Review of Deep Learning Algorithms in Computational biochemistry

Nezar Ismet Sino1*, Rabah N. Farhan2, Mohammed E. Seno3

1Renewable Energy Research Center, University Of Anbar, Alramadi, Iraq
2Renewable Energy Research Center, University Of Anbar, Alramadi, Iraq
3Dept. of Computer Science, Al-Maarif Universities, Iraq

Nezar.Ismet@uoanbar.edu.iq
Rabahalobaidy@uoanbar.edu.iq
Mohammed.E.Seno3@uoa.edu.iq

Abstract. Biochemistry actually is a fertile pool of resources, including modeling, DL and optimization techniques for chemical data and associated phenomena. Computational Biochemistry is a very effective entity. These include rapid literature research, physical and quantum chemical propaganda analyzes, transition states, chemical structures, chemical reactions as well as new catalysts and candidates for drugs. DL algorithms can integrate raw input into intermediary layers of features and successfully fit the desired compound into optimum combinations. This review study introduces a series of biochemical applications with the most exciting discoveries involving the use of DL in wide range of applications such as Modeling bio-processes, algorithms and methods to promote the design and synthesis of bio compounds, material design, binding forecasting and molecular activity are given special importance.

Keywords. Machine-learning, Deep-learning, molecular simulation, Drug Discovery, Bio compound.

1. Introduction
The active pools of artificial algorithms that participate in many computational chemistry applications such as computer-aided drug design, material property prediction, and quality analysis of molecular compounds fall in so nowadays called Deep Learning (DL). deep learning models have attained top positions in the Tox21 toxicity prediction competition introduced by NIH in 2014 as an example of its excellent performance in the field of biochemistry.[1][2]. The toxicity agents for example, was analyzed successfully in [3]–[5]. Most of recent DL algorithms established are concentrated on the notion of stacked layers of neural networks and, for the purpose of this research, we would focus exclusively on deep neural networks. brief introduction to DL will be included, explaining and showing an overview on artificial neural networks and identifying critical scientific advances over the last decade that have facilitated deep neural networks. In addition, we will elaborate about how deep learning varies from conventional machine learning techniques used in computational chemistry, and how well the continuous re-emergence of deep learning varies greatly from artificial neural network models, which can be used as its parent algorithm. In the next section of the study, we will include a survey of recent
advances in deep learning applications across the field of computational chemistry, where we will analyze its success against current DL models.[6][7].

2. Deep Learning Architectures.

Decades of biochemistry study also led to the development of several thousand molecular descriptors that define a variety of properties of conceivably any compound. Thus, molecular descriptors act as features developed using chemical knowledge and experience (i.e. domain expertise) that can be used in standard machine learning frameworks that have achieved reasonable performance in computational chemistry applications. Classic machine learning algorithms, such as linear regression and decision tree, are intuitive and construct simple models that humans can understand. However, as we move towards the prediction of more complex properties with a non-linear relationship, usually those associated with biological processes and materials engineering, it is always important to focus on more advanced and less straightforward algorithms. The DL algorithms thus emerge as an important method for achieving these goals.

[Figure 1. Deep learning in action for classifying CT scan images which outputs a classification vectors for tumor predictions.]

The concepts of deep learning are seen in Figure (1), which shows deep learning in operation for the classification of Images taken. Deep learning method evidence from the lesser level to the higher level, and the incremental composition of growing semantic terms, simulates the hierarchical ability of the human brain. Deep learning has recently grown as the most common method for big data analysis [40] and artificial intelligence [40]. Using a deep learning model, artificial intelligence has made a significant breakthrough in many fields, such as facial recognition [40], image processing [3], and voice recognition [2]. Driven by this, an effort has been made to explore the effect of deep learning in the eLearning world.

The DL algorithm architecture seen in Figure (2). As shown, the DL consists of successive layers of artificial neurons linked with weighted arcs that imitate the topology of normal human brains. The conceptual structure consists of multiple hidden layers (in greater amounts compared to more traditional approaches) which yield the ability of DLNs to learn from massively complicated information and to undertake inference and elimination. This implies that the algorithm finds similar data when discarding unrelated information. Each layer incorporates the knowledge obtained from the previous layer and then insinuates the respective value and sends the relevant data towards the next layer. The word "hidden" denoted layers that are not immediately adjacent to input or output layers.
Figure 2. Artificial neural network architecture composed of successive layers of connected neurons.

