Glycogen Synthase Kinase-3 (GSK-3) Regulation of Inhibitory Coreceptor Expression in T-cell Immunity

Mark E. Issa¹,², Christopher E. Rudd¹,²,*
¹Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
²Division of Immunology-Oncology, Centre de Recherche-Hospital Maisonneuve Rosemont, Montreal, Quebec, Canada H1T 2M4

Abstract

The serine/threonine kinase, glycogen synthase kinase 3 (GSK-3) has been implicated in immune cell activation and function. Our recent studies have shown that the abrogation of GSK-3 activity down-regulates the expression of key inhibitory receptors PD-1 and LAG-3. It also regulates the expression of the transcription factor NFAT which, in turn, is responsible for inhibiting PD-1/LAG-3 transcription as well as activating the expression of cytolytic effector proteins such as perforin and granzyme B. The role of components of the Wnt signaling pathway in these events remains to be fully uncovered. This mini-review discusses the recent discoveries that have elucidated the role of the GSK-3 signaling pathway in cancer immunotherapy.

Introduction

While the immune system is capable of recognizing tumor antigens, certain cancer cells evade immune detection and destruction [1]. Due to genetic instability, cancer cells become heterogeneous with an ever-accumulating mutational burden that can render the immune system exhausted and incapable of dealing with the expanding tumor. In addition to the genetic instability, cancer cells utilize a variety of mechanisms that enable them to evade immune destruction and promote tumor escape [2]. The tumor microenvironment can create conditions that limit the immune response by impairing antigen presentation, releasing immunosuppressive cytokines, exhausting the availability of oxygen and nutrients, and promoting the recruitment of immunosuppressive regulatory T-cells (Tregs), neutrophils and myeloid derived suppressor cells (MDSCs) [1,3].

As in the case of classic peptide antigen presentation, tumor neoantigens can be presented by major histocompatibility complexes I and II (MHC-I and MHC-II) leading to T-cell activation [3,4]. This involves the engagement of the receptor (TCR) and coreceptors, CD4 and CD8 which we showed bind to the protein-tyrosine kinase p56łck (LCK) for the induction of a protein tyrosine phosphorylation cascade [5,6]. LCK phosphorylates the tyrosine residues in the immunoreceptor tyrosine-based activation motifs (ITAMs) of the ζ.
chains of the TCR complex [7–9]. This creates docking sites for second protein tyrosine kinase termed ZAP-70 [10]. ZAP-70 phosphorylates immune cell adaptor proteins, linker of activated T-cells (LAT) and the SH2-domain containing signal transducing adaptor protein (SLP-76) [11,12]. Phosphorylated LAT serves as a docking site for SLP-76, ultimately leading to T-cell activation, proliferation, differentiation, and cytokine release. In general terms, src kinases such as p56^{lck} phosphorylate a wide array of substrates, while ZAP-70 is more restricted in its number of targets [5].

Following TCR activation, CD8^{+} T-cells differentiate into memory, memory-effector and effector cytolytic T-cells, whereas CD4^{+} T-cells differentiate into helper T-cells, or suppressive Tregs [13,14]. Effector T-cells expand, clear pathogens, and undergo apoptosis or differentiate into memory T-cells for extended immune protection against the re-encountered pathogens [15,16]. However, when a chronic condition, such as a cancer, persistent Stimulation can impair T-cell activity, rendering them dysfunctional in a process called T-cell exhaustion [17]. This state of the T-cell is characterized by a progressive loss of T-cell effector function. In this context, TCR activation induces the expression of inhibitory receptors (IRs) such as programmed cell death protein 1 (PD-1), lymphocyte activation gene 3 (LAG-3) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) [18,19]. These IRs can mark exhausted T-cells and to varying degrees regulate T-cell exhaustion. In both cancer biology and in chronic models of infection, the blockade of these receptors (aka immune Checkpoint blockade (ICB)) can partially reverse the state of T-cell exhaustion, thereby unleashing T-cells to proliferate and reject cancer or the infectious agent [1,20]. In the hallmark case of cancer, antibodies to CTLA-4 followed by antibodies to PD-1, or in combination, are effective in reducing tumor growth (Figure 1) [1,21].

