DIFFUSION-THERMO AND THERMAL-DIFFUSION EFFECTS ON RIVLIN-ERICKSEN ROTATORY CONVECTIVE FLOW PAST A POROUS VERTICAL PLATE

M. S. Dada*, S. A. Agunbiade, E. O. Titiloye

Department of Mathematics, Faculty of Physical Sciences, University of Ilorin, Nigeria

ABSTRACT

Diffusion-thermo and thermal-diffusion effects on unsteady, incompressible Rivlin-Ericksen rotatory convective flow of a magnetic conducting electrical fluid with time dependent suction between two vertical plates of which one is permeable are investigated. The uniform angular velocity rotates about an axis normal to the plate. The equations governing the flow model are non-dimensionalised, perturbed for simplification and solved by Adomian decomposition method. Graphical illustrations of the fluid parameters on velocity, temperature, concentration are presented and discussed. The effect of skin-friction, Nusselt and Sherwood numbers are presented in tabular forms and it is discovered from the results that a rise in thermal-diffusion parameter speedup the skin-friction, while increasing diffusion-thermo parameter slowdown the skin-friction.

Keywords: Diffusion-thermo, Rivlin-Ericksen fluid, Rotatory, thermal-diffusion and Unsteady.

1. INTRODUCTION

Forced and free convection mechanisms contribute significantly to heat transfer. The phenomenon occurs in both industrial and technical problems such as solar collectors, in cooling of electronic devices and nuclear reactors resulting in an emergency shutdown etc. The significance of these applications led some researchers to study natural, forced and mixed convective flows in the presence of heat and mass transfer. Deepthi and Prasada (2017) considered heat and mass transfer with mixed convective flow in the presence of radiation and Soret. In the investigation, rotatory and Dufour effects were considered insignificant. The result shown that a rise in Soret parameter decreased the heat and mass transfer rate on the walls. Soret effect on mixed convection viscoelastic fluid flow in the presence of heat and mass transfer was studied by Devasena and Ratmat (2014). The effects of Dufour and thermal radiation were not considered. Dada and Agunbiade (2016) examined the effects of chemical reaction and radiation on convective non-rotatory Rivlin-Ericksen fluid flow in a vertical porous plate. It was discovered that temperature and velocity decreased as radiation parameter increased. Aruna et al. (2015) investigated the influence of both thermal-diffusion and diffusion-thermo of non-rotatory mixed convective hydromagnetic fluid flow through a vertical wavy porous plate. The finite difference method was used to obtain the solution.

However, the study of rotating medium is of great importance in fluid dynamics as a result of its relevance in many natural phenomena and its applications in technology relating to Coriolis force. Some of the applications of rotating flow, particularly in porous media in the field of engineering, to mention but a few are rotating machinery, food and chemical processing industries. The study of rotating flow has gained the interest of many researchers due to its importance. Sibanda and Makinde (2010) examined steady MHD flow with heat transfer as a result of rotating disk in a porous fluid in the presence of viscous dissipation. Mutua et al. (2013) considered MHD free convection flow of a Newtonian fluid with variable suction through porous plate and the result revealed that skin friction increased both along x and y axes due to a decrease in rotation parameter.

In addition, Singh (2013) studied thermal radiation effects on rotatory viscoelastic MHD flow via a vertical plate. It was reported that rotation parameter enhanced velocity profiles. Oldroyd-B Rotating MHD radiative fluid through a vertical porous channel was carried out by Garg et al. (2014b). Guria and Jana (2013) examined rotatory viscoelastic fluid past a porous plate under a uniform suction. It was discovered that the presence of viscoelastic parameter contributed to the increase in the plate heat transfer. Abdulmajeque (2017) investigated the effects of temperature dependent suction/injection on non-Newtonian casson radiative fluid flow with viscous dissipation. Also, Garg et al. (2014a) presented oscillatory viscoelastic fluid flow through a porous rotating vertical channel with an assumption of an optically thin radiation and constant suction. The result showed that as the rotation parameter increased, the velocity decreased. Even though, the above investigations had contributed to the studies of fluid flow but the effects of chemical reaction was neglected in the studies and chemical reactions have tremendous impacts in changing the rate of mass diffusion.

In fluid flow that involves both heat and mass transfer, driving po-
tentials and the fluxes relation are significantly noted. The energy flux that
is generated due to concentration gradient is referred to as diffusion-
thermo, while mass flux resulting from temperature gradients is thermal-
diffusion. Mostly, the effects of diffusion-thermo and thermal-diffusion
are often neglected in most studies on the bases that they are of low mag-
nitude in relation to the rest chemical species. The effects of Dufour and
Soret become significant phenomena in areas like petrology, hydrology,
geosciences, etc. The effect of thermal-diffusion is relevant, for example,
in the separation of isoipe and mixture of gases that has light molecular
weight. Therefore, Sarma and Govardhan (2016) reported on the effects
of thermal-diffusion and diffusion-thermo on natural convection heat and
mass transfer with thermal radiation in the presence of viscous dissipation
in a porous medium. A Newtonian fluid was examined in the study and
fine difference method was used in the computations of the results. It
was reported that velocity profiles was accelerated by increase in viscous
dissipation. The effects of thermal-diffusion and diffusion-thermo on free
convection MHD flow of Rivlin-Ericksen fluid was examined by Reddy
et al. (2016). Rotatory and thermal radiation effects were considered to
be insignificant, the result shown that an increase in diffusion-thermo and
thermal-diffusion speedup the skin-friction. Gbadeyan et al. (2011) ex-
amined the influence of Soret and Dufour with heat and mass transfer
on mixed convective viscoelastic fluid flow past a porous medium. It was
observed from the result that Soret enhanced both concentration and tem-
perature profiles.

Furthermore, Dada and Salawu (2017) presented heat and mass trans-
fer of pressure-driven flow with inclined magnetic field. The result re-
vealed that an increase in chemical reaction reduced both pressure and
concentration profiles. Ibrahim and Suneetha (2015) studied effects of
Soret and chemical reaction on MHD unsteady viscoelastic fluid past an
infinite vertical plate. The study concluded that both concentration and
velocity profiles increased as thermal-diffusion increased. Hayat et al.
(2017) investigated Dufour and Soret effects on MHD Jeffrey fluid of
peristaltic transport in a curved channel. It was observed that Dufour and
Soret have opposite behaviour for concentration and temperature. Babu
et al. (2017) considered diffusion-thermo and thermal-diffusion effects on
heat and mass transfer MHD Jeffery fluid flow in a stretching sheet. The
result revealed that temperature profiles was reduced by an increase in ei-
ther Prandtl number or Soret parameter. Influence of thermal-diffusion on
Kurvinshiki fluid in the presence of heat and mass transfer past a verti-
cal porous plate was investigated by Jimoh et al. (2014). At the boundary
layer, the result shown that increase in the heat sources parameter im-
proved both velocity and temperature profiles. However, as impressive as
the above studies were, rotatory Rivlin-Ericksen fluid flows have received
no significant attention.

