STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination

Hsueh Chung Lu, Sunja Kim, Andrew J. Steelman, Kevin Tracy, Beiyan Zhou, Danielle Michaud, Andrew E. Hillhouse, Kranti Konganti, and Jianrong Li

Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease of the central nervous system. Dysregulation of STAT3, a transcription factor pivotal to various cellular processes including Th17 cell differentiation, has been implicated in MS. Here, we report that STAT3 is activated in infiltrating monocytic cells near active MS lesions and that activation of STAT3 in myeloid cells is essential for leukocyte infiltration, neuroinflammation, and demyelination in experimental autoimmune encephalomyelitis (EAE). Genetic disruption of Stat3 in peripheral myeloid lineage cells abrogated EAE, which was associated with decreased antigen-specific Th helper cell responses. Myeloid cells from immunized Stat3 mutant mice exhibited impaired antigen-presenting functions and were ineffective in driving encephalitogenic T cell differentiation. Single-cell transcriptome analyses of myeloid lineage cells from preclinical wild-type and mutant mice revealed that loss of myeloid STAT3 signaling disrupted antigen-dependent cross-activation of myeloid cells and T helper cells. This study identifies a previously unrecognized requisite for myeloid cell STAT3 in the activation of myelin-reactive T cells and suggests myeloid STAT3 as a potential therapeutic target for autoimmune demyelinating disease.

Significance

Myeloid lineage cells are suspected of having an integral role in pathophysiological processes of multiple sclerosis (MS), but the molecular mechanism(s) governing their effector function remains incompletely understood. We show that STAT3 is activated in myeloid cells near active MS lesions. Conditional deletion of Stat3 in myeloid cells abolished symptoms of experimental autoimmune encephalomyelitis (EAE) by suppressing the generation of pathogenic T cells. Functional and transcriptomic analyses of myeloid cells from wild-type and conditional knockout mice implicated antigen processing/presentation and inflammatory cytokine production as the mechanism underlying the effects of Stat3 deletion on impaired T cell activation. Our data indicate that targeting STAT3 in myeloid cells might be a viable treatment option for autoimmune demyelinating disease.

Author contributions: H.C.L. and J.L. designed research; H.C.L., S.K., A.J.S., D.M., A.E.H., and J.L. performed research; H.C.L., S.K., K.T., B.Z., K.K., and J.L. analyzed data; and H.C.L. and J.L. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The sequence reported in this paper has been deposited in the National Center for Biotechnology Information (NCBI) BioProject database (accession no. PRJNA605403).

Present address: Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

Present address: Department of Immunology, University of Connecticut Health Center, Farmington, CT 06030.

To whom correspondence may be addressed. Email: jrl@cvm.tamu.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913997117/-/DCSupplemental.

First published February 24, 2020.
Signal transducer and activator of transcription 3 (STAT3), a member of the Janus kinase (JAK)/STAT family of tyrosine kinases, transduces extracellular signals from cytokines such as interleukin (IL)-6 and IL-10 and regulates an array of genes critical for immune responses and cell differentiation (21). Genome-wide association studies identified Stat3 as a potential MS susceptibility locus (22–25); however, the exact role of STAT3 in MS pathogenesis is not clear. Elevated levels of phosphorylated STAT3 have been found in circulating T cells and monocytes from MS patients and correlate with disease progression (26–28). Phosphorylated STAT3 was also observed in macrophages/microglia and astrocytes in the white matter adjacent to active MS lesions (29). Mice with selective deletion of the Stat3 gene in CD4+ T cells did not develop EAE due to impaired induction of encephalitogenic Th17 cells (30). Systemic blockade of JAK/STAT pathways suppressed Th1/Th17 differentiation, myeloid cell activation, and leukocyte infiltration during EAE (31). Conversely, Stat3 appears to have a nonredundant role in IL-10-mediated antiinflammatory responses in monocytes/macrophages as Il10 deficiency results in exacerbated EAE (32). Therefore, loss of Stat3 in myeloid cells may aggravate inflammation and autoimmune diseases. On the other hand, Stat3 mediates IL-6 signaling, and If6-null mice are resistant to EAE due to deficiency of effector T cell development (33–35). Interestingly, myeloid cell-specific ablation of Stat3, a negative regulator of STAT3, results in excessive Th1/Th17 responses and exacerbated demyelination of the cerebellum (36), underscoring a potential pathogenic role for STAT3 overactivation in myeloid cells in neuroinflammation.

To determine the in vivo function of myeloid STAT3 signaling in CNS autoimmune diseases, we generated myeloid cell-restricted Stat3 mutant mice and subjected them to MOG35–55-induced EAE. Here, we provide in vivo evidence that activation of STAT3 in peripheral myeloid cells is required for EAE development in large part through cross-talk with CD4+ T cells and promotion of Th1/Th17 cell differentiation and activation.

**Results**

**STAT3 Is Activated in Subsets of CD11b+ Cells Adjacent to Active MS Lesions and in Inflamed Loci in the EAE Animal Model of MS.** As the transcriptional activity of STAT3 is critically dependent on phosphorylation at Tyr705, the levels of phosphorylated STAT3 (pSTAT3, Y705) and total STAT3 were evaluated by Western blotting analysis of postmortem brain tissues from MS patients and control subjects (Fig. 1A and B and SI Appendix, Table S1). We found significant increases in both pSTAT3 (~4.9-fold) and total STAT3 (~2.3-fold) in MS tissues compared to controls (Fig. 1B). Cellular location of pSTAT3 was then determined by double immunolabeling with monoclonal antibodies that specifically detect STAT3 phosphorylated at Tyr705. While we did not find a pSTAT3 signal in control cases, we observed sparse pSTAT3-positive cells near demyelinating lesions in the white matter (Fig. 1C). Most interestingly, we often observed distinct pSTAT3 immunoreactivity in CD11b+ monocytes in the lumen of blood vessels and perivascular regions (Fig. 1D). Similarly, STAT3 immunoreactivity was elevated in macrophages/microglia clustered around blood vessels (Fig. 1E), a finding consistent with the vasocentric nature of new lesion formation that is often seen in MS. These findings demonstrate that not only total STAT3 expression is increased, it is also activated in subsets of myeloid cells that are frequently associated with the inflamed vasculature in active MS, and suggest that myeloid STAT3 activation may be involved in the pathogenesis of new lesion formation.

