The Old and the New: Discovery Proteomics Identifies Putative Novel Seminal Fluid Proteins in Drosophila

Authors
Timothy L. Karr, Helen Southern, Matthew A. Rosenow, Toni I. Gossmann, and Rhonda R. Snook

Correspondence
tkarr@asu.edu; rhonda.snook@zoologi.su.se

In Brief
We used discovery, bottom up proteomics to provide the first in-depth accessory gland proteome in D. pseudoobscura. Computational bioinformatics identified >500 proteins in the secretory pathway of which 163 were annotated as extracellular, and therefore candidate, seminal fluid proteins. We further compared molecular rates of evolution between intra- and extracellular proteins, showing a hierarchy of rapid evolution with putative seminal fluid proteins evolving more rapidly than other secreted proteins, and those proteins evolving more rapidly than intra-cellular proteins.

Highlights
- First deep proteomic coverage of an accessory gland proteome in Drosophila.
- Discovery proteomics identified >3000 proteins of the D. pseudoobscura accessory gland proteome.
- Identified 132 putative novel seminal fluid proteins in this species.
- Demonstrated the exoproteome as the most rapidly evolving subcellular component of the proteome.
Seminal fluid proteins (SFPs), the nonsperm component of male ejaculates produced by male accessory glands, are viewed as central mediators of reproductive fitness. SFPs effect both male and female post-mating functions and show molecular signatures of rapid adaptive evolution. Although *Drosophila melanogaster* is the dominant insect model for understanding SFP evolution, understanding of SFP evolutionary causes and consequences require additional comparative analyses of close and distantly related taxa. Although SFP identification was historically challenging, advances in label-free quantitative proteomics expands the scope of studying other systems to further advance the field. Focused studies of SFPs has so far overlooked the proteomes of male reproductive glands and their inherent complex protein networks for which there is little information on the overall signals of molecular evolution. Here we applied label-free quantitative proteomics to identify the accessory gland proteome and secretome in *Drosophila pseudoobscura*, a close relative of *D. melanogaster*, and use the dataset to identify both known and putative novel SFPs. Using this approach, we identified 163 putative SFPs, 32% of which overlapped with previously identified *D. melanogaster* SFPs and show that SFPs with known extracellular annotation evolve more rapidly than other proteins produced by or contained within the accessory gland. Our results will further the understanding of the evolution of SFPs and the underlying male accessory gland proteins that mediate reproductive fitness of the sexes. *Molecular & Cellular Proteomics* 18: S23–S33, 2019. DOI: 10.1074/mcp.RA118.001098.

Male ejaculates typically consist of a sperm component and a nonsperm component, both of which are transferred to females during mating. The nonsperm component is seminal fluid, containing secreted peptides and proteins (SFPs)
, typically produced in the testes and specialized male exocrine glands (1, 2). SFPs have profound effects on both male and female reproductive fitness (3) and therefore significant attention has been focused on the role of SFPs in polyandrous species. Polyandry, where females mate with different males across a reproductive bout generating postcopulatory sexual selection, results in ejaculates that compete for fertilization of a limited supply of ova, and females may choose whose sperm will fertilize those limited ova (4). Polyandry also engenders sexual conflict, in which male and female reproductive interests differ, because of the disproportionate costs and benefits of mating between the sexes (5). In internally fertilizing species, postcopulatory sexual selection operates between the male ejaculate that is transferred to and stored in the female reproductive tract (6). SFPs in these species may increase female fecundity, reduce female receptivity, decrease female life span, alter female hunger, and remodel female reproductive tract morphology (2, 3, 7, 8).

SFPs were first identified by their canonical signal peptide sequence that direct proteins to the secretory pathway (2). Cross-species comparative work has found that general classes of SFPs are conserved (e.g. proteases and protease inhibitors, lectins and prohormones) suggesting that their mechanisms of action are also conserved. However, individual SFPs can rapidly evolve with signals of accelerated rates of adaptive molecular evolution found in studies of coding sequence and male-biased gene expression observed across different animal taxa (e.g. mammals (9, 10); birds (11); *Drosophila* (12–14)). Sex-biased genes in general show faster rates of sequence and expression divergence that is consistent with predictions from sexual selection (e.g. (15) but see (11)).

Despite these general patterns, there are limitations to understanding the evolution of SFPs and their function. For example, SFP identification and their role in influencing fitness is dominated by work in *D. melanogaster*. This species is relatively highly polyandrous (16) and studies identifying SFPs in species with different mating systems is necessary to un-
understand the evolution of reproductive proteins and their fitness consequences. The advent of high throughput proteomics using LC-MS/MS should allow identification of SFPs, even in non-model organisms although tests of adaptive evolution may be restricted (17).

Moreover, SFPs function in a complex network of protein-tissue interactions (1, 2). However, the general focus on SFPs (a small subset of the accessory gland proteome) leaves open questions about the full complexity of the accessory gland proteome that supports the production of these critical reproductive proteins. Further, the larger role other accessory gland proteins play in postcopulatory sexual selection, and how the accessory gland proteome responds to such selection in toto has been relatively ignored. For example, despite *D. melanogaster* being a model system for this work, there is but a single study of its accessory gland proteome which is based on 2D gel electrophoresis (18). The recent advent of high throughput proteomics using LC-MS/MS should allow identification of not only SFPs but of the supporting proteins in the male accessory reproductive tissues. A proteomic study of the oriental fruit fly, *Bactrocera dorsalis*, identified ~3000 male accessory gland proteins by LC-MS/MS (19) but focused only on the proteins with identified signal sequences and did not further study the entire proteome. Although a recent study used LC-MS/MS to determine both the male and female accessory gland proteome of the silk worm, *Bombyx mori*, no tests of molecular evolution of these proteins were performed (20). Previous studies have shown that the subcellular localization of a protein is a strong predictor of its evolutionary rate, and that extracellular proteins secreted from the cell evolve faster than intracellular proteins (21–23). Whether this pattern is observed in the male accessory gland requires testing.

