Concentrations of IGF-I and IGFBP-3 and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition

Citation
Rohrmann, S, V A Grote, S Becker, S Rinaldi, A Tjønneland, N Roswall, H Grønbæk, et al. 2012. Concentrations of igf-i and igfbp-3 and pancreatic cancer risk in the european prospective investigation into cancer and nutrition. British Journal of Cancer 106(5): 1004-1010.

Published Version
doi:10.1038/bjc.2012.19

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:10996764

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Concentrations of IGF-I and IGFBP-3 and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition

S Rohrmann1,2, VA Grote3, S Becker2,3, S Rinaldi4, A Tjenneland5, N Roswall6, H Gronbaek4, K Overvad7, MC Boutron-Ruault8,9, F Clavel-Chapelon8,9, A Racine8,9, B Teucher2, H Boeing10, D Drogan10, V Dilos11, P Lagiou12,13,14, A Trichopoulou11,12, D Palli15, G Tagliafu16, R Tumino17, P Vines18,19, A Mattiello20, L Rodriguez21, EJ Duell22, E Molina-Montes23,24, M Dorrorsoro25, M J M Huerta26,27,28, E Ardanaz27,28, S Jeurnink28,29, PHM Peeters30, B Lindkvist31, D Johansen32, M Sund33, W Ye34,35, K-T Khaw36, NJ Wareham37, NE Allen38, FL Crowe38, V Fedirko4, M Jenab5, DS Michaud6,39, T Norat40, E Riboli41, HB Bueno-de-Mesquita28,29 and R Kaaks5

1Division of Cancer Epidemiology and Prevention, Institute of Social and Preventive Medicine, University of Zurich, Hirschengraben 84, Zurich 8001, Switzerland; 2Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; 3Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany; 4International Agency for Research on Cancer (IARC-WHO), Lyon, France; 5Diet, Cancer and Health, Danish Cancer Society, Copenhagen, Denmark; 6Department of Department of Medicine V, Aarhus University Hospital, Aarhus, Denmark; 7Department of Epidemiology, School of Public Health, Aarhus University, Aarhus, Denmark; 8Inserm, Centre for Research in Epidemiology and Population Health, Institut Gustave Roussy, Villejuif, France; 9Paris South University, Villejuif, France; 10Department of Epidemiology, German Institute of Human Nutrition, Nuthetal, Germany; 11Hellenic Health Foundation, Athens, Greece; 12WHO Collaborating Centre for Food and Nutrition Policies, Department of Hygiene, Epidemiology, and Medical Statistics, University of Athens Medical School, Athens, Greece; 13Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece; 14Department of Epidemiology, Harvard School of Public Health, Boston, MA, USA; 15Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy; 16Lombardy Cancer Registry and Environmental Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; 17Cancer Registry and Histopathology Unit, Civile M.P. Areszio’ Hospital, Ragusa, Italy; 18School of Public Health, Imperial College London, London, UK; 19HuGeF Foundation, Torino, Italy; 20Department of Clinical and Experimental Medicine, Federico II University, Naples, Italy; 21Public Health and Participation Directorate, Health and Health Care Services Council, Asturias, Spain; 22Unit of Nutrition, Environment and Cancer, Catalan Institute of Oncology (ICO-DIBELL), Barcelona, Spain; 23Andalusian School of Public Health, Granada, Spain; 24Consortium for Biomedical Research in Epidemiology and Public Health (CIBER) de Epidemiology y Salud Publica (CIBERESP), Spain; 25Epidemiology and Health Information, Public Health Division of Gipuzkoa, Basque Regional Health Department, San Sebastian, Spain; 26Department of Epidemiology, Murcia Regional Health Authority, Murcia, Spain; 27Navarre Public Health Institute, Pamplona, Spain; 28National Institute for Public Health and Environment (RIVM), Bilthoven, The Netherlands; 29Department of Gastroenterology and Hepatology, University Medical Centre Utrecht (UMCU), Utrecht, The Netherlands; 30Julius Center, University Medical Center Utrecht, Utrecht, The Netherlands; 31Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; 32Department of Surgery, Skåne University Hospital, SSW, Malmö, Sweden; 33Departments of Surgical and Perioperative Sciences, Surgery and Public Health and Clinical Medicine, Nutrition Research, Umeå University, Umeå, Sweden; 34Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; 35The Medical Biobank at Umeå University, Umeå, Sweden; 36Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK; 37Medical Research Council (MRC) Epidemiology Unit, Cambridge, UK; 38Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; 39Department of Epidemiology, Division of Biology and Medicine, Brown University, Providence, RI, USA

BACKGROUND: Insulin-like growth factors (IGFs) and their binding proteins (BPs) regulate cell differentiation, proliferation and apoptosis, and may have a role in the aetiology of various cancers. Information on their role in pancreatic cancer is limited and was examined here in a case–control study nested within the European Prospective Investigation into Cancer and Nutrition.

METHODS: Serum concentrations of IGF-I and IGFBP-3 were measured using enzyme-linked immunosorbent assays in 422 cases and 422 controls matched on age, sex, study centre, recruitment date, and time since last meal. Conditional logistic regression was used to compute odds ratios (OR) and 95% confidence intervals (CI) adjusted for confounding variables.

