A Network Pharmacological Elucidation of the Systematic Treatment Activities and Mechanisms of the Herbal Drug FDY003 Against Esophageal Cancer

Ho-Sung Lee1,2, In-Hee Lee1, Kyungrae Kang2, Sang-In Park3, Minho Jung2, Seung Gu Yang4, Tae-Wook Kwon2, and Dae-Yeon Lee1,2

Abstract
Despite accumulating evidence for the value of herbal drugs for cancer treatment, the mechanisms underlying their effects have not been fully elucidated in a systematic manner. In this study, we performed a network pharmacological analysis to elucidate the anti-esophageal cancer (EC) properties of the herbal drug FDY003, a mixture of Artemisia capillaris Thunberg (AcT), Cordyceps militaris (Linnaeus) Link (Cm), and Lonicera japonica Thunberg (LjT). FDY003 reduced human EC cell viability and increased the pharmacological effects of chemotherapeutic drugs. There were 15 active pharmacological chemicals targeting 61 EC-associated genes and proteins in FDY003. The FDY003 targets were key regulators of major oncogenic EC-associated signaling pathways, such as phosphoinositide 3-kinase (PI3K)-Akt, hypoxia-inducible factor (HIF)-1, mitogen-activated protein kinase (MAPK), tumor necrosis factor (TNF), p53, Janus kinase (JAK)-signal transducer and activator of transcription (STAT), erythroblastic leukemia viral oncogene homolog (ErbB), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappa B), and vascular endothelial growth factor (VEGF) cascades. These EC-associated genes, proteins, and pathways targeted by FDY003 determine the malignant behaviors of EC cells, including cell death, survival, division, proliferation, and growth. This network pharmacological analysis provides an integrative view of the mechanisms by which FDY003 contributes to EC treatment.

Keywords
esophageal cancer, herbal drugs, network pharmacology, anticancer agents, molecular mechanisms

Received: February 8th, 2022; Accepted: May 16th, 2022.

Introduction
Esophageal cancer (EC), an aggressive gastrointestinal cancer, is the 10th most frequently diagnosed malignant tumor worldwide, accounting for 0.60 million new cases and 0.54 million deaths per year.1 The major treatment strategies for EC include immunotherapy, targeted therapy, and chemotherapy.2 However, treatment options are limited and their efficacies are generally insufficient.2 Herbal drugs are increasingly recognized as potent agents for cancer treatment based on evidence that they can increase the therapeutic success rate, promote recovery after anticancer therapies, suppress recurrence and adverse events, and alleviate cancer-associated symptoms in patients with EC.3

FDY003—an herbal mixture made up of Artemisia capillaris Thunberg (AcT), Cordyceps militaris (Linnaeus) Link (Cm), and Lonicera japonica Thunberg (LjT)—has been developed for cancer treatment and effectively triggers growth arrest and apoptosis in cancer cells.5–8 This herbal drug exhibits a multiple compound-multiple target-multiple pathway mechanism of action by regulating various crucial cancer-associated gene, proteins, and pathways to exert its anticancer effects and to act as a chemosensitizer.5–8 However, the pharmacological roles and

1The Fore, Seoul, Republic of Korea
2Forest Hospital, Seoul, Republic of Korea
3Forestheal Hospital, Seoul, Republic of Korea
4Kyunghee Naro Hospital, Seongnam, Republic of Korea

Corresponding Authors:
Ho-Sung Lee, The Fore, 33 Saemunan-ro 5ga-gil, Jongno-gu, Seoul 03170, Republic of Korea.
Email: forehslee@gmail.com
Dae-Yeon Lee, The Fore, 33 Saemunan-ro 5ga-gil, Jongno-gu, Seoul 03170, Republic of Korea.
Email: foresthrnd@gmail.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
regulatory mechanisms of FDY003 in EC have not been evaluated.

Network pharmacology is a powerful approach to dissect the complex and synergistic therapeutic effects of herbal drugs, as demonstrated by extensive studies.9,10 Based on the “drug-targeted gene/protein-disease” perspective, network pharmacology attempts to explore systematic relationships among pharmacological targets, genes, and proteins involved in the pathological mechanisms of a given disease.9,10 Using network pharmacology, the active pharmacological chemicals with major roles in the pharmacological action of herbal drugs are screened, targets of active chemicals are identified, and the molecular regulatory mechanisms underlying the effects of herbal drugs are determined via the analysis of networks formed by the intricate interactions among drug targets and disease-associated genes and proteins.9,10 We conducted a network pharmacology-driven study to evaluate the anti-EC activity of FDY003.

Materials and Methods

Cell Culture

The EC9706 human EC cell line was obtained from the American Type Culture Collection (Rockville, MD, USA). Cells were cultured in Dulbecco’s modified Eagle’s medium (WELGENE Inc.) that contained 10% fetal bovine serum (WELGENE Inc.) and 1% streptomycin-penicillin (Thermo Fisher Scientific, Inc.). The cells were then incubated at 5% CO2 and 37 °C.

Preparation of FDY003

LjT (150.0 g), Cm (100.0 g), and AcT (150.0 g), components of FDY003, were obtained from Hanpure Pharmaceuticals (Pocheon, Korea). They were mixed and ground, and the resulting mixture was submerged in 70% ethanol (500 mL). After reflux extraction at −80 °C for 3 h, the extracts were dissolved in 80% and 90% ethanol consecutively. Next, the extracts were cryodesiccated at −80 °C to obtain 50.4 g of a freeze-dried form, stored at −20 °C, and dissolved in purified water before experiments.

