Nutraceuticals in prevention of cataract – An evidence based approach

Amandeep Kaur a, Vikas Gupta a, Ajay Francis Christopher a, Manzoor Ahmad Malik b,1, Parveen Bansal a,⇑

Abstract

Cataract is a principal cause of blindness in the world and is characterized by clouding of eye’s natural lens. Surgery is the major therapeutic step taken to cure cataract; however, it has its own limitations and complications such as iris prolapse, raised IOP, infection, cystoid macular edema and posterior capsular opacification (PCO). So world is looking toward more robust and natural ways to prevent cataract. One of the important factors that can play a role in prevention of any and many diseases is diet of the people. The inclusion of certain naturally occurring food and nutraceuticals is coming up as a best alternative for curing cataract because of their presumed safety, potential nutritional and therapeutic effects. Some nutraceuticals can act as an anticataract agent through some or the other molecular mechanism if consumed by normal population deliberately or inadvertently.

Keywords: Cataract, Nutraceutical, Age, Antioxidant, Diabetes

Introduction

Cataract is a principal cause of blindness in the world and occurs due to the clouding of the eye’s natural lens. The proteins in the lens aggregate resulting in clouding of the lens and formation of cataract. As the light cannot pass clearly through the lens, there is some loss of vision. Since new cells cover the outside of lens, the other cells are compacted into the center of the lens resulting in the cataract. Cataract ultimately results in the loss of vision in people over the age of 40 years. The most recent estimates from World Health Organization (WHO) reveal that 47.8% of global blindness is due to cataract. In India cataract is the principal cause of blindness accounting for 62.6% cases of blindness and 77.5% cases of avoidable blindness.1 India is one of the signatories in a program Vision 2020 for elimination of avoidable blindness. It can occur due to aging, infection in newborn babies, injury or poor development prior to birth or during childhood, complications of various diseases and exposure to toxic substances such as UV radiations, corticosteroids and diuretics.

In the early stages of the disease, optimal refractive management and advice on glare reduction can lessen the impact of cataract formation. Surgery is undertaken only in case other measures are no longer adequate for the patient’s visual needs because of its known limitations. Significant intraoperative complications of phacoemulsification in experienced hands are rare. Early postoperative complications include iris prolapse, raised IOP and infection. Cystoid macular edema (CMO) and posterior capsular opacification (PCO)
are the most common late complications. So world is looking toward more robust and natural ways to prevent cataract. One of the important factors that can play a role in prevention of any and many diseases is the diet of people.

The inclusion of certain naturally occurring food and nutraceuticals is coming up as a best alternative that reminds words of Hippocrates 2500 years ago “Let thy food be medicine and medicine be thy food”. A nutraceutical is the opposite of “junk food and according to the World Health Organization, over 80% of the world’s population (4.3 billion people) rely upon such traditional plant-based systems of medicine as phytochemicals, nutritional constituents or as functional food”.[2] The term “Nutraceutical” was coined in 1979 by Stephen De Felice and is defined “as a food or part of diet with medical or health benefits, including the prevention and treatment of disease”. Nutraceuticals may be isolated nutrients, dietary supplements, genetically engineered “designer” food, traditional herbal product and processed products such as cereals, soups, and beverages. Plant derived nutraceuticals/functional foods have received considerable attention because of their presumed safety, potential nutritional and therapeutic effects. This renewed interest in nutraceuticals reflects the fact that consumers are aware about epidemiological studies which indicate the role of a specific diet or component of the diet in association with a lower risk of certain diseases. This review is about the hypothesis behind the mechanism of action of various nutraceuticals in prevention of cataract. Authors have compiled a list of commonly used vegetables, fruits, nuts and grains that have a probable mechanism of action against cataract formation. This compilation is intended to provide information to scientists working in this particular field to create more evidences for the mechanism of action and to disseminate the idea of use of nutraceuticals for prevention of cataract.

