PREPARATION OF FUTURE SPECIALISTS TECHNOLOGIES ARE TO PROFESSIONAL ACTIVITY

Abstract. Introduction. The problem of innovations in professional activity pedagogical workers is related to general strategy innovative development Ukraine in the context claim post-industrial vector public advancement, globalization and development informative revolution.

In logic the probed problem goes about the socially personality conditionality integration competency, cultural, and personality oriented going near the purposeful change aims, terms, maintenance, facilities, methods, forms activity of subjects pedagogical process, which a novelty, high potential increase efficiency activity, to provide ability long duration useful effort, co-ordination aims and results; co-ordination of external stimuli and internal possibilities pedagogical collective is to the purposeful converting educational environment from existing to innovative.

The purpose. In this article we aim to expose theoretical approaches and practical realities of preparation of students of VNZ as future specialists to professional innovative activity.

The methods to innovative pedagogical activity there is realization technology monitoring innovative activity important determinant effectiveness preparation future teachers of labour studies in the system of "ZOSFI" – VNZ in the context of socially personality demand and results of his pleasure.

Results. If to estimate the results of introduction in an educational-educate process VNZ the system forming readiness future teachers educational industry offered by us «Technology» to innovative pedagogical activity from position creatively active, potentially productive, middle, and low levels of their readiness, have a next picture.

Growth creatively active level readiness of graduating students VNZ took a place to innovative activity from 0% to 1,2%; potentially productive level – from 12% to 27,8%; notably the amount of the respondents diminished with the low level of readiness – from 42% to 22%.

Conclusions. Taking into account it is higher expanded, system of preparation future teachers of educational industry «Technology» to innovative pedagogical activity we presented as an aggregate of subsystems of methodological approaches (competence, cultural, personality oriented); subsystem of components of an educational-at-educate process (having a special purpose, motivational, rich in content, operation –labouring, emotionally-regulative, evaluation-effective); subsystem of organizationally pedagogical terms (development and introduction of model of aims from preparation future teachers educational industry «Technology» to innovative pedagogical activity.

Keywords: pedagogical innovation; innovative pedagogical activity; the willingness of teachers to innovative activity; levels of readiness.

DOI 10.31651/2524-2660-2019-2-133-137
ORCID ID 0000-0003-3819-7630

DRAHSHKO Olena,
Ph.D in Pedagogy, Senior Teacher of Pedagogics and Method of Technological Education Department, Krivoy Rog of State Pedagogical University

СОРОКА Тарас Петрович,
кандидат педагогичних наук, доцент кафедри сфери обслуговування, технологій та охорони праці
Тернопільський національний педагогічний університет імені Володимира Гнатюка
 e-mail: Linnar83@ukr.net
ORCID ID 0000-0002-4651-9399

СОПІГА Віктор Борисович,
кандидат педагогичних наук, асистент кафедри сфери обслуговування, технологій та охорони праці
Тернопільський національний педагогічний університет імені Володимира Гнатюка
 e-mail: victorsopiga@gmail.com
УДК: 378.015.3

ФОРМУВАННЯ ПРОФЕСІЙНИХ КOMPETENTNOSTей МАЙБУТНИХ ФАХІВЦІВ СФЕРІ ОБСЛУГОВУВАННЯ В ПРОЦЕСІ ВИВЧЕННЯ ДИСЦИПЛІНИ «ОСНОВИ ПРОЕКТУВАННЯ І МОДЕЛЮВАННЯ»

Розкрито особливості вивчення дисципліни «Основи проектування і моделювання» майбутніми фахівцями сфери обслуговування у закладах вищої освіти. Обґрунтовано структуру розробки творчого проекту, яка ґрунтується на засадах проектно-технологічної діяльності та включає: розробку технічного завдання, розробку технічної пропозиції, експлікації проектування, розробку технічного проекту, розробку технічної документації, розрахунок собівартості та ціни виробу, розрахунок оцінки якості проектованого виробу, екологічне обґрунтування виробу. Наведено приклад побудови виступу для захисту проекту згідно такої структури: мета проекту, роз'язування задач в процесі проектування (конструктивні, технологічні, екологічні, естетичні, економічні та маркетингові), коротка історична довідка з теми проекту, хід виконання проекту, економічна доцільність виготовлення виробу, висновки з теми проекту, власна оцінка роботи над проектом.

Визначено та розкрито фахові компетентності майбутніх фахівців сфери обслуговування, а саме: графічна, проектно-технологічна, інформаційна, художньо-конструкторська, автоматизаційна, комунікаційна.

