DATA NOTE

The genome sequence of the hawthorn shieldbug,
Acanthosoma haemorrhoidale (Linnaeus, 1758) [version 1; peer review: 2 approved, 1 approved with reservations]

Liam M. Crowley, University of Oxford and Wytham Woods Genome Acquisition Lab, Darwin Tree of Life Barcoding collective, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, John Mulley, Darwin Tree of Life Consortium

1Department of Zoology, University of Oxford, Oxford, Oxfordshire, UK
2School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK

First published: 05 Jul 2022, 7:178
https://doi.org/10.12688/wellcomeopenres.17926.1
Latest published: 05 Jul 2022, 7:178
https://doi.org/10.12688/wellcomeopenres.17926.1

Abstract
We present a genome assembly from an individual male Acanthosoma haemorrhoidale (hawthorn shieldbug; Arthropoda; Insecta; Hemiptera; Acanthosomatidae). The genome sequence is 866 megabases in span. The majority of the assembly (99.98%) is scaffolded into 7 chromosomal pseudomolecules with the X and Y sex chromosomes assembled. The complete mitochondrial genome was also assembled and is 18.9 kilobases in length.

Keywords
Acanthosoma haemorrhoidale, hawthorn shieldbug, genome sequence, chromosomal, Arthropoda

This article is included in the Tree of Life gateway.
Corresponding author: Darwin Tree of Life Consortium (mark.blaxter@sanger.ac.uk)

Author roles: Crowley LM: Investigation, Resources; Mulley J: Writing – Original Draft Preparation;

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by Wellcome through core funding to the Wellcome Sanger Institute [206194, https://doi.org/10.35802/206194] and the Darwin Tree of Life Discretionary Award [218328, https://doi.org/10.35802/218328]
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2022 Crowley LM et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Crowley LM, University of Oxford and Wytham Woods Genome Acquisition Lab, Darwin Tree of Life Barcoding collective et al. The genome sequence of the hawthorn shieldbug, Acanthosoma haemorrhoidale (Linnaeus, 1758) [version 1; peer review: 2 approved, 1 approved with reservations] Wellcome Open Research 2022, 7:178
https://doi.org/10.12688/wellcomeopenres.17926.1

First published: 05 Jul 2022, 7:178 https://doi.org/10.12688/wellcomeopenres.17926.1
Species taxonomy
Eukarya; Metazoa; Ecdysozoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Paraneoptera; Hemiptera; Heteroptera; Panheteroptera; Pentatomomorpha; Pentatomoidea; Acanthosomatidae; Acanthosoma; Acanthosoma haemorrhoidale (Linnaeus, 1758) (NCBI:taxid483950).

Background
The hawthorn shield bug, *Acanthosoma haemorrhoidale*, is a large Pentatomoid shield bug, easily recognisable by their size (typically 13mm or more in length) and bright green and red coloration. The species is common on hawthorn (*Crataegus monogyna*), where the berries comprise their principal food source, but are also found in mixed woodland and will feed on leaves of oak, hazel, and other deciduous trees and shrubs. Adults overwinter in leaf litter or under bark, and sometimes in buildings, and emerge in spring. Eggs are laid in several batches in late spring to early summer, and females exhibit no maternal care, unlike other members of the Acanthosomatidae (Hanelová & Vilímová 2013; Tsai & Rédei, 2015). First ecdysis to adult emergence takes around 35 days (Hori et al., 1993).

Originally classified as *Cimex haemorrhoidalis* by Linnaeus in 1758, the genus Acanthosoma (acantho- = spiny, -soma = body) was raised by Curtis in 1824 for the spined keel on the ventral surface (Curtis, 1824). The species name references the blood red coloration and appearance of discharging blood, particularly from the tip of the abdomen. The species has a trans-palaearctic distribution and comprises at least three currently-recognised subspecies: *A. h. haemorrhoidale*, Linnaeus 1758; *A. h. angulatum*, Jakovlev 1880; *A. h. ouchii*, Ishihara 1950 (Tsai & Rédei, 2015).

