Hepatitis B virus (HBV), which was discovered in 1965, is a threat to global public health. HBV infects human hepatocytes and leads to acute and chronic liver diseases, and there is no cure. In cells infected by HBV, viral DNA can be integrated into the cellular genome. HBV DNA integration is a complicated process during the HBV life cycle. Although HBV integration normally results in replication-incompetent transcripts, it can still act as a template for viral protein expression. Of note, it is a primary driver of hepatocellular carcinoma (HCC). Recently, with the development of detection methods and research models, the molecular biology and the pathogenicity of HBV DNA integration have been better revealed. Here, we review the advances in the research of HBV DNA integration, including molecular mechanisms, detection methods, research models, the effects on host and viral gene expression, the role of HBV integrations in the pathogenesis of HCC, and potential treatment strategies. Finally, we discuss possible future research prospects of HBV DNA integration.

KEY WORDS: HEPATITIS B VIRUS, INTEGRATION, NON-HOMOLOGOUS END JOINING; INSERTIONAL MUTAGENESIS; HEPATOCELLULAR CARCINOMA

Introduction

In 1965, Dr. Baruch Blumberg made the discovery of the "Australia antigen," subsequently identified as the hepatitis B virus (HBV) surface antigen (HBsAg).1 Because of this work, Dr. Blumberg was awarded the Nobel Prize in Physiology or Medicine in 1976. HBV infection chronically infects about 250 million individuals worldwide and is a major global health burden.2 Chronic HBV infection is recognized as a high risk factor for developing liver cirrhosis and hepatocellular carcinoma (HCC).3 After infection, the viral genome is established as a minichromosome, called covalently closed circular DNA (cccDNA). The cccDNA is essential to establishing persistent HBV infection as a stable intracellular HBV replication intermediate, which is localized to the nucleus of infected cells as an episomal plasmid-like molecule that can produce progeny virus.4 Stably integrated HBV DNA in the host genome is another stable form of viral DNA. Although no progeny virus is produced, integrated HBV DNA can produce viral RNAs and proteins.5–7 HBV DNA integration was first reported in 1980 in human HCC.8–11 Since then, technologies used in HBV integration research include Southern blots, in situ hybridization, polymerase chain reaction (PCR), and next-generation sequencing (NGS).12–14 HBV DNA integration events occur at a rate of ~1 integration per 10^3 infected cells in animal models17–19 and ~1 integration per 10^4 infected cells in the early viral life cycle in an in vitro infection model.10 HBV DNA integration has a close relationship with HCC and many studies have been done to explore its role in the development of HCC. In the genome of hepatic cancer cells, HBV DNA integration occurs more often (86.4%) than in normal liver tissues (30.7%).10 Observed mechanisms leading to tumorigenesis include insertional mutagenesis acting in cis of key HCC-associated genes, induction of chromosomal instability, and the expression of mutant HBV genes from integrated HBV DNA.21

HBV Life Cycle

HBV belongs to the Hepadnaviridae, a family of small enveloped hepatotropic DNA viruses. Unlike other DNA viruses, HBV replicates its DNA through reverse transcription, which also determines the complexity of the HBV life cycle. The HBV life cycle is complex, including processes such as viral entry, cccDNA formation, transcription, replication, assembly, secretion, and integration (Figure 1). HBV enters hepatocytes from the basolateral (sinusoidal) membrane, where the viral receptor, sodium taurocholate co-transporting polypeptide (NTCP), is localized.25 This process can be subdivided into adsorption and entry. Adsorption is mediated by glycosaminoglycans, such as heparan sulfate proteoglycans, that can recruit HBV to the cell surface through non-covalent binding.26,27 As the functional receptor for HBV, NTCP interacts with the preS1 domain of HBV large surface protein (L) to complete the HBV entry process.28,29 Mediated by NTCP, the relaxed circular DNA (rcDNA) containing nucleocapsids enter the cytoplasm and are released in the nucleus,30 where the rcDNA is repaired to form cccDNA with the assistance of host factors, including TDP2, DNA polymerase (POL) α, POLβ, DNA ligase 1 and 3, and flap endonuclease 1.31,32,33 As a template for HBV transcription, cccDNA transcribes five kinds of HBV RNAs (0.7 kb, 2.1 kb, 2.4 kb, longer and shorter 3.5 kb RNAs) under the action of host RNA polymerase II.34–36 Transcription of cccDNA is controlled by four promoters (the Core, preS1, preS2, and X promoters) and two enhancers (enhancers I and II).37,38 The 0.7-kb RNA can be translated to HBV X protein (HBX) which acts as a transcriptional regulator. The 2.1-kb RNA can be translated to HBV small surface protein (S) and middle surface protein (M). The 2.4-kb RNA can be translated to HBV large surface protein (L). L, M, and S can self-assemble to form empty subviral particles (SVPs) (including spherical SVPs and filamentous SVPs) that are secreted,39–44 with only filamentous SVPs and virions containing significant amounts of L protein. The spherical SVPs are secreted through the constitutive secretory pathway. The filamentous SVPs are secreted by the endosomal sorting complex required for transport (ESCRT) machinery through multivesicular bodies (MVB).45 The longer 3.5-kb RNA is termed pre-Core RNA (pgRNA) and can be translated to pre-Core protein, better known as HBV e antigen (HBeAg).46–48 The shorter 3.5-kb RNA is pre-genomic RNA (pgRNA) that has two roles, as the translation template for HBV polymerase (Pol) and core proteins and as the replication template for intra-capsid (formed by Core protein polymerization) reverse transcription by Pol to form HBV rcDNA.49–51 These nucleocapsids can then be enveloped by HBV surface proteins (L, M, and S) to form mature virions and secrete through the ESCRT/MVB pathway.52,53 Alternatively, these nucleocapsids can also be transported to the nucleus to form cccDNA.

Other enveloped nucleocapsids containing double-stranded linear DNA (dsDNA), HBV RNA, or the enveloped empty capsid can also form in the HBV life cycle.54–59 These particles are secreted out of the cells after which they can conduct viral entry. In both de-novo-infected nucleocapsids and in cytoplasm-produced nucleocapsids dsDNA can be circularized by the non-homologous end joining (NHEJ) DNA repair pathway into cccDNA-like molecules.60,61 As NHEJ is error-prone, many of these molecules are functionally defective.62 Furthermore, dsDNA is the dominant substrate for integration into the host genome.18 A study performed in an in vitro infection model...
demonstrated that the dsIDNA in de-novo-infected nucleocapsids was the main contributor of HBV DNA integration. However, some NGS studies report that a few virus-cell junctions are not correlated to the dsIDNA termini, suggesting a place for other HBV DNA forms. Cohesive end linear DNA is another HBV DNA form thought to occur caused by denaturation at the 5' cohesive overlap region of HBV rDNA and subsequent extension of the recessed 3' ends to create terminal redundancies between direct repeat 1 (DR1) and DR2 which may play this role in integration. HBV RNA in the nucleocapsids may be an additional candidate for viral integration along with HBV spliced variants, as HBV spliced variants lose the cis-acting signal for circular DNA and thus support dsIDNA. The integrated HBV DNA can transcribe viral mRNAs or viral-cellular fusion mRNAs, which is discussed below.

