In the framework of the Fermi-Pasta-Ulam (FPU) model, we show a simple method to give an accurate analytical estimation of the maximal Lyapunov exponent at high energy density. The method is based on the computation of the mean value of the modulational instability growth rates associated with unstable mode. Moreover, we show that the strong stochasticity threshold found in the β-FPU system is closely related to a transition in tangent space: the Lyapunov eigenvector being more localized in space at high energy.

A large number of theoretical and numerical studies have been devoted to the characterization of chaotic high-dimensional systems, but in spite of these efforts several fundamental items are not yet fully understood. In particular, the relation between Lyapunov analysis and other phase space properties like diffusion of orbits, relaxation to equilibrium states, spatial development of instability remains to be clarified. This Rapid Communication, besides presenting an estimate of the largest Lyapunov exponent, is a contribution to clarify this relationship in the context of the Fermi-Pasta-Ulam (FPU) model. This system was not only the starting point of several studies of the mixed chaotic/ordered phase space structure based on resonance overlap criteria, but initiated also several studies of the mixed chaotic/ordered phase space structure based on resonance overlap criteria, KAM theorem and Nekhoroshev stability estimates. Statistical mechanics was also tested on this equation and the results showed that ergodicity is not an obvious condition for unstable modes. Moreover, we show that the strong stochasticity threshold found in the β-FPU system is closely related to a transition in tangent space: the Lyapunov eigenvector being more localized in space at high energy.

where energy is evenly distributed among all Fourier modes (relaxation times will not be our concern here). One of the main points of this paper is to emphasize the relevant role played by some unstable periodic orbits corresponding to Fourier modes. Therefore, we will first derive the criterion for modulational instability of a plane wave on the lattice.

Denoting by \(u_n(t) \) the position of the nth atom (\(n \in [1,N] \)), the equations of motion of the FPU chain read

\[
\dot{u}_n = u_{n+1} + u_{n-1} - 2u_n + \beta \left[(u_{n+1} - u_n)^{2p+1} - (u_n - u_{n-1})^{2p+1} \right] \tag{1}
\]

where \(p \) is an integer greater or equal than 1. We chose periodic boundary conditions. Even if the positive parameter \(\beta \) can be forgotten by appropriate scaling transformations of \(u_n \), we will keep it in order to make reliable comparisons with previous papers, where \(\beta = 0.1 \). For sake of simplicity, we consider first the case \(p = 1 \) and then we generalize to any \(p \)-value.

Looking for plane wave solutions

\[
u_n(t) = \phi_0 \left(e^{i\theta_n(t)} + e^{-i\theta_n(t)} \right) \tag{2}
\]

where \(\theta_n(t) = qn - \omega t \) and \(q = 2\pi k/N \), we obtain the dispersion relation \(\omega^2(q) = 4(1 + \alpha) \sin^2(q/2) \) where \(\alpha = 12\beta \phi_0^2 \sin^2(q/2) \) takes into account the nonlinearity. The modulational instability of such a plane wave is investigated by studying the linearized equation associated to the envelope of the carrier wave. Therefore, one introduces an infinitesimal perturbation in the amplitude and looks for solutions

\[
u_n(t) = [\phi_0 + b_n(t)] e^{i\theta_n(t)} + [\phi_0 + b^*_n(t)] e^{-i\theta_n(t)} \tag{3}
\]

Introducing this ansatz in Eq. (2), after linearization with respect to \(b_n \) but keeping the second derivative (contrary to what has been done for Klein-Gordon type equation), we obtain

\[
\dot{b}_n - 2i\omega b_n = (1 + 2\alpha)(b_{n+1}e^{iq} + b_{n-1}e^{-iq} - 2\cos(q) b_n) + \alpha(b^*_{n+1} + b^*_n - 2\cos(q) b_n) \tag{4}
\]

Assuming further \(b_n = A e^{i(Qn - \Omega t)} + B e^{-i(Qn - \Omega t)} \), we finally obtain the following dispersion relation

\[
(\Omega + \omega)^2 - 4(1 + 2\alpha) \sin^2 \left(\frac{q + Q}{2} \right) \times \n(\Omega - \omega)^2 - 4(1 + 2\alpha) \sin^2 \left(\frac{q - Q}{2} \right) = 4\alpha^2 (\cos Q - \cos q)^2 \tag{5}
\]
This equation has 4 different solutions once \(q \) (wavevector of the unperturbed wave) and \(Q \) (wavevector of the perturbation) are given. If one of the solutions is complex we have an instability of one of the modes \((q \pm Q)\) with a growth rate equal to the imaginary part of the solution. Therefore, one can compute the instability threshold for any initial linear wave, i.e. any wavevector and any amplitude. For example for \(q = 0 \) we find that the solution is obviously stable since the zero-mode, corresponding to translation invariance, is completely decoupled from the others. For \(q = \pi \), the expression for the growth rate is

