Characterization of a Thermostable UvrD Helicase and Its Participation in Helicase-dependent Amplification*

Lixin An‡, Wen Tang§, Tamara A. Ranalli§, Hyun-Jin Kim§, Jamie Wytia§, and Huimin Kong$¶

From ‡New England Biolabs and §BioHelix, Beverly, Massachusetts 01915

Received for publication, March 21, 2005, and in revised form, June 10, 2005
Published, JBC Papers in Press, June 13, 2005, DOI 10.1074/jbc.M503096200

Helicase-dependent amplification (HDA) is an isothermal in vitro DNA amplification method based upon the coordinated actions of helicases to separate double-stranded DNA and DNA polymerases to synthesize DNA. Previously, a mesophilic form of HDA (mHDA) utilizing the Escherichia coli UvrD helicase, DNA polymerase I Klenow fragment, two accessory proteins, MutL and single-stranded DNA-binding protein (SSB), was developed (1). In an effort to improve the specificity and performance of HDA, we have cloned and purified a thermostable UvrD helicase (Tte-UvrD) and the mutL homolog (Tte-MutL) from Thermoanaerobacter tengcongensis. Characterization of the Tte-UvrD helicase shows that it is stable and active from 45 to 65 °C. We have found that the Tte-UvrD helicase unwinds blunt-ended DNA duplexes as well as substrates possessing 3’- or 5’-ssDNA tails. Tte-UvrD was used to develop a thermophilic helicase-dependent amplification (tHDA) system to selectively amplify target sequences at 60–65 °C. The tHDA system is more efficient than mHDA, displaying heightened amplification sensitivity without the need for the MutL and SSB accessory proteins. Amplification independent of MutL corresponds with studies demonstrating that maximal Tte-UvrD helicase activity does not require the mutL homolog. The tHDA system allows for rapid amplification and detection of targets present in genomic DNA. The expeditious nature and simplistic design of the tHDA platform makes the technology ideal for use in diagnostic applications requiring rapid identification of organisms at the point-of-need.

DNA helicases use the energy generated by the hydrolysis of nucleoside triphosphate to break the hydrogen bonds linking the two strands together in duplex DNA (2). Helicases are involved in a myriad of cellular processes requiring the manipulation of DNA, including replication, repair and recombination, because of the ability of these enzymes to allow access to the buried nucleotide sequence (3). The well studied Escherichia coli UvrD helicase (helicase II) unwinds DNA in a 3’ to 5’ direction (4). Unlike many other helicases, the UvrD helicase is capable of melting fully duplex molecules (DNA fragment with blunt ends) as well as nicked circular DNA molecules (5). In E. coli cells, UvrD is recruited to a site containing an erroneously incorporated nucleotide to unwind the DNA for corrections to be made during methyl-directed mismatch repair (6) and UvrABC-mediated nucleotide excision repair (7). Direct physical interactions between UvrD and MutL, the master coordinator of the mismatch repair pathway, have shown that MutL dramatically stimulates UvrD helicase activity (8–10).

Although several homologs of the E. coli uvrD helicase have been identified and characterized from many bacteria, relatively few uvrD homologs have been described from thermophilic organisms. Expression of the Thermus thermophilus uvrD homolog has been shown to partially compensate for the repair function of E. coli UvrD, suggesting that the function of the helicase is evolutionarily conserved (11). Characterization of this protein indicates that the T. thermophilus UvrD possesses a 3’-5’ DNA helicase activity similar to the E. coli UvrD (12). In addition, another homolog of the uvrD helicase has been purified from Bacillus stearothermophilus (13). It was named Bst pcrA because of its sequence homology to the pcrA helicase in Staphylococcus aureus (13). Studies of two accessory proteins, ribosomal protein L3 and replication initiator protein RepD, have been shown to enhance Bst PcrA unwinding activity, much like the MutL stimulation of UvrD helicase activity in E. coli (14, 15). The stimulatory effect of MutL on UvrD has not been demonstrated to be a universal feature or species specific with uvrD homologs.

