Dc Link Voltage Balance Of Grid Integrated Pv Module Using Pi-Awt

Dipak Kumar Dash1, Pradip Kumar Sadhu2,
1,2Department of Electrical Engineering IIT (ISM), Dhanbad
Corresponding Author Email: dipak.nitrkl@gmail.com

Abstract: The purpose of this paper is to investigate the performance of a PV-based grid-connected system. In the suggested arrangement, there are two phases in the conversion process. The conversion of alternating current voltage to direct current voltage is the first stage. It is decided to use the usual two-level converter at this point. The second stage consists of converting the direct current voltage to alternating current voltage using a typical two-level voltage source converter (VSC). A control technique based on the Anti-windup tuned PI (PI+AWT) is being developed to govern the dc link voltage at VSC of the second stage conversion. The proportional resonant controller is used to control the current signals and also to regulate the reference signals in the pulse width modulation (PWM) scheme, which is described in detail below. The sinusoidal pulse width modulation (PWM) technique is used to regulate VSC switches. The suggested controller’s performance is evaluated under three different conditions: continuous irradiation, change of irradiation, and three-phase fault. MATLAB/SIMULINK is used to calculate the parameters of the results.

Keywords: PV; PWM; PI; AWT; PR

1. INTRODUCTION

Renewable energy sources have got a lot of responsiveness in the last twenty years because of the rising costs, limited reserves, and negative impact on the environment of fossil fuels [1]. In the last two decades, a wide range of solar power techniques have been developed, improving conversion efficiency and lowering the cost of solar power generation [1]. This industry continues to move forward despite photovoltaic efficiency and controllability going up in recent decades, as well as its tighter integration with the grid [3]. The deficiency of grid integrated solar power in power system applications are the power system stability and power quality which reflects on power unbalance and voltage control [6-8]. The suitable control algorithms are required to overcome the challenges in grid integration of solar power [9]. Various control technique used for this purpose is addressed in [10]. The active and reactive power control method [11] Conservative power theory [12] has adopted for control of grid integrated PV system. The voltage control of dc link is the key issue in grid connected voltage source converters [13]. The PI and Fuzzy Logic Controllers are the methods used for the balancing of dc-voltage [14-15]. The PI controller is generally used for the balancing of dc-voltage [16-17]. Power smoothing control methodologies are addressed in [18-19]. In this paper, the PI tuned Anti windup Technique (AWT) is projected to regulate the dc voltage.

2. MODELING OF THE SYSTEM

![Figure 1. Block diagram of system](image-url)
The equivalent circuit of PV cell is shown in Fig. 2. The PV cell modeling [14] can be described by the following equations:

\[
I = I_L - I_D \left\{ e^{\frac{q(v + IR_s)}{nkT}} - 1 \right\}
\]

(1)

The PV power at time \(t \) is calculated by [15]

\[
P_{pv}(t) = S_r(t) \cdot a \cdot \eta
\]

(2)

The total PV system power calculated by

\[
P_t(t) = N_{pv} \cdot P_{pv}(t)
\]

(3)

The PV model includes the following parameters:
- \(I_L \): Light generated current (A)
- \(I_D \): Reverse saturation current of diode (A)
- \(v \): Operating voltage of array (V)
- \(k \): Boltzmann constant (J/°K)
- \(n \): No. of series connected cell
- \(T \): Temperature (°K)
- \(R_s \): Equivalent series resistance (Ω)
- \(R_{sh} \): Equivalent shunt resistance (Ω)
- \(q \): Charge on electrons
- \(a \): Ideality factor
- \(\eta \): System efficiency
- \(S_r \): Solar irradiation during time (t)
- \(N_{pv} \): Total no. of solar module

Fig. 2 The equivalent circuit of PV cell

Considering zero sequence components in a 3-phase system is not necessary because there is no circulation path. Eq.(4) depicts the three-phase balanced voltages.

\[
\begin{bmatrix}
V_{ga} \\
V_{gb} \\
V_{gc}
\end{bmatrix} = V_m \begin{bmatrix}
\sin(\omega t) \\
\sin(\omega t + 120^0) \\
\sin(\omega t - 120^0)
\end{bmatrix}
\]