Next, we investigated whether STAT3 is activated in the EAE model of MS as EAE approximates autoimmune activation and cell trafficking aspects of MS. In contrast to a complete lack of pSTAT3 immunoreactivity in normal spinal cords (Fig. 2A), prominent pSTAT3 immunoreactivity was found at the site of immune cell infiltration in EAE mice (Fig. 2 B–F). Using a visual method for colocalization, in which colocalization is determined if a cell or its nucleus exhibits yellow color when the green (cell markers) and red (pSTAT3) channels are superimposed, we found that pSTAT3 signal was colocalized to a subset of CD68+ (Fig. 2C), tomato lectin+ (Fig. 2D), and CD11b+ myeloid cells (Fig. 2E). Very few pSTAT3+ cells were GFAP+ astrocytes (Fig. 2B) or CD4+ T cells (Fig. 2F). This spatial distribution of pSTAT3+ cells further suggests that STAT3 activation in myeloid cells may contribute to immune cell infiltration and the pathogenesis of EAE.

**Selective Ablation of Stat3 in Myeloid Cells Abrogates MOG35–55-Induced EAE.** To investigate the in vivo function of myeloid STAT3 in autoimmune demyelination, we disrupted Stat3 gene specifically in myeloid lineage cells. Stat3 gene was floxed at exon 22 encoding the Tyr residue that is essential for STAT3 activation (37) (Fig. 3A). Truncated Stat3 protein may be expressed but is not activated due to the lack of Tyr705, resulting in functional STAT3 inactivation in targeted cells. We confirmed that the targeted sequence of Stat3 gene was indeed deleted upon recombination as determined by genomic PCR of fluorescence-activated cell sorting (FACS) isolated CD11b+ splenocytes (Fig. 3B). Flow cytometry analysis of LysMcre reporter mice (LysMcre:rosa26 At14) further showed high efficacy of cre recombination in peripheral myeloid cells, such as granulocytes, Ly6cha and Ly6cho monocytes, and dendritic cells, but not CNS microglia (SI Appendix, Fig. S1C). In addition, IL-6–induced STAT3 phosphorylation was markedly abolished in bone marrow-derived macrophages (BMDMs) from LysMcre:Stat3fl/fl in comparison to controls (SI Appendix, Fig. S1).

LysMcre:Stat3fl/fl and littermate Stat3fl/fl controls were then subjected to MOG35–55-induced EAE. In stark contrast to Stat3fl/fl mice that developed typical EAE symptoms and progression, LysMcre:Stat3fl/fl mice were resistant (Fig. 3 C and D) and did not exhibit characteristic weight loss associated with EAE onset (Fig. 3E). Consistent with the lack of EAE symptoms in the LysMcre:Stat3fl/fl mice, there was little peripheral immune cell infiltration (Fig. 3 G and H), microglia activation (Fig. 3 I and J), and demyelination (Fig. 3F). Although activated CD68+ macrophages were present in leptomeninges of the LysMcre:Stat3fl/fl mice, there were essentially no inflammatory cells (by FACS) isolated from CNS tissues in LysMcre:Stat3fl/fl mice (Fig. 3F). Moreover, LysMcre:Stat3fl/fl mice also had attenuated spinal production of proinflammatory cytokines (Tnf, Il1β, Il6, and Gm-csf) and chemokines (Ccl2, Ccl3, and Ccl5) compared to controls (Fig. 3K). EAE-associated up-regulation of intercellular adhesion molecule-1 (Icam-1) and loss of activated leukocyte cell adhesion molecule (Alcam) were also abolished in LysMcre:Stat3fl/fl mice (SI Appendix, Fig. S2F). Immunohistochemistry confirmed robust up-regulation of ICAM-1 in immunized Stat3fl/fl mice, particularly in regions where leukocytes infiltrated, whereas moderate ICAM-1 immunoreactivity in the mutant mice was largely restricted to leptomeninges (SI Appendix, Fig. S2). Taken together, these data demonstrate that disruption of STAT3 signaling in myeloid cells abrogated EAE development and prevented leukocyte infiltration, neuroinflammation, and demyelination.

**Peripheral Antigen-Specific Th1 Responses Are Reduced in Stat3 Mutant Mice at the Preclinical and Onset Stages of EAE.** To determine if the lack of CNS inflammatory responses in LysMcre:Stat3fl/fl mice resulted from impaired development of encephalitogenic Th1/Th17 cells, we examined the kinetics of antigen-specific T cell responses over the course of EAE. Mononuclear cells were isolated from secondary lymphatic organs of immunized mice at different stages of EAE and tested for their responses upon secondary exposure to MOG35–55 peptide (Fig. 4). During the preclinical and onset stages of EAE, LysMcre:Stat3fl/fl splenocytes secreted significantly less interferon (IFN) γ (Fig. 4A) and
trend of less IL-17A (Fig. 4B) when compared to littermate controls. Moreover, antigen-elicited production of the pathogenic cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) was significantly suppressed in the mutant mice compared to littermate controls at the onset of disease (Fig. 4C). Consistent with these data, the frequency (Fig. 4D–H) and the number (SI Appendix, Fig. S4) of IFNγ- and GM-CSF–producing CD4+ T cells were significantly lower in immunized LysMcre:Stat3fl/fl mice than that of Stat3fl/fl mice at disease onset. In contrast to diminished pathogenic T cell responses during the early phase of EAE, antigen-specific production of IFNγ, GM-CSF, IL-17A, and many proinflammatory mediators was comparable between genotypes at later stages (Fig. 4A–C and SI Appendix, Fig. S3). Major myeloid and lymphocyte populations in blood and spleens were also similar between genotypes (SI Appendix, Fig. S5). Collectively, these data show that disruption of STAT3 signaling in myeloid cells results in decreased antigen-specific pathogenic CD4+ T helper responses at preclinical and early stages of EAE, and that activation of STAT3 in myeloid cells is required for generating antigen-specific encephalitogenic CD4+ T helper cells and induction of EAE.

