ON A POSITIVITY PRESERVATION PROPERTY FOR
SCHRÖDINGER OPERATORS ON RIEMANNIAN MANIFOLDS

OGNJEN MILATOVIC

Abstract. We study a positivity preservation property for Schrödinger operators with singular potential on geodesically complete Riemannian manifolds with non-negative Ricci curvature. We apply this property to the question of self-adjointness of the maximal realization of the corresponding operator.

1. Introduction

In his landmark paper [Ka1], Kato proved a powerful distributional inequality, today known as Kato’s inequality, which has since found numerous applications in self-adjointness (and m-accretivity) problems in $L^2(\mathbb{R}^n)$ for Schrödinger operators with a singular potential V. In this context, it is desirable that the “negative part” of V, that is max$(-V, 0)$, satisfy the positivity preservation property described below.

Positivity Preservation Property (PPP). Let $F \in L^1_{\text{loc}}(\mathbb{R}^n)$ be a non-negative function. Then, there exists $\lambda_0 \geq 0$ so that if $\lambda > \lambda_0$, $u \in L^2(\mathbb{R}^n)$, $Fu \in L^1_{\text{loc}}(\mathbb{R}^n)$, and
\[-\Delta u + \lambda u - Fu \geq 0, \quad \text{in distributional sense,}\]
then $u \geq 0$.

Brézis and Kato [BK] showed that (PPP) holds for (non-negative) functions $F \in L^\infty(\mathbb{R}^n) + L^p(\mathbb{R}^n)$ with $p = \frac{n}{2}$ for $n \geq 3$, $p > 1$ for $n = 2$, and $p = 1$ for $n = 1$, together with the assumption $F \in L^{n/2+\epsilon}(\mathbb{R}^n)$, $\epsilon > 0$, in dimensions $n = 3$ and $n = 4$. The proof of (PPP) in [BK] was based on elliptic equation theory and Sobolev space techniques.

Subsequently, using stochastic analysis techniques, Devinatz [De] showed that (PPP) holds for (non-negative) functions $F \in L^1_{\text{loc}}(\mathbb{R}^n)$ satisfying the property
\[
\lim_{\alpha \to \infty} \left(\sup_{x \in \mathbb{R}^n} \frac{1}{4\pi^{n/2}} \int_{\mathbb{R}^n} \frac{F(x-y)}{|y|^{n-2}} \left(\int_{0}^{\infty} \tau^{n/2-2} e^{-\tau} d\tau \right) dy \right) < 1.
\]

We should note that the results of [De] include those of Jensen [J]. As an application of (PPP), the papers [BK, De, J] studied the self-adjointness problem of the corresponding Schrödinger operator.

In the context of a Riemannian manifold M, a simpler variant of (PPP) with $F \equiv 0$, which we label as (PPP-0), was considered in Proposition B.3 of [BMS], where it was shown that (PPP-0) holds under C^∞-bounded geometry assumption.

2010 Mathematics Subject Classification. Primary 47B25,58J50; Secondary 35P05, 60H30.

Key words and phrases. non-negative Ricci curvature, positivity preservation, Riemannian manifold, Schrödinger operator, self-adjoint, singular potential.
on M, that is, M has a positive injectivity radius and all Levi–Civita derivatives of the curvature tensor of M are bounded. The main point here is that the corresponding proof of \cite{BMS} depends on the existence of a sequence of smooth compactly supported functions χ_k with the following properties:

(C1) $0 \leq \chi_k(x) \leq 1$, $x \in M$, $k = 1, 2, \ldots$;
(C2) for every compact set $K \subset M$, there exists k_0 such that $\chi_k = 1$ on K, for $k \geq k_0$;
(C3) $\sup_{x \in M} |d\chi_k(x)| \to 0$ as $k \to \infty$.
(C4) $\sup_{x \in M} |\Delta \chi_k(x)| \to 0$ as $k \to \infty$.

While the existence of a sequence χ_k satisfying (C1), (C2), and (C3) on an arbitrary geodesically complete Riemannian manifold is well known (see \cite{K}), a sequence satisfying all four properties has not yet been constructed (to our knowledge) in such a general context.

Very recently, G"uneysu \cite{G4} has improved (PPP-0) result considerably. In particular, in the context of a geodesically complete Riemannian manifold with non-negative Ricci curvature, the author of \cite{G4} has constructed a sequence χ_k satisfying (C1)–(C4) and proved (PPP-0). We should also note that the paper \cite{G4} contains, among other things, a study of (PPP-0) in the setting of L^p spaces with $p \in [1, \infty]$.

Let us point out that under C^∞-bounded geometry assumptions on M, an earlier study \cite{Mi} showed that (PPP) holds for (non-negative) functions F belonging the Kato class (see Section 3.1 below) and satisfying the following additional assumption: $F \in L^p_{\text{loc}}(M)$ with $p = n/2 + \epsilon$, with some arbitrarily small $\epsilon > 0$, for the case $2 \leq n \leq 4$; $p = n/2$ for the case $n \geq 5$. We note that the paper \cite{Mi} used the latter assumption for elliptic equation and Sobolev space arguments. Based on recent developments in path-integral representations for semi-groups of Schrödinger operators with singular potential on Riemannian manifolds and the construction of cut-off functions satisfying (C1)–(C4) above, as seen in G"uneysu’s works \cite{G1, G2, G3, G4}, we will study (PPP) for a class functions F that shares some properties with \cite{L1} and includes, in particular, Kato class. In this regard, within the class of non-negative Ricci curvature, our results include those in \cite{Mi}. In particular, we eliminate the assumption $F \in L^p_{\text{loc}}(M)$ with p as described above. Finally, as an application of the corresponding (PPP), we give sufficient conditions for the self-adjointness of the “maximal” realization of the Schrödinger operator with electric potential whose negative part satisfies the same assumptions as F in (PPP).

