CANCELLATION PROBLEM FOR
AS-REGULAR ALGEBRAS OF DIMENSION THREE

X. TANG, H. J. VENEGAS RAMÍREZ AND J.J. ZHANG

ABSTRACT. We study a noncommutative version of the Zariski cancellation
problem for some classes of connected graded Artin-Schelter regular algebras
of global dimension three.

INTRODUCTION

The classical Zariski cancellation problem for commutative polynomial rings has
a long history, see a very nice survey paper of Gupta [Gu3] written in 2015. A
noncommutative version of the Zariski cancellation problem was investigated in as
early as 1970s, see papers by Coleman-Enochs [CE] and Brewer-Rutter [BR], and
was re-introduced by Bell and the third-named author in 2017 in [BZ1]. During the
past few years several research groups have been making significant contributions
to this topic, see for example, [BZ1, BZ2, BY, CPWZ1, CPWZ2, CYZ1, CYZ2,
Ga, GKM, GWy, LY, LeWZ, LuWZ, LMZ, NTY, 131, 132, WZ]. Very recently,
Zariski cancellation problem was introduced for commutative Poisson algebras by
Gaddis-Wang [GW].

We are following the terminology introduced in [Gu3, BZ1]. Recall that an
algebra A is called cancellative if any algebra isomorphism

$$A[t] \cong B[t]$$

of polynomial extensions for some algebra B implies that

$$A \cong B.$$

The famous Zariski Cancellation Problem (abbreviated as ZCP) asks if

the commutative polynomial ring $k[x_1, \ldots, x_n]$ over a field k is cancellative

for $n \geq 1$, see [KT, Gu3, BZ1]. It is well-known that $k[x_1]$ is cancellative by a result
of Abhyankar-Eakin-Heinzer in 1972 [AEH] and that $k[x_1, x_2]$ is cancellative by a
result of Fujita in 1979 [Fu] and Miyanishi-Sugie in 1980 [MS] in characteristic zero
and by a result of Russell in 1981 [Ru] in positive characteristic. The ZCP for
$n \geq 3$ has been open for many years. A major breakthrough in this research area
is a remarkable result of Gupta in 2014 [Gu1, Gu2] which settled the ZCP negatively
in positive characteristic for $n \geq 3$. The ZCP in characteristic zero remains open
for $n \geq 3$. Examples of non-cancellative algebras were given by Hochster [Ho],
Danielewski [Da] and Gupta [Gu1, Gu2], and can be found in [LuWZ, Example
1.5].

2010 Mathematics Subject Classification. Primary 16P99, 16W99.

Key words and phrases. Zariski cancellation problem, Morita cancellation problem, Artin-
Schelter regular algebra, finite global dimension.
Our main goal is to study the ZCP for noncommutative noetherian connected graded Artin-Schelter (abbreviated as AS) regular algebras of global dimension three. AS-regular algebras are considered as a noncommutative analogue of the commutative polynomial rings. We refer to [La, LMZ, St] for the definition of an AS-regular algebra as well as that of the Auslander regularity and the Cohen-Macaulay property which will be used later in Proposition 0.5. It is well-known that the only AS-regular algebra of global dimension one is the polynomial ring \(k[x_1] \), which is cancellative by a classical result [AEH, Corollary 3.4]. Combining classical results in [Fu, MS] with [BZ1, Theorem 0.5], every AS-regular algebra of global dimension two (over a base field of characteristic zero) is cancellative. On the other hand, by the results of Gupta in [Gu1, Gu2], not every AS-regular algebra of global dimension three (or higher) is cancellative. Therefore it is natural and sensible to ask which AS-regular algebras of global dimension three (or higher) are cancellative. In [LMZ, Corollary 0.9], the authors showed that several classes of AS-regular algebras of global dimension three are cancellative. We say \(A \) is PI if it satisfies a polynomial identity. Our first result is

Theorem 0.1. Suppose \(\text{char } k = 0 \). Let \(A \) be a noetherian connected graded AS-regular algebra of global dimension three that is generated in degree 1. If \(A \) is not PI, then it is cancellative.

Theorem 0.1 covers [LMZ, Corollary 0.9]. For an algebra \(A \), let \(Z(A) \) denote the center of \(A \). Let \(\text{GKdim } A \) (respectively, \(\text{gldim } A \)) be the Gelfand-Kirillov dimension (respectively, the global dimension) of \(A \). For AS-regular algebras of higher global dimension, we have the following.

Theorem 0.2. Suppose \(\text{char } k = 0 \). Let \(A \) be a noetherian connected graded domain of finite global dimension that is generated in degree 1. Suppose that

(a) \(\text{GKdim } Z(A) \leq 1 \), and

(b) \(\text{gldim } A/(t) = \infty \) for every homogeneous central element \(t \) in \(Z(A) \) of positive degree.

Then \(A \) is cancellative.

We will also show a result similar to Theorem 0.2 for graded isolated singularities which have infinite global dimension, see Theorem 4.3. For a general noncommutative algebra we have the following conjecture, which extends both Theorems 0.1 and 0.2.

Conjecture 0.3. Let \(A \) be a noetherian finitely generated prime algebra.

1. If \(\text{GKdim } Z(A) \leq 1 \), then \(A \) is cancellative.
2. If \(\text{GKdim } A = 3 \) and \(A \) is not PI, then \(A \) is cancellative.

Cancellation property of Veronese subrings of skew polynomial rings was considered in [CYZ2]. We have the following improvement of Theorem 0.1 concerning the Veronese subrings which provides some evidence for Conjecture 0.3.

Corollary 0.4. Suppose \(\text{char } k = 0 \). Let \(A \) be a noetherian connected graded AS-regular algebra of global dimension three that is generated in degree 1. If \(A \) is not PI, then the \(d \)th Veronese subring \(A^{(d)} \) of \(A \) is cancellative for every \(d \geq 1 \).

The proofs of Theorems 0.1 and 0.2 are related to the following result that establishes that the center of the algebras in these two theorems is either \(k \) or \(k[t] \).
Proposition 0.5. Let A be a noetherian connected graded Auslander regular Cohen-Macaulay algebra. If $GKdim Z(A) \leq 1$, then $Z(A)$ is either k or $k[t]$.

When $Z(A) = k[t]$, we can use Theorem 1.5 which was proved in [LuWZ]. And we have a question along this line.

Question 0.6. Let A be a noetherian connected graded Auslander regular algebra. If $GKdim Z(A) = 2$, what can we say about the center $Z(A)$? For example, is $Z(A)$ always noetherian in this case?

As in the commutative case, it is usually difficult to determine whether or not an AS-regular algebra is cancellative. For example, we are unable to answer the following question.

Question 0.7. Let $q \in k \setminus \{0, 1\}$ be a root of unity. Is the skew polynomial ring of three variables $k_q[x_1, x_2, x_3]$ (or of odd number variables $k_q[x_1, x_2, \cdots, x_{2n+3}]$) cancellative?

When $q = 1$ and char $k = 0$, the above question is the classical ZCP which has been open for many years [Gu3]. Note that if $q = 1$ and char $k > 0$, then $k[x_1, \cdots, x_n]$ for $n \geq 3$ is not cancellative by [Gu1, Gu2]. Question 0.7 is a special case of [CYZ2, Question 1.5] which was stated for a larger class of rings, namely, for Veronese subrings of the skew polynomial rings. Surprisingly, if $q \in k \setminus \{0, 1\}$, then the skew polynomial ring of even number variables $k_q[x_1, \cdots, x_{2n}]$ is cancellative by [BZ1, Theorem 0.8(a)].

Several new methods were introduced to deal with the noncommutative version of the ZCP. For example, methods of discriminants and Makar-Limanov invariants were introduced and used in [BZ1]. In [LeWZ], the retractability and detectability were introduced to relate the cancellation property. In [LMZ], Nakayama automorphisms were used to show some classes of algebras are cancellative. In [LuWZ], Azumaya locus and P-discriminant methods were introduced to study the cancellation property. One should continue to look for new invariants and methods to handle the algebras given in Question 0.7.

