Transcriptional dysregulation of the multifunctional zinc finger factor 423 in acute lymphoblastic leukemia of childhood

Lena Harder a,1, Benjamin Otto b,1, Martin A. Horstmann a,⁎

a Research Institute Children's Cancer Center and Clinic of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
b Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany

Abstract

Differentiation arrest is a hallmark of acute lymphoblastic leukemia (ALL). Among a variety of structural and chromosomal alterations, especially mutations in genes encoding for regulators of B cell differentiation are common. The objective of this study was a comprehensive assessment of transcriptional dysregulation and high-resolution genomic profiling of B cell differentiation factors. Here we provide extended materials and methods regarding transcriptome and genome-wide copy number variation analyses published by Harder et al. [1]. Our data provide a resource for the identification of yet undefined factors that play a putative functional role in leukemogenesis such as ZNF423, whose aberrant expression interferes with B-cell differentiation.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

Data in Brief

Transcriptional dysregulation of the multifunctional zinc finger factor 423 in acute lymphoblastic leukemia of childhood

Keywords:
ZNF423
Acute lymphoblastic leukemia
Transcriptome profiling
Genome-wide copy number variation

Article history:
Received 22 April 2014
Received in revised form 16 May 2014
Accepted 16 May 2014
Available online 27 May 2014

Keywords:
ZNF423
Acute lymphoblastic leukemia
Transcriptome profiling
Genome-wide copy number variation

Direct link to deposited data

Deposited data can be found here: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42221 and http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42056.

Experimental design, materials and methods

Patient samples

All primary human samples were obtained upon approval by Institutional Ethics Boards. Patients were recruited by the COALL multicenter clinical trial group (Germany) and enrolled in trials COALL 97 and 03.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

http://dx.doi.org/10.1016/j.gdata.2014.05.009
2213-5960/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Fig. 1, samples are affected by slight degradation likely due to the elaborate cell selection and material isolation procedures followed by two amplification steps. In addition, a slight batch effect can be observed. Nevertheless, good sample comparability is given, because the degree of degradation is almost identical across all samples and the batch effect, which manifests as an overall higher signal intensity in one group, is readily eliminated during the normalization process.

Basic microarray analysis

The expression data of primary ALL at diagnosis (I1s, I2s, I3s, and I4; s, sorted cellular material) were independently filtered based on defined cutoff criteria such as present call, signal intensity (SI) ≥ 20, increase (I) or decrease call (D), change P value ≤ 0.003 for I/ ≥ 0.997 for D and signal log ratio (SLR) ≥ 0.5849 for I/ ≤ -0.415 for D (equivalent to 1.5× up- or down-regulation), which arose from the comparison with the corresponding remission material (E1s, E2s, E3s, and E4s) as control. In all comparisons initial scaling was set to a target signal of 100. All genes meeting these cutoff criteria were considered to be differentially expressed, as depicted in the heatmap.

Quantitative real-time PCR

Ahead of high-resolution genomic profiling ZNF423 expression was evaluated by quantitative real time PCR (qPCR) in 200 primary B-precursor ALL samples. For this purpose RNA isolation was performed

Table 1
Patient characteristics. M, male; F, female; C-ALL, common ALL; NA, not available.

ID	Sex	Immuno-phenotype	BCR–ABL	MLL–AF4	ETV6–RUNX1	Hyper-diploidy	ZNF423 mRNA expression
6646	M	C-ALL	0	NA	0	1	36.23
6787	M	preB-ALL	NA	NA	0	1	17.00
6822	M	C-ALL	0	0	1	0	24.97
6845	M	C-ALL	0	NA	0	NA	51.38
6869	M	C-ALL	0	0	0	1	7.91
6923	M	preB-ALL	NA	NA	NA	0	22.20
6924	M	C-ALL	0	0	0	0	9.79
6965	F	C-ALL	0	0	1	0	19.08
6992	F	preB-ALL	0	0	1	NA	18.81
7021	M	C-ALL	0	0	1	0	39.56
7065	M	C-ALL	0	0	0	0	8.71
7077	M	C-ALL	0	0	1	NA	27.48
7115	M	C-ALL	0	0	1	0	47.38
7118	M	C-ALL	0	0	0	0	20.88
7137	F	preB-ALL	0	0	0	0	13.54
7191	F	C-ALL	0	0	1	0	69.07
7293	F	C-ALL	0	0	1	0	6.52
7360	M	C-ALL	0	0	1	0	17.42
7503	M	C-ALL	0	0	1	0	27.27
7523	F	C-ALL	0	0	1	0	26.80

Fig. 1. Quality metrics for gene expression dataset GSE42221. (A) The rate of present calls (%), scaling factors (blue bars) as well as 3′ to 5′ ratios for β-ACTIN and GAPDH were calculated by the simpleaffy package. (B) The dissimilarity matrix of the arrays ahead of normalization shows a batch effect that is linked to hybridization date. (C) This effect is eliminated by the background and normalization procedure. The scores displayed in the dissimilarity matrices (blue: high similarity, yellow: low similarity) reflect the distance between each pair of arrays. They are computed as the mean absolute difference between the array data.
Table 2
Affymetrix SNP array quality metrics.