RESULTS: Neither circulating levels of IGF-I (OR = 1.21, 95% CI 0.75–1.93 for top vs bottom quartile, P-trend 0.30), IGFBP-3 (OR = 1.00, 95% CI 0.66–1.51, P-trend 0.79), nor the molar IGF-I/IGFBP-3 ratio, an indicator of free IGF-I level (OR = 1.22, 95% CI 0.75–1.97, P-trend 0.27), were statistically significantly associated with the risk of pancreatic cancer. In a cross-classification, however, a high concentration of IGF-I with concurrently low levels of IGFBP-3 was related to an increased risk of pancreatic cancer (OR = 1.22, 95% CI 0.75–1.97, P-trend 0.27). When adjusted for potential confounding factors, this association was statistically significant (OR = 1.21, 95% CI 0.75–1.93, P-trend 0.30). However, on the basis of the results of a subanalysis, it cannot be excluded that a relatively large amount of IGF-1 together with very low levels of IGFBP-3 might still be associated with an increase in pancreatic cancer risk.

CONCLUSION: On the basis of these results, circulating levels of components of the IGF axis do not appear to be the risk factors for pancreatic cancer. However, on the basis of the results of a subanalysis, it cannot be excluded that a relatively large amount of IGF-1 together with very low levels of IGFBP-3 might still be associated with an increase in pancreatic cancer risk.

British Journal of Cancer (2012) 106, 1004–1010. doi:10.1038/bjc.2012.19 www.bjcancer.com
Published online 7 February 2012
© 2012 Cancer Research UK

Keywords: IGF-I; IGFBP-3; pancreatic cancer; cohort study

*Correspondence: Dr S Rohrmann; E-mail sabine.rohrmann@ifspm.uzh.ch
Received 20 October 2011; revised 12 January 2012; accepted 12 January 2012; published online 7 February 2012
Pancreatic cancer is one of the most common causes of cancer deaths in the western world. In Europe, 48,300 deaths in men and 46,900 deaths in women due to pancreatic cancer were estimated for 2008 (Ferlay et al., 2010). So far, only few risk factors for pancreatic cancer have been clearly identified. Smoking is the major established lifestyle factor known to cause pancreatic cancer, accounting for up to 25 – 30% of all pancreatic cancer cases (Lowenfels and Maisonneuve, 2004). Some nutrition-related factors have also been found to be associated with pancreatic cancer risk, including excess body weight (Berrington de González et al., 2003; Jiao et al., 2010), history of type-2 diabetes mellitus (Huxley et al., 2005), elevated blood levels of glucose (Gapskar et al., 2001; Watts et al., 2007; Jiao et al., 2002; Stattin and Solomom et al., 2006). However, the number of studies conducted with pancreatic cancer (The Endogenous Hormones and Breast Cancer Collaborative Group, 2010). However, the number of studies conducted with pancreatic cancer is limited, as is the number of cases in these studies. The results of the prospective studies are rather inconsistent, however, with most studies showing no association of circulating IGF-I or IGFBP-3 levels with pancreatic cancer risk (Lin et al., 2011). IGFBP-3 has growth-inhibiting properties by competitively binding IGF-I, but it also has independent growth inhibiting effects, for example, via induction of apoptosis (Rahaj et al., 1997). IGFBP activities are, among others, regulated by IGFBP proteases, which may cleave IGFBPs into fragments with lower affinity to IGFs (Nunn et al., 1997).

Ohmura et al. (1990) have shown that IGF-I can stimulate pancreatic cancer cell growth in vitro, and that this effect is mediated by the IGF-I receptor (Bergmann et al., 1995). The analysis of pancreatic cancer tissue revealed increased IGF-I mRNA and IGFI receptor mRNA levels, compared with tissue of healthy individuals (Bergmann et al., 1995). Similarly, increased levels of IGF-I and increased IGF-I receptor expression were observed in pancreatic cancer tissue compared with normal pancreatic tissue (Karna et al., 2002). It appears that IGF-I stimulation and subsequent suppression of tumour suppressor chromosome 10 (PTEN) activity enhance invasiveness and proliferation of the pancreatic cancer cells (Ma et al., 2010).

Circulating levels of IGF-1- and IGF-binding proteins have been found to be associated with several types of cancers, including colon (Rinaldi et al., 2010), prostate (Roddam et al., 2008), and breast cancer (The Endogenous Hormones and Breast Cancer Collaborative Group, 2010). However, the number of studies conducted with respect to pancreatic cancer is limited, as is the number of cases in these studies. The results of the prospective studies are rather inconsistent, however, with most studies showing no association of circulating IGF-I or IGFBP-3 levels with pancreatic cancer risk (Lin et al., 2011). Stattin and Solomom et al. (2006). Because of the inconsistencies of previous studies, we examined the association between IGF-I, IGFBP-3, and pancreatic cancer in the prospective European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, including more than 400 incident cases of pancreatic cancer.

MATERIAL AND METHODS

Study description

European Prospective Investigation into Cancer and Nutrition is a prospective cohort study that includes more than 500,000 male and female participants recruited in 23 centres in 10 European countries between 1992 and 2000. Most centres recruited subjects from the general population, but in Utrecht and Florence, only women from breast cancer screening programs were recruited; the Spanish and Italian centres include blood donors, and the French cohort consists of members of a health insurance for state school employees. A high proportion of participants of the Oxford cohort are vegetarians or health-conscious volunteers. The cohorts of France, Utrecht, Florence, and Norway include women only.

Information on lifestyle and diet was collected during baseline examination. Diet was assessed using country-specific, validated dietary assessment instruments (Kaaks et al., 1997; Riboli and Kaaks, 1997). Information on smoking, alcohol consumption, physical activity, education, occupation, and medical and reproductive history was collected using questionnaires and personal interviews. Anthropometric measurements were conducted during the baseline examination (Haftenberger et al., 2002).

