LETTER TO THE EDITOR

HIFI observations of warm gas in DR21: Shock versus radiative heating

V. Ossenkopf1,2, M. Röllig1, R. Simon1, N. Schneider1, Y. Okada1, J. Stutzki1, M. Gerin1, M. Akyilmaz1, D. Beintema2, A.O. Benz2, O. Berne6, F. Boulanger7, B. Bumble8, O. Coeur-Joly9,10, C. Deves5, M.C. Diez-Gonzalez11, K. France12, A. Fuente13, J.D. Gallego11, J.R. Goicoechea14, R. Güsten15, A. Harris16, R. Higgins171, B. Jackson2, C. Jarchow18, C. Joblin9,10, T. Klein15, C. Kramer19, S. Lord20, P. Martin12, J. Martin-Pintado14, B. Moorkerjea21, D.A. Neufeld22, T. Phillips23, J.R. Rizze14, F.F.S. van der Tak2,24, D. Teyssière25, H. Yorke8

(Affiliations can be found after the references)

Preprint online version: May 17, 2010

1. Introduction

The molecular gas in the DR21 massive star formation region is known to be affected by the strong UV field from the central star cluster and by a fast outflow creating a bright shock. The relative contribution of both heating mechanisms is the matter of a long debate. The molecular gas in the DR21 region is known to be heated by photodissociation regions (PDRs), UV radiation from young stars (Hollenbach & Tielens, 1999; Davis et al., 2007). As the cluster is located close to the eastern edge of the molecular ridge, the eastern, blue-shifted outflow, and a more widespread distribution of cooler, but nevertheless dense, molecular clumps.

1.1. HIFI observations

Spitzer 8 μm images reveal spots of bright PAH emission with a size below 10′′ (Marston et al., 2004). They represent the surfaces of high-density, UV irradiated clumps, forming photon-dominated (or photo-dissociation) regions (PDRs), transition zones from ionized and atomic gas to dense molecular gas where physics and chemistry are dominated by UV radiation from young stars (Hollenbach & Tielens, 1993; Ossenkopf et al., 2007). These hot and dense regions give rise to redshifted emission of PAHs, as well as transitions of CO, [C II], and [O I] by Lane et al. (1996) and Jakob et al. (2007) have shown that the emission of those transition cannot be explained by shocks, but is consistent with a pure UV heating, i.e., PDR physics.

To quantify the heating of the gas, we use spectra taken with the HIFI instrument (de Graauw et al., 2010) on board the Herschel Space Observatory (Pilbratt et al., 2010) during the performance verification campaign. Observations of high-J HCO+ transitions trace hot material, ionized by UV radiation or X-rays (Stemberg & Dalgarno, 1995). Hot water lines are detected in shocked gas (Steff et al., 2003), and observations of CO isotopes around J = 10 close the gap in the excitation ladder between ground-based observations and existing ISO data, allowing to obtain a full picture of the temperature distribution. In Sect. 2 we present the observational data. Sect. 3 compares the measured line profiles to distinguish different components, and Sect. 4 we provide a model for the emission, supporting the PDR character of the source, and discuss the results in Sect. 5.

2. Observations

2.1. HIFI observations

All spectra presented here were obtained in performance verification observations for the HIFI instrument. As their main goal...
was to demonstrate the functionality and performance of the different observing modes, the spectra were taken with a large variety of observing modes and strategies. Consequently, every spectrum was taken in a slightly different manner. All observational parameters are summarized in Table 1.

Most observations where single-point observations towards the central position of the DR21 H region at RA=20h39m01.1s, DEC=42°19′43.0″ (J2000). Fully sampled maps were only obtained in the [CII] line. Data were taken with the wideband spectrometer (WBS) at a resolution of 1.1 MHz, corresponding to 0.2 km/s (at 1900 GHz) – 0.7 km/s (at 500 GHz). The [CII] data were rebinned to a velocity resolution of 0.45 km/s to improve the signal to noise.

2.2. Complementary data

ISO Long Wavelength Spectrometer 43 – 197 μm grating scans were obtained for the DR21 central position from the ISO Data Archive (TDT 15200786). Integrated line intensities were extracted for [OⅠ] at 63 and 145 μm and the CO 14–13 to 17–16 transitions. Mid-J CO lines of the DR21 region were mapped with the KOSMA 3 m submm telescope (Jakob et al. 2007). We use the lines of CO and 13CO from J = 3–2 to 7–6, which have been observed at native angular resolutions from 80″ to 40″. The HCO+ 1-0, H13CO+ 1-0, and HCO+ 3-2 observations were taken with the IRAM 30 m telescope (Schneider et al. 2010). Native angular resolutions at the 1-0 and 3-2 transition frequencies are 28″ and 9″, respectively.

2.3. Beam size effects

For a direct comparison of the different data sets we smoothed the available data to the coarsest common angular resolution of 80″, matching that of the CO 3-2 KOSMA beam and the lowest frequency ISO observations. This is impossible for the single-point HIFI observations. Moreover, the Herschel beam varies between 40″ HPBW for the HCO+ line at 535 GHz and 20″ for 13CO at 1100 GHz. Those data were corrected for the different beam filling by estimating the source size from the HCO+ 3-2 line as a PDR tracer (Sternberg & Dalgarno 1995) with quite compact emission (20″ to 30″ in diameter). Successively convolving from the native angular resolution of 9″ to the angular resolution of the Herschel data, and further to the final, smoothed spectra at 80″, we obtained scaling factors for the HIFI spectra, being 0.5 when going from 40″ to 80″ and 0.33 when going from 20″ to 80″. The maps obtained in [CII] allow a direct smoothing to a resolution of 40″ (see Table 1). Beyond that size, the same scaling factor as above was applied.

3. Line profiles

The molecular ridge including the DR21 H region has an intrinsic LSR velocity of -3 km s⁻¹. The quiescent material is visible in narrow absorption lines of NH3 (Matsakis et al. 1977) and H2CO (Bieging et al. 1982). A second velocity component at 8–10 km s⁻¹ is known to be associated with the W75N complex. It appears in emission in CO and [CII] (Jakob et al. 2007), as a narrow absorption feature in HCO+ 1-0 (Nyman, 1983), and has a very broad velocity distribution in the H1 cm absorption (Thomas et al. 1969, Roberts et al. 1997). The wings of the low-J CO lines trace outflow velocities down to about -20 km s⁻¹ for the eastern, blister outflow and up to ≈ 10 km s⁻¹ for the western outflow.

Figure 1 shows the profiles of the HIFI spectra of CO isotopes, HCO+ and [CII]. All lines peak at about -4 km s⁻¹. The CO and HCO+ lines have a similar shape, but the [CII] line shows an additional broad blue wing extending down to -30 km s⁻¹. This indicates that the warm molecular material is slightly blue-shifted relative to the cold gas and that the [CII] emission is not only originating from that warm gas, but also from the ionized wind in the blister outflow.

Figure 2 compares the shapes of the CO and HCO+ lines with complementary ground-based measurements towards the same positions. We show only a few selected transitions as, e.g., the data for the CO 7-6 or 4-3 lines provide no additional information. All CO isotopic lines up to 7-6 are roughly symmetric, centered at the ridge velocity of -3 km s⁻¹. The lines of the main isotope are heavily self-absorbed with the absorption dip marking line center. The 10-9 lines, tracing hotter material, are slightly asymmetric and shifted to -4 km s⁻¹. This indicates that the warm molecular material is slightly blue-shifted relative to the cold gas and that the [CII] emission is not only originating from that warm gas, but also from the ionized wind in the blister outflow.

Figure 2 compares the shapes of the CO and HCO+ lines with complementary ground-based measurements towards the same positions. We show only a few selected transitions as, e.g., the data for the CO 7-6 or 4-3 lines provide no additional information. All CO isotopic lines up to 7-6 are roughly symmetric, centered at the ridge velocity of -3 km s⁻¹. The lines of the main isotope are heavily self-absorbed with the absorption dip marking line center. The 10-9 lines, tracing hotter material, are slightly asymmetric and shifted to -4 km s⁻¹. This indicates that the warm molecular material is slightly blue-shifted relative to the cold gas and that the [CII] emission is not only originating from that warm gas, but also from the ionized wind in the blister outflow.

Figure 2 compares the shapes of the CO and HCO+ lines with complementary ground-based measurements towards the same positions. We show only a few selected transitions as, e.g., the data for the CO 7-6 or 4-3 lines provide no additional information. All CO isotopic lines up to 7-6 are roughly symmetric, centered at the ridge velocity of -3 km s⁻¹. The lines of the main isotope are heavily self-absorbed with the absorption dip marking line center. The 10-9 lines, tracing hotter material, are slightly asymmetric and shifted to -4 km s⁻¹. This indicates that the warm molecular material is slightly blue-shifted relative to the cold gas and that the [CII] emission is not only originating from that warm gas, but also from the ionized wind in the blister outflow.

