Dark matter solution to the H_0 and S_8 tensions, and the integrated Sachs-Wolfe void anomaly

Krishna Naidoo,1,2 Mariana Jaber,1 Wojciech A. Hellwing,1 and Maciej Bilicki1

1Center for Theoretical Physics, Polish Academy of Sciences, al. Lotników 32/46 Warsaw, Poland
2Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK

(Dated: April 16, 2024)

We consider a phenomenological model of dark matter with an equation-of-state w that is negative and changing at late times. We show this couples the H_0 and S_8 tensions, alleviating them both simultaneously, reducing the H_0 tension from $\sim 5\sigma$ to $\sim 3\sigma$ and the S_8 tension from $\sim 3\sigma$ to $\sim 1\sigma$. Furthermore, the model provides an explanation for the anomalously large integrated Sachs-Wolfe (ISW) effect from cosmic voids, a unique consequence of the changing and negative equation-of-state. Observations of high ISW from cosmic voids may therefore be evidence that dark matter plays a significant role in both the H_0 and S_8 tensions. We predict the ISW from cosmic voids to be a factor of up to ~ 2 greater in this model than what is expected from the standard model ΛCDM. These results extend to other degenerate models of dark matter, such as unified or interacting dark matter and dark energy models.

I. INTRODUCTION

The emergence of strong tensions in the constraints of the Hubble constant H_0 and S_8 parameters, between early [1] and late universe-based observations [2–6], have placed intense scrutiny on observations, methods and the assumptions of the standard model of cosmology ΛCDM (see [7–14] for reviews on the Hubble tension). One of these assumptions is the presence of cold dark matter; a yet-to-be-detected massive particle that is the dominant source of gravitation in the universe. Dark matter’s interactions with standard model particles and forces is known to be very weak and the specific properties of dark matter are often assumed to manifest only on small cosmological scales.

However, with no direct observations of dark matter, there is little we can presume about its properties, other than its gravitational effects and weak interactions with known particles. Rather than consider an endless list of dark matter model extensions we can instead consider phenomenological scenarios that allow us to determine the general observational implications of a whole family of models, including their role in tensions and anomalies. With this in mind, we explore the implication of a subset of the generalised dark matter model [15], in a spatially flat universe with a cosmological constant (Λ). The equation-of-state (EoS) for dark matter (w_{dm}) is allowed to be non-zero and evolving at late times but with null speed of sound and viscosity. For consistency with constraints from the early universe [16, 17] the EoS is assumed to be effectively zero at early times. We will refer to this model as evolving dark matter (eDM), to distinguish it from other models often abbreviated to WDM (such as warm dark matter), and with the full model with Λ referred to as ΛeDM.

While the H_0 and S_8 tensions are widely discussed in the community, a lesser known anomaly is the observation of larger than expected integrated Sachs-Wolfe (ISW) signal from cosmic voids [18] (the void-ISW anomaly). This anomaly is strongest for ‘photometric’ voids, i.e. voids measured from photometric observations of galaxies which are preferentially elongated along the line-of-sight (LOS) and ranging in significance from 2–4σ [19, 20, 22], while for ‘spectroscopic’ voids (smaller and not aligned with the LOS) the ISW is larger but to a lesser extent and remains consistent with ΛCDM [23]. In contrast, observations of void lensing are either consistent with ΛCDM or lower than expected [24].

The aim of this paper is to establish the role dark matter can play in alleviating tensions in cosmology and in explaining the void-ISW anomaly. The latter has rarely been considered part of the tension discussion, but in this paper we show the ISW is very sensitive to late-time changes in dark matter’s EoS and can provide a unique test for a dark matter (or an interacting dark sector) solution to tensions. This paper is organised as follows: (1) we discuss the assumptions and theoretical background of ΛeDM and the implications for the H_0 and S_8 tensions, and the ISW and lensing from cosmic voids; (2) we describe ΛeDM’s parameter degeneracies and methods used for parameter inference, (3) we discuss the constraints on ΛeDM parameters using cosmological observations; and (4) we discuss the implications for tensions and anomalies in cosmology.

II. THEORY

A. ΛeDM and Tensions

The evolution of the dark matter density ρ_{dm} can be described as a function of the scale factor a and a time-
varying EoS $w_{dm}(a)$ defined as
\[\rho_{dm}(a) = \frac{\rho_{dm,0}}{a^3} W(a), \]
\[W(a) = \exp \left(3 \int_a^1 \frac{w_{dm}(a')}{{a'}^3} da' \right), \]
where $\rho_{dm,0}$ is the dark matter density today and a' a dummy variable for the integration by the scale factor. This general solution is derived from the assumption of energy conservation and the continuity equation. We consider the following function for the EoS,
\[w_{dm}(a) = \begin{cases} w_{dm,0} \left(\frac{a - a_{nz}}{1 - a_{nz}} \right), & \text{for } a \geq a_{nz}, \\ 0, & \text{otherwise}, \end{cases} \]
\[i.e. \text{ a linearly increasing/decreasing EoS where } w_{dm,0} \text{ is the current value of the dark matter EoS and } a_{nz} \text{ the scale factor at which dark matter's EoS becomes non-zero. At early times (i.e. for } a < a_{nz} \text{) constraints from CMB measurements have shown the EoS must be very close to zero (} |w_{dm}| \lesssim 0.001) \text{ [16, 17], however, at late times the constraints are more relaxed [17]. For this reason we fix the EoS at early times to zero and allow the EoS to be non-zero at late times. However, this means the EoS is non-differentiable at } a_{nz}, \text{ a detail that should be revisited in future studies of the model. Generalised dark matter models with a cosmological constant, like the EoS is zero and } \Omega_m h^2 = 0.1202, \]
\[\Omega_{dm} W_0 h^2 = \Omega_{dm} h^2 = 0.1202, \]
where Ω_{dm} is the fractional density of dark matter if the EoS is zero and $W_0 = W(a_{nz})$.

