Some Oil Characteristics of Fruit of Le002 And Mt087 Olive Cultivar Candidates

Yasin Ö*, Seda K and Nesrin AT
Department of Food Technology, Turkey

Abstract

LE002 and MT087 cultivar candidates had olive fruits their color is never turn black from green until they fall. So that their olives described as evergreen fruit. In this study olives were harvested at of first day of November normally other olive cultivars have whole black olive but LE002 and MT087 have green olives. Oil and dry matter content of LE002 and MT087 fruits were determined after that oils were produced by cold press and free fatty acid content, peroxide value and absorbency in ultraviolet light of oils were detected. Dry matter and oil content of olives were 41.0% and 19.47% for MT087 and 45.96% and 23.42% for LE002. Oil content of green olives were lower than these detected values for Marmara region of Turkey. All the analyses result of oils was between the limits of olive oil standards and regulations. So that both these cultivar candidates should be more analyzed to be determine their oil characteristics for future cultivar registration and certification steps.

Introduction

During maturation of olive fruits, their color, size and contents were changed. Normally olives had green color at first stage of ripeness after that violet-red, purple, dark purple and black skin color were formed [1,2]. With black skin color formation tissue color of olive change from white to dark purple/black color from skin to the seed. During olive fruit maturation from green to black color oil content were increased but total phenol and antioxidant activity content declined whose content highly determine the sensory characters, shelf life and price of olive oil [3,4]. LE002 and MT087 had ever green olive fruits until they fall from tree. So that they attracted breeding researcher who work on olive breeding project which started in 1990 with cross breeding of Spanish, Italian and Turk olive cultivars [5]. LE002 and MT087 may have both positive characters of green and black olive maturation stages. So that this study aimed to determine some their fruit and oil characteristics.

Materials and Methods

Material

Fruits of LE002 (Lucas X Eðnciksu crossing) and MT087 (Manzanilla X Tavşanyüreği crossing) cultivar candidates were used as material. Their trees were planted at 1.5×3m distance in olive genotype observation orchard of Atatürk Central Horticultural Research Institute (Yalova/Turkey). Olives were hand-picked at first day of November of 2014/2015 and 2015/2016.

Fruit analysis

Maturation index of olives was determined according calculation method of [6] by using the color of olive skin and flesh. Before the oil content analysis, olive seeds were removed and sliced after that dried until constant weight. Oil of the dried olive paste was extracted by soxhlet apparatus, for at least 8 hours, with petroleum ether extraction at 50 °C[7].

Olive oil production

Olives were washed and unhealthily and washed olives were removed. Olives were crashed to form olive paste by laboratory scale hammer (100rev/min) and kneader (45 minutes) after which 250mg batches of olive paste was put into press cloth and pressed (250-300kg/cm²).
Drained liquid phase from press was separated into water and oil phase by using separatory funnel. The obtained oil was centrifuged (8,000rev/min) and filtered through a coarse filter (20µm). Finally, oil was filled into dark glass bottles and analyzed immediately.

**Oil analysis**

Free acid content and peroxide value were assessed by titrimetric methods according to the official methodologies of Turkish Food Codex - Communiqué of Analysis Methods of Olive Oil and Pomace Oil [8]. For determination of specific absorbance value, 0.5g of oil were weighed and dissolved into 50mL cyclohexane 50mL. Mixture was put into 1cm quartz cuvette and its absorbance was measured at 232 and 270nm with spectrophotometer (Hitachi, Japan)

**Results and Discussion**

Oil content was one of the important criteria for table olive because it directly affects sensory characteristics of final product [9]. On the other hand, oil content directly determines the commercial value of olive cultivars for oil production aim. So that oil content was thought as important as oil quality characters of olive cultivars for oil production purpose cultivars. Maturity index and dry matter and oil content of olives were given in Table 1. Dry matter content has less importance for oil production than table olive. Because water soluble dry matter will be discharged with waste water during oil production from olives. But dry matter of raw olives is important for table olive production. When oil content was deleted from dry matter content gives idea on sugar, protein, mineral and fiber content of olive. Invert sugar and nitrogen content was important for successful fermentation of olives. Oil content were reported 20.52 % and 19.61 % and dry matter content 36.89 % and 37.45 for olive of Ayvalık and Memecik cultivars [10].

