Increased colistin resistance of Acinetobacter species in intensive care unit-acquired infections in a tertiary care hospital

Sanem Karadag Gecgel1, Canan Demir2

1 Departments of Microbiology and Clinical Microbiology.
2 Infectious Diseases and Clinical Microbiology, University of Health Sciences, Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey.

Abstract

Background: The aim of our study was to evaluate the antimicrobial resistance rates among pathogen microorganisms especially colistin resistant rates of Acinetobacter baumannii in intensive care unit (ICU)-acquired infections and to determine infection-specific correct treatment strategies.

Methods: The data of adult and newborn infant patients diagnosed with ICU-acquired infection in a tertiary education and research hospital in Bursa in 2014 and 2016 were analyzed, retrospectively.

Results: Acinetobacter baumannii was the most frequent pathogen of ICU-acquired infections in 2014 and 2016. There was a significant increase in colistin (CO) resistance rates in A. baumannii (0.0%-6.8%). A significant increase in CO, cefepime (FEP), ciprofloxacin (CIP) resistance rates was established in all gram negative bacteria (0.0%-7.9%, 50.0%-91.9%, 54.7%-74.6%), respectively. A significant increase in the rate of detection of A. baumanii as the pathogen microorganism in respiratory tract infection (RTI) was established (53.9% -79.5%). In addition, the average ventilator-associated pneumonia (VIP) infection rate also increased in 2016 compared to 2014 (VIP rate 2014: 7.12, 2016: 7.45, per 1000 ventilator days). A significant decrease in the rate of detection of all gram negative microorganisms in the surgical site infection (SSI), and a significant increase in the rate of detection of all gram positive microorganisms in the SSI was determined.

Conclusion: Increased antimicrobial resistance, especially increased colistin resistance rates in ICU-acquired infections, necessitates the creation of new strategies in empirical therapy. Detection of antimicrobial resistance profiles of local and infectious pathogen microorganisms in ICUs is a good guide for correct antimicrobial management.

Keywords:
Colistin; Intensive Care Unit; Acinetobacter Baumannii; Antibiotic Resistance.

Recived 10-01-2018; Accepted 30-01-2018
Introduction
The frequent use of broad spectrum antibiotics in intensive care unit (ICU), leads to increased rates of antimicrobial resistance and more frequent occurrence of multidrug-resistant microorganisms [1-3]. Increased antimicrobial resistance in ICU-acquired pathogens complicates treatment and limits new treatment options [4-6]. Nowadays colistin is frequently used as an effective antibiotic in ICU-acquired infections caused by multiresistant gram-negative bacteria, but colistin resistance is also observed to be increasing in recent years [7-9]. In the management of antimicrobial resistance in ICUs; it is necessary to optimize specific diagnosis and treatment of infections. In addition, strategies for selection of antibiotics, optimization of dose and duration, prevention of the passage of resistant pathogenic microorganisms to the patient through correct infection control measures need to be developed [10]. Microbiologists, clinicians, and infection control staff must work together to identify specific common bacteria and antibiotic resistance profiles in ICUs to select the right antibiotics for treatment [4, 11].

The aim of this study was to evaluate the antimicrobial resistance rates especially colistin resistance rates of pathogen microorganisms in ICU-acquired infections and to determine infection-specific correct treatment strategies.

Materials and methods
Data collection
Bursa Yuksek Ihtisas Education and Research Hospital which is served 3 million population in Turkey, and is a tertiary care hospital with total of 147 ICU-patient beds including cardiovascular surgery (CVS), general surgery, internal medicine, cardiology, pediatrics, newborn and reanimation departments. In our study, the data of adult and newborn infants diagnosed with ICU-acquired infection in 2014 and 2016 were analyzed retrospectively. ICU-acquired infections were determined according to the criteria of Centers for Disease Control and Prevention (CDC) guidelines for patients after length of ICU stay of 48 hours. ICU-acquired infections were categorized according to CDC criteria as blood stream infection (BSI), respiratory tract infection (RTI), urinary tract infection (UTI), surgical site infection (SSI), skin and soft tissue infection (SSTI) and central nervous system infection (CNSI).

