A facile strategy for the growth of high-quality tungsten disulfide crystals mediated by oxygen-deficient oxide precursors

Miakota, Denys I.; Unocic, Raymond R.; Bertoldo, Fabian; Ghimire, Ganesh; Engberg, Sara; Geohegan, David; Thygesen, Kristian S.; Canulescu, Stela

Published in:
Nanoscale

Link to article, DOI:
10.1039/d2nr01863b

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Miakota, D. I., Unocic, R. R., Bertoldo, F., Ghimire, G., Engberg, S., Geohegan, D., Thygesen, K. S., & Canulescu, S. (2022). A facile strategy for the growth of high-quality tungsten disulfide crystals mediated by oxygen-deficient oxide precursors. Nanoscale, 14(26), 9485-9497. https://doi.org/10.1039/d2nr01863b
A Facile Strategy for the Growth of High-Quality Tungsten Disulfide Crystals Mediated by Oxygen-Deficient Oxide Precursors

Denys I. Miakota¹, Raymond R. Unocic², Fabian Bertoldo³, Ganesh Ghimire¹, Sara Engberg¹, David Geohegan², Kristian S. Thygesen³, and Stela Canulescu¹

¹Department of Photonics Engineering, Technical University of Denmark, DK-4000 Roskilde, Denmark
²Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States;
³CAMD and Center for Nanostructured Graphene (CNG), Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

KEYWORDS: transition-metal dichalcogenides, WS₂ monolayers, pulsed laser deposition (PLD), chemical vapor deposition (CVD), epitaxial oxides.
ABSTRACT

Chemical vapor deposition (CVD) has been established as a versatile route for the large-scale synthesis of transition metal dichalcogenides, such as tungsten disulfide (WS$_2$). Yet, the role of the precursor composition on the efficiency of the CVD process remains largely unknown and yet to be explored. Here, we employ Pulsed Laser Deposition (PLD) in a two-stage process to tune the oxygen content in tungsten oxide (WO$_{3-x}$) precursors and demonstrate that the presence of oxygen vacancies in the precursor films leads to a more facile conversion from WO$_{3-x}$ to WS$_2$. Using a joint study based on *ab initio* density functional theory (DFT) calculations and experiments, we unravel that the oxygen vacancies in WO$_{3-x}$ can serve as niches through which sulfur atoms enter the lattice and may facilitate an efficient growth of WS$_2$ crystals. By solely modulating the precursor stoichiometry, the photoluminescence emission of WS$_2$ can be greatly enhanced, while the size of WS$_2$ domains increases significantly. Atomic resolution scanning transmission electron microscopy (STEM) reveals that tungsten vacancies are the dominant intrinsic defects in mono- and bilayers WS$_2$. Moreover, our data reveal that grain boundaries in bilayer WS$_2$ emerge upon the coalescence of AA’ and AB-oriented crystals, while turbostatic moiré patterns originate upon formation of distinct grain boundaries between the bottom and bottom layers. The atomic resolution images show local strain buildup in bilayer WS$_2$ due to competing effects of complex grain boundaries. Our study provides a means to tune the precursor composition in order to control the lateral growth of TMDs, while revealing insights into the different pathways for the formation of grain boundaries in bilayer WS$_2$.
Tungsten disulfide (WS₂) is an intriguing material in the layered transition metal dichalcogenides (TMDs) family. WS₂ can usually exist in two phases with distinct electronic properties, i.e., the 2H semiconducting phase with a trigonal prismatic geometry and 1T metallic phase with a tetragonal symmetry. In particular, 2H WS₂ in its monolayer form is a direct band gap semiconductor, with an energy gap of ~2 eV, as demonstrated both theoretically and experimentally. Among two-dimensional 2D TMDs, WS₂ monolayers exhibit a high photoluminescence (PL) quantum yield (> 6.3%), which can be further enhanced via doping, excellent thermal stability, mechanical flexibility and access to valley degree of freedom.

Several approaches have been exploited to obtain wafer-scale synthesis of TMD monolayers, including chemical vapor deposition (CVD), metal-organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), atomic layer deposition (ALD), pulsed laser deposition (PLD). For instance, conventional CVD synthesis of 2D-TMDs involves evaporation of stoichiometric tungsten trioxide (WO₃) or molybdenum trioxide (MoO₃) powders. The narrow optimum window of the CVD synthesis requires a precise control of the precursors vapor phase composition, chalcogen flow rate, etc. It has been shown that the conversion of MoO₃ to MoS₂ evolves via an intermediate step, during which MoO₃ is first partially reduced and then sulfurized into MoS₂. Moreover, on the basis of previous findings, variation in the oxide precursor composition can greatly impact the growth of WS₂ flakes. Recently, it was demonstrated that the epitaxial oxide films grown by PLD can be used to produce quasi-crystalline TMDs with improved device performance. However, despite a vast number of studies on CVD synthesis, the role of the oxygen vacancies of the precursors on the growth of TMD domains remains largely unexplored. This subject is of fundamental importance note only for the synthesis
of TMDs, but also because oxygen substitution in basal plane TMDs can open new avenues for engineering of 2D electrocatalysts.25

In this work, we unravel how the presence of intrinsic oxygen vacancies in the non-stoichiometric tungsten oxides (WO$_{3-x}$, 0$<$ x$<$1) grown by PLD leads to a more facile conversion from WO$_{3-x}$ to WS$_2$ films. A two-stage growth process was developed, which employs tunability of the oxygen vacancies in uniform WO$_{3-x}$ precursors to independently control the nucleation, lateral growth and ultimately the WS$_2$ domain size. Our study suggests that native oxygen vacancies in the PLD-grown precursors can serve as active sites through which sulfur atoms enters the lattice and facilitates the growth of WS$_2$ crystals with high photoluminescence (PL) emission and large domain size. Atomic resolution scanning transmission electron microscopy (STEM) images reveal how the single and bilayer WS$_2$ crystal orientation develops for low-temperature (nearly stoichiometric oxides) compared to high-temperature (reduced oxides) grown precursors. By solely modulating the precursor composition, the effect of precursor composition on the surface diffusion and thus lateral growth can be clearly discerned, providing insights into the parameters that control WS$_2$ domain growth.

RESULTS AND DISCUSSION

Pulsed Laser Deposition of WO$_{3-x}$ precursors

To synthesize WS$_2$ crystals, WO$_{3-x}$ (0$<$ x$<$1) thin films and sulfur powder were used as precursors and reactant materials, respectively (see Materials and Methods). The WO$_{3-x}$ thin films were grown by PLD on (0001)-oriented Al$_2$O$_3$ substrates. To experimentally achieve a modulation of the oxygen vacancy content (V_O), WO$_{3-x}$ films were prepared at different substrate temperatures, i.e. 500 °C, 600 °C, 700 °C and 800 °C and background gases, i.e., oxygen (O$_2$) and argon (Ar). As it
will be discussed next, these two parameters determine the extent to which the V_O content can be tuned in the precursor films. In contrast to the CVD process, which relies on the use of oxide powder, PLD allows the growth an uniform and epitaxial film as the precursor source. In a second step, the as-grown oxide films were converted into WS_2 in a standard CVD furnace at a temperature of 900 °C, which is a standard temperature for CVD synthesis of WS_2.

We performed high-resolution X-ray photoelectron spectroscopy (XPS) to investigate the composition of WO_{3-x} films. XPS data show that the WO_{3-x} films grown in O$_2$ at a temperature of 500 °C are nearly stoichiometric (Figure 1 and Table S1). The XPS spectrum of the W 4f consists of two spin–orbit doublets corresponding to W^{6+} in fully coordinated WO_3 (W 4f$_{7/2}$ binding energy 35.9 eV) and a small fraction of W^{5+} in reduced WO_{3-x} (W 4f$_{7/2}$ binding energy 34.7 eV). Increasing the substrate temperature to 700 °C and above, new W 4f doublets appear at binding energies of 33.4 eV and 35.3 eV due to emergence of a lower valence state of W, i.e., W^{4+}. The peaks at 41.7 eV and 40.4 eV were attributed to W 5p$_{3/2}$. The corresponding S 2p spectra are shown in Figures S1 and S2 and the W 4f XPS spectra of O$_2$-grown precursors are shown in Figure S3.

