Search for Resonances in the Dijet Mass Spectrum from 7 TeV pp Collisions at CMS

The CMS Collaboration

Abstract

A search for narrow resonances with a mass of at least 1 TeV in the dijet mass spectrum is performed using pp collisions at $\sqrt{s} = 7$ TeV corresponding to an integrated luminosity of 1 fb$^{-1}$, collected by the CMS experiment at the LHC. No resonances are observed. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, and gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95% confidence level: string resonances with mass less than 4.00 TeV, E_6 diquarks with mass less than 3.52 TeV, excited quarks with mass less than 2.49 TeV, axigluons and colorons with mass less than 2.47 TeV, and W' bosons with mass less than 1.51 TeV.

Submitted to Physics Letters B

See Appendix A for the list of collaboration members
The Large Hadron Collider (LHC) has recently delivered an integrated luminosity in excess of 1 fb$^{-1}$ at a centre-of-mass energy $\sqrt{s} = 7$ TeV. This extends considerably the search territory for new physics in events containing jets. In this Letter we report a search for narrow resonances in the dijet mass spectrum, performed with the Compact Muon Solenoid (CMS) detector [1], with sensitivity exceeding that of our previous search [2]. Proton-proton collisions produce two or more energetic jets when the constituent partons are scattered with large transverse momenta, p_T. The invariant mass spectrum of the two jets with largest p_T (dijets) is predicted to fall steeply and smoothly by quantum chromodynamics (QCD). Many extensions of the standard model predict the existence of new massive objects that couple to quarks (q) and gluons (g), and result in resonances in the dijet mass spectrum.

We apply the results of this generic search to the following specific models of narrow s-channel dijet resonances:

- **String resonances (S),** which are Regge excitations of quarks and gluons in string theory and decay predominantly to qg [3, 4].
- **Scalar diquarks (D),** which decay to qq and $\bar{q}\bar{q}$, predicted by a grand unified theory based on the E_6 gauge symmetry group [5].
- **Mass-degenerate excited quarks (q^*),** which decay to qg, predicted if quarks are composite objects [6, 7]; the compositeness scale is set to be equal to the mass of the excited quark.
- **Axial-vector particles called axigluons (A),** which decay to $q\bar{q}$, predicted in a model where the symmetry group SU(3) of QCD is replaced by the chiral symmetry SU(3)$_L \times SU(3)_R$ [8].
- **Color-octet colorons (C),** also decaying to $q\bar{q}$, predicted by the flavour-universal coloron model, embedding the SU(3) symmetry of QCD in a larger gauge group [9].
- **New gauge bosons (W' and Z'),** which decay to $q\bar{q}$, predicted by models that include new gauge symmetries [10]; the W' and Z' bosons are assumed to have standard model couplings.
- **Randall-Sundrum (RS) gravitons (G),** which decay to $q\bar{q}$ and gg, predicted in the RS model of extra dimensions [11]; the value of the dimensionless coupling κ/M_{Pl} is chosen to be 0.1.

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter providing an axial field of 3.8 tesla. Within the field volume at central values of pseudorapidity η are the silicon pixel and strip tracker ($|\eta| < 2.4$) and the barrel and endcap calorimeters ($|\eta| < 3$): a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadronic calorimeter (HCAL). An iron/quartz-fiber calorimeter is located in the forward region ($3 < |\eta| < 5$), outside the field volume. For triggering purposes and to facilitate jet reconstruction, the ECAL and HCAL cells are grouped into towers projecting radially outward from the centre of the detector. The energy deposits measured in the ECAL and the HCAL within each projective tower are summed to find the calorimeter tower energy. A more detailed description of the CMS experiment can be found elsewhere [1].

The CMS coordinate system has the origin at the center of the detector. The z-axis points along the direction of the anticlockwise beam, with the transverse plane perpendicular to the beam; ϕ is the azimuthal angle, θ is the polar angle, and the pseudorapidity is defined as $\eta = -\ln(\tan(\theta/2))$.

The integrated luminosity of the data sample selected for this analysis is 1.01 ± 0.06 fb$^{-1}$.
Events are recorded using a two-tier trigger system. Objects satisfying the requirements at the first level (L1) are passed to the High Level Trigger (HLT). The sample was collected with a multijet trigger at the HLT, which is based on the sum of the transverse energies of all jets in the event with p_T above 40 GeV. The trigger selects events with a total transverse energy of jets in the HLT exceeding 550 GeV. The trigger efficiency is measured from the data to be larger than 99.9% for dijet masses above 838 GeV.

To remove possible instrumental and non-collision backgrounds in the selected sample, jets are required to pass identification criteria that are fully efficient for signal [12]. Events are required to have a reconstructed primary vertex within the range $|z| < 24$ cm.

We consider two types of standard jets with different inputs: particle-flow jets, which we use for the search, and calorimeter jets, which we use as a check. The particle-flow algorithm [13] reconstructs all stable particles in an event by combining information from all subdetectors. The algorithm categorizes all particles into the following five types: muons, electrons, photons, charged hadrons, and neutral hadrons. Particle-flow jets use reconstructed particles as input to the jet reconstruction algorithm, while calorimeter jets use calorimeter energy deposits as the input.

The reconstructed jet energy E is defined as the scalar sum of the energies of the constituents of the jet, and the jet momentum \vec{p} is the corresponding vector sum of the momenta of the inputs. The jet transverse momentum p_T is the component of \vec{p} perpendicular to the beam. The values of E and \vec{p} of a reconstructed jet are corrected for the response of the detector to a generated jet, using Monte Carlo simulations, test beam results, and collision data [14].

This analysis combines particle-flow jets reconstructed with the anti-k_T algorithm [15] into "wide jets", which we use to measure the mass spectrum and search for new physics. Wide jets are the result of a radiation recovery algorithm for dijets, inspired by recent jet-grooming algorithms [16, 17]. The partons from the decay of heavy objects can radiate additional partons, which are often produced at a large angle with respect to the original parton direction and thus are clustered into a separate jet by the anti-k_T jet-clustering algorithm. Wide jets collect more of this final-state radiation and therefore improve the mass resolution for dijet resonances. First, we reconstruct AK5 and AK7 jets using the anti-k_T algorithm with distance parameters $R = 0.5$ and $R = 0.7$, respectively, which are the two standard choices we support for analysis at CMS. In our previous search [2] we used AK7 jets, since they have a larger distance parameter than AK5 jets and capture more radiation. Here we introduce wide jets reconstructed from AK5 jets to produce a wider jet than AK7. We correct the AK5 jet energy and select the two AK5 jets with the highest p_T in the event (leading AK5 jets). Then we add the Lorentz vectors of all other AK5 jets with $p_T > 10$ GeV and $|\eta| < 2.5$ to the closest AK5 leading jet, if within $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 1.1$, to obtain the two leading wide jets. The parameter ΔR sets the maximum size of the wide jet.

