Abstracts from the 4th Asian Conference in Pharmaceutical Sciences (Asia Pharm IV)

Selangor, Malaysia. 28–29 August 2019

Published: 26 November 2019

INTRODUCTION
Asian Conference on Pharmaceutical Sciences (Asia Pharm) is an international conference dedicated to promoting advances in pharmaceutical sciences. Asia Pharm was first held in Vietnam, from July 10-12 2016, with the theme of “Advances in Pharmaceutical and Biosciences”. Asia Pharm I was co-organised by Ton Duc Thang University, Vietnam and Seoul National University, South Korea. Following the success of Asia Pharm I, Asia Pharm II was hosted from July 20-22 2017 at Seoul National University with the theme of “Education and Science in Pharmacy”. The Asia Pharm network was further expanded with the organisation of the third series of Asia Pharm where it was organised by Bandung Institute of Technology, Indonesia. Asia Pharm III was held from July 2-4 2018 in Bali with the theme of “Expecting the role of pharmaceutical sciences in discovering future medicines”. This year, the Faculty of Pharmacy, Universiti Teknologi MARA will play host for the fourth series of Asia Pharm. Asia Pharm IV took place from August 28-29 2019 with the theme of “Advancing Health Care through Collaborative Innovation”.

Asia Pharm has consistently becoming an important annual international scientific conference that serves as a platform to discuss and present challenges, ideas and innovation in the field of pharmaceutical sciences that includes diverse areas such as Drug Design and Discovery, Formulation Design and Pharmaceutical Technology, Natural Products, Translational Research and Individualized Medicines, Pharmacokinetics or Pharmacodynamics and Systems Biology, Regulatory Science, Analytical Sciences and Quality, and Biotechnology. This year, Asia Pharm IV aims to not only continue the exchange of ideas, but stimulate a culture of collaborative innovation, promoting open forms of collaboration where access to different but complementary capabilities and knowledge among participants would enable the acceleration of innovation. Furthermore, by promoting a culture of collaborative innovation, significant progress can be made from the conception, to the use and application of medicines. This would be beneficial in improving the health of the population and also the health care system, on a national and global level.

KEYNOTE ADDRESS

KN1
A pharmaceutically scientific approach to treating Aβ amyloid as the cause of Alzheimer’s disease
Colin L Masters
The Florey Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria 3010, Australia

Correspondence: Colin L Masters (c.masters@unimelb.edu.au)
BMC Proceedings 2019, 13(Suppl 7):KN1

The etiology of Alzheimer’s disease (AD) is best understood through the deposition of Aβ-amyloid (Aβ). There are two basic forms of AD. The common (95%) form is sporadic and is caused by the failure to clear Aβ (mean age at onset 80 years). The rare (<5%) autosomal dominant familial form is caused by the overproduction of Aβ42, also on a background of failure to clear (mean age at onset 45 years). In both forms, the kinetics of Aβ accumulation are similar, taking about 30 years to accumulate a total of approximately 7mg of Aβ. Thus, we estimate that sporadic AD starts about the age of 50 years and the autosomal dominant form starts about 15 years of age. The advent of validated biomarkers (PET/CSF Aβ and tau) now provides us with unprecedented opportunities for preclinical diagnosis, enabling the development of primary and secondary prevention strategies. Predictive algorithms utilizing age, biomarkers, polygenic and vascular risk scores are now being developed from longitudinal cohort studies to estimate times of onset and rates of cognitive decline. Applications of biomarker screens (blood, CSF, PET) to subjects who are about to cross the lower cut point threshold will define a population who may be suitable for primary prevention clinical trials. Therapeutic targeting the Aβ pathway remains the principal strategy for delaying onset of AD. There are many molecular targets in this pathway, and no single one is likely to prove efficacious on its own. Therefore, a combination of strategies needs to be developed and applied.

© The Author(s), 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
PLENARY LECTURE

PL1 Potential therapeutic targets for the treatment of tamoxifen-resistant breast cancer
Keon Wook Kang
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
Correspondence: Keon Wook Kang (kwkang@snu.ac.kr)
BMC Proceedings 2019, 13(Suppl 7):PL1

Breast cancer is the most common malignancy in Western women and grows under hormone-dependent control. Hence, the ability to reduce breast tumor growth through the administration of anti-estrogens has played a key role in the endocrine therapy of breast cancer. The non-steroidal anti-estrogen, tamoxifen (TAM), is the most widely used anti-estrogen in estrogen receptor-positive breast cancer patients. Although most patients are initially responsive, resistance to TAM is a critical problem for anti-estrogen therapy. To mimic this condition, we established an MCF-7 derived TAM-resistant cell line (TAMR-MCF-7 cells) by long-term culture of MCF-7 cells with 4-hydroxytamoxifen in 2007. RNA sequencing analysis using MCF-7 and TAMR-MCF-7 cells showed that many coding and non-coding RNAs regulating both estrogen signaling and epithelial mesenchymal transition were differentially expressed in both the cell types. In this presentation, I will briefly summarize our previous studies identifying potential targets to overcome TAM resistance and the related pharmacological approaches.

Keyword: breast cancer, EMT, tamoxifen-resistance, therapeutic targets

PL2 Vietnamese ginseng – from an ethno-medicine to a national product of Vietnam
Minh Duc Nguyen1, Jeong Hill Park2
1Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam; 2College of Pharmacy, Seoul National University, Seoul 08826, Korea
Correspondence: Minh Duc Nguyen (nguyenminhduc@tdtu.edu.vn)
BMC Proceedings 2019, 13(Suppl 7):PL2

Panax species occur in the northern hemisphere from Central Himalaya to North America through China, Korea and Japan. This genus includes the well-known medicinal plant Panax ginseng C.A. Meyer (Korean or Asian ginseng) and its two congeners, P. notoginseng (Burk.) F. H. Chen (Sanchi ginseng), and P. quinquefolium L. (American ginseng), which have been widely used in many countries of the world and are important plants in terms of therapeutic uses and economic values. In 1973, a wild Panax species was discovered at the elevation of 1,800 m above sea level of Ngoc Linh Mount in Middle Vietnam. The plant used to be a secrete tonic and body-strengthening ethno-medicine of the Sedang ethnic group living in high mountains of the Truong Son Range. In 1985, it was defined as a new Panax species with the scientific name Panax vietnamensis Ha et Grushv, Ariacle family, and is now commonly known as Vietnamese ginseng (VG) which is used for many indications similar to those of Panax ginseng (PG), such as enhancement for physical strength, tonic, lowering blood cholesterol, preventing cardiovascular diseases etc.

Since then, scientific studies of VG on botany, cultivation, chemistry, bioactivities, etc., have been done. The result showed that VG contains a characteristic saponin composition, which includes not only known dammarane saponins found in PG such as ginsenoside-Rb1, -Rb2, -Rg1, -Rd, -Re etc., but also ocellitol saponins in high yield, especially majonoside-R2 (more than 5%). Twenty-five (25) new dammarane saponins named vina-ginsenosides-R1-R25 from the underground part and 8 named vina-ginsenosides-L1-L8 from the leaves were also isolated and identified. The underground part of VG contains up to 15-20% saponins, which is the highest content compared with that of PG (4-6%) and other Panax spp. As for pharmacological activities, VG showed similar effects with those of PG, including tonic, dose-dependent stimulation/depression on CNS, physical strength enhancement, analgetic, anti-fatigue, adaptogenic, androgenic, anti-tumorogenic etc. VG also showed remarkable physical and psychological anti-stress activities.

Results of scientific studies have proven that VC is a trustful herbal medicine. It has therefore become an important medicinal plant of Vietnam in terms of therapeutic uses and economic value. Recently, the Vietnam government defined VG as an important national product. A national program was set up to protect the wild plant and the biodiversity of its native areas, and to develop the large-scale cultivation of VG. An updated review on VG will be reported to show how the used-to-be ethno-herb VG becomes an national product and its impact to the contemporary Vietnam medicine.

Keyword: Vietnamese ginseng, Panax vietnamensis, ethno-medicine, Vietnam national product

PL3 Gene-Chemical Interplay in Alzheimer’s Disease
Abu Bakar Abdul Majeed
Brain Research Laboratory, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, 42300 Puncak Alam, Malaysia
Correspondence: Abu Bakar Abdul Majeed (abubakar@uitm.edu.my)
BMC Proceedings 2019, 13(Suppl 7):PL3

Alzheimer’s disease (AD) is a neurodegenerative disease that debilitates numerous human psycho-behavioural functions, notably memory processing. In the developed world AD is considered as one of the major causes of death. In the developing world, the number of people living with AD (PLWAD) is expected to rise significantly in the coming decades. Though AD is more prevalent among the elderly over 65 years old, cases of early onset AD are also widely known. Both types of AD are linked to genes. Much research is ongoing to elucidate the exact pathophysiology of AD, hence leading to its ultimate cure. Chemicals whether working in synchrony or otherwise, are known to be responsible for the preservation or destruction of the brain function, respectively. Firstly, putative neurotransmitters in normal brain physiology related to AD include acetylcholine, dopamine, serotonin, noradrenaline, aspartate and GABA. Secondly, chemicals that pre-cede the pathology of AD. Among them are the pro inflammatory mediators, the levels of which are constantly checked by anti-inflammatory mediators. Thirdly, the group of chemicals found to play an important role in AD is the pathological proteins. Among them are beta-amyloid, hyperphosphorylated tau and alpha-synuclein. The formation of these proteins leads to the neuronal dysfunction that contributes to the psycho-physical disability of PLWAD. At the heart of the chemical homeostasis or imbalance are the genes. Six genes identified in a Malaysian cohort of PLWAD will be highlighted. The over- or under-expression of these genes tilts the chemical homeostasis, which ultimately promotes the manifestation of symptoms of AD.

INVITED LECTURE

IL1 Developing proposed national competency framework for pharmacists in Vietnam
Dinh Thi Thanh Hai
Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan kiem, Hanoi, Vietnam
Correspondence: Dinh Thi Thanh Hai (haidtt@hup.edu.vn)
BMC Proceedings 2019, 13(Suppl 7):IL1

Background
In recent years, the number of pharmaceutical human resource training institutions has been increasing (28 establishments) including public and non-public establishments. However, the training
program, facilities, quality of teaching staff, quality of students’ inputs and especially the way of implementing training programs, training organization capacity of each institution is different, so the quality of output products, quality of practice is also different. Therefore, it is necessary to have basic competency standards for pharmacists in Vietnam. On the other hand, in the face of extensive regional and international integration needs, managers and employers need to have a set of tools to control, evaluate and standardize the quality of human resources. Recognizing that reality, the Ministry of Health has directed the construction of the Basic Competence Standard for Pharmacists in Vietnam with the participation of all stakeholders including experts in the field of training, employers, Employers, managers, professionals, social organizations. In the process of construction, the Drafting Board has consulted the standard of competencies of pharmacists in the region and the world to adjust to suit the situation in Vietnam. Therefore, this study was carried out to develop a basic competency framework for pharmacist in Vietnam.

Materials and Methods

The study was conducted by a method of retrospective and cross-sectional descriptions, combining qualitative research (method of in-depth interview; group discussion) and quantitative research based on FIP and Thailand pharmacist competency standards. The data is processed on SPSS software.

Results

A basic competency framework was developed for pharmacist in Vietnam. 98 competencies required for pharmacist, organised into 24 standards, 7 domains: professional and ethical practice, communication and collaboration, organisation and management, quality assurance of pharmaceutical, prepare pharmaceutical products, supply of medicines, safe and rational use of medicines.

Conclusion

The proposed competency framework of pharmacist in Vietnam provides a solid foundation for both pharmacy training and curriculum development and is based on several rounds of scientific research. The proposed competency framework may help understand the pharmacist role and how to best prepare for the Practice of Pharmacy and many added values for stakeholders.

IL2

Vietnam pharmaceutical industry: Actual status and perspectives for decade 2020-2030
Le Van Truyen
Faculty of Pharmacy, Hanoi Business and Technology University, House no.29A, Gate 124, Vinh Tuy Street, Vinh Tuy Ward, Hai Ba Trung Dist, Hanoi, Vietnam
Correspondence: Le Van Truyen (levantruyen@gmail.com)
BMC Proceedings 2019, 13(Suppl 7):IL2
The presentation described an overall outlook on the actual status of Vietnam pharmaceutical industry, which is considered as one of the fastest developing sectors among the emerging countries in pharmaceutical industries. The Vietnam general and healthcare indicators were presented and analysed. The presentation also gave a SWOT analysis of the Vietnam pharmaceutical industry. The perspectives of Vietnam pharmaceutical industry for decade 2020-2030 were analysed, based on the policies and strategies determined relevant to the resolutions of the Government of Vietnam especially in New Drug Law 2016. The factors impacting into the process of modernization of Vietnam pharmaceutical industry were discussed and suggested for realization of the objectives of the Vietnam pharmaceutical industry development in the context of deeper participation of the nation in the process of economic globalization in ASEAN and the world.

IL3

Phytochemicals: a new insight into regenerative medicine
Rajesh Ramasamy, Ramesh Renggasamy, Hamza Laval and Johnson Stanslas
Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Correspondence: Rajesh Ramasamy (rajeshr@upm.edu.my)
BMC Proceedings 2019, 13(Suppl 7):IL3
Targetting the impairment of stem cells in disease models and conditions become a primary target of the modern therapeutic approaches. Stem cells sit at the top of the cellular hierarchy, maintain the structure and homeostasis of an organ by uninterrupted tissue-specific cells’ supply. Besides, the ageing and diseases processes affect stem cells, many chronic diseases such as cancers, diabetes and other organ-related diseases are consequent of functional impairment of stem cells. Phytochemicals, whose therapeutic activities are not only limited to the somatic cells but showcasing a profound impact on stem cells too. To date, not much research data are available regarding the effect of phytochemicals on stem cells. Amongst, Morinda citrifolia, a local plant, has exhibited a profound impact on adult mesenchymal stem cells (MSCs). Mesenchymal stem cells are found mainly in the bone marrow, which promote haematopoiesis, alleviate inflammation and mediate tissue repair. In line with this, the ethanol extract of Morinda citrifolia (MOEE) boosted the proliferation of human MSCs. The enhanced proliferation activity of MSCs was due to an intensification of the cell cycle with reduced apoptosis. The treatment of MOEE altered the cytokine secretory profile of MSCs depicting anti-inflammation with enhanced expression of growth factors that mediate tissue repair. Similarly, various administrations of MOEE in a rat model of immunosuppression showed reconstitution of immune cells by preserving the bone marrow-derived haematopoietic stem cells (HSCs) and MSCs. The phytochemicals from MOEE showed a promising way of recovering immune cells and immunity in degenerative diseases. However, the identification and isolating specific compound/s to accelerate the desired therapeutic properties and challenges of diversified actions in a multiorgan system need to be addressed prior to clinical applications.

IL5

Role of Microbial-Catalysed Biotransformation In Sustainable Medicinal Chemistry
Sadia Sultan1,2
1Department of Pharmaceutical Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, 42300 Selangor, Malaysia; 2Attar-ur-Rahman Institute for Natural Product Discovery (AuRIN), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, 42300 Selangor, Malaysia.
Correspondence: Sadia Sultan (sadsia@uitm.edu.my), (sadasultan801@yahoo.com)
BMC Proceedings 2019, 13(Suppl 7):IL5
Background
Over the past few years there has been an upsurge interest from medicinal chemistry groups in embracing the philosophy and tools of green chemistry. This philosophy is in part a driver to move towards more sustainable practices, but there is also an interest in using emerging new technologies to speed up the drug discovery process and to discover new and diverse structures as scaffolds and lead compounds. Microbial-catalysed biotransformation plays an important role in the production of commercially valuable steroids and terpenes for therapeutic use by the
pharmaceutical industry with the advantage of high stereo- and region-selectivity, which additionally fulfils green chemistry principles.

Methods
Different bioactive natural products have been exposed to the microbial bio-catalysis as an attempt to find further lively and fewer toxic products. Initially screening of selected steroids and terpenes were performed with different fungi. Preparative scale started upon detection of biotransformed products. Resulted metabolites were isolated and elucidated using HPLC, LC-MS, ID and 2D NMR spectroscopic techniques. Resulted metabolites were screened for bioassays including anti-inflammatory, α-glucoisidase inhibitory, tyrosinase inhibitory, acetylcholinesterase inhibitory and antiproliferative assays, respectively. The binding interactions of compounds were studied by molecular docking studies.

Results
Novel products were obtained during biotransformation of multifunctional steroid and terpenoid drugs with growing cultures of fungi from different biotopes. Some of the products showed more than or comparable activities to the standard inhibitors.

Conclusion
Hence, the identification of these novel compounds opens the possibility of producing more promising pharmaceutical agents with potential bioactivities with lesser side effects than the existing drugs.

Keywords: Biotransformation, Steroids, Terpenes

IL6
Preclinical studies of Carica papaya against DEN-2 dengue infection
Mohd Ridzuwan1, Adlin Afzan1, Noor Rain Abdullah1, Ami Fazlin Syed Mohamed1
1Herbal Medicine Research Center, Institute for Medical Research, Level 5, Block C6, National Institutes of Health Complex, No 1, Jalan Setia Murni U13/52, Section U13, 40170 Setia Alam, Selangor, Malaysia
Correspondence: Ami Fazlin Syed Mohamed (ami@imr.gov.my)

Background
Dengue is still a major problem in Malaysia and causing high mortality. There is no specific treatment for dengue and one of the strategy is to study the effect of herbal medication on dengue. The aim is to review the results of the series of preclinical studies that has been conducted for Carica papaya in treating dengue fever.

Methods
Several preclinical studies were conducted namely the phytochemical, efficacy and toxicity studies. Phytochemistry studies were conducted on water extract of Carica papaya with chromatography and spectrometry analysis. The in vitro plaque assay and the in vivo studies on AG129 mice were conducted with non-mouse adapted Malaysian dengue virus type 2 (DEN-2) infection. The mouse model of DENV-infection that closely mimicked the human disease was established and used to study the immunomodulatory activity involving specific cytokines, the endothelial cell biology in dengue infection and the effect of dosing on the day of infection. The genotoxicity and general toxicity studies were also conducted.

