The semileptonic decays $B/B_s \to (\pi, K)(l^+l^-, l\nu, \nu\bar{\nu})$ in the perturbative QCD approach beyond the leading-order

Wen-Fei Wang, and Zhen-Jun Xiao

Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, Jiangsu 210046, People’s Republic of China
(Dated: May 2, 2014)

Abstract

In this paper we first calculate the form factors of $B \to (\pi, K)$ and $B_s \to K$ transitions by employing the perturbative QCD (pQCD) factorization approach with the inclusion of the next-to-leading-order (NLO) corrections, and then we calculate the branching ratios of the corresponding semileptonic decays $B/B_s \to (\pi, K)(l^+l^-, l\nu, \nu\bar{\nu})$ (here l denotes e, μ and τ). Based on the numerical calculations and phenomenological analysis, we found the following results:

(a) For $B \to (\pi, K)$ and $B_s \to K$ transition form factors $F_{0,+,T}(q^2)$, the NLO pQCD predictions for the values of $F_{0,+,T}(0)$ and their q^2-dependence agree well with those obtained from other methods; (b) For $\bar{B}^0 \to \pi^+l^-\bar{\nu}_l, \bar{K}^0l^+l^-$ and $B^- \to \pi^0l^-\bar{\nu}_l, K^-l^+l^-$ decay modes, the NLO pQCD predictions for their branching ratios agree very well with the measured values; (c) By comparing the pQCD predictions for $Br(\bar{B}^0 \to \pi^+l^-\bar{\nu}_l)$ with the measured decay rate we extract out the magnitude of $|V_{ub}|$: $|V_{ub}| = (3.80^{+0.56}_{-0.50} \text{(theor.)}) \times 10^{-3}$; (d) We also defined several ratios of the branching ratios, R_0, R_C and R_{N_1,N_2,N_3}, and presented the corresponding pQCD predictions, which will be tested by LHCb and the forthcoming Super-B experiments.

PACS numbers: 13.20.He, 12.38.Bx, 14.40.Nd
I. INTRODUCTION

The semileptonic decays $B \to (\pi,K)(l^+l^-,l\bar{\nu},\nu\bar{\nu})$ and $B_s \to K(l^+l^-,l\bar{\nu},\nu\bar{\nu})$ with $l = (e,\mu,\tau)$ are very interesting B/B_s decay modes and playing an important role in testing the standard model (SM) and in searching for the new physics (NP) beyond the SM, such as the determination of $|V_{ub}|$ and the extractions of the transition form factors $F_{0,+}(q^2)$ of B/B_s meson to pion and/or kaon. For the charged current $B/B_s \to Pl\bar{\nu}$ decays, the ”Tree” diagrams provide the leading order contribution. For the neutral current $B/B_s \to Pl^+l^-$ and $P\nu\bar{\nu}$ decays, however, the leading order SM contributions come from the photon penguin, the Z penguin and the W^+W^- box diagrams, as shown in Fig. 1, where the symbol \oplus denotes the corresponding one-loop SM contributions.

On the experiment side, some decay modes among the all considered $B \to P(l^+l^-,l\nu,\nu\bar{\nu})$ decays have been measured by CLEO, BaBar and Belle experiments [1–5]. The $B_s \to K(l^+l^-,l\nu,\nu\bar{\nu})$ decays are now under studying and will be measured by the LHCb and the forthcoming Super-B experiments [6, 7].

On the theory side, the considered semileptonic decays strongly depend on the values and the shape of the $B/B_s \to P$ form factors. At present, there are various approaches to calculate the $B/B_s \to (\pi,K)$ transition form factors, such as the lattice QCD technique [8], the light cone QCD sum rules (LCSRs) [9–12], as well as the perturbative QCD (pQCD) factorization approach [13–17]. The direct perturbative calculations of the one-gluon exchange diagram for the B_s meson transition form factors suffer from the end-point singularities. Because of these end-point singularities, it was claimed that the $B \to P$ transition form factors is not calculable perturbatively in QCD [18].

In the pQCD factorization approach [19], however, a form factor is generally written as the convolution of a hard amplitude with initial-state and final-state hadron distribution amplitudes. In fact, in the endpoint region the parton transverse momenta k_T is not negligible. If the large double logarithmic term $\alpha_s \ln^2(k_T)$ and large logarithms $\alpha_s \ln^2(x)$ are resummed to all orders, the relevant Sudakov form factors from both the k_T resummation and the threshold resummation [20, 21] can cure the endpoint singularity which makes the perturbative calculation of the hard amplitudes infrared safe, and then the main contribution comes from the perturbative regions.

In Refs. [13, 16], for example, the authors calculated the $B \to \pi,\rho$ [13] and $B \to S$ form factors [16] at the leading order by employing the pQCD factorization approach and found that the values of the corresponding form factors coming from the pQCD factorization approach agree well with those obtained by using other methods. In a recent paper [22], Li, Shen and Wang calculated the next-to-leading order (NLO) corrections to the $B \to \pi$ transition form factors at leading twist in the k_T factorization theorem. They found that the NLO corrections amount only up to 30% of the form factors at the large recoil region of the pion.

In this paper, based on the assumption of the $SU(3)$ flavor symmetry, we first extend the NLO results about the $B \to \pi$ form factors as presented in Ref. [22] to the cases of $B \to K$ and $B_s \to K$ directly, and then calculate the q^2-dependence of the differential decay rates and the branching ratios of the considered B/B_s semileptonic decay modes, and furthermore extract $|V_{ub}|$ based on our calculations.

This paper is organized as follows. In Sec.II, we collect the distribution amplitudes of the B/B_s mesons and the π,K mesons being used in the calculation and give the k_T-dependent NLO expressions of the corresponding transition form factors. In Sec.III,
FIG. 1. The typical Feynman diagrams for the semileptonic decays $B/B_s \to (\pi, K)(l^+l^-, l\bar{\nu}, \nu\bar{\nu})$, where the symbol \oplus in (b) and (e) denotes the flavor-changing neutral current vertex with $V = \gamma$ and/or Z boson.

based on the k_T factorization formulism, we calculate and present the expressions for the $B/B_s \to \pi, K$ transition form factors in the large recoil regions. The numerical results and relevant discussions are given in Sec. IV. And Sec. V contains the conclusions and a short summary.

II. THE THEORETICAL FRAMEWORK AND NLO CORRECTIONS

For the sake of simplicity, we use B denotes both the B and B_s meson and P denotes final meson π or K from now on. As usual, we treat B meson as a heavy-light system. In the B meson rest frame, with the m_B stands for the mass of B meson, we define the B meson momentum p_1 and the final meson P (say π or K meson) momentum p_2 in the light-cone coordinates:

$$p_1 = \frac{m_B}{\sqrt{2}}(1, 1, 0_T), \quad p_2 = \frac{m_B}{\sqrt{2}}\eta(0, 1, 0_T),$$

with the energy fraction $\eta = 1 - q^2/m_B^2$ carried by the final meson (here $q = p_1 - p_2$). The light spectator momenta k_1 in the B meson and k_2 in the final meson are parameterized as

$$k_1 = (x_1\frac{m_B}{\sqrt{2}}, 0, k_{1T}), \quad k_2 = (0, x_2\eta\frac{m_B}{\sqrt{2}}, k_{2T}).$$

Because of the final pseudoscalar meson moving along the minus direction with large momentum, the plus component of its partons momentum should be very small, so it’s dropped in the expression of k_2. But the four components of k_1 should be of the same order, i.e. $O(\Lambda)$, with $\Lambda \equiv m_B - m_b$, m_b being the b quark mass. However, since k_2 is mainly in the minus direction with $k_{2T} \sim O(m_B)$, the hard amplitudes will not depend on the minus component k_1 as explained below. This is the reason why we do not give k_1^- in Eq.(2) explicitly.

