Single-ion anisotropy, Dzyaloshinskii-Moriya interaction and negative magnetoresistance of the spin-1/2 pyrochlores $R_2V_2O_7$

H. J. Xiang, E. J. Kan, M.-H. Whangbo, C. Lee, Su-Huai Wei, and X. G. Gong

1Key Laboratory of Computational Physical Sciences (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, P. R. China
2Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
3National Renewable Energy Laboratory, Golden, Colorado 80401, USA

(Dated: October 25, 2010)

Abstract

The electronic and magnetic properties of spin-1/2 pyrochlores $R_2V_2O_7$ were investigated on the basis of density-functional calculations. Contrary to the common belief, the spin-1/2 V^{4+} ions are found to have a substantial easy-axis single-ion anisotropy. The $|D/J|$ ratio deduced from the magnon quantum Hall effect of Lu$_2$V$_2$O$_7$, where J is the nearest-neighbor spin exchange and D is the Dzyaloshinskii-Moriya parameter, is much greater than the value estimated from our calculations (i.e., 0.32 vs. 0.05). We show that this discrepancy is due to the neglect of the single-ion anisotropy of the V^{4+} ions, and the negative magnetoresistance observed for $R_2V_2O_7$ arises from a new mechanism.

PACS numbers: 75.30.Gw,71.15.Rf,71.20.-b,75.10.-b
During the past two decades the magnetic properties of pyrochlore oxides of the type $R^{3+}_2M^{4+}_2O_7$ ($R =$ rare-earth; $M =$ transition metal) have been extensively studied1,2, due largely to the spin frustration in the pyrochlore lattice that results when the nearest-neighbor (NN) spin exchange is antiferromagnetic (AFM)1. The vanadate pyrochlores $R_2V_2O_7$ ($R =$ Lu, Yb, Tm, Y) are unique because they are ferromagnetic insulators3–8 contrary to the observation that ferromagnetism leads usually to metallic character. Furthermore, Lu$_2$V$_2$O$_7$ exhibits a negative magnetoresistance (MR) as high as 50% just above the Curie temperature $T_C = 73K$ under magnetic field of 5 T9. Recently, Lu$_2$V$_2$O$_7$ is found to exhibit a magnon Hall effect (i.e., the anomalous thermal Hall effect caused by spin excitations)10. The explanations presented for these observations raise fundamental questions. Namely, the MR of Lu$_2$V$_2$O$_7$ was suggested to be caused by polaron mediation as found in Tl$_2$Mn$_2$O$_7$9. However, this possibility seems remote, because the diffuse 6s orbital of the Tl$^{3+}$ ion is believed to assist the polaron formation in Tl$_2$Mn$_2$O$_7$ whereas the Lu$^{3+}$ ion in Lu$_2$V$_2$O$_7$ does not have such an extended s orbital. In the magnon Hall effect11, the Dzyaloshinskii-Moriya (DM) interaction is considered to play the role of the vector potential as in the intrinsic anomalous Hall effect in metallic ferromagnets. In the fitting analysis of their experimental data, Onose et al. found it necessary to use the $|D/J|$ ratio of 0.32. This ratio is unusually large because the DM interaction is a consequence of spin-orbit coupling (SOC) so that the typical $|D/J|$ ratio is expected to be smaller than 0.1. Therefore, it is important to quantify the magnitude of the DM term. In this Letter, we probe these questions by studying the electronic and magnetic properties of R$_2$V$_2$O$_7$ on the basis of density functional calculations to find that the spin-1/2 V^{4+} ions have a substantial easy-axis single-ion anisotropy contrary to the common belief, the neglect of this anisotropy can lead to an unusually large $|D/J|$ ratio, and R$_2$V$_2$O$_7$ exhibits a new type of negative MR mechanism.