(4)

Control systems enable an increase in the efficiency and quality of output power from a PV energy conversion system. They are closed-loop feedback systems that control switching elements in active power conversion stages. Initially, the voltage can be sensed and controlled using an active rectifier and a proportional integral (PI) controller. Second, the grid-side inverter PWM signal can be used to regulate a system. It can be adopted to keep DC link at a constant voltage, which will decouple the grid from power fluctuations caused by irradiation variations.
The goal of the grid side converter (GSC) is to keep the dc-link voltage constant. Fig. 3 depicts the block diagram for control of GSC. The current reference (Idg_ref) is generated using PI+AWT method. The GSC output current is converted from abc signal to dq signal and this current components are compared with reference currents of Idg_ref and Iqg_ref. This design is made up of one outer voltage loops and two inner current loops, which are connected together. The dc-link voltage loop provides the reference d-axis component of grid current. It is necessary to match the reference and measured dc-link voltages, and vector control is used to minimise errors. The reference d-axis grid current is produced by the PI+AWT controller. Inner proportional-resonant (PR) controller produces d-q axis grid voltage from d-axis reference grid current and actual d-axis grid current. Park transformation is adopted to convert the d-q voltage components into natural abc grid components. The actual three-phase abc grid voltage components are then sent to the PWM generator, which generates the firing pulses to the VSC. Figure 4 depicts the PR controller's block diagram. The PR control method has a high gain at the resonant frequency, which ensures that presented a little steady-state inaccuracy between the actual and reference signals. The PR controller is composed of a proportional and a resonant term.

3. Simulation Result and Analysis

The performance of proposed grid connected PV system is analyzed using Matlab/simulink. The proposed work is simulated in three cases such as constant irradiation, variable irradiation and three phase fault condition. Table 1 contains the simulation parameters.
Table 1: Simulation parameters

Description	Value
DC link Capacitor	4700 µF
Reference DC voltage	800V
Switches	IGBT
Switching frequency	7000Hz
Filter inductance	6 mH
Voltage	400V (r.m.s)
Frequency	50 Hz
Source resistance	0.01Ω
Source inductance	2µH

The first case simulation response curves are illustrated in Fig. 5. In the first case, the DC link voltage is regulated and there is no difference between reference and actual voltage is observed using proposed controller and is illustrated in Fig. 5 (a). That shows the actual value is perfectly tracking the reference value. The response curves of voltages and currents of Grid are presented in Fig. Fig. 5 (b). The response curves of grid voltage and current are presented in Fig.5 (c) using proposed controller. All grid voltages and currents are sinusoidal and balanced using proposed controller.

(a) DC link Voltage

(b) Grid Voltage
Figure 5. Response curves of proposed controller under constant irradiation

The second case simulation response curves are illustrated in Fig. 6. In the second case, the irradiation is set in different values in different times as depicted in Fig. 6 (a). The DC link voltage using proposed controller is tracking the reference voltage as depicted in Fig. 6 (a). No difference value between reference and actual voltage is observed using proposed controller. That shows the actual value is perfectly tracking the reference value. The response curves of grid voltage and current are presented in Fig. 6 (b & c). All the grid voltages and currents of grid are sinusoidal and balanced using proposed controller.
The performance of proposed controller is further extended to validate under fault condition. For this, three phase fault is applied from \(t=0.5 \)sec to \(t=0.7 \)sec. The actual DC voltage accurately follows the reference voltage in three conditions as depicted in Fig.7 (a). The grid voltages are 200V during the fault condition and immediately retained the value of 400V after fault clearance which is presented in Fig. 7(b). The response curves of current are presented in Fig.7 (c) It is observed that the proposed controller have effectiveness in stabilization of currents after fault clearance compared.

Further, the comparative performance analysis has made with THD and DC link voltage regulation. FFT spectrum using conventional controller (PI) and proposed controller (PI+AWT) are presented in Fig.8 (a) and Fig.8 (b). The THD using the PI controller have recorded 2.27% while the proposed controller is 2.01%. The proposed controller has given good performance compared to conventional controller.

