Observation of a Charmed Baryon Decaying to $D^0 p$ at a Mass Near 2.94 GeV/c²

B. Aubert,1 R. Barate,1 M. Bona,1 D. Boutigny,1 F. Coudere,1 Y. Karyotakis,1 J. P. Lees,1 V. Poireau,1 V. Tisserand,1 A. Zghiche,1 E. Grauges,2 A. Palano,3 M. Pappagallo,3 J. C. Chen,4 N. D. Qi,4 G. Rong,4 P. Wang,4 Y. S. Zhu,4 G. Eigen,4 I. Otte,5 B. Stugu,5 G. S. Abrams,6 M. Battaglia,6 D. N. Brown,6 J. Button-Shafner,6 R. N. Carl,6 E. Charles,6 C. T. Day,6 M. S. Gill,6 Y. Gryszman,6 R. G. Jacobsen,6 J. A. Kadyk,6 L. T. Kerth,6 Yu. G. Kolomensky,6 G. Kukartsev,6 G. Lynch,6 L. M. Mir,6 P. J. Odone,6 T. J. Orimoto,6 M. Pripstein,6 N. A. Roe,6 M. T. Ronan,6 W. A. Wenzel,6 M. Barrett,7 K. E. Ford,7 T. J. Harrison,7 A. J. Hart,7 C. M. Hawkes,7 S. E. Morgan,7 A. T. Watson,7 K. Goetzten,8 T. Held,8 H. Koch,8 B. Lewandowski,8 M. Pelizaues,8 K. Peters,8 T. Schroeder,8 M. Steink,8 J. T. Boyd,8 J. P. Burke,9 W. N. Cottingham,9 D. Walker,9 T. Cuhadar-Donszelmann,10 B. G. Fulsom,10 C. Hearty,10 N. S. Knecht,10 T. S. Mattison,10 J. A. McKenna,10 A. Khan,11 P. Kyberd,11 M. Saleem,11 Teodorescu,11 V. E. Blinov,12 V. D. Dzhuvinin,12 V. B. Golubev,12 A. P. Onuchin,12 S. I. Serednyakov,12 Yu. I. Sklovpen,12 E. P. Solorodov,12 K. Yu Todyshev,12 D. S. Best,13 M. Bondioli,13 M. Bruinser,13 M. Chao,13 S. Curry,13 I. Eschrich,13 D. Kirkby,13 A. J. Lankford,13 P. Lund,13 M. Mandelker,13 R. K. Mommens,13 W. Roethel,13 D. P. Stoker,13 S. Abachi,14 C. Buchanan,14 S. D. Foukes,15 J. W. Gary,15 O. Long,15 B. C. Shen,15 K. Wang,15 L. Zhang,15 H. K. Hadavand,16 E. J. Hill,16 H. P. Paar,16 S. Rahatlon,16 V. Sharma,16 J. W. Berryhill,17 C. Campagnaro,17 A. Cunha,17 B. Dahmes,17 T. M. Hong,17 D. Kovalskyi,17 J. D. Richman,17 T. W. Beck,18 A. M. Eiser,18 C. J. Flacco,18 C. A. Heusche,18 J. Kroseberg,18 W. S. Lockman,18 G. Nesom,18 T. Schall,18 B. A. Schummi,18 A. Seiden,18 P. Spradlin,18 D. C. Williams,18 M. G. Wilson,18 J. Albert,19 E. Chen,19 A. Dvoretski,19 D. G. Hitlin,19 I. Narsky,19 T. Piaeken,19 F. C. Porter,19 A. Ryd,19 A. Samuel,19 R. Andreassen,20 G. Mancinelli,20 B. T. Meadows,20 M. D. Sokoloff,20 F. Blanc,21 P. C. Bloom,21 S. Chen,21 W. T. Ford,21 J. F. Hirschauer,21 A. Kreisfeld,21 U. Nauenberg,21 A. Olivas,21 W. O. Ruddick,21 J. G. Smith,21 K. A. Ulmer,21 R. S. Zhang,21 A. Chen,22 E. A. Eckhart,22 A. Sofer,22 W. H. Toki,22 R. J. Wilson,22 F. Winklmeier,22 Q. Zeng,22 D. D. Altenburg,23 E. Feltesi,23 A. Hauke,23 H. Jasper,23 B. Spaan,23 T. Brandt,24 V. Klose,24 H. M. Lackner,24 W. F. Mader,24 R. Nogowski,24 A. Petzold,24 J. Schubert,24 K. R. Schubert,24 R. Schwierz,24 J. E. Sundermann,24 A. Volk,24 D. Bernard,25 G. R. Bonneau,25 P. Grienier,25, 25 E. Latour,25 Ch. Thiebaux,25 M. Verderi,25 D. J. Bard,26 P. J. Clark,26 W. Gradl,26 F. Muheim,26 