ABSTRACT: A hexagonal analogue, Li₆SiO₄Cl₂, of the cubic lithium argyrodite family of solid electrolytes is isolated by a computation—experiment approach. We show that the argyrodite structure is equivalent to the cubic antiperovskite solid electrolyte structure through anion site and vacancy ordering within a cubic stacking of two close-packed layers. Construction of models that assemble these layers with the combination of hexagonal and cubic stacking motifs, both well known in the large family of perovskite structural variants, followed by energy minimization identifies Li₆SiO₄Cl₂ as a stable candidate composition. Synthesis and structure determination demonstrate that the material adopts the predicted lithium site-ordered structure with a low lithium conductivity of $\sim 10^{-11}$ S cm⁻¹ at room temperature and the predicted hexagonal argyrodite structure above an order–disorder transition at 469.3(1) K. This transition establishes dynamic Li site disorder analogous to that of cubic argyrodite solid electrolytes in hexagonal argyrodite Li₆SiO₄Cl₂ and increases Li-ion mobility observed via NMR and AC impedance spectroscopy. The compositional flexibility of both argyrodite and perovskite alongside this newly established structural connection, which enables the use of hexagonal and cubic stacking motifs, identifies a wealth of unexplored chemistry significant to the field of solid electrolytes.

1. INTRODUCTION

Compounds related to the mineral argyrodite (Ag₈GeS₆) have been the focus of considerable interest for over half a century. The argyrodite family is compositionally flexible, with the general formula $\text{A}_m\text{B}_n\text{C}_y\text{D}_z\text{E}_t\text{F}_h\text{G}_j\text{H}_k\text{I}_l\text{J}_m\text{K}_n\text{L}_o\text{M}_p\text{N}_q\text{O}_r\text{P}_s\text{Q}_t\text{R}_u\text{S}_v\text{T}_w\text{U}_x\text{V}_y\text{W}_z\text{X}_u\text{Y}_v\text{Z}_w$ (A = Ag⁺, Cu⁺, Cd⁺, etc.; L = Ga³⁺, Si⁴⁺, Ge⁴⁺, P⁵⁺, etc.; X = S²⁻, Se²⁻, Te²⁻; Y = Cl⁻, Br⁻, I⁻), where the A cation content can vary from 3.25 to 9 to maintain charge neutrality. This family of compounds contains examples of fast Ag⁺ and Cu⁺ ion conductors (e.g., Cu₃PS₃Cl and Ag₆NbS₆) as well as materials interesting for their nonlinear optical properties (e.g., Cd₃.25PS₃I₆.5 and thermoelectric properties (e.g., Ag₆SnSe₆). The reported crystal structures of argyrodites are related to the high-temperature $F43m$ cubic polymorph of Ag₈GeS₆ where A cations often demonstrate an extended dynamic disorder. Static ordering of cations at low temperatures, along with the corresponding structural displacements, can lead to low-temperature polymorphs with lower symmetry. This dynamic disorder in higher-symmetry polymorphs has led to extensive investigations of argyrodites as potential solid-state electrolytes in all solid-state lithium-ion batteries (ASSBs). In the lithium-containing argyrodites, the introduction of a halide anion transforms the room-temperature orthorhombic polymorph (Li₆P₇Cl₁₂ (Ch = S, Se): space group $Pna2_1$) into cubic symmetry (Li₆P₇Cl₁₂ (Ch = Cl, Br, I): space group $F43m$), while charge compensation occurs via reduction of the lithium content. The latter cubic phase exhibits an order–disorder phase transition from static order (LT cubic phase) to an extended dynamic disorder (HT cubic phase), with delocalization of the lithium distribution. In cubic oxide analogues such as Li₆PO₄Br, this phase transition does not occur, and lithium localization within the $F43m$ structure is maintained over a wide temperature range (173–873 K). In the ordered $F43m$ structure of Li₆PO₄Br, lithium ions fully occupy a single crystallographic 24g position. In the dynamically disordered HT $F43m$ structure of the lithium sulfide argyrodites, the additional available lithium sites (Wyckoff position 48h) and extended diffusion of Li⁺ are linked to a dramatic increase in ionic conductivity by six orders of magnitude. The most highly conducting Li-containing argyrodites are based on mixed sulfide–halide compositions, e.g., Li₆PS₃Br and Li₆P₃.06Si₃.35S₅Br₂ in which Li⁺ is delocalized across 48h and 24g positions. The high-temperature $F43m$ argyrodite structure has previously been described in terms of tetrahedral close-packing or as localized pseudo-octahedral cages of A cations surrounding one anion and separated by the other anions.
In this work, we establish a new relationship between the structures of argyrodites and those of cubic antiperovskites, which are themselves good conductors of lithium ions (i.e., Li4Cl1.5Br).3 We extend this relationship, which provides a framework for designing lithium-ion conductors, from cubic to hexagonal antiperovskites and thus propose the lithium hexagonal argyrodite family, computationally identifying several new compositional targets within this family, Li5SiO4Cl is then successfully synthesized following these predictions based on mixed cubic and hexagonal stacking and shows analogous dynamical cation site disorder to cubic argyrodites, which is required for Li transport.

2. EXPERIMENTAL PROCEDURE

2.1. Computational Methods. Periodic plane-wave-based density functional theory (DFT) calculations were performed using the VASP code (version 5.4.4).6 All calculations were performed with the projector-augmented wave method,6 a plane-wave cutoff energy of 700 eV, and a k-point spacing of 0.1 Å−1. Geometry optimization of both atomic positions and unit cell parameters was terminated once all forces fell below 0.001 eV Å−1. The PBE functional10 was used to calculate relative energies and mechanical properties, and the PBEsol functional11 was used for direct comparison between computational and experimental crystal structures. The convex hull of energies for all reported phases in the Li4SiO4 structure. The twin operator is 92.82°. The degree of overlap of two components was around 1%. The twin operator is 92.82° rotation around the −0.59 0.37 −0.72 reciprocal axis. The twin operator was set to the nominal value and the Li occupancies were set to ensure charge compensation.

2.2. Synthesis. 2.2.1. Materials. Li4CO3 (99.99%), SiO2 (silica gel, technical grade, particle size 40–63 μm), and LiCl (>99.0%) were purchased from Sigma-Aldrich.

2.2.2. Synthesis of Li5SiO4Cl. Precursors were dried overnight at 473 K before weighing. Li4CO3 (1.2331 g) and SiO2 (0.0513 g) were weighed according to the stoichiometric 2:1 ratio. The powders were ground with an agate pestle and mortar for 15 min, placed into an alumina crucible and heated in air to 1073 K at a ramp rate of 5 K min−1, held at 1073 K for 12 h, and cooled at a ramp rate of 5 K min−1. The resulting product was ground to obtain a fine powder, which was then used as a precursor in the final synthesis step.

2.2.3. Synthesis of Li5SiO4Cl. Li5SiO4Cl. Li5SiO4, LiCl, and LiBr were vacuum-dried overnight (under 10−4 mbar) before placing them in an Ar-filled glovebox. All precursors and resulting powders were then handled in an Ar-filled glovebox. LiCl, LiBr, and Li5SiO4 were mixed in the stoichiometric ratio, ground with an agate pestle and mortar for 15 min, and transferred to an alumina crucible. The crucible was placed in a silica tube, which was sealed under vacuum (<10−5 mbar). The tube was heated to 798 K at a ramp rate of 5 K min−1, held at 798 K for 12 h, and cooled at a rate of 5 K min−1. Once cooled, the silica tube was opened inside the Ar glovebox, and the powder was ground in a pestle and mortar for further characterization.

Single crystals of Li5SiO4Cl were grown by mixing LiCl and Li5SiO4 in the stoichiometric ratio, heating the mixture to 883 K at a ramp rate of 5 K min−1, annealing it for 3 h, and slow cooling at 3 K h−1 to room temperature.