PD-1 and T-cells - A Summary

PD-1 is an IR expressed on the surfaces of T-cells, B cells, and NK cells [22]. It belongs to the CD28 supergene family and plays a critical role in the regulation of immunological tolerance, and in immune cell responses against pathogens and cancer [23,24]. PD-1 is comprised of 288 amino acids with an extracellular immunoglobulin (Ig) domain, a transmembrane domain and a cytoplasmic domain [23,24]. Following TCR activation, basal PD-1 is phosphorylated by LCK on the cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM) and on the immunoreceptor tyrosine-based switch motif (ITSM). The phosphorylated PD-1 ITIM and ITSM act as docking sites for phosphatases SHP-1 and SHP-2, respectively [3]. The phosphatase activity of SHP-1 and/or SHP-2 may target ZAP-70 of the TCR and phosphatidylinositol 3-kinase (PI-3K) of CD28, thereby, terminating the TCR-mediated and CD28-mediated T-cell stimulation [25–27]; although this is still a matter of debate, for example, as to whether SHP-2 acts to positively or negatively regulate T-cells [28].

Importantly, PD-1 binds to two ligands, the B7 homologues 1 and 2 (aka PD-L1/PD-L2). PD-L1 and PD-L2 engagement of PD-1 inhibits the proliferation, cytokine production and effector function in both helper CD4^{+} and cytolytic CD8^{+} T-cells [29,30]. Further, PD-1 blockade requires the expression of the positive co-receptor CD28 to mediate its positive effects [31,32]. Early work from the Riley laboratory reported that PD-1 signaling inhibits...
AKT phosphorylation by preventing CD28-mediated activation of PI-3K (Figure 1) [33]. In contrast, CTLA-4 was found to inhibit AKT (PKB) phosphorylation in a pathway involving the serine phosphatase PP2A. Others have extended this theme by showing that PD-1 targets the RAS-RAF-MEK-ERK pathway by reducing the activation of MEKs1/2 and that of ERKs1/2, possibly by impairing the activity of PLCγ1 and RAS [34,35]. In a similar vein, PD-1 also plays a key role in the regulation of T-cell metabolism, whereby upon activation, T-cells shift from oxidative phosphorylation to glycolysis [36]. CD28 signaling stimulates this glucose uptake and promotes glycolysis [37]. In contrast, PD-1 ligation was found to reduce both glucose transport and glycolysis [38]. Further, inhibition of PI-3K/AKT pathway caused T-cells to shift to lipid metabolism [36], an effect that promotes T-cell memory [39]. The use of anti-PD-1 was found to restore glycolysis in CD8+ TILs [40].

LAG-3 and Its Role in T-cells - A Summary

LAG-3 is another IR that is expressed on activated T-cells, B cells, and NK cells [22]. It consists of 530 amino acids that include four Ig-like sequential domains, a single transmembrane region, and a short cytoplasmic domain. LAG-3, like CD4, binds to MHC-II, through its membrane-distal IgG domain extra loop, and negatively regulates CD4+ T-cells [41,42]. It can also negatively regulate CD8+ T-cells, possibly through interactions with fibrinogen-like protein 1 (FGL1) [43]. However, the negative effects exerted by LAG-3 on T-cells is mediated by an unusual amino acid sequence, KIEELE, located on the cytoplasmic tail [42]. LAG-3 inhibits T-cell function and controls memory T-cell development [44] and is upregulated in response to cytokines IL-2, IL-7 and IL-12 [45].

