When Blockchain Meets Auction Models: A Survey, Some Applications, and Challenges
Zeshun Shi, Cees de Laat, Member, IEEE, Paola Grosso, Member, IEEE, and Zhiming Zhao, Senior Member, IEEE

Abstract—In recent years, blockchain has gained widespread attention as an emerging technology for decentralization, transparency, and immutability in advancing online activities over public networks. As an essential market process, auctions have been well studied and applied in many business fields due to their efficiency and contributions to fair trade. Complementary features between blockchain and auction models trigger a great potential for research and innovation. On the one hand, the decentralized nature of blockchain can provide a trustworthy, secure, and cost-effective mechanism to manage the auction process; on the other hand, auction models can be utilized to design incentive and consensus protocols in blockchain architectures. These opportunities have attracted enormous research and innovation activities in both academia and industry; however, there is a lack of an in-depth review of existing solutions and achievements. In this paper, we conduct a comprehensive state-of-the-art survey of these two research topics. We review the existing solutions for integrating blockchain and auction models, with application-oriented taxonomies generated. Additionally, we highlight some open research challenges and future directions towards integrated blockchain-auction models.

I. INTRODUCTION

Over the past decade, the world has witnessed the success of blockchain as a novel technology to build decentralized systems. In general, blockchain is a decentralized ledger technology that incorporates cryptography, peer-to-peer (P2P) networks, and consensus mechanisms. The ledger is maintained by all nodes participating in the system and is decentralized, tamper-proof, transparent, and secure [1]. In 2018, Satoshi Nakamoto first introduced blockchain as the foundation technology for a cryptocurrency named Bitcoin [2]. After that, with smart contracts bringing programmability to the blockchain, it is now widely believed that blockchain can be applied to build decentralized systems in various application scenarios, e.g., transportation and logistics, agriculture and food, energy and utilities, healthcare, and life sciences [3]. According to a report from MarketsandMarkets, the worldwide blockchain market is predicted to expand to $39.7 billion and cover specific applications across more than 15 industries [4].

An auction is a process of buying and selling goods or services. This process involves offering items for bidding, waiting for bids to be accepted, and then selling goods to the highest bidder under the supervision of an auctioneer [5]. Typically, auctions tend to be centrally organized and offline. Due to their fairness properties, auctions are widely used in trading activities for artworks, cars, radio spectra, online advertisements, etc. [6]. In the field of economics, auction theory has become one of the most successful and active branches [7]. Hundreds of auction models have been designed to serve different auction scenarios. A case in point is the spectrum auction that the Federal Communications Commission (FCC) has been conducting since 1994 [8]. Since then, spectrum auctions have contributed more than $200 billion of revenue to the U.S. government. The two designers of the FCC auction were awarded the Nobel Prize in 2020 for their improvements to auction theory and the invention of new auction formats [9].

Potential research and innovation opportunities across both blockchain and auction models have emerged recently [10]. On the one hand, traditional centralized auctions usually require a third-party auctioneer or auction house to manage the entire auction process, which is expensive due to high commission fees. They also suffer from a single point of failure, as auctioneers can potentially be malicious in some cases [11]. In this context, blockchain has emerged as a decentralized platform to support trustworthy online auction applications. In 2018, for the first time in the world, multi-million dollar artworks by Andy Warhol were tokenized and auctioned successfully using the Ethereum blockchain [12]. [13]. It is also reported that major auction houses (e.g., Sotheby’s and Christie’s) are actively working on applying blockchain in secure and trusted auction use cases [14]. Thus, we can foresee that this mechanism of bidding for ownership of items with blockchain could become the future trend. On the other hand, peers in the blockchain can use auctions to handle dynamic relationships. For instance, auction theory can be leveraged to model the transaction fee market of blockchain platforms. The transaction fee mechanism of the Ethereum blockchain has been a first-price auction since its inception; each transaction has an associated transaction fee (bid), which is paid by its submitter to the miner for priority processing [15]. Auctions are also found, as the literature indicates, in other blockchain activities such as miner selection [16] and block reward allocation [17].

The opportunities of applying blockchain in auctions or enhancing blockchain using auctions have attracted many research and innovation activities; however, there is a lack of surveys to systemically review those different technical developments and achievements, and to identify the important open challenges. In this paper, we attempt to answer the following questions through a systematic literature survey: 1) What are the characteristics of existing blockchain technologies and auction models? 2) How can blockchain technologies and
Auction models enhance each other? 3) What blockchain-based auction applications have been published, and how can these applications be classified? 4) What auction-based solutions have been proposed for enhancing blockchains? 5) What open challenges can we identify in the integration between blockchain and auction models?

A. Contributions

In this survey, we draw a comprehensive research landscape of the integration between blockchain and auction models to answer the above-mentioned research questions. Both aspects of the integration, namely blockchain-based auction models and auction-enhanced blockchain technologies, are carefully reviewed. The main contributions of this paper can be summarized as follows:

- Review existing blockchain technologies and auction models, and provide a conceptual schema to analyze research and innovation opportunities from their integration.
- Systematically review the blockchain-based auction applications, and auction-based solutions to enhance blockchain technologies.
- Provide a taxonomy to classify the existing applications and solutions in the integration between blockchain technologies and auction models.
- Identify open research challenges from the reviewed models, and provide guidance to design applications that require integration between blockchain and auction models.

B. Related Works

During the past years, auction-based theories and models have attracted extensive attention from many researchers. Most surveys on auction-related topics can find were published before 2017 in the field of economics. Those surveys mainly concern the introduction and comparison of different auction models [18], [19], [20], market design [6], as well as the application of auctions in specialized areas such as wireless systems [21], [22] and crowdsensing [23]. The investigation efforts of blockchain, on the other hand, are relatively new. Despite the fact that blockchain is a newly emerged technology, almost every aspect of blockchain has been extensively studied in the literature. These surveys cover topics including blockchain overview [24], [25], [26], security & privacy [27], [28], [29], [30], [31], smart contract [32], consensus mechanism [33], models & tools [34], and various blockchain-based applications [35] such as healthcare [36], smart city [37], Internet of Things (IoT) [38], [39], cloud/edge computing [40], [41], [42], big data [43], and cryptocurrency [44]. The summary of these survey topics over the publication years is shown in Fig. 1. Overall, both the publication number and the research diversity have increased significantly in the last few years.

A Blockchain can provide a decentralized environment to support auction activities, thereby improving the security and trustworthiness of auctions. On the other hand, previous research has suggested the application prospect of using auction models to optimize blockchain workflows, e.g., transaction fee mechanism design, miner selection, and block reward distribution. However, although there are so many studies on blockchain and auction models respectively, the issue of combining the two has rarely been addressed in previous survey works. The studies most relevant to our research are three survey papers working on blockchain-based energy trading solutions, where auction models are partially discussed [45], [46], [47]. The authors in these studies only focus on one specific application field and do not offer the comprehensiveness of this work. Besides, no research work has so far summarized how to use auction models to optimize blockchain technologies.

In summary, most of the existing surveys discussed the two topics separately. There is no general survey on the current landscape of integrated blockchain-auction models. Therefore, the purpose of this survey is to summarize previous publications and to complement existing research on the integration of blockchain and auction models. To the best of our knowledge, this paper is the first comprehensive survey to fill these gaps.

C. Organization

Fig. 2 illustrates the road map and organization of this paper. As shown in the figure, the remainder of this survey is organized as follows. Firstly, some preliminary knowledge of blockchain technologies and auction models, as well as the opportunities and considerations for integration, are presented in Section II. Then, Section III reviews blockchain-based auction applications, including a survey on auction models and blockchain technologies used in different application fields. Section IV explores several aspects of using auction models to enhance blockchain technologies. Section V highlights and summarizes the current research challenges and solutions. Finally, the survey is concluded in Section VI. The acronyms used in this paper are listed in Table A in the appendix section for easy reference.
II. BACKGROUND KNOWLEDGE

In this section, we begin with a brief overview of different blockchain technologies and auction models. We then proceed to discuss the opportunities and considerations behind combining them.

A. Blockchain Technologies

Introduced by Satoshi Nakamoto in 2018, blockchain was initially used as the underlying technology for Bitcoin. It records transactions among distributed participants as identical copies through a decentralized ledger, which is represented as a chain of blocks. Based on the consensus among distributed participants, new blocks are generated and attached to the chain using a cryptographic algorithm. In this process, a blockchain builds trust among its distributed users by virtue of the immutability and security of the ledger.

1) Blockchain Architecture: Blockchain researchers and practitioners often model blockchain systems using a layered architecture, and abstract typical blockchain technologies and functional components as six bottom-up layers: data, network, consensus, incentive, contract, and application layer [29]. The three layers at the bottom are usually considered a blockchain’s basic elements, while the upper three layers are the extended elements.

- **Data Layer.** This layer defines the schema, data structure, and storage of all the data information on the blockchain. As the name suggests, a blockchain uses the “chained blocks” data structure as its backbone. Each block consists of several transactions, with useful information (e.g., version, hash, nonce, timestamp, and Merkle root) contained in the block header. The blocks are chained to each other via cryptographic algorithms, making the data layer constitute a tamper-proof database for the blockchain.

- **Network Layer.** This layer models protocols for connecting blockchain nodes and validating data transferred across them. Blockchain nodes are typically connected using a P2P paradigm, where the blockchain is maintained by all peer nodes together, and no single agent can control the whole system. When new transactions are generated on a node, they are first propagated to the neighboring nodes for validation. If the data structure and syntax are valid, they are saved for further processing; otherwise, they are simply rejected.

- **Consensus Layer.** This layer is the foundation and core of a blockchain system. It defines protocols and algorithms for decentralized nodes to reach a consensus on the update of the blockchain. The most common and successful consensus algorithm is Proof of Work (PoW). Other alternatives like Proof of Stake (PoS), Delegated Proof of Stake (DPoS), Practical Byzantine Fault Tolerance (PBFT), Proof of Elapsed Time (PoET), Proof of Authority (PoA), and Raft, have also been widely discussed recently [33].

- **Incentive Layer.** This layer provides incentive mechanisms for a blockchain to motivate participants to validate the data and maintain the whole system. Incentive mechanisms are typically based on block rewards and transaction fees. For example, the issuance mechanism of the Bitcoin blockchain guarantees that successful miners are rewarded with 6.25 Bitcoins when a new valid block is mined. At the same time, the transaction fees associated with each transaction can be allocated to the corresponding miners. This layer is essential in permissionless blockchains. Whereas in a permissioned blockchain, the incentive mechanism is often optional since the participants are selected organizations [26].

- **Contract Layer.** This layer defines decentralized programming paradigms in a blockchain, which was initially promoted by the Ethereum smart contract technology. A smart contract is a tamper-proof and self-executing program running on the blockchain, which enables a much broader range of application innovations in addition to cryptocurrencies. The concept of smart contracts has also extended to other blockchain platforms, e.g., chaincodes [48] and transaction processors [49] are smart contracts offered by Hyperledger Fabric and Sawtooth, respectively.

- **Application Layer.** This layer defines application programming interfaces (APIs) and programming models for developing specific applications. Blockchain was once well known for its cryptocurrency application (e.g., Bitcoin). Now with the popularity of smart contract technology, blockchain-based applications, namely decentralized applications (DApps), are showing huge market potential in many industrial sectors [4].

2) Blockchain Types: In general, there are three types of blockchains: permissionless, permissioned, and hybrid blockchain. This section provides a brief summary of them. A more detailed comparison is shown in Table I.

- **Permissionless Blockchain.** In a permissionless or public blockchain (e.g., Bitcoin or Ethereum), anyone can join the network by submitting or validating transactions. To address the lack of trust among anonymous players, a
A consensus mechanism is often used to determine who gets the right to package transactions and produce new blocks in a given round. PoW is a good illustration of such a consensus algorithm and has been validated with the popularity of blockchain. However, it has been criticized for being inefficient and consuming too much energy in order to reach a consensus. It is widely believed that in a PoW-based permissionless blockchain, the waste of energy is inevitable in order to establish trust among strangers without any prior knowledge of each other.

- **Permissioned Blockchain.** A permissioned blockchain is operated as a closed ecosystem that can only be accessed by users with permissions. A user can only view the ledger or validate new transactions after being approved by the authority of the blockchain. In this way, malicious or crashed nodes can be identified through more energy-efficient consensus algorithms such as PBFT, PoET, and Raft. The ability of assigning specific network permissions to users and the enhanced performance give permissioned blockchains a great potential for wider industrial application. Hyperledger is one of the most successful blockchain communities and has incubated several permissioned blockchain platforms such as Fabric and Sawtooth [50]. However, there are also some arguments that the “partially decentralized” nature of the permissioned blockchain may lead to compromises in trust [53].

- **Hybrid Blockchain.** It aims to combine the strengths of both permissionless and permissioned blockchains and to customize the degree of decentralization based on specific application needs. A hybrid blockchain enables highly regulated organizations to have greater flexibility and control over which data is kept private versus shared on a public ledger [51]. A typical example is the Aergo platform, which consists of a public chain network using the DPoS consensus and several customized sidechains dedicated to specific applications based on leader-based PoA consensus mechanisms [52].

Table I: Characteristics of the Three Types of Blockchain

	Permissionless Blockchain	Permissioned Blockchain	Hybrid Blockchain
Participants	• Public	• Private/Consortium	• Public + Private
	• Anonymous	• Known identities	
Access Mechanism	• Anyone	• Selected users	• Customized
	• Decentralized	• Partially decentralized	
Consensus	• PoW, PoS	• PBFT, Raft, and PoET	• Integrated
	• Energy-intensive	• Energy-efficient	
Performance	• Low	• High	• Medium
Examples	• Bitcoin	• Hyperledger Fabric	• Aergo

B. Auction Models

An auction is a sale activity in which potential buyers make competitive bids for objects or services [18]. There are usually several fundamental elements in an auction: 1) a seller who owns and wants to sell the objects; 2) one or several bidders who want to buy the objects via the auction; 3) the auction objects traded between the seller and the buyer(s); and 4) an auctioneer who works as an intermediary agent to host and control the auction process.

Auction models can be classified from different dimensions, e.g., the bidding process, the number of items, the roles of buyers/sellers, and the bidding participants [22]. In the rest of this section, we review auction models that are frequently used in the blockchain-related literature. A comparison of those auction models is also shown in Table I.

1) **Open-Outcry Auction vs. Sealed-Bid Auction:** From the perspective of the bidding process, an auction model can be either open-outcry or sealed-bid. In an open-outcry auction, a bidder’s bidding activities are transparent and visible to all bidders. Whereas in a sealed-bid auction, bidders submit their bids to the auctioneer privately, and the bids are only known by the auctioneer until the auction ends. Typical open-outcry auctions and sealed-bid auctions are summarized as follows:

- **English Auction** (also called open-outcry ascending-price auction). In an English auction, the price begins low and rises as buyers submit their bids until only one bidder is left and no higher bids are obtained within the specified time span. The whole process of requesting bids is open and transparent. It can be very competitive, with pressure rising as bidders’ offers increase. Since the auctioneer would try to get the best price for the seller, an English auction is expected to benefit the seller.

- **Dutch Auction** (also called open-outcry descending-price auction or clock auction). In a Dutch auction, the auctioneer starts by announcing a high asking bid and then keeps lowering this bid until a buyer is willing to accept it. This auction is often used to sell goods that must be sold quickly (e.g., fresh produce). For example, such auctions are very common in the Dutch flower sales market.