The classic work by Southwood and Leston on British land and water bugs (Southwood & Leston, 1959) describes a distribution across much of England and Wales, with only recent colonisation of Northern England. Whilst sporadic records for Scotland are found from the mid-20th century, it appears that a gradual northward range expansion has been underway from at least the mid-1990’s, and that the species is now well-established across northern England and is reasonably common up to the central belt of Scotland, with more scattered reports from further north (Ramsay, 2014). A similar northern expansion appears to have occurred in Finland in the mid-20th century (Ramsay, 2014; Southwood & Leston, 1959), and it may be interesting to investigate parallel behavioural or physiological changes in these northward-bound populations. Development is temperature sensitive, with high mortality at 30°C (Hori et al., 1993), and more southern parts of the species range may therefore become unsuitable in the future.

In contrast to groups like the Lepidoptera, where females produce pheromones to attract males, in the Pentatomomorpha it seems to be males that produce pheromones, most likely to avoid parasitoids utilising female pheromones to find hosts, and male *A. haemorrhoidale* possess extensive abdominal sternal glands (Staddon, 1990). The genome sequence will facilitate identification of biosynthetic pathways underlying pheromone production and reception in this species. Similarly, genomic data will shed light on host-symbiont relationships, including not only characterisation of bacterial symbionts themselves, but also the anatomical and behavioural mechanisms for storing and transmitting them to the next generation, such as the midgut crypts and the lubricating organs of females (Kikuchi et al., 2009).

Southwood and Leston report the diploid (2N) karyotype of *A. haemorrhoidale* to be 12, comprising ten autosomes and two sex chromosomes (XX or XY), and this accords with reported modal numbers for other members of the Acanthosomatidae (Kaur & Patial, 2017; Rebagliati et al., 2005; Southwood & Leston, 1959).

Genome sequence report
The genome was sequenced from a single male *A. haemorrhoidale* collected from Wytham woods, Berkshire, UK (Figure 1). A total of 26-fold coverage in Pacific Biosciences single-molecule HiFi long reads and 223-fold coverage in 10X Genomics read clouds were generated. Primary assembly contigs were scaffolded with chromosome conformation Hi-C data. Manual assembly curation corrected 321 missing/misjoins and removed 4 haplotypic duplications, reducing the assembly size by 0.08% and the scaffold number by 65.5%, and increasing the scaffold N50 by 112.02%.

The final assembly has a total length of 866 Mb in 72 sequence scaffolds with a scaffold N50 of 33.6 Mb (Table 1). The majority, 99.98%, of the assembly sequence was assigned to 7 chromosomal-level scaffolds, representing 5 autosomes and two sex chromosomes (numbered by sequence length) and the X and Y sex chromosomes (Figure 2–Figure 5; Table 2).

The assembly has a BUSCO v5.2.2 (Manni et al., 2021) completeness of 99.2% (single 97.4%, duplicated 1.8%) using the hemiptera_odb10 reference set (n=954). While not fully

Figure 1. Image of the *Acanthosoma haemorrhoidale* specimen taken prior to preservation and processing.
Table 1. Genome data for *Acanthosoma haemorrhoidale*, ihAcaHaem1.1.

Project accession data	
Assembly identifier	ihAcaHaem1.1
Species	*Acanthosoma haemorrhoidale*
Specimen	ihAcaHaem1 (genome assembly; Hi-C)
NCBI taxonomy ID	483950
BioProject	PRJEB47321
BioSample ID	SAMEA8563710
Isolate information	Male, abdomen (genome sequencing); head/thorax (Hi-C)

Raw data accessions	
Pacific Biosciences SEQUEL II	ERR6808043-ERR6808045
10X Genomics Illumina	ERR6688746-ERR6688753
Hi-C Illumina	ERR6688405

Genome assembly	
Assembly accession	GCA_930367205.1
Accession of alternate haplotype	GCA_930374635.1
Span (Mb)	866
Number of contigs	545
Contig N50 length (Mb)	3.36
Number of scaffolds	72
Scaffold N50 length (Mb)	129.2
Longest scaffold (Mb)	193.5
BUSCO* genome score	C:99.2%[S:97.4%,D:1.8%],F:0.1%,M:0.7%,n:2510

*BUSCO scores based on the hemiptera_odb10 BUSCO set using v5.1.2. C= complete [S= single copy, D=duplicated], F=fragmented, M=missing, n=number of orthologues in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/ihAcaHaem1.1/dataset/CAKNEZ01/busco#Filters.

phased, the assembly deposited is of one haplotype. Contigs corresponding to the second haplotype have also been deposited.

Methods

Sample acquisition and nucleic acid extraction

A single *A. haemorrhoidale* specimen (ihAcaHaem1) was collected using a pot from Wytham wood, Berkshire, UK (latitude 51.772, longitude -1.336) by Liam Crowley (University of Oxford). The specimen was identified by Liam Crowley and snap-frozen on dry ice.

