A Review on metal 3D printing; 3D welding

Z K Wani and A B Abdullah*
School of Mechanical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang

*meha@usm.my

Abstract. 3D printing is a well-known method to produce a 3D object and widely used in many types of industries including, mechanical, civil, medical, etc. The technology has been applied in industry for more than 20 years ago, but it is strictly limited to the slow production of small plastic objects, and some special fabric only. As its advancements, the technology of 3D printing becomes broad interest recently. In present industrial, 3D printers are able to produce high precision, quality products of different sizes fast at comparatively low cost. The aim of this paper is to highlight the importance of 3D printing in meeting low and medium production volumes besides having a review on metal 3D printing techniques available. The issue and challenges in producing metal 3D printing also will be discussed extensively in this paper. Suggestions on the subtractive method to complete the 3D printing process according to research interest also explained in this paper.

1. Introduction
3D printing is additive manufacturing (AM) formerly known as a method of reshaping product development in industries. This 3D printing is resulting in the rapid growth in showing the usefulness in design, small-batch production, and potentially distributed manufacturing [1-6]. In general, an AM is a technology that enables the fabrication of 3D parts from 3D data by depositing a thin layer of material layer-by-layer until a semi-finish part is produced. A few decades ago, 3D printing is commonly applied for rapid prototyping only but lately, it is used for actual manufacturing. Frazier [7] and Das et al [8] also addressed that AM has been around over two decades, but it has only recently begun to appear as a significant marketable manufacturing technology. According to Wong and Hernandez [9], the early version of 3D printing is to produce a fast prototype by speeding up the process in model development and shortening lead time between product development and market placement. The requirement to capture the market placement is significant to facilitate the product for not being outdated. In a fraction of time, the company able to produce prototype parts faster compared to conventional manufacturing methods, such as molding, forging, and milling [10]. Few researchers believed that the product produce by AM is unique as well it can be produced in a short time which is surely able to mass customization [11]. This is also considered as the growth of 3D printing where the changes in the uses of 3D printing in presenting the trend of new business model. In the meantime, 3D printing acknowledged as one of the fastest-growing fields in AM.

As a small and medium-sized production company, there are certainly a number of factors to consider in production costs. The total cost of production must include the cost of labor, the process, and the manufacture of a product which is of utmost importance. The importance of 3D printing in this kind of industry is to help in reducing waste. Since AM have a great technology to reduce energy and
material cost, it could be an indicator for the industry in innovative development. The production steps are reduced when the assembly requirement is eliminated. Hence, by having a 3DD printing, practically small and medium companies can reduce production waste [3] as well as the number of workers. The AM process also able to shorter time to market the product with the benefit of lowering down the overall production cost [12]. AM necessarily correspond to the practices in small and medium companies. Few researchers carry out the studies on the importance of 3D printing in various fields such as in design, engineering, analysis and planning, pre-production parts, manufacturing and tooling, aerospace [13], automotive and biomedical [14]. For instance, a brief explanation of the importance and uses of 3D printing in mechanical engineering is done by Madhav et al. [15]. The growing trend in demand for metal-based parts for low and medium production is evident as various companies from the medical and aerospace industries continue to demand the advancement of this technology in meeting their needs [16]. It is vital for a company to comply with the demand to meet the customer’s expectations. Further explanation of metal 3D printing or known as 3D welding, and its challenge, and issues will be discussed in sections 2 and 3 respectively. Suggestions on the subtractive process are discussed in section 4

2. 3D welding
Welding is a process of linking parts by melting the work piece and adding filler material. It is also being defined as a consistent joining technique to assemble metal parts with the heat application [17-18]. 3D welding is described as a constructing up metal beads layered by layer to produce a 3D metal object [20]. The differences between common welding and 3D welding are illustrated in Figures 1 and 2. The cost and productivity are increased to produce, metal volume objects by using the welding method [21]. Not only to produce a new 3D object, but research by Ren et al. [22] has also been done about the 3D repairing technology where surface patching has greatly improved the accuracy, efficiency, and reliability of part repairing. The repair shows it would save more cost than producing a new part to replace the broken part.

![Figure 1. Example of common welding (joint) types: square butt, lap, and T-joint. [19]](image1)

![Figure 2. Example of 3D printing: (a) 3D computer graphic image of a cup object and (b) formed object by 3D Micro Welding. [20]](image2)

Additive welding technology is one of the processes to manufacture 3D parts for metal. The chronology (Figure 3) of development 3D welding for the fabrication of 3D structure has been discussed by Colegrove and Williams [23]. The most common technique for 3D printing consists of Powder Bed Fusion (PBF), Material Extrusion, Sheet Lamination, Directed Energy Deposition (DED), Material Jetting, and Binder Jetting. Material extrusion and Binder jetting methods used to be applied to plastics and ceramics only in the past 20 years, but now being used in metal 3D printing as well due to advancement in additive manufacturing technique. The material used for the metal 3D printing
technique is most likely powder-based and wire-based [24]. A recent article written by Lewandowski and Seifi published about the mechanical properties of materials processed by various AM techniques, including powder bed fusion and directed energy deposition technologies [25].

Three universities named University of Nottingham, Wollongong University and Southern Methodist University in Dallas has conducted research work related to 3D arc welding [26]. According to Korzhik et al. [27], the development of plasma arc melting and welding technologies, as well as the other welding technologies of 3D printing of metal products is being researched by advanced research institutes and industrial corporations of economically developed countries at present. Metal 3D printing can be roughly categorizing into two main groups; Powder Bed Fusion (PBF) and Directed Energy Deposition (DED) based on technologies used. Table 1 shows the list of technology for both groups. Article from Bhavar et al. in 2014 [28] has discussed about this two type of technologies based on their energy source used. However, there are other techniques that have been recently developed, such as binder jetting [14] [29], cold spraying [30], friction stir welding [31], direct metal writing [32] and diode-based processes [33]. Besides Bhavar et al., Some other researchers [34-35] in their review about metal AM also highlight some of the differences between the various processes. A summary of the several AM technologies and the dictate AM equipment manufacturers is presented by Hederick in his review [36].

Table 1. List of Powder Based Fusion and Direct Energy Deposition technologies [28]

Powder Based Fusion (PBF)	Direct Energy Diffusion (DED)
Selective Laser Sintering (SLS)	Laser Engineered Net Shaping (LENS)
Selective Laser Melting (SLM)	Direct Metal Deposition (DMD)
Direct Metal Laser Sintering (DMLS)	Electron Beam Free Form Fabrication (EBFF)
Electron Beam Melting (EBM)	Arc Based Additive Manufacturing

PBF is the leading technology in the industry which shows it is relevant to metal objects [37]. PBF technologies able to manufacture products with good mechanical properties and complex shapes with high accuracy (±0.02 mm) [38]. According to Berger, DMLS is the most preferred PBF technology for welding 3D printing with short manufacturing time, cost-effective assembly, and wide variety of metal parts. DMLS is a laser-based rapid prototyping and tooling process by means of which net shape parts
are fabricated in a single process. SLM, SLS, and DMLS are always being described as similar process however, the nature of the powder is the main difference. Research on the 3D welding machine is not new and various successful stories were reported from all over the world and had been reviewed by Korzhik et al. [27]. In terms of welding technique, there are various techniques employed e.g. arc-weld [39], laser [40], MIG [41], TIG [42-43], plasma-arc [44] and electron beam [45]. Table 2 shows the list of techniques for 3D welding focusing on metal that has been discussed by Wang et al [46].

Wire-Arc Additive Manufacturing (WAAM) is an arc-based technology considered by high productivity, high energy efficiency, and low raw material cost [47-48]. WAAM shows the high saving in the uses of material where buy to fly ratio compared to traditional welding method is 4.9 including the finishing machining [49]. In producing welded joint and metal layers a few technologies for welding methods such as MX3D, GMAW, GTAW being discussed by Peleshenko et al. [50] as a new level of 3D printing. However, among all additive welding technologies, plasma arc welding is the most promising with the high accuracy of manufacturing and the quality of the surface compared to other arc welding method [50].

Table 2. List of welding technology for metal 3D printing with the advantages [46]

Technology	Advantages	Material
TIG	High quality	Low-alloy structural steel
High frequency TIG	High precision and quality	High-strength steel
Pulse MIG	Simplicity and economic efficiency	Stainless steel
Cold Metal Transfer (CMT)	Low heat input, High Stability of the process	Nickel heat-resistant alloys
Tandem Pulsed MIG	High building-up speed	Aluminum alloys
Plasma PTA	High quality, High speed, Possibility to adjust the width of the build-up layer	Titan, titanium alloys
		Copper and copper alloy

3. Issues and challenges on 3D welding

Significant research and further understanding are required in aspects of machine design and process integration, optimization, and level of automation including for process planning to meet future demands. One of the challenges in producing metal 3D printing is the selection of the material. For example, titanium and its alloys are commonly used in various industries due to their high performance [51-52] but it is the long lead time and high machining cost if being performed with conventional. The common steel used in 3D welding are tool steel [53], austenitic stainless steel [54], precipitation hardenable stainless steel [55], and maraging steel [56]. Due to the different properties of each metal, the correct material needs to be chosen in order to enlighten the purpose of AM which is reducing cost, waste, and energy. Besides the differences in properties, other things to be considered are such as the price, method, or technique and the strengthens [24] of the metal itself. Further research about each metal itself will help in selecting the appropriate material. Secondly, the defects after the 3D welding process also are the drawback of this process. The void formation, anisotropic microstructure, and mechanical properties, divergent from design to execution and layer by layer appearance are highlighted [24] as the challenges that are attributed to the nature of AM. High porosity created in product lead to the reduction of interfacial bonding between the printed layer which
also will reduce its mechanical performance [57]. However, it is depending on the method and the type of material used.

Other issues regarding the metal 3D printing are poor surface finish, inaccurate dimensional and the requirement of post-processing (machiing, heat treatment or chemical etching) to complete a part [24]. However, the combination of 3D-printing technology with equivalent manufacturing and subtractive manufacturing will create additional benefits for advanced manufacturing. The effectiveness of combination both process welding and milling was proven by Alhuzaim [58] in his research work. The welding process combined with milling is the conceptual idea presented by researcher from the India Institute of Technology and Automation [27]. The combination with the milling process gave great manufacturing flexibility besides increase surface quality and dimensional accuracy [59]. The residual stress and strain is highly dependent on the strategy of depositing the material which also leads to the constant height that can be measured layer by layer. Most of the available 3D printing machine available in the market is powder-based material. As it is a powder, the strength of the produced parts results in some issues. The post-welding process should not only be focused on the accuracy and the surface finish itself but also need to take into account about the product’s strength.

Welding machine design also becomes one of the issues to perform welding because it is due to the complexity of the parts. Most of the existing machine available is a hybrid machine, where two or more processes were integrated on the same machine. A machine usually will consist main body, tools and mechanism involve to perform tasks (for this case welding), control system, and accessories. The body shape and size may affect the mechanism and arrangement of machine parts. Thus, at design stages, the complex design of the machine should be avoided to elude difficulty during the welding process. Figure 4 shows a few existing machine designs presented in previous researchers.

Figure 4. Solid casted iron body (a), structure wireframe (b) by Rosli et al., (41) and without frame as robotic arm is utilized by Colgrove and William (22) as shown in (c)

For welding operation, two important tools required are the platform and the welding nozzle. The nozzle uses to perform welding need to mount or clamp on a bracket or holder, while the platform is needed to prepare a space where the weld bead is produced. Two options for welding mechanisms to be described, it is either to have a fixed nozzle and moving platform or vice versa. However, it is to be highlighted that the efficient method where a stationed nozzle could reduce machine complexity, as the cable and bulky size will limit the movement of the nozzle. In addition, the moving platform is much easier to control.

4. Suggestions

Traditional manufacturing technologies [60], such as casting, forging, machining, and injection molding are portrayed as a process to make a 3D part in previous years. However, time-consuming for the preparations and waste in the material makes the process is not good compared to additive manufacturing. However, it cannot be simply compared to comparable manufacturing technologies
such as casting, forging, and machining with subtractive manufacturing processes (milling, turning, and grinding); relatively, different manufacturing technologies should be applied where they can be of best use. 3D printing must provide end-use products by fabricating more than just simple structures with sufficient mechanical strength to retain shape in order to become more widely adopted in mainstream manufacturing technology. Through the powder-based technique, the necessary strength is not able to achieve. In future research, the author would like to suggest forging as the subtractive process of 3D welding. Forging, known as the metal forming process, that involves large deformation and can improve part's strength. In addition, time taken is shorter compared to machining and suitable to use due to the suitability for mass production.

Through 3D welding, the pre-form shape can be prepared, and this will reduce waste and can shorten the process steps. The critical issue to be addressed is on part complexity due to forging is not convenient with the harder materials because it is difficult in filling a complex cavity. Limitations of the process include the need to build larger volumes. Further research will be carried out accordingly in order to find the solution to the limitation of the forging process to become a subtractive process in producing 3D objects.

5. Conclusion
This paper presented the surface of 3D printing with the justification of 3D welding technology and technique available. Their relationship was explained based on the review the literatures in this research area. Many publications had explored the importance and techniques of 3D printing including metal 3D printing. However, there is limited research to discuss about strength of parts after welding process.

References
[1] Bourell D, Stucker B, Crane N B, Tuckerman J, and Nielson G N 2011 Self-assembly in additive manufacturing: opportunities and obstacles Rapid Prototyping Journal
[2] Lass N, Tropmann A, Ernst A, Zengerle R, and Koltay P 2011 June Rapid prototyping of 3d microstructures by direct printing of liquid metal at temperatures up to 500 C using the starjet technology In 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference IEEE pp 1452-145
[3] Petrovic V, Vicente Haro Gonzalez J, Jordá Ferrando O, Delgado Gordillo J, Ramón Blasco Puchades J, and Portolés Griñan L 2011 Additive layered manufacturing: sectors of industrial application shown through case studies International Journal of Production Research 49(4) pp 1061-1079
[4] Upcraft S, and Fletcher R 2003 The rapid prototyping technologies Assembly Automation
[5] Wittbrodt B T, Glover A G, Laureto J, Anzalone G C, Oppliger D, Irwin J L, and Pearce J M 2013 Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers Mechatronics 23(6) pp 713-726
[6] Lipson H, and Kurman M 2013 Fabricated: The new world of 3D printing John Wiley & Sons
[7] Frazier W E 2014 Metal additive manufacturing: a review Journal of Materials Engineering and performance 23(6) pp 1917-1928
[8] Das S, Bourell D L, and Babu S S 2016 Metallic materials for 3D printing Mrs Bulletin 41(10) pp 729-741
[9] Wong K V, and Hernandez A 2012 A review of additive manufacturing ISRN Mech. Eng 1 pp 1-10
[10] Banks J 2013 Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization IEEE pulse 4(6) pp 22–26
[11] Duda T, and Raghavan L V 2016 3D metal printing technology IFAC-PapersOnLine 49(29) pp 103-110
[12] Berman B 2013 3D printing: the new industrial revolution IEEE Engineering Management Review 41(4) pp 72-80
[13] Council N R 2004 Accelerating technology transition: bridging the valley of death for materials and processes in defense systems National Academies Press
[14] Bai Y, and Williams C B 2015 An exploration of binder jetting of copper Rapid Prototyp J 21(2) pp 77–85
[15] Madhav C V, Kesav R S N H, and Narayan Y S 2016 Importance and utilization of 3D printing in various applications International Journal of Modern Engineering Research (IJMER) pp 24-29
[16] Castonguay K C 2018 Additive manufacture of propulsion systems in low earth orbit Air Command and Staff College Air University Maxwell AFB United States
