Holograms of conformal Chern–Simons gravity

Niklas Johansson

Vienna University of Technology

Uppsala, June 30, 2011

Work done with H. Afshar, B. Cvetković, S. Ertl and D. Grumiller
We study...

\[S_{\text{CS}} = \frac{k}{4\pi} \int_{M^3} (\Gamma \wedge d\Gamma + \frac{2}{3} \Gamma^3) \]

[Deser, Jackiw & Templeton, '82], [Horne & Witten, '89]
We study...

\[S_{\text{CS}} = \frac{k}{4\pi} \int_{M^3} (\Gamma \wedge d\Gamma + \frac{2}{3} \Gamma^3) \]

[Deser, Jackiw & Templeton, '82], [Horne & Witten, '89]

- Topological. (Gauge symmetries: diffeos + Weyl.)
We study...

\[S_{CS} = \frac{k}{4\pi} \int_{M^3} (\Gamma \wedge d\Gamma + \frac{2}{3} \Gamma^3) \]

[Deser, Jackiw & Templeton, '82], [Horne & Witten, '89]

- Topological. (Gauge symmetries: diffeos + Weyl.)
- \(\partial M^3 \neq \emptyset \implies \) non-trivial dynamics.
We study...

\[S_{\text{CS}} = \frac{k}{4\pi} \int_{\partial M^3} (\Gamma \wedge d\Gamma + \frac{2}{3} \Gamma^3) \]

[Deser, Jackiw & Templeton, '82], [Horne & Witten, '89]

- Topological. (Gauge symmetries: diffeos + Weyl.)
- \(\partial M^3 \neq \emptyset \mapsto \) non-trivial dynamics.
- Holographic description: Partially massless gravitons, Brown–York responses, correlators... [arXiv:1107.xxxx]
We study...

\[S_{CS} = \frac{k}{4\pi} \int_{M^3} \left(\Gamma \wedge d\Gamma + \frac{2}{3} \Gamma^3 \right) \]

[Deser, Jackiw & Templeton, '82], [Horne & Witten, '89]

- Topological. (Gauge symmetries: diffeos + Weyl.)
- \(\partial M^3 \neq \emptyset \implies \) non-trivial dynamics.
- Holographic description: Partially massless gravitons, Brown–York responses, correlators... [arXiv:1107.xxxx]

- This talk: What does the Weyl symmetry give rise to at the boundary?
Warm-up: (2+1)-dimensional EH gravity

\[S_{EH} = \int_{M^3} \sqrt{-g} (R - 2\Lambda) \quad \text{Gauge symmetry:} \quad \delta g_{\mu\nu} = \nabla_{(\mu} \xi_{\nu)} \]
Warm-up: (2+1)-dimensional EH gravity

\[S_{EH} = \int_{M^3} \sqrt{-g} (R - 2\Lambda) \]

Boundary conditions: \[\text{[Brown, Henneaux '86]} \]

\[g_{\mu\nu} = g^{\text{AdS}}_{\mu\nu} + h_{\mu\nu} = g^{\text{AdS}}_{\mu\nu} + \begin{pmatrix} \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(y) \\ \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(y) \\ \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) \end{pmatrix}_{\mu\nu} \]
Warm-up: (2+1)-dimensional EH gravity

\[S_{EH} = \int_{M^3} \sqrt{-g} (R - 2\Lambda) \]

Gauge symmetry: \(\delta g_{\mu\nu} = \nabla_{(\mu} \xi_{\nu)} \)

Boundary conditions: [Brown, Henneaux '86]

\[g_{\mu\nu} = g_{\mu\nu}^{AdS} + h_{\mu\nu} = g_{\mu\nu}^{AdS} + \begin{pmatrix} \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(y) \\ \mathcal{O}(1) & \mathcal{O}(y) & \mathcal{O}(1) \\ \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) \end{pmatrix}_{\mu\nu} \]

Diffeos that preserve the BCs: \(\xi^\pm = \epsilon^\pm (x^\pm) + \mathcal{O}(y^2) \)
Warm-up: (2+1)-dimensional EH gravity

\[S_{\text{EH}} = \int_{M^3} \sqrt{-g} (R - 2\Lambda) \quad \text{Gauge symmetry:} \quad \delta g_{\mu\nu} = \nabla_{(\mu} \xi_{\nu)} \]