In addition, LAG-3 has been reported to identify new Treg subpopulations and promote their suppressive function [46]. In this context, Tregs from LAG-3−/− mice exhibit reduced suppressive activity. Further, LAG-3+ Tregs exhibit superior suppressive activity when compared to LAG-3− Tregs, release more immunosuppressive cytokines IL-10 and TGFβ1 [47]. LAG-3 has also been found to cooperate with PD-1 to regulate both CD4+ and CD8+ T-cell function [48]. While LAG-3 and PD-1 double knock-out (KO) mice exhibit an elevated autoimmune disease phenotype affecting multiple organs and leading to death, the majority of the same type of mice effectively cleared tumors and showed a significantly prolonged survival [49].

GSK-3 and Its Role in CD8+ T-cells

Given this background, it is of a great interest that the expression of PD-1 and LAG-3 is controlled by the serine/threonine kinase glycogen synthase kinase 3 (GSK-3) (Figure 1). This kinase was first discovered in 1980 to regulate glycogen synthase and was subsequently found to phosphorylate over 100 different proteins [50]. GSK-3 has been implicated in numerous cell and disease states such as Alzheimer, diabetes, inflammation and cancer [51]. The two GSK-3 isoforms, α and β are 98% identical in their kinase domains. Importantly, unlike other kinases, GSK-3 is constitutively active in resting T-cells where it maintains T-cells in a quiescent state [50]. GSK-3 enters the nucleus of CD4+ T-cells to promote the exit of NFAT, while active GSK-3β inhibits the proliferation of T-cells [52,53]. This occurs independently of the action of the GTP exchange factor, VAV-1 [54]. While TCR and CD28
signals inactivate GSK-3 in T-cells [18,54,55], CD28 activation of PI-3K generates lipids phosphatidylinositol-(4,5)-biphosphate (PIP2) to phosphatidylinositol -(3,4,5)-triphosphate (PIP3) that attach to the plasma membrane to recruit proteins with pleckstrin homology (PH) domains. Pyruvate dehydrogenase kinase 1 (PDK1) in combination with an unidentified kinase phosphorylates and activates PH domain carrying PKB or AKT. PKB (and other kinases) inactivate GSK-3β and GSK-3α by phosphorylating inhibitory residues 9 and 21.

In the context of PD-1 and LAG-3, we first showed that GSK-3 plays a central role in the regulation of PD-1 and LAG-3 in T-cells (Figure 1) [56,57]. Together with former lab member, Dr. Alison Taylor (currently at the University of Leeds), we showed that the use of small molecule inhibitors (SMIs) or siRNA to attain GSK-3 inhibition (GSK-3i) led to a significant increase in CD8+ T cytolytic activity. This increase in CD8+ T cytolytic function was initially found to be due to a GSK-3i-mediated reduction in the expression of PD-1 and later LAG-3. We showed that GSK-3 inhibition reduced tumor growth to the same extent as anti-PD-1 therapy in a B16 melanoma and an EL4 lymphoma model of tumor growth [58]. GSK-3i also promoted the clearance of the lymphocytic choriomeningitis virus clone 13 to the same extent as anti-PD-1 [56]. The combination of anti-LAG-3 and GSK-3 inhibitor further reduced tumor growth and in particular, prolonged survival of mice, more than single agent therapy. Mechanistically, the effect of GSK-3 inhibition is mediated, in part, by an increase in the expression of the transcriptional regulator Tbet (Tbx27). Tbet, in turn, binds to and inhibits the transcription of PD-1 and LAG-3 [56,57]. GSK-3 inactivation also compensates for the lack of CD28 in the priming of CD8+ cytotoxic T-cells [59]. On a cellular level, GSK-3 inhibition led to a decreased T-cell motility, reduced CD8+ T-cell interactions with target cells but without affecting their cytolytic activity [58]. Overall, GSK-3 and its regulation of IR expression has a great potential as a key pathway to be exploited in the development of novel strategies to treat cancer.