For reviews of results concerning the question of self-adjointness of Schrödinger operators in $L^2(\mathbb{R}^n)$ and $L^2(M)$, see, for instance, \cite{CFKS} and \cite{BMS}. For more recent studies, see the papers \cite{Ba} BGP \cite{GK} \cite{G4} \cite{GP}.

Finally, we remark that it might be possible to obtain a variant of (PPP) for perturbations of Dirichlet forms by measures. For the background on Dirichlet forms and their perturbations by measures, see, for instance, the book \cite{FOT}, papers \cite{KT1} \cite{KT2} \cite{SV}, and references therein.

2. Results

2.1. Notations. Let (M, g) be a connected smooth Riemannian n-manifold without boundary. Throughout the paper, by Δ we denote the corresponding negative Laplace–Beltrami operator on M, by $d\mu$ the volume measure of M, by $C^\infty(M)$ the
space of complex-valued smooth functions on \(M \), by \(C_c^\infty(M) \) the space of complex-valued smoothly compactly supported functions on \(M \), by \(\Omega^1(M) \) the space of smooth 1-forms on \(M \), by \(L^2(M) \) the space of square integrable complex-valued functions on \(M \), and by \(\langle \cdot, \cdot \rangle \) the usual inner product on \(L^2(M) \). Additionally, \(p(t, x, y) \) denotes the heat kernel of \(M \) as in Theorem 7.13 in [Gr]. We should emphasize that in this paper \(p(t, x, y) \) corresponds to \(e^{-t(-\Delta/2)} \), \(t \geq 0 \), instead of \(e^{-t(-\Delta)} \).

2.2. Positivity Preservation Property

We are ready to formulate sufficient conditions for the positivity preservation property introduced in Section 1.

Theorem 2.1. Assume that \(M \) is a geodesically complete connected Riemannian manifold with non-negative Ricci curvature. Let \(F: M \to [0, \infty) \) be a measurable function satisfying the following property: there exists \(t_0 > 0 \) such that

\[
\sup_{x \in M} \left(\int_0^{t_0} \int_{M} p(s, x, y) F(y) \, d\mu(y) \, ds \right) < 1.
\]

Then, there exists \(\lambda_\ast \geq 0 \) such that if \(\lambda > \lambda_\ast \) and \(u \in L^2(M) \) and \(Fu \in L^1_{\text{loc}}(M) \) and \(u \) satisfies the distributional inequality

\[
(-\Delta/2 - F + \lambda)u \geq 0,
\]

then \(u \geq 0 \) a.e. on \(M \).

Remark 2.2. If \(F \) belongs to Kato class, then (2.1) is satisfied; see Section 3.1 below.

2.3. Hermitian Vector Bundles and Bochner Laplacian

We will formulate our self-adjointness result for Schrödinger operators acting on Hermitian vector bundles over \(M \). Before doing so, we explain some additional notations. Let \(E \to M \) be a smooth Hermitian vector bundle over \(M \) with underlying Hermitian structure \(\langle \cdot, \cdot \rangle_x \) and the corresponding norms \(| \cdot |_x \) on fibers \(E_x \). Smooth sections of \(E \) will be denoted by \(C^\infty(E) \) and compactly supported smooth sections by \(C^\infty_c(E) \). With \(d\mu \) as in Section 2.1 for all \(1 \leq p < \infty \) we obtain the \(L^p(E) \) spaces of sections \(L^p(E) \) with norms \(\| \cdot \|_p \). The space of essentially bounded sections of \(E \) will be denoted by \(L^\infty(E) \) with the corresponding norm \(\| \cdot \|_\infty \). The notation \((\cdot, \cdot)_{L^2(E)} \) or just \(\langle \cdot, \cdot \rangle \), when there is no danger of confusion, stands for the usual inner product in \(L^2(E) \).

Let \(\nabla \) be a Hermitian connection on \(E \) and let \(\nabla^* \) be its formal adjoint with respect to \((\cdot, \cdot)_{L^2(E)} \). In what follows, we will consider the so-called Bochner Laplacian operator \(\nabla^* \nabla: C^\infty(E) \to C^\infty(E) \). For example, if we take \(\nabla = d \), where \(d: C^\infty(M) \to \Omega^1(M) \) is the standard differential, then \(d^* d: C^\infty(M) \to C^\infty(M) \) is just the (non-negative) Laplace–Beltrami operator \(-\Delta \).

We are interested in the Schrödinger-type differential expression

\[
L_V = \nabla^* \nabla/2 + V,
\]

where \(V \) is a measurable section of \(\text{End} E \) such that \(V(x): E_x \to E_x \) is a self-adjoint operator for almost every \(x \in M \).

For every \(x \in M \) we have the following canonical decomposition:

\[
V(x) = V^+(x) - V^-(x),
\]

where

\[
V^+(x) := P_+(x)V(x) \quad \text{and} \quad V^-(x) := -P_-(x)V(x),
\]

Here, \(P_+(x) := \chi_{[0, \infty)}(V(x)) \) and \(P_-(x) := \chi_{(-\infty, 0]}(V(x)) \), and \(\chi_G \) denotes the characteristic function of the set \(G \).
Lemma 3.1. If \(f \) is a measurable function on \(M \), then \(\sigma_{\max}(f) \) is a (real-valued) measurable function on \(M \).

2.4. Self-adjoint Realization of \(H_V \). Assume that \(V \in L^1_{\text{loc}}(E) \) and \(\sigma_{\max}(V^-) \in L^1_{\text{loc}}(M) \). We define \(S \) as an operator in \(L^2(E) \) by \(Su = L_Vu \) with the following domain \(\text{Dom}(S) \):

\[
\{ u \in L^2(E) : V^+ u \in L^1_{\text{loc}}(E), \sigma_{\max}(V^-)u \in L^1_{\text{loc}}(E), \text{ and } L_Vu \in L^2(E) \}
\]

Here, the expression \(L_Vu \) is understood in distributional sense.