- **First-Price Sealed-Bid (FPSB) Auction** (also called blind auction). In an FPSB auction, all bidders submit sealed bids to the auctioneer simultaneously, and the highest bidder wins and pays his/her bid. Other bidders’ bids will not be revealed during the auction until a winner is determined. Therefore, bidders do not compete openly with each other, but they can collect information about their competitors’ bids before submitting their own.

- **Vickrey Auction** (also called second-price sealed-bid auction). It is similar to an FPSB auction but with a different payment mechanism. After all bidders submit sealed bids to the auctioneer, the highest bidder still wins but only pays the second-highest bid. In Vickrey auctions, truthful bidding is the dominant strategy [7]. It has been well studied in theory but not very popular in practice.

2) **Single-Item Auction vs. Multi-Item Auction:** From the perspective of the number of items, an auction model can be single-item or multi-item. The above-mentioned four auction models are the main types of auctions where a single item is sold [53]. However, in some situations, selling multiple items at the same time is a more efficient way. Multi-item auctions can be further subdivided into two cases: an auction...
is said to be homogeneous if all items offered in the auction are identical; otherwise, it is considered heterogeneous.

- **Combinatorial Auction** (also called multi-lot auction). This is a popular auction in which heterogeneous items are sold at the same time. Bidders can place bids on combinations (or “packages”) of items. It is suitable to auction scenarios where bidders have non-additive valuations for bundled items.
- **Multi-unit Auction**. This is an auction in which several homogeneous items are sold. Based on the different payments for each unit, it can be further divided into two types, i.e., pay-as-bid auction (or discriminatory price auction) and uniform price auction (or clearing price auction) [54]. In the former, bidders pay their bids for each unit they won. Whereas in the latter, all winning bidders pay the same price regardless of their actual bid.

3) **Forward Auction vs. Reverse Auction**: An auction model can be either forward or reverse in terms of the roles of buyers/sellers. A forward auction is also called a seller-determined auction, in which one seller sells products to multiple potential buyers (bidders). The auction models discussed so far are all forward ones. In a reverse auction, however, the roles of buyers and sellers are swapped: sellers need to bid and compete for the opportunity to sell their products.

- **Reverse Auction** (also called buyer-determined auction or procurement auction). In a reverse auction, one buyer needs to trade with multiple potential sellers. The buyer first makes a request for the required goods or services. Then sellers place bids for the goods or services they are willing to deliver. A reverse auction is highly suitable for procurement activities proposed by governments, companies, and organizations since it motivates sellers’ competition.

4) **Single-Sided Auction vs. Double Auction**: In terms of the participants in the bidding process, an auction model can be single-sided or double-sided. The single-sided approach has been widely implemented in traditional auctions (e.g., forward and reverse auctions). However, in some cases, they cannot accommodate additional sellers/bidders in a large-scale situation. The double auction is an extension of the conventional auction, which adopts the many-to-many strategy to generate multiple winning bidders in each round [55].

- **Double Auction** (also called double-sided auction). In this auction, multiple sellers and buyers submit their bids/offers, respectively. The market institution (auctioneer) then chooses a price that clears the market. Many different market clearing mechanisms already exist, including average mechanism, VCG (Vickrey-Clarke-Groves)
mechanism, trade reduction mechanism, and McAfee’s mechanism [56]. In reality, a double auction is suitable for marketplaces with multiple sellers and buyers, e.g., stock exchanges.

5) Others: Some other emerging auction models found in the literature are listed as follows:

- **All-Pay Auction.** Every bidder must pay regardless of whether he/she wins or not. The auction is awarded to the highest bidder as in a conventional auction. It is popular among governments and central banks. However, overbidding is a common behavior in the auction process.
- **Multi-Attribute Auction.** The bids could have multiple attributes (e.g., service time and quality) other than price. In this case, a scoring mechanism is essential to calculate the total bidding value. It is suitable when the auction needs to consider multiple attributes (e.g., service allocation).
- **Sponsored Search Auction (also called keyword auction).** It is specially designed for search advertising scenarios. In this auction, n advertisers (bidders) compete for the assignment of k advertisement slots/positions. Each bidder submits a bid, then the highest bidder gets the first slot (with his/her bid), the second-highest bidder gets the second slot, and so forth. Based on the winner’s different payment strategies, it can be further divided into generalized first-price (GFP) auction, generalized second-price (GSP) auction, and VCG auction.

C. Opportunities and Considerations for Integration

The integration between blockchain technologies and auction models can promote innovations on both sides. On the one hand, blockchain can be used to enable a decentralized auction system and improve the trustworthiness of centralized auctions. On the other hand, auction models can be leveraged to motivate decentralized peer nodes as a kind of price incentive mechanism to enhance blockchain technology. In this section, we discuss the research and innovation opportunities brought by the integration between blockchain and auction models.

Blockchain technologies effectively eliminate intermediaries, thereby reducing transaction costs and ensuring trust among auction stakeholders [57]. In general, blockchain technologies can enhance auction models from the following aspects:

- **Immutability of the Auction Transaction.** Every transaction executed on the blockchain is public, verifiable, and immutable. This means that the blockchain can be leveraged as an audit certificate device that prevents participants from cheating during the auction. The winning bidders can also use the blockchain as a transaction proof [58].

- **Automation of the Auction Process.** A smart contract automates the auction process on the blockchain. Almost all auction logic can be predefined in smart contracts to facilitate the exchange of goods or services as well as the token payment.

- **Decentralization of the Auction Management.** There is no need for a specific third-party auctioneer, which ensures trustworthiness and greatly reduces the auction cost. By contrast, traditional centralized auctions can be very expensive and subject to cheating auctioneers; auction houses typically charge 8-20% of the hammer price as a commission [59].

- **Flexibility in the Auction Payment.** Cryptocurrencies embedded in the blockchain can improve the security and flexibility of auction payments. At the same time, a decentralized payment scheme obviates the need for financial intermediaries, making transactions more convenient and less costly.

In addition, auction models can be inserted into any blockchain component to optimize the overall workflow. They have been used to improve blockchain technologies from different aspects: e.g., modeling and optimizing the blockchain transaction fee mechanisms [60], selecting miners [61], and designing new consensus algorithms [62].

Given the six-layer architecture of a generic blockchain (as introduced in Section II-A), detailed opportunities for integrating blockchain with auction models can be discussed at different blockchain layers, as illustrated in Fig. 3.

![Fig. 3. Integration of auction models in different blockchain layers.](image-url)

1) **Integration at the Application Layer:** The application layer is where the blockchain encapsulates various application scenarios and use cases [35]. To communicate with the blockchain network, applications use either a command-line interface tool provided by the blockchain platform or a specific programming software development kit. In this layer, various auction application scenarios can be designed and implemented as DApps. The front-end code of an auction DApp can be written in any programming language and make API calls to its back-end (usually blockchain nodes). Different cryptocurrency DApps are also implemented at this layer to support auction payments.

2) **Integration at the Contract Layer:** Once deployed on the blockchain, a smart contract cannot be altered. Therefore, an
auction smart contract must be carefully analyzed, developed, and tested to ensure that the contract rules meet all requirements before they take effect in a real blockchain. Researchers have designed various auction smart contracts for different auction models (e.g., English auction, Dutch auction, and sealed-bid auction). The operational cost of these contracts, as well as the security and privacy of auction transactions, are the current concerns that need to be addressed urgently. Another consideration for contract layer integration is the development of new programming languages for auction smart contracts [63]. In addition to general programming languages (e.g., Solidity in Ethereum), domain-specific programming languages have also been proposed to improve the usability of auction smart contracts [64].

3) Integration at the Incentive Layer: There is great potential to use auction-based incentives in this layer to promote the development of blockchain systems. Most current permissionless blockchains (e.g., Bitcoin and Ethereum) leverage a built-in GFP auction mechanism for the transaction fee market design; users attach a transaction fee when they submit a new transaction to the blockchain, and miners choose the transactions with the highest fee for priority processing. Alternative auction models (e.g., GSP auction) hold the promise of making the blockchain transaction fee market more efficient [65]. Another integration direction in this layer is the block reward allocation in mining pools. In reality, auction models are widely used for efficient and fair block reward allocation to motivate more miners to join the mining pool [17].

4) Integration at the Consensus Layer: Existing studies have highlighted the need to integrate auction models into blockchain consensus mechanisms. Auction models can be added to the consensus layer in different manners. For example, miners can use auctions to offload the mining tasks to cloud/edge/fog computing servers when traditional PoW consensus requires too many computational resources [66]. Besides, auction models can be leveraged to model and optimize existing consensus mechanisms. The selection of miner nodes in PoS can be modeled as an auction where miners bid for the new block, and the miner with the highest bid (stake) wins the auction [67]. There are also new consensus mechanisms that are designed using the auction mechanism [62]. All these directions make the consensus layer a more developed area in terms of integration.

5) Integration at the Network Layer: Researchers are working hard to optimize the blockchain network layer with various techniques to improve security and efficiency [27]. However, there are still many concerns about whether an auction model is suitable in this layer. One promising topic would be the design of data transfer mechanisms with incentives for P2P networks using auction models [68]. However, to our knowledge, few studies have specifically incorporated auctions into this blockchain layer. We believe that future research in this area should delve into such mechanisms.

6) Integration at the Data Layer: It is instinctive that there is little space to optimize the blockchain data structure using the auction model. In contrast, when blockchain is used to support auction applications, all data related to auction activities (including bidding and payment) will be stored in this layer in the form of blockchain transactions. While most researchers use current blockchain data structures to store auction transactions, some others are designing customized data structures for auction scenarios. For example, the authors in [69] added additional fields (e.g., “Auctioned”, “Expired”, “Price”, and “Consumption”) to the Bitcoin transaction data structure to represent energy consumption and auction status. Despite such technical advances, a comprehensive study is still lacking in integrating auction models with the data layer.

In summary, although a blockchain is a multi-layered collaborative system, the research on blockchain-based auction applications mainly focuses on the contract and application layers. By contrast, the research using auction models to enhance blockchain technology mostly targets the incentive and consensus layers. Moreover, the integration in data and network layers is less studied and discussed in the literature. In the following text, we present a detailed and state-of-the-art review of the two integration efforts in Section III and Section IV respectively.

III. BLOCKCHAIN-BASED AUCTION APPLICATIONS

Existing surveys have indicated the huge potential of blockchain-based auction models in application fields like energy trading [47]. However, a systematic classification to categorize these applications is still lacking [70]. In this section, we propose an application-oriented taxonomy for blockchain-based auction applications, which is shown in Fig. 4. We identified and reviewed several key application fields, namely energy trading, wireless communication, service allocation, and others. Our classification method is based on a statistical analysis of existing literature and is therefore suitable to analyze current development efforts and illustrate future trends. Table III further summarizes the auction models and blockchain technologies used in different studies.

Fig. 4. Taxonomy of blockchain-based auction applications.

A. Energy Trading

Traditional centralized energy transaction models have many shortcomings, including high operating costs, low transparency, and latent risks of transaction data modification [71].
Integrating blockchain with energy trading is a new paradigm that has recently emerged. As an incentive and pricing mechanism, an auction plays a vital role in ensuring fairness and improving transaction efficiency in energy exchange. However, there are many challenges in integrating traditional energy auctions into blockchain technology. Researchers have proposed different blockchain-based auction models to address those challenges in the energy market [72]. Thematically, the relevant literature can be roughly classified into three categories: power grid, smart community, and Internet of Vehicles (IoV).

1) Power Grid: In traditional centralized power stations (e.g., thermal power, natural gas, and nuclear stations), consumers typically trade indirectly with energy suppliers through retailers in the market. The situation has been improved by a system named microgrid. It is a small-scale power generation and distribution system that comprises distributed power sources, electric loads, distribution facilities, and monitoring devices [73]. By promoting decentralized transactions between distributed generations (DGs) and consumers in a microgrid (instead of letting retailers act as intermediaries), the interests of both parties are increased. With the development of microgrids, transactive energy paradigms have been proposed to support the development of next-generation energy distribution systems. In this paradigm, customers might also act as suppliers rather than the one-way configuration of suppliers and consumers. Microgrid systems, in this way, allow customers to store electricity resources, sell them on-demand, and buy them from other customers [74].

In this regard, the fusion of blockchain and auction models can provide a transparent and credible trading environment for P2P microgrid energy transactions. The relevant literature has demonstrated that double auctions are more suitable for multi-seller and multi-buyer models in grid transactions. For example, Wang et al. [71] suggested a model for direct electricity trading between DGs and consumers in microgrids based on blockchain technology and continuous double auctions. To allow dynamic adjustment of the auction bids, their model adopts an adaptive aggressiveness bidding strategy. Besides, DGs and consumers can exchange digital certificates on the blockchain to settle the auction and guarantee auction security. Yan et al. [75] used a similar pricing strategy, but they paid more attention to the generation right trade market. They focused on the problem of how to allocate available generation rights to integrate clean energy and reduce thermal power emissions. It should be noted that the energy payments in both of the above-mentioned studies are based on the Bitcoin cryptocurrency protocol. In addition, Thakur et al. [69] proposed that the information about energy surplus or deficit can be encoded as blockchain transactions and stored in an optimized Bitcoin data structure to support double auctions. Stübs et al. [76] argued that there are multiple communications and data transmissions between various layers of the power grid. So a hierarchical double auction model is proposed for full on-chain implementation of energy transactions. AlAshery et al. [77] proposed a double auction model with an optimized VCG pricing mechanism for P2P energy trading in power grids on the blockchain. Zhao et al. [78] proposed a bandit learning-based double auction model that can provide participants with more auction revenues by learning the transaction history.

Some traditional single-sided auction models are also presented for microgrid energy trading. Seven et al. [79] proposed a novel P2P energy trading scheme that uses smart contracts for virtual power plants (VPPs). In particular, the authors used an English auction-based workflow to achieve P2P transactions in a VPP. Hahn et al. [80] demonstrated how to implement Vickrey auctions on smart contracts and use them for a trading market, where multiple consumers bid for power resources from photovoltaic arrays. The authors in [81] leveraged both Dutch and Vickrey auction models for user negotiation and power distribution. In addition, a wallet-based cryptocurrency called GreenCoin is created to support energy payments.

Blockchain-based decentralized systems bring new privacy challenges like the possible leakage of energy usage patterns [82]. So permissioned blockchains with better scalability and identity permission mechanisms are widely discussed in power grids. In this context, Zhang et al. [83] proposed a privacy-preserving scheme for direct power transactions in microgrids, in which a continuous double auction is combined with a permissioned blockchain to reduce costs and improve transaction privacy and efficiency. Hassan et al. [84] adopted a permissioned blockchain for the computation of complex on-chain transactions. Additionally, they leveraged the differential privacy technology to protect auction privacy.

2) Smart Community: The smart community is another blockchain-based energy auction application field that has attracted much public attention [85], [86]. In general, a community microgrid is a self-sufficient energy system designed to meet local energy needs (e.g., electricity, heating, and cooling) for communities, villages, towns, and cities. Some households may have extra renewable energy in their community microgrid and can therefore meet the needs of their neighbors. The community can flexibly absorb the peak hours of individual consumers; in this way, the energy demand of the community can be stabilized, and energy resources can be better planned.

The success of a smart community heavily depends on the function of its auction economic backbone [85]. In [86], the authors proposed a model for auctioning energy and water resources between smart communities and smart homes, thus encouraging communities to optimize global consumption. In particular, users can use a Vickrey auction model on the blockchain network during the resource negotiation stage. Guo et al. [87] considered the issue of energy trading in combined cooling, heating, and power (CCHP) systems and developed a non-cooperative Stackelberg game between power grid agents and the system to model energy transactions.