DNA was extracted at the Tree of Life laboratory, Wellcome Sanger Institute. The ihAcaHaem1 sample was weighed and dissected on dry ice with tissue set aside for Hi-C sequencing. Abdomen tissue was cryogenically disrupted to a fine powder using a Covaris cryoPREP Automated Dry Pulveriser, receiving multiple impacts. Fragment size analysis of 0.01-0.5 ng of DNA was then performed using an Agilent FemtoPulse. High molecular weight (HMW) DNA was extracted using the Qiagen MagAttract HMW DNA extraction kit. Low molecular weight DNA was removed from a 200-ng aliquot of extracted DNA using 0.8X AMPure XP purification kit prior to 10X Chromium sequencing; a minimum of 50 ng DNA was submitted for 10X sequencing. HMW DNA was sheared into an average fragment size between 12–20 kb in a Megaruptor 3 system with speed setting 30. Sheared DNA was purified by solid-phase reversible immobilisation using AMPure PB beads with a 1.8X ratio of beads to sample to remove the shorter fragments and concentrate the DNA sample. The concentration of the sheared and purified DNA was assessed using a Nanodrop spectrophotometer and Qubit Fluorometer and Qubit dsDNA High Sensitivity Assay kit. Fragment size distribution was evaluated by running the sample on the FemtoPulse system.
Figure 2. Genome assembly of *Acanthosoma haemorrhoidale*, ihAcaHaem1.1: metrics. The BlobToolKit Snailplot shows N50 metrics and BUSCO gene completeness. The main plot is divided into 1,000 size-ordered bins around the circumference with each bin representing 0.1% of the 865,622,309 bp assembly. The distribution of chromosome lengths is shown in dark grey with the plot radius scaled to the longest chromosome present in the assembly (193,544,673 bp, shown in red). Orange and pale-orange arcs show the N50 and N90 chromosome lengths (129,246,741 and 116,641,292 bp), respectively. The pale grey spiral shows the cumulative chromosome count on a log scale with white scale lines showing successive orders of magnitude. The blue and pale-blue area around the outside of the plot shows the distribution of GC, AT and N percentages in the same bins as the inner plot. A summary of complete, fragmented, duplicated and missing BUSCO genes in the hemiptera_odb10 set is shown in the top right. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ihAcaHaem1.1/dataset/CAKNEZ01/snail#Filters.
Figure 3. Genome assembly of *Acanthosoma haemorrhoidale*, ihAcaHaem1.1: GC coverage. BlobToolKit GC-coverage plot. Scaffolds are coloured by phylum. Circles are sized in proportion to scaffold length. Histograms show the distribution of scaffold length sum along each axis. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ihAcaHaem1.1/dataset/CAKNEZ01/blob#Filters.

Sequencing

Pacific Biosciences HiFi circular consensus and 10X Genomics Chromium read cloud sequencing libraries were constructed according to the manufacturers’ instructions. Sequencing was performed by the Scientific Operations core at the Wellcome Sanger Institute on Pacific Biosciences SEQUEL II (HiFi) and Illumina NovaSeq 6000 (10X) instruments. Hi-C data were generated in the Tree of Life laboratory from head/thorax tissue of ihAcaHaem1 using the Arima v2 kit and sequenced on a NovaSeq 6000 instrument.
Figure 4. Genome assembly of Acanthosoma haemorrhoidale, ihAcaHaem1.1: cumulative sequence. BlobToolKit cumulative sequence plot. The grey line shows cumulative length for all scaffolds. Coloured lines show cumulative lengths of scaffolds assigned to each phylum using the buscogenes taxrule. An interactive version of this figure is available at https://blobtoolkit.genomehubs.org/view/ihAcaHaem1.1/dataset/CAKNEZ01/cumulative#Filters.

Genome assembly

Assembly was carried out with HiFiasm (Cheng et al., 2021); haplotypic duplication was identified and removed with purge_dups (Guan et al., 2020). One round of polishing was performed by aligning 10X Genomics read data to the assembly with longranger align, calling variants with freebayes (Garrison & Marth, 2012). The assembly was then scaffolded with Hi-C data (Rao et al., 2014) using SALSA2.
Figure 5. Genome assembly of *Acanthosoma haemorrhoidale*, ihAcaHaem1.1: Hi-C contact map. Hi-C contact map of the ihAcaHaem1.1 assembly, visualised in HiGlass. Chromosomes are arranged in size order from left to right and top to bottom. The interactive Hi-C map can be viewed at https://genome-note-higlass.tol.sanger.ac.uk/l/?d=SITVSHcSTwOqolCwz4HaZ.

