Jeon, Bogwang
On the number of hyperbolic Dehn fillings of a given volume. (English) Zbl 1462.57023
Trans. Am. Math. Soc. 374, No. 6, 3947-3969 (2021).

By Thurston’s hyperbolic Dehn filling theorem, excluding finitely many fillings for each cusp of an n-cusped hyperbolic 3-manifold M, the manifold obtained by surgery with coefficients p_i/q_i on the cusps is again hyperbolic; moreover the volumes of the manifolds obtained by Dehn filling on M converge from below to the volume of M when $|p_i| + |q_i| \to \infty$ ($1 \leq i \leq n$). In this context, the following question is still open: Does there exist a constant $c = c(M)$ such that, for the number $N_M(v)$ of hyperbolic Dehn fillings of M with a given volume v, one has $N_M(v) < c$ for any v? (It is known instead that the number $N(v)$ of hyperbolic 3-manifolds with a given volume v is finite but unbounded when $v \to \infty$.)

The main result of the present paper is the following partial solution for the case of 1-cusped hyperbolic 3-manifolds. Let M be a 1-cusped hyperbolic 3-manifold whose cusp shape is quadratic; then there exists a constant c such that $N_M(v) < c$ for any v. The proof of the main theorem is an interesting combination of different ideas from number theory, algebraic geometry, and model theory. By a result of W. D. Neumann and D. Zagier [Topology 24, 307–332 (1985; Zbl 0589.57015)], the volume of the manifold obtained by p/q-filling of the cusp of M can be approximated from the volume of M by using a quadratic form $Q_M(p, q)$. As the author notes, usual well-known techniques for counting rational or integral points over algebraic varieties in diophantine geometry do not work in this case (since the volumes are presumably not algebraic). “To overcome this technical difficulty, we employ results from the so-called “o-minimal theory” in logic. An o-minimal structure is simply a generalization of the class of semialgebraic sets, and an element of it, called a definable set, shares many common properties with a semialgebraic set.”

Reviewer: Bruno Zimmermann (Trieste)

MSC:
57K32 Hyperbolic 3-manifolds
57K31 Invariants of 3-manifolds (including skein modules, character varieties)

Keywords:
cusped hyperbolic 3-manifold; hyperbolic Dehn filling; hyperbolic volume

Full Text: DOI arXiv

References:
[1] Baker, Alan, Transcendental number theory, Cambridge Mathematical Library, x+165 pp. (1990), Cambridge University Press, Cambridge · Zbl 0715.11032
[2] Burger, M.; Gelander, T.; Lubotzky, A.; Mozes, S., Counting hyperbolic manifolds, Geom. Funct. Anal., 12, 6, 1161-1173 (2002) · Zbl 1029.57021 · doi:10.1007/s00039-002-1161-1
[3] Bombieri, E.; Pila, J., The number of integral points on arcs and ovals, Duke Math. J., 50, 2, 337-357 (1989) · Zbl 0718.11048 · doi:10.1215/S0012-7094-89-05915-2
[4] Carlip, S., Dominant topologies in Euclidean quantum gravity, Classical Quantum Gravity, 15, 9, 2629-2638 (1998) · Zbl 0938.83010 · doi:10.1088/0264-9381/15/9/010
[5] van den Dries, Lou, A generalization of the Tarski-Seidenberg theorem, and some nondefinability results, Bull. Amer. Math. Soc. (N.S.), 15, 2, 189-193 (1986) · Zbl 0612.03008 · doi:10.1090/S0273-0979-1986-15468-6
[6] van den Dries, Lou, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series 248, x+180 pp. (1998), Cambridge University Press, Cambridge · Zbl 0953.03045 · doi:10.1017/CBO9780511525919
[7] van den Dries, Lou; Miller, Chris, Geometric categories and o-minimal structures, Duke Math. J., 84, 2, 497-540 (1996) · Zbl 0889.03025 · doi:10.1215/S0012-7094-96-08416-1
[8] Gabai, David; Meyerhoff, Robert; Milley, Peter, Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc., 22, 4, 1157-1215 (2009) · Zbl 1204.57013 · doi:10.1090/S0894-0347-09-00639-0
[9] Gabai, David; Meyerhoff, Robert; Milley, Peter, Mom technology and volumes of hyperbolic 3-manifolds, Comment. Math. Helv., 86, 1, 145-188 (2011) · Zbl 1207.57023 · doi:10.4171/CMH/221
[10] Gabrièlov, A. M., Projections of semianalytic sets, Funkcional. Anal. i Priložen., 2, 4, 18-30 (1968)

[11] Gromov, Michael, Hyperbolic manifolds (according to Thurston and Jørgensen). Bourbaki Seminar, Vol. 1979/80, Lecture Notes in Math. 842, 40-53 (1981), Springer, Berlin-New York

[12] Hironaka, Heisuke, Subanalytic sets, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, 453-493 (1973), Kinokuniya, Tokyo

[13] Hironaka, Heisuke, Introduction to the theory of infinitely near singular points, vii+95 pp. (1974), Consejo Superior de Investigaciones Científicas, Madrid - Zbl 0366.32007

[14] Hodgson, Craig; Masai, Hidetoshi, On the number of hyperbolic 3-manifolds of a given volume. Geometry and topology down under, Contemp. Math. 597, 295-320 (2013), Amer. Math. Soc., Providence, RI - Zbl 1288.57016 · doi:10.1090/conm/597/11767

[15] Milley, Peter, Minimum volume hyperbolic 3-manifolds, J. Topol., 2, 1, 181-192 (2009) - Zbl 1165.57016 · doi:10.1112/jtopol/jtp006

[16] Krantz, Steven G.; Parks, Harold R., A primer of real analytic functions, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], xiv+205 pp. (2002), Birkhäuser Boston, Inc., Boston, MA - Zbl 1015.26030 · doi:10.1007/978-0-8176-8134-0

[17] Neumann, Walter D.; Zagier, Don, Volumes of hyperbolic three-manifolds, Topology, 24, 3, 307-332 (1985) - Zbl 0589.57015 · doi:10.1016/0040-9383(85)90004-7

[18] Pila, Jonathan, Rational points on a subanalytic surface, Ann. Inst. Fourier (Grenoble), 55, 5, 1501-1516 (2005) - Zbl 1121.11032

[19] Pila, J.; Wilkie, A. J., The rational points of a definable set, Duke Math. J., 133, 3, 591-616 (2006) - Zbl 1217.11066 · doi:10.1215/S0012-7094-06-13330-7

[20] Wielenberg, Norbert J., Hyperbolic \((\mathbb{R})\)-manifolds which share a fundamental polyhedron. Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference, State Univ. New York, Stony Brook, N.Y., 1978, Ann. of Math. Stud. 97, 505-513 (1981), Princeton Univ. Press, Princeton, N.J.

[21] Wilkie, A. J., Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc., 9, 4, 1051-1094 (1996) - Zbl 0892.03013 · doi:10.1090/S0894-0347-96-00216-0

[22] Z. B. Zimmermann, A note on hyperbolic 3-manifolds of the same volume, Monatshe. Math. 110 (1990), 321-327. - Zbl 0717.57005

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.