Universality for random tensors and cycle graphs with multiple edges

Nana Kanbe

Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan

Abstract

We consider the universality for the trace invariants of $c_1 N \times \cdots \times c_D N$ tensors with i.i.d. complex random elements. In the case $c_1 = \cdots = c_D$, Gurau derived the universality in the limit $N \to \infty$ by representing the average trace invariants in terms of the corresponding colored graphs. Moreover he could explicitly calculate the asymptotic forms of the average trace invariants, if the corresponding graphs were special ones called "melonic graphs". In this paper we study another kind of special graphs, cycle graphs with multiple edges. One can construct these graphs by using simple cycle graphs and melonic graphs. Counting the number of the components, we can explicitly calculate the asymptotic forms of the average trace invariants.
Let us suppose that a $c_1 N \times \cdots \times c_D N$ tensor T has random complex elements (N and $c_i N$ are positive integers). The real and imaginary parts of the tensor elements are i.i.d. random numbers with zero odd moments and finite even moments. The trace invariants of such a tensor are defined as

$$Tr(T, \bar{T}) = \sum_{n^1, \bar{n}^1 = 1}^{c_1 N} \cdots \sum_{n^D, \bar{n}^D = 1}^{c_D N} \prod_{j=1}^{k} \delta_{n^i_j \bar{n}^i_{\sigma_1(j)}} \cdots \delta_{n^i_j \bar{n}^i_{\sigma_D(j)}} T_{n^1_j \cdots n^D_j \bar{T}_{\bar{n}^1_j \cdots \bar{n}^D_j}}, \quad (1)$$

where \bar{T} is the complex conjugate of T and $\sigma_1, \ldots, \sigma_D$ are cyclic permutations of length k on $\{1, \ldots, k\}$. A trace invariant is a real number which is invariant under the unitary transformations of T. We can represent a trace invariant as a connected D-colored graph defined below.

Definition 1. A graph B satisfying the following conditions is a D-colored graph $[1]$. Here $V(B)$ and $E(B)$ are the sets of the vertices and edges of B, respectively.

- All edges e of B have vertices v and \bar{v} at their ends. There exists a partition of $V(B)$, $V(B) = V_1(B) \sqcup V_2(B)$, such that $v \in V_1(B)$ and $\bar{v} \in V_2(B)$ for all e. We depict v (white vertices) as white circles and \bar{v} (black vertices) as black circles in figures.

- There exists a partition of $E(B)$, $E(B) = \bigcup_{i=1}^{D} E^i(B)$. The element of $E^i(B)$ are called edges with color i.

- Each vertex is at the end of D edges, which have different colors from each other.

A D-colored graph B has k white vertices v_1, \ldots, v_k, and k black vertices $\bar{v}_{\sigma_1(1)}, \ldots, \bar{v}_{\sigma_1(k)}$ for each color i. Let us suppose in the trace invariant that $T_{n^1_j \cdots n^D_j}$ and $\bar{T}_{\bar{n}^1_j \cdots \bar{n}^D_j}$ have contraction with respect to n^i_j and \bar{n}^i_j. Then v_j and $\bar{v}_{\sigma_i(j)}$ are directly connected by an edge with color i on B.

By using colored graphs, Gurau showed in a special case $c_1 = \cdots = c_D = 1$ that the average value $\mu(Tr(T, \bar{T}))$ of the trace invariants have universal asymptotic forms in the limit $N \to \infty$. Let us first consider that special case. In order to calculate $\mu(Tr(T, \bar{T}))$, the cumulants

$$\kappa_{2k} \left(T_{n^1 \cdots n^D}, \bar{T}_{\bar{n}^1 \cdots \bar{n}^D}, \ldots, T_{n^1 \cdots n^D}, \bar{T}_{\bar{n}^1 \cdots \bar{n}^D} \right)$$

$$= \mu \left(T_{n^1 \cdots n^D} \bar{T}_{\bar{n}^1 \cdots \bar{n}^D} \cdots T_{n^1 \cdots n^D} \bar{T}_{\bar{n}^1 \cdots \bar{n}^D} \right)$$

