The origin of a_{ig} and e_{g}' orderings in Na$_x$CoO$_2$

D. Pillay,1 M.D. Johannes,1 I.I. Mazin,1 and O.K. Andersen2

1Code 6393, Naval Research Laboratory, Washington, D.C. 20375
2Max-Plank-Institut für Festkörperforschung, Stuttgart, Germany

It has often been suggested that correlation effects suppress the small e_{g}' Fermi surface pockets of Na$_x$CoO$_2$ that are predicted by LDA, but absent in ARPES measurements. It appears that within the dynamical mean field theory (DMFT) the ARPES can be reproduced only if the on-site energy of the e_{g}' complex is lower than that of the a_{ig} complex at the one-electron level, prior to the addition of local correlation effects. The current estimates regarding the order of the two orbital complexes range from -200 meV to 315 meV in terms of the energy difference. In this work, we perform density functional theory calculations of this one-electron splitting $\Delta = \epsilon_{a_{1g}} - \epsilon_{e_{g}'}$ for the full two-layer compound, Na$_{2x}$Co$_2$O$_4$, accounting for the effects of Na ordering, interplanar interactions and octahedral distortion. We find that $\epsilon_{a_{1g}} - \epsilon_{e_{g}'}$ is negative for all Na fillings and that this is primarily due to the strongly positive Coulomb field created by Na$^+$ ions in the intercalant plane. This field disproportionately affects the a_{ig} orbital which protrudes farther upward from the Co plane than the e_{g}' orbitals. We discuss also the secondary effects of octahedral compression and multi-orbital filling on the value of Δ as a function of Na content. Our results indicate that if the e_{g}' pockets are indeed suppressed that can only be due to nonlocal correlation effects beyond the standard DMFT.

Since shortly after the discovery of superconductivity in hydrated Li$_3$Co$_2$O$_2$ at $x = 1/3$, there has been controversy surrounding the discrepancy between the calculated and observed Fermi surfaces of the parent compound, Na$_x$CoO$_2$ ($x = 1/3$). Density functional (DFT) calculations show a large central FS, surrounded by six small elliptical hole pockets, while angular-resolved photoemission (ARPES) measurements find the large pocket but do not see the smaller ones. The presence or absence of these small pockets drastically changes the response properties of the system, and a number of proposed superconductivity models depend on them.

There are two basic ways to resolve the controversy: either the experiment is not representative of the bulk electronic states, or correlation effects beyond the DFT calculations qualitatively change the Fermiology. The latter seems rather plausible, given the narrow width of the Co t_{2g} bands and the fact that DFT fails to reproduce the nonmagnetic ground state for $x \lesssim 0.7$. The effects of adding correlation have been recently addressed through DMFT calculations which account for both on-site Coulomb repulsion (Hubbard U) and local fluctuation effects (albeit not for long-wave-length ferromagnetic calculations, compatible with the observed at $x \gtrsim 0.5$ magnetic interactions in this system). Despite initial controversies, it has been firmly established that DMFT calculations only agree with ARPES if the centroids of the the a_{ig} and e_{g}' Co d-bands are such that $\epsilon_{a_{ig}}$ is higher than $\epsilon_{e_{g}'}$, which would yield a positive splitting, $\Delta = \epsilon_{a_{1g}} - \epsilon_{e_{g}'} > 0$. If, on the other hand $\epsilon_{a_{1g}} - \epsilon_{e_{g}'} < 0$ then the small hole pockets are preserved and even slightly enlarged. This result does not depend on the value of U or the particular Hamiltonian used in the calculation.

The sign of Δ is therefore of great importance, but difficult or impossible to access experimentally. A tight binding fit to full potential density functional theory calculations employing all 5 Co d orbitals and 3 O p orbitals in a double layer system found a strongly negative $\Delta \sim -200$ meV for $x = 0.3$. Other tight binding models fit to a one-layer system and employing a smaller basis set of Co t_{2g} orbitals11,15 found $\Delta \sim -144$ meV, and an alternate procedure for extracting Δ from the band structure yielded a value of ~ 100 meV12. On the other hand, quantum chemical calculations of embedded clusters16,17 invariably find a positive $\Delta = 315$ meV. There has so far been little understanding of what might cause such strong discrepancy between the values obtained through the two different methodologies.