GEO accession	Sample name	Contrast QC	QC call rate
GSM1031509	ALL 6890 initial	1.00	94.04
GSM1031510	ALL 6845 initial	1.43	94.01
GSM1031511	ALL 6646 initial	1.77	93.33
GSM1031512	ALL 7021 initial	1.24	91.99
GSM1031513	ALL 6923 initial	2.14	95.43
GSM1031514	ALL 7077 initial	2.29	95.2
GSM1031515	ALL 7191 initial	2.04	96.13
GSM1031516	ALL 7115 initial	1.21	91.53
GSM1031517	ALL 7360 initial	2.02	97.15
GSM1031518	ALL 7065 initial	1.93	94.97
GSM1031519	ALL 6965 initial	1.67	95.96
GSM1031520	ALL 7303 initial	2.14	95.47
GSM1031521	ALL 7523 initial	2.18	96.03
GSM1031522	ALL 6992 initial	2.02	96.03
GSM1031523	ALL 6787 initial	2.32	97.25
GSM1031524	ALL 6924 initial	1.68	93.28
GSM1031525	ALL 7137 initial	2.49	97.88
GSM1031526	ALL 6822 initial	2.79	95.57
GSM1031527	ALL 7118 initial	4.26	95.96
GSM1031528	ALL 7293 initial	2.07	97.29
GSM1031529	ALL 6869 remission	1.75	93.81
GSM1031530	ALL 6845 remission	1.21	94.57
GSM1031531	ALL 6646 remission	1.66	94.71
GSM1031532	ALL 7021 remission	1.87	94.11
GSM1031533	ALL 6923 remission	1.95	96.23
GSM1031534	ALL 7077 remission	2.29	95.43
GSM1031535	ALL 7191 remission	1.72	94.08
GSM1031536	ALL 7115 remission	1.98	94.34
GSM1031537	ALL 7360 remission	0.0	93.58
GSM1031538	ALL 7065 remission	2.62	97.58
GSM1031539	ALL 7293 remission	1.57	94.57
GSM1031540	ALL 7503 remission	1.7	94.61
GSM1031541	ALL 7523 remission	1.97	95.6
GSM1031542	ALL 6992 remission	1.99	95.93
GSM1031543	ALL 6787 remission	2.12	97.32
GSM1031544	ALL 6924 remission	2.17	96.29
GSM1031545	ALL 7137 remission	2.18	96.62
GSM1031546	ALL 6822 remission	2.41	95.9
GSM1031547	ALL 7118 remission	1.91	92.55
GSM1031548	ALL 7293 remission	1.42	94.28

Discussion
In this report we provide an extended description of materials and methods for two datasets deposited in the GEO database containing gene expression and high-resolution genomic profiling data. The corresponding biologic material was isolated from fluorescence activated sorted primary leukemic cells (except one case) and normal lymphoblasts (gene expression data) as well as from 20 initial ALL and intraindividually matched MNC from remission bone marrow (genomic data). Based on these data we identified a potentially causative role for ZNF423 in ALL by its interference with B-cell differentiation and modulation of Smad1–Smad4 dependent transcription [1]. We encourage the use of our deposited datasets for further investigation into mechanistic underpinnings of ALL. We will provide further information if needed.

References
[1] L. Harder, G. Eschenburg, A. Zech, N. Kriebitzsch, B. Otto, T. Streichert, A. Behlich, K. Dierck, B. Klingler, A. Hansen, M. Stanulla, M. Zimmermann, E. Kremmer, C. Stocking, M.A. Horstmann, Aberrant ZNF423 impedes B cell differentiation and is linked to adverse outcome of ETV6–RUNX1 negative B precursor acute lymphoblastic leukemia. J. Exp. Med. 210 (2013) 2289–2304.
[2] C.L. Wilson, C.J. Miller, Simpleaffy: a BioConductor package for Affymetrix Quality Control and data analysis. Bioinform. Appl. Note 21 (2005) 3683–3685.
[3] A. Kauffmann, R. Gentleman, W. Huber, arrayQualityMetrics—a bioconductor package for quality assessment of microarray data. Bioinformatics 25 (3) (2009) 415–416.