Molecular Cloning of the cDNA Encoding pp36, a Tyrosine-phosphorylated Adaptor Protein Selectively Expressed by T Cells and Natural Killer Cells

By John R. Weber,* Sigurd Ørstavik,‡ Knut Martin Torgersen,§ Niels Christian Danbolt,§ Siri F. Berg,§ James C. Ryan,* Kjetil Taskén,‡ John B. Imboden,* and John T. Vaage§

From the *Department of Medicine and Rosalind Russell Arthritis Center, University of California, San Francisco, California 94143; the ‡Institute of Medical Biochemistry and §Department of Anatomy, University of Oslo, N-0317 Oslo, Norway; and the iVeterans Administration Medical Center, University of California, San Francisco, California 94122

Summary

Activation of T and natural killer (NK) cells leads to the tyrosine phosphorylation of pp36 and to its association with several signaling molecules, including phospholipase Cγ-1 and Grb2. Microsequencing of peptides derived from purified rat pp36 protein led to the cloning, in rat and man, of cDNA encoding a T- and NK cell-specific protein with several putative Src homology 2 domain-binding motifs. A rabbit antiserum directed against a peptide sequence from the cloned rat molecule recognized tyrosine phosphorylated pp36 from pervanadate-treated rat thymocytes. When expressed in 293T human fibroblast cells, pp36 associated with phospholipase Cγ-1 and Grb2. Studies with GST–Grb2 fusion proteins demonstrated that the association was specific for the Src homology 2 domain of Grb-2. Molecular cloning of the gene encoding pp36 should facilitate studies examining the role of this adaptor protein in proximal signaling events during T and NK cell activation.

Materials and Methods

Cells and Reagents. Thymocytes isolated from F344 rats were used for initial purification of pp36, and thymocytes from PVG rats were used for precipitation studies. The human 293T fibroblast cell line, a gift from Dr. L.L. Lanier (DNAX, Palo Alto,
was maintained in RPMI 1640 with 10% FCS, penicillin, and streptomycin. Cells were washed and resuspended in RPMI 1640 with 2% FCS before use. Tyrosine phosphorylation was induced with the tyrosine phosphatase inhibitor pervanadate (12) by incubation with 0.01% H$_2$O$_2$ and 100 μM sodium orthovanadate for 5 min at 37°C. Mice mAbs to Grb2 (clone 81) and PLC$_{\gamma}$1 (clone 10) were from Transduction Laboratories (Lexington, KY), to hemagglutinin (HA) epitope from Babco (16B12; Richmond, CA); and to phosphotyrosine from U pstate Biotechnology Inc. (4G10; Lake Placid, NY). Polyclonal Abs were generated against two peptides corresponding to residues 35–49 (AS Y D-S A S T E S L Y P R S) and 96–110 (R M P S S R Q N S D D A N V S) of rat pp36. They were coupled to K LH with glutaraldehyde and affinity purified on columns with immobilized peptides, as previously described (13). As secondary Abs we used horseradish peroxidase-conjugated goat anti–mouse IgG (111-035-100; Jackson Immunoresearch Labs., West Grove, PA) and horseradish peroxidase-conjugated goat anti–rabbit IgG (111-035-144; Jackson Immunoresearch Labs.). Glutathione-S-transferase (GST) fusion proteins with SH2 (sc-4035 AC) and N-SH3 (sc-4034 AC) domains of Grb2 were from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA).