Other studies focus on improving the scalability of the blockchain to improve the performance of community energy auctions. Saxena et al. [88] presented a permissioned blockchain implementation of a P2P energy trading system for residential communities. In this system, a single house owner can place his/her energy bid in the district within discrete time intervals on the blockchain. A more scalable local grid system for smart communities is enerDAG [89], in which a blockchain with tangled data structures is leveraged.
to overcome issues such as expensive transaction fees and limited throughput. However, there are still many debates regarding this blockchain since it deviates from the traditional blockchain’s “chained block” data structure.

Quarterstrom [90] is a blockchain-based project for community energy trading. It is designed to manage the exchange and payment of electricity resources between consumers, producers, and local grid suppliers without any intermediaries. In Quarterstrom, a real-world prototype system has been implemented and tested in the town of Wallenstadt in Switzerland (a community with 37 families involved). The pricing mechanism of the Quarterstrom market is a double auction with discriminative pricing, while Tendermint serves as the underlying blockchain [91].

3) Internet of Vehicles: Vehicle-to-vehicle (V2V) describes a trading model in which plug-in electric vehicles (EVs) communicate with each other to exchange electricity energy. It can enhance the cooperation between vehicles, extend the driving endurance, and avoid the grid overload problem [92], [93]. However, conducting non-transparent energy transactions in IoV without trust is risky. Most existing IoV energy trading platforms and facilities are centralized, and they rely on trusted third parties (TPPs) to manage power dispatch, transaction payments, and security issues; nevertheless, these third parties are costly and can be corrupted [94]. In a blockchain-enabled decentralized IoV network, Xia et al. [92] presented a V2V electricity trading strategy using Bayesian game-based bidding and pricing. Sun et al. [94] further considered transaction privacy and efficiency issues. They adopted a permissioned blockchain in the designed V2V energy trading architecture. Additionally, a novel DPoS consensus mechanism is utilized to boost trade efficiency. In [95] and [96], the authors argued that the high computational cost required in the classic permissionless blockchain is not suitable for IoV. Therefore, they adopted a blockchain with a directed acyclic graph (DAG) data structure for charging scheduling among EVs. Furthermore, Choubey et al. [97] introduced a new cryptocurrency called ETcoin to facilitate energy transactions among EVs on the permissioned blockchain.

Another related topic is vehicle-to-grid (V2G), which describes a system in which plug-in EVs communicate with the grid by returning electricity or limiting their charging rate to satisfy demand response services. Hassija et al. [98] proposed a scheme utilizing the IOTA blockchain for data sharing and energy trading in V2G networks. The scheme implements an auction-based game-theoretic approach for the price competition between EVs and grid users. Similarly, Liu et al. [99] developed a reverse auction-based dynamic pricing model for V2G networks in order to improve social welfare and transaction efficiency. In their model, unfulfilled charging EVs are powered by the smart grid, while charging and discharging transactions are executed on the smart contract.

Pustišek et al. [100] presented a model that allows independent selection/dispatch of the most convenient charging stations for EVs in V2G networks via blockchain. The model is implemented using the Ethereum blockchain and an FPSB auction model. To summarize, a general blockchain-based energy trading model for IoV is illustrated in Fig. 5.

B. Wireless Communication

As wireless systems develop with new mobile communication technologies, they become increasingly complex in terms of architecture and management. Auctions have been proposed as practical mechanisms for assigning a wide range of wireless resources (e.g., spectra, subchannels, time slots, and transmit power levels). By designing and employing various auction procedures, wireless resources can be efficiently allocated between consumers and resource providers [101].

1) Spectrum Resource: With the rapid development of communication technology, users’ demand for spectrum resources continues to increase, making spectrum a scarce resource in the trading market. However, the traditional government-led static spectrum allocation approach has failed to fully utilize the limited spectrum resources. According to the report from FCC, the utilization of the licensed spectrum can only be maintained between 15% to 85% with static spectrum allocation solutions [102]. As a result, market-driven spectrum auctions have emerged as promising solutions for spectrum allocation [103]. A spectrum auction can be centralized or decentralized, and Fig. 6 shows a comparison of the two approaches.

In this context, Fan and Huo [104] suggested a blockchain-based framework for license-free spectrum resource management in cyber-physical-social systems (CPSS). In particular, two ways of obtaining a spectrum access license (i.e., mining and auction) are designed. A new virtual currency, called Xcoin, is also introduced in this process to enhance spectrum trading. Yu et al. [105] focused on the space communication field and presented a spectrum auction model for heterogeneous spacecraft networks based on blockchains. Recent studies have further highlighted the security and privacy challenges [106]. For example, Tu et al. [107] designed a privacy-preserving double auction mechanism for blockchain-enabled spectrum sharing using the differential privacy technology. Wang et al. [108] designed a secure spectrum auction protocol that utilizes Intel Software Guard Extensions (SGX) technology and the Paillier cryptosystem.
It should be noted that spectrum auctions are different from traditional auctions due to the reusable nature of spectrum resources. In most traditional auctions, the same items (e.g., artworks, antiques, and estates) can only be auctioned to a specific buyer. Spectrum auctions, by contrast, can allow the sharing of an auctioned channel as long as the buyers do not interfere with each other. In this context, dynamic spectrum management in cognitive radio (CR) networks can address the lack and underutilization of spectrum resources. CRs can be dynamically programmed and configured to use the best wireless channel nearby to avoid users interference and congestion. Based on the cognition and reconfiguration of CRs, the primary users can share their licensed spectrum with secondary users to improve spectrum utilization. The authors in [108], [109] introduced the idea of using blockchain as a decentralized database to verify spectrum sharing and auctions in CR networks. For secondary spectrum auctions in a CR network, an automatic pricing strategy based on a blockchain token called “spectrum dollars” is introduced in [110].

2) Network Resource: In addition to spectrum resources, researchers have paid attention to other network resources in wireless networks. SAFE [111] is a framework designed for users to customize auction formats and allocate general wireless network resources, e.g., spectrum channels, femtocell access permissions, and resource blocks of device-to-device connections. Afraz et al. [112] proposed a distributed resource market mechanism for future telecommunications networks, in which a double auction model and a permissioned blockchain are combined. Besides, cooperative relaying can be an effective way to improve the capacity, reliability, and security of wireless networks. It either helps establish communications between the source and destination or improves the established communications by adding diversity. In [113], relay operators are designed to be responsible for the relay/jammer selection and resource allocation. A double auction mechanism is used to simulate the interaction between transmitters and relay operators. Furthermore, User congestion in wireless networks is a severe problem to be solved. A Vickrey auction-based user offloading mechanism between macrocell base stations and small cell access points has been proposed in [114] to improve the capacity of heterogeneous wireless networks.

An unmanned aerial vehicle (UAV), also known as a drone, is a newly emerging flying antenna system with a critical requirement for network resource allocation. Accordingly, a drone-mounted base station is primarily responsible for the communication between the UAV backhaul and access networks. In this field, Hassija et al. [115] introduced the idea of using dynamic auctions to allocate the bandwidth of drone-mounted base stations to different users to improve availability and reduce costs. Khan et al. [116] proposed a multi-UAV network framework, which can: 1) outsource network coverage in specific areas based on the required service requirements; 2) enable each network entity to use the blockchain intelligently; and 3) provide an auction mechanism to make autonomous decisions. To model the interaction between UAV operators and business agents, a reputation-based truthful auction method is also presented.

C. Service Allocation

Recent developments in service computing allow the use of blockchain to allocate heterogeneous services, where blockchain can be used as decentralized auditing devices, and cryptocurrencies can secure money payments. However, most of the existing models do not provide incentives for matching service customers and providers; they often rely on manual and inefficient solutions [117]. Therefore, different auction models are proposed together with blockchain to provide secure, credible, and economical service allocation platforms.

1) Cloud/Fog/Edge Service: With the rapid growth of the cloud computing industry, more and more application operators are now using the cloud for service hosting, computing offloading, and data storage. Some large cloud service providers (e.g., AWS, Azure, and Google Cloud) have already supported spot instance pricing, allowing users to bid on unused capacity in cloud data centers. In this way, some users can even save up to 90% of the cost compared with the traditional on-demand instance pricing [118]. However, since cloud service providers usually sell services in a centralized and opaque manner, the fairness of the auction is challenging to guarantee in reality. A trustworthy transaction and payment mechanism is urgently needed to motivate service providers/customers and improve service utilization. ASiERISK [117] is a framework designed to fill this gap; it automatically determines the best price for cloud services and assigns customers to
the most appropriate providers by implementing sealed-bid auctions on the blockchain. Similarly, Chen et al. [119] introduced a blockchain-based auction and trading model for cloud virtual machine allocation. Their model can achieve fairness in auction transactions by implementing commitment-based state mechanisms, smart contracts, and cryptocurrency technologies. In [120, 121], the authors paid attention to the cloud storage problem and proposed VCG auction-based resource trading models for distributed cloud storage.

The paradigm of connecting things to the cloud to receive a centralized service is not always the best option, which leads to the context in which edge and fog computing are widely discussed. Basically, they both intend to distribute the computing capacity and assist the cloud server with additional resources located near the end users [122]. In this respect, Debe et al. [124] demonstrated a blockchain-based reverse auction solution for public fog service allocation. Yu et al. [125] also leveraged the reverse auction model and presented a blockchain-based edge crowdsourcing service system. Specifically, a changeable auction algorithm is designed so that each request from the user will find a winner that can provide the appropriate edge service.

2) Virtual Network Service: Network function virtualization (NFV) has come into view for its ability to provide multiple network functions at a low cost [126]. BRAIN [127] is a blockchain-based reverse auction solution with a focus on NFV scenarios. It is introduced to address the challenge of discovering and selecting infrastructures that can efficiently host NFV services based on specific user needs. Virtual network embedding (VNE) is one of the most important problems in network virtualization and is responsible for mapping virtual networks to underlying physical networks. Many auction methods have been presented in the literature to achieve efficient resource allocation in VNE. Rizk et al. [128] designed a decentralized VNE system that uses smart contracts and a Vickrey auction model for trustworthy virtual network partitioning and allocation.

3) Mobile Service: The number of mobile devices and compute-intensive mobile applications has exploded in recent decades. The focus of these mobile applications is to improve the quality of service (QoS) for end users; however, by improving the QoS, these applications generate a large amount of mobile traffic, thus posing a huge challenge to mobile network providers. One of the most promising ways to deal with this issue is mobile data offloading. For example, Hassija et al. [129] created a mobile data offloading model in which mobile devices and users can securely perform computation offloading services on the blockchain. FlopCoin [130] is a virtual currency specially designed for compensating mobile devices when they execute device-to-device offloading services.

On the other hand, the widespread dissemination of programmable sensor-employed smartphones has facilitated mobile crowdsensing applications such as environmental monitoring, crowd journalism, and public safety. These applications require effective incentives to compensate and reward mobile users for their resource contributions. Chatzopoulou et al. [131] suggested the use of blockchain and smart contracts to manage spatial crowdsensing interactions between mobile service providers and customers. A truthful and cost-optimal auction model is also designed on the blockchain to reduce payments from crowdsensing providers to mobile users.

D. Others

1) Data Management: The uncertainty of data value makes it difficult to make accurate estimates of the appropriate price for data. An auction is a powerful approach to protect the interests of both data sellers and buyers while maintaining the fundamental principles of the marketplace. To eliminate systemic risks caused by collusion in large-scale data auctions, the authors in [132] introduced a decentralized data auction system that uses an anti-collusion auction algorithm executed on the smart contract. The system ensures that buyers and sellers can engage in data auctions without relying on TTPs. An et al. [133] implemented a crowdsourcing data trading system using blockchain and reverse auctions. They carefully designed smart contracts to replace third-party data brokers, thus providing a trustworthy environment for data sellers and consumers. Besides, a permissioned blockchain-based model is used in [134] to enable secure and efficient IoT data transactions. An iterative double auction model is also presented to optimize data pricing and improve data transaction volume.

2) Stock Exchange: A stock exchange is a marketplace where traders can buy and sell securities, e.g., stocks, bonds, options. To address the single point of failure in centralized stock exchange platforms, Al-Shaibani et al. [135] introduced a permissioned blockchain-based decentralized stock exchange platform. Similarly, Pop et al. [136] suggested addressing the shortcomings of centralized stock trading to reduce transaction costs caused by brokers and central institutions. An Ethereum-based decentralized Bucharest stock exchange model is further proposed and validated. Recently, dark pool trading, as an anonymous and decentralized stock trading approach, has become an increasingly important component of traditional stock exchanges. The decentralized and secure transaction properties of blockchain are well suited to provide support for anonymous dark pool transactions. AuditChain [137] is an auditing and record-keeping platform for financial markets using blockchain. In particular, a periodic double auction-based dark pool use case is used to demonstrate the platform’s feasibility for stock trading. When a private corporation wants to raise capital by issuing new stocks, it can issue shares to the public by conducting an initial public offering (IPO). Purchasers usually acquire multiple shares from the seller at the same price in an IPO, which is a typical example of a uniform price auction. In [138], the authors introduced a universal auction model for IPOs on the permissioned blockchain. The model further leverages secure multi-party computation technology to protect the privacy of IPO transactions.
3) Crowdsourcing: Crowdsourcing is a specific business model for acquiring resources in which an individual or organization can leverage a large number of users to obtain desired services. Traditional centralized crowdsourcing platforms face many challenges, including motivating workers to share their truthful costs and guaranteeing trusted interactions among users and the platform. To cope with these challenges, ABCrowd \cite{139} is a fully decentralized crowdsourcing framework that implements a repeated single-minded VCG auction mechanism on the blockchain. BitFund \cite{140} is a platform designed to connect developers and investors in the global crowdfunding environment, where a novel ascending-price progressive auction algorithm is implemented for cost-effective task allocation.

4) Supply Chain Management: In a supply chain, decentralized auctions can be widely used to coordinate transactions between suppliers and consumers. BitCom \cite{141} is a decentralized supply chain model built on the blockchain to provide a clean and efficient trading environment. Martins et al. \cite{142} proposed a customer-driven supply chain marketplace on the blockchain, where customers post their proposals and suppliers strive to outbid each other in a reverse auction model. Similarly, Koirala et al. \cite{143} introduced a solution to improve transparency and traceability in the carrier procurement process. Their solution considers multiple attributes of carriers in the supply chain during the reverse auction bidding process. The traditional English auction model has also been found in the literature. In \cite{144}, an online English auction system is implemented to sell and buy food products using the Ethereum blockchain.

5) Human Resource Management: Employment and labor industries become more and more important since the value of human resources is directly related to a company’s profitability. However, employee background check remains a controversial field in HR operations, particularly in the cases of employment, education, and skills verification \cite{145}. E²C-Chain \cite{145} \cite{146} is a two-stage blockchain designed to assist the improvement of human resource management. In the first stage, the employees’ background records can be stored in the blockchain in an immutable manner. After that, a VCG auction mechanism is leveraged to encourage verifiers to join in the skill verification of employees. Another application field is employee recognition program, where employers reward employees for their achievements, milestones, and anniversaries \cite{147}. In such a context, Ward et al. \cite{148} argued that employees could liquidate their unwanted gifts to others through auction mechanisms. Blockchain and smart contract technologies can be used in this process of matching individuals for exchanging gifts.