Here we aimed to address these limitations by using LC-MS/MS to characterize the accessory gland proteome of *Drosophila pseudoobscura*, whose mating system, although displaying lower levels of polyandry than the model species *D. melanogaster*, has nonetheless proven useful for experimental evolution studies documenting rapid sex-specific responses to across-generation changes of the mating system (24, 25). Our comparative study also takes advantage of the extensive genetic knowledgebase available in *Drosophila melanogaster* and on SFP functional genomics and evolution. We further characterize the *D. pseudoobscura* accessory gland proteome by constructing, using bioinformatics and gene ontology (GO), an accessory gland secretome (AcgS), exoproteome (exoP) and candidate SFPs. Finally, we compare rates of molecular evolution between these proteome subcomponents to test how subcellular protein localization impacts evolutionary rates in this system.

EXPERIMENTAL PROCEDURES

*Experimental Design and Statistical Rationale—*The experimental design included *D. pseudoobscura* selection lines derived from a naturally polyandrous line as previously described (25, see also Experimental Lines section below). Four replicates of each of two selection lines were used for the LFQ studies which provided the necessary replicative power for high value protein identifications and the statistical power needed for downstream GO category enrichment. We employed standard hypergeometric statistical tests as implemented in Cytoscape v3.7.1 (33, 34) and visualized using the Clique plug-in app (35, 36).

*Stock and Fly Maintenance—*We used experimentally evolved sexual selection lines in which the opportunity for post-copulatory sexual selection was either eliminated or facilitated. The establishment and maintenance of the selection lines were previously described in detail (25). Briefly, an ancestral wild-caught population of *D. pseudoobscura* from Tucson AZ, a naturally polyandrous species (wild caught females have been shown to be frequently inseminated by at least two males at any given time; (26)), was used to establish the selection lines. From this population, four replicate lines (replicates 1–4) of two different sexual selection treatments were established. To modify the opportunity for sexual selection, adult sex ratio in vials was manipulated by either confining one female with a single male which enforces monogamy (“monogamy” treatment, M) and eliminates postcopulatory sexual selection and sexual conflict or one female with six males promoting polyandry (“polyandry” treatment, P (NB: this treatment has also been referred to as E in other publications). Effective population sizes are equalized between the treatments as described previously (27). At each generation, offspring are collected and pooled together for each replicate line, and a random sample from this pool is used to constitute the next generation in the appropriate sex ratios, thus proportionally reflecting the differential offspring production across families. In total, eight selection lines (M1, M2, M3, M4 and P1, P2, P3, P4) are maintained, in standard vials (2.5 × 80 mm), with a generation time of 28 days. All populations are kept at 22 °C on a 12L:12D cycle, with standard food media and added live yeast.

*Sample Preparation—*Flies from replicates 1–4 of each of the selection lines were collected from generations 157, 156, 155, and 153 respectively. We standardized for maternal and larval environments (25), but in brief, parental flies were collected and housed in food bottles, then groups of about 30 were transferred on egg laying plates for 24 h, removed and replaced with a fresh egg plate. This second plate was removed after 24 h, then 48 h later, first instar larvae were collected in groups of 100 and housed in standard molasses/agar food vials at 22 °C. Males from these vials were collected on the day of eclosion and housed in vials of 10 individuals, until they were sexually mature (28), and then dissected when they were reproductively mature at 5 or 6 days old.

Using a Leica stereomicroscope, reproductively mature males were ether anesthetized and accessory glands dissected into a drop of PBS using fine dissection needles (supplemental Fig. S1A, S1B). Each accessory gland pair was moved to a fresh drop of PBS and then into a microcentrifuge tube containing 0.5 ml PBS at 4 °C until a total of 30 accessory gland pairs per replicate were acquired. Samples were then stored at −80 following a brief centrifugation. Each
abundant multiply-charged (2+ or 3+) ions in a given chromatogram. For MS/MS data, we combined the global proteomic data set of all eight replicates and searched mass spectra data files using Sequest HT and X!Tandem searches were set with a fragment ion mass tolerance of 0.60 Da and a parent ion tolerance of 10.0 parts per million. The oxidation of methionine (15.99), carboxyamidomethyl of cysteine (57.02), and acetyl modification on peptide N terminus (42.01) were set as variable modifications. Files from Sequest HT searches within the same gel lane were merged together as Mudpit using Scaffold, which calculated False Discovery Rates (FDRs) using a reverse concatenated decoy database (FDR was set at 1.0%). Peptide identifications were accepted if they could be established at greater than 95.0% probability as specified by the PeptideProphet (29) and protein identifications were accepted if they could be established at greater than 99.0% probability and contained at least 2 identified peptides. Protein probabilities were assigned by the Protein Prophet Algorithm (30). Proteins that contained similar peptides and could not be differentiated based on MS/MS analysis alone were grouped to satisfy the principles of parsimony. The data set was filtered so that every protein must be identified by at least two unique peptides in any one of the biological replicates. Although a conservative approach, this procedure ensured a robust data set devoid of potential misidentifications often caused by use of a single peptide for protein identification. To establish a working list of the AcgP, protein IDs from Scaffold were converted to D. pseudoobscura Fly Base gene numbers (FBgns) using the Uniprot website (Uniprot.org). The resulting D. pseudoobscura FBgns were then used to query Flybase (Flybase.org) to retrieve orthologous D. melanogaster genes from the OrthoDB orthology tables as implemented in Flybase (flybase.org). A complete listing can be found in supplemental Table S1. Note that in all cases, except where noted, only strict 1:1 orthologs were used in this study.

