Abstract: Let p be an odd prime number. In this paper, we show that the genome $\Gamma(P)$ of a finite p-group P, defined as the direct product of the genotypes of all rational irreducible representations of P, can be recovered from the first group of K-theory $K_1(\mathbb{Q}P)$. It follows that the assignment $P \mapsto \Gamma(P)$ is a p-biset functor. We give an explicit formula for the action of bisets on Γ, in terms of generalized transfers associated to left free bisets. Finally, we show that Γ is a rational p-biset functor, i.e. that Γ factors through the Roquette category of finite p-groups.

AMS Subject Classification: 19B28, 20C05, 18A99.

Keywords: K-theory, genotype, Whitehead group, biset functor, Roquette category, transfer.

1. Introduction

Let p be a prime number. This article originates in a joint work with Nadia Romero ([3]), when we started considering the possible applications of genetic bases to the computation of Whitehead groups of finite p-groups. Indeed, after the comprehensive book of B. Oliver ([7]), it became clear to N. Romero that these questions have close links to rational representations of p-groups. So the idea emerged that possibly genetic bases would be a natural tool in this context, and a first use of this is made in [8].

In particular, when trying to compute various groups related to the Whitehead group of a finite p-group P (for odd p), a specific product appears, defined in terms of the fields of endomorphisms of the irreducible $\mathbb{Q}P$-modules. After some non trivial reformulation using genetic bases, this product can be viewed as

$$\Gamma(P) = \prod_{S \in \mathcal{B}} (N_P(S)/S)$$

where \mathcal{B} is a genetic basis of P. As the groups $N_P(S)/S$ are called the types or genotypes of the irreducible $\mathbb{Q}P$-modules, we call $\Gamma(P)$ the genome of P. It is the main subject of this paper.

The connection of $\Gamma(P)$ with Whitehead groups and K-theory is established in Theorem [4,3] the genome of P can be recovered as the p-torsion
part of $K_1(QP)$. This induces a structure of p-biset functor on the correspondence $P \mapsto \Gamma(P)$, which we try to make explicit in Section 5 by giving formulae to compute the action of a (Q,P)-biset on $\Gamma(P)$ (Theorem 5.9). Finally, we show that Γ is a rational p-biset functor, hence it factors through the Roquette category of finite p-groups introduced in [3].

2. Review of K_1

2.1. Let A be a ring (with 1). Let $GL(A)$ denote the colimit of the linear groups $GL_n(A)$, for $n \in \mathbb{N}_{>0}$, where the inclusion $GL_n(A) \hookrightarrow GL_{n+1}(A)$ is

$$M \in GL_n(A) \mapsto \begin{pmatrix} M & 0 \\ 0 & 1 \end{pmatrix} \in GL_{n+1}(A).$$

The group $K_1(A)$ is defined as the abelianization of $GL(A)$, namely

$$K_1(A) = GL(A)^{ab} = GL(A)/[GL(A), GL(A)].$$

2.2. Remark: In particular there is a canonical group homomorphism from the group $A^\times = GL_1(A)$ of invertible elements of A to $K_1(A)$, which factors as

$$A^\times \longrightarrow A^\times/[A^\times, A^\times] \longrightarrow K_1(A)$$

2.3. There is an alternative definition of $K_1(A)$: let $\mathcal{P}(A)$ denote the category of pairs (P,a) of a finitely generated projective (left) A-module P, and an automorphism a of P. A morphism $(P,a) \rightarrow (Q,b)$ in $\mathcal{P}(A)$ is a morphism of A-modules $f : P \rightarrow Q$ such that $b \circ f = f \circ a$.

Let $[P,a]$ denote the isomorphism class of (P,a) in $\mathcal{P}(A)$, and let $K_{det}(A)$ denote the Grothendieck group with generators the set of these equivalence classes, and the relations of the following two forms

- $[P,a \circ a'] = [P,a] + [P,a']$, for any $a, a' \in \text{Aut}_A(P),$
- $[Q,b] = [P,a] + [R,c]$ whenever there are morphisms $f : [P,a] \rightarrow [Q,b]$ and $g : [Q,b] \rightarrow [R,c]$ in $\mathcal{P}(A)$ such that the sequence

$$0 \rightarrow P \xrightarrow{f} Q \xrightarrow{g} R \rightarrow 0$$

is an exact sequence of A-modules (in particular, since R is projective, this sequence splits).
If \(n \in \mathbb{N}_{>0} \) and \(m \in GL_n(A) \), one can view \(m \) as an automorphism of the free module \(A^n \). Let \(\lambda(m) = [A^n, m] \in K_{\text{det}}(A) \).

2.4. Theorem: The assignment \(m \mapsto \lambda(m) \) induces a group isomorphism \(K_1(A) \cong K_{\text{det}}(A) \).

Proof: See [5] Theorem 40.6. \(\square \)

2.5. Let now \(A \) and \(B \) be two rings, and let \(L \) be a \((B,A)\)-bimodule which is finitely generated and projective as a left \(B \)-module. If \(P \) is a finitely generated projective \(A \)-module, then \(P \) is a direct summand of some free \(A \)-module \(A^n \), and then \(L \otimes_A P \) is a direct summand of \(L \otimes_A A^n \cong L^n \) as a left \(B \)-module. Hence \(L \otimes_A P \) is a finitely generated projective left \(B \)-module. Then the functor \(P \mapsto L \otimes_A P \) induces a functor \(T_L : \mathcal{P}(A) \rightarrow \mathcal{P}(B) \) such that

\[
T_L((P, a)) = (L \otimes_A P, L \otimes_A a) .
\]

One checks easily that the defining relations of \(K_{\text{det}}(A) \) are preserved by this functor, hence there is a well-defined induced group homomorphism

\[
t_L : K_{\text{det}}(A) \rightarrow K_{\text{det}}(B)
\]

sending the class \([P, a]\) to the class \([L \otimes_A P, L \otimes_A a]\). This group homomorphism is called the (generalized) transfer associated to the bimodule \(L \).

The properties of the tensor product of bimodules now translate to properties of this transfer homomorphism:

2.6. Proposition: Let \(A, B, C \) be rings. In the following assertions, assume that the bimodules involved are finitely generated and projective as left modules. Then:

1. if \(L \cong L' \) as \((B,A)\)-bimodules, then \(t_L = t_{L'} \).
2. if \(L \) is the \((A,A)\)-bimodule \(A \), then \(t_L = \text{Id}_{K_{\text{det}}(A)} \).
3. if \(L \cong L_1 \oplus L_2 \) as \((B,A)\)-bimodules, then \(t_L = t_{L_1} + t_{L_2} \).
4. if \(L \) is a \((B,A)\)-bimodule and \(M \) is a \((C,B)\)-bimodule, then

\[
t_M \circ t_L = t_{M \otimes_B L} .
\]

It follows in particular from (2) and (4) that if \(L \) is a \((B,A)\)-bimodule inducing a Morita equivalence from \(A \) to \(B \), then \(t_L \) is an isomorphism (more precisely, if \(M \) is an \((A,B)\)-bimodule such that \(M \otimes_B L \cong A \) and \(L \otimes_A M \cong B \) as bimodules, then \(t_L \) and \(t_M \) are inverse to one another).
The group $K_1(A)$ has been determined for a number of rings A. In particular:

2.8. Theorem:

1. Let D be a division ring. Then $K_1(D) \cong D^\times/[D^\times,D^\times]$.
2. Let F be a field. Then the determinant homomorphism

$$m \in GL_n(F) \to \det(m) \in F^\times$$

induces an isomorphism $K_1(F) \cong F^\times$.

