REVIEW ARTICLE

Karyopherin abnormalities in neurodegenerative proteinopathies

Terouz Pasha,1,† Anna Zatorska,1,† Daulet Sharipov,1,† Boris Rogelj,2,3 Tibor Hortobágyi4,5 and Frank Hirth1

†These authors contributed equally to this work.

Abstract

Neurodegenerative proteinopathies are characterised by progressive cell loss that is preceded by the mislocalisation and aberrant accumulation of proteins prone to aggregation. Despite their different physiological functions, disease-related proteins like tau, alpha-synuclein, Tar DNA binding protein-43, Fused in sarcoma and mutant Huntingtin, all share low complexity regions that can mediate their liquid-liquid phase transitions. The proteins’ phase transitions can range from native monomers to soluble oligomers, liquid droplets and further to irreversible, often-mislocalised aggregates that characterise the stages and severity of neurodegenerative diseases. Recent advances into the underlying pathogenic mechanisms have associated mislocalisation and aberrant accumulation of disease-related proteins with defective nucleocytoplasmic transport and its mediators called karyopherins. These studies identify karyopherin abnormalities in amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer’s disease, and synucleinopathies including Parkinson’s disease and dementia with Lewy bodies, that range from altered expression levels to the subcellular mislocalisation and aggregation of karyopherin alpha and beta proteins. The reported findings reveal that in addition to their classical function in nuclear import and export, karyopherins can also act as chaperones by shielding aggregation-prone proteins against misfolding, accumulation and irreversible phase-transition into insoluble aggregates. Karyopherin abnormalities can, therefore, be both the cause and consequence of protein mislocalisation and aggregate formation in degenerative proteinopathies. The resulting vicious feedback cycle of karyopherin pathology and proteinopathy identifies karyopherin abnormalities as a common denominator of onset and progression of neurodegenerative disease. Pharmacological targeting of karyopherins, already in clinical trials as therapeutic intervention targeting cancers such as glioblastoma and viral
infections like COVID-19, may therefore represent a promising new avenue for disease-modifying treatments in neurodegenerative proteinopathies.

Author affiliations:

1 King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK

2 Jozef Stefan Institute, Department of Biotechnology, University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia

3 Biomedical Research Institute BRIS, University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia

4 ELKH-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary

5 King’s College London, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK

Correspondence to: Dr. Frank Hirth

King’s College London, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, Cutcombe Road, SE5 9RX, London, UK

E-mail: Frank.Hirth@kcl.ac.uk

Running title: Karyopherin pathology in proteinopathies

Keywords: karyopherin; nucleocytoplasmic transport; phase transition; protein aggregation; neurodegeneration.

Abbreviations: AD = Alzheimer’s Disease; ADAR = Adenosine Deaminase RNA Specific; ALS = Amyotrophic Lateral Sclerosis; ARM = Armadillo domain; Aβ = Amyloid-beta; CSE1L/CAS = Chromosome Segregation 1 Like/Cellular apoptosis susceptibility; DLB =...
Dementia with Lewy Bodies; EWS = Ewing Sarcoma; FG = phenylalanine and glycine; FTD = Fronto-Temporal Dementia; FUS = Fused in sarcoma; HD = Huntington’s Disease; HTT = Huntingtin; IBB = Importin beta binding; IPOA = importin alpha; KPNA = karyopherin-α; KPNB = karyopherin-β; LB = Lewy body; LCR = low-complexity region; LN = Lewy neurites; MGC = Mammalian Gene Collection; NES = nuclear export signal; NF-κB = nuclear factor-κB; NFT = neurofibrillary tangles; NLS = nuclear localisation signal; NPC = nuclear pore complex; NPI = Nucleoprotein interactor; NRF2 = Nuclear factor erythroid 2-related factor 2; NT17 = N-terminal 17-residue sequence; NUP = nucleoporin; PD = Parkinson’s Disease; PDD = Parkinson's disease dementia; PRKCI = Protein Kinase C Iota; PY-NLS = Proline-Tyrosine NLS; QIP = Importin alpha Q; RAN = Ras-related nuclear; RBM8A = RNA Binding Motif Protein 8A; RCC1 = regulator of chromosome condensation 1; RCH = RAG cohort protein; RP = ribosomal protein; Ran-GAP = Ran GTPase activating protein; RanBP1 = Ran binding protein 1; SFSR1/2 = splicing factors SR1/2; SINE = selective inhibitors of nuclear export; SNAI1 = Snail Family Transcriptional Repressor; SRP19 = Signal Recognition Particle 19; SRP = signal recognition particle; STAT12 = Signal transducer and activator of transcription 2; STAT1 = Signal transducer and activator of transcription 1; Scyl1 = SCY1 like pseudokinase 1; TAF15 = TATA binding associated factor 15; TDP-43 = transactive response DNA binding protein of 43 kDa; Ubc = ubiquitin-conjugating enzyme; cNLS = classical nuclear localisation signal; eIF1A = eukaryotic translation initiation factor 1A; hnRNP = Heterogeneous nuclear ribonucleoproteins A1/A2/H/M; mHTT = mutant huntingtin; p50RhoGAP = p50 Rho GTPase-activating protein; poly-P = poly-Proline; α-syn = alpha-synuclein.

Introduction

Neurodegeneration is the selective and progressive loss of neurons, eventually leading to cognitive and behavioural deficits for which currently no cure or effective treatments are available.¹ Neurodegenerative diseases are distinguished by clinical appearance and pathology, such as movement disorders like Parkinson’s Disease (PD), Huntington’s Disease (HD) and Amyotrophic Lateral Sclerosis (ALS), and dementias like Alzheimer’s Disease (AD), Fronto-Temporal Dementia (FTD) and Dementia with Lewy Bodies (DLB). Despite their clinical heterogeneity, the majority of neurodegenerative diseases are characterised by proteinaceous inclusions that are often mis-localized and accumulate in the extracellular milieu or intracellular compartments of affected cells. The disease-related proteins are frequently post-
translationally modified (phosphorylated, ubiquitinated, acetylated and cleaved into fragments), which is often related to their transition from native soluble monomers into oligomers, protofibrils and the ultimate deposition of β-sheet fibrils and insoluble aggregates.\(^2\) The quantity and distribution of these aggregates correlates with the stage and severity of the diseases,\(^3,4\) and different proteins aggregate in different neurodegenerative diseases. For example, in AD proteins aggregate as amyloid plaques comprising Amyloid-beta (A\(\beta\)) fragments of aberrantly cleaved amyloid precursor protein; in PD and DLB as Lewy bodies comprising aberrant forms of alpha-synuclein (α-syn); in AD, FTD, PD and ALS as tangles comprising phosphorylated tau; and in ALS, FTD, AD and PD as insoluble aggregates containing TAR DNA binding protein 43 (TDP-43), with some TDP-43-negative cases of ALS and FTD as insoluble aggregates of fused in sarcoma (FUS); and in HD as mutant huntingtin with aberrant poly-glutamine extension.

The disease-related proteins differ significantly in function and, until recently, it remained elusive how such functionally unrelated proteins can lead to comparable pathogenic alterations and degenerative cell death. However, structure-function analyses revealed the majority of these proteins harbor unstructured, intrinsically disordered amino acid sequences called low-complexity regions (LCRs), that have recently been linked with unprecedented insights to pathogenic mechanisms underlying neurodegenerative diseases.\(^5-11\) These studies showed that LCRs of disease-related proteins enable their aberrant phase transition into liquids and the subsequent mislocalisation and accumulation as fibrillary aggregates.\(^12-14\) Further mechanistic insights revealed that nuclear transport receptors, termed karyopherins, and their abnormalities are associated with protein mislocalisation and aggregation.\(^15,16\)

These findings provide evidence that in addition to nucleocytoplasmic transport, karyopherins can also function as chaperones to maintain their protein cargos in a soluble non-aggregated state, thereby reducing aberrant phase transition and protein accumulation.\(^17-20\) For example, in the case of ALS and FTD, it has been shown that the underlying pathogenesis involves defective nucleocytoplasmic transport across the nuclear envelope,\(^21-24\) mediated by karyopherins known to shuttle proteins across the nuclear membrane.\(^25\) These findings suggest a dual role of karyopherins as a molecular switch between protein aggregation states and as a gatekeeper of protein localisation, deregulation of which can trigger onset and progression of disease. Here we review recent evidence and current understanding of karyopherin function,
their role in onset and progression of disease, and discuss their potential as therapeutic targets in neurodegenerative proteinopathies.

Karyopherin protein families

Karyopherins are classified into karyopherin-α (KPNA) and karyopherin-β (KPNB) families (Figure 1), with each member recognising its own set of cargo proteins or RNAs. KPNB orthologues are grouped into subfamilies, α1, α2 and α3 (Figure 1A; Table 1) based on differences in primary amino acid sequences. The human genome encodes seven KPNA orthologues with a common structure consisting of ten helical Armadillo (ARM) repeats that recognise the nuclear localisation signal (NLS) of their specific cargos; a short C-terminal region which functions as a specific binding site for the export factor chromosome segregation 1 like (CSE1L, also known as Cellular apoptosis susceptibility, CAS); and an N-terminal Importin beta binding (IBB) domain for KPNB1 binding. Evidence from cancer research reveals these subfamilies have distinct cargo specificities. For instance, members of the α2 subfamily KPNA3 and KPNA4 show particular affinity for NF-κB and the nuclear regulator of chromosome condensation 1 (RCC1), whilst KPNA1 of the α3 subfamily specifically binds to signal transducer and activator of transcription 1 and 2 (STAT1, STAT2). Furthermore, the N-terminal IBB domain of KPNA proteins (Figure 1A) also control the accessibility of the nuclear localisation signal binding site by mimicking an NLS structure and folding back to occupy the ARM repeats when KPNA proteins are not bound to their cargos. Thus, only cargos with high affinity are bound to KPNA proteins (Table 1). Cargos with a relatively lower affinity bind to the ARM repeats of KPNA upon formation of KPNA-KPNB1 heterodimer, which frees the NLS binding site.

KPNB proteins (Figure 1B and Table 2) have an essential role in nucleocytoplasmic transport and as a secondary consequence downstream of their role in nuclear transport also affect the regulation of gene expression, the immune response and signal transduction, as well as viral pathogenesis and tumorigenesis. Members of the KPNB family share an importin N-terminal domain responsible for RanGTP/GDP binding that drives active nucleocytoplasmic transport (Figure 2). KPNBs are characterized by multiple tandem helical repeats termed HEAT repeats located in the C-terminal region, each composed of two antiparallel helices A and B arranged into ring-like structures. The HEAT repeats are responsible for binding to KPNA and to cargos. In humans, the KPNB family contains 18 members (Table 2), which...
can be divided into three groups based on their major role in nucleocytoplasmic transport as either exportins, importins or for bidirectional transport. For example, KPNBs such as exportin 4 (XPO4) or exportin 5 (XPO5) mediate nuclear export of cargos,37-41 whereas KPNB1 or TNPO1 and TNPO2 (also called KPNB2 and KPNB2B, respectively) mediate nuclear import (see Table 2, also for synonyms and cargos). Despite significant differences in protein structure, localisation and function of the majority of disease-associated proteins, their nucleocytoplasmic shuttling is mediated by karyopherins.

Karyopherins in nucleocytoplasmic transport

The nucleus of cells provides a protective environment through tightly regulated protein import and export.42 While smaller proteins as well as ions, salts and nucleotides can enter the nucleus via passive diffusion,34 proteins larger than 40-65kDa require binding to nuclear transport receptors to traverse the nuclear pore complex (NPC).26 This process (Figure 2) is regulated by three key elements: the nuclear pore complex, nuclear transport factors of the karyopherin families and a Ras-related nuclear (RAN) protein gradient.43 The nuclear pore complex consists of three rings: the nucleoplasmic ring, the middle inner ring and the cytoplasmic ring that form an aqueous channel spanning the nuclear envelope.44 At the molecular level, it consists of an assembly of approximately 30 nucleoporins (NUPs) classified into six groups based on their localisation.45 The nucleoporins are also grouped by their molecular function into those that form the NPC scaffold, the trans-membrane nucleoporins and the phenylalanine and glycine (FG) containing nucleoporins – where phase separation occurs. In the absence of stable nucleoporin complexes, the nucleus would be pore-free with a continuous nuclear envelope.43 Ran, a small GTPase protein, drives the direction of cargo transport, depending on its bound nucleotide state. The nuclear regulator RCC1 functions as a guanine nucleotide exchange factor and maintains RanGTP levels by facilitating GDP-GTP exchange. In the cytoplasm, Ran GTPase activating protein (Ran-GAP) and Ran binding protein 1 (RanBP1) catalyse the hydrolysis of GTP to GDP. Cooperation of these two systems forms a Ran gradient, which guides directionality of nucleocytoplasmic transport (Figure 2) and facilitates the rapid and selective cargo transport into and out of the nucleus.26

Karyopherins are central to nucleocytoplasmic trafficking as they recognise the nuclear localisation signal or nuclear export signal (NES) of cargo proteins.31 In the ‘classical’ nuclear import pathway,46 cargo proteins such as TDP-43 contain a ‘classical’ NLS (eNLS), which
KPNAs bind to mediate nuclear import. cNLSs are either monopartite or bipartite sequences. Whilst monopartite sequences contain a single cluster of basic amino acids (Lys/Arg) as exemplified by the SV40 large T antigen NLS 126-PKKKRRV-132,47 bipartite sequences are made up of two clusters of basic residues separated by an unconserved linker region (e.g. nucleoplasmin NLS 155-KRPAATKKAGQA-KKKK-170).48

During classical nuclear import (Figure 2), the cargo-KPNA bipartite complex binds to KPNB1 creating a trimeric complex (cargo-KPNA-KPNB1) that interacts with the FG motifs of the nucleoporins in the central channel, and subsequently, driven by the RanGTP/GDP gradient, this complex translocates to the nucleus.42,49 In the nucleus the trimeric complex starts to dissociate once RanGTP binds to KPNB1, with the physical separation of KPNB1 and KPNA. Subsequent dissociation of the KPNA-cargo complex is slow and can be catalysed by CSE1L/CAS that also mediates export of KPNA. The KPNA, RanGTP and CSE1L/CAS proteins are then recycled back to the cytoplasm (Figure 2). In addition to the cNLS-dependent pathway, other import pathways involve non-classical NLSs, which unlike cNLSs bind directly to KPNBs without the need for interaction with KPNA.34 One such example is the Proline-Tyrosine NLS (PY-NLS) motif of FUS, which is directly imported via TNPO1 and 2 (KPNB2 and KPNB2B).7,50,51 Although FUS and TDP-43 have putative nuclear export signal sequences, it should be noted that TDP-43 and FUS could also be exported through the nucleus via passive diffusion.52,53 Bioinformatics analysis indicates that the nuclear export signals in TDP-43 and FUS are non-functional and both proteins can be exported independent of the export receptors XPO1 and XPO5.52

Karyopherin abnormalities in neurodegenerative diseases

Karyopherin abnormalities have been implicated in ALS and FTD with TDP pathology,15-20,54 in Alzheimer’s disease and FTD with Tau pathology,55-60 in synucleinopathies,61-66 and in cell and animal models of Huntington’s disease67-70, suggesting karyopherin-associated pathology as a common denominator in the aetiology of neurodegenerative proteinopathies. In the following sections we review how karyopherin abnormalities manifest in these neurodegenerative diseases which is summarised in Table 3.

Karyopherin abnormalities in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia with TDP pathology

ALS and FTD are part of a common disease spectrum with overlapping clinical, pathological and genetic features.71,72 ALS is a debilitating and ultimately fatal disease, characterised by the progressive loss of upper and lower motor neurons which inevitably leads to degeneration of corticospinal tracts and muscle wasting.73,74 In contrast, FTD is characterised by progressive neuronal atrophy which occurs in the frontal and temporal lobes with the resulting loss of cortical tissue leading to personality and behavioural changes, and/or a gradual impairment of language skills.72,75 A common pathological feature found in both diseases are abnormally aggregated cytoplasmic inclusions of TDP-4376,77 that characterise 97\% of ALS cases and approximately 45\% of patients with FTD71 which are therefore termed FTD-TDP in contrast to FTD cases with tau pathology termed FTD-Tau.