In Ref. [22], the authors derived the k_T-dependent NLO hard kernel for the $B \to \pi$ transition form factor. We here use their results directly for $B \to \pi$ transition processes,
and extend the expressions of $B \rightarrow \pi$ form factors to the ones for both $B \rightarrow K$ and $B_s \rightarrow K$ transitions, under the assumption of $SU(3)$ flavor symmetry. As given in Eq.(56) of Ref. [22], the NLO hard kernel $H^{(1)}$ can be written as

$$H^{(1)} = F(x_1, x_2, \eta, \mu_f, \mu, \zeta_1)H^{(0)}$$

$$= \frac{\alpha_s(\mu_f)C_F}{4\pi} \left[\frac{21}{4} \ln \frac{\mu^2}{m_B^2} - \left(\ln \frac{m_B^2}{\zeta_1^2} + \frac{13}{2} \right) \ln \frac{\mu_f^2}{m_B^2} + \frac{7}{16} \ln^2(x_1x_2) \right.$$

$$+ \frac{1}{8} \ln^2 x_1 + \frac{1}{4} \ln x_1 \ln x_2 + \left(\frac{2}{\zeta_1} \ln \frac{m_B^2}{\zeta_1^2} + \frac{7}{8} \ln \eta - \frac{1}{4} \right) \ln x_1$$

$$+ \left\{ \frac{7}{8} \ln \eta - \frac{3}{2} \right\} \ln x_2 + \left(\frac{15}{4} - \frac{7}{16} \ln \eta \right) \ln \eta$$

$$- \frac{1}{2} \ln \frac{m_B^2}{\zeta_1} \left(\frac{3}{8} \ln \frac{m_B^2}{\zeta_1^2} + 2 \right) + \frac{101}{48} \pi^2 + \frac{219}{16} \right] H^{(0)}.$$

(3)

where $\zeta_1 = 25 m_B [22]$, μ_f is the factorization scale and set to the hard scales t_1 or t_2 as defined in the Appendix, $\eta = 1 - (p_1 - p_2)^2/m_B^2$ is the energy fraction carried by the final meson, and finally the renormalization scale μ is defined as [22]

$$t_s(\mu_f) = \{ \exp \left[c_1 + \left(\ln \frac{m_B^2}{\zeta_1^2} + \frac{5}{4} \right) \ln \frac{\mu_f^2}{m_B^2} \right] x_1^c x_2^c \}^{2/21} \mu_f,$$

(4)

with the coefficients

$$c_1 = - \left(\frac{15}{4} - \frac{7}{16} \ln \eta \right) \ln \eta + \frac{1}{2} \ln \frac{m_B^2}{\zeta_1^2} \left(\frac{3}{8} \ln \frac{m_B^2}{\zeta_1^2} + 2 \right) - \frac{101}{48} \pi^2 - \frac{219}{16},$$

$$c_2 = - \left(\frac{2}{\zeta_1} \ln \frac{m_B^2}{\zeta_1^2} + \frac{7}{8} \ln \eta - \frac{1}{4} \right),$$

$$c_3 = - \frac{7}{8} \ln \eta + \frac{3}{2}.$$

(5)

In this paper, we use the same distribution amplitudes for B/B_s meson and for the π and K meson as those used in Refs. [10, 22, 24].

$$\phi_B(x, b) = N_B x^2 (1 - x)^2 \exp \left[-\frac{1}{2} \left(\frac{x m_B}{\omega_b} \right)^2 - \frac{\omega_b^2 b^2}{2} \right],$$

(6)

and

$$\phi_{B_s}(x, b) = N_{B_s} x^2 (1 - x)^2 \exp \left[-\frac{1}{2} \left(\frac{x m_{B_s}}{\omega_{B_s}} \right)^2 - \frac{\omega_{B_s}^2 b^2}{2} \right],$$

(7)

where the normalization factors $N_{B,(s)}$ are related to the decay constants $f_{B,(s)}$ through

$$\int_0^1 dx \phi_{B,(s)}(x, b = 0) = \frac{f_{B,(s)}}{2\sqrt{6}}.$$

(8)

Here the shape parameter ω_b has been fixed at 0.40 GeV by using the rich experimental data on the B mesons with $f_B = 0.21$ GeV. Correspondingly, the normalization constant
N_B is 101.4. For B_s meson, we adopt the shape parameter $\omega_{B_s} = 0.50$ GeV with $f_{B_s} = 0.23$ GeV, then the corresponding normalization constant is $N_{B_s} = 63.67$. In order to analyze the uncertainties of theoretical predictions induced by the inputs, we can vary the shape parameters ω_b and ω_{B_s} by 10%, i.e., $\omega_b = 0.40 \pm 0.04$ GeV and $\omega_{B_s} = 0.50 \pm 0.05$ GeV, respectively.

For the π and K mesons, we adopt the same set of distribution amplitudes $\phi_i^A(x)$ (the leading twist-2) and $\phi_i^{P,T}(x)$ with $i = (\pi, K)$ as defined in Refs. [10, 24, 25]:

\[
\phi_i^A(x) = \frac{3f_i}{\sqrt{6}} x(1-x) \left[1 + a_1 C_i^{3/2}(t) + a_2 C_i^{5/2}(t) + a_4 C_4^{3/2}(t) \right],
\]

\[
\phi_i^P(x) = \frac{f_i}{2\sqrt{6}} \left[1 + \left(30\eta_3 - \frac{5}{2} \rho_i^2 \right) C_i^{1/2}(t) - 3 \left(\eta_3 \omega_3 + \frac{9}{20} \rho_i^2 \left(1 + 6a_2 \right) \right) C_i^{1/2}(t) \right],
\]

\[
\phi_i^T(x) = \frac{f_i}{2\sqrt{6}} x(1-x) \left[1 + \left(5\eta_3 - \frac{1}{2} \eta_3 \omega_3 - \frac{7}{20} \rho_i^2 - \frac{3}{5} a_2 \right) C_i^{2/2}(t) \right],
\]

where $t = 2x - 1$, $\rho_{s(K)} = m_{s(K)}/m_0^{s(K)}$ are the mass ratios (here $m_0^\pi = m_0^2/(m_u + m_d) = 1.4 \pm 0.1$ GeV and $m_0^K = m_0^2/(m_s + m_d) = 1.6 \pm 0.1$ GeV are the chiral mass of pion and kaon), $a_i^{\pi,K}$ are the Gegenbauer moments, while $C_i^\nu(t)$ are the Gegenbauer polynomials

\[
C_1^{3/2}(t) = 3t, \quad C_2^{1/2}(t) = \frac{1}{2} \left(3t^2 - 1 \right), \quad C_2^{3/2}(t) = \frac{3}{2} \left(5t^2 - 1 \right),
\]

\[
C_4^{1/2}(t) = \frac{1}{8} \left(3 - 30t^2 + 35t^4 \right), \quad C_4^{3/2}(t) = \frac{15}{8} \left(1 - 14t^2 + 21t^4 \right).
\]

The Gegenbauer moments appeared in Eqs. (9-11) are the following [10, 24]

\[
a_1^\pi = 0, \quad a_1^K = 0.06 \pm 0.03, \quad a_2^{\pi,K} = 0.25 \pm 0.15,
\]

\[
a_4^\pi = -0.015, \quad \eta_3^{\pi,K} = 0.015, \quad \omega_3^{\pi,K} = -3.
\]

III. FORM FACTORS AND SEMILEPTONIC DECAYS

A. $B_{(s)} \rightarrow \pi, K$ form factors

The form factors for $B \rightarrow P$ transition are defined by [26]

\[
\langle P(p_2)|\bar{b}(0)\gamma_\mu q(0)|B(p_1)\rangle = \left[(p_1 + p_2)_\mu - \frac{m_B^2 - m_P^2}{q^2} q_\mu \right] F_+(q^2)
\]

\[
+ \frac{m_B^2 - m_P^2}{q^2} q_\mu F_0(q^2),
\]

where $q = p_1 - p_2$ is the momentum transfer to the lepton pairs. In order to cancel the poles at $q^2 = 0$, $F_+(0)$ should be equal to $F_0(0)$. For the sake of the calculation, it is convenient to define the auxiliary form factors $f_1(q^2)$ and $f_2(q^2)$

\[
\langle P(p_2)|\bar{b}(0)\gamma_\mu q(0)|B(p_1)\rangle = f_1(q^2)p_{1\mu} + f_2(q^2)p_{2\mu}
\]
in terms of \(f_1(q^2) \) and \(f_2(q^2) \), the form factors \(F_+(q^2) \) and \(F_0(q^2) \) are defined as

\[
F_+(q^2) = \frac{1}{2} [f_1(q^2) + f_2(q^2)],
\]
\[
F_0(q^2) = \frac{1}{2} f_1(q^2) \left[1 + \frac{q^2}{m_B^2 - m_p^2} \right] + \frac{1}{2} f_2(q^2) \left[1 - \frac{q^2}{m_B^2 - m_p^2} \right].
\]

As for the tensor operator, there’s only one independent form factor, which is important for the semi-leptonic decay

\[
\langle P(p_2)|\bar{b}(0)\gamma_\mu q(0)|B(p_1)\rangle = i[p_2\mu q_\nu - q_\mu p_2\nu] \frac{2F_T(q^2)}{m_B + m_P},
\]
\[
\langle P(p_2)|\bar{b}(0)\gamma_5 q(0)|B(p_1)\rangle = \epsilon_{\mu\nu\alpha\beta} P_2^\alpha q_\beta \frac{2F_T(q^2)}{m_B + m_P}.
\]