[17] Hindsén M, and Bruins M 2020 Welding Kanerva’s Occupational Dermatology pp 2351-2353
[18] Mat M F, Manurung Y H, Muhammad N, Ditler A, Abd Ghani M S, and Leitner M 2020 April Grain Growth Prediction of Bead-on-Plate with Filler Wire SS316L using FEM In IOP Conference Series: Materials Science and Engineering 834(1) pp 012009
[19] Gibson B T, Lammlein D H, Prater T J, Longhurst W R, Cox C D, Ballun M C, ... and Strauss A M 2014 Friction stir welding: Process, automation, and control Journal of Manufacturing Processes 16(1) pp 56-73
[20] Horii T, Kiriha R, and Miyamoto Y. 2009 Freeform fabrication of superalloy objects by 3D micro welding Materials & Design 30(4) pp 1093-1097
[21] Korzhik V, Khaskin V, Voitenko O, Sydorets V N, and Dolianovskaya O 2017 Welding technology in additive manufacturing processes of 3D objects In Materials Science Forum 906 pp 121-130
[22] Ren L, Padathu A P, Ruan J, Sparks T, and Liou F W 2006 August Three dimensional die repair using a hybrid manufacturing system In Proceedings of the 17th Solid Freeform Fabrication Symposium, Austin, TX, USA pp 14-16
[23] Colegrove P, and Williams S 2013 High deposition rate high quality metal additive manufacture using wire+ arc technology Cranfield University
[24] Ngo T D, Kashani A, Imbalzano G, Nguyen K T, and Hui D 2018 Additive manufacturing (3D printing): A review of materials, methods, applications and challenges Composites Part B: Engineering 143 172-196
[25] Lewandowski J I, and Seifi M 2016 Metal additive manufacturing: a review of mechanical properties Annu Rev Mater Res 46 pp 151–186
[26] Kovacevic, R. Development of machine for rapid manufacturing/repair. in The 2003 CTMA Symp. (2003)
[27] Korzhik V N, Khaskin V Y, Grinyuk A A, Tkachuk V I, Peleshenko S I, Korotenko V V, and Babich A A 2016 3D-printing of metallic volumetric parts of complex shape based on welding plasma-arc technologies The Paton Welding Journal 56(6) pp 117-129
[28] Bhavar V, Kattire P, Patil V, Khot S, Gujar K, and Singh R 2014 September A review on powder bed fusion technology of metal additive manufacturing In 4th International conference and exhibition on Additive Manufacturing Technologies-AM-2014 pp 1-2
[29] Bogue R 2013 3D printing: the dawn of a new era in manufacturing? Assembly Automation
[30] Sova A, Grigoriev S, Okunkova A, and Smurov I 2013 Potential of cold gas dynamic spray as additive manufacturing technology The International Journal of Advanced Manufacturing Technology 69(9-12) pp 2269-2278
[31] Sharma A, Bandari V, Ito K, Kohama K, Ramji M, and BV H S 2017 A new process for design and manufacture of tailor-made functionally graded composites through friction stir additive manufacturing Journal of Manufacturing Processes 26 pp 122-130
[32] Chen W, Thornley L, Coe H G, Tonneslan S J, Vericella J J, Zhu C, ... and Pascale A J 2017 Direct metal writing: Controlling the rheology through microstructure Applied Physics Letters 110(9) p 094104
[33] Matthews M J, Guss G, Drachenberg D R, Demuth J A, Heebner J E, Duoss E B, ... and Spadaccini C M 2017 Diode-based additive manufacturing of metals using an optically-
addressable light valve *Optics Express* 25(10) pp 11788-11800