Results
The phytochemistry studies allowed confirmation of the herb identity and consistency of the chemical composition for efficacy and toxicity studies. Plaque assay and the in vivo studies have confirmed that the extract of Carica papaya do not kill the dengue virus. The extract affected the immunomodulatory system and the endothelial cells of the blood vessels. These provide clues to the control of the cytokine ‘storm’ and the vascular leakage that is the characteristic of dengue haemorrhagic fever. A previous study has confirmed that Carica papaya juice increases the platelet by inducing the platelet production in the bone marrow. The results of the toxicity studies were also favourable.

Conclusion
The preclinical studies has provided evidence that Carica papaya extract worked on different pathogenesis of dengue fever and can be further studied in a clinical trial.

Keywords: preclinical, herbal, Carica papaya, dengue

ORAL PRESENTATION

OPT1
The study on ORF239342, a protein isolated from the mushroom Agaricus bisporus as a potent pharmaceutical biomolecule
Heni Rachmawati1, Diana Diana1, Najwa Nabila1, Sohgi Damayanti1, Olivia M. Tandrasasmita2, Raymond R. Tjandrawinita2, Warsa T. Ismaya2
1School of Pharmacy, Bandung Institute of Technology, Ganesha 10, Bandung 40132, Indonesia; 2Dexa Laboratories of Biomolecular Science, Industri Selatan V PP-7, Jababeka II Industrial Estate, Cikarang 17550, Indonesia
Correspondence: Heni Rachmawati (h_rachmawati@fa.itb.ac.id)

Background
Drug absorption becomes constrained when the permeability is low leading to limited bioavailability. The use of lectin for glyco-targeting is an approach to overcome problems in the delivery of compounds with low permeability. Interaction between lectin with several types of oligosaccharides present in cells on the surface of gastrointestinal wall could facilitate the lectin to be absorbed. Vast glycosylated areas within gastrointestinal tracts can be targeted for this purpose. LSMT (light chain subunit in the tetramer complex of tyrosinase enzyme Agaricus bisporus) has the ability to recognize a specific group of sugar moieties, non-toxic, and nonimmunogenic. Formation of LSMT-drug bioconjugate was explored in this study to assess the ability of LSMT as a drug carrier using captopril as a drug model.

Methods
Prior to permeability study, solvent accessibility of cysteine residue (Functional target candidate for bioconjugation) using ASAView and NetSurfP programs was conducted. In vitro accessibility of cystein was performed to determine free sulphydryl using DTNB reagent. Conjugation was performed using different conditions of reaction, then characterized.

Results
Lysine is chosen as an active side of the reaction. Conjugate is formed with SMPT as a linker utilizing a reduced disulphide bond to release the drug. Optimum conditions currently found for conjugate formation was at 4°C for 24 hours for protein activation stage with SMPT and 48 hours for captopril binding stage with ratio of protein:SMPT = 1:10 and activated protein:captopril = 1:100. Conjugate substitution obtained under these conditions was between 1-2 mol of captopril per mole of LSMT. Conjugate formed was stable in simulated gastric and intestinal solutions. Furthermore, preliminary in vitro permeability study using Caco2 cells and ex vivo with non-everted gut sac method showed intact ability of LSMT to penetrate gastrointestinal wall.

Conclusions
LSMT is a promising biomolecule for a drug carrier to improve per oral bioavailability.

Keywords: Light subunit mushroom tyrosinase, recombinant protein, Agaricus bisporus, drug delivery

OPT2
Formulation design and characterization of self nano emulsifying drug delivery system (SNEDDS) roxithromycin using capryol-90, polysorbate-80 and PEG–400
Mardiyanto Mardiyanto, Najma Annuria Fitrihi, Duha Inda Misdwima
1 Department of Pharmacy Faculty of Science Sriwijaya University, Kampus UNSRI Indralaya JL Raya Palembang-Prabumulih KM32 South Sumatra, 30162, Indonesia
Correspondence: Mardiyanto Mardiyanto (mardiyantoUNSI@gmail.com)

Background
Roxithromycin is a macroline antibiotic included in the biopharmaceutics classification system (BCS) class II with poor water solubility (0.0189...
mg/mL) resulting poor solubility of roxithromycin in gastrointestinal track and decreases bioavailability. Technology development of self nano emulsifying drug delivery system (SNEDDS) to reduce particle size has known effectively for increasing drug solubility.

Methods
An optimum formulation of this reseach were determined by simplex lattice design method in Design Expert®10. Investigated factors were solubility of roxithromycin in capryol-90 and in mixture of polysorbate-80 and PEG-400 also the ternary phase of capryol-90/polysorbate-80:PEG-400. The emulsification system was performed by ultrasonica- tion. The characters of SNEDDS were determined by dynamic light scattering and transmission electron microscopy. The thermodynamic stability test was performed by heating-cooling cycle.

Results
Capryol-90 could dissolve roxithromycin properly (2.355±0.040 mg/mL). Polysorbate-80, and PEG-400 also could increase the solubility of roxithromycin in water. Determination of ternary phase diagram to obtain combination proportions formed a sponta- neous range of 10 - 60% capryol-90, 20 - 50% polysorbate-80, and 10 - 70% PEG-400. Proportion of optimum roxithromycin SNEDDS formula resulted percent solubility of roxithromycin in capryol-90, 60.00% polysorbate-80, and 20.00% PEG–400. Characterization of optimum formula resulted percent transmittance (80.60 ± 0.33)%; emulsification time (71.70 ± 0.99) seconds, viscosity (3.76 ± 0.02) cP, pH (7.84 ± 0.07), and ro- bustness to dilution in aquadest, SGF, and SIF (99.16 ± 0.67)%,

Conclusion
The results of this study could serve as a basis that mucoadhesive HA coated CS-latanoprost-link nanoparticles could provide a pro- longed ocular delivery system of latanoprost for better glaucoma treatment.

Keywords: latanoprost, chitosan, hyaluronic acid, nanoparticles, prolonged drug delivery

OPP1

Synthesis, characterization, and biological activities of Schiff bases and their iron and zinc metal complexes

Bushra Naureen1, G.A. Miana2, Khadija Shahid2, M.A. Bhatti3, Samreen Tarveer4

1Department of Chemistry, Faculty of Science, University of Malaya, S0603 Kuala Lumpur, Malaysia; 2Riphah Institute of Pharmaceutical Sciences, Riphah International University, 44000 Islamabad, Pakistan; 3Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, S0603 Kuala Lumpur, Malaysia; 4Department of Pharmaceutical Sciences, Superior University, 55150 Lahore, Pakistan

Correspondence: Khadija Shahid (khadijajee@yahoo.com), Bushra Naureen (bushrannaureen@gmail.com)

BMC Proceedings 2019, 13(Suppl 7):OPP1

Background
Schiff bases, being active biological moieties, possess diverse pharmacological activities. Metal ions play vital role in various functions of human body, and diseases may occur due to metal ion deficiencies. The importance of metal complexes of Schiff bases has been acknowledged in the field of biomedical sciences.

Methods
Herein, two Schiff base ligands (L1, L2) underwent metal complex formation, to produce their iron and zinc metal complexes, respectively. Original ligands and their metal complexes were characterized physically as well as by means of spectral characterization techniques such as Infra-red spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry. Pharmacological perspectives of these Schiff base ligands and their iron and zinc metal complexes such as antibacterial, antifungal and antioxidant assays were assessed.

Results
All compounds exhibited antibacterial and antifungal activities, but the metal complexes showed better activities in comparison to the original ligands, especially all zinc complexes. Zinc complex (L2)2Zn(Ac)2 elicited good antibacterial activity against all gram posi- tive and gram negative bacterial strains and exceptional activity against Candida albican strain. Overall, all the compounds showed better antifungal activity against Candida albican as compared to Candida glabrata. Free ligands illustrated better antioxidant behaviour as compared to the metal complexes.

Conclusions
These results suggest that all the ligands and metal complexes, being active in one way or the other, have the potential to be employed as antibacterial, antifungal and antioxidant agents.

Keywords: Schiff base, Metal complex, Antibacterial, Antifungal, Antioxidant
Oppo2
Possible drug-herb interactions between Merunggai (Moringa oleifera) and selected antihypertensive drugs
Malina Jasamai 1, Endang Kumolosasi 1, Adyani Md Redzuan 2
1 Drugs & Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia; 2 Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Malaysia
Correspondence: Malina Jasamai (malina@ukm.edu.my)
BMC Proceedings 2019, 13(Suppl 7):OPP2

Background
Herbal medicines have been widely used in Malaysia for cardiovascular pharmacotherapy. This is alarming as little is known about drug-herb interactions of conventional cardiovascular drugs with most Malaysian herbs. Moringa oleifera is a medicinal plant with high nutritional values and was reported to possess blood pressure (BP) lowering effect. Hypertension has become a significant health issue globally and as such, treated with four main classes of drugs namely; angiotensin converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), β-blockers and calcium channel blockers. This study aimed to investigate any possible drug-herb interactions between the aqueous leaves extract of M. oleifera and selected antihypertensive drugs in normotensive rats (NTs) and spontaneously hypertensive rats (SHRs).

Methods
The study consists of ten groups of SHRs and one group of NTs. The rats were given either drugs alone or drugs in combination with antihypertensive drugs. The rats were measured on day 1 prior to the treatment and on day 15.

Results
All treatment groups were found to produce significant blood pressure reduction on day 15 when compared with negative control but there was no significance difference when compared with positive controls. Combination of drugs and extract significantly reduced BP but are comparable with the use of drugs alone.

Conclusions
There is a possibility of drug-herb interaction between M. oleifera and the selected antihypertensive drugs. Detailed mechanism of actions on how these interactions occur are worth to be investigated further to ensure the safety of M. oleifera usage in combination with antihypertensive drugs.

Keywords: Moringa oleifera; angiotensin converting enzyme inhibitors; angiotensin receptor blockers; β-blockers; calcium channel blockers

Opp4
Effect of Gymnura procumbens and Christia vespertilionis extracts on cell adhesion molecules in human umbilical vein endothelial cells
Tan Jia Ying1, Zakiah Jiburi2, Khairana Husaini1, Ibrahim Jantari1, Fhataheya Bunga1, Aziah Binti Ugusman3, Mohd Faizal Ahmad3, Ani Amelia Zainuddin3, Nursyahida Mohd Fauzi3
1 Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; 2 Department of Biochemistry, Faculty of Medicine, The National University of Malaysia Medical Centre (UKMMC), Malaysia; 3School of Pharmacy, Taylor’s University, Lakeside Campus, 47500 Subang Jaya, Selangor, Malaysia; 4Department of Physiology, National University of Malaysia Medical Centre, Kuala Lumpur, Malaysia; 5Obstetrics and Gynecology, National University of Malaysia (UKM), UKMMC, Jalan Yacob Latiff, 56000 Cheras, Kuala Lumpur, Malaysia
Correspondence: Nursyahida Mohd Fauzi (dnorsyahida@ukm.edu.my)
BMC Proceedings 2019, 13(Suppl 7):OPP4

Background
The initiation of atherosclerotic lesion involves endothelial cell pro-inflammatory state that recruits leukocytes and promotes their movement across endothelium which requiring endothelial expression of cell adhesion molecules. Gymnura procumbens (GP) and Christia vespertilionis (CV) are herbaceous plants that are traditionally used for treatment of various inflammation-related ailments. However, there is limited evidence that points to the protective activity of these plants against inflammation that occurs in atherosclerosis. In this study, we sought to explore the inhibitory effect of GP and CV extracts on TNF-α induced vascular cell adhesion molecule-1 (VCAM-1) expression and its underlying mechanism.

Methods
Cell viability of HUVEC treated with GP or CV extracts was determined by MTT assay while protein expression of adhesion molecules and cellular signaling molecules were determined by Western blot.

Results
GP or CV extracts at concentration ranging from 5 μg/mL to 60 μg/mL were found to maintain more than 80% cell viability following 24 hours treatment. Selected treatment concentrations (20, 40 and 60 μg/mL) of CV extract showed no effect on TNF-α-induced VCAM-1 expression in HUVEC. On the other hand, pretreatment of 60 μg/mL GP extract demonstrated a significant inhibition on TNF-α induced VCAM-1 protein expression in HUVEC (p<0.005). Pretreatment of 60 μg/mL GP extract also showed a dose-dependent suppression on IL6/β phosphorylation and significant inhibitory effect (p<0.05) on protein expression of phosphorylated NFκB.

Conclusions
Results from this study demonstrated that CV extract may not have inhibitory effect on expression of adhesion molecules but GP extract showed inhibitory effect on VCAM-1 expression by suppressing NFκB signaling pathway. This results implicate that GP extract may have beneficial use particularly in vascular inflammation.

Keywords: Gymnura procumbens; Christia vespertilionis; vascular cell adhesion molecule; NFκB; endothelial cells
Results
The methanol extraction method resulted in the highest percentage of recovery (98.3 % for testosterone and 98.4 % for δβ-hydroxytestosterone) with moderate protein depletion (79.95 ± 1.87 %). The ethyl acetate extraction method resulted in the highest protein depletion at 98.8 %, however, the percentage of recovery of analytes is lower than that of methanol extraction method.

Conclusions
As a conclusion, methanol was found to be the most optimum solvent for extraction of testosterone and δβ-hydroxytestosterone from cell culture media compared to other solvents used and the amount of protein left in sample did not interrupt UHPLC analysis.

Keywords: Testosterone, δβ-hydroxytestosterone, UHPLC, metabolism, solvent extraction

OPP6
Phytoestrogens induced apoptosis and phagocytosis through modulation of annexin A1 in leukemic cell lines
Endang Kumolosasi1, Afidah Sabran1, Masyitah Hasan1, Jamia Azdina Jamal1, Malina Jasamai1, Norazrina Azmi1, Ibrahim Jantan1, Nor Fadilah Rajab1, 2

1Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia; 2School of Pharmacy, Taylor’s University, Lakeside Campus, 47500 Subang Jaya, Selangor, Malaysia.

Background
Phytoestrogens are a non-steroid plant compound that has structurally similar to estrogen which possess anti-cancer properties. Phytoestrogens have the ability to induce apoptosis, cell cycle arrest and phagocytosis and reducing Annexin A1 in leukemic cell lines. However, the underlying mechanism of phytoestrogens in inducing cell death is still not fully understood. The present study aimed to investigate the effects of phytoestrogens in inducing of cell death is through decreasing ANXA1 level or independently.

Methods
Leukemic cells and ANXA1-knockdown leukemic cells were incubated with estrogen and phytoestrogens 40 μg/ml for 24 hrs at 37°C. Cells viability were examined by MTT assay and ANXA1 quantification via ELISA Assay. Apoptosis were examined by flow cytometer and phagocytosis were evaluated by haematoxylin-eosin staining. Transfection of ANXA1 siRNA was conducted to down-regulate ANXA1 expression.

Results
In Leukemic cells, coumestrol significantly (P<0.05) reduced the total level of ANXA1 in both K562 and U937 cells. Genistein induced a significant (P<0.05) reduction in the total level of ANXA1 in K562, Jurkat and U937. Estradiol and daidzein induced similar reduction in U937 and Jurkat cells. Coumestrol and daidzein induced apoptosis in K562 and Jurkat cells, while genistein and estradiol induced apoptosis in all tested cells. Coumestrol, genistein and estradiol induced phagocytosis in all cells but daidzein induced significant (P<0.05) phagocytosis in K562 and Jurkat cells only. In ANXA1 knockdown leukemic cells, the expression of ANXA1 was significantly downregulated in all cell lines. Genistein significantly induced apoptosis (p<0.001) only in Jurkat cell, contrary coumestrol and daidzein did not induce apoptosis in all the cell lines tested. The percentage of phagocytosis and phagocytosis index increased significantly after treatment with phytoestrogens in all cell lines.

Conclusions
Induction of apoptosis and phagocytosis by phytoestrogens are mediated through decreasing of annexin A1 expression.

Keywords: Phytoestrogens, Annexin A1, Apoptosis, Phagocytosis, Leukemia

This study was funded by a grant from Universiti Kebangsaan Malaysia (GUP-2018-044).

OPL1
Atheroprotection by antilipidaemic Pediococcus pentosaceus LAB6- and Lactobacillus plantarum LAB12-fermented cell free supernatant in vitro
Nur Syakila Rohavi1,2, Siong Meng Lim1,2, Hasseri Halim1, Kalavathy Ramasamy1,2

1Faculty of Pharmacy, University Teknologi MARA (UiTM), Cawangan Selangor, Kampus Puncak Alam, 43200 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; 2Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical and Life Science Community of Research, Universiti Teknologi MARA Shah Alam, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia

Correspondence: Kalavathy Ramasamy (kalav922@gmail.com)

Background
Current treatments against atherosclerosis rely predominantly on lipid lowering in combination with anti-inflammatory therapies. However, the maximum efficacy of these treatment strategies appears to be rather modest, often compromised by the lack of response by high risk patients and adverse effects. There is a need for alternative approaches that can manage atherosclerosis more effectively. Recent evidence raises the possibility of using antilipidaemic probiotics for atheroprotection. Nevertheless, the beneficial effects of probiotics are believed to be strain-dependent. We had identified unique probiotic lactic acid bacteria (LAB) (i.e. Pediococcus pentosaceus LAB6 and Lactobacillus plantarum LAB12) with promising cholesterol lowering effects. Capitalising on this beneficial property, the present study aimed to investigate the atheroprotective potential of LAB6 and LAB12 in vitro.

Methods
The sub-toxic concentration of 24 h LAB-fermented cell free supernatant (CFS) against RAW264.7 was determined using the sulforhoda mine assay. Sub-toxic CFS was added to oxLDL-induced foam cell for 24 h before staining with Oil Red O stain. For semi-quantitative analysis, images captured under light microscopy were analysed for differential intensity using ImageJ. For quantitative analysis, Isopropanol was added, and absorbance was measured at 540 nm using a spectrophotometer. The effect of CSF against oxLDL-induced mitochondrial dysfunction was assessed using the mitochondrial membrane potential assay.

Results
The highest sub-toxic concentration (IC50) of LAB6- and LAB12-derived CFS against RAW264.7 were 7 % and 5.6 %, respectively. Sub-toxic LAB6- and LAB12-derived CFS significantly (p<0.05) reduced lipid uptake in oxLDL-induced foam cells by at least 47.06% and 47.12%, respectively. LAB-derived CFS also prevented oxLDL-induced mitochondrial dysfunction (early apoptosis) by increasing red (aggregates)/green (monomer) ratio of JC-1 fluorescence by ≤ 4.