The above form factors are dominated by a single gluon exchange in the lowest order and in the large recoil regions. The factorization formula for the \(B \to P \) form factors is written as [13, 15]

\[
\langle P(p_2)|\bar{b}(0)\gamma_\mu q(0)|B(p_1)\rangle = g_s^2 C_F N_c \int dx_1 dx_2 k_{1T} d^2k_{2T} \frac{d^2z}{(2\pi)^3} \frac{dy^-d^2y_T}{(2\pi)^3} \times e^{-i k_{2T} y} \langle P(p_2)|\bar{q}'(y) q(0)|0\rangle e^{i k_{1T} - z} \langle 0|\bar{b}\gamma_\mu(0) q(0)|B(p_1)\rangle T_{H\mu}^{\gamma_\mu:0\delta}. \]

In the hard-scattering kernel, the transverse momentum in the denominators are retained to regulate the endpoint singularity. The masses of the light quarks and the mass difference (\(\Delta^r \)) between the \(b \) quark and the \(B \) meson are neglected. The terms proportional to \(k_{1T}^2, k_{2T}^2 \) in the numerator are dropped, because they are power suppressed compared to other terms. In the transverse configuration b-space and by including the Sudakov form factors and the threshold resummation effects, we obtain the \(B \to P \) form factors as following,

\[
f_1(q^2) = 16\pi C_F m_B^2 \int dx_1 dx_2 \int b_1 b_2 b_2 \bar{\psi}_B(x_1, b_1)
\times \left\{ \left[r_0 (\phi^p(x_2) - \phi^t(x_2)) \cdot h_1(x_1, x_2, b_1, b_2) - r_0 x_1 \eta m_B^2 \phi^o (x_2) \cdot h_2(x_1, x_2, b_1, b_2) \right] \cdot \alpha_s(t_1) \exp [-S_{ab}(t_1)]
+ [x_1 (\eta \phi^o (x_2) - 2 r_0 \phi^p (x_2)) + 4 r_0 x_1 \phi^p (x_2)] \cdot h_1(x_2, x_1, b_2, 1) \cdot \alpha_s(t_2) \exp [-S_{ab}(t_2)] \right\},
\]
\[
f_2(q^2) = 16\pi C_F m_B^2 \int dx_1 dx_2 \int b_1 b_2 b_2 \bar{\psi}_B(x_1, b_1)
\times \left\{ \left[(x_2 \eta + 1) \phi^p(x_2) + 2 r_0 \left(\left(\frac{1}{\eta} - x_2 \right) \phi^t(x_2) - x_2 \phi^p(x_2) + 3 \phi^o (x_2) \right) \right] \cdot h_1(x_1, x_2, b_1, b_2) - r_0 x_1 m_B^2 (1 + x_2 \eta) \phi^o (x_2) \cdot h_2(x_1, x_2, b_1, b_2) \right\} \cdot \alpha_s(t_1) \exp [-S_{ab}(t_1)]
+ 2 r_0 \left(\frac{x_1}{\eta} + 1 \right) \phi^p (x_2) \cdot h_1(x_2, x_1, b_2, 1) \cdot \alpha_s(t_2) \exp [-S_{ab}(t_2)] \right\},
\]
\[F_T(q^2) = 8\pi C_F m_B^2 \int dx_1dx_2 \int b_1db_1b_2db_2(1 + r_P)\psi_B(x_1, b_1) \]
\[
\times \left\{ \left[r_0 x_1 m_B^2 \phi^\alpha(x_2) \cdot h_2(x_1, x_2, b_1, b_2) \right. \right. \\
\left. + \left. \frac{\phi^\alpha(x_2) - r_0 x_2 \phi^\alpha(x_2) + r_0}{\eta + x_2} \phi'(x_2) + r_0 \phi^\alpha(x_2) \right] \cdot h_1(x_1, x_2, b_1, b_2) \right\} \cdot \alpha_s(t_1) \exp [-S_{ab}(t_1)] \\
+ 2r_0 \phi^\alpha(x_2) \left(1 + \frac{x_1}{\eta} \right) \cdot h_1(x_1, x_2, b_1, b_1) \cdot \alpha_s(t_2) \exp [-S_{ab}(t_2)] \right\},
\]

where \(C_F = 4/3 \) is a color factor, \(r_0 = m_0^2/m_B = m_P^2/[m_B(m_q + m_{q'})] \), \(r_P = m_P/m_B \) and \(m_P \) is the mass of the final pseudoscalar meson, \(m_q \) and \(m_{q'} \) is the mass of the quarks involved in the final meson. The functions \(h_1 \) and \(h_2 \), the scales \(t_1, t_2 \) and the Sudakov factors \(S_{ab} \) are given in the Appendix A of this paper. One should note that \(f_1(q^2), f_2(q^2) \) and \(F_T(q^2) \) as given in Eqs. (19-21) do not including the NLO correction. In order to include the NLO corrections, the \(\alpha_s \) in Eqs. (19-21) should be changed into \(\alpha_s \cdot F(x_1, x_2, \eta, \mu_f, \mu, \zeta_1) \), where the NLO factor \(F(x_1, x_2, \eta, \mu_f, \mu, \zeta_1) \) has been defined in Eq. (3).

B. Semileptonic \(B \) and \(B_s \) meson decays

For the charged current \(B \to \pi l^- \bar{\nu}_l \) and \(\bar{B}_s \to K^+ l^- \bar{\nu}_l \) decays, as illustrated in Fig.1(a) and 1(d), the quark level transitions are the \(b \to ul^- \bar{\nu}_l \) transitions with \(l^- = (e^-, \nu^-, \tau^-) \), the effective Hamiltonian for such transitions is [27]

\[\mathcal{H}_{\text{eff}}(b \to ul\bar{\nu}_l) = \frac{G_F}{\sqrt{2}} V_{ub} \bar{u} \gamma_\mu (1 - \gamma_5) b \cdot \bar{l} \gamma^\mu (1 - \gamma_5) l \bar{\nu}_l, \]

where \(G_F = 1.16637 \times 10^{-5} \text{GeV}^{-2} \) is the Fermi-coupling constant, \(V_{ub} \) is one of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements. The corresponding differential decay widths can be written as [16, 28]

\[
\frac{d\Gamma(b \to ul\bar{\nu}_l)}{dq^2} = \frac{G_F^2 |V_{ub}|^2 q^2 - m_l^2}{192\pi^3 m_B^3 (q^2)} \sqrt{\frac{(q^2 - m_l^2)^2}{q^2} \left(\frac{m_B^2 - m_P^2 - q^2}{4q^2} \right)^2 - m_P^2} \\
\times \left\{ \left(m_l^2 + 2q^2 \right) \left[q^2 - (m_B - m_P)^2 \right] \left[q^2 - (m_B + m_P)^2 \right] \right\} F_+^2(q^2) \\
+ 3m_l^2 \left(m_B^2 - m_P^2 \right)^2 F_0^2(q^2) \right\},
\]

where \(m_l \) is the mass of the lepton. If the produced lepton is \(e^\pm \) or \(\mu^\pm \), the corresponding mass terms could be neglected, the above expression then becomes

\[
\frac{d\Gamma(b \to ul\bar{\nu}_l)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{192\pi^3 m_B^3} \lambda^{3/2}(q^2) |F_+(q^2)|^2,
\]

where \(\lambda(q^2) = (m_B^2 + m_P^2 - q^2)^2 - 4m_B^2 m_P^2 \) is the phase-space factor.

For those flavor changing neutral current one-loop decay modes, such as \(B \to Pl^- l^+ \) with \(P = (\pi, K) \) and \(\bar{B}_s \to \bar{K}^0 l^- l^+ \) decays, as illustrated in Fig.1, the quark level
transitions are the $b \to (s, d) l^- l^+$ transitions, the corresponding effective Hamiltonian for such transitions is

$$\mathcal{H}_{\text{eff}} = -\frac{G_F}{\sqrt{2}} V_{tb} V_{tq}^* \sum_{i=1}^{10} C_i(\mu) O_i(\mu),$$

(25)

where $q = (d, s)$, $C_i(\mu)$ are the Wilson coefficients and the local operators $O_i(\mu)$ are given by \cite{27}

$$O_1 = (\bar{q}_a c_\alpha)_{V-A} (\bar{c}_\beta b_\beta)_{V-A}, \quad O_2 = (\bar{q}_a c_\alpha)_{V-A} (\bar{c}_\beta b_\alpha)_{V-A},$$

$$O_3 = (\bar{q}_a c_\alpha)_{V-A} \sum_{q'} (\bar{q}'_\beta q'_\beta)_{V-A}, \quad O_4 = (\bar{q}_a b_\beta)_{V-A} \sum_{q'} (\bar{q}'_\beta q'_\alpha)_{V-A},$$

$$O_5 = (\bar{q}_a b_\beta)_{V-A} \sum_{q'} (\bar{q}'_\beta q'_\beta)_{V+A}, \quad O_6 = (\bar{q}_a b_\beta)_{V-A} \sum_{q'} (\bar{q}'_\beta q'_\alpha)_{V+A},$$

$$O_7 = \frac{e m_b}{8 \pi^2} \bar{q} \sigma^{\mu \nu} (1 + \gamma_5) b F_{\mu \nu},$$

$$O_9 = \frac{\alpha_{\text{em}}}{8 \pi} \left(\bar{I}_{\gamma \mu} l \right) [\bar{q} \gamma^\mu (1 - \gamma_5) b], \quad O_{10} = \frac{\alpha_{\text{em}}}{8 \pi} \left(\bar{I}_{\gamma \mu} \gamma_5 l \right) [\bar{q} \gamma^\mu (1 - \gamma_5) b],$$

(26)

where $q = (d, s)$, $q' = (u, d, c, s, b)$.