Theorem 2.3. Assume that \(M \) is a geodesically complete connected Riemannian manifold with non-negative Ricci curvature. Assume that \(V^+ \in L^1_{\text{loc}}(E) \) and \(\sigma_{\max}(V^-) \) satisfies the property (2.1). Then \(S \) is a self-adjoint operator.

Remark 2.4. If \(\sigma_{\max}(V^-) \) satisfies the property (2.1), then \(\sigma_{\max}(V^-) \in L^1_{\text{loc}}(M) \); see Lemma 3.2 below.

Remark 2.5. For the operator \(H_V = -\Delta + V \) acting on scalar functions, the conditions \(V^+ u \in L^1_{\text{loc}}(E) \) and \(\sigma_{\max}(V^-)u \in L^1_{\text{loc}}(E) \) are equivalent to \(Vu \in L^1_{\text{loc}}(M) \). In this case, (2.4) describes the “maximal” realization of \(H_V \) in the sense of [Ka2].

3. Proof of Theorem 2.1

We first recall two definitions from [KT2].

3.1. Dynkin and Kato Classes. Let \(p(t,x,y) \) be as in Section 2.1. We say that a measurable function \(f : M \to \mathbb{R} \) belongs to Dynkin class relative to \(p(t,x,y) \) and write \(f \in S^0_D \) if \(|f| \) satisfies (2.1). We say that a measurable function \(f : M \to \mathbb{R} \) belongs to Kato class relative to \(p(t,x,y) \) and write \(f \in S^0_K \) if

\[
\lim_{t \to 0^+} \sup_{x \in M} \int_0^t \int_M p(s,x,y)|f(y)| \, d\mu(y) \, ds = 0.
\]

Clearly, we have the inclusion \(S^0_K \subset S^0_D \). For \(\alpha > 0 \), set

\[
r_\alpha(x,y) := \int_0^{\infty} e^{-\alpha t}p(t,x,y) \, dt.
\]

For \(\alpha > 0 \) and \(f \in S^0_D \) define

\[
c_\alpha(f) := \sup_{x \in M} \int_M r_\alpha(x,y)|f(y)| \, d\mu(y).
\]

By Lemma 3.2 in [KT2], we have \(c_\alpha(f) < \infty \) for all \(\alpha > 0 \). We now set

\[
c(f) := \inf_{\alpha > 0} c_\alpha(f).
\]

Lemma 3.1. If \(f \in S^0_D \) then \(c(f) < 1 \).

Proof. By Lemma 3.1 in [KT1] (or Proposition 2.7(a) in [G2]), for any measurable function \(f : M \to \mathbb{R} \) and all \(\alpha, t > 0 \) we have

\[
(1 - e^{-\alpha t}) \sup_{x \in M} \int_M r_\alpha(x,y)|f(y)| \, d\mu(y) \leq \sup_{x \in M} \int_0^t \int_M p(s,x,y)|f(y)| \, d\mu(y) \, ds.
\]
Since \(f \in S^0_D \), there exists \(t = t_0 > 0 \) such that the right hand side is less than 1. Consequently, we get
\[
c_\alpha(f) < \frac{1}{1 - e^{-\alpha t_0}},
\]
for all \(\alpha > 0 \), and from here \(c(f) < 1 \) follows easily. \(\square \)

The following lemma follows from Proposition 2.7(b) in [G2]:

Lemma 3.2. If \(f \in S^0_D \) then \(f \in L^1_{\text{loc}}(M) \).

Remark 3.3. The proof of Proposition 2.7(b) in [G2] uses strict positivity of \(p(t, x, y) \), which requires connectedness of \(M \).

Remark 3.4. In the sequel, for any \(x \in M \), the symbol \(\mathbb{P}^x \) stands for the law of a Brownian motion \(X_t \) on \(M \) starting at \(x \), and \(\mathbb{E}^x \) denotes the expected value corresponding to \(\mathbb{P}^x \). Our hypothesis on \(M \) ensure that \(M \) is stochastically complete (see [G1]); hence, the lifetime of \(X_t \) is \(\zeta = \infty \). We should emphasize that in this paper \(\mathbb{P}^x \) is \(-\Delta/2\) diffusion, as opposed to \(-\Delta \) diffusion.

Remark 3.5. We should note that the geodesic completeness and non-negative Ricci curvature assumptions are not used until Lemma 3.10 below. Also, in the absence of stochastic completeness, path-integral formulas below can be rewritten by taking into account the lifetime \(\zeta \) of \(X_t \).

Lemma 3.6. If \(0 \leq f \in S^0_D \) then there exist constants \(\beta > 0 \) and \(\gamma > 0 \) such that
\[
\sup_{x \in M} \mathbb{E}^x \left[e^{\int_0^t f(X_s) \, ds} \right] \leq \beta e^{\gamma t},
\]
for all \(t > 0 \).

Proof. First note that we can write
\[
\int_0^t \int_M p(s, x, y) f(y) \, d\mu(y) \, ds = \mathbb{E}^x \left[\int_0^t f(X_s) \, ds \right].
\]
By the definition of the class \(S^0_D \), there exists \(t^* > 0 \) such that
\[
\nu_t := \sup_{x \in M} \mathbb{E}^x \left[\int_0^t f(X_s) \, ds \right] < 1,
\]
for all \(0 < t \leq t^* \). By Khasminskii’s Lemma (see Lemma 3.37 in [LHB]) we have
\[
\sup_{x \in M} \mathbb{E}^x \left[e^{\int_0^t f(X_s) \, ds} \right] \leq \frac{1}{1 - \nu_t},
\]
for all \(0 < t \leq t^* \). From here on we may repeat the proof of Lemma 3.38 of [LHB] to conclude that
\[
\sup_{x \in M} \mathbb{E}^x \left[e^{\int_0^t f(X_s) \, ds} \right] \leq \left(\frac{1}{1 - \nu_{t^*}} \right)^{\lfloor t/t^* \rfloor + 1},
\]
for all \(t > 0 \), where \(\lfloor a \rfloor := \max\{k \in \mathbb{Z} : k \leq a\} \).