Molecular Mechanisms of HBV DNA Integration

The dsIDNA is synthesized from pgRNA like the rDNA (Figure 2). First, a short DNA oligo templated by the sequence of the ϵ packaging signal internal bulge, which is phosphodiester-linked to the terminal protein (TP) domain of the Pol protein, is generated by protein priming at the 5’ ϵ of pgRNA mediated by Pol protein. The DNA oligo then is transferred to proximal DR1 at the 3’ terminal of the pgRNA, which subsequently primes the synthesis of the negative strand DNA (–DNA) mediated by the reverse transcriptase domain of the Pol protein. During (–)DNA extension, most of the pgRNA is degraded by the RNase H domain of the Pol protein, except for the capped 5' end, and the undegraded RNA oligo serves as the positive strand DNA (+)DNA primer. Subsequently, the RNA primer is transferred to DR2 of (–)DNA, which primes the synthesis of (+)DNA and generates rDNA. However, in 5%–20% of
cases, the RNA primer performs the direct (in situ) extension yielding dslDNA, also known as the in-situ-primed linear DNA.5,52,60

HBV dslDNA is ~10 nucleotides (nt) longer than the genome length (e.g., genotype A, serotype adw2, GenBank accession number X02763.1)61,62 and contains several features (1) a capped RNA oligomer at the 5’ end of (+)-DNA, (2) Pol protein, which is covalently linked to the 5’ end of the (+)-DNA, (3) DR1 at 1,826–1,836 nt and DR2 at 1,592–1,602 nt which have identical sequences (ttcacctctgc), and (4) DR1 at the 5’ end of (-)-DNA, which has only four nucleotides (tgaa) and the nucleotide “t,” which is covalently linked to the Pol protein. Like rcDNA, the plus strand of dslDNA is incomplete. HBV integration occurs early in the viral life cycle as demonstrated in in vitro infection models20,63 and appears to have the same timeline as the formation of cccDNA, indicating a similar process between the two events. Thus, the first step of HBV integration is likely to remove or repair these structures to remove the RNA oligomer and Pol protein and repair the incomplete plus strand.

The second step of HBV integration is to integrate HBV DNA into the host genome. Although some aspects of this process remain unknown, much
progress has been made. As a member of the Hepadnaviridae, the biological characteristics of duck HBV (DHBV) are very similar to HBV. Most present knowledge of HBV is derived from DHBV models. A study using recombinant restriction enzyme-induced host genomic double-stranded breaks in an in vitro DHBV infection model showed that integration preferentially occurs at these sites. A series of studies on HBV or DHBV reported that the integration breakpoints in the viral DNA frequently occur near the DR1 or DR2 sites (1,600–1,800 nt in HBV genome). The sizes of integrated viral DNA fragments range from 28 base pairs (bp) to the full-length viral DNA sequence, with deletions at the termini of up to 200 bp from the integrated viral DNA being common.

The NHEJ DNA repair pathway is typically associated with deletions and is deterministically observed in tumor cells and greater enrichment of integration into non-tumor tissues. A plausible suggested mechanism is that, after a limited number of virus-cell junctions, NHEJ is proposed as a mechanism used for HBV DNA integration. However, a few integration junctions have short homologous sequences between the viral DNA and the cellular DNA, suggesting that the microhomology-mediated end joining (MMEJ) (also known as non-classical or alternative NHEJ) DNA repair pathway is the mechanism for these cases.

The insertion sites of HBV DNA integration occur throughout the whole host genome. Earlier studies using PCR-based techniques suggested a random process with no sites of preferential integration. More robust high-throughput sequencing studies have found various recurrent sites of insertion in the genes encoding human telomerase reverse transcriptase (hTERT), mixed-lineage leukemia 4 (MLL4), cyclin e1 (CCNE1), extra spindle pole bodies like 1 (ESPL1), and in structures such as telomerases and CpG islands. Recurrent sites of integration are preferentially observed in tumor cells and greater enrichment of integration into specific genes or features has been detected in HCC tissue compared with non-tumor tissues. A plausible suggested mechanism is that, after random integration of viral DNA occurs, those hepatocytes carrying recurrent sites of integration experience clonal expansion as they have a selective advantage during tumorigenesis. Thus, in a recent study more virus-integrated hepatocytes are observed in HCC tumors when compared with matched control tissues. However, recurrent sites of integration, such as the retrotransposon elements long interspersed nuclear elements 1 and 2 have been detected in HepaRG cells, a human hepatocyte stem cell line and an in vitro HBV infection model, which has no clonal expansion during HBV infection. A similar study in a non-clonally expanding in vitro HBV infection model via NTCP-dependent uptake of HBV found no obvious genomic recurrent sites of integration, although HBV DNA integration occurred across the whole genome.

A conceptual model is thus proposed to describe the process of HBV integration during HBV infection (Figure 3): (1) host chromosomal DNA double-stranded breaks are formed by HBV infection or endogenous metabolism. (2) The dslDNA is de-novo-infected nucleocapsids or in cytoplasm-produced nucleocapsids is repaired by viral proteins or host proteins. (3) The mature dslDNA is randomly integrated into the host genome. The use of the NHEJ or MMEJ DNA repair pathways depends on the sequence characteristics at the ends of the viral DNA and the host double-stranded break DNA. (4) During hepatocarcinogenesis, recurrent sites of integration are a result of positive selection and clonal expansion.

Detection Methods for HBV DNA Integration

HBV DNA integration has been studied for 40 years since the first reports in 1980. Knowledge of HBV DNA integration has grown rapidly, largely limited by detection capabilities. From the earliest Southern blot hybridization to the current high-throughput sequencing technologies, each method has unique capabilities and limitations to further the study of HBV DNA integration.

