Colorectal cancer incidences in Lynch syndrome: a comparison of results from the prospective Lynch syndrome database and the international mismatch repair consortium

Pål Møller1*, Toni Seppälä2,3,4, James G. Dowty5, Saskia Haupt6,7, Mev Dominguez-Valentin1, Lone Sunde8,9, Inge Bernstein10,11, Christoph Engel12, Stefan Aretz13, Maartje Nielsen14, Gabriel Capella15, Dafydd Gareth Evans16, John Burn17, Elke Holinski-Feder18,19, Lucio Bertario20, Bernardo Bonanni20, Annika Lindblom21, Zohar Levi22, Finlay Macrae23,24, Ingrid Winship23,24, John-Paul Plazzer25, Rolf Sijmons26, Luigi Laghi27, Adriana Della Valle28, Karl Heinimann29, Elizabeth Half30, Francisco Lopez-Koestner31, Karin Álvarez-Valenzuela31, Rodney J. Scott32, Lior Katz33, Ido Laish34, Elez Vainer33, Carlos Alberto Vaccaro35, Dirce Maria Carraro36, Nathan Gluck37, Naim Abu-Freha38, Aine Stakelum39, Rory Kennelly39, Des Winter39, Benedito Mauro Rossi40, Marc Greenblatt41, Mabel Bohorquez42, Harsh Sheth43, Maria Grazia Tibiletti44, Leonardo S. Lino-Silva45, Karoline Horisberger46, Carmen Portenkirchner46, Ivana Nascimento47, Norma Teresa Rossì48, Leandro Apolinário da Silva49, Huw Thomas50, Attila Zarán51, Jukka-Pekka Mecklin52,53, Kirsí Pylvänäinen54, Laura Renkonen-Sinisalo55, Anna Lepisto56, Päivi Peltonmäki57,58, Christina Therkildsen59, Lars Joachim Lindberg60, Ole Thorlacius-Ussing61,10,11, Magnus von Knebel Doeberitz75,77, Markus Loeffler59, Nils Rahner60, Verena Steinke-Lange18,19, Wolff Schmiegel62, Deepak Vangala63, Claudia Perne13, Robert Hübner64, Aída Falcón de Vargas65,66, Andrew Latchford65, Anne-Marie Gerdes66, Ann-Sofie Backman67, Carmen Guillén-Ponce68, Carrie Snyder69, Charlotte K. Laurup70, David Amor70, Edenir Palmero71,72, Elena Stoffel73, Floor Duijkers74, Michael J. Hall75, Heather Hampel76, Heinrich Williams77, Henrik Okkels78, Jan Lubiński79, Jeanette Reece80, Joanne Ngeow80, Jose G. Guillem81, Mary J. Arnold82, Karin Wadt82, Kevin Monahan83, Leigha Senter84, Lene J. Rasmussen85, Liselotte P. van Hest86, Luigi Ricciardiello87, Majka R. J. Kohonen-Corish88, Marjolijn J. L. Lijtengberg89, Melissa Southey90, Melyssa Aronson91, Mohd N. Zahary92, N. Jewel Samadder93, Nicola Poplawski94,95, Nicole Hoogerbrugge96, Patrick J. Morrison97, Paul James98, Grant Lee99, Rachel McNally100,101, Ravindran Ankathil102, Rish Pai102, Robyn Ward103, Susan Parry104, Tadeusz Dębniak104, Thomas John105, Thomas van Overeem Hansen66, Trinidad Caldés106, Tatsuro Yamaguchi107, Verónica Barca-Tierino108, Pilar Garre109, Giulia Martina Cavestro109, Jürgen Weitz110, Silke Redler100, Reinhard Büttner111, Vincent Heuveline6, John L. Hopper5, Aung Ko Win5.

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Abstract

Objective: To compare colorectal cancer (CRC) incidences in carriers of pathogenic variants of the MMR genes in the PLSD and IMRC cohorts, of which only the former included mandatory colonoscopy surveillance for all participants.

Methods: CRC incidences were calculated in an intervention group comprising a cohort of confirmed carriers of pathogenic or likely pathogenic variants in mismatch repair genes (path_MMR) followed prospectively by the Prospective Lynch Syndrome Database (PLSD). All had colonoscopy surveillance, with polypectomy when polyps were identified. Comparison was made with a retrospective cohort reported by the International Mismatch Repair Consortium (IMRC). This comprised confirmed and inferred path_MMR carriers who were first- or second-degree relatives of Lynch syndrome probands.

Results: In the PLSD, 8,153 subjects had follow-up colonoscopy surveillance for a total of 67,604 years and 578 carriers had CRC diagnosed. Average cumulative incidences of CRC in path_MLH1 carriers at 70 years of age were 52% in males and 41% in females; for path_MSH2 50% and 39%; for path_MSH6 13% and 17%; and for path_PMS2 11% and 8%. In contrast, in the IMRC cohort, corresponding cumulative incidences were 40% and 27%; 34% and 23%; 16% and 8%; and 7% and 6%. Comparing just the European carriers in the two series gave similar findings. Numbers in the PLSD series did not allow comparisons of carriers from other continents separately. Cumulative incidences at 25 years were < 1% in all retrospective groups.

Conclusions: Prospectively observed CRC incidences (PLSD) in path_MLH1 and path_MSH2 carriers undergoing colonoscopy surveillance and polypectomy were higher than in the retrospective (IMRC) series, and were not reduced in path_MSH6 carriers. These findings were the opposite to those expected. CRC point incidence before 50 years of age was reduced in path_PMS2 carriers subjected to colonoscopy, but not significantly so.

Keywords: Lynch Syndrome, Epidemiology, Prevention, Penetrance, Colorectal cancer, Segregation analysis, Prospective, Incidence, Over-diagnosis, Colonoscopy

Background

In 1995, a study in Finland found that colonoscopy with polypectomy conducted every three to five years was associated with a reduced CRC incidence in Lynch syndrome (LS) when compared to LS patients who did not have colonoscopy [1]. It was stated that ‘The recommended surveillance protocol for HNPCC is based on the hypothesis that the adenoma-carcinoma sequence, which is generally accepted in sporadic colorectal cancer, is also applicable in HNPCC’ [2] and relatives of LS cases were thereafter widely subjected to surveillance with colonoscopy every three years. However, continued occurrence of CRC was noted despite this surveillance and, in response, the recommended interval between colonoscopies was reduced [3, 4]. Despite this change, continuing occurrence of CRC was still observed and in some centres the interval between colonoscopies was therefore reduced further, to one year [5] or even less. Surprisingly, since the initial Finnish report in 1995 that did not control for lead-time bias and was not randomized, there has been no confirmatory study to show that colonoscopy surveillance with polypectomy significantly reduces CRC incidence in LS.