Here we report the cloning and characterization of the UvrD and MutL proteins from a fully sequenced thermophilic bacterium, Thermoanaerobacter tengcongensis (16). The helicase activity of the Tte-UvrD is described, as are the effects of the Tte-MutL protein on unwinding reactions catalyzed by Tte-UvrD helicase. Previously, we have developed an isothermal DNA amplification method using the UvrD helicase from E. coli (1). Unlike the polymerase chain reaction (PCR) that is dependent on heat to separate double-stranded DNA, double-stranded DNA in helicase-dependent amplification (HDA) reactions are separated into two single strands by a helicase and, thus, enables the amplification reaction to be performed at a constant temperature. In this study, we have tested the ability of thermostable helicases to support thermophilic HDA reactions at higher temperatures, to simplify the reaction components and improve detection sensitivity.

MATERIALS AND METHODS

Bacterial Strains, Plasmids, and Enzymes—[α-32P]dTTP was obtained from PerkinElmer Life Sciences. E. coli ER2502, E. coli ER2566, plasmid pTYB1, and chitin beads were from New England Biolabs Inc. (Beverly, MA). Plasmid pCR2.1-TOPO was from Invitrogen. HiTrap Heparin HP column, and ATP were obtained from Amersham Biosciences. QIAquick Nucleotide Removal kit was obtained from Qiagen (Valencia, CA). Bacterial genomic DNA was obtained from ATCC (Manassas, VA). Deep Vent DNA polymerase, Klenow fragment (3’-5’ exo−), QuickT4 DNA ligase, Thermopol buffer, and Thermopol II buffer were all from New England Biolabs.

The abbreviations used are: HDA, helicase-dependent amplification; tHDA, thermophilic HDA; mHDA, mesophilic HDA; SSB, single-stranded-binding protein; LMP, low melting point; dTTP, deoxythymidine triphosphate; ssDNA, single-stranded DNA; SSB, ssDNA-binding protein.

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed. Tel.: 978-998-7285; Fax: 978-921-1350; E-mail: kong@biohelix.com.
Cloning and Purification of Tte-UvrD and Tte-MutL—Oligonucleotide primers were designed to amplify the Tte uvrD gene from T. tengcongensis according to the published sequence (16). The forward primer TUR (5'-ATACATAGTTATGGCTAAAGAGG-3') included the NdeI site and the reverse primer TUR (5'-AAAAATGCCCTTTCCCCAGCAAATTTCCCAAAGGAG-3') included a SapI site. The PCR product was first cloned into the pCR2.1-TOPO vector. After screening and sequencing, the correct construct was digested with NdeI and SapI, inserted into the pTYB1 expression vector, and transformed into E. coli ER2502 cells (17). The sequence of the pTYB1-Tte-UvrD construct was verified and then transformed into E. coli ER2566 cells for overexpression.

E. coli harboring the pTYB1-Tte-UvrD expression plasmid were grown at 37 °C until OD600 reached 0.5–0.8. Tte-UvrD protein expression was induced using 0.4 mM isopropyl-β-D-thiogalactopyranoside at 15 °C for 12–14 h. All subsequent procedures were performed at 4 °C except when noted. 20 grams of cells were resuspended in Buffer C (20 mM Tris-HCl, pH 8.0, 500 mM NaCl, 1 mM EDTA) and lysed by sonication. The clarified lysate was applied to a 15-ml column of chitin beads pre-equilibrated with buffer C at a flow rate of ~0.5–1 ml/min. The column was washed with 10 column volumes of buffer C and then washed with three bed volumes of buffer C containing 50 mM dithiothreitol at a flow rate of 2 ml/min. Following incubation for 16 h at 16 °C, the cleaved Tte-UvrD protein was eluted with buffer C, and 1-ml fractions were collected. Fractions containing protein were pooled and dialyzed against buffer A (20 mM potassium phosphate, pH 6.9, 0.1 mM EDTA, 6 mM 2-mercaptoethanol, 5% v/v glycerol) supplemented with 50 mM NaCl. The dialyzed Tte-UvrD was further purified using the HiTrap Heparin HP column pre-equilibrated with buffer A supplemented with 50 mM NaCl. Protein was eluted from the column with a linear gradient of 50–500 mM NaCl containing glycerol. Protein bands were identified in the gel and dialyzed into buffer A supplemented with 50 mM NaCl. Fractions containing the Tte-UvrD protein were analyzed by SDS-PAGE, stained with Coomassie Blue, and scanned and quantified using Quantity One 4.4.1 software to verify the purity of the protein. The purified Tte-UvrD was dialyzed against a storage buffer (20 mM Tris-HCl, pH 7.4, 200 mM NaCl, 1 mM EDTA, 1 mM dithiothreitol, 50% v/v glycerol), and aliquots were stored at −80 °C.

