Promising Advances for Imaging Lung Macrophage Recruitment

Pulmonary hypertension (PH) contributes significantly to morbidity and mortality and has no curative therapies. Patients with World Health Organization group I pulmonary arterial hypertension (PAH) have improved survival as a result of targeted treatments, but 5-year survival remains low at 57% to 61% (1, 2), with a significant proportion ultimately requiring lung transplantation (3–5). Inflammation is being increasingly recognized as an important contributor to PAH development and progression (6). Therapies that reduce lung macrophage recruitment also reduce PH in animal models, further demonstrating the relevance of macrophages in PAH pathogenesis (7). Therefore, noninvasive biomarkers of lung macrophage recruitment and activity could help demonstrate the efficacy of macrophage-targeted therapies as well as enable investigations to understand how macrophages contribute to PAH development. Such biomarkers would also be applicable more broadly in multiple different lung diseases, including chronic obstructive pulmonary
disease.

This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/). For commercial usage and reprints, please contact Diane Germ (dgem@thoracic.org).

Supported by Wil B. Nelp, M.D., Endowed Professorship in Nuclear Medicine.

Originally Published in Press as DOI: 10.1164/rccm.201907-1455ED on August 5, 2019
disease, idiopathic pulmonary fibrosis, and lung transplant rejection, among others.

Imaging is an attractive platform for developing macrophage biomarkers. Positron emission tomography (PET) is particularly attractive because it is inherently quantitative. Nearly any biological product or chemical entity can be transformed into a PET tracer by radiolabeling with a positron emitter, providing great flexibility in interrogating molecular targets. Administered in very small amounts (nanogram mass amounts or less), PET tracers in general have a large safety margin. Recent advances in PET scanner hardware, including digital PET scanners and total body scanners that are long enough to image the entire body from head to toe within minutes, will provide improved sensitivity and spatial resolution that can enable improved characterization of novel PET tracers in the lungs in humans (8, 9). Together, these features and advancements make PET ideally suited for interrogating any number of molecular targets, including tracking macrophages. As such, a number of PET tracers have been developed for imaging targets enriched in or specific for monocytes and macrophages in the lungs, including the translocator protein (10), cysteine cathepsins (11), and chemokine receptor 2 (12).

In this issue of the Journal, Park and colleagues (pp. 95–106) describe a tracer, 68Ga-NOTA-mannosylated serum albumin (68Ga-NOTA-MSA), for PET imaging of a marker of M2 polarized macrophages, the mannose receptor (13). The authors demonstrated the potential utility of this imaging approach in a preclinical model of PH and in a small proof-of-concept study in humans. For this evaluation, the authors first verified increased transcription of macrophage activation factors in the established monocrotaline rat model of PH at the same time points evaluated by imaging. They then demonstrated that 68Ga-NOTA-MSA lung uptake in this model correlated highly with the degree of macrophage infiltration. This uptake was partially blockable with mannan, suggesting that the lung uptake was due to specific binding.

The authors further demonstrated in a small proof-of-concept study that 68Ga-NOTA-MSA lung uptake was increased in five patients with group I PAH but not in healthy control subjects or in an additional five patients with World Health Organization Group II left heart disease–related PH. These exciting preliminary results suggest the potential utility of 68Ga-NOTA-MSA to detect macrophages associated with PAH. Although macrophage recruitment is well studied in group II PH, macrophages have been demonstrated to drive PH development in the context of heart disease (7). Therefore, these results suggest the possibility of differences in macrophage phenotypes in these two PH populations that warrants further investigation.

Common factors that can confound the interpretation of lung PET tracer uptake as specific include the high relative fractional blood volume in the lungs and alterations in blood flow. The large blood volume in the lungs can result in a large contribution to lung activity from tracer in the blood, making it difficult to measure changes in uptake due to the targeted process. Changes in blood flow can also affect the amount of tracer delivered or cleared over time. In PAH, however, these variables are less likely to confound the interpretation of increased lung tracer uptake as specific. In this study, 68Ga-NOTA-MSA uptake correlated highly with macrophage recruitment and increasing arterial hypertrophy, the latter of which would lead to lower blood volumes and thus a lower contribution from blood to the total measured lung activity. Inflammation tends to increase blood flow, at least initially, in many models. However, again because of the progressive arterial hypertrophy in this model, increased pulmonary blood flow is not the most likely explanation for the increased lung uptake of 68Ga-NOTA-MSA at these time points. Decreases in blood flow due to progressive vascular proliferation could also lead to nonspecific retention of the tracer as a result of delayed tracer clearance, which may explain the residual uptake seen after administering mannan. Independently measuring the effects of blood flow and blood volume on delivery and retention of 68Ga-NOTA-MSA in the lungs would provide additional supportive data demonstrating the specificity of this tracer for imaging mannose receptor–expressing macrophages in this model. Similarly, in the patient study, the 68Ga-NOTA-MSA lung uptake seen in the patients with group I PAH was less likely to be confounded by blood activity, as Vcs are reduced in these patients (14).