We also identified individual applications in blockchain-based auction models, e.g., federated learning (FL), IoT collaboration, and code ownership management. For instance, a centralized aggregator is usually needed to maintain and update the global state in a traditional FL model. BAFFLE \cite{149} is a decentralized framework for non-aggregator FL. It uses smart contracts to coordinate FL tasks and a user scoring and bidding mechanism to reach the FL goal. For FL in edge computing, Fan et al. \cite{150} proposed a resource trading system using a hybrid blockchain. Their main idea is to establish a transparent, decentralized, and high-performance trading platform that can encourage more edge nodes to join in the FL model training. Another interesting topic is collaborative IoT. As IoT projects become more and more complex, IoT managers, experts, and non-technical staff are expected to collaborate in the IoT development cycle \cite{151}. In \cite{152}, a novel blockchain-based reverse auction model is proposed to prompt active cooperation among IoT participants. Besides, the current centralized code ownership management scheme is cumbersome and opaque. Therefore, a blockchain-based approach for managing code ownership is proposed in \cite{153}, where auctions are used for ubiquitous code allocation.

E. Key Observations

The key observations we obtained in this section are summarized as follows:

- Blockchain and smart contract technologies hold great potential to optimize traditional centralized auction models in many application fields, as they can provide a decentralized, transparent, and trustworthy trading environment. Different researchers have used different auction models and blockchain technologies to handle auctions for specific application scenarios. These applications are mainly found in energy trading, wireless communication, and service allocation.
- The most popular application field for blockchain-based auctions is energy trading. Energy trading has been a popular research topic in recent years, and as a result, a large number of publications have appeared. Specifically, decentralized auctions can facilitate P2P energy transactions between energy producers and consumers in microgrids, smart communities, and IoV networks.
- Blockchain-based auction models can promote the effective and trustworthy allocation of scarce wireless communication resources. On the one hand, blockchain can optimize the traditional government-led spectrum auction and make the auction process more transparent and trustworthy. On the other hand, other wireless network resources, such as users, bandwidth, and access rights, can be effectively allocated between resource customers and providers through different auction models on the blockchain.
- Another popular application is service allocation, where service providers and customers can use blockchain and smart contracts to set auction rules for service transactions. A common scenario is that only service providers who win the bidding can sell their services to the customer (i.e., a reverse auction). Current research on this topic is mainly focused on cloud/fog/edge services. Virtual network services and mobile services are also found as auction items in different studies. Other promising applications identified in the literature include data management, stock exchange, crowdsourcing, supply chain management, human resource management, etc.
To get an overview of how blockchain and auction models are integrated, we summarized the auction models and blockchain technologies used in different studies, as shown in Table III. In general, although different blockchain technologies have their trade-offs, researchers tend to have specific selection requirements and preferences when actually performing the model construction. We find that the largest share of studies (34.7%) adopt permissioned blockchain technologies. It is widely believed that the access control mechanism in the permissioned blockchain can protect business secrets better. In addition, the high throughput of permissioned blockchains can accommodate large-scale transactions, making them more suitable for real industrial applications. Slightly fewer studies (28.0%) use permissionless blockchains. In these studies, researchers argue that the fully decentralized nature of permissionless blockchains can make the auction platform more trustworthy, and the built-in cryptocurrency can directly support transactions within the blockchain platform. We find that only three studies choose the hybrid blockchain. Although blockchain solutions have been proposed for several years, they have rarely been studied in auction applications. Nevertheless, we believe this could be a promising direction for future research. Finally, in one-third of the studies, no specific blockchain technology was determined. Those authors leave the choice of implementing blockchain technologies to users.

Fig. 7(a) further illustrates the distribution of blockchain platforms used in different auction application fields. Our finding is that more than half of the studies use Ethereum as the underlying blockchain infrastructure. Apart from energy trading, Ethereum is also the most popular blockchain platform in all application fields. Some researchers argue that microtransactions in P2P energy trading require high system throughput, so it is more favorable to implement a permissioned blockchain (e.g., Hyperledger Fabric) or DAG blockchain (e.g., IOTA) platform. In addition, we notice that a small number of authors do not choose established commercial blockchains; instead, they use simulation tools (e.g., Python or Matlab) to validate their models or frameworks. Other studies only present the conceptual proof of their blockchain-based auction models without on-chain implementations.

As shown in Fig. 7(b) the most commonly used auction models are double auction (36.4%), reverse auction (11.7%), Vickrey auction (11.7%), and VCG auction (7.8%). We notice that double auctions are most frequently used in energy trading and stock exchange. This is mainly because the energy trading and stock exchange markets with multiple sellers and multiple buyers are well suited to integrate with double auctions. Among other application fields, most researchers prefer traditional single-sided auctions (e.g., reverse, Vickrey, and VCG auctions). Another interesting finding is that reverseauctions are popular in service allocation and supply chain management. This is mainly because the reverse auction can bring substantial cost savings to buyers in those two application fields. A reverse auction also helps streamline the auction process; auction time is saved because buyers do not need to send requests to different sellers one by one.
Application Field	Ref.	Year	Addressed Issue	Auction Model	Blockchain Type	Blockchain Platform
Power Grid	[71]	2017	Microgrids energy trading	Continuous double auction	Permissionless	Bitcoin
	[75]	2018	Generation right trading	Continuous double auction	Permissioned	MultiChain
	[69]	2018	Microgrids energy trading	Double auction	Permissionless	Bitcoin
	[76]	2020	Smart grids energy trading	Hierarchical double auction	Permissionless	Ethereum
	[77]	2020	Smart grids energy trading	Double auction	Permissioned	Simulation
	[78]	2019	Transactive energy trading	Double auction with bandit learning	N/S	Ethereum
	[79]	2020	Energy trading in virtual power plants	English auction	Permissionless	Ethereum
	[80]	2017	Transactive energy trading	Vickrey auction	N/S	Ethereum
	[81]	2019	Smart power distribution	Dutch auction & Vickrey auction	N/S	Ethereum
	[82]	2017	Transactive energy trading	N/S	Permissionless	Prototype
	[83]	2019	Microgrids energy trading	Continuous double auction	Permissioned	Simulation
	[84]	2020	Microgrids energy trading	Modified VCG auction	Permissioned	Prototype
	[72]	2017	Decentralized energy trading market	Short-term parallel auction	Permissioned	Hyperledger Burrow
	[74]	2020	Microgrids energy trading	English auction & Continuous double auction	N/S	Ethereum
	[154]	2019	Decentralized energy trading market	Uniform-Price double auction	Permissioned	Ethereum
Energy Trading	[85]	2019	Smart communities energy trading	Double auction	Hybrid	Prototype
	[86]	2018	Smart communities energy trading	Vickrey auction	Permissioned	Ethereum
	[82]	2020	Energy trading in CCHP systems	N/S	Permissionless	Prototype
	[88]	2019	Residential communities energy trading	Periodic double auction	Permissioned	Hyperledger Fabric
	[89]	2020	Local energy trading market	Double auction	Permissionless	IOTA
	[90]	2019	Local energy trading market	Double auction	Permissioned	Tendermint
	[92]	2020	V2V energy trading	Double auction	Permissioned	Hyperledger Fabric
	[93]	2020	EV group energy trading	Double auction	N/S	Prototype
	[94]	2020	V2V energy trading	Iterative double auction	Permissioned	Simulation
	[95]	2020	Energy trading in IoV	Multi-attribute auction	Permissionless	IOTA
	[96]	2020	EV charging scheduling	Constrained double auction	Permissionless	Prototype
	[97]	2019	V2V energy trading	Double auction	Permissioned	Hyperledger Fabric
	[98]	2020	V2G data sharing and energy trading	Ascending-price progressive auction	Permissionless	IOTA
	[99]	2019	V2G energy trading	Reverse sealed-bid auction	Permissioned	Ethereum
	[103]	2016	V2G charging scheduling	FPSB auction	N/S	Ethereum
Internet of Vehicles	[103]	2020	Spectrum resource allocation	Single-sided auction	N/S	Ethereum
	[104]	2020	Spectrum resource management in CPSS	N/S	Permissioned	Prototype
	[106]	2020	Multiple-operators spectrum sharing	Double auction	Permissioned	Ethereum
	[107]	2020	Dynamic spectrum sharing	Double auction	Permissioned	Ethereum
	[108]	2017	Spectrum sharing in CR networks	Waiting-line auction	Permissionless	Prototype
	[109]	2018	Spectrum sharing in CR networks	Waiting-line auction	Permissionless	Prototype
	[110]	2020	Secondary spectrum trading market	Periodic sealed-bid auction	N/S	Prototype
	[105]	2019	Spectrum allocation in spacecraft networks	Generalized Vickrey auction	Permissionless	Ethereum

Continued on next page
Application Field	Ref.	Year	Addressed Issue	Auction Model	Blockchain Type	Blockchain Platform
Network Resource						
	[111]	2020	Wireless network resource allocation	General sealed-bid auction	Permissionless	Ethereum
	[112]	2019	Trade market for telecommunication networks	Double auction	Permissioned	Hyperledger Fabric
	[113]	2019	Cooperative relaying resource allocation	Double auction	Permissionless	Ethereum
	[114]	2020	User offloading in wireless networks	Vickrey auction	N/S	Ethereum
	[115]	2020	Bandwidth allocation for UAV base stations	Multi-attribute auction	Permissioned	Ethereum
	[116]	2020	UAV network resource allocation	Vickrey auction	Permissioned	Hyperledger Fabric
	[117]	2019	Bandwidth allocation between EVs and roadside units	Multi-attribute auction	Permissionless	IOTA
Cloud/ Fog/ Edge Service						
	[118]	2019	Shared economy service allocation	Vickrey auction	Permissionless	Chainspace
	[119]	2020	Cloud VM allocation	Combinatorial auction	N/S	Ethereum
	[120]	2018	Cloud data storage resource trading	VCG auction	N/S	Ethereum
	[121]	2018	Distributed data storage	Reverse VCG auction	N/S	Ethereum
	[122]	2019	Edge/Cloud service trading	Double auction	N/S	Prototype
	[123]	2020	Fog service trading	Reverse auction	Permissionless	Ethereum
	[124]	2019	Edge service crowdsensing	Reverse auction	N/S	Prototype
	[125]	2020	Service allocation in fog-enabled IoV	VCG auction	Permissioned	Hyperledger Fabric
Mobile Service	[126]	2019	Virtual network services in NFV markets	Reverse FPSB auction	Permissionless	Ethereum
	[127]	2018	Brokerless virtual network embedding	Vickrey auction	Permissioned	Ethereum
	[128]	2020	Mobile data offloading	Multi-attribute auction	Permissionless	Simulation
	[129]	2018	Mobile service crowdsensing	Combinatorial auction	N/S	Ethereum
Data Management	[130]	2020	Big data trading and auction	FPSB auction	N/S	Ethereum
	[131]	2019	Crowdsensed data trading	Reverse auction	N/S	Ethereum
	[132]	2019	Data trading in IoV	Iterative double auction	Permissioned	Ethereum
Stock Exchange	[133]	2020	Decentralized stock exchange	Double auction	Permissioned	Ethereum
	[134]	2018	Decentralized stock exchange	Double auction	N/S	Ethereum
	[135]	2020	Financial trade auditing	Periodic double auction	Permissioned	AuditChain
	[136]	2019	Secure and efficient IPOs	Sealed-bid uniform price auction	Permissioned	Hyperledger Fabric
Crowdsourcing	[137]	2020	Decentralized spatial crowdsourcing	Optimized VCG auction	N/S	Ethereum
	[138]	2020	Decentralized crowdfunding platform	Ascending-price progressive auction	N/S	Ethereum
Supply Chain	[139]	2020	Decentralized supply chain management	Double auction	Hybrid	Prototype
	[140]	2020	Customer bargaining and e-procurement	Reverse auction	Permissionless	Ethereum
	[141]	2019	Multi-attribute carrier procurement	Reverse auction	N/S	Ethereum
	[142]	2021	Food supply chain management	English auction	N/S	Ethereum
Human Resource	[143]	2019	Education and employment verification	VCG auction	N/S	Simulation
	[144]	2018	Employee recognition programs reward	N/S	N/S	Ethereum
Others	[145]	2020	Decentralized federated learning	Scoring and bidding mechanism	N/S	Ethereum
	[146]	2020	Federated learning resource trading	Reverse auction	Hybrid	Ethereum & FISCO-BCOS
	[147]	2020	IoT collaboration	Reverse auction	Permissioned	Prototype
	[148]	2018	Code ownership management system	Vickrey auction	Permissionless	Ethereum
IV. Auction-Based Solutions for Blockchain Enhancement

Recent studies have shown that the auction model has great potential for optimizing blockchain technology [157, 158, 17]. However, a systematic review of existing enhancement solutions in different scenarios is still missing. In this section, we present a taxonomy of the current auction-based solutions for blockchain enhancement, as shown in Fig. 8. Based on the purpose of using auction models in the blockchain, five application domains are identified: mining task offloading, transaction fee design, miner selection & reward distribution, cryptocurrency economy, and others. In addition, a summary of the auction models and main contributions in different studies is shown in Table IV.

A. Mining Task Offloading

The use of blockchain in IoT and mobile computing scenarios can increase security and trust assurance and prevent malicious attackers from entering the network [39]. Solving the PoW puzzle needs continuous computation. Unfortunately, lightweight IoT and mobile devices have difficulty participating in the PoW consensus process due to a lack of computing capacity [159]. As a result, rational miners (i.e., consensus nodes) will naturally offload PoW computational tasks to cloud/edge/fog computing servers. An illustration of the auction-based mining task offloading is shown in Fig. 9. Generally, this offloading model has the following two assumptions: 1) the blockchain network is permissionless and adopts the classical PoW consensus protocol; and 2) miners cannot use their own devices, such as lightweight or mobile devices, to complete all mining tasks [160]. In [161], the authors used an auction model to study resource management and pricing mechanisms for mobile blockchains. They demonstrated that their VCG-based auction model could maximize social welfare and satisfy several important auction properties. Similarly, Xia et al. [157] proposed a VCG-based auction mechanism for mobile blockchain resource allocation. Their auction includes three stages: 1) matching potential winners; 2) matching cloudlets for access points; and 3) allocating the resource. Taking into account the diverse resource demands, bids, and usage patterns of mobile users, the authors in [162] used an optimized Vickrey auction to acquire dynamic resource allocation strategies in mobile blockchain networks.

Our investigation also shows that many researchers focused on allocating mining resources between multiple blockchain users/miners and service providers through double auction models. Based on the combinatorial double auction, a two-level allocation mechanism is designed for cloud and edge computing resources in [163]. Specifically, mobile users compete to allocate edge-level resources first, and then cloud-level resources can be used as supplements. This model satisfies the requirements of multiple users and optimizes resource utilization compared to single-level computing offloading. Similarly, Xu et al. [166] and Li et al. [164] argued that mobile edge computing servers with limited resources could request resources from cloud computing servers. They considered two auction scenarios, namely single-seller multiple buyers and multi-seller multi-buyer. Correspondingly, a hierarchical auction model (including a single-sided combinatorial auction and a double combinatorial auction) was presented. Guo et al. [165] proposed that the non-mining devices and idle resources on the edge cloud can be selected to create a so-called collaborative mining network (CMN) to perform mining tasks. Thus, a double auction can be used to manage resource allocation between mining and sharing devices in a CMN. In addition, the interactions between edge cloud operators and CMNs are modeled with a Stackelberg game, and both uniform and differentiated pricing strategies are analyzed.

The following studies also investigate the different demands of miners, privacy considerations, and the algorithm for winner determination problems. Jiao et al. [160] studied two types of miners with different demands on computing resources: 1) miners with constant demand; and 2) miners with multiple demands. Correspondingly, two auction algorithms are proposed and tested. In [159], the authors argued that the competition between IoT devices and edge servers should be truthful and privacy-preserving in terms of personal data. Therefore,
they designed a truthful multi-item double auction. The proposed auction model is also extended with the differential privacy technology to protect sensitive bidding information. Liu et al. [166] argued that the solution of combinatorial double auctions can be modeled as NP-hard winner determination problems. Thus two different greedy algorithms are designed and implemented to solve these problems.