Table 1. Summary of the used HIFI observational data

transition	v_{min} [GHz]	HPBW	observing mode	t_{int,source} [s]	rms [K]
HCO+ 6-5	535.062	40	OTF map	16	0.04
HCO+ 12-11	1069.694	21	FSW spectral scan	150	0.1
13CO 10-9	1101.350	21	LC spectral scan	270	0.08
C18O 10-9	1097.163	21	LC spectral scan	270	0.08
[CII]	1900.537	12	DBS raster map	14	1
		20	convolved+binned	112	0.2
		40	convolved+binned	420	0.1

1 DBS = dual-beam-switch, OTF = On-The-Fly, FSW = frequency-switch, LC = load-chop, OFF position = 20h37m10s, 42°37′00″.
To better understand the exact velocity distribution in the source, we plot some additional HIFI lines towards the same position (see Sect. 2.3).

4. Modelling

We use the KOSMA-\(\tau\) PDR code [Röllig et al. 2006] to model the emission of PDR ensembles, representing a distribution of spherical clumps with \(dN/dM \propto M^{-1.5}\) (Cubick et al. 2008). For DR21 two ensembles with different properties had to be superimposed, a hot component, close to the inner H\,\beta region with strong FUV illumination, but only a small fraction of the total mass, and a cooler component that fills a larger solid angle and provides the bulk of the material. Each clumpy PDR ensemble has five free parameters: the average ensemble density, \(n_{\text{ens}}\), the ensemble mass, \(M_{\text{ens}}\), the UV field strength, \(\chi\) given in units of the Draine field, and the minimum and maximum mass of the clump ensemble, \([M_{\text{min}}, M_{\text{max}}]\). In contrast to most other PDR models, we fit absolute line intensities, using the available ground-based observations, complementary ISO data, and the HIFI lines of the CO isotopes, HCO\(^{+}\), atomic and ionized carbon, and atomic oxygen. The chemical network that has been applied in these calculations includes \(^{13}\)C but not \(^{18}\)O. The \(^{18}\)O lines were scaled from the \(^{13}\)CO intensities with a conversion of 1:8. Simulated annealing was used to find the optimum parameter combination.

The significance of the model is limited by the fact that the clump superposition ignores mutual line shading between different clumps, i.e., optical depth effects are only considered within individual clumps. This is usually justified by the virialised velocity dispersion between different clumps, but for optically very thick and broad lines some correction is needed. To estimate the effect we have computed the optical depth for the bulk of the individual clumps. This is of the order of unity or below for the majority of the observed transitions, reaches values up to ten for \(^{13}\)CO and HCO\(^{+}\) transitions up to \(J = 5\), but exceeds ten for the \(^{13}\)CO main isotopic lines up to \(J = 6\) and the \([\text{O}\,\beta]\) 63 \(\mu\)m line. For the CO lines showing clear self-absorption dips, we performed a Gaussian fit to the line wings and used the integrated intensity of that Gaussian to compute the total emission including the blocked radiation from the inner clumps close to the H\,\beta-region. As we have no spectral information for the \([\text{O}\,\beta]\) line, we have no estimate for the blocked radiation in this case, so that we excluded that data point from the fit.

The best fit result is shown in Figure 4. The corresponding model parameters are:
fields corresponds to a geometrical distance of 0.06 pc, i.e. 7″, from the central cluster, matching the size of the PAH emission (Marston et al. 2004). Our dense clouds match those determined by Jakob et al. (2007) for the extended cool gas, but are slightly higher than their hot-gas density (4×10^5 cm$^{-3}$). In contrast, Jones et al. (1994); van der Tak et al. (2010) find still somewhat higher densities for the hot gas, up to 10^6 cm$^{-3}$. The hot ensemble mass is close to the $170 M_\odot$ derived from early CO 7-6 observations by Jaffe et al. (1989). The total mass of the PDR ensemble falls between the mass limits derived by Jakob et al. (2007) from dust observations and from line radiative transfer fits.

While the existing ground-based observations provide a very good constraint on the properties of the extended cool gas, and the ISO lines show the total amount of hot gas, it is only the set of new HIFI data that puts the hot and cold distributions well apart from each other in terms of the temperature structure. While Jakob et al. (2007) obtained cooling curves with single peaks, the new data for the 10-9 lines of the CO isotopes and the HCO$^+$ transitions forced the fit to a bimodal distribution of excitation conditions. When we exclude the Herschel data from the model fit, we obtain a parameter set that shows a UV field that is lower by a factor ten for the hot ensemble, i.e., that would imply molecular clumps farther away from the central cluster. For the cold ensemble, the fitted UV field is also somewhat lower, while all other parameters remain similar to those from the full fit. Only with the Herschel data, we therefore obtain a parameter set that is consistent with the source geometry.

