TIME PERIODIC SOLUTIONS TO THE 2D QUASI-GEOSTROPHIC EQUATION WITH THE SUPERCritical DISSIPATION

MIKIHIRO FUJII

Abstract. We consider the 2D dissipative quasi-geostrophic equation with the time periodic external force and prove the existence of a unique time periodic solution in the case of the supercritical dissipation. In this case, the smoothing effect of the semigroup generated by the dissipation term is too weak to control the nonlinearity in the Duhamel term of the corresponding integral equation. In this paper, we give a new approach which does not depend on the contraction mapping principle for the integral equation.

1. Introduction

We consider the 2D dissipative quasi-geostrophic equation with the time periodic external force:

\begin{equation}
\begin{aligned}
&\partial_t \theta + (-\Delta)^\alpha \theta + u \cdot \nabla \theta = F, \quad t > 0, x \in \mathbb{R}^2, \\
&u = R^\perp \theta = (-R_2 \theta, R_1 \theta), \quad t \geq 0, x \in \mathbb{R}^2, \\
&\theta(0, x) = \theta_0(x), \quad x \in \mathbb{R}^2,
\end{aligned}
\end{equation}

where \(\theta = \theta(t, x) \) and \(u = (u_1(t, x), u_2(t, x)) \) represent the unknown potential temperature of the fluid with some initial value \(\theta_0 \) and the unknown velocity field of the fluid, respectively. The given external force \(F = F(t, x) \) is \(T \)-time periodic, that is \(F \) satisfies \(F(t + T) = F(t) \) \((t > 0) \) for some \(T > 0 \). The two operators \((-\Delta)^\alpha\) \((0 < \alpha \leq 2) \) and \(R_k \) \((k = 1, 2) \) denote the nonlocal differential operators so-called the fractional Laplacian and the Riesz transforms on \(\mathbb{R}^2 \), respectively and they are defined by

\[
(-\Delta)^\alpha f = \mathcal{F}^{-1} \left[|\xi|^{2\alpha} \hat{f}(\xi) \right], \quad R_k f = \partial_{x_k} (-\Delta)^{-\frac{1}{2}} f = \mathcal{F}^{-1} \left[\frac{i\xi_k}{|\xi|} \hat{f}(\xi) \right].
\]

In this paper, we prove the existence of a unique \(T \)-time periodic solution of (1.1) with the supercritical dissipation if the given \(T \)-time periodic external force is sufficiently small.

Before we state the main result precisely, we recall some known results for the 2D dissipative quasi-geostrophic equation with the case \(F = 0 \), that is the usual initial value problem:

\begin{equation}
\begin{aligned}
&\partial_t \theta + (-\Delta)^\alpha \theta + u \cdot \nabla \theta = 0, \quad t > 0, x \in \mathbb{R}^2, \\
&u = R^\perp \theta = (-R_2 \theta, R_1 \theta), \quad t \geq 0, x \in \mathbb{R}^2, \\
&\theta(0, x) = \theta_0(x), \quad x \in \mathbb{R}^2.
\end{aligned}
\end{equation}

2010 Mathematics Subject Classification. 35Q35, 35Q86, 35B10.

Key words and phrases. the 2D dissipative quasi-geostrophic equations, time periodic solution, energy estimates.
Based on the scaling transform and the $L^\infty(\mathbb{R}^2)$-conservation, the dissipative quasi-geostrophic equation is divided into the subcritical case $1 < \alpha \leq 2$, critical case $\alpha = 1$ and supercritical case $0 < \alpha < 1$. In the subcritical case, Constantin-Wu [6] proved the existence of a weak solution and decay estimates with respect to L^2 norm for the initial data $\theta_0 \in L^2(\mathbb{R}^2)$. Wu [14] proved the global well-posedness for small data in the scaling subcritical setting $\theta_0 \in L^p(\mathbb{R}^2)$ ($p > 2/(\alpha - 1)$) via the contraction mapping principle for the corresponding integral equation. In the critical case, the order of the spatial derivative in the dissipation term coincides with that in the nonlinear term. Zhang [16] noticed this property and proved the existence of the global in time mild solution in the scaling critical Besov space $B_{p, 1}^{2, \alpha}(\mathbb{R}^2)$ $(1 \leq p \leq \infty)$. Global well-posedness in the Tribel-Lizorkin spaces $F_{p,q}^s(\mathbb{R}^2)$ $(s > 2/p, 1 < p, q < \infty)$ is proved by Chen-Zhang [5]. In the supercritical case, the order of the spatial derivative in the dissipation term is less than that in the nonlinear term. Therefore, the smoothing effect of the fractional heat kernel $e^{-t(-\Delta)^{\alpha}}$ is too weak to control the spatial derivative in the nonlinear term. Although, this implies that it seems to be impossible to construct a solution of (1.2), it is able to overcome this and the local well-posedness for large data and the global well-posedness for small data in the scaling critical Sobolev $H^{2-\alpha}(\mathbb{R}^2)$ by Miura [12] and Besov spaces $B_{p,q}^{1+\frac{2}{p}-\alpha}(\mathbb{R}^2)$ $(2 \leq p < \infty, 1 \leq q < \infty)$ by Bae [11], Chae-Lee [3] and Chen-Miao-Zhang [4]. Their method is based on the energy estimates for the iteration of the transport-diffusion type equation and they control the nonlinear term by the divergence free condition $\nabla \cdot u = 0$ and the commutator estimates.

On the other hand, despite the large number of previous studies on the well-posedness of the initial value problem (1.2), the study on the existence of time periodic solutions to the 2D quasi-geostrophic equation is hardly known.

In this manuscript, we consider the supercritical case and prove the existence of a unique suitable initial data and a unique time periodic solution to (1.1) in the scaling critical Besov space if the given time periodic external force is sufficiently small. More precisely, our main result of this paper reads as follows.

Theorem 1.1. Let $T > 0$ and $2/3 < \alpha < 1$. Let exponents p, q and r satisfy

$$\frac{2}{2\alpha - 1} < r \leq p < \frac{4}{\alpha}, \quad 1 \leq q < \infty.$$ \hspace{1cm} (1.3)

Then, there exist positive constants $\delta = \delta(\alpha, p, q, r, T)$ and $K = K(\alpha, p, q, r, T)$ such that if the given T-time periodic external force $F \in BC((0, \infty); B^0_{r, \infty}(\mathbb{R}^2))$ satisfies

$$\sup_{t > 0} \|F(t)\|_{B^0_{r, \infty}} \leq \delta,$$

then there exist a unique initial data $\theta_0 \in B^{1+\frac{2}{p}-\alpha}_{p,q}(\mathbb{R}^2)$ and a unique T-time periodic solution θ to (1.1) satisfying

$$\theta \in BC([0, \infty); B^{1+\frac{2}{p}-\alpha}_{p,q}(\mathbb{R}^2)), \quad \|\theta\|_{L^\infty(0, \infty; B^{1+\frac{2}{p}-\alpha}_{p,q})} \leq K.$$ \hspace{1cm} (1.4)

Remark 1.2.

1. If θ and F satisfy (1.1), then

$$\theta(\lambda t, \lambda x) = \lambda^{\alpha - 1}\theta(\lambda^\alpha t, \lambda x), \quad F(\lambda t, \lambda x) = \lambda^{2\alpha - 1}F(\lambda^\alpha t, \lambda x).$$
also satisfy (1.1) for all \(\lambda > 0 \). Since it holds
\[
\sup_{t \geq 0} \| \theta_\lambda(t) \|_{B^{1+\frac{2}{p}-\alpha}_{p,q}} = \sup_{t \geq 0} \| \theta(t) \|_{B^{1+\frac{2}{p}-\alpha}_{p,q}},
\]
\[
\sup_{t > 0} \| F_\lambda(t) \|_{\dot{B}^{0}_{2/(2\alpha-1),\infty}} = \sup_{t > 0} \| F(t) \|_{\dot{B}^{0}_{2/(2\alpha-1),\infty}},
\]
for all dyadic numbers \(\lambda > 0 \), the function spaces \(BC([0, \infty); B^{1+\frac{2}{p}-\alpha}_{p,q}({\mathbb R}^2)) \) and \(BC((0, \infty); \dot{B}^{0}_{r,\infty}({\mathbb R}^2)) \) in Theorem 1.1 are scaling critical and subcritical setting, respectively.

(2) Our smallness condition \(\delta \) and \(K \) depend continuously on \(T \) and go to 0 as \(T \to +0 \) or \(T \to \infty \). Hence, we can take \(\delta \) and \(K \) local uniformly for \(T \in (0, \infty) \).

(3) The assumption \(\frac{2}{3} < \alpha \) in Theorem 1.1 ensures the existence of \(p \) and \(r \) satisfying (1.3).

In the case of the Navier-Stokes equation, the existence of time periodic solutions is often proved by applying the contraction mapping principle to the corresponding integral equation. (It was in [10] that first used this idea.) However, in the case of our problem, the supercritical dissipation prevents us from using this scheme. Indeed, when we apply the idea of [10] to (1.1) on the whole time line \(\mathbb{R} \), we meet the difficulty that the smoothing effect of the fractional heat kernel \(e^{-t(-\Delta)^{\frac{\alpha}{2}}} \) is too weak to control the first order spatial derivative of the nonlinear term and it is pretty difficult to find a Banach space \(X \) satisfying
\[
\sup_{t \in \mathbb{R}} \left\| \int_{-\infty}^{t} e^{-t-\tau(-\Delta)^{\frac{\alpha}{2}}} (\mathcal{R}^\perp \theta(\tau) \cdot \nabla \theta(\tau)) d\tau \right\|_X \leq C \left(\sup_{t \in \mathbb{R}} \| \theta(t) \|_X \right)^2.
\]

As another approach, let us consider the successive approximation defined by the transport diffusion type equation
\[
\begin{cases}
\partial_t \theta^{(n+1)} + (-\Delta)^{\frac{\alpha}{2}} \theta^{(n+1)} + u^{(n)} \cdot \nabla \theta^{(n+1)} = S_{n+4} F, & t \in \mathbb{R}, x \in \mathbb{R}^2, \\
u^{(n)} = \mathcal{R}^\perp \theta^{(n)}, & t \in \mathbb{R}, x \in \mathbb{R}^2.
\end{cases}
\tag{1.5}
\]

Then, we can obtain the a priori estimates for the approximation solutions by the energy method. However, it seems to be difficult to construct a time periodic solution \(\theta^{(n+1)} \) of (1.5) when \(\theta^{(n)} \) is determined. Therefore, we are not able to proceed in parallel with the energy method of the initial value problem for the supercritical case.

We now introduce an idea to overcome these difficulties and get a time periodic solution. Our idea is to consider the successive approximation for the solution to (1.1) together with the initial data satisfying a necessary condition which ensures the existence of time periodic solutions.

We explain the necessary condition for the initial data by using the idea by Geissert-Hieber-Nguyen [8]. In [8], they considered the time periodic problem of the abstract linear equation
\[
\begin{cases}
\partial_t u + Au = F, & t > 0, \\
u(0) = u_0, & t = 0,
\end{cases}
\tag{1.6}
\]
where \(A \) denotes by a closed operator satisfying some conditions and \(F \) is given \(T \)-time periodic external force. It is proved in [8] that there exist a initial data
$u_0 = u_0 (F)$ such that (1.6) admits a T-time periodic solution

$$u(t) = e^{-tA}u_0 + \int_0^t e^{-(t-\tau)A}F(\tau)d\tau$$

in some interpolation spaces by noting that u_0, which ensures the existence of a time periodic solution, should satisfy

$$(1 - e^{-TA})u_0 = \int_0^T e^{-(T-\tau)A}F(\tau)d\tau.$$

Our approach is to incorporate this idea to the successive approximation of (1.1) and we define $\{\theta_0^{(n)}\}_{n=0}^\infty$ and $\{\theta^{(n)}\}_{n=0}^\infty$ inductively by

$$\begin{cases}
\partial_t \theta^{(n)} + (\Delta)\frac{2}{3} \theta^{(n)} + u^{(n)} \cdot \nabla \theta^{(n)} = S_{n+4}F, & 0 < t \leq T, x \in \mathbb{R}^2, \\
u^{(n)} = \mathcal{R}_\perp \theta^{(n)}, & 0 \leq t \leq T, x \in \mathbb{R}^2, \\
\theta^{(n)}(0, x) = S_{n+4} \theta_0^{(n+1)}, & x \in \mathbb{R}^2,
\end{cases}$$

where $\theta_0^{(n+1)}$ satisfies

$$(1 - e^{-T(\Delta)\frac{2}{3}}) \theta_0^{(n+1)} = \int_0^T e^{-(T-\tau)(\Delta)\frac{2}{3}} (S_{n+3}F(\tau) - u^{(n-1)}(\tau) \cdot \nabla \theta^{(n)}(\tau))d\tau$$

$$= \theta^{(n)}(T) - e^{-T(\Delta)\frac{2}{3}} \theta^{(n)}(0).$$

(See in Section 3 for the precise definition.) We then gain the uniform boundedness of the sequences $\{\theta_0^{(n)}\}_{n=0}^\infty$ and $\{\theta^{(n)}\}_{n=0}^\infty$ by the energy method if the size of the time periodic external force is sufficiently small. Then, we get a continuous in time solution θ on $[0, T]$ satisfying $\theta(T) = \theta(0) = \theta_0$ by converging the sequences and we obtain a T-time periodic solution by extending the solution periodically in time. We can also prove the uniqueness by the similar argument as in the convergence part.