The paper is organized as follows. Section 1 contains definitions and preliminaries. In Section 2, we prove some preliminary results, necessary for the last section. In Section 3, we present some lemmas related to cancellation problem. As an application we establish that the universal enveloping algebra of any 3-dimensional nonabelian Lie algebra is cancellative [Example 3.10]. Theorems 0.1, 0.2 and Corollary 0.4 are proven in Section 4.

1. Definitions and Preliminaries

We recall some definitions from [BZ1, LeWZ, LuWZ]. Let k be a base field that is algebraically closed. Objects in this paper are k-linear.

Definition 1.1. [BZ1, Definition 1.1] Let A be an algebra.

(1) We call A cancellative if any algebra isomorphism $A[t] \cong B[s]$ for some algebra B implies that $A \cong B$.

(2) We call A strongly cancellative if, for each $n \geq 1$, any algebra isomorphism $A[t_1, \cdots, t_n] \cong B[s_1, \cdots, s_n]$ for some algebra B implies that $A \cong B$.
For any algebra A, let $M(A)$ denote the category of right A-modules.

Definition 1.2. [LuWZ, Definition 1.2] Let A be an algebra.

1. We call A *m-cancellative* if any equivalence of abelian categories $M(A[t]) \cong M(B[s])$ for some algebra B implies that $M(A) \cong M(B)$.
2. We call A *strongly m-cancellative* if, for each $n \geq 1$, any equivalence of abelian categories $M(A[t_1, \cdots, t_n]) \cong M(B[s_1, \cdots, s_n])$ for some algebra B implies that $M(A) \cong M(B)$.

The letter m here stands for the word “Morita”.

This Morita version of the cancellation property is a natural generalization of the original Zariski cancellation property when we study noncommutative algebras.

Let Z be a commutative ring over the base field k, which is usually the center of a noncommutative algebra. We now recall the definition of P-discriminant for a property P. Let $\text{Spec } Z$ denote the prime spectrum of Z and $\text{MaxSpec}(Z) := \{m \mid m$ is a maximal ideal of $Z\}$ is the maximal spectrum of Z. For any $S \subseteq \text{Spec } Z$, $I(S)$ is the ideal of Z vanishing on S, namely,

$$I(S) = \bigcap_{p \in S} p.$$

For any algebra A, A^\times denotes the set of invertible elements in A. A property P considered in the following means a property defined on a class of algebras that is an invariant under algebra isomorphisms.

Definition 1.3. [LuWZ, Definition 2.3] Let A be an algebra, $Z := Z(A)$ be the center of A. Let P be a property defined for k-algebras (not necessarily a Morita invariant).

1. The *P-locus* of A is defined to be

$$L_P(A) := \{m \in \text{MaxSpec}(Z) \mid A/mA$ has the property $P\}.$$

2. The *P-discriminant set* of A is defined to be

$$D_P(A) := \text{MaxSpec}(Z) \setminus L_P(A).$$

3. The *P-discriminant ideal* of A is defined to be

$$I_P(A) := I(D_P(A)) \subseteq Z.$$

4. If $I_P(A)$ is a principal ideal of Z generated by $d \in Z$, then d is called the *P-discriminant* of A, denoted by $d_P(A)$. In this case $d_P(A)$ is unique up to an element in Z^\times.

5. Let C be a class of algebras over k. We say that P is *C-stable* if for every algebra A in C and every $n \geq 1$,

$$I_P(A \otimes k[t_1, \cdots, t_n]) = I_P(A) \otimes k[t_1, \cdots, t_n]$$

as an ideal of $Z \otimes k[t_1, \cdots, t_n]$. If C is a singleton $\{A\}$, we simply call P *A-stable*. If C is the whole collection of k-algebras with the center affine over k, we simply call P *stable*.
In general, neither $L_P(A)$ nor $D_P(A)$ is a subscheme of Spec $Z(A)$.

In this paper we will use another property that is closely related to the cancellative property.

Recall from the Morita theory that if $A' := A[t_1, \ldots, t_n]$ is Morita equivalent to $B' := B[s_1, \ldots, s_n]$, then there is an (A', B')-bimodule Ω that is invertible and induces naturally algebra isomorphisms $A' \cong \text{End}(\Omega_{B'})$ and $(B')^{\text{op}} \cong \text{End}(A')$ such that

$$Z(A') \cong \text{Hom}_{(A', B')}(\Omega, \Omega) \cong Z(B').$$

The above isomorphism is denoted by

$$(\text{E1.3.1}) \quad \omega : Z(A') \rightarrow Z(B').$$

The retractable property was introduced in [LeWZ, Definitions 2.1 and 2.5] and the Morita Z-retractability was introduced in [LuWZ, Definition 2.6].

Definition 1.4. Let A be an algebra.

1. [LeWZ, Definition 2.5(1)] We call A Z-retractable, if for any algebra B, any algebra isomorphism $\phi : A[t] \cong B[s]$ implies that $\phi(Z(A)) = Z(B)$. If further $\phi(A) = B$, we just say A is retractable.
2. [LeWZ, Definition 2.5(2)] We call A strongly Z-retractable, if for any algebra B and integer $n \geq 1$, any algebra isomorphism $\phi : A[t_1, \ldots, t_n] \cong B[s_1, \ldots, s_n]$ implies that $\phi(Z(A)) = Z(B)$. If further $\phi(A) = B$, we just say A is strongly retractable.
3. [LuWZ, Definition 2.6(3)] We call A m-Z-retractable if, for any algebra B, any equivalence of categories $M(A[t]) \cong M(B[s])$ implies that $\omega(Z(A)) = Z(B)$ where $\omega : Z(A)[t] \rightarrow Z(B)[s]$ is given as in $$(\text{E1.3.1}).$$
4. [LuWZ, Definition 2.6(4)] We call A strongly m-Z-retractable if, for any algebra B and any $n \geq 1$, any equivalence of categories $M(A[t_1, \ldots, t_n]) \cong M(B[s_1, \ldots, s_n])$ implies that $\omega(Z(A)) = Z(B)$ where

$$\omega : Z(A)[t_1, \ldots, t_n] \rightarrow Z(B)[s_1, \ldots, s_n]$$

is given as in $$(\text{E1.3.1}).$$

The following theorem was proved in [LuWZ, Corollary 2.11 and Lemma 3.5] which will be used several times in later sections.

Theorem 1.5. Let A be a noetherian algebra such that its center $Z(A)$ is $k[x]$. Let \mathcal{P} be a Morita invariant property (respectively, stable property) such that the \mathcal{P}-discriminant of A, denoted by d, is a nonzero non-invertible element in $Z(A)$. Then A is strongly m-Z-retractable (respectively, strongly Z-retractable) and strongly m-cancellative (respectively, strongly cancellative).

Proof. By [LuWZ, Lemma 5.1], \mathcal{P} is stable (when k is algebraically closed). The assertion follows from [LuWZ, Corollary 2.11] and [LuWZ, Lemma 3.5].

2. Results not involving cancellation properties

In this section we collect some results that do not directly involve cancellation properties, but are needed in later sections. In the next section, we collect some lemmas that are directly related to cancellation properties.

Lemma 2.1. Let k be a field of characteristic zero and $q \neq 1$ be a nonzero scalar in k. The following hold.
(1) Algebras \(\mathbb{k}(x, y)/(xy - yx) \), \(\mathbb{k}(x, y)/(xy - yx - 1) \) and \(\mathbb{k}(x, y)/(xy - yx - x) \) are pairwise not Morita equivalent.

(2) If \(q \) is not a root of unity, \(\mathbb{k}(x, y)/(xy - qyx) \) is not Morita equivalent to \(\mathbb{k}(x, y)/(xy - qy - 1) \).

