A two-parameter extension of the Urbanik semigroup

Christian Berg

October 15, 2018

Abstract

We prove that $s_n(a, b) = \frac{\Gamma(an + b)}{\Gamma(b)}$, $n = 0, 1, \ldots$ is an infinitely divisible Stieltjes moment sequence for arbitrary $a, b > 0$. Its powers $s_n(a, b)^c$, $c > 0$ are Stieltjes determinate if and only if $ac \leq 2$. The latter was conjectured in a paper by Lin (ArXiv: 1711.01536) in the case $b = 1$. We describe a product convolution semigroup $\tau_c(a, b)$, $c > 0$ of probability measures on the positive half-line with densities $e_c(a, b)$ and having the moments $s_n(a, b)^c$. We determine the asymptotic behaviour of $e_c(a, b)(t)$ for $t \to 0$ and for $t \to \infty$, and the latter implies the Stieltjes indeterminacy when $ac > 2$. The results extend previous work of the author and J. L. López and lead to a convolution semigroup of probability densities $(g_c(a, b)(x))_{c>0}$ on the real line. The special case $(g_c(a, 1)(x))_{c>0}$ are the convolution roots of the Gumbel distribution with scale parameter $a > 0$. All the densities $g_c(a, b)(x)$ lead to determinate Hamburger moment problems.

2000 Mathematics Subject Classification:
Primary 60E07; Secondary 60B15, 44A60
Keywords: Infinitely divisible Stieltjes moment sequence, product convolution semigroup, asymptotic approximation of integrals, Gumbel distribution.

1 Introduction

A Stieltjes moment sequence is a sequence of non-negative numbers of the form

$$s_n = \int_0^\infty t^n d\mu(t), \quad n \in \mathbb{N}_0 := \{0, 1, 2, \ldots\},$$

where μ is a positive measure on $[0, \infty)$ such that $x^n \in L^1(\mu)$ for all $n \in \mathbb{N}_0$. The sequence (s_n) is called normalized if $s_0 = \mu([0, \infty)) = 1$, and it is called S-determinate (resp. S-indeterminate) if (1) has exactly one (resp. several) solutions μ as positive measures on $[0, \infty)$. All these concepts go back to the fundamental memoir of Stieltjes [17].

A Stieltjes moment sequence (s_n) is called infinitely divisible if (s_n^c) is a Stieltjes moment sequence for any $c > 0$. These sequences were characterized in Tyan’s phd-thesis [19] and again in [5] without the knowledge of [19]. An important example of an infinitely divisible normalized Stieltjes moment sequence is $s_n = n!$, first established in Urbanik [20]. He proved that e_c in (2) is
a probability density such that

\[(n!)^c = \int_0^{\infty} t^n e_c(t) \, dt, \quad e_c(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} t^{ix-1} \Gamma(1-ix)^c \, dx, \quad c, t > 0. \tag{2}\]

Here \(\Gamma\) is Euler’s Gamma-function. The family \(\tau_c = e_c(t)dt, c > 0\) is a convolution semigroup in the sense of \[6\] on the locally compact abelian group \(G = (0, \infty)\) under multiplication. It is called the Urbanik semigroup in \[7\].

By Carleman’s criterion for S-determinacy it is easy to prove that \((n!)^c\) is S-determinate for \(c \leq 2\). That this estimate is sharp was first proved in \[4\], where it was established that \((n!)^c\) is S-indeterminate for \(c > 2\) based on asymptotic results of Skorokhod \[16\] about stable distributions, see \[21\]. Another proof of the S-indeterminacy was given in \[7\] based on the asymptotic behaviour of \(e_c(t), e_c(t) = \frac{2\pi}{\sqrt{c}} \left(\frac{c}{2\pi} \right)^{c/2} \exp\left(-ct^{1/c}\right) t^{b/a-1} \exp\left(-t^{1/a}\right) dt, t \to \infty. \tag{3}\]

In the recent paper \[10\], Lin proposes the following conjecture:

Conjecture Let \(a > 0\) be a real constant and let \(s_n = \Gamma(na + 1), n \in \mathbb{N}_0\).

Then

(a) \((s_n)\) is an infinitely divisible Stieltjes moment sequence;
(b) For real \(c > 0\) the sequence \((s_n^c)\) is S-determinate if and only if \(ac \leq 2\);
(c) For \(0 < c \leq 2/a\) the unique probability measure \(\mu_c\) corresponding to \((s_n^c)\) has the Mellin transform

\[\int_0^{\infty} t^s d\mu_c(t) = \frac{\Gamma(as + 1)^c}{\Gamma(b)}, s \geq 0.\]

When \(a = 1\) the conjecture is true because of the known results about the Urbanik semigroup, and for \(a \in \mathbb{N}, a \geq 2\) the conjecture is true because of the Theorems 5 and 8 in \[10\].

We shall prove that the conjecture is true, and it is a special case of similar results for the following more general normalized Stieltjes moment sequence

\[s_n(a, b) = \frac{\Gamma(an + b)}{\Gamma(b)} = \frac{1}{a\Gamma(b)} \int_0^{\infty} t^{n+b/a-1} \exp(-t^{1/a}) \, dt, \quad n = 0, 1, \ldots, \tag{4}\]

where \(a, b > 0\) are arbitrary.

Defining

\[e_{1}(a, b)(t) = \frac{1}{a\Gamma(b)} t^{b/a-1} \exp(-t^{1/a}), \tag{5}\]

we get for \(\text{Re} \, z > -b/a\) and a change of variable \(t = s^a\)

\[\int_0^{\infty} t^z e_{1}(a, b)(t) \, dt = \frac{\Gamma(sz + b)/\Gamma(b).}{} \tag{6}\]

This leads to our main result.
Theorem 1.1. (i) \((s_n(a, b))\) is an infinitely divisible Stieltjes moment sequence.