The dijet system is composed of the two leading jets. We require that the pseudorapidity separation $\Delta \eta$ of the two leading jets satisfy $|\Delta \eta| < 1.3$, and that both jets be in the region $|\eta| < 2.5$. These $\Delta \eta$ and η requirements maximize the search sensitivity for isotropic decays of dijet resonances in the presence of QCD background. The dijet mass is given by $m = \sqrt{(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2}$. We select events with $m > 838$ GeV without any requirements on the p_T of the leading jet.

The number of events as a function of dijet mass is shown in Fig. 1 for both calorimeter and particle-flow AK7 jets; the observed rates agree. Figure 1 also shows that the observed wide jet dijet mass distribution is shifted to higher mass because wide jets collect more energy.
Figure 1: The number of events observed versus dijet mass for wide jets (solid circles), particle flow AK7 jets (open boxes), and calorimeter AK7 jets (X symbols).

Figure 2: Dijet mass spectrum from wide jets (points) compared to a smooth fit (solid) and to predictions [18] including detector simulation of QCD (short-dashed), excited quark signals (dot-dashed), and string resonance signals (long-dashed). The QCD prediction has been normalized to the data (see text). The error bars are statistical only. The shaded band shows the systematic uncertainty in the jet energy scale (JES). The bin-by-bin significance of the data-fit difference (see text) is shown at bottom.
Figure 3: Ratio (points) between the dijet mass data from wide jets and the smooth fit, compared to the simulated ratios for excited quark signals (dot-dashed) in the CMS detector. The error bars represent statistical uncertainties only.

Figure 2 presents the inclusive dijet mass distribution for \(pp \rightarrow 2 \) leading wide jets + \(X \), where \(X \) can be anything, including additional jets. Wide jets are used and we plot the measured differential cross section as a function of dijet mass in bins approximately equal to the dijet mass resolution [2]. The data are compared to a QCD prediction from \textsc{pythia} V6.424 [18], which includes a simulation of the CMS detector and the jet energy corrections. The prediction uses a renormalization scale \(\mu = p_T \) of the hard-scattered partons and CTEQ6L1 parton distribution functions [19], and has been normalized to the data by multiplying the prediction by a factor of 1.33. The shape of the \textsc{pythia} prediction agrees with the data within the jet energy scale uncertainty, which is the dominant systematic uncertainty. To test the smoothness of our measured cross section as a function of dijet mass, we fit the following parameterization to the data:

\[
\frac{d\sigma}{dm} = \frac{P_0(1 - m/\sqrt{s})^{P_1}}{(m/\sqrt{s})^{P_2 + P_3 \ln(m/\sqrt{s})}},
\]

with four free parameters \(P_0, P_1, P_2, \) and \(P_3 \). This functional form is used in previous searches [2, 20–22] to describe both data and QCD predictions. In Fig. 2 we show the fit, which has a chi-squared (\(\chi^2 \)) of 27.5 for 28 degrees of freedom, as well as the bin-by-bin significance, defined as the difference between the data and the fit value, divided by the statistical uncertainty of the data. Figure 3 displays the ratio of the data to the fit. The data are well described by the smooth parameterization.

We search for narrow resonances, for which the natural resonance width is small compared to the CMS dijet mass resolution. Figures 2 and 3 present the predicted dijet mass distribution for excited quarks using \textsc{pythia} V6.424 and the CMS detector simulation. The predicted mass distributions have a Gaussian core coming from the jet energy resolution and a tail towards lower mass from QCD radiation. This can be seen in Fig. 4, which shows examples of the predicted dijet mass distribution of resonances from three different parton pairings: \(q\bar{q} \) (or \(qq \))
resonances from the process $G \rightarrow q\bar{q}$ \cite{11}, qg resonances from $q^* \rightarrow qg$ \cite{6}, and gg resonances from $G \rightarrow gg$ \cite{11}. The increase of the width of the measured mass shape and the shift of the mass distribution towards lower masses are enhanced when the number of gluons in the final state is larger, because QCD radiation is larger for gluons than for quarks. The distributions in Fig. 4 are generically valid for other resonances with the same parton content and with a natural width small compared to the dijet mass resolution, and are examples of the shapes we use to set limits on dijet resonances. Wide-jet reconstruction gives a little better resolution than AK7-jet reconstruction, as shown in Fig. 4 for gg resonances. There is no indication of narrow resonances in our data, as shown in Figs. 2 and 3.

We use the dijet mass data from wide jets, the background (QCD) parameterization, and the dijet resonance shapes to set specific limits on new particles decaying to the parton pairs qq (or $q\bar{q}$), qg, and gg. The dominant sources of systematic uncertainty are the jet energy scale (2.2%), the jet energy resolution (10%), the integrated luminosity (6%), and the statistical uncertainty on the background parameterization, which are all considered nuisance parameters. For setting upper limits we use a Bayesian formalism with a uniform prior for the signal cross section \cite{23}. To incorporate systematic uncertainties we use a fully Bayesian treatment, integrating the likelihood over these nuisance parameters. We calculate the posterior probability density as a function of resonance cross section independently at each value of the resonance mass. Table I lists the generic upper limits at the 95% confidence level (CL) on $\sigma \times B \times A$, i.e. the product of the cross section (σ), the branching fraction (B), and the acceptance (A), for the kinematic requirements $|\Delta\eta| < 1.3$ and $|\eta| < 2.5$, for qq, qg, and gg resonances. The acceptance for isotropic decays is $A \approx 0.6$ independent of resonance mass. The observed upper limits in Table I can be compared to predictions of $\sigma \times B \times A$ at the parton level, without any detector simulation, in order to determine mass limits on new particles. In addition to these observed upper limits, we also calculate the expected upper limits using pseudo-experiments: searches
Table 1: The observed upper limits at the 95% CL on $\sigma \times B \times A$, as a function of the new-particle mass, for narrow resonances decaying to dijets with partons of type quark-quark (qq), quark-gluon (qg), and gluon-gluon (gg). The limits apply to the kinematic range where the two jets have pseudorapidity $|\eta| < 2.5$ and $|\Delta \eta| < 1.3$.

Mass (TeV)	Upper limit (pb)	Mass (TeV)	Upper limit (pb)				
	qq	qg	gg				
1.0	1.098	1.245	1.851	2.6	0.0619	0.0749	0.1011
1.1	0.777	0.909	1.374	2.7	0.0470	0.0577	0.0781
1.2	0.662	0.732	1.079	2.8	0.0356	0.0440	0.0601
1.3	0.486	0.535	0.803	2.9	0.0274	0.0336	0.0455
1.4	0.284	0.332	0.518	3.0	0.0210	0.0257	0.0348
1.5	0.231	0.265	0.395	3.1	0.0158	0.0196	0.0268
1.6	0.201	0.226	0.326	3.2	0.0118	0.0151	0.0209
1.7	0.168	0.190	0.280	3.3	0.0091	0.0117	0.0163
1.8	0.115	0.138	0.207	3.4	0.0075	0.0097	0.0136
1.9	0.113	0.131	0.183	3.5	0.0065	0.0085	0.0117
2.0	0.121	0.140	0.193	3.6	0.0061	0.0078	0.0105
2.1	0.108	0.130	0.183	3.7	0.0059	0.0074	0.0096
2.2	0.093	0.115	0.160	3.8	0.0057	0.0071	0.0091
2.3	0.089	0.108	0.148	3.9	0.0055	0.0068	0.0084
2.4	0.085	0.102	0.138	4.0	0.0052	0.0064	0.0080
2.5	0.077	0.092	0.125	4.1	0.0048	0.0060	0.0073
conducted on random samples of events generated from our smooth background parameterization. The use of wide jets instead of AK7 jets improves the expected upper limits on the resonance cross section by roughly 20% for gg, 10% for qg, and 5% for qq resonances.