To further modulate the V_O content, WO_{3-x} films were grown by ablation of the WO_3 target in Ar. The XPS spectra of the corresponding WO_{3-x} precursors reveal the presence of three distinct valence states of W^{6+}, W^{5+} and W^{4+} corresponding to the W 4f$_{7/2}$ peak at binding energy of 35.9 eV, 34.1 eV and 32.8 eV, respectively (Figure 1e-h). The evolution of the W chemical state in the WO_{3-x} precursors with the change in the growth temperature and background gas is depicted in Figure 1 i,j. Films grown in O$_2$ at 500 °C have a very high fraction of WO_3 (W^{6+} fraction of ~0.91), along with a small fraction of W^{5+} (~0.09). Here, W^{x+} fraction, $x=4$, 5, 6 denotes the ratio of the W 4f peak area (sum of the W4f$_{7/2}$ and W4f$_{7/2}$ peak areas) attributed to W in a given valence state (W^{x+}) to the total W 4f peak area, i.e., the sum of W^{4+}, W^{5+} and W^{6+} peaks areas. Increasing
the growth temperature to 600 °C, the W^{5+} content increases to ~ 0.12. The most significant change occurs at 700 °C, for which the fitting yields W fraction of W^{6+} ~ 0.79, W^{5+} ~ 0.10 and W^{4+} ~ 0.11. Finally, at the growth temperature of 800 °C, the W^{4+} fraction increases to ~ 0.14. For the films grown in Ar, a significant fraction of W^{4+} is already observed at 500 °C (W^{4+} ~ 0.41) and which increases to ~ 0.50 for oxides grown at 800 °C.

The XPS analysis demonstrate that the oxygen deficiency (V_O) in WO_{3-x} precursors can be greatly tuned from O_2 to Ar background gas, and to a degree significantly larger than reported previously.\(^\text{26}\) The average composition of the films decreases from ~2.95 to ~2.45 from O_2 to Ar-grown films (see Table I). This significant variation in V_O content arises from the different gas-phase reactions that occur during propagation of the plasma-plume in gas. The complex phenomena of laser ablation into gas, involving plasma-plume free expansion and shock wave propagation, has been the subject of many theoretical and experimental studies.\(^\text{27,28,29,30,31}\) Considering first the case of pulsed laser ablation in the reactive O_2 gas, the plasma-plume expansion in O_2 leading to the formation and propagation of the shock wave favors the dissociation of the O_2 molecules. The interaction of plasma plume species (i.e., W atoms and ions) with oxygen will modify the plume chemistry through formation of molecular WO^+ excited species\(^\text{27}\). On the contrary, in the case of the inert Ar gas, the plasma chemistry is quantitatively different and determined by the W and O atomic species. On the basis of our findings, we can conclude that for PLD in O_2, the gas-phase reactions are an important pathway for the oxygen incorporation in WO_{3-x}, which is not the case in Ar gas.

The stability of oxygen vacancies in sub-stoichiometric oxides can be explained through their formation energy determined from density functional theory (DFT) calculations. The formation energy (E^F) of V_O was calculated for various suboxides with compositions varying from WO_{2.944}
to WO$_{2.0}$ (see Figures S7 and S8). In the whole range of oxide compositions, V$_0$ was found to have the lowest formation energy for oxides close to stoichiometric WO$_3$ (WO$_{2.944}$) while the formation energy of V$_0$ increases roughly 4 times from WO$_{2.994}$ to WO$_2$. Moreover, in the whole range of O chemical potential, formation energy of V$_0$ in WO$_{2.944}$ was found to increase from 1.055 eV under an O-poor environment to 1.775 eV under an O-rich environment. This is well aligned with our experimental observations, for which a high V$_0$ content was observed in films grown under an O$_2$-poor environment and high temperature.

While the theoretical calculations do not account for the stability of the aforementioned oxides, they suggest that oxygen vacancies in WO$_{3-x}$ can easily form under O-poor environment. In particular, oxygen vacancies are a signature of oxide films grown by PLD32 and can cause an atomic re-arrangement of the WO$_3$ crystal to compensate for the high oxygen deficiencies.33 Yet, the detailed mechanism of surface reconstruction in sub-stoichiometric tungsten oxide is beyond the scope of the work. A wide range of oxides can form between WO$_3$ and WO$_2$. Among all, W$_{18}$O$_{49}$ (WO$_{2.72}$) and W$_{20}$O$_{58}$ (WO$_{2.9}$) are the most thermodynamically stable phases, and which exhibit metallic characteristics as the Fermi level moves up in the conduction band as compared to the parent WO$_3$.33,34 It is therefore likely that the aforementioned phases either co-exist in the PLD-grown films, or metastable oxides present in the PLD precursors transform into most thermodynamically stable phases during the CVD process. Nanostructures of WO$_{2.72}$ were previously synthesized by various approaches, such as heating a W foil at high temperature (1600 °C)35, photochemical reduction of carbon dioxide by visible light36, thermally evaporating WO$_3$ powders, electron-beam induced synthesis37, etc.

The X-ray diffraction (XRD) patterns shown in Figure 1k and Figure S4 reveal that monolithically distorted rutile (020)-oriented WO$_2$ films can be grown on (0001) Al$_2$O$_3$ substrate.38 The (020)
reflection of WO₂ develops from a very broad to a sharp (020) oriented peak, indicating an optimum window growth of epitaxial-oriented WO₂ between 600 °C and 700 °C. The b-axis oriented growth of WO₂ are similar to that of monoclinic MoO₂.³⁸,³⁹ The WO₂ reflection of the film grown at 800 °C shifts significantly from 36.8° to 37.4° which can probably be assigned to a change the a (002)-preferred oriented WO₂³⁸.

Conversion from WO₃-x to WS₂ crystals

The W 4f XPS spectra of WS₂ films obtained upon sulfurization of WO₃-x precursors grown in Ar are shown in Figure 2. The W 4f XPS spectra of the sulfurized films can be tailored using three doublets, in accordance with different valence states of W (see also Tables S2 and S3 for detailed W 4f and S 2p spectra peak fitting). A similar trend was observed for the precursors deposited in O₂. The W 4f XPS spectra of WS₂ exhibit a dominant W⁴⁺ doublet (W 4f7/2 binding energy at ~32.6 eV, full width of half maximum (FWHM) ~ 0.7 eV) which corresponds to the hexagonal 2H-WS₂ phase⁹ with an estimated S/W ratio of ~2. In addition, residual WO₃ is evidenced by the presence of the W4f doublet with W⁶⁺ valence state (W 4f7/2 binding energy at ~ 36.0 eV).⁴⁰,⁴¹ We find that the precursors grown at 500 °C in Ar and sulfurized at 900°C have a fraction of WO₃ of ~ 0.34 (see Table 1). In contrast, only an oxide fraction of ~ 0.20 was estimated in WS₂ based on 800 °C-grown precursors, indicating a nearly complete conversion from oxide to sulfide. In addition, a low-intensity W⁷⁺ doublet (binding energy W 4f7/2 at ~ 32.0 eV) is observed in the XPS spectra. Components at lower binding energies with respect to the hexagonal WS₂ phase can be either assigned to the 1T-WS₂ metallic phase⁴²,⁴³ or sulfur-deficient films.⁴² We hypothesize that the doublet appears due to sulfur-deficient WS₂ which may arise from sulfur-deficient grain boundaries, as well as various intrinsic point defects in pristine WS₂⁴². We note, however, that the sulfur-deficient WS₂ fraction is very low (~ 0.08-0.06) and any variations are within the
measurements accuracy (see Table 1). Lastly, the broad contributions at ~ 38.6 eV and ~ 41.6 eV (light green-colored curves in Figure 1) are assigned to the W 5p3/2 peaks.9,40,41 Since neither S-O bonds nor W-S-O bonds were observed in the XPS spectra (see S 2p XPS spectra in Figure S1), we can conclude that, within the sensitivity of the XPS, the intermediate WOxSy phase is not present in the sulfurized films for Ar-grown WO3-x films.

Our experimental results indicate a more facile sulfurization for oxide precursors with of a high V0 content. The sulfurization of WO3 in the presence of H2S has been studied extensively in the past44 and it was show that the reduction of W valence state (W6+ to W5+) is the first step in the sulfurization process. In addition, higher bond energy of W–O (∼670 kJ/mol) compared to Mo–O (∼560.2 kJ/mol) requires a higher temperature of conversion for WS2 as compared to MoS2 (typically below 800°C when using PLD-grown MoOx films as precursors, not shown). Pathways to reduce the sulfurization temperature were demonstrated via the formation of atomic H in plasma discharge which facilitates W reduction45.

