Improving Clearance for Renal Replacement Therapy

Seolhyun Lee¹,², Tammy L. Sirich¹,², and Timothy W. Meyer¹,²

¹The Department of Medicine, Stanford University, Palo Alto, CA
²The Department of Medicine, VA Palo Alto Healthcare System, Palo Alto, CA

Correspondence: Seolhyun Lee
Nephrology 111R
Palo Alto VAHCS
3801 Miranda Ave.
Palo Alto, CA 94304
Phone: 650-852-3314
Fax: 650-849-0213
seolhyun@stanford.edu
Abstract

The adequacy of hemodialysis is now assessed by measuring the removal of the single solute urea. The urea clearance provided by current dialysis methods is a large fraction of the blood flow through the dialyzer, and therefore cannot be increased much further. Other solutes which are less effectively cleared than urea may however contribute more to the residual uremic illness suffered by hemodialysis patients. We here review a variety of methods which could be employed to increase the clearance of such non-urea solutes. New clinical studies will be required to test the extent to which increasing solute clearances improves patients' health.
We presume that an important part of the residual illness in patients maintained on hemodialysis is due to incomplete removal of uremic solutes.1-4 The variety of such solutes is enormous.5 Yet we now assess the adequacy of treatment by removal of the single solute urea. This review will describe potential means to improve clearance of non-urea solutes using mechanical devices. We will not discuss peritoneal dialysis and will deal only in passing with solute properties which prevent increases in their clearance from achieving proportional reductions in their plasma levels. We will separately consider the clearances of free low-molecular-weight solutes, middle molecules, and protein-bound solutes. In so doing, we employ the classification originally proposed by the European Uremic Toxin Work Group (EUTox), founded in 1999 to address question related to solute retention and removal in chronic kidney disease.2, 5, 6

Free low-molecular-weight uremic solutes

Urea has served as a prototype for free, low-molecular-weight uremic solutes. Its use to assess treatment adequacy has directed the design of dialyzers and dialysis machines. With conventional hemodialysis a large portion of the urea is cleared from the blood on a single pass through the dialyzer. The urea clearance cannot be increased much further by increasing the dialyzer membrane capacity or dialysate flow.7, 8 The case is different, however, for non-urea solutes. Membrane capacity, as assessed by the mass transfer area coefficient K_oA, declines in approximate proportion to the square root of solute mass.9 A dialyzer's K_oA for solutes with mass 240 Da is thus approximately half that of its K_oA for urea with mass 60 Da. Viscosity further lowers the effective K_oA of a dialyzer for removal of solutes from plasma as compared
to aqueous solutions. The predicted clearances of free solutes thus decline with increasing mass as depicted in Figure 1.

Because toxicities have not been proven for solutes in the mass range depicted in Figure 1, there has been limited effort to increase their clearances. Here we encounter a recurrent problem in dialysis research which is reminiscent of the conundrum which gave the novel "Catch 22" its title. We can't prove that solutes are toxic without lowering their levels, and we don't develop means to lower their levels without proof that they are toxic. The hope that dialysis can be miniaturized for ambulatory treatment has however stimulated the development of new membrane materials. Such materials could allow dialyzer KoA values to be greatly increased without increasing dialyzer size.

Middle Molecules

Early dialysis membranes were impermeable to solutes with molecular weight much greater than 400 Da. Dialysis with these membranes reversed uremic coma and kept patients alive for years. Researchers hypothesized however that removal of larger solutes would improve health. It was initially suggested that toxic larger solutes had molecular weights in the range between 300 and 2000 Da, and they were thus designated "middle molecules." The meaning of "middle molecules" has changed over time to include solutes with molecular weights between 600 and 45,000 Da. Most of these are small proteins with molecular weights above 10,000 Da. Efforts to increase the clearance of such solutes were stimulated by the finding that accumulation of β_2 microglobulin caused amyloidosis in dialysis patients. β_2 microglobulin with molecular
weight 12,000 Da was indeed adopted as a prototypical middle molecule just as urea had been adopted as a prototypical free, low-molecular weight solute.

The clearance of solutes in the size range of β_2 microglobulin was initially increased by making dialysis membranes permeable to larger solutes. Use of these "high flux" membranes provided β_2 microglobulin clearances in the range of 20 ml/min. The HEMO study failed to show clear benefit from increasing β_2 microglobulin clearance to this level as compared to the few ml/min achieved with "low flux" membranes. 12

Researchers however responded to this failure differently than to HEMO's failure to show benefit with increased clearance of urea. Efforts were made to further increase the clearance of low molecular proteins. Rapid passage of blood through the dialyzer does not allow sufficient time for large molecules to be cleared by diffusion even if the dialysis membrane is permeable to them. Their clearance however can be increased by hemodiafiltration which adds convective clearance to dialytic clearance. Convective clearance can also be added to dialytic clearance by manipulating blood and dialysate pressures within a dialysis cartridge. $^{13, 14}$

Increasing β_2 microglobulin clearances to approximately 80 ml/min by hemodiafiltration has so far failed to clearly improve outcomes in patients enrolled in clinical trials. 15 Proponents of the technique note that patients who have achieved the highest ultrafiltration volumes have appeared to benefit. $^{16, 17}$ A randomized trial is now being conducted to more rigorously test the benefit of high volume ultrafiltration. 18

Efforts to further increase the clearance of middle molecules are also ongoing. Some efforts have been made to increase the clearance of β_2 microglobulin and other low molecular weight proteins by passing blood over sorbent columns. 19 Currently, such
protein sorbent columns are being considered largely for treatment of sepsis and associated acute kidney insufficiency.20 Other efforts are directed toward increasing the clearance of low molecular weight proteins which are larger than β_2 microglobulin. New dialyzers can clear such solutes by using "medium cut-off" membranes which are permeable to solutes with molecular weight up to 50 kDa combined with designs which promote internal convection.21

