Short left main coronary artery causing dynamic left ventricular outflow tract obstruction and new onset left bundle branch block

Geoffrey Chibuzor Nwuruku, Godsent Chichebem Isiguzo, Joel Tamayo Brooks, Ernest Madu

ABSTRACT

Introduction: Left bundle branch block can be seen in conditions like aortic stenosis, extensive coronary artery disease, primary disease of the cardiac electrical conduction system, dilated cardiomyopathy, Lyme disease; it is also associated with short left main coronary artery and dynamic left ventricular outflow tract obstruction. While the former is caused by the shearing force on septal branches of the left anterior descending artery, the latter is related to either Venturi effect in hypertrophic cardiomyopathy or effect of systolic anterior motion caused by abnormal geometric relationship of papillary muscle and the mitral apparatus.

Case Report: A 50-year-old male, former smoker with a history of dyslipidemia, presented with shortness of breath and exertional chest pain. After clinic review, he was thought to have stable angina, electrocardiogram, and echocardiography were normal and lifestyle modification was advised. Patient had some improvement, but represented seven months later with worsening of symptoms. Repeat electrocardiograph showed a new onset left bundle branch block, with short left main coronary artery on coronary angiogram and dynamic left ventricular outflow tract obstruction in stress echocardiography, with a gradient of 40 mmHg.

Conclusion: Short left main coronary artery is a rare cause of left bundle branch block, and it should be considered when evaluating patients with new onset left bundle branch block without hypertrophic cardiomyopathy.
Short left main coronary artery causing dynamic left ventricular outflow tract obstruction and new onset left bundle branch block

Geoffrey Chibuzor Nwuruku, Godsent Chichebem Isiguzo, Joel Tamayo Brooks, Ernest Madu

ABSTRACT

Introduction: Left bundle branch block can be seen in conditions like aortic stenosis, extensive coronary artery disease, primary disease of the cardiac electrical conduction system, dilated cardiomyopathy, Lyme disease; it is also associated with short left main coronary artery and dynamic left ventricular outflow tract obstruction. While the former is caused by the shearing force on septal branches of the left anterior descending artery, the latter is related to either Venturi effect in hypertrophic cardiomyopathy or effect of systolic anterior motion caused by abnormal geometric relationship of papillary muscle and the mitral apparatus. Case Report: A 50-year-old male, former smoker with a history of dyslipidemia, presented with shortness of breath and exertional chest pain. After clinic review, he was thought to have stable angina, electrocardiogram, and echocardiography were normal and lifestyle modification was advised. Patient had some improvement, but represented seven months later with worsening of symptoms. Repeat electrocardiograph showed a new onset left bundle branch block, with short left main coronary artery on coronary angiogram and dynamic left ventricular outflow tract obstruction in stress echocardiography, with a gradient of 40 mmHg. Conclusion: Short left main coronary artery is a rare cause of left bundle branch block, and it should be considered when evaluating patients with new onset left bundle branch block without hypertrophic cardiomyopathy.

Keywords: Erectile dysfunction, Hypertrophic cardiomyopathy, Left bundle branch block (LBBB), Left main coronary artery (LMCA), Left ventricular outflow tract (LVOT), Lyme disease, Microvascular dysfunction (MVD), Septal dysynchrony, Short left main coronary

INTRODUCTION

Although left bundle branch block (LBBB) is a common finding in conditions such as aortic stenosis, extensive coronary artery disease, primary disease of the cardiac electrical conduction system, dilated cardiomyopathy, Lyme disease; it can also be associated with short left main coronary artery (LMCA) and a dynamic left ventricular...
outflow tract (LVOT) obstruction [1]. While the former is
caired by the shearing force on the septal branches of
the left anterior descending artery, the latter is related to
these major possibilities among others: the Venturi effect
in hypertrophic cardiomyopathy (HCM) as well as systolic
anterior motion of the mitral valve (SAM) generated
largely by drag effect, that is hydrodynamic pushing force
of flow directly on the leaflets, and the SAM caused by
abnormal geometric relationship of papillary muscle and
the mitral apparatus. This abnormal geometry is in part
as a result of non-coordinated contraction (mechanical
dys synchrony) of interventricular septum and left
ventricular posterior or posterolateral walls which lead
to the displacement of the papillary muscles and the
chordae tendineae (chordae tendineae SAM).