This paper is organized as follows. In Section 2, we summarize some notations and introduce lemmas which are key ingredients of the proof of the main results. In Section 3, we prove Theorem 1.1. Throughout this paper, we denote by C the constant, which may differ in each line. In particular, $C = C(a_1, ..., a_n)$ means that C depends only on $a_1, ..., a_n$. We define a commutator for two operators A and B as $[A, B] = AB - BA$.

2. Preliminaries

Let $\mathcal{S}(\mathbb{R}^2)$ be the set of all Schwartz functions on \mathbb{R}^2 and let $\mathcal{S}'(\mathbb{R}^2)$ be the set of all tempered distributions on \mathbb{R}^2. For $f \in \mathcal{S}(\mathbb{R}^2)$, we define the Fourier transform and the inverse Fourier transform of f by

$$\mathcal{F}[f](\xi) = \hat{f}(\xi) := \int_{\mathbb{R}^2} e^{i\xi \cdot x} f(x) \, dx, \quad \mathcal{F}^{-1}[f](x) := \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} e^{i\xi \cdot x} f(\xi) \, d\xi,$$

respectively. $\{\varphi_j\}_{j \in \mathbb{Z}}$ is called the homogeneous Littlewood-Paley decomposition if $\varphi_0 \in \mathcal{S}(\mathbb{R}^2)$ satisfy $\text{supp } \hat{\varphi}_0 \subset \{2^{-1} \leq |\xi| \leq 2\}$, $0 \leq \hat{\varphi}_0 \leq 1$ and

$$\sum_{j \in \mathbb{Z}} \varphi_j(\xi) = 1, \quad \xi \in \mathbb{R}^2 \setminus \{0\},$$

where $\varphi_j(\xi) = \hat{\varphi}_0(2^{-j}\xi)$. Let us write

$$\Delta_j f := \varphi_j \ast f$$
for \(j \in \mathbb{Z} \) and \(f \in \mathcal{S}'(\mathbb{R}^2) \). Using the homogeneous Littlewood-Paley decomposition, we define the Besov spaces. For \(1 \leq p, q \leq \infty \) and \(s \in \mathbb{R} \), the homogeneous Besov space \(\dot{B}^s_{p,q}(\mathbb{R}^2) \) is defined by

\[
\dot{B}^s_{p,q}(\mathbb{R}^2) := \left\{ f \in \mathcal{S}'(\mathbb{R}^2) : \| f \|_{\dot{B}^s_{p,q}} < \infty \right\},
\]

\[
\| f \|_{\dot{B}^s_{p,q}} := \left\| \left\{ 2^j \| \Delta_j f \|_{L^p} \right\}_{j \in \mathbb{Z}} \right\|_{l^2(\mathbb{Z})},
\]

where \(\mathcal{S}'(\mathbb{R}^2) \) is the dual space of \(\mathcal{S}(\mathbb{R}^2) \) and \(\mathcal{S}(\mathbb{R}^2) \) is the space of rapidly decreasing smooth functions.

Note that \(\dot{B}^s_{p,q}(\mathbb{R}^2) \) is a Banach space with respect to the norm \(\| \cdot \|_{\dot{B}^s_{p,q}} \). It is well known that if \(1 \leq p, q \leq \infty \) and \(s < 2/p \), then we can identify \(\dot{B}^s_{p,q}(\mathbb{R}^2) \) as

\[
\left\{ f \in \mathcal{S}'(\mathbb{R}^2) : f = \sum_{j \in \mathbb{Z}} \Delta_j f \text{ in } \mathcal{S}'(\mathbb{R}^2) \text{ and } \| f \|_{\dot{B}^s_{p,q}} < \infty \right\}.
\]

(See for the detail in [11] and [13].) For \(s > 0 \) and \(1 \leq p, q \leq \infty \), the inhomogeneous Besov space \(B^s_{p,q}(\mathbb{R}^2) \) is defined by

\[
B^s_{p,q}(\mathbb{R}^2) := \dot{B}^s_{p,q}(\mathbb{R}^2) \cap L^p(\mathbb{R}^2),
\]

\[
\| f \|_{B^s_{p,q}} := \| f \|_{\dot{B}^s_{p,q}} + \| f \|_{L^p}.
\]

In this paper, we also use the space-time Besov spaces defined by

\[
\dot{B}^s_{p,q}(0,T; \mathbb{R}^2) := \left\{ F : (0,T) \to \mathcal{S}'(\mathbb{R}^2) : \| F \|_{L^p(0,T; \dot{B}^s_{p,q})} < \infty \right\},
\]

\[
\| F \|_{L^p(0,T; \dot{B}^s_{p,q})} := \left\| \{ 2^j \| \Delta_j F \|_{L^p(0,T; \mathbb{R}^2)} \}_{j \in \mathbb{Z}} \right\|_{l^2(\mathbb{Z})},
\]

for \(1 \leq p, q, r \leq \infty, s \in \mathbb{R} \) and \(0 < T \leq \infty \).

Next, we introduce the semigroup generated by the fractional Laplacian \((-\Delta)^{\frac{\alpha}{2}} \).

It is given explicitly by using the Fourier transform:

\[
e^{-t(-\Delta)^{\frac{\alpha}{2}}} f = F^{-1} \left[e^{-t|\xi|^{2\alpha}} \hat{f}(\xi) \right].
\]

Then, this semigroup possesses the following properties:

Lemma 2.1. Let \(\alpha > 0 \) and \(1 \leq p, q \leq \infty \). Then, the followings hold:

1. There exists a positive constant \(C = C(\alpha) \) such that

\[
\left\| e^{-t(-\Delta)^{\frac{\alpha}{2}}} \Delta_j f \right\|_{L^p} \leq Ce^{-Ct^2j^{2\alpha}} \| \Delta_j f \|_{L^p}
\]

holds for all \(t > 0 \), \(j \in \mathbb{Z} \) and \(f \in \mathcal{S}'_0(\mathbb{R}^2) \) with \(\Delta_j f \in L^p(\mathbb{R}^2) \).

2. Let \(s_1, s_2 \in \mathbb{R} \) satisfy \(s_1 \leq s_2 \). Then, there exists a positive constant \(C = C(\alpha, s_1, s_2) \) such that

\[
2^{sj} \left\| e^{-t(-\Delta)^{\frac{\alpha}{2}}} \Delta_j f \right\|_{L^p} \leq Ct^{-\frac{2sj}{\alpha}} 2^{sj} \| \Delta_j f \|_{L^p}
\]

holds for all \(t > 0 \), \(j \in \mathbb{Z} \) and \(f \in \mathcal{S}'_0(\mathbb{R}^2) \) with \(\Delta_j f \in L^p(\mathbb{R}^2) \). In particular, it holds

\[
\left\| e^{-t(-\Delta)^{\frac{\alpha}{2}}} f \right\|_{\dot{B}^s_{p,q}} \leq Ct^{-\frac{2sj}{\alpha}} \| f \|_{\dot{B}^s_{p,q}}
\]

for all \(t > 0 \) and \(f \in \dot{B}^s_{p,q}(\mathbb{R}^2) \).
Then, considering the supports of the functions of the Fourier side, we have

\[T > \frac{\sum_{k} s_k}{1} \geq \frac{1}{2} \]

Using them, we have for \(f, g \in B_0^s(\mathbb{R}^2) \),

\[e^{-t(-\Delta)^s} f \]

Let us prove (3). The density property yields that for any \(\varepsilon > 0 \), there exists a \(f_\varepsilon \in \mathcal{B}_0(\mathbb{R}^2) \) such that \(\| f - f_\varepsilon \|_{B^s_{p,q}} < \varepsilon \). Then, we see that

\[
\left\| e^{-t(-\Delta)^s} f \right\|_{B^s_{p,q}} \leq C \left\| f - f_\varepsilon \right\|_{B^s_{p,q}} + \left\| e^{-t(-\Delta)^s} f_\varepsilon \right\|_{B^s_{p,q}} \\
\leq C \varepsilon + C \varepsilon \\
\leq C \varepsilon \\
\leq C \varepsilon.
\]

Since \(\varepsilon > 0 \) is arbitrary, the proof is completed.

Next, we derive some bilinear estimates. We first recall the definition and basic properties of the Bony paraproduct formula. For \(f, g \in \mathcal{B}_0(\mathbb{R}^2) \), we decompose the product \(fg \) as

\[
fg = Tfg + R(f,g) + Tg,
\]

where

\[
Tfg := \sum_{l \in \mathbb{Z}} S_l f \Delta_l g, \quad R(f,g) := \sum_{l \in \mathbb{Z}} \sum_{|k-l| \leq 2} \Delta_k f \Delta_l g.
\]

Here, \(S_l f \) is defined by

\[
S_l f := \sum_{k \leq l-3} \Delta_k f, \quad l \in \mathbb{Z}.
\]

Then, considering the supports of the functions of the Fourier side, we have

\[
\Delta_j Tfg = \sum_{l \mid j-l \leq 3} \Delta_j (S_l f \Delta_l g), \quad \Delta_j R(f,g) = \sum_{(k,l): \max \{j,k\} \geq l-3, |k-l| \leq 2} \Delta_j (\Delta_k f \Delta_l g).
\]

Using them, we have for \(T > 0, 1 \leq p, q \leq \infty \) and \(s_1, s_2 \in \mathbb{R} \) with \(s_1 < 0 \) (if \(q = 1 \), then \(s_1 \leq 0 \)) that

\[
2^{(s_1 + s_2)} \| \Delta_j Tfg \|_{L^\infty(0,T;L^p)} \leq C \| f \|_{L^\infty(0,T;\dot{B}^{s_1}_{p,q})} \sum_{|l-j| \leq 3} 2^{s_2|l|} \| \Delta_l g \|_{L^\infty(0,T;L^p)}
\]

(2.1)

and it also holds for \(1 \leq p, q \leq \infty \) and \(s_1, s_2 \in \mathbb{R} \) with \(s_1 + s_2 > 0 \)

\[
\| R(f,g) \|_{L^\infty(0,T;\dot{B}^{s_1}_{p,q})} \leq C \| f \|_{L^\infty(0,T;\dot{B}^{s_1}_{p,q})} \| g \|_{L^\infty(0,T;\dot{B}^{s_2}_{p,q})}.
\]

(2.2)

See [2] for the idea of the proof of these estimates. From easy applications of (2.1) and (2.2), we obtain the following lemma:
Lemma 2.2. Let \(2 \leq p \leq \infty\) and \(1 \leq q \leq \infty\). Let \(s_1, s_2 \in \mathbb{R}\) satisfy \(s_1 + s_2 > 0\) and \(s_1, s_2 < 2/p\). Then, there exists a positive constant \(C = C(p, q, s_1, s_2)\) such that
\[
\|f\|_{L^\infty(0, T; \dot{B}^{s_1 + s_2 - \frac{2}{p}}_{p,q})} \leq C \|f\|_{L^\infty(0, T; \dot{B}^{s_1}_{p,q})} \|g\|_{L^\infty(0, T; \dot{B}^{s_2}_{p,q})}
\]
holds for all \(T > 0\), \(f \in \tilde{L}^\infty(0, T; \dot{B}^{s_1}_{p,q} (\mathbb{R}^2))\) and \(g \in \tilde{L}^\infty(0, T; \dot{B}^{s_2}_{p,q} (\mathbb{R}^2))\).

By the standard argument of the proof of commutator estimates (see for instance [2], [12]), we get the following lemma:

Lemma 2.3. Let \(2 \leq p \leq \infty\) and \(1 \leq q \leq \infty\). Let \(s_1, s_2 \in \mathbb{R}\) satisfy \(s_1 + s_2 > 0\), \(0 < s_1 < 1 + 2/p\) and \(s_2 < 2/p\). Then, there exists a positive constant \(C = C(p, q, s_1, s_2)\) such that
\[
\left\| \left\{ 2^{(s_1 + s_2 - \frac{2}{p})j} \|f, \Delta_j\|_{L^\infty(0, T; L^p)} \right\}_{j \in \mathbb{Z}} \right\|_{\ell^1(\mathbb{Z})} \leq C \|f\|_{L^\infty(0, T; \dot{B}^{s_1}_{p,q})} \|g\|_{L^\infty(0, T; \dot{B}^{s_2}_{p,q})}
\]
holds for all \(T > 0\), \(f \in \tilde{L}^\infty(0, T; \dot{B}^{s_1}_{p,q} (\mathbb{R}^2))\) and \(g \in \tilde{L}^\infty(0, T; \dot{B}^{s_2}_{p,q} (\mathbb{R}^2))\).

The next lemma helps us to control the product term which will appear in equations such as (3.5), (3.22) and (3.32) below.

Lemma 2.4. Let \(\lambda > 0\), \(\alpha > 0\), \(\beta \leq \alpha\), \(2 \leq p \leq \infty\) and \(1 \leq q \leq \infty\). Let \(s_1, s_2 \in \mathbb{R}\) satisfy \(s_1 + s_2 > 0\), \(2/p < s_1 < 2/p + \alpha\) and \(s_2 < 2/p\). Then, there exists a positive constant \(C = C(\lambda, \alpha, \beta, p, s_1, s_2)\) such that
\[
\left\| \left\{ 2^{(s_1 + s_2 - \frac{2}{p})j} \|\Delta_j(f) e^{-\tau(-\Delta)^{\frac{\alpha}{2}} g}\|_{L^p} \right\}_{\tau \in \mathbb{Z}} \right\|_{\ell^1(\mathbb{Z})} \leq C T^{1 - \frac{\beta}{p} - \frac{\alpha}{2} (s_1 - \frac{2}{p})} \|f\|_{L^\infty(0, T; L^p)} + \left(1 + T^{\frac{\alpha}{2} (s_1 - \frac{2}{p})} \right) \|g\|_{\dot{B}^{s_2}_{p,q}}
\]
holds for all \(T > 0\), \(f \in L^\infty(0, T; L^p(\mathbb{R}^2)) \cap \tilde{L}^\infty(0, T; \dot{B}^{s_1}_{p,q}(\mathbb{R}^2))\) and \(g \in \dot{B}^{s_2}_{p,q}(\mathbb{R}^2)\).