![Graph showing upper limits on the cross section for dijet resonances](image)

Figure 5: The 95% CL upper limits on $\sigma \times B \times A$ for dijet resonances of type gluon-gluon (open circles), quark-gluon (solid circles), and quark-quark (open boxes), compared to theoretical predictions for string resonances [3], E_6 diquarks [5], excited quarks [6], axigluons [8], colorons [9], new gauge bosons W' and Z' [10], and Randall-Sundrum gravitons [11].

Table 2: For each model we list the observed and expected upper values of the excluded mass range at 95% CL. The lower value of the excluded mass range from this search is 1 TeV.

Model	Excluded Mass (TeV)	
	Observed	Expected
String Resonances	4.00	3.90
E_6 Diquarks	3.52	3.28
Excited Quarks	2.49	2.68
Axigluons/Colorons	2.47	2.66
W' Bosons	1.51	1.40

In Fig. 5 we compare the observed upper limits to the model predictions as a function of resonance mass. The predictions are from lowest-order calculations [24] of the product $\sigma \times B \times A$ using CTEQ6L1 parton distributions [19]. New particles are excluded at the 95% CL in mass regions for which the theory curve lies above our upper limit for the appropriate pair of partons. We also determine the expected lower limit on the mass of each new particle by comparing the expected cross section limits to the model predictions. An example of the expected limits is shown in Fig. 6 where for qg resonances we compare the expected limits and their uncertainty bands to both observed limits and model predictions. Our search starts at a resonance mass...
Figure 6: The observed 95% CL upper limits on $\sigma \times B \times A$ for quark-gluon dijet resonances (points) are compared to the expected limits (dot-dash) and their expected statistical variation at the 1σ and 2σ levels (shaded bands) and are also compared to the theoretical predictions for string resonances [3] and excited quarks [6].

of 1 TeV, and all quoted exclusions start at this mass value. The observed and expected limits are listed in Table 2. For string resonances the expected mass limit is 3.90 TeV and we exclude masses less than 4.00 TeV; this extends our previous exclusion of $0.5 < M(S) < 2.5$ TeV [2]. For E_6 diquarks the expected limit is 3.28 TeV and we exclude masses less than 3.52 TeV; this extends our previous exclusions of $0.5 < M(D) < 0.58$ TeV, $0.97 < M(D) < 1.08$ TeV, and $1.45 < M(D) < 1.60$ TeV [2]. For excited quarks the expected mass limit is 2.68 TeV and we exclude masses less than 2.49 TeV; this extends our previous exclusion of $0.5 < M(q^*) < 1.58$ TeV [2] and the ATLAS exclusion of $0.6 < M(q^*) < 2.15$ TeV from the dijet mass spectrum [22]. For axigluons or colorons the expected mass limit is 2.66 TeV and we exclude masses less than 2.47 TeV; this extends our previous exclusions of $0.5 < M(A, C) < 1.17$ TeV and $1.47 < M(A, C) < 1.52$ TeV [2], and the ATLAS exclusion of $0.6 < M(A, C) < 2.1$ TeV [22]. For W' bosons the expected mass limit is 1.40 TeV and we exclude masses less than 1.51 TeV; this extends the CDF exclusion of $0.3 < M(W') < 0.8$ TeV from the dijet mass spectrum [20]. We do not set any mass limits on Z' bosons and RS gravitons. The systematic uncertainties included in this analysis reduce the excluded upper masses by 0.03 TeV or less for each type of new particle.

In summary, the dijet invariant mass distribution has been measured to be a smoothly falling distribution, as expected within the standard model. There is no evidence for new particle production. We present generic upper limits on the product $\sigma \times B \times A$ that can be applied to any model of dijet resonance production. We set specific mass limits on string resonances, E_6 diquarks, excited quarks, axigluons, flavour-universal colorons, and W' bosons, all of which extend previous exclusions from the dijet mass search technique.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and
other CMS institutes, and acknowledge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPEPI, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). We thank Can Kilic for calculations of the string resonance cross section.

References

[1] CMS Collaboration, “The CMS Experiment at the CERN LHC”, JINST 03 (2008) S08004. doi:10.1088/1748-0221/3/08/S08004.

[2] CMS Collaboration, “Search for Dijet Resonances in 7 TeV pp Collisions at CMS”, Phys. Rev. Lett. 105 (2010) 211801. doi:10.1103/PhysRevLett.105.211801.

[3] L. A. Anchordoqui et al., “Jet signals for low mass strings at the Large Hadron Collider”, Phys. Rev. Lett. 101 (2008) 241803. doi:10.1103/Physrevlett.100.171603.

[4] S. Cullen, M. Perelstein, and M. E. Peskin, “TeV strings and collider probes of large extra dimensions”, Phys. Rev. D 62 (2000) 055012. doi:10.1103/PhysRevD.62.055012.

[5] J. L. Hewett and T. G. Rizzo, “Low-energy phenomenology of superstring-inspired E_6 models”, Phys. Rept. 183 (1989) 193. doi:10.1016/0370-1573(89)90071-9.

[6] U. Baur, I. Hinchliffe, and D. Zeppenfeld, “Excited Quark Production at Hadron Colliders”, Int. J. Mod. Phys. A 2 (1987) 1285. doi:10.1142/S0217751X87000661.

[7] U. Baur, M. Spira, and P. M. Zerwas, “Excited Quark and Lepton Production at Hadron Colliders”, Phys. Rev. D 42 (1990) 815. doi:10.1103/PhysRevD.42.815.

[8] P. H. Frampton and S. L. Glashow, “Chiral color: An alternative to the standard model”, Phys. Lett. B 190 (1987) 157. doi:10.1016/0370-2693(87)90859-8.

[9] E. H. Simmons, “Coloron phenomenology”, Phys. Rev. D 55 (1997) 1678. doi:10.1103/PhysRevD.55.1678.

[10] E. Eichten et al., “Supercollider physics”, Rev. Mod. Phys. 56 (1984) 579. doi:10.1103/RevModPhys.56.579.

[11] L. Randall and R. Sundrum, “An alternative to compactification”, Phys. Rev. Lett. 83 (1999) 4690. doi:10.1103/PhysRevLett.83.4690.

[12] CMS Collaboration, “Jet Performance in pp Collisions at $\sqrt{s}=7$ TeV”, CMS Physics Analysis Summary CMS-PAS-JME-10-003 (2010).