Purification of pp36 Protein and Peptide Sequencing. Tyrosine-phosphorylated pp36 was purified at 4°C from lysates of 3 × 109 perivandate-treated thymocytes by sequential affinity chromatography. Lysates were loaded on a column of maltose binding protein–PLC$_{\gamma}$1 SH2 domain fusion protein coupled to amylose resin. After extensive washing, the fusion protein and bound proteins were eluted with 10 mM free maltose and applied to a second column of antiphosphotyrosine mAb (4G10) coupled to agarose. The antiphosphotyrosine column was washed and then eluted with 100 mM phenyl phosphate. Eluted proteins were resolved on SDS-PAGE. A 36-kD band was identified by Coomasie blue staining, excised, and subjected to tryptic digestion, HPLC, and microsequencing (Beckman Center, Protein and Nucleic Acid Facility, Stanford University Medical Center, Stanford, CA).

dNA Cloning and Sequencing. The oligopeptide sequences obtained from rat pp36 were analyzed for matches in the GenBank dbst database using the tBLASTn program (14). Two contiguous overlapping human expressed sequence tags (ESTs 15), accession numbers AA355655 and AA380490, gave a full match with the PDLLIPR peptide corresponding to residues 79–86 of the rat sequence (see Fig. 1). Based on this information, we amplified a 276-bp DNA from a Jurkat T cell library (N o. 938200; Stratagene, La Jolla, CA) with two synthetic primers (5'-CT CA-CACGGTTGCCCCCTGGCCAC-3' and 5'-CAGTGCTAATGGCCGGTTGCTGT-3') and Taq DNA polymerase. The amplified product was then used to probe a rat cDNA library that amplified a 276-bp DNA from a Jurkat T cell library (No. 938200; Stratagene, La Jolla, CA) with two synthetic primers (5'-CT CA-CACGGTTGCCCCCTGGCCAC-3' and 5'-CAGTGCTAATGGCCGGTTGCTGT-3'). The amplified products were ligated into the pZERO-blunt vector (Invitrogen Corp., Carlsbad, CA), isolated, and subcloned in a modified pEF-BOS vector with an in-frame HA epitope. The orientation of inserts was determined using restriction enzyme digestion and sequencing. 293T cells were transiently transfected with two clones containing rat pp36 DNA in sense (+) and antisense (−) orientations, using lipofectamine (GIBCO BRL, Gaithersburg, MD). The cells were analyzed 36–48 h after transfection.

Immunoprecipitation and Western Blotting. Cells (2.5–107/ml) were solubilized for 30 min on ice with 2× lysis buffer (2% NP-40, 20 mM Tris, pH 7.5, 300 mM NaCl, 20% glycerol, 4 mM EDTA, 2 mM PMSF, 20 μg/ml aprotinin, 20 μg/ml leupeptin, 2 mM sodium orthovanadate, 20 mM sodium fluoride, and 20 mM sodium pyrophosphate). 1–5 μg antibody and 25 μl of protein A/G plus agarose (SC-2003, Santa Cruz Biotechnology), or 10 μg of agarose-coupled GST fusion proteins, were used to precipitate from 5 × 107 thymocytes or 107 293T cells. Precipitates were washed three to four times with buffer containing 0.1–1% NP-40, resolved by 10% SDS-PAGE under reducing conditions, and transferred by semidy electroblotting to polyvinylidene difluoride membranes. Blots were blocked with 5% dry milk (2% BSA was added for antiphosphotyrosine blots) in PBS-T (PBS/0.1% Tween 20), before incubation with the indicated Ab. After extensive washings with PBS-T, blots were incubated with either horseradish peroxidase HRP-conjugated goat anti-mouse or goat anti–rabbit IgG, washed, and developed with enhanced chemiluminescence (Amersham Corp., Arlington Heights, IL).

Results
dNA Cloning of pp36, a Tyrosine Phosphorylated Adaptor Protein

The open reading frame for a 233-amino acid protein, as presented in Fig. 1. Confirmation of this sequence was obtained by PCR amplification of the entire pp36-coding sequence with two additional primers (5'-GTCCGGTCCCTCCCAACCATCTTCTAG-3' and 5'-CA GCCAGCCTTTTATCTTCAG-3'). DNA sequencing was performed by Medigene sequencing service (M artiensd ied, Germany). Sequences were assembled and analyzed with the Wisconsin Genetics Computer Group program package (M adison, WI; reference 16).