**Disruption of STAT3 Signaling in Myeloid Cells Impairs Their Capability to Differentiate Naïve CD4+ T Cells into Th1 and Th17 Ex Vivo.** Direct engagement of naive CD4+ T cells with antigen-presenting cells and a proper cytokine milieu dictate the differentiation of T cells into effector cells. To directly test whether Stat3 mutant myeloid cells are less efficient at differentiating naive CD4+ T cells into antigen-specific pathogenic T cells, we took an ex vivo coculture approach (Fig. 5A). We isolated CD11b+ splenocytes from LysMcre:Stat3fl/fl and littermate Stat3fl/fl mice 9 d after immunization with MOG35–55 and cocultured them with CD4+ T cells from naive 2D2 mice that express a transgenic TCR for MOG35–55 (38) (Fig. 5A). Positive immunomagnetic selection for CD11b and CD4 yielded highly enriched corresponding populations (SI Appendix, Fig. S6A and B), and immunophenotyping analyses revealed no overt populational differences in isolated CD11b+ cells between genotypes (SI Appendix, Fig. S6C) and immunophenotyping analyses revealed no overt populational differences in isolated CD11b+ cells between genotypes (SI Appendix, Fig. S6C). However, upon culturing with naive CD4+ 2D2 T cells in the presence of MOG35–55, the cocultures containing Stat3 mutant myeloid cells had a lower percentage of CD11b+CD11c+ APCs than that with wild-type (WT) myeloid cells (SI Appendix, Fig. S6D), and fewer IFNγ- and IL-17A–producing CD4+ T cells (Fig. 5B). Consistent with decreased
than that of LysMcre:Stat3fl/fl eliciting antigen-specific adaptive immune responses. Efficient in polarizing and activating Th1 and Th17 cells and efficient than their wild-type counterpart in promoting Th1 cell activation may be affected by the loss of STAT3 signaling. Lu et al. PNAS Appendix

IL-17A, and GM-CSF was also significantly reduced (Fig. 5B), and IL-18, IL-23, CCL3, and CCL5, were similarly reduced in cocultures of 2D2 T cells with mutant myeloid cells (SI Appendix, Fig. S7A). Furthermore, mutant CD11b<sup>+</sup> cells were less efficient than their wild-type counterpart in promoting Th1 cell proliferation (SI Appendix, Fig. S8). Together, these data suggest that myeloid cells from immunized LysMcre:Stat3<sup>fl/fl</sup> mice are less efficient in polarizing and activating Th1 and Th17 cells and eliciting antigen-specific adaptive immune responses.

In the absence of T cells, CD11b<sup>+</sup> cells from immunized LysMcre:Stat3<sup>fl/fl</sup> mice produced lower levels of TNFα and IL-1β than that of Stat3<sup>−/−</sup> mice upon lipopolysaccharide (LPS)/IFNγ activation (Fig. 5D). We also observed decreased production of IL-17A, CCL3, and CCL5, but not IL-6, IL-12, IL-4, IL-10, IL-18, IL-23, or IP-10 upon LPS/IFNγ activation (Fig. 5D and SI Appendix, Fig. S7B). In contrast, CCL2 was significantly higher in stimulated mutant CD11b<sup>+</sup> monocytes (SI Appendix, Fig. S7B). Interestingly, mutant myeloid cells expressed significantly less MHC class II than wild-type cells upon stimulation (Fig. 5E and SI Appendix, Fig. S9). The decreased expression of MHC class II and costimulatory molecules on mutant myeloid cells may account for decreased antigen-specific Th1/Th17 responses in cocultures, which in turn produced less instructive signals, such as GM-CSF to myeloid cells, resulting in decreased myeloid cell activation and production of proinflammatory cytokines.

To examine whether inactivation of STAT3 affects individual myeloid cell types differentially, we stimulated ex vivo CD11b<sup>+</sup> cells (Fig. 5A) with LPS and examined TNFα production in individual cells by intracellular staining and flow cytometry (SI Appendix, Fig. S10). When compared to wild-type cells, a lower percentage of mutant Ly6<sup>Ch</sup> and Ly6C<sup>Low</sup> monocytes produced TNFα upon activation, in agreement with above multiplex findings (Fig. 5 and SI Appendix, Fig. S7). Although there was no difference in TNFα production between mutant and wild-type neutrophils, we found a significant reduction in MOG-dependent secretion of myeloperoxidase (MPO) in the Stat3 mutant myeloid cocultures (SI Appendix, Fig. S10B), suggesting that neutrophil activation may be affected by the loss of STAT3 signaling.