Microbiological tests
Bacterial and fungal cultivation were made from clinical samples (blood, cerebrospinal fluid, urine, wound, tissue, tracheal aspirate, etc.) of the ICU patients in microbiology laboratory. Positive blood and cerebrospinal fluid cultures were detected by automated blood culture system (BACTEC 9240 Blood Culture System; Becton Dickinson Biosciences). Identification and antibiograms of gram-positive and gram-negative bacteria and yeast fungi were determined from the pure isolates obtained from the cultures on the automated device (Vitek 2, bioMérieux, USA). All antibiotic resistance values were determined based on current EUCAST minimal inhibitor concentration (MIC) limit values. Amikacin (AN), ampicillin (AM), gentamicin (GN), imipenem (IMP), piperacillin-tazobactam (TPZ), FEP, cefotaxime (CTX), trimethoprim-sulfamethoxazole (SXT), meropenem (MEM), ceftazidim (CAZ), ceftriaxone (CRO), tetracycline (TE), cefoxitin (FOX), teicoplanin (TEC), vancomycin (VA), linezolid (LNZ) and colistin (CO).

Statistical analysis
The data were analyzed using the Fisher-exact Chi square test and the Pearson Chi square test by the SPSS program version 21.0. Statistically significant difference was accepted as p<0.05-95% and p<0.01-99%.
Results

The distribution of all pathogen microorganisms according to period of detection was shown in ICU-acquired infections (Table 1). *Acinetobacter baumannii* was the most frequent pathogen detected in ICU-acquired infections in 2014 and 2016, among gram-negative bacteria, whereas among gram-positive bacteria coagulase-negative *Staphylococcus* (CNS), and *Candida albicans* among Candida spp. was the most frequent isolates.

Antibiotic resistance rates of gram-negative pathogens in ICU-acquired infections were compared between 2014 and 2016 (Table 2, 3).

There was a significant increase in CO resistance rates in *A. baumannii* (0.0%-6.8%, p <0.05). There was a significant increase in GN resistance rates in *Klebsiella pneumoniae* (41.9% - 80.3%, p <0.01). A significant decrease in TPZ resistance rates was found in *Pseudomonas aeruginosa* (65.1% - 31.4%, p<0.01).

A significant increase in CO and FEP resistance rates was established in all gram negative bacteria (0.0%-7.9%, 50.0% -91.9%, p<0.01). CIP resistance rates were also significantly increased (54.7% -74.6%, p<0.05). The increase of AM, GN, CAZ, TPZ, IMP, MEM, and SXT resistance ratios were not statistically significant. The decrease in CTX and CRO resistance ratios was not statistically significant. AN resistance rate did not change.

Antibiotic resistance rates of gram-positive pathogens in ICU-acquired infections were compared between 2014 and 2016 (Table 4).

There was a significant decrease in GN resistance of CNS (76.0%-42.1%, p<0.05) and a significant decrease in FOX resistance in *Staphylococcus aureus* (100.0% -75.0%, p<0.05).

A significant decrease in FOX and GN resistance was determined in all gram positive bacteria (100.0% -75.0%, 76.0% -42.1%, p<0.05). The decrease of LNZ, SXT, VA and TE resistance ratios was not statistically significant, and the increase of AM resistance was not statistically significant.

Table 1. Distribution of all recovered pathogens from ICU-acquired infections over the 2-year (2014 & 2016).

Microorganism	2014	2016
Gram Negative Bacteria		
Acinetobacter baumannii	89	73
Acinetobacter spp.	53	6
Pseudomonas aeruginosa	43	35
Klebsiella pneumoniae	31	69
Escherichia coli	13	8
Enterobacter aerogenes	6	1
Pseudomonas spp.	5	1
Klebsiella spp.	5	0
Enterobacter aerogenes	3	0
Serratia marcescens	3	0
Enterobacter cloacae	2	0
Proteus mirabilis	1	0
Stenotrophomonas maltophilia	1	0
Citrobacter spp.	0	0
Burkholderia cepacia	0	0
Morganella morganii	0	0
Salmonella spp.	0	0
Klebsiella oxytoca	0	0
Other	0	0
Gram Positive Bacteria		
CNS	25	19
Staphylococcus aureus	19	12
Enterococcus faecalis	8	7
Enterococcus faecium	2	6
Enterococcus spp.	6	2
Streptococcus pneumoniae	1	0
Gram Positive Bacteria		
All Candida spp.	13	7
Candida albicans	9	3
Candida glabrata	0	0
Candida parapsilosis	3	2
Candida tropicalis	1	0
All Candida spp.	26	14
Total	342	288

© Under License of Creative Commons Attribution 4.0 License
Table 2. Comparison of antimicrobial resistance rates of gram negative pathogens in ICU-acquired infections over the 2-year (2014 & 2016).