Ключові слова: сфера обслуговування; проектно-технологічна діяльність; творчий проект; фахові компетентності.
Постановка проблеми. В сучасних умовах розвитку суспільства важливого значення в повсякденному житті людини набувають заклади сфери обслуговування різних типів. Очевидно, постає потреба підготовки висококваліфікованих фахівців для роботи у даних установах. Якщо ніша підготовки спеціалістів робітничих професій вже зайнята закладами професійно-технічної освіти, до яких належать: технікуми, коледжі, професійно-технічні училища та загalom заклади І-ІІ рівнів акредитації, то цілком очевидно, що заклади вищої освіти (ЗВО) можуть претендувати на підготовку фахівців освітніх рівнів бакалавр та магістр з даного напряму.

Питання професійної підготовки майбутніх кваліфікованих робітників професійно-технічних навчальних закладів досліджували: Р. Гуревич, Й. Гущулей, Д. Закатов, М. Кадемія, А. Литвин, В. Лозовецька, Л. Лук’янова, Г. Ничкало та ін.; особливості формування професійних здібностей робітників сфери обслуговування – І. Жорова; формування художньо-творчих умінь – Н. Котляревська, О. Опеч; розвиток особистісно-професійних якостей – Н. Вінник та ін. Поряд з тим актуальним залишається питання розкриття особливостей підготовки фахівців освітніх рівнів бакалавр та магістр спеціальності Професійна освіта (Сфера обслуговування) та формування у них професійних компетентностей в процесі вивчення фахових дисциплін.

Мета статті. Розкрити особливості вивчення дисципліни «Основи проектування і моделювання» майбутніми фахівцями сфери обслуговування.

Виклад основного матеріалу дослідження. Відповідно до освітньо-професійної програми та навчальних планів підготовки бакалаврів спеціальності 015.16 Професійна освіта (Сфера обслуговування) в Тернопільському національному педагогічному університеті імені Володимира Гнатюка передбачено вивчення студентами дисципліни «Основи проектування і моделювання».

Предметом вивчення навчальної дисципліни є: проектно-технологічна діяльність майбутніх фахівців сфери обслуговування. Метою викладання курсу «Основи проектування і моделювання» є: формування у студентів знань та умінь з основ проектної діяльності, розвиток пізнавальних інтересів та творчих здібностей, необхідних для ефективної організації навчання майбутніх фахівців сфери обслуговування. Основними міждисциплінарними зв’язками навчальної дисципліни, згідно навчальних планів, є: товарознавство, проектування виробів з текстилю, проектування і виготовлення меблів для ресторанів, устаткування закладів сфери послуг та ін. [1].

Структура та зміст навчальної дисципліни побудовані на основних засадах проектно-технологічної діяльності з підготовки фахівців технологічної освіти, однак мають свою специфіку [2].

Результатом вивчення даної навчальної дисципліни є формування вміння майбутніми фахівцями проектувати та виготовляти вироби для закладів сфери обслуговування.

У процесі вивчення дисципліни майбутні фахівці розбирають проектно-технологічну документацію на виготовлення виробів. Безпосереднє втілення проекту відбувається в процесі вивчення дисципліни практичного спрямовання (проектування і виготовлення меблів для ресторанів, проектування виробів з текстилю).

Розглянемо структуру пояснювальної записки до проекту [3].

1. Розробка технічного завдання.

1.1. Основне призначення проектованого виробу.

1.2. Вимоги до конструкції виробу:

- обґрунтування конструкції виробу відповідно до його призначення і експлуатаційних параметрів;
- вибір конфігурації виробу; відповідність обраної конфігурації призначенню;
- вимоги до складових частин виробу.

1.3. Вимоги до матеріалів:

- техніко-економічні чинники, які визначають вимоги до матеріалів, придатних для виготовлення виробу;
- санітарно-гігієнічні вимоги до виробу;
- експлуатаційні вимоги до виробу;
- вимоги до матеріалів для основних частин виробу.

2. Розробка технічної пропозиції.

2.1. Аналіз зразків аналогів майбутнього виробу.

У вигляді таблиці 1 доцільно з’ясувати, які вимоги ставляться до конструкції, охарактеризувати кожен її варіант відповідно до поставлених вимог
і навпреди заміні відмінні: знаком ++ – відповідає певним вимогам, знаком + - не відповіді. (Вимог для об’єктивності, повинно бути не менше 7).

Таблиця 1
Характеристика відомих конструкцій

Вимоги до конструкції:	Конструкція		
	№ 1	№ 2	№ 3
1.			
...			
7.			

2.2. Висновок за технічною пропозицією:
- відповідність зразків-аналогів своєму призначенню;
- технологічність запропонованих зразків;
- вибір оптимального варіанту (здійснюється шляхом вибору найкращих, найвдавших сторін запропонованих конструкцій, при цьому необхідно сформувати свій оптимальний варіант. Для кращого розуміння необхідно здійснити вибір оптимального варіанту у вигляді таблиці 2).

Таблиця 2
Формування оптимальних варіантів майбутньої конструкції виробу

Вимоги до конструкції:	Дослідження мети	Шляхи дослідження мети
1.		
...		
7.		

