High [OIII]/[CII] surface brightness ratios trace early starburst galaxies

L. Vallini1*, A. Ferrara1, A. Pallottini1, S. Carniani1, S. Gallerani1
1Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

Abstract: High [OIII]/[CII] surface brightness ratios trace early starburst galaxies

1 Introduction

The Atacama Large Millimeter Array (ALMA; Carilli & Walter 2013) opened a window on the characterization of the interstellar medium (ISM), star formation, and chemical enrichment in the Epoch of Reionization (EoR) as traced by far-infrared (FIR) lines. Among FIR lines, the fine-structure transition of the ionized carbon ([CII]) at 158μm is one of the most luminous (Stacey et al. 1991), with the [CII] line mostly tracing the cold neutral diffuse gas (Wolfire et al. 2003) and the dense photodissociation regions (PDRs; Hollenbach & Tielens 1999) associated with molecular clouds. After the first, pioneering, detections in 1998, [CII] has now been observed and often spatially resolved, in ~100 galaxies at 4 < z < 5.5 (ALPINE-Survey; Pentericci et al. 2016; Bradač et al. 2017; Matthee et al. 2017; Smit et al. 2018; Carniani et al. 2018a,b; Hashimoto et al. 2019; Fujiwara et al. 2019; Matthee et al. 2019; Balx et al. 2020; Cabra et al. 2021; Herrera-Camus et al. 2021). In addition to [CII], ALMA has also been used to probe the star formation histories (SFH) in these galaxies.

Joint [CII]-[OIII] line detections have a huge diagnostic potential as they yield complementary views of the ISM at early epochs. While [OIII] traces ionized gas in HII regions (Cormier et al. 2015), [CII] mainly arises from neutral/molecular gas. Notably, the [OIII]/[CII] luminosity ratio (L[OIII]/L[CII]) in galaxies at 7 < z < 9 (Inoue et al. 2016; Hashimoto et al. 2019; Harikane et al. 2020; Carniani et al. 2020) exceed the highest values observed in local dwarf galaxies (Madden et al. 2013; Cormier et al. 2015) which are known to be bright [OIII] emitters.

An increasing number of theoretical works (Vallini et al. 2013, 2015; Olsen et al. 2017; Pallottini et al. 2017; Katz et al. 2017; Lagache et al. 2018; Kohandel et al. 2019; Pallottini et al. 2019; Lupi et al. 2020; Arata et al. 2020), suggest that the prevailing physical conditions of the ISM were extreme (e.g. large densities, high turbulence, strong radiation fields) and common among early galaxies. These findings provide a solid basis to investigate the origin of the observed high L[OIII]/L[CII] ratios.

Possible explanations include high ionization parameters (U) (Katz et al. 2017; Moriwaki et al. 2018; Pallottini et al. 2019), high filling factor of ionized gas vs gas in dense PDRs (Harikane et al. 2020), intermittent starbursting phases in the star formation histories of the EoR galaxies (Arata et al. 2020; Lupi et al. 2020), and photoevaporation feedback (Vallini et al. 2017; Decataldo et al. 2017). As outlined by Ferrara et al. (2019) all these conditions can be produced in the ISM of a starburst galaxy, hence located above the Kennicutt-Schmidt (KS) relation. As a matter of fact, a source with star formation rate surface density (ΣSFR) exceeding the KS value at fixed gas surface density (Σgas), has a correspondingly larger U, and therefore larger ionized gas column density as compared to a galaxy with the same Σgas but lying...
on the KS relation. These conditions boost (quench) ionized (neutral) gas tracers (Vallini et al. 2020).

Apart from gas ionization conditions, [CII] and [OIII] line emission is also influenced by metallicity (Z): it has been shown that for Z < 0.1Z⊙ the [CII] luminosity drops significantly (e.g. Vallini et al. 2015; Pallottini et al. 2017; Olsen et al. 2017; Lagache et al. 2018). At the same time, low-Z galaxies are expected to feature brighter [OIII] luminosities (Cormier et al. 2015; Inoue et al. 2016; Vallini et al. 2017). Lower C/O ratios (Steidel et al. 2016; Arata et al. 2020), high densities (Harikane et al. 2020), and the compactness of EoR galaxies (Shibuya et al. 2015) can also partially explain large \(L_{\text{[OIII]}}/L_{\text{[CII]}} \) ratios.

However, the determination of \(L_{\text{[OIII]}}/L_{\text{[CII]}} \) ratios in early galaxies must be handled with caution. As noted by Carniani et al. (2020) the \(L_{\text{[OIII]}}/L_{\text{[CII]}} \) values of EoR sources are closer to those of local metal-poor dwarf galaxies when the [CII] flux loss is corrected for. The \(L_{\text{[OIII]}}/L_{\text{[CII]}} \) are in fact prone to overestimation because the [CII] emitting region of ALMA detected galaxies at high-z is \(\approx 2-3 \) times more extended (Carniani et al. 2018b; Fujimoto et al. 2019; Ginolfi et al. 2020; Fujimoto et al. 2020; Herrera-Camus et al. 2021) than the [OII]/rest-frame ultraviolet (UV) one. Flux losses due to the surface brightness dimming in [CII] can thus lead to a spurious underestimation of the actual [CII] luminosity (Kohandel et al. 2019).