S. Playfer,26 A. I. Robertson,26 Y. Xie,26 M. Andreotti,27 D. Bettoni,27 C. Bozzi,27 R. Calabrese,27 G. Cibinetto,27 E. Luppi,27 M. Negrimi,27 A. Petrella,27 L. Piemontese,27 E. Pruneau,27 F. Amulli,28 R. Baldini-Ferroli,28 A. Calcaterra,28 R. de Sangro,28 G. Finocchiaro,28 S. Pacetti,28 P. Patteri,28 I. M. Peruzzo,28 M. Piccolo,28 M. Rama,28 A. Zallo,28 A. BUzzo,29 R. Capra,29 R. Contr,29 M. Lo Vetere,29 M. M. Macri,29 R. M. Monge,29 S. Passaggio,29 C. Patrignani,29 E. Robutti,29 A. Santroni,29 S. Tosi,29 G. Brandenburg,30 K. S. Chaisanguanthum,30 M. Morii,30 J. Wu,30 R. S. Dubitzky,31 J. Marks,31 S. Schnik,31 U. Uwer,31 W. Bihnji,32 D. A. Bowerman,32 P. D. Daucey,32 U. Egede,32 R. L. Flack,32 J. R. Gaillard,32 J. A. Nash,32 M. B. Nikolich,32 W. Panduro Vazquez,32 X. Chai,33 M. J. Charles,33 U. Millik,33 N. T. Meyer,33 V. Ziegler,33 J. Cochran,34 H. B. Crawley,34 L. Dong,34 V. Eges,34 W. T. Meyer,34 S. P. Prell,34 E. I. Rosenberg,34 A. E. Rubin,34 A. V. Gritsan,35 M. Fritsch,36 G. Schott,36 N. Arnaud,37 M. Davier,37 G. Grosdidier,37 A. Höcker,37 F. Le Diberder,37 V. Lepeltier,37 A. M. Lutz,37 A. Oyanguren,37 S. Pruvot,37 S. Rodier,37 P. Roudeau,37 M. H. Schune,37 A. Stocchi,37 W. F. Wang,37 G. Wortnser,37 C. H. Cheng,38 D. J. Lange,38 D. M. Wright,38 C. A. Chavez,39 I. J. Forster,39 J. R. Fry,39 E. Gabathuler,39 R. Gamet,39 K. A. George,39 D. E. Hutchcroft,39 D. J. Payne,39 K. C. Schofield,39 C. Touramanis,39 A. J. Bevan,39 F. Di Lodovico,40 W. Menges,40 R. Sacco,40 C. L. Brown,41 G. Gowan,41 H. U. Flaecher,41 A. D. Hopkins,41 P. S. Jackson,41 T. R. McMahon,41 S. Ricciardi,41 F. Salvatore,41 D. N. Brown,42 C. L. Davis,42 J. Allison,43 R. N. Barlow,43 R. J. Barlow,43 Y. M. Chia,43 C. L. Edgar,43 M. P. Kelly,43 G. D. Lafferty,43 M. T. Naisbit,43 J. C. Williams,43 J. I. Yi,43 C. Chen,44 W. D. Hulsbergen,44 A. Jawahery,44 C. K. Lae,44 D. A. Roberts,44 G. Simi,44 G. Blaylock,45 C. Dallapiccola,45 S. H. Hertzbach,45 X. Li,45 T. B. Moore,45 S. Saremi,45 H. Staengel,45 S. Y. Willocq,45 R. Cowan,46 K. Koenneke,46 G. Sciola,46 S. J. Sekula,46 M. Spitznagel,46 F. Taylor,46 R. K. Yamamoto,46 H. Kim,47 P. M. Patel,47 C. T. Potter,47 S. H. Robertson,47 A. Lazzara,48 V. Lombardo,48 F. Palombo,48 J. M. Bauer,49 L. Cremaldi,49 V. Eschenburg,49 R. Godang,49 R. Kroeger,49 J. Reidy,49 D. A. Sanders,49 D. J. Summers,49 H. W. Zhao,49 S. Brunet,50 D. Côte,50 M. Simard,50 P. Taras,50 F. B. Viana,50 H. Nicholson,51 N. Cavallo,52 G. De Nardo,52 D. del Re,52 F. Fabozzi,52 C. Gatto,52 L. Lista,52 D. Monorchio,52 P. Paolucci,52 D. Piccolo,52 C. Sciaccia,52 M. Baak,53 H. Bulten,53 G. Raven,53 H. L. Snoek,53 C. P. Jessop,54 J. M. LoSecco,54 T. Allmendinger,55 G. Benelli,55 K. K. Gan,55 K. Honscheid,55 D. Hufnagel,55