Pathogens	Period	Amikacin %	p	Ampicillin %	p	Gentamicin %	p	Imipenem %	p	Piperacillin/Tazobactam %	p	Cefepime %	p	Cefotaxime %	p
E.coli	2014	30.8	.727	38.5	43.5	1,00		61.5	65.2	1,00					
	2016	39.1													
Klebsiella	2014	35.5	.384	41.9	80.3	0,000**		58.1	73.9	1,160					
pneumoniae	2016	46.4													
Pseudomonas	2014	44.2	.350	48.8	42.9	.652		65.1	31.4	006**					
aeruginosa	2016	31.4													
Acinetobacter	2014	62.9	1,00	69.7	74.0	.602									
baumanii	2016	63.0													
Acinetobacter	2014	44.2	1,00	77.4	66.7	.440									
spp.	2016	31.4													
Pseudomonas	2014	40.0	1,00	40.0	66.7	1,00									
spp.	2016	33.3													
All Gram	2014	48.2	1,00	62.3	63.3	.842		36.4	44.4	0.006**					
Negative	2016	48.2													
Bacterias															

*: p<0.05; **: p<0.01.

Table 3. Comparison of antibiotic resistance rates of gram-negative pathogens in ICU-acquired infections over the 2-year (2014 & 2016).

Pathogens	Period	Trimethoprim-sulfamethoxazole %	p	Meropenem %	p	Ciprofloxacin %	p	Ceftazidime %	p	Ceftriaxone %	p	Colistin %	p
E.coli	2014	69.2	.484a	69.2	62.2	1,00a		61.5	65.2	1,00			
	2016	52.2											
Klebsiella	2014	58.1	1,00a	87.1	87.0	1,00a		58.1	73.9	1,160			
pneumoniae	2016	58.0											
Pseudomonas	2014			51.2	31.4	.108a		62.8	48.6	.254a			
aeruginosa	2016												
Acinetobacter	2014											0.0	
baumanii	2016											6.8	
Acinetobacter	2014												
spp.	2016												
Pseudomonas	2014												
spp.	2016												
All Gram	2014	56.9	.457a	54.7	74.6	.013a*		56.4	60.1	.001a**			
Negative	2016	62.9		1,00a	73.3	1,00a		56.4	60.1	.001a**			
Bacterias													

*: p<0.05; **: p<0.01.
The rates of ICU-acquired infections were compared in gram-negative pathogens between 2014 and 2016 (Table 5).

There was a significant decrease in the rate of detection of A. baumanii as the pathogen microorganism in BSI (40.4% -15.1%, p<0.01) and a significant increase in the rate of detection as the pathogen microorganism in RTI (53.9% -79.5%, p<0.01). A significant decrease in the rate of detection of K. pneumoniae as the pathogen microorganism in UTI was detected (25.8% -8.7%, p <0.05).

The rate of detection of all gram-negative bacteria as pathogen microorganism in SSI were significantly decreased (3.1%-0.0%, p<0.01). The decrease of in the rate of detection as the pathogen microorganism in BSI and UTI and the increase in the rate of detection as an pathogen microorganism in RTI, SSTI and CNSI was not statistically significant.

Table 5. Comparison of ICU-acquired infection rates for gram negative pathogens during the 2-year (2014 & 2016).