The Tte-MutL was amplified from genomic DNA by PCR using the forward primer TF (5'- ATACAATTAGTAATAAAATCCATTCTCAGCAAAGA-3') and the reverse primer TM (5'- AATATATGCTCTTCCAGCTTGGATGCTTGGTAACATCTTCTCA3A-3'). The restriction enzyme sites, NdeI and SapI, were engineered into the forward and reverse primers, respectively, to clone the Tte-MutL gene into the expression vector. The pTYB1-Tte-MutL construct was expressed in E. coli ER2502 cells harboring the pTYB1-Tte-UvrD expression plasmid and purified using the procedure described above for Tte-UvrD.

ATPase Assays—The hydrolysis of ATP was detected by monitoring the release of inorganic phosphate with acidic ammonium molybdate and malachite green (19). Reactions were performed using 100 ng/ml bacterially expressed, 3 mM ATP, 5 mM MgOAc₂, with varying amounts of Tte-UvrD protein at the indicated temperatures. Reactions were performed in ThermoPol buffer (20 mM Tris-HCl, pH 8.8, 10 mM KCl, 10 mM (NH₄)₂SO₄, 2 mM MgSO₄, 0.1% Triton X-100), and preincubated at the indicated temperatures for 2 min prior to the addition of the helicase. A parallel reaction was performed without helicase as a negative control. Incubation was continued to each specified time, where 10 μl of the reaction mixture was removed and added to 800 μl of the ammonium molybdate (1.05% w/v/malachite green (0.3% w/v)) reagent. Each sample was incubated with the ammonium molybdate/malachite green reagent for 1 min at room temperature and then 100 μl of 34% w/v sodium citrate solution was added. After 20 min of continual incubation at room temperature, the absorbance at 660 nm was measured.

Helicase Assays—The DNA substrates used in this study were composed of four oligodeoxyxynucleotides: a fixed 23-mer top strand (5'-GCTCCGTGCGCAAGCCACGAAAGG-3') and three different bottom strands to produce either the 3'-ssDNA tailed (5'-ACCTTGTTGGGATCGGAGGAC-3') or the 5'-ssDNA tailed (5'-dT40-ACCTTGTTGGGATCGGAGGAC-3') as depicted in Table I. The ssDNA regions, either the 3'- or 5'-tails, were composed entirely of oligodeoxyxymidylates to avoid intramolecular base pairing within the single-stranded region (20). The top and bottom oligodeoxyxynucleotides were mixed in ThermoPol Buffer at a 1:1.5 molar ratio. The annealing mixture was heated at 95 °C for 2 min and then slowly cooled to 25 °C over a period of 70 min. The annealed duplex was radioactive labeled by filling one nucleotide in at the 3'-end of the top strand with [α-32P]dATP using Klenow fragment (3'-5' exo) . The labeled duplexes were then purified by QIAquick Nucleotide Removal kit to remove any unincorporated nucleotides.

Helicase assay reactions were performed by mixing 0.25 mM radiolabeled DNA duplex, 3 mM ATP, and differing amounts of Tte-UvrD in ThermoPol buffer in a total volume of 20 μl. Reactions were preincubated at 55 °C for 2 min and were initiated by the addition of ATP and incubated at 55 °C for the indicated length of time. Reactions were terminated by the addition of 5 μl of the stop solution (0.25% bromphenol blue, 25% glycerol, 1% SDS, 100 mM EDTA). A positive control assay was performed by incubation of the DNA substrate at 95 °C for 15 min in the absence of helicase to completely denature the DNA substrate. A negative control containing intact DNA substrate in the absence of helicase was performed in parallel with the sample reactions. Samples were resolved in a 20% Tris borate/EDTA gel and radioactively labeled bands were quantified using Molecular Imager FX (Bio-Rad) and Quantity One 4.4.1 software.