In addition to the above research, mining offloading is also discussed in blockchain-based vehicle-to-everything (V2X) networks [167]. Besides, machine learning-based optimal auction models have been discussed. For example, the authors in [168], [169] proposed a deep learning-based optimal auction model for allocating edge resources in mobile blockchain networks. Their model contains a multi-layer neural network, and the training data is composed of bidder valuation profiles of the miners.

B. Transaction Fee Mechanism Design

Most current permissionless blockchains utilize the same transaction fee mechanism for transaction prioritization. Each transaction is charged a fee from the user, and miners choose the transactions with the highest fees to include in the block (as illustrated in Fig. 10). Such a mechanism is critical in cryptocurrencies since it subsidizes miners to keep building the blockchain and ensures efficient use of network resources. As the cryptocurrency becomes more popular and the baseline subsidy (block reward) to miners gradually decreases, the revenue from transaction fees will play a more prominent role in ensuring network stability [65]. In this context, auction models are widely used to model and optimize the blockchain transaction fee mechanism. Huberman et al. [170] found that the Bitcoin protocol, despite the absence of an auctioneer, implicitly includes a priority auction. Besides, users’ bids have the characteristic of a VCG mechanism, i.e., each user offers a bid equal to his/her externalities (the transaction delays he/she caused to others). They simulated this auction activity and demonstrated that the Bitcoin payment system could serve as a prototype for protecting customers from monopolies. Dimitri [158] modeled the blockchain transaction fee as the Nash equilibrium result of a complete information auction game. Successful miners function as auctioneers in the game, selling block space to users who bid for shares to confirm their transactions. Their analysis shows that the optimal block size limit for successful miners is determined by the transaction confirmation fee that users are willing to pay. Daian et al. [171] focused on the decentralized exchange (DEX) field and observed that bots in DEXes participate in so-called priority gas auctions, where bots compete to raise their transaction fees in order to confirm transactions faster. Their analysis of the priority gas auction demonstrates that protocol details (e.g., miner selection criteria and P2P network composition) could directly affect smart contracts’ application-layer security and fairness properties.

It is commonly believed that the transaction confirmation process in Bitcoin and Ethereum is equivalent to a GFP auction [15]. This auction is first proposed in online advertising auctions where advertisers bid for more prominent advertising positions. However, the market practice of Bitcoin has demonstrated that the GFP mechanism may have some defects [172]. For example, the GFP mechanism causes Bitcoin users to pay unnecessary transaction fees. When the Bitcoin memory pool is stuffed with a huge number of transactions, it can lead to severe congestion where users have to wait for days to confirm transactions and pay additional transaction fees. In addition, the empirical analysis also shows that the transaction fees charged vary significantly from block to block and from day to day, leading to large fluctuations in miners’ income. All of these facts prove that the GFP mechanism is not a perfect auction mechanism for the Bitcoin transaction fee market. Therefore, researchers have proposed different alternative auction models to optimize the current blockchain transaction fee market. Although related studies have focused only on Bitcoin and Ethereum, the findings can be generalized to any permissionless blockchain that uses PoW mining mechanism to validate new transactions.

In [65], the authors argued that it is the lack of a dominant strategy equilibrium in the existing transaction fee market that caused instability and low efficiency. Therefore, a GSP auction-based transaction fee mechanism can be used to replace the GFP one. Implementing such a mechanism remains challenging as miners can include transactions using any criteria and manipulate the auction results after seeing the proposed transaction fees. Nevertheless, they demonstrated that the suggested approach is immune to manipulation as the user base grows. Similarly, two cases of GSP auctions in Bitcoin, namely complete information under synchronous submission and incomplete information under asynchronous
submission, have been analyzed in [172], [173]. Their results suggest that this new GSP mechanism can help users save transaction fees compared to the currently used GFP approach. Furthermore, Yan et al. [174] took time series into consideration and studied the time-dependent dynamic game model of the GSP transaction fee mechanism. Their analysis result shows that there exists a perfect Bayesian game equilibrium so that the whole system can remain stable.

A monopolistic auction is another possible alternative mechanism for blockchain transaction inclusion. In this mechanism, given a series of bids, miners selectively include transactions in the block. All selected transactions are subject to the same charge, which is the lowest bid in the current block. The authors in [60] observed that the monopolistic auction is immune to malicious auctioneers in the Bitcoin network. Besides, such an auction is easy to implement for transaction issuers, and miners’ revenue does not decrease as the maximum block size increases. Yao [175] further proved that the monopolistic auction mechanism is almost truthful for any i.i.d. distribution when the number of users becomes large, making it a good candidate for the blockchain transaction fee market.

C. Miner Selection & Reward Distribution

In a PoW-based permissionless blockchain, anyone with the necessary computing capacity and network connection can become a miner. Miners compete with each other to provide transaction processing services to the blockchain and receive corresponding rewards [170]. For some blockchain platforms with new consensus algorithms, however, miners need to be selected and authorized to verify new blocks. PoS is one of the popular solutions to replace energy-intensive PoW. It specifies that users can mine or validate new block transactions based on the stakes they hold, and therefore the network may suffer from centralization and unfairness issues. Saad et al. [67] presented an enhanced version of PoS called e-PoS. In particular, a blind block auction is integrated into e-PoS to offload mining opportunities to more users, thus improving fairness and resisting centralization. Another interesting consensus mechanism called ABC is proposed in [62], in which a continuous double auction is leveraged to determine and select miners to write new blocks. Through extensive experiments, the authors concluded that ABC has better performance than PBFT in blockchain networks with a large number of nodes. Devi et al. [61] developed a novel mechanism for miner selection in order to encourage miners to participate in block validation and optimize the blockchain performance. Especially, a multi-attribute two-stage auction model is designed and implemented to select miners; only nodes with high credibility and data quality can be selected as miners for block verification. Amin et al. [16] argued that users can leverage a discretionary mining strategy in an IOTA blockchain network. This means that a user with low computational power can outsource his/her verification tasks to a mining pool. The nomination of a specific number of miners can be conducted using an FPSB auction.

Other studies focus on the design of distribution mechanisms for miners’ rewards. Typically, PoW-based blockchain systems distribute rewards based on the blocks discovered by miners [17]. Nadendla and Varshney [176] suggested that blockchain mining can be characterized as an all-pay auction, where the computational efforts of miners are interpreted as bids. In this way, the reward distribution function is defined as the chance of solving the cryptographic puzzle in a single try with unit computational power. Based on such assumptions, they constructed a mining auction mechanism that generates a logarithmic equilibrium among miners. The analysis shows that no allocation function in equilibrium prevents miners from bidding higher costs. As a result, it is crucial to penalize miners who choose a larger computational cost to maintain a trustworthy system. In real-life blockchains, miners can also join a number of mining pools to share the rewards they earn in time. In [17], the authors investigated the reward distribution mechanism of mining pools. They compared several block reward allocation strategies in a long-term scenario and showed that no existing technique could guarantee continuous mining for miners in a pool. To address this issue, they proposed an auction-based approach that increases miners’ enthusiasm and the mining pool’s stability.

D. Token Sale & Exchange

Auction models are playing important roles in token sale and exchange programs. An initial coin offering (ICO) (also known as a token sale) is the process of raising funds from the public for the development of a new cryptocurrency project. It is a particular application of IPO in the cryptocurrency industry. With the integration of blockchain and smart contract technologies, it is possible to raise external funds for cryptocurrencies without any intermediaries [177]. The basic process of an ICO is shown in Fig. [11] When a new cryptocurrency is created, pre-mined tokens are sold to the public through an ICO in exchange for other cryptocurrencies or fiat money [178]. The issuing agency can arbitrarily set a fixed price or determine the sale price through an auction [179]. According to a survey, the most commonly used auctions include the Dutch auction and its variants, such as the Vickrey-Dutch auction and the reverse Dutch auction [180]. For example, an optimal ICO mechanism based on the multi-unit Vickrey-Dutch auction is proposed in [181] to guarantee truthful bidding. Some third-party organizations, e.g., CoinList and Gnosis, are also actively working on providing auction services for token sales [182]. However, a survey revealed that only a small percentage of ICO projects use auction mechanisms [183]. While researchers have noted that various types of auctions can be used in theory, there are few real examples of attempts in ICOs except for Dutch auctions so far [184].

An atomic swap (also called atomic cross-chain trading) is an automated, self-enforcing cryptocurrency exchange contract that allows P2P transactions of cryptocurrencies without the need for TTPs [185]. In this respect, Zhang [186] demonstrated an exchange mechanism that uses uniform price auctions for atomic swaps. He proved that a uniform price auction could save data cost, but the optimal transaction collection of the atomic swap auction is NP-hard. Liu et al. [187] presented
an efficient protocol for cross-chain asset transfers using Vickrey auction and atomic transfer techniques. Furthermore, Black et al. [188] proposed the notion of atomic loans, which make use of atomic swap technology to enable market participants to build cryptocurrency debt instruments. They also introduced a competitive bidding process for the fair distribution of collateral when defaults occur.

There are some commercial efforts dedicated to building an auction-based atomic swap trading platform. For example, Freimarkets [189] is a protocol that adds primitives required for implementing non-currency financial transactions on Bitcoin. Specifically, three auction models (i.e., English auction, Dutch auction, and double auction) are demonstrated on how to conduct atomic cross-chain trade. By contrast, Gnosis [190] is a trading platform based on the Ethereum Plasma framework in which a uniform price multi-batch auction model is implemented among different ERC-20 (Ethereum Request for Comments 20) tokens. Each batch, in particular, allows requests to purchase any ERC-20 tokens in exchange for other ERC-20 tokens. All orders are gathered at predetermined time intervals and then settled using a uniform clearing price computed across all token pairs.

E. Others

Other studies mainly focus on blockchain incentive mechanism design and domain name trading. For example, most existing studies assume that the network state of the blockchain is perfect; however, this is not the real case. When miners have limited network bandwidth, their utility, the block broadcasting, and the throughput of the entire blockchain are heavily affected [160]. In this context, Wang et al. [191] argued that peers in a blockchain network should be paid for forwarding a large number of transactions, just as miners put computational resources into block mining and get rewards. Therefore, a new incentive can be designed for blockchain network participants with limited bandwidth. In their study, an FPSB auction is used to build this relay payment scheme. The Ethereum Name Service (ENS) is a distributed, open and scalable naming system based on the Ethereum blockchain. It maps human-readable names to machine-readable identifiers like wallet addresses, content hashes, and metadata via a Vickrey auction-based name registration approach defined in Ethereum Improvement Proposal (EIP)-162 [192].

F. Key Observations

The key observations we obtained in this section are summarized as follows:

- Auctions have been proven to be promising solutions for blockchain enhancement; the efficient distribution and fair trade features of auctions can facilitate different blockchain workflows. There are four main application areas and directions identified in the literature: mining task offloading, transaction fee mechanism design, miner selection & reward distribution, and token sale & exchange.
- The huge energy consumption caused by the PoW consensus has always been a big challenge for blockchains. Some mobile blockchain or IoT-based blockchain miners are not capable of using their own resources to complete the mining task. By using auction models, PoW mining tasks can be assigned to different devices to reduce the computational burden. In this case, edge and cloud servers become ideal targets for mining task offloading.
- Using auctions to design and optimize the blockchain transaction fee mechanism is another promising direction. Traditional permissionless blockchains (e.g., Bitcoin and Ethereum) use a GFP auction model to build their transaction fee market. GSP and monopoly auctions are often recommended as alternative mechanisms with more benefits. However, the usability and reliability of those new mechanisms need to be further tested in real-world blockchains.
- Auctions can be used as incentive mechanisms to optimize some specific blockchain workflows, such as the process of selecting miners and distributing mining rewards. An efficient auction model can improve blockchain performance by selecting and nominating the most suitable miners. By designing a reasonable incentive through auctions, miners can get a fair share of the mining rewards in a mining pool, thus ensuring their continuous mining in the blockchain network.
- Another direction that integrates auctions into the blockchain is the sale and exchange of tokens. On the one hand, new tokens can be sold to the public by auctions through ICOs. On the other hand, the quick exchange among different tokens can be performed through atomic swap technology using various auction models.
- The design of new blockchain incentive mechanisms using auction models is a promising direction, which could involve both permissionless and permissioned blockchains. A good example is the network transmission model that uses auction-based incentives to motivate users to forward transactions.
| Classification | Ref. | Year | Addressed Issue | Auction Model | Main Contributions |
|----------------|------|------|-----------------|---------------|-------------------|
| **Mining Task Offloading** | [167] | 2017 | Edge resource offloading | VCG auction | An auction model that offloads mobile blockchain mining tasks to edge providers and maximizes social welfare. |
| | [157] | 2018 | Edge resource offloading | VCG auction | A three-stage auction model that optimizes edge resource allocation for mobile blockchains. |
| | [163] | 2019 | Edge resource offloading | Optimized Vickrey auction | A dynamic auction model for allocating edge resources while maximizing the revenue of all mobile users. |
| | [163] | 2021 | Cloud/Edge resource offloading | Combinatorial double auction | An efficient resource allocation model for computation offloading in mobile blockchains. |
| | [60] | 2020 | Cloud/Edge resource offloading | Hierarchical combinatorial auction | A hierarchical combinatorial auction model that enhances resource allocation for mobile blockchain. |
| | [163] | 2019 | Cloud/Edge resource offloading | Hierarchical combinatorial auction | A hierarchical combinatorial auction model in which both edge and cloud computing resources are considered. |
| | [165] | 2020 | Edge resource offloading | Double auction | Non-mining devices and edge clouds can be selected to construct CMNs to offload mining tasks. |
| | [160] | 2019 | Cloud/Edge resource offloading | Constant-demand and multi-demand auction algorithms | Miners with different demand situations are considered, and two efficient auction mechanisms are proposed. |
| | [159] | 2021 | Edge resource offloading | Multi-item double auction | A privacy-preserving auction model that offloads limited edge servers to blockchain-based IoT devices. |
| | [166] | 2019 | Edge resource offloading | Combinatorial double auction | A combinatorial double auction mechanism that offloads the mining process from miners to edge servers. |
| | [167] | 2020 | Mining task offloading in V2X networks | First-price auction | An efficient auction solution for offloading mining tasks in cellular V2X networks. |
| | [168] | 2019 | Edge resource offloading | Deep learning-based optimal auction | A deep learning-based optimal auction for edge resource allocation in mobile blockchains. |
| | [169] | 2020 | Fog resource offloading | Deep learning-based optimal auction | A deep learning-based optimal auction for fog resource allocation in blockchain networks. |
| | [173] | 2020 | Edge resource offloading | Double auction | Multi-task cross-server resource allocation in mobile edge computing is achieved through auction models. |
| | [170] | 2019 | Edge resource offloading | Double auction | A smart contract-based mobile blockchain computation offloading model using long-term double auctions. |
| **Transaction Fee Mechanism Design** | [170] | 2017 | Bitcoin transaction fee mechanism | Priority auction with VCG mechanism | The Bitcoin protocol, despite the absence of an auctioneer, implicitly includes a priority auction. |
| | [175] | 2019 | Bitcoin transaction fee mechanism | Auction game | The transaction mechanism is modeled as an auction game, where miners sell their space and users bid for such space. |
| | [171] | 2020 | Ethereum transaction fee mechanism | Priority gas auction | Bots in DEXes engage in priority gas auctions to competitively bid up transaction fees to obtain priority orders. |
| | [15] | 2020 | Ethereum transaction fee mechanism | GFP auction | The transaction fee mechanism of Ethereum has always been a GFP auction, as indicated in EIP-1559. |
| | [65] | 2019 | Fee market for cryptocurrencies | GSP auction | An alternative transaction fee mechanism for cryptocurrencies inspired by the GSP auction. |
| | [172] | 2020 | Bitcoin transaction fee mechanism | GSP auction | A novel GSP auction mechanism that deals with the problems caused by the GFP mechanism. |
| | [174] | 2020 | Bitcoin transaction fee mechanism | GSP auction | A time-dependent dynamic game model for the Bitcoin transaction fee market under the GSP mechanism. |
| | [60] | 2019 | Bitcoin transaction fee mechanism | Monopolistic auction | Monopolistic auctions are immune to malicious auctioneers and can solve issues in the GFP mechanism. |
| | [173] | 2018 | Bitcoin transaction fee mechanism | Monopolistic auction | The monopolistic auction mechanism is nearly truthful for any i.i.d. distribution as the number of users grows large. |
| **Miner Selection & Reward Distribution** | [67] | 2021 | Miner selection in PoS consensus | Blind block auction | An enhanced version of PoS called e-PoS is proposed to resist centralization and improve fairness. |
| | [62] | 2020 | Miner selection in new consensus | Continuous double auction | A new auction-based consensus mechanism called ABC is proposed for blockchain. |
| | [61] | 2020 | Miner selection in blockchain-based IoT | Multi-attribute auction | An auction-based mechanism for miner selection to encourage miners to participate in block validation in IoT. |
| | [15] | 2020 | Miner selection in the mining pool | FPBS auction | A discretionary mining mechanism for the IOTA blockchain in which miners are nominated through auctions. |
| | [176] | 2020 | Mining cost and allocation function | All-pay auction | Mining is modeled as an all-pay auction to analyze the mining allocation function of the blockchain. |
| | [171] | 2019 | Reward distribution for pool mining | Uniform price auction | An auction-based reward distribution method that improves miners’ enthusiasm and the stability of the mining pool. |
| **Token Sale & Exchange** | [185] | 2020 | Cross-chain atomic swap | Uniform price auction | An atomic swap mechanism with a uniform price auction can save costs, but the optimal result collection is NP-Hard. |
| | [187] | 2020 | Cross-chain asset transfer | Vickrey auction | An efficient cross-chain asset transfer protocol using atomic swap technology and the Vickrey auction model. |
| | [183] | 2019 | Cross-chain atomic swap | Bidding process | A competitive bidding process for the liquidation of collateral when defaults occur for atomic loans. |
| | [189] | 2013 | Cross-chain atomic swap | English, Dutch, and double auction | The Freemarkets protocol adds primitives to Bitcoin in order to implement non-currency financial constructs. |
| | [190] | 2018 | Cross-chain atomic swap | Uniform price multi-batch auction | A trading platform using Ethereum Plasma in which auctions are implemented among different ERC-20 tokens. |
| **Others** | [191] | 2020 | New blockchain incentive mechanism | FPBS auction | A new relay payment scheme that uses an auction model to solve the relay incentive problem in the blockchain. |
| | [193] | 2019 | Ethereum naming service | Vickrey auction | ENS is an auction-based naming system built on top of Ethereum, as defined in EIP-162.
V. CHALLENGES AND FUTURE DIRECTIONS