In ΛCDM these functions simplify to $\Gamma(a) = 1$ and $\Upsilon(a) = 0$.

We modify the background evolution and the linear perturbation equations of dark matter in the cosmological Boltzmann solver CLASS [28], following the above relations and equation 2 of [17]. From CLASS we output the power spectrum and growth functions.

To understand the role that ΛeDM may play in the H_0 tension we fix the conditions of the early universe to those inferred by Planck CMB measurements [1]. This is carried out by fixing the primordial power spectrum, optical depth and the physical densities of baryons and dark matter to $A_s = 2.101 \times 10^{-9}$, $n_s = 0.9649$, $\tau = 0.0544$ and $\Omega_b h^2 = 0.02236$, respectively. For dark matter this means fixing its value at early times to
\[\Omega_{dm} W_0 h^2 = \Omega_{dm} h^2 = 0.1202, \]
where Ω_{dm} is the fractional density of dark matter if the EoS is zero and $W_0 = W(a_{nz})$.

In Fig. [1] we fix the parameters of ΛeDM as described above while varying a single parameter – the Hubble constant H_0. In this plot we show that changing H_0 to values above CMB constraints (of $H_0 = 67.27$ km s$^{-1}$ Mpc$^{-1}$ indicated with a solid blue line) requires dark matter’s EoS to be negative. A consequence of a high H_0 is a decrease in the power spectrum amplitude and therefore low σ_8. Since $\sigma_8 \propto S_8$ this naturally couples the two tensions. If H_0 is set to the values observed by SHOES [29] (of $H_0 = 73.3$ km s$^{-1}$ Mpc$^{-1}$) we obtain $\sigma_8 \sim 0.5$.

B. Implications for the ISW and lensing

The ISW T_{ISW} is defined as
\[\frac{T_{ISW}(\hat{n})}{T} = \frac{2}{c^2} \int_0^{\chi_{LS}} \Phi(\chi, t) a(\chi) d\chi, \]
where Φ is the time-derivative of the gravitational potential Φ, c is the speed of light, χ is the transverse comoving distance in a direction η and χ_{LS} is the comoving distance to the last scattering surface. The gravitational potential is related to the density contrast δ by the Poisson equation which in the linear regime simplifies to
\[\Phi(x, t) = \frac{3}{2} H_0^2 \Omega_m \Gamma(t) \frac{D(t)}{a(t)} \nabla^2 \delta(x, 0), \]
where Ω_m is the total fractional matter density today, $D(t)$ the linear growth function and $\delta(x, 0)$ the density contrast today (i.e. at $z = 0$). Consequently, the time-derivative is given by
\[\Phi(x, t) = H(t) \left[f(t) - 1 + \Upsilon(t) \right] \Phi(x, t). \]
where $f(t)$ is the linear growth rate.

The lensing convergence is given by
\[\kappa(\bar{\eta}) = \frac{3 H_0^2}{2c^2} \Omega_m \int_0^{\chi_s} \frac{\chi}{\chi_s} (\chi_s - \chi) \frac{\Gamma(\chi)}{a(\chi)} \delta(\chi) d\chi, \]
FIG. 1. The Hubble function $H(z)$, dark matter EoS $w_{\text{dm}}(z)$ and power spectrum $P(k)$ are displayed for models of ΛCDM as a function of the Hubble constant H_0, with early universe physics fixed to CMB constraints. A higher H_0 requires a negative EoS for dark matter, which leads to a decrease in the $P(k)$ amplitude and therefore a low σ_8 (shown in the inset plot on the right). Therefore, ΛCDM can alleviate both the H_0 and S_8 tensions as a high-H_0 is naturally coupled to a low-σ_8. For reference the profiles for ΛCDM assuming early universe CMB constraints are shown with dark blue solid lines and the profiles for ΛeDM assuming late universe constraints on H_0 are shown with red dashed lines.

where χ_s is the comoving distance to the lensing source.

Both the ISW and lensing are dependent on $\Gamma(t)$ (see Eqs. 8 and 10) while the ISW is also dependent on $\Upsilon(t)$ (see Eq. 8 and Eq. 10). This means the ISW and lensing signals will be different in ΛeDM than in ΛCDM and can be constrained from studies cross-correlating galaxy surveys with weak lensing and CMB temperature maps. However, cross-correlation studies of the ISW typically have very large errors since the signal is highest on large angular scales and subject to cosmic variance (see [30]). This makes distinguishing the effect of ΛeDM this way rather challenging. Voids on the other hand allow us to improve the signal-to-noise by stacking void-ISW signals. They are extremely sensitive to ΛeDM because they accumulate the departures in $\Gamma(t)$ and $\Upsilon(t)$ from ΛCDM; an effect which is more relevant for larger voids elongated along the LOS, such as those measured by photometric surveys.

The ISW and κ profiles for three types of voids are explored, assuming the elliptical void profile of [31]. (1) spec-z voids refers to typical voids found from spectroscopic surveys [23, 32–34]; (2) photo-z voids from photometric surveys [24, 29, 35], i.e. large and preferentially elongated along the LOS; and (3) the combined profiles of the Eridanus voids [30] which are located in the direction of the CMB Cold Spot anomaly [37] and for which the role of the ISW from voids has generated considerable discussion [24, 31, 38, 40]. The void parameters used and the measured ISW and lensing amplitude with respect to ΛCDM are given in Table I.