To explore the thermodynamics of the process, we have performed DFT calculations to determine the energy required to incorporate S atoms into the bulk WO3 crystal (see Methods and Figure S9 for details). Our calculations indicate that the addition of interstitial sulfur (S1) in WO3 requires a formation energy of 3.44 eV. On the other hand, the formation energy for sulfur atom on an oxygen vacancy site (S0) is only 2.55 eV; hence, incorporation of S atoms into the lattice is more energetically favorable in the presence of oxygen vacancies as compared to the interstitial sites. Next, we have extended the modelling to investigate the energetics of the sulfurization process on the WO3 (001) surface simulated by a slab model. Our theoretical calculations reveal that adsorbing a sulfur atom at the oxygen site (S0) site yields a negative adsorption energy of -1.256 eV. This suggests that sulfur adsorption on the WO3 (001) surface in the presence of an oxygen
vacancy is highly energetically favorable. This allows us to conclude that oxygen vacancies in WO$_3$-x can serve as niches through which sulfur atoms enter the lattice and trigger an efficient conversion of WO$_3$-x into WS$_2$.

PL and Raman spectroscopy were used to examine the optical properties of WS$_2$. The PL spectra of WS$_2$ acquired using a 532 nm laser excitation wavelength are shown in Figure 3. Remarkably, the PL spectra differ in peak intensity, peak position and FWHM as a function of the growth temperature of the WO$_3$-x precursors. The overall PL emission of WS$_2$ increases ~40 fold with increasing precursor growth temperature from 500 °C to 800 °C, whereas the FWHM of the PL peak decreases gradually from the 500 °C to 800 °C-based precursors (see Figure 3a, c, e, g). This suggests that the optical quality of WS$_2$ is higher for high temperature-based precursors as compared to the low-temperature counterpart. All peaks marked with asterisk are associated with the sapphire substrate.

To better understand the PL spectra, we consider the contribution of neutral exciton (X), negative exciton or trion (X$^-$), bi-exciton (XX), and defected-mediated exciton (D) to the overall PL emission of WS$_2$. The optimal peak fitting was achieved with 100% Lorentzian functions. The PL spectra of WS$_2$ is dominated by the neutral exciton emission (A exciton), which shifts from 2.02 to 1.99 eV with increasing precursor growth temperature from 500°C to 800°C. We also find that the spectral weight of the neutral X exciton decreases. The increase in the A exciton emission along with the decrease of the FWHM of the peak indicates a lower presence of defects in the high temperature-grown samples. Moreover, we observe the emergence of a low-energy emission feature (D), which is attributed to excitons bound to defects. Similar sub-band gap PL features were observed upon ion bombardment of 2D-TMDs.
The Raman spectra of WS$_2$ display a Raman peak at \sim178 cm$^{-1}$ which corresponds to the longitudinal acoustic LA(M) mode, a first-order Raman active mode of the LA phonons at the edge of the Brillouin zone (the M point)51. The dominant Raman feature at \sim353 cm$^{-1}$ can be deconvoluted into three distinct contributions corresponding to the E_{2g}^{\parallel} (M) in-plane mode at \sim347 cm$^{-1}$, 2LA(M), second-order Raman mode of the LA phonons at \sim354 cm$^{-1}$ and E_{2g}^{\parallel} (Г) in-plane vibration mode of the W and S atoms at \sim357.5 cm$^{-1}$, in a good agreement with previous work52. In addition, the $A_{1g}(\Gamma)$ peak at \sim419 cm$^{-1}$ corresponds to the out-of-plane vibration of the S atoms in WS$_2$. The separation between the $A_{1g}(\Gamma)$ and $E_{12g}(\Gamma)$ Raman modes (denoted as Δk in Table II) is commonly used to identify the number of layers, whereas Δk of \sim 60 - 61 cm$^{-1}$ denotes a monolayer WS$_2$51,52. Δk values of 60.7 cm$^{-1}$, 61.1 cm$^{-1}$, 61.3 cm$^{-1}$ and 61.6 cm$^{-1}$ were obtained for the WS$_2$ films grown using 500 °C, 600 °C, 700 °C and 800 °C Ar-deposited WO$_{3-x}$ precursors, respectively (see Table 2). The data indicate that the sulfurized films consist predominantly of mono-bilayers WS$_2$. A detailed discussion of the Raman peak assignments is given in the Supporting Information.

One remarkable difference is that the $I_{2LA(M)}/I_{A1g(\Gamma)}$ ratio is the lowest for WS$_2$ obtained from Ar-deposited WO$_{3-x}$ precursors at 500 °C (see Table 2). Small variations in the $I_{2LA(M)}/I_{A1g(\Gamma)}$ ratio can arise from multilayer regions. We observe, however, that at the excitation wavelength of 532 nm, the $A_{1g}(\Gamma)$ peak is more enhanced for the 500 °C-based precursors. As it will be discussed next, this trend cannot be associated with resonance-enhanced Raman scattering. For monolayer WS$_2$, the first and second order Raman peaks (2LA(M), $E_{12g}(\Gamma)$ and $A_{1g}(\Gamma)$) can be greatly enhanced for photon energies corresponding the three optical exciton excitations, commonly labeled as X_A, X_B and X_C.52 In particular, the $A_{1g}(\Gamma)$ peak is enhanced at \sim2.4 eV which corresponds to the X_B exciton energy (B exciton)52. The B exciton energy (E_B) can be calculated as $E_A + \Delta S_{O}$, where E_A is the A
exciton energy and Δ_{SO} is the spin-orbit splitting energy. Considering Δ_{SO} of 0.39 eV for WS$_2$,53 E_B was estimated to vary between ~ 2.408 and ~ 2.388 eV for the 500 and 800 $^\circ$C-based precursors. As the photon energy of 2.33 eV (532 nm) is far from the X_B exciton energy, we can conclude that the enhancement of the $A_{1g}(\Gamma)$ peak due to resonance Raman scattering is negligible. An enhancement of $A_{1g}(\Gamma)$ mode (as well as the LA(M) mode) can be observed in samples with high density of defects52,54. We can therefore conclude that WS$_2$ monolayers based on 500 $^\circ$C Ar-deposited WO$_{3-x}$ exhibit a higher amount of defects as compared to the high-temperature counterpart. Previous findings have shown a clear correlation between the FWHM of the $A_{1g}(\Gamma)$ mode, the doping level and the presence of defects52,54. For WS$_2$ synthesized in this work, the FWHM of $A_{1g}(\Gamma)$ mode increases with increasing the precursor growth temperature (see Table 2) and thus can be attributed to the reduced amount of defects.

Atomic force microscopy (AFM) images reveal that the size and shape of the WS$_2$ crystals varies significantly as a function of the nature of the precursors. WS$_2$ domains with triangular-shaped grains of ~ 200 nm in size are observed for films obtained from precursors grown at 500 $^\circ$C (Figure 4a). WS$_2$ consists primarily of monolayers along with a smaller contribution from bilayers (Figure 4c). Similar morphology was observed for MoSe$_2$ monolayers grown by PLD in vacuum55. For the specimens based on the 700 $^\circ$C-precursors, the WS$_2$ crystals become more circularly-shaped, of similar grain size of ~ 200 nm, while the average surface coverage of the monolayer increases as compared to the low-temperature counterpart (see Figures S5 and S6). Finally, increasing the precursor growth temperature to 800 $^\circ$C, large WS$_2$ domains can be identified. Figure 4 shows AFM images of WS$_2$, where large islands consisting of monolayer and multilayer patches are visible. At the edge of the sample (Figure 4 e,f), isolated triangles have edge lengths ranging between 18 and 26 μm. Away from the edge of the film, i.e., in regions where the precursor
films thickness increases (nucleation density is high), islands merge into a quasi-continuous monolayer, and multilayer regions emerge, while the WS$_2$ crystal size decreases (Figure S5).