Conclusions
The present findings strongly implied the atheroprotective potential of LAB6- and LAB12-derived CFS against foam cell formation in the event of atherosclerosis. This in turn warrants further investigations using in vivo model.

Keywords: Probiotics, cholesterol lowering, HPTLC, atheroprotective

OPL2
Use of xylazine hydrochloride–ketamine hydrochloride for immobilization of captive large felines in Malaysia: a 15-year retrospective study (1988-2003)
Vellayan Subramaniam and Nur Zahira Zakaria

Department of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi Malaysia, 43200 Bandar Puncak Alam, Selangor, Malaysia

Correspondence: Vellayan Subramaniam (vellayan@utm.edu.my)

Background
Chemical immobilisation by anaesthesia with xylazine hydrochloride (XZK) – ketamine hydrochloride (KTH) has been widely used in large
felines. This study was aimed to determine the relationship between time of effect and effect of anaesthesia with XZH-KTH.

Methods
Data were retrieved from existing anaesthesia records from different zoos in Malaysia from 1988 to 2003. A total of 66 large felines belonging to 5 different species namely, Malayan Tiger (Panthera tigris jacksoni) (n = 4), Bengal Tiger (P. tigris tigris) (n = 10), African Lion (P. leo) (n = 12), Sumatran Tiger (P. tigris sumatrae) (n = 17) and Gir Lion (P. leo persica) (n = 23) were involved in this study. All the large felines were successfully anaesthetised using XZH-KTH. The effects of variables such as body weight, sex, health status, demeanour and fasting time on dose selection were evaluated. The relationship of dose with effect of anaesthesia and time of effect were also studied.

Results
The results showed that the effect of anaesthesia and time of effect had no significant correlation with dose. Among the variables studied, only weight had significant (p = 0.016 and p = 0.002) effect on dose. When an average dose (KTH = 363.33 mg; XZH = 185.98 mg) was given to the felines, it gave a weak positive correlation with time of effect (rKTH = 0.220; rXZH = 0.324). Similar findings were observed for the effect of anaesthesia (rKTH = 0.156; rXZH = 0.227).

Conclusions
Although the time of effect and effect of anaesthesia were independent of the dose, it is important to determine the weight of the large felines so that the drug administered were sufficient enough to produce the desired anaesthetic effect.

Keywords: ketamine, xylazine, large felines, dose selection.

OPC1
Development of simultaneous analysis method for determining level of losartan potassium and hydrochlorothiazide in tablets using high performance liquid chromatography (HPLC)
Sophi Damayanti, Mia Savira, Benny Permana
School of Pharmacy ITB, Ganeshia I/0 Bandung, 40132, Indonesia
Correspondence: Sophi Damayanti (sophi.damayanti@fa.itb.ac.id)
BMC Proceedings 2019, 13(Suppl 7):OPC1

Background
Losartan potassium and hydrochlorothiazide are combination of antihypertension drugs from group of angiotensin II receptor blocker (ARB) and diuretic. The assay of both substances needs a method which is able to determine the substances without performing prior separation method. Due to its great sensitivity, Reverse-Phase HPLC with UV detector could be used in simultaneous analysis. This research was conducted to develop the method of losartan potassium and hydrochlorothiazide assay in tablet simultaneously.

Methods
The assay was performed on a system with Inertsil ODS-3 RP-C18 5 μm (4.6x50 mm) as column, methanol pro HPLC: H₂PO₄-KH₂PO₄ (55:45) pH 3 as mobile phase, flow rate 1 mL/minute, and detected at 225 nm.

Results
The retention time for losartan potassium and hydrochlorothiazide were 2,001; 6,671 μg/mL with correlation coefficient 0.999. Limits of detection and quantification for losartan potassium and hydrochlorothiazide were 1,360; 0,959 and 1,455; 1,400 μg/mL, respectively. Relative standard deviation (RSD) of intraday precision for losartan potassium and hydrochlorothiazide were 1,360; 0,959 and 1,455; 1,400 % while the interday precision RSD were 0,333; 0,848 and 0,919; 0,904 %. Percent recovery for losartan potassium and hydrochlorothiazide in simulation were 100,560 ± 1,032 % and 100,356 ± 0,941 %.

Conclusions
Losartan potassium and hydrochlorothiazide content in sample tablet were in range of 97,029 – 99,875 % and 98,054 – 101,506 %. It can be concluded that the developed method is suitable for simultaneous analysis of both active pharmaceutical ingredients.

Keywords: losartan potassium, hydrochlorothiazide, RP-HPLC, simultaneous analysis, validation.
Background

The first report on isolation and characterization of isohopeaphenol A was from *Vatica oblongifolia*. The following year, a compound with the same spectral data was isolated from *Vatica pauciflora*. It was assigned a different stereochemistry and named pauciflorol C. Recently we isolated from *Neobalanocarpus heimi* (Dipterocarpaceae), a compound with the same spectral data. We, therefore, studied the structure in detail. The stereochemistry of the structure was conferred based on NMR spectroscopy and a three-dimensional computer generated structural model.

Methods

The extraction of the plant material was by the classical method of repetitive maceration and lixiviation with methanol. The crude residue was subjected to HPLC for fractionation and isolation processes. The pure compound was isolated as a dark brown amorphous powder. Its structural characterization was performed by means of spectrometric methods, including exact mass spectrometry and a three-dimensional computer generated structural model.

Results

Preliminary examination of the mass, 1H- and 13C-NMR data suggested a resveratrol tetramer. Thorough analyses of 2D-NMR confirmed the oligomeric degree and elucidated the structure. The compound consists of two similar stilbene dimer plane structures, linked by a bridge. The fact that they are not magnetically equivalent from an NMR perspective suggested stereoisomeric differences for these two dimeric moieties. A NOESY experiment contributed to solve the issue. A 3-dimensional model was performed and it was showed that such correlation was only possible when the second half of the molecule is rotated 180° relative to the first half of the molecule. This information was in agreement with the coupling constant of 11.5 Hz. The absence of cross peak between further supported a trans configuration.

Conclusions

The present in-depth analyses of NOE data together with 3D modeling strongly suggest that the initial structure of isohopeaphenol A is correct. It is possible that for pauciflorol C, the author overlooked the possibility for the two halves of the molecule to be positioned in a head-to-tail manner, which is the only way to understand some of the measurements discussed above. As a result, it is concluded that the spectroscopic data is for isohopeaphenol A.

Keywords: isohopeaphenol A, pauciflorol C, oligostilbenes, phytomedicine, spectroscopy.

OPC4

Design and syntheses of ortho-, meta- and para-xyleglylguanidinium–zn²⁺–cyclen complexes and their interaction with DNA (cyclen = 1,4,7,10-tetraazacyclododecane)

Nor Amin Hassan¹, Mohd Zulkifeli², Jean-Frédéric F. Weber³
¹Faculty of Pharmacy, Universiti Teknologi MARA, Bertam, Pulau Pinang, 13200 Malaysia; ²School of Pharmacy, International Medical University, Kuala Lumpur, 57000 Malaysia; ³Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam, Selangor, 42300 Malaysia

Correspondence: Jean-Frédéric F. Weber (jfweber@uitm.edu.my)

BMC Proceedings 2019, 13(Suppl 7):OPC4

Background

Three new zinc ions (Zn²⁺) complexes, C1, C2 and C3, were designed and synthesized by coordination of Zn²⁺ into the integrated 1,4,7,10-tetraazacyclododecane (cyclen) and ortho-, meta- and para-bromoxylguanidinium pendant groups. The aim of synthesizing these Zn²⁺ complexes was to confirm the anticipated interactions of Zn²⁺ complexes towards natural DNA as well as to explore the phosphatase activity of such complexes. A retrosynthetic analysis was carried out to identify and solve problems with regard the selection of organic reagents.

Methods

The syntheses were performed in five steps including of (i) Gabriel and Ing-Manske primary amine synthesis, (ii) S₂,2 substitution reaction, (iii) guanylation of primary amine, (iv) deprotection of Boc group, and (v) coordination of Zn²⁺ complex. All the Zn²⁺ complexes were characterized by 1H- and 13C-NMR spectroscopy, infrared spectroscopy and mass spectrometry. Ethidium bromide (EB) fluorescence assay and circular dichroism (CD) spectroscopy were used to ascertain the interaction between Zn²⁺ complexes towards natural DNA i.e. calf thymus (ctDNA).

Results

The former assay demonstrated a displacement of EB from its complexes with ctDNA, thus confirming the affinity of these Zn²⁺ complexes towards DNA. CD spectroscopic results also revealed that C1 has disturbed both base stacking and right handed helicity properties of ctDNA, but retained the B-form of its structure. By contrast, C2 and C3 transformed the conformation of ctDNA from B-form into Z-form. This was further supported by thermal denaturation studies showing ΔTm values of C1, C2, and C3 to be +2, +4 and +5, respectively.

Conclusions

The catalytic properties of these complexes for phosphatase hydrolization was evaluated using phosphodiesterases bisp-nitrophenylphosphate (BNPP) as a model and monitoring by UV spectrometry. The BNPP hydrolization results (ca. 17% after 8 days incubation) suggested that C1, C2, and C3 were endowed with still modest yet significant catalytic properties.

Keywords: Zn²⁺ Complex, Guanidinium, DNA Binding, Phosphodiesterase, BNPP Hydrolization.

OPC5

Persistence of drugs residue in urban river. Case study of Sungai Buloh, Malaysia

Zulhafizal Othman1,2, Marfiah Ab. Wahid1,3, Khuriah Abdul Hamid4 and Jazuri Abdullah²
¹Micropolllutant and Pathogen in Water Research (WATERµPath), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; ²Faculty of Civil Engineering, Universiti Teknologi MARA, Cawangan Selangor, Puncak Alam, 42300 Malaysia; ³Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Puncak Alam, 42300 Malaysia; 4Faculty of Pharmacy, Universiti Teknologi MARA, Cawangan Selangor, Puncak Alam, 42300 Malaysia

Correspondence: Marfiah Ab. Wahid (marf851@uitm.edu.my)

BMC Proceedings 2019, 13(Suppl 7):OPC5

Background

Drugs and their metabolites are continually introduced into the environment and are prevalent at detectable concentrations, which may affect water quality and potentially impact drinking water supplies, ecosystem and human health. The discharge of micropollutants without control can have the adverse health impact and at the same time can disturb the aquatic ecology and systems in a long period of exposure. In addition, the occurrence at trace levels of several drugs in drinking water raises concerns about possible implications for human health. Therefore, it is critically needed to conduct the study on detection of drugs on river water because the data are still insufficient especially in Malaysia. This study is done to trace the residue of drugs on urban surface water which is in Sungai Buloh, Malaysia as a selected urban river.

Methodology

The samples were analysed using liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (LC-Q-ToF/MS) for compounds tracing purpose.

Results

From the result obtained, several drugs have been traced in river water. All the drugs detected were classified based to their therapeutic usage. The residues detected consist of β-blockers, analgesics and psychoanaleptics.

Conclusion

This river contains drugs that may affect the environment. Further analysis needs to be done to get a more accurate concentration of the drug residue that contaminated the river.
Background

Engineering education and real-world demands on engineers have in recent years led engineering schools in the USA and Europe to form the Conceive Design Implement Operate (CDIO) initiative. It is a worldwide collaboration to conceive and develop a new vision of engineering education. The main objective of this research was to determine the implementation of CDIO training methods to pharmacy education (knowledge-skills-attitudes) in the pharmaceutical supply chain can improve the students; skills.

Methods

A cross-sectional survey was conducted to assess the current level and level of expectation from stakeholders for the skills of pharmacy students in pharmaceutical industry training universities in Ho Chi Minh City.

Results

Findings from the current study revealed that there are differences between the current level and the level of expectation of the stakeholders on the skills to be trained for students to meet the requirements of employers for work needs.

Conclusions

The findings from this study are the basis of developing pharmaceutical supply chain education and the application of CDIO training methods to the universities in Ho Chi Minh City. This is essential for the students to know and prepare to meet the demand of the workforce and society after graduation.

Keywords: Mapping CDIO skills, CDIO, pharmaceutical supply chain

Acknowledgement

The authors would like to acknowledge Universiti Teknologi MARA for providing great facilities throughout the research project, Ministry of Higher Education Malaysia for assisting with SLAB/SLAI scholarship.

OPE1

CDIO approach method for supply chain education improve pharmacy students’ skills

Nguyen Huu Khanh Quan1, Nguyen Thi Ngoc Yen2, Thai Hong Thuy Khanh3

1Department of Clinical Pharmacy, Faculty of Pharmacy, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh street, Ho Chi Minh City, Viet Nam; 2Department of Microbiology - parasites, Faculty of Pharmacy, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh street, Ho Chi Minh City, Viet Nam; 3Faculty of Finance and Accounting, 300A Nguyen Tat Thanh Street, Ho Chi Minh City, Viet Nam

Correspondence: Nguyen Huu Khanh Quan (nhkquan@ntt.edu.vn)

BMC Proceedings 2019, 13(Suppl 7):OPE1

PPT1

Evaluation of quality and stability of matrix tablet contained monoammonium glycyrrhizinate

Otgonsuren Daramzav1, T S Davaasuren2, Enkhhuul Bayarsaikhan2, Damjinjav Davaadagva1, Enkhjargal Dorjbal2, Jambaninj Dambiniam1

1Department of Pharmaceutical Technology, School of Pharmacy, Mongolian National University of Medical Sciences; 2Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Mongolian National University of Medical Sciences

Correspondence: Jambaninj Dambiniam (jambaninj@mnums.edu.mn)

BMC Proceedings 2019, 13(Suppl 7):PPT1

Background

Monoammonium glycyrrhizinate of Glycyrrhiza root has been used as an expectorant, detoxificator, anti-allergic, and antioxidant. We have isolated monoammonium glycyrrhizinate from Glycyrrhiza root, grown in Mongolia by previous study. The objective of the study was to develop prolonged release matrix tablet with hepatoprotective effect and to evaluate their pharmacotechnical qualities and stability.

Methods

The matrix tablets were prepared by wet granulation method. In order to develop appropriate tablets various excipients such as matrix former, diluents, binder, lubricant and glidiant were added. APIs and matrix former, diluent and binder were mixed properly and were granulated with the 5% solution of PVP K-30 as a binder solution. The wet mass was granulated by wet granulator through the sieve with 2 mm diameter holes and generated wet granules were dried at room temperature. Dry granules were lubricated with talc and magnesium stearate. The matrix tablets were prepared by the compression of the tablet mixture using rotary tablet machine. The quality of the prepared tablets was evaluated according to Mongolian National Pharmacopoeia’s methods by criteria such as appearance, average weight, weight variation, hardness, friability, microbiological contamination and in-vitro dissolution study. Licozinat matrix tablets contained monoammonium glycyrrhizinate 140 mg; glycine 50 mg; LD-methionin 50 mg in each tablet.

Results

Formulations were evaluated and satisfied the quality criteria by Mongolian National Pharmacopoeia methods. The stability of matrix tablet tested by long term method for 12 months and by accelerated method for 6 months according to standard MNS 6439:2014. Stability testing results by both long term and accelerated method, Licozinat matrix tablet was stable for 12 months. Stability testing of matrix tablet is continued by long term method.

Conclusion

Controlled release “Licozinat” matrix tablets were prepared by wet granulation method. Formulation (F5) containing 20% HPMC K4000 releases in the desired manner and was determined to be the appropriate design. Licozinat matrix tablet was stable for 12 months. Stability testing of matrix tablet is continued by long term method.

Keywords: Glycyrrhiza uralensis, monoammonium glycyrrhizinate, matrix tablet, stability testing

PPT2

Formulation and evaluation of in situ gelling system for ophthalmic delivery of Erythromycin

Abdullah Khan1, Reeshantara Balasingam2, Anandarajagopal Kalusalingam1

1School of Pharmacy, KPJ Healthcare University College, Kota Seriemas, 71800 Nilai, Negeri Sembilan; 2DiethelmKellerSiberHegner (DKSH) Healthcare, Malaysia

Correspondence: Abdullah Khan (abdullahkhan@kpjuc.edu.my)

BMC Proceedings 2019, 13(Suppl 7):PPT2

Background

Conventional ophthalmic dosage forms provide low bioavailability and less pre-conveal drug residence time due to nasolacrimal drainage and blinking action of the eyes. The major challenge is to formulate a system to improve the contact time of the drug in the eyes. The present study was aimed to prepare and evaluate in situ gelling system for the effective delivery of Erythromycin to combat ophthalmic infections.

Methods

Development of novel in situ gelling system using Erythromycin was based on the concept of ion triggered in-situ gelation. Sodium Alginat was used as a gelling agent in combination with Hydroxypropyl methylcellulose (HPMC K100) as a viscosity enhancing agent. The prepared formulations were evaluated for physical appearance, pH, gelling capacity, viscosity, stability studies, drug content, in vitro diffusion study and s spreadability test.

Results

All formulations were found to be clear and free from undissolved particles. The pH of the formulations was within the range of 6.8 – 6.92 which is safe for ophthalmic use. Formulation F4 (Sodium Alginat 1.2% and HPMC 0.5%) showed optimum viscosity of 48cps, good spreadability and gelling capacity that will improve residence time of the drug in eyes. All the formulations were found to have drug content uniformity of 98 ±2% p. In vitro, drug release studies showed that the drug was released in the of order F2<F1<F3<F4 over the period of 8 hours. All formulations F1 to F4 followed zero order drug release kinetic with a correlation coefficient of (R2=0.990) followed by the Korsmeyer-
Peppas model showed drug released from the system by diffusion mechanism.

Conclusion
The developed in situ gelling systems may provide greater ocular bioavailability and it may be proposed to treat ocular infections by retaining the drug for a prolonged period in the eye.

Keywords: In situ gel, ophthalmic, Erythromycin, HPMC, Sodium Alginate.

