Recyclable PhotoFuel Cell for Use of Acidic Water as a Medium
Yuta Ogura, Mao Yoshiba, Yasuo Izumi

To cite this version:
Yuta Ogura, Mao Yoshiba, Yasuo Izumi. Recyclable PhotoFuel Cell for Use of Acidic Water as a Medium. Oil & Gas Science and Technology - Revue d’IFP Energies nouvelles, Institut Français du Pétrole, 2015, 70 (5), pp.853-862. 10.2516/ogst/2015031. hal-01931380

HAL Id: hal-01931380
https://hal.archives-ouvertes.fr/hal-01931380
Submitted on 22 Nov 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
This paper is a part of the hereunder thematic dossier published in OGST Journal, Vol. 70, No. 5, pp. 791-902 and available online here.

Cet article fait partie du dossier thématique ci-dessous publié dans la revue OGST, Vol. 70, n°5, pp. 791-902 et téléchargeable ici.
Recyclable PhotoFuel Cell for Use of Acidic Water as a Medium

Yuta Ogura, Mao Yoshiba and Yasuo Izumi*

Department of Chemistry, Graduate School of Science, Chiba University, Yayoi 1-33, Inage-ku, Chiba 263-8522 - Japan
e-mail: tyojuryoku@hotmail.co.jp - yubari.com@ae.aone-net.jp - yizumi@faculty.chiba-u.jp
* Corresponding author

Abstract — We reported a new PhotoFuel Cell (PFC) comprising two photocatalysts for use of acidic water as a recyclable medium. Nitrogen and oxygen flow was required in the photoanode and photocathode, respectively. In this study, we developed a gas-circulating PFC that needs no gas supply from outside. In the gas-circulating PFC, the reverse reaction of water oxidation at the anode was prevented by the gas flow of photogenerated O2 from the anode to the cathode inside the PFC. The gas-circulating PFC accommodated an organic solvent layer over the aqueous electrolyte for the anode, and also a vent hole in the upper part of the Proton-Conducting Polymer (PCP) film. O2 transferred from the anode electrolyte to the organic solvent due to the solubility difference between the HCl solution and organic solvent. O2 transfer from the gas phase in the anode to that in the cathode was achieved by the vent hole in the PCP film due to the pressure difference due to the progress of the reaction. By the addition of a hexane layer to the anode of the PFC, it was demonstrated to achieve a photocurrent value of 69.7 μA per 1.3 cm² of photocatalysts. However, in the stability tests for more than 7 h, the small amount of remaining O2 in the electrolyte (2.85 μmol L⁻¹) exhibited serious effects on the PFC performance. The ISC, V OC and P Max values of the gas-circulating PFC were 29.2 μA, 1.18 V and 6.10 μW, that were 40%, 74% and 44%, respectively, of those for a N2 and O2 flow-type PFC. Apparently, photocurrents were dramatically suppressed by the reverse reaction at the photoanode in the extended tests for the gas-circulating PFC.

Résumé — Cellule photocombustible recyclable pour l’utilisation d’eau acide en tant que milieu — Nous descrivons une nouvelle cellule photocombustible (PhotoFuel Cell, PFC) comprenant deux photocatalyseurs utilisant de l’eau acide recyclée. Un flux d’azote et d’oxygène a été nécessaire dans respectivement la photoanode et la photocathode. Dans cette étude, nous avons développé une PFC à circulation de gaz qui n’a pas besoin d’être alimentée en gaz de l’extérieur. Dans la PFC à circulation de gaz, la réaction inverse d’oxydation de l’eau à l’anode a été évitée par le flux de gaz d’O2 photo-généré de l’anode à la cathode à l’intérieur de la PFC. La PFC à circulation de gaz présentait une couche de solvant organique au-dessus de l’électrolyte aqueux pour l’anode, et également un orifice d’aération dans la partie supérieure du film polymère conducteur de proton (Proton-Conducting Polymer, PCP). L’O2 était transféré de l’électrolyte de l’anode au solvant organique, à cause de la différence de solubilité entre la solution d’HCl et le solvant organique.

Le transfert d’O2 de la phase gazeuse à l’anode vers celle dans la cathode a été réalisé par l’orifice d’aération dans le film PCP, du fait de la différence de pression due à la progression de la réaction. En ajoutant une couche d’héxane à l’anode de la PFC, il a été démontré que l’on atteignait une valeur de courant photo-électrique de 69.7 μA par 1.3 cm² de photocatalyseurs. Toutefois, dans les tests de stabilité, pendant plus de 7 h, la faible quantité d’O2 restant dans l’électrolyte (2,85 μmol L⁻¹) a eu des...
INTRODUCTION

Fossil fuels have been utilized as the essential energy source for industrialization. Industrial CO₂ emissions have led to an increase in the level of atmospheric CO₂ concentration (400 ppm), and the effects of this increase on global warming cannot be underestimated. The development of renewable energy as a replacement for fossil fuels has been slow [1, 2].

Among the renewable energies, solar energy has the greatest potential. Although the Silicon Solar Cell (Si SC) has been commercialized, the technology that can convert solar energy to electricity often needs subsidies to spread more widely [3]. Other types of SC, e.g. the dye-sensitized SC and compound SC [4], and Fuel Cells (FC) that use hydrogen/methanol fuel [5-8], potentially obtained using solar energy [9], have been extensively investigated. However, all the requisites (sustainability, durability and an electromotive force of 1-3 V per cell) have not been fully satisfied.