The earliest published reports of LS families [6] suggest that in previous generations, most individuals who developed a first cancer died from that cancer. By contrast, more recently, LS patients diagnosed with a non-colorectal cancer at a young age usually survive and often develop CRC later in life [7]. The extent to which this
time-trend (survivor bias) has influenced the outcomes of interventions that aim to prevent occurrence of CRC and improve its prognosis through early detection and treatment, is not known.

No single institution nor country had the resources needed to resolve these issues, leading the European Hereditary Tumour Group in 2012 (www.ehtg.org, that at the time was known as the Mallorca group) to invite pooling of international results of prospective follow-up of LS families in a single shared database, the Prospective Lynch Syndrome Database (PLSD). The goal of PLSD was to describe cancer incidences in all organs in carriers of path_MMR variants who were undergoing follow-up according to the internationally advocated clinical guidelines and to stratify these by age, gene and gender. Once sufficient numbers of carriers and follow-up years were collated, the intention was to use the information obtained to assess whether the results were compatible with current assumptions about carcinogenesis and the expected effects of interventions in LS. This paper reports the results of one such assessment. Because neither randomized trials of colonoscopy versus no-colonoscopy, nor open trials with a non-intervention control arm are likely to be undertaken in LS, a separate goal of PLSD is to produce the information needed to inform development of alternative randomized trials, for example of different surveillance intervals, in the future.

Around the same time as the PLSD was developed, an initiative aiming to compile data on as many LS families as possible for a retrospective segregation analysis was established by the International Mismatch Repair Consortium (IMRC) (https://www.sphinx.org.au/imrc). Its primary aim was to determine the cumulative CRC incidences in path_MMR carriers by retrospective analysis including family members in former generations who were not subject to the same degree of CRC preventive surveillance with colonoscopy as contemporary patients followed in PLSD [5].

There is limited information on survival following CRC detected during surveillance with colonoscopy in path_MMR carriers, other than reports from the PLSD [8] and the recent IMRC report did not include data on survival [5].

Here, we compare prospective CRC incidences in an updated version of PLSD that includes 8,153 path_MMR carriers aged from 25 to 70 years and subjected to regular follow-up with colonoscopy for a total of 67,604 years with retrospective CRC incidences calculated from path_MMR carriers from 5,255 families collected by the IMRC.

Methods

The PLSD compiles observed cancers in path_MMR carriers from the first prospectively planned and performed colonoscopy. It considers all cancers that occur before or at the same age as the first colonoscopy as prior or prevalent cancers, and from that point onwards it counts new primary cancers as events. Data collection was made from age 25 years at earliest, and cumulative incidence of CRC at age 25 years was set to zero. When CRC was counted as the event, all carriers who already had CRC prior to or at inclusion in the study were excluded, and observation time was right-censored at the first event, last observation or death, whichever came first. These methods have been discussed in detail in a separate report [9]. Lead-time bias was controlled by colonoscopy at inclusion and only scoring CRC after inclusion as an event, but since there is no pre-determined time to right-censoring and no obligatory colonoscopy at right-censoring is required, length-time bias may occur. Although the median observation time was less than 10 years, as it is longer in some patients, time-trend bias may occur. Except for the effects of ascertainment bias, which will affect any study, the annual incidences of CRC reported by PLSD are not subject to any assumptions underlying the calculations: they reflect observed events divided by observation years in each age group. Observation years and events (i.e. CRCs) in each five-year age group were calculated by using MySQL80®. Incidence rates (AIR) were calculated in five-year cohorts starting at age 25 as number of events (in this paper CRCs) divided by number of observation years in each age cohort. The corresponding incidence risk (IR) was approximated by IR = AIR × 5 years. Cumulative incidence risk was set to zero at age 25. In previous PLSD reports cumulative incidence, denoted Q, was computed starting at age 25 using the formula Q(age) = Q(age – 1) + [1 – Q(age – 1)] × AIR R(age) and the 95% confidence intervals (CIs) were calculated using the Lagrange multiplier test. In this report, we calculated the cumulative incidence risks and the 95% CIs based on Nelson-Aalen estimates with an underlying Poisson distribution as detailed in the supplementary note. As expected, the cumulative incidences calculated by the former and present methods were close to identical, while the Poisson distribution gave slightly different CIs (comparison not shown). There were insufficient numbers to calculate results separately for continents other than Europe.

The IMRC used a segregation analysis to study a retrospective family cohort of first- and second-degree relatives, including 31,944 first-degree relatives and 47,865 second-degree relatives of path_MMR probands in 5,585 families. Most probands were path_MLH1 or path_MSH2 carriers, and the methods were discussed previously. Pedigree data of path_MMR families was sought from clinicians and researchers worldwide between July 11, 2014 and December 31, 2018 [5]. Observation time for all individuals included their lifetime risk of
first colorectal cancer from birth to their age at death or last known age at latest update to the cohort in 2018. In summary, standard methods correcting for ascertainment bias and then calculating cumulative incidences of CRC by age, gene and gender were applied. The results were reported by continent. To allow for direct comparison with the PLSD, the results of IMRC segregation analyses for the current study were not right-censored at polypectomy (as had been done in the previously published IMRC report [5]) and consequently the results presented here may differ slightly from those previously published. The overall (global) averages were calculated as a weighted mean of the results from the different continents that were previously reported.

Results
Cumulative incidences at ages 30, 40, 50, 60 and 70 years for male and female carriers by MMR gene are detailed in Table 1. For the PLSD series, numbers of carriers included and follow-up years by country are given in the supplementary Table 1.