(3) The Jordan algebra \(\mathbb{k}(x, y)/(xy - yx + x^2) \) is not Morita equivalent to \(\mathbb{k}(x, y)/(xy - yx + x^2 - 1) \).

(4) The Jordan algebra \(\mathbb{k}(x, y)/(xy - yx + x^2) \) is not Morita equivalent to \(\mathbb{k}(x, y)/(xy - yx + x^2 - x) \).

(5) The Jordan algebra \(\mathbb{k}(x, y)/(xy - yx + x^2) \) is not Morita equivalent to \(\mathbb{k}(x, y)/(xy - yx + x^2 - y) \).

Proof. (1) First of all \(\mathbb{k}(x, y)/(xy - yx) \) and \(\mathbb{k}(x, y)/(xy - yx - x) \) have global dimension two while \(\mathbb{k}(x, y)/(xy - yx - 1) \) has global dimension one. So either the algebra \(\mathbb{k}(x, y)/(xy - yx) \) or the algebra \(\mathbb{k}(x, y)/(xy - yx - x) \) is not Morita equivalent to \(\mathbb{k}(x, y)/(xy - yx - 1) \). Second, the centers of \(\mathbb{k}(x, y)/(xy - yx) \) and \(\mathbb{k}(x, y)/(xy - yx - x) \) are non-isomorphic, so these algebras are not Morita equivalent.

(2) Let \(A := \mathbb{k}(x, y)/(xy - qyx) \) and \(B := \mathbb{k}(x, y)/(xy - qy - 1) \). Suppose on the contrary that \(A \) is Morita equivalent to \(B \). Let \(J \) be the height one prime ideal of \(B \) generated by \((1 - q)xy - 1 \) such that \(B/J = \mathbb{k}[x \pm 1] \) (with the image of \(y \) being \((1 - q)^{-1}x^{-1} \)). Since \(A \) is Morita equivalent to \(B \), there is an ideal \(I \) of \(A \) such that \(A/I \) is Morita equivalent to \(\mathbb{k}[x \pm 1] \). Since every projective module over \(\mathbb{k}[x \pm 1] \) is free, \(A/I \) is a matrix algebra over \(\mathbb{k}[x \pm 1] \). When \(q \) is not a root of unity, the only height one prime ideals \(I \) of \(A \) are \((x) \) or \((y) \) \([\text{LG}]\) Example II.1.2\). In both cases, \(A/I \) is isomorphic to \(\mathbb{k}[x] \), which is not a matrix algebra over \(\mathbb{k}[x \pm 1] \). This yields a contradiction and therefore \(A \) is not Morita equivalent to \(B \).

(3) Let \(A := \mathbb{k}(x, y)/(xy - yx + x^2) \) and \(B := \mathbb{k}(x, y)/(xy - yx + x^2 - 1) \) by recycling notation from the proof of part (2) and suppose on the contrary that \(A \) is Morita equivalent to \(B \). Let \(J_k \) be the height one prime ideals of \(B \) generated by \((xy - yx, x \pm 1) \). Since \(A \) is Morita equivalent to \(B \), there is an ideal \(I_k \) of \(A \) such that \(A/I_k \) is Morita equivalent to \(B/J_k \). Since char \(\mathbb{k} = 0 \), \(A \) has only a single height one prime that is \((x) \) \([\text{Sh}]\) Theorem 2.4\]. This yields a contradiction. Therefore \(A \) is not Morita equivalent to \(B \).

(4) The assertion follows from part (3) because \(\mathbb{k}(x, y)/(xy - yx + x^2 - 1) \cong \mathbb{k}(x, y)/(xy - yx + x^2 - x) \).

(5) Let \(A := \mathbb{k}(x, y)/(xy - yx + x^2) \) and \(B := \mathbb{k}(x, y)/(xy - yx + x^2 - y) \) by recycling notation from the proof of part (2) and suppose on the contrary that \(A \) is Morita equivalent to \(B \). Let \(y' = y - x^2 \). Then the relation in \(B \) becomes \(xy' - y'x - x' = 0 \). Exchanging \(x \) and \(y' \), one sees that \(B \) is isomorphic to \(\mathbb{k}(x, y)/(xy - yx + x) \). Let \(I \) be the unique height one prime ideal of \(B \) generated by \(x \). Then \(B/I \cong \mathbb{k}[y] \). Since \(A \) and \(B \) are Morita equivalent, there is a height one prime \(J \) of \(A \). Since the only height one prime of \(A \) is \((x) \). Let \(J = (x) \), then \(J^2 \) corresponds to \(J^2 \). This implies that \(B/J^2 \cong \mathbb{k}(x, y)/(xy - yx + x, x^2) \) is Morita equivalent to \(A/J^2 \cong \mathbb{k}[x, y]/(x^2) \). Since the center is preserved by Morita equivalence, \(\mathbb{k}(x, y)/(x^2) \cong Z(\mathbb{k}(x, y)/(xy - yx + x, x^2)) \cong \mathbb{k} \) yielding a contradiction. Therefore \(A \) and \(B \) are not Morita equivalent.

Next we prove Proposition \([\text{Le}]\). To save some space, we refer the reader to \([\text{Le, Sh}]\) for the definitions of Auslander regularity and Cohen-Macaulay property. A nice result of \([\text{Le}]\) Corollary 6.2\] is that every AS-regular algebra of global dimension
three is Auslander regular and Cohen-Macaulay. A ring A is called stably free if, for every finitely generated projective A-module P, there exist integers n and m such that $P \oplus A^\oplus n \cong A^\oplus m$. Connected graded algebras are automatically stably free \cite{St}. An Ore domain A is called a maximal order if $A \subseteq B$ inside the quotient division ring $Q(A)$ of A for some ring B with the property that $aBb \subseteq A$, for some $a, b \in A \setminus \{0\}$, then $A = B$. The main result of \cite{St} is

Theorem 2.2. \cite{St} Theorem] Let A be a noetherian algebra that is Auslander regular, Cohen-Macaulay and stably free. Then, A is a domain and a maximal order in its quotient division ring $Q(A)$.

Lemma 2.3. Let Z be a connected graded domain of GKdimension one.

1. It is noetherian and finitely generated over \mathbb{k}.
2. If Z is normal, then Z is isomorphic to $\mathbb{k}[t]$.

Proof. Note that every domain of GKdimension one is commutative.

1. Since Z is connected graded and \mathbb{k} is algebraically closed, Z is a subring of $\mathbb{k}[t]$ where $\deg t = 1$. From this, it is easy to see that Z is finitely generated and noetherian.

2. First of all, $\text{Kdim } Z = \text{GKdim } Z = 1$. By part (1), Z is noetherian. Every noetherian normal domain Z of Krull dimension one or zero is regular (namely, has finite global dimension). So Z is regular of global dimension no more than one. Since Z is connected graded, its graded maximal ideal is principal, which implies that $Z \cong \mathbb{k}[t]$.

Note that a noetherian commutative maximal order is a normal domain.

Lemma 2.4. Let A be a domain that is a maximal order.

1. Its center $Z(A)$ is a maximal order in the field of fractions $Q(Z(A))$.
2. If A is connected graded and $\text{GKdim } Z(A) \leq 1$, then $Z(A)$ is either \mathbb{k} or $\mathbb{k}[t]$.

Proof. (1) Let B be a subring of $Q(Z(A))$ containing $Z(A)$ such that $aBb \subseteq Z(A)$ for some $a, b \in Z(A)$. Let $C = AB$ the subring generated by A and B. Then $aCb \subseteq AZ(A) = A$. Since A is a maximal order, $C = A$. As a consequence, $B = Z(A)$. The assertion follows.

(2) The assertion follows from part (1) and Lemma 2.3.

