Performance of CHARMM36m with modified water model in simulating intrinsically disordered proteins: a case study

Laura I. Gil Pineda1,2, Laurie N. Milko1, Yi He1✉

1 Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA
2 Department of Chemical Sciences, Universidad Icesi, Cali 760031, Colombia

Received: 8 August 2019 / Accepted: 25 December 2019 / Published online: 20 June 2020

Abstract Molecular dynamics simulations can be a powerful tool to complement experiments in the study of the structures and dynamics of intrinsically disordered proteins. Though the accuracy of the physics-based all-atom force fields has improved significantly in simulating structured proteins over the past twenty years, most of these force fields face a big challenge to simulate flexible proteins. Recently, CHARMM36m with modified TIP3P model was proposed as a possible solution to simulate intrinsically disordered proteins. Here, we tested the proposed solution using an extensively studied protein, namely NCBD, to explore the performance of CHARMM36m plus modified TIP3P water. Our results suggest that the modified TIP3P water model does enhance the sampling of conformational space compared to the standard TIP3P water model. However, the new CHARMM36m force field still leads to over-compact structures and over-stabilized helices.

Keywords Nuclear coactivator binding domain (NCBD), CHARMM36m, Protein simulations, Secondary structure preferences, Stabilization of proteins

INTRODUCTION

In traditional structural biology, a globular protein has a single stable tertiary structure. The discovery of intrinsically disordered proteins (IDPs), which do not have a unique stable structure under physiological conditions, is challenging the traditional structural biological paradigm (Click et al. 2010; Dunker et al. 2008; Dyson and Wright 2005; Tompa 2002; Wright and Dyson 1999). One unique property of IDP sequences is that the primary sequence of an IDP is enriched with polar and charged amino acids, along with decreased amounts of non-polar residues. Such decreases of non-polar residues have limited the capability of IDPs to form hydrophobic cores, which are the key contributors leading to stable structures in structured proteins (Dunker et al. 2001; Huang and MacKerell 2018). This distinct sequence composition enables IDP’s ability to switch between or sample different tertiary structural states. Their constant structural fluctuation allows a single IDP to perform a multitude of biological functions (Uversky et al. 2005), such as roles in cellular signaling (Smock and Gierasch 2009) and regulation (Fuxreiter et al. 2008; Babu et al. 2011). IDPs have also been associated with several pathological conditions, including cancer (Iakoucheva et al. 2002; Metallo 2010; Uversky et al. 2008) and neurodegenerative diseases (Uversky et al. 2014).

Experimental techniques, such as small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) and Forster resonance energy transfer (FRET) spectroscopy, are often being used to study IDPs (Eliezer 2009; Sapienza and Lee 2010; Yengo and Berger 2010). The major challenges are that the heterogeneous ensembles of IDPs and their rapid inter-conversion between conformations make it difficult to obtain detailed structural information solely from experiments. Over the past years, molecular dynamics (MD)
Simulate intrinsically disordered proteins using CHARMM36m with modified water model

RESULTS

Preference to compact structures

As mentioned in the Introduction section, a major problem when modeling IDPs through physics-based atomistic models is overly compact ensembles (Best et al. 2014; Henriques et al. 2015; Piana et al. 2014; Rauscher et al. 2015). Previous simulations of NCBD with different force fields faced this problem (Burger et al. 2012; Knott and Best 2012; Papaleo et al. 2018). The modified TIP3P water model intends to fix this problem by increasing the dispersion interactions between the protein and water (Huang et al. 2017). In the timescale studied, the modified water system sampled more "open" conformations when compared to the standard TIP3P water (Fig. 1).
However, when calculating the average \(R_g \) for each system, the difference is reasonably small (1.21 nm for modified vs 1.2 nm for standard). Details of the average value and the standard deviation of each trajectory are shown in Table 1. It also results much more compact when compared to that obtained by previous simulations (1.37–1.49 nm) (Knott and Best 2012; Papaleo et al. 2018) and of course lower to the values estimated experimentally under “native-like” conditions (1.52 nm) (Kjaergaard et al. 2010). This could be explained by the fact that previous works employed different techniques to improve their samplings, such as REMD and experimental restraints (Knott and Best 2012; Papaleo et al. 2018). Additionally, it is important to mention that only one Lennard–Jones well depth (\(\epsilon_H \)) value was tested and it was previously stated that no universal \(\epsilon_H \) applies to all IDP systems, so it might be necessary to decrease or increase this value to get the desired effect (Huang et al. 2017).

