Role of coronary physiology in the contemporary management of coronary artery disease

Neil Ruparelia, Rajesh K Kharbanda

Neil Ruparelia, Rajesh K Kharbanda, Oxford Heart Centre, John Radcliffe Hospital, OX3 9DU Oxford, United Kingdom

Author contributions: Ruparelia N and Kharbanda RK both devised, drafted and revised the manuscript.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Dr. Rajesh K Kharbanda, Oxford Heart Centre, John Radcliffe Hospital, Headley Way, OX3 9DU Oxford, United Kingdom. rajesh.kharbanda@ouh.nhs.uk

Telephone: +44-1865-220325
Fax: +44-1865-740409
Received: July 26, 2014
Peer-review started: July 27, 2014
First decision: September 16, 2014
Revised: September 29, 2014
Accepted: October 28, 2014
Article in press: October 29, 2014
Published online: February 16, 2015

Abstract

Coronary artery disease (CAD) remains the leading cause of death worldwide with approximately 1 in 30 patients with stable CAD experiencing death or acute myocardial infarction each year. The presence and extent of resultant myocardial ischaemia has been shown to confer an increased risk of adverse outcomes. Whilst, optimal medical therapy (OMT) forms the cornerstone of the management of patients with stable CAD, a significant number of patients present with ischaemia refractory to OMT. Historically coronary angiography alone has been used to determine coronary lesion severity in both stable and acute settings. It is increasingly clear that this approach fails to accurately identify the haemodynamic significance of lesions; especially those that are visually “intermediate” in severity. Revascularisation based upon angiographic appearances alone may not reduce coronary events above OMT. Technological advances have enabled the measurement of physiological indices including the fractional flow reserve, the index of microcirculatory resistance and the coronary flow reserve. The integration of these parameters into the routine management of patients presenting to the cardiac catheterization laboratory with CAD represents a critical adjunctive tool in the optimal management of these patients by identifying patients that would most benefit from revascularisation and importantly also highlighting patients that would not gain benefit and therefore reducing the likelihood of adverse outcomes associated with coronary revascularisation. Furthermore, these techniques are applicable to a broad range of patients including those with left main stem disease, proximal coronary disease, diabetes mellitus, previous percutaneous coronary intervention and with previous coronary artery bypass grafting. This review will discuss current concepts relevant to coronary physiology assessment, its role in the management of both stable and acute patients and future applications.

Key words: Ischaemia; Coronary physiology; Coronary flow reserve; Fractional flow reserve; Coronary artery disease

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Coronary artery disease remains the leading cause of death worldwide. There is increasing evidence to suggest that the use of invasive coronary angiography alone may not reliably identify all lesions associated with haemodynamic compromise. Technological advances have enabled the measurement of a number of coronary physiological indices which when incorporated into routine practice are associated with improved outcomes, reduced risks and greater economy. This review will
Ruparelia N, Kharbanda RK. Role of coronary physiology in the contemporary management of coronary artery disease. World J Clin Cases 2015; 3(2): 148-155 Available from: URL: http://www.wjgnet.com/2307-8960/full/v3/i2/148.htm DOI: http://dx.doi.org/10.12998/wjcc.v3.i2.148

INTRODUCTION

Coronary artery disease (CAD) is the leading cause of death worldwide\(^1\) with approximately 1 in 30 patients with stable CAD experiencing acute myocardial infarction (AMI) or cardiovascular death each year\(^2\). The presence of resultant myocardial ischaemia and its extent has been shown to confer increased risk of adverse outcomes\(^\[3-6\]\). With an increasing burden of atherosclerotic coronary disease and the associated high event rate, there is a need to identify both patients at highest risk with most to benefit from revascularisation strategies and also those that would be best managed by a conservative approach to improve clinical outcomes and minimise exposure to procedural risks.

Prevention by risk factor control and optimal medical therapy (OMT) including aspirin\(^7\), beta-blockers\(^8\), statins\(^9\) and angiotensin converting enzyme inhibitors forms the cornerstone of the management of patients with stable CAD\(^10,11\). However, a significant number of patients present with myocardial ischaemia refractory to OMT and subsequently undergo coronary revascularisation by percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) with the aim of reducing ischaemic burden and therefore risk\(^12\).

Historically, visual assessment of coronary lesions by invasive coronary angiography in isolation has been used to determine the severity of coronary lesions in both stable and acute settings. It is increasingly clear that this approach fails to accurately and consistently identify the haemodynamic significance of lesions, especially those that are “intermediate” in severity\(^13\) and that revascularisation based upon angiographic appearances may not reduce coronary events above OMT alone\(^14\). Recent advances in technology and understanding of coronary physiology have resulted in its central role in the assessment of patients in the catheterization laboratory and their optimal management\(^15,16\). This review will discuss current concepts relevant to coronary physiology assessment, its role in the management of patients and possible future applications.

