Axial anomaly and hadronic properties in a nuclear medium

Gergely Fejős

Eötvös Loránd University
Faculty of Science
Department of Atomic Physics

Zimányi Winter School 2019

6th December, 2019

GF & A. Hosaka, Phys. Rev. D 95, 116011 (2017)
GF & A. Hosaka, Phys. Rev. D 98, 036009 (2018)
Motivation

Gergely Fejős
Axial anomaly and hadronic properties in a nuclear medium
AXIAL ANOMALY OF QCD:

- **$U_A(1)$ anomaly**: anomalous breaking of the $U_A(1)$ subgroup of $U_L(N_f) \times U_R(N_f)$ chiral symmetry
 - vacuum-to-vacuum topological fluctuations (instantons)

$$\partial_\mu j^\mu_A = -\frac{g^2}{16\pi^2} \epsilon^{\mu\nu\rho\sigma} \text{Tr} [T^a F_{\mu\nu} F_{\rho\sigma}]$$

- $U_A(1)$ breaking interactions depend on instanton density
 - suppressed at high T^1 (valid beyond T_c)
 - is the anomaly present at the phase transition?

- Very little is known at finite baryochemical potential $(\mu_B)^2$
 - sign problem in lattice simulations
 - effective models have not been extensively explored

1. R. D. Pisarski, and L. G. Yaffe, Phys. Lett. B97, 110 (1980).
2. T. Schaefer, Phys. Rev. D57, 3950 (1998).
Motivation

η' - NUCLEON BOUND STATE:

- Effective models at finite T and/or density:
 \rightarrow mean field calculations (NJL3, linear sigma models4) predict a ~ 150 MeV drop in $m_{\eta'}$ at finite μ_B

- Effective description of the mass drop:
 \rightarrow attractive potential in medium $\Rightarrow \eta'N$ bound state
 \rightarrow Analogous to $\Lambda(1405) \sim \bar{K}N$ bound state

3P. Costa, M. C. Ruivo & Yu. L. Kalinovsky, Phys. Lett. B 560, 171 (2003).
4S. Sakai & D. Jido, Phys. Rev. C88, 064906 (2013).
Motivation

\(\eta' \) - NUCLEON BOUND STATE:

- Effective models at finite \(T \) and/or density:
 \(\rightarrow \) mean field calculations (NJL\(^3\), linear sigma models\(^4\)) predict a \(\sim 150 \text{ MeV} \) drop in \(m_{\eta'} \) at finite \(\mu_B \)

- Effective description of the mass drop:
 \(\rightarrow \) attractive potential in medium \(\Rightarrow \eta' N \) bound state
 \(\rightarrow \) Analogous to \(\Lambda(1405) \sim \bar{K}N \) bound state

- Problem with mean field calculations: they treat model parameters as environment independent constants
 \(\rightarrow \) „\(A \cdot \nu \)“ type of terms decrease (\(A \)-constant, \(\nu \)-decreases)
 \(\rightarrow \) evolution of the „\(A \)“ anomaly at finite \(T \) and \(\mu_B \)?

- What is the role of fluctuations?

\(^3\)P. Costa, M. C. Ruivo & Yu. L. Kalinovsky, Phys. Lett. B 560, 171 (2003).
\(^4\)S. Sakai & D. Jido, Phys. Rev. C 88, 064906 (2013).
Fluctuation effects in a quantum system is encoded in the effective action

Partition function and **effective action** in field theory:
[S: classical action, \(\phi\): dynamical variable, \(\bar{\phi}\): mean field, \(J\): source field]

\[
Z[J] = \int D\phi e^{-\left(S[\phi] + \int J\phi\right)}, \quad \Gamma[\bar{\phi}] = -\log Z[J] - \int J\bar{\phi}
\]

\(\Gamma\) contains the truncated 1PI *n-point functions*

How to calculate the effective action? \(\Rightarrow\) **perturbation theory!**

\(-\rightarrow\) find a **small parameter** in \(S\) and Taylor expand

\(-\rightarrow\) fails in QCD & eff. models are not weakly coupled either

Non-perturbative methods are necessary:
Functional Renormalization Group (FRG)

\[\text{C. Wetterich, Phys. Lett. B301, 90 (1993)}\]