[34] Frazier W E 2010 August Direct digital manufacturing of metallic components: vision and roadmap *In 21st Annual International Solid Freeform Fabrication Symposium, Austin, TX, Aug* pp 9-11

[35] Froes F H, and Dutta B 2014 The additive manufacturing (AM) of titanium alloys *In Advanced Materials Research* 1019 pp 19-25

[36] Herderick E 2011 Additive manufacturing of metals: A review *Materials science and technology* p 1413

[37] Berger R 2013 Additive manufacturing: A game changer for the manufacturing industry? *Munich*

[38] Selective Laser Melting Machine SLM 500 | SLM Solutions. https://slm-solutions.com/products/machines/selective-laser-melting-machine-slm-500. 23/10/2017

[39] Pan Z, Ding D, Wu B, Cuiuri D, Li H, and Norrish J 2018 Arc welding processes for additive manufacturing: a review *In Transactions on intelligent welding manufacturing Springer Singapore* pp 3-24

[40] Brandl E, Michailov V, Viehweger B, and Leyens C 2011 Deposition of Ti-6Al-4V using laser and wire, part I: Microstructural properties of single beads *Surface and Coatings Technology* 206(6) pp 1120-1129

[41] Rosli N A, Alkahari M R, Ramli F R, Mat S, and Yusof A A 2019 Influence of process parameters on dimensional accuracy in GMAW based additive manufacturing *Proceedings of Mechanical Engineering Research Day 2019* pp 7-9

[42] Wang F, Williams S, and Rush M 2011 Morphology investigation on direct current pulsed gas tungsten arc welded additive layer manufactured Ti6Al4V alloy *The international journal of advanced manufacturing technology* 57(5) pp 597-603

[43] Ding D, Pan Z, Van Duin S, Li H, and Shen C 2016 Fabricating superior NiAl bronze components through wire arc additive manufacturing *Materials* 9(8) pp 652

[44] Aiyiti W, Zhao W, Lu B, and Tang Y 2006 Investigation of the overlapping parameters of MPAW-based rapid prototyping *Rapid Prototyping Journal*

[45] Murr L E, Gaytan S M, Ramirez D A, Martinez E, Hernandez J, Amato K N, ... and Wicker R B 2012 Metal fabrication by additive manufacturing using laser and electron beam melting technologies *Journal of Materials Science & Technology* 28(1) pp 1-14

[46] Wang F, Williams S, Colegrove P, and Antony samy A A 2013 Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V *Metallurgical and materials transactions A* 44(2) pp 968-977

[47] Venturini G, Montevcchi F, Scippa A, and Campatelli G 2016 Optimization of WAAM deposition patterns for T-crossing features *Procedia CIRP* 55 pp 95-100

[48] Bikas H, Stavridis J, Stavropoulos P, and Chryssolouris G 2015 Design and topology optimization for additively manufactured structural parts: a formula student case study *In 6th BETA CAE Int Conf*

[49] Colegrove P A, Martina F, Roy M J, Szost B A, Terzi S, Williams S W, ... and Jarvis D 2014 High pressure interpass rolling of wire+ arc additively manufactured titanium components *In Advanced Materials Research* 996 pp 694-700

[50] Peleshenko S, Korzyhьk V, Voitenko O, Khaskin V, and Tkachuk V 2017 Analysis of the current state of additive welding technologies for manufacturing volume metallic products *Восточно-Европейский журнал передовых технологий* 3(1) pp 42-52

[51] Nie B, Yang L, Huang H, Bai S, Wan P, and Liu J 2015 Femtosecond laser additive manufacturing of iron and tungsten parts *Applied Physics A* 119(3) pp 1075-1080

[52] Sheydaeian E, and Toyserkani E 2018 A new approach for fabrication of titanium-titanium boride periodic composite via additive manufacturing and pressure-less sintering *Composites Part B: Engineering* 138 pp 140-148

[53] Mazumder, J., Choi, J., Nagarathnam, K., Koch, J., & Hetzner, D. (1997). The direct metal
deposition of H13 tool steel for 3-D components. Jom, 49(5), 55-60.

[54] Carlton, H. D., Haboub, A., Gallegos, G. F., Parkinson, D. Y., & MacDowell, A. A. (2016). Damage evolution and failure mechanisms in additively manufactured stainless steel. Materials Science and Engineering: A, 651, 406-414.

[55] Murr, L. E., Martinez, E., Amato, K. N., Gaytan, S. M., Hernandez, J., Ramirez, D. A., ... & Wicker, R. B. (2012). Fabrication of metal and alloy components by additive manufacturing: examples of 3D materials science. Journal of Materials Research and technology, 1(1), 42-54.

[56] Casalino, G., Campanelli, S. L., Contuzzi, N., & Ludovico, A. D. (2015). Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel. Optics & Laser Technology, 65, 151-158.

[57] Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110, 442-458.

[58] Alhuzaim, A. F. (2014). Investigation in the use of plasma arc welding and alternative feedstock delivery method in additive manufacture. Montana Tech of The University of Montana.

[59] Song, Y. A., Park, S., Choi, D., & Jee, H. (2005). 3D welding and milling: Part I–a direct approach for freeform fabrication of metallic prototypes. International Journal of Machine Tools and Manufacture, 45(9), 1057-1062.

[60] Fousová, M., Vojtěch, D., Kubásek, J., Dvorský, D., & Machová, M. (2015). 3D printing as an alternative to casting, forging and machining technologies?. Manufacturing Technology, 15(5), 809-814.