On perfect 2-colorings of the q-ary n-cube

Vladimir N. Potapov

Sobolev Institute of Mathematics, 4 Acad. Koptug avenue, 630090, Novosibirsk, Russia
Novosibirsk State University, 2 Pirogova st., 630090, Novosibirsk, Russia

A R T I C L E I N F O

Article history:
Received 8 July 2011
Received in revised form 29 November 2011
Accepted 6 December 2011
Available online 9 January 2012

Keywords:
Hypercube
Perfect coloring
Perfect code
MDS code
Equitable partition
Orthogonal array

A B S T R A C T

A coloring of a q-ary n-dimensional cube (hypercube) is called perfect if, for every n-tuple x, the collection of the colors of the neighbors of x depends only on the color of x. A Boolean-valued function is called correlation-immune of degree $n-m$ if it takes value 1 the same number of times for each m-dimensional face of the hypercube. Let $f = x^2$ be a characteristic function of a subset S of hypercube. In the present paper we prove the inequality $\rho(S)q(\text{cor}(f) + 1) \leq \alpha(S)$, where $\text{cor}(f)$ is the maximum degree of the correlation immunity of f, $\alpha(S)$ is the average number of neighbors in the set S for n-tuples in the complement of a set S, and $\rho(S) = |S|/q^n$ is the density of the set S. Moreover, the function f is a perfect coloring if and only if we have an equality in the formula above. Also, we find a new lower bound for the cardinality of components of a perfect coloring and a 1-perfect code in the case $q > 2$.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let Z_q be the set $\{0, \ldots, q-1\}$. The set Z_q^n of n-tuples over Z_q is called q-ary n-dimensional cube (hypercube). The Hamming distance $d(x, y)$ between two n-tuples $x, y \in Z_q^n$ is the number of positions at which they differ. If $d(x, y) = 1$, we call x and y neighbors. Define the number $\alpha(S)$ to be the average number of neighbors in a set $S \subseteq Z_q^n$ for n-tuples in the complement of S, i.e., $\alpha(S) = \frac{1}{q^n} \sum_{x \in S} |\{y \in S \mid d(x, y) = 1\}|$.

A mapping $\text{Col}: Z_q^n \rightarrow \{0, \ldots, k\}$ is called a perfect coloring with the matrix of parameters $P = \{p_{ij}\}$ if, for all i, j, for every n-tuple of color i, the number of its neighbors of color j is equal to p_{ij}. Other terms used for this notion in the literature are “equitable partition”, “partition design” and “distributive coloring”. In what follows we will only consider colorings in two colors (2-coloring). Moreover, for convenience we will assume that the set of colors is $\{0, 1\}$. In this case the Boolean-valued function Col is a characteristic function of the set of n-tuples colored by 1.

A 1-perfect code (one-error-correcting code) $C \subseteq Z_q^n$ can be defined as the set of units of a perfect coloring with the matrix of parameters $P = \left(\begin{array}{c} n(q-1) - 1 \\ n(q-1) \end{array} \right)$. The entry 0 in the Southeast says that no two codewords are neighbors, hence the minimum distance is at least 2; the entries in the first row show that each vector outside of the code is at distance 1 from exactly one codeword. If q is the power of a prime number then a coloring with such parameters exists only if $n = \frac{q^m - 1}{q - 1} (m$ is an integer). For $q = 2$ a list of achievable parameters and corresponding constructions of perfect 2-colorings can be found in [3,4].

Let U be a finite set. A correlation immune function of order $n-m$ is a function $f: Z_q^n \rightarrow U$ whose each value is uniformly distributed on all m-dimensional faces. For any function f we denote the maximum order of its correlation immunity by

$\rho(f)$.
cor(f). An orthogonal array \((OA(N, k, u, t))\) of strength \(t\) with \(N\) rows, \(k\) columns \((k \geq t)\) and based on \(u\) symbols is an \(N \times k\) array with elements from \(U, |U| = u\), such that every \(N \times t\) subarray contains each of the \(u^t\) possible \(t\)-tuples equally often as a row (say \(\lambda\) times). \(N\) must be a multiple of \(u^t\) and \(\lambda = N/u^t\) is the index of the array. The definition of correlation immune (of order \(t\)) function \(f\) is equivalent to the following property: the array whose rows are the vectors of \(f^{-1}(a)\) for each \(a \in U\) is an orthogonal array of strength \(t\). In [5] it is established that for each unbalanced Boolean function \(f = x^S (S \subset Z_q^n)\) the inequality \(\text{cor}(f) \leq \frac{2^n}{t} - 1\) holds. Moreover, in the case of the equality \(\text{cor}(f) = \frac{2^n}{t} - 1\), the function \(f\) is a perfect 2-coloring. Similarly, if for any set \(S \subset Z_q^t\) the Friedman inequality (see [6]) \(\rho(S) \geq 1 - \frac{n}{2 \text{nei}(f) + 1}\) becomes an equality then the function \(\chi^S\) is a perfect 2-coloring (see [11]). Consequently, in the extremal cases, regular distributions on balls follow from uniform distributions on faces. The main result of the present paper is the following theorem:

Theorem 1. (a) For each Boolean-valued function \(f = \chi^S\), where \(S \subset Z_q^n\), the inequality \(\rho(S)q(\text{cor}(f) + 1) \leq \alpha(S)\) holds.

(b) A Boolean-valued function \(f = \chi^S\) is a perfect 2-coloring if and only if \(\rho(S)q(\text{cor}(f) + 1) = \alpha(S)\).

2. Criterion for perfect 2-coloring

In the proof of the theorem we employ the idea from [1].

We consider \(Z_q\) as the cyclic group on the set \(\{0, \ldots, q - 1\}\). We may impose the structure of the group \(Z_q \times \cdots \times Z_q\) on the hypercube. Consider the vector space \(V\) of complex-valued functions on \(Z_q^n\) with the scalar product \((f, g) = \frac{1}{q^n} \sum_{x \in Z_q^n} f(x)g(x)\). For every \(z \in Z_q^n\) define a character \(\phi_z(x) = \xi^{(x,z)}\), where \(\xi = e^{2\pi i/q}\) is a primitive complex \(q\)th root of unity and \((x, z) = x_1z_1 + \cdots + x_nz_n\). Here all arithmetic operations are performed on complex numbers. As is generally known, the characters of the group \(Z_q \times \cdots \times Z_q\) form an orthonormal basis of \(V\). It is sufficient to verify that \(\xi^{kh} = 1\) and \(\sum_{j=0}^{q-1} \xi^{kj} = 0\) as \(k \neq 0\) mod. \(q\).

Let \(M\) be the adjacency matrix of the hypercube \(Z_q^n\). This means that \(Mf(x) = \sum_{y = (x,y) = 1} f(y)\). It is well known that the characters are eigenvectors of \(M\). Indeed, we have

\[M\phi_z(x) = \sum_{y, d(x,y) = 1} \xi^{(y,x)+c(z)} = \xi^{(x,z)} \sum_{j=1}^n \sum_{k=0}^{q-1} \xi^{kz} = ((n - wt(z))(q - 1) - wt(z))\phi_z(x), \]

where \(wt(z)\) is the number of nonzero coordinates of \(z\).

Consider a perfect coloring \(f \in \forall, f(Z_q^n) = \{0, 1\}\) with the matrix of parameters

\[A = \left(\begin{array}{cc} (n - 1) & b \\ c & (n - 1) \end{array} \right). \]

The vector \((-b, c)\) is an eigenvector of \(A\) with the eigenvalue \(n - 1\) \(- c - b\). The definition of a perfect 2-coloring implies that the function \((b+c)f - b\) is the eigenvector of the matrix \(M\). Moreover, the converse is true: every two-valued eigenvector of \(M\) generates a perfect coloring (see [5]).

Proposition 1 (See [3]).

(a) Let \(f\) be a perfect 2-coloring with the matrix of parameters \(A\). Then \(s = \frac{c+b}{q}\) is an integer and \((f, \phi_z) = 0\) for every \(n\)-tuple \(z \in Z_q^n\) such that \(wt(z) \neq 0\), \(s\).

(b) Let \(f: Z_q^n \rightarrow \{0, 1\}\) be a Boolean-valued function. If \((f, \phi_z) = 0\) for every \(n\)-tuple \(z \in \{0, \ldots, q - 1\}\) such that \(wt(z) \neq 0\), \(s\) then \(f\) is a perfect 2-coloring.

Proposition 2 (See [1]).

(a) If \(f \in \forall\) is a correlation-immune function of order \(m\) then \((f, \phi_z) = 0\) for every \(n\)-tuple \(z \in Z_q^n\) such that \(0 < wt(z) \leq m\).

(b) A Boolean-valued function \(f \in \forall\) is correlation-immune of order \(m\) if \((f, \phi_z) = 0\) for every \(n\)-tuple \(z \in Z_q^n\) such that \(0 < wt(z) \leq m\).

