Complete mitochondrial genome of the important entomopathogenic fungus *Cordyceps tenuipes* (Hypocreales, Cordycipitaceae)

Dandan Li, Guodong Zhang, Luodong Huang, Yuanbing Wang and Hong Yu

CONTACT

Yuanbing Wang, wangyb001@126.com

Hong Yu, hongyu@ynu.edu.cn

ARTICLE HISTORY

Received 11 February 2019
Accepted 13 March 2019

KEYWORDS

Cordyceps tenuipes; mitochondrial genome; phylogenetic analyses

ABSTRACT

Cordyceps tenuipes is a worldwide entomopathogenic fungus and is famous as the edible and medical value in East Asian nations. In the present study, the high-quality whole-genome of *C. tenuipes* was sequenced on the Illumina sequencing platform. The complete mitochondrial genome of this fungus was assembled as a single circular dsDNA of 31386 bp, including 15 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes. The overall base composition of *C. tenuipes* is 36.6% A, 36.4% T, 11.8% C, 15.2% G, with a CG content of 27%. Phylogenetic analyses based on concatenated protein sequences from 27 taxa of five families within the order Hypocreales were conducted using Maximum likelihood (ML) and Bayesian inference (BI) methods. It is revealed that *C. tenuipes* is more closely related to *C. militaris* in the family Cordycipitaceae. This study would facilitate the future investigation of genetics, evolution and function of cordycipitoid fungi.

CONTACT

Yuanbing Wang, wangyb001@126.com

Hong Yu, hongyu@ynu.edu.cn

ARTICLE HISTORY

Received 11 February 2019
Accepted 13 March 2019

KEYWORDS

Cordyceps tenuipes; mitochondrial genome; phylogenetic analyses

ABSTRACT

Cordyceps tenuipes is a worldwide entomopathogenic fungus and is famous as the edible and medical value in East Asian nations. In the present study, the high-quality whole-genome of *C. tenuipes* was sequenced on the Illumina sequencing platform. The complete mitochondrial genome of this fungus was assembled as a single circular dsDNA of 31386 bp, including 15 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes. The overall base composition of *C. tenuipes* is 36.6% A, 36.4% T, 11.8% C, 15.2% G, with a CG content of 27%. Phylogenetic analyses based on concatenated protein sequences from 27 taxa of five families within the order Hypocreales were conducted using Maximum likelihood (ML) and Bayesian inference (BI) methods. It is revealed that *C. tenuipes* is more closely related to *C. militaris* in the family Cordycipitaceae. This study would facilitate the future investigation of genetics, evolution and function of cordycipitoid fungi.
annotated mitogenome of *C. tenuipes* was submitted to GenBank under accession no. MK234910. The total length of this circular mitogenome is 31,386 bp, containing 15 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes and 22 transfer RNA (tRNA) genes. The overall base composition is as follows: 36.6% A, 36.4% T, 11.8% C, 15.2% G, with a CG content of 27%.

To validate the phylogenetic position of *C. tenuipes*, mitogenomic sequences of its 26 allied taxa were downloaded from NCBI. Mitogenomic sequences of *C. tenuipes* and its allies were aligned using the programme HomBlocks (Bi et al. 2018). Phylogenetic analyses of the concatenated protein sequences from 27 taxa were conducted using Bayesian inference (BI) and maximum-likelihood (ML) methods, employing MrBayes v.3.1.2 (Ronquist and Huelsenbeck 2003) and RaxML7.0.3 (Stamatakis 2006), respectively. The BI analysis was run on MrBayes v.3.1.2 for five million generations using the GTR + G + I model. The GTR + I model was selected as the optimal model for ML analysis, and the concatenated protein sequences were performed with 500 rapid bootstrap replicates. BI analysis is consistent with that of ML analysis from 27 taxa of the order Hypocreales. Phylogenetic tree reveals the topological structure of 27 taxa within Hypocreales and is composed of five families, namely Nectriaceae, Hypocreaceae, Ophiocordycipitaceae, Clavicipitaceae, and Cordycipitaceae (Figure 1). *Cordyceps tenuipes* is clustered in the genus *Cordyceps* of Cordycipitaceae and is more closely related to *C. militaris*, the type species of this genus.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was jointly funded by China Postdoctoral Science Foundation [2017M613017], National Natural Science Foundation of China [31760011 and 31870017], and Department of Science and Technology of Yunnan Province [KC1810172, 2018FY001-006]].

ORCID

Luodong Huang http://orcid.org/0000-0001-6788-6158

References

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SL, Pham S, Prjibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 19:455–477.

Bi G, Mao Y, Xing Q, Cao M. 2018. Homblocks: a multiple-alignment construction pipeline for organelle phylogenomics based on locally collinear block searching. Genomics. 110:18–22.
Hong IP, Nam SH, Sung GB, Chung IM, Hur H, Lee MW, Kim MK, Guo SX. 2007. Chemical components of Paecilomyces tenuipes (Peck) Samson. Mycobiology. 35:215–218.

Kepler RM, Luangsa-ard JJ, Hywel-Jones NL, Quandt CA, Sung GH, Rehner SA, Aime MC, Henkel TW, Sanjuan T, Zare R, et al. 2017. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus. 8:335–353.

Liang JD, Han YF, Tian WL, Liang ZQ, Li ZZ. 2018. Advances in bioactive components in Cordyceps takaomontana and their pharmacological effects. Acta Edulis Fungi. 25:113–119.

Lohse M, Drechsel O, Bock R. 2007. Organellargenomedraw (ogdraw): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet. 52:267–274.

Ronquist F, Huelsenbeck JP. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19:1572–1574.

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 22:2688–2690.