Northern Blot Analysis. Total cellular RNA was extracted with the guanidinium isothiocyanate/cesium chloride method, resolved by formaldehyde agarose gel electrophoresis, and transferred to nylon membranes (17). Hybridization with radiolabeled cDNA (a PstI fragment from clone 15-1, containing most of the open reading frame of rat pp36) was performed overnight at 42°C in a formamide-based hybridization solution. Before autoradiography, final washes of blots was with 0.1 × SSC, 0.1% SDS for 2 × 30 min at 50°C.

Generation of Expression Construct and Transient Transfection of 293T. The open reading frame of rat pp36 was amplified by PCR with two primers introducing ClaI restriction sites (5'-AATCGATATGGAAGCAGACGCCTTGAGCC-3' and 5'-AATCGATTGAAGTCATCGTACTCTTGTCTG-3'). The amplified products were ligated into the pZER0-blunt vector (Invitrogen Corp., Carlsbad, CA), isolated, and subcloned in a modified pEF-BOS vector with an in-frame HA epitope. The orientation of inserts was determined using restriction enzyme digestion and sequencing. 293T cells were transiently transfected with two clones containing rat pp36 DNA in sense (+) and antisense (−) orientations, using lipofectamine (GIBCO BRL, Gaithersburg, MD). The cells were analyzed 36–48 h after transfection.

Immunoprecipitation and Western Blotting. Cells (2.5–107/ml) were solubilized for 30 min on ice with 2× lysis buffer (2% NP-40, 20 mM Tris, pH 7.5, 300 mM NaCl, 20% glycerol, 4 mM EDTA, 2 mM PMSF, 20 μg/ml aprotinin, 20 μg/ml leupeptin, 2 mM sodium orthovanadate, 20 mM sodium fluoride, and 20 mM sodium pyrophosphate). 1–5 μg antibody and 25 μl of protein A/G plus agarose (SC-2003, Santa Cruz Biotechnology), or 10 μg of agarose-coupled GST fusion proteins, were used to precipitate from 5 × 107 thymocytes or 107 293T cells. Precipitates were washed three to four times with buffer containing 0.1–1% NP-40, resolved by 10% SDS-PAGE under reducing conditions, and transferred by semidy electroblotting to polyvinylidene difluoride membranes. Blots were blocked with 5% dry milk (2% BSA was added for antiphosphotyrosine blots) in PBS-T (PBS/0.1% Tween 20), before incubation with the indicated Ab. After extensive washings with PBS-T, blots were incubated with either horseradish peroxidase HRP-conjugated goat anti-mouse or goat anti–rabbit IgG, washed, and developed with enhanced chemiluminescence (Amersham Corp., Arlington Heights, IL).
responding to amino acid 76–83 of the human sequence, Fig. 1) with two contiguous human expressed sequence
tags. Based on this information, we amplified a 276-bp
fragment from a Jurkat T cell library and used this fragment
for homology screening of a rat NK cell cDNA library.
Several individual positive clones were isolated, and one of
them, 15-1, was sequenced completely on both strands.
The predicted sequence of the full-length rat cDNA has
241 amino acids and contains all three of the oligopeptide
sequences obtained by protein purification (Fig. 1). A hu-
man cDNA was isolated from a human thymus library by
5' and 3' rapid amplification of cDNA ends (R A C E). Hu-
man pp36 encodes a somewhat shorter protein of 233
amino acids and displays 67% amino acid identity with the
rat molecule. Although both rat and human pp36 have a
high content of acidic amino acids (20 and 17%, respec-
tively), as well as many prolines (~12%) and serines
(~12%), there were relatively few basic residues (~5%).
Database searching revealed no closely homologous pro-
teins or known signaling motifs.

Transcripts for the Cloned cDNA Are Selectively Expressed by
T Cells and NK Cells.