Our calculations are based on the density functional theory (DFT) plus the on-site repulsion (U) method12 (DFT+U) within the generalized gradient approximation13 on the basis of the projector augmented wave method14 encoded in the Vienna ab initio simulation package15. The plane-wave cutoff energy was set to 400 eV. Careful convergence test were performed and the total energy was converged to 10^{-6} eV. In the following, we report results obtained with $U = 3$ eV and $J = 1$ eV on V, but the dependence of our results on U and J will be also discussed. It was found16 that Y$_2$V$_2$O$_7$ has magnetic properties very similar to those of Lu$_2$V$_2$O$_7$. Thus, our calculations focused mainly on Y$_2$V$_2$O$_7$ using its
experimental structure. The structural optimization was found to have a negligible effect on its magnetic properties.

In the V_2O_7 framework of $Y_2V_2O_7$ (space group $Fd\bar{3}m$), the VO$_6$ octahedron containing V^{4+} ($3d^1$, $S = 1/2$) ions share their corners such that the V^{4+} ions form corner-sharing V_4 tetrahedrons [see Fig. 1(a)]. below $T_C \sim 70$ K. The VO$_6$ octahedron of $R_2V_2O_7$ are slightly distorted (i.e., axially-compressed slightly) from the ideal shape. Under the trigonal crystal field, the t_{2g} states are split into the lowest a_{1g} state $|0\rangle$ and two e'_g states $|+\rangle$ and $|-\rangle$:

\begin{align}
|0\rangle &= 1/\sqrt{3}(d_{xy} + d_{yz} + d_{xz}) \\
|+\rangle &= -1/\sqrt{3}(d_{xy} + e^{2\pi i/3}d_{yz} + e^{-2\pi i/3}d_{xz}) \\
|-\rangle &= 1/\sqrt{3}(d_{xy} + e^{-2\pi i/3}d_{yz} + e^{2\pi i/3}d_{xz}),
\end{align}

where the local coordinate system of a perfect VO$_6$ octahedron was adapted [see Fig. 1(c)]. Note that the higher e_g states $d_{x^2-y^2}$ and d_{z^2} remain degenerate. The recent polarized neutron diffraction study showed that, at each V site of a given V$_4$ tetrahedron, only the a_{1g} level is occupied by an electron.

The band structure and density of states calculated for the ferromagnetic (FM) state of $Y_2V_2O_7$ by the DFT+U method are shown in Fig. 2(a) and Fig. 3(a), respectively. Both the valence band maximum (VBM) and conduction band minimum (CBM) are majority-spin states. There is an indirect band gap of about 0.33 eV between the VBM state near the W point and the CBM state at the Γ point. This band gap is consistent with the experimentally measured activation energy 0.2 eV. Our calculations show that the FM state of $Y_2V_2O_7$ has a nonzero band gap when $U - J \geq 1.5$ eV. The four states between -0.7 eV and 0 eV (with zero set at the VBM level) are the occupied 3d states of the four V^{4+} ions per unit cell. The electron density associated with the four states, plotted in the inset of Fig. 3(a), clearly shows that these occupied orbitals are the a_{1g} states, in agreement with experiment. The analysis of the partial density of states provides further insight into the electronic structures of $Y_2V_2O_7$. For the spin majority part, the orbital levels are consistent with the trigonal crystal field splitting. For the spin minority part, the empty $|+\rangle$ and $|-\rangle$ states have lower energies than the unoccupied $|0\rangle$ state. This is so because the intra-orbital onsite Coulomb interaction U is much larger than the interorbital onsite Coulomb interaction (U'), and the trigonal crystal field splitting between the a_{1g} and e'_g states. The spin down a_{1g} state lies slightly lower in energy than the spin down e_g states, and both states are delocalized with...
strong hybridization between them. The electron configuration of the V^{4+} ion is shown schematically in Fig. 3(b).

