Correspondence

Is the proximal bone resorption around the femoral stem after hip arthroplasty really caused by reduced stress?

Sir,—The proximal bone resorption (often associated with mid-thigh pain) commonly seen around apparently distally well-fixed cementless stems has been supposed to be caused by removal of stress (according to Wolff’s law) and therefore called stress-shielding. In order to bring about a more physiological loading of the bone, the isoelastic prosthesis and a large number of amazingly different calcar-loading cementless prostheses were introduced in the 1970s and ’80s (Morscher 1984), but most of them failed because of loosening. Since then, when most poorly performing cementless prostheses have been taken off the market and the operative technique has improved, both proximal bone resorption and thigh pain have decreased (Engh et al. 2009, Khanuja et al. 2011). Although the etiology of the thigh pain has not been clarified, the most accepted hypothesis is that it in some way derives from stress the prosthetic stem and the surrounding proximal bone may cause micromovements between the two during normal daily activities: the more proximal, the larger the micromovements (Figures 1–2). These micromovements (e.g. at heel strike) may cause short bursts of high fluid pressure in the interstice between the stem and the proximal bone, which is enough to induce osteolysis (Fahlgren et al. 2010) through a complex series of sometimes significantly painful inflammatory responses to the necrotic bone (Rock and Kono 2008). A similar mechanism for bone resorption and thigh pain, of course, is also applicable to clearly loose femoral components.

Bengt Mjöberg
Email: bengt.mj@telia.com

The bone resorption has consistently been described to increase progressively proximally to the distal load area—and has also been reported (Bodén et al. 2006, Capello et al. 2009, Yamada et al. 2009) to increase for several years. These observations are difficult to explain on the basis of stress-shielding because, from a logical point of view, the proximal bone must (from the very beginning) either be in contact or not in contact with the implant (i.e. either stress-shielded or not stress-shielded). This means that the pathophysiological mechanism of the proximal bone resorption remains enigmatic.

In addition, bone resorption due to reduced stress has been prevented experimentally by just 4 two-second physiological strain cycles a day (Rubin and Lanyon 1984). Hence: Is the proximal bone resorption around the femoral stem after hip arthroplasty really caused by reduced stress? Probably not.

Proposed mechanism for both proximal bone resorption and thigh pain: Although a prosthetic stem would be well-fixed distally, the difference in flexural stiffness between

© 2017 The Author(s). Published by Taylor & Francis on behalf of the Nordic Orthopedic Federation. This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (https://creativecommons.org/licenses/by-nc/3.0).

DOI 10.1080/17453674.2017.1373492
Boden H S, Skoldenberg O G, Salemyr M O, Lundberg H J, Adolphson P Y. Continuous bone loss around a tapered un cemented femoral stem: A long-term evaluation with DEXA. Acta Orthop 2006; 77 (6): 877-85.

Capello W N, D’Antonio J A, Geesink R G, Feinberg J R, Naughton M. Late remodeling around a proximally HA-coated tapered titanium femoral component. Clin Orthop Relat Res 2009; 467 (1): 155-65.

Engh C A Jr, Mohan V, Nagowski J P, Sychterz-Terefenko C J, Engh C A Sr. Influence of stem size on clinical outcome of primary total hip arthroplasty with cementless extensively porous-coated femoral components. J Arthroplasty 2009; 24 (4): 554-9.

Fahlgren A, Bostrom M P G, Yang X, Johansson L, Edlund U, Agholme F, Aspenberg P. Fluid pressure and flow as a cause of bone resorption. Acta Orthop 2010; 81 (4): 508-16.

Khanuja H S, Vakil J J, Goddard M S, Mont M A. Cementless femoral fixation in total hip arthroplasty. J Bone Joint Surg (Am) 2011; 93 (5): 500-9.

Lavernia C, D’Apuzzo M, Hernandez V, Lee D. Thigh pain in primary total hip arthroplasty: The effects of elastic moduli. J Arthroplasty 2004; 19 (7 Suppl 2): 10-16.

Morscher E (Ed.). The cementless fixation of hip endoprostheses. Berlin: Springer Verlag, 1984.

Perren S M. Evolution of the internal fixation of long bone fractures. The scientific basis of biological internal fixation: Choosing a new balance between stability and biology. J Bone Joint Surg (Br) 2002; 84 (8): 1093-110.

Rock K L, Kono H. The inflammatory response to cell death. Annu Rev Pathol 2008; 3: 99-126.

Rubin C T, Lanyon L E. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg (Am) 1984; 66: 397-402.

Yamada H, Yoshihara Y, Henni O, Morita M, Shiromoto Y, Kawano T, Kanaji A, Ando K, Nakagawa M, Kosaki N, Fukaya E. Cementless total hip replacement: Past, present, and future. J Orthop Sci 2009; 14 (2): 228-41.