[13] CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_T^{miss}”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001 (2009).
[14] CMS Collaboration, “Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS”, (2011). [arXiv:1107.4277] Submitted to JINST.

[15] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_T jet clustering algorithm”, JHEP 04 (2008) 063. [doi:10.1088/1126-6708/2008/04/063]

[16] D. Krohn, J. Thaler, and L.-T. Wang, “Jet Trimming”, JHEP 02 (2010) 084. [doi:10.1007/JHEP02(2010)084]

[17] A. Abdesselam et al., “Boosted objects: a probe of beyond the Standard Model physics”, Eur. Phys. J. C 71 (2011) 1661. [doi:10.1140/epjc/s10052-011-1661-y]

[18] T. Sjöstrand et al., “High-energy-physics event generation with PYTHIA 6.1”, Comp. Phys. Commun. 135 (2001) 238. [doi:10.1016/S0010-4655(01)00236-8]

[19] J. Pumplin et al., “New generation of parton distributions with uncertainties from global QCD analysis”, JHEP 07 (2002) 012. [doi:10.1088/1126-6708/2002/07/012]

[20] CDF Collaboration, “Search for new particles decaying into dijets in proton-antiproton collisions at $\sqrt{s} = 1.96$ TeV”, Phys. Rev. D 79 (2009) 112002. [doi:10.1103/PhysRevD.79.112002]

[21] ATLAS Collaboration, “Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC”, Phys. Rev. Lett. 105 (2010) 161801. [doi:10.1103/PhysRevLett.105.161801]

[22] ATLAS Collaboration, “Search for New Physics in Dijet Mass and Angular Distributions in pp Collisions at $\sqrt{s} = 7$ TeV Measured with the ATLAS Detector”, New J. Phys. 13 (2011) 053044. [doi:10.1088/1367-2630/13/5/053044]

[23] Particle Data Group Collaboration, “Review of particle physics”, J. Phys. G 37 (2010) 075021. [doi:10.1088/0954-3899/37/7A/075021]

[24] CMS Collaboration, “CMS Sensitivity to Dijet Resonances”, CMS Note 2006/070, (2006).
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, J. Hammer, S. Hänsel, M. Hoch, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, M. Krammer, D. Liko, I. Mikulec, M. Pernicka, B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, F. Teischinger, C. Trauner, P. Wagner, W. Waltenberger, G. Walzel, E. Widl, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Bansal, L. Benucci, E.A. De Wolf, X. Janssen, S. Luyckx, T. Maes, L. Mucibello, S. Ochesanu, B. Roland, R. Rougny, M. Selvaggi, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, R. Gonzalez Suarez, A. Kalogeropoulos, M. Maes, A. Olbrechts, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
O. Charaf, B. Clerbaux, G. De Lentdecker, V. Dero, A.P.R. Gay, G.H. Hammad, T. Hreus, P.E. Marage, A. Raval, L. Thomas, G. Vander Marcken, C. Vander Velde, P. Vanlaer

Ghent University, Ghent, Belgium
V. Adler, A. Cimmino, S. Costantini, M. Grunewald, B. Klein, J. Lellouch, A. Marinov, J. Mccartin, D. Ryckbosch, F. Thyssen, M. Tytgat, L. Vanelderden, P. Verwilligen, S. Walsh, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, G. Bruno, J. Caudron, L. Ceard, E. Cortina Gil, J. De Favereau De Jeneret, C. Delaere, D. Favart, A. Giammanco, G. Grégoire, J. Hollar, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, S. Ovyn, D. Pagano, A. Pin, K. Piotrzkowski, N. Schul

Université de Mons, Mons, Belgium
N. Beliy, T. Caeborgs, E. Daubie

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, L. Brito, D. De Jesus Damiao, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, E.M. Da Costa, C. De Oliveira Martins, S. Fonseca De Souza, L. Mundim, H. Nogima, V. Oguri, W.L. Prado Da Silva, A. Santoro, S.M. Silva Do Amaral, A. Sznajder

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil
C.A. Bernardes, F.A. Dias, T. Dos Anjos Costa, T.R. Fernandez Perez Tomei, E. M. Gregores, C. Lagana, F. Marinho, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
N. Darmenov, V. Genchev, I. Iaydjiev, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, V. Tcholakov, R. Trayanov, M. Vutova
University of Sofia, Sofia, Bulgaria
A. Dimitrov, R. Hadjiiska, A. Karadzhinova, V. Kozhuharov, L. Litov, M. Mateev, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, C.H. Jiang, D. Liang, S. Liang, X. Meng, J. Tao, J. Wang, J. Wang, X. Wang, Z. Wang, H. Xiao, M. Xu, J. Zang, Z. Zhang

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China
Y. Ban, S. Guo, Y. Guo, W. Li, Y. Mao, S.J. Qian, H. Teng, B. Zhu, W. Zou

Universidad de Los Andes, Bogota, Colombia
A. Cabrera, B. Gomez Moreno, A.A. Ocampo Rios, A.F. Osorio Oliveros, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lesas, K. Lesas, R. Plestina, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Dzelalija, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, S. Duric, K. Kadija, J. Luetic, S. Morovic

University of Cyprus, Nicosia, Cyprus
A. Attikis, M. Galanti, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, A. Ellithi Kamel, S. Khalil, M.A. Mahmoud, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
A. Hektor, M. Kadastik, M. Muntel, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
V. Azzolini, P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
S. Czellar, J. Harkonen, H. Heikkinen, V. Karimaki, R. Kinnunen, M. Kortelainen, T. Lammen, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Maenpaa, E. Tuominen, J. Tuominiemi, E. Tuovinen, D. Ungaro, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
K. Banzuzi, A. Karjalainen, A. Korpela, T. Tuuva

Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France
D. Sillou

DSM/IRFU, CEA/Saclay, GIF-sur-Yvette, France
M. Besancon, S. Choudhury, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, F.X. Gentit, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, M. Maronneau, L. Millischer, J. Rander, A. Rosowsky, I. Shreyber, M. Titov, P. Verrecchia
T. Hermanns, K. Kaschube, G. Kaussen, H. Kirschenmann, R. Klanner, J. Lange, B. Mura, S. Naumann-Emme, F. Nowak, N. Pietsch, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, M. Schröder, T. Schum, H. Stadie, G. Steinbrück, J. Thomsen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, J. Bauer, J. Berger, V. Buege, T. Chwalek, W. De Boer, A. Dierlamm, G. Dirkes, M. Feindt, J. Gruschke, C. Hackstein, F. Hartmann, M. Heinrich, H. Held, K.H. Hoffmann, S. Honc, I. Katkov, J.R. Komaragiri, T. Kuhr, D. Martschei, S. Mueller, Th. Müller, M. Niegel, O. Oberst, A. Oehler, J. Ott, T. Peiffer, G. Quast, K. Rabbertz, F. Ratnikov, N. Ratnikova, M. Renz, C. Saout, A. Scheurer, P. Schieferdecker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, D. Troendle, J. Wagner-Kuhr, T. Weiler, M. Zeise, V. Zhukov, E.B. Ziebarth