Submitted to Physical Review Letters
| Institution Name                              | City, State/Country (Postal Code) |
|-----------------------------------------------|-----------------------------------|
| 22 Colorado State University, Fort Collins    | 80523, USA                        |
| 23 Universität Dortmund, Institut für Physik  | D-44221 Dortmund, Germany         |
| 24 Technische Universität Dresden, Institut für Kern- und Teilchenphysik | D-01062 Dresden, Germany         |
| 25 Ecole Polytechnique, LLR                   | F-91128 Palaiseau, France        |
| 26 University of Edinburgh                     | Edinburgh EH9 3JZ, United Kingdom |
| 27 Università di Ferrara, Dipartimento di Fisica and INFN | I-44100 Ferrara, Italy         |
| 28 Laboratori Nazionali di Frascati dell’INFN | I-00044 Frascati, Italy          |
| 29 Università di Genova, Dipartimento di Fisica and INFN | I-16146 Genova, Italy         |
| 30 Cornell University, Cambridge               | Massachusetts 02138, USA        |
| 31 Universität Heidelberg, Physikalisches Institut, Philosophenweg 12 | D-69120 Heidelberg, Germany |
| 32 Imperial College London                     | London, SW7 2AZ, United Kingdom |
| 33 University of Iowa, Iowa City               | Iowa City, Iowa 52242, USA      |
| 34 Iowa State University                       | Ames, Iowa 50011-3160, USA      |
| 35 Johns Hopkins University                    | Baltimore, Maryland 21218, USA  |
| 36 Universität Karlsruhe, Institut für Experimentelle Kernphysik | D-76021 Karlsruhe, Germany |
| 37 Laboratoire de l’Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay | B.P. 34, F-91898 ORSAY Cedex, France |
| 38 Lawrence Livermore National Laboratory     | Livermore, California 94550, USA |
| 39 University of Liverpool                     | Liverpool L69 7ZE, United Kingdom |
| 40 Queen Mary, University of London            | London, E1 4NS, United Kingdom  |
| 41 University of London, Royal Holloway and Bedford New College | Egham, Surrey TW20 0EX, United Kingdom |
| 42 University of Louisville                     | Louisville, Kentucky 40292, USA |
| 43 University of Manchester, Manchester M13 9PL | United Kingdom          |
| 44 University of Maryland                       | College Park, Maryland 20742, USA |
| 45 University of Massachusetts                  | Amherst, Massachusetts 01003, USA |
| 46 Massachusetts Institute of Technology       | Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA |
| 47 McGill University, Montréal                  | Québec, Canada H3A 2T8          |
| 48 Università di Milano, Dipartimento di Fisica and INFN | I-20133 Milano, Italy          |
| 49 University of Mississippi                    | University, Mississippi 38677, USA |
| 50 Université de Montréal                       | Physique des Particules, Montréal, Québec, Canada H3C 3J7 |