Our ability to increase clearances of β_2 microglobulin and even larger solutes has revealed a fundamental pathophysiological problem. Plasma levels may not fall in proportion to the increase in solute clearances, particularly when treatment is intermittent.22 In the HEMO study, increasing the average β_2 microglobulin clearance by more than fivefold reduced the average plasma level by only 20 percent.23 This apparent discrepancy may be attributable to two factors.24 First, a low but continually operating non-renal clearance accomplishes a large portion of β_2 microglobulin removal. Second, β_2 microglobulin movement from the interstitium to the plasma is restricted and plasma β_2 microglobulin levels rebound following rapid removal from the plasma during intermittent dialysis or hemodiafiltration. It seems likely that these factors also limit the extent to which high renal replacement clearances can lower levels of other middle molecules. It is notable that increasing the clearances of solutes with molecular weight greater than 20 kDa using "medium cut-off" membranes has generally failed to lower their plasma levels.25-27 These findings should stimulate further investigation of the largely unknown mechanisms by which low-molecular weight proteins are cleared outside the kidney at a low rate. We might be able to increase this non-renal clearance in patients whose kidneys have failed.
Protein-Bound Solutes

The protein-bound solutes are small molecules that bind to plasma proteins, with known examples binding largely to albumin.28-30 Conventional dialysis clears them poorly because only the free portion of the solute contributes to the concentration gradient driving their diffusion from the plasma to the dialysate.31 There has been much less clinical study of increasing the clearance of protein-bound solutes than of increasing the clearance of middle molecules. Looking back, it appears that this may have been because no single bound solute was shown to have a specific ill effect like the amyloidosis caused by accumulation of β_2 microglobulin.

The clearance of bound solutes can be increased by increasing the free fraction of the solute as blood passes through the dialyzer. One attractive means to accomplish this is addition of displacing agents to the blood entering the dialyzer.32 Madero et al.33 recently showed that infusion of ibuprofen could significantly increase the clearance of the bound solutes indoxyl sulfate and p-cresol sulfate during single dialysis treatments. Successful chronic treatment will require identification of displacing agents which can be repeatedly administered in sufficient concentrations without ill effect. Alternative agents have been considered but not yet shown to satisfy this requirement.34

Imposing physical-chemical changes could also increase the free fractions of bound solutes as blood passes through the dialyzer. The free fraction of many bound solutes can be increased by lowering the blood pH.35 Clinical testing has been restricted to preventing a rise in blood pH during hemodialysis treatment rather than lowering the blood pH.36 This had only a limited effect on the clearance of protein-bound uremic solutes, and whether reduction of blood pH below physiologic levels
would have a greater effect remains to be tested. Another potential means to increase the free fraction of bound solutes is to increase the tonicity of the blood as it flows through the dialyzer. As with changes in pH, large changes in tonicity may be required to increase the free fractions of bound solutes, and the extent to which such changes can be safely imposed remains uncertain. It has also been suggested that the clearance of bound solutes can be increased by the imposition of electrical fields, possibly in conjunction with the use of new composite membrane materials.

Sorbents provide an alternate means to remove uremic solutes which bind to plasma proteins. Early workers attempted to clear uremic solutes by direct passage of blood over activated carbon. Contact of blood with carbon however caused platelet consumption and other complications. These complications were largely avoided by coating carbon granules with cellulose acetate or other materials. Hemoperfusion using coated carbon cartridges has since been used largely to remove poisons. Cartridges remain available but evidence for efficacy is lacking and their use has declined where hemodialysis is available.

Hemoperfusion over coated sorbent granules provided limited clearance because solutes which diffuse through the coating cannot readily permeate the interior of the granules. Several strategies have been envisioned to improve plasma solutes' access to sorbents. The first is to create sorbents which allow direct hemoperfusion by taking up solutes of interest without adversely affecting other blood constituents. Modern materials science provides a variety of means to create such sorbents. Clinical testing, however, has been limited and ability to enhance the removal of protein-bound uremic solutes has not been demonstrated.
A second strategy for sorbent removal of bound solutes is to separate the plasma from the cellular components of the blood using a membrane with a molecular cut-off of 250 to 300 kDa. The plasma stream created by this "plasma fractionation" can then be passed over sorbents to remove bound solutes. This strategy was developed largely for the treatment of liver failure and its effect was measured by removal of bilirubin and bile acids. Limited trials showed that it could increase the clearance of protein-bound solutes from patients with end stage renal failure (ESRD). Testing in ESRD was however complicated by coagulation abnormalities and therefore abandoned.

A third strategy for sorbent removal of bound solutes in hemodialysis is to add a sorbent to the dialysate compartment. This has the effect of reducing the solute concentration in the dialysate compartment toward zero and thereby increasing the concentration gradient across the dialysis membrane. Because the free solute concentration of a highly bound solute in the plasma remains low a high capacity membrane is required to achieve high clearances of bound solutes with sorbent addition to the dialysate compartment. Indeed adding a sorbent to the dialysate compartment has the same effect on bound solute clearances as greatly increasing the dialysate flow. Pilot clinical studies have shown that the bound solute clearances achieved with conventional hemodialysis can be increased significantly by increasing dialyzer membrane capacity together with dialysate flow.

An obvious candidate sorbent for addition to the dialysate compartment is albumin. Solutes bound to albumin in a patient's plasma would pass through the dialysis membrane and be absorbed onto albumin in the dialysate compartment. Two
designs for "albumin dialysis" have been considered. In "single pass albumin dialysis" the patient is dialyzed against an albumin solution which is discarded after passage over the dialysis membrane. In "sorbent recirculating dialysis" the patient is dialyzed against an albumin solution which is itself then dialyzed against standard dialysate in a second dialyzer to remove unbound solutes and electrolytes and then passed through sorbent cartridges to remove bound solutes before being recirculated to dialyze the patient. Like plasma fractionation, albumin dialysis has been developed as a short term treatment for liver failure. Questionable efficacy and great expense have discouraged consideration of its use as renal replacement therapy.