GSK-3 and the Wnt Pathway

Classically, GSK-3 was discovered to phosphorylate the transcriptional regulator β-catenin rendering it a target for proteasomal degradation, and thereby inactivating important Wnt signaling [59]. Therefore remains an issue of future work to determine what components (if any) of the Wnt pathway may be involved in the downregulation of IRs. The Wnt pathway could operate in a way to control IR expression or in a parallel pathway that cooperates with the GSK-3-Tbet-IR axis. The Wnt pathway promotes the presence of self-renewing multipotent stem like CD8+ memory T-cells (Tscm). Adoptively transferred Tscm cells exhibit an increased in vivo recall and an improved tumor control [60]. The β-catenin-Wnt pathway also regulates the function of the transcription factor, T-cell factor 1 (TCF-1). TCF-1 helps maintain T-cells in a more progenitor-like self-renewing state [61]. The ablation of TCF-1+ PD-1+ CD8+ T-cells significantly attenuates anti-PD-1-induced tumor control. With respect to exhaustion, TCF-1+ progenitor cell subsets gradually lose TCF-1 expression and give rise to an effector-like Tex intermediate and a terminally exhausted subset [62]. TCF-1 and T-bet facilitate the interconversion between different exhausted T-cells subsets. The exact interrelationship between GSK-3 activity, its control of PD-1 and LAG-3 expression and the interconversion of different stages of exhaustion remain to be explored. In a similar context, TCF-1 was found to associate and competes with Foxp3 in human Tregs.
where GSK-3 inhibitor mediated Wnt activation significantly impaired Foxp3 activity and reduced Treg suppressive function [63]. The development of interventions linked to the inter-relationships between GSK-3, IRs, exhaustion and suppression on immunity has great potential in the future generation of new therapies in cancer immunotherapy.

References

1. Sharma P, Siddiqui BA, Anandhan S, Yadav SS, Subudhi SK, Gao J, et al. The next decade of immune checkpoint therapy. Cancer Discovery. 2021 Apr 1;11(4):838–57. [PubMed: 33811120]

2. Bai R, Chen N, Li L, Du N, Bai L, Lv Z, et al. Mechanisms of cancer resistance to immunotherapy. Frontiers in Oncology. 2020 Aug 6;10:1290. [PubMed: 32850400]

3. Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH. Coinhibitory pathways in immunotherapy for cancer. Annual Review of Immunology. 2016 May 20;34:539–73.

4. Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nature Reviews Cancer. 2021 May;21(5):298–312. [PubMed: 33750922]

5. Rudd CE. How the discovery of the CD4/CD8-p56lck complexes changed immunology and immunotherapy. Frontiers in Cell and Developmental Biology. 2021 Mar 15:9:107.

6. Rudd CE, Trevillyan JM, Dasgupta JD, Wong LL, Schlossman SF. The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes. Proceedings of the National Academy of Sciences. 1988 Jul 1;85(14):5190–4.

7. Raab M, Kang H, da Silva A, Zhu X, Rudd CE. FYN-T-FYB-SLP-76 interactions define a T-cell receptor ζ/CD3-mediated tyrosine phosphorylation pathway that up-regulates interleukin 2 transcription in T-cells. Journal of Biological Chemistry. 1999 Jul 23;274(30):21170–9. [PubMed: 10409671]

8. Samelson LE, Bunnell SC, Tribble RP, Yamazaki T, Zhang W. Studies on the adapter molecule LAT. In Cold Spring Harbor symposia on quantitative biology 1999 Jan 1:64, 259–264.