In this work, we present DFT calculations of Δ that include both layers of the double-layer unit cell and real Na ions (no virtual crystal or other approximation) and we extract our values directly from the DFT calculation without employing a tight-binding fit. It is crucial to understand that Δ is controlled entirely by the electrostatic field at the Co site and Co-O overlap integrals, which are both accurately described by DFT. Note that, within DFT, the Fermi surface itself hardly depends on the sign of Δ, as long as $|\Delta|$ is moderate, but the effect of the local correlation effects (as evaluated by DMFT) is drastically different. At every Na doping level and for every reasonable value of octahedral compression, we find that Δ is negative. We find that the main cause of the ordering between a_{ig} and e_{g}' orbitals is the positive Na potential in the interstitial plane that drives the out-of-plane a_{ig} orbitals downward in energy, a factor that has been overlooked in all previous studies18. Interestingly, we find that octahedral distortion as an isolated factor increases Δ, a reversal of crystal field predictions for CoO$_6$ octahedra. This highlights the strong role of Na to re-establish a negative Δ and emphasizes that Co-O hybridization depends on interactions beyond the CoO$_6$ octahedra.
A. Calculational Methods

All calculations have been performed using a plane wave density functional theory code, the Vienna Ab initio Simulation Package (VASP)19. The projected augmented wave method (PAW)20 was used along with the generalized gradient approximation12 to the exchange correlation potential. A $\sqrt{3} \times \sqrt{3}$ cell that preserves the overall hexagonal symmetry was used to simulate the bulk. Ground state geometries were fully optimized using a Monkhorst Pack k-point mesh of $4 \times 4 \times 2$. For the total energy calculation and density of states (DOS) the Brillouin zone integrations were performed on a $8 \times 8 \times 4$ mesh.

To calculate Δ, we first consider the Co plane in a cubic coordinate system where three Co atoms are located equidistant along the x, y, and z axes, i.e. they form a plane perpendicular to the [111] cubic axis which is also the z axis in the hexagonal system. In this cubic system, it is easy to explicitly write out the a_{1g} and e'_g orbitals:

\begin{align*}
a_{1g} &= \frac{XY + YZ + XZ}{2} \\
e'_g &= \frac{XY - XZ - YZ}{2} \\
e'_g &= \frac{\sqrt{3}(YZ - XZ)}{2}
\end{align*}

(1)

Standard band structure codes project the density of states onto the three symmetry representations appropriate for a hexagonal symmetry, that is, $N_{a_{1g}}$ projects onto the $3z^2 - r^2$ orbital, and $N_{e'_g}$ onto $x^2 - y^2$ and N_{z^2}, each give the total projection onto the two orbitals belonging to each respective representation. Since the projected density of states contains the square of the projected orbital, we square each term in Eq. (1) keeping only the terms conforming to the correct symmetry. The resulting recipe is:

\begin{align*}
N_{a_{1g}}(\epsilon) &= N_{z^2}(\epsilon) \\
N_{e'_g}(\epsilon) &= N_{x^2-y^2}(\epsilon) + 2N_{z^2}(\epsilon)
\end{align*}

(2)