| 51 Mount Holyoke College                       | South Hadley, Massachusetts 01075, USA |
| 52 Università di Napoli Federico II, Dipartimento di Scienze Fisiche e INFN | I-80126 Napoli, Italy          |
| 53 NIKHEF, National Institute for Nuclear Physics, NL-1009 DB Amsterdam, The Netherlands |                 |
| 54 University of Notre Dame                      | Notre Dame, Indiana 46556, USA  |
| 55 Ohio State University                        | Columbus, Ohio 43210, USA       |
| 56 University of Oregon                         | Eugene, Oregon 97403, USA       |
| 57 Università di Padova, Dipartimento di Fisica and INFN | I-35131 Padova, Italy          |
| 58 Universités Paris VI et VII                  | Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France |
| 59 University of Pennsylvania                   | Philadelphia, Pennsylvania 19104, USA |
| 60 Università di Perugia, Dipartimento di Fisica and INFN | I-06100 Perugia, Italy         |
| 61 Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN | I-56127 Pisa, Italy           |
| 62 Prairie View A&M University                  | Prairie View, Texas 77446, USA  |
| 63 Princeton University                        | Princeton, New Jersey 08544, USA |
| 64 Università di Roma                           | La Sapienza, Dipartimento di Fisica e INFN, I-00185 Roma, Italy |
| 65 Universität Rostock                          | D-18051 Rostock, Germany        |
| 66 Rutherford Appleton Laboratory, Chilton      | Didcot, Oxon, OX11 0QX, United Kingdom |
| 67 DSM/Dapnia, CEA/Saclay                       | F-91191 Gif-sur-Yvette, France  |
| 68 University of South Carolina                 | Columbia, South Carolina 29208, USA |
| 69 Stanford Linear Accelerator Center           | Stanford, California 94309, USA |
| 70 Stanford University, Stanford                | California 94305-4060, USA      |
| 71 State University of New York                 | Albany, New York 12222, USA     |
| 72 University of Tennessee                      | Knoxville, Tennessee 37996, USA |
| 73 University of Texas at Austin                 | Austin, Texas 78712, USA        |
| 74 University of Texas at Dallas                 | Richardson, Texas 75083, USA    |
| 75 Università di Torino, Dipartimento di Fisica Sperimentale and INFN | I-10125 Torino, Italy          |
| 76 Università di Trieste, Dipartimento di Fisica and INFN | I-34127 Trieste, Italy        |
| 77 IFIC, Universitat de Valencia-CSIC           | E-46071 Valencia, Spain         |
| 78 University of Victoria, Victoria, British Columbia | Canada V8W 3P6                   |
| 79 Department of Physics, University of Warwick  | Coventry CV4 7AL, United Kingdom |
| 80 University of Wisconsin                      | Madison, Wisconsin 53706, USA   |
| 81 Yale University                              | New Haven, Connecticut 06511, USA |

