Multi-algebras as tolerance quotients of algebras

G. Grätzer and R. Quackenbush

Abstract. If A is an algebra and τ is a tolerance on A, then A/τ is a multi-algebra in a natural way. We give an example to show that not every multi-algebra arises in this manner. We slightly generalize the construction of A/τ and prove that every multi-algebra arises from this modified construction.

1. Tolerance quotients

Let M be a nonempty set. Denote by $\text{Pow} M$ the set of all subsets of M and by $\text{Pow}_+ M$ the set of all nonempty subsets of M. A multi-operation f on M (of arity n) is a function $f : M^n \to \text{Pow}_+ M$. A multi-algebra $(M; F)$ is a nonempty set M with a set F of multi-operations on M.

If $(A; F)$ is an algebra and α is a congruence on A, then the congruence classes of α form an algebra $(A/\alpha; F) = (A; F)/\alpha$. A congruence α is a reflexive, symmetric, and transitive binary relation on A with the Substitution Property (so α is a subalgebra of $(A; F)^2$). If we drop the Substitution Property, $(A/\alpha; F) = (A; F)/\alpha$ becomes a multi-algebra. The converse was proved in G. Grätzer [3]: every multi-algebra can be obtained (up to isomorphism) in this fashion; for additional results in this direction, see G. Grätzer and G. H. Wenzel [5], H. Höft and P. E. Howard [6].

What happens if we drop the transitivity of τ? Define a tolerance τ on an algebra $(A; F)$ as a reflexive and symmetric binary relation on A with the Substitution Property. For an overview of tolerances in algebra, see I. Chajda [2].

Let τ be a binary relation on the set A. As in graph theory, we call a subset $B \subseteq A$ a clique if $B^2 \subseteq \tau$; we call B a maximal clique if B is maximal with respect to the property $B^2 \subseteq \tau$. By Zorn’s Lemma, every clique is contained in a maximal clique. A covering of a nonempty set A is a collection \mathcal{C} of pairwise incomparable subsets of A whose union is A. It is easy to see that a reflexive and symmetric binary relation τ on A is equivalent to a covering, \mathcal{C}_τ, of A where the sets in the covering are the maximal cliques of τ. For a tolerance τ on an algebra $(A; F)$, we call a maximal clique a tolerance block.
Conversely, a covering \mathcal{C} of A *induces* a reflexive and symmetric binary relation τ on A defined by $(a, b) \in \tau$ iff there is an $S \in \mathcal{C}$ such that $a, b \in S$. It is easy to see that each $S \in \mathcal{C}$ is a clique of τ; however, $S \in \mathcal{C}$ need not be a maximal clique of τ, and even if each $S \in \mathcal{C}$ is a maximal clique of τ, there may be maximal cliques of τ that do not belong to \mathcal{C}.

Example 1.1. Let $|A| \geq 3$.

(1) Let \mathcal{C}_2 be the set of all 2-element subsets of A. Then \mathcal{C}_2 induces the full relation $\tau = A^2$ on A, and A is its unique maximal clique.

(2) On $\text{Pow}_+ A$, define the *non-disjointness* relation ν by

$$
(X, Y) \in \nu \text{ iff } X \cap Y \neq \emptyset.
$$

Then every ultrafilter U on A is a maximal clique of ν. But these are not the only maximal cliques of ν. Let $\{a, b, c\}$ be a 3-element subset of A; then the set

$$\{\{a, b\}, \{a, c\}, \{b, c\}\}
$$

is a clique of ν, but is contained in no ultrafilter of A. Hence, there is a maximal clique of ν which is not an ultrafilter. Notice that ν is induced by the set of all principal ultrafilters of A. The non-disjointness relation is well studied in the combinatorics of set systems, usually under the name *intersecting families* of sets; see [1].

Construction 1.2. Given a tolerance τ on the algebra $(A; F)$, we construct a multi-algebra $(M; F)$. Let \mathcal{B}_τ be the covering of A consisting of all tolerance blocks of τ. For $f \in F$ of arity n and $B_1, \ldots, B_n \in \mathcal{B}_\tau$, define f on \mathcal{B}_τ by

$$
f(B_1, \ldots, B_n) = \{ B \in \mathcal{B}_\tau \mid f(b_1, \ldots, b_n) \in B \text{ for all } b_i \in B_i \text{ and } 1 \leq i \leq n \}.
$$

Since τ is a tolerance, if $f(b_1, \ldots, b_n) \in B$ for some $b_i \in B_i$, then $f(b_1, \ldots, b_n) \in B$ for all $b_i \in B_i$. We denote by $(A; F)/\tau$ this multi-algebra defined on \mathcal{B}_τ and call it the *tolerance quotient* induced by the tolerance τ on the algebra $(A; F)$.

It is natural to wonder how general this construction is. As the next example shows, it is not completely general.

