Contribution of DNA conformation and topology in right-handed DNA-wrapping by the *Bacillus subtilis* LrpC protein

Christophe Beloin†, Josette Jeusset², Bernard Révet², Gilles Mirambeau², Françoise Le Hégarat¹* and Eric Le Cam²

¹ Institut de Génétique et Microbiologie, Université Paris XI, UMR 8621, Bât. 360, 91405 Orsay Cedex, France. Phone: (33) 1 69 15 63 62, Fax: (33) 1 69 15 63 34.

² Laboratoire de Microscopie Cellulaire et Moléculaire, Institut Gustave Roussy, UMR 8126 94805 Villejuif Cedex, France. Phone: (33) 1 42 11 48 74.

† Present address : Groupe de Génétique des Biofilms, Bâtiment Fernbach, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France.

* Corresponding author: E-mail : francoise.le-hegarat@igmors.u-psud.fr

Running Title: LrpC wraps and overwinds DNA.

Copyright 2002 by The American Society for Biochemistry and Molecular Biology, Inc.

Keywords: Electron Microscopy / architectural protein / DNA curvature / DNA supercoiling

Abbreviations: EM for Electron Microscopy; AFM for Atomic Force Microscopy; EMSA for Electrophoretic Mobility Shift Assay
SUMMARY

The *Bacillus subtilis* LrpC protein belongs to the Lrp/AsnC family of transcriptional regulators. It binds the upstream region of the *lrpC* gene and autoregulates its expression. In this study, we have dissected the mechanisms that govern the interaction of LrpC with DNA by Electrophoretic Mobility Shift Assay, Electron Microscopy and Atomic Force Microscopy. LrpC is a structure-specific DNA binding protein which forms stable complexes with curved sequences containing phased A tracts, and which wraps DNA to form spherical nucleosome-like structures. Formation of such wraps, initiated by co-operative binding of LrpC to DNA, results from optimal protein/protein interactions specified by the DNA conformation. In addition, we have demonstrated that LrpC constrains positive supercoils by wrapping the DNA in a right-handed superhelix, as visualized by Electron Microscopy.
INTRODUCTION

The structural properties of DNA and specific DNA/protein interactions are crucial for the regulation of fundamental cellular processes such as recombination, replication and chromosome organization. In prokaryotes several small DNA binding proteins regulate these processes by local changes in DNA conformation, through the formation of specific nucleoprotein complexes. In *Escherichia coli* these small DNA binding proteins include the CRP, IHF, Fis, H-NS, Dps, Lrp and HU proteins (1), and in *Bacillus subtilis* the HU-like protein, HBsu (2). Notably these proteins can regulate DNA transcription. For example, CRP, IHF and Fis facilitate the association of RNA polymerase with upstream DNA sequences or with activator proteins, and can enhance the interactions of activator or repressor proteins at distant sites (3, 4). Moreover, HU binding to promoter regions modulates the binding of other transcriptional regulators like CRP (5), LexA (6) and GalR (7). Change of DNA conformation by protein/DNA interaction, however, is not limited to prokaryotic species. Numerous eukaryotic proteins such as transcription factors like TBP or TFIIIA, or the structural HMG proteins like LEF-1, SRY (8), HMG1 and HMG2 (9), HMG-I(Y) (10) use similar properties, particularly DNA bending, to regulate transcription.

The *lrpC* gene was identified during the *B. subtilis* genome sequencing project (11). It encodes a neutral 16.4 kDa protein, LrpC, that forms tetramers in solution. Based on amino acid sequence identity, it has been assigned to the Lrp/AsnC family of transcriptional regulators which in *B. subtilis* includes seven Lrp/AsnC-like proteins (12-14). The N-terminal region of LrpC is predicted to form a typical Helix-Turn-Helix DNA binding domain, characteristic of numerous transcriptional regulators (15). Previous experiments have shown that the *lrpC* gene is autoregulated (16). In addition, phenotypic analysis of a *lrpC* mutant in *B. subtilis* has revealed a possible role of LrpC in branched chain amino-acids metabolism, in sporulation, and in long term adaptation to stress (16).

In order to analyze in detail the interactions of LrpC with DNA, the experiments presented here combine Electrophoretic Mobility Shift Assays (EMSA), Electron Microscopy (EM) and Atomic Force Microscopy (AFM), using the *lrpC* promoter DNA, and curved DNA fragments. These studies show that LrpC possesses unusual DNA architectural properties not previously assigned to Lrp-like proteins or other general DNA structuring proteins and that DNA curvature and DNA topology, i.e., supra-architecture, controls the order of events in protein/DNA complex formation.
EXPERIMENTAL PROCEDURES

DNAs and protein

The 648-bp fragment encompassing the lrpC promoter region was obtained by a PvuII digestion of the plasmid pUC18prolrpC (16). Shorter, 331-bp DNA fragments containing 5′-lrpC region used in Electron Microscopy (EM) and Atomic Force Microscopy (AFM) experiments were obtained by PCR and purified by an anion exchange MonoQ column using a SMART system (Pharmacia): α and β fragments correspond respectively to -225 to +106 and -270 to +61 with respect to the P1 transcription start site.

The β fragment was biotinylated at its 5′- or 3′-extremity and dimerized using streptavidin. After dimerization of the β fragment the promoters P1/P2 are localized near the extremities when using the 5′ biotinylated fragment (5′β dimers) or near the center using the 3′ biotinylated fragment (3′β dimers).

The DNA fragments containing the different curved regions of pBR322 were obtained by PCR amplification (pC4-6: 1773-bp, position: 1185-2958; pC7: 1444-bp, position: 2576-4020 and pC8: 722-bp, position: 3946-307). The 1444-bp fragment containing C7 curved region was end labeled at its 3′-extremity using a biotinylated primer. The labeling was revealed by the streptavidin ferritin system (17). Curvature of the pBR322 was determined using the DNA ReSCue program (17; 18).

Plasmid pBR322 was used in both Electrophoretic Mobility Shift Assays (EMSA) and EM experiments. Supercoiled pBR322 was from Pharmacia and linear pBR322 DNA was obtained by a SalI digestion of the plasmid. It was then purified using the High Pure PCR product purification kit from Roche Molecular Biochemicals. Relaxed DNA used in relaxation assays was from Lucent Ltd. Topoisomers of plasmid pTZ18R were prepared by a topoisomerase I assay in presence of ethidium bromide to obtain negative topoisomers and in presence of netropsin to obtain positive topoisomers.