HDA Assays—HDA assays were performed by creating two reaction mixes, mixture A and mixture B. Mixture A contains the DNA substrate (various concentrations of either plasmid DNA or bacterial genomic DNA), primers (25–50 nt of each primer), 3.5 mM MgSO₄, 1× ThermoPol II buffer, and ddH₂O to a volume of 25 μl. Mixture B contains 1× ThermoPol II buffer, 200 μM dNTPs, 3 mM dATP, 20 units of Bst polymerase, 100 ng of Tte-UvrD helicase, < 200 ng of Tte-MutL, and ddH₂O to a volume of 25 μl. Mixture A is heated to 95 °C for 3–5 min then cooled to 65 °C for 3 min when needed. Mixture B is added to mixture A, and the reactions were incubated at 65 °C for various amounts of time. Reactions were terminated by the addition of 12.5 μl of stop buffer (0.1% sodium dodecyl-sulfate, 50 mM Na₂EDTA, 15% Ficoll, and 0.2% orange G), and 10–15 μl aliquots of the reactions were separated on a 2% W/L agarose gel. The plasmid used in this study was pΔC19 plasmid. The primers for the plasmid system were as follows: forward primer: 5'-GTGACGCCAGATAACATTTCACACAGGAGA-3' and reverse primer: 5'-CGCGAGGATTGTTCGCCGACACGAGTTT-3' and reverse primer: 5'-TTGCTCTCCATGAGCTATGGTCTC-3'. Primers for bacterial genomic DNA amplification were as follows: Neisseria gonorrhoeae penvp forward primer: 5'-GCAAAGTTTGAACAGCAATGTCACACAGGA-3' and reverse primer: 5'-GCACAGAGGTGGTCACAGGA-3'.

RESULTS

Cloning and Purification of Tte-UvrD and Tte-MutL—Analysis of the T. tengcongensis genome sequence revealed the presence of E. coli uvrD and mutL homologs (16). Tte-UvrD shares 42.9% sequence identity with E. coli UvrD at the amino acid level; however, the Tte-MutL shares a lower (29.5%) but still significant amino acid sequence identity with MutL in E. coli (17). The corresponding genes encoding Tte-UvrD and Tte-MutL were amplified from T. tengcongensis by PCR and inserted into the expression vector pTYB1 under the control of the T7 promoter. The proteins were purified using an intein fusion method that allows for self-cleavage on chitin columns (17). The proteins were further purified over a heparin column. Tte-UvrD and Tte-MutL proteins were found to be about 90% pure based on polyacrylamide gel electrophoresis and had apparent molecular masses of 53 and 67 kDa, respectively, which is in agreement with the calculated molecular weights of 82,800 (Tte-UvrD) and 67,200 (Tte-MutL) (Fig. 1).

Temperature Optima and Thermal Stabilities—The temperature range of the hot spring that T. tengcongensis was isolated from fluctuates from 50 to 80 °C; therefore, the Tte-UvrD helicase was expected to be stable and active at elevated temperatures (16). To determine the optimal temperature for maximal Tte-UvrD activity, we utilized a colorimetric assay to directly measure the amount of inorganic phosphate released by the ATPase activity of Tte-UvrD over a range of temperatures. Helicase activity was assessed by incubating reactions at temperatures ranging from 40 to 75 °C for 8 min and measuring the absorbance of each sample at 660 nm. The absorbance at each temperature was expressed as a percentage of remaining activity relative to the highest absorbance in each assay group.

Analysis of the data from the ATPase assay showed that ATP hydrolysis occurred over a broad temperature range (from 45 to
65 °C) and reached a maximum at 55 °C (Fig. 2A). The ATPase assay was repeated using several different incubation times (2, 4, or 10 min), and similar results were obtained from each assay (data not shown). The thermal stability of Tte-UvrD was determined by incubating the helicase at 65 or 70 °C for differing amounts of time and then assaying for ATPase activity with substrates at the experimentally determined optimal temperature of 55 °C for 10 min. The percentage of remaining ATPase activity at 65 or 70 °C was plotted as a function of time and demonstrated that Tte-UvrD was relatively stable at 65 °C and lost 30% of ATPase activity after 90 min of continuous incubation at 65 °C. The protein was much less stable at 70 °C and displayed a half-life of 110 min. After incubating at 70 °C for 1 h, 90% of Tte-UvrD activity was abolished (Fig. 2B). Similar findings in the thermophilic bacterium *T. thermophilus* have been observed when analyzing the optimal temperature for UvrD helicase activity at temperatures above 70 °C (12). Considering the natural habitat of *T. tengcongensis* reaches temperatures as high as 80 °C, the loss of activity at 70 °C is an interesting observation and suggests that the helicase may require accessory proteins to function at higher temperatures.

