Birth Weight Reference for Triples in Korea

An estimation of the baseline value of birth weight depending on gestational age is helpful for reducing morbidity and mortality following the early diagnosis and treatment of intrauterine growth retardation. In Korea, there are established baseline values for singletons and twins. But no definite criteria exist for triplets yet. Given the above background, we obtained the baseline value of birth weight depending on the gestational age in triplets with a gestational age of 27-38 weeks using a raw data about birth records which had been obtained during a 10-yr period from 1998 to 2007. This baseline value was compared with those of singletons and twins. During the 10-yr period, the total number of newborns who were born between gestational age 27 and 38 was 1,330,822. Of these, the number of singletons, twins and triplets was 1,330,822, 90,245, and 840, respectively. A mean gestational age was 37.3 ± 1.5 weeks, 36.0 ± 2.0 weeks and 33.3 ± 2.4 weeks in the corresponding order. A mean birth weight was 3,071 ± 490 g, 2,414 ± 455 g, and 1,836 ± 454 g in the corresponding order. A comparison of the birth weight depending on the gestational age of triplets was made with the normal value of singletons and twins. According to this, in the overall gestational age ranging from weeks 27 to 38, it was relatively smaller as compared with the birth weight of twins and singletons. The current study was of significance in that it first obtained the normal value of birth weight of triplets in the overall gestational age ranging from weeks 27 to 38, whose results are expected to be helpful for studies or treatments of triplets.

Key Words: Triples; Birth Weight; Gestational Age; Korea

INTRODUCTION

With the introduction of ovulation-inducing agents in the late 1960s and assisted-reproductive techniques in the 1970s, the frequency of multiple pregnancies and multiple birth have been increasing (1-5). In Korea, the frequency of twins has recently been increased by three times for the past 20 yr (6). To date, however, no studies have been conducted to examine the triplets. In cases of multiples, as compared with singletons, the morbidity and mortality of fetus or newborns were relatively high. This has therefore been of increasing interest (5-8). Particularly in cases of multiples with the intrauterine growth retardation, the morbidity and mortality have been reported to be relatively high (9, 10).

According to Blickstein (9, 10) there were differences in the intrauterine growth pattern between singletons, twins and triplets. The author therefore noted that the differential criteria for birth weight depending on the gestational age should be established. In addition, criteria for birth weight depending on the gestational age vary depending on country, ethnicity and sex. Accordingly, the differential criteria for birth weight depending on the gestational age should be established. In Korea, there are established baseline values for singletons and twins (11-14). But no definite criteria exist for triplets yet. We conducted this study to establish the normal value of birth weight depending on the gestational age in Korean triplets.

MATERIALS AND METHODS

Of the data about the population status, which was collected by The Korean National Statistics Office, we used a raw data about birth records of a 10-yr period from January 1 1998 to December 31 2007. The total number of newborns who were born during this period was 5,278,646. Of these, excluding 20,519 newborns (0.4%) with unknown gestational age, birth weight or plurality, 840 triplets, aged between gestational weeks 27 and 38, were finally enrolled in the current study. The number of triplets, whose gestational age was short-
er than 27 weeks, as present at an extremely small. Accordingly, these triplets were not enrolled in the current study. Triplets whose gestational age was longer than 38 weeks were also not enrolled in the current study. We obtained mean birth weight, standard deviation and 10th, 25th, 50th, 75th, and 90th percentile values for each gestational age group by one week increment. Then, we investigated the birth weight distribution of each gestational age group by the normal Gaussian model. To establish final standard value of birth weight distribution by gestational age, we used the finite mixture model to eliminate erroneous birth weights for respective gestational age (15-18). Then we made percentile curve of birth weight distribution by gestation for triples.

A baseline value of birth weight depending on the gestational age in triplets, which was established as described herein, was compared with 10th, 50th, and 90th percentile values in singletons and twins (12). A comparison was also made with criteria for triplets which have been established in other countries (19, 20).

A statistical analysis was performed using STATA 8.0E (Stata Corp., College Station, TX, USA) for an analysis and an estimation of finite mixture model.

RESULTS

During a 10-yr period from 1998 to 2007, the total number of newborns who were born between gestational weeks 27 and 38 was 1,330,822. Of these, the number of singletons, twins and triplets was 1,330,822, 90,245, and 840, respectively. A mean gestational age was 37.3 ± 1.5 weeks, 36.0 ± 2.0 weeks, and 33.3 ± 2.4 weeks in the corresponding order. A mean birth weight was 3,071 ± 490 g, 2,414 ± 455 g, and 1,836 ± 454 g in the corresponding order. These results indicate that gestational age and birth weight decreased depending on the plurality (Table 1). Mean age of mothers was 29.7 yr in cases of singletons, 30.2 yr in cases of twins and 30.5 yr in cases of triplets. These results indicate that age of mother increased significantly depending on the plurality (Table 1). The birth rate of triplets was increased from 0.06% in 1998 to 0.1% in 2007.

