Identification of Potential Wild Herbal as parts of Landscape Elements

Bambang Sulistyantara¹ and Nio Mentari²

¹Lecturer, Dept. of Landscape Architecture, Bogor Agric. Univ.
²Student, Dept. of Landscape Architecture, Bogor Agric. Univ.

E-mail: niomentari@gmail.com

Abstract. Many landscape plants can grow on their own without cultivated by humans. They are type of plants that can be found anywhere, so they can be categorized as wild plants. The economic value of wild plants are easy to obtain and their maintenance costs are low. Because wild plants not widely known even a just a few of people that aware of their existence, it is necessary to do a study to learn the potential of the wild plants to be used as an element of landscape. This research aims to identify the species that have potential to be used in landscape design, to describe the benefits of the their implementation as a landscape element, and to recommend the wild plants that have functional value and visual. This research used a scoring method based on the functional and visual criteria, and questionnaires were conducted to 50 students of Landscape Architecture IPB who have completed Landscape Plants courses. Based on the research, there are 150 species of wild plants that found in the study site, and 60 of them are recommended as landscape elements. Then all of the species were arranged as a recommendations book so they can be used as alternative landscape plants.

Keywords: functional, alternative landscape plants, wild plants, medicinal plants, visual

1. Introduction

Plants are landscape element that used as functional and aesthetic purposes. Potential plant that can be used as landscape plants, one of them is wild plants. Unfortunately, wild plants has not been used by people, moreover it considered as weed. Besides that, several wild plants has aesthetic value and it easier to maintain than other decorative plants. Therefore, the provision of wild plants as landscape element would be helpful to solve park maintenance problems.

Not all plants has cultivated or planted deliberately, many plants has grown by itself. That kind of plants can be found in many potential places, so that can be categorized as wild plants. Wild plants are indigenous plants or local plants, original plants as introduction plants that developed and known by people in certain areas (Rachman et. al. 2002).

The existence of the plants need to be conserved because of it has economic value and other benefits, such as to be consumed or as pharmaceutical ingredients. Economic benefits of wild plant are easy to find and lower cost to maintain it. Because of wild plants were not widely known yet, moreover only few people are aware of its existence, so necessary to do an study about potential wild plants to be used as landscape elements.

This research objectives are to identify wild plants species that potential to be used in landscape design, to describe other benefits for wild plants owner in its application as landscape elements, and to recommend wild plant species and its design form that can be used in landscape element.
2. Methodology

2.1. Location and time
This research was located in Pos Kesehatan Dusun (Poskedus) Tangkilan, Sidoarum Village, Subdistrict Godean, District Sleman, Special Region of Yogyakarta. This research was conducted in June 2015 until February 2016.

![Research location](image1)

Figure 1. Research location

2.2. Research methods
This research consist of five stages, that is: field survey, species identification, presentation and questionnaire, assessment, and recommendation arrangement in gallery book. About 150 wild plant species randomly selected from field survey, then identified by using literature study. Functional quality assessment was conducted by comparing the morphology of each species with four criterias of plant function assessment. That four criterias are architectural function, engineering function, climate amelioration, and aesthetics. Plant morphology that used were: type of plant, plant height, canopy shape, and leaves texture. Visual quality assessment was conducted by presentation and questionnaires to 50 Respondents. Those respondents are Landscape Architecture students (Department of Landscape Architecture, IPB), who has passed Plant in The Landscape course. Respondents were requested to assess visual quality of wild plants based on 150 photos that presented by researcher. The value obtained in questionnaire divided to four criterias, that is form, texture, color, and scale. Visual quality value was obtained with calculating average value of each criteria per species, then it was described in plant description. In recommendation arrangement stage, each of species were given description about functional and visual quality values based on assessment that was obtained, and arranged in an gallery book of landscape plants by using application *File Maker Pro 11*.

2.2.1. Functional quality criterias

Plant function in the landscape consists of architectural function, engineering function, climate amelioration, and aesthetics (Carpenter 1975). The criterias of functional quality assessment presented in Table 1 and Table 2.

No.	Function	Planting Criteria
1	Floor	• Plants that be used are grasses and ground cover plants
2. Wall
 - Plants that be used are climber plants, shrubs, bushes, and trees
 - Shrubs/bushes can be used as border plants (>1.25 m)
 - Climber can be places on wire, woods structure, bamboos, or pergola.