From these expressions, we calculate band centers of each complex. It is important to note that the e'_g states share the same irreducible representation as the unoccupied e_g states and that there is mixing between the two complexes17. Therefore, without specifically projecting out only the e'_g states as in our methodology, erroneous values for Δ will be found. The onsite parameters that result from this procedure are not identical to the onsite parameters in the effective 3×3 Hamiltonian, so far used in DMFT calculations because the latter contain not only the Co-based a_{1g} and e'_g states, but also the hybridized O states. The latter can be obtained only by downfolding the calculated Bloch functions onto Wannier functions, as has been done before11,12,15,22. Still, our method can be used to estimate the changes in Δ brought about by different factors, such as octahedral distortion, Na filling, or Na ordering. In the several cases where we have compared our values of Δ to those calculated from the Wannier functions of a three band model, we have found that the latter are always more negative than the values extracted directly from DFT. It is worth noting that these Wannier functions are very long range, having a sizeable weight not only on O and on nearest neighbor Co’s, but even at the third neighbor Co sites. This may have an effect on the onsite energy ordering, although we believe it will be quantitative, not qualitative. An additional effect of this extent is a strong reduction of the Hubbard U as compared to typical values for local d-orbitals in transition metal oxides.

B. Results and Discussion

We first address the effect of the octahedral compression (trigonal distortion) that lowers the symmetry at the Co site and splits the t_{2g} triplet into the a_{1g} and e'_g complexes. Some previous works have assumed that the distortion destabilizes the a_{1g} state23,24,25,26, while others assume oppositely that the e'_g state is higher in energy22,27. We have examined this question from two points of view. First, we have constructed a tight-binding model of a CoO\textsubscript{6} octahedron, including the three Co t_{2g} orbitals and three p orbitals on each of the six O atoms. We have diagonalized the resulting matrix for both compressive and expansive distortions. Using the canonical scaling of the $t_{dp\sigma}$ and $t_{dp\pi}$ parameters, namely $t_{dp\sigma} = \sqrt{3}t_{dp\pi}$, we find that the compressive distortion, as seen in Na$_x$CoO$_2$ for all x, destabilizes the e'_g state. However, if the ratio of the two parameters were to be increased by approximately a factor of two, as has been seen in some cases28, the order of energies is reversed and the a_{1g} state is destabilized. Second, we have performed a full DFT calculation of Δ as a function of the trigonal
distortion. We use a fictitious compound, $e^-\text{CoO}_2$, in which one electron per formula unit has been added to the CoO$_2$ compound to achieve the band-insulating state, analogous to NaCoO$_2$. The extra charge is compensated by a uniform positive background. We use this technique, termed "jellium filling", to eliminate the effects of the Na potential and of unequal band fillings, which we discuss in later section. As can be seen in Fig. 2 octahedral compression always produces a positive Δ, i.e. the a_{1g} state is raised above the e'_g orbital. This demonstrates that the scaling of t_{dps} and t_{dpt} is outside the canonical range and points to the importance of neighbors more distant than the surrounding O atoms.

By far the strongest factor determining the value of Δ is the presence of ionized Na atoms in the intercalant plane. The positive Coulomb field they produce serves to strongly shift the a_{1g} orbital downward compared to the e'_g orbital. As seen in Fig. 1 the a_{1g} orbital has a greater extent along the z direction (c-axis of the crystal) and therefore penetrates further into the Na plane. The resultant lowering of the a_{1g} states is sufficient to shift the sign of Δ from positive to negative. Replacing the jellium filling discussed above with real Na ions (again one per formula unit), we find a negative shift of approximately 150 meV in Δ for all trigonal distortions, as seen in Fig. 2. Because quantum chemical calculations account only for the filling effects of Na and neglect the electrostatic field produced by real ions, this shift is not present and Δ is consequently found to be strongly positive. Not surprisingly, when Na ions are located directly atop a Co ion (2b site), the effect is stronger than when they are located equidistant between three Co ions (2c site).