The symmetric spin exchange parameters were extracted by mapping the energy differences between ordered collinear spin states obtained from DFT$+U$ calculations onto the corresponding energy differences obtained from the quantum Heisenberg Hamiltonian for the spin-1/2 system: $H = \sum_{i<j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j$. We consider all symmetric spin exchange interactions up to the third nearest neighboring pairs [see Fig. 1(b)]; the NN exchange J_1 within each V_4 tetrahedron and the next NN exchanges J_2, J_3 and J_4. To evaluate these four spin exchange parameters reliably, we considered 33 different ordered spin states and then determined them by performing a linear least-square fitting analysis. Our calculations show that $J_1 = -7.09$ meV, $J_2 = -0.07$ meV, $J_3 = -0.31$ meV, and $J_4 = -0.28$ meV, namely, J_2, J_3 and J_4 are negligibly small compared with the NN FM exchange J_1. Using the calculated J_1, we estimate the Curie-Weiss temperature $\theta = zS(S+1)J_1/3k_B = 6 \times \frac{1}{2}(\frac{1}{2}+1)J_1/3k_B = 122$ K, which is close to the observed value 106 K for Lu$_2$V$_2$O$_7$. The calculated spin exchange parameters show that the magnetic ground state is the FM state, in agreement with experiment. Interestingly, we find that J_1 is always ferromagnetic for any reasonable U and J values ($U < 8$ and $J \geq 0$), which is not in support of the previous prediction that antiferromagnetism is favorable when $J < 0.7$.

We now discuss the microscopic origin of the ferromagnetism in R$_2$V$_2$O$_7$ by comparing the electron hopping processes between adjacent spin sites 1 and 2 for cases when they have the FM and AFM arrangements. By symmetry, the overall total energy gain by the hopping is twice that of the majority-spin a_{1g} state of site 1 ($a_{1g}^{\uparrow\uparrow}$). In the FM case, the $a_{1g}^{\uparrow\uparrow}$ state can hop to the majority-spin e'_g and e_g states but not a_{1g} of site 2 according to the Pauli exclusion principle. In the AFM case, the $a_{1g}^{\uparrow\uparrow}$ can hop to all minority-spin states of site 2. The energy gain from the virtual hopping is larger for the FM case than for the AFM case because the empty up-spin states of site 2 are closer in energy to the filled $a_{1g}^{\uparrow\uparrow}$ state for the FM case and the hopping between $a_{1g}^{\uparrow\uparrow}$ state and the minority-spin a_{1g} state of site 2 is negligible due to our finding that the minority-spin a_{1g} state lies much higher in energy than the minority-spin $|+\rangle$ and $|-\rangle$ and a rather small transfer integral between a_{1g} states.

Fig. 2(b) shows the band structure of an AFM state in which there are two up- and two down-spins in every V_4 tetrahedron [see inset of Fig. 2(b)]. As in the FM case, there is an indirect band gap between the VBM state near the W point and the CBM state at
the Γ point. However, there is an important difference: The band gap of the AFM state is about 0.62 eV, which is almost twice that of the FM state. By taking the level of the Y 4s semicore level as the reference, we find that the VBM level of the FM state is at almost the same (only about 0.01 eV higher) as that of the AFM state. Therefore, the CBM of the AFM state is much higher than that of the FM state. The reason why the AFM state has a higher CBM and thus a larger band gap is illustrated in Fig. 3(d). When the spins of two neighboring V ions have an FM coupling, the up-spin \(e'_g \) states of the adjacent sites have the same energies so that the lowest energy state is lower than the \(e'_g \) level by \(t' \), where \(t' \) is the hopping integral between the adjacent \(e'_g \) states. In the AFM case, however, the lowest energy state is lower than the majority-spin \(e'_g \) level by \(t'^2/\Delta \), where \(\Delta \) is the exchange splitting and \(\Delta > t' \). Therefore, the AFM state has a higher CBM and thus a larger band gap. This fact naturally explains the negative MR observed just above the ferromagnetic Curie temperature \(T_C \). When the temperature is lowered towards \(T_C \), the spins have a tendency to order ferromagnetically, but are not fully aligned. The application of an external magnetic field (about 5 T) will help align the spins ferromagnetically. Thus, the band gap decreases with increasing the magnetization, so that the resistivity of \(R_2V_2O_7 \) would be reduced by external magnetic field hence leading to the negative MR effect. This explanation is consistent with the observation that the maximum MR effect occurs at 75 K, right above the Curie temperature [See Fig. 3(a) of Ref.9]. We note that this new mechanism of negative MR should be also applicable to other ferromagnetic insulators (e.g., EuO).