Unwinding Activity of Tte-UvrD—The unwinding reaction catalyzed by the Tte-UvrD helicase has been analyzed using an *in vitro* assay to measure the displacement of a radiolabeled 24-mer DNA strand from a DNA duplex in which the complementary strand is unlabeled. Three different duplex substrates were designed for the unwinding assay (Table I and Refs. 20 and 21). To test the suitability of these substrates, the unwinding assay was initially performed using the well-characterized *E. coli* UvrD protein. Our results showed that the *E. coli* UvrD was capable of unwinding all three substrates, with a strong preference for the substrate containing a 3'-ssDNA tail (data not shown). In addition, we also observed that the *E. coli* MutL protein significantly stimulated *E. coli* UvrD unwinding activity (data not shown), observations that are consistent with previous reports by Yamaguchi et al. (9) and Mechanic et al. (10).

After characterization of the substrates with the *E. coli* UvrD, unwinding assays were performed using a range of Tte-UvrD protein concentrations (0.25–16 nM) to unwind a fixed concentration of duplex substrate (0.25 nM). When the 3'-ssDNA tailed duplex was used, unwound single-stranded product increased as a function of increasing enzyme concentration (Fig. 3A). In parallel unwinding assays, Tte-UvrD displayed a significant unwinding activity toward blunt-ended (Fig. 3B) and 5'-ssDNA tailed duplex (Fig. 3C). Although Tte-UvrD was capable of unwinding all three substrates, slightly higher activity was displayed with the 3'-ssDNA tailed substrate as compared with either the blunt-ended or 5'-ssDNA tailed substrates. For example, in the presence of 4 nM Tte-UvrD, more than 85% of the 3'-ssDNA tailed duplex was separated and less
than 70 and 60% of the blunt-ended or 5'-ssDNA tailed duplexes, respectively, were unwound (Fig. 3D). Unlike the E. coli UvrD, Tte-UvrD has only a marginal preference toward the 3'-ssDNA tailed duplex and is able to effectively unwind all three types of substrates (4, 5). The results remained consistent over the broad range of Tte-UvrD concentrations analyzed.

To address the efficiency of the unwinding reaction, we also performed a time course assay with the Tte-UvrD protein. After 4 min of reaction time, 66.5% of the 3'-ssDNA tailed duplex was unwound and in contrast, 46.1% of the blunt-ended and 45.2% of the 5'-ssDNA tailed duplexes were separated (Fig. 4). After 16 min, the unwinding assay had plateaued, and increasing the incubation time did not further increase the displacement of the labeled strand. At this protein/DNA ratio (r = 8; Tte-UvrD 2 nM, DNA duplex 0.25 nM), Tte-UvrD was able to maximally unwind 90% of the 3'-ssDNA tailed duplex and 71% of the blunt-ended or 5'-ssDNA tailed duplexes (Fig. 4). Although Tte-UvrD unwinds all three types of substrates, the efficiency of the reaction is higher with the 3'-ssDNA tailed duplex. Taken together, the data from the concentration and time course assays support the observation that the Tte-UvrD helicase is capable of unwinding all substrates analyzed, with only a marginal preference for the 3'-ssDNA tailed duplex.

The Effect of MutL on UvrD Unwinding Activity—In E. coli, MutL targets and loads UvrD onto the DNA substrate and thereby enhances the unwinding activity of UvrD more than 10-fold (9, 10). To test whether Tte-MutL can similarly stimulate the unwinding reaction catalyzed by Tte-UvrD, increasing amounts of Tte-MutL were added to unwinding assays. The results indicate that the Tte-MutL did not have a significant effect on unwinding of blunt-ended and 5'-ssDNA tailed duplex substrates catalyzed by Tte-UvrD (Fig. 5). For the 3'-ssDNA tailed duplex, a low level of stimulation (<30%) was observed when the molar ratio of Tte-MutL to Tte-UvrD reached 32 or 64 (Tte-UvrD 0.5 nM, Tte-MutL 16 or 32 nM; Fig. 5). The assays were repeated with different UvrD protein to DNA substrate mole-

![Fig. 3. Comparison of the ability of Tte-UvrD protein to unwind DNA duplex with 3'-ssDNA tail, blunt end, and 5'-ssDNA tails. Helicase activity assays were performed as described under "Materials and Methods." A and C are autoradiographs showing the displacement of a 24-mer radiolabeled fragment (lower band) from its duplex (upper band). The substrates in A were 3'-ssDNA tailed duplexes, in B were blunt-ended duplexes, in C were 5'-ssDNA tailed duplexes. The DNA concentrations were 0.25 nM duplex DNA molecules. In each panel, lane 1 was the negative control without helicase, lane 2 was the positive control (after heating at 95 °C for 15 min without helicase), and lanes 3–9 contained Tte-UvrD at 0.25, 0.5, 1, 2, 4, 8, and 16 nM, respectively. The oligonucleotide displacement percentage from A to C was calculated and shown in D. Filled square, 3'-ssDNA tailed duplex; open square, blunt-ended duplex; filled triangle, 5'-ssDNA tailed duplex. Each data point represents the result of a single experiment.