Southern Blot Hybridization. Southern blot hybridization was first used to report the presence of HBV DNA integration both in tumor tissue and in HCC cell lines. Total DNA extracted from the cells or tissues infected by HBV is digested with a restriction enzyme, after which the 32P-labeled HBV DNA used as the hybridization probe binds to the digested DNAs, which are separated through gel electrophoresis. The autoradiograph is subsequently presented on film, from which the HBV DNA integration can be judged. This method cannot detect cells below a detection limit of 10^3–10^5 copies of the HBV genome, thus biasing it toward hepatocytes that have undergone clonal expansion. In addition, the integrated sequence information cannot be determined.

In Situ Hybridization. In situ hybridization can identify the location of genes in cells and has been used to investigate the chromosomal integration sites of HBV DNA. Cellular DNA fragments are isolated from the DNA of the integrant clones and then radiolabeled with 32P-dTTP for use as a probe for in situ hybridization. The target metaphase chromosomes are then extracted and hybridization is performed. Like Southern blot hybridization, the
sensitivity of this technique is low, but improved in situ hybridization techniques with higher sensitivity, such as fluorescence in situ hybridization (FISH), have been used for the detection of HBV DNA integration in chromosomes. However, FISH faces drawbacks, such as a high off-target rate resulting in a high noise-to-signal ratio thus necessitating high specificity and careful design of the probe.

Cloning and Nucleotide Sequencing. Cloning and nucleotide sequencing was the earliest technique used to identify the sequences of integrated HBV DNA and the adjacent cellular DNA. Although the detailed integrated sequence information can be identified, this method is laborious and inefficient. A cellular genomic library must be constructed through a specific restriction enzyme digest and then screened with the HBV probe. The positive clones are subsequently sequenced. During this process, many integrated sequences may be lost due to the choice of restriction enzyme and the amplification of the genomic library. This method is not suitable to screen a large number of unknown virus-cell junctions.

PCR is a molecular biology technique used to amplify specific DNA fragments. PCR can greatly increase the amount of target DNA making it a suitable method to detect HBV integration from samples that are always obtained in small amounts. Common PCR strategies used for HBV integration are Alu-PCR and inverse-PCR (invPCR).

Alu-PCR. Alu-PCR is a "DNA fingerprinting" technique based on using Alu elements as target loci. Alu-repeated sequences being one of the most abundant repetitive elements interspersed in the human genome at a mean interval of about 4 kb and accounting for more than 10% of the human genome. Alu elements are frequently mapped within or adjacent to HBV integration fragments. The primers specific for HBV DNA and Alu repetitive sequences are used to amplify virus-cell DNA junctions and many HBV DNA integrations in patients with HBV infection have been detected.

invPCR. InvPCR is used to amplify the unknown cellular DNA adjacent to an integrated sequence. Restriction enzymes are used to digest DNA, after which circularization of cleavage products through self-ligation and amplification using specific forward primers based on the HBV sequence is done. Normally, a restriction enzyme that has only one cutting site in the genome will have a melting temperature of about 4 kb and accounting for more than 10% of the human genome.

High-Throughput Sequencing Technology. High-throughput sequencing technology, also known as NGS technology can sequence millions of reads in a single run and does not require previous knowledge of the target sequences. Depending on the strategy and target, NGS can be used for whole-genome sequencing (WGS), whole-exome sequencing, RNA sequencing (RNA-seq), single-cell sequencing, and captured/enriched NGS among others. Many of these technologies have been used for the detection of HBV DNA integration. WGS and RNA-seq were first used to detect HBV integration in HCC patients in 2012 and are both sensitive and comprehensive at the identification and quantification of viral integrants across the human genome and transcriptome. RNA-seq allows for analysis of differential gene expression and can be more sensitive in reporting sub-clonal HBV integrations than WGS due to a greater sequencing coverage, especially if the sub-clonal genomic integration greatly alters the produced transcript. However, those integrations resulting in no RNA transcription cannot be detected by RNA-seq.

WGS is a powerful method to detect HBV integration in HCC genomes limited by the high cost of performing population-scale studies. Thus, high-throughput viral integration detection (HIVID), a sensitive low cost method, was created and has been used widely. HIVID uses a set of HBV probes to enrich HBV sequence fragments, which are then sequenced using a high-throughput platform. Compared with WGS, HIVID is cost-effective while still providing high specificity and sensitivity to detect viral integration throughout the human genome.

Research Models for HBV DNA Integration

Currently, most knowledge about HBV DNA integration is acquired from liver tissues of patients infected with HBV or non-primate animal models of other hepadnaviruses, such as woodchuck infected with woodchuck hepatitis virus and duck infected with DHBV. Studies of HBV DNA integration in HBV models have been stymied due to the lack of models for HBV infection. With the discovery of the HBV receptor NTCP, a series of HBV in vitro infection models have been established, which is of use in the study of HBV DNA integration. HBV DNA integration occurs in the early stages of infection, so here we introduce models that support HBV infection.

HBV in vitro infection models consists of primary human hepatocytes, HepG2-HepG2 or human NTCP (NTCP) cells, and NTCP-expressing hepatoma cells (such as HepG2-NTCP cells and Huh7-NTCP cells). Studies using these models show that HBV DNA is integrated quickly after infection with a variety of host sequences which often consist of tandemly repeating non-coding DNA; the HBV genotypes and various cell lines may affect the detection of HBV DNA integration.

HBV in vivo infection models consists of chimpanzee, macaque expressing NTCP, Tupaia and human liver chimeric mice. Chimpanzees remain the only immunocompetent non-human hosts fully susceptible to infection with HBV. In the livers of chimpanzees with chronic HBV infection, clonally expanded hepatocytes carried integrated viral DNA. Human liver chimeric mice harbor primary human hepatocytes incorporated into the murine liver parenchyma and can support HBV infection for extended periods of time. Despite HBV DNA integration was detected in this model, integrated viral DNA was not observed to contribute to antigen production. Macaques expressing NTCP are a non-human primate that can support HBV infection, while Tupaia are the only non-primate animals experimentally susceptible to HBV infection. Although infection of adult Tupaia results in acute self-limited infection, neonate Tupaia can be infected with HBV for chronic infection of the liver with moderate levels of viremia and histopathological changes, such as mild fibrosis and HCC development. The Tupaia model may be a suitable animal model for studying the relationship between HBV DNA integration and HCC, but at the time of writing the literature is silent on HBV DNA integration using either macaque expressing NTCP or Tupaia.