In particular, if \(\beta < \alpha\), then the following estimate holds:
\[
\sum_{\tau \in \mathbb{Z}} \int_0^T 2^{2j} e^{-\lambda x^2 (T - \tau)} \|\Delta_j(f(\tau) e^{-\tau(-\Delta)^{\frac{\alpha}{2}} g})\|_{\dot{B}^{s_1 + s_2 - \frac{2}{p}}_{p,q}} d\tau
\leq C T^{1 - \frac{\beta}{p} - \frac{\alpha}{2} (s_1 - \frac{2}{p})} \|f\|_{L^\infty(0, T; L^p)} + \left(1 + T^{\frac{\alpha}{2} (s_1 - \frac{2}{p})} \right) \|g\|_{\dot{B}^{s_2}_{p,q}}.
\]

Remark 2.5. Let \(1/2 < \alpha < 1\) and \(2 \leq p < 4/(2\alpha - 1)\). Then, it immediately follows from (2.3) with \(s_1 = s_2 := 1 + 2/p - \alpha\) and the continuous embedding \(\tilde{L}^\infty(0, T; \dot{B}^{0}_{p,1}(\mathbb{R}^2)) \hookrightarrow L^\infty(0, T; L^p(\mathbb{R}^2))\) that
\[
\left\| \left\{ 2^{2j} e^{-\lambda x^2 (T - \tau)} \|\Delta_j(f(\tau) e^{-\tau(-\Delta)^{\frac{\alpha}{2}} g})\|_{L^p} \right\}_{\tau \in \mathbb{Z}} \right\|_{\ell^1(\mathbb{Z})} \leq C T^{1 - \frac{\beta}{p} + \frac{2}{p} - \frac{\alpha}{2}} \|f\|_{L^\infty(0, T; L^p)} \|g\|_{\dot{B}^{s_2}_{p,q}}
\]
where \(X^{p,q}_T := \tilde{L}^\infty(0, T; \dot{B}^{0}_{p,1}(\mathbb{R}^2)) \cap \tilde{L}^\infty(0, T; \dot{B}^{s_2}_{p,q}(\mathbb{R}^2))\). If \(\beta < \alpha\), then (2.3) yields that
\[
\sum_{\tau \in \mathbb{Z}} \int_0^T 2^{2j} e^{-\lambda x^2 (T - \tau)} \|f(\tau) e^{-\tau(-\Delta)^{\frac{\alpha}{2}} g}\|_{\dot{B}^{s_1 + s_2 - \frac{2}{p}}_{p,q}} d\tau
\leq C T^{1 - \frac{\beta}{p} + \frac{2}{p} - \frac{\alpha}{2}} \|f\|_{L^\infty(0, T; L^p)} \|g\|_{\dot{B}^{s_2}_{p,q}}.
\]
Proof of Lemma 2.4. First, we prove (2.3) It follows from an inequality of (2.1) type and (2) of Lemma 2.1 that
\[
\int_0^T 2^{βj} e^{-λ2^{αj}(T−τ)} 2^{(s_1+ s_2− \frac{2}{p})j} ∥Δ_j T_f(τ) e^{−τ(−Δ)^{\frac{β}{2}}} g∥_{L^p} dτ
\]
\[\leq C \int_0^T 2^{βj} e^{-λ2^{αj}(T−τ)} ∥f(τ)∥_{B^p_{s_1+ s_2− \frac{2}{p}}} \sum_{|j−l|\leq 3} 2^{[(s_1− \frac{2}{p})+s_2]l} ∥e^{−τ(−Δ)^{\frac{β}{2}}} Δ_l g∥_{L^p} dτ \tag{2.7}
\]
By virtue of $s_1− \frac{2}{p} < α$ and $β ≤ α$, it is easy to see that
\[
\sup_{j∈Z} \int_0^T 2^{βj} e^{-λ2^{αj}(T−τ)} 2^{(s_1+ s_2− \frac{2}{p})j} dτ ≤ CT^{1− \frac{α}{p}− \frac{β}{(s_1− \frac{2}{p})}}.
\]
Hence, taking $l^p(Z)$-norm of (2.7) and using
\[
∥f∥_{L^∞(0,T;B^p_{s_1+ s_2− \frac{2}{p}})} \leq \sum_{l≥0} 2^{\frac{2}{β}l} ∥Δ_j f∥_{L^∞(0,T;L^p)} + ∥\left\{2^{\left(\frac{2}{β}−s_1\right)j}\right\}∥_{l^p(Z)} \left\{f∥_{L^∞(0,T;B^p_{s_1+ s_2− \frac{2}{p}})}\right\}
\]
\[≤ C \left(∥f∥_{L^∞(0,T;L^p)} + ∥f∥_{L^∞(0,T;B^p_{s_1+ s_2− \frac{2}{p}})}\right), \tag{2.8}
\]
we obtain that
\[
\left\{\int_0^T 2^{βj} e^{-λ2^{αj}(T−τ)} 2^{(s_1+ s_2− \frac{2}{p})j} ∥Δ_j T_f(τ) e^{−τ(−Δ)^{\frac{β}{2}}} g∥_{L^p} dτ\right\}
\]
\[≤ CT^{1− \frac{α}{p}− \frac{β}{(s_1− \frac{2}{p})}} \left(∥f∥_{L^∞(0,T;L^p)} + ∥f∥_{L^∞(0,T;B^p_{s_1+ s_2− \frac{2}{p}})}\right) \|g∥_{B^p_{s_2− \frac{2}{p}}}. \tag{2.9}
\]
Since it holds
\[
\int_0^T 2^{βj} e^{-λ2^{αj}(T−τ)} 2^{(s_1+ s_2− \frac{2}{p})j} ∥Δ_j R(f(τ), e^{−τ(−Δ)^{\frac{β}{2}}} g∥_{L^p} dτ
\]
\[≤ \int_0^T 2^{βj} e^{-λ2^{αj}(T−τ)} ∥Δ_j R(f(τ), e^{−τ(−Δ)^{\frac{β}{2}}} g∥_{L^∞(0,T;L^p)}, \tag{2.10}
\]
taking $l^q(Z)$-norm of (2.10), we see by (2.2) and (2) of Lemma 2.1 that
\[
\left\{\int_0^T 2^{βj} e^{-λ2^{αj}(T−τ)} 2^{(s_1+ s_2− \frac{2}{p})j} ∥Δ_j R(f(τ), e^{−τ(−Δ)^{\frac{β}{2}}} g∥_{L^p} dτ\right\}
\]
\[≤ \sup_{j∈Z} \int_0^T 2^{βj} e^{-λ2^{αj}(T−τ)}∥R(f, e^{−τ(−Δ)^{\frac{β}{2}}} g∥_{L^∞(0,T;B^p_{s_1+ s_2− \frac{2}{p}})}
\]
\[≤ CT^{1− \frac{α}{p}}∥f∥_{L^∞(0,T;B^p_{s_1+ s_2− \frac{2}{p}})} \|g∥_{B^p_{s_2− \frac{2}{p}}}. \tag{2.11}
\]
Here, we have used
\[
\sup_{j∈Z} \int_0^T 2^{βj} e^{λ2^{αj}(T−τ)} dτ ≤ CT^{1− \frac{α}{p}}, \quad β ≤ α. \tag{2.12}
\]
Similarly, it follows from (2.1) and (2) of Lemma 2.1 that
\[\left\| \int_0^T 2^{\beta_j} e^{-\lambda_2 \alpha_j (T-t)} 2^{(s_1+s_2-\frac{2}{p})} \Delta_j T^{-\tau(-\Delta)\frac{s}{2}} g(\tau) \right\|_{L^p} \right\|_{L^p} \leq \sup_{j \in \mathbb{Z}} \int_0^T 2^{\beta_j} e^{-\lambda_2 \alpha_j (T-t)} d\tau \left\| T^{-\tau(-\Delta)\frac{s}{2}} g(t) \right\|_{L^p(0,T;B^{-s_1+s_2-\frac{2}{p}}_{p,q})} \]
\[\leq C T^{1-\frac{\beta}{\alpha}} \left\| f \right\|_{L^p(0,T;B^{-s_1}_{2,p,q})} \left\| e^{-\lambda_2 \alpha_j (T-t)} \frac{2^{(s_1+s_2-\frac{2}{p})}}{2^{s_1}} \right\|_{L^p(0,T;B^{-s_1}_{2,p,q})} \]
\[\leq C T^{1-\frac{\beta}{\alpha}} \left\| f \right\|_{L^p(0,T;B^{-s_1}_{2,p,q})} \left\| g \right\|_{B^{-s_1}_{2,p,q}}. \tag{2.13} \]

Combining (2.9), (2.11) and (2.13), we complete the proof of (2.5). Next, we show (2.4). By similar inequality to (2.1) and (2) of Lemma 2.1 we see that
\[\sum_{j \in \mathbb{Z}} \int_0^T 2^{\beta_j} e^{-\lambda_2 \alpha_j (T-t)} \left\| T f(\tau) e^{-\tau(-\Delta)\frac{s}{2}} g \right\|_{B^{-s_1+s_2-\frac{2}{p}}_{p,q}} d\tau \]
\[\leq C \sum_{j \in \mathbb{Z}} \int_0^T 2^{\beta_j} e^{-\lambda_2 \alpha_j (T-t)} \left\| T f(\tau) e^{-\tau(-\Delta)\frac{s}{2}} g \right\|_{B^{-s_1}_{2,p,q}} d\tau \]
\[\leq C T^{1-\frac{\beta}{\alpha}} \left(\left\| f \right\|_{L^p(0,T;B^{-s_1}_{2,p,q})} + \left\| g \right\|_{L^p(0,T;B^{-s_1}_{2,p,q})} \right) \left\| g \right\|_{B^{-s_1}_{2,p,q}}. \tag{2.14} \]

We also obtain from (2.2) and (2) of Lemma 2.1 that
\[\sum_{j \in \mathbb{Z}} \int_0^T 2^{\beta_j} e^{-\lambda_2 \alpha_j (T-t)} \left\| R(f(\tau), e^{-\tau(-\Delta)\frac{s}{2}} g) \right\|_{B^{-s_1+s_2-\frac{2}{p}}_{p,q}} d\tau \]
\[\leq \sum_{j \in \mathbb{Z}} \int_0^T 2^{\beta_j} e^{-\lambda_2 \alpha_j (T-t)} d\tau \left\| R(f(\tau), e^{-\tau(-\Delta)\frac{s}{2}} g) \right\|_{L^p(0,T;B^{-s_1}_{2,p,q})} \]
\[\leq C T^{1-\frac{\beta}{\alpha}} \left\| f \right\|_{L^p(0,T;B^{-s_1}_{2,p,q})} \left\| g \right\|_{B^{-s_1}_{2,p,q}}. \tag{2.15} \]

Here, we have used the following inequalities in (2.13) and (2.15):
\[\sum_{j \in \mathbb{Z}} \int_0^T 2^{\beta_j} e^{-\lambda_2 \alpha_j (T-t)} d\tau \leq C T^{1-\frac{\beta}{\alpha}} \frac{\gamma}{\alpha}, \quad \beta < \alpha, \gamma < \alpha, \tag{2.16} \]
\[\sum_{j \in \mathbb{Z}} \int_0^T 2^{\beta_j} e^{-\lambda_2 \alpha_j (T-t)} d\tau \leq C T^{1-\frac{\beta}{\alpha}}, \quad \beta < \alpha. \]

Similarly, we have
\[\sum_{j \in \mathbb{Z}} \int_0^T 2^{\beta_j} e^{-\lambda_2 \alpha_j (T-t)} 2^{(s_1+s_2-\frac{2}{p})} \left\| T e^{-\tau(-\Delta)\frac{s}{2}} g \right\|_{B^{-s_1+s_2-\frac{2}{p}}_{p,q}} d\tau \]
\[\leq C T^{1-\frac{\beta}{\alpha}} \left\| f \right\|_{L^p(0,T;B^{-s_1}_{2,p,q})} \left\| g \right\|_{B^{-s_1}_{2,p,q}}. \tag{2.17} \]

Hence, we complete the proof by combining (2.14), (2.15) and (2.17). □

To derive some estimates for initial data related to a time periodic solution in the proof of the main results, we introduce the following two lemmas.
Lemma 2.6. Let $\alpha > 0$, $1 \leq p \leq \infty$, $1 \leq q < \infty$ and $s \in \mathbb{R}$. Then, for any $f \in \dot{B}^s_{p,q}(\mathbb{R}^2) \cap \dot{B}^{s-\alpha}_{p,q}(\mathbb{R}^2)$, the series
\begin{equation}
 u = \sum_{k=0}^{\infty} e^{-Tk(-\Delta)^{\frac{\alpha}{2}}} f
\end{equation}
converges in $\dot{B}^s_{p,q}(\mathbb{R}^2)$ and u satisfies
\begin{equation}
 (1 - e^{-T(-\Delta)^{\frac{\alpha}{2}}}) u = f \quad \text{in} \quad \dot{B}^s_{p,q}(\mathbb{R}^2).
\end{equation}
Moreover, there exists a positive constant $C = C(\alpha)$ such that
\begin{equation}
 \|u\|_{\dot{B}^s_{p,q}} \leq C \left(T^{-1} \|f\|_{\dot{B}^{s-\alpha}_{p,q}} + \|f\|_{\dot{B}^s_{p,q}} \right).
\end{equation}