Table 1. Comparison of birth outcome by plurality

Factors	Total birth	Mean GA (weeks)	Mean BW (g)	Sex (male)	Mean maternal age (yr)
Singletons	1,330,822	37.3 ± 1.5	3,071 ± 490 g	0.55	29.7 ± 4.1
Twins	90,245	36.0 ± 2.0	2,414 ± 455 g	0.51	30.2 ± 3.9
Triplets	840	33.3 ± 2.4	1,836 ± 454 g	0.50	30.5 ± 3.6
P value					<0.05

GA, gestational age; BW, birth weight.

Table 2. The baseline value of birth weight depending on gestational age for triplets

Gestational age (weeks)	Observations (Numbers)	Mean (g)	Standard deviation	10th	25th	50th	75th	90th
27	9	1,014	139	829	909	1,012	1,115	1,207
28	27	1,126	179	923	1,024	1,139	1,253	1,357
29	38	1,276	188	1,039	1,153	1,280	1,407	1,522
30	41	1,426	183	1,154	1,289	1,437	1,586	1,720
31	60	1,612	301	1,264	1,425	1,604	1,783	1,943
32	122	1,770	300	1,390	1,570	1,771	1,971	2,151
33	120	1,932	312	1,540	1,728	1,937	2,146	2,335
34	112	2,106	316	1,701	1,894	2,108	2,322	2,515
35	145	2,284	322	1,861	2,059	2,279	2,499	2,697
36	111	2,457	342	2,004	2,207	2,433	2,659	2,862
37	40	2,575	337	2,110	2,317	2,549	2,781	2,990
38	15	2,639	349	2,170	2,381	2,621	2,861	3,079

Fig. 1. Percentile curves of birth weight distribution by gestational age for triplets. P, percentile.
Table 2 and Fig. 1 presents birth weight percentiles for gestational age in triplets. A mean gestational age of male triplets was 33.3 ± 2.6 weeks and that of female triplets was 33.3 ± 2.3 weeks. This difference did not reach a statistical significance (P = 0.388). However, mean birth weight of male babies was 1,872 ± 495 g and that of female babies was 1,799 ± 407 g. This difference reached a statistical significance (P = 0.001).

In addition, birth weight percentile for gestational age was compared between male and female triplets. This showed that male triplets had a significantly greater birth weight percentile for the gestational age as compared with female triplets in overall gestational age (Table 3).

Birth weight percentile for gestational age in triplets was compared with the normal value which we obtained using the same methods in singletons and twins in our previous study (12). According to this, in the overall gestational age ranging from gestational week 27 to 38, it was relatively smaller as compared with birth weight obtained from twins and sing-
Birth Weight Reference for Triples in Korea

And we compared 50th percentile curve of Korean triplets with those of USA and Norway, it was smaller than those in the USA and Norway (Fig. 3).

DISCUSSION

In Korea, the birth rate has been annually decreasing. However, with the advancement of assisted reproductive techniques such as ovulation-inducing agents, the birth of multiples has been increased. With the well-trained neonatal intensive care unit personnel treating newborns and the well-equipped facility, the survival rate of premature birth has also been increased (6, 21).

Multiples show a higher degree of the mortality of newborns as compared with singletons. They also are associated with such problems as premature birth, intrauterine growth retardation and low birth weight (5-8). Although multiples have been of increasing interest, few studies have been conducted to examine triplets in Korea. The current study was conducted using a raw data about birth records which was collected during the recent 10-yr period by the Korean National Statistics Office. And it would be of significance in that it first obtained the normal value of birth weight during a period ranging from gestational week 27 to 38 in Korea. In cases of triplets, however, the proportion of cases in which a delivery occurred at gestational week 36 or later was approximately 10% (28). This data could be applied to a clinical setting.

Limitations of the current study are as follows: 1) In a statistical analysis of the birth records which were collected during a 10-yr period in Korea, the number of triplets aged gestational week 27 or earlier was extremely small. Accordingly, there was a lack of the data about these triplets. 2) The data which was collected from triplets aged gestational week 37 or later was also problematic. Despite these limitations, the current results are of significance in that it first obtained the normal value of birth weight during a period ranging from gestational week 27 to 38, which is clinically important, in Korean triplets. It is expected that the current results would be of help for the studies and treatment of triplets.

REFERENCES

1. Luke B. *The changing pattern of multiple births in the United States: maternal and infant characteristics, 1973 and 1990.* Obstet Gynecol 1994; 84: 101-6.

2. Tuppin P, Blondel B, Kaminski M. *Trends in multiple deliveries and infertility treatments in France. Br J Obstet Gynaecol 1993; 100: 383-5.*

3. Millar WJ, Wadhera S, Nimrod C. *Multiple births: trends and patterns in Canada, 1974-1990.* Health Rep 1992; 4: 223-50.