The Roles of HBV DNA Integration in Disease

HBV DNA integration is a common phenomenon during the HBV life cycle and has been widely reported, from cell lines infected with HBV, chimpanzees chronically infected with HBV, and patients chronically infected with HBV with and without HCC. HBV DNA integration is an early event in HBV infection, which can run through all stages of chronic HBV infection. Chronic HBV infection can cause a series of liver diseases, including chronic hepatitis, cirrhosis, and HCC, with HBV DNA integration playing a role in the progression of these diseases.

HBV-related liver diseases are mainly driven by sustained inflammation modulated by immune cells. As an important general phenomenon in liver diseases, HBV DNA integration appears to have some relationship with the immune response in the liver microenvironment. Chronic inflammation associated with HBV infection can increase the exposure of hepatocytes to oxidative stress, leading to greater levels of double-stranded DNA breaks which form the substrate for HBV DNA integration. It has been shown that HBV DNA integration is increased under oxidative stress. Furthermore, the immune system in the liver microenvironment may facilitate HBV DNA integration through clonal hepatocyte expansion. HBV-specific T cells, HBV
DNA integration, and clonal hepatocyte expansion has been detected in chronic hepatitis B patients considered immune tolerant.10 HBV-specific T cells selectively kill hepatocytes undergoing HBV virus replication, leading to clonal expansion of HBV DNA-integrated hepatocytes as they bypass the HBV-specific T cell immune response. Meanwhile, HBV DNA integration also affects the immune response and leads to inflammation in the liver microenvironment. High levels of HBsAg can lead to T cell exhaustion, resulting in limited or weak T cell responses.111,112 Integrated HBV DNA has been reported as another source of HBsAg apart from cccDNA12 and may serve as a persistent factor impairing the HBV-specific T cell immune response. In addition, hepatic CD205+ macrophages from HBsAg-transgenic mice exhibited an activated phenotype and expressed higher levels of inflammatory cytokine, chemokine, and phagocytosis-related genes,112 suggesting that HBsAg produced from integrated HBV DNA may induce inflammation through the immune response in the liver microenvironment. The relationship between HBV DNA integration and the immune system in the liver microenvironment is complex and lacks direct evidence, thus perhaps serving as an important future direction of study.

HBV DNA integration is more common in HBV-related HCC than in the non-tumor tissue,10,112-127 and is associated with hepatocarcinogenesis via multiple mechanisms, including insertional mutagenesis acting in cis of HCC-associated genes, induction of chromosomal instability, and the expression of mutant HBV genes from the stably integrated HBV DNA.111-124

Insertional Mutagenesis. Insertional mutagenesis caused by HBV DNA integration is common as the insertion site of HBV DNA integration occurs throughout the whole host genome.122,123,125,126,127,128,129,130 HBV DNA integration in HCC patients with HBV infection, many recurrent integration sites that may cause mutation of HCC-associated genes have been identified. The first gene that was reported to be a recurrent HBV integration site was hTERT in two HCC tumor samples.130,131 The telomerase reverse transcriptase encoded by hTERT plays an important role in overriding cellular senescence and its dysregulation in somatic cells is linked to carcinogenesis.132 The activation of telomerase and its role in maintenance of telomere length are key events to drive hepatocarcinogenesis.133-139 A recent study reported that the E74-like ETS transcription factor 4 (ELF4), which normally drives HBV gene transcription, can bind to the chimeric HBV enhancer I at the TERT promoter, resulting in the activation of telomerase.14 A histone methyltransferase encoded by MLL4 plays an important role in epigenetics and gene expression in cancer cells140 and is a part of the ASC-2 complex implicated in the p53 tumor suppressor pathway.141 Other members of the MLL family are also frequently mutated in solid tumors.121,122 Viral integration within the MLL4 gene results in a >20-fold increase in the transcript level of MLL4.142 As the key cell-cycle regulators in eukaryotic cells, Cyclins are the major targets for oncogenic signals. Cyclin E1 is encoded by CCNE1 and is required for the cell-cycle G1/S phase transition. The expression of CCNE1 was increased by approximately 30-fold in tumors with HBV integration compared with normal controls.143 HBV integration at CCNE7 suggests a mechanism of dysregulation of the G1/S phase transition leading to HCC;144 however, a study of overexpressed CCNE1 in transgenic mice found chromosomal instability in addition to dysregulated cell-cycle control through accelerated S phase entry in CCNE1 overexpressed mouse liver tissues.124 HBV integration in the ATPase sarcoplasmic/endo-plasmic reticulum Ca2+ transporting 1 (SERCA1) gene in HCC tissue was reported to result in an HBx/SERCA1 fusion protein, which drove oncogenesis by inducing apoptosis.119

Chromosomal Instability. Chromosomal instability, a hallmark of cancer cells, is another possible consequence of HBV DNA integration and may contribute to hepatocarcinogenesis.125-129 It has been hypothesized that viral DNA integration may cause chromosomal instability, which is recognized as one of the factors leading to tumorigenesis.130 This hypothesis was subsequently tested by a WGS study, in which the somatic copy number variations (CNVs) near the 344 HBV integration sites in tumors were examined. The results indicated that somatic CNVs were positively correlated with the number of HBV integration reads, suggesting that HBV integration might impair chromosomal stability and cause the copy number to change.12 A similar study reported the same result.55

Telomeres are repetitive DNA regions at the ends of chromosomes and maintain chromosomal stability by protecting them from degradation and fusion events. HBV integration sites are markedly enriched in the vicinity of telomeres in HCC compared with matched control tissue,145 suggesting a mechanism involving chromosomal stability. Furthermore, as discussed above, HBV integrations into hTERT and long non-coding RNAs involved in telomere maintenance and chromosome localization have been identified.111-124

Mutant HBV Genes. Mutant HBV genes are also the products of HBV DNA integration and can stably express mutant HBV proteins, which may promote hepatocarcinogenesis. The sequence of the HBV DNA integration can at most transcribe one intact 2.4/2.1-kb HBV mRNA (coding HBsAg), with integrated HBV DNA reported as another source of HBsAg apart from cccDNA.8,67 Because deletions at the termini of up to 200 bp from the integrated viral DNA are common,130,131,132 truncated HBsAg can also be produced. Intact HBsAg and some truncated HBsAg are associated with endoplasmic reticulum stress responses, thereby increasing the risk of HCC.133,134,135 Moreover, the HBsAg derived from integrated HBV DNA can participate in the assembly and release of hepatitis delta virus (HDV), a satellite virus of HBV that requires HBsAg for production of new virions.136 In vivo, chronic coinfection of HBV and HBV in patients often causes severe necroinflammation and is associated with a higher risk of cirrhosis and HCC development compared with patients with only HBV infection.137-139