Pathogens	Period	Amikacin	Linezolid	Tetracycline	Trimethoprim / sulfamethoxazole	Vancomycin	Gentamicin	Cefoxitin
E.coli	2014	38.5	26.1	.475	17.4	.634	53.8	.310
	2016	7.7	17.4	634	53.8	34.8	310	0.0
Klebsiella pneumoniae	2014	29.0	43.5	.191	41.9	42.0	25.8	3.3
	2016	29.0	43.5	191	41.9	42.0	25.8	3.3
Pseudomonas aeruginosa	2014	16.3	11.1	.538	60.5	75.0	14.0	1.0
	2016	29.4	15.1	538	60.5	75.0	14.0	1.0
Acinetobacter baumanii	2014	32.9	15.1	.000**	5.3	79.5	2.2	2.0
	2016	50.6	201	001**	53.9	79.5	2.2	2.0

*: p<0.05; **: p<0.01.
The distribution of ICU-acquired infection rates in gram-positive and fungal pathogens were shown between the years 2014 and 2016 (Table 6).

A significant increase in the rate of detection of all gram positive bacteria as the pathogen microorganism in SSI was found (0.0%-8.7%, p<0.05). The increase of in the rate of detection as a pathogen microorganism in RTI and the decrease of in the rate of detection as a pathogen microorganism in BSI and UTI was not statistically significant.

A non-significant increase in BSI and a non-significant decrease in UTI were detected in the rates of all Candida species and Candida albicans.

Discussion

Routine surveillance and reporting on prevalence of infection and antimicrobial resistance patterns of isolates among patients in ICUs are essential measurements to control misuse of certain antimicrobial drugs and to reduce emergence of more resistant pathogens. Colistin resistance rates ranging from 0.9% to 40.7% have been reported between 2001 and 2011, in many countries of Asia, Europe and the United States [12, 13]. According to this study, there was a significant increase in colistin resistance rates among A. baumanii and all gram-negative bacteria isolates (p<0.05, p<0.01) (Table 3). First, the rates of colistin resistance reported in A. baumanii were 5.9% in 1999 in the Czech Republic. According to studies from Turkey, colistin resistance rates were reported to be ranged between 0% in 2014 and 0.6% in 2016 [14, 15]. The primary cause of increased colistin resistance rates in our study was the significant especially for CIP, FEP, IMP, MEM, and TPZ which were frequently used in treatment of ICU-acquired infections caused by gram-negative pathogens (Table 2, 3).

Table 6. Comparison of ICU-acquired infection rates in gram-positive and Candida microorganisms during the 2-year (2014 & 2016).

Microorganisms	Period	BSI %	p	RTI %	p	UTI %	p	SSI %	p	
Staphylococcus aureus	2014	78.9	.253	21.1	.676	0.0	8.3	.387		
	2016	58.3		33.3						
Enterococcus faecalis	2014	50.0	1.00			50.0	42.9	1.00		
	2016	57.1								
CNS	2014	100.0	.444a	0.0		1.00	0.0	0.0	5.0	.444
	2016	95.0								
Enterococcus faecium	2014	100.0	1.00a	0.0		1.00	0.0	0.0	16.7	
	2016	83.3								
All Gram Positive Bacteria	2014	80.3	.487	8.2	1.00	11.5	8.7	.754		
	2016	73.9		8.7				0.0	8.7	.032*
Candida spp.	2014	50.0	1.00			50.0	42.9	1.00		
	2016	57.1								
Candida albicans	2014	66.7	.509			33.3	0.0	.509		
	2016	100.0								
All Candida species	2014	60.0	.514			40.0	28.6	.514		
	2016	71.4								

*: p<0.05
In our hospital, many antibiotics including carbapenems are becoming useless in the treatment of multidrug resistant ICU-acquired *A. baumannii* infections. For this reason, colistin has been started to be used in empirical treatment. However, a recently increase in colistin resistance to already exist multi-resistant gram-negative causing infections further complicates the selection of already limited treatment options. Studies from different countries have shown that increasing CIP, TPZ, and carbapenem resistant in gram-negative bacteria isolates from intensive care units, as well as the increasing of community antimicrobial resistance rates, have affected empirical treatment choice [16, 17]. Common alternative antimicrobial treatment strategies need to be developed where the use of colistin should be limited for empirical treatment of patients of intensive care units as has been done in our hospital.

