Synthesis, Characterization, and Catalytic Properties of Magnetic Fe$_3$O$_4$@FU: A Heterogeneous Nanostructured Mesoporous Bio-Based Catalyst for the Synthesis of Imidazole Derivatives

Maryam Banazadeh, Sara Amirnejat and Shahrzad Javanshir*

Heterocyclic Chemistry Research Laboratory, Chemistry Department, Iran University of Science and Technology, Tehran, Iran

In this protocol, Fucoidan (FU), a fucose-rich sulfated polysaccharide extracted from brown algae Fucus vesiculosus was used for in situ preparation of magnetic Fe$_3$O$_4$@FU. Nanoco magnetic properties of Fe$_3$O$_4$@FU were investigated by energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) adsorption method, and vibrating sample magnetometer (VSM). The catalytic activity of Fe$_3$O$_4$@FU was employed for the synthesis of tri- and tetra-substituted imidazoles through three- and four-component reactions respectively, between benzyl, aldehydes, NH$_4$OAc and benzyl, aldehydes, NH$_4$OAc, and amine under reflux in ethanol. It is worth nothing that excellent yields, short reaction times, chromatography-free purification, and environmental friendliness are highlighted features of this protocol.

Keywords: fucoidan, heterogeneous catalyst, imidazoles, superparamagnetic iron oxide nanoparticles, sulfated polysaccharides

INTRODUCTION

Through extensive applications and potential in the chemical industry and preservation of the environment, the recently supported solid nanocatalysis has been faced with various attentions in catalysis science and technology (Amirnejat et al., 2013; Fereshteh and Shahrzad, 2020). To overcome the difficulty of catalyst separation, some magnetic heterogeneous catalysts with unique features and advanced functionalities suitable for a range of applications, including biological and environmental applications have been made (Pourian et al., 2018; Zaheri et al., 2018). The magnetic materials have gained more attention due to their combined physicochemical characteristics such as high surface area, high thermal and chemical stability, excellent biocompatibility and biodegradability, and efficient super magnetic behavior (Dolatkhah et al., 2018; Piri et al., 2019).

Natural biopolymers as an effective tool have given rise to a new method of producing degradable materials. Meanwhile, marine polysaccharides exhibit a vast variety of structures and could be considered as a novel natural source (Dekamin et al., 2016; Alipour et al., 2018; Dolatkhah et al., 2019). Nanomaterials based on marine polysaccharides have been considered as one of...
the most important topics of research in recent years, especially in chemical and bio-based research, due to biocompatibility and biodegradability, cheapness, non-toxicity, and abundance (Hemmati et al., 2016; Amirnejat et al., 2020a,b,c). Fucoidan refers to a type of polysaccharide which contains substantial percentages of L-fucose and sulfated ester groups, mainly derived from brown seaweed which has been extensively studied due to its numerous interesting biological activities (Gomez-Zavaglia et al., 2019; Zayed and Ulber, 2019, 2020).

In recent decades, it has been extensively represented that multi-component reaction (MCR) is an ideal tool for creating molecular diversity and complexity (Graebin et al., 2019). Meanwhile imidazoles, polar in nature and with a five-member ring structure, are one of the most important compounds showing a wealthy source of biologically important features such as inhibitors, fungicides, herbicides plant, anti-inflammatory, anticancer, antimicrobial, analgesic, and anti-tubercular activity (Shalini et al., 2010; Varzi and Maleki, 2019). Numerous approaches have been developed for the synthesis of 1,2,4,5-tetrasubstituted imidazoles, which can be prepared by a four-component cyclo condensation consisting of aldehyde, benzil, a primary amine and ammonium acetate in the presence of different catalysts such as BF$_3$·SiO$_2$ (Sadeghi et al., 2008), and silica gel/NaHSO$_4$ (Karimi et al., 2006), while other main components are achieved by synthesis of tri-substituted imidazoles by the condensation of benzil derivatives, aryl aldehydes, and ammonium acetate catalyzed by different catalysts such as ZrCl$_4$ (Shitole et al., 2015), sulfanilic acid (Gadekar et al., 2009), and chitosan (Zheng et al., 2019). However, some of these methodologies have some drawbacks, such as low yields, long reaction times, severe reaction conditions, and work up procedure. Herein, we report the in situ synthesis of a novel eco-friendly magnetic heterogeneous catalyst Fe$_3$O$_4$@FU for the synthesis of tri-and tetra-substituted imidazoles under reflux condition in ethanol (Scheme 1). Easy work up and separation, high product yields and short reaction times made this method effective and advantageous.