*(Dated: March 25, 2006)*
A search for charmed baryons decaying to $D^0 p$ reveals two states: the $\Lambda_c(2880)^+ baryon and a previously unobserved state at a mass of $[2939.8 \pm 1.3 \text{ (stat.)} \pm 1.0 \text{ (syst.)}] \text{ MeV/c}^2$ and with an intrinsic width of $[17.5 \pm 5.2 \text{ (stat.)} \pm 5.9 \text{ (syst.)}] \text{ MeV}$. Consistent and significant signals are observed for the $K^- \pi^+$ and $K^- \pi^+ \pi^- \pi^+$ decay modes of the $D^0$ in $287 \text{ fb}^{-1}$ annihilation data recorded by the \textsc{babar} detector at a center-of-mass energy of 10.58 GeV. There is no evidence in the $D^+ p$ spectrum of doubly-charged partners. The mass and intrinsic width of the $\Lambda_c(2880)^+ baryon and relative yield of the two baryons are also measured.

PACS numbers: 14.20.Lq, 13.85.Ni

Charmed baryons are expected to exhibit a rich spectrum of states. Only a few of these states have been confirmed [1]. The heaviest singly-charmed baryon previously observed is the $\Lambda_c(2940)^+$ decaying to $\Lambda_c\pi^+\pi^-$ [2]. The $\Lambda_c(2880)^+$ baryon is notable not only due to its narrow width ($< 8\text{ MeV}$) but also because it is one of only two singly-charmed baryons, along with the $\Xi_c(2815)$ [3], found above the $D^0$ mass threshold.

Presented in this Letter is the observation of a new charmed baryon decaying to $D^0 p$ [4] with a mass of approximately 2.94 GeV/c$^2$ and an intrinsic width of approximately 20 MeV. This baryon, tentatively labeled the $\Lambda_c(2940)^+$, is observed in $287 \text{ fb}^{-1}$ of $e^+e^-$ annihilation data collected near $\sqrt{s} = 10.58$ GeV by the \textsc{babar} detector [5] at the PEP-II asymmetric-energy storage rings. Along with this new baryon, the decay $\Lambda_c(2880)^+ \rightarrow D^0 p$ is also observed. The masses, intrinsic widths of both baryons and their relative production rate are measured.

The goal of this analysis is to study the inclusive $D^0 p$ mass spectrum. Two samples of $D^0$ mesons are identified using the $K^- \pi^+$ and $K^- \pi^+ \pi^- \pi^+$ final states. Each sample is produced by combining charged tracks of the appropriate composition in a geometric fit to a common vertex. The $\chi^2$ probability of this fit is required to exceed 2%. Charged particle species ($K^+, \pi^+, p$) are separated using a likelihood algorithm that combines data from a ring-imaging Cherenkov detector with the measured energy loss in the tracking systems [5]. Each proton candidate is combined with each $D^0$ candidate using a geometric vertex fit that assumes a common production point within the nominal beam envelope. The $\chi^2$ probability of this fit is required to be better than 2%.

Requirements are imposed on three additional quantities to improve the signal purity of the $D^0 p$ samples: $\Delta m$, the difference between the reconstructed $D^0$ mass and the accepted value of $m_{D^0} = 1864.6 \text{ MeV/c}^2$ [1]; $p^*$, the center-of-mass momentum of the $D^0 p$ system; and $\cos \vartheta$, where $\vartheta$ is the angle of the proton with respect to the $e^+e^-$ system in the $D^0 p$ center-of-mass frame. For isotropic production (expected for the $\Lambda_c(2940)^+$), the $\cos \vartheta$ distribution will be flat whereas background tends to peak at $\pm 1$. Studies of Monte Carlo (MC) simulated data samples are used to determine the specific requirements on these quantities that maximize the expected significance of signals introduced in the mass region near 2940 MeV/c$^2$. The resulting best criteria are $|\Delta m| < 14 \text{ MeV/c}^2$, $p^* > 2.6 \text{ GeV/c}$, and $\cos \vartheta < 0.8$ for the $D^0 \rightarrow K^- \pi^+$ sample and $|\Delta m| < 9 \text{ MeV/c}^2$, $p^* > 2.8 \text{ GeV/c}$, and $\cos \vartheta < 0.8$ for the $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$ sample. The $\Delta m$ requirements correspond to approximately two standard deviations in $D^0$ mass resolution. The $p^*$ requirement removes all sources of $D^0 p$ combinations from $B$ meson decay.

A MC simulation of a baryon of mass 2.94 GeV/c$^2$ decaying to $D^0 p$ predicts selection efficiencies between 30% and 38% for the $D^0 \rightarrow K^- \pi^+$ final state depending on $p^*$ and between 12% and 14% for the $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$ final state. A proton purity of approximately 83% in the final $D^0 p$ sample is estimated from studies of a comparable MC sample.

To calculate a $D^0 p$ invariant mass, each $D^0$ candidate is assigned an energy that is consistent with a $D^0$ mass of $m_{D^0}$. The resulting combined $D^0 p$ invariant mass spec-
trum is shown in Fig. 1. Two peaks are apparent. The clear signal at 2.88 GeV/c² is likely due to the decay of the Λ_c(2880)⁺ baryon. The signal at 2.94 GeV/c² is the evidence for the new Λ_c(2940)⁺ baryon. No similar structures are observed in the wrong-sign D⁰p candidate combinations. Candidates selected from D⁰ mass sidebands are used to estimate the contribution from non-D⁰ sources (see Fig. 1). This sideband sample shows no structure.