Let us now examine the magnetic properties that require the consideration of SOC. For two interacting spins, the SOC can induce DM antisymmetric interactions \(H_{DM} = D_{ij} \cdot (\hat{S}_i \times \hat{S}_j) \) \((D_{ij} = D d_{ij}, D = |D_{ij}| \) and \(d_{ij} \) is a unit vector). According to the crystal symmetry, the DM vector for a V-V edge of each \(V_4 \) tetrahedron is perpendicular to the V-V bond and is parallel to the opposite edge of the \(V_4 \) tetrahedron [Fig. 1(d)]. To evaluate the magnitude of the DM interaction term \(D \), we consider two spin configurations shown in Fig. 1(e). In one spin configuration, the four spins are aligned along the \(X, Y, Z, \) and \(Z \) axes, respectively [see Fig. 1(a) for the definition of the global coordinate system \(XYZ \)]. From this configuration, we generate the other spin configuration by performing a reflection operation of each spin with respect to the \(XZ \) plane containing the spin site. The only difference from the first configuration is that the spin at the second site now points along the \(-Y\) direction. It can be easily shown that the two spin configurations have the same spin
exchange interactions and the same single-ion anisotropy interactions (see below). In terms of the quantum expression of the DM interaction Hamiltonian, it is found that the total DM interaction vanishes for the first spin configuration, but is $D\sqrt{2}/2$ per V_4 tetrahedron for the second spin configuration. By using the energy difference between the two spin configurations obtained from the DFT+U+SOC calculations, D is estimated to be 0.34 meV. The D value is rather insensitive to the calculation parameters (U and J). Thus, D is of the order of 5% of the NN spin exchange $J_1 = -7.09$ meV, i.e., $|D/J_1| = 0.048$, which is almost an order of magnitude smaller than the value $D/J_1 = 0.32$ deduced by Onose et al. from analyzing the magnetic field dependence of the thermal Hall conductivity in terms of their model for the magnon Hall effect. This raises a serious question as to whether the observed thermal Hall effect can be described solely in terms of the DM interaction.

Another important consequence of the SOC interaction is that the magnetic moment of each spin site gets a preferred orientation in space with respect to the crystal lattice. However, it is commonly believed that a spin-$1/2$ ion has no single-ion anisotropy because the spin doublet state is not split by the zero-field splitting term $CS_z^2 = CI/4$ for $S = 1/2$ (C is a constant and I is a 2×2 unit matrix)18. Here, we find that the spin-$1/2$ V ions of $R_2V_2O_7$ have substantial single-ion anisotropy, which is not described by the usual zero-field splitting term. The single-ion anisotropy of the V^{4+} ion can be estimated in two ways. First, we replace three of the four V^{4+} ions in each V_4 tetrahedron of $Y_2V_2O_7$ with non-magnetic Ti^{4+} Ti^{4+} ions to obtain $Y_2Ti_3V_2O_7$, which has no NN pairs of V^{4+} ions. Our DFT+U+SOC calculations show that the easy axis of the spin-$1/2$ V ion is along the three-fold rotational axis $[\mathbf{z'}$ in Fig.11(c)] of the distorted VO$_6$ octahedron. The state with spin moments parallel to the $\mathbf{z'}$ axis is more stable than that with the spin moments perpendicular to the $\mathbf{z'}$-axis by about 0.81 meV per V. Second, we consider two spin configurations to obtain a more accurate value of the single-ion anisotropy. In one configuration, all spins are along the easy axis directions such that, in a V_4 tetrahedron, one spin is pointed out from the center and the remaining three spins are pointed to the center. From this spin configuration, we obtain the other spin configuration by rotating the directions of all the spins around the global Z axis by 120°. In the resulting spin configuration all spins are perpendicular to the easy axis directions. The two spin configurations are the same in the symmetric exchange interactions and in the DM interactions. Our DFT+U+SOC calculations for the two spin configurations show that the spin orientation along the easy axis is more stable than that
along the hard axis by 0.91 meV per V. Therefore, it is unequivocal that a spin-1/2 ion can have significant single-ion anisotropy, contrary to the general belief. It should be noted that single-ion anisotropy for a spin-1/2 ion is not excluded according to the general expression of the \(\mathbf{L} \cdot \mathbf{S} \) Hamiltonian\(^{18,20} \). In the traditional effective spin Hamiltonian approach\(^{18,19} \), the energy for an orbital/spin basis function \(|LM_L\rangle|SM_S\rangle \) does not depend on the spin projection \(|M_S\rangle \), whereas an exchange splitting is always present in any realistic magnetic system, as found in our first principles calculations.