Prospective PLSD series under colonoscopy surveillance
In total 8,153 carriers were subject to follow-up with colonoscopy for 67,604 years with mean follow-up time of 8.3 years, including 6,266 carriers followed-up for 53,559 years with mean follow-up time 8.5 years in Europe. Five-hundred and seventy-eight carriers had CRC diagnosed. Average cumulative incidences of CRC (with 95% confidence intervals in parentheses) in *path_MLR1, path_MSH2, path_MSH6* and *path_PMS2* carriers at 70 years of age were 52 (45-59)%/ 41 (35-48)%/ 50 (42-58)%/ 39 (33-46)%, 13 (7-25)%/ 17 (11-26)% and 11 (3-37)%/ 8 (2-29)% in male/female carriers in the total cohort, respectively. For carriers followed-up in Europe, the corresponding cumulative incidences at 70 years were 49 (42-57)% / 41 (35-48)%/ 46 (37-57)%/ 39 (31-47)%/ 12 (6-24)%/ 15 (9-24)% and 12 (3-40)% / 3 (1-22)%, respectively.

Retrospective IMRC series
The corresponding average calculated cumulative incidences up to 70 years of age based on all carriers from the IMRC cohort were 40 (34-47)%/ 27 (22-33)%/ 34 (28-40)%/ 23 (19-29)%/ 16 (12-24)%/ 8 (6-13)% and 7 (6-8)%/ 6 (5-6)% respectively. The cumulative incidences in families from Europe were 36 (27-48)%/ 22 (15-32)%/ 28 (21-38)%/ 17 (11-27)%/ 14 (8-24)%/ 6 (3-11)% and 8 (6-10)%/ 5 (4-7)% respectively. Cumulative incidences at 25 years of ages were < 1.0% in all of the groups considered. Sixty percent of the carriers were right-censored after 1980.

As seen in Table 1 and Fig. 1, the cumulative incidences of CRC in *path_MLR1* and *path_MSH2* carriers of both genders were significantly higher in the prospective PLSD cohort in which all were subjected to regular colonoscopy surveillance than in the IMRC cohort (95% confidence intervals do not overlap). No significant differences were observed for *MSH6*, for which fewer patients and events were available in both cohorts (95% confidence intervals of the one series overlap the mean of the other). The point estimates for the mean for *path_PMS2* carriers below 50 years of age indicated a lower CRC incidence in the PLSD cohort when compared to the IMRC cohort, but this was not statistically significant.

Discussion
Prospectively observed incidences of CRC in *path_MLR1, path_MSH2* and *path_MSH6* carriers of both genders in the PLSD cohort, in which all patients were subject to colonoscopy surveillance, were up to twice as high as in the retrospective IMRC series that included carriers who did not all receive regular surveillance colonoscopy.

Consideration of the methodologies used and the associated statistical concepts and confounders is indicated to explore the possibility that the results we obtained might reflect methodological biases, particularly as they were the opposite of what was expected. The PLSD methods have been described previously [9] and the IMRC results were produced using commonly accepted methods, as previously described [5]. Assuming the PLSD mean observation time (8.3 years) to be applicable to IMRC cases right-censored after 1980 (when surveillance with colonoscopy was introduced) as a maximum estimate of the fraction of IMRC cases subjected to colonoscopy, at least 85% of the IMRC observation years would have been completed without colonoscopy. The main finding of the current study would not, anyway, be confounded if a fraction of cases in the IMRC cohort underwent colonoscopy. We recognize that some individuals will have been included in the PLSD as well as the IMRC cohort, but we cannot identify them and their inclusion in both cohorts will not have contributed to the differences in observed CRC incidences. It is possible that CRC was under-reported in the pedigrees obtained by clinical teams, the details of which constituted the primary data source for the IMRC analysis. By contrast, under-reporting of CRC is unlikely in the PLSD cohort whose subjects were under regular surveillance at the contributing centres. It is unlikely that the lower CRC incidences estimated in the IMRC cohort are due to differing frequencies of lower penetrance *path_MLR* variants or modifying genes in former generations because there have been no known major fluctuations (bottlenecks) in population sizes or structures over the last three generations to cause such changes. As 60% of IMRC cases were...
right-censored after 1980, possible lower CRC incidence in previous generations (time-trend bias) can not explain the results. However, Lynch syndrome colorectal cancer incidence is associated with lower physical activity [10], and higher body mass index [11]. Temporal changes in such factors could explain some of the observed differences in colorectal cancer incidences between the two cohorts.

In a previous retrospective study, segregation analyses describing cumulative incidences of CRC in French path_MLH1, path_MSH2 and path_MSH6 carriers [12] were not restricted to first and second degree relatives. This helped to avoid simply returning the criteria used to identify families for genetic testing as the results of the study, and to minimize the effects of removing young affected carriers when considering a family to have a hypergeometric distribution of events. Observation time was right-censored at the diagnosis of any cancer in order to avoid survival bias when deaths from other cancers were caused by the same genetic variant. Additional family members were tested and demonstrated to carry the genetic variant in question in order to minimize the

Table 1 Percent cumulative incidences (with 95% confidence intervals in parentheses) of CRC at ages 30, 40, 50, 60 and 70 years by gender and genetic variant for both series for European path_MMR carriers separately and for all carriers irrespective of residence, and overall cumulative incidence at 25 years in the IMRC series

Sex	Gene	Continent	25 years	30 years	40 years	50 years	60 years	70 years
Male MLH1	Europe IMRC	0.9 (0.4-1.8)	2.6 (1.2-5.2)	8.1 (5.0-14)	21 (15-29)	36 (27-48)		
	Europe PLSD	2.7 (1.0-7.0)	14.2 (10.2-19.6)	30.3 (25.0-36.6)	44.3 (37.9-51.2)	49.2 (42.0-56.8)		
	All IMRC	0.7 (0.5-1.1)	5.8 (4.3-7.8)	15 (12-19)	27 (23-33)	40 (34-47)		
	All PLSD	3.5 (1.6-7.6)	14.8 (10.9-20.0)	32.1 (27.0-38.0)	45.1 (39.2-51.4)	51.9 (45.2-58.9)		
MSH2	Europe IMRC	0.7 (0.4-1.5)	2.2 (1.1-4.2)	6.7 (4.1-11)	16 (12-22)	28 (21-38)		
	Europe PLSD	2.7 (0.9-8.1)	8.9 (5.3-14.6)	19.1 (13.9-25.9)	34.1 (26.8-42.8)	46.4 (37.1-56.7)		
	All IMRC	0.6 (0.4-0.8)	4.8 (3.6-6.5)	13 (10-16)	23 (19-28)	34 (28-40)		
	All PLSD	3.7 (1.6-8.8)	10.4 (6.8-15.9)	21.3 (16.3-27.4)	37.3 (30.8-44.6)	49.6 (41.5-58.4)		
MSH6	Europe IMRC	0.4 (0.1-1.3)	1.2 (0.4-3.8)	3.6 (1.4-9.7)	8.1 (4.1-17)	14 (7.8-24)		
	Europe PLSD	3.1 (0.4-20.1)	4.6 (1.1-18.5)	5.9 (1.8-18.6)	11.5 (5.5-23.5)	11.5 (5.5-23.5)		
	All IMRC	0.2 (0.1-0.4)	1.6 (0.9-3.2)	4.8 (3.0-8.7)	9.9 (7.0-16)	16 (12-24)		
	All PLSD	2.8	60	7.1	11.8	13.4		

