ON A PROBLEM BY ARENS, GOLDBERG, AND LUXEMBURG

RAYMOND REDHEFFER AND TERENCE TAO

Abstract. We construct a normed algebra A with norm $N(\cdot)$ over the reals, which is quadrative in the sense that $N(A^2) \leq N(A)^2$ for all $A \in A$, but is not 3-bounded in the sense that $N(A^3) \leq N(A)^3$. This answers a question of Arens, Goldberg, and Luxemburg.

Let A be a normed algebra over a field F, either \mathbb{R} or \mathbb{C}. In [2] the norm N of the algebra is called quadrative if $N(A^2) \leq N(A)^2$ for all $A \in A$, k-bounded for a positive integer k if $N(A^k) \leq N(A)^k$ for all $A \in A$, and strongly stable if it is k-bounded for all $k = 1, 2, 3, \ldots$. It was seen in [1] that boundedness for a particular $k > 2$ does not ensure strong stability or even quadrativity. Let $W = (\omega_{ij})$ be a fixed 2×2 matrix of positive entries. Then for the W-weighted sup norm on $\mathbb{C}^{2 \times 2}$, the algebra of $n \times n$ complex matrices,

$$||A||_{W,\infty} = \max_{i,j} \omega_{ij} |\alpha_{ij}|, \quad A = (\alpha_{ij}) \in \mathbb{C}^{2 \times 2},$$

Arens and Goldberg proved:

Theorem [1, Theorem 2]. If $k \geq 3$, then there exists a 2×2 weight matrix W for which $|| \cdot ||_{W,\infty}$ is k-bounded but not strongly stable, in fact not even quadrative on $\mathbb{C}^{2 \times 2}$.

Our main theorem gives a negative answer to the following question raised in [2]: Does quadrativity imply strong stability?

Theorem 0.1. There exists a commutative algebra A of 2×2 matrices over \mathbb{R} and a norm on A such that $|A^2| \leq |A|^2$ for all $A \in A$ and $|A^3| > |A|^3$ for some $A \in A$.

Proof. In Theorem 0.1 the elements of the algebra are real matrices of the form

$$A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} =: [[a, b]]$$

where the symbol on the right is introduced to save space. We will use the identity

$$[[a, b]]^k = [[a^k, kba^{k-1}]]$$

for any $[[a, b]]$ and any integer $k \geq 1$.

1
We observe that the algebra \mathcal{A} contains a multiplicative semi-group

$$G := \{ \exp[-t, t] : t \geq 0 \} = \{ [e^{-t}, te^{-t}] : t \geq 0 \}$$

In particular, if $A = [e^{-t}, te^{-t}]$ is an element of G, then so is $A^2 = [e^{-2t}, 2te^{-2t}]$ and $A^3 = [e^{-3t}, 3te^{-3t}]$.

We can write G as a graph of b over a; indeed, setting $a = e^{-t}$ we have

$$G := \{ [a, b] : 0 < a \leq 1, b = e^{-a} \}$$

where $f(a)$ is the function $f(a) := -a \log e$ on the interval $0 < a \leq 1$. We remark that on this interval the function f is concave (since $f''(a) = -1/a$), non-negative and attains its maximum at the point $a = e^{-1}$, $f(a) = e^{-1}$. We define the modified function $g(a)$ on $0 < a \leq 1$ by setting $g(a) := f(a)$ when $e^{-1} \leq a \leq 1$ and $g(a) := e^{-1}$ when $0 < a \leq e^{-1}$; note that g is still (weakly) concave.

Define a ball to be any non-empty bounded open convex subset of \mathcal{A} which is symmetric around the origin. Then for every ball Ω, we can define a norm N_Ω on \mathcal{A} in the usual manner as

$$N_\Omega(A) := \inf \{ t : t > 0, A \in t\Omega \},$$

so that Ω is the unit ball of A. The fact that Ω is a ball ensures that N_Ω is indeed a norm.

Let $k \geq 2$ be an integer. We say that a norm $N(\cdot)$ on \mathcal{A} is k-bounded if one has $N(A^k) \leq N(A)^k$ for all $A \in \mathcal{A}$. Also, we shall say that a ball Ω is k-bounded if one has $A^k \in \Omega$ whenever $A \in \Omega$. It is clear from homogeneity that N_Ω is k-bounded if and only if Ω is k-bounded. We say that N or Ω is quadratic if it is 2-bounded.

As an example, consider the set

$$\Omega_0 := \{ [a, b] : |a| < 1; |b| < g(|a|) \}.$$

It is clear that this set is a ball. We now show that Ω_0 is k-bounded for every integer $k \geq 2$. Let $[a, b] \in \Omega_0$; we have to show that $[a, b]^k = [a^k, kba^{k-1}]$ is also in Ω_0.

By reflection symmetry in the a and b axes, we may assume that we are in the first quadrant $a, b \geq 0$. There are two cases: $e^{-1} \leq a < 1$ and $0 \leq a \leq e^{-1}$.

First suppose that $e^{-1} \leq a < 1$. Then $b < g(a) = -a \log a$. Thus

$kba^{k-1} < -a^k \log a^k = f(a^k) \leq g(a^k)$,

and so $[\langle a^k, kba^{k-1} \rangle] \in \Omega_0$ as desired.

Now suppose that $0 \leq a \leq e^{-1}$. Then $b < g(a) = e^{-1}$. Thus

$kba^{k-1} < ke^{-k} \leq e^{-1} = g(a^k)$

since the function te^{-t} attains its maximum at $t = 1$, and since a^k is clearly bounded by e^{-1}. Thus $[\langle a^k, kba^{k-1} \rangle] \in \Omega_0$ as desired.

We identify three interesting points on the boundary of Ω_0: $P_1 := [\langle e^{-1}, e^{-1} \rangle]$, $P_2 := [\langle e^{-1/2}, \frac{1}{2}e^{-1/2} \rangle]$, and $P_3 := [\langle e^{-1/3}, \frac{1}{3}e^{-1/3} \rangle]$. Note that $P_3^3 = P_1$ and $P_2^2 = P_1$. Also, P_1 is the point of Ω_0 where the two constraints $|b| < f(|a|)$ and $|b| < e^{-1}$ intersect.

We now modify the ball Ω_0 slightly, to prove
Proposition. There exists a ball Ω which is 2-bounded but not 3-bounded.

Proof. The idea is to chip a small amount away from Ω_0, enough to destroy the 3-boundedness but not enough to destroy the 2-boundedness.

We shall need three small numbers $0 < \varepsilon_3 < \varepsilon_2 < \varepsilon_1 < 1$ to be chosen later. We define Ω to be the set of matrices $[a, b]$ in which $|a| < e^{-1/3}$ and b satisfies all three of the inequalities

$$|b| < g(|a|), \quad |b| < e^{-1} - \varepsilon_3, \quad |b| < e^{-1/2} - T_2 \frac{1}{2} |a| - \varepsilon_1.$$

Note that the line $b = e^{-1/2} - \frac{3}{2} a$ is the tangent line to the curve $b = g(a)$ at the point P_2. Thus the restriction $|b| \leq e^{-1/2} - \frac{1}{2} |a| - \varepsilon_1$ cuts off a small sliver of Ω_0 near the point P_2 (and similarly for the other three quadrants, by reflection symmetry). The restriction $|a| < e^{-1/3}$ cuts off everything in Ω_0 to the right of P_3, while the restriction $|b| < e^{-1} - \varepsilon_3$ cuts off a very thin horizontal sliver from the straight portion of the boundary of Ω_0, and in particular cuts off a small sliver near P_1.

It is clear that Ω is still a bounded open non-empty convex symmetric set, i.e. a ball. Also, it is clear that Ω is no longer 3-bounded, because one can get arbitrarily close to P_3 in Ω, but one cannot get arbitrarily close to $P_1 = P_3^3$.

It remains to show that Ω is 2-bounded. To do this, we take any $[a, b] \in \Omega$; our task is to show that $|[a, b]|^2 = |a^2, 2ab|$ is also in Ω. By symmetry we may assume that we are in the first quadrant $a, b \geq 0$. Since $a < e^{-1/3}$, we have $a^2 < e^{-2/3} < e^{-1/3}$, so we only have to show the three inequalities

$$2ab < g(a^2) \quad (1)$$
$$2ab < e^{-1} - \varepsilon_3 \quad (2)$$
$$2ab < e^{-1/2} - T_2 \frac{1}{2} a^2 - \varepsilon_1. \quad (3)$$

Recall that the line $y = e^{-1/2} - \frac{3}{2} x - \varepsilon_1$ was just a small perturbation of the tangent line $y = e^{-1/2} - \frac{1}{2} x$ of the curve $y = g(x)$ at the point $x = e^{-1/2}, y = \frac{1}{2} e^{-1/2}$. In particular we see from the concavity of g that, if ε_1 is sufficiently small,

$$e^{-1/2} - T_2 \frac{1}{2} x - \varepsilon_1 > g(x)$$

for all $x < e^{-2/3} < e^{-1/2}$. Since $a^2 < e^{-2/3}$, we thus see that the condition (3) is redundant, being implied automatically by (1).

It remains to prove (1) and (2). To do this we divide into three cases.

Case 1. $e^{-1/2} + \varepsilon_2 \leq a < e^{-1/3}$. Then we have $b < g(a) = f(a) = -a \log a$. Thus

$$2ab < -a^2 \log a^2 = f(a^2) = g(a^2)$$

since

$$e^{-1} + 2\varepsilon_2 e^{-1/2} + \varepsilon_2^2 \leq a^2 < e^{-2/3}. \quad (4)$$
Figure 2. The ball Ω in the first quadrant. The vertical line is the condition $|a| < e^{-1/3}$; the horizontal line is the condition $|b| < e^{-1} - \varepsilon_3$; and the slanted line is the condition $|b| < e^{-1/2} - \frac{1}{3}|a| - \varepsilon_1$.

Note that Ω gets arbitrarily close to P_3 but not to P_1 or P_2; also the region removed near P_2 is larger than that near P_1 since it depends on ε_1 instead of ε_3.

This gives (1). If ε_2 is chosen sufficiently small compared to ε_1, and ε_3 is chosen sufficiently small compared to ε_2, then we see from (4) (and the monotonicity of $g(x)$ for $x > e^{-1}$) that

$$g(a^2) < g(e^{-1}) - \varepsilon_3 = e^{-1} - \varepsilon_3.$$

This gives (2) as desired.

Case 2. $e^{-1/2} - \varepsilon_2 < a < e^{-1/2} + \varepsilon_2$. In this case we use the bound

$$b < e^{-1/2} - T\frac{1}{2}a - \varepsilon_1,$$

and so

$$2ab < 2e^{-1/2}a - a^2 - 2\varepsilon_1a.$$

Since $a = e^{-1/2} + O(\varepsilon_2)$, we thus have

$$2ab < e^{-1} - 2\varepsilon_1e^{-1/2} + O(\varepsilon_2).$$
On the other hand, since $a^2 = e^{-1} + O(\varepsilon_2)$, we have
\[g(a^2) = g(e^{-1}) + O(\varepsilon_2) = e^{-1} + O(\varepsilon_2). \]
Thus if ε_2 is sufficiently small compared to ε_1, we obtain (1). Using the above estimate for $2ab$, we see that (2) follows from
\[e^{-1} - 2\varepsilon_1 e^{-1/2} + O(\varepsilon_2) < e^{-1} - \varepsilon_3. \]
This holds if both ε_2 and ε_3 are sufficiently small compared to ε_1.

Case 3. $0 < a \leq e^{-1/2} - \varepsilon_2$. In this case we use the bound $b < g(a)$, so that $2ab < 2ag(a)$. Since
\[a^2 \leq e^{-1} - 2\varepsilon_2 e^{-1/2} + \varepsilon_2^2 \]
we have $g(a^2) = e^{-1}$ where ε_2 is small. Thus (1) follows from (2), and it suffices to show that
\[2ag(a) < e^{-1} - \varepsilon_3. \]
First suppose that $a \leq e^{-1}$. Then $2ag(a) \leq 2e^{-2}$, which is certainly acceptable if ε_3 is small enough. Thus we may take $a > e^{-1}$, in which case
\[2ag(a) = 2af(a) = -a^2 \log a^2 = f(a^2). \]
Since f attains its maximum e^{-1} at e^{-1}, we thus see from (5) that $f(a^2) < e^{-1} - \varepsilon_3$, if ε_3 is sufficiently small compared to ε_2. This concludes the proof of the Proposition in all three cases. \qed

One may try to improve this counterexample by adding another natural condition to the norm N, namely that the identity $[[1, 0]]$ have norm 1. This is equivalent to $[[1, 0]]$ lying on the boundary of Ω. It is true that the counterexample constructed above does not obey this condition, but this is easily rectified by replacing the ball Ω constructed above with the convex hull $\text{hull}(\Omega, [[1, 0]], [[-1, 0]])$ of Ω with the points $[[-1, 0]]$. We omit the computation which shows that this ball remains 2-bounded and not 3-bounded.

Acknowledgement. It is a pleasure to express our appreciation to Professor Moshe Goldberg, who brought the problem to our attention and supplied the references.

References

[1] R. Arens and M. Goldberg, *Weighted ℓ_∞ norms for matrices*. Linear Algebra Appl. 201 (1998), 155–163.

[2] R. Arens, M. Goldberg and W.A.J. Luxemburg, *Stable Seminorms Revisited*. Math. Ineq. Appl. 1, No. 1 (1998), 31–40.
Department of Mathematics, UCLA, Los Angeles CA 90095-1555

E-mail address: rr@math.ucla.edu

Department of Mathematics, UCLA, Los Angeles CA 90095-1555

E-mail address: tao@math.ucla.edu