Targeting of stealth liposomes to erbB-2 (Her/2) receptor: in vitro and in vivo studies

D Goren¹, AT Horowitz¹, S Zalipsky², MC Woodle³, Y Yarden⁴ and A Gabizon¹

¹Hadassah Hebrew University Hospital, Jerusalem, Israel; ²Sequus Pharmaceuticals, Menlo Park, California, USA; ³Weizmann Institute of Science, Rehovot, Israel.

Summary

Long-circulating (stealth) liposomes coated with polyethylene glycol (PEG), which show reduced uptake by the reticuloendothelial system (RES) and enhanced accumulation in tumours, were used for conjugation to monoclonal antibodies (MAbs) as a drug-targeting device. A MAb (N-12A5) directed against erbB-2 oncoprotein, a functional surface antigen, was used. Amplification and overexpression of the erbB-2 gene product, being unique to malignancy, confer onto this antibody-mediated therapy high tumour specificity. In vitro binding of [3H]cholesterol ether ([3H]Chol ether) labelled anti-erbB-2 conjugated liposomes to N-87 cells (erbB-2-positive human gastric carcinoma) was compared with the binding of non-targeted liposomes and indicated a 16-fold increase in binding for the targeted liposomes. No difference in binding to OVI163 cells (erbB-2-negative human ovary carcinoma) was observed. These results indicate highly selective binding of antibody-targeted liposomes to erbB-2-overexpressing cells. Despite increased cell binding, doxorubicin (DOX) loaded in anti-erbB-2-conjugated liposomes did not cause increased intracellular cytotoxicity against N-87 cells, suggesting lack of liposome internalisation. In vivo, the critical factor needed to decrease the non-specific RES uptake and prolong the circulation time of antibody-conjugated liposomes is a low protein to phospholipid ratio (<60 µg µmol⁻¹). Using these optimised liposome preparations loaded with DOX and by monitoring the drug levels and the [3H]Chol ether label, biodistribution studies in nude mice bearing subcutaneous implants of N-87 tumours were carried out. No significant differences in liver and spleen uptake between antibody-conjugated and plain liposomes were observed. Nevertheless, there was no enhancement of tumour liposome levels over plain liposomes. Both liposome preparations considerably enhanced DOX concentration in the tumour compared with free drug administration. Therapeutic experiments with N-87 tumour-bearing nude mice indicated that anti-tumour activity of targeted and non-targeted liposomes was similar, although both preparations had an increased therapeutic efficacy compared with the free drug. These studies suggest that efficacy is dependent on drug delivery to the tumour and that the rate-limiting factor of liposome accumulation in tumours is the liposome extravasation process, irrespective of liposome affinity or targeting to tumour cells.

Keywords: erbB-2; targeting; chemotherapy; monoclonal antibodies; liposomes

Recent advances in the design of liposomes have resulted in the development of 'stealth liposomes', small (<100 nm) vesicles, with prolonged circulation time and enhanced tumour localisation properties (Papahadjopoulos et al., 1991). These liposomes localise in the tumour extracellular compartment but are not taken up by tumour cells (Gabizon, 1992; Huang et al., 1991; Papahadjopoulos et al., 1991). To enhance cytotoxic efficacy further, selective delivery of drugs to target cells can be achieved through liposome binding of antibodies that recognize specific determinants on target cells (Ahmad and Allen, 1992; Debs et al., 1987; Peeters et al., 1989). The erbB-2 gene product is a membrane glycoprotein of 185 kDa (p185HER2) with intrinsic kinase activity. As the product of an activated oncogene, erbB-2 represents an important class of tumour-surface antigens for diagnosis or targeting of monoclonal antibody-mediated therapy (Harris and Mas-trangelo, 1989). Amplification and overexpression of the erbB-2 gene is shown in many epithelial malignancies, particularly in breast and ovarian carcinomas (15–20% of human carcinomas) (Burchuck et al., 1990; Yonemura et al., 1991), predicting a poor prognosis (Slamon et al., 1987, 1989; Park et al., 1992). The phenomenon is unique to malignancy. In normal tissues p185HER2 is expressed only at low levels in certain epithelial cell types (Press et al., 1990). As the oncoprotein plays a role in cell growth and oncogenesis, blocking it by antibodies may interfere with signal transduction pathways. Moreover, being a membranous overexpressed antigen with ready accessibility and high level of tumour specificity, erbB-2 offers an attractive target for cancer therapy. Here, we describe the development of anti-erbB-2 immunoliposomes as a tumour-targeting vehicle in which the specificity of anti-p185HER2 and the cytotoxic activity of DOX are combined with the pharmacokinetic and drug delivery advantages of liposomes. N12A5 (IgG1) MAb, which has a high binding capacity to erbB-2-overexpressing cells (Stancovski et al., 1991), was selected for our studies of targeted therapy with doxorubicin-loaded 'stealth liposomes'. N12A5 significantly inhibited the tumour growth of human carcinoma cell line N-87 and mouse fibroblasts transfected with the human gene in nude mice (Hurwitz et al., 1995), and specifically induced phenotypic differentiation on various cultured breast carcinoma lines (Bacus et al., 1992). The erbB-2-positive human gastric carcinoma line N-87 (Park et al., 1990), which grows well in nude mice, was chosen as tumour model.