Northern blot analysis with the rat
cDNA probe revealed a 1.4-kb transcript expressed at high
levels in thymus and at lower levels in spleen. No signal
was detected in the other tissues investigated (Fig. 2
A). The probe also detected a
1.4-kb transcript in freshly isolated CD4+ and CD8+ T cells, Con A lym-
phoblasts, IL-2–activated NK cells, and in two different NK cell lines
(R N K 16 and A 18 1) but not in B cells, granulocytes, peritoneal macro-
phages, or a macrophage line (R 2). Probing for β-actin confirmed equal
loading of R N A (20 μg/lane; data not shown).

Figure 3. A rabbit antiserum to a peptide from the cloned pp36 sequence recognizes a
tyrosine-phosphorylated protein of apparent
Mr 36 kD that associates with a Grb2-SH2
domain fusion protein. (A) Whole cell lys-
ates of 293T fibroblasts cells and unstim-
ulated rat thymocytes were resolved by SDS-
PAGE, transferred to PVDF, and analyzed
by immunoblotting with an affinity-purified
rabbit antiserum made to a peptide from the
cloned rat pp36 sequence. The antiserum
detected a protein of apparent Mr 36 kD in
thymocytes but not in 293T cells. (B) Lys-
ates from pervanadate-treated (+) or unstim-
ulated (−) rat thymocytes were subjected to
immunoprecipitation with anti–PLCγ-1,
anti-Grb2, and the anti-pp36 rabbit antise-
rum. After resolution by SDS-PAGE and
transfer to PVDF, the precipitates were ana-
yzed by immunoblotting with an mAb to
phosphotyrosine. In the lower panel, paral-
lel blots were probed with anti–PLCγ-1
(146 kD; lanes 1 and 2), anti-Grb2 (24 kD;
lanes 3 and 4), and anti-pp36 (36 kD; lanes 5 and 6). (C) Lysates from pervanadate-treated (+) and unstimulated (−) rat thymocytes were subjected to
precipitation with Grb2 SH2 domain–GST and Grb2 SH3 domain–GST fusion proteins. The precipitated proteins were analyzed by immunoblotting
with the anti-pp36 rabbit antiserum.
lymphoblasts, IL-2–activated N K cells, and two different N K lines (R NK-16 and A181), but not in B cells, granulocytes, peritoneal macrophages, or the macrophage cell line, R 2.

The cloned cDNA encodes a protein that migrates with an apparent Mr of 36 kD on SDS-PAGE and associates with Grb-2 and PLC-γ1 when T tyrosine-phosphorylated. The calculated molecular weight of the deduced amino acid sequence of the cloned cDNAs was ∼26 kD, considerably less than the apparent Mr of pp36 based on its migration in SDS-PAGE. To confirm that the cloned cDNAs corresponded to pp36, we generated a rabbit antiserum to a peptide from the predicted amino acid sequence of the rat molecule. When affinity purified and used for immunoblot analysis, the antiserum detected a 36-kD protein in a whole cell lysate of rat thymocytes, but not of a 293T human fibroblast line (Fig. 3 A). Identical results were obtained using a rabbit antiserum to a second peptide (data not shown). Treatment of rat thymocytes with pervanadate induced the tyrosine phosphorylation of the 36-kD protein immunoprecipitated by the antiserum, and this protein comigrated on SDS-PAGE with pp36 that coimmunoprecipitated with Grb2 and PLC-γ1 (Fig. 3 B). To investigate further the interactions between the 36-kD protein and Grb2, we used GST fusion proteins containing either SH2 or SH3 domains of Grb2. The GST-Grb2-SH2, but not GST-Grb2-SH3, fusion protein precipitated the 36-kD protein detected by the antipeptide antiserum (Fig. 3 C). Although some 36-kD protein bound GST-Grb2-SH2 in lysates of unstimulated thymocytes, treatment of the cells with pervanadate led to a substantial increase in the amount of precipitated 36-kD protein.