The retort of voltage in DC link is shown in Fig.9 during normal operation. The settling time and stabilization of DC voltage is achieved best using proposed controller as
compared to conventional controller. The performance of PI+AWT controller is also verified under three phase fault. The response curve is presented in Fig.10. From this, it is observed that the proposed controller has performed best in all three conditions such as before fault, during fault and post fault respectively compared to conventional controller. The contrast of recital indices for both PI and PI+AWT controller is enumerated in Table 2.

Controller	DC voltage settling time (sec)	%THD in Current signal
PI	1	2.27
PI+AWT	0.065	2.01

Table 2. Comparison of performance indices

Fundamental (50Hz) = 228.6 , THD= 2.27%

Fundamental (50Hz) = 277.6 , THD= 2.01%

Figure 8. THD comparison

Figure 9. Comparison of DC voltage regulation during normal operation
10. CONCLUSION

The mathematical modeling of the PV and grid are described in detail. The potentiality of the proposed control scheme has been tested under constant irradiation, change of irradiation and the three-phase fault condition. From the results, it is realized that the controller side parameters has able to track its reference. The DC voltage regulation is achieved best with proposed controller in all thee-three situations including constant irradiation, variable irradiation and three phase fault.
REFERENCES

[1] Adnan Rasheed, Jong Won Lee and Hyun Woo Lee (2016), “Feasibility Evaluation of the Wind Energy as an Alternative Energy Source for the Irrigation of Greenhouse Crops”, International Journal of Energy Research, Vol. 6, No. 4, 2016, pp. 1546-1555.

[2] Venkata Yaramasu, Bin Wu, K. Oka, Paresh C. Sen, Samir Kouro, and Mehdi Narimani, (2015) “High-Power Wind Energy Conversion Systems: State-of-the-Art and Emerging Technologies”, Proceedings of the IEEE, 2015. DOI: 10.1109/JPROC.2014.2378692

[3] Bindeshwar Singh (2012), “Introduction to FACTS Controllers in Wind Power Farms: A Technological Review”, International Journal of Energy Research, Vol. 2, No. 2, 2012, pp. 166-212.

[4] Mohammadreza Fakhari Moghaddam Arani, Yasser Abdel-Rady I. Mohamed, (2016)“Assessment and Enhancement of a Full-Scale PMSG-Based Wind Power Generator Performance under Faults”, IEEE Transactions on Energy Conversion, Vol. 31, No. 2, June 2016, pp. 728-739.

[5] Hua Geng, Lu Liu, and Ruiqi Li (2018), “Synchronization and Reactive Current Support of PMSG-Based Wind Farm During Severe Grid Fault”, IEEE Transactions on Sustainable Energy, Vol. 9, No. 4, October 2018, pp. 1596-1604.

[6] C. N. Bhende, S. Mishra, and Siva Ganesh Malla (2011), “Permanent Magnet Synchronous Generator-Based Standalone Wind Energy Supply System”, IEEE Transactions on Sustainable Energy, Vol. 2, No. 4, October 2011, pp. 361-373.

[7] T.R. Ayodele, A.A. Jimoh, J.L Munda, J.T Agee (2012), “Challenges of Grid Integration of Wind Power on Power System Grid Integrity: A Review”, International Journal of Energy Research, Vol.2, No.4, 2012, pp. 619-626.

[8] Y. Sawle, S. C. Gupta, and A. K. Bohre (2016), “PV- wind hybrid system: A review with case study,” Cogent Eng., vol. 3, no. 1, pp. 1–31, 2016.

[9] P. M. Chavan and G. P. Chavan (2018), “Interfacing of hybrid power system to grid using statcom & power quality improvement,” IEEE Int. Conf. Information, Commun, Instrum. Control. ICICIC 2017, vol. 2018-Janua, pp. 1–5, 2018.

[10] M. V. Gururaj, U. Vinatha, and V. N. Jayasankar (2015), “Interconnection of wind-solar hybrid Renewable Energy source to the 3 phase-3 wire distribution system along with power quality improvements at the grid side,” Proc. 2015 IEEE Int. Conf. Power Adv. Control Eng. ICPACE 2015, pp. 168–172.2015.