Other sorbents can also be added to the dialysate compartment to increase the diffusive clearance of protein-bound solutes. This has so far been tested only in vitro with activated carbon being the sorbent most frequently used. Various configurations for addition of activated carbon to the dialysate stream have been envisioned, as illustrated in Figure 2. Perhaps the simplest design is for addition of a sorbent to the dialysate stream. This is equivalent to "albumin dialysis" with the use of a sorbent other than albumin. Alternate designs would fix the sorbent in different positions in the dialysate stream. As is the case with plasma separation, sorbent addition to the dialysate stream has been considered more extensively for the treatment of liver failure than kidney failure. In one design, part of the dialysate stream would be passed over a sorbent and then added to the fresh dialysate being pumped past the dialysis membrane (Fig 2B). The effect would be to greatly increase the effective dialysate flow for solutes taken up by the sorbent and increase their clearances by keeping their concentrations low in the dialysate compartment. This design might have particular
application in home hemodialysis in which low dialysate flows are commonly prescribed to limit the cost and complexity of in-home dialysate production. Another design would be to insert a sorbent cartridge in the dialysate path of two dialyzers used in series (Fig 2C). This configuration has the advantage that it could be tested using standard dialyzers and dialysis machines. Perhaps the optimal configuration for sorbent addition to the dialysate compartment would be to fix sorbent in the dialysate compartment along the length of a dialyzer (Fig 2D). Of note, sorbent fixation to the dialysis membrane was tested early during the development of hemodialysis however its effect on bound solute clearances was not evaluated. The recent development of a mixed matrix hemodialysis membrane in which activated carbon is incorporated into the membrane material represents a technical advance along these lines. The performance of mixed matrix membranes could potentially be enhanced by an "outside-in" design, with dialysate flowing through hollow fibers while blood flows outside the fibers.

While activated carbon has been the sorbent most commonly considered for addition to the dialysate stream, other materials could provide special benefits or greater safety. Addition of lipids to the dialysate was initially evaluated as a means to improve removal of drugs which bind to both lipids and plasma proteins. Addition of lipid to the dialysate could potentially increase the clearance of as yet unknown uremic toxins that bind to circulating lipids more than to proteins. It has also recently been suggested that liposomes could be added to the dialysate to absorb uremic solutes and thereby increase their dialytic clearance.

What Next
We have means, as described above, to increase the clearances of various types of solutes. We have not however identified those solutes which are most toxic and therefore most important to remove. This lack of information is a major impediment to progress. If we knew which solutes were toxic, we could refine our proposed methods for solute clearance. Sorbents which remove specific solutes from the blood or dialysate, displacing agents which release specific solutes from binding proteins, and active membrane materials which selectively pass or chemically degrade specific solutes could be devised. Solutes whose behaviors are not adequately characterized under our current classification scheme may require additional consideration, including solutes that bind to plasma lipids and solutes that move into or out of erythrocytes during conventional dialysis. 68, 69

"Metabolomic" studies employing untargeted mass spectrometry have provided a new means to identify toxic uremic solutes. This analytic method has increased the number of known uremic solutes to more than 250 and additional solutes continue to be identified. 3, 70-73 Large scale studies will be required, however, to associate levels of individual solutes with clinical and physiological endpoints. An alternate means to identify toxic solutes is to try to increase the clearance and lower the levels of whole groups of solutes. Positive clinical effects could both improve current treatment and provide direction to our search for specific toxins. Efforts to improve the removal of large middle molecules are ongoing as described above. Means to improve the removal of protein-bound solutes have been much less extensively tested in patients. A clinical trial of adding activated carbon to the dialysate stream using the configurations depicted in Figure 2B or 2C might speed progress in this area. Such a trial could be
performed with only modest modifications to existing hemodialysis equipment. A positive result would spur development of more effective means to clear bound solutes. A question attracting current clinical interest is the relative value of residual native kidney function to dialysis.74, 75 The ratio of residual to dialytic clearance for individual solutes is highly variable.24, 76 Better knowledge of the extent to which residual function allows dialysis to be curtailed could help identify the solutes which are most toxic.

Finally, we face the question of the how solute levels respond to changes in their extracorporeal clearances. The failure of β_2 microglobulin levels to fall in proportion to increases in the extracorporeal β_2 microglobulin clearance has been noted above. Other studies suggest that plasma levels of the commonly studied bound solute p-cresol sulfate are unaffected by large changes in its time-averaged dialytic clearance.77-80 This phenomenon remains unexplained but could reflect changes in solute production combined with non-renal clearance and/or a complex compartmental distribution. A question of particular current interest is the value of continuous clearance supplied by wearable or implantable dialysis machine.10, 81 The value of continuous as opposed to intermittent clearance can depend on a solute's dialytic clearance relative to its volume of distribution within the body as depicted in Figure 3. Overall, we need more knowledge not only of solute toxicity but also of solute generation and disposition within the body to improve our methods for solute removal.
Disclosures

T. Meyer reports the following: Consultancy Agreements: Baxter; Research Funding: Outset Medical; Honoraria: Baxter; Scientific Advisor or Membership: JASN Editorial Board, KI Editorial Board. T. Meyer has a patent application pending for improved removal of protein bound solutes by dialysis. T. Sirich reports the following: Consultancy Agreements: Baxter. The remaining author has nothing to disclose.

Funding

American Society of Nephrology (ASN): Ben J Lipps Research Fellowship - Seolhyun Lee

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK): R01 DK101674 - Timothy W Meyer

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK): R01 DK118426 - Tammy Lisa Sirich

Author Contributions

S Lee: Writing - original draft; Writing - review and editing

T Sirich: Writing - original draft; Writing – review and editing

T Meyer: Writing - original draft; Writing - review and editing
References

1. Depner TA: Uremic toxicity: urea and beyond. Semin Dial, 14: 246-251, 2001

2. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, Argiles A: Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol, 23: 1258-1270, 2012 10.1681/ASN.2011121175

3. Tanaka H, Sirich TL, Plummer NS, Weaver DS, Meyer TW: An Enlarged Profile of Uremic Solutes. PLoS One, 10: e0135657, 2015 10.1371/journal.pone.0135657

4. Rhee EP, Waikar SS, Rebholz CM, Zheng Z, Perichon R, Clish CB, Evans AM, Avila J, Denburg MR, Anderson AH, Vasan RS, Feldman HI, Kimmel PL, Coresh J, Consortium CKDB: Variability of Two Metabolomic Platforms in CKD. Clin J Am Soc Nephrol, 14: 40-48, 2019 10.2215/CJN.07070618

5. Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Deppisch R, Descamps-Latscha B, Henle T, Jorres A, Lemke HD, Massy ZA, Passlick-Deetjen J, Rodriguez M, Stegmayr B, Stenvinkel P, Tetta C, Wanner C, Zidek W: Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int, 63: 1934-1943, 2003 kid924 [pii] 10.1046/j.1523-1755.2003.00924.x

6. Vanholder R, Abou-Deif O, Argiles A, Baurmeister U, Beige J, Brouckaert P, Brunet P, Cohen G, De Deyn PP, Drueke TB, Fliser D, Glorieux G, Herget-Rosenthal S, Horl WH, Jankowski J, Jorres A, Massy ZA, Mischak H, Perna AF, Rodriguez-Portillo JM, Spasovski G, Stegmayr BG, Stenvinkel P, Thornalley PJ, Wanner C, Wiecek A: The role of EUTox in uremic toxin research. Semin Dial, 22: 323-328, 2009 10.1111/j.1525-139X.2009.00574.x
7. Depner TA: *Prescribing Hemodialysis: A Guide to Urea Modeling*, 2nd Ed., Norwell, MA, Kluwer Academic Publishers, 1991

8. Bhimani JP, Ouseph R, Ward RA: Effect of increasing dialysate flow rate on diffusive mass transfer of urea, phosphate and beta2-microglobulin during clinical haemodialysis. *Nephrol Dial Transplant*, 25: 3990-3995, 2010 10.1093/ndt/gfq326

9. Schneditz D, Daugirdas JT: Quantifying the Effect of Plasma Viscosity on In Vivo Dialyzer Performance. *ASAIO J*, 66: 834-840, 2020 10.1097/MAT.0000000000001074

10. Hojs N, Fissell WH, Roy S: Ambulatory Hemodialysis-Technology Landscape and Potential for Patient-Centered Treatment. *Clin J Am Soc Nephrol*, 15: 152-159, 2020 10.2215/CJN.01970219

11. Scribner BH, Babb AL: Evidence for toxins of "middle" molecular weight. *Kidney Int Suppl*: 349-351, 1975

12. Eknoyan G, Beck GJ, Cheung AK, Daugirdas JT, Greene T, Kusek JW, Allon M, Bailey J, Delmez JA, Depner TA, Dwyer JT, Levey AS, Levin NW, Milford E, Ornt DB, Rocco MV, Schulman G, Schwab SJ, Teehan BP, Toto R: Effect of dialysis dose and membrane flux in maintenance hemodialysis. *N Engl J Med*, 347: 2010-2019, 2002

13. Krieter DH, Falkenhain S, Chalabi L, Collins G, Lemke HD, Canaud B: Clinical cross-over comparison of mid-dilution hemodiafiltration using a novel dialyzer concept and post-dilution hemodiafiltration. *Kidney Int*, 67: 349-356, 2005 10.1111/j.1523-1755.2005.0088.x

14. Santoro A, Ferramosca E, Mancini E, Monari C, Varasani M, Sereni L, Wratten M: Reverse mid-dilution: new way to remove small and middle molecules as well as phosphate with
high intrafilter convective clearance. *Nephrol Dial Transplant*, 22: 2000-2005, 2007

10.1093/ndt/gfm101

15. Wang AY, Ninomiya T, Al-Kahwa A, Perkovic V, Gallagher MP, Hawley C, Jardine MJ: Effect of hemodiafiltration or hemofiltration compared with hemodialysis on mortality and cardiovascular disease in chronic kidney failure: a systematic review and meta-analysis of randomized trials. *Am J Kidney Dis*, 63: 968-978, 2014 10.1053/j.ajkd.2014.01.435

16. Blankestijn PJ, Grooteman MP, Nube MJ, Bots ML: Clinical evidence on haemodiafiltration. *Nephrol Dial Transplant*, 33: iii53-iii58, 2018 10.1093/ndt/gfy218

17. Canaud B, Kohler K, Sichart JM, Moller S: Global prevalent use, trends and practices in haemodiafiltration. *Nephrol Dial Transplant*, 35: 398-407, 2020 10.1093/ndt/gfz005

18. Blankestijn PJ, Fischer KI, Barth C, Cromm K, Canaud B, Davenport A, Grobbee DE, Hegbrant J, Roes KC, Rose M, Strippoli GF, Vernooij RW, Woodward M, de Wit GAd, Bots ML: Benefits and harms of high-dose haemodiafiltration versus high-flux haemodialysis: the comparison of high-dose haemodiafiltration with high-flux haemodialysis (CONVINCE) trial protocol. *BMJ Open*, 10: e033228, 2020 10.1136/bmjopen-2019-033228

19. Morena MD, Guo D, Balakrishnan VS, Brady JA, Winchester JF, Jaber BL: Effect of a novel adsorbent on cytokine responsiveness to uremic plasma. *Kidney Int*, 63: 1150-1154, 2003 10.1046/j.1523-1755.2003.00839.x

20. Girardot T, Schneider A, Rimmene T: Blood Purification Techniques for Sepsis and Septic AKI. *Semin Nephrol*, 39: 505-514, 2019 10.1016/j.semnephrol.2019.06.010
21. Kirsch AH, Lyko R, Nilsson LG, Beck W, Amdahl M, Lechner P, Schneider A, Wanner C, Rosenkranz AR, Krieter DH: Performance of hemodialysis with novel medium cut-off dialyzers. *Nephrol Dial Transplant*, 32: 165-172, 2017 10.1093/ndt/gfw310

22. Sirich T: Obstacles to reducing plasma levels of uremic solutes by hemodialysis. *Seminars in dialysis*, in press, 2017

23. Cheung AK, Rocco MV, Yan G, Leypoldt JK, Levin NW, Greene T, Agodoa L, Bailey J, Beck GJ, Clark W, Levey AS, Ornt DB, Schulman G, Schwab S, Teehan B, Eknoyan G: Serum beta-2 microglobulin levels predict mortality in dialysis patients: results of the HEMO study. *J Am Soc Nephrol*, 17: 546-555, 2006

24. Ward RA, Greene T, Hartmann B, Samtleben W: Resistance to intercompartmental mass transfer limits beta2-microglobulin removal by post-dilution hemodiafiltration. *Kidney Int*, 69: 1431-1437, 2006 5000048 [pii] 10.1038/sj.ki.5000048

25. Belmouaz M, Diolez J, Bauwens M, Duthe F, Ecotiere L, Desport E, Bridoux F: Comparison of hemodialysis with medium cut-off dialyzer and on-line hemodiafiltration on the removal of small and middle-sized molecules. *Clin Nephrol*, 89 (2018): 50-56, 2018 10.5414/CN109133

26. Cho NJ, Park S, Islam MI, Song HY, Lee EY, Gil HW: Long-term effect of medium cut-off dialyzer on middle uremic toxins and cell-free hemoglobin. *PLoS One*, 14: e0220448, 2019 10.1371/journal.pone.0220448
27. Weiner DE, Falzon L, Skoufos L, Bernardo A, Beck W, Xiao M, Tran H: Efficacy and Safety of Expanded Hemodialysis with the Theranova 400 Dialyzer: A Randomized Controlled Trial. *Clin J Am Soc Nephrol*, 15: 1310-1319, 2020 10.2215/CJN.01210120

28. Viaene L, Annaert P, de Loor H, Poesen R, Evenepoel P, Meijers B: Albumin is the main plasma binding protein for indoxyl sulfate and p-cresyl sulfate. *Biopharm Drug Dispos*, 34: 165-175, 2013 10.1002/bdd.1834

29. Niwa T: Removal of protein-bound uraemic toxins by haemodialysis. *Blood Purif*, 35 Suppl 2: 20-25, 2013 10.1159/000350843

30. Neirynck N, Glorieux G, Schepers E, Pletinck A, Dhondt A, Vanholder R: Review of protein-bound toxins, possibility for blood purification therapy. *Blood Purif*, 35 Suppl 1: 45-50, 2013 10.1159/000346223

31. Meyer TW, Leeper EC, Bartlett DW, Depner TA, Lit YZ, Robertson CR, Hostetter TH: Increasing dialysate flow and dialyzer mass transfer area coefficient to increase the clearance of protein-bound solutes. *J Am Soc Nephrol*, 15: 1927-1935, 2004

32. Tao X, Thijssen S, Kotanko P, Ho CH, Henrie M, Stroup E, Handelman G: Improved dialytic removal of protein-bound uraemic toxins with use of albumin binding competitors: an in vitro human whole blood study. *Sci Rep*, 6: 23389, 2016 10.1038/srep23389

33. Madero M, Cano KB, Campos I, Tao X, Maheshwari V, Brown J, Cornejo B, Handelman G, Thijssen S, Kotanko P: Removal of Protein-Bound Uremic Toxins during Hemodialysis Using a Binding Competitor. *Clin J Am Soc Nephrol*, 14: 394-402, 2019 10.2215/CJN.05240418
34. Li J, Wang Y, Xu X, Cao W, Shen Z, Wang N, Leng J, Zou N, Shang E, Zhu Z, Guo J, Duan J: Improved dialysis removal of protein-bound uremic toxins by salvianolic acids. *Phytomedicine, 57*: 166-173, 2019 10.1016/j.phymed.2018.12.018

35. Kochansky CJ, McMasters DR, Lu P, Koeplinger KA, Kerr HH, Shou M, Korzekwa KR: Impact of pH on plasma protein binding in equilibrium dialysis. *Mol Pharm*, 5: 438-448, 2008 10.1021/mp800004s

36. Etinger A, Kumar SR, Ackley W, Soiefer L, Chun J, Singh P, Grossman E, Matalon A, Holzman RS, Meijers B, Lowenstein J: The effect of isohydric hemodialysis on the binding and removal of uremic retention solutes. *PLoS One*, 13: e0192770, 2018 10.1371/journal.pone.0192770

37. Krieter DH, Devine E, Korner T, Ruth M, Wanner C, Raine M, Jankowski J, Lemke HD: Haemodiafiltration at increased plasma ionic strength for improved protein-bound toxin removal. *Acta Physiol (Oxf)*, 219: 510-520, 2017 10.1111/apha.12730

38. Saar-Kovrov V, Zidek W, Orth-Alampour S, Fliser D, Jankowski V, Biessen EAL, Jankowski J: Reduction of protein-bound uraemic toxins in plasma of chronic renal failure patients: A systematic review. *J Intern Med*, 2021 10.1111/joim.13248