4. Jewell SE, Yip R. *Increasing trends in plural births in the United States. Obstet Gynecol 1995; 85: 229-32.*

5. Joseph KS, Marcoux S, Ohlsson A, Kramer MS, Allen AC, Liu S, Wu Wen S, Demissie K, Sause R, Liston R. *Preterm birth, stillbirth and infant mortality among triplet births in Canada. 1985-96.* Paediatr Perinat Epidemiol 2002; 16: 141-8.

6. Hur YM, Kwon JS. *Changes in twinning rates in South Korea: 1981-2002.* Twin Res Hum Genet 2005; 8: 76-9.

7. Kaufman GE, Malone FD, Harvey-Wilkes KB, Chelmow D, Penzias AS, D’Alton ME. *Neonatal morbidity and mortality associated with triplet pregnancy. Obstet Gynecol 1998; 91: 342-8.*

8. Yaron Y, Bryant-Greenwood PK, Dave N, Moldenhauer JS, Kramer RL, Johnson MP, Evans MI. *Multifetal pregnancy reductions of triplets to twins: comparison with nonreduced triplets and twins. Am J Obstet Gynecol 1994; 171: 1631-4.*
9. Blickstein I. Is it normal for multiples to be smaller than singletons? Best Pract Res Clin Obstet Gynaecol 2004; 18: 613-23.
10. Blickstein I. Normal and abnormal growth of multiples. Semin Neonatol 2002; 7: 177-85.
11. Lee JJ, Park CK, Lee GS. Birth weight distribution by gestational age in Korean population: using finite mixture model. Korean J Pediatr 2005; 48: 1179-86.
12. Lee JJ. Birth weight for gestational age patterns by sex, plurality, and parity in Korean population. Korean J Pediatr 2007; 50: 732-9.
13. Shin SM, Chang YP, Lee ES, Lee YA, Son DW, Kim MH, Choi YR. Low birth weight, very low birth weight rates and gestational age-specific birth weight distribution of Korean newborn infants. J Korean Med Sci 2005; 20: 182-7.
14. Jung GY, Lee K. Intrauterine growth of Korean infants from 25 weeks to 44 weeks gestation. J Korean Pediatr Sci 1990; 33: 887-99.
15. Alexander GR, Kogan M, Martin J, Papiernik E. What are the fetal growth patterns of singletons, twins, and triplets in the United States? Clin Obstet Gynaecol 1998; 41: 114-25.
16. Glinianaia SV, Skjaerven R, Magnus P. Birthweight percentiles by gestational age in multiple births. A population-based study of Norwegian twins and triplets. Acta Obstet Gynecol Scand 2000; 79: 480-8.
17. Kramer MS, Platt RW, Wen SW, Joseph KS, Allen A, Abrahamowicz M, Blondel B, Bréart G. A new and improved population-based Canadian reference for birth weight for gestational age. Pediatrics 2001; 108: E35.
18. Joseph KS, Kramer MS, Allen AC, Mery LS, Platt RW, Wen SW. Implausible birth weight for gestational age. Am J Epidemiol 2001; 153: 110-3.
19. Platt RW, Abrahamowicz M, Kramer MS, Joseph KS, Mery L, Blondel B, Bréart G, Wen SW. Detecting and eliminating erroneous gestational ages: a normal mixture model. Stat Med 2001; 20: 3491-503.
20. Oja H, Koiranen M, Rantanen P. Fitting mixture models to birth weight data: a case study. Biometrics 1991; 47: 883-97.
21. Bae YM, Bae CW. The changes in the mortality rates of low birth weight infant and very low birth weight infant in Korea over the past 40 years. J Korean Med Sci 2004; 19: 27-31.
22. Kato N. Reference birthweight range for multiple birth neonates in Japan. BMC Pregnancy Childbirth 2004; 4: 2.
23. Naeye RL, Benirschke K, Haggstrom JW, Marcus CC. Intrauterine growth of twins as estimated from liveborn birth-weight data. Pediatrics 1966; 37: 409-16.
24. Elster AD, Belyl JL, Craven TE. Birth weight standards for triplets under modern obstetric care in the United States, 1984-1989. Obstet Gynecol 1991; 77: 387-93.
25. Jones JS, Newman RB, Miller MC. Cross-sectional analysis of triplet birth weight. Am J Obstet Gynecol 1991; 164 (1 Pt 1): 135-40.
26. Kuno A, Akiyama M, Yangahhara T, Hata T. Comparison of fetal growth in singleton, twin, and triplet pregnancies. Hum Reprod 1999; 14: 1352-60.
27. Yuval Y, Seidman DS, Achiron R, Goldenberg M, Alcalay M, Mashiach S, Lipitz S. Intrauterine growth of triplets as estimated from liveborn birth weight data. Ultrasound Obstet Gynecol 1995; 6: 345-8.
28. Min SJ, Luke B, Min L, Misiunas R, Nugent C, Van de Ven C, Martin D, Gonzalez-Quintero VH, Eardley S, Witter FR, Mauldin JG, Newman RB. Birth weight references for triplets. Am J Obstet Gynecol 2004; 191: 809-14.