(ii) There exists a uniquely determined convolution semigroup \((\tau_c(a, b))_{c>0}\)
of probability measures on the multiplicative group \((0, \infty)\) such that

\[
\int_0^\infty t^z \, d\tau_c(a, b)(t) = \left[\Gamma(az + b)/\Gamma(b)\right]^c, \quad \text{Re } z > -b/a, \tag{7}
\]

and in particular \((s_n(a, b)^c)\) is the moment sequence of \(\tau_c(a, b)\).

(iii) \(\tau_c(a, b) = e_c(a, b)(t) \, dt\) on \((0, \infty)\), where

\[
e_c(a, b)(t) = \frac{1}{2\pi} \int_{-\infty}^\infty t^{ix-1}\left[\Gamma(b - iax)/\Gamma(b)\right]^c \, dx, \quad t > 0 \tag{8}
\]

is a probability density belonging to \(C^\infty(0, \infty)\).

(iv) \((s_n(a, b)^c)\) is \(S\)-determinate if and only if \(ac \leq 2\), hence independent of \(b > 0\).

Note that (4) is a special case of (6).

The measure \(\tau_1(a, b)\) was considered in [18], where it was proved that the
measure is \(S\)-indeterminate if \(a > \max(2, 2b)\). This is a consequence of our
result. Note that \(\tau_1(a, 1)\) is called the Weibull distribution with shape parameter \(1/a\) and scale parameter 1.

In (7) and (8) we use that \(\Gamma(z)\) is a non-vanishing holomorphic function in
the cut plane \(A = \mathbb{C} \setminus (-\infty, 0]\),

\[
\tag{9}
\]

so we can define

\[
\Gamma(z)^c := \exp(c \log \Gamma(z)), \quad z \in A
\]

using the holomorphic branch of \(\log \Gamma\) which is 0 for \(z = 1\). This branch is explicitly given in [18].

Let us recall a few facts about convolution semigroups of probability measures on LCA-groups, see [6] for details.

The continuous characters of the multiplicative group \(G = (0, \infty)\) can be
given as \(t \rightarrow t^{ix}\), where \(x \in \mathbb{R}\) is arbitrary, and in this way the dual group \(\hat{G}\) of
\(G\) can be identified with the additive group of real numbers. The convolution
between measures \(\mu, \sigma\) on \((0, \infty)\), called product convolution and denoted \(\mu \ast \sigma\),
is defined as

\[
\int_0^\infty f(t) \, d\mu \ast \sigma(t) = \int_0^\infty \int_0^\infty f(ts) \, d\mu(t) \, d\sigma(s)
\]

for suitable classes of continuous functions \(f\) on \((0, \infty)\), e.g. those of compact support.

A family \((\mu_c)_{c>0}\) of probability measures on the multiplicative group \(G = (0, \infty)\) is called a convolution semigroup, if \(\mu_c \ast \mu_d = \mu_{c+d}, c, d > 0\) and
\(\lim_{c \to 0} \mu_c = \varepsilon_1\) vaguely. Here \(\varepsilon_1\) is the Dirac measure with total mass 1
concentrated in the neutral element 1 of the group. By [6, Theorem 8.3] there is
a one-to-one correspondence between convolution semigroups μ_c of probability measures on G and continuous negative definite functions $\rho : \mathbb{R} \to \mathbb{C}$ satisfying $\rho(0) = 0$ such that

$$\int_0^\infty t^{-ix} d\mu_c(t) = \exp(-c\rho(x)), \quad c > 0, x \in \mathbb{R}. \quad (10)$$

By the inversion theorem of Fourier analysis for LCA-groups, if $\exp(-c\rho)$ is integrable on \mathbb{R}, then $\mu_c = \int f_c(t) dt$ for a continuous function $f_c(t)$ (the density of μ_c with respect to Haar measure $1/t dt$ on $(0, \infty)$) given by

$$f_c(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} t^{ix-1} \exp(-c\rho(x)) \, dx, \quad t > 0. \quad (11)$$

(Note that the dual Haar measure of $1/t dt$ on $(0, \infty)$ is $1/(2\pi) dx$ on \mathbb{R}.)

Proposition 1.2. For $a, b > 0$

$$\rho(x) := \log \Gamma(b) - \log \Gamma(b - iax), \quad x \in \mathbb{R} \quad (12)$$

is a continuous negative definite function on \mathbb{R} satisfying $\rho(0) = 0$.

Proposition 1.2 shows that there exists a uniquely determined product convolution semigroup $(\tau_c(a, b))_{c > 0}$ satisfying

$$\int_0^\infty t^{-ix} d\tau_c(a, b)(x) = \exp[-c(\log \Gamma(b) - \log \Gamma(b - iax))]$$

$$= [\Gamma(b - iax)/\Gamma(b)]^c, \quad x \in \mathbb{R}. \quad (13)$$

Like in the proof of [4, Lemma 2.1] it is easy to see that (13) implies (7).

Putting $z = -ix$ in (6), we see by the uniqueness theorem for Fourier transforms that $\tau_1(a, b) = e_1(a, b)(t) dt$.

The function $(\Gamma(b - iax)/\Gamma(b))^c$ is a Schwartz function on \mathbb{R} and in particular integrable, so (8) follows from (7), and $e_c(a, b)$ is C^∞ on $(0, \infty)$.

In this way we have established (i)-(iii) of Theorem 1.1. The proof of the more difficult part (iv) as well as the proof of Proposition 1.2 will be given in Section 3.

By Riemann-Lebesgue’s Lemma we also see that $te_c(a, b)(t)$ tends to zero for t tending to zero and to infinity. Much more on the behaviour near 0 and infinity will be given in Section 2. There we extend the work of [7] leading to the asymptotic behaviour of the densities $e_c(a, b)(t)$ for $t \to 0$ and $t \to \infty$. The behaviour for $t \to \infty$ will lead to a proof of the S-indeterminacy for $ac > 2$ using the Krein criterion.