Recently, a new device was demonstrated: a PFC utilizing two photocatalysts of TiO₂ and silver(0/I)-doped TiO₂ [10] on an electrode film, both immersed in acidic solutions separated by a PCP film [11]. Platinum is not used [5-8, 12-16], and only inexpensive materials were used in the PFC for sustainability. The PFC is similar to photoelectrochemical cells (PEC) consisting of a photoanode and a photocathode to form O₂ and H₂, respectively, from water [17, 18] and also PEC consisting of a photoanode to oxidize water [19] or organic dye fuel [20] and a photocathode to reduce protons. The PFC is different from these PEC in that the medium, water, is recycled in the cell and no fuel is needed except for natural light [21].

Although PFC enable higher electromotive force (1.8 V) [11, 21] and use only acidic water as a medium and inexpensive catalysts, PFC need a gas supply to promote surface reactions at both the anode and cathode. At the anode, O₂ gas needs to be evacuated by N₂ flow to prevent a reverse surface reaction:

\[\text{O}_2 + 4\text{H}^+ + 4e^- \rightarrow 2\text{H}_2\text{O} \quad (1) \]

On the other hand, at the cathode reactant O₂ should be supplied for the reaction (1) to proceed. Therefore, PFC need gas cylinders to supply these gases for effective power generation. This situation limits the design of compact enough PFC that can be accommodated in portable electronic devices.

Herein, we developed a PFC in which gas circulates internally. By circulating formed O₂ gas from the anode to the cathode, the reverse reaction at the anode could be prevented. The concept of gas-circulating PFC is shown in Figure 1a, Test 3. The PFC has two photocatalysts (TiO₂ and Ag-TiO₂) immersed in HCl solution. The electrolyte at the anode and that at the cathode (Fig. 1b2, 3) are separated by a PCP (Fig. 1b4, 5). As the mechanism of gas circulation, the PFC designed in this study comprises an organic solvent phase on an anode electrolyte (Fig. 1b1) and a vent hole in the upper part of the PCP film (Fig. 1b4, 5). The organic solvent can dissolve a greater amount of O₂ gas than water can.

O₂ gas circulated in the PFC as follows. O₂ generated by the anode reaction transferred preferentially into the organic solvent due to the difference in O₂ solubility between the HCl solution and the organic solvent. Then, the dissolved O₂ in the organic solvent moved to the upper gas phase due to the increased O₂ concentration in the solvent in the compartment of the anode, and then to the upper gas phase in the compartment of the cathode through the vent hole in the PCP film due to the pressure difference between the O₂ formed at the anode and O₂ consumed at the cathode (Fig. 1a, 1b1). Finally, the gaseous O₂ that moved to the cathode side reached the photocatalyst on the cathode and was photo-reduced.

1 EXPERIMENTAL SECTION

1.1 Sample Preparation of the Photoelectrodes

TiO₂ powder [1.00 g; P25, Degussa; anatase/rutile phases = 7/3; Brunauer-Emmett-Teller (BET) surface area (S_{BET}) = 60 m² g⁻¹] was suspended in 3.0 mL of deionized water (<0.06 μS cm⁻¹) and then stirred well. The obtained suspension was dried at 373 K for 24 h and heated in air at 673 K for 2 h. The resultant powder was suspended in 75 μL of deionized water and placed on an Indium Tin Oxide (ITO, thickness 1.2-1.6 μm)-coated Pyrex glass plate. The TiO₂/ITO/Pyrex was dried at 373 K for 18 h and heated in air at 573 K for 30 min. The amount of TiO₂ deposited on the ITO-coated glass plate was 5.0 mg and covered an area of 1.3 cm².
Silver nitrate (159 mg; 99.8%, Wako Pure Chemicals) was dissolved in 10 mL of deionized water. The solution was mixed with 3.33 g of untreated TiO2 (P25). The mixture was magnetically stirred at a rate of 850 rotations per minute (rpm) and the water was distilled at 353 K. The obtained powder was dried at 373 K for 24 h and heated in air at 673 K for 2 h. The resultant Ag-TiO2 powders contained 3.0 wt% of Ag. They were suspended in a minimum amount of water and placed on ITO-coated glass (Ag-TiO2/ITO/Pyrex) in a manner similar to that for the TiO2/ITO/Pyrex.

1.2 Photocurrent Tests

1.2.1 Test 1: Gas-Flow Conditions

TiO2/ITO/Pyrex and Ag-TiO2/ITO/Pyrex electrodes were immersed in HCl solutions (40 mL in each compartment; initial pH 4.0-2.0). The two compartments were separated by a 50-μm-thick PCP film (Nafion, DuPont; acid capacity > 9.2 × 10^{-4} equivalent g^{-1}). N2 (purity > 99.999%) and O2 gases (purity > 99.6%) were bubbled 30 mm away from each photoelectrode at a flow rate of 100 mL min^{-1} (Fig. 1a). The PFC was equipped with quartz windows (ϕ = 80 mm) on both sides. Both the TiO2 and Ag-TiO2 photocatalysts were irradiated with UV–visible light through the quartz windows using a two-way branched quartz fiber light guide (Model 5ϕ-2B-1000L, San-eti Electric Co.) from a 500-W xenon arc lamp (Model SX-UID502XAM, Ushio).

The distance between the light exit (ϕ = 5 mm) and the TiO2 or Ag-TiO2 film was 46 mm. The light intensity was 8 mW cm^{-2} at the center of the photocatalyst film on each electrode.