Gergely Fejős

Axial anomaly and hadronic properties in a nuclear medium
FRG generalizes the idea of the Wilsonian RG: fluctuations are taken into account at the level of the quantum effective action. Introduce a flow parameter k and include fluctuations for which $q \gtrsim k$:

$$Z_k[J] = \int D\phi e^{-\left(S[\phi] + \int J\phi\right)} \times e^{-\frac{1}{2} \int \phi R_k \phi}$$

→ regulator: mom. dep. mass term suppressing low modes
Functional Renormalization Group

- FRG generalizes the idea of the Wilsonian RG: fluctuations are taken into account at the level of the quantum effective action.
- Introduce a flow parameter k and include fluctuations for which $q \gtrsim k$

$$Z_k[J] = \int \mathcal{D}\phi e^{-\left(S[\phi] + \int J\phi\right)} \times e^{-\frac{1}{2} \int \phi R_k \phi}$$

→ regulator: mom. dep. mass term suppressing low modes.

- Scale dependent effective potential and its flow equation:

$$\Gamma_k[\tilde{\phi}] = -\log Z_k[J] - \int J\tilde{\phi} - \frac{1}{2} \int \tilde{\phi} R_k \tilde{\phi}$$

$$\partial_k \Gamma_k = \frac{1}{2} \int_{q,p} \left(\Gamma_k^{(2)} + R_k \right)^{-1}(p, q) = \frac{1}{2}$$
The scale dependent effective action \(\Gamma_k \) is an average action from fluctuations with wavelengths \(\lambda \sim k^{-1} \) are integrated out

\[\rightarrow k \rightarrow \infty: \text{no fluctuations} \quad \Rightarrow \quad \Gamma_{k \rightarrow \infty}[\bar{\phi}] = S[\bar{\phi}] \]

\[\rightarrow k = 0: \text{all fluctuations} \quad \Rightarrow \quad \Gamma_{k=0}[\bar{\phi}] = \Gamma[\bar{\phi}] \]

The scale-dependent effective action interpolates between classical- and quantum effective actions

The trajectory depends on \(R_k \) but the endpoint does not

Choice of \(R_k \leftrightarrow \) choice of scheme
3 FLAVOR CHIRAL NUCLEON-MESON MODEL:

- Effective model of chiral symmetry breaking: order par. M
 [excitations of M: π, K, η, η' and a_0, κ, f_0, σ]

\[
\mathcal{L}_M = \text{Tr} \left[\partial_i M^\dagger \partial_i M \right] - \text{Tr} \left[H (M^\dagger + M) \right] + V_{ch}(M) + A \cdot (\det M^\dagger + \det M)
\]

\[
\mathcal{L}_{\omega+N} = \frac{1}{4} (\partial_i \omega_j - \partial_j \omega_i)^2 + \frac{1}{2} m_\omega \omega_i^2 + \bar{N}(\bar{\phi} - \mu_B \gamma_0) N,
\]

\[
\mathcal{L}_{\text{Yuk}} = \bar{N} (g_Y \tilde{M}_5 - ig_\omega \varphi) N
\]

\rightarrow nucleon mass: entirely from Yukawa coupling

- Fluctuation effects are calculated in the mesonic potentials:

\[
V_k = V_{ch,k}(M) + A_k(M) \cdot (\det M^\dagger + \det M)
\]

\rightarrow solve a set of functional differential equations on a grid
Baryon Silver Blaze property:

\[\rightarrow \text{no change in the effective action for } T = 0 \text{ if } \mu_B < m_N - B \equiv \mu_{B,c} \]
Baryon Silver Blaze property:

\[\mu_B < m_N - B \equiv \mu_{B,c} \]

At \(\mu_B = \mu_{B,c} \):\(^6\)

\[\rightarrow \text{1st order phase transition from nuclear gas to liquid} \]
\[\rightarrow \text{nuclear density jumps from zero to } n_0 \approx 0.17 \text{ fm}^{-3} \]
\[\rightarrow \text{non-strange chiral condensate jumps from } f_\pi \text{ to } v_{ns,\text{nucl}} \]
\[(\text{Landau mass } M_L \approx 0.8m_N \Rightarrow v_{ns,\text{nucl}} \approx 69.5 \text{ MeV}) \]