[11] Perera ATD, Attalage RA, Perera KKCK, Dassanayake VPC (2013), A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems. Appl Energy 2013;107:412–25.

[12] Bhandari B, Lee K-T, Lee CS, Song C-K, Maskey RK, Ahn S-H, (2014), A novel off-grid hybrid power system comprised of solar photovoltaic, wind, and hydro energy sources. Appl Energy 2014;133:236–42.

[13] M. E. Lotfy, T. Senjyu, M. A. Farahat, A. F. Abdel- Gawad, and A. Yona,(2017) “Enhancement of a small power system performance using multi-objective optimization,” IEEE Access, vol. 5, pp. 6212–6224, 2017.

[14] N. T. Pathan, S. P. Adhau, P. G. Adhau, and M. Sable (2019), “MPPT for grid connected hybrid wind Title of the Article Journal Name, 2019, Vol. 0, No. 0 7

[15] Bekele G, Tadesse G (2012), Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia. Appl Energy 2012;97:5–15.

[16] Bekele G, Palm B,(2010), Feasibility study for a standalone solar–wind-based hybrid energy system for application in Ethiopia. Appl Energy 2010;87(2):487–95.

[17] H. Fathabadi (2017), “Novel fast and high accuracy maximum power point tracking method for hybrid photovoltaic/fuel cell energy conversion systems,” Renew. Energy, vol. 106, pp.232–242.

[18] H. Fathabadi (2016), “Novel high-efficient unified maximum power point tracking controller for hybrid fuel cell/wind systems,” Appl. Energy, vol.183, pp. 1498–1510.

[19] F. Baghdadi, K. Mohammed, S. Diao, and O.Behar (2015), “Feasibility study and energy conversionanalysis of stand-alone hybrid renewable energy system,” Energy Convers. Manag., vol. 105, pp. 471–479.

[20] C. M. Hong and C. H. Chen(2014), “Intelligent control of a grid-connected wind-photovoltaic hybrid power systems,” Int. J. Electr. Power Energy Syst., vol. 55, pp. 554–561, 2014.

[21] V. N. Jayasankar and U. Vinatha (2016), “Implementation of adaptive fuzzy controller in
a grid connected wind-solar hybrid energy system with power quality improvement features,” Bienn. Int. Conf. Power Energy Syst. Towar. Sustain. Energy, PESTSE 2016, no. 1, pp. 1–5.

[22] Mohammad Kamruzzaman Khan Prince, Mohammad T. Arif, Ameen Gargoom, Aman M. T. Oo, Md Enamul Haque (2021), “Modeling, Parameter Measurement, and Control of PMSG-based Grid-connected Wind Energy Conversion System”, Journal of Modern Power Systems and Clean Energy, Vol. 9, No. 5, pp. 1054-1065.

[23] Shaimaa Omran and Robert Broadwater (2020), “Grid Integration of a Renewable Energy System: Modeling and Analysis”, International Journal of Energy Research, Vol. 10, No. 3, pp. 1202-1212.

[24] Rupendra Kumar Pachauri, Yogesh K. Chauhan (2012), “Assessment of Wind Energy Technology Potential in Indian Context”, International Journal of Energy Research, Vol.2, No.4, pp. 773-780.

[25] David J. Rincón, María A. Mantilla, Johann F. Petit, Gabriel Ordóñez and Oscar Sierra (2015), “Control of Three Phase Inverters for Renewable Energy Systems under Unbalanced Grid Voltages”, International Journal of Energy Research, Vol.5, No.2, pp. 507-516.

[26] Natalia Angela Orlando, Member, Marco Liserre, Rosa Anna Mastromauro, and Antonio Dell Aquila (2013), “A Survey of Control Issues in PMSG-Based Small Wind-Turbine Systems”, IEEE Transactions on Industrial Informatics, Vol. 9, No. 3, pp. 1211-1221.

[27] Abdullah S. Bubshait, Ali Mortezaei, Marcelo Godoy Simões, and Tiago Davi Curi Busarello (2017), “Power Quality Enhancement for a Grid Connected Wind Turbine Energy System”, IEEE Transactions on Industry Applications, Vol. 53, No. 3, May/June 2017, pp. 2495-2505.