MR Imaging Features of Acquired Brown Syndrome

S. Currie and T. Goddard

AJNR Am J Neuroradiol 2009, 30 (9) 1778-1779
doi: https://doi.org/10.3174/ajnr.A1591
http://www.ajnr.org/content/30/9/1778

This information is current as of October 13, 2023.
Brown syndrome is characterized by the inability to gaze upward beyond the horizontal level while adducting the eye due to an abnormality of the superior oblique tendon sheath complex.\(^1\)

The course of the superior oblique tendon can be demonstrated on axial CT images. CT is unable to resolve fully the different components of the trochlea area; however, the combined structures are discernible (Fig 1). Axial MR imaging offers even less resolution, and both coronal CT and MR imaging allow visualization of only portions of the muscle belly (Fig 2).

CT characteristics of the condition have been described and include thickening of the tendon, often the reflected portion following passage through the trochlea.\(^2\) This feature was not discernible on the CT performed on our patient. Conversely, MR imaging confirmed the diagnosis. This unique case describes the salient features of acquired Brown syndrome on MR imaging and highlights the use of MR imaging as a diagnostic tool when CT findings are negative.

Case Report

A 46-year-old woman with known systemic lupus erythematosus (SLE) presented acutely with a 2-week history of severe headache associated with vertical double vision, particularly in an upward gaze to the left. She experienced tenderness to palpation over the right trochlea region.

Laboratory values for blood tests, including full blood count, urea and electrolytes, plasma glucose, immunoglobulins, serum complement, antineutrophil cytoplasmic antibody, and cardiolipin antibodies were normal. The antinuclear antibody-2 test was positive, but retrospective review of her blood results showed that this had been positive during a 4-year period before this presentation and was attributable to SLE.

CT head imaging findings with and without contrast were normal (Fig 3). MR imaging of the brain showed no intracranial abnormality. However, the right superior oblique tendon was abnormally thickened on T1-weighted imaging (Fig 4) and of abnormally high signal intensity on T2-weighted fat-saturated imaging (Fig 5) and demonstrated mild enhancement after administration of gadolinium (Fig 6).

The diagnosis of inflammatory Brown syndrome was made, and she was treated with an initial 2-week course of 50-mg flurbiprofen 3 times a day and was given a frosted lens to aid her double vision. On 2-week review, her symptoms had improved, though she continued to have vertical double vision, particularly in her left gaze. She was pre-
scribed a further 4-week course of flurbiprofen and is currently awaiting review in 6 weeks.

Discussion

Brown described the syndrome in 1950 and classified its etiology into true (congenital) and simulated (acquired) types. The acquired form replicates the clinical presentation of its congenital counterpart and differs only in its cause. Pathology commonly reveals swelling of the tendon associated with thickening of the sheath, and it has been postulated that the acquired form primarily involves the posterior fascia and tendon as a result of an inflammatory process. Various acquired causes have been reported, including rheumatoid arthritis, scleritis, systemic lupus erythematosus, trauma, and sinusitis and following peribulbar anesthetic injection.

Previous reports have illustrated the use of CT as a valuable tool in assessing Brown syndrome. Imaging reveals thickening of the reflected portion of the superior oblique tendon, which may be accompanied by localized low attenuation representing edema. These features were not clearly present on the CT images of our patient.

To our knowledge, the features of the disease on MR imaging have yet to be described in the literature. This case clearly demonstrated abnormal thickening of the tendon on T1-weighted imaging, abnormal high signal intensity on T2-weighted fat suppression, and abnormal enhancement on T1-weighted gadolinium-enhanced imaging. These findings support an inflammatory and edematous pathologic process. SLE is a known cause of acquired Brown syndrome, and the patient’s symptoms improved with nonsteroidal anti-inflammatory therapy. The literature supports conservative management of acquired Brown syndrome because the results of surgery to reduce the tethering caused by scarring in the region of the trochlea are generally disappointing.

This case shows that MR imaging can play an important role in the identification of Brown syndrome and should be considered in cases where CT fails to confirm the abnormality.

References

1. Brown HW. Congenital structural muscle anomalies. In Allen JH, ed. Strabismus Ophthalmic Symposium. St Louis: Mosby; 1950:205–36
2. Mafee MF, Folk ER, Langer BG, et al. Computed tomography in the evaluation of brown syndrome of the superior oblique tendon sheath. Radiology 1985;154:691–95
3. Killian PJ, McClain B, Lawless OJ. Brown’s syndrome: an unusual manifestation of rheumatoid arthritis. Arthritis Rheum 1977;20:1080–84
4. Sanford-Smith JH. Intermittent superior oblique tendon sheath syndrome: a case report. Br J Ophthalmol 1969;53:412–17
5. Mein J, Harcourt B. Diagnosis and Management of Ocular Motility Disorders. Oxford, UK: Blackwell Scientific Publications; 1986:301–04
6. Clarke E. A case of apparent intermittent overaction of the left superior oblique. Br J Ophthalmol 1966;50:116–17
7. Erie JC. Acquired Brown’s syndrome after peribulbar anesthesia. Am J Ophthalmol 1990;109:349–50