Note that if $\text{GKdim } Z(A) = 2$, then $Z(A)$ may not be regular. For example let $A = k_{p_{ij}}[x_1, x_2, x_3, x_4]$ where

$$p_{ij} = \begin{cases} 1 & (i, j) = (1, 2), \\ -1 & (i, j) = (1, 3), (2, 3), (1, 4), (2, 4), \\ q & (i, j) = (3, 4) \end{cases}$$

where q is not a root of unity. Then it is easy to see that $Z(A)$ is the second Veronese subring $k[x_1, x_2]^{(2)}$ of the commutative polynomial ring. Hence $Z(A)$ is not regular.

Lemma 2.5. Let A be a connected graded domain and t be a central element in A of positive degree d.

1. For every $\alpha \in \mathbb{k}^\times$, $A/(t - \alpha)$ contains $(A[t^{-1}])_0$ as a subalgebra.
Suppose that A is generated in degree 1 and that $d \neq 0$ in k. Then

$$\text{gldim } A/(t - \alpha) = \text{gldim}(A[t^{-1}]_0).$$

(3) Suppose that A is generated in degree 1 and that $d \neq 0$ in k. If A has finite global dimension, then so does $A/(t - \alpha)$ for all $\alpha \in k^\times$.

Proof. (1) Let T denote the dth Veronese subalgebra of A where $d = \deg t$. So, in T, t can be treated as an element of degree 1. Now

$$T/(t - \alpha) \cong T/(\alpha^{-1}t - 1) \cong (T[(\alpha^{-1}t)^{-1}])_0 \cong (T[t^{-1}])_0 \cong (A[t^{-1}])_0$$

where the second \cong is due to [RSS, Lemma 2.1].

Note that $A/(t - \alpha)$ is a $\mathbb{Z}/(d)$-graded algebra with the degree 0 component being $T/(t - \alpha)$. By (E2.5.1) $A/(t - \alpha)$ contains $(A[t^{-1}])_0$ as a subalgebra.

(2) Since A is generated in degree 1, $A/(t - \alpha)$ is a strongly $\mathbb{Z}/(d)$-graded algebra with the degree 0 component being $(A[t^{-1}])_0$. Since we assume $d \neq 0$ in k, by [Yi, Lemma 2.2(iii)],

$$\text{gldim } A/(t - \alpha) = \text{gldim}(A[t^{-1}])_0.$$

(3) By part (2) it suffices to show that $(A[t^{-1}])_0$ has finite global dimension. Since A has finite global dimension, A has finite graded global dimension. Then $A[t^{-1}]$ has finite graded global dimension. As a consequence, $(A[t^{-1}])_0$ has finite global dimension as required. \qed

To conclude this section we list two well-known results.

Lemma 2.6. [LPWZ, Lemma 7.6] Let A be a connected graded algebra and t be a central element of degree 1. If $A/(t)$ has finite global dimension, then so does A.

Lemma 2.7. [SmZ, Corollary 2] Let A be a finitely generated Ore domain that is not PI. Let Z be the center of A. Then

$$\text{GKdim } Z \leq \text{GKdim } A - 2.$$

3. SOME CANCELLATION LEMMAS

First we recall a classical result concerning the cancellation property.

Lemma 3.1. [AEH, Corollary 3.4] Let A be an affine domain of GKdimension at most one.

1. If $A = k$, then it is trivially strongly retractable and strongly cancellative.
2. If $A = k[t]$, then it is strongly cancellative.
3. If $A \not\cong k[t]$, then it is strongly retractable, and consequently, strongly cancellative.

The following lemma concerns cancellation properties for a tensor product $A \otimes R$ where R is commutative.

Lemma 3.2. Let A be an algebra with trivial center and let R be a commutative algebra that is cancellative (respectively, strongly cancellative). Then the tensor product $A \otimes R$ is both cancellative (respectively, strongly cancellative) and m-cancellable (respectively, strongly m-cancellable).
Proof: The proofs for the assertions without the word “strongly” are similar by taking \(n = 1 \) in the following proof. So we only prove the “strongly” version.

First we show that \(A \otimes R \) is strongly cancellative assuming that \(R \) is strongly cancellative. Let \(B \) be an algebra such that

\[
\phi : (A \otimes R)[t_1, \ldots, t_n] \xrightarrow{\sim} B[s_1, \ldots, s_n]
\]

is an isomorphism of algebras. Taking the center on both sides, we obtain an isomorphism

\[
\phi_Z : R[t_1, \ldots, t_n] \xrightarrow{\sim} Z(B)[s_1, \ldots, s_n]
\]

where \(\phi_Z \) is a restriction of \(\phi \) on the centers. Since \(R \) is strongly cancellative, \(R \cong Z(B) \). Let

\[
f_i = \phi_Z^{-1}(s_i) = \phi^{-1}(s_i) \in R[t_1, \ldots, t_n]
\]

for \(i = 1, \ldots, n \). Let \(I \) be the ideal of \(Z(B)[s_1, \ldots, s_n] \) generated by \(\{s_i\}^n_{i=1} \). Then

\[
J := \phi^{-1}(I) \text{ is an ideal of } R[t_1, \ldots, t_n] \text{ and}
\]

\[
A \otimes (R[t_1, \ldots, t_n]/J) \cong B \otimes (k[s_1, \ldots, s_n]/I) \cong B.
\]

Taking the center of the above isomorphism and using the fact that \(Z(A) = k \), we have

\[
R[t_1, \ldots, t_n]/J \cong Z(B) \cong R.
\]

Therefore

\[
B \cong A \otimes (R[t_1, \ldots, t_n]/J) \cong A \otimes R
\]

as required.

Next we show that if \(R \) is strongly cancellative, then \(A \otimes R \) is strongly m-cancellative. Let \(B \) be an algebra such that

\[
A' := (A \otimes R)[t_1, \ldots, t_n] \text{ is Morita equivalent to } B[s_1, \ldots, s_n] =: B'.
\]

By [LuWZ Lemma 2.1(3)], there is an invertible \((A', B')\)-bimodule \(\Omega \) and an isomorphism

\[
\omega : Z(A') = R[t_1, \ldots, t_n] \xrightarrow{\sim} Z(B)[s_1, \ldots, s_n] = Z(B')
\]

such that the left action of \(x \in Z(A') \) on \(\Omega \) agrees with the right action of \(\omega(x) \in Z(B') \) on \(\Omega \). Since \(R \) is strongly cancellative, \(R \cong Z(B) \). Let

\[
f_i = \omega^{-1}(s_i) \in R[t_1, \ldots, t_n]
\]

for \(i = 1, \ldots, n \). Let \(I \) be the ideal of \(Z(B)[s_1, \ldots, s_n] \) generated by \(\{s_i\}^n_{i=1} \). Then

\[
J := \omega^{-1}(I) \text{ is an ideal of } R[t_1, \ldots, t_n], \text{ and by [LuWZ Lemma 2.1(5)],}
\]

\[
A \otimes (R[t_1, \ldots, t_n]/J) \text{ is Morita equivalent to } B \otimes (k[s_1, \ldots, s_n]/I) \cong B.
\]

Taking the center of the above Morita equivalence and using the fact that \(Z(A) = k \), we have

\[
R[t_1, \ldots, t_n]/J \cong Z(B) \cong R.
\]

Hence

\[
A \otimes (R[t_1, \ldots, t_n]/J) \cong A \otimes R.
\]

Therefore

\[
A \otimes R \text{ is Morita equivalent to } B
\]

as required. \(\square \)
Corollary 3.3. Let \(\mathbb{k} \) be of characteristic zero and \(A \) be a commutative algebra. Let \(\delta \) be a locally nilpotent derivation of \(A \) with \(\delta(y) = 1 \) for some \(y \in A \). Suppose that \(\ker(\delta) \) is cancellative (respectively, strongly cancellative). Then \(A[x; \delta] \) is cancellative (respectively, strongly cancellative).

Proof. Let \(C = \ker(\delta) \). By [MR, Lemma 14.6.4] \(A[x; \delta] \cong C \otimes A_1(\mathbb{k}) \). By hypothesis, then \(C \) is cancellative and \(Z(A_1(\mathbb{k})) = \mathbb{k} \). The assertion follows from Lemma 3.2. \(\Box \)

With a slight modification to the previous lemma we can consider the case in which \(R \) is a (noncommutative) \(\mathbb{Z} \)-retractable algebra.

Lemma 3.4. Let \(A \) be an algebra with trivial center and let \(R \) be a \(\mathbb{Z} \)-retractable algebra (respectively, strongly \(\mathbb{Z} \)-retractable). Then the tensor product \(A \otimes R \) is \(\mathbb{Z} \)-retractable (respectively, strongly \(\mathbb{Z} \)-retractable).

The proof of Lemma 3.4 is similar to the proof of Lemma 3.2, so it is omitted.

Lemma 3.5. Let \(A \) be a noetherian algebra such that

(i) its center \(Z(A) \) is the commutative polynomial ring \(\mathbb{k}[t] \) for some \(t \in A \), and

(ii) \(t \) is in the ideal \([A, A] \) of \(A \) generated by the commutators and \([A, A] \neq A \).

Then \(A \) is strongly \(\mathbb{Z} \)-retractable and strongly cancellative.

Proof. Let \(\mathcal{P} \) be the property that the commutators generate the whole algebra. By (ii) the property \(\mathcal{P} \) fails for the maximal ideal \((t) \) in \(\mathbb{k}[t] \) since \([\overline{A}, \overline{A}] \neq \overline{A} \) where \(\overline{A} = A/(t) \). By (ii) again, \((t - \alpha) + [A, A] = A \) for all \(\alpha \neq 0 \). This means that the property \(\mathcal{P} \) holds for the maximal ideal \((t - \alpha) \) in \(\mathbb{k}[t] \) for all \(\alpha \neq 0 \). Thus the \(\mathcal{P} \)-discriminant of \(A \) is \(t \). The assertion follows from Theorem 1.5. \(\Box \)

We refer to [LeWZ, LuWZ] for the definition of \(\text{LND}_H^\mathbb{Z} \)-rigid in the proof of the following lemma.

Lemma 3.6. Let \(A \) be a noetherian domain with \(Z(A) = \mathbb{k}[t] \). Let \(\mathcal{P} \) be a property such that the \(\mathcal{P} \)-discriminant is \(t \).

1. \(A \) is strongly \(\mathbb{Z} \)-retractable and strongly cancellative.
2. If \(\mathcal{P} \) is a Morita invariant, then \(A \) is strongly \(\mathbb{Z} \)-retractable, strongly \(m \)-\(\mathbb{Z} \)-retractable, strongly cancellative and strongly \(m \)-cancellative.

Proof. We only prove (2).

Since \(t \) is an effective element in \(\mathbb{k}[t] \) by [LeWZ, Example 2.8]. By [LuWZ, Theorem 2.10], \(Z \) is strongly \(\text{LND}_H^\mathbb{Z} \)-rigid. By [LuWZ, Proposition 2.7(2)], \(A \) is both strongly \(Z \)-retractable and strongly \(m \)-\(Z \)-retractable. Since \(A \) is noetherian, it is Hopfian in the sense of [LeWZ, Definition 3.4]. By [LuWZ, Lemmas 3.4 and 3.6], \(A \) is strongly cancellative and strongly \(m \)-cancellative. \(\Box \)

Next we consider the connected graded case.

Lemma 3.7. Let \(A \) be a noetherian connected graded domain.
(1) If \(\text{GKdim}(A) \leq 1 \) and \(Z(A) \) is not isomorphic to \(\mathbb{k}[t] \), then \(A \) is strongly \(Z \)-retractable, strongly \(m \)-\(Z \)-retractable, strongly cancellative and strongly \(m \)-cancellative.

For the following parts, we assume that \(A \) is generated in degree 1, that \(Z(A) \cong \mathbb{k}[t] \) and that \(\text{char } \mathbb{k} = 0 \).

(2) If \(\text{gldim}(A/t) = \infty \) and \(\text{gldim}(A/(t-1)) < \infty \), then \(A \) is strongly \(Z \)-retractable, strongly \(m \)-\(Z \)-retractable, strongly cancellative and strongly \(m \)-cancellative.

(3) Suppose the global dimension of \(A \) is finite and \(\text{gldim}(A/t) = \infty \). Then \(A \) is strongly \(Z \)-retractable, strongly \(m \)-\(Z \)-retractable, strongly cancellative and strongly \(m \)-cancellative.

(4) Suppose \(A \) is AS-regular and \(\text{gldim}(A/t) = \infty \). Then \(A \) is strongly \(Z \)-retractable, strongly \(m \)-\(Z \)-retractable, strongly cancellative and strongly \(m \)-cancellative.

Proof. (1) By Lemma 2.3(1), \(Z \) is an affine domain. By Lemma 3.1, \(Z \) is strongly retractable. By taking \(P \) to be a trivial property, say being an algebra, the \(P \)-discriminant is 1. By [LeWZ, Remark 3.7(6)], \(Z \) is strongly LND\(H \)-rigid. By [LuWZ, Proposition 2.7(2)], \(A \) is both strongly \(Z \)-retractable and strongly \(m \)-\(Z \)-retractable. Since \(A \) is noetherian, it is Hopfian in the sense of [LeWZ, Definition 3.4]. By [LuWZ, Lemmas 3.4 and 3.6], \(A \) is strongly cancellative and strongly \(m \)-cancellative.

(2) Let \(P \) be the property of having finite global dimension. By Lemma 2.5, for every \(0 \neq \alpha \in \mathbb{k} \),
\[
\text{gldim}(A/(t-\alpha)) = \text{gldim}(A[t^{-1}])_0 = \text{gldim}(A/(t-1)) < \infty
\]
and by the hypothesis, we have that
\[
\text{gldim}(A/t) = \infty.
\]
Hence \(P \)-discriminant is \(t \). The assertion follows from Lemma 3.6(2).

(3) By Part (2), it suffices to show that \(\text{gldim}(A/(t-1)) < \infty \). Since \(A \) has finite global dimension, so does \(A[t^{-1}] \). Then \(A[t^{-1}] \) has finite graded global dimension. Since \(A \) is generated in degree 1, \(A[t^{-1}] \) is strongly \(Z \)-graded. Hence \(\text{gldim}(A[t^{-1}])_0 \) is finite. By Lemma 2.5
\[
\text{gldim}(A/(t-1)) = \text{gldim}(A[t^{-1}])_0 < \infty
\]
as required.

(4) The assertion follows from part (3) and the fact that an AS-regular algebra has finite global dimension. \(\square \)

By Lemma 3.7(1), the case of \(\text{GKdim}(Z(A)) = 1 \) is covered except for \(Z(A) = \mathbb{k}[t] \).

Lemma 3.8. Let \(A \) be a noetherian connected graded algebra.

(1) Suppose \(Z(A) = \mathbb{k}[t] \) for some homogeneous element \(t \) of positive degree. If \((A[t^{-1}])_0 \) does not have any nonzero finite dimensional left module, then \(A \) is strongly \(Z \)-retractable, strongly \(m \)-\(Z \)-retractable, strongly cancellative and strongly \(m \)-cancellative.

(2) Suppose \(B \) is a connected graded subalgebra of \(A \) satisfying
(i) \(Z(B) = \mathbb{k}[t] \) for some homogeneous element \(t \in B \) of positive degree.
(ii) \(Z(A) \cap Z(B) \neq \mathbb{k} \).
(iii) \((A[t^{-d}])_0 \) does not have any nonzero finite dimensional left module for some \(t^d \in Z(B) \cap Z(A) \), where \(d \) is a positive integer.

(iv) \(A_B \) is finitely generated and \(B \) is noetherian.

(v) \(A = B \oplus C \) as a right \(B \)-module.

Then \(B \) is strongly \(Z \)-retractable, strongly \(m \)-\(Z \)-retractable, strongly cancellative and strongly \(m \)-cancellative.

Proof. (1) Let \(\mathcal{P} \) be the property of not having nonzero finite dimensional left module over an algebra. Since \(A \) is connected graded, \(\mathcal{P} \) fails for \(A/(t) \). We claim that \(\mathcal{P} \) holds for \(A/(t-\alpha) \) for all \(\alpha \in k^\times \). By the hypothesis, \((A[t^{-1}])_0 \) does not have any nonzero finite dimensional left module. Since \(A/(t-\alpha) \) contains \((A[t^{-1}])_0 \) by Lemma 2.5(1), \(A/(t-\alpha) \) does not have any nonzero finite dimensional left module. So the claim holds. Therefore the \(\mathcal{P} \)-discriminant of \(A \) is \(t \). Now the assertion follows from Lemma 3.8(2).

(2) By part (1) it suffices to show that \((B[t^{-1}])_0 \) does not have any nonzero finite dimensional left module. Note that \(B[t^{-1}] = B[t^{-d}] \). So it is equivalent to show that \((B[t^{-d}])_0 \) does not have any nonzero finite dimensional left module. We prove this claim by contradiction. Suppose otherwise \(M \) is a nonzero finite dimensional left \((B[t^{-d}])_0 \)-module. By hypotheses (iii)-(iv) and by inverting \(t^d \), \(A[t^{-d}] = C[t^{-d}] \oplus B[t^{-d}] \) and \(A[t^{-d}] \) is a finitely generated right \(B[t^{-d}] \)-module. Then \((A[t^{-d}])_0 = (C[t^{-d}])_0 \oplus (B[t^{-d}])_0 \) and \(A[t^{-d}]_0 \) is a finitely generated right \((B[t^{-d}])_0 \)-module. Hence \((A[t^{-d}])_0 \subset (B[t^{-d}])_0 \) \(M \) is a nonzero finite dimensional left \((A[t^{-d}])_0 \)-module. This yields a contradiction. At this point, we have proved that \((B[t^{-1}])_0 \) does not have any nonzero finite dimensional left module. The assertion follows from part (1). \(\square \)

Lemma 3.8 can be applied to many examples. Here is an easy one.

Example 3.9. Suppose \(\text{char } k = 0 \). Let \(A \) be a generic 3-dimensional Sklyanin algebra generated by \(\{x, y, z\} \), see [GKMW] Introduction for the relations. Then \(Z(A) = k[g] \) where \(g \) is a homogeneous element of degree three. Let \(G \) be any finite group of graded algebra automorphisms of \(A \). Let \(B \) be the fixed subring \(A^G \). Then we claim that \(B \) is strongly \(Z \)-retractable, strongly \(m \)-\(Z \)-retractable, strongly cancellative and strongly \(m \)-cancellative. It is easy to see that hypotheses (ii), (iii), (iv) and (v) in Lemma 3.8(2) hold. If hypothesis (i) in Lemma 3.8(2) fails, then the claim follows by Lemma 3.7(1). If hypothesis (i) in Lemma 3.8(2) holds, then the claim follows by Lemma 3.8(2).

To conclude this section we give an example of ungraded algebras that are cancellative.

Example 3.10. Suppose \(\text{char } k = 0 \). Let \(A \) be the universal enveloping algebra \(U(\mathfrak{g}) \) where \(\mathfrak{g} \) is a 3-dimensional non-abelian Lie algebra. One can use Bianchi classification to list all 3-dimensional non-abelian Lie algebras [La] Section 1.4 as follows.

1. \(\mathfrak{g} = \mathfrak{sl}_2 \).
2. \(\mathfrak{g} \) is the Heisenberg Lie algebra
3. \(\mathfrak{g} = L \oplus kz \) where \(L \) is the 2-dimensional non-abelian Lie algebra.
4. \(\mathfrak{g} \) has a basis \(\{e, f, g\} \) and subject to the following relations

\[
[e, f] = 0, \quad [e, g] = e, \quad [f, g] = af
\]
where $\alpha \neq 0$.

(5) g has a basis $\{e, f, g\}$ and subject to the following relations

$$[e, f] = 0, \quad [e, g] = e + \beta f, \quad [f, g] = f$$

where $\beta \neq 0$.

For each class, one can verify that A is strongly cancellative.

(1) See [LuWZ, Example 5.11].

(2) The universal enveloping algebra of the Heisenberg Lie algebra has the center $Z = k[t]$ with t in the ideal generated by the commutators, then the assertion follows from Lemma 3.5

(3) In this case $U(g) = U(L) \otimes k[z]$ with $Z(U(L)) = k$. The assertion follows from Lemma 3.2

(4,5) In both cases, one can write $A := U(g)$ as an Ore extension $k[e, f][g; \delta]$ for some derivation δ of the commutative polynomial ring $k[e, f]$. If the center of A is trivial, then A is strongly cancellative by [BZ1, Proposition 1.3]. For the rest of the proof we assume that $Z(A) \neq k$. Note that the derivation δ of $k[e, f]$ is determined by

\[(E3.10.1) \quad \delta : \quad e \mapsto -e, \quad f \mapsto -\alpha f\]

in part (4), and by

\[(E3.10.2) \quad \delta : \quad e \mapsto -(e + \beta f), \quad f \mapsto -f\]

in part (5). By an easy calculation, one sees that

$$Z(A) = \{x \in k[e, f] \mid \delta(x) = 0\}$$

which is a graded subring of $k[e, f]$ (which is inside A). Since A contains $U(L)$ as a subalgebra where L is the 2-dimensional non-abelian Lie algebra, A is not PI. By Lemma 2.7, GKdim $Z(A) \leq 1$. Since $Z(A) \neq k$ and k is algebraically closed, GKdim $Z(A) \geq 1$. Thus GKdim $Z(A) = 1$. By Lemma 2.3, $Z(A)$ is a domain that is finitely generated over k. If $Z(A)$ is not isomorphic to $k[t]$, then $Z(A)$ is strongly retractable by Lemma 3.1(3). (The next few lines are copied from the proof of Lemma 3.7(1).) By taking P to be a trivial property, say being an algebra, the P-discriminant is 1. By [LeWZ, Remark 3.7(6)], Z is strongly LNDP-rigid. By [LeWZ, Proposition 2.7(2)], A is both strongly Z-retractable and strongly m-Z-retractable. Since A is noetherian, it is Hopfian in the sense of [LeWZ, Definition 3.4]. By [LeWZ, Lemmas 3.4 and 3.6], A is strongly cancellative and strongly m-cancellative. For the rest, we assume that $Z(A) \cong k[t]$ for some homogeneous element t in $k[e, f]$. By the form of δ in (E3.10.1)-(E3.10.2), the degree of t is at least 2. This implies that $k[e, f]/(t-\alpha)$ has infinite global dimension. On the other hand, if $\alpha \neq 0$, then $k[e, f]/(t-\alpha)$ has finite global dimension (applying Lemma 2.5 to the algebra $k[e, f]$). Therefore $A/(t) = (k[e, f]/(t))[g; \delta]$ has infinite dimensional dimension and $A/((t-\alpha)) = (k[e, f]/(t-\alpha))[g; \delta]$ has finite global dimension. Then the argument similar to the proof of Lemma 3.7(2) shows that A is strongly cancellative. By the way the center of $U(g)$ can explicitly be worked out, see [MR, Example 14.4.2] for some hints.

One obvious question after Example 3.10 is whether or not every universal enveloping algebra of a 4-dimensional non-abelian Lie algebra is cancellative.
4. Proof of Theorems 0.1, 0.2 and Corollary 0.3

In this section we prove some of the main results listed in the introduction. We start with Theorem 0.2.

Proof of Theorem 0.2. If $Z(A)$ is not isomorphic to $k[t]$, the assertion follows from Lemma 3.7(1). If $Z(A)$ is isomorphic to $k[t]$, the assertion follows from Lemma 3.7(3). □

Proof of Theorem 0.1. Note that every AS-regular algebra has finite global dimension. If A is not PI, then by Lemma 2.7

$$\text{GKdim } Z \leq \text{GKdim } A - 2 = 3 - 2 = 1.$$

If $Z(A)$ is not isomorphic to $k[t]$, the assertion follows from Lemma 3.7(1). If $Z(A)$ is isomorphic to $k[t]$ and if $\text{gldim } A/(t) = \infty$, the assertion follows from Lemma 3.7(3). For the rest of the proof we assume that $Z(A) = k[t]$ and $A/(t)$ has finite global dimension.

By Rees lemma, $\text{gldim } A/(t) \leq 2$. By the Hilbert series computation, we obtain that $\text{GKdim } A/(t) = 2$. This implies that $A/(t)$ is AS-regular of global dimension two. Since we assume that k is algebraically closed, $A/(t)$ is either $k_0[x, y]$ or $k_0[x, y]$. In particular, the Hilbert series of $A/(t)$ is $\frac{1}{1-t}$. Since A is AS-regular of global dimension three, it is generated by either 3 elements or 2 elements. Next we consider these two cases.

Case 1: A is generated by two elements. Then the Hilbert series of A is $\frac{1}{(1-t)^2(1-x^2)}$. It forces that $\text{deg } t = 2$. If $A/(t) = k_0[x, y]$, then $t = xy - qyx$ and $A/(t) = k_0(x, y)/(xy - qyx - 1)$. If $q = 1$, let P be the property of not being Morita equivalent to $A/(t)$. Then the P-discriminant is t by Lemma 2.1(1). Now the assertion follows from Lemma 3.0(2).

If $q \neq 1$, we claim that q is not a root of unity. If q is a root of unity, then $A/(t-1)$ is PI. By Lemma 2.3(1), $(A[t^{-1}])_0$ is PI. Note that $A^{(2)}[t^{-1}] = (A[t^{-1}])_0[t^{±1}]$. So $A^{(2)}[t^{-1}]$ is PI. Consequently, $A^{(2)}$ is PI and whence A is PI, a contradiction. Then by the argument with Lemma 2.1(2) being replaced by Lemma 2.1(1), one sees that A is strongly cancellative and strongly m-cancellative.

If $A/(t) = k_0[x, y]$, then $t = xy - qyx + x^2$ and $A/(t-1) = k_0(x, y)/(xy - qyx + x^2-1)$. Let P be the property of being Morita equivalent to $A/(t-1)$. Then the P-discriminant is t by Lemma 2.1(3). By Lemma 3.0(2), A is strongly cancellative and strongly m-cancellative.

Case 2: A is generated by three elements. Then the Hilbert series of A is $\frac{1}{(1-t)^3}$. If A is isomorphic to $A' \otimes k[t]$ for some algebra A', then $Z(A')$ is trivial and the assertion follows from Lemma 3.2. So we further assume that A is not a tensor product of two nontrivial algebras. In this case A is generated by x, y, t subject to three relations

$$xt - tx = 0,$$
$$yt - ty = 0,$$
$$xy - qyx = ft + et^2, \quad \text{or} \quad xy - yx + x^2 - ft + et^2$$

where ϵ is either 0 or 1 and f is a linear combination of x and y.

Again we have three cases. If $q = 1$, using Lemmas 2.1(1) and 3.0(2), one sees that A is strongly cancellative and strongly m-cancellative. If $q \neq 1$, then we can assume that $f = 0$ and $\epsilon = 1$ after a base change. Since A is not PI, q is not a root
of unity. Then we use Lemma 2.1(2) instead of Lemma 2.1(1). Otherwise we have the relation
\[xy - yx + x^2 - ft - \epsilon t^2 = 0.\]
Up to a base change, we may assume that \(\epsilon = 0\). Then we have either \(xy - yx + x^2 - xt = 0\) or \(xy - yx + x^2 - yt = 0\). In the case of \(xy - yx + x^2 - xt = 0\), using Lemmas 2.1(4) and 3.6(2), one sees that \(A\) is strongly cancellative and strongly m-cancellative. In the case of \(xy - yx + x^2 - yt = 0\), using Lemmas 2.1(5) and 3.6(2), one sees that \(A\) is strongly cancellative and strongly m-cancellative. □

For the rest of this section we study cancellation property for some graded isolated singularities. In noncommutative algebraic geometry, Ueyama gave the following definition of a graded isolated singularity.

Definition 4.1. [Ue, Definition 2.2] Let \(A\) be a noetherian connected graded algebra. Then \(A\) is called a graded isolated singularity if

1. \(\text{gldim } A\) is infinite.
2. The associated noncommutative projective scheme \(\text{Proj } A\) (in the sense of [AZ]) has finite global dimension.

Examples of graded isolated singularities are given in [CYZ3, GKMW, MU1, MU2, Ue]. One nice example of graded isolated singularities is the fixed subring of the generic Sklyanin algebra under the cyclic permutation action [GKMW, Theorem 5.2] which is cancellative by Example 3.9.

Lemma 4.2. Suppose \(\text{char } k = 0\). Let \(A\) be a graded isolated singularity generated in degree one and \(t \in B\) be a central regular element of positive degree. Then \(A/(t - \alpha)\), for every \(0 \neq \alpha \in k\), has finite global dimension.

Proof. By Lemma 2.5(2) it suffices to show that \((A[t^{-1}])_0\) has finite global dimension. Since there is a localizing functor from \(\text{Proj } A\) to \(\text{GrMod } A[t^{-1}]\),
\[\text{gldim } \text{GrMod } A[t^{-1}] \leq \text{gldim } \text{Proj } A < \infty.\]
It is well-known that
\[\text{gldim } (A[t^{-1}])_0 = \text{gldim } \text{GrMod } A[t^{-1}]\]
as \(A[t^{-1}]\) is strongly \(\mathbb{Z}\)-graded. The assertion follows. □

Theorem 4.3. Let \(A\) be a noetherian connected graded domain generated in degree 1. Suppose

1. \(\text{char } k = 0\), and
2. \(\text{GKdim } Z(A) \leq 1\), and
3. \(A\) is a graded isolated singularity.

Then \(A\) is strongly cancellative and strongly m-cancellative.

Proof. If \(Z(A) \not\cong k[t]\), then the assertion follows from Lemma 3.7(1). Now we assume that \(Z(A) \cong k[t]\) where \(t\) can be chosen to be a homogeneous element of positive degree. Since \(A\) has infinite global dimension, so does \(A/(t)\) by Lemma 2.6. For every \(0 \neq \alpha \in k\), by Lemma 4.2 \(A/(t - \alpha)\) has finite global dimension. The assertion follows from Lemma 3.7(2). □

Now we are ready to prove Corollary 0.4.
Proof of Corollary 0.4. If $d = 1$, then it follows from Theorem 0.1. Next we assume that $d > 1$. Note that the Hilbert series of A is either $rac{1}{1-s}$ or $rac{1}{1-s^2}$. By an easy computation, the Hilbert series of $A^{(d)}$ cannot be of the form $\frac{1}{f(s)}$ for some polynomial $f(s)$. By [SZ] Theorem 2.4 and the argument before it, $A^{(d)}$ does not have finite global dimension. By [AZ, Proposition 5.10(3)], $A^{(d)}$ is a graded isolated singularity. Since A is not PI, $\text{GKdim} \ Z(A) \leq 1$ by Lemma 2.7. The assertion follows from Theorem 4.3. □

Acknowledgments. X. Tang thanks J.J. Zhang for the hospitality during his short visit to the University of Washington; and some travel support from Bill & Melinda Gates Foundation is gratefully acknowledged. H. Venegas Ramírez is very grateful to J.J. Zhang and the Department of Mathematics at the University of Washington, for their hospitality, advice and discussion about the subject during his internship. H. Venegas Ramírez was partially supported by Colciencias (doctoral scholarship 757). J.J. Zhang was partially supported by the US National Science Foundation (No. DMS-1700825).