The fact that $\tau_c(a, b) \circ \tau_d(a, b) = \tau_{c+d}(a, b)$ can be written

$$e_{c+d}(a, b)(t) = \int_0^\infty e_c(a, b)(t/x)e_d(a, b)(x) \frac{dx}{x}, \quad c, d > 0. \quad (14)$$
In particular for \(c = d = 1 \) and the explicit formula for \(e_1(a, b) \) we get
\[
e_2(a, b)(t) = \frac{t^b/a - 1}{a \Gamma(b)} \int_0^\infty \exp \left(-x^{-1/a} t^{1/a} - x^{1/a} \right) \frac{dx}{x} \tag{15}
\]
\[
= \frac{2t^b/a - 1}{a \Gamma(b)^2} K_0(2t^{1/(2a)}),
\]
because the Macdonald function \(K_0 \) is given by
\[
K_0(z) = \frac{1}{2} \int_0^\infty \exp \left(-(z/2)^2 / y - y \right) \frac{dy}{y},
\]
cf. [8] 8.432(7), [12] Chap. 10, Sec. 25.

2 Main results

Our main results are

Theorem 2.1. For \(c > 0 \) we have
\[
e_c(a, b)(t) = \frac{(2\pi)^{(c-1)/2}}{a \sqrt{c} \Gamma(b)} \frac{\exp(-ct^{1/(ac)})}{t^{1/(b-1/2+1/(2c))}/a} \left[1 + \mathcal{O} \left(t^{-1/(ac)} \right) \right], \quad t \to \infty. \tag{16}
\]

Theorem 2.2. The measure \(\tau_c(a, b) \ dt \) is \(S \)-indeterminate if and only if \(ac > 2 \).

Theorem 2.3. For \(c > 0 \) and \(0 < t < 1 \) we have
\[
e_c(a, b)(t) = \frac{t^b/a - 1}{a \Gamma(b)^c} \left[\frac{\log(1/t)^c - 1}{\Gamma(c)} \right] + \mathcal{O} \left(t^{b/a - 1}[\log(1/t)]^{c-2} \right), \quad t \to 0. \tag{17}
\]

Remark 2.4. Formula (17) shows that \(e_c(a, b)(t) \) tends to 0 for \(t \to 0 \) if \(b/a > 1 \), and to infinity if \(b/a < 1 \), independent of \(c \). If \(b/a = 1 \) then \(e_c(a, b)(t) \) tends to 0 for \(c < 1 \) and to infinity as a power of \(\log(1/t) \) when \(c > 1 \).

3 Proofs

Proof of Proposition 1.2: From the Weierstrass product for the entire function \(1/\Gamma(z) \), we get the following holomorphic branch in the cut plane \(\mathcal{A} \), cf. [9],
\[
- \log \Gamma(z) = \gamma z + \log z + \sum_{k=1}^\infty (\log(1 + z/k) - z/k) \quad z \in \mathcal{A}, \tag{18}
\]
where \(\log \) denotes the principal logarithm, and \(\gamma \) is Euler’s constant.

For \(n \in \mathbb{N} \) and \(z \in \mathcal{A} \) define
\[
\rho_n(z) = \gamma z + \log z + \sum_{k=1}^n (\log(1 + z/k) - z/k),
\]
\[
R_n(z) = \sum_{k=n+1}^\infty (\log(1 + z/k) - z/k)
\]
so \(\lim_{n \to \infty} \rho_n(z) = -\log \Gamma(z) \), uniformly on compact subsets of \(\mathcal{A} \).

Furthermore, we have

\[
\log \Gamma(b) + \rho_n(b) + R_n(b) = 0,
\]

and since \(\log(1 + x) < x \) for \(x > 0 \), we see that \(R_n(b) < 0 \) and hence \(\log \Gamma(b) + \rho_n(b) > 0 \).

We claim that \(\log \Gamma(b) + \rho_n(b - iax) \) is a continuous negative definite function, and letting \(n \to \infty \) we get the assertion of Proposition 1.2.

To see the claim, we write

\[
\log \Gamma(b) + \rho_n(b - iax) = \log \Gamma(b) + \left(b - iax \right) \left(\gamma - \sum_{k=1}^{n} \frac{1}{k} \right) + \log \left(\frac{\Gamma(b - iax)}{\Gamma(b)} \right) + \sum_{k=0}^{n} \log \left(1 - i\frac{ax}{b+k} \right),
\]

and the assertion follows since \(\alpha + i\beta x \) and \(\log(1 + i\beta x) \) are negative definite functions when \(\alpha \geq 0, \beta \in \mathbb{R} \), see [6], [14]. □

Proof of Theorem 2.1

We modify the proof given in [7] and start by applying Cauchy’s integral theorem to move the integration in (8) to a horizontal line

\[
H_\delta := \{ z = x + i\delta : x \in \mathbb{R} \}, \quad \delta > -b/a.
\]

Lemma 3.1. With \(H_\delta \) as in (19) we have

\[
e_{c}(a, b)(t) = \frac{1}{2\pi} \int_{H_\delta} t^{iz-1} \frac{\Gamma(b - iaz) \Gamma(b)}{\Gamma(b)} dz, \quad t > 0. \tag{20}
\]

Proof. For \(t, c > 0 \) fixed, \(f(z) = t^{iz-1} \frac{\Gamma(b - iaz) \Gamma(b)}{\Gamma(b)} \) is holomorphic in the simply connected domain \(\mathbb{C} \setminus (-\infty, -b/a] \), so (20) follows from Cauchy’s integral theorem provided the integral

\[
\int_0^\delta f(x + iy) \, dy
\]

tends to 0 for \(x \to \pm \infty \). We have

\[
|f(x + iy)| = t^{-y-1} |\Gamma(b + y - iax) / \Gamma(b)|^c
\]

and since

\[
|\Gamma(u + iv)| \sim \sqrt{2\pi} e^{-\pi/2|v|} |v|^{u-1/2}, \quad |v| \to \infty, \text{ uniformly for bounded real } u,
\]

cf. [1] p.141, Eq. 5.11.9, [8] 8.328(1), the result follows. □
In the following we will use Lemma 3.1 with the line of integration $H_δ$, where $δ = (t^{1/(ac)} - b)/a$. Therefore,
\[e_c(a, b)(t) = t^{(b - t^{1/(ac)})/a - 1} \frac{1}{2\pi} \int_{-\infty}^{\infty} t^{ix}\frac{\Gamma(t^{1/(ac)} - iax)}{\Gamma(b)c} dx, \]
and after the change of variable $x = a^{-1}t^{1/(ac)}u$ and putting $A := (1/c + b - a)/a$
\[e_c(a, b)(t) = t^{A - a^{-1}t^{1/(ac)}} \frac{1}{2\pi a} \int_{-\infty}^{\infty} t^{iuA^{-1}t^{1/(ac)}} \frac{\Gamma(t^{1/(ac)}(1 - iu))}{\Gamma(b)c} du. \tag{21} \]