For the decays with $b \to s l^+ l^-$ transition, for example, the decay amplitude can be written as \cite{27}

$$\mathcal{A}(b \to s l^+ l^-) = \frac{G_F}{2 \sqrt{2}} \frac{\alpha_{\text{em}}}{\pi} V_{ts}^* V_{tb} \left\{ C_{10} [\bar{s} \gamma_\mu (1 - \gamma_5) b] [\bar{l} \gamma^\mu \gamma_5 l] \right. \right.$$

$$+ C_9^{\text{eff}}(\mu) \left[\bar{s} \gamma_\mu (1 - \gamma_5) b \right] [\bar{l} \gamma^\mu l] \right.$$

$$- 2 m_b C_7^{\text{eff}}(\mu) \left[\bar{s} i \sigma_{\mu \nu} q^\nu \left(1 + \gamma_5 \right) b \right] [\bar{l} \gamma^\mu l] \left\},\right.$$

(27)

where $C_7^{\text{eff}}(\mu)$ and $C_9^{\text{eff}}(\mu)$ are the effective Wilson coefficients, defined as

$$C_7^{\text{eff}}(\mu) = C_7(\mu) + C_7^{b \to s \gamma}(\mu),$$

$$C_9^{\text{eff}}(\mu) = C_9(\mu) + Y_{\text{pert}}(\hat{s}) + Y_{\text{LD}}(\hat{s}).$$

(28)

(29)

Here the term Y_{pert} represents the short distance perturbative contributions and has been given in Ref. \cite{29}

$$Y_{\text{pert}}(\hat{s}) = h(\hat{m}_c, \hat{s}) C_0 - \frac{1}{2} h(1, \hat{s}) (4 C_3 + 4 C_4 + 3 C_5 + C_6)$$

$$- \frac{1}{2} h(0, \hat{s}) (C_3 + 3 C_4) + \frac{2}{9} (3 C_3 + C_4 + 3 C_5 + C_6),$$

(30)

with $C_0 = C_1 + 3 C_2 + 3 C_3 + C_4 + 3 C_5 + C_6$, $\hat{s} = q^2/m_B^2$, $\hat{m}_c = m_c/m_b$ and $\hat{m}_b = m_b/m_B$.

while the functions $h(z, \hat{s})$ and $h(0, \hat{s})$ in above equation are of the form

$$h(z, \hat{s}) = -\frac{8}{9} \ln \left(\hat{m}_b/\mu \right) - \frac{8}{9} \ln z + \frac{8}{27} + \frac{4}{9} x$$

$$- \frac{2}{9} (2 + x) \sqrt{|1 - x|} \left\{ \begin{array}{ll} (\ln |\sqrt{1-x}+1|-i\pi), & (x \equiv \frac{4\hat{s}}{3} < 1), \\ 2 \arctan \frac{1}{\sqrt{x-1}}, & (x \equiv \frac{4\hat{s}}{3} > 1), \end{array} \right.$$

(31)

$$h(0, \hat{s}) = \frac{8}{27} - \frac{8}{9} \ln \left(\hat{m}_b/\mu \right) - \frac{4}{9} \ln \hat{s} + \frac{4}{9} i\pi.$$

(32)
The term $Y_{LD}(\hat{s})$ in Eq. (29) refers to the long-distance contributions from the resonant states and will be neglected because they could be excluded by experimental analysis\cite{30,31}. The term $C_{b\rightarrow s\gamma}^{\prime}$ in Eq. (28) is the absorptive part of $b \rightarrow s\gamma$ and is given by\cite{32}

$$C_{b\rightarrow s\gamma}^{\prime}(\mu) = i\alpha_s \left\{ \frac{2}{9} \eta^{14/23} [G_{\mu}(x_t) - 0.1687] - 0.03C_2(\mu) \right\}, \quad (33)$$

with

$$G_{\mu}(x_t) = \frac{x_t (x_t^2 - 5x_t - 2)}{8 (x_t - 1)^3} + \frac{3x_t^2 \ln x_t}{4(x_t - 1)^4}, \quad (34)$$

where $\eta = \alpha_s (m_W)/\alpha_s (\mu)$ and $x_t = m_t^2/m_W^2$.

The differential decay width of $b \rightarrow s l^+ l^-$ is given by\cite{16,33}

$$\frac{d\Gamma(b \rightarrow s l^+ l^-)}{dq^2} = \frac{G_F^2 \alpha_s^2 |V_{tb}|^2 |V_{ts}|^2}{512 m_B^3 \pi^5} \sqrt{\frac{\lambda(q^2)}{q^2 - 4m_t^2}} \frac{1}{3q^2} \times \left[6m_t^2 |C_{10}|^2 (m_B^2 - m_P^2)^2 F_0^2(q^2)
+ (q^2 + 2m_t^2) \lambda(q^2) \left| C_{9}^{\text{eff}} F_+(q^2) + \frac{2C_{7}^{\text{eff}} (m_b - m_s) F_T(q^2)}{m_B + m_P} \right|^2
+ |C_{10}|^2 (q^2 - 4m_t^2) \lambda(q^2) F_+^2(q^2) \right], \quad (35)$$

where $\alpha_{em} = 1/137$ is the fine structure constant. For $b \rightarrow d l^+ l^-$ decays, it is easy to derive the differential decay width from above equation by a simple replacement $V_{ts} \rightarrow V_{td}$ and $m_s \rightarrow m_d$.

Finally, the effective Hamiltonian for $b \rightarrow s \nu \bar{\nu}$ transition is

$$H_{b\rightarrow s\nu\bar{\nu}} = \frac{G_F \alpha_{em}}{\sqrt{2} 2\pi \sin^2(\theta_W)} V_{tb} V_{ts}^* \eta_X X(x_t) \left[\bar{s} \gamma^\mu (1 - \gamma_5) b \right] \left[\bar{\nu} \gamma_\mu (1 - \gamma_5) \nu \right] = C_{L\rightarrow s}^{b\rightarrow s} O_{L\rightarrow s}^{b\rightarrow s}, \quad (36)$$

where θ_W is the Weinberg angle with $\sin^2(\theta_W) = 0.231$, the function $X(x_t)$ can be found in Ref.\cite{27}, while $\eta_X \approx 1$ is the QCD factor\cite{27}. The corresponding differential decay width can be written as

$$\frac{d\Gamma(b \rightarrow s \nu \bar{\nu})}{dq^2} = 3 |C_{L\rightarrow s}^{b\rightarrow s}|^2 \lambda^{3/2}(m_B^2, m_P^2, q^2) \frac{F_+(q^2)}{96 m_B^3 \pi^5} \frac{|F_+(q^2)|^2}{96 m_B^3 \pi^5}. \quad (37)$$

The factor 3 in above equation arises form the summation over the three neutrino generations. For $b \rightarrow d \nu \bar{\nu}$ transition, we can obtain the differential decay widths easily also by simple replacements: $|V_{ts}^*| \rightarrow |V_{td}^*|$ and $m_s \rightarrow m_d$.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In the numerical calculations we use the following input parameters (the masses and decay constants are all in unit of GeV) [34]:

\[
\begin{align*}
\Lambda_{MS}^{(f=4)} &= 0.287, \quad f_\pi = 0.13, \quad f_K = 0.16, \quad f_B = 0.21, \\
f_B &= 0.236, \quad m_{B^\pm} = 5.2792, \quad m_{B^0} = 5.2795, \quad m_{B^0_s} = 5.3663, \\
\tau_{B^\pm} &= 1.638 \text{ ps}, \quad \tau_{B^0} = 1.525 \text{ ps}, \quad \tau_{B^0_s} = 1.472 \text{ ps}, \\
m_{\pi^\pm} &= 0.1396, \quad m_{\pi^0} = 0.135, \quad m_{K^\pm} = 0.4937, \quad m_{K^0} = 0.4976, \\
m_\tau &= 1.777, \quad m_b = 4.8, \quad m_W = 80.4, \quad m_t = 172.
\end{align*}
\]

For relevant CKM matrix elements we use \(|V_{ub}| = 0.999, \ |V_{ts}| = 0.0403^{+0.0011}_{-0.0007}, |V_{td}/V_{ts}| = 0.211 \pm 0.001 \pm 0.005 [34].