39. Yen SC, Liu ZW, Juang RS, Sahoo S, Huang CH, Chen P, Hsiao YS, Fang JT: Carbon Nanotube/Conducting Polymer Hybrid Nanofibers as Novel Organic Bioelectronic Interfaces for Efficient Removal of Protein-Bound Uremic Toxins. *ACS Appl Mater Interfaces*, 11: 43843-43856, 2019 10.1021/acsami.9b14351

40. Yatzidis H, Yulis G, Digenis P: Hemocarboperfusion-hemodialysis treatment in terminal renal failure. *Kidney Int Suppl*: S312-314, 1976
41. Gelfand MC, Winchester JF: Hemoperfusion results in uremia. *Clin Nephrol*, 11: 107-110, 1979

42. Ghannoum M, Hoffman RS, Gosselin S, Nolin TD, Lavergne V, Roberts DM: Use of extracorporeal treatments in the management of poisonings. *Kidney Int*, 94: 682-688, 2018 10.1016/j.kint.2018.03.026

43. Dinh DC, Recht NS, Hostetter TH, Meyer TW: Coated carbon hemoperfusion provides limited clearance of protein-bound solutes. *Artif Organs*, 32: 717-724, 2008 10.1111/j.1525-1594.2008.00594.x

44. Clark WR, Ferrari F, La Manna G, Ronco C: Extracorporeal Sorbent Technologies: Basic Concepts and Clinical Application. *Contrib Nephrol*, 190: 43-57, 2017 10.1159/000468911

45. Cheah WK, Ishikawa K, Othman R, Yeoh FY: Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: A review. *J Biomed Mater Res B Appl Biomater*, 105: 1232-1240, 2017 10.1002/jbm.b.33475

46. Sandeman SR, Zheng Y, Ingavle GC, Howell CA, Mikhalovsky SV, Basnayake K, Boyd O, Davenport A, Beaton N, Davies N: A haemocompatible and scalable nanoporous adsorbent monolith synthesised using a novel lignin binder route to augment the adsorption of poorly removed uraemic toxins in haemodialysis. *Biomed Mater*, 12: 035001, 2017 10.1088/1748-605X/aa6546

47. Li WH, Yin YM, Chen H, Wang XD, Yun H, Li H, Luo J, Wang JW: Curative effect of neutral macroporous resin hemoperfusion on treating hemodialysis patients with refractory
uremic pruritus. *Medicine (Baltimore)*, 96: e6160, 2017

10.1097/MD.0000000000006160

48. Yamamoto S, Sato M, Sato Y, Wakamatsu T, Takahashi Y, Iguchi A, Omori K, Suzuki Y, Ei I, Kaneko Y, Goto S, Kazama JJ, Gejyo F, Narita I: Adsorption of Protein-Bound Uremic Toxins Through Direct Hemoperfusion With Hexadecyl-Immobilized Cellulose Beads in Patients Undergoing Hemodialysis. *Artif Organs*, 42: 88-93, 2018 10.1111/aor.12961

49. Garcia Martinez JJ, Bendjelid K: Artificial liver support systems: what is new over the last decade? *Ann Intensive Care*, 8: 109, 2018 10.1186/s13613-018-0453-z

50. Meijers BK, Weber V, Bammens B, Dehaen W, Verbeke K, Falkenhagen D, Evenepoel P: Removal of the uremic retention solute p-cresol using fractionated plasma separation and adsorption. *Artif Organs*, 32: 214-219, 2008 10.1111/j.1525-1594.2007.00525.x

51. Brettschneider F, Tolle M, von der Giet M, Passlick-Deetjen J, Steppan S, Peter M, Jankowski V, Krause A, Kuhne S, Zidek W, Jankowski J: Removal of protein-bound, hydrophobic uremic toxins by a combined fractionated plasma separation and adsorption technique. *Artif Organs*, 37: 409-416, 2013 10.1111/j.1525-1594.2012.01570.x

52. Meijers BK, Hoylaerts MF, Evenepoel P: Coagulation and fractionated plasma separation and adsorption. *Am J Transplant*, 9: 242-243, 2009 10.1111/j.1600-6143.2008.02485.x

53. Meyer TW, Peattie JW, Miller JD, Dinh DC, Recht NS, Walther JL, Hostetter TH: Increasing the clearance of protein-bound solutes by addition of a sorbent to the dialysate. *J Am Soc Nephrol*, 18: 868-874, 2007 10.1681/ASN.2006080863

54. Luo FJ, Patel KP, Marquez IO, Plummer NS, Hostetter TH, Meyer TW: Effect of increasing dialyzer mass transfer area coefficient and dialysate flow on clearance of protein-bound...
solutes: a pilot crossover trial. *American journal of kidney diseases : the official journal of the National Kidney Foundation*, 53: 1042-1049, 2009 10.1053/j.ajkd.2009.01.265

55. Sirich TL, Luo FJ, Plummer NS, Hostetter TH, Meyer TW: Selectively increasing the clearance of protein-bound uremic solutes. *Nephrol Dial Transplant*, 27: 1574-1579, 2012 10.1093/ndt/gfr691

56. Carpentier B, Ash SR: Sorbent-based artificial liver devices: principles of operation, chemical effects and clinical results. *Expert Rev Med Devices*, 4: 839-861, 2007 10.1586/17434440.4.6.839

57. Haroon S, Davenport A: Haemodialysis at home: review of current dialysis machines. *Expert Rev Med Devices*, 15: 337-347, 2018 10.1080/17434440.2018.1465817

58. Gurland HJ, Fernandez JC, Samtleben W, Castro LA: Sorbent membranes used in a conventional dialyzer format. In vitro and clinical evaluation. *Artif Organs*, 2: 372-374, 1978 10.1111/j.1525-1594.1978.tb01624.x