Example 1.3. Let $M = \{1, 2, 3\}$ and define the multi-groupoid $(M; +)$ by

$$
a + b = \{a, b\}
$$

for all $a, b \in \{1, 2, 3\}$. Let us assume that $(M; +)$ is isomorphic to the tolerance multi-groupoid induced by the tolerance τ on the groupoid $(A; +)$. Then τ has exactly 3 tolerance blocks: B, C, D. Further, $B + C = \{B, C\}$, $B + D = \{B, D\}$, and $C + D = \{C, D\}$. This means that there are $b_1, b_2 \in B$, $c_1, c_3 \in C$, and $d_2, d_3 \in D$ such that $b_1 + c_1 \in (B \cap C) - D$, $b_2 + d_2 \in (B \cap D) - C$, and $c_3 + d_3 \in (C \cap D) - B$. But then $\{b_1 + c_1, b_2 + d_2, c_3 + d_3\}$ is a 3-element clique in τ not contained in B, C, or D, so τ has at least 4 cliques. This is a contradiction, so there is no tolerance multi-groupoid isomorphic to the multi-groupoid $(M; +)$.
2. Full covering quotients

Let us re-examine the multi-groupoid $(M; +)$ of Example 1.3. We take $A = \text{Pow}_+ M$ and define ν to be the non-disjointness relation as in (1). Then ν has 4 maximal cliques:

- $S_1 = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$,
- $S_2 = \{\{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$,
- $S_3 = \{\{3\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$,
- $S = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$.

Let $B, C \in A$. If $|B| = |C| = 1$, we define $B + C$ to be $B \cup C$; otherwise, define $B + C$ to be $M = \{1, 2, 3\}$. Then ν is readily seen to be a tolerance on $(A; +)$. Form $(A; +)/\nu$. We hope that $(M; +)$ is isomorphic to the subalgebra of $(A; +)/\nu$ on the subset $\{S_1, S_2, S_3\}$. But it is not: $S_1 + S_2 = \{S_1, S_2, S\}$, which is not a subset of $\{S_1, S_2, S_3\}$.

So we have to get rid of that troublesome tolerance block S.

Construction 2.1. Let τ be a tolerance on the algebra $(A; F)$. Let \mathcal{C} be a covering of A consisting of some tolerance blocks of τ. If for $a, b \in A$, we have $(a, b) \in \tau$ iff there is some $C \in \mathcal{C}$ such that $a, b \in C$, then we call \mathcal{C} a full covering. For $f \in F$ of arity n and $C_1, \ldots, C_n \in \mathcal{C}$, define

$$f(C_1, \ldots, C_n) = \{C \in \mathcal{C} | f(c_1, \ldots, c_n) \in C \text{ for all } c_i \in C_i \text{ and } 1 \leq i \leq n \}.$$

We denote this multi-algebra by $(A; F)/\mathcal{C}$ and call it the full covering quotient of the algebra $(A; F)$ induced by the full covering \mathcal{C}.

We shall now see that Construction 2.1 is completely general.

Theorem 2.2. Let $(M; F)$ be a multi-algebra. Then there is an algebra $(A; F)$ and a full covering \mathcal{C} of $(A; F)$ that induces a tolerance τ on $(A; F)$ such that $(M; F)$ is isomorphic to $(A; F)/\mathcal{C}$.

Proof. Take $A = \text{Pow}_+ M$. For n-ary $f \in F$ and $m_1, \ldots, m_n \in M$, define f on $\text{Pow}_+ M$ by:

$$f(\{m_1\}, \ldots, \{m_n\}) = \{f(m_1, \ldots, m_n)\},$$

and, otherwise,

$$f(B_1, \ldots, B_n) = M.$$

For $m \in M$, let $M_m = \{S \subseteq M | m \in S\}$; then $\mathcal{C} = \{M_m | m \in M\}$ is a covering of A by the principal filters of M. As noted in Example 1.1 (2), \mathcal{C} induces ν on A. Each M_m is a maximal clique of ν.

To prove that ν is a tolerance, let $f \in F$ be n-ary and $(A_i, B_i) \in \nu$ for $1 \leq i \leq n$; we need to conclude that $(f(A_1, \ldots, A_n), f(B_1, \ldots, B_n)) \in \nu$. Note that $(M_N, N) \in \nu$ for all nonempty $N \subseteq M$; thus, our conclusion holds unless each A_i and each B_i is a 1-element subset of M. But for 1-element subsets A, B, we have $(A, B) \in \nu$ iff $A = B$. Because ν is reflexive, our conclusion
also holds in this case since then $A_i = B_i$ for all i. So ν is indeed a tolerance. Hence, C is a full covering.

Now use Construction 2.1 to form $(A; F)/C$. It is obvious from the definitions that $(A; F)/C$ is isomorphic to $(M; F)$ via the map that sends M_m to m. □

REFERENCES

[1] Bollobás, B.: Combinatorics. Cambridge University Press, Cambridge (1986)
[2] Chajda, I.: Algebraic theory of tolerance relations. Univerzita Palackého v Olomouc (1991)
[3] Grätzer, G.: A representation theorem for multi-algebras. Arch. Math. 13, 452–456 (1962)
[4] Grätzer, G., Lakser, H.: Identities for globals (complex algebras) of algebras. Colloq. Math. 56, 19–29 (1988)
[5] Grätzer, G., Wenzel, G.H.: Tolerances, covering systems, and the Axiom of Choice. Arch. Math. (Brno) 25, 27–34 (1989)
[6] Höft, H., Howard, P.E.: Representing multi-algebras by algebras, the axiom of choice, and the axiom of dependent choice. Algebra Universalis 13, 69–77 (1981)

G. GRÄTZER AND R. QUACKENBUSH

Department of Mathematics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

e-mail, G. Grätzer: gratzer@me.com
e-mail, R. Quackenbush: qbush@cc.umanitoba.ca

URL, G. Grätzer: http://server.maths.umanitoba.ca/homepages/gratzer/