$$- \sum_{\pi} \prod_{\alpha=1}^{\alpha_{\text{max}}} \kappa_{2k}(\pi) \left(T_{n^1_{\pi_1(1)} \cdots n^D_{\pi_1(1)}}, \bar{T}_{\bar{n}^1_{\pi_1(1)} \cdots \bar{n}^D_{\pi_1(1)}}, \ldots, \bar{T}_{\bar{n}^1_{\pi_\alpha(1)} \cdots \bar{n}^D_{\pi_\alpha(1)}} \right) \quad (2)$$

are useful. Here π is a way to dividing distinct $2k$ points into α_{max} groups ($2 \leq \alpha_{\text{max}} \leq k$). As each group has $2k(\alpha)$ points ($1 \leq \alpha \leq \alpha_{\text{max}}$), we see
that \(\sum_{\alpha=1}^{\alpha_{\max}} 2k(\alpha) = 2k \). After expanding the average value in terms of the cumulants, we find the terms containing \(\kappa_2 \) dominate in the limit \(N \to \infty \) and the other terms converge to zero with some normalization:

\[
\mu(\text{Tr}(T, \bar{T})) \sim \sum_{n^1, \bar{n}^1=1}^{N} \cdots \sum_{n^D, \bar{n}^D=1}^{N} \left(\prod_{j=1}^{k} \delta_{n^1_{\bar{n}^1(j)}} \cdots \delta_{n^D_{\bar{n}^D(j)}} \right) \times \left(\sum_{\tau \in S_k} \prod_{i=1}^{k} \kappa_2 \left(T_{n^1_{\bar{n}^1(i)}}, T_{\bar{n}^1_{\tau(i)}} \right) \right) \tag{3}
\]

Here \(S_k \) is the symmetric group of degree \(k \).

In order to graphically represent \(\kappa_2 \), we introduce a new edge with color \(0 \), which directly connects the vertices \(v_i \) and \(\bar{v}_{r(i)} \). Then we obtain a new \((D+1)\)-colored graph \(G \), called a covering graph of \(B \). Let us now assume that \(\mu(T_{n^1 \cdots n^D}, \bar{T}_{\bar{n}^1 \cdots \bar{n}^D}) \) is one. Then we find \(\kappa_2(T_{n^1 \cdots n^D}, \bar{T}_{\bar{n}^1 \cdots \bar{n}^D}) = \delta_{n^1 \bar{n}^1} \cdots \delta_{n^D \bar{n}^D} \), so that

\[
\mu(\text{Tr}(T, \bar{T})) \sim \sum_{n^1, \bar{n}^1=1}^{N} \cdots \sum_{n^D, \bar{n}^D=1}^{N} \left(\prod_{j=1}^{k} \delta_{n^1_{\bar{n}^1(j)}} \cdots \delta_{n^D_{\bar{n}^D(j)}} \right) \times \left(\sum_{\tau \in S_k} \prod_{i=1}^{k} \kappa_2 \left(T_{n^1_{\bar{n}^1(i)}}, T_{\bar{n}^1_{\tau(i)}} \right) \right) \tag{4}
\]

\[
= \sum_{G} N^{\sum_{i=1}^{D} |F^{(i,j)}(G)|}.
\]

Here \(F^{(i,j)}(G) \) is the set of \((i,j)\)-faces (2-colored subgraphs with colors \(i \) and \(j \)) of \(G \). We write the cardinality of a set \(S \) as \(|S| \). When \(\sum_{i=1}^{D} |F^{(i,j)}(G)| \) is maximum, \(G \) is called the minimal covering graph \(G_{\text{min}} \) of \(B \).

Then the average trace invariants can be written in terms of the minimal covering graph \(G_{\text{min}} \) as

\[
\mu(\text{Tr}(T, \bar{T})) = \sum_{G_{\text{min}}} N^{\gamma(D)} + o \left(N^{\gamma(D)} \right) = |G_{\text{min}}| N^{\gamma(D)} + o \left(N^{\gamma(D)} \right) \tag{5}
\]

with

\[
\gamma(D) = \sum_{i=1}^{D} |F^{(0,i)}(G_{\text{min}})|,
\]

so that \(G_{\text{min}} \)

\[
\lim_{N \to \infty} \frac{1}{N^{\gamma(D)}} \mu(\text{Tr}(T, \bar{T})) = |G_{\text{min}}|.
\]