Female MLH1	Europe IMRC	0.1 (0.1-0.1)	0.3 (0.3-0.3)	1.0 (0.9-1.1)	3.5 (2.8-4.1)	7.6 (5.7-9.7)	
	Europe PLSD	0 (-)	0 (-)	0 (-)	12.1 (3.2-40.3)	12.1 (3.2-40.3)	
	All IMRC	0.0 (0.0-0.0)	0.3 (0.3-0.3)	1.1 (1.0-1.1)	3.3 (3.0-3.6)	7.1 (6.3-8.1)	
	All PLSD	0 (-)	0 (-)	0 (-)	10.7 (2.8-36.5)	10.7 (2.8-36.5)	
PMS2	Europe IMRC	0.1 (0.1-0.1)	0.3 (0.3-0.3)	1.0 (0.9-1.1)	3.5 (2.8-4.1)	7.6 (5.7-9.7)	
	Europe PLSD	0 (-)	0 (-)	0 (-)	12.1 (3.2-40.3)	12.1 (3.2-40.3)	
	All IMRC	0.0 (0.0-0.0)	0.3 (0.3-0.3)	1.1 (1.0-1.1)	3.3 (3.0-3.6)	7.1 (6.3-8.1)	
	All PLSD	0 (-)	0 (-)	0 (-)	10.7 (2.8-36.5)	10.7 (2.8-36.5)	
MSH2	Europe IMRC	0.4 (0.2-0.9)	1.3 (0.6-2.9)	4.7 (2.6-8.2)	12 (8.4-18)	22 (15-32)	
	Europe PLSD	8.5 (5.7-12.7)	17.8 (13.8-22.8)	29.9 (24.7-35.9)	41.0 (34.7-48.0)		
	All IMRC	0.4 (0.3-0.7)	0.8 (0.5-1.2)	3.1 (2.2-4.5)	8.6 (6.6-12)	17 (14-21)	27 (22-33)
	All PLSD	0 (-)	9.3 (6.5-13.2)	18.2 (14.5-22.9)	29.9 (25.1-35.4)	41.3 (35-47.8)	
MSH6	Europe IMRC	0.4 (0.2-1.0)	1.5 (0.7-3.3)	4.7 (2.6-8.9)	10 (6.7-17)	17 (11-27)	
	Europe PLSD	2.3 (0.7-6.9)	7.2 (4.1-12.4)	15.3 (10.8-21.4)	23.3 (17.8-30.1)	38.4 (31.4-46.9)	
	All IMRC	0.4 (0.3-0.7)	0.8 (0.6-1.3)	3.3 (2.3-5.0)	8.7 (6.5-12)	15 (12-20)	23 (19-29)
	All PLSD	1.8 (1.6-5.4)	7.1 (4.3-11.6)	15.4 (11.4-20.6)	23.4 (18.6-29.1)	38.7 (32.5-45.6)	
PMS2	Europe IMRC	0.1 (0.0-0.2)	0.2 (0.1-0.7)	0.8 (0.3-2.3)	2.5 (1.3-5.5)	5.6 (2.8-11)	
	Europe PLSD	0 (-)	0 (-)	0 (-)	3.1 (1.0-9.5)	8.2 (4.4-15.3)	14.5 (8.7-23.5)
	All IMRC	0.0 (0.0-0.0)	0.1 (0.0-0.2)	0.3 (0.1-1.0)	1.0 (0.6-3.0)	3.4 (2.4-6.4)	8.1 (5.5-13)
	All PLSD	0 (-)	1.2 (0.8-2.2)	4.0 (1.5-10.4)	8.4 (4.6-15.2)	16.8 (10.8-25.5)	

confounder of there being additional inherited causes of cancer within the family. Observation time was also right censored if the carrier was subjected to surveillance colonoscopy in order to avoid the confounder of colonoscopy modifying CRC incidence. The point estimates of cumulative CRC incidence at 70 years in that report for both genders combined were 41% for path_MLH1 carriers, 48% for path_MSH2 carriers and 12% for path_MSH6 carriers, very close to the observed incidences in the PLSD series in the current report. The number of cases included was, however, limited and the confidence intervals correspondingly wide – a reason why the PLSD waited for the IMRC results to be available before making a comparison of its prospective data with results of retrospective segregation analyses. While the French report could suggest that the IMRC segregation analyses have underestimated CRC incidence, comparing the current PLSD results with the point estimates in the French series does not demonstrate any reduction in CRC incidence associated with colonoscopy surveillance in the PLSD cohort.

A European multicentre segregation analysis that estimated CRC incidence in path_PMS2 carriers [13] demonstrated an increased incidence in carriers under 50 years of age, similar to the findings reported in the IMRC series. In a subsequent report [14] the same group confirmed that the apparent anticipation observed was a statistical artifact caused by birth cohorts. The PLSD design eliminates such artificial anticipation. The path_PMS2 carriers in the PLSD cohort had lower incidence of CRC before 50 years of age than those reported by the IMRC, but not significantly so. That is, the assumption that colonoscopy reduces CRC incidence may be true for younger adult path_PMS2 carriers. If this finding is confirmed, the recently revised clinical guidelines for path_PMS2 carriers [15] that advocate postponing surveillance compared to other groups with LS would need to be reconsidered. Observations in larger numbers of path_PMS2 carriers are needed to clarify this.