Proof: See [5] Theorem 38.32.

2.9. Proposition: Let F be a field and G be a finite group of order prime to the characteristic of F. Let $\text{Irr}_F(G)$ denote a set of representatives of isomorphism classes of irreducible FG-modules, and for $V \in \text{Irr}_F(G)$, let $D_V = \text{End}_{FG}(V)$ denote the skew field of endomorphisms of V.

Then V is an (FG,D_V^{op})-bimodule, where the action of $g \in G$ and $f \in D_V$ on $v \in V$ is given by $g \cdot v \cdot f = gf(v) = f(gv)$. Let V^* denote the F-dual of V, considered as a (D_V^{op},FG)-bimodule.

Then the map

$$\tau : K_1(FG) \overset{\prod t_V^*}{\longrightarrow} \prod_{V \in \text{Irr}_F(G)} K_1(D_V^{\text{op}})$$

is a well defined isomorphism of abelian groups, with inverse

$$\tau' : \prod_{V \in \text{Irr}_F(G)} K_1(D_V^{\text{op}}) \overset{\prod t_V}{\longrightarrow} K_1(FG).$$

Proof: As $|G|$ is invertible in F, the group algebra FG is semisimple. Moreover for each $V \in \text{Irr}_F(V)$, the skew field D_V^{op} is also a semisimple F-algebra. This shows that V is projective and finitely generated as an FG-module, and that V^* is projective and finitely generated as a D_V^{op}-module (that is V^* is a finite dimensional D_V-vector space). Hence the generalized transfer maps $t_V : K_1(FG) \to K_1(D_V^{\text{op}})$ and $t_{V^*} : K_1(D_V^{\text{op}}) \to K_1(FG)$ are well defined.

Now for any two finitely generated FG-modules V and W, the map

$$\alpha \otimes w \mapsto \langle v \in V \mapsto \alpha(v)w \in W \rangle$$
extends to an isomorphism (see e.g. [6] (2.32))

\[V^* \otimes_{FG} W \to \text{Hom}_{FG}(V, W) \]

of \(((\text{End}_{FG}V)^{op}, (\text{End}_{FG}W)^{op}))\)-bimodules, where the bimodule structure on the right hand side is given by

\[\forall h \in (\text{End}_{FG}V)^{op}, \forall \psi \in \text{Hom}_{FG}(V, W), \forall k \in (\text{End}_{FG}W)^{op}, h \cdot \psi \cdot k = k \circ \psi \circ h. \]

In case \(V, W \in \text{Irr}_F(G) \) and \(V \neq W \), this yields \(V^* \otimes_{FG} W = 0 \). And if \(V = W \), we have an isomorphism \(V^* \otimes_{FG} V \cong D^D_{V^*} \) of \((D^D_{V^*}, D^D_{V^*})\)-bimodules. Then by Assertions (2) and (4) of Proposition 2.6

\[t_{V^*} \circ t_W = \begin{cases} 0 & \text{if } V \neq W \\ \text{Id}_{K_1(D^D_{V^*})} & \text{if } V = W. \end{cases} \]

In other words \(\tau \circ \tau' \) is the identity map of \(\prod_{V \in \text{Irr}_F(G)} K_1(D^D_{V^*}). \) Conversely

\[\tau' \circ \tau = \sum_{V \in \text{Irr}_F(G)} t_V \circ t_{V^*} = t_L, \]

where \(L \) is the \((FG, FG)\)-bimodule \(\bigoplus_{V \in \text{Irr}_F(G)} (V \otimes_{D^D_{V^*}} V^*) \). For each \(V \in \text{Irr}_F(G) \), the bimodule \(V \otimes_{D^D_{V^*}} V^* \cong \text{End}_{D^D_{V^*}}(V) \) is isomorphic to the Wedderburn component of \(FG \) corresponding to the simple module \(V \), and the semisimple algebra \(FG \) is equal to the direct sum of its Wedderburn components. Thus \(L \cong FG \), and \(t_L \) is equal to the identity map of \(K_1(FG) \). \(\square \)

2.10. Corollary : Under the assumptions of Proposition 2.9, there is a group isomorphism

\[K_1(FG) \cong \prod_{V \in \text{Irr}_F(G)} D^X_{V} / [D^X_{V}, D^X_{V}] . \]

Proof : This follows from Proposition 2.9 and Theorem 2.8 since \(x \mapsto x^{-1} \) is a group isomorphism \(D^X \to (D^{op})^X \), for any skew field \(D \). \(\square \)

2.11. Recall ([2] Chapter 3) that the biset category \(\mathcal{C} \) of finite groups has all finite groups as objects, the set of morphisms in \(\mathcal{C} \) from a group \(G \) to a group \(H \) being the Grothendieck group of (finite) \((H, G)\)-bisets, i.e. the Burnside group \(B(H, G) \). The composition of morphisms in \(\mathcal{C} \) is the linear extension of the product \((V, U) \mapsto V \times_H U \), for a \((K, H)\)-biset \(V \) and an \((H, G)\)-biset \(U \). 5
A biset functor is an additive functor from \mathcal{C} to the category $\mathcal{A}b$ of abelian groups.

For a prime number p, a p-biset functor is an additive functor from the full subcategory \mathcal{C}_p of \mathcal{C} consisting of p-groups to $\mathcal{A}b$.

Let $1\mathcal{C}$ denote the (non full) subcategory of \mathcal{C} with the same objects, but where the set of morphisms from a group G to a group H is the Grothendieck group $1B(H,G)$ of left free (H,G)-bisets. A deflation biset functor is an additive functor from $1\mathcal{C}$ to $\mathcal{A}b$.

\begin{itemize}
 \item[2.12. Proposition:]\end{itemize}
 \begin{itemize}
 \item[1.] Let R be a commutative ring. The assignment $G \mapsto K_1(RG)$ is a deflation functor.
 \item[2.] The assignment $G \mapsto K_1(QG)$ is a biset functor.
 \end{itemize}

\textbf{Proof}: For Assertion 1, if G and H are finite groups, and if U is a finite left free (H,G)-biset, then the corresponding permutation (RH, RG)-bimodule RU is free and finitely generated as a left RH-module. Hence the transfer $t_{RU} : K_1(RG) \to K_1(RH)$ is well defined. If U' is an (H, G)-biset isomorphic to U, then $RU' \cong RU$ as bimodules, hence $t_{RU'} = t_{RU}$. And if U is the disjoint unions of two (H, G)-bisets U_1 and U_2, then $RU \cong RU_1 \oplus RU_2$, thus $t_{RU} = t_{RU_1} + t_{RU_2}$. This shows that one can extend linearly this transfer construction $U \mapsto t_{RU}$ to a group homomorphism $u \in 1B(H, G) \mapsto K_1(u) \in \text{Hom}_{\mathcal{A}b}(K_1(RG), K_1(RH))$.

Moreover, if K is a third group, and V is a finite left free (K, H)-biset, then $t_{RU} \circ t_{RV} = t_{R(U \times H V)}$ since the bimodules $RV \otimes_{RH} RU$ and $R(V \times_H U)$ are isomorphic. Finally, if U is the identity biset at G, namely the set G acted on by left and right multiplication, then $RU \cong RG$ as (RG, RG)-bimodule, thus $t_{RU} = \text{Id}_{K_1(RG)}$. This completes the proof of Assertion (1).