Reduced protein levels of KPNA2 and CAS are observed in FTD-TDP frontal cortex54 and reduced KPNB1 levels are found in the spinal cord of patients with ALS.78 Immunohistochemical analysis of nucleoporins in ALS revealed an irregular, fractured nuclear pore complex,79 possibly preventing the nuclear import of TDP-43. In addition, irregular, disrupted nuclear staining for NUP62 or KPNB1 has been reported in sporadic ALS with TDP-43 mislocalisation providing further evidence for disruption of the nuclear pore complex in TDP-43 pathologies.80 Moreover, cell culture experiments revealed that KPNB1 and CAS knockdown dysregulates the classical nuclear import of TDP-43, leading to its cytoplasmic accumulation comparable to disease pathology.54

Corresponding phenotypes were also observed in the most common genetic form of ALS and FTD caused by an intronic hexanucleotide repeat expansion (GGGGCC) in the \textit{C9ORF72} gene, termed C9ALS/FTD.21,22,81-84 Several pathogenic mechanisms have been related to the \textit{C9ORF72} mutation, including haploinsufficiency85,86 and homozygous loss of \textit{C9ORF72} function,87 as well as toxic gain of function of the repeat RNA,83,88-90 and the accumulation of dipeptide repeat proteins (DPRs) that are translated from G4C\textsubscript{2} mRNA templates through repeat-associated non-ATG translation (RAN translation).89,91 However, the exact contribution of each of these mechanisms to onset and progression of disease in C9ALS/FTD is still inconclusive.92 Functional studies in C9ALS/FTD cell and animal models identified defective nucleocytoplasmic transport and nuclear pore complex deficits as potential pathogenic
mechanisms underlying neurodegeneration.21-24,93,94 These findings are supported by rescue experiments in yeast and \textit{Drosophila} models of C9ALS/FTD, which identified importins, exportins, Ran-GTP cycle regulators and nuclear pore components as modifiers of G4C2 RNA and DPR-mediated neurodegeneration.21,23,24 Moreover, a recent study, using a permeabilised cell assay, showed that arginine-rich DPRs bind KPN1, ultimately leading to dose- and length-dependent disruption of nuclear import.95 Of note, this study also revealed that transport disruption was neither due to sequestration of NCT components, nor to blockade of the FG nucleoporin-mediated permeability barrier, but rather due to perturbed KPNB-related cargo-binding.95

Comparable nucleocytoplasmic transport and nuclear pore complex deficits were also reported in models of TDP-43 proteinopathy.15,16 These studies provide experimental evidence that accumulating cytosolic TDP-43 causes cytoplasmic mislocalization of KPNAs in \textit{Drosophila} models of C9ALS/FTD, a phenotype that is also observed in post-mortem frontal cortex tissue of C9FTD patients and sporadic cases of FTD-TDP.15,16 Cytosolic TDP-43 functions in the stabilisation, translation and transport of mRNA.96 However, imbalanced cytoplasmic accumulation of TDP-43 can induce its nuclear depletion and aggregate formation,97 cellular phenotypes that are both related to onset and progression of disease.98 Nuclear depletion of TDP-43, through decreased expression or aggregate formation, has also been shown to lead to reduced levels of RanBP1, suggesting that TDP-43 mislocalisation may be both cause and consequence of errors in nucleocytoplasmic transport.98 However, the initiating causes leading to cytoplasmic accumulation of TDP-43 remain elusive.

Interaction studies have identified direct protein-protein interactions between TDP-43 and KPNA254 and KPNA415, in addition to TDP-43 targeting the pre-mRNA of KPNA4 and to a lesser extent that of KPNA2.99 Furthermore, cytoplasmic TDP-43 droplets that are not associated with stress granules have been shown to sequester KPNA4 and NUP62 and induce mislocalization of RanGap1, Ran, and NUP107.20 These findings support the feedback loop model proposed by Solomon \textit{et al.}16, whereby cytoplasmic, non-aggregated droplets of TDP-43 recruit karyopherins which in turn causes nucleocytoplasmic transport deficits. Of note, KPNAs also bind arginine-rich DPRs,93 the most toxic DPR species observed in models of C9ALS/FTD,100,101 which in turn impairs KPN1/KPNB mediated nuclear import, including cargo transport of TDP-43.102 Moreover, cell culture studies revealed that DPRs can be sequestered into cytoplasmic inclusions by β-sheet protein aggregates, including fragments of
TDP-43. Furthermore, experiments in cell culture54 and in \textit{Drosophila}103 revealed the depletion of KPNB1 and KPNAs directly contributes to impaired nuclear import and cytoplasmic accumulation of TDP-43. These data suggest a vicious cycle of TDP-43 and karyopherin abnormalities16 and in turn impaired nucleocytoplasmic transport and a defective nuclear pore complex, that trigger onset and progression of disease in ALS and FTD-TDP.

Karyopherin abnormalities in Alzheimer's Disease and Frontotemporal Dementia with Tau pathology

Alzheimer’s disease is the most common cause of dementia, accounting for up to 75\% of all dementia cases.104 Patients suffer from insidiously progressive disturbances in memory and other cognitive capabilities such as dysfunction in language, visuospatial deficits and impaired executive function.105 AD-related proteinopathy is characterized by neurofibrillary tangles enriched in hyperphosphorylated tau, and amyloid plaques comprising Aβ fragments of aberrantly cleaved Amyloid precursor protein. Karyopherin abnormalities in Alzheimer’s disease have been repeatedly reported, yet how they contribute to disease formation and/or progression is only starting to emerge.

Accumulated and aggregated KPNA2/Importin-α1 has been identified in neurofibrillary tangles57 and in Hirano bodies in hippocampal CA1 neurons of AD patient cases.56 cDNA microarray studies using AD patient brain samples identified abnormally upregulated levels of KPNA3,55 while KPNA6 upregulation was identified in association with small non-coding RNAs in AD-affected brain.58 In addition to KPNA abnormalities, several members of the KPNB family have been found to be mis-localised, accumulated or aggregated in Alzheimer’s disease patient brain. KPNB1 and KPNB2 were found in cytoplasmic granules in hippocampal neurons, while KPNB2 accumulation was also detected in tangle-bearing cells of Alzheimer’s disease cases.107 Expression of KPNB1 and XPO5/exportin-5 were both found to be upregulated in AD cases and both proteins co-localized with hyperphosphorylated tau.59 These data suggest that karyopherin abnormalities may play a direct role in tau pathology related to Alzheimer’s disease and possibly also FTD-Tau.

In support of this hypothesis, experiments using a \textit{Drosophila} model of tauopathy revealed that tau-induced nuclear envelope invaginations sequestered the karyopherin beta family member XPO1/exportin-1.108 Another study using AD patient brain material together with transgenic
mouse models of FTD-Tau identified a direct link between tau pathology and nucleocytoplasmic transport deficits.60 Using co-immunoprecipitation from human AD brain tissue, these studies demonstrated direct binding between tau and Nup98 and that tau interacts with nuclear pore proteins enriched in phenylalanine-glycine (FG) repeat domains. In addition, these FG-motif nucleoporins were shown to mis-localize from and in turn disrupt the nuclear membrane in primary cortical neurons derived from transgenic mouse models of FTD-Tau.60 As a likely consequence of these NPC deficits, alterations in active protein import and export were observed including decreased expression of Ran required for energy-dependent nucleocytoplasmic shuttling.60 This reduction in Ran expression and reduced nucleocytoplasmic transport has also been observed in an earlier study using Alzheimer’s disease brain samples and neuroblastoma cells,109 suggesting that nucleocytoplasmic transport deficits may directly contribute to tau pathology and disease progression. This is further supported by in vitro experiments which showed that Nup98 triggers tau aggregation and accelerates tau fibrilization seen in Alzheimer’s disease and tauopathy brains.60

Despite these functional insights into tau phenotypes and nucleocytoplasmic transport deficits, it remains to be established whether the karyopherin abnormalities observed in Alzheimer’s disease patient brain55-59,107 are a cause or a consequence of tau pathology. A possible pathogenic mechanism might be related to the functional link between nuclear pore proteins enriched in FG-motifs like Nup98 and karyopherins of the beta family. These FG-motif Nups and KPNBs are known to interact with each other at the nuclear membrane110,111 and their functional interactions are essential to allow repeated Ran-dependent cycles of nucleocytoplasmic shuttling.112 These data suggest that alterations in levels or localisation of FG-Nups, Ran and/or KPNBs could trigger tau pathology - and vice versa – and lead to the cellular and molecular phenotypes already observed in transgenic mouse models of FTD-Tau.60

Karyopherin abnormalities in synucleinopathies

Synucleinopathies are a group of neurodegenerative disorders that include Parkinson's disease (PD), Parkinson's disease with dementia (PDD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA).113,114 Their common pathological feature is the accumulation and aggregation of α-synuclein (α-syn) in Lewy bodies (LB) found in neurons and glial cells, and in Lewy neurites (LN) within neuronal processes.66,115-117 Native α-syn is found in presynaptic terminals of neurons where it acts as a chaperone for neurotransmitter release.118 Its initial discovery in *Torpedo* identified α-syn not only in synaptic terminals but also in
neuronal nuclei, suggesting a physiological function in both synapse and the nucleus. Indeed, recent experiments using transgenic mice and human cell culture revealed translocation of α-syn to the nucleus where it modulates DNA repair, raising the question how α-syn can shuttle into the nucleus.

α-syn does not possess a nuclear localisation signal and due to its small size of 14kDa may enter the nucleus via passive diffusion. Recent findings however, identified three intermediates that interact with α-syn and together translocate into the nucleus: by direct binding of α-syn to the retinoic acid receptor and its calcium-dependent nuclear import; by sumoylation of α-syn and its subsequent binding to KPNA6 which mediates transport into the nucleus; by interaction with TRIM28 and its karyopherin-alpha mediated nuclear import. Dysfunction of either pathway has been directly implicated in α-syn pathology in transgenic mice and in cell culture experiments expressing human mutant forms of α-syn, as well as in post-mortem brain tissue of DLB cases. These findings could explain the pathological phenotypes observed in synucleinopathies in which α-syn has been detected in aberrant forms in the nucleus and in presynaptic terminals where it can spread across synaptically connected brain regions.

Consistent with these findings, karyopherin abnormalities have been associated with synucleinopathies. Alterations in KPNB1 expression were identified using microarray analysis of tissue material derived from PD patients with a triplication in the α-syn encoding SNCA gene. Lewy body formation triggered by prefibrillar α-syn was found to alter the expression levels of KPNA7 and XPO1/exportin-1. The PD-related α-syn mutation G51D was shown to cause nuclear aggregation, while nuclear aggregation of α-syn was shown to be mitigated by targeted knockdown of KPNA2. Cell culture studies revealed that α-syn mediated cytotoxicity caused upregulation of KPNB3 and involved interaction with KPNA3. In addition to these phenotypes directly related to α-syn accumulation, several other studies reported karyopherin abnormalities in cell and animal models of familial forms of PD that are characterised by α-syn pathology. KPNA2 and KPNA6 have been identified as substrates of LRRK2/PARK8 whose mutations cause one of the most common forms of PD. Mutant DJ-1/PARK7 was shown to interact with KPNB2 in an oxidative stress-dependent manner leading to its mislocalisation. FBXO7/PARK15 which requires XPO1 for its normal localisation was found mislocalised together with α-syn in Lewy bodies, Lewy neurites and cytoplasmic inclusions in glial cells in both PD and MSA cases.
Despite this multitude of phenotypes, it should be noted that unlike in ALS, FTD and AD cases, conspicuous karyopherin pathology has not been reported in any of the synucleinopathies to date. It therefore seems likely that the detected phenotypes described above are a consequence rather than a cause contributing to the cellular and molecular mechanisms underlying synucleinopathies. However, this situation may change with future work specifically focusing on karyopherin abnormalities and their potential role in the onset and progression of α-syn pathology.

Karyopherin abnormalities in cell and animal models of Huntington's disease

Huntington’s disease is an autosomal dominant disorder characterised by neurodegeneration and gliosis in the striatum and cortex, leading to progressive loss of motor function, psychiatric symptoms, and cognitive impairment. HD is caused by a CAG triplet repeat expansion encoding for a polyglutamine (poly-Q) tract in the N-terminus of Huntingtin (HTT). Expansions of >36–39 Glutamine residues trigger disease, and longer poly-Q stretches above this threshold cause early onset Huntington’s disease. Huntingtonin is a large (∼350 kDa) protein that shuttles between the cytoplasm and nucleus; it contains a XPO1/CRM1-dependent nuclear export signal at its carboxyl-terminus and its nuclear import occurs via its PY-NLS by the TNPO/KPNB2 pathway. In mutant Huntingtonin, the poly-Q domain is flanked by the first 17 amino acids at the N-terminus (Nt17) and by a poly-Proline stretch at its C-terminus. Mutant Huntingtonin is more prone to proteolysis, resulting in smaller fragments of the N-terminus containing the poly-Q expansion of exon 1. Nt17 plays an important role in Huntingtonin aggregation and toxicity, in addition to acting as another nuclear export signal via interactions with XPO1/CRM1 in an α-helical and RanGTP-dependent manner.

The subcellular localisation and actual function of wildtype Huntingtin is still debated, however there is consensus that poly-Q expanded mutant Huntingtin causes gain of function proteinopathy in both the nucleus and the cytoplasm. Consistent with this hypothesis, both intranuclear and cytoplasmic aggregates have been observed in HD patient brains while cell culture experiments using human embryonic kidney 293T cells, neuroblastoma cells and mouse primary neurons transfected with fragments of mutant Huntingtin revealed its nuclear...
and cytoplasmic aggregation.70 Moreover, in the striatum and cortex of HD mouse models, mutant Huntingtin formed both nuclear and cytoplasmic aggregates, which resulted in the accumulation of mRNA in the nucleus and an overall reduction in mRNA levels.70,157 These cellular and molecular phenotypes may point towards a role of nucleocytoplasmic transport deficits in HD.

Indeed, poly-Q and mutant Huntingtin pathology has been related to nuclear pore complex deficits and defective nucleocytoplasmic transport, including karyopherin abnormalities.67,69,150-161 Transfection of mouse primary neurons with mutant Huntingtin expanded with 96 poly-Q fragments not only caused nuclear and cytoplasmic aggregation of mutant Huntingtin; it also caused aggregation of KPNA2 and KPNA4.70 Some of these cytoplasmic KPNA2/4 aggregates were found associated with mutant Huntingtin aggregates, suggesting that Huntington’s disease-related poly-Q pathology directly causes karyopherin abnormalities. Consistent with this hypothesis, affinity-purification mass spectrometry using mouse brain tissue expressing mutant Huntingtin expanded with 97 poly-Q, identified the karyopherins KPNA6, XPO7, CAS and KPNB1 as binding partners of mutant Huntingtin.158 Several of these karyopherins were independently confirmed as targets of mutant Huntingtin in a genomics and proteomics study using transgenic mice expressing human mutant Huntingtin exon 1 carrying disease-related CAG repeats.159 These experiments identified altered expression levels of the karyopherin alpha proteins KPNA1, KPNA2 and KPNA3 together with KPNA4 and KPNA6, as well as altered expression levels of KPNB1 and KPNB2.159 Despite these experimental evidences in cell and animal models of Huntington’s disease, conspicuous karyopherin pathology has not been reported so far in brain of patient cases.

Interestingly, however, it has been shown that HD-related CAG repeat expansion RNAs can also function as a template for repeat-associated non-AT (RAN) translation. The resulting homo-polymeric RAN translation products include poly-Ala, poly-Ser, poly-Leu, and poly-Cys peptides that have been detected in brains of Huntington’s disease patients, especially in regions of microglial activation and degenerative apoptotic cell loss, as well as throughout the degenerating cerebellar layers of juvenile-onset Huntington’s disease cases.162 These data indicate that the aetiology of Huntington’s disease may share similarities with C9ALS/FTD, both in its RAN translation-derived peptide accumulation161,163 and in nuclear transport deficits.70,161 However, further work is required to establish whether karyopherin pathology
characterises patient brain cases and whether these phenotypes are mere consequences of, or
directly contribute to mutant Huntingtin, poly-Q and RAN-derived peptide pathology that have
been detected in cell and animal models of Huntington’s disease.