Here \(|G_{\text{min}}| \) is the number of the minimal covering graphs \(G_{\text{min}} \).
For general c_1, \ldots, c_D, we can similarly find \[\mu(\text{Tr}(T, \bar{T})) \sim \sum_{n_1, \bar{n}_1=1}^{c_1 N} \cdots \sum_{n_D, \bar{n}_D=1}^{c_D N} \left(\prod_{j=1}^{k} \delta_{n_j \bar{n}_j} \delta_{n_{j'} \bar{n}_{j'}} \delta_{n_{j''} \bar{n}_{j''}} \right) \times \left(\sum_{\tau \in S_k} \prod_{i=1}^{k} \kappa_2 \left(T_{n_1 \cdots n_{j'}, \bar{T}_{\bar{n}_1 \cdots \bar{n}_{j'}}} \right) \right) \] (8)

\[= \sum_{G} \prod_{i=1}^{D} (c_i N)^{|F^{(0,i)}(G)|} \]

and

\[\mu(\text{Tr}(T, \bar{T})) = \sum_{G_{\text{min}}} \prod_{i=1}^{D} (c_i N)^{|F^{(0,i)}(G_{\text{min}})|} + o \left(N^{\gamma(D)} \right) \]

\[= N^{\gamma(D)} \sum_{G_{\text{min}}} \prod_{i=1}^{D} c_i^{|F^{(0,i)}(G_{\text{min}})|} + o \left(N^{\gamma(D)} \right) \] (9)

with

\[\gamma(D) = \sum_{i=1}^{D} |F^{(0,i)}(G_{\text{min}})|, \] (10)

so that

\[\lim_{N \to \infty} \frac{1}{N^{\gamma(D)}} \mu(\text{Tr}(T, \bar{T})) = \sum_{G_{\text{min}}} \prod_{i=1}^{D} c_i^{|F^{(0,i)}(G_{\text{min}})|}. \] (11)

Thus we have derived the asymptotic forms of the average trace invariants in the limit $N \to \infty$ with c_i fixed. These forms are universal because they do not depend on the details of the tensor element distribution.

In the following, we consider two special cases, in which one can more explicitly evaluate the asymptotic forms.

1. **Melonic graphs**

It is in general difficult to calculate $|G_{\text{min}}|$ and $\sum_{i=1}^{D} |F^{(0,i)}(G_{\text{min}})|$. However, one can explicitly evaluate them, when B is a melonic graph defined below.

Definition 2. A dipole with d colors is a d-colored graph with only two vertices [1].

Definition 3. (melonic graph)

Suppose that B_1 is a D-dipole, and that H_i is the $(D-1)$-colored graph given by a D-dipole by removing the edge with color i. We generate a D-colored graph B_k from B_1 as follows.

1. To obtain B_2, cut the edge with color i_1 on B_1 and insert H_{i_1} there.
(2) To obtain B_3, cut one of the two edges with color i_2 on B_2 and insert H_{i_2} there.

(3) To obtain B_4, cut one of the edges with color i_3 on B_3 and insert H_{i_3} there.

(k-1) To obtain B_k, cut one of the edges with color i_{k-1} on B_{k-1} and insert $H_{i_{k-1}}$ there.

A D-colored graph B_k (with 2^k vertices) given above is called a melonic graph $[1].$

Lemma 1. $[1]$ A melonic D-colored graph has only one minimal covering graph G_{min} satisfying $\sum_{i=1}^{D} |F^{(0,i)}(G_{\text{min}})| = 1 + k(D-1)$.

Therefore the universal asymptotic forms of the average trace invariants corresponding to melonic graphs can be calculated as

$$\lim_{N \to \infty} \frac{1}{N^{1+k(D-1)}} \mu(Tr(T, \overline{T})) = \prod_{i=1}^{D} c_i^{\left|F^{(0,i)}(G_{\text{min}})\right|}. \quad (12)$$

However, in order to have explicit asymptotic forms, we still need to know the value of each $|F^{(0,i)}(G_{\text{min}})|$, except for the case $c_1 = \cdots = c_D$.

2. Cycle graphs with multiple edges

When R is a cycle graph with multiple edges, we are able to explicitly evaluate the asymptotic universal forms of the average trace invariants for general c_1, \ldots, c_D. Let us begin with the definition of such a cycle graph.