Binet’s formula for $Γ$ is (8, 8.341(1))
\[Γ(z) = \sqrt{2\pi z} z^{z - 1/2} e^{-z + \mu(z)}, \quad \text{Re}(z) > 0, \tag{22} \]
where
\[\mu(z) = \int_0^{\infty} \left(\frac{1}{2} - \frac{1}{t} + \frac{1}{e^t - 1} \right) \frac{e^{-zt}}{t} dt, \quad \text{Re}(z) > 0. \tag{23} \]
Notice that $μ(z)$ is the Laplace transform of a positive function, so we have the estimates for $z = r + is$, $r > 0$
\[|μ(z)| ≤ μ(r) ≤ \frac{1}{12r}, \tag{24} \]
where the last inequality is a classical version of Stirling’s formula, thus showing that the estimate is uniform in $s \in ℝ$.

Inserting this in (21), we get after some simplification
\[e_c(a, b)(t) = (2π)^{c/2 - 1} a^{-1/(2a)} e^{-ct^{1/(ac)}} \int_{-\infty}^{\infty} e^{ct^{1/(ac)}f(u)} g_c(u) M(u, t) du, \tag{25} \]
where
\[f(u) := iu + (1 - iu) \text{Log}(1 - iu), \quad g_c(u) := (1 - iu)^{-c/2} \tag{26} \]
and
\[M(u, t) := \exp[\mu(t^{1/(ac)}(1 - iu))]. \tag{27} \]
From (24) we get $M(u, t) = 1 + O(t^{-1/(ac)})$ for $t \to \infty$, uniformly in u. We shall therefore consider the behaviour for large x of
\[\int_{-\infty}^{\infty} e^{-x f(u)} g_c(u) du, \quad x = ct^{1/(ac)}. \tag{28} \]

This is the same integral which was treated in [7, Eq.(28)] leading to
\[\int_{-\infty}^{\infty} e^{-x f(u)} g_c(u) du = (2\pi/x)^{1/2} [1 + \mathcal{O}(x^{-1})] \]
by methods from [11].

For $x = ct^{1/(ac)}$ we find
\[\int_{-\infty}^{\infty} e^{ct^{1/(ac)}f(u)} g_c(u) du = \frac{\sqrt{2π}}{\sqrt{ct^{1/(2ac)}}} [1 + \mathcal{O}(t^{-1/(ac)})], \]
where
\[H_δ = \frac{1}{2\pi} \int_{-\infty}^{\infty} t^{ix}\frac{\Gamma(t^{1/(ac)} - iax)}{\Gamma(b)c} dx. \]

[11]
hence

\[e_c(a, b)(t) = \left(\frac{2\pi}{a} \right)^{(c-1)/2} \frac{e^{-ct/(ac)}}{t^{1-(b-1/2-1/(2c))/a}} [1 + O(t^{-1/(ac)})]. \]

□

Proof of Theorem 2.2.
We first prove that \((s_n(a, b)^c)\) is S-determinate for \(ac \leq 2\) by Carleman’s criterion, cf. [15, p. 20]. In fact, from Stirling’s formula we have

\[s_n(a, b)^c/2^n = \frac{\Gamma(na + b)/\Gamma(b)}{2^n} \sim (na/e)^{ac/2}, \quad n \to \infty, \]

so \(\sum s_n(a, b)^{-c/2^n} = \infty\) if and only if \(ac \leq 2\).

Since Carleman’s criterion is only a sufficient condition for S-determinacy, we need to prove that \(e_c(a, b)\) is S-indeterminate for \(ac > 2\). We apply the Krein criterion for S-indeterminacy of probability densities concentrated on the half-line, using a version due to H. L. Pedersen given in [9, Theorem 4]. It states that if

\[\int K \log e_c(a, b)(t^2) dt > -\infty \]

for some \(K \geq 0\), then \(\tau_c(a, b) = e_c(a, b)(t) dt\) is S-indeterminate. This version of the Krein criterion is a simplification of a stronger version given in [13]. We shall see that (29) holds for \(ac > 2\).

From Theorem 2.1 we see that (29) holds for sufficiently large \(K > 0\) if and only if

\[\int K \frac{-ct^2/(ac)}{1 + t^2} dt > -\infty, \]

and the latter holds precisely for \(ac > 2\). This shows that \(\tau_c(a, b)\) is S-indeterminate for \(ac > 2\). □

Proof of Theorem 2.3.
The proof uses the same ideas as in [7], but since the proof is quite technical, we give the full proof with the necessary modifications. Since we are studying the behaviour for \(t \to 0\), we assume that \(0 < t < 1\) so that \(\Lambda := \log(1/t) > 0\).

We will need integration along vertical lines

\[V_\alpha := \{ \alpha + iy \mid y = -\infty \ldots \infty \}, \quad \alpha \in \mathbb{R}, \]

and we can therefore express (8) as

\[e_c(a, b)(t) = \frac{t^{b/a-1}}{2\pi ita\Gamma(b)c} \int_{V_{-b}} t^{z/a}\Gamma(-z)^c dz. \]

By the functional equation for \(\Gamma\) we get

\[e_c(a, b)(t) = \frac{t^{b/a-1}}{2\pi ita\Gamma(b)c} \int_{V_{-b}} g(z)\varphi(z) dz, \]

where

\[g(z) := \frac{z^{a-1}}{\Gamma(z)}, \quad \varphi(z) := \frac{\Gamma(z)^c}{z^c}. \]
where we have defined

\[\varphi(z) := t^{1/a} \Gamma(1 - z)^c, \quad g(z) := (-z)^{-c} = \exp(-c \log(-z)). \]

Note that \(\varphi \) is holomorphic in \(\mathbb{C} \setminus [1, \infty) \), while \(g \) is holomorphic in \(\mathbb{C} \setminus [0, \infty) \).