The LrpC protein was previously purified (16) and shown to form tetramers in solution (data not shown and 19). Consequently, all the concentrations of protein used in this work correspond to LrpC tetramers.

Protein/DNA binding

EMSA: A typical assay mixture contained 25 mM Tris HCl (pH 8), 50 mM NaCl, 10% glycerol, 0.1 mM EDTA, 5 mM MgCl2, 1 mM dithiothreitol (DTT), 0.1 mM PMSF (Binding Buffer M) with or without 4 mM spermidine, ~ 0.5 nM of 32P-end-labeled DNA probe, and purified LrpC protein in a volume of 20 µl. For plasmid DNA, unlabeled pBR322 plasmid (2 nM) was used, and Binding Buffer M without spermidine. After
incubation for 10 min at room temperature, the reaction was loaded onto a 6% acrylamide/N,N'-methylenebisacrylamide (80:1 final ratio) gel containing 10% glycerol or onto a 0.7% agarose gel in 44.5 mM Tris Borate, 2 mM EDTA (pH 8.3) (TBE 0.5X). Electrophoresis was performed at 10 V/cm and at 4°C. Radioactive gels were dried, visualized by autoradiography and sometimes quantified with a Phospho Imager (Molecular Dynamics). Non radioactive gels were stained in TBE 0.5X containing 0.2 µg/ml ethidium bromide.

Observation of LrpC/DNA complexes by Electron Microscopy and Atomic Force Microscopy

Complexes were formed as described for EMSA with the following modifications. DTT, PMSF and spermidine were removed from Binding Buffer M to avoid any interference or artifact due to these components. The volume of the assay mixture was 40 µl. After incubation for 10 min at room temperature the complexes were purified by gel filtration (Superose 6B, APBiotech), with a SMART system (APBiotech) to remove unbound protein and to reduce non-specific binding. EM observations were performed as previously described (20). 5 µl of LrpC/DNA complexes, at the concentration of 0.5 µg/ml of DNA, were deposited onto a 600 mesh copper grid covered with a thin carbon film activated by a glow discharge in the presence of pentylamine (21). Grids were washed with aqueous 2% uranyl acetate, dried and observed in annular dark-field, in a Zeiss 902 electron microscope. Using this spreading procedure DNA molecules are rapidly adsorbed onto the carbon film with no major loss in the tridimensional information (22). LrpC-DNA complexes were observed at a final magnification of x 340,000 on a TV screen. Images of LrpC- bound DNA molecules were stored and digitized with a Kontron image processing system as previously described (17). The data were processed in a PC computer and the DNA–protein interactions were mapped from 250 complexes. DNA foreshortening gives an estimation of the length wrapped around the particle.

To analyze LrpC/DNA complexes by AFM, 20 µl of the same solutions used for EM in presence of 5 mM Mg²⁺ were deposited onto freshly cleaved mica and then washed with 0.2 % (w/v) aqueous uranyl acetate (23). The observation was performed in the tapping mode in air specifically available with nanoscope IIIa (Digital instruments-Veeco).

Effect of LrpC on DNA supercoiling in vitro

Different amounts of LrpC ranging from 37.5 nM to 1500 nM (in tetramers) were incubated with 20 nM of pBR322 (supercoiled or relaxed) at room temperature for 15 min in a total volume of 10 µl of buffer containing
20 mM Tris HCl pH (7.5), 50 mM NaCl, 0.1 mM EDTA, 1 mM DTT and 20% glycerol. Wheat germ topoisomerase I (2 U) was then added and the incubation continued for 150 min at 37°C. The DNA was deproteinized by adding SDS and NaCl to a final concentration of 1% and 1.7 M respectively, followed by extraction with phenol/chloroform/isoamyl alcohol (25/24/1 v/v) and the DNA precipitated with 100% ethanol. The DNA pellet was resuspended in 10 µl TE (10 mM Tris HCl (pH 7.5), 1 mM EDTA) and loaded onto a 1% agarose gel. One-dimension electrophoresis was performed for 16 h at 1.5 V/cm in TAE buffer (40 mM Tris HCl, pH 8.3, 25 mM sodium acetate, 1 mM EDTA). Two-dimension electrophoresis was performed as follows: in the first dimension samples were separated in 1% agarose for 6 h at 3 V/cm in TAE buffer. The gel was then equilibrated for 30 min in TAE containing 10 ng/ml ethidium bromide. The second dimension electrophoresis was performed for 16 h at 1.3 V/cm in the same buffer. Gels were stained with 0.2 µg/ml ethidium bromide.
RESULTS

The effect of LrpC on lrpC promoter architecture — Previous experiments have shown that the LrpC protein binds the upstream region of the lrpC gene in vitro (16; 19). As many transcriptional regulators are known to modify the geometry of their target promoters, we wanted to determine whether LrpC displays such a property. Therefore, the interaction of LrpC with the lrpC promoter region was visualized by EM. Purified LrpC protein was incubated with a 648-bp DNA fragment digested from plasmid pUC18prolrpC that contains the \(\alpha \) fragment in Fig. 2A, this is 331-bp of the 5’-lrpC region (16). Protein/DNA complexes were visualized by EM using an annular dark field mode (24).

The simultaneous presence of free DNA molecules, and of LrpC/DNA complexes, which were either partially or completely condensed (Fig. 1a) confirms the cooperative binding of LrpC to DNA as previously shown (16). Some DNA molecules displayed thickening that was sometimes associated with bending of the DNA (Fig. 1 and data not shown). Various degrees of organization of the lrpC promoter were observed, ranging from a local binding of LrpC along the DNA to DNA wrapping (Fig. 1b to e). It is tempting to suggest that these series of micrographs as put in the order b to e actually represent the progressive interaction of LrpC with DNA. Measurements of DNA length in LrpC/DNA complexes indicated that such interaction corresponds either to less than one turn of the DNA molecule around the protein core (Fig. 1c and d), or to the wrapping of more than one turn of the DNA (Fig. 1a arrow and 1e) which thus appears shorter.