Database Construction of the D. pseudoobscura Accessory Gland Secretome (AcgS) and Exoproteome (exop)— As a secretory organ, the accessory gland is expected to contain the cellular machinery necessary for efficient and sustained secretory activity throughout the adult reproductive life cycle. To examine and focus on potential activities related to secretion, we assembled an in silico AcgS from the 3281 FBgns of the AcgP as input into Uniprot resulting in 5624 UniProtKB IDs (which includes all predicted protein isoforms). Fasta protein sequence files from each Uniprot entry were downloaded and submitted to SignalP (31) and Phobius (32), using default settings. The protein IDs were combined and exported into Excel yielding a final list of 771 UniProt identifiers. The Uniprot IDs were mapped back to 506 unique D. pseudoobscura FBgns (via Uniprot) which, after submission to OrthoDB (via Flybase) resulted in a final list and 506 D. melanogaster 1:1 orthologs. Candidate SFPs were identified by first querying the list of 515 AcgS genes in Flybase for Gene Ontology (GO) terms containing “extracellular.” We also compared this list to RNAseq data of the accessory gland in this population and found that 100% of our AcgS proteins were expressed in the accessory gland (Snook, unpublished data). The resulting list of 163 proteins therefore represents the accessory gland exoproteome (exop) and is considered to contain a representative sampling of a major fraction of SFPs. **Pathway, GO Enrichment, and Protein Interaction Network Analyses**—The finalized data sets were used for downstream bioinformatic analyses and subsequent visualizations of GO enrichment. The protein coding sequences of the AcgP were downloaded from Uniprot and submitted to Blast2go for annotation and tabulation of the three major GO categories, biological process (BP), molecular function (MF) and cellular component (CC). GO enrichment and network visualization and analysis was performed with Cytoscape v3.4 (33, 34) and ClueGO plugin version 2.2.4 (35, 36). Network parameters used were specific for each dataset as detailed in figure legends and supplemental tables. Protein interaction network analysis was performed using Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), a program that calculates the degree of protein-protein network interconnectedness (37).
Molecular Evolution Parameters—We obtained genome-wide coding sequence information for two close relatives, *D. lowei* and *D. affinis* (http://popoolation.at/lowei_genome and http://popoolation.at/affinis_genome), (38).

These two species have the same karyotype as *D. pseudoobscura* and show reasonable divergence (median pairwise dS = 0.102 versus *D. lowei* and dS = 0.26 versus *D. affinis*) thus avoiding substitution rate saturation. To identify orthologs of the identified AcgP *D. pseudoobscura* proteins in the two other Drosophila genomes we combined two approaches. First we used gene annotation ignoring isoforms specification using only the longest isoform identified to maximize (as these are difficult to identify within a proteomic screen). We then used best BLAST hits (39) of the *D. pseudoobscura* gene against each of the two other genomes but excluded gene sets for which annotation was contradictory to the *D. pseudoobscura* annotation. Using a pipeline, we developed earlier (40), sequences were aligned using MUSCLE (41), uncertain sequences filtered out using ZORRO (42) and input files converted with pal2nal (43). Sequences were then analyzed using PAML v4.9 (44) to obtain dN/dS values for each gene set (one-ratio estimates). For the one-ratio estimates, median differences in dN, dS and dN/dS among groups (AcgP, AcgS, exoP) were tested using a nonparametric two-tailed test (45).

RESULTS

The *D. pseudoobscura* AcgP—A *D. pseudoobscura* AcgP was constructed from peptide-based (“bottom-up”) shotgun MS/MS spectral data obtained from eight independent runs. For the purposes of assembling a proteome with the broadest coverage, data from all runs were pooled together resulting in a total of 3757 UniProt IDs that mapped to 3160 unique FlyBase gene names. Because a latter research goal is to quantify how sexual selection affects the production of proteins in the male accessory gland, here we present the overlap between proteins identified in the four replicates each of M and P selection lines. These data sets were highly correlated with >90% (3534/3757) overlap (Fig. 1A). Likewise, proteins with values in all four replicates for each selection line represented most identified proteins (M-line 2103/3649; 57.6% and P-line, 2235/3642; 61.4%). A complete listing and tabulation of the secreted protein assignments because of low quantities (as measured by total spectral counts). Indeed, the average total spectral counts for the unique set of proteins (ave. 4.5; n = 223) was 16-fold lower than the average across the entire dataset (ave. 72.8, n = 3874). We do not consider these unique proteins further here and base the remainder of the description of male accessory gland proteins on those that are shared by each treatment.