A careful examination of all the above studies on heat and mass trans-
fer showed that combined effects of time dependence suction, pressure
gradiant and heat absorption in Rivlin-Ericksen convective fluid flow in
a rotating medium with diffusion-thermo and thermal-diffusion have re-
ceived little or no attention. Considering various phenomena, combined
effects of all these parameters come into consideration in a prac-
tical flows of fluid and are of practical applications in the field of en-
geering, chemical processing industry, rotating machinery, paper and
food processing industry, petroleum industry and other areas that involve
viscoelastic fluid flow. Hence, this present study analyses the effects of
diffusion-thermo, thermal-diffusion and radiation effects on convective
Rivlin-Ericksen fluid in a rotating system with chemical reaction.

2. MATHEMATICAL ANALYSIS

Consider a non-Newtonian, two-dimensional incompressible free convect-
ive Rivlin-Ericksen flow of an electrically conducting fluid through a
rotating vertical channel with a periodic suction. The following assump-
tions are made in the formulation of this problem:

(i) an unsteady and laminar flow is considered;

(ii) induced magnetic field and Hall effects are ignored due to the fact
that magnetic Reynolds number and transversely applied magnetic
field is considered to be very small;

(iii) a magnetic field (B_0) of uniform strength is perpendicularly applied

to the plates;

(iv) there is a rotation of the entire system through the perpendicular
axis to the plates;

(v) thermal-diffusion and diffusion-thermo are assumed to be of sub-
stantial magnitude, hence, they are not negligible;

(vi) the plates are considered to be infinite in relation to the rest chemical
species. The effects of Dufour and Soret become significant phenomena
in areas like petrology, hydrology, geosciences, etc. The effect of thermal-
diffusion is relevant, for example, in the separation of isoipe and mixture of gases that has light molecular
weight. Therefore, Sarma and Govardhan (2016) reported on the effects
of thermal-diffusion and diffusion-thermo on natural convection heat and
mass transfer with thermal radiation in the presence of viscous dissipation
in a porous medium. A Newtonian fluid was examined in the study and
fine difference method was used in the computations of the results. It
was reported that velocity profiles was accelerated by increase in viscous
dissipation. The effects of thermal-diffusion and diffusion-thermo on free
convection MHD flow of Rivlin-Ericksen fluid was examined by Reddy
et al. (2016). Rotatory and thermal radiation effects were considered to
be insignificant, the result shown that an increase in diffusion-thermo and
thermal-diffusion speedup the skin-friction. Gbadeyan et al. (2011) ex-
amined the influence of Soret and Dufour with heat and mass transfer
on mixed convective viscoelastic fluid flow past a porous medium. It was
observed from the result that Soret enhanced both concentration and tem-
perature profiles.

Furthermore, Dada and Salawu (2017) presented heat and mass trans-
fer of pressure-driven flow with inclined magnetic field. The result re-
vealed that an increase in chemical reaction reduced both pressure and
concentration profiles. Ibrahim and Suneetha (2015) studied effects of
Soret and chemical reaction on MHD unsteady viscoelastic fluid past an
infinite vertical plate. The study concluded that both concentration and
velocity profiles increased as thermal-diffusion increased. Hayat et al.
(2017) investigated Dufour and Soret effects on MHD Jeffrey fluid of
peristaltic transport in a curved channel. It was observed that Dufour and
Soret have opposite behaviour for concentration and temperature. Babu
et al. (2017) considered diffusion-thermo and thermal-diffusion effects on
heat and mass transfer MHD Jeffery fluid flow in a stretching sheet. The
result revealed that temperature profiles was reduced by an increase in ei-
ther Prandtl number or Soret parameter. Influence of thermal-diffusion on
Kurvinshiki fluid in the presence of heat and mass transfer past a verti-
cal porous plate was investigated by Jimoh et al. (2014). At the boundary
layer, the result shown that increase in the heat sources parameter im-
proved both velocity and temperature profiles. However, as impressive as
the above studies were, rotatory Rivlin-Ericksen fluid flows have received
no significant attention.

A careful examination of all the above studies on heat and mass trans-
fer showed that combined effects of time dependence suction, pressure
gradiant and heat absorption in Rivlin-Ericksen convective fluid flow in
a rotating medium with diffusion-thermo and thermal-diffusion have re-
ceived little or no attention. Considering various phenomena, combined
effects of all these parameters come into consideration in a prac-
tical flows of fluid and are of practical applications in the field of en-
geering, chemical processing industry, rotating machinery, paper and
food processing industry, petroleum industry and other areas that involve
viscoelastic fluid flow. Hence, this present study analyses the effects of
diffusion-thermo, thermal-diffusion and radiation effects on convective
Rivlin-Ericksen fluid in a rotating system with chemical reaction.

\begin{equation}
\frac{\partial u^*}{\partial z^*} = 0
\end{equation}

\begin{equation}
\frac{\partial u^*}{\partial t^*} + \nu^* \frac{\partial u^*}{\partial z^*} = - \frac{1}{\rho} \frac{\partial p^*}{\partial x^*} + \frac{\nu^2 u^*}{\partial z^*} + 2\Omega^* v^* + \frac{\sigma B_0^2 u^*}{\rho} - \beta_1 \left(\frac{\partial^2 u^*}{\partial t^* \partial z^*} + \nu^* \frac{\partial^3 u^*}{\partial z^3} \right)
\end{equation}

\begin{equation}
\frac{\partial v^*}{\partial t^*} + \nu^* \frac{\partial v^*}{\partial z^*} = - \frac{1}{\rho} \frac{\partial p^*}{\partial x^*} + \frac{\nu^2 v^*}{\partial z^*} - 2\Omega^* u^* - \nu^* \frac{\sigma B_0^2 v^*}{\rho} - \beta_1 \left(\frac{\partial^2 v^*}{\partial t^* \partial z^*} + \nu^* \frac{\partial^3 v^*}{\partial z^3} \right)
\end{equation}
\[
\frac{\partial T^*}{\partial t^*} + \nu^* \frac{\partial T^*}{\partial z^*} = \frac{\partial^2 T^*}{\partial z^*^2} - \frac{\phi_0 \rho c_p}{\rho c_p} (T^* - T_0^*) - \frac{1}{\rho c_p} \frac{\partial q_{R}}{\partial \eta} + \frac{DK_T \partial^2 C^*}{C_p \rho C_z \partial z^*^2} \\
\frac{\partial C^*}{\partial t^*} + \nu^* \frac{\partial C^*}{\partial z^*} = D \frac{\partial^2 C^*}{\partial z^*^2} - K_1^* (C^* - C_n^*) + \frac{DK_T \partial^2 T^*}{T_m}
\]