There are three or four linked layers of an artificial neural network. Input neurons are the first layer. This neuron transmit data to deeper layers, and then send the final output data to the last output nodes. All inner layers are obscured and created in a variety of transformations that adapt information obtained from one layer to another. The input and the output layer of each level helps the ANN to recognize more dynamic objects. These inner frameworks are collectively referred to as the neural layer. The units in the neural layer aim to learn about the data obtained in conjunction with the internal ANN scheme. These directives require units, which will then be given as feedback to the next layer, to deliver a transformed result. A further collection of training rules uses back propagation, a mechanism by which the ANN will change its effects by considering errors. Any time during the supervised training process, the result is identified as an error, the data is sent backwards. Any weight is updated according to the sum of the mistake.

The mistake is then used to recalibrate the weight of the ANN 's relations so that the difference between the desired and the real effects can be taken into account. The ANN "learns" how to mitigate the probability of mistakes and unexpected outcomes at an acceptable level. Artificial neural network training requires the option of approved models for which many related algorithms exist. An ANN has many benefits, but one of the most known is that it can learn from data set observation. ANN is thus used as a randomized estimation method for functions. These techniques allow one to evaluate the most efficient and suitable technique for solving strategies when describing machine functions or distributions. ANN brings data fragments to solutions that save time and resources, rather than complete data collections. Mathematical models that develop current data processing technology are considered very simple. Weighted data impulses accessing a neuron mimic a nerve cell's electrical excitation and hence the flow of information into the network or brain. A binding weight, \(w_n, m \), multiplies the admission values for a workplace in which neuronal networks in the brain are simulated. The training is emulated in ANNs by changing relation intensity or weight. The deep artificial neural network used throughout the evaluation of biomedicine treatment is seen in Figure (3).
Figure 3. Example of using DL to evaluate different structure predictions of molecules for drugs used in medicine applications.

3. Deep learning Algorithms classifications.

Deep neural networks can be defined in terms of their complexity, such as the number of layers between input and output or so-called hidden layers of a model. For this cause, the word "neural network" means deep learning almost synonymous. The number of hidden nodes in the model or the number of inputs and outputs in the node may also define them. Alterations in the classical architecture of the neural networks allow different ways of forward and backward knowledge transmission between third parties. Includes: (1) Feed-forward neural networks in particular forms of artificial neural networks. (2) Neural networks in repeated formats. (3) Convolutionary neural grids Modular neural grids Feed-forward neural grids are among the simplistic types of neural networks. They transmit data to the output layer in one direction, through various input nodes. The network can be made more easily decipherable by the hidden node layers or not. It is ready to withstand vast volumes of noise. In technology like face recognition and machine vision, this sort of ANN computer model is used. The complex of recurrent neural networks (RNNs). They extract the processing node output and return the data to the model. In this model the consequence of a layer is expected. Each node in the RNN model serves as a memory cell and proceeds to compute and execute transactions. This neural network begins with the same forward distribution as a feed network, but then recalls all stored data to reuse it in future. If the forecast of the network is inaccurate, the machine discovers and operates on the right forecast in the background propagation process. This kind of ANN is also used in transformations from text to voice. CNNs are one of the most common models used nowadays. CNN is a recently created platform.

A multilayered vision variety is used in this neural network processing model and includes one or more convolutionary layers that are either completely connected or pooled. These convolutionary layers generate characteristic maps that document an image field that is eventually divided into rectangles and sent for nonlinear processing. In the field of image identification, the CNN paradigm is especially famous; it has been utilized in several of AI's most innovative applications, including face recognition, text digital transformation and natural language processing. Paraphrase recognition, signal analysis and image recognition are other examples. Deconvolutionary neural networks use a reversed process of the CNN model. They seek to locate missing functionality or signals that were deemed unimportant to the operation of the CNN system. In pattern recognition and interpretation this network structure can be used. Modular neural networks include many, different neural networks. Through the computing process
the networks do not interact or compete with each other's function. Complex or large systems should also be undertaken more effectively.

3.1. Convolutional neural network (CNN)
CNN is one of the DL techniques' most well-known architectures. This method is commonly used for applications in image processing. CNN comprises three layer forms with separate convolutionary layers, pooling and fully related (Fig. 4). For the training phase, the feed-forwards and the back-promotion stage, each CNN is divided into two stages. GoogleNet, VGGNet, AlexNet, ResNet are the most frequent CNN architectures. Figure 4 demonstrates the DL algorithm’s architecture.