Following a standardized protocol, a blood sample of 30 ml was collected in all participating EPIC countries. In all centres except Oxford, blood samples were stored protected from light at 5 – 10°C until further processing and aliquoting. In the Oxford centre, blood samples were collected throughout the United Kingdom and transported to the laboratory in Norfolk by mail at an ambient temperature. In all centres except Denmark and Sweden, 0.5 – 1.5 ml aliquots of serum, plasma, red blood cells, anduffycoat were filled into plastic straws and stored in liquid nitrogen at −190°C. In the Danish centres, 1 ml aliquots were filled into tubes and stored in the vapour phase of liquid nitrogen containers (−150°C). In Sweden, the samples were stored at −80°C.

Selection of case and control subjects

Pancreatic cancer incidence data were coded according to ICD-10, and included all invasive exocrine pancreatic cancers that were coded as C25 (25.0 – 25.3, 25.7 – 25.9). Cases were those EPIC participants who developed pancreatic cancer after their recruitment into the cohort and before the end of the study period. Individuals were excluded when diagnosed with another malignant tumour before the diagnosis of pancreatic cancer, except for non-melanoma skin cancer, and when no blood specimens were available for analysis. A total of 638 incident cases of pancreatic cancer occurred until December 2006. 578 of them were primary exocrine pancreatic tumours. Blood specimens were available for 422 of these cases. The included 422 pancreatic cancer cases were similar in their characteristics to the overall 578 cases with pancreatic adenocarcinoma (data not shown). Of the 422 cases, 307 (76%) were microscopically confirmed. The remaining 24% were diagnosed by clinical symptoms, imaging results, or physical examination. Forty-one percent of the tumours occurred in the head of the pancreas, followed by body (76%) and tail (5%), the rest of the tumours were of unknown localization. One control, alive and free of cancer at time of diagnosis of the index case, was selected for each case using incidence density sampling, that is, controls may include subjects who became a case later in time, and free of cancer at time of diagnosis of the index case, was selected for each case using incidence density sampling, that is, controls may include subjects who became a case later in time, and for each control, one control was matched by study centre, sex, age at enrollment (+6 months), date of entry in the cohort, time between blood sampling and time of last consumption of foods and drinks (<3h, 3–6h, >6h).

Laboratory assays

Serum IGF-I and IGFBP-3 concentrations were measured in the immunoassay laboratory at the German Cancer Research Center (DKFZ), Heidelberg, Germany. Both peptides were analysed by enzyme-linked immunosorbent assays purchased from Beckman Coulter (Wyester, TX, USA). Before the total IGF-I analysis, IGF-I was separated from IGF-I–binding proteins by an acid–ethanol extraction step. Cases and matched controls were measured in...
Epidemiology

1006

(0.82)), whereas the ratio showed no correlation with IGFBP-3 (0.59)) and the molar IGF-1/IGFBP-3 ratio (0.26). Circulating C-peptide level (0.12) showed correlations with body mass index (0.14) and length of follow-up (0.06). Age at recruitment (0.10) showed significant correlation with IGF-1 (0.03) and IGFBP-3 (0.03) and the molar IGF-1/IGFBP-3 ratio (0.04). Statistical tests for heterogeneity were based on χ2-tests, calculated as the deviations of logistic beta-coefficients observed in each of the subgroups, relative to the overall beta-coefficient. All analyses were conducted with SAS version 9.2 (Cary, NC, USA).

RESULTS

Of the 422 cases in this analysis, 46% were men (Table 1). Mean age at baseline was 58 years; mean age at diagnosis was 63 years. Female cases had a higher body mass index and waist circumference than female controls, but no difference was observed among men. Cases were more often smokers at baseline than controls, and they more often reported a diagnosis of diabetes at baseline (0.02) or had elevated baseline blood levels of HbA1c. IGF-1 was calculated as the deviations of logistic beta-coefficients observed into sex-specific quartiles, based on the distribution among all controls. Crude models took into account matching criteria; multivariate models were additionally adjusted for body mass index (continuous), smoking history (never, former, quitting smoking less than 10 years ago, more than 10 years ago, current, with 1–9, 10–19, or ≥20 cigarettes per day, missing), and history of diabetes (self-reported or high glycated haemoglobin (HbA1c) concentration (≥6.5%).). These covariates were added in the multivariable adjusted models, because they were associated with pancreatic cancer, correlated with IGF-1 or IGFBP-3, or changed the logistic β-estimate by more than 10%. Further adjustment was made for circulating C-peptide concentration, which has been measured previously on the same subjects (Grote et al, 2011). Further analyses were conducted with mutual adjustments between IGF-1 and IGFBP-3 concentrations.

Sub-analyses were performed, stratified by sex, smoking status at baseline (smoker/non-smoker), diabetes (defined by self-report or HbA1c concentrations (≥6.5%)), waist circumference (<73 cm for men and 80 cm for women), length of follow-up (<16 years or ≥20 years of follow-up time in cases), concentration of C-peptide (<8 mg/l), median, 5.57 ng ml1), and microscopical verification of cases. Odds ratios (OR) were estimated for quartiles of IGF-1 and IGFBP-3 concentrations, as well as IGF-1/IGFBP-3 ratio. Additionally, we examined the interaction between IGF-1 and IGFBP-3 levels (both variables were dichotomized by median concentration) in a cross-classification. Statistical tests for heterogeneity were based on χ2-statistics, calculated as the deviations of logistic beta-coefficients observed in each of the subgroups, relative to the overall beta-coefficient. All analyses were conducted with SAS version 9.2 (Cary, NC, USA).