Setting \(\beta = \frac{1}{1 - \nu_{t^*}} \) and \(\gamma = \frac{1}{t^*} \log \left(\frac{1}{1 - \nu_{t^*}} \right) \), we obtain (3.3). \(\square \)
3.2. Quadratic Forms. In what follows, all quadratic forms are considered in the space $L^2(M)$. Let $w \in L^2_{loc}(M)$. Set $w^+ := \max(w, 0)$ and $w^- := \max(-w, 0)$, so that $w = w^+ - w^-$. Define

$$Q_0(u) := \frac{1}{2} \int_M |du|^2 d\mu,$$

with the domain $D(Q_0) = \{u \in L^2(M) : Q_0(u) < \infty\}$. The form Q_0 is non-negative, densely defined (since $C^\infty_c(M) \subset D(Q_0)$), and closed. Define $Q_{w^+}(u) := (w^+ u, u)$ with the domain $D(Q_{w^+}) = \{u \in L^2(M) : w^+ |u|^2 \in L^1(M)\}$. The form Q_{w^+} is non-negative, densely defined (since $C^\infty_c(M) \subset D(Q_{w^+})$), and closed (by Theorem VI.1.11 in [Ka3] and Example VI.1.15 in [Ka3]). Finally, we define $Q_{w^-}(u) := -(w^- u, u)$ with the domain $D(Q_{w^-}) = \{u \in L^2(M) : w^- |u|^2 \in L^1(M)\}$. The form Q_{w^-} is symmetric and densely defined.

Lemma 3.7. Assume that $w^- \in S^0_D$. Then there exist $a \in [0, 1)$ and $b \geq 0$ such that

$$|Q_{w^-}(u)| \leq a|Q_0(u)| + b|u|^2, \quad \text{for all } u \in D(Q_0).$$

Proof. Let $c_\alpha(w^-)$ be as in (3.2). We have already observed that $w^- \in S^0_D$ implies $c_\alpha(w^-) < \infty$ for all $\alpha > 0$. By Theorem 3.1 in [SV] we have

$$(w^- u, u) \leq \frac{c_\alpha(w^-)}{2} \int_M |du|^2 d\mu + \alpha c_\alpha(w^-) |u|^2,$$

for all $u \in D(Q_0)$ and all $\alpha > 0$. By Lemma 3.1 we have $c(w^-) < 1$. Hence, there exists α^* such that $c_{\alpha^*}(w^-) < 1$, which shows (3.4). \qed

By Lemma 3.7 above and Theorem VI.1.33 in [Ka3], the form $Q_{0,w} := (Q_0 + Q_{w^+}) + Q_{w^-}$ is densely defined, closed and semi-bounded from below with $D(Q_w) = D(Q_0) \cap D(Q_{w^+}) \subset D(Q_{w^-})$. Let $H(w)$ denote the semi-bounded from below self-adjoint operator in $L^2(M)$ associated to $Q_{0,w}$ by Theorem VI.2.1 of [Ka3].

3.3. Semigroup Associated to $H(-w^-)$. As seen from the proof of Lemma 3.7 for $w^- \in S^0_D$, there exists α_* such that $c_{\alpha_*}(w^-) < 1$, and the form $Q_{0,-w^-} := Q_0 + Q_{w^-}$ is semi-bounded from below by $-\alpha_* c_{\alpha_*}(w^-)$. Let $H(-w^-)$ be the corresponding self-adjoint (semi-bounded from below) operator and let $U_{2,-w^-}(t) := e^{-tH(-w^-)}, \ t \geq 0$, be the corresponding C_0-semigroup in $L^2(M)$. The following Lemma was proven in Theorem 3.3 of [SV].

Lemma 3.8. Assume that $w^- \in S^0_D$. Then, the operators $U_{2,-w^-}(t)$ act as C_0-semigroups in $L^p(M)$, for all $p \in [1, \infty)$, and we label those semigroups as $U_{p,-w^-}(t)$. Moreover, there exist $C \geq 0$ and $\omega \in \mathbb{R}$ (depending only on α_* and $c_{\alpha_*}(w^-)$) such that

$$\|U_{p,-w^-}(t)\|_{L^p \rightarrow L^p} \leq Ce^{\omega t},$$

for all $p \in [1, \infty)$ and $t \geq 0$.

3.4. Path Integral Representation of $U_{2,-w^-}(t)$. Let X_t be as in Remark 3.4. For $w^- \in S^0_D$ we have the Feynman–Kac formula

$$U_{2,-w^-}(t)g(x) = \mathbb{E}^x \left[e^{\int_0^t w^-(X_s) \, ds} g(X_t) \right],$$

where \mathbb{E}^x denotes the expectation with respect to the increment process $\{X_t \mid t \geq 0\}$ started at x. The Feynman–Kac formula provides a probabilistic representation of the semigroup $U_{2,-w^-}(t)$ for $w^- \in S^0_D$. This representation is particularly useful in the study of stochastic processes and Feynman–Kac formulas.
for all \(g \in L^2(M) \), all \(t \geq 0 \), and a.e. \(x \in M \). In the Kato-case \(w^- \in S^0_\text{K} \), the formula (3.6) was proven in Theorem 2.9 of [G3]. The same proof works for \(w^- \in S^0_D \) thanks to (3.4) and the the following property: \(w^- \in S^0_D \) implies

\[
\mathbb{P}^x[w^-(X_*) \in L^1_{\text{loc}}(0, \infty)] = 1, \quad \text{a.e. } x \in M.
\]

For the latter property see the proof of Lemma 2.4(b) in [G3], which works without change for the class \(S^0_\text{D} \) instead of \(S^0_\text{K} \).