Analyzing instead the [OIII]/[CII] surface brightness ratios (\(\Sigma_{\text{[OIII]}}/\Sigma_{\text{[CII]}} \)) can overcome this problem as the different extension of the line emitting regions are explicitly accounted for when computing the line surface brightness. Additionally, the \(\Sigma_{\text{[OIII]}}/\Sigma_{\text{[CII]}} \) ratios, along with their relation with \(\Sigma_{\text{SFR}} \), are more closely related to the local ISM conditions than the integrated \(L_{\text{[CII]}}/L_{\text{[OIII]}} \) ratios. For instance, the far-ultraviolet flux impinging upon PDRs – which is one of the fundamental the parameters affecting the line surface brightness from PDR and ionized gas layers (e.g. Ferrara et al. 2019; Vallini et al. 2020) – is more tightly related to the local SFR surface density (e.g. Herrera-Camus et al. 2015; Díaz-Santos et al. 2017; Rybak et al. 2020; McKinney et al. 2021) than to the total galaxy SFR.

The aim of this work is precisely that of exploiting \(\Sigma_{\text{[OIII]}}/\Sigma_{\text{[CII]}} \) ratios with the goal of determining the starforming and chemical enrichment conditions of the ISM in EoR galaxies, along with the physical mechanisms governing the [OII] and [CII] emission in early sources. To this aim, we build on the Ferrara et al. (2019); Vallini et al. (2020) models which provide a physically motivated framework to compute the expected FIR line surface brightness tracing both ionized and neutral gas as a function of the deviation from the KS relation (\(\kappa_2 \)), metallicity (Z), and gas density (n). The model also provides physically transparent interpretations of complex numerical simulations (Pallottini et al. 2019). The paper is organized as follows: in Sec. 2 we present the method and validate it on well-studied low-z sources; in Sec. 3 we apply the model to all the joint [CII]-[OIII] detections in EoR so far available and compare the results with state-of-art cosmological zoom-in simulations. Sec. 4 discusses the implications of the results; our conclusions are given in Sec. 5.

2 METHOD

To study the physical mechanisms determining the \(\Sigma_{\text{[OIII]}}/\Sigma_{\text{[CII]}} \) ratios we adopt the method presented in Vallini et al. (2020, V20 hereafter). In V20 the [CII] surface brightness (\(\Sigma_{\text{[CII]}} \)), the SFR surface density (\(\Sigma_{\text{SFR}} \)), and the surface brightness of a ionized gas tracer (\(\Sigma_{\text{line,ion}} \)), have been used to determine the (possible) deviation from the star formation law, the gas density and metallicity of galaxies in the EoR. V20 focused on \(\Sigma_{\text{line,ion}} = \Sigma_{\text{CII}} \), i.e. the UV CIII\(\lambda1909\) line, which is expected to be bright in the first galaxies (e.g. Stark et al. 2015). For the present analysis we apply the model to the [OIII]88\(\mu\)m surface brightness (\(\Sigma_{\text{[OIII]}} \)). In what follows we summarize the rationale of the procedure, the fundamental equations, and their extension to oxygen lines.

2.1 Rationale, fundamental equations, and extension to [OIII]

The V20 method is built upon the analytical model developed in Ferrara et al. (2019) that enables the computation of the line surface brightness from a gas slab with ionized/PDR column densities (\(N_{\text{PDR}}, N_i \), respectively) determined by the average gas density (n) of the H\text{II}/PDR environment, the dust-to-gas ratio, (\(D \propto Z \)), and ionisation parameter, \(U \). The latter, can be expressed in terms of observed quantities by deriving its relation (\(U \propto \Sigma_{\text{SFR}}/\Sigma_{\text{gas}}, \) see eqs 38 and 40 in Ferrara et al. 2019) with the star formation rate surface density (\(\Sigma_{\text{SFR}} \)) and the gas surface density (\(\Sigma_{\text{gas}} \)), which in turn are connected through the star formation law \(\Sigma_{\text{SFR}} = \kappa_2 \Sigma_{\text{gas}}^{1.4} \) (Kennicutt 1998). This leaves us with the \(\kappa_2 \) parameter, describing the burstiness of the galaxy.

V20 adopted a Markov Chain Monte Carlo (MCMC) algorithm to search for the posterior probability of the best-fit parameters (\(\kappa_2, Z, n \)) that reproduce the observed [CII] surface brightness (\(\Sigma_{\text{[CII]}}^{\text{obs}} \)) in \(L_\odot \text{ kpc}^{-2} \) units, CIII\(\lambda1909\) surface brightness (\(\Sigma_{\text{CII}}^{\text{obs}} \)), in \(L_\odot \text{ kpc}^{-2} \), and the deviation (\(\Delta_{\text{[CII]}}^{\text{obs}} \)) from the local \(\Sigma_{\text{CII}}/\Sigma_{\text{SFR}} \) relation (De Looze et al. 2014):

\[
\begin{align*}
\Sigma_{\text{[CII]}}^{\text{obs}} &= F_{\text{[CII]}}(\kappa_2, Z, n) \\
\Sigma_{\text{CII}} &= F_{\text{CII}}(\kappa_2, Z, n) \\
\Delta_{\text{[CII]}}^{\text{obs}} &= \Delta_{\text{[CII]}}(\kappa_2, Z, n)
\end{align*}
\]

In this work, instead of Eq. 2 we use \(F_{\text{[OIII]}}^{\text{ss}}(\kappa_2, Z, n) \), so that the input of the MCMC is the [OIII]88\(\mu\)m surface brightness (\(\Sigma_{\text{[OIII]}}^{\text{obs}} \)) instead of \(\Sigma_{\text{CII}}^{\text{obs}} \). To do so, we follow the same approach outlined in Eq. 29 and in Appendix B of Ferrara et al. (2019). Adopting the same notation used in V20, the \(F_{\text{[OIII]}}^{\text{ss}} \) flux (in erg s\(^{-1}\) cm\(^{-2}\)) excited by collision with free electrons in a gas slab of density \(n \) and ionized hydrogen column density \(N_i(\kappa_2, Z) \), can be written as a function of the cooling rate (\(\Lambda_{\text{[OIII]}}^{\text{ss}} \)) as:

\[
F_{\text{[OIII]}}^{\text{ss}} = n \Lambda_{\text{[OIII]}}^{\text{ss}} A_O Z N_i(\kappa_2, Z),
\]