GO and Pathway Analysis of the AcgP—Pathway and functional analyses began by identifying orthologous *D. melanogaster* genes, (3160/3281, 96.2%; supplemental Table S1), providing a useful annotated database to evaluate the overall patterns of the functional elements in the AcgP. As an overview of the major GO groupings, Blast2Go returned “signal- ing,” “reproduction,” and “localization” among BP- and numerous proteins annotated as extracellular involved in the CC-categories, respectively (supplemental Fig. S2). Statistical analysis for GO category enrichment (Fig. 2) identified BP terms related to intracellular transport (n = 363, p = 2.80E-45), translation (n = 257, p = 2.47E-35), establishment of protein localization (n = 418, p = 1.22E-44), vesicle-mediated transport (n = 301, p = 8.47E-42), endocytosis (n = 106, p = 7E-10), and secretion (n = 140, p = 2.71E-16). Likewise, the AcgP contains a significant number of proteins in CC categories annotated as “extracellular region” (n = 266, p = 3.2E-05), “endomembrane system” (n = 583, p = 1.04E-57), and “vesicle” (n = 230, p = 8.72E-25). Finally, the overall known biochemical pathways of the AcgP, analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG), revealed a similar enrichment of 20 overview terms curated by KEGG that included ribosome biogenesis, protein export, endocytosis and the Wnt signaling pathways (Table I). We conclude the AcgP contains features expected of a tissue devoted to protein production and protein secretion. See supplemental Table S2 for a complete listing of all enriched GO categories.

The *D. pseudoobscura* AcgS—Signal peptides are a ubiquitous class of short (20–22 aa) N-terminal sequences, that target proteins for translocation across, and into, the endomembrane system of the cell (46, 47). Collectively proteins containing signal peptide sequences are considered part of the secretory pathway, and a subclass—those secreted into the extracellular space—are termed the secretome (also referred to as the exoproteome, exoP). Therefore, some or all components of the exoP can be considered as candidate SFPs. Given the secretory nature of the Drosophila accessory
gland, we therefore queried the AcgP for proteins containing canonical signal sequences using two predictive programs, SignalP and Phobius (see Methods). SignalP (31) is a neural network-based algorithm designed to detect canonical N-terminal signal sequences and discriminate against N-terminal transmembrane regions known to reduce predictive power, and Phobius uses a combined model of both transmembrane and signal peptide predictors (32, 48). The combined output of both resulted in 771 Uniprot IDs that mapped to 535 D. pseudoobscura FBgns (Fig. 1B; supplemental Table S3). D. melanogaster orthologs (OrthoDB via Flybase) subsequently returned 506 D. melanogaster orthologs to the D. pseudoobscura AcgS including a small percentage (8/511, 1.6%) of “1:many” matches included in the analysis to capture the greatest proteome coverage of the secretome. Thus, the AcgS represents ~15% (535/3281; 16.3%) of the entire AcgP consistent with similar calculations for the predicted human secretome (~15%, http://www.proteinatlas.org/humanproteome/secretome).

Gene Ontology (GO) Functional Analysis of the AcgS—The high degree of orthology between the D. pseudoobscura and D. melanogaster proteomes allows a GO category enrichment analysis. Distribution of major functional category groupings for Biological Process (A) and Cellular Component (B). Categories related to secretory processes. Categories highlighted in bold are discussed in the main text.

Table 1 Enriched KEGG pathways of the AcgP
GOID
KEGG:03008
KEGG:03040
KEGG:04141
KEGG:03018
KEGG:03050
KEGG:04144
KEGG:04310
KEGG:00071
KEGG:04130
KEGG:00330
KEGG:00230
KEGG:00250
KEGG:00280
KEGG:00250
KEGG:00020
KEGG:00030
KEGG:04086
KEGG:00500
KEGG:03010
KEGG:03015

*Bonferroni Corrected.
AcgS genes and *D. melanogaster* (506/528), supplemental Table S3) provided a putative orthologous secretome useful for GO analysis and network visualization. A significant enrichment in BP terms was observed, many related to multicellular organism reproduction (*n* = 113, *p* = 7E-7), reproduction (*n* = 116, *p* = 7E-7), behavior (*n* = 53, *p* = 2.1E-5), and proteolysis (*n* = 66, *p* = 3.5E-6). The secretome is enriched in MF terms related to oxidoreductase activity (*n* = 55, *p* = 7.1E-7) and hydrolase activity (*n* = 138, *p* = 8.5e-14; see supplemental Table S3 for a complete list of all AcgS enriched BP, CC, and MF GO categories). We also examined the subcellular localization of the AcgS using the Cerebral layout tool implemented in Cytoscape. As expected for functions related to secretion and proteins containing signal sequences targeted to the secretory pathway, the predicted subcellular localization of AcgS proteins were skewed toward extracellular and plasma membrane proteins (Fig. 3).

*The exoP as a Proxy to Identify Putative SFPs—*To identify potential candidate SFPs (essentially the exoP component of the AcgS), we queried the AcgS for the GO CC term “extracellular” and obtained a final list of 163 proteins (Fig. 1B; supplemental Table S4). This list is a conservative estimate as 85 genes of the AcgS had no GO CC functional annotation and 28/85 were unannotated in all 3 major categories. However, inspection of the BP or MF annotation of the remaining 57 proteins revealed “extracellular” terms, suggesting several possible candidates for inclusion in the exoP including 20% (13/57) with annotations related to proteolysis and protease inhibitors (supplemental Table S4). We suggest this correlation because SFPs across diverse taxa (see below) contain several proteases, some with critical reproductive functions (13, 49–51).

In addition to identified exoP proteases, we used Cytoscape and Cluego network analysis of the annotated exoP to return enriched BP terms of major functional categories. These included insemination, sperm competition, copulation reproduction, female mating behavior, and regulation of female receptivity, and response to wounding (Table II; Fig. 4, Fig. 3. Functional grouping and subcellular localization of the AcgS mapped to subcellular regions (labeled on the right) using the Cerebral layout in Cytoscape. Shaded regions show all annotations that include the keyword “Extracellular”.