Lemma 3.9. If \(w^- \in S^0_D \) then for all \(g \in L^2(M) \cap L^\infty(M) \) and all \(t \geq 0 \) we have

\[
\|U_{2,-w^-}(t)g\|_\infty \leq \beta e^{\gamma t}\|g\|_\infty,
\]

where \(\beta > 0 \) and \(\gamma > 0 \) are some constants.

Proof. The lemma follows by combining (3.7) and (3.3). \(\square \)

3.5. Cut-off Functions. The following lemma was proven in Theorem 2.2 of [G4].

Lemma 3.10. Assume that \(M \) is a geodesically complete Riemannian manifold with non-negative Ricci curvature. Then there exists a sequence of functions \(\chi_k \in C^\infty_c(M) \) satisfying the properties (C1)–(C4) from Section 1.

3.6. Sobolev Space. Let \(\tilde{H}^2(M) \) denote the space of measurable functions \(u: M \to \mathbb{C} \) such that

\[
\|u\|_{\tilde{H}^2} := \|u\| + \|du\| + \|\Delta u\| < \infty,
\]

where \(\|du\| \) denotes the norm in \(L^2(\Lambda^1T^*M) \).

Lemma 3.11. Assume that \(M \) is a geodesically complete Riemannian manifold with non-negative Ricci curvature. Let \(0 \leq u \in \tilde{H}^2(M) \). Then there exists a sequence of functions \(0 \leq u_k \in C^\infty_c(M) \) such that \(\|u_k - u\|_{\tilde{H}^2} \to 0 \), as \(k \to \infty \).

Proof. In this proof, \((\tilde{H}^2(M))^+ \) and \((C^\infty_c(M))^+ \) denote the sets of non-negative elements of \(\tilde{H}^2(M) \) and \(C^\infty_c(M) \) respectively. Let \(u \in (\tilde{H}^2(M))^+ \) and let \(\chi_k \) be the sequence of cut-off functions as in Lemma 3.10. We will first show that the set of compactly supported elements of \((\tilde{H}^2(M))^+ \) is dense in \((\tilde{H}^2(M))^+ \). To do this, first note that

\[
d(\chi_k u) = u d\chi_k + \chi_k du
\]

and

\[
\Delta(\chi_k u) = \chi_k(\Delta u) + 2(d\chi_k, du) + u(\Delta \chi_k).
\]

If we denote the Riemannian metric of \(M \) by \(r = (r_{jk}) \), the notation \(\langle \kappa, \psi \rangle \) in (3.8) for 1-forms \(\kappa = \kappa_j dx^j \) and \(\psi = \psi_k dx^k \) means

\[
\langle \kappa, \psi \rangle := r^{jk} \kappa_j \psi_k,
\]

where \((r^{jk}) \) is the inverse matrix to \((r_{jk}) \), and the standard Einstein summation convention is understood. Now the property \(\|\chi_k u - u\|_{\tilde{H}^2} \to 0 \), as \(k \to \infty \), easily follows from (3.7), (3.8), and (C1)–(C4). This shows that the set of compactly supported elements of \((\tilde{H}^2(M))^+ \) is dense in \((\tilde{H}^2(M))^+ \). It remains to show that \((C^\infty_c(M))^+ \) is dense in the set of compactly supported elements of \((\tilde{H}^2(M))^+ \). To see this, we start with a compactly supported element \(u \in (\tilde{H}^2(M))^+ \). Since the support of \(u \) is compact, using a partition of unity, we may assume that \(u \) is supported in a coordinate chart \((G, \phi) \) of \(M \) such that \(\phi(G) = K_1 \), where \(K_1 \) is
an open ball of radius 1 in \(\mathbb{R}^n\). Applying the Friederichs mollification procedure to \(u \circ \phi^{-1}\), we obtain a sequence of non-negative smooth functions \(v_j\) with support in \(K_j\) converging to \(u \circ \phi^{-1}\) with respect to \(\| \cdot \|_{W^{2,2}}\), as \(j \to \infty\), where \(\| \cdot \|_{W^{2,p}}\) stands for the usual Sobolev norm in \(\mathbb{R}^n\), with \(k\) indicating the highest derivative and \(p\) the corresponding \(L^p\)-space. Then \(v_j \circ \phi\) converges to \(u\) in the norm \(\| \cdot \|_{\tilde{H}^2}\), as \(j \to \infty\).

With the above preparations, the proof of Theorem 2.1 proceeds as that of (PPP) in [De].

Proof of Theorem 2.1. Let \(F\) be as in hypotheses of the Theorem. Define \(F_k := \min(F, k)\), \(k \in \mathbb{Z}_+\), and consider the semigroup \(U_{2,-F_k}(t)\) as in Section 3.3. Denote the generator of this semigroup by \(H(-F_k)\). As \(F_k \in L^\infty(M)\) and \(M\) is geodesically complete, it is well known that \((-\Delta/2 - F_k)|_{C^\infty(M)}\) is essentially self-adjoint and its (self-adjoint) closure is \((-\Delta/2 - F_k)|_{C^\infty(M)}\). Let \(F_k\) and \(F\) coincide with \(H(-F_k)\), which, in turn, coincides with the operator sum \(H(0) - F_k\), where \(F_k\) stands for the corresponding multiplication operator by the function \(F_k\).

Noting \(-F_k \geq -F\) and using the representation \(3.9\) together with \(3.10\) we have

\[
\|U_{2,-F_k}(t)\|_{L^2 \to L^2} \leq \|U_{2,-F}(t)\|_{L^2 \to L^2} \leq Ce^{\omega t},
\]

where \(U_{2,-F}(t)\) is the semigroup corresponding to \(H(-F)\) as in Section 3.3.