Materials and methods

Liposome preparation

Sources of liposome components were as follows: hydrogenated soybean phosphatidylcholine (HPC) was from Avanti Polar Lipids (Birmingham, AL, USA); cholesterol (Chol) and α-tocopherol were from Sigma (St Louis, MO, USA); mPEG(2000)/DSPE (polyethylene glycol derivative of distearoylphosphatidylethanolamine) and H2-PEG-DSPE were prepared as described elsewhere (Zalipsky, 1993a); and [3H]cholesterol hexadecyl ether was from NEN (Boston, MA, USA). Stealth liposomes (HPC–mPEG DSPE–Chol–H2-PEG-DSPE–α-Tocopherol; 92.5:5:70:2.5:1 mol ratio) and trace amount of [3H]Chol ether (150 µCi per 500 µmol phospholipid) were prepared as described by Papahadjopoulos et al. (1991). The DOX phospholipid ratio obtained was

Correspondence: A Gabizon, Department of Oncology, Hadassah Medical Centre, Jerusalem 91120, Israel

Received 22 March 1996; revised 18 June 1996; accepted 19 June 1996
50–80 μg μmol⁻¹ and vesicle size 70±20 nm. A liposomal DOX preparation of similar composition but lacking the H sezPEG derivative, known as Doxil, was provided by Sequis (Menlo Park, CA, USA).

Immunoliposome preparation

Ascitic fluid from mouse hybridomas producing monoclonal α-erbB-2 antibodies N12A5 (Stancovski et al., 1991) was supplied by Dr Yarden (Weizmann Institute, Israel). Isolation of MAb was done using a protein A–Sepharose column (Sigma). Conjugation was carried out via hydrazine linkage of the liposome hydrazide moiety with oxidised carbohydrates on the Fc portion of the α-erbB-2 antibodies (Allen et al., 1994; Zalipsky et al., 1993b). Sodium periodate (10 mM) was used for oxidation of carbohydrates. Unreduced periodate was quenched with excess N-acetylmethionine (NAM) (50 mM). Quick reduction in the amount of NAM commensurate with the amount of periodate present, presumably by conversion into methionine sulphoxide and sulphone derivatives, as confirmed by HPLC (Zalipsky, unpublished results). For the coupling reaction, anti-erbB-2 antibodies (3–5 mg ml⁻¹) and stealth liposomes (30–50 μmol phospholipid ml⁻¹) were co-incubated overnight at room temperature, in 0.1 M acetate buffer pH 5.5, at a molar ratio of 1:200 MAb–H sezPEG-DSPE to attain 40–60 μg IgG μmol⁻¹ phospholipid. Uncoupled antibody was separated from immunoliposomes by gel filtration with the Bio-Rad, Agarose Bio-Gel A-15m. Determination of conjugation level was done by the Pierce Coomassie Protein Assay Reagents (Pierce, Rockford, IL, USA). The stability of the hydrazide bond conjugating the antibody to H sezPEG has been examined and proven in vivo (Zalipsky et al., 1995).

Cell lines

We chose a human-derived gastric carcinoma, N-87, described previously by Park et al. (1990), with the ability to develop tumours in nude mice and breast carcinoma BT-474, both with α-erbB-2 overexpression. ZR-75.1 and OV1063 (Horowitz et al., 1985) breast and ovary human carcinoma lines with low expression of erbB-2 were used as control cells.

Binding in vitro

Binding was assayed through measurement of cell-associated liposomal [3H]Chol ether. Approximately 5 × 10⁵ N-87 cells in RPMI + 10% fetal calf serum (FCS) were grown in 35 mm dishes for 72 h; the medium was then replaced by medium containing liposomes (200 nmol phospholipid/per dish) for the indicated periods. Extraction of [3H]Chol ether and DOX from phosphate-buffered saline (PBS)-washed N-87 cells was accomplished using 0.075 N hydrochloric acid in 90% isopropanol at 4°C overnight. Non-specific association of liposomes was measured by the use of empty culture dishes as a control. The counts of these control dishes were subtracted.

Cytotoxicity in vitro

N-87 cells seeded at a density of 5 × 10⁴ per well (96-well plate) were incubated in RPMI +10% FCS for 3 days in the presence of liposomal and free DOX (10⁻⁸ to 10⁻³ M) without change of medium. In one of the experiments, cells were exposed to the drug for 2 h, the medium was then replaced and the cells incubated for 3 days. Cell growth was assayed colorimetrically by methylene blue staining. A detailed description of the in vitro cytotoxicity test has been reported previously (Horowitz et al., 1992).

Biodistribution studies

Biodistribution of plain and immuno stealth liposomes injected i.v. into tumour-bearing nude mice was examined. N-87 cells (6 × 10⁶) were s.c. injected into both flanks of athymic nude balb/c female mice. Fourteen days after inoculation, when the average tumour weight was ~100 mg, the mice were injected i.v. with 10 mg kg⁻¹ DOX (2–4 μmol phospholipid per mouse). Doxorubicin was given as free drug, in plain liposomes and in immunoliposomes. At 1, 2, 4, 24, 48 and 96 h after injection, the animals were anaesthetised with ether inhalation, bled by eye enucleation and immediately sacrificed for removal of tumours, skin and liver. Each group consisted of five mice. Liposomal tracers were [3H]Chol ether, a non-degradable β-emitter with very stable association to liposome bilayers, and DOX, which serves as a liposome inner water compartment marker, assayed by HPLC with a fluorometric detector. The extraction procedure consisted of homogenisation of ~200 mg wet tissue in 1.8 ml double-distilled water supplemented with 0.5 μg daunorubicin (Roget Bellon, France) as internal standard and 33% silver nitrate to help detach the DNA-bound drug, followed by centrifugation, removal of pellet and addition to the supernatant of chloroform–isopropanol (2 ml of each solvent) and 1.5 g ammonium sulphate. Phase separation, for the collection of lipids and DOX in the chloroformic upper phase, was done by hexane and 20% ethanol. Because of the high concentration of ammonium sulphate, the water phase density increases above that of the organic phase, which then becomes the upper phase. The high ionic strength of the water phase is also necessary to force DOX into the organic phase and increase the efficiency of extraction. The volume of the upper phase was measured and 500 μl was monitored for [3H]Chol ether presence using a β-counter. For DOX quantification the remaining upper phase was evaporated to dryness and redissolved in 35% HPLC-grade acetonitrile (Lab Scan Analytical Sciences, Dublin, Eire) and 65% double-distilled water. HPLC analysis of DOX proceeded by filtration of the samples through 0.2 μm filters, followed by centrifugation and examination of the clear supernatants by injection into an isocratic HPLC system with a reverse-phase C₁₈ column, and fluorescence detection using a Kontron–SFM 25 Spectrofluorometer (Kontron Instruments, Zurich, Switzerland). For DOX quantification, an excitation wavelength of 470 nm and an emission wavelength of 590 nm were used. The mobile phase composition was: 35% acetonitrile, 65% double-distilled water and 0.001% desipramine (Sigma), pH 2.5 (HCl), with a flow rate of 2 ml min⁻¹. Helium degassing was carried out before each run.

