Time-resolved x-ray crystallography capture of a slow reaction tetrahydrofolate intermediate

Hongnan Cao and Jeffrey Skolnick

AFFILIATIONS
Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, Georgia 30332, USA

ABSTRACT
Time-resolved crystallography is a powerful technique to elucidate molecular mechanisms at both spatial (angstroms) and temporal (picoseconds to seconds) resolutions. We recently discovered an unusually slow reaction at room temperature that occurs on the order of days: the in crystalline reverse oxidative decay of the chemically labile (6S)-5,6,7,8-tetrahydrofolate in complex with its producing enzyme Escherichia coli dihydrofolate reductase. Here, we report the critical analysis of a representative dataset at an intermediate reaction time point. A quinonoid-like intermediate state lying between tetrahydrofolate and dihydrofolate features a near coplanar geometry of the bicyclic pterin moiety, and a tetrahedral sp^3 C6 geometry is proposed based on the apparent mFo-DFc omit electron densities of the ligand. The presence of this intermediate is strongly supported by Bayesian difference refinement. Isomorphous Fo-Fo difference map and multi-state refinement analyses suggest the presence of end-state ligand populations as well, although the putative intermediate state is likely the most populated. A similar quinonoid intermediate previously proposed to transiently exist during the oxidation of tetrahydrofolate was confirmed by polarography and UV-vis spectroscopy to be relatively stable in the oxidation of its close analog tetrahydropterin. We postulate that the constraints on the ligand imposed by the interactions with the protein environment might be the origin of the slow reaction observed by time-resolved crystallography.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5086436

I. INTRODUCTION
Time-resolved crystallography is an experimental technique that can detect molecular changes at atomic and temporal resolutions. Due to the feasibility of rapid reaction initiation by a laser pulse, this technique has been widely used to study light-active protein systems including myoglobin, hemoglobin, photoactive yellow protein, photosystem II, and rhodopsin. Recent advances in sample delivery systems and femtosecond X-ray free electron lasers (XFELs) have allowed time-resolved serial femtosecond crystallography (TR-SFX) to be extended to other systems as well. For example, the mix-and-inject method can rapidly and uniformly initiate an enzymatic reaction or an RNA-ligand interaction in micro/nanocrystals before diffraction whose rate is limited by diffusion. To the best of our knowledge, time-resolved crystallography has almost exclusively been applied on time scales of picoseconds to seconds. Here, using traditional cryocrystallography at a synchrotron source without rapid mixing or use of a laser pulse, we recently discovered the slow oxidative decay of tetrahydrofolate to dihydrofolate in the enzyme bound crystalline form at room temperature, with the critical transition occurring 2–3 days after the crystallization setup. We present an analysis of the third day's crystal structure to estimate the putative intermediate's geometry and population relative to dihydrofolate and tetrahydrofolate. The implications of the current observation on the molecular mechanism of tetrahydrofolate to dihydrofolate conversion and its possible generalization to other systems are discussed.

II. MATERIALS AND METHODS
A. Protein expression and purification
C-terminal 6xHis-tagged Escherichia coli DHFR (dihydrofolate reductase, with 100% sequence identity to UNIPROT sequence sp[P0ABQ4] or sp[P0ABQ5]) was generously provided by Drs. Eugene Shakhnovich and Joao Rodrigues from Harvard University. DHFR was overexpressed in E. coli BL21 and then purified by Ni-NTA and size exclusion chromatography as previously described. The initial protein stock was stored at –80°C at a concentration of 30 mg ml$^{-1}$ in 20 mM Tris, at pH 8, and in 1 mM dithiothreitol (DTT).
Polyethylene glycol 3350 was purchased from Hampton Research. All other chemicals and reagents were obtained at the highest quality available from Sigma-Aldrich or ThermoFisher and used without further purification.

B. Protein crystallization

The current intermediate time point complex was obtained using the same crystal growth condition as in our previously reported binary tetrahydrofolate complex (PDB: 6CW7). Briefly, as-purified eDHFR was crystallized by sitting drop vapor diffusion using a 1:1 v/v mixing of 20 mg ml
-1 DHFR solution in 13.3 mM Tris at pH 8, 16.7 mM HEPES at pH 7.3, 33.3 mM NaCl, and 0.67 mM DTT with the reservoir solution containing 0.1 M MES, at pH 6.5, with 30% w/v PEG 3350, and 0.4 M MgCl₂. Mixed drops of 0.8 µl were equilibrated over a reservoir solution of 50 µl on a MRC 2-well plate (Hampton Research) and incubated at 20 °C in the dark. A single crystal per dataset was harvested at 3 days after setting up the crystallization drops (as opposed to 2 days for the tetrahydrofolate complex or 2 weeks for the dihydrofolate complex in our earlier report) and then cryoprotected with LV CryoOil and flash-frozen in liquid N₂.