In the previous equation the O\(^{2+}\) column density is approximated as \(N_{O^{2+}} \approx A_O Z N_i \) where we assume Asplund et al. (2009) abundance at solar metallicity (\(A_O \equiv O/H = 4.89 \times 10^{-4} \) or 12 + log(O/H) = 8.69\(^{+} \)). Moreover, we adopt a linear scaling with \(Z \) (which is in solar units).

\(^1\) The carbon abundance entering the [CII] emission calculation is \(A_C \equiv C/H = 2.69 \times 10^{-4} \) or 12 + log(C/H) = 8.43
The cooling rate \(\Lambda_{\text{OIII},88} = n_i A_{ij} E_{10} \) follows from the computation of the population of the \(^3P_1 \) level. To derive the cooling rate as a function of temperature, \(T \), and density \(n \), we use Pyneb (Luridiana et al. 2015). Such code solves the statistical equilibrium equation for the \(^{2+} \) ion including all the possible transitions between the \(^3P_0, ^3P_1, ^3P_2, ^1D_2, ^1S_0 \) levels:

\[
\sum_{j \neq i} n_j C_{ij}(T) + \sum_{j > i} n_j A_{ij} = \sum_{j < i} n_j n C_{ij}(T) + \sum_{k < i} n_i A_{ij}.
\]

where \(C_{ij} \) are the collisional excitation (de-excitation) rate coefficients, \(A_{ij} \) are the Einstein coefficients for spontaneous emission, and \(i = 0, \ldots, 4 \). The electron temperature in the ionized region is set to \(T = 10^4 \text{ K} \). This assumption is not very critical as the \(^3P_1 \rightarrow ^3P_0 \) \([\text{OIII}]88 \mu m \) line (and the other transition in the doublet, i.e. the \(^3P_2 \rightarrow ^3P_1 \) transition at 52\(\mu m \)) have similar excitation energy (\(T_{ex,88} \approx 160 \text{ K} \) and \(T_{ex,52} \approx 280 \text{ K} \), respectively) but they have different critical densities \(n_c \approx A_{ij}/C_{ij} \). For this reason the \([\text{OIII}]88 \mu m/\text{[OIII]}52 \mu m \) ratio is not very sensitive to the gas temperature for \(T > 10^4 \text{ K} \) (Palay et al. 2012).

\[\text{Eq. 1, 4, 3, and the observed values and errors, } \Sigma_{\text{OIII}} \pm \delta_{\text{OIII}}, \Sigma_{\text{SFR}} \pm \delta_{\text{SFR}} \text{ for each galaxy, allow us to search for the posterior probability of the best fit parameters exploiting a MCMC algorithm. As in V20, we use the open-source emcee Python implementation (Foreman-Mackey et al. 2013) of the Goodman Weare’s Affine Invariant MCMC Ensemble sampler (Goodman & Weare 2010) adopting flat priors in the range } 0.0 \leq \log n \leq 4.0, -2 \leq \log Z \leq 0.0 \text{ and } -1 \leq \log k_s \leq 2.5, \text{i.e. spanning all the physically reasonable parameter space.}^{2} \text{ We use the } \chi^2 \text{ likelihood function to determine the probability distribution function of the output parameters.}

\[2 \text{ We publicly release the code, called GLAM (Galaxy Line Analyzer with MCMC), on GitHub (https://lvallini.github.io/MCMC_galaxyline_analyzer/) along with Jupyter notebooks that exemplify how to derive the } (\kappa_s, Z, n) \text{ of any galaxy of interest for which } \Sigma_{\text{[OIII]}}, \Sigma_{\text{OIII}} \text{ and } \Sigma_{\text{SFR}} \text{ are measured.}

\[3 \text{ Only pixels attaining surface brightness levels of signal-to-noise } S/N > 5 \text{ were taken into consideration by De Looze et al. (2014).}

\[4 \text{ The result of this procedure is detailed in Appendix A.}

2.2 Model validation at low redshift

Before applying our model to galaxies in the EoR we validate it on a sub-sample of five spatially resolved sources extracted from the Dwarf Galaxy Survey (DGS, Madden et al. 2013). Dwarf galaxies with their bursty star formation activity, low-metallicity, and low stellar mass, are generally considered fair local analogues of high-z sources (e.g. Cormier et al. 2012; Ucci et al. 2019; Nammi et al. 2020). The five galaxies analyzed here are NGC 4449, NGC 4861, NGC 1569, NGC 2366, NGC 1705 for which we consider the spatially resolved HERSCHEL \(\Sigma_{\text{[OIII]}}, \Sigma_{\text{[OIII]}}, \) and GALEX FUV, and MIPS 24 \(\mu m \) measurements (converted to \(\Sigma_{\text{SFR}} \)) computed by De Looze et al. (2014) over pixels of physical size 114 \(\times \) 114 pc\(^2\). For each galaxy, we aggregated the pixels in 0.5 \(\times \) 0.5 px bins in the range \(\log(\Sigma_{\text{SFR}}/M_\odot \text{ yr}^{-1} \text{ kpc}^2) \approx [-3, 0.5] \), and associated to each of those bins the mean value of \(\Sigma_{\text{[OIII]}}, \Sigma_{\text{[OIII]}}, \) and \(\Sigma_{\text{SFR}} \). These values are then fed as input to the model to compute the likelihood distribution of the \((\kappa_s, Z, n) \) parameters over each bin.