Institute of Nuclear Physics “Demokritos”, Aghia Paraskevi, Greece
G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, I. Manolakos, A. Markou, C. Markou, C. Mavrommatis, E. Ntomari, E. Petrakou

University of Athens, Athens, Greece
L. Gouskos, T.J. Mertzimekis, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
I. Evangelou, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, V. Patras, F.A. Triantis

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
A. Aranyi, G. Bencze, L. Boldizsar, C. Hajdu, P. Hidas, D. Horvath, A. Kapusi, K. Kraiczar, F. Sikler, G.I. Veres, G. Vesztergombi

Institute of Nuclear ResearchATOMKI, Debrecen, Hungary
N. Beni, J. Molnar, J. Palinkas, Z. Szillasi, V. Veszpremi

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Jindal, M. Kaur, J.M. Kohli, M.Z. Mehta, N. Nishu, L.K. Saini, A. Sharma, A.P. Singh, J. Singh, S.P. Singh

University of Delhi, Delhi, India
S. Ahuja, B.C. Choudhary, P. Gupta, A. Kumar, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, S. Dutta, B. Gomber, S. Jain, S. Jain, R. Khurana, S. Sarkar

Bhabha Atomic Research Centre, Mumbai, India
R.K. Choudhury, D. Dutta, S. Kailas, V. Kumar, P. Mehta, A.K. Mohanty, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, M. Guchait, A. Gurtu, M. Maity, D. Majumder, G. Majumder, K. Mazumdar, G.B. Mohanty, A. Saha, K. Sudhakar, N. Wickramage

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad, N.K. Mondal

Institute for Research and Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, S.M. Etesami, A. Fahim, M. Hashemi, H. Hesari, A. Jafari,
M. Khakzad, A. Mohammadi, M. Mohammadi Najafabadi, S. Paktinat Mehdibadi, B. Safarzadeh, M. Zeinali

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, B. Safarzadeh, M. Zeinali, M. Khakzad, A. Mohammadi

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, P. Capiluppi, A. Fanfani, P. Fabbricatore, R. Musenich, A. Martelli, S. Moroni, M. Meneghelli, A. Montanari, F. M. Morelli, A. Massironi, D. Menasce, S. Paoletti, A. Perrotta, M. Rossi, T. Rovelli, G. Sioli, R. Travaglini

INFN Sezione di Catania, Università di Catania, Catania, Italy
S. Albergo, A. Benaglia, L. Benussi, S. Bianco, S. Colafranceschi, A. Fanfani, D. Fasanella, A. Focardi, S. Frosali, E. Gallo, S. Gonzi, P. Lenzi, M. Meschini, S. Paoletti, S. Sarracino

INFN Laboratori Nazionali di Frascati, Frascati, Italy
F. Fabbri, D. Piccolo

INFN Sezione di Genova, Genova, Italy
P. Fabbrocato, R. Menich

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
A. Benaglia, F. De Guio, L. Di Matteo, S. Gennai, A. Ghezzi, S. Malvezzi, A. Martelli, A. Massironi, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, S. Sala, T. Tabarelli de Fatis

INFN Sezione di Napoli, Università di Napoli “Federico II”, Napoli, Italy
S. Buontempo, C.A. Carrillo Montoya, N. Cavallo, A. De Cosa, F. Fabozzi, A.O.M. Iorio, L. Lista, M. Merola, P. Paolucci

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy
P. Azizi, N. Bacchetta, P. Bellan, D. Bisello, A. Branca, R. Carlin, P. Checchia, T. Dorigo, U. Dosselli, F. Fanzago, F. Gasparini, U. Gasparini, A. Gozzelino, S. Lacaprara, I. Lazzizzera, M. Margoni, M. Mazzucato, A.T. Meneguzzo, M. Nespolo, L. Perrozzi, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi, S. Vanini, P. Zotto, G. Zumerle

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
P. Baesso, U. Berzano, S.P. Ratti, C. Riccardi, P. Torre, P. Vitulo, C. Viviani

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, B. Caponeri, L. Fanò, P. Lariccia, A. Lucaroni, G. Mantovani, M. Menichelli, A. Nappi, F. Romeo, A. Santocchia, S. Taroni, M. Valdata
INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
P. Azzurri a, c, G. Bagliesi b, J. Bernardini a, b, T. Boccali a, G. Broccolo a, c, R. Castaldi a, R.T. D’Agnolo a, c, R. Dell’Orso a, F. Fiori a, b, L. Foà a, c, A. Giassi a, A. Kraan a, F. Ligabue a, c, T. Lomtadze a, L. Martin a, b, A. Messineo a, b, F. Palla a, F. Palmonari, G. Segneri a, A.T. Serban a, P. Spagnolo a, R. Tenchini a, G. Tonelli a, b, A. Venturi a, b, P.G. Verdini a

INFN Sezione di Roma a, Università di Roma “La Sapienza” b, Roma, Italy
L. Barone a, b, F. Cavallari a, D. Del Re a, b, E. Di Marco a, b, M. Diemoz a, D. Franci a, b, M. Grassi a, E. Longo a, b, P. Meridiani, S. Nourbakhsh a, G. Organtini a, b, F. Pandolfi a, b, 1, R. Paramatti a, S. Rahatlou a, M. Sigamani a

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapane a, b, R. Arcidiacono a, c, S. Argiro a, b, M. Arneodo a, c, C. Biino a, C. Bott a, b, 1, N. Cartiglia a, R. Castello a, b, M. Costa a, b, N. Demaria a, A. Graziano a, b, 1, C. Mariotti a, S. Maselli a, E. Migliore a, b, V. Monaco a, b, M. Musich a, M.M. Obertino a, c, N. Pastrone a, M. Pellicioni a, b, A. Potenza a, b, A. Romero a, b, M. Ruspa a, c, R. Sacchi a, b, V. Sola a, b, A. Solano a, b, A. Staiano a, A. Vilela Pereira a

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belforte a, F. Cossutti a, G. Della Ricca a, b, B. Gobbo a, M. Marone a, b, D. Montanino a, b, A. Penzo a

Kangwon National University, Chunchon, Korea
S.G. Heo, S.K. Nam

Kyungpook National University, Daegu, Korea
S. Chang, J. Chung, D.H. Kim, G.N. Kim, J.E. Kim, D.J. Kong, H. Park, S.R. Ro, D.C. Son, T. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
Zero Kim, J.Y. Kim, S. Song

Konkuk University, Seoul, Korea
H.Y. Jo

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, J.H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park, E. Seo, K.S. Sim

University of Seoul, Seoul, Korea
M. Choi, S. Kang, H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Cho, Y. Choi, Y.K. Choi, J. Goh, M.S. Kim, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, D. Martisiute, P. Petrov, M. Polujanskas, T. Sabonis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, R. Magaña Villalba, J. Martínez-Ortega, A. Sánchez-Hernández, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia
Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck, J. Tam