1.2.2 Test 2: Gas-Closed Conditions

PFC comprising TiO2/ITO/Pyrex and Ag-TiO2/ITO/Pyrex electrodes were prepared and immersed in HCl solutions (40 mL in each compartment; initial pH 2.0) in a similar procedure to that in Test 1. The two compartments were separated by a 50-μm-thick PCP film. N2 and O2 gases purged the compartments of TiO2/ITO/Pyrex and Ag-TiO2/ITO/Pyrex, but the gas supply was stopped before the start of Test 2. Both the TiO2 and Ag-TiO2 photocatalysts were irradiated with UV–visible light in the closed compartments filled with N2 and O2, respectively.

1.2.3 Test 3: Gas-Circulating Conditions inside the PFC

An Ag-TiO2/ITO/Pyrex electrode was immersed in 50 mL of HCl solution (initial pH 2.0), whilst TiO2/ITO/Pyrex was immersed in 50 mL of the HCl solution phase (initial pH 2.0) and 50 mL of hexane phase was added above the HCl solution phase (Fig. 1). All the area of the TiO2 film was immersed in the HCl solution phase and not in contact with the hexane phase. N2 and O2 gases purged the compartments of TiO2/ITO/Pyrex and Ag-TiO2/ITO/Pyrex,
respectively, but the gas supply was stopped before the start of Test 3. Both the TiO$_2$ and Ag-TiO$_2$ photocatalysts were irradiated with UV–visible light, set in the closed compartments filled with N$_2$ and O$_2$, respectively. The two compartments were separated by a 50-µm-thick PCP film; however, in Test 3, gas circulation inside the PFC was enabled through a vent hole (6.0 mm × 3.0 mm) in the upper part of the PCP film (Fig. 1a, b4, b5) from the anode compartment in which O$_2$ was formed to the cathode compartment in which O$_2$ was consumed. The conditions of UV–visible light irradiation were similar to those for Tests 1 and 2 (Tab. 1).

1.2.4 Test 4: Gas-Closed Conditions Plus Hexane@Anode

An Ag-TiO$_2$/ITO/Pyrex electrode was immersed in 55 mL of HCl solution (initial pH 2.0), whilst TiO$_2$/ITO/Pyrex was immersed in 55 mL of the HCl solution phase (initial pH 2.0) and 55 mL of the hexane phase above the HCl solution phase (Fig. 1). All the area of the TiO$_2$ film was immersed in the HCl solution phase and not in contact with the hexane phase. N$_2$ and O$_2$ gases purged the compartments of TiO$_2$/ITO/Pyrex and Ag-TiO$_2$/ITO/Pyrex, respectively, but the gas supply was stopped before the start of Test 4. Both the TiO$_2$ and Ag-TiO$_2$ photocatalysts were irradiated with UV–visible light, set in the closed compartments filled with N$_2$ and O$_2$, respectively. The two compartments were separated by a 50-µm-thick PCP film. The conditions of UV–visible light irradiation were similar to those for Tests 1-3 (Tab. 1). For Tests 1-5, photocurrent generation (photocurrent tests) was performed by connecting the external parallel circuit for one route via a voltmeter and another route via an ammeter with a resistance of 0.5 Ω (Fig. 1a). Both catalysts were exposed for 30 min to UV–visible light and then kept in the dark for 30 min, and this process was repeated five-seven times. The current and voltage between the two electrodes were monitored.

1.2.5 Test 5: Gas-Circulating Conditions inside the PFC Minus Hexane@Anode

An Ag-TiO$_2$/ITO/Pyrex electrode was immersed in 40 mL of HCl solution (initial pH 2.0), whilst TiO$_2$/ITO/Pyrex was immersed in 40 mL of the HCl solution phase (initial pH 2.0). N$_2$ and O$_2$ gases purged the compartments of TiO$_2$/ITO/Pyrex and Ag-TiO$_2$/ITO/Pyrex, respectively, but the gas supply was stopped before the start of Test 5. Both the TiO$_2$ and Ag-TiO$_2$ photocatalysts were irradiated with UV–visible light, set in the closed compartments filled with N$_2$ and O$_2$, respectively. The two compartments were separated by a 50-µm-thick PCP film. The conditions of UV–visible light irradiation were similar to those for Tests 1-4. This PFC had a vent hole (6.0 mm × 3.0 mm) in the upper part of the PCP film (Fig. 1a, b4, b5) similar to Test 3 (Tab. 1). For Tests 1-5, photocurrent generation (photocurrent tests) was performed by connecting the external parallel circuit for one route via a voltmeter and another route via an ammeter with a resistance of 0.5 Ω (Fig. 1a). Both catalysts were exposed for 30 min to UV–visible light and then kept in the dark for 30 min, and this process was repeated five-seven times. The current and voltage between the two electrodes were monitored.

1.3 Current–Voltage Dependence Tests

The current (i)–voltage (V) characteristics were also measured for several types of PFC using a similar parallel circuit (Fig. 1a). After the photocurrent test for Figure 2 (2.5, 3.5 and 3.5 h of irradiation of UV–visible light for Tests 1, 2 and 4, respectively), the resistance was gradually decreased from 500 kΩ to 0.3 Ω over 20 min to plot the $i–V$ dependence. For comparison, a PFC in the conditions of Test 1
(Sect. 1.2.1) was also prepared and \(i-V \) characteristics were also measured similar to the experiments described above, but in darkness.

