Effects of Sarpogrelate, a Novel 5-HT$_2$ Antagonist, on 5-HT-Induced Endothelium-Dependent Relaxations in Porcine Coronary Artery

Mamunur Rashid1, Mikio Nakazawa2 and Takafumi Nagatomo1,*

1Department of Pharmacology, Niigata College of Pharmacy, 5-13-2 Kamishinei-cho, Niigata 950-2081, Japan
2Department of Medical Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Niigata 951-8518, Japan

Received January 28, 2002 Accepted May 30, 2002

ABSTRACT—The aim of the present study was to examine the effects of sarpogrelate, a 5-HT$_2$ antagonist, on 5-HT-induced endothelium-dependent relaxation in isolated porcine coronary artery preincubated with ketanserin (3 × 10$^{-6}$ M) and precontracted by U 46619 (5 × 10$^{-6}$ M) and compare its effects with other 5-HT$_2$ antagonists such as ritanserin and cyproheptadine. The investigation showed that sarpogrelate (10$^{-7}$ – 10$^{-5}$ M) had a weak antagonistic effect on 5-HT-induced relaxation and its effect was weaker than that of ritanserin (10$^{-9}$ – 10$^{-7}$ M) and cyproheptadine (10$^{-9}$ – 10$^{-7}$ M). The rank order of the antagonistic effects was: ritanserin > cyproheptadine > sarpogrelate. The study also showed that both sarpogrelate and ritanserin had no inhibitory effect on bradykinin-induced relaxation. In our previous study, we investigated the binding affinity of sarpogrelate, ritanserin and cyproheptadine to the 5-HT$_2$A-receptor in rabbit cerebral cortex membranes and the pK$_i$ values found were 7.22, 8.98 and 7.54, respectively (M. Rashid et al., Jpn J Pharmacol 87, 189 – 194, 2001). Rank order of the calculated ratio of concentration of pA$_2$ or pD$_2$ vs K$_i$ was: sarpogrelate > ritanserin > cyproheptadine. Thus, these findings suggest that sarpogrelate has the lowest antagonistic effect on 5-HT-induced endothelium-dependent relaxation and the highest selectivity towards 5-HT$_2$A receptor and might also be the safest drug with respect to its clinical implications in comparison with ritanserin and cyproheptadine.

Keywords: Sarpogrelate, Porcine coronary artery, Endothelium-dependent relaxation, 5-HT receptor

Recent studies have revealed that serotonin (5-HT) has produced both contractions and a relaxation response in the vascular smooth muscles (1 – 4). Multiple 5-HT receptors are involved in mediating these effects. 5-HT-induced vasoconstrictions of arteries are mainly mediated by 5-HT$_2$A receptor subtype (5). 5-HT causes both endothelium-dependent and endothelium-independent relaxation of a number of isolated blood vessels in a variety of animals. In porcine coronary and pulmonary artery, 5-HT causes endothelium-dependent relaxation responses. So far, it has been reported that endothelium-dependent relaxant effects of 5-HT in pig coronary and pulmonary artery are mediated by 5-HT$_1$-like and/or 5-HT$_3$ receptors (6 – 9).

Sarpogrelate has been demonstrated to be selective and to show high affinity for the 5-HT$_2$A receptor subtype, since it lacks significant 5-HT$_1$, 5-HT$_3$, 5-HT$_4$: α_{1-}, α_2- and β-adrenoreceptor; histamine H$_1$ and H$_2$; and muscarinic M$_3$ antagonistic activity (10 – 12). Sarpogrelate was introduced as a therapeutic agent for the treatment of ischemic diseases associated with thrombosis (13). Sarpogrelate inhibits thrombus formation (14, 15) and suppresses platelet aggregation (16, 17). It inhibits 5-HT induced coronary artery spasm (18) and contraction of coronary artery in the porcine model mediated by 5-HT and α-methylserotonin (19) and also inhibits vascular smooth muscle cell proliferation (20). All of these pathophysiological effects are mediated by the 5-HT$_2$A subtype. Previously we reported that sarpogrelate inhibited the contraction response induced by 5-HT in pig coronary artery mediated by the 5-HT$_2$A subtype (19).