For \(x > 0 \) we define

\[g_{\pm}(x) := \lim_{\varepsilon \to 0^\pm} g(x \pm i\varepsilon) = x^{-c} e^{\pm i\pi c}. \]

Case 1. Assume \(0 < c < 1 \).

We fix \(0 < s < 1 \), choose \(0 < \varepsilon < \min(s, b) \) and integrate \(g(z) \varphi(z) \) over the contour \(\Gamma \)

\[\{-b + iy \mid y = \infty \ldots 0\} \cup \{-b, -\varepsilon\} \cup \{\varepsilon e^{i\theta} \mid \theta = \pi \ldots 0\} \cup [\varepsilon, s] \cup \{s + iy \mid y = 0 \ldots \infty\} \]

and get 0 by the integral theorem of Cauchy. On the interval \([\varepsilon, s] \) we use \(g = g_+ \).

Similarly we get 0 by integrating \(g(z) \varphi(z) \) over the complex conjugate contour \(\overline{\Gamma} \), and now we use \(g = g_- \) on the interval \([\varepsilon, s] \).

Subtracting the second contour integral from the first leads to

\[\int_{V_s} - \int_{V_{-b}} - \int_{|z| = \varepsilon} g(z) \varphi(z) \, dz + \int_{\varepsilon}^{s} \varphi(x) (g_+(x) - g_-(x)) \, dx = 0, \]

where the integral over the circle is with positive orientation. Note that the two integrals over \([-b, -\varepsilon] \) cancel. Using that \(0 < c < 1 \) it is easy to see that the just mentioned integral converges to 0 for \(\varepsilon \to 0 \), and we finally get for \(\varepsilon \to 0 \)

\[e_{c}(a, b)(t) = \frac{e^{b/a-1}}{2\pi i a \Gamma(b)c} \int_{V_s} g(z) \varphi(z) \, dz + \frac{e^{b/a-1} \sin(\pi c)}{\pi a \Gamma(b)c} \int_{0}^{s} x^{-c} \varphi(x) \, dx := I_1 + I_2. \]

We claim that \(I_1 \) is \(o(t^{(s+b)/a-1}) \) for \(t \to 0 \). To see this we insert the parametrization of \(V_s \) and get

\[I_1 = \frac{e^{b/a-1}}{2\pi i a \Gamma(b)c} \int_{-\infty}^{\infty} (-s - iy)^{-c} e^{(s+iy)/a} \Gamma(1 - s - iy)^c \, dy \]

\[= \frac{t^{(s+b)/a-1}}{2\pi a \Gamma(b)c} \int_{-\infty}^{\infty} e^{-iy\Lambda/a} (-s - iy)^{-c} \Gamma(1 - s - iy)^c \, dy, \]

and the integral is \(o(1) \) for \(t \to 0 \) by Riemann-Lebesgue’s Lemma because \(\Lambda := \log(1/t) \to \infty \).

The substitution \(u = x\Lambda \) in the integral in the term \(I_2 \) leads to

\[I_2 = \frac{e^{b/a-1} \sin(\pi c)}{\pi a \Gamma(b)c} \Lambda^{c-1} \int_{0}^{s\Lambda} u^{-c} e^{-u/a} \Gamma(1 - u/\Lambda)^c \, du. \quad (33) \]

We split the integral in \((33) \) as

\[\int_{0}^{s\Lambda} u^{-c} e^{-u/a} [\Gamma(1 - u/\Lambda)^c - 1] \, du + \int_{0}^{\infty} u^{-c} e^{-u/a} \, du - \int_{s\Lambda}^{\infty} u^{-c} e^{-u} \, du. \quad (34) \]
Calling the three terms \(J_1, J_2, J_3 \) we have \(J_2 = a^{1-c} \Gamma(1-c) \) and
\[
J_3 = -a^{1-c} \Gamma(1-c, s\Lambda/a),
\]
where \(\Gamma(\alpha, x) \) is the incomplete Gamma function with the asymptotics
\[
\Gamma(\alpha, x) = \int_x^\infty u^{\alpha-1} e^{-u} du \sim x^{\alpha-1} e^{-x}, \quad x \to \infty,
\]
cf. [8, 8.357], hence \(J_3 = O(t s/a \Lambda^{-c}) \), \(t \to 0 \).

Using the Digamma function \(\Psi = \Gamma'/\Gamma \), we get by the mean-value theorem
\[
\Gamma(1-u/\Lambda)^c - 1 = -\frac{u}{\Lambda} \Gamma(1-\theta u/\Lambda)^c \Psi(1-\theta u/\Lambda)
\]
for some \(0 < \theta < 1 \), but this implies that
\[
|\Gamma(1-u/\Lambda)^c - 1| \leq \frac{cu}{\Lambda} M(s), \quad 0 < u < s\Lambda,
\]
where
\[
M(s) := \max\{\Gamma(x)^c|\Psi(x)| \mid 1-s \leq x \leq 1\},
\]
so \(J_1 = \mathcal{O}(\Lambda^{-1}) \) for \(t \to 0 \).

This gives
\[
I_2 = \frac{t^{b/a-1} \sin(\pi c)}{\pi a \Gamma(b)^c} \Lambda^{c-1} \left(\mathcal{O}(\Lambda^{-1}) + a^{1-c} \Gamma(1-c) + \mathcal{O}(t^{s/a} \Lambda^{-c}) \right)
\]
\[
= \frac{t^{b/a-1} \Lambda^{c-1}}{(a \Gamma(b)^c \Gamma(c)} + \mathcal{O}(t^{b/a-1} \Lambda^{-c-2}),
\]
where we have used Euler’s reflection formula for \(\Gamma \). Since finally
\[
I_1 = o(t^{(s+b)/a-1}) = \mathcal{O}(t^{b/a-1} \Lambda^{-c-2}),
\]
we see that (17) holds.

Case 2. Assume \(1 < c < 2 \).

The Gamma function decays so rapidly on vertical lines \(z = \alpha+i y, y \to \pm \infty \),
that we can integrate by parts in (32) to get
\[
ce_c(a, b)(t) = -\frac{t^{b/a-1}}{2\pi i a \Gamma(b)^c} \int_{V-1} \frac{(-z)^{-(c-1)}}{c-1} \frac{d}{dz} \left(t^{z/a} \Gamma(1-z)^c \right) dz.
\]
(35)

Defining
\[
\varphi_1(z) := \frac{d}{dz} \left(t^{z/a} \Gamma(1-z)^c \right) = t^{z/a} \Gamma(1-z)^c ((1/a) \log t - c \Psi(1-z)),
\]
and using the same contour technique as in Case 1 to the integral in (35), where
now \(0 < c-1 < 1 \), we get for \(0 < s < 1 \) fixed
\[
ce_c(a, b)(t) = -\frac{t^{b/a-1}}{a \Gamma(b)^c} \left(\tilde{I}_1 + \tilde{I}_2 \right),
\]

where
\[
\hat{I}_1 = \frac{1}{2\pi i(c-1)} \int_{V_z} (-z)^{-(c-1)} \varphi_1(z) \, dz,
\]
\[
\hat{I}_2 = \frac{\sin(\pi(c-1))}{\pi(c-1)} \int_0^s x^{-(c-1)} \varphi_1(x) \, dx.
\]

We have \(\hat{I}_1 = o(t^{s/a} \Lambda)\) for \(t \to 0\) by Riemann-Lebesgue’s Lemma, and the substitution \(u = x \Lambda\) in the second integral leads to
\[
\int_0^s x^{-(c-1)} \varphi_1(x) \, dx
\]
\[
= \Lambda^{c-2} \int_0^{s \Lambda} u^{-(c-1)} \varphi_1(u/\Lambda) \, du
\]
\[
= -(1/a)\Lambda^{c-1} \left(\int_0^{s \Lambda} u^{-(c-1)} e^{-u/a} \, du + \int_0^{s \Lambda} u^{-(c-1)} e^{-u/a} (\Gamma(1-u/\Lambda)^c - 1) \, du \right)
\]
\[
- c\Lambda^{c-2} \int_0^{s \Lambda} u^{-(c-1)} e^{-u/a} \Gamma(1-u/\Lambda)^c \Psi(1-u/\Lambda) \, du
\]
\[
= -a^{1-c} \Lambda^{c-1} \Gamma(2-c) + O(\Lambda^{c-2}).
\]

Using that
\[
\frac{\sin(\pi(c-1))}{(c-1)\pi} \left(-a^{1-c} \Lambda^{c-1} \Gamma(2-c) \right) = -a^{1-c} \frac{\Lambda^{c-1}}{\Gamma(c)}
\]
by Euler’s reflection formula, we see that (17) holds.

Case 3. Assume \(c > 2\).
We perform the change of variable \(w = (1/a)\Lambda z\) in (32) and assume that \(\Lambda > a\). This gives
\[
e_{\varepsilon}(a,b)(t) = \frac{b^{\varepsilon-1}\Lambda^{c-1}}{[a \Gamma(b)]^c} \frac{1}{2\pi i} \int_{V_{-(b/a)\Lambda}} (-w)^{-c} e^{-w} \Gamma(1-aw/\Lambda)^c \, dw.
\]

Using Cauchy’s integral theorem, we can shift the contour \(V_{-(b/a)\Lambda}\) to \(V_{-1}\) as the integrand is holomorphic in the vertical strip between both paths and exponentially small at both extremes of that vertical strip. For the holomorphic function \(h(z) = \Gamma(1-z)^c\) in the domain \(G = \mathbb{C} \setminus [1, \infty)\), which is star-shaped with respect to 0, we have
\[
h(z) = h(0) + z \int_0^1 h'(uz) \, du, \quad z \in G,
\]
hence
\[
\Gamma(1-aw/\Lambda)^c = 1 - \frac{caw}{\Lambda} \int_0^1 \Gamma(1-uw/\Lambda)^c \Psi(1-uw/\Lambda) \, du.
\]
(36)

Defining
\[
R(w) = \int_0^1 \Gamma(1-uw/\Lambda)^c \Psi(1-uw/\Lambda) \, du,
\]

we get
\[
\frac{1}{2\pi i} \int_{V_{-1}} (-w)^{-c} e^{-w} \Gamma(1 - aw/\Lambda)^c \, dw = \frac{1}{2\pi i} \int_{V_{-1}} (-w)^{-c} e^{-w} \, dw + \frac{ac/\Lambda}{2\pi i} \int_{V_{-1}} (-w)^{1-c} e^{-w} R(w) \, dw.
\]

For any \(w \in V_{-1}, 0 \leq u \leq 1 \) and for \(\Lambda \geq a \) we have that \(1 - uaw/\Lambda \) belongs to the closed vertical strip located between the vertical lines \(V_1 \) and \(V_2 \). Because \(\Gamma(z)^c \Psi(z) \) is continuous and bounded in this strip, \(R(w) \) is bounded for \(w \in V_{-1} \) by a constant independent of \(\Lambda \geq a \). Furthermore, \((-w)^{1-c} e^{-w}\) is integrable over \(V_{-1} \) because \(c > 2 \).

