This article presents a dataset produced to investigate how data and information quality estimations enable to detect anomalies and malicious acts in cyber-physical systems. Data were acquired making use of a cyber-physical subsystem consisting of liquid containers for fuel or water, along with its automated control and data acquisition infrastructure. Described data consist of temporal series representing five operational scenarios – Normal, anomalies, breakdown, sabotages, and cyber-attacks – corresponding to 15 different real situations. The dataset is publicly available in the .zip file published with the article, to investigate and compare faulty operation detection and characterization methods for cyber-physical systems.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Type of data
Raw signal measurements directly collected from a liquid storage and distribution cyber-physical subsystem, composed by one ultrasound depth sensor, four discrete sensors, two pumps, and a communication network

How data was acquired
A personal computer sounder recorded all the signals in synchroNous automatic mode, scanning every 0.1 s the system’s programmable logic controller (PLC)

Data format
Comma separated values (CSV) files

Experimental factors
Fifteen situations were recorded separately including – Normal, blocked measures, floating objects on the liquid’s surface, sensor failure, denial of service, spoofing, wrong connection, and hit of the tanks with different intensities – to illustrate five factual operational scenarios

Experimental features
Relations between dysfunctional components of the cyber-physical subsystem, operational scenario, and systemic effects are represented

Data source location

Data accessibility
The data are available with this article. To access it open the index.html file included in the published .zip file

Value of the data

- The dataset represents realistic sensors signals of a cyber-physical subsystem impacted by actual risks like aNomalies, sabotages, system breakdown, and cyber-attacks.
- The dataset can be used to validate detection and characterization algorithms for operational surveillance and security applications in cyber-physical systems.
- Included aNomalies and malicious acts can be studied to compare detection and characterization approaches for decision support.
- The dataset can be used to examine algorithms that assess data alteration and service degradation.

1. Data

The dataset contains 15 files of temporal series that represent 15 different situations related to 5 operational scenarios. Files’ duration varies depending on the situation and dysfunctional component. Accordingly, affected components are two types of depth sensor, the underlying network, or the whole subsystem. These situations can be wrongly understood by a decision maker, or only identified for instance after the malicious act was accomplished. Since wrongly managed situations might have significant adverse operational costs, it is critical to detect and analyze in real time such events. Datasets covering such situations are currently rare, because of the complexity to acquire data from cyber-physical systems. In our case, the principle of reusable experimental platform [1] was applied, to collect diverse datasets for monitoring [2] and categorization of aNomalies [3].

2. Experimental design, materials and methods

Two tanks of different volumes that function as storage and distribution device for water or fuel, one ultrasound depth sensor, four discrete sensors, and two pumps, were used to acquire the dataset (Fig. 1). A computer controlled the system with a PLC connected to a monitoring network. The ultrasound depth sensor on the main tank (volume of 7 L) was calibrated relating the tank dimensions to 10,000 equidistant depth steps (0 corresponds to the full tank and 10,000 to the empty tank). Fig. 2 shows the tracked filling and emptying of the main tank. The four floating discrete sensors in the second tank (volume of 9 L), measured levels of liquid corresponding to four volumes: 1.25 L, 3.35 L, 8 L, and 9 L.

All signals – ultrasound depth sensor, pump 1, pump 2, and the four discrete level sensors – were acquired synchroNously for every situation described in Table 1, independently of the affected
component, operational scenario, and duration. The Normal scenario without anomalies serves as reference. Nine situations focus on the ultrasound depth sensor, since its high resolution makes it more sensitive to show anomalies (No. 2, No. 3, and No. 4). Also, objects intentionally hidden inside the main tank modify liquid volume measurements depending on the number of pieces (No. 5 and No. 6), while surrounding humidity can block the measure (No. 7). The ultrasound depth sensor

![Platform of the used cyber-physical subsystem.](image1)

Fig. 1. Platform of the used cyber-physical subsystem.