\(\lambda_* := \max\{\omega, \gamma, \alpha_* c_{\alpha_*}(F)\}\), where \(\gamma\) is as in Lemma 3.10 and \(\alpha_* c_{\alpha_*}(F)\) is as in Section 3.3. For \(\lambda > \lambda_*\), the (linear) operator \((\lambda + H(-F_k))^{-1} : L^2(M) \to L^2(M)\) is bounded. Let \(g \in L^2(M) \cap L^\infty(M)\) and \(g \geq 0\). For \(k \in \mathbb{Z}_+\), define

\[
(3.10) \quad u_k := (\lambda + H(-F_k))^{-1}g.
\]

Using the representation

\[
(3.11) \quad (\lambda + H(-F_k))^{-1}g = \int_0^\infty e^{-\lambda t}U_{2,-F_k}(t)g \, dt,
\]

the estimate \(3.9\) and the inequality \(\lambda > \lambda_*\), we obtain

\[
(3.12) \quad \|u_k\| \leq C \int_0^\infty e^{-(\lambda - \omega)t} \|g\| \, dt \leq C_1 \|g\|.
\]

for all \(k \in \mathbb{Z}_+\), with some constant \(C_1 \geq 0\).

Note that \(u_k \geq 0\) by \(3.11\), \(3.10\) and the assumption \(g \geq 0\). By Lemma 3.10 we have

\[
0 \leq u_k(x) = \int_0^\infty e^{-\lambda t}U_{2,-F_k}(t)g \, dt \\
\leq \int_0^\infty e^{-\lambda t}\|U_{2,-F_k}(t)g\|_\infty \, dt \\
\leq \beta \int_0^\infty e^{-(\lambda - \gamma)t} \|g\|_\infty \, dt \leq C_2 \|g\|_\infty,
\]

where \(C_2 \geq 0\) is a constant, and in the last inequality we used \(\lambda > \lambda_* \geq \gamma\).
By the definition of u_k we have
\[(\lambda + H(-F_k))u_k = g.\]
Taking the inner product in $L^2(M)$ with u_k, using the fact that $H(0)$ is the operator associated to the form Q_0, and recalling the inequality $-F_k \geq -F$, we obtain
\[
(g, u_k) = ((\lambda + H(0) - F_k)u_k, u_k) = \lambda \|u_k\|^2 + \frac{1}{2} \int_M |du_k|^2 d\mu - (F_k u_k, u_k)
\]
\[
\geq \lambda \|u_k\|^2 + \frac{1}{2} \int_M |du_k|^2 d\mu - (F u_k, u_k),
\]
which, upon combining with (3.4) and rearranging, leads to
\[
(g, u_k) \geq \frac{1-a}{2} \int_M |du_k|^2 d\mu + (\lambda - b)\|u_k\|^2.
\]
From the last inequality we get
\[
\frac{1-a}{2} \int_M |du_k|^2 d\mu \leq (g, u_k) + (b-\lambda)\|u_k\|^2
\]
(3.14)
\[
\leq |b-\lambda|(C_1^2\|g\|^2 + C_1\|g\|^2),
\]
where in the last estimate we used Cauchy–Schwarz inequality and (3.12).

Let $0 \leq \psi \in C_c^\infty(M)$, let u be as in the hypothesis of the theorem, and let $0 \leq g \in L^2(M) \cap L^\infty(M)$ and u_k be as in (3.10). We have the following equality:
\[
(\psi u, g) = (\psi u, (-\Delta/2 + \lambda - F_k)u_k).
\]
Using (3.14) and the property
\[
0 \leq u_k \in \text{Dom}(H(-F_k)) = \{v \in L^2(M) : \Delta v \in L^2(M)\},
\]
we have $0 \leq u_k \in \tilde{H}^2(M)$. Thus, by Lemma 3.11 without loss of generality, we may assume that $0 \leq u_k \in C_c^\infty(M)$ in (3.15), which we will do from now on.

Using (3.7) and (3.8) we have
\[
(\psi u, (-\Delta/2 + \lambda - F_k)u_k) = ((-\Delta/2)(\psi u), u_k) + \lambda(u, \psi u_k)
\]
\[
+ ((F - F_k)\psi u, u_k) - (F\psi u, u_k)
\]
\[
= ((-\Delta/2 + \lambda - F)\psi u, u_k) + ((-\Delta/2)\psi u, u_k)
\]
\[
- (du, (d\psi)u_k) + ((F - F_k)\psi u, u_k)
\]
\[
geq ((-\Delta/2)\psi u, u_k) - (du, (d\psi)u_k) + ((F - F_k)\psi u, u_k),
\]
where in the last inequality we used $0 \leq \psi u_k \in C_c^\infty(M)$ and the assumption (2.2).

Using the fact that $-\Delta = d^*d$ we have
\[
(du, (d\psi)u_k) = (u, d^*(d\psi)u_k)) = (u, (d^*d\psi)u_k) - (ud\psi, du_k)
\]
(3.16)
\[
= ((-\Delta \psi)u, u_k) - (ud\psi, du_k),
\]
which upon combining with the preceding estimate and (3.15) leads to
\[
(\psi u, g) \geq ((F - F_k)\psi u, u_k) + ((-\Delta/2)\psi u, u_k) + (ud\psi, du_k).
\]
(3.17)
Let us replace $0 \leq \psi \in C_c^\infty(M)$ by a sequence χ_m of cut-off functions from Lemma 3.10. Using (3.12), (3.13), and the properties of χ_m, it is easy to see that the last two terms on the right hand side of (3.17) converge to 0 as $m \to \infty$.
4. Quadratic Forms in Vector-Bundle Setting.

4.1. Proof of Theorem

Let E, ∇, and V be as in hypotheses of Theorem. We begin by describing $L^2(E)$ analogues of quadratic forms from Section 3.2.