On the other hand, in the integral
\[
\frac{1}{2\pi i} \int_{V_{-1}} (-w)^{-c} e^{-w} \, dw
\]

the contour \(V_{-1} \) may be deformed to a Hankel contour
\[
\mathcal{H} := \{ x - i \mid x = \infty \ldots 0 \} \cup \{ e^{i\theta} \mid \theta = -\pi/2 \ldots -3\pi/2 \} \cup \{ x + i \mid x = 0 \ldots \infty \}
\]
surrounding \([0, \infty)\), and the integral over \(\mathcal{H} \) is Hankel’s integral representation of the inverse of the Gamma function:
\[
\frac{1}{2\pi i} \int_{\mathcal{H}} (-w)^{-c} e^{-w} \, dw = \frac{1}{\Gamma(c)}.
\]

Therefore, when we join everything, we obtain that for \(c > 2 \):
\[
e_c(a, b)(t) = \frac{t^{b/a-1}}{[a\Gamma(b)]^c} \frac{[\log(1/t)]^{c-1}}{\Gamma(c)} + O \left(t^{b/a-1} [\log(1/t)]^{c-2} \right), \quad t \to 0.
\]

Case 4. \(c = 1, c = 2 \).

These cases are easy since \(e_1(a, b)(t) \) is explicitly given by (3) and \(e_2(a, b)(t) \) by (15). The asymptotics of \(K_0 \) is known:
\[
K_0(t) = \log(2/t) + O(1), \quad t \to 0.
\]

\(\square\)

Remark 3.2. The behaviour of \(e_c(a, b)(t) \) for \(t \to 0 \) can be obtained from (31) using the residue theorem when \(c \) is a natural number. In fact, in this case \(\Gamma(-z)^c \) has a pole of order \(c \) at \(z = 0 \), and a shift of the contour \(V_{-1} \) to \(V_s \), where \(0 < s < 1 \), has to be compensated by a residue, which will give the behaviour for \(t \to 0 \).

When \(c \) is a natural number one can actually express \(e_c(a, b)(t) \) in terms of Meijer’s G-function:
\[
e_c(a, b)(t) = \frac{t^{b/a-1}}{a\Gamma(b)^c} G_{0,c}^{c,0} \left(t^{1/a} \mid \begin{array}{cccc}
- & \cdots & - \\
0 & & & 0
\end{array} \right),
\]

cf. Section 9.3 in [3].
4 A one parameter extension of the Gumbel distributions

The group isomorphism \(x = \log(1/t) \) of the multiplicative group \((0, \infty)\) onto the additive group \(\mathbb{R}\) of real numbers transforms the convolution semigroup \((\tau_c(a, b))_{c>0}\) into an ordinary convolution semigroup \((G_c(a, b))_{c>0}\) of probability measures on \(\mathbb{R}\) with densities given by

\[
g_c(a, b)(x) = e^{-x}e_c(a, b)(e^{-x}), \quad x \in \mathbb{R},
\]

and \(a, b, c > 0\) are arbitrary. For \(c = 1\) we have

\[
g_1(a, b)(x) = \frac{1}{a \Gamma(b)} \exp \left(-bx/a - e^{-x/a} \right), \quad x \in \mathbb{R}.
\]

This density is infinitely divisible and the uniquely determined convolution roots are given by \(37\).

The special density \(g_1(a, 1)(x)\) is the Gumbel density with scale parameter \(a > 0\), and the basic case \(a = 1\) is discussed in [7]. From the asymptotic behaviour of \(e_c(a, b)\) in Theorems 2.1 and 2.3 we can obtain the asymptotic behaviour of the convolution roots \(g_c(a, b)\):

\[
g_c(a, b)(x) = \left(2\pi\right)^{(c-1)/2} \frac{\exp \left(-ce^{-x/(ac)} \right)}{a^{2n} \Gamma(b)^{c} \exp \left(x(b - 1/2 + 1/(2c))/a \right)} \left[1 + O(\exp(x/(ac))) \right]
\]

for \(x \to -\infty\), and

\[
g_c(a, b)(x) = \frac{\exp(-bx/a)x^{c-1}}{[a \Gamma(b)]^c \Gamma(c)} + O(\exp(-bx/a)x^{c-2}), \quad x \to \infty.
\]

Theorem 4.1. All densities \(g_c(a, b)\) belong to determinate Hamburger moment problems.

Proof. We first prove that \(g_1(a, b)\) is determinate, and for this it suffices to verify that the moments

\[
s_n = \int_{-\infty}^{\infty} x^n g_1(a, b)(x) \, dx
\]

verify Carleman’s condition \(\sum_{n=0}^{\infty} s_{2n}^{-1/(2n)} = \infty\), cf. [15, p. 19]. From \(41\) we get

\[
s_{2n} = \frac{1}{a \Gamma(b)} \int_0^\infty (\log t)^{2n} t^{b/a-1} \exp(-t^{1/a}) \, dt = \frac{1}{\Gamma(b)} \int_0^\infty (a \log s)^{2n} s^{b-1} e^{-s} \, ds < \frac{a^{2n}}{\Gamma(b)} \left(\int_0^1 (\log s)^{2n} s^{b-1} \, ds + \int_1^\infty s^{2n+b-1} e^{-s} \, ds \right).
\]

By integrations by parts we see that

\[
\int_0^1 (\log s)^{2n} s^{b-1} \, ds = \frac{(2n)!}{b^{2n+1}},
\]
\[
\int_1^\infty s^{2n+b-1}e^{-s} \, ds < \Gamma(2n + b),
\]

hence
\[
s_{2n}^{1/(2n)} < \frac{a}{\Gamma(b)^{1/(2n)}} \left[\left(\frac{(2n)!}{b^{2n+1}} \right)^{1/(2n)} + \Gamma(2n + b)^{1/2n} \right],
\]

and the Carleman condition follows from Stirling’s formula, which shows that the right-hand side is bounded by \(Kn\) for sufficiently large \(K > 0\). We next use Corollary 3.3 in [2] to infer that the Carleman condition also holds for all convolution roots \(g_c(a, b)\).

Concerning the moments
\[
s_n(c) = \int_{-\infty}^\infty x^n g_c(a, b)(x) \, dx, \quad n \in \mathbb{N}_0 \tag{42}
\]
of the convolution roots we have the following result:

Theorem 4.2. The moments \(s_n(c)\) of (42) is a polynomial
\[
s_n(c) = \sum_{k=1}^n a_{n,k} c^k, \quad n \geq 1, \tag{43}
\]
of degree at most \(n\) in the variable \(c\). The coefficients \(a_{n,k}\) are given below.