A. Form factors in the pQCD factorization approach

By using the definitions in Eqs. [16,17] and the expressions in Eqs. [19,21], we can calculate the values of the form factors \(F_0(q^2), F_+(q^2)\) and \(F_T(q^2)\) for given value of \(q^2\), in the region of \(0 \leq q^2 \leq (M_B - m_P)^2\). But one should note that the pQCD predictions for the considered form factors are reliable only for small or moderate values of \(q^2\): say \(0 \leq q^2 \leq 12 \text{ GeV}^2\). For the form factors in the larger \(q^2\) region, one has to make an extrapolation for them from the lower \(q^2\) region to larger \(q^2\) region.

For the form factor \(F_0(q^2)\) of \(B/B_s \to (\pi, K)\) transition, we make the extrapolation by using the pole model parametrization

\[
F_0(q^2) = \frac{F_0(0)}{1 - a(q^2/m_B^2) + b(q^2/m_B^2)^2},
\]

where \(a, b\) are the constants to be determined by the fitting procedure. In Table II we list the LO and NLO pQCD predictions for the form factors \(F_0(0)\) and the corresponding parametrization constant \(a\) and \(b\) for \(B \to (\pi, K)\) and \(B_s \to K\) transitions extracted through the fitting. The first error of \((F_0(0), a, b)\) in Table II comes from the uncertainty of \(\omega_b = 0.40 \pm 0.04 \text{ GeV}\) or \(\omega_{B_s} = 0.50 \pm 0.05 \text{ GeV}\), the second error is induced by \(a_1^K = 0.06 \pm 0.03\) and/or \(a_2^{\pi,K} = 0.25 \pm 0.15\). The errors from the uncertainties of \(m_0^{\pi,K}, V_{ts}\) and \(|V_{td}/V_{ts}|\) are very small and have been neglected.

For the form factors \(F_+(q^2)\) and \(F_T(q^2)\), the pole model parametrization as given in Eq. (39) does not work, and we have to use other proper parametrization method. In this paper, we use the Ball/Zwicky (BZ) parametrization method [10, 35, 36]. It includes the essential feature that \(F_+(q^2)\) and \(F_T(q^2)\) have a pole at \(q^2 = m_{B^*}^2\), with \(B^*(1^-)\) is a narrow resonance with \(m_{B^*} = 5.325 \text{ GeV}\) and \(m_{B^*_s} = 5.415 \text{ GeV}\), which are expected to have a distinctive impact on the form factor.

For the form factors \(F_+(q^2)\) and \(F_T(q^2)\) of \(B/B_s \to (\pi, K)\) transition, we make the extrapolation by using the BZ parametrization

\[
F_i(q^2) = F_i(0) \left(\frac{1}{1 - q^2/m_{B^*_i}^2} + \frac{r q^2/m_{B^i}^2}{(1 - q^2/m_{B^i}^2) (1 - \alpha q^2/m_{B^i}^2)} \right),
\]
TABLE I. The pQCD predictions for form factors $F_0(0)$ and the parametrization constant a and b for $B \to (\pi, K)$ and $B_s \to K$ transitions, at the LO and NLO level respectively. The two errors come from the uncertainties of ω_b or ω_B, and a^K_1 and/or $a^{\pi,K}_2$, respectively.

	$F_0(0)$	a	b
$B \to \pi$	$0.22^{+0.03}_{-0.02} \pm 0.01$	$0.58 \pm 0.01 \pm 0.03$	$-0.15 \pm 0.01 \pm 0.01$
$B \to K$	$0.27^{+0.04}_{-0.03} \pm 0.01$	$0.60 \pm 0.01 \pm 0.03$	$-0.15^{+0.02}_{-0.00}^{+0.01}$
$B_s \to K$	$0.22 \pm 0.03 \pm 0.01$	$0.61^{\pm 0.01 \pm 0.03}_{+0.04}$	$-0.16 \pm 0.00^{+0.02}_{-0.01}$

	$F_0(0)$	a	b
$B \to \pi$	$0.26^{+0.04}_{-0.03} \pm 0.02$	$0.50 \pm 0.01^{+0.05}_{-0.04}$	$-0.13 \pm 0.01 \pm 0.01$
$B \to K$	$0.31 \pm 0.04 \pm 0.02$	$0.53 \pm 0.01^{+0.03}_{-0.04}$	$-0.13 \pm 0.01^{+0.02}_{-0.01}$
$B_s \to K$	$0.26^{+0.04}_{-0.03} \pm 0.02$	$0.54 \pm 0.00 \pm 0.05$	$-0.15 \pm 0.01 \pm 0.01$

FIG. 2. The pQCD predictions for the form factors $F_T(q^2)$ for $B \to \pi$ transition, where the dots refer to the pQCD predictions for the given points of q^2 in the range of $0 \leq q^2 \leq 12 GeV^2$, while the solid curve stands for the fitted curve at the NLO level.

where α and r are the shape parameters to be determined by the fitting procedure, the same as for the case of $F_0(q^2)$. In Table III we list the pQCD predictions for the form factors $F_\pm(0)$, $F_T(0)$ and the corresponding shape parameters (α, r) for $B \to (\pi, K)$ and $B_s \to K$ transitions at the LO and NLO level. In Fig. 2, we show the pQCD predictions for the form factors $F_T(q^2)$ for $B \to \pi$ transition, where the dots refer to the pQCD predictions for each given value of q^2 in the large-recoil range of $0 \leq q^2 \leq 12 GeV^2$, while the solid curve stands for the fitted curve at the NLO level, obtained through fitting by using the Eq. (40).
TABLE II. The same as in Table I but for the pQCD predictions for the form factors $F_+(0)$, $F_T(0)$ and the corresponding shape parameters α and r at the LO and the NLO level. And the two errors come from the uncertainties of ω_0 or ω_{B_s}, and a_1^K and/or $a_2^\pi^K$, respectively.

	$F_+(0)_{LO}$	α_{LO}	r_{LO}
$B \to \pi$	$0.23^{+0.02}_{-0.03} \pm 0.01$	$0.61^{+0.00}_{-0.01} \pm 0.01$	$0.51 \pm 0.00 \pm 0.03$
$B \to K$	$0.27^{+0.04}_{-0.05} \pm 0.01$	$0.62^{+0.00}_{-0.01} \pm 0.01$	$0.58 \pm 0.00 \pm 0.03$
$B_s \to K$	$0.22 \pm 0.03 \pm 0.01$	$0.64 \pm 0.00 \pm 0.01$	$0.56 \pm 0.00 \pm 0.04$

	$F_T(0)_{LO}$	α_{LO}	r_{LO}
$B \to \pi$	$0.23 \pm 0.03 \pm 0.01$	$0.69^{+0.00}_{-0.01} \pm 0.01$	$0.55 \pm 0.01 \pm 0.03$
$B \to K$	$0.36^{+0.04}_{-0.05} \pm 0.01$	$0.71^{+0.00}_{-0.01} \pm 0.01$	$0.58 \pm 0.01 \pm 0.03$
$B_s \to K$	$0.25^{+0.04}_{-0.05} \pm 0.01$	$0.71^{+0.01}_{-0.00} \pm 0.01$	$0.59 \pm 0.00 \pm 0.03$

	$F_+(0)_{NLO}$	α_{NLO}	r_{NLO}
$B \to \pi$	$0.26^{+0.04}_{-0.03} \pm 0.02$	$0.52 \pm 0.01 \pm 0.03$	$0.45 \pm 0.00^{+0.05}_{-0.04}$
$B \to K$	$0.31 \pm 0.04 \pm 0.02$	$0.54 \pm 0.01^{+0.02}_{-0.03}$	$0.50 \pm 0.00 \pm 0.05$
$B_s \to K$	$0.26^{+0.04}_{-0.03} \pm 0.02$	$0.57 \pm 0.01 \pm 0.02$	$0.50 \pm 0.01 \pm 0.05$

	$F_T(0)_{NLO}$	α_{NLO}	r_{NLO}
$B \to \pi$	$0.26^{+0.04}_{-0.03} \pm 0.02$	$0.65^{+0.01}_{-0.02} \pm 0.01$	$0.50 \pm 0.00 \pm 0.00$
$B \to K$	$0.34^{+0.05}_{-0.06} \pm 0.02$	$0.67 \pm 0.01 \pm 0.01$	$0.53 \pm 0.00^{+0.05}_{-0.04}$
$B_s \to K$	$0.28 \pm 0.04 \pm 0.02$	$0.69 \pm 0.01 \pm 0.01$	$0.53^{+0.01+0.04}_{-0.00-0.02}$

FIG. 3. The pQCD predictions for the q^2-dependence of $F_{0,+T}(q^2)$ for $B \to \pi$ transition, where the dots curve and dot-dashed curve shows the LO and NLO part respectively, and the solid curve stands for the total value at the NLO level.

In Figs. (3,5), we show the pQCD predictions for the q^2-dependence of the form factors $F_{0,+T}(q^2)$ at the leading order (dots curves) and the next-to-leading order (solid curve) for the considered $B \to (\pi,K)$ and $B_s \to K$ transitions, respectively.