CORONARY PHYSIOLOGY

Technological advances have enabled the measurement of a number of physiological indices including the fractional flow reserve (FFR), the index of microcirculatory resistance (IMR) and the coronary flow reserve (CFR). The advantages and disadvantages of each of the coronary physiology indices are summarised in Table 1.

FFR

FFR is the ratio of myocardial blood flow in a stenosed coronary artery at maximal hyperaemia in comparison to normal (proximal) myocardial flow. It quantifies the pressure drop measured across a coronary artery stenosis\(^17\) and therefore the physiological significance of the lesion. The pressure drop is directly proportional to stenosis length, inversely proportional to lumen cross-sectional area and related to the square of the blood velocity. FFR is thus related to both lesion morphology and the volume of viable subtended myocardium and is independent of changes in haemodynamic conditions\(^18\).

CFR

CFR is the ratio of hyperaemic to resting coronary flow and incorporates both the epicardial and microvascular circulations\(^19\). A value of < 2.0 is correlated with stenosis severity\(^20\).

IMR

IMR is a measure of true microcirculatory resistance and is calculated by measuring the distal arterial pressure at hyperaemia divided by the inverse of the transit time. The IMR is not influenced by the presence or absence of epicardial artery stenosis\(^21\). There is no absolute validated “normal” value but a cut-off value of 32 units has been shown to be predictive of myocardial recovery following AMI\(^22\).

Technique

To measure the FFR, a wire with a distal pressure sensor is advanced into a guiding coronary artery catheter, the pressure is equalised, and then passed distal to the coronary stenosis of interest (Figure 1A). The aortic pressure (Pa) is measured from the guide catheter and the distal pressure (Pd) from the pressure sensor distal to the stenosis (Figure 1B). To calculate the FFR, hyperaemia is achieved by the administration of intravenous (140 mcg/kg per minute) or intracoronary (20-50 mcg) adenosine and is the ratio of hyperaemia Pd/Pa (Figure 1C). Other hyperaemic stimuli can be used but adenosine is the most widely validated.

In the measurement of IMR and CFR, the shaft of the pressure wire is used to detect changes in the temperature-dependent electrical resistance and thus acts as a proximal thermistor. The sensor at the end of the wire is used to simultaneously measure pressure and temperature at the distal end of the artery. Therefore, the transit time of room-temperature saline injected through the guiding...
coronary artery catheter can be calculated using a thermodilution technique\(^\text{[23]}\). The initial transit time is recorded \((T_{mn})\) following three injections of room-temperature saline. Following hyperaemia, three further injections of room-temperature saline are administered and hyperaemia \(T_{mn}\) is measured. The thermodilution CFR is calculated by dividing the resting \(T_{mn}\) by the hyperaemic \(T_{mn}\). The IMR is calculated as the distal coronary pressure \((P_d)\) at maximal hyperaemia divided by the inverse of the hyperaemic \(T_{mn}\).

MYOCARDIAL ISCHAEMIA

Many studies have demonstrated that the presence and extent of myocardial ischaemia is closely related to adverse clinical events\(^\text{[5,6,24]}\) with the annual rate of cardiac death and AMI positively correlated with the extent of myocardial ischaemia\(^\text{[24]}\). Coronary revascularisation has been demonstrated to be beneficial in individuals with moderate and severe ischaemia, with OMT being optimal in patients with mild or no ischaemia\(^\text{[5,28]}\). In patients with demonstrated extensive ischaemia (> 20% myocardium), an early revascularisation strategy (as opposed to OMT alone) is associated with a 30% reduction in risk of all-cause death\(^\text{[25]}\).

The identification of the presence and extent of myocardial ischaemia in patients presenting with stable CAD is critical to their optimal management. Myocardial perfusion imaging is the most commonly used modality however stress echocardiography and magnetic resonance imaging are increasingly being employed.

There is some evidence that an ischaemia-guided revascularisation strategy is associated with improved prognosis and outcome\(^\text{[27,28]}\). In patients that underwent myocardial perfusion imaging prior to revascularisation (PCI or CABG) and then in the follow up period, the incidence of patients with worsening ischaemia (> 5% of total myocardium) was more common in patients treated medically in comparison to patients who underwent revascularisation (PCI or CABG) and was an independent predictor of adverse outcomes\(^\text{[29]}\).

