Prevalence of Antibiotic Use and Factors Associated With Self-medication among University Students in Malaysia

Ibrahim Mohamed Ali1, Sami Mohammed Albawani1, Rasheed Abdulsalam2 and Abdulmutalib Alabeed Allaq3*

1Department of Pharmacology, Faculty of Medicine, Lincoln University College, Malaysia.
2Faculty of Dentistry, Lincoln University College, Malaysia.
3University Technology MARA, Shah Alam, Malaysia.

Authors’ contributions

This work was carried out in collaboration among all authors. Author IMA designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors SMA and RA managed the analyses of the study. Author AAA managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i1831313

Editor(s): (1) Dr. Mohamed Fawzy Ramadan Hassani, Zagazig University, Egypt.

Reviewers: (1) Ruth López Alcántara, Universidad Autónoma de Campeche, Mexico.
(2) Miguel Angel Amaró Garrido, University of Medical Sciences of Sancti Spiritus, Cuba.

Complete Peer review History: http://www.sdiarticle4.com/review-history/66995

Received 18 January 2021
Accepted 23 March 2021
Published 29 March 2021

Original Research Article

ABSTRACT

Self-medication with antibiotics is a global menace especially in developing countries due to lack of knowledge, poor access to the proper health care, and the weakness in the government’s role in monitoring and controlling the use of antibiotics. Thus, this study was carried out to identify the prevalence of antibiotic use during self-medication and the associated factors with self-medication among the students of Lincoln University College Malaysia. A quantitative research approach (i.e. cross-sectional study) was utilized. A simple sampling technique was employed to select 240 respondents among the students. The survey was used to collect data through the process of questionnaires’ validation. Descriptive statistics were used to examine all the research hypotheses. Though the prevalence of self-medication among the respondents as well as the misuse of

*Corresponding author: E-mail: alabeed119@gmail.com;
antibiotics during self-medication was relatively low, there is, however, an urgent need to provide university students with health education programs to help them understand the proper use of the drugs and to increase their awareness about the risk of self-medication without supervision from qualified health providers.

Keywords: Antibiotics; antimicrobial resistance; self-medication; Malaysia.

1. INTRODUCTION

Since the discovery of penicillin in the early twentieth century by Scottish scientist and Nobel laureate Alexander Fleming; antibiotics have played a vital role in the treatment of contagious diseases particularly bacterial infection [1,2]. The irrational use of these drugs, however, has led to antimicrobial resistance which is becoming a global problem in public health [3-5]. Furthermore, antibiotic self-treatment may exacerbate bacterial infections, causing the disease to turn into their chronic or complicated forms, or may lead sometimes to death [6,7]. Moreover, antibiotic self-medication has been emphasized to have a significant role in the development of resistance to the antibiotics being used [8].

Self-medication (SM) refers to the use of drugs for the treatment of self-diagnosed symptoms or disorders or the continuous or intermittent use of a prescribed drug for recurrent symptoms or disease. It is a subset of self-care whose prevalence with antibiotics is high in low-income countries due to easy access to and availability of antibiotics, inappropriate use, lack of access to health care, poor regulation, poor awareness, lack of supervision by health professionals, increased antibiotic prescription, and high occurrence of infectious diseases [9]. SM with antibiotics is quite more common in developing countries compared with developed ones [10] due to lack of knowledge, poor access to the proper health care, and the weakness in the government’s role in monitoring and controlling the use of antibiotics [11]. It is one of the most disputed and debatable issues in the world and is gaining more popularity in the ongoing discussion [12]. It is considered as the first choice for the treatment of a minor illness which does not require patients to see a doctor for the treatment. The drugs for SM are popularly called over-the-counter drugs (OTC) which are sold to consumers by pharmacies. It has been estimated that over 92% of consumers have used one or three antibiotics at the same time in the last decades [13]. Moreover, OTC drugs require medical authorization before they could be sold to consumers. However, consumers adopt SM at home to treat particular illnesses like flu, cold, insect bites, skin problems, heartburn, etc [14]. Generally, there is a high prevalence of SM in Asian countries not only because of sociocultural problems but also because they have a higher population density, aging, easy access to medicines and little control of these by the government. For instance, in a study to compare the attitude, knowledge, and practice (KAP) on SM in urban and rural North Indian communities. The findings indicated that self-medication was more practiced among the rural population than urban [15,16]. Irrational and misuse of antibiotics have led to antibiotic resistance and serious health problem globally. Although the use of antibiotics during self-medication was investigated by many researchers from different countries, only a few studies were conducted among university students in Malaysia.