3. Divide bigger space to smaller one
 - Plants that can be planted in line that can make a space

4. Circulation
 - Plants that be used are, shrubs, bushes, and trees

5. Corridor
 - Plants that be used are, shrubs, bushes, and trees

6. Connecting space
 - Plants that be used are, shrubs, bushes, and trees

7. Physical Border
 - Plants that be used are, shrubs, bushes, and trees

Screen
1. Screening the bad view
 - Plants that can be used are shrubs and bushes (>1.25 m)
 - Can be planted in high density line, and allowed to be grow higher.

Give the private place
1. Making private place
 - Partial arranged, that is separated but still can be seen (>1.25 m)
 - Full arranged, that is fully separated and can not be seen (>1.25 m)

(Source: Taihuttu 2013)

Table 2 Criteria of other functions

No.	Functions	Planting Criteria
1	Erosion control	To be as controller erosion by water and air.
		To be planted so that be cover ground surface
		Using ground cover plants, climber plants, shrubs, bushes, and trees.
2	Noise control	Using shrubs and bushes that planted in several high density line (>1.25 m)
3	Sunlight reflector and filter	Plants that be used are, shrubs, bushes, and trees
4	Manage traffic in the space room	Plants that be used are, shrubs, bushes, and trees
		Planted according to desired pattern and arrangement.
5	Setting the accoustic	Plants that be used are shrubs and bushes
		Planted in several high density line

Climate Amelioration

1. Controlling the sunlight radiation
 - Using ground cover plants, climber plants, shrubs, bushes, and trees.

2. Wind Control
 - Plants as wind barrier, wind breaker, and wind flow control
 - Plants that be used are trees

3. Air filter
 - Plants that be used are shrubs, bushes, and trees
 - Will be effective if the plants are coniferous plants, plants that have wide leaf, or rough surfaced leaf plants.

Aesthetics purposes

1. Two dimensions elements
 - Plant aesthetics can be seen from two dimensions, such as its shadow.
 - Plants that be used are climber plants, shrubs, bushes, and trees

2. Three dimensions elements
 - Can be seen from plant shape, size, colour, and texture.
 - Plants that be used are climber plants, shrubs, bushes, and trees

3. Plant as backdrop, frame, topiary, or espalier
 - Plants that be used are ground cover plants, climber plants, shrubs, bushes, and trees

(Source: Taihuttu 2013)

2.2.2. Functional Quality Assessment. Functional quality assessment was conducted by comparing the morphology of each species with function criterias that have been appropriate. Plant morphology that used were: type of plant, plant height, canopy shape, and leaves texture.
The result of functional quality assessment was as follows: Score 1 (Bad) if <40% of criteria were fulfilled, that means from 22 criterias, only 1-7 criterias were fulfilled. Score 2 (Medium) obtained if 41-60% criteria were fulfilled, that means from 22 criterias, 8-12 criterias were fulfilled. Score 3 (Good) obtained if 61-80% of criteria were fulfilled, that means from 22 criterias, 13-16 criterias were fulfilled. Score 4 (Very good) obtained if >81% of criterias were fulfilled, that means from 22 criterias, 17-22 criterias were fulfilled (Wungkar 2005).

2.2.3. Visual Quality Criteria. The assessment was conducted by spreading the questionnaire to 50 respondents. Visual quality of the wild plant was rated based on four criterias, that is colour, form, texture, and scale. To obtain the total score from each criteria, all score that has been obtained must be summed, then divide to 50. To obtain the total visual quality score, we must be sum the total score of each criteria, then divide to 4 (Figure 2).

\[\bar{x}_{\text{response criteria}} = \frac{x_1 + x_2 + x_3 + x_4 + \cdots + x_{50}}{50} = \frac{\sum x_n}{n} \]

\[\bar{x}_{\text{visual}} = \frac{\bar{x}_{\text{colour response}} + \bar{x}_{\text{form response}} + \bar{x}_{\text{texture response}} + \bar{x}_{\text{scale response}}}{4} \]

