Dual metal zeolitic imidazolate frameworks as an organometallic polymer for effective adsorption of chlorpyrifos in aqueous solution

Abdolraouf Samadi-Maybodi†, Afshin Rahmati

Analytical Division, Faculty of Chemistry, University of Mazandaran, 47416-95447, Babolsar, Iran

ABSTRACT
In this work for the first time, green technique-solvent free synthesis Dual metallic Zeolitic imidazolate frameworks (ZIF-2M) consisting of cobalt and zinc metals (ZIF-2M) at room temperature was performed. The synthesized compound was used as an efficient adsorbent for the adsorption of chlorpyrifos. The presence of second metal led to the improving in both chemical as well as physical properties such as crystal structure, porosity, specific area and magnetic property together keeping basic structure of ZIFs. In order to comparison ZIF-2M with ZIF-8 both of them were applied for removal of chlorpyrifos in aqueous solution. Comparison of removal efficiency was investigated for both nanoparticles under optimized conditions. The main factors which can potentially effect on the adsorption process are dosage of adsorbent, pH and contact time. Those factors were considered in statistical studies. The optimum conditions were achieved by BOX-Behnken design(BBD). Results revealed that the removal efficiency of ZIF-2M (97%) is more than that of ZIF-8 (90%). Also, Langmuir and Freundlich isotherms for chlorpyrifos sorption by ZIF-2M in optimal conditions were studied and discussed.

Keywords: BOX-Behnken design(BBD), Chlorpyrifos, Dual metal ZIF, Freundlich isotherm, Langmuir isotherm, ZIF

1. Introduction
With increasing population growth, there has been a lot of progress in raising the productivity of agricultural production. Modern agriculture should protect its products from the risk of destruction by insects and worms. Hence, pesticides are widely used in the world to safe guard plants from the pests [1]. Due to the high consumption of pesticides, considerable amounts of the pesticides enter the environment (water resources and soil), consequently they have harmful effects on the humans and animals [2, 3]. Organophosphate pesticide is one of an important category of insecticides that are mostly used in agriculture. Chlorpyrifos (Fig. 1) is an insecticide which is widely used in agricultural for the struggle against pests [4]. The acute oral and dermal LD50 for chlorpyrifos in male and female rats are 270 and 2000, respectively [5, 6]. Chlorpyrifos is absorbed through the skin and causing chronic and acute poisoning [7]. The acetyl cholinesterase is an enzyme that hydrolyzes the acetylcholine to stimulate the nerves at the synapse site, the presence of such poisons causes to interact with this enzyme and consequently leads to neurological disorders [8]. As a result, it is essential to be removed the chlorpyrifos in water resources. A number of various methods, such as Fenton oxidation [9], biotreatment [10], have been reported to remove organic chemicals including pesticides. Batch processing and continuous flow absorption methods have been widely considered by employing various natural and synthetic adsorbents as high-performance processes for purification of aqueous solutions. MOFs as porous material,
which have the fastest growing knowledge amongst new organic materials, this research area is based on the combination of organic and inorganic branches. These compounds have high porosity, with large specific area. Therefore they are good material to be used them as an adsorbent [11-14].

ZIFs are a set of MOFs materials with chemical and thermal stabilities that are topologically isomorphic with zeolite and contain functionalized organic linked and transition metal ions and their properties have been studied at the presence of these special metals [15-18].

2. Experimental Section

2.1. Synthesis ZIF-8 and Dual Metal ZIF

Commercial CMC, ZIFs were synthesized with two metal ions of Co$^{2+}$ and Zn$^{2+}$, the prepared samples were characterized with several techniques such as FTIR, XRD, BET and FESEM.