Definition 4. Let $m, n \in \mathbb{N}$ satisfy $m + n = D$. An (m, n)-cycle graph R is defined as a D-colored graph with 2^k vertices satisfying the following conditions.

(1) k m-dipoles and k n-dipoles are the subgraphs of R.

(2) m-dipoles have m edges with colors i_1, \ldots, i_m and n-dipoles have n edges with colors i'_1, \ldots, i'_n, provided that $i_\nu \neq i'_\nu$ for all ν, ν'.

A D-colored graph with 2^k vertices has Dk edges. Thus R does not have any edges except the dipole edges. Therefore it is a cycle graph with multiple edges composed of $2k$ dipoles (Figure 4).

Note that $(1,1)$-cycle graphs represent trace invariants of random matrices, and that $(1,n)$-cycle graphs are melonic when $n \neq 1$. We can count the number of the minimal covering graphs and their $(0,j)$-faces for such $(1,n)$-cycle graphs. This fact helps us understand (m,n)-cycle graphs for general m and n.

Lemma 2. Suppose that a $(1,1)$-cycle graph R has 2^k vertices.
(1) The number of the minimal covering graphs of R is the Catalan number \(C_k = \frac{1}{k+1} \binom{2k}{k} \). The total number of \((0,i)\)-faces \((1 \leq i \leq D)\) of each minimal covering graph is \(k + 1 \).

(2) The number of the minimal covering graphs (of R) which have \(\ell \) \((0,1)\)-faces is the Narayana number \(N_{k,\ell} = \frac{1}{\tan(1)} \binom{k}{1} \binom{k}{\ell-1} \).

Proof.

(1) Let G be a covering graph of R with $2k$ vertices and $3k$ edges. Then

\[
\sum_{0 \leq i < j} |F^{(i,j)}(G)| - |E(G)| + |V(G)|
= 2 \sum_{i=1}^{2} |F^{(0,i)}(G)| + 1 - k \\
= 2 - 2g(G).
\]

Thus if there is a covering graph G satisfying $g(G) = 0$ (i.e. G are planar), it is a minimal covering graph G_{min}. The edges with color 0 of a planar G give a plane partition of R. The number of the plane partitions of R, that is \(|G_{\text{min}}| \), is the Catalan number C_k. Moreover it follows from eq. (13) that

\[
\sum_{i=1}^{2} |F^{(0,i)}(G_{\text{min}})| = k + 1.
\]
Dividing a cycle graph at an edge (v_1, \tilde{v}_i) with color 0 gives a recurrence formula for C_k. Here v_1 is fixed and $i \in \{1, ..., k\}$.

(2) Let $N_{k,l}$ be the number of minimal covering graphs having l $(0, 1)$-faces. We fix an edge e (on the $(1, 1)$-cycle graph R) with color 1 and denote the $(0, 1)$-face containing the edge e by F. Suppose that F has $2m$ vertices ($m \in \{1, ..., k\}$). Then R is divided into $(m + 1)$ parts ($B_1, ..., B_m$, and F). The number of B_i having $2k_i$ vertices and l_i $(0, 1)$-faces is N_{k_i,l_i}. Thus we obtain a recurrence formula

$$N_{k,l} = \sum_{k_1 = k-1}^{k} \sum_{l_1 = l-1}^{l} N_{k_1,l_1} + \sum_{k_1 + k_2 = k - 2}^{k} \sum_{l_1 + l_2 = l-1}^{l} N_{k_1,l_1}N_{k_2,l_2} + \sum_{k_1 + k_2 + k_3 = k - 3}^{k} \sum_{l_1 + l_2 + l_3 = l-1}^{l} N_{k_1,l_1}N_{k_2,l_2}N_{k_3,l_3} + \cdots .$$

(15)

We can make use of the Lagrange inversion formula\[5\] to derive $N_{k,l} = \frac{k}{k+1}\binom{k}{l-1}$ from this recurrence formula.

Lemma 3. When $n \neq 1$, a $(1, n)$-cycle graph R with $2k$ vertices has only one minimal covering graph. The total number of $(0, i)$-faces ($1 \leq i \leq D$) of the minimal covering graph is $nk + 1$.