Ali, Kai, Keat, and Dhanaraj [17] reported that self-medication is common among Malaysian students. The major illnesses that the students used self-medication for were headache, cold and cough, fever and chills, allergy, fungal/microbial infections, pain, and diarrhea. They reported that the reasons given by the students for the self-medication include: quick relief of symptoms; the illness is mild and does not require seeing a doctor; they are already familiar with the illness; time-saving, and the economic cost. Some of the benefits of self-medication to patients include being a first aid in the treatment of different sicknesses, opportunities to control and manage health before seeing a doctor. Though the core benefits that the patients could derive from the self-medication include economic benefit, time-saving, and usefulness for minor illness. Self-medication of drugs without a prescription, however, could have caused adverse effects on a patient’s health such as disease aggravation, wrong medication, and drug interaction [11]. It has caused many damages to human health especially among the students of higher institutions [18,19]. It has been a common
practice used by the students when they feel certain pain. Based on such an assumption, students go to pharmacies to buy drugs to cure minor illnesses like flu, headache, pain, supplement, and cold without the knowledge of specialists and this, in turn, affects their overall health conditions [20]. It is also noted that students do not bother to read the leaflet instruction and precautions [19]. Most of these students had put their lives in danger and permanent disability [18].

This study was, therefore, carried out to identify the prevalence of antibiotic use during self-medication and the associated factors with self-medication among the student of Lincoln University College Malaysia. It is hypothesized that there is no significant relationship between the prevalence of illnesses in self-medication with antibiotics among students of Lincoln University College.

2. METHODOLOGY

In this study, a quantitative research approach (i.e. cross-sectional study) was chosen and utilized. The survey was used to collect data through the process of validated questionnaires. A survey was chosen because the target study populations were college students. Descriptive statistics were used to examine all the research hypotheses. The population for the present research was students of Lincoln University College Malaysia comprising students in medical and non-medical faculties. All registered students were eligible to participate with no specific inclusion and exclusion criteria.

The minimum sample size was calculated using Epi Info software (Version 3.5.2, 2010) with a level of significance of 95%, the marginal error of 0.05, and the prevalence of outcome factor in the population of 5% (0.05) [21]. Thus, the minimum positive sample size required for the present study was 240 students of Lincoln University College Malaysia. A simple sampling technique was employed to select the 240 respondents. The researcher attempted to choose equal participants from both medical and non-medical faculties. The researcher explained the purpose of the study to the participants, distributed the questionnaires among them at the beginning of their classes, and collected the questionnaire after the classes. The study was approved by the institute of postgraduate studies at Lincoln University College. The participants were asked to sign an agreement letter and informed consent. In this study, the instrument was adopted from previous studies that are related to our study. A previously validated questionnaire containing open-ended and closed-ended questions was used for this study [22]. There were two sections in the instrument of the study Part A and part B. Part A contained demographic information of the respondents while part B contains the items to be answered by the students. The part B section was based on “Yes or no” questions. Based on the objectives of this study, the bivariate analysis was used to identify the risk factors associated with self-medication practice with antibiotics among students. In this study, factors like age, gender, marital status, ethnicity, year of study, type of study, the ease of access to medical centers, the unavailability of medical health, awareness of bacterial resistance, respondent perception about the complications due to self-medication and the illnesses treated during self-medication, the reasons for self-medication, the source(s) of information for self-medication.

In this research, content validity was chosen to ascertain whether the instrument measured what was supposed to be measured. Three experts in the related field were consulted to examine the constructs and items that were going to be used. The Tests-retest method was also employed to determine the reliability of the instrument prepared for the study.

2.1 Data Analysis

The data were double entered into Microsoft Office Excel 2007 spreadsheets and cross-checked for accuracy before being exported to IBM SPSS statistical package version 20 (IBM Corp, NY, USA) for data analysis. For descriptive analysis, frequency and proportion were used to present the distribution categorical variables. All quantitative variables were examined for normality by skewness and kurtosis test before analysis. Statistical associations between self-medication response and explanatory variables, including age, gender, ethnicity, etc. were assessed using the percentage or Fisher’s exact test where applicable. The bivariate analysis was used to identify the risk factors associated with self-medication practice with antibiotics among students. In this study, factors like age, gender, marital status, ethnicity, year of study, type of study, the ease of access to medical centers, the
unavailability of medical health, awareness of bacterial resistance, respondent perception about the complications due to self-medication and death possibly due to self-medication were tested. Multiple logistic regression was used to identify the most important risk factors related to self-medication practice with antibiotics among medical and non-medical students at Lincoln College University.

3. RESULTS AND DISCUSSION

3.1 Socio-Demographic Characteristics of Respondents

Table 1 shows the age information of the respondents. From a total of 240 participants, 75.4% were from the age group 19-25 while 24.6% were from the age group 26-29. Thus, the majority of the survey respondents were from the age group 19-25. The result also revealed that 44.2% of the respondents were males while 55.8% were females. Thus, there were more female students in the survey and the University, by extension, than males. It was also found that 41.3% were Malay, 8.3% were Chinese while 23.3% were Indians and 27.1% were from other ethnicities. There were 13.2% married and 86.7% from single categories. This analysis further showed 22.1% of the respondents were from first-year students, 37.1% from second-year students, 25.0% from third-year students, 11.3% were from fourth-year students while 4.6% were from higher studies such as master and Ph.D. There were 50.0% non-medical students as well as 50.0% of respondents from medical schools. The results also revealed that 30.4% of the respondents had medical health insurance while 69.6% of respondents were without medical health insurance.

Conceptual Framework for Self-Medication:

![Conceptual Framework for Self-Medication](image)

Fig. 1. The conceptual framework for self-medication
Table 1. Socio-demographic characteristics of the respondents (N= 240)

Variables	N	%
Age		
19-25	81	75.4
26-29	59	24.6
Gender		
Male	106	44.2
Female	134	44.8
Ethnicity		
Malay	99	41.3
Chinese	20	8.3
Indian	56	23.3
Others	65	27.1
Marital Status		
Married	32	13.3
Single	208	86.7
Year of Study		
First-year	53	22.1
Second-year	89	37.1
Third-year	60	25.0
Fourth-year	27	11.4
Others	11	4.6
Type of School		
Medical	120	50.0
Non-medical	120	50.0
Medical health insurance		
Yes	73	30.4
No	167	69.6
Access to physician		
Yes	89	37.1
No	151	62.9

The prevalence of self-medication practice among university students in different countries was found to range from 20.33% to 81.5% [23-28]. The prevalence in this study was 22.1% which suggests that self-medication practice among university students is relatively low. The reason for the differences in the prevalence of self-medication in various studies may be due to the differences in socioeconomic status, education, culture, and health care system of each country [9].

3.2 The Prevalence of Antibiotic Use during Self-medication

The results (Table 2) showed 22.1% of respondents consumed antibiotics in the last six months while 77.9% did not. Only 53.8% of the respondents, however, were aware of antibiotic resistance while 46.3% were not. Moreover, 29.6% of the participants believed that antibiotic use with self-medication can lead to death while 70.4% did not. The results also show that 58.3% of the respondents believed antibiotics use may cause health complications while 41.7% did not.