To synthesis ZIF-8, 8 g of 2-methylimidazole was added in 25 mL methanol (solution A) and stirred for 7 min; in another vessel 3 gr of Zn(NO$_3$)$_2$. 6H$_2$O was dissolved in 25 mL of methanol (solution B). Solutions A and B were mixed and stirred for 7 h, then slurry was centrifuged (7,500 rpm) and white the precipitate was washed with methanol for several times and dried at 60 °C for 24 h. To synthesis ZIF-2M in the first vessel, 8 g of 2-methylimidazole was added in 25 mL methanol (solution C) and stirred for 7 min; in the second vessel 1.5 g of Zn(NO$_3$)$_2$. 6H$_2$O was dissolved in 12.5 mL of deionized water (solution D); in the another vessel 1.5 g of Co(NO$_3$)$_2$. 6H$_2$O was dissolved in 12.5 mL of deionized water (solution E). Three solutions (A, B & C) were mixed and stirred for 24 h. To synthesis ZIF-2M in the first vessel, 8 g of 2-methylimidazole was added in 25 mL methanol (solution C) and stirred for 7 min; in another vessel 1.5 g of Zn(NO$_3$)$_2$. 6H$_2$O was dissolved in 12.5 mL of deionized water (solution D); in the another vessel 1.5 g of Co(NO$_3$)$_2$. 6H$_2$O was dissolved in 12.5 mL of deionized water (solution E). Three solutions (A, B & C) were mixed and stirred for 7 h, then slurry was centrifuging (7,500 rpm) and the precipitate (light Purple) was washed with deionized water and dried at 60 °C for 24 h.

2.2. Instrument and Software

XRD patterns of ZIF and ZIF-2M was obtained by X-ray diffractometer (PHILIPS-PW1730) using Cu Kα radiation (1.5 Å) in the range of 2θ 5-80.

The infrared spectra of ZIF-2M and ZIF-8 were measured by Fourier infrared spectroscopy (AVATAR spectrophotometer) over the range 400-4000 cm$^{-1}$ at room temperature. The surface morphology and elemental composition of ZIF-2M and ZIF-8 were acquired by field emission scanning electron microscopy coupled with energy dispersive X-ray spectrometer (FESEM/EDX) model TESCAN-MIRA3.

3. Results and Discussion

3.1. Characterization

XRD patterns of ZIF-2M and ZIF-8 are presented in Fig. 2. The feature of the XRD patterns reveal both synthesized materials were well crystallized. The crystallinity of the compounds can be estimated by considering the index peak (intense peak) of the XRD pattern. As can be seen the index peak of ZIF-2M (12.7 2θ) has higher intensity than that of ZIF-8(7.3 2θ). As a result, it can be deduced that the ZIF-2M (Fig. 2(a)) was more crystalized than that of ZIF-8 (Fig. 2(b)).

FTIR spectra of ZIF-2M and ZIF-8 were recorded under the same spectral conditions in the range 400-4000 cm$^{-1}$ and presented in Fig. 3. The peaks at 2925.6 cm$^{-1}$ and 1576.87 cm$^{-1}$ are related to stretching mode of Co = C and C = N in 2-methylimidazole ring. Also, the bands from the range of 650 to 1500 cm$^{-1}$ assign to the vibrational modes of the ring for both ZIFs, the peaks at 421 cm$^{-1}$ ascribed to Zn-N stretching mode vibration and the peak at 490 cm$^{-1}$ for ZIF-2M indicates Co-N bond, confirming bonding between the metals and the organic ligand. Results are in good agreement with previous reports [24, 25].

The surface morphology and elemental analysis of ZIF-2M and ZIF-8 were also acquired by the FESEM with 10$^{-10}$ magnification (Fig. 4). As can be observed the synthesized nanoparticles are fairly uniform with polyhedral shape.
The elemental analysis for both nanoparticles was implemented by EDX and presented in Fig. S1(a) & (b) with corresponding elemental analysis (inserted Table). Fig. S1(a) clearly shows signals corresponding to Zn and Co elements confirming successful synthesis of ZIF-2M. Likewise Fig. S2(a) illustrates the EDX spectrum of ZIF-8 showing signal of Zn element.

Adsorption/desorption isotherms of ZIF-8 and ZIF-2M were performed by BET method and presented in Fig. 5. On the basis of IUPAC classification, the isotherm of adsorption is associated to the type I. The morphological parameters of the corresponding nanoparticles are listed in Table 1. As can be realized two nanoparticles have somewhat difference. The specific area of ZIF-2M is more than that of ZIF-8, also the total pore of ZIF-2M is higher than that of ZIF-8. The mean pore diameter of ZIF-2M and ZIF-8 are 2.615 and 1.982 nm, respectively. As a consequence, it can be said that the ZIF-8 is a micro porous while the ZIF-2M is somehow mesoporous material.
Abdolraouf Samadi-Maybodi and Afshin Rahmati

Table 1. Experimental Ranges and Levels in the Experimental Design

Factor	Rang and level
	-1 0 +1
A: dose of absorbent (mg)	10 15 20
B: contact time (min)	4 7 10
C: pH	3 6 9