Proof. We illustrate in Figure 2 that R is melonic. Its only minimal covering graph G^min is depicted in Figure 3. We see that G^min is a $(1, n + 1)$-cycle graph, and easily find

$$\sum_{i=1}^{D} |F^{(0,i)}(G^\text{min})| = nk + 1. \quad (16)$$

We are now in a position to consider a general (m, n)-cycle graph R. Two cases (the case $m = n$ and the case $m < n$) are separately treated. We first evaluate $|G^\text{min}|$ and $|F^{(0,i)}(G^\text{min})|$, and then explicitly calculate the average trace invariants.

- The case $m = n$. An (m, n)-cycle graph R has $2k$ m-dipoles, k of which have edges with colors $i_1, ..., i_m$ and the others $i'_1, ..., i'_m$. Since the dipoles with colors $i_1, ..., i_m$ and those with $i'_1, ..., i'_m$ are alternately connected in R, R is divided into m $(1, 1)$-cycle graphs with colors i_ν and i'_ν ($\nu = 1, ..., m$).
See Figure 2. Let us define R_ν as the $(1, 1)$-cycle graph with colors i_ν and i'_ν. The covering graph G of R is also divided into graphs G_ν ($\nu = 1, ..., m$). Here
G_{ν} is the covering graph of R_{ν}. See Figure 5.

Figure 5: A covering graph G of R.

The number of $(0, i)$-faces of G is equal to the total number of $(0, i)$-faces of G_{ν}:

$$\sum_{i=1}^{D} |F^{(0,i)}(G)| = \sum_{\nu=1}^{m} \sum_{i=i_{\nu}, i'_{\nu}} |F^{(0,i)}(G_{\nu})|. \quad (17)$$

Since all G_{ν} have the same form (except their colors) for each covering graph G, if G is the minimal covering graph of R, G_{ν} is the minimal covering graph of R_{ν} for each ν. Therefore

$$|G_{\text{min}}| = |G_{1,\text{min}}| = \cdots = |G_{m,\text{min}}| = C_{k}. \quad (18)$$

Here $G_{\nu,\text{min}}$ is the minimal covering graph of R_{ν}. One can also see that

$$\sum_{i=1}^{D} |F^{(0,i)}(G_{\text{min}})| = \sum_{\nu=1}^{m} \sum_{i=i_{\nu}, i'_{\nu}} |F^{(0,i)}(G_{\nu,\text{min}})|$$

$$= \sum_{\nu=1}^{m} (k+1) = m(k+1). \quad (19)$$

Now the universal asymptotic formula for the average trace invariants $\mu(Tr(T, \bar{T}))$ of $N \times \cdots \times N$ random tensors T is written in the form

$$\frac{1}{N^{\gamma(D)}} \mu(Tr(T, \bar{T}))$$

$$= \frac{1}{N^{\gamma(D)}} \left(|G_{\text{min}}| N^{\gamma(D)} + o \left(N^{\gamma(D)} \right) \right)$$

$$= \frac{1}{N^{m(k+1)}} \left(C_{k} N^{m(k+1)} + o \left(N^{m(k+1)} \right) \right) \quad (20)$$

$$\rightarrow C_{k} \quad (N \rightarrow \infty).$$
The more general formula for $c_1 N \times \cdots \times c_D N$ tensors T is

$$\frac{1}{N^{\gamma(D)}} \mu(T r(T, T)) = \frac{1}{N^{\gamma(D)}} \left(\sum_{G_{\text{min}}, j=1}^D (c_j N)^{|F(0,j)(G_{\text{min}})|} + o\left(N^{\gamma(D)}\right)\right)$$

$$= \frac{1}{N^{m(k+1)}} \left(\sum_{l=1}^k N_{k,l} \prod_{\nu=1}^m c_{i_{\nu}}^{k-\lambda+1} N^{m(k+1)} + o\left(N^{m(k+1)}\right)\right)$$

$$\rightarrow \sum_{l=1}^k N_{k,l} \prod_{\nu=1}^m c_{i_{\nu}}^{k-\lambda+1} \quad (N \rightarrow \infty).$$

(21)

Here the minimal covering graphs G_{ν}^{min} are classified according to the number $l = |F(0,i_{\nu})(G_{\nu}^{\text{min}})|$. Then the number of G_{ν}^{min} is given by the Narayana number $N_{k,l}$. We see that eq. (21) follows from the equality $|F(0,i_1)(G_1^{\text{min}})| = \cdots = |F(0,i_m)(G_m^{\text{min}})|$.