The increase in the detection rate of *A. baumannii* as a pathogen causing RTIs was found significant compared to other gram-negative pathogens *(p<0.01)* (Table 5). The average ventilator-associated pneumonia (VIP) infection rate also increased in 2016 compared to 2014 (VIP rate 2014: 7.12, 2016: 7.45 per 1000 ventilator days). The efficacy of colistin treatment was noticed clearly in multidrug resistant *A. baumannii* pneumonias, especially among patients in ICU-acquired infections. Several studies have recommended a combined treatment with colistin [18, 19]. In our hospital, the detection of multi-resistant *A. baumannii* in ICU-acquired infections resulted in increasing the use of colistin and consequently a significant increase in colistin resistance was detected. Increasing infection control measures by improving isolation conditions, especially in our patients with RTIs, which were frequently infected with multi-drug resistant *A. baumannii*, may lead to a decrease in colistin resistance rates as has been demonstrated by other studies [20, 21]. In addition, we found a significant decrease in the rate of detection of all gram negative and gram positive bacteria as pathogens in BSI and UTI (Table 5, 6). When invasive device associated infections in ICU were examined, central venous catheter-related bloodstream infection rate (2.98%/2014 versus 2.97%/2016:) and catheter-related urinary tract infection rate (0.97%/2014 versus 0.61%/2016) were also found to be slightly decreased in our hospital. Several studies have found that The incidence of ICU-acquired infections, the distribution of pathogens and antibiotic resistance, and the frequency of infection from invasive devices are interrelated and should be analysed together [22, 23]. Therefore, a decrease in using invasive devices can reduce the frequency of acquired multidrug resistant bacteria [23].

This study demonstrated that gram-negative pathogens were more common in ICU-acquired infections in 2016 than 2014 (Table 1). In addition, a significant decrease in the rate of detection of all gram-negative bacteria isolates in the SSI *(p<0.01)*, and also a significant increase in the rates of all gram positive bacteria in the SSI *(p<0.05)* was observed (Table 5). The reason for the increase of SSI caused by gram-positive pathogens is related to patients who were admitted to the CVS and gynecology ICUs. Therefore, it is also important to choose empiric antibiotherapy which are effective against gram-positive.

Conclusion

In conclusion, increased antimicrobial resistance, especially increased colistin resistance rates in ICU-infected patients, necessitates the creation of new strategies in empirical therapy. Reporting of antimicrobial resistance profiles of recovered pathogens in ICUs is recommended guide for correct antimicrobial management and control nosocomial infection.
Acknowledgements
We thank the dedicated staff members at Clinical Microbiology, Bursa Yuksek Ihtisas Training and Research Hospital for their technical support.

Funding
There is no relevant sources of funding for this study.

Conflicts of interest
There are no conflicts of interest for this study.