CASE REPORT

A 50-year-old male with a history of dyslipidemia
and erectile dysfunction, stopped smoking 10 years ago,
not known to be hypertensive or have diabetes mellitus
and no significant family history. He presented with
shortness of breath and exertional chest pain at variable
threshold. Physical examination was negative while blood
workup showed total cholesterol (223 mg/dL), LDL
(165 mg/dL) and the remainder of the blood test results
were normal. Various other tests conducted including
ECG (Figure 1A), ECHO/Doppler and Stress ECHO
were not significant while 24-hour Holter monitoring
revealed sinus arrhythmias with a solitary ventricular
ectopic beat and rare supraventricular ectopic beat
with a couplet. A treatment plan that included lifestyle
modification was instituted for stable angina. The patient
noted improvement but less than a year later the same
symptoms recurred and even became more severe. He
presented to the clinic again and a repeat ECG revealed
a new onset BBB (Figure 1B) that was not seen in the
previous rest ECG before stress test (Figure 1A). He was
suspected to have a progressive ischemia, and repeat
echocardiography showed septal dyssynchrony with good
left ventricular systolic function. A coronary angiogram
was then done, showing a short left main coronary artery
(Figure 2), while a stress ECHO revealed a significant
dynamic LVOT obstruction (chordae tendineae SAM)
with a gradient of 40.9 mmHg (Figure 3) at the end of a
third dose with symptoms that prompted the termination
of the test. He was discharged on beta blocker (bisoprolol
5 mg daily) management and has reported great
improvement in his functional capacity.

DISCUSSION

This is a case of a 50-year-old male patient with a new
onset LBBB associated with systolic anterior motion of
the mitral valve (chordae tendineae SAM). This finding
triggered a LVOT obstruction with a gradient of 40.9
mmHg on a stress echo. The LBBB was spontaneous and
thought to have resulted from progressive ischemia as
previous ECG and resting ECG before stress test did not
reveal this. The echocardiographic findings were related to
shortness of breath and angina (on a mild activity) noticed
on the patient that was also reproduced during stress
test. Studies have shown longstanding LVOT obstruction
(basal gradient, ≥30 mmHg) as a strong determinant of
HCM-related progressive heart failure symptoms and
cardiovascular death but however, showed only a weak
relationship evident between outflow obstruction and
specifically the risk for sudden cardiac death (usually
in patients without significant heart failure symptoms)
[2]. We did not find any study that demonstrated this
relationship in a patient with SAM caused purely by
abnormal geometry of the mitral valve apparatus. A study
by Rodriguez Rodrigo et al. demonstrates microvascular
dysfunction (MVD) as the cause of deterioration of left
ventricular function in patients with isolated LBBB [3].
The study only considered the functional influence of
LBBB on the coronary arteries; in contrast our report
shows the prognostic influence of the coronary arteries
anatomy in the pathogenesis of a spontaneous LBBB of
which MVD plays a vital role.

Short LMCA has been shown to be a prelude to
development of coronary artery disease, and a cause
of LBBB, with the later known as a marker of slowly
progressing ischemic or non-ischemic cardiac disease and
increase cardiovascular disease related death risk, and
lower survival rate [4], hence the need for an exhaustive
evaluation. In the index patient, finding of new onset

Figure 1: (A) Electrocardiograph of the patient at initial
presentation (normal), and (B) After onset of new symptoms
showing left bundle branch block.
LBBB, without any apparent trigger associated with progressive symptoms was a source of concern and lead to our further evaluation with a resting echocardiogram which revealed a septal dyssynchrony while a stress echo showed SAM of the mitral valve with LVOT obstruction demonstrated by a gradient of 40.9 mmHg. He was thereafter studied on coronary angiogram and a short LMCA was observed with no significant coronary artery obstruction.

There are divergent results on the role of short LMCA in the pathogenesis of LBBB, most of which are not recent. A study by Lewis et al. in 1969 found that the length of the left main coronary artery (LMCA) was less than 6 mm in all but one of 12 patients with LBBB and was longer than 7 mm in a control group of 25 patients [1]. This data suggest that the cardiac diseases associated with LBBB were not etiologically important or that they were important only when the LMCA was short. We posited that the association between a short LMCA and LBBB could be explained by greater shearing forces imposed during systole in the short arteries (LMCA). This, in turn might compromise flow through the early septal branches of the left coronary system and thus produce ischemia and fibrosis of the left bundle branch. Ischemia as a possible pathogenetic mechanism producing fibrosis, when it affects conducting system, has been found to be the histologic abnormalities in patients with LBBB [5]. This could explain the new onset conducting system abnormality noticed in this patient after one year of a normal ECG.

In a study based on pathological observations by Gazetopoulos et al. suggested that short LMCA should be considered as a congenital factor predisposing to the development of atherosclerotic coronary artery disease, confirming their earlier finding that length of the LMCA is an anatomic factor that may influence the rate of development of atheromatosis on its branches [6]. But in contrast to the findings, De Mots et al. showed that the length of LMCA in their 13 patients with LBBB was not significantly different compared to the 78 patients in the control group [7].