Figure 2. Visual quality assessment formula

3. Result and discussion

3.1. General description

Sidoarum village located 7 KM from west of Sleman and 8 KM from the city of Yogyakarta. Geographical coordinates between 5° 46’ 18” LS - 5° 49’ 16” LS and 110° 17’ 24” E - 110° 19’ 35” E, with UTM coordinates 423 076 425 820 MT and MT-MU 9,138,318 - 9,142,432 MU (Hendriono 2013). Sidoarum village has 8 hamlets, namely Cokro Konteng, Bantulan, Beji, Cokro Bedog, Kramat, Potrowangan, Tangkilan, and Sebaran. Sidoarum village has lower topography with altitude 110 mdpl, temperature 26° C and average of rainfall about 1180 mm/year (Hendriono 2013). The river which is through the village Sidoarum are Kontheng and Bedog River and the upper reaches are in the North of Mount Merapi heading to the South and empties in the Progo River, so that the average of groundwater depth in this village less than 7 meters. Tangkilan located in the Sidoarum village, Godean, Sleman. Total area of Godean is 306.37 Ha. Tangkilan hamlet rich of medicinal plant and the development center known as Pos Kesehatan Dusun (Poskesdus). Poskesdus cultivate more than 501 medicinal plants including wild plants, and they won first prize as a medicinal plant cultivators in provincial level (Hendriono 2013).

3.2. Species identification

Obtained 150 wild plant species identified from the results of field survey in Pos Kesehatan Dusun (Poskesdus) Tangkilan.

Table 3 Species identification

FAMILY	LOCAL NAME	FAMILY	LOCAL NAME	FAMILY	LOCAL NAME
Acanthaceae	dluju	Acanthaceae	gempur batu	Acanthaceae	kejbling
Acanthaceae	sambiloto	Acanthaceae	jarong lelaki	Acanthaceae	bayam dempo
Acanthaceae	daun madu	Acanthaceae	bayam duri	Acanthaceae	kremah
Acanthaceae	landep	Acanthaceae	bayam duri	Acanthaceae	gempur batu
Acanthaceae	dandang gendis	Acanthaceae	bayam duri	Acanthaceae	kejbling
Acanthaceae	gandarusa	Acanthaceae	bayam duri	Acanthaceae	kejbling

FAMILY	LOCAL NAME	FAMILY	LOCAL NAME	FAMILY	LOCAL NAME
Amarantaceae	boroco	Amarantaceae	jenang ayam	Amarantaceae	kaki kuda
Amarantaceae	jarong lelaki	Amarantaceae	bayam dempo	Amarantaceae	bunga kenop
Amarantaceae	bayam duri	Amarantaceae	bayam duri	Apiaceae	semanggi gunung
Apiaceae	semanggi gunung	Apiaceae	semanggi gunung	Apiaceae	semanggi gunung
Apiaceae	semanggi gunung	Apiaceae	semanggi gunung	Apiaceae	semanggi gunung
FAMILI	LOCAL NAME	FAMILI	LOCAL NAME	FAMILI	LOCAL NAME
-----------------	--------------	-----------------	--------------	-----------------	--------------
Apocynaceae	pulosari	Convolvulaceae	bangkung	Nyctaginaceae	bunga pukul
Apocynaceae	tapak doro	Convolvulaceae	songgo	Onagraceae	krangkong
Apocynaceae	pule pandak	Crassulaceae	sosoar	Oxalidaceae	krambangan
Apocynaceae	ginje	Cyperaceae	rumput	Oxalidaceae	calcing
Aracea	sente	Cyperaceae	jukut	Passifloraceae	pernot
Aracea	keladi warna	Dioscoreaceae	gadung	Phytolaccaceae	getih-getihan
Araceae	talas	Elaeocarpaceae	talok	Piperaceae	suruhan
Araceae	sambeng	Euphorbiaceae	anting-anting	Piperaceae	cabe jawa
Araliaceae	daun mangkox	Euphorbiaceae	ekor kucing	Plantaginaceae	sendokan
Araliaceae	cikra-eikri	Euphorbiaceae	alakifa bintik	Plumbaginaceae	daun encok
Araliaceae	poncosudo	Euphorbiaceae	buni	Poaceae	jali
Asteraceae	daun seribu	Euphorbiaceae	patikan kebo	Poaceae	sere dapur
Asteraceae	bandotan	Euphorbiaceae	zig-zag	Poaceae	jukut
Asteraceae	purwaceng	Euphorbiaceae	cerme	Poaceae	jam pang
Asteraceae	ajaran	Euphorbiaceae	daun katu	Poaceae	alang-alang
Asteraceae	daun sembung	Fabaceae	daun kupu-kupu	Poaceae	rumput
Asteraceae	kenikir	Fabaceae	secang	Polygonaceae	aseman
Asteraceae	urang-arang	Fabaceae	kedinding	Polyopodiaceae	simbar
Asteraceae	tapak liman	Fabaceae	kembang telang	Polyopodiaceae	layangan
Asteraceae	tempuh wiyang	Fabaceae	jenu	Pontederiaceae	eceng
Asteraceae	jubung	Fabaceae	daun duduk	Pontederiaceae	gondok
Asteraceae	bribil	Fabaceae	putri malu	Portulacaceae	eceng padi
Asteraceae	umyung	Fabaceae	ketepeng kebo	Portulacaceae	krokot
Asteraceae	beluntas	Fabaceae	turi	Portulacaceae	som jawa
Asteraceae	wedelia	Fabaceae		Rosaceae	gucen
Asteraceae	stevia	Fabaceae		Rubiaceae	remek watu
Asteraceae	kembang	Fabaceae		Rubiaceae	mengkudu
Basellaceae	binahong	Fabaceae		Rubiaceae	nusa indah
Basellaceae	gendola	Fabaceae		Rubiaceae	putih
Bignoniaceae	bungli	Fabaceae		Rubiaceae	rumput mutiara
Bixaceae	kesumba keleng	Fabaceae		Rubiaceae	daun kentut
Borrugimaceae	ekor anjing	Fabaceae		Rutaceae	kemuning
Brassicaceae	sawi putih	Fabaceae		Rutaceae	inggu
Bromeliaceae	nanas nanasan	Fabaceae		Saururaceae	amisan
Caictaceae	duri tengtong	Fabaceae		Schrophulariaceae	jaka tuwa
Campanulaceae	kitolod	Fabaceae		Selaginellaceae	cakar ayam
Cannaceae	bunga tasbih	Malvaceae	waru lengis	Solanaceae	cipulkan
Caprificaceae	mamang besar	Malvaceae	sidoguri	Thymelaeaceae	makutu dewa
Caprificaceae	kerak nasi	Malvaceae	pulutan	Urticaceae	lateng
Combretaceae	melati belanda	Marantaceae	bambah	Verbenaceae	kembang bugang
Combretaceae	gewor	Marantaceae	genrt	Verbenaceae	bunga
Combretaceae	nanas kerang	Melastomataceae	senggani	Verbenaceae	pagoda
Convolvulaceae	songkung air	Menispermaceae	camau rambat	Verbenaceae	tembelekan
Convolvulaceae	bangkung	Moraceae	awar-awar	Verbenaceae	pecut kuda
Convolvulaceae	bangkung	Moraceae	murbei	Violaceae	antanan
Convolvulaceae	bangkung	Myrsinaceae	daun lempeni	Zingiberaceae	kecombrang
3.3. Description of quality plant

