A Realistic Approach to the ΞNN Bound-State Problem based on Faddeev Equation

K. Miyagawa · M. Kohno

Received: date / Accepted: date

Abstract The Faddeev equations for the ΞNN bound-state problem are solved where the three $S=−2$ baryon-baryon interactions of Jülich-Bonn-München chiral EFT, HAL QCD and Nijmegen ESC08c are used. The T-matrix $T_{\Xi NN}$ obtained within the original $\Lambda\Lambda-\Xi N-\Sigma\Sigma / \Xi N-\Lambda\Sigma-\Sigma\Sigma$ coupled-channel framework is employed as an input to the equations. We found no bound state for Jülich-Bonn-München chiral EFT and HAL QCD but ESC08c generates a bound state with the total isospin and spin-parity $(T,J^P) = (1/2,3/2^+)$ where the decays into $\Lambda\Lambda N$ are suppressed.

Keywords $S=−2$ hypernuclear system · Faddeev equation · coupled-channel interaction

1 Introduction

In the last decade, the description of $S=−2$ baryon-baryon interactions has been significantly developed; in addition to conventional meson-theoretical approaches, the ways established on chiral effective theory and lattice QCD simulation have made remarkable progress. Following this development, analyses of three-baryon systems with $S=−2$ have appeared [1, 2,3]. The interactions adopted there are, however, more or less simplified, and the results obtained appear to be still primitive. This paper presents an analysis of the ΞNN system as a bound state on the basis of Faddeev equation, which uses the three descriptions of the interaction for the $\Lambda\Lambda-\Xi N-\Sigma\Sigma$ and $\Xi N-\Lambda\Sigma-\Sigma\Sigma$ coupled systems: Jülich-Bonn-München chiral EFT (Jülich Ch-EFT) [4,5,6], HAL QCD [7,8], and Nijmegen ESC08c [9].

An advantage of the Faddeev approach is that the inputs to the equations are two-body T-matrices. Notice that the $\Lambda\Lambda$, ΞN and $\Sigma\Sigma$ systems are coupled in 1S_0 for t (isospin)=0 states, while ΞN is not coupled to other channels in 3S_1,3D_1. On the other hand, for $t =1,$
ΞN and ΛΣ are coupled in 1S_0, while ΞN, ΛΣ and ΣΣ are coupled in $^3S_1-^3D_1$. After precisely solving these two-body coupled-channel problems, we use the T-matrix $T_{ΞN,ΞN}$ as the input to $ΞN$ Faddeev equations. Although entire couplings in the three-body space are not included, this usage of the coupled-channel T-matrix is a significant step toward realistic analyses of $S=-2$ hypernuclear systems.

We are also interested in the fact that Jülich Ch-EFT and HAL QCD give quite similar $ΞN$ phase shifts throughout the S-wave spin- and isospin channels [4,8]. In particular, they both predict a structure close to the $ΞN$ threshold that is related to the coupling to the $ΛΛ$ state. Thus, we first describe in detail the $S=-2$ interactions employed in Sect. 2. The $ΞNN$ Faddeev equations and the results are presented in Sect. 3.

In Fig. 1, $ΞN S$-wave phase shifts generated by Jülich Ch-EFT (red lines) and HAL QCD (blue lines) are shown for isospin $t=0$ and $t=1$ states. Interestingly, these two interactions give quite similar phase shifts except at lower energies of the 3S_1, $t=1$ state. The 1S_0 phase shift for $t=0$ to which the $ΛΛ$ channel is coupled also shows noticeable behavior; it indicates a strongly attractive feature quickly rising up to 80 degrees from the threshold. In contrast to this, ESC08c gives repulsive phase shift for the 1S_0, $t=0$ state as shown in Fig. 2. A characteristic of ESC08c is that a bound state exists in $^3S_1-^3D_1$ for $t=1$ [9]. However, as realized from Fig. 2 the force used here for this partial wave is not so attractive as it generates a bound state. The numerical code used [10] is given by one of the authors of Ref. [9], and we examine rigorously the

![phase_shifts](image_url)
A Realistic Approach to the ΞN Bound-State Problem based on Faddeev Equation

Fig. 2 $\Xi N\, ^1S_0$ (left panel) and 3S_1 (right panel) phase shifts generated by ESC08c for isospin $t = 0$ (dashed lines) and $t = 1$ (solid lines).

phase shifts shown in Fig. 2. Thus, ESC08c employed in this paper is not identical to the original, but nevertheless in Sec. 3, the three-body results for ESC08c will be shown for reference.

Since the ΞN state can decay into $\Lambda\Lambda$ in 1S_0 for $t = 0$, we closely investigate the T-matrices for this channel. In Fig. 3, both of $|T_{\Xi N,\Xi N}|^2$ and $|T_{\Delta \Lambda,\Xi N}|^2$ by Jülich Ch-EFT and HAL QCD show visible cusps just at the ΞN threshold, which are caused by an inelastic virtual-state pole close to the threshold [4,8]. In more detail, the real and the imaginary parts of $T_{\Xi N,\Xi N}$ below the ΞN threshold are illustrated in Fig. 4. As indicated on the left panel, the magnitude of the imaginary part of Jülich Ch-EFT is negligibly small compared to that of the real part. This is the reason why we utilize only the real part of $T_{\Xi N,\Xi N}$ as an input to the ΞNN Faddeev calculation, and treat it as a bound state problem. By contrast, the imaginary part of ESC08c has a significant magnitude indicated by the red line on the right panel, which makes us unable to address the ΞNN system as a bound state.
3 ΞNN Faddeev equation and Results