Table 1

System	Average	Standard deviation
Modified		
MD1	12.200	1.047
MD2	12.090	0.951
Standard		
MD1	11.971	0.669
MD2	11.947	0.640

Over-stabilization of helical structures

Another problem that is common when modeling IDPs is the over-stabilization and preference bias to secondary structures, in particular, helices. To evaluate this effect in CHARMM36m, the secondary structure (specifically the helicity) was calculated for each system, using the define secondary structure of proteins (DSSP) algorithm (Kabsch and Sander 1983). Both systems (Fig. 2) presented three regions of high helical propensity that correspond in sequence location to the helixes presented in unbound NCBD (Kjaergaard et al. 2010). However, previous works on NCBD rarely report helicity above 0.8 (or 80%). This indicates possibly over-stabilization of the helices, which was also observed for NCBD with previous force fields (Naganathan and Orozco 2011; Zhang et al. 2012) even at high temperatures. Additionally, some of the previous studies (Knott and Best 2012; Zhang et al. 2012) found a bimodal behavior in the region corresponding to Helix 2 (residues 23–35), which was not observed here.

Contact maps (Fig. 3) were also constructed. Two residues were considered to be in contact if the distance between two heavy atoms of these residues, which must be more than four residues apart in the sequence, was less than 0.55 nm. Based on this definition, the intra-helical contacts were identified \((i, i + 4)\) presenting a high probability of contact (diagonal), which correlates with the high helicity found using DSSP. Perpendicular to these are the inter-helical contacts, which were also similar for both systems, with minor differences in the probability. The other tertiary contacts appear to be distinctive or at least with a different probability.
between the two systems. Specifically, there were some contacts between the C-terminal and the first helix, as well as with the N-terminal. This could be an indication of a compact structure which is in agreement with the low radius of gyration obtained. These contacts were presented with a slightly higher probability in the standard water system than in the modified ones. Finally, both systems seem to have similar results, presenting the most difference in the C-terminal region of Helix 3. This is because of the low percentage of interactions between the C-terminal of the protein and the rest of NCBD as shown in Fig. 3.

Modified TIP3P samples larger conformational space

Next, the conformational space sampled by each system was studied. First, protein structures of both systems were clustered with a cutoff of 0.25 nm. This clustering was done by using the core (no N or C-terminal) for the least-squares fit and RMSD calculations. By excluding the terminal movements (which can be significant in terms of RMSD values), conformational changes in helical packing can be identified. With this cutoff, the simulations with the modified TIP3P water generated about twice more clusters than the ones using the standard TIP3P water. Additionally, the modified system, in general, had clusters that represented smaller amounts of conformations (low percentage). These could be indications that the modified system sampled a more heterogeneous free energy space. The top five clusters (Fig. 4), which on average represent ~65% of the structures, consisted of folded structures (high residual structure) and some appear to be more compact than the initial structure. All the top structures present three highly structured helixes, as expected from DSSP analysis. However, there are some changes in the packing of the helixes, which can be seen clearly in Clusters 2 and 4 of the modified TIP3P water systems and to a less extent in Clusters 4 and 5 of the standard TIP3P systems.
Fig. 4 Representative structures for the top five clusters, fitted to the initial structure, for each system. Below each structure is the percentage it represents and its radius of gyration.

Fig. 5 Free energy landscapes for each system, using as order parameters: radius of gyration (R_g) and fraction of native contacts (Q). Notice that both have multiple minimums but the modified system samples a wider space.
Having studied representative structures from each system, free energy landscapes based on these trajectories were generated to examine the sampling capabilities of molecular dynamics simulations using different water models. Given that the modifications in the water model were implemented to try to replicate chain dimensions and the ability to model an intrinsically disordered protein is being tested, the order parameters chosen were the radius of gyration (R_g) and the fraction of native contacts (Q). As can be seen in Fig. 5, the modified TIP3P water system samples a larger conformational space. The standard water system is mostly limited by its inability to sample higher radius of gyration, causing repeated sampling of the same space, many times with R_g values lower than the initial structure (~1.45 nm). While the modified system also has its minimums at low R_g values, its sampling is more evenly spread with no significant energy barriers. Additionally, it is also clear that the modified TIP3P system samples more conformations with $Q < 0.5$, which although may not imply the sampling of unfolded structures, does indicate the sampling of structurally different conformations compared to the initial/NMR structure.