The amount of [3H]Chol ether in plasma was determined directly by β-counting of the plasma sample, and the amount of DOX was determined by an extraction procedure similar to that described for organs. Daunorubicin (20 μl) was spiked into each 400 μl sample: 1.0 μg for plasma samples after 48 h and 5.0 μg for plasma samples up to 48 h, as internal standard. A 400 μl aliquot plasma sample, 400 μl isopropyl alcohol (HPLC grade), 400 μl of chloroform (HPLC grade) and 500 μg of ammonium sulphate (Sigma) were mixed, vortexed and centrifuged to achieve phase separation and isolation of lipids and DOX in the organic upper phase. The chloroformic upper phase was dried, redissolved in 400 μl of HPLC mobile phase, filtered through 0.2 μm-pore polycarbonate filters and injected into the HPLC system described above.

In all cases, the biodistribution results were expressed as per cent injected dose per gram tissue (%ID g⁻¹). [3H]Chol ether, m.p.m. were measured in a scintillation counter and translated into %ID g⁻¹. The fluorescence intensity peak of DOX obtained by HPLC was converted into μg g⁻¹, based on the daunorubicin internal standard. These values were also converted into %ID g⁻¹.

Therapeutic studies

Each mouse was injected with two inocula of tumour cells (5 × 10⁶ N-87 cells) subcutaneously into each flank. Intravenous treatment was given 15 days after inoculation. The two
largest perpendicular diameters of the palpable tumours were measured using calipers, starting on the first treatment day and three times a week thereafter. Tumour volume and approximate weight were estimated by the equation \(a^{3}/2 \) in mm\(^3\) or mg, where \(a \) and \(b \) are the two largest perpendicular diameters. The tumour volume/weight values were converted in percent change from baseline by the equation \(V / V_0 \times 100/V_0 \), where \(V \) is volume measured at time \(t \) and \(V_0 \) is baseline volume. Mice were labelled individually for individual follow-up of tumour growth and tumour weight. Two months after start of treatment, all surviving mice were sacrificed and tumours were dissected carefully and weighed directly.

Results
In vitro binding of immunoliposomes and plain stealth liposomes to erbB-2-positive and -negative cells

The binding kinetics of antibody-targeted liposomes and non-targeted liposomes to N-87 cells, erbB-2 overexpressors were studied for 24 h (Figure 1). Cell association of liposomes ([\(^{3}H\)]Chol ether) and DOX was monitored as described. The binding kinetics curves show that at least 2 h is needed for a measurable association to occur. There was more than a 10-fold increase in liposome binding when antibody was conjugated, as indicated by the [\(^{3}H\)]Chol ether marker (Figure 1a). When DOX was measured, the maximum increase in cell association using antibody-targeted liposomes was 5-fold after 8 h of incubation (Figure 1b). After 24 h of incubation, this increased factor of DOX cell association went down to 2.5-fold which was probably a result of the masking effect of DOX leakage from liposomes on the targeting effect. Drug leakage studies from plain liposomes and immunoliposomes, in the presence of 90% plasma at 37°C, did not reveal any significant difference in stability between plain liposomes and immunoliposomes (data not shown). In the following in vitro binding experiments, attachment was monitored after 7 h incubation of liposomes with cells.

Binding of plain, irrelevant Ab or anti-erbB-2 (N12A5) MAb-conjugated liposomes to erbB-2-positive N-87 cells (10\(^{6}\)) was examined after 7 h incubation at 37°C with 200 nmol of phospholipid per plate (35 mm). Figure 2 demonstrates a 16-fold increase in \(\alpha \)-erbB-2 liposome association to N-87 cells compared with the attachment of plain liposomes or liposomes conjugated to polyclonal (irrelevant) IgG. This experiment was done with similar levels of Ab coupled to liposomes, i.e. 52 and 58 \(\mu \)g mmol\(^{-1}\) phospholipid of relevant and irrelevant Ab respectively.

Attachment of non-targeted and \(\alpha \)-erbB-2-targeted stealth liposomes to N-87 and OV-1063 cells, erbB-2-positive and negative respectively. A 19-fold increase in [\(^{3}H\)]Chol ether association to N-87 (erbB-2-positive) cells, compared with OV-1063 (erbB-2-negative) cells, when co-incubated with anti-erbB-2 immunoliposomes was obtained, as shown in Figure 3. These results, together with our previous results, confirm the specific and avid targeting conferred by anti-erbB-2 IgG coupling to liposomes through PEG-hydrazide. In additional experiments with the breast carcinoma line BT-474 (erbB-2-positive) we observed the same net increase in specific binding of \(\alpha \)-erbB-2-targeted liposomes - 1.5 – 2.0 nmol phospholipid/10\(^{6}\) cells - similar to that obtained with N-87 cells under the same experimental conditions (data not shown).