References

[AEH] S. Abhyankar, P. Eakin and W. Heinzer, On the uniqueness of the coefficient ring in a polynomial ring, J. Algebra 23 (1972) 310–342.

[ASZ] M. Artin, L. Small and J.J. Zhang, Generic flatness for strongly noetherian algebras, J. Algebra 221 (1999), 579–610.

[AZ] M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), 228–287.

[BZ] J. Bell and J. J. Zhang, Zariski cancellation problem for noncommutative algebras, Selecta Math. (N.S.) 23 (2017), no. 3, 1709–1737.

[BR] J.W. Brewer and E.A. Rutter, Isomorphic polynomial rings, Arch. Math. (Basel) 23 (1972), 484–488.

[BG] K.A. Brown and K.R. Goodearl, Lectures on algebraic quantum groups, Biskhauser Basel (2002).

[CE] D.B. Coleman and E.E. Enochs, Isomorphic polynomial rings, Proc. Amer. Math. Soc. 27 (1971), 247–252.

[Da] W. Danielewski, On the cancellation problem and automorphism groups of affine algebraic varieties, preprint, 1989, 8 pages, Warsaw.

[Fu] T. Fujita, On Zariski problem, Proc. Japan Acad. 55(A) (1979) 106-110.

[Ga] J. Gaddis, The isomorphism problem for quantum affine spaces, homogenized quantized Weyl algebras, and quantum matrix algebras, J. Pure Appl. Algebra 221 (2017), no. 10, 2511–2524.

[GKM] J. Gaddis, E. Kirkman and W.F. Moore, On the discriminant of twisted tensor products, Journal of Algebra 477 (2017), 29-55.
[GKMW] J. Gaddis, E. Kirkman, W.F. Moore and R. Won, Auslander’s Theorem for permutation actions on noncommutative algebras, Proc. Amer. Math. Soc. 147 (2019), no. 5, 1881–1896.

[GW] J. Gaddis and X.-T. Wang, The Zariski cancellation problem for Poisson algebras, preprint (2019), arXiv:1904.05836.

[GWY] J. Gaddis, R. Won and D. Yee, Discriminants of Taft algebra smash products and applications, Algebr. Represent. Theory, (2019), https://doi.org/10.1007/s10468-018-9798-0.

[Gu1] N. Gupta, On the Cancellation Problem for the Affine Space A^3 in characteristic p, Inventiones Math. 195 (2014), no. 1, 279–288.

[Gu2] N. Gupta, On Zariski’s cancellation problem in positive characteristic, Adv. Math. 264, (2014), 296–307.

[Gu3] N. Gupta, A survey on Zariski cancellation problem, Indian J. Pure Appl. Math. 46 (2015), no. 6, 865–877.

[Ho] M. Hochster, Non-uniqueness of the ring of coefficients in a polynomial ring, Proc. Amer. Math. Soc., 34 (1972), 81-82.

[Ja] N. Jacobson, Lie algebras, Dover publications, Inc., New York (1979).

[Kr] H. Kraft, Challenging problems on affine n-space. Séminaire Bourbaki, Vol. 1994/95. Astérisque, No. 237 (1996), Exp. No. 802, 5, 295–317.

[Le] T. Levasseur, Some properties of non-commutative regular rings, Glasgow Math. J. 34 (1992) 277–300.

[LY] J. Levitt and M. Yakimov, Quantized Weyl algebras at roots of unity, Israel J. Math. 225 (2018), no. 2, 681–719.

[LeWZ] O. Lezama, Y.-H. Wang and J.J. Zhang, Zariski cancellation problem for non-domain noncommutative algebras, Math. Z. (2019), https://doi.org/10.1007/s00209-018-1215-7.

[LMZ] J.-F. Lü, X.-F. Mao and J.J. Zhang, Nakayama automorphism and applications, Trans. Amer. Math. Soc. 369 (2017), no. 4, 2425–2460.

[LPWZ] D.-M. Lu, J.H. Palmieri, Q.-S. Wu and J.J. Zhang, Regular algebras of dimension 4 and their A_1-Ext-algebras, Duke Math. J. 137 (2007), no. 3, 537–584.

[LuWZ] D.-M. Lu, Q.-S. Wu and J.J. Zhang, Morita cancellation problem, Canadian J. Math. (2019), (to appear).

[MR] J.C. McConnell and J.C. Robson, Noncommutative Noetherian Rings, Wiley, Chichester, 1987.

[MS] M. Miyanishi and T. Sugie, Affine surfaces containing cylinderlike open sets, J. Math. Kyoto Univ. 20 (1980) 11–42.

[MU1] I. Mori and K. Ueyama, Ample Group Action on AS-regular Algebras and Noncommutative Graded Isolated Singularities, Trans. Amer. Math. Soc. 368 (2016), no. 10, 7359–7383.

[MU2] I. Mori and K. Ueyama, Stable categories of graded maximal Cohen-Macaulay modules over noncommutative quotient singularities, Adv. Math. 297 (2016), 54–92.

[NTY] B. Nguyen, K. Trampel, and M. Yakimov, Noncommutative discriminants via Poisson primes, Adv. Math. 322 (2017), 269–307.

[RSS] D. Rogalski, S.J. Sierra and J.T. Stafford, Algebras in which every subalgebra is Noetherian, Proc. Amer. Math. Soc. 142 (2014), no. 9, 2983–2990.

[Ru] P. Russell, On Affine-Ruled rational surfaces, Math. Ann., 255 (3) (1981), 287–302.

[Sh] E.N. Shirikov, Two-generated graded algebras, Algebra Discrete Math. 3 (2005), 64–80.

[SmZ] S.P. Smith and J.J. Zhang, A remark on Gelfand-Kirillov dimension, Proc. Amer. Math. Soc. 126 (1998), no. 2, 349–352.

[St] J.T. Stafford, Auslander-regular algebras and maximal orders, J. London Math. Soc. (2) 50 (1994), no. 2, 270–292.

[StZ] D.R. Stephenson and J.J. Zhang, Growth of graded Noetherian rings, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1593–1605.

[Su] M. Suzuki, Propriétés topologiques des polynomes de deux variables complexes et automorphismes algébriques de l’espace C^2, J. Math. Soc. Japan 26 (3) (1974), 241–257.

[Ta1] X. Tang, Automorphisms for some symmetric multivariable quantized Weyl algebras and their localizations, Algebra Colloq. 24 (2017), no. 3, 419–438.

[Ta2] X. Tang, The Automorphism Groups for a family of Generalized Weyl Algebras, J Algebra Appl 18 (2018), 1850142.

[Ue] K. Ueyama, Graded maximal Cohen-Macaulay modules over noncommutative graded Gorenstein isolated singularities, J. Algebra 383 (2013), 85-103.
[WZ] Y.-H. Wang and J.J. Zhang, Discriminants of noncommutative algebras and their applications (in Chinese), *Sci. China Math.* 2018, **48** 1615–1630, doi: 10.1360/N012017-00263.

[Yi] Z. Yi, Homological dimension of skew group rings and crossed products, *J. Algebra* **164** (1994), no. 1, 101–123.

TANG: **DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE, FAYETTEVILLE STATE UNIVERSITY, FAYETTEVILLE, NC 28301, USA**
E-mail address: xtang@uncfsu.edu

VENEGAS RAMÍREZ: **DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD NACIONAL DE COLOMBIA, Sede Bogotá, Colombia**
E-mail address: hjvenegasr@unal.edu.co

ZHANG: **DEPARTMENT OF MATHEMATICS, BOX 354350, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195, USA**
E-mail address: zhang@math.washington.edu