![Recorded temporal series for the Normal scenario.](image2)

Fig. 2. Set example of recorded temporal series for the Normal scenario (abscissas correspond to time in seconds). From top to down: periodic liquid filling and emptying of the main tank as indicated by the ultrasound depth sensor; activation of pump 2 to fill the second tank; state of the four discrete sensors in the second tank; activation of pump 1 to fill the main tank.
measurements also change incorrectly when the tanks are hit with different intensities (No. 13, No. 14, and No. 15). Some examples of signal alterations are represented in Figs. 3–5.

Additionally, two of the discrete sensors (1 and 2) were disrupted by keeping each one at a blocked position, i.e. up when the liquid has Not reached that level yet (No. 8) and pushing randomly down once liquid overflowed it (No. 9), leaving the tank almost empty or filling up to the security aperture, respectively. Network intrusions were carried out making use of the Modbus Penetration Testing Framework, Smod,\(^1\) to execute a denial of service attack (No. 10) and a spoofing attack (No. 11). Finally, aNomalies can also be the result of unintentional human errors as a wrong system connection (No. 12) and more generally incorrect maintenance. Technical data sheets of the ultrasound sensor and the PLC, the network schema, the transmitted information between components, a script written in Python to read and display files, and additional details are provided with the dataset.

\(^1\) Smod project. Available in: https://github.com/enddo/smod.

Table 1

List of log files that compose the dataset.

No.	Situation	Affected component	Operational scenario	Duration (hh:mm:ss)	Size
1	Normal	None	Normal	02:01:47	7.3 MB
2	Plastic bag	Ultrasound sensor	Accident/Sabotage	00:33:20	4.2 MB
3	Blocked measure 1	Ultrasound sensor	Breakdown/Sabotage	00:00:25	74 KB
4	Blocked measure 2	Ultrasound sensor	Breakdown/Sabotage	00:00:17	48 KB
5	Floating objects in main tank (2 objects)	Ultrasound sensor	Accident/Sabotage	00:01:35	272 KB
6	Floating objects in main tank (7 objects)	Ultrasound sensor	Accident/Sabotage	00:01:22	234 KB
7	Humidity	Ultrasound sensor	Breakdown	00:00:18	52 KB
8	Discrete sensor failure	Discrete sensor 1	Breakdown	00:13:55	1.8 MB
9	Discrete sensor failure	Discrete sensor 2	Breakdown	00:03:40	610 KB
10	Denial of service attack	Network	Cyber-attack	00:01:37	102 KB
11	Spoofing	Network	Cyber-attack	00:34:33	3.2 MB
12	Wrong connection	Network	Breakdown/Sabotage	00:15:33	1.7 MB
13	Person hitting the tanks (low intensity)	Whole subsystem	Sabotage	00:00:39	112 KB
14	Person hitting the tanks (medium intensity)	Whole subsystem	Sabotage	00:00:32	91 KB
15	Person hitting the tanks (high intensity)	Whole subsystem	Sabotage	00:00:33	95 KB

Fig. 3. Left: Environmental aNomaly detected in the reference scenario (No. 1). Right: Noise produced by a plastic film over the sensor (No. 2).
Acknowledgements

The authors would like to thank the Chair of Naval Cyber Defense funded and supported by École Navale, Institut Mines-Telecom Atlantique Bretagne Pays de la Loire, Thales and DCNS.

Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.07.038.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.07.038.
References

[1] H. Gao, Y. Peng, Z. Dai, T. Wang, X. Han, H. Li, An industrial control system testbed based on emulation, physical devices and simulation, in: J. Butts, S. SheNoi (Eds.), Critical Infrastructure Protection VIII. IFIP Advances in Information and Communication Technology. 441, 2014, pp. 79–91.

[2] P. Merino Laso, D. Brosset, J. Puentes, Monitoring approach of cyber-physical systems by quality measures, in: Proceedings of the 7th International Conference on Sensor Systems and Software, European Alliance for Innovation. LNICST, 205, 9, 2016, pp. 1–13. http://dx.doi.org/10.1007/978-3-319-61563-9.

[3] P. Merino Laso, D. Brosset, J. Puentes, Analysis of quality measurements to categorize anomalies in sensor systems, in: Proceedings of Computing Conference, 2017, pp. 1330-1338. ISBN: 978-1-5090-5443-5.