From the numerical results as listed in Table I and II and the q^2-dependence as illustrated in Figs. (3,4), one can see that:
(i) For the considered $B \to (\pi, K)$ and $B_s \to K$ transitions, the NLO pQCD predictions for the form factors $F_{0,+}^{B \to \pi}(0)$ agree well with the values estimated from the LCSR or other methods\cite{10}.

(ii) $F_0(0)$ equals to $F_+(0)$ by definition, but they have different q^2-dependence as illustrated by Figs.3-5. We also observe the pattern of the relative strength of the form factors:

$$F_{0,+}^{B \to \pi}(0) = F_{0,+}^{B_s \to K}(0) \lesssim F_{0,+}^{B \to K}(0), \quad (41)$$

$$F_T^{B \to \pi}(0) \lesssim F_T^{B_s \to K}(0) \lesssim F_T^{B \to K}(0), \quad (42)$$

which is consistent with the general expectation.

(iii) The LO part of the form factors dominate the total contribution, the NLO part is only around 20%. The form factor $F_0(q^2)$ has a relatively weak q^2-dependence, but $F_+(q^2)$ and $F_T(q^2)$ show a little stronger q^2-dependence when compared with $F_0(q^2)$.

FIG. 4. The same as in Fig. 3 but for $B \to K$ transition.

FIG. 5. The same as in Fig. 3 but for $B_s \to K$ transition.
B. Decay widths and branching ratios

By using the relevant formula and the input parameters as defined or given in previous sections, it is straightforward to calculate the branching ratios for all the considered decays.

Firstly, in Figs. (6-7), we show the differential decay rates $d\Gamma/dq^2$ for the decay modes corresponding to the $B \rightarrow (\pi, K)$ and $B_s \rightarrow K$ transitions.

\[\text{FIG. 6. The } q^2\text{-dependence of the differential decay rates } d\Gamma/dq^2 \text{ for the decay processes with the } B \rightarrow \pi \text{ and } B \rightarrow K \text{ transitions.} \]

By making the numerical integrations over the whole range of q^2, we find the numerical results for the branching ratios. For the $b \rightarrow u$ charged current processes, the NLO pQCD predictions for the decay rates are the following

\[Br(\bar{B}^0 \rightarrow \pi^+ l^- \bar{\nu}_l) = (1.42^{+0.40}_{-0.30}(\omega_b) \pm 0.15(a_2^\pi) \pm 0.12(m_0^\pi)) \times \frac{|V_{ub}|^2}{0.0038^2} \times 10^{-4}, \quad (43) \]

\[Br(\bar{B}^0 \rightarrow \pi^- l^+ \bar{\nu}_l) = (0.90^{+0.25}_{-0.19}(\omega_b) \pm 0.09(a_2^\pi) \pm 0.08(m_0^\pi)) \times \frac{|V_{ub}|^2}{0.0038^2} \times 10^{-4}, \quad (44) \]
FIG. 7. The q^2-dependence of the differential decay rates $d\Gamma/dq^2$ for the decay processes with the $B_s \to K$ transitions.

\[
Br(B^+ \to \pi^0 l^- \bar{\nu}_l) = (7.63^{+2.16}_{-1.61}(\omega_b)^{+0.82}_{-0.75}(a_s^2)^{+0.66}_{-0.63}(m_0^K)) \times \frac{|V_{ub}|^2}{0.0038^2} \times 10^{-5}, \quad (45)
\]
\[
Br(B^+ \to \pi^0 \tau^- \bar{\nu}_\tau) = (4.85^{+1.34}_{-1.01}(\omega_b)^{+0.47}_{-0.41}(a_s^2)^{+0.45}_{-0.43}(m_0^\tau)) \times \frac{|V_{ub}|^2}{0.0038^2} \times 10^{-5}, \quad (46)
\]
\[
Br(\bar{B}_s^0 \to K^+ l^- \bar{\nu}_l) = (1.27^{+0.46}_{-0.26}(\omega_b)^{+0.14}_{-0.13}(a_s^K)^{+0.10}_{-0.09}(m_0^K)) \times \frac{|V_{ub}|^2}{0.0038^2} \times 10^{-4}, \quad (47)
\]
\[
Br(\bar{B}_s^0 \to K^+ \tau^- \bar{\nu}_\tau) = (7.78^{+2.53}_{-1.83}(\omega_b)^{+0.69}_{-0.66}(a_s^K)^{+0.62}_{-0.59}(m_0^K)) \times \frac{|V_{ub}|^2}{0.0038^2} \times 10^{-5}, \quad (48)
\]

where the first error comes from the uncertainties of $\omega_b = 0.40 \pm 0.04$ or $\omega_{B_s} = 0.50 \pm 0.05$, the second error are induced by the variations of $a_s^K = 0.06 \pm 0.03$, $a_{\pi, K} = 0.25 \pm 0.15$ and the third error comes from the uncertainties of $m_0^K = 1.4 \pm 0.1 GeV$, $m_0^{\pi} = 1.6 \pm 0.1 GeV$.

For $\bar{B}^0 \to \pi^+ l^- \bar{\nu}_l$ and $B^- \to \pi^0 l^- \bar{\nu}_l$ decay mode, their branching ratios have been well measured by BaBar, Belle and CLEO Collaborations [1,3]. The new BaBar measurement [1] and the new world average [37] are the following

\[
Br(\bar{B}^0 \to \pi^+ l^- \bar{\nu}_l) = \begin{cases}
(1.41 \pm 0.05(syst.) \pm 0.07(stat.)) \times 10^{-4}, & \text{BaBar[1],} \\
(1.44 \pm 0.05) \times 10^{-4}, & \text{PDG2012[37],}
\end{cases} \quad (49)
\]
\[
Br(B^- \to \pi^0 l^- \bar{\nu}_l) = (7.78 \pm 0.28) \times 10^{-5}, \quad \text{PDG2012[37],} \quad (50)
\]

On the other hand, we know that one can extract out the magnitude of the CKM matrix element V_{ub} by comparing the theoretical prediction for $Br(B \to \pi l\nu)$ with the data.

Based on the measured partial branching fraction for $B \to \pi l\nu$ in the range of $0 \leq q^2 < 12 GeV^2$ and the most recent QCD light-cone sum-rule calculation of the form factor $F_+(q^2)$ [38], BaBar Collaboration found the result [1]

\[
|V_{ub}| = (3.78 \pm 0.13(exp.)^{+0.55}_{-0.46}(theor.)) \times 10^{-3}, \quad (51)
\]
where the two errors refer to the experimental and theoretical uncertainties.

From the differential decay rate as given in Eq. (24) and the pQCD calculation of the form factor \(F_+(q^2) \) at the NLO level, we make the numerical integration over the whole range of \(0 \leq q^2 \leq (M_B - m_q)^2 \), compare the obtained branching ratio for \(B^0 \to \pi^+ l^- \bar{\nu}_l \) with the new BaBar measurement as given in Eq. (49), and derive out our estimation for the magnitude of \(V_{ub} \):

\[
|V_{ub}| = (3.80^{+0.50}_{-0.43}(\omega_b) \pm 0.20(a_0^V)^{+0.16}_{-0.15}(m_0^{\pi})) \times 10^{-3} = (3.80^{+0.56}_{-0.50}(theor.)) \times 10^{-3}, \tag{52}
\]

It is easy to see that our estimation for the central value and the uncertainty of \(|V_{ub}| \) agrees very well with the BaBar result as given in Eq. (51).

For other neutral current processes, after making the numerical integration over the whole range of \(0 \leq q^2 \leq (M_B - m_q)^2 \), we find the NLO pQCD predictions for the branching ratios. The pQCD predictions at the NLO level and currently available data are all listed in Table III. The first error of the pQCD predictions comes from the uncertainties of \(\omega_b \) or \(\omega_{B_s} \), the second one from \(a_0^V \) and/or \(a_0^{\pi K} \), and the third one is induced by the uncertainties of the chiral mass \(m_0^{\pi K} \).

TABLE III. The NLO pQCD predictions for the branching ratios of the considered decays with \(l = (e, \mu) \) and currently available experimental measurements \([14, 39]\) and the world averages\([33]\). The upper limits are all given at the 90\% C.L.