Proof. From (7) we get
\[
\int_{-\infty}^\infty e^{-ixy} dG_c(a, b)(x) = \int_0^\infty t^{iy} e^{c(t)} \, dt = [\Gamma(b + iay)/\Gamma(b)]^c,
\]

which shows that the negative definite function \(\rho\) corresponding to the convolution semigroup \((G_c(a, b))_{c>0}\) is
\[
\rho(y) = \log \Gamma(b) - \log \Gamma(b + iay), \quad y \in \mathbb{R}.
\]
The derivatives of \(\rho\) can be expressed in terms of the Digamma function \(\Psi\), namely
\[
\rho^{(n+1)}(y) = -(ia)^{n+1} \Psi^{(n)}(b + iay), \quad n \in \mathbb{N}_0,
\]
so if \(n \in \mathbb{N}_0\) we define (cf. [2, Eq. (2.7)])
\[
\sigma_n := -i^{n+1} \rho^{(n+1)}(0) = (-a)^{n+1} \Psi^{(n)}(b),
\]
we find
\[
\sigma_0 = a\gamma + \frac{a}{b} - ab\sum_{k=1}^\infty \frac{1}{k(b+k)},
\]
\[
\sigma_n = a^{n+1}n! \sum_{k=0}^\infty \frac{1}{(b+k)^{n+1}} = a^{n+1}n!\zeta(n+1, b), \quad n \in \mathbb{N},
\]
where ζ(z, q) is Hurwitz’ Zeta function, cf. [8, 9.521].

According to [3] we have

\[s_1(c) = \sigma_0 c, \quad s_2(c) = \sigma_1 c + \sigma_0^2 c^2 \]

and in general \(s_n(c) \) is given by [13] where the coefficients \(a_{n,k} \) are given by the recursion

\[
a_{n+1,k+1} = \sum_{j=k}^{n} a_{j,k} \binom{n}{j} \sigma_{n-j}, \quad n \geq k \geq 0.
\]

It is easy to see that

\[
a_{n,1} = \sigma_{n-1}, \quad a_{n,n-1} = \left(\begin{array}{c} n \\ 2 \end{array}\right) \sigma_0^{n-2} \sigma_1, \quad a_{n,n} = \sigma_0^n.
\]

References

[1] R. A. Askey and R. Roy, Chapter 5, Gamma Function, NIST Handbook of Mathematical Functions, NIST and Cambridge Univ. Press, 2010.

[2] C. Berg, *On the preservation of determinacy under convolution*, Proc. Amer. Math. Soc. 93 (1985), 351–357.

[3] C. Berg, *On infinitely divisible solutions to indeterminate moment problems*. Pages 31–41 in Proceedings of the International Workshop “Special Functions”, Hong Kong, 21-25 June, 1999. Ed. C. Dunkl, M. Ismail, R. Wong, World Scientific, Singapore, 2000.

[4] C. Berg, *On powers of Stieltjes moment sequences, I*, J. Theor. Prob. 18 (2005), 871–889.

[5] C. Berg, *On powers of Stieltjes moment sequences, II*, J. Comput. Appl. Math. 199 (2007), 23–38.

[6] C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete Band 87, Springer-Verlag, Berlin-Heidelberg-New York, 1975.

[7] C. Berg and J. L. López, *Asymptotic behaviour of the Urbanik semigroup*, J. Approx. Theory 195 (2015), 109–121.

[8] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products. Sixth Edition, Academic Press, San Diego, 2000.

[9] P. Hörfelt, *The moment problem for some Wiener functionals: Corrections to previous proofs (with an appendix by H. L. Pedersen)*. J. Appl. Prob. 42 (2005), 851–860.

[10] G. D. Liu, *On powers of the Catalan number sequence*. arXiv:1711.01536

[11] J. L. López, P. Pagola and E. Pérez Sinusía, *A systematization of the saddle point method. Application to the Airy and Hankel functions*. J. Math. Anal. Appl. 354 (2009), 347–359.
[12] F. W. J. Olver, L. C. Maximon, Chapter 10, Bessel Functions, NIST Handbook of Mathematical Functions, NIST and Cambridge Univ. Press, 2010.

[13] H. L. Pedersen, *On Krein’s Theorem for indeterminacy of the classical moment problem*. J. Approx. Theory 95 (1998), 90–100.

[14] R. L. Schilling, R. Song and Z. Vondraček, Bernstein functions. Theory and applications. De Gruyter Studies in Mathematics 37, de Gruyter, Berlin 2010.

[15] J. A. Shohat and J. D. Tamarkin, The problem of moments. Mathematical Surveys No. 1. Amer. Math. Soc., Providence, R. I., 1943.

[16] Skorokhod, A.V., *Asymptotic formulas for stable distribution laws*, Dokl. Akad. Nauk SSSR 98 (1954), 731–734; English transl., Selected Transl. Math. Statist. and Probab., Vol. 1 (1961), 157–161, Amer. Math. Soc., Providence, R. I.

[17] T. J. Stieltjes, *Recherches sur les fractions continues*, Annales de la Faculté des Sciences de Toulouse, 8 (1894), 1–122; 9 (1895), 5–47. English translation in Thomas Jan Stieltjes, *Collected papers*, Vol. II, pp. 609–745. Springer-Verlag, Berlin, Heidelberg. New York, 1993.

[18] M. L. Targhetta, *On a family of indeterminate distributions*, J. Math. Anal. Appl. 147 (1990), 477–479.

[19] Shu-gwei Tyan, *The structure of Bivariate distribution functions and their relation to Markov processes*. Ph. D. Thesis, (Princeton University 1975).

[20] K. Urbanik, Functionals on transient stochastic processes with independent increments. Studia Math. 103 (1992), 299–315.

[21] V. M. Zolotarev, One-dimensional Stable Distributions, Translations of Mathematical Monographs 65, Amer. Math. Soc., Providence, R. I., 1986.

C. Berg, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
email: berg@math.ku.dk