These results were similar with oil content of fruit of MT087 but lower than that of LE002. Dry matter contents of fruit of MT087 and LE002 were higher than results of Yildirim [10]. Free fatty acid content was the first quality evaluation criteria for extra virgin olive oils. Lower free fatty acid content indicates possibilities for earlier harvest, healthiness of olives, immediately oil production after harvest without losing time, colder oil production temperature and appropriate oil storage without or reduced light and oxygen and reduced temperature [11,12]. Peroxide value also indicates same history of olive and olive oil, but only free fatty acid content can be seen on label of olive oils because of national and international olive standards and regulations. Specific absorbency at ultraviolet light (232 and 270nm) of olive oil is reported as another common character used for quality and purity determination of olive oils [13,14]. In this study free fatty acid content, peroxide value and absorbency at 232 and 270nm of olive oils were given in Table 2. All of these parameters were between the limits of extra virgin olive oils. Last years with parallel to idea of disease prevention by consuming healthy diet phenols, antioxidants and effective nutrients gain importance on developed countries [15]. As a result of this idea, olive oil had remarkable attraction not only its produces are but also worldwide because of its specific components such as phenols, fatty acids and tocopherols etc [16,17].

**Table 1:** Maturity index and dry matter and oil content of olives.

| Parameters      | MT087      | LE002      | p   | cv |
|-----------------|------------|------------|-----|----|
| Maturity index  | 1.2        | 1.5        | -   | -  |
| Dry matter (%)  | 41±3.12b   | 45.99±5.94a| <0.05 | 3.6 |
| Oil (%)         | 19.47±1.5b | 23.42±1.31a| <0.05 | 2.9 |

**Table 2:** Free fatty acid content, peroxide value and absorbency at 232 and 270nm of olive oils.

| Parameters                  | MT087      | LE002      | p   | cv |
|-----------------------------|------------|------------|-----|----|
| Free fatty acid (oleic acid %) | 0.50±0.17  | 0.63±0.65  | >0.05 | 9  |
| Peroxide value (meqO₂/kg)    | 2.35±0.07b | 3.42±0.08a | <0.05 | 4.9|
| Absorbency at 232nm          | 2.63±0.05a | 2.40±0.035b| <0.05 | 3.5|
| Absorbency at 270nm          | 0.187±0.01 | 0.21±0.01  | >0.05 | 5.7|

**Table 3:** Total phenol, antioxidant activity and alpha tocopherol content of olive oils.

| Parameters                  | MT087      | LE002      | p   | cv |
|-----------------------------|------------|------------|-----|----|
| Total phenol (mg gallic acid/kg) | 446.67±5.36b | 653.33±9.22a | <0.05 | 2.7|
| Antioxidant activity (μM Trolox /kg) | 334.11±3.33b | 419.31±7.68a | <0.05 | 2.3|
| Alpha tocopherol (mg/kg)     | 190.667±11.50a | 148±3.72b  | <0.05 | 7.3|

Total phenol content, antioxidant activity and alpha tocopherol content of olive oils were given in Table 3. These values give idea on quality, sensory characters, nutritive value and disease preventive potential of olive oils. Beltrán G et al [18] reported total tocopherols content ranging between 84 and 463mg/kg within thirty olive cultivars. Antioxidant activity of olive oil of four cultivars were reported between 659-1803μmol Trolox/kg by Krichene D [19]. On the other hand [20] reported that polyphenols content and the antioxidant activity reported from 97,37 to 219,70mg gallic acid/kg of oil and from 387.2 to 997.5μmol Trolox/kg in commercial olive oils respectively.
Total phenol content was reported 1041 and 694mg/kg of for olive oil of Sevillian and Kalamata cultivars [12]. From producer perspective olive oil and oil yields was important for giving decision to plant new olive cultivars and they used for calculation of total income. But some minor components such as phenols and/ or tocopherols directly affect the unit price of olives oils. So that selection for new olive cultivars should be done after evaluation all of parameters of olive and olive oil of cultivars.

Conclusion

Oil content directly affect olive commercial value of olives for both table olive or olive oil production purpose. Fruits of LE002 and MT087 had satisfied oil content for pre-selection as oil production purpose. Their olive oil had remarkable total phenol and antioxidant activity, but they had lesser content of tocopherols. LE002 and MT087 had ever green olive fruits until they fall so that they should be thought as high oil content such a black olive maturation with higher phenol content such a green olive maturation. Fruits of MT087 higher oil and dry matter content [21]. Olive oils of MT087 also higher total phenol and antioxidant activity.

References

1. Romero C, Medina E, Mateo MA, Brenes M (2017) Quantification of bioactive compounds in picual and arbequina olive leaves and fruit. Journal of the Science of Food and Agriculture 97(6): 1725-1732.