Corollary 1. Let \(f\) be a perfect 2-coloring with the matrix of parameters \(A\). Then \(\text{cor}(f) = \frac{c+b}{q} - 1\).

For 1-perfect codes the last statement was proved in [2].

Proof of Theorem 1. We have the following equalities by the definitions and general properties of an orthonormal basis.

\[\sum_x |(f, \phi_z)|^2 = \frac{1}{q^n} \sum_{x \in Z_q^n} |f(x)|^2 = \rho(S). \]

\[(f, \phi_z) = \frac{1}{q^n} \sum_{x \in Z_q^n} f(x) = \rho(S). \]

\[(Mf, f) = \frac{1}{q^n} \sum_{x \in Z_q^n} \sum_{y, d(x,y) = 1} f(x)f(y) = \text{nei}(S)\rho(S). \]
where \(\text{nei}(S) = \frac{1}{|S|} \sum_{x \in S} |y \in S \mid d(x, y) = 1| \).

\[
(Mf, f) = \sum_{z \in \mathbb{Z}^q_n} (n(q - 1) - wt(z)q)|f, \phi_z|^2.
\] (4)

From (1) to (4) and Proposition 2 we obtain the equality

\[
\text{nei}(S)\rho(S) = \rho(S)^2n(q - 1) + \sum_{z, wt(z) \geq \text{cor}(f) + 1} (n(q - 1) - wt(z)q)|f, \phi_z|^2.
\]

Since \(\sum_{z, wt(z) \geq \text{cor}(f) + 1} |f, \phi_z|^2 = \rho(S) - \rho(S)^2 \), we have

\[
\text{nei}(S)\rho(S) \leq \rho(S)^2n(q - 1) + (n(q - 1) - (\text{cor}(f) + 1)q)(\rho(S) - \rho(S)^2)
\] and

\[
(\text{cor}(f) + 1)q(1 - \rho(S)) \leq n(q - 1) - \text{nei}(S).
\] (5)

Substitute the set \(\mathbb{Z}^n_q \setminus S \) instead of the set \(S \) in the inequality (5). Since \(\text{cor}(\chi^S) = \text{cor}(\chi^{\mathbb{Z}^n_q \setminus S}) \), \(1 - \rho(\mathbb{Z}^n_q \setminus S) = \rho(S) \) and \(n(q - 1) - \text{nei}(\mathbb{Z}^n_q \setminus S) = \alpha(S) \) we obtain (a) of the theorem.

Moreover, the equality

\[
(\text{cor}(f) + 1)q(1 - \rho(S)) = n(q - 1) - \text{nei}(S)
\] (6)

holds if and only if \(f, \phi_z = 0 \) for every \(n \)-tuple \(z \) such that \(wt(z) \geq \text{cor}(f) + 2 \). Then from Proposition 1(b) we conclude that \(f \) is a perfect 2-coloring.

Any perfect 2-coloring satisfies (6), which is a consequence of Proposition 1(a) and Corollary 1. As mentioned above, equality (6) is equivalent to the equality (b) of the theorem. \(\square \)

Since \(\text{nei}(S) \neq 0 \), the inequality (5) implies the Bierbrauer–Friedman inequality (see [6,1])

\[
\rho(S) \geq 1 - \frac{n(q - 1)}{q(\text{cor}(f) + 1)}.
\]

For 1-perfect binary codes, a similar theorem was previously proved in [9]. Namely, if \(\text{cor}(S) = \text{cor}(H) \) and \(\rho(S) = \rho(H) \), where \(S, H \subseteq \mathbb{Z}^n_q \) and \(H \) is a 1-perfect code, then \(S \) is also a 1-perfect code.

3. Components of a perfect 2-coloring

By a bitrade of order \(n - m \) we will mean a subset \(B \subseteq \mathbb{Z}^n_q \) such that the cardinality of intersections of \(B \) and each \(m \)-dimensional face are even. For example, if \(q \) is even then \(B \subseteq \mathbb{Z}^n_q \) is a bitrade of order \(n - 1 \).

Proposition 3. Let \(B \subseteq \mathbb{Z}^n_q \) be a nonempty bitrade of order \(m \), \(m < n \). Then \(|B| \geq 2^{m+1} \).