59. Malchesky PS, Piatkiewicz W, Varnes WG, Ondercin L, Nose Y: Sorbent membranes: device designs, evaluations and potential applications. *Artif Organs*, 2: 367-371, 1978 10.1111/j.1525-1594.1978.tb01623.x

60. Mardini HA, Hoenich N, Bartlett K, Record CO: Comparative value of different dialysis membranes, including a carbon coated membrane for removal of noxious substances in hepatic coma. *Int J Artif Organs*, 2: 290-295, 1979

61. Geremia I, Bansal R, Stamatialis D: In vitro assessment of mixed matrix hemodialysis membrane for achieving endotoxin-free dialysate combined with high removal of
uremic toxins from human plasma. Acta Biomater, 90: 100-111, 2019
10.1016/j.actbio.2019.04.009

62. Ter Beek OEM, van Gelder MK, Lokhorst C, Hazenbrink DHM, Lentferink BH, Gerritsen KGF, Stamatialis D: In vitro study of dual layer mixed matrix hollow fiber membranes for outside-in filtration of human blood plasma. Acta Biomater, 123: 244-253, 2021
10.1016/j.actbio.2020.12.063

63. Kato S, Otake KI, Chen H, Akpinar I, Buru CT, Islamoglu T, Snurr RQ, Farha OK: Zirconium-Based Metal-Organic Frameworks for the Removal of Protein-Bound Uremic Toxin from Human Serum Albumin. J Am Chem Soc, 141: 2568-2576, 2019 10.1021/jacs.8b12525

64. Shen Y, Shen Y, Bi X, Li J, Chen Y, Zhu Q, Wang Y, Ding F: Linoleic acid-modified liposomes for the removal of protein-bound toxins: An in vitro study. Int J Artif Organs: 391398820968837, 2020 10.1177/0391398820968837

65. Li J, Han L, Xie J, Liu S, Jia L: Multi-sites polycyclodextrin adsorbents for removal of protein-bound uremic toxins combining with hemodialysis. Carbohydr Polym, 247: 116665, 2020 10.1016/j.carbpol.2020.116665

66. Shinaberger JH, Shear L, Clayton LE, Barry KG, Knowlton M, Goldbaum LR: Dialysis for Intoxication with Lipid Soluble Drugs: Enhancement of Glutethimide Extraction with Lipid Dialysate. Trans Am Soc Artif Intern Organs, 11: 173-177, 1965 10.1097/00002480-196504000-00034

67. Ward KW, Medina SJ, Portelli ST, Mahar Doan KM, Spengler MD, Ben MM, Lundberg D, Levy MA, Chen EP: Enhancement of in vitro and in vivo microdialysis recovery of SB-265123
using Intralipid and Encapsin as perfusates. *Biopharm Drug Dispos*, 24: 17-25, 2003
10.1002/bdd.332

68. Eloot S, Torremans A, De Smet R, Marescau B, De Deyn PP, Verdonck P, Vanholder R:
Complex compartmental behavior of small water-soluble uremic retention solutes:
evaluation by direct measurements in plasma and erythrocytes. *Am J Kidney Dis*, 50:
279-288, 2007

69. Ponda MP, Quan Z, Melamed ML, Raff A, Meyer TW, Hostetter TH: Methylamine clearance
by haemodialysis is low. *Nephrol Dial Transplant*, 25: 1608-1613, 2009 gfp629 [pii]
10.1093/ndt/gfp629

70. Kikuchi K, Itoh Y, Tateoka R, Ezawa A, Murakami K, Niwa T: Metabolomic analysis of uremic
toxins by liquid chromatography/electrospray ionization-tandem mass spectrometry. *J
Chromatogr B Analyt Technol Biomed Life Sci*, 878: 1662-1668, 2010
10.1016/j.jchromb.2009.11.040

71. Rhee EP, Souza A, Farrell L, Pollak MR, Lewis GD, Steele DJ, Thadhani R, Clish CB, Greka A,
Gerszten RE: Metabolite profiling identifies markers of uremia. *J Am Soc Nephrol*, 21:
1041-1051, 2010 ASN.2009111132 [pii]
10.1681/ASN.2009111132

72. Mair RD, Sirich TL, Plummer NS, Meyer TW: Characteristics of Colon-Derived Uremic
Solutes. *Clinical journal of the American Society of Nephrology: CJASN*, 13: 1398-1404,
2018 10.2215/CJN.03150318

73. Kalim S, Rhee EP: An overview of renal metabolomics. *Kidney Int*, 91: 61-69, 2017
10.1016/j.kint.2016.08.021
74. Basile C, Casino FG, Kalantar-Zadeh K: Is incremental hemodialysis ready to return on the scene? From empiricism to kinetic modelling. *J Nephrol*, 30: 521-529, 2017
10.1007/s40620-017-0391-0

75. Casino FG, Basile C, Kirmizis D, Kanbay M, van der Sande F, Schneditz D, Mitra S, Davenport A, Gesuldo L, Eudial Working Group of E-E: The reasons for a clinical trial on incremental haemodialysis. *Nephrol Dial Transplant*, 35: 2015-2019, 2020 10.1093/ndt/gfaa220

76. Leong SC, Sao JN, Taussig A, Plummer NS, Meyer TW, Sirich TL: Residual Function Effectively Controls Plasma Concentrations of Secreted Solutes in Patients on Twice Weekly Hemodialysis. *J Am Soc Nephrol*, 29: 1992-1999, 2018 10.1681/ASN.2018010081

77. Pham NM, Recht NS, Hostetter TH, Meyer TW: Removal of the protein-bound solutes indican and p-cresol sulfate by peritoneal dialysis. *Clinical journal of the American Society of Nephrology : CJASN*, 3: 85-90, 2008 10.2215/CJN.02570607

