Circadian Transcription Contributes to Core Period Determination in Drosophila

Sebastian Kadener1,3, Jerome S. Menet2,3, Rebecca Schoer1,3*, Michael Rosbash1,2,3*

1 Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America, 2 Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts, United States of America, 3 National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts, United States of America.

The Clock–Cycle (CLK–CYC) heterodimer constitutes a key circadian transcription complex in Drosophila. CYC has a DNA-binding domain but lacks an activation domain. Previous experiments also indicate that most of the transcriptional activity of CLK–CYC derives from the glutamine-rich region of its partner CLK. To address the role of transcription in core circadian timekeeping, we have analyzed the effects of a CYC–viral protein 16 (VP16) fusion protein in the Drosophila system. The addition of this potent and well-studied viral transcriptional activator (VP16) to CYC imparts to the CLK–CYC–VP16 complex strongly enhanced transcriptional activity relative to that of CLK–CYC. This increase is manifested in flies expressing CYC–VP16 as well as in S2 cells. These flies also have increased levels of CLK–CYC direct target gene mRNAs as well as a short period, implicating circadian transcription in period determination. A more detailed examination of reporter gene expression in CYC–VP16–expressing flies suggests that the short period is due at least in part to a more rapid transcriptional phase. Importantly, the behavioral effects require a period (per) promoter and are therefore unlikely to be merely a consequence of generally higher PER levels. This indicates that the CLK–CYC–VP16 behavioral effects are a consequence of increased per transcription. All of this also suggests that the timing of transcriptional activation and not the activation itself is the key event responsible for the behavioral effects observed in CYC–VP16–expressing flies. The results taken together indicate that circadian transcription contributes to core circadian function in Drosophila.

Introduction

Circadian rhythms are widespread in nature and help to maintain internal temporal order as well as anticipate daily environmental changes [1]. They use self-sustained biochemical oscillators that generate oscillations at the molecular, physiological, and behavioral levels [2,3].

Results over the past 15 years have highlighted the importance of transcription to circadian biology [4]. In eukaryotic systems, a large fraction of mRNAs, perhaps 10% or more, undergoes circadian transcription (e.g., [5,6]). Circadian transcriptional oscillations contribute to myriad physiological and behavioral outputs in diverse tissues of eukaryotic organisms (e.g., [5,7–10]). Recent data from humans, mice, and flies indicate that numerous kinases, and there is similar evidence in mammals. In Drosophila, genetic evidence indicates that major alterations in circadian period result from mutations of key kinase genes, and there is similar evidence in mammals. For example, the key Drosophila clock gene doubletime (dbt) transcriptional feedback loop of flies and mammals. There are also subsidiary loops involving additional repressors and activators, but genetic evidence indicates that they are less important to circadian timekeeping [29–31]. The circadian transcriptional feedback loop was originally proposed in flies and based on the circadian oscillation of per transcription as well as the role of PER in the parallel timing of behavioral and transcriptional oscillations [25,29]. Subsequent evidence made a direct role of PER in transcriptional repression more likely [18,24,32–34].

There is also an important contribution of post-transcriptional and post-translational regulation to circadian timekeeping in both the fly and the mammalian systems. In Drosophila, genetic evidence indicates that major alterations in circadian period result from mutations of key kinase genes, and there is similar evidence in mammals. For example, the key Drosophila clock gene doubletime (dbt)
Author Summary

The existence of circadian clocks, which allow organisms to predict daily changes in their environments, have been recognized for centuries, yet only recently has the molecular machinery responsible for their generation been uncovered. The current model in animals posits that interlocked feedback loops of transcription–translation produce these 24-hour rhythms. In fruit flies, the transcription loop contains a key activator complex, composed of the transcription factors Clock and Cycle. This CLK-CYC complex stimulates the synthesis of repressor proteins like Period and Timeless, which repress the activator complex. The synthesis–repression cycle takes precisely 24 hours under environmental conditions that influence the circadian period. An almost identical process relies on the ortholog proteins CLK-BMAL in mammals. Recent findings have challenged the transcription-translation feedback model and suggest that circadian transcription is an output process and that the post-translational modification of clock proteins is the real central pacemaker mechanism. In the present study, we have manipulated the levels and strength of the CLK-CYC complex. The results demonstrate that its activity is vital for proper period determination and thus indicate that the transcriptional feedback loop is part of the core circadian mechanism.

To pursue the contribution of transcription to core circadian timekeeping in *Drosophila*, we have analyzed the in vivo effects of a CYC–viral protein 16 (VP16) fusion gene. VP16 is a potent transcriptional activator derived from Herpes virus [60] and imparts to the CLK–CYC-VP16 complex enhanced transcriptional activity relative to the normal CLK–CYC heterodimeric complex. This is based on activity in S2 cells as well as flies expressing CYC-VP16. These flies also have increased levels of CLK–CYC direct target gene mRNAs, including those from *per* and *tim*. Moreover, the CYC-VP16-expressing flies have short periods, implicating circadian transcription in period determination. Taken together with more detailed molecular analyses of these flies as well as behavioral assays of strains missing the normal *per* promoter, we suggest that CLK–CYC-mediated transcription of the *per* gene is important for period determination.

Results

To manipulate the transcriptional activation potential of the CLK–CYC heterodimer, we generated a fusion protein between the CYC protein and the strong and well-characterized viral transcriptional activator VP16 (Figure 1A) [60]. Current indications are that all activator activity of the CLK–CYC heterodimer normally comes from the polyglutamine region of CLK (Figure 1A) [18], so we considered that VP16 might increase the activity of a CLK–CYC-VP16 heterodimer. As an initial assay, DNA encoding the fusion protein was transfected into S2 cells along with a standard *timeless* promoter-luciferase (*tim-luc*) reporter gene [18,61], which responds well to CLK–CYC activity.