Decay modes	NLO pQCD predictions	Data
\(Br(B^0 \to \pi^0 l^+ l^-) \)	\((0.91^{+0.28}_{-0.19} \pm 0.10 \pm 0.08) \times 10^{-8} \)	\(< 1.2 \times 10^{-7}\)
\(Br(B^0 \to \pi^0 l^+ l^-) \)	\((0.28^{+0.07}_{-0.06} \pm 0.02 \pm 0.03) \times 10^{-8} \)	\(< 2.2 \times 10^{-4}\)
\(Br(B^0 \to \pi^0 l^+ l^-) \)	\((7.30^{+2.07}_{-1.54} + 0.79 + 0.63) \times 10^{-8} \)	\(< 4.9 \times 10^{-8}\)
\(Br(B^0 \to \pi^0 l^+ l^-) \)	\((6.00^{+0.16}_{-0.12} + 0.04 \pm 0.03 \pm 0.06) \times 10^{-8} \)	\(< 1.0 \times 10^{-4}\)
\(Br(B^0 \to K^0 l^+ l^-) \)	\((4.1^{+1.2}_{-0.9} + 0.4 + 0.3) \times 10^{-6} \)	\(< 5.6 \times 10^{-5}\)
\(Br(B^0 \to K^0 l^+ l^-) \)	\((5.50^{+1.59}_{-1.1} + 0.57 + 0.42) \times 10^{-7} \)	\(< 5.1 \pm 0.5 \times 10^{-7}\)
\(Br(B^0 \to K^0 l^+ l^-) \)	\((1.00^{+0.32}_{-0.25} + 0.07 + 0.11) \times 10^{-7} \)	\(< 1.3 \times 10^{-5}\)

From the NLO pQCD predictions for the branching ratios of all considered semi-leptonic decays of \(B \) and \(B_s \) meson, as listed in Eqs. (44),(17) and Table III we have the following points:

(i) The branching ratios of the charged current processes \(B \to \pi l \nu \) and \(B_s \to K l \nu \) are all at the order of \(10^{-4} \). For \(\bar{B}^0 \to \pi^+ l^- \bar{\nu}_l \) and \(B^- \to \pi^0 l^- \bar{\nu}_l \) decay modes, the
pQCD predictions for its branching ratios as shown in Eqs. (43,45) agree very well with the data as given in Eqs. (49,50). For other charged current decay modes, the pQCD predictions as given in Eqs. (44,46,48) will be tested by LHCb and the forthcoming Super-B experiments.

(ii) For the neutral current $\bar{B}^0 \rightarrow K^0 l^+ l^-$ and $B^- \rightarrow K^- l^+ l^-$ decays, the NLO pQCD predictions for their branching ratios agree very well with currently available experimental measurements. For other neutral current decays, the NLO pQCD predictions are all consistent with currently available experimental upper limits and will be tested by LHCb and the forthcoming Super-B experiments.

(iii) Because of the strong suppression of the CKM factor $|V_{td}/V_{ts}|^2 = 0.211^2$, the branching ratios for the decays with $b \rightarrow d$ transitions are much smaller than those decays with the $b \rightarrow s$ transitions. Furthermore, the branching ratios of $B_{(s)} \rightarrow P \nu \nu$ are almost an order larger than their corresponding decay modes $B_{(s)} \rightarrow P l^+ l^-$ partially due to the generation factor $N_g = 3$. In order to reduce the theoretical uncertainty of the pQCD predictions, we defined several ratios R_ν, R_C and $R_{N1,N2,N3}$ among the branching ratios of the considered decay modes.

The NLO pQCD prediction for the ratio R_ν is of the form

$$R_\nu = \frac{Br(\bar{B}^0 \rightarrow \pi^0 \nu \bar{\nu})}{Br(B^0 \rightarrow \pi^0 l^+ l^-)} \approx \frac{Br(\bar{B}^0 \rightarrow \bar{K}^0 \nu \bar{\nu})}{Br(B^0 \rightarrow K^0 l^+ l^-)}$$

$$\approx \frac{Br(B^- \rightarrow \pi^- \nu \bar{\nu})}{Br(B^- \rightarrow \pi^- l^+ l^-)} \approx \frac{Br(B_s^0 \rightarrow K^0 \nu \bar{\nu})}{Br(B_s^0 \rightarrow K^0 l^+ l^-)} \approx 8,$$ \hspace{1cm} (53)

for $l = (e, \mu)$. These relations will be tested by experiments.

(iv) Because of the large mass of τ lepton, we found that the considered B/B_s decays involving one or two τ's in the final state have a smaller decay rates than those without τ. The pQCD predictions for the ratios R_C and $R_{N1,N2,N3}$ of the corresponding branching ratios of relevant decays are the following

$$R_C = \frac{Br(\bar{B}_s^0 \rightarrow P^+ l^- \bar{\nu}_l)}{Br(B_s^0 \rightarrow P^+ \tau^- \bar{\nu}_\tau)} \approx 1.5,$$ \hspace{1cm} (54)

$$R_{N1} = \frac{Br(B^0 \rightarrow \pi^0 l^+ l^-)}{Br(B^0 \rightarrow \pi^0 \tau^+ \tau^-)} \approx \frac{Br(B^- \rightarrow \pi^- l^+ l^-)}{Br(B^- \rightarrow \pi^- \tau^+ \tau^-)} \approx 3.3,$$ \hspace{1cm} (55)

$$R_{N2} = \frac{Br(B^0 \rightarrow K^0 l^+ l^-)}{Br(B^0 \rightarrow K^0 \tau^+ \tau^-)} \approx \frac{Br(B^- \rightarrow K^- l^+ l^-)}{Br(B^- \rightarrow K^- \tau^+ \tau^-)} \approx 4.3,$$ \hspace{1cm} (56)

$$R_{N3} = \frac{Br(\bar{B}_s^0 \rightarrow K^0 l^+ l^-)}{Br(B_s^0 \rightarrow K^0 \tau^+ \tau^-)} \approx 3.8,$$ \hspace{1cm} (57)

for $l = (e, \mu)$. These relations will be tested by LHCb and the forthcoming Super-B experiments.
V. SUMMARY AND CONCLUSIONS

In this paper we calculated the branching ratios of the semileptonic decays $B \to (\pi, K)(l^+l^-, \ell\nu, \nu\bar{\nu})$ and $B_s \to K(l^+l^-, \ell\nu, \nu\bar{\nu})$ in the pQCD factorization approach. We firstly evaluate the $B \to (\pi, K)$ and $B_s \to K$ transition form factors $F_{0,+,T}(q^2)$ by employing the pQCD factorization approach with the inclusion of the next-to-leading-order corrections, and then we calculate the branching ratios for all considered semileptonic decays. Based on the numerical results and the phenomenological analysis, we found the following points:

(i) For the $B \to (\pi, K)$ and $B_s \to K$ transition form factors $F_{0,+,T}(q^2)$, the NLO pQCD predictions for the values of $F_{0,+,T}(0)$ and their q^2-dependence agree well with those obtained from the LCSR or other methods. The NLO part of the form factors in the pQCD factorization approach is only around 20% of the total value.

(ii) For the charged current $\bar{B}^0 \to \pi^+l^-\bar{\nu}_l$ and $B^- \to \pi^0l^-\bar{\nu}_l$ decays and the neutral current $\bar{B}^0 \to K^0l^+$ and $B^- \to K^-l^+$ decays, the NLO pQCD predictions for their branching ratios agree very well with the measured values.

(iii) By comparing the pQCD predictions for $Br(\bar{B}^0 \to \pi^+l^-\bar{\nu}_l)$ with the measured decay rate we extract out the magnitude of the CKM element $|V_{ub}| = (3.80^{+0.56}_{-0.50}(\text{theor.})) \times 10^{-3}$.

(iv) We also defined several ratios of the branching ratios R_ν, R_C and $R_{N1,N2,N3}$, and presented the corresponding pQCD predictions, which will be tested by LHCb and the forthcoming Super-B experiments.

ACKNOWLEDGMENTS

The authors would like to thank H.n. Li, Y.M. Wang, C.D. Lu and Y.L. Shen for valuable discussions. This work is supported in part by the National Natural Science Foundation of China under Grant No. 10975074 and 10735080.

Appendix A: Related functions defined in the text

In this Appendix, we present the functions needed in the pQCD calculation. The threshold resummation factors $S_t(x)$ is adopt from Ref. [13]:

$$S_t = \frac{2^{1+2c} \Gamma(3/2 + c) [x(1-x)]^c}{\sqrt{\pi} \Gamma(1+c)},$$ \hspace{1cm} (A1)

and we here set the parameter $c = 0.4$. The hard functions h_1 and h_2 come form the Fourier transform and can be written as [40]

$$h_1(x_1, x_2, b_1, b_2) = K_0(\sqrt{x_1x_2m_Bb_1}) \left[\theta(b_1 - b_2)I_0(\sqrt{x_2m_Bb_2})K_0(\sqrt{x_2m_Bb_1}) + \theta(b_2 - b_1)I_0(\sqrt{x_2m_Bb_1})K_0(\sqrt{x_2m_Bb_2}) \right] S_t(x_2),$$ \hspace{1cm} (A2)
\[h_2(x_1, x_2, b_1, b_2) = \frac{b_1 K_1(\sqrt{x_1 x_2 \eta m_B b_1})}{2 \sqrt{x_1 x_2 \eta m_B}} \left[\theta(b_1 - b_2) I_0(\sqrt{x_2 \eta m_B b_2}) K_0(\sqrt{x_2 \eta m_B b_1}) + \theta(b_2 - b_1) I_0(\sqrt{x_2 \eta m_B b_1}) K_0(\sqrt{x_2 \eta m_B b_2}) \right] S_1(x_2), \quad (A3) \]

where \(J_0 \) is the Bessel function and \(K_0, K_1, I_0 \) are modified Bessel functions.