Pathogenesis of age related cataract

An eye lens consists of crystallins, cytoskeletal and membrane proteins. Crystallins make up to 90% of lens proteins and have high refractive index. It exists in the cytoplasm of lens fibers in the form of complex protein solution. The majority of proteins are in a soluble phase, and this soluble form accounts for transparency. With increase in age a wide range of proteins leave the soluble phase and form high molecular weight aggregates. The primary mechanism that lies behind protein aggregation is posttranslational modification associated disulfide bond formation and non-enzymatic glycation. These changes occur in the nucleus that contains the long-lived proteins.[3,4] Reactive oxygen species (ROS) such as peroxide, superoxide and hydroxyl radicals are causes of protein modification. Normally the healthy lens contains antioxidants such as glutathione, ascorbate and catalase that protect lens proteins against ROS. Glutathione is one of the most important antioxidants found in eye lens.[5] Reduced glutathione (GSH) reacts with ROS and is converted to its oxidized form (GSSG). GSH is restored through the action of the enzyme glutathione reductase (GR). Hydrogen peroxide (H2O2) has been considered as the major oxidant in the pathogenesis of cataract. Normally, H2O2 is eliminated by GSH, or through the action of the enzymes glutathione peroxidase and catalase. However, with age there is decrease in activity of these protective mechanisms that result into elevation of H2O2 levels in the lens.[3] This acts on the lens epithelium and inhibits membrane lipids as well as transporter proteins such as Na⁺K⁺ATPase ultimately leading to epithelial cell death and loss of lens transparency. Although individuals may have a genetic susceptibility to ROS, yet exposure to environmental factors such as smoking and UV exposure, the presence of certain diseases such as diabetes and the intake of systemic drugs are also important variables.

Pathogenesis of diabetic cataract

In diabetes, there is high concentration of glucose in the aqueous humor that is passively transported into the lens. The enzyme Aldose Reductase (AR) catalyzes the conversion of glucose to sorbitol through the polyol pathway and results in intracellular accumulation of sorbitol that further leads to osmotic changes resulting in degeneration of hydropic lens fibers and formation of cataract.[6,7] In addition, the intracellular sorbitol cannot be removed through diffusion because of its polar character. The intracellular accumulation of sorbitol leads to a collapse and liquefaction of lens fibers that causes opacities in lens.[6,8] Further studies have shown that osmotic stress in the lens caused by sorbitol accumulation[9] induces apoptosis in Lens Epithelial Cells (LEC) leading to the development of cataract.[10] Moreover, increased glucose levels in the aqueous humor may cause glycation of lens proteins, a process resulting in the generation of superoxide radicals (O2⁻) and in the formation of Advanced Glycation End products (AGE).[11] As the AGE interacts with cell surface receptors in the epithelium of the lens, there is generation of O2⁻ and H2O2.

Prevention of cataract

Cataract is a major global cause of blindness, and large section of the world’s population cannot assess cataract surgery. It has been found that mechanisms related to glucose toxicity, namely oxidative stress, processes of non-enzymatic glycation and enhanced polyol pathway are significantly involved in the development of eye lens opacity. There is an urgent need for inexpensive, non-surgical approaches to prevent cataract. The following types of dietary phytochemicals could be implied to obtain the desired therapeutic action:

1. Antioxidants or ROS scavengers
2. Aldose Reductase inhibitors
3. Antiglycating agents
4. Inhibitors of Lens Epithelial Cell apoptosis

Antioxidants

Various classes of antioxidants that can be used to prevent cataract are flavonoids, carotenoids, ascorbic acid, tocopherol, caffeine, and pyruvate. Flavonoids: Flavonoids are C6-C3-C6 compounds with fifteen carbon atoms. Flavonoids exert antioxidant effects due to their ability to scavenge free radicals, donate hydrogen as hydrogen donating compounds, and act as singlet oxygen quenchers and metal ion chelators. Examples of few flavonoids acting as antioxidants are myrcetin, quercetin, rham-
Carotenoids: Carotenoids are a family of 700 compounds found in fruits, vegetables and green plants. Out of these 700 compounds, about 20 have been detected in human plasma and tissues. Lutein and zeaxanthin are two dietary carotenoids that are in the human eye lens. It has been reported that these two carotenoids can be beneficial in prevention and treatment of cataracts.