An unbinned likelihood fit is used to model the D⁰p spectrum from the kinematic limit up to 3.05 GeV/c². This fit includes Λ_c(2880)⁺ and Λ_c(2940)⁺ states, each modeled by a relativistic Breit-Wigner lineshape σ(convolved with a Gaussian resolution function. The

\[
\sigma(m) \propto \frac{q(m)}{(m^2 - m_0^2)^2 + m_0^2 \Gamma^2},
\]

where Γ is the intrinsic width and is constant (i.e. not mass dependent), m_0 is the mass pole, and q is the three-momentum magnitude of the D⁰ or proton in the D⁰p rest frame for a given mass m. The detector resolution is obtained from MC simulation which predicts 1.8 MeV/c² and 1.3 MeV/c² for the D⁰ → K⁻π⁺ and D⁰ → K⁻π⁺π⁻π⁺ samples, respectively.

The product of a fourth-order polynomial and two-body phase space \[1\] is used to model the combinatorial background. A fit based on this background shape and the Λ_c(2880)⁺ and Λ_c(2940)⁺ signals is shown in Fig. 1 and results in a Λ_c(2940)⁺ mass of 2939.8 ± 1.3 MeV/c², a width of 17.5 ± 5.2 MeV, and a raw yield of 2280 ± 310 decays (statistical errors only). The Λ_c(2880)⁺ properties obtained are a mass of 2881.9 ± 0.1 MeV/c² and a width of 5.8 ± 1.5 MeV, consistent with the CLEO results [2], and a raw yield of 2800 ± 190 decays (statistical errors only). If the Λ_c(2940)⁺ signal is removed from the fit, the log likelihood changes by 38.2, which is equivalent (in one degree of freedom) to a signal significance of 8.7 standard deviations. If the D⁰ → K⁻π⁺ and D⁰ → K⁻π⁺π⁻π⁺ samples are fit separately, the resulting masses, widths, and relative yields of the Λ_c(2880)⁺ and Λ_c(2940)⁺ baryons are consistent within statistical errors. After accounting for selection efficiency and D⁰ branching fractions, the absolute yields for the two D⁰ decays modes are consistent for both the Λ_c(2880)⁺ and Λ_c(2940)⁺ baryons.

The above likelihood fit models the mass spectrum near 2.84 GeV/c² as a smooth distribution (Fig. 2(a)). There is, however, a non-distinct structure near a mass of 2.84 GeV/c² whose origin is not understood, and so this model may not be accurate. Various modifications of the fit are employed as systematic checks. At one extreme, if the likelihood fit is limited to masses above 2.8525 GeV/c² (Fig. 2(b)), the result is a substantial decrease (29%) in the Λ_c(2940)⁺ yield, a 0.5 MeV/c² shift in mass, and a smaller width (12.5 MeV). The changes in the fitted Λ_c(2940)⁺ properties are much smaller if a third signal line shape (of variable mass and width) is added to the fit (Fig. 2(c)). None of these alternate fits lead to a reduction in the statistical significance of the Λ_c(2940)⁺ signal below 7.2 standard deviations.

Because the Λ_c(2880)⁺ and Λ_c(2940)⁺ are near the D⁰p threshold, the systematic uncertainty in mass from possible detector biases is relatively small. This uncertainty is calculated by considering appropriate variations in the assumed B field strength and detector material using a procedure developed for measuring the Λ_c mass [6]. This procedure is also used to calculate small (< 0.1 MeV/c²) corrections to the reconstructed D⁰p mass. An additional uncertainty of 0.5 MeV/c² arises from the current knowledge of m_D⁰. The results for the Λ_c(2940)⁺ baryon are:

\[ m = \left[ 2939.8 \pm 1.3 \text{ (stat.) } \pm 1.0 \text{ (syst.) } \right] \text{ MeV/c}^2 \]
\[ \Gamma = \left[ 17.5 \pm 5.2 \text{ (stat.) } \pm 5.9 \text{ (syst.) } \right] \text{ MeV}. \]