1.4 Product Analyses during Photocurrent Tests at the Anode

1.4.1 Analysis of \(\text{O}_2 \) Formed at the Anode

56.2 mg of iron(III) chloride hexahydrate (Kanto Chemical, purity \(\geq 99\% \)) was dissolved in 90 mL of HCl aqueous solution in a quartz flask. The pH of this solution was adjusted to 2.0 by the addition of HCl solution. 151 mg of TiO\(_2\) powder (P25, Degussa) was suspended in this solution for 10 min. Then, dissolved \(\text{O}_2 \) in the solution was removed by \(\text{N}_2 \) bubbling for 30 min. Next, \(\text{N}_2 \) bubbling was stopped and the flask was isolated. The solution suspended with TiO\(_2\) was irradiated with UV–visible light from model SX-UID502-XAM. The distance between the light exit (\(\phi = 60 \text{ mm} \)) and the center of the flask was 120 mm. The sample was exposed to the light for 15 min and kept in the dark for 15 min. This step was repeated five times. The solution was magnetically stirred at a rate of 1 000 rpm and the temperature was 298-301 K. The formed O\(_2\) as dissolved was monitored \textit{in situ} by a Dissolved Oxygen (DO) electrode (Model 9520-10D, Horiba).

1.4.2 Analysis of Hypochlorous Acid Formed at the Anode by the Photooxidation of Cl\(^{-}\)

The possibility of the photooxidation of Cl\(^{-}\) ions at the anode of the PFC instead of the photooxidation of water was checked. If Cl\(_2\) is formed by the photodegradation at the anode (Eq. 2), it should immediately decompose into hypochlorous acid and hydrochloric acid in the HCl solution of the anode (Eq. 3):

\[
2\text{Cl}^- + 2h^+ \rightarrow \text{Cl}_2 \tag{2}
\]

\[
\text{Cl}_2 + \text{H}_2\text{O} \rightarrow \text{HCl} + \text{HClO} \tag{3}
\]

The HClO formed was evaluated by the \(N,N \)-Diethyl-p-PhenyleneDiamine (DPD) method [22].

20 mg of DPD reagent (0.8 mg of DPD sulfate salt (H\(_2\)SO\(_4\)) and 19.2 mg of Na\(_2\)SO\(_4\)) were dissolved in 1.0 mL phosphate buffer solution (pH 6.5). This solution was mixed with 5.0 mL of 0.39.0 \(\mu \text{mol L}^{-1} \) of NaOCl aqueous solutions and used as a standard solution. The mixed solutions (6.0 mL) were used to obtain a linear regression relationship between the absorbance at 515 nm and the concentration of ClO\(^{-}\) ions.

Next, 20 mg of DPD reagent were dissolved in 4.0 mL phosphate buffer solution (pH 6.5). This solution was mixed with 2.0 mL of sample solution (HCl aqueous solution) after a photocurrent Test 1 using a PFC (Fig. 1) for 3 h at pH 2.0. The \(\text{UV}–\text{visible} \) spectrum of the mixed solution (6.0 mL) was measured by \(\text{UV}–\text{visible} \) spectrometer (Model V650, JASCO). The concentration of HClO in the sample was determined based on the absorbance at 515 nm and the relationship obtained using NaOCl standard solutions. The reason for the volume difference for the phosphate buffer and sample solutions was to adjust the pH within 6.4 and 6.6 for mixed solutions (6.0 mL).

2 RESULTS AND DISCUSSION

2.1 Photocurrent Tests

The time courses of the photocurrent tests are summarized in Figure 2. For Test 1, in response to the \(\text{UV}–\text{visible} \) irradiation, photocurrents increased from 43.7 to 60.5 \(\mu \text{A} \) in five cycles at pH 2.0. In contrast, the photocurrents increased and converged to a constant value (26.7 \(\mu \text{A} \)) in the test at pH 3.0 (not shown) [11]. Thus, the active metallic Ag\(^0\) species for photo-reduction of \(\text{O}_2 \) at the cathode should gradually increase, transformed from Ag\(_2\)O by the reaction with protons, in the five cycles at pH 2.0. The transformation of the active Ag species (Ag\(^0\), Ag\(_2\)O and AgCl) was reported based on an extended X-ray absorption fine-structure study [11].

At pH 4.0, a PFC current of 3 \(\mu \text{A} \) was obtained (not shown) for 2.5 h irradiated by \(\text{UV}–\text{visible} \) light (0.28 \(\mu \text{mol-e}^- \) generated in total) [11]. The pH values starting from 4.0 for the HCl solution (40 mL, 4.0 \(\mu \text{mol-H}^+ \)) remained constant after the PFC test at both the anode and cathode. The pH change due to each half reaction was calculated as ±0.03. As this value is nearly the accuracy of pH monitoring under these conditions, we cannot judge that the photooxidation of water (at the anode) and photoreduction of \(\text{O}_2 \) (at the cathode) exclusively took place. The possibility of a by-reaction, \textit{e.g.} the consumption of acid, remained. For the test at pH 2.0, the initial proton concentration was 400 \(\mu \text{mol} \) in 40 mL of electrolyte solution at both the anode and cathode, while the PFC current for 2.5 h was 4.7 \(\mu \text{mol-e}^- \) in total. The pH change due to each half reaction is calculated as ±0.005. It was even more difficult to judge the possibility of photooxidation of water and/or anions of acid under the conditions.