![Figure 4. Topology architecture of Convolutional Neural Networks.](image)

3.2. Recurrent neural networks (RNN)
RNN is designed to recognize sequences and patterns such as speech, hand-writing, text, and such applications. RNN benefits cyclic connections in the structure which employ recurrent computations to sequentially process the input data [70]. RNN is basically a standard neural network that has been extended across time by having edges which feed into the next time step instead of into the next layer in the same time step. Each of the previous inputs data are kept in a state vector in hidden units, and these state vectors is utilized to compute the outputs. Some examples of this type are LSTM and AGN networks [70]. Fig 5 shows the architecture of RNN.

![Figure 5. Topology architecture of Recurrent Neural Networks RNN.](image)

3.3. Denoising AutoEncoder (DAE)
DAE consists primarily of three layers: input, layer encoding and layer decoding. DAE can be grouped with the use of high-level methods. As a non-controlled algorithm, The DEA approach is designed using an AutoEncoder (SDAE) constructed with stacks for reducing non-linear dimensions. This process is a form of neural feedback network and uses a deep architecture with many hidden layers and a technique of preparation. Fig6 describes the architecture of DEA technology.

Figure 6. Topology architecture of Denoising Autoencoder DL networks.

4. Deep learning in Computational Biochemistry Applications.

Technological developments in genomics and imaging have contributed to the proliferation of evidence on genetic and cellular profiling from sample size. This rapid rise in the biological data dimension and processing rate is challenging traditional analytical strategies. Modern machine learning approaches, such as deep learning, aim to use very huge data groups to identify hidden patterns within them and to make precise predictions. In this study, we address the implications of this new method of qualitative research in behavioral genomics and cell imaging. Provide history on what deep learning is and the environments in which it can be effectively applied to the derivation of biological insights. In addition to addressing basic applications and offering tips on practical use, We also illustrate potential risks and drawbacks to guide mathematical biologists where and how to make the most of this modern technology.[8][1], [9], [9], [10].

4.1. Computer-Aided Drug Discovery.

Deep learning offers a computational basis for the identification and priorities of bioactive compounds with the required pharmacological effects and their enhancement as drug-like leads. Bio-target recognition and protein architecture are new fields of application among the methods have been shown to be commonly applied by many machine-learning techniques in molecular informatics. Their fundamental rationale usually follows three stages. In [11], The DNN implemented to the Merck Kaggle challenge dataset using a huge number of 2D topological descriptors; and the DNN showed marginally better results in 13 of the total 15 targets than the traditional RF system. Any of the main learning outcomes of the research are: (i) DNNs can accommodate thousands of descriptors without the need for a feature selection; (ii) drop-outs can escape the infamous over-fitting issue encountered by the conventional ANN.; (iii) Hyperparameter (layer nodes, kernel function, layers, etc.) Optimization will maximize the DNN type of work; (iv) multitask DNN method performed better than local-task Neural networks. It reveals that unsupervised responsible, which played a crucial role in the performance of DNNs in many machine learning, typically degrades DNN’s predictive capacity in QSAR tasks. At this time, we don’t have a full account of why pre-training harms results, but it possibly has to do with the property of substructure descriptors. Also, the restriction of our program, which prohibits us from using the preferred ReLU activation feature, it stopped us from having a better pre-training exam. They plan to revisit the system by adding DNNs to data sets using various types of molecular descriptors. In [12]
the researcher suggested a novel, deep learning platform that would be sufficient for the rapid docking of billions of molecules; it's always true fashion. The DD method uses what is known as "quantitative structure-activity-relationship" (QSAR) deep model based on scores for mechanism of docking subgroups of the chemical library to estimate the docking effect of unprocessed entries and, thus, unprocessed entries, to extract unfavorable molecules in an adaptive manner. Using the DD technique in combination with the FRED docking software, the fast and precise measurement of docking scores for 1.36 billion molecule in the ZINC15 library against 12 popular target proteins was demonstrated by a 100-fold drop in data and a 6000-fold rise in high-scoring molecules (without a noticeable loss of favorable docked entities).

Figure 7. Top, DD initialization: a small sample of molecules is randomly extracted from an ultralarge docking database and docked to a target under consideration. (Bottom) DD screening: from iteration 2 onward, the deep model gets gradually improved by augmenting the training set with randomly sampled QSAR-predicted virtual hits from the previous DD. (from [12]).

