Jitter-Adaptive Dictionary Learning - Application to Multi-Trial Neuroelectric Signals
Sebastian Hitziger, Maureen Clerc, Alexandre Gramfort, Sandrine Saillet, Christian G. Bénar, Théodore Papadopoulo

To cite this version:
Sebastian Hitziger, Maureen Clerc, Alexandre Gramfort, Sandrine Saillet, Christian G. Bénar, et al.. Jitter-Adaptive Dictionary Learning - Application to Multi-Trial Neuroelectric Signals. International Conference on Learning Representations 2013, May 2013, Phoenix, Arizona, United States. 2013. hal-01094663

HAL Id: hal-01094663
https://inria.hal.science/hal-01094663v1
Submitted on 5 Jan 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Multi-trial analysis in neuroscience

- **Trials:** recordings of neuronal electromagnetic activity under similar conditions.
- **Goal:** detect similar waveforms and describe how they change across trials.

![Graph showing time vs. trials with a scatter plot and a linear regression line]

Existing approaches:
- **Averaging:** loses the information present in individual trials.
- **Matrix factorization (PCA, ICA, dictionary learning)** (11):
- **Linear approach:** does not account for temporal shifts [2].
- **Variants of matching pursuit** (3):
- Do not learn waveforms but require predefined dictionary.

Atom:

\[\Delta \]

\[\Delta = \{ \Delta \} \]

Epochs:

- **Epoch 41**
- **Epoch 111**
- **Epoch 161**

Jitter-Adaptive Dictionary Learning (JADL)

- **1-regularized optimization**

\[\begin{align*}
(\delta_{k}, s_{k}, b_{k}) = & \min_{\delta_{k}, s_{k}, b_{k}} \sum_{n} \sum_{k} a_{n} b_{k} \delta_{k} + \lambda \| s_{k} \|_{1} \\
\text{s.t.} & \quad |\delta_{k}| = 1, \quad b_{k} \in \Delta
\end{align*} \]

Dictionary:

- **Update:**

\[\begin{align*}
\text{Sparse coding: update } (a_{n}, b_{k}) & \quad \text{idea as } \Delta \text{ is finite, we can first apply all possible shifts to } D, \text{ yielding the "unrolled" dictionary } D^{\delta} \\
& \quad \text{sparse coding can now be performed over } D^{\delta}, \text{ the non-zero coefficients show which shifts are used.}
\end{align*} \]

Algorithm 1

Sparse coding update

Dictionary update

Learned coefficients and shifts provide insight into data

Real data

In an animal model of epilepsy, local field potentials were recorded during one hour with an intra-cranial electrode in a Winster-Han rat. Bipolarization (a block of inhibition) was injected in the cortex to elicit epileptic-like discharges. 169 of these spikes were then selected visually and segmented into epochs of 10 seconds.

Jitter-Adaptive Dictionary Learning (JADL)

- **Learned coefficients and shifts provide insight into data**

Conclusion

We presented a new method (JADL) which is an extension to dictionary learning and designed to analyze multi-trial neuroelectric datasets. We evaluated JADL on synthetic and real data and showed its superiority to common dictionary learning. In particular, JADL showed the following qualities:

- **Ability to learn main waveforms and to separate them.**
- **Learned shifts and coefficients give insights into the changes of waveforms (phase, latency, amplitude).**
- **Computational efficiency, even for high shift-tolerance.**
- **Robustness and denoising qualities.**