Phase transition and protein aggregation of karyopherin cargos

Despite their functional heterogeneity and disease-specificity, TDP-43, tau, α-syn and FUS as well as mutant Huntingtin with poly-Q, all harbour low complexity regions rendering them intrinsically disordered proteins. Low complexity regions are devoid of charged amino acids but contain polar ones (Q, N, S, G) with interspersed aromatic residues (F, Y), making these chains highly flexible and interactive. Because of their similarity to infectious yeast proteins, low complexity regions are also called prion-like domains. Recent functional studies provide compelling evidence that prion-like low complexity regions make intrinsically disordered proteins vulnerable to changes in the surrounding milieu which can alter their physical properties, eventually leading to their accumulation in pathological aggregates. These changes in aggregate state are similar to phase separations of mixed solutions, ranging from liquid-liquid de-mixing into liquid droplets, to phase transitions into gel-like structures (hydrogels) that over time can mature into solid fibrillary aggregates such as amyloid-like fibres. These phase transitions, especially the initiating phase separation of soluble proteins with low complexity regions into droplets and hydrogels, tend to accumulate in membrane-less compartments such as P granules, paraspeckles, nucleoli and stress granules and are very sensitive to changes in temperature, salt, pH or molecular concentration. These environmental alterations characterize protein accumulation and cellular stress observed in neurodegenerative diseases.

Recent studies showed that tau, mutant Huntingtin-poly-Q, TDP-43, FUS, and α-syn can undergo liquid-liquid phase separation. In the case of poly-Q pathology, it was shown that Huntingtin exon 1 aggregates are present in liquid-like as well as solid-like forms. The poly-Q and proline-rich regions of exon 1 facilitate liquid-like formation, which can convert into solid-like assemblies when poly-Q length expands beyond the threshold for Huntington’s disease. Similar to poly-Q related phase separation, recent studies showed that phosphorylated tau, recombinant mutant aggregate prone tau, and soluble
phospho-tau isolated from human AD brain can all undergo phase separation.166,171-174 These findings are consistent with previous studies, in which TIA1, a major component of stress granules, promoted tau misfolding and aggregation by sequestering tau into stress granules, whilst TIA1 knockout inhibited tau mediated pathology and toxicity.182

Karyopherin-mediated phase transition in neurodegeneration

Previously known for their role in nucleocytoplasmic transport, karyopherins are now also recognised for their important functions as chaperones and molecular switches in the pathogenesis of neurodegenerative proteinopathies (Figure 3).13,14,183 In the case of TDP-43 and FUS, recent studies established that this process is mediated by karyopherins acting as molecular chaperones in phase separation.17-20 These data suggest that karyopherin abnormalities are not only a common denominator in neurodegenerative proteinopathies but misregulation of karyopherins can also trigger onset and progression of disease. In line with this notion, in vitro studies demonstrated that TDP-43 which assembled into protein-rich droplets via liquid-liquid phase separation could fibrillate over time.8,94 Liquid-liquid phase separation of TDP-43 is crucially dependent on the C-terminal low complexity region,175 especially its alpha-helical structure9,178,184 and three tryptophan residues within it, W334, W385 and W412.185 Using hydrogels, Guo and colleagues19 showed that KPNA and KPNB1 interact with the canonical nuclear localisation signal of TDP-43 (Figure 3), the binding of which reverses and prevents its aberrant phase transition.19,102 ALS-related mutations in the low complexity region of TDP-43 accelerate the transition of liquid-like droplets to pathologically fibrillized states,8,186 whereas overexpression of KPNA and KPNB1 resulted in reversal and prevention of TDP-43 fibrillation.19 Moreover, studies in sporadic and familial forms of ALS and FTD revealed that disease-initiating cytoplasmic accumulation of TDP-43 is associated with a vicious cycle of KPNA dysfunction that is accompanied by depletion of KPNB1 and a dysfunctional nuclear pore complex.15,16,20,93

Comparable phenotypes have been observed in FUS-related ALS. TNPO1/KPNB2 was shown to inhibit liquid-liquid phase separation of FUS18 and to reverse and prevent the fibrillization of FUS and other RNA binding proteins by interacting with the PY-NLS domain.19 Using NMR spectroscopy and small angle X-ray scattering techniques, Yoshizawa et al.18 showed that a combination of strong and weak binding between TNPO1/KPNB2 and FUS inhibits phase separation. The interactions between TNPO1/KPNB2 and FUS competed with FUS-FUS
interactions, thereby disrupting phase separation.18 Moreover, \textit{in vitro} studies revealed that TNPO1/KPNB2 suppresses FUS phase separation and stress granule association by interacting with its arginine residues in its PY-NLS and RGG domains.17 These studies also showed that ALS-related mutations in FUS reduce its sensitivity to the chaperone activity of TNPO1/KPNB2 both in cells and \textit{in vitro}, thereby leading to a model in which FUS mutations both enhance phase separation and elude the chaperone activity of TNPO1/KPNB2.17-19 Arginine residues appear to be critical to aberrant phase separation and karyopherin-mediated chaperoning as overexpression of arginine-containing DPRs derived from RAN translated, C9ALS/FTD related G4C2 repeat RNA, can induce the assembly of stress granules, triggering the co-localisation of Ran and karyopherins into these membraneless organelles.187 The resulting decrease in karyopherin availability impairs karyopherin-mediated cargo transport and chaperone function, thereby increasing cytoplasmic accumulation and phase transitions, which ultimately leads to disease-related fibrillization and aggregate formation.

Corresponding molecular and cellular phenotypes have been observed in AD, FTD-Tau and synucleinopathies. Liquid-liquid phase separation of tau protein was shown to initiate tau aggregation166,174,188,189 that was significantly enhanced by FTD-tau associated mutations including P301L-tau linked to inherited tauopathy.173 Tau positive neurofibrillary tangles and Hirano bodies were found enriched in KPNA2/Importin-\textalpha{}1 aggregates,56,57 while KPNB1 and XPO5 were found co-localised with hyperphosphorylated tau in affected neurons.59 \textalpha{}-syn has been shown to undergo spontaneous liquid-liquid phase separation which was accelerated by disease-related mutations A53T, E46K and S129E and formation of fibrils167 that could mature into Lewy body-like assemblies.181 Of note, Lewy body formation related to synucleinopathies has been associated with altered KPNA7 and XPO1/exportin-1 expression,66 while inhibition of KPNA2 impaired the pathological accumulation of \textalpha{}-syn in the nucleus.62 Similarly, triggered by its disease-related poly-Q tracts, mutant huntingtin exon1 was shown to form liquid-like assemblies that could convert to solid fibrillar structures.165

These findings suggest that karyopherin abnormalities are interlinked with alterations of aggregation-prone proteins that can phase separate into disease-related intracellular inclusions and aggregates. In line with these observations, work on nucleocytoplasmic transport receptors, including KPNB3, showed that karyopherins can act as molecular chaperones, shielding basic domains of positively charged proteins and preventing their aggregation.102,187 Together, these
data indicate that both karyopherin abnormalities and affected karyopherin-cargo binding promote phase transition which accelerates protein mislocalisation and aggregate formation characteristic of neurodegenerative proteinopathies. As a result of these new findings, it is becoming increasingly evident that karyopherins can act as chaperones comparable to molecular disaggregases14,190,191 that protect aggregation-prone proteins against misfolding, accumulation and irreversible phase-transition into insoluble aggregates. It is therefore reasonable to consider karyopherins as therapeutic targets for the treatment of neurodegenerative diseases for which currently no cure or effective treatments are available.

Targeting karyopherin abnormalities in degenerative proteinopathies

Current treatments like Riluzole for ALS192 or Donepezil, Rivastigmine, Galantamine and Memantine for AD193 offer only short-term amelioration of clinical symptoms but do not arrest progressive cell loss. Similarly, PD-related treatment with Levodopa offers symptomatic improvements but it does not arrest synapse loss and subsequent neurodegeneration.118 However, there is time between when a patient is first diagnosed and when severe mental and physical decline occurs, indicating the existence of a potential therapeutic window during which surviving, unaffected neurons could be protected against their progressive dysfunction leading to further cognitive decline and degenerative cell loss. As biomarkers for early diagnosis and effective treatments become available, the development of therapies to halt progressive cell death becomes an increasingly hopeful prospect. Karyopherins have already been described as diagnostic and prognostic biomarkers in cancer and viral infections, where they are usually upregulated.194-196 As a result, several compounds have been developed to target nuclear import and export receptors197 and phase III clinical trials are under way targeting the KPNA/KPNB1 interface highjacked by viruses causing Dengue fever and COVID-19, respectively.196

In neurodegenerative diseases, karyopherins are generally downregulated and mislocalized, which together with impaired nucleocytoplasmic transport and defective chaperone function leads to aberrant phase transition and the subsequent accumulation and aggregation of affected proteins.14,191 Recent studies demonstrate that targeting karyopherins can reverse aberrant phase transition and extract aggregated proteins from stress granules.17-20,102 Thus, targeting karyopherins, especially their chaperone function, provides a potential novel therapeutic
avenue to shield and maintain vulnerable proteins in their native and soluble state, thereby protecting them against phase transition, mislocalisation and aberrant aggregate formation, ultimately protecting affected neurons against cytotoxicity and degenerative loss.

The role of compounds inhibiting nuclear transport of specific cargo substrates has been reported for their use as anti-cancer and anti-viral agents, with more than 20 nuclear transport inhibitors being identified, including Mifepristone, Ivermectin and Verdinexor. Inhibitors of XPO1/CRM1 like Verdinexor, commonly also known as selective inhibitors of nuclear export (SINE) compounds, have been developed via structure-based drug design. Previous studies investigating SINE compounds focused on their use as anti-cancer and anti-viral agents, however they are also candidates for the development of therapeutic strategies to target neurodegeneration. For example, XPO1 inhibition in preclinical models of inflammatory demyelination and axonal damage resulted in attenuation of disease progression. Comparably, in ALS models, XPO1 inhibition showed neuroprotective effects against C9orf72-related disease phenotypes caused by G4C2 hexanucleotide repeat expansion. Targeted manipulation of the nuclear import receptor karyopherin-β2 was able to reverse the defects caused by mutant FUS. Pharmacological treatment with Verdinexor and KPT-276, two XPO1 inhibitor, reduced cell death by more than 50% caused by selective overexpression of C-terminal fragments of human TDP-43 or its ALS-related mutant Q331K in mouse cortical neurons. A parallel study showed that SINE compounds targeting XPO1 could prolong, at least to some extent, neuronal survival of rodent primary neurons and mitigate motor symptoms in an in vivo rat model expressing wildtype and mutant forms of TDP-43. This study revealed that none of the SINE compounds could enhance nuclear TDP-43 levels, while depletion of XPO1 or other exportins had little effect on TDP-43 localization, consistent with recent studies suggesting that nuclear egress of TDP-43 does not require XPO1-mediated nuclear export.

These findings suggest that pharmacological targeting of karyopherin function might represent a new strategy for disease-modifying treatments of neurodegenerative proteinopathies. However, given the different topology of disease-related protein accumulation – nuclear and/or cytoplasmic - a more balanced application will be required that considers not only nuclear transport inhibitors but also their targeted gain of function which will require careful assessment and calibration. Karyopherins modulate an essential cellular process, energy-dependent nucleocytoplasmic transport of cargo proteins required for cellular homeostasis.
Any interference or manipulation of this process may therefore cause unwanted side effects affecting the localisation and function of cargo proteins essential for neuronal and glial function. It will be of great interest to await and analyse the outcome of currently ongoing clinical trials targeting the KPNA/KPNB1 interface as a strategy to combat several types of cancer such as leukemia and glioblastoma, as well as viral infections including Dengue fever and COVID-19.196,197,206 If proven to be clinically safe, some of these compounds might be suitable for repurposing as a novel therapeutic strategy for the targeted treatment of neurodegenerative proteinopathies.

Conclusions and future directions

Nucleocytoplasmic transport is a fundamental process that moves macromolecules across the nuclear membrane, thereby allocating proteins to their principal destination of activity, which is an essential requirement for proper cell function and viability. Key players in this process are karyopherins that mediate the transport of cargo proteins in and out of the nucleus. The mislocalisation of proteins and their subsequent accumulation in the nucleus or cytoplasm are characteristic features, and likely the direct cause, of several neurodegenerative proteinopathies. Why these proteins mislocalise and accumulate in the first place, has remained elusive and the lack of insights into the underlying pathogenic mechanisms constitutes a major obstacle for the development of efficient therapeutic strategies to go beyond current symptomatic treatments.

Despite their differences in function, ranging from nucleic acid processing by TDP-43, to tau-mediated microtubule stabilisation and chaperone activity of alpha-synuclein in synaptic terminals, all these proteins harbour low complexity regions that make them intrinsically vulnerable to phase transitions of their aggregation state. Phase transitions can be initiated by changes in cellular acidity, temperature and alterations in pH or salt but also by protein mutations, all of which have been associated with neurodegeneration. However, \textit{in vivo} determination of these pathomechanisms, their detection in patient tissue and a direct role in disease formation and/or progression remain to be shown, and although first generation preclinical biomarkers of liquid-liquid phase separation are becoming available, their use and efficiency remains to be established.207
Nucleocytoplasmic transport deficits and in particular karyopherin abnormalities are now recognised as a major player, and possibly a trigger, in mediating the mislocalisation and accumulation of disease-related proteins in degenerative proteinopathies, especially in ALS and FTD. Furthermore, karyopherins can also act as chaperones by shielding proteins from irreversible phase transitions, thereby retaining their targets in a soluble form and thus devoid of disease-related aggregation comparable to disaggregase activity. It is currently unclear and remains to be elucidated, how these chaperone functions are exerted, whether they include specific amino acids/protein interaction domains and how these interactions are accomplished. Thus, an exciting area of future research will be to determine how karyopherins exert their chaperone and disaggregase activity. Work in this area will lead to both a better understanding of how neurodegenerative diseases develop and may uncover novel treatment opportunities.

Pharmacological targeting of karyopherins represents a promising new strategy for therapeutic intervention in neurodegenerative diseases. It remains a major task for an ever-growing elderly population to identify therapies that can stop or at least ameliorate degenerative cell loss. Even after decades of intense research, the destiny of a patient remains the same: when they enter the hospital with disease-specific clinical symptoms, a significant number of neurons are already lost, while remaining functional ones are doomed to degenerate over time due to the lack of efficient treatments. Several compounds targeting karyopherins are already in clinical trials to treat specific forms of cancer and viral infections, with an emphasis on the karyopherin-α/karyopherin-β1 interface. A number of neurodegenerative diseases are characterised by intracellular proteinaceous inclusions and aggregates for which nucleocytoplasmic transport-modifying compounds may yield promising outcomes for an effective treatment of these devastating illnesses. Targeting nuclear transport may therefore be an advantageous strategy for halting and perhaps reversing the progression of neurodegenerative proteinopathies.

Acknowledgements

We thank D. Solomon, R.B. Parsons and M. Atwal for comments on the manuscript.

Funding

This work was supported by a Bolashak International scholarship (Sharipov/Aug28/2019) of the government of Kazakhstan to D.S.; Slovenian Research Agency grants (P4-0127, J3-9263,
J3-8201, J7-9399 and N3-0141) and CRP-ICGEB research grant (CRP/SVN19-03) to B.R.; the Hungarian Brain Research Program (2017-1.2.1-NKP-2017-00002) and NKFIH-SNN-132999 grant to T.H.; and an Alzheimer's Research UK - King's College London Network grant to F.H. and T.H. F.H. acknowledges funding from the UK Medical Research Council (G0701498; MR/L010666/1); the UK Biotechnology and Biological Sciences Research Council (BB/N001230/1); Alzheimer's Research UK (Hirth/ARUK/2012); and the UK MND Association (Hirth/Oct07/6233; Hirth/Mar12/6085; Hirth/Oct13/6202; Hirth/Nov15/914-793; Hirth/Oct16/890-792).

Competing interests

The authors declare no competing interests.

References

1. World Health Organization. Global action plan on the public health response to dementia 2017–2025. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO.

2. Moreno-Gonzalez, I., Soto, C. Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. Semin. Cell Dev. Biol. 22, 482–487 (2011).

3. Braak, H., Tredici, K. Del, Rüb, U., de Vos, R.A., Jansen Steur, E.N., Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

4. Jucker, M., Walker, L.C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).

5. Alberti, S., Halfmann, R., King, O., Kapila, A., Lindquist, S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137, 146–158 (2009).

6. Han, T.W., Kato, M., Xie, S., Wu, L.C., Mirzaei, H., Pei, J., Chen, M., Xie, Y., Allen, J., Xiao, G., Mcknight, S.L. Cell-free formation of RNA granules: Bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).