2. Domínguez HV, Ríos JJ, Rojas BG, Roca M (2016) Chlorophyll catabolism in olive fruits (var. Arbequina and Hojiblanca) during maturation. Food Chem 212: 604-611.

3. Köseoğlu O, Sevim D, Kadioğlu P (2016) Quality characteristics and antioxidant properties of Turkish monovarietal olive oils regarding stages of olive ripening. Food Chem 212: 628-634.

4. Bodoira R, Torres M, Pierantonzi P, Taticchi A, Servili M, et al. (2015) Oil biogenesis and antioxidant compounds from “Arauco” olive (Olea europaea L) cultivar during fruit development and ripening. European journal of lipid science and technology 117(3): 377-388.

5. Ozdemir Y, Ozturk A, Guven E, Nebioglu MA, Tangu NA, et al. (2016) Fruit and oil characteristics of olive candidate cultivars from Turkey. Not Bot Horti Agrobo 44(1): 147-154.

6. Hermoso M, Uceda M, Garcia A, Morales B, Frías ML, et al. (1991) Elaboracion de aceite de calidad. Consejeria de Agricultura y Pesca, Serie Apuntes 5/92, Sevilla.

7. Cemeroglu B (2007) Food analysis. Ankara: Bizim Büro Publication, Turkey.

8. Anonymous (2015) Trade standard applying to olive oils and olive-pomace oils. International Olive Council.

9. Bejaoui MA, Ortiz AS, Aguileria MP, Moreno MJR, Sánchez S, et al. (2018) High power ultrasound frequency for olive paste conditioning: Effect on the virgin olive oil bioactive compounds and sensorial characteristics. Innovative Food Science & Emerging Technologies 47: 136-145.

10. Yıldırım AN, Yıldırım F, Ozkan G, San B, Polat M, et al. (2017) The determination of pomological and total oil properties of some olive cultivars grown in isparta, Turkey. Scientific Papers-Series B-Horticulture 61: 45-49.

11. Babola KB, Krpac M, Sladonja B (2016) Influence of olive fruit fly attack on quality and composition of ‘Risinjola’ virgin olive oil. VIII International Olive Symposium 1199: 489-496.

12. Fuentes E, Paucar F, Tapia J, Ortiz J, Jimenez P, et al. (2018) Effect of the composition of extra virgin olive oils on the differentiation and antioxidant capacities of twelve monovarietals. Food Chem 243: 285-294.

13. Jabeur H, Zribi A, Bouaziz M (2016) Extra-virgin olive oil and cheap vegetable oils: distinction and detection of adulteration as determined by GC and chemometrics. Food Analytical Methods 9(3): 712-723.

14. Mahesar SA, Bendini A, Cerretani L, Carbognin MB, Sherazi STH (2010) Application of a spectroscopic method to estimate the olive oil oxidative status. European Journal of Lipid Science and Technology 112(12): 1356-1362.

15. Aguileria Y, Cabreras MAA, Mejia EG (2016) Phenolic compounds in fruits and beverages consumed as part of the mediterranean diet: their role in prevention of chronic diseases. Phytochemistry Reviews 15(3): 405-423.

16. Foscolou A, Critselis E, Panagiotakos D (2018) Olive oil consumption and human health: A narrative review. Maturitas 118: 60-66.

17. Bernardini E, Visioli F (2017) High quality, good health: the case for olive oil. European Journal of Lipid Science and Technology 119(1): 1500505.

18. Beltrán G, Jiménez A, Rio CD, Sánchez S, Martínez L, et al. (2010) Aguilería Variability of Vit E in virgin olive oil by agronomical and genetic factors. J. Food Compos Anal 23: 633-639.

19. Krichene D, Allalout A, Campos VM, Salvador MD, Zarruk M, et al. (2010) Stability of virgin olive oil and behavior of its natural antioxidants under medium temperature accelerated storage conditions. Food Chemistry 121(1): 171-177.

20. Gouvánhas I, Machado J, Gomes S, Lopes J, Lopes PM, et al. (2014) Phenolic composition and antioxidant activity of monovarietal and commercial Portuguese olive oils. Journal of the American Oil Chemists’ Society 91(7): 1197-1203.

21. Pietrantonio F, Scotti E (2017) Internal medicine network: a new way of thinking hospital-territory integration and public-private partnership. Italian Journal of Medicine 11(2): 85-94.