Novel Drosophila SFP Identification
supplemental Table S4). These are all terms in which *D. melanogaster* SFPs are known to impact sex-specific fitness. We next compared our putative SFP list with a list of 212 *D. melanogaster* SFPs assembled from the literature (13, 52, 53) and found an overlap of 32.1% (68/212), including 32 SFP genes that have been functionally well-studied in *D. melanogaster*, such as Acp53Ea, Acp53C14d and Acp53C14c (supplemental Table S4). We also found no overlap of the 85 AcgS genes that had no CC annotation with the 212 *D. melanogaster* SFPs. Likewise, comparison of our putative SFP list to that of 29 *D. pseudoobscura* SFPs computationally derived from *D. melanogaster* SFPs (54) found an ~50% (14/29) overlap.

Table II

Enriched BP categories of the AcgS exoproteome (putative SFPs)	Nr. Genes	p value*
Multicellular organism reproduction	77	7.5E-29
Insemination	11	2.8E-13
Drug catabolic process	10	1.3E-06
Response to biotic stimulus	20	7.3E-06
Lipid transport	9	2.2E-05
Response to wounding	8	1.9E-03
Negative regulation of catalytic activity	9	2.4E-03
Reproduction	78	3.3E-27
Multi-multicellular organism process	11	2.8E-13
Copulation	11	2.7E-12
Sperm competition	10	5.6E-12
Regulation of female receptivity, post-mating	9	2.0E-11
Regulation of female receptivity	9	1.7E-09
Female mating behavior	9	2.0E-08
Response to external biotic stimulus	20	7.3E-06
Response to other organism	20	7.3E-06
Carbohydrate derivative catabolic process	9	1.1E-05
Mating	12	4.5E-05
Reproductive behavior	12	6.2E-05
Mating behavior	11	9.4E-05
Response to bacterium	13	5.5E-04
Lipid localization	9	9.6E-04
Aminoglycan metabolic process	8	2.5E-03
Negative regulation of molecular function	9	3.5E-03

*Bonferonni corrected.

DISCUSSION

We used label-free quantitative proteomics to describe the accessory gland proteome and its subcomponents, including identifying candidate SFPs, in *D. pseudoobscura*. This species is less polyandrous than *D. melanogaster* and patterns of evolution therefore may differ, given the role SFPs play in postcopulatory sexual selection. Indeed, the microevolutionary response of sex-biased gene expression to experimental sexual selection in this species is different than that of *D. melanogaster* (24, 55, 56). Here we identified 163 proteins that meet many criteria for being putative SFPs, 132 which were previously unknown for this species. GO term enrichment for biological processes for putative SFPs returned terms related to those expected to influence reproductive fitness including sperm competition. We found that only one third of the exoP overlapped with previously described *D. melanogaster* SFPs. Four obvious but not mutually exclusive possibilities exist to explain the differences in the lists: (1) not all SFPs have yet been discovered in either species, (2) the different SFP discovery methods used in various studies will necessarily result in variable lists, (3) our exoP list contains false positives, and/or (4) although nearly all the proteins in the AcgS, from which we bioinformatically derived the exoP, were homologous with the *D. melanogaster* genome, some of these proteins may have rapidly diversified to function as SFPs. From a discovery perspective, there is yet no AcgP and AcgS equivalent in *D. melanogaster*. Such a resource would improve and extend the predictive abilities of identifying putative SFPs in related species and help understand the evolution of this tissue that generates proteins with profound fitness consequences on both sexes. Related to false positives and potential evolutionary recruitment, we computationally derived putative SFPs but reproductive proteins with extracellular function does not necessarily mean they will be transferred to females (64). Future work will require more downstream analyses of these putative SFPs that will also inform about recruitment. Such analyses include testing that these are transferred to females and functionally determining their effect on sex-specific fitness by taking advantage of the published genome of this species and the increasing use of sophisticated gene editing technology in previously nonmodel organisms (e.g. (57)). Putative SFPs that would be good targets for further investigation include the *D. pseudoobscura* SFPs with protease function that were not identified in *D. melanogaster*. We argue this because seminal fluid proteases in *D. melanogaster* are well-known reproductive players, regulating proteolytic and post-mating reproductive processes in a variety of arthropod taxa including Drosophila (13, 20, 49, 50).

In addition to our list of potentially novel candidate SFPs, several *D. melanogaster* SFPs with known impacts on postcopulatory reproductive fitness were also found. For example, we identified nearly all SFP members of the canonical Sex Peptide network (2, 53). In *D. melanogaster*, Sex Peptide
bound to sperm is transferred to the female seminal receptacle during copulation and is required for both long-term female resistance to remating and for sperm release from storage (58). We identified the gene duplicate pair lectins CG1652 and CG1656, aquarius (CG14061), intrepid (CG12558), antares (CG30488), seminase (CG10586), and CG9997 (a serine protease homolog) (59). CG9997 is processed in the female and males that do not produce this protein are unable to transfer the lectins, which are required to slow the rate at which CG9997 is processed in the female. All proteins identified in the D. melanogaster SP network, except SP itself, were detected in our putative list of SFPs. Absence of detectable D. pseudoobscura SP protein is consistent with the lack of a recognized SP ortholog in this species and raises the interesting possibility that either the D. pseudoobscura SP ortholog has significantly diverged, or has been replaced by another gene. If indeed a bona fide D. pseudoobscura SP gene exists, then further MS searches using algorithms to detect amino acid replacements (60) may be useful in the search for this elusive SFP.

One aim of this work was to extend the focus from solely SFPs to the functional complexity of other proteins in the accessory gland tissue. We generated a robust accessory gland proteome containing 3160 proteins, representing the

![GO network analysis of the exoP.](image)

The five major enriched GO BP categories visualized by Cytoscape and Cluego. Processes related to reproduction and insemination are clearly prominent in the network including are other processes related to the adhesion and extracellular matrix assembly and maintenance. Categories of cellular functions related to wound healing and defense/immunity were also recovered.