In Test 2, the photocurrent in the first cycle (34.7 \(\mu \text{A} \)) was similar to that in Test 1 (43.7 \(\mu \text{A} \)). In response to the \(\text{UV}–\text{visible} \) irradiation, photocurrents gradually increased to 35.8 \(\mu \text{A} \) in three cycles. In contrast to the gradual increase in photocurrents throughout 5 h of the study in Test 1, the photocurrents peaked at 35.8 \(\mu \text{A} \) in the third cycle and gradually decreased to 32.2 \(\mu \text{A} \) in the seventh cycle in Test 2 (Fig. 2). This decrease by 3.6 \(\mu \text{A} \) suggested partial
deactivation of the TiO_2 photocatalyst at the anode. One of the major reasons is the reverse reaction of produced O_2 which remained dissolved in the HCl solution to water (Eq. 1). In contrast to the gas-flowing Test 1, the anode compartment of TiO_2/ITO/Pyrex was purged with N_2 gas and produced O_2 remained in the compartment for Test 2 (Tab. 1).

The photocurrent in the first cycle (54.8-40.3 μA) was clearly higher in Test 3 than that in Tests 1 and 2. The photocurrent decreased to 36.5 μA at the end of the second cycle (Fig. 2) and continued to decrease gradually to 31.0 μA at the end of the seventh cycle. The photocurrents in the first cycle were probably higher because N_2 was purged in the anode compartment more completely than in Tests 1 and 2 by the effect of hexane to preferably dissolve a contamination level of O_2 (–0.04 ppb). This evaluation was based on the impurity of O_2 (< 1 ppm) in the N_2 gas used and the equilibrium of dissolution. Conversely, the decrease in the photocurrent in seven cycles suggested an even smaller amount of formed O_2 remained in the anode and inhibited the PFC performance considerably, and an unexpected reverse diffusion of O_2 from the cathode into the anode was not excluded through the vent hole.

In Test 4, the photocurrent in the first cycle (69.7 μA) was clearly higher than that in Tests 1-3. However, in response to the UV–visible irradiation, photocurrents gradually decreased to 51.9 μA in seven cycles (Fig. 2). The photocurrent in Test 4 was always higher than that in Tests 2 and 3 throughout the photocurrent test. Thus, the positive effects of hexane on PFC were confirmed (Tab. 1), but unexpectedly, the vent hole in Test 3 contributed negatively to the photocurrent generation. Furthermore, the linear decrease of the photocurrent as a function of time that elapsed during Test 4 was more gradual than the exponential-like decrease as a function of time in Test 3.

In Test 5, the photocurrent in the first cycle (41.0-33.0 μA) was similar to that in Test 2 (Fig. 2). Then, it decreased to 29.2 μA in the second cycle. Later than the third cycle, the photocurrents became stable at 28.4 μA. This stabilized current was lowest among the Tests 1-5, as the result of produced O_2 which remained dissolved in the HCl solution to water, and the unexpected reverse diffusion of O_2 in the cathode into the anode through the vent hole, as in Test 3 (Tab. 1).

In Test 2, 1.11 μmol of O_2 were generated during the 7-h photocurrent test based on the total photocurrent for 3.5 h and assuming reaction 4. In this test, the O_2 should be distributed between the HCl solution and hexane. Based on the O_2 solubility values in the literature to hydrochloric acid solution (1.27 mmol L\(^{-1}\)) and to hexane (15.0 mmol L\(^{-1}\)) [23], the distribution of O_2 to hexane was calculated as:

\[
\frac{0.055 \times 15 \text{ mmol L}^{-1}}{0.055 \times 1.27 \text{ mmol L}^{-1} + 0.055 \times 15 \text{ mmol L}^{-1}} = 0.922
\]

Thus, 1.85 and 0.157 μmol of O_2 should be distributed to the hexane and HCl solutions, respectively, in equilibrium. Thus, the O_2 concentration in the anode electrolyte (HCl solution) was calculated as 2.85 μmol L\(^{-1}\). Hence, the O_2 concentration at the end of Test 4 was only 10% of that at the end of Test 2. This difference accounted for the higher current density in Test 4 by a factor of two as compared with Test 2 (Fig. 2).

2.2 \(i-V\) Characteristic Tests

The obtained \(i-V\) characteristics are shown in Figure 3. Furthermore, the properties of PFC calculated based on \(i-V\) data in Tests 1, 2 and 4 are summarized in Table 2. In Test 1, the \(i\) value gradually increased as the cell voltage decreased, starting from open circuit voltage \((V_{OC})\) at 1.59 V, which is a similar trend to the \(i-V\) dependence of the SC [24] or the Ohmic
loss region of a Polymer Electrolyte Fuel Cell (PEFC). When the voltage became less than 0.45 V, the current increased linearly from 20 to 74 µA (short-circuit current, I_{SC}). This increasing trend was different from that in a SC or the transportation limit region of a PEFC [7, 8].

In Test 2, the shape of the i–V characteristic curve was similar to that for Test 1. However, the increase in currents in the lower voltage region (≥ 0.45 V) was less steep than the slope in Test 1. The values of I_{SC} (29.8 µA), V_{OC} (1.23 V) and P_{Max} (5.51 µW) were 40, 77 and 39% of the corresponding values obtained in Test 1. The lower photocurrents in Test 2 suggested that the reverse reaction 1 that occurred in the anode seriously affected the performance of the PFC.