Although the majority of the respondents did not believe that antibiotics with self-medication can lead to death. Such prevalence was expected especially as the majority of students were aware of bacterial resistance. Also, the majority of students believed that antibiotics with self-medication can have serious implications for their health.

3.3 Symptoms and Illnesses Treated with Antibiotics during Self-medication

The results, as shown in Table 3, revealed that proportion of the respondents using antibiotics to treat headache (43.8%), fever (14.2%), cough (15.4%), cold/sore throat (12.1%), ulcer (4.2%), allergy (1.7%), joint pain (4.2%), vomiting (1.3%), skin infection (4.0%), sexual problem (4.0%) and other related diseases (2.5%). Headache was found to be the major symptom responsible for
the practice of self-medication among the respondents while skin infections and sexual problems were the least symptoms.

The most common illnesses and symptoms reported by students during self-medication were sore throats, fever, and cough [28]. In another study, fever and pain were reported to be the most common symptoms treated during self-medication [25].

3.4 Reasons for Self-Medication with Antibiotics

Table 4 shows 21.7% of the respondents used antibiotics for self-medication because they did not have medical health insurance. Similarly, 27.1% believed that visiting a physician can be expensive while 13.8% believed that visiting a physician can be time-consuming. 25.0% believed that their condition was not serious, 6.3% believed that they had previous experience of a similar condition, 3.8% believed they needed to play an active role regarding their health, and 2.5% felt embarrassed to discuss their condition with the physician. These findings indicate that people could not go to the hospital due to time constraints, and information from the internet making people self-belief in caring for themselves.

Other reasons reported in the literature include saving the cost of physician’s consultation [29-31] and consultation time [30], previous knowledge about the illness [32], the case was not serious [29,31], previous experience [29,32,31], urgent usage [32], easy access to medications: [32] and traditional believes like protecting from witches [33].

3.5 Sources of Information during Self-Medication with Antibiotics

Table 5 shows the sources of information to practice self-medication among the participants. The result revealed that 45.8% got information from family members, 27.1% from a friend, 10.8% from a pharmacist, 7.5% from an old prescription, 2.5% from media, 5.0% from personal choice, and others 1.3%. Thus, the family member was the major source of information for the respondents to resort to self-medication with an antibiotic.

According to the literature, the most common source of information and advice during self-medication was the community drug dispenser [34,35]. This was expected as the pharmacy is the main supply for medication. Other sources like family members and media have also been reported [35,36].

4. BIVARIATE ANALYSIS

The Chi-square test was used to identify the risk factors associated with self-medication as shown in Table 6. It was found that age, gender, marital status, ethnicity, year of study, type of study, the ease of access to medical centers, awareness of bacterial resistance, respondent perception about the complications due to self-medication and death possibly due to self-medication do not have any association with self-medication practice. However, only the unavailability of medical health insurance was found to be a significant predictor of self-medication practice with antibiotics.

Table 2. Self-medication practice among respondents
Variables
The use of antibiotics during self-medication
Yes
No
Awareness of bacterial resistance
Yes
No
Antibiotics may cause health complications
Yes
No
Antibiotics may lead to death
Yes
No
Table 3. Common illnesses and symptoms treated during self-medication treated with antibiotics

Variables	N	%
Headache		
Yes	105	43.8
No	135	56.2
Cough		
Yes	37	15.4
No	203	84.6
Cold and sore throat		
Yes	29	12.1
No	211	87.9
Ulcer		
Yes	10	4.2
No	230	95.8
Allergy		
Yes	4	1.7
No	236	98.3
Pain in general		
Yes	10	4.2
No	230	95.8
Vomiting		
Yes	3	1.3
No	237	98.7
Skin infections and wounds		
Yes	1	0.4
No	239	99.6
Sexual Problems		
Yes	1	0.4
No	239	99.6

Table 4. Reasons for self-medication with antibiotics

Variables	N	%
I don’t have a medical health insurance		
Yes	52	21.7
No	188	78.3
Visiting a physician can be expensive		
Yes	65	27.1
No	175	72.9
Visiting a physician can be time-consuming		
Yes	33	13.8
No	207	86.2
My condition was not serious		
Yes	60	25.0
No	180	75.0
I have previous experience of similar condition		
Yes	15	6.3
No	225	93.7
I need to play an active role regarding my health		
Yes	9	3.8
No	231	96.2
I feel embarrassed to discuss my condition with the physician		
Yes	6	2.5
No	234	97.5
Table 5. Sources of information and advice during self-medication with antibiotics

Variables	N	%
Family member		
Yes	110	45.8
No	130	54.2
Friends		
Yes	65	27.1
No	175	72.9
Pharmacists		
Yes	26	10.8
No	214	89.2
An old prescription		
Yes	18	7.5
No	222	92.5
Media		
Yes	6	2.5
No	225	97.5
Personal choice		
Yes	12	5.0
No	228	95.0
Others		
Yes	3	1.3
No	237	98.7
Table 6. Bivariate analysis (Chi-square test)

Variables	Yes (%)	No (%)	Chi-Square	Odds Ratio	Lower	Upper	Sig.
Self-medication with antibiotics							
Age							
19-25	42 (23.2)	139 (76.8)	0.538				0.588
26-29	11 (18.6)	48 (81.4)					
Gender							
Male	28 (26.4)	78(73.6)	2.070	1.565	0.848	2.888	0.161
Female	25 (18.7)	109 (81.3)					
Marital status							
Married	10 (31.3)	22 (68.8)	1.803	1.744	0.769	3.958	0.178
Single	43 (20.7)	165 (79.3)					
Ethnicity							
Malay	25 (25.3)	74 (74.7)	1.366				0.713
Chinese	3 (15.0)	85 (85.0)					
Indian	11 (19.6)	45 (80.4)					
Others	14 (21.5)	51 (78.5)					
Year of study							
First-year	11 (20.8)	42 (79.2)	2.512				0.643
Second-year	19 (21.3)	70 (78.7)					
Third-year	15 (25.0)	45 (75.0)					
Fourth-year	4 (14.8)	23 (85.2)					
Others	4 (36.4)	7 (63.6)					
Type of school							
Medical	23 (31.5)	50 (68.5)	5.414	2.101	1.116	3.954	0.027
Non-medical	30 (18.0)	137 (82.0)					
Availability of medical insurance							
Yes	23 (19.2)	97 (80.8)	1.187	1.406	0.761	2.598	0.351
No	30 (25.0)	90 (75.0)					
Access to the medical center							
Yes	25 (28.1)	64 (71.9)	2.966	1.716	0.925	3.184	0.107
No	28 (18.5)	123 (81.5)					
Awareness of bacterial resistance							
Yes	29 (22.5)	100 (77.5)	0.26	1.051	0.570	1.939	1.000
Self-medication with antibiotics

Variables	Yes (%)	No (%)	Chi-Square	Odds Ratio	Lower	Upper	Sig.
No	24 (21.6)	87 (78.4)					

Complications due to self-medication

Variables	Yes (%)	No (%)	Chi-Square	Odds Ratio	Lower	Upper	Sig.
Yes	33 (23.6)	107 (76.4)	0.432	1.234	0.659	2.308	0.532
No	20 (20.0)	80 (80.0)					

Death possibly due to self-medication

Variables	Yes (%)	No (%)	Chi-Square	Odds Ratio	Lower	Upper	Sig.
Yes	20 (28.2)	51 (71.8)	2.170	1.616	0.851	3.071	0.172
No	33 (19.5)	136 (80.5)					

Table 7. Multivariate analysis (multiple logistic regression model)

Variables B	S.E.	Wald	Sig.	Exp (B)	EXP (B) Lower	Upper	
Age	0.655	1.988	0.159	1.925	0.775	4.784	
Gender	-0.339	0.350	.941	0.332	0.712	0.359	1.413
Ethnic	0.197	1.841	0.175	1.218	0.916	1.620	
Marital status	-0.656	0.462	2.020	0.155	0.519	0.210	1.283
Type of school	-0.982	0.430	5.226	0.022	0.374	0.161	0.869
Medical insurance	-0.718	0.373	3.701	0.054	0.488	0.234	1.014
Access to medical	-0.522	0.357	2.141	0.143	0.593	0.295	1.194
Constant	1.229	574	4.593	0.032	3.419		
The results indicated that medical students were more likely to use self-medication with antibiotics during self-medication compared to non-medical students. Such findings were consistent with other studies [37-40,18,20,41]. The reason for such a result may be due to better exposure of medical students towards medical knowledge compared to non-medical students.

5. MULTIVARIATE ANALYSIS

Multiple logistic regression was used to identify the most important risk factors related to self-medication practice with antibiotics among the respondents. Among all the variables tested by the Chi-square test, only the type of school was found to be a significant predictor of self-medication practice with antibiotics. When the multiple regression was conducted, only the type of school was found to be significantly predicting the use of antibiotics among students. The results (Table 7) indicated that medical students were more likely to use antibiotics during self-medication compared to non-medical students (OR= 0.374, CI 95% 0.161-0.869, p= 0.022).

Although the prevalence of self-medication among the respondents was not high compared to other studies [42,16,9], the misuse of antibiotics during self-medication was seen in this study. Studies have shown that self-medication practice among doctors develops during their undergraduate training [37]. Besides, the irrational use of antibiotics among medical students during self-medication may potentially increase the misuse or irrational use of medicines. Therefore, there is a need to review the pharmacy curriculum to include modules on self-medication and rational use of medicine.

6. CONCLUSION

There is a significant relationship between the prevalence of illnesses in self-medication with antibiotics among students of Lincoln University College, thus, our hypothesis was rejected. Though the prevalence of self-medication among the respondents as well as the misuse of antibiotics during self-medication was relatively low, there is, however, an urgent need to provide university students with health education programs to help them understand the proper use of the drugs and to increase their awareness about the risk of self-medication without supervision from qualified health providers. Moreover, the role of community pharmacists to ensure safe, rational, and effective self-medication practices is recommended.

CONSENT

As per international standard or university standard, Participants’ written consent has been collected and preserved by the author(s).

ETHICAL APPROVAL

As per international standard or university standard ethical approval has been collected and preserved by the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Skiros E, Merkouris P, Papazafiropoulou A, Gikas A, Matzouranis G, Papafragos C, Sotiropoulos A. Self-medication with antibiotics in rural population in Greece: A cross-sectional multicenter study. BMC Family Practice. 2010;11(1):58.
2. Nigam A, Gupta D, Sharma A. Treatment of infectious disease: Beyond antibiotics. Microbiological Research. 2014;169(9-10):643-651.
3. Ahmed IA, Mikail MA. Paradigm Shift: Focusing on plant-based natural antimicrobials. Journal of Microbiology & Experimentation. 2017;5(2):00145:1-2.
4. Allaq AA, Sidik NA, Abdul-Aziz A, Ahmed IA. Antioxidant, antibacterial and phytochemical screening of ethanolic crude extracts of Libyan Peganum harmala seeds. Journal of Pharmaceutical Research International. 2021;33(13):74-82.
5. Allaq AA, Sidik NA, Abdul-Aziz A, Ahmed IA. Cumin (Cuminum cyminum L.): A review of its ethnopharmacology, phytochemistry. Biomedical Research and Therapy. 2020;7(9):4016-4021.
6. Pawaskar MD, Balkrishnan R. Switching from prescription to over-the-counter medications: A consumer and managed care perspective. Managed Care Interface. 2007;20(1):42-47.
7. Ahmed IA. Understanding the causes of diabetes and its complications. Journal of Microbiology & Experimentation. 2019; 7(1):27.

8. World Health Organization. Guidelines for the regulatory assessment of medicinal products for use in self-medication; 2000.

9. Albawani SM, Hassan YB, Abd-Aziz N, Gnanasan S. Self-medication with antibiotics in Sana’a City, Yemen. Tropical Journal of Pharmaceutical Research. 2017;16(5):1195-1199.

10. Nathwani D, Davey P. Antibiotic prescribing—are there lessons for physicians? QJM: An International Journal of Medicine. 1999;92(5):287-292.

11. Sontakke SD, Bajait CS, Pimpalkhute SA, Jaiswal KM, Jaiswal SR. Comparative study of evaluation of self-medication practices in first and third-year medical students. International Journal of Biological and Medical Research, 2011; 2(2):561-564.

12. Klemenc-Ketiš Z, Hladnik Ž, Kersnik J. A cross sectional study of sex differences in self-medication practices among university students in Slovenia. Collegium Antropologicum. 2011;35(2):329-334.

13. Gutema GB, Gadisa DA, Kidanemariam ZA, Berhe DF, Berhe AH, Hadera MG, Dagne AW. Self-Medication Practices among Health Sciences Students: The Case of Mekelle University; 2011.

14. Galato D, Galafassi LDM, Alano GM, Trauthman SC. Responsible self-medication: Review of the process of pharmaceutical attendance. Brazilian Journal of Pharmaceutical Sciences. 2009; 45(4):625-633.

15. Ahmad A, Khan MU, Srikanth AB, Kumar B, Singh NK, Trivedi N, Patel I. Evaluation of knowledge, attitude and practice about self-medication among rural and urban north Indian population. 2015;18(30):31-40.

16. Ali H, Naureen ON, Ahmad A, Yasmeen S, Mehmoody R, Arshad A. Assessment of Self-Medication among Medical and Non-Medical Students. Biomedica. 2015;31(4):311.

17. Ali AN, Kai JTTK, Keat CC, Dhanaraj SA. Self-medication practices among health care professionals in a Private University, Malaysia. International Current Pharmaceutical Journal. 2012;1(10):302-310.

18. Shubha R, Savkar MK, Manjunath GN. Self-medication pattern among dentists with antibiotics. Journal of Evolution of Medical and Dental Sciences. 2013; 2(46):9037-41.

19. Hassali MA, Shaﬁe AA, Al-Qazaz H, Tambyappa J, Palaian S, Hariraj V. Self-medication practices among adult population attending community pharmacies in Malaysia: An exploratory study. International Journal of Clinical Pharmacy. 2011;33(5):794.

20. Aashi MM, Alghanmi HA, Alhibshi RH, Alsaati BA, Aljohani NJ. Self-medication among medical students in King Abdul-Aziz University. International Journal of Research in Medical Sciences. 2016; 4(3):947-949.

21. Kish L. Survey Sampling, New York: John Wiley & Sons, Inc; 1965.

22. Albalawi Y, Sixsmith J. Agenda setting for health promotion: Exploring an adapted model for the social media era. JMIR Public Health and Surveillanace. 2015;1(2):e21.

23. Fadare JO, Tamuno I. Antibiotic self-medication among university medical undergraduates in Northern Nigeria. Journal of Public Health and Epidemiology. 2011;3(5):217-220.

24. Lv B, Zhou Z., Xu G, Yang D, Wu L, Shen Q, Fang Y. Knowledge, attitudes and practices concerning self-medication with antibiotics among university students in western China. Tropical Medicine & International Health. 2014;19(7):769-779.

25. Shah SJ, Ahmad H, Rehan RB, Najeeb S, Mumtaz M, Jilani MH, Kadir MM. Self-medication with antibiotics among non-medical university students of Karachi: a cross-sectional study. BMC Pharmacology and Toxicology. 2014;15(1):74.

26. Biswas S, Ghosh A, Mondal K, Dalui JR., Haldar M, Biswas S. Self-medication with antibiotics among undergraduate nursing students of a government medical college in Eastern India. International Journal of Pharmaceutical Research. 2015;5(10), 239-43.

27. Núñez M, Tresierra-Ayala M, Gil-Olivares F. Antibiotic self-medication in university students from Trujillo, Peru. Medicina Universitaria. 2016;18(73):205-209.

28. Zhu X, Pan H, Yang Z, Cui B, Zhang D, Ba-Thein W. Self-medication practices with antibiotics among Chinese university
students. Public health. 2016;130;78-83.

29. Adegoke SA, Abioye-Kuteyi EA, Orji EO. The rate and cost of hospitalisation in children with sickle cell anaemia and its implications in a developing economy. African Health Sciences. 2014;14(2):475–480.

30. Kolade A, Adelani TW, Adeniran DA. Self-medication Practices among Pregnant Women Attending the State Hospital, Osogbo Nigeria. Mental Health. 2016; 198164925.

31. Mbarambara PM, Kingombe CZ, Mututa PM, Bisangamo CK. Determinants of Contraceptive use among Women in General Hospital of Referral Bagira, Democratic Republic of Congo. International Journal of Innovation and Applied Studies. 2016;16(1):63-71.

32. Haque SE, Rahman M, Itsuko K, Mutahara M, Kayako S, Tsutsumi A, et al. Effect of a school-based oral health education in preventing untreated dental caries and increasing knowledge, attitude and practices among adolescents in Bangladesh. BMC Oral Health. 2016; 16(44):1-10.

33. Abasiubong F, Bassey EA, Udobang JA, Akinbami OS, Udoh SB, Idung AU. Self-Medication: Potential risks and hazards among pregnant women in Uyo, Nigeria. Pan African Medical Journal. 2012;13(1).

34. Eticha T, Mesfin K. Self-Medication Practices in Mekelle, Ethiopia. PLOS ONE. 2014;9(5):e97464.

35. Albalawi Y, Sixsmith J. Agenda setting for health promotion: Exploring an adapted model for the social media era. JMiR Public Health and Surveillance. 2015;1(2):e21.

36. Marak A, Borah M, Bhattacharyya H, Talukdar K. A cross-sectional study on self-medication practices among the rural population of Meghalaya. International Journal of Medical Science and Public Health. 2016;5(6):1-5.

37. Sawalha AF. A descriptive study of self-medication practices among Palestinian medical and nonmedical university students. Research in Social and Administrative Pharmacy. 2008;4:164–172.

38. Banerjee I, Bhadury T. Self-medication practice among undergraduate medical students in a tertiary care medical college, West Bengal. Journal of Postgraduate Medicine. 2012;58(2):127.

39. Niveditha G, Maity N, Rathai R, Shivamurthy MC. A Cross-sectional Study to evaluate and compare knowledge, attitude and practice of self-medication among medical and non-medical students. Journal of Pharmaceutical Research. 2012;11(2):61-66.

40. Shehnaz SI, Khan N, Sreedharan J, Issa KJ, Arifulla M. Self-medication and related health complaints among expatriate high school students in the United Arab Emirates. Pharmacy Practice. 2013;11(4):211.

41. Uppal D, Agarwal M, Roy V. Assessment of knowledge, attitude, and practice of self-medication among college students. International Journal of Basic & Clinical Pharmacology. 2017;3(6):988-994.

42. Alam N, Safsoon N, Uddin R. Self-medication among medical and pharmacy students in Bangladesh. BMC research notes. BMC. 2015;8(1):763.