In Figure 1, for each galaxy we compare the \((\kappa_s, Z, n) \) values with independent estimates in literature. The left panel compares \(\kappa_s \) values obtained from our model with those estimated as \(\kappa_s \approx \Sigma_{\text{gas}}/\Sigma_{\text{SFR}}, \) i.e. by inverting the KS relation. This is done by inferring the \(\Sigma_{\text{gas}} \) in each \(\Sigma_{\text{SFR}} \) bin from the \(\Sigma_{\text{SFR}} \) using \(L_{\text{[OIII]}} - M_{\text{gas}} \) conversion factor in the DGS (Madden et al. 2020). Note that this assumption is rather uncertain as the \(L_{\text{[OIII]}} - M_{\text{gas}} \) relation involves integrated, rather than areal, quantities. We find that our \(\kappa_s \) estimates for NGC 4449 and NGC 1569 are in agreement within errors with those inferred by using the Madden et al. (2020) conversion factor. However, for NGC 1705, NGC 4861, and NGC 2366, 50% of the bins show lower \(\kappa_s \) values with respect to those inferred from the \(L_{\text{[OIII]}} - M_{\text{gas}} \) conversion, falling at \(\approx 1.5 \sigma \) from the value estimated using the Madden et al. (2020) relation. This is likely because the errors on the \(\kappa_s \) derived applying the Madden et al. (2020) conversion consider only the uncertainty on the \(L_{\text{[OIII]}} - M_{\text{gas}} \) relation, thus they are likely underestimated. In fact, we do not include...
Figure 2. Cutouts of Iris (SERRA-04:46:4630), one the 20 galaxies extracted from the SERRA simulation (Pallottini et al. in prep. 2021). We also overplot the circular patches of $d = 100$ pc covering a square of 1.5 kpc edge, used for our spatially resolved analysis (see text for details). Upper row: gas surface density (left), [CII] surface brightness (center) at 30 pc resolution, and that obtained after convolving with $\theta = 0.2''$ beam (right). The half light radius is highlighted with a black circle. Bottom row: SFR surface density map (left), [OIII] surface brightness at 30 pc resolution, and that obtained after convolving with a $\theta = 0.1''$ beam (right). The half light radius is indicated with a black circle.

3 APPLYING THE MODEL IN THE EOR

More than 30 EoR galaxies have been so far detected, and often spatially resolved in [CII] (e.g. Carniani et al. 2018a; Matthee et al. 2019, for compilations) and nine very bright galaxies (see Table 1) at $z \approx 6 - 9$ have been detected in [OIII]. The list includes MACS1149-JD1 (Hashimoto et al. 2018), A2744-YD4 (Laporte et al. 2017b), MACS416-Y1 (Tamura et al. 2019), SXDF-NB1006-2 (Inoue et al. 2016), B14-65666 (Hashimoto et al. 2019), BDF3299 (Carniani et al. 2017), J0121 J0235, J1211 (Harikane et al. 2020). All of them have been detected also in [CII], albeit at fainter fluxes with respect to [OIII] (Carniani et al. 2020; Bakx et al. 2020; Hashimoto et al. 2019; Maiolino et al. 2015; Harikane et al. 2020), and therefore are suitable for use in our model.

From the line luminosity, and the sizes of the emitting regions (r_{CII}, r_{OIII}) obtained by Carniani et al. (2020), we compute the surface brightness of each line as $\Sigma_{\text{CII}} = L_{\text{CII}} / 2\pi r_{\text{CII}}^2$, and $\Sigma_{\text{OIII}} = L_{\text{OIII}} / 2\pi r_{\text{OIII}}^2$. Σ_{SFR} is inferred either from the UV-derived star formation rate (SFR_{UV}) or, for sources detected in continuum by ALMA (A2744-YD4, MACS0416-Y1, B14-65666, J1211 and J0217), from the UV+IR luminosity (SFR = SFR_{UV} + SFR_{IR}, Carniani et al. 2020) using the Kennicutt & Evans (2012) relations. In particular Carniani et al. (2020) derived the IR luminosity using a modified blackbody with dust temperature $T_d = 40$ K and emissivity index $\beta = 1.5$ to reproduce the observed continuum measurements. The area of the star forming region is taken equal to the UV emitting region, πr_{UV}^2, following Cormieri et al. (2019). We stress two important caveats: (i) there is growing evidence that a large fraction of the high-z galaxy population is characterized by a multi-component morphology (e.g. Maiolino et al. 2015; Cormieri et al. 2019). The electron and PDR densities from Cormieri et al. (2019) enclose the lower and upper bounds, respectively, of the density distribution derived with our method. This is expected as our n value represents the average density of the H II/PDR environment from which [OIII] and [CII] line emission arises.
Matthee et al. 2017; Jones et al. 2017; Carniani et al. 2018a; Hashimoto et al. 2019), and (ii) this often leads to significant spatial offsets (up to several kpc) between [CII], [OIII], dust continuum emission, and the star-forming regions traced by rest-frame UV light (Carniani et al. 2017; Bakx et al. 2020). Among the galaxies in our sample, B14-65666 and BDF3299 show a clear multi component morphology, MACS416-Y1 and BDF3299 have spatial offsets between [CII] and [OIII]. B14-65666 has been spatially resolved in two clumps (A and B) which are both detected in [CII], [OIII] and IR continuum (Hashimoto et al. 2019). This allow us to apply our model to B14-65666 and its two clumps separately. Doing the same for BDF3299 is impossible because the [CII] and the [OIII] are not co-spatial. Hence we warn the reader that for BDF3299 we use the global Σ[CII], Σ[OIII], and ΣSFR not considering the spatial displacement, an information that would require an additional parameter in our model. The mean Σ[CII]/Σ[OIII] ratio of the EoR sample is ≈ 10× higher than observed locally. As we will see in the next Section, this has strong implications for the predicted (κs, Z, n) values. Hence in the following we pause to discuss whether such high values may be affected by observational biases due to beam smearing (Kohandel et al. 2019, 2020) or if instead they are produced by extreme conditions in the ISM of early galaxies.