The aim of the present study was to investigate the effects of sarpogrelate on 5-HT-induced endothelium-dependent relaxation in porcine coronary artery and compare its antagonistic activity with other 5-HT$_2$ antagonists such as ritanserin and cyproheptadine. This study would also establish the comparative selectivity towards 5-HT$_2$A among these three antagonists.

*Corresponding author. FAX: +81-25-268-1280
E-mail: nagatomo@niigata-pharm.ac.jp
MATERIALS AND METHODS

Experimental protocol

Fresh pig hearts were obtained from a local slaughterhouse within 10 min after death and transported to the laboratory immersed in ice-cold Krebs-Henseleit solution of the following composition: 118.4 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO_4, 1.2 mM KH_2PO_4, 25.0 mM NaHCO_3, 2.5 mM CaCl_2, 0.026 mM Na_2EDTA and 11.1 mM dextrose. The first branch of the left anterior descending coronary artery was dissected and cleaned of all surrounding fat and connective tissue and was cut into rings of 2–3 mm in length. Care was taken to keep the endothelium of the artery intact. Vascular rings were mounted on two stainless-steel hooks inserted through the lumen of the ring. The bottom hook in each preparation was fixed, whereas the top hook was attached to a force transducer (TT-30-240; Orientec, Tokyo) mounted on a movable platform, which allowed adjustment of resting tension. Tension changes were recorded on a recorder (Rikadenki; Rikadenki Kogyo Co., Ltd., Tokyo). Each ring was suspended in a 10-ml organ bath and immersed in Krebs-Henseleit solution maintained at 37°C and bubbled continuously with 95% O_2 and 5% CO_2. The ring was allowed to equilibrate for 60–90 min with an optimal resting tension of 1.5 g before all experiments. The responsiveness of each preparation was evaluated by 3 × 10^{-2} M KCl-induced contraction. The contractile response to KCl was allowed to reach a plateau and the existence of endothelium was confirmed by the presence of relaxation in response to bradykinin (10^{-7} M).

At first, the concentration-contraction response curve to the thromboxane A_2 receptor agonist U 46619 was constructed in endothelium intact rings, by cumulative addition of the drug. Each concentration was added when a maximal response to the previous concentration had been reached. To determine the optimal concentration of ketanserin for observing the 5-HT-induced relaxation response, effects of three concentrations of ketanserin (3 × 10^{-7}, 10^{-6} and 3 × 10^{-5} M) on responses to 5-HT in endothelium intact coronary artery precontracted with U 46619 were investigated. Ketanserin was added to the bath 20 min before U 46619 (5 × 10^{-6} M, a concentration producing around 50% of the maximal effect). From these investigations, 3 × 10^{-6} M of ketanserin was used to study the effects of three 5-HT_2 antagonists on the endothelium-dependent relaxation induced by 5-HT. After a steady state contraction produced by U 46619, 5-HT or bradykinin was added cumulatively. Ketanserin was not added before the addition of U 46619 in the case of the bradykinin-induced concentration-dependent relaxation response. The effect of 5-HT and bradykinin were very rapid and transient; therefore, each concentration was added immediately after the previous one had produced its maximal effect. Bradykinin (10^{-7} M) was added at the end of the addition of the last concentration of 5-HT to examine the functional integrity of the endothelium corresponding to a maximal relaxation.

In the experiments with 5-HT_2 antagonists such as sarpogrelate, ritanserin, and cyproheptadine, drugs were added at 20 min before the contraction produced by U 46619. Two concentration response curves were obtained in each preparation, one was for the control and the other was for the antagonist-treated preparation.