EXPERIMENTAL

Materials and Methods

All solvents and chemicals were purchased from Merck and Aldrich. All reactions and the purity of the products were monitored by thin-layer chromatography (TLC) using aluminum plates coated with silica gel F254 plates (Merck) using ethyl acetate and n-hexane as eluents. UV light with a wavelength of 254 nm was used for the detection of products. By using an Electro thermal 9100, melting points were determined in open capillaries. IR spectra were run on a 400s Shimadzu FTIR Spectrophotometer (as KBr pellets). 1H and 13C NMR spectra were recorded on a 500 MHz Bruker Avance DRX Spectrometer instrument using TMS as an internal standard and CDCl$_3$, DMSO–d$_6$ as a solvent. The XRD patterns were obtained on an X-ray diffractometer (Holland, Philips Xpert, Co K, radiation, $\lambda = 0.178897$ nm). A Field Emission Scanning Electron Microscope (FE-SEM) with 15 KV, Mira3, Tescan), Thermal Gravimetric Analysis (TGA D-32609 from Hullhorst), and Transmission electron microscope (TEM, Philips –CM120, 100 KV) were used. An ultrasonic probe watt ultrasonic homogenizer 400 from

![Image](image.png)
Topsonics Co was used in room temperature for optimization of the reaction.

Preparations of Fucoidan Powder

2.5 gr of algae Fucus vesiculosus was finely ground by a ball mill for 5 min and was placed in a round bottom 200 ml flask containing 100 ml of 96% ethanol, and was stirred for 12 h. Then, the suspension was centrifuged at 4,000 rpm for 15 min and the resulting powder was dried at 50°C for 1 h.

Synthesis of Magnetic Fe$_3$O$_4$@FU Nanocomposite

For the preparation of the Fe$_3$O$_4$@FU, 0.2 g of fucoidan powder, FeCl$_2$•4H$_2$O (2 g, 0.01 mol) and (5.5 g, 0.02 mol) of FeCl$_3$ were

SCHEME 2 | Preparation of Fe$_3$O$_4$@FU magnetic nanocomposite.

FIGURE 1 | The FT-IR spectra for (a) FU, (b) Fe$_3$O$_4$@FU NPs.
FIGURE 2 | SEM images of (a) FU, (b) Fe$_3$O$_4$@FU, and (c) TEM images of Fe$_3$O$_4$@FU NPs. EDX analysis of (d) FU, and (e) Fe$_3$O$_4$@FU NPs.
FIGURE 3 | BET curve of Fe$_3$O$_4$@FU NPs.

FIGURE 4 | XRD patterns of Fe$_3$O$_4$@FU NPs.
used. H_2O was dissolved in 100 ml of distilled water. Then the mixture was vigorously stirred under a nitrogen atmosphere at 80°C for 15 min to reach a uniform solution. The pH of the solution was then adjusted to 12 by the dropwise addition of an aqueous ammonia solution (25%). The mixture was stirred at 80°C for 45 min. The prepared magnetic nanoparticles were separated by an external magnet, finally washed with ethanol and DI, and dried for 6 h at 60°C (Scheme 2).

General Procedure for the Preparation of 2, 4, 5-Trisubstituted Imidazoles Derivatives

A mixture of benzil (210 mg, 1 mmol), aldehydes (1 mmol), NH$_4$OAc (154 mg, 2 mmol), and Fe$_3$O$_4$@FU NPs (12 mg) in 3 ml EtOH was stirred under reflux conditions for the appropriate times. The progress of the reactions was monitored by TLC (eluent: EtOAc / n-hexane, 1: 3). After completion of the reaction, the catalyst was easily separated by an external magnet and then reused as such for the following experiment after being washed with EtOH and dried. The pure products were obtained by recrystallization from hot EtOH and then dried at 60°C for 1 h.