University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, I. Ahmed, M.H. Ansari, M.I. Asghar, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoalib

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Soltan Institute for Nuclear Studies, Warsaw, Poland
T. Frueboes, R. Gokieli, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
N. Almeida, P. Bargassa, A. David, P. Faccioli, P. G. Ferreira Parracho, M. Gallinaro¹, P. Musella, A. Nayak, J. Pela¹, P.Q. Ribeiro, J. Seixas, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, I. Belotelov, P. Bunin, M. Gavrilenko, I. Golutvin, A. Kamenev, V. Karjavin, G. Kozlov, A. Lanev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, A. Volodko, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, V. Matveev, A. Pashenkov, A. Toropin, S. Troitsky

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, M. Erofeeva, V. Gavrilov, V. Kaftanov¹, M. Kossov¹, A. Krokhottin, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, V. Stolin, E. Vlasov, A. Zhokin

Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin³, L. Dudko, A. Ershov, A. Gribushin, O. Kodolova, I. Lokhtin, A. Markina, S. Obraztsov, M. Perfilov, S. Petrushanko, L. Sarycheva, V. Savrin, A. Snigirev

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Grishin¹, V. Kachanov, D. Konstantinov, A. Korablev,
V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, D. Krpic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, P. Arce, B. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, C. Diez Pardos, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, F. García-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, J. Puerta Pelayo, I. Redondo, L. Romero, J. Sandoval, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, G. Codispoti, J.F. de Trocóniz

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias, J.M. Vizán García

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Felcini, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, C. Jord, P. Lobelle Pardo, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, C. Fernandez Bedoya, J. Pineda Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, M. Sobron Sanudo, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, A.J. Bell, D. Benedetti, C. Bernet, W. Bialas, P. Bloch, A. Bocci, S. Bolognesi, M. Bona, H. Breuker, K. Bunkowski, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, B. Curé, D. D’Enterria, A. De Roeck, S. Di Guida, N. Dupont-Sagorin, A. Elliott-Peisert, B. Frisch, W. Funk, A. Gaddi, G. Georgiou, H. Gerwig, D. Gigi, K. Gill, D. Giordano, F. Glege, R. Gomez-Reino Garrido, M. Gouzevitch, P. Govoni, S. Gowdy, R. Guida, L. Guiducci, M. Hansen, C. Hartl, J. Harvey, J. Hegeman, B. Hegner, H.F. Hoffmann, V. Innocente, P. Janot, K. Kaadze, E. Karavakis, P. Lecoq, C. Lourenço, T. Máki, M. Malberti, L. Malgeri, M. Mannelli, L. Masetti, A. Maurisset, F. Meijers, S. Mersi, E. Meschi, R. Moser, M.U. Mozer, M. Mulders, E. Nesvold, M. Nguyen, T. Orimoto, L. Orsini, E. Palencia Cortezon, E. Perez, A. Petrilli, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, G. Polese, L. Quertenmont, A. Racz, W. Reece, J. Rodrigues Antunes, G. Rolandi, T. Rommerskirchen, C. Rovelli, M. Rovere, H. Sakulin, C. Schäfer, C. Schwik, I. Segoni, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Spichas, D. Spiga, M. Spiropulu, M. Stoye, A. Tsirou, P. Vichoudis, H.K. Wöhri, S.D. Worm, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, K. Gabathuler, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, F. Meier, D. Renker, T. Rohe, J. Sibille

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
L. Bäni, P. Bortignon, L. Caminada, B. Casal, N. Chanon, Z. Chen, S. Cittolin, G. Dissertori, M. Dittmar, J. Eugster, K. Freudenreich, C. Grab, W. Hintz, P. Lecomte, W. Lüstermann, C. Marchica, P. Martinez Ruiz del Arbol, P. Milenovic, F. Moortgat, C. Nägeli, P. Nef,
F. Nessi-Tedaldi, L. Pape, F. Pauss, T. Punz, A. Rizzi, F.J. Ronga, M. Rossini, L. Sala,
A.K. Sanchez, M.-C. Sawley, A. Starodumov, B. Stieger, M. Takahashi, L. Tauscher, A. Thea,
K. Theofilatos, D. Treille, C. Uirscheler, R. Wallny, M. Weber, L. Wehrli, J. Weng

Universität Zürich, Zurich, Switzerland

E. Aguilo, C. Amsler, V. Chiochia, S. De Visscher, C. Favaro, M. Ivova Rikova, A. Jaeger,
B. Millan Mejias, P. Otiougova, P. Robmann, A. Schmidt, H. Snoek

National Central University, Chung-Li, Taiwan

Y.H. Chang, K.H. Chen, C.M. Kuo, S.W. Li, W. Lin, Z.K. Liu, Y.J. Lu, D. Mekterovic, R. Volpe,
S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, W.-S. Hou, Y. Hsiung,
K.Y. Kao, Y.J. Lei, R.-S. Lu, J.G. Shiu, Y.M. Tzeng, X. Wan, M. Wang

Cukurova University, Adana, Turkey

A. Adiguzel, M.N. Bakirci, C. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis,
G. Gokbulut, I. Hoş, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk,
A. Polatoz, K. Sogut, D. Sunar Cerci, B. Tali, H. Topaklı, D. Uzun, L.N. Vergili, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey

I.V. Akin, T. Aliiev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, K. Ocalan,
A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, E. Yildirim, M. Zeyrek

Bogazici University, Istanbul, Turkey

M. Deliomeroglu, D. Demir, E. Gülmez, B. Isildak, M. Kaya, O. Kaya, M. Özbek,
S. Ozkorucuklu, N. Sonmez

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

L. Levchuk

University of Bristol, Bristol, United Kingdom

F. Bostock, J.J. Brooke, T.L. Cheng, E. Clement, D. Cussans, R. Frazier, J. Goldstein, M. Grimes,
D. Hartley, G.P. Heath, H.F. Heath, L. Kreczko, S. Metson, D.M. Newbold, K. Nirunpong,
A. Poll, S. Senkin, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom

L. Basso, K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, B. Camanzi, D.J.A. Cockerill,
J.A. Coughlan, K. Harder, S. Harper, J. Jackson, B.W. Kennedy, E. Olaiya, D. Petyt,
B.C. Radburn-Smith, C.H. Shepherd-Themistocleous, I.R. Tomalin, W.J. Womersley

Imperial College, London, United Kingdom

R. Bainbridge, G. Ball, J. Ballin, R. Beuselinck, O. Buchmuller, D. Colling, N. Cripps, M. Cutajar,
G. Davies, M. Della Negra, W. Ferguson, J. Felcher, D. Futyan, A. Gilbert, A. Guneratne Bryer,
G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, L. Lyons, B.C. MacEvoy, A.-
M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko, A. Papageorgiou,
M. Pesaresi, K. Petridis, M. Pioppi, D.M. Raymond, S. Rogerson, N. Rompotis, A. Rose,
M.J. Ryan, C. Seez, P. Sharp, A. Sparrow, A. Tapper, S. Tourneur, M. Vazquez Acosta, T. Virdee,
S. Wakefield, N. Wardle, D. Wardrope, T. Whyntie