As described above, the single-ion anisotropy energy is much greater than the DM interaction parameter in \(\text{R}_2\text{V}_2\text{O}_7 \). We now estimate how the DM interaction parameter is affected when the single-ion anisotropy energy is neglected. The single-ion anisotropy for the spin-1/2 \(\text{V}^{4+} \) ion cannot be described by any quantum spin Hamiltonian. Our calculations show that the single-ion anisotropy energy can nevertheless be written as \(H_{\text{ani}} = A \sum_i (\mathbf{S}_i \cdot \mathbf{z}_i)^2 \) (\(|\mathbf{S}| = 1/2 \) and \(A = -3.64 \) meV) when the spins are treated as classical vectors. Then, the total classical spin Hamiltonian for \(\text{R}_2\text{V}_2\text{O}_7 \) is expressed as:

\[
H = \sum_{i<j} JS_i \cdot S_j + D \sum_{i<j} \mathbf{d}_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j) + A \sum_i (\mathbf{S}_i \cdot \mathbf{z}_i)^2. \tag{2}
\]

Using the spin Hamiltonian, our Monte Carlo simulation shows that the spin ground state is nearly FM with the moments aligned along the [001] direction, which is in agreement with the slight anisotropy displayed in the magnetization curve\(^{10} \). If we renormalize the single ion anisotropy term into the DM interaction term, the Hamiltonian is rewritten as:

\[
H = \sum_{i<j} JS_i \cdot S_j + D^{\text{eff}} \sum_{i<j} \mathbf{d}_{ij} \cdot (\mathbf{S}_i \times \mathbf{S}_j),
\]

where \(D^{\text{eff}} \) is the effective DM interaction parameter to be obtained by neglecting the single-ion anisotropy. For two spin configurations that are related to each other by a mirror-plane symmetry [e.g., see Fig. 1(e)], the energy difference can be used to extract \(D^{\text{eff}} \). We generate several random spin configurations to find that \(D^{\text{eff}} / D \) can be as large as 20. This shows that the effective DM interaction can be much larger than the actual DM interaction when the single-ion anisotropy is neglected.

In summary, \(\text{R}_2\text{V}_2\text{O}_7 \) exhibits negative MR because its band gap depends on the spin arrangement, with the smallest gap for the FM state. The \(\text{V}^{4+} \) ions of \(\text{R}_2\text{V}_2\text{O}_7 \) exhibits an easy-axis single-ion anisotropy that is much stronger than the DM interaction term \(D \), despite the common belief that spin-1/2 have no single-ion anisotropy. The effective \(D \) value evaluated can be unreasonably large when this anisotropy is neglected, as found from the analysis of the magnon quantum Hall effect of \(\text{Lu}_2\text{V}_2\text{O}_7 \). Thus, the consideration of
the single-ion anisotropy is necessary to formulate a more complete theory for the observed magnon Hall effect.

Work at Fudan was partially supported by NSFC, Pujiang plan, and Program for Professor of Special Appointment (Eastern Scholar). Work at NREL was supported by U.S. DOE under Contract No. DE-AC36-08GO28308, and that at NCSU U.S. DOE, under Grant No. DE-FG02-86ER45259.