![Fig. 4. Time course of unwinding of various duplex DNA substrates by the Tte-UvrD helicase. Helicase activity assays were performed as described under "Materials and Methods." Concentration of the substrate was 0.25 nM DNA molecules, and the Tte-UvrD was 2 nM. Filled square, 3'-ssDNA tailed duplex; open square, blunt-ended duplex; filled triangle, 5'-ssDNA tailed duplex. Each data point represents the result of a single experiment.](image-url)
ratios and consistent results were observed. Stimulation of the UvrD unwinding activity by MutL is much less in T. tengcongensis (<30%) than for E. coli (>10-fold; Refs. 9 and 10), suggesting that the stimulation of UvrD unwinding activity may be specific to the mesophilic system.

To test whether MutL from other thermophilic bacteria stimulate their corresponding UvrD helicase activity, we have cloned and purified a pair of MutL and UvrD homologs from the partially sequenced B. steaorthermophilus strain (GenBankTM accession number: NC_002926). The Bst-UvrD helicase shares 91.4% amino acid sequence identities with the previously characterized Bst PcrA helicase (13). In addition, Bst-UvrD also shares 43.6 and 53.9% sequence identities with E. coli UvrD and Tte-UvrD, respectively. The corresponding Bst-MutL protein shares 32.3 and 38.9% sequence identity with E. coli MutL and with Tte-MutL, respectively. The purified Bst-UvrD with the Bst-MutL was also capable of unwinding all three duplex DNA substrates and displayed a slight preference for the 3'-ssDNA tail substrate (Fig. 6A). A titration of Bst-MutL protein was performed in the presence of a low helicase to substrate ratio (r = 4) during the unwinding assay. The results indicate that Bst-MutL had no effect on the unwinding activity of Bst-UvrD regardless of the type of DNA duplex tested (Fig. 6B), similar to the results obtained with the Tte-UvrD helicase and the corresponding MutL protein.

Thermophilic Helicase-dependent Amplification—To determine whether performing HDA at higher temperature would increase the specificity and efficiency of the reaction, we tested thermostable DNA helicases in HDA reaction in conjunction with various thermostable DNA polymerases. Among these thermostable helicases, Tte-UvrD helicase along with BstDNA polymerase performed the best under our assay conditions. Studies of the HDA reaction buffer conditions indicate that the assay is sensitive to the concentrations of magnesium and salt. Optimal reaction conditions were determined to be under low magnesium (2.5–5 mM) and salt (0–50 mM) concentrations.

Low temperature mHDA reactions require the participation of four proteins: polymerase, UvrD helicase, MutL, and T4 gp32 SSB. The components required for HDA reactions were determined by systematically observing the ability of the reaction to proceed in the absence of each reagent (Fig. 7). In the absence of DNA template (lane 2), primers (Fig. 7, lanes 3 and 4), or cofactor dATP (lane 5), no amplification was observed. Substitution of the dATP cofactor with ATP decreased the amplification yield (lane 6). Additional studies were carried out to test whether nucleotides cofactor maximally supports the HDA reaction, and the result confirmed that dATP is better than

2 L. An and H. Kong, unpublished observation.
ATP (data not shown). In terms of necessary proteins, the absence of the Tte-UvrD helicase from the reaction resulted in no amplification and confirmed that amplification is helicase-dependent. Omitting both the thermostable MutL (lane 8) and SSB (lane 9) proteins had no significant effect on the DNA amplification and indicated that no accessory proteins are required for tHDA. As expected, no amplification was observed in the absence of BstDNA polymerase large fragment (lane 10).

To evaluate the sensitivity of tHDA, tHDA reactions were conducted with serial dilutions of the N. gonorrhoeae template DNA. Amplification was performed using a pair of primers specific for the pivNg gene of N. gonorrhoeae, a gene that is necessary for virulence (see "Materials and Methods" and Ref. 22). A specific DNA fragment corresponding to the 94-bp target sequence was observed with as little as 50 copies of input genome (Fig. 8). In the absence of N. gonorrhoeae DNA, only low molecular weight, nonspecific product was observed that corresponded to the predicted size of primer-dimers (Fig. 8).