PPT3

Development of glucomannan nano-emulsion formulation as non-steroidal treatment for atopic dermatitis

Mohd Hafiz Mohd Jaafar1, Khuriah Abdul Hamid1, Munira Shahbuddin2, Zahid Hussain1, Tommy Julianto Bustami Afendi1, Nor Amlizan Ramli1, 2Department of Biotechnology Engineering, Kuliyyah of Engineering, International Islamic University Malaysia (IIUM), Gombak 50728, Kuala Lumpur. Correspondence: Nor Amlizan Ramli (nor.amlizan@uitm.edu.my) BMC Proceedings 2019, 13(Suppl 7):PPT3

Background
Atopic dermatitis is a chronically relapsing pruritic inflammatory disease which affects 15% to 30% of children and 10% of adults in industrialized country. Konjac glucomannan (KGM) isolated from Amorphophallus konjak K. Koch exhibit high water solubility, biocompatibility, biodegradability and non-toxic properties. There are vast applications of KGM including biomedical studies such as cholesterol and obesity studies, anti-inflammatory effect, antioxidant study, and wound healing property. In this research, we developed KGM nano-emulsion as drug carrier that acts as hydrogel which stabilized the formulation and moisturize the skin for relieving atopic dermatitis.

Methods
Cream formulations were developed using variable ratios of glucomannan (1%-1.5%), Olive oil (0%-20%) and avocado oil (0%-20%). Oil phase and aqueous phase were mixed under constant stirring using Ika-Werke Eurostar with propeller mixer at 900 rpm for 10 min. The formulations will be tested and measured for particle size and zeta potential using zetasizer (Nano ZS, Malvern Instrument, UK); and Firmness and viscosity using rheometer (Physica MCR 301).

Results
The mean particle size for KGM nano-emulsion ranged from 326.93±11.14 to 586.7±26.48 nm with polydispersity index ranges from 0.41±0.04 to 0.56±0.02. The zeta potentials of KGM nano-emulsion showed low values indicate stable formulations which ranged from -45.83±2.30 to -47.70±354 mV. The firmness of nano-emulsion formulations were lower than control (753.20±3.73 g) which were measured from 477.45±8.52 to 658.84±10.20 g. Finally, viscosity of nano-emulsion also lower than control group (2773±632.64 Pa·S), where the values were ranged from 1393±210.32 to 2033±32.15 Pa·S.

Conclusion
Glucomannan showed promising application in cream development as it exhibits non-toxic and high bioavailability. Development of glucomannan cream using 1.5% glucomannan concentration combination of both avocado oil and olive oil (Formulation C) provides small mean particle size and uniform polydispersity index with good zeta potential. The firmness and work of shear of Formulation C also provides comparable results to control group. Finally, non-Newtonian pseudoplastic properties of these creams provide an even spreadibility on skin.

Keywords: Nanoemulsion, Glucomannan, Atopic dermatitis, Anti-steroidal treatment

PPT4

Preparation and characterisation of fast-dissolving oral films

Muhammad Qayiem Razali, Muhammad Sahmi Mohd Sairi, Nor Hayati Abu Samah
Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia. Correspondence: Nor Hayati Abu Samah (norhayati2975@uitm.edu.my) BMC Proceedings 2019, 13(Suppl 7):PPT4

Background
Fast-dissolving oral films (ODF) are thin sheets designed to rapidly disintegrate when in contact with saliva to release the incorporated active, without the need for swallowing. Difficulty in swallowing solid dosage forms (e.g. tablets) has been identified as one of the factors affecting the non-compliance of patient populations such as paediatric and geriatric. Thus, ODF may serve as an alternative to existing dosage forms. This study aimed to formulate and characterise a series of ODFs made from hydroxypropyl methylcellulose (HPMC) and carboxymethylcellulose (CMC), plasticised with glycerol and sorbitol.

Methods
Three formulae of each HPMC and CMC were prepared by solvent casting technique. The resulting films were characterised physically (i.e. visual appearance) and mechanically (i.e. mass and thickness variation, folding endurance and tensile strength). Furthermore, the placebo films were also assessed in terms of their disintegration time and contact angle.

Results
The films produced were not sticky, easy to handle and acidic in nature. They had an average mass between 19 to 30 mg and thickness between 41 to 78 μm. Films of CMC were significantly thicker than the HPMCs (p<0.05). For CMC films, reduction in CMC and increase in plasticiser contents were found to slightly enhance their tensile strength and elasticity, indicative of weaker and softer films. On the other hand, the HPMC films exhibited greater tensile strength, but lower extensibility than the CMC films. Films dissolved within 180 s and 25 s for CMC and HPMC, respectively. The CMC films took longer time to disintegrate than the HPMC films due to their higher contact angles values with water. The disintegration of all films increased in corresponding to an increase in tensile property.

Conclusion
Formulation HPMC-3 was considered as the best candidate for further optimisation for drug loading as it possessed the ideal balance between toughness and flexibility.

Keywords: hydroxypropyl methylcellulose; carboxymethylcellulose; fast-dissolving; oral film

PPP1

L-Stepholdine (SPD) treatment ameliorates learning and memory deficits in ICR mice

Arunkumar Karunanidhi1, Kalavathy Ramasamy2,3, Siong Meng Lim1,3 Fazlin Mohd Fauzi1

1Department of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; 2Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA, Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; 3Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical and Life Sciences Community of Research, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan, Malaysia. Correspondence: Fazlin Mohd Fauzi (fazlin5465@uitm.edu.my) BMC Proceedings 2019, 13(Suppl 7):PPP1
Background
L-Stepholidine (L-SPD) was recently identified through our virtual screening exercise in search of potential drugs for Alzheimer’s disease (AD). L-SPD is an active ingredient of the Chinese herb Stephania intermedia. Prior research has reported beneficial effects of L-SPD on dopamine D1- and D2-type receptors, suggesting promising treatment/prevention approach for neurodegenerative diseases. This study evaluated the effect of SPD on spatial learning and memory in lipopolysaccharide (LPS)-induced murine neuroinflammation model.

Methods
ICR male mice (n=8/group) were randomly grouped as follows: control (saline), LPS (3 mg/kg b.w.), LPS SPD 3 mg/kg b.w., LPS SPD 5 mg/kg b.w., LPS SPD 10 mg/kg b.w. and positive control: LPS + D-Serine (30 mg/kg). The mice were allowed to acclimatize for 3 days prior to treatment with SPD (i.p.) for 5 days (i.e. on day 1, 2, 3, 4, 5). Except for the control group, all mice received LPS (1 mg/kg b.w.). Following treatment, the mice were subjected to Morris water maze (MWM) test to evaluate the spatial learning and memory function. Finally, a probe trial was conducted on day 6 to evaluate memory retention.

Results
SPD treatments at 3 and 10 mg/kg b.w displayed earliest measure of learning, with an escape latency of ~18-25 secs compared to ~26-35 secs of control. SPD-treated groups (3, 5 and 10 mg/kg b.w; 204-233) entered the platform zone more frequently compared to positive control (LPS + D-Serine). SPD-treated mice showed better spatial learning (shorter escape latency and travelled distance) than the LPS control. A high SPD dose (10 mg/kg) showed a significant increase in the number of entries to the platform zone and time spent in the target quadrant.

Conclusions
Based on the swimming time in the target quadrant and the frequency of crossing the platform, SPD treatment may ameliorate cognitive deficits in learning and memory functioning in ICR mice.

Keywords: L-Stepholidine; lipopolysaccharide; neuroinflammation; memory deficits; behavioral test.

This project is funded by the Ministry of Education of Malaysia with Universiti Teknologi MARA (UiTM) through the Fundamental Research Grant Scheme (FRGS; 600-RMI/FRGS 5/3 (0020/2016).

PPP2
Synthesis, characterization, and antioxidant potential of biodegradable polyurethane based on polypropylene fumarate as polyol
Bushra Naureen1, A.S.M.A. Haseeb2, W.J. Basirun1,2, F.B. Muhamad2
1Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; 2Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; 3Institute of Nanotechnology and catalyst (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia; 4Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.

Correspondence: A.S.M.A. Haseeb (haseeb@um.edu.my)
BMC Proceedings 2019, 13(Suppl 7):PPP2

Background
Prominent biomaterials for various biomedical applications include natural or synthetic polymers. Among synthetic polymers, polyurethanes (PUs) are unique due to their versatile physiochemical and mechanical properties. Free radicals in body e.g. nitrogen and oxygen are very reactive and cause oxidative damage of cells and tissues, thus affecting normal healing and regeneration processes. There is a need to develop and explore antioxidant potential of ligands, capable of neutralizing reactive free radicals. In the present study, novel biodegradable PU was synthesized, based on polypropylene fumarate diol as polyol, hexamethylene diisocyanate (HDI) and poly-3-hydroxybutyrate as chain extender via two step growth polymerization process.

Methods
The prepared samples were characterized by using Fourier Transform Infrared Spectrophotometer (FTIR), Nuclear Magnetic Resonance (NMR), mass spectrometry and Scanning Electron Microscope (SEM).

PPP3
Polyethyleneimine cytotoxicity against human cancer cell lines
Akmal Arif Daud1, A’edah Abu Bakar2, Ramli Salfarina2, Hasseri Halim1
1Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia; 2Petroleum Nasional Berhad, Level 15, Tower 3, Petronas Twin Towers, 50088 Kuala Lumpur City Centre, W.P. Kuala Lumpur

Correspondence: Hasseri Halim (hasseri2945@uitm.edu.my)
BMC Proceedings 2019, 13(Suppl 7):PPP3

Background
Polyethyleneimine (PEI) is a simple and cost-effective reagent for the condensation and linking plasmid DNA to cells for gene delivery. However, its cytotoxicity has not yet to be reported. The aim of this study was to determine the lethal dose (IC10) of PEI against breast cancer (MCF7), lung cancer (A549) and liver cancer (HepG2) cell lines.

Methods
MCF7, A549 and HepG2 cancer cell lines were treated with various concentrations of PEI for 24 hours. The viability of the cells was determined using the MTS assay.

Results
The IC10 of PEI for MCF7, A549 and HepG2 cell line were 73.2 μg/mL, 62.0 μg/mL and 70.5 μg/mL, respectively. This indicated that PEI is more cytotoxic towards A549 cancer cell line.

Conclusion
The IC10 results obtained from this study is useful to optimise transfection parameters of PEI on A549, MCF7 and HepG2 cell lines.

Keywords: Transfection, polyethyleneimine, cancer

PPP4
Antibacterial activity of selected Cambodia medicinal plants in vitro
Kanika Heng1, Sothea Kim2, Monidarin Chou1
1Rodolphe Mérieux Laboratory University of Health Sciences, 73, Bd Monivong, Phnom Penh, Cambodia; 2Laboratory of Phytochemistry IRPF/ UHS, University of Health Sciences, 73,Bd Monivong, Phnom Penh, Cambodia

Correspondence: Kanika Heng (h_kanika@uhs.edu.kh)
BMC Proceedings 2019, 13(Suppl 7):PPP4

Background
Antimicrobial resistance has become a serious problem of public health. It creates a constant need for either new antimicrobial compounds or inhibitors of mechanisms that underlie antibiotic resistance. Cambodia is one of the well-known South-East Asia countries where natural substances are widely used for treatment of many diseases, especially for infectious diseases. As such, the study of antibacterial activity of plants traditionally used by Cambodian traditional healers to treat infectious diseases is important. This study aimed to screen the antimicrobial activity of 138 extracts from 67 plants that are traditionally used by Cambodian traditional healers.

Methods
The plants were collected in eight provinces and cities of Cambodia. The extraction was performed using ethanol:water (50/50 v/v) to obtain the majorities of the compounds present in plants. The antibacterial activities of plants extracts were first
tested against reference strains, *Staphylococcus aureus* (ATCC 6553; cocci; Gram positive bacteria) and *Pseudomonas aeruginosa* (ATCC 9027; rod; Gram negative bacteria), and then against clinical strains using micro-dilution and macro-dilution tests, respectively.

Results

A total of 138 extracts isolated from 67 species of plants were tested. Most of the extracts were very active against *S. aureus* but less active against *P. aeruginosa*. Only 5 extracts derived from 5 plants were highly active against both standard and isolated strain of *S. aureus*. Three plant extracts were highly active against standard strain of *P. aeruginosa* but weakly active against its isolated strain.

Conclusions

Our results showed a great variability of the bacteriostatic qualities of extracts between isolated and standard strains. These results warrant selection of the most active extracts for development of anti-microbial products based on medicinal plants.

Keywords: Antibacterial activities, *Staphylococcus aureus*, *Pseudomonas aeruginosa*, Micro-dilution, Macro-dilution

PPPS5

Body mass index is not correlated to blood glucose levels in Down Syndrome individuals

Maziana Mahamood, Mizaton Hazizul Hasan, Aishah Adam

Department of Pharmaceutical Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor, Malaysia.

Correspondence: Maziana Mahamood (maziana2795@uitm.edu.my) BMC Proceedings 2019, 13(Suppl 7):PPPS5

Background

Down syndrome (DS) is a common chromosomal abnormality that occurs in about 1 in 700 live births. Previous studies found that DS is associated with higher obesity rates. There is a wide spectrum of medical complications among individuals with DS, which include diabetes mellitus that are associated with increased susceptibility to weight gain. Therefore, the present study was carried out to evaluate the association between body mass index (BMI) and fasting blood glucose levels in DS individuals.

Methods

Measurement of height and weight was done, and BMI was calculated. Blood was collected with informed consent from the parents or guardians of DS individuals (n=52) and controls (n=52). Fasting blood glucose level was measured by using the Reflotron® Plus System.

Results

The mean BMI of individuals with DS ranged from 11.1 to 37.2 kg/m² with 13.5% (n=7) being overweight and 7.7% (n=4) obese. The mean BMI of controls ranged from 13.8 to 33.3 kg/m² with 19.2% (n=10) being overweight and 3.8% (n=2) obese with no significant difference (p>0.05) between DS and controls. There was also no significant difference (p>0.05) in the fasting blood glucose levels in DS (mean=5.22 mmol/L) when compared to controls (mean=5.35 mmol/L). With respect to the association of BMI and fasting blood glucose, the present results failed to prove the relationship in both groups (p>0.05).

Conclusions

It can be concluded that there was no significant difference in the levels of fasting blood glucose in DS individuals when compared to controls. This study also found no prove of association between fasting blood glucose levels and BMI in both DS and controls group.

Keywords: Down syndrome, BMI, Glucose

PPPS6

Effects of *Myrmecodia platytyrea* methanolic tuber extract on sub-acute cancer-induced severe combined immunodeficiency (SCID) mouse model

Nurhafizah Ibrahim1,2, Mizaton Hazizul Hasan1, Aisyah Hasylia Jahidin1, Aishah Adam1

1Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Puncak Alam, Selangor Darul Ehsan; 2Faculty of Engineering and Life Sciences, Universiti Selangor, 45600 Bestari Jaya, Selangor Darul Ehsan.

Correspondence: Mizaton Hazizul Hasan (mizaton_hazizul@uitm.edu.my) BMC Proceedings 2019, 13(Suppl 7):PPPS6

Background

Myrmecodia platytyrea (Ant’s plant) is member of Rubiaceae family. Tuber of *M. platytyrea* is used traditionally as decoction to treat various mild and severe diseases including cancer. Other species of *Myrmecodia* including *M. platytyrea* have been reported for their antiproliferative effect against various cancer cells in vitro. Hence, this study was carried out to investigate the effect of sub-acute administration of *M. platytyrea* methanolic tuber extract (MPMTE) on hepatocellular carcinoma (HCC)-induced SCID mice.

Method

A total of 36 SCID mice were divided into 6 groups (n=6/group): control 1 (non HCC-induced mice treated with normal saline), control 2 (HCC-induced mice treated with normal saline), control 3 (HCC-induced mice treated with 10 mg/kg doxorubicin) and 3 groups of HCC-induced mice treated with 100, 200 and 400 mg/kg of MPMTE, respectively. NS and MPMTE were given orally twice daily, for 28 days whereas doxorubicin was given intraperitoneally once daily to control 3 at 3-day intervals. Mortality, body weight, food and water intake were recorded throughout the experiment. Physical and behavioural changes were also observed. All mice were sacrificed on day 29. Tumour was excised and weighed.

Result

Control 1, 2 and the HCC-induced mice treated with MPMTE showed no mortality. No significant changes in terms of body weight, food intake and water intake were observed in all groups. However, HCC-induced mice treated with doxorubicin showed symptoms of toxicity and 100% mortality was recorded after 9 days of treatment. Remarkably, sub-acute oral administration of MPMTE (100 and 400 mg/kg, p.o.) suppressed tumour development at 13% and 6%, respectively. The tumour volume of mice treated with 200 mg/kg, on the other hand, was found to increase by 14%.

Conclusion

SCID mice treated with MPMTE (100 and 400 mg/kg, p.o., bid) for 28 days showed tumour suppression, suggesting potential therapeutic value of the plant.

Keywords: *Myrmecodia platytyrea*; hepatocellular carcinoma; tumour suppression; severe combined immunodeficiency mouse model

PPPS7

Antagonistic interactions between *Chromolaena odorata* ethanolic extract and cisplatin against breast cancer cell lines MCF-7 and MDA-MB-231

Nurliana Abd Mutalib1, Zulhilmi Mohamad Bakri1, Khaireuddin Abdul Jalil1, Normala Abd Latip2

1Faculty of Pharmacy, Universiti Teknologi MARA, 42300 Bandar Puncak Alam, Selangor, Malaysia.

Correspondence: Normala Abd Latip (dnormala6351@uitm.edu.my) BMC Proceedings 2019, 13(Suppl 7):PPPS7

Background

Chromolaena odorata (Ant’s plant) is traditional used to treat various mild and severe diseases including cancer. Other species of *Chromolaena* have been reported for their antiproliferative and pro-apoptotic effect against various cancer cells in vitro. Hence, this study was carried out to investigate the effect of *C. odorata* ethanolic extract on breast cancer cell lines MCF-7 and MDA-MB-231.

Method

A total of 36 breast cancer cell lines MCF-7 and MDA-MB-231 were divided into 3 groups (n=12/group): control 1 (un-treated), control 2 (treated with cisplatin), and 2 groups of treated with 100, 200 and 400 mg/ml of *C. odorata* ethanolic extract. The cells were treated with extract and cisplatin for 48 hours and then evaluated for cell viability.