LrpC wraps DNA to form nucleosome-like structures — The conformation of the 648-bp DNA fragment containing the lrpC promoter was significantly altered when bound by the LrpC protein. To further investigate this change in DNA conformation we analyzed the interactions of LrpC with the \(\alpha \) fragment itself, which encompasses only the 5’-lrpC region (Fig. 2A, \(\alpha \) fragment, -225 to +106 with respect to the \(P_l \) transcription start site). Protein/DNA complexes were allowed to form for different lengths of time using a LrpC/DNA molar ratio of 4:1 (LrpC protein concentration in tetramers, its preferred quaternary structure in solution). The complexes were subsequently visualized by EM at high magnification (x140 000). After 1-10 min the complexes appeared to be localized at various positions of the \(\alpha \) fragment, although a preference at or near the extremities was observed (data not shown). After a longer incubation time (15 min) LrpC seems to be nearer to the center of the \(\alpha \) fragment, with the DNA molecule clearly tightly wrapped around it (Fig. 2A). This LrpC-mediated DNA wrapping creates spherical structures resembling nucleosomes (Fig. 2Aa). The contour length of the DNA wrapped around LrpC (averaged from measuring 50 LrpC/DNA complexes, see Experimental
procedures) was 28 nm +/- 4 nm, which corresponds to 80 bp +/- 12 bp, and a radius of curvature was 4.5 nm +/- 0.2. The presence of intrinsic curvature in the *lrpC* promoter region presumably promotes the DNA wrapping around LrpC (16). As shown in Fig. 1, several LrpC/DNA complexes resulted from multiple wrappings of the DNA that induced a highly ordered condensation (data not shown).

We also used AFM under air dried conditions to obtain topographic information about the LrpC/DNA complexes. The main results shown in Fig. 2A confirmed that the thickenings observed by EM (Fig. 1 and 7) were really due to the presence of the protein. LrpC covered various lengths of DNA but such complexes were not always associated with DNA bending. LrpC binding therefore appears to progress until stable wrappings are formed (Fig. 2Aa) resulting also in spherical structures.

Localization of the LrpC binding site on the *lrpC* promoter — To map the location of LrpC binding to the *lrpC* promoter DNA fragment we have used the β fragment (Fig. 2B, -270 to +61 with respect to the *P1* transcription start site). The β fragment has the same length as the α fragment but the *P1* promoter region is much closer to the extremity of the DNA molecule. To obtain an orientation of the β fragments those were bridged by their 5’ (5’β dimers) or 3’ (3’β dimers) extremities (see Experimental Procedures). In the 5’β dimers the *P1* promoter regions localized at the extremities of the dimers. In the 3’β dimers the *P1* promoter regions are gathered at the center of the dimers. When LrpC was incubated either with the 5’β dimers (Fig. 2Ba and b) or the 3’β dimers (Fig. 2Bc), its binding coincided with the position of the *P1* promoter as visualized by EM. Some unbridged β monomers present in the preparation were complexed with LrpC at their extremities. 250 LrpC/5’β complexes were mapped to precise the location of LrpC. 78% of the LrpC/5’β dimers complexes had LrpC bound at the *P1* promoter region. Only 10-20% of the complexes had LrpC localized at the *P2* promoter region. The average length of DNA complexed with LrpC was 90-bp with a standard deviation of 42.5-bp. Here also multiple DNA wrappings around LrpC were observed (data not shown).

Binding of LrpC to linear versus supercoiled plasmid DNA — LrpC DNA binding properties described above are not restricted to the *lrpC* promoter region. This was first demonstrated in an electrophoretic mobility shift assay (EMSA) by using pBR322 DNA as a competitor for the previously shown binding of LrpC to a 32P-labeled *lrpC* promoter DNA fragment (Fig. 3A and C) (16). Increasing concentrations of plasmid DNA were able to disrupt the highly retarded radioactive complexes LrpC/*lrpC* promoter (Fig. 3A and C). Moreover, a remarkable difference was observed in the competing ability of the linear and of the supercoiled pBR322 monitored by
electrophoretic mobility shift assay (EMSA). Up to 0.2 nM the linear form is more able than the supercoiled
form to compete with the labeled *lrpC* promoter region for the LrpC protein. As a result a larger fraction of the
LrpC bound DNA is released from the LrpC protein and can move further in the electric field (Fig. 3A). At
higher pBR322 concentrations the supercoiled form is more effective to bind the LrpC protein and the totality of
the labeled DNA is even free from the LrpC protein (Fig. 3C).

The binding between LrpC and pBR322 DNA was also confirmed directly (Fig. 3B and D). At low LrpC
concentrations a small proportion of linear pBR322 was shifted and led to clearly defined retarded complexes
(Fig. 3B, arrows) whereas at higher concentrations of LrpC, the totality of the DNA remained in the wells.
Curiously, the binding of LrpC to supercoiled pBR322 was somewhat different (Fig. 3D). Whereas linear
pBR322 caused gel retardation as expected on basis of the competition experiment, the supercoiled pBR322
did show very weak retardation of the totality of the DNA at LrpC concentrations of 37.5 and 75 nM (Fig. 3D).
At higher concentrations of LrpC (150 and 225 nM) the protein even slightly increased the mobility of most of
the supercoiled DNA. At 300 nM LrpC a large proportion of the DNA was stuck in the wells. In comparison,
the open circular form of plasmid pBR322 was not bound at LrpC concentrations below 150 nM suggesting a
lower affinity of LrpC for open circular DNA. Altogether these results show that LrpC interacts quite
differently with the various topological forms of the same DNA molecule.

