Magnéli Phase Titanium Oxide as a Novel Anode Material for Potassium Ion Batteries

Geon-Woo Lee, † Byung Hoon Park, † Masoud Nazarian Samani, † Young Hwan Kim, † Kwang Chul Roh, ‡ and Kwang-Bum Kim*†

† Department of Materials Science and Engineering, Yonsei University, 134 Shinchon- Dong, Seodaemun-gu, Seoul 120-749, Republic of Korea
‡ Energy Efficient Materials Team, Energy & Environmental Division, Korea Institute of Ceramic Engineering & Technology, 101, Soho-ro, Jinju 660-031, Republic of Korea
Figure S1. (a) X-ray diffraction pattern, (b) scanning electron microscopy (SEM) images, (c) cross-sectional SEM images, and (d) high-resolution transmission electron microscopy images of TiO$_2$/CNT microspherical composites.

Figure S2. TGA curve of TiO$_2$/CNT microspherical composites.
Figure S3 shows the TEM images of the TiO$_2$-precursor/CNT composites obtained right after mixing the pristine CNTs and TiO$_2$-precursor solution. Note that 10~20 nm TiO$_2$ precursor were precipitated in contact with the pristine CNTs in the TiO$_2$-precursor/CNT composites. This could be attributable to the CH-π interactions between the alkyl groups of titanium ethoxide organometallic Ti source and the aromatic walls of pristine CNTs.1
Figure S4. Electrochemical properties of CNTs electrode in 0.8 M KPF\textsubscript{6} 1:1 EC/DEC electrolyte in the potential window of 0.01–2.5 V. (a) First three charge-discharge curves, (b) dQ/dV curves based on the charge-discharge curves of (a), (c) charge/discharge curves at increasing current density from 0.05 to 3 A g-1, (d) rate capability, and (e) cycling performance.
Figure S5. Electrochemical properties of bare TiO$_2$ electrode in 0.8 M KPF$_6$ 1:1 EC/DEC electrolyte in the potential window of 0.01–2.5 V. (a) First three charge-discharge curves, (b) dQ/dV curves based on the charge-discharge curves of (a), (c) charge/discharge curves at increasing current density from 0.05 to 1 A g$^{-1}$, (d) rate capability, and (e) cycling performance
Figure S6. HR-TEM image of fully charged Ti$_6$O$_{11}$/CNT composite.
Figure S7. Ex-situ XRD patterns of the bare TiO$_2$ electrode for selected states of charge in the (a) first and (b) second cycle in the potential window of 0.01 – 2.5 V vs K/K$^+$ at a current density of 0.05 A g$^{-1}$.

Figure S8. HR-TEM image of bare TiO$_2$.
Figure S9. (a) Cycling performance and (b) ex-situ XRD patterns of the Ti$_6$O$_{11}$/CNT electrode for selected cycles in the potential window of 0.01 – 2.5 V vs K/K$^+$ at a current density of 0.05 A g$^{-1}$.

Figure S10. SEM images of the Ti$_6$O$_{11}$/CNT composite electrode (a) in pristine state (b) after 500 cycle.
Table S1 Comparison of potassium ion storage performance of Ti$_6$O$_{11}$/CNT composite with other oxide-based anodes$^{2-4}$

Active materials	Reversible Capacity	Rate performance	Cycle performance	Reference
Ti$_6$O$_{11}$/CNT composite	148 mAh g$^{-1}$ at 50 mA g$^{-1}$	91 mAh g$^{-1}$ at 500 mA g$^{-1}$	74 mAh g$^{-1}$ at 200 mA g$^{-1}$ 500 cycles (76%, 1st cycle)	This work
K$_2$Ti$_8$O$_{17}$	118 mAh g$^{-1}$ at 20 mA g$^{-1}$	44 mAh g$^{-1}$ at 500 mA g$^{-1}$	110 mAh g$^{-1}$ at 20 mA g$^{-1}$ 50 cycles (63%, 2nd cycle)	[2]
K$_2$Ti$_4$O$_9$	74 mAh g$^{-1}$ at 30 mA g$^{-1}$	79 mAh g$^{-1}$ at 100 mA g$^{-1}$	37 mAh g$^{-1}$ at 100 mA g$^{-1}$ 30 cycles (47%, 2nd cycle)	[3]
K$_2$Ti$_4$O$_9$	142 mAh g$^{-1}$ at 20 mA g$^{-1}$	81 mAh g$^{-1}$ at 300 mA g$^{-1}$	44 mAh g$^{-1}$ at 50 mA g$^{-1}$ 100 cycles (61%, 2nd cycle) 47 mAh g$^{-1}$ at 200 mA g$^{-1}$ 900 cycles (51%, 2nd cycle)	[4]

Reference

1. Lee, G. W.; Kim, M. S.; Jeong, J. H.; Roh, H. K.; Roh, K. C.; Kim, K. B., Comparative Study of Li$_4$Ti$_5$O$_{12}$ Composites Prepared with Pristine, Oxidized, and Surfactant-Treated Multiwalled Carbon Nanotubes for High-Power Hybrid Supercapacitors. Chemelectrochem 2018, 5 (17), 2357-2366.

2. Han, J.; Xu, M. W.; Niu, Y. B.; Li, G. N.; Wang, M. Q.; Zhang, Y.; Jia, M.; Li, C. M., Exploration of K$_2$Ti$_8$O$_{17}$ as an anode material for potassium-ion batteries. Chem Commun 2016, 52 (75), 11274-11276.

3. Kishore, B.; Venkatesh, G.; Munirachaiah, N., K$_2$Ti$_4$O$_9$: A Promising Anode Material for Potassium Ion Batteries. J Electrochem Soc 2016, 163 (13), A2551-A2554.

4. Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Qin, J. Q.; Wang, S.; Shi, X. Y.; Bao, X. H., Ti$_3$C$_2$ MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities. Acs Nano 2017, 11 (5), 4792-4800.