Result

Control 1, 2 and the treated with *C. odorata* ethanolic extract showed no mortality. No significant changes in terms of cell viability were observed in all groups. However, *C. odorata* ethanolic extract showed symptoms of toxicity and 100% mortality was recorded after 9 days of treatment. Remarkably, sub-acute oral administration of MPMTE (100 and 400 mg/kg, p.o.) suppressed tumour development at 13% and 6%, respectively. The tumour volume of mice treated with 200 mg/kg, on the other hand, was found to increase by 14%.

Conclusion

SCID mice treated with MPMTE (100 and 400 mg/kg, p.o., bid) for 28 days showed tumour suppression, suggesting potential therapeutic value of the plant.

Keywords: *Myrmecodia platytyrea*; hepatocellular carcinoma; tumour suppression; severe combined immunodeficiency mouse model
Background
In Malaysia, breast cancer, which was ranked as the number one disease among female in 2016, has seen its incidence increased between 2007 to 2011. Cisplatin has been commonly used as the first line treatment against breast cancer. However, the combination uses of alternative medicine (CAM) together with conventional therapy by many cancer patients could possibly lead to unwanted interactions. This study has evaluated Chromolaena odorata, locally known as pokok kapal terbang for its potential to interact with cisplatin in combination therapy.

Methods
C. odorata was extracted using maceration method with 70% ethanol. Antiproliferative activity of the extract was screened against a panel of cell lines using the MTT assay. For combination study, MCF-7 and MDA-MB-231 breast cancer cell lines were treated with C. odorata ethanolic extract in combination with cisplatin. Isobologram and combination index (CI) were derived from the combination treatments.

Results
The yield of extraction was 2.69%. The IC_{50} values of C. odorata antiproliferative activity of MCF-7, MDA-MB-231, WRL68 and CRL2522 were 0.15 ± 0.00 mg/mL, 0.43 ± 0.02 mg/mL, 0.31 ± 0.00 mg/mL and 0.63 ± 0.00 mg/mL, respectively. Co-treatment of cisplatin and C. odorata ethanolic extract at IC_{15}, IC_{15} and IC_{25} against MCF-7 and MDA-MB-231 resulted in CI greater than one.

Conclusions
Combination treatment of cisplatin and C. odorata ethanolic extract leads to antagonistic interactions.

Keywords: Chromolaena odorata, cisplatin, MTT, isobologram, combination index

Conclusion
High binding affinity of bile pigments indicates their potential to inhibit the binding of NNK to CYP2A6 enzyme. However, this requires further confirmation by enzymology studies.

Keywords: NNK, CYP2A6, Bilirubin, Biliverdin, Molecular docking

PPP10
Study on the effect of some medicinal plants on in vitro proliferation of peripheral blood mononuclear cells and their antioxidant activity
Thao-Nguyen Le-Thi1, Minh-Thuan Nguyen-Thi2
1Department of Biochemistry, Faculty of Pharmacy, Lac Hong University (LHU), 10 Huynh Van Nghe Street, Bien Hoa City,810000 Dong Nai, Vietnam ; 2Department of Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy Ho Chi Minh City (UMP), 43 Dinh Tien Hoang Street, Ben Nghe Ward, District 1, 760000 Ho Chi Minh, Vietnam
Correspondence: Thao-Nguyen Le-Thi (thaonguyen@luu.edu.vn)
BMC Proceedings 2019, 13(Suppl 7);PPP10

Background
Medicinal plants have been used widely in the treatment of immune-related diseases such as immunodeficiency, hypersensitivity, inflammation, or autoimmune diseases, yet little is known about their mechanisms of action. Therefore, this study was conducted to study the effect of some medicinal plants on in vitro proliferation of peripheral blood mononuclear cells (PBMCs) and their antioxidant activity.

Methods
PBMCs were isolated from whole blood of healthy donors. MTT assay was used to evaluate the effect of 13 extracts in 96% ethanol and 24 fractionated extracts on PBMCs in vitro proliferation. IL-2 concentration secreted by extracts-treated PBMCs were quantitated using ELISA. The plant extract with the strongest antiproliferative activity was chosen for further evaluation on the apoptosis/necrosis and ratios of TCD3+/CD4+ and TCD3+/CD8+ of PBMCs. Antioxidant activities of 96% ethanol extracts and fractionated extracts were assessed using DPPH assay.

Results
Of the 13 ethanol extracts, 6 extracts inhibited and 2 extracts stimulated the in vitro proliferation of PBMCs. The extracts with inhibitory effects reduced the amount of IL-2, whilst the extracts with stimulatory effects showed no effect on IL-2 expression compared to untreated cells (control). The chloroform extract of Wedelia chinesis showed strongest inhibitory activity with an IC_{50} value of 16.1 ppm, exerting an increase of 19.1% in apoptosis and a decrease of 4.18% in TCD3+/CD4+ ratio compared to untreated cells. The chloroform extract of Piper betle showed a strong antioxidant activity with an EC_{50} of 1.94 ppm, 2.1 times higher than that of vitamin C.

Conclusions
The chloroform extract of Wedelia chinesis had a potential of being used in the treatment of autoimmune diseases. Further studies are needed to isolate and identify the compounds responsible for this activity.

Keywords: PBMCs, interleukine–2, TCD3+CD4+, TCD3+CD8+, cytotoxicity, antioxidant

PPP11
MDA-MB-231 cells are resistant to low concentrations of medroxyprogesterone
Nur Anis Sahita Abd Rahman1, Nor Anisa Aisyah Nor Hasrin1, Sharifah Nurfazilah Wan Yusop2, Sadia Sultan1,2, Nur Syamimi Ariffin1
1Department of Pharmaceutical Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia; 2Atta-ur-Rahman Institute for Natural Product Discovery (AuRIn), Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia
Correspondence: Nur Syamimi Ariffin (nursyamimi.ariffin@uitm.edu.my)
BMC Proceedings 2019, 13(Suppl 7);PPP11
Background
Breast cancer is the most prevalent cancer among women worldwide. Despite treatment options available for breast cancer, the rate of mortality is high with over 500,000 deaths reported annually. The aggressiveness of triple-negative breast cancer (TNBC) makes the treatment challenging and this is especially true in preventing the cells from migrating to other sites in the body. Therefore, identifying compounds that can inhibit TNBC cells from metastasizing to other regions is crucial before it develops a secondary cancer. Medroxyprogesterone (MP) is a synthetic derivative of progesterone and it shares similar pharmacological actions to progestin. The cytotoxic effect of MP has never been reported in MDA-MB-231 cells, a metastatic TNBC cell line. Therefore, in this study, the effect of MP on MDA-MB-231 cells was first determined.

Methods
MDA-MB-231 cells were seeded in a number of 2,000 cells per well in 96-well plates and incubated overnight at 37°C. The cells were then treated with a range of MP concentrations from 0 to 8.5 μM for 24h and cytotoxicity was determined by a colorimetric MTT assay. Absolute DMSO was used to break the formazan crystal formed and absorbance was measured at 550nm using a microplate reader.

Results
The results show that within the concentration range tested, MP did not cause any cytotoxic effect to MDA-MB-231 cells as indicated by a non-significant difference in the percentage of cell viability compared to the control group (p>0.05). This indicates that MDA-MB-231 cells are resistant to MP at least at this concentration range and therefore, it is safe to be tested for anti-metastatic activity in the future.

Conclusions
It is confirmed that MDA-MB-231 cells are safe to be treated with MP at a concentration of 0-8.5μM within 24h exposure. This is important to determine the inhibitory effect of MP against the metastatic capability of TNBC cells.

Keywords: Triple-negative breast cancer, Breast cancer metastasis, Medroxyprogesterone

PPP13
A potential role of norethisterone (ED-4) as an anti-metastatic drug against triple-negative breast cancer cells
Nuralia Sadiqin Lokmanulhakim1, Syed Muhammad Muzaffar Syed Mohd Hamdann1, Shanfah Nurazilah Wan Yusop1,2, Syed Adnan Ali Shah1,2, Nur Syamim Arifin1,2 Sadia Sultan1,2
1Department of Pharmaceutical Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, 42300 Selangor, Malaysia; 2Atta-ur-Rahman Institute for Natural Product Discovery (AuRins), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, 42300 Selangor, Malaysia

Correspondence: Sadia Sultan (dssadia@uitm.edu.my)

BMC Proceedings 2019, 13(Suppl 7):PPP13

Background
Breast cancer is one of the most common malignant cancer in women. It is a heterogeneous disease that affects one in every eight women worldwide. Breast cancer metastasis is the most life-threatening aspect of breast cancer. It is a multiple step process involving an invasion of a primary tumour cell and followed by a subsequent colonization of the cell at the secondary sites in the body like bone, brain, liver, and lung. It was hypothesized that norethisterone (ED-4) might have the ability to inhibit the migration of metastatic breast cancer cells.

Methods
The MDA-MB-231 cells were treated with a range of ED-4 concentrations, from 0 till 8.5 μM, specifically, the cells were incubated with the drug for 18h at 37°C at the concentration of 0, 2.5, 3.5, 4.5, 5.5, 6.5 and 8.5μM and their cytotoxicity was performed using a colorimetric MTT assay.

Results
The result showed that ED-4 did not induce cytotoxicity on MDA-MB-231 cells at the concentration range of 1μM up to 8μM (p>0.05). Therefore, ED-4 at this concentration range can be used to determine its efficacy as anti-metastasis against triple negative breast cancer cells.

Conclusions
To date, there is no drug available for a prevention of breast cancer metastasis and therefore, norethisterone (ED-4) was proposed as a new drug candidate to inhibit breast cancer metastasis. This potential could have benefits on future studies on the management of breast cancer metastasis among breast cancer patients.

Keywords: Breast cancer, Norethisterone (ED-4), Triple Negative Breast Cancer, Metastasis, MDA-MB-231 cells.
PPP14

Characterization and cytotoxic activity of semi-purified Fucoidan extract from *Sargassum polycystum* C. Agardh (Sargassaceae) against Acute Myelogenous Leukemia (AMLK) cell line using MTT assay

Cecilia D. Santiago, Mariane O. Magahis, Mica Anjanel R. Hernandez, Federica Angelica T. Inciong, Justin Dave M. Manantan, Rachel Leah T. Menez, Vaniah Grace B. Soriano, Jan Karlo T. Ecalhe
School of Pharmacy, Centro Escolar University, Mandalia, Manila, Philippines

Correspondence: Cecilia D. Santiago (cdsantiago@ceu.edu.ph)
BMC Proceedings 2019, 13(Suppl 7):PPP14

Background

Leukemia is one of the most prevalent cancer types for Filipinos becoming the 7th leading form of cancer in both sexes. In 2012, the Philippines estimated national standardized mortality of leukemia were of 3.9 per 100,000. The brown macroalgae specifically from the Sargassum are considered as rich sources of phytochemicals such as Fucoidan and Fucoxanthin that act on multi-signaling pathways needed to combat cancer.

Methods

Isolation of the semi-purified Fucoidan extract was based on a process developed by Mak. W. (2012), in which pre-treatment of the sample with ethanol, precipitation with Calcium Chloride and ethanol concentrations, with centrifugation steps in between. The study evaluated the physicochemical characteristics including the following: i) organoleptic, ii) solubility, iii) phytochemical assay, iv) fucose, sulfate and glucuronic content using UV-VIS spectroscopy, instrumental analysis using Fourier Transform Infrared Spectroscopy (FTIR) and the cytotoxicity activity of semi purified Fucoidan extract against Acute Myelogenous Leukemia (AMLK) cell line using MTT assay using doxorubicin as the positive control.

Results

The obtained percentage yield showed that 440.15 g of the pre-treated *Sargassum polycystum* contained 1.3% semi-purified fucoidan extract. Solubility test confirm the solubility of the extract to water and hydrochloric acid. The semi-purified Fucoidan isolate was characterized of its fucose, sulfate, and glucuronic acid content, with results of 26.23%, 23.52%, and 32.71%, respectively. FTIR spectrum confirms the presence functional moieties i.e. isothiocyanate and sulfonyl that are also found on fucoidan standard and sulfated polysaccharides, these functional groups may be attributed to the different biological activities that Fucoidan exhibits. Cytotoxic activity was evaluated using MTT assay, wherein results showed that the semi-purified Fucoidan extract from *S. polycystum C. Agardh* (Sargassaceae) exhibits cytotoxic activity against AMLK cell line, with concentration of 6.25 μg/ml having the highest inhibitory rate of 44.08%. Statistical treatment showed significant difference between the semi-purified Fucoidan extract and the standard drug, doxorubicin.

Conclusions

In conclusion, the semi-purified Fucoidan extract from *S. polycystum C. Agardh* (Sargassaceae) may exhibit anti-proliferative effect against AMLK cell line. **Keywords:** Sargassum, Cytotoxicity, Fucoidan, MTT assay, AMLK cell line

PPP15

Formulation of antibacterial ointment from the ethanolic crude extract of *Ikmo* leaves (*Piper betle* Linn, Piperaceae family)

Mylene S. Andal, Lois Stephanie B. Galalo, Paola Noreen A. Dela Merced, Ezili Laine F. Perez, Gary Jr. C. Quebec, Serie S. Shimomura, Regine F. Valderama, Cecilia D. Santiago
School of Pharmacy, Centro Escolar University, Manila, Philippines

Correspondence: Mylene S. Andal (maandal@ceu.edu.ph)
BMC Proceedings 2019, 13(Suppl 7):PPP15

Background

According to World Health Organization cases of Antimicrobial Resistance (AMR) have exponentially increased yet fewer antibacterial agents are discovered on the past years. AMR hampers the control of infectious diseases resulting to an increase in health care cost and risk of spreading resistant microorganisms in the community, these events is a growing public health challenge and poses a global health crisis if remain uncontrolled. *Ikmo* leaves on the otherhand has been well studied and has shown abundant and potential source of phytoconstituents that may be developed as antimicrobial agent and incorporate it to an applicable dosage form, therefore to address this concern the researchers formulate a plant-derived antibacterial ointment from the ethanolic crude extract from *Piper betle* locally known as *Ikmo*.

Methods

Mature *Ikmo* leaves were collected, dried and extracted. The extract was then subjected to physicochemical characterization and antibacterial assay by means of agar-plate method. The plant concentration that exhibits the most active effect against *Staphylococcus aureus* and *Pseudomonas aeruginosa* (p<0.05) will be used in the formulation of antibacterial ointment. To ensure the safety of the formulated product, initial dermal irritation test was conducted using rabbits.

Results

The yield of ethanolic extract of *Ikmo* leaves extract is 9.922% and is found to have greenish-black color, creosote-like odor and has syrupy consistency. The ethanolic crude extract was soluble in acetone, ethanol, and ethyl and insoluble in water. The optimized extract concentration of 60% was further develop to ointment and is the subjected to antibacterial assay against *Staphylococcus aureus* and *Pseudomonas aeruginosa* resulting to a zone of inhibition of 23.05±1.35 mm and 26.40±0.89 mm compared to mupirocin (14.93 ±0.03 mm and 17.55±0.03 mm). Dermal irritation test has also shown that the formulated extract does not show any skin reactions to test animals.

Conclusion

Based on the result of the study, the formulated ointment of the optimized ethanolic crude extract of *Ikmo* leaves has shown to be a potential agent to be further studied considering its good preliminary antibacterial effect and dermal irritation test.

Keywords: *Piper betle* Linn, *Ikmo* leaves, *Staphylococcus aureus*, *Pseudomonas aeruginosa*, antibacterial, ointment

PPP16

Antibacterial activity of *Musa paradisiaca* stem extracts against isolated UTI pathogens

Anita Gnana Kumari, Logananthini
Department of basic sciences, Faculty of pharmacy, KPJ Healthcare University College (KPJUC), Kotasremas, Nilai, 71800, Malaysia

Correspondence: Anita Gnana Kumari (av.kumari@kpjuc.edu.my)
BMC Proceedings 2019, 13(Suppl 7):PPP16

Background

Urinary tract infection (UTI) has become a more serious problem today, due to multidrug resistance of Gram-positive (GP) and Gram-negative (GN) bacteria. *Musa paradisiaca* is used as a medicinal plant in traditional system of healing many infectious diseases. The goal of our research was to evaluate antimicrobial efficiency of *Musa paradisiaca* (banana) stem extracts against isolated UTI pathogens.

Methods

Banana stem extracts were obtained with maceration technique using two solvents separately: distilled water and methanol. Agar well diffusion assay was used for evaluation of antimicrobial properties of stem extracts against isolated UTI pathogens. Minimum inhibitory concentrations and minimum bactericidal concentrations were determined by broth dilution method and agar plate method. The preliminary phytochemical analyses of the plants were carried out using standard procedure.

Results

A total of 5 UTI pathogens were isolated from the UTI patients attending in the hospital such as *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, *E. coli*, *Enterococcus faecalis* and *Staphylococcus aureus*. Aqueous and ethanol extracts expressed antimicrobial activity against isolated UTI pathogens except *S. aureus* at 500 mg/ml. Zone of inhibition of the extracts were compared with ciprofloxacin (250mg/ml). Ethanolic extracts of *M. paradisiaca* inhibited the growth of *P. aeruginosa* and *E. coli* at 62.5 mg/ml and *K. pneumoniae* at 125 mg/ml. Aqueous extracts of *M. paradisiaca* inhibited the growth of *K. pneumoniae* and *E. coli* at 250mg/ml. Ethanol extracts of *M. paradisiaca* exhibited bactericidal activity.
against *P. aeruginosa* and *E. faecalis* at 250 mg/ml. Ethanolic extracts exhibited better antibacterial activity against tested strains than water extracts. The antibacterial activity of the *M. paradisiaca* was due to the presence of alkaloids, tannins, flavonoids, terpenoids and sugars.

Conclusions

Hence, the plant *M. paradisiaca* stem contains potential antimicrobial compounds against UTI pathogens. Further study is required to identify the bioactive compounds, mode of action and in vivo toxic effect of *M. Paradisiaca*.