Antioxidants: One of the most important factors in the pathogenesis of cataract is oxidative damage caused by reactive oxygen species (ROS). The green leafy vegetables, cereals, nuts, chocolate and beverages contain primary carotenoids such as lutein and β-carotene, which have the ability to inhibit the formation of AGEs. Various phenolic compounds such as gallic acid, p-coumaric acid (a typical cinnamic acid) and epicatechin (flavanol) from Cypers rotundus, have been reported to show potent inhibitory activity on AGEs formation and protein oxidation.

Aldose reductase inhibitors

The accumulation of polyol sorbitol in the lens results in the formation of diabetic cataract. The enzyme aldose reductase within the lens converts glucose to sorbitol and is responsible for the accumulation of sorbitol in eye lens. Hence Aldose Reductase inhibitors can be used as potential therapeutic agents to prevent the onset or progression of diabetic cataract. A large hydrophobic pocket forms the inhibitor-binding site of Aldose Reductase and acts as a target for pharmacophore. Inhibitor binding is therefore a repercussion of polar and non-polar interactions between the inhibitor and the complementary residues that match the enzyme-binding pocket. It has been proposed that the specificity for the inhibitor was mainly due to inhibitor–enzyme interactions at the non-polar domain. There are some dietary phytochemicals, illustrated in Tables 2–5, that act as ARI (Aldose Reductase Inhibitors).

Antiglycating agents

The process of non-enzymatic glycation is one of the well-known mechanisms involved in diabetic cataract. With the age, there is accumulation of advanced glycation end products, which may contribute to lens opacity. So clinically used antiglycating agents are also reasonable option as antiglaucoma agents. Some of these agents are given below:

Polyphenols: Polyphenols are the most abundant dietary antioxidants, which are common constituents of fruits, vegetables, cereals, seeds, nuts, chocolate and beverages such as coffee, tea, and wine. These dietary constituents have shown strong antiglycating activity. Based on their chemical structure, these are further classified as phenolic acids and flavonoids.

Phenolic acids: These are the most important non-vitamin antioxidant phytochemicals naturally present in almost all vegetables and fruits. Caffeic acid is a naturally occurring cinnamic acid (type of phenolic acid), found in various plants such as coffee, pear, basil, oregano and apple. Caffeic acid present in Ilex paraguariensis, Chrysanthemum morifolium and Chrysanthemum indicum has the ability to inhibit the formation of AGEs. Ferulic acid is another naturally occurring cinnamic acid reported in drinks and foods such as rice, wheat, and oats, some fruits and vegetables. It has been reported that ferulic acid being an antioxidant prevents AGE formation. It binds to the amino groups and inhibits the sugar autoxidation as well as early Maillard Reaction Products (MRP) degradation. However the exact mechanism of antiglycation by ferulic acid needs to be investigated further. The leaves and stems of Erigeron annuus contain quinic acid derivative, 3,5-di-O-cafeeyl-epi-quinic acid, a potent inhibitor of AGEs formation and thus prevents opacification of eye lenses. The potent inhibitory effect of rosmarinic acid isolated from Salvia miltiorrhiza Bge has been reported against the formation of AGEs. Protocatechuic acid obtained from Rhus verniciflua extracts has been shown to inhibit aldose reductase and accumulation of AGEs. Various phenolic compounds such as gallic acid, p-coumaric acid (a typical cinnamic acid) and epicatechin (flavanol) from Cypers rotundus, have been reported to show potent inhibitory activity on AGEs formation and protein oxidation.
of astaxanthin (a red ketocarotenoid) which is a potent antioxidant and is the major carotenoid having role against excessive oxidative damage. Astaxanthin has stronger antioxidant activity than other carotenoids such as zeaxanthin, lutein, canthaxanthin and \(-\)carotene and hundred times stronger antioxidant than that of \(\alpha\)-tocopherol.