3.2. BBD and Data Analysis

When multiple factors affect the response (here removal efficiency), BBD, which enables us to measure the impact of each of the factors, as well as the impact of interactions between the factors on the response and finding the optimized parameters [26, 27]. The objectives of this study were: (1) to optimize the numerous factors including absorbent dose, pH and contact time for chlorpyrifos removal by ZIF-2M and ZIF-8 and obtain maximum response by applying BBD under RSM; and (2) to verify the fitted models and determine the optimum operational conditions for removal efficiency and comparison of the absorbance of the toxin by each nanoparticle in optimal conditions. For each factor, 3 levels of 0, -1, +1 were selected which are listed in Table 2. Number of experiments was calculated by equation (3). On the basis of this equation, 16 experiments are needed which 12 runs are related to factorial experiments and 4 of them are belong to the central point [28].

\[N = 2K(K - 1) + C_P \]

Where, \(K \) is the factor number and \(C_P \) is the replicate number of the central point [28].

\[\text{Removal\%} = \left(\frac{C_i - C_e}{C_i} \right) \times 100 \]

Where, \(C_i \) and \(C_e \) (mg/L) are the initial and final concentrations of chlorpyrifos, respectively.

3.3. Suitability of the Model

In the BBD to be obtained a suitable model it is necessary to be found the appropriate parameters. These parameters can be estimated by ANOVA results, which were achieved by Design Expert software. The ANOVA results for removal efficiency of chlorpyrifos by using ZIF-2M and ZIF-8 are listed in Tables S3 and Table S4, respectively. From Tables S3 and S4, the model F value for sorption chlorpyrifos by ZIF-2M and ZIF-8 were 848.17 and 676.72, respectively. Probability, P value of < 0.0001 for two models indicates that the model is significant. Also for two models The F value less than 0.0001 indicates that the parameter and its interactions with the other parameters is important.

According to above results, it can be deduced that factors of pH and absorbent dosage are very important factors for adsorption of chlorpyrifos by ZIF-8 and ZIF-2M. The coefficient of determination (R²) values for ZIF-2M and ZIF-8 are 0.99. The normal Plot diagrams (Fig. S2) indicates there is a good linear correlation between the experiments and the predicted data. Lack of fit data is essential to check the compatibility of a model for predicting the optimum response. In this case, for two models the F-value for lack of fit is very low and indicating it is not significant relative to the pure error. To detect the effects of uncontrollable variables on the response during the experiments the residual curves were investigated. Corresponding curve for the removal of chlorpyrifos is illustrated in Figure S3. As can be observed, there is no meaningful error in the removal efficiency chlorpyrifos. This graph also suggests that there are no systematic errors in the response to the experiments. As a result, it can be concluded that the predicted models are suitable for optimization parameters in adsorption process of the chlorpyrifos by both synthesized nanoparticles.

3.4. Response Surface

3-factor and 3-level BBD methods were selected to evaluate the interaction effects of three independent variables including absorbent dosage, pH and contact time on the chlorpyrifos removal efficiency. The relationships between the independent variables

Fig. 5. N₂ adsorption/desorption isotherms: (a) ZIF-2M (b) ZIF-8.
and response values can be deduced in 3D response (Fig. 6).

On the basis of the results, it can be concluded that the behavior of sorption chlorpyrifos on both of adsorbent (ZIF-2M and ZIF-8) are similar for all of circumstances. Results indicated that the pH close to 7.0 is an optimum value for this proposes. It can be said that electrostatic interaction is governing between adsorbate (chlorpyrifos) and both adsorbents. The chlorpyrifos molecule as no ionic form that means neither cationic from in the acidic media (pH < 7) and nor in basic media (pH > 7) therefore it can be said that there is no dipole-dipole interaction between the adsorbent (ZIFs) and the adsorbate (chlorpyrifos). It would be mentioned that the zeta potential of both ZIFs are about 9.8 [29]. Here we can say the π-π interaction is dominated between the adsorbent and the adsorbate. This is justified by considering the structure of chlorpyrifos which is an aromatic molecule and the other hand the ZIF-2M and ZIF-8 have the imidazolate molecule in their structures. As a result it can be concluded the π-π interaction is dominated interaction.

