Effect of $KCNQ1$ rs2237892 polymorphism on the predisposition to type 2 diabetes mellitus: An updated meta-analysis

Hong-Liang Jiang¹, Han Du²*, Ying-Jun Deng³ and Xue Liang⁴

Abstract

Objectives: Previous studies have analyzed the potential effect of $KCNQ1$ rs2237892 polymorphism on the predisposition to type 2 diabetes mellitus, but the findings are inconclusive and the subject of debate. The purpose of our study was to provide further insight into the potential association between $KCNQ1$ rs2237892 polymorphism and the risk of type 2 diabetes mellitus.

Methods: In total, 50 articles (60 studies) with 77,276 cases and 76,054 controls were utilized in our analysis. The pooled odds ratio (OR), 95% confidence interval (95% CI), and p value were used to evaluate the significance of our findings. Funnel plots and Beggar’s regression tests were utilized to determine the presence of publication bias.

Results: Our meta-analysis results indicated that $KCNQ1$ rs2237892 polymorphism could be correlated with the risk of type 2 diabetes mellitus under the C allelic, recessive, and dominant genetic models ($OR = 1.25$, 95% CI 1.19–1.32, $p < 0.001$; $OR = 1.50$, 95% CI 1.34–1.68, $p < 0.001$; $OR = 1.26$, 95% CI 1.14–1.40, $p < 0.001$, respectively). Additionally, ethnicity analysis revealed that the source of control, case size, and Hardy–Weinberg Equilibrium status were correlated to the polymorphism in the three genetic models.

Conclusions: Our meta-analysis demonstrated significant evidence to support the association between $KCNQ1$ rs2237892 polymorphism and predisposition to type 2 diabetes mellitus.

Keywords: $KCNQ1$ rs2237892, Polymorphism, T2DM, Meta-analysis

Background

The worldwide prevalence of type 2 diabetes mellitus (T2DM) is increasing, along with associated comorbidities such as cardiovascular disease [1]. The International Diabetes Federation (IDF) reports that there were 9.3% (463 million) adults with diabetes in 2019, and 700 million people will have diabetes by 2045 [2]. Researchers consider T2DM to be a polygenic metabolic disorder with genetic heterogeneity that is affected by nongenetic (environmental), genetic, and lifestyle factors. However, the pathogenesis of T2DM still remains unclear [3]. Previous studies have reported that the potassium voltage-gated channel KQT-like sub-family, member 1 gene ($KCNQ1$) is associated with T2DM in Japanese, Korean, Chinese, Indian, and European populations [4–7]. Case–control studies investigating the role of $KCNQ1$ polymorphisms in T2DM, have indicated that rs2237892, a single nucleotide polymorphism (SNP) located on intron 15, has a strong association with T2DM. Therefore, rs2237892 has been widely investigated in subsequent studies. However, there are disagreements between the different studies, and their validity has been limited by insufficient sample size and lack of ethnic diversity in the study populations [8–11].
Although a previous meta-analysis in 2012 investigated the association between KCNQ1 rs2237892 polymorphism and T2DM risk, the authors only utilized 25 articles [12]. Therefore, our objective in the present meta-analysis, was to further examine and elucidate the connection between KCNQ1 rs2237892 polymorphism and an increased risk of T2DM.

Methods
Publication search
We systematically searched for relevant publications published through March 11, 2021 using Cochrane Library, PubMed, EMBASE, Web of Science, and China National Knowledge Infrastructure. We used the following search terms: (“KCNQ1”, OR “potassium voltage-gated channel”, OR “KQT-like subfamily, member 1”, OR “rs2237892”) AND (“variant”, OR “polymorphism”, OR “mutation”) AND (“T2DM”, OR “type 2 diabetes mellitus”, OR “type 2 diabetes”, OR “T2D”). Two investigators independently checked the references of retrieved articles to select the publications they would include in the analysis.

Selection criteria
Studies were selected according to the following inclusion criteria: full text could be found; the case–control studies focused on the relevance of KCNQ1 rs2237892 polymorphism and T2DM risk; the KCNQ1 rs2237892 genotype was obtained, and association between the KCNQ1 rs2237892 SNP and T2DM prevalence was assessed. Studies were excluded if they met the following exclusion criteria: they were repetitions of other articles; they were not case–control studies; they were unpublished studies, conference articles, meta-analyses, systematic evaluations, and they were pedigree studies. We consulted the Preferred Reporting Project (PRISMA) Guide for Systematic Evaluation and Meta-Analysis to comply with standards for conducting and presenting results from meta-analyses [13].

Data extraction
Referring to the inclusion/exclusion criteria, two investigators independently extracted data that included: first author, country, publication year, amount of cases and controls, Hardy–Weinberg equilibrium (HWE), control group source, and the availability of KCNQ1 rs2237892 genotype. Only articles with maximum sample size were selected when similar data appeared in multiple publications. A third investigator reviewed the final results to ensure data accuracy, and discussions were held to resolve any conflicts.

Study quality assessment
Two investigators performed independent quality assessments for each eligible article according to the 9-point Newcastle–Ottawa Scale [14]. The third investigator resolved any conflicting results produced by the two investigators. The assessment score included these criteria: case and control selection (4 points); confounding factor quality corrected in cases and controls (2 points), exposure ascertainment (3 points). The total scores ranged from 0 to 9, and scores >6 were indicative of high-quality articles.