Studies with an HA-tagged version of the cloned rat cDNA provided additional evidence for its identity with pp36. The rat cDNA was cloned into the pEF-BOS vector containing an HA epitope, and the construct was used to transiently transfet 293T cells. Cells transfected with the sense (+), but not antisense (−), orientation of the cloned cDNA expressed a 40-kD, HA-tagged protein that could be immunoprecipitated by either an anti-HA mAb or by the antipeptide antiserum (Fig. 4 A). After treatment of the transfected cells with pervanadate, the HA-tagged protein coimmunoprecipitated with Grb2 and PLC-γ1 (Fig. 4 B).

Discussion

Here we report the cDNA cloning of the rat and human genes encoding pp36, a previously identified adaptor molecule involved in early signaling events during T and N K cell activation. The cloned molecule exhibits the known properties of pp36: expression in T lymphocytes, inducible tyrosine phosphorylation, binding to the SH2 domains of Grb-2 and PLC-γ1, and an apparent Mr of 36 kD on SDS-PAGE. Although the calculated molecular weight of the cloned molecules was ∼26 kD, antisera directed against peptides from the predicted rat amino acid sequence recognized a 36-kD protein on immunoblot analysis. Furthermore, the cloned molecule migrated with an apparent Mr of 40 kD on SDS-PAGE when expressed as a fusion protein with a short HA peptide. A discrepancy between molecular weight and migration on SDS-PAGE also has been noted for another Grb2 binding protein, SLP-76, and has been attributed to the high content of negatively charged residues in SLP-76 (18). Because acidic residues account for ∼20 and 17% of the amino acids of rat and human pp36, respectively, a similar mechanism may explain the migration of pp36 on SDS-PAGE.

PP36 was recognized on the basis of its tyrosine phosphorylation after T and N K cell activation and by its ability to interact with Grb-2 and PLC-γ1 by means of their SH2 domains. Eight tyrosine residues are conserved in the rat and human sequences. Four of these (Y113, Y175, Y195, and Y234 in the rat sequence) are contained in amino acid sequences identified as potential binding sites for Grb2 SH2 domains. Eight tyrosine residues in SLP-76 (18). Because acidic residues account for ∼20 and 17% of the amino acids of rat and human pp36, respectively, a similar mechanism may explain the migration of pp36 on SDS-PAGE.
SH2 domain binding motifs are all located on the COOH-terminal side of the hydrophobic region, indicating that, if the NH2-terminal hydrophobic region is a transmembrane domain, pp36 would have only three to four extracellular amino acids and a relatively large cytoplasmic region of 205 (human) to 212 (rat) amino acids.

pp36 appears to be involved in the activation of the phospholipase C pathway in T cells and NK cells and thus in the responses of these cells to antigen and target cells (8, 11). The cloning of cDNA encoding pp36 and the development of serologic reagents should facilitate the further dissection of the role of pp36 in T and NK cell activation.

We thank Anne Skotte for expert technical assistance.

This work was supported by grants from The Norwegian Research Council and The Norwegian Cancer Society, the National Institutes of Health (to J.R. Weber, J.B. Imboden, and J.C. Ryan), the Arthritis Foundation (to J.B. Imboden), and Human Frontier Science Program (H FSP) (to J.C. Ryan and J.T. Vaage).

Address correspondence to John B. Imboden, Box 0868, Department of Medicine, University of California, San Francisco, CA 94143. Phone: 415-206-6641; Fax: 415-648-8425; E-mail: imboden@itsa.ucsf.edu

Received for publication 26 January 1998.

Note added in proof. Zhang et al. recently reported the cloning of human and mouse pp36. Cell 92:83.