Proof. Let $m, n \in \mathbb{N}$ satisfy $m < n$. Then, it follows from (1) of Lemma 2.1 that
\begin{equation}
 \begin{aligned}
 \left\| \sum_{k=m}^{n} e^{-T(k(-\Delta)^{\frac{\alpha}{2}})} f \right\|_{\dot{B}^s_{p,q}}^q = & \sum_{j \in \mathbb{Z}} \left(2^{sj} \left\| \sum_{k=m}^{n} e^{-T(k(-\Delta)^{\frac{\alpha}{2}}) \Delta_j f} \right\|_{L^p} \right)^q \\
 & \leq \sum_{j \in \mathbb{Z}} \left(2^{sj} \|\Delta_j f\|_{L^p} \sum_{k=m}^{n} C e^{-C^{-1}2^{\alpha j}k} \right)^q,
\end{aligned}
\end{equation}
where C is the same constant as in (1) of Lemma 2.1. Since it holds
\begin{equation}
\begin{aligned}
 & \sum_{j \in \mathbb{Z}} \left(2^{sj} \|\Delta_j f\|_{L^p} \frac{C}{1 - e^{-C^{-1}2^{\alpha j}T}} \right)^q \\
 & = \sum_{j:2^{\alpha j}T < 1} \left(2^{sj} \|\Delta_j f\|_{L^p} \frac{C^{-1}2^{\alpha j}T}{1 - e^{-C^{-1}2^{\alpha j}T}} \right)^q \frac{C}{1 - e^{-C^{-1}2^{\alpha j}T}} \\
 & + \sum_{j:2^{\alpha j}T \geq 1} \left(2^{sj} \|\Delta_j f\|_{L^p} \frac{C}{1 - e^{-C^{-1}2^{\alpha j}T}} \right)^q \\
 & \leq \left(1 - e^{-C^{-1}} \right)^q \left(T^{-q} \|f\|_{\dot{B}^{s-\alpha}_{p,q}}^q + \|f\|_{\dot{B}^s_{p,q}}^q \right) \\
 & \leq \left(\frac{2C}{1 - e^{-C^{-1}}} \right)^q \left(T^{-1} \|f\|_{\dot{B}^{s-\alpha}_{p,q}}^q + \|f\|_{\dot{B}^s_{p,q}}^q \right) < \infty,
\end{aligned}
\end{equation}
we have
\begin{equation}
2^{sj} \|\Delta_j f\|_{L^p} \sum_{k=m}^{n} C e^{-C^{-1}2^{\alpha j}k} \leq 2^{sj} \|\Delta_j f\|_{L^p} \sum_{k=0}^{\infty} C e^{-C^{-1}2^{\alpha j}k} \\
= 2^{sj} \|\Delta_j f\|_{L^p} \frac{C}{1 - e^{-C^{-1}2^{\alpha j}T}} \in l^q(\mathbb{Z}).
\end{equation}
Hence, it follows from (2.21) and the dominated convergence theorem that
\[\limsup_{n,m \to \infty} \left\| \sum_{k=m}^{n} e^{-T(k(-\Delta)^{\frac{\alpha}{2}})} f \right\|_{\dot{B}^s_{p,q}}^q \leq \sum_{j \in \mathbb{Z}} \left(2^{sj} \|\Delta_j f\|_{L^p} \lim_{m,n \to \infty} \sum_{k=m}^{n} C e^{-C^{-1}2^{\alpha j}k} \right)^q = 0. \]
Thus, the series (2.18) converges in \(\dot{B}^{s}_{p,q}(\mathbb{R}^2) \) and we find that \(u \) satisfies (2.20) by
\[
\left\| u \right\|^{q}_{B^{s}_{p,q}} = \sum_{j \in \mathbb{Z}} \left(2^{sj} \sum_{k=0}^{\infty} \left\| e^{-Tk(-\Delta)^{\frac{\alpha}{2}}} \Delta f \right\|_{L^p} \right)^{q}
\leq \sum_{j \in \mathbb{Z}} \left(2^{sj} \sum_{k=0}^{\infty} \left\| e^{-Tk(-\Delta)^{\frac{\alpha}{2}}} \Delta f \right\|_{L^p} \right)^{q}
\leq \sum_{j \in \mathbb{Z}} \left(2^{sj} \left\| \Delta f \right\|_{L^p} \sum_{k=0}^{\infty} C e^{-CT^{2j}\alpha} \right)^{q}
\leq \left(\frac{2C}{1 - e^{-C\alpha}} \right)^{q} \left(T^{-1} \left\| f \right\|_{\dot{B}^{s-\alpha}_{p,q}} + \left\| f \right\|_{\dot{B}^{s}_{p,q}} \right)^{q},
\]
where we have used (2.22). Finally, we show (2.19). Let
\[
u_{N} := \sum_{k=0}^{N-1} e^{-Tk(-\Delta)^{\frac{\alpha}{2}}} f, \quad N \in \mathbb{N}.
\]
Note that \(\nu_{N} \) converges to \(u \) in \(\dot{B}^{s}_{p,q}(\mathbb{R}^2) \) as \(N \to \infty \). By a simple calculation, we see that
\[
(1 - e^{-T(-\Delta)^{\frac{\alpha}{2}}}) \nu_{N} = f - e^{-TN(-\Delta)^{\frac{\alpha}{2}}} f. \tag{2.23}
\]
Here, it follows from (2) of Lemma 2.1 that
\[
\left\| (1 - e^{-T(-\Delta)^{\frac{\alpha}{2}}}) \nu_{N} - (1 - e^{-T(-\Delta)^{\frac{\alpha}{2}}}) u \right\|_{\dot{B}^{s}_{p,q}}
\leq \left\| u - \nu_{N} \right\|_{\dot{B}^{s}_{p,q}} + \left\| e^{-T(-\Delta)^{\frac{\alpha}{2}}} (u - \nu_{N}) \right\|_{\dot{B}^{s}_{p,q}} \tag{2.24}
\leq C \left\| u - \nu_{N} \right\|_{\dot{B}^{s}_{p,q}} \to 0
\]
as \(N \to \infty \) and it holds by (3) of Lemma 2.1 that
\[
\left\| e^{-TN(-\Delta)^{\frac{\alpha}{2}}} f \right\|_{\dot{B}^{s}_{p,q}} \to 0 \tag{2.25}
\]
as \(N \to \infty \). Hence, letting \(N \to \infty \) in (2.23) by (2.24) and (2.25), we find that \(u \) satisfies (2.19). This completes the proof. \(\square \)

Lemma 2.7. Let \(T > 0, \alpha > 0, 1 \leq p \leq \infty, 1 \leq q < \infty \) and \(s < 2/p \). Then, for any \(T \)-time periodic function \(F \) satisfying
\[
f(t) := \int_{0}^{t} e^{-(t-\tau)(-\Delta)^{\frac{\alpha}{2}}} F(\tau) d\tau \in BC((0, \infty); \dot{B}^{s-\alpha}_{p,q}(\mathbb{R}^2) \cap \dot{B}^{s}_{p,q}(\mathbb{R}^2)),
\]
there exists a unique element \(u_{0} \in \dot{B}^{s}_{p,q}(\mathbb{R}^2) \) such that the function
\[
u(t) = e^{-t(-\Delta)^{\frac{\alpha}{2}}} u_{0} + f(t), \quad t \geq 0
\]
is \(T \)-time periodic. Moreover, \(u_{0} \) satisfies
\[
\left\| u_{0} \right\|_{\dot{B}^{s}_{p,q}} \leq C \left(T^{-1} \left\| f(T) \right\|_{\dot{B}^{s-\alpha}_{p,q}} + \left\| f(T) \right\|_{\dot{B}^{s}_{p,q}} \right), \tag{2.26}
\]
where \(C \) is the same constant as in Lemma 2.6.
Proof. By Lemma 2.6, the series
\[u_0 := \sum_{k=0}^{\infty} e^{-Tk(-\Delta)^{\frac{\alpha}{p}}} f(T) \]
converges in \(\dot{B}^s_{p,q}(\mathbb{R}^2) \) and \(u_0 \) satisfies (2.26) and
\[(1 - e^{-T(-\Delta)^{\frac{\alpha}{p}}})u_0 = f(T). \] (2.27)

By the periodicity of \(F \), we have
\[f(t + T) = f(t) + e^{-t(-\Delta)^{\frac{\alpha}{p}}} f(T), \quad t > 0. \] (2.28)

Therefore, it follows from (2.27) and (2.28) that
\[u(t + T) = e^{-t(-\Delta)^{\frac{\alpha}{p}}} e^{-T(-\Delta)^{\frac{\alpha}{p}}} u_0 + f(t + T) = e^{-t(-\Delta)^{\frac{\alpha}{p}}} (u_0 - f(T)) + f(t) + e^{-t(-\Delta)^{\frac{\alpha}{p}}} f(T) = u(t) \]
for all \(t > 0 \). Hence, \(u(t) \) is \(T \)-time periodic. Next, we prove the uniqueness. Let \(v_0 \) be an arbitrary element of \(\dot{B}^s_{p,q}(\mathbb{R}^2) \) such that \(v(t) := e^{-t(-\Delta)^{\frac{\alpha}{p}}} v_0 + f(t) \) is a \(T \)-time periodic function. Then, since \(u_0 - v_0 = u(NT) - v(NT) = e^{-NT(-\Delta)^{\frac{\alpha}{p}}} (u_0 - v_0) \) holds for all \(N \in \mathbb{N} \) by the periodicity, we obtain by (3) of Lemma 2.1 that
\[\| u_0 - v_0 \|_{\dot{B}^s_{p,q}} = \| e^{-NT(-\Delta)^{\frac{\alpha}{p}}} (u_0 - v_0) \|_{\dot{B}^s_{p,q}} \to 0 \]
as \(N \to \infty \). Therefore, we have \(u_0 = v_0 \) in \(\dot{B}^s_{p,q}(\mathbb{R}^2) \) and this completes the proof. \(\Box \)

Finally, we recall a positivity lemma for the \(L^p \)-energy of the fractional dissipation:

Lemma 2.8 ([1], [15]). Let \(0 < \alpha < 2 \) and \(2 \leq p < \infty \). Then, there exists a positive constant \(\lambda = \lambda(\alpha, p) \) such that
\[\int_{\mathbb{R}^2} |\Delta_j f(x)|^{p-2} \Delta_j f(x)(-\Delta)^{\frac{\alpha}{p}} \Delta_j f(x) dx \geq \lambda 2^{\alpha j} \| \Delta_j f \|_{L^p}^p \]
for all \(j \in \mathbb{Z} \) and \(f \in \mathcal{S}''(\mathbb{R}^2) \) with \(\Delta_j f \in L^p(\mathbb{R}^2) \).

3. Proof of Main Results

In this section, we prove Theorem 1.1. Let \(T, \alpha, p, q \) and \(r \) satisfy the assumptions of Theorem 1.1 and let \(\sigma \) satisfy \(\alpha - 2/p < \sigma < 2/p \). We use the following notation for simplicity in this section:
\[s_c := 1 + \frac{2}{p} - \alpha, \]
\[X^{p,q}_T := \tilde{L}^\infty(0, T; \dot{B}^0_{p,1}(\mathbb{R}^2)) \cap \tilde{L}^\infty(0, T; \dot{B}^{s_c}_{p,q}(\mathbb{R}^2)). \]

We consider the successive approximation sequences \(\{ \theta^{(n)}_0 \}_{n=0}^{\infty} \subset \dot{B}^0_{p,1}(\mathbb{R}^2) \cap \dot{B}^{s_c}_{p,q}(\mathbb{R}^2) \) of the initial data and \(\{ \theta^{(n)} \}_{n=0}^{\infty} \subset X^{p,q}_T \) of solutions to (1.1) defined inductively as follows:
First, let \(\theta_0^{(0)}(x) = 0 \) and \(\theta^{(0)}(t, x) = 0 \). Next, if \(\theta_0^{(n)} \) and \(\theta^{(n)} \) are determined, then we define \(\theta_0^{(n+1)} \) and \(\theta^{(n+1)} \) by the following linear equation:

\[
\begin{align*}
\partial_t \theta^{(n+1)} + (-\Delta)^{\frac{\alpha}{2}} \theta^{(n+1)} + u^{(n)} \cdot \nabla \theta^{(n+1)} &= S_{n+4} F, \quad 0 < t \leq T, x \in \mathbb{R}^2, \\
u^{(n)} &= \mathcal{R}^{\perp} \theta^{(n)}, \\
\theta^{(n+1)}(0, x) &= S_{n+4} \theta_0^{(n+1)},
\end{align*}
\] (3.1)

where \(\theta_0^{(n+1)} \) is given by

\[
\theta_0^{(n+1)} := \sum_{k=0}^{\infty} e^{-T(-\Delta)^{\frac{\alpha}{2}}} \left(\theta^{(n)}(T) - e^{-T(-\Delta)^{\frac{\alpha}{2}}} \theta^{(n)}(0) \right).
\] (3.2)

For \(n \in \mathbb{N} \cup \{0\} \), we put \(\psi^{(n)}(t) := \theta^{(n)}(t) - e^{-t(-\Delta)^{\frac{\alpha}{2}}} \theta^{(n)}(0) \) and

\[
\begin{align*}
A_n := \max \left\{ \| \theta_0^{(n)} \|_{\dot{B}_{p,1}^{0} \cap \dot{B}_{p,q}^{s_0}}, \| \theta^{(n)} \|_{X_{T}^{p,q}} \right\}, \\
B_n := \| \theta_0^{(n+1)} - \theta_0^{(n)} \|_{\dot{B}_{p,q}^{s_0}} + \| \theta^{(n+1)} - \theta^{(n)} \|_{\dot{L}_{t,x}^{\infty}(0,T;\dot{B}_{p,q}^{s_0})}.
\end{align*}
\]

The well-definedness of the sequences is assured if the series in \((3.2) \) converges in \(\dot{B}_{p,1}^{0}(\mathbb{R}^2) \cap \dot{B}_{p,q}^{s_0}(\mathbb{R}^2) \). In the following lemma, we check the convergence and derive some properties of the sequences.

Lemma 3.1. Let \(n \) be a positive integer. Assume that \(\theta^{(n)} \in \dot{B}_{p,1}^{0}(\mathbb{R}^2) \cap \dot{B}_{p,q}^{s_0}(\mathbb{R}^2) \) and \(\theta^{(n)} \in X_{T}^{p,q} \). Then, for every \(F \in BC((0, \infty); \dot{B}_{p,1}^{0}(\mathbb{R}^2)) \), the series in \((3.2) \) converges in \(\dot{B}_{p,1}^{0}(\mathbb{R}^2) \cap \dot{B}_{p,q}^{s_0}(\mathbb{R}^2) \) and it holds

\[
(1 - e^{-T(-\Delta)^{\frac{\alpha}{2}}}) \theta_0^{(n+1)} = \theta^{(n)}(T) - e^{-T(-\Delta)^{\frac{\alpha}{2}}} \theta^{(n)}(0)
\] (3.3)
in \(\dot{B}_{p,1}^{0}(\mathbb{R}^2) \cap \dot{B}_{p,q}^{s_0}(\mathbb{R}^2) \). Moreover, there exist positive constants \(\delta_1 = \delta_1(\alpha, p, q, r, T) \) and \(C_1 = C_1(\alpha, p, q, r, T) \) such that if \(F \) satisfies

\[
sup_{t > 0} \| F(t) \|_{\dot{B}_{p,1}^{0}} \leq \delta_1,
\]

then it holds

\[
\begin{align*}
\sup_{m \in \mathbb{N} \cup \{0\}} \| \theta_0^{(m)} \|_{\dot{B}_{p,1}^{0} \cap \dot{B}_{p,q}^{s_0}} &\leq 2C_1 \sup_{t > 0} \| F(t) \|_{\dot{B}_{p,1}^{0}}, \\
\sup_{m \in \mathbb{N} \cup \{0\}} \| \theta^{(m)} \|_{X_{T}^{p,q}} &\leq 2C_1 \sup_{t > 0} \| F(t) \|_{\dot{B}_{p,q}^{s_0}}.
\end{align*}
\] (3.4)

Proof. To prove the convergence of the series in \((3.2) \) in \(\dot{B}_{p,1}^{0}(\mathbb{R}^2) \cap \dot{B}_{p,q}^{s_0}(\mathbb{R}^2) \), Lemma 2.6 yields that it suffices to check

\[
\theta^{(n)}(T) - e^{-T(-\Delta)^{\frac{\alpha}{2}}} \theta^{(n)}(0) = \psi^{(n)}(T)
\]

in \(\left(\dot{B}_{p,q}^{s_0}(\mathbb{R}^2) \cap \dot{B}_{p,q}^{-s_0}(\mathbb{R}^2) \right) \cap \left(\dot{B}_{p,1}^{0}(\mathbb{R}^2) \cap \dot{B}_{p,q}^{-s}(\mathbb{R}^2) \right) \).

Since \(\psi^{(n)} \) satisfies

\[
\partial_t \psi^{(n)} + (-\Delta)^{\frac{\alpha}{2}} \psi^{(n)} + u^{(n-1)} \cdot \nabla \psi^{(n)} + u^{(n-1)} \cdot \nabla e^{-t(-\Delta)^{\frac{\alpha}{2}}} \theta^{(n)}(0) = S_{n+4} F,
\] (3.5)
applying Δ_j to (3.5), we see that

$$
\partial_t \Delta_j \psi^{(n)} + (-\Delta)^{\frac{p}{2}} \Delta_j \psi^{(n)} = S_{n+4} \Delta F + \left[u^{(n-1)}, \Delta_j \right] \cdot \nabla \psi^{(n)} - u^{(n-1)} \cdot \nabla \Delta_j \psi^{(n)} - \Delta_j (u^{(n-1)} \cdot \nabla e^{-t(-\Delta)^{\frac{p}{2}}} \theta^{(n)}(0)).
$$

Multiplying (3.6) by $p |\Delta_j \psi^{(n)}|^{p-2} \Delta_j \psi^{(n)}$ and integrating over \mathbb{R}^2, we have by the Hölder inequality that

$$
\frac{d}{dt} \left(\| \Delta_j \psi^{(n)}(t) \|_{L^p}^p \right) + p \int_{\mathbb{R}^2} |\Delta_j \psi^{(n)}(t, x)|^{p-2} \Delta_j \psi^{(n)}(t, x)(-\Delta)^{\frac{p}{2}} \Delta_j \psi^{(n)}(t, x) dx
\leq C p \| \Delta_j F(t) \|_{L^p} \| \Delta_j \psi^{(n)}(t) \|_{L^p}^{p-1} + p \left[\| \psi^{(n)}(t) \|_{L^p} \| \Delta_j \psi^{(n)}(t) \|_{L^p}^{p-1} \right.
\left. - p \int_{\mathbb{R}^2} |\Delta_j \psi^{(n)}(t, x)|^{p-2} \Delta_j \psi^{(n)}(t, x) u^{(n-1)}(t, x) \cdot \nabla \Delta_j \psi^{(n)}(t, x) dx
+ p \| \Delta_j (u^{(n-1)}(t) \cdot \nabla e^{-t(-\Delta)^{\frac{p}{2}}} \theta^{(n)}(0)) \|_{L^p} \| \Delta_j \psi^{(n)}(t) \|_{L^p}^{p-1}.
$$

(3.7)

By Lemma 2.8, we obtain that

$$
\int_{\mathbb{R}^2} |\Delta_j \psi^{(n)}(t, x)|^{p-2} \Delta_j \psi^{(n)}(t, x)(-\Delta)^{\frac{p}{2}} \Delta_j \psi^{(n)}(t, x) dx \geq \lambda 2^{\alpha_j} \| \Delta_j \psi^{(n)}(t) \|_{L^p}^p.
$$

(3.8)

for some $\lambda = \lambda(\alpha, p) > 0$. On the other hand, it follows from the divergence free condition $\nabla \cdot u^{(n-1)} = 0$ that

$$
\int_{\mathbb{R}^2} |\Delta_j \psi^{(n)}(t, x)|^{p-2} \Delta_j \psi^{(n)}(t, x) u^{(n-1)}(t, x) \cdot \nabla \Delta_j \psi^{(n)}(t, x) dx = 0.
$$

(3.9)

Substituting (3.8) and (3.9) into (3.7), we have

$$
\frac{d}{dt} \| \Delta_j \psi^{(n)}(t) \|_{L^p} + \lambda 2^{\alpha_j} \| \Delta_j \psi^{(n)}(t) \|_{L^p}
\leq C \| \Delta_j F(t) \|_{L^p} + \| [u^{(n-1)}(t), \Delta_j] \cdot \nabla \psi^{(n)}(t) \|_{L^p}
+ \| \Delta_j (u^{(n-1)}(t) \cdot \nabla e^{-t(-\Delta)^{\frac{p}{2}}} \theta^{(n)}(0)) \|_{L^p},
$$

which implies that

$$
\| \Delta_j \psi^{(n)}(T) \|_{L^p} \leq C \int_0^T e^{-\lambda 2^{\alpha_j} (T-\tau)} \| \Delta_j F(\tau) \|_{L^p} d\tau
+ \int_0^T e^{-\lambda 2^{\alpha_j} (T-\tau)} \| [u^{(n-1)}(\tau), \Delta_j] \cdot \nabla \psi^{(n)}(\tau) \|_{L^p} d\tau
+ \int_0^T e^{-\lambda 2^{\alpha_j} (T-\tau)} \| \Delta_j (u^{(n-1)}(\tau) \cdot \nabla e^{-t(-\Delta)^{\frac{p}{2}}} \theta^{(n)}(0)) \|_{L^p} d\tau.
$$

(3.10)
Let $s \in \{s_c, s_c - \alpha\}$. Multiplying (3.10) by 2^{sj}, we have
\[2^{sj}\|\Delta_j \psi^{(n)}(T)\|_{L^p} \leq C \int_0^T 2^{(s+\frac{2}{r}-\frac{s}{q})j} e^{-\lambda 2^{\alpha j}(T-\tau)} \|\Delta_j F(\tau)\|_{L^q} d\tau + \int_0^T 2^{(\alpha+s-s_c)j} e^{-\lambda 2^{\alpha j}(T-\tau)} d\tau \]
\[\times 2^{(2s_c-1-s)j} ||u^{(n-1)}, \Delta_j|| \cdot \nabla \psi^{(n)}||_{L^\infty(0,T;L^p)} \]
\[+ \int_0^T 2^{(\alpha+s-s_c)j} e^{-\lambda 2^{\alpha j}(T-\tau)} \]
\[\times 2^{(2s_c-1-s)j} ||\Delta_j (u^{(n-1)}(\tau) \cdot \nabla e^{-\tau(-\Delta)\frac{\alpha}{2}} \theta^{(n)}(0))||_{L^p} d\tau. \]

Taking l^q-norm of (3.11), we see by (2.12) that
\[||\psi^{(n)}(T)||_{B_{p,q}^s} \leq C \sum_{j \in \mathbb{Z}} \int_0^T 2^{(s+\frac{2}{r}-\frac{s}{q})j} e^{-\lambda 2^{\alpha j}(T-\tau)} d\tau \sup_{t>0} ||F(t)||_{B_{p,\infty}^0} \]
\[+ CT^{\frac{2s_c-1}{\alpha}} \left\{ 2^{(2s_c-1-s)j} ||u^{(n-1)}, \Delta_j|| \cdot \nabla \psi^{(n)}||_{L^\infty(0,T;L^p)} \right\}_{j \in \mathbb{Z}} \]
\[+ \left\{ \int_0^T 2^{(\alpha+s-s_c)j} e^{-\lambda 2^{\alpha j}(T-\tau)} \times 2^{(2s_c-1-s)j} ||\Delta_j (u^{(n-1)}(\tau) \cdot \nabla e^{-\tau(-\Delta)\frac{\alpha}{2}} \theta^{(n)}(0))||_{L^p} d\tau \right\}_{j \in \mathbb{Z}}. \]

Hence, it follows from Lemma 2.23 and (2.5) that
\[||\psi^{(n)}(T)||_{B_{p,q}^s} \leq CT^{-\frac{1}{\alpha}(s+\frac{2}{r}-\frac{s}{q})} \sup_{t>0} ||F(t)||_{B_{p,\infty}^0} \]
\[+ CT^{\frac{2s_c-1}{\alpha}} ||u^{(n-1)}||_{L^\infty(0,T;B_{p,q}^{s_c})} ||\psi^{(n)}||_{L^\infty(0,T;B_{p,q}^{s_c})} \]
\[+ CT^{\frac{2s_c-1}{\alpha}} (T - \frac{1}{\alpha} + 1) ||u^{(n-1)}||_{X_{p,q}^{s_c}} ||\theta^{(n)}(0)||_{B_{p,q}^{s_c}}. \]

Using
\[||\psi^{(n)}||_{L^\infty(0,T;B_{p,q}^{s_c})} \leq ||\theta^{(n)}||_{L^\infty(0,T;B_{p,q}^{s_c})} + ||e^{-t(-\Delta)\frac{\alpha}{2}} \theta^{(n)}(0)||_{L^\infty(0,T;B_{p,q}^{s_c})} \]
\[\leq ||\theta^{(n)}||_{L^\infty(0,T;B_{p,q}^{s_c})} + C ||\theta^{(n)}(0)||_{B_{p,q}^{s_c}} \]
\[\leq ||\theta^{(n)}||_{X_{p,q}^{s_c}} + C ||\theta^{(n)}(0)||_{B_{p,q}^{s_c}} \]
\[\leq CA_n \]
and the boundedness of the Riesz transform on the homogeneous space-time Besov spaces, we obtain
\[||\psi^{(n)}(T)||_{B_{p,q}^s} \leq CT^{-\frac{1}{\alpha}(s+\frac{2}{r}-\frac{s}{q})} \sup_{t>0} ||F(t)||_{B_{p,\infty}^0} \]
\[+ CT^{\frac{2s_c-1}{\alpha}} ||\theta^{(n-1)}||_{L^\infty(0,T;B_{p,q}^{s_c})} A_n \]
\[+ CT^{\frac{2s_c-1}{\alpha}} (T - \frac{1}{\alpha} + 1) ||\theta^{(n-1)}||_{X_{p,q}^{s_c}} ||\theta^{(n)}(0)||_{B_{p,q}^{s_c}}. \]
Hence, it follows from (3.12) and Lemma 2.6 that
\[
\|\theta_0^{(n+1)}\|_{\dot{B}_{p,q}^{s_c}} \leq C(T^{-1}\|\psi^{(n)}(T)\|_{\dot{B}_{p,q}^{-\alpha}} + \|\psi^{(n)}(T)\|_{\dot{B}_{p,q}^{s_c}}) \\
\leq CT^{\frac{1}{(2\alpha-1-\frac{2}{p})}} \sup_{t>0} \|F(t)\|_{\dot{B}_{p,q}^{s_c}} + C(1 + T^{\frac{1}{(2\alpha-1-\frac{2}{p})}})A_{n-1}A_n. \tag{3.13}
\]

Let \(s' := s - s_c \in \{-\alpha, 0\}\). Multiplying (3.10) by \(2^j\) and taking \(l^1(Z)\)-norm, we see that
\[
\|\psi^{(n)}(T)\|_{\dot{B}_{p,q}^{s'}} \leq C \sum_{j \in Z} \int_0^T 2^{(s' + \frac{2}{p} - \frac{2}{p})j} e^{-\lambda_{2^n} j} d\tau \sup_{t>0} \|F(t)\|_{\dot{B}_{p,q}^{s_c}} \\
+ \sum_{j \in Z} \int_0^T 2^{(\alpha + s - 2s_c)j} e^{-\lambda_{2^n} j} d\tau \\
\times \left\| \left\{ 2^{(2s_c - \frac{2}{p})j} \| [u^{(n-1)}, \Delta_j] \cdot \nabla \psi^{(n)} \|_{L^\infty(0,T;L^p)} \right\}_{j \in Z} \right\|_{L^1(Z)} \\
+ \sum_{j \in Z} \int_0^T 2^{(\alpha + s - 2s_c)j} e^{-\lambda_{2^n} j} d\tau \\
\times \|u^{(n-1)}(\tau) \cdot \nabla e^{-\tau(-\Delta)^{\frac{\alpha}{p}}} \theta^{(n)}(0)\|_{\dot{B}_{p,q}^{s_c}} dt.
\]

It follows from Lemma 2.3 and (2.6) that
\[
\|\psi^{(n)}(T)\|_{\dot{B}_{p,q}^{s'}} \leq CT^{\frac{1}{(2\alpha-1-\frac{2}{p})}} \sup_{t>0} \|F(t)\|_{\dot{B}_{p,q}^{s_c}} \\
+ CT^{\frac{2s_c - \alpha}{\alpha}} \|u^{(n-1)}\|_{L^\infty(0,T;\dot{B}_{p,q}^{s_c})} \|\psi^{(n)}\|_{L^\infty(0,T;\dot{B}_{p,q}^{s_c})} \\
+ CT^{\frac{2s_c - \alpha}{\alpha}} (T^{1 - \frac{1}{\alpha}} + 1) \|u^{(n-1)}\|_{L^p_{T}} \|\theta^{(n)}(0)\|_{\dot{B}_{p,q}^{s_c}}.
\]

Therefore, by the same argument as above, we have
\[
\|\psi^{(n)}(T)\|_{\dot{B}_{p,q}^{s'}} \leq CT^{\frac{1}{(2\alpha-1-\frac{2}{p})}} \sup_{t>0} \|F(t)\|_{\dot{B}_{p,q}^{s_c}} \\
+ CT^{\frac{4s_c - \alpha}{\alpha}} (1 + T^{\frac{1}{(2\alpha-1-\frac{2}{p})}})A_{n-1}A_n
\]
and we see that the series in (3.2) converges in \(\dot{B}_{p,q}^{0}(\mathbb{R}^2)\) and
\[
\|\theta_0^{(n+1)}\|_{\dot{B}_{p,q}^{s_c}} \leq C(T^{-1}\|\psi^{(n)}(T)\|_{\dot{B}_{p,q}^{-\alpha}} + \|\psi^{(n)}(T)\|_{\dot{B}_{p,q}^{s_c}}) \\
\leq CT^{\frac{1}{\alpha}} T^{\frac{1}{(2\alpha-1-\frac{2}{p})}} \sup_{t>0} \|F(t)\|_{\dot{B}_{p,q}^{s_c}} + CT^{\frac{1}{\alpha}} (1 + T^{\frac{1}{(2\alpha-1-\frac{2}{p})}})A_{n-1}A_n. \tag{3.14}
\]

Combining (3.12) and (3.14), we find that Lemma 2.6 implies the series in (3.2) converges in \(\dot{B}_{p,q}^{0}(\mathbb{R}^2) \cap \dot{B}_{p,q}^{s_c}(\mathbb{R}^2)\) and (3.3) also holds.

Next, we prove (3.4). Since \(\Delta_j \theta^{(n+1)}\) satisfies
\[
\partial_t \Delta_j \theta^{(n+1)} + (-\Delta)^{\frac{\alpha}{p}} \Delta_j \theta^{(n+1)} \\
= S_{n+4} \Delta_j F + [u^{(n)}, \Delta_j] \cdot \nabla \theta^{(n+1)} - u^{(n)} \cdot \nabla \Delta_j \theta^{(n+1)},
\]
On the other hand, by (3.15), we see that
\[
\|\Delta_j \theta^{(n+1)}(t)\|_{L^p} \leq e^{-\lambda_2 \alpha_1 t} \|\Delta_j \theta^{(n)}(0)\|_{L^p} + C \int_0^t e^{-\lambda_2 \alpha_1 (t-\tau)} \|\Delta_j F(\tau)\|_{L^p} \, d\tau
\]
\[
+ \int_0^t e^{\lambda_2 \alpha_1 (t-\tau)} \|f^{(n+1)}(\tau)\|_{L^p} \, d\tau,
\]
which implies that
\[
2^{\alpha_j} \|\Delta_j \theta^{(n+1)}(t)\|_{L^p}
\]
\[
\leq C 2^{\alpha_j} \|\Delta_j \theta_0^{(n+1)}\|_{L^p} + C \int_0^t 2^{(1+\frac{2}{p} - \alpha)} e^{-\lambda_2 \alpha_1 (t-\tau)} \|\Delta_j F(\tau)\|_{L^p} \, d\tau
\]
\[
+ \int_0^t 2^{\alpha_j} e^{-\lambda_2 \alpha_1 (t-\tau)} \|f^{(n+1)}(\tau)\|_{L^p} \, d\tau,
\]
Taking \(L^\infty_t(0,T)\)-norm of (3.16) and then taking \(l^q(Z)\)-norm, we see by Lemma 2.8 that
\[
\|\theta^{(n+1)}\|_{L^\infty_t(0,T; B^\infty_{p,q})}
\]
\[
\leq C \|\theta_0^{(n+1)}\|_{B^\infty_{p,q}} + C T \frac{1}{\alpha_2 - \frac{\alpha_1}{2}} \sup_{t>0} \|F(t)\|_{B^\infty_{2,\infty}}
\]
\[
+ C \left\| \left\{ 2^{(2\alpha_2 - 1 - \frac{\alpha_1}{2})} \|f^{(n+1)}(\tau)\|_{L^\infty_t(0,T;L^p)} \right\}_{j \in Z} \right\|_{l^1(Z)}
\]
\[
\leq C \|\theta_0^{(n+1)}\|_{B^\infty_{p,q}} + C T \frac{1}{\alpha_2 - \frac{\alpha_1}{2}} \sup_{t>0} \|F(t)\|_{B^\infty_{2,\infty}}
\]
\[
+ C \|\theta^{(n)}\|_{L^\infty_t(0,T; B^\infty_{p,q})} \|\theta^{(n+1)}\|_{L^\infty_t(0,T; B^\infty_{p,q})}.
\]
On the other hand, by (3.15), we see that
\[
\|\Delta_j \theta^{(n+1)}(t)\|_{L^p}
\]
\[
\leq C \|\Delta_j \theta_0^{(n+1)}\|_{L^p} + C \int_0^t 2^{(\frac{2}{p} - \frac{1}{2})} e^{-\lambda_2 \alpha_1 (t-\tau)} d\tau \sup_{t>0} \|F(t)\|_{B^\infty_{2,\infty}}
\]
\[
+ \int_0^t 2^{(\alpha_2 - \frac{1}{2})} e^{-\lambda_2 \alpha_1 (t-\tau)} d\tau
\]
\[
\times \left\| \left\{ 2^{(2\alpha_2 - 1 - \frac{\alpha_1}{2})} \|f^{(n+1)}(\tau)\|_{L^\infty_t(0,T;L^p)} \right\}_{j \in Z} \right\|_{l^1(Z)}.
\]
Taking \(L^\infty_t(0,T)\)-norm and then \(l^1(Z)\)-norm of (3.18), we have
\[
\|\theta^{(n+1)}\|_{L^\infty_t(0,T; B^0_{p,1})}
\]
\[
\leq C \|\theta_0^{(n+1)}\|_{B^0_{p,1}} + C \sum_{j \in Z} \sup_{0 \leq t \leq T} \int_0^t 2^{(1+\frac{2}{p} - \alpha)} e^{-\lambda_2 \alpha_1 (t-\tau)} d\tau \sup_{t>0} \|F(t)\|_{B^0_{2,\infty}}
\]
\[
+ \sum_{j \in Z} \sup_{0 \leq t \leq T} \int_0^t 2^{(\alpha_2 - \frac{1}{2})} e^{-\lambda_2 \alpha_1 (t-\tau)} d\tau
\]
\[
\times \left\| \left\{ 2^{(2\alpha_2 - 1 - \frac{\alpha_1}{2})} \|f^{(n+1)}(\tau)\|_{L^\infty_t(0,T;L^p)} \right\}_{j \in Z} \right\|_{l^1(Z)}.
\]
Using Lemma 2.3 and the second inequality of (2.16) we obtain that
\[\|\theta^{(n+1)}\|_{L^\infty(0,T;\dot B^\sigma_{p,q})} \leq C \|\theta_0^{(n+1)}\|_{\dot B^\sigma_{p,q}} + CT^{\frac{2}{(2\alpha-1)^2}} \sup_{t>0} \|F(t)\|_{\dot B^\sigma_{p,q}} \]
\[+ CT^{\frac{2}{(2\alpha-1)^2}} \|\theta^{(n)}\|_{L^\infty(0,T;\dot B^\sigma_{p,q})} \|\theta^{(n+1)}\|_{L^\infty(0,T;\dot B^\sigma_{p,q})}. \]

(3.19)

Hence, combining estimates (3.12), (3.14), (3.17) and (3.19), we obtain
\[A_{n+1} \leq C_1 \sup_{t>0} \|F(t)\|_{\dot B^\sigma_{p,q}} + C_1 A_{n-1} A_n + C_1 A_n A_{n+1} \]
for some \(C_1 = C_1(\alpha, p, q, r, T). \)

On the other hand, since \(\psi \) and Lemma 2.6, we consider the estimates of
\[\dot B^\sigma_{p,q} \]
then it holds
\[\|\theta^{(n+1)}\|_{L^\infty(0,T;\dot B^\sigma_{p,q})} < \infty. \]

(3.20)

Next lemma ensures the convergence of the approximation sequences.

Lemma 3.2. There exists a positive constant \(\delta_2 = \delta_2(\alpha, p, q, r, \sigma, T) \leq \delta_1 \) such that if \(F \in BC((0,\infty); \dot B^\sigma_{p,q}(\mathbb{R}^2)) \) satisfies
\[\sup_{t>0} \|F(t)\|_{\dot B^\sigma_{p,q}} \leq \delta_2, \]
then it holds
\[\sum_{n=0}^\infty \|\theta_0^{(n+1)} - \theta_0^{(n)}\|_{\dot B^\sigma_{p,q}} + \sum_{n=0}^\infty \|\theta^{(n+1)} - \theta^{(n)}\|_{L^\infty(0,T;\dot B^\sigma_{p,q})} < \infty. \]

Proof. Due to
\[\theta_0^{(n+2)} - \theta_0^{(n+1)} = \sum_{k=0}^\infty e^{-Tk(-\Delta)^{\frac{\sigma}{2}}} (\psi_0^{(n+1)}(T) - \psi_0^{(n)}(T)) \]
and Lemma 2.6, we consider the estimates of \(\psi^{(n+1)}(T) - \psi^{(n)}(T) \) in \(\dot B^\sigma_{p,q}(\mathbb{R}^2) \cap \dot B^\sigma_{p,q}(\mathbb{R}^2). \) Since \(\psi_0^{(n+1)} - \psi_0^{(n)} \) satisfies
\[\partial_t (\psi^{(n+1)} - \psi^{(n)}) + (\Delta)^{\frac{\sigma}{2}} (\psi_0^{(n+1)} - \psi_0^{(n)}) + u^{(n)} \cdot \nabla (\psi_0^{(n+1)} - \psi_0^{(n)}) \]
\[+ u^{(n)} \cdot \nabla e^{-t(-\Delta)^{\frac{\sigma}{2}}} (\theta^{(n+1)}(0) - \theta^{(n)}(0)) + (u^{(n)} - u^{(n-1)}) \cdot \nabla \theta^{(n)} = \Delta_{n+1} F, \]

(3.22)
we see that

\[
\begin{align*}
\partial_s \Delta_j (\psi^{(n+1)} - \psi^{(n)}) + (-\Delta) \frac{\partial}{\partial \tau_j} \Delta_j (\psi^{(n+1)} - \psi^{(n)}) & \\
= \Delta_{n+1} \Delta_j F + [u^{(n)}, \Delta_j] \cdot \nabla (\psi^{(n+1)} - \psi^{(n)}) - u^{(n)} \cdot \nabla \Delta_j (\psi^{(n+1)} - \psi^{(n)}) & \\
- \Delta_j (u^{(n)} \cdot \nabla e^{-t(-\Delta)\frac{\partial}{\partial \tau_j}} (\theta^{(n+1)}(0) - \theta^{(n)}(0))) + \Delta_j (u^{(n)} - u^{(n-1)}) \cdot \nabla \theta^{(n)}.
\end{align*}
\]

Thus, the similar energy calculation as in the proof of Lemma 3.1 yields that

\[
\begin{align*}
\| \Delta_j (\psi^{(n+1)}(T) - \psi^{(n)}(T)) \|_{L^p} & \\
& \leq C \int_0^T e^{-\lambda_0s_j(T-\tau)} 2^{(\frac{1}{p}-\frac{1}{2})j} \| \Delta_j F(\tau) \|_{L^p} \, d\tau \\
& + C T^{\frac{2-s}{q}} \left\{ \left\| 2^{\left(s_j + (\sigma-1) - \frac{\sigma}{p}\right)j} [u^{(n)}, \Delta_j] \cdot \nabla (\psi^{(n+1)} - \psi^{(n)}) \|_{L^\infty(0,T;L^p)} \right\}_{j \in \mathbb{Z}} \\
& + \left\{ \left\| \int_0^T 2^{(\sigma-\sigma)j} e^{-\lambda_0s_j(T-\tau)} 2^{(s_j + (\sigma-1) - \frac{\sigma}{p})j} \right. \\
& \times | \Delta_j (u^{(n)} \cdot \nabla e^{-t(-\Delta)\frac{\partial}{\partial \tau_j}} (\theta^{(n+1)}(0) - \theta^{(n)}(0))) \|_{L^p} \, d\tau \right\}_{j \in \mathbb{Z}} \\
& + C T^{\frac{2-s}{q}} \| u^{(n)} - u^{(n-1)} \cdot \nabla \theta^{(n)} \|_{L^\infty(0,T;B_{p,q}^{\sigma + (\sigma-1) - \frac{\sigma}{p}})}.
\end{align*}
\]

Let \(s \in \{\sigma, \sigma - \alpha\} \). Multiplying this by \(2^{s_j} \) and taking \(l^q(\mathbb{Z}) \)-norm of this, we obtain that

\[
\| \psi^{(n+1)}(T) - \psi^{(n)}(T) \|_{B_{p,q}}^q \leq C T^{\frac{2-s}{q}} T^{\frac{1}{2}(2\alpha-1-\frac{s}{2})} 2^{-s_j + \alpha} \sup_{\tau_0 > 0} \| F(\tau) \|_{B_{p,q}^{\alpha}} \\
+ C T^{\frac{2-s}{q}} \left\{ \| \psi^{(n)} \|_{L^\infty(0,T;B_{p,q}^{\alpha})} \| \psi^{(n+1)} - \psi^{(n)} \|_{L^\infty(0,T;B_{p,q}^{\alpha})} \\
+ C T^{\frac{2-s}{q}} (1 + T^{1-\frac{s}{2}}) \| \theta^{(n)} \|_{X_{p,q}^{\alpha}} \| \theta^{(n)}(0) - \theta^{(n-1)}(0) \|_{B_{p,q}} \\
+ C T^{\frac{2-s}{q}} \| \theta^{(n)} \|_{L^\infty(0,T;B_{p,q}^{\alpha})} \| \theta^{(n)} - \theta^{(n-1)} \|_{L^\infty(0,T;B_{p,q}^{\alpha})}.
\]

Therefore, it follows from Lemmas 2.2, 2.3 and 2.5 that
This gives

\[
\|\theta^{(n+1)}_0 - \theta^{(n)}_0\|_{B^s_{p,q}} \\
\leq C(T^{-1}\|\psi^{(n)}(T)\|_{B^s_{p,q}} + \|\psi^{(n+1)}(T) - \psi^{(n)}(T)\|_{B^s_{p,q}}) \\
\leq CT^{\frac{n}{2} - \frac{3}{4}} 2^{(s_\epsilon - \sigma)} \sup_{t \geq 0} \|F(t)\|_{B^0_{r,\infty}} \\
+ CA_n B_n + C(1 + T^{-\frac{1}{2\alpha}}) A_n B_{n-1}.
\] (3.24)

Since \(\theta^{(n+2)} - \theta^{(n+1)}\) satisfy

\[
\partial_t \Delta_j (\theta^{(n+2)} - \theta^{(n+1)}) + (-\Delta)^{\frac{3}{2}} (\theta^{(n+2)} - \theta^{(n+1)}) \\
+ u^{(n+1)} \cdot \nabla (\theta^{(n+2)} - \theta^{(n+1)}) + (u^{(n+1)} - u^{(n)}) \cdot \nabla \theta^{(n+1)} = \Delta_j \Delta_j F,
\]

we see that

\[
\partial_t \Delta_j (\theta^{(n+2)} - \theta^{(n+1)}) + (-\Delta)^{\frac{3}{2}} \Delta_j (\theta^{(n+2)} - \theta^{(n+1)}) \\
= \Delta_j \Delta_\Delta^{-1} F + [u^{(n+1)}, \Delta_j] \cdot \nabla (\theta^{(n+2)} - \theta^{(n+1)}) \\
- u^{(n+1)} \cdot \nabla \Delta_j (\theta^{(n+2)} - \theta^{(n+1)}) - \Delta_j ((u^{(n+1)} - u^{(n)}) \cdot \nabla \theta^{(n+1)}).
\]

By the similar energy calculation as in the proof of Lemma 3.1 we have

\[
\|\Delta_j (\theta^{(n+2)}(t) - \theta^{(n+1)}(t))\|_{L^p} \\
\leq e^{-\lambda \omega_j \tau} \|\Delta_j (\theta^{(n+2)(0)} - \theta^{(n+1)(0)})\|_{L^p} \\
+ C \int_0^t \lambda \omega_j \int_0^{\frac{t}{2}} e^{-\lambda \omega_j (t-\tau)} \|\Delta_j \Delta_\Delta^{-1} F(\tau)\|_{L^p} d\tau \\
+ \int_0^t e^{-\lambda \omega_j (t-\tau)} \|[u^{(n+1)}(\tau), \Delta_j] \cdot \nabla (\theta^{(n+2)}(\tau) - \theta^{(n+1)}(\tau))\|_{L^p} d\tau \\
+ \int_0^t e^{-\lambda \omega_j (t-\tau)} \|\Delta_j ((u^{(n+1)}(\tau) - u^{(n)}(\tau)) \cdot \nabla \theta^{(n+1)}(\tau))\|_{L^p} d\tau.
\] (3.25)

Multiplying (3.25) by \(2^{\omega_j}\), we see that

\[
2^{\omega_j} \|\Delta_j (\theta^{(n+2)}(t) - \theta^{(n+1)}(t))\|_{L^p} \\
\leq 2^{\omega_j} \|\Delta_j (\theta^{(n+2)(0)} - \theta^{(n+1)(0)})\|_{L^p} \\
+ C \int_0^t 2^{1 + \frac{3}{2} - \alpha} \int_0^{\frac{t}{2}} e^{-\lambda \omega_j (t-\tau)} \sup_{\tau \geq 0} \|\Delta_j \Delta_\Delta^{-1} F(\tau)\|_{B^0_{s_\epsilon - \sigma}} \\
+ \int_0^t 2^{\omega_j} e^{-\lambda \omega_j (t-\tau)} d\tau \|u^{(n+1)}(\tau), \Delta_j\) \cdot \nabla (\theta^{(n+2)}(\tau) - \theta^{(n+1)}(\tau))\|_{L^p} d\tau \\
+ \int_0^t 2^{\omega_j} e^{-\lambda \omega_j (t-\tau)} d\tau \|\Delta_j ((u^{(n+1)}(\tau) - u^{(n)}(\tau)) \cdot \nabla \theta^{(n+1)}(\tau))\|_{L^p} d\tau.
\]
By taking $L^\infty_t(0,T)$ and then $l^q(Z)$-norm, it follows from (2.16) and Lemmas 2.2 and 2.3 that

$$
\|\theta^{(n+2)} - \theta^{(n+1)}\|_{L^\infty_t(0,T;B^s_{p,q})} \\
\leq \|\theta^{(n+2)}(0) - \theta^{(n+1)}(0)\|_{B^s_{p,q}} \\
+ C T \frac{1}{2} (2\alpha - \frac{1}{2}) 2^{-(s_c-\sigma)n} \sup_{t>0} \|F(t)\|_{B^s_{p,q}} \\
+ C \|\theta^{(n+1)}\|_{L^\infty_t(0,T;B^s_{p,q})} \|\theta^{(n+2)} - \theta^{(n+1)}\|_{L^\infty_t(0,T;B^s_{p,q})} \\
+ C \|\theta^{(n+1)}\|_{L^\infty_t(0,T;B^s_{p,q})} \|\theta^{(n+1)} - \theta^{(n)}\|_{L^\infty_t(0,T;B^s_{p,q})}.
$$

(3.26)

Since it holds

$$
\|\theta^{(n+2)}(0) - \theta^{(n+1)}(0)\|_{B^s_{p,q}} \\
\leq \|S_{n+5}(\theta^{(n+2)}_0 - \theta^{(n+1)}_0)\|_{B^s_{p,q}} + \|\Delta_{n+2}\theta^{(n+1)}\|_{B^s_{p,q}} \\
\leq C \|\theta^{(n+2)}_0 - \theta^{(n+1)}_0\|_{B^s_{p,q}} + C 2^{-(s_c-\sigma)n} \|\theta^{(n+1)}_0\|_{B^s_{p,q}} \\
\leq C \|\theta^{(n+2)} - \theta^{(n+1)}\|_{B^s_{p,q}} + C 2^{-(s_c-\sigma)n} A_{n+1},
$$

we have by (3.20) that

$$
\|\theta^{(n+2)} - \theta^{(n+1)}\|_{L^\infty_t(0,T;B^s_{p,q})} \\
\leq C \|\theta^{(n+2)}_0 - \theta^{(n+1)}_0\|_{B^s_{p,q}} + C 2^{-(s_c-\sigma)n} \left(T \frac{1}{2} (2\alpha - \frac{1}{2}) \sup_{t>0} \|F(t)\|_{B^s_{p,q}} + A_{n+1} \right) \\
+ C \|\theta^{(n+1)}\|_{X_t^{s+\delta}} \|\theta^{(n+1)} - \theta^{(n)}\|_{L^\infty_t(0,T;B^s_{p,q})} \\
+ C \|\theta^{(n+1)}\|_{X_t^{s+\delta}} \|\theta^{(n+2)} - \theta^{(n+1)}\|_{L^\infty_t(0,T;B^s_{p,q})}.
$$

(3.27)

Therefore, combining (3.24) and (3.27), we obtain

$$
B_{n+1} \leq C_2 2^{-(s_c-\sigma)n} \left(\sup_{t>0} \|F(t)\|_{B^0_{p,q}} + A_{n+1} \right) \\
+ C_2 A_n B_{n-1} + C_2 (A_n + A_{n+1}) B_n + C_2 A_{n+1} B_{n+1}
$$

(3.28)

for some $C_2 = C_2(\alpha, p, q, r, \sigma, T) > 0$. Here, we assume that

$$
\sup_{t>0} \|F(t)\|_{B^0_{p,q}} \leq \delta_2 =: \min \left\{ \delta_1, \frac{1}{16C_1 C_2} \right\}.
$$

Let $N \in \mathbb{N}$ satisfy $N \geq 2$. Then, summing (3.28) over $n = 1, ..., N - 1$ and using Lemma 3.1 we have

$$
\sum_{n=1}^{N-1} B_{n+1} \leq C_T \delta_1 \sum_{n=1}^{N-1} 2^{-(s_c-\sigma)n} \\
+ 2C_1 C_2 \sum_{n=1}^{N-1} B_{n-1} + 4C_1 C_2 \sum_{n=1}^{N-1} B_n + 2C_1 C_2 \sum_{n=1}^{N-1} B_{n+1}
$$
for some constant $C_T > 0$ depending on T. This implies

$$
\sum_{n=2}^{N} B_n \leq C_T \delta_1 \sum_{n=1}^{N-1} 2^{-(s_c-\sigma)n} + \frac{1}{8} \sum_{n=0}^{N-2} B_n + \frac{2}{8} \sum_{n=1}^{N-1} B_n + \frac{1}{8} \sum_{n=2}^{N} B_n
$$

Hence, we have

$$
\frac{1}{2} \sum_{n=0}^{\infty} B_n \leq C_T \delta_1 \sum_{n=1}^{\infty} 2^{-(s_c-\sigma)n} + B_0 + B_1 < \infty,
$$

which completes the proof. \hfill \Box

Lemma 3.3. There exists a positive constant $C_3 = C_3(\alpha, p, q, r, T, \sigma)$ such that

$$
\|\theta - \tilde{\theta}\|_{L^\infty(0,T;B^s_{p,q})} \leq C_3 \left(\|\theta\|_{L^\infty(0,T;B^s_{p,q})} + \|\tilde{\theta}\|_{L^\infty(0,T;B^s_{p,q})} \right) \|\theta - \tilde{\theta}\|_{L^\infty(0,T;B^s_{p,q})}
$$

(3.29)

for all T-time periodic solutions $\theta \in BC([0, \infty); B^s_{p,q}(\mathbb{R}^2)) \cap \mathcal{X}^p_q$ and $\tilde{\theta} \in BC([0, \infty); B^s_{p,q}(\mathbb{R}^2)) \cap \tilde{L}^\infty(0, \infty; B^s_{p,q}(\mathbb{R}^2))$ to (1.1) with the same T-time periodic external force F.