- The case $m < n$. An (m,n)-cycle graph R has $k m$-dipoles with colors i_1, \ldots, i_m and $k n$-dipoles with colors i'_1, \ldots, i'_n. As before R can be divided into $(m-1)$ $(1,1)$-cycle graphs R_{ν} with colors i_{ν} and i'_{ν} ($\nu \in \{1, \ldots, m-1\}$), and a $(1,n-m+1)$-cycle graph R_m. See Figure 6. The covering graphs G are also divided into m graphs G_{ν}. See Figure 7. All G_{ν} can be the minimal covering graphs of R_{ν} at the same time, because, if G_m is minimal, all G_{ν} for
\(\nu \in \{1, \ldots, m - 1\} \) are minimal. (Check the form of the minimal covering graph of a \((1, n)\)-cycle graph in Lemma 3.) Since \(R_m \) has only one minimal covering graph (Lemma 3), we find
\[
|G_{\text{min}}| = 1. \tag{22}
\]

The number of \((0, i)\)-faces of \(G_{\text{min}} \) is
\[
\sum_{i=1}^{D} |F^{(0,i)}(G_{\text{min}})| = \sum_{\nu=1}^{m} \sum_{i=1}^{D} |F^{(0,i)}(G_{\nu}^{\text{min}})| = \sum_{\nu=1}^{m-1} (k + 1) + (n - m + 1)k + 1 = nk + m. \tag{23}
\]

Here \(G_{\nu}^{\text{min}} \) is the minimal covering graph of \(R_{\nu} \) \((\nu \in \{1, \ldots, m\})\). Then the universality for \(N \times \cdots \times N \) tensors \(T \) is given by the formula
\[
\frac{1}{N^{\gamma(D)}} \mu(Tr(T, \bar{T})) = \left(\frac{1}{N^{\gamma(D)}} |G_{\text{min}}^{\nu}| N^{\gamma(D)} + o(N^{\gamma(D)}) \right) = \frac{1}{N^{nk+m}} (N^{nk+m} + o(N^{nk+m})) \rightarrow 1 \quad (N \rightarrow \infty). \tag{24}
\]

More generally, for \(c_1 N \times \cdots \times c_D N \) tensors \(T \), we obtain
\[
\frac{1}{N^{\gamma(D)}} \mu(Tr(T, \bar{T})) = \frac{1}{N^{\gamma(D)}} \left(\sum_{j=1}^{D} \prod_{G_{\text{min}}} (c_j N) |F^{(0,j)}(G_{\text{min}})| + o(N^{\gamma(D)}) \right) = \frac{1}{N^{nk+m}} \left(N^{nk+m} \left(\prod_{\nu=1}^{m} c_{\nu} \right) \left(\prod_{\nu' \neq \nu}^{D} c_{\nu'}^{k} \right) + o(N^{nk+m}) \right) \rightarrow \left(\prod_{\nu=1}^{m} c_{\nu} \right) \left(\prod_{\nu' \neq \nu}^{n} c_{\nu'}^{k} \right) \quad (N \rightarrow \infty). \tag{25}
\]

In summary, we studied the universal asymptotic forms in the limit \(N \rightarrow \infty \) of the average trace invariants of \(c_1 N \times \cdots \times c_D N \) random tensors. In the special cases corresponding to cycle graphs with multiple edges, we explicitly calculated the asymptotic forms.

Acknowledgement

The author thanks Taro Nagao for valuable suggestions and discussions.
References

[1] R. Gurau, “Universality for Random Tensors”, Ann. Inst. H. Poincaré Probab. Statist. 50 (2014) 1474-1525 [arXiv:1111.0519v4 [math.PR]]

[2] N. Kanbe, “On the Universality for Random Tensors”, Master’s Thesis (in Japanese), Nagoya University, 2016

[3] T. Koshy, “Catalan Numbers with Applications”, Oxford University Press, 2009, ISBN978-0-19-533454-8

[4] P. Flajolet, M. Noy, “Analytic Combinatorics of Non-crossing Configurations”, Discrete Mathematics 204 (1999) 203-229

[5] P. Magyar, “Lagrange Inversion Formula”, http://users.math.msu.edu/users/magyar/Math880/