For the Λ_c(2880)⁺ baryon the results are:

\[ m = \left[ 2881.9 \pm 0.1 \text{ (stat.) } \pm 0.5 \text{ (syst.) } \right] \text{ MeV/c}^2 \]
\[ \Gamma = \left[ 5.8 \pm 1.5 \text{ (stat.) } \pm 1.1 \text{ (syst.) } \right] \text{ MeV}. \]

From the baryon yields obtained from the likelihood fits, the following ratio of production cross sections and decay
branching ratios is calculated:

\[
\frac{\sigma(\Lambda_c(2940)^+ Br(\Lambda_c(2940)^+ \rightarrow D^0 p)}{\sigma(\Lambda_c(2880)^+ Br(\Lambda_c(2880)^+ \rightarrow D^0 p)} = 0.81 \pm 0.13 \text{ (stat.)} \pm 0.35 \text{ (syst.)},
\]

where the systematic uncertainty is dominated by uncertainties in the background shape.

Various tests are applied to the data to confirm the \( \Lambda_c(2940)^+ \) signal. Since the signal is observed in two different \( D^0 \) decay modes, it appears to be associated with real \( D^0 \) decays. The lack of any structure in the \( D^0 \) sidebands and the relative size of these samples support this conclusion. Since the sample of protons is 83% pure, it is unlikely that the \( \Lambda_c(2940)^+ \) signal could arise from proton mis-identification. As further confirmation, when the \( K^+ \) or \( \pi^+ \) mass is assigned to the protons, the resulting \( D^0 K^+ \) and \( D^0 \pi^+ \) invariant mass distributions show no evidence of structure.

Even if the observed signal is attributed to a combination of \( D^0 \) and protons, it is still possible to produce a false signal from the reflection of heavier states. One example of such a possible reflection is a hypothetical baryon of mass near 3.10 GeV/\( c^2 \) decaying to either \( D^+(2010)^+ p \) or \( D^+(2007)^0 p \). Such a baryon, if sufficiently narrow, would produce a \( D^0 p \) mass spectrum (after ignoring the \( \pi^+ \) or \( \pi^0 \) from \( D^+ \) decay) of approximately the correct mass and width. Such a baryon would also be clearly visible in the \( D^+(2010)^+ p \) or \( D^+(2007)^0 p \) mass distributions. An explicit search in those mass distributions shows no signal, and thus this hypothesis is strongly disfavored.

Another possible reflection is from a baryon of mass 3.13 GeV/\( c^2 \) decaying to \( D^0 \Sigma^+ \). The kinematics of such a decay could produce peaks at both 2.85 GeV/\( c^2 \) and 2.94 GeV/\( c^2 \) if the \( \Sigma^+ \) had the appropriate spin alignment. The \( \Sigma^+ \), however, is a long-lived particle, and MC studies indicate that for this decay the proton vertex \( \chi^2 \) probability distribution would peak at zero. An investigation of the \( \chi^2 \) probability of the \( \Lambda_c(2940)^+ \) signal seen in the data indicates a flat distribution. Thus, a reflection from \( D^0 \Sigma^+ \) decay is also strongly disfavored.

The simplest interpretation of the \( \Lambda_c(2940)^+ \) signal is that it arises from a charmed baryon of quark content \( u\bar{d}u \). Under this scenario the decay to \( D^0 p \) involves simple \( u\pi \) gluon splitting. The remaining question is whether the \( \Lambda_c(2940)^+ \) belongs to an isostriplet. The most direct way to address this question is to explicitly search for a neutral or doubly-charged partner of nearly the same mass and width, analogous to the \( \Sigma^0 \) and \( \Sigma^+_c \). The BABAR detector cannot isolate the most obvious neutral decay mode \( (D^0 n) \). It is possible, however, to search for a doubly-charged baryon decaying to \( D^+ p \).