CORONARY PHYSIOLOGY AND STABLE CORONARY ARTERY DISEASE

PCI reduces mortality in patients with acute coronary syndromes\(^\text{[30]}\), however, in patients presenting with stable CAD, PCI results in an improvement of angina symptoms alone without a mortality advantage in comparison to OMT alone\(^\text{[14]}\). These results may be a consequence of sub-optimal patient selection due to the sole reliance of visual assessment of coronary lesion by invasive coronary angiography to determine the severity of disease with no information as to the haemodynamic significance of these lesions\(^\text{[31,32]}\). This can result in inappropriate coronary revascularisation with little benefit and potential procedural risk.

The severity of a lesion (and resultant extent of myocardial ischaemia) is dependent on a number of factors including the severity of luminal narrowing, lesion length and extent of subtended myocardium. As discussed in the previous section, whilst non-invasive techniques can be employed to ascertain...
the extent of myocardial ischaemia, many patients present to the cardiac catheterization laboratory without having undergone such assessment and indeed, in the setting of multi-vessel disease, non-invasive stress tests are often not able to definitively detect and localise ischaemia. Furthermore, if a non-invasive image approach is taken, a positive test will result in repeat catheterization for PCI - thus further subjecting a patient to procedural complications, delaying revascularisation and being less economical. The use of coronary physiology provides the unique ability to gain immediate information with regards to the haemodynamic significance of specific coronary lesions in patients already in the cardiac catheterization laboratory attending for coronary angiography and identify those at highest risk who are most likely to benefit from PCI.

In stable CAD, CFR decreases as stenosis severity increases. When compared to non-invasive parameters a value of < 2.0 has been shown to correlate with significant ischaemia. However, because CFR takes account of both epicardial and microvascular circulations, this measure can be influenced by exogenous factors and therefore due to confounding factors is no longer used for stenosis assessment.

In the setting of stable CAD, the IMR has recently been shown to be independent of the severity of epicardial stenosis when collateral coronary flow is accounted for. IMR may however, play a role in predicting outcome following elective PCI, with a high IMR pre-PCI predicting peri-procedural myocardial infarction following PCI.

FFR is a highly reproducible technique and is insensitive to external factors such as changes in haemodynamics. The normal FFR is 1 with a value of ≤ 0.75 associated with ischaemia and ≥ 0.8 not associated with significant ischaemia. There is therefore a “grey zone” of between 0.75-0.8, however the majority of clinical studies to date have adopted a lower normal value of 0.8 to define significant ischaemia.

As opposed to relying solely on angiographic appearances, a FFR guided strategy has been shown to identify patients who would most benefit from coronary revascularisation. In the DEFER (deferral versus performance of PCI of non-ischaemia-producing stenoses) study, in patients with single-vessel coronary disease and a measured FFR ≥ 0.75, deferral of PCI was associated with similar event free survival in both OMT and PCI groups at five years.

In patients presenting with multi-vessel coronary disease, the clinical utility of myocardial perfusion imaging has been doubted. The technique measures relative differences (normal vs abnormal) in myocardial perfusion between coronary artery territories. Thus, in multi-territory ischaemia, the relative differences may be less pronounced resulting in “balanced ischaemia” even in the presence of significant ischaemia as determined by FFR. The FAME study (FFR vs angiography for multi-vessel evaluation trial) which investigated patients with multi-vessel coronary disease, supported an FFR-guided strategy in comparison to angiography alone with an associated reduction in mortality or MI at 2 years. This benefit was also found to be true when compared to contemporary OMT in the more recent FAME II study that indicated that an FFR-guided strategy resulted in a lower rate of urgent revascularisation.

FFR has been shown to be reproducible both in singe and multi-vessel coronary disease. However in certain instances, caution should be taken in interpreting coronary physiology parameters.

Left main stem disease

In patients presenting with left main stem disease, FFR has been shown to be useful in managing revascularisation strategies. This is also true of left main stem disease and concomitant downstream stenosis if the pressure wire is placed in a non-stenosed downstream vessel and the other vessel does not have a critical proximal stenosis.

Post PCI

FFR following PCI has been shown to predict...
outcome. Post PCI FFR was found to be the strongest predictor of major adverse cardiovascular events at 6 mo\(^{(43)}\). FFR has also been utilised following bifurcation stenting, illustrating that even in the presence of appearances in keeping with severe pinching of side branches, FFR was rarely ≤ 0.75 and therefore of no haemodynamic significance\(^{(44)}\).