The proof of Assertion (2) is the same, except that the transfer $t_{QU} : K_1(QG) \to K_1(QH)$ is well defined for an arbitrary finite (H, G)-biset U: indeed QU is always finitely generated and projective as a QH-module.

\section*{3. Review of genetic subgroups}

3.1. Let p be a prime number. A finite p-group is called a Roquette p-group if it has normal rank 1, i.e. if all its normal abelian subgroups are cyclic. The Roquette p-groups (see [3]) are the cyclic groups C_{p^n}, for $n \in \mathbb{N}$, if p is odd. The Roquette 2-groups are the cyclic groups C_{2^n}, for $n \in \mathbb{N}$, the generalized
quaternion groups Q_{2^n} for $n \geq 3$, the dihedral groups D_{2^n} for $n \geq 4$, and the semidihedral groups SD_{2^n} for $n \geq 4$.

If P is a Roquette p-group, then P admits a unique faithful irreducible rational representation Φ_P ([2] Proposition 9.3.5).

3.2. If S is a subgroup of a finite p-group P, denote by $Z_P(S)$ the subgroup of $N_P(S)$ defined by $Z_P(S)/S = Z(N_P(S)/S)$. The subgroup S is called genetic if it fulfills the following two conditions:

1. if $x \in P$, then $S^x \cap Z_P(S) \leq S$ if and only if $S^x = S$.
2. the group $N_P(S)/S$ is a Roquette p-group.

When S is a genetic subgroup of P, let $V(S) = \text{Indinf}^P_{N_P(S)/S}\Phi_{N_P(S)/S}$ denote the $\mathbb{Q}P$-module obtained by inflation of $\Phi_{N_P(S)/S}$ to $N_P(S)$ followed by induction to P.

Two genetic subgroups S and T of P are said to be linked modulo P (notation $S \Leftrightarrow_P T$) if there exists an element $x \in P$ such that $S^x \cap Z_P(T) \leq T$ and $xT \cap Z_P(S) \leq S$ (where as usual $S^x = x^{-1}Sx$ and $xT = xTx^{-1}$).

3.3. Theorem: Let p be a prime number and P be a finite p-group.

1. If V is a simple $\mathbb{Q}P$-module, then there exists a genetic subgroup S of P such that $V \cong V(S)$.
2. If S is a genetic subgroup of P, then there is an isomorphism of \mathbb{Q}-algebras

$$\text{End}_{\mathbb{Q}P}(S) \cong \text{End}_{\mathbb{Q}N_P(S)/S}\Phi_{N_P(S)/S}$$

induced by the induction-inflation functor from $\mathbb{Q}N_P(S)/S$-modules to $\mathbb{Q}P$-modules.

3. If S and T are genetic subgroups of P, then $V(S) \cong V(T)$ if and only if $S \Leftrightarrow_P T$. In this case, the groups $N_P(S)/S$ and $N_P(T)/T$ are isomorphic.

Proof: See Theorem 9.4.1, Lemma 9.4.3, Definition 9.4.4, Corollary 9.4.5, Theorem 9.5.6 and Theorem 9.6.1 of [2].

It follows in particular that the relation \Leftrightarrow_P is an equivalence relation on the set of genetic subgroups of P. A genetic basis of P is by definition a set of representatives of genetic subgroups of P for this equivalence.

It also follows that if V is a simple $\mathbb{Q}P$-module, and if S is a genetic subgroup of P such that $V \cong V(S)$, then the group $N_P(S)/S$ does not depend on the choice of such a genetic subgroup S. This factor group is called the type of V ([2] Definition 9.6.8). Laurence Barker ([1]) has introduced the word genotype instead of type, and we will follow this terminology.
3.4. Definition: Let p be a prime number and P be a finite p-group. The genome $\Gamma(P)$ of P is the product group

$$\Gamma(P) = \prod_{S \in B} (N_P(S)/S) ,$$

where B is a genetic basis of P. It is well defined up to isomorphism.

More precisely, suppose that B and B' are genetic bases of a p-group P. Then for $S \in B$, there exists a unique $S' \in B'$ such that there exists some $x \in P$ with

$$S^x \cap Z_P(S') \leq S'$$

and the correspondence $S \mapsto S'$ is a bijection from B to B'. Moreover, for each $S \in B$ corresponding to $S' \in B'$, the set D of elements x satisfying (3.5) is a single $(N_P(S), N_P(S'))$-double coset in P ([4], Proposition 9.6.9).

Let $x \in D$. Then for each $n \in N_P(S)/S$, there is a unique element $n' \in N_P(S')/S'$ such that $nSx = xS'n'$, and the map $n \mapsto n'$ is a group isomorphism $N_P(S)/S \to N_P(S')/S'$, which only depends on x up to interior automorphism of $N_P(S)/S$. In particular, when p is odd, the group $N_P(S)/S$ is cyclic, so this group isomorphism does not depend on x.

Thus for odd p, this yields a canonical group isomorphism

$$\prod_{S \in B} (N_P(S)/S) \xrightarrow{\gamma_{B,B'}} \prod_{S' \in B'} (N_P(S')/S') .$$

3.7. Remark: Let p be a prime number, and P be a finite p-group. Since the Roquette p-groups are all indecomposable (that is, they cannot be written as a direct product of two non-trivial of their subgroups), the genotypes of the simple Q_P-modules are determined by the group $\Gamma(P)$: by the Krull-Remak-Schmidt theorem, the group $\Gamma(P)$ can be written as a direct product of indecomposable groups $\Gamma_1, \ldots, \Gamma_r$, and such a decomposition is unique (up to permutation and isomorphism of the factors). Then $\Gamma_1, \ldots, \Gamma_r$ are the genotypes of the simple Q_P-modules.

In terms of the Roquette category \mathcal{R}_p (see Section 7 or [3]), this means that two finite p-groups P and Q become isomorphic in \mathcal{R}_p if and only if their genomes $\Gamma(P)$ and $\Gamma(Q)$ are isomorphic (as groups) (see [3] Proposition 5.14).
4. K-theory and genome

4.1. Lemma : Let p be a prime, and C be a cyclic p-group. Recall that Φ_C is the unique faithful irreducible rational representation of C, up to isomorphism.

1. If $C = 1$, then $\Phi_C = \mathbb{Q}$.
2. If $C \neq 1$, let Z be the unique subgroup of order p of C. Then there is an exact sequence
 \[(4.2) \quad 0 \to \Phi_C \to \mathbb{Q}C \to \mathbb{Q}(C/Z) \to 0,
 \]
of $(\mathbb{Q}C, \mathbb{Q}C)$-bimodules, where $\mathbb{Q}C \to \mathbb{Q}(C/Z)$ is the canonical surjection.
3. If C has order p^n, then the algebra $\text{End}_{\mathbb{Q}C}(\Phi_C)$ is isomorphic to the cyclotomic field $\mathbb{Q}(\zeta_{p^n})$, and if $p > 2$, the map sending $c \in C$ to the endomorphism $\varphi \mapsto \varphi c$ of Φ_C is a group isomorphism from C to the p-torsion part $\mathbb{Q}(\zeta_{p^n})^\times$ of the multiplicative group $\mathbb{Q}(\zeta_{p^n})^\times$.