Furthermore, as enhancer I is recognized to be active in the integrated form, the incomplete HBx open reading frame (ORF) can be transcribed to produce truncated HBx,140,141 which is functional in transcriptional transactivation.142 Overexpression of the truncated HBx can induce stem cell-like properties,143 transformation and inhibition of apoptosis,144,145 and tumor invasion.146,147 Meanwhile, HBx cellular transcripts can be produced due to the lack of a stop codon in the 3′ end of the HBx ORF.70,75,148,149

HBV DNA transcription and stability are further regulated by epigenetic effects, along with both viral and host factors.150-152 Thus, integrated HBV DNA in the host genome may also recruit viral or host factors which perform epigenetic modifications, affecting either integrated HBV DNA expression or the host genome. Indeed, as described above, E74-like ELF4 can bind to the chimeric HBV enhancer I at the TERT promoter, resulting in telomerase activation.146 Clarification of the influence of integrated HBV DNA regulated by transcription factors or epigenetic modifications may be an important issue. Despite the hepatocarcinogenic effects of HBV DNA integration, in some cases it can be utilized for HCC treatment. A study which aimed to detect and use the HBV-host-integrated DNAs in plasma samples as potential circulating biomarkers to detect the tumor load in HBV-related HCC patients may help to monitor the residual tumor and recurrence clonality after tumor resection.151

The current goal of HBV antiviral therapy is to achieve a "functional cure" consisting of persistently undetectable HBV DNA in serum, loss of HBsAg, preferably with seroconversion (from HBsAg to antibody to HBsAg, anti-HBs), and normal liver enzymes and histology after stopping treatment.152,153 Persistently undetectable HBV DNA in serum can commonly be achieved through current antiviral therapies (using nucleos(t)ide analogs or PegIFNα), but the loss of HBsAg is rare,154 perhaps because current treatments cannot clear cccDNA, the main source of HBsAg. Furthermore, integrated HBV DNA can express HBsAg, making the loss of HBsAg more difficult.154,155 In this way, HBV DNA integration will seriously hinder the achievement of a functional cure.

Potential Therapeutic Strategies for HBV DNA Integration

Many therapeutic approaches for HBV infection have been developed and used to cure HBV infection.155,156,157 Currently, there are no treatment strategies targeting the integrated HBV DNA. This may be due to the complexity of HBV DNA integration, as the HBV DNA sequence integrated host genome is variable, consists of many different integration sites, which are mostly unable to produce RNAs. Potential treatment strategies to target integrated HBV DNA may be through gene therapies or RNA interference (RNAi)-based
therapeutic targeting transcripts derived from integrated HBV DNA. In a human clinical trial with an RNAi-based therapeutic targeting HBV transcripts, ARC-520 strongly reduced HBsAg levels in treatment-naive patients positive for HBcAg but the reduction in HBsAg levels was significantly less in patients who were HBcAg-negative, indicating that ARC-520 could not target HBsAg mRNA transcribed from integrated HBV DNA.1,15,16 Improved RNA therapies that can target viral transcripts regardless of origin could be a promising treatment strategy.

Gene therapies mainly depend on gene-editing tools, such as CRISPR-Cas9, zinc-finger nucleases, and transcription activator-like effector nucleases, which have been used to target HBV cccDNA.16,17,19,20 Gene therapy is still in its early stages of exploration and has many issues to be solved before clinical application is viable. The most basic requirement of gene editing in clinical use is to ensure both accuracy and safety, with off-target effects being troubling. The sequence and site diversity of HBV DNA integration will be problematic in the application of gene therapies. It should be noted that most of the impact of HBV DNA integration comes from the destruction of the continuity of the host genome by insertion, and it is difficult for current gene-editing techniques to remove the inserted HBV DNA sequence. Overall, the use of gene therapies to target integrated HBV DNA is still in its early stages.

Possible Future Research Prospects of HBV DNA Integration

HBV cccDNA is the primary reason that HBV continues to lack a functional cure. Therefore, many studies are devoted to removing or inactivating cccDNA. However, HBV DNA integration also plays an important role in HBV-related diseases, especially HCC. Although research on HBV DNA integration has made great strides, problems remain.

The Role of HBV Itself in HBV DNA Integration. HBV DNA integration occurs early in the viral life cycle2,6,3 and integration sites are at double-stranded breaks of the host genome.56 Can HBV infection cause double-stranded breaks in the host genome? The role, if any, that viral protein plays in the integration process needs to be clarified.

Generation of Mature HBV DNA Integrated Fragment dsDNA. Similar to cccDNA, HBV dsDNA contains several features: (1) a capped RNA oligomer at the 5’ end of (+)DNA, (2) Pol protein, which is covalently linked to the 5’ end of the (−)DNA, and (3) incomplete plus-strand dsDNA. Does HBV dsDNA need to be repaired before integration? Is the mechanism similar to the repair mechanism of HBV rcDNA? What virus or host proteins are involved in this process?

The Integration Mechanisms of HBV DNA. The NHEJ or MMEJ DNA repair pathways are used to perform HBV DNA integration. Why are these two cellular processes hijacked? What is the mechanism of integration, and are there other ways of integration? Moreover, a determination of whether it is random integration into the host genome needs to be investigated.

Appropriate Animal Research Models. The role of HBV DNA integration in HBV-related liver diseases is complex. Appropriate animal models that can simulate the pathogenesis of HBV will help us understand more clearly the role of HBV DNA integration in disease and assist related drug development.

The Relationship between HBV DNA Integration and the Immune Response in the Liver Microenvironment. This relationship is closely related to the occurrence and development of HBV-related diseases. Understanding this will prove useful for the monitoring and treatment of the disease.

Mapping HBV DNA Integration in the Host Genome. This map should include HBV DNA integration sites, integration sequences, transcripts, protein expression, and related pathological changes. This will enable the development of the full picture that HBV DNA integration plays in the occurrence of disease and provide more precise targets for targeted gene therapies. Furthermore, this will support the location of HBV DNA integration sites that cause disease through analysis of HBV DNA integration in individual patients, allowing for precision medicine.

Summary

During the past four decades, great strides have been made in the HBV DNA integration field, although some key aspects remain muddled, such as the molecular mechanism of integration and the role of HBV integration in HCC initiation and development. It remains hopeful that continual progress in the development of detection methods and research models, such as NTCP-expressing hepatoma cell lines and animals will result in a comprehensive and detailed understanding of HBV DNA integration. As a part of the cellular genome, integrated HBV DNA is more stable than cccDNA. While many direct-acting antiviral and host-targeting agents aimed at cccDNA destruction or silencing have been developed, they do not address the problem of integrated HBV DNA. It should be recognized that, in addition to cccDNA, integrated HBV DNA plays an important role in HBV-related diseases, especially HCC. HBV DNA integration should be used as a clinical indicator for disease monitoring and treatment of patients with HBV infection. Even if cccDNA can be cleared in the future, a functional cure may not be feasible because of the fundamental challenge integrated HBV DNA will continue to pose. Thus, the exact role of integrated HBV DNA in disease remains a question of interest in the development of curative therapeutics and to gain a clearer picture of HBV biology.