Statistical analysis
We estimated the significance of the data describing KCNQ1 rs2237892 SNP and T2DM risk using the OR and 95% CI. The Chi-Square-Based Q-test and I-Squared test were utilized to analyze the heterogeneity with \(p < 0.1 \) suggesting heterogeneity [15, 16]. We estimated the pooled OR by fixed effect model (Mantel–Haenszel) when no heterogeneity existed, or by the DerSimonian and Laird random effects model [17, 18]. We performed the Chi-squared test in controls, to examine HWE. To estimate the influence of the pooled ORs caused by an individual data set, we performed sensitivity analysis for each of the comparison models. The publication bias was tested by Funnel plot and Begg linear regression (19, 20), and Stata 12.0 was used to perform all analyses.

Results
Study characteristics
Figure 1 shows flowcharts of the selection of publications for the present study. There were 535 publications located in several electronic databases. After examining the research title, content, and abstract of the publications, the two investigators excluded 169 duplicate documents, 298 irrelevant papers, and examined the remaining 68 articles in full. Finally, our meta-analysis included 50 (60 case–control) publications. Among the 60 case–control studies, 51 included Asian populations, 4 included Caucasian, and 5 involved other populations. Of the studies in our meta-analysis, 24 were based on population (PB), 19 were based on hospital (HB), and 17 studies were based on no report (NR). The sample group of 21 studies was less than 500 patients, 10 studies included between 500 and 1000 patients, 4 studies included between 1001 and 2000 patients, and the remaining 6 studies had a sample group of greater than 2000. HWE balance (\(p < 0.05 \)) was not met in 5 of the control groups. Due to lack of control group descriptions, 19 studies did not meet HWE assessment.
Table 1 shows the main features of the study and the genotype distribution results of the HWE test.

Meta-analysis results

The meta-analysis included 153,330 participants (77,276 cases and 76,057 controls). KCNQ1 rs2237892 polymorphism was significantly associated with T2DM risk under the C allelic, recessive, and dominant genetic models (OR:1.25, 1.50 and 1.26; 95% CI 1.19–1.32, 1.34–1.68, and 1.14–1.40; p<0.001, respectively). In ethnic subgroup analysis shown in Table 2, KCNQ1 rs2237892 polymorphism was correlated with increased risk of T2DM in the dominant genetic model of East Asians, in the C allelic genetic model of East Asians, and in the C allelic genetic model of West Asian populations (OR=1.39, 1.32 and 1.25; 95% CI 1.31–1.49, 1.27–1.37 and 1.19–1.32; p<0.001, respectively). In the stratified analysis by source of control, marked correlation was found in the C allelic genetic model (HB, PB, and NR: OR=1.24, 1.25 and 1.16; 95% CI 1.14–1.37, 1.19–1.32 and 1.02–1.32; p<0.001, respectively) and the dominant genetic model (HB and PB: OR=1.25 and 1.48; 95% CI 1.08–1.46 and 1.38–1.59, p<0.05, respectively). In the case size stratification, the C allelic genetic model (OR=1.23, 1.14, 1.25 and 1.33; 95% CI 1.09–1.38, 0.88–1.48, 1.19–1.32 and 1.27–1.39; p<0.001, respectively), the dominant genetic model (OR=1.24, 1.13, 1.41 and 1.43; 95% CI 1.05–1.46, 0.81–1.58 and 1.33–1.53; p<0.001, respectively) and the recessive genetic model (500–1000: OR=1.32, 95% CI 0.91–1.91, p<0.001) found notable association between KCNQ1 rs2237892 polymorphism and increased T2DM risk. Finally, we stratified by sample size—significant correlation was found in the C allelic genetic model (<500, 1001–2000 and >2000: OR=1.23, 1.25 and 1.33; 95% CI 1.09–1.38, 1.19–1.32 and 1.27–1.39; p<0.001, respectively) and the dominant genetic model (<500, 1001–2000 and >2000: OR=1.24, 1.41 and 1.43; 95% CI 1.05–1.46, 1.14–1.75 and 1.33–1.53; p<0.001, respectively).

Discussion

The association of KCNQ1 rs2237892 polymorphism with T2DM has been reported in many previous studies [21–62]. In 2008, two independently conducted genome-wide association studies (GWAS) in Japanese populations identified KCNQ1 as a novel T2DM susceptibility gene [5, 6, 8]. Subsequently, the SNP locus rs2237892 of this gene was found to be correlated with the incidence of T2DM in Korean population [15]. In our present meta-analysis, there were 60 studies, 77,276 cases and 76,057 controls, that we evaluated for the possible association between KCNQ1
Table 1 Studies and data included in this meta-analysis