As the two-ensemble PDR model is able to fit all of the observed lines, we find no evidence for a shock heating of the dense gas. This is in agreement with the analysis of Lane et al. (1990), explicitly excluding a shock origin of the fine-structure lines, but seems to be in contradiction with the analysis of the line profiles in Sect. 3 that shows excited outflow material. We conclude that the material visible in the blue line wing, characterizing the blister outflow, is contained in dense clumps that are accelerated by the outflow, but that are chemically and energetically fully dominated by the UV field and not by the associated shock.

References

Bieging, J.H.; Wilson, T.L.; Downs, D. 1982, A&ASS 49, 607

Cubick, M.; Stutzki,J.; Ossenkopf,V.; Kramer,C.; Röllig,M. 2008, A&A 488, 623

Davis, C. J., Kumar, M. S. N., Sandell, G., et al. 2007, MNRAS 374, 29

Falgarone, E.; Ossenkopf, V.; Gerin, M. et al. 2010, A&A & this volume

Garden, R., Geballe, T. R., Gatley, I., Nadeau, D. 1986, MNRAS, 220, 203

de Graauw, Th.; et al. 2010, this volume

Jaffe, D.T.; Genzel, R., Harris, A.I., Lugten, B., Stacey, G.J., Stutzki, J., ApJ 344, 265

Hollenbach, D.J.; Tielens, A.G.G.M. 1999, Rev. Mod. Phys. 71, 173

Jakob,H.; Kramer,C.; Simon,R.; Schneider,N.; Ossenkopf,V.; Bontemps,S.; Graf,U.U.; Stutzki,J. 2007, A&A & 461, 999

Jones, K. N.; Field, D.; Gray, D. M.; Walker, R. N. F. 1994, A&A & 288, 581

Kirby, L. 2009, ApJ 694, 1056

Lan, A.P.; Has, M.R.; Hollenbach, D.J.; Erickson, E.F. 1990, ApJ 361, 132

Marston, A. P., Reach, W. T., Noriega-Crespo, A., et al. 2004, ApJS, 154, 333

Matsakis, D. N.; Brandshaf, D.; Chui, M.F. et al. 1977, ApJ 214, L67

Ossenkopf, V.; Röllig, M.; Cubick, M.; Stutzki, J. 2007, in Molecules in Space and Laboratory, by J.L. Lemaire & F. Combes (eds.), S. Dhana publ., p.95

Ossenkopf, V.; Müller, H.S.P.; Lis, D. 2010, A&A this volume

Nyman, L.-Å. 1983, A&A 120, 307

Pilbratt, G.; et al. 2010, this volume

Roberts, D.A.; Dickel, H.R.; Goss, W.M. 1997, ApJ 476, 209

Roelfsema, P. R., Goss, W. M., Geballe, T. R. 1989, A&A, 222, 247

Röllig, M.; Ossenkopf, V.; Jeyakumar, S.; Stutzki, J.; Sterenberg, A. 2006, A&A 458, 917

Schneider, N.; Bontemps, S.; Simon, R.; et al. 2006, A&A 458, 855
Acknowledgements. HIFI has been designed and built by a consortium of institutes and university departments from across Europe, Canada and the United States under the leadership of SRON Netherlands Institute for Space Research, Groningen, The Netherlands and with major contributions from Germany, France and the US. Consortium members are: Canada: CSA, U.Waterloo; France: CESR, LAB, LERMA, IRAM; Germany: KOSMA, MPIfR, MPS; Ireland: NUI Maynooth; Italy: ASI, IFSI-INAF, Osservatorio Astrofisico di Arcetri- INAF; Netherlands: SRON, TUD; Poland: CAMK, CBK; Spain: Observatorio Astronómico Nacional (IGN), Centro de Astrología (CSIC-INFA). Sweden: Chalmers University of Technology - MC2, RSS & GARD; Onsala Space Observatory; Swedish National Space Board, Stockholm University - Stockholm Observatory; Switzerland: ETH Zurich, FHNW; USA: Caltech, JPL, NSC.

This work was supported by the German Deutsche Forschungsgemeinschaft, DFG project number Os 177/1–1. A portion of this research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.