by Chris King

The international geoscience school syllabus and its development

Keele University, Keele, Staffordshire, ST5 5BG. E-mail: c.j.h.king@keele.ac.uk

(Received January 25, 2014; Revised form accepted November 11, 2014)

International organisations focussed on school-level Earth science education decided in 2012 to develop a recommended geoscience syllabus for use in countries across the world. The syllabus was developed on these initial principles: it should be based on the content of existing curricula, be well-structured, be presented as a succinct document with flexible exemplification, and be given as a list of content to be covered by the age of 16. A range of national Earth science curricula submitted by international colleagues was analysed. A first draft of the syllabus was developed from this analysis and circulated for comment; this was modified in response to feedback and recirculated; the final document was endorsed by the organisations and published on their websites in January 2014. This document has the potential to enhance Earth science education across the world, providing crucial background to those who will become the decision-makers of the future.

Background

An international survey of the school-level geoscience education across 34 countries (King, 2012, 2013) found that the compulsory Earth science content of national curricula was very variable. Following a wide invitation, the 34 countries which responded to the survey were: Argentina, Australia, Bangladesh, Belgium, Brazil, Canada, Czech Republic, England, Estonia, Finland, France, Germany, India, Indonesia, Israel, Italy, Japan, Korea, Malawi, New Zealand, Norway, Philippines, Portugal, Romania, Russia, Saudi Arabia, Scotland, South Africa, Spain, Sri Lanka, Taiwan, Trinidad & Tobago, Uruguay and the United States.

One country had no compulsory Earth science whilst in the other countries the content varied from minimal to comprehensive. Earth science was taught through science, geography or a combination of science and geography, whilst the level of teaching varied from only being at primary level to systematic coverage from primary to secondary level and beyond.

It was because of the variability of Earth science education discovered by the survey that a decision was made at meetings of the International Geoscience Education Organisation (IGEO) and the International Union of Geological Science Commission on Geoscience Education (IUGS-COGE) held at the 34th International Geological Congress held in Brisbane, Australia in 2012, to prepare and publish a recommended syllabus for school-level geoscience education.

A previous attempt to highlight the big ideas of Earth science to be taught in school was formulated and published in the United States (Earth Science Literacy Initiative, 2010), but this was not based on existing curricula or appears to be widely known about beyond the United States.

The following account shows how syllabus was developed and published as an internal report by IGEO and IUGS-COGE (King, 2014).

Principles of syllabus development

The decision was made to base the syllabus on the content of existing Earth science curricula around the world, since such a syllabus was most likely to be widely accepted. Although the structure of the Earth science content of many of the syllabuses around the world was not readily apparent, the new International Syllabus would have clear structure. The syllabus would be presented in a very concise form, since a short syllabus would be most persuasive to future syllabus developers around the world, who were considering the incorporation of Earth science content – so the core syllabus is presented on a single page. However, this brevity may lead to misunderstanding about the meaning of some of the concepts included, so these would be exemplified in a way allowing different countries to develop different emphases to the syllabus. Such an approach would not allow educational progression to be shown – so the syllabus would simply be presented as a series of Earth science content statement for pupils to encounter by the age of 16.

The core syllabus developed on these principles is shown in Table 1 and the core syllabus with exemplification is given in Table 2.

Methodology

Members of the International Geoscience Education Organisation (IGEO) and the International Union of Geological Science Commission on Geoscience Education (IUGS-COGE) were invited to submit the syllabuses being taught in their countries, and nine countries did so (Australia, England, Japan, New Zealand, Norway,
Table 1. The International Geoscience Syllabus, to be encountered by all pupils by the age of 16 – core syllabus

By the age of 16 pupils should develop an understanding of the following:

Earth as a changing system
- **Attributes**
 - open to energy, almost closed to matter, changing over time, within the solar system, comprising geosphere, hydrosphere, atmosphere, biosphere
- **Interactions**
 - interaction of geosphere, hydrosphere, atmosphere, biosphere
- **Feedback**
 - positive and negative
- **Processes and products**
 - water cycle, rock cycle, carbon cycle
- **Energy sources**
 - solar, internal

Earth is a system within the solar system, within the universe
- **Origins**
 - big bang; accretion from dust; stars; planets
- **The Sun**
 - only external energy source; fluctuations
- **Rotational effects**
 - day/night, seasons, moon phases, eclipses

Earth is a system which has changed over time
- **Geological time**
 - span, major events, relative and absolute dating methods, rates of processes