Previous study showed that Stat3-deficient peritoneal macrophages exhibit enhanced proinflammatory responses due to loss of the IL-10/STAT3 antiinflammatory axis (39). Therefore, we examined BMDMs from naive LysMcre:Stat3<sup>fl/fl</sup> and littermate controls. While differentiation and maturation of BMDMs were comparable between genotypes (SI Appendix, Fig. S11A), upon stimulation, LysMcre:Stat3<sup>fl/fl</sup> BMDMs expressed lower levels of CD40 and CD80, higher MHC class II, and proinflammatory mediators such as TNFα, IL-1β, IL-6, IL-12, and CCL2 at both messenger RNA (mRNA) and protein levels than control BMDMs (SI Appendix, Fig. S11B–D). In cocultures of BMDM plus Th1 or Th17 cells, antigen-specific production of IFNγ and IL-17A was not different between genotypes (SI Appendix, Fig. S11E). Our results confirmed previous findings that STAT3-deficient macrophages exhibit enhanced innate immune responses but, in the meantime, revealed that cultured BMDMs did not recapitulate immune responses of myeloid cells isolated from MOG-immunized mice (Fig. 5 and SI Appendix, Fig. S7), which further underscores the importance of examining STAT3-dependent immune responses in vivo.

**LysMcre:Stat3<sup>fl/fl</sup> Mice Develop Passive EAE after Adoptive Transfer of Encephalitogenic T Cells.** Our data thus far suggest that impaired development of myelin-specific Th1 underlies the insensitivity of Stat3<sup>−/−</sup> mice to MOG<sub>35-55</sub>-induced EAE. If this indeed is the case, LysMcre:Stat3<sup>fl/fl</sup> mice should be susceptible to passive EAE mediated by adoptive transfer of encephalitogenic T cells (Fig. 6A). After antigen reactivation, donor cells from draining lymph nodes of preclinical EAE mice consisted primarily of B cells, CD8<sup>+</sup> T cells, and CD4<sup>+</sup> T cells, of which 46.6% were IFNγ-secreting Th1 and 32.4% were IL-17A–secreting Th17 cells (SI Appendix, Fig. S12A and B). In contrast to active EAE, where only about 5% of LysMcre:Stat3<sup>fl/fl</sup> mice developed the disease (Fig. 3), two-thirds of the mutant mice developed passive EAE after receiving encephalitogenic T cells (Fig. 6B), and ones that developed disease had comparable levels of neuroinflammation as wild-type controls (Fig. 6D–F and SI Appendix, Fig. S12C). These data further support the notion that myeloid STAT3 signaling is critical to the development of myelin-specific pathogenic T cells.

It is worth noting that, although a majority of LysMcre:Stat3<sup>fl/fl</sup> mice developed EAE symptoms upon adoptive transfer of encephalitogenic T cells, their overall clinical scores were lower...
than that of Stat3ΔΔ mice, which suggests additional mechanisms or cell types affected by loss of myeloid Stat3 signaling. One possibility is impaired innate functions of mutant macrophages and neutrophils (SI Appendix, Fig. S10).

**STAT3 Activation in the Peripheral Myeloid Cells, but Not CNS Microglia, Is Necessary for the Development of Active EAE.** Our data above suggest that STAT3 activation in blood-derived myeloid cells plays a pathogenic role in the induction of EAE. To address whether LysMcre:Stat3ΔΔ mice become susceptible to MOG-induced EAE when their peripheral myeloid cells are replenished with wild-type cells as well as whether CNS microglial STAT3 contributes to EAE pathogenesis, we generated bone-marrow (BM) chimeric mice (Fig. 7A). Flow cytometry analyses of splenocytes, blood, and CNS mononuclear cells from chimeric mice showed high engraftment efficiency of the peripheral

---

Fig. 3. Mice with targeted disruption of Stat3 in myeloid cells are resistant to MOG35-55-induced EAE. (A) Schematic of Cre-dependent excision of exon 22 of Stat3 gene that encodes tyrosine 705 residue essential for STAT3 protein activation. F and R depict forward and reverse primers designed to flank the entire deleted sequence (forward-CCTCTACCCCGACATTCCCAAGG; reverse-CACACAAGCCATCAAACTCTGGTCTC). (B) QPCR analysis of Lumbar sections from EAE mice at 21 dpi stained for Iba-1, CD68, and Hoechst. (Scale bars: 10 μm.) (C) Flow cytometry analyses of spinal cords isolated from EAE mice at 21 dpi stained for Iba-1, CD68, and Hoechst. (Scale bars: 10 μm.) (K) Quantitative RT-PCR analysis of spinal cords isolated from Stat3ΔΔ (n = 5) and LysMcre:Stat3ΔΔ mice (n = 5) at 14 dpi. Data represent fold changes relative to naive mice (n = 3) and are mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.005 as determined by one-way ANOVA. ns, not significant.
immune system (85 to 95%) and minimal engraftment in the CNS (Fig. 7B). Moreover, chimera reconstituted with BM from LysMcre:Stat3fl/fl reporter mice confirmed that peripheral myeloid cells do not engraft into the CNS parenchyma under normal conditions (Fig. 7C). The few tdTomato+ (tdT+) donor cells found per tissue section were all associated with meninges or blood vessels. In contrast, when Cx3cr1gfp/+ transgenic mice, in which microglia express GFP, were reconstituted with LysMcre:Rosa26tdTomato BM and later subjected to EAE, massive peripheral donor-derived tdTomato+ myeloid cells infiltrated into the CNS and were clearly distinguishable from resident GFP+ microglia (Fig. 7D). These results show that peripheral infiltrates are the primary driver of neuroinflammation and that the chimera model is suitable for investigating central and peripheral immune contributions in EAE. Stat3fl/fl chimeric mice were then examined for their susceptibility to MOG-induced EAE. Chimeric mice engrafted with wild-type BM (i.e., Stat3fl/fl (donor) → Stat3fl/fl (recipient) and Stat3fl/fl → LysMcre:Stat3fl/fl) developed typical EAE (Fig. 7E and F). In contrast, chimeric mice hosting mutant myeloid cells in the periphery (i.e., LysMcre:Stat3fl/fl → Stat3fl/fl and LysMcre:Stat3fl/fl → LysMcre:Stat3fl/fl) failed to develop EAE (Fig. 7E and F). In line with clinical scores, the number of CNS infiltrates were indistinguishable between wild-type and mutant mice that received wild-type BM (Fig. 7G and H), suggesting that STAT3 activation in the peripheral myeloid compartment, but not the CNS compartment, is critical for the development of EAE.