In vitro cytotoxicity of immunoliposome- and plain liposome-DOX on N-87 cells

In vitro cytotoxicity studies of the soluble anti-erbB-2 MAb (N12A5) on erbB-2-positive cells revealed that there was a maximum of 20% growth inhibition of N-87 cells (erbB-2-positive) without affecting the growth of OV-1063 cells (erbB-2-negative). A control polyclonal IgG did not cause growth inhibition. When N-87 cells were exposed to N12A5 antibody

![Figure 1](image1.png) Binding kinetics of immunoliposomes (conjugated to \(\alpha \)-erbB-2 MAb) and plain liposomes to erbB-2-positive cells, at 37°C for 24 h. N-87 cells were seeded at a density of 10\(^{6}\)/plate (35 mm). Each time point is the mean of five replicates. s.d. did not exceed ±5%. ○, plain liposomes; ●, immunoliposomes.

![Figure 2](image2.png) Binding of immunoliposomes and control liposomes to erbB-2-positive cells: liposome binding was carried out at 37°C for 7 h. Phospholipid concentration, 200 nmol ml\(^{-1}\); protein/phospholipid ratio, 52 \(\mu \)g and 58 \(\mu \)g mmol\(^{-1}\) of relevant and irrelevant Ab respectively. Each bar is the mean of five replicates.
and free DOX or liposomal DOX, we found a simple additive effect with no evidence of synergistic inhibition of growth (data not shown). Comparison of the cytotoxic activity of liposomal (immune and plain) with free DOX on N-87 cells, presented in Figure 4, showed no difference between α-erbB-2-coupled liposomes and plain liposomes. IC\textsubscript{50} values for plain liposome and immunoliposome DOX were 1.3 x 10-9 M, while the soluble drug was 6-fold more active (2.1 x 10-9 M). In another design of the cytotoxic experiment, N-87 cells were incubated for only 2 h in the presence of DOX (liposomal or free) and then further incubated for 3 days in fresh medium (Figure 4). IC\textsubscript{50} values for plain and immunoliposomes were similar (1.3 x 10-9 M) and higher than for the free drug by ~10-fold (1.1 x 10-8 M). Consistent with this, experiments with BT-474 also demonstrate insignificant differences in IC\textsubscript{50} values of DOX in immunoliposomes and plain liposomes (1.1 x 10-8 M and 1.5 x 10-8 M respectively). These results corroborate previous observations indicating that cytotoxicity originates from liposomal drug release in the extracellular fluid and free drug diffusion into the cells (Horwitz et al., 1992). In the following experiments, we focused on the N-87 cell line, as this tumour is a very reliable and convenient model for in vivo therapeutic studies (Hurwitz et al., 1995).

Biodistribution studies

Plasma (Figure 5) Initial pharmacokinetic experiments of antibody-targeted liposomes in mice were done with α-erbB-2-conjugated liposome preparations of relatively high protein/phospholipid ratio, around 100 µg µmol-1. As shown in Figure 5a, high-protein immunoliposomes were cleared from plasma significantly faster than plain liposomes and low-protein immunoliposomes (44 µg µmol-1). As shown in Figure 5b, the differences in plasma DOX clearance rates between targeted and non-targeted liposomes were minimal when a liposome preparation with low protein to lipid ratio was used. DOX and [3H]Chol ether showed a similar clearance rate, suggesting that drug leakage is a minor pathway of clearance. We inferred that low levels of protein conjugated to liposomes are required to maintain stealth qualities of immunoliposomes. Further experiments, shown below, were carried out with these low-protein immunoliposomes.

Liver (Figure 6a) There was no increased liver uptake of immunoliposomes compared with plain liposomes, as reflected in the [3H]Chol ether levels. When the DOX liver clearance rate was compared between plain DOX and immunoliposome DOX, there was no significant difference (Figure 6b).
levels were examined, the peak levels were similar, but it appeared that the drug clearance with immunoliposomes was faster than with plain liposomes. This suggests that immunoliposomes may be incorporated faster than plain liposomes into an intracellular compartment where liposome degradation and drug release occur. Liver uptake was not enhanced when immunoliposomes with low protein to lipid ratio were used.

Tumour (Figure 6b) Liposome levels in the tumour implants were slightly higher for plain liposomes than for immunoliposomes when either DOX or [3H]Chol ether is considered. It should be noted that the levels of [3H]Chol ether did not show any significant decrease even as late as 4 days after injection. The reason for this is that [3H]Chol ether is in a non-degradable form (ether-bond) and therefore the [3H]Chol ether values indicate a cumulative liposome localisation in tissues. It is clear from Figure 6b that the tumour drug levels are much higher when DOX is delivered by plain-liposomes or immunoliposomes than free DOX, indicating a substantial advantage of liposome delivery with respect to tumour drug exposure.

Skin (Figure 6c) In the skin, high levels of liposomes were detected. Liposome distribution in skin represents the largest depot of liposomes in the nude mouse. As the total skin weight in a mouse is about 3 g (twice that of the liver), an uptake of 10% ID g⁻¹ indicates that about 30% of the injected liposomes accumulated in skin.