A recent overview of current knowledge on carcinogenetic mechanisms in LS CRCs [16] reported that in addition to the traditional adenoma-carcinoma pathway [2], other carcinogenetic mechanisms also need to be considered. Five hypotheses were described, including 1) adenomas that are overlooked during colonoscopy, 2) fast progression of adenomas to carcinomas [2], 3) CRCs developing without a macroscopically visible adenoma phase 4) over-diagnosis / disappearing cancers [17] and 5) colonoscopy inducing cancer in path_MMR carriers via damage of the colonic epithelium. Hypothesis 1 and 2 cannot explain the results described in this paper as we found higher rates of CRC incidence in those receiving colonoscopy. Although hypothesis 5 is consistent with our results, we have no method to evaluate this. We are left with hypotheses 3 and 4, that CRC may develop directly from MMR deficient crypts without a
macroscopically visible precursor and that microsatellite instable crypts, or more advanced cancers, may be invaded by immunocompetent cells leading to their eradication. The latter underlies the principle of neoadjuvant checkpoint inhibitor therapy that has shown marked success in recent trials in MMR deficient CRCs [18, 19] and current studies exploring the feasibility of vaccines to prevent or cure LS cancers [20]. An adult path_MLH1 or path_MSH2 carrier is thought to have > 1000 microsatellite instable crypts in his/her colon [21–24]. It is known that apparently healthy path_MMR carriers have measurable immune responses against frameshift-induced neopeptides, suggesting their immune system can detect and potentially attack microsatellite instable crypts [25]. The probabilities for such crypts persisting, disappearing or developing into infiltrating cancers are not known. The biology of CRC in path_PMS2 carriers may be different from carriers of the pathogenic variants of the other genes [26, 27].

Although the focus of this paper is on CRC incidence, we consider prevention of death due to CRC to be the ultimate goal of surveillance colonoscopy, and the good prognosis of CRC detected in path_MMR carriers who are subjected to colonoscopy every three years or more frequently has been described in previous PLSD reports [8]. This is a strong argument to continue surveillance of path_MMR carriers by colonoscopy. The current paper does not call this into question, but its findings do support a change in the message to be communicated to path_MMR carriers, namely that the purpose of surveillance colonoscopy is not to prevent CRC from occurring but to detect it early. The authors of the current study have previously examined the relationship between colonoscopy interval and CRC incidence, stage at diagnosis, and survival [18, 28–30] without finding evidence of lower CRC incidence, less advanced stage or better survival when the interval between colonoscopies is shortened to less than three years.

Lastly, the very low incidence of CRC before 25 years of age that was found in the IMRC cohort indicates that the PLSD methodology of setting CRC incidence to zero at 25 years of age was justified. Indeed, without extensive genetic testing, one cannot exclude the possibility that occurrence of CRC before 25 years of age may, in some cases, have been due to inclusion of unrecognized biallelic path_MMR carriers (i.e. individuals who were affected by constitutional mismatch repair deficiency syndrome) or the presence of pathogenic germline variants in other co-existing CRC predisposition genes [31].

The strength of the current study is that it compares the results of the two largest studies to date on CRC incidences in path_MMR carriers. One weakness is the lack of information on colonoscopy in the IMRC series: contributors to IMRC were asked to provide information on colonoscopy screening and polypectomy, however this was not provided for the vast majority of submitted individuals. Another weakness is lack of information on the degree to which follow up for cases included in the PLSD complied with recommendations. The effects of non-compliance would be to diminish the differences between the two series and could not explain the increased CRC incidence in the PLSD series compared to the IMRC series.

Conclusions

We found a higher incidence of CRC in the carriers reported to PLSD, all of whom received colonoscopic surveillance. However, as the details of colonoscopies that will have been undertaken in some of the IMRC cohort are not available, we cannot quantify the magnitude of this effect. Although these findings could reflect differences in the fidelity of recording of CRC in the retrospective and prospective cohorts, the findings could also be explained by the occurrence of carcinogenetic mechanisms in LS CRC that override the preventive effect of colonoscopy [16].

Abbreviations

LS: Lynch syndrome; CRC: colorectal cancer; Path_MMR: pathogenic or likely pathogenic variant of one of the MLH1, MSH2, MSH6 or PMS2 genes; Path_MLH1: pathogenic or likely pathogenic variant of one of the MLH1 gene; Path_MSH2: pathogenic or likely pathogenic variant of one of the MSH2 gene; Path_MSH6: pathogenic or likely pathogenic variant of one of the MSH6 gene; Path_PMS2: pathogenic or likely pathogenic variant of one of the PMS2 gene; PLSD: The Prospective Lynch Syndrome Database; IMRC: The International Mismatch Repair Consortium.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13053-022-00241-1.

Additional file 1.
Finland, Jane and Aatos Erkko Foundation. G Capellà: team: funded by the Spanish Ministry of Economy and Competitiveness and co-funded by FEDER funds -a way to build Europe- (grant PID2019-111254R-B-I00) and CIBERONC (CB16/12/00234). We thank CERCA Program / Generalitat de Catalunya for institutional support. S Arezzo, E Holinski-Feder, and V Steinke-Lange were supported by the European Reference Network on Genetic Tumor Risk Syndromes (ERN GENTURIS) – Project ID No 739547. ERN GENTURIS is partly co-funded by the European Union within the framework of the Third Health Programme "ERN-2016 – Framework Partnership Agreement 2017–2021". BMRossi: team: we thank LA-GETH (Latino America - Grupo de Estudios de Tumores Hereditarios) for the Institutional support. DGE and EJC are supported by the all Manchester NIHR Biomedical Research Centre (IS-BRC-1215-20007). JRS thanks HCRW for its support via Wales Gene Park. MRI Kohonen-Corish had a grant from Cancer Council NSW grant RG19-01. J Burn contributed with support from Cancer Research U.K. catalyst award: Aspirin for Cancer Prevention AsCoAP CRUK A24991. The German Consortium for Familial Intestinal Cancer was supported by grants of the German Cancer Aid. DM Carraro and GT Torezan: Funded by the National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation (FAPESP 2014/509443-1, CNPq 465682/2014-6 and CAPES - 8888136405/2017-00). We acknowledge funding from the Norwegian Cancer Society, contract 194751-2017.

Availability of data and materials
Not applicable.

Declarations
Ethics approval and consent to participate
All contributors to the PLSD and IMRC have declared ethics approval and have obtained consents for participations.

Consent for publication
There is no further need for consent for publication of categorized data.

Competing of interests
L Senter-Jamieson have received speaking/consultant fees from AstraZeneca in the past year. Carmen Guillén-Ponce: registrations for congresses and continuing education courses by Merck, Sanofi and Astra Zeneca. Toni T. Sippalä reports CEO and co-owner of Healthfund Finland and an interview honoraria from Boehringer Ingelheim Finland.