The atomic structure of WS$_2$ was studied using atomic-resolution annular dark-field (ADF) imaging using an aberration-corrected scanning transmission electron microscope (STEM). For this purpose, the WS$_2$ specimens grown on sapphire were transferred onto a TEM grid, as described in Methods. Figure 5 shows the low-resolution STEM images of the as-transferred WS$_2$ films based on 500 and 800 °C-grown oxide precursors. The intensity of the STEM image is directly related to the atomic number of the atoms (Z) and with the number of atomic layers.15,56 The atomic structure of 2H WS$_2$ can be unambiguously distinguished in Figure 5d, in which sulfur atoms (Z = 16) have much lower intensity than tungsten atoms (Z = 74). The most common point defects identified in monolayer WS$_2$ are single W vacancy (V_W) and double W vacancies (V_{2W}) (Figure S11), in good agreement with previous work.57 These intrinsic defects are observed for all specimens, regardless on the precursor synthesis route. We also note that these intrinsic point defects are significantly different from one-step growth PLD15 or sputtering,58 where antisite defects are dominant intrinsic defects. This suggests that the WS$_2$ domains grow under S-rich environment.59,60 While the AFM micrographs can only provide a microscale picture of the TMD domains (Figure 4 a,c), atomic resolution images reveal the presence of triangular-shaped bilayer WS$_2$ domains for all samples, regardless of synthesis conditions. Lastly, the XPS data reveal a high oxygen content in the sulfurized films in the form of oxide and to a lesser fraction as WO$_x$S$_y$. The presence of the oxygen atoms in WS$_2$ films could not be accurately assessed by means of STEM as the relatively weak intensity contrast makes it difficult to distinguish between the sulfur on oxygen site (S_O) and S vacancy (V_S).61
WS₂ bilayers obtained from 800 °C precursors are found to have predominantly the 2H (AA')/3H (AB) stacking (Figure 5b). In the case of bilayer WS₂ based on 500 °C-grown precursors, the atomic structure is more complex. Grain boundaries (GBs) formed by atomic stitching of randomly oriented domains lead to the formation of bilayers with AA'/AB stacking, as well as turbostatic moiré patterns. Depending on the precise manner the bilayer meet, a wide variety of dislocation cores and grain boundaries can form. Figure 6 shows representative high-resolution images of bilayer WS₂ with various GBs. When the bottom and top layers share the same GB, here referred to as bilayer GB, the WS₂ bilayers have a 2H (AA')/3H (AB) stacking orientation (Figure 6a). In this case, a monolayer forms by atomic stitching of domains with a tilt angle of 23.5°, resulting in dislocation rings of different sizes, such as single and double W clusters consisting of aligned 8-fold dislocation rings, in agreement with previous reports. An atomic resolution image of a monolayer WS₂ with dislocation cores at the GB is shown in Figure S12. In the second stage of the growth, top layers nucleate on individual domains maintaining a similar orientation of the original bottom grains (AA' and AB). They crystals continue to expand laterally until they reach the GB, when the growth stops. A schematic of the GB in bilayer WS₂ is shown in Figure 6g, left-hand sketch. Interestingly, we find that the on the length scale of several nanometers, the AA' stacked bilayer has undergone an in-plane translation, likely due to the build-up local strain near the GB (Figure 6b). In addition to bilayer domains sharing the same GB, bilayers WS₂ with distinct GBs for the bottom and top layers are observed (Figure 6d,e), resulting in the emergence of moiré patterns. In this case, in the first stage of the growth, low (7.5°) and high-angle (20.5°) monolayer GBs are formed. Similarly, top layers nucleate on grains A and B with AB/AA' crystal orientation. The top layer which nucleates on grain A extends over the low-angle GB (7.5°) on the neighboring grain resulting in the formation of a turbostatic moiré pattern (bilayer C). On the contrary, the top
layer which nucleates on grain B stops at the high-angle GB. We hypothesize that the formation of the moiré pattern in bilayer WS₂ is more energetically favorable for low-angle GB. A zoom-in view of the atomic structure of the GB reveals how the bilayer stacking orientation develops from AB to a moiré pattern without a lattice discontinuity (Figures 6e, S13 and S14). Again, an in-plane translation of the bilayer is observed in the high-resolution STEM image. Here, several competitive factors, i.e., weak interlayer van der Waals forces and intralayer GB results in a buildup strain in the bilayer structure.

CONCLUSIONS

In summary, we have developed a PLD-based synthesis of quasi-continuous mono- and multilayers WS₂ films based on sulfurization of WO₃₋ₓ epitaxial films. We have shown that the composition of WO₃₋ₓ films determines the morphology and optical properties of WS₂ monolayers synthesizes in a CVD process. The presence of oxygen vacancies in tungsten oxide film is highly favorable for successful film conversion. The optimized oxide growth conditions (800 ºC deposition temperature using Ar background pressure) results in formation of a stoichiometric 2H-WS₂ monolayer film with a large size of crystals, reaching 26 um on the films edges.

METHODS

Synthesis of WS₂ crystals

A customized pulsed laser deposition (PLD) setup consisting of a target carousel equipped with a water cooled baffle (from McAllister Technical Services) and an IR lamp substrate heating system (from AJA International INC) was used to first produce a variety of tungsten oxide precursors which were then sulfurized for conversion to WS₂ crystals. The cooling of the target is not critical in this work, but from our experience it is strictly necessary for ablation of sulfide materials.
Growth of precursor epitaxial WOx films by pulsed laser deposition (PLD). The thin-films were grown by laser ablation of WO3 target (1 inch diameter, 6 mm thickness, 99.95% purity, from Testbourne Ltd.) using a 248 nm KrF laser (pulse duration τ=20 ns) operating at laser frequency of 1 Hz. The target was placed at a distance of ~7 cm from the substrate. Prior growth, the target was ablated using a number of 30 laser pulses. During deposition, the laser beam was rastered across the target using motorized mirrors and the target was rotated at the angular speed of 6 rpm to ensure uniform ablation and consequently films with a good thickness uniformity. The laser fluence on the target was maintained at ~ 1.5 J/cm². Prior deposition, the vacuum chamber was pumped down to base pressure of ~5 × 10⁻⁷ mbar and background gas was introduced manually using a needle valve. To growth of oxide precursors was carried out O (99.9995% purity, Air Liquide Danmark A/S) or Ar (99.9999% purity, Air Liquide Danmark A/S). In all experiments, the gas pressure was maintained at 5 × 10⁻³ mbar. The films were grown (0001) Al₂O₃ and SiO₂ (300 nm)/Si substrates of 1 x 1 cm² in size cut from large wafers. Before loading the substrates into the PLD chamber, they were sequentially cleaned in acetone, isopropanol (IPA) and deionized water (DI) water for 10 min in each solvent combined with sonication. The substrate were heated using a ramp rate of 15 °C/min to the desired growth temperature and finally cooled down to room temperature using a similar cooling rate of 15 °C/min. The WOx precursors were grown on a temperature range varying from 500 °C to 800 °C using a number of ~40 laser pulses. A minimum number of 30 pulses was required to obtain any deposition.

Sulfurization of WOx films. The sulfurization of WOx precursor films was performed as follows. (1) Firstly, the precursor films were placed facing up onto a flat graphite plate and loaded in the middle of the three-zone tube furnace of a 3 inch outside diameter. A narrow alumina ceramic boat containing ~2.0 g of sulfur flakes (≥99.99 % purity, from Sigma Aldrich) was placed outside the main heating area of the quartz tube and heated independently using an external heater. The distance between the ceramic boat and the samples was 35 cm. (2) The system was pumped down to 5 × 10⁻² mbar and sequentially flushed 5 times by pressuring to 500 mbar with Ar-H₂ mixture (5 % volume fraction, 99.9995 % purity, Air Liquide Danmark A/S) to remove residual gases, such as oxygen and water vapor. Then, a 200 sccm Ar-5 % H₂ gas flow was introduced as a carrier gas throughout the entire process. The tube furnace was then heated at a rate of 15 °C/min to 900 °C and the sulfurization process took place at 900 °C for 30 min. Moreover, when the furnace
temperature reached 900 °C, the external heater was set to 250 °C to produce an adequate sulfur evaporation rate. The system was finally cooled down at a rate of 15 °C/min to 500 °C, and then naturally to room temperature.

Structural characterization of the WS₂ films

Raman/PL spectroscopy. Raman and PL spectra were collected using home-built Raman confocal spectroscopy setup using a 532 nm excitation laser. The samples were illuminated through a 40x objective lens (NA=0.75), type Nikon CFI Plan Flour. The spectrometer is a Spectra Pro HRS-750 scanning monochromator from Princeton Instruments equipped with suitable gratings of 300 gr/mm (for PL measurements) and 1800 gr/mm (for Raman acquisition) and a cryogenically-cooled, ultra-low noise Pylon CCD camera, type PyLoN:100BR from Princeton Instruments. The wavelength calibration was carried using an Ar-Ne light source mounted directly on a side entrance slit of the spectrometer. The spectrometer resolution was found to be ~1 cm⁻¹ at 532 nm. Raman spectra were collected using various integration time and then normalized. The PL spectra were taken at a low laser power below 10 mW to prevent overheating.

Scanning Electron Microscopy (SEM). The morphologies of the WS₂ crystals grown on either (0001) sapphire or SiO₂/Si substrates were analyzed using a Zeiss Merlin microscope operated using an In Lens detector, acceleration voltages in the 1–2 kV and working distance between 3 and 4 cm.

Atomic Force Microscopy (AFM). AFM measurements were conducted at room temperature using a Bruker Icon AFM microscope.

X-ray Photoelectron Spectroscopy (XPS). The XPS spectra were recorded using a Thermo Fisher Nexsa XPS system with Al Kα 1486.6 eV excitation source. The energy scale of the XPS was calibrated using Au 4f⁷/₂ line centered at 84.0 eV, and the line positions were calibrated using W4f⁷/₂ peak of WO₃ at 36.0 eV, which is present in all the samples.

Scanning Transmission Electron Microscopy (STEM). The WS₂ specimens were transferred onto a TEM grid with the aid of cellulose acetate butyrate (CAB) coating followed by KOH etching. CAB is used because of its hydrophobic nature compared to the hydrophilic substrate. In this transfer process the CAB solution (20 mg/100 ml in ethyl acetate) produces 15 μm-thick polymer. The specimens on sapphire were spin coated with CAB using a 1500 rpm rotation speed followed by heating for few minutes on a hot plate. The samples were dipped inside KOH solution in order
to etch them from sapphire and washed several times with DI water for the complete removal of KOH. The samples were then transferred to TEM grid and kept them in air for several minutes for drying. The presence of the samples before and after cleaning with acetone were confirmed by Raman measurement. Afterwards, the samples were cleaned with acetone to remove CAB on the samples. The samples transferred on the TEM grid were baked at a temperature of 160 °C in vacuum for 8 h before loading them in the STEM chamber for imaging. The STEM measurements were performed using an aberration-corrected Nion UltraSTEM 100 microscope equipped with a cold field emission gun. The images were acquired at an acceleration voltage of 60 kV and a semiconvergence angle of 31 mrad.

DFT Calculations. The DFT calculations were performed within the projected-augmented (PAW) method implemented in the electronic structure code GPAW (21). We used a plane wave basis set with a cutoff of 800 eV and included exchange and correlations with the Perdew-Burke-Enzerhof (PBE) functional (20). Reciprocal space was sampled with a k-point density of 6 Å$^{-1}$ including the Γ point. The atomic positions were relaxed at a fixed cell until forces were less than 10^{-2} eVÅ$^{-1}$.
Figure 1. Chemical composition of PLD-grown WO$_{3-x}$ precursors. W4f core level XPS spectra of WO$_{3-x}$ films grown in temperature range from 500 °C to 800 °C in O$_2$ (a-d) and Ar (e-h). (i, j) The corresponding W$^{x+}$ fraction extracted from the XPS spectra. The XPS spectra were fitted with peaks attributed to three sets of doublets corresponding to W$^{6+}$ (blue lines), W$^{5+}$ (orange lines) and W$^{4+}$ (magenta lines) valence states, and their corresponding W$^{5p3/2}$ (same color as a doublet). All the films were grown on (0001) Al$_2$O$_3$ substrates using 40 laser pulses. (k) XRD 0-20 patterns of WO$_2$ films grown on (0001) Al$_2$O$_3$ substrate in Ar in a temperature range from 500 °C to 800 °C.
Figure 2. Chemical analysis of WS$_2$ using XPS. W 4f core level XPS spectra of WS$_2$ films obtained upon sulfurization of WO$_{3-x}$ precursors grown in Ar at 500 °C (a), 600 °C (b), 700 °C (c) and 800 °C (d). The XPS spectra peaks were attributed to three sets of doublets corresponding to W$^{6+}$ (blue lines), W$^{4+}$ (magenta lines) and W$^{x+}$ (orange lines) valence states, and their corresponding W 5p$_{3/2}$ (light green). WS$_x$ denotes S-deficient WS$_2$.
Figure 3. Optical properties of WS$_2$. PL and Raman spectra of WS$_2$ obtained by sulfurization at 900 °C of WO3-xprecursors grown in Ar at a temperature of 500 °C (a, b), 600 °C (c, d), 700 °C (e, f), 800 °C (g, h). Deconvolution of the PL spectra using Lorentzian multiple-peak fitting into four peaks corresponding to neutral exciton (X) (blue), negative exciton – trion (X$^-$) (red), bi-exciton (XX) (green), and defected-mediated exciton (D) (dark cyan). Deconvolution of the Raman spectra using Lorentzian multiple-peak fitting is marked with red curves (major contributions presented).
Figure 4. Morphology of WS\textsubscript{2} crystals. AFM images showing the change in the morphology of the WS\textsubscript{2} as a function of the growth parameters of the WO\textsubscript{3-x} precursors: (a) 500 °C, O\textsubscript{2}; (b) 800 °C, O\textsubscript{2}; (c) 500 °C, Ar; (d) 800 °C, Ar; (e, f) Optical images of WS\textsubscript{2} monolayers based on 800 °C-grown precursors, and (g) the corresponding AFM image.
Figure 5. Atomic structure of mono-bilayer WS$_2$. ADF-STEM images of mono-bilayer WS$_2$ derived from 500°C (a) and 800°C-grown precursors (b). (c) Magnified STEM image showing of triangular-shape edges of bilayer WS$_2$ with a 2H (AA') interface. (d) Magnified view of the yellow box in (c) showing the atomic resolution image of pristine monolayer.
Figure 6. Atomic structure of bilayer WS$_2$. a) ADF-STEM images of 23.5° bilayer GB showing bilayer WS$_2$ sharing the same GB as the monolayer counterpart. Panels b) and c) are zoom-in views of bilayer domains from regions highlighted in (a). (d) STEM image of 20.5° bilayer GB showing AA'/AB orientation and moiré pattern. e) High-resolution image of bilayer domains taken roughly on the region highlighted in d). f) Fast Fourier transform (FFT) of the AF STEM image shown in (d). (g) Left- and right-hand illustrations revealing the formation of bilayer WS$_2$ in (a), and (d), respectively.
Table 1. The average composition of the WO$_{3-x}$ precursors and WS$_2$ derived from XPS.

Background gas (8×10$^{-3}$ mbar)	Substrate temperature (°C)	Oxide Precursors	Sulfides			
		WO$_{3-x}$ Stoichiometry(*)	WS$_2$ Stoichiometry	WS$_x$ Stoichiometry	Residual WO$_3$	Residual WS$_x$
Oxygen	500 °C	2.95	-	-	-	-
	600 °C	2.94	-	-	-	-
	700 °C	2.84	2.10	2.10	0.50	0.09
	800 °C	2.76	2.15	2.15	0.42	0.05
Argon	500 °C	2.52	2.00	2.00	0.34	0.09
	600 °C	2.50	2.00	2.00	0.33	0.09
	700 °C	2.48	2.00	2.00	0.27	0.08
	800 °C	2.44	2.02	2.02	0.20	0.06

(*) Average composition of the films accounting all various oxidation states of W in WO$_{3-x}$. The WS$_2$ stoichiometry was estimated by taking into account contributions from both 2H-WS$_2$ and WS$_x$.

Table 2. Raman peak positions, intensity ratios and FWHM for the WS$_2$ layers grown using different precursors. The excitation wavelength was 532 nm. The data were fitted using Lorentzian functions.