In conclusion, this study presents promising initial data demonstrating that 68Ga-NOTA-MSA may be a useful marker of M2 polarized macrophages in PAH. Further investigations to validate the lung uptake of this tracer as a marker of M2 macrophages in patients with PAH and other relevant diseases are warranted.

Author disclosures are available with the text of this article at www.atsjournals.org.

Delphine L. Chen, M.D.
Seattle Cancer Care Alliance
University of Washington
Seattle, Washington

ORCID ID: 0000-0002-0150-5401 (D.L.C.).

References

1. Thenappan T, Shah SJ, Rich S, Tian L, Archer SL, Gomberg-Maitland M. Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. Eur Respir J 2010;35:1079–1087.
2. Benza RL, Miller DP, Barst RJ, Badesch DB, Frost AE, McGoон MD. An evaluation of long-term survival from time of diagnosis in pulmonary arterial hypertension from the REVEAL Registry. Chest 2012;142:448–456.
3. Sibton O, Humbert M, Nunes H, Parent F, Garcia G, Hervé P, et al. Long-term intravenous epoprostenol infusion in primary pulmonary hypertension: prognostic factors and survival. J Am Coll Cardiol 2002;40:780–788.
4. Barst RJ, Rubin LJ, Long WA, McGoон MD, Rich S, Badesch DB, et al.; Primary Pulmonary Hypertension Study Group. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med 1996;334:296–301.
5. Shapiro SM, Oudiz RJ, Cao T, Romano MA, Beckmann XJ, Georgiou D, et al. Primary pulmonary hypertension: improved long-term effects and survival with continuous intravenous epoprostenol infusion. J Am Coll Cardiol 1997;30:243–249.
6. Abid S, Marcos E, Parpaleix A, Arnslèmè V, Breau M, Housaini A, et al. CCR2/CCR5-mediated macrophage-smooth muscle cell crosstalk in pulmonary hypertension. Eur Respir J [online ahead of print] 18 Jul 2019; DOI: 10.1183/13993003.02308-2018.
7. Bordenave J, Thuillet R, Tu L, Phan C, Curnut M, Marsol C, et al. Neutralization of CXCL12 attenuates established pulmonary hypertension in rats. Cardiovasc Res [online ahead of print] 7 Jun 2019; DOI: 10.1093/cvr/cvz153.
8. Salvadori J, Imbert L, Perrin M, Karcher G, Lamiral Z, Marie PY, et al. Head-to-head comparison of image quality between brain 18F-FDG images recorded with a fully digital versus a last-generation analog PET camera. EJNMMI Res 2019;9:61.

9. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med 2019;60:299–303.

10. Jones HA, Valind SO, Clark IC, Bolden GE, Krausz T, Schofield JB, et al. Kinetics of lung macrophages monitored in vivo following particulate challenge in rabbits. Toxicol Appl Pharmacol 2002;183:46–54.

11. Withana NP, Ma X, McGuire HM, Verdoes M, van der Linden WA, Ofori LO, et al. Non-invasive imaging of idiopathic pulmonary fibrosis using cathepsin protease probes. Sci Rep 2016;6:19755.

12. Liu Y, Gunsten SP, Sultan DH, Luehmann HP, Zhao Y, Blackwell TS, et al. PET-based imaging of chemokine receptor 2 in experimental and disease-related lung inflammation. Radiology 2017;283:758–768.

13. Park JB, Suh M, Park JY, Park JK, Kim YI, Kim H, et al. Assessment of inflammation in pulmonary artery hypertension by 68Ga-mannosylated human serum albumin. Am J Respir Crit Care Med 2020;201:95–106.

14. Farha S, Laskowski D, George D, Park MM, Tang WH, Dweik RA, et al. Loss of alveolar membrane diffusing capacity and pulmonary capillary blood volume in pulmonary arterial hypertension. Respir Res 2013;14:6.

Copyright © 2020 by the American Thoracic Society