REFERENCES

1. Blumberg, B.S., Alter, H.J., and Visnich, S. (1965). A ‘new’ antigen in leukemia sera. JAMA 191, 541–546.
2. WHO. (2017). Hepatitis B Fact Sheet No. 204. http://www.who.int/mediacentre/factsheets/fs204/en/.
3. Schweitzer, A., Horn, J., Mikolajczyk, R.T., Krause, G., and Ott, J.J. (2015). Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet 386, 1546–1555.
4. Polaris Observatory. (2018). Global prevalence, treatment, and prevention of hepatitis B virus infection in 2016: a modelling study. Lancet Gastroenterol. Hepatol. 3, 383–403.
5. Nossal, M. (2015). HBV cccDNA: viral persistence reservoir and key obstacle for a cure of chronic hepatitis B. Gut 64, 1972–1984.
6. Tu, T., Budzinska, M.A., Shackel, N.A., and Urban, S. (2017). HBV DNA integration: molecular mechanisms and clinical implications. Viruses 9, 75.
7. Budzinska, M.A., Shackel, N.A., Urban, S., and Tu, T. (2018). Cellular genomic sites of hepatitis B virus DNA integration. Genes 9, 365.
8. Wooddell, C.J., Yuan, M.F., Chan, H.L., Gish, R.G., Locarnini, S.A., Chavez, D., Ferrari, C., Given, B.D., Hamilton, J., Kanner, S.B., et al. (2017). RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci. Transl. Med. 9, eaan0241.
9. Hu, B., Wang, R., Fu, J., Su, M., Du, M., Liu, Y., Li, H., Wang, H., Lu, F., and Jiang, J. (2018). Integration of hepatitis B virus S gene impacts on hepatitis B surface antigen levels in patients with antiviral therapy. J. Gastroenterol. Hepatol. 33, 1389–1396.
10. Chakraborty, P.R., Ruiz-Opazo, N., Shouval, D., and Shafritz, D.A. (1980). Identification of integrated hepatitis B virus DNA and expression of viral RNA in an HBsAg-producing human hepatocellular carcinoma cell line. Nature 286, 531–533.
11. Brechot, C., Pourcel, C., Louise, A., Rain, B., and Tiollais, P. (1980). Presence of integrated hepatitis B virus DNA sequences in cellular DNA of human hepatocellular carcinoma. Nature 286, 533–535.
12. Kawai, S., Yokosuka, O., Imazeki, F., Maru, Y., and Saisho, H. (2001). State of HBV DNA in HBsAg-negative, anti-HCV-positive hepatocellular carcinoma: existence of HBV DNA possibly as nonintegrated form with analysis by Alu-HBV DNA PCR and conventional HBV PCR. J. Med. Virol. 64, 410–418.
13. Minami, M., Poussin, K., Brechot, C., and Paterlini, P. (1995). A novel PCR technique using Alu-specific primers to identify unknown flanking sequences from the human genome. Genomics 29, 403–408.
14. Georgi-Geisberger, P., Bens, H., Loncarevic, I.F., Yu, Z.Y., Tang, Z.Y., Zentgraf, H., and Schroder, C.H. (1992). Mutations on free and integrated hepatitis B virus DNA in a patient with severe liver disease. Genomics 13, 259–264.
15. Fujimoto, A., Totoki, Y., Abe, T., Boroevich, K.A., Hosoda, F., Nguyen, H.H., Aoki, M., Hosono, N., Kubo, M., Miya, F., et al. (2012). Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat. Genet. 44, 760–764.
16. Summers, J., Jibert, A.R., Yang, W., Aldrich, C.E., Saputelli, J., Liwiv, S., Toll, E., and Mason, W.S. (2003). Hepatocyte turnover during resolution of a transient hepadnaviral infection. Proc. Natl. Acad. Sci. U S A 100, 11652–11659.
17. Yang, W., and Summers, J. (1999). Integration of hepadnavirus DNA in infected liver: evidence for a linear precursor. J. Virol. 73, 9710–9717.
19. Allweiss, L., Volz, T., Giersch, K., Kaih, J., Raffa, G., Petersen, J., Lohse, A.W., Beninati, C., Pollicino, T., Urban, S., et al. (2018). Proliferation of primary human hepatocytes and prevention of hepatitis B virus reinfec tion efficiently deplete nuclear cccDNA in vivo. Gut 67, 542–552.

20. Tu, T., Budzinska, M.A., Vondran, F.W.R., Shackel, N.A., and Urban, S. (2018). Hepatitis B virus DNA integration occurs early in the viral life cycle in an in vitro infection model via sodium taurocholate cotransporting polypeptide-dependent uptake of enveloped virus particles. J. Virol. 92, e01038–e01022.

21. Sung, W.K., Zheng, H., Li, S., Chen, R., Liu, X., Li, Y.Y., N.P., Lee, W.H., Ariyaratne, P.N., Tennakoon, C., et al. (2012). Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 44, 765–769.

22. Yan, H., Yang, Y., Zhang, L., Tang, G., Wang, Y., Xue, G., Zhou, W., and Sun, S. (2015). Characterization of the genotype and integration patterns of hepatitis B virus in early- and late-onset hepatocellular carcinoma. Hepatology 61, 1821–1831.

23. Wang, W., Huang, L., Mai, M.D., and Su, I.J. (2006). Hepatitis B virus pre-S mutants, endoplasmic reticulum stress and hepatocarcinogenesis. Cancer Sci. 97, 683–688.

24. Tu, T., Budzinska, M.A., Shackel, N.A., and Gilbert, A.R. (2015). Conceptual models for the initiation of hepatitis B virus-associated hepatocellular carcinoma. Liver Int. 35, 1786–1800.

25. Meier, P.J., and Stieger, B. (2002). Bile salt transporters. Annu. Rev. Physiol. 64, 635–661.

26. Schulze, A., Gripp, P., and Urban, S. (2007). Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 46, 1759–1768.

27. Leitner, C.M., Gruen-Bernhard, S., and Glebe, D. (2008). Role of glycosaminoglycans for binding and infection of hepatitis B virus. Cell. Microbiol. 10, 122–133.