The Faddeev equations for the system consist of two nucleons and a hyperon can be seen in many literatures. Let us now assign the number 1 to Ξ, 2 and 3 to two nucleons, and impose antisymmetry to the total wave function Ψ:

\[P_{23} \Psi = -\Psi \]

where \(P_{23} \) is the transposition operator for two nucleons. Then the Faddeev components for the bound-state problem satisfy the coupled equations,

\[\psi^{(23)} = G_{0}^{NN} (1 - P_{23}) \psi^{(12)} \]

\[\psi^{(12)} = G_{0}^{\Xi NN} (\psi^{(23)} - P_{23} \psi^{(12)}) \]

(1)

where \(\psi = \psi^{(23)} + (1 - P_{23}) \psi^{(12)} \). To solve this coupled set, we follow the way used in [11, 12]: the set of integral equations is put into the form

\[\eta(E) \tilde{\psi} = \tilde{K}(E) \tilde{\psi} \]

(2)

with \(\eta(E) \) added to the left, and this eigenvalue problem is solved at a fixed energy \(E \) below the \(\Xi NN \) threshold. If a bound state exists, an eigenvalue such as \(\eta(E_b) = 1 \) can be found at the bound-state energy \(E_b \).

We first analyze the state with the total isospin and spin-parity \((T, J^{\pi}) = (1/2, 1/2^+) \), which is most likely bound owing to the contribution from the \(\Xi \)-deuteron configuration. As mentioned in Sect. 2, the calculations are performed only for Jülich Ch-EFT and HAL QCD, where the imaginary part of \(T_{\Xi NN} \) is negligibly small below the threshold and only the real part is incorporated. In Fig. 5, eigenvalue \(\eta(E) \) is shown as a function of \(E \) below the \(\Xi d \) threshold at \(-2.225 \text{ MeV} \). The energy \(E \) is set to zero at the \(\Xi NN \) threshold. Although the \(\Xi \) phase shifts in the \(t = 0, 1 \) state show a strongly attractive feature, the eigenvalues are far from \(\eta(E) = 1 \), thus the \(\Xi NN \) system is not bound. Through detailed investigations, we confirm that the \(\Xi NN, t = 1 \) force for \(1S_0 \) which shows repulsive behavior in Fig. 1 prevents the state from binding.

We also study the \((T, J^{\pi}) = (1/2, 3/2^+) \) state. In this case, the overlap of the \(\Xi NN \), \(1S_0 \) state with the total spin \(J^{\pi} = 3/2^+ \) in angular-momentum coupling is negligible, and decays into \(\Lambda NN \) are suppressed. Hence, we perform bound-state calculations for ESC08c in
A Realistic Approach to the ΞNN Bound-State Problem based on Faddeev Equation

Fig. 5 Eigenvalue $\eta(E)$ of the Faddeev kernel $\tilde{K}(E)$ as a function E below the Ξd threshold. The energy E is set to zero at the ΞNN threshold. The red and blue lines indicate the values generated by Jülich Ch-EFT and HAL QCD respectively.

addition to Jülich Ch-EFT and HAL QCD. No bound state is found also in this $(T,J^P) = (1/2, 3/2^+) \text{ state for Jülich Ch-EFT and HAL QCD, but a bound state exists at } E = -3.05 \text{ MeV for ESC08c. The attraction in the } \Xi^N_1S_1 \text{ state for } t=1 \text{ shown in Fig. 2 is the main contribution to this binding. In conclusion, we have performed the } \Xi NN \text{ bound-state calculations for the } (T,J^P) = (1/2, 1/2^+) \text{ and } (T,J^P) = (1/2, 3/2^+) \text{ states using the coupled-channel } T \text{-matrix } T_{\Xi^N_1S_1} \text{ with negligible imaginary parts below the threshold for Jülich Ch-EFT and HAL QCD. It turns out that no bound state exists. In spite of the } \Xi N \text{ strong attraction in the } ^1S_0, t=0 \text{ state, repulsive effects from the isosin partner, } ^1S_0, t=1 \text{ state prevent the binding. In contrast, ESC08c generates a bound state at } E = -3.05 \text{ MeV for } (T,J^P) = (1/2, 3/2^+) \text{ where the decays into } \Lambda \Lambda \text{ are suppressed owing to negligible angular-momentum coupling. This is brought about by an attractive feature of the } ^3S_1, t=1 \text{ state for ESC08c.}

Acknowledgements We thank Y. Yamamoto, J. Haidenbauer and T. Inoue for the communication with regard to their $S = -2$ baryon-baryon interactions.

References

1. H. Garcilazo and A. Valcarce, Phys. Rev. C93, 034001 (2016).
2. I. Filikhin, V. M. Suslov, and B. Vlahovic, Math. Model. Geom. 5, 1 (2017).
3. E. Hiyama et al., Phys. Rev. Lett. 124, 092501 (2020).
4. J. Haidenbauer, U.-G. Meißner, Eur. Phys. J. A 55, 23 (2019).
5. J. Haidenbauer, U.-G. Meißner, S. Petschauer, Nucl. Phys. A 954, 273 (2016).
6. H. Polinder, J. Haidenbauer, U.-G. Meißner, Phys. Lett. B 653, 29 (2007).
7. T. Inoue and for HAL QCD Collaboration, AIP Conf. Proc. 2130, 020002 (2019).
8. K. Sasaki et al. for HAL QCD Collaboration, EPJ Web Conf. 175, 05010 (2018).
9. M.M. Nagels, Th. A. Rijken, Y. Yamamoto, arXiv:1504.02634 [nucl-th].
10. The numerical code for ESC08c is given by Y. Yamamoto.
11. K. Miyagawa and W. Glöckle, Phys. Rev. C48, 2576 (1993).
12. K. Miyagawa, H. Kamada, W. Glöckle, VStoks, Phys. Rev. C51, 2905 (1995).