Proof : Assertion 1 is trivial. Assertion 2 follows e.g. from [2], Proposition 9.3.5. A different proof consists in observing that if C has order p^n, then the algebra $\mathbb{Q}C$ is isomorphic to $\mathbb{Q}[X]/(X^{p^n} - 1)$, and the projection map $\mathbb{Q}C \to \mathbb{Q}(C/Z)$ becomes the canonical map
 \[\mathbb{Q}[X]/(X^{p^n} - 1) \to \mathbb{Q}[X]/(X^{p^{n-1}} - 1).\]
The kernel of this map is now clearly isomorphic to $\mathbb{Q}[X]/(\gamma_{p^n})$, where γ_{p^n} is the p^n-th cyclotomic polynomial, that is, the p^n-th cyclotomic field, which is clearly a simple faithful module for the cyclic group generated by X in the algebra $\mathbb{Q}[X]/(X^{p^n} - 1)$. Observe moreover that the exact sequence (4.2) is indeed a sequence of $(\mathbb{Q}C, \mathbb{Q}C)$-bimodules.

The first part of Assertion 3 follows easily. For the last part, let ζ_{p^n} be a primitive p^n-th root of unity. Observe that a p-torsion element in $\mathbb{Q}(\zeta_{p^n})^\times$ is a p^n-th root of unity. Hence the p-torsion part of $\mathbb{Q}(\zeta_{p^n})^\times$ is cyclic of order p^n, generated by ζ_{p^n}. \hfill \Box

4.3. Theorem : Let p be an odd prime, and P be a finite p-group, and \mathcal{B} be a genetic basis of P. If S is a genetic subgroup of P, and $a \in N_P(S)/S$, view a as an automorphism of $\Phi_{N_P(S)/S}$, and let \hat{a} denote the corresponding automorphism of $V(S) = \text{Ind}^P_{N_P(S)} \Phi_{N_P(S)/S}$.
1. The group homomorphism

\[\Gamma(P) = \prod_{S \in \mathcal{B}} \left(N_P(S)/S \right)^{\nu_B} K_1(QP) \]

sending \(a \in N_P(S)/S \), for \(s \in \mathcal{B} \), to the class \([V(S), \tilde{a}]\) in \(K_1(QP) \) is an isomorphism of the genome \(\Gamma(P) \) onto the \(p \)-torsion part \(pK_1(QP) \) of \(K_1(QP) \).

2. If \(\mathcal{B}' \) is another genetic basis of \(P \), and \(\gamma_{\mathcal{B}', \mathcal{B}} \) is the canonical isomorphism defined in 3.6, then

\[\nu_{\mathcal{B}'} \circ \gamma_{\mathcal{B}', \mathcal{B}} = \nu_{\mathcal{B}}. \]

Proof: Since \(p \) is odd, the Roquette \(p \)-groups are the cyclic \(p \)-groups. Assertion 1 now follows from Proposition 2.9, Theorem 3.3, and Lemma 4.1.

For Assertion 2, let \(S \in \mathcal{B} \) and let \(S' \) be the unique element of \(\mathcal{B}' \) such that \(S' \prec_p S \). Let \(\varphi : N_P(S)/S \to N_P(S')/S' \) be the restriction of \(\gamma_{\mathcal{B}', \mathcal{B}} \) to \(N_P(S)/S \). If \(a \in N_P(S)/S \), let \(a' = \varphi(a) \). Then \(\varphi \) induces an isomorphism of \(QP \)-modules \(\tilde{\varphi} : V(S) \to V(S') \) such that the diagram

\[
\begin{array}{ccc}
V(S) & \xrightarrow{\tilde{\varphi}} & V(S) \\
\varphi \downarrow & & \downarrow \tilde{\varphi} \\
V(S') & \xrightarrow{\tilde{a}'} & V(S')
\end{array}
\]

is commutative. Hence \((V(S), \tilde{a}) \cong (V(S'), \tilde{a}') \) in \(\mathcal{P}(QP) \), thus \([V(S), \tilde{a}] = [V(S'), \tilde{a}'] \) in \(K_1(QP) \), as was to be shown.

4.4. Remark: The elements of odd order of \(\mathbb{Q}(\zeta_p^n) \times \) are the \(p^n \)-th roots of unity. So \(\Gamma(P) \) is also the odd-torsion part of \(K_1(QP) \).

4.5. Corollary: Let \(p \) be an odd prime. Then the correspondence sending a finite \(p \)-group \(P \) to its genome \(\Gamma(P) \) is a \(p \)-biset functor.

Proof: Indeed by Proposition 2.12, the assignment \(P \mapsto K_1(QP) \) is a \(p \)-biset functor. So its \(p \)-torsion part is also a \(p \)-biset functor.

5. Explicit transfer maps

We begin with a slight generalization of the transfer homomorphism, associated to a left-free biset:
5.1. Lemma and Definition: Let G and H be finite groups, and let Ω be a left free (H, G)-biset. Let $[H \setminus \Omega]$ be a set of representatives of H-orbits on Ω. For $g \in G$, and $x \in \Omega$, let $h_{g,x} \in H$ and $\sigma_g(x) \in [H \setminus \Omega]$ be the elements defined by $xg = h_{g,x}\sigma_g(x)$.

1. The map $g \in G \mapsto \prod_{x \in [H \setminus \Omega]} h_{g,x}$ (in any order) induces a well defined group homomorphism

$$\text{Ver}_\Omega : G/[G, G] \to H/[H, H]$$

called the (generalized) transfer associated to Ω.

2. If $\Omega' \cong \Omega$ as (H, G)-bisets, then $\text{Ver}_{\Omega'} = \text{Ver}_{\Omega}$.

3. If $\Omega = \Omega_1 \sqcup \Omega_2$ as (H, G)-bisets, then $\text{Ver}_\Omega = \text{Ver}_{\Omega_1} + \text{Ver}_{\Omega_2}$.

4. If K is another finite group, and Ω' is a finite left free (K, H)-biset, then $\Omega' \times_H \Omega$ is a finite left free K-set, and

$$\text{Ver}_{\Omega'} \circ \text{Ver}_\Omega = \text{Ver}_{\Omega' \times_H \Omega}.$$

The notation and terminology comes from the classical transfer from $G/[G, G]$ to $H/[H, H]$, when H is a subgroup of G: the corresponding biset Ω is the set G itself, in this case.

Proof: Changing the set of representatives $[H \setminus \Omega]$ amounts to replacing each $x \in [H \setminus \Omega]$ by $\eta_x x$, for some $\eta_x \in H$. This changes the element $h_{g,x}$ in $h_{g',x} = \eta_x h_{g,x} \eta_{\sigma_g(x)}^{-1}$, so the product over $x \in [H \setminus \Omega]$ of the elements $h_{g',x}$ is equal to the product of the elements $h_{g,x}$ in the abelianization $H/[H, H]$. Hence Ver_Ω does not depend on the choice of a set of representatives.

It follows moreover from the definition that for $g, g' \in G$ and $x \in [H \setminus \Omega]$, we have $h_{gg',x} = h_{g,x}h_{g',\sigma_g(x)}$. Hence

$$\prod_{x \in [H \setminus \Omega]} h_{gg',x} = \prod_{x \in [H \setminus \Omega]} h_{g,x} \prod_{x \in [H \setminus \Omega]} h_{g',\sigma_g(x)} = \prod_{x \in [H \setminus \Omega]} h_{g,x} \prod_{x \in [H \setminus \Omega]} h_{g',x}$$

in $H/[H, H]$, so Ver_Ω is a group homomorphism. This proves Assertion 1.