Transfection of the fusion protein gene has little or no activity (Figure 1B). This is expected and reflects the absence of its partner CLK from S2 cells [18]. In contrast, transfection of a CLK gene alone partners with endogenous CYC and potently increases reporter gene activity (Figure 1B), identically to what has been reported previously [18]. Cotransfection of CLK with CYC-VP16 increases activity a further 5-fold (Figure 1B), which presumably reflects the transcriptional activation potential of VP16. Importantly, cotransfection of CLK with CYC or with another VP16 fusion protein (GAL4-VP16) has no effect over transfection with CLK alone (Figure S1A and unpublished data). An assay of endogenous *tim* mRNA expression by real-time PCR and TIM protein by western blotting gives rise to similar results: CYC-VP16 alone has no activity, whereas CLK plus CYC-VP16 cotransfection has considerably more activity than CLK alone (Figure 1C and Figure S1B). Moreover, coexpression of CYC-VP16 rescues activity of the truncated CLKJrk protein in this tissue culture assay system (Figure S1C); CLKJrk is missing most of its activation domain [17].

CLK-driven transcription is inhibited by double-stranded RNAs (dsRNAs) against the 5′ and 3′ untranslated regions (UTRs) of the endogenous *cry* mRNA present in S2 cells (Figure 1B and 1C). In contrast, activity due to cotransfection of CLK and CYC-VP16 is insensitive to incubation with the same dsRNAs (Figure 1B and 1C). This is because the CYC-VP16 expression plasmid does not carry the *cry* UTRs. The result indicates that most CLK activity is derived from the CLK–CYC-VP16 heterodimer. Neither CLK–CYC nor CLK–CYC-VP16 has activity on a *tim-luc* reporter with mutant E-boxes [61], indicating that the CLK–CYC-VP16 fusion has DNA-binding properties similar to wild-type CLK–CYC (Figure 1B).
Because there is no detectable endogenous per expression in S2 cells, even after clk expression [62], the higher target gene mRNA levels are likely the consequence of a stronger transcriptional activation independent of any possible weaker PER-mediated repression on CYC-VP16.

Cotransfection with per cDNA inhibits CLK–CYC-VP16 activity, similar to what is observed for CLK–CYC activity (Figure 1D) [18,34]. Given the entirely different nature of the VP16 activator compared to the polyglutamine region of CLK and the 5-fold increase in activity, this suggests that per repression involves a similar inhibition of CLK–CYC and CLK–CYC-VP16, probably an inhibition of DNA binding [54]. The similar properties of the two heterodimers are despite the much more potent activity of the former.

To generate flies with cyc-vp16 expression in circadian cells, we created vas-cyc-vp16 transgenic flies and crossed them to tim-gal4 driver lines. We then assayed circadian locomotor behavior in these tim-cyc-vp16 flies (Figure 2A and 2B, top). They were robustly rhythmic with ~22-h periods, approximately 2 h shorter than those of wild-type flies. Figure 2C summarizes comparable period shortening by vas-cyc-vp16 combined with a highly spatially restricted circadian driver (pdf-gal4) and with two broader expression drivers (actin-gal4 and the pan-neuronal elav-gal4). This indicates that the ~22-h period is not an idiosyncrasy of the tim-gal4 driver. Moreover, the short period was not simply caused by cyc overexpression. This is because elav-cyc flies (vas-cyc rather than vas-cyc-vp16 in combination with the same elav-gal4 driver) have a wild-type–like period (Figure 2C, bottom). We thus attribute the period-shortening effect to increased transcriptional activity from the CLK–CYC-VP16 heterodimer within circadian cells.

Consistent with this interpretation is the period of tim-cyc-vp16 in combination with the classic per allele; these flies have ~17-h periods, 2 h shorter than the canonical per19–20 h phenotype (Figure 2B, bottom). The additive nature of tim-cyc-vp16 and per suggests that they shorten period in independent ways, the former by increasing transcription of CLK–CYC direct target genes and the latter by causing more rapid PER turnover [50].

To further study the period-shortening effect of tim-cyc-vp16, we characterized the molecular clock of these flies. To this end, we added a tim-luc or a per-luc reporter gene to the tim-cyc-vp16 strain (generating tim-luc-cyc-vp16 flies or per-luc-cyc-vp16 flies).

The expression of luciferase is robustly rhythmic in tim-luc-cyc-vp16 flies and isolated wings. The patterns are similar to those of wild-type tim-luc flies, but luciferase levels were about 2–3 times higher (Figure 3A for isolated wings and Figure S2A for intact flies). This is a comparable activity...
difference to what was observed above between CLK–CYC and CLK–CYC-VP16 in S2 cells (Figure 1B and 1C). Robust cycling and an even greater activity difference are observed with the per-luc reporter gene (Figure 3B).

Normalization to the first peak of the oscillations in Figure 3B and 3A allowed a useful comparison between the controls and the per-luc-cyc-VP16 and the tim-luc-cyc-VP16 profiles (Figure 3C and Figure S2B). The normalized pairs are very similar, but the CYC-VP16 curves are phase-advanced as they decrease more rapidly and then increase more rapidly during the next cycle (Figure 3C and Figure S2B). The peaks remain coincident, almost certainly reflecting entrainment to the superimposed 24-h LD cycle. Careful observation of the tim-luc reporter in constant darkness (DD) conditions reveals shorter circadian period in CYC-VP16 flies, in parallel with the behavior (Figure S2B). The damping oscillations of the wing transcriptional reporters in DD (always true in our hands) precluded a precise period determination.