The boundary conditions for the problem are:

\[z^* = 0; u^* = v^* = 0, T^* = T_0^* + \epsilon (T_0^* - T_n^*) \cos \tau^* t, \quad C^* = C_0^* + \epsilon (C_n^* - C_0^*) \cos \tau^* t, \quad z^* = h, \quad u^* = W_0 (1 + \epsilon \cos \tau^* t), \quad v^* = 0, \quad T^* = T_0^*, \quad C^* = C_n^* \]

The time dependent suction velocity is expressed in exponential form as:

\[v^* = -W_0 (1 + \epsilon A e^{i\omega t} t) \] (Das et al. 2011), \(\epsilon \) and \(\epsilon A \) is small values less than unity. \(q_{R} \) is the radiative heat flux and is defined base on Rosseland approximation (Blob and BOOM 1972) as:

\[q_{R} = -\frac{4\sigma}{3} \frac{\partial T}{\partial \eta} \]

This present analysis is limited to optically thick fluid, hence Rosseland approximation is used. Considering the temperature differences within the flow to be sufficiently small, \(T^* \) (quartic temperature function) can be expanded using Taylor series expansion and neglecting higher order terms gives:

\[T^{*^4} \approx 4T^n_0^3 T^* - 3T^n_0^4 \]

This is substituted into radiative heat flux term that was used in Eq. (4). The pressure gradient for the fluid is considered in the form:

\[-\frac{1}{\rho} \frac{\partial \rho}{\partial \eta} = 0 \quad \text{and} \quad -\frac{1}{\rho} \frac{\partial \rho}{\partial T} = H \cos \omega t \]

where \(H \) is a constant and it oscillates only in \(x \)-axis direction.

The accompanying non-dimensional variables are utilized to reduce the governing equations to non-dimensional form.

\[
\begin{align*}
\xi & = \frac{w^*}{W_0}, \quad v = \frac{v^*}{\psi^*}, \quad t = \frac{t^*W_0}{L}, \quad \eta = \frac{W_0 z^*}{L}, \quad \tau = \frac{\omega t^*}{L}, \\
\theta & = \frac{v}{\nu \psi^*}, \quad \nu \psi \frac{\partial \psi}{\partial x} = \frac{\nu \psi}{\partial x}, \quad x = \frac{W_0}{W_0}, \\
M & = \frac{\nu \psi C_p}{\nu \psi C_z}, \quad G_m = \frac{\nu \psi C_p}{\nu \psi C_z}, \quad S_0 = \frac{k_0}{\nu \psi C_z}, \quad V_T = \frac{\nu \psi C_p}{\nu \psi C_z}, \\
G_m & = \frac{\nu \psi C_p}{\nu \psi C_z}, \quad y = \frac{W_0}{W_0}, \quad P = \frac{P_T}{\nu \psi C_z}, \quad \zeta = \frac{\nu \psi C_p}{\nu \psi C_z}, \\
E & = \frac{k_1 k_p}{4 \nu \psi T_0}, \quad \Omega = \frac{\nu \psi}{\nu \psi C_z}, \quad K_p = \frac{k_1 k_p}{4 \nu \psi T_0}, \quad \phi = \frac{\nu \psi}{\nu \psi C_z}, \\
S_p & = \frac{\nu \psi C_p}{\nu \psi C_z}, \quad 2 \nu \psi C_z, \quad D_p = \frac{\nu \psi C_p}{\nu \psi C_z}, \quad 2 \nu \psi C_z, \quad k_p = \frac{k_1 k_p}{4 \nu \psi T_0}
\end{align*}
\]

By applying non-dimensional variables (10), Eqs. (2)-(5) become

\[\frac{\partial \xi}{\partial \tau} - \left(1 + \epsilon A e^{i\omega t} \right) \frac{\partial \xi}{\partial \eta} = H \cos \omega t + \frac{\partial^2 \xi}{\partial \eta^2} + 2 \Omega v + G_m \theta - \left(M \frac{1}{k_p} \right) \xi + G_m \zeta - V_R \left(\frac{\partial^3 \xi}{\partial \eta^3} - \left(1 + \epsilon A e^{i\omega \eta} \right) \frac{\partial^2 \xi}{\partial \eta^2} \right) \]

\[\frac{\partial v}{\partial \tau} - \left(1 + \epsilon A e^{i\omega t} \right) \frac{\partial v}{\partial \eta} = \frac{\partial^2 v}{\partial \eta^2} - 2 \Omega - \left(M \frac{1}{k_p} \right) \nu \psi - V_R \left(\frac{\partial^3 v}{\partial \eta^3} - \left(1 + \epsilon A e^{i\omega \eta} \right) \frac{\partial^2 \nu \psi}{\partial \eta^2} \right) \]

\[\frac{\partial \psi}{\partial \tau} - \left(1 + \epsilon A e^{i\omega t} \right) \frac{\partial \psi}{\partial \eta} = \left(\frac{1}{F_r} + \frac{4}{3 \nu \psi T_0} \right) \frac{\partial^2 \psi}{\partial \eta^2} - \phi \theta + D_p \frac{\partial^2 \zeta}{\partial \eta^2} \]

The boundary conditions for the problem are:

\[\psi = 0, \quad \theta = 1 + \frac{1}{2} (e^{i\omega \eta} e^{i\omega t} + e^{-i\omega \eta} e^{-i\omega t}), \quad \zeta = 1 + \frac{1}{2} (e^{i\omega \eta} e^{i\omega t} + e^{-i\omega \eta} e^{-i\omega t}), \quad \phi = 0, \quad \zeta = 0 \text{ at } \eta = 1 \]

where \(\xi, \tau, \zeta, \psi, \Omega, R, \nu, k, M, \Omega, \theta, \phi, V_r, A, D_p, S_p, G_h, G_m \) are velocity, temperature, concentration, plates distance apart, rotation parameter, resultant velocity, radiation parameter, chemical reaction parameter, magnetic parameter, Prandtl number, Schmidt number, heat absorption parameter, viscoelasticity parameter, suction velocity parameter, Dufour number, Thermal-diffusion parameter, Grashof number for heat and mass transfer, respectively. Taking \(\psi = \xi + iv \) then, Eqs. (11) and (12) combine to

\[\frac{\partial \psi}{\partial \tau} - \left(1 + \epsilon A e^{i\omega \eta} \right) \frac{\partial \psi}{\partial \eta} = H \cos \omega t + \frac{\partial^2 \psi}{\partial \eta^2} + 2 \Omega \psi + G_m \theta + \left(1 + \epsilon A e^{i\omega \eta} \right) \frac{\partial^2 \psi}{\partial \eta^2} \]

where

\[F = M + \frac{1}{k_p} \]