Measurements of the void density profiles are based on observations of galaxies, biased tracers of the underlying density field. To correct for the galaxy bias, a linear galaxy bias parameter is usually fitted based on clustering analysis. However, if ΛCDM is not the correct model, the inferred bias will be incorrect. By making the approximation that the $P(k)$ for ΛeDM can be related to the $P(k)$ in ΛCDM by an amplitude shift, we can make a σ_8 bias correction to the central void density δ_0 (the central density contrast obtained from ΛCDM) by multiplying

$H(z) = \frac{\sqrt{\Omega_{\Lambda}(1+z)^3 + \Omega_{\text{DM}}(1+z)^2 + \Omega_{\text{b}}}}{H_0}$

$P(k) = \frac{1}{(2\pi)^3} \int d^3p \frac{1}{V} \delta^3 \delta^3 \frac{1}{\sqrt{2\pi}} e^{-i k \cdot \mathbf{p}}$

$w_{\text{dm}}(z) = -

TABLE I. We list the void parameters for spectroscopic voids (spec-z) [23, 32–34], photometric voids (photo-z) [24, 29, 35] and the Eridanus voids (combining profiles from voids E-1, E-2, E-3 and E-4) [30]. The void parameters are the central redshift z_c, the central density contrast δ_0, the effective radius R, and the measured amplitude of the ISW A_{ISW} and lensing A_κ signals with respect to ΛCDM. Note the measured amplitudes are omitted for the Eridanus voids as this corresponds to a singular location on the sky. Furthermore all voids are assumed to be spherical, with the exception of the photo-z voids which are preferentially aligned towards the LOS with a LOS and perpendicular ratio of $R_\parallel/R_\perp = 2.6$ [35].

Void	δ_0	z_c	R [Mpc]	A_{ISW}	A_κ
Spec-z	-0.6	0.6	35	1.64 ± 0.53	0.97 ± 0.19
Photo-z	-0.55	0.5	60	4.1 ± 2	0.79 ± 0.12
E-1	-0.34	0.14	119	n/a	n/a
E-2	-0.87	0.26	50	n/a	n/a
E-3	-0.8	0.3	59	n/a	n/a
E-4	-0.62	0.42	168	n/a	n/a
by the factor $\sqrt{\sigma_8^{\Lambda CDM}/\sigma_8^{\Lambda eDM}}$, where $\sigma_8^{\Lambda CDM}$ is the σ_8 obtained from ΛCDM and $\sigma_8^{\Lambda eDM}$ from ΛeDM.

In Fig. 3, we show the void ISW and lensing profiles as a function of H_0. As was shown in Fig. 1, an increase in H_0 requires a negative and decreasing EoS for dark matter, resulting in $\Gamma \neq 1$ and $\Upsilon \neq 0$. This results in a significant increase in the ISW profile and a slight decrease in lensing, fitting well with observational measurements (indicated in the inset plots). For spec-z and photo-z voids the ISW and lensing measurements were made by stacking voids, something which cannot be performed for the Eridanus voids which lies on a singular patch of sky. For this reason and because these voids more closely resemble photo-z voids we will assume that their ISW and lensing profiles follow the relation for photo-z voids.

III. METHODS

A. Model Degeneracies

The ΛeDM model is defined with the addition of two free parameters, $w_{dm,0}$ which defines the dark matter EoS today (i.e. at $z = 0$) and a_{nz} the scale factor at which the EoS becomes non-zero. In Fig. 3 we show the angular power spectra of the CMB temperature, E and B-modes, and lensing potentials for the ΛeDM model with base parameters (i.e. those in common with ΛCDM) fixed to best-fit ΛCDM P18 constraints. In Fig. 4 we show the power spectra at redshift $z = 0$ with base parameters fixed to best-fit ΛCDM. In Fig. 3 and 4 the analytical angular and 3D power spectra are shown as a function of $w_{dm,0}$ varying between -1 and 0.3 with $a_{nz} = 0.5$ and separately as a function of a_{nz} varying between 0.2 and 0.9 with $w_{dm,0} = -0.2$.

We see that smaller $w_{dm,0}$ and a_{nz} lead to a very similar dampening effect on the power spectra, a shift to the right in the temperature and E-mode angular auto/cross correlation, and an amplification on the B-mode and lensing auto/cross-correlations. At low-\ell we see a modest increase to the temperature autocorrelation (highlighted in the inset plots), this is caused by larger ISW in these models. These figures illustrate the strong degeneracy between these two parameters and that cosmological probes will be much more sensitive to $w_{dm,0}$ than a_{nz}. For this reason we fix a_{nz} to 0.5 in our analysis.