To compare these reporter effects with those on bona-fide circadian mRNAs, microarray assays were performed on tim-cyc-vp16 head RNA from Zeitgeber time 15 (ZT15) and ZT3 (the timepoints when the CLK target genes have the peak and trough mRNA amounts in wild-type flies) and compared to the same timepoints from wild-type flies (Figure 4A and 4B). CLK–CYC direct target gene (tim, per, vrille (vri), and par domain protein 1 (pdp1)) mRNA peak levels increase 2–3-fold, and an increase is also observed in trough levels (Figure 4A). The increase in trough levels suggests that they normally result from residual CLK–CYC activity that resists repression.

Figure 2. Expression of cyc-vp16 in Pacemaker Neurons Shortens the Period of Behavioral Rhythms
(A) Comparison of circadian locomotor behavior of control flies (uas-cyc-vp16/+), top tracing) and flies expressing cyc-vp16 under the control of the tim driver (tim-gal4/uas-cyc-vp16, middle tracing). In each case, the behavior is shown in average actograms. The arrow indicates the phase of evening anticipation for each fly strain. The light timing is indicated by alternating white and gray background areas, with white representing the illuminated interval of the LD condition (ZT0–12) and gray representing the dark period (ZT12–24 and DD period). To facilitate the identification of peaks in the control and tim-cyc-vp16 datasets the data were smoothed with a low-pass filter set with a cutoff of 12 h (bottom tracing).
(B) Period length of fly strains overexpressing uas-cyc-vp16 using the tim-gal4 driver and control flies.
(C) Behavioral analysis of fly strains expressing the uas-cyc-vp16 or uas-cyc transgenes in combination with different gal4 drivers.

Strain	% Rhythmic	Period (n)
tim-gal4/Cyo	94%	24.02±0.05 (46)
tim-gal4/UAS-CYCVP16	90%	22.04±0.04 (82)
per²; tim-gal4	92%	19.08±0.14 (11)
per²; tim-gal4/UAS-CYC-VP16	73%	17.26±0.25 (8)

Strain	% Rhythmic	Period (n)
actin-gal4/Cyo	82%	23.2±0.13 (14)
actin-gal4/UAS-CYC-VP16	82%	21.4±0.19 (9)
pdf-gal4/Cyo	92%	24.4±0.08 (11)
pdf-gal4/UAS-CYC-VP16	84%	22.4±0.1 (21)
elav-gal4; Cyci/+	100%	24.0±0.05 (37)
elav-gal4; UAS-CYC-VP16	91%	22.2±0.04 (96)
UAS-CYCHA	76%	23.6±0.13 (11)
elav-gal4; UAS-CYCHA	80%	23.3±0.07 (8)
and/or that there is a minority of CLK–CYC-expressing cells that lack a robust circadian repression system. The microarray results are qualitatively similar although quantitatively less striking than the reporter gene assays shown above (Figure 3A and 3B). This may reflect the longer half-lives of the CLK–CYC direct target gene mRNAs relative to the luciferase reporter mRNAs or another level of post-transcriptional regulation. It is also possible that the reporter genes have a larger transcriptional response to CYC-VP16 than the CLK–CYC direct target genes.

In contrast to these direct target genes, maximal values for cycling mRNAs that peak at the opposite time of day are not increased in tim-cyc-vp16 flies (Figure 4B). Trough levels are decreased, however, suggesting that this might reflect an increase in the level of a transcriptional repressor protein, itself the product of a CLK–CYC direct target gene (e.g., VRI [29,30]).

We also tested whether the increase in CLK-mediated transcription was predominantly due to impaired per repression. To this end, we measured the effect of the CYC-VP16 protein in a per null mutant (per^{null}) background [63]. The tim and vri mRNA levels are increased in per^{null} flies, comparable to the increase in the S2 cell (also without PER) experiments (Figure 1B). This indicates that transcription is increased independent of any more subtle effects on per repression.

Although we attribute the shorter period of the cyc-vp16 flies to a direct enhancement of transcription, it is still possible that the VP16 activation domain has a subtle effect on some other aspect of repression, which then only indirectly enhances transcription. Therefore we decided to assay the periods of transgenic flies carrying increasing numbers of copies of the Clk genomic region. Introduction of additional copies of the Clk transgene shortens circadian period and increases CLK–CYC-mediated transcription similar to the effects of the cyc-vp16 transgene (Figure 4A and 4B).

Homozygous ClkAR flies have significantly diminished levels of functional CLK and very low amplitude transcriptional oscillations of core clock genes [64]. As a consequence, these mutant flies do not have circadian activity patterns in DD or even in standard LD conditions. In addition they do not show the typical burst of activity at the beginning of the light cycle present in wild-type flies (lights-on startle response). Because CYC-VP16 increases CLK-driven transcription, we tested it
Figure 4. mRNA Levels of Direct CLK Targets Are Selectively Affected in tim-cyc-vp16 Flies

(A) mRNA expression value for control (uas-cyc-vp16/+, white) and tim-cyc-vp16 flies (black) for two timepoints (ZT3 and ZT15) of four direct Clk targets: tim, vri, per, and Pdp1. The data were obtained by microarray (n = 2 for each genotype and timepoint). The data were normalized to the maximum value obtained in the control flies. Error bars indicate standard error of the mean.

(B) mRNA expression value for control (uas-cyc-vp16/+, red) and tim-cyc-vp16 flies (blue) for two timepoints (ZT3 and ZT15) of four genes (Clk, cry, Ugt35B, and CG9649) that are not direct CLK targets and that oscillate in control flies with opposite phase than the genes shown in (A). The data were obtained by microarray (n = 2 for each genotype and timepoint). The data were normalized to the maximum value obtained in the control flies. Error bars indicate standard error of the mean.