Author details
1Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, 0379 Oslo, Norway. 2Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland.
3Applied Tumour Genomics Research Program, University of Helsinki, Helsinki, Finland.
4Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland.
5Centre of Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. 6Engineering Mathematics and Computing Lab (EMCL), Interdisciplinary Center for Scientific Computing (WIR), Heidelberg University, Heidelberg, Germany.
7Data Mining and Uncertainty Quantification (DMUQ), Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany.
8Department of Clinical Genetics, Aalborg University Hospital, 9000 Aalborg, Denmark.
9Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark.
10Department of Surgical Gastroenterology, Aalborg University Hospital, Aalborg University, 9100 Aalborg, Denmark.
11Institute of Clinical Medicine, Aalborg University Hospital, Aalborg University, 9100 Aalborg, Denmark.
12Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, 04107 Leipzig, Germany. 13Institute of Human Genetics, National Center for Hereditary Tumor Syndromes, Medical Faculty, University of Bonn, 53127 Bonn, Germany. 14Department of Clinical Genetics, Leids Universitair Medisch Centrum, 2300 RC, Leiden, The Netherlands.
15Hereditary Cancer Program, Institut Català d'Oncologia-IDIBELL, L Hospitalet de Llobregat, 08908 Barcelona, Spain. 16Division of Evolution and Genomic Sciences, Manchester Centre for Genomic Medicine, University of Manchester, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK.
17Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK. 18Campus Innenstadt, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany. 19Medizinische Universität zu Lübeck, 28355 Lübeck, Germany. 20Division of Cancer Prevention and Genomics, IEO, European Institute of Oncology, IRCCS, 20141 Milan, Italy. 21Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden. 22Department Rabin Medical Center, Service High Risk GI Cancer Gastroenterology, Petach Tikva, Israel. 23Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Melbourne, Australia.
24Department of Medicine, Melbourne University, Melbourne, Australia.
25The Royal Melbourne Hospital, Melbourne, Victoria, Australia.
26Department of Gastroenterology, University of Nebraska Medical Center, Omaha, Nebraska, USA.
27Department of Medicine and Surgery, Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, University of Parma, Parma, Italy.
28Hospital Fuerzas Armadas, Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCUI), Montevideo, Uruguay. 29Medical Genetics, Institute for Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland.
30Gastrointestinal Cancer Prevention Unit, Gastroenterology Department, Rambam Health Care Campus, Haifa, Israel.
31Programa Cáncer Hereditario Familiar Universidad de los Andes, Santiago, Chile.
32University of Newcastle and the Hunter Medical Research Institute, Callaghan, Australia.
33Department of Gastroenterology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
34The Department of Gastroenterology, High Risk and GI Cancer Prevention Unit, The Jules Bordet Institute, Gastro-Oncology Unit, UZ Brussel, Brussels, Belgium.
35Hereditary Cancer Program (PROCANHE), Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
36Genomic and Molecular Biology Group, A.C.Camargo Cancer Center, Sao Paulo, Brazil.
37Department of Gastroenterology, Tel-Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
38The Instituto de Gastroenterología y Hepatología, Soroka Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel.
39St Vincent’s University Hospital, Elm Park, Dublin 4, Ireland. 40Hospital Sirio Libanês, Sao Paulo, Brazil.
41University of Vermont, Larner College of Medicine, Burlington, VT 05405, USA.
42University of Tolima, Tolima, Colombia.
43Foundation for Research in Genetics and Endocrinology, FRIGE House, Jodhpur Village Road, Satellite Ahmedabad, Ahmedabad 380015, India.
44Ospedale di Circolo ASST Settetalghi, Centro di Ricerca Tumori Eredo-Familiari, Università dell’Insubria, Varese, Italy.
45Instituto Nacional de Cancerología, Mexico, DF, Mexico.
46Department of Abdominal and Transplantation Surgery, Universitätsklinik Zürich, Ramistrasse 100, CH-8091 Zürich, Switzerland.
47Laboratório de Imonologia, ICS UFBA, Núcleo de Oncologia da Bahia/Oncoclinicas, Salvador, Brazil.
48Hospital Privado Universitario de Córdoba, Córdoba, Argentina.
49Hospital Universitario Oswaldo Cruz, Universidad de Pernambuco, Hospital de Cáncer de Pernambuco, IPON - Instituto de Pesquisas Oncológicas do Nordeste, Salvador, Brazil.
50Department of Surgery and Cancer, St Mark’s Hospital, Imperial College London, London, UK.
51Department of Transplantation and Surgery, Semmelweis University Budapest, Budapest, Hungary.
52Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
53Department of Surgery, Central Finland Health Care District, Jyväskylä, Finland.
54Department of Education and Science, Central Finland Health Care District, Jyväskylä, Finland.
55Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
56The Danish HNPCC Register, Gastro Unit, Copenhagen University Hospital – Aarhus University Hospital, Aarhus, Denmark.
57Department of Medical Oncology, University Hospital – Amager and Hvidovre, Copenhagen, Denmark.
58Department of Applied Tumour Biology, Institute of Pathology, University Hospital, Heidelberg, Heidelberg, Germany.
59Clinical Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
60Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany.
61Institute of Human Genetics, University Clinic Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
62Department of Medicine, Knappschaftskrankenhaus, Ruhr-University Bochum, Bochum, Germany.
63Department of Internal Medicine, University Hospital Bonn, Bonn, Germany.
64Genetics Unit, Hospital Vargas de Caracas, Caracas, Venezuela.
65Escuela de Medicina Jose Maria Vargas, Universidad Central de Venezuela, UCV, Caracas, Venezuela.
66St Mark’s Hospital, London, UK.
67Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
68Department of Medicine, University of Copenhagen, Copenhagen, Denmark.
69Hereditary Cancer Center, Department of Preventive Medicine, Umeå University, Umeå, Sweden.
Creighton University, Omaha, NE 68178, USA. 70Murdoch Children’s Research Institute and University of Melbourne Department of Paediatrics, Royal Children’s Hospital, Parkville, VIC 3052, Australia. 71Department of Genetics, Brazilian National Cancer Institute, Rio de Janeiro, Brazil. 72Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil. 73Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA. 74Department of Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands. 75Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA. 76Division of Human Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA. 77Department of Urology, Geisinger Medical Center, Danville, PA 17822, USA. 78Department of Molecular Diagnostics, Aalborg University, Aalborg, Denmark. 79Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University in Szczecin, Szczecin, Poland. 80Lee Kong Chian School of Medicine, Nanyang Technological University Singapore and Cancer Genetics Service National Cancer Centre Singapore, Singapore, Singapore. 81Gastrointestinal Surgery, University of North Carolina, Chapel Hill, NC, USA. 82New Zealand Familial Gastrointestinal Cancer Service, Auckland, New Zealand. 83St Mark’s Hospital & Imperial College, London, UK. 84Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA. 85Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark. 86Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. 87IRCCS AOU di Bologna, and Department of Medical and Surgical Sciences - University of Bologna, Bologna, Italy. 88Woolcock Institute of Medical Research, Glebe, Sydney NSW 2037, Australia. 89Department of Human Genetics and Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands. 90Monash Health Translation Precinct, Monash University, Clayton South, VIC 3169, Australia. 91Zane Cohen Centre, Sinai Health System, Toronto, Ontario, Canada. 92Faculty of Health Sciences, University Sultan Zainal Abidin, Kuala Terengganu, Terengganu, Malaysia. 93Division of Gastroenterology and Hepatology, Mayo Clinic, Phoenix, AZ 85054, USA. 94Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia. 95Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA 5000, Australia. 96Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands. 97Regional Medical Genetics Centre, Belfast HSC Trust, City Hospital Campus, Queen’s University Belfast, Belfast, Northern Ireland, UK. 98Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia. 99Genomics Platform Group, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia. 100The Biology Department, Ariel University, Ariel and the Oncogenetic Clinic, The Clinical Genetics Institute, Kaplan Medical Center, Rehovot, Israel. 101Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia. 102Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA. 103Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia. 104Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland. 105Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia. 106Molecular Oncology Laboratory, Hospital Clinico San Carlos, IDISSC, Madrid, Spain. 107Department of Clinical Genetics, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan. 108Department of Genetics, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain. 109Gastroenterology and Gastrointestinal Endoscopy Unit, Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan, Italy. 110Technische Universität Dresden, Dresden, Germany. 111Department of Pathology, University Hospital of Cologne, Cologne, Germany. 112Department of Health Science Research, Mayo Clinic Arizona, Phoenix, USA. 113Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada. 114University of Hawaii Cancer Center, Honolulu, USA. 115Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA. 116Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia. 117University of Melbourne for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia. 118Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia. 119Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA. 120Leids Universitair Medisch Centrum, Leiden, Netherlands. 121Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway. 122Centre for Cancer Cell Reprogramming (CanCell), Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. 123Department of Surgery, Central Manchester University Hospitals NHS Foundation Trust and University of Manchester, Manchester, UK. 124Gynaecological Oncology Research Group, Manchester University NHS Foundation Trust, Manchester, UK. 125Division of Cancer Sciences, University of Manchester, Manchester, UK. 126Division of Obstetrics and Gynaecology, Department of Women’s and Children’s Health, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden. 127Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Hospital Italiano de Buenos Aires-IJHI-CONICET, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina. 128Surgical Center for Hereditary Tumors, Ev. Bethesda Khs Duisburg, University Witten-Heideke, Heidelberg, Germany. 129Division of Cancer and Genetics, Institute of Medical Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.