3. Method of Solution

3.1. Perturbation Method

The partial differential Eqs. (13), (14) and (16) are reduced to ordinary differential equations by Perturbation technique. Due to the nature of the boundary conditions, the assumed solutions can be written as follows (Garg et al. 2014b):

\[\psi(\eta, t) = \psi_0(\eta) + \frac{1}{2} \left(\psi_1(\eta)e^{i\omega t} + \psi_2(\eta)e^{-i\omega t} \right) \]

\[\psi(\eta, t) = \psi_0(\eta) + \frac{1}{2} \left(\psi_1(\eta)e^{i\omega t} + \psi_2(\eta)e^{-i\omega t} - \psi_3(\eta)e^{-i\omega t} \right) \]

Substituting equation (17) into Eqs. (13), (14) and (16) gives:

\[V_R \psi_0'' + \psi_0'' + \left(2i\Omega + F \right) \psi_0 = -G_m \theta_0 - G_m \zeta_0 \]

\[V_R \psi_1'' + (1 - V_R i\Omega) \psi_0'' + \psi_1'' - (i\pi + 2i\Omega + F) \psi_1 = -2A \psi_0 - G_h \theta_0 - G_h \zeta_0 - 2V_R \psi_0'' \]

\[V_R \psi_2'' + (1 + V_R i\Omega) \psi_0'' + \psi_2'' - (2i\Omega + F - i\pi) \psi_2 = -2A \psi_0 - G_h \theta_0 - G_h \zeta_0 - 2V_R \psi_0'' \]

Where

\[B = \frac{1}{F_r} + \frac{4}{3 \nu \psi T_0} \]

The boundary conditions for the problem are:

\[\psi_0 = \psi_1 = \psi_2 = 0, \quad \theta_0 = \theta_1 = \theta_2 = 1, \quad \zeta_0 = \zeta_1 = \zeta_2 = 0 \text{ at } \eta = 0 \]

\[\psi_0 = \psi_1 = \psi_2 = 1, \quad \theta_0 = \theta_1 = \theta_2 = 0, \quad \zeta_0 = \zeta_1 = \zeta_2 = 0 \text{ at } \eta = 1 \]
Equations (18)-(20) are third order differential equations with only two boundary conditions. In order to obtain necessary and sufficient boundary conditions (Beard and Walters (1964)) and (Garg et al. (2014b)), the solutions are expressed in the forms:

\[
\begin{align*}
\psi_0(\eta) &= \psi_{01}(\eta) + V_B \psi_{02}(\eta) + 0(V_B^2) \\
\psi_1(\eta) &= \psi_{11}(\eta) + V_B \psi_{12}(\eta) + 0(V_B^2) \\
\psi_2(\eta) &= \psi_{21}(\eta) + V_B \psi_{22}(\eta) + 0(V_B^2) \\
\phi_0(\eta) &= \phi_{01}(\eta) + V_B \phi_{02}(\eta) + 0(V_B^2) \\
\phi_1(\eta) &= \phi_{11}(\eta) + V_B \phi_{12}(\eta) + 0(V_B^2) \\
\phi_2(\eta) &= \phi_{21}(\eta) + V_B \phi_{22}(\eta) + 0(V_B^2) \\
\zeta_0(\eta) &= \zeta_{01}(\eta) + V_B \zeta_{02}(\eta) + 0(V_B^2) \\
\zeta_1(\eta) &= \zeta_{11}(\eta) + V_B \zeta_{12}(\eta) + 0(V_B^2) \\
\zeta_2(\eta) &= \zeta_{21}(\eta) + V_B \zeta_{22}(\eta) + 0(V_B^2)
\end{align*}
\]

subject to the following boundary conditions:

\[
\begin{align*}
\psi_{01} &= \psi_{02} = \psi_{11} = \psi_{12} = \psi_{21} = \psi_{22} = 0 \quad \eta = 0 \\
\psi_{01} &= \psi_{02} = \psi_{11} = \psi_{12} = \psi_{21} = \psi_{22} = 0 \quad \eta = 1 \\
\phi_{01} &= \phi_{11} = \phi_{21} = 1, \quad \phi_{02} = \phi_{12} = \phi_{22} = 0 \quad \eta = 0 \\
\phi_{01} &= \phi_{11} = \phi_{21} = 0, \quad \phi_{02} = \phi_{12} = \phi_{22} = 0 \quad \eta = 1 \\
\zeta_{01} &= \zeta_{02} = \zeta_{11} = \zeta_{12} = \zeta_{21} = \zeta_{22} = 0 \quad \eta = 0 \\
\zeta_{01} &= \zeta_{11} = \zeta_{12} = \zeta_{21} = \zeta_{22} = 0 \quad \eta = 1
\end{align*}
\]

Applying Eqs. (28) to Eqs. (18)-(26) gives:

\[
\begin{align*}
\psi_{01}'' &+ \psi_{01}' - (2\Omega + F) \psi_{01} = -G_3 \theta_{01} - G_m \zeta_{01} \\
\psi_{02}'' &+ \psi_{02}' - (2\Omega + F) \psi_{02} = -\psi_{01}'' - G_3 \theta_{02} - G_m \zeta_{02} \\
\psi_{11}'' &+ \psi_{11}' - (i\pi + 2\Omega + F) \psi_{11} = -H - 2A \psi_{01} \\
&\quad - G_3 \theta_{11} - G_m \zeta_{11} \\
\psi_{12}'' &+ \psi_{12}' - (i\pi + 2\Omega + F) \psi_{12} = i\pi \psi_{11}' - \psi_{11}'' - 2A \psi_{02} \\
&\quad - 2A \psi_{01}'' - G_3 \theta_{12} - G_m \zeta_{12} \\
\psi_{21}'' &+ \psi_{21}' - (2\Omega + F - i\pi) \psi_{21} = -H - G_3 \theta_{21} - G_m \zeta_{21} \\
\psi_{22}'' &+ \psi_{22}' - (2\Omega + F - i\pi) \psi_{22} = -\psi_{21}'' - i\pi \psi_{21}' - G_3 \theta_{22} - G_m \zeta_{22}
\end{align*}
\]