(C) Effect of cyc-vp16 in per01 mutants flies measured by quantitative PCR. Un-entrained per01 or per01; tim-gal4; uas-cyc-vp16 flies were harvested. RNA was extracted from fly heads, and quantitative PCR was performed. Expression values for each transcript and timepoint were generated by dividing the vri or tim mRNA signal by the expression value for a control non-circadian mRNA (rp49). Expression values are reported as a ratio of tim or vri over rp49 expression. We assigned a value of 1 to the ratio obtained for control flies and proceed as in (A). The data are the average of the normalized vri or tim expression values for three independent RNA samples. The error bars indicate standard error of the mean.

doi:10.1371/journal.pbio.0060119.g004
for rescue of circadian activity in the ClkAR mutant background. Although introduction of CYC-VP16 into the ClkAR background failed to rescue circadian locomotor activity rhythms in DD conditions, most of the abnormal features of LD behavior conditions were restored: this included the presence of behavioral cycles (higher diurnal than night activity) as well as the lights-on startle response (Figure 6).

The effect of CYC-VP16 on the transcriptional profiles of the reporters and CLK–CYC direct target mRNAs suggested that the period-shortening effect might be simply due to a CYC-VP16-mediated change in the timing or level of per transcription. To test this possibility, we assayed the period of tim-cyc-vp16 flies in the context of uas-per (i.e., a period gene that can be driven constitutively by GAL4 but not by CLK–CYC or by CLK–CYC-VP16). Importantly, Sehgal and co-workers [58] have shown previously that uas-per can rescue the arrhythmic per01 genotype (per01; elav-gal4; uas-per), and we verified this finding (Figure 7A). Importantly, the elav-gal4 driver in combination with uas-cyc-VP16 (and a wild-type per gene) also manifests the ∼2-h period shortening as shown above (Figure 2C). However, these two transgenes in combination with the uas-per and per01 only shorten circadian period by 20 min (Figure 7A–7C, and Figure S3B). This indicates that an increase in the levels and/or timing of per transcription is a major contributor to CLK–CYC-VP16 period shortening. We also note the broad distribution of individual fly periods from genotypes containing the uas-per; per01 combination compared to the much tighter distribution in genotypes containing a proper per promoter (Figure 7C and Figure S3C); this is an additional indication that per transcription contributes to period determination (see Discussion section).

This role of per transcription is consistent with previous reports showing a relationship between per gene dose and behavioral period: more per genes cause shorter periods [65–67]. To determine if other ways of increasing per transcription also give rise to period shortening, we compared behavioral period between genotypes with one or two doses of uas-per (Figure 7A and Figure S3C). Rather than shortening period, however, the extra copy of uas-per slightly lengthens it. This is consistent with previous reports showing that over-expression of a uas-per transgene does not shorten period [44,58,68]. Taken together with other data shown above, we conclude that the short period of tim-cyc-VP16 requires not just increased levels of per mRNA but proper timing of the per transcriptional increase.

Discussion

To address the role of transcription in core circadian timekeeping in the Drosophila system, we have analyzed the effects of a cyc-VP16 fusion gene in S2 cells as well as in flies. VP16 is a potent and well-studied transcriptional activator, which imparts to the CLK–CYC-VP16 heterodimer enhanced activity relative to that of the normal CLK–CYC complex. This increased activity is manifested with reporter genes, and transgenic flies also have increased levels of CLK–CYC direct
target gene mRNAs, including those from \textit{per} and \textit{tim}. Importantly, the \textit{cyc-\textit{vp16}}-expressing flies have a short period, implicating circadian transcription in period determination. As this short period and proper period control more generally require a \textit{per} promoter, we suggest that CLK–CYC-VP16 drives increased \textit{per} transcription, which leads to more rapid accumulation of PER and a consequent advanced phase of \textit{per} repression. This is also consistent with reporter gene profiles in \textit{cyc-\textit{vp16}}-expressing flies. The results indicate that circadian transcription contributes to core period determination in \textit{Drosophila}.

This conclusion fits with several other pieces of data from the \textit{Drosophila} system. First, recent studies have identified the transcriptional repressor–encoding gene \textit{clockwork orange} (\textit{cwo}) as a clock gene [62,69,70]. The protein product synergizes with PER and aids the repression of CLK–CVC direct target genes. Importantly, mutations in \textit{cwo} or changes in \textit{cwo} expression cause substantial period changes. Second, an increase in \textit{per} gene dose leads to flies with short periods. There is a decrease of approximately 0.5 h for each additional gene copy up to about four copies, which have a \(~22\text{-h}\) period (e.g., [65]). Third, a hemizygous deletion that includes \textit{clock} lengthens circadian period by about 0.5 h [17]. Although this deletion removes more DNA than just \textit{clk} (including the adjacent clock gene \textit{pdp1}), our results indicate that additional copies of the \textit{clk} locus indeed shorten the circadian period of otherwise wild-type flies (Figure 5). All of these observations are qualitatively similar to the increase in transcription and period shortening caused by expression of \textit{cyc-\textit{vp16}} in flies.

Because of the molecular analyses (Figure 3 and Figure S2), we suspect that it is the timing of \textit{per} transcription rather than a simple increase in \textit{per} mRNA levels that causes the period shortening by expression of \textit{cyc-\textit{vp16}}. As the reporter genes contain proper \textit{per} and \textit{tim} promoters, their profiles indicate

\begin{figure}[ht]
\centering
\includegraphics[width=\textwidth]{figure6.png}
\caption{Expression of \textit{cyc-\textit{vp16}} Partially Rescues LD Behavior in \textit{ClkAR} Flies}
\end{figure}
that *per* and *tim* transcription decreases more steeply and then increases more steeply in the *cyc-VP16* flies (Figure 3C and Figure S2B). The steeper decrease presumably reflects a faster accumulation of active PER repressor, and the steeper increase reflects the enhanced potency of CLK–CYC-VP16.