Fig. 4. GO network analysis of the exoP.
first accessory gland proteome to be described in Drosophila. 96% of these proteins showed homology to D. melanogaster. The AcgP proteins in D. pseudoobscura were enriched for cellular components expected from a tissue whose primary function is secretory, including several cellular component GO terms related to membranes, extracellular regions, and peptidase complex. The top biological process GO terms clearly indicated a large investment in processes directly and indirectly related to protein synthesis, protein assembly, transport, and secretion. We then in silico concatenated this list to include proteins with secretory signal sequences to identify 506 accessory gland secretome proteins, which were enriched for GO terms related to the biological processes of reproduction, behavior, and proteolysis, with these proteins heavily biased toward subcellular localizations in the plasma membrane or extracellular components, as predicted from proteins with secretory signals. As previously noted, describing the D. melanogaster AcgP and AcgS, along with other related species, will provide the basis for evolutionary analyses required to understand how selection, particularly arising from postcopulatory selection pressures on males to influence female reproductive fitness, has acted on this tissue.

Documenting the AcgP then allowed testing another aim of our work—determining signals of molecular evolution in different subcomponents of accessory gland proteins. Rapid evolution at the molecular level is common for reproductive proteins including SFPs (e.g. (12, 61–63)). However, extracellular proteins in general exhibit more rapid molecular evolution than proteins restricted to functions within the cell (21–23). We therefore compared molecular evolution rates of D. pseudoobscura with its close relatives across proteins from different subcomponents of the male reproductive accessory gland tissue that identified genes encoding SFPs with significantly faster rates of molecular evolution compared with both the AcgS (i.e. other secreted protein encoding genes that were not candidate SFPs) and to non secreted accessory gland proteome genes. Moreover, we also found that secretome genes showed higher rates of molecular evolution than non-secreted proteins (i.e. the remainder of the AcgP). These results support not only previous work that SFP genes evolve faster than non-SFP genes, but also the more general finding that genes coding proteins which interact extracellularly evolve more rapidly than those that remain within the cytoplasm, irrespective of reproductive function (22, 23).

CONCLUSION

Increasing emphasis on understanding how SFPs impact reproductive fitness across many different organisms requires not only identifying those proteins but also understanding the protein complexity of the SFP-producing tissues. Using organisms with different mating systems and testing the extent to which signatures of rapid molecular evolution are shared across taxa, and across the different environments in which proteins function (i.e. intra- versus extra- cellular), will generate improved understanding of the causes and consequences of SFP evolution. Here we show that the use of label-free quantitative proteomics methods can address such questions and, specifically, will serve as the basis for more detailed work in this species on the role of postcopulatory sexual selection and reproductive protein evolution.

Acknowledgments—We thank the reviewers for their careful and thoughtful comments and criticisms that helped to make this work better. We also thank the many people who have contributed to the maintenance of the Snook experimental evolution lines.

DATA AVAILABILITY

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD012545.

* Funding of the experimental evolution lines came from NSF (DEB-0093149), NERC (NE/B504065/1; NE/I014632/1), and EU (ITN-2008-213780 SPECIATION) to RRS. Funding and technical support for the proteomic work came from the University of Sheffield Biological Mass Spectrophotometry Facility (funded by Yorkshire Cancer Research (Shend01) and the Wellcome Trust). TIG was supported by a Leverhulme Early Career Fellowship (Grant ECF-2015-453) and a NERC
Novel Drosophila SFP Identification

grant (NE/N013832/1). Funding from the Kyoto Institute of Technology to TLK also supported this research. This article contains supplemental Figures and Tables. * To whom correspondence may be addressed. E-mail: tkarr@asu.edu. ‡‡ To whom correspondence may be addressed. E-mail: rhonda.snoook@zoologi.si.se.