3.1 Possible biases affecting high Σ[CII]/Σ[OIII] values

To study the Σ[CII]/Σ[OIII] expectation from a theoretical point of view, we consider a sample of 20 galaxies at z = 7.7 extracted from SERRA\(^5\). The sample extracted from SERRA is built by selecting central galaxies with stellar mass in the range log(M*/M⊙) = 8.0 – 10.1, comparable to that spanned by the observed z = 7 – 9 sources in our EoR sample (Roberts-Borsani et al. 2020; Jones et al. 2020).

In Fig. 2 we show the cutouts of Iris\(^6\), the most extended source in our sample. To perform a fair comparison with the [OIII] and [CII] observations in low-z dwarf galaxies, we first derive Σ[CII], Σ[OIII], ΣSFR within circular patches of 100 pc diameter covering an area of 1.5 kpc×1.5 kpc centered on each galaxy (see white circles in Fig. 2). Considering that typical UV size of sources at z = 6 – 7 is ≈ 0.5 – 1.0 kpc (Shibuya et al. 2015, 2019) and that the [C II] half-light radius is typically r_{[C II]} ≈ 2.5 ± 1.0 (Carniani et al. 2018a; Matthee et al. 2019), the region covered by the patches is wide enough to

\(^5\) SERRA follows the evolution of galaxies down to z = 6 with mass (spatial) resolution of the order of 10\(^4\)M⊙ (30 pc at z ≈ 6).

\(^6\) Galaxies extracted from SERRA (“greenhouse” in Italian) are named after flower species.
include the ISM outskirsts (see Fig. 2). We also compute the global $\Sigma_{\text{CII}}, \Sigma_{\text{OIII}}, \Sigma_{\text{SFR}}$ values in two different ways: (i) considering the (native) 30 pc resolution galaxy maps from SERRA, and dividing the $[\text{OIII}] (\text{CII})$ luminosity of each galaxy at the half-light radius, by the corresponding area, (ii) convolving the $[\text{OIII}] (\text{CII})$ maps with a gaussian kernel of 0.1 arcsec (0.2 arcsec) resolution and following the same procedure. The resolutions chosen are equal to the lower limits for the beam adopted in the observations analyzed by Carniani et al. (2020). In both cases Σ_{SFR} is the mean value computed at the half light radius of the $[\text{OIII}]$ emission.

The results of this analysis are shown in Figure 3. There, we plot Σ_{CII} vs Σ_{OIII} values for the 100 pc patches, and the galaxy-averaged values computed both at the 30 pc SERRA resolution, and after convolution with the ALMA beam. The surface brightness of individual patches span a wide range of $\Sigma_{\text{OIII}} \approx 10^{-5} - 10^3 L_{\odot} \text{kpc}^{-2}$, a value similar to that observed in local dwarfs. These faint regions are characterized by low $\Sigma_{\text{SFR}} \approx 10^{-2} M_{\odot} \text{yr}^{-1} \text{kpc}^{-2}$. However, these patch properties are not common in the local dwarfs on sub-kpc scales. The luminosity of Σ_{CII} is thus coming closer to those derived in the high-z dwarf galaxies could potentially shift towards higher values if we compare the beam-averaged values of SERRA with the global values inferred from SERRA at Σ_{CII} arising from HII regions and dense PDR (Hollenbach & Tielens 1999; Vallini et al. 2015) associated with Giant Molecular Clouds (GMCs), in agreement with finding from other groups (Katz et al. 2017; Arata et al. 2020).

Overall, 50% (85%) of the $\Sigma_{\text{OIII}}, \Sigma_{\text{CII}}, \Sigma_{\text{SFR}}$ galaxy-averaged values, at native resolution, fall within the 1σ (2σ) dispersion of the patches. In particular, their distribution peaks around the luminosity-weighted mean of the patches. The beam-convolved data shifts towards slightly lower $\Sigma_{\text{CII}}, \Sigma_{\text{OIII}}$ and Σ_{SFR}. However, the $\Sigma_{\text{OIII}}/\Sigma_{\text{CII}}$ ratio remains constant as both the beam-convolved and the non-convolved values are $\approx 5 - 10 \times$ higher than those measured in the local dwarfs on sub-kpc scales. The luminosity weighted $\Sigma_{\text{OIII}}/\Sigma_{\text{CII}}$ values on global galactic scales in the dwarf galaxies could potentially shift towards higher values thus coming closer to those derived in the high-z sample. Nevertheless, from our simulation, we do not obtain any systematic shift of global values towards parameter regions that are not covered by existing patches hence, we do not expect EoR observations to be affected by spurious bias effects.