Boundary conditions: [Brown, Henneaux '86]

\[g_{\mu\nu} = g_{\mu\nu}^{\text{AdS}} + h_{\mu\nu} = g_{\mu\nu}^{\text{AdS}} + \begin{pmatrix} \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(y) \\ \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(y) \\ \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) \end{pmatrix}_{\mu\nu} \]

Diffeos that preserve the BCs: \(\xi^\pm = \epsilon^\pm (x^\pm) + \mathcal{O}(y^2) \)

• Canonical realization \implies boundary charge!
Warm-up: (2+1)-dimensional EH gravity

\[S_{\text{EH}} = \int_{M^3} \sqrt{-g} (R - 2\Lambda) \]

Gauge symmetry: \(\delta g_{\mu\nu} = \nabla_{(\mu} \xi_{\nu)} \)

Boundary conditions: \[\text{[Brown, Henneaux '86]} \]

\[g_{\mu\nu} = g_{\mu\nu}^{\text{AdS}} + h_{\mu\nu} = g_{\mu\nu}^{\text{AdS}} + \begin{pmatrix} O(1) & O(1) & O(y) \\ O(1) & O(1) & O(y) \\ O(1) & O(1) \end{pmatrix}_{\mu\nu} \]

Diffeos that preserve the BCs: \(\xi^\pm = \epsilon^\pm(x^\pm) + O(y^2) \)

- Canonical realization \(\implies \) boundary charge!
- Central extension of the algebra!
Warm-up: (2+1)-dimensional EH gravity

\[S_{EH} = \int_{M^3} \sqrt{-g} (R - 2\Lambda) \]

Gauge symmetry: \(\delta g_{\mu\nu} = \nabla_{(\mu} \xi_{\nu)} \)

Boundary conditions: [Brown, Henneaux '86]

\[g_{\mu\nu} = g_{\mu\nu}^{\text{AdS}} + h_{\mu\nu} = g_{\mu\nu}^{\text{AdS}} + \begin{pmatrix} \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(y) \\ \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(y) \\ \mathcal{O}(1) & \mathcal{O}(1) \end{pmatrix}_{\mu\nu} \]

Diffeos that preserve the BCs: \(\xi^\pm = \epsilon^\pm (x^\pm) + \mathcal{O}(y^2) \)

- Canonical realization \(\implies \) boundary charge!
- Central extension of the algebra!
- Gauge symmetry \(\rightarrow \) global symmetry!
Warm-up: (2+1)-dimensional EH gravity

\[S_{\text{EH}} = \int_{M^3} \sqrt{-g} (R - 2\Lambda) \quad \text{Gauge symmetry: } \delta g_{\mu\nu} = \nabla_\mu \xi_\nu \]

Boundary conditions: [Brown, Henneaux '86]

\[g_{\mu\nu} = g_{\mu\nu}^{\text{AdS}} + h_{\mu\nu} = g_{\mu\nu}^{\text{AdS}} + \left(\begin{array}{ccc} O(1) & O(1) & O(y) \\ O(1) & O(1) & O(y) \\ O(1) & O(1) & O(1) \end{array} \right)_{\mu\nu} \]

Diffeos that preserve the BCs: \(\xi^\pm = \epsilon^\pm (x^\pm) + O(y^2) \)

- Canonical realization \(\Longrightarrow \) boundary charge!
- Central extension of the algebra!
- Gauge symmetry \(\rightarrow \) global symmetry!

\[i\{L_n, L_m\} = (n - m)L_{n+m} + \frac{c}{12} (n^3 - n)\delta_{n+m} \]
Warm-up: (2+1)-dimensional EH gravity

\[S_{\text{EH}} = \int_{M^3} \sqrt{-g} (R - 2\Lambda) \]

Gauge symmetry: \(\delta g_{\mu\nu} = \nabla_{(\mu} \xi_{\nu)} \)

Boundary conditions: \[\text{[Brown, Henneaux '86]} \]

\[g_{\mu\nu} = g_{\mu\nu}^{\text{AdS}} + h_{\mu\nu} = g_{\mu\nu}^{\text{AdS}} + \left(\begin{array}{ccc} O(1) & O(1) & O(y) \\ O(1) & O(1) & O(y) \\ O(1) & O(1) \end{array} \right)_{\mu\nu} \]