Despite the great potential of integrating blockchain with auction models, there are several research challenges that need to be addressed. In this section, we highlight and summarize eight open challenges identified in the literature, as shown in Fig. 12. Specifically, the first six challenges, i.e., privacy protection, performance & scalability, cost-effectiveness, cryptocurrency payment, auction enforcement, and regulations & standards correspond to the topic of blockchain-based auction applications (Section III), while the last two challenges, i.e., auction design properties and auction fraud, are both involved in blockchain-based auctions (Section III) and auction-based solutions for blockchain enhancement (Section IV).

A. Privacy Protection

All data stored on the blockchain must be public to all blockchain nodes in order to ensure traceability, verifiability, and immutability. This conflicts with the privacy requirements of most auction applications, especially for those with important trade secrets. Normal users will be discouraged from using the blockchain for auctions if privacy cannot be fully guaranteed.

As illustrated in Fig. 12, there are generally two types of privacy concerns for blockchain-based auctions [195]. The first one is identity privacy, which considers participants' privacy and prevents transactions from being associated with specific auction users and their blockchain addresses. The second one is transaction privacy, which covers the privacy of auction information about bids, auction contracts, payments, and other transaction details. We find that most researchers target both types of privacy concerns in their models through a combination of various techniques. Based on the relevant literature, the existing privacy protection solutions and their challenges are summarized in the following text. A more detailed comparison of the techniques used in different studies can be found in Table V.

Fig. 12. There are two privacy concerns identified for blockchain-based auctions: identity privacy and transaction privacy. The former concerns the privacy of auction participants, while the latter concerns the privacy of various auction transactions (e.g., bids, payments, and contract details).

1) Cryptographic Primitives: Cryptographic techniques can effectively protect privacy in blockchain-based auction models. The most common cryptographic primitives used in the literature can be summarized as follows:

- **Multi-Party Computation (MPC):** Multiple parties securely compute an objective function without TTPs, while each party does not have access to any input information from other parties except for the computation result.
- **Zero-Knowledge Proof (ZKP):** One person (the prover) demonstrates to another person (the verifier) that he/she knows a value without providing any information other than the fact that he/she knows the value.
- **Commitment Scheme (CS):** One person can commit to a chosen value (or statement) while hiding it from others and being able to reveal the promised value later.
- **Asymmetric Encryption (AE):** A key pair is required for encryption and decryption. So it is also known as public key encryption. Ciphertexts encrypted with a public key can only be decrypted with the associated private key and vice versa.
- **Homomorphic Encryption (HE):** An encryption method that enables users to retrieve, compare and calculate encrypted data without decrypting it in advance.
- **Digital Signature (DS):** Two operations are designed to verify the authenticity of digital messages or documents: signature and verification. One can use the private key to encrypt (generate a signature), and others can use the public key to decrypt (verify the signature).

Since these cryptographic techniques differ in terms of effects and application scenarios, some studies choose to integrate multiple algorithms on the blockchain to build a secure and privacy-preserving auction system. For example, ZKP, MPC, AE, and CS and their variant algorithms have been widely combined in recently proposed frameworks in [196], [197], [198], [199]. Such an integrated model can reduce the potential risk of using one single encryption algorithm, thus presenting an overall good privacy-preserving effect.

On the other hand, while cryptographic primitives can protect auction privacy, they suffer from high computational complexity and high transaction costs when implemented on the blockchain. It is reported that a non-interactive ZKP verification roughly takes more than 3 million gas on the Ethereum blockchain [200]. The huge transaction fees make it impractical for auction users to use these algorithms and join the auction. To effectively protect privacy, the performance of the cryptographic algorithms used in the blockchain needs to be significantly improved [201]. Recent studies have focused on designing lightweight cryptographic protocols that are weaker than traditional ones (e.g., MPC/ZKP) [202], [198], [203], [204]. These protocols can perform specific auction tasks and achieve optimized on-chain performance.

Cryptographic protocols can also be implemented off-chain as separate modules to reduce on-chain execution costs. However, this increases the risk of data corruption during the transmission and communication phase. To solve this problem, Benhamouda et al. [205] proposed an approach that integrates secure MPC protocols into the Hyperledger Fabric blockchain.
architecture. This integration model combining blockchain and cryptographic protocols can significantly reduce the risk of data transmission and, therefore, may become a future research and development trend.

2) **Mixing/Tumbler Service**: Blockchain addresses do not guarantee the anonymity of auction participants. The pseudonymous addresses used for transactions can be publicly verified. So it is possible for anyone to analyze an auction user’s address and link transaction records to his/her real identity [29]. In this context, tumbler or mixing, as a service that prevents users’ addresses from being linked to their real identities, has been leveraged to protect bidders’ privacy. ASTERISK [117] is a blockchain-based auction framework that uses the mixing function of the Coconut contract [206] to break the link between bidders and their bids and tokens, thus protecting the bidders’ privacy. It should be noted that centralized mixing services may pose a significant risk to users, as all operations are handled centrally. Attackers may also utilize big data analytics and machine learning techniques to compromise mixing services and auction privacy.

3) **Differential Privacy**: Although the blockchain addresses of auction participants can be hidden using cryptography and mixing services, hackers can infer the true identity of users through side-channel information (i.e., side-channel attacks). This is why differential privacy, as a new privacy-preserving technology, has recently been investigated to protect bidder’s privacy by adding noise to the auction transactions. DEAL [84] is a decentralized auction model for microgrid energy trading. It can protect the privacy of auction participants through the combination of Laplacian and exponential noise on a permissioned blockchain. However, the introduction of noise can reduce the data utility, which becomes more severe for small data sets. Recent studies focused on how to add noise to a data set to maintain confidentiality while maximizing the data utility [27].

4) **Trusted Execution Environment (TEE)**: TEEs can be used to create secure auction computation environments and protect the sensitive data involved in blockchain-based auctions. Intel SGX, as one of the most popular hardware-based commercial TEE solutions, has been widely used in building blockchain-based auction systems [207], [103], [208]. To effectively safeguard auction smart contracts with TEEs, however, challenges such as rollback attacks, state continuity, and TEE protocol integration must be properly addressed [209]. In [210] [211], the authors introduced a framework for executing Hyperledger Fabric chaincodes in Intel SGX to deal with rollback attacks. A sealed-bid auction use case is also evaluated to demonstrate the framework’s feasibility.

5) **Permissioned Blockchain**: Permissioned blockchains usually have an extra authentication mechanism for permission management and, therefore, can provide privacy protection against non-member users. For example, Hyperledger Fabric implements the “channel” technology, which is essentially a private ledger between specific network members; nodes within the same “channel” can share data, but nodes outside the channel cannot access it. In [212], a hybrid blockchain-based auction architecture is proposed, in which a permissioned blockchain is used to publish sensitive bids and a permissionless blockchain is used to make the auction accountable. It should be noted that this solution offers privacy protection against non-member peers, but still suffers from possible data leakage from malicious nodes within the same network [205]. Therefore, it is often used in combination with other encryption techniques.
Main Contributions

- A framework that integrates secure MPC protocols into the blockchain architecture.
- BOREALIS is an efficient model for sealed-bid auctions on the blockchain. It performs the secure comparison of integer bids among participants using ZKP.
- A smart contract protocol for verifiable sealed-bid auctions on the Ethereum blockchain. Different cryptographic primitives are used during the auction process.
- A smart contract protocol for succinctly verifiable sealed-bid auctions on the Ethereum blockchain with various cryptographic primitives.
- A blockchain-based fair and secure MPC model for double auctions. In particular, a secure auction model with advisory computations using an insulated integer comparison protocol, which is more efficient than traditional MPC/ZKP solutions.
- A protocol for secure English auction on the blockchain, in which ECDSA, AE, and TEE are leveraged to enhance security and privacy.
- Hawk can help users write private smart contracts without having to implement cryptography. Hawk compiler automatically builds cryptographic protocols for users.
- A hybrid blockchain-based auction architecture, in which a private blockchain is used to publish sensitive bids and a public blockchain is used to make the auction accountable.
- A protocol called Time-Capsule that solves the multi-party timed commitments problem for blockchain-based auction applications.
- ShadowEth is a solution for public blockchains that utilizes hardware enclaves to secure smart contracts while maintaining their integrity and availability.
- An anonymous auction model that uses a permissioned blockchain and blind signatures. Specifically, bids are encrypted using a timed-release AE method.
- PASTRAMI makes bidders accountable on the Ethereum blockchain by utilizing threshold blind signatures and commitment schemes to ensure strong privacy guarantees.
- A smart contract-based electronic voting and bidding system that integrates cryptographic techniques such as the Paillier cryptosystem and homomorphic encryption.
- An iterative double auction protocol using smart contract and state channel technologies that minimizes blockchain transactions.
- TPAACES is a secure blockchain-based auction protocol for combinatorial auctions. It introduces a privacy-preserving comparison technique to compare two integers.
- Auctionity is a blockchain-based English auction protocol built on Ethereum, in which ECDSA and non-fungible tokens are leveraged to enhance security and privacy.
- A protocol for secure English auction on the blockchain, in which ECDSA, AE, and threshold blind signatures are used to ensure strong privacy guarantees.
- An auction model for quantum blockchains aims to achieve bid privacy, posterior privacy, bid binding, decentralization, and unconditional security.

Privacy Protection Techniques

Ref.	Main Contributions
2123	Hawk can help users write private smart contracts without having to implement cryptography. Hawk compiler automatically builds cryptographic protocols for users.
2229	BOREALIS is an efficient model for sealed-bid auctions on the blockchain. It performs the secure comparison of integer bids among participants using ZKP.
1977	A smart contract protocol for verifiable sealed-bid auctions on the Ethereum blockchain. Different cryptographic primitives are used during the auction process.
1993	A smart contract protocol for succinctly verifiable sealed-bid auctions on the Ethereum blockchain with various cryptographic primitives.
1923	A blockchain-based fair and secure MPC model for double auctions. In particular, a more efficient protocol for secure two-party comparison is designed.
2177	A protocol called Time-Capsule that solves the multi-party timed commitments problem for blockchain-based auction applications.
2171	ShadowEth is a solution for public blockchains that utilizes hardware enclaves to secure smart contracts while maintaining their integrity and availability.
2169	An anonymous auction model that uses a permissioned blockchain and blind signatures. Specifically, bids are encrypted using a timed-release AE method.
2193	PASTRAMI makes bidders accountable on the Ethereum blockchain by utilizing threshold blind signatures and commitment schemes to ensure strong privacy guarantees.
2191	A hybrid blockchain-based auction architecture, in which a private blockchain is used to publish sensitive bids and a public blockchain is used to make the auction accountable.
2207	FAST is an efficient protocol for sealed-bid auctions on the blockchain. In FAST, bidders work together to compute the auction winner while keeping failed bids private.
2109	TPAACES is a secure blockchain-based auction protocol for combinatorial auctions. It introduces a privacy-preserving comparison technique to compare two integers.
2221	Auctionity is a blockchain-based English auction protocol built on Ethereum, in which ECDSA and non-fungible tokens are leveraged to enhance security and privacy.
2241	A protocol for secure English auction on the blockchain, in which ECDSA, AE, and threshold blind signatures are used to ensure strong privacy guarantees.
1077	A blockchain-based secure spectrum sharing platform that protects users’ anonymity by using AE and DP technologies during the bidding process.
1033	A blockchain-based secure spectrum trading platform that combines Intel SGX, the Paillier cryptosystem, and the Pedersen commitment.
83	Pseudonyms and pseudonym certificates are issued using blind signatures to enhance the privacy of user identities on the blockchain.
1055	A secure auction framework built on permissioned blockchains and cryptographic primitives that protects against collusion attacks in auctions.
90	Quarterstrom utilizes a coin mixing protocol and account-based on-chain smart contracts to create a secure P2P energy marketplace.
84	A decentralized auction model for energy trading in microgrids, where DP and permissioned blockchains are used to protect bid privacy.
1177	AXERISK is a secure auction framework that uses the mixing function of the Coconut contract to protect auction privacy.
82	PETra is a blockchain-based microgrid trading platform that uses mixing services to protect energy transaction privacy.