We conclude that high-z galaxies observed so far seem to show rather extreme ISM properties, namely high-Σ_{SFR}, high $\Sigma_{\text{OIII}}/\Sigma_{\text{CII}}$ values. This is expected as they have been selected to be the brightest sources at those redshifts. Finally, if we compare the beam-averaged values of SERRA with the observed ones, we find a very good agreement with the majority of the sources, even though MACS1149-JD1 ($z = 9.1$), and AZ744-YD4 ($z = 8.38$) have lower Σ_{CII} values than the global values inferred from SERRA at $z = 7.7$, and also higher Σ_{SFR} when compared with the patches falling in the same range of $\Sigma_{\text{OIII}}, \Sigma_{\text{CII}}$.

4 RESULTS

The $\Sigma_{\text{CII}}, \Sigma_{\text{OIII}}$and Σ_{SFR} (along with their uncertainties) in the EoR sample allow us to run our model and derive the posterior probability distributions of the free parameters. The results, along with their 1σ errors are gathered in Table 1, while in Appendix B we report all the corner plots showing the 2D posterior probability distributions of (κ_s, Z, n) for each of the galaxy/sub-component analyzed in this work. As a first step we focus on to the determination of the burstiness parameter κ_s. All the joint $[\text{OIII}]-\text{CII}$ emitters in the EoR sample have $1.0 < \log \kappa_s < 2.0$, meaning that all of them are starburst galaxies with upwards deviations from the KS relation. These values are also higher than $\log \kappa_s = 0.3$ found by V20 for COS3018, a LBG at $z = 6.6$, with the same method applied to CII and CIII emission data. While in principle using CII or $[\text{OIII}]$ should return consistent (κ_s, Z, n) values if applied on a galaxy detected in all the three lines, modulo variations with Z of the C/O abundance ratio, dust extinction effects on the CIII luminosity could decrease κ_s if the CIII value is underestimated.

The κ_s derived with our method can be used to constrain the (resolved) gas depletion time $t_{\text{dep}} \approx \Sigma_{\text{gas}}/\Sigma_{\text{SFR}} \times \kappa_s^{-2}(1/4)\Sigma_{\text{SFR}}^{1/4}$ of the galaxies. High κ_s values result in short depletion times, $t_{\text{dep}} = 6 - 49$ Myr. This is in line with resolved t_{dep} values derived in a handful of dusty star forming galaxies (DSFGs) at $z \approx 3.5 - 5$: $t_{\text{dep}} = 50 - 200$ Myr (Hodge et al. 2015), $t_{\text{dep}} = 1 - 30$ Myr (Rybak et al. 2020), and $t_{\text{dep}} = 12 - 357$ Myr (Rizzo et al. 2021). Our analysis thus suggests that joint CII-[OIII] emitters, despite not being as dusty as DSFGs, share comparable levels of star formation activity. They also seem to be characterized by ISM conditions favouring an efficient conversion of gas into stars, carving HII regions which shine conspicuously in $[\text{OIII}]$ emission.

4.1 Relative role of (κ_s, Z, n) on $\Sigma_{\text{OIII}}/\Sigma_{\text{CII}}$

To broadly quantify possible trends between (κ_s, Z, n) and the $\Sigma_{\text{OIII}}/\Sigma_{\text{CII}}$, in Fig 4 we present the best fit linear regression between $\log(\Sigma_{\text{OIII}}/\Sigma_{\text{CII}})$ and $\log \kappa_s, \log n, \log Z$, separately. For the burstiness parameter we find the following relation:

$$\log(\Sigma_{\text{OIII}}/\Sigma_{\text{CII}}) = \alpha \log \kappa_s + \beta$$

with $\alpha = 1.04 \pm 0.41$, and $\beta = -0.42 \pm 0.62$. The correlation is thus linear and can be explained by considering that higher starbursting conditions produce more extended ionized layers (Ferrara et al. 2019) in which $\text{OIII}88\mu m$ is excited. Eq. 6 can be readily used to estimate the global deviation from the KS relation of EoR galaxies once resolved ALMA OIII and CII observations are obtained.

For what concerns the gas density we obtain:

$$\log(\Sigma_{\text{OIII}}/\Sigma_{\text{CII}}) = \alpha \log n + \beta$$

with $\alpha = -0.38 \pm 0.21$ and $\beta = 2.00 \pm 0.52$. The negative slope can be explained in terms of the different critical density of $\text{OIII}88\mu m$ ($n_{c,\text{OIII}} = 500 \text{ cm}^{-3}$ for collisions with free electrons) and CII ($n_{c,\text{CII}} = 3300 \text{ cm}^{-3}$, for collisions with neutrals). For galaxies with $n_{c,\text{OIII}} < n < n_{c,\text{CII}}$ the OIII/CII ratio

7 The current work focuses on a simple situation where the slab geometry, a linear gas-to-dust ratio as a function of metallicity, and a uniform C/O abundance ratio are assumed. The derived parameters can thus have intrinsically larger uncertainties.
In order to perform the PCA we first normalize the variables to zero mean in logarithmic space:

\[x_1 = \log(\kappa_s) - \langle \log(\kappa_s) \rangle \]
\[x_2 = \log(n) - \langle \log(n) \rangle \]
\[x_3 = \log(Z) - \langle \log(Z) \rangle \]
\[x_4 = \log(\Sigma_{\text{[OIII]}}/\Sigma_{\text{[CII]}}) - \langle \log(\Sigma_{\text{[OIII]}}/\Sigma_{\text{[CII]}}) \rangle \]

and then we derive enough PCs to explain 99% of the sample variance. In our case we need three components (PC1, PC2, and PC3) which account for 69%, 28%, and 2% of the variance, respectively:

\[\text{PC1} = 0.04x_1 - 0.86x_2 - 0.06x_3 + 0.50x_4 \]
\[\text{PC2} = -0.60x_1 - 0.41x_2 - 0.10x_3 - 0.68x_4 \]
\[\text{PC3} = -0.80x_1 + 0.27x_2 - 0.04x_3 - 0.54x_4 \]