The LBBB leads to electrical conduction disorder which by the way of mechanical dyssynchrony causes abnormalities in the movement of the mitral apparatus including anterior and inward or central displacement of the papillary muscle and leaflet elongation that can ultimately lead to SAM and left ventricular outflow tract obstruction in patients without HCM.

Several explanations have been adduced for the occurrence of SAM in patients with hypertrophic cardiomyopathy (HCM), notable among which are Venturi effect and anatomic difference in position of papillary muscles and valve leaflets [8, 9]. More recent studies have also attributed the dominant force in the anterior displaced mitral valve leaflets as drag force that is in proportion to velocity of flow in LVOT and to the angle between the anterior mitral leaflet and the direction of flow in the LVOT [10]. Many other factors may play roles in causing patients without HCM to present with LVOT obstruction as seen in the index. These include primary abnormalities of the mitral valve apparatus, like anterior and inward or central displacement of the papillary muscles, leaflet elongation, geometric disarray of the left ventricle caused by LBBB. Short LMCA may also cause progressive microvascular disease, and its clinical consequence depends on the level of obstruction at the LVOT, dyssynchrony impact of LBBB and dynamic state of the patient.

CONCLUSION

Though there are divergent reports and paucity of recent studies regarding the role of a short left main coronary artery in causing left bundle branch block (LBBB), it has been shown that isolated LBBB with microvascular dysfunction is associated with worse
outcome. Therefore, there is need for physicians to evaluate for causes of new onset LBBB in their patients as early discovery and prompt intervention may alter the cause of potential cardiovascular disease mortality and morbidity as seen in the index patient.

Author Contributions
Geoffery Chibuzor Nwuruku – Substantial contribution to conception design, Acquisition of data, Drafting of article, Revising it critically for important intellectual content, Final approval of version to be published
Godsent Chichebem Isiguzo – Substantial contribution to conception design, Analysis and interpretation of data, Drafting of article, Revising it critically for important intellectual content, Final approval of version to be published
Joel Tamayo Isiguzo – Substantial contribution to conception design, Acquisition of data, Revising critically for important intellectual content, Final approval of version to be published
Madu Ernest – Substantial contribution to conception design, Acquisition of data, Revising it critically for important intellectual content, Final approval of version to be published

Guarantor
The corresponding author is the guarantor of submission.

Conflict of Interest
Authors declare no conflict of interest.

Copyright
© 2015 Geoffrey Chibuzor Nwuruku et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

ABOUT THE AUTHORS

Article citation: Nwuruku GC, Isiguzo GC, Brooks JT, Madu E. Short left main coronary artery causing dynamic left ventricular outflow tract obstruction and new onset left bundle branch block. Int J Case Rep Images 2015;6(3):156–160.

Geoffrey Chibuzor Nwuruku is Registered Cardiologist and family physician in DOCS VIP Clinic, Heart Centre, Enugu, Enugu State, Nigeria. He earned undergraduate degree, Doctor in Medicine from Latin American School of Medicine, Havana, Cuba and postgraduate degree, Specialist in Cardiology from ‘Hermanos Ameijeiras’ Specialist Hospital Department of Cardiology and Cardiovascular Surgery, Havana, Cuba. He has published one research paper in national academic journal. This research interests include diastolic heart failure, non dipping pattern of blood pressure and target organ damage, the relationship between clinical and echo findings in functional capacity. He intends to pursue a research fellowship with any applicable research institute of good repute in future.
Email: jeffrey_2@live.co.uk