7. Patel, A., Lee, H.O., Jawerth, L., Maharana, S., Jahnel, M., Hein, M.Y., Stoynov, S., Mahamid, J., Saha, S., Franzmann, T.M., Pozniakovski, A., Poser, I., Maghelli, N., Royer, L.A., Weigert, M., Myers, E.W., Grill, S., Drechsel, D., Hyman, A.A., Alberti, S. A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease
8. Molliex, A., Temirov, J., Lee, J., Coughlin, M., Kanagaraj, A.P., Kim, H.J., Mittag, T., Taylor, J.P. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123–133 (2015).

9. Conicella, A.E., Zerze, G.H., Mittal, J., Fawzi, N.L. ALS mutations disrupt phase separation mediated by-helical structure in the TDP-43 low complexity C-terminal domain. Structure 24, 1537–1549 (2016).

10. Monahan, Z., Ryan, V.H., Janke, A.M., Burke, K.A., Rhoads, S.N., Zerze, G.H., O’Meally, R., Dignon, G.L., Conicella, A.E., Zheng, W., Best, R.B., Cole, R.N., Mittal, J., Shewmaker, F., Fawzi, N.L. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. EMBO J. 36, 2951–2967 (2017).

11. Murray, T., Kato, M., Lin, Y., Thurber, K.R., Hung, I., McKnight, S.L., Tycko, R. Structure of FUS protein fibrils and its relevance to self-assembly and phase separation of low-complexity domains. Cell 171, 615–627 (2017).

12. Aguzzi, A., Altmeyer, M. Phase Separation: Linking Cellular Compartmentalization to Disease. Trends Cell Biol. 26, 547–558 (2016).

13. Boeynaems, S., Alberti, S., Fawzi, N.L., Mittag, T., Polymenidou, M., Rousseau, F., Schymkowitz, J., Shorter, J., Wolozin, B., Van, L., Bosch, D., Tompa, P., Fuxreiter, M. Protein phase separation: A new phase in cell biology. Trends Cell Biol 28, 420–435 (2018).

14. Guo, L., Fare, C.M., Shorter, J. Therapeutic dissolution of aberrant phases by nuclear-import receptors. Trends Cell Biol. 29, 308-322 (2019).

15. Chou, C.-C., Zhang, Y., Umoh, M.E., Vaughan, S.W., Lorenzini, I., Liu, F., Sayegh, M., Donlin-Asp, P.G., Chen, Y.H., Duong, D.M., Seyfried, N.T., Powers, M.A., Kukar, T., Hales, C.M., Gearing, M., Cairns, N.J., Boylan, K.B., Dickson, D.W., Rademakers, R., Zhang, Y.-J., Petrucelli, L., Sattler, R., Zarnescu, D.C., Glass, J.D., Rossoll, W. TDP-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in ALS/FTD. Nat. Neurosci. 21, 228–239 (2018).

16. Solomon, D.A., Stepto, A., Au, W.H., Adachi, Y., Diaper, D.C., Hall, R., Rekhi, A., Boudi, A., Tziortzouda, P., Lee, Y.-B., Smith, B., Bridi, J.C., Spinelli, G., Dearlove, J., Humphrey, D.M., Gallo, J.-M., Troakes, C., Fanto, M., Soller, M., Rogelj, B., Parsons, R.B., Shaw, C.E., Hortobágyi, T., Hirth, F. A feedback loop between dipeptide-repeat protein, TDP-43 and karyopherin-a mediates C9orf72-related neurodegeneration. Brain 141, 2908–2924 (2018).
17. Hofweber, M., Hutten, S., Bourgeois, B., Spreitzer, E., Niedner-Boblenz, A., Schifferer, M., Ruepp, M.D., Simons, M., Niessing, D., Madl, T., Dormann, D. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173, 706-713 (2018).

18. Yoshizawa, T., Ali, R., Jiou, J., Fung, H.Y.J., Burke, K.A., Kim, S.J., Lin, Y., Peeples, W.B., Saltzberg, D., Soniat, M., Baumhardt, J.M., Oldenbourg, R., Sali, A., Fawzi, N.L., Rosen, M.K., Chook, Y.M. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. Cell 173, 693-705 (2018).

19. Guo, L., Kim, H.J., Wang, H., Chook, M., Taylor, J.P., Shorter, J., O’donovan, K., Fare, C.M., Diaz, Z., Singh, N., Zhang, Z.C., Coughlin, M., Sweeny, E.A., Desantis, M.E., Jackrel, M.E., Rodell, C.B., Burdick, J.A., King, O.D., Gitler, A.D., Lagier-Tourenne, C., Pandey, U.B., Chook, Y.M. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 173, 677–692 (2018).

20. Gasset-Rosa, F., Lu, S., Yu, H., Chen, C., Melamed, Z., Guo, L., Shorter, J., Da Cruz, S., Cleveland, D.W. Cytoplasmic TDP-43 de-mixing independent of stress granules drives inhibition of nuclear import, loss of nuclear TDP-43, and cell death. Neuron. 102, 339-357 (2019).

21. Zhang, K., Donnelly, C.J., Haeusler, A.R., Grima, J.C., Machamer, J.B., Steinwald, P., Daley, E.L., Miller, S.J., Cunningham, K.M., Vidensky, S., Gupta, S., Thomas, M.A., Hong, I., Chiu, S.L., Huganir, R.L., Ostrow, L.W., Matunis, M.J., Wang, J., Sattler, R., Lloyd, T.E., Rothstein, J.D. The C9orf72 repeat expansion disrupts nucleocytoplasmic transport. Nature 525, 56–61 (2015).

22. Freibaum, B.D., Lu, Y., Lopez-Gonzalez, R., Kim, N.C., Almeida, S., Lee, K.-H., Badders, N., Valentine, M., Miller, B.L., Wong, P.C., Petrucelli, L., Kim, H.J., Gao, F.-B., Taylor, J.P. GGGGCC repeat expansion in C0ORF72 compromises nucleocytoplasmic transport. Nature 525, 129–133 (2015).

23. Jovičič, A., Mertens, J., Boeynaems, S., Bogaert, E., Chai, N., Yamada, S.B., Paul, J.W., Sun, S., Herdy, J.R., Bieri, G., Kramer, N.J., Gage, F.H., Van Den Bosch, L., Robberecht, W., Gitler, A.D. Modifiers of C9orf72 dipeptide repeat toxicity connect nucleocytoplasmic transport defects to FTD/ALS. Nat. Neurosci. 18, 1226–1229 (2015).

24. Boeynaems, S., Bogaert, E., Michiels, E., Gijselinck, I., Sieben, A., Jovičič, A., De Baets, G., Scheveneels, W., Steyaert, J., Cuijt, I., Verstrepen, K.J., Callaerts, P., Rousseau, F., Schymkowitz, J., Cruts, M., Van Broeckhoven, C., Van Damme, P., Gitler, A.D., Robberecht, W., Van Den Bosch, L. Drosophila screen connects nuclear transport genes
to DPR pathology in e9ALS/FTD. Sci Rep. 6, 20877 (2016).

25. Görlich, D., Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol 15, 607–60 (1999).

26. Cautain, B., Hill, R., de Pedro, N., Link, W. Components and regulation of nuclear transport processes. FEBS J. 282, 445–462 (2015).

27. Pumroy, R.A., Cingolani, G. Diversification of importin-α isoforms in cellular trafficking and disease states. Biochem. J. 466, 13–28 (2015).

28. Köhler, M., Speck, C., Christiansen, M., Bischoff, F.R., Prehn, S., Haller, H., Görlich, D., Hartmann, E. Evidence for distinct substrate specificities of importin-α family members in nuclear protein import. Mol. Cell Biol. 19, 7782-7791 (1999).

29. Herold, A., Truant, R., Wiegand, H., Cullen, B.R. Determination of the functional domain organization of the importin alpha nuclear import factor. J. Cell Biol. 143, 309–318 (1998).

30. Kobe, B. Autoinhibition by an internal nuclear localization signal revealed by the crystal structure of mammalian importin α. Nat. Struct. Biol. 6, 388–397 (1999).

31. Soniat, M., Chook, Y.M. Nuclear localization signals for four distinct karyopherin-β nuclear import systems. Biochem. J. 468, 353–362 (2015).

32. Yarbrough, M.L., Mata, M. A., Sakthivel, R., Fontoura, B.M. Viral subversion of nucleocytoplasmic trafficking. Traffic 15, 127–140 (2014).

33. Mor, A., White, M. A. and Fontoura, B. M. Nuclear trafficking in health and disease. Curr. Opin. Cell Biol. 28, 28–35 (2014).

34. Chook, Y., Blobel, G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11, 703–715 (2001).

35. Quan, Y., Ji, Z.L., Wang, X., Tartakoff, A.M., Tao, T. Evolutionary and transcriptional analysis of karyopherin beta superfamily proteins. Mol. Cell. Proteomics. 7, 1254-1269 (2008).

36. Di Francesco, L., Verrico, A., Asteriti, I.A., Rovella, P., Cirigliano, P., Guarguaglini, G., Schininà, M.E., Lavia, P. Visualization of human karyopherin beta-1/importin beta-1 interactions with protein partners in mitotic cells by co-immunoprecipitation and proximity ligation assays. Sci. Rep. 8, 1850 (2018).

37. Kutay, U., Ralf Bischoff, F., Kostka, S., Kraft, R., Görlich, D. Export of importin α from the nucleus is mediated by a specific nuclear transport factor. Cell 90, 1061–1071 (1997).

38. Kutay, U., Lipowsky, G., Izaurralde, E., Bischoff, F.R., Schwarzmaier, P., Hartmann, E.,
39. Lipowsky, G., Bischoff, F.R., Schwarzmaier, P., Kraft, R., Kostka, S., Hartmann, E., Kutay, U., Görlich, D. Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J. 19, 4362–4371 (2000).

40. Yi, R., Qin, Y., Macara, I.G., Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

41. Kurisaki, A., Kurisaki, K., Kowanetz, M., Sugino, H., Yoneda, Y., Heldin, C.H., Moustakas A. The mechanism of nuclear export of Smad3 involves exportin 4 and Ran. Mol. Cell 26, 1318–1332 (2006).

42. Weis K. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441–451 (2003).

43. Eibauer, M., Pellanda, M., Turgay, Y., Dubrovsky, A., Wild, A., Medalia, O. Structure and gating of the nuclear pore complex. Nat. Commun. 6, 7532 (2015).

44. von Appen, A., Kosinski, J., Sparks, L., Ori, A., DiGuilio, A.L., Vollmer, B., Mackmull, M.-T., Banterle, N., Parca, L., Kastritis, P., Buczak, K., Mosalaganti, S., Hagen, W., Andres-Pons, A., Lemke, E.A., Bork, P., Antonin, W., Glavy, J.S., Bui, K.H., Beck, M. In situ structural analysis of the human nuclear pore complex. Nature 526, 140–143 (2015).

45. Hoelz, A., Glavy, J.S., Beck, M. Toward the atomic structure of the nuclear pore complex: when top down meets bottom up. Nat. Struct. Mol. Biol. 23, 624–630 (2016).

46. Chook, Y.M., Suel, K.E. Nuclear import by karyopherin-betas: recognition and inhibition. Biochim Biophys Acta 813, 1593–606 (2011).

47. Dingwall, C., Robbins, J., Dilworth, S.M., Roberts, B., Richardson, W.D. The Nucleoplasmin Nuclear Location Sequence Is Larger and More Complex than That of SV-40 Large T Antigen. J. Cell Biol. 107, 841–849 (1988).

48. Kalderon, D., Roberts, B.L., Richardson, W.D., Smith, A.E. A short amino acid sequence able to specify nuclear location. Cell 39, 499–509 (1984).

49. Bednenko, J., Cingolani, G., Gerace, L. Importin b contains a COOH-terminal nucleoporin binding region important for nuclear transport. J. Cell Biol. 162, 391-401 (2003).

50. Lee BJ, Cansizoglu AE, Süel KE, Louis TH, Zhang Z, Chook YM. Rules for nuclear localization sequence recognition by karyopherin beta 2. Cell 126, 543-558 (2006).

51. Vance, C., Scotter, E.L., Nishimura, A.L., Troakes, C., Mitchell, J.C., Kathe, C., Urwin,
H., Manser, C., Miller, C.C., Hortobágyi, T., Dragunow, M., Rogelj, B., Shaw, C.E. ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules. Hum Mol Genet 22, 2676-2688 (2013).

52. Ederle, H., Funk, C., Abou-Ajram, C., Hutten, S., Funk, E.B.E., Kehlenbach, R.H., Bailar, S.M., Dormann, D. Nuclear egress of TDP-43 and FUS occurs independently of Exportin-1/ CRM1. Sci. Rep. 8, 1–18 (2018).

53. Pinarbasi, E.S., Cağatay, T., Yee, H., Fung, J., Li, Y.C., Chook, Y.M., Thomas, P.J. Active nuclear import and passive nuclear export are the primary determinants of TDP-43 localization. Sci. Rep. 8, 1-16 (2018).

54. Nishimura, A.L., Zupunski, V., Troakes, C., Kathe, C., Fratta, P., Howell, M., Gallo, J., Hortobágyi, T., Shaw, C.E., Rogelj, B. Nuclear import impairment causes cytoplasmic trans-activation response DNA-binding protein accumulation and is associated with frontotemporal lobar degeneration. Brain 133, 1763–1771 (2010).

55. Wang, G., Zhang, Y., Chen, B., Cheng, J. Preliminary studies on Alzheimer's disease using cDNA microarrays. Mech. Ageing Dev. 124, 115-124 (2003).

56. Lee, H., Ueda, M., Miyamoto, Y., Yoneda, Y., Perry, G., Smith, M.A., Zhu, X. Aberrant localization of importin alpha1 in hippocampal neurons in Alzheimer disease. Brain Res. 1124, 1–4 (2006).

57. Carter, C.J. Alzheimer's disease plaques and tangles: cemeteries of a pyrrhic victory of the immune defence network against herpes simplex infection at the expense of complement and inflammation-mediated neuronal destruction. Neurochem. Int. 58, 301-320 (2011).

58. Roy, J., Sarkar, A., Parida, S., Ghosh, Z., Mallick, B. Small RNA sequencing revealed dysregulated piRNAs in Alzheimer's disease and their probable role in pathogenesis. Mol. Biosyst. 13, 565-576 (2017).

59. Nuovo, G., Amann, V., Williams, J., Vandiver, P., Quinonez, M., Fadda, P., Paniccia, B., Mezache, L., Mikhail, A. Increased expression of importin-β, exportin-5 and nuclear transportable proteins in Alzheimer’s disease aids anatomic pathologists in its diagnosis. Ann. Diagn. Pathol. 32, 10–16 (2018).

60. Eftekharzadeh B, Daigle JG, Kapinos LE, Coyne A, Schiantarelli J, Carломagno Y, Cook C, Miller SJ, Dujardin S, Amaral AS, Grima JC, Bennett RE, Tepper K, DeTure M, Vanderburg CR, Corjuc BT, DeVos SL, Gonzalez JA, Chew J, Vidensky S, Gage FH, Mertens J, Troncoso J, Mandelkow E, Salvatella X, Lim RYH, Petrucelli L, Wegmann S, Rothstein JD, Hyman BT. Tau Protein Disrupts Nucleocytoplasmic Transport in
Alzheimer's Disease. Neuron 99, 925-940 (2018).

61. Zhou, Y., Gu, G., Goodlett, D.R., Zhang, T., Pan, C., Montine, T.J., Montine, K.S., Aebersold, R.H., Zhang, J. Analysis of alpha-synuclein-associated proteins by quantitative proteomics. J. Biol. Chem. 279, 39155-39164 (2004).

62. Ma, K.L., Song, L.K., Yuan, Y.H., Zhang, Y., Han, N., Gao, K., Chen, N.H. The nuclear accumulation of alpha-synuclein is mediated by importin alpha and promotes neurotoxicity by accelerating the cell cycle. Neuropharmacology 82, 132–142 (2014).

63. Björkblom, B., Maple-Grodem, J., Puno, M.R., Odell, M., Larsen, J.P., Möller, S.G. Reactive oxygen species-mediated DJ-1 monomerization modulates intracellular trafficking involving karyopherin β2. Mol. Cell. Biol. 34, 3024-3040 (2014).

64. Han, K.A., Shin, W.H., Jung, S., Seol, W., Seo, H., Ko, C., Chung, K.C. Leucine-rich repeat kinase 2 exacerbates neuronal cytotoxicity through phosphorylation of histone deacetylase 3 and histone deacetylation. Hum. Mol. Genet. 26, 1-18 (2017).