For Assertion 2, let $f : \Omega \to \Omega'$ be an isomorphism of (H, G)-bisets. Then the set $f([H \setminus \Omega])$ is a set of representatives of the H-orbits on Ω'. Moreover for $x \in [H \setminus \Omega]$ and $g \in G$,

$$f(x)g = f(xg) = f(h_{g,x}\sigma_g(x)) = h_{g,x}f(\sigma_g(x)),$$
so \(\text{Ver}_{\Omega'}(g) = \prod_{x \in \Omega} h_{g,x} = \text{Ver}_{\Omega}(g) \), which proves Assertion 2.

Assertion 3 is clear, since \([H \setminus \Omega] = [H \setminus \Omega_1] \sqcup [H \setminus \Omega_2]\).

For Assertion 4, it is straightforward to check that \(\Omega' \times_H \Omega \) is left free. Moreover, the set of pairs \((x', x) \in \Omega' \times_H \Omega\), for \(x' \in [K \setminus \Omega']\) and \(x \in [H \setminus \Omega]\), is a set of representatives of \(K \) orbits on \(\Omega' \times_H \Omega \). Then for \(x' \in [K \setminus \Omega']\) and \(x \in [H \setminus \Omega]\), and \(g \in G\)

\[
(x', x)g = (x', xg) = (x', h_{g,x} \sigma_g(x)) = (x' h_{g,x}, \sigma_g(x)) = h_{h_{g,x}, x'} \tau_{h_{g,x}}(x'), \sigma_g(x) \,,
\]

where \(k_{h,x'} \in K\) and \(\tau_{h}(x') \in [K \setminus \Omega']\) are defined by \(x'h = k_{h,x'} \tau_{h}(x')\), for \(h \in H\) and \(x' \in [K \setminus \Omega']\).

It follows that

\[
\text{Ver}_{\Omega'} \times_h \Omega(g) = \prod_{x' \in [K \setminus \Omega']} h_{x', x} = \text{Ver}_{\Omega'} \left(\prod_{x \in [H \setminus \Omega]} h_{g,x} \right) = \text{Ver}_{\Omega'} \circ \text{Ver}_{\Omega}(g) \,,
\]

which completes the proof.

\[\square\]

5.2. Corollary 4.5 shows that there exists a \(p \)-biset functor structure on the assignment \(P \mapsto \Gamma(P) \) for \(p \)-groups, when \(p \) is odd. This raises the following question: suppose that \(P \) and \(Q \) are finite \(p \)-groups, that \(\mathcal{B}_P \) is a genetic basis of \(P \), and \(\mathcal{B}_Q \) is a genetic basis of \(Q \). When \(U \) is a finite \((Q,P)\)-biset, how can we compute the map

\[
\Gamma(U) : \Gamma(P) = \prod_{S \in \mathcal{B}_P} (N_P(S)/S) \rightarrow \Gamma(Q) = \prod_{T \in \mathcal{B}_Q} (N_Q(T)/T)
\]

giving the action of the biset \(U \)?

This amounts to finding the map

\[
\Gamma(U)_{T,S} : \overline{N}_P(S) = N_P(S)/S \rightarrow \overline{N}_Q(T) = N_Q(T)/T
\]

for each pair \((T, S)\) of a genetic subgroup \(T \) of \(Q \) and a genetic subgroup \(S \) of \(P \), defined as follows: if \(a \in \overline{N}_P(S) \), then \(a \) can be viewed as an automorphism of the \(Q \overline{N}_P(S) \)-module \(\Phi_{\overline{N}_P(S)} \), viewed as an ideal of \(Q \overline{N}_P(S) \) as in 4.2. Then \(\tilde{a} = \text{Ind}_{\overline{N}_P(S)}^{Q \overline{N}_P(S)} a \) is an automorphism of \(V(S) = \text{Ind}_{\overline{N}_P(S)}^{Q \overline{N}_P(S)} \Phi_{\overline{N}_P(S)} \), hence an element \(\tilde{a} = [V(S), \tilde{a}] \) of \(K_1(QP) \). This element is mapped by \(t_{QU} \) to the element

\[
t_{QU}(\tilde{a}) = [QU \otimes_{QP} V(S), QU \otimes_{QP} \tilde{a}]
\]

12
of $K_1(\mathbb{Q}Q)$. This in turn is mapped to the element $t_{V(T)} \circ t_{QU}(\hat{a})$ of the direct summand $K_1(F_T)$ of $K_1(\mathbb{Q}Q)$ corresponding to the simple $\mathbb{Q}Q$-module $V(T)$ as in Proposition 2.9, where F_T is the field $D_{V(T)} = \text{End}_{\mathbb{Q}Q}V(T)$.

Thus to find $\Gamma(U)_{T,S}(a)$, we have to compute the element

$$[V(T)^* \otimes_{\mathbb{Q}Q} \mathbb{Q}U \otimes_{\mathbb{Q}P} V(S), V(T)^* \otimes_{\mathbb{Q}Q} \mathbb{Q}U \otimes_{\mathbb{Q}P} \hat{a}]$$

of $K_1(F_T) \cong F_T^*$, and identify it as an element of $\overline{N}_Q(T)$.

We set $L(U)_{T,S} = V(T)^* \otimes_{\mathbb{Q}Q} \mathbb{Q}U \otimes_{\mathbb{Q}P} V(S)$ for simplicity. First we observe that the induction-inflation functor $\text{Indinf}_{\mathbb{Q}P(S)}^{N_{P(S)}}$ is isomorphic to the functor $Q(P/S) \otimes_{N_{P}(S)}(-)$, where $Q(P/S)$ is endowed with its natural structure of $(QP, Q(N_{P}(S)))$-bimodule. Hence

$$\mathbb{Q}U \otimes_{\mathbb{Q}P} V(S) = \mathbb{Q}U \otimes_{\mathbb{Q}P} \text{Indinf}_{\mathbb{Q}P(S)}^{N_{P(S)}} \Phi_{N_{P}(S)}$$

$$\cong \mathbb{Q}U \otimes_{\mathbb{Q}P} Q(P/S) \otimes_{Q_{N_{P}(S)}} \Phi_{N_{P}(S)}$$

$$\cong \mathbb{Q}(U/S) \otimes_{Q_{N_{P}(S)}} \Phi_{N_{P}(S)}$$

where $\mathbb{Q}(U/S)$ is given its natural structure of $(QP, Q(N_{P}(S)))$-bimodule.

Tensoring on the left with $V(T)^*$, an using a similar argument, we get that

$$L(U)_{T,S} \cong \Phi_{\overline{N}_Q(T)}^* \otimes_{Q_{\overline{N}_Q(T)}} Q(T/U/S) \otimes_{Q_{N_{P}(S)}} \Phi_{N_{P}(S)}$$

where $Q(T/U/S)$ is the permutation $(Q\overline{N}_Q(T), Q\overline{N}_P(S))$-bimodule associated to the $(\overline{N}_Q(T), \overline{N}_P(S))$-biset $T/U/S$. Moreover $\Phi_{\overline{N}_Q(T)}$ is self dual, since it is the unique faithful rational irreducible representation of $\overline{N}_Q(T)$, so we can replace $\Phi_{\overline{N}_Q(T)}^*$ by $\Phi_{\overline{N}_Q(T)}$ in the right hand side of the previous isomorphism.