Brunel University, Uxbridge, United Kingdom

M. Barrett, M. Chadwick, J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leslie, W. Martin,
I.D. Reid, L. Teodorescu
Baylor University, Waco, USA
K. Hatakeyama, H. Liu

The University of Alabama, Tuscaloosa, USA
C. Henderson

Boston University, Boston, USA
T. Bose, E. Carrera Jarrin, C. Fantasia, A. Heister, J. St. John, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, L. Sulak

Brown University, Providence, USA
A. Avetisyan, S. Bhattacharya, J.P. Chou, D. Cutts, A. Ferapontov, U. Heintz, S. Jabeen, G. Kukartsev, G. Landsberg, M. Luk, M. Narain, D. Nguyen, M. Segala, T. Sinthuprasith, T. Speer, K.V. Tsang

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, J. Dolen, R. Erbacher, E. Friis, W. Ko, A. Kopecky, R. Lander, H. Liu, S. Maruyama, T. Miceli, M. Nikolic, D. Pellett, J. Robles, B. Rutherford, S. Salur, T. Schwarz, M. Searle, J. Smith, M. Squires, M. Tripathi, R. Vasquez Sierra, C. Veelken

University of California, Los Angeles, Los Angeles, USA
V. Andreev, K. Arisaka, D. Cline, R. Cousins, A. Deisher, J. Duris, S. Erhan, C. Farrell, J. Hauser, M. Ignatenko, C. Jarvis, C. Plager, G. Rakness, P. Schlein, J. Tucker, V. Valuev

University of California, Riverside, Riverside, USA
J. Babb, A. Chandra, R. Clare, J. Ellison, J.W. Gary, F. Giordano, G. Hanson, G.Y. Jeng, S.C. Kao, F. Liu, H. Liu, O.R. Long, A. Luthra, H. Nguyen, S. Paramesvaran, B.C. Shen, R. Stringer, J. Sturdy, S. Sumowidagdo, R. Wilken, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, D. Evans, F. Golf, A. Holzner, R. Kelley, M. Lebourgais, J. Letts, B. Mangano, S. Padhi, C. Palmer, G. Petrucciani, H. Pi, M. Pieri, R. Ranieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, R. Bellan, C. Campagnari, M. D’Alfonso, T. Danielson, K. Flowers, P. Geffert, J. Incandela, C. Justus, P. Kalavase, S.A. Koay, D. Kovalskyi, V. Krutelyov, S. Lowette, N. Mccoll, E. Mullin, V. Pavlunin, F. Rebassoo, J. Ribnik, J. Richman, R. Rossin, D. Stuart, W. To, J.R. Vlimant, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, M. Gataullin, Y. Ma, A. Mott, H.B. Newman, C. Rogan, K. Shin, V. Timciuc, P. Traczyk, J. Veverka, R. Wilkinson, Y. Yang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
B. Akgun, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, S.Y. Jun, Y.F. Liu, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, M.E. Dinardo, B.R. Drell, C.J. Edelmaier, W.T. Ford, A. Gaz, B. Heyburn, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner, S.L. Zang
Cornell University, Ithaca, USA
L. Agostino, J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, B. Heltsley, K. Henriksson, W. Hopkins, A. Khukhunaishvili, B. Kreis, Y. Liu, G. Nicolas Kaufman, J.R. Patterson, D. Puigh, A. Ryd, M. Saelim, E. Salvati, X. Shi, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Vaughan, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
A. Biselli, G. Cirino, D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, M. Atac, J.A. Bakken, L.A.T. Bauer, A. Beretvas, J. Berryhill, P.C. Bhat, I. Bloch, K. Burkett, J.N. Butler, V. Chelluru, H.W.K. Cheung, F. Chlebana, S. Chihangir, W. Cooper, D.P. Eartly, V.D. Elvira, S. Esen, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, D. Green, K. Gunthotz, O. Gutsche, J. Hanlon, R.M. Harris, J. Hirschauer, B. Hooberman, H. Jensen, M. Johnson, U. Joshi, R. Khatriwada, B. Klima, K. Kousouris, S. Kunori, S. Kwan, C. Leonidopoulos, P. Limon, D. Lincoln, R. Lipton, J. Lyrken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, T. Miao, K. Mishra, S. Mrenna, Y. Musienko48, C. Newman-Holmes, V. O’Dell, J. Pivarski, R. Pordes, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, P. Tan, L. Taylor, S. Tkaczyk, L. Uplegger, E.W. Vaandering, R. Vidal, J. Whitmore, W. Wu, F. Yang, F. Yumiceva, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Chen, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, A. Drozdetskiy, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Gartner, S. Goldberg, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, G. Mitselmakher, L. Muniz, P. Myeonghun, C. Prescott, R. Remington, A. Rinkevicius, M. Schmitt, B. Scurllock, P. Sellers, N. Shirkladze, M. Snowball, D. Wang, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaulthney, L.M. Lebolo, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, S.V. Gleyzer, J. Haas, S. Hagopian, V. Hagopian, M. Jenkins, K.F. Johnson, H. Prosper, S. Sekmen, V. Veeraraghavan

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, I. Vodopiyanov

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, I.M. Anghel, L. Apanasevich, Y. Bai, V.E. Bazterra, R.R. Betts, J. Culler, R. Cavanaugh, C. Dragoiu, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khale, G.J. Kunde49, F. Lacroix, M. Malek, C. O’Brien, C. Silkworth, C. Silvestre, A. Smorin, D. Strom, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, F. Duru, C.K. Lae, E. McCliment, J.-P. Merlo, H. Mermerkaya50, A. Mestvirishvili, A. Moeller, J. Nachtman, C.R. Newsom, E. Norbeck, J. Olson, Y. Onel, F. Ozok, S. Sen, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, A. Bonato, C. Eskew, D. Fehling, G. Giurgiu, A.V. Gritsan, Z.J. Guo, G. Hu, P. Maksimovic, S. Rappoccio, M. Swartz, N.V. Tran, A. Whitbeck

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, O. Grachov, R.P. Kenny Iii, M. Murray, D. Noonan, S. Sanders, J.S. Wood, V. Zhukova

Kansas State University, Manhattan, USA
A.f. Barfuss, T. Bolton, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, S. Shrestha, I. Svintradze, Z. Wan

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, D. Wright

University of Maryland, College Park, USA
A. Baden, M. Boutemeur, S.C. Eno, D. Ferencek, J.A. Gomez, N.J. Hadley, R.G. Kellogg, M. Kirn, Y. Lu, A.C. Mignerey, K. Rossato, P. Rumerio, F. Santanastasio, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar, E. Twedt