REFERENCES

1. Poiani, A. (2006) Complexity of seminal fluid: a review. Behav. Ecol. Sociobiol. 60, 289–310
2. Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D., and Wolfner, M. F. (2011) Insect seminal fluid proteins: identification and function. Annu. Rev. Entomol. 56, 21–40
3. Perry, J. C., Sirot, L., and Wigby, S. (2013) The seminal symphony: How to compose an ejaculate. Trends Ecol. Evol. 28, 414–422
4. Snook, R. R. (2014) The evolution of polyandry 159–180. in The Evolution of Insect Mating Systems, Shuker, D., & Simmons, L., eds. Oxford University Press, Oxford, U.K.
5. Arnqvist, G., and Rowe, L. (2005) Sexual conflict, Princeton University Press, Princeton, N.J.
6. Chen, P. S. (1984) The functional morphology and biochemistry of insect male accessory glands and their secretions. Ann. Rev. Entomol. 29, 233–255
7. Mattel, A. L., Riccio, M. L., Avila, F. W., and Wolfner, M. F. (2015) Integrated 3D view of postmating responses by the Drosophila melanogaster female reproductive tract, obtained by micro-computed tomography scanning. Proc. Natl. Acad. Sci. U.S.A. 112, 8475–8480
8. Avila, F. W., and Wolfner, M. F. (2009) AcP36DE is required for uterine conformational changes in mated Drosophila females. Proc. Natl. Acad. Sci. U.S.A. 106, 15796–15800
9. Dorus, S., Evans, P. D., Wyckoff, G. J., Choi, S. S., and Lahn, B. T. (2004) Rate of molecular evolution of the seminal protein gene SEMG2 correlates with levels of female promiscuity. Nat. Genet. 36, 1326–1329
10. Ramam, S. A., McDonald, L., Hurst, J. L., Beynon, R. J., and Stockley, P. (2009) Comparative proteomics reveals evidence for evolutionary diversification of rodent seminal fluid and its functional significance in sperm competition. Mol. Biol. Evol. 26, 189–198
11. Harrison, P. W., Wright, A. E., Zimmer, F., Dean, R., Montgomery, S. H., Pointer, M. A., and Mark, J. E. (2015) Sexual selection drives evolution and rapid turnover of male gene expression. Proc. Natl. Acad. Sci. U.S.A. 112, 4393–4398
12. Clark, N. L., Aagaard, J. E., and Swanson, W. J. (2006) Evolution of reproductive proteins from animals and plants. Reproduction 131, 11–22
13. Mueller, J. L., Ravi Ram, K., McGraw, L. A., Bloch Qazi, M. C., Siggia, E. D., Clark, A. G., Aquadro, C. F., and Wolfner, M. F. (2005) Cross-species comparison of Drosophila male accessory gland protein genes. Genetics 171, 131–143
14. Panhuis, T. M., Clark, N. L., and Swanson, W. J. (2006) Rapid evolution of reproductive proteins in abalone and Drosophila. Phil. Trans. Roy. Soc. London B 361, 261–268
15. Parsch, J., and Ellegren, H. (2013) The evolutionary causes and consequences of sex-biased gene expression. Nat. Rev. Genet. 14, 83–87
16. Markow, T. A. (1996) Evolution of Drosophila mating systems. Evolutionary Biol. 29, 73–106
17. Basram, H., Sayadi, A., Immenen, E., and Arnqvist, G. (2019) Identification of novel ejaculate proteins in a seed beetle and division of labour across male accessory reproductive glands. Insect Biochem. Mol. Biol. 104, 50–57
18. Takemori, N., and Yamamoto, M. T. (2009) Proteome mapping of the Drosophila melanogaster male reproductive system. Proteomics 9, 2484–2493
19. Wei, D., Li, H. M., Tian, C. B., Smagghie, G., Jia, F. X., Jiang, H. B., Dou, W., and Wang, J. J. (2015) Proteome analysis of male accessory gland secretions in oriental fruit flies reveals juvenile hormone-binding protein, suggesting impact on female reproduction. Sci. Reports 5, 16845
20. Dong, Z., Wang, X., Zhang, Y., Zhang, L., Chen, Q., Zhang, X., Zhao, P., and Xia, Q. (2016) Proteome profiling reveals tissue-specific protein expression in male and female accessory glands of the silkworm, Bombyx mori. Amino Acids 48, 1173–1183
21. Sojo, V., Dessimoz, C., Pomiankowski, A., and Lane, N. (2016) Membrane proteins are dramatically less conserved than water-soluble proteins across the Tree of Life. Mol. Biol. Evol. 33, 2874–2884
22. Feyertag, F., Berninsson, P. M., and Alvarez-Ponce, D. (2017) Secluded proteins defy the expression level-evolutionary rate anticorrelation. Mol. Biol. Evol. 34, 692–706
23. Liao, B. Y., Weng, M. P., and Zhang, J. (2010) Impact of extracellularity on the evolutionary rate of mammalian proteins. Genome Biol. Evol. 2, 12
24. Crudgington, H. S., Fellows, S., Badcock, N. S., and Snook, R. R. (2009) Experimental manipulation of sexual selection promotes greater male mating capacity but does not alter sperm investment. Evolution 63, 926–938
25. Crudgington, H. S., Beckerman, A. P., Brustle, L., Green, K., and Snook, R. R. (2005) Experimental removal and elevation of sexual selection: Does sexual selection generate manipulative males and resistant females? American Naturalist 165, S72–S87
26. Anderson, W. W. (1974) Frequent multiple insemination in a natural population of Drosophila pseudoobscura. American Naturalist 108, 709–711
27. Snook, R. R., Brustle, L., and Slate, J. (2009) A test and review of the role of effective population size on experimental sexual selection patterns. Evolution 63, 1923–1933
28. Snook, R. R., and Markow, T. A. (2002) Efficiency of gamete usage in nature: sperm storage, fertilization and polyspermy. Proceedings Biol. Sci. 269, 467–473
29. Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392
30. Nesvizhskii, A. I., Keller, A. Kolker, E., and Aebersold, R. (2003) A statistical model for identifying proteins by tandem mass spectrometry abilities that proteins are present in a sample on the basis. Anal. Chem. 75, 4646–4658
31. Petersen, T. N., Bruunak, S., von Heijne, G., and Nielsen, H. (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786
32. Käll, L., Krogh, A., and Sonnhammer, E. L. (2004) A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 335, 1027–1036