Determination of EC Cell Viability After Drug Treatment

The effects of drug treatment on the viability of EC cells were determined using water-soluble tetrazolium salt (WST-1) assays. In brief, 1.0 × 104 cells were plated onto 96 well-plates and treated for 72 h with FDY003 and/or 5-FU (Sigma-Aldrich) as a single drug treatment and also in a combination. Then, WST-1 solution (Daeil Lab Service Co. Ltd, Seoul, Korea) was added to the cells before incubation for 2 h at 37 °C with 5% CO2. The absorbance at 450 nm was measured using an xMark microplate absorbance spectrophotometer (Bio-Rad) to assess viability.

Uncovering Active Pharmacological Chemicals and Targets of FDY003

Detailed information on the chemicals contained in FDY003 and their pharmacological properties was retrieved from large-scale herbal medicine-relevant databases (eg, Traditional Chinese Medicine Systems Pharmacology,11 Anticancer Herbs Database of Systems Pharmacology,12 and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine13). Their oral bioavailability, druglikeness, and Caco-2 permeability—widely used parameters for network pharmacology studies—were analyzed, and the chemicals were classified as active pharmacological chemicals if they were able to satisfy the following conditions as reported previously:11:

1. Oral bioavailability ≥30%, druglikeness ≥0.18, and Caco-2 permeability ≥0.4. Oral bioavailability determines whether a chemical taken orally has the potential to effectively reach relevant organs and tissues it aims to.13 Oral bioavailability ≥30% is a general criterion for screening chemicals with effective delivery in the human body.5,11,15 Druglikeness determines whether a chemical possesses pharmacologically suitable properties in terms of structures and physicochemical and molecular activities.5,11,15 Caco-2 permeability ≥0.18 is a general criterion for screening chemicals with strong potential as drug candidates.5,11,15

Next, the simplified molecular-input line-entry system (SMILES) notations for the individual active pharmacological chemicals were acquired from PubChem18 and entered into databases of protein–chemical interactome data and algorithms (eg, SwissTargetPrediction,19 PharmMapper,20 Search Tool for Interactions of Chemicals5,21 and Similarity Ensemble Approach22) to identify the targets of the active chemicals of FDY003. Targets that have been shown to contribute to the carcinogenesis and malignant development and progression of EC were screened using comprehensive data obtained from various relevant databases (eg, DisGeNET,23 Human Genome Epidemiology Navigator,24 Comparative Toxicogenomics Database,25 Pharmacogenomics Knowledgebase,26 GeneCards,27 Therapeutic Target Database,28 DrugBank,29 and Online Mendelian Inheritance in Man30).

Generation of Networks and Analysis of their Properties

Networks are generally composed of nodes that represent individual components and edges (or links) that represent interactions, relationships, and associations between nodes. The term “degree” describes the No. of edges a given node has. The herbal constituents, active pharmacological chemicals, and targets of FDY003 serve as nodes in the herbal medicine-active pharmacological chemical-target (H-A-T) network; various forms (ie, molecular, functional, and
FDY003 was able to inhibit the viability of EC9706 cells and the combination was administered to EC9706 human EC cells. The protein–protein interaction (PPI) network uses FDY003 targets as nodes and diverse mechanistic interactions and relationships between the nodes as edges based on PPI interaction data with confidence scores ≥0.7 from the STRING database. Network generation and all related analyses were performed using Cytoscape.

Associations Between Expression Levels of FDY003 Targets and EC Survival

Associations between the expression levels of FDY003 targets and EC survival were determined by importing the targets to the Kaplan–Meier Plotter, a effective tool for the survival analysis across various cancer types. The results were obtained with an auto-selected best cut-off and those with \(P < .05 \) (log-rank test) were considered statistically significant.

Functional and Pathway Enrichment Analyses of FDY003 Targets

Enriched Gene Ontology terms and pathways for the EC-related FDY003 targets were identified by importing them to the gProfiler, and results with \(P < .05 \) were considered statistically significant.

Molecular Binding and Docking Between Active Pharmacological Chemicals and Targets of FDY003

In silico molecular docking experiments were performed to analyze interactions between the active pharmacological chemicals and targets of FDY003. The structural formula (SDF format obtained from PubChem) of the individual active pharmacological chemicals and the protein structures of the individual targets (collected from RCSB Protein Data Bank) were employed using Autodock Vina, and molecular docking scores were obtained. The chemicals and targets were determined to exhibit strong binding affinity if the molecular docking score was \(<-5.0\), as previously described.

Results

Pharmacological Action of FDY003 in EC

For the evaluation of the pharmacological action of FDY003 in EC, either FDY003, 5-FU (a cytotoxic anti-EC drug), or their combination was administered to EC9706 human EC cells. FDY003 was able to inhibit the viability of EC9706 cells and further raised the inhibitory effect of 5-FU on EC cells (Figure 1A and B). These data may indicate that FDY003 acts as an anticancer inhibitor and chemosensitizer for EC treatment.