Received: 3 December 2021 Accepted: 31 August 2022

Published online: 01 October 2022

References
1. Janvinen HJ, Mecklin JP, Sistonen P. Screening reduces colorectal cancer rate in families with hereditary nonpolyposis colorectal cancer. Gastroenterology. 1995;108(5):1405–11. https://doi.org/10.1016/0016-5085(95)90608-6 PMID: 7729632.
2. Vesen HF, Nagengast FM, Khan PM. Interval cancers in hereditary non-polyposis colorectal cancer (Lynch syndrome). Lancet. 1995;345(8958):1183–4. https://doi.org/10.1016/0140-6736(95)91016-6 PMID: 7723572.
3. Vasen HF, Moslein G, Alonso A, Bernstein I, Bertario L, Blanco G, et al. Guidelines for the clinical management of Lynch syndrome (hereditary non-polyposis cancer). J Med Genet. 2007;44(6):353–62. https://doi.org/10.1136/jmg.2007.048991 Epub 2007 Feb 27. PMID: 17327285. PMCID: PMC2740877.
4. Vasen HF, Blanco I, Akutan-Collan K, Cope J, Alonso A, Arezz S, Bernstein I, Bertario L, Burn J, Capella G, Colas C, Engel C, Frayling IM, Genuardi M, Heinimann K, Hes FJ, Hodgson SV, Karagiannis JA, Lallof F, Lindblom A, Mecklin JP, Møller P, Myrheim J, Nagengast FM, Parc Y, Ponz de Leon M, Renkonen-Sinoxalo L, Sampson J, Stormorken A, Sjømøn Rh, Tegar S, Thomas HJ, Rahn N, Wijnen J, Janvinen HJ, Moslein G, Mallorca Group. Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut. 2013;62(10):1218-32. https://doi.org/10.1136/gutjnl-2012-304356. Epub 2013 Feb 13. PMID: 23408351. PMCID: PMC3647348.
5. International Mismatch Repair Consortium. Variation in the risk of colorectal cancer in families with Lynch syndrome: a retrospective study. Lancet Oncol. 2021;22(7):1014–22. https://doi.org/10.1016/S1470-2045(21)00189-3 Epub 2021 Jun 7. PMID: 34111421.
6. Douglas JA, Gruber SB, Meister KA, Bonner J, Watson P, Kush AJ, et al. History and molecular genetics of Lynch syndrome in family. A: a century later. JAMA. 2005;294(17):2195–202. https://doi.org/10.1001/jama.294.17.2195 PMID: 16264161.
7. Moller P, Seppälä T, Bernstein I, Holmski-Feder E, Sala P, Evans DG, et al. Incidence of and survival after subsequent cancers in carriers of pathogenic MMR variants with previous cancer: a report from the prospective Lynch syndrome database. Gut. 2017;66(9):1657–64. https://doi.org/10.1136/gutjnl-2016-311403 Epub 2016 Jun 3. PMID: 27261338. PMCID: PMC5561364.

Moller et al. Hereditary Cancer in Clinical Practice (2022) 20:36 Page 9 of 11
G, Pino TA, Gonzalez ML, Kalfayan P, Tjandra D, Winship IM, Macrae F, Moslein G, Mecklin JP, Nielsen M, Møller P. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database. Genet Med. 2020;22(15):15-25. https://doi.org/10.1038/s41436-019-0306-9. Epub 2019 Jul 24. Erratum in: Genet Med. 2020;22(9):1569. PMID: 31337882; PMCID: PMC7317626.