Proof. Suppose that the statement is true for \(n = k \). We will prove it for \(n = k + 1 \). Since \(|B| \geq 2 \), there exist two parallel \(k \)-dimensional faces \(F_i, F_j \) such that the intersections \(F_i \cap S \) are nonempty for \(i = 1, 2 \). It is clear that \(F_i \cap S \) is a bitrade of order \(m - 1 \) in the \((n - 1) \)-dimensional cube \(F_i \). By induction hypothesis, \(|F_i \cap B| \geq 2^m \) for \(i = 1, 2 \); consequently, \(|B| \geq 2^{m+1} \). \(\square \)

Suppose that the characteristic functions \(f = \chi^{S_1} \) and \(g = \chi^{S_2} \) are perfect 2-colorings (correlation-immune) with the same matrix of the parameters \(\text{cor}(f) = \text{cor}(g) \). A set \(S_1 \triangle S_2 \) is called mobile and sets \(S_1 \setminus S_2 \) and \(S_2 \setminus S_1 \) are called components of perfect 2-colorings (correlation-immune functions) \(\chi^{S_1} \) and \(\chi^{S_2} \), respectively. It is clear, that a mobile set of correlation-immune function of order \(m \) is a bitrade of order \(m \).

Corollary 2. (a) Let \(f \) be a perfect 2-coloring with the matrix of parameters \(A \). If \(S \subset \mathbb{Z}^n_q \) is a component of \(f \) then \(|S| \geq 2^{\frac{q-1}{4}} \).

(b) Let \(C \subset \mathbb{Z}^n_q \) be a 1-perfect code. If \(S \subset \mathbb{Z}^n_q \) is a component of \(f \) then \(|S| \geq 2^{\frac{n(q-1)+1}{4}}-1 \).

If \(q = 2 \) then the lower bound \(|S| \geq 2^{\frac{n+1}{4}}-1 \) for the cardinality of components of 1-perfect codes is achievable (see, for example, [11]). In the case \(q > 2 \), an upper bound for the cardinality of components of 1-perfect codes is obtained constructively (see [10,8]). If \(q = p^\alpha \) and \(p \) is a prime number then \(|S| \geq p^{2^{m-1}}(\frac{\alpha}{2^{m-1}}+1)|S| \) where \(n = \frac{q-1}{q-1} \).

A set \(S \subset \mathbb{Z}^n_q \) is called MDS code with distance 2 if the intersection of \(S \) with each \(1 \)-dimensional face contains precisely one \(n \)-tuple. Obviously, a characteristic function of an MDS code is a perfect 2-coloring with the matrix of parameters \(\left(\begin{array}{c} \binom{n-1}{0} \\ \binom{n-1}{1} \\ \vdots \\ \binom{n-1}{n-1} \end{array} \right) \). If \(q \geq 4 \) then the lower bound \(|S| \geq 2^{q-1} \) for the cardinality of the components of MDS codes is achievable (see [7]).
References

[1] J. Bierbrauer, Bounds on orthogonal arrays and resilient functions, Journal of Combinatorial Designs 3 (1995) 179–183.
[2] P. Delsarte, Bounds for unrestricted codes by linear programming, Philips Research Reports 27 (1972) 272–289.
[3] D.G. Fon-Der-Flaass, Perfect 2-colorings of a hypercube, Siberian Mathematical Journal 48 (4) (2007) 740–745.
[4] D.G. Fon-Der-Flaass, Perfect 2-colorings of the 12-cube that attain the bounds on correlation immunity, Sibirskie Elektronnye Matematicheskie Izvestiya 4 (2007) 292–295 (Russian).
[5] D.G. Fon-Der-Flaass, A bound of correlation immunity, Siberian Electronic Mathematical Reports, 4, 2007, pp. 133–135.
[6] J. Friedman, On the bit extraction problem, in: Proc. 33rd IEEE Symposium on Foundations of Computer Science 1992, pp. 314–319.
[7] D.S. Krotov, V.N. Potapov, P.V. Sokolova, On reconstructing reducible n-ary quasigroups and switching subquasigroups, Quasigroups and Related Systems 16 (2008) 55–67.
[8] A.V. Los’, Construction of perfect q-ary codes by switching of simple components, Problems of Information Transmission 42 (1) (2005) 30–37.
[9] P.R.J. Östergård, O. Pottonen, K.T. Phelps, The perfect binary one-error-correcting codes of length 15: part II-properties, IEEE Transactions on Information Theory 56 (2010) 2571–2582.
[10] K.T. Phelps, M. Villanueva, Ranks of q-ary 1-perfect codes, Design, Codes and Cryptography 27 (1–2) (2002) 139–144.
[11] V.N. Potapov, On perfect colorings of Boolean n-cube and correlation immune functions with small density, Sibirskie Elektronnye Matematicheskie Izvestiya 7 (2010) 372–382 (Russian).