Erratum: Optimal linear drift for the speed of convergence of an hypoelliptic diffusion*†

Arnaud Guillin‡ Pierre Monmarché§

Abstract

Erratum for Optimal linear drift for the speed of convergence of an hypoelliptic diffusion, A. Guillin, and P. Monmarché, Electron. Commun. Probab. 21 (2016), paper no. 74, 14 pp. doi:10.1214/16-ECP25.

Keywords: hypocoercivity; Ornstein-Uhlenbeck process; irreversibility; optimal sampling.

AMS MSC 2010: 60J60; 35K10; 65C05.

Submitted to ECP on December 23, 2016, final version accepted on January 13, 2017.

The authors correct the two following mistakes:

1. At page 5, line -20, it is proved in [13, Corollary 12] that the entropy converges at rate $2\rho(A)$

$$\text{Ent}_{\psi_{\infty}}\left(e^{tL_{A,D}h}\right) \leq ce^{-2\rho(A)t}\text{Ent}_{\psi_{\infty}}(h),$$

and not simply $\rho(A)$ as it has been written.

2. At page 9, line 8, C should be replaced by C^T:

$$\partial_t \left(\alpha''(h_t)(\nabla h_t)^T M \nabla h_t\right) \leq 2\alpha''(h_t)(\nabla h_t)^T MC^T \nabla h_t$$

Indeed, the Jacobian Matrix of the function $b(x) =Cx$ is C^T and not C. This initial mistake has the following chain of consequences:

• At page 9, from line 9 to 15, $S_{\frac{1}{2}}$ should be systematically replaced by $S^{-\frac{1}{2}}$. For the computations to hold, the matrix \tilde{J} should be taken equal to its opposite, meaning that at page 8, the line -5 should be

$$\left(\tilde{J}\right)_{k,l} = \frac{\nu_k + \nu_l}{\nu_k - \nu_l}.$$

• At page 9, the computation from line -6 to line -3 should be replaced by

$$\text{Ent}_{\psi_{\infty}}(h_t) \leq \frac{1}{2} \int \frac{(\nabla h_t)^T S^{-1} \nabla h_t}{h_t} d\psi_{\infty}.$$

*Main article: 10.1214/16-ECP25.
†Supported by ANR STAB 12-BS01-0019 and SNF grant 200020-149871/1
‡Université Blaise Pascal, France. E-mail: guillin@math.univ-bpclermont.fr
§INRIA Paris, France. E-mail: pierre.monmarche@ens-cachan.org
Erratum: Optimal linear drift for the speed of convergence of an hypoelliptic diffusion

\[\frac{1}{2\nu_1} \int \left| \frac{Q^s S^{-\frac{1}{2}} \nabla h_t}{h_t} \right|^2 d\psi_\infty \leq e^{-2\lambda(t-s)} \frac{\nu_N}{2\nu_1} \int \left| \frac{S^{-\frac{1}{2}} \nabla h_s}{h_s} \right|^2 d\psi_\infty, \]

\[\leq e^{-2\lambda(t-s)} \frac{\nu_N}{2\nu_1 \min \sigma(S)} \int \left| \nabla h_s \right|^2 h_s d\psi_\infty. \]

Note that an annoying factor \(\frac{\max \sigma(S)}{\min \sigma(S)} \) has disappeared.

As a consequence of both these corrections, the main result is improved to the following correct statement:

Theorem 2. For any \(C > 1 \) we can construct \((A, D) \in I(S)\) such that for all \(h > 0 \), with finite entropy, and for all \(t, t_0 > 0 \) with \(t \geq t_0 \),

\[
\text{Ent}_{\psi_\infty} \left(e^{(t-t_0) L_{\lambda, D}^*} e^{t_0 L_{-, S, I_N}} h \right) \leq C \frac{1}{2t_0 \min \sigma(S)} e^{-2(\max \sigma(S))(t-t_0)} \text{Ent}_{\psi_\infty} (h).
\]

Moreover it is possible to construct \((A, D) \in I(S)\) with \(\|A\|_F \leq 4N^2 \sqrt{\frac{(\max \sigma(S))}{\min \sigma(S)}} \) (where \(\|A\|_F = \sqrt{\text{Tr}(A^T A)} \) is the Frobenius norm) such that for all \(h > 0 \), with finite entropy, and for all \(t \geq t_0 > 0 \)

\[
\text{Ent}_{\psi_\infty} \left(e^{(t-t_0) L_{\lambda, D}^*} e^{t_0 L_{-, S, I_N}} h \right) \leq \frac{1}{t_0 \min \sigma(S)} e^{-2(\max \sigma(S))(t-t_0)} \text{Ent}_{\psi_\infty} (h).
\]