\[
\tau(\pi, Q) = 2 \left(\sqrt{(1 + \alpha)(4 + 8\alpha) \cos^2(Q/2) + \alpha^2 \cos^4(Q/2)} - 1 - \alpha - (1 + 2\alpha) \cos^2(Q/2) \right)^{1/2}
\]

A simple analysis of this function shows that the first unstable mode is the nearest mode corresponding to \(Q = 2\pi/N \). Computing the critical value of the parameter \(\alpha \) above which \(\tau(\pi, 2\pi/N) \) is positive, we obtain the critical energy \(E_c \) for the \(\pi \)-mode. It reads

\[
E_c = \frac{2N}{9\beta} \sin^2\left(\frac{\pi}{N}\right) \left(\frac{7 \cos^2\left(\frac{\pi}{N}\right) - 1}{3 \cos^2\left(\frac{\pi}{N}\right) - 1} \right) .
\]

This analytical expression is in agreement with the previous approximate expression \(E_c \approx \pi^2/3N\beta \) valid only in the large \(N \) limit. Above this energy threshold, the \(\pi \)-mode is therefore unstable and gives rise to a chaotic localized breather-like excitation, able to move very fast in the system, collecting energy from high-energy, the rescaled growth rate is reached. It is important to notice that, for sufficiently high energy, the rescaled growth rate \(\tau/\tau(\pi, Q_{\text{max}}) \) does not depend on the energy density. The growth rate is plotted in Fig. 2 at high energy.

We performed some simulations of the system with a 6th-order symplectic integration scheme adopting as initial condition the \(\pi \)-mode and computing the Lyapunov exponents after the transition to equipartition. We used the algorithm proposed by Benettin et al. where the full set of tangent vectors is periodically reorthonormalized using the Gram-Schmidt method; the Lyapunov exponents are then obtained from the time average of the logarithms of the normalization factors. The results are plotted in Fig. 3. We have also checked our results by performing the numerical integration directly in Fourier space, paying particular attention to the Lyapunov eigenvectors.

Let us present now the analytical estimation of the maximal Lyapunov. As the system is symplectic, the usual pairing rule is valid and moreover Pesin’s theorem allows us to identify the Kolmogorov-Sinai entropy of the system with the sum of all positive Lyapunov exponents. As the spectrum was shown to be approximately linear at high energy (see the inset of Fig. 2), one can relate the Kolmogorov-Sinai entropy \(S_{KS} \) with the maximal Lyapunov exponent, namely

\[
S_{KS} = \sum_{i=1}^{N} \lambda_i \equiv \lambda_1 N/2 .
\]

Let us define the instability entropy

\[
S_{IE}(q) = \sum_{i=1}^{N/2} \tau(q, 2\pi i/N) ,
\]

where the sum is over all positive growth rates. The crucial physical hypothesis of this paper is that \(S_{KS} \approx S_{IE}(\pi) \), we then obtain the following analytical expression for the maximal Lyapunov exponent:

\[
\lambda_1 = \frac{2}{N} \sum_{i=1}^{N/2} \tau(2\pi i/N) .
\]

Using the expression, we can then compute the maximal Lyapunov exponent. Fig. 4 attests that the analytical expression is very accurate. In the same figure the data obtained with a completely different approach, developed by Casetti, Livi and Pettini (CLP), are also shown. The two methods give almost identical results, apart at very low energy, where the CLP-findings are in better agreement with our numerical data. However, our approach is definitely simpler and relies on the analysis of unstable periodic orbits, while the CLP-one on the Riemannian differential geometry.

It is remarkable to note that Chirikov found similarly the maximal Lyapunov exponent of the standard map at high energy by averaging over the phase space the maximal eigenvalue associated to the main hyperbolic point. It corresponds in our case to averaging the growth rate for the unstable periodic orbit \(q = \pi \) over the equilibrium equipartition state (where all modes have the same weight). A similar approach is known as Toda criterion and although it cannot be used as a signature of chaos, it can give an approximate estimation of \(\lambda_1 \).