B. Parameter Inference

Constraints on cosmological parameters were obtained using the cosmological Markov chain Monte Carlo
(MCMC) software Cobaya [47, 48]. This was done using a combination of Planck CMB measurements, Pantheon Type Ia supernovae, constraints on the absolute magnitude of Type Ia supernovae, baryonic acoustic oscillations and redshift space distortion measurements. Specifically:

(i) Planck CMB measurements of temperature, polarisation auto/cross correlation for high-ℓ (i.e. $\ell > 30$), temperature and polarisation auto correlation for low-ℓ (i.e. $\ell \leq 30$) and lensing [49]. The joint likelihood for Planck CMB measurements are re-

FIG. 3. The angular power spectra D_ℓ are shown as a function of $w_{\text{dm},0}$ on the left and a_{nz} on the right, with all other parameters held fixed to P18 ΛCDM cosmology and $a_{nz} = 0.5$. In the subplots we show the CMB temperature autocorrelation (TT, top left), temperature to E-mode cross correlation (TE, top right), E-mode autocorrelation (EE, middle left), B-mode autocorrelation (BB, middle right), lensing potential autocorrelation ($\phi\phi$, bottom left) and temperature to lensing potential cross correlation ($T\phi$, bottom right). The text in each subplot shows the multiplication factor used for plotting each angular power spectra.

FIG. 4. The power spectrum at redshift zero for ΛeDM, with varying $w_{\text{dm},0}$ and $a_{nz} = 0.5$ and on the left and varying a_{nz} with $w_{\text{dm},0} = -0.2$ on the right. The plots show a strong degeneracy between these parameters, smaller values of a_{nz} and $w_{\text{dm},0}$ dampen $P(k)$ more strongly, an effect which is more sensitive to $w_{\text{dm},0}$.
ferred to in the paper as P18.
(ii) Pantheon Type Ia supernovae [50] referred to as SN.
(iii) SH0ES Cepheid constraints on the Type Ia absolute magnitude [51], referred to as SN+M_B.
(iv) Baryonic acoustic oscillations and redshift space distortion measurements from 6dF, SDSS DR7 and BOSS [52–54], which are referred to as BAO.

The constraints for parameters from ΛCDM and ΛeDM are obtained by sampling the posterior by running an MCMC. In both cases, this means varying the standard ΛCDM parameters, i.e. primordial power spectrum amplitude A_s, the spectral tilt n_s, the sound horizon θ_s, the optical depth τ, baryon density $\Omega_b h^2$ and dark matter density $\Omega_{dm} h^2$. For ΛeDM we also vary the dark matter EoS today $w_{dm,0}$. In ΛeDM there is a strong degeneracy between Ω_{dm} and $w_{dm,0}$, which makes sampling the posterior extremely difficult. To remove this degeneracy and improve the efficiency of the MCMC sampling, we instead sample the initial dark matter density, i.e. Ω^init_{dm} which is related to Ω_{dm} by the relation $\Omega_{dm} = \frac{\Omega^\text{init}_{dm}}{W_0}$, for ΛCDM the two are equivalent since $W_0 = 1$. Note, the addition of the Type Ia absolute magnitude from SH0ES means we have to additionally sample M_B as a sampled parameter. In Fig. 5 we show the posterior of the sampled ΛeDM parameters, showing that with the exception of $w_{dm,0}$ the posteriors are generally quite Gaussian. A comparison to ΛCDM shows the constraints on these parameters are close to identical for P18, since the high redshift CMB measurements are unable to constrain the late evolution of dark matter’s EoS. To ensure the MCMC chains have converged we make use of Cobaya’s inbuilt measure of the $R−1$ Gelman-Rubin statistics [55]. The chains are assumed to be converged once $R−1 < 0.01$.

Defining S_8 for ΛeDM is rather challenging since the general definition $S_8 = \sigma_8 \sqrt{0.3/\Omega_m}$ in the literature generally assumes the contribution of cold dark matter to Ω_m. Assuming that this functional form is really trying to capture an amplitude to the power spectra and define this in relation to the fiducial ΛCDM constraints where $\Omega_m \simeq 0.3$ the most sensible definition of S_8 will use Ω^init_{dm} since this sets the shape and amplitude of the initial power spectra and using σ_8 which captures ΛeDM’s dampening effect. Therefore, we define

$$S_8 = \sigma_8 \sqrt{\Omega^\text{init}_{dm}/0.3}$$

where $\Omega^\text{init}_{dm} = \Omega^\text{init}_m + \Omega_b + \Omega^\text{NR}_m$ and Ω^NR_m is the contribution from non-relativistic neutrinos.

In Table I we show the constraints on the base and derived parameters for ΛCDM and ΛeDM. For model comparison, we provide the χ^2, Akaike Information Criterion (AIC; [56]) and the significance of the Hubble, M_B and S_8 tensions; comparing to $H_0 = 73.3 \pm 1.04$ [29], $M_B = -19.244 \pm 0.020$ [51] and $S_8 = 0.766 \pm 0.017$ in brackets [57] ($S_8 = 0.790 \pm 0.016$ in brackets [5]) respectively.

IV. RESULTS

A. Constraints on ΛeDM

We constrain ΛeDM parameters (standard ΛCDM parameters plus the current dark matter EoS $w_{dm,0}$) using measurements from Planck CMB (referred to as P18, [19–28]), Type Ia supernovae from Pantheon [50] (referred to as SN), SH0ES constraints on the absolute magnitude of Type Ia supernovae M_B from Cepheids [51–60] (referred to as SN+M_B), baryonic acoustic oscillations and redshift space distortions from 6dF, SDSS DR7 and BOSS [52–54] (referred to as BAO). Constraints on cosmological parameters for ΛCDM and ΛeDM are provided in Table I. In Fig. 6 we highlight the constraints on the derived quantities of H_0 and σ_8, showing that ΛeDM allows for slightly larger values of H_0 (∼68.3 for ΛeDM compared to ∼67.5 for ΛCDM from P18+SN constraints), easing tensions with measurements of SH0ES M_B [51] from ∼5σ to ∼3σ. The larger H_0 constraints allow for lower values of σ_8 (∼0.69 for ΛeDM compared to ∼0.81 for ΛCDM from constraints P18+SN constraints), a result which eases tensions with weak lensing measurements [3–6] from SH0ES.

In Table I we provide the χ^2 and AIC for model selection. Comparisons of the χ^2 show that combinations of P18 with SN, SN+M_B and SN+M_B+BAO are better fitted with a ΛeDM model however the AIC penalises the necessity for the $w_{dm,0}$ parameter, showing a marginal preference for ΛCDM. In this Table we show the significance of tensions between the constraints on the Hubble constant (comparing to $H_0 = 73.3 \pm 1.04$ [29] and S_8 (comparing to $S_8 = 0.766 \pm 0.017$ [57] and in brackets to $S_8 = 0.790 \pm 0.016$ [5]). Here the significance is obtained by computing the difference between the best-fit values and dividing by the joint errors added in quadrature. The significance of the H_0 tension are reduced from 4.5σ to ∼3.5σ while the S_8 tension is reduced from ∼3σ to ∼1σ. The constraints on the dark matter EoS remain consistent with ΛCDM $w_{dm,0} > -0.462$ (for P18+SN+M_B+BAO), although the maximum likelihood peaks at $w_{dm,0} \sim -0.2$.

B. ISW and Lensing Predictions

In Fig. 7 we sample the chains from the Cobaya MCMC for ΛCDM and ΛeDM from P18+SN+M_B+BAO and display the amplitude of the ISW (A_{ISW}) and lensing (A_{κ}) for the three void types with respect to the best-fit ΛCDM model. We show here that ΛCDM makes very tight predictions for what this should be, with little dependence on the void types. On the other hand ΛeDM allows for much larger A_{ISW} and smaller A_{κ}. The Hubble constant for the sampled points is shown with a red-blue color bar, indicating that in ΛeDM a higher H_0 is met with larger A_{ISW} and smaller A_{κ}, in better agreement with observations. A redshift evolution can be seen in
FIG. 5. Constraints on ΛeDM parameters for P18 (dashed blue lines), P18+SN+MB (solid blue lines) and P18+SN+MB+BAO (filled purple). The contours represent the 68% and 95% confidence regions. P18 does not strongly constrain $w_{dm,0}$, but the addition of SN+MB and BAO pulls it away from -1 and towards -0.3, although these constraints remain consistent with zero.

the profiles, voids at lower redshift exhibit a larger A_{ISW} but weaker A_{κ} with respect to ΛCDM for high-H_0.

In Table III we make predictions for the void ISW and lensing amplitude for ΛeDM with respect to ΛCDM based on constraints using P18+SN+MB+BAO. These values are in excellent agreement with current observations and suggest the S_8 tensions and void-ISW anomaly can be solved and the H_0 tension alleviated with new physics in dark matter (or a unified interacting dark sector) that is being captured by the phenomenological ΛeDM model.

V. DISCUSSIONS

In this paper we introduce ΛeDM, a phenomenological model of dark matter with a non-zero EoS at late times. We show that ΛeDM is able to simultaneously ease the H_0 and S_8 tensions while also providing an explanation for the void-ISW anomaly. This is the first model, to our knowledge, that can consistently explain all three with a single modification.

Previous solutions to the H_0 tension (such as early dark energy [61]) provide a high H_0 at the cost of greater clustering and therefore larger σ_8 – putting them in conflict with the S_8 tension [62, 63]. ΛeDM, on the other hand, does not require changing the physical densities of dark matter at last scattering but instead imposes a late change to the evolution of dark matter. Since dark matter has never been directly observed, it is reasonable to suspect the simple assumptions of cold dark matter may be incomplete. Best fit constraints on ΛeDM imply dark matter’s EoS is negative at late times, strongly implying interactions between dark matter and dark energy [25], which have been shown to alleviate both the H_0 and S_8 tensions [64–69]; if this is proven to be true this will have a profound impact on fundamental physics.

However ΛeDM does not only alleviate the H_0 and
TABLE II. Constraints on ΛCDM and ΛeDM parameters and statistics are shown for P18, P18+SN, P18+SN+MB and P18+SN+MB+BAO. In the top section we show the constraints on the base ΛCDM parameters A_s, n_s, θ_*, $\Omega_b h^2$ and $\Omega_c h^2$. For ΛeDM we provide constraints on $\omega_{\text{dm},0}$ and M_B when including constraints from SH0ES on the SN Type Ia absolute magnitude [3]. In the second section we provide constraints on the derived parameters H_0, σ_8 and S_8. In the third section we provide estimations of the significance with respect to local measurements of H_0 [2] and weak lensing measurements of S_8 from [3] and [5] in brackets. In the last section we provide comparisons of the χ^2 and AIC for model selection, showing that although ΛeDM provides a better fit to the data, there remains a marginal preference for ΛCDM (based on the AIC).

	P18	P18+SN	P18+SN+MB	P18+SN+MB+BAO	P18+SN+MB+BAO
	ΛCDM	ΛCDM	ΛCDM	ΛCDM	ΛCDM
$\ln(10^{10} A_s)$	3.045 ± 0.029	3.045 ± 0.029	3.045 ± 0.028	3.046 ± 0.029	3.048 ± 0.028
n_s	0.9659 ± 0.0082	0.9658 ± 0.0082	0.9672 ± 0.0082	0.9672 ± 0.0082	0.9675 ± 0.0071
$100 \theta_*$	1.04196 ± 0.00057	1.04196 ± 0.00057	1.04203 ± 0.00057	1.04203 ± 0.00057	1.04204 ± 0.00057
τ	0.055 ± 0.014	0.055 ± 0.014	0.056 ± 0.014	0.056 ± 0.014	0.057 ± 0.014
$\Omega_b h^2$	0.02239 ± 0.00029	0.02239 ± 0.00029	0.02245 ± 0.00029	0.02245 ± 0.00029	0.02245 ± 0.00029
$\Omega_c h^2$	0.1199 ± 0.0224	0.1199 ± 0.0224	0.1194 ± 0.0224	0.1194 ± 0.0224	0.1193 ± 0.0224
$w_{\text{dm},0}$	-0.439 ± 0.057	-0.31 ± 0.057	-0.31 ± 0.057	-0.31 ± 0.057	-0.31 ± 0.057
M_B	-0.439 ± 0.057				
Derived					
H_0	67.4 ± 1.1	67.5 ± 1.1	67.9 ± 1.0	67.9 ± 1.0	67.99 ± 0.81
σ_8	0.811 ± 0.012	0.810 ± 0.012	0.809 ± 0.012	0.809 ± 0.012	0.809 ± 0.012
S_8	0.829 ± 0.025	0.827 ± 0.024	0.818 ± 0.024	0.818 ± 0.024	0.816 ± 0.026

S8 tensions, it also provides an explanation to a long-standing anomaly – the void-ISW anomaly, while remaining consistent with void lensing measurements. This allows the model to be tested in the near future, including testing other shapes and parameterisations for the EoS, from galaxy surveys such as Euclid and LSS. So far, observations appear to be consistent with constraints to ΛeDM, with the ISW of voids predicted to be roughly a factor of ~2 and lensing to be a factor of ~0.9 with respect to ΛCDM. Future measurements of void ISW and lensing, and other probes (such as galaxy cluster abundances, galaxy lensing and CMB temperature auto and cross-correlations) will allow us to provide tighter constraints on ΛeDM and help determine whether new physics in dark matter (or an interacting dark sector) is the cause of the H_0 and S_8 tension.

VI. ACKNOWLEDGEMENTS

We thank Enrique Gaztañaga, Ofer Lahav, Constance Mahony, Adi Nusser and Joe Silk for providing useful suggestions and insightful discussions in

1 https://www.euclid-ec.org/
2 https://www.lsst.org/
FIG. 6. Constraints on the derived parameters of H_0 and σ_8 are shown for ΛeDM. These are constrained with Planck CMB measurements (dashed blue contours), the addition of Pantheon type Ia supernovae and Cepheid constraints on M_B (SN$+M_B$; solid blue contours) and BAO (purple shaded contours). The contours indicate regions of 68% and 95% confidence intervals. Constraints on ΛeDM provide higher values of H_0 and lower values of σ_8 easing the H_0 and S_8 tensions.

TABLE III. Predictions for the ISW A_{ISW} and lensing convergence A_κ for the Spec-z, Photo-z and Eridanus voids from constraints of P18+SN$+M_B$+BAO on ΛCDM and ΛeDM. For ΛCDM the predictions are very close to 1, while ΛeDM allows for A_{ISW} to be a factor of up to 2 times larger than ΛCDM and A_κ a factor of up to 0.9 times smaller than ΛCDM.

Void	A_{ISW}	A_κ		
	A_{CDM}	A_{eDM}	A_{CDM}	A_{eDM}
Spec-z	1.00 ± 0.0093	1.55 ± 0.49	1.00 ± 0.034	0.99 ± 0.072
Photo-z	1.00 ± 0.0096	1.71 ± 0.64	1.00 ± 0.034	0.99 ± 0.069
Eridanus	1.00 ± 0.012	1.97 ± 0.71	1.00 ± 0.037	0.96 ± 0.048

[1] Planck Collaboration, N. Aghanim, Y. Akrami, M.Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak, R. Battye, K. Benabed, J. P. Bernard, M. Bersanelli, et al., Planck 2018 results. VI. Cosmological parameters, A&A 641, A6 (2020) [arXiv:1807.06209 [astro-ph.CO]]

[2] A. G. Riess, L. M. Macri, S. L. Hoffmann, D. Scolnic, S. Casertano, A. V. Filippenko, B. E. Tucker, M. J. Reid, D. O. Jones, J. M. Silverman, R. Chornock, P. Challis, W. Yuan, P. J. Brown, and R. J. Foley, A 2.4% Determination of the Local Value of the Hubble Constant, ApJ 826, 56 (2016) [arXiv:1604.01424 [astro-ph.CO]]

[3] M. Asgari, C.-A. Lin, B. Joachimi, B. Giblin, C. Heymans, H. Hildebrandt, A. Kannawadi, B. Stöfler, T. Tröster, J. L. van den Busch, A. H. Wright, M. Bilicki, C. Blake, J. de Jong, A. Dvornik, T. Erben, F. Getman, H. Hoekstra, F. Köhlinger, K. Kuijken, L. Miller, M. Radovich, P. Schneider, H. Shan, and E. Valentijn, KiDS-1000 cosmology: Cosmic shear constraints and comparison between two point statistics, A&A 645, A104 (2021) [arXiv:2007.15633 [astro-ph.CO]]

[4] T. M. C. Abbott, M. Aguena, A. Alarcon, S. Allam, O. Alves, A. Amon, F. Andrade-Oliveira, J. Annis, S. Avila, D. Bacon, E. Baxter, K. Bechtol, M. R. Becker, G. M. Bernstein, S. Bhargava, et al., Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing, Phys. Rev. D 105, 023520 (2022) [arXiv:2105.13549 [astro-ph.CO]]