During our EAE experiments involving bone marrow chimeric mice, we observed that, although wild-type mice reconstituted with mutant BM (LysMcre:Stat3fl/fl → Stat3fl/fl) did not develop EAE (Fig. 7D), they displayed sickness behaviors, appeared hunched and lethargic, and died at various days after MOG immunization. These mice, however, did not develop other symptoms associated with atypical EAE, such as ataxia and axial rotation. We suspect this may due to enhanced innate immune responses elicited by immunization as we found that the serum from LysMcre:Stat3fl/fl mice at the preclinical stage had higher levels of TNFα compared to littermate controls and that STAT3-deficient BMDMs had exacerbated immune responses upon LPS stimulation (SI Appendix, Fig. S11). Of note, LysMcre:Stat3fl/fl → Stat3fl/fl chimeric mice did not exhibit any apparent health problems prior to immunization. LysMcre:Stat3fl/fl → LysMcre:Stat3fl/fl chimeric mice did not exhibit these problems, probably due to inherent adaptation to myeloid Stat3 inactivation.

To overcome the adverse effects of myeloablation by irradiation and to determine the contribution of microglial STAT3, we generated tamoxifen-inducible microglia-specific Stat3 mutant mice. The efficiency of Cx3cr1-driven recombination in microglia (40) was first established with reporter mice (Fig. 8 A–C). Although recombination occurred in peripheral Cx3cr1Cre-expressing cells (Fig. 8C), 4 wk after tamoxifen pulse treatment, the short-lived blood-borne Cx3cr1-expressing cells were replaced by unarranged bone marrow progeny whereas Cre-recombined microglia persisted (>96%), resulting in specific gene targeting in long-lived microglial cells (Fig. 8C). When active EAE was induced in Stat3fl/fl and Cx3cr1Cre:Stat3fl/fl mice 4 wk after tamoxifen treatment, EAE clinical scores (Fig. 8 D and E) and CNS cytokine transcripts (Fig. 8F) were not significantly different between genotypes. Thus, our collective data demonstrate that microglia STAT3 signaling does not play a major role in EAE development and progression.

![**Fig. 4.** Peripheral antigen-specific T cell responses were impaired in myeloid Stat3 mutant mice during preclinical and onset of EAE. (A–C) EAE was induced in LysMcre:Stat3fl/fl and Stat3fl/fl control mice. At different EAE stages based on clinical scores of control Stat3fl/fl mice, splenocytes were isolated and cultured in the absence or presence of MOG35-55 (30 μg/mL) for 3 d. Production of IFNγ, IL-17A, and GM-CSF in the supernatant was determined with ELISA. Preclinical, Stat3fl/fl,n = 6; LysMcre:Stat3fl/fl, n = 5. Onset, Stat3fl/fl, n = 6; LysMcre:Stat3fl/fl, n = 4. Peak, Stat3fl/fl, n = 5; LysMcre:Stat3fl/fl, n = 2. Post-peak, Stat3fl/fl, n = 3; LysMcre:Stat3fl/fl, n = 2. Data represent mean ± SEM. **P < 0.01, ***P < 0.005. (D–H) Intracellular cytokine analysis of the frequency of IFNγ, IL-17A, and GM-CSF-producing CD4+ effector T cells. Splenocytes were isolated at disease onset and rechallenged with antigen MOG35-55 for 24 h. Intracellular cytokine production by CD4+ T cells was analyzed by flow cytometry after secretion blockade with Brefeldin A followed by immunostaining with fluorophore-conjugated antibodies against CD4, IFNγ, IL-17A, and GM-CSF-producing CD4+ effector T cells.](media/pnas.1914408117.Fig4.large.png)
Single-Cell Gene Profiling of Peripheral Myeloid Cells from Preclinical EAE Mice Revealed STAT3 Dependency during Cross-Activation of Myeloid Cells and Autoreactive T Cells. We have shown that peripheral myeloid cells play a critical role in antigen presentation and secretion of instructive cytokines for Th cell priming and differentiation in the EAE model of MS. In attempts to identify potential myeloid cell subsets and molecular networks that are regulated by STAT3 in an antigen-specific manner, we conducted single-cell RNA-seq (scRNA-seq) experiments on sorted CD11b+ myeloid cells from Stat3 mutant and littermate controls on day 9 post-MOG immunization (Fig. 9A). While a fraction of CD11b+ myeloid cells underwent scRNA-seq, the remaining CD11b+ cells were cocultured with naive 2D2 T cells in the presence or absence of the antigen, followed by FACS isolation and scRNA-seq (Fig. 9B). Two independent experiments representing six mice per genotype generated a dataset from a total of 446 myeloid cells, of which 1,229 filtered genes were identified (Dataset S1). Unsupervised hierarchical clustering of the top 100 variably expressed genes revealed that myeloid cells organized into their respective groups and that the most variance was attributable to differences between mutant and wild-type myeloid cells that were cocultured with T cells in the presence of antigen: namely, M\(^{K0}/T+MOG\) vs. M\(^{WT}/T+MOG\) (Fig. 9B). In contrast, CD11b+ cells freshly isolated from the spleens of mutant and wild-type mice exhibited similar gene profiles (M\(^{K0}\) ctrl vs. M\(^{WT}\) ctrl) (Fig. 9B), suggesting that peripheral myeloid cell development and phenotypes were similar between wild-type and Stat3 mutant mice at the preclinical phase of EAE. A t-distributed stochastic neighbor embedding (tSNE) plot further demonstrated a close spatial relationship between clusters of mutant and wild-type myeloid cells (M\(^{K0}\) ctrl vs. M\(^{WT}\) ctrl) (Fig. 9C). Interestingly, in the presence of antigen and 2D2 T cells, the transcriptomic profile of Stat3 mutant myeloid cells started to diverge substantially from that of wild-type cells on the pseudotime single-cell trajectory plot (Fig. 9D). These data reveal a requirement for a STAT3-dependent myeloid cell population(s) in intercellular communications that results in cross-activation of myeloid cells and antigen-specific T effector cells.

Among the top variance genes (Fig. 9B), the cluster of genes that were most highly expressed in the M\(^{K0}/T+MOG\) group versus others were a number of ribosomal proteins and regulatory genes related to transcription, RNA transport, and mRNA translation (e.g., Rps19, Rps23, Rps14, Rppl2, Rpl7, Eef1a1, and Uba52). The clusters of transcripts that were highly expressed in myeloid cells from the M\(^{K0}/T+MOG\) group but collapsed in Stat3 mutant myeloid cells included genes involved in innate immune responses, antigen-presentation and processing, cytokine signaling, and inflammatory responses (e.g., Tyrobp, Cyba, Camp, Pndx5, Fpr1, Lys2, Ly6c, B2m, Alox5ap, Ifitm6, Ccl3, and Lst1). The distribution of expression levels of several top variance transcripts in individual myeloid cells across experimental groups was visualized with violin plots (Fig. 9E). Of note, Tyrobp (DAPI12), a key immunoreceptor tyrosine-based activation motif (ITAM)-bearing adaptor molecule that regulates immune responses (41), was completely down-regulated in Stat3 mutant myeloid cells (Fig. 9E). Similarly, Cgr3 (Fc receptor y-chain 3) was also lost in the M\(^{K0}/T+MOG\) group (Fig. 9E). Previous studies showed that dendritic Tyrobp- and Fc receptor y-mediated pathways control autoimmune CD4 T cells by regulating antigen processing and presentation (42) and that Tyrobp-deficient mice fail to develop autoimmunity due to impaired antigen priming of T cells (43). Together, these data further support that STAT3 signaling is required for optimal APC function in the development of autoimmunity. Our results also suggest potential functional links between myeloid STAT3 and Tyrobp signaling in autoimmune diseases.

Ingenhu pathway comparison analyses of gene expression profiles of the two most spatially distinct groups (M\(^{K0}/T+MOG\) vs. M\(^{WT}/T+MOG\))...
consistent with this hypothesis, myeloid cells isolated from immunized mice and maintained myeloid cell activation with MOG-specific Th cells. In contrast to the essential pathogenic role of peripheral myeloid STAT3 signaling, loss of CNS microglial STAT3 did not significantly affect EAE development and progression. Together, these data demonstrate a critical in vivo function of STAT3 signaling in the peripheral myeloid cell compartment in regulating encephalitogenic T cell development and neuroinflammation.

The main mechanism by which STAT3 inactivation in peripheral myeloid cells abolished the development of EAE is impaired functions of myeloid APCs in priming and differentiating CD4^+ T cells into encephalitogenic T cells in vivo. STAT3 ablation in myeloid cells did not alter circulating or splenic myeloid cell populations at preclinical stages, as determined by immunophenotyping and myeloid cell gene profiling. However, the functionality of these STAT3 mutant and WT myeloid cells differed drastically when they interacted with autoreactive CD4^+ T cells in the presence of a cognate antigen. In contrast to WT myeloid cells, STAT3 mutant myeloid cells were ineffective in priming and differentiating naive CD4^+ T cells into Th1/Th17 effectors cells. Therefore, LysMcre:Stat3^{fl/fl} mice were susceptible to passively induced EAE. In contrast to the essential pathogenic role of peripheral myeloid STAT3 signaling, loss of CNS microglial STAT3 did not significantly affect EAE development and progression. Together, these data demonstrate a critical in vivo function of STAT3 signaling in the peripheral myeloid cell compartment in regulating encephalitogenic T cell development and neuroinflammation.

Discussion

In this study, we demonstrate that STAT3 activation in peripheral myeloid cells is required for the development of CNS pathologies in an autoimmune animal model of MS. We found that phosphorylated STAT3 was significantly elevated and was frequently associated with infiltrating CD11b^+ cells and/or CD68^+ macrophages around vasculature in MS tissues. Conditional deletion of Stat3 in myeloid cells resulted in resistance to MOG35-55-induced EAE due to impaired encephalitogenic T cell development and suppressed leukocyte infiltration and neuroinflammation. Consistent with this hypothesis, myeloid cells isolated from immunized LysMcre:Stat3^{fl/fl} mice expressed lower levels of antigen-presenting and costimulatory molecules and were less effective in differentiating naive 2D2 CD4^+ T cells into Th1/Th17 effector cells. Furthermore, LysMcre:Stat3^{fl/fl} mice were susceptible to passively induced EAE. In contrast to the essential pathogenic role of peripheral myeloid STAT3 signaling, loss of CNS microglial STAT3 did not significantly affect EAE development and progression. Together, these data demonstrate a critical in vivo function of STAT3 signaling in the peripheral myeloid cell compartment in regulating encephalitogenic T cell development and neuroinflammation.