Background gas (8×10$^{-3}$ mbar)	Substrate temperature (°C)	Sulfides				
		$A_{1g}(\Gamma)$ (cm^{-1})	FWHM $A_{1g}(\Gamma)$ (cm^{-1})	$E_{2g}(\Gamma)$ (cm^{-1})	Δk (cm^{-1})	2LA(M) (cm^{-1})
Oxygen	500 °C	-	-	-	-	-
	600 °C	-	-	-	-	-
	700 °C	419.2	3.84	358.4	61.2	178.8
	800 °C	419.0	3.38	358.5	60.5	178.8
Argon	500 °C	419.2	3.08	358.5	60.7	177.9
	600 °C	419.4	3.66	358.3	61.1	179.1
	700 °C	418.8	3.90	357.5	61.3	178.2
	800 °C	419.1	6.39	357.5	61.6	178.5
ASSOCIATED CONTENT

Supporting Information. A listing of the contents of each file supplied as Supporting Information should be included. For instructions on what should be included in the Supporting Information as well as how to prepare this material for publications, refer to the journal’s Instructions for Authors. The following files are available free of charge. Table S1, XPS data of WO\textsubscript{3-\textit{x}}; Table S2, XPS data of WS\textsubscript{2}; Figure S1, S 2p core level XPS spectra of WS\textsubscript{2}; Figure S2, S 2p core level XPS spectra of WS\textsubscript{2}; Figure S3, W 4f core level XPS spectra of WS\textsubscript{2}; Figure S4, \(\theta – 2\theta\) XRD pattern of WO\textsubscript{2} on (0001) Al\textsubscript{2}O\textsubscript{3}; Figure S5, High-resolution SEM images of WS\textsubscript{2}; Figure S6, Optical images of WS\textsubscript{2} monolayers; Section Raman and PL studies; Figure S7, DFT-calculated formation energy (E\textsubscript{F}) of oxygen vacancies in WO\textsubscript{3-\textit{x}} oxides; Figure S8, Equilibrium oxygen vacancy concentration as a function of temperature; Figure S9, Visualization of sulfur interstitial (S\textsubscript{i}) and sulfur on oxygen site (S\textsubscript{o}) in WO\textsubscript{3}; Figure S10, Visualization of systems in the slab calculations; Figure S11, Intrinsic point defects on monolayer WS\textsubscript{2}; Figure S12, STEM image of 20.5\(^{\circ}\) grain boundary in monolayer WS\textsubscript{2}; Figure S13, Low-resolution STEM image showing a 30.5\(^{\circ}\) monolayer; Figure S14, STEM and Fourier-filtered images of bilayer WS\textsubscript{2}.

AUTHOR INFORMATION

Corresponding Author

Stela Canulescu – Department of Photonics Engineering, Technical University of Denmark, 4000 Roskilde, Denmark; orcid.org/0000-0003-3786-2598; Email: stec@fotonik.dtu.dk.

Present Addresses

NA

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
Funding Sources

NA

Notes

Any additional relevant notes should be placed here.

ACKNOWLEDGMENT

S.C. acknowledges support from the Independent Research Fund Denmark, Sapere Aude grant (project number 8049- 00095B). K.S.T. acknowledges support from the Center for Nanostructured Graphene (CNG) under the Danish National Research Foundation (project DNRF103) and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC grant no. 773122, LIMA). STEM imaging was conducted as a part of a user project at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

ABBREVIATIONS

PLD pulsed laser deposition
REFERENCES

(1) Lin, Y.-C.; Yeh, C.-H.; Lin, H.-C.; Siao, M.-D.; Liu, Z.; Nakajima, H.; Okazaki, T.; Chou, M.-Y.; Suenaga, K.; Chiu, P.-W. Stable 1T Tungsten Disulfide Monolayer and Its Junctions: Growth and Atomic Structures. *ACS Nano* **2018**, *12* (12), 12080–12088. https://doi.org/10.1021/acsnano.8b04979.

(2) Zeng, H.; Liu, G. Bin; Dai, J.; Yan, Y.; Zhu, B.; He, R.; Xie, L.; Xu, S.; Chen, X.; Yao, W.; Cui, X. Optical Signature of Symmetry Variations and Spin-Valley Coupling in Atomically Thin Tungsten Dichalcogenides. *Scientific Reports* **2013**, *3*, 2–6. https://doi.org/10.1038/srep01608.

(3) Zhu, Z. Y.; Cheng, Y. C.; Schwingenschlögl, U. Giant Spin-Orbit-Induced Spin Splitting in Two-Dimensional Transition-Metal Dichalcogenide Semiconductors. *Physical Review B - Condensed Matter and Materials Physics* **2011**, *84* (15), 1–5. https://doi.org/10.1103/PhysRevB.84.153402.

(4) Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R.; López-Urias, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary Room-Temperature Photoluminescence in Triangular WS2 Monolayers. *Nano Letters* **2013**, *13* (8), 3447–3454. https://doi.org/10.1021/nl3026357.

(5) Zheng, B.; Zheng, W.; Jiang, Y.; Chen, S.; Li, D.; Ma, C.; Wang, X.; Huang, W.; Zhang, X.; Liu, H.; Jiang, F.; Li, L.; Zhuang, X.; Wang, X.; Pan, A. WO3-WS2 Vertical Bilayer Heterostructures with High Photoluminescence Quantum Yield. *JOURNAL OF THE AMERICAN CHEMICAL SOCIETY* **2019**, *141* (30), 11754–11758. https://doi.org/10.1021/jacs.9b03453.

(6) Yao, H.; Liu, L.; Wang, Z.; Li, H.; Chen, L.; Pam, M. E.; Chen, W.; Yang, H. Y.; Zhang, W.; Shi, Y. Significant Photoluminescence Enhancement in WS2 Monolayers through Na2S Treatment. *Nanoscale* **2018**, *10* (13), 6105–6112. https://doi.org/10.1039/c8nr00530c.

(7) Huang, F.; Li, J. Z.; Xu, Z. H.; Liu, Y.; Luo, R. P.; Zhang, S. W.; Nie, P. B.; Lv, Y. F.; Zhao, S. X.; Su, W. T.; Li, W. Di; Zhao, S. C.; Wei, G. D.; Kuo, H. C.; Kang, F. Y. A Bilayer 2D-WS2/Organic-Based Heterojunction for High-Performance Photodetectors. *NANOMATERIALS* **2019**, *9* (9). https://doi.org/10.3390/nano9091312.

(8) Wang, Z.; Molina-Sánchez, A.; Altmann, P.; Sangalli, D.; De Fazio, D.; Soavi, G.; Sassi, U.; Bottegoni, F.; Ciccacci, F.; Finazzi, M.; Wirtz, L.; Ferrari, A. C.; Marini, A.; Cerullo, G.; Dal Conte, S. Intravalley Spin–Flip Relaxation Dynamics in Single-Layer WS2. *Nano Letters* **2018**, *18* (11), 6882–6891. https://doi.org/10.1021/acs.nanolett.8b02774.

(9) McCreary, K. M.; Hanbicki, A. T.; Jernigan, G. G.; Culbertson, J. C.; Jonker, B. T. Synthesis of Large-Area WS2 Monolayers with Exceptional Photoluminescence. *Scientific Reports* **2016**, *6* (November 2015), 1–7. https://doi.org/10.1038/srep19159.

(10) Cong, C.; Shang, J.; Wu, X.; Cao, B.; Peimyoo, N.; Qiu, C.; Sun, L.; Yu, T. Synthesis and Optical Properties of Large-Area Single-Crystalline 2D Semiconductor WS2 Monolayer
from Chemical Vapor Deposition. *Advanced Optical Materials* **2014**, *2*(2), 131–136. https://doi.org/10.1002/adom.201300428.

(11) Cun, H.; Macha, M.; Kim, H. K.; Liu, K.; Zhao, Y.; LaGrange, T.; Kis, A.; Radenovic, A. Wafer-Scale MOCVD Growth of Monolayer MoS2 on Sapphire and SiO2. *Nano Research* **2019**, *12*(10), 2646–2652. https://doi.org/10.1007/s12274-019-2502-9.

(12) Kang, K.; Xie, S.; Huang, L.; Han, Y.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-Mobility Three-Atom-Thick Semiconducting Films with Wafer-Scale Homogeneity. *Nature* **2015**, *520*(7549), 656–660. https://doi.org/10.1038/nature14417.

(13) Hall, J.; Pielić, B.; Murray, C.; Jolie, W.; Wekking, T.; Busse, C.; Kralj, M.; Michely, T. Molecular Beam Epitaxy of Quasi-Freestanding Transition Metal Disulphide Monolayers on van Der Waals Substrates: A Growth Study. *2D Materials* **2018**, *5*(2). https://doi.org/10.1088/2053-1583/aaa1c5.

(14) Balasubramanyam, S.; Merkx, M. J. M.; Verheijen, M. A.; Kessels, W. M. M.; Mackus, A. J. M.; Bol, A. A. Area-Selective Atomic Layer Deposition of Two-Dimensional WS2 Nanolayers. *ACS Materials Letters* **2020**, *2*(5), 511–518. https://doi.org/10.1021/acsmaterialslett.0c00093.