[5] T. T. Tröster, J. L. van den Busch, A. H. Wright, M. Bilicki, C. Blake, J. de Jong, A. Dvornik, T. Erben, F. Getman, H. Hoekstra, F. Köhlinger, K. Kuijken, L. Miller, M. Radovich, P. Schneider, H. Shan, and E. Valentijn, KiDS-1000 cosmology: Cosmic shear constraints and comparison between two point statistics, A&A 645, A104 (2021) [arXiv:2007.15633 [astro-ph.CO]]
FIG. 7. The amplitude of the ISW (A_{ISW}) and lensing convergence (A_κ) for three void types are sampled from parameter constraints on ΛCDM (solid black) and ΛeDM (dashed black) from P18+SN+MB+BAO. These are compared to the amplitude obtained from the best-fit constraints on ΛCDM. The Hubble constant value for the sampled points in ΛeDM are indicated with a red-blue color bar. The grey horizontal and vertical bands show measurements from observations (see Table I). Constraints from ΛCDM show the amplitudes should be very close to one. For ΛeDM a larger H_0 strongly correlates to a much larger A_{ISW} and smaller A_κ.

[5] Dark Energy Survey and Kilo-Degree Survey Collaboration, T. M. C. Abbott, M. Aguena, A. Alarcon, O. Alves, A. Amon, F. Andrade-Oliveira, M. Asgari, S. Avila, D. Bacon, K. Bechtol, M. R. Becker, G. M. Bernstein, E. Bertin, M. Bilicki, et al., DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys, The Open Journal of Astrophysics 6, 36 (2023), arXiv:2305.17173 [astro-ph.CO].

[6] R. Dalal, X. Li, A. Nicola, J. Zuntz, M. A. Strauss, S. Sugiyama, T. Zhang, M. M. Rau, R. Mandelbaum, M. Takada, S. More, H. Miyatake, A. Kannwadi, M. Shirasaki, T. Taniguchi, et al., Hyper Suprime-Cam Year 3 results: Cosmology from cosmic shear power spectra, Phys. Rev. D 108, 123519 (2023), arXiv:2304.00701 [astro-ph.CO].

[7] L. Verde, T. Treu, and A. G. Riess, Tensions between the early and late Universe, Nature Astronomy 3, 891 (2019), arXiv:1907.10625 [astro-ph.CO].

[8] L. Knox and M. Millea, Hubble constant hunter’s guide, Phys. Rev. D 101, 043533 (2020), arXiv:1908.03663 [astro-ph.CO].

[9] E. Di Valentino, L. A. Anchordoqui, Ö. Akarsu, Y. Ali-Haimoud, L. Amendola, N. Arientse, M. Asgari, M. Ballardini, S. Basilakos, E. Battistelli, M. Benetti, S. Birrer, F. R. Bouchet, M. Bruni, E. Calabrese, D. Camarena, et al., Cosmology intertwined II: The hubble constant tension, Astroparticle Physics 131, 102605 (2021), arXiv:2008.11284 [astro-ph.CO].

[10] K. Jedamzik, L. Pogosian, and G.-B. Zhao, Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension, Communications Physics 4, 123 (2021), arXiv:2010.04158 [astro-ph.CO].

[11] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, In the realm of the Hubble tension—a review of solutions, Classical and Quantum Gravity 38, 153001 (2021), arXiv:2103.01183 [astro-ph.CO].

[12] L. Perivolaropoulos and F. Skara, Challenges for ΛCDM: An update, New A Rev. 95, 101659 (2022), arXiv:2105.05208 [astro-ph.CO].

[13] P. Shah, P. Lemos, and O. Lahav, A buyer’s guide to the Hubble constant, A&A Rev. 29, 9 (2021), arXiv:2109.01161 [astro-ph.CO].

[14] E. Abdalla, G. F. Abellan, A. Aboubrahim, A. Agnello, Ö. Akarsu, Y. Akrami, G. Alestas, D. Aloni, L. Amendola, L. A. Anchordoqui, R. I. Anderson, N. Arientse, M. Asgari, M. Ballardini, V. Barger, S. Basilakos, et al., Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies, Journal of High Energy Astrophysics 34, 49 (2022), arXiv:2203.06142 [astro-ph.CO].

[15] W. Hu, Structure Formation with Generalized Dark Matter, ApJ 506, 485 (1998) arXiv:astro-ph/9801234 [astro-ph].

[16] L. Xu and Y. Chang, Equation of state of dark matter after Planck data, Phys. Rev. D 88, 127301 (2013), arXiv:1310.1532 [astro-ph.CO].

[17] M. Kopp, C. Skordis, D. B. Thomas, and S. Ilić, Dark Matter Equation of State through Cosmic History,
[47] J. Torrado and A. Lewis, Cobaya: Bayesian analysis in cosmology, Astrophysics Source Code Library, record ascl:1910.019 (2019), ascl:1910.019

[48] J. Torrado and A. Lewis, Cobaya: code for Bayesian analysis of hierarchical physical models, J. Cosmology Astropart. Phys. 2021, 057 (2021) arXiv:2005.05290 [astro-ph.IM]

[49] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak, K. Benabed, J. P. Bernard, M. Bersanelli, P. Bielewicz, et al., Planck 2018 results. VIII. Gravitational lensing, A&A 641, A8 (2020) arXiv:1807.06210 [astro-ph.CO]