Variable	Cases (n = 422)	Controls (n = 422)
Male subjects, n (%)	195 (46)	195 (46)
Age at recruitment (y), mean (range)	58 (30–76)	58 (30–76)
Age at diagnosis (y), mean (range)	63 (37–82)	—
Follow-up (y), mean (range)	5.4 (0–13)	—
BMI (kg m2), mean ± s.d.		
Male	26.8 ± 3.6	26.7 ± 3.7
Female	26.5 ± 4.9	25.2 ± 4.2
Height (cm), mean ± s.d.		
Male	174.6 ± 7.4	175.1 ± 7.7
Female	162.3 ± 6.6	161.5 ± 7.2
Waist circumference (cm), mean ± s.d.		
Male	96.2 ± 10.1	96.6 ± 10.3
Female	84.3 ± 12.3	81.1 ± 10.6
Smoking status, n (%)*		
Never	155 (37)	189 (45)
Former	130 (31)	137 (32)
Current	132 (31)	91 (22)
Education, n (%)*		
Primary school or less	165 (40)	158 (39)
University	82 (20)	86 (21)
Physical activity, n (%)*		
Active	62 (16)	60 (16)
Inactive	103 (27)	119 (31)
Alcohol intake at recruitment (g per day), mean ± s.d.		
Male	19.7 ± 24.4	20.4 ± 26.2
Female	9.1 ± 13.1	7.4 ± 10.6
Fasting status, n (%)		
Fasting (>6 h)	117 (28)	113 (27)
In between (3–6 h)	158 (37)	163 (39)
Non-fasting (<3 h)	66 (16)	66 (15)
Unknown	81 (19)	80 (19)
Self-reported diabetes at recruitment, n (%)	30 (7)	17 (4)
Subjects HbA1c ≥6.5%, n (%)	50 (12)	28 (7)
C-peptide (ng ml-1), mean ± s.d.	6.9 ± 4.6	6.66 ± 4.5
IGF-1 (ng ml-1), mean ± s.d.	181.8 ± 713	182.5 ± 685
Male	187.1 ± 74.1	185.7 ± 86.3
Female	182.9 ± 68.9	179.7 ± 68.7
IGFBP-3 (ng ml-1), mean ± s.d.	4668 ± 1209	4665 ± 1085
Male	4411 ± 1267	4484 ± 1042
Female	4890 ± 1114	4821 ± 1100
IGF-1/IGFBP-3 ratio	0.19 ± 0.06	0.18 ± 0.06

Abbreviations: BMI = body mass index; IGF = insulin-like growth factor; IGFBP = IGF-binding protein; IQR = interquartile range; y = years. *Percentages do not add up to 100%, because not all subgroups are shown.

Circulating levels of IGF-1 or IGFBP-3 were not related to the risk of pancreatic cancer (Table 2). Using molar IGF-1/IGFBP-3 ratio as an indicator of free IGF-I concentration, we also observed no association with pancreatic cancer risk. The results were only slightly affected by different types of adjustment. Additional mutual adjustment of IGF-1 and IGFBP-3 also did not strongly change the observed associations with pancreatic cancer. There were no associations of IGF-1, IGFBP-3, or the ratio of these two with pancreatic cancer, when using only microscopically confirmed cases (Table 3).

In sub-analyses, we examined whether the association of IGF-1, IGFBP-3, or IGF-I/IGFBP-3 with pancreatic cancer was modified...
Table 2 Relative risk (OR (95% CI)) of pancreatic cancer by quartiles of IGF-I, IGFBP-3, and its ratio in EPIC.

Quartiles*	OR P-trendb	Continuous OR P-trendb					
	1	2	3	4			
IGF-I men (ng ml⁻¹)	33–138	139–176	177–226	227–437	—	Per 10 ng ml⁻¹	—
IGF-I women (ng ml⁻¹)	40–128	129–168	169–220	221–433	—	—	—
Number of cases/controls	103/104	88/105	115/106	114/105	—	—	—
Model 1d	1.0	0.85 (0.55–1.34)	1.21 (0.77–1.90)	1.13 (0.67–1.92)	0.472	1.01 (0.98–1.04)	0.721
Model 2e	1.0	0.88 (0.58–1.35)	1.23 (0.78–1.94)	1.13 (0.67–1.92)	0.469	1.01 (0.98–1.04)	0.460
Model 3f	1.0	0.87 (0.57–1.33)	1.21 (0.78–1.91)	1.13 (0.67–1.92)	0.469	1.01 (0.98–1.04)	0.460
Model 4g	1.0	0.89 (0.56–1.42)	1.27 (0.75–2.14)	1.21 (0.66–2.25)	0.439	1.01 (0.97–1.06)	0.597
Model 5h	1.0	0.85 (0.56–1.35)	1.21 (0.75–1.98)	1.13 (0.67–1.92)	0.469	1.01 (0.98–1.04)	0.460

IGFBP-3 men (ng ml⁻¹)

Quartiles*	OR P-trendb	Continuous OR P-trendb					
	1	2	3	4			
IGF-I men (ng ml⁻¹)	33–138	139–176	177–226	227–437	—	Per 10 ng ml⁻¹	—
IGF-I women (ng ml⁻¹)	40–128	129–168	169–220	221–433	—	—	—
Number of cases/controls	103/104	88/105	115/106	114/105	—	—	—
Model 1d	1.0	0.85 (0.55–1.34)	1.21 (0.77–1.90)	1.13 (0.67–1.92)	0.472	1.01 (0.98–1.04)	0.721
Model 2e	1.0	0.88 (0.58–1.35)	1.23 (0.78–1.94)	1.13 (0.67–1.92)	0.469	1.01 (0.98–1.04)	0.460
Model 3f	1.0	0.87 (0.57–1.33)	1.21 (0.78–1.91)	1.13 (0.67–1.92)	0.469	1.01 (0.98–1.04)	0.460
Model 4g	1.0	0.89 (0.56–1.42)	1.27 (0.75–2.14)	1.21 (0.66–2.25)	0.439	1.01 (0.97–1.06)	0.597
Model 5h	1.0	0.85 (0.56–1.35)	1.21 (0.75–1.98)	1.13 (0.67–1.92)	0.469	1.01 (0.98–1.04)	0.460