Abbreviations: Multi-Party Computation (MPC), Zero-Knowledge Proof (ZKP), Commitment Scheme (CS), Trusted Execution Environment (TEE), Asymmetric Encryption (AE), Digital signature (DS), Homomorphic Encryption (HE), Tumbler/Mixing (MiX), Differential Privacy (DP), Permissioned Blockchain (PB).
B. Performance & Scalability

Performance is one of the major bottlenecks that prevent the widespread application of blockchain in auction applications. As one of the world’s largest e-auction platforms, eBay needs to process more than 2 billion transactions per day [227]. However, current popular permissionless blockchain platforms (e.g., Bitcoin and Ethereum) can not support high-frequency auction transactions. Due to the requirement to establish trust among anonymous entities, a compute-intensive and time-intensive consensus mechanism (i.e., PoW) is often required. For instance, the throughput of Bitcoin and Ethereum are only 7 and 15 transactions per second (TPS), respectively [57]. According to the investigation in Section III, most existing blockchain-based auction models are implemented using Ethereum. As a result, their performance bottleneck would be around 15 TPS in a public chain network. We argue that such a throughput value is sufficient for small-scale auctions (e.g., high-value auctions among a few participants) and static auctions requiring only a few rounds of bidding. However, dynamic auction models that include iterative bidding and intensive computations may need other high-performance blockchain alternatives.

Scalability is another big concern for blockchain-based auctions, especially when the number of auction participants increases dramatically. Nowadays, some large-scale e-auction platforms need to handle an increasing number of users and intensive auction transactions. For instance, eBid serves a daily traffic volume of around 60,000 visitors [28]. However, when conducting an auction on the blockchain, the maximum number of auction participants is based on the condition of the underlying blockchain, which is actually limited by the maximum size of each block [127]. Therefore, in order to support auction applications with large-scale users, more scalable blockchain solutions need to be carefully designed and developed. The use of the permissioned blockchain is a feasible and popular solution to this problem. Permissioned blockchains can generally achieve better performance and scalability due to the use of efficient consensus algorithms (such as PBFT or Raft) and customizable block parameters. Hyperledger Fabric is expected to reach a throughput of more than 3,000 TPS. FastFabric [229] is a project that aims to extend Hyperledger Fabric with architectural improvements that allow it to support even 20,000 TPS. However, it should be noted that the improved performance of the permissioned blockchain is at the expense of decentralization. The absence of a stable and widely recognized cryptocurrency also limits the widespread use of permissioned blockchains.

In addition, there are some popular solutions that can improve the performance of the blockchain.

- **Sharding.** The basic idea is to split the entire blockchain network into smaller “shards”, each of which is composed of only pieces of the blockchain data. It is reported that the latest Ethereum 2.0 integrates a sharding solution to achieve more than 10,000 TPS while maintaining decentralization and security [230]. This solution is expected to support large-scale auctions on Ethereum in the near future.

- **Off-chain Solutions.** The basic idea is to transfer the blockchain performance burden by offloading some transactions to an off-chain network. This scheme is particularly suitable for some privacy-preserving auction models where complex cryptographic algorithms usually cannot be executed on-chain [219], [10], [203].

- **New Data Structures.** Using a DAG to build a blockchain is a new development that replaces the traditional “chained blocks” data structure. IOTA is one of the popular DAG blockchain platforms that can achieve high throughput. This platform has been recently applied to blockchain-based energy auction models [98], [89], [96] to support microtransactions. Besides, a tree-structured blockchain has been introduced in [201] to enhance the scalability of the blockchain to support large-scale auctions.

C. Cost-Effectiveness

The issue of the high cost is a big challenge for auctions based on permissionless blockchains that require transaction fees. In the current Ethereum blockchain network, any operation that invokes a smart contract requires an execution cost. This cost is usually measured by gas, which represents the unit of computational effort required to perform specific operations on Ethereum [231]. Under certain exchange rates, the gas cost of submitting an auction transaction may be higher than its value, which will discourage normal users from using Ethereum for auctions. In this context, researchers have designed and tested a number of auction smart contracts in the related literature to verify the feasibility and affordability. In [58], the gas consumption of the smart contracts for four basic auctions (i.e., English, Dutch, FPSB, and Vickrey auction) is tested. The result shows that implementing sealed-bid auctions consumes a little bit more gas than open-outcry auctions. Nevertheless, the deployment and implementation costs of the four auctions are kept at a low level. Although smart contracts for basic auctions are less costly, a complex auction smart contract may include multiple operations that incur unexpected large costs. The cost is highly dependent on the design pattern of the auction smart contract and the code optimization. For instance, in an auction scenario where the auction process requires 300 iterations to complete, a total of 12,191,380 gases are required, which could incur a huge transaction cost that equals several thousand dollars [10]. A promising solution to this issue is the use of state channel technology. By submitting the majority of auction transactions off-chain and only two transactions on-chain, state channels have the potential to reduce gas consumption by 99% [10].

D. Cryptocurrency Payment

Following the end of an auction, the exchange of goods and money between buyers and sellers is expected to happen. Cryptocurrency is often leveraged to complete the auction payment due to its easy and secure transaction properties. Besides, auction payments can be enforced automatically through the Ethereum token Ether in a smart contract. With such a design, payments can be processed within the blockchain,
and transactions containing the corresponding values can be processed between different wallets [127]. On the other hand, the price volatility of cryptocurrencies is a big challenge. Due to the speculative nature of cryptocurrencies, their market values are constantly fluctuating. This makes it difficult for auction sellers to accept cryptocurrencies as the payment method without considering the price risk. Buyers who expect the cryptocurrency value to increase will also be hesitant to use their own tokens as auction payments [232]. This issue can be partially addressed by introducing a cryptocurrency payment gateway [233].

Market liquidity is another concern regarding using cryptocurrencies for auction payments. There are already cryptocurrencies that are designed to support application-specific auctions, e.g., GreenCoin [81] for energy trading and Xcoin [104] for spectrum trading. However, the trading market of these emerging cryptocurrencies is quite small and therefore lacks liquidity. This means that in some cases, cryptocurrencies may not be considered equivalent to fiat money. Another issue is that different blockchain platforms support different cryptocurrencies. In this case, an atomic swap [188] is an efficient solution for auction payments when users hold different cryptocurrencies.

E. Auction Enforcement

Blockchain and smart contracts cannot confirm the veracity of external data, which is known as the blockchain oracle problem. This is a big challenge that prevents the widespread adoption of smart contracts for auction applications on the blockchain. It should be noted that many of the (non-digital) auctioned items and services cannot be managed by the blockchain directly. For instance, in an art auction, while the ownership of artworks can be recorded by the blockchain, the blockchain cannot directly enforce the transfer of off-chain artworks. Basically, a blockchain oracle is a secure middleware that facilitates communication between the blockchain and any off-chain system [234]. Using oracles in an auction fills this gap and ensures that the real-world data fed into the blockchain (e.g., whether the auction item/service is delivered as agreed) is accurate and the auction contract is triggered properly [235]. This is why some smart contract-based auction platforms have a built-in oracle component [222]. Current blockchain oracle services are often provided by third-party companies. Some successful solutions include Chainlink, Provable, and Witnet [236]. These oracle services usually require additional commission fees, and a single oracle may suffer from a single point of failure. In [235], a decentralized oracle network is integrated into an auction system. The oracles act as external timers to trigger the start/end of the auction in a trustworthy way.

Another possible solution to the oracle problem is to introduce a decentralized witness mechanism to monitor the delivery of auctioned goods/services. In this case, game theory can be used to design incentive mechanisms to motivate normal blockchain users to join the network and work as witnesses [237]. In addition, a self-enforcing contract witness mechanism is proposed in [238]. The basic idea is that the smart contract can be enforced through the mutual judgment of auction participants. We believe that an efficient and economical oracle design solution will significantly facilitate the enforcement of blockchain-based auction applications.

F. Regulations & Standards

There is no authority in a decentralized blockchain network to avoid possible transaction disputes. In an auction application, decentralized users may generate transaction data in different formats. It would be a huge challenge to ensure that the information uploaded by auction users complies with the relevant laws and regulations. For instance, a key part of the EU General Data Protection Regulation (GDPR) is in the citizen’s right to data erasure, i.e., the GDPR claims that individuals have the right to delete the data associated with them [239]. However, due to the immutable nature of the blockchain, it is difficult to remove on-chain sensitive information once uploaded to the blockchain. Currently, different countries and regions are actively developing new blockchain industry regulations to promote blockchain applications. The diversity of current laws and regulations needs to be carefully considered when designing blockchain-based auction applications.

Another pressing challenge is standardization. Currently, different blockchain platforms have different architectures and design patterns, and there are hundreds of auction models to support different application scenarios. There is an urgent need for a standardized solution to set, maintain and merge standards across blockchain platforms to enable seamless integration. As one of the largest blockchain communities, Ethereum has developed several standards (e.g., ERC-20 for token development) to help maintain project interoperability across different implementations [240]. Standardized solutions for auction applications have great potential to address challenges such as interoperability, user experience, social acceptance, scale, governance, cost consumption, digital identity, privacy protection, and developer shortcomings [241]. We believe that the development and operations of standardized auction smart models will be an active research direction in the near future.

G. Auction Design Properties

Mechanism design is a branch of economics and game theory that takes an objective-oriented approach to design economic mechanisms or incentives to achieve desired outcomes. As a result, mechanism design is also commonly referred to as reverse game theory [242]. Auction mechanism design allows a designer to organize specific auction rules to produce the desired equilibrium outcome (e.g., maximize the auction social welfare). Generally, the main properties of designing an auction model can be summarized as follows:

- **Individual Rationality**: An auction is individually rational if no person loses from joining the auction. This is a basic assumption in economic theory when modeling auctions with game theory.
- **Incentive Compatibility** (also known as truthfulness or strategy-proofness): An auction is incentive-compatible
TABLE VI
SUMMARY OF AUCTION DESIGN PROPERTIES IN INTEGRATED BLOCKCHAIN-AUCTION MODELS

Group	Ref.	Auction Mechanism Design Objectives	Design Properties*				
			IR	IC	BB	EE	CE
		A truthful and cost-optimal auction mechanism that reduces payments from crowdsensing providers to mobile users.					
		An iterative double auction mechanism for IoV data trading aimed at maximizing social welfare.					
		A truthful and effective online multi-item double auction mechanism for mobile blockchains.					
		A novel VCG pricing rule that compensates the balanced budget attribute for the VCG mechanism.					
		A combinatorial double auction model for computation offloading in mobile blockchains.					
		A three-stage VCG auction model to achieve resource allocation for mobile blockchains.					
		A truthful double auction model to incentivize EVs to participate in the V2V energy trading.					
		An efficient combinatorial double auction model for mining task assignment with two greedy algorithms.					
		A long-term auction model for mobile blockchains that satisfies several economic properties.					
		A double auction model for V2V energy trading where EVs will bid truthfully based on their private value.					
		A double auction model satisfies the crucial economic properties of a market while achieving great efficiency.					
		Two auction algorithms, namely a truthful mechanism for charging and an efficient mechanism for charging, are designed for charging scheduling among EVs.					
		An auction model in edge computing resource allocation for mobile blockchains that maximizes social welfare.					
		A decentralized cloud storage resource trading model using the VCG auction mechanism.					
		A novel decentralized framework for educational background investigation using the VCG mechanism.					
		An efficient Vicer-Dutch multi-item auction algorithm that satisfies several economic properties.					
		A VCG auction model for energy trading that maximizes revenue and ensures the truthful bidding.					
		A crowdsourcing platform that motivates workers to bid truthfully through an optimized VCG auction.					
		A decentralized cloud storage transaction mechanism based on the reverse VCG auction.					
		A computation offloading framework using a truthful auction strategy and a P2P reputation exchange scheme.					
		An auction-based resource trading system that encourages more edge nodes to join in the FL model training.					
		A truthful auction in IoV that motivates vehicles to undertake the tasks issued by traffic administrations.					
		A truthful crowdsensing data trading framework based on the reverse auction and blockchain.					
		A reputation-based truthful auction method for handling interactions between UAV operators and business agents.					
		A Vickrey auction model that loads users from a macrocell base station to small cell access points.					
		A secure and fair auction framework that can achieve high economic efficiency.					
		An auction framework that automatically determines the best price for cloud services.					
		A truthful and cost-optimal auction model that reduces payments from crowdsensing providers to mobile users.					
		A truthful and secure combinatorial auction solution that focuses on single-minded bidders.					
		A collusion resistance auction solution that maintains social welfare at an acceptable level.					
		An auction model that selects cost-effective service providers and (nearly) maximizes service requesters’ utility.					
		The new monopolistic auction-based Bitcoin fee market mechanism is proved approximately truthful.					
		The monopolistic auction is nearly truthful for any i.i.d. distribution as the number of users grows large.					
		A truthful service allocation model for IoV that uses a VCG auction mechanism.					
		A deep learning-based optimal auction model for blockchain mining tasks offloading.					
		An auction-based market model for blockchain mining tasks offloading, in which two bidding scenarios (the constant demand and the multiple demands) are considered. Accordingly, three different auctions that satisfy different economic attributes are designed.					

* Abbreviations: Individual Rationality (IR), Incentive Compatibility (IC), Budget Balance (BB), Economic Efficiency (EE), Computational Efficiency (CE).
* Notes: Filled (or half-filled) circles indicate that the economic properties are (partially) proven or addressed, while empty circles mean that economic properties are not satisfied. Empty cells represent properties not mentioned in the paper.
(or truthful) if every participant can achieve the best outcome for themselves just by acting according to their true preferences.

- **Balanced Budget**: An auction is budget-balanced if all money transfers are conducted only between buyers and sellers; the auctioneer should not gain or lose money.
- **Economic Efficiency**: An auction is economically efficient if the total social welfare of the auction is maximized. Social welfare can be defined as the sum of individual utilities of all auction participants [47].
- **Computational Efficiency**: An auction is computationally efficient if the auction result, including the winning buyer/seller, the price charged to the buyer, and the payment to the seller, can be obtained in polynomial time [96].
- **Allocative Efficiency** (also known as system efficiency): An auction is allocatively efficient if the overall value of the items awarded to bidders is maximized.
- **Cost-Optimal**: An auction is cost-optimal if it minimizes the cost incurred by sellers [131]. This property is usually associated with user satisfaction, which implies revenue maximization or cost minimization for one side of the auction user (seller or buyer).

An auction mechanism may expect several design goals to meet different market requirements. Some classical auction models have intrinsic properties. For instance, the FPSB auction is by default a non-incentive-compatible auction, while the Vickrey auction is an incentive-compatible one. The VCG mechanism satisfies three basic properties, namely individual rationality, economic efficiency, and incentive compatibility. The ability to realize economic efficiency while ensuring truthful bidding makes it a unique mechanism that has attracted much discussion [84], [139], [156]. Some studies focus on the optimization of existing auction mechanisms. In this context, a novel pricing rule to remedy balanced budget property in the VCG auction is proposed in [77]. According to the Myerson-Satterwhite theorem, four basic properties (i.e., individual rationality, incentive compatibility, balanced budget, and economic efficiency) cannot be satisfied in a single auction market mechanism [246]. Although there is not a “perfect” auction, designing an auction mechanism to satisfy as many objectives as possible is a hot research topic. Among the above economic design properties, incentive compatibility is always considered a top priority in auction design because malicious bidders have instinctive incentives to manipulate the market and harm honest bidders in a non-incentive-compatible auction. An incentive-compatible auction can simplify the decision-making of auction bidders since truth-telling is their dominant strategy [111]. Therefore, most of the current studies focus on designing an incentive-compatible auction while ensuring other properties. A detailed summary of auction design properties in existing blockchain-auction integrated models is shown in Table VI.