2.3. Powder X-ray Diffraction. Routine assessment of sample purity was carried out using a Bruker D8 Discover diffractometer with monochromatic Cu radiation (Kα1, λ = 1.54056 Å) in a Debye Scherrer transmission geometry with sample powders loaded into 0.5 mm borosilicate glass capillaries. Synchrotron X-ray diffraction (SXRD) was performed at Diamond Light Source U.K., on high-resolution beamline 111.23 at λ = 0.826552 Å. The pattern was recorded in transmission mode [0° < 2θ < 150°] using a multianalyzer crystal (MAC) detector. The sample was introduced into a 1.0 mm diameter borosilicate glass capillary. The experiment was performed at room temperature.

Synchrotron variable temperature X-ray diffraction (VT-XRD) was performed in transmission mode using a position-sensitive detector (PSD, λ = 0.82660 Å) on a sample, which was introduced into a 1.0 mm diameter silica capillary. The experiment was performed in the temperature range of 298–798 K in 25 K steps on heating and then cooled directly to room temperature to assess reversibility.

Rietveld refinements were carried out using TOPAS Academic.24 Initially, Pawley fits were performed on SXRD data, refining the lattice parameters and the background using a Chebyshev function with 12 parameters. The peak shape was modeled using a pseudo-Voigt function (high-temperature patterns) and a Thomson–Cox function (room-temperature patterns). Refined parameters from final Pawley fits were then used as starting points for Rietveld refinements where the following parameters were refined: (1) scale factor, (2) atomic coordinates, (3) isotropic (Li, Si, O) and anisotropic (Cl) displacement parameters, and (4) atomic occupancies: the occupancies of Cl and O, and Li were refined, while the occupancy of the Si site was set to the nominal value and the Li occupancies were set to ensure charge compensation.

2.4. Single-Crystal X-ray Diffraction. A twinned crystal was examined with a Rigaku MicroMax-007 HF X-ray generator equipped with a Mo Kα rotating-anode microfocus source and a Saturn 72+ detector. The data were collected at 100 K. Refinement of the cell parameters, indexing of twin components, and reduction of the data were performed on the obtained diffraction images with the use of the software package CrysAlisPro.25 The volume ratio of the twin components was about 1:1. The degree of overlap of two components is around 1%. The twin operator is 92.82° rotation around the −0.59 0.37 −0.72 reciprocal axis. The determined HKLF4 format file was used for structure solution using Olex2.26 The crystal structure was solved with the intrinsic phase method provided by the ShelXT27 structure solution program. Refinements were carried out with the ShelXL28 refinement package using least-squares minimization.

2.5. Differential Scanning Calorimetry (DSC). Heat flux profiles were measured from 15.1 mg of powdered sample in a 40 μL aluminum crucible cold-welded under an Ar atmosphere (<0.1 ppm O2, H2O) using a Netzsch DSC 404 F1 differential scanning calorimeter. Data were recorded on heating to 823 K and then cooling to 323 K using heating and cooling rates of 10 K min−1 under a constant 50 mL min−1 flow of helium. The temperature transition is the average of the values obtained from both the heating and cooling curves, which were extracted through peak fitting.

2.6. Alternating current (AC) Impedance Spectroscopy and Direct Current (DC) Polarization. A pellet of Li5SiO4Cl was made by uniaxially pressing ~30 mg of material in an 8 mm cylindrical steel die at a pressure of 125 MPa. The pellet was sintered in an evacuated, flame-dried silica tube for 12 h at 848 K. Using this method, a relative density of 84% was achieved.

AC impedance measurements were conducted using an impedance analyzer (Keysight impedance analyzer E4990A). A sputtered gold coating of 300 nm thickness was used as the ion blocking electrodes. Sputtering was achieved under an argon atmosphere using a Q150R sputter coater, and temperature-dependent conductivity measurements were performed under an argon atmosphere over a frequency range of 2 MHz to 20 Hz (with an amplitude of 100 mV). Measurements were performed in the temperature range of 333–575 K in 20 K steps. The ZView2 program29 was used to fit the impedance spectra with an equivalent circuit.

A pellet of 94% relative density was used for DC potentiation polarization measurements. DC polarization data was collected at 300 °C on a Au/Li5SiO4Cl/Au symmetric cell by applying constant potentials of 0.05, 0.1, 0.5, and 1 V for 7200 s and monitoring the current variation with time. Once a constant current was achieved, the current was recorded and plotted against the applied voltage allowing for the electronic conductivity (σe) to be extracted from the following equation
where U refers to the polarization voltage, I refers to the pellet thickness, A refers to the Au electrode area, and I refers to the current.

2.7. Nuclear Magnetic Resonance (NMR) Spectroscopy. 29Si magic-angle spinning (MAS) NMR spectra were recorded with a 4 mm HXY MAS probe in double resonance mode on a Bruker 9.4 T Avance III HD spectrometer. 29Si NMR data was obtained using a pulse length of 5 µs at a radio frequency (rf) amplitude of 50 kHz and at a MAS rate of $v_2 = 10$ kHz. The sample was packed into a rotor in an Ar-filled glovebox to eliminate exposure to air and moisture. 29Si chemical shifts were externally referenced to the lowest-frequency signal of octakis(trimethylsiloxy)silsesquioxane at chemical shifts were externally referenced to the lowest-frequency Ar- anions. (e) Compared with Li$_3$OBr, the cubic argyrodite structure of Li$_6$PO$_5$Br has a reduced Li coordination number defined by four A-site (Br: dark green, PO$_4$: polyanion light green) and one B-site anion (O: red) with half of the B-sites vacant (vacancy: gray).

![Figure 1](image)

(a) Cubic argyrodite structure of Li$_6$PO$_5$Br (Li: pink, P: light green, O: red, Br: dark green, vacant B-site (V): gray; the arrow shows the direction of the P–O bond vector oriented toward the vacant B-site), showing the relationship with (b) the cubic perovskite SrTiO$_3$ (Sr: green, Ti: dark red, O: red) and (c) the B-site vacancy-ordered K$_2$PtCl$_6$ (K: dark green, Pt: red, Cl: light green, vacancies: gray). (d) Cubic antiperovskite structure of Li$_6$OBr, highlighting the octahedral coordination environment of Li, coordinated by four A-site (Br: dark green) and two B-site (O: red) anions. (e) Compared with Li$_3$OBr, the cubic argyrodite structure of Li$_6$PO$_5$Br has a reduced Li coordination number defined by four A-site (Br: dark green, PO$_4$: polyanion light green) and one B-site anion (O: red) with half of the B-sites vacant (vacancy: gray).

$\sigma_t = \frac{II}{UA}$ \hspace{1cm} (1)

where σ_t refers to the polarization voltage, I refers to the pellet thickness, A refers to the Au electrode area, and I refers to the current.

3. RESULTS AND DISCUSSION

3.1. Selection of Target Compounds by Structural Analogy between Argyrodite and Perovskite. We describe the relationship between the argyrodite structure, exemplified by Li$_6$PO$_5$Br (Figure 1a), and the cubic antiperovskite structure. In analogy with perovskites of general formula ABX$_3$, Li$_6$PO$_5$Br can be written as \[\left[\left((PO_4)_{0.5}Br_{0.5}\right)^{-}\right]\text{[Li}_3\text{]}^2,\] where \square is a vacancy. As such, Li$_6$PO$_5$Br could be considered as an inverse double perovskite. When viewed as a cubic antiperovskite, the lithium ions in Li$_6$PO$_5$Br replace the anion positions in the conventional cubic perovskite (e.g., SrTiO$_3$) (Figure 1b). The phosphate polyanions and bromide anions replace the larger A-site cations in a rock-salt-ordered fashion. As the cubic perovskite, Li$_6$PO$_5$Br (Figure 1a), and the cubic antiperovskite structure.

Temperature calibrations were performed using the chemical shift thermometers Pb(NO$_3$)$_2$, using 207Pb NMR35 and by monitoring the phase transition of CuI and CuBr using 63Cu NMR.32,33 The errors associated with this method were calculated using the isotropic peak line broadening and range from 5 to 20%.