IGFBP-3 women (ng ml⁻¹)

Quartiles*	OR P-trendb	Continuous OR P-trendb					
	1	2	3	4			
IGF-I men (ng ml⁻¹)	33–138	139–176	177–226	227–437	—	Per 10 ng ml⁻¹	—
IGF-I women (ng ml⁻¹)	40–128	129–168	169–220	221–433	—	—	—
Number of cases/controls	103/104	88/105	115/106	114/105	—	—	—
Model 1d	1.0	0.85 (0.55–1.34)	1.21 (0.77–1.90)	1.13 (0.67–1.92)	0.472	1.01 (0.98–1.04)	0.721
Model 2e	1.0	0.88 (0.58–1.35)	1.23 (0.78–1.94)	1.13 (0.67–1.92)	0.469	1.01 (0.98–1.04)	0.460
Model 3f	1.0	0.87 (0.57–1.33)	1.21 (0.78–1.91)	1.13 (0.67–1.92)	0.469	1.01 (0.98–1.04)	0.460
Model 4g	1.0	0.89 (0.56–1.42)	1.27 (0.75–2.14)	1.21 (0.66–2.25)	0.439	1.01 (0.97–1.06)	0.597
Model 5h	1.0	0.85 (0.56–1.35)	1.21 (0.75–1.98)	1.13 (0.67–1.92)	0.469	1.01 (0.98–1.04)	0.460

Abbreviations: BMI = body mass index; CI = confidence interval; EPIC = European Prospective Investigation into Cancer and Nutrition; IGF = insulin-like growth factor; IGF-I = IGF-binding protein; OR = odds ratio. *Quartile cut points were based on the distribution of controls. **P-trend test was based on median values of each quartile. ***P-trend test was based on continuous values.

Discussion

We examined the association of components of the IGF axis in association with the risk of pancreatic cancer in the largest prospective study, so far without finding any indication for an association with the circulating levels of IGF-I and IGFBP-3. There was, however, an increased risk among those with high IGF-I and concurrently low IGFBP-3 concentrations, although the interaction was not statistically significant. Evans et al (1997) found no elevated serum levels of IGF-I and IGFBP-3 in pancreatic cancer compared with controls. In contrast, Karna et al (2002) showed significant increases in serum IGF-I and IGFBP-3 levels in patients with pancreatic cancer compared with control subjects. Among prospective studies, a case–control study nested within the ATBC trial did not observe associations of serum concentrations of IGF-1, IGFBP-3, or IGF-1/IGFBP-3 ratio with the risk of pancreatic cancer (Stolzenberg-Solomon et al, 2004); however, this result is based on a cohort of male smokers only. This null association, though, is similar to the results seen in the four US cohorts that were analysed together (Wolpin et al, 2007). Only a nested case–control study conducted in Japan reported that individuals in the highest quartile of IGF-I concentration had an OR of 2.31 (95% CI 0.70–7.64) compared with participants in the lowest quartile (Lin et al, 2004). A recently published study nested in the PLCO cohort observed an increased risk of pancreatic cancer with increasing IGF-I/IGFBP-3 molar ratio, which was interpreted as an indicator of the concentration of free IGF-I (Douglas et al, 2010). We did not observe an increased risk in conference with increasing IGF-I/IGFBP-3 molar ratio, but did observe that those participants with high IGF-I levels above the median and low IGFBP-3 concentrations had an increased risk of pancreatic cancer.

IGFBP-3 is supposed to have growth-inhibiting properties and one would, thus, expect that high IGFBP-3 concentrations are inversely associated with cancer risk. On the other hand, IGFBP-3 and IGF-I are highly correlated in our cohort. In the Japanese nested case–control study, IGFBP-3 concentration was positively associated with pancreatic cancer risk; the risk of death from pancreatic cancer was increased with increasing levels of serum IGFBP-3, with the OR for the highest quartile being 2.53 (95% CI 0.93–6.85; Lin et al, 2004). However, the results of previous studies on different types of cancer have been inconsistent with some studies indeed showing inverse associations, but some also showing no or even a positive association (Renehan et al, 2004).

Cleavage of IGFBPs by proteases results in IGFBP fragments with affinity to IGFs and additionally influences IGF-I bioavailability by reducing the amount of functional IGFBPs. It has been
suggested that the maintenance of normal IGFBP levels is critical to normal rates of cell growth and cell death (Nunn et al, 1997; Firth and Baxter, 2002). It has also been discussed that different assays measuring concentrations of total or intact IGFBP-3 could cause differences between studies (Kaaks et al, 2001; Renehan et al, 2004; Rinaldi et al, 2005). We measured intact IGFBP-3, not total IGFBP-3, which also includes IGFBP-3 fragments that are less biologically active.