Now the biset $T/U/S$ splits as a disjoint union

$$T/U/S = \biguplus_{\omega \in N_{Q}(T)/U/N_{P}(S)} T/\omega/S$$

of transitive $(\overline{N}_Q(T), \overline{N}_P(S))$-bisets, where $N_{Q}(T)/U/N_{P}(S)$ is the set of $(N_{Q}(T), N_{P}(S))$-orbits on U. This yields a decomposition

$$(5.3) \quad \mathbb{Q}(T/U/S) \cong \bigoplus_{\omega \in N_{Q}(T)/U/N_{P}(S)} \mathbb{Q}(T/\omega/S)$$

as $(Q\overline{N}_Q(T), Q\overline{N}_P(T))$-bimodules.
5.4. Lemma : Let C and D be cyclic p-groups, and let Ω be a transitive (D, C)-biset. Then $\Phi_D \otimes_{QD} Q\Omega = 0$ unless Ω is left free, and $Q\Omega \otimes_{QC} \Phi_C = 0$ unless Ω is right free.

Proof : Suppose that the action of C is not free. This means that C is non-trivial, and that the unique subgroup Z of order p of C acts trivially on Ω: indeed since Ω is a transitive biset, the stabilizers in C of the points of Ω are conjugate in C, hence equal since C is abelian. So these stabilizers all contain Z if one of them is non trivial. Then Ω is inflated from a (C/Z)-set Ω, and then $Q\Omega \cong Q\Omega \otimes_{Q(C/Z)} Q(C/Z)$. But $Q(C/Z) \otimes_{QC} \Phi_C$ is the module of Z-coinvariants on Φ_C, hence it is zero, since Φ_C is faithful. Hence $Q\Omega \otimes_{QC} \Phi_C = 0$ in this case. Similarly, if the action of D is not free, then $\Phi_D \otimes_{QD} Q\Omega = 0$.

5.5. It follows from Lemma 5.4 that to compute

$$\Phi^*_{NQ(T)} \otimes_{QNQ(T)} Q(T \setminus U/S) \otimes_{QNP(S)} \Phi_{NP(S)}$$

using decomposition 5.3, we can restrict to orbits $\omega = N_Q(T)uNP(S)$, where $u \in U$, for which the $(N_Q(T), NP(S))$-biset $T \setminus \omega/S$ is left and right free. The left stabilizer of the element TuS of this biset is equal to

$$\{ xT \in N_G(T) \mid \exists s \in S, xu = us \} ,$$

hence $T \setminus \omega/S$ is left free if and only if

$$uS \cap N_Q(T) \leq T ,$$

where $uS = \{ x \in Q \mid \exists s \in S, xu = us \}$ (2 Notation 2.3.16).

Similarly $T \setminus \omega/S$ is right free if and only if

$$T^u \cap NP(S) \leq S ,$$

where $T^u = \{ x \in P \mid \exists t \in T, tu = ux \}$.

Finally, the bimodule $L(U)_{T,S}$ is isomorphic to

$$\bigoplus_{\substack{u \in [N_Q(T)] \setminus U/\ NP(S) \\ uS \cap N_Q(T) \leq T \\ T^u \cap NP(S) \leq S}} \Phi_{NQ(T)} \otimes_{QNQ(T)} Q(T \setminus N_Q(T)uNP(S)/S) \otimes_{QNP(S)} \Phi_{NP(S)} ,$$

where $[N_Q(T)] \setminus U/\ NP(S)$ is a set of representatives of $(N_Q(T), NP(S))$-orbits on U.

--

14
5.7. Lemma: Let p be an odd prime, and let C and D be cyclic p-groups. Let moreover Ω be a left and right free finite (D,C)-biset. Let $a \in C$, viewed as an automorphism of the $\mathbb{Q}C$-module Φ_C. Then the image of $[\Phi_C,a]$ in $K_1(\mathbb{Q}D)$ by the transfer associated to the bimodule $L = \Phi_D \otimes_{\mathbb{Q}D} \mathbb{Q}\Omega$ is equal to the image of $\text{Ver}_\Omega(a) \in D = D/[D,D]$ by the map $\alpha_{\mathbb{Q}D}$ of Remark 2.2.

Proof: By Lemma 5.1 and Proposition 2.6 we can assume that Ω is a transitive biset, of the form $(D \times C)/B$ for some subgroup B of $D \times C$. Then Ω is left and right free if and only if there exists a subgroup E of C and an injective group homomorphism $\varphi : E \rightarrow D$ such that $B = \{(\varphi(e),e) \mid e \in E\}$. There are two cases:

- either $E = 1$: in this case $\Omega = D \times C$, so $\mathbb{Q}\Omega \cong \mathbb{Q}D \otimes_{\mathbb{Q}} \mathbb{Q}C$, and $\Phi_D \otimes_{\mathbb{Q}D} \mathbb{Q}\Omega \otimes_{\mathbb{Q}C} \Phi_C \cong \Phi_D \otimes_{\mathbb{Q}} \Phi_C$. As a vector space over the cyclotomic field F of endomorphisms of Φ_D, it is isomorphic to $F \otimes_{\mathbb{Q}} \Phi_C$. The action of $a \in C$ on this vector space is given by the matrix of a acting on Φ_C.

Suppose that a is a generator of C, of order p^n. Then this action is the action by multiplication of a primitive p^n-th root of unity ζ on the field $\mathbb{Q}(\zeta)$. As an element of $K_1(F)$, it is equal to the determinant of the matrix representing this multiplication, i.e. to the norm $N_{\mathbb{Q}(\zeta)/\mathbb{Q}}(\zeta)$, which is equal to 1, as the p^n-th cyclotomic polynomial has even degree $p^{n-1}(p-1)$ and value 1 at 0. It follows that $[\Phi_C,a]$ is mapped to the identity element of $K_1(\mathbb{Q}D)$ in this case. Since this holds for a generator a of C, the same is true for any element a of C.

In this case also, a set of representatives of $[D\backslash \Omega]$ is the set $1 \times C$, which is invariant by right multiplication by C. It follows that the elements $d_{a,x} \in D$ defined for $a \in C$ and $x \in [D\backslash \Omega]$ by $xa = d_{a,x}x'$, for $x' \in [D\backslash \Omega]$, are all equal to 1. So the transfer Ver_Ω is also the trivial homomorphism in this case.

- or $E \neq 1$: let Z denote the unique subgroup of order p of C. Tensoring over $\mathbb{Q}C$ the exact sequence of $(\mathbb{Q}C,\mathbb{Q}C)$-bimodules

$$0 \rightarrow \Phi_C \rightarrow \mathbb{Q}C \rightarrow \mathbb{Q}(C/Z) \rightarrow 0$$

with $\Phi_D \otimes_{\mathbb{Q}D} \mathbb{Q}\Omega$ gives the exact sequence

$$0 \rightarrow \Phi_D \otimes_{\mathbb{Q}D} \mathbb{Q}\Omega \otimes_{\mathbb{Q}C} \Phi_C \rightarrow \Phi_D \otimes_{\mathbb{Q}D} \mathbb{Q}\Omega \rightarrow \Phi_D \otimes_{\mathbb{Q}D} \mathbb{Q}(\Omega/Z) \rightarrow 0 .$$

But Ω/Z is not free as a left D-set, since the unique subgroup $\varphi(Z)$ of order p of D stabilizes $BZ \in \Omega/Z$, as for $z \in Z$ and $e \in E$

$$\varphi(z)(\varphi(e),e) = (\varphi(ze),e) = (\varphi(ze),ze)z .$$
By Lemma 5.4, it follows that $\Phi_D \otimes Q \Omega \otimes QC \Phi_C \cong \Phi_D \otimes Q \Omega$.