The factor \(\exp[-S_{ab}(t)] \) contains the Sudakov logarithmic corrections and the renormalization group evolution effects of both the wave functions and the hard scattering amplitude with \(S_{ab}(t) = S_B(t) + S_P(t) \), where

\[S_B(t) = s \left(x_1 \frac{m_B}{\sqrt{2}}, b_1 \right) + \frac{5}{3} \int_{1/b_1}^t \frac{d\tilde{\mu}}{\tilde{\mu}} \gamma_q(\alpha_s(\tilde{\mu})) \tag{A4} \]

\[S_P(t) = s \left(x_2 \frac{m_B}{\sqrt{2}}, b_2 \right) + s \left((1 - x_2) \frac{m_B}{\sqrt{2}}, b_2 \right) + 2 \int_{1/b_2}^t \frac{d\tilde{\mu}}{\tilde{\mu}} \gamma_q(\alpha_s(\tilde{\mu})) \tag{A5} \]

with the quark anomalous dimension \(\gamma_q = -\alpha_s/\pi \). The functions \(s(Q, b) \) are defined by \(13 \)

\[
s(Q, b) = \frac{A^{(1)}}{2\beta_1} \hat{q} \ln \left(\frac{\hat{q}}{b} \right) - \frac{A^{(1)}}{2\beta_1} (\hat{q} - \hat{b}) + \frac{A^{(2)}}{4\beta_1^2} \left(\frac{\hat{q}}{b} - 1 \right) - \left[\frac{A^{(2)}}{4\beta_1^2} - \frac{A^{(1)}}{4\beta_1} \ln \left(\frac{e^{2\gamma_E} - 1}{2} \right) \right] \ln \left(\frac{\hat{q}}{b} \right) + \frac{A^{(1)}}{8\beta_1^3} \left[\ln^2(2\hat{q}) - \ln^2(2\hat{b}) \right], \tag{A6} \]

where the variables are defined by \(\hat{q} = \ln[Q/(\sqrt{2} \Lambda)], \hat{b} = \ln[1/(b \Lambda)] \), and the coefficients \(A^{(i)} \) and \(\beta_i \) are

\[
\beta_1 = \frac{33 - 2n_f}{12}, \quad \beta_2 = \frac{153 - 19n_f}{24}, \quad A^{(1)} = \frac{4}{3}, \quad A^{(2)} = \frac{67}{9} - \frac{\pi^2}{3} - \frac{10n_f}{27} + \frac{8}{3} \beta_1 \ln(e^{\gamma_E}/2) \tag{A7} \]

here, \(n_f \) is the number of the quark flavors, the \(\gamma_E \) is the Euler constant. The hard scales \(t_i \) in the equations of this work are chosen as the largest scale of the virtuality of the internal particles in the hard- \(b \)-quark decay diagram,

\[
t_1 = \max\{\sqrt{x_2 \eta m_B}, 1/b_1, 1/b_2\}, \quad t_2 = \max\{\sqrt{x_1 \eta m_B}, 1/b_1, 1/b_2\} \tag{A8} \]

[1] P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. D 83, 032007 (2011);
P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. D 83, 052011 (2011).
[2] N. E. Adam et al. (CLEO Collaboration), Phys. Rev. Lett. 99, 041802 (2007).
[3] T. Hokuue et al. (Belle Collaboration), Phys. Lett. B 648 (2007) 139.
[4] J. P. Lees et al. (BABAR Collaboration), arXiv:1204.3933.
[5] P. del Amo Sanchez et al. (BABAR Collaboration), Phys. Rev. D 82, 112002 (2010)
[6] G. Dissertori, summary talk presented at the Moriond QCD, La Thuile, Italy, March 10-17, 2012.
[7] A.J. Buras, talk presented at the Cracow Epiphany Conference, Jan.9-11, 2012, Cracow, Poland.
[8] E. Gulez, A. Gray, M. Wingate, C.T.H. Davies, G.P. Lepage, and J. Shigemitsu, Phys. Rev. D 73, 074502 (2006); E. Gulez, A. Gray, M. Wingate, C.T.H. Davies, G.P. Lepage, and J. Shigemitsu, Phys. Rev. D 75, 119906(E) (2007), and references therein.
[9] P. Ball, J. High Energy Phys. 09 (1998) 005; P. Ball and R. Zwicky, J. High Energy Phys. 10 (2001) 019.
[10] P. Ball and R. Zwicky, Phys. Rev. D 71, 014015 (2005).
[11] G. Duplancic, A. Khodjamirian, T. Mannel, B. Melic, and N. Offen, J. High Energy Phys. 04 (2008) 014.
[12] A. Khodjamirian, T. Mannel, N. Offen, and Y.-M. Wang, Phys. Rev. D 83, 094031 (2011).
[13] T. Kurimoto, H. N. Li and A. I. Sanda, Phys. Rev. D 65, 014007(2001).
[14] Z. T. Wei and M. Z. Yang, Nucl. Phys. B 642, 263 (2002).
[15] C. D. Lu and M. Z. Yang, Eur. Phys. J. C 23, 275 (2002); Eur. Phys. J. C 28, 515 (2003).
[16] R.H. Li, C.D. Lu, W. Wang, and X.X. Wang, Phys. Rev. D 79, 014013 (2009).
[17] T. Huang and X.G. Wu, Phys. Rev. D 71, 034018 (2005).
[18] T. Huang and C.W. Luo, Commun. Theor. Phys. 22, 473 (1994); A. Khodjamirian, R. Ruckl, and C.W. Winhart, Phys. Rev. D 58, 054013 (1998).
[19] T.W. Yeh and H. N. Li, Phys. Rev. D 56, 1615 (1997); H. N. Li and H. L. Yu, Phys. Rev. Lett. 74, 4388 (1995); Phys. Lett. B 353, 301 (1995); Phys. Rev. D 53, 2480 (1996).
[20] G. Sterman, Phys. Lett. B 179, 281 (1986); Nucl. Phys. B 281, 310 (1987); S. Catani and L. Trentadue, Nucl. Phys. B 327, 323 (1989); Nucl. Phys. B 353, 183 (1991).
[21] H. N. Li, Phys. Rev. D 66, 094010 (2002).
[22] H. N. Li, Y.L Shen and Y.M. Wang, Phys. Rev. D 85, 074004 (2012).
[23] Z.J. Xiao, W.F. Wang and Y.Y. Fan, Phys. Rev. D 85, 094003 (2012).
[24] P. Ball, V.M. Braun, A. Lenz, J. High Energy Phys. 0605 (2006) 004;
[25] P.Ball, J. High Energy Phys. 01, 010 (1999).
[26] M. Beneke, T. Feldmann, Nucl. Phys. B 592, 3 (2001).
[27] A. J. Buras, M. Misiak, M. Munz, and S. Pokorski, Nucl. Phys. B 424, 374 (1994); G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
[28] P. Colangelo, F. De Fazio, R. Ferrandes, and T. N. Pham, Phys. Rev. D 73, 115006 (2006).
[29] A. J. Buras and M. Munz, Phys. Rev. D 52, 186 (1995).
[30] T. Aaltonen et al., CDF Collaboration, Phys. Rev. Lett. 106, 161801 (2011).
[31] M. Beneke, G. Buchalla, M. Neubert, C. T. Sachrajda, Eur. Phys. J. C 61, 439 (2009); M. Bartsch, M. Beylich, G. Buchalla, D. N. Gao, J. High Energy Phys. 11, 011 (2009).
[32] C. H. Chen and C. Q. Geng, Phys. Rev. D 64, 074001 (2001).
[33] P. Colangelo, F.De Fazio, and W. Wang, Phys. Rev. D 81, 074001 (2010)
[34] K. Nakamura et al., (Particle Data Group), J. Phys. G 37, 075021 (2010).
[35] P. Ball and R. Zwicky, J. High Energy Phys. 10 (2001) 019.
[36] P. Ball, Phys. Lett. B 644, 38(2007).
[37] J. Beringer et al., (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
[38] G. Duplancic, A. Khodjamirian, T. Mannel, B. Melic, and N. Offen, J.Phys. Conf. Ser.
110, 052026 (2008).

[39] K. Abe et al. (Belle Collaboration), talk presented at FPCP 2004, hep-ex/0410006

[40] H.-n. Li, Y.-L. Shen, Y.-M. Wang, and H. Zou, Phys. Rev. D 83, 054029 (2011).