DISCUSSION

The purpose of this study is to evaluate the proposed solution of using the latest CHARMM36m with a modified TIP3P water model to simulate IDPs as well as determine whether the proposed modification in the protein–water interactions is enough to improve chain dimensions in MD simulations. The modification of the water model allows NCBD to sample more open conformations (and larger conformational space), based on the larger value of the calculated average radius of gyration. It is clear that, for the tested ε value and the timescale reached, such modification is not enough to replicate the chain dimensions obtained experimentally. Higher ε values may need to be tested, although the physical validation of this is uncertain. Additionally, it may be necessary to perform REMD simulations, as limitations set by the starting structure and general problems with convergence may contribute to these results. As far as the CHARMM36m force field, with or without the water model modification, there seems to be some weakness in the force field. To the extent of this study, there is a potential overemphasis on secondary structure, over-stabilization of the protein in general, and the possible underestimation of protein–water interactions.

METHOD

All-atom simulation details

NCBD (59 residues) was simulated using two water models: the standard TIP3P and the modified TIP3P water as described by Huang et al. (2017). The only difference between these two water models is that the parameter describing ε_H between the water hydrogen atoms is changed from -0.046 kcal/mol in the standard CHARMM TIP3P water model to -0.1 kcal/mol in the modified CHARMM TIP3P water model (Huang et al. 2017). The structure for NCBD was obtained from the ligand-free state solution NMR structure (PDB ID: 2KKJ) (Kjaergaard et al. 2010) as shown in Fig. 6. All simulations were carried out using the CHARMM36m force field with explicit solvents and the Groningen Machine for Chemical Simulations (GROMACS) package (version 2018.3) (Abraham et al. 2015; Berendsen et al. 1995; Pall et al. 2015). The protein was placed in a cubic box with the corresponding water model and counter ions (Cl–) to neutralize the whole system at 304 K. Long-range electrostatics is calculated using the particle-mesh Ewald (PME) algorithm (Darden et al. 1993; Essmann et al. 1995). Periodic boundary conditions were applied in all directions. Each system of protein, water, and counter ions was prepared using CHARMM-GUI (Jo et al. 2008; Lee et al. 2016), which generates a series of GROMACS inputs for subsequent MD simulations.
To generate equilibrated starting structures for the MD simulations, steepest-descent minimization was carried out, followed by a 1-ns MD equilibrium simulation with a time step of 1 fs, to heat the whole system from 1 K to the desired temperature. All bonds with hydrogen atoms are converted to constraints with the algorithm LINear Constraint Solver (LINCS) (Hess et al. 1997), using the default parameters of the GROMACS package. The equilibrated structures obtained from the above steps were used for subsequent production runs. A Nose–HOOVER temperature thermostat (Nose 1984; Hoover 1985) was used to maintain the temperature. The time step was 2 fs, and snapshots were taken every 100 ps. For both the standard TIP3P and the modified TIP3P water model systems, a cubic water box size of 10 nm was employed and run for a total of 20 μs, including two 10-μs long MD trajectories.

Acknowledgements This work was supported by the Research Allocations Committee (RAC) Award and Substance Use Disorders Grand Challenge Pilot Research Award at the University of New Mexico, the startup fund from the University of New Mexico.

Compliance with Ethical Standards

Conflict of interest Laura I. Gil Pineda, Laurie N. Milko, and Yi He declare that they have no conflicts of interest.

Human and animal rights and informed consent This article does not contain any studies with human or animal subjects performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindah E (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:219–225

Babu MM, van der Lee R, de Groot NS, Gsponer J (2011) Intrinsically disordered proteins: regulation and disease. Curr Opin Struct Biol 21(3):432–440

Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56

Best RB, Zheng W, Mittal J (2014) Balanced protein–water interactions improve properties of disordered proteins and non-specific protein association. J Chem Theory Comput 10(11):5113–5124

Burger VM, Ramanathan A, Savol AJ, Stanley CB, Agarwal PK, Chennubhotla CS (2012) Quasi-anharmonic analysis reveals intermediate states in the nuclear co-activator receptor binding domain ensemble. Pac Symp Biocomput 2012:170–181

Click TH, Ganguly D, Chen J (2010) Intrinsically disordered proteins in a physics-based world. Int J Mol Sci 11(12):5292–5309

Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089

Demarest SJ, Deechongkit S, Dyson HJ, Evans RM, Wright PE (2004) Packing, specificity, and mutability at the binding interface between the p160 coactivator and CREB-binding protein. Protein Sci 13(1):203–210

Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Higgs KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Modelling 19(1):26–59

Dunker AK