Another effective factor is absorbent dosage that was studied at three levels of 10, 15 and 20mgr. As can be observed, for both nanoparticles the removal efficiency increases with increasing dose of absorbent, since, the available sites are raised. Contact time also is another factor that can influence on the response, obviously by increasing contact time the removal percent is increased however, after a given time reach it has no impact. In this experiment, the optimized values of absorbent dosage, pH and contact time were obtained 17.85 mgr, 6.33 and 7min for ZIF-2M and those for ZIF-8, 19.5 mgr, 6.8 and 10 min

3.5. Study of Removal Efficiency at Optimal Levels

The removal efficiency of chlorpyrifos using two nanoparticles of ZIF-2M and ZIF-8 was evaluated at optimal levels. The experiments were performed under optimal condition as expressed above.

3.6. Adsorption Isotherm

According to the above results, series experiments were performed at optimal condition (pH = 6.33, absorbent dose = 17.85 mg, contact time = 7 min) with different initial chlorpyrifos concentrations.
The plot of C_0/q_e versus C_e (Langmuir isotherm) and log$_q_e$ against log$_C_e$ (Freundlich) were constructed by extracting data adsorption. The values of parameters of q_{max}, K_L, K_F, and n were calculated and listed in Table S4. By comparison and considering of data extracted from the plot of Langmuir and Freundlich models (Fig. S4(a) & (b)), it can be deduced that the former model is more suitable model than that the latter. Since the determination coefficient for Langmuir ($R^2 = 0. 988$) has higher value than that Freundlich model. This explains that the adsorption process is dominated by single layer adsorption.

4. Conclusions

Free solvent synthesis of dual metal ZIF (ZIF-2M) nanoparticle was performed containing Zn and Co metals. ZIF-2M was used to examine for removal of chlorpyrifos as an organophosphate poisoning. Experiment conditions were optimized assessing BBD. Removal efficiency of chlorpyrifos with ZIF-2M and ZIF-8 were examined and results revealed that the ZIF-2M has more removal efficiency than that of ZIF-8. Also the removal of chlorpyrifos can be taken place in neutral medium ($pH > 6.5$). Studies of isotherm models indicated that the adsorption process is preferably occurred by single layer adsorption (Langmuir model). As a conclusion, dual metal ZIF is good adsorbent with improved chemical and physical properties with keeping the basic structure of ZIFs.

Author Contributions

A.R. (Ph.D. student) conducted all the experiments, formal analysis and writing original draft. A.S.M. (Professor) did conceptualization, project administration, editing manuscript and supervision.