1. J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010).
2. P. Blaha, D. J. Singh, and K. Schwarz, Phys. Rev. Lett. 93, 216403 (2004).
3. S. Shamoto, H. Tazawa, Y. Ono, T. Nakano, Y. Nozue, and T. Kajitani, J. Phys. Chem. Solids 62, 325 (2001).
4. S. Shamoto, T. Nakano, Y. Nozue, and T. Kajitani, J. Phys. Chem. Solids 63, 1047 (2002).
5. H. Ichikawa, L. Kano, M. Saitoh, S. Miyahara, N. Furukawa, J. Akimitsu, T. Yokoo, T. Matsumura, M. Takeda, and K. Hirota, J. Phys. Soc. Jpn. 74, 1020 (2005).
6. T. Kiyama, T. Shiraoka, M. Itoh, L. Kano, H. Ichikawa, and J. Akimitsu, Phys. Rev. B 73, 184422 (2006).
7. S. Miyahara, A. Murakami, and N. Furukawa, J. Mol. Struct. 838, 223 (2007).
8. G. T. Knoke, A. Niazi, J. M. Hill, and D. C. Johnston, Phys. Rev. B 76, 054439 (2007).
9. H. D. Zhou, E. S. Choi, J. A. Souza, J. Lu, Y. Xin, L. L. Lumata, B. S. Conner, L. Balicas, J. S. Brooks, J. J. Neumeier, and C. R. Wiebe, Phys. Rev. B 77, 020411(R) (2008).
10. Y. Onose, T. Ideue, H. Katsura, Y. Shiomi, N. Nagaosa, Y. Tokura, Science 329, 297 (2010).
11. H. Katsura, N. Nagaosa, and P. A. Lee, Phys. Rev. Lett. 104, 066403 (2010).
12. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
13. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
14. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994); G. Kresse and D. Joubert, *ibid* 59, 1758 (1999).
15. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11169 (1996).
16. A. A. Haghighira, C. Gross, and W. Assmusd, J. Cryst. Growth 310, 2277, 2008.
17. H. J. Xiang, E. J. Kan, S.-H. Wei, M.-H. Whangbo, and J. L. Yang, Phys. Rev. B 80, 132408 (2009).
18. D. Dai, H. J. Xiang, and M.-H. Whangbo, J. Comput. Chem. 29, 2187 (2008).
19 Norberto Majlis, The Quantum Theory of Magnetism (World Scientific, Singapore, 2000).

20 H. J. Xiang, S.-H. Wei, and M.-H. Whangbo, Phys. Rev. Lett. 100, 167207 (2008).
FIG. 1: (a) The crystal structure of R₂V₂O₇. The global coordinate system X
Y
Z is indicated. (b) The spin exchange paths between V⁴⁺ ions. (c) The two local coordinate systems used for the ideal VO₆ octahedron. The <i>x</i>_y_{<i>z</i>} coordinate system is defined for the ideal VO₆ octahedron with the <i>x</i>, <i>y</i> and <i>z</i> axes taken along the V-O bonds. In the <i>x</i>_′<i>y</i>_′<i>z</i>_′ coordinate system, the <i>z</i>_′ axis is taken along one three-fold rotational axis of the ideal VO₆ octahedron. In R₂V₂O₇ each VO₆ octahedron is axially compressed slightly with only one three-fold rotational axis. (d) The DM vectors <i>D</i>_{<i>i</i><i>j</i>} with <i>i</i> < <i>j</i> of the V tetrahedron, where <i>i</i> and <i>j</i> denote the V site labels. (e) The two spin configurations used to extract the DM parameter. (f) The two spin configurations used to extract the single-ion anisotropy parameter.
FIG. 2: (color online) (a) The band structure of the FM state from the DFT+U calculation. (b) The band structure of the AFM state (with two up- and two down-spins in each V₄ tetrahedron) from the DFT+U calculation. Solid lines and dashed lines represent up-spin and down-spin bands, respectively.

FIG. 3: (color online) (a) The total and partial density of states of the FM state from the DFT+U calculation. The inset shows the density distribution associated with the occupied V 3d¹ states. (b) A schematic illustration of electron configuration of the V⁴⁺ ion. (c) The interactions between the 3d-states of two adjacent V⁴⁺ ions when their spins have the FM and AFM arrangements. Only the hopping processes which lead to the overall energy lowering of the up-spin a₁g state of the spin site 1 are shown. (d) The interactions between the 3d-states of two adjacent V⁴⁺ ions leading to the CBM positions when their spins have the FM and AFM arrangements.