In [13], generative long-term memory (LSTM) was used by the Researchers as one form of RNN architectures for computational de novo peptide architecture. RNN models catch correlations in sequential data and create new data instances in the studied sense. Amino acid arrays are an effective input for these machine-learning models. Generative models educated in peptide sequences may also promote the construction of boutique peptide libraries. Of these sequences, 82 per cent were expected to be active antimicrobial proteins compared to 65 per cent of sequences of the same distribution of amino acids that was chosen randomly as the training collection. The created sequences are also similar to the training data than the manually built polar helices. The findings of this study demonstrate the potential of LSTM RNNs to create new amino acid sequences within the model's given observations and to inspire their physical check to the design of peptides and proteins without the requirement for an exhaustive listing of sequence libraries. In [14], Reinforcement Deep Learning RL, scientists combine two deep neural networks— generative and predictive— that are trained independently but are used jointly to produce new, tailored chemical libraries.

4.2. Biological Reactions Optimizations.

In addition to the effects of software upgrades, the continuous growth of chemical data in public libraries, such as PubChem and Protein Data Bank, has also encouraged the advancement of ML and DL technologies in chemistry, including quantum chemistry, Property prediction and substance construction, drug discovery, QSAR, virtual scanning, and protein structure predictions [15]–[18]. Property prediction and substance construction, drug discovery, QSAR, virtual scanning, and protein structure predictions. General-purpose deep learning system for inorganic materials specifications predictions has been studied [19]. Although using Genetic Algorithm GA, the acceleration of molecular architecture was discussed in [20], Modeling of atomistic materials in[22], predicts the properties of energy materials in[23]. Atomic-centered symmetry functions for creating high-dimensional neural
network possibilities in [24], Automatic chemical design uses data-driven communities engaged of molecules under investigation [25][2], [25]–[28]. Crystallographic structures were studied by GAN networks in [29]. The most important and breakthrough elementary compound usage for the discovery of new chemical compounds, as described in[30].

4.3. Deep learning for biological image analysis.

A most important achievements in DL architectures models appears in image processing. Deep architectures educated on millions of photographs have the potential to detect objects in images better than humans [1][7]. Neural networks supported by existing models of image recognition, object identification, image retrieval and image segmentation are well studied. In [33], the researchers are researching Organelles Localization Estimation using A Deep U-Net. As in fig 9, the segmentation was effective with high precision. The semantic segmentation of DNA images has been investigated [34]. They combine traditional microscopy with deep neural networks for the accurate resolution of DNA and oncogene magnification at a single cell level. At the image level, mean accuracy and retrieval values were 82% respectively, in comparison to 59% and 23% obtained by ecDetect, which was rarely retrieved above 50 percent. Fig 11 indicates the consequence of DL model designed. The autoencoder dependent DNA-enhancing picture was analyzed in [35]. Cell segmentation technique with histopathological images using not only popular deep-learning techniques, but also ordinary relationships, knowledge that is crucial to the achievement of better outcomes in cell segmentation for...
cancer diagnostic studies [36]. A segmentation approach based on a (CNN) internal pixels relationships is suggested for the segmentation of cervical cancer cells investigated in [6].

Figure 10. Organelles Localization using A Deep U-Net.

Figure 11. Cell detection and segmentation of bio samples [34].

5. Conclusion
Deep learning approaches are a valuable supplement to classical machine learning techniques and other computational strategies. These methods have also been used in a variety of computational biology applications, including regulatory genomics and image processing. The first publicly available software platforms helped minimize the overhead of model creation and offered a rich, open toolbox for clinicians. We expect the continuous development of the computing architecture to make deep learning accessible to an increasing variety of biological problems. The fact that DL approaches have been superior and have outperformed human experts in all fields discussed indicates that DL would be de facto in biochemistry research and applications.

Reference
[1] K. A. Carpenter, D. S. Cohen, J. T. Jarrell, and X. Huang, “Deep learning and virtual drug screening,” Future Medicinal Chemistry, vol. 10, no. 21. Future Medicine Ltd., pp. 2557–2567, Nov. 01, 2018, doi: 10.4155/fmc-2018-0314.
[2] M. T. Degiacomi, “Coupling Molecular Dynamics and Deep Learning to Mine Protein Conformational Space,” Structure, vol. 27, no. 6, pp. 1034-1040.e3, Jun. 2019, doi: 10.1016/j.str.2019.03.018.