Myocardial scar
Following AMI, irreversibly injured myocardium is replaced by scar tissue that results in a reduction in the microcirculation to this territory. FFR in this context can therefore still be used to guide future management strategies, with the value representing viability of the subtended myocardium, but after an appropriate interval to allow for myocardial healing following AMI to ensure adequate hyperaemia\(^{(45)}\).

Grafts
FFR can also safely be used in patients with previous CABG. In an observational study, patients with intermediate stenoses in both arterial and vein graft conduits that were managed by adopting a FFR-guided PCI strategy suffered significantly lower major adverse clinical endpoints as compared to an angiography guided group\(^{(46)}\).

Diabetes mellitus
FFR depends upon the vasodilative capacity of the coronary system and therefore achieving maximal hyperaemia. Patients with diabetes mellitus, suffer abnormalities in microvascular function with altered vasodilative capacity and increased vascular resistance. Whilst caution should be taken in when using FFR in this patient group\(^{(47)}\), a recent study comparing FFR in diabetic and non-diabetic patients has shown that FFR appears to be accurate and applicable in this patient group\(^{(48)}\).

These studies highlight the critical role played by coronary physiology in identifying haemodynamically significant coronary stenoses that may benefit from revascularisation, and allow targeted vessel specific treatment beyond the angiographic appearances. The concept of the functional as opposed to the anatomical SYNTAX score appears to stratify patients appropriately to CABG or PCI or patients that would be best managed by OMT. FFR is broadly applicable to all patient groups and is associated with improved outcomes.

CORONARY PHYSIOLOGY AND ACUTE CORONARY SYNDROMES
In the setting of AMI, myocardial inflammation resulting in oedema can result in blunting of the hyperaemic response in the microcirculation resulting in falsely high FFR values, however coronary physiology parameters can potentially still be useful in guiding the management of this patient group.

The IMR when measured in the setting of primary PCI has been shown to correlate with the extent of microvascular obstruction and independently predicted left ventricular systolic function and infarct volume\(^{(22,49)}\) and thus provides important prognostic information in this patient group. The clinical utility of this approach, however, is presently unknown.

The thermodilution CFR when measured in the first day after primary PCI also offers important prognostic information with a significant decrease in CFR in patients with impaired left ventricular systolic function. Conversely a greater increase in CFR by day 1 was associated with a higher salvage index\(^{(50)}\).

A significant number of patients presenting with acute coronary syndromes also have visually severe “non-culprit” epicardial artery lesions. FFR of “non-culprit” lesions has been shown to be reliable\(^{(51)}\) and has been used to guide revascularisation of these lesions. A large prospective multicentre randomised trial is currently underway to investigate the utility of this approach further\(^{(52)}\).

LIMITATIONS
The adjunctive beneficial role that coronary physiology plays in the management of CAD has been discussed thus far. There are however, some limitations. The possibility of false negative or false positive results does exist, for example if maximal hyperaemia is not achieved or if instrumentation of the coronary artery induces coronary artery spasm. There is a risk of coronary artery injury (perforation or dissection) with instrumention of the artery to obtain measurements. Finally, there is an additional economic cost when adopting coronary physiology techniques. The adjunctive beneficial role that coronary physiology plays in the management of CAD has been discussed thus far. There are however, some limitations. The possibility of false negative or false positive results does exist, for example if maximal hyperaemia is not achieved or if instrumentation of the coronary artery induces coronary artery spasm. There is a risk of coronary artery injury (perforation or dissection) with instrumention of the artery to obtain measurements. Finally, there is an additional economic cost when adopting coronary physiology techniques. The thermodilution CFR when measured in the first day after primary PCI also offers important prognostic information with a significant decrease in CFR in patients with impaired left ventricular systolic function. Conversely a greater increase in CFR by day 1 was associated with a higher salvage index\(^{(50)}\).

A significant number of patients presenting with acute coronary syndromes also have visually severe “non-culprit” epicardial artery lesions. FFR of “non-culprit” lesions has been shown to be reliable\(^{(51)}\) and has been used to guide revascularisation of these lesions. A large prospective multicentre randomised trial is currently underway to investigate the utility of this approach further\(^{(52)}\).

FUTURE DIRECTIONS
A current limitation to invasive coronary physiology techniques is the need to induce maximal hyperaemia with agents such as adenosine. Patients may have contraindications to this agent, and additionally there is a time and cost implication. More recently an adenosine independent index of stenosis severity - the instantaneous wave-free ratio (iFR) has been developed\(^{(53)}\). The accuracy of this ratio in comparison to FFR has been shown to be approximately 80%\(^{(54)}\) and outcome data from the on-going DEFINE-FLAIR (functional lesion assessment of intermediate stenosis to guide revascularisation) study\(^{(55)}\) are awaited to ascertain if this index can be used routinely in clinical practice.