REFERENCE
1. Lewis CM, Dagenais GR, Friesinger GC, Ross RS. Coronary Arteriographic Appearances in Patients with Left Bundle-Branch. Circulation 1970 Feb;41(2):299–307.
2. Maron BJ, Maron MS, Wigle ED, Braunwald E. The 50-year history, controversy, and clinical implications of left ventricular outflow tract obstruction in hypertrophic cardiomyopathy from idiopathic hypertrophic subaortic stenosis to hypertrophic cardiomyopathy: from idiopathic hypertrophic subaortic stenosis to hypertrophic cardiomyopathy. J Am Coll Cardiol 2009 Jul 14;54(3):191–200.
3. Rodrigo RFJ, Peralta JM, Arias EV, Barrero AA, Lascorz TSA, Pereira EP, Chaverri AR. Prognostic implication of the coronary microvascular dysfunction in patients with isolated left bundle branch block. World J Card Dis 2014;4:61–9.
4. Eriksson P, Wilhelmsen L, Rosengren A. Bundle-branch block in middle-aged men: risk of complications and death over 28 years. The Primary Prevention Study in Göteborg, Sweden. Eur Heart J 2005 Nov;26(21):2300–6.
5. Davies M, Harris A. Pathological basis of primary heart block. Br Heart J 1969 Mar;31(2):219–6.
6. Gazetopoulos N, Ioannidis PJ, Karydis C, Lolas C, Kiriaou K, Tountas C. Short left coronary artery trunk as a risk factor in the development of coronary atherosclerosis. Pathological study. Br Heart J 1976 Nov;38(11):1160–5.
7. De Mots H, Rösch J, Rahimtoola SH. Coronary Artery Anatomy in Left Bundle Branch Block. Circulation 1973 Sep;48(3):605–8.
8. Lemke R, Kaltenbach M. Systolic anterior movement of the mitral valve and the venturi effect: An in vitro study. Z Kardiol 1987;76 Suppl 3:87–90.
9. Chun EJ, Choi SI, Jin KN, et al. Hypertrophic cardiomyopathy: Assessment with magnetic resonance imaging and multidetector CT. Radiographics 2010 Sep;30(5):1309–28.
10. Sherrid MV, Gunsburg DZ, Moldenhauer S, Pearle G. Systolic anterior motion begins at low left ventricular outflow tract velocity in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol 2000 Oct;36(4):1344–54.
Godsent Chichebem Isiguzo is Consultant Physician, Cardiologist at Medicine department, Federal teaching hospital, Abakaliki, Ebonyi state, Nigeria and Cardiologist at DOCS VIP Clinic, Heart Centre, Enugu, Enugu State, Nigeria. He earned the undergraduate degree (MBBS) from College of Medicine, Abia Stae University, Nigeria and postgraduate degree (FWACP) from West African college of Physician, following Postgraduate training at Jos University teaching hospital, Jos, Plateau state Nigeria. His fellowship thesis was on Pulmonary hypertension and HIV-related cardiac dysfunction. He has published 11 research papers in national and international academic journals. His research interests include: HIV-related heart disease, Pregnancy related heart disease, hypertension, cardiomyopathies and cardiac imaging). He intends to pursue Postdoctoral fellowship in echocardiography and Preventive cardiology in future. Email: isiguzogodsent@yahoo.com

Joel Tamayo Brooks is Registered Consultant Cardiologist, interventional cardiologist and family physician at the Heart Institute of the Caribbean, Kingston, Jamaica and DOCS VIP Clinic, Heart Centre, Enugu, Nigeria. He earned the undergraduate degree, Doctor in Medicine from University of Medicine, Havana, Cuba and postgraduate degree, Specialist in Cardiology from ‘Hermanos Ameijeiras’ Specialist Hospital Department of Cardiology and Cardiovascular Surgery, Havana, Cuba. Interventional Cardiology fellowship, University Complex Hospital of Vigo, Spain. He has published 12 research papers in national and international academic journals and the interventional cardiologist handbook. His research interests include all the interesting topics on the interventional cardiologist field. He intends to pursue a research fellowship with any applicable research institute of good repute in future. Email: blackhope7869@yahoo.com

Ernest Madu is Professor of Cardiovascular Medicine and Imaging Technology and Chairman of the Heart Institute of the Caribbean. He has published extensively in cardiovascular medicine. His current research interests are in innovative health systems development and technology applications in emerging nations. He has given keynote lectures in many countries and is widely sought after as a global leader in innovative and disruptive healthcare applications. Email: emadu@caribbeanheart.com
Edorium Journals: An introduction

Edorium Journals Team

About Edorium Journals
Edorium Journals is a publisher of high-quality, open access, international scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

But why should you publish with Edorium Journals?
In less than 10 words - we give you what no one does.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day of every week of every month of every year.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testimony to this.

Editorial Review
All manuscripts submitted to Edorium Journals undergo pre-processing review, first editorial review, peer review, second editorial review and finally third editorial review.

Peer Review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early View version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates (minimum six times) about status of your manuscripts directly in your email.

Our Commitment

Six weeks
You will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this by even one day, we will publish your manuscript free of charge.

Four weeks
After we receive page proofs, your manuscript will be published in the journal within four weeks (31 days). If we fail to honor this by even one day, we will publish your manuscript free of charge and refund you the full article publication charges you paid for your manuscript.

Mentored Review Articles (MRA)
Our academic program “Mentored Review Article” (MRA) gives you a unique opportunity to publish papers under mentorship of international faculty. These articles are published free of charges.

Favored Author program
One email is all it takes to become our favored author. You will not only get fee waivers but also get information and insights about scholarly publishing.

Institutional Membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in fees make their research accessible to all.

Our presence
We have some of the best designed publication formats. Our websites are very user friendly and enable you to do your work very easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services.

We welcome you to interact with us, share with us, join us and of course publish with us.

CONNECT WITH US

Edorium Journals: On Web
Browse Journals

This page is not a part of the published article. This page is an introduction to Edorium Journals and the publication services.