Diffeos that preserve the BCs: \(\xi^\pm = \epsilon^\pm(x^\pm) + O(y^2) \)

- Canonical realization \(\implies \) boundary charge!
- Central extension of the algebra!
- Gauge symmetry \(\rightarrow \) global symmetry!

\[i\{\bar{L}_n, \bar{L}_m\} = (n - m)\bar{L}_{n+m} + \frac{c}{12} (n^3 - n)\delta_{n+m} \]
Conformal Chern-Simons gravity

Gauge sym: \(\delta g_{\mu\nu} = \nabla_{(\mu} \xi_{\nu)} \), \(\delta g_{\mu\nu} = 2\Omega(x)g_{\mu\nu} \)
Conformal Chern-Simons gravity

Gauge sym: $\delta g_{\mu\nu} = \nabla_{(\mu} \xi_{\nu)}$, $\delta g_{\mu\nu} = 2\Omega(x)\delta_{\mu\nu}$

Boundary conditions: [arXiv:1107.xxxx].

$$g_{\mu\nu} = e^{\phi(x,y)} \left(g_{\mu\nu}^{\text{AdS}} + h_{\mu\nu} \right)$$
Conformal Chern-Simons gravity

Gauge sym: \(\delta g_{\mu\nu} = \nabla_{\mu} \xi_{\nu}, \delta g_{\mu\nu} = 2\Omega(x)g_{\mu\nu} \)

Boundary conditions: [arXiv:1107.xxxx].

\[
g_{\mu\nu} = e^{\phi(x,y)} \left(g_{\mu\nu}^{\text{AdS}} + h_{\mu\nu} \right)
\]

Gauge-trafo’s that preserve the BCs: depends on BC on \(\phi \).
Conformal Chern-Simons gravity

\[g_{\mu\nu} = e^{\phi(x,y)} \left(g_{\mu\nu}^{\text{AdS}} + h_{\mu\nu} \right) \]
Conformal Chern-Simons gravity

$$g_{\mu\nu} = e^{\phi(x,y)} \left(g_{\mu\nu}^{\text{AdS}} + h_{\mu\nu} \right)$$

$$\phi \equiv 0 : \quad \text{diffeo} \quad \rightarrow \quad \text{Vir}^2, \quad c = -\bar{c}.$$

Weyl \rightarrow trivial
Conformal Chern-Simons gravity

\[g_{\mu\nu} = e^{\phi(x,y)} \left(g_{\mu\nu}^{\text{AdS}} + h_{\mu\nu} \right) \]

\[\phi \equiv 0 : \quad \text{diffeo} \quad \rightarrow \quad \text{Vir}^2, \quad c = -\bar{c}. \]

\[\text{Weyl} \quad \rightarrow \quad \text{trivial} \]

\[\phi \equiv f_{\text{fixed}}(x) + \ldots : \quad \text{diffeo} + \text{Weyl} \quad \rightarrow \quad \text{Vir}^2, \quad c = -\bar{c} \]

\[\text{Weyl} \quad \rightarrow \quad \text{trivial} \]
Conformal Chern-Simons gravity

\[g_{\mu \nu} = e^{\phi(x,y)} (g_{\mu \nu}^{\text{AdS}} + h_{\mu \nu}) \]

\[\phi \equiv 0 : \quad \text{diffeo} \quad \rightarrow \quad \text{Vir}^2, \quad c = -\bar{c}. \]
\[\text{Weyl} \quad \rightarrow \quad \text{trivial} \]

\[\phi \equiv f_{\text{fixed}}(x) + \ldots : \quad \text{diffeo} + \text{Weyl} \quad \rightarrow \quad \text{Vir}^2, \quad c = -\bar{c} \]
\[\text{Weyl} \quad \rightarrow \quad \text{trivial} \]

\[\phi = f_{\text{free}}(x) + \ldots : \quad \text{diffeo} + \text{Weyl} \quad \rightarrow \quad \text{Vir}^2, \quad c = -\bar{c} \]
\[\text{Weyl} \quad \rightarrow \quad \text{nontrivial charge} \]
Conformal Chern-Simons gravity