Authors	Year	Country	Source of control	Sample size	Cse	Control	NOS score	HWE
Yasuda K et al	2008	Japanese	NR	2954	2988	5954	2802	
Yasuda K et al	2008	China/Korea	NR	6552	6621	9042	4062	
Yasuda K et al	2008	European	NR	63	752	120	6	
Lee Y et al	2008	Korea	HB	865	496	389	377	99
Chen Z et al	2009	China	HB	57	341	27	24	6
Takeuchi F et al	2009	Japan	NR	519	503	228	236	55
Takeuchi F et al	2009	Japan	NR	1110	1014	492	488	130
Qi Q et al	2009	China	PB	424	1908	617	231	
Hu C et al	2009	China	PB	1719	1720	947	643	129
Liu Y et al	2009	China	NR	1880	1996	902	813	165
Tan JT et al	2009	Chinese	PB	1541	2196	2127	955	
Tan JT et al	2009	Malay	PB	1076	2257	1549	603	
Zhang S et al	2009	China	HB	104	98	52	44	8
Yamauchi T et al	2010	Japanese	PB	4878	3345	6439	3317	
Yamauchi T et al	2010	Japan	PB	2886	3087	3861	1911	
Han X et al	2010	China	PB	990	959	525	396	69
Xu M et al	2010	China	PB	1825	2200	2548	1102	
Zhou JB et al	2010	China	PB	537	510	773	301	
Been LF et al	2011	India	PB	1290	1019	1259	30	1
Been LF et al	2011	US-India	PB	139	557	133	6	0
Saif-Al R et al	2011	Malaysia	HB	234	177	135	79	20
Tabara Y et al	2011	Japan	NR	493	394	243	206	44
Saif-Al R et al	2011	Malaysia	HB	300	230	183	99	18
Da Wet et al	2011	China	PB	223	201	115	92	16
Dai XP et al	2012	China	NR	367	212	233	112	22
Yu W et al	2012	China	PB	5409	614	2773	2245	391
Yu W et al	2012	China	PB	2994	3256	1608	1162	224
Gamboa-Melendez MA et al	2012	Mexico	HB	1027	990	1479	575	
Turk I et al	2012	Tunisia	NR	883	591	763	106	14
Iwata M et al	2012	Japan	HB	724	763	342	300	82
VanVliet-Ostaptchouk JV et al	2012	Netherlands	NR	4511	5152	4149	348	14
Authors	Year	Country	Source of control	Cse	Sample size	Control NOS score	HWE	
-------------------------	------	---------	-------------------	------	-------------	-------------------	------	
Odgerel Z et al	2012	China	PB	177	216	223	131	
Gao X et al	2012	China	HB	200	200	217	127	
Yamakawa-Kobayashi K et al	2012	Japan	PB	333	417	462	240	
Tam CH et al	2013	China	PB	5882	2569	8458	3306	
Almawi WY et al	2013	Lebanon	NR	994	1077	499	371	
Long J et al	2013	America	PB	1551	2725	2823	279	
Lin YD et al	2013	China	PB	2899	3261	1491	1174	
Wang T et al	2013	China	HB	300	200	150	132	
Bazzi MD et al	2014	Saudi	HB	78	96	7	8	
The STDC	2014	Mexico/USA	NR	4366	3848	6435	2297	
Zhu AN et al	2014	China	HB	238	240	106	118	
Zhang WL et al	2015	China	NR	530	452	274	217	
Qian Y et al	2015	China	PB	2925	3281	1504	1185	
Cui L et al	2016	China	HB	100	100	39	46	
Zhou XY et al	2016	China	HB	305	200	148	136	
Robello C et al	2016	Spain	HB	180	501	155	25	
Al-Shammar M et al	2017	Saudi	NR	330	516	319	9	
Plengvidhya N et al	2018	Thailand	HB	500	500	285	192	
Chen J et al	2018	China	HB	84	104	34	42	
Huang Q et al	2018	China	PB	506	497	250	220	
Yang KL et al	2018	China	PB	522	522	270	215	
Li YH et al	2018	China	NR	284	99	210	68	
Li YH et al	2018	China	NR	293	208	144	128	
Xu T et al	2018	China	HB	100	100	31	45	
Totomoch-Serra A et al	2018	Mexico	HB	415	416	523	307	
rs2237892 polymorphism and T2DM risk. Our results showed that KCNQ1 rs2237892 polymorphism could be associated with T2DM in the dominant (CC vs CT + TT), recessive (CC + CT vs TT) and allele models (C vs T). In a stratified analysis based on ethnicity, the source of control, and case size, we found that KCNQ1 rs2237892 polymorphism was significantly associated with T2DM in the dominant model, the allele model of East Asians, and in the allele model of West Asian populations. In Southeast Asian, South Asian, Caucasian, and other populations, KCNQ1 rs2237892 polymorphism was not significantly related to T2DM. In the stratified analysis according to the source of control, we found that KCNQ1 rs2237892 polymorphism was significantly correlated with T2DM in the dominant model and the allele model of HB and PB group, and in the allele model of NR group. But the correlation between KCNQ1 rs2237892 polymorphism and T2DM in children lacked corresponding evidence. The stratified analysis of the sample size showed that the correlation between populations occurred when the number of samples in the case group was less than 500, within 1001–2000, and > 2000. The above analysis shows that the ethnicity, the source of the control group, and the sample size of the case group may be the factors in the association occurred (Fig. 2).

Previously, a meta-analysis was performed in 2012 to investigate the association between KCNQ1 rs2237892 polymorphism and T2DM risk; however, only 25 articles were included in the analysis. Recently, a meta-analysis was performed to investigate the relationship between several KCNQ1 SNPs and T2DM risk, and a significant relationship between KCNQ1 polymorphism rs2237892 and T2DM risk was found [63]. However, the analysis was limited to 38 articles and incomplete sample size as well as selective bias are potential limitations of that study [63] (Fig. 3).

Compared to previous studies, our results demonstrate robust evidence to support a correlation between KCNQ1 rs2237892 polymorphism and T2DM risk. Scientists do not currently understand the biological mechanisms that cause an association between KCNQ1 and T2DM. There is biological evidence supporting the hypothesis that KCNQ1 might play a role in the predisposition to T2DM. KCNQ1, encoding the alpha subunit of the IKsK + channel, is expressed in the tissues or cells of the heart [64], as well as in pancreas islets, which play an important role in the regulation of insulin secretion [23] (Fig. 4).

Table 2

Pooled ORs and 95% CIs of the association between KCNQ1 rs2237892 polymorphism and T2DM

Total and subgroups	Studies	CC vs CT + TT	CC + CT vs TT	CVST						
		OR 95%Cl	I²	P	OR 95%Cl	I²	P	OR 95%Cl	I²	P
Total	41/60	1.26 (1.14–1.40)	87.2%	<0.001	1.50 (1.34–1.68)	66.6%	<0.001	1.25 (1.19–1.32)	86.6%	<0.001
Ethnicity										
East Asian	30/42	1.39 (1.31–1.49)	61.4%	<0.001	1.59 (1.50–1.68)	0.0%	0.575	1.32 (1.27–1.37)	69.4%	<0.001
Southeast Asian	3/4	1.43 (1.20–1.72)	0.00%	0.453	1.79 (1.27–2.52)	0.0%	0.712	1.30 (1.17–1.45)	20.0%	0.290
South Asian	1/2	1.53 (0.94–2.48)	–	–	1.26 (0.08–20.27)	–	–	2.07 (1.03–4.17)	64.6%	0.093
West Asian	3/3	0.64 (0.26–1.57)	82.3%	0.003	1.50 (1.39–1.68)	68.5%	0.075	1.25 (1.19–1.32)	83.0%	0.003
Caucasian	2/4	1.00 (0.56–1.76)	79.0%	0.029	0.44 (0.18–1.08)	–	–	1.19 (1.02–1.38)	36.7%	0.192
Other	2/5	0.91 (0.52–1.61)	43.5%	0.184	0.68 (0.27–1.70)	0.0%	0.677	1.06 (0.90–1.25)	75.1%	0.003
Source of control										
HB	17/19	1.25 (1.08–1.46)	59.2%	0.001	1.68 (1.44–1.97)	10.6%	0.335	1.24 (1.14–1.37)	63.4%	<0.001
PB	11/24	1.48 (1.38–1.59)	47.4%	0.040	1.50 (1.34–1.68)	0.0%	0.984	1.25 (1.19–1.32)	67.6%	<0.001
NR	13/17	1.13 (0.87–1.42)	94.6%	<0.001	1.21 (0.91–1.62)	86.2%	<0.001	1.16 (1.02–1.32)	95.0%	<0.001
Case size										
< 500	21	1.24 (1.05–1.46)	63.6%	<0.001	1.77 (1.50–2.08)	0.0%	0.483	1.23 (1.09–1.38)	71.5%	<0.001
500–1000	10	1.13 (0.81–1.58)	95.3%	<0.001	1.32 (0.91–1.91)	88.5%	<0.001	1.14 (0.88–1.48)	95.7%	<0.001
1001–2000	4	1.41 (1.14–1.75)	82.4%	0.001	1.44 (1.26–1.65)	0.0%	0.670	1.25 (1.19–1.32)	67.3%	<0.001
> 2000	6	1.43 (1.33–1.53)	58.0%	0.036	1.56 (1.41–1.72)	35.2%	0.173	1.33 (1.27–1.39)	80.1%	<0.001
HWE status										
Yes	36/36	1.36 (1.28–1.45)	57.3%	<0.001	1.57 (1.48–1.67)	2.9%	0.420	1.32 (1.26–1.38)	53.2%	<0.001
No	5/5	0.95 (0.46–1.96)	97.8%	<0.001	0.99 (0.45–2.18)	94.0%	<0.001	1.25 (1.19–1.32)	98.1%	<0.001
NK	0/19	–	–	–	–	–	–	1.25 (1.18–1.34)	82.8%	<0.001
This meta-analysis has several limitations. Firstly, most of the articles included in the meta-analysis involved the Asian population, while there were few articles involving Caucasian and other populations. Therefore, we could not perform the analysis grouped by different populations, and the ability to apply our results to a more general population is subsequently limited. Secondly, T2DM is caused by complex interactions between genetic, lifestyle, and environmental factors. Our study focused exclusively on the impact of genetic factors on T2DM risk. In the future, further studies should be conducted to determine interconnection between KCNQ1 rs2237892, lifestyle factors, and environmental factors on T2DM.

Fig. 2. Forest plots of the KCNQ1 rs2237892 polymorphism under different genetic models. a is the model of CC vs CT + TT, b is the model of CC vs TT, c is the model of CC+CT vs TT.
b:CC+CT vs TT

Study ID	OR (95% CI)	% Weight
Chen Z et al (2009)	0.97 (0.39, 2.43)	1.19
Xu T et al (2018)	1.17 (0.62, 2.21)	2.00
Chen JF (2018)	1.12 (0.43, 2.93)	1.11
Cui LJ et al (2016)	0.77 (0.34, 1.75)	1.42
Zhang S (2009)	1.36 (0.52, 3.61)	1.08
Been LF et al (2011)	1.26 (0.06, 28.30)	0.14
Gao X et al (2012)	1.61 (0.84, 3.07)	1.96
Da W (2011)	2.63 (1.41, 4.94)	2.03
Yang HL (2013)	3.09 (1.47, 6.50)	1.62
Saif-Ali R et al (2011)	1.44 (0.75, 2.75)	1.96
Zhu AN et al (2014)	2.55 (1.33, 4.90)	1.93
Li YH et al (2016)	1.61 (0.87, 2.99)	2.06
Li YH et al (2018)	0.22 (0.01, 3.86)	0.15
Saif-Ali R et al (2011)	2.08 (1.12, 3.89)	2.05
Wang T (2013)	2.34 (1.25, 4.40)	2.02
Zhou XY et al (2016)	2.02 (1.10, 3.70)	2.13
Al-Shammari MS et al (2017)	1.60 (0.31, 8.32)	0.44
Dai XP (2012)	1.63 (0.87, 3.07)	2.02
Tabara Y et al (2011)	2.02 (1.34, 3.03)	3.18
Takeuchi F et al (2009)	1.50 (1.04, 2.18)	3.42
Huang Q et al (2018)	1.49 (0.96, 2.33)	2.94
Plengvidhya N et al (2018)	1.85 (1.09, 3.14)	2.50
Yang KL (2018)	1.48 (0.96, 2.30)	2.99
Zhang WL et al (2015)	2.15 (1.42, 3.27)	3.12
Iwata M et al (2012)	1.93 (1.44, 2.58)	3.99
Lee YH et al (2008)	1.38 (1.00, 1.90)	3.76
Turk I et al (2012)	0.64 (0.24, 1.67)	1.10
Alnawal WY et al (2013)	0.35 (0.25, 0.49)	3.65
Han X et al (2010)	1.68 (1.22, 2.30)	3.80
Takeuchi F et al (2009)	1.45 (1.14, 1.86)	4.29
Been LF et al (2011)	1.27 (0.89, 2.07)	0.16
Hu C et al (2009)	1.60 (1.27, 2.02)	4.40
Liu Y et al (2009)	1.31 (1.06, 1.62)	4.55
Lin YD et al (2013)	1.58 (1.33, 1.87)	4.82
Qian Y et al (2015)	1.58 (1.33, 1.87)	4.82
Yu W et al (2012)	1.61 (1.35, 1.91)	4.80
Takeuchi F et al (2009)	1.57 (1.39, 1.78)	5.09
Van Vliet-Oostapchouk JV et al (2012)	0.44 (0.18, 1.08)	1.21
Yu W et al (2012)	1.55 (1.17, 2.04)	4.10
Bazzi MD et al (2014)	(Excluded)	0.00
Riobello C et al (2016)	(Excluded)	0.00
Overall (I-squared = 66.6%, p = 0.000)	1.50 (1.34, 1.68)	100.00

NOTE: Weights are from random effects analysis.
Table 1: Meta-analysis of c:C vs T

Study	OR (95% CI)	%	Weight
Yusuf K et al (2009)	1.46 (1.36, 1.57)	2.41	
Yusuf K et al (2009)	1.40 (1.30, 1.50)	2.43	
Yusuf K et al (2008)	1.53 (0.65, 2.48)	0.53	
Lee YH et al (2008)	1.30 (1.10, 1.52)	2.00	
Chen J et al (2009)	0.99 (0.65, 1.52)	0.83	
Takeuchi F et al (2009)	1.30 (1.08, 1.58)	1.91	
Takeuchi F et al (2009)	1.23 (1.06, 1.43)	2.18	
Qi Q et al (2009)	1.29 (0.99, 1.69)	1.99	
Hu C et al (2009)	1.53 (1.36, 1.70)	2.27	
Liu Y et al (2009)	1.19 (1.06, 1.31)	2.20	
Tan JT et al (2009)	1.10 (0.98, 1.21)	2.29	
Tan JT et al (2009)	1.21 (1.06, 1.38)	2.23	
Tan JT et al (2009)	3.10 (1.55, 6.22)	0.85	
Zhang S et al (2009)	1.25 (0.82, 1.91)	0.94	
Yamawaki T et al (2010)	1.22 (1.14, 1.30)	2.40	
Yamawaki T et al (2010)	1.28 (1.18, 1.38)	2.37	
Han X et al (2010)	1.30 (1.21, 1.60)	2.12	
Xu M et al (2010)	1.30 (1.16, 1.42)	2.30	
Zhou JB et al (2010)	1.36 (1.15, 1.61)	1.89	
Been LF et al (2011)	1.51 (0.94, 2.43)	0.81	
Been LF et al (2011)	1.51 (0.83, 3.03)	0.31	
Saif-All R et al (2011)	1.45 (1.01, 1.98)	1.34	
Tabbara Y et al (2011)	1.63 (1.24, 1.98)	1.63	
Saif-All R et al (2011)	1.57 (1.16, 2.07)	1.47	
Da W (2011)	1.65 (1.23, 2.20)	1.41	
Yu W et al (2012)	1.50 (1.14, 1.87)	1.47	
Yu W et al (2012)	1.46 (1.26, 1.68)	2.18	
Gencocu-Melankiz MA et al (2012)	1.31 (1.16, 1.49)	2.36	
Turk A et al (2012)	0.76 (0.56, 1.02)	1.36	
Inada M et al (2012)	1.62 (1.29, 1.94)	2.06	
Van Vliet-Doodt C et al (2012)	1.22 (1.07, 1.40)	2.13	
Otgondet Z et al (2012)	0.63 (0.47, 0.86)	1.35	
Gao X et al (2012)	1.43 (1.06, 1.91)	1.39	
Yamashita Kakei et al (2012)	1.28 (1.04, 1.58)	1.77	
Tam CH et al (2013)	1.34 (1.24, 1.44)	2.38	
Ahmed YF et al (2013)	0.40 (0.34, 0.46)	2.06	
Long J et al (2013)	1.25 (1.08, 1.45)	2.07	
Lin YD et al (2013)	1.31 (1.21, 1.42)	2.36	
Yang RL (2013)	1.69 (1.32, 2.14)	1.26	
Wang T (2013)	1.67 (1.32, 2.11)	1.69	
Buzcu MD et al (2014)	0.81 (0.63, 1.04)	0.21	
The STDC (2014)	1.13 (1.05, 1.21)	2.39	
Zhu X et al (2014)	1.17 (0.88, 1.54)	1.68	
Zhang WL et al (2015)	1.45 (1.00, 2.05)	1.66	
Qin V et al (2015)	1.31 (1.21, 1.41)	2.36	
Gao LJ et al (2016)	0.68 (0.45, 1.04)	0.95	
Zhou KY et al (2016)	1.52 (1.16, 1.98)	1.50	
Robellos C et al (2016)	0.72 (0.44, 1.18)	0.76	
Al-Sharman M et al (2017)	1.24 (0.86, 2.23)	0.47	
Panggoodh T et al (2018)	1.29 (1.06, 1.57)	1.62	
Chen JF (2018)	0.73 (0.47, 1.14)	0.89	
Huang Q et al (2018)	1.34 (1.05, 1.50)	1.87	
Yang RL (2018)	1.25 (1.04, 1.51)	1.68	
Li YH et al (2018)	0.90 (0.68, 1.21)	0.81	
Li YH et al (2018)	1.28 (0.98, 1.68)	1.49	
Xu T et al (2018)	1.04 (0.70, 1.54)	1.03	
Tolomosch-Serra A et al (2018)	0.92 (0.75, 1.12)	1.62	

Note: Weights are from random effects analysis.

Fig. 2 continued
Fig. 3 Sensitivity analysis examining the association between the KCNQ1 rs2237892 polymorphism and risk of stroke under these model. a CC vs CT + TT, b CC + CT vs TT, c C vs T.
b:CC+CT vs TT

Meta-analysis estimates, given named study is omitted

Lower CI limit
Estimate
Upper CI limit

Chen Z et al (2009)
Xu T et al (2018)
Chen JF (2018)
Bazzi MD et al (2014)
Cui LJ et al (2016)
Zhang S (2009)
Beeen LF et al (2011)
Ricelino C et al (2016)
Gao X et al (2012)
Dai W (2011)
Yang HL (2013)
Safi-Ali R et al (2011)
Zhu AN et al (2014)
Li YH et al (2016)
Li YH et al (2016)
Safi-Ali R et al (2011)
Wang T (2013)
Zhou XY et al (2016)
Al-Shammari MS et al (2017)
Dai XP (2012)
Tabara Y et al (2011)
Takeuchi F et al (2009)
Huang Q et al (2018)
Plengvidhya N et al (2018)
Yang KL (2018)
Zhang WL et al (2015)
Iwata M et al (2012)
Lee YH et al (2006)
Turki A et al (2012)
Almawi WW et al (2013)
Han X et al (2010)
Takeuchi F et al (2009)
Beeen LF et al (2011)
Hu C et al (2009)
Liu Y et al (2009)
Lin YD et al (2013)
Cian Y et al (2016)
Yu W et al (2012)
Takeuchi F et al (2009)
Van Vliet-Oostapchouk JV et al (2012)
Yu W et al (2012)

1.29 1.34 1.5 1.68 1.73

Fig. 3 continued
Conclusion

Our meta-analysis demonstrated an association between \textit{KCNQ1} rs2237892 polymorphism and the predisposition to T2DM. There was notable correlation between \textit{KCNQ1} rs2237892 and T2DM in East Asian populations and West Asian populations. However, for the Southeast Asian, South Asian, Caucasian, and other populations, the relevance of the \textit{KCNQ1} rs2237892 SNP was not confirmed because of the relatively limited sample size and the sparse amount of research into this subject. In addition, the source of the control group and the sample size of the case would also have an impact on the study results in the stratified analysis of this study. Therefore, in future research, we suggest exploring the relationship between \textit{KCNQ1} rs2237892 polymorphism and T2DM in a wide variety of populations. Although two meta-analyses were performed previously, the number of articles included in these was less than that in our study. Therefore, we believe that our study is superior than the two previous meta-studies.
Abbreviations
T2DM: Type 2 diabetes mellitus; IDF: International Diabetes Federation;
PRISMA: Preferred Reporting Project; HWE: Hardy–Weinberg equilibrium;
SNP: Single nucleotide polymorphism.

Acknowledgements
We appreciate the cooperation of the partners and staffs cooperated in this study.

Authors’ contributions
Manuscript writing, editing and review were conducted by HLJ; YJD and XL participated in the articles search; HLJ and HD performed data analysis and evaluation the quality of the selected studies. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Fig. 4 Begg’s funnel plot for publication bias analysis. a is the model of CC vs CT + TT; b is the model of CC+CT vs TT; c is the model of C vs T

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Anorectal Medicine, Gaozhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Gaozhou 525025, Guangdong, China. 2 Dermatology Department of Gaozhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 32 Masong Avenue, Gaozhou 525025, Guangdong, China. 3 The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China. 4 Department of Science and Education, Gaozhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Gaozhou 525025, Guangdong, China.

Received: 10 March 2021 Accepted: 2 June 2021
Published online: 08 July 2021

References
1. Standards of medical care in diabetes—2013. Diabetes care. 2013;36 Suppl 1(Suppl 1):S11–66.
2. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for 2019 and
projections for 2030 and 2045. Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes research and clinical practice. 2019;157:107-843.

3. Li YY, Wang XM, Lu XZ. KCNQ1 rs2237892 C→T gene polymorphism and type 2 diabetes mellitus in the Asian population: a meta-analysis of 15,736 patients. J Cell Mol Med. 2014;18(2):274–82.

4. Barhanin J, Lesage F, Guillermue E, Fink M, Lazardmunti L, Romgay G. K(V) LQT1 and Isk (mink) proteins associate to form the (Ks) cardiac potas-

sium current. Nature. 1996;384(6604):78–80.

5. Uroki H, Takahashi A, Kawaguchi T, Hara K, Honkoshi M, Andersen G, et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet. 2008;40(9):1098–102.

6. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet. 2008;40(9):1092–7.

7. Been LF, Ralhan S, Wander GS, Mehra NK, Singh J, Mulvihill JJ, et al. Vari-

ants in KCNQ1 increase type II diabetes susceptibility in South Asians: a study of 3,310 subjects from India and the US. BMC Med Genet. 2011;12:18.

8. Lee YH, Kang ES, Kim SH, Han SJ, Kim CH, Kim HJ, et al. Association between polymorphisms in SLCO3A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, and KCNQ1 and type 2 diabetes in the Korean population. J Hum Genet. 2008;53(11–12):991–8.

9. Liu Y, Zhou HZ, Zhang D, Chen Z, Zhao T, Zhang Z, et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes in the population of mainland China. Diabetologia. 2009;52(7):1315–21.

10. Chen Z, Yin Q, Ma Q, Qian Q. KCNQ1 gene polymorphisms are associated with lipid parameters in a Chinese Han population. Cardiovasc Diabetol. 2010;9:35.

11. HolmKVIST1, J, Banaski K, Andersen G, Uroki H, Jensen TS, Pilsgard C, et al. The type 2 diabetes associated minor allele of rs2237895 KCNQ1 associ-

ates with reduced insulin release following an oral glucose load. PLoS one. 2009;4(6):e5872.

12. Sun Q, Song K, Shen X, Cai Y. The association between KCNQ1 gene polymorphism and type 2 diabetes risk: a meta-analysis. PLoS One. 2012;7(11):e48578.

13. Mohler D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.

14. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assess-
m of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.

15. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine. 2002;21(11):1539–58.

16. Zintzaras E, Lau J. Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches. J Clin Epidemiol. 2008;61(7):634–45.

17. Higgins JP, Thompson SG. Measuring inconsistency in a meta-analysis. Respirology (Carlton, Vic). 2016;21(4):626–37.

18. McKenzie JE, Beller EM, Forbes AB. Introduction to systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;4(6):e5872.

19. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-

analysis detected by a simple, graphical test. BMJ (Clinical research ed). 2003;327(7414):557–60.

20. Eberhart-Phillips N, Pelszynski A, Zmuda JM, McDonnell PJ, Bodegah M, et al. Lack of association between genetic polymorphisms within KCNQ1 and type 2 diabetes in the Japanese population. J Hum Genet. 2009;54(10):577–80.

21. Wang W, Hua J, Guo K, Wang J, Liu Y, et al. Meta-analysis of the association of KCNQ1 with type 2 diabetes mellitus in Chinese Han population: a case-control study and meta-analysis. Medicine (Baltimore). 2017;96(19):e7580.

22. Qian J, Li R, Liu J, Chen X, Chen X, et al. Cumulative effect and predic-
tions with type 2 diabetes in Chinese, Malays, and Asian-Indians in Singapore. J Clin Endocrinol Metab. 2010;95(1):390–7.