In fact, one can understand this average in a better way by recalling that the modes \(\{\pi/2\}, \{2\pi/3\}, \{\pi\} \) correspond to the simplest unstable periodic orbits and are also the only three one-mode solutions of the \(\beta \)-FPU problem. The calculation of the instability entropies of this three modes shows that they are extremely close one to another contrary to the value for other modes. A correct approach would be to apply the zeta-function formalism to this system, if feasible.
At high energy, expression \(\tau(\pi, Q) \approx \sqrt{\alpha} f(Q) \) where \(f(Q) \) is energy independent. Therefore the growth rate scales with the amplitude \(\phi_0 \), and as \(E = N(8\phi_0^2 + 64\beta\phi_0^4) \), it means that the growth rate and therefore the maximal Lyapunov \(\lambda_1 \) scales with \(E/N^{1/4} \) at high energy. This result is in contradiction with Ref. \([22]\) but in agreement with Ref. \([3]\).

In fact, a similar approach gives also very good results for other powers \(2(p + 1) \) in the coupling potential. The expression of the growth rate is then the same if we use \(\alpha = \beta(2p+1)! \left(2\phi_0 \sin(\pi/2) \right)^{2p} \). Fig. \(3\) shows that the results are once more in very good agreement with numerical estimates. One derives easily that the maximal Lyapunov scales at high energy like \(\lambda_1 \approx (E/N)^{\xi} \). It is important to stress that in the limit of hard potential \((p \to \infty) \) we find the exponent \(1/2 \), analogously to billiards \([24]\). In the low energy limit, however, all models have the same scaling behaviors as expected.

Plotting \(\lambda_1(E/N) \) in a log-log scale we observe (see Fig. \(3\)) that the two asymptotic linear behaviors are separated by a knee at intermediate energy density. An estimation of this transition region can be derived assuming that the linear and nonlinear contributions to \(\omega(q) \) should be of the same order. We obtain \(\alpha \sim 1 \) i.e., an energy density of the order of \(1/\beta \) (this is equivalent to the estimation given by mode overlap criterion \([4]\)).

This knee corresponds to a stochasticity threshold \([6]\) which defines the crossing from weak to strong chaos. But we have also found that it corresponds to an interesting transition in tangent space. Considering the normalized Lyapunov vector \(V_1 \) associated to the maximal Lyapunov \(\lambda_1 \), we can introduce the participation ratio \([24]\)

\[
\xi = \left(\sum_{i=1}^{N} \left[V_1(i)^2 + V_1(i + N)^2 \right]^{-2} \right)^{-1},
\]

where the first (resp. last) \(N \) components of \(V_1 \) are associated to the evolution of linear perturbation of \(u_n \) (resp. \(\dot{\mu}_n \)) in tangent space. The quantity \([11]\) has been used in different contexts and for example in dynamical systems \([26]\) as an indicator of localization: it is of order \(N \) if the vector is extended and of order one if localized. We have found that the stochasticity threshold corresponds to a crossover from an extended state in tangent space to a more localized state, as attested by Fig. \(3\). The two examples of Lyapunov vectors reported in Fig. \(3\) show the clear difference between low and high energy density. This transition is very reminiscent of the metallic-insulating transition in finite samples \([27]\).

We conclude by stressing again that we have computed the maximal Lyapunov for a high dimensional Hamiltonian system by using a simple analytical approach, based upon modulation instability analysis of linear waves. The results obtained here are in excellent agreement with our computer simulation results. The success of this calculation suggests that this Lyapunov estimation could be extended to other high-dimensional Hamiltonian systems. Moreover, we have shown that the strong stochasticity threshold \([3]\) is not a threshold to energy equipartition, since equipartition can be always obtained, although on longer time scales \([28]\). It rather corresponds to a crossover from extended to more localized state in tangent space.

We would like to thank G. Benettin, P. Poggi and A. Politi for enlightening discussions as well as L. Casetti, R. Livi and M. Pettini, for providing us some of their data. T.D. gratefully acknowledges EC for financial support with grant ERBFMBI-CT96-1063. S.R. thanks CICC, Cuernavaca, Mexico and ESI Institute, Vienna, Austria for hospitality and financial support. This work is also part of the EC network on “Stability and universality in classical mechanics” (contract ERBCHRX-CT94-0460). Part of CPU time has been nicely supplied by the Institute of Scientific Interchanges (ISI) of Torino.

\[\text{References}\]

[1] A. J. Lichtenberg and M. A. Lieberman, \textit{Regular and chaotic dynamics} (Springer, Berlin, 1992). Chapt. 6.5.

