The united research of ER, EPR, String theory and Force

TianCheng Zhang
Faculty of science, University Malaya, Kuala Lumpur, Malaysia

Abstract: More than 100 years ago, there have been many theories about physics. However, there are still many argumentative theories about physics that need to move forward. For example, relativity and quantum mechanics are important branches. There is also a lot of controversy about relativity and quantum mechanics. Quantum entanglement is one of them. This article focuses on the relationship between ER, EPR and String theory.

1. Introduction
A few years ago, Dr. Malda Senna and Dr. Suskin proposed a new theory, ER = EPR. After proposing this theory, the academic world has a new perspective on the observation of quantum entanglement. This article will first discuss how wormholes are implemented in strings and give models and illustrations. Next I will try to explain how remote operations work. Finally, a new spatial presence model and how ER works in this new model will be presented.

Illustration 1: particle model
A particle model (every line represents a string, include open string and close string, Different color represents different string

The Einstein-Rosen Bridge is a method of connecting two different time and space in a direct bridge. We can use this theory to explain why quantum entanglement may occur. In addition, it should be noted that string theory (a theory that replaces quarks and other particles with one dimension) gives us new ideas that allow us to get more details about the microscopic perspective.

Below, we can somehow let the two particles produce quantum entanglement. For example, Pro. Mika Sillanpää and his team have achieved an interaction of two tympanic membranes at -273 °C, which can last for about 30 minutes. The following is explained by illustration.
Illustration 2: The first section of beginning of worm hole

This illustration shows that the elementary period when two particles produce entanglement.

First, set up two particles to be composed of strings. At the beginning, different strings begin to attract other strings (there is a theory of the attractiveness of strings, which will be explained below, but now it is only assumed that these strings have their own appeal). The strings are compressed by their own power because of the influence of other particles, the open part of any string begins to attract the open part of other strings from another particle, and there is a tendency for multiple strings to contain one or more new strings. The new connection between the next different particles begins as a prototype, which explains how the ER is built.

2. The principle of EPR

Through the above analysis, we already know how ER is structured. Below we can analyze how it can carry out such actions in the distance. As shown in the figure, each ER is composed of a new connection of open strings (which can be called the attractive trend of strings). So if we can assume that the string exists anywhere, and the string motion will affect the spatiotemporal variation around the string.

Illustration 3: The interval between strings

Here is an example to illustrate. Just like if you think there might be another person who is sitting in the same seat as copying. We believe that different string vibrations or different strings constitute different time and space, and there are many gaps or connections between these strings. If we use Cartesian coordinates to express different time and space, we can explain it more clearly.
We all know that we live in four dimensions. If you use the Cartesian coordinate system as a reference, there are other space-time spaces in the same position.

Illustration 4: The second section of beginning of worm hole

This section will discuss wormholes that span different dimensions. This means we may span a few different dimensions. If the creatures are in a higher form, we may use them at the same time. Interestingly, because the wormhole is in a string, the different parts of the link have different forces. Because strings are ubiquitous, wormholes are actually set up by a number of strings compressed together, and these strings have the same power.

Illustration 5: The model of link (worm hole) with string’s interval

3. Reaction at a distance

According to the EPR, if there are some materials in the ER or if there are any special methods to speed up the distribution of the fields, can it produce different effects? This assumption may be correct. Because of the compression of the strings, there is some center of force in the ER. However, we
believe that this is due to the compression of the strings and shortens the ER, thus accelerating the field rate.

4. The string vibration’s force

Illustration 6: The model of strings’ vibration

We can also say that the vibration of the strings is the basis of each substance. I believe that this vibration will generate strength, and it is the basic strength of every military force. Moreover, this vibration gives the string its own attractive force.

5. Field acceleration

We use the field to explain the medium of electromagnetic waves and light. If we think that Field can "accelerate", then this power can make the field structure more compact. For example, by attracting enough strings to give them enough power to perform wave or other types of martial arts through this link, it is faster than traditional time and space.

Illustration 7: the single string’s vibration

6. Black hole and white hole

If the basis of each substance is a string, it can be said that black holes and white holes are also set by strings.
First, set a force value A, which is a constant in the field. Many strings are entangled together and produce a force B consisting of chords with the same force direction. If, where appropriate, B > A, then the stops are completed, as mentioned earlier, the strings have their own appeal. Because when the string attraction encounters an inappropriate situation, the space and time has no conditional extension string settings. However, if you add a String Collection Chain (ER) setting with the same force direction and then complete the link, the “White Hole” will appear.

![Illustration 8: The classical model of white hole and black hole](image1)

In addition, if the string shrinks forever, the black hole will continue to extend. It will have a powerful internal force. If white holes and black holes may collapse after not having enough legions (strings), the space in the ER may also begin to collapse.

![Illustration 9: The collapse model](image2)

If one of the strings becomes weaker and weaker, the black hole and the white hole will start to collapse at the same time, and the ER will be destroyed. However, another situation is that if one is stronger, it will gain more attraction to absorb the other.

7. The third spacetime
Black holes and white holes are the connections between two words. Since the vibration of the string has an uncertain factor, the ER can connect not only the two spaces but also the third space and more.
8. Summary

(1) According to the experiment, we believe that EPR does exist. We have demonstrated how it works macroscopically and can explain some other phenomena.

(2) Strings Due to the vibration of the strings, the strength of the strings and the strength of the strings have their own appeal, and the vibration of the strings is also based on the direction of the strings.

(3) The strings have different force directions, but they can be changed by the other's string attraction.

(4) ER is set with String, many strings are attracted to each other, and ER is set with the same direction force.

(5) The field can be accelerated due to the force of the string (the vibration of the string).

(6) The black hole is a strong attraction field, and the white hole is a light attraction field. A black hole can extend because it stays absorbed, a white hole can stretch like a black hole, or it can collapse because of weakening power (not suitable for absorbing new ropes).

(7) ER has a single feature.

(8) Strings can be superimposed, and their forces can have the same characteristics.

(9) ER opening may not be 3 + 1 dimension space time. Because of the different types of strings and strings, we can open any different dimension.

Reference

[1] Laloe, Franck, Do We Really Understand Quantum Mechanics, Cambridge University Press, 2012, ISBN 978-1-107-02501-1

[2] Einstein A, Podolsky B, Rosen N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?. Phys. Rev.

[3] Haroche, Serge; Raimond, Jean-Michel. Exploring the Quantum: Atoms, Cavities, and Photons 1st. Oxford University Press. 2006.

[4] Letter from Einstein to Max Born, 3 March 1947; The Born-Einstein Letters; Correspondence between Albert Einstein and Max and Hedwig Born from 1916 to 1955, Walker, New York, 1971.

[5] Moreva, Ekaterina (2014). "Time from quantum entanglement: an experimental illustration". Physical Review A.

[6] Staff (11 October 2018). "Public Release: 11-OCT-2018 - Where is it, the foundation of quantum reality?". EurekAlert

[7] Some of the history of both referenced Zbinden, et al. experiments is provided in Gilder, L., The Age of Entanglement, Vintage Books