9. Weiss A Littman DR. Signal transduction by lymphocyte antigen receptors. Cell. 1994 Jan 28;76(2):263–74. [PubMed: 8293463]

10. Chan AC, Iwashima M, Turck CW, Weiss A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR ζ chain. Cell. 1992 Nov 13;71(4):649–62. [PubMed: 1423621]

11. Raab M, da Silva AJ, Findell PR, Rudd CE. Regulation of Vav-SLP-76 Binding by ZAP-70 and Its Relevance to TCRζ/CD3 Induction of Interleukin-2. Immunity. 1997 Feb 1;6(2):155–64. [PubMed: 9047237]

12. Zhang W, Sloan-Lancaster J, Kitchen J, Tribble RP, Samelson LE. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell. 1998 Jan 9;92(1):83–92. [PubMed: 9489702]

13. Masopust D, Ahmed R. Reflections on CD8 T-cell activation and memory. Immunologic Research. 2004 Jun;29(1):151–60. [PubMed: 15181278]

14. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008 May 30;133(5):775–87. [PubMed: 18510923]

15. MacLeod MK, McKee A, Crawford F, White J, Kappler J, Marrack P. CD4 memory T cells divide poorly in response to antigen because of their cytokine profile. Proceedings of the National Academy of Sciences. 2008 Sep 23;105(38):14521–6.

16. Youngblood B, Hale JS, Kissick HT, Ahn E, Xu X, Wieland A, et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature. 2017 Dec;552(7685):404–9. [PubMed: 29236683]

17. McLane LM, Abdel-Hakeem MS, Wherry EJ. CD8 T cell exhaustion during chronic viral infection and cancer. Annual Review of Immunology. 2019 Apr 26;37:457–95.

18. Rudd CE, Schneider H. Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nature Reviews Immunology. 2003 Jul;3(7):544–56.

19. Wherry EJ. T cell exhaustion. Nature immunology. 2011 Jun;12(6):492–9. [PubMed: 21739672]

J Cell Immunol. Author manuscript; available in PMC 2022 June 10.
20. Virgin HW, Wherry EJ, Ahmed R. Redefining chronic viral infection. Cell. 2009 Jul 10;138(1):30–50. [PubMed: 19596234]

21. Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD. Immune modulation in cancer with antibodies. Annual Review of Medicine. 2014 Jan 14;65:185–202.

22. Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG 3 (CD 223) as a cancer immunotherapy target. Immunological Reviews. 2017 Mar;276(1):80–96. [PubMed: 28258692]

23. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proceedings of the National Academy of Sciences. 2001 Nov 20;98(24):13866–71.

24. Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance. Trends in Immunology. 2006 Apr 1;27(4):195–201. [PubMed: 16500147]

25. Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA, Wooters J, et al. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3ζ signalosome and downstream signaling to PKCθ. FEBS Letters. 2004 Sep 10;574(1–3):37–41. [PubMed: 15358536]

26. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. The Journal of Immunology. 2004 Jul 15;173(2):945–54. [PubMed: 15240681]

27. Arasanz H, Gato-Cañas M, Zuaazo M, Ibañez-Vea M, Breckpot K, Kochan G, et al. PD1 signal transduction pathways in T cells. Oncotarget. 2017 Aug 1;8(31):51936. [PubMed: 28881701]

28. Mustelin T, Vang T, Bottini N. Protein tyrosine phosphatases and the immune response. Nature Reviews Immunology. 2005 Jan;5(1):43–57.

29. Brunner-Weinzierl MC, Rudd CE. CTLA-4 and PD-1 control of T-cell motility and migration: implications for tumor immunotherapy. Frontiers in Immunology. 2018 Nov 27;9:2737. [PubMed: 30542345]

30. Carter LL, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR, et al. PD-1: PD-L inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2. European Journal of Immunology. 2002 Mar;32(3):634–43. [PubMed: 11857337]

31. Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, et al. Rescue of exhausted CD8 T cells by PD-1+ targeted therapies is CD28-dependent. Science. 2017 Mar 31;355(6332):1423–7. [PubMed: 28280249]

32. Krueger J, Rudd CE. Two strings in one bow: PD-1 negatively regulates via co-receptor CD28 on T cells. Immunity. 2017 Apr 18;46(4):529–31. [PubMed: 28423334]

33. Parry RV, Chemnitz JM, Fruwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Molecular and Cellular Biology. 2005 Nov 1;25(21):9543–53. [PubMed: 16227604]

34. Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. New England Journal of Medicine. 2016 Nov 3;375(18):1767–78. [PubMed: 27806234]

35. Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Science Signaling. 2012 Jun 26;5(230):ra46-. [PubMed: 22740686]

36. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D, et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell. 2013 Jun 6;153(6):1239–51. [PubMed: 23746840]

37. Fruwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity. 2002 Jun 1;16(6):769–77. [PubMed: 12121659]

38. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, et al. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nature Communications. 2015 Mar 26;6(1):1–3.