RESULTS AND DISCUSSION

Fe$_3$O$_4$@FU magnetic nanoparticles as a heterogeneous catalyst were characterized by Fourier transform infrared (FT-IR) spectral analysis. One strong broad band at 3,500 cm$^{-1}$ was attributed to the stretching vibration due to the O-H of fucoidan and water. The appearance of the peak at 1,624 cm$^{-1}$, attributed to significant polysaccharide chains, is stronger than magnetic fucoidan. The absorption band at 1,029 cm$^{-1}$ indicated hemiacetal vibration at alcohol and ether functional groups in fucoidan structure. Furthermore, the peak at 1,240–1,255 cm$^{-1}$ was related to the stretching vibration of S=O from the SO$_3$H group. The presence of the metal oxide peaks of 570 and 455 cm$^{-1}$ also exhibited in FT-IR of Fe$_3$O$_4$@FU.
TABLE 1 | Condition optimization for the synthesis of 2,4,5-trisubstituted imidazole (5k)*.

Entry	Catalyst	Temp. (°C)	Solvent	Catalyst (mg)	Time (min)	Yield (%)
1	-	r.t.	Solvent free	-	24 h	-
2	-	Reflux	Ethanol	-	250	Trace
3	FU	Reflux	Ethanol	12	40	70
4	Fe₃O₄	Reflux	Ethanol	12	40	55
5	Fe₃O₄@FU	Reflux	Ethanol	12	20	96
6	Fe₃O₄@FU	Reflux	Ethanol/ Water	12	30	80
7	Fe₃O₄@FU	r.t.	Ethanol	12	35	75
8	Fe₃O₄@FU	Reflux	Water	12	40	60
9	Fe₃O₄@FU	Reflux	CH₂CN	12	70	48
10	Fe₃O₄@FU	Reflux	THF	12	90	40
11	Fe₃O₄@FU	Reflux	Toluene	12	60	45
12	Fe₃O₄@FU	Reflux	Ethanol	15	20	96
13	Fe₃O₄@FU	Reflux	Ethanol	10	30	90
14	Fe₃O₄@FU	Reflux	Ethanol	5	50	60

*R: Reaction conditions: benzaldehyde (1 mmol), benzil (1 mmol), ammonium acetate (2 mmol), solvent (3 ml).

TABLE 2 | Synthesis of 2,4,5-triaryl (5a-k)* and 1,2,4,5- tetraaryl−1H-imidazoles (6l-p)c catalyzed by Fe₃O₄@FU nanocomposite.

Entry	R¹−ArCHO	R²−ArNH₂	Productd	Time (min)	Yield (%)	M.p (°C) found/reported
1	O−H	-	(1)	12	96	261–262/260–261 (Salimi et al., 2015)
			(2)			
			(3)			
			(4)			
			or			
			Fe₃O₄@FU(12mg)			
			EtOH, reflux			
			(5a-k)			
2	O−H	-	(1)	20	90	192–194/191–192 (Shaabani et al., 2017)
			(2)			
			(3)			
			(4)			
			or			
			Fe₃O₄@FU(12mg)			
			EtOH, reflux			
			(5a-k)			

(Continued)
Entry	R^1-ArCHO	R^2-ArNH	Product^d	Time (min)	Yield^e (%)	M.p (°C) found/reported
3	4-CHO	-	![5c](image)	12	96	248–250/248–250 (Marques et al., 2012)
4	4-CHO	-	![5d](image)	15	91	170–173/171–174 (Amirnejat et al., 2020a)
5	4-CHO	-	![5e](image)	22	90	301–303/300–303 (Amirnejat et al., 2020a)
6	4-CHO	-	![5f](image)	25	88	229–231/230–233 (Momahed Heravi et al., 2019)
7	4-CHO	-	![5g](image)	15	95	195–197/196–198 (Shaabani et al., 2016)

(Continued)
Entry	R^1-ArCHO	R^2-ArNH₂	Product	Time (min)	Yield (%)	M.p (°C) found/reported
8	O-H	-	![5h](image)	20	86	314-316/313-315 (Momahed Heravi et al., 2019)
9	O-H	-	![5i](image)	25	80	257-259/256-259 (Salimi et al., 2015)
10	O-H	-	![5j](image)	30	80	230-232/230-232 (Mirsafaei et al., 2016)
11	O-H	-	![5k](image)	20	90	268-270/270 (Shaterian and Ranjbar, 2011)
12	O-H	NH₂	![6l](image)	20	94	157-159/156-158 (Salimi et al., 2015)

(Continued)
TABLE 2 | Continued

Entry	R₁-ArCHO	R₂-ArNH₂	Product	Time (min)	Yield (%)	M.p (°C) found/reported
13	![Image](image1.png)	![Image](image2.png)	![Image](image3.png)	30	85	175–177/176–178 ([Ray et al., 2013](#))
14	![Image](image4.png)	![Image](image5.png)	![Image](image6.png)	30	90	230–234/232–236 ([Salimi et al., 2015](#))
15	![Image](image7.png)	![Image](image8.png)	![Image](image9.png)	35	83	260–262/257–259 ([Mohammadi et al., 2012](#))
16	![Image](image10.png)	![Image](image11.png)	![Image](image12.png)	30	87	150–152/150–152 ([Salimi et al., 2015](#))

4Reaction conditions: benzil (1 mmol), aldehydes (1 mmol), ammonium acetate (2 mmol), EtOH (3 ml), and Fe₃O₄@FU nanocomposite (12 mg) (5a-k).

5Reaction conditions: benzil (1 mmol), aldehydes (1 mmol), ammonium acetate (2 mmol), aniline (1 mmol), EtOH (3 ml), and Fe₃O₄@FU nanocomposite (12 mg) (6l-p).

6Isolated yields.

7The 1H NMR spectra for products 5a and 5c have been provided in supplementary file.

Acknowledged that the chemical structure of the magnetic nanoparticles have been preserved after the functionalization.

Primarily, the size, structure, and morphology of FU, and the as prepared nanocomposite were investigated by SEM analyses (Figures 2a,b). As can be seen, Fe₃O₄@FU nanocomposites have a cauliflower-shaped morphology in which the average size distribution was around 24–33 nm. TEM analysis of the as-synthesized Fe₃O₄@FU showed that the Fe₃O₄@FU NPs have a...
core–shell structure (Figure 2c). Simultaneously, the elemental composition of Fe₃O₄@FU and FU were studied by EDX analysis (Figures 2d,e) which confirmed the presence of O, C, Fe, and S elements constituted in the nanocomposite.

The surface area and pore size distributions of the Fe₃O₄@FU were analyzed by N₂ adsorption-desorption analysis. As shown in Figure 3, Fe₃O₄@FU NPs have type IV isotherms and type H₃ hysteresis loops. The BET surface area, average pore diameter and the total pore volume were calculated to be 55.65 m²/g, 11 nm, and 1.749 cm³/g, respectively.

The XRD patterns of Fe₃O₄@FU NPs are presented in Figure 4. As can be seen, diffraction peaks at 2θ values = 30.4°, 35.8°, 43.7°, 55.3°, 57.8°, and 63.3° could be indexed to the presence of all the crystal planes such as (220), (311), (400), (422), (511), and (440) attributed to the cubic inverse spinel structure of Fe₃O₄ which

Entry	Catalyst	Reaction condition	Reaction time (min)	Yield (%)	References
1	[Et₃NH][HSO₄](10 mol %)	Solvent-free/ 130°C	40	89	Deng et al., 2013
2	COPAPSC(20 mg)	Solvent-free/ 110°C	4h	77	Salimi et al., 2015
3	(CTA)₃PMo-MMT nanocomposite (50 mg)	Solvent-free/ 100°C	60	85	Masteri-Farahani et al., 2020
4	Fe₃O₄@FU (12 mg)	EtOH, Reflux	20	90	This work

TABLE 3 | Comparison of the activity of the catalysts in synthesis 5k with some of the other catalysts reported in the literature.

SCHEME 3 | The proposed mechanism for the synthesis of 2,4,5-trisubstituted imidazoles by using Fe₃O₄@FU nanocomposite.
matched with the standard pattern (JCPDS-PDF, No. 01-087-2334). These results proved that the crystalline structure of Fe$_3$O$_4$ was maintained after its decoration with fucoidan polysaccharide.

The magnetization curves of Fe$_3$O$_4$ and Fe$_3$O$_4$@FU NPs measured at room temperature with a vibrating sample magnetometer (VSM) were shown in Figure 5. The hysteresis loops of Fe$_3$O$_4$@FU NPs showed the superparamagnetic behavior of Fe$_3$O$_4$@FU NPs. The saturation magnetization (Ms) values for the Fe$_3$O$_4$ and the Fe$_3$O$_4$@FU NPs were 51, 35 emu/g, respectively. It is important to note that the saturation magnetization remains sufficient after covering by FU.

The thermogravimetric analysis (TGA) curve of FU and Fe$_3$O$_4$@FU NPs showed three-stage weight loss in the temperature range from 100 to 500°C (Figure 6). The first weight loss of around 2 wt% ensues at 100°C indicating the evaporation of water or solvent. The next weight loss of about 12 wt% occurs at 240°C and the third weight loss about 42 wt% at 440°C for the decomposition of polysaccharide. Accordingly, the TGA studies showed improved stability for Fe$_3$O$_4$@FU NPs.

Catalytic Activity of Magnetic Fe$_3$O$_4$@FU NPs

The catalytic efficacy of Fe$_3$O$_4$@FU NPs as a proficient heterogeneous catalyst was investigated in the one-pot reaction between benzil (1 mmol), benzaldehyde (1 mmol), and ammonium acetate (2 mmol) as a model reaction for the synthesis of imidazole derivatives. To determine the role of the catalyst, the model reaction was performed in the absence of the catalyst. The anticipated product was not shown after a long reaction time. The results reveal that the presence of the catalyst has a considerable effect on the formation of these compounds. The model reactions were carried out in the presence of different
solvents such as EtOH, H$_2$O, THF, and Toluene, CH$_3$CN and solvent-free conditions. As the results show, Ethanol (3 ml) was found to be the most effective solvent. To evaluate the optimum catalyst concentration, the model reaction was carried out in the presence of various amounts of catalyst (5, 10, 12, and 15 mg). Consequently, the best yield is accessible in the presence of just 12 mg catalyst, and use of extra amounts of the catalyst (15 mg) did not increase the result to a significant level (Table 1). The model reaction was carried out with FU, Fe$_3$O$_4$, and Fe$_3$O$_4$@FU. These results endorsed that Fe$_3$O$_4$@FU was more suitable for this reaction. Overall, the most significant conditions for the desired products were achieved at reflux under ethanol in the presence of 12 mg magnetic nanocomposite.

For total assessment of the synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles after the mentioned optimized conditions, various aromatic aldehydes and anilines were evaluated which can be seen in Table 2, including both electron-donating and electron-withdrawing substitutions which were studied in these reactions. While the presence of electron-donating groups resulted in the corresponding products being prepared with lower reaction yields, in addition, electron-withdrawing functionalities led to the higher yields with shorter reaction times. Most of the products directly crystallized from the mixture of reaction with high purity with good to excellent yields (80–96%). It should be mentioned that all the products were confirmed by melting points, and some of the products were characterized by NMR spectral data.

To evaluate the generality of this catalyst in comparison to previously reported results in the literature, Fe$_3$O$_4$@FU acts as...
an appropriate green biocatalyst due to the yields of products, reaction time and temperature (Table 3).

The proposed mechanism for the synthesis of tri-substituted imidazoles was shown in Scheme 3. In the first step, the aldehyde and benzil group were activated by the formation of a hydrogen bond with the functional group of fucoidan, followed by the nucleophilic attack of ammonia, coming from the ammonium acetate, the intermediate imine (II) is formed after the removal of \(\text{H}_2\text{O} \). Intermediate (II) is then added to benzil forming intermediate (III). Dehydration of intermediate (III) afforded the intermediate (IV), which rearranges via 1,5 H-shift which, followed by deprotonation, gives tri substituted imidazole (5).

The proposed mechanism for the preparation of four one-pot reactions of benzil, aldehyde, and ammonium acetate and amine is shown in Scheme 4. Aldehyde and 1, 2-diketone were first activated by Fe\(_3\)O\(_4\)@FU, then amine was added to the aldehydes forming an imine intermediate which was attacked by ammonia (released from the ammonium acetate) to form the amine intermediate (II). On the other hand, the amine intermediate (II) reacted with the activated carbonyl groups of benzil to form the intermediate (III). Finally, the imidazole derivative was formed after dehydration, followed by a 1,5 H-shift.

The main concerns from an economic and environmental aspect, such as recyclability and the ability to reuse the catalyst, were also surveyed. In this regard, after the reaction was completed, the catalyst was collected by an external magnet and then washed with ethyl acetate, n-hexane and ethanol and dried at 50°C in an oven. The recycled catalyst was used six consecutive times in the reaction. According to the results, no appreciable reduction in the efficiency of the catalysts is observed (Figure 7).

The recycled catalyst was identified by EDX and FT-IR analysis. The comparison of the FT-IR spectrum of Fe\(_3\)O\(_4\)@FU before and after six consecutive runs confirms that no definite change in its structure was seen, which can therefore be considered as a recyclable and stable biocatalyst in organic reactions (Figure 8). However, the EDX analysis of the recovered catalyst (Figure 9) showed that a degree of catalyst desulfation and leaching occurred after six runs, which explains the decrease in the yield of reactions.

CONCLUSION

In summary, magnetic core-shell structured fucoidan coated Fe\(_3\)O\(_4\) NPs were in situ synthesized and their structural and magnetic properties were investigated. The catalytic property of Fe\(_3\)O\(_4\)@FU was studied in the synthesis of imidazoles derivatives. Outstanding catalytic activity alongside a simple synthesis method, easy processing and separation, a high product yield, and short reaction time make Fe\(_3\)O\(_4\)@FU an attractive bio-based heterogeneous catalyst.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

MB and SA: investigation and writing—original draft preparation. SJ: project administration, conceptualization, resources, writing—review, and editing. All authors contributed to the article and approved the submitted version.

ACKNOWLEDGMENTS

The authors wish to express their gratitude for the partial financial support provided by the Research Council of Iran University of Science and Technology (IUST), Tehran, Iran.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2020.596029/full#supplementary-material

REFERENCES

Alipour, A., Javanshir, S., and Peymanfar, R. (2018). Preparation, characterization and antibacterial activity investigation of hydrocolloids based Irish moss/ZnO/CuO bio-based nanocomposite films. *J. Cluster Sci.* 29, 1329–1330. doi: 10.1007/s10876-018-1449-4

Amirnejat, S., Movahedi, F., Morsouri, H., Mohadesi, M., and Kassaei, M. (2013). Silica nanoparticles immobilized benzoylthiourea ferrous complex as an efficient and reusable catalyst for one-pot synthesis of benzopyranopyrimidines. *J. Mol. Catal. A Chem.* 378, 135–141. doi: 10.1016/j.molcata.2013.05.023

Amirnejat, S., Nosrati, A., and Javanshir, S. (2020c). Superparamagnetic Fe\(_3\)O\(_4\)@Alginate supported L-arginine as a powerful hybrid inorganic–organic nanocatalyst for the one-pot synthesis of pyrazole derivatives. *Appl. Organomet. Chem.* 34:e5888. doi: 10.1002/aoc.5888

Amirnejat, S., Nosrati, A., Javanshir, S., and Naimi-Jamal, M. R. (2020a). Superparamagnetic alginate-based nanocomposite modified by L-arginine: an eco-friendly bifunctional catalysts and an efficient antibacterial agent. *Int. J. Biol. Macromol.* 152, 834–845. doi: 10.1016/j.ijbiomac.2020.02.212

Amirnejat, S., Nosrati, A., Peymanfar, R., and Javanshir, S. (2020b). Synthesis and antibacterial study of 2-amino-4H-pyran and pyrans annulated heterocycles catalyzed by sulfated polysaccharide-coated BaFe\(_{12}\)O\(_{19}\) nanoparticles. *Res. Chem. Intermed.* 46, 3683–3701. doi: 10.1007/s11164-020-04168-x

Dekamin, M. G., Peyman, S. Z., Karimi, Z., Javanshir, S., Naimi-Jamal, M. R., and Barikani, M. (2016). Sodium alginate: an efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. *Int. J. Biol. Macromol.* 87, 172–179. doi: 10.1016/j.ijbiomac.2016.01.080

Deng, X., Zhou, Z., Zhang, A., and Xie, G. (2013). Branched acid ionic liquid [Et 3 NH][HSO 4] as an efficient and reusable catalyst for the synthesis of 2, 4, 5-triaryl-1H-imidazoles. *Res. Chem. Intermed.* 39, 1101–1108. doi: 10.1007/s11164-012-0669-8

Dolatkhah, Z., Javanshir, S., Bazgir, A., and Hemmati, B. (2019). Palladium on magnetic Irish moss: a new nano-biocatalyst for suzuki type cross-coupling reactions. *Appl. Organomet. Chem.* 35:e4859. doi: 10.1002/aoc.4859

Dolatkhah, Z., Javanshir, S., Bazgir, A., and Hemmati, B. (2019). Palladium on magnetic Irish moss: a new nano-biocatalyst for suzuki type cross-coupling reactions. *Appl. Organomet. Chem.* 35:e4859. doi: 10.1002/aoc.4859

Dolatkhah, Z., Javanshir, S., Bazgir, A., and Mohammadkhani, A. (2018). Magnetic isinglass a nano-bio support for copper immobilization: Cu–IG@ Fe\(_3\)O\(_4\) a heterogeneous catalyst for triazoles synthesis. *ChemistrySelect* 3, 5486–5493. doi: 10.1002/slct.20180501
Fereshhteh, N., and Shahrazad, J. (2020). Magnetic γFe₂O₃@ Sh@ CuO: an efficient solid-phase catalyst for reducing agent and base-free click synthesis of 1, 4-disubstituted-1, 2, 3-triazoles. BMC Chem. 14:9. doi: 10.1186/s13554-019-0657-9

Gadkar, L. S., Mane, S. R., Kaikar, S. S., Arbad, B. R., and Lande, M. K. (2009). Scolicite as an efficient heterogeneous catalyst for the synthesis of 2, 4, 5-triaryl imidazolines. Cent. Eur. J. Chem. 7, 550–554. doi: 10.2478/s11532-009-0050-y

Gomez-Zavaglia, A., Prieto Lage, M. A., Jimenez-Lopez, C., Mejuto, J. C., and Simal-Gandara, J. (2019). The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidative value. Antioxidants 8:406. doi: 10.3390/antiox8090406

Graebin, C. S., Ribeiro, F. V., Rogério, K. R., and Kümmerle, A. E. (2019). Hybrid magnetic Irish moss/Fe₃O₄ as a nano-biocatalyst for synthesis of imidazopyrimidine derivatives. RSC Adv. 6, 50431–50436. doi: 10.1039/C6RA08504K

Karimi, A. R., Alimohammadi, Z., Azizian, J., Mohammadzadeh, M. (2006). Solvent-free synthesis of tetrasubstituted imidazoles on silica gel/NaHSO₄ support. Catal. Commun. 7, 728–732. doi: 10.1016/j.catcom.2006.04.004

Marques, M. V., Rutherf, M. M., Fontoura, L. A., and Russowsky, D. (2012). Metal chloride hydrates as Lewis acid catalysts in multicomponent synthesis of 2, 4, 5-triaryl imidazolines or 2, 4, 5-triaryl oxazoles. J. Braz. Chem. Soc. 23, 171–179. doi: 10.1590/S0103-5053201000100024

Masteri-Farahani, M., Ezabadi, A., Mazarei, R., Ateaeina, P., Shahsavarifar, S., and Mousavi, F. (2020). A new nanocomposite catalyst based on clay-supported heteropolyacid for the green synthesis of 2, 4, 5-trisubstituted imidazoles. Appl. Organomet. Chem. 34:e5727. doi: 10.1002/aoc.5727

Mirsafei, R., Heravi, M. M., Ahmadi, S., and Hosseinnejad, T. (2016). Synthesis and properties of novel reusable nano-ordered KIT-5-N-sulfamic acid as a heterogeneous catalyst for solvent-free synthesis of 2, 4, 5-triaryl imidazolines. Chem. Pap. 70, 418–429. doi: 10.1515/chempap-2015-0228

Mohammadi, A., Keshvani, H., Sandarosoo, R., Maleki, B., Rouhi, H., Moradi, H., et al. (2012). A highly efficient and reusable heterogeneous catalyst for the one-pot synthesis of tetrasubstituted imidazoles. Appl. Catal. A. 429, 73–78. doi: 10.1016/j.apcata.2012.04.011

Momahed Heravi, M., Karimi, N., and Pooremami, S. (2019). One-pot three components synthesis of 2, 4, 5-triaryl-imidazolines catalyzed by Caro’s acid-silica gel under solvent–free condition. Adv. J. Chem. 2, 72–78. doi: 10.29088/SAMI/AJCA.2019.2.7378

Pirt, T., Pymaran, J., Javanshir, S., and Amirnejat, S. (2019). Magnetic BaFe₂O₃/Al₂O₃@ Fe₃O₄: an efficient heterogeneous Lewis acid catalyst for the synthesis of α-aminophosphonates (Kabachnik–Fields Reaction). Catal. Lett. 149, 3384–3394. doi: 10.1007/s10562-019-02910-8

Pourian, E., Javanshir, S., Dolatkhah, Z., Molaei, S., and Maleki, A. (2018). Ultrasonic-assisted preparation, characterization, and use of novel bio-compatible core/shell Fe₃O₄@ GA@ isinglass in the synthesis of 1, 4-dihydropyridine and 4 H-pyran derivatives. ACS Omega 3, 5012–5020. doi: 10.1021/acsomega.8b00379

Ray, S., Das, P., Bhaumik, A., Dutta, A., and Mukhopadhyay, C. (2013). Covalently anchored organic carboxylic acid on porous silica nano particle: a novel organometallic catalyst (PSNP-CA) for the chromatography-free highly product selective synthesis of tetrasubstituted imidazoles. Appl. Catal. A. 458, 183–195. doi: 10.1016/j.apcata.2013.03.024

Sadeghi, B., Mirjalili, B. F. B., and Hashemi, M. M. (2008). BF₃SO₄: an efficient reagent system for the one-pot synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles. Tetrahedron Lett. 49, 2575–2577. doi: 10.1016/j.tetlet.2008.02.100

Salimi, M., Nasser, M. A., Chapeshthoo, T. D., and Zakerinasab, B. (2015). (Carboxy-3-oxopropylamino)-3-propylsilylet CELLULose as a novel organocatalyst for the synthesis of substituted imidazoles under solvent-free conditions. RSC Adv. 5, 33974–33980. doi: 10.1039/C5RA01909E

Shaabani, A., Afshari, R., and Hooshmand, S. E. (2017). Crosslinked chitosan nanoparticle-anchored magnetic multi-wall carbon nanotubes: a bio-nanoreactor with extremely high activity toward click-multi-component reactions. New J. Chem. 41, 8469–8481. doi: 10.1039/C7NJ01150D

Shaabani, A., Sepahvand, H., Hooshmand, S. E., and Borjian Boroujeni, M. (2016). Design, preparation and characterization of Cu/GA/Fe₃O₄@ SiO₂ nanoparticles as a catalyst for the synthesis of benzosiazepines and imidazoles. Appl. Organomet. Chem. 30, 414–421. doi: 10.1002/aoc.3448

Shalini, K., Sharma, P. K., and Kumar, N. (2010). Imidazole and its biological activities: a review. Der Chemica Sinica 1, 36–47.

Shaterian, H. R., and Ranjar, M. (2011). An environmental friendly approach for the synthesis of highly substituted imidazoles using Bromsted acidic ionic liquid, N-methyl-2-pyrrolidinium hydrogen sulfate, as reusable catalyst. J. Mol. Liq. 160, 40–49. doi: 10.1016/j.molliq.2011.02.012

Shitore, B. V., Shitore, N. V., Ade, S. B., and Kakde, G. K. (2015). Microwave-induced one-pot synthesis of 2, 4, 5-trisubstituted imidazoles using rochelle salt as a green novel catalyst. Orbital Electron. J. Chem. 7, 240–244. doi: 10.17807/orbital.v7i3.720

Varzi, Z., and Maleki, A. (2019). Design and preparation of ZnS-ZnFe₂O₄: a green and efficient hybrid nanocatalyst for the multicomponent synthesis of 2, 4, 5-triaryl-1H-imidazoles. Appl. Organomet. Chem. 33:e5008. doi: 10.1002/aoc.5008

Zaheri, H. M., Javanshir, S., Hemmati, B., Dolatkhah, Z., and Fardpourn, M. (2018). Magnetic core–shell Carrageenan moss/Fe₃O₄@ polysaccharide-based metallic nanoparticles for synthesis of pyrimidone derivatives via Biginelli reaction. Chem. Cent. J. 12:108. doi: 10.1186/s13065-018-0477-3

Zayed, A., and Ulber, R. (2019). Fucoidan production: approval key challenges and opportunities. Carbohydr. Polym. 211, 289–297. doi: 10.1016/j.carbpol.2019.01.105

Zayed, A., and Ulber, R. (2020). Fucoidans: downstream processes and recent applications. Mar. Drugs 18:170. doi: 10.3390/md18030170

Zheng, Y., Monty, J., and Linhardt, R. J. (2019). Polysaccharide-based nanocomposites and their applications. Carbohydr. Res. 405, 23–32. doi: 10.1016/j.carres.2014.07.016

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Banazadeh, Amirenejat and Javanshir. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.