23. Xu M, Bi Y, Xu Y, Yu B, Huang Y, Gu L, et al. Combined effects of 19 common variations on type 2 diabetes in Chinese results from two community-based studies. PLoS one. 2010;5(10):e10422.
43. Tam CH, Ho JS, Wang Y, Lam VK, Lee HM, Jiang G, et al. Use of net reclassification improvement (NRI) method confirms the utility of combined genetic risk score to predict type 2 diabetes. PLoS one. 2013;8(12):e83093.
44. Almawi WY, Nemr R, Keleshian SH, Echtay A, Saldanha FL, AlDossery FA, et al. A replication study of 19 GWAS-validated type 2 diabetes at-risk variants in the Lebanese population. Diabetes Res Clin Pract. 2013;102(2):117–22.
45. Long J, Edwards T, Signorello LB, Cai Q, Zheng W, Shu XO, et al. Evaluation of genome-wide association study-identified type 2 diabetes loci in African Americans. Am J Epidemiol. 2012;176(11):995–1001.
46. Iwata M, Maeda S, Kamura Y, Takano A, Kato H, Murakami S, et al. Genetic risk score constructed using 14 susceptibility alleles for type 2 diabetes is associated with the early onset of diabetes and may predict the future requirement of insulin injections among Japanese individuals. Diabetes Care. 2012;35(8):1763–70.
47. van Vliet-Ostaptchouk JV, van Haeften TW, Landman GW, Reiling E, Kleefstra N, Bilo HJ, et al. Common variants in the type 2 diabetes KCNQ1 gene are associated with impairments in insulin secretion during hyperglycemic glucose clamp. PLoS one. 2012;7(3):e32148.
48. Odgerel Z, Lee HS, Erdenebileg N, Gandbold S, Luvsanjamba M, Sambuughin N, et al. Genetic variants in potassium channels are associated with type 2 diabetes in Mongolian population. J Diabetes. 2012;4(3):238–42.
49. Saif-Ali R, Ismail IS, Al-Hamodi Z, Al-Mekhlafi HM, Siang LC, Alabsi AM, et al. KCNQ1 haplotypes associate with type 2 diabetes mellitus in Malaysian Chinese Subjects. Int J Mol Sci. 2011;12(9):5705–18.
50. Lin YD, Qian Y, Dong MH, Lu F, Shen C, Jin GF, et al. Association of polymorphisms of potassium voltage-gated channel, KQT-like subfamily, member 1 and type 2 diabetes in Jiangsu province. China Chinese journal of preventive medicine. 2013;47(6):538–41.
51. Yamakawa-Kobayashi K, Natsume M, Aoki S, Nakano S, Inamori T, Kasezawa N, et al. The combined effect of the T2DM susceptibility genes is an important risk factor for T2DM in non-obese Japanese: a population case-control study. BMC Med Genet. 2012;13:11.
52. Al-Shammary MS, Al-Ali R, Al-Balawi N, Al-Enazi MS, Al-Muraikhi AA, Busaaleh FN, et al. Type 2 diabetes associated variants of KCNQ1 strongly confer the risk of cardiovascular disease among the Saudi Arabian population. Genet Mol Biol. 2017;40(3):586–90.
53. Totomoch-Serra A, Muñoz ML, Burgueño J, Revilla-Monsalve MC, Perez-Muñoz A, Diaz-Badillo A. The ADRA2A rs553668 variant is associated with type 2 diabetes and five variants were associated at nominal significance levels in a population-based case-control study from Mexico City: Gene. 2018;669:28–34.
54. Chen J, Pan T. Association between transcription KCNQ1 rs2237892 polymorphism and development of type 2 diabetes in Hefei. Acta Universitatis Medicinalis Anhui. 2018;53(1):110–3.
55. Da H. Genetic epidemiology of type 2 diabetes mellitus and metabolic syndrome in Hubei Han population. Central China Normal University; 2011.
56. Gao X, Lv DM, Wang Y, Wang T, Li W, Zhang Y. Association Studies of KCNQ1 Gene Polymorphism and Type 2 Diabetes Mellitus in Huaibei Region. Chinese general practice. 2012;15(27):3139–42.
57. Li Y, Zhu T. Association of KCNQ1 and SRR gene polymorphisms with type 2 diabetes mellitus in Uygur and Han nationality. Chin J Diabet. 2018;26(07):534–42.
58. Xu T, Pan B, Ding P. Correlation study between gene polymorphism of KCNQ1 and SLC30A8 and type 2 diabetes mellitus. China Modern Doctor. 2018;56(09):1–4.
59. Yang M. Early screening of type 2 diabetes mellitus in Chinese Han population: Ningbo University; 2013.
60. Yang K. Association between KCNQ1 gene polymorphism and susceptibility to type 2 diabetes mellitus in Han population: Zhengzhou University; 2018.
61. Zhang S. Association of IL6R, APM1 and KCNQ1 genes with type 2 diabetes mellitus in Hubei Han population. Central China Normal University, 2009.
62. Zhu A, Yang X, Wu Y, Zhang Z, Li M. Association study of single nucleotide polymorphisms in KCNQ1 and susceptibility of type 2 diabetes. J Trop Med. 2014;2014(01):41–5.
63. Yu XX, Liao MQ, Zeng YF, Gao XP, Liu YH, Sun W, Zhu S, Zeng FF, Ye YB. Associations of KCNQ1 Polymorphisms with the Risk of Type 2 Diabetes Mellitus: An Updated Meta-Analysis with Trial Sequential Analysis. J Diabetes Res. 2020;2020:7145139.
64. Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G, Berger RD, Brandenburg SA, Litzij TJ, Buntont TE, Limp C, Francis H, Gorelikow M, Gu H, Washington K, Argani P, Goldenring JR, Coffey RJ, Feinberg AP. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest. 2000;106(12):1447–55.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.