DISCUSSION

We have cloned and characterized a thermostable UvrD-like helicase from T. tengcongensis. Tte-UvrD helicase is able to unwind DNA duplexes possessing a 3′- or 5′-ssDNA tails as well as blunt-ended substrates. Although Tte-UvrD prefers 3′-ssDNA tailed duplex templates, the degree of the preference is much lower than that displayed by the E. coli UvrD (this study and Refs. 4 and 5). Recently, a study based on single turnover DNA unwinding experiments suggests that the active form of E. coli UvrD is a dimer that is formed on 3′-ssDNA tails possessing a minimum tail-length of 12 nucleotides (23). At high temperatures, the ends of the duplex DNA may become single-stranded because of "thermal breathing" (24, 25). Since the temperature optima for Tte-UvrD is much higher than that for the E. coli UvrD, the thermal breathing effect is predicted to generate an increase intransient 3′-ssDNA tails. The ability of Tte-UvrD to efficiently unwind both blunt-ended and 5′-ssDNA tailed duplexes may be attributed to the transient generation of 3′-ssDNA tail during thermal breathing at higher temperatures and the subsequent capture of the tail by the helicase.

Previous work in E. coli has demonstrated that the MutL protein interacts with UvrD (8). The mechanism underlying this interaction has been shown to involve the stimulation of the UvrD unwinding activity by MutL, which is responsible for loading the UvrD helicase onto the DNA substrate (10). There is a biological relevance to the in vivo interaction between MutL and UvrD as UvrD participates in the DNA mismatch repair pathway by unwinding the strand containing the mutation (26). In addition, this effect is specific for UvrD and does not occur between the Rep helicase, which shares 40% homology with UvrD, and MutL (9).

Although sequence homologs of UvrD and MutL have been found in most of the sequenced bacterium genomes, very few biochemical and genetic studies have been reported. For example, it is not known whether the functional interaction between UvrD and MutL is universal to all bacterial systems. In this study, we have investigated whether the thermostable Tte-MutL can stimulate Tte-UvrD unwinding activity. Our results suggest that there is no significant stimulatory effect on the Tte-UvrD activity by Tte-MutL. To further verify our observations, we cloned, purified, and tested the thermostable helicase and the corresponding MutL protein from a partially sequenced B. stearothermophilus strain (GenBank™ accession number: NC_002926). We found that Bst-MutL also has no significant stimulation on Bst-UvrD activity. Stimulation of UvrD activity by MutL appears to be either a specific effect observed in E. coli, or perhaps a more general mechanism necessary for efficient mesophilic DNA repair. If MutL and UvrD interact in thermophilic bacteria, the interaction may not automatically lead to the stimulation of the UvrD unwinding activity, at least in the two thermophilic bacteria reported in this study. Alternatively, UvrD may not be a necessary component of the DNA mismatch repair pathway in thermophilic bacteria and an alternative mechanism for DNA mismatch repair may exist.

In an effort to generate a tHDA platform, we evaluated the ability of the Tte-UvrD helicase and Tte-MutL accessory protein to amplify DNA in conjunction with a thermophilic polymerase. We found that Tte-UvrD was capable of efficiently amplifying target sequences from various genomes including both bacterial and human. Performing the HDA reaction at a higher temperature improves both the sensitivity and specificity of the reaction. As few as 10 copies of bacterial genomic DNA can be utilized for amplification. This is a significant advancement over the previously developed mHDA platform, which has a detection limit of 1000 copies of bacterial genomic DNA (1).

Unlike the mHDA system, the tHDA system does not require MutL and SSB proteins as accessory proteins and, thus, simplifies the reagent composition. In the tHDA assay, addition of the Tte-MutL protein to the reaction does not enhance product formation (Fig. 7). This is in contrast with the previously developed mHDA platform (1), which has been shown to absolutely require the presence of the corresponding MutL protein for amplification. However, the lack of enhancement observed in the tHDA assay by Tte-MutL is in agreement with the biochemical analysis of the Tte-UvrD helicase, which shows that addition of MutL to the unwinding assay did not significantly enhance unwinding activity (Fig. 5). Currently, the exact mechanism underlying the lack of an SSB requirement is not known. Perhaps at higher temperatures (65 °C), the rate of rewinding of separated DNA strands is slower than that at lower temperatures (37°C), eliminating the need for an SSB to stabilize the single-stranded DNA.