4.1.1. Quadratic Forms in Vector-Bundle Setting. Define

$$Q_{\nabla,0}(u) := \frac{1}{2} \int_M |\nabla u|^2 \, d\mu$$

with the domain $D(Q_{\nabla,0}) = \{ u \in L^2(E) : \nabla u \in L^2(T^*M \otimes E) \}$. Note that $Q_{\nabla,0}$ is non-negative, densely defined and closed. Next we define $Q_{V+}(u) = (V^+u, u)$ with the domain $D(Q_{V+}) = \{ u \in L^2(E) : (V^+u, u) \in L^1(M) \}$. The form Q_{V+} is non-negative, densely defined and closed (by Theorem VI.1.11 in [Ka3] and Example VI.1.15 in [Ka3]). Finally, we define $Q_{V-}(u) = -(V^-u, u)$ with the domain $D(Q_{V-}) = \{ u \in L^2(E) : (V^-u, u) \in L^1(M) \}$. The form Q_{V-} is densely defined and symmetric.

Lemma 4.1. Let $\sigma_{\text{max}}(V^-)$ be as in hypotheses of Theorem. Then there exist $a \in [0, 1)$ and $b \geq 0$ such that

$$\int_M \langle V^-u, u \rangle \, d\mu \leq (a/2)\|\nabla u\|^2_{L^2(T^*M \otimes E)} + b\|u\|^2_{L^2(E)}, \quad (4.1)$$

for all $u \in D(Q_{\nabla,0})$.

Proof. Let $u \in D(Q_{\nabla,0})$ and let Q_0 be as in Section 3.2. By Corollary 2.5 in [C2] we have $|u| \in D(Q_0)$, and

$$\|d|u||^2_{L^2(A^1T^*M)} \leq \|\nabla u\|^2_{L^2(T^*M \otimes E)}. \quad (4.2)$$

Using (3.4) and (4.2) we obtain

$$\int_M \langle V^-u, u \rangle \, d\mu \leq \int_M \sigma_{\text{max}}(V^-)|u|^2 \, d\mu \leq (a/2)\|d|u||^2_{L^2(A^1T^*M)} + b\|u\|^2_{L^2(M)} \leq (a/2)\|\nabla u\|^2_{L^2(T^*M \otimes E)} + b\|u\|^2_{L^2(E)}, \quad \text{for all } u \in D(Q_{\nabla,0}),$$

where a and b are as in 4.1.

As a consequence of Lemma 4.1, analogously as in Section 3.2 the form $Q_{\nabla, V} := Q_0 + Q_{V+} + Q_{V-}$ is densely defined, closed and semi-bounded from below with

$$D(Q_{\nabla, V}) = D(Q_{\nabla,0}) \cap D(Q_{V+}) \subset D(Q_{V-}).$$

Let $H(V)$ denote the semi-bounded from below self-adjoint operator in $L^2(E)$ associated to $Q_{\nabla, V}$.

We now consider the term $((F - F_k)\chi_m u, u_k)$. For a fixed $m \in \mathbb{Z}_+$, using the property (3.13) we have

$$(F - F_k)\chi_m u_k \to 0, \quad \text{a.e. } x \in M, \quad \text{as } k \to \infty.$$
4.2. Description of $H_V(V)$. By Lemma 3.2 we have $\sigma_{\max}(V^-) \in L^1_{\text{loc}}(M)$, which together with (4.1) and geodesic completeness of M, means that the hypothesis of Theorem 1.2 in [Mi] are satisfied. The latter theorem gives the following description of $H_V(V)$:

$$\text{Dom}(H_V(V)) = \{u \in D(Q_V); \langle V^+ u, u \rangle \in L^1(M) \text{ and } ((\nabla^* \nabla/2)u + Vu) \in L^2(E)\}.$$

and $H_V(V)u = (\nabla^* \nabla/2)u + Vu$, for all $u \in \text{Dom}(H_V(V))$.

In the proof of Theorem 2.3 we will use Kato’s inequality for Bochner Laplacian, whose proof is given in Theorem 5.7 of [BMS].

Lemma 4.2. Let M be a connected Riemannian manifold (not necessarily geodesically complete). Let E be a Hermitian vector bundle over M, and let ∇ be a Hermitian connection on E. Assume that $w \in L^1_{\text{loc}}(E)$ and $\nabla^* \nabla w \in L^1_{\text{loc}}(E)$. Then

$$-\Delta |w| \leq \text{Re} \langle \nabla^* \nabla w, \text{sign } w \rangle_{E_x},$$

where

$$\text{sign } w(x) = \begin{cases} \frac{w(x)}{|w(x)|} & \text{if } w(x) \neq 0, \\ 0 & \text{otherwise.} \end{cases}$$

Remark 4.3. The original version of Kato’s inequality was proven in [Ka1].

Proof of Theorem 2.3 Note that for all $u \in \text{Dom}(H_V(V))$ we have $\langle V^+ u, u \rangle \in L^1(M)$ and $\langle V^- u, u \rangle \in L^1(M)$, where the latter inclusion follows by (4.1). Thus, as observed in (4.3) of [Mi], the mentioned two inclusions and hypotheses on V imply $V^+ u \in L^1_{\text{loc}}(E)$ and $\sigma_{\max}(V^-) u \in L^1_{\text{loc}}(E)$. Now we just compare the descriptions of $H_V(V)$ and S to conclude that the operator relation $H_V(V) \subset S$ holds.