\(^6\)M. Drews and W. Weise, Prog. Part. Nucl. Phys. 93, 69 (2017).
Baryon **Silver Blaze** property:

\rightarrow no change in the effective action for $T = 0$ if $\mu_B < m_N - B \equiv \mu_{B,c}$

At $\mu_B = \mu_{B,c}$:

\rightarrow 1st order phase transition from nuclear gas to liquid

\rightarrow nuclear density jumps from zero to $n_0 \approx 0.17 \text{ fm}^{-3}$

\rightarrow non-strange chiral condensate jumps from f_π to $\nu_{ns,nucl}$

(Landau mass $M_L \approx 0.8m_N \Rightarrow \nu_{ns,nucl} \approx 69.5 \text{ MeV}$)

The first order transition is related to the condensation of the **timelike component** of the ω vector particle

ω couples to ν_{ns} that couples to ν_s

\rightarrow jump in all order parameters

6M. Drews and W. Weise, Prog. Part. Nucl. Phys. 93, 69 (2017).
The model consists of the following parameters:

\[V(M) : m^2, g_1, g_2, b_i \ (i = 1..4) \ [b_i \text{ are non-renormalizable interactions!}] \]

\[\text{explicit breaking, anomaly: } h_0, h_8, A \]

\[\omega + N: g_\omega^2/m_\omega^2, g_Y \]

12 parameters in total. Input:

\[\text{masses in the vacuum: } m_\pi, m_K, m_\eta, m_\eta', m_{a_0}, m_N \]

\[\text{normal nuclear density: } n_0 \]

\[\text{critical chemical potential: } \mu_{B,c} \]

\[\text{nucleon mass drop in the medium: } \Delta m_N \]

\[2 \text{ PCAC relations (decay constants } f_\pi, f_K \text{)} \]

\[\text{temperature of the critical endpoint } T_{CEP} \]

[Compression modulus: prediction! \(K = \frac{9n_0}{\partial n_0/\partial \mu_B} \approx 287 \text{ MeV} \)]
Numerical results

\[V_{\text{eff}}(\nu_{\text{ns}}, \mu_B) \]

- \(\mu_B = 915 \text{ MeV} \)
- \(\mu_B = 922.7 \text{ MeV} \)
- \(\mu_B = 930 \text{ MeV} \)

\(T = 0 \text{ MeV} \)
Numerical results

$T = 18 \text{ MeV}$

$\mu_B = 914 \text{ MeV}$

$\mu_B = 905.85 \text{ MeV}$

$\mu_B = 898 \text{ MeV}$
Gergely Fejős
Axial anomaly and hadronic properties in a nuclear medium
Numerical results

V_s

V_{ns}

condensates [MeV]

μ_B [MeV]

Gergely Fejős

Axial anomaly and hadronic properties in a nuclear medium
Numerical results

![Graph showing phase transitions in a nuclear medium with and without mesonic fluctuations. The graph plots temperature (T) versus chemical potential (μ_B). The phase transitions are indicated by different colors and markers.](image-url)

- **Gas** phase at lower temperatures.
- **Liquid** phase at higher temperatures.

Legend:
- Purple line: with mesonic fluctuations.
- Green line: without mesonic fluctuations.
Numerical results

\[A_{k=0} \text{ [GeV]} \]

\[\sqrt{I_1} \text{ [MeV]} \]

\[\rightarrow I_1 = \left(v_{ns}^2 + v_s^2 \right)/2 \]
Numerical results

\[I_1 = \left(\nu_{ns}^2 + \nu_s^2 \right) / 2 \]

\[A_{k=0} [\text{GeV}] \]

\[T = 0 \]

Axial anomaly and hadronic properties in a nuclear medium
Numerical results

\[\Delta |A| (\mu_B; T) \text{ [MeV]} \]

\[\mu_B - \mu_{B,c}(T) \text{ [MeV]} \]