Acknowledgments—We thank Jun Yu and Huanming Yang from Beijing Genomics Institute and Yuqing Tian from the Institute of Microbiology, Chinese Academy, for providing the genomic DNA of T. tengcongensis. We thank Myriam Vincent, Yan Xu, Lauren Higgins, and Michael Dalton for assistance in protein purification. We thank Christopher Thomas for providing us Bst-UvrD helicase (Bst-PcrA). We are very grateful to Richard Roberts, Elisabeth Raleigh, and Ann Kays for constructive discussion and critical reading of this manuscript. We thank Donald Comb for his support.
REFERENCES

1. Vincent, M., Xu, Y., and Kong, H. (2004) EMBO Rep. 5, 795–800
2. Kornberg, A., and Baker, T. (1992) DNA Replication, 2nd Ed., pp. 355–378, W.H. Freeman and Company, New York
3. Caruthers, J. M., and McKay, D. B. (2002) Curr. Opin. Struct. Biol. 12, 123–133
4. Matson, S. W. (1986) J. Biol. Chem. 261, 10169–10175
5. Runyon, G. T., and Lohman, T. M. (1989) J. Biol. Chem. 264, 17502–17512
6. Lahue, R. S., Au, K. G., and Modrich, P. (1989) Science 245, 160–164
7. Caron, P. R., Kushner, S. R., and Grossman, L. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 4925–4929
8. Hall, M. C., Jordan, J. R., and Matson, S. W. (1998) EMBO J. 17, 1535–1541
9. Yamaguchi, M., Daa, V., and Modrich, P. (1998) J. Biol. Chem. 273, 9197–9201
10. Mechanic, L. E., Frankel, B. A., and Matson, S. W. (2000) J. Biol. Chem. 275, 38337–38346
11. Hiratake, T., Kato, R., Kawaguchi, S., and Kuramitsu, S. (1997) Gene (Amst.) 199, 77–82
12. Collins, R., and McCarthy, T. V. (2003) Extremophiles 7, 35–41
13. Bird, L. E., Brannigan, J. A., Subramanya, H. S., and Wigley, D. B. (1998) Nucleic Acids Res. 26, 2686–2693
14. Soultanas, P., Dillingham, M. S., and Wigley, D. B. (1998) Nucleic Acids Res. 26, 2374–2379
15. Soultanas, P., Dillingham, M. S., Papadopoulos, F., Phillips, S. E., Thomas, C. D., and Wigley, D. B. (1999) Nucleic Acids Res. 27, 1421–1428
16. Bao, Q., Tian, Y., Li, W., Xu, Z., Xuan, Z., Hu, S., Dong, W., Yang, J., Chen, Y., Xue, Y., Xu, Y., Lai, X., Huang, L., Dong, X., Ma, Y., Ling, L., Tan, H., Chen, R., Wang, J., Yu, J., and Yang, H. (2000) Genome Res. 12, 689–700
17. Chong, S., Montello, G. E., Zhang, A., Cantor, E. J., Liao, W., Xu, M. Q., and Benner, J. (1998) Nucleic Acids Res. 26, 5109–5115
18. Bradford, M. M. (1976) Anal. Biochem. 72, 248–254
19. McGlynn, P., Mahdi, A. A., and Lloyd, R. G. (2000) Nucleic Acids Res. 28, 2324–2332
20. Ali, J. A., Maluf, N. K., and Lohman, T. M. (1999) J. Mol. Biol. 293, 815–834
21. Ali, J. A., and Lohman, T. M. (1997) Science 275, 377–380
22. Carrick, C. S., Prye, J. A. M., and Davies, J. K. (1996) Gene (Amst.) 220, 21–29
23. Maluf, N. K., Fischer, C. J., and Lohman, T. M. (2003) J. Mol. Biol. 325, 913–935
24. Putnam, B. F., Van Zandt, L. L., Prohofsky, E. W., and Mei, W. N. (1981) Biophys. J. 35, 271–287
25. Roychoudhury, R., Tu, C. P., and Wu, R. (1979) Nucleic Acids Res. 6, 1323–1333
26. Modrich, P. (1989) J. Biol. Chem. 264, 6597–6600