In addition, we note that an increase in *per* dose with a *uas-per* transgene slightly increases rather than decreases period (Figure 7A and Figure S3C) [44,58]. This genetic requirement for the *per* promoter also emphasizes the contribution of proper transcriptional regulation to period determination.
The increased transcriptional potency of CLK–CYC-VP16 is unlikely to be a consequence of impaired PER-mediated repression, due in turn to some structurally anomalous feature of the artificial fusion protein. This is because the stronger activation of CLK direct targets by the CLK–CYC-VP16 dimer is apparent even in the absence of PER (Figures 4C and 4D).

Shorter periods due to more potent transcription is also the conclusion of Figure 5, which shows that increasing clk gene dose (an independent and “more natural” way to increase CLK-mediated transcription) leads to molecular and behavioral changes that resemble those observed in tim-cyc-VP16 flies. Finally, cyc-VP16 expression rescues several aspects of the ClkAR phenotype (Figure 6). This suggests that these features are due to low direct target mRNA levels, which are increased by the more potent CLK–CYC-VP16 complex. The failure to rescue the behavioral arrhythmity of homozygous ClkAR flies may reflect a requirement for minimal CLK levels, which would not be expected to increase by the addition of CYC-VP16.

The robust behavioral and molecular rhythms of cyc-VP16 flies (Figure 2 and 3) more generally indicate that CLK–CYC-VP16 circadian function, including the mechanism(s) that temporally activate or repress transcription of this hyperactive complex, must be similar to those that regulate the activity of the wild-type CLK–CYC complex. This is also because the increased transcription as well as RNA levels in tim-cyc-VP16 flies suggests that most CLK–CYC direct target gene transcription is carried out by CYC-VP16 rather than endogenous CYC. Because the VP16 activation domain almost certainly functions differently from the CLK polyglutamyl region, this indicates that the recruitment of specific activator and/or repressor proteins is unlikely to play a prominent, mechanistic role in the circadian regulation of transcription. A more likely mechanism involves the cyclidal inhibition of CLK–CYC DNA binding. Importantly, this notion is consistent with recent chromatin immunoprecipitation results from the mammalian as well as the fly system [54,71]. Nonetheless, we suggest that per transcription as well as DNA binding of the CLK–CYC dimer to per E-boxes is the actual timekeeper of the circadian cycle during the mid-late day, when they are both increasing. This predicts that the additional activation power of VP16 indirectly shortens the DNA binding time of the CLK–CYC-VP16 dimer by accelerating the rate of PER accumulation and function. This hypothesis also fits well with the behavioral and molecular defects observed in cwo mutant flies [62,69,70].

The emphasis on the per promoter is seemingly contradicted by the rhythmicity of flies missing not only this promoter but also the tim promoter [58]. In our hands as well, per[62]; elav-gal4; uas-per flies are largely rhythmic despite weak rhythms, and their average period is near-normal. However, the period distribution of individual flies is unusually broad (Figure 7C and Figure S3C), indicating a contribution of the per promoter to the proper control of period within individual flies—even without CYC-VP16. Moreover, luciferase recordings from these transgenic flies show poor or no transcriptional oscillations (unpublished data). These observations suggest that individual neurons from this per[62]; elav-gal4; uas-per strain might be impaired even more than indicated by the behavioral rhythms of this strain (i.e., circadian brain circuitry might help to compensate for poor core circadian function within individual cells). This is analogous to the superior circadian performance of behavioral rhythmicity and the suprachiasmatic nucleus (SCN) from mutant mouse strains compared to that of individual tissue culture cells (mouse embryonic fibroblasts) derived from the same strains [72].

The role of circadian transcription described in this study complements the well-documented role of PER, TIM, and CLK post-translational regulation in period determination [34,35,43,44,48,49,54,73–75]. Given the parallel role of mammalian CLK and BMAL1 to CLK and CYC, it would be surprising were there not a similar contribution of circadian transcription to mammals. This suggests that there is a division of labor in animals between transcriptional and post-translational regulation of circadian timekeeping, which may even be temporally segregated. In contrast and as mentioned above, recent indications are that post-translational regulation is the pre- eminent mechanism in cyanobacteria. It is also the case that individual bacterial cells keep excellent circadian time, essentially indistinguishable from the culture [76]. This contrasts with individual eukaryotic cells, for example, separated SCN cells, which show substantially more variation in period than the intact SCN or organism [72,77]. All of these considerations suggest that the intracellular timekeeping mechanism of animals is different from that of cyanobacteria. We suggest that this important difference between systems reflects their separate origins, a view that is supported by the lack of sequence conservation between cyanobacterial and animal clock proteins.

Materials and Methods

Plasmids. pAc-clh, pAc-per, Copia Renilla luciferase, and tim-luc have been described previously [61]. pAc-cyc-VP16 was constructed by amplifying the cyc coding region and the vp16 activation domain by PCR and ligating in-frame into pAcA V5/His6 (Invitrogen). pAc-cyc was constructed by amplifying the cyc coding region and ligating in-frame into pAcA V5/His6.

S2 cell transfection. S2 cells were maintained in 10% fetal bovine serum (Invitrogen) insect tissue culture medium (HyClone). Cells were seeded in a six-well plate. Transfection was performed at 70–90% confluence according to company recommendations (12 μl of Cellfectin (Invitrogen) and 2 μg of total DNA). In all experiments 50 ng of pCopia Renilla luciferase plus 50 ng of the luciferase firefly reporter were used. PBS-KS+ (Stratagene) was used to bring the total amount of DNA to 2 μg.

dsRNA synthesis and RNAi treatment. For both procedures we follow the RNAi protocol in S2 cells previously described [34]. Two dsRNAs were synthesized against per, one containing its 5’ UTR and another containing the 3’ UTR.