As a vector space over the cyclotomic field F of endomorphisms of Φ_D, this is isomorphic to $F \otimes Q [D \setminus \Omega]$. The action of $a \in C$ on this vector space is given for $x \in [D \setminus \Omega]$ and $\lambda \in F$ by

$$(\lambda \otimes x)a = \lambda \otimes xa = \lambda \otimes d_{a,x} \sigma_a(x) = \lambda d_{a,x} \otimes \sigma_a(x),$$

where $d_{a,x} \in D$ and $\sigma_a(x) \in [D \setminus \Omega]$ are defined by $xa = d_{a,x} \sigma_a(x)$. In other words, the matrix of the action of a is the product of the permutation matrix of σ_a with a diagonal matrix of coefficients $d_{a,x}$, for $x \in [D \setminus \Omega]$. In $K_1(F)$, this matrix is equal to its determinant, that is the signature of σ_a, which is equal to 1 as σ_a is a product of cycles of odd length (equal to some power of p), multiplied by the product of the elements $d_{a,x}$, that is the image in $K_1(Q)$ of $\text{Ver}_\Omega(a)$, as was to be shown.

5.8. Remark : Recall that if Q is a central subgroup of finite index n in a group G, then the transfer $G/[G,G] \to Q$ is induced by the map $g \mapsto g^n$ from G to Q (see [10] Theorem 7.47). It follows easily that in the situation of Lemma 5.7, if $\Omega = (D \times C)/B$, where $B = \{(\varphi(e), e) \mid e \in E\}$ for a subgroup E of C and an injective homomorphism $\varphi : E \to D$, the transfer $\text{Ver}_\Omega : C \to D$ is given by $a \mapsto \varphi(a^{[C:E]})$. Moreover $|C : E| = |D \setminus \Omega|$.

5.9. Theorem : Let p be an odd prime. Let P and Q be finite p-groups, and let U be a finite (Q, P)-biset.

1. Let S be a genetic subgroup of P and T be a genetic subgroup of Q. Let $D(U)_{T,S}$ be the set of orbits $N_Q(T)uN_P(S)$ of those $u \in U$ for which $T^u \cap N_P(S) \leq S$ and $u \cap N_Q(T) \leq T$ (see 5.6 for notation). Then for $\omega \in D(U)_{T,S}$, the set $T \setminus \omega / S$ is a left and right free $(N_Q(T)/T, N_P(S)/S)$-biset, and the map

$$\Gamma(U)_{T,S} : N_P(S)/S \to N_Q(T)/T$$

sending $a \in N_P(S)/S$ to

$$\prod_{\omega \in D(U)_{T,S}} \text{Ver}_{T \setminus \omega / S}(a)$$

is a well defined group homomorphism.
2. Let \mathcal{B}_P and \mathcal{B}_Q be genetic bases of P and Q, respectively. Then the map $\Gamma(U) : \Gamma(P) \to \Gamma(Q)$ giving the biset functor structure of Γ is the map

$$\Gamma(P) = \prod_{S \in \mathcal{B}_P} (N_P(S)/S) \to \prod_{T \in \mathcal{B}_Q} (N_Q(T)/T) = \Gamma(Q)$$

with component (T, S) equal to $\Gamma(U)_{T,S}$.

Proof: This results from Paragraph 5.2, Lemma 5.3, Paragraph 5.5, and Lemma 5.7.

6. Examples

6.1. Proposition: Let P be a finite p-group, for p odd, and let \mathcal{B} be a genetic basis of P. Let $N \trianglelefteq P$, and $\mathcal{P} = P/N$. Let \mathcal{B}_N be the subset of \mathcal{B} defined by

$$\mathcal{B}_N = \{ S \in \mathcal{B} | S \supseteq N \}.$$

Then:

1. The set $\overline{\mathcal{B}} = \{ \overline{S} = S/N \mid S \in \mathcal{B}_N \}$ is a genetic basis of \mathcal{P}.
2. Up to the identification of $N_\mathcal{P}(\overline{S})$ with $N_P(S)/S$, for $S \in \mathcal{B}_N$, the inflation morphism

$$\text{Inf}^\mathcal{P}_{\mathcal{P}/N} : \Gamma(P/N) = \prod_{S \in \mathcal{B}} (N_\mathcal{P}(\overline{S})/\overline{S}) \to \Gamma(P) = \prod_{S \in \mathcal{B}} (N_P(S)/S)$$

is the embedding in the product of the factors of $\Gamma(P)$ corresponding to genetic subgroups S containing N.
3. Similarly, the deflation morphism

$$\text{Def}^\mathcal{P}_{\mathcal{P}/N} : \Gamma(P) = \prod_{S \in \mathcal{B}} (N_P(S)/S) \to \Gamma(P/N) = \prod_{\overline{S} \in \overline{\mathcal{B}}} (N_\mathcal{P}(\overline{S})/\overline{S})$$

is the projection onto the product of the factors of $\Gamma(P)$ corresponding to genetic subgroups S containing N.

Proof: Assertion 1 is clear from the definitions: if $N \leq S \leq P$, then S is
genetic in P if and only if S/N is genetic in P/N. Moreover the relation $\sim_{P/N}$ gives the relation \sim_{P} by inflation.

Now the inflation morphism $\text{Inf}_{P/N}^{P}$ is defined by the (P, \mathcal{F})-biset $U = P/N$, with natural actions of P and \mathcal{F}. Let $u = xN$ be an element of U, for some $x \in P$. Let $T \in \mathcal{B}$ and $\mathcal{S} \in \mathcal{B}$.

$$T^u \cap N_{\mathcal{F}}(\mathcal{S}) = \{yN \in N_{\mathcal{F}}(\mathcal{S}) \mid \exists t \in T, tu = u\mathcal{F}\}$$
$$= \{yN \in N_{\mathcal{F}}(\mathcal{S}) \mid \exists t \in T, txN = xyN\}$$
$$= \{yN \in N_{\mathcal{F}}(\mathcal{S}) \mid yN \in T^x N\}$$
$$= (T^x N \cap N_{P}(S))/N = (T^x \cap N_{P}(S))N/N,$$

where the last two equalities hold because $S \geq N$. Hence $T^u \cap N_{\mathcal{F}}(\mathcal{S}) \leq \mathcal{S}$ if and only if $T^x \cap N_{P}(S) \leq S$.

On the other hand

$$\mathcal{S}^u \cap N_{P}(T) = \{y \in N_{P}(T) \mid \exists s \in \mathcal{S}, yu = us\mathcal{F}\}$$
$$= \{y \in N_{P}(T) \mid \exists s \in \mathcal{S}, yxN = xNs\}$$
$$= \{y \in N_{P}(T) \mid y \in ^xS\}$$
$$= ^xS \cap N_{P}(T).$$

Hence $\mathcal{S}^u \cap N_{P}(T) \leq T$ if and only if $^xS \cap N_{P}(T) \leq T$.