\(T = 0 \text{ MeV} \)
\(T = 12 \text{ MeV} \)
\(T = 18 \text{ MeV} \)
Numerical results

Gergely Fejős
Axial anomaly and hadronic properties in a nuclear medium
Numerical results

\[
\begin{array}{cccc}
\text{masses [MeV]} & f_0 & \kappa & a_0' \\
\text{\(\mu_B\) [MeV]} & \eta' & N & \sigma \\
\end{array}
\]

Axial anomaly and hadronic properties in a nuclear medium
Numerical results

- Conventional wisdom is that the axial anomaly should decrease as the chiral condensate drops
 ➔ How can we obtain the opposite effect?
- Earlier perturbative calculations are based on a high-T expansion and take into account instanton effects
 ➔ these calculations are valid way above T_c and definitely not for $T \lesssim T_c$
Conventional wisdom is that the axial anomaly should decrease as the chiral condensate drops.

→ How can we obtain the opposite effect?

Earlier perturbative calculations are based on a high-T expansion and take into account instanton effects.

→ these calculations are valid way above T_c and definitely not for $T \lesssim T_c$

Current effect: mesonic quantum fluctuations, not instanton contributions.

→ backreaction of the anomaly on itself

→ mean field theory is questionable

Even the bare anomaly coefficient A can depend explicitly on T and μ_B!
Numerical results

- Conventional wisdom is that the axial anomaly should decrease as the chiral condensate drops
 \[\rightarrow\] How can we obtain the opposite effect?

- Earlier perturbative calculations are based on a high-T expansion and take into account instanton effects
 \[\rightarrow\] these calculations are valid way above T_c and definitely not for $T \lesssim T_c$

- Current effect: mesonic quantum fluctuations, not instanton contributions
 \[\rightarrow\] backreaction of the anomaly on itself
 \[\rightarrow\] mean field theory is questionable

- Even the bare anomaly coefficient A can depend explicitly on T and μ_B
 \[\rightarrow\] competition between instantons and mesonic loop effects
 \[\rightarrow\] extension: assume a form of $A = A(T, \mu_B)$
Summary

- Mesonic and nucleon fluctuations effects on chiral symmetry, axial anomaly and mesonic spectrum in a nuclear medium using the Functional Renormalization Group (FRG) approach

Findings:
- Mesonic fluctuations make the anomaly coefficient $\Delta |A|$ condensate dependent
- (partial) restoration of chiral symmetry seems to increase the anomaly ($\Delta |A| \gtrsim 15\%$ relative difference)
- Nuclear transition: $\sim 20\%$ drop in (n.s.) chiral cond.
- η' mass is smooth at the transition point

Important:
- No instanton effects have been included!
- Environment dependence of the bare anomaly coefficient could be relevant!

Gergely Fejős
Axial anomaly and hadronic properties in a nuclear medium
Summary

- Mesonic and nucleon fluctuations effects on chiral symmetry, axial anomaly and mesonic spectrum in a nuclear medium using the Functional Renormalization Group (FRG) approach

Findings:

- Mesonic fluctuations make the anomaly coefficient condensate dependent
- (partial) restoration of chiral symmetry seem to increase the anomaly ($\Delta |A| \gtrsim 15\%$ relative difference)
- Nuclear transition: $\sim 20\%$ drop in (n.s.) chiral cond.
- η' mass is smooth at the transition point
 $\Rightarrow \eta' N$ bound state?

Important:

- No instanton effects have been included!
- Environment dependence of the bare anomaly coefficient could be relevant!
Summary

- Mesonic and nucleon fluctuations effects on chiral symmetry, axial anomaly and mesonic spectrum in a nuclear medium using the Functional Renormalization Group (FRG) approach

Findings:

- Mesonic fluctuations make the anomaly coefficient condensate dependent
- (partial) restoration of chiral symmetry seem to increase the anomaly ($\Delta|A| \gtrsim 15\%$ relative difference)
- Nuclear transition: $\sim 20\%$ drop in (n.s.) chiral cond.
- η' mass is smooth at the transition point
 $\Rightarrow \eta' N$ bound state?

Important:

- No instanton effects have been included!
- Environment dependence of the bare anomaly coefficient could be relevant!