Data analyses

Force responses were calculated as total developed tension minus resting tension immediately before addition of each agonist. The maximum relaxation response produced by 5-HT and bradykinin without antagonists treatment was taken as 100% relaxation response (control). Relaxation elicited by 5-HT and bradykinin with antagonists treatment was expressed as a percentage of the maximum relaxation response produced by 5-HT and bradykinin before the treatment of antagonists (control), respectively. Results are presented as the mean ± S.E.M. of experiments. Statistical significance of the data was evaluated by Student’s t-test for comparison of two groups and one-way ANOVA followed by Tukey’s test for comparison of more than three groups. The agonist EC_{50} value of the concentration response curve was calculated by nonlinear analysis using the Sigma Plot Program (Jandel Scientific, San Rafael, CA, USA). Antagonists pA_2 and pD_2 value were calculated using the equation of Van Rossum (21): pA_2 = pA_2 + log(X - 1), where pA_2 is the negative logarithm of antagonists concentration and X is the ratio of EC_{50} values of the agonist with/without antagonists; pD_2 = pD_2 + log(X - 1), where pD_2 is the negative logarithm of antagonists concentration and X is the ratio of maximal effects of the agonist in the presence and absence of the antagonists.

Drugs used

The following drugs were used: 5-HT (serotonin-creatinine sulfate; Toray Industries Inc., Tokyo), bradykinin and U 46619 (9,11-dideoxy-11α,9α-epoxy-methano-prostaglandin F_2α; Wako Pure Chemical Industries, Ltd., Osaka), sarpogrelate (Mitsubishi Chemical Corporation, Tokyo), ketanserin and ritanserin (Sigma-RBI, St. Louis, MO, USA) and cyproheptadine (Sigma Chemical Co., St. Louis, MO, USA).

RESULTS

Effects of ketanserin on responses to 5-HT in arterial rings precontracted with U 46619

U 46619 produced a concentration-dependent response of contraction with a mean EC_{50} value of 8.34 × 10^{-9} M
Porcine coronary arteries with intact endothelium were contracted by 5×10^{-9} M of U 46619, a concentration that caused a steady state and sustained contraction (around 50% of the maximum contraction). The difference among the contractile responses to U 46619 in the individual series of experiments did not vary significantly. Without ketanserin, a small magnitude of relaxation response was observed, which was then abolished and followed by a contraction at high concentrations of 5-HT. With the pretreatment of ketanserin (3×10^{-7} to 3×10^{-8} M), 5-HT causes relaxation responses in a concentration-dependent manner (10^{-9} to 3×10^{-8} M) in U 46619 contracted porcine coronary artery with intact endothelium (Fig. 1). In this study, all the experiments were performed in the presence of 3×10^{-6} M ketanserin that produced the maximum relaxation response induced by 5-HT, except for the bradykinin-induced relaxation response.

Effects of receptor antagonists on 5-HT-induced relaxation

5-HT elicited concentration-dependent relaxations in endothelium-intact porcine coronary artery preincubated with ketanserin (3×10^{-6} M) and precontracted by U 46619 (5×10^{-9} M). Representative recordings of 5-HT-induced relaxation in porcine coronary artery with endothelium and the effect of sarpogrelate on the relaxation response produced by 5-HT of the same preparation are shown in Fig. 2: a and b. Figure 3 shows the inhibitory effects of sarpogrelate, ritanserin and cyproheptadine on the concentration response curve of 5-HT. Sarpogrelate, ritanserin and cyproheptadine caused parallel rightward shifts of the concentration-relaxation curve of 5-HT with no significant effect on the maximum response at concentrations of 10^{-7} and 10^{-6} M, 10^{-9} and 10^{-8} M, and 10^{-7} M, respectively (Fig. 3: a, b and c), and the mean pA_2 values were 6.67 and 6.17, 9.21 and 8.12, and 8.07, respectively (Table 1). Sarpogrelate at a concentration of 10^{-5} M caused rightward shifts with an inhibition of the maximum response (mean pD_2 value = 4.79). Ritanserin only at the concentration of 10^{-7} M and cyproheptadine at 10^{-8} and 10^{-7} M concentrations caused rightward shifts with an inhibition of the maximum relaxation effect induced by 5-HT; and mean pD_2 values were 6.99, 6.66 and 6.27, respectively (Table 1).