To select a sample of \( D^+ \) candidates, the same methods used for the \( D^0 \) samples are applied to the decay \( D^+ \rightarrow K^- \pi^+ \pi^+ \). The selection requirements for the \( D^+ p \) sample are \( |\Delta m| < 12 \text{ MeV}/c^2, p^* > 2.7 \text{ GeV}/c, \) and \( \cos \theta < 0.8 \). The efficiency for this selection is approximately 23%.

The resulting \( D^+ p \) distribution is shown in Fig. 3. No signals corresponding to either the \( \Lambda_c(2880)^+ \) or \( \Lambda_c(2940)^+ \) baryon are apparent. A likelihood fit which assumes a doubly-charged partner of the \( \Lambda_c(2940)^+ \) of identical mass and width results in a yield of \( -40 \pm 120 \) candidates (statistical error only).

Based on previous observations, such as the CLEO measurement of the \( \Sigma^0 \) and \( \Sigma^+_c \) [7], one would expect similar production rates for the \( \Lambda_c(2940)^+ \) and a hypothetical doubly-charged partner. Under the additional assumption that the branching fraction of the doubly-charged baryon to \( Dp \) is the same, the expected doubly-charged signal yield would be approximately 2200 decays once the \( D^0 \) and \( D^+ \) branching fractions and selection efficiencies are accounted for (see Fig. 3). It thus seems unlikely that a doubly-charged partner exists, unless its production is largely suppressed or it decays in an unexpected fashion.

The \( \Lambda_c(2940)^+ \) baryon is interesting for several reasons. Relativistic quark model calculations [8] predict three excited \( \Lambda_c \) baryons of different spin-parity quantum numbers near a mass of 2.94 GeV/\( c^2 \). The \( DN \) decay mode, although not unexpected [9, 10], is a final state that has received relatively little theoretical investigation. If this baryon had a significant branching fraction to \( \Lambda_c \pi^+ \pi^- \) it probably would have been observed with the \( \Lambda_c(2880)^+ \) by CLEO [2]. It is not clear, however, why this particular decay mode, which is favored by phase space, is suppressed. One observation which is notable, even if it might be a simple coincidence, is that at

![Graph](image-url)
a mass of 2939.8 MeV/c², the $\Lambda_c(2940)^+$ is just 6 MeV/c² below the $D^{*0}p$ threshold. It is also interesting that the $\Lambda_c(2940)^+$ is approximately one pion mass heavier than the $\Sigma_c(2800)^+$, a charmed baryon recently discovered by BELLE [11] decaying to $\Lambda_c\pi^0$.

The $\Lambda_c(2880)^+$ mass and width results presented here are consistent with but more precise than the CLEO measurement of $m = 2880.9 \pm 2.3$ MeV/c² and $\Gamma < 8$ MeV (at 90% CL). The existence of the decay $\Lambda_c(2880)^+ \rightarrow D^0p$ rules out various interpretations of this baryon [10].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), Marie Curie EIF (European Union), the A. P. Sloan Foundation, the Research Corporation, and the Alexander von Humboldt Foundation.

† Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
‡ Also with Università della Basilicata, Potenza, Italy

[1] S. Eidelman et al. (Particle Data Group), Phys. Lett. B592, 1 (2004).
[2] M. Artuso et al. (CLEO), Phys. Rev. Lett. 86, 4479 (2001).
[3] J. P. Alexander et al. (CLEO), Phys. Rev. Lett. 83, 3390 (1999).
[4] Inclusion of charge conjugate states is implied throughout this paper.
[5] B. Aubert et al. (BABAR), Nucl. Instrum. Meth. A479, 1 (2002).
[6] B. Aubert et al. (BABAR), Phys. Rev. D72, 052006 (2005).
[7] M. Artuso et al. (CLEO), Phys. Rev. D65, 071101 (2002).
[8] S. Migura, D. Merten, B. Metsch, and H.-R. Petry (2006), submitted to Eur. Phys. J. A, hep-ph/0602153.
[9] D. Pirjol and T.-M. Yan, Phys. Rev. D56, 5483 (1997).
[10] A. E. Blechman, A. F. Falk, D. Pirjol, and J. M. Yelton, Phys. Rev. D67, 074033 (2003).
[11] R. Mizuk et al. (Belle), Phys. Rev. Lett. 94, 122002 (2005).

* Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France