28. Yan, H., Zhong, G., Xu, G., He, W., Jing, Z., Gao, Z., Huang, Y., Qi, Y., Peng, B., Wang, H., et al. (2012). Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. eLife 1, e00049.

29. Blondot, M.L., Bruss, V., and Kann, M. (2016). Intracellular transport and egress of hepatitis B virus. J. Hepatol. 64, S49–S59.

30. Koniger, C., Wingert, I., Marsmann, M., Rosler, C., Beck, J., and Nassal, M. (2014). Involvement of the host DNA-repair enzyme TDP2 in formation of the covalently closed circular DNA persistence reservoir of hepatitis B viruses. Proc. Natl. Acad. Sci. U S A 111, E4243–E4253.

31. Qi, Y., Gao, Z., Xu, G., Peng, B., Liu, C., Yan, H., Yao, Q., Sun, G., Liu, Y., Tang, D., et al. (2016). DNA polymerase kapa is a key cellular factor for the formation of covalently closed circular DNA of hepatitis B virus. PLoS Pathog. 12, e1005893.

32. Long, Q., Yan, R., Hu, J., Cai, D., Mitra, B., Kim, E.S., Marchetti, A., Zhang, H., Wang, S., et al. (2017). The role of host DNA ligases in hepatitis viru s covalently closed circular DNA formation. PLoS Pathog. 13, e1006784.

33. Cui, X., McAllister, R., Boregowda, R., Sohn, J.A., Cortes Ledesma, F., Caldecott, K.W., Seeger, C., and Hu, J. (2015). Does tyrosyl DNA phosphodiesterase-2 play a role in covalently closed circular DNA formation? PLoS Pathog. 6, e1001107.

34. Liu, Y., et al. (2017). The role of host DNA ligases in hepadnavirus covalently closed circular DNA formation. PLoS Pathog. 13, e1005893.

35. Valenzuela, P., Gray, P., Quiroga, M., Zaldivar, J., Goodman, H.M., and Rutter, W.J. (2007). Hepatitis B virus subviral envelope particle morphogenesis and intracellular trafficking. J. Virol. 81, 3842–3851.

36. Jiang, Z., Jhunjhunwala, S., Liu, J., Haverty, P.M., Kennemer, M.I., Guan, Y., Lee, W., et al. (2008). Characterization of the contribution of spliced RNAs of hepatitis B virus to DNA synthesis in transfection cultured of Hep7 and HepG2 cells. Virology 379, 30–37.

37. Hu, J., and Boyer, M. (2006). Hepatitis B virus reverse transcriptase and epsilon RNA sequences required for specific interaction in vitro. J. Virol. 80, 2141–2150.

38. Jones, S.A., Boregowda, R., Spratt, T.E., and Hu, J. (2012). In vitro epsilon RNA-dependent protein priming activity of human hepatitis B virus polymerase. J. Virol. 86, 5134–5150.

39. Zhao, X.L., Yang, J.R., Lin, S.Z., Ma, H., Guo, F., Yang, R.F., Zhang, H.H., Han, J.C., Wei, L., and Pan, X.B. (2016). Serum viral duplex-linear DNA proportion increases with the progression of liver disease in patients infected with HBV. Gut 65, 502–511.

40. Valenzuela, P., Gray, P., Quiroga, M., Zaldivar, J., Goodman, H.M., and Rutter, W.J. (1979). Nucleotide sequence of the gene coding for the major protein of hepatitis B virus surface antigen. Nature 280, 815–819.

41. Nassal, M. (2008). Hepatitis B viruses: reverse transcription a different way. Virus Res. 134, 235–249.

42. Chauhan, R., Churchill, N.D., Mullooney-Cousins, P.M., and Michalak, T.I. (2017). Initial sites of hepadnavirus integration into host genome in human hepatocytes and in the woodchuck model of hepatitis B-associated hepatocellular carcinoma. Oncogenesis 6, e317.

43. Summers, J., and Mason, W.S. (2004). Residual integrated viral DNA after hepadnavirus clearance by nucleoside analog therapy. Proc. Natl. Acad. Sci. U S A 101, 638–640.

44. Mason, W.S., Liu, C., Aldrich, C.E., Litvin, S., and Yeh, M.M. (2010). Clonal expansion of normal-appearing human hepatocytes during chronic hepatitis B virus infection. J. Virol. 84, 8308–8318.

45. Mason, W.S., Low, C.H., Xu, C., Aldrich, C.E., Scougall, C.A., Grosse, A., Clouston, A., Chavez, D., Litwin, S., Peri, S., et al. (2009). Detection of clonally expanded hepatitis B virus chimpanzees with chronic hepatitis B virus infection. J. Virol. 83, 8406–8408.

46. Enders, G.H., Ganem, D., and Varum, H. (1985). Mapping the major transcripts of ground squirrel hepatitis virus: the presumptive template for reverse transcriptase is terminally redundant. Cell 42, 297–308.
The Innovation

70. Lau, C.C., Sun, T., Ching, A.K., He, M., Liu, J.W., Wong, A.M., Co, N.N., Chan, A.W., Li-P, Lung, R.H., et al. (2020). Viral-human chimeric viruses predispose to liver cancer development and progression. Cancer cell 25, 335–349.

71. Budzinska, M.A., Shackel, N.A., Urban, S., and Tu, T. (2018). Sequence analysis of integrated hepatitis B virus DNA during HBsAg-seroconversion. Emerg. Microbes Infect. 7, 142.

72. McVey, M., and Lee, S.E. (2008). MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endpoints. Trends Genetics 24, 529–538.

73. Matsuoka, S., and Tokino, T. (1990). Integration of hepatitis B virus DNA and its implications for hepatocarcinogenesis. Mol. Biol. Med. 7, 243–260.

74. Sze, K.M., Ho, D.W., Chiu, Y.T., Tsai, Y.M., Chan, L.K., Lee, J.M., Chok, K.S., Chan, A.C., Tang, C.N., Tang, V.W., et al. (2020). HBV-TERT promoter integration harnesses host ELF4 resulting in TERT gene transcription in hepatocellular carcinoma. Hepatology. https://doi.org/10.1002/hep.32311.

75. Saigo, K., Yoshida, K., Ikeda, R., Sakamoto, Y., Murakami, Y., Urashima, T., Asano, T., Li, X., Zhang, J., Yang, Z., Kang, J., Jiang, S., Zhang, T., Chen, T., Li, M., Lv, Q., Chen, X., Budzinska, M.A., Shackel, N.A., Urban, S., and Tu, T. (2018). Sequence analysis of in-...