INSDC accession	Chromosome	Size (Mb)	GC%
OV884011.1	1	193.55	35.5
OV884012.1	2	157.4	35.3
OV884013.1	3	125.66	35.4
OV884014.1	4	120.69	35.3
OV884015.1	5	116.64	35.2
OV884009.1	X	129.25	35.7
OV884010.1	Y	4.79	36.8
OV884016.1	MT	0.02	24.2
-	Unplaced	17.64	37.8

Table 2. Chromosomal pseudomolecules in the genome assembly of *Acanthosoma haemorrhoidale*, ihAcaHaem1.1.

The assembly was checked for contamination and corrected using the gEVAL system (Chow *et al.*, 2016) as described previously (Howe *et al.*, 2021). Manual curation (Howe *et al.*, 2021) was performed using gEVAL, HiGlass (Kerpedjiev *et al.*, 2018) and Pretext. The mitochondrial genome was assembled using MitoHiFi (Uliano-Silva *et al.*, 2021), which performs annotation using MitoFinder (Allio *et al.*, 2020). The genome was analysed and BUSCO scores generated within the BlobToolKit environment (Challis *et al.*, 2020). Table 3 contains a list of all software tool versions used, where appropriate.

Ethics/compliance issues
The materials that have contributed to this genome note have been supplied by a Darwin Tree of Life Partner. The submission of materials by a Darwin Tree of Life Partner is subject to the Darwin Tree of Life Project Sampling Code of Practice. By agreeing with and signing up to the Sampling Code of Practice, the Darwin Tree of Life Partner agrees they

(Ghurye *et al.*, 2019).
Table 3. Software tools used.

Software tool	Version	Source
Hifiasm	0.15.3-r339	Cheng et al., 2021
purge_dups	1.2.3	Guan et al., 2020
SALS A2	2.2	Ghurye et al., 2019
longranger align	2.2.2	https://support.10xgenomics.com/genome-exome/software/pipelines/latest/advanced/other-pipelines
freebayes	1.3.1-17-gaa2ace8	Garrison & Marth, 2012
MitoHiFi	2.0	Uliano-Silva et al., 2021
HiGlass	1.1.6	Kerpedjiev et al., 2018
PretextView	0.2.x	https://github.com/wtsi-hpag/PretextView
Blob ToolKit	3.0.5	Challis et al., 2020

will meet the legal and ethical requirements and standards set out within this document in respect of all samples acquired for, and supplied to, the Darwin Tree of Life Project. Each transfer of samples is further undertaken according to a Research Collaboration Agreement or Material Transfer Agreement entered into by the Darwin Tree of Life Partner, Genome Research Limited (operating as the Wellcome Sanger Institute), and in some circumstances other Darwin Tree of Life collaborators.

Data availability
European Nucleotide Archive: Acanthosoma haemorrhoidale (hawthorn shieldbug). Accession number PRJEB47321; https://identifiers.org/ena.embl/PRJEB47321.

The genome sequence is released openly for reuse. The A. haemorrhoidale genome sequencing initiative is part of the Darwin Tree of Life (DToL) project. All raw sequence data and the assembly have been deposited in INSDC databases. The genome will be annotated and presented through the Ensembl pipeline at the European Bioinformatics Institute. Raw data and assembly accession identifiers are reported in Table 1.

Author information
Members of the University of Oxford and Wytham Woods Genome Acquisition Lab are listed here: https://doi.org/10.5281/zenodo.6418202.

Members of the Darwin Tree of Life Barcoding collective are listed here: https://doi.org/10.5281/zenodo.6418156.

Members of the Wellcome Sanger Institute Tree of Life programme are listed here: https://doi.org/10.5281/zenodo.6418327

Members of Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective are listed here: https://doi.org/10.5281/zenodo.5746904.

Members of the Tree of Life Core Informatics collective are listed here: https://doi.org/10.5281/zenodo.6125046.

Members of the Darwin Tree of Life Consortium are listed here: https://doi.org/10.5281/zenodo.6418363.