The final factor contributing to the size of Δ is the non-uniform filling of the two band complexes. For all levels of Na intercalation, the a_{1g} bands are less filled than the e'_g bands. At a critical filling of $x_c \sim 0.67$, the e'_g complex becomes entirely filled, leaving holes only in the a_{1g} bands. The increased on-site Coulomb repulsion due to greater filling drives the e'_g upward in energy compared to a_{1g} bands. In the absence of real Na ions (hence no positive interstitial Coulomb field) and without octahedral distortion, the calculated Δ for CoO$_2$ is ~ -77 meV, reflecting this multi-band effect. We have calculated Δ for Na$_x$CoO$_2$ and for $xe^-\text{CoO}_2$ (jellium filling) as a function of x, with all oxygen positions fixed to perfect octahedra. For the jellium filled compounds, Δ initially remains approximately constant and then increases dramatically at $x_c \sim 0.67$ where the e'_g bands become entirely filled, as seen in Fig. 3. The Na$_x$CoO$_2$ curve, on the other hand, decreases initially and then flattens out once the e'_g complex is full. In the former case, electrons are added to both e'_g and a_{1g} states at low x, pushing both complexes upward nearly equally. Once the e'_g holes are filled, all further electrons enter the a_{1g} complex, pushing the a_{1g} onsite energy up relative to e'_g and causing Δ to increase. The situation is more complex when real Na ions are added. At low x, both e'_g and a_{1g}, electrons are added to both complexes and on-site repulsion raises both energies together, but the increasingly positive Coulomb field created by adding Na ions pushes the a_{1g} states downward. Δ therefore increases with x as long as holes remain in both symmetry complexes. After x_c, where additional electrons enter only the a_{1g} complex, the positive Coulomb field acts oppositely to the increased on-site repulsion. Apparently the magnitude of these two effects is approximately equal, as evidenced by the nearly constant Δ at $x > x_c$.

The effect of octahedral distortion on Δ competes with the effect of the positive Na$^+$ potential, and both are a function of the Na filling, x, which separately affects the a_{1g} and e'_g ordering. Having studied each of these fac-

FIG. 2: (color online) $\Delta \equiv \epsilon_{a_{1g}} - \epsilon_{e'_g}$ as a function of octahedral distortion in the jellium filled and real Na filled compounds. The vertical bar at $\sim 5.2\%$ marks the position of the octahedral compression obtained through relaxing the oxygen height in our calculations.

FIG. 3: (color online) $\Delta \equiv \epsilon_{a_{1g}} - \epsilon_{e'_g}$ as a function of electron filling for jellium filled and real Na filled compounds. The critical doping x_c where the e'_g complex becomes completely filled is marked by a vertical bar.
TABLE I: $\Delta \equiv \epsilon_{a_{1g}} - \epsilon_{e_{g}}$ values for full DFT calculations, including relaxation of the lattice parameters and ionic positions. Values for Na placed at Na1 (2b trigonal site) and at Na2 (2c octahedral site) positions are given for comparison.

x	Na1 position	Na2 position
0	-80 meV	-
1/3	-100 meV	-95 meV
2/3	-114 meV	-101 meV
1	-77 meV	-6 meV

tors individually, we proceed to calculate Δ as a function of x, accounting for all factors simultaneously. This is accomplished by relaxing the lattice parameters (both a and c) and the ionic positions at each Na filling and using supercell calculations to include real Na ions in the interstitial plane. Our results are tabulated in Table I. Lechermann et al have derived Δ for $x=0.5$ with Na in the Na2 position, by integrating the partial density of states and also by constructing first principles Wannier functions, arriving at an estimate of -100 meV, in excellent agreement with our Table I. Their estimate for Delta at $x=1$ is also consistent with ours. It is clear that Δ is a non-monotonic function of x, owing to competition between the various effects associated with Na filling, but that it remains negative for all Na content 0 < x < 1.

C. Conclusions

The crystal field splitting $\Delta \epsilon_{a_{1g}} - \epsilon_{e_{g}}$ is known to be the parameter that controls the presence or absence of the controversial $\epsilon_{e_{g}}$ pockets at the Fermi level in Na$_x$CoO$_2$. Here we show that, within the DFT framework which is highly reliable for calculating one-electron parameters, Δ is always negative and strongly so for low x. We have shown that this fact is mainly due to the electrostatic crystal field of Na as well as demonstrating that the O ligand field (octahedral distortion), in fact, leads to the opposite sign of Δ. The explicit effect of ionized Na has been neglected or severely approximated in previous calculations, leading erroneously to positive values of Δ. This result indicates that local correlation and/or fluctuation effects are not responsible for suppressing the $\epsilon_{e_{g}}$ Fermi sheets. Either long-range fluctuations, outside the scope of DMFT, or strong deviations from the bulk structure/stoichiometry such as surfaces, defects, or vacancies, must therefore account for the non-observation of these pockets in ARPES experiments.