Most IGF-1 in the circulation is produced by the liver (Pollak et al, 2004). A major factor stimulating the hepatic production of IGF-1 and IGFBP-3 is growth hormone (Jones and Clemmons, 1995), but insulin also has a central role in regulating levels of

Abbreviations: BMI = body mass index; CI = confidence interval; EPIC = European Prospective Investigation into Cancer and Nutrition; IGF = insulin-like growth factor; IGFBP = IGF-binding protein; OR = odds ratio. *Logistic regression conditioned on matching factors (EPIC recruitment centre, sex, age at recruitment, date at entry in the cohort, time between blood sampling and last consumption of foods and drinks) and adjusted for smoking (never, former, quitting smoking less than 10 years ago, more than 10 years ago, current, with 1–9, 10–19, or ≥ 20 cigarettes per day, missing), BMI (continuous) and diabetes (defined by self-report or HbA1c concentrations ≥ 6.5%). 1P-trend test was based on median values of each quartile.
Spearman’s rank correlations between repeat measurements in serum concentrations over longer time periods. In a study IGFBP-3 generally have been found to be quite representative of baseline. It might be that repeated measurements of IGF-I and IGF-I/IGFBP-3 ratio, but the associations in the respective subgroups were not consistently statistically significant. or IGF-II/IGFBP-3 ratio are associated with the risk of pancreatic cancer, which confirms the results of most previous prospective studies. However, it is noteworthy that individuals with high circulating IGF-I and low IGFBP-3 levels have an increased risk of pancreatic cancer, compared with those with low IGF-I and high IGFBP-3 concentrations.

Acknowledgements

We thank Miss Britta Lederer and Miss Sigrid Henke for their excellent work in performing the immunoassays. VAG is funded by the Deutsche Forschungsgemeinschaft, Graduiertenschule 793. The coordination of the EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by the Danish Cancer Society (Denmark); LigueContre le Cancer, InstitutGustaveRoussy, MutuelleGénérale de l’EducationNationale, Institut National de la Santé et de la RechercheMédicale (INSERM; France); Deutsche Krebshilfe, Deutsches Krebsforschungszentrum (DKFZ), and the Federal Ministry of Education and Research (Germany); Ministry of Health and Social Solidarity, Stavros Niarchos Foundation, and Hellenic Health Foundation (Greece); Italian Association for Research on Cancer (AIRC) and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), the Netherlands Cancer Registry (NKR); LK Research Funds, Dutch Prevention Funds, Dutch ZON (ZorgOn-derzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); ERC-2009-AdG 232997 and Nordforsk, Nordic Centre of Excellence Programme on Food, Nutrition and Health (Norway); Health Research Fund (FIS), Regional Governments of Andalucia, Asturias, Basque Country, Murcia and Navarra, ISCIII RETIC (RD06/0020; Spain); Swedish Cancer Society, Swedish Scientific Council and Regional Government of Skåne and Västerbotten (Sweden); Cancer Research UK, Medical Research Council, Stroke Association, British Heart Foundation, Department of Health, Food Standards Agency, and Wellcome Trust (United Kingdom).

References

Batty GD, Shipley MJ, Marmot M, Smith GD (2004) Diabetes status and post-load plasma glucose concentration in relation to site-specific cancer mortality: findings from the original Whitehall study. Cancer Causes Control 15: 873–881

Bergmann U, Funatomi H, Yokoyama M, Beger HG, Korc M (1995) Insulin-like growth factor-I overexpression in human pancreatic cancer: evidence for autocrine and paracrine roles. Cancer Res 55: 2007–2011

Berrington de Gonzalez A, Sweetland S, Spencer E (2003) A meta-analysis of obesity and the risk of pancreatic cancer. Br J Cancer 89: 519–523

Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, Hennekens CH, Pollak M (1998) Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279: 563–566

Douglas JB, Silverman DT, Pollak MN, Tao Y, Soliman AS, Stolzenberg-Solomon RZ (2010) Serum IGF-1, IGF-II, IGFBP-3, and IGF-I/IGFBP-3 molar ratio and risk of pancreatic cancer in the prostate, Lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiol Biomarkers Prev 19: 2298–2306

Evans JD, Egg, D, Donovan IA, Bramhall SR, Neophotomis JP (1997) Serum levels of insulin-like growth factors (IGF-I and IGF-II) and their binding protein (IGFBP-3) are not elevated in pancreatic cancer. Int J Pancreatitis 22: 95–100

Ferlay J, Parkin DM, Steliarova-Foucher E (2010) Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 46: 765–781

Firth SM, Baxter RC (2002) Cellular actions of the insulin-like growth factor binding proteins. Endoc Rev 23: 824–854

Gapstur SM, Gann PH, Lowe W, Liu K, Colangelo L, Dyer A (2000) Abnormal Glucose Metabolism and Pancreatic Cancer Mortality. JAMA 283: 2552–2558

Goodman-Gruen D, Barrett-Connor E (1997) Epidemiology of insulin-like growth factor-I in elderly men and women. The Rancho Bernardo Study. Am J Epidemiol 145: 970–976

Grimberg A, Cohen P (2000) Role of insulin-like growth factors and their binding proteins in growth control and carcinogenesis. J Cell Physiol 183: 1–9

Grote VA, Rohrmann S, Nieters A, Dossus L, Tjonneland A, Halkjaer J, Overvad K, Fagherazzi G, Boutron-Ruault MC, Morois S, Teucher B, Becker S, Shlik D, Boeing H, Trichopoulou A, Lagiou P, Trichopoulos D, Palli D, Pala V, Tumino R, Vineis P, Panico S, Rodriguez L, Dujel E, Molina-Montes E, Dorronsoro M, Huerta JM, Ardanaz E, Khaw KT, Wareham N, Allen N, Crowe F, Jenab M, Romieu I, Michaëls DS, Riboli E, Romaguera D, Bueno-de-Mesquita HB, Kaaks R (2011) Diabetes mellitus, glycated haemoglobin and C-peptide levels in relation to pancreatic cancer risk: a