Therapeutic study

As pharmacokinetic studies have shown a close pattern of *in vivo* distribution for the plain and immunoliposomes, we proceeded by examining whether antibody targeting to tumour cells would result in enhanced therapeutic efficacy of immunoliposomes. Nude mice bearing subcutaneously implanted N-87 carcinoma were treated (i.v.) with 8 mg kg⁻¹ free and liposomal (plain and immuno) DOX on days 15 and 22 after tumour implantation, i.e. at a time when tumour implants became palpable. The therapeutic results given in Table 1 are the final median tumour weights, after sacrificing the mice 2 months after start of treatment. There was a significant and unequivocally greater tumour-inhibitory effect of liposome-delivered DOX than of free DOX. However, there was no apparent difference in tumour weight when immunoliposome- and plain liposome-treated groups were compared. Figure 7 summarises the relative changes in estimated tumour volume during 60 days of follow-up. As
Liposome targeting to erbB-2-positive cells

D Goren et al

Table 1 Tumour weights (mg) on day of sacrifice—75 days after inoculation

Treatment	Untreated control	Free DOX	Plain liposome-DOX	Immunoliposome-DOX	Doxil
Median	1649	787	229	249	62
95% CI	581 – 3990	454 – 1142	59 – 795	146 – 427	11 – 410

On day of sacrifice the number of surviving mice was: control, 6/6; plain liposome-DOX, 6/18; immunoliposome-DOX, 8/9; free DOX, 13/14; doxil, 5/5.

Results from a separate experiment. Although the median weight was for Doxil group lower than for other liposome-treated groups, the relative change in tumour volume was not significantly different from other liposome-DOX groups. Statistical analysis (Wilcoxon test): free DOX vs control, 0.02P < 0.05; plain liposome DOX vs free DOX, 0.002 < P < 0.005; immunoliposome DOX vs free DOX, P < 0.001.

seen in Figure 7, tumour growth was clearly slowed by treatment, more by liposome-delivered drug than by free drug. Groups treated with plain liposomes and immunoliposomes behaved similarly, plain liposomes being slightly more effective. Addition of unconjugated, soluble antibody to free DOX or plain liposomes, at doses equal to the amount of antibody given with immunoliposomes (~100 μg MAb per mouse), did not have any impact on the therapeutic effect (data not shown). Thus, antibody targeting of liposomes did not endow any therapeutic advantage over plain liposomes, nor was there a significant loss of activity.

Therapeutic experiment, a significant number of toxic deaths were observed in the group of animals treated with DOX in non-targeted liposomes (12/18 mice died), in contrast to the other experimental groups (1/9 for DOX in immunoliposomes, 1/14 for free DOX, 0/6 for control untreated).

All deaths occurred 3 – 5 weeks after the start of treatment and were preceded by severe weight loss. An additional group of six mice treated with DOX in liposomes lacking the PEG-hydrazide linker (Doxil) showed no signs of toxicity (0/6 deaths) and a level of anti-tumour activity at least as potent as that of the PEG-hydrazide-containing preparation (Table I). This is consistent with our past experience (Gabizon, 1992; Papahadjopoulos et al., 1991), which indicates that the dosage of liposomal DOX used in this study is not toxic. These observations suggest that the PEG-hydrazide group in unquenched form (i.e. not protein bound) contributes to the toxicity observed, but not to the anti-tumour activity.

Discussion

Recent reports have indicated the feasibility of using immunoliposomes for targeted drug delivery to augment the therapeutic efficacy of an encapsulated anti-cancer drug (Ahmad et al., 1993; Emanuel et al., 1996). These models used DOX in Ab targeted stealth liposomes, but their relevance to humans is limited as they are based on mouse tumours. We have tried to examine the likelihood that such a strategy could succeed in a human tumour model by targeting liposomes to erbB-2 oncoprotein, a receptor that is stably overexpressed by certain carcinomas and required for the maintenance of aggressive tumour growth (Berchuck et al., 1990; Slamon et al., 1987, 1989). Our aim was to develop stealth immunoliposomes equipped with anti-erbB-2 monoclonal antibodies, to preserve the pharmacokinetic properties of stealth liposomes and to improve tumour drug delivery and anti-tumour activity.

In this study, anti-erbB-2 MAb coupled to stealth liposomes using the Hz-PEG-DSPE linker was found to function as a specific and efficient targeting device in in vitro systems. This is in agreement with other studies using the same coupling system with a different antibody (Allen et al., 1994; Zalipsky et al., 1993b).

Experiments in biodistribution studies using nude mice bearing N-87 xenografts revealed that, despite optimal preparation of antibody-conjugated liposomes with high in vitro affinity to tumour cells and reduced RES uptake, no benefit of tumour liposome levels over plain stealth liposomes was noted.

Figure 7 Therapeutic efficacy of liposomal and free DOX on s.c. implanted N-87 tumours. Approximately 6 x 10⁶ cells were injected into both flanks of nude mice. On days 15 (tumour volume of 300 ± 150 mg) and 22, i.v. treatment of 8 mg/kg DOX was given as free or liposomal drug. Control is the non-treated group. Tumour volume was measured three times a week and estimated by the following equation ab²/2, where a is the largest tumour diameter and b is the perpendicular diameter. ■, plain liposome DOX; ▲, immunoliposome DOX; ○, free DOX; □, control. Each group consisted of at least 12 tumours. Protein/phospholipid ratio, 52 μg μmol⁻¹. Addition of free antibody, at the same dose as the conjugated antibody (~100 μg per mouse) to DOX (free or liposomal), had no effect on tumour growth (data not shown).