Keywords: antibacterial activity, *M. Paradisiaca* stem extracts, minimum inhibitory concentration, phytochemicals

PPL2

Locomotor, exploratory and anxiety-like behavior assessment of aged rats following intrahippocampal injection with streptozotocin: A novel Alzheimer’s disease rodent model

Mazzura Wan Chik1, Nur Hidayah Elias1, Nur Faiqah Fauzi1, Nurul Aqmar Mohd Nor Hazalim1, Gurmeet Kaur Surindar Singh2,3

1 Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia; 2Brain Degeneration and Therapeutics Group, Pharmaceutical and Life Sciences Community of Research, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia; 3Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Selangor, Malaysia

Correspondence: Gurmeet Kaur Surindar Singh (gurmeet19952@uitm.edu.my)

BMC Proceedings 2019, 13(Suppl 7):PPL2

Background

Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with a series of pathophysiological changes, accumulation of amyloid plaques and tau tangles. The hippocampal region which is responsible for long-term memory and spatial navigation demonstrated neuronal loss in AD patients. Peripheral exposure of streptozotocin (STZ) used in diabetic studies showed AD pathogenesis in 8 months. A reliable AD rat model should resemble the brain metabolic and behavioral disturbances in humans. Thus, the present study was conducted to investigate the effects of intrahippocampal (IH)-STZ administration that directly target the insulin receptors on the locomotor activity and anxiety-like behavior at two time points (3 and 12 weeks) post-STZ injection.

Methods

Forty-male (12 months old) Sprague-Dawley rats (350-450 g) were divided into two groups to monitor the progression of AD at two time points (3 weeks and 12 weeks, n=20 respectively). The rats were further divided to control (no treatment, n=5), sham-operated (received PBS, n=5) and treatment (IH-STZ, n=10). STZ (3 mg/kg; 5 μl) was administered bilaterally as a single injection into the dorsal hippocampus of the rats using a stereotaxic apparatus. The open field test using the open square maze (50 cm x 50 cm) tracked with software (ANY-maze) was used to record the rat’s behavior.

Results

There were no significant differences in spontaneous locomotor, exploratory activity and time spent in the central area between the groups. Rats from group 3 and 12 weeks also did not show significant changes in all the parameters when compared between the two time points (p < 0.05).

Conclusions

STZ when administered intrahippocampally did not impair the rats’ locomotor activity, absent of any signs of anxiety and exhibited normal exploratory behavior. The rodent IH-STZ is a suitable model to study treatment and prevention of AD as the behavior and pathology resembled AD patients.

Keywords: Alzheimer’s disease, Intrahippocampal, Rodent model, Streptozotocin, Locomotor

PPL3

Machine learning based prediction of potential interaction between leukaemia-related proteins and *Centella asiatica* compounds

Norodiyah Othman1,2, Mohd Ilham Adenan1, Fazlin Mohd Faiz1

1 Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia; 2Haematology Unit, Cancer Research Centre, Institute for Medical Research (IMR), 50588 Kuala Lumpur, Malaysia; 3Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Selangor, Malaysia

Correspondence: Fazlin Mohd Faiz (fazlin5465@uitm.edu.my)

BMC Proceedings 2019, 13(Suppl 7):PPL3

Background

Leukaemia is one of the leading causes of morbidity and mortality in adult and children worldwide. Finding specific targets for anti-leukaemic activity is challenging, due to the limited understanding of target selectivity features and compounds. For this purpose, a one vs one (OvO) classification model was built on bioactivity data of 23 leukaemia-related proteins to assess potential compound-target interaction of 4 main *Centella asiatica* compounds.

Methods

An OvO classification model was trained on bioactivity data containing protein-ligand interactions between 23 leukaemia-related proteins and 17,637 compounds. The data was obtained from ChEMBL (https://www.ebi.ac.uk/chembl/) database. The compounds were converted to ECFP_4 fingerprint and Random Forests was used as the machine learning algorithm to deduce a mathematical correlation between compound structure and protein receptor in the training set. The model was validated using a 5-fold cross validation and potential target interaction of *C. asiatica* compounds; Asiaticoside, Madecassoside, Asiatic acid and Madecassic acid were then identified using the model.

Results

In the internal validation, the OvO model exhibited an average sensitivity of 0.87, specificity of 0.96, q2 value of 0.57, and root-mean-square error (RMSE) of 0.22. In the prediction of potential protein targets for *C. asiatica* compounds, 3 potential proteins (CHEMBL1997, CHEMBL1825 and CHEMBL2034) may interact with the tested compounds. The next phase of the study will involve testing the 4 compounds against the 3 predicted proteins in vitro.

Conclusions

Machine learning based prediction of interaction between protein target and bioactive compounds may serve as a valuable tool in searching for potential lead compounds in leukemic diseases.

Keywords: One vs one classification; target prediction; machine learning; interaction; leukaemia-related protein

PPL4

Centella asiatica extract (CAE) improves motor performance of methamphetamine-treated rats

Nursyamilia Shamsuddin1, Mohd Shihabuddin Ahmad Noor1, Mazatulkhima Mat Zain1

1 Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia; 2Institute of Science (IOS), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia

Correspondence: Mohd Shihabuddin Ahmad Noor (shihia@uitm.edu.my)

BMC Proceedings 2019, 13(Suppl 7):PPL4

Background

Methamphetamine or METH, a psychostimulant with devastating neurotoxic effects on the central nervous system. METH’s abuser has
Reference text content here...
PPL7

Tth111I Single nucleotide polymorphism (SNP) among Malay subjects as detected by polymerase chain reaction (PCR) and DNA sequencing methods

Siti Noorainah Hussin, Nor Syuhada Shaari, Siti Zuhairah Zainuddin
1Department of Life Science, Faculty of Pharmacy, UiTM Cawangan Selangor, Campus Puncak Alam, 43200 Bandar Puncak Alam, Selangor
Correspondence: Siti Noorainah Hussin (noorainah0352@uitm.edu.my)

BMC Proceedings 2019, 13(Suppl 7):PPL7

Background
Glucocorticoid receptor (GR) plays an integral role in regulating body functions. Polymorphism of the Tth111I significantly increases the sensitivity of the GR receptor, with prominent evidence at higher HDL-C levels. Thus, this study aims to screen and to find the Tth111I SNP association with the HDL-C level by using polymerase chain reaction (PCR) and DNA sequencing methods among Malay subjects.

Methods
DNA was extracted and amplified from blood samples of 24 Malay subjects, which consist of 12 normal lean and 12 obese respondents.

Results
Among the ten sequenced samples however, none was detected as mutant. Since, all the samples were wild-types (WTs), hence, the association between the Tth111I SNP with the HDL-C level could not be made.

Conclusions
A larger sample size must be recruited, and further studies need to be conducted to determine the impact of this SNP on the HDL-c level to explain the potential role of Tth111I SNP in preventing cardiovascular disease (CVD) among the Malay Malaysians.

Keywords: glucocorticoid receptor gene, single nucleotide polymorphism, Tth111I, HDL-C

PPL8

Ciproxifan protects the effects of D-galactose/aluminium chloride-induced memory impairment in mice through BDNF and neuronal cell marker

Suraya Mohd Noh1,2, Abu Bakar Abdul Majeed1,2, Kalavathy Ramasamy1,2, Vasudevan Mani2
1Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia;
2Brain Degeneration and Therapeutics Group, Collaborative Drug Discovery Research (CDDR) Group, Pharmaceutical & Life Sciences CoRe, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia;

Correspondence: Suraya Mohd Noh (sue_adam90@yahoo.com)

BMC Proceedings 2019, 13(Suppl 7):PPL8

Background
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, and is associated with the formation of amyloid-β (Aβ) plaques which are generated from the cleavage of amyloid precursor protein. Thus far, (−)-epigallocatechin gallate (EGCG), curcumin and resveratrol are some of the natural product based compounds that possess inhibitory activities against Aβ aggregation. The current study was designed to discover Aβ aggregation inhibitory compounds from fermented tea (Camellia japonica).

Methods
Fermented tea was provided by Amore Pacific Co., and was extracted using acetone and ethanol. The ethanol soluble extract was separated by diverse column chromatography methods. Isolated compounds were identified by interpretation of spectroscopic data including one-, two-dimensional NMR, UV, IR and ESI-Q-TOF-MS. Amyloid-β aggregation inhibitory activity was evaluated using Thioflavin T beta-amyloid aggregation kit and negative -stained transmission electron microscopy. The protective effect of the compounds was tested in Aβ-treated SH-SYSY cells by estimating the viability using the CCK-8 assay kit.

Results
Phytochemical investigation of the fermented tea led to isolation of 31 phenolic compounds including three new flavonoid glycosides. Among the compounds, (−)-catechin gallate (CG), (−)-epicatechin gallate (EGC), and (−)-epigallocatechin gallate (EGCG) showed strong Aβ aggregation inhibitory effect whilst CG exhibited high protection in SH-SYSY cells against Aβ-induced cytotoxicity.

Conclusions
CG and ECG showed more potent anti-Aβ aggregation effects than EGCG, a well-known natural Aβ aggregation inhibitor. The current study provides scientific evidences that compounds from fermented tea possess beneficial actions against neurodegeneration in vitro.

Keywords: Camellia japonica, phenolic compounds, anti-Aβ aggregation

PPL9

Amyloid-beta aggregation inhibitory compounds isolated from fermented tea (Camellia japonica)

Kee Dong Yoon
College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
Correspondence: Kee Dong Yoon (kdyoon@catholic.ac.kr)

BMC Proceedings 2019, 13(Suppl 7):PPL9

Background
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, and is associated with the formation of amyloid-β (Aβ) plaques which are generated from the cleavage of amyloid precursor protein. Thus far, (−)-epigallocatechin gallate (EGCG), curcumin and resveratrol are some of the natural product based compounds that possess inhibitory activities against Aβ aggregation. The current study was designed to discover Aβ aggregation inhibitory compounds from fermented tea (Camellia japonica).

Methods
Fermented tea was provided by Amore Pacific Co., and was extracted using acetone and ethanol. The ethanol soluble extract was separated by diverse column chromatography methods. Isolated compounds were identified by interpretation of spectroscopic data including one-, two-dimensional NMR, UV, IR and ESI-Q-TOF-MS. Amyloid-β aggregation inhibitory activity was evaluated using Thioflavin T beta-amyloid aggregation kit and negative -stained transmission electron microscopy. The protective effect of the compounds was tested in Aβ-treated SH-SYSY cells by estimating the viability using the CCK-8 assay kit.

Results
Phytochemical investigation of the fermented tea led to isolation of 31 phenolic compounds including three new flavonoid glycosides. Among the compounds, (−)-catechin gallate (CG), (−)-epicatechin gallate (EGC), and (−)-epigallocatechin gallate (EGCG) showed strong Aβ aggregation inhibitory effect whilst CG exhibited high protection in SH-SYSY cells against Aβ-induced cytotoxicity.

Conclusions
CG and ECG showed more potent anti-Aβ aggregation effects than EGCG, a well-known natural Aβ aggregation inhibitor. The current study provides scientific evidences that compounds from fermented tea possess beneficial actions against neurodegeneration in vitro.

Keywords: Camellia japonica, phenolic compounds, anti-Aβ aggregation

Copyright permission
The content of this study was published [Phytochemistry 160 (2019) 11–18] previously but received the copyright permission from Elsevier Copyright Clearance Center (licence # 4631220464146) for the poster presentation.
Agmatine prevents mitochondrial dysfunction in 3-nitropionic acid-induced experimental Huntington’s Disease
Nor Awatif Osmanudin1,2, Atish Prakash2,6, Vasudevan Mani5, Kalavathy Ramasamy1,3,4, Abu Bakar Abdul Majeeed1,2,4
1Faculty of Pharmacy, Puncak Alam Campus, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; 2Brain Degeneration and Therapeutics Group & 3 Collaborative Drug Discovery Research (CDDR) Group; 4Pharmaceutical Life Sciences CoRe, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor Darul Ehsan, Malaysia; 5Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, P.O. Box 6800, Buraidah, 51452, Kingdom of Saudi Arabia; 6John Hopkins School of Medicine, Baltimore, Maryland, United State of America
Correspondence: Nor Awatif Osmanudin (awatif.osmanudin@gmail.com)
BMC Proceedings 2019, 13(Suppl 7):PPL10

Background
Huntington’s disease (HD) is an inherited genetic disorder, caused by the mutation of abnormally expanded and unstable CAG repeat within the coding region of the huntingtin protein gene. At the molecular level, mitochondrial dysfunction plays a significant role in the pathogenesis of HD. 3-nitropionic acid (3-NP) is a neurotoxin which induces neurodegeneration in the animal model of Huntington’s disease (HD). It is an irreversible inhibitor of mitochondrial complex II (SDH) enzyme of the electron transport chain. Agmatine is the metabolite of arginine by arginine decarboxylase and has been suggested to be a neuroprotective agent. The objective of this study was to investigate the protective effect of agmatine on 3-NP-induced neurodegeneration through the estimation of mitochondrial enzymatic profile in Wistar rats.

Methods
The experimental protocol design includes systemic 3-NP (10 mg/kg, i.p.) treatment thrice, i.e. on day 1, 5 and 9. Agmatine (40 and 80 mg/kg) was also given i.p. daily, from day 9 to day 15.

Results
Enzymatic levels in mitochondrial complexes-I, II, III and IV were found to be significantly lowered in the brain of rats treated with 3-NP. Mitochondrial SDH contributes to cell viability reduction, hence, the decrease of cell viability approves irreversible inhibition of SDH by 3-NP. The level of enzymes of all complexes in groups treated with agmatine (40 and 80 mg/kg) was significantly increased.

Conclusion
The present study provides evidence that agmatine exerts protective action over 3-NP-induced neurodegeneration through preventing mitochondrial dysfunction and thus, may be potentially used as a neuroprotective agent.

Keywords: Huntington’s disease, 3-NP, agmatine, mitochondrial dysfunction

Amplification of purine rich site from COL4A3 gene for triple helix study in keratoconus eye disease
Mohd Shihabuddin Ahmad Noorden1, Qishaina Mizan1, Nur Serene Sofia Noor Aziz2, Fazileen Haslinda Mohd Hatta1
1Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia; 2Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Correspondence: Fazileen Mohd Fauzi (fazileen@puncakalam.uitm.edu.my)
BMC Proceedings 2019, 13(Suppl 7):PPL12

Background
Keratoconus (KC) eye disease is a non-inflammatory disorder characterized by eye bulging due to corneal thinning and results in blurred vision and astigmatism. Several factors lead to KC development including genetic factor and polymorphism of COL4A3. Triple helix is DNA structure where three single strand of DNA fragment bind to the purine rich site of DNA duplex in reverse Hoogsteen hydrogen bonds. This triplex structure is enable to suppress gene expression by inhibiting the initiation of transcription. The objective of the study was to identify and amplify the purine rich site in COL4A3 gene.

Methods
The desired purine rich site of COL4A3 gene was amplified using designed PCR primers based on sequence from NCBI (accession number: NG_011591.1). The PCR steps were repeated for 30 cycles by using 54.5 °C annealing temperature (°Tm). The amplicon then subjected for 1% agarose gel electrophoresis for DNA separation and observed under UV light through ethidium bromide staining before advancing for sequencing.

Results
The PCR product bands with size of 429 nucleotides were successfully observed. Based on the sequencing analysis, 88.8% of amplicon aligned with original sequence from NCBI and there was one base deletion from the amplicon. This shows that the purine rich region of COL4A3 gene was successfully amplified.

Conclusions
Results demonstrated that the purine rich region of COL4A3 gene was successfully identified and amplified and it can be used as triple helix forming oligonucleotides binding site.

Keywords: keratoconus eye disease, COL4A3 gene, triple helix

Towards the discovery of novel dengue NS3 antiviral drug: Application of proteochemometric (PCM) modelling and in vitro validation in drug repurposing
Zafirah Liyana Abdullah1, Chee Hui Yee2, Fazlin Mohd Fauzi1
1Department of Pharmaceutical Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia; 2Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
Correspondence: Fazlin Mohd Fauzi (fazlin@puncakalam.uitm.edu.my)
BMC Proceedings 2019, 13(Suppl 7):PPL11

Background
The current treatment for DENV infection is only supportive care involving fluid replacement, analgesics and bed rest. Dengvaxia®, a DENV vaccine was recently approved by FDA but its usage is age-limited and only for patients with confirmed previous dengue infection. Antivirals for DENV infection that can reduce the risk of severe cases of patients from any background is crucial. Hence this study aims to screen currently available drugs (a process known as drug repurposing) for potential antiviral activity that targets the NS3 protease of DENV through proteochemometric (PCM) modeling and subsequent in vitro validation.

Methods
The PCM model was built on a training set which comprises of 62,746 bioactivity data from ten serine proteases available from public databases. Aitchison-Aitken kernel and sequence identity were used to calculate chemical and biological similarity respectively while Parzen-Rosenblatt Window was used as the classification algorithm. The performance of the model was validated to measure the accuracy of the prediction model. Drugs from the SWEETLEAD database were then screened for potential activity against NS3 protease using the validated model and further tested in vitro for their ability to inhibit DENV activity. Molecular docking was performed to model the interaction between drugs and NS3 protease.

Results
The performance of the model was validated internally (goodness of fit RMSE = 0.315, predictive ability $Q^2 = 0.567$) and externally (RMSE = 0.466, and $Q^2 = -1.509$). The screening showed that Zileuton and Trimethadione have the potential as antiviral with good binding affinity at the active sites. The in vitro assay further validated that Tri-methadione possess better anti-DENV activity with 80% foci reduction when tested at 20 mM drug concentration.

Conclusions
Drug repurposing through PCM modelling is a promising technique to accelerate the discovery of novel dengue antiviral drug.

Keywords: Dengue virus, antiviral drug, proteochemometric (PCM) modelling, drug repurposing

This project is funded by the Ministry of Education of Malaysia with Universiti Teknologi MARA (UiTM) through the Fundamental Research Grant Scheme (FRGS; 600-RMI/FRGS 5/3 (0020/2016).
PPL13

Photodamage attenuating effects of marine endophytic fungus (MV) fractions against fibroblast cell line

Asma Genari@Azhari, Siti Alwani Ariffin

Marine Pharmaceutical Research Group (Mareg), Department of Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia

Correspondence: Siti Alwani Ariffin (alwani229@uitm.edu.my)

BMC Proceedings 2019, 13(Suppl 7):PPL13

Background

Over exposure to sunlight increased UVB radiation, lead to potential photoaging and skin cancer. As these trends are likely to continue for the foreseeable future, the adverse effect of UVB has become a major human health concern.

