Supporting Information

Nanostructured CuO with a thin g-C₃N₄ layer as a highly efficient photocathode for solar water splitting

Hyojung Bae, Vishal Burungale, Wonkyeong Na, Hokyun Rho, Sang-Wan Ryu, Soon Hyung Kang, and Jun-Seok Ha.

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2021
Experimental Details

1. Materials

The materials used in the experiment included copper(II) sulfate (anhydrous, Sigma Aldrich), lactic acid (85%, FCC, Sigma Aldrich), and sodium hydroxide (pellets, Sigma Aldrich). Fluorine-doped tin oxide (FTO) coated glass with a surface resistivity of 8 \(\Omega/\text{sq}\) and Cu wire with a diameter of 0.5 mm were purchased from Omniscience and Nilaco, respectively. All chemicals were of analytical grade and were used without purification.

2. \(\text{Cu}_2\text{O}\) electrodeposition

The electrodeposition of \(\text{Cu}_2\text{O}\) occurs as described by the following schematic reaction:

\[
2\text{Cu}^{2+} + 2e^- + \text{H}_2\text{O} \rightarrow \text{Cu}_2\text{O} + 2\text{H}^+ \quad (1)
\]

FTO films were cut into pieces with dimensions of 2 \(\times\) 2 cm\(^2\) and were sonicated in acetone, isopropyl alcohol (IPA), and distilled water for 15 min to remove any contaminants from their surfaces. A 0.2 M CuSO\(_4\)·5H\(_2\)O solution and a 3 M lactic acid solution were freshly prepared with distilled water. The pH values of the solutions were adjusted to just over 11 using NaOH. The experimental setup for \(\text{Cu}_2\text{O}\) electrodeposition consisted of a three-electrode configuration with a Pt wire as the cathode, Ag/AgCl in saturated KCl as the
reference electrode, and an FTO film as the anode. The applied voltage was -0.6 V and the deposition times were 30, 45, and 60 min. The thicknesses of all the Cu$_2$O films were determined using scanning electron microscopy (SEM). Fig. S1 shows that the thickness of Cu$_2$O after 30, 45, and 60 min of deposition were approximately 3.4, 5.4, and 7.6 μm, respectively. Accordingly, the deposition rate of Cu$_2$O was determined to be ~130 nm/min.

3. Photoelectrochemical (PEC) performance of Cu$_2$O depending on deposition time

Fig. S1. Cross-section images of Cu$_2$O electrodeposition with respect to deposition time.

The PEC performance was assessed using a Parstat 4000 potentiostat with a...
NaOH (1 M) solution as the electrolyte. Fig. S2 shows the chopped photocurrent density of the Cu$_2$O thin film with respect to the deposition time, where the highest photocurrent density was achieved at 45 min; however, the stability was low. Therefore, considering both efficiency and stability, we chose the Cu$_2$O thin film prepared with a deposition time of 60 min for our subsequent experiments.

4. Fabrication of the g-C$_3$N$_4$/CuO thin film

The optimized Cu$_2$O thin film was used to fabricate the g-C$_3$N$_4$/CuO thin film. First, 2 g of a urea precursor was dissolved in 10 mL of methanol, and the solution was stirred for 1 h at room temperature. Thereafter, Cu$_2$O was dipped in the solution for 30 min. The prepared samples were subsequently placed in an oven at 80 °C for 1 h. The samples were then placed in crucibles with covers, which were moved to a muffle furnace for 3 h at 520 °C. After cooling to an ambient temperature, the g-C$_3$N$_4$/CuO thin film was obtained. The process for obtaining CuO was identical to that used to prepare g-C$_3$N$_4$/CuO, except the urea

![Fabrication procedure and SEM images of CuO and g-C$_3$N$_4$/CuO thin films.](image_url)
precursor treatment was not employed. The fabrication procedure is illustrated in Fig. S3(a).

Before the thermal oxidation stage, Cu$_2$O was brown. After the Cu$_2$O film was dipped in the urea–methanol solution, transparent particles formed on its surface. After thermal oxidation, Cu$_2$O turned into black CuO. The surface morphologies of the resulting Cu$_2$O, CuO, and g-C$_3$N$_4$/CuO thin films were observed using SEM (Fig. S3(b)). The Cu$_2$O thin film had a larger grain boundary than that of the CuO thin film. Interestingly, unlike CuO, the g-C$_3$N$_4$/CuO thin film featured self-assembled regions. These regions were mainly attributed to the use of the urea precursor during thermal oxidation. Moreover, the cross-section SEM images of CuO show that the CuO nanostructure is well formed (Fig. S4).

![Cross section](image)

Fig. S4. Cross-section SEM images of the CuO thin film.
Fig. S5. Electron probe X-ray micro analyzer results for the g-C₃N₄/CuO thin film.
5. PEC properties of the g-C$_3$N$_4$/CuO thin film

H$_2$ evolution detection by gas chromatography

The experiments used to detect the hydrogen generated were carried out in a sealed cell, as shown Fig. S6. The working electrode was g-C$_3$N$_4$/CuO and platinum wire was used as the counter electrode. Inert gas (CO$_2$) was continuously flowed through the PEC cell, and a portion of the exiting gas was directed into an Micro GC Fusion (INFICON, Switzerland) with a thermal conductivity detector (TCD) and fast cycling time. The GC-TCD analyses were split into two column, MolSieve 5A and PLOT Q column. The Faradaic efficiency of the CO$_2$ reduction gaseous product is calculated as below;

\[
FE (\%) = \frac{F \times n_e \times \chi \times F_r}{I}
\]

where F is the Faraday constant (96485 C/mol), ne is the number of the electrons required for a hydrogen evolution, x is the mole fraction of the gaseous product obtained from the GC, FCO$_2$ is the molar flow rate of CO$_2$ through the cell, and I is the average current during the run. The faradic efficiency of hydrogen evolution for g-C$_3$N$_4$/CuO photocathode was found to be about 47.35%.

Fig. S6. Experimental setup with Xe lamp for water splitting using g-C$_3$N$_4$/CuO photocathode.
Arrow denote flow direction of CO\textsubscript{2} inert gas with flow rate of 20 sccm.