If moreover $T^u \cap N_{\mathcal{F}}(\mathcal{S}) \leq \mathcal{S}$, i.e. $T^x \cap N_{P}(S) \leq S$, it follows that $T \sim_{P} S$, hence $T = S$ since T and S belong to the same genetic basis \mathcal{B}. Moreover $x \in N_{P}(S)$, and the induced group homomorphism $N_{\mathcal{F}}(\mathcal{S})/S \to N_{P}(T)/T$ is the canonical isomorphism $N_{\mathcal{F}}(\mathcal{S})/\mathcal{S} \to N_{P}(S)/S$. This completes the proof of Assertion 2.

For Assertion 3, we consider the deflation map $\text{Def}_{P/N}^{P} : \Gamma(P) \to \Gamma(P/N)$.

It corresponds to the biset $V = P/N$, with left action of \mathcal{F} and right action of P. For $v = yN \in V$, for $T \in \mathcal{B}$ and $\mathcal{S} \in \mathcal{B}$, and with the same notation as above, the computation is similar: we have $T^v \cap N_{\mathcal{F}}(\mathcal{S}) \leq \mathcal{S}$ if and only if $T^u \cap N_{P}(S) \leq S$, and $\mathcal{S}^v \cap N_{P}(T) \leq T$ if and only if $^xS \cap N_{P}(T) \leq T$. These two conditions are fulfilled if and only if $S = T$ and $y \in N_{P}(S)$. This completes the proof.
6.2. Corollary: Let p be an odd prime and P be a finite p-group. Let B be a genetic basis of P. Then the faithful part $\partial \Gamma(P)$ of $\Gamma(P)$ is equal to

$$\partial \Gamma(P) = \prod_{S \in B, S \cap Z(P) = 1} (N_P(S)/S) .$$

7. Genome and Roquette category

7.1. Let F be a p-biset functor. It is shown in [2] Theorem 10.1.1 that if P is a finite p-group and B is a genetic basis of P, then the map

$$I_B = \bigoplus_{S \in B} \text{Ind}_{N_P(S)/S}^P : \bigoplus_{S \in B} \partial F(N_P(S)/S) \to F(P)$$

is always split injective. When I_B is an isomorphism for one particular genetic basis B of P, then I_B is an isomorphism for any other genetic basis B' of P.

The functors for which I_B is an isomorphism for any finite p-group P and any genetic basis B of P are called rational p-biset functors. It has been shown further ([3]) that these rational p-biset functors are exactly those p-biset functors which factorize through the Roquette category \mathcal{R}_p of p-groups: more precisely ([3], Definition 3.3), the category \mathcal{R}_p is defined as the idempotent additive completion of a specific quotient \mathcal{R}_p^2 of the category \mathcal{C}_p, so there is a canonical additive functor $\pi_p : \mathcal{C}_p \to \mathcal{R}_p$, equal to the composition of the projection functor $\mathcal{C}_p \to \mathcal{R}_p^2$ and the inclusion functor $\mathcal{R}_p^2 \to \mathcal{R}_p$. The rational p-biset functors are the additive functors $F : \mathcal{C}_p \to Ab$ for which there exists an additive functor $\overline{F} : \mathcal{R}_p \to Ab$ such that $F = \overline{F} \circ \pi_p$. In this case, the functor \overline{F} is unique.

7.2. Proposition: Let p be an odd prime. Then the genome p-biset functor Γ is rational.

Proof: Let P be a p-group, and B be a genetic basis of P. If $S \in B$, then $Q = N_P(S)/S$ is cyclic, so the trivial subgroup S/S of Q is the only one intersecting trivially the center of Q, and it is a genetic subgroup of Q. By Corollary 6.2 we have that

$$\partial \Gamma(N_P(S)/S) = N_P(S)/S .$$
Now the induction-inflation map $\text{Ind}_{N_p(S)/S}^P$ is given by the $(P, N_P(S)/S)$-biset $U = P/S$. Let $T \in B$, and let $u = xS \in U$ such that

$$T^u \cap N_Q(S/S) \leq S/S \quad \text{and} \quad u(S/S) \cap N_P(T) \leq T.$$

The first inclusion means that

$$\{yS \in N_P(S)/S \mid \exists t \in T, txS = xSy\} = S/S.$$

In other words $T^x \cap N_P(S) \leq S$. The second inclusion means similarly that

$$\{y \in N_P(T) \mid \exists s \in S/S, txS = xSs\} \leq T,$$

that is $N_P(T) \cap xS \leq T$. Hence $T \preceq_p S$, thus $T = S$ since T and S both belong to a genetic basis of P. Moreover $x \in N_P(S)$, and the morphism we get from $N_P(S)/S$ to $N_P(T)/T$ is the identity map.

In other words, the map

$$\text{Ind}_{N_p(S)/S}^P : \partial \Gamma(N_P(S)/S) = N_P(S)/S \to \Gamma(P)$$

is the canonical embedding of $N_P(S)/S$ in $\Gamma(P)$. It clearly follows that the map \mathcal{I}_B is an isomorphism, hence Γ is rational.

7.3. Corollary: Let p be an odd prime. Then there exists a unique additive functor $\tilde{\Gamma}$ from the Roquette category R_p to Ab such that $\Gamma = \tilde{\Gamma} \circ \pi_p$. Moreover $\tilde{\Gamma}(\partial P) = \partial \Gamma(P)$ for any finite p-group P, where ∂P is the edge of P in R_p. In particular $\Gamma(\partial C) = C$ for any cyclic p-group C.

Proof: This follows from the definition and properties of the category R_p (for the definition of the edge ∂P of a p-group P in the Roquette category, see [3] Definition 3.7).

References

[1] L. Barker. Genotypes of irreducible representations of finite p-groups. Journal of Algebra, 306:655–681, 2007.

[2] S. Bouc. Biset functors for finite groups, volume 1990 of Lecture Notes in Mathematics. Springer, 2010.

[3] S. Bouc. The Roquette category of finite p-groups. Journal of the European Mathematical Society, 17:2843–2886, 2015.
[4] S. Bouc and N. Romero. The Whitehead group of (almost) extra-special p-groups with p-odd. Preprint, arXiv:1604.06306, 2016.

[5] C. Curtis and I. Reiner. Methods of representation theory with applications to finite groups and orders, volume II of Wiley classics library. Wiley, 1990.

[6] C. Curtis and I. Reiner. Methods of representation theory with applications to finite groups and orders, volume I of Wiley classics library. Wiley, 1990.

[7] R. Oliver. Whitehead groups of finite groups, volume 132 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1988.

[8] N. Romero. Computing Whitehead groups using genetic bases. Journal of Algebra, 450:646–666, 2016.

[9] P. Roquette. Realisierung von Darstellungen endlicher nilpotenter Gruppen. Arch. Math., 9:224–250, 1958.

[10] J. J. Rotman. An introduction to the theory of groups, volume 148 of Graduate Texts in Mathematics. Springer-Verlag, New York, fourth edition, 1995.

Serge Bouc
LAMFA-CNRS UMR7352
33 rue St Leu, Amiens Cedex 01
France
email: serge.bouc@u-picardie.fr