References
1. Mitharwal SM, Yaddanapudi S, Bhardwaj N, Gautam V, Biswal M, et al. Intensive care unit-acquired infections in a tertiary care hospital: An epidemiologic survey and influence on patient outcomes. Am J Infect Control 2016; 44: 113-7.
2. Ariffin N, Hasan H, Raml N, Ibrahim NR, Taib F, et al. Comparison of antimicrobial resistance in neonatal and adult intensive care units in a tertiary teaching hospital. Am J Infect Control 2012; 40: 572-5.
3. Axente C, Licker M, Moldovan R, Hoga E, Muntean D, Horhat F, Bedreag O, Sandesc D, Papurica M, Dugaesescu D, Voicu M, Baditoiu L. Antimicrobial consumption, costs and resistance patterns: a two year prospective study in a Romanian intensive care unit. BMC Infect Dis. 2017; 17: 358. doi: 10.1186/s12879-017-2440-7.
4. Fraimow HS, Tsigrelis C. Antimicrobial resistance in the intensive care unit: mechanisms, epidemiology, and management of specific resistant pathogens. Crit Care Clin 2011; 27: 163-205.
5. Ritchie DJ, Alexander BT, Finnegan PM. New antimicrobial agents for use in the intensive care unit. Infect Dis Clin North Am 2009; 23: 665-81.
6. Cassir N, Rolain JM, Brouqui P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Front Microbiol 2014; 5: 551.
7. Yilmaz GR, Dizbay M, Guven T, Pullukcu H, Tasbakan M, et al. Risk factors for infection with colistin-resistant gram-negative microorganisms: a multicenter study. Ann Saudi Med 2016; 36: 216-22.
8. Lee JY, Choi MJ, Choi HJ, Ko KS. Preservation of acquired colistin resistance in gram-negative bacteria. Antimicrob Agents Chemother2015; 60: 609-12.
9. Halaby T, Al Naemi M, Kluythmans J, van der Palen J, Vandenbroucke-Grauls CM. Emergence of colistin resistance in Enterobacteriaceae after the introduction of selective digestive tract decontamination in an intensive care unit. Antimicrob Agents Chemother 2013; 57: 3224-9.
10. Centers for Disease Control and Prevention. Campaign to prevent antimicrobial resistance in healthcare settings. MMWR Morb Mortal Wkly Rep. 2002; 51: 343.
11. Beardsley J, Williamson J, Johnson J, et al. Using local microbiologic data to develop institution-specific guidelines for the treatment of hospital acquired pneumonia. Chest 2006;130:787-93.
12. Arroyo LA, Garcia-Curiel A, Pachon- Ibanez ME, van den Barselaar M, Nordmann P, et al. Reliability of the E-test method for detection of colistin resistance in clinical isolates of Acinetobacter baumannii. J Clin Microbiol 2005; 43: 903-5.
13. Cai Y, Chai D, Wang R, Liang B, Bai N. Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother 2012; 67: 1607-15.
14. Beriş FŞ, Budak EE, Gülek D, Uzun A, Çizmeci Z, et aal. Investigation of the frequency and distribution of beta-lactamase genes in the clinical isolates of Acinetobacter baumannii collected from different regions of Turkey: a multicenter study. Mikrobiyol Bul 2016; 50: 511-21.
15. Karagöz A, Baran I, Akşu N, Acar S, Durmaz R. Characterization and determination of antibiotic resistance profiles of a single clone Acinetobacter baumannii strains isolated from blood cultures. Mikrobiyol Bul 2014; 48: 566-76.
16. Sligl WI, Dragan T, Smith SW. Nosocomial Gram-negative bacteremia in intensive care: epidemiology, antimicrobial susceptibilities, and outcomes. Int J Infect Dis 2015; 37: 129-34.
17. Clark NM, Patterson J, Lynch JP. Antimicrobial resistance among gram-negative organisms in the intensive care unit. Curr Opin Crit Care 2003; 9: 413-23.
18. Shojaei L, Mohammadi M, Beigmohammadi MT, Doomanlou M, Abdollahi A, et al. Clinical response and outcome of pneumonia due to multi-drug resistant Acinetobacter baumannii in critically ill patients. Iran J Microbiol. 2016; 8: 288-29.
19. Gu WJ, Wang F, Tang L, Bakker J, Liu JC. Colistin for the treatment of ventilator-associated pneumonia caused by multidrug-resistant Gram-negative bacteria: a systematic review and meta-analysis. Int J Antimicrob Agents 2014; 44: 477-85.
20. Tekin R, Dal T, Pirincičioglu H, Oygucu SE. A 4-year surveillance of device-associated nosocomial infections in a neonatal intensive care unit. Pediatr Neonatol 2013; 54: 303-8.
21. El-Saed A, Balkhy HH, Al-Dorzi HM, Khan R, Rishu AH, Arabi YM. Acinetobacter is the most common pathogen associated with late-onset and recurrent ventilator-associated pneumonia in an adult intensive care unit in Saudi Arabia. Int J Infect Dis 2013; 17: 696-701.

22. Leblebicioglu H, Erben N, Rosenthal VD, Atasay B, Erbay A, et al. International Nosocomial Infection Control Consortium (INICC) national report on device-associated infection rates in 19 cities of Turkey, data summary for 2003-2012. Ann Clin Microbiol Antimicrob 2014: 18; 13:51.

23. Rosenthal VD, Maki DG, Graves N. The International Nosocomial Infection Control Consortium (INICC): goals and objectives, description of surveillance methods, and operational activities. Am J Infect Control 2008; 36: 1-12.