[3] N. Brown, M. Fiscato, M. H. S. Segler, and A. C. Vaucher, “GuacaMol: Benchmarking Models for de Novo Molecular Design,” J. Chem. Inf. Model., vol. 59, no. 3, pp. 1096–1108, Mar. 2019, doi: 10.1021/acs.jcim.8b00839.

[4] S. K. Chakravarti, “Distributed Representation of Chemical Fragments,” ACS Omega, vol. 3, no. 3, pp. 2825–2836, 2018, doi: 10.1021/acsomega.7b02045.

[5] P. V. Coveney, E. R. Dougherty, and R. R. Highfeld, “Big data need big theory too,” in Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Nov. 2016, vol. 374, no. 2080, doi: 10.1098/rsta.2016.0153.

[6] Y. Song et al., “A deep learning based framework for accurate segmentation of cervical cytoplasm and nuclei,” in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, pp. 2903–2906, doi: 10.1109/EMBC.2014.6944230.

[7] S. Ekins, “The Next Era: Deep Learning in Pharmaceutical Research,” Pharm. Res., vol. 33, no. 11, pp. 2594–2603, Nov. 2016, doi: 10.1007/s11095-016-2029-7.

[8] E. Gawehn, J. A. Hiss, and G. Schneider, “Deep Learning in Drug Discovery,” Molecular Informatics, vol. 35, no. 1. Wiley-VCH Verlag, pp. 3–14, Jan. 01, 2016, doi: 10.1002/minf.201501008.

[9] L. David, A. Thakkar, R. Mercado, and O. Engkvist, “Molecular representations in AI-driven drug discovery: a review and practical guide,” Journal of Cheminformatics, vol. 12, no. 1. BioMed Central Ltd, Sep. 17, 2020, doi: 10.1186/s13321-020-00460-5.

[10] J. Jiménez-Luna, F. Grisoni, and G. Schneider, “Drug discovery with explainable artificial intelligence,” Nature Machine Intelligence, vol. 2, no. 10. Nature Research, pp. 573–584, Oct. 01, 2020, doi: 10.1038/s42256-020-00236-4.

[11] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, “Deep neural nets as a method for quantitative structure–activity relationships,” J. Chem. Inf. Model., vol. 55, no. 2, pp. 263–274, Feb. 2015, doi: 10.1021/ci500747n.

[12] F. Gentile et al., “Deep Docking: A Deep Learning Platform for Augmentation of Structure Based Drug Discovery,” ACS Cent. Sci., vol. 6, no. 6, pp. 939–949, May 2020, doi: 10.1021/acscentsci.0c00229.

[13] A. T. Müller, J. A. Hiss, and G. Schneider, “Recurrent Neural Network Model for Constructive Peptide Design,” J. Chem. Inf. Model., vol. 58, no. 2, pp. 472–479, Feb. 2018, doi: 10.1021/acs.jcim.7b00414.

[14] M. Popova, O. Isayev, and A. Troshka, “Deep reinforcement learning for de novo drug design,” Sci. Adv., vol. 4, no. 7, Jul. 2018, doi: 10.1126/sciadv.aap7885.

[15] J. E. Saal, S. Kirklin, M. Aykol, B. Meredig, and C. Wolverton, “Materials design and discovery with high-throughput density functional theory: The open quantum materials database (OQMD),” JOM, vol. 65, no. 11, pp. 1501–1509, Nov. 2013, doi: 10.1007/s11837-013-0755-4.

[16] C. W. Coley, R. Barzilay, T. S. Jaakkola, W. H. Green, and K. F. Jensen, “Prediction of Organic Reaction Outcomes Using Machine Learning,” ACS Cent. Sci., vol. 3, no. 5, pp. 434–443, May 2017, doi: 10.1021/acscentsci.7b00064.

[17] M. H. S. Segler, M. Preuss, and M. P. Waller, “Planning chemical syntheses with deep neural networks and symbolic AI,” Nature, vol. 555, no. 7698, pp. 604–610, Mar. 2018, doi: 10.1038/nature25978.

[18] D. White and R. C. Wilson, “Generative models for chemical structures,” J. Chem. Inf. Model., vol. 50, no. 7, pp. 1257–1274, Jul. 2010, doi: 10.1021/ci9004089.