Selective recognition of LrpC within the different curved regions of pBR322 — LrpC shows selectivity in
forming complexes with linear pBR322 DNA. The presence of preferential LrpC binding sites was investigated
by EMSA. The 1444-bp *Taq*I-*Taq*I restriction fragment (see Fig. 5B for details) was preferentially bound by
LrpC (data not shown). It contains a curved region previously described as C7 (Fig. 4A; 17). To identify more
precisely the region(s) recognized by LrpC within this fragment, it was cleaved by restriction enzymes into
three different sets of DNA fragments (Fig. 4B). Interestingly, a 517-bp fragment that encompasses the C7
curved sequence was preferentially bound by LrpC (Fig. 4C-1). When the curvature or its position within the
fragment was altered the preferential binding was lost (Fig. 4C-2, the 517-bp fragment is cut into 349 and 168-
bp fragments). Finally, a 361-bp fragment containing only the C7 region was specifically bound by LrpC (Fig.
4C-3). A precise localization of the LrpC binding site was performed using a 1444-bp biotinylated fragment
and EM observation (Experimental Procedures, Fig. 5Ac and d). The complexes were visualized between
position 490 and 720 covering about 80-bp (±- 20-bp) (data not shown). This corresponds exactly to the
position of the curved region detected in C7 (Fig. 4A).
As pBR322 contains three other major curved regions, namely, C4, C6 and C8 (17; Fig. 5B) we sought to investigate the differential affinity of LrpC for these curved regions. To this effect three DNA fragments were amplified from pBR322 by PCR. These contained the C4-C6 region (pc4-6), the C7 region (pc7) and the C8 region (pc8). The three fragments were mixed at equimolar concentration, incubated at a LrpC/DNA molar ratio of 12.5 and 200 complexes were analyzed by EM (Fig. 5Aa). No LrpC/pc4-6 complexes were observed whereas 44% of the pc8 fragments were complexed with LrpC. Consistent with the results presented above 78% of the pc7 fragments were found to be associated with LrpC. LrpC binding to the C7 and C8 regions led to the formation of stable wraps/loops as observed with the \textit{lrpC} promoter region (Fig. 5Aa to d). Therefore, the presence of curvature favoured the wrapping of DNA around LrpC. Interestingly, the sequence analysis of pc8 revealed that it has two series of oligoA tracts in phase (ie on the same side of the DNA double helix) that create two successive, sharply curved domains that could be potential targets for LrpC. Indeed, double wrappings were frequently observed within LrpC/pc8 complexes as clearly visible in Fig. 5Ab.

\textit{LrpC positively supercoils DNA} — After showing the influence of DNA curvature on the formation of the LrpC/DNA complexes, we investigated the effect of LrpC on DNA topology. Increasing amounts of purified LrpC protein were incubated with relaxed closed circular pBR322 DNA. Subsequently, wheat germ topoisomerase I was added to relax any formation of compensatory supercoils elsewhere in the free DNA. The pBR322 DNA was deproteinized and analyzed by agarose gel electrophoresis to resolve topoisomers (Fig. 6A). Incubation of pBR322 DNA with increasing concentrations of LrpC in combination with the action of the topoisomerase I resulted in extended supercoiling and generated a large distribution of distinct topoisomers. Indeed, at a LrpC/DNA molar ratio of 75:1 (one tetramer of LrpC per 60-bp) eleven topoisomers could be resolved (Fig. 6A lane b). These experiments clearly demonstrate that LrpC interaction with pBR322 in presence of topoisomerase I introduces supercoils into a closed circular DNA, consistent with reference (19).

To ascertain whether the supercoils constrained by LrpC were negative or positive, pBR322 samples that were incubated without LrpC (Fig. 6Aa) or with 1500 nM LrpC (Fig. 6Ab) were separated by two-dimensional agarose gel electrophoresis (Fig. 6B). A mixture of negatively and positively supercoiled topoisomers migrates as a biphasic arched pattern of bands. In the presence of LrpC, the arch of topoisomers corresponded exclusively to positively supercoiled topoisomers (Fig. 6Bb), whereas, without LrpC the distribution of DNA topoisomers corresponded to the relaxed state (Fig. 6Ba). Therefore, it can be concluded that most of the DNA bound to LrpC protein is positively supercoiled.
LrpC wraps DNA in a right-handed superhelix — We have shown that LrpC binds to negatively supercoiled pBR322 DNA (Fig. 3B), however, LrpC constrains positive supercoils in closed circular DNA (Fig. 6). Therefore, binding of LrpC to different forms of pBR322 plasmid DNA was further analyzed by EM. LrpC was incubated with an equimolar concentration of linear and supercoiled plasmid DNA at a LrpC/DNA ratio of 37/1 (corresponding to one LrpC tetramer per 118-bp). Only 5% of the open form of the plasmid (linear and traces of open circular DNA) were complexed with LrpC opposed to almost 100% for the supercoiled DNA. In the cases where LrpC associated with the linear or open circular plasmids, only one or two wrappings appearing as small loops were formed (Fig. 7d and data not shown). In contrast, the assembly of LrpC with negatively supercoiled DNA led to formation of 5-6 homogeneously structured loops (Fig. 7b, c, d). This confirmed the selective affinity of LrpC for supercoiled DNA compared to linear DNA at high LrpC/DNA ratios. Moreover, these LrpC/DNA wrappings were frequently close to each other in a restricted part of the molecule (Fig. 7b). The resulting topological constraints induced by loop formation appeared to be compensated by tight winding in other parts of the DNA, when compared to free DNA molecules (compare Fig. 7b and 7a). Such a partition of DNA structural domains is clearly due to an increase in the free negative supercoiling to compensate for the LrpC-restrained positive supercoils. This clearly demonstrates that the DNA is wrapped around LrpC as a right-handed superhelix, as left-handed wrapping of negatively supercoiled DNA would result in an apparent relaxation of the molecule. Furthermore, when compared to free DNA (Fig. 7a), the part of the DNA exhibiting tight winding displayed thickening that could be due to a local polymerization of LrpC on the DNA (Fig. 7b and c). We also observed that within the same samples several supercoiled DNA molecules were highly compacted by the LrpC protein (Fig. 7d).

Considering the properties of LrpC it was important to monitor its binding to positively supercoiled DNA. To this effect we used a pBR322-derivative plasmid, pTZ18R, also containing the C7 and C8 regions. With the native negatively supercoiled form of pTZ18R (ΔLk = -15) we obtained the same pictures as with pBR322 (LrpC/DNA ratio of 28/1 corresponding to 1 LrpC tetramer per 100-bp, data not shown). However when pTZ18R was artificially positively supercoiled (ΔLk = +4) only two loop complexes were observed (Fig. 7e, LrpC/DNA ratio of 8/1). Since positive supercoils are introduced by LrpC binding, the unbound DNA region is relaxed. When LrpC/DNA ratio was increased to 27/1, a mixture of two types of complexes was observed: the two loops complexes already observed at a lower LrpC/DNA ratio and new complexes showing a very organized folding of the pTZ18R (+4) on itself (Fig. 7f and g). As observed with native pBR322, LrpC was
able to massively cover the DNA through cooperative mechanisms, thus promoting intramolecular condensation of DNA through LrpC/LrpC interactions.
DISCUSSION

We previously identified LrpC as the seventh member of the Lrp/AsnC family of proteins in *Bacillus subtilis* and we have shown that LrpC positively autoregulates its own gene. In this study, we have analyzed in detail the interactions of LrpC with DNA, with respect to DNA conformation, curvature and topology, using EMSA, EM and AFM. We showed that LrpC progresses unspecifically along DNA, preferentially recognizes a specific type of DNA curvature and wraps DNA in a right-handed superhelix to form looped structures. In addition, we propose that its oligomerization on DNA is not random but is orientated by DNA conformation, mainly its bendability and its topological state. Moreover, LrpC is an unusual bacterial DNA architectural protein due to its capacity to constrain positive supercoiling. We propose a model for dynamic interactions between LrpC and DNA.

