METHOD DEVELOPMENT AND VALIDATION OF LUMACAFTOR AND IVACAFTOR IN PHARMACEUTICAL DOSAGE FORMS IN RP-HPLC

C. Karuppasamy*, P. Sandhiya¹, R. Rajakumar¹

¹Department of Pharmaceutical Analysis, PPG College of Pharmacy, Saravanampatti, Coimbatore, Tamil Nadu, India.

ABSTRACT
A reverse phase high performance liquid chromatographic method was developed for the determination of Lumacaftor and Ivacaftor in bulk and Pharmaceutical dosage form. The separation was effected on a C18 column (250mm x 4.6mm; 5μm) using a mobile phase mixture 50 volumes of Acetonitrile and 50 volumes of phosphate buffer in a ratio of 80:20v/v with a flow rate of 1ml/min. The detection was made at 259nm. Calibration curve was linear over the concentration range of 50-250μg/ml of Lumacaftor and 31.25-156.25µg/ml of Ivacaftor. The proposed method is validated as per the ICH guidelines. The method is accurate, precise, specific and rapid and found to be suitable for the quantitative analysis of the drug and Pharmaceutical dosage forms.

KEYWORDS
Buffer, Acetonitrile, Lumacaftor and Ivacaftor and RPHPLC.

INTRODUCTION
Lumacaftor improves Cystic fibrosis symptoms and underlying disease pathology by aiding the conformational stability of F508 del-mutated Cystic fibrosis transmembrane conductance regulator, resulting in increased processing and trafficking of mature protein to the cell surface. More specifically, Lumacaftor acts as a protein-folding chaperone, preventing misfolding of Cystic fibrosis transmembrane conductance regulator ion channels and consequent destruction during processing in the endoplasmic reticulum.
Half Life
The apparent terminal half-life was approximately 26 hours following a single dose. Ivacaftor exerts its effect by acting as a potentiator of the Cystic fibrosis transmembrane conductance regulator protein, an ion channel involved in the transport of chloride and sodium ions across cell membranes of the lungs, pancreas, and other organs. Alterations in the Cystic fibrosis transmembrane conductance regulator gene result in altered production, misfolding, or function of the protein and consequently abnormal fluid and ion transport across cell membranes. Ivacaftor improves Cystic fibrosis symptoms and underlying disease pathology by potentiating the channel open probability (or gating) of Cystic fibrosis transmembrane conductance regulator protein in patients with impaired Cystic fibrosis transmembrane conductance regulator gating mechanisms. The overall level of Ivacaftor-mediated Cystic fibrosis transmembrane conductance regulator chloride transport is dependent on the amount of Cystic fibrosis transmembrane conductance regulator protein at the cell surface and how responsive a particular mutant Cystic fibrosis transmembrane conductance regulator protein is to Ivacaftor Potentiation.

Half Life
The apparent terminal half-life was approximately 12 hours following a single dose.

MATERIAL AND METHODS
PREPARATION OF THE LUMACAFTOR AND IVACAFTOR WORKING SOLUTIONS
Standard Solution Preparation
Accurately weigh and transfer 20 mg of Lumacaftor and 12.5 mg of Ivacaftor working standard into a 10 mL clean dry volumetric flask add about 7 mL of Diluent and sonicate to dissolve it completely and make up the solution up to the mark with the same solvent. (Stock solution). Further pipette 0.75 mL of the above stock solutions into a 10 mL volumetric flask and dilute up to the mark with diluent. (150 ppm of Lumacaftor and 93.75 ppm of Ivacaftor)

Sample Solution Preparation
Accurately weigh 10 tablets crush in mortor and pestle and transfer equivalent to 20 mg of Lumacaftor and 12.5 mg Ivacaftor sample into a 10 mL clean dry volumetric flask add about 7 mL of Diluent and sonicate it up to 15 mins to dissolve it completely and make up the volume up to the mark with the same solvent. Then it is filtered through 0.45 µ Injection filter. (Stock solution).

EXPERIMENTAL METHODS
Wave length selection
UV spectrum of 10 µg/mL Lumacaftor and 10 µg/mL Ivacaftor in diluents (mobile phase composition) was recorded by scanning in the range of 1000 nm to 400 nm. From the UV spectrum wavelength selected as 259 nm. At this wavelength both the drugs show good absorbance.

Mobile Phase Optimization
Initially the mobile phase tried was methanol: Ortho phosphoric acid buffer and Methanol: phosphate buffer, Acetonitrile: methanol with various combinations of pH as well as varying proportions. Finally, the mobile phase was optimized to Phosphate buffer (pH 3.0), Acetonitrile in proportion 80: 20 v/v respectively.

Optimization of Column
The method was performed with various columns like C18 column Phenomenex column, YMC, and Inertsil ODS column. Inertsil ODS (4.6 x 250 mm, 5 µm) was found to be ideal as it gave good peak shape and resolution at 1.0 mL/min flow.

OPTIMIZED CHROMATOGRAPHIC CONDITIONS
Instrument used: HPLC with Auto sampler and UV detector (WATERS)
Temperature: Ambient
Column: Inertsil ODS (4.6 x 250 mm, 5 µm)
Buffer: 3.4 g of KH₂PO₄ in 1000 mL of HPLC water
Ph was adjusted with OPA up to 3.0.
pH: 3.0
Mobile phase: 80% buffer 20% Acetonitrile
Flow rate: 1 mL per min
Wavelength: 259 nm
January – February
Injection volume : 20µl
Run time : 12min.

RESULTS AND DISCUSSION
The estimation of Lumacaftor and Ivacaftor was performed by RP-HPLC. The assay of Lumacaftor and Ivacaftor was performed with tablets and the % assay was found to be 100.09 and 100.76 which shows that the method is useful for routine analysis. The acceptance criteria of precision is RSD should not be more than 2.0% and the method show precision 0.4 and 0.8 for Lumacaftor and Ivacaftor which states that the method is precise. The acceptance criteria of intermediate precision is RSD should not be more than 2.0% and the method show precision 0.1 and 0.7 for Lumacaftor and Ivacaftor which shows that the method is repeatable when Performed in different days.

The accuracy limit of the percentage recovery should be in the range of 97.0% - 103.0%. The total recovery was found to be 99.86% and 99.96% for Lumacaftor and Ivacaftor. The robustness limit of the mobile phase variation and flow rate variation are well and within the limit, the % degradation results also within the limits. Which states that the method is having good system suitability and precision under given set of conditions.

The isopiestic point of Lumacaftor and Ivacaftor is 259nm. The assay % of Lumacaftor and Ivacaftor is 99.97 and 100.64 and found the system suitability 3.607 and 5.141 respectively. The Validation parameters such as.

Table No.1: Instruments used

S.No	Instrument	Model
1	HPLC	WATERS, software: Empower, 2695 separation module, UV detector
2	UV/VIS spectrophotometer	LABINDIA UV 12.500+
3	pH meter	Adwa – AD 10100
4	Weighing machine	Afcozet ER-1000A
5	Pipettes and Burettes	Borosil
6	Beakers	Borosil

Table No.2: Chemicals used

S.No	Chemical	Company Name
1	Lumacaftor	PHARMATRAIN
2	Ivacaftor	PHARMATRAIN
3	KH₂PO₄	FINER chemical LTD
4	Water and Methanol for HPLC	LICHROSOLV (MERCK)
5	Acetonitrile for HPLC	MOLYCHEM
6	Ortho phosphoric Acid	MERCK

Table No.3: Parameters used

S.No	Parameters	Lumacaftor	Ivacaftor
1	Accuracy	99.86	99.96
2	Precision	0.4	0.8
3	LOD	3.00	3.02
4	LOQ	9.98	10
5	Robustness	AC	AC
Table No.4: Calibration of drugs used

S.No	Lumacaftor	Ivacaftor		
	Concentration (µg/ml)	Area	Concentration (µg/ml)	Area
1	50	244841	31.25	31672
2	100	525756	62.5	68336
3	150	856654	93.75	113345
4	200	1150925	125	159680
5	250	1435608	156.25	204473

Figure No.1: Isobestic point of Lumacaftor and Ivacaftor

Figure No.2: Optimized chromatogram; Peaks are separated and peak shapes are also good
CONCLUSION
The linearity of Lumacaftor and Ivacaftor is found to be linear with a correlation coefficient of 0.999 and 0.999 respectively, which shows that the method is capable of producing good sensitivity. The validation of the developed method states that the accuracy is well and within the limit, which states that the method is capable of showing good accuracy and Reproducibility.

ACKNOWLEDGEMENT
The authors wish to express their sincere gratitude to Department of Pharmaceutical Analysis, PPG College of Pharmacy, Saravanampatti, Coimbatore, Tamil Nadu, India for providing necessary facilities to carry out this research work.

CONFLICT OF INTEREST
We declare that we have no conflict of interest.

REFERENCES
1. Gurudeep Chatwal and Sham Anand. Instrumental methods of chemical analysis, Himalaya Publishers, 7th Edition, 1992, 2.624-2.639.
2. Skoog et al. Principles of Instrumental Analysis, Barkhanath Publishers, 6th Edition, 2006, 973-995.
3. Hobart H. Willard et al. Instrumental methods of analysis, CBS Publications and Distributors, New Delhi, 1st Edition, 1986, 529-563.
4. Sethi P D. Quantitative analysis of Drugs and Pharmaceuticals, CBS publishers and distributors, New Delhi, 3rd Edition, 2001, 1-120.
5. Janeyulu Y and Marayyah. Quality assurance and Quality management in Pharmaceutical Industry, Pharma Book Publishers, Hyderabad, 2005 Edition, 78-108.
6. Vogel’s Text book of quantitative chemical analysis, Published by Dorling Kindersley Pvt. Ltd, 6th Edition, 2008, 289-304.
7. Lloyd R. Snyder et al. Practical HPLC method development, John Wiley and sons Publishers, 2nd Edition, 1997, 350-400.
8. Knevel A M and Digengl F E, Jenkins. Quantitative Pharmaceutical Chemistry, Mc Graw Hill Book Co. 7th Edition, 1977, 544.

Available online: www.uptodateresearchpublication.com
9. Daniel W. Armstrong. Bonded Phase material for Chromatographic separations, U.S. Patent 4, 539, 399, 1985.
10. Sastry C S P, Singh N R, Reddy. Methods of Analysis, 1986 Edition, 316.
11. Baveja S K et al. Journal of chromatography A, 1987 Edition, 337-344.
12. Puthli S P, Vavia P R J. Pharm. Biomed. Anal, Published In, 22, 2000, 673-677.
13. Salo J P. High performance thin layer chromatographic analysis of hydrolyzed tinidazole solutions I. Development and validation method, J. Pharm. Biomed. Anal, 14(8-10), 1996, 1261-1266.
14. Loyd R. Snyder et al. Practical HPLC Method Development, John Wiley and Sons Publishers, INC, New York, 2nd Edition, 1997, 686-706.
15. www.science direct.com.
16. Helmeste D et al. Rapid determination of venlafaxine and O-desmethylvenlafaxine in human plasma by high-performance liquid chromatography with fluorimetric detection, J. Chromatogr, 703(1-2), 1997, 195-201.
17. Internal ICH of technical requirements for the registration of pharmaceuticals for human use, validation of analytical parameters, Methodology adopted in 1996, Geneva.
18. ICH Guidelines Q2B, Validation of Analytical Procedure: Definitions, Published in March 1996, Geneva, Switzerland.
19. Singh G N, Gupta R P. Stability of Pharmaceuticals, Department of Pharmaceutics, Institute of Technology, B.H.U, Varanasi U.P. Eastern Pharmacist, 1987, 85-89.
20. Teresa I, Lucas, Bishara R H, Robert H S. A Stability Program for the Distribution of Drug Products, Pharmaceutical Technology Resource Guide, 28(7), 2004, 86-89.
21. Gennaro A R. Remington: The Science and Practice of Pharmacy, Philadelphia, 12th Edition, 2000, 986-990.
22. Singh S, Bakshi M. Development of validated stability-indicating assay methods critical review, J Pharm Biomed Anal, 28(6), 2002, 1011-1040.
23. ICH Harmonised Tripartite Guideline Stability Testing of New Drug Substances and Products Q1A (R2), 2, 2003, 1-24.
24. Sravanthi B, Divya M. Analytical Method Development and Validation of Ivacaftor and Lumacaftor by RP-HPLC Method, Indo Am. J. P. Sci, 3(8), 2016.
25. Akram N, Umamahesh M. A New Validated Rp-Hplc Method for the Determination of Lumacaftor and Ivacaftor in its Bulk and Pharmaceutical Dosage Forms, Oriental Journal of Chemistry, 33(3), 2017, 1492-1501.
26. Satheesh, Naresh D, Sowjanya P, Gampa Vijaya Kumar. Analytical method development and validation for the simultaneous estimation of ivacaftor and lumacaftor in its bulk and pharmaceutical dosage forms, Pharma Research Library, 2018.
27. Suresh Babu M, Spandhana N, Baby Rani P, Jagadeesh P, Akhil P. Analytical method development and validation for the estimation of Lumacaftor and Ivacaftor using RP-HPLC, Journal of Pharmacreations, 4(1), 2017, 55-78.
28. Pawanjeet J. Chhabda, Balaji M, Srinivasaarao V. Development and validation of a new and stability indicating RP-HPLC method for the determination of Ivacaftor in presence of degradant products, International Journal of Pharmacy and Pharmaceutical Sciences, 5(4), 2013, 607-613.