Table 4 Joint effect of IGF-1 and IGFBP-3 concentrations on risk of pancreatic cancer (OR (95% CI))

Median IGF-1	Median IGFBP-3	IGF-1	IGFBP-3
< Median IGF-1	> Median IGFBP-3	1.0	1.48 (0.97–2.22)
< Median IGFBP-3	> Median IGF-1	1.47 (0.97–2.22)	1.72 (1.65–2.83)

Abbreviations: BMI = body mass index; CI = confidence interval; EPIC = European Prospective Investigation into Cancer and Nutrition; IGF = insulin-like growth factor; IGFBP = IGF-binding protein; OR = odds ratio. Logistic regression conditioned on matching factors (EPIC recruitment centre, sex, age at recruitment, date at entry in the cohort, time between blood sampling and last consumption of foods and drinks) and adjusted for smoking (never, former, quitting smoking less than 10 years ago, more than 10 years ago, current, with 1–9, 10–19, or ≥20 cigarettes per day, missing), BMI (continuous) and diabetes (defined by self-report or HbA1c concentrations ≥6.5%). 1°-interaction = 0.154.

© 2012 Cancer Research UK

British Journal of Cancer (2012) 106(5), 1004 – 1010
study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. *Diabetologia* 54: 3037–3046

Haftenberger M, Lahmann PH, Panico S, Gonzalez CA, Seidell JC, Boeing H, Giurdanella MC, Krogh V, Bueno-de-Mesquita HB, Peeters PH, Skeie G, Hjartaker A, Rodrigues M, Quiros JR, Berglund G, Janlert U, Khaw KT, Spencer EA, Overvad K, Tjorneland A, Clavel-Chapelon F, Tehard B, Miller AB, Klipstein-Grobusch K, Benetou V, Kirizai G, Riboli E, Slimani N (2002) Overweight, obesity and fat distribution in 50- to 64-year-old participants in the European Prospective Investigation into Cancer and Nutrition (EPIC). *Public Health Nutr* 5: 1147–1162

Huxley R, Ansary-Moghaddam A, Berrington de Gonzalez A, Barzi F, Woodward M (2005) Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. *Br J Cancer* 92: 2076–2083

Jee SH, Ohrer H, Sull JW, Yun JE, Ji I, Samet JM (2005) Fasting serum glucose level and cancer risk in Korean men and women. *JAMA* 293: 194–202

Jiao L, Berrington de Gonzalez A, Hartge P, Pfeiffer R, Park Y, Freedman D, Gail M, Alavanja M, Albanes D, Beane Freeman L, Chow W-H, Huang W-Y, Hayes R, Hoppin J, Ji B, Leitzmann M, Linet M, Meinhold C, Schairer C, Schatzkin A, Virtamo J, Weinstein S, Zheng W, Zolstenberg-Solomon R (2010) Body mass index, effect modifiers, and risk of pancreatic cancer: a pooled study of seven prospective cohorts. *Cancer Causes Control* 21: 1305–1314

Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. *Endocr Rev* 16: 3–34

Kaaks R, Lukanova A (2001) Energy balance and cancer: the role of insulin and insulin-like growth factor-I. *Proc Nutr Soc* 60: 91–106

Kaaks R, Rinaldi S, Lukanova A, Akhmedkhanov A, Zeleniuch-Jacquotte A, Toniolo P (2001) Correspondence re: Giovannucci et al., A prospective study of plasma insulin-like growth factor-I and binding protein-3 and risk of colorectal neoplasia in women. *Cancer Epidemiol Biomark Prev* 9: 345–349, 2000; *Cancer Epidemiol Biomark Prev* 10: 1103–1104

Kaaks R, Slimani N, Riboli E (1997) Pilot phase studies on the accuracy of dietary intake measurements in the EPIC project: overall evaluation of results. European Prospective Investigation into Cancer and Nutrition. *Int J Epidemiol* 26(Suppl 1): S26–S36

Karna E, Surazynski A, Orlowski K, Laszkiewicz J, Puchalski Z, Nawrat P, Palka J (2002) Serum and tissue level of insulin-like growth factor-I (IGF-I) and IGF-I binding proteins as an index of pancreatitis and pancreatic cancer. *Int J Exp Pathol* 83: 239–246

Khandwala HM, McCutcheon IE, Flyvbjerg A, Friend KE (2000) The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. *Endocr Rev* 21: 215–244

Lee P, Giudice LC, Conover CA, Powell DR (1997) Insulin-like growth factor binding protein-1: recent findings and new directions. *Proc Soc Exp Biol Med* 216: 319–357

Lin Y, Tamakoshi A, Kikuchi S, Yagyu K, Obata Y, Ishibashi T, Kawamura T, Inaba Y, Kurosawa M, Motohashi Y, Ohno Y (2004) Serum insulin-like growth factor-I, insulin-like growth factor binding protein-3, and the risk of pancreatic cancer death. *Int J Cancer* 110: 262–268

Lowenfels AB, Maisonneuve P (2004) Epidemiology and Prevention of Pancreatic Cancer. *Ipn J Clin Oncol* 34: 238–244

Lukanova A, Zeleniuch-Jacquotte A, Lundin E, Micheli A, Arslan AA, Rinaldi S, Muti P, Lenner P, Koenig KL, Bissey C, Krogh V, Riboli E, Shore RE, Stattin P, Berrino F, Hallmans G, Toniolo P, Kaaks R (2004) Prediagnostic levels of C-peptide, IGF-I, IGF-1, -2 and -3 and risk of endometrial cancer. *Int J Cancer* 108: 625–630