Methods

Marine endophytic fungus isolated from red seaweed, Gracilaria arcuata Zanardini (MV) collected from Port Dickson, Negeri Sembilan, Malaysia was investigated for its potential in attenuating the photodamage effects of UVB against fibroblast (CRL 2522) cell line by MTT assay.

Results

The aim of this study was to investigate the potential of marine endophytic fungus (MV) fractions in stimulating DNA repair of CRL 2522 cells against UVB-induced DNA damage. About 13 of MV fractions showed increased of CRL 2522 cell viability (70-80%) after 30 min exposure to UVB radiation. Five of fractions (MV14, MV35, MV41, MV45 and MV50) significantly increased (p<0.05) cell viability. These data suggest a greater potential of marine endophytic fungus (MV) fractions in stimulating DNA repair against UVB-induced damaging cells. Further study of these 13 active fractions should be carried out to determine the photodamage attenuating effects of MV fractions against fibroblasts and Hacat cell lines.

Conclusions

These potential MV fractions might be useful as a starting point for developing dermatological products to prevent oxidative skin damage.

Keywords: seaweed, marine endophytic fungi, photodamage, UVB

PPC2

Investigation of some metals in underground part of the Adenophora stenanthiana (Ledeb) Kitag

Zhang ha dan bao li gao1, Zhang xiu lan1, Wang xiu lan1,

1China Inner Mongolia University for Nationalities; 2School of Pharmacy, Mongolian National University of Medical Science

Correspondence: Zhang xiu lan (zhangxiulang@imu.edu.cn)

BMC Proceedings 2019, 13(Suppl 7):PPC2

Background

Adenophora stenanthiana (Ledeb) Kitag, family of Campanulaceae, is widely grown in China. It is documented in the Chinese Medical Encyclopedia to be beneficial for gout, rheumatism, leprosy, various bacterial infections and cancer. The part grown under ground contained glycosides, terpenes, and small amount of alkaloids. To determine the safety of the raw material of Adenophora stenanthiana (Ledeb) Kitag, the content of some heavy metals were determined by atomic absorption spectrometer.

Methods

Eight samples of Adenophora stenanthiana were collected from different geographical regions of China, according to the Chinese pharmacopoeia. Heavy metals such as lead, cadmium and copper were measured in the samples with standard atomic absorption spectrometric method (CP- A/59).

Results

The heavy metal content of the 8 samples were determined. According to the Medicinal Plasma Standard (GAPS) the permissible content were as follow: (Cu ≤ 20.0 μg/g, Pb ≤ 5.0 μg/g, Cd ≤ 0.3 μg/g). Sample 6 and 8 were relatively high in lead with 18.85 μg/g and 41.92 μg/g, respectively, However, both samples did not exceed the acceptable concentration for cadmium and copper.

Conclusions

Adenophora stenanthiana grown in different geographical regions presented with different concentrations of heavy metals.

Keywords: Adenophora stenanthiana, copper, cadmium, lead, atomic absorption spectrometer

PPC1

The study of effect of method and time of extraction on antioxidant, total phenolic content and total flavonoid content of Ficus deltoidea

Muhammad Fikriey Bin Shafie1, Kamran Ashraf1,2

1Department of Pharmacology & Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; 2A'zra-UrRahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia

Correspondence: Kamran Ashraf (kamrani1368@uitm.edu.my)

BMC Proceedings 2019, 13(Suppl 7):PPC1

Background

Ficus deltoidea is a well-known medicinal plant which has long been used by the Malay community in treating various health problems. Due to its antioxidant property and the presence of phenolics and flavonoids, the plant contributes the various biological activities. These properties vary significantly with different extraction methods and time. This study aimed to evaluate the effect of method and time of extraction on antioxidant, total phenolic content (TPC) and total flavonoid content (TFC) of Ficus deltoidea.

Methods

Different extraction methods like continuous shaking extraction (CSE) with time (30, 160 and 360 min), ultrasonic extraction (USE) with time (5, 15 and 30 min) and microwave assisted extraction (MAE) with time (1, 3 and 5 min) were applied to see the effect on total antioxidant activity, TPC and TFC quantitatively. The antioxidant and total phenolic and total flavonoid content of extracts were evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, Folin-Ciocalteu and aluminum chloride (AlCl3) tests, respectively.

Results

The microwave extraction method provided good extractive yield, superior scavenging activity and higher yield of TPC and TFC compared to the other two methods used. The outcome of this experiment also indicates that TPC and TFC increases as the increase in extraction time in each different methods of extraction.

Conclusions

MAE showed good results even in shorter time of extraction may be due to the rapid heating mechanism of microwave. The hot solvent produced in MAE penetrated easily into the matrix and extract compounds from the lysed plant cells. Therefore, the MAE method is more efficient in extracting phenolic and flavonoid compounds and showed better antioxidant effect compared to USE and CSE methods.

Keywords: Ficus deltoidea, antioxidant, total phenolic content, total flavonoid content, microwave assisted extraction

PPC5

Analysis of methanolic extract of Aloe vera by reverse phase high performance liquid chromatography (RP-HPLC)

Razuan Hilmi Md Sulji, Kathleen J. Jalani, Hannis Fadzillah Mohsin, Ibtsiam Abdul Wahab

Department of Pharmacology & Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia

Correspondence: Ibtsiam Abdul Wahab (ibtsiam@uitm.edu.my)

BMC Proceedings 2019, 13(Suppl 7):PPC5
Background
Aloe vera is also known as Aloe barbadensis Miller, a plant that has been used for the purpose of medication and cure for health conditions. The Aloe vera extract was studied by using reversed phase high performance liquid chromatographic (RP-HPLC) method.

Methods
The RP-HPLC system included a Model 1100 pump supplied with a multi solvent delivery system, an Agilent C18 (5 μm, 4.6 x 250 mm) column and a photodiode array detector. The solvent consisted of acetonitrile (CH₃CN) and water (0.01% formic acid). It was set up to run in a gradient elution as follows: 0 min, 10:90; 3 min, 10:90; 30 min, 90:10; 35 min, 90:10; 36 min, 10:90; and 45 min, 10:90. The flow rate was set as 1 mL/min (temperature of the column = 25°C) and the UV absorbances were measured at λ = 210, 254 and 280 nm. The peaks in the chromatograms were recorded and reviewed. A triplicate trial was performed for each sample volume = 10 μL per injection.

Results
The compounds with the highest absorbance values were eluted within nine minutes, whereby the solvent ratio was 30:70 (CH₃CN:H₂O). It is suggested that aloe emodin was separated much earlier, at retention time, RT = 1.676 minutes. Later, the anthrone C-glycosylates [aloin A (barbaloin) and aloin B (isobarbaloin)] could be eluted, respectively at RT = 8.171 and 8.721 minutes.

Conclusions
The Aloe compounds could be identified by comparing their retention times with the monograph. Some unresolved, minor peaks, that were not well isolated (RT = 2.2 and 8.3 minutes) could be attributed to the less polar metabolites of aloins, for example, the aloe emodin anthraquinone and rhein. The RP-HPLC technique appears to be adequate for routine analysis of the Aloe extract.

Keywords: Aloe, chromatography, extraction, separation

PPC7
Phytochemical investigation of Combretum indicum leaves extracts
Sabarina Binti Aziz, Humera Naz
Department of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam, Selangor, Malaysia
Correspondence: Humera Naz (humeranaz@uitm.edu.my)
BMC Proceedings 2019, 13(Suppl 7):PPC7

Background
Combretum indicum is also known as Akar Dani or Rangoon Creeper and can be found throughout Asia and tropical Africa. C. indicum is a plant species belonging to the Combretum genus and the family of Combretaceae. Numerous studies proved the therapeutic effects of this plant including anti-obesity, anti-inflammatory, antioxidant, insecticidal, antimicrobial, cytotoxic and immunomodulatory properties. The previous phytochemical studies of Combretum indicum have revealed the presence of tetracyclic triterpenes, trigonelline (alkaloid), rutin (flavonoid), tannins, L-proline (α-amino acid), L-asparagine (α-amino acid) and quinic acid. In addition, isoenzyme A and isoenzyme B (Enzyme), the two forms of the cysteine synthase are also present in C. indicum.

Methods
The chemical constituents of leaves of C. indicum were extracted using organic solvents. The TLC profile of chloroform extract of C. indicum was established and chemical constituents were purified by PTLC.

Results
Two long chain fatty acids derivatives were successfully isolated from the crude chloroform extract and the structures were confirmed by using NMR analysis.

Conclusions
The phytochemical study on Malaysian C. indicum confirmed the presence of terpenes in chloroform extract.

Keywords: Combretum indicum, Combretaceae, Phytochemical study

PPC8
Analysis of saponins in Vietnamese ginseng cultivated in Lam Dong Province, Vietnam by HPLC-PDA/CAD
Huy Truong Nguyen¹, Quoc Dung Tran Huynh², Hong Van Le Thí³, Jeong Hill Park¹, Minh Duc Nguyen¹
¹Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam; ²Department of Pharmacy, Traditional Medicine Institute, 179 Nam Ky Kho Nghia Street, Ho Chi Minh city, Vietnam; ³Department of Pharmacognosy, University of Medicine and Pharmacy Ho Chi Minh City, 41 Dinh Tien Hoang street, dist. 1, Ho Chi Minh city, Vietnam; ⁴College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
Correspondence: Minh Duc Nguyen (nguyenminhduc@tdu.edu.vn), Jeong Hill Park (hillpark@snu.ac.kr)
BMC Proceedings 2019, 13(Suppl 7):PPC8

Background
Panax vietnamensis is, namely Vietnamese ginseng (VG), was discovered under the canopy of Ngoc Linh mountain in Kon Tum and Quang Nam provinces in 1973. Since then, VG had been believed to be an herbaceous perennial plant native to this area only until recently it was acclimatized to Lam Dong province and cultivated successfully. In this comparative study, we analyzed the saponin composition in both VG cultivated in Lam Dong (VG-LD) and VG cultivated in Ngoc Linh area (VG-NL).

Methods
Saponins in the underground part of VG-LD from 2-4 years old were analyzed in comparison with with those of VG-NL. Separation, qualitative and quantitative analysis of twelve main VG saponins including N-R1, M-R1, G-Rg1, G-Re, M-R2, P-R74, V-R11, V-R2, G-Rh1, G-Rb1, G-Rc, and G-Rd were obtained by HPLC coupled with diode array (PDA) and charge aerosol (CAD) detectors.

Results
VG-LD not only yielded the same chemical composition but also exhibited the considerably higher total saponin content than that of VG-NL at all ages. For instance, total saponin contents of 2-4 years old VG-LD roots, on average, were 9.95%, 11.73%, and 12.84%, respectively, whereas those of VG-NL, on average, were 2.91%, 4.18%, and 10.31%, respectively. Similarly, total saponin contents of 2-4 years old VG-LD rhizomes, on average, were 11.39%, 17.21%, and 14.96%, respectively, whereas those of VG-NL were 3.94%, 5.77%, and 9.59%, respectively.

Conclusions
The result indicates that, regarding the saponin composition, the cultivation of VG in Lam Dong province is successful and, therefore, deserves the support from both central and local governments to nurture and develop the achievement. Further comparative study on the saponin composition of VG-NL and VG-LD at different ages is now in progress to observe the accumulation of saponins over years.

Keywords: Vietnamese ginseng, HPLC-PDA/CAD, analysis of saponin composition

PPC9
Development and validation of a HPLC method for the determination of hippadine in the bulbs of Crinum latifolium L.
Nguyen Thi Tuyet Nhung¹, Nguyen Thi Ngoc Ha¹, Vo Thi Bach Hue²
¹Department of Analytical chemistry and Drug quality control, Faculty of Pharmacy, Luc Hanoi University, 10 Huynh Van Nghe, Dong Nai, Vietnam; ²Department of Analytical chemistry and Drug quality control, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 41 Dinh Tien Hoang, Ho Chi Minh City, Vietnam
Correspondence: Nguyen Thi Tuyet Nhung (tuyetnhung@hlu.edu.vn)
BMC Proceedings 2019, 13(Suppl 7):PPC9

Background
Hippadine is a biologically active alkaloid isolated from Crinum latifolium L. It has been shown to decrease the heart rate and blood pressure due to α and β adrenoeceptor inhibition.
Methods
An isocratic HPLC method was developed to determine hippadine in the bulbs of *Crinum latifolium* L. The chromatographic separation was achieved using a mobile phase consisted of acetonitrile – phosphoric acid pH 3 (46:54 v/v) on a C18 column (100 x 4.6 mm, 3.5 μm) and detection was carried out at 299 nm. The injection volume was 10 μL, the flow rate was 1 mL/min and column temperature was set at 30 °C. The method was validated with respect to system suitability, specificity, linearity, accuracy and precision.

Results
The content of hippadine in the bulbs of *Crinum latifolium* L. collected from Binh Dinh province (Viet Nam) was found as 315.8 mcg/g (0.0316%). The method was precised with an intra-day RSD = 0.6% and inter-day RSD = 1.16%. The detector’s response was linear (R² > 0.999) and reliable for hippadine quantitation from 1 up to 20 ppm. Through recovery studies, accuracy of the method was averagely estimated to be 98.06 – 99.65%.

Conclusions
The HPLC method was proved to determine hippadine in the bulbs of *Crinum latifolium* L. with sufficient accuracy and precision.

Keywords: HPLC, hippadine, *Crinum latifolium* L.

PPC10
Synthesis and antibacterial activity of some new chlorobenzothiazole derivatives

Phung Thi Thu Thuy¹, Nguyen Thi Ngoc Ha², Truong Phuong³
¹Department of Pharmaceutical chemistry, Faculty of Pharmacy, Lac Hong University, 10 Huynh Van Nghe, Dong Nai, Viet Nam;
²Department of Analytical chemistry and Drug quality control, Faculty of Pharmacy, Lac Hong University, 10 Huynh Van Nghe, Dong Nai, Viet Nam;
³Department of Pharmaceutical chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 41 Dinh Tien Hoang, Ho Chi Minh city, Viet Nam

Correspondence: Phung Thi Thu Thuy (thuyphungds@lhu.edu.vn)

BMC Proceedings 2019, 13(Suppl 7):PPC10

Background
Benzothiazole derivatives are well known as antibacterial agents. In the present study, a series of novel amides containing chlorobenzothiazole were synthesized, characterized and evaluated for their antibacterial properties.

Methods
In this research, we synthesized some new 2-acetamido-chlorobenzothiazole derivatives from 2-chloroanilin and 2,4,5-trichloroanilin through four reactions. The evaluation of the synthesized compounds for antibacterial activities were carried out by using agar diffusion method.

Results
Seven 2-acetamido-chlorobenzothiazole derivatives were obtained. All of the newly synthesized compounds were characterized by melting point, thin layer chromatography, structural elucidation by UV, IR, 1H-NMR, 13C-NMR and MS. This research also presents the result of the investigation antibacterial activities of the 2-acetamido-chlorobenzothiazole derivatives on the *Escherichia coli* ATCC 25922, *Staphylococcus aureus* (MRSA) ATCC 43300, *Pseudomonas aeruginosa* ATCC 27853; *Streptococcus faecalis* ATCC 29212. Tests on biological activity showed that 5 of the synthesized derivatives (3b, 3c, 4g, 4h, 4r) were effective against two referenced strains of bacteria. 4g and 4r showed higher antibacterial effect against the MRSA (MIC₉₀ = MIC₄₀ = 16 mg/ml).

Conclusions
We have discovered some new chlorobenzothiazole derivatives and bioassay results showed that some of these synthesized derivatives displayed medium antibacterial activities against various bacterial species. These results are the basis for synthesis of new antimicrobial drugs which can be suitable for this current.

Keywords: Benzothiazole, 2-chloroanilin, 2,4,5-trichloroanilin, Antibacterial activity.

PPC11
Study and establish of process of synthesis some 2-hydrazinylthiazolopyridine derivatives

Van-Thong Huynh¹, Thu-Thuy Thi Phung², Phuong Truong³
¹Faculty of Pharmacy, Lac Hong University, Bien Hoa City, Viet Nam;
²Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh City, Viet Nam

Correspondence: Van-Thong Huynh (thonghuynhvan63@gmail.com)

BMC Proceedings 2019, 13(Suppl 7):PPC11

Background
The derivatives contain thiazolopyridine ring show that many potential biological activities have been reported in literature as antitumor, antiviral activity, antiinflammatory activity, antibacterial activity and antifungal. Therefore, the aim of this study was to establish an effective process for synthesis some thiazolopyridine derivatives.

Methods
Similar benzothiazole ring, thiazolopyridine heterocycle can be synthesized with various methods such as Hugershoff's cyclization reaction with bromine agent or Jacobsen reaction with K3[Fe(CN)6] agent. In this research, we synthesized 2-hydrazinylthiazolopyridine derivatives by thiazolopyridine cyclization reaction in dimethyl sulfoxide with sodium methoxide agent.

Results
The derivatives containing thiazolopyridine ring are synthesized through 5 stages. A compound N-(pyridyl)carbamothioyl)benzamide was obtained from the reaction between 4-methyl-2-chloro-3-aminopyridine and benzoyl isothiocyanate. N-(pyridylcarbamothioyl) benzamide was cyclized by CH3ONa agent in DMSO to form the structure of thiazolopyridine. Hydrolyzing benzamide in sulfuric acid 70% agent lead to formation of 2-aminothiazolopyridine. Then condensation the obtained derivative with hydrazine sulfate to obtain 2-hydrazinylthiazolopyridine. Finally reacted with different aldehydes and obtained 6 new derivatives. All of the synthesized compounds were characterized by melting point, thin layer chromatography, structural elucidation by UV, IR, 1H-NMR, 13C-NMR and MS.

Conclusions
This study have established procedure to synthesize 2-hydrazinylthiazolopyridine derivatives from the initial material 4-methyl-2-chloro-3-aminopyridine with good performance. The intermediate and final derivatives are precisely defined chemical structures with the expected formula. Therefore, we propose to synthesize thiazolopyridine derivatives according to the process that has been investigated and tested for biological activity to receive compounds with good biological activity.