Active Pharmacological Chemicals and Targets of FDY003

Following previous studies, the following threshold values of pharmacological parameters were applied for the determination of active pharmacological chemicals of FDY003: druglike-ness \(\geq 0.18\), Caco-2 permeability \(\geq -0.4\), and oral bioavailability \(\geq 30\%\) (Supplementary Tables S1 and S2). Some chemicals with previously established potent antitumor efficacy were added to the list of active pharmacological chemicals (Supplementary Tables S1 and S2). The targets of these active chemicals were then identified using various tools and algorithms to search human gene and protein targets of certain chemicals (Supplementary Table S3). The targets that were closely related to the pathological processes and mechanisms in EC were screened using databases related to cancer biology and medical oncology (Supplementary Table S3).

Network-Perspective Analysis of Mechanisms Underlying FDY003 Effects Against Esophageal Cancer

To analyze the anticancer mechanisms of FDY003 against EC from a network perspective, its H-A-T network was created by integrating the comprehensive data of the herbal drug (Figure 2 and Supplementary Table S3). The H-A-T network indicated that quercetin interacted with the largest number (51) of the 61 targets (Figure 2 and Supplementary Table S3), supporting its key role in the anti-EC activity of FDY003. Additionally, 80.32\% (49 of 61) of targets interacted with 2 or more active pharmacological chemicals (Figure 2).

It is essential to investigate the network-level features of the molecular targets to elucidate the regulatory mechanisms of a given drug. Thus, a PPI network of the FDY003 targets was created based on molecular and functional interactions, and hub nodes with a relatively large number of links and pharmacological importance were searched in the network (Figure 3). Hubs were defined using the following criterion: nodes whose No. of links is equal to, or greater than, 2 times the average No. of links across all nodes in the network. The nodes AKT1, epidermal growth factor receptor (EGFR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), IL6, tumor necrosis factor (TNF), TP53, and VEGFA were identified as hubs (Figure 3), demonstrating that these loci may be key determinants of the anti-EC functions of FDY003. Additionally, a survival analysis indicated a significant \(P < .05 \) association between expression levels and the survival of patients with EC (Figure 4), supporting the clinical value of the hub nodes.

The analysis of functional enrichment of the FDY003 targets further revealed the mechanism underlying its effects in EC. The
targets were potent coordinators of the malignant behaviors of EC cells, having roles in cell death, survival, division, proliferation, and growth (Supplementary Figure S1). In addition, the FDY003 targets were key regulators of the activities of major oncogenic signaling pathways associated with EC pathomechanisms (Figure 5 and Supplementary Figure S1), such as phosphoinositide 3-kinase (PI3K)-Akt, hypoxia-inducible factor (HIF)-1, mitogen-activated protein kinase (MAPK), TNF, p53, Janus kinase (JAK)-signal transducer and activator of transcription (STAT), erythroblastic leukemia viral oncogene homolog (ErbB), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappa B), and vascular endothelial growth factor (VEGF) cascades. These results provide insight into the polypharmacological activity of FDY003 against EC.

Verification of the Molecular Binding Between Targets and Active Pharmacological Chemicals of FDY003

To confirm the molecular binding between the targets and active pharmacological chemicals of FDY003 and the investigation of their active binding sites, we evaluated the molecular docking scores for target-active chemical pairs. The scores for target–chemical binding interactions were less than or equal
to −5.0 (Figure 6A-L and Supplementary Figure S2A-D), suggesting strong pharmacological binding.

Discussion

We elucidated the anti-EC properties of the herbal drug FDY003 by a comprehensive network pharmacological approach. FDY003 reduced the viability of human EC cells and improved the efficacies of anticancer chemotherapeutic drugs. Fifteen active pharmacological chemicals in FDY003 targeted 61 EC-associated genes and proteins involved in the regulation of major oncogenic signaling pathways (eg, the PI3K-Akt, HIF-1, MAPK, TNF, p53, JAK-STAT, ErbB, NF-kappa B, and VEGF pathways). These EC-associated genes, proteins, and pathways targeted by FDY003 contribute to various processes in EC cells, including cell death, survival, division, proliferation, and growth. Overall, the network pharmacological investigation provided integrative and detailed insight into the mechanisms underlying the therapeutic effects of FDY003 in EC.

Key targets of FDY003 that possessed hub-like properties are involved in the initiation and progression of malignant pathological processes in EC and are candidate drug targets with high efficacies for EC treatment. Akt1, EGFR, and TP53 regulate proliferation, colony formation, migration, epithelial-to-mesenchymal transition, invasion, tumor microenvironment, anchorage-independent growth, and metastasis in EC cells and tumors, and they are markers for the survival rate and time.41–51 GAPDH is upregulated in EC cells and tumors and promotes proliferation, invasion, migration, and chemoresistance.52 Targeting the cytokine IL6 can repress chemoradiotherapy resistance, stenosis, EMT, angiogenesis, migration, invasion, metastasis, colony formation, inflammation, and growth in EC cells and tumors.53–57 This cytokine is also a predictor of survival, disease aggressiveness, pathological stage, tumor invasion and metastasis, recurrence, risk of incidence, treatment response, and postoperative complications in EC.53–57 The inflammation-associated cytokine TNF is a pharmacological modulator of the chemosensitivity, radiosensitivity, survival, apoptosis, and proliferation of EC cells and tumor.58–61 Moreover, the expression and activity profiles of cytokines may predict post-therapeutic complications, immune cell infiltration, inflammation, malignant disease development, survival, and clinical response of EC patients.58–61 VEGFA is highly expressed in EC cells and tumors and stimulates their survival, migration, metastasis, angiogenesis, growth, and metastasis.62–63

The pathways by which FDY003 exerts anticancer effects are crucial mediators of EC carcinogenesis and progression. The ErbB, MAPK, p53, and PI3 K-Akt pathways are involved in the risk, tumor-node-metastasis (TNM) staging, lymph node and distant metastasis, tumor progression and development, tumor depth and invasion, tumor stage, and overall and disease-free survival of patients with EC.41–51,64–68 Targeting these pathways may lead to the inhibition of therapeutic resistance, metastasis, migration, survival, invasion, and proliferation of EC cells and tumors.41–51,64–68 The HIF-1 pathway is associated with the modulation of proliferation, treatment sensitivity, death, and survival of EC cells and tumors.69,70 The JAK-STAT pathway participates in the regulation of angiogenesis, inflammation, colony formation, stenosis, invasion, motility, metastasis, EMT, cell cycle progression, growth, anoikis resistance, proliferation, migration, malignant formation, and sensitivity
to chemotherapy and radiotherapy in EC cells and tumors.71–78 It has also been reported that patient survival, TNM stage, lymphatic metastasis, and degree of infiltration in patients with EC are associated with the expression, genetic, and activation statuses of this pathway.71–78 The NF-kappa B pathway has prognostic value in EC; it represses angiogenesis, metastasis, growth, inflammation, treatment resistance, carcinogenesis, tumorigenesis, and survival of EC cells and tumors.79 The programmed death-ligand 1 (PD-L1)/programmed death-1 (PD-1) checkpoint pathway may be important for the

![Figure 4](image.png)

Figure 4. Associations of the expression levels of the FDY003 targets with esophageal cancer (EC) survival. Kaplan–Meier curves for the association of the expression levels of the indicated FDY003 targets with the EC survival.
prediction of disease-free survival, overall survival, cancer relapse, treatment response rate and susceptibility, metastasis, lymph node invasion, tumor stage, and incidence of post-therapeutic adverse effects in patients with EC.80–82 The modulation of this pathway can inhibit immunosuppression, tumor-igenicity, self-renewal, immune escape, proliferation, metastasis, EMT, and treatment resistance of EC cells and tumors, and can enhance the antitumor immune response and survival in EC.80–82 The TNF pathway determines the treatment sensitivity, viability, and growth of EC cells and tumors.58–61 It also serves as an indicator of tumor aggressiveness, survival durations, immune status, and complications and symptoms in patients with EC.58–61 The VEGF pathway stimulates various malignant behaviors of EC cells and tumors, such as growth, metastasis, and angiogenesis.62,63

The chemical and herbal components of FDY003, uncovered from the network pharmacological elucidation, have been reported to exhibit anticancer activities against EC. Cm, genkwanin, and isorhamnetin repress the proliferation of EC cells.65–85 Cordycepin intervenes in the activities of the cyclin, B-cell lymphoma 2 (Bcl-2), and extracellular signal-regulated kinase (ERK) pathways of EC cells to decrease their proliferative and survival abilities.85 Kaempferol promotes EC cell proliferation arrest and apoptosis by regulating Bcl-2-associated X protein (Bax), Bcl-2, caspase, EGFR, and hexokinase-2 cascades.85 Luteolin suppresses cell cycle progression, growth, survival, EMT, migration, and chemoresistance by the modulation of cyclin, survivin, Myc, p21, p53, poly (adenosine diphosphate [ADP]-ribose) polymerase (PARP), Bim, caspase, SIRT1, c-Jun N-terminal kinase (JNK), and ROS signaling.88 Quercetin targets cyclin, DNA methyltransferase 1, histone deacetylase 1, caspase, p16, NF-kappa B, growth arrest and DNA damage-inducible protein (GADD)-β, p53-inducible gene 3, p18, E-cadherin, VEGF-A, matrix metalloproteinase (MMP), miR-1-3p/ transgelin-2, and phosphatase and tensin homolog (PTEN) pathways89; these effects result in the suppression of drug resistance, growth, proliferation, invasion, angiogenesis, and cancer stemness of EC cells.89

The anticancer properties of FDY003 against diverse kinds of cancer cells have been previously investigated.5–8 FDY003 may intervene in the expression and activity of important regulators for determining proliferation, cell cycle progression, cell division, survival and death of cancer cells, such as Bax, caspases, p21, and p53.5–8 This herbal prescription was able to repress the growth rate of human tumors transplanted into xenograft mice,8 which suggests its \textit{in vivo} efficacy. In opposition to the cytotoxic anticancer agents, FDY003 notably did not reduce the body weight of xenograft mice during the drug treatment periods,8 suggesting that the herbal prescription may be better tolerated than the chemotherapy.

There are several limitations in the present study. First, the pharmacologically active chemicals and targets of FDY003 identified by the network pharmacology methodology were explored based on data analysis and modeling, and which may require experimental validation to enhance the reliability of the network pharmacological findings. Second, this study lacks animal experiments and clinical trials to validate the network pharmacology analysis results. These issues may

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure5.png}
\caption{Herbal medicine-active pharmacological chemical target pathway network for FDY003. Green node, herbal medicine; red node, active pharmacological chemical; blue node, esophageal cancer (EC)-related target; orange node, EC-related pathway.}
\end{figure}

Lee et al
Figure 6. Binding affinities of the active pharmacological chemicals of FDY003 and esophageal cancer (EC)-associated targets by molecular docking analysis. (A) Cordycepin-IL6 (score = −6.1). (B) Cordycepin-GAPDH (score = −8.0). (C) Isorhamnetin-AKT1 (score = −6.4). (D) Kaempferol-AKT1 (score = −6.4). (E) Kaempferol-TP53 (score = −8.8). (F) Kaempferol-EGFR (score = −8.2). (G) Luteolin-AKT1 (score = −6.6). (H) Luteolin-TP53 (score = −9.0). (I) Luteolin-EGFR (score = −8.4). (J) Luteolin-VEGFA (score = −7.9). (K) Quercetin-AKT1 (score = −6.6). (L) Quercetin-TP53 (score = −9.1). Abbreviation: EGFR, epidermal growth factor receptor.
emphasize the necessity of further experimental researches to (i) validate the presence of active chemicals in FDY003, (ii) evaluate the contribution of individual active chemicals to the pharmacological effects of the herbal drug, (iii) explore the anticancer efficacy of FDY003 in terms of cancer mechanisms other than proliferation and survival/apoptosis, including migration, angiogenesis, invasion, cancer stemness, and immunomodulation of cancer cells, and (iv) assess the safety and effectiveness of FDY003 and its use in combination with current standard anticancer strategies (eg, chemotherapy, cancer immunotherapy, radiotherapy, and targeted therapy) through animal experiments and clinical trials. These efforts would improve the rationality of the present network pharmacological findings.

In conclusion, we conducted a network pharmacological analysis to systematically elucidate the anti-EC properties of the herbal drug FDY003. We found that FDY003 reduces the viability of human EC cells and increases the pharmacological effects of anticancer chemotherapeutic drugs. Furthermore, 15 active pharmacological chemicals targeting 61 EC-associated genes and proteins were identified. These targets of FDY003 were key regulators of the activities of such major oncogenic EC-associated signaling pathways as PI3K-Akt, HIF-1, MAPK, TNF, p53, JAK-STAT, ErbB, NF-kappa B, and VEGF cascades. These FDY003 targets are potent determinants of the malignant behaviors of EC cells, having regulatory roles in the death, survival, division, proliferation, and growth of cells. Further studies are needed to determine the therapeutic effects of herbal drugs and the mechanisms by which they increase the efficacy of anticancer strategies, including surgery, chemotherapy, and radiotherapy.

Acknowledgments
Not applicable.

Author’s Contribution
Conceptualization: Ho-Sung Lee, In-Hee Lee, and Dae-Yeon Lee. Methodology: Ho-Sung Lee, In-Hee Lee, and Dae-Yeon Lee. Data collection: Ho-Sung Lee, In-Hee Lee, Kyungrae Kang, Sang-In Park, Minho Jung, Seung Gu Yang, and Tae-Wook Kwon. Data analysis and investigation: Ho-Sung Lee, In-Hee Lee, and Dae-Yeon Lee. Writing: Ho-Sung Lee, In-Hee Lee, and Dae-Yeon Lee. All authors read and approved the final manuscript.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the National Research Foundation of Korea (grant number 2021R1F1A1049472).

Ethical Approval
Not applicable, because this article does not contain any studies with human or animal subjects.

Informed Consent
Not applicable, because this article does not contain any studies with human or animal subjects.

Trial Registration
Not applicable, because this article does not contain any clinical trials.

Statement of Human and Animal Rights
This article does not contain any studies with human or animal subjects.

Data Statement
All data generated or analyzed during this study are included in this published article and its Supplemental materials file.

ORCID iD
Dae-Yeon Lee https://orcid.org/0000-0002-3198-9881

Supplemental Material
Supplemental material for this article is available online.

References
1. Tan AC, Ashley DM, Lopez GY, et al. Management of glioblastoma: state of the art and future directions. CA Cancer J Clin. 2020;70(4):299-312.
2. Yang J, Liu X, Cao S, et al. Understanding esophageal cancer: the challenges and opportunities for the next decade. Front Oncol. 2020;10(1727):1-13.
3. Zhang D, Ni M, Wu J, et al. The optimal Chinese herbal injections for use with radiotherapy to treat esophageal cancer: a systematic review and Bayesian network meta-analysis. Front Pharmacol. 2018;9(1470):1-14.
4. Zhang D, Wu J, Wang H, et al. Systematic review and network meta-analysis comparing Chinese herbal injections with chemotherapy for treating patients with esophageal cancer. J Int Med Res. 2020;48(1):1-20.
5. Lee HS, Lee IH, Kang K, et al. A network pharmacology study on the molecular mechanisms of FDY003 for breast cancer treatment. Evid Based Complement Alternat Med. 2021;2021(3919143):1-18.
6. Lee IH, Lee DY. FDY003 Inhibits colon cancer in a Colo205 xenograft mouse model by decreasing oxidative stress. Pharmacogn Mag. 2019;15(65):675-681.
7. Lee HS, Lee IH, Kang K, et al. Systems pharmacology study of the ant cervical cancer mechanisms of FDY003. Nat Prod Commun. 2020;15(12):1-15.
8. Lee HS, Lee IH, Kang K, et al. Network pharmacology-based dissection of the comprehensive molecular mechanisms of the herbal...
9. Poornima P, Kumar JD, Zhao Q, et al. Network pharmacology of cancer: from understanding of complex interactions to the design of multi-target specific therapeutics from nature. *Pharmacol Res.* 2016;111:290-302.

10. Lee WY, Lee CY, Kim YS, et al. The methodological trends of traditional herbal medicine employing network pharmacology. *Biomolecules.* 2019;9(362):1-15.

11. Ru J, Li P, Wang J, et al. TCMS: a database of systems pharmacology for drug discovery from herbal medicines. *J Cheminform.* 2014;6(13):1-6.

12. Tao W, Li B, Gao S, et al. CancerHSP: anticancer herbs database of systems pharmacology. *Sci Rep.* 2015;5(11481):1-6.

13. Liu Z, Guo F, Wang Y, et al. BATMAN-TCM: a bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine. *Sci Rep.* 2016;6(21146):1-11.

14. Wang CK, Craik DJ. Cyclic peptide oral bioavailability: lessons from the past. *Biopolymers.* 2016;106(6):901-909.

15. Lee HS, Lee IH, Kang K, et al. A network pharmacology perspective investigation of the pharmacological mechanisms of the herbal drug FDY003 in gastric cancer. *Nat Prod Commun.* 2022;17(1):1-12.

16. Barabasi AL, Oltvai ZN. Network biology: understanding the cell's functional organization. *Nat Rev Genet.* 2004;5(2):101-113.

17. Szklarczyk D, Gable AL, Lyon D, et al. STRING V11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. *Nucleic Acids Res.* 2019;47(D1):D607-D613.

18. Kim S, Chen J, Cheng T, et al. Pubchem 2019 update: improved access to chemical data. *Nucleic Acids Res.* 2019;47(D1):D1102-D1109.

19. Daina A, Michielin O, Zoete V. Swisstargetprediction: updated data and new features for efficient prediction of protein targets of small molecules. *Nucleic Acids Res.* 2019;47(W1):W357-W364.

20. Wang X, Shen Y, Wang S, et al. Pharmmapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmaphore database. *Nucleic Acids Res.* 2017;45(W1):W356-W360.

21. Szklarczyk D, Santos A, von Mering C, et al. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. *Nucleic Acids Res.* 2016;44(D1):D380-D384.

22. Keiser MJ, Roth BL, Armbuster BN, et al. Relating protein pharmacology by ligand chemistry. *Nat Biotechnol.* 2007;25(2):197-206.

23. Pinero J, Bravo A, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. *Nucleic Acids Res.* 2017;45(D1):D833-D839.

24. Yu W, Gwinn M, Clyne M, et al. A navigator for human genome epidemiology. *Nat Genet.* 2008;40(2):124-125.

25. Davis AP, Grondin CJ, Johnson RJ, et al. The comparative toxicogenomics database: update 2019. *Nucleic Acids Res.* 2019;47(D1):D948-D954.

26. Whirl-Carrillo M, McDonagh EM, Hebert JM, et al. Pharmacogenomics knowledge for personalized medicine. *Clin Pharmacol Ther.* 2012;92(4):414-417.

27. Safran M, Dalah I, Alexander J, et al. Genecards version 3: the human gene integrator. *Database.* 2010;2010(baq020):1-16.

28. Zhu F, Han B, Kumar P, et al. Update of TTD: therapeutic target database. *Nucleic Acids Res.* 2010;38(Database issue):D787-D791.

29. Wishart DS, Feunang YD, Guo AC, et al. Drugbank 5.0: a major update to the DrugBank database for 2018. *Nucleic Acids Res.* 2018;46(D1):D1074-D1082.

30. Amberger JS, Bocchini CA, Schiettecatte F, et al. OMIM.Org: Online Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic disorders. *Nucleic Acids Res.* 2015;43(Database issue):D789-D798.

31. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. *Genome Res.* 2003;13(11):2498-2504.

32. Nagy A, Lánczyk A, Menyhárt O, et al. Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. *Sci Rep.* 2018;8(1):1-9.

33. Raudvere U, Kolberg L, Kuzmin I, et al. G:pro: a web server for functional enrichment analysis and conversions of gene lists (2019 update). *Nucleic Acids Res.* 2019;47(W1):W191-W198.

34. Burley SK, Berman HM, Bhikadiya C, et al. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. *Nucleic Acids Res.* 2019;47(D1):D464-D474.

35. Trot O, Olson Aj. Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. *J Comput Chem.* 2010;31(2):455-461.

36. Zhang M, Yuan Y, Zhou W, et al. Network pharmacology analysis of Chaihu Lizhong Tang treating non-alcoholic fatty liver disease. *Comput Biol Chem.* 2020;86(107248):1-9.

37. Ku GY. Systemic therapy for esophageal cancer: chemotherapy. *Clin Clin Oncol.* 2017;6(5):1-10.

38. Athanasios A, Charalampos V, Vasileios T, et al. Protein-Protein Interaction (PPI) network: recent advances in drug discovery. *Curr Drug Metab.* 2017;18(1):5-10.

39. Cho DY, Kim YA, Przybycka TM. Chapter 5: network biology approach to complex diseases. *PLoS Comput Biol.* 2012;8(12):1-11.

40. Jeong H, Mason SP, Barabasi AL, et al. Lethality and centrality in protein networks. *Nature.* 2001;411(6833):41-42.

41. Li P, Chen X, Qin G, et al. Maelstrom directs myeloid-derived suppressor cells to promote esophageal squamous cell carcinoma progression via activation of the Akt1/RelA/IL6 signaling pathway. *Cancer Immunol Res.* 2018;6(10):1246-1259.

42. Mao Y, Li X, Liu J, et al. MiR-495 inhibits esophageal squamous cell carcinoma progression by targeting AKT1 expression and over-expression of miR-373-3p. *Sci Rep.* 2020;10(13969):1-9.
Zheng Y, Yu W, Fu X, et al. Phosphorylated AKT1 is associated with poor prognosis in esophageal squamous cell carcinoma. *J Exp Clin Cancer Res*. 2015;34(95):1-8.

Jiang D, Li X, Wang H, et al. The prognostic value of EGFR overexpression and amplification in esophageal squamous cell carcinoma. *BMC Cancer*. 2015;15(377):1-9.

Zeng W, Zhu JF, Liu Y, et al. miR-133b inhibits cell proliferation, migration and invasion of esophageal squamous cell carcinoma by targeting EGFR. *Biomed Pharmacother*. 2019;111:476-484.

Zhu Z, Yu W, Fu X, et al. Phosphorylated AKT1 is associated with poor prognosis in esophageal squamous cell carcinoma. *BMC Cancer*. 2015;15(377):1-9.

Lee et al.

Kimura S, Kitadai Y, Kuwai T, et al. Expression of p53 protein in esophageal squamous cell carcinoma: relation to hypoxia-inducible factor-1alpha, angiogenesis and apoptosis. *Pathobiology*. 2005;72(4):179-185.

Shimada H. P53 molecular approach to diagnosis and treatment of esophageal squamous cell carcinoma. *Ann Gastroenterol Surg*. 2018;2(4):266-273.

Wang L, Yu X, Li J, et al. Prognostic significance of p53 expression in patients with esophageal cancer: a meta-analysis. *BMC Cancer*. 2016;16(373):1-10.

Hao L, Zhou X, Liu S, et al. Elevated GAPDH expression is associated with the proliferation of lung and esophageal squamous cell carcinomas. *Proteomics*. 2015;15(17):3087-3100.

Chen MF, Chen PT, Lu MS, et al. IL-6 expression predicts treatment response and outcome in squamous cell carcinoma of the esophagus. *Mod Cancer*. 2013;12(26):1-12.

Groblewska M, Mroczko B, Sosnowska D, et al. Interleukin 6 and C-reactive protein in esophageal cancer. *Clin Chim Acta*. 2012;413(19-20):1583-1590.

Higashino N, Koma YI, Hosono M, et al. Fibroblast activation protein-positive fibroblasts promote tumor progression through secretion of CCL2 and interleukin-6 in esophageal squamous cell carcinoma. *Lab Invest*. 2019;99(6):777-792.

Qiao Y, Zhang C, Li A, et al. IL-6 Derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. *Oncogene*. 2018;37(7):873-883.

Upadhyay R, Jain M, Kumar S, et al. Association of interleukin-6 (−174G>C) promoter polymorphism with risk of squamous cell esophageal cancer and tumor location: an exploratory study. *Clin Immunol*. 2008;128(2):199-204.

Menke V, van Zoest KP, Moons LM, et al. Ncoi TNF-βeta gene polymorphism and TNF expression are associated with an increased risk of developing Barrett’s esophagus and esophageal adenocarcinoma. *Scand J Gastroenterol*. 2012;47(4):378-386.

Omatsu H, Kuwahara A, Yamamori M, et al. TNF-alpha −857C>T genotype is predictive of clinical response after treatment with definitive 5-fluorouracil/cisplatin-based chemoradiotherapy in Japanese patients with esophageal squamous cell carcinoma. *Int J Mol Sci*. 2013;10(12):1755-1760.

Zheng Y, Li Y, Lian J, et al. TNF-alpha-induced Tim-3 expression marks the dysfunction of infiltrating natural killer cells in human esophageal cancer. *J Transl Med*. 2019;17(165):1-12.

Zuo J, Zhao M, Liu B, et al. TNF-α-mediated upregulation of SOD2 contributes to cell proliferation and cisplatin resistance in esophageal squamous cell carcinoma. *Oncoi Rep*. 2019;42(4):1497-1506.

Ren S, Tan X, Fu MZ, et al. Downregulation of miR-375 contributes to ERBB2-mediated VEGFA overexpression in esophageal cancer. *J Cancer*. 2021;12(23):7138-7146.

Shen W, Yu L, Cong A, et al. Silencing IncRNA AFAP1-A51 inhibits the progression of esophageal squamous cell carcinoma cells via regulating the miR-498/VEGFA axis. *Cancer Manag Res*. 2020;12:6397-6409.

Jing Z, Gong L, Xie CY, et al. Reverse resistance to radiation in KYSE-150R esophageal carcinoma cell after epidermal growth factor receptor signal pathway inhibition by cetuximab. *Radiother Oncol*. 2009;93(3):468-473.

Zhang P, He H, Bai Y, et al. Dexametomidine suppresses the progression of esophageal cancer via miR-143-3p/epidermal growth factor receptor pathway substrate 8 axis. *Anticancer Drug*. 2020;31(7):693-701.

Li JC, Zhao YH, Wang XY, et al. Clinical significance of the expression of EGFR signaling pathway-related proteins in esophageal squamous cell carcinoma. *Tumour Biol*. 2014;35(1):651-657.

Qu Y, Zhang Y, Wang K, et al. Single nucleotide polymorphisms in microRNA-binding site of epidermal growth factor receptor signaling pathway and susceptibility to esophageal squamous cell carcinoma. *Dig Dis*. 2020;38(1):1-8.

Wang YL, Yuan Y, Luo XX, et al. Genetic variants in EGFR/PLCE1 pathway are associated with prognosis of esophageal squamous cell carcinoma after radical resection. *Curr Med Sci*. 2019;39(3):385-390.

Li Y, Sui H, Jiang C, et al. Dihydroartemisinin increases the sensitivity of photodynamic therapy via NF-kappaB/HIF-1alpha/VEGFA pathway in esophageal cancer cell in vitro and in vivo. *Cell Physiol Biochem*. 2018;48(5):2035-2045.

Wei Z, Zhihow L, Jianmin W, et al. Knockdown of USP28 enhances the radiosensitivity of esophageal cancer cells via the c-Myc/hypoxia-inducible-factor-1 alpha pathway. *J Cell Biochem*. 2019;120(1):201-212.

Du XL, Yang H, Liu SG, et al. Calreticulin promotes cell motility and enhances resistance to anoxia through STAT3-CITN-Akt pathway in esophageal squamous cell carcinoma. *Oncogene*. 2009;28(42):3714-3722.

Fang J, Chu L, Li C, et al. JAK2 Inhibitor blocks the inflammation and growth of esophageal squamous cell carcinoma in vitro through the JAK/STAT3 pathway. *Oncol Rep*. 2015;33(1):494-502.

Li C, Zhu M, Zhu J, et al. SOX12 Contributes to the activation of the JAK2/STAT3 pathway and malignant transformation of esophageal squamous cell carcinoma. *Oncol Rep*. 2021;45(1):129-138.

Ma Z, Dong Z, Yu D, et al. IL-32 promotes the radiosensitivity of esophageal squamous cell carcinoma cell through STAT3 pathway. *Biomed Res Int*. 2021;2021(6653747):1-17.

Xu DD, Chen SH, Zhou PJ, et al. Suppression of esophageal cancer stem-like cells by SNX-2112 is enhanced by STAT3 silencing. *Front Pharmacol*. 2020;11(532395):1-16.
76. Zhang C, Jiang F, Su C, et al. Upregulation of long noncoding RNA SNHG20 promotes cell growth and metastasis in esophageal squamous cell carcinoma via modulating ATM-JAK-PD-L1 pathway. *J Cell Biochem*. 2019;120(7):1-9.

77. Zhang N, Zhang M, Wang Z, et al. Activated STAT3 could reduce survival in patients with esophageal squamous cell carcinoma by up-regulating VEGF and cyclin D1 expression. *J Cancer*. 2020;11(7):1859-1868.

78. Zhu H, Chen X, Chen B, et al. Activating transcription factor 4 mediates a multidrug resistance phenotype of esophageal squamous cell carcinoma cells through transactivation of STAT3 expression. *Cancer Lett*. 2014;354(1):172-180.

79. Abdel-Latif MM, Kelleher D, Reynolds JV. Potential role of NF-kappaB in esophageal adenocarcinoma: as an emerging molecular target. *J Surg Res*. 2009;153(1):172-180.

80. Chen K, Wang X, Yang L, et al. The anti-PD-1/PD-L1 immunotherapy for gastric esophageal cancer: a systematic review and meta-analysis and literature review. *Cancer Control*. 2021;28:1-13.

81. Kuo HY, Guo JC, Hsu CH. Anti-PD-1 immunotherapy in advanced esophageal squamous cell carcinoma: a long-awaited breakthrough finally arrives. *J Formos Med Assoc*. 2020;119(2):565-568.

82. Walsh EM, Kelly RJ. Single agent anti PD-1 inhibitors in esophageal cancer-a first step in a new therapeutic direction. *J Thorac Dis*. 2018;10(3):1308-1313.

83. Zhang HW, Hu JJ, Fu RQ, et al. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kgamma mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. *Sci Rep*. 2018;8(11255):1-13.

84. Ma G, Yang C, Qu Y, et al. The flavonoid component isorhamnetin in vitro inhibits proliferation and induces apoptosis in eca-109 cells. *Chem Biol Interact*. 2007;167(2):153-160.

85. Nurmamat E, Xiao H, Zhang Y, et al. Effects of different temperatures on the chemical structure and antitumor activities of polysaccharides from *Cordyceps militaris*. *Polymers (Basel)*. 2018;10(430):1-12.

86. Xu JC, Zhou XP, Wang XA, et al. Cordycepin induces apoptosis and G2/M phase arrest through the ERK pathways in esophageal cancer cells. *J Cancer*. 2019;10(11):2415-2424.

87. Yao S, Wang X, Li C, et al. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway. *Tumour Biol*. 2016;37(8):10247-10256.

88. Qin T, Zhao J, Liu X, et al. Luteolin combined with low-dose paclitaxel synergistically inhibits epithelial-mesenchymal transition and induces cell apoptosis on esophageal carcinoma in vitro and in vivo. *Phytol Res*. 2021;35(11):6228-6240.

89. Davoodvandi A, Shabani Varkani M, Clark CCT, et al. Quercetin as an anticancer agent: focus on esophageal cancer. *J Food Biochem*. 2020;44(9):1-10.