In the future, there may be non-invasive anatomical
and functional imaging surrogates for FFR. Current anatomical imaging modalities [e.g., computed tomography (CT)] correlate poorly with lesion haemodynamic significance and do not capture information related to translesional energy/pressure losses. Newer techniques including CT myocardial perfusion, the measurement of contrast gradients in conventional CT angiography and the use of three-dimensional luminal anatomy are currently being evaluated to investigate if they correlate with FFR values for the evaluation of coronary stenoses. Current technologies however have not been shown to equal the sensitivity and specificity of FFR.

DISCUSSION

The integration of invasive coronary physiology measurements into the routine management of patients presenting to the cardiac catheterization laboratory with CAD represents a critical adjunctive tool in the optimal management of these patients. The use of FFR can identify patients that would most benefit from revascularisation either by PCI or CABG and importantly also highlights patients that would not gain benefit and therefore reducing the likelihood of adverse outcomes associated with coronary revascularisation. In the setting of acute coronary syndromes, the use of IMR and CFR provides important information with regard to outcome and myocardial salvage, although the clinical value of these measures remains uncertain. The interpretation of the described coronary physiology indices is now essential in current interventional cardiology practice and is represented by current training medical curricula in this sub-specialty field.

The use of newer techniques to derive FFR—both invasively as well as non-invasively—functional imaging may result in coronary physiology parameters playing an even more central role in the future.

REFERENCES

1. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006; 3: e442 [PMID: 17132052 DOI: 10.1037/journal.pmed.0030442]
2. Steg PG, Bhatt DL, Wilson PW, D’Agostino R, Ohman EM, Röther J, Liau CS, Hirsch AT, Mas JL, Ikeda Y, Pencina MJ, Goto S. One-year cardiovascular event rates in outpatients with atherothrombosis. JAMA 2007; 297: 1197-1206 [PMID: 17374814 DOI: 10.1001/jama.297.11.1197]
3. Marwick TH, Case C, Vassey C, Allen S, Short L, Thomas JD. Prediction of mortality by exercise echocardiography: A strategy for combination with the duke treadmill score. Circulation 2001; 103: 2566-2571 [PMID: 11382725 DOI: 10.1161/01.CIR.103.21.2566]
4. Marwick TH, Case C, Sawada S, Rimmerman C, Brenneman P, Kovacs R, Short L, Lauer M. Prediction of mortality using dobutamine echocardiography. J Am Coll Cardiol 2001; 37: 754-760 [PMID: 11693748 DOI: 10.1016/S0735-1097(00)01191-8]
5. Brown KA, Boucher CA, Okada RD, Guiney TE, Newell JB, Strauss HW, Pohost GM. Prognostic value of exercise thallium-201 imaging in patients presenting for evaluation of chest pain. J Am Coll Cardiol 1983; 1: 994-1001 [PMID: 6833659 DOI: 10.1016/S0735-1097(83)80100-4]
6. Lademann ML, Pollock BH, Rozanski A, Berman DS, Stanloff HM, Forrester JS, Diamond GA. Extent and severity of myocardial hyperperfusion as predictors of prognosis in patients with suspected coronary artery disease. J Am Coll Cardiol 1986; 7: 464-471 [PMID: 3950226 DOI: 10.1016/S0735-1097(86)80454-5]
7. Hennekens CH, Buring JE, Sandercocq P, Collins R, Petro R. Aspirin and other antiplatelet agents in the secondary and primary prevention of cardiovascular disease. Circulation 1989; 80: 749-756 [PMID: 2676257 DOI: 10.1161/01.CIR.80.4.749]
8. Cruickshank JM. Beta-blockers: primary and secondary prevention. J Cardiovasc Pharmacol 1992; 20 Suppl 11: S55-S69 [PMID: 1284145 DOI: 10.1097/00005053-18920111-00001]
9. Bulbulia R, Bowman L, Wallendusz K, Parisi S, Armitage J, Petro R, Collins R. Effects on 11-year mortality and morbidity of lowering LDL cholesterol with simvastatin for about 5 years in 20,536 high-risk individuals: a randomised controlled trial. Lancet 2011; 378: 2013-2020 [PMID: 22115874 DOI: 10.1016/S0140-6736(11)61125-2]
10. Pfitzler ME, Zellweger MJ, Gersh BJ. Management of stable coronary artery disease. Lancet 2010; 375: 763-772 [PMID: 20189028 DOI: 10.1016/S0140-6736(10)60618-7]
11. Smith SC, Benjamin EJ, Bonow RO, Braun LT, Creager MA, Franklin BA, Gibbons RJ, Grundy SM, Spertus JA, Berman DS, Blaustein AS, Booth DC, Bates ER, Spertus JA, Title LM, Gau G, N Engl J Med 2009; 360: 213-224 [PMID: 19144937 DOI: 10.1056/NEJMoa0807611]
12. Topol EJ, Nissen SE. Our preoccupation with coronary luminoanatomy. The dissociation between clinical and angiographic findings in ischemic heart disease. Circulation 1995; 92: 2333-2342 [PMID: 7554219 DOI: 10.1161/01.CIR.92.8.2333]
13. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, Kudsnson M, Dada M, Caspenson P, Harris CL, Chaitman BR, Shaw L, Gosselin G, Nawaz S, Title LM, Gau G, Blaustein AS, Booth DC, Bates ER, Spertus JA, Berman DS, Mancini GB, Weintraub WS. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 2007; 356: 1503-1516 [PMID: 17387127 DOI: 10.1056/NEJMoa070829]
14. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikono F, Bornschein B, van’t Veer M, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2010; 362: 464-471 [PMID: 20574943 DOI: 10.1056/NEJMoai0909080]
15. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, N Engl J Med 2010; 362: 177-184 [PMID: 20574943 DOI: 10.1056/NEJMoai0909080]
16. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, Jagic N, Mösbiwhringer S, Riusofual G, Witt N, Kala P, MacCarthy PA, Engstrom T, Oldroyd KG, Matimuzska K, Manoharan G, Verlee F, Frobert O, Curzen N, Johnson JB, Jini P, Fearon WF. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 2012; 367: 991-1001 [PMID: 22924638 DOI: 10.1056/NEJMoai1205361]
Armstrong PW. A comparison of pharmacologic therapy with/without timely coronary intervention vs. primary percutaneous intervention early after ST-elevation myocardial infarction: the WEST (Which Early ST-elevation myocardial infarction Therapy) study. Eur Heart J. 2006;27:1530-1538 [PMID: 16757491 DOI: 10.1093/eurheartj/ehl038]

DeRouen TA, Murray JA, Owen W. Variability in the analysis of coronary arteriograms. Circulation 1977; 55: 324-328 [DOI: 832349 DOI: 10.1161/01.CIR.55.5.324]

Goldberg RK, Kleinman NS, Minor ST, Abukhalil J, Riauzner AE. Comparison of quantitative coronary angiography to visual estimates of lesion severity pre and post PTCA. Am Heart J 1990; 119: 178-184 [PMID: 2403837 DOI: 10.1016/S0002-8703(058099-5)]

Lima RS, Watson GD, Goode AR, Siadaty MS, Ragosta, M, Beller GA, Samady H. Incremental value of combined perfusion and function over perfusion alone by gated SPECT myocardial perfusion imaging for detection of severe three-vessel coronary artery disease. J Am Coll Cardiol 2003; 42: 64-70 [PMID: 12849661 DOI: 10.1016/S0735-1097(03)00565-X]

Kern MJ, Lerman A, Bech JW, De Bruyne B, Ezekhout E, Fearon WF, Higano ST, Lim MJ, Meuwissen M, Piek JJ, Pijls NH, Siebes M, Spaan JA. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation 2006; 114: 1321-1341 [PMID: 16940193 DOI: 10.1161/CIRCULATIONAHA.106.177276]

Yong AS, Ho M, Shah MG, Ng MK, Fearon WF. Coronary microcirculatory resistance is independent of epicardial stenosis. Circ Cardiovasc Interv 2012; 5: 103-108 [PMID: 22298800 DOI: 10.1161/CIRCINTERVENTIONS.111.966556]

Ng MK, Yong AS, Ho M, Shah MG, Chawantanipit C, O’Connell R, Kreek A, Kirtharides L, Fearon WF. The index of microcirculatory resistance predicts myocardial infarction related to percutaneous coronary intervention. Circ Cardiovasc Interv 2012; 5: 515-522 [PMID: 22874078 DOI: 10.1161/CIRCINTERVENTIONS.112.969048]

Pijls NH, De Bruyne B, Poels K, Van Der Voort PH, Bonnier HH, Bartunek J Koolen JJ, Koolen JJ. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 1996; 334: 1703-1708 [PMID: 8637515 DOI: 10.1056/NEJM199606233341003]

Kern MJ, Samady H. Current concepts of integrated coronary physiology in the catheterization laboratory. J Am Coll Cardiol 2010; 55: 173-185 [PMID: 20117397 DOI: 10.1016/j.jacc.2009.08.062]

Beech GJ, de Bruyne B, Pijls NH, de Muinck ED, Hoornjec J, Escaned J, Stella PR, Boersma E, Bartunek J, Koolen JJ, Wijs W. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 2001; 103: 2928-2934 [PMID: 11413082 DOI: 10.1161/01.CIR.103.24.2928]

Pijls NH, van Schaardenburg P, Manoharan G, Boersma E, Beech JW, van’t Veer M, Bär F, Hoornjec J, Koolen JJ, Wijs W. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial. Circulation 2001; 103: 2928-2934 [PMID: 11413082 DOI: 10.1161/01.CIR.103.24.2928]

Hamilos M, Muller O, Cuijset T, Nitalianis A, Chlouverakis G, Samo G, Nelas O, Bartunek J, Vanderheiden M, Wyffels E, Barbato E, Hooynderdick GR, Wijn J. Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery disease. Circulation 2009; 120: 1505-1512 [PMID: 19786633 DOI: 10.1161/CIRCULATIONAHA.109.850073]

Yong AS, Daniels D, De Bruyne B, Kim HS, Ikeno F, Lyons J, Pijls NH, Fearon WF. Fractional flow reserve assessment of left main stenosis in the presence of downstream coronary stenoses. Circ Cardiovasc Interv 2013; 6: 161-165 [PMID: 23549043 DOI: 10.1161/CIRCINTERVENTIONS.112.000104]

Pijls NH, Klauss V, Siebert U, Powers E, Takakawa K, Fearon WJCC | www.wjgnet.com

Volume 3 | Issue 2
Kuprelia N et al. Coronary physiology and coronary artery disease

WF, Escaned J, Tsurumi Y, Akasaka T, Samady H, De Bruyne B. Coronary pressure measurement after stenting predicts adverse events at follow-up: a multicenter registry. Circulation 2002; 105: 2950-2954 [PMID: 12081986 DOI: 10.1161/01.CIR.0000020547.92091.76]

44 Koo BK, Kang HJ, Youn TJ, Chae IH, Choi DJ, Kim HS, Sohn DW, Oh BH, Lee MM, Park YB, Choi YS, Tahk SJ. Physiologic assessment of failed side branch lesions using fractional flow reserve. J Am Coll Cardiol 2005; 46: 633-637 [PMID: 16094827 DOI: 10.1016/j.jacc.2005.04.054]

45 De Bruyne B, Pijs NH, Barbate J, Kuleckl K, Bech JW, De Winter H, Van Crombrugge P, Heyndrickx GR, Wijns W. Fractional flow reserve in patients with prior myocardial infarction. Circulation 2001; 104: 157-162 [PMID: 11447079 DOI: 10.1161/01.CIR.104.2.157]

46 Di Serafini L, De Bruyne B, Mangiacapra F, Barbate J, Agostoni P, Vanderheyden M, Scognamiglio G, Heyndrickx GR, Wijns W, Barbato E. Long-term clinical outcome after fractional flow reserve- versus angio-guided percutaneous coronary intervention in patients with intermediate stenosis of coronary artery bypass grafts. Am Heart J 2013; 166: 110-118 [PMID: 23816029 DOI: 10.1016/j.ahj.2013.04.007]

47 Sahinarslan A, Kocaman SA, Olgun H, Kunak T, Kiziltunç E, Ozdemir M, Timurkaynak T. The reliability of fractional flow reserve measurement in patients with diabetes mellitus. Coron Artery Dis 2009; 20: 317-321 [PMID: 19444091 DOI: 10.1097/MCA.0b013e32832c8ca3]

48 Reith S, Battmerth K, Hellmich M, Marx N, Burgmaier M. Impact of type 2 diabetes mellitus and glucose control on fractional flow reserve measurements in intermediate grade coronary lesions. Clin Res Cardiol 2014; 103: 191-201 [PMID: 24264473 DOI: 10.1007/s00392-013-0633-7]

49 McGeoch R, Watkins S, Berry C, Steedman T, Davie A, Byrne J, Hillis S, Lindsay M, Robb S, Dargie H, Oldroyd K. The index of microcirculatory resistance measured acutely predicts the extent and severity of myocardial infarction in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Inter 2010; 3: 715-722 [PMID: 20650433 DOI: 10.1016/j.jcin.2010.04.009]

50 Cuculi F, Dall’armellina E, Manhio C, De Caterina AR, Colyer S, Ferreire V, Morovat A, Prendergast BD, Forfar JC, Alp NJ, Choudhury RP, Neubauer S, Channon KM, Banning AP, Kharbanda R. Early change in invasive measures of microvascular function can predict myocardial recovery following pci for st-elevation myocardial infarction. Eur Heart J 2014; 35: 1971-1980 [PMID: 24133833 DOI: 10.1093/eurheartj/ehu343]

51 Ntalialis A, Sels JW, Davidavicius C, Tanaka N, Muller O, Trana C, Barbato E, Hamilos M, Mangiacapra F, Heyndrickx GR, Wijns W, Pijs NH, De Bruyne B. Fractional flow reserve for the assessment of nonculprit coronary artery stenoses in patients with acute myocardial infarction. JACC Cardiovasc Inter 2010; 3: 1274-1281 [PMID: 21232721 DOI: 10.1016/j.jcin.2010.08.025]

52 Berry C, Layland J, Sood A, Curzen NP, Balachandran DP, Ras D, Juneko S, Henderson RA, Briggs AH, Ford I, Oldroyd KG. Fractional flow reserve versus angiography in guiding management to optimize outcomes in non-ST-elevation myocardial infarction (FAMOUS-NSTEMI): rationale and design of a randomized controlled clinical trial. Am Heart J 2013; 166: 662-668.e3 [PMID: 24093845 DOI: 10.1016/j.ahj.2013.07.011]

53 Sen S, Escaned J, Malik IS, Mikhail GW, Foale RA, Mila R, Tarkin J, Petracco R, Broyd C, Jabbour R, Sethi A, Baker CS, Bellamy M, Al-Bustami M, Hackett D, Khan M, Lefroy D, Parker KH, Hughes AD, Francis DP, Di Mario C, Mayet J, Davies JE. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine Vasodilator Independent Stenosis Evaluation) study. J Am Coll Cardiol 2012; 59: 1392-1402 [PMID: 22154731 DOI: 10.1016/j.jacc.2011.11.003]

54 Jeremias A, Maehara A, Généreux P, Assrress KN, Berry C, De Bruyne B, Davies JF, Escaned J, Fearon WF, Gould KL, Johnson NP, Kirtane AJ, Koo BK, Marques KM, Nijjer S, Oldroyd KG, Petracco R, Piekk J, Pijs NH, Redwood S, Siebes M, Spaan JA, van’t Veer M, Mintz GS, Stone GW. Multicenter core laboratory comparison of the instantaneous wave-free ratio and reding Pd/Pa with fractional flow reserve: the RESOLVE study. J Am Coll Cardiol 2014; 63: 1253-1261 [PMID: 22411503 DOI: 10.1016/j.jacc.2013.09.060]

55 Clinicaltrials. Functional lesion assessment of intermediate stenosis to guide revascularization (DEFINE-FLAIR); NCT02053038. Available from: URL: http://clinicaltrials.gov/show/NCT02053038

56 Meijboom WB, Van Mieghem CA, van Pelt N, Weustink A, Pugliese F, Mollet NR, Boersma E, Regar E, van Geuns RJ, de Jaegere PJ, Serruys PW, Krestin GP, de Feyter PJ. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. J Am Coll Cardiol 2008; 52: 636-643 [PMID: 18702967 DOI: 10.1016/j.jacc.2008.05.024]

57 Blankstein R, Shitarumand LD, Rogers IS, Rocha-Filho JA, Okada DR, Sarwar A, Soni AV, Bezerra H, Ghoshajabra B, Petranovic M, Loureiro R, Feuchter G, Gewirz H, Hoffmann U, Mamuya WS, Brady TJ, Curry RC. Adenosine-induced stress myocardial perfusion imaging using dual-source cardiac computed tomography. J Am Coll Cardiol 2009; 54: 1072-1084 [PMID: 19744616 DOI: 10.1016/j.jacc.2009.06.014]

58 Chow BJ, Kass M, Gagné O, Chen L, Yam Y, Dick A, Wells GA. Can differences in corrected coronary opacification measured with computed tomography predict resting coronary artery flow? J Am Coll Cardiol 2011; 57: 1280-1288 [PMID: 21392642 DOI: 10.1016/j.jcc.2010.09.072]

59 Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 2011; 58: 1989-1997 [PMID: 22032711 DOI: 10.1016/j.jcc.2011.06.066]

60 Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzesse P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 2012; 308: 1237-1245 [PMID: 22922562 DOI: 10.1001/2012.jama.11274]

P- Reviewer: Pan SP, Teragawa H S- Editor: Tian YL - Editor: A E- Editor: Lu Y