The first eigenvector, PC1, is dominated by the gas density while PC2 and PC3 are dominated by \(\kappa_s \). The metallicity is the least influential parameter in all the PCs. Given that PC3 accounts for only \(\sim 2\% \) of the variance it can be exploited for establishing an optimized view of the parameter space defined by \(\log(\kappa_s), \log(n), \log(Z) \) and \(\log(\Sigma_{\text{[OIII]}}/\Sigma_{\text{[CII]}}) \) thus giving:

\[\log \left(\frac{\Sigma_{\text{[OIII]}}}{\Sigma_{\text{[CII]}}} \right) = 0.16 + 1.5 \log(\kappa_s) - 0.5 \log n + 0.07 \log Z. \]

This relation is especially useful from a theoretical standpoint, as it combines in a single expression the dependence of the \([\text{OIII}] / [\text{CII}] \) ratio on the three main physical parameters of the problem. As a caveat we note that, although in general PCA is very effective in isolating correlations among parameters, both the sample size and the metallicity range spanned here are small. Hence, further analysis on larger samples would be beneficial. Alternatively, eqs. 6 and 7, can be adopted to infer \(\kappa_s \) or \(n \) from measured \(\Sigma_{\text{[OIII]}}/\Sigma_{\text{[CII]}} \) values in galaxies lacking information on all parameters.

To summarize, our analysis suggests that high \(\Sigma_{\text{[OIII]}}/\Sigma_{\text{[CII]}} \) values so far measured in high-z galaxies are likely produced by ongoing starbursts. Note that also several SED fitting analysis (e.g. Laporte et al. 2017b; Cormier et al. 2015) found significant correlation between \(\log(\Sigma_{\text{[OIII]}}/\Sigma_{\text{[CII]}}) \) and UV – for which our model assumption of a single gas slab could introduce a bias in the derivation of the trends – are indicated with a different symbol (square).

Figure 4. *Left panel:* Best-fit \(\log(\Sigma_{\text{[OIII]}}/\Sigma_{\text{[CII]}}) \)-\(\log(n) \) relation and its 1σ dispersion (black line and shaded area) for the high-z joint \([\text{CII}] - [\text{OIII}] \) sample analysed in this work. *Right panel:* Best fit \(\log(\Sigma_{\text{[OIII]}}/\Sigma_{\text{[CII]}}) \)-\(n_s \) relation, and its 1σ dispersion. The magenta vertical lines represent the critical densities of [OIII] (dotted) and [CII] (dashed) transitions. In both panels the two sources with spatial displacement between [CII], [OIII], and UV – for which our model assumption of a single gas slab could introduce a bias in the derivation of the trends – are indicated with a different symbol (square).

Figure 5. The \(\log(\Sigma_{\text{[OIII]}}/\Sigma_{\text{[CII]}}) \)-\(\log(Z/Z_\odot) \) scatter plot for the high-z sources analyzed in this work. The two sources with spatial displacement between [CII], [OIII], and UV are indicated with a different symbol (square).
we assumed a fixed O/C abundance. Recent simulations from Arata et al. (2020), suggest that the increasing trend can be ascribed to enhanced O/C ratios at low-Z (e.g. Steidel et al. 2016; Berg et al. 2019).

8 We caution the reader that in this work we have assumed a physically motivated analytical model for the [OIII]88µm and [OIII]52µm line emission, relating the [OIII]88µm/SFR ratio of a galaxy to the average electron density and metallicity in the H II regions. Due to the n_e-Z degeneracy of [OIII]88µm emissivity equations from Yang & Lidz (2020) they compute the resulting 2D posteriors, in the n_e-Z plane. They quote the 1σ lower bound on Z, and the 1σ upper bound on log n as the most robust results from their analysis, which we therefore consider in our comparison.

9 We convert 12+(O/H) to Z assuming 12+(O/H)⊙ = 8.69 (Asplund et al. 2009).

Figure 6. Comparison between metallicity (left panel) and gas density (right panel) derived in this work, and those obtained by Jones et al. (2020) (black diamonds) and Yang & Lidz (2020) (grey circles). The dotted line in the two panels represents the 1:1 relation. The two sources with spatial displacement between [CII], [OIII], and UV are indicated with a different symbol (square).
Table 1. List of the EoR galaxies analyzed in this work along with the input \(\Sigma_{\text{CII}} \), \(\Sigma_{\text{OIII}} \), \(\Sigma_{\text{SFR}} \) values and the \(Z \), \(\kappa_z \) from the MCMC. We have assumed a fiducial 0.3 dex uncertainty for the \(\Sigma_{\text{SFR}} \). References as follows: M15 Maioelio et al. (2015), I16 Inoue et al. (2016), L17 Laporte et al. (2017b), C17 Carniani et al. (2017), H18 Hashimoto et al. (2018), H19 Hashimoto et al. (2019), T19 Tamura et al. (2019), B20 Baxk et al. (2020), HK20 Harikane et al. (2020), C20 Carniani et al. (2020).