\[
\begin{align*}
B \theta_{01}'' &+ \dot{\theta}_{01} - \dot{\theta}_{01} = -D_p \zeta_{01}'' \\
B \theta_{02}'' &+ \dot{\theta}_{02} - \dot{\theta}_{02} = -D_p \zeta_{02}'' \\
B \theta_{11}'' &+ \dot{\theta}_{11} - (\phi - i\pi) \theta_{11} = -2A \theta_{01}'' - D_p \zeta_{11}'' \\
B \theta_{12}'' &+ \dot{\theta}_{12} - (\phi - i\pi) \theta_{12} = -2A \theta_{02}'' - D_p \zeta_{12}'' \\
B \theta_{21}'' &+ \dot{\theta}_{21} - (\phi - i\pi) \theta_{21} = -D_p \zeta_{21}'' \\
B \theta_{22}'' &+ \dot{\theta}_{22} - (\phi - i\pi) \theta_{22} = -D_p \zeta_{22}'' \\
\zeta_{01}'' &+ S_c \zeta_{01}'' = -S_c \theta_{01}'' \\
\zeta_{02}'' &+ S_c \zeta_{02}'' = -S_c \theta_{02}'' \\
\zeta_{11}'' &+ S_c \zeta_{11}'' = -2A \theta_{01}'' - S_c \theta_{01}'' \\
\zeta_{12}'' &+ S_c \zeta_{12}'' = -2A \theta_{02}'' - S_c \theta_{02}'' \\
\zeta_{21}'' &+ S_c \zeta_{21}'' = -S_c \theta_{21}'' \\
\zeta_{22}'' &+ S_c \zeta_{22}'' = -S_c \theta_{22}''
\end{align*}
\]

3.2. Adomian Decomposition method

The ordinary differential Eqs. (29)-(46), though linear but are highly coupled, hence Adomian decomposition methods is applied in solving the problem. A differential equation can be written in a general form as:

\[
F\psi(\eta) = b
\]

where \(F\) represents an operator of nonlinear ordinary differential equation containing both linear and nonlinear terms. \(\psi\) represents the linear term, and the invertible linear operator is \(L\). Taking the highest-ordered derivative as \(L^1\), \(L^{-1}\) is n-fold integration operator from \(0\) to \(\eta\) for \(L = \frac{d^n}{d\eta^n}\). For the linear operator \(L\), the remainder is \(R\) and \(N\psi\) is the nonlinear term. Hence,

\[
L\psi + R\psi + N\psi = b
\]

Since \(L\) is invertible, thus

\[
L^{-1} L\psi = L^{-1} b - L^{-1} R\psi - L^{-1} N\psi
\]

The highest-order in Equations (29)-(46) is two, therefore,

\[
L^{-1} L\psi = \int_0^\eta \int_0^\eta \psi''(\eta) d\eta d\eta s
\]

\[
L^{-1} L\psi = \psi - \psi(0) - \eta \psi'(0)
\]

substituting for \(L^{-1} L\psi\) in Equation (51), the equation becomes;

\[
\psi = \psi(0) + \eta \psi'(0) + L^{-1} b - L^{-1} R\psi - L^{-1} N\psi
\]

Hence,

\[
\psi = \psi(0) + \eta \psi'(0) + b \frac{\eta^2}{2} - \int_0^\eta \int_0^\eta (R\psi + N\psi) \, d\eta d\eta s
\]

\[
\psi\text{ can be written in series form as:}
\]

\[
\psi = \sum_{n=0}^\infty \psi_n
\]

also, the nonlinear term as:

\[
N\psi = \sum_{n=0}^\infty A_n
\]

where

\[
A_n = \frac{1}{n!} \frac{d^n}{d\eta^n} \left(F \left(\sum_{i=0}^n \lambda^i \psi_i \right) \right)_{\lambda=0} \quad n = 0, 1, 2, 3, ...
\]

Substituting Equations (56) and (57) into equation (55) gives:

\[
\sum_{n=0}^\infty \psi_n = \psi(0) + \eta \psi'(0) + b \frac{\eta^2}{2}
\]

\[
- \int_0^\eta \int_0^\eta \left(R \sum_{n=0}^\infty \psi_n + \sum_{n=0}^\infty A_n \right) \, d\eta d\eta s
\]

The first three terms are identified as \(\psi_0\) which is the initial approximation, that is

\[
\psi_0 = \psi(0) + \eta \psi'(0) + b \frac{\eta^2}{2}
\]

and

\[
\psi_{n+1} = - \int_0^\eta \int_0^\eta \left(R \sum_{n=0}^\infty \psi_n + \sum_{n=0}^\infty A_n \right) \, d\eta d\eta s
\]
is the recurrence relation. All the components can be determined since A_0 depends on ψ_0 only, A_1 depends on ψ_0 and ψ_1 and so on. The solution then is the n-term approximation or approximant to ψ.

From Eqs. (60) and (61), the approximate solutions for Eqs (29)-(46), which converges at $n = 5$, can be written as:

$$
\begin{align*}
\zeta_0 &= \sum_{a=0}^{5} \zeta_0[a], \quad \theta_0 = \sum_{a=0}^{5} \theta_0[a], \\
\psi_0 &= \sum_{a=0}^{5} \psi_0[a], \quad \zeta_0 = \sum_{a=0}^{5} \zeta_0[a], \\
\theta_0 &= \sum_{a=0}^{5} \theta_0[a], \quad \psi_0 = \sum_{a=0}^{5} \psi_0[a], \\
\zeta_1 &= \sum_{a=0}^{5} \zeta_1[a], \quad \theta_1 = \sum_{a=0}^{5} \theta_1[a], \\
\psi_1 &= \sum_{a=0}^{5} \psi_1[a], \quad \zeta_2 = \sum_{a=0}^{5} \zeta_2[a], \\
\theta_2 &= \sum_{a=0}^{5} \theta_2[a], \quad \psi_2 = \sum_{a=0}^{5} \psi_2[a], \\
\zeta_2 &= \sum_{a=0}^{5} \zeta_2[a] \\
\theta_2 &= \sum_{a=0}^{5} \theta_2[a] \quad \psi_2 = \sum_{a=0}^{5} \psi_2[a]
\end{align*}
$$

(62)

Series solutions (62) are substituted in Eqs. (17) and (28) to give the final solution for velocity, temperature and concentration distributions.

$$
\begin{align*}
\psi(\eta, t) &= \sum_{a=0}^{5} \psi_0[a](\eta) + V_R \sum_{a=0}^{5} \psi_2[a](\eta) + \\
&\quad \frac{\epsilon}{2} \left(\sum_{a=0}^{5} \psi_{11}[a](\eta) + V_R \sum_{a=0}^{5} \psi_{12}[a](\eta) \right) e^{i\omega t} + \\
&\quad \frac{\epsilon}{2} \left(\sum_{a=0}^{5} \psi_{21}[a](\eta) + V_R \sum_{a=0}^{5} \psi_{22}[a](\eta) \right) e^{-i\omega t}
\end{align*}
$$