[19] L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, “A general-purpose machine learning framework for predicting properties of inorganic materials,” npj Comput. Mater., vol. 2, Aug. 2016, doi: 10.1038/npjcompumats.2016.28.
[20] J. H. Jensen, “A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space,” Chem. Sci., vol. 10, no. 12, pp. 3567–3572, Mar. 2019, doi: 10.1039/c8sc05372c.

[21] V. Botu and R. Ramprasad, “Adaptive machine learning framework to accelerate ab initio molecular dynamics,” Int. J. Quantum Chem., vol. 115, no. 16, pp. 1074–1083, Aug. 2015, doi: 10.1002/qua.24836.

[22] N. Artrith and A. Urban, “An implementation of artificial neural-network potentials for atomistic materials simulations: Performance for TiO2,” Comput. Mater. Sci., vol. 114, pp. 135–150, Mar. 2016, doi: 10.1016/j.commatsci.2015.11.047.

[23] D. C. Elton, Z. Boukouvalas, M. S. Butrico, M. D. Fuge, and P. W. Chung, “Applying machine learning techniques to predict the properties of energetic materials,” Sci. Rep., vol. 8, no. 1, Dec. 2018, doi: 10.1038/s41598-018-27344-x.

[24] J. Behler, “Atom-centered symmetry functions for constructing high-dimensional neural network potentials,” J. Chem. Phys., vol. 134, no. 7, Feb. 2011, doi: 10.1063/1.3553717.

[25] R. Gómez-Bombarelli et al., “Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules,” ACS Cent. Sci., vol. 4, no. 2, pp. 268–276, Feb. 2018, doi: 10.1021/acscentsci.7b00572.

[26] K. V. Chuang and M. J. Keiser, “Comment on ‘Predicting reaction performance in C–N cross-coupling using machine learning,’” Science (80-.), vol. 362, no. 6416, Nov. 2018, doi: 10.1126/science.aat8603.

[27] A. Jain et al., “Commentary: The materials project: A materials genome approach to accelerating materials innovation,” APL Materials, vol. 1, no. 1. American Institute of Physics Inc., p. 011002, 2013, doi: 10.1063/1.4812323.

[28] D. J. Durand and N. Fey, “Computational Ligand Descriptors for Catalyst Design,” Chemical Reviews, vol. 119, no. 11. American Chemical Society, pp. 6561–6594, Jun. 12, 2019, doi: 10.1021/acs.chemrev.8b00588.

[29] A. Nouira, N. Sokolovska, and J. C. Crivello, “CrystalGAN: Learning to discover crystallographic structures with generative adversarial networks,” in CEUR Workshop Proceedings, 2019, vol. 2350.

[30] D. Jha et al., “ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition,” Sci. Rep., vol. 8, no. 1, pp. 1–13, Dec. 2018, doi: 10.1038/s41598-018-35934-y.

[31] S. Bose, D. Dhawan, S. Nandi, R. R. Sarkar, and D. Ghosh, “Machine learning prediction of interaction energies in rigid water clusters,” Phys. Chem. Chem. Phys., vol. 20, no. 35, pp. 22987–22996, 2018, doi: 10.1039/C8CP03138J.

[32] N. M. Angenent-Mari, A. S. Garruss, L. R. Soenksen, G. Church, and J. J. Collins, “A deep learning approach to programmable RNA switches,” Nat. Commun., vol. 11, no. 1, p. 5057, 2020, doi: 10.1038/s41467-020-18677-1.

[33] N. Yudistira, M. Kavitha, T. Itabashi, A. H. Iwane, and T. Kurita, “Prediction of Sequential Organelles Localization under Imbalance using A Balanced Deep U-Net,” Sci. Rep., vol. 10, no. 1, p. 2626, 2020, doi: 10.1038/s41598-020-59285-9.

[34] U. Rajkumar et al., “EcSeg: Semantic Segmentation of Metaphase Images Containing Extrachromosomal DNA,” iScience, vol. 21, pp. 428–435, Nov. 2019, doi: 10.1016/j.isci.2019.10.035.

[35] A. Mohandas, S. M. Joseph, and P. S. Sathidevi, “An Autoencoder based Technique for DNA Microarray Image Denoising,” in 2020 International Conference on Communication and Signal Processing (ICCSP), 2020, pp. 1366–1371.

[36] N. Hatipoglu and G. Bilgin, “Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships,” Med. Biol. Eng. Comput., vol. 55, no. 10, pp. 1829–1848, 2017, doi: 10.1007/s11517-017-1630-1.