Therapeutic experiments correlated with biodistribution studies, i.e. similar anti-tumour efficacy of the two liposomal preparations was found. Despite the in vitro pronounced binding affinity of immunoliposomes to target cells, no improvement in therapeutic efficacy was achieved.

Baselga et al. (1996), in a phase II trial using humanised anti-erbB-2 MAbs, observed accelerated plasma clearance in patients with high plasma levels of extracellular domain of erbB-2 (ECDHER). Our studies detected minimal differences in plasma clearance rates between immunoliposomes and plain liposomes. Whether this is the outcome of low plasma levels of ECDHER or of their minor effect on circulating z-erbB-2-targeted liposomes remains to be clarified.

Skin liposome uptake was extremely high for both liposome preparations, a finding consistent with the skin toxicity of a stealth liposomal DOX (Doxil) preparation in humans (Uziel et al., 1995). High lipidome localisation in skin has been reported previously in nude mice (Gabizon et al., 1990; Huang et al., 1993), although the underlying mechanism remains poorly understood.

These studies suggest that the rate-limiting factor of liposome accumulation in tumours is the liposome extravasation process, irrespective of liposome affinity or targeting to tumour cells. This hypothesis has the following rational basis. It is clear that the erbB-2-targeted antigens are to be found beyond the endothelial cell barrier. Liposomes need firstly to extravasate in tumour areas and, only then, does binding to tumour cell receptors occur. As the extravasation efficiency of
plain liposomes should not be less than that of immunolipo-
somes, a difference in tumour accumulation can only be
established if the former are washed out from the tumour
area faster than the latter. However, given the relatively large
size of liposomes and the lack of functional lymphatic
Drainage in tumours (Jain, 1989) it is likely that most
extravasated vesicles will remain in the tumour site, whether
cellbound or not, until they are degraded or cleared by
scavenger cells. For complexes of smaller size than liposomes,
for which return to the circulation is feasible, binding to an
extravascular target cell will be an important determinant of
tumour accumulation through decreased washout from the
tumour. In fact, a number of soluble MAb do show a
selective enhancement of concentration in the targeted
tumour in comparison with irrelevant MAb (Jakowitz et al.,
1985). In line with this, enhanced in vivo efficacy of
N12A5 MAb against N-87 tumour (Hurwitz et al., 1995), and
of other anti-erbB-2 antibodies in various tumour models
(Bacus et al., 1992; Harwerth et al., 1993), has been obtained.
A recent report (Park et al., 1995) of a study with Fab’
fragments of anti-erbB-2 MAb (from a different source)
conjugated via MPB-Pe to the lipid bilayer of stealth
liposomes demonstrates internalisation of immunoliposomes
by human-derived breast carcinoma cells (SKBR3, erbB-2
positive) in vitro and augmented cytotoxicity of anti-erbB-2-
targeted liposomes over plain liposomes. Unfortunately, the
N-87 model did not show an increased in vitro sensitivity to
immunoliposomes, suggesting lack of internalisation of the
cell-bound immunoliposomes at surviving target cells, or
liposomal drug localisation in a non-bioavailable cellular
compartment. It should be noted that soluble anti-erbB-2
N12A5 MAb is internalised by N-87 cells in vitro to a great
extent (85%) as shown by Hurwitz et al. (1995). These
observations indicate differences in internalisation capacity
among the various erbB-2-positive carcinoma cell-lines, or
an advantage for Fab’ fragments over the bulkier whole IgG in
facilitating internalisation. A possibility is that the lower
molar fraction of PEG in the liposomes used by Park
et al. (1995) (2% PEG of total phospholipid) may have
facilitated internalisation compared with the liposomes used
here (7.5% PEG). However, even in the presence of 6.7%
PEG, internalisation of liposomes is still possible, as
demonstrated by Lee and Low, (1995), with folate-targeted
stealth liposomes and cell lines overexpressing folic acid
receptor. These authors also reported that internalisation was
accompanied by an increase in the cytotoxicity of liposomal
DOX. Whether as a result of the intrinsic properties of the
target cells and their receptors, the density of the liposome
PEG coating, or the nature and size of the ligand,
internalisation may be a necessary step to enhance the
cytotoxicity of DOX encapsulated in targeted liposomes, and
hence translate targeting into enhanced efficacy. The
argument for internalisation in vivo would be that drug
released in the tumour intracellular compartment cannot
escape from the tumour, while drug released in the interstitial
fluid, as in the case of non-targeted liposomes, may still be
partially washed out from the tumour and return to
circulation.
A positive result of the therapeutic study was the enhanced
efficacy of stealth liposomal DOX, with or without targeting
antibodies, over free DOX. Similar observations have been
made in a number of human xenograft models (Williams et al.,
1993; Vaage et al., 1994). As emphasised in this study, the
factors involved in the design of immunoliposomes are
complex and unique to this system, and the results may not be
extrapolatable to other tumour models, particularly in cases in
which the drug becomes bioavailable in the intracellular
compartment as a result of immunoliposome internalisation.
Our results highlight the serious limitations of the antibody–liposome targeting approach to extravascular
tumours. Nevertheless, the advantages of the liposome
approach [multivalent binding and delivery of a large drug
payload; the availability of long-circulating liposomes; an
ever-increasing variety of ligand-coupling techniques; and
the possibility of aiming at alternative targets such as the tumour
microvasculature (Burrows and Thorpe, 1993) or intravas-
cular targets] justify further investigation in this field.

Abbreviations
DOX, doxorubicin; Chol, cholesterol; [3H]Chol ether,
[3H]cholesterol hexadecyll ether; MPEG, polyethylene glycol; Hz,
hydrazide; DSPE, distearoyl phosphatidylethanolamine; MPB-Pe,
maleimidophenylbutyryl phosphatidylethanolamine; NAM,
N-acetylmethionine, α-Toco, α-tocopherol.