(63)

$$
\begin{align*}
\theta(\eta, t) &= \sum_{a=0}^{5} \theta_0[a](\eta) + V_R \sum_{a=0}^{5} \theta_2[a](\eta) + \\
&\quad \frac{\epsilon}{2} \left(\sum_{a=0}^{5} \theta_{11}[a](\eta) + V_R \sum_{a=0}^{5} \theta_{12}[a](\eta) \right) e^{i\omega t} + \\
&\quad \frac{\epsilon}{2} \left(\sum_{a=0}^{5} \theta_{21}[a](\eta) + V_R \sum_{a=0}^{5} \theta_{22}[a](\eta) \right) e^{-i\omega t}
\end{align*}
$$

(64)

$$
\begin{align*}
\zeta(\eta, t) &= \sum_{a=0}^{5} \zeta_0[a](\eta) + V_R \sum_{a=0}^{5} \zeta_2[a](\eta) + \\
&\quad \frac{\epsilon}{2} \left(\sum_{a=0}^{5} \zeta_{11}[a](\eta) + V_R \sum_{a=0}^{5} \zeta_{12}[a](\eta) \right) e^{i\omega t} + \\
&\quad \frac{\epsilon}{2} \left(\sum_{a=0}^{5} \zeta_{21}[a](\eta) + V_R \sum_{a=0}^{5} \zeta_{22}[a](\eta) \right) e^{-i\omega t}
\end{align*}
$$

(65)

3.3. Skin-friction, Nusselt and Sherwood number in term of Amplitude

With reference to the boundary conditions, the amplitude is defined in terms of primary and secondary velocities for steady and unsteady flow. Therefore, total resultant velocity can be written as:

$$
R_v = \sqrt{d^2 + f^2}
$$

(66)

where velocity is defined as

$$
\psi(\eta, t) = d + if
$$

(67)

The Skin-friction is given as:

$$
\tau(\eta) = \left(\frac{\partial \psi}{\partial \eta} \right)_{\eta=0.1} = \tau_m + i\tau_n
$$

(68)

$$
\beta_1 = \sqrt{\tau_m^2 + \tau_n^2}
$$

(69)

Nusselt number (Heat transfer coefficient) is defined as:

$$
Nu(\eta) = - \left(1 + \frac{4}{3}E \right) \left(\frac{\partial \theta}{\partial \eta} \right)_{\eta=0.1} = \beta_m + i\beta_n
$$

(70)

Sherwood Number(Mass transfer coefficient) is expressed as:

$$
Sh(\eta) = \left(\frac{\partial \zeta}{\partial \eta} \right)_{\eta=0.1} = \lambda_m + i\lambda_n
$$

(72)

4. DISCUSSION OF RESULTS

The solutions for the partial differential equations (13), (14) and (16) with the corresponding boundary conditions (15) are acquired by Adomian decomposition methods alongside with MATHEMATICA programming. The impacts of different parameters governing the flow field on velocity, temperature and species in the fluid are depicted in tabular and graphical forms. The parameters considered in this study include: dimensionless viscoelasticity parameter of the Rivlin-Ericksen fluid (V_R), suction velocity parameter (A), rotation parameter (Ω), scalar constant (ϵ), chemical reaction parameter (K_r), thermal radiation parameter (E), Prandtl number (Pr), Schmidt number (Sc), heat absorption coefficient (ϕ), Mass transfer Grashof number (G_m), Heat transfer Grashof number (G_h), permeability of the porous medium (k_p), Dufour parameter (D_f), Soret parameter (S_f) and magnetic parameter (M). Throughout the computations, the following are taken as default values: $t = 1$, $G_h = G_m = M = 5$, $V_R = 0.05$, $\phi = 0.005$, $Pr = 0.71$, $E = 3$, $\epsilon = 0.01$, $A = k_p = 0.5$, $K_r = 2$, $\Omega = 10$, $D_f = 0.1$, $G_h = 2, Sc = 2$ and $Sc = 1.002$.

Figures 2 and 3 depict the effects of Suction velocity parameter (A) on concentration and resultant velocity (R_v). It is obvious that as Suction velocity parameter increases, resultant velocity and concentration increase.
Variation of values of scalar constant (ϵ) on resultant velocity, temperature and species distribution is shown in Figs. 4 - 6. It is detected that increasing ϵ causes a corresponding increment on resultant velocity, temperature and species profiles.

Fig. 4 Variation of dimensionless concentration ζ with scalar constant ϵ

Fig. 5 Variation of dimensionless temperature ϑ with scalar constant ϵ

Fig. 6 Variation of resultant velocity R_v with scalar constant ϵ

The influence of G_m, G_h and k_p on velocity is illustrated in Figs. 7 - 9. From these Figures, resultant velocity is enhanced by an increase in G_m, G_h and k_p.

Fig. 7 Variation of resultant velocity R_v with mass transfer Grashof number G_m

Fig. 8 Variation of resultant velocity R_v with heat transfer Grashof number G_h

Fig. 9 Variation of resultant velocity R_v with permeability of the porous medium k_p

Figures 10 and 11 display the effect of the different values of K_r on species and velocity profiles. It is observed that the more the value of K_r, the less the species and resultant velocity.
Figure 10 reveals the influence of \(M \) on the resultant velocity. It is clear from the figure that a higher value of \(M \) decreases the flow velocity throughout the domain of the fluid. A drag force identified as Lorentz force is produced in electrically conducting fluid where magnetic field is applied. There is a decrease in the velocity of the fluid as a result of the effect of this drag force since fluid transport is resisted in the presence of the magnetic field.

Figure 12 reveals the influence of \(M \) on the resultant velocity. It is clear from the figure that a higher value of \(M \) decreases the flow velocity throughout the domain of the fluid. A drag force identified as Lorentz force is produced in electrically conducting fluid where magnetic field is applied. There is a decrease in the velocity of the fluid as a result of the effect of this drag force since fluid transport is resisted in the presence of the magnetic field.

The effect of \(\Omega \) on resultant velocity is seen in Fig. 15. The result revealed that, higher values of rotation parameter enhanced resultant velocity profiles, which showed an overwhelming effect of rotation. A diminishing in \(R_v \) due to a decrease in \(\Omega \) is because of the presence of gravitational and Lorentz force rotating at very low speeds. This indicates that a friction factor is noticed, hence \(R_v \) decreases. The same trend is apparent in Figs. 16 and 17, which represented velocity and temperature profiles for different values of \(Pr \). Prandtl number can be defined as the ratio of momentum diffusivity to thermal diffusivity. It is, therefore, obvious that a lower thermal conductivity material leads to high velocity and a different trend is seen for higher thermal conductivity. Hence, in Fig. 17, it is seen that an increase in Prandtl number accelerates the resultant velocity profiles. Likewise, in Figs. 16, an increase in \(Pr \) reduces the thermal boundary layer thickness and average temperature within the boundary. This implies that, an increase in \(Pr \) makes the thermal conductivity of the fluid to increase. Thus, resulting in rapid diffusivity of the heated surface.
Furthermore, effect of S_c on concentration and resultant velocity profiles is revealed in Figs. 18 and 19. Here, it is observed that higher S_c leads to a decline in concentration profiles, while the resultant velocity is enhanced.
Figures 22 - 24 detect the effects of variation of S_p on resultant velocity, temperature and species profiles. A careful study of these figures shown that the presence of S_p enhances both resultant velocity and concentration profiles, while a different trend is noticed in temperature profiles. Temperature profiles decline with a rise in S_p.

Effect of D_p on resultant velocity, temperature and concentration profiles is presented in Figs. 25 - 27. Resultant velocity profiles diminish as D_p is increased, while temperature profiles increases. This is as a result of the generation of energy flux that enhances the temperature. A rise in D_p makes concentration profiles to fall within $0 \leq \eta \leq 0.7$, and within $0.7 \leq \eta \leq 1$, a rise in concentration profile is observed.
Tables 1 and 2 display the variation of fluid parameters (K_r, E, Ω, S_p, D_p, and V_R) on Skin-friction, Nusselt number and Sherwood Number at $\eta = 0$ and $\eta = 1$. It is seen in Table 1 that the Skin-friction is diminished with the presence of K_r, Ω, D_p, and V_R, while it is strengthened by E and S_p. Nusselt number is reduced with an increase in K_r, N, and D_p. On the other hand, increasing the values of S_p enhances the Nusselt number. In like manner, Sherwood number increases with an increase in chemical reaction and Dufour parameter. The mass transfer coefficient value is reduced with an increase in E and S_p. Consequently, Table 2 shows that skin friction is quickened by an increase in K_r, E, Ω, S_p, and V_R, while higher values of Dufour parameter decreases the Skin-friction. Nusselt number is risen with an increase in K_r and D_p but diminishes with increment in the values of E and S_p. Increasing E, S_p, and D_p make Sherwood number to rise and it decelerates by increasing the values of K_r.

Table 1

K_r	E	Ω	S_p	D_p	V_R	τ	N_u	Sh
1	3	15	2	0.1	0.05	1.26547	2.11822	1.51979
2	3	15	2	0.1	0.05	1.23144	2.05517	1.88701
3	3	15	2	0.1	0.05	1.20171	1.99740	2.21109
2	2	15	2	0.1	0.05	1.22856	2.24886	2.02036
2	3	15	2	0.1	0.05	1.23144	2.05517	1.88701
2	4	15	2	0.1	0.05	1.23326	1.95820	1.80325
2	3	10	2	0.1	0.05	2.30656	2.05517	1.88701
2	3	12	2	0.1	0.05	1.91408	2.05517	1.88701
2	3	14	2	0.1	0.05	1.47608	2.05517	1.88701
2	3	15	0.5	0.1	0.05	1.15877	1.96696	2.39242
2	3	15	1	0.1	0.05	1.18374	1.99150	2.23485
2	3	15	1.5	0.1	0.05	2.02080	2.02105	2.06581
2	3	15	2	0.2	0.05	1.23902	1.91244	2.24897
2	3	15	2	0.3	0.05	1.22160	1.68476	2.84090
2	3	15	2	0.4	0.05	1.17973	1.28395	3.77168
2	3	15	2	0.1	0.03	1.88677	2.05517	1.27000
2	3	15	2	0.1	0.04	1.24755	2.05517	1.88689
2	3	15	2	0.1	0.05	1.23144	2.05517	1.88701

5. CONCLUSION

An investigation of the joint influence of the fluid parameters on convective Rivlin-Ericksen flow of an unsteady incompressible and electrically conducting fluid in vertical plates with a time dependence is discussed. The governing equations of the flow field were non-dimensionalised and the solutions are obtained using Adomian decomposition method. The effects of various parameters on velocity, temperature, concentration, skin friction, Nusselt number and Sherwood number are presented in graphical and tabular forms.

The study reveals that:

1. Resultant velocity is strengthened by the presence of Ω, E, V_R, and S_p and weakened with the presence of K_r and D_p.

2. An increase in D_p tends to accelerate temperature profiles, while it is slowed down by higher values of E and S_p.

3. Concentration distribution is enhanced with increase in S_p, however, the profile is reduced with an increase in K_r and D_p. Within $0.7 \leq \eta \leq 1$, higher values of D_p improved the profile.

4. Skin friction is enhanced with an increase in the values of S_p and decelerated by increasing D_p and Ω at $\eta = 0$. The same effect is noticed for S_p and D_p at $\eta = 1$. But, Ω tends to accelerate the skin friction.

5. At $\eta = 0$, it is observed that increasing in the Soret number strengthens the heat transfer coefficient and weakens mass transfer coefficient. The reverse effect is noticed for Dufour number.

6. Both heat and mass transfer coefficients are improved by high values of D_p at $\eta = 1$.

NOMENCLATURE

x^*, y^*, z^*: dimensional distance upward the plate (m)
x^+, y^+, z^+: dimensional distance normal to the plate (m)
u^*, v^*, w^*: dimensional velocity components in the x^*, y^*, z^* directions respectively (ms$^{-1}$)
t*: dimensional time (s)
\(C_p \) specific heat at constant pressure (Jkg\(^{-1}\)K\(^{-1}\))

\(B_0 \) magnetic induction (tesla)

\(T^* \) dimensional temperature (K)

\(C^* \) dimensional concentration (kmol/m\(^3\))

\(P^* \) dimensional pressure (N/m\(^2\))

\(D \) chemical molecular diffusivity

\(g \) gravitational acceleration (m/s\(^2\))

\(T_{p*} \) plate dimensional temperature (K)

\(C_{p*} \) plate dimensional concentration (kmol/m\(^3\))

\(\kappa_p \) non-dimensional permeability of the porous medium

\(\kappa \) mean absorption coefficient

\(W_o \) scale of suction velocity contain non-zero positive constant

\(T_m \) mean fluid temperature

\(K_T \) thermal diffusion ratio

\(C_s \) concentration susceptibility

\(K \) thermal conductivity (W/m · K)

\(T_0 \) temperature at the left plate (K)

\(C_0 \) concentration at the left plate (kmol/m\(^3\))

\(h \) distance of the plate (m)

Greek Symbols

\(\rho \) fluid density (kgm\(^{-3}\))

\(\nu^* \) kinematic viscosity (m\(^2\)s\(^{-1}\))

\(\sigma \) Stefan-Boltzman constant (W/m\(^2\) · K\(^4\))

\(\phi_o \) dimensional heat absorption coefficient (j/kg)

\(\alpha \) thermal diffusivity

\(\beta T, \beta C \) thermal, concentration expansion coefficient

\(\beta_k \) kinematic viscoelasticity

\(\epsilon \) scalar constant

REFERENCES

Abdulmaleque, K.L., 2017, “Temperature dependent suction/injection and variable properties on non-Newtonian Casson mixed convective MHD laminar fluid flow with viscous dissipation and thermal radiation,” *American Journal of Heat and Mass Transfer*, 4(2), 104–120.

http://dx.doi.org/10.7726/ajhmt.2017.1007.

Aruna, G., Varma, S.V., and Raju, R.S., 2015, “Combined influence of Soret and Dufour effects on unsteady hydromagnetic mixed convective flow in an accelerated vertical wavy plate through a porous medium,” *Int J Adv Appl Math and Mech.*, 3(1), 122–134.

http://dx.doi.org/10.5098/hmt.8.5.

Beard, D.M., and Walters, K., 1964, *Elastico-viscous boundary-layer flows-I: two-dimensional flow near the stagnation point*, Proc. Camb. Phil. Soc., London.

Brewster, M.Q., 1972, *Thermal Radiation Transfer Properties*, John Wiley and sons, London.

Dada, M.S., and Agunbiade, S.A., 2016, “Radiation and chemical reaction effects on convective Rivlin-Ericksen flow past a porous vertical plate,” *Ife Journal of Science*, 18(3), 655–667.

Dada, M.S., and Salawu, S.O., 2017, “Analysis of Heat and Mass Transfer of an inclined magnetic field pressure-driven flow past a permeable plate,” *Applications and Applied Mathematics: An international Journal (AAM)*, 12(1), 189–200.

http://pvamu.edu/aam.

Das, S., Maity, M., and Das, J.K., 2011, “Effect of heat source and variable suction on unsteady viscous stratified flow past a vertical porous flat moving plate in the slip flow regime,” *International Journal of Energy and Environment*, 2(2), 375–382.

Deepthi, J., and Prasada, D.R.V., 2017, “Mixed convective heat and mass transfer flow in a vertical channel with Soret effect and radiation,” *International Journal of Emerging Trends in Engineering and Development*, 2(7), 1–11.

http://www.rspublication.com/ijected/ijected index.htm.

Devasena, Y., and Ratmat, A.L., 2014, “Effect of thermo-Diffusion on mixed convective Heat and mass transfer flow of a Visco-Elastic fluid past a porous plate with Heat Generating Sources,”*International Journal of Emerging Trends in Engineering and Development*, 2(4), 8–19.

http://www.rspublication.com/ijected/ndex.htm.

Garg, B.P., Singh, K.D., and Bansal, A.K., 2014a, “An oscillatory MHD convective flow of viscoelastic fluid through porous medium filled in a rotating vertical porous channel with heat radiation,” *International Journal of Engineering and innovative Technology*, 3(12), 273–281.

Garg, B.P., Singh, K.D., and Bansal, A.K., 2014b, “Rotating MHD convective flow of Ouldroyd-B fluid through a porous medium in a vertical porous channel with thermal Radiation,” *International Journal of Innovations in Engineering and Technology*, 4(1), 251–267.

Gbadeyan, J.A., Idowu, A.S., Ogun sola, A.W., Agbola, O.O., and Olarewaju, P.O., 2011, “Heat and mass transfer for Soret and Dufour’s effect on mixed convection boundary layer flow over a stretching vertical surface in a porous medium filled with a viscoelastic fluid in the presence of magnetic field,” *Global Journal of Science Frontier Research*, 11(8), 96–115.

Guria, M., and Jana, R.N., 2013, “Flow of a viscoelastic fluid past a porous plate in a rotating system,” *Int J of Applied Mechanics and Engineering*, 18(1), 27–41.

http://dx.doi.org/10.2478/ijame-2013-0002.

Hayat, T., Zahir, H., Tanveer, A., and Alsaeed, A., 2017, “Soret and Dufour effects on MHD peristaltic transport of Jeffrey fluid in a curved channel with convective boundary conditions,” *PLoS ONE*, 12(2), 1–50.

http://dx.doi.org/10.1371/journal.pone.0164854.

Ibrahim, S.M., and Suneetha, K., 2015, “Chemical reaction and Soret effects on unsteady MHD flow of a viscoelastic fluid past an impulsively started infinite vertical plate with heat source/Sink,” *International Journal of Mathematics and computational Science*, 1(1), 5–14.

http://www.publicscienceframework.org/journal/ijmcs.

Jimoh, A., Idowu, A.A., and Titiloye, O., 2014, “Influence of Soret on unsteady MHD of Kuvshinshiki fluid flow flow with heat and mass Transfer past a vertical porous plate with vertical suction,” *International journal of Recent and Innovation Trends in computing and communication*, 2(9), 2599–2611.

http://www.ijritcc.org.

Mutua, N.M., Musyoki, N.M., Kinyanjui, M.N., and Kwanza, J.K., 2013, “Magnetohydrodynamic free convection flow of a heat generating fluid past a semi-infinite vertical porous plate with variable suction,” *International Journal of Applied Mathematics Research*, 2(3), 356–371.

Reddy, P.C., Raju, M.C., and Raju, G.S.S., 2016, “Soret and Dufour effects on MHD free convective flow of Rivlin-Ericksen fluid past a semi-infinite vertical plate,” *Advances and Applications in Fluid Mechanics*, 19(2), 401–414.

http://dx.doi.org/10.17654/FM019020401.
Sarma, G.S., and Govardhan, K., 2016, “Thermo-diffusion and Diffusion-thermo effects on free convective heat and mass transfer from vertical surface in a porous medium with viscous dissipation in the presence of Thermal radiation,” *Archives of Current Research International*, 3(1), 1–11.
http://dx.doi.org/10.9734/ACRI/2016/21503.

Sibanda, P., and Makinde, O.D., 2010, “On steady MHD flow and heat transfer due to a rotating disk in a porous medium with ohmic heating and viscous dissipation,” *Int J Num Methods for Heat and Fluid Flow*, 20(3), 269–285.

Singh, K.D., 2013, “Visco-Elastic MHD convective periodic flow through porous medium in a rotating vertical channel with thermal radiation,” *Journal of Global Research in Mathematics Archives*, 1(4), 8–20.
http://www.jgrma.info.