3.3.1. Functional quality rating. Plants that have a functional quality with grade 1 (poor) are 17 species, grade 2 (medium) are 5 species, grade 3 (good) are 65 species, and grade 4 (very good) are 63 species (Figure 3). From 150 species, plants which is getting a grade 1 (bad) are types of groundcover, because it only serves as an articulation and aesthetics. While the plants which is getting a grade 4 (very good) are types of shrubs and trees because they fulfill many functions.

Figure 3. Functional quality

3.3.2. Visual quality assessment. Visual quality assessment consists of 4 criteria: color, shape, texture, and scale. Grades obtained based on the results of questionnaires from respondents.

The average value obtained of visual quality assessment criteria of color is 6.3. Wild plant species with a score above the average are 61 species (Figure 4). From the results of the assessment it is known that there are 41% species of wild plants whose color is considered attractive, whereas 59% considered less attractive.

Figure 4. Visual quality of color

The average value obtained of visual quality assessment criteria of form is 6.17. Wild plant species with a score above the average are 78 species (Figure 5). From the results of the assessment it is known that there are 52% species of wild plants whose shape is considered attractive, whereas 48% considered less attractive.

Figure 5. Visual quality of form

The average value obtained of Visual quality assessment criteria of texture is 6.13. Wild plant species with a score above the average are 76 species (Figure 6). From the results of the assessment it is known that there are 51% species of wild plant whose texture is considered attractive, whereas 49% considered less attractive.

Figure 6. Visual quality of texture

The average value obtained of Visual quality assessment criteria of scale is 6.33. Wild plant species with a score above the average are 66 species (Figure 7). From the results of the assessment it is known that there are 44% species of wild plants whose size is considered attractive, whereas 56% considered less attractive.

Figure 7. Visual quality of scale
3.4. Recommendation

The next step is make recommendation based on the results of functional and visual quality assessment by using FileMaker Pro 11 application. The content that provided include: latin name, family, synonym, local name, description of plants (high maximum growth, morphology of the whole body of plants and how to multiply), habitat (open/with shade and grow in lowland/highland), chemical content, description of visual quality and functionally owned and recommendation as an element of the landscape, crop images, as well as additional information (can not be consumed because they are poisonous or can consumed as vegetables and medicines). The following are 60 plant species that recommended as landscape element. Those plant species has functional and visual quality score above the average.