References

Allio R, Schomaker-Bastos A, Romiguier J, et al.: MitoFinder: Efficient Automated Large-Scale Extraction of Mitogenomic Data in Target Enrichment Phylogenomics. Mol Ecol Resour. 2020; 20(4): 892–905. PubMed Abstract | Publisher Full Text | Free Full Text

Challis R, Richards E, Rajan J, et al.: Blob ToolKit - Interactive Quality Assessment of Genome Assemblies. G3 (Bethesda). 2020; 10(4): 1361–74. PubMed Abstract | Publisher Full Text | Free Full Text

Cheng H, Concepcion GT, Feng X, et al.: Haplotype-Resolved de Novo Assembly Using Phased Assembly Graphs with Hifiasm. Nat Methods. 2021; 18(2): 77–85. PubMed Abstract | Publisher Full Text | Free Full Text

Chow W, Brugger K, Caccamo M, et al.: gEVAL - a web-based browser for evaluating genome assemblies. Bioinformatics. 2016; 32(16): 2508–10. PubMed Abstract | Publisher Full Text | Free Full Text
Curtis J: British Entomology : Being Illustrations and Descriptions of the Genera of Insects Found in Great Britain and Ireland. The Author, London. 1824; 1: 1–50.

Reference Source

Garrison E, Marth G: Haplotype-Based Variant Detection from Short-Read Sequencing. arXiv: 1207.3907. 2012.

Reference Source

Ghurye J, Rhie A, Walenz BP, et al.: Integrating Hi-C Links with Assembly Graphs for Chromosome-Scale Assembly. PLoS Comput Biol. 2019; 15(8): e1007273. PubMed Abstract | Publisher Full Text | Free Full Text

Guan D, McCarthy SA, Wood J, et al.: Identifying and Removing Haplotypic Duplication in Primary Genome Assemblies. Bioinformatics. 2020; 36(9): 2896–98. PubMed Abstract | Publisher Full Text | Free Full Text

Hanelová J, Vilímová J: Behaviour of the Central European Acanthosomatidae (Hemiptera: Heteroptera: Pentatomoidea) during Oviposition and Parental Care. Scientiae Biologicae. 2013; 98(2)(1211-8788): 433–57. Reference Source

Howe K, Chow W, Collins J, et al.: Significantly Improving the Quality of Genome Assemblies through Curation. Gigascience. 2021; 10(1): giaa153. PubMed Abstract | Publisher Full Text | Free Full Text

Kaur H, Patial N: Male Meiotic Behaviour and Linear Characterization of Holocentric Chromosomes of Two Species of Acanthosomatidae (Hemiptera: Heteroptera). International Journal of Entomology Research. 2017; 31(2): 102–107. Reference Source

Kerpedjiev P, Abdennur N, Lekchas F, et al.: HiGlass: Web-Based Visual Exploration and Analysis of Genome Interaction Maps. Genome Biol. 2018; 19(1): 125. PubMed Abstract | Publisher Full Text | Free Full Text

Kikuchi Y, Hosokawa T, Nikoh N, et al.: Host-Symbiont Co-Speciation and Reductive Genome Evolution in Gut Symbiotic Bacteria of Acanthosomatid Stinkbugs. BMC Biol. 2009; 7: 2. PubMed Abstract | Publisher Full Text | Free Full Text

Kerpedjiev P, Abdennur N, Lekchas F, et al.: HiGlass: Web-Based Visual Exploration and Analysis of Genome Interaction Maps. Genome Biol. 2018; 19(1): 125. PubMed Abstract | Publisher Full Text | Free Full Text

Kikuchi Y, Hosokawa T, Nikoh N, et al.: Host-Symbiont Co-Speciation and Reductive Genome Evolution in Gut Symbiotic Bacteria of Acanthosomatid Stinkbugs. BMC Biol. 2009; 7: 2. PubMed Abstract | Publisher Full Text | Free Full Text

Manni M, Berkeley MR, Seppey M, et al.: BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol Biol Evol. 2021; 38(10): 4647–54. PubMed Abstract | Publisher Full Text | Free Full Text

Rebagliati PJ, Mola LM, Papeschi AG, et al.: Cytogenetic Studies in Pentatomidae (Heteroptera): A Review. J Zool Syst Evol Res. 2005; 43(3): 199–213. Publisher Full Text

Southwood R, Leston D: Land and Water Bugs of the British Isles. Frederick Warne and Co London. 1959. Reference Source