Effects of receptor antagonists on bradykinin-induced relaxation

Figure 4 shows the effects of sarpogrelate, ritanserin, and cyproheptadine on the concentration-relaxation response curve of bradykinin. Both sarpogrelate ($10^{-7}–10^{-5}$ M) and ritanserin ($10^{-2}–10^{-7}$ M) did not inhibit bradykinin-induced concentration-dependent relaxation of porcine coronary artery with endothelium (Fig. 4: a and b), whereas only 10^{-8} M cyproheptadine inhibited the bradykinin-induced relaxation with an inhibition of the maximum response (Fig. 4c).

DISCUSSION

The investigations revealed that with the pretreatment of ketanserin, 5-HT caused relaxation in U 46619-precontracted pig coronary artery with intact endothelium. Without ketanserin, this relaxation response was abolished, and instead, a contraction was produced at a high 5-HT concentration (Fig. 1.). It also further suggests that ketanserin blocks the contractile response of 5-HT probably mediated by the $5HT_{2A}$ receptor, which in turn can conceivably result in the relaxant effect (6, 7). The previous studies have

![Fig. 1. Effects of ketanserin on responses to 5-HT in porcine coronary artery with endothelium precontracted with U 46619. Ketanserin was added 20 min before contraction produced by U 46619 (5×10^{-8} M). The responses occurred by cumulative addition of 5-HT with ketanserin (closed circles = 3×10^{-8} M; open triangles = 1×10^{-4} M; closed triangles = 3×10^{-8} M) or without ketanserin (open circles) were expressed as a percentage of the maximum contraction response produced by U 46619 (5×10^{-8} M). Each point represents the mean response ± S.E.M. of 4 arterial rings. *P<0.05, †P<0.01 and ‡P<0.001 vs without ketanserin.](image-url)
shown that the relaxations induced by 5-HT in the arteries including porcine coronary arteries were mediated by activation of 5-HT receptors localized on the endothelial cells (6, 7, 22 – 25). So far it has been reported that endothelium-dependent relaxation response involves two types of receptor: 5-HT1-like and 5-HT2B receptors (7 – 9). The relaxant
effect on 5-HT-induced relaxation in porcine coronary artery with intact endothelium is due to release of NO (26).

In the present study, we investigated the effects of sarpgrelate on endothelium-dependent relaxation response induced by 5-HT in porcine coronary artery and compared it with other 5-HT₂ antagonists such as ritanserin and cyproheptadine. Sarpgrelate at concentrations of 10⁻² and 10⁻¹ M, ritanserin at 10⁻⁴ and 10⁻³ M, and cyproheptadine at 10⁻⁶ M induced parallel rightward shifts of the concentration-relaxation curve of 5-HT without significant effect on the maximum response (Fig. 3: a, b and c); and the mean pA_2 values were 6.67 and 6.17, 9.21 and 8.12, and 8.07, respectively. Sarpgrelate at the concentration of 10⁻³ M caused a rightward shift with an inhibition of the maximum response with a mean pD_2 value of 4.79. Ritanserin at 10⁻⁴ M and cyproheptadine at 10⁻⁶ and 10⁻³ M caused rightward shifts with an inhibition of the maximum relaxation effect induced by 5-HT (Fig. 3: b and c); the mean pD_2 values were 6.99 for 10⁻³ M ritanserin and 6.66 and 6.27 for 10⁻⁷ and 10⁻⁴ M cyproheptadine, respectively.

The study demonstrated that sarpgrelate had a weak antagonistic effect on the 5-HT-induced relaxation in porcine coronary artery with intact endothelium. On the other hand, ritanserin had the highest antagonistic effect on such relaxation among these three antagonists and the antagonistic effect of cyproheptadine is also higher than that of sarpgrelate. All of these antagonists acted in a noncompetitive manner at a higher concentration (Fig. 3). Based on radioligand binding assay and functional experiments, it has been found that sarpgrelate has high affinity and selectivity towards the 5-HT₂₃ receptor, but not towards 5-HT₁, 5-HT₃, 5-HT₂ and other receptors (10–12). The current study also showed that sarpgrelate had weak antagonistic effect on 5-HT-induced endothelium-dependent relaxation mediated by 5-HT₁-like and/or 5-HT₃ₘ receptors. On the

Table 1. pA_2 and pD_2 values of 5-HT₂ antagonists for 5-HT-induced endothelium-dependent relaxation in porcine coronary artery

Antagonists	Conc. (M)	pA_2 value (n)	pD_2 value (n)
Sarpgrelate	10⁻²	6.67 ± 0.09 (8)	—
	10⁻¹	6.17 ± 0.13 (8)	—
	10⁻⁰	—	4.79 ± 0.12 (6)
Ritanserin	10⁻³	9.21 ± 0.11ᵃᵇ (6)	—
	10⁻⁴	8.12 ± 0.21ᵃᵇ (6)	—
	10⁻⁵	—	6.99 ± 0.17ᵃ (8)
Cyproheptadine	10⁻⁶	8.07 ± 0.19ᵃᵇ (5)	—
	10⁻⁷	—	6.66 ± 0.31ᵃ (8)
	10⁻⁸	—	6.27 ± 0.12ᵃ (10)

Values are the mean ± S.E.M. The number in the parentheses indicates the number of experiments. ᵃP<0.01 vs 10⁻³ M sarpgrelate, ᵇP<0.01 vs 10⁻⁴ M sarpgrelate, ᶜP<0.01 vs 10⁻⁵ M sarpgrelate.

Fig. 4. Effect of 5-HT₂ antagonists on bradykinin-induced concentration-dependent relaxation in porcine coronary artery with endothelium. a: Sarpgrelate (closed circles = control; open circles = 10⁻³ M; closed triangles = 10⁻⁴ M; open triangles = 10⁻⁵ M). b: Ritanserin (closed circles = control; open circles = 10⁻³ M; closed triangles = 10⁻⁴ M; open triangles = 10⁻⁵ M). c: Cyproheptadine (closed circles = control; open circles = 10⁻³ M; closed triangles = 10⁻⁴ M; open triangles = 10⁻⁵ M). The relaxation responses occurred by cumulative addition of bradykinin with antagonists treatments were expressed as a percentage of the maximum relaxation response of bradykinin before antagonists. Each point represents the mean response ± S.E.M. of 4 to 6 arterial rings. ᵃP<0.05 vs control.
other hand, ritanserin is more selective and has higher affinity towards the 5-HT$_{2A}$-receptor subtype than the 5-HT$_{2B}$- and 5-HT$_{2C}$-receptor subtypes (27), although its affinity to 5-HT$_{2B}$- and 5-HT$_{2C}$-receptor subtypes is higher than that of cyproheptadine and sarpogrelate. Cyproheptadine is a 5-HT$_2$ antagonist (28) as well as Cu$^{2+}$ channel antagonist (29), and its affinity towards 5-HT$_{2A}$ receptors is slightly higher than its affinities for the 5-HT$_{2B}$ and 5-HT$_{2C}$ receptor.

This study also revealed that both sarpogrelate ($10^{-7} \ldots 10^{-5}$ M) and ritanserin ($10^{-9} \ldots 10^{-7}$ M) did not inhibit the bradykinin-induced relaxation response in U 46619-precontracted porcine coronary artery with endothelium, but the same concentrations of these antagonists inhibited the relaxation induced by 5-HT. Bradykinin stimulates endothelial cells in porcine coronary artery to release NO and EDHF (endothelium-derived hyperpolarizing factor), which cause relaxations (30). The result indicated that both sarpogrelate and ritanserin could compete at the serotonin receptors existing in the endothelium of porcine coronary artery. In contrast, cyproheptadine at the concentration of 10^{-6} M inhibited bradykinin-induced relaxation with an inhibition of the maximum response. It was also found (data were not shown) in our preliminary experiments that the endothelium derived relaxing factor may reverse the vasodilator action of 5-HT on the artery wall (32, 33) and loss or injury of the endothelium may reverse the vasodilator action of 5-HT to vasoconstriction (2, 34, 35). Sarpogrelate, a 5-HT$_{2A}$ antagonist, was introduced as a therapeutic agent for the treatment of ischemic diseases associated with thrombosis (13). Most recently, Sharma et al. (36) suggested that sarpogrelate could be used as a therapeutic agent to inhibit serotonin-induced neointimal hyperplasia and improve the success rate of coronary artery bypass grafts. From this investigation, it is observed that slightly higher concentration of sarpogrelate is required for the inhibition of the relaxation response in comparison with ritanserin and cyproheptadine. The ratio of pA$_2$ or pD$_2$ vs K$_i$ is a measure of the selectivity of these compounds to 5-HT$_{2A}$. The value for sarpogrelate was higher than those of ritanserin and cyproheptadine. This result suggests that sarpogrelate may be the safer drug with respect to its clinical implications.

In conclusion, 1) sarpogrelate has the lowest antagonistic effect on the endothelium-dependent relaxation response induced by 5-HT that is mediated by 5-HT$_{1A}$-like and/or 5-HT$_{2B}$ receptors, compared with ritanserin and cyproheptadine, and the rank order for this antagonistic effect is: ritanserin > cyproheptadine > sarpogrelate. 2) The rank order of the calculated ratio of concentration of pA$_2$ or pD$_2$ vs K$_i$ is sarpogrelate > ritanserin > cyproheptadine. Therefore, our results suggest that sarpogrelate has the highest selectivity towards the 5-HT$_{2A}$ receptor and might also be the safest drug in comparison with ritanserin and cyproheptadine.

Acknowledgment

This research was supported by a grant from the Promotion and Mutual Aid Corporation for Private Schools of Japan.

REFERENCES

1 Saxena PR and Villalon CM: Cardiovascular effects of serotonin agonists and antagonists. J Cardiovasc Pharmacol 15, S17 – S34 (1990)
Sarpogrelate and 5-HT-Induced Relaxation 411

2 Guttermann DD, Rusch NJ, Hermsmeyer K and Dole WP: Differ- ential reactivity to 5-hydroxytryptamine in canine coronary arteries. Blood Vessels 23, 165 – 172 (1986)

3 Houston DS and Vanhoutte PM: Comparison of serotoninergic receptor subtypes on the smooth muscle and endothelium of the canine coronary artery. J Pharmacol Exp Ther 244, 1 – 10 (1988)

4 Lüscher TF, Raji L and Vanhoutte PM: Endothelium-dependent vascular responses in normotensive and hypertensive Dhal rats. Hypertension 9, 157 – 163 (1987)

5 Van Nueten JM, Leysen JE, De Clerk F and Vanhoutte PM: Serotoninergic receptor subtypes and vascular reactivity. J Cardiovasc Pharmacol 6, S564 – S574 (1984)

6 Cocks TM and Angus JA: Endothelium-dependent relaxation of smooth muscle in canine coronary arteries by noradrenaline and serotonin. Nature 308, 627 – 630 (1983)

7 Molderings GJ, Engel G, Roth E and Gothert M: Characteri- zation of an endothelial 5-hydroxytryptamine (5-HT)-receptor mediating relaxation of the porcine coronary artery. Naunyn Schmiedebergs Arch Pharmacol 340, 300 – 308 (1989)

8 Schoeffler P and Hoyer D: 5-Hydroxytryptamine (5-HT)-induced endothelium-dependent relaxation of pig coronary arteries is mediated by 5-HT receptors similar to the 5-HT2 receptor subtype. J Pharmacol Exp Ther 252, 387 – 395 (1990)

9 Glusa E and Pertz HH: Further evidence that 5-HT-induced relaxation of pig pulmonary artery is mediated by endothelial 5-HT2 receptors. Br J Pharmacol 130, 692 – 698 (2000)

10 Maruyama K, Kinami J, Sugita Y, Takada Y, Sugiyama E, Tsuchihashi H and Nagatomo T: MCI-9042: high affinity for serotoninergic receptors as assessed by radioligand binding assay. J Pharmacobiodyn 14, 177 – 181 (1991)

11 Nishio H, Inoue A and Nakata Y: Binding affinity of sarpogrelate, a new antiplatelet agent, and its metabolite for serotonin receptor subtypes. Arch Int Pharmacodyn Ther 331, 189 – 202 (1996)

12 Pertz H and Elz S: In-vitro pharmacology of sarpogrelate and the enantiomers of its major metabolite: 5-HT2A receptor specificity, stereoselectivity and modulation of ritanserin-induced depression of 5-HT contractions in rat tail artery. J Pharm Pharmacol 47, 310 – 316 (1995)

13 Ito K and Notsu T: Effect of sarpogrelate hydrochloride (MCI-9042) on peripheral circulation of chronic arterial occlusive diseases. J Clin Ther Med 7, 1243 – 1251 (1991)

14 Hara H, Kitajima A, Shimada H and Tamao Y: Antithrombic effect of MCI-9042, a new antiplatelet agent on experimental thrombosis models. Thromb Haemost 66, 484 – 488 (1991)

15 Yamashita T, Kitamori K, Hashimoto M, Watanabe S, Giddings JC and Yamamoto J: Conjunctive effects of the 5HT2 receptor antagonist, sarpogrelate, on thrombolysis with modified tissue plasminogen activator in different laser-induced thrombosis models. Haemostasis 30, 321 – 332 (2000)

16 Hara H, Osakabe M, Kitajima A, Tamao Y and Kikumoto R: MCI-9042, a new antiplatelet agent is a selective 5-HT2-serotonergic receptor antagonist. Thromb Haemost 65, 415 – 420 (1991)

17 Nakamura K, Kariyazono H, Moriyama Y, Toyohira H, Kubo H, Yotsumoto G, Taira A and Yamada K: Effects of sarpogrelate hydrochloride on platelet aggregation, and its relation to the release of serotonin and P-selectin. Blood Coagul Fibrinolys 10, 513 – 519 (1999)

18 Miyata K, Shimokawa H, Higo T, Yamawaki T, Katsumata N, Kandabashi T, Tanaka E, Takamura Y, Yogo K, Egashira K and Takeshita A: Sarpogrelate, a selective 5-HT2A serotonergic receptor antagonist, inhibits serotonin-induced coronary artery spasm in a porcine model. J Cardiovasc Pharmacol 35, 294 – 301 (2000)

19 Hong N, Nakamura T, Hattori K, Ohnuki T, Rashid M, Nakazawa M, Watanabe K and Nagatomo T: A novel 5-HT2 antagonist, sarpogrelate hydrochloride, shows inhibitory effects on both contraction and relaxation mediated by 5-HT receptor subtypes in porcine coronary arteries. Pharmacology 61, 263 – 268 (2000)

20 Sharma SK, Zahradka P, Chapman D, Kumamoto H, Takeda N and Dhalia NS: Inhibition of serotonin-induced vascular smooth muscle cell proliferation by sarpogrelate. J Pharmacol Exp Ther 290, 1475 – 1481 (1999)

21 Van Rossum JM, Hurkmans JATM and Wolters CJJ: Cumulative dose-response curves II. Techniques for the making of dose-response curves in isolated organs and the evaluation of drug parameters. Arch Int Pharmacodyn 143, 299 – 330 (1963)