(15) Bertoldo, F.; Unocic, R. R.; Lin, Y.-C.; Sang, X.; Puretzky, A. A.; Yu, Y.; Miakota, D.; Rouleau, C. M.; Schou, J.; Thygesen, K. S.; Geohegan, D. B.; Canulescu, S. Intrinsic Defects in MoS2 Grown by Pulsed Laser Deposition: From Monolayers to Bilayers. *ACS Nano* **2021**, *15*(2), 2858–2868. https://doi.org/10.1021/acsnano.0c08835.

(16) Yao, J. D.; Zheng, Z. Q.; Shao, J. M.; Yang, G. W. Stable, Highly-Responsive and Broadband Photodetection Based on Large-Area Multilayered WS2 Films Grown by Pulsed-Laser Deposition. *Nanoscale* **2015**, *7*(36), 14974–14981. https://doi.org/10.1039/c5nr03361f.

(17) Loh, T. A. J.; Chua, D. H. C. Growth Mechanism of Pulsed Laser Fabricated Few-Layer MoS2 on Metal Substrates. *ACS Applied Materials & Interfaces* **2014**, *6*(18), 15966–15971. https://doi.org/10.1021/am503719b.

(18) Tumino, F.; Casari, C. S.; Passoni, M.; Russo, V.; Li Bassi, A. Pulsed Laser Deposition of Single-Layer MoS2 on Au(111): From Nanosized Crystals to Large-Area Films. *Nanoscale Advances* **2019**, *1*(2), 643–655. https://doi.org/10.1039/c8na00126j.

(19) Xu, X.; Wang, Z.; Lopatin, S.; Quevedo-Lopez, M. A.; Alshareef, H. N. Wafer Scale Quasi Single Crystalline MoS2 Realized by Epitaxial Phase Conversion. *2D Materials* **2019**, *6*(1). https://doi.org/10.1088/2053-1583/aaf3e9.

(20) Zhang, Y.; Zhang, Y.; Ji, Q.; Ju, J.; Yuan, H.; Shi, J.; Gao, T.; Ma, D.; Liu, M.; Chen, Y.; Song, X.; Hwang, H. Y.; Cui, Y.; Liu, Z. Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. *Acns Nano* **2013**, *7*(10), 8963–8971. https://doi.org/10.1021/nn403454e.
(21) Chubarov, M.; Choudhury, T. H.; Hickey, D. R.; Bachu, S.; Zhang, T.; Sebastian, A.; Bansal, A.; Zhu, H.; Trainor, N.; Das, S.; Terrones, M.; Alem, N.; Redwing, J. M. Wafer-Scale Epitaxial Growth of Unidirectional WS2 Monolayers on Sapphire. ACS NANO 2021, 15 (2), 2532–2541. https://doi.org/10.1021/acsnano.0c06750.

(22) Lin, Y.-C.; Zhang, W.; Huang, J.-K.; Liu, K.-K.; Lee, Y.-H.; Liang, C.-T.; Chu, C.-W.; Li, L.-J. Wafer-Scale MoS2 Thin Layers Prepared by MoO3 Sulfurization. NANO SCALE 2012, 4 (20), 6637–6641. https://doi.org/10.1039/c2nr31833d.

(23) Liu, P.; Luo, T.; Xing, J.; Xu, H.; Hao, H.; Liu, H.; Dong, J. Large-Area WS2 Film with Big Single Domains Grown by Chemical Vapor Deposition. Nanoscale Research Letters 2017, 12 (1), 558. https://doi.org/10.1186/s11671-017-2329-9.

(24) Liu, Z.; Murphy, A. W. A.; Kuppe, C.; Hooper, D. C.; Valev, V. K.; Ilie, A. WS2 Nanotubes, 2D Nanomeshes, and 2D In-Plane Films through One Single Chemical Vapor Deposition Route. ACS Nano 2019, 13 (4), 3896–3909. https://doi.org/10.1021/acsnano.8b06515.

(25) Pető, J.; Ollár, T.; Vancsó, P.; Popov, Z. I.; Magda, G. Z.; Dobrik, G.; Hwang, C.; Sorokin, P. B.; Tapasztó, L. Spontaneous Doping of the Basal Plane of MoS2 Single Layers through Oxygen Substitution under Ambient Conditions. Nature Chemistry 2018, 10 (12), 1246–1251. https://doi.org/10.1038/s41557-018-0136-2.

(26) Ning, S.; Huberman, S. C.; Ding, Z.; Nahm, H.-H.; Kim, Y.-H.; Kim, H.-S.; Chen, G.; Ross, C. A. Anomalous Defect Dependence of Thermal Conductivity in Epitaxial WO3 Thin Films. Advanced Materials 2019, 31 (43), 1903738. https://doi.org/10.1002/adma.201903738.

(27) Canulescu, S.; Papadopoulou, E. L.; Anglos, D.; Lippert, Th.; Schneider, C. W.; Wokaun, A. Mechanisms of the Laser Plume Expansion during the Ablation of LiMn 2O4. Journal of Applied Physics 2009, 105 (6). https://doi.org/10.1063/1.3095687.

(28) Canulescu, S.; Dobeli, M.; Yao, X.; Lippert, T.; Amoruso, S.; Schou, J. Nonstoichiometric Transfer during Laser Ablation of Metal Alloys. Physical Review Materials 2017, 1 (7), 73402. https://doi.org/10.1103/PhysRevMaterials.1.073402.

(29) Toftmann, B.; Schou, J.; Canulescu, S. Energy Distribution of Ions Produced by Laser Ablation of Silver in Vacuum. Applied Surface Science 2013, 278. https://doi.org/10.1016/j.apsusc.2013.01.214.

(30) Canulescu, S.; Papadopoulou, E.; Anglos, D.; Lippert, T.; Montenegro, M. J.; Georgiou, S.; Döbeli, M.; Wokaun, A. Nanosecond and Femtosecond Ablation of La0.6Ca 0.4CoO3: A Comparison between Plume Dynamics and Composition of the Films. Applied Physics A: Materials Science and Processing 2011, 105 (1). https://doi.org/10.1007/s00339-011-6463-4.

(31) Amoruso, S.; Sambri, A.; Wang, X. Plume Expansion Dynamics during Laser Ablation of Manganates in Oxygen Atmosphere. Photon-Assisted Synthesis and Processing of Functional Materials - E-MRS-H Symposium 2007, 253 (19), 7696–7701. https://doi.org/DOI: 10.1016/j.apsusc.2007.02.041.
(32) von Soosten, M.; Christensen, Dennis. V; Eom, C.-B.; Jespersen, Thomas. S.; Chen, Y.; Pryds, N. On the Emergence of Conductivity at SrTiO3-Based Oxide Interfaces – an in-Situ Study. Scientific Reports 2019, 9 (1), 18005. https://doi.org/10.1038/s41598-019-54463-w.

(33) Meng, J.; Lan, Z.; Castelli, I. E.; Zheng, K. Atomic-Scale Observation of Oxygen Vacancy-Induced Step Reconstruction in WO3. The Journal of Physical Chemistry C 2021, 125 (15), 8456–8460. https://doi.org/10.1021/acs.jpcc.1c01577.

(34) Zhang, X.; Tang, F.; Wang, M.; Zhan, W.; Hu, H.; Li, Y.; Friend, R. H.; Song, X. Femtosecond Visualization of Oxygen Vacancies in Metal Oxides. Science Advances 2020, 6 (10), eaax9427. https://doi.org/10.1126/sciadv.aa9427.

(35) Zhu, Y. Q.; Hu, W.; Hsu, W. K.; Terrones, M.; Grobert, N.; Hare, J. P.; Kroto, H. W.; Walton, D. R. M.; Terrones, H. Tungsten Oxide Tree-like Structures. Chemical Physics Letters 1999, 309 (5), 327–334. https://doi.org/10.1016/S0009-2614(99)00732-0.

(36) Xi, G.; Ouyang, S.; Li, P.; Ye, J.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 Nanowires with Diameters below 1 Nm: Synthesis, Near-Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide. Angewandte Chemie International Edition 2012, 51 (10), 2395–2399. https://doi.org/10.1002/anie.201107681.

(37) Shen, G.; Bando, Y.; Golberg, D.; Zhou, C. Electron-Beam-Induced Synthesis and Characterization of W18O49 Nanowires. The Journal of Physical Chemistry C 2008, 112 (15), 5856–5859. https://doi.org/10.1021/jp8000338.