2.8. Maximum Entropy Methods (MEM). Maximum entropy method (MEM) analysis was performed on SXRD and VT-XRD data using the software Jana200634 and BayMEM.35 Rietveld models from Topas were input into Jana2006, which was used to extract F_{obs} and generate MEM inputs. BayMEM was used to calculate the electron density distribution using the F_{obs} and the number of electrons in the nominal stoichiometry. Calculations using the number of electrons associated with a 10% Li deficiency were also performed for all models investigated and found to have negligible impact in the resulting electron density distributions. All MEM results were visualized in the VESTA crystal structure visualization software.36

https://dx.doi.org/10.1021/acs.chemmater.1c00157

Chem. Mater. 2021, 33, 2206–2217
common to both material families. The existence of both cubic and hexagonal perovskites associated with the distinct stackings of the AX₃ layers suggests the existence of hexagonal Li argyrodites that are also based on alternating Li₆Br and Li₆PO₄ stackings.

Although closely related in composition to argyrodite, the compound Cu₂GeSe₆ has a hexagonal P6₃mc high-temperature polymorph rather than the cubic F43m argyrodite structure, as do the compounds Ag₂PS₄ and Li₅SiO₄. Analysis of these structures shows that they contain similar close-packed layers to those present in the cubic antiperovskite description of the argyrodite family, but that, instead of a c–(−a−b−a−c) manner, they are stacked in a −h−c−c−h−c−(−a−b−a−c−) manner, as would occur in a hexagonal antiperovskite. Different close-packed layer stacking motifs are known within the antiperovskites. The argyrodite/cubic antiperovskite structural relationship suggests that Li-containing materials based on the hexagonal, rather than cubic, antiperovskite stacking of these layers, related to the hexagonal structures of Cu₂GeSe₆ and Ag₂PS₄ would be analogous to the lithium-containing argyrodites, where the number of Li sites and extent of Li ordering among them control ionic conductivity.

Starting from the cubic Li₆PO₄X (X = Cl, Br) argyrodites, the phosphate (PO₄)₃⁻ (P–O bond length: 1.54 Å) was replaced with silicate (SiO₄)₄⁻ (Si–O bond length: 1.65 Å) to increase the A-site cation radius and thus drive a cubic to hexagonal transition through the perovskite tolerance factor (t = 0.17 Å/0.16 Å = 0.26 Å). The isolated oxide ion was replaced by a halide ion (F, Cl, Br, I) to balance charge. Structures were built with compositions Li₆SiO₄X’ (X’ = F, Cl, Br, I) with the −h−c−c−h−c−(−a−b−a−c−) stacking pattern, following Cu₂GeSe₆ in the P6₃mc space group. This affords a hexagonal antiperovskite in which half of the A-sites are occupied with silicate polyanions and half with halide anions. Half of the B-sites are then occupied in an ordered manner by the remaining halide anions, with the vacant B-sites chosen to avoid interactions between the halide anions and the corners of the silicate tetrahedra (Figure 2a).

This is a hexagonal analogue of the Li₆PO₄Br structure described previously and an inverse analogue of the 4H-BaMnO₃,46 stacking sequence described previously and an inverse analogue of the 4H-cubic argyrodites (i.e., alternating Li₃Br and Li₃PO₄/Li₃SiO₄ (LiCl and LiBr) (Table S1). Through phonon calculations, lower-energy structures than the high-symmetry hexagonal were recomputed in these four lower-symmetry polymorphs, arising from the rotation of lithium atoms off the mirror plane of P₆₃mc through activation of displacive Γ₃, Γ₅, Γ₇, M₂, and M₄ modes (Figure 3b), leading to four potential lower-symmetry polymorphs in space groups P31c, P6₃, Pmn2₁, and Pca2₁. The stabilities of all compositions were computed in these four lower-symmetry polymorphs, revealing that Li₅SiO₄Cl₂, Li₅SiO₄Br₂, Li₅SiO₄ClBr, and Li₅SiO₄ClI were predicted to be stable (Figure 3a, Table 1, and Table S1).

These results suggest that a new lithium hexagonal antiperovskite family of compounds may be experimentally accessible, with Li₅SiO₄Cl₂ and Li₅SiO₄ClBr (with the larger Br ordered on the A-site) predicted to be the most stable and chosen as targets for experimental synthesis.

DFT calculations of the elastic constants of Li₅SiO₄Cl₂ in the Pna2₁ structure result in a computed bulk modulus, B₉₀, of 53 GPa and a computed shear modulus, G₉₀, of 31 GPa. This material is considerably softer than oxide solid-state lithium electrolytes such as Li₅La₂Zr₂O₁₂ (B₉₀ = 117 GPa,

Figure 2. (a) DFT-optimized P6₃mc structure of Li₅SiO₄ClBr (Li: pink, Si: light green, O: red, Br: dark green, Cl: blue, vacant B-site: gray) is compared to (b) the 4H-BaMnO₃ hexagonal perovskite structure (Ba: green, Mn: blue, O: red). The oxide anions in the conventional hexagonal perovskite are replaced by lithium cations in Li₅SiO₄ClBr, the A-site barium cations are replaced by an ordered mixture of silicate polyanions and bromide anions, and the B-site manganese cations are replaced by ordered chloride anions and vacancies. In Li₅SiO₄ClBr, close-packed Li₆Br layers (dark pink lithium) alternate along the c-direction with close-packed Li₅SiO₄ layers (light pink lithium) in an −a−b−a−c− stacking sequence. Half of the octahedral B-sites between these layers are then occupied by chloride anions (blue octahedra), leaving half of the B-sites vacant (gray octahedra). (c–h) Comparing close-packed AX₃ layers in Li₅PO₄Br cubic antiperovskite (viewed along the [111] direction in (c) and (d), and computed Li₅SiO₄ClBr hexagonal antiperovskite viewed along [001] in (f) and (g)). (c) Li₅PO₄Br: Li₅PO₄ layer, (d) Li₅PO₄Br: Li₅PO₄ layer, and (e) Li₅PO₄Br: cubic (−a−b−c−) stacking of close-packed Li₅Br and Li₅PO₄ layers. Oxygen atoms (red) and vacancies (gray) occupy octahedral B-sites between the close-packed layers (f) Li₅SiO₄ClBr: Li₅SiO₄ layer, (g) Li₅SiO₄ClBr: Li₅Br layer, and (h) Li₅SiO₄ClBr: cubic (−a−b−c−) stacking of close-packed Li₅Br and Li₅SiO₄ layers. Chlorine atoms (blue) and vacancies (gray) occupy octahedral B-sites between the close-packed layers. For all further figures, all (poly)anions occupying the A-site are drawn in green and all B-site anions are drawn in blue.
mechanical stability issues inherent in the use of pure oxide and sulfide ceramics.

3.2. Synthesis, Thermal Behavior, and Structure Determination. Compounds were synthesized as powders with compositions $\text{Li}_x\text{SiO}_y\text{Cl}_z\text{Br}_w$ ($x = 0, 0.5, 1$) to explore the computationally predicted targets. Synthesis of powders was attempted at varying reaction temperatures (50 K steps from 723 to 873 K) and reaction times ($12, 24, 48$ h), and starting materials and resulting powders were handled under an argon atmosphere and annealed in alumina crucibles (Section 2.2). Synthesis at 823 K for 48 h yielded phase-pure powders for $\text{Li}_4\text{SiO}_4\text{Cl}_1$. This new phase persists in the compositional range $\text{Li}_x\text{SiO}_y\text{Cl}_z\text{Br}_w$ ($0 \leq x \leq 1$) and displays increased lattice parameters as a function of bromine content (Figure S1). Despite this clear indication of anion substitution, all compositions with $x > 0$ contained impurities; only $\text{Li}_6\text{SiO}_4\text{Cl}_2$ was synthesized as a phase-pure white powder, and as such, all further discussion therefore concerns $\text{Li}_6\text{SiO}_4\text{Cl}_2$. Single crystals of $\text{Li}_6\text{SiO}_4\text{Cl}_2$ were synthesized by annealing at 883 K for 3 h before slow cooling (3 K h$^{-1}$) to room temperature. High-resolution synchrotron XRD data (SXRD) were collected on the powder from 298 to 798 K in 25 K steps. At temperatures 473–498 K, convergence of some peaks and disappearance of other small peaks indicate a phase transition to a high-temperature, higher-symmetry phase (denoted HT phase) (Figure 4a,b). This transition is also observed in differential scanning calorimetry (DSC) data measured from $\text{Li}_6\text{SiO}_4\text{Cl}_2$ powder, which shows endothermic and exothermic events on heating and cooling, respectively, associated with this reversible phase transition (Figure 4c). The exact transition temperature determined from DSC data is $469.3(1)$ K, consistent with the observations from SXRD, NMR, and AC impedance measurements (see below). Similarly to the RT phase, the experimental SXRD pattern of the HT phase could not be indexed to any known compounds in the Li–Si–O–Cl phase field. The structure of the RT phase was solved by single-crystal (SC) X-ray diffraction and the HT phase by the Rietveld refinement of a computed starting model against high-resolution SXRD data.

3.2.1. Room-Temperature Phase: Structure Determination. The crystal structure was solved in the space group Pna_2_1 from a nonmerohedrally twinned crystal with lattice parameters: $a = 10.5204(8)$ Å, $b = 6.0756(4)$ Å, and $c = 9.9530(7)$ Å. The assignments of Li, Si, O, and Cl were determined based on interatomic distances and relative displacement parameters. All atomic positions were refined with fixed fully occupied sites. Lithium atoms exhibited nonpositive definite anisotropic mean square displacements, so ISOR restraints were applied to totals $L1$–6 during the final refinement and also to atoms $O2$–4 as a result of distorted thermal ellipsoids. The final anisotropic atomic refinement converged to $R_1 = 0.0530, wR_2 = 0.1189$ for reflections with $I \geq 2\sigma(I)$ and $R_1 = 0.0750, wR_2 = 0.1279$ for all reflections. Crystallographic data and structural refinements for $\text{Li}_6\text{SiO}_4\text{Cl}_2$ are summarized in Table S2. The asymmetric unit contains two distinct crystallographic Cl positions, four distinct O positions, one Si position (further confirmed by 29Si solid-state NMR, which displays a main signal at -67 ppm, Figure S2, corresponding to a SiO_4^{4-} unit), and six Li positions. The final refined atomic positions, and isotropic and anisotropic displacement parameters of each atom are given in Tables S3 and S4, and the selected bond lengths and angles are given in Tables S5 and S6. Orthorhombic superlattice reflections characteristic of the

![Figure 3. (a) Stabilities of the compounds $\text{Li}_x\text{SiO}_y\text{XX'}$ ($X/X' = F^-, Cl^-, Br^-, I^-$) against decomposition into $\text{Li}_x\text{SiO}_y + \text{LiX} + \text{LiX'}$, calculated using DFT. $\text{Li}_6\text{SiO}_4\text{BrCl}$ and $\text{Li}_6\text{SiO}_4\text{Cl}_2$ are calculated to be the most stable compositions. (b) DFT-optimized structures of $\text{Li}_6\text{SiO}_4\text{Cl}_2$ (Li: pink, SiO_4: green, Cl: light green and blue). In the high-symmetry $P6_3mc$ structure (center), half of the lithium ions lie on mirror planes (shown in darker pink). Displacement of these lithium ions off the mirror planes leads to a lowering of symmetry and a reduction in the DFT-calculated energy. Triangles of lithium ions are displaced by small rotations about the c axis. These rotations can be in phase or out of phase, leading to the different low-symmetry structures shown. Rotations of lithium ions in the Li_6SiO_4 layers and Li_2Cl_4 layers are shown by pink and white arrows, respectively.](https://dx.doi.org/10.1021/acs.chemmater.1c00157)
The high-resolution room-temperature SXRD data further confirms this model showing subtle peak splitting consistent with the \(Pna2_1\) symmetry (Figure 4a, inset) evident due to higher \(Q\) resolution in the synchrotron data.

The observed systematic absences in the SXRD data were consistent with the \(Pna2_1\) space group and the lattice parameters refined to \(a = 10.543155(5)\) Å, \(b = 6.07657(3)\) Å, and \(c = 9.960255(5)\) Å from a Pawley fit. The model obtained from SC diffraction proved to be a good starting point for the Rietveld refinement with values of \(R_{wp} = 4.61\) and \(\chi^2 = 2.81\) after the initial refinement of site occupancies and displacement parameters. Cl and O site occupancies were refined, and Li site occupancies were fixed to achieve charge neutrality. Refinement of atomic positions improved \(R_{wp}\) from 4.61 to 4.27 and \(\chi^2\) from 2.81 to 2.61 (Figure S3). Small impurity phases of LiCl (1.95\%) and Li\(_2\)SiO\(_3\) (2.35\%) were observed (Figure S4a). The maximum entropy method (MEM) analysis did not show any additional electron density, indicating that all lithium sites are accounted for in the structural model described above (Figure S6). The final Rietveld fit is shown in Figure 4a, and refined structural parameters are presented in Tables S7 and S8. The refined composition is \(Li_{6.957(2)}Si_{0.986(2)}O_{3.985(1)}Cl_{2.017(1)}\), and the RT phase will therefore be denoted RT-Li\(_6\)SiO\(_4\)Cl\(_2\) hereafter for simplicity.

3.2.2. Room-Temperature Phase: Structure Description.

As described in Section 3.1, the orthorhombic structure arises from the rotation of lithium atoms off the mirror plane in \(P6_{3}mc\) through activation of \(\Gamma_3\) and \(M_2\) modes, stabilizing the \(Pna2_1\) symmetry. This leads to a change in anionic and cationic coordination environments compared to the hexagonal defect antiperovskite parent.

The experimentally determined RT structure is shown in Figure 5a, highlighting the atomic packing within the structure defined by alternating Li\(_6\)SiO\(_4\) and Li\(_2\)Cl layers. Comparison of the experimentally determined \(Pna2_1\) structure to the computed structure shows almost identical atomic positions (Figure S7a). The chloride ions that occupy 50\% of the antiperovskite B-site positions (Cl\(_1\)) are found in an octahedral environment with bond lengths ranging from 2.415(3) to 2.621(3) Å to neighboring Li. Compared to the idealized octahedral environment expected for B-site anions in antiperovskites, the octahedra are distorted slightly as a result of the nonrigid rotation of Li ions and the displacement of chlorine toward neighboring vacant B-sites. The chloride ions that occupy 50\% of the A-site (Cl\(_2\)), typically forming cuboctahedral (12-fold) coordination environments in hexagonal perovskites such as 4H-BaMnO\(_3\), occupy a distorted octahedral environment in the orthorhombic polymorph with bond lengths from 2.446(3) to 2.798(7) Å (Figure S8). All lithium atoms are found in tetrahedral LiCl\(_2\)O\(_2\) coordination environments (Figure 4a, and re

The observed systematic absences in the SXRD data were consistent with the \(Pna2_1\) space group and the lattice parameters refined to \(a = 10.543155(5)\) Å, \(b = 6.07657(3)\) Å, and \(c = 9.960255(5)\) Å from a Pawley fit. The model obtained from SC diffraction proved to be a good starting point for the Rietveld refinement with values of \(R_{wp} = 4.61\) and \(\chi^2 = 2.81\) after the initial refinement of site occupancies and displacement parameters. Cl and O site occupancies were refined, and Li site occupancies were fixed to achieve charge neutrality. Refinement of atomic positions improved \(R_{wp}\) from 4.61 to 4.27 and \(\chi^2\) from 2.81 to 2.61 (Figure S3). Small impurity phases of LiCl (1.95\%) and Li\(_2\)SiO\(_3\) (2.35\%) were observed (Figure S4a). The maximum entropy method (MEM) analysis did not show any additional electron density, indicating that all lithium sites are accounted for in the structural model described above (Figure S6). The final Rietveld fit is shown in Figure 4a, and refined structural parameters are presented in Tables S7 and S8. The refined composition is \(Li_{6.957(2)}Si_{0.986(2)}O_{3.985(1)}Cl_{2.017(1)}\), and the RT phase will therefore be denoted RT-Li\(_6\)SiO\(_4\)Cl\(_2\) hereafter for simplicity.

3.2.2. Room-Temperature Phase: Structure Description.

As described in Section 3.1, the orthorhombic structure arises from the rotation of lithium atoms off the mirror plane in \(P6_{3}mc\) through activation of \(\Gamma_3\) and \(M_2\) modes, stabilizing the \(Pna2_1\) symmetry. This leads to a change in anionic and cationic coordination environments compared to the hexagonal defect antiperovskite parent.

The experimentally determined RT structure is shown in Figure 5a, highlighting the atomic packing within the structure defined by alternating Li\(_6\)SiO\(_4\) and Li\(_2\)Cl layers. Comparison of the experimentally determined \(Pna2_1\) structure to the computed structure shows almost identical atomic positions (Figure S7a). The chloride ions that occupy 50\% of the antiperovskite B-site positions (Cl\(_1\)) are found in an octahedral environment with bond lengths ranging from 2.415(3) to 2.621(3) Å to neighboring Li. Compared to the idealized octahedral environment expected for B-site anions in antiperovskites, the octahedra are distorted slightly as a result of the nonrigid rotation of Li ions and the displacement of chlorine toward neighboring vacant B-sites. The chloride ions that occupy 50\% of the A-site (Cl\(_2\)), typically forming cuboctahedral (12-fold) coordination environments in hexagonal perovskites such as 4H-BaMnO\(_3\), occupy a distorted octahedral environment in the orthorhombic polymorph with bond lengths from 2.446(3) to 2.798(7) Å (Figure S8). All lithium atoms are found in tetrahedral LiCl\(_2\)O\(_2\) coordination environments. Due to the difference in ionic radii \(r_{Li} = 1.81\) Å, \(r_{O} = 1.40\) Å, lithium atoms are displaced toward the oxygen atoms (Figure 4c). Li–O bond lengths vary from 1.829(3) to 1.931(3) Å, comparable to distances reported for the cubic argyrodite Li\(_4\)PO\(_4\)Cl (1.93 Å)\(^9\) and shorter than Li–O bonds in Li\(_6\)SiO\(_4\) (1.84–2.51 Å)\(^{49}\), Li–Cl bond lengths range from 2.415(3) to 2.798(3) Å. These values are larger than expected for typical LiCl\(_2\) bond lengths, e.g., 2.38 Å in Li\(_6\)MgCl\(_4\).\(^{50}\) The difference in bond lengths compared to homoleptic LiCl\(_4\) and LiO\(_4\) tetrahedral environments is expected in heteroleptic LiClO\(_4\) and optimizes the bond valence sum for Li\(^{+}\) (BVS: 0.939(8)–1.12(1)). The Li–Cl distances in Li\(_6\)SiO\(_4\)Cl\(_2\) are shorter than in the cubic oxide argyrodite Li\(_4\)PO\(_4\)Cl (2.910(4) Å)\(^9\), in which Li atoms have a trigonal bipyramidal coordination (LiO\(_5\)Cl\(_2\)) with Cl occupying the axial positions.\(^9\)

In the RT structure, LiClO\(_4\) tetrahedra are connected through the corner-sharing of Cl and O vertices and the sharing of Cl–Cl edges; they are referred to using the central lithium atom, i.e., Li\((1)O_2Cl_2\) as a Li\(_1\) tetrahedron. Edge-sharing between Li\(_1\)–Li\(_3\) and Li\(_4\)–Li\(_6\) tetrahedra is facilitated by the lithium-ion displacements away from the shared Cl–Cl edges (Figure 6a,c), minimizing electrostatic repulsions.

The Li\(_6\)SiO\(_4\) layer can be described (Figure 6a) as alternating corner-sharing Li\(_2\)–Li\(_3\) and Li\(_1\)–SiO\(_4\) chains

Figure 4. (a) RT-Li\(_6\)SiO\(_4\)Cl\(_2\): Rietveld refinement against SXRD of RT-Li\(_6\)SiO\(_4\)Cl\(_2\) (Diamond Light Source 111 beamline) with \(I_{obs}\) (black circles), \(I_{calc}\) (red line), \(I_{obs} − I_{calc}\) (gray line), and Bragg reflections (black tick marks for Li\(_6\)SiO\(_4\)Cl\(_2\) green tick marks for Li\(_2\)SiO\(_3\) blue tick marks for LiCl); the inset highlights reflections consistent with the orthorhombic \(Pna2_1\) symmetry. (b) HT-Li\(_6\)SiO\(_4\)Cl\(_2\): Rietveld refinement against SXRD data of Li\(_6\)SiO\(_4\)Cl\(_2\) (black tick marks for Li\(_6\)SiO\(_4\)Cl\(_2\) green tick marks for Li\(_2\)SiO\(_3\) blue tick marks for LiCl); the inset compares reflections from the RT-orthorhombic phase at 298 K (black line) with the HT-hexagonal phase at 548 K (red line). (c) Differential scanning calorimetry (DSC) data showing a reversible thermal event associated with phase transition between \(Pna2_1\), and \(P6_{3}mc\) symmetries in Li\(_6\)SiO\(_4\)Cl\(_2\).
Figure 5. (a) RT-Li₆SiO₄Cl₂ unit cell showing alternating Li₃Cl and Li₃SiO₄ layers. Comparing with the ABX₃ perovskite, SiO₄ (green tetrahedra) and Cl₂ (light green) occupy the A-sites, Cl₁ (blue) ions fill 50% of the B-sites with the remaining 50% vacant, and lithium atoms occupy the X-sites (Li₁, Li₂, Li₃ atoms in light pink, Li₄, Li₅, Li₆ atoms in dark pink). Vacant tetrahedral lithium sites in the Li₃SiO₄ layer are shown in white to facilitate comparison with the HT structure. (b) HT-Li₆SiO₄Cl₂ unit cell showing the same alternating Li₃Cl and Li₃SiO₄ layers. Lithium atoms are disordered over partially occupied sites with respect to the RT structure (Li₁a and Li₁b atoms in light pink, Li₂ atoms in dark pink). (c) RT-Li₃SiO₄Cl₂ lithium tetrahedra showing displacement of lithium (4a Wyckoff site) toward coordinating oxygen. The vacant tetrahedral sites (V), drawn in white, are generated by activation of occupational modes when lowering the symmetry of HT-Li₆SiO₄Cl₂ to ISODISTORT (Figure S10). (d) HT-Li₆SiO₄Cl₂, Li₁a, Li₁b (6c Wyckoff site), and Li₂ (12d Wyckoff site) coordination environment, showing partial occupancy of tetrahedral sites that are both fully occupied and vacant at RT. (e) This order–disorder behavior of lithium sites is analogous to the lithium distribution in Li₆PS₅I argyrodite;²¹ at low temperatures (LTs), lithium atoms are ordered occupying one of the tetrahedral positions, whereas at high-temperature (HT), lithium ions are disordered with partial occupancy of tetrahedral and trigonal positions. Distinct sulfide anion positions are labeled in the HT structure. (f) Octahedral Li-ion cages surrounding B-site anions in Li₆PO₅Cl (cubic), HT-Li₆SiO₄Cl₂ (hexagonal), and Li₆PS₅Br (cubic). Trigonal anion windows (consisting of three oxide anions in Li₆PO₅Cl, two oxide anions and one chloride anion in Li₆SiO₄Cl₂, and two sulfide and one mixed sulfide/bromide site in Li₆PS₅Br) are shown, highlighting their anion–anion distances that determine the window area. Two distinct trigonal windows are present in HT-Li₆SiO₄Cl₂ with oxide ions both either occupying Wyckoff position 6c (edge length: 3.54 Å) or occupying Wyckoff positions 2a and 6c (edge length: 3.23 Å). Lithium ions move through these windows in argyrodite solid electrolytes.

3.1.3 and Figure 3c). Very similar Pawley fits were obtained using these symmetries, and lattice parameters were refined to \(a = 6.110805(12) \) Å and \(c = 10.02068(3) \) Å for P6₃mc (Figure S4b). The higher-symmetry computed P6₃mc structure gave a reasonable starting point for the Rietveld refinement. The unit cell contains two distinct crystallographic Cl positions (Wyckoff position 2b), two O positions (Wyckoff positions 6c and 2a), one Si position (Wyckoff position 2a), and three Li positions (Wyckoff positions 6c and 12d). Occupancies of Cl and O sites were refined, and the occupancies of Li sites were fixed to ensure charge neutrality. In the computational model, Li₂ is located on the mirror plane in special position 6c (Figure S7b). Inspection of the Fourier density map (FDM) reveals extra electron density around this position and indicates displacement of Li₂ away from the mirror plane onto the general position 12d (Figure S9a). Replacing the 6c site with the 12d position improved \(R_{wp} \) from 3.61 to 2.98%. The FDM...
also revealed electron density around the Li1 position along the c-direction (Figure 5b). Splitting the Li1 site into two distinct Li1a and Li1b sites along c further improved \(R_{wp} \) to 2.75%. The computed P31c model (Figure 3c) is similar, only allowing two distinct 6c crystallographic sites for Li2 instead of one 12d site. A fit of the diffraction data to this model, with independent refinement of both Li2a and Li2b 6c occupancies, did not result in an improved fit. The \(P6_{1}mc \) model was therefore used for final refinement. MEM analysis also supports the displacement of Li1 and Li2 positions (Figure S6). The final refinement is shown in Figure 4b, and the refined structural parameters are provided in Table S7. The refined composition is \(Li_{5.92(4)}Si_{0.08(6)}O_{3.94(6)}Cl_{1.95(6)} \) and the HT phase will therefore be denoted HT-\(Li_{6}SiO_{4}Cl_{2} \) for simplicity.

3.2.4. High-Temperature Phase: Structure Description

The HT \(P6_{1}mc \) structure can be described as a 4H-hexagonal antiperovskite of general formula \(ABX_{2} \), with structural similarities to \(4H-BaMnO_{3} \) (Figure 2b) in which half of the \(B \)-sites are vacant. This is consistent with cation-deficient hexagonal perovskites with the formula \(A_{x}BX_{2} \), such as \(Nb_{2}MnF_{6} \) with the \(P6_{1}mc \) symmetry. \(^{51} \) The HT structure of \(Li_{6}SiO_{4}Cl_{2} \), consisting of alternating hexagonally stacked \(Li_{2}Cl \) and \(Li_{2}SiO_{4} \) layers, is shown in Figure 5b. The (poly)anion network in the HT structure remains unchanged with the observed symmetry change originating from displacements in Li positions. The lithium environments remain tetrahedral (\(LiO_{4}Cl_{2} \)) with lithium atoms displaced toward the oxygens due to its smaller ionic radius compared to chlorine. \(Li-Cl \) bond lengths vary from 2.366(3) to 2.908(8) \(\AA \), and \(Li-O \) bond lengths range from 1.847(4) to 1.942(4) \(\AA \) (Figure 5d).

As shown in Figure 5c,d, the ordered lithium atoms of RT-\(Li_{6}SiO_{4}Cl_{2} \) are disordered in the higher-symmetry HT structure. Similar to the results from normal mode calculations described in Section 3.1, this order–disorder transition occurs via activation of occupational \(M_{2} \) and \(M_{3} \) modes, with a small contribution from displace mode \(M_{5} \) modes that predominantly involve displacement of the Li1 atoms within the close-packed \(Li_{2}SiO_{4} \) layer (Figure S10). This disorder of the \(A \) cation positions is well known in \(A_{12}^{\infty} \) and \(A_{12}^{\infty}X_{12}^{\infty} \) argyrodites \(^{2,23} \) and provides a direct comparison of Li disorder between oxide and sulfide argyrodite materials. The delocalization of Li positions in HT-\(Li_{6}SiO_{4}Cl_{2} \) resembles that observed in high-temperature \(F43m \) cubic argyrodites \(Li_{6}PS_{5}X \left(X = Cl, Br, I \right) \), in which Li partially occupies both tetrahedral and trigonal planar coordination environments (48h and 24g Wyckoff sites, respectively; Figure S9c) and is one of the reasons for reduced energy barriers for bulk Li-ion transport in these materials. \(^{8} \)

The order–disorder transition of \(Li_{6}SiO_{4}Cl_{2} \) (Figure 5c,d) is similar to the behavior of many argyrodites; \(Cu_{6}GeSe_{6} \) displays an order–disorder transition between \(P6_{3}cm \) and \(P6_{1}mc \) structures, where Cu ions are disordered in the latter similarly to Li on the 6c and 12d Wyckoff positions in \(Li_{6}SiO_{4}Cl_{2} \), \(^{39,54} \) and analogous behavior is observed in silver-containing argyrodites. \(^{1} \) Specifically, cubic \(Li_{6}PS_{5}I \) has ordered lithium positions at low temperature (<180 K) and a disordered structure at 298 K in which lithium is delocalized across the 24g and 48h positions (Figure 5e), \(^{21} \) resulting in comparable local lithium coordination environments with \(Li_{6}SiO_{4}Cl_{2} \) (Figure 5c,d) that are consistent with dynamical disorder. This is distinct from the cubic oxide argyrodite, \(Li_{6}PO_{5}Br \), in which lithium remains localized on the trigonal planar 24g Wyckoff position in the \(F43m \) structure over a wide (173–873 K) temperature range (Figure 1c). \(^{48} \) Stabilization of this lithium disorder, which enables access to higher-energy sites in \(Li_{6}SiO_{4}Cl_{2} \), would increase lithium-ion migration compared against the room-temperature structure.

3.3. Transport Properties

The ionic conductivity of \(Li_{6}SiO_{4}Cl_{2} \) was investigated through AC impedance spectroscopy on a sintered white pellet of ~84% theoretical density (pellet cold-pressed under 125 MPa and sintered in an evacuated silica ampoule for 12 h at 848 K). A typical set of data measured at 533 K in an inert atmosphere are shown in Figure 7a. The impedance complex plane plots, \(Z' \) vs \(\omega \), consist of a high-frequency arc with the presence of a small low-frequency inclined spike. The large single arc is attributed to the sample bulk, as shown by overlapping peaks in the combined \(Z' \) vs \(\omega \) spectra (Figure S12a). The associated capacitance of the high-frequency arc, 0.6 pF cm\(^{-1} \), corresponding to a permittivity of \(~6.8\), is also consistent with the grain response (Figure S12b). The low-frequency spike is attributed to the double-layer capacitance at the blocking sample–electrode interface, where Li ions cannot pass. To a first approximation, the high-frequency arc could be modeled with an equivalent circuit consisting of a resistor in parallel with a constant phase element (CPE). Impedance data were fitted to the equivalent circuit using ZView software (Figure 7a). In general, the material is homogeneous and shows a total conductivity of \(6.2 \times 10^{-6} \) S cm\(^{-1} \) at 575 K and \(~10^{-10} \) S cm\(^{-1} \) at room temperature. DC polarization measurements show a low electronic contribution of >0.5% at 300 °C to the overall conductivity (eq 1 and Figure S13). From the low-frequency intercept of the impedance arc on the \(Z' \) axis, the values of the total resistance were obtained and are shown in an Arrhenius format in Figure 7b. A change in slope can be observed above

Figure 6. (a) \(Li_{3}SiO_{4} \) intralayer environments and \(Li_{2} \)–\(Li_{3} \) (pink) and \(Li_{1} \)–\(SiO_{2} \) (blue and green, respectively) chains of corner- and edge-sharing tetrahedra. (b) Connection of \(Li_{3}SiO_{4} \) layers along the stacking axis (c) through corner-sharing of \(Cl_{2} \) atoms (light green). (c) \(Li_{3}SiO_{4} \) (top) and \(Cl_{1} \) (bottom) layers consisting of corner- and edge-sharing tetrahedra (\(Li_{1} \): light blue, \(Li_{2} \), \(Li_{3} \): light pink, \(Li_{4} \)–\(Li_{6} \): dark pink, \(Si \): green, \(Cl_{1} \) (B-sites): blue, \(Cl_{2} \) (A-sites): light green, \(O \): red), all shared edges are \(Cl_{1}–Cl_{2} \). (d) \(Li_{3}Cl \) layers connected via \(SiO_{4} \) units viewed along the \(b \)-direction showing stacking along \(c \); \(SiO_{4} \) tetrahedra are shown to guide the eye.
∼498 K, agreeing with the phase transition observed via VT-XRD and DSC experiments. The orthorhombic phase (red circles) and the hexagonal phase (black squares) have activation energies of 0.560(8) and 0.444(9) eV, respectively.

The local ionic mobility of lithium was investigated through 7Li solid-state NMR. The temperature dependence of the static 7Li NMR spectra of Li$_6$SiO$_4$Cl$_2$ over the temperature range of 331−593 K is shown in Figure 7c. At temperatures where ion mobility is minimal, i.e., the rigid lattice regime, the $1/2 \leftrightarrow -1/2$ central transition is broadened by the 7Li$-^7$Li homonuclear dipolar coupling. For Li$_6$SiO$_4$Cl$_2$, this region is between 350 and 450 K, where the line width of the central transition is \sim5.5 kHz. As the temperature is increased above 450 K, the line width decreases drastically over a small temperature range (Figure 7d) due to the increasing motion of the Li spins continuously averaging the dipolar interactions and clearly evidences an increase in ionic mobility facilitated by the phase transition from the ordered RT-orthorhombic to the higher-symmetry HT-hexagonal phase.

Through calculation of the strength of 7Li$-^7$Li homonuclear dipolar coupling of both the room-temperature and high-temperature phases of Li$_6$SiO$_4$Cl$_2$, further insight into the local ion dynamics of the two phases can be determined. By extracting the shortest Li−Li distance from the SXRD data (Li1−Li5, 2.697(6) Å), the absolute value of the dipolar coupling constant can be calculated (eq 2) as \sim5.8 kHz in RT-Li$_6$SiO$_4$Cl$_2$ in full agreement with the experimental line width observed, while \sim8.2 kHz is obtained from Li1a and Li2 (2.410(5) Å) for HT-Li$_6$SiO$_4$Cl$_2$. Due to the increase in dipolar coupling after the phase transition, it would be expected that 7Li spectra demonstrate increased line widths at higher T in the absence of an increase in Li-ion mobility. However, the line narrowing observed (Figure 7d) is a clear indication that the phase transition from the RT-orthorhombic phase to the higher-symmetry HT-hexagonal phase facilitates an increase in Li-ion mobility, as also observed in AC impedance measurements (Figure 7b).

The delocalization of lithium in HT-Li$_6$SiO$_4$Cl$_2$ across the 6c and 12d sites (Figure 5c,d) results in a lowering of the activation energy from RT-Li$_6$SiO$_4$Cl$_2$ where the lithium positions are fully ordered. The activation energies obtained from Li$_6$SiO$_4$Cl$_2$ are lower than those extracted from Li$_6$PO$_5$Cl across the measured temperature range, despite the latter adopting the higher-symmetry cubic $F\bar{4}3m$ structure.9 The distinction between the oxide materials Li$_6$SiO$_4$Cl$_2$ and Li$_6$PO$_5$Cl is likely the increased size of the trigonal anion window (Figure 5f) and the associated dynamical Li disorder (absent in cubic Li$_6$PO$_5$Cl, where Li is localized on the 24g position) in hexagonal Li$_6$SiO$_4$Cl$_2$ (partial occupancy of 6c and 12d positions by Li), leading to lower activation energies for ion mobility. Local jumps of Li$^+$ between these tetrahedral sites separated by the trigonal anion windows are the most favorable for ionic diffusion in argyrodites.8 Occupational disorder via chalcogenide–halide mixing on the anion position that forms

Figure 7. (a) Impedance complex plane plots Z' of Li$_6$SiO$_4$Cl$_2$ at 533 K; the inset shows equivalent circuit used to model the data. The inset shows the low-frequency inclined spike attributed to the capacitance of the blocking electrode. (b) Arrhenius plots of the total conductivity; activation energies derived from the data are shown. A change in Arrhenius behavior and activation energy can be seen at \sim470 K corresponding to the phase change observed in VT-XRD and DSC measurements. (c) 7Li NMR spectra under static conditions as a function of temperature. (d) Motional narrowing of the line width (full width at half-maximum) of the central 7Li NMR transition. The temperature at which the phase change is detected via DSC measurements is also noted (dashed line).
part of the trigonal window that mobile cations traverse (Figure 5f) is an important route to enhancing Li-ion mobility.12,54 Unlike Li₆PO₅Cl, where this window is formed from three oxide anions, the LiClO₄ environments of Li₆SiO₄Cl₂ yield a window described by one chloride and two oxide anions. The larger Cl (rₐ = 1.81 Å, r₀ = 1.40 Å)45 increases the size of this window, further lowering the activation energy of ion transport compared to Li₆PO₅Cl.

4. CONCLUSIONS

The connection between argyrodite and antiperovskite structures is established, thus identifying close-packed layers that can be assembled through the diversity of combined hexagonal and cubic stacking operations known to give the perovskite material family its breadth of scientific and technological importance. We exemplify these mixed stackings in the hexagonal argyrodite material family through the prediction and then isolation of the non toxic and earth-abundant Li₆SiO₄Cl₂. Here, the resulting layer stacking gives access to a disordered Li distribution, which is observed in fast lithium-ion conductors, a distribution not accessible to its nearest known cubic compositional counterpart, Li₆PO₅Cl. Exploration of the many accessible mixed layer sequences and associated site and chemical orderings afforded within this family opens new routes to the tuning and creation of ion transport pathways through variation of both composition and structure, as well as broader functional outcomes based on the importance of the cubic argyrodite materials.

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.chemmater.1c00157.

Computed decomposition energies of the compounds Li₆SiO₄Cl₂′ (X = F, Cl, Br, I) for different space groups, PXRD patterns for Li₆SiO₄Cl₂′, Brₙ Pawley fits (RT and HT phases), comparison of Rietveld refinement before and after refinement of atomic positions as well as with and without Li atoms (RT phase), MEM analysis (RT and HT phases), comparison of computed and experimental structures (RT and HT phases), Fourier difference map (HT phase), structural information of Li₆SiO₄Cl₂ determined by single-crystal diffraction and powder diffraction refinement (refinement details, atomic positions, bond distances, and angles), 29Si NMR spectrum and impedance results are available (PDF)

Crystal structure of SC-Li₆SiO₄Cl₂ is deposited with ICSD 2032155 (CIF)
Crystallographic data (RT-Li₆SiO₄Cl₂′-powder-responses) (CIF)
Crystallographic data (HT-Li₆SiO₄Cl₂′) (CIF)

AUTHOR INFORMATION

Corresponding Author
Matthew J. Rosseinsky – Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K.; orcid.org/0000-0002-1910-2483; Email: m.j.rosseinsky@liverpool.ac.uk

Authors
Alexandra Morscher – Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K.
Matthew S. Dyer – Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K.
Benjamin B. Duff – Department of Chemistry and Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZD Liverpool, U.K.; orcid.org/0000-0002-7398-5002
Guopeng Han – Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K.
Jacinthe Gamon – Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K.
Luke M. Daniels – Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K.; orcid.org/0000-0002-7077-6125
Yun Dang – Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K.; orcid.org/0000-0002-0140-0140
T. Wesley Surta – Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K.; orcid.org/0000-0002-2882-6483
Craig M. Robertson – Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K.
Frédéric Blanc – Department of Chemistry and Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZD Liverpool, U.K.; orcid.org/0000-0001-9171-1454
John B. Claridge – Department of Chemistry, University of Liverpool, L69 7ZD Liverpool, U.K.

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.chemmater.1c00157

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the support of the Faraday Institution project “SOLBAT—The Solid-State (Li or Na) Metal-Anode Battery” [grant number FIRG007] for funding Y.D., the studentship of A.M., and partial studentship support of B.B.D., who is also supported by the University of Liverpool. This work used the Cirrus U.K. National Tier-2 HPC Service at EPCC (http://www.cirrus.ac.uk) funded by the University of Edinburgh and EPSRC (EP/P020267/1), along with the University of Liverpool HPC cluster, Barkla. We thank EPSRC for funding G.H. and J.G. under EP/N004884 and for funding T.W.S. under EP/R011753/1. M.J.R thanks the Royal Society for a Research Professor position. This work was carried out with the support of Diamond Light Source, instrument I11 (proposal CY23666).

REFERENCES

(1) Kuhs, W.; Nitsche, R.; Scheunemann, K. The argyrodites—a new family of tetrahedrally close-packed structures. Mater. Res. Bull. 1979, 14, 241–248.
(2) Wada, H. Crystal structures and silver ionic conductivities of the new compounds Ag₇NbS₆, Ag₇TaSe₆ and Ag₇−ξTaSe₆−ξI (0.1 ≤ ξ ≤ 0.5). J. Alloys Compd. 1992, 178, 315–323.
(3) Li, L.; Liu, Y.; Dai, J.; Hong, A.; Zeng, M.; Yan, Z.; Xu, J.; Zhang, D.; Shan, D.; Liu, S.; Ren, Z.; Liu, J.-M. High thermoelectric performance of superionic argyrodite compound Ag₆SnSe₆. J. Mater. Chem. C 2016, 4, 5806–5813.
(4) Gaudin, E.; Boucher, F.; Petricke, V.; Taulelle, F.; Evain, M. Structures and phase transitions of the A₇PSe₆ (A = Ag, Cu)
argyrodite-type ionic conductors. II. β-and γ-Cu$_3$PSe$_6$. Acta Crystallogr. Sect. B: Struct. Sci. 2000, 56, 402–408.
(5) Evain, M.; Gaudin, E.; Boucher, F.; Petricke, V.; Taulelle, F. Structures and phase transitions of the A$_x$P$_6$Se$_6$ ($A =$ Ag, Cu) argyrodite-type ionic conductors. I. A=Ag, PACT Acta Crystallogr. Sect. B: Struct. Sci. 1998, 54, 376–383.
(6) Rao, R. P.; Adams, S. Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. Phys. Status Solidi A 2011, 208, 1804–1807.
(7) Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaal, T.; Schlosser, M. Li$_3$P$_6$S$_6$: A crystal of crystalline Li-rich solids with an unusually high Li$^+$ mobility. Angew. Chem. 2008, 120, 767–770.
(8) Deiseroth, H. J.; Maier, J.; Weichert, K.; Nickel, V.; Kong, S. T.; Reiner, C. Li$_3$PS$_6$ and Li$_3$PS$_6$X (X = Cl, Br, I): Possible Three-dimensional Diffusion Pathways for Lithium Ions and Temperature Dependence of the Ionic Conductivity by Impedance Measurements. Z. Anorg. Allg. Chem. 2011, 637, 1287–1294.
(9) Kong, S. T.; Deiseroth, H. J.; Maier, J.; Nickel, V.; Weichert, K.; Reiner, C. Li$_3$PO$_4$Br and Li$_3$PO$_4$Cl: The First Lithium-Oxide-Arroyedite. Z. Anorg. Allg. Chem. 2010, 636, 1920–1924.
(10) De Klerk, N. J.; Rostlon, I.; Wagemaker, M. Diffusion mechanism of Li argyrodite solid electrolytes for Li-ion batteries and prediction of optimized halogen doping: the effect of Li vacancies, halogens, and halogen disorder. Chem. Mater. 2016, 28, 7955–7963.
(11) Kraft, M. A.; Culver, S. P.; Calderon, M.; Böcher, F.; Krauskopf, T.; Sensynsh, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Reiner, W. G. Influence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li$_3$PS$_6$X (X = Cl, Br, I). J. Am. Chem. Soc. 2017, 139, 10909–10918.
(12) Minafra, N.; Culver, S. P.; Krauskopf, T.; Sensynsh, A.; Reiner, W. G. Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. J. Mater. Chem. A 2018, 6, 645–651.
(13) Zhao, Y.; Daemen, L. L. Superionic conductivity in lithium-rich anti-Fe-peroxovites. J. Am. Chem. Soc. 2012, 134, 15042–15047.
(14) Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, No. 11169.
(15) Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, No. 1758.
(16) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.
(17) Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zaanen, A. C.; Ziegler, B. Restoring the chemical bond and atomic displacements in SrTiO$_3$ from X-ray diffraction analysis. Acta Crystallogr., Sect. B: Struct. Sci. 1999, 51, 942–951.
(18) Williams, R.; Dillen, D. R.; Milligan, W. Structure refinement of potassium chloroplatinate by powder and single-crystal methods. Acta Crystallogr. Sect. B: Struct. Chem. 1973, 29, 1369–1372.
(19) Jahn, B.; Pioten, F.; Eikeland, E.; Chen, H.; Song, Q.; Ren, D.; Zhang, T.; Yang, J.; Iversen, B. B.; Shi, X.; Chen, L. Cu$_8$GeSe$_6$-based thermoelectric materials with an argyrodite structure. J. Mater. Chem. A 2017, 5, 945–952.
(20) Onoda, M.; Ishii, M.; Patterson, P.; Shibata, K.; Yamamoto, A.; Chayap, G. Superspace-group approach to the phase transition of Cu$_3$GeSe$_5$. J. Solid State Chem. 1999, 146, 355–362.
(21) Jiang, B.; Qiu, P.; Eikeland, E.; Chen, H.; Song, Q.; Ren, D.; Zhang, T.; Yang, J.; Iversen, B. B.; Shi, X.; Chen, L. Cu$_3$GeSe$_5$-based thermoelectric materials with an argyrodite structure. J. Mater. Chem. A 2017, 5, 945–952.
(22) Jabloniska, M.; Pfitzner, A. Preparation and crystal structure of Ag$_2$Ag$_3$P$_6$S$_6$. Z. Anorg. Allg. Chem. 2004, 630, No. 7351.
(23) Hofmann, R.; Hoppe, R. Ein neues Oxogermanat: Li$_2$GeO$_3$ = Li$_2$O$_3$Ge$_2$O$_3$. Z. Anorg. Allg. Chem. 1987, 575, 118–128.
(24) Gähler, F.; Niewa, R. Stacking Design of Inverse Perovskites: The Systems (Sr$_{1-x}$Ba$_x$)$_2$N$_2$. Inorg. Chem. 2007, 46, 859–865.
(25) Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta
(46) Potoff, A. D.; Chamberland, B. L.; Katz, L. A single crystal study of eight-layer barium managanese oxide, BaMnO₃. *J. Solid State Chem.* 1973, 8, 234–237.

(47) Monroe, C.; Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. *J. Electrochem. Soc.* 2005, 152, A396.

(48) Kim, K. J.; Balaish, M.; Wadaguchi, M.; Kong, L.; Rupp, J. L. M. Solid-State Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces. *Adv. Energy Mater.* 2021, 11, No. 2002689.

(49) Tranqui, D.; Shannon, R.; Chen, H.-Y.; Iijima, S.; Baur, W. Crystal structure of ordered Li₃SiO₄. *Acta Crystallogr., Sect. B: Struct. Crystallogr.* Cryst. Chem. 1979, 35, 2479–2487.

(50) Partik, M.; Schneider, M.; Lutz, H. Kristallstrukturen von MgCr₂O₄-Typ Li₂VCl₄ und Spinell-Typ Li₂MgCl₄ und Li₂CdCl₄. *Z. Anorg. Allg. Chem.* 1994, 620, 791–795.

(51) Schippers, A.; Brandwijk, V.; Gorter, E. Derivation and discussion of crystal structures of compounds ABX₃ and A₂BX₆: Part I. Derivation of the structures. *J. Solid State Chem.* 1973, 6, 479–492.

(52) Nilges, T.; Pfitzner, A. A structural differentiation of quaternary copper argyrodites: Structure–property relations of high temperature ion conductors. *Z. Kristallogr.* 2005, 281–294.

(53) Albert, S.; Pillet, S.; Lecomte, C.; Pradel, A.; Ribes, M. Disorder in Ag₄GeSe₆I₃, a superionic conductor: temperature-dependent anharmonic structural study. *Acta Crystallogr., Sect. B: Struct. Sci.* 2008, 64, 1–11.

(54) Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F. Boosting solid-state diffusivity and conductivity in lithium superionic argyrodites by halide substitution. *Angew. Chem., Int. Ed.* 2019, 58, 8681–8686.