Staddon BW: Male Sternal Pheromone Glands in Acanthosomatid Shield Bugs from Britain. J Chem Ecol. 1990; 16(7): 2195–2201. PubMed Abstract | Publisher Full Text

Tsai JF, Rédei D: Redefinition of Acanthosoma and Taxonomic Corrections to Its Included Species (Hemiptera: Heteroptera: Acanthosomatidae). Zootaxa 3950 (April). 2015; 1–60. Publisher Full Text

Uliano-Silva M, Nunes JGF, Krasheninnikova K, et al.: marcelauliano/MitoHiFi: mitohifi_v2.0. 2021. Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔️ ❓ ✔️

Version 1

Reviewer Report 10 February 2023

https://doi.org/10.21956/wellcomeopenres.19864.r53971

© 2023 Brahmachari V et al. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

✔️ Vani Brahmachari
University of Delhi, Delhi, India

Surbhi Kohli
Department of Biochemical Engineering and Biotechnology, IIT (Indian Institute of Technology), Delhi, India

The authors provide a comprehensive account of the genome assembly of the hawthorn shield bug. The authors highlight the pheromone production by males and its reception by females as well as the host-symbiont relationship in hawthorn shield bugs as interesting features and hence a motivation for elucidating the genome sequence. However, there are no further comments on these aspects. Though it may be reserved for a detailed study, a comment on the indication of metabolic cooperation, if any, would be interesting.

A combination of PacBio sequencing and HiC has led to chromosomal level assembly of several insect genomes and has been effectively utilized in this manuscript. The methods are clearly described and the outcomes are provided in the figures. I appreciate the interactive figures, however I could not access interactive Hi-C map, “No such uuid” comes up at the site.

Minor comments:

1. The N50 value mentioned of scaffolds mentioned on page 3 is different from that in Table 1.

2. In Fig. 3, three categories of scaffolds are given (Total, No hit and Arthropod). Were the symbiont sequences and horizontal transfer gene scaffolds removed from the assembly? Please clarify.

3. As mentioned in the manuscript the authors were able to generate two different haplotypes of the assembly; which is the tool used for resolving the haplotype?

4. Following clarification on the above comments the manuscript is approved.
Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Partly

Are the datasets clearly presented in a useable and accessible format?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Epigenetics, mining epigenetic regulatory factors from the genome. Exploring genomic imprinting mechanisms using the coccid insect system, namely the mealybugs.

We confirm that we have read this submission and believe that we have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

As the Darwin Tree of Life (DToL) genome sequencing project continues to produce high-quality (chromosome-scale) genome assemblies for eukaryotic species of the British Isles, I welcome here the documentation of a genome assembly for the shieldbug *Acanthosoma haemorrhoidale*. The bugs (the Hemiptera, including aphids, cicadas, and the true bugs) are the most species-rich order of hemimetabolous insects. Increasing genomic resources for this major animal group will support ongoing research on biodiversity and many aspects of insect biology and ecological interactions, extending resources beyond the already well-sampled Holometabola and pest species of Hemiptera.

I understand that DToL prioritizes rapid dissemination of genome data according to a standard template, and the Wellcome Open Research format of the Data Note is a great fit for this. However, having been asked to review this specific contribution, I find that there are some aspects of presentation for dataset reproducibility, rigor, and readability that should be improved.
Concern leading to status of “approval with reservations”:
Documentation of species identification is insufficient. In the Data Note, it is based solely on a low-
magnification image of the sequenced individual (Figure 1) and a methods statement that the
specimen was collected and identified “by Liam Crowley (University of Oxford)”. This is insufficient,
as there is no mention of a type specimen accession, barcoding identification, or a cited reference
for taxonomic expertise. At present, identification of wild-caught individuals for future research is
not reproducible, unless Liam Crowley is a resource available on demand to the scientific
community! Also, please ensure that the Figure 1 image is of the highest quality, provide a scale
bar (should be possible, given the inclusion of a standard collection tube in the image), and crop
unneeded white space to maximize size of the insect within the image.

Readability issues, including technical documentation, general clarity, and completeness
(rigor) of scientific presentation:
The final paragraph of the Background states that the karyotype consists of ten autosomes and
the X and Y sex chromosomes, and this is supported by identification of seven unique
chromosomes in the current assembly (Figure 5), but it would be easier to reconcile these facts if
the Background comment were reworded slightly (suggestion in all caps) to “the diploid (2N)
karyotype of A. haemorrhoidale to be 12, comprising FIVE AUTOSOMAL PAIRS and two sex
chromosomes...”. Also, include the year immediately after the author names for clear attribution at
the beginning of this sentence, particularly since multiple references are cited together at the end.