Acknowledgements
We are grateful to Dr Esther Hurwitz for helpful advice in the
purification of antibodies, and to Dina Tzemach for technical help.
Work supported by the Israeli Ministry of Science and Technology
and by Sequeus Pharmaceuticals (Menlo Pk., CA, USA).

References
AHMAD I AND ALLEN TM. (1992). Antibody-mediated specific
binding and cytotoxicity of liposome entrapped doxorubicin to
lung cancer cells in vitro. Cancer Res., 52, 4871–4820.
AHMAD I, LONGENECKER M, SAMUEL J AND ALLEN TM. (1993).
Antibody-targeted delivery of doxorubicin entrapped in sterically
stabilized liposomes can eradicate lung cancer in mice. Cancer
Res., 53, 1484–1488.
ALLEN TM, AGRAWAL AK, AHMAD I, HANSEN CB AND ZALIPSKY
S. (1994). Antibody-mediated targeting of long circulating
(Stealth) liposomes. J. Liposome Res., 4, 1–25.
BACUS SS, STANCOVSKI I, HUBERMAN E, CHIN D, HURWITZ E,
MILLS GB, ULLRICH A, SELA M AND YARDEN Y. (1992). Tumor
inhibitory monoclonal antibodies to the HER-2/neu receptor,
induce differentiation of human breast cancer cells. Cancer Res.,
52, 2580–2589.
BACHELA J, TRIPATHY D, MENDESJOHN J, BOUGHAMAN S, BENZ
CC, DANIS L, SKLARIN NT, SEIDMAN AD, HUDIS CA, MOORE
J, ROSEN PP, TWADDELL T, HENDERSON C AND NORTON L.
(1996). Phase II study of weekly intravenous recombinant
humanized anti-p185HER2 monocalonal antibody in patients with
HER2/neu-overexpressing metastatic breast cancer. J. Clin.
Oncol., 14, 737–744.
BERCHUCK A, KAMEL A, WHITAKER R, KERN B, OLT G, KINNEY
R, SOPER JT, DODGE R, CLARKE-PEARSON DL AND MARKS P.
(1990). Overexpression of HER-2/neu is associated with poor
survival in advanced epithelial ovarian cancer. Cancer Res., 50,
4087–4091.
BURROWS FJ AND THORPE PE. (1993). Eradication of large solid
tumors in mice with an immunotoxin directed against tumor
vasculature. Proc. Natl Acad. Sci. USA, 90, 8966–9000.
DEBS RJ, HEATH TD AND PAPAHADIOPOULOS D. (1987). Targeting
of anti-thy 1.1 monoclonal antibody- conjugated liposomes in
Thy 1.1 mice after intravenous administration. Biochim. Biophys.
Acta, 901, 183–190.
EMANUEL N, KEDAR E, BOLOTIN EM, SMORODINSKY NI AND
BARENHOLZ Y. (1996). Targeted delivery of doxorubicin via
sterically stabilized immunoliposomes: pharmacokinetics and
biodistribution in tumor-bearing mice. Pharm. Res., 13, 861–868.
GABIZON A. (1992). Selective tumor localization and improved
therapeutic index of anthracyclines encapsulated in long
circulating liposomes. Cancer Res., 52, 891–896.
GABIZON A, PRICE DC, HUBERTY J, BRESALIER RS AND
PAPAHADIOPOULOS D. (1990). Effect of liposome composition
and other factors on the targeting of liposomes to experimental
tumors: biodistribution and imaging studies. Cancer Res., 50,
6371–6378.
HARRIS DT AND MASTRANGELO MJ. (1989). Serotherapy of
cancer. Semin. Oncol., 16, 180–198.
HARWERTH IM, WELS W, SCHLEGEL J, MUELLER M AND HYNES
NE. (1993). Monoclonal antibodies directed to the erbB-2 receptor
inhibit in vivo tumour cell growth. Br. J. Cancer, 68, 1140–1145.
Liposome targeting to erbB-2-positive cells

D Goren et al

1756

HOROWITZ AT, TREVES AJ, VOSS R, OKON E, FUKS Z, DAVIDSON L, AND BIRAN S. (1985). A new human ovarian carcinoma cell line: establishment and analysis of tumor-associated markers. Oncology, 42, 332 – 337.

HOROWITZ AT, BARENHOLZ Y AND GABIZON A. (1992). In vitro cytotoxicity of liposome-encapsulated doxorubicin: dependence on liposome composition and drug release. Biochim. Biophys. Acta, 1109, 203 – 209.

HUANG SK, HONG K, LEE KD, PAPAHADIOPOULOS D AND FRIEND DS. (1991). Light microscopic localization of silver enhanced liposome entrapped colloidal gold in mouse tissues. Biochim. Biophys. Acta, 1069, 117 – 121.

HUANG SK, MARTIN FJ, JAY G, VOGEL J, PAPAHADIOPOULOS D AND FRIEND DS. (1993). Extravasation and transcytosis of liposomes in Kaposi’s sarcoma-like dermal lesions of transgenic mice bearing the HIV tat gene. Am. J. Pathol., 143, 10 – 14.

HURWITZ E, STANCOVSKI J, SELA M AND YARDEN Y. (1995). Suppression and promotion of tumor growth by monoclonal antibodies to ErbB-2 differentially correlate with cellular uptake. Proc. Natl Acad. Sci. USA, 92, 3353 – 3357.

JAIN RK. (1989). Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J. Natl Cancer Inst., 81, 570 – 576.