In Test 4, the curve of i–V characteristics was similar to that for Test 2; the increase in photocurrents in the low-voltage region (≥ 0.45 V) was less steep than the slope in Test 1. The values of I_{SC} (29.2 µA) and V_{OC} (1.18 V) were slightly lower than the corresponding values in Test 2, whilst the value of P_{Max} (6.10 µW) was clearly higher than that in Test 2 (5.51 µW). This low performance (Fig. 3) was inconsistent with the better performance in photocurrent Test 4 than that in Tests 1 and 2 (Fig. 2). This trend cannot be rationalized based on the remaining amount of produced O2 dissolved in the anode. One of the possibilities is the polarization of photoelectrodes during the i–V measurements at high voltage to modify the band bending (charge balance at the surface) at the surface of photocatalysts [25-29].

In a control Test 1’ in darkness, the value of the current was always less than the detection limit by changing the resistance from 500 kΩ to 0.3 Ω. The corresponding voltage was less than 0.002 V. Therefore, the values of I_{SC}, V_{OC} and P_{Max} were less than 0.1 µA, 0.002 V and 0.0002 µW, respectively. This indicated electricity of the PFC was generated exclusively by irradiation with UV–visible light.

2.3 Product Analyses during Photocurrent Tests at the Anode

2.3.1 Analysis of O2 Formed at the Anode

The time course of dissolved O2 concentrations is shown in Figure 4. When TiO2 was irradiated with UV–visible light, the dissolved O2 concentration linearly increased immediately in all five cycles. For 1.25 h irradiation, dissolved O2 was increased from 7.8 µmol L$^{-1}$ to 119 µmol L$^{-1}$. If the irradiation was stopped, dissolved O2 decreased gradually in all cycles. This indicated that the formed O2 dissolved in acidic water and was transported to the gas phase in the quartz flask. In this photoreaction test, 151 mg of TiO2 was used, significantly greater than the 5 mg for the photocurrent test (Sect. 2.1, 2.2). Accordingly, a greater amount of O2 was generated from the water (63.1 µmol L$^{-1}$ per 0.25 h) in this photoreaction test than in photocurrent Test 2 (27.8 µmol L$^{-1}$ per 3.5 h). Thus, excessive O2 greater than the dissolution amount would be transported to the gas phase.

When the photocatalyst was irradiated, the rate would be the balance between O2 formation and the transportation to

Table 2

PFC characteristics defined by i–V characteristics in Tests 1 (gas flow), 2 (gas closed), and 3 (gas circulating inside the PFC)

Test	I_{SC} (µA)	V_{OC} (V)	P_{Max} (µW)
1 (Gas flow)	73.7	1.59	14.0
2 (Gas closed)	29.8	1.23	5.5
4 (Gas-closed conditions plus hexane@anode)	29.2	1.18	6.1
1’ (Gas flow; control in darkness)	< 0.1	< 0.002	< 0.0002

Figure 4

The time course of dissolved O2 concentrations during the photoirradiation test on TiO2. UV–visible light and FeCl3·6H2O (2.31 mmol L$^{-1}$) were used as excitation light and a sacrificial reagent, respectively. The initial pH value was 2.0.
the gas phase. The increase in dissolved O$_2$ in the first cycle was the quickest among all the cycles. The increase in dissolved O$_2$ was 63.1 μmol L$^{-1}$ per 0.25 h. The slope of the dissolved O$_2$ gradually became less steep as the cycles were repeated. As a result, in the fifth cycle, it was 36.2 μmol L$^{-1}$ per 0.25 h. This trend is contradicted by the gradual increase in the photocurrent in Figure 2, Test 1 as the cycles repeated. We suspect that the major reason was that the transportation of dissolved O$_2$ to the gas phase became faster as the concentration of dissolved O$_2$ increased, as the cycles were repeated (Fig. 4).

The increase rate of dissolved O$_2$ in the first cycle was:

$$63.1 \text{ μmol L}^{-1} \times 0.090 \text{ L/0.25 h/0.151 g}_{\text{cat}} = 151 \text{ μmol-O}_2 \text{ h}^{-1} g_{\text{cat}}^{-1}$$

In comparison, the total photocurrent in Test 2 was average current:

$$34.0 \text{ μA} \times 3600 \text{ s h}^{-1}/9.65 \times 10^4 \text{ A s mol-e}^{-1}/0.005 g_{\text{cat}} = 253 \text{ μmol-e}^{-1} \text{ h}^{-1} g_{\text{cat}}^{-1}$$

The electron flow rate corresponded to the O$_2$ generation rate of 63 μmol-O$_2$ h$^{-1}$ g$_{\text{cat}}^{-1}$. The net O$_2$ generation rate in Figure 4 should be even higher because the O$_2$ transported to the gas phase was not included for the evaluation in Figure 4. This difference in the amount based on the PFC current was not inconsistent. In the presence of a sacrificial oxidation agent, Fe$^{3+}$, photoexcited electrons to the conduction band of TiO$_2$ easily diffuse with sufficient Fe$^{3+}$ and react in contrast so that the electrons need to travel to the cathode to react with holes at the valence band of [Ag]-TiO$_2$ in the PFC. The concentration of holes was determined by the balance of charge separation by light and the cathode reaction rate of O$_2$ reduction [11, 21].

2.3.2 Analysis of Hypochlorous Acid Formed at the Anode from Cl$^-$ Ions

The absorbance at 515 nm for standard mixed solutions (6.0 mL) was plotted as a function of NaOCl concentrations in the solution (6.0 mL). Then, a standard curve was calculated as follows (Fig. 5):

$$\text{Absorbance@515 nm = 0.0166 } [\text{ClO}^-] (\text{μmol L}^{-1}) + 0.007$$

20 mg of DPD reagent in 4.0 mL phosphate buffer solution (pH 6.5) were mixed with 2.0 mL of sampled solution from the anode solution (40 mL) of the PFC after Test 1 for 3 h. The absorbance of this mixed solution was 0.018 ± 0.008. Therefore, the amount of HClO in the mixed solution (6.0 mL) was 3.98 nmol based in Equation (8).

Thus, the amount of HClO in the anode solution was calculated as:

$$3.98 \text{ nmol } \times 40 \text{ mL}/2.0 \text{ mL} = 0.080 \pm 0.056 \text{ μmol}$$

For 3 h of Test 1 (pH 2.0), total electron flow was 3.92 μmol based on the integration of photocurrents. Two holes reacted with Cl$^-$ ions (Eq. 2) correspond to one HClO formed from Cl$_2$ (Eq. 3). As the concentration of HClO was the impurity level for the anode solution in Test 1, the amount of HClO was nearly the detection limit. Therefore, the upper limit of selectivity to proceed with Equation (2) for photogenerated holes was:

$$2 \times 0.080 \text{ μmol-HClO}/3.92 \text{ μmol-h}^+ = 0.041 \pm 0.031$$

The participation of chlorine ions in the anode reaction cannot be denied; however, the ratio was as low as 4.1% at most.

CONCLUSIONS

First, the anode reaction in the PFC was demonstrated exclusively to be the photooxidation of water over TiO$_2$ based on the O$_2$ evolution test, and negligible (or no) photooxidation of Cl$^-$ occurred based on the detected amount of HClO. The selectivity of photooxidation of Cl$^-$ was 4.1% at most as compared with the photooxidation of water. Next, a product gas-trapping PFC was demonstrated to achieve a
photocurrent value of 69.7 μA per 1.3 cm² of photocatalysts (53.6 μA cm⁻²). Gas trapping was enabled by accommodating an organic solvent layer over the aqueous electrolyte solution phase in the anode and utilizing the solubility difference of produced O₂. However, gas circulation by a vent hole in the upper part of the PCP film due to pressure differences was not well achieved. To transfer generated O₂ to an anode, a greater pressure difference was needed. The performance of the gas-closed PFC equipped with a hexane layer on the anode (Test 4) was the best at the initial stage of the photocurrent test due to the O₂ solubility effect of hexane rather than the other conditions. However, the photocurrents gradually decreased during the measurements for 7 h. The small amount of remaining O₂ in the anode electrolyte (2.85 μmol L⁻¹) reduced the PFC performance considerably in Test 4. The Isc, Voc and Pmax values of the gas-circulating PFC were 29.2 μA (22.5 μA cm⁻²), 1.18 V and 6.10 μW (4.69 μW cm⁻²), respectively. These values were similar to corresponding values for the gas-closed PFC.

The feasibility of a gas-trapping PFC was successfully demonstrated in this study. Further, the improvement of power efficiency is required by the optimization of photocatalysts and the thickness and density of photocatalyst layers in order to be accommodated in portable electronic devices, remote-control light gliders, and environmental cameras/sensors.

ACKNOWLEDGMENTS

The authors are grateful for financial support from the Feasibility Study Stage of A-STEP (AS262Z00159L, AS251Z0096L, AS231Z01459C) from the Japan Science and Technology Agency, the Iwatani Naoji Foundation (2011-2012), and a Grant-in-Aid for Scientific Research C (26410204, 22550117) from the Japan Society for the Promotion of Science. X-ray absorption experiments were conducted under the approval of the Photon Factory (2011-2012), and a Grant-in-Aid for Scientific Research C (26410204, 22550117) from the Japan Society for the Promotion of Science. X-ray absorption experiments were conducted under the approval of the Photon Factory Proposal Review Committee (2013G159).