D. Acknowledgements

We would like to thank A. Liebsch for many helpful and interesting discussions and F. Lechermann for a critical reading of our manuscript and for sharing unpublished results. Research at NRL is funded by the Office of Naval Research. DP would like to acknowledge funding from a National Research Council Associateship.

1. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).
2. D. J. Singh, Phys. Rev. B 61, 13397 (2000).
3. M. Z. Hasan et al, Phys. Rev. Lett. 92, 246402 (2004).
4. D. Qian, L. Wray, D. Hsieh, L. Viciu, R. J. Cava, J. L. Luo, D. Wu, N. L. Wang, and M. Z. Hasan, Phys. Rev. Lett. 97, 186405 (2006).
5. H. -B. Yang et al, Phys. Rev. Lett. 95, 146401 (2005).
6. H. -B. Yang et al, Phys. Rev. Lett. 92, 246403 (2004).
7. M. D. Johannes, I. I. Mazin, D. J. Singh, and D. A. Papaconstantopoulos, PRL 93, 097005 (2004).
8. M. Mochizuki, Y. Yanase, and M. Ogata, Phys. Rev. Lett. 94, 147005 (2005).
9. H. Ikeda, Y. Nisikawa, and K. Yamada, J. Phys. Soc. Japan 73, 17 (2004).
10. K. Kuroki, Y. Tanaka, and R. Arita, Phys. Rev. Lett. 93, 077001 (2004).
11. H. Ishida, M. D. Johannes, and A. Liebsch, Phys. Rev. Lett. 94, 196401 (2005).
12. F. Lechermann, S. Biermann, and A. Georges, Prog. Theor. Phys. Suppl. 160, 233 (2005), and F. Lechermann, private communication.
13. C. A. Marianetti, K. Haule, and O. Parcollet, Phys. Rev. Lett. 99, 246404 (2007).
14. A. Liebsch and H. Ishitani, Euro. Phys. J. B 61, 405 (2008).
15. The same procedure used in Ref. 11 was used for $x=0,0.1$, and 0.5, yielding -151, -149, and -130 meV.
16. S. Landron and M. Lepetit, Phys. Rev. B 77, 125106 (2008).
17. S. Landron and M.B. Lepetit, Phys. Rev. B 74, 184507 (2006).
18. Similarly, it is the Coulomb potential of Mg or Ca that pushes down, respectively, the C π band in MgB$_2$ and the free-electron band in CaC$_6$, which in both cases is instrumental in raising the critical temperature.
19. G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
20. P. E. Blochl, Phys. Rev. B 50, 17953 (1994).
21. J. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
22. S. Zhou, M. Gao, H. Ding, P. A. Lee, and Z. Wang, Phys. Rev. Lett. 94, 206401 (2005).
23. M. M. Korshunov, I. Eremin, A. Shorikov, and V. I. Anisi-
24 T. Kroll, M. Knupfer, J. Geck, C. Hess, T. Schwieger, G. Krabbes, C. Sekar, and D. R. Batchelor, Phys. Rev. B 74, 115123 (2006).
25 F. C. Chou, J. H. Cho, and Y. S. Lee, Phys. Rev. B 70, 144526 (2004).
26 Q.-H. Wang, D. -H. Lee, and P. A. Lee, Phys. Rev. B 69, 092504 (2004).
27 W. Koshibae and S. Maekawa, Phys. Rev. Lett. 91, 257003 (2003).
28 M. D. Johannes and I. I. Mazin, Phys. Rev. B (in press) (2008).