Fig. 6. LysMcre:Stat3^{fl/fl} mice are susceptible to passive EAE induced by adoptive transfer of encephalitogenic T cells. (A) Schematic of passive induction of EAE by adoptive transfer of encephalitogenic lymphocytes. (B and C) T cell adoptive transfer EAE was induced in Stat3^{fl/fl} (n = 20) and LysMcre:Stat3^{fl/fl} (n = 15) mice, and their clinical scores were assessed daily. Data represent mean ± SEM of five independent experiments. *P < 0.05. (D) The number of CNS infiltrating leukocytes at 30 d post-transfer (dpt). Data represent mean ± SEM of three mice per genotype. (E and F) Representative images of immunostaining of spinal cords of EAE mice with clinical scores of 2 to 2.5. Spinal cord cross-sections were immunostained for Iba-1 and CD3. Boxed areas indicate images taken at higher magnification (F). (Scale bars: E, 200 μm; F, 25 μm.)
with CD4⁺ T cells, as well as a cytokine environment that drives autoimmune inflammation.

Myeloid cells are heterogeneous and phenotypically dynamic at different activation stages in terms of surface protein profiles, signaling molecule expression and cytokine production. Using a high-dimensional single-cell mass cytometry approach, a recent study systematically compared myeloid cell populations across different clinical stages of EAE and identified five separate clusters of peripherally derived, CNS-infiltrating myeloid cells (44). Interestingly, among these, two monoocyte populations had increased pSTAT3 signal at the onset of EAE, compared to all other infiltrating monocytes or CNS-resident myeloid cells, and most likely represented activated myeloid APCs based on their surface marker expression patterns (44). These findings are in accordance with our data demonstrating that selective inactivation of STAT3 signaling in peripheral myeloid cells ameliorates the development of encephalitogenic T cells and EAE. Our study also highlights the potential of myeloid STAT3 as a therapeutic target in autoimmune demyelinating disease. Single-cell transcriptome profiling of myeloid cells revealed that the STAT3-dependent impairment only becomes evident when myeloid cells were cocultured with MOG-reactive T cells, suggesting yet-to-be-identified STAT3-dependent, antigen-initiated reciprocal communications between CD4⁺ T cells and myeloid cells that drive CNS inflammation. In line with these findings, loss of MHC class II expression on CD11c⁺ myeloid cells effectively prevented EAE induction (45). The exact nature of activated myeloid cells that are regulated by STAT3 signaling in the context of EAE and T cell activation remains to be determined and likely

Fig. 7. STAT3 activation in the peripheral myeloid cells, but not CNS myeloid cells, is required for MOG35-55-induced EAE. (A) Schematic of experimental design of bone marrow chimeric experiments. (B) Efficacy of BM engraftment in congenic recipients. Engraftment of CD45.1 BM cells into irradiated CD45.2 congenic C57BL/6 mice (CD45.1 → CD45.2) was analyzed 6 wk after BM transplantation. Mononuclear cells from spleen, blood, and the CNS of chimeric mice were stained with antibodies against CD45.1 and CD45.2 and analyzed by flow cytometry. Data are representative of four to eight chimera. (C) Representative spinal cord images of naive chimeras reconstituted with BM from LysMcre:Rosa-ttdTomato reporter mice. There was minimal CNS engraftment by donor myeloid cells in unchallenged chimeric mice 6 to 9 wk after transplantation (n = 3). (Scale bars: whole cross section, 500 μm; Insert, 50 μm.) Insets, magnified areas in red boxed highlighting double-positive cells. (D) Representative images of dual reporter chimera at the peak of EAE, illustrating massive infiltrating LysM-driven tdTomato⁺ myeloid cells at inflamed loci, clearly distinguishable from resident microglia (GFP⁺). No overlap between ttdTomato and GFP was observed (n = 2). (E and F) Mean EAE clinical scores and cumulative scores of Stat3 chimeric mice. Active EAE was induced in chimeric mice 6 wk post-BM engraftment and scored daily. Stat3⁺ (BM donor) → Stat3⁻ (recipient), n = 11 mice; Stat3⁻ → LysMcre:Stat3⁺, n = 8; LysMcre:Stat3⁺ → Stat3⁻, n = 11; LysMcre:Stat3⁻ → LysMcre:Stat3⁺, n = 4. (G and H) Infiltrating leukocytes were isolated from the CNS of EAE mice at 26 dpi, immunolabeled, and analyzed with flow cytometry. Data represent mean ± SEM; *P < 0.05, **P < 0.01, ***P < 0.005.
recent evidence suggests that neutrophils have the capacity to infiltrate the CNS and modulate neuroinflammation (48). Neutrophils may acquire APC-like functions in activating MOG-specific T cells, infiltrating the CNS, and promoting leukocyte extravasation (52). Interestingly, MMP-8, produced by infiltrating neutrophils, is involved in degradation of the basement membrane matrix and promotes leukocyte diapedesis (52). MMP-8 has been shown to degrade the basement membrane matrix and promote leukocyte diapedesis (52). Interestingly, MMP-8, produced by infiltrating neutrophils, is involved in degradation of the basement membrane matrix and promotes leukocyte diapedesis.