(38) Wong, F. J.; Ramanathan, S. Heteroepitaxy of Distorted Rutile-Structure WO2 and NbO2 Thin Films. Journal of Materials Research 2013, 28 (18), 2555–2563. https://doi.org/10.1557/jmr.2013.247.

(39) Xu, X.; Wang, Z.; Lopatin, S.; Quevedo-Lopez, M. A.; Alshareef, H. N. Wafer Scale Quasi Single Crystalline MoS2 Realized by Epitaxial Phase Conversion. 2D MATERIALS 2019, 6 (1). https://doi.org/10.1088/2053-1583/aaf3e9.

(40) Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A. Colloidal Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society 2014, 136 (40), 14121–14127. https://doi.org/10.1021/ja506261t.

(41) Di Paola, A.; Palmisano, L.; Venezia, A. M.; Augugliaro, V. Coupled Semiconductor Systems for Photocatalysis. Preparation and Characterization of Polycrystalline Mixed WO3/WS2 Powders. Journal of Physical Chemistry B 1999, 103 (39), 8236–8244. https://doi.org/10.1021/jp9911797.

(42) Perrozzi, F.; Emamjomeh, S. M.; Paolucci, V.; Taglieri, G.; Ottaviano, L.; Cantalini, C. Thermal Stability of WS2 Flakes and Gas Sensing Properties of WS2/WO3 Composite to H2, NH3 and NO2. Sensors and Actuators, B: Chemical 2017, 243 (2), 812–822. https://doi.org/10.1016/j.snb.2016.12.069.
Ambrosi, A.; Sofer, Z.; Pumera, M. 2H \rightarrow \text{1T} Phase Transition and Hydrogen Evolution Activity of MoS2, MoSe2, WS2 and WSe2 Strongly Depends on the MX2 Composition. *Chemical Communications* **2015**, *51*(40), 8450–8453. https://doi.org/10.1039/c5cc00803d.

van der Vlies, A. J.; Kishan, G.; Niemantsverdriet, J. W.; Prins, R.; Weber, Th. Basic Reaction Steps in the Sulfidation of Crystalline Tungsten Oxides. *The Journal of Physical Chemistry B* **2002**, *106* (13), 3449–3457. https://doi.org/10.1021/jp0138734.

Morrish, R.; Haak, T.; Wolden, C. A. Low-Temperature Synthesis of n-Type WS2 Thin Films via H2S Plasma Sulfurization of WO3. *Chemistry of Materials* **2014**, *26* (13), 3986–3992. https://doi.org/10.1021/cm501566h.

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. *NATURE NANOTECHNOLOGY* **2012**, *7* (11), 699–712. https://doi.org/10.1038/NNANO.2012.193.

Sebait, R.; Biswas, C.; Song, B.; Seo, C.; Lee, Y. H. Identifying Defect-Induced Trion in Monolayer WS2 via Carrier Screening Engineering. *ACS Nano* **2021**, *15* (2), 2849–2857. https://doi.org/10.1021/acsnano.0c08828.

Harats, M. G.; Kirchhof, J. N.; Qiao, M.; Greben, K.; Bolotin, K. I. Dynamics and Efficient Conversion of Excitons to Trions in Non-Uniformly Strained Monolayer WS2. *Nature Photonics* **2020**, *14* (5), 324–329. https://doi.org/10.1038/s41566-019-0581-5.

Chow, P. K.; Jacobs-Gedrim, R. B.; Gao, J.; Lu, T.-M.; Yu, B.; Terrones, H.; Koratkar, N. Defect-Induced Photoluminescence in Monolayer Semiconducting Transition Metal Dichalcogenides. *ACS Nano* **2015**, *9* (2), 1520–1527. https://doi.org/10.1021/nn5073495.

Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J.; Ogletree, F.; Li, J.; Grossman, J. C.; Wu, J. Defects Activated Photoluminescence in Two-Dimensional Semiconductors: Interplay between Bound, Charged, and Free Excitons. *Scientific Reports* **2013**, *3*, 2657. https://doi.org/10.1038/srep02657.

Berkdemir, A.; Gutierrez, H. R.; Botello-Mendez, A. R.; Perea-Lopez, N.; Elias, A. L.; Chia, C.-I.; Wang, B.; Crespi, V. H.; Lopez-Urías, F.; Charlier, J.-C.; Terrones, H.; Terrones, M. Identification of Individual and Few Layers of WS2 Using Raman Spectroscopy. *Scientific Reports* **2013**, *3*, 1755. https://doi.org/10.1038/srep01755.

Del Corro, E.; Botello-Méndez, A.; Gillet, Y.; Elias, A. L.; Terrones, H.; Feng, S.; Fantini, C.; Rhodes, D.; Pradhan, N.; Balicas, L.; Gonze, X.; Charlier, J. C.; Terrones, M.; Pimenta, M. A. Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy. *Nano Letters* **2016**, *16* (4), 2363–2368. https://doi.org/10.1021/acs.nanolett.5b05096.

Hanbicki, A. T.; Currie, M.; Kioseoglou, G.; Friedman, A. L.; Jonker, B. T. Measurement of High Exciton Binding Energy in the Monolayer Transition-Metal Dichalcogenides WS2 and WSe2. *Solid State Communications* **2015**, *203*, 16–20. https://doi.org/https://doi.org/10.1016/j.ssc.2014.11.005.
(54) Yao, Y.; Chen, F.; Fu, L.; Ding, S.; Zhao, S.; Zhang, Q.; Su, W.; Ding, X.; Song, K. In Situ Probing the Localized Optoelectronic Properties of Defective Monolayer WS2. *The Journal of Physical Chemistry C* 2020, 124 (13), 7591–7596. https://doi.org/10.1021/acs.jpcc.0c02042.

(55) Puretzky, A. A.; Lin, Y.-C.; Liu, C.; Strasser, A. M.; Yu, Y.; Canulescu, S.; Rouleau, C. M.; Xiao, K.; Duscher, G.; Geohegan, D. B. In Situ Laser Reflectivity to Monitor and Control the Nucleation and Growth of Atomically Thin 2D Materials. *2D MATERIALS* 2020, 7 (2). https://doi.org/10.1088/2053-1583/ab7a72.

(56) Krivanek, O. L.; Chisholm, M. F.; Nicolosi, V.; Pennycook, T. J.; Corbin, G. J.; Dellby, N.; Murfitt, M. F.; Own, C. S.; Szilagyi, Z. S.; Oxley, M. P.; Pantelides, S. T.; Pennycook, S. J. Atom-by-Atom Structural and Chemical Analysis by Annular Dark-Field Electron Microscopy. *Nature* 2010, 464 (7288), 571–574. https://doi.org/10.1038/nature08879.

(57) Hickey, D. R.; Yilmaz, D. E.; Chubarov, M.; Bachu, S.; Choudhury, T. H.; Miao, L.; Qian, C.; Redwing, J. M.; van Duin, A. C. T.; Alem, N. Formation of Metal Vacancy Arrays in Coalesced WS2 Monolayer Films. *2D Materials* 2020, 8 (1), 11003. https://doi.org/10.1088/2053-1583/abc905.

(58) van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y.; Lee, G.-H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and Grain Boundaries in Highly Crystalline Monolayer Molybdenum Disulphide. *Nature Materials* 2013, 12 (6), 554–561. https://doi.org/10.1038/nmat3633.

(59) Zhou, W.; Zou, X.; Najmaei, S.; Liu, Z.; Shi, Y.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J.-C. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide. *Nano Letters* 2013, 13 (6), 2615–2622. https://doi.org/10.1021/nl4007479.

(60) Intrinsic Point Defects and Complexes in the Quaternary Kesterite Semiconductor Cu 2 ZnSnS 4. *Phys. Rev.* 2010, 81 (24).

(61) Tang, J.; Wei, Z.; Wang, Q.; Wang, Y.; Han, B.; Li, X.; Huang, B.; Liao, M.; Liu, J.; Li, N.; Zhao, Y.; Shen, C.; Guo, Y.; Bai, X.; Gao, P.; Yang, W.; Chen, L.; Wu, K.; Yang, R.; Shi, D.; Zhang, G. In Situ Oxygen Doping of Monolayer MoS2 for Novel Electronics. *Small* 2020, 16 (42), 2004276. https://doi.org/https://doi.org/10.1002/smll.202004276.