[2] J. Ford, Phys. Rep. \textbf{213}, 271 (1992).

[3] N.J. Zabusky and M. D. Kruskal, Phys. Rev. Lett. \textbf{15}, 240 (1965).

[4] F. M. Izrailev and B. V. Chirikov, Soviet. Phys. Dokl. \textbf{11}, 30 (1966).

[5] L. Galgani et al Physica D \textbf{59}, 334 (1992).

[6] P. Bocchieri et al, Phys. Rev. A \textbf{2}, 2013 (1970).

[7] R. Livi, M. Pettini, S. Ruffo, N. Sparpaglione and A. Vulpiani Phys. Rev. A \textbf{31}, 1039 (1985).

[8] L. Casetti, R. Livi and M. Pettini, Phys. Rev. Lett. \textbf{74}, 375 (1995).

[9] H. Kantz, Physica D \textbf{39}, 322 (1989).

[10] For \(q = \pi/2, 2\pi/3 \) and \(\pi \), solution \([3]\) is the first term of the harmonic expansion of an exact solution of the \(\beta \)-FPU model \([4]\). In general an exact solution can only be recovered by combination of several \(q \)-modes.

[11] I. Daumont, T. Dauxois and M. Peyrard, to appear in \textit{Nonlinearity} (1997).

[12] G. P. Berman and A. R. Kolovskii, Zh. Eksp. Teor. Fiz. \textbf{87}, 1938 (1984) [Sov. Phys. JETP \textbf{60}, 1116 (1984)].

[13] S. Flach, Physica D \textbf{91}, 223 (1996).

[14] P. Poggi and S. Ruffo, to appear in Physica D (1997).

[15] T. Cretegny, T. Dauxois, S. Ruffo and A. Torcini unpublished (1997).

[16] G. Benettin et al, Meccanica \textbf{9}, 21 (1980).

[17] R. Livi, A. Politi and S. Ruffo, J. Phys. A. \textbf{19}, 2033 (1986).

[18] For a given wavevector, there are 4 solutions of Eq. \([3]\). Two are real and two complex conjugates: i.e. 2 solutions with positive (or null) growth rates and two with negative (or null) growth rates.
[19] B. V. Chirikov, Phys. Rep. 52, 265 (1979).
[20] G. Benettin, R. Brambilla and L. Galgani, Physica A 87, 381 (1977).
[21] D. Ruelle, *Statistical mechanics, Thermodynamics Formalism* (Reading, MA:Addison-Wesley).
[22] M. Pettini and M. Landolfi, Phys. Rev. A 41, 768 (1990).
[23] The correct scaling law at high density of energy can be also obtained by assuming that the evolution in the tangent space is ruled by the average value of the Hessian matrix. A similar mean-field approach was previously used for billiards [24].
[24] G. Benettin, Physica D 13, 211 (1984).
[25] F. M. Izrailev, Phys. Rep. 196, 299 (1990).
[26] K. Kaneko, Physica D 23, 436 (1986).
[27] B. Kramer and A. MacKinnon, Rep. Prog. Phys. 56 1469 (1993).
[28] J. De Luca, A. Lichtenberg and S. Ruffo, Phys. Rev. E 51, 2877 (1995).

FIG. 1. Shape of the growth rate $\tau(\pi, Q)/\tau(\pi, Q_{\text{max}})$ for sufficiently high energy. The diamonds corresponds to the case $N = 256$ and the solid curve to the asymptotic shape when N goes to infinity.

FIG. 2. Comparison of the analytical estimate with numerical results for the maximal Lyapunov exponent. The solid curve corresponds to our estimation (Eq. 10), the dashed curve to the estimate using Riemannian differential geometry (see Ref. [8]) and the triangles to our numerical results (for the β-FPU, i.e. $p = 1$). The dotted curve (resp. diamonds) corresponds to the analytical estimate (resp. numerical results) in the case of a power $p = 2$. In the inset, we plot the N positive Lyapunov in the case $E/N = 4200$ and $p = 1$.

FIG. 3. Participation ratio ξ versus the density of Energy E/N, for different lattice sizes: diamonds for $N = 64$, triangles for $N = 256$ and squares for $N = 1024$.

FIG. 4. Localization in tangent space of the Lyapunov vector for $N = 256$. The dashed curve corresponds to a generic localized Lyapunov vector at high energy density $E/N \simeq 2.5 \times 10^6$, whereas the solid curve (shifted by -0.2) corresponds to a generic delocalized one at low energy density $E/N \simeq 2$.