Analysis of gene expression by real-time PCR. Total RNA was prepared from S2 cells or adult fly heads using Trizol reagent (Invitrogen) according to the manufacturer’s protocol. cDNA derived from this RNA (using Invitrogen Superscript II) was utilized as a template for quantitative real-time PCR performed with the Corbett Research Rotor-Gene 3000 real-time cycler. The PCR mixture contained Platinum Taq polymerase (Invitrogen), optimized concentrations of Sybr-green, and the corresponding primers. Tim: 5’-CCCTTTCGTCACACAGATGCC-3’, 5’-GGTCCGTCTGGTGATCC-3’, ori: 5’-GGCGTCGACGATACGT-3’, 5’-GTCGACTGCGAGTTCA-3’; Clk: 5’-CTTTGTTGTGGCTGTTGGTG-3’, 5’-CTTTGTTGTGGCTGTTGGTG-3’; vp16: 5’-ATCCGCGCAGCATA CAG-3’, 5’-TGGACCCAGGTGTTCAAGAA-3’; vp16: 5’-GGAC GAGGAGATTGTACTATA-3’, 5’-TTGGATTGTTACAATATGTCG-3’.

Cycling parameters were 95 °C for 3 min, followed by 40 cycles of 95 °C for 30 s, 55 °C for 45 s, and 72 °C for 45 s. Fluorescence intensities were plotted versus the number of cycles by using an algorithm provided by the manufacturer. mRNA levels were quantified using a calibration curve based upon dilution of concentrated cDNA. mRNA values from heads were normalized to that from ribosomal protein 49 (rp49).

Luciferase activity assay. Forty-eight hours after transfection cells were assayed using the Dual Luciferase Assay Kit (Promega) following the manufacturer’s instructions.

Western blotting. Lysate for the luciferase activity assay was electrophoresed in 6% SDS-PAGE. The protein was transferred to a
membrane. The membrane was blocked and probed with primary and secondary antibodies according to standard techniques. Rat anti-TIM antibody [78] and horseradish-peroxidase-conjugated anti-rat antibody (Sigma) were used.

Fly strains. The following drivers were utilized: tim-gal4 [79], pdf-gal4 [80], and elav-gal4 [58], per-luc, tim-luc, per2, uas-cyc-HA, and per-rescued flies (perΔ elav-gal4; uas-per) were previously described [58,63,64,81,82].

Construction of uas-cyc-vp16 transgenic lines. The uas-cyc-vp16 plasmids were generated by cloning a PCR fragment from pBc-cyc-vp16 into pJACST [83]. This construct was used to generate germ-line transgenic lines by injecting yw; P(KpnI,SacI)Δ2-3J into fly embryos.

Construction of dC8b-V5 14.8 kb transgenic lines. D. melanogaster RP98-5k6 bacterial artificial chromosome, which contains the complete dClk gene, was used as a template (BACPAC Resources Center at Children’s Hospital Oakland Research Institute). Four different fragments covering the entire gene were first PCR amplified and cloned into PBS vector (first fragment from 7751817 to 7747524 with KpnI and SacI; second fragment from 7747617 to 7755351 with KpnI and SacI; third fragment from 7745570 to 7741748 with KpnI and SacI; fourth fragment from 7741779 to 7736982 with XhoI and NotI; the position of nucleotides refer to D. melanogaster 3L chromosome sequence). A V5 tag was inserted in the fourth fragment by PCR using primers (Stratagene) in the C terminus just before the stop codon at 7738162. The four fragments were then cut and ligated together in the PBS vector using three endogonous restriction sites. BgII at 7747320, Nhel at 7745537, and NotI at 7741772, resulting in a final dClk transgene of 14878 bp (14836 bp of dClk and 42 bp of V5 tag) with KpnI on the 5’ and NotI on the 3’ ends. The dClk-V5 transgene was then inserted into the C. elegans vector, sequenced, and injected into yw embryo (CBRC Transgenic Drosophila Fly Core).

Locomotor behavior. Male flies were monitored for 4 d in LD conditions, followed by 4–5 d in DD conditions using Trizol reagent (Invitrogen) according to the manufacturer’s protocol. cDNA synthesis was carried out as described in the Materials and Methods section. Luciferase was measured as described in the Materials and Methods section. The assay was performed for three days in LD (12:12 LD) conditions, followed by 4–5 d in DD conditions using Trikinetics Activity Monitors. Analyses were performed with a signal-processing toolbox [84]. We utilized autocorrelation and spectral analysis to estimate behavioral cycle durations (periods) and the Rhythm Index to assess rhythm strength [84].

Real-time monitoring of luciferase activity from whole flies and dissected wings. Adult male flies and dissected wings were cultured in 12:12 LD conditions, and luciferease was measured as described previously [85]. In the case of the experiments described in Figure 3A and Figure 2B, the assay was performed for three days in LD (12:12 LD) and then in DD conditions.

Microarrays. **Probe preparation.** Total RNA was extracted from fly heads, using Trizol reagent (Invitrogen) according to the manufacturer’s protocol. cDNA synthesis was carried out as described in the Expression Analysis Technical Manual (Affymetrix). The cRNA reactions were carried out using the IVT Transcription Labeling Kit (Affymetrix). Affymetrix high-density arrays for D. melanogaster (Affymetrix) were probed, hybridized, stained, and washed according to the manufacturer’s protocol.