Massachusetts Institute of Technology, Cambridge, USA
B. Alver, G. Bauer, J. Bendavid, W. Busza, E. Butz, I.A. Cali, M. Chan, V. Dutta, P. Everaerts, G. Gomez Ceballos, M. Goncharov, K.A. Hahn, P. Harris, Y. Kim, M. Klute, Y.-J. Lee, W. Li, C. Loizides, P.D. Luckey, T. Ma, S. Nahn, C. Paus, D. Ralph, C. Roland, G. Roland, M. Rudolph, G.S.F. Stephens, F. Stöckli, K. Sumorok, K. Sung, D. Velicanu, E.A. Wenger, R. Wolf, S. Xie, M. Yang, Y. Yilmaz, A.S. Yoon, M. Zanetti

University of Minnesota, Minneapolis, USA
S.I. Cooper, P. Cushman, B. Dahmes, A. De Benedetti, G. Franzoni, A. Gude, J. Haupt, K. Klappoetke, Y. Kubota, J. Mans, N. Pastika, V. Rekovic, R. Rusack, M. Sasseville, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, University, USA
L.M. Cremaldi, R. Godang, R. Kroeger, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Bose, J. Butt, D.R. Claes, A. Dominguez, M. Eads, P. Jindal, J. Keller, T. Kelly, I. Kravchenko, J. Lazo-Flores, H. Malbouisson, S. Malik, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
U. Baur, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S.P. Shipkowski, K. Smith

Northeastern University, Boston, USA
G. Alver, E. Barberis, D. Baumgartel, O. Boeriu, M. Chasco, S. Reucroft, J. Swain, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, A. Kubik, N. Mucia, N. Odell, R.A. Ofierzynski, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
L. Antonelli, D. Berry, A. Brinkerhoff, M. Hildreth, C. Jessop, D.J. Karmgard, J. Kolb, T. Kolberg, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, J. Ziegler

The Ohio State University, Columbus, USA
B. Bylsma, L.S. Durkin, J. Gu, C. Hill, P. Killewald, K. Kotov, T.Y. Ling, M. Rodenburg, C. Vuosalu, G. Williams

Princeton University, Princeton, USA
N. Adam, E. Berry, P. Elmer, D. Gerbaudo, V. Halyo, P. Hebda, A. Hunt, E. Laird, D. Lopes
Pegna, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, B. Safdi, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
J.G. Acosta, X.T. Huang, A. Lopez, H. Mendez, S. Oliveros, J.E. Ramirez Vargas, A. Zatserklyaniy

Purdue University, West Lafayette, USA
E. Alagoz, V.E. Barnes, G. Bolla, L. Borrello, D. Bortoletto, M. De Mattia, A. Everett, A.F. Garfinkel, L. Gutay, Z. Hu, M. Jones, O. Koybasi, M. Kress, A.T. Laasanen, N. Leonardo, C. Liu, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, I. Shipsey, D. Silvers, A. Svyatkovskiy, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
S. Guragain, N. Parashar

Rice University, Houston, USA
A. Adair, C. Boulahouache, K.M. Ecklund, F.J.M. Geurts, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, Y.S. Chung, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, H. Flacher, A. Garcia-Bellido, P. Goldenzweig, Y. Gotra, J. Han, A. Harel, D.C. Miner, D. Orbaker, G. Petrillo, W. Sakumoto, D. Vishnevskiy, M. Zielinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, the State University of New Jersey, Piscataway, USA
S. Arora, O. Atramentov, A. Barker, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, D. Hits, A. Lath, S. Panwalkar, R. Patel, A. Richards, K. Rose, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA
G. Cerizza, M. Hollingsworth, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
R. Eusebi, W. Flanagan, J. Gilmore, A. Gurrula, T. Kamon, V. Khotilovich, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Safonov, S. Sengupta, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA
N. Akchurin, C. Bardak, J. Damgov, P.R. Dudero, C. Jeong, K. Kovitanggoon, S.W. Lee, T. Libeiro, P. Mane, Y. Roh, A. Sill, I. Volobouev, R. Wigmans, E. Yazgan

Vanderbilt University, Nashville, USA
E. Appelt, E. Brownson, D. Engh, C. Florez, W. Gabella, M. Issah, W. Johns, C. Johnston, P. Kurt, C. Maguire, A. Melo, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, M. Balazs, S. Boutle, B. Cox, B. Francis, S. Goadhouse, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood, R. Yohay

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, M. Mattson, C. Milstène, A. Sakharov
University of Wisconsin, Madison, USA
M. Anderson, M. Bachtis, D. Belknap, J.N. Bellinger, D. Carlsmith, M. Cepeda, S. Dasu, J. Efron, L. Gray, K.S. Grogg, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, J. Leonard, R. Loveless, A. Mohapatra, I. Ojalvo, W. Parker, I. Ross, A. Savin, W.H. Smith, J. Swanson, M. Weinberg

†: Deceased
1: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
2: Also at Universidade Federal do ABC, Santo Andre, Brazil
3: Also at California Institute of Technology, Pasadena, USA
4: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
5: Also at Suez Canal University, Suez, Egypt
6: Also at British University, Cairo, Egypt
7: Also at Fayoum University, El-Fayoum, Egypt
8: Also at Ain Shams University, Cairo, Egypt
9: Also at Soltan Institute for Nuclear Studies, Warsaw, Poland
10: Also at Massachusetts Institute of Technology, Cambridge, USA
11: Also at Université de Haute-Alsace, Mulhouse, France
12: Also at Brandenburg University of Technology, Cottbus, Germany
13: Also at Moscow State University, Moscow, Russia
14: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
15: Also at Eötvös Loránd University, Budapest, Hungary
16: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
17: Also at University of Visva-Bharati, Santiniketan, India
18: Also at Sharif University of Technology, Tehran, Iran
19: Also at Shiraz University, Shiraz, Iran
20: Also at Isfahan University of Technology, Isfahan, Iran
21: Also at Facoltà Ingegneria Università di Roma, Roma, Italy
22: Also at Università della Basilicata, Potenza, Italy
23: Also at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy
24: Also at Università degli studi di Siena, Siena, Italy
25: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
26: Also at University of California, Los Angeles, Los Angeles, USA
27: Also at University of Florida, Gainesville, USA
28: Also at “C” Institute of Nuclear Sciences, Belgrade, Serbia
29: Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy
30: Also at INFN Sezione di Roma; Università di Roma “La Sapienza”, Roma, Italy
31: Also at University of Athens, Athens, Greece
32: Also at The University of Kansas, Lawrence, USA
33: Also at Paul Scherrer Institut, Villigen, Switzerland
34: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
35: Also at Gaziosmanpasa University, Tokat, Turkey
36: Also at Adiyaman University, Adiyaman, Turkey
37: Also at The University of Iowa, Iowa City, USA
38: Also at Izmir Institute of Technology, Izmir, Turkey
39: Also at Kafkas University, Kars, Turkey
40: Also at Suleyman Demirel University, Isparta, Turkey
43: Also at Ege University, Izmir, Turkey
44: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
45: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
46: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
47: Also at Utah Valley University, Orem, USA
48: Also at Institute for Nuclear Research, Moscow, Russia
49: Also at Los Alamos National Laboratory, Los Alamos, USA
50: Also at Erzincan University, Erzincan, Turkey