In the “Sequencing” section, please specify reagent (chemistry) versions for the HiFi, 10X, and Hi-C
work, similar to the software details provided in Table 3. Who is the manufacturer of the Arima kit?

The presentation of Figures 2-5 is inadequate for a non-bioinformatic audience, such as
entomologists and molecular geneticists. In-text mention is confined to a single stub, batch
parenthetical citation early in the “Genome sequence report” section. The figures and their
legends are devoid of biological information and apparently only present pipeline-generated
statistical visualization features with no wider context or attempt to customize appearance in a
fashion appropriate to this species’ assembly values. A few sentences in the main text should
make clear what each figure presents. Even if the figures themselves may have interactive online
versions, they should be annotated and intelligible in the Data Note itself, with consistent and
legibly sized in-figure text legends and text labels that are not merely pipeline designations (e.g.,
“CAKNEZ01” in Figures 3 and 4).

In Figure 2, there were many elements that I could not interpret. The lower left “Scale” is of
unclear value. The upper right BUSCO pie chart is too small and disproportionately tiny compared
to the main pie chart. Customarily, these elements should be distinguished as figure panels (a)
and (b), not simply dumped in the same graphical space. For the BUSCO chart, there seems to be
an inappropriate distinction between complete and duplicated, as the latter is a subset of the
former in Table 1. Also, when multiple features of the BUSCO pie chart will be impossibly small to
visually distinguish (2 features each <1%), what is the value of this chart in the first place,
comparing to the clear information already provided in Table 1 and with an interactive hyperlink in
the Table 1 footnote? For the main chart, the multiple instances of red and grey referred to in the
figure legend were ambiguous, and I could not reconcile these elements with the actual image
appearance: please provide in-figure text labels. For example, I cannot tell which is the “dark grey”
for chromosome lengths and which is the “pale grey spiral” for cumulative chromosome counts.
The outer blue tracks to indicate GC content may be a standard pipeline output, but it is of no clear visual value here. Rather, the Figure 2 in-figure legend for this feature should be explicitly given for GC content statistics in Table 1. Elsewhere, there appears to be a typo, as the main text and Table 1 cite 72 scaffolds in the assembly, whereas the upper left legend for Figure 2 lists 73. If there are only 7 chromosomes, why is “chromosome count” given on a log scale? In general, the main pie chart left me none the wiser about the assembly, where I only gleaned key information from the in-figure legends with numerical values or, partially, from the main figure caption.

Compared to a simple report that GC content is 35.5%, what is the value of Figure 3? In its present state, it appears to be an unaltered pipeline output, but unhelpful for the uninitiated (see comments above).

Please amend Figure 4 so that the plot itself and in-figure text are appropriately sized. At present the chart is unnecessarily large for its complexity and content, while the in-figure text is too small for the axes and legend (and see above on using appropriate legend text labels). To make this chart useful, in the legend or main text please report what percent of the total assembly can be designated as arthropod-specific, attributable to another phylum (does the pipeline support identification of microbial content? – see below), or with no assigned phylum. Also, as BUSCO focuses on protein coding genes and this assembly has not yet been formally annotated with an official gene set, please comment on what fraction of the assembly is assessed by this method (the technical reference to “buscogenes taxrule” is not informative for me).

I value Figure 5, but there is a complete absence of axis labels or heatmap color code legend for these Hi-C data. It would also be helpful if in-figure annotations indicated the X and Y chromosomes. Alternatively, if this is correct, state in the figure legend that “linkage groups corresponding to chromosomes are presented from top left to lower right in order of descending size, from Chromosome 1 to Y, as listed in Table 2, with the mitochondrial assembly not shown”. Also, the link to the interactive version of this figure seems to be broken (“No such uuid”) – please amend.

For the “Genome assembly” section, the main text link to “Pretext” on GitHub requires more detailed documentation and citation to indicate which exact methods were used (which versions) in a Data Note generated at a specific point in time and that has a permanent DOI. For the main text citation of Table 3, what does “where appropriate” include or exclude (or, what is the purpose of this caveat)?