9. Møller P. The Prospective Lynch Syndrome Database reports enable evidence-based personal precision health care. Hered Cancer Clin Pract. 2020;14(18). https://doi.org/10.1186/s13053-020-0138-0; PMCID: 32190163; PMCID: PMC7073013.

10. Dashti SG, Win AK, Hardikar SS, Giombicki SE, Mallenahalli S, Thirumurthi K, et al. Physical activity and the risk of colorectal cancer in Lynch syndrome. Int J Cancer. 2018;143(9):2250‑2257. https://doi.org/10.1002/ijc.31611 Epub 2018 Aug 7. PMID: 29904935; PMCID: PMC6195467.

11. Win AK, Dowty JG, English DR, Campbell PT, Young JP, Winship I, Macrae FA, Lipton L, Parry S, Young GP, Buchanan DD, Martínez ME, Jacobs ET, Ahnén DJ, Haile RW, Casey G, Baron JA, Lindor NM, Thibodeau SN, Newcomb PA, Potter JD, Le Marchand L, Gallinger S, Hopper JL, Jenkins MA. Body mass index in early adulthood and colorectal cancer risk for carriers and non-carriers of germ-line mutations in DNA mismatch repair genes. Br J Cancer. 2011 105(1):162‑9. https://doi.org/10.1038/bjc.2011.172. Epub 2011 May 2. PMID: 21559014; PMCID: PMC3137400.

12. Bonardova V, Bonaiti B, Olschewski S, Grandjouan S, Huitr L, Longy M, et al. French Cancer Genetics Network. Cancer risks associated with germ-line mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;305(23):2304‑10. https://doi.org/10.1001/jama.2011.7143 PMID: 21642682.

13. Ten Broeke SW, van der Klift HM, Tops CMJ, Aretz S, Buchanan DD, Jenkins MA, van Hest LP, von Knebel Doeberitz M, Bläker H. Prevalence of mismatch repair-deficient crypt foci in Lynch syndrome: a pathological study. Lancet Oncol 2012 13(6):598‑606. https://doi.org/10.1016/S1470-2045(12)70109-2. Epub 2012 May 1. PMID: 22552011.

14. Ten Broeke SW, van der Klift HM, Tops CMJ, Aretz S, Bernstein I, Buchanan DD, Jenkins MA, Thibodeau SN, French AJ, Lindor NM, Pai RK. DNA mismatch repair protein deficient non-neoplastic colonic crypts: a novel indicator of Lynch syndrome. Mod Pathol. 2018 31(10):1608‑1618. https://doi.org/10.1038/s41379-018-0097-6. Epub 2018 Jun 8. PMID: 29884888; PMCID: PMC6396269.

15. Brand RE, Dudley B, Karloski E, Das R, Fuhrer K, Pai RK, et al. Detection of DNA mismatch repair deficient variants in random colonoscopic biopsies identifies Lynch syndrome patients. Fam Cancer. 2019;18(2):169‑75. https://doi.org/10.1007/s10689-018-01161-w PMID: 31997046.

16. Schwitalla Y, Kloor M, Eiermann S, Linnebacher M, Kienel P, Kraebel HP, Tariverdian M, Benner A, van Knebel Doeberitz M. Immune response against frameshift-induced neoepitopes in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology. 2008 134(4):988‑997. https://doi.org/10.1053/j.gastro.2008.01.015. Epub 2008 Jan 11. PMID: 18395080.

17. Ten Broeke SW, van Bavel TC, Jansen AM, Gómez-Garcia E, Hes FJ, van Hest LP, Letteboer TGW, Olderode-Berends MJW, Rozenbergen N, Roxy C, Buchanan DD, Jenkins MA, Thibodeau SN, French AJ, Lindor NM, Pai RK. DNA mismatch repair protein deficient non-neoplastic colonic crypts: a novel indicator of Lynch syndrome. Mod Pathol. 2018 31(10):1608‑1618. https://doi.org/10.1038/s41379-018-0097-6. Epub 2018 Jun 8. PMID: 29884888; PMCID: PMC6396269.

18. Bajwa-Ten Broeke SW, Ballhausen A, Ahadova A, Moslein G, Mecklin JP, Loeffler M, German HNPCC Consortium, the Dutch Lynch Syndrome Associated With Germline Variants in PMS2. Gastroenterology. 2018 155(3):844‑851. https://doi.org/10.1053/j.gastro.2018.05.020. Epub 2018 Jul 29. PMID: 29758216.

19. Bajwa-Ten Broeke SW, Ballhausen A, Ahadova A, Moslein G, Mecklin JP, Loeffler M, German HNPCC Consortium, the Dutch Lynch Syndrome Associated With Germline Variants in PMS2. Gastroenterology. 2018 155(3):844‑851. https://doi.org/10.1053/j.gastro.2018.05.020. Epub 2018 Jul 29. PMID: 29758216.

20. Bajwa-Ten Broeke SW, Ballhausen A, Ahadova A, Moslein G, Mecklin JP, Loeffler M, German HNPCC Consortium, the Dutch Lynch Syndrome Associated With Germline Variants in PMS2. Gastroenterology. 2018 155(3):844‑851. https://doi.org/10.1053/j.gastro.2018.05.020. Epub 2018 Jul 29. PMID: 29758216.

21. Bajwa-Ten Broeke SW, Ballhausen A, Ahadova A, Moslein G, Mecklin JP, Loeffler M, German HNPCC Consortium, the Dutch Lynch Syndrome Associated With Germline Variants in PMS2. Gastroenterology. 2018 155(3):844‑851. https://doi.org/10.1053/j.gastro.2018.05.020. Epub 2018 Jul 29. PMID: 29758216.
Syndrome Collaborative Group, and the Finnish Lynch Syndrome Registry. No Difference in Colorectal Cancer Incidence or Stage at Detection by Colonoscopy Among 3 Countries With Different Lynch Syndrome Surveillance Policies. Gastroenterology. 2018 155(5):1400-1409.e2. https://doi.org/10.1053/j.gastro.2018.07.030. Epub 2018 Jul 29. PMID: 30063918.

31. Mao R, Krautscheid P, Graham RP, et al. Genetic testing for inherited colorectal cancer and polyposis, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23:1807–17.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.