Ma J, Sawai H, Matsuo Y, Ochi N, Yasuda A, Takahashi H, Wakasugi T, Funahashi H, Sato M, Takeyama H (2010) IGF-I mediates PTEN Suppression and Enhances Cell Invasion and Proliferation via Activation of the IGF-1/PI3K/Akt Signaling Pathway in Pancreatic Cancer Cells. *J Surg Res* 160: 90–101

Nunn SE, Gibson TB, Rajah R, Cohen P (1997) Regulation of prostate cell growth by the insulin-like growth factor binding proteins and their proteases. *Endocrine* 7: 115–118

Ohmura E, Okada M, Onoda N, Kamiya Y, Murakami H, Tsuchima T, Shirzume K (1990) Insulin-like growth factor I and transforming growth factor I as autocrine growth factors in human pancreatic cancer cell growth. *Cancer Res* 50: 103–107

Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. *Nat Rev Cancer* 4: 505–518

Rajah R, Lee KW, Cohen P (2002) Insulin-like growth factor binding protein-3 mediates tumor necrosis factor-alpha-induced apoptosis: role of Bcl-2 phosphorylation. *Cell Growth Differ* 13: 163–171

Rajah R, Valentini B, Cohen P (1997) Insulin-like growth factor (IGF)-binding protein-3 induces apoptosis and mediates the effects of transforming growth factor-beta1 on programmed cell death through a p53- and IGF-independent mechanism. *J Biol Chem* 272: 12181–12188

Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M (2004) Insulin-like growth factor (IGF-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. *Lancet* 363: 1346–1353

Riboli E, Kaaks R (1997) The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. *Int J Epidemiol* 26(Suppl 1): S6–S14

Rinaldi S, Cleveland R, Norat T, Biessy C, Rohrmann S, Linseisen J, Boeing H, Pisano T, Panico S, Agnelli C, Palli D, Tumino R, Vinesi P, Peeters PH, van Gils CH, Bueno-de-Mesquita BH, Vrieling A, Allen NE, Roddam A, Bingham S, Khaw KT, Manjer J, Bergquist S, Dumeaux V, Torhild Gram I, Lund E, Trichopoulou A, Makrygianis G, Benetou V, Molina E, Donald Suarez J, Barricarte Areira G, Gonzalez CA, Tormo MJ, Altzibar JM, Olsen A, Tjonneland A, Gronbaek H, Overvad K, Clavel-Chapelon F, Broutron-Ruault MC, Morois S, Slimani N, Bottella P, Jenab M, Riboli E, Kaaks R (2010) Serum levels of IGF-I, IGF-BP3 and colorectal cancer risk: results from the EPIC cohort, plus a meta-analysis of prospective studies. *Int J Cancer* 126: 1702–1715

Rinaldi S, Kaaks R, Zeleniuch-Jacquotte A, Arslan AA, Shore RE, Koenig KL, Dossus L, Riboli E, Stattin P, Lukanova A, Toniolo P (2005) Insulin-like growth factor-I, IGF binding protein-3, and breast cancer in young women: a comparison of risk estimates using different peptide assays. *Cancer Epidemiol Biomarkers Prev* 14: 48–52

Roddam AW, Allen NE, Appleby P, Key TJ, Ferrucci L, Carter HB, Metter EJ, Chen C, Weiss NS, Fitzpatrick A, Hsing AW, Lacey Jr J, Helzlsouer K, Rinaldi S, Riboli E, Kaaks R, Janssen JA, Wildhagen MF, Schroder FH, Platz EA, Pollak M, Giovannucci E, Schernhammer ES, Overvad K, Pischon T, Panico S, Agnoli C, Palli D, Hallmans G, Jansonh M, Chan JM, Gann P, Oliver SE, Holly JM, Donovan J, Meyer F, Braitia I, Galan P (2008) Insulin-like growth factors, their binding proteins, and prostate cancer risk: analysis of individual patient data from 12 prospective studies. *Ann Intern Med* 149: 461–471, W83–W88

Stattin P, Bjorj O, Ferrari P, Lukanova A, Lenner P, Lindahl B, Hallmans G, Kaaks R (2007) Prospective study on hyperglycemia and cancer risk. *Diabetes Care* 30: 561–567

Stolzenberg-Solomon RZ, Graubard BI, Chari S, Limburg P, Taylor PR, Virtamo J, Albanes D (2005) Insulin, Glucose, Insulin Resistance, and Pancreatic Cancer in Male Smokers. *JAMA* 294: 2872–2878

Stolzenberg-Solomon RZ, Limburg P, Pollak M, Taylor PR, Virtamo J, Albanes D (2004) Insulin-like growth factor (IGF-1), IGF-binding protein-3, and pancreatic cancer in male smokers. *Cancer Epidemiol Biomarkers Prev* 13: 438–444

The Endogenous Hormones and Breast Cancer Collaborative Group (2010) Insulin-like growth factor 1 (IGF1), IGF binding protein 3 (IGFBP3), and breast cancer risk: pooled individual data analysis of 17 prospective studies. *Lancet Oncol* 11: 530–542

Wolpin BM, Michaud DS, Giovannucci EL, Schernhammer ES, Stampfer MJ, Manson JE, Cochrane BB, Rohan TE, Ma J, Pollak MN, Fuchs CS (2007) Circulating insulin-like growth factor axis and the risk of pancreatic cancer in four prospective cohorts. *Br J Cancer* 97: 98–104