References

1. Pawson, T. 1995. Protein modules and signaling networks. Nature. 373:573–580.
2. Chan, A.C., D.M. Desai, and A. Weiss. 1994. The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Annu. Rev. Immunol. 12:555–592.
3. Koretzky, G.A. 1997. The role of Grb-2–associated proteins in T-cell activation. ImmunoL. Today. 18:401–406.
4. Buday, L., S.E. Egan, P.R. Viciana, D.A. Cantrell, and J. Downdward. 1993. A complex of grb2 adaptor protein, sos exchange factor, and a 36-kDa membrane-bound tyrosine phosphoprotein is implicated in ras activation in T cells. J. Biol. Chem. 269:9019–9023.
5. Sieh, M., A. Batzer, J. Schlessinger, and A. Weiss. 1994. GR B2 and phospholipase C-γ1 associate with a 35- to 38-kilodalton phosphotyrosine protein after T-cell receptor stimulation. Mol. Cell. Biol. 14:4435–4442.
6. Weber, J.R., G.M. Bell, M.Y. Han, T. Pawson, and J.B. Imboden. 1992. Association of the tyrosine kinase LCK with phospholipase C-γ1 after stimulation of the T cell antigen receptor. J. Exp. Med. 176:373–379.
7. Gilliland, L.K., G.L. Schieven, N.A. Norris, S.B. Kanner, A. Aruffo, and J.A. Ledbetter. 1992. Lymphocyte lineage-restricted tyrosine-phosphorylated proteins that bind PLC-γ1 SH2 domains. J. Biol. Chem. 267:13610–13616.
8. Motto, D.G., M.A. Musci, S.E. Ross, and G.A. Koretzky. 1996. Tyrosine phosphorylation of Grb2-associated proteins correlates with phospholipase C-γ1 activation in T cells. Mol. Cell. Biol. 16:2823–2829.
9. Smit, L., A.M.M. de Vries Smits, J.L. Bos, and J. Borst. 1994. B cell antigen receptor stimulation induces formation of a Shc-Grb2 complex containing multiple tyrosine phosphorylated proteins. J. Biol. Chem. 269:20209–20212.
10. Galandrini, R., G. Palmiter, M. Piccoli, L. Frati, and A. Santoni. 1996. CD16-mediated p21ras activation is associated with shc and p36 tyrosine phosphorylation and their binding with grb2 in human natural killer cells. J. Exp. Med. 183:179–186.
11. Valiante, N.M., J.H. Phillips, L.L. Lanier, and P. Parham. 1996. Killer cell inhibitory receptor recognition of human leukocyte antigen (HLA) class I blocks formation of a pp36/PD-γ signaling complex in human natural killer (NK) cells. J. Exp. Med. 184:2243–2250.
12. Secrist, J.P., L.A. Burns, L. Karnitz, G.A. Koretzky, and R.T. Abraham. 1993. Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J. Biol. Chem. 268:5886–5893.
13. Lehre, K.P., L.M. Levy, O.P. Ottersen, J. Storm-Mathisen, and N.C. Danbolt. 1995. Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J. Neurosci. 15:1835–1853.
14. Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 25:3389–3402.
15. Adams, M.D., A.R. Kerlavage, R.D. Fleischmann, R.A. Fuldner, C.J. Bult, M.L. Songyang, K.G. Weinstock, J.D. Gocayne, O. White, et al. 1995. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature. 377(6547 Suppl.):3–174.
16. Genetics Computer Group. 1994. Program Manual for the Wisconsin Package, Version 8. Madison, WI.
17. Dissen, E., S.F. Berg, I.H. Westgaard, and S. Fossum. 1997. Molecular characterization of a gene in the rat homologous to human CD94. Eur. J. Immunol. 27:2080–2086.
18. Jackman, J.K., D.G. Motto, Q. Sun, M. Tanemoto, C.W. Tuck, G.A. Pelz, G.A. Koretzky, and P.R. Findell. Molecular cloning of SLP-76, a 76-kDa tyrosine phosphoprotein associated with grb2 in T cells. 1995. J. Biol. Chem. 270:7029–7032.
19. Cantley, L.C., and Z. Songyang. 1994. Specificity in recognition of phosphopeptides by scr-homology 2 domains. J. Cell Biol. 128:121–126.