\[g_{\mu\nu} = e^{\phi(x,y)} \left(g^{\text{AdS}}_{\mu\nu} + h_{\mu\nu} \right) \]

\[\phi \equiv 0 : \hspace{1cm} \text{diffeo} \rightarrow \text{Vir}^2, \ c = -\bar{c}. \]
\[\text{Weyl} \rightarrow \text{trivial} \]

\[\phi \equiv f_{\text{fixed}}(x) + \ldots : \hspace{1cm} \text{diffeo} + \text{Weyl} \rightarrow \text{Vir}^2, \ c = -\bar{c} \]
\[\text{Weyl} \rightarrow \text{trivial} \]

\[\phi = f_{\text{free}}(x) + \ldots : \hspace{1cm} \text{diffeo} + \text{Weyl} \rightarrow \text{Vir}^2, \ c = -\bar{c} \]
\[\text{Weyl} \rightarrow \text{nontrivial charge} \]

Conservation of the Weyl charge \[\implies\] consistency conditions.
Conformal Chern-Simons gravity

\[g_{\mu\nu} = e^{\phi(x,y)} \left(g^{\text{AdS}}_{\mu\nu} + h_{\mu\nu} \right) \]

Conservation of the Weyl charge \(\implies \) consistency conditions.

Simplest case: \(\phi = \phi(x^+) \) and \(\Omega = \Omega(x^+) \)
Conformal Chern-Simons gravity

\[g_{\mu\nu} = e^{\phi(x,y)} \left(g_{\mu\nu}^{\text{AdS}} + h_{\mu\nu} \right) \]

Conservation of the Weyl charge \(\implies \) consistency conditions.

Simplest case: \(\phi = \phi(x^+) \) and \(\Omega = \Omega(x^+) \)

\[[L_n, L_m] = (n - m) L_{n+m} + \frac{c}{12} (n^3 - n) \delta_{n+m} \]

\[[ar{L}_n, \bar{L}_m] = (n - m) \bar{L}_{n+m} + \frac{\bar{c}}{12} (n^3 - n) \delta_{n+m} \]

\[[\mathcal{J}_n, \mathcal{J}_m] = 2k n \delta_{n+m} \]
Conformal Chern-Simons gravity

\[g_{\mu \nu} = e^{\phi(x,y)} (g^{\text{AdS}}_{\mu \nu} + h_{\mu \nu}) \]

Conservation of the Weyl charge \(\implies \) consistency conditions.

Simplest case: \(\phi = \phi(x^+) \) and \(\Omega = \Omega(x^+) \)

\[
\begin{align*}
[L_n, L_m] &= (n - m) L_{n+m} + \frac{c+1}{12} (n^3 - n) \delta_{n+m} \\
[\bar{L}_n, \bar{L}_m] &= (n - m) \bar{L}_{n+m} + \frac{\bar{c}}{12} (n^3 - n) \delta_{n+m} \\
[J_n, J_m] &= 2k n \delta_{n+m} \\
[L_n, J_m] &= -m J_{n+m}
\end{align*}
\]

Pure diffeos \(\implies \) Sugawara shift \(L_n \to L_n + \sum_k J_k J_{n-k} \).
Conformal Chern-Simons gravity

\[g_{\mu\nu} = e^{\phi(x,y)} (g_{\mu\nu}^{\text{AdS}} + h_{\mu\nu}) \]

Conservation of the Weyl charge \(\implies \) consistency conditions.

Simplest case: \(\phi = \phi(x^+) \) and \(\Omega = \Omega(x^+) \)

\[
\begin{align*}
[L_n, L_m] &= (n - m) L_{n+m} + \frac{c+1}{12} (n^3 - n) \delta_{n+m} \\
[\bar{L}_n, \bar{L}_m] &= (n - m) \bar{L}_{n+m} + \frac{\bar{c}}{12} (n^3 - n) \delta_{n+m} \\
[J_n, J_m] &= 2k n \delta_{n+m} \\
[L_n, J_m] &= -m J_{n+m}
\end{align*}
\]

Pure diffeos \(\implies \) Sugawara shift \(L_n \rightarrow L_n + \sum_k J_k J_{n-k} \).

Thank you!