H. Auction Fraud

Auction fraud is a complex research topic that has received much attention in traditional auction theory studies. Typically, an auction involves three parties: the bidder, the seller, and the auctioneer. Each party can collude with anyone on the opposite side or on its own side in a variety of manners [247]. The most common auction fraud activities include collusive bidding and shill bidding. In [248], 11 types of auction fraud are further summarized, including failure to ship, failure to pay, misrepresented, loss or damage claims, and three-party fraud, etc. Blockchain and smart contracts offer a new perspective to partially solve these problems. By providing an open, transparent, and trustworthy environment, blockchain eliminates the information asymmetry that exists in traditional auctions. In addition, many advanced security mechanisms, e.g., access control, insurance/guarantee mechanisms, reputation/feedback systems, and certification authorities, can be integrated with blockchain-based auction models to alleviate auction fraud [224]. However, there is no one-size-fits-all solution to this problem. When faced with more sophisticated fraud variations, blockchain and smart contacts could be powerless. We expect more solutions will be proposed to address this challenge in the future.

VI. Conclusion

In this paper, we review existing auction models and blockchain technologies, and provide a conceptual schema to analyze research and innovation opportunities from their integration. Specifically, we provide an overview of main application areas for blockchain-based auction models, e.g., energy trading, wireless communication, and service allocation. Moreover, existing auction-based solutions for blockchain enhancement are classified into several categories through extensive investigations, e.g., mining task offloading, transaction fee mechanism design, miner selection & reward distribution, and token sale & exchange. There are many open research challenges identified for integrated blockchain-auction models, e.g., privacy protection, performance & scalability, cost-effectiveness, cryptocurrency payment, auction enforcement, regulations & standards, auction design properties, and auction fraud, should be further investigated in the near future.

In summary, recent research on the integration of blockchain and auction models is quite extensive. Scientific communities have recognized the great potential of integrating the two to solve problems in various application scenarios. While there are still many challenges, such an integration trend will be beneficial to both industry and academia. This paper attempts to explore how blockchain technology and auction models work and when they should be fused together to tackle corresponding challenges. We believe that the main findings of this survey will offer theoretical support and practical guidance for researchers and auction practitioners.
What Is AERGO?

A. Devi, G. Rathee, and H. Saini, “Using optimization and auction approach: Security provided to vehicle network through blockchain technology,” in Proc. Int. Conf. PDGC, Solan, India, Nov. 2020, pp. 476–480.

Z. Ai, Y. Liu, and X. Wang, “ABC: An auction-based blockchain consensus-incentive mechanism,” in Proc. IEEE ICPADS, Hong Kong, China, Dec. 2020, pp. 609–616.

M. Wöhrer and U. Zdun, “Domain specific language for smart contract development,” in Proc. IEEE ICCB, Toronto, Canada, May 2020, pp. 1–9.

I. Sergey, L. V. Nagaraj, J. Johanssen, A. Kumar, A. Trunov, and K. C. G. Hao, “Safer smart contract programming with Scilla,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA, pp. 1–30, 2019.

F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic literature review of blockchain-based applications: Current status, classification and open issues,” Telemat. Inform., vol. 36, pp. 55–81, 2019.

E. J. De Aguiar, B. S. Faïçal, B. Krishnamachari, and J. Ueyama, “A survey of blockchain-based strategies for healthcare,” ACM Comput. Surv., vol. 53, no. 2, pp. 1–27, 2020.

J. Xie, H. Tang, T. Huang, F. R. Yu, R. Xie, J. Liu, and Y. Liu, “A survey of blockchain technology applied to smart cities: Research issues and challenges,” IEEE Commun. Surv. Tuts., vol. 21, no. 3, pp. 2794–2830, 2019.

F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic literature review of blockchain-based applications: Current status, classification and open issues,” Telemat. Inform., vol. 36, pp. 55–81, 2019.

E. J. De Aguiar, B. S. Faïçal, B. Krishnamachari, and J. Ueyama, “A survey of blockchain-based strategies for healthcare,” ACM Comput. Surv., vol. 53, no. 2, pp. 1–27, 2020.

J. Xie, H. Tang, T. Huang, F. R. Yu, R. Xie, J. Liu, and Y. Liu, “A survey of blockchain technology applied to smart cities: Research issues and challenges,” IEEE Commun. Surv. Tuts., vol. 21, no. 3, pp. 2794–2830, 2019.

M. A. Ferrag, M. Derdour, M. Mukherjee, A. Derhab, L. Maglaras, and K. Gai, J. Guo, L. Zhu, and S. Yu, “Blockchain meets cloud computing: AERGO,” vol. 52, no. 3, pp. 1–34, 2019.

IEEE Access, vol. 8, 2020, Early Access.

Z. Ai, Y. Liu, and X. Wang, “ABC: An auction-based blockchain consensus-incentive mechanism,” in Proc. IEEE ICPADS, Hong Kong, China, Dec. 2020, pp. 609–616.

M. Wöhrer and U. Zdun, “Domain specific language for smart contract development,” in Proc. IEEE ICCB, Toronto, Canada, May 2020, pp. 1–9.

I. Sergey, L. V. Nagaraj, J. Johanssen, A. Kumar, A. Trunov, and K. C. G. Hao, “Safer smart contract programming with Scilla,” Proc. ACM Program. Lang., vol. 3, no. OOPSLA, pp. 1–30, 2019.

F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic literature review of blockchain-based applications: Current status, classification and open issues,” Telemat. Inform., vol. 36, pp. 55–81, 2019.

J. Wang, Q. Wang, N. Zhou, and Y. Chi, “A novel electricity transaction mode of microgrids based on blockchain and continuous double auction,” Energies, vol. 10, no. 12, p. 20171, 2017.

A. Esma, M. de Vos, Y. Ghiasi-Farrokhi, P. Palensky, and D. Epema, “A novel decentralized platform for peer to peer energy trading market with blockchain technology,” Appl. Energy, vol. 282, p. 116123, 2021.

S. Thakur, B. P. Hayes, and J. G. Breslin, “Distributed double auction for peer to peer energy trading using blockchains,” in Proc. Int. Symp. EPEFA, Rome, Italy, Sep. 2018, pp. 1–8.

F. Casino, T. K. Dasaklis, and C. Patsakis, “A systematic literature review of blockchain-based applications: Current status, classification and open issues,” Telemat. Inform., vol. 36, pp. 55–81, 2019.

J. Wang, Q. Wang, N. Zhou, and Y. Chi, “A novel electricity transaction mode of microgrids based on blockchain and continuous double auction,” Energies, vol. 10, no. 12, p. 20171, 2017.

A. Esma, M. de Vos, Y. Ghiasi-Farrokhi, P. Palensky, and D. Epema, “A novel decentralized platform for peer to peer energy trading market with blockchain technology,” Appl. Energy, vol. 282, p. 116123, 2021.
M. Debe, K. Salah, M. H. U. Rehman, and D. Svetinovic, “Blockchain-based decentralized reverse bidding in fog computing,” *IEEE Access*, vol. 8, pp. 81 686–81 697, 2020.

B. Yu, Y. Chen, S. Fu, W. Yu, and X. Guo, “Building trustful crowdsensing service on the edge,” in *Proc. Int. Conf. WASHA*, Hawaii, USA, Jun. 2019, pp. 445–457.

P. Han, L. Guo, and Y. Liu, “Virtual network embedding in SDN/NFV based fiber-wireless access network,” in *Proc. ICSN*, Jeju Island, Republic of Korea, May 2016, pp. 1–5.

M. F. Franco, E. J. Scheid, L. Z. Granville, and B. Stiller, “BRAIN: Blockchain-based reverse auction for infrastructure supply in virtual network functions-as-a-service,” in *Proc. IFIP Networking*, Warsaw, Poland, May 2019, pp. 1–9.

A. Rizk, J. Bishal, S. Bergsträsser, and R. Steinmetz, “Brokerless inter-domain virtual network embedding: A blockchain-based approach,” *it - Inform. Technol.*, vol. 60, no. 5–6, pp. 293–306, 2018.

V. Hassija, V. Saxena, and V. Chamola, “A mobile data offloading framework based on a combination of blockchain and virtual voting,” *Softw.-Pract. Exp.*, 2020, Early Access.

D. Chatzopoulos, M. Ahmadi, S. Kosta, and P. Hui, “FlopCoin: A cryptocurrency for computation offloading,” *IEEE Trans. Mobile Comput.*, vol. 17, no. 5, pp. 1062–1075, 2018.

D. Chatzopoulos, S. Gujar, B. Faltings, and P. Hui, “Privacy preserving and cost optimal mobile crowdsensing using smart contracts on blockchain,” in *Proc. IEEE MASS*, Chengdu, China, Oct. 2018, pp. 442–450.

W. Xiong and X. Xiong, “Anti-collusion data auction mechanism based on smart contract,” *Inf. Sci.*, vol. 555, pp. 386–409, 2021.

B. An, M. Xiao, A. Liu, G. Gao, and H. Zhao, “Truthful crowdsensed data trading based on reverse auction and blockchain,” in *Database Systems for Advanced Applications*. Springer, 2019, pp. 292–309.

C. Chen, J. Wu, H. Lin, W. Chen, and Z. Zheng, “A secure and efficient blockchain-based data trading approach for internet of vehicles,” *IEEE Trans. Veh. Technol.*, vol. 68, no. 9, pp. 9110–9121, 2019.

H. Al-Shaibani, N. Lasla, and M. Abdallah, “Coupled blockchain-based decentralized stock exchange platform,” *IEEE Access*, vol. 8, pp. 12 371–12 375, 2020.

C. Pop, C. Pop, A. Marcel, A. Vesa, T. Petrican, T. Cioara, I. Anghel, and I. Salomie, “Decentralizing the stock exchange using blockchain an Ethereum-based implementation of the Bucharest stock exchange,” in *Proc. IEEE ICCP*, Cluj-Napoca, Romania, Sep. 2018, pp. 459–466.

G. R. Vishnia and G. W. Peters, “AuctionChain: A trading audit platform over blockchain,” *Front. Block.*, vol. 3, p. 9, 2020.

T. Halevi, F. Benhamouida, A. D. Caro, S. Halevi, C. Jutla, Y. Manevich, and Q. Zhang, “Initial Public Offering (IPO) on permissioned blockchain using secure multiparty computation,” in *Proc. IEEE Blockchain*, Atlanta, USA, Jul. 2019, pp. 91–98.

M. Kadadha, R. Mizouni, S. Singh, H. Otrok, and A. Ouali, “AB Crowd: An auction mechanism on blockchain for spatial crowdsourcing,” *IEEE Access*, vol. 7, pp. 12 743–12 757, 2020.

V. Hassija, V. Chamola, and S. Zeadally, “Bitfund: A blockchain-based crowd funding platform for future smart and connected nation,” *Sust. Cities Soc.*, vol. 10, pp. 102145, 2020.

S. Gupta, H. Sharma, V. Hassija, and V. Saxena, “BitCom: A commerce model on blockchain,” in *Proc. IEEE ICSC*, San Diego, USA, Mar. 2019.

J. Martins, M. Parente, M. Amorim-Lopes, L. Amaral, G. Figueira, P. Rocha, and P. Amorim, “Fostering customer bargaining and e-procurement through a decentralized marketplace on the blockchain,” *IEEE Trans. Eng. Manag.*, pp. 1–15, 2020, Early Access.

R. C. Koirala, K. Dahal, S. Matalonga, and R. Rijal, “A supply chain model with blockchain-enabled reverse auction bidding process for transparency and efficiency,” in *Proc. Int. Conf. SKIMA*, Island of Jeju Island, Republic of Korea, May 2019, pp. 72–81.

B. Yu, Y. Chen, S. Fu, W. Yu, and X. Guo, “Building trustful crowdsensing service on the edge,” in *Proc. Int. Conf. WASHA*, Hawaii, USA, Jun. 2019, pp. 445–457.

L. Liu, M. Han, Y. Zhou, and R. M. Parizi, “E²C-Chain: A two-stage incentive education employment and skill certification blockchain,” in *Proc. IEEE ICSC*, San Diego, USA, Mar. 2019, pp. 140–147.

Semos Cloud. (2019) *Employee Recognition Program Benefits and Ideas*. Accessed: Aug. 21, 2021. [Online]. Available: https://semoscloud.com/blog/employee-recognition-program-benefits-ideas/

B. Ward, A. Elayan, and A. Norta. (2018) *Establishing a Blockchain-Enabled, Highly Liquid, Auction-Based Employee Rewards Marketplace*. Accessed: Oct. 04, 2021. [Online]. Available: https://icofriends.com/urtoken/URT-WPv07b.pdf

P. Ramanan and K. Nakayama, “Baffle: Blockchain based aggregator free federated learning,” in *Proc. IEEE Blockchain*, Rhodes Island, Greece, Nov. 2020, pp. 72–81.

F. Jameel, M. A. Javed, S. Zeadally, and R. J antti, “Efficient miningauction in edge computing,” in *Proc. Int. Conf. IWCMC*, Limassol, Cyprus, Jun. 2020, pp. 1260–1265.

Y. Jiao, P. Wang, D. Niyato, and K. Suankaewmanee, “Auction mechanisms in cloud/fog computing resource allocation for public blockchain networks,” *IEEE Trans. Parallel Distrib. Syst.*, vol. 30, no. 9, pp. 1975–1989, 2019.

Y. Jiao, P. Wang, D. Niyato, and Z. Xiong, “Social welfare maximization auction in edge computing resource allocation for mobile blockchain,” 2017, arXiv:1710.10595.

Z. Gao, B. Lin, K. Xiao, Q. Wang, Z. Mo, and Y. Yang, “A dynamic resource allocation algorithm based on auction model in mobile blockchain network,” in *Proc. Int. Conf. EFFICE*, Xiamen, China, Oct. 2019, pp. 1605–1610.

L. Li, Y. Li, and R. Li, “Double auction-based two-level resource allocation mechanism for computation offloading in mobile blockchain application,” *Mob. Inf. Syst.*, vol. 2021, pp. 1–15, 2021.

S. Li, K. Zhu, Y. Xu, R. Wang, and Y. Zhao, “Resource allocation for mobile blockchain: A hierarchical combinatorial auction approach,” in *Proc. IEEE GLOBECOM*, Hawaii, USA, Dec. 2019, pp. 1–6.

S. Guo, Y. Dai, S. Guo, X. Qiu, and F. Qi, “Blockchain meets edge computing: Stackelberg game and double auction based task offloading for mobile blockchain,” *IEEE Trans. Veh. Technol.*, vol. 69, no. 5, pp. 5549–5561, 2020.

Y. Li, J. Wu, L. Chen, and C. Xia, “Efficient auction mechanism for edge computing resource allocation in mobile blockchain,” in *Proc. IEEE HPCC/SmartCity/DSS*, Zhangjiajie, China, Aug. 2019, pp. 871–876.

F. Jameel, M. A. Javed, S. Zeadally, and R. Jantti, “Efficient mining cluster selection for blockchain-based cellular V2X communications,” *IEEE Trans. Intell. Transp. Syst.*, pp. 1–10, 2020, Early Access.

N. C. Luong, Z. Xiong, P. Wang, and D. Niyato, “Optimal auction for edge computing resource management in mobile blockchain networks: A deep learning approach,” in *Proc. IEEE ICC*, Kansas City, USA, May 2018, pp. 1–6.

N. C. Luong, Y. Jiao, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “A machine-learning-based auction for edge computing in fog computing,” *IEEE Commun. Mag.*, vol. 58, no. 3, pp. 82–88, 2020.

G. Huberman, J. D. Leshno, and C. C. Moallemi. (2017) *Monopoly Without a Monopolist: An Economic Analysis of the Bitcoin