33. Cline, M. S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C., Christians, R., Avila-Campillo, I., Creech, M., Gross, B., Hanspers, K., Iserlin, R., Kelley, R., Killcoyne, S., Lotia, S., Maere, S., Morris, J., Ono, K., Pavlovic, V., Pico, A. R., Vailaya, A., Wang, P.-L., Adler, A., Conklin, B. R., Hood, L., Kuiper, M., Sander, C., Schmulovich, I., Schwikowski, B., Warner, G. J., Ideker, T., and Bader, G. D. (2007) Integration of biological networks and gene expression data using Cytoscape. Nat. Protocols 2, 2366–2382
34. Demchak, B., Hull, T., Reich, M., Liefeld, T., Smoot, M., Ideker, T., and Mesirov, J. P. (2014) Cytoscape: the network visualization tool for Genomespace workflows. F1000Research 3, 151
35. Bindea, G., Milenic, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.-H., Pagès, F., Trajanoski, Z., and Galon, J. (2009) ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093
36. Bindea, G., Galon, J., and Milenic, B. (2013) CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 29, 661–663
37. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Kuhn, M., Wyder, S., Simonovic, M., Roth, A., Santos, A., Tsafou, K. P., Kuhn, M., Bork, P., Jensen, L. J., and von Mering, C. (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, D447–D452
38. Palmieri, N., Kosiol, C., and Schlotterer, C. (2014) The life cycle of Drosophila sperm genes. Elife 3, e01311
39. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410
40. Gossmann, T. I., Santure, A. W., Sheldon, B. C., Slate, J., and Zeng, K. (2014) Highly variable recombinational landscape modulates efficacy of natural selection in birds. Genome Biol. Evol. 6, 2061–2075
41. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797
42. Wu, M., Chatterji, S., and Eisen, J. A. (2012) Accounting for alignment uncertainty in phylogenomics. PLoS ONE 7, e30288
43. Suyama, M., Torrents, D., and Bork, P. (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612
44. Yang, Z. (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591
45. Mann, H. B., and Whitney, D. R. (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Statistics 18, 50–60
46. Armengaud, J., Christie-Oleza, J. A., Clair, G., Malard, V., and Duport, C. (2012) Exoproteomics: exploring the world around biological systems. Expert Rev. Proteomics 9, 561–575
47. Tjalsma, H., Sohuis, A., Jongbloed, J. D., Bron, S., and van Dijl, J. M. (2000) Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbial. Mol. Biol. Rev. 64, 515–547
48. Käll, L., Krogh, A., and Sonnhammer, E. L. (2007) Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res. 35, W429–W432
49. Sitnik, J. L., Francis, C., Hens, K., Huybrechts, R., Wolfner, M. F., and Callaerts, P. (2014) Neprilysins: an evolutionarily conserved family of metalloproteases that play important roles in reproduction in Drosophila. Genetics 196, 781–797
50. Xu, J., Baulding, J., and Pali, S. R. (2013) Proteomics of Tribolium castaneum seminal fluid proteins: Identification of an angiotensin-converting enzyme as a key player in regulation of reproduction. J. Proteomics 78, 83–93
51. LaFramme, B. A., Ram, K. R., and Wolfner, M. F. (2012) The Drosophila melanogaster seminal fluid protease semenase regulates proteolytic and post-mating reproductive processes. PLoS Genet. 8, e1002435
52. Findlay, G. D., Yi, X., Maccoss, M. J., and Swanson, W. J. (2008) Proteomics reveals novel Drosophila seminal fluid proteins transferred at mating. PLoS Biol. 6, e178
53. Findlay, G. D., MacCoss, M. J., and Swanson, W. J. (2009) Proteomic discovery of previously unannotated, rapidly evolving seminal fluid genes in Drosophila. Genome Res. 19, 886–896
54. Wagstaff, B. J., and Begun, D. J. (2005) Comparative genomics of accessory gland protein genes in Drosophila melanogaster and D. pseudoobscura. Mol. Biol. Evol. 22, 818–832
55. Hollis, B., Houlé, D., Yan, Z., Kawecki, T. J., and Keller, L. (2014) Evolution under monogamy feminizes gene expression in Drosophila melanogaster. Nat. Commun. 5, 3482
56. Veltsos, P., Yang, Y., Cossins, A. R., Snook, R. R., and Ritchie, M. G. (2017) Mating system manipulation and the evolution of sex-biased gene expression in Drosophila. Nat Commun 8, 1–11
57. Gantz, V. M., and Akbari, O. S. (2018) Gene editing technologies and applications for insects. Curr. Opin. Insect Sci. 28, 66–72
58. Avila, F. W., Ravi Ram, K., Bloch Qazi, M. C., and Wolfner, M. F. (2010) Sex peptide is required for the efficient release of stored sperm in mated Drosophila females. Genetics 186, 595–600
59. Findlay, G. D., Sitnik, J. L., Wang, W., Aquadro, C. F., Clark, N. L., and Wolfner, M. F. (2014) Evolutionary rate covariance identifies new members of a protein network required for Drosophila melanogaster female post-mating responses. PLoS Genet. 10, e1004108
60. Starkweather, R., Barnes, C. S., Wyckoff, G. J., and Kightley, J. A. (2007) Virtual polymorphism: finding divergent peptide matches in mass spectrometry data. Anal. Chem. 79, 5030–5039
61. Mueller, J. L., Ripoll, D. R., Aquadro, C. F., and Wolfner, M. F. (2004) Comparative structural modeling and inference of conserved protein classes in Drosophila seminal fluid. Proc. Natl. Acad. Sci. U.S.A. 101, 13542–13547
62. Vicens, A., Borziak, K., Karr, T. L., Roldan, E. R. S., and Dorus, S. (2017) Comparative sperm proteomes in mouse species with divergent mating systems. Mol. Biol. Evol. 34, 1403–1416
63. Wilburn, D. B., and Swanson, W. J. (2016) From molecules to mating: Rapid evolution and biochemical studies of reproductive proteins. J. Proteomics 135, 12–25
64. Sepil, I., Hopkins, B. R., Dean, R., Thézéna, M.-L., Charles, P. D., Konietzny, R., Fischer, R., Kessler, B. M., and Wigby, S. (2019) Quantitative Proteomics Identification of Seminal Fluid Proteins in Male Drosophila Melanogaster. Mol. Cell. Proteomics 18, S46–S58