Proof. Since $\theta - \tilde{\theta}$ satisfies

$$
\partial_t (\theta - \tilde{\theta}) + (-\Delta)^{\frac{p}{2}} (\theta - \tilde{\theta}) + u \cdot \nabla (\theta - \tilde{\theta}) + (u - \tilde{u}) \cdot \nabla \tilde{\theta} = 0,
$$

where $u = \mathcal{R}^{\perp} \theta, \tilde{u} = \mathcal{R}^{\perp} \tilde{\theta}$, we see that

$$
\partial_t \Delta_j (\theta - \tilde{\theta}) + (-\Delta)^{\frac{p}{2}} \Delta_j (\theta - \tilde{\theta}) = [u, \Delta_j] \cdot \nabla (\theta - \tilde{\theta}) - u \cdot \nabla \Delta_j (\theta - \tilde{\theta}) - \Delta_j ((u - \tilde{u}) \cdot \nabla \tilde{\theta}).
$$

Therefore, it follows from the similar energy calculation as in the derivation of (3.27) that

$$
\|\theta - \tilde{\theta}\|_{L^\infty(0,T;B^s_{p,q})} \leq \|\theta(0) - \tilde{\theta}(0)\|_{B^s_{p,q}} + C \left(\|\theta\|_{L^\infty(0,T;B^s_{p,q})} + \|\tilde{\theta}\|_{L^\infty(0,T;B^s_{p,q})} \right) \|\theta - \tilde{\theta}\|_{L^\infty(0,T;B^s_{p,q})}.
$$

(3.30)

Next, we derive the estimate for $\theta(0) - \tilde{\theta}(0)$. Since $\theta - \tilde{\theta}$ is T-time periodic and the Duhamel principle gives

$$
\theta(t) - \tilde{\theta}(t) = e^{-t(-\Delta)^{\frac{p}{2}}} (\theta(0) - \tilde{\theta}(0)) - \int_0^t e^{-t-\tau}(-\Delta)^{\frac{p}{2}} (u(\tau) \cdot \nabla \theta(\tau) - \tilde{u}(\tau) \cdot \nabla \tilde{\theta}(\tau)) d\tau,
$$

we have by Lemma 2.1 that

$$
\|\theta(0) - \tilde{\theta}(0)\|_{B^s_{p,q}} \leq C(T^{-1} \|\psi(T) - \tilde{\psi}(T)\|_{B^s_{p,q}} + \|\psi(T) - \tilde{\psi}(T)\|_{B^s_{p,q}}),
$$

(3.31)

where $\psi(t) := \theta(t) - e^{-t(-\Delta)^{\frac{p}{2}}} \theta(0)$ and $\tilde{\psi}(t) := \tilde{\theta}(t) - e^{-t(-\Delta)^{\frac{p}{2}}} \tilde{\theta}(0)$. Since it holds

$$
\partial_t (\psi - \tilde{\psi}) + (-\Delta)^{\frac{p}{2}} (\psi - \tilde{\psi}) = -u \cdot \nabla (\psi - \tilde{\psi}) - u \cdot \nabla e^{-t(-\Delta)^{\frac{p}{2}}} (\theta(0) - \tilde{\theta}(0)) - (u - \tilde{u}) \cdot \nabla \tilde{\theta},
$$

(3.32)
By Lemma 3.1 and (3.34), we see that

\[\theta \text{ in } L^\infty \text{ of the solution } \theta \]

It is easy to check that

\[\text{From Lemma 3.2, there exist limits} \]

Let \[\sigma = \alpha/2 \]. Then, \[\sigma \text{ satisfies } \alpha - 2/p < \sigma < 2/p \]. We put

\[\delta := \min \left\{ \delta_1, \delta_2, \frac{1}{8C_1C_3} \right\} \]

and let \(F \in BC((0, \infty); \dot{B}^0_{r,\infty}(\mathbb{R}^2)) \) satisfy

\[\sup_{t > 0} \|F(t)\|_{\dot{B}^0_{r,\infty}} \leq \delta. \]

It follows from (3.4) that

\[\sup_{n \in \mathbb{N}} \|\theta^{(n)}\|_{X^{p,q}_T} \leq 2C_1 \sup_{t > 0} \|F(t)\|_{\dot{B}^0_{r,\infty}} \leq 2C_1 \delta =: K. \]

From Lemma 3.2, there exist limits \(\theta_0 \in \dot{B}^\sigma_{p,q}(\mathbb{R}^2) \) and \(\theta \in L^\infty(0, T; \dot{B}^\sigma_{p,q}(\mathbb{R}^2)) \) such that

\[\theta_0 = \sum_{n=0}^{\infty} (\theta_0^{(n+1)} - \theta_0^{(n)}) = \lim_{n \to \infty} \theta_0^{(n)} \text{ in } \dot{B}^\sigma_{p,q}(\mathbb{R}^2), \]

\[\theta = \sum_{n=0}^{\infty} (\theta^{(n+1)} - \theta^{(n)}) = \lim_{n \to \infty} \theta^{(n)} \text{ in } L^\infty(0, T; \dot{B}^\sigma_{p,q}(\mathbb{R}^2)). \]

By Lemma 3.1 and (3.34), we see that \(\theta_0 \in \dot{B}^{s_{\epsilon}}_{p,q}(\mathbb{R}^2), \theta \in X^{p,q}_T \) and

\[\|\theta\|_{L^\infty(0, T; \dot{B}^{s_{\epsilon}}_{p,q})} \leq \|\theta\|_{X^{p,q}_T} \leq K. \]

It is easy to check that \(\theta \) is a solution to (1.1) on \([0, T]. \) Next, we show the continuity in time of the solution \(\theta \) by the idea in \([7]. \) Let \((s, \rho) \in \{(s_{\epsilon}, q), (0, 1)\}. \) Since it
holds $\partial_t \Delta_j \theta = \Delta_j F - (-\Delta)^{\frac{q}{2}} \Delta_j \theta - \Delta_j (u \cdot \nabla \theta)$, we have

$$\|\partial_t \Delta_j \theta\|_{L^p_T} \leq C 2^{sj} \|\partial_t \Delta_j \theta\|_{L^p} \leq C 2^{sj+2 \frac{j}{p} - \frac{1}{p}} \|\Delta_j F(t)\|_{L^p} + C 2^{sj+\alpha_j} \|\Delta_j \theta\|_{L^p} + C 2^{sj+j} \|u(t)\|_{L^p} \|\theta(t)\|_{L^\infty} \leq C 2^{sj+2 \frac{j}{p} - \frac{1}{p}} \sup_{t>0} \|F(t)\|_{L^{p,j}_{s_j}} + C 2^{sj+\alpha_j} \|\theta\|_{L^\infty(0,T;B^p_{r,j})} + C 2^{sj+j} \|\theta\|_{X^p_{r,j}}^2,$$

which implies $\partial_t \Delta_j \theta \in L^\infty(0,T;\dot{B}^p_{r,j}(\mathbb{R}^2))$. Therefore, we have

$$\Theta_m := \sum_{|j| \leq m} \Delta_j \theta \in C([0,T];\dot{B}^0_{p,1}(\mathbb{R}^2) \cap \dot{B}^\infty_{p,q}(\mathbb{R}^2)), \quad m \in \mathbb{N}.$$

It follows from $q < \infty$ and (3.35) that

$$\|\Theta_m - \theta\|_{L^\infty(0,T;\dot{B}^0_{p,1} \cap \dot{B}^\infty_{p,q})} \leq C \sum_{|j| \geq m} \|\Delta_j \theta\|_{L^\infty(0,T;L^p)} + C \left\|\left\{2^{sj} \|\Delta_j \theta\|_{L^\infty(0,T;L^p)}\right\}_{|j| \geq m}\right\|_{L^q} \to 0, \quad as \ m \to \infty.$$

Hence, we see that $\theta \in C([0,T];\dot{B}^0_{p,1}(\mathbb{R}^2) \cap \dot{B}^\infty_{p,q}(\mathbb{R}^2)) \subset C([0,T];\dot{B}^\infty_{p,q}(\mathbb{R}^2))$. Since

$$\|\theta^{(n)}(0) - \theta_0\|_{\dot{B}^p_{r,q}} \leq C \|S_{n+3}(\theta_0^{(n)} - \theta_0)\|_{\dot{B}^p_{r,q}} + \|(1 - S_{n+3})\theta_0\|_{\dot{B}^p_{r,q}} \leq C \|\theta_0^{(n)} - \theta_0\|_{\dot{B}^p_{r,q}} + \|(1 - S_{n+3})\theta_0\|_{\dot{B}^p_{r,q}} \to 0,$$

$$\|\theta_0^{(n+1)} - \theta_0\|_{\dot{B}^p_{r,q}} \leq \|\theta_0^{(n+1)} - \theta_0\|_{\dot{B}^p_{r,q}} + \|e^{-T(-\Delta)^{\frac{q}{2}}} (\theta_0^{(n+1)} - \theta_0)\|_{\dot{B}^p_{r,q}} \leq C \|\theta_0^{(n+1)} - \theta_0\|_{\dot{B}^p_{r,q}} \to 0,$$

$$\|\theta(T) - e^{-T(-\Delta)^{\frac{q}{2}}} \theta_0\|_{\dot{B}^p_{r,q}} \leq \|\theta(T) - \theta(T)\|_{\dot{B}^p_{r,q}} + \|e^{-T(-\Delta)^{\frac{q}{2}}} (\theta(T) - \theta_0)\|_{\dot{B}^p_{r,q}} \leq C \|\theta^{(n)}(0) - \theta_0\|_{\dot{B}^p_{r,q}} \to 0$$

as $n \to \infty$, we obtain by letting $n \to \infty$ in (3.3) that

$$(1 - e^{-T(-\Delta)^{\frac{q}{2}}} \theta_0) = \theta(T) - e^{-T(-\Delta)^{\frac{q}{2}}} \theta_0, \quad \theta(0) = \theta_0,$$

which implies

$$\theta(T) = \theta(0) = \theta_0.$$ \hfill (3.36)

Let us extend θ to the function on the interval $[0, \infty)$ periodically as

$$\theta(t) = \theta(t - NT), \quad for \ NT < t \leq (N + 1)T, \quad N \in \mathbb{N}.$$

Then, $\theta \in BC([0, \infty); \dot{B}^\infty_{p,q}(\mathbb{R}^2))$ and θ is a T-time periodic solution to (1.1) satisfying (1.4). Finally, we prove the uniqueness. Let $\tilde{\theta}$ be arbitrary solution satisfying (1.1). Note that since $0 < \sigma < s_c$, we see that $\theta, \tilde{\theta} \in L^\infty(0,T;L^\sigma(\mathbb{R}^2)) \cap$
\[\tilde{L}^\infty(0, T; \tilde{B}^\sigma_{p,q}(\mathbb{R}^2)) \subset \tilde{L}^\infty(0, T; \tilde{B}^\sigma_{p,q}(\mathbb{R}^2)) \text{ holds by the similar calculation as (2.8).} \]

Then, it follows from (3.29) and (3.35) that
\[
\| \theta - \tilde{\theta} \|_{\tilde{L}^\infty(0, T; \dot{B}^\sigma_{p,q})} \leq C_3 \left(\| \theta \|_{X_{p,q}^\sigma T} + \| \tilde{\theta} \|_{\tilde{L}^\infty(0, T; \dot{B}^\sigma_{p,q})} \right) \| \theta - \tilde{\theta} \|_{\tilde{L}^\infty(0, T; \dot{B}^\sigma_{p,q})}
\leq 2KC_3 \| \theta - \tilde{\theta} \|_{\tilde{L}^\infty(0, T; \dot{B}^\sigma_{p,q})}
\leq \frac{1}{2} \| \theta - \tilde{\theta} \|_{\tilde{L}^\infty(0, T; \dot{B}^\sigma_{p,q})}.
\]

Thus, we see that \(\tilde{\theta} = \theta \) on \([0, T]\). The periodicity of \(\theta \) and \(\tilde{\theta} \) implies \(\theta = \tilde{\theta} \) on \([0, \infty)\). This completes the proof. \(\square \)

Acknowledgements.
The author would like to express his sincere gratitude to Professor Jun-ichi Segata, Faculty of Mathematics, Kyushu University, for many fruitful advices and continuous encouragement. This work was partly supported by Grant-in-Aid for JSPS Research Fellow Grant Number JP20J20941.

References

[1] H. Bae, Global well-posedness of dissipative quasi-geostrophic equations in critical spaces, Proc. Amer. Math. Soc. 136 (2008).
[2] H. Bahouri, J.-Y. Chemin, and R. Danchin, Fourier analysis and nonlinear partial differential equations, Vol. 343, Springer, Heidelberg, 2011.
[3] D. Chae and J. Lee, Global well-posedness in the super-critical dissipative quasi-geostrophic equations, Comm. Math. Phys. 233 (2003), 297–311.
[4] Q. Chen, C. Miao, and Z. Zhang, A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic equation, Comm. Math. Phys. 271 (2007).
[5] Q. Chen and Z. Zhang, Global well-posedness of the 2D critical dissipative quasi-geostrophic equation in the Triebel-Lizorkin spaces, Nonlinear Anal. 67 (2007), 1715–1725.
[6] P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal. 30 (1999), 937–948.
[7] R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations, Invent. Math. 144 (2001), 579–614.
[8] M. Geissert, M. Hieber, and T. H. Nguyen, A general approach to time periodic incompressible viscous fluid flow problems, Arch. Ration. Mech. Anal. 220 (2016), 1095–1118.
[9] T. Hmidi and S. Keraani, Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces, Adv. Math. 214 (2007), 618–638.
[10] H. Kozono and M. Nakao, Periodic solutions of the Navier-Stokes equations in unbounded domains, Tohoku Math. J. (2) 48 (1996), 33–50.
[11] H. Kozono and M. Yamazaki, Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Comm. Partial Differential Equations 19 (1994), 959–1014.
[12] H. Miura, Dissipative quasi-geostrophic equation for large initial data in the critical Sobolev space, Comm. Math. Phys. 267 (2006).
[13] Y. Sawano, Theory of Besov spaces, Developments in Mathematics, vol. 56, Springer, Singapore, 2018.
[14] J. Wu, Dissipative quasi-geostrophic equations with \(L^p \) data, Electron. J. Differential Equations (2001), No. 56, 13.
[15] J. Wu, Lower bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces, Comm. Math. Phys. 263 (2006), 803–831.
[16] Z.-F. Zhang, Global well-posedness for the 2D critical dissipative quasi-geostrophic equation, Sci. China Ser. A 50 (2007), 485–494.