Name	\(z \)	\(\log(\frac{\Sigma_{\text{CII}}}{M_{\odot}\text{kpc}^{-2}}) \)	\(\log(\frac{\Sigma_{\text{OIII}}}{M_{\odot}\text{kpc}^{-2}}) \)	\(\log(\frac{\Sigma_{\text{SFR}}}{M_{\odot} \text{yr}^{-1}\text{kpc}^{-2}}) \)	\(\log(Z/Z_{\odot}) \)	\(\log(\kappa_z) \)	\(\log(\frac{n}{\text{cm}^{-3}}) \)	Refs
MACS1149-JD1	9.11	5.44±0.25	6.55±0.81	0.68	−0.66±0.41	0.96±0.13	0.88±0.55	H18, C20
A2744-YD4	8.38	5.62±0.33	7.49±0.24	1.40	−0.64±0.39	1.89±0.26	1.28±0.20	L17, C20
MACS0416-Y1	8.31	7.27±1.21	8.57±0.25	0.67	−0.35±0.17	1.63±0.12	2.98±0.27	T19, B20
SXDF-NB1006-2	7.21	6.31±0.24	8.15±0.22	0.84	−0.65±0.40	1.65±0.10	2.21±0.64	I16, C20
B14-65666	7.15	7.58±0.33	8.18±0.43	1.04	−0.51±0.28	1.31±0.18	2.92±0.36	H19
··· ClumpA		7.55±0.38	7.97±0.50	1.18	−0.59±0.53	1.23±0.21	2.88±0.37	H19
··· ClumpB		7.70±0.64	7.94±0.61	1.46	−0.63±0.37	1.26±0.24	2.98±0.26	H19
BDF3299	7.11	6.27±0.13	7.41±0.11	0.70	−0.76±0.52	1.12±0.08	1.93±0.41	M15, C17
J0217	6.20	7.19±0.21	8.47±0.27	1.28	−0.48±0.29	1.82±0.12	2.67±0.50	HK20
J0235	6.09	6.95±0.45	8.40±0.41	1.31	−0.59±0.38	1.88±0.13	2.53±0.56	HK20
J1211	6.02	7.17±0.23	8.23±0.35	1.25	−0.57±0.34	1.56±0.17	2.56±0.60	HK20

Acknowledgements

LV, AF, SC, AP, acknowledge support from the ERC Advanced Grant INTERSTELLAR H2020/740120 (PI: Ferrara). Any dissemination of results must reflect only the author’s view and that the Commission is not responsible for any use that may be made of the information it contains. Partial support from the Carl Friedrich von Siemens-Forschungspreis der Alexander von Humboldt-Stiftung Research Award is kindly acknowledged (AF). We acknowledge the CINECA award under the ISCRA initiative, for the availability of high performance computing resources and support from the Class B project SERRA HP10BPZ9F. We acknowledge use of Astropy (Astropy Collaboration et al. 2018), Matplotlib (Hunter 2007), NumPy (Harris et al. 2020), Scikit-image (van der Walt et al. 2014), Scipy (Virtanen et al. 2020), and Pandas (McKinney 2010). LV thank Laura Sommovigo for fruitful discussions. We thank the reviewer for useful suggestions that improved the quality of the paper.

Data Availability

We release the code, called GLAM (Galaxy Line Analyzer with MCMC) for the derivation of the \(\kappa_z \), \(n \) from \(\Sigma_{\text{OIII}}/\Sigma_{\text{CII}} \) observations on Github at: https://lvallini.github.io/MCMC_galaxyline_analyzer/. The SERRA data used in this article were accessed from the computational resources available to the Cosmology Group at Scuola Normale Superiore, Italy.

References

Anibali F., Tosi M., Pasquali A., Aloisi A., Mignoli M., Romano D., 2015, AJ, 150, 143
Arata S., Yajima H., Nagamine K., Abe M., Khochfar S., 2020, MNRAS, 498, 5541
Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARA&A, 47, 481
Table A1. Oxygen abundance of the five dwarf galaxies considered in this work.

Galaxy	12+(O/H)	Reference
NGC 4449	8.20 ± 0.11	Madden et al. (2013)
NGC 4861	7.89 ± 0.01	Madden et al. (2013)
NGC 1509	8.16 ± 0.10	McCormick et al. (2018)
NGC 2366	8.04 ± 0.11	James et al. (2016)
NGC 1705	7.91 ± 0.08	Annibali et al. (2015)

APPENDIX A: LOW-Z DWARF GALAXY SAMPLE: DATA AND PARAMETERS

Figure A1 shows the Σ_{SFR}-Σ_{CII} relation for the five dwarf galaxies considered in this work (grey points). For the five galaxies we highlight the Σ_{SFR} bins over which we compute the average Σ_{OIII} and Σ_{CII} (colored big points with error bars) used in our method validation at low-z. Furthermore, in Tab. A1, we list the metallicity values of dwarf galaxies from literature against which we test our validation. As a caveat note that different methods were used for deriving the metallicities referenced in Table A1. More precisely, James et al. (2016) derived the gas-phase metallicity with narrow-band images based on the R23 method which is offset from the direct-temperature method by 0.23 dex. Annibali et al. (2015) used the multi-object slit spectroscopy and obtain the gas-phase metallicity with the direct-temperature method. Madden et al. (2013) derived the metallicity using the R23 method, while McCormick et al. (2018) have obtained metallicity using the Pettini & Pagel (2004) method based on the $([\text{OIII}]/\text{H}$β)/([NII]/Hα) ratio.

APPENDIX B: THE POSTERIOR PROBABILITY DISTRIBUTIONS

In Figure B1 we show for each galaxy/sub-component the corner plot of the 2D likelihood distributions for three parameters (κ_s, Z, n) entering in our analytical models. Contours represent the 1σ, 2σ, 3σ confidence levels.
Figure B1. Corner plots with the results of the MCMC for all the galaxies analyzed in this work. The name of each galaxy is indicated with a label close to the best fit location (yellow star) in each plot.