An octameric model for LrpC/DNA interactions — We have provided evidence that LrpC wraps DNA and forms stable complexes resembling nucleosomes with various DNA fragments including the *lrpC* promoter region where its binding coincides with the *P1* promoter. Formation of stable complexes between LrpC and DNA results from protein-protein assembly. DNA flexibility or intrinsic curvature favours protein-protein interactions within one DNA fragment to form a stable protein core. This results in a progressive bending of the DNA that leads to loop formation through a complete wrapping of the DNA around the protein (Fig. 8B). LrpC could interact with DNA through its N-terminal HTH motif and oligomerize through its C-terminal domain (Fig. 8A). The radius of curvature measured in the LrpC/DNA complexes correlates perfectly with the sizes of the octameric model presented for the recently crystallized LrpA protein of *Pyrococcus furiosus*, in which the four dimerized N-terminal DNA binding domains are diametrically opposed (25). Moreover, as LrpA, LrpC has been shown to form dimers and multimers of dimers, mainly tetramers in solution (19 and data not shown).

DNA conformation and formation of stable LrpC/DNA complexes — DNA bendability determines the path of the double helix axis and contributes to the thermodynamic stabilization of the DNA/protein complexes. DNA bendability results from an increased local flexibility (26) and/or from a static intrinsic curvature, such as kinks or smooth continuous curvature, with either planar or torsional bending (27; 28). We demonstrated here that among different types of curvature, LrpC forms stable complexes with curved regions containing phased A tracts in pBR322 (C7 and C8, Fig. 5); in the *lrpC* promoter region (between the -35 box of *P1* and the ATG,
Fig. 2B); and in the synthetic curved DNA molecules (data not shown). These A tracts motifs are related to the junction model where the deflection of the helix axis is localized at junctions between B’ form structure of A tracts and B form (29). Furthermore, all regions stably bound by LrpC contained phased A tracts preceded by a C, ie C(A)n motifs. In contrast, LrpC does not form any complexes with the pBR322 curved C4-C6 region (Fig. 5) or with the highly curved region located upstream of the -35 box of the P1 lrpC promoter (Fig. 2B; 16). In these fragments, curvature is more related to the wedge model which attributes small deflections of the helix axis at every base-pairs step, with a predominant contribution of the AA dinucleotide (30). Albeit junction and wedge models are comparable in their general predictions of DNA curvature for fragments including phased A tracts they differ for curved fragments without A tracts motifs. Moreover, the wedge model does not take into account co-operativity effects in the stacking of AT base pairs within A tracts (31). Our results clearly show that LrpC discriminates between different types of curvature to form stable complexes within C(A)n phased motifs.

DNA topology and LrpC/DNA interactions — We have shown that LrpC/DNA complex formation is influenced by DNA topology and moreover that LrpC constrains positive supercoiling. We propose that the formation of a first complex in supercoiled molecules is promoted by one curved region localized at one of the apices as previously observed for the transcription activator NR1 (32) and the Tth 111 glutamine synthetase (33) (Fig. 7 and 8D1). As LrpC induces the formation of a positively supercoiled loop, a new negatively supercoiled loop is then created in the vicinity of the first complex to maintain a constant linking number. The formation of a second complex is favoured by co-operative effects which promote LrpC recruitment to the flanking DNA regions (Fig. 8D2). This will induce the formation of a new positive supercoil and subsequently of a compensatory negative supercoil that will be again targeted by an LrpC oligomer (Fig. 8D3). This model explains the formation of successive wrappings in a very close proximity by an invasive mechanism which induces partition of topological domains between LrpC-restrained positive supercoils and free negative ones (Fig. 8D4). To our knowledge, we present the first visualization of such a partition in negative and positive supercoiled domains within a single DNA molecule and therefore demonstrate that positive supercoiling mediated by LrpC is due to a right-handed DNA wrapping (Fig. 7b and c). The presence of a right-handed DNA superhelix wrapped around a protein core in a negatively supercoiled environment represents a new topological paradox that could be explained by the following considerations.
The affinity of LrpC for DNA increases with supercoiling, either positive or negative, because supercoiling favours loops formation. Whatever their chirality, these loops promote protein/protein assembly and the stabilization of the complexes leads to the formation of a right-handed DNA helix. Such DNA transition triggered by LrpC should require a minimal energy as shown for interaction of \((H3-H4)_2\) tetramer with supercoiled DNA (34).

Such a topological partition in the plasmid induces an accumulation of negative topological constraints in the free DNA which reduces its flexibility. In consequence, right-handed DNA wrapping around the LrpC protein core is no longer favoured and an alternative mode of protein-protein interaction is adopted: any additional LrpC protein polymerizes along the hyper-negatively supercoiled DNA (Fig. 7 and 8).

This bimodal assembly of LrpC within nucleoprotein complexes is related to two types of DNA condensation, determined by the topological state of DNA. The first one results from successive DNA wrappings mainly observed with linear fragments and in regions of negatively supercoiled DNA (Fig. 1, 2 and 7). The second one results from polymerization of LrpC along DNA and bridging of DNA segments within a circular plasmid to finally induce its folding. This could be observed with open circular plasmids (data not shown) or with slightly positive supercoiled plasmids where right-handed DNA wrapping by LrpC led to a relaxation of the free DNA (Fig. 7) followed by additional polymerization of the protein along DNA. The same type of interactions, ie polymerization and bridging, is observed with "straight" uncurved DNA (data not shown and Fig. 8C).

LrpC, an unusual DNA architecture protein — The capacities of LrpC to drastically modify DNA structure by DNA bending and wrapping, and the fact that it probably uses these properties to modulate the geometry of promoters, confirms that LrpC belongs to the DNA architectural protein family. However, it appears that LrpC possesses unusual properties among eubacterial DNA structuring proteins, including the Lrp-like family. Whereas *E. coli* Lrp has been proposed to wrap DNA (35) LrpC along with the Smj12 protein from *Sulfolobus solfataricus* which also overwinds DNA, and the PutR protein from *Agrobacterium tumefaciens*, are the only members of the Lrp-like family for which DNA wrapping has been firmly demonstrated (36; 37). Looped structures formed by LrpC where 80-bp of DNA is wrapped resemble eukaryotic dimers of \((H3-H4)\) and archaeal HMf or HTz tetrasomes (Fig. 2; 38; 39). Eukaryotic dimers of \((H3-H4)\) (35) and HMf tetramers (40) are able, under certain conditions, to constrain positive supercoils as is observed for LrpC. Other proteins that activate transcription such as the eukaryotic transcription factors UBF or SWI/SNF, or the *B. subtilis* PurR...
regulator, are known to bind upstream of the promoters they regulate and to introduce one positive supercoil (41-44). Therefore, it is likely that the capacity of LrpC to induce right-handed supercoiling is involved in its regulatory activity. In addition, like the HMF proteins, eukaryotic histones and the HMG proteins, LrpC highly compacts DNA. Such ability has not been described thus far for other members of the Lrp-like family. This work shows that the \textit{B. subtilis} LrpC protein displays a mosaic of properties present in archaeal and eukaryotic histones, Lrp-like proteins, transcription factors, and eubacterial DNA structuring proteins. Consequently, LrpC is a unique member of the DNA architectural family of proteins.

A fascinating hypothesis is that micro-organisms have developed a DNA overwinding activity to compensate for the DNA underwinding activity displayed by more common nucleoid associated proteins such as H-NS, HU, IHF or Fis. The LrpC protein could be a prototypic member of a new family of proteins that overwinds DNA, and together with topoisomerases, modulates the global supercoiling density or more likely the local DNA topology during certain DNA transactions. Indeed, LrpC is not particularly abundant in the cell under normal growth conditions, 10 to 80 tetramers per cell (16); this could limit its role as global chromosome organizer and would suggest a role in sensing locally DNA architecture. In light of what we have learned concerning LrpC it would be interesting to evaluate the DNA binding and DNA structuring properties of the six other \textit{B. subtilis} Lrp/AsnC proteins in order to gain a fuller appreciation of the role for this family in bacterial physiology.

\textit{Acknowledgements} — We thank R. Exley for her help with the English language, P. Deighan, F. Confalonieri and W. F. Stevens for helpful discussions and S. Lyonnais for his help with figures. C. Beloin wishes to acknowledge the receipt of MENESR (French Ministère de l'Éducation Nationale, de l'Enseignement Supérieur et de la Recherche) and FRM (Fondation pour la Recherche Médicale) fellowships. The work was supported by grants from CNRS/Université Paris XI UMR C 8621, ARC 9490 to F.L.H. and CNRS UMR 1598 to E.L.C.
REFERENCES

1. Azam, T. A., and Ishihama, A. (1999) J. Biol. Chem. 274, 33105-33113
2. Alonso, J.C., Gutierrez, C., and Rojo, F. (1995) Mol. Microbiol. 18, 471-478
3. Goosen, N., and van de Putte, P. (1995) Mol. Microbiol. 16, 1-7
4. Perez-Martin, J., and de Lorenzo, V. (1997) Annu. Rev. Microbiol. 51, 593-628
5. Flashner, Y., and Gralla, J. D. (1988) Cell 54, 713-721
6. Preobrajenskaya, O., Boullard, A., Boubrik, F., Schnarr, M., and Rouvière-Yaniv, J. (1994) Mol. Microbiol. 13, 459-467
7. Aki, T., and Adhya, S. (1997) EMBO J. 16, 3666-3674
8. Werner, M. H., Huth J. R., Gronenborn, A. M., and Clore, G. M. (1995) Cell 81, 705-714
9. Bianchi, M. E. (1994) Mol. Microbiol. 14, 1-5
10. Reeves, R., Leonard, W. J. and Nissen, M. S. (2000) Mol. Cell Biol. 20 4666-4679
11. Beloin, C., Ayora, S., Exley, R., Hirschbein, L., Ogasawara, N., Kasahara, Y., Alonso, J. C., and Le Hégarat, F. (1997) Mol. Gen. Genet. 256, 63-71
12. Belitsky, B. R., Gustafsson, M. C., Sonenshein, A. L., and Von Wachenfeldt, C. (1997) J. Bacteriol. 179, 5448-5457
13. Dartois, V., Liu, J., and Hoch, J. A. (1997) Mol. Microbiol. 25, 39-51
14. Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V., Bertero, M. G., Bessieres, P., Bolotin, A., Borchert, S., Borris, R., Boursier, L., Brans, A., Braun, M., Brignell, S. C., Bron, S., Brouillet, S., Bruschi, C. V., Caldwell, B., Capuano, V., Carter, N. M., Choi, S. K., Codani, J. J., Connerton, I. F., Danchin, A., and et al. (1997) Nature 390, 249-256
15. Brennan, R.G., and Matthews, B. W. (1989) J. Biol. Chem. 264, 1903-1906
16. Beloin, C., Exley, R., Mahe, A. L., Zouine, M., Cubasch, S., and Le Hégarat, F. (2000) J. Bacteriol. 182, 4414-4424
17. Muzard, G., Theveny, B., and Révet, B. (1990) EMBO J. 9, 1289-1298
18. Larquet, E., Furrer, P., Stasiak, A., Dubochet, J., and Révet, B. (1995) J. Biomolec. Struct. Dynamics 12, 134
19. Tapias, A., Lopez, G., and Ayora, S. (2000) Nucleic Acids Res. 28, 552-559
20. Le Cam, E., and Delain, E. (1995) In G. Morel (ed.) Visualization of nucleic acids. CRC Press, pp. 333-358
21. Dubochet, J., Ducommun, N., Zollinger, M., and Kellenberger, E. (1971) *J. Ultrastruct. Res.* **35**, 147-167

22. Joanicot, M., and Révet, B. (1987) *Biopolymers* **26**, 315-326

23. Delain, E., Fourcade, A., Poulin, J. C., Barbin, A., Coulaud, D., Le Cam E., and Paris E. (1992) *Microsc. Microanal. Microstruct.* **3**, 457-470

24. Delain, E., and Le Cam, E. (1995) In G. Morel (ed.) *Visualization of nucleic acids*. CRC Press, pp. 35-56

25. Leonard, P. M., Smits, S. H., Sedelnikova, S. E., Brinkman, A. B., de Vos, W. M., van der Oost, J., Rice, D. W., and Rafferty, J. B. (2001) *EMBO J.* **20**, 990-997

26. Grove, A., Galeone, A., Mayol, L., and Geiduschek, E. P. (1996) *J Mol Biol* **260**, 120-125

27. Trifonov, E. N. (1991) *Trends Biochem Sci* **16**, 467-470

28. Travers A., and Klug, A. (1987) *Nature* **327**, 280-281

29. Nadeau, J. G. and Crothers, D. M. (1989) *Proc. Natl. Acad. Sci. USA* **86**, 2622-2626

30. Bolshoy, A., McNamara, P., Harrington, R. E., and Trifonov, E. N. (1991) *Proc. Natl. Acad. Sci. USA* **88**, 2312-2316

31. Haran, T. E., Kahn, J. D., and Crothers D. M. (1994) *J. Mol. Biol.* **244**, 135-143

32. Révet, B., Brahms, S, and Brahms, G. (1995) *Proc. Natl. Acad. Sci. USA* **92**, 7535-7539

33. Mary, J., and Révet, B. (1999) *J. Mol. Biol.* **286**, 121-134

34. Hamiche, A., Carot, V., Ailat, M., De Lucia, F., O’Donohue, M. F., Révet, B., and Prunell, A. (1996) *Proc. Natl. Acad. Sci. USA* **93**, 7588-7593

35. Wang, Q., and Calvo, J. M. (1993) *EMBO J.* **12**, 2495-2501

36. Jafri, S., Evoy, S., Cho, K., Craighead, H. G., and Winans, S.C. (1999) *J. Mol. Biol.* **288**, 811-824

37. Napoli, A., Kvaratskeli, M., White, M. F., Rossi, M., and Ciaramella, M. (2001) *J. Biol. Chem.* **276**, 10745-10752

38. Dong, F., and van Holde, K. E. (1991) *Proc. Natl. Acad. Sci. USA* **88**, 10596-10600

39. Musgrave, D. R., Sandman, K. M., and Reeve, J. N. (1991) *Proc. Natl. Acad. Sci. USA* **88**, 10397-10401

40. Musgrave, D., Forterre, P, and Slesarev, A. (2000) *Mol. Microbiol.* **35**, 341-349

41. Putnam, C. D., Copenhaver, G. P., Denton, M. L., and Pikaard, C. S. (1994) *Mol. Cell. Biol.* **14**, 6476-6488

42. Quinn, J., Fyrberg, A. M., Ganster, R. W., Schmidt, M. C., and Peterson, C. L. (1996) *Nature* **379**, 844-847

43. Shin, B. S., Stein, A., and Zalkin, H. (1997) *J. Bacteriol.* **179**, 7394-7402

44. Ozoline, O. N., Deev, A. A., and Trifonov, E. N. (1999) *J. Biomol. Struct. Dyn.* **16**, 825-831

45. Koo, H. S., and Crothers, D. M. (1988) *Proc. Natl. Acad. Sci. USA* **85**, 1763-1767

46. de Santis, P., Palleschi, A., Savino, M., and Scipioni, A. (1990) *Biochemistry* **29**, 9269-9273
Legends to Figures

Fig. 1: Visualization of LrpC binding to the lrpC promoter region. A 648-bp fragment (1 nM) containing 331-bp of the 5’-lrpC region (-225 to +106 with respect to P1) and flanked by 120 and 197-bp of pUC18 plasmid DNA was mixed with purified LrpC at a protein/DNA molar ratio of 6:1 (1 tetramer per 100-bp). LrpC/DNA complexes were visualized by EM. Panel (a) illustrates the different types of protein/DNA complexes that formed compared to uncomplexed DNA (molecule at bottom right). The presence of the protein correlates with thickening of some parts of the DNA. The LrpC/DNA complex indicated by an arrow shows highly condensed DNA due to successive wrappings. Panels (b) to (e) show representative LrpC/DNA complexes indicating the different steps in the wrapping mechanism. In panel (e) a tight wrapping of more than one superhelical turn of DNA is shown. The bar represents 50 nm.

Fig. 2: Structure and mapping of the LrpC/DNA complex. A, EM and AFM visualization of LrpC/DNA nucleosome-like complexes. Purified LrpC was incubated with the DNA α fragment (-225 to +106 with respect to the lrpC P1 promoter) and the wrapping of DNA around LrpC was analyzed by EM (panel (a) - × 140 000). Panels (b,c) show representative LrpC/α DNA fragment visualized by AFM without (b) or with (c) DNA wrapping. B, Mapping the LrpC binding site within the lrpC promoter region. The β fragment (-270 to +61 with respect to P1) was biotinylated at its 5’- or 3’-extremity and dimerized using streptavidin (5’β and 3’β dimers, respectively). Promoters P1/P2 are localized near the extremities of 5’β dimers (panels a and b) or near the center of 3’β dimers (panel c). Monomers of β fragments are also present in the preparation and are complexed at their extremities by LrpC. The precise LrpC binding sites of 250 LrpC/5’β dimers complexes were mapped and the data presented in the histogram shows the total number of interactions (in %) within 20-bp windows. m and d represent monomers and dimers of β fragments respectively. In A and B the bars represent 50 nm. The α and β fragments used above are represented with the wedge-curved sequence (black box) localized between P2 and P1 -35 box whereas the junction-curved DNA is localized between P1 -35 box and the lrpC ATG.

Fig. 3: LrpC binding has different effects on linear and on supercoiled plasmid DNA. Competitive EMSA: 32P-labeled 5’-lrpC β fragment (0.5 nM) was incubated with an excess of purified LrpC (12 nM) and increasing amounts (0 to 2 nM) of unlabeled linear pBR322 (pBRlin, A) or supercoiled pBR322 (pBRsc, C) as competitor DNA. Complexes were resolved by migration through a 6% polyacrylamide gel. Direct plasmid EMSA: 2 nM of
linear pBR322 DNA (B) or negatively supercoiled pBR322 DNA (D) was incubated with an increasing concentration of LrpC (0 to 300 nM). Complexes were resolved by migration through a 0.7% agarose gel. Protein/DNA complexes were visualized by staining with ethidium bromide. 400 ng of Bovine Serum Albumin (BSA) was incubated with the plasmids as a negative control. Linear plasmid (lin) corresponds to SalI-digested supercoiled pBR322 (sc). LrpC/lin complexes are indicated by arrows. Purified supercoiled pBR322 contains traces of open circular plasmid as indicated (oc).

FIG. 4: Identification of a curved region of pBR322 to which LrpC preferentially binds. A, Analysis of DNA curvature. A 1444-bp TaqI-TaqI fragment of pBR322 (position 2576 to 4020) that is preferentially bound by LrpC was subjected to curvature detection analysis using the DNA ReSCue program (18). The propensity plots indicating curvature (degree/bp) according to references (45, grey) and (46, black), plotted against the position in the sequence are presented. The DNA corresponding to the C7 curved region is indicated (410 to 750-bp in the 1444-bp TaqI-TaqI fragment that corresponds to 2986 to 3301-bp in pBR322). The C7 DNA contains two curved regions, the first only slightly curved and located between 410 to 600-bp with a maximum curvature at 550-bp, and a second one extended from 600 to 750-bp with a maximum curvature at 650-bp. B, Schematic representation of the 1444-bp fragment with the C7 curved region (thick line). The maximum of the major curvature (650-bp) is indicated by the thick arrow whereas the maximum of the minor curvature (550-bp) is indicated by the thin arrow. The positions of relevant restriction endonuclease cleavage sites are shown. Three sets of DNA fragments encompassing different regions of the 1444-bp fragment were generated by using different enzyme combinations. Restriction fragments that include a part of, or the entire, C7 curved region are marked by an asterisk. C, EMSA of LrpC interactions with restricted segments of the 1444-bp TaqI-TaqI fragment of pBR322. The 1444-bp TaqI-TaqI fragment (10 nM) was digested with (1) AvaII-HinfI, (2) HinfI-BspHI or (3) AvaII-HinfI-Eco57I and incubated with increasing concentration of LrpC (0 to 300 nM). Complexes were resolved through a 6% acrylamide gel in 0.5X TBE at 4°C. M corresponds to the Promega 100-bp DNA ladder. Restriction fragments that include a part of, or the entire, C7 curved region are marked by an asterisk.

FIG. 5: LrpC binds preferentially to the C7 and C8 regions of pBR322. A, EM visualization of LrpC association with curved DNA. Three PCR fragments were generated that contain the C4-C6 (1773-bp, pc4-6), C7 (1444-bp, pc7) and C8 (722-bp, pc8) pBR322 curved regions. These fragments (5 nM) were co-incubated
with 100 nM of LrpC. Complexes formed were observed by EM (a and b). To localize the binding of LrpC to the C7 curved region the pc7 fragment was labeled by biotin-streptavidin-ferritin at its 3'-extremity and complexes formed with LrpC were visualized by EM (c and d). The bar represents 100 nm. B, Schematic representation of the curved regions of pBR322. This diagram is adapted from reference (17). Minor curved regions including C1, C2, C3 and C5 are hatched. Major curved regions C4, C6, C7 and C8 are indicated by black boxes. PCR fragments containing C4-C6, C7 or C8 regions are represented by arrows.

FIG. 6: LrpC constrains positive supercoils in relaxed pBR322. Topoisomerase I relaxation assay. A, Relaxed pBR322 (20 nM) was incubated with increasing amounts of LrpC (37.5 nM to 1500 nM) for 15 min at room temperature. TopoI was then added and incubation continued for 150 min at 37°C. Deproteinized samples were separated on a one-dimensional agarose gel. B, pBR322 DNA without LrpC (a), and with 1500 nM LrpC (b), as indicated, were separated by two-dimensional agarose gel electrophoresis with ethidium bromide in the second dimension. The positive topoisomers constrained by LrpC are clearly visible in sample (b).

FIG. 7: EM visualization of complexes between LrpC and supercoiled plasmid DNA. Panel (a) shows a molecule of naked supercoiled pBR322. In panels (b), (c) and (d) LrpC was incubated with an equimolar concentration of supercoiled pBR322 and linear plasmid DNA (protein/DNA molar ratio of 37:1 corresponding to one LrpC tetramer per 118-bp). A typical LrpC/supercoiled pBR322 complex conformation that was predominantly observed is shown in panels (b) and (c). LrpC was rarely associated with linear DNA or open circular DNA molecules. However, a complex of LrpC with open circular pBR322 is shown on the left side of panel (d). The ability of LrpC to highly condense supercoiled DNA is shown at the bottom right of panel (d). Panels (e), (f) and (g) correspond to complexes of LrpC with positively supercoiled pTZ18R plasmid (\(\Delta LZ=+4\)) at a LrpC/DNA molar ratio of 8 (e) and 27 (f and g). At the top left of panel (g) is shown a free pTZ18R DNA molecule. The bar represents 50 nm.

FIG. 8: A model for LrpC-DNA interaction. A, Octameric model of quaternary structure of LrpC interacting with DNA adapted from comparison with the *P. furiosus* LrpA protein octameric model (25). N-ter HTH DNA-binding domain and C-ter oligomerization domain are represented by open squares and circles, respectively. B, Interaction of LrpC with flexible/curved DNA induces a complete wrapping of the DNA around the protein to form a nucleosome-like structure. C, Interaction of LrpC with straight DNA, ie uncurved or hyperconstrained,
leads to polymerization of LrpC and bridging of DNA fragments through protein-protein interactions. D, Interaction of LrpC with a negatively supercoiled plasmid DNA. LrpC creates a positively supercoiled loop which is compensated by a new negatively supercoiled loop. The latter is a target for LrpC. This model explains the formation of successive wrappings in a very close proximity by an invasive mechanism which induces partition of topological domains between LrpC-restrained positive supercoils and free negative ones.
Fig. 6

Relaxed DNA

A

0 37.5 75 150 300 600 900 1200 1500

LrpC (nM)

a b

B

a b
Fig. 8

A

B

C

D

1

2

3

4

hyper

LrpC polymerization

Recruitment of LrpC

Recruitment of LrpC

(+)

(+)

(+)

(−)

(−)

(−)
Contribution of DNA conformation and topology in right-handed DNA-wrapping by the Bacillus subtilis LrpC protein
Christophe Beloin, Josette Jeusset, Bernard Revet, Gilles Mirambeau, Françoise Le Hegarat and Eric Le Cam

J. Biol. Chem. published online November 27, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M207489200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts