Gastric Carcinomas in Young (Younger than 40 Years) Chinese Patients: Clinicopathology, Family History, and Postresection Survival

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Zhou, Fan, Jiong Shi, Cheng Fang, Xiaoping Zou, and Qin Huang. 2016. “Gastric Carcinomas in Young (Younger than 40 Years) Chinese Patients: Clinicopathology, Family History, and Postresection Survival.” Medicine 95 (9): e2873. doi:10.1097/MD.0000000000002873. http://dx.doi.org/10.1097/MD.0000000000002873.

Published Version
doi:10.1097/MD.0000000000002873

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:26318663

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Gastric Carcinomas in Young (Younger than 40 Years) Chinese Patients
Clinicopathology, Family History, and Postresection Survival

Fan Zhou, PhD, Jiong Shi, PhD, Cheng Fang, PhD, Xiaoping Zou, MD, and Qin Huang, MD

Abstract: Little is known about clinicopathological characteristics of gastric carcinoma (GC) in young (<40 years) Chinese patients. We aimed in this study to analyze those features along with family history and prognostic factors after resection.

We retrospectively reviewed all 4671 GC resections (surgical and endoscopic) performed at our center from 2004 to 2014 and identified 152 (3.2%) consecutive young patients. Patient demographics, clinical results, family history, and endoscopic-pathological findings were analyzed along with the older (>41 years) GC controls recruited in the same study period. Clinicopathological factors related to postresection outcomes were assessed statistically.

The trend of GC resections in young patients was not changed over the study period. Compared to old GCs, the young GC cohort was predominant in women, positive family history, middle gastric location, the diffuse histology type, shorter duration of symptoms, and advanced stage (pH3+pIV, 53.3%). Radical resection was carried out in 90.1% (n = 137) with a better 5-year survival rate (70.3%) than palliative surgery (0%, n = 15). There was no significant difference in clinicopathological characteristics between familial GC (FGC, n = 38) and sporadic GC (SGC, n = 114) groups. Very young patients (≤ 30 years, n = 38) showed lower Helicobacter pylori (Hp) infection and significantly higher perineural invasion rates, compared to older (31–40 years) patients. Hp infection was more commonly seen in the Lauren’s intestinal type and early pT stages (T1+T2). Independent prognostic factors for worse outcomes included higher serum CA 72–4, CA 125 levels, positive resection margin, and stage pIII–pIV tumors. The 5-year survival rate was significantly higher in patients with radical resection than those without.

GCs in young Chinese patients were prevalent in women with advanced stages but showed no significant differences in clinicopathology between FGC and SGC groups. High serum CA 72–4 and CA 125 levels may help identify patients with worse outcomes. Radical resection improved postresection survival.

(Observational Study)

INTRODUCTION

At present, the incidence of gastric carcinoma (GC) has steadily decreased worldwide due to effective Helicobacter pylori (Hp) screening and treatment, as well as early detection by upper endoscopy. However, GC remains the third leading cause of cancer-related deaths in China.2,3 In general, GC occurs primarily in elderly patients aged ≥60 years; only ~2.7% to 15% of patients are ≤40 years old.4–6 as the early-onset gastric cancer (EOGC).7 Previous studies show that EOGCs occur mainly in female patients with the histology diffuse type (Lauren’s classification), advanced tumor stage, and high incurable rates.4,8,9

Although detailed pathogenesis mechanisms of GC remain elusive, environmental factors combined with specific genetic alterations in the vulnerable population play critical roles in GC tumorigenesis.10–12 Because EOGC patients expose to environmental toxins much lesser than older patients, hereditary factors may be of more importance in EOGC tumorigenesis.13 Indeed, ~10% to 25% of EOGC patients have a positive family history,14 some of whom have hereditary GC syndromes, such as hereditary diffuse GC with 25% to 50% of cases harboring germline CDH1 gene mutations. However, the CDH1 gene mutation rate differs considerably between high- and low-incidence regions in the world. In a Japanese study on CDH1 gene mutations in 13 familial gastric cancer (FGC) families,16 only 1 missense somatic mutation was identified. Most Chinese studies also revealed no truncating germline CDH1 gene mutations in FGC families or EODGC patients17–19 a feature different from that reported in Europeans.20,21

The reports on prognosis of EOGC patients after resection also show conflicting results.5,8,9,22–25 Some studies demonstrate an unfavorable prognosis in very young (<30 years) GC patients, which was interpreted as a result of delayed diagnosis and rapid disease progression,23,25 whereas others report no significant differences in survival between the very young...
and older GC patient groups.9,22–24 Some investigators have even described better survival rates in EOGC patients, compared to older GC patients.9 However, few studies have focused on clinicopathologic features of young Chinese GC patients and those with a family history of GC in the first- or second-degree relatives. The aims of this study were to characterize clinicopathology of EOGC, compared to old (>41 years) GCs, elucidate prognostic factors, especially in familial EOGC patients, and compare differences between very young (≤30 years) and older (31–40 years) EOGC patients groups in a homogeneous Chinese population.

METHODS

Patients

We searched GC resection cases in the electronic pathology databank stored in the Department of Pathology of the Nanjing Drum Tower Hospital over the period between January 2004 and December 2014. All pathology reports were retrieved and reviewed by 2 experienced pathologists. Inclusion criteria for the EOGC study were: (1) surgical or endoscopic GC resection, (2) patient age ≤40 years. Exclusion criteria consisted of: (1) GC diagnosed by endoscopic biopsy without resection, (2) no archival tissue blocks available for recuts, and (3) the patient lost to follow-up. The control group consisted of 250 older (>41 years) GC patients recruited from the same study period. Consent for GC resection and research was obtained from each patient before the resection procedure was taken place. The study protocol was approved by the Medical Ethics Committee of the Nanjing Drum Tower Hospital.

Data

Clinical features of each patient, extracted from the medical record, included demographics, symptoms and durations, body mass index (BMI), endoscopic findings (tumor site, macroscopic pattern defined by the WHO classification),26 adjuvant therapy, tumor recurrence, and Hp infection status (determined by the rapid urease test). Grossly, early GC was categorized as protruded (type 0–I), superficially elevated (type 0–IIa), superficially flat (type 0–IIb), superficially depressed (type 0–IIc), and excavated (type 0–III) patterns, whereas advanced GC showed 4 patterns, including polypoid (type I), fungating (type II), ulcerated (type III), and flat infiltrative feature (type IV). Tabulated were laboratory test results on serum levels of albumin (normal range: 35–50 g/L), CA 72–4 (normal range: 0–6.9 U/mL), CA 125 (normal range: 0–30.2 U/mL), CA 19–9 (normal range: 0–39 U/mL), CA 242 (normal range: 0–15 U/mL), CEA (normal range: 0–10 ng/mL), and AFP (normal range: 0–15 ng/mL). Also analyzed were surgical resection methods, operative morbidity, and pathological details such as tumor size and 4 primary tumor locations: (1) proximal, including gastroesophageal junction and proximal third of the stomach, (2) middle (corpus), and (3) distal stomach, from the incidura, antrum to pylorus, and (4) whole stomach. Pathology features assessed were Lauren’s classification, the WHO tumor histology type, WHO tumor differentiation, tumor stage (based on the 7th edition of the American Joint Committee on Cancer [AJCC7]),27 lymphovascular invasion (LVI), perineural invasion (PNI) (defined as the process of neoplastic invasion of nerves),28 and resection margin status. All selected patients were interviewed and followed-up through telephone or home visit by a trained gastroenterologist for detailed family history.

FIGURE 1. Flowchart showing early-onset gastric cancer study cohort and treatment modalities.
TABLE 1. Clinicopathologic Features of Early-Onset Gastric Carcinoma in Chinese Patients (Younger than 40 Years of Age) Versus Those in Patients 41 Years or Older

Features	Young Patients (N = 152)	Old Patients (N = 250)	P*
Age	33.7 ± 5.54	62.9 ± 10.4	<0.01
Gender			<0.01
Male	53 (34.9%)	178 (71.2%)	
Female	99 (65.1%)	72 (28.8%)	
Positive familiar patients	38 (25.0%)	40 (16.0%)	0.027
Symptom at diagnosis			
Abdominal pain	73 (48.0%)	98 (39.2%)	0.083
Discomfort	37 (24.3%)	95 (38.0%)	<0.01
Alarming features	39 (25.7%)	48 (19.2%)	0.127
GIT bleeding	19 (12.5%)	11 (4.4%)	
Metastasis	7 (4.6%)	5 (2.0%)	
Vomiting	7 (4.6%)	17 (6.8%)	
Dysphagia	6 (4.0%)	15 (6.0%)	
Diarrhea	2 (1.3%)	1 (0.4%)	0.560
Diagnosed at health check-up	1 (0.7%)	8 (3.2%)	0.162
Duration of symptom			<0.01
<1 year	125 (82.2%)	142 (56.8%)	
≥1 year	27 (17.8%)	108 (43.2%)	
Tumor site			
Proximal	8 (5.3%)	75 (30%)	<0.01
Middle	57 (37.5%)	53 (21.2%)	<0.01
Distal	75 (49.3%)	115 (46%)	0.515
Whole gastric	12 (7.9%)	7 (2.8%)	0.02
Macroscopic type			
0	31 (20.4%)	57 (22.8%)	0.572
0–I	4 (2.6%)	10 (4.0%)	
0–IIA	3 (2.0%)	9 (3.6%)	
0–IIIB	12 (7.9%)	14 (5.6%)	
0–IIIC	10 (6.6%)	14 (5.6%)	
0–III	2 (1.3%)	10 (4%)	
I	5 (3.3%)	35 (14.0%)	<0.01
II	34 (22.4%)	63 (25.2%)	0.520
III	66 (43.4%)	70 (28%)	<0.01
IV	16 (10.5%)	25 (10%)	0.866
Hp infection	70 (51.1%)	154 (61.6%)	0.045
Lauren’s classification			
Diffuse	112 (79.4%)	73 (29.2%)	<0.01
Intestinal	13 (9.2%)	156 (62.4%)	<0.01
Mixed	16 (11.3%)	21 (8.4%)	0.475
Clinical staging			
0 (Tis)	0	12 (4.8%)	<0.01
IA+IIB	39 (25.7)	129 (51.6%)	<0.01
IIA+IIB	32 (21.1)	35 (14%)	0.066
III	66 (43.4)	52 (20.8%)	<0.01
IV	15 (9.9)	22 (8.8%)	0.719

*χ² test. † Fisher’s exact test.
Clinicopathologic Characteristics	Total Number (n = 152)	FGC (n = 38) (%)	SGC (n = 114) (%)	P*	Clinicopathologic Characteristics	Total Number (n = 152)	FGC (n = 38) (%)	SGC (n = 114) (%)	P*
Gender					Gender	0.665			
Male	53 (34.9)	13 (34.2)	40 (35.1)	0.998	Male	39 (25.7)	11 (28.9)	28 (24.6)	
Female	99 (65.1)	25 (65.8)	74 (64.9)		Female	66 (43.4)	14 (36.8)	52 (45.6)	
Male/female ratio	0.53/1	0.52/1	0.54/1		Male/female ratio	15 (9.9)	3 (7.9)	12 (10.5)	
Age	33.6 ± 5.54	33.8 ± 5.21	33.6 ± 5.66	0.610	Age	32 (21.1)	10 (26.3)	22 (19.3)	
Duration of symptom	<1 year	125 (82.2)	33 (86.8)	0.391	Duration of symptom	III	66 (43.4)	14 (36.8)	
	≥1 year	27 (17.8)	5 (13.2)		≥1 year	IV	15 (9.9)	3 (7.9)	12 (10.5)
Tumor location				0.694	Tumor location				
Proximal	8 (5.3)	1 (2.6)	7 (6.1)		Proximal	85 (55.9)	18 (47.4)	67 (58.8)	0.220
Middle	57 (37.5)	17 (44.7)	40 (35.1)		Middle	94 (61.8)	21 (55.3)	73 (64.0)	0.335
Distal	75 (49.3)	18 (47.4)	57 (50.0)		Distal	15 (9.9)	3 (7.9)	12 (10.5)	0.875
Linitis plastica	12 (7.9)	2 (5.3)	10 (8.8)		Linitis plastica	118 (77.6)	29 (76.3)	89 (78.1)	0.822
Size (cm)				0.203	Size (cm)				
Overall	4.6 ± 2.9	4.2 ± 2.1	4.7 ± 3.1		Overall	51 (33.6)	13 (34.2)	38 (33.3)	0.921
Range	0.3–15.0	1.2–8.0	0.3–15.0		Range	42 (27.6)	10 (26.3)	32 (28.1)	0.834
Hp infection				0.074	Hp infection				
Positive	70 (51.1)	17 (48.6)	53 (52.0)		Survival Rate	82.4	84.8	81.7	0.433
Negative	67 (48.9)	18 (51.4)	49 (48.0)		Overall survival	80.23 ± 4.93	86.43 ± 5.94	76.87 ± 5.66	
Lauren’s classification				0.537	Lauren’s classification				
Diffuse	112 (79.4)	27 (75.0)	85 (81.0)		1 year	82.4	84.8	81.7	
Intestinal	13 (9.2)	5 (13.9)	8 (7.6)		3 years	71.6	73.0	71.1	
Mixed	16 (11.3)	4 (11.1)	12 (11.4)		5 years	64.0	67.4	62.9	

EOGC = early-onset gastric cancer, FGC = familial gastric cancer, LN = lymph node, LVI = lymphovascular invasion, PNI = perineural invasion, SGC = sporadic gastric cancer.

χ² test. t test. Log-rank test.
and type 0; the type I pattern was the least (3.3%) frequent, and whole stomach involvement was found in 16 patients (10.5%). In type 0 GCs, type IIB and IIC lesions were most common (7.9% and 6.6%). In comparison in old GCs, the type I pattern was significantly more common (P < 0.01) and the type III pattern was significantly less frequent (P < 0.05). Interestingly, the EOGC group had significantly lower frequent Hp infection rate than the old GC (P < 0.05, Table 1).

Histopathology

According to Lauren’s classification, the diffuse type (79.4%) was significantly more common in young GCs (P < 0.01), whereas the intestinal type was significantly more common in old GCs (62.4%) (P < 0.01). As shown in Table 1, 43.4% of young patients were significantly more frequently diagnosed at advanced stage (pIII, P < 0.01), compared with 20.8% in old patients. In EOGCs, tumor distant metastasis (n = 15) was limited to abdominal organs, mainly to the ovary (n = 6), peritoneum (n = 4), colon (n = 4), and pancreas (n = 1).

Clinicopathological Characteristics of Familial EOGC

Detailed family cancer history was available in all 152 patients (Table 2 and Figure 3). Thirty-eight (25%) GC cases met the FGC diagnostic criteria, whereas the majority (n = 114, 75%) were classified as SGC. Among typical pedigrees of FGC, the autosomal dominant hereditary pattern was most common. The most common organ with cancer in the relatives was, in the descending order, the stomach, esophagus, liver, lung, and colorectum (Table 3). In contrast, esophageal, hepatic, and pulmonary cancers were significantly more frequently found in the SGC group. However, the difference in overall clinicopathology between the 2 groups was not statistically significant.

Differences in Clinicopathology between Very Young (< 30 years) and Older (31–40 years) EOGC Patient Groups

To investigate the biological behavior of EOGCs, we further divided the cohorts into 2 groups, according to age (Supplementary Table 1, http://links.lww.com/MD/A718). The very young EOGC (<30 years) group, compared to the older (31–40 years) group, was significantly more likely to have more frequent PNI (76.3% vs 57.0%, P = 0.034). No other significant differences in clinicopathology were found between the 2 groups.

Hp Infection Status

Hp infection was detected in 51.1% of EOGC cases. The clinicopathological difference between Hp-positive and -negative patients was shown in Supplementary Table 2, http://links.lww.com/MD/A719. Interestingly, the Hp infection rate was significantly higher in the older (31–40 years, 55.1%) GC group, Lauren’s intestinal type, and longer symptom duration, but significantly lower in patients staged at pIII and pIV (P = 0.002) and PNI (P = 0.001). Consequently, the survival rate in patients with Hp infection was significantly higher than those without. Univariate logistic regression analysis showed that patient age, advanced macroscopic pattern (i.e. local or infiltrating, ulcerative, whole gastric involvement), Lauren’s intestinal type, larger tumor size (>4.0 cm), advanced tumor stage (cIII and cIV), pT stage, and PNI were significantly associated with Hp infection, whereas Lauren’s intestinal type and early pT stage (pT1 and pT2) were the independent risk factors for Hp infection by multivariate analysis (Table 4).

Prognostic Factors for Overall Survival

In the cohort, 137 EOGC patients (90.1%) underwent radical R0 surgical resection with curative intent. Tumor palliative resection was carried out in 15 (9.9%) (R1 resection) patients. Two EOGC patients underwent endoscopic submucosal dissection with subsequent additional open surgical resection with nodal dissection because of signet-ring cell carcinoma. One patient had severe postoperative complications with multiple organ failure and died of extensive abdominal metastasis. Of 152 EOGC patients, 42 (27.6%) died of cancer-specific causes. Univariate analysis (Table 5) identified poor prognostic factors including lower BMI (<18.5 kg/m²), the absence of Hp infection, lower serum levels of albumin, higher levels of CA 15-3, CA 125, and CA 19–9, larger tumor size (>4 cm), whole stomach involvement, advanced macroscopic patterns (type pIII–pIV), palliative R1 surgical resection, advanced pathology stage (pIII and pIV), LVI, PNI, and resection margin involvement. By multivariate analysis (Table 5), independent worse prognostic factors included higher serum levels of CA 72–4, CA 125, and CA 19–9, larger tumor size of >4 cm, whole stomach involvement, advanced macroscopic patterns (type pIII–pIV), palliative R1 surgical resection, advanced pathology stage (pIII and pIV), LVI, PNI, and resection margin involvement. Kaplan–Meier survival curves for EOGC patients, according to independent prognostic factors, were exhibited in Figure 4.
FIGURE 3. Typical pedigree of familiar gastric carcinoma patient.
In line with previous similar investigations in other ethnic populations, our study reveals that EOGCs in Chinese patients treated at our hospital are also female predominant and show mainly the diffuse histology type. Although FGC accounts for only 25% of the EOGC cohort, there are no significant differences in clinicopathology between FGC and SGC groups. However, very young (≤30 years) patients have a significantly lower *Hp* infection rate, but a higher PNI rate than older patients, the findings that have not been described before. To our surprise, high serum levels of CA 72–4 and CA 125, along with palliative resection, are identified as independent risk factors for worse outcomes in EOGC patients, which may be clinically useful for patient management, if confirmed by additional clinical studies with larger samples from other centers.

EOGC is uncommon and found in only 3.2% of all GC resections in our cohort, which is consistent with previous studies (2–8%). Although the true incidence of EOGC in China remains unknown, a recent American study, based on the data of the National Cancer Institute’s Surveillance Epidemiology and End Results (SEER) program in the United States, shows a significantly increased incidence trend from 0.27 to 0.45 per 100,000 person-years for both female and male patients aged between 25 and 39 years. However, that study is limited to noncardiac GC only and carried out in a low GC risk population. In contrast, a significantly decreased EOGC incidence for male patients has been reported by Korean investigators under the Population-Based Regional Cancer Registry (PBCR) program in Korea, which is a high GC risk population, as the Chinese.

In general, family cancer aggregation is more common in EOGC patients than in older age GC groups, as also shown in our study. In our cohort, FGC accounted for 25% of EOGCs, a percentage similar to that reported by Umeyama et al in Japan, but slightly higher than that described by investigators from Shanghai in China and in Korea. Our studies show that the EOGC tumor location is more frequent in the middle stomach, which is consistent with that reported previously in Chinese and Japanese studies, suggesting underlying unique, probably hereditary, pathogenesis mechanisms that are different from those in the proximal or distal stomach. Nevertheless, the published data indicate an important role of hereditary factors in tumorigenesis of EOGC in both populations.

Table 3. Cancers Among the First- and Second-Degree Relatives of Early-Onset Gastric Carcinoma Patients Between Familial and Sporadic Groups

Cancer Site	Total Number (%)	FGC (%)	SGC (%)	P*
Total	145	85	60	
Stomach	56 (38.6)	56 (100)	0 (0)	
Esophagus	20 (13.8)	6 (30.0)	14 (70.0)	0.005
Liver	17 (11.7)	5 (29.4)	12 (70.6)	0.009
Lung	13 (9.0)	3 (23.1)	10 (76.9)	0.006
Colorectum	10 (6.9)	6 (60.0)	4 (40.0)	0.927
Pancreas	5 (3.4)	1 (20.0)	4 (80.0)	0.186
Gallbladder	3 (2.1)	3 (100)	0	0.267
Bone	3 (2.1)	1 (33.3)	2 (66.7)	0.759
Leukemia	2 (1.4)	0	2 (100)	0.170
Breast	2 (1.4)	1 (50.0)	1 (50.0)	1.000
Uterus	2 (1.4)	0	2 (100)	0.170
Nasal pharyngeal	1 (0.7)	1 (100)	0	1.000
Melanoma	1 (0.7)	1 (100)	0	1.000
Brain	1 (0.7)	0	1 (100)	0.414
Kidney	1 (0.7)	0	1 (100)	0.414
Prostate	1 (0.7)	1 (100)	0	1.000
Bladder	1 (0.7)	0	1 (100)	0.414
Lymphoma	1 (0.7)	0	1 (100)	0.414
Unknown	5 (3.4)	0	5 (100)	0.011

FGC = familial gastric cancer, SGC = sporadic gastric cancer. *χ² test. ‡ Fisher’s exact test.

Table 4. Univariate and Multivariate Analyses (Logistic Regression) of Clinicopathological Features in Relation to *Hp* Infection in Early-Onset Gastric Cancer Patients

Factors	Univariate Analysis	Multivariate Analysis		
	Risk Ratio (95% CI)	P	RR (95% CI)	P
Age (≥30 years)	1.083 (1.012–1.160)	0.021	18.896 (1.693–210.871)	0.017
Macrosopic type				
Early GC	0.296 (0.121–0.724)	0.008		
Advanced GC	0.862 (0.758–0.981)	0.024		
Tumor size (>4.0 cm)	12.868 (1.608–102.969)	0.016		
Lauren’s classification				
Diffuse/mixed Intestinal	0.303 (0.147–0.625)	0.001		
Perineural invasion	0.476 (0.240–0.941)	0.033		
Clinical tumor stage	0.207 (0.096–0.445)	<0.001	0.044 (0.005–0.382)	0.005

CI = confidence interval, GC = gastric carcinoma, RR = risk ratio.
Western and Asian populations. Compared with SGC, the FGC group does show more frequent esophageal, liver and lung cancers in the proband first- and second-degree relatives. Interestingly, those cancers rank the highest in incidence among other organ types of cancer in the general population in China, suggesting a hereditary component(s) in those cancers. A recent genomic study points out that germline mutation of the CDH1, CTNNA1, or MAP3K6 genes may be involved in the tumorigenesis of some FGCs. Further investigations are needed to reveal genomic mechanisms of hereditary GC in Chinese patients. In contrast in the SGC group, lung and liver, but not esophageal, cancers are predominant, a finding consistent with the data from the Chinese National Central Cancer Registry (NCCR) published in 2011. Apparently, EOGC in the SGC group may be part of common cancer syndromes but the hereditary relationship may exist between esophageal and gastric cancers in the Chinese population, as alluded by the most recent meta-analysis of GC genomics.

GC is more common in men with a male/female ratio ranging from 1.62:1 to 2:1. However, most surveys on EOGC, including our own, have shown a female dominance with the male/female ratio ranging from 0.64:1 to 0.87:1. This observation suggests the potential role of estrogen in EOGC pathogenesis. According to a prospective study on Spanish women, the risk of GC increased in women who had oophorectomy, indicating the protective effect of estrogen against GC development, which has been confirmed by 2 large-scale studies in Japan and in China. Further investigation to illustrate molecular mechanisms by which estrogen plays in EOGC tumorigenesis is needed.

Hp infection has been proven to be carcinogenic in GC development but conveys a favorable survival outcome in GC patients with Hp infection, compared to those without Hp infection, which is also our experience in EOGC. Moreover, we show that very young (<30 years) GC patients are less likely to be infected with Hp and less exposure to environmental toxins, suggesting that hereditary factors may be of more importance.
importance than Hp infection in tumorigenesis of EOGC. We showed that the absence of Hp infection was associated with a shorter symptom duration, more advanced tumor stage, and more frequent PNI, which are consistent with those reported in 1995 by a research group from Taiwan.51 Lee et al first reported that Hp seropositive GC patients with localized Borrmann types showed better survival than Hp-negative counterparts.51 Recently, Hp infection was found to be an independent prognostic factor for relapse-free survival and overall survival.53,54 The immune response activated by Hp infection could lead to genesis of gastric adenocarcinoma (activation of Th17 pathway),55 but meanwhile can also modulate antitumor immunity.54 The molecular interplay between Hp infection and host genetic vulnerability is essential for illustration of EOGC pathogenesis mechanism.

The postresection survival of EOGC patients remains elusive.56 In our study, the 5-year survival rate in EOGC patients was 64%, which is much higher than that reported by Korean and Japanese investigators.53 The discrepancy may be related to several factors. First, we included only the patients who underwent surgical or endoscopic resection with additional surgical nodal dissection. This indirectly suggests that if young GC patients diagnosed at a resectable stage, the prognosis would be favorable. Second, most patients in our cohort have undergone radical resection that demonstrates a significant survival advantage than those with palliative surgery only.

A major limitation of our study is the retrospective study design. As a result, not all cases have a complete dataset for analysis. In addition, we rely on patient self-reporting family history, which might have contributed to under-reporting of second-degree positive family history and under-diagnosed FGC. Although those variables are difficult to be controlled in the present study, we are currently conducting a robust prospective clinical investigation with a major focus on hereditary GC diseases at our center.

CONCLUSION

We show that family aggregation in GC is more common in EOGC patients but FGC patients have clinicopathological features similar to SGC patients; early detection of high serum levels of CA 72–4 and CA 125 and subsequent radical, rather than palliative, resection could improve survival outcomes, especially for those with positive family history. Further genomic studies of EOGC especially FGC may help reveal molecular tumorigenesis mechanisms to provide EOGC patients with optimal individualized precision management strategy.

REFERENCES

1. Herrero R, Parsonnet J, Greenberg ER. Prevention of gastric cancer. JAMA. 2014;312:1197–1198.
2. Ferlay J SI, Ervik M, Dikshit R, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. Available at: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. Accessed 10 October 2014.
3. Chen W, Zheng R, Zeng H, et al. Annual report on status of cancer in China, 2011. Chin J Cancer Res. 2015;27:2–12.
4. Hsieh FJ, Wang YC, Hsu JT, et al. Clinicopathological features and prognostic factors of gastric cancer patients aged 40 years or younger. J Surg Oncol. 2012;105:304–309.
5. Theuer CP, de Virgilio C, Keese G, et al. Gastric adenocarcinoma in patients 40 years of age or younger. Am J Surg. 1996;172:473–476; discussion 476–477.
6. Umeyama K, Sowa M, Kaminoo K, et al. Gastric carcinoma in young adults in Japan. Anticancer Res. 1982;2:283–286.

7. Corso G, Pedrazzani C, Pinheiro H, et al. E-cadherin genetic screening and clinico-pathological characteristics of early onset gastric cancer. Eur J Cancer. 2011;47:631–639.

8. Qiu MZ, Wang ZQ, Zhang DS, et al. Clinopathological characteristics and prognostic analysis of gastric cancer in the young adult in China. Tumour Biol. 2011;32:509–514.

9. Bai Y, Li ZS. Endoscopic, clinicopathological features and prognosis of very young patients with gastric cancer. J Gastroenterol Hepatol. 2011;26:1626–1629.

10. Fang C, Lu L, Shi J, et al. Risk factors of early proximal gastric carcinoma in Chinese diagnosed with the WHO criteria. J Dig Dis. 2015;16:327–336.

11. Mocellin S, Verdi D, Pooley KA, et al. Genetic variation and gastric cancer risk: a field synopsis and meta-analysis. Gut. 2015;64:1209–1219.

12. Graham DY. Helicobacter pylori update: gastric cancer, reliable therapy, and possible benefits. Gastroenterology. 2015;148:719–731; e713.

13. Tavares A, Gandra A, Viveiros F, et al. Analysis of clinicopathological characteristics and prognosis of gastric cancer in young and older patients. Pathol Oncol Res. 2013;19:111–117.

14. Kokkola A, Sipponen P. Gastric carcinoma in young adults. Hepatogastroenterology. 2001;48:1552–1555.

15. Koea JB, Karpeh MS, Brennan MF. Gastric cancer in young patients: demographic, clinicopathological, and prognostic factors in 92 patients. Ann Surg Oncol. 2000;7:346–351.

16. Shimura K, Kohno T, Takahashi M, et al. Familial gastric cancer: clinicopathological characteristics, RER phenotype and germline p53 and E-cadherin mutations. Carcinogenesis. 1999;20:1127–1131.

17. Zhang YY, Li JT, Zhu M, et al. Association of the germline mutations of E-cadherin gene (CDH1) in gastric cancer. Carcinogen. Teratog Mutagen. 2005;17:350–353.

18. Zhu ZG, Yu YY, Zhang Y, et al. Association of the germline mutations of E-cadherin gene (CDH1) in gastric cancer. Carcinogen. Teratog Mutagen. 2005;17:350–353.

19. Yanjun X, Wenming C, Lisha Y, et al. Detection of CDH1 gene variants in early-onset diffuse gastric cancer in Chinese patients. Clin Lab. 2014;60:1823–1830.

20. Corso G, Carvalho J, Marrelli D, et al. Somatic mutations and deletions of the E-cadherin gene predict poor survival of patients with gastric cancer. J Clin Oncol. 2013;31:868–875.

21. Kaurah P, MacMillan A, Boyd N, et al. Founder and recurrent CDH1 mutations in families with hereditary diffuse gastric cancer. JAMA. 2007;297:2360–2372.

22. Ramos-De la Medina A, Salgado-Nesme N, Torres-Villalobos G, et al. Clinicopathologic characteristics of gastric cancer in a young patient population. J Gastrointest Surg. 2004;8:240–244.

23. Yokota T, Takahashi N, Teshima S, et al. Early gastric cancer in the young: clinicopathological study. Aust N Z J Surg. 1999;69:443–446.

24. Lo SS, Kuo HS, Wu CW, et al. Poorer prognosis in young patients with gastric cancer? Hepatogastroenterology. 1999;46:2690–2693.

25. Smith BR, Stabile BE. Extreme aggressiveness and lethality of gastric adenocarcinoma in the very young. Arch Surg. 2009;144:506–510.

26. Lauwers G, Carneiro F, Graham DY, et al. Gastric carcinoma. In: Bosman FT, Carneiro F, Hruban RH, Theise ND, eds. WHO Classification of Tumours of the Digestive System. Lyon: IARC; 2010:48–68.
49. Persson C, Inoue M, Sasazuki S, et al. Female reproductive factors and the risk of gastric cancer in a large-scale population-based cohort study in Japan (JPHC study). *Eur J Cancer Prev.* 2008;17:345–353.

50. Freedman ND, Chow WH, Gao YT, et al. Menstrual and reproductive factors and gastric cancer risk in a large prospective study of women. *Gut.* 2007;56:1671–1677.

51. Lee WJ, Lin JT, Shun CT, et al. Comparison between resectable gastric adenocarcinomas seropositive and seronegative for *Helicobacter pylori*. *Brit J Surg.* 1995;82:802–805.

52. Milne AN, Sitarz R, Carvalho R, et al. Early onset gastric cancer: on the road to unraveling gastric carcinogenesis. *Curr Mol Med.* 2007;7:15–28.

53. Meimarakis G, Winter H, Assmann I, et al. *Helicobacter pylori* as a prognostic indicator after curative resection of gastric carcinoma: a prospective study. *Lancet Oncol.* 2006;7:211–222.

54. Kang SY, Han JH, Ahn MS, et al. *Helicobacter pylori* infection as an independent prognostic factor for locally advanced gastric cancer patients treated with adjuvant chemotherapy after curative resection. *Int J Cancer.* 2012;130:948–958.

55. Amedei A, Munari F, Bella CD, et al. *Helicobacter pylori* secreted peptidyl prolyl cis, trans-isomerase drives Th17 inflammation in gastric adenocarcinoma. *Intern Emerg Med.* 2014;9:303–309.

56. Karim S. Clinicopathological and p53 gene alteration comparison between young and older patients with gastric cancer. *Asian Pac J Cancer Prev.* 2014;15:1375–1379.