REFERENCES

1 Lewis N.S., Nocera D.G. (2006) Powering the Planet: Chemical Challenges in Solar Energy Utilization, Proc. Natl. Acad. Sci. USA 103, 15729.
2 Izumi Y. (2013) Recent Advances in the Photocatalytic Conversion of Carbon Dioxide to Fuels with Water and/or Hydrogen Using Solar Energy and Beyond, Coord. Chem. Rev. 257, 171.
3 Bolton J.R. (1996) Solar Photoproduction of Hydrogen: A review, Sol. Energy 57, 37.
4 Grätzel M. (2001) Photoelectrochemical Cells, Nature 414, 338.
5 Gasteiger H.A., Marković N.M. (2009) Just a Dream or Future Reality? Science 324, 48.
6 Schlabach L. (2009) Hydrogen-Fuelled Vehicles, Nature 460, 809.
7 Oka K., Ogura Y., Izumi Y. (2014) X-Ray Evaluation of the Boundary between Polymer Electrolyte and Platinum and Carbon Functionalization to Conduct Protons in Polymer Electrolyte Fuel Cell, J. Power Sources 258, 83.
8 Oka K., Shibata Y., Itoi T., Izumi Y. (2010) Synthesis and Site Structure of a Replica Platinum–Carbon Composite Formed Utilizing Ordered Mesopores of Aluminum-MCM-41 for Catalysis in Fuel Cells, J. Phys. Chem. C 114, 1260.
9 Joya K.S., Joya Y.F., Okazaki K., van de Krol R. (2013) Water-Splitting Catalysis and Solar Fuel Devices: Artificial Leaves on the Move, Angew. Chem. Int. Ed. 52, 10426.
10 Seery M.K., George R., Floris P., Pillai S.C. (2007) Silver Doped Titanium Dioxide Nanomaterials for Enhanced Visible Light Photocatalysis, J. Photochem. Photobiol. A 189, 258.
11 Ogura Y., Okamoto S., Itoi T., Fujishima Y., Yoshida Y., Izumi Y. (2014) A photofuel Cell Comprising Titanium Oxide and Silver(I/I0) Photocatalysts for Use of Acidic Water as a Fuel, Chem. Comm. 50, 3067-3070.
12 Huang S.Y., Ganesan P., Park S., Popov B.N. (2009) Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications, J. Am. Chem. Soc. 131, 13898.
13 Orilall M.C., Matsumoto F., Zhou Q., Sai H., Abrüna H.D., DiSalvo F.J., Wiesner U. (2009) One-Pot Synthesis of Platinum-Based Nanoparticles Incorporate into Mesoporous Niobium Oxide–Carbon Composites for Fuel Cell Electrodes, J. Am. Chem. Soc. 131, 9389.
14 Sun Y., Zhuang L., Lu J., Hong X., Liu P. (2007) Collapse in Crystalline Structure and Decline in Catalytic Activity of Pt Nanoparticles on Reducing Particle Size to 1 nm, J. Am. Chem. Soc. 129, 15465.
15 Wang L.L., Johnson D.D. (2007) Shear Instabilities in Metallic Nanoparticles: Hydrogen-Stabilized Structure on Pt57 on Carbon, J. Am. Chem. Soc. 129, 3658.
16 Izumi Y., Nagamori H., Kiyotaki F., Masih D., Minato T., Roisin E., Candy J.P., Tanida H., Uruga T. (2005) X-ray Absorption Fine Structure Combined with X-ray Fluorescence Spectrometry. Improvement of Spectral Resolution at the Absorption Edges of 9–29 keV, Anal. Chem. 77, 6969.
17 Hanna M.C., Nozik A.J. (2006) Solar Conversion Efficiency of Photovoltaic and Photoelectrolysis Cells with Carrier Multiplication Absorbers, J. Appl. Phys. 100, 074510.
18 Morikawa M., Ogura Y., Ahmed N., Kawamura S., Mikami G., Okamoto S., Izumi Y. (2014) Photocatalytic Conversion of Carbon Dioxide into Methanol in Reverse Fuel Cells with Tungsten Oxide and Layered Double Hydroxide Photocatalysts for Solar Fuel Generation, Catal. Sci. Technol. 4, 1644.
19 Heller A. (1981) Conversion of Sunlight into Electrical Power and Photoassisted Electrolysis of Water in Photoelectrochemical Cells, Acc. Chem. Resear. 14, 154.
20 Chen F., Liu H., Bagwasi S., Shen X., Zhang J. (2010) Visible-Light Responsive Photocatalytic Fuel Cell Based on WO3/W Photoanode and Cu2O/Cu Photocathode for Simultaneous Wastewater Treatment and Electricity Generation, Environ. Sci. Technol. 46, 11451.
21 Fujishima Y., Okamoto S., Yoshiba M., Itoi T., Kawamura S., Yoshida Y., Ogura Y., Izumi Y. (2015) Photofuel Cell Comprising Titanium Oxide and Bismuth Oxychloride (BiO1-xCl1-y) Photocatalysts for Use of Acidic Water as a Fuel, *J. Mater. Chem. A.* 3, 8389.

22 Moberg L., Karlberg B. (2000) An Improved N, N'-Diethyl-p-Phenylenediamine (DPD) Method for the Determination of Free Chlorine Based on Multiple Wavelength Detection, *Anal. Chim. Acta* 407, 127.

23 Battino R., Rettich T.R., Tominaga T. (1983) The Solubility of Oxygen and Ozone in Liquids, *J. Phys. Chem. Ref. Data* 12, 163.

24 Anderson A.Y., Barnes P.R.F., Durrant J.R., O’Regan B.C. (2011) Quantifying Regeneration in Dye-Sensitized Solar Cells, *J. Phys. Chem. C* 115, 2439.

25 Hu Z.T., Liu J., Yan X., Oh W.D., Lim T.T. (2015) Low-Temperature Synthesis of Graphene/Bi2Fe4O9 Composite for Synergistic Adsorption-Photocatalytic Degradation of Hydrophobic Pollutant under Solar Irradiation, *Chem. Eng. J.* 262, 1022.

26 Wu W., Huang Z.H., Lim T.T. (2014) Recent Development of Mixed Metal Oxide Anodes for Electrochemical Oxidation of Organic Pollutants in Water, *Appl. Catal. A.* 480, 58.

27 Nath R.K., Zain M.F.M., Kadhum A.A.H. (2014) Artificial Photosynthesis using LiNbO3 as Photocatalyst for Sustainable and Environmental Friendly Construction and Reduction of Global Warming: A Review, *Catal. Rev. Sci. Eng.* 56, 175.

28 Swierk J.R., Mallouk T.E. (2013) Design and Development of Photoanodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells, *Chem. Soc. Rev.* 42, 2357.

29 Wenyi T., Qin Z., Han Y., Xiufang Z., Hongyi L. (2012) Deactivation Anode Catalyst La0.75Sr0.25Cr0.5Mn0.5O3+δ in SOFC with Fuel Containing Hydrogen Sulfur: The Role of Lattice Oxygen, *Int. J. Hydrogen Energy* 37, 7398.

Cite this article as: Y. Ogura, M. Yoshiba and Y. Izumi (2015). Recyclable PhotoFuel Cell for Use of Acidic Water as a Medium, *Oil Gas Sci. Technol* 70, 5, 853-862.