JAKOWATZ GJ, BEATTY BG, VLHOS WG, PORUDOMINSKY D, PHILBE VN, WILLIAMS LE, PAXTON RJ, SHVILYES J AND BEATTY JD. (1985). High-specific-activity 111In-labeled antiserum to an oncogenic antigen monoclonal antibody: biodistribution and imaging in nude mice bearing human colon cancer xenografts. Cancer Res., 45, 5700 – 5706.

LEE RJ AND LOW PS. (1995). Folate-mediated tumor cell targeting of liposome-entrapped doxorubicin in vitro. Biochim. Biophys. Acta, 1233, 134 – 144.

PAPAHADIOPOULOS D, ALLEN TM, GABIZON A, MAYHEW E, MATTAY K, HUANG SK, WOODLE MC, LASIC DD, REDEMANNC AND MARTIN FJ. (1991). Sterically stabilized liposomes: improvements in pharmacokinetics and anti-tumor therapeutic efficacy. Proc. Natl Acad. Sci. USA, 88, 11460 – 11464.

PARK JG, FRUCHT H, LAROCCA RV, BLISS DP, KURITA Y, CHEN TR, HENSLEE JG, TREPEL JB, JENSEN RT, JOHNSON BE, BANG Y, KIM J AND GAZDZICKI JF. (1990). Characteristics of cell lines established from human gastric carcinoma. Cancer Res., 50, 2773 – 2780.

PARK JW, STAGG R, LEWIS GD, CARTER P, MANEVAL D, SLAMON DJ, JAFFE H AND SHEPARD HM. (1992). Advances in cellular and molecular biology of breast cancer. In Genes, Oncogenes, Hormones, Dickson RB and Lippman ME. (eds) pp. 193 – 211. Kluwer Academic Publishing: Boston.

PARK JW, HONG K, CARTER P, ASGARI H, GUO LY, KELLER GA, WIRTH C, SHALABY R, KOTTS C, WOOD WI, PAPAHADIOPOULOS D AND BENTZ CC. (1995). Development of anti-p185HER2-immunoliposomes for cancer therapy. Proc. Natl Acad. Sci. USA, 92, 1327 – 1331.

PEETERS PA, BRUNINK BG, ELING WM AND CROMMELIN DJ. (1989). Therapeutic effect of chloroquine (CQ)-containing immunoliposomes in rats infected with Plasmodium berghei: parasitized mouse red blood cells: comparison with combination of antibodies and CQ or liposomal CQ. Biochim. Biophys. Acta, 981, 269 – 276.

PRESS MF, CORDON-CARDO C AND SLAMON DJ. (1990). Expression of the HER-2/neu proto-oncogene in normal human adults and fetal tissues. Oncogene, 5, 953 – 962.

SLAMON DJ, CLARK GM, WONG SG, LEVIN WJ, ULLRICH A AND MCGUIRE WL. (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2 neu oncogene. Science, 235, 177 – 182.

SLAMON DJ, GODOLPHIN W, JONES LA, HOLT JA, WONG SG, KEITH DE, LEVIN WJ, STUART SG, UDOVE J, ULLRICH A AND PRESS MF. (1989). Studies of the HER-2/neu protooncogene in human breast and ovarian cancer. Science, 244, 707 – 712.

STANCOVSKI J, HURWITZ E, LEITNER O, ULLRICH A, YARDEN Y AND SELA M. (1991). Mechanistic aspects of the opposing effects of monoclonal antibodies to the erbB-2 receptor on tumor growth. Proc. Natl Acad. Sci. USA, 88, 8691 – 8695.

UZIELY B, JEFFERS S, ISACSON R, KUTSCH K, WEI-TSAO D, YEHOSHUA Z, MUGGIA FM AND GABIZON A. (1995). Liposomal doxorubicin: antitumor activity and unique toxicities during two complementary phase I studies. J. Clin. Oncol., 13, 1777 – 1785.

VAAGE J, BARBERA-GUILLEM E, ABRAS R, HUANG A AND WORKING P. (1994). Tissue distribution and therapeutic effect of intravenous free or encapsulated liposomal Doxorubicin on human prostate carcinoma xenografts. Cancer, 73, 1478 – 1484.

WILLIAMS SS, ALOSOCO TR, MAYHEW E, LASIC DD, MARTIN FJ AND BANKERT RB. (1993). Arrest of human lung tumor xenograft growth in severe combined immunodeficient mice using Doxorubicin encapsulated in sterically stabilized liposomes. Cancer Res., 53, 3964 – 3967.

YONEMURA Y, NINOMIYA I, YAMAGUCHI A, FUSHIDA S, KIMURA H, OHOYAMA S, MIYAZAKI I, ENDOU Y, TANAKA M AND SASAKI T. (1991). Evaluation of immunoreactivity for erbB2 protein as a marker of poor short term prognosis in gastric cancer. Cancer Res., 51, 1034 – 1038.

ZALIPSKY S. (1993a). Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes. Bioconjug. Chem., 4, 296 – 299.

ZALIPSKY S, NEWMAN M, PUNNTAMBKAR B AND WOODLE MC. (1993b). Model ligands linked to the polymer-chains on liposomal surfaces: application of a new functionalized polyethylene glycol–lipid conjugate. Polym. Mater. Sci. Eng., 67, 519 – 520.

ZALIPSKY S, PUNNTAMBKAR B, BOULIKAS P, ENGBER CM AND WOODLE MC. (1995). Peptide attachment to extremities of liposomal surface grafted PEG chains: preparation of the long-circulating form of laminin pentapeptide, YIGSR. Bioconjugate Chem., 6, 705 – 708.