Earth’s system comprises interacting spheres – geosphere
- **Earth materials and properties**
 - minerals, fossils, sedimentary, igneous and metamorphic rocks, soil
- **Earth processes and preserved characteristics**
 - surface processes, sedimentary, igneous and metamorphic processes, deformation
- **Structure of the Earth and evidence**
 - crust, mantle, core, lithosphere
- **Plate tectonics and evidence**
 - unifying theory, plate construction and subduction, characteristics of plate margins, mechanism, rates of movement; evidence

Earth’s system produces resources
- **Hydrosphere**
 - Continental water
 - Oceanic water
- **Atmosphere**
 - Composition
 - Flow
 - Change
- **Biosphere**
 - Evolution
 - Impact on other systems

Human/Earth system interactions
- **Natural hazards**
 - human impact, forecasting, mitigation
- **Environmental issues**
 - local to global, mitigation
- **Impact on human history**
 - resource wars; migration due to climate change

Earth’s system is explored through fieldwork and practical work
- **Observation**
 - observation, measurement and recording
- **Synthesis of observations**
 - interpretation
- **Investigation and hypothesis-testing**
 - devising and implementing plans, processing data, drawing conclusions, evaluating results and communicating findings

A tabulated analysis of all these curricula was developed, based on the structure of the IESO syllabus. The Earth science coverage of each syllabus was added to the table, indexed by page numbers of the syllabus. A penultimate column was added to the table indicating the frequency of the items found across the syllabuses as: F = frequent (more than 4); M = moderate (3 or 4); blank = infrequent (2 or less).

The new draft syllabus was prepared on the basis of this analysis, and cross-checked with the syllabus analysis table by adding a final column, indicating that the new syllabus addressed the items identified in the survey. The results of this analysis are shown in Tables 3 - 9 and the sources of the national syllabus information used are shown in Table 10.

The draft syllabus was circulated to members of IGEO and IUGS-COGE for comment and generated thoughtful and constructive feedback about the structure, scope and detail of the draft syllabus. The syllabus was modified in the light of this feedback and the second draft was similarly circulated, generating further constructive criticism, particularly from those listed in the Acknowledgements section below.

The final draft of the syllabus was endorsed by the Senior Officers of both the IGEO and IUGS-COGE and published on their respective websites in January 2014.

Comment

At the outset of the endeavour to produce an international geoscience syllabus, the point was made that it was very easy to write such a syllabus, but much more difficult to agree the outcome with colleagues across the world. However, whilst sometimes providing
Table 2. International Geoscience Syllabus, to be encountered by all pupils by the age of 16 – core syllabus with exemplification

By the age of 16, pupils should develop an understanding of the following:	Exemplification of the core to indicate the extent of coverage (it is anticipated that this will vary from country to country)
Earth as a changing system	open to energy, almost closed to matter, changing over time, within the solar system, comprising geosphere, hydrosphere, atmosphere, biosphere
- **Attributes**	lithosphere/hydrosphere interaction causes coastal processes; hydrosphere/atmosphere interaction causes waves and atmospheric warming; atmosphere/biosphere interaction climatically controls vegetation; lithosphere/biosphere interaction affects soil quality; rates vary from fast to slow
- **Interactions**	positive and negative
- **Feedback**	varying area of polar ice sheets gives increased reflection of solar energy, gives increased cooling, gives increasing area of polar ice sheets; negative – the more carbon dioxide is released into the atmosphere, the more that is absorbed in the oceans
- **Processes and products**	unique properties of water, evaporation, transpiration, condensation, precipitation; weathering/erosion, sedimentation, metamorphism, melting, igneous activity; photosynthesis, respiration, burial as limestone/fossil fuel, release by burning/weathering
- **Energy sources**	internal energy from radioactivity and energy from Earth's formation

Earth is a system within the solar system, within the universe

- **Origins**	big bang; accretion from dust; stars; planets
- **The Sun**	only external energy source; fluctuations
- **Rotational effects**	day/night, seasons, moon phases, eclipses

Earth is a system which has changed over time

| - **Geological time** | major events: 4600 million years (Ma) – formation of Earth; 3600Ma – early life; 550Ma – animals with hard parts; 250Ma – major extinction, including trilobites; 65Ma – major extinction, including dinosaurs; 1Ma ice age; dating principles: superposition, cross-cutting relationships, fossil correlation; radiometric dating; processes occur on a frequency-magnitude spectrum from continuous to catastrophic |

Earth’s system comprises interacting spheres – geosphere

- **Earth materials and properties**	minerals, fossils, sedimentary, igneous and metamorphic rocks, soil
- **Earth processes and preserved characteristics**	surface processes, sedimentary, igneous and metamorphic processes, deformation
- **Structure of the Earth and evidence**	crust, mantle, core, lithosphere
- **Plate tectonics and evidence**	unifying theory, plate construction and subduction, characteristics of plate margins, mechanism, rates of movement; evidence

Definitions: mineral, fossil, rock sedimentary rock, igneous rock, metamorphic rock, soil; minerals including: quartz, feldspar, mica, garnet, calcite, halite, gypsum, pyrite, galena; fossils including: trilobite, ammonite, dinosaur; fossilisation processes including: burial, replacement, moulds and casts; trace fossils; rock texture, porosity, permeability; sedimentary rocks including: limestone, chalk, conglomerate, sandstone, clay, shale, rock salt; sedimentary features including: layering (bedding), cross bedding, ripple marks; igneous rocks including: granite, basalt, andesite, gabbro, volcanic ash; metamorphic rocks including: slate, schist, greiss, marble, metaquartzite (quartzite); weathering (physical/chemical), erosion, transportation, deposition, lithification, metamorphism, intrusion, extrusion, folding, faulting, jointing; seismic evidence; constructive, destructive and conservative margins; past and present evidence
Table 2 Contd....

Earth’s system comprises interacting spheres - Contd...

Sphere	Description
- hydrosphere	
Continental water	location, processes of movement, uses surface water, groundwater, ice caps/glaciers; infiltration, downhill flow; water resource management salinity; surface flow and waves caused by wind; deep flow due to density differences caused by temperature and salinity
Oceanic water	composition, processes of movement
- atmosphere	
Composition	evolution, current composition outgassing by early volcanic activity; nitrogen, oxygen, trace gases including water vapour and carbon dioxide
Flow	processes of movement unequal heating of Earth, flow due to density differences caused by temperature, oceanic heat source
Change	greenhouse effect, planetary influences, human influence, impact on sea level temperature graphs over different time spans; link between temperature change and sea level
- biosphere	
Evolution	natural selection, fossil evidence, mass-extinction palaeogeographical effects on evolution; mass-extinction by volcanic activity and impact
Impact on other systems	role of biosphere in Earth systems biological weathering; biological deposition

Earth’s system produces resources

Resource Type	Description
Raw materials and fossil fuels	naturally concentrated, non-renewable, uses, need careful managing (sustainable development), potentially polluting issues oil/gas; metal ores; bulk raw materials; local examples of mining/quarrying
Renewable energy	low pollution, cost, regularity of supply

Human/Earth’s system interactions

Interaction Type	Description
Natural hazards	human impact, forecasting, mitigation eruption; earthquake; tsunami; landslide
Environmental issues	local to global, mitigation global human impact (causing erosion, pollution, drainage-changes mining/quarrying); burning fossil fuels and greenhouse effect
Impact on human history	resource wars; migration due to climate change

Earth’s system is explored through fieldwork and practical work

Exploration Type	Description
Observation	observation, measurement and recording environment of rock-formation; geological history; environmental issues
Synthesis of observations	interpretation
Investigation and hypothesis-testing	devising and implementing plans, processing data, drawing conclusions, evaluating results and communicating findings
Table 3. Matrix of coverage by current school-level Earth science syllabuses – geoscience skills and abilities

Matrix developed from current syllabuses (and recommendations – US and England)

* Note for Tables 3 - 9: Curriculum recommendations shown in grey columns – not yet implemented

** Note for tables 3 - 9: F = frequent (more than 4); M = moderate (3 or 4); blank = infrequent (2 or less)

Details of syllabuses	IESO	Australia N/C	England N/C	Japan N/C	New Zealand N/C	Norway N/C	Scotland N/C	South Africa N/C	US standards	Portugal N/C	*US framework	* England rec.	** Frequency	Covered by proposal
Geoscience skills and abilities														
three dimensional thinking	4													
thinking on different timescales including deep time	4													
thinking at different scales, from microscopic to global	4													
cyclic thinking	4													
systems thinking	4													
field skills	4	G, KS3 104, 107												
construction of a geological history	4													
Statements – derived from the IESO syllabus	IESO	Australia N/C	England N/C	Japan N/C	New Zealand N/C	Norway N/C	Scotland N/C	South Africa N/C	US standards	Portugal N/C	* US framework	* England	** Frequency	Covered by proposal
--	------	---------------	-------------	-----------	-----------------	------------	-------------	------------------	--------------	-------------	----------------	----------	---------------	------------------
The Geosphere	6	4												
Earth materials														
Minerals														
quartz	7													
orthoclase	7													
plagioclase	7													
biotite	7													
muscovite	7													
garnet	7													
calcite	7													
clay	7													
halite	7													
gypsum	7													
pyrite	7													
Soils	7	S, KS2 11												
properties of color and texture														
capacity to retain water, and ability to														
support growth of plants, including														
those in our food supply														
soil consists of weathered rocks														
and decomposed organic material														
from dead plants, animals, and bacteria														
Soils have properties of color and														
texture, capacity to retain water, and														
ability to support growth of plants,														
including those in our food supply														
Rock	7	S, KS1 S,												
texture		KS1 S, KS2 11												
permeability		S, KS2 11												
Sedimentary rocks	7	3												
limestone	7													
chalk	7													
chert	7													
clay	7													
marl	7													
dolomite	7													
sandstone	7													
phosphorite	7													
gypsum	7													
rock salt	7													
Table 4. Contd...

Statements – derived from the IESO syllabus	IESO	Australia N/C	England N/C	Japan N/C	New Zealand N/C	Norway N/C	Scotland N/C	South Africa N/C	US standards	Portugal N/C	* US frame work	* England rec.	** Fre quency	Covered by proposal
Igneous rocks	7	3						NS 70	X		✔			F
granite	7													
rhyolite	7													
obsidian	7													
basalt	7													
andesite	7													
gabbro	7													
tuff	7													
Metamorphic rocks	7	3						NS 70	X		✔			F
schist	7													
gneiss	7													
marble	7													
metaquartzite (quartzite)	7													
Fossils	7										✔			
various forms of fossilisation	7													
fossils provide evidence about	7													
the plants and animals that	7													
lived long ago and the nature	7													
of the environment at that time	7													
mass extinction	7													
Rock structures								NS 65	X		✔			
Sedimentary textures/ structures/ features	7													
layering (bedding)	7													
graded bedding	7													
cross bedding	7													
ripple marks	7													
discontinuity planes	7													
Igneous textures/ structures/ features	7													
porphyritic	7													
pegmatitic	7													
scoria	7													
scoria	7													
scoria	7													
scoria	7													
volcano	7													
lapilli	7													
dyke	7													
sill	7													
Metamorphic textures/ structures/ features	7													
foliation	7													
lineation	7													
Structural features	7													
fold	7													
fault	7													
Table 4. Contd....

Statements – derived from the IESO syllabus	IESO	Australia N/C	England N/C	Japan N/C	New Zealand N/C	Norway N/C	Scotland N/C	South Africa N/C	US standards	Portugal N/C	* US frame work	* England rec.	** Fre quency	Covered by proposal
Earth processes														
Sedimentary processes														
weathering														
erosion														
deposition														
lithification														
landscape formations														
by glaciers														
Fossilisation processes														
	7													
Igneous processes														
volcanic activity														
	1													
Metamorphic processes														
	7													
Deformation processes														
stress fields influence rock	7													
tensional processes	7													
compressional processes	7													
shear processes														
earthquakes	1,2													
Past processes														
Earth processes today are similar to those that occurred in the past. Earth history is also influenced by occasional catastrophes														
Geological time														
Deep time	3, 4													
the solar system formed 4.6 billion years ago														
evidence for one-celled forms of life — the bacteria — extends back more than 3.5 billion years														
punctuated by a series of key events														
Table 4. Contd....

Statements – derived from the IESO syllabus	IESO Australia N/C	England N/C	Japan N/C	New Zealand N/C	Norway N/C	Scotland N/C	US standards	Portugal N/C	*US frame work	*England rec.	**Freqency	Covered by proposal			
Relative dating															
using rock strata	2														
using fossils															
using tree rings and ice cores															
Absolute dating															
by radioactive decay of isotopes	2														
Structure of the Earth															
Characteristics															
shape and size of the Earth	1														
Earth magnetism	1														
Layers	6	1	S1	X	M	C									
crust															
mantle															
core	6														
lithosphere															
evidence for Earth’s structure (probes, seismic, magnetic, geological)															
Earth cycles															
Cyclic processes															
transition between reservoirs where form changes but total amount of matter remains constant	6														
feedback (positive and negative)	6														
tight coupling of systems	6														
rates vary from fast to very slow	6	3													
Earth systems	6	4	2	S3	F3	F	C								
lithosphere	6	4													
hydrosphere	6	4													
atmosphere	6	4													
biosphere	6	4													
Statements – derived from the IESO syllabus	IESO	Australia N/C	England N/C	Japan N/C	New Zealand N/C	Norway N/C	Scotland N/C	South Africa N/C	US standards	Portugal N/C	* US framework	* England rec.	** Frequency	Covered by proposal	
--	------	---------------	-------------	-----------	-----------------	-------------	-------------	-----------------	--------------	-------------	-----------------	--------------	--------------	----------------------	
Earth cycles															
Earth systems															
interactions and cycles within and between Earth’s spheres	4													✓	
the many dynamic and delicate feedbacks between the biosphere and other Earth systems cause a continual co-evolution of Earth’s surface and the life that exists on it														M	E
Earth energy sources	6														
solar energy	6							NS 71	S3	X	F3			E	
internal energy (including radioactive decay)	6							S3	F3						
gravitational energy from the Earth’s original formation.															
Rock cycle	6	S, KS3						S2	X					M	
Plate tectonic cycle	6	4 S, KS4	2					X						F	
lithospheric plates constantly move at rates of centimetres per year in response to movements in the mantle. Major geological events, such as earthquakes, volcanic eruptions, and mountain building, result from these plate motions.															
tectonic processes continually generate new ocean seafloor at ridges and destroy old seafloor at trenches														F3	✓
Statements – derived from the IESO syllabus	IESO	Australia N/C	England N/C	Japan N/C	New Zealand N/C	Norway N/C	Scotland N/C	South Africa N/C	US standards	Portugal N/C	* US framework	* England rec.	** Frequency	Covered by proposal	
--	------	---------------	-------------	-----------	----------------	------------	--------------	------------------	--------------	-------------	----------------	----------------	--------------	-------------------	
continental rocks (eg >4 billion years old), are generally much older than rocks on the ocean floor (<200 million years old)															
motions of the mantle and its plates occur primarily through thermal convection															
the locations of mountain ranges, deep ocean trenches, ocean floor structures, earthquakes, and volcanoes occur in patterns.															
most earthquakes and volcanoes occur in bands that are often along the boundaries between continents and oceans.															
major mountain chains form inside continents or near their edges															
plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth’s surface and provides a framework for understanding its geological history	4														
Carbon cycle	3	4													
Table 5. Matrix of coverage by current school-level Earth science syllabuses – the hydrosphere

Statements – derived from the IESO syllabus	IESO	Australia N/C	England N/C	Japan N/C	New Zealand N/C	Norway N/C	Scotland N/C	South Africa N/C	US standards	Portugal N/C	US frame work	England rec.	Frequency	Covered by proposal	
The hydrosphere	8	4							F5		✓	F	C		
Water	8								F3						
water cycle (transpiration, evaporation, condensation and crystallization, and precipitation as well as downhill flows on land)	8														
the geosphere, hydrosphere, atmosphere and biosphere are tightly coupled	8														
natural water composition is affected by geological processes	8														
water’s unique combination of physical and chemical properties are central to the planet’s dynamics. These properties include water’s exceptional capacity to absorb, store, and release large amounts of energy; transmit sunlight; expand upon freezing; dissolve and transport materials; and lower the viscosities and melting points of rocks	8														
water availability is affected by atmospheric and geological processes	8								F5						
the amount of water for human consumption is limited	8														
water resources need to be carefully managed	8								NS 70						
flood	8														
drought	8														
Oceanic water	8														
oceanic water composition affected by geological processes	8														
the composition of oceanic water evolved over geological time ocean currents are the result of unequal heating of the Earth and salinity differences	8														
the ocean exerts a major influence on weather and climate by absorbing energy from the sun, releasing it over time, and globally redistributing it through ocean currents.	9														
tsunamis	8														
tides	8														
storms (hurricane and typhoons)	8														
Statements – derived from the IESO syllabus	IESO	Austra-	England	Japan	New Zealand	Norway	Scotland	South Africa	US standards	Portugal	* US frame	* England	** FreQUENCY	Covered	proposal
--	-----	---------	---------	-------	-------------	--------	----------	-------------	--------------	----------	------------	----------	--------------	----------	
The atmosphere	8	4													
Composition	9														
the geosphere, hydrosphere, atmosphere and biosphere are tightly coupled	9														
the composition of the early atmosphere was from gases omitted by volcanic activity	9														
the composition of the atmosphere has evolved over geological time	9	S, KS4	225								✓	M	C		
evolution of the composition of the atmosphere is tightly linked to evolution of life on Earth	9										✓				
the modern atmosphere is a mixture of nitrogen, oxygen, and trace gases that include water vapour	4	S5	NS	71							✓	F	C		
the atmosphere protects the earth from harmful radiation and from most objects from outer space that would otherwise strike the Earth’s surface					NS						✓	M	E		
Flow	9														
the foundation for Earth’s global climate system is the electromagnetic radiation from the sun as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems and this energy’s re-radiation into space	1	2	SS8								F6	M	C		
Earth’s axial tilt causes differential intensity of sunlight on different areas of Earth											S3	F2			
atmospheric flows are the result of unequal heating of the Earth	9	1, 2	S3								✓	M	E		
Change															
climate change	1, 2	G, KS3	106								✓	M	C		
global climate is determined by energy transfer from the sun at and near the earth’s surface. This energy transfer is influenced by dynamic processes such as cloud cover and the Earth’s rotation, and static conditions such as the position of mountain ranges and oceans					S3						✓	M	C		
Statements – derived from the IESO syllabus	IESO	Australia N/C	England N/C	Japan N/C	New Zealand N/C	Norway N/C	Scotland N/C	South Africa N/C	US standards	Portugal N/C	* US framework rec.	** Frequency	Covered by proposal		
--	-----	---------------	-------------	----------	----------------	-----------	-------------	----------------	--------------	--------------	------------------	-------------	-------------------		
Change															
cyclical changes in the shape of Earth’s orbit around the sun, together with changes in the orientation of the planet’s axis of rotation, both occurring over tens to hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on Earth. These phenomena cause cycles of ice ages and other gradual climate changes															
greenhouse gases in the atmosphere absorb and retain the energy radiated from land and ocean surfaces, thereby regulating Earth’s average surface temperature and keeping it habitable.															
climate change can occur when certain parts of Earth’s systems are altered. Geological evidence indicates that past climate changes were either sudden changes caused by alterations in the atmosphere; longer term changes (e.g., ice ages) due to variations in solar output, Earth’s orbit, or the orientation of its axis; or even more gradual atmospheric changes due to plants and other organisms that captured carbon dioxide and released oxygen. The time scales of these changes varied from a few to millions of years															
changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate															
if Earth’s global mean temperature continues to rise, the lives of humans and other organisms will be affected in many different ways															
global climate models are often used to understand the process of climate change															
Table 7. Matrix of coverage by current school-level Earth science syllabuses – the biosphere

Statements – derived from the IESO syllabus	IESO	Australia N/C	England N/C	Japan N/C	New Zealand N/C	Norway N/C	Scotland N/C	South Africa N/C	US standards	Portugal N/C	* US framework	* England rec.	** Frequency	Covered by proposal
The biosphere														
Interactions	4													
the evolution and proliferation of living														
things over geological time have in														
turn changed the rates of weathering														
and erosion of land surfaces, altered														
the composition of Earth’s soils and														
atmosphere, and affected the														
distribution of water in the														
hydrosphere.														
Evolution	5													
fossils provide evidence for evolution														
evolution is shaped by Earth’s														
varying geological conditions														
sudden changes in conditions (e.g.,														
meteor impacts, major volcanic														
eruptions) have caused mass														
extinctions, but these changes, as														
well as more gradual ones, have														
ultimately allowed other life forms to														
flourish														
evidence for theories that explain the														
diversity of life on Earth and														
evolution	5													

Table 8. Matrix of coverage by current school-level Earth science syllabuses – the solar system

Statements – derived from the IESO syllabus	IESO	Australia N/C	England N/C	Japan N/C	New Zealand N/C	Norway N/C	Scotland N/C	South Africa N/C	US standards	Portugal N/C	* US framework	* England rec.	** Frequency	Covered by proposal
The solar system														
Planetary system	10													
the star called the sun is changing														
and will burn out over a life span of														
approximately 10 billion years														
Earth rotation, day/night, daily/seasonal	1, 3	2	S4, S6	S6	NS 69	S1, S2, S3	F2	F3	M	C				
changes, phases of moon														
eclipses	3	S2	F2	M	C									
tides														
Earth systems are a subset of planetary														
systems														
energy balances of planets include														
external (solar) energy and internal														
energy														
the solar system has evolved over		8, KS												
time		4 225												
Table 9. Matrix of coverage by current school-level Earth science syllabuses – environmental geoscience

Statements – derived from the IESO syllabus	IESO	Australia N/C	England N/C	Japan N/C	New Zealand N/C	Norway N/C	Scotland N/C	South Africa N/C	US standards	Portugal N/C	*US framework rec.*	*England frequency proposal	Covered by proposal	
Environmental geoscience														
global distribution of resources depends upon past geological processes														
the environment is part of a cyclic world formed of sub-systems (geosphere, hydrosphere, atmosphere and biosphere) that coexist	2													
humans are an integral part of the natural system	2	S, KS3 211 & G, KS3 103	4									F3	M, C	
all materials, energy, and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways.														
the effects of human activity on the environment		S, KS4 225												
explain how crude oil and natural gas have come about and how these substances are used												S8, S4		
all forms of energy production and other resource extraction have associated economic, social, environmental, and geopolitical costs and risks, as well as benefits												SS9, S4, SS 92/3	X, F7, F	
sustainable development	3	S, KS3 212 & G, KS3 103				S8, S4, G6	NS 58/9, SS 92							
renewable and non-renewable resources	3	S, KS3, 212				S8, S4	NS 67, 72							
environmental problem identification and suggestion of solutions	4											G6	X, F8, F	
the cause of natural disasters, including earthquakes, tsunamis and volcanic eruptions	2											GX4, G6, SS 89	X, F7, F	
natural hazard forecasting and mitigation	5											GX4		

* N/C: Not Covered
* Covered by proposal: M, C

Notes:
- “Global distribution of resources depends upon past geological processes” is covered in the US syllabus.
- “The environment is part of a cyclic world” is covered in the US syllabus.
- “Humans are an integral part of the natural system” is covered in the US syllabus.
- “All materials, energy, and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways” is covered in the US syllabus.
- “The effects of human activity on the environment” is covered in the US syllabus.
- “Explain how crude oil and natural gas have come about and how these substances are used” is covered in the US syllabus.
- “All forms of energy production and other resource extraction have associated economic, social, environmental, and geopolitical costs and risks, as well as benefits” is covered in the US syllabus.
- “Sustainable development” is covered in the US syllabus.
- “Renewable and non-renewable resources” is covered in the US syllabus.
- “Environmental problem identification and suggestion of solutions” is covered in the US syllabus.
- “The cause of natural disasters, including earthquakes, tsunamis and volcanic eruptions” is covered in the US syllabus.
- “Natural hazard forecasting and mitigation” is covered in the US syllabus.
Table 10. Sources of information for the matrix of coverage by current school-level Earth science syllabuses given in Tables 3 - 9.