It remains to prove that $\text{Dom}(S) \subset \text{Dom}(H_V(V))$. Let $u \in \text{Dom}(S)$. Let λ_* be as in Theorem 2.1. Since $H_V(V)$ is a semi-bounded from below (self-adjoint) operator, we can select $\lambda > \lambda_*$ large enough so that $H_V(V) + \lambda$ is a positive self-adjoint operator. With this selection of λ, the operator $(H_V(V) + \lambda)^{-1}: L^2(E) \to L^2(E)$ is bounded. Since $u \in \text{Dom}(S)$, we may define $v := (H_V(V) + \lambda)^{-1}(S + \lambda)u$

and write

$$(H_V(V) + \lambda)v = (S + \lambda)u.$$

Since $H_V(V) \subset S$, we can rewrite the last equality as

$$(S + \lambda)w = 0,$$

where $w := u - v$.

Since $w \in \text{Dom}(S)$, we have $V^+ w \in L^1_{\text{loc}}(E)$ and $\sigma_{\max}(V^-) w \in L^1_{\text{loc}}(E)$. Furthermore, from (4.4) we get

$$(\nabla^* \nabla/2)w = -Vw - \lambda w \in L^1_{\text{loc}}(E).$$

By Lemma 4.2 we have

$$-\langle \Delta/2 |w| \leq \text{Re} \langle (\nabla^* \nabla/2)w, \text{sign } w \rangle_{E_x} = \text{Re} \langle -(V + \lambda)w, \text{sign } w \rangle_{E_x}$$

$$\leq (\sigma_{\max}(V^-) - \lambda)|w|,$$

which leads to

$$-\Delta/2 - \sigma_{\max}(V^-) + \lambda)|w| \leq 0.$$
Since $\sigma_{\text{max}}(V^-)|w| \in L_{\text{loc}}^1(M)$, we may use Theorem 2.1 with $F = \sigma_{\text{max}}(V^-)$ to conclude $|w| \leq 0$ a.e. on M. This shows that $w = 0$ a.e. on M, i.e. $u = v$ a.e. on M; therefore, $u \in \text{Dom}(H_V(V))$. □

ACKNOWLEDGEMENT

The author is grateful to Batu Güneysu for numerous fruitful discussions.

REFERENCES

[Ba] L. Bandara, Density problems on vector bundles and manifolds. arXiv:1207.6440 to appear in Proc. Amer. Math. Soc.

[BMS] M. Braverman, O. Milatovic, M. A. Shubin, Essential self-adjointness of Schrödinger type operators on manifolds. Russian Math. Surveys 57 (2002), no. 4, 641–692.

[BK] H. Brézis, T. Kato, Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. (9) 58 (1979), 137–151.

[BGP] J. Brüning, V. Geyler, K. Pankrashkin, Continuity properties of integral kernels associated with Schrödinger operators on manifolds. Ann. Henri Poincaré 8 (2007), 781–816.

[CFKS] H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry. Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987.

[De] A. Devinatz, Schrödinger operators with singular potentials. J. Operator Theory 4 (1980), 25–35.

[FO87] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes. Second revised and extended edition, de Gruyter Studies in Mathematics, 19, Walter de Gruyter & Co., Berlin, 2011.

[Gr] A. Grigor’yan, Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society, Providence, RI, International Press, Boston, MA, 2009.

[GK] R. Grummt, M. Kolb, Essential selfadjointness of singular magnetic Schrödinger operators on Riemannian manifolds. J. Math. Anal. Appl. 388 (2012), 480–489.

[G1] B. Güneysu, The Feynman–Kac formula for Schrödinger operators on vector bundles over complete manifolds. J. Geom. Phys. 60 (2010), 1997–2010.

[G2] B. Güneysu, Kato’s inequality and form boundedness of Kato potentials on arbitrary Riemannian manifolds. Proc. Amer. Math. Soc. 142 (2014), 1289-1300.

[G3] B. Güneysu, On generalized Schrödinger semigroups. J. Funct. Anal. 262 (2012), 4639-4674.

[G4] B. Güneysu, Sequences of uniform Laplacian cut-off functions. To appear in Journal of Geometric Analysis (2014)

[GP] B. Güneysu, O. Post, Path integrals and the essential self-adjointness of differential operators on noncompact manifolds. Math. Z. 275 (2013), 331-348.

[J] R. Jensen, Uniqueness of solutions to $\Delta u - qu = 0$. Comm. Partial Differential Equations 3 (1978), 1055–1076.

[K] H. Karcher, Riemannian center of mass and mollifier smoothing. Commun. Pure. Appl. Math. 30 (1977), 599–541.

[Ka1] T. Kato, Schrödinger operators with singular potentials. Israel J. Math. 13 (1972), 135–148.

[Ka2] T. Kato, A second look at the essential selfadjointness of the Schrödinger operators. In: Physical Reality and Mathematical Description, Reidel, Dordrecht, 1974, pp. 193–201.

[Ka3] T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, New York, 1980.

[KT1] K. Kuwae, M. Takahashi, Kato class functions of Markov processes under ultracontractivity. In: Potential theory in Matsue, Adv. Stud. Pure Math., 44, Math. Soc. Japan, Tokyo, 2006, pp. 193-202.

[KT2] K. Kuwae, M. Takahashi, Kato class measures of symmetric Markov processes under heat kernel estimates. J. Funct. Anal. 250 (2007), 86-113.

[LHB] J. Lorinczi, F. Hiroshima, V. Betz, Feynman-Kac-type Theorems and Gibbs Measures on Path Space. With Applications to Rigorous Quantum Field Theory. de Gruyter Studies in Mathematics, 34, Walter de Gruyter & Co., Berlin, 2011.
[Mi] O. Milatovic, *Self-adjoint realizations of Schrödinger operators on vector bundles over Riemannian manifolds*. In: Recent advances in harmonic analysis and partial differential equations, Contemp. Math., 581, Amer. Math. Soc., Providence, RI, 2012, pp. 175-197.

[SV] P. Stollmann, J. Voigt, *Perturbation of Dirichlet forms by measures*. Potential Anal. 5 (1996), 109–138.

Department of Mathematics and Statistics, University of North Florida, Jacksonville, FL 32224, USA

E-mail address: omilatov@unf.edu