76. McVey, M., and Lee, S.E. (2008). MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endpoints. Trends Genetics 24, 529–538.

77. Vlahos, R., Taton, C., and Paterlini-Brechot, P. (2005). Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut 54, 107–116.

78. Saigo, K., Yoshida, K., Ikeda, R., Sakamoto, Y., Murakami, Y., Urashima, T., Asano, T., Kenmochi, T., and Inoue, I. (2008). Integration of hepatitis B virus DNA into the myeloid/lymphoid or mixed-lineage leukemia (MLL4) gene and rearrangements of MLL4 in human hepatocellular carcinoma. Hum. Mutat. 29, 703–708.

79. Hu, B., Huang, W., Wang, R., Zhang, W., Su, M., Li, H., Wang, H., Cao, B., Deng, D., Li, Q.Q., et al. (2020). High rate of detection of human ESPL1-HBV fusion in patients with HBV-related liver cancer: a Chinese case-control study. Anticancer Res. 40, 245–252.

80. Saigo, K., Yoshida, K., Ikeda, R., Sakamoto, Y., Murakami, Y., Urashima, T., Asano, T., Kenmochi, T., and Inoue, I. (2008). Integration of hepatitis B virus DNA into the myeloid/lymphoid or mixed-lineage leukemia (MLL4) gene and rearrangements of MLL4 in human hepatocellular carcinoma. Hum. Mutat. 29, 703–708.

81. Li, X., Zhang, J., Yang, Z., Kang, J., Jiang, S., Zhang, T., Chen, T., Li, M., Lv, Q., Chen, X., Budzinska, M.A., Shackel, N.A., Urban, S., and Tu, T. (2018). Sequence analysis of in-...

82. Saigo, K., Yoshida, K., Ikeda, R., Sakamoto, Y., Murakami, Y., Urashima, T., Asano, T., Kenmochi, T., and Inoue, I. (2008). Integration of hepatitis B virus DNA into the myeloid/lymphoid or mixed-lineage leukemia (MLL4) gene and rearrangements of MLL4 in human hepatocellular carcinoma. Hum. Mutat. 29, 703–708.

83. Li, X., Zhang, J., Yang, Z., Kang, J., Jiang, S., Chen, T., Li, M., Lv, Q., Chen, X., Budzinska, M.A., Shackel, N.A., Urban, S., and Tu, T. (2018). Sequence analysis of in-...

84. Saigo, K., Yoshida, K., Ikeda, R., Sakamoto, Y., Murakami, Y., Urashima, T., Asano, T., Kenmochi, T., and Inoue, I. (2008). Integration of hepatitis B virus DNA into the myeloid/lymphoid or mixed-lineage leukemia (MLL4) gene and rearrangements of MLL4 in human hepatocellular carcinoma. Hum. Mutat. 29, 703–708.

85. Li, X., Zhang, J., Yang, Z., Kang, J., Jiang, S., Chen, T., Li, M., Lv, Q., Chen, X., Budzinska, M.A., Shackel, N.A., Urban, S., and Tu, T. (2018). Sequence analysis of in-...

86. Saigo, K., Yoshida, K., Ikeda, R., Sakamoto, Y., Murakami, Y., Urashima, T., Asano, T., Kenmochi, T., and Inoue, I. (2008). Integration of hepatitis B virus DNA into the myeloid/lymphoid or mixed-lineage leukemia (MLL4) gene and rearrangements of MLL4 in human hepatocellular carcinoma. Hum. Mutat. 29, 703–708.
Hence, the risk of hepatocellular carcinoma: a meta-analysis. J. Natl. Cancer Inst. 101, 1066–1082.

18. Wang, H.C., Wu, H.C., Chen, C.F., Fausto, N., Lee, H.Y., and Su, I.J. (2003). Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants that may induce endoplasmic reticulum stress. Am. J. Pathol. 163, 2441–2449.

19. Borinio, F., Heermann, K.H., Rizzotto, M., and Gerlich, W.H. (1986). Hepatitis delta virus: protein component of delta antigen and its hepatitis B virus-gen type-derived envelope protein. J. Virol. 58, 945–950.

20. Freitas, N., Cunha, C., Menne, S., and Gudima, S.O. (2014). Envelope proteins derived from naturally integrated hepatitis B virus DNA support assembly and release of infectious hepatitis delta virus particles. J. Virol. 88, 5742–5754.

21. Fatovich, G., Bortolotti, F., and Donato, F. (2008). Natural history of chronic hepatitis B: special emphasis on disease progression and prognostic factors. J. Hepatol. 48, 335–352.

22. Fatovich, G., Giustina, G., Christensen, E., Pantalena, M., Zagni, I., Realdi, G., and Schalm, S.W. (2000). Influence of hepatitis delta virus infection on morbidity and mortality in compensated cirrhosis type B. The European Concerted Action on Viral Hepatitis (Eurohep). Gut 46, 420–426.

23. Mariocchi, C., Viganò, P., Costa, R., Hubertini, G., and Cargnel, A. (1988). Histological and immunohistochemical features in chronic delta hepatitis. Basic Appl. Histoch. 32, 247–254.

24. Shamay, M., Agami, R., and Shaul, Y. (2001). HBV integrants of hepatocellular carcinoma cell lines contain an active enhancer. Oncogene 20, 6811–6819.

25. Schulte, V., Meyer, M., Hofschneider, P.H., Koshy, R., and Caselmann, W.H. (1994). Integrated hepatitis B virus X and 3 truncated preS2 sequences derived from human hepatomas encode functionally active transactivators. Oncogene 9, 3335–3344.

26. Kooner, V., Jayasudanu, N., and Kumar, R. (1996). A truncated mutant (residues 58–140) of the hepatitis B virus X protein retains transactivation function. Proc. Natl. Acad. Sci. U S A 93, 5647–5652.

27. Ng, K.Y., Chai, S., Tong, M., Guan, X.Y., Lin, C.H., Ching, Y.P., Xie, D., Cheng, A.S., and Ma, S. (2016). C-Terminal truncated hepatitis B virus X protein promotes hepatocellular carcinoma progression through induction of cancer and stem cell-like properties. Oncotarget 7, 24005–24017.

ACKNOWLEDGMENTS
This work was supported by the National Scientific Foundation of China (project no. 82041004), the Fundamental Research Funds for the Central Universities and Gilead Sciences Research Scholars Program in Liver Disease Asia.

DECLARATION OF INTERESTS
The authors declare no competing interests.