Keywords: Thiazolopyridine, 2-hydrazinylthiazolopyridine, thiazole

PPC12
Determination of amygdalin in “Xuefu Zhuyu” capsules by HPLC - PDA method for use in the drug quality control

Tran Khanh Duy¹, Vo Thi Bach Hue²
¹Department of Analytical Chemistry and Drug Quality Control, Faculty of Pharmacy, Lac Hong University, 10 Huynh Van Nghe, 76100 Bien Hoa, Dong Nai, Viet Nam; ²Department of Analytical Chemistry and Drug Quality Control, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh city, 41 Dien Tien Hoang, 71000 District 1, Ho Chi Minh city, Viet Nam

Correspondence: Tran Khanh Duy (duyk018@gmail.com)

BMC Proceedings 2019, 13(Suppl 7):PPC12

Background
Xuefu Zhuyu is a famous traditional Chinese medicine widely used in the treatment of cardiovascular diseases such as thrombosis, angina pectoris, heart attack, strokes. Xuefu Zhuyu comprises of 11 herbs: *Semen Persicae*, *Flos Carthami tinctorii*, *Radix Angelicae sinensis*, *Rhizoma Ligustici wallichii*, *Radix Paeoniae*, *Radix Rehmanniae glutinosae*, *Fructus Aurantii*, *Radix Platycodi grandiflori*, *Radix Achyranthis bidentatae*, *Radix Glycyrrhiza*, *Flos Carthami tinctorii*, *Radix Angelicae sinensis*, *Radicis Radix*.

Methods
An isocratic HPLC method was developed to determine hippadine in the bulbs of *Crinum latifolium* L. The chromatographic separation was achieved using a mobile phase consisted of acetonitrile – phosphoric acid pH 3 (46:54 v/v) on a C18 column (100 x 4.6 mm, 3.5 μm) and detection was carried out at 299 nm. The injection volume was 10 μL, the flow rate was 1 mL/min and column temperature was set at 30 °C. The method was validated with respect to system suitability, specificity, linearity, accuracy and precision.

Results
The content of hippadine in the bulbs of *Crinum latifolium* L. collected from Binh Dinh province (Viet Nam) was found as 315.8 mcg/g (0.0316%). The method was precised with an intra-day RSD = 0.6% and inter-day RSD = 1.16%. The detector’s response was linear (R² > 0.999) and reliable for hippadine quantitation from 1 up to 20 ppm. Through recovery studies, accuracy of the method was averagely estimated to be 98.06 – 99.65%.

Conclusions
The HPLC method was proved to determine hippadine in the bulbs of *Crinum latifolium* L. with sufficient accuracy and precision.

Keywords: HPLC, hippadine, *Crinum latifolium* L.
rhizae. The determination of amygdalin, a bioactive component in Xuefu Zhuyu capsules was developed by using liquid chromatography with photo diode array detector (HPLC - PDA). This HPLC method was validated and applied to the quality assessment of Xuefu Zhuyu capsules.

Methods

The sample preparation method and the chromatographic conditions were optimized to quantify amygdalin in the Xuefu Zhuyu capsules by HPLC. The optimization was obtained when the peak area of amygdalin in the chromatogram of sample solution was maximum and chromatographic parameters met requirements such as theoretical plate number (N > 5000), resolution (Rs > 1.5), asymmetry (0.8 - 1.5) and peak purity (purity factor > 999.000). This method was subsequently validated according to the ICH guideline Q2 (R1) (ICH 2005) with respect to system suitability, specificity, linearity, repeatability, intermediate precision, accuracy and range of analytical procedures.

Results

The optimal sample preparation method was found. The powder of Xuefu Zhuyu was extracted with methanol in ultrasonic bath for 15 min. The chromatographic conditions were as follows: Mobile phase methanol - water (21.5 : 78.5), column Phenomenex Gemini C18 (250 × 4.6 mm; 5 μm), column temperature 25 °C, photo diode array detector set at 210 nm, flow rate 1.0 mL/min, injective volume 20 μL. The developed method showed system suitability, specificity, linearity within 2.4 - 48.0 μg/mL (y = 18.10x, R² = 1), repeatability (RSD = 0.3%), intermediate precision (RSD = 0.6%), accuracy with recovery rate 98.1 - 101.1% and the range 9.6 - 38.4 μg/mL.

Conclusions

In the present study, a simple, accurate and reliable analytical method for determination of amygdalin in Xuefu Zhuyu capsules was developed by using HPLC - PDA. The result of this study would be helpful to build the quality control standard of Xuefu Zhuyu capsules.

Keywords: Amygdalin, Xuefu Zhuyu, determination, traditional Chinese medicine, HPLC.

PPR1

Perception of problem-based learning among academic staff of Faculty of Pharmacy, Uitm

Nurafifah Shazreen Kamarul Mohd Sham, Siti Aisyah Zulkifli, Aida Azlina Ali, Nur Suraya Adina Suratman

Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia

Correspondence: Nur Suraya Adina Suratman (suereya@uitm.edu.my)

BMC Proceedings 2019, 13(Suppl 7):PPR1

Background

Problem-based learning is an approach that is focused on self-directed learning and small group discussion whereupon students work through a given case to acquire knowledge. It is a learning strategy that is commonly adopted in higher education institutions, including pharmacy schools throughout the world. Perception, whether good or bad, can have an impact on the effectiveness of PBL implementation. This study aimed to determine the perception of PBL among academic staff at the Faculty of Pharmacy, UiTM Puncak Alam Campus.

Methods

Cross sectional study was conducted from March to May 2018. Data was collected through a 27 item, self-administered questionnaire. Descriptive analyses were performed using frequency counts, percentages, means and standard deviations.

Results

A total of 74 questionnaires were distributed to academic staff involved in the Bachelor of Pharmacy (B. Pharm) curriculum, with a 56.94% response rate. The majority of respondents agree that PBL is an effective learning strategy, with several advantages, among others, a more thorough knowledge gain and enhancement of public speaking skills.

Conclusions

PBL is viewed by the academic staff as an effective teaching and learning approach. Nonetheless, it is important to ensure careful planning of PBL and adequate training of faculty members to ensure its successful implementation in the UiTM B.Pharm programme.

Keywords: Perception, Problem-based learning, Teaching-learning, Pharmacy

PPR2

Preliminary study on medicinal plants used in the treatment of arthritis among medicinal plant practitioners in Kampot Province, Cambodia

Cheng Monineath, Koem Dany, Mam Phuongdan

Faculty of Pharmacy, University of Health Sciences, 12201 Daun Penh, Phnom Penh, Cambodia

Correspondence: Cheng Monineath (chengmonineath@gmail.com)

BMC Proceedings 2019, 13(Suppl 7):PPR2

Background

This research is based on an ethnobotanical investigation which focused on medicinal plants used to treat arthritis by traditional healers as well as local people in Kampot province. According to the WHO, about 80% of the world population including Cambodia uses medicinal plants for treatment since the ancient time. This survey was conducted on the uses of medicinal plants for arthritic treatment. This study was aimed to document all of this indigenous knowledge for sustainability and improvement of usage as arthritis was seen commonly occurring in the society of Cambodia.

Methods

The data collection was conducted in Kampot province among traditional healers and local people. Five traditional healers and 45 local people who are also medicinal plant practitioners responded to the following the semi-structured interviews.

Results

Twenty eight medicinal plants were listed with information on local, scientific and family name, plant parts used, mode of preparation and administration. Leea rubra Blume., Achyranthes aspera Linn., Morus alba Linn., and Zingiber officinale Rose. were the most identified and mentioned by various sources (book, international papers, survey). Leaves were the most common to use for the treatment of arthritis, which represents 20% among the other plant parts. The frequent preparation method and administration was drying and decocction, taken orally which represented 64% of all methods used.

Conclusions

Throughout this research, it illustrates the diversity of plants which have been used among traditional healers and local people who were mentioned differently in therapeutic practices. Interestingly, 5 medicinal plants have been identified and Leea rubra Blume. was considered as one of the most potential plants which should be focused for further investigation.

Keywords: Ethnobotanical investigation, traditional healers, indigenous knowledge

PPR3

Exploration of pharmacology facilitators’ satisfaction level in problem-based learning at Pharmacy School

Nurul Hasanah Zainul Affiffin, Muhammad Amzar Safiy Raduan, Nur Suraya Adina Suratman, Mohd Shahezwan Abd Wahab, Aida Azlina Ali

Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) Cawangan Selangor Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia

Correspondence: Aida Azlina Ali (aidaaz2790@uitm.edu.my)

BMC Proceedings 2019, 13(Suppl 7):PPR3

Background

Problem-based learning (PBL) is a constructivist teaching-learning method by which students are to construct idea based on their existing knowledge. Facilitators on the other hand plays a less active role in the conventional method by which students are to construct idea based on their existing knowledge. Facilitators on the other hand plays a less active role in the conventional teaching-learning approach. Because of this, the characteristics and skills of effective facilitators have received relatively more attention. Therefore, this study was conducted to investigate facilitators’ satisfaction of PBL and to determine correlation between the facilitators’ position and their satisfaction level on PBL.
Methods
Subjects of this study were lecturers who have been involved in facilitating PBL in Pharmacology subjects. A total of 14 subjects were asked to assess their satisfaction on PBL using a self-administered questionnaire. The questionnaire consisted of 21 items group as seven factors related to student's role, tutor's role, designated problems, environment of classroom, allotted time, evaluation process and overall satisfaction.

Results
The result indicate that facilitators were moderately satisfied with the PBL method. Interestingly, their position i.e. senior lecturer or professor determines their satisfaction level.

Conclusions
In conclusion, the role of the facilitator is of pivotal importance, providing students with proper guidance during the PBL process. As such, a PBL training program is desirable to prepare tutors for facilitation of PBL.

Keywords: satisfaction, problem-based learning, facilitator, Pharmacology, Pharmacy

PPR4
A case study research prevalence of Alcohol Consumption among women in Phnom Penh Capital City and Kampong Cham Province 2018
Ly Ratanak, Heach Lyheang, Solot Salorn, Chheang Sena
Faculty of Pharmacy, University of Health Sciences, Phnom Penh, Cambodia
Correspondence: Chheang Sena (senachheang@uhs.edu.kh)
BMC Proceedings 2019, 13(Supp 7):PPR4

Background
Alcoholic drinks have been a part of the community life and up until now societies have always found it difficult to understand or restrain their use. The aim of this study was to find out the prevalence of alcohol consumption among women in community of Phnom Penh and Kampong Cham.

Methods
The review was conducted at two sites (Kampong Cham and Phnom Penh). These questionnaires were pretested and proved to be well understood by responders. Data analyses are achieved using SPSS version 18. Results was counted in number (N) and percentage (%).

Results
The study reveals that among the 384 respondents, prevalence of consuming alcohol among women was 65.4%. About 69.3% and 61.5% of women in Phnom Penh and Kampong Cham, respectively consumed alcohol beverages. The factors that prompted these women to take alcohol were due to the influence of society and family members, self-medication, and during postpartum.

Conclusion
In conclusion, there are more women in Phnom Penh that consumed alcohol than women who lives in Kampong Cham.

Keyword: Alcohol, Prevalence, Women, Cambodia

PPR5
Pain Control and Analgesic Dosing Deviation in Patients with Chronic, Non-Cancer Pain
Harun Mohammad Akmal, Ahmad Nurul Fateehah, Cheah Huey Miin
Department of Pharmacy, Kuala Lipis Hospital, Kuala Lipis, 27200 Pahang, Malaysia
Correspondence: Cheah Huey Miin (hueyminin@moh.gov.my)
BMC Proceedings 2019, 13(Supp 7):PPR5

Background
Chronic pain places a tremendous burden on the sufferers’ quality of life. Several studies have reported treatment inadequacy involving patients with chronic pain. The objective of the study is to investigate the prevalence of discrepancy between prescribed dose and the actual dose taken in analgesic use, as well as its relationship with pain control in chronic, non-cancer pain.

Methods
This was a cross-sectional study. Subjects were recruited into the study through convenience sampling. Data was collected using Brief Pain Inventory (BPI) form. Pearson chi-square test was used to study the relationship between dosing deviation of analgesic regimen and pain control (pain management index, PMI). Statistical significance was defined as p<0.05.

Results
A total of 127 patients were recruited. The median value for the worst pain score was 8 while the least pain score was 1. As much as 70.9% of patients reported inadequate pain control with current analgesic(s), depicted as negative PMI. There was discrepancy between prescribed dose and the actual dose taken by patients in analgesic use. 11.8% and 34.7% patients did not follow prescriber's instruction for oral and topical analgesic use respectively. However, no significant result was found between dosing deviation and pain control (p>0.95). The study also discovered that 98% patients did not know the maximum dose of analgesic(s) which they were taking.

Conclusions
Although there was dosing deviation in analgesic use between what was prescribed and what was actually taken by patients, the relationship between the deviation and pain control was not significant.

Keywords: chronic pain, pain control, pain management index, brief pain inventory, analgesic

PPR6
A preliminary study on ethnobotanical survey of medicinal plants used by traditional healers to treat toothaches
Them Seydadauong, Kak Nika, Brang Nita
Faculty of Pharmacy, University of Health Sciences, 12201, Daun Penh, Phnom Penh, Cambodia
Correspondence: Them Seydadauong (daduonngg@yahoo.com)
BMC Proceedings 2019, 13(Supp 7):PPR6

Background
Medicinal plants have potential in treating different kinds of diseases since many centuries. They have been the primary solution to care for people's oral health due to the inexpensive costs and potentials. The aim of this study was to document the types of medicinal plants and therapeutical methods used by traditional healers to relieve toothaches and also the use of these plants to produce an effective modern medicine.

Methods
The study was conducted from 25th September to 30th October in 2017 using questionnaires, following the WHO guideline. The information was collected from three key traditional healers, who are from National Center of Traditional Medicine and Faculty of Pharmacy, University of Health Sciences, due to their vast knowledge on medicinal plants.

Results
A total 37 medicinal plants were identified for the use in treating toothaches, which were collected from three references. Among these plants, 3 medicinal plants (Spilanthes acmella, Syzygium aromaticum and Piper lolot) were commonly used for the toothache treatment. This study shows that leaves and barks were the most frequently used parts of the plants, followed by resin, flower, root and stem. These plants were applied directly to the infected area of the tooth in different ways such as decoction, maceration, pounding or chewing.

Conclusions
This study shows that the diversity of each plants has different effect as remedies to treat toothaches. Three medicinal plants have been recognised as potential cure. Moreover, leaves were the most common plants part used which were generally prepared through decoction.

Keywords: Toothache, Medicinal plant, Traditional healer, Ethnobotany
PPR7
A case study research of self-medication as a daily living behavior of people in community of Kampong Cham province and Phnom Penh capital
Sreypich Prak, Vouchmeng Hun, Chhumsophearath Loeung, Sena Cheheang
Faculty of Pharmacy, University of Health Sciences, 12201 Daun Penh, Phnom Penh, Cambodia
Correspondence: Sreypich Prak (sena_chheang@uhs.edu.kh)
BMC Proceedings 2019, 13(Suppl 7):PPR7

Background
According to WHO (2000), self-medication is the use of medicinal products to treat self-recognized disorder or symptoms. There are several circumstances arising from self-medication, including irrational use of drug, mistreatment and risk of drug abuse. However, no research has addressed the extent of self-medication practice in local community of Cambodia.

Methods
A quantitative cross-sectional study was conducted with a total of 312 samples, 156 samples in Phnom Penh and 156 in Kampong Cham, were selected randomly among patients who purchased medicines from pharmacies. The study used questionnaires as the study tool for face-to-face semi-direct interview. Data analysis is achieved through using SPSS version 18. Results were presented as count (n) and percentage (%).

Results
In Phnom Penh, 91% of 156 respondents self-medicate, where the prevalence rate in Kampong Cham was 70.2% of 156 respondents. Cost efficiency was the main reason of self-medication in both areas. The most common illness was flu (15.3% of all reported cases) and the most prescribed medicine was analgesics (24.9%). Respondents from both areas prefer pharmacy as the first choice for healthcare service. Practice of patient counselling was very low in Phnom Penh (1.3%) compared to Kampong Cham (79.5%).

Conclusions
Prevalence rate of self-medication was higher in Phnom Penh compared to Kampong Cham (22.52% difference). Although pharmacy is the first choice of healthcare service, awareness should be raised as serious illnesses require proper diagnosis and treatment. Dependency may develop due to the misuse of analgesics. Good pharmacy practice should be applied to ensure safety, efficacy and efficiency use of medication.

Keywords: Self-medication; Pharmacy practice; Dependency

PPR8
Cross-sectional study of fever management of Influenza among undergraduate student in Phnom Penh, Cambodia: Preliminary result in 2018
Chhay Chhingsrean, Chhorn Hangthida, Chea Sreytouch
Faculty of Pharmacy, University of Health Sciences, 12201 Daun Penh, Phnom Penh, Cambodia
Correspondence: Chhay Chhingsrean (chhingsrean.chhay@gmail.com)
BMC Proceedings 2019, 13(Suppl 7):PPR8

Background
In low income country, fever is common among adolescents and adults seeking for healthcare. Fever is one of the symptoms of influenza (flu) which happened every year in Cambodia. This research aims to expose the experiences and attitudes of undergraduate students from different universities on fever and flu medication and care.

Methods
A cross-sectional survey of 453 undergraduate students was conducted in Phnom Penh using semi-structured questionnaire which was prepared and validated. Epidata was used to insert data before analyzed by STATA version 12.

Results
A total number of 453 undergraduate students from 30 universities in Phnom Penh successfully consented and completed the questionnaire. Alternative methods were mostly used to confirm the body temperature; however, 61.22% used thermometer. 58.72% of participants relied on both medication and self-care while flu medicines (55.06%) was commonly used following by unknown medication, antipyretic and antibiotic that were used for less than 3 days (45.19%). Besides, resting (68.56%), hot bath, wiping, home remedies, coining and exercise were preferable practices for self-care. Although the respondents preferred both methods, they felt more confident to use medication than self-care.

Conclusions
Medication and self-care are widely practiced among undergraduate students to manage fever and flu. Education about fever management relying on medication and self-care should be promoted in Cambodia.

Keywords: Cross-sectional study, Fever management, Undergraduate students