Curriculum	Submission by:	Source details
International Earth Science Olympiad	Syllabus submitted by Nir Orion, Israel	International Earth Science Olympiad (IESO) syllabus, IESO website: http://ieso2012.gl.fcen.uba.ar/index.php/ieso-downloads/syllabus/
Australia	One document précised and submitted by Bronte Nichols, others submitted by Ian Clark and Greg McNamara	‘Australian Curriculum Science: Summary of Earth and Space Science strand; prepared by Bronte Nichols’ Australian Curriculum, F – 10 Curriculum: Science. Found at: http://www.australiancurriculum.edu.au/Science/Curriculum/F-10
England	Chris King	Geography at KS2 (7–11 year olds): https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239044/PRIMARY_national_curriculum_-_Geography.pdf
Geography at KS3 (11–14 year olds): https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239087/SECONDARY_national_curriculum_-_Geography.pdf		
Science at KS1 and 2 (5–11 year olds): https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/239132/PRIMARY_national_curriculum_-_Science.pdf		
Science at KS3 (11–14 year olds): https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/335174/SECONDARY_national_curriculum_-_Science_220714.pdf		
Science at KS4 (14–16 year olds): https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/319108/National_Curriculum_Reform_England__Key_Stage_4__Science__consultation_document.pdf%204.pdf		
King, C. & Bilham, N. (2012) Towards a balanced Earth science Curriculum for England – science and geography perspectives. Teaching Earth Sciences 37.1, 45-48.		
Japan	List of national curriculum content submitted by Ken-ichiro Hisada, Japan	‘Geoscience Basics’ and ‘Geoscience’ syllabuses.
New Zealand	Specially prepared document submitted by Glenn Vallender, New Zealand	‘Summary of the New Zealand curriculum in science’ based on the National Curriculum documents available on the following internet pages:
http://nzcurriculum.tki.org.nz/Curriculum-documents/The-New-Zealand-Curriculum		
Norway	Documents submitted by Merethe Frøyland and Kari Remmen, Norway	Natural science subject curriculum. Found by searching for “Natural science subject curriculum” Norway, on a search engine (‘S’ in Tables 3-9) Social studies subject curriculum [including geography]. Found by searching for “Social studies subject curriculum” Norway, on a search engine (‘SS’ in Tables 3-9) Geosciences – programme subject in programmes for specialisation in general studies. From: http://horselshemmet.vibli.no/?Lan=3&Program=V.GFG1-01 (‘GX’ in Tables 3-9 – GX is studied by all secondary students)
Scotland	Chris King	Curriculum for excellence; sciences – experiences and outcomes. From: http://www.educationscotland.gov.uk/learningteachingandassessment/curriculumareas/socialstudies/eandos/index.asp (indicated as ‘S’ above)
Curriculum for excellence; social studies – experiences and outcomes. From: http://www.educationscotland.gov.uk/learningteachingandassessment/curriculumareas/sciences/eandos/index.asp (indicated as ‘G’ above)		
South Africa	Documents submitted by Ian McKay, South Africa	Department of Education (2002) Revised national curriculum statement for grades R – 9 (schools): Natural sciences. D of E, Pretoria. ISBN: 1-919917-48-9. (‘NS’ in Tables 3-9)
Department of Education (2002) Revised national curriculum statement for grades R – 9 (schools): Social sciences. D of E, Pretoria. ISBN: 1-919917-47-0. (‘SS’ in Tables 3-9)		
United States of America	Documents précised and submitted by Mary Dowse, USA	National Science Education Standards (1996) National Academy Press: Washington DC (‘S’ above) A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (2012), National Academies Press http://www.nap.edu/catalog.php?record_id=13165 (‘F’ in Tables 3-9)
Portugal	Information provided by Luis Marques and Clara Vasconcelos	Personal communication
contrasting points of view and suggesting different approaches and content, colleagues were very constructive, understanding and supportive, with the results shown in Tables 1 and 2.

With this international consensus, it is to be hoped that this curriculum document can be used by curriculum developers, geoscience educators, geoscientists and science and geography educators across the world to develop coherent, well-structured curriculum content in Earth science, flexible enough to be developed in national contexts and therefore with clear relevance to those involved. This then will have the potential to improve teaching and learning in Earth science internationally, developing understanding of the past, present and future of our globe whilst providing crucial background education to the decision-makers of the future.

Acknowledgements

Key feedback comments were provided by Ian Clark – Australia, Rosely Imbernon – Brazil, Luis Marques – Portugal, Ian McKay – South Africa, Bronte Nichols – Australia, Glenn Vallender – New Zealand, Clara Vasconcelos – Portugal, Ashvin Wickramasooriya – Sri Lanka, Michael Wyssession – United States of America; these have had the effect of greatly improving the first draft of the syllabus. Many thanks to all these colleagues for their contributions.

References

Websites here and in Table 10 last checked in November 2014.

Earth science literacy initiative (2010) Earth science literacy principles. Available at: http://www.earthscienceliteracy.org/
King, C. (2014) International Geoscience Syllabus, to be encountered by all pupils by the age of 16. Available at: http://www.geoscied.org/about_us.htm
King, C. (2013) Geoscience education across the globe - results of the IUGS-COGE/IGEO survey. Episodes, v. 36, no. 1, pp. 19-30.
King, C. (2012) Third International Geoscience Education Survey: 2012 – with 2013 updates, 2. Available at: http://www.geoscied.org/about_us.htm.

Chris King is Professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit, based at Keele. Following five years as a diamond prospector and an MSc, Chris trained as a teacher and then taught geology and science in a secondary school. Since then, he has been a lecturer at Keele University. He was Chair and is now a Senior Officer/Advisor of the International Geoscience Education Organisation (IGEO). He is Co-Chair of the IUGS Commission on Geoscience Education (IUGS-COGE). He instigated the formation of the Earthlearningidea.com website of international Earth science educational resources and has more than 200 publications.