22 Cohen RA, Shepherd JT and Vanhoutte PM: 5-Hydroxytryptamine can mediate endothelium-dependent relaxation of coronary arteries. Am J Physiol 245, H1077 – H1080 (1983)

23 Houston DS, Shepherd JT and Vanhoutte PM: Adenine nucleo- sides, serotonin, and endothelium-dependent relaxations to platelets. Am J Physiol 248, H389 – H395 (1985)

24 Leff P, Martin GR and Morse J: Differential classification of vascular smooth muscle and endothelial cell 5-HT receptors by use of tryptamine analogues. Br J Pharmacol 91, 321 – 331 (1987)

25 Martin GR, Leff P, Cambridge D and Barrett VJ: Comparative analysis of two types of 5-hydroxytryptamine receptor mediating vasorelaxation: differential classification using tryptamines. Naunyn Schmiedebergs Arch Pharmacol 336, 365 – 373 (1987)

26 Matsumoto T, Kinosita M and Toda N: Mechanisms of endot- helium-dependent responses of the rabbit coronary artery to 5-hydroxytryptamine. J Pharm Pharmacol 44, 331 – 336 (1992)

27 Bonhaus DW, Bach C, DeSouza A, Salazar FHR, Matsuoka BD, Zuppan P, Chan HW and Eglen RM: The Pharmacology and distribution of human 5-hydroxytryptaminergic (5-HT2A) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br J Pharmacol 115, 622 – 628 (1995)

28 Loric S, Launay JM, Colas JF and Maroteaux L: New mouse 5-HT1-like receptor. Expression in brain, heart and intestine. FEBS Lett 312, 203 – 207 (1992)

29 Bolger GT, Gengo P, Klockowski R, Luchowski E, Siegel H, Janis RA, Triggle AM and Triggle DJ: Characterization of Ca++ channel antagonist, [3H]lignptedrine, to guinea-pig ileal smooth muscle. J Pharmacol Exp Ther 225, 291 – 309 (1983)

30 Kilpatrick EV and Cocks TM: Evidence for differential roles of nitric oxide (NO) and hyperpolarization in endothelium-dependent relaxation of pig isolated coronary artery. Br J Pharmacol 112, 557 – 565 (1994)

31 Rashid M, Watanabe M, Nakazawa M, Nakamukura T, Hattori K and Nagatomo T: Assesment of afNNinity and dissociation ability of a newly synthesized 5-HT antagonist, AT-1015: Comparison with other 5-HT2 antagonists. Jpn J Pharmacol 87, 189 – 194 (2001)

32 Garland CJ: Endothelial cells and the electrical and mechanical responses of the rabbit coronary artery to 5-hydroxytryptamine.
J Pharmacol Exp Ther 233, 158 – 162 (1985)
33 Chu A and Cobb FR: Vasoactive effects of serotonin on proximal coronary arteries in awake dogs. Circ Res 61, Suppl II, 81 – 87 (1987)
34 Lüscher TF, Rubanyi GM, Aarhus LL, Edoute Y and Vanhoutte PM: Serotonin reduces coronary flow in the isolated heart of the spontaneously hypertensive rat. J Hypertens 4, S148 – S150 (1986)
35 Cohen RA, Zitnay KM and Weisbrod RM: Accumulation of 5-hydroxytryptamine leads to dysfunction of adrenergic nerves in canine coronary artery following intimal damage in vivo. Circ Res 61, 829 – 833 (1987)
36 Sharma SK, Del Rizzo DF, Zahradka P, Bhangu SK, Werner JP, Kumamoto H, Takeda N and Dhalla NS: Sarpogrelate inhibits serotonin-induced proliferation of porcine coronary artery smooth muscle cell: implications for long-term graft patency. Ann Thorac Surg 71, 1856 – 1864 (2001)