References

1. Sumon KA, SahaS, Van Den Brink PJ, Peeters ET, Bosma RH, Rashid H. Acute toxicity of chlorpyrifos to embryo and larvae of banded gourami Trichogaster fasciata. J. Environ. Sci. Health, Part B. 2017;52:92-96.
2. Sharam MS, Miles JRW, Harris CR, McEwen FL. Behavior of 12 insecticides in soil and aqueous suspensions of soil and sediment. Water Res. 1980;14:1095-1100.
3. Liu J, Zhang X, Yang M, Hu M, Zhong G. Toxicity assessment of chlorpyrifos-degrading fungal bio-composites and their environmental risks. Sci. Rep. 2018;8:2152.
4. Samadi MT, Khodadadi A, Rahmani AR, Allahresani A, Saghif MH. Comparison of the efficiency of simultaneous application of UV/O3 for the removal of organophosphorus and carbamatic pesticides in aqueous solutions. J. Water Wastewater. 2010;73:69-75.
5. Timchalk C, Nolan RJ, Mendrala AL, Dittenber DA, Brzak KA, Mattson JL. A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphorus insecticide chlorpyrifos in rats and humans. Toxicol. Sci. 2002;66:34-53.
6. Berg GL, Sine C, Meister RT, Poplyk J. Farm chemicals hand book. Willoughby, OH: Meister Publishing Company. 1986.
7. Bagheri H, Ayazi Z, Aghakhanian A. A novel needle trap sorbent based on carbon nanotube-sol-gel for microextraction of poly-cyclic aromatic hydrocarbons from aquatic media. Anal. Chim. Acta. 2011;683:212-220.
8. Garfitt SJ, Jones K, Mason HJ, Cocker J. Exposure to the organophosphate diazinon: Data from a human volunteer study with oral and dermal doses. Toxicol. Lett. 2002;134:105-113.
9. Wang Q, Lemley AT. Oxidation of diazinon by anodic Fenton treatment. Water Res. 2002;36:3237-3244.
10. Liu YH, Liu Y, Chen ZS, Lian J, Huang X, Chung YC. Purification and characterization of a novel organophosphates pesticide hydrolase from Penicillium lilacinum BP303. Enzyme Microb. Technol. 2004:34:297-303.
11. Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. PNAS. 2006;103:10186-10191.
12. Li Y, Zhou K, He M, Yao J. Synthesis of ZIF-8 and ZIF-67 using mixed-base and their dye adsorption. Micropor. Mesopor. Mat. 2016;234:287-292.
13. Javida N, Nasirib A, Malakootian M. Removal of nonylphenol from aqueous solutions using carbonized date pits modified with ZnO nanoparticles. Desal. Water Treat. 2019:141:140-148.
14. Malakootian M, Nasiri A, Mahdizadeh H. Preparation of CoFe2O4/activated carbon@ chitosan as a new magnetic nanobiocomposite for adsorption of ciprofloxacin in aqueous solutions. Water Sci. Technol. 2018;78:2158-2170.
15. Cui Y, Li B, He H, Zhou W, Chen B, Qian G. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res. 2016;49:483-493.
16. Abdi J, Vossoughi M, Mahmoodi N M, Alemzadeh I. Synthesis of amine-modified zeolitic imidazolate framework-8, ultra-sound-assisted dye removal and modeling. Ultrason. sonochem. 2017;39:550-564.
17. Pan Y, Jia C, Liu B, Zhang Z, et al. Separation of methanol-ethylene gas mixtures efficiently by using ZIF-67/water-ethylene glycol slurry. Fluid Ph. Equilibria. 2016;414:14-22.
18. Amirilargani M, Sadatnia B. Poly(vinyl alcohol)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of isopropanol. J. Membrane Sci. 2014;469:1-10.
19. Faraji M, Ebrahimia A, Nourmoradi H, et al. Optimizing the removal of humic acid with polyaluminum chloride and polyaluminum ferric chloride as green coagulants using response surface methodology. Desalin. Water Treat. 2019;139:297-304.
20. Khoshnamvand N, Mostafapour FK, Mohammadi A, Faraji M. Response surface methodology (RSM) modeling to improve removal of ciprofloxacin from aqueous solutions in photocatalytic process using copper oxide nanoparticles (CuO/UV). AMB Express. 2018;8:48.
21. Dehghani MH, Faraji M, Mohammadi A, Kamani H. Optimization of Fluoride adsorption onto natural and modified pumice using response surface methodology: isotherm, kinetic and thermodynamic studies. Korean J. Chem. Eng. 2017;34:454-462.
22. Lockridge O, Verdier LS, Schogfer LM. Half-life of chlorpyrifos
oxon and other organophosphorus esters in aqueous solution. Chem.-Bio. Interact. 2019;311:108788.
23. Jiang C, Fu B, Cai H, Cai T. Efficient adsorptive removal of Congo red from aqueous solution by synthesized zeolitic imidazolate framework-8. Chem. Spec. Bioavailab. 2016;28:199-208.
24. Zhou X, Zhang HP, Wang GY, Yao ZG, Tang YR, Zheng SS. Zeolitic imidazolate framework as efficient heterogeneous catalyst for the synthesis of ethyl methyl carbonate. J. Mol. Catal. A: Chem. 2013;366:43-47.
25. Cravillon J, Nayuk R, Springer S, Feldhoff A, Huber K, Wiebcke M. Controlling zeolitic imidazolate framework nano- and microcrystal formation: insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011;23:2130-2141.
26. Kousha M, Daneshvar E, Dopeikar H, Taghavi D, Bhatnagar A. Box-Behnken design optimization of Acid Black 1 dye biosorption by different brown macroalgae. Chem. Eng. J. 2012;179:158-168.
27. De Luna MDG, Flores ED, Genuino DAD, Futalan CM, Wan MW. Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls-Optimization, isotherm and kinetic studies. J. Taiwan Inst. Chem. E. 2013;44:646-653.
28. Babazadeh M, Hosseinzadeh-Khanmiri R, Abolhasani J, Ghorbani-Kalhor E, Hassanpour A. Solid phase extraction of heavy metal ions from agricultural samples with the aid of a novel functionalized magnetic metal-organic framework. Rsc Adv. 2015;5:19884-19892.
29. Wu CS, Xiong ZH, Li C, Zhang JM. Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution. RSC Advances. 2015;5:82127-82137.