78. Meyer TW, Sirich TL, Fong KD, Plummer NS, Shafi T, Hwang S, Banerjee T, Zhu Y, Powe NR, Hai X, Hostetter TH: Kt/Vurea and Nonurea Small Solute Levels in the Hemodialysis Study. *J Am Soc Nephrol*, 27: 3469-3478, 2016 10.1681/ASN.2015091035

79. Sirich TL, Fong K, Larive B, Beck GJ, Chertow GM, Levin NW, Kliger AS, Plummer NS, Meyer TW: Limited reduction in uremic solute concentrations with increased dialysis frequency and time in the Frequent Hemodialysis Network Daily Trial. *Kidney international*, 2017 10.1016/j.kint.2016.11.002

80. Sirich TL, Meyer TW: Intensive Hemodialysis Fails to Reduce Plasma Levels of Uremic Solutes. *Clinical journal of the American Society of Nephrology : CJASN*, 13: 361-362, 2018 10.2215/CJN.00950118
81. Basile C, Davenport A, Mitra S, Pal A, Stamatialis D, Chrysochou C, Kirmizis D: Frontiers in hemodialysis: Innovations and technological advances. *Artif Organs*, 45: 175-182, 2021 10.1111/aor.13798

82. Gura V, Rivara MB, Bieber S, Munshi R, Smith NC, Linke L, Kundzins J, Beizai M, Ezon C, Kessler L, Himmelfarb J: A wearable artificial kidney for patients with end-stage renal disease. *JCI Insight*, 1, 2016 10.1172/jci.insight.86397

83. Sirich TL, Funk BA, Plummer NS, Hostetter TH, Meyer TW: Prominent accumulation in hemodialysis patients of solutes normally cleared by tubular secretion. *J Am Soc Nephrol*, 25: 615-622, 2014 10.1681/ASN.2013060597
Figure Legends

Figure 1. The effect of increasing solute molecular weight on clearance of solutes from the plasma with conventional hemodialysis. The solid line depicts clearance values obtained with a standard dialyzer with KoA_{urea} in aqueous solution of 1400 ml/min as assessed by the manufacturer and the dashed line depicts clearance values obtained with a dialyzer with a KoA_{urea} twice that high. KoA values in plasma were reduced by a factor of 0.52 as compared to KoA in aqueous solution and KoA was assumed to decrease in proportion $m^{-0.46}$ where m is the solute molecular weight as described by Schneditz.9 Clearance values were modeled for a plasma flow of 250 ml/min and a dialysate flow of 600 ml/min using a published model. Doubling KoA has little effect on the clearance of very small solutes but a larger effect on the clearance solutes with molecular weight in the range 400 to 2000. The clearance of such solutes, which includes the lower end of the range now classified as "middle molecules" could be increased simply by increasing the size of dialyzers made with current membrane materials. The addition of convection, which is now employed to increase the clearance of low molecular weight proteins like β_2 microglobulin with molecular weight approximately 12,000 Da, would not be required.

Figure 2. Potential configurations for sorbent addition to the dialysate compartment to improve the clearance of protein bound solutes. A). In standard hemodialysis without any sorbent, blood (pink shaded) flows at a rate Q_B past a semipermeable membrane (dashed line) with size KoA_x for solute x with dialysate (blue shaded) flowing at a rate Q_D in the opposite direction on the other side of the membrane. Uremic solutes (not shown) diffuse from the blood into the dialysate which goes down the drain. Different configurations for addition of a sorbent to lower the concentrations of bound solutes in the dialytic compartment have been considered. B). Part of the dialysate stream now is diverted and flows at a rate Q_{DR} over a sorbent (gray shaded area) before being reintroduced into the stream of fresh dialysate entering the system at a flow rate of Q_D. The effective dialysate flow for a given solute is determined by the extent to which the sorbent takes up that solute. C). Blood passes thought two dialyzers in series and a sorbent cartridge is inserted in the dialysate
stream between the two dialyzers. D). Sorbent material is fixed along the dialysate path within a dialyzer.

Figure 3. Predicted plasma solute levels with continuous dialysis using a wearable dialyzer (blue lines) compared to 8 hours of nocturnal dialysis providing 10 fold higher solute clearances (red lines, with time averaged concentrations as dashed lines). Levels are depicted over the course of 24 hours for urea and two solutes which are normally cleared by tubular secretion. Solute A is not protein-bound and normally cleared at 540 ml/min by the kidneys with a volume of distribution of 14 liters. Solute B is normally 98 percent bound and has a kidney clearance of 23 ml/min and a volume of distribution of 13 liters in terms of its total plasma levels. The figure is scaled so that plasma free levels would be 1.0 for each solute in humans with normal kidney function. The continuously operating wearable dialyzer provides a urea clearance of 17 ml/min equal to that of the device described by Gura et al.82 Dialytic clearances of the secreted solutes are adjusted downwards relative to urea to 10 ml/min for the unbound solute and 1.3 ml/min for the bound solute based on dialytic clearances of phenylacetylglutamine and p-cresol sulfate observed by Sirich et al.83 The figure shows first that plasma levels of solutes normally cleared by secretion are poorly controlled by dialysis whether provided continuously or intermittently. Levels of urea are maintained within 4-fold normal by both treatments and must be plotted on an expanded scale for their diurnal variation be apparent, while levels of the secreted solutes remain more than 20-fold normal. Compared to continuous dialysis, a higher clearance during nocturnal treatment can control average solute levels but will allow wide diurnal variation in the levels of those solutes for which the dialytic clearance is high relative to their volume of distribution. The control of a solute’s plasma level with continuous dialysis compared to intermittent dialysis is highly dependent on the solute’s volume(s) of distribution and compartmental behavior.
Figure 1
Figure 3

Urea vs. Secreted Solutes over Hours