Polysaccharides: Longan pericarp fruit (Dimocarpus longan) contains polysaccharide that acts as free radical scavenger and competes with glucose for binding to free amino group in proteins, and thus reduces the concentration of glycation targets in proteins. Similarly, Ganoderma lucidum polysaccharides have the ability to decrease lipid peroxidation and blood glucose levels in diabetes. Polysaccharides from pumpkin (Cucurbita moschata) have also shown antiglycating activity.

Other antiglycating agents

Citrate a natural dietary constituent found in citrus fruits when administered orally has the potential to delay the
development of cataracts and inhibit the accumulation of AGEs in lens proteins. Fermentation by-products are also capable to inhibit glycation. Recycled distilled residues of AGEs in lens proteins. Fermentation by-products are also shown inhibitory effect on formation of glycation end products.

Inhibitors of lens epithelial cell apoptosis: Apoptosis is a physiological process of cell death that provides an important molecular basis for both the initiation and progression of cataracts. Depending upon the different apoptotic stimuli, there are several mechanisms involved in apoptosis classified as intrinsic pathway and extrinsic pathway. Mitochondria-dependent pathway is associated with lens opacification. Certain stimuli such as radiations, drugs, toxins and free radicals cause mitochondrial damage and dysfunc-

tion. All this results in the release of pro-apoptotic proteins (including cytochrome c and SMAC) from the inner mitochondrial surface into cytosol, which contributes to programmed cell death. Oxidative stress has been recognized as an important mediator of apoptosis in lens epithelial cells and plays an important role in the pathogenesis of cataracts.

Epigallocatechin gallate (EGCG), the most abundant component in green tea (Camellia sinensis), has potent antioxidant activity. It has been shown that EGCG reduces the H$_2$O$_2$-induced generation of reactive oxygen species (ROS), and prevents the loss of mitochondrial membrane potential ($\Delta$$\psi$m), and the release of cytochrome c from the mitochondria into the cytosol. Epigallocatechin gallate inhibits the activities of caspase-9 and caspase-3 and thus prevents intrinsic apoptosis. There are many other polyphenols such as flavonoids, phenolic acids, phenolic alcohols, stilbenes and lignans which act as dietary antioxidants and are thus effective in apoptosis inhibition. Polyphenols are major constituents of fruits, vegetables, grains, roots, chocolate, coffee, tea, and wine.

Grape seed extract (GSE) is a dietary supplement that acts as potent antioxidant and free radical scavenger by influencing various signaling pathways and therefore beneficial in preventing cataracts. GSE contains 70–95% standardized proanthocyanidins (class of phenolic compounds). The seeds of the grape are particularly rich source of proanthocyanidins. NF-κB is transcription factor that regulates various genes including apoptosis, cell adhesion, proliferation, inflammation, and cellular-stress response. In un-stimulated or normal cells, NF-κB remains in the cytoplasm as an inactive complex with inhibitor kappa B. Pathogenic stimuli like free radicals activate NF-κB and causes its phosphorylation. After phosphorylation there is subsequent release of inhibitor kappa B, resulting in translocation of NF-κB to the nucleus followed by binding to DNA control elements that influence the transcription of certain specific genes. Ultimately resulting in cell apoptosis. However, it has been shown that grape seed extract reduces the generation of ROS induced by H$_2$O$_2$ as well as translocation of NF-κB in lens epithelial cells ultimately inhibiting apoptosis.

Resveratrol (RES) is a naturally occurring polyphenol that decreases production of ROS and increases protection against oxidative stress. RES has been shown to suppress apoptosis of lens epithelial cells and hence prevents cataract formation. Table 6 cites some dietary sources of resveratrol.

Coenzyme Q10 (ubiquinone) is a vitamin-like benzo-

quinone compound that acts as free radical scavenger. It prevents light induced apoptosis in human lens epithelial cells. Sources of coenzyme Q10 are mentioned in Table 7. Common nutraceuticals used in market and their common mechanism of actions are listed in Table 8 and Fig. 1.

Table 8. Common nutraceuticals and their common mechanism of actions.

S. no.	Dietary source	Antioxidants	Aldose reductase inhibitors	Antiglycating agents	Inhibitors of lens epithelial cell apoptosis
1.	Lemon				
2.	Orange				
3.	Guava				
4.	Grapes				
5.	Apple				
6.	Turmeric				
7.	Ginger				
8.	Liquorice				
9.	Rice				
10.	Fennel				
11.	Black pepper				
12.	Garlic				
13.	Coriander				
14.	Onion				
15.	Rice				
16.	Wheat				
17.	Green tea				
18.	Pumpkin				
19.	Oats				
20.	Black berries				
21.	Mango				
22.	Pomegranate				

Conclusion

In the era of evidence-based medicine, it is pertinent to find alternative ways of treating common ocular morbidities such as cataract. This manuscript is about the scientific evidences in favor of some nutraceuticals consumed by normal
population knowingly or inadvertently that act as anticataract agent through some or the other molecular mechanism. From meta-analysis of data in the literature, it can be concluded that there is a plethora of commonly used nutraceuticals that if consumed daily can prevent or revert changes responsible for cataract pathogenesis. These nutraceuticals play their role by adopting one or more of mechanisms singly or simultaneously and work against development of cataract. Most common mechanism followed by nutraceuticals seems to be antioxidant activity and antiglycating activity.

Conflict of interest

The authors declared that there is no conflict of interest.

Acknowledgment

The authors fully acknowledge the support by university authorities for preparation of this manuscript.

References

1. John N, Rachel J, Vashist P, et al. Rapid assessment of avoidable blindness in India. PLoS One 2008;3:e2867. http://dx.doi.org/10.1371/journal.pone.0002867.
2. Kasbia GS. Functional foods and nutraceuticals in the management of obesity. Nutr Food Sci 2005;35:344–52.
3. Spector A. Oxidative stress-induced cataract: mechanisms of action. FASEB 1995;9:1173–82.
4. Ottonello S, Foroni C, Carta A, et al. Oxidative stress and age-related cataract. Ophthalmologica 2000;214:78–85.
5. Truscott RJW. Age-related nuclear cataract: a lens transport problem. Ophthalmic Res 2000;32:185–94.
6. Kinoshita JH. Mechanisms initiating cataract formation. Proctor lecture. Invest Ophthalmol Vis Sci 1974;13:713–24.
7. Kinoshita JH, Fukushima S, Kador P, et al. Aldose reductase in diabetic complications of the eye. Metabolism 1979;28:462–9.
8. Kinoshita JH. Cataracts in galactosemia. The Jonas S. Friedenwald memorial lecture. Invest Ophthalmol Vis Sci 1965;4:786–99.
9. Srivastava SK, Ramana KV, Bhatnagar A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev 2005;26:380–92.
10. Takamura Y, Sugimoto Y, Kubo E, et al. Immunohistochemical study of apoptosis of lens epithelial cells in human and diabetic rat cataracts. Jpn J Ophthalmol 2001;45:559–63.

11. Li WC, Kusakz JR, Dunn K, et al. Lens epithelial cell apoptosis appears to be a common cellular basis for noncongenital cataract development in humans and animals. J Cell Biol 1995;130:169–81.

12. Stitt AW. The Maillard reaction in eye diseases. Ann N Y Acad Sci 2006;1043:582–97.

13. Gao S, Qin T, Liu Z, et al. Lutein and zeaxanthin supplementation reduces H2O2 induced oxidative damage in human lens epithelial cells. Mol. Vision 2011;17:3180–90.

14. Krinsky NI, Landrum JT, Bone RA. Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 2003;23:171–201.

15. Maiani G, Caston MJ, Catasta G, et al. Carotenoids: Actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol Nutr Food Res 2009;53:5194–218.

16. Abdel Aal SM, Young JC, Akhtar H, et al. Stability of lutein in wholegrain bread products naturally high in lutein or fortified with free lutein. J Agric Food Chem 2010;58:10109–17.

17. De La Parra C, Saldivar SO, Lui RH. Effect of processing on the phytochemical profiles and antioxidant activity of corn for production of masa, tortillas and tortilla chips. J Agric Food Chem 2007;55:4177–83.

18. El-Kabbani O, Ouafi I, Rabaliski I, et al. Identification and quantification of seed carotenoids from selected wheat species. J Agric Food Chem 2007;55:787–94.

19. Chihiro YN. Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev 1998;50:21–33.

20. Alexiou P, Pekkidiou K, Chatzopoulos M, et al. Aldose reductase enzyme and its implication to major health problems of the 21st century. Curr Med Chem 2009;16:734–52.

21. Del Corso A, Cappiello M, Mura U. From a dull enzyme to something else: facts and perspectives regarding aldose reductase. Curr Med Chem 2008;15:1452–61.

22. Costantino L, Rosati G, Gamberini MC, et al. Pharmacological approaches to the treatment of diabetic complications. Expert Opin Ther Patents 2000;10:1245–62.

23. Miyamoto S. Recent advances in aldose reductase inhibitors: potential agents for the treatment of diabetic complications. Expert Opin Ther Patents 2002;12:621–31.

24. Suzen S, Buyukbingol E. Recent studies of aldose reductase enzyme inhibition for diabetic complications. Curr Med Chem 2003;10:1329–52.

25. El-Kabban O, Ruiz F, Darmanin C, et al. Aldose reductase structures: implications for mechanism and inhibition. Cell Mol Life Sci 2004;61:750–62.

26. El-Kabban O, Pajary A. Selectivity determinants of the aldose and aldehyde reductase inhibitor-binding sites. Cell Mol Life Sci 2007;64:1970–8.

27. Jung SH, Lee YS, Lee S, et al. Isoflavonoids from the rhizomes of Belamcanda chinensis and their effects on aldose reductase and sorbitol accumulation in streptozotocin induced diabetic rat tissues. Arch Pharm Res 2002;25:306–12.

28. Ueda H, Kuroiwa E, Tachibana Y, et al. Aldose reductase inhibitors from the leaves of Myriaria dubia (H. B. & K.) McVaug. Phytochemistry 2004;11:652–6.

29. Lee SJ, Park WH, Park SD, et al. Aldose reductase inhibitors from Litchi chinensis Sonn. J Enzyme Inhib Med Chem 2009;24:957–9.

30. Saraswat M, Muthenna P, Suryanarayana P, et al. Dietary sources of aldose reductase inhibitors: prospects for alleviating diabetic complications. Asia Pac J Clin Nutr 2008;17:558–65.

31. Kandil FE, El-Sayed NH, Mchael HN, et al. Flavonoids from Psidium guajava. Asian J Chem 1997;9:871–2.

32. Du ZY, Bao YD, Liu Z, et al. Curcumin analogs as potent aldose reductase inhibitors. J Ethnopharmacol 2006;399:123–8.

33. Kato A, Higuchi Y, Gato H, et al. Inhibitory effects of Zingiber officinalis Roscoe derived components on aldose reductase activity in vitro and in vivo. J Agric Food Chem 2006;54:6640–4.

34. Lee YS, Kim SH, Jung SH, et al. Aldose reductase inhibitory compounds from Glycyrrhiza uralensis. Biol Pharm Bull 2003;26:917–21.

35. Helder N, Joshi S, Gupta SK. Lens aldose reductase inhibiting potential of some indigenous plants. J Ethnopharmacol 2003;86:113–6.

36. Lee HS. Inhibitory activity of Cinnamomum cassia bark derived component against rat lens aldose reductase. J Pharm Pharmacut Sci 2002;5:226–30.

37. Lee HS. Cuminaldehyde: aldose reductase and a-glucosidase inhibitor derived from Cuminum cyminum L. seeds. J Agric Food Chem 2005;53:2446–50.

38. Fatmorati S, Shimizu K, Kondo R. Ganoderic acid Df, a new triterpenoid with aldose reductase inhibitory activity from the fruiting body of Ganoderma lucidum. Fitoterapia 2010;81:1033–6.

39. Murata M, Irie J, Homma S. Aldose reductase inhibitors from green tea. LWT-Food Sci Technol 1994;27:401–5.

40. Jung HA, Jung YJ, Yoon NY, et al. Inhibitory effects of Nelumbo nucifera leaves on rat lens aldose reductase, advanced glycation endproducts formation, and oxidative stress. Food Chem Toxicol 2008;46:3188–216.

41. Yawadio R, Shinji T, Morita N. Identification of phenolic compounds from Glycyrrhiza uralensis. J Agric Food Chem 2007;55:10085–90.

42. Monnier VM, Sell DR, Genthin S. Glycation products as markers and predictors of the progression of diabetic complications. Ann N Y Acad Sci 2003;1043:57–61.

43. Nagaraj RH, Linetsky M, Stitt AW. The pathogenic role of Maillard reaction in the aging eye. Amino Acids 2012;42:1205–20.

44. Monnier VM, Cerami A. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 1981;211:491–3.

45. Clifford MN. Chlorogenic acids and other cinammatyisis-nature and dietary burden. Sci Food Agric 1999;79:362–72.

46. Tsuji-Naito K, Saeki H, Hamano M. Inhibitory effects of Chrysanthemum species extracts on formation of advanced glycation end products. Food Chem 2009;116:854–9.

47. Gugliucci A, Bastos DH, Schulze J, et al. Caffeic and chlorogenic acids in Ilex paraguariensis extracts are the main inhibitors of AGE formation by methylglyoxal in model proteins. Fitoterapia 2009;80:339–44.

48. Wang J, Sun B, Cao Y, et al. Protein glycation inhibitory activity of wheat bran feruloyl oligosaccharides. Food Chem 2009;112:350–3.

49. Silván JM, Assar SH, Srey C, et al. Control of the Maillard reaction by antioxidant capacity and antimicrobial activity. J Agric Food Chem 2005;53:1190–5.

50. Jang DS, Yoo NH, Kim NH, et al. 3,5-Di-caffeoyl-epi-quinic acid from thyme (Thymus vulgaris). J Agric Food Chem 2009;57:208–13.

51. Jang DS, Yoo NH, Kim NH, et al. 3,5-Di-caffeoyl-epi-quinic acid from thyme (Thymus vulgaris). J Agric Food Chem 2009;57:208–13.

52. Wang J, Sun B, Cao Y, et al. Protein glycation inhibitory activity of wheat bran feruloyl oligosaccharides. Food Chem 2009;112:350–3.

53. Silván JM, Assar SH, Srey C, et al. Control of the Maillard reaction by antioxidant capacity and antimicrobial activity. J Agric Food Chem 2005;53:1190–5.

54. Jang DS, Yoo NH, Kim NH, et al. 3,5-Di-caffeoyl-epi-quinic acid from thyme (Thymus vulgaris). J Agric Food Chem 2009;57:208–13.

55. Jang DS, Yoo NH, Kim NH, et al. 3,5-Di-caffeoyl-epi-quinic acid from thyme (Thymus vulgaris). J Agric Food Chem 2009;57:208–13.

56. Wang J, Sun B, Cao Y, et al. Protein glycation inhibitory activity of wheat bran feruloyl oligosaccharides. Food Chem 2009;112:350–3.

57. Silván JM, Assar SH, Srey C, et al. Control of the Maillard reaction by antioxidant capacity and antimicrobial activity. J Agric Food Chem 2005;53:1190–5.
62. Wu CH, Yen GC. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. J Agric Food Chem 2005;53:3167–73.

63. Cervantes-Laurean D, Schramm DD, Jacobson EL, et al. Inhibition of advanced glycation end product formation on collagen by rutin and its metabolites. J Nutr Biochem 2006;17:531–40.

64. Bar E, Rise M, Vishkautsan M, et al. Inhibitors of aldose reductase and advanced glycation end-products formation from the leaves of Stelechocarpus zofingiensis R.E.Fr. Phytomedicine 2007;14:546–50.

65. Babu PV, Sabitha KE, Shyamaladevi CS. Effect of green tea extract on the formation of advanced glycation endproducts (AGEs). Food Chem 2010;120:261–7.

66. Chen F. High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 1996;14:421–6.

67. Sun Z, Peng X, Liu J, et al. Inhibitory effect of microalgal extracts on apoptosis induced by transforming growth factor beta (2) in human lens epithelial cells. Mol Vision 2008;14:217–23.

68. Scalbert A, Manach C, Morand C, et al. Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 2005;45:287–306.

69. Miki W. Biological functions and activities of animal carotenoids. Biochim Biophys Acta 2007;1733:160–70.

70. Ye XJ, Ng TB, Nagai R. Inhibitory effect of fermentation byproducts of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. J Nutr Biochem 2003;14:348–61.

71. Sun Z, Peng X, Liu J, et al. Inhibitory effect of microalgal extracts on apoptosis induced by transforming growth factor beta (2) in human lens epithelial cells. Mol Vision 2008;14:217–23.

72. Cervantes-Laurean D, Schramm DD, Jacobson EL, et al. Inhibition of advanced glycation end product formation on collagen by rutin and its metabolites. J Nutr Biochem 2006;17:531–40.

73. Voziyan PA, Hudson BG. Pyridoxamine: the many virtues of a Maillard reaction inhibitor. Ann N Y Acad Sci 2005;1043:807–16.

74. Dicter N, Madar Z, Tirosh O. Alpha-lipoic acid inhibits glycolgen synthesis in rat soleus muscle via its oxidative activity and the uncoupling of mitochondria. J Nutr 2002;132:3001–6.

75. Sandhu JK, Pandey S, Monette R, et al. Molecular mechanisms of glutamate neurotoxicity in mixed cultures of NT2-derived neurons and astrocytes: protective effects of coenzyme Q10. J Neurosci Res 2003;72:691–703.

76. McCarthy S, Somayajulu M, Sikorska M, et al. Human lens epithelial cells. Biochim Biophys Acta 2007;1733:160–70.

77. Sandhu JK, Pandey S, Monette R, et al. Molecular mechanisms of glutamate neurotoxicity in mixed cultures of NT2-derived neurons and astrocytes: protective effects of coenzyme Q10. J Neurosci Res 2003;72:691–703.

78. McCarthy S, Somayajulu M, Sikorska M, et al. Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10. Toxicol Appl Pharmacol 2004;201:21–31.

79. Sandhu JK, Pandey S, Monette R, et al. Molecular mechanisms of glutamate neurotoxicity in mixed cultures of NT2-derived neurons and astrocytes: protective effects of coenzyme Q10. J Neurosci Res 2003;72:691–703.

80. Yao K, Ye PP, Zhang L, et al. Epigallocatechin gallate protects against oxidative stress-induced mitochondria-dependent apoptosis in human lens epithelial cells. Mol Vision 2008;14:217–23.

81. Burns J, Yokota T, Ashihara H, et al. Plant foods and herbal sources of resveratrol. J Agric Food Chem 2004;52:4713–9.

82. Stewart JR, Arttime MC, O’Brian CA. Resveratrol: a candidate nutritional substance for prostate cancer prevention. J Nutr 2003;133:2440S–3S.

83. Papucci L, Schiavone N, Witort E, et al. Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 2003;278:28220–8.

84. Papucci L, Schiavone N, Witort E, et al. Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 2003;278:28220–8.

85. Papucci L, Schiavone N, Witort E, et al. Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 2003;278:28220–8.

86. Papucci L, Schiavone N, Witort E, et al. Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 2003;278:28220–8.

87. Papucci L, Schiavone N, Witort E, et al. Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 2003;278:28220–8.

88. Papucci L, Schiavone N, Witort E, et al. Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 2003;278:28220–8.

89. Papucci L, Schiavone N, Witort E, et al. Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 2003;278:28220–8.