Besides regulating APC functions in activating MOG-specific T cells, infiltrating neutrophils have the capacity to function as antigen-presenting cells under certain pathological conditions (49). Whether this occurs in EAE and whether STAT3 regulates potential APC-like functions of neutrophils is presently open questions. Deletion of Socs3, an inducible negative regulator of STAT3, in myeloid cells resulted in a more severe form of atypical EAE that was mainly mediated by enhanced neutrophil functions (36, 50). Although we did not observe significant differences in neutrophil populations between Stat3 mutant and control mice at preclinical and EAE onset or between wild-type and mutant ex vivo myeloid cells cocultured with 2D2 T cells, we did, however, find a significant reduction in antigen-dependent MPO secretion in the mutant CD11b+ cells plus 2D2 cocultures (SI Appendix, Fig. S10B). MPO is mainly secreted from activated neutrophils and has been implicated in myeloid cell infiltration and blood–brain barrier (BBB) breakage during EAE (51). In addition, our pathway analysis of the myeloid cell RNA-seq dataset suggests decreased iMLP signaling in neutrophils, IL-8/CXCL8 signaling, and leukocyte extravasation pathways in Stat3 mutant myeloid cells (SI Appendix, Fig. S13). Immune cell extravasation across the BBB into the CNS parenchyma represents a critical step in breaking CNS immune privilege and initiating neuroinflammatory reactions. Matrix metalloproteinases (MMPs) such as MMP-2/9, secreted primarily by infiltrated myeloid cells, have been shown to degrade the basement membrane matrix and promote leukocyte diapedesis (52). Interestingly, MMP-8, produced mainly by infiltrating neutrophils during EAE and of which gene ablation reduces EAE progression (53), was down-regulated in Stat3 mutant myeloid cell populations only when stimulated with antigen cognate T cells (Fig. 9E). These findings suggest that STAT3 signaling in granulocytes likely contributes to leukocyte transmigration and activation during CNS autoimmune pathogenesis.

We found increased STAT3 activation in infiltrating myeloid cells in the vicinity of blood vessels in apparent newly forming MS lesions. The STAT3 locus has been associated with two autoimmune diseases: Crohn’s disease and MS (54). Comorbidity of inflammatory bowel disease and MS has been implicated in some MS patients (55). Interestingly, a STAT3 allele variant associated with a protective haplotype in MS is associated with increased risk in Crohn’s disease (24). Animal studies showed that targeted deletion of Stat3 in CD4 T cells (30) and myeloid cells (the current study) prevents the development of EAE and that pharmacological inhibition of JAK/STAT signaling abolishes EAE pathogenesis and progression (31). These studies collectively support a significant role for STAT3 in autoimmune disease pathogenesis. One limitation of this study is that LysMcre:Stat3fl/fl mice were prone to developing chronic enterocolitis with age and enhanced IL-12p40 production and Th1 activity (39, 56). The inflamed gastrointestinal tract could disrupt the balance of commensal microbiota that may affect EAE and other autoimmune diseases (57). Although a few of our mutant mice developed rectal prolapse either before or after EAE induction, we did not observe any correlations between these two phenotypes as all Stat3 mutant mice failed to develop EAE and mutant mice reconstituted with wild-type marrow were fully susceptible to active EAE. Moreover, mutant mice with rectal prolapse developed passive EAE after adoptive transfer of encephalitogenic T cells. It is noteworthy that IL-10-deficient mice also develop chronic enterocolitis (58). However, unlike lymcCre:Stat3fl/fl mice, IL-10-deficient mice are more susceptible to EAE and develop more severe symptoms (32). This suggests that resistance of myeloid Stat3 mutant mice to active EAE is unlikely simply due to their predisposition to developing enterocolitis and cannot be solely explained by potential effects on commensal microbiota. Moreover, myeloid cells isolated from immunized mutant mice exhibited impaired, rather than enhanced, functions in priming MOG-specific CD4+ T cells.

In summary, our data suggest that STAT3 activation in monocyte cells is a feature of active MS lesions. Our data also demonstrate a previously uncharacterized, but essential, pathogenic role for STAT3 signaling in microglia in the pathogenesis of EAE.
role for STAT3 signaling in myeloid cells in the development of CNS autoimmunity in experimental models of MS. Our results reveal a regulatory capacity of STAT3 in myeloid APC functions and in sustaining cognate antigen-dependent cross-activation of myeloid cells and T helper cells that drives autoimmune-mediated demyelination. This study implies that targeting the JAK/STAT3 axis in the myeloid compartment may be beneficial in curbing inflammatory demyelinating diseases.

Methods

Human Brain Tissues. Postmortem brain tissues (SI Appendix, Table S1) from clinical diagnosed and neuropathologically confirmed MS and control cases were processed and characterized as described previously (59).

Animals. Stat3mutant mice containing two LoxP sites flanking exon 22 that encodes the tyrosine residue (Y705) essential for STAT3 activation (39) were backcrossed to C57BL/6 mice for at least nine generations (60). All mice were housed under constant 12-h light/dark cycles in covered cages and fed with a standard rodent diet ad libitum under specific pathogen-free conditions at the Comparative Medicine Program, Texas A&M University. Animal studies were approved by the Institutional Animal Care and Use Committee. Detailed methods can be found in SI Appendix.

Data Availability Statement. The sequence reported in this paper has been deposited in the National Center for Biotechnology Information (NCBI) BioProject database (accession no. PRJNA605403).
ACKNOWLEDGMENTS. We thank Drs. Shizuo Akira (Osaka University, Japan) and John DiGiovanni (University of Texas Anderson Cancer Center) for providing the Stat3flox mice; Dr. Gus Wright for assistance in FACS of myeloid cells; and Dr. Michael Deveau and Ms. Linda Knight for mouse irradiation. Human tissue specimens were kindly provided by the Rocky Mountain MS Center (supported by the National Multiple Sclerosis Society), and the Human Brain and Spinal Fluid Resource Center of the Veterans Affairs West Los Angeles Healthcare System and National Institute of Neurological Disorders and Stroke, National Institute of Mental Health, the National Multiple Sclerosis Society, and the Department of Veterans Affairs. This study was funded in part by National Institutes of Health Grant RO1NS060017 and National Multiple Sclerosis Society Grants RG93975 and RG1507 (to J.L.).