Please report the actual assembly metrics associated with the analyses for contamination and mitochondrial genome assembly. As noted by Andrew J. Mongue in his peer review report (5 August 2022), it is a notable omission, after introductory information on interest in microbiomes, that there is no main text reporting on these findings. I was interested to note that the abdomen – the predominant location of microbiome components associated with reproductive and digestive anatomy – was sequenced by HiFi but excluded for Hi-C, which presumably provides a basis for at least an initial explicit statement on which fraction of the unplaced assembly (17.6 Mb) may be due to specimen heterozygosity, microbial content, or other sources.

Taxonomic corrections:
In the article Background, first paragraph, please correct the spelling of the superfamily name
“Pentatomoid” (the “-to-“ is missing).

The peer review report of this article by Andrew J. Mongue refers to aphids and mealybugs as “true bugs”, but this is incorrect. The term “true bugs” applies to the monophyletic Heteroptera, which does include the species presented here (*Acanthosoma haemorrhoidale*), while aphids and mealybugs belong to the distinct lineage Sternorrhyncha, sometimes (formerly) regarded as a part of the paraphyletic Homoptera (see, for example, Figure 2 in: Panfilio *et al.*, 2018).

References
1. Panfilio KA, Angelini DR: By land, air, and sea: hemipteran diversity through the genomic lens. *Curr Opin Insect Sci.* 2018; 25: 106-115 [PubMed Abstract] | [Publisher Full Text]

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Partly

Are the datasets clearly presented in a useable and accessible format?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: insects; Hemiptera; Coleoptera; comparative genomics; evolution of development; molecular evolution; macroevolutionary processes; developmental genetics; molecular genetics; gene regulatory networks; transcription factors; transgenesis; cell and tissue development; fluorescence microscopy; live cell imaging

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard, however I have significant reservations, as outlined above.

Reviewer Report 05 August 2022

https://doi.org/10.21956/wellcomeopenres.19864.r51880

© 2022 Mongue A. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Andrew J. Mongue
Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh, UK
The authors report the genome assembly of the hawthorn shield bug with brief background and detailed methodology of sequencing and assembly. I understand this reporting format is designed to be concise yet informative and I commend the authors on the level of rigor in describing the process from DNA extraction through to finished assembly. As this and other recent genome assembly papers have demonstrated, the combination of PacBio HiFi and HiC sequencing is an almost guaranteed success for generating highly contiguous insect genomes. Given that this approach seems to be so powerful, it is all the more important that researchers document the methodology in detail so that others can replicate this success. I appreciated the table listing tools and their versions as an example of how to effectively highlight methodological details. Likewise, the accession numbers appropriately link to data that are now available, so these resources have immediate value to the community as well.

I have only two comments for clarification and these focus on the species background context.

Firstly, the authors contrast shield bug pheromone production to that of Lepidoptera, stating that female Lepidoptera produce pheromones to attract males. While this is true of some groups within the order, many species behave much like the bugs described here: males produce pheromones to entice females (see milkweed butterflies as a specific example and generally species in which males have a hair-pencil organ). Please clarify the text on this point.

Secondly, the authors mention the potential for sequencing data to reveal symbiont relationships that the hawthorn shield bug has with bacteria. Host-microbe interactions are particularly well-studied in true bugs like aphids and mealybugs, so I can see the value in this new datapoint for comparison. As such, I was surprised that symbiont screening is never directly mentioned again in the methods or results. Perhaps this is a structural choice from the Tree of Life initiative and these data will be reported elsewhere. Given the interest in hemipteran symbionts from the research community, however, I feel it would be good to include at least a follow-up sentence directing the interested reader to the appropriate resources.

I also noticed two small grammatical errors to correct:

- “The hawthorn shield bug…is a large Pentamoid shield bug, easily recognisable by their size” should be “easily recognisable by its size”.
- “The species is common on hawthorn…but are also found in mixed woodland” should be “but is also found in mixed woodland”.

Is the rationale for creating the dataset(s) clearly described?
Yes

Are the protocols appropriate and is the work technically sound?
Yes

Are sufficient details of methods and materials provided to allow replication by others?
Yes

Are the datasets clearly presented in a useable and accessible format?
Yes
Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Insect genomics, population genetics, Lepidopteran and Hemipteran biology

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.

Comments on this article

Reader Comment 17 Aug 2022

Jeremy Lanfear, ELIXIR, Cambridge, UK

A minor point, the location data for the collection of the specimen is listed twice in the article, both times given as "Wytham Wood, Berkshire". I think that should be "Wytham Wood, Oxfordshire"?

Competing Interests: No competing interests were disclosed.