65. George, G., Singh, S., Lokappa, S.B., Varkey, J. Gene co-expression network analysis for identifying genetic markers in Parkinson's disease - a three-way comparative approach. Genomics 111, 819-830 (2019).

66. Mahul-Mellier, A.L., Burtscher, J., Maharjan, N., Weerens, L., Croisier, M., Kuttler, F., Leleu, M., Knott, G.W., Lashuel, H.A. The process of Lewy body formation, rather than simply α-synuclein fibrillation, is one of the major drivers of neurodegeneration. Proc. Natl. Acad. Sci. USA. 117, 4971-4982 (2020).

67. Chan, W.M., Tsoi, H., Wu, C.C., Wong, C.H., Cheng, T.C., Li, H.Y., Lau, K.F., Shaw, P.C., Perrimon, N., Chan, H.Y. Expanded polyglutamine domain possesses nuclear export activity which modulates subcellular localization and toxicity of polyQ disease protein via exportin-1. Hum. Mol. Genet. 20, 1738-50 (2011).

68. Desmond, Atwal, R.S., Xia, J., Truant, R. Identification of a karyopherin β1/β2 proline-tyrosine nuclear localization signal in huntingtin protein. J. Biol. Chem. 287, 39626–39633 (2012).

69. Rué, L., López-Soop, G., Gelpi, E., Martínez-Vicente, M., Alberch, J., Pérez-Navarro, E. Brain region- and age-dependent dysregulation of p62 and NBR1 in a mouse model of Huntington's disease. Neurobiol. Dis. 52, 219-228 (2013).

70. Woerner, A.C., Frottin, F., Hornburg, D., Feng, L.R., Meissner, F., Patra, M., Tatzelt, J., Mann, M., Winklhofer, K.F., Hartl, F.U., Hipp, M.S. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of protein and RNA. Science 351, 173–176 (2016).
71. Ling, S.C., Polymenidou, M., Cleveland, D.W. Converging mechanisms in ALS and FTD: Disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

72. Hortobágyi, T., Cairns N.: Amyotrophic lateral sclerosis and non-tau frontotemporal lobar degeneration. Handbook of Clinical Neurology (3rd series). (eds.: G.G. Kovacs & I. Alafuzoff). Elsevier. (Book chapter) 145, 369-381 (2017).

73. Strong, M.J., Hortobágyi, T., Okamoto K. Kato S. Amyotrophic lateral sclerosis, Primary lateral sclerosis and Spinal muscular atrophy. In: Neurodegeneration: The molecular pathology of dementia and movement disorders. 2nd ed. (eds.: Dickson D.W., Weller R.O.). pp. 418-433. Wiley-Blackwell (2011).

74. Taylor JP, Brown RH Jr, Cleveland DW. Decoding ALS: from genes to mechanism. Nature 539, 197-206 (2016).

75. Deleon, J., Miller, B.L. Frontotemporal dementia. Handb. Clin. Neurol. 148, 409-430 (2018).

76. Arai, T., Hasegawa, M., Akiyama, H., Ikeda, K., Nonaka, T., Mori, H., Mann, D., Tsuchiya, K., Yoshida, M., Hashizume, Y., Oda, T. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

77. Neumann, M., Sampathu, D.M., Kwong, L.K., Truax, A.C., Micsenyi, M.C., Chou, T.T., Bruce, J., Schuck, T., Grossman, M., Clark, C.M., McCluskey, L.F., Miller, B.L., Masliah, E., Mackenzie, I.R., Feldman, H., Feiden, W., Kretzschmar, H.A., Trojanowski, J.Q., Lee, V.M.-Y. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

78. Yamashita, T., Aizawa, H., Teramoto, S., Akamatsu, M., Kwak, S. Calpain-dependent disruption of nucleo-cytoplasmic transport in ALS motor neurons. Sci. Rep. 7, 39994 (2017).

79. Kinoshita, Y., Ito, H., Hirano, A., Fujita, K., Wate, R., Nakamura, M., Kaneko, S., Nakano, S., Kusaka, H. Nuclear Contour Irregularity and Abnormal Transporter Protein Distribution in Anterior Horn Cells in Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 68, 1184-1192 (2009).

80. Aizawa, H., Yamashita, T., Kato, H., Kimura, T., Kwak, S. Impaired nucleoporins are present in sporadic Amyotrophic Lateral Sclerosis motor neurons that exhibit mislocalization of the 43-kDa TAR DNA-Binding Protein. J Clin Neurol. 15, 62-67 (2019).

81. Al-Sarraj, S., King, A., Troakes, C., Smith, B., Maekawa, S., Bodi, I., Rogelj, B., Al-
Chalabi, A., Hortobágyi, T., Shaw, C.E. P62 positive, TDP-43 negative, neuronal cytoplasmic and intranuclear inclusions in the cerebellum and hippocampus define the pathology of C9orf72-linked FTLD and MND/ALS. Acta Neuropathol. 122, 691–702 (2011).

82. Murray, M.E, DeJesus-Hernandez, M., Rutherford, N.J., Baker, M., Duara, R., Graff-Radford, N.R., Wszolek, Z.K., Feman, T.J., Josephs, K.A., Boylan, K.B., Rademakers, R., Dickson, D.W. Clinical and neuropathologic heterogeneity of c9FTD/ALS associated with hexanucleotide repeat expansion in C9ORF72. Acta Neuropathol. 122, 673-90 (2011).

83. Dejesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Flynn, H., Adamson, J., Kouri, N., Wojtas, A., Sengdy, P., Hsiung, G.-Y.R., Karydas, A., Seeley, W.W., Josephs, K.A., Coppola, G., Geschwind, D.H., Wszolek, Z.K., Feldman, H., Knoopman, D.S., Petersen, R.C., Miller, B.L., Dickson, D.W., Boylan, K.B., Graff-Radford, N.R., Rademakers, R. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 72, 245–256 (2011).

84. Renton, A.E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., Kalimo, H., Paetau, A., Abramzon, Y., Remes, A.M., Kaganovich, A., Scholz, S.W., Duckworth, J., Ding, J., Harmer, D.W., Hernandez, D.G., Johnson, J.O., Mok, K., Ryten, M., Trabzuni, D., Guerreiro, R.J., Orrell, R.W., Neal, J., Murray, A., Pearson, J., Jansen, I.E., Sonndervan, D., Seelaar, H., Blake, D., Young, K., Halliwell, N., Callister, J.B., Toulson, G., Richardson, A., Gerhard, A., Snowden, J., Mann, D., Neary, D., Nalls, M.A., Peuralinna, T., Jansson, L., Isoviita, V.-M., Kaivirinne, A.-L., Hölttä-Vuori, M., Ikonen, E., Sulkava, R., Benatar, M., Wuu, J., Chiò, A., Restagno, G., Borghero, G., Sabatelli, M., ITALSGEN Consortium, D., Heckerman, D., Rogaeva, E., Zinman, L., Rothstein, J.D., Sendtner, M., Drepper, C., Eichler, E.E., Alkan, C., Abdullaev, Z., Pack, S.D., Dutra, A., Pak, E., Hardy, J., Singleton, A., Williams, N.M., Heutink, P., Pickering-Brown, S., Morris, H.R., Tienari, P.J., Traynor, B.J. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–68 (2011).

85. Waite, A.J., Bäumer, D., East, S., Neal, J., Morris, H.R., Ansorge, O., Blake, D.J. Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiol. Aging. 35, 1779.e5-1779.e13 (2014).
86. Shi, Y., Lin, S., Staats, K.A., Li, Y., Chang, W.H., Hung, S.T., Hendricks, E., Linares, G.R., Wang, Y., Son, E.Y., Wen, X., Kisler, K., Wilkinson, B., Menendez, L., Sugawara, T., Woolwine, P., Huang, M., Cowan, M.J., Ge, B., Koutsodendris, N., Sandor, K.P., Komberg, J., Vangoor, V.R., Senthilkumar, K., Hennes, V., Seah, C., Nelson, A.R., Cheng, T.Y., Lee, S.J., August, P.R., Chen, J.A., Wisniewski, N., Hanson-Smith, V., Belgard, T.G., Zhang, A., Coba, M., Grunseich, C., Ward, M.E., van den Berg, L.H., Pasterkamp, R.J., Trotti, D., Zlokovic, B.V., Ichida, J.K. Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons. Nat. Med. 24, 313-325 (2018).

87. Fratta, P., Poulter, M., Lashley, T., Rohrer, J.D., Polke, J.M., Beck, J., Ryan, N., Hensman, D., Mizioleinska, S., Waite, A.J., Lai, M.C., Gendron, T.F., Petrucelli, L., Fisher, E.M., Revesz, T., Warren, J.D., Collinge, J., Isaacs, A.M., Mead, S. Homozygosity for the C9orf72 GGGGCC repeat expansion in frontotemporal dementia. Acta Neuropathol. 126, 401-409 (2013).

88. Lee, Y.B., Chen, H.J., Peres, J.N., Gomez-Deza, J., Attig, J., Stalekar, M., Troakes, C., Nishimura, A.L., Scotter, E.L., Vance, C., Adachi, Y., Sardone, V., Miller, J.W., Smith, B.N., Gallo, J.M., Ule, J., Hirth, F., Rogelj, B., Houart, C., Shaw, C.E. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep. 5, 178-1186 (2013).

89. Zu, T., Liu, Y., Bañez-Coronel, M., Reid, T., Pletnikova, O., Lewis, J., Miller, T.M., Harms, M.B., Falchook, A.E., Subramony, S.H., Ostrow, L.W., Rothstein, J.D., Troncoso, J.C., Ranum, L.P. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc. Natl. Acad. Sci. USA 110, E4968-77 (2013).

90. Cooper-Knock, J., Walsh, M.J., Higginbottom, A., Robin Highley, J., Dickman, M.J., Edbauer, D., Ince, P.G., Wharton, S.B., Wilson, S.A., Kirby, J., Hautbergue, G.M., Shaw, P.J. Sequestration of multiple RNA recognition motif-containing proteins by C9orf72 repeat expansions. Brain 137, 2040–2051 (2014).

91. Mori, K., Weng, S.-M., Arzberger, T., May, S., Remtzh, K., Kremmer, E., Schmidt, B., Kretsschmar, H., Cruts, M., Van Broeckhoven, C., Haass, C., Edbauer, D. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339, 1335–1338 (2013).

92. Braems, E., Swinnen, B., Van Den Bosch, L. C9orf72 loss-of-function: a trivial, stand-alone or additive mechanism in C9 ALS/FTD? Acta Neuropathol. 140, 625-643 (2020).
93. Lee, K.H., Zhang, P., Kim, H.J., Mitrea, D.M., Sarkar, M., Freibaum, B.D., Cika, J., Coughlin, M., Messing, J., Molliex, A., Maxwell, B.A., Kim, N.C., Temirov, J., Moore, J., Kolaitis, R.M., Shaw, T.I., Bai, B., Peng, J., Kriwacki, R.W., Taylor, J.P. C9orf72 dipeptide repeats impair the assembly, dynamics, and function of membrane-less organelles. Cell 167, 774-788 (2016).

94. Boeynaems, S., Bogaert, E., Kovacs, D., Konijnenberg, A., Timmerman, E., Volkov, A., Guharoy, M., De Decker, M., Jaspers, T., Ryan, V.H., Janke, A.M., Baatsen, P., Vercruysse, T., Kolaitis, R.M., Daelemans, D., Taylor, J.P., Kedersha, N., Anderson, P., Impens, F., Sobott, F., Schymkowitz, J., Rousseau, F., Fawzi, N.L., Robberecht, W., Van Damme, P., Tompa, P., Van Den Bosch, L. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Mol. Cell 65, 1044-1055 (2017).

95. Hayes, L.R., Duan, L., Bowen, K., Kalab, P., Rothstein, J.D. C9orf72 arginine-rich dipeptide repeat proteins disrupt karyopherin-mediated nuclear import. Elife 9, e51685 (2020).

96. Ederle, H., Dormann, D. TDP-43 and FUS en route from the nucleus to the cytoplasm. FEBS Lett. 591, 1489–1507 (2017).

97. Winton, M.J., Igaz, L.M., Wong, M.M., Kwong, L.K., Trojanowski, J.Q., M-Y Lee, V. Disturbance of Nuclear and Cytoplasmic TAR DNA-binding Protein (TDP-43) Induces Disease-like Redistribution, Sequestration, and Aggregate Formation. J Biol Chem 283, 13302–13309 (2008).

98. Tziortzouda, P., Van Den Bosch, L., Hirth, F. Triad of TDP43 control in neurodegeneration: autoregulation, localization and aggregation. Nat. Rev. Neurosci. 22, 197-208 (2021).

99. Tollervey, J.R., Curk, T., Rogelj, B., Briese, M., Cereda, M., Kayikci, M., König, J., Hortobágyi, T., Nishimura, A.L., Żupunski, V., Patani, R., Chandran, S., Rot, G., Zupan, B., Shaw, C.E., Ule, J. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 14, 452–458 (2011).

100. Mizielinska, S., Grönke, S., Niccoli, T., Ridler, C.E., Clayton, E.L., Devoy, A., Moens, T., Norona, F.E., Woollacott, I.O.C., Pietrzyk, J., Cleverley, K., Nicoll, A.J., Pickering-Brown, S., Dols, J., Cabecinha, M., Hendrich, O., Fratta, P., Fisher, E.M.C., Partridge, L., Isaacs, A.M. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science 345, 1192-1194 (2014).

101. Wen, X., Tan, W., Westergard, T., Krishnamurthy, K., Markandaiah, S.S., Shi, Y., Lin, S., Shneider, N.A., Monaghan, J., Pandey, U.B., Pasinelli, P., Ichida, J.K., Trott, D.
Antisense proline-arginine RAN dipeptides linked to C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal death. Neuron 84, 1213-1225 (2014).

102. Hutten, S., Usluer, S., Bourgeois, B., Simonetti, F., Odeh, H.M., Fare, C.M., Czuppa, M., Hruska-Plochan, M., Hofweber, M., Polymenidou, M., Shorter, J., Edbauer, D., Madl, T., Dormann, D. Nuclear Import Receptors Directly Bind to Arginine-Rich Dipeptide Repeat Proteins and Suppress Their Pathological Interactions. Cell Rep. 33, 108538 (2020).

103. Park, J.H., Chung, C.G., Park, S.S., Lee, D., Kim, K.M., Jeong, Y., Kim, E.S., Cho, J.H., Jeon, Y.M., Shen, C.J., Kim, H.J., Hwang, D., Lee, S.B. Cytosolic calcium regulates cytoplasmic accumulation of TDP-43 through Calpain-A and Importin alpha3. Elife 9, e60132 (2020).

104. Qui, C., Kivipelto, M., von Strauss, E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin. Neurosci. 11, 111-128 (2009).

105. Wang, J., Gu, B.J., Masters, C.L., Wang, Y.-J. A systemic view of Alzheimer disease — insights from amyloid-β metabolism beyond the brain. Nat. Rev. Neurol. 13, 612–623 (2017).

106. Hyman, B.T., Phelps, C.H., Beach, T.G., Bigio, E.H., Cairns, N.J., Carrillo, M.C., Dickson, D.W., Duyckaerts, C., Frosch, M.P., Masliah, E., Mirra, S.S., Nelson, P.T., Schneider, J.A., Thal, D.R., Thies, B., Trojanowski, J.Q., Vinters, H. V, Montine, T.J. National Insitute on Aging- Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s Dement. 8, 1–13 (2013).

107. Sheffield, L.G., Mirra, S.S. The distribution of karyopherin beta proteins in Alzheimer’s disease. FASEB J. 22, 707.6 (2008).

108. Cornelison, G.L., Levy, S.A., Jenson, T., Frost B. Tau-induced nuclear envelope invagination causes a toxic accumulation of mRNA in Drosophila. Aging Cell 18, e12847 (2019).

109. Mastroeni, D., Chouiliaras, L., Grover, A., Liang, W.S., Hauns, K., Rogers, J., Coleman, P.D. Reduced RAN expression and disrupted transport between cytoplasm and nucleus; a key event in Alzheimer's disease pathophysiology. PLoS One 8, e53349 (2013).

110. Bayliss, R., Littlewood, T., Stewart, M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-beta in nuclear trafficking. Cell 102, 99-108 (2000).

111. Fontoura, B.M., Blobel, G., Yaseen, N.R. The nucleoporin Nup98 is a site for GDP/GTP
exchange on ran and termination of karyopherin beta 2-mediated nuclear import. J. Biol. Chem. 275, 31289-31296 (2000).

112. Wagner, R.S., Kapinos, L.E., Marshall, N.J., Stewart, M., Lim, R.Y.H. Promiscuous binding of Karyopherinβ1 modulates FG nucleoporin barrier function and expedites NTF2 transport kinetics. Biophys. J. 108, 918-927 (2015).

113. Goedert, M., Spillantini, M.G., Del Tredici, K., Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13-24 (2013).

114. Goedert, M., Jakes, R., Spillantini, M.G. The Synucleinopathies: Twenty Years On. J. Parkinsons. 7, S51-S69 (2017).

115. Spillantini, M.G., Schmidt, M.L., Lee, V.M.-Y., Trojanowski, J.Q., Jakes, R., Goedert, M. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

116. Baba, M., Nakajo, S., Tu, P.H., Tomita, T., Nakaya, K., Lee, V.M., Trojanowski, J.Q., Iwatsubo, T. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am. J. Pathol. 152, 879-884 (1998).

117. Takeda, A., Mallory, M., Sundsмо, M., Honer, W., Hansen, L., Masliah, E. Abnormal accumulation of NACP/alpha-synuclein in neurodegenerative disorders. Am. J. Pathol. 152, 367-372 (1998).

118. Bridi, J., Hirth, F. Mechanisms of α-synuclein induced synaptopathy in Parkinson's disease. Front. Neurosci. 12, 80 (2018).

119. Maroteaux, L., Campanelli, J.T., Scheller, R.H. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J. Neurosci. 8, 2804-2815 (1998).

120. Schaser, A.J., Osterberg, V.R., Dent, S.E., Stackhouse, T.L., Wakeham, C.M., Boutros, S.W., Weston, L.J., Owen, N., Weissman, T.A., Luna, E., Raber, J., Luk, K.C., McCullough, A.K., Woltjer, R.L., Unni, V.K. Alpha-synuclein is a DNA binding protein that modulates DNA repair with implications for Lewy body disorders. Sci. Rep. 9, 10919 (2019).

121. Ueda, K., Fukushima, H., Masliah, E., Xia, Y., Iwai, A., Yoshimoto, M., Otero, D.A., Kondo, J., Ihara, Y., Saitoh, T. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 11282–11286 (1993).

122. Davidi, D., Schechter, M., Elhadi, S.A., Matatov, A., Nathanson, L., Sharon, R. α-Synuclein Translocates to the Nucleus to Activate Retinoic-Acid-Dependent Gene Transcription. iScience 23, 100910 (2020).
123. Ryu, S., Baek, I., Liew, H. Sumoylated α-synuclein translocates into the nucleus by karyopherin α6. Mol. Cell. Toxicol. 15, 103-109 (2019).

124. Rousseaux, M.W., de Haro, M., Lasagna-Reeves, C.A., De Maio, A., Park, J., Jafarnajad, P., Al-Ramahi, I., Sharma, A., See, L., Lu, N., Vilanova-Velez, L., Klisch, T.J., Westbrook, T.F., Troncoso, J.C., Botas, J., Zoghbi, H.Y. TRIM28 regulates the nuclear accumulation and toxicity of both alpha-synuclein and tau. Elife 5, e19809 (2016).

125. Moriyama, T., Sangel, P., Yamaguchi, H., Obuse, C., Miyamoto, Y., Oka, M., Yoneda, Y. Identification and characterization of a nuclear localization signal of TRIM28 that overlaps with the HP1 box. Biochem. Biophys. Res. Commun. 462, 201-207 (2015).

126. Rousseaux, M.W., Revelli, J.P., Vázquez-Vélez, G.E., Kim, J.Y., Craigen, E., Gonzales, K., Beckinghausen, J., Zoghbi, H.Y. Depleting Trim28 in adult mice is well tolerated and reduces levels of α-synuclein and tau. Elife 7, e36768 (2018).

127. Nishie, M., Mori, F., Yoshimoto, M., Takahashi, H., Wakabayashi, K. A quantitative investigation of neuronal cytoplasmic and intranuclear inclusions in the pontine and inferior olivary nuclei in multiple system atrophy. Neuropathol. Appl. Neurobiol. 30, 546-554 (2004).

128. Pinho, R., Paiva, I., Jercic, K.G., Fonseca-Ornelas, L., Gerhardt, E., Fahlbusch, C., Garcia-Esparcia, P., Kerimoglu, C., Pavlou, M.A.S., Villar-Piqué, A., Szego, É., Lopes da Fonseca, T., Odoardi, F., Soerces, S., Rego, A.C., Fischle, W., Schwamborn, J.C., Meyer, T., Kügler, S., Ferrer, I., Attems, J., Fischer, A., Becker, S., Zweckstetter, M., Borovecki, F., Outeiro, T.F. Nuclear localization and phosphorylation modulate pathological effects of alpha-synuclein. Hum. Mol. Genet. 28, 31-50 (2019).

129. Kramer, M.L., Schulz-Schaeffer, W.J. Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J. Neurosci. 27, 1405-1410 (2007).

130. Colom-Cadena, M., Pegueroles, J., Herrmann, A.G., Henstridge, C.M., Muñoz, L., Querol-Vilaseca, M., Martin-Paniello, C.S., Luque-Cabecerans, J., Clarimon, J., Belbin, O., Núñez-Llaves, R., Blesa, R., Smith, C., McKenzie, C.A., Frosch, M.P., Roe, A., Fortea, J., Andilla, J., Loza-Alvarez, P., Gelpi, E., Hyman, B.T., Spires-Jones, T.L., Lleó, A. Synaptic phosphorylated α-synuclein in dementia with Lewy bodies. Brain 140, 3204-3214 (2017).

131. Bereczki, E., Francis, P.T., Howlett, D., Pereira, J.B., Höglund, K., Bogstedt, A., Cedazo-Minguez, A., Baek, J-H., Hortobágyi, T., Attems, J., Ballard,C., Aarsland, D. Synaptic
proteins predict cognitive decline in Alzheimer’s disease and Lewy body dementia. Alzheimer’s & Dementia. 12, 1149-1158 (2016).

132. Bereczki, E., Branca, R.M., Francis, P.T., Pereira, J.B., Baek, J-H., Hortobágyi, T., Windblad, B., Ballard, C., Lehtiö, J., Aarsland, D. Synaptic markers of cognitive decline in neurodegenerative diseases: a proteomic approach. Brain 141, 582-595 (2018).

133. Braak, H., Rub, U., Gai, W.P., Del Tredici, K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110, 517–536 (2003).

134. Morgan, S.A., Lavenir, I., Fan, J., Masuda-Suzukake, M., Passarella, D., DeTure, M.A., Dickson, D.W., Ghetti, B., Goedert, M. alpha-Synuclein filaments from transgenic mouse and human synucleinopathy-containing brains are major seed-competent species. J. Biol. Chem. 295, 6652-6664 (2020).

135. Devine, M.J., Ryten, M., Vodicka, P., Thomson, A.J., Burdon, T., Houlden, H., Cavalieri, F., Nagano, M., Drummond, N.J., Taanman, J.W., Schapira, A.H., Gwinn, K., Hardy, J., Lewis, P.A., Kunath, T. Parkinson’s disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nat. Commun. 2, 440 (2011).

136. Fares, M.B., Ait-Bouziad, N., Dikiy, I., Mbefo, M.K., Jovičić, A., Kiely, A., Holton, J.L., Lee, S.J., Gitler, A.D., Eliezer, D., Lashuel, H.A. The novel Parkinson’s disease linked mutation G51D attenuates in vitro aggregation and membrane binding of α-synuclein, and enhances its secretion and nuclear localization in cells. Hum. Mol. Genet. 23, 4491-4509 (2014).

137. Büttner, S., Habernig, L., Broeskamp, F., Ruli, D., Vögtle, F.N., Vlachos, M., Macchi, F., Küttnner, V., Carmona-Gutierrez, D., Eisenberg, T., Ring, J., Markaki, M., Taskin, A.A., Benke, S., Ruckenstuhl, C., Braun, R., Van den Haute, C., Bammens, T., van der Perren, A., Fröhlich, K.U., Winderickx, J., Kroemer, G., Baekelandt, V., Tavernarakis, N., Kovacs, G.G., Dengiel, J., Meisinger, C., Sigrist, S.J., Madeo, F. Endonuclease G mediates α-synuclein cytotoxicity during Parkinson’s disease. EMBO J. 32, 3041-3054 (2013).

138. Paisán-Ruiz, C., Jain, S., Evans, E.W., Gilks, W.P., Simón, J., van de Brug, M., López de Munain, A., Aparicio, S., Gil, A.M., Khan, N., Johnson, J., Martinez, J.R., Nicholl, D., Martí Carrera, I., Pena, A.S., de Silva, R., Lees, A., Martí-Massó, J.F., Pérez-Tur, J., Wood, N.W., Singleton, A.B. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44, 595-600 (2004).

139. Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J,
Hulihan, M., Uitti, R.J., Calne, D.B., Stoessl, A.J., Pfeiffer, R.F., Patenge, N., Carbajal, I.C., Vieregge, P., Asmus, F., Müller-Myhsok, B., Dickson, D.W., Meitinger, T., Strom, T.M., Wszolek, Z.K., Gasser, T. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601-607 (2004).

140. Bonifati, V., Rizzu, P., van Baren, M.J., Schaap, O., Breedveld, G.J., Krieger, E., Dekker, M.C., Squitieri, F., Ibanez, P., Joosse, M., van Dongen, J.W., Vanacore, N., van Swieten, J.C., Brice, A., Meco, G., van Duijn, C.M., Oostra, B.A., Heutink, P. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256-259 (2003).

141. Nelson, D.E., Laman, H. A Competitive binding mechanism between Skp1 and exportin 1 (CRM1) controls the localization of a subset of F-box proteins. J. Biol. Chem. 286, 19804-19815 (2011).

142. Zhao, T., Severijnen, L.A., van der Weiden, M., Zheng, P.P., Oostra, B.A., Hukema, R.K., Willemsen, R., Kros, J.M., Bonifati, V. FBXO7 immunoreactivity in α-synuclein-containing inclusions in Parkinson disease and multiple system atrophy. J. Neuropathol. Exp. Neurol. 72, 482-488 (2013).

143. McCollgan, P., Tabrizi, S.J. Huntington's disease: a clinical review. Eur. J. Neurol. 25, 24-34 (2018).

144. Bates, G.P., Dorsey, R., Gusella, J.F., Hayden, M.R., Kay, C., Leavitt, B.R., Nance, M., Ross, C.A., Seahill, R.I., Wetzel, R., Wild, E.J., Tabrizi, S.J. Huntington disease. Nat. Rev. Dis. Prim. 1, 15005 (2015).

145. Finkbeiner, S. Huntington’s Disease. Cold Spring Harb. Perspect. Biol. 3, a007476 (2011).

146. Ashizawa, T., Wong, L.J., Richards, C.S., Caskey, C.T., Jankovic, J. CAG repeat size and clinical presentation in Huntington's disease. Neurology 44, 1137-1143 (1994).

147. Kieburtz, K., MacDonald, M., Shih, C., Feigin, A., Steinberg, K., Bordwell, K., Zimmerman, C., Srinidhi, J., Sotack, J., Gusella, J., et al. Trinucleotide repeat length and progression of illness in Huntington's disease. J. Med. Genet. 31, 872-874 (1994).

148. Truant, R., Atwal, R.S., Burtnik, A. Nucleocytoplasmic trafficking and transcription effects of huntingtin in Huntington’s disease. Prog. Neurobiol. 83, 211-227 (2011).

149. Maiuri, T., Woloshansky, T., Xia, J., Truant, R. The huntingtin N17 domain is a multifunctional CRM1 and ran-dependent nuclear and ciliary export signal. Hum. Mol. Genet. 22, 1383–1394 (2013).

150. Zheng, Z., Li, A., Holmes, B.B., Marasa, J.C., Diamond, M.I. An N-terminal nuclear
export signal regulates trafficking and aggregation of huntingtin (Htt) protein exon 1. J. Biol. Chem. 288, 6063–6071 (2013).

151. Twyffels, L., Gueydan, C., Kruys, V. Transportin-1 and Transportin-2: protein nuclear import and beyond. FEBS Lett. 588, 1857-1868 (2014).

152. Kim, M., Roh, J.K., Yoon, B.W., Kang, L., Kim, Y.J., Aronin, N., DiFiglia, M. Huntingtin is degraded to small fragments by calpain after ischemic injury. Exp. Neurol. 183, 109–115 (2003).

153. Hughes, A., Jones, L. Huntingtin localisation studies - a technical review. PLoS Curr. 3, RRN1211 (2011).

154. Saudou, F., Humbert, S. The Biology of Huntingtin. Neuron 89, 910-926 (2016).

155. DiFiglia, M., Sapp, E., Chase, K.O., Davies, S.W., Bates, G.P., Vonsattel, J.P., Aronin, N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990-1993 (1997).

156. Wellington, C.L., Ellerby, L.M., Hackam, A.S., Margolis, R.L., Trifiro, M.A., Singhara, R., McCutcheon, K., Salvesen, G.S., Propp, S.S., Bromm, M., Rowland, K.J., Zhang, T., Rasper, D., Roy, S., Thornberry, N., Pinsky, L., Kakizuka, A., Ross, C.A., Nicholson, D.W., Bredesen, D.E., Hayden, M.R. Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 273, 9158–9167 (1998).

157. Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., Lawton, M., Trottier, Y., Lehra, H., Davies, S.W., Bates, G.P. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493-506 (1996).

158. Shirasaki, D.I., Greiner, E.R., Al-Ramahi, I., Gray, M., Boontheung, P., Geschwind, D.H., Botas, J., Coppola, G., Horvath, S., Loo, J.A., Yang, X.W. Network organization of the huntingtin proteomic interactome in mammalian brain. Neuron 75, 41-57 (2012).

159. Langfelder, P., Cantle, J.P., Chatzopoulou, D., Wang, N., Gao, F., Al-Ramahi, I., Lu, X.H., Ramos, E.M., El-Zein, K., Zhao, Y., Deverasety, S., Tebbe, A., Schaab, C., Lavery, D.J., Howland, D., Kwak, S., Botas, J., Aaronson, J.S., Rosinski, J., Coppola, G., Horvath, S., Yang, X.W. Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat. Neurosci. 19, 623-633 (2016).

160. Gasset-Rosa, F., Chillon-Marinacs, C., Goginashvili, A., Atwal, R.S., Artates, J.W., Tabet, R., Wheeler, V.C., Bang, A.G., Cleveland, D.W., Lagier-Tourenne, C. Polyglutamine-Expanded Huntingtin Exacerbates Age-Related Disruption of Nuclear
Integrity and Nucleocytoplasmic Transport. Neuron 94, 48-57 (2017).

161. Grima, J.C., Daigle, J.G., Arbez, N., Cunningham, K.C., Zhang, K., Ochaba, J., Geater, C., Morozko, E., Stocksdale, J., Glatzer, J.C., Pham, J.T., Ahmed, I., Peng, Q., Wadhwa, H., Pletnikova, O., Troncoso, J.C., Duan, W., Snyder, S.H., Ranum, L.P.W., Thompson, L.M., Lloyd, T.E., Ross, C.A., Rothstein, J.D. Mutant Huntingtin Disrupts the Nuclear Pore Complex. Neuron 94, 93-107 (2017).

162. Bañez-Coronel, M., Ayhan, F., Tarabochia, A.D., Zu, T., Perez, B.A., Tusi, S.K., Pletnikova, O., Borchelt, D.R., Ross, C.A., Margolis, R.L., Yachnis, A.T., Troncoso, J.C., Ranum, L.P.W. RAN translation in Huntington Disease. Neuron 88, 667–677 (2015).

163. Yamada, S.B., Gendron, T.F., Niccoli, T., Genuth, N.R., Grosely, R., Shi, Y., Glaria, I., Kramer, N.J., Nakayama, L., Fang, S., Dinger, T.J.I., Thoeng, A., Rocha, G., Barna, M., Puglisi, J.D., Partridge, L., Ichida, J.K., Isaacs, A.M., Petrucelli, L., Gitler, A.D. RPS25 is required for efficient RAN translation of C9orf72 and other neurodegenerative disease-associated nucleotide repeats. Nat. Neurosci. 22, 1383-1388 (2019).

164. Bogaert, E., Boeynaems, S., Kato, M., Guo, L., Caulfield, T.R., Steyaert, J., Scheveneels, W., Wilmans, N., Haeck, W., Hersmus, N., Schymkowitz, J., Rousseau, F., Shorter, J., Callaerts, P., Robberecht, W., Van Damme, P., Van Den Bosch, L. Molecular dissection of FUS points at synergistic effect of low-complexity domains in toxicity. Cell Rep. 24, 529-537 (2018).

165. Peskett, T.R., Rau, F., O’Driscoll, J., Patani, R., Lowe, A.R., Saibil, H.R. A liquid to solid phase transition underlying pathological Huntingtin exon1 aggregation. Mol. Cell 70, 588-601 (2018).

166. Wegmann, S., Eftekhharzadeh, B., Tepper, K., Zoltowska, K.M., Bennett, R.E., Dujardin, S., Laskowski, P.R., MacKenzie, D., Kamath, T., Commens, C., Vanderburg, C., Roe, A.D., Fan, Z., Molliex, A.M., Hernandez-Vega, A., Muller, D., Hyman, A.A., Mandelkow, E., Taylor, J.P., Hyman, B.T. Tau protein liquid–liquid phase separation can initiate tau aggregation. EMBO J. 37, 1–21 (2018).

167. Ray, S., Singh, N., Kumar, R., Patel, K., Pandey, S., Datta, D., Mahato, J., Panigrahi, R., Navalkar, A., Mehra, S., Gadhe, L., Chatterjee, D., Sawner, A.S., Maiti, S., Bhatia, S., Gerez, J., Chowdhury, A., Kumar, A., Padinheateeri, R., Riek, R., Krishnamoorthy, G., Maji, S.K. α-synuclein aggregation nucleates through liquid-liquid phase separation. Nat. Chem. 12, 705-716 (2020).
168. Cascarina, M., Elder, R., Ross, D. Atypical structural tendencies among low-complexity domains in the Protein Data Bank proteome. PLoS Comput. Biol. 16, e1007487 (2020).
169. Alberti, S., Hyman, A.A. Are aberrant phase transitions a driver of cellular aging? BioEssays 38, 959–968 (2016).
170. Shin, Y., Brangwynne, C.P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
171. Ambadipudi, S., Biernat, J., Riedel, D., Mandelkow, E., Zweckstetter, M. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nat. Commun. 8, 1–13 (2017).
172. Boyko, S., Surewicz, K., Surewicz, W.K. Regulatory mechanisms of tau protein fibrillation under the conditions of liquid-liquid phase separation. Proc. Natl. Acad. Sci. USA 117, 31882-31890 (2020).
173. Kanaan, N.M., Hamel, C., Grabinski, T., Combs, B. Liquid-liquid phase separation induces pathogenic tau conformations in vitro. Nat. Commun. 11, 2809 (2020).
174. Ash, P.E.A., Lei, S., Shattuck, J., Boudeau, S., Carломagno, Y., Medalla, M., Mashimo, B.L., Socorro, G., Al-Mohanna, L.F.A., Jiang, L., Öztürk, M.M., Knobel, M., Ivanov, P., Petrucelli, L., Wegmann, S., Kanaan, N.M., Wolozin, B. TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proc. Natl. Acad. Sci. USA 118m, e2014188118 (2021).
175. Babinchak, W.M., Haider, R., Dumm, B.K., Sarkar, P., Surewicz, K., Choi, J.K., Surewicz, W.K. The role of liquid-liquid phase separation in aggregation of the TDP-43 low-complexity domain. J. Biol. Chem. 294, 6306–6317 (2019).
176. French, R.L., Grese, Z.R., Aligireddy, H., Dhavale, D.D., Reeb, A.N., Kedia, N., Kotzbauer, P.T., Bieschke, J., Ayala, Y.M. Detection of TAR DNA-binding protein 43 (TDP-43) oligomers as initial intermediate species during aggregate formation. J. Biol. Chem. 294, 6696–6709 (2019).
177. Watanabe, S., Inami, H., Oiwa, K., Murata, Y., Sakai, S., Komine, O., Sobue, A., Iguchi, Y., Katsuno, M., Yamanaka, K. Aggresome formation and liquid-liquid phase separation independently induce cytoplasmic aggregation of TAR DNA-binding protein 43. Cell Death Dis. 11, 909 (2020).
178. Conicella, A.E., Dignon, G.L., Zerze, G.H., Schmidt, H.B., D’Ordine, A.M., Kim, Y.C., Rohatgi, R., Ayala, Y.M., Mittal, J., Fawzi, N.L. TDP-43 α-helical structure tunes liquid-liquid phase separation and function. Proc. Natl. Acad. Sci. USA 117, 5883-5894 (2020).
179. Murthy, A.C., Dignon, G.L., Kan, Y., Zerze, G.H., Parekh, S.H., Mittal, J., Fawzi, N.L.
Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat. Struct. Mol. Biol. 26, 637-648 (2019).

180. Dasmeh, P., Wagner, A. Natural Selection on the Phase-Separation Properties of FUS during 160 My of Mammalian Evolution. Mol. Biol. Evol. 38, 940-951 (2021).

181. Hardenberg, M.C., Sinnige, T., Casford, S., Dada, S., Poudel, C., Robinson, E.A., Fuxreiter, M., Kaminski, C., Kaminski-Schierle, G.S., Nollen, E.A.A., Dobson, C.M., Vendruscolo, M. Observation of an α-synuclein liquid droplet state and its maturation into Lewy body-like assemblies. J. Mol. Cell Biol. 2021 Jan 2, mjaa075 (2021).

182. Vanderweyde, T., Yu, H., Varnum, M., Liu-Yesucevitz, L., Citro, A., Ikezu, T., Duff, K., Wolozin, B. Contrasting pathology of the stress granule proteins TIA-1 and G3BP in tauopathies. J. Neurosci. 32, 8270–8283 (2012).

183. Springhower, C.E., Rosen, M.K., Chook, Y.M. Karyopherins and condensates. Curr. Opin. Cell Biol. 64, 112-123 (2020).

184. Schmidt, H.B., Barreau, A., Rohatgi, R. Phase separation-deficient TDP43 remains functional in splicing. Nat. Commun. 10, 4890 (2019).

185. Li, H.-R., Chiang, W.-C., Chou, P.-C., Wang, W.-J., Huang, J. TAR DNA-binding protein 43 (TDP-43) liquid-liquid phase separation is mediated by just a few aromatic residues. J. Biol. Chem 293, 6090–6098 (2018).

186. Lin, Y., Protter, D.S.W., Rosen, M.K., Parker, R. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol. Cell 60, 208–219 (2015).

187. Zhang, K., Daigle, J.G., Cunningham, K.M., Coyne, A.N., Ruan, K., Grima, J.C., Bowen, K.E., Wadhwa, H., Yang, P., Rigo, F., Taylor, J.P., Gitler, A.D., Rothstein, J.D., Lloyd, T.E. Stress granule assembly disrupts nucleocytoplasmic transport. Cell 173, 958-959 (2018).

188. Zhang, X., Vigers, M., McCarty, J., Rauch, J.N., Fredrickson, G.H., Wilson, M.Z., Shea, J.E., Han, S., Kosik, K.S. The proline-rich domain promotes Tau liquid-liquid phase separation in cells. J. Cell Biol. 219, e202006054 (2020).

189. Lin, Y., Fichou, Y., Longhini, A.P., Llanes, L.C., Yin, P., Bazan, G.C., Kosik, K.S., Han, S. Liquid-Liquid Phase Separation of Tau Driven by Hydrophobic Interaction Facilitates Fibrillization of Tau. J. Mol. Biol. 2021 433, 166731 (2021).

190. Shorter, J. Designer protein disaggregases to counter neurodegenerative disease. Curr. Opin. Genet. Dev. 44, 1-8 (2017).

191. Darling, A.L., Shorter, J. Combating deleterious phase transitions in neurodegenerative disease. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118984 (2021).
192. Dorst, J., Ludolph, A.C., Huebers, A. Disease-modifying and symptomatic treatment of amyotrophic lateral sclerosis. Ther. Adv. Neurol. Disord. 11, 1756285617734734 (2017).
193. Long, J.M., Holtzman, D.M. Alzheimer Disease: An update on pathobiology and treatment strategies. Cell 179, 312-339 (2019).
194. Stelma, T., Chi, A., Van Der Watt, P.J., Verrico, A., Lavia, P., Leaner, V.D. Critical Review Targeting Nuclear Transporters in Cancer: Diagnostic, Prognostic and Therapeutic Potential. IUBMB Life 68, 268–280 (2016).
195. Çağatay, T., Chook, Y.M. 2018. Karyopherins in cancer. Curr. Opin. Cell Biol. 52, 30–42.
196. Martin, A.J., Jans, D.A. Antivirals that target the host IMPα/β1-virus interface. Biochem. Soc. Trans. 49, 281-295 (2021).
197. Jans, D.A., Martin, A.J., Wagstaff, K.M. Inhibitors of nuclear transport. Curr. Opin. Cell Biol. 58, 50-60 (2019).
198. Kosyna, F.K., Depping, R. Controlling the gatekeeper: Therapeutic targeting of nuclear transport. Cells 7, E221 (2018).
199. Wagstaff, K.M., Sivakumaran, H., Heaton, S.M., Harrich, D., Jans, D.A. Ivermectin is a specific inhibitor of importin alpha/beta-mediated nuclear import able to inhibit replication of HIV-1 and dengue virus. Biochem. J. 443, 851–856 (2012).
200. Tay, M.Y., Fraser, J.E., Chan, W.K., Moreland, N.J., Rathore, A.P., Wang, C., Vasudevan, S.G., Jans, D.A. Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antivir. Res. 99, 301–306 (2013).
201. Panchal, M., Rawat, K., Kumar, G., Kibria, K.M., Singh, S., Kalamuddin, M., Mohammmed, A., Malhotra, P., Tuteja, R. Plasmodium falciparum signal recognition particle components and anti-parasitic effect of ivermectin in blocking nucleocytoplasmic shuttling of SRP. Cell Death Dis. 5, e994 (2014).
202. Widman, D.G., Gornisiewicz, S., Shacham, S., Tamir, S. In vitro toxicity and efficacy of verdinexor, an exportin 1 inhibitor, on opportunistic viruses affecting immunocompromised individuals. PLoS One 13, e0200043 (2018).
203. Haines, J.D., Herbin, O., De La Hera, B., Vidaurre, O.G., Moy, G.A., Sun, Q., Fung, H.Y.J., Albrecht, S., Alexandropoulos, K., McCauley, D., Chook, Y.M., Kuhlmann, T., Kidd, G.J., Shacham, S., Casaccia, P. Nuclear export inhibitors avert progression in preclinical models of inflammatory demyelination. Nat. Neurosci. 18, 511–520 (2015).
204. Niaki, A.G., Sarkar, J., Cai, X., Rhine, K., Vidaurre, V., Guy, B., Hurst, M., Lee, J.C.,
Koh, H.R., Guo, L., Fare, C.M., Shorter, J., Myong, S. Loss of dynamic RNA interaction and aberrant phase separation induced by two distinct types of ALS/FTD-linked FUS mutations. Mol Cell 77, 82-94 (2020).

205. Archbold, H.C., Jackson, K.L., Arora, A., Weskamp, K., Tank, E.M., Li, X., Miguez, R., Dayton, R.D., Tamir, S., Klein, R.L., Barmada, S.J. TDP43 nuclear export and neurodegeneration in models of amyotrophic lateral sclerosis and frontotemporal dementia. Sci. Rep. 8, 4606 (2018).

206. Wang, A.Y., Liu, H. The past, present, and future of CRM1/XPO1 inhibitors. Stem Cell Investig. 6, 6 (2019).

207. Quiroz, F.G., Fiore, V.F., Levorse, J., Polak, L., Wong, E., Pasolli, H.A., Fuchs, E. Liquid-liquid phase separation drives skin barrier formation. Science 367, pii: eaax9554.

208. Khosravi, B., Hartmann, H., May, S., Möhl, C., Ederle, H., Michaelsen, M., Schludi, M.H., Dormann, D., Edbauer, D. Cytoplasmic poly-GA aggregates impair nuclear import of TDP-43 in C9orf72 ALS/FTLD. Hum. Mol Genet. 26, 790-800 (2017).

209. Sowa, A.S., Martin, E., Martins, I.M., Schmidt, J., Depping, R., Weber, J.J., Rother, F., Hartmann, E., Bader, M., Riess, O., Tricoire, H., Schmidt, T. Karyopherin α-3 is a key protein in the pathogenesis of spinocerebellar ataxia type 3 controlling the nuclear localization of ataxin-3. Proc. Natl. Acad. Sci. USA 115, E2624-E2633 (2018).

210. Tsou, W.L., Ouyang, M., Hosking, R.R., Sutton, J.R., Blount, J.R., Burr, A.A., Todi, S.V. The deubiquitinase ataxin-3 requires Rad23 and DnaJ-1 for its neuroprotective role in Drosophila melanogaster. Neurobiol. Dis. 82, 12-21 (2015).

211. Fagerlund, R., Kinnunen, L., Köhler, M., Julkunen, I., Melén, K. NF-κB Is Transported into the Nucleus by Importin α3 and Importin α4. J. Biol. Chem. 280, 15942–15951 (2005).

212. Lu, C., Figueroa, J.A., Liu, Z., Konala, V., Aulakh, A., Verma, R., Cobos, E., Chiriva-Internati, M., Gao, W. Nuclear export as a novel therapeutic target: The CRM1 connection. Curr. Cancer Drug Targets 15, 575-592 (2015).

213. Chafe, S.C., Mangroo, D. Scyl1 facilitates nuclear tRNA export in mammalian cells by acting at the nuclear pore complex. Mol Biol Cell. 21, 2483-2499 (2010).

214. Wang, J., Lee, J.E., Riemondy, K. et al. XPO5 promotes primary miRNA processing independently of RanGTP. Nat. Commun 11, 1845 (2020).

215. Stueven, T., Hartmann, E., Goerlich, D. Exportin 6: a novel nuclear export receptor that is specific for profilin/actin complexes. EMBO J. 22, 5928-5940 (2003).

216. Mingot, J. M., Bohnsack, M. T., Jakle, U. and Görlich, D. Exportin 7 defines a novel
general nuclear export pathway. EMBO J. 23, 3227-3236 (2004).

217. Aksu M, Pleiner T, Karaca S, Kappert C, Heinz-Jurgen D, Seibel Km Henning U, Bohnsack M, Gorlich D; Xpo7 is a broad-spectrum exportin and a nuclear import receptor. J. Cell Biol. 217, 2329–2340 (2018).

218. Jaekel, S., Görlich, D. Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J. 17, 4491-4502 (1998).

219. Neumann, M., Bentmann, E., Dormann, D., Jawaid, A., DeJesus-Hernandez, M., Ansorge, O., Roeber, S., Kretzschmar, H.A., Munoz, D.G., Kusaka, H., Yokota, O., Ang, L., Bilbao, J.M., Rademakers, R., Haass, C., Mackenzie, I.R.A. FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 134, 2595–2609 (2011).

220. Barraud, P., Banerjee, S., Mohamed, W.I., Jantsch, M.F., Allain, F.H. A bimodular nuclear localization signal assembled via an extended double-stranded RNA-binding domain acts as an RNA-sensing signal for transportin 1. Proc. Natl. Acad. Sci. U.S.A. 111, E1852-1861 (2014).

221. Güttinger, S., Mühlhäusser, P., Koller-Eichhorn, R., Brennecke, J., Kutay, U. Transportin2 functions as importin and mediates nuclear import of HuR. Proc. Natl. Acad. Sci. USA 101, 2918-2923 (2004).

222. Kataoka, N., Bachorik, J.L., Dreyfuss, G. Transportin-SR, a nuclear import receptor for SR proteins. J. Cell Biol. 145, 1145-1152 (1999).

223. Jaekel, S. Mingot, J.M., Schwarzmaier, P., Hartmann, E., Görlich, D. Importins fulfil a dual function as nuclear import receptors and cytoplasmic chaperones for exposed basic domains. EMBO J. 21, 377–386 (2002).

224. Dean, K.A., von Ahsen, O., Görlich, D., Fried, H.M. Signal recognition particle protein 19 is imported into the nucleus by importin 8 (RanBP8) and transportin. J. Cell Sci. 114, 3479-3485 (2001).

225. Plafker, S.M., Macara, I.G. Importin-11, a nuclear import receptor for the ubiquitin-conjugating enzyme, UbcM2. EMBO J. 19, 5502-5513 (2000).

226. Mingot, J.-M., Kostka, S., Kraft, R., Hartmann, E., Görlich, D. Importin 13: a novel mediator of nuclear import and export. EMBO J. 20, 3685-3694 (2001).
Figure 1. Functional architecture of karyopherins. (A) Karyopherin alpha (KPNA) family proteins consist of two main functional domains: an importin beta (KPNB) binding (IBB) domain for nuclear import and export and Armadillo repeats for the recognition of canonical nuclear localisation signal (cNLS) of cargo proteins. The IBB consists of cNLS binding boxes (bars in purple), major (‘KRR’) and minor (‘RRRR’ or ‘RRQR’ or ‘RRHR’) binding sites, which in the absence of KPNB occupy the cNLS-binding surface of Armadillo repeats. This prevents import of ‘unloaded’ karyopherin complexes in the nucleus. KPNA family proteins are subdivided into three subfamilies, alpha 1, 2 and 3, based on differences in amino acid sequence in their IBB domain and cNLS binding sites. See Table 1 for details on all KPNA family members. (B) Karyopherin beta (KPNB) family proteins comprise an N-terminal (20-120 a/a) importin domain responsible for binding with Ran and for directed protein translocation across the nuclear envelope, and HEAT repeats that are distinguishable by their flexibility and recognition/binding of cargo-proteins via the NLS or the nuclear export signal and binding to KPNA. Shown are two functionally important representatives of the KPNB family, KPNB1 and CAS; see Table 2 for details on all KPNB family members. Protein sequences were obtained from UniProt (see Table 1 and Table 2 for ID numbers); Clustal Omega was used for sequence alignment. Abbreviations: KPNA, karyopherin alpha; KPNB, karyopherin beta; cNLS, canonical nuclear localisation signal; NES, nuclear export signal; CAS, cellular apoptosis susceptibility protein.

Figure 2: Nucleocytoplasmic transport and chaperone function of karyopherins. Left, schematic diagram showing the RanGTP/GDP cycle through the nuclear pore complex. In the cytoplasm, RanGAP1, together with RanBP, hydrolyses RanGTP to maintain high cytoplasmic concentrations of RanGDP. In the nucleus, RCC1 (nuclear RanGEF) facilitates GTP-GDP exchange, causing high concentrations of RanGTP. These regulators maintain higher concentrations of RanGDP in the cytoplasm whilst preserving high levels of RanGTP in the karyoplasm, leading to a gradient required for energy-dependent nucleocytoplasmic transport. Right, schematic diagram of the classical nuclear import and export pathway. During nuclear import, KPNB1 binds to KPNA, which itself is bound to the classical nuclear localisation signal (cNLS) of cargo, forming a trimeric complex. KPNA also exerts chaperone function to cargo-cNLS by shielding basic residues from hydrophobic/ionic interactions, which maintains a cargo protein in its native soluble state. KPNB1 carries the complex through the nuclear pore complex, where RanGTP binds, causing a conformational change in the bound importin (note, some KPNBs shown as beta bind directly to cargo forming a dimeric complex which directly
translocates to the nucleus). This results in a trimeric complex of KPNA, nuclear export factor CAS, and RanGTP, and a dimeric complex consisting of KPNB1 and RanGTP. Both complexes then translocate back to the cytoplasm where their respective RanGTPs are hydrolysed to bind to the next cargo. During export, Exportin/KPNB (beta) bound to RanGTP binds to the cargo-NES of the cargo in the nucleoplasm. This complex is exported through the nuclear pore complex into the cytoplasm where RanGTP is hydrolysed, which triggers cargo release. *Abbreviations*: KPNA, karyopherin alpha; KPNB, karyopherin beta; cNLS, canonical nuclear localisation signal; CAS, cellular apoptosis susceptibility protein; RAN, Ras-related nuclear; RCC1, regulator of chromosome condensation 1; Ran-GAP, Ran GTPase activating protein; RanBP1, Ran binding protein 1; RanGEF, Ran Guanine Exchange Factor.

Figure 3. Karyopherins abnormalities in neurodegenerative proteinopathies. Left: In ALS/FTD-TDP, cytoplasmic accumulation of TDP-43 and its aggregates not associated with stress granules have been shown to sequester KPNAs. Right: In AD and FTD-Tau, pathological tau has been shown to sequester KPNAs. See text and Table 3 for details. *Abbreviations*: ALS, amyotrophic lateral sclerosis; FTD-TDP, frontotemporal dementia with TDP-43 pathology; Ad, Alzheimer’s disease; FTD-Tau, frontotemporal dementia with Tau pathology; KPNA, karyopherin alpha; KPNB1, karyopherin beta 1; CAS, cellular apoptosis susceptibility.
Pasha et al Figure 1

181x125mm (300 x 300 DPI)
Gene/Protein Name	NCBI ID	Sub Family	Synonyms	Cargo(s)	References
KPNA1	3836	α3	IPOA-5	SRP1β, NPI-1, RCH2	TDP-43 NF-κB (p50/p65; c-Rel; p52; RelB) Pumroy et al.,27 Lee et al.,50 Nishimura et al.24
KPNA2	3838	α1	IPOA-1	SRP1α, NPI-3, RCH1	TDP-43 NF-κB (p65) Pumroy et al.27 Nishimura et al.24
KPNA3	3839	α2	IPOA-4	SRP4, hSRP1, QIP2	TDP-43* NF-κB (p65/p50, p52) Nishimura et al.24 Khorovski et al.23a Sowa et al.209 Tsou et al.210 Fagerlund et al.211
KPNA4	3840	α2	IPOA-3	SRP3, QIP1	MGC1 2217 TDP-43* NF-κB (p50/p65, p52) Pumroy et al.27 Nishimura et al.24 208, 211
KPNA5	3841	α3	IPOA-6	SRP6, n/a, n/a	TDP-43* NF-κB (p65/p50, p52; c-Rel; RelB) Pumroy et al.27 Nishimura et al.24
KPNA6	23633	α3	IPOA-7	n/a, NPI-2	MGC1 7918 TDP-43 NF-κB (c-Rel; RelB) Pumroy et al.27 54
KPNA7	402569	α1	IPOA-8	n/a, n/a, n/a	n/a

Abbreviations: IPOA, importin alpha; KPNA, Karyopherin alpha; MGC, Mammalian Gene Collection; NF-κB, nuclear factor-κB; NPI, Nucleoprotein interactor; QIP, Importin alpha Q; RCH, RAG cohort protein; SRP, signal recognition particle; TDP-43, transactivating response (TAR) DNA binding protein of 43 kDa.

*Whilst TDP-43 acts as a cargo for KPNA1-6, KPNA3 & 4 show the strongest interactions.
Gene/Protein	Name	NCBI ID	Synonyms	Full name	Cargos	References
EXP1	XPO1	7514		Exportin-1	TDP-43; rRNA; snRNA; mRNA	Archbold et al.,205, Lu et al.,212
	CRM1					
CAS	XPO2	1434		Exportin-2	Importin α; TDP-43?	Kutay et al.,13, Nishimura et al.,54
	CAS					
	CSE1					
XPO3	EXP3	11260		Exportin-3	tRNA; Scy1	Kutay et al.,38, Chafe et al.,213
XPO5	EXP5	57510		Exportin-5	Scy1miRNA precursors	Chafe et al.,211, Wang et al.,214
XPO6	EXP6	23214		Exportin-6	Actin	Stueven et al.,215
XPO7	EXP7	23039		Exportin-7	p50RhoGAP; TDP-43; Tubulin; Histones	Archbold et al.,205, Mingot et al.,214, Aksu et al.,216
KPNB1	IPO1	3837		Importin-1	HTT; RPL23A; RPS7; RPL5; SNAI1 PRKCI	Desmond et al.,16, Jaekel and Görlich,218
	IPO90			Importin-90		
	IPOB			Importin-beta		
	IMB1			Importin beta 1 subunit		
	KPNB1			Karyopherin-beta 1		
	PTAC97			Pore targeting complex 97 kDa subunit		
	NTF97			Nuclear factor p97		
TNPO1	TRN	3842		Transportin 1	HTT; FUS; TAF15; EWS; hnRNP-a1/a2; RPL23A; RPS7; RPL5; ADAR/ADAR1 (isoform 1 and 5)	Desmond et al.,16, Jaekel and Görlich,218, Neumann et al.,219, Barraud et al.,220
	IPO2			Importin-beta-2		
	KPNB2			Karyopherin-beta 2		
	MMP			M9 region interaction protein (MIP)		
TNPO2	TRN2	30000		Transportin-2	FUS; hnRNP A1/H/M	Güttinger et al.,221
	IPO3			Importin 3		
	KPNB2B			Karyopherin β2-2B		
TNPO3	TRN3	23534		Transportin-3	SFRS1; SFRS2	Kataoka et al.,222
	TRNSR			Transportin-SR		
	IPO12			Importin-12		
	LGMD1F			Limb girdle muscular dystrophy 1F		
IFO4	IMP4	79711		Importin-4	RPS3A	Jaekel et al.,223
	IMP4b			Importin-4b		
	RANBP4			Ran-binding protein 4		
IFO5	IMP5	3843		Importin-5	RPL23A RPS7; RPL5	Jaekel and Görlich,218
	IMP3			Importin subunit β-3		
	KPNB3			Karyopherin β-3		
	RANBP5			Ran-binding protein 5		
	PSE1			Protein Secretion Enhancer 1		
IFO7	IMP7	10527		Importin-7	RPL23A RPS7; RPL5	Jaekel and Görlich,218
	RANBP7			Ran-binding protein 7		
IFO8	IMP8	10526		Importin-8	SRP19	Dean et al.,224
	RANBP8			Ran-binding protein 8		
IFO9	IMP9	55705		Importin-9	Actin; RPS7 RPL18A RPL6	Jaekel et al.,223, UniProtKB - Q96P70
	RANBP9			Ran-binding protein 9		
	KIAA1192			Identified by Kazusa Institute		
	HSPC273			Homo sapiens HSPC273 mRNA, partial cds		
IFO11	IMP11	51194		Importin-11	UbcM2	Plafker and Macara,225
	RANBP11			Ran-binding protein 11		
XPO4	EXP4	64328		Exportin-4	n/a	
XPO13	IMP13	9670		Importin-13	RBM8A SUMO1; UBC9; EIF1A	Mingot et al.,226
	KAP13			Karyopherin 13		
	RANBP13			Ran-binding protein 13		
	KIAA0724			Identified by Kazusa Institute		
	LGL2			Late gestation lung 2		
Table 3 Karyopherin abnormalities in neurodegenerative proteinopathies

Karyopherin	Pathogenisis	References
ALS/FTD-TDP		
KPNA2	Reduced levels in FTD-TDP frontal cortex; Accumulating TDP-43 causes cytoplasmic mislocalization in Drosophila model of C9ALS/FTD.	Chou et al.15, 16, Solomon et al.16, Nishimura et al.64
KPNA4	Accumulating TDP-43 causes cytoplasmic mislocalization in Drosophila model of C9ALS/FTD; Depletion of KPNA4 directly contributes to impaired nuclear import and cytoplasmic accumulation of TDP-43.	Chou et al.15, 16, Solomon et al.16, Park et al.103
XPO1	In ALS models, XPO1 inhibition showed neuroprotective effects against c9orf72 related disease.	Zhang et al.16
CAS	Reduced levels in FTD-TDP frontal cortex; Knockdown of CAS dysregulates the import of TDP-43.	Nishimura et al.64
KPNB1	Reduced levels in spinal cords of patients with ALS; Irregular and disrupted nuclear staining in sporadic ALS with TDP-43; Depletion of KPNB1 directly contributes to impaired nuclear import and cytoplasmic accumulation of TDP-43; ALS related mutations in FUS reduce its sensitivity to the chaperone activity of KPNB1, ultimately leading to increased phase separation.	Solomon et al.26, Hofweber et al.17, Yamashita et al.78, Aizawa et al.80, Park et al.103
TNPO1	ALS related mutations in FUS reduce its sensitivity to the chaperone activity of TNPO1, ultimately leading to increased phase separation.	Hofweber et al.17
AD/FTD-Tau		
KPNA2	Accumulation and aggregation of KPNA2 is found in neurofibrillary tangles and Hirano bodies of hippocampal CA1 neurons of AD patients.	Lee et al.56, Carter67
KPNA3	Abnormally upregulated levels of KPNA3 found in cDNA microarray studies of AD human brains.	Wang et al.65
KPNA6	Upregulated KPNA6 identified in association with small non-coding RNAs.	Roy et al.68
KPNB1	Found within cytoplasmic granules in hippocampal neurons in AD cases and co-localizes with hyperphosphorylated tau.	Nuovo et al.79, Sheffield and Mirra76
KPNB2	Found in cytoplasmic granules in hippocampal neurons and in tangle-bearing cells of AD cases.	Sheffield and Mirra76
XPO1	Tau-induced nuclear envelope invaginations sequester XPO1 in a Drosophila model of tauopathy.	Cornellison et al.69
Synucleinopathies		
KPNA2	Targeted knockdown linked to nuclear aggregation of α-syn; Substrate of LRRK2/PARK8.	Ma et al.62, Han et al.64
KPNA3	α-syn mediated cytotoxicity involves interaction with KPNA3	Buttner et al.70
KPNA6	Substrate of LRRK2/PARK8	Han et al.64
KPNA7	Lewy body formation triggers alterations in the expression level of KPNA7.	Ma et al.62
XPO1	FBOX7/PARK15 was found mislocalised together with α-syn in Lewy bodies, Lewy neurites and cytoplasmic inclusions in glial cells in both PD and MSA cases; Lewy body formation triggers the alterations in the expression level.	Ma et al.62, Zhao et al.63
KPNB1	Alterations in the expression level of PD patients with a triplication in the SNCA locus encoding α-syn.	George et al.64, Devine et al.65
KPNB2	Mutant DJ-1/PARK7 was shown to interact with KPNB2 in an oxidative stress-dependent manner leading to its mislocalisation.	Bjorkblom et al.71
KPNB3	α-syn mediated cytotoxicity lead to upregulation of KPNB3.	Zhou et al.72
KPNA1	Target of mHtt in genomics and proteomics study of transgenic mice expressing mHtt.	Langfelder et al.159
Huntington’s disease		
KPNA2	mHtt-transfected mouse neurons cause aggregation of mHtt and KPNA2/KPNA4. Some KPNA2/4 aggregates were associated with mHtt aggregates; Target of mHtt in genomics and proteomics study of transgenic mice expressing mHtt.	Woerner et al.70, Langfelder et al.159
KPNA3	Target of mHtt in genomics and proteomics study of transgenic mice expressing mHtt.	Langfelder et al.159
KPNA4	mHtt-transfected mouse neurons cause aggregation of mHtt and KPNA2/KPNA4. Some KPNA2/4 aggregates were associated with mHtt aggregates; Target of mHtt in genomics and proteomics study of transgenic mice expressing mHtt.	Woerner et al.70, Langfelder et al.159
KPNA6	Binding partner of mHtt in mouse brain expressing mHtt expanded with 97 poly-Q; Target of mHtt in genomics and proteomics study of transgenic mice expressing mHtt.	Shirasakis et al.159, Langfelder et al.159
KPNB1	Binding partner of mHtt in mouse brain expressing mHtt expanded with 97 poly-Q; Target of mHtt in genomics and proteomics study of transgenic mice expressing mHtt.	Shirasakis et al.159, Langfelder et al.159
KPNB2	Target of mHtt in genomics and proteomics study of transgenic mice expressing mHtt.	Langfelder et al.159
XPO7	Binding partner of mHtt in mouse brain expressing mHtt expanded with 97 poly-Q.	Shirasakis et al.159
CAS	Binding partner of mHtt in mouse brain expressing mHtt expanded with 97 poly-Q.	Shirasakis et al.159

Abbreviations: α-syn, alpha-synuclein; AD, Alzheimer’s disease; ALS, amyotrophic lateral sclerosis; FTD-TDP, frontotemporal
dementia with TDP-43 pathology; FTD-Tau, frontotemporal dementia with Tau pathology; KPNA, karyopherin alpha; KPNB, karyopherin beta; MSA, multiple system atrophy; PD, Parkinson’s disease.