Data analysis. GeneChip CEL files were analyzed using R (http://www.r-project.org/) and the bioconductor package (gcrma algorithm; http://www.bioconductor.org/). An anti-logarithm (base 2) was applied to the data to obtain the expression values.

Supporting Information

Figure S1. Specific Effects of CYCVP16 in S2 Cells

(A) Expression of cyd does not affect CLK-mediated transcription in S2 cells. S2 cells were transfected with 5 ng of pBc-clk, a tim-luc reporter and different amounts of pBc-cyc plasmid. The data analysis was performed as in Figure 1B.

(B) Protein was isolated from nontransfected S2 cells or cells transfected with pBc-clk (10 ng) and/or pBc-cyc-vp16 (100 ng). Western blotting with anti-TIM was performed to determine TIM levels. (C) S2 cells were transfected with 100 ng of pBc-clk[58] or 100 ng of pBc-C8b-5k6 plus 100 ng of pBc-cyc-vp16 plasmid.

Found at doi:10.1371/journal.pbio.0060119.sg001 (196 KB PPT).

Figure S2. Luciferase Real-Time Recordings from Control and tim-cyc-vp16 Flies

(A) Luciferase recordings from whole flies for the different fly strains were performed as described in the Materials and Methods section.

(B) Each of the curves in (A) (fly wing Luciferase recordings) was normalized to its maximum value and then plotted together. In the lower right box, an amplification of the marked region is shown.

Found at doi:10.1371/journal.pbio.0060119.sg002 (351 KB PPT).

Figure S3. Representation of the Period Spread among Individuals of Different Fly Strains

The y-axis corresponds to the relative frequency. The dataset is identical to that displayed in Figure 7A.

Found at doi:10.1371/journal.pbio.0060119.sg003 (166 KB PPT).

Accession Numbers

Accession numbers for genetic sequences mentioned in this paper from the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov) are the D. melanogaster RP98-5k6 bacterial artificial chromosome, which contains the complete dClk gene, (AC010042) and the D. melanogaster 3L chromosome sequence (NT_037436.2).

Acknowledgments

We thank our colleagues in the Rosbash lab for helpful discussions, especially D. Stoleru, P. Nawatheen, and J. Agosto. We also thank R. Allada, P. Emery, M. Merr, W. Luo, and E. Nagoshi for comments on the manuscript; K. Palm for help with the fly genetics; and Heather Felton for administrative assistance.

Author contributions. SK and MR conceived and designed the experiments. SK, JSM, and RAS performed the experiments. SK and MR wrote the paper.

Funding. SK is a recipient of a Human Frontier Science Program postdoctoral fellowship and JSM is a recipient of an European Molecular Biology Organization long term postdoctoral fellowship. The work was supported in part by National Institutes of Health grants NS44232, NS45713, and GM65778 to MR.

Competing interests. The authors have declared that no competing interests exist.

References

1. Panda S, Hogenesch J, Kay S (2002) Circadian rhythms from flies to human. Nature 417: 329–335.

2. Dunlap JC (1999) Molecular bases for circadian clocks. Cell 96: 271–290.

3. Roenneberg T, Merrow M (2003) The network of time: understanding the circadian system. Neuron 32: 657–671.

4. Davis S, Mirick DK (2006) Circadian disruption, shift work and the risk of breast cancer: a summary of the evidence and studies in Seattle. Cancer Causes Control 17: 539–545.

5. Shaw PJ, Tononi G, Greenspan RJ, Robinson DF (2002) Stress response systems: commonality versus diversity. Science 291: 1040–1043.

6. Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, et al. (2005) Functional consequences of a CKLδ mutation causing familial advanced sleep-phase syndrome. Nature 434: 640–644.

7. Lamont EW, James FO, Bevin DB, Cermakian N (2007) From circadian clock gene expression to pathologies. Sleep Med 8: 547–556.

8. Davis S, Mirick DK (2006) Circadian disruption, shift work and the risk of breast cancer: a summary of the evidence and studies in Seattle. Cancer Causes Control 17: 539–545.

9. Shaw PJ, Tononi G, Greenspan RJ, Robinson DF (2002) Stress response systems: commonality versus diversity. Science 291: 1040–1043.

10. Claridge-Chang A, Wijnen H, Naef F, Boothroyd C, Rajewsky N, et al. (2001) Circadian regulation of gene expression systems in the Drosophila head. Neuron 32: 657–671.

11. Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, et al. (1999) Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med 5: 1062–1065.

12. Stekenberg T, Capponi A, Chevinsky J, Chen Y, et al. (2004) Hper phosphorylation site mutation in familial advanced sleep-phase syndrome. Science 306: 1040–1043.

13. Hall J (2003) Genetics and molecular biology of rhythms in Drosophila and other insects. Adv Genet 48: 1–280.

14. Roenneberg T, Merrow M (2003) The network of time: understanding the circadian system. Neuron 32: 657–671.

15. Davis S, Mirick DK (2006) Circadian disruption, shift work and the risk of breast cancer: a summary of the evidence and studies in Seattle. Cancer Causes Control 17: 539–545.

16. Shaw PJ, Tononi G, Greenspan RJ, Robinson DF (2002) Stress response systems: commonality versus diversity. Science 291: 1040–1043.

17. Allada R, White N, So W, Hall J, Roshbash M (1998) A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 95: 791–804.
Transcription in Circadian Period Determination

18. Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, et al. (1998) Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280: 1599–1603.

19. Gekakis N, Staknis D, Nguyen HB, Davis CF, Wibulswad LD, et al. (1998) Role for the CLOCK protein in the mammalian circadian mechanism. Science 280: 1564–1569.

20. Antoch MP, Song E-J, Chang A-M, Vitaterna MH, Zhao Y, et al. (1997) Functional identification of the mouse circadian clock gene by transgenic rescue. Cell 95: 555–567.