39. Pearce EL, Walsh MC, Celas PJ, Harms GM, Shen H, Wang LS, et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature. 2009 Jul;460(7251):103–7. [PubMed: 19494812]
40. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015 Sep 10;162(6):1229–41. [PubMed: 26321679]

41. Workman CJ, Vigilani DA. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. European Journal of Immunology. 2003 Apr; 33(4):970–9. [PubMed: 12672063]

42. Workman CJ, Vigilani DA. Negative regulation of T cell homeostasis by lymphocyte activation gene-3 (CD223). The Journal of Immunology. 2005 Jan 15;174(2):688–95.

43. Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun J, et al. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell. 2019 Jan 10;176(1–2):334–47. [PubMed: 30580966]

44. Workman CJ, Cauley LS, Kim IJ, Blackman MA, Woodland DL, Vignali DA. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. The Journal of Immunology. 2004 May 1;172(9):5450–5. [PubMed: 15100286]

45. Bruniquel D, Borie N, Hannier S, Triebel F. Regulation of expression of the human lymphocyte activation gene-3 (LAG-3) molecule, a ligand for MHC class II. Immunogenetics. 1998 Jun;48(2):116–24. [PubMed: 9634475]

46. Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004 Oct 1;21(4):503–13. [PubMed: 15485628]

47. Camisaschi C, Casati C, Rini F, Perego M, De Filippo A, Triebel F, et al. LAG-3 expression defines a subset of CD4+ CD25highFoxp3+ regulatory T cells that are expanded at tumor sites. The Journal of Immunology. 2010 Jun 1;184(11):6545–51. [PubMed: 20421648]

48. Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Research. 2012 Feb 15;72(4):917–27. [PubMed: 22186141]

49. Kraman M, Faroudi M, Allen NL, Kmiecik K, Gliddon D, Seal C, et al. FS118, a bispecific antibody targeting LAG-3 and PD-L1, enhances T-cell activation resulting in potent antitumor activity. Clinical Cancer Research. 2020 Jul 1;26(13):3333–44. [PubMed: 32299814]

50. Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. The EMBO journal. 1990 Aug;9(8):2431–8. [PubMed: 2164470]

51. Beurel E, Grieco SF, Jope RS. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacology & Therapeutics. 2015 Apr 1;148:114–31. [PubMed: 25435019]

52. Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree GR. Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science. 1997 Mar 28;275(5308):1930–3. [PubMed: 9072970]

53. Ohteki T, Parsons M, Zakarian A, Jones RG, Nguyen LT, Woodgett JR, et al. Negative regulation of T cell proliferation and interleukin 2 production by the serine threonine kinase GSK-3. The Journal of Experimental Medicine. 2000 Jul 3;192(1):99–104. [PubMed: 10880530]

54. Wood JE, Schneider H, Rudd CE. TcR and TcR-CD28 engagement of protein kinase B (PKB/AKT) and glycogen synthase kinase-3 (GSK-3) operates independently of guanine nucleotide exchange factor VAV-1. Journal of Biological Chemistry. 2006 Oct 27;281(43):32385–94. [PubMed: 16905544]

55. Appleman LJ, van Puijenbroek AA, Shu KM, Nadler LM, Boussiotis VA. CD28 costimulation mediates down-regulation of p70S6K and cell cycle progression by activation of the PI3K/PKB signaling pathway in primary human T cells. The Journal of Immunology. 2002 Mar 15;168(6):2729–36. [PubMed: 11884439]

56. Taylor A, Barker JA, Chanthong K, Stevenson PG, Zuniga EI, Rudd CE. Glycogen synthase kinase 3 inactivation drives T-bet-mediated downregulation of co-receptor PD-1 to enhance CD8+ cytolytic T cell responses. Immunity. 2016 Feb 16;44(2):274–86. [PubMed: 26885856]

57. Rudd CE, Chanthong K, Taylor A. Small molecule Inhibition of GSK-3 specifically inhibits the transcription of inhibitory co-receptor LAG-3 for enhanced anti-tumor immunity. Cell Reports. 2020 Feb 18;30(7):2075–82. [PubMed: 32075731]

58. Taylor A, Rothstein D, Rudd CE. Small-molecule Inhibition of pd-1 transcription is an effective alternative to antibody blockade in cancer therapy. Cancer Research. 2018 Feb 1;78(3):706–717. [PubMed: 29055015]
59. Taylor A, Rudd CE. Glycogen synthase kinase 3 inactivation compensates for the lack of CD28 in the priming of CD8+ cytotoxic T-cells: Implications for anti-PD-1 immunotherapy. Frontiers in Immunology. 2017 Dec 11;8:1653. [PubMed: 29312284]

60. Gattinoni L, Zhong XS, Palmer DC, Ji Y, Hinrichs CS, Yu Z, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nature Medicine. 2009 Jul;15(7):808–13.

61. Siddiqui I, Schaeuble K, Chennupati V, Marraco SF, Calderon-Copete S, Ferreira DP, et al. 1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity. 2019;50(195–211):e10.

62. Beltra JC, Manne S, Abdel-Hakeem MS, Kurachi M, Giles JR, Chen Z, et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity. 2020 May 19;52(5):825–41. [PubMed: 32396847]

63. Van Loosdregt J, Fleskens V, Tiemessen MM, Mokry M, van Boxtel R, Meerding J, Pals CE, Kurek D, Baert MR, Delemarre EM, Gröne A. Canonical Wnt signaling negatively modulates regulatory T cell function. Immunity. 2013 Aug 22;39(2):298–310. [PubMed: 23954131]

64. Biorender.com.
Figure 1: GSK-3 regulates PD-1 and LAG3 expression for enhanced T-cell reactivity.

T-cell activation is regulated by IRs PD-1, LAG-3 and CTLA-4. GSK-3 inactivation by GSK3 small molecule inhibitors (SMIs) or siRNA causes the upregulation of Tbet (Tbx21) transcription and expression, which in turn, represses the transcription and expression of PD-1 and LAG-3. Some inhibition is mediated via TCR-CD28 mediated activation of PI 3K, its activation of AKT (and ERKs) which phospho-inhibit GSK-3; however, the effects of this pathway are partial. The use of GSK-3 SMIs and siRNAs provides a much more potent bolus inhibition of GSK-3 resulting in the potent generation of PD-1 and LAG-3 down-regulation. The downregulation of both IRs removes the inhibitory effect of the IRs on T-cell function, allowing for more potent reactivity against tumor antigens in cancer immunotherapy. At the same time, it is possible that PD-1 and CTLA-4 themselves can also affect the activation status of GSK-3. PD-1 and CTLA-4 inhibit AKT activation via different mechanisms resulting in enhanced GSK-3 inhibitory functions. Blockade of PD-1 and CTLA-4 with antibodies might block function and sequester the receptors away from CD28 resulting in enhanced AKT, reduced GSK-3 and reduced PD-1 and LAG3 expression. Lastly, the inhibition of GSK-3 liberates β-catenin from proteasomal degradation and allows it to translocate to the nucleus to upregulate progenitor transcription factor, TCF-1. TCF-1 regulates T-cell exhaustion and progenitor pool. This figure was created by biorender.com [64].