[50] D. M. Scolnic, D. O. Jones, A. Rest, Y. C. Pan, R. Chornock, R. J. Foley, M. E. Huber, R. Kessler, G. Narayan, A. G. Riess, S. Rodney, E. Berger, D. J. Brout, P. J. Challis, M. Drout, et al., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, ApJ 859, 101 (2018) arXiv:1710.00845 [astro-ph.CO]

[51] A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri, J. C. Zinn, and D. Scolnic, Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM, ApJ 898, L6 (2021) arXiv:2012.08534 [astro-ph.CO]

[52] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-Smith, G. B. Poole, L. Campbell, Q. Parker, W. Saunders, and F. Watson, The 6dF Galaxy Survey: $z \approx 0$ measurements of the growth rate and σ_8, MNRAS 423, 3430 (2012) arXiv:1204.4725 [astro-ph.CO]

[53] A. J. Ross, L. Samushia, C. Howell, W. J. Percival, A. Burden, and M. Manera, The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent distance measure at $z = 0.15$, Mon. Not. Roy. Astron. Soc. 449, 835 (2015) arXiv:1409.3242 [astro-ph.CO]

[54] S. Alam, M. Ata, S. Bailey, F. Beutler, D. Bizyaev, J. A. Blakez, A. S. Bolton, J. R. Brownstein, A. Burden, C.-H. Chuang, J. Comparat, A. J. Cuesta, K. S. Dawson, D. J. Eisenstein, S. Escoiffier, et al., The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, MNRAS 470, 2617 (2017) arXiv:1607.03155 [astro-ph.CO]

[55] A. Lewis, Efficient sampling of fast and slow cosmological parameters, Phys. Rev. D87, 103529 (2013) arXiv:1304.4473 [astro-ph.CO]

[56] H. Aikaike, A new look at the statistical model identification, IEEE transactions on automatic control 19, 716 (1974)

[57] C. Heymans, T. Tröster, M. Asgari, C. Blake, H. Hildebrand, B. Joachimi, K. Kuijken, C.-A. Lin, A. G. Sánchez, J. L. van den Busch, A. H. Wright, A. Amon, M. Bilicki, J. de Jong, M. Crocce, et al., KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints, A&A 646, A140 (2021) arXiv:2007.15632 [astro-ph.CO]

[58] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro, N. Bartolo, S. Basak, K. Benabed, J. P. Bernard, M. Bersanelli, P. Bielewicz, et al., Planck 2018 results. VIII. Gravitational lensing, A&A 641, A8 (2020) arXiv:1807.06210 [astro-ph.CO]

[59] G. Efstathiou, To H$_0$ or not to H$_0$?, MNRAS 505, 3866 (2021) arXiv:2103.08723 [astro-ph.CO]

[60] D. Camarena and V. Marra, On the use of the local prior on the absolute magnitude of Type Ia supernovae in cosmological inference, MNRAS 504, 5164 (2021) arXiv:2101.08641 [astro-ph.CO]

[61] V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, Early Dark Energy can Resolve the Hubble Tension, Phys. Rev. Lett. 122, 221301 (2019) arXiv:1811.04083 [astro-ph.CO]

[62] S. Vagnozzi, Consistency tests of ΛCDM from the early integrated Sachs-Wolfe effect: Implications for early-time new physics and the Hubble tension, Phys. Rev. D 104, 063524 (2021) arXiv:2105.10425 [astro-ph.CO]

[63] H. García Escudero, J.-L. Kuo, R. E. Keeley, and K. N. Abazajian, Early versus Phantom Dark Energy, Self-Interacting, Extra, or Massive Neutrinos, Primordial Magnetic Fields, or a Curved Universe: An Exploration of Possible Solutions to the H_0 and σ_8 Problems, arXiv e-prints , arXiv:2208.14435 (2022), arXiv:2208.14435 [astro-ph.CO]

[64] A. Pourtsidou and T. Tram, Reconciling CMB and structure growth measurements with dark energy interactions, Phys. Rev. D 94, 043518 (2016) arXiv:1604.04222 [astro-ph.CO]

[65] S. Kumar and R. C. Nunes, Probing the interaction between dark matter and dark energy in the presence of massive neutrinos, Phys. Rev. D 94, 123511 (2016) arXiv:1608.02454 [astro-ph.CO]

[66] S. Kumar, R. C. Nunes, and S. K. Yadav, Dark sector interaction: a remedy of the tensions between CMB and LSS data, European Physical Journal C 79, 576 (2019) arXiv:1903.04865 [astro-ph.CO]

[67] E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi, Interacting dark energy in the early 2020s: A promising solution to the H_0 and cosmic shear tensions, Physics of the Dark Universe 30, 100666 (2020) arXiv:1908.04281 [astro-ph.CO]

[68] M. Lucca and D. C. Hooper, Shedding light on dark matter-dark energy interactions, Phys. Rev. D 102, 123502 (2020) arXiv:2002.06127 [astro-ph.CO]

[69] V. Poulin, J. L. Bernal, E. Kovetz, and M. Kamionkowski, The Sigma-8 Tension is a Drag, arXiv e-prints , arXiv:2209.06217 (2022), arXiv:2209.06217 [astro-ph.CO]

[70] A. Lewis and S. Bridle, Cosmological parameters from CMB and other data: A Monte Carlo approach, Phys. Rev. D 66, 103511 (2002) arXiv:astro-ph/0205436 [astro-ph]

[71] R. M. Neal, Taking Bigger Metropolis Steps by Dragging Fast Variables, ArXiv Mathematics e-prints (2005) math/0502099