Table 4 Recommendation list

Local Name	Func	Vis
ajeran	4(Vg)	6.58
akalifa bintik	4(Vg)	7.515
alang-alang	4(Vg)	6.405
amisan	3(G)	7.22
andong	4(Vg)	7.925
antanan kembang	3(G)	7.63
aseman	4(Vg)	7.01
bakung	3(G)	6.95
bayam dempo	3(G)	6.67
boroco	3(G)	6.75
bribil	3(G)	7.445
bunga kenop	3(G)	7.97
bunga pagoda	4(Vg)	8.39
bunga pukul	3(G)	7.25
bunga tasbih	4(Vg)	7.905
buni	4(Vg)	6.755
cakar ayam	3(G)	6.73
calincing	3(G)	6.95
daun duduk	3(G)	6.865
daun encok	4(Vg)	6.925
daun katu	4(Vg)	6.575
daun kentut	4(Vg)	6.695
daun kupu-kupu	4(Vg)	6.965
daun madu	4(Vg)	7.065
daun mangkokan	4(Vg)	6.41
dljuju	4(Vg)	6.47
eceng padi	3(G)	6.445
ekor anjing	3(G)	6.41
ekor kucing	4(Vg)	6.905
gempur batu	3(G)	7.005
getih-getihan	4(Vg)	6.245
gewor	3(G)	6.355
iler	4(Vg)	7.63
jabung	3(G)	6.26
jarong lelaki	3(G)	6.29
jengger ayam	3(G)	6.975
kangkung alas	3(G)	7.225
kecombrang	4(Vg)	7.88
keladi warna	3(G)	6.73
kembang bugang	3(G)	6.54
kembang kertas	4(Vg)	6.925
kembang telang	4(Vg)	7.12
kemuning	4(Vg)	6.78
kenikir	3(G)	6.68
kerak nasi	4(Vg)	7.73
mamang besar	4(Vg)	6.835
melati belanda	4(Vg)	7.725
nanas-nanasan	3(G)	6.845
pule pandak	3(G)	7.018
putri malu	3(G)	6.58
secang	3(G)	6.655
sente	3(G)	6.51
songgo langit	3(G)	6.97
suruhan	3(G)	6.93
talok	4(Vg)	6.69
tapak doro putih	3(G)	6.995
tembelekan	4(Vg)	6.925
turi	3(G)	7.235
wedelia	4(Vg)	7.61
zig-zag	3(G)	6.705

4. Conclusions and suggestions

4.1. Conclusion

There are 150 wild plants identified in Pos Kesehatan Dusun (Poskesdus) Tangkilan, Sidoarum Village, Godean, Sleman, Yogyakarta. Consisting of ground cover types of plants, bushes, shrubs, and trees. Each species is described by latin name, family, synonym, local name, morphology, habitat, chemical content, visual and functional quality value obtained, on the landscape, crop images, and additional information fit the category. Additional information consists of non-herbal food crops that can or can not be consumed, as well as herbal food crops that can be consumed or can not be consumed. Wild plants that have functional value and visual quality above average are 60 species, so it can be recommended as an element of the landscape. The recommendations compiled in book form gallery landscape plants using FileMaker Pro 11 application.

4.2. Suggestion

The results of this study can be input and consideration for the designers and managers in designing minimal management of park.
References

[1] Carpenter PL, Walker TD, Lanphear FO. 1975. Plant in The Landscape. San Fransisco (US): WH Freeman and Co.

[2] Hendriono HB. 2013. Yogyakarta di Tangkilan [internet]. [referred to 2016 Maret 8]. Available from: http://www.disanaproject.com.

[3] Rachman TA, Ramdlani S, Soekirno A. 2013. Penataan kembali kawasan pasar bunga dan pasar hewan (splendid) Kota Malang. Jurnal Mahasiswa Jurusan Teknik Arsitektur. 1(1):1-10.

[4] Taihuttu HN. 2013. Fungsi tanaman dalam desain lanskap Taman Makam Pahlawan Perang Dunia II – Australia di Kota Ambon. Jurnal Budidaya Pertanian. 9(2):92-94.

[5] Wungkar MM. 2005. Evaluasi aspek fungsi dan kualitas estetika arsitektural pohon lanskap jalan Kota Bogor [Tesis]. Bogor (ID): Institut Pertanian Bogor.