21. King DP, Zhao Y, Sangoram AM, Wibulswad LD, Tanaka M, et al. (1997) Positional cloning of the mouse circadian clock gene. Cell 89: 461–473.

22. Rutila JE, Suri V, Le M, So WV, Roshbach M, et al. (1998) CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93: 805–814.

23. Hardin PF, Hall JC, Roshbach M (1999) Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343: 535–539.

24. Sehgal A, Price JL, Man B, Young MW (1994) Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263: 1603–1606.

25. Hardin PF, Hall JC, Roshbach M (1992) Circadian oscillations in period gene mRNA levels are transcriptionally regulated. Proc Natl Acad Sci U S A 89: 11711–11715.

26. Sun ZS, Albrecht U, Zhuchenko O, Bailey J, Eichele G, et al. (1997) RIGUI, a circadian clock component, regulates circadian oscillation of Drosophila Period protein. Proc Natl Acad Sci U S A 94: 83–95.

27. Tei H, Okamura H, Shigeyoshi Y, Fukuhara C, Ozawa R, et al. (1997) Circadian cycling of a mammalian homologue of the Drosophila period gene. Cell 93: 501–510.

28. Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, et al. (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98: 193–205.

29. Cyran S, Buchsbaum A, Reddy K, Lin M, Glossop N, et al. (2003) vrille, Pdp1, and dbt collaborate to potentiate Drosophila PERIOD protein accumulation. Cell 112: 329–341.

30. Glossop NR, Houl JH, Zheng H, Aoi GZ, Vinhphu DM (2000) Positional syntenic cloning and functional characterization of the Drosophila period gene. Proc Natl Acad Sci U S A 105: 6178–6183.

31. Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15(Spec No 2): R271–R277.

32. Zeng H, Hardin PF, Roshbach M (1994) Constitutive overexpression of the Drosophila period gene protein inhibits period mRNA cycling. EMBO J 15: 3590–3598.

33. Rothenfluh A, Young MW, Saez I (2000) A TIMELESS-independent function for PERIOD proteins in the Drosophila clock. Neuron 26: 505–513.

34. Nawathean P, Roshbach M (2004) The doubletime and CKII kinases collaborate to potentiate Drosophila PER transcriptional repressor activity. Mol Cell 13: 213–223.

35. Lowery PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, et al. (2006) Positional, tissue-specific and functional characterization of the mammalian circadian mutation tau. Science 288: 485–492.

36. Kloss B, Price JL, Saez I, Blau J, Rothenfluh-Hilfiker A, et al. (1998) Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94: 83–95.

37. Dembinska ME, Stanewsky R, Hall JC, Rosbash M (1997) Circadian cycling of a period-lacZ fusion protein in the Drosophila circadian oscillator. Mol Cell Biol 17: 5014–5028.

38. Curtin K, Huang ZJ, Roshbach M (1995) Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Nature 14: 365–372.

39. Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, et al. (1998) Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280: 1599–1603.

40. Akten B, Jauch E, Genova GK, Kim EY, Edery I, et al. (2003) A role for CK2 in the Drosophila circadian oscillator. Nat Neurosci 6: 251–257.

41. Lin JM, Kilmann VL, Keegan K, Paddock B, Emerlye L, et al. (2002) A role for casein kinase 2α in the Drosophila circadian clock. Nature 420: 816–820.

42. Akten B, Jauch E, Genova GK, Kim EY, Edery I, et al. (2003) A role for CK2 in the Drosophila circadian oscillator. Nat Neurosci 6: 251–257.

43. Vielhaber E, Eide E, Rivers A, Gao ZH, Vinhphu DM (2000) Nuclear entry of the Drosophila period gene is controlled by mammalian casein kinase 1D. Mol Cell Biol 20: 4888–4899.

44. Yu W, Zheng H, Houl JH, Dauwalder B, Hardin PF (2006) PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription. Genes Dev 20: 725–735.

45. Akten B, Jauch E, Genova GK, Kim EY, Edery I, et al. (2003) A role for CK2 in the Drosophila circadian oscillator. Nat Neurosci 6: 251–257.

46. Curtin K, Huang ZJ, Roshbach M (1995) Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Nature 14: 365–372.
75. Edery I, Zwiebel LJ, Dembinska ME, Rosbash M (1994) Temporal phosphorylation of the Drosophila period protein. Proc Natl Acad Sci U S A 91: 2260–2264.
76. Mihalcescu I, Hsing W, Leibler S (2004) Resilient circadian oscillator revealed in individual cyanobacteria. Nature 430: 81–85.
77. Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14: 697–706.
78. Zeng H, Qian Z, Myers MP, Rosbash M (1996) A light-entrainment mechanism for the Drosophila circadian clock. Nature 380: 129–135.
79. Kaneko M, Hall JC (2000) Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J Comp Neurol 422: 66–94.
80. Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH (1999) A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99: 791–802.
81. Peng Y, Stoleru D, Levine JD, Hall JC, Rosbash M (2003) Drosophila free-running rhythms require intercellular communication. PLoS Biol 1: e13.
82. Stanewsky R, Jamison CF, Plautz JD, Kay SA, Hall JC (1997) Multiple circadian-regulated elements contribute to cycling period gene expression in Drosophila. EMBO J 16: 5006–5018.
83. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401–415.
84. Levine JD, Funes P, Dowse HB, Hall JC (2002) Signal analysis of behavioral and molecular cycles. BMC Neurosci 3: 1.
85. Krishnan B, Levine JD, Lynch MK, Dowse HB, Funes P, et al. (2001) A new role for cryptochrome in a Drosophila circadian oscillator. Nature 411: 313–317.