3. Експериментальний вигляд

3.1. Опис зовнішнього вигляду:
- за результатами, отриманими під час проектування, скласти макет (екскіз, креслення, технічний рисунок) спроектованої конструкції;
- матеріали для виготовлення деталей (необхідно вказати кожну деталь, з якого матеріалу виготовлена і якії її розмірі); відповідності форма, розміри деталей, інші елементи;
- види з’єднань деталей у виробі;
- види обробки деталей;
- рекомендовані габаритні розміри деталей (заповнити таблицю 3).

Таблиця 3
Розмірні характеристики деталей виробу

№	Найменування	Кількість	Матеріал	Розміри
1.				
...				

4. Розробка технічного проекту.
4.1. Визначити вихідні дані для деталей виробу та їх розмірні характеристики.
5. Розробка технічної документації.
5.1. Витрати матеріалів на виріб.
5.2. Розробка технологічної час інструкції карти (картку) на виготовлення виробу.
6. Розрахунок собівартості та ціни виробу.
6.1. Вартість матеріалів.
6.2. Вартість електроенергії.
6.3. Операція праці.
6.4. Амортизаційні відрахування на інструменти і обладнання.
6.5. Визначення загальної собівартості виробу.
7. Розрахунок оцінки якості сконструйованого та відомих виробів, згідно формулі 1 [3].

\[K_n = K_{id} \cdot K_{vidx. max.} \] (1)
де \(K_n \) – коефіцієнт якості п-го виробу;
\(K_{id} \) – ідеальний коефіцієнт якості виробу (теоретичний) = 1;
\(K_{vidx. max.} = 1 / b \), де b – кількість поставлених позитивних вимог.

Коефіцієнт максимально можливий (\(K_{max} \)) розраховується за формулою 2.

\[K_{max.} = 1 - 1 / c \] (2)
де c – кількість вимог.
Результати фікуються у таблиці 4 і порівнюються.

Таблиця 4
Результати розрахунку коефіцієнтів якості виробів

Виріб	Коефіцієнт якості
1-й	
2-й	
3-й	
Сконструйований	
Максимально можливий якість	

8. Екологічне обґрунтування виробу (потрібно визначити, чи відповідає екологічним стандартам виріб, а також зазначити екологічні умови роботи під час обробки деталей).
8.1. Розрахунок коефіцієнта екологічності виробництва за формулою 3 [3].

\[K_e = K_{n} - K_{w} \] (3)
де \(K_e \) – коефіцієнт відходоспів виробництва, що розраховується за формулою 4.

\[K_{w} = \frac{Q_c \times H_t \times A_k}{d_{P} \times H_{t} \times A_k} \] (4)
де \(Q_c \) – показник небезпечності відходів;
\(A_k \) – об’єм спожитих матеріально-сировинних ресурсів;
8.4. Міні-маркетингові дослідження. На місці купинки виробів, та викорис-
ткується самопослуха виробів, та відповідь на вимоги покупців
(«+») і негативні («−»)

8.3. Міні-маркетингові дослідження. Необхідно відоми виробів, які
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
відповідають вимогам покупців, при цьому вироби від 0 до 9, a вироби від 9 до 0.8
мають відповідно. При KБ = 0.9 до 1 вироби, які мають відповідно. При KБ = 0.9 до 1 вироби,
FORMATION OF PROFESSIONAL COMPETENCES OF FUTURE FACTORS OF THE SERVICE SECTOR IN THE DISCIPLINE STUDY PROCESS -BASIS OF DESIGN AND MODELING-

SOROKA Taras,
Ph.D in Pedagogy, associate professor of service sphere, technology and occupational safety Department, Ternopil National Pedagogical University named after Volodymyr Hnatyuk

SOPIGA Viktor,
Ph.D in Pedagogy, assistant of service sphere, technology and occupational safety Department, Ternopil National Pedagogical University named after Volodymyr Hnatyuk

Abstract. Introduction. The peculiarities of the study of the discipline «Basis of design and modeling» by future specialists in the field of service in higher education institutions are revealed.

The purpose of the article is to describe the features of the study of the discipline «Fundamentals of design and modeling» by future professionals in the service sector.

Results. The structure of development of a creative project, which is based on the principles of design and technological activity, is substantiated and includes: development of a technical task, technical proposal development, preliminary design, technical project development, technical documentation development, calculation of cost price and product price, calculation of quality assessment of a projected product, environmental justification the product.

Originality. An example of construction of a speech for protection of the project according to the following structure is presented: the purpose of the project, the tasks to be solved in the design process (constructive, technological, ecological, aesthetic, economic and marketing), a brief historical reference on the topic of the project, the progress of the project, the economic feasibility of manufacturing the product, conclusions on the topic of the project, own assessment of the work on the project.

Conclusion. The professional competencies of future specialists in the sphere of service are identified and disclosed, namely: graphic, design-technological, informational, artistic-design, autonomous, communicative.

Keywords: sphere of service; design-technological activity, creative project, professional competencies.