C. Data collection and refinement

Diffraction data were collected at the Advanced Photon Source at Argonne National Laboratory on the LRL-CAT (31-ID-D) beamline at 100 K. The detector was a Rayonix 225 HE CCD (Rayonix) using a single wavelength of 0.97931 Å. The intermediate time point (3 days of crystal growth) was collected and processed to a resolution of 1.35 Å. The datasets were indexed, integrated, and scaled using XDS. The structure was determined by molecular replacement with Phaser_MR1 using the protein coordinates of the tetrahydrofolate complex as the search model, PDB ID: 6CW7 and completed by alternating rounds of manual model building with COOT and both reciprocal and real space refinements using phenix.refine of the PHENIX suite. The ligand was originally built into the model as tetrahydrofolate (PDB Ligand ID: THG) based on the apparent tetrahydrofolate conformation of the end-state complexes with tetrahydrofolate (PDB: 6CW7) or dihydrofolate (PDB: 6CXK) based on the apparent tetrahydrofolate conformation of the end-state complexes with tetrahydrofolate (PDB: 6CW7) or dihydrofolate (PDB: 6CXK) that were visible in our earlier report. On the other hand, Met20 and Pro21 are clearly visible and are quite close to their conformation in the dihydrofolate complex. Thus, the residues in the Met20 loop adopt structure of the intermediate in complex with DHFR are a hybrid of the two endpoint conformations with disorder in the middle residues of the loop. Mg²⁺, Cl⁻ ions, and water molecules were added to the model after the ligand was built into the structure.

The fully refined model contains a ligand geometry containing coplanar pterin rings and a tetrahedral C6 geometry suggesting a possible intermediate state. This contrasts with the puckered pterin previously observed for the tetrahydrofolate complex despite the same ligand restraints being used. Due to the uncertainty of the exact chemical structure and fractional population of the ligand, we further performed refinement analysis by comparing one-state (a single intermediate), two-state (a linear combination of two end states, dihydrofolate and tetrahydrofolate), three-state (a linear combination of both end states and the proposed intermediate) models. Briefly, the previously reported end-state models (PDB IDs: 6CW7 and 6CXK) were each aligned to the current protein model and their ligand coordinates extracted and merged into the current model with COOT. To achieve the linear combination of ligand states, only the occupancy and individual B-factors of the structures were refined in reciprocal space with their coordinates kept intact. The initial ligand occupancy was assigned as 0.5 to each ligand for the two-state model. In the three-state model, the initial ligand occupancy was intentionally assigned as 0.33 for each ligand state and always converged to the same results, i.e., the intermediate state is the most populated at 0.45 which approximately equals the combined occupancy of two-end states. The structures determined in this study display Ramachandran statistics absent of outliers, with 98.8% of the residues in the most favored regions and 1.2% of residues in additionally allowed regions of the Ramachandran diagram defined by MolProbity (Table I). All structures are displayed using PyMOL unless otherwise stated. The coordinates and reflection files of the structures are deposited in the Protein Data Bank (www.rcsb.org) under PDB IDs: 6MR9 (one-state), 6MT8 (two-state), and 6MTH (three-state).

D. Fo-Fo difference map

Fo-Fo difference electron density maps were calculated using the “Isomorphous Difference Map” utility of PHENIX. The input files are the coordinate (.pdb) files and structure factor (.mtz) files of the corresponding states being compared.

E. Bayesian difference refinement

Bayesian difference refinement was performed using the default protocol developed by Terwilliger and Berendzen. This is a sensitive method to detect small but finite structural changes between two very similar protein structural models obtained from two very similar experimental X-ray diffraction datasets. It was reported to perform better or at least as good as individual refinements in estimating the finite atomic shifts (RMS of shifts), depending on the correlation coefficient of model errors between test datasets. The more similar the two datasets (hence the models) are, the more useful is the Bayesian difference refinement method. Briefly, a pseudo variant dataset with amplitudes and weights was generated by running PDIFF scripts in the SOLVE program based on Fo (the observed amplitude of the structure factor) and Fc (the amplitude calculated from the model) from both native and variant datasets. In our case, the native dataset was the tetrahydrofolate complex (PDB: 6CW7), and the variant dataset was the intermediate time point dataset. Both are isomorphous crystals with nearly identical unit cell parameters grown under the same crystallization conditions, with around a 24 h delay in harvesting (2 days vs. 3 days of crystal growth since setup).

The parameters of Bayesian difference refinement were defined originally by Terwilliger and Berendzen as follows:

```plaintext
---

Struct. Dyn. 6, 024701 (2019); doi: 10.1063/1.5086436
© Author(s) 2019
```
TABLE I. Statistics for X-ray data collection and structural refinement. Values in parentheses are for the highest resolution shell.

Statistic	One intermediate (31.3–1.35)	Two end states (31.1–1.35)	Three states (31.3–1.35)	Bayesian difference
Protein Data Bank ID code	6MR9	6MT8	6MTH	6MT8
Spacegroup	P2_12_1	P2_12_1	P2_12_1	P2_12_1
Cell dimensions				
a, b, c (Å)	34.1, 51.7, 79.0	33.9, 51.5, 77.8	39.0, 90.0, 90.0	39.0, 90.0, 90.0
α, β, γ (°)	90.0, 90.0, 90.0	90.0, 90.0, 90.0		
Wavelength (Å)	0.97931			0.97931
Resolution of data collection (Å)	31.3–1.35	1.40–1.35	31.1–1.35	1.40–1.35
No. of unique reflections	30678 (2550)	29117 (2419)		
Completeness % (Å)	97.7 (82.7)	94.9 (80.1)		94.9 (80.1)
Redundancy	6.4 (3.1)			
R_work	0.098 (1.369)			
I/σ	10.8 (0.9)			4.3
CC1/2 (0)	0.997 (0.289)			
CC1/2 (μ)	0.999 (0.670)			
Resolution range in refinement (Å)	31.3–1.35 (1.40–1.35)	31.1–1.35 (1.40–1.35)		
No. of unique reflections (total/test)	30673/3667	29113/2000		
Resolution range in refinement (Å)				
Ramachandran Statistics (%)	98.8, 1.2, 0	98.8, 1.2, 0	99, 1.2, 0	98, 1.4, 0.6
No. of ligand atoms	39	71	103	39
No. of waters	200	200	200	205
No. of protein atoms	1357	1357	1357	1428
No. of non-hydrogen atoms	1596	1628	1660	1672
No. of non-hydrogen atoms	1596	1628	1660	1672
No. of protein atoms	1357	1357	1357	1428
No. of ligand atoms	39	71	103	39
Ramachandran Statistics (%)	98.8, 1.2, 0	98.8, 1.2, 0	99, 1.2, 0	98, 1.4, 0.6
Individual ligand B-factor (Å²)	28	22/21	23/23/23	25
Individual ligand occupancy				
(Intermediate/FH4/FH2)				
RSCC	1.0	0.47/0.45	0.47/0.21/0.22	1.0
RSR (Intermediate/FH4/FH2)	0.94	0.95/0.95	0.95/0.95/0.95	0.97
RSR (Intermediate/FH4/FH2)	0.14	0.12/0.11	0.10/0.11/0.11	0.05

1R_work = Σ(|hkl| - |hkl|)/|hkl|, where hkl is the intensity of an individual measurement of the symmetry related reflection, and |hkl| is the mean intensity of the symmetry related reflections.

2R_work = Σ(|hkl| - |hkl|)/|hkl|, where |hkl| is the intensity of an individual measurement of the symmetry related reflection, and |hkl| is the mean intensity of the symmetry related reflections.

3Ramachandran statistics indicate the percentage of residues in the most favored, additionally allowed and outlier regions of the Ramachandran diagram as defined by MolProbity.

4RSCC = Σ(ρ_obs - 〈ρ_obs〉)(ρ_calc - 〈ρ_calc〉)/Σ(ρ_obs - 〈ρ_obs〉)² Σ(ρ_calc - 〈ρ_calc〉)², where ρ_obs and ρ_calc are the observed and calculated electron densities, and 〈ρ_obs〉 and 〈ρ_calc〉 are the mean values of ρ_obs and ρ_calc, respectively. RSCC is an abbreviation for the real-space correlation coefficient.

5Bayesian difference refinement uses a pseudo dataset as described in the methods. Parameters such as Rsym are unavailable.
The value of F_{diff} is given by

$$F_{\text{diff}} = F_{\text{c, native}} + \beta \times (F_{\text{o, variant}} - F_{\text{o, native}}). \quad (1)$$

The factor β, essentially the correlation coefficient between $F_{\text{o, native}} - F_{\text{c, native}}$ and $F_{\text{o, variant}} - F_{\text{c, variant}}$, is given by

$$\beta = \frac{E^2}{(E^2 + A_{\text{native}}^2 + \sigma_{\text{native}}^2)}. \quad (2)$$

The weighting factor or pseudo experimental errors of the pseudo dataset is given by

$$\sigma_{\text{diff}}^2 = \sigma_{\text{variant}}^2 + A_{\text{variant}}^2 + 1/[1/(\sigma_{\text{native}}^2 + A_{\text{native}}^2) + 1/E^2]. \quad (3)$$

E^2 represents the total correlated model error vs. the data between the native and variant datasets. A_{native}^2 and A_{variant}^2 represent uncorrelated model errors of the native and variant datasets, respectively. σ_{native}^2 and $\sigma_{\text{variant}}^2$ represent the experimental measurement errors of the native and variant datasets, respectively. Both β and σ_{diff}^2 terms contain certain weighted information derived from errors in both models and the experimental measurement of the two original datasets. The pseudo dataset containing information of F_{diff} (amplitudes) and σ_{diff}^2 (weights) can then be used as input for the structure factor data in phenix.refine following regular refinement procedures.

III. RESULTS AND DISCUSSION

A. Structural refinement using an individual dataset

We first performed a regular refinement on the intermediate time point dataset (3 days of crystal growth). The details of the structural determination using molecular replacement and subsequent refinement are described in Sec. II. Both the 2mFo-DFc and mFo-DFc omit electron density maps indicate that the bound ligand retains an sp^3 C6 with a tetrahedral geometry (Fig. 1). When the structure is refined with a single ligand [using PDB Ligand THG, (6S)-5,6,7,8-tetrahydrofolate], the pterin rings of the ligand appear to be near coplanar as compared to the puckered rings in the tetrahydrofolate bound complex. Hence, the ligand density suggests a putative intermediate...
state, which not only chemically resembles tetrahydrofolate in the \(sp^3 \) C\(_6\) hybridization state (as opposed to the \(sp^2 \) C\(_6\) of 7,8-dihydrofolate) but also partially mimics dihydrofolate by its nearly flattened pterin. The overall direction of the changes of the ligand geometry during the decay of tetrahydrofolate in the enzyme complex could be visualized from the ligand electron density changes based on the superposition of the corresponding models at different time points using COOT\(^{14}\) (Fig. 2). The putative intermediate state displays omit ligand electron densities in between those of the two end states. This is consistent with our previous report on the concomitant C\(_6\) \(sp^3 \) to \(sp^2 \) transition and the rotation of the benzoyl ring of the ligand during the decay of the binary complex of \(E.\ coli \) DHFR with tetrahydrofolate.\(^2\) In addition, the Met20 loop is partially disordered in the putative intermediate complex structure with little electron density for residues Glu17-Asn18-Ala19. Interestingly, in the putative intermediate complex, one anchor of the loop (Gly15-Met16) resembles the initial state tetrahydrofolate complex, and the other anchor (Met20-Pro21) is similar to the dihydrofolate complex at the completion of the decay (Fig. 3) Thus, it appears that both the ligand and Met20 loop conformations in the proposed intermediate state have distinct features that may represent a quasi-stable state captured during the slow reverse oxidative decay of the tetrahydrofolate complex. These mixed state results also suggest that the intermediate is real and not the result of averaging of the two endpoint conformations and implies that the time-resolved ligand and protein conformational changes are finitely coupled in the crystalline state of the tetrahydrofolate bound complex. These results corroborate previous NMR studies of \(E.\ coli \) DHFR on the mechanism of conformational selection in response to the identity of the bound ligand.\(^2\)

We next refined the structure with mixed ligand states to estimate the population percentage since it is rare to observe a true intermediate state in time-resolved crystallography experiments.\(^{1-5}\) In particular, a linear combination of two end states (tetrahydrofolate and dihydrofolate) and all three states (tetrahydrofolate, putative intermediate, and dihydrofolate) was used to define the bound ligands with equal partial initial occupancy summed to 1. Since the initial and final states were well defined in a previous study, the atomic B factors and occupancy values were optimized with their coordinates intact. The refinement statistics are listed in Table I. It appears that in the reciprocal space as reflected by \(R_{work} \) and \(R_{free} \) both single state and multiple states yield similar statistics with the two-state model performing slightly better. The real-space correlation coefficient (RSCC) values of the individual ligands are comparable among the single intermediate state (0.94), two-state (0.95), and three-state (0.95) models (Table I). The individual ligand real-space R factors (RSR) and B-factors of the multi-state models appear to be relatively more favorable than the one-state model (Table I). In the three-state model, the putative intermediate state displays a slightly more favorable RSR value of 0.10 over those of the two end states each of 0.11. The mFo-DFc residual electron densities of refinement with all three strategies display weak positive and negative peaks adjacent to the pterin and \(\gamma \)-carboxylate groups of the ligands as evidenced at the \(\pm 3 \sigma \) level but little residual densities at the \(\pm 3.5 \sigma \) level (Fig. S1, supplementary material). This further indicates in real space that single state and multiple states can both fit the ligand electron densities with little residual electron densities remaining to suggest other alternative states. However, a closer examination of the negative electron density peaks near the pterin ring of the modeled putative intermediate facing the dihydrofolate end state suggests the absence of the latter. (Fig. S1, top panel, supplementary material). In addition, the 2mFo-DFc difference maps indicate that the benzoyl ring moiety of the initial tetrahydrofolate state in the two-state or three state models partially resides outside the electron density envelope.
This suggests that atomic shifts occur from the initial state to a putative intermediate state, and the observed ligand electron densities cannot be attributed solely to a simple linear combination of the two end states (Fig. S2, supplementary material). In real space, the apparently better fit of the putative intermediate state over the two end state model is even clearer from the 2mFo-DFc maps at a higher cutoff, 1.5 \(\sigma \) level (Fig. S2, supplementary material, right panels). The final refined occupancy values of the two-state model are 0.47 and 0.45 for tetrahydrofolate and dihydrofolate, respectively. This suggests that the diffraction data can also be fit with approximately equal populations of two end ligand states in the reciprocal space (Table I), although the real space omit electron density suggests the presence of a putative intermediate ligand conformational state (Fig. 1). If the ligand and protein conformations are indeed coupled as we postulated earlier, then the real space electron density of the anchor residues of the partially disordered Met20 loop also favors a quasi-intermediate state rather than a simple linear combination of equal populations of the two end states (Fig. 3). The refined occupancy of the three-state model suggests that the most populated intermediate state (occupancy value of 0.45) that is approximately the sum of the two end states (occupancy values of 0.23 and 0.23). We then intentionally lower the initial occupancy of the putative intermediate state (occupancy value of 0.45) with both the end states having higher occupancies (0.45 each). The refined occupancy is rather insensitive to the initial occupancy with a refined value of 0.47 for the intermediate state and refined values of 0.21 and 0.22 for tetrahydrofolate and dihydrofolate, respectively. To reflect an unbiased treatment, we deposit the three-state model in the Protein Data Bank (PDB, www.pdb.org) with the lower initial occupancy of the intermediate. Regardless of the overall number of states, the near equal populations of the two end states with that of the intermediate, when included, suggest that a mid-time point intermediate was captured along the decay time course.

B. Fo-Fo isomorphous difference map

The difference map method has been often used for time-resolved crystallography to analyze the direction of atom shifts and intermediate states.\(^{3,6,8-10,13}\) We also performed a Fo-Fo difference map analysis using the ligand free model as unbiased phase input (PDB ID: 6CW7)\(^{14}\) to compare the intermediate dataset and the initial state tetrahydrofolate complex dataset (Fig. 4). The difference map shows positive Fo-Fo electron density near the atoms of the pterin, methylene linker, aminobenzoyl moiety, and \(\alpha \)-carboxylate, in the direction shifted away from the initial tetrahydrofolate state, but hardly any negative electron density except near the exocyclic amino group of the pterin. It is known from other studies that the Fo-Fo difference electron densities rarely overlap exactly with the atom positions depending on the extent of shift.\(^{8-10,24,25}\) We further analyzed the Fo-Fo map to compare the two end-state datasets as a positive control (Fig. 4). There are clearly both positive and negative electron densities to suggest the completion of the reverse decay reaction from tetrahydrofolate to dihydrofolate. This indicates that the ligand atoms at the intermediate time point have a finite shift in the direction of decay that is small enough to differentiate it from the tetrahydrofolate and dihydrofolate beginning and end states. Importantly, the intuitive Fo-Fo difference map shown here qualitatively indicates the direction of the atom shifts rather than quantitatively estimating the percentage populations of different states or how each atom shifts. In order to assess the relatively small atom shifts of

FIG. 4. Fo-Fo isomorphous difference map in stereo views. Fo-Fo omit maps at \(\pm 3 \sigma \) are calculated with PHENIX\(^ {19} \) for the pairwise comparison between tetrahydrofolate and intermediate (top panel) as well as between tetrahydrofolate and dihydrofolate (bottom panel). Color codes for carbon are tetrahydrofolate in green, intermediate in orange, and dihydrofolate in magenta. The left and right images are stereo views.
the intermediate state, we adopted the following Bayesian difference refinement approach.

C. Bayesian difference refinement based on dataset pairs

Difference refinement aims to minimize the residual between the observed and calculated differences in the structure-factor amplitudes between two structures. The method was pioneered by Terwilliger and Berendzen and relies on the correlation of model errors between two similar datasets having very similar structures with relatively small atom shifts or conformational changes. The advantage of the Bayesian difference refinement method is that it accounts for correlated and uncorrelated model errors as well as the experimental uncertainty of each structure by introducing appropriate weighting terms. As described in Sec. II, ultimately a pseudo dataset was generated for refinement. The successful application of the method requires that the native structure be confidently determined with high accuracy, so that the very small shifts in the variant structure can be reliably estimated. This is suitable to the current case where the native tetrahydrofolate complex at 2 days of crystal growth was previously determined at a high resolution of 1.03 Å. Also as shown earlier, the isomorphous variant dataset at 3 days of crystal growth suggests finite but small changes based on the mFo-DFc omit maps (Fig. 2) and Fo-Fo difference maps (Fig. 4).

The results of Bayesian difference refinement based on the paired datasets (2 days vs. 3 days of crystal growth) are summarized in Fig. 5 and Table II. The Bayesian difference refined structure displays ligand atoms lying somewhere in between the two end states, similar to the individually refined putative intermediate state (Fig. 5). However, it more closely resembles the initial tetrahydrofolate complex. This is expected, since the Bayesian difference refinement will bring model bias from the native structure as described by the method developer. Consequently, the method is very sensitive to any small true

![Image](https://example.com/image.png)

FIG. 5. Bayesian difference refinement detects subtle atomic shifts from the initial state in stereo views. F_{obs} from the Bayesian weighted pseudo dataset was used as input in the same way as the regular F_{obs} for the calculation of electron density maps for Bayesian difference refinement as described in Sec. II. Top panel, 2mFo-DFc omit map at 1 Å (carve = 1.3); middle panel, mFo-DFc omit map at 6 Å; bottom panel, mFo-DFc omit map at 10 Å. Both the native (2 days’ crystal) and variant (3 days’ crystal) states use the same ligand geometry restraints (PDB ligand ID: THG for tetrahydrofolate). The Bayesian difference refinement ligand model is shown as sticks (carbon in grey). The initial state tetrahydrofolate (green), end state dihydrofolate (magenta), and the individually refined putative intermediate state (orange) are shown as thin lines and superposed based on protein coordinates for comparison. The guanidine and α-carboxylate groups form bidentate salt bridges with Asp27 and Arg58, respectively (indicated by dashed lines). They display minimal shifts compared to the rest of pterin, methylene linker, and benzoyl moieties (general direction of shifts indicated by red arrows). Importantly, chemical labile C6 maintains sp3 tetrahedral geometry with little shift between 3 day and 2 day complexes but shows a relatively large shift for the dihydrofolate end state. The left and right images are stereo views.
differences from the native structure, which is of interest here and in many similar cases. The overall trend of the atom shifts is in the same direction toward the formation of dihydrofolate as observed in the individual structure refinement (Fig. 5). The Bayesian difference refinement also suggests that the pterin ring becomes less puckered and thus favors charge delocalization at the intermediate time point, although the chemical nature of the ligand still appears reduced as the C6 position displays a tetrahedral geometry (as indicated by an arrow in Fig. 5). The quantitative estimation of atomic shifts is summarized in Table II which compares the different ligand states along the time course of decay of the tetrahydrofolate complex for the different refinement methods. Based on the RMSD shifts, it appears that the Bayesian difference refined structure is slightly more similar to the putative intermediate state than the native tetrahydrofolate state in the pterin moiety (0.14 vs. 0.18 Å), despite the overall similarity to the latter (0.32 vs 0.20 Å) as expected due to the introduction of native model bias (last two columns of Table II). This again supports the possible presence of a quasi-stable intermediate state along the reaction.

Table II. Shifts (Å) of ligand non-hydrogen atom positions between superposed protein structures.

Ligand atoms	FH4 to Intermediate	FH4 to FH2	FH4 to Bayesian	Bayesian to Intermediate
Pterin RMSD				
N1	0.30	0.58	0.18	0.14
C2	0.11	0.21	0.10	0.06
N2	0.05	0.13	0.07	0.07
N3	0.18	0.40	0.09	0.13
C4	0.09	0.19	0.09	0.08
O4	0.10	0.15	0.14	0.04
C4a	0.10	0.48	0.19	0.09
N5	0.41	0.82	0.25	0.19
C6	0.16	0.69	0.09	0.09
C7	0.66	1.18	0.34	0.32
N8	0.46	0.83	0.25	0.21
C8a	0.26	0.49	0.16	0.12
Methylene-p-aminobenzoyl RMSD	0.59	0.97	0.24	0.39
C9	0.66	1.29	0.29	0.38
N10	0.55	1.00	0.28	0.27
C1’	0.34	0.70	0.18	0.20
C2’	0.75	0.89	0.24	0.56
C3’	0.83	1.03	0.29	0.58
C4’	0.49	0.84	0.25	0.25
C5’	0.71	1.18	0.25	0.50
C6’	0.72	1.22	0.25	0.50
C11	0.25	0.67	0.16	0.14
O11	0.21	0.65	0.13	0.14
Glutamate tail RMSD	0.46	1.01	0.17	0.39
N	0.25	0.66	0.17	0.13
C2	0.26	0.69	0.18	0.14
Cβ	0.26	0.76	0.17	0.13
Cγ	0.24	0.91	0.16	0.11
Cδ	0.49	0.40	0.13	0.43
Oc1	0.87	1.23	0.28	0.78
Oc2	0.88	2.38	0.16	0.76
C	0.22	0.49	0.13	0.17
OX1	0.22	0.43	0.11	0.20
OX2	0.15	0.38	0.12	0.17
All-atom RMSD	0.46	0.86	0.20	0.32

*All structures were aligned based on protein coordinates using the "LSQ superpose" function of COOT. The structures include the FH4 or tetrahydrofolate complex (PDB: 6CW7), FH2 or dihydrofolate complex (PDB: 6CXX), intermediate complex (single-state model in the current study), and Bayesian difference refinement complex model.
coordinate of the current slow reverse oxidation process that favors charge delocalization through a near planar pterin ring, followed by a rate-limiting C6-H breaking step to form the end point oxidized dihydrofolate state. A geometrically similar and relatively stable quinonoid intermediate has been experimentally observed before for the oxidation of a closely related compound tetrahydropterin in solution by polarography and UV-vis spectroscopy.14 This quinonoid intermediate was formed through proton coupled electron transfer under either anaerobic conditions in the presence of ferricyanide or aerobic conditions.27,28 However, the oxidation of free tetrahydrofolate in solution generated 6,8-dihydrofolate anaerobically29,30 or pterins aerobi-
only observed for the oxidation of related tetrahydro-
try in solution generated 6,8-dihydrofolate anaerobically29,30 or pterins aerobic-
ly observed for the oxidation of related tetrahydrop-

IV. CONCLUSIONS

We report here a critical assessment of the ligand identity during a slow reverse oxidative decay of tetrahydrofolate in the enzyme bound crystalline form. The linearly combined multi-state analysis suggests that we captured a putative intermediate state featuring a more planar C6 geometry based on both the individual refinement of a single dataset and Bayesian difference refinement using paired datasets. A geometrically similar quinonoid intermediate was experimentally observed for the oxidation of related tetrahydropterin14,15,22 and proposed for the oxidation of tetrahydrofolate free in solution22,25,28,29,30 both occur on the minute time scale.13,33 This implies that the extension of the conjugation system in the bicyclic pterin favoring charge delocalization may occur either stably or transiently depending on the exocyclic derivatives at the C6 position during the rate-limiting C6-H bond breaking step. Here, the overall reverse oxidation of tetrahydrofolate is slowed down to an appreciable extent due to the coupling of ligand and protein conformational changes and the limited protein motion in the crystalline state. As shown in Fig. 3, one end of the intermediate is basically clamped by the protein in the same conformation as that in the tetrahydrofolate structure, while the other more mobile end adopts a conformation much closer to the dihydrofolate oxidation product. Time-resolved crystallography is achieved due to a relatively uniform starting point, the rate-limiting product release complex of E. coli DHFR, whose irreversible oxidation was likely triggered by a finite amount of freely diffusing oxygen in the generally aerobic crystallization conditions, despite the presence of the mM level of the reducing agent in the crystallization drop. The limitation of the current method in delineating the exact ligand populations and chemical nature can be complemented by orthogonal approaches such as time-resolved spectroscopy at controlled oxidant levels. Such complementary approaches might provide additional evidence to allow further differentiation of the presence of the putative inter-

SUPPLEMENTARY MATERIAL

See supplementary material for Figs. S1 and S2 on electron densities of single-state and multi-state refinements and also a supplementary state file containing between the protein and PDB entry of E. coli DHFR deposited by our group to facilitate comparison and use of these structures. In particular, 6MR9, 6MT8, 6MTH, 6CXK, 6CYV, and 6CQA were superposed with PyMOL onto the published FH4 complex (6CW7).14

ACKNOWLEDGMENTS

This project was funded by 1R35GM-118039 of the Division of General Medical Sciences of the NIH. We thank Dr. Eugene Shakhnovich and Dr. Joao Rodrigues from Harvard University for generously providing purified E. coli DHFR, Dr. Loren Williams from Georgia Tech for providing crystallography tools, and Dr. Tom Terviller from Los Alamos National Laboratory for insights and suggestions on Bayesian difference refinement. This research used the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The use of the Lilly Research Laboratories Collaborative Access Team (LRL-CAT) beamline at Sector 31 of the Advanced Photon Source was provided by Eli Lilly. A special thanks to the LRL-CAT staff Dr. Jordi Benach, Dr. Anton Frommelt, Dr. John Koss, and Dr. Laura Morisco for data collection and sample handling. We would also like to thank Mu Gao, Hongyi Zhou, and Jessica Forness from our
group at Georgia Tech for their suggestions and assistance during the preparation of the manuscript.

REFERENCES

1. H. van den Bedem and J. S. Fraser, "Integrative, dynamic structural biology at atomic resolution—it's about time," Nat. Methods 12, 307–318 (2015).

2. I. Schotte, M. Lim, T. A. Jackson, A. V. Smirnov, J. Soman, J. S. Olson, G. N. Phillips, Jr., M. Wulff, and P. A. Anfinrud, "Watching a protein as it functions with 150-ps time-resolved x-ray crystallography," Science 300, 1944–1947 (2003).

3. E. Knapp, R. Pahl, V. Srajer, and W. E. Royer, Jr., "Allostatic action in real time: Time-resolved crystallographic studies of a cooperative dimeric hemoglobin," Proc. Natl. Acad. Sci. U. S. A. 103, 7649–7654 (2006).

4. R. Dods, R. Harimoorthy, K. R. Beyerlein, J. Rheinberger, D. James, D. Milathianaki, M. Kubo, W. Wu, C. Conrad, J. Coe, R. Bean, Y. Zhao, P. Bath, M. Chen, M. O. Wiedorn, J. Knoska, A. Meents, V. Majrani, T. Norwood, I. Poudyal, T. Grant, M. D. Miller, W. Xu, A. Tolstikova, A. Morgan, M. Metz, J. M. Martin-Garcia, J. M. Zook, S. Roy-Chromywa, J. Coe, N. Nagaratnam, D. Meza, R. Fromme, S. Bausa, M. Frank, T. White, A. Barty, S. Bajt, O. Yefanov, H. N. Chapman, N. Zatsepin, G. Nelson, U. Weierstall, J. Spencer, P. Schwander, M. Pollack, P. Fromme, A. Ourzam, G. N. Phillips, Jr., and M. Schmidt, "Structural enzymology using X-ray free electron lasers," Struct. Dyn. 4, 044003 (2017).

5. R. J. Olimos, Jr., S. Pandey, J. M. Martin-Garcia, G. Calvey, A. Katz, J. Knoska, C. Kupitz, M. S. Hunter, M. Liang, D. Oberthuer, O. Yefanov, M. Wiedorn, M. Heyman, M. Pollack, A. Barty, M. D. Miller, S. Stern, S. Roy-Chromywa, J. Coe, N. Nagaratnam, J. Zook, J. Verburgh, T. Norwood, I. Poudyal, D. Wu, J. Koglin, M. H. Seaberg, Y. Zhao, S. Bajt, T. Grant, V. Mariani, G. Nelson, G. Subramanian, E. Bae, R. Fromme, R. Fung, P. Schwander, M. Frank, T. A. White, U. Weierstall, N. Zatsepin, J. Spencer, P. Fromme, H. N. Chapman, L. Pollack, T. Lembaye, A. Ourzam, G. N. Phillips, Jr., and M. Schmidt, "Enzyme intermediates captured on the fly by time-resolved serial-crystallography," BMC Biol. 16, 59 (2018).

6. I. Stagno, Y. Liu, Y. R. Bhandari, C. E. Conrad, S. Panja, M. Swain, L. Fan, G. Nelson, C. Li, D. R. Wendel, T. A. White, J. D. Coe, M. O. Wiedorn, J. Knoska, D. Oberthuer, R. A. Tuckey, P. Yu, M. Dyba, S. G. Tarasov, U. Weierstall, T. D. Grant, C. D. Schwiers, J. Zhang, A. R. Ferre-D’Amare, P. Fromme, D. E. Draper, M. Liang, M. S. Hunter, S. Bouted, K. Tan, X. Xuo, X. Ji, A. Barty, N. A. Zatsepin, H. N. Chapman, J. C. Spence, S. A. Woodson, and Y. X. Wang, "Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography," Nature 541, 242–246 (2017).

7. H. Cao, M. Gao, H. Zhou, and J. Skolnick, "The crystal structure of a tetrahydrofolate-bound dihydrofolate reductase reveals the origin of slow product release," Commun. Biol. 1, 226 (2018).

8. J. V. Rodrigues, S. Berstein, A. Li, E. R. Lovosky, D. L. Harli, and E. I. Shakhnovich, "Biophysical principles predict fitness landscapes of drug resistance," Proc. Natl. Acad. Sci. U. S. A. 113, E1470–E1478 (2016).

9. W. Kabsch, "XDS," Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 125–132 (2010).

10. A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, and R. J. Read, "Phaser crystallographic software," J. Appl. Crystallogr. 40, 658–674 (2007).

11. P. Emzler and K. Cowtan, "Coot: Model-building tools for molecular graphics," Acta Crystallogr., Sect. D: Biol. Crystallogr. 60, 2126–2132 (2004).

12. P. D. Adams, P. V. Afonine, G. Bunkoczi, V. B. Chen, I. W. Davis, N. Echols, J. J. Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. M. Mortaroy, R. Oefner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger, and P. H. Zwart, "PHENIX: A comprehensive Python-based system for macromolecular structure solution," Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 213–221 (2010).

13. B. Chen, W. B. Arendell, 3rd, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, "MolProbity: All-atom structure validation for macromolecular crystallography," Acta Crystallogr., Sect. D: Biol. Crystallogr. 66, 12–21 (2010).

14. The PyMOL Molecular Graphics System, version 1.3 Schrodinger, LLC, 2010.

15. T. C. Terwilliger and J. Berendzen, "Bayesian difference refinement," Acta Crystallogr., Sect. D: Biol. Crystallogr. 52, 1004–1011 (1996).

16. T. C. Terwilliger and J. Berendzen, "Automated MAD and MR structure solution," Acta Crystallogr., Sect. D: Biol. Crystallogr. 55, 849–861 (1999).

17. M. A. Roudl and C. W. Carter, Jr., "Isomorphous difference methods," Methods Enzymol. 374, 145–163 (2003).

18. Z. Ren, P. W. Y. Chan, K. Moffat, E. F. Pai, W. E. Royer, Jr., V. Srajer, and X. Yang, "Resolution of structural heterogeneity in dynamic crystallography," Acta Crystallogr., Sect. D: Biol. Crystallogr. 69, 946–959 (2013).

19. T. C. Terwilliger and J. Berendzen, "Difference refinement: Obtaining differences between two related structures," Acta Crystallogr., Sect. D: Biol. Crystallogr. 51, 609–618 (1995).
27. D. J. Vonderschmitt and K. G. Scrimgeour, "Reaction of Cu$^{2+}$ and Fe$^{3+}$ with tetrahydropteridines," Biochem. Biophys. Res. Commun. 28, 302–308 (1967).
28. M. C. Archer and K. G. Scrimgeour, "Rearrangement of quinonoid dihydropteridines to 7,8-dihydropteridines," Can. J. Biochem. 48, 278–287 (1970).
29. D. Chippel and K. G. Scrimgeour, "Oxidative degradation of dihydrofolate and tetrahydrofolate," Can. J. Biochem. 48, 999–1009 (1970).
30. L. S. Reed and M. C. Archer, "Oxidation of tetrahydrofolic acid by air," J. Agric. Food. Chem. 28, 801–805 (1980).
31. E. Toprak, A. Veres, J. B. Michel, R. Chait, D. L. Hartl, and R. Kishony, "Evolutionary paths to antibiotic resistance under dynamically sustained drug stress," Nat. Genet. 44, 101–105 (2012).
32. B. Srinivasan, J. V. Rodrigues, S. Tonddast-Navaei, E. Shakhnovich, and J. Skolnick, "Rational design of novel allosteric dihydrofolate reductase inhibitors showing antibacterial effects on drug-resistant Escherichia coli escape variants," ACS Chem. Biol. 12, 1848–1857 (2017).
33. R. L. Blakley, "Spectrophotometric studies on the combination of formaldehyde with tetrahydropteroylglutamic acid and other hydropteridines," Biochem. J. 74, 71–82 (1960).
34. A. A. Vaguine, J. Richelle, and S. J. Wodak, "SFCHECK: A unified set of procedure for evaluating the quality of macromolecular structure-factor data and their agreement with atomic model," Acta Crystallogr., Sec. D: Biol. Crystallogr. 55, 191–203 (1999).
35. M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley, P. R. Evans, R. M. Keegan, E. B. Krissinel, A. G. Leslie, A. McCoy, S. J. McNicholas, G. N. Murshudov, N. S. Pannu, E. A. Potterton, H. R. Powell, R. J. Read, A. Vagin, and K. S. Wilson, "Overview of the CCP4 suite and current developments," Acta Crystallogr., Sec. D: Biol. Crystallogr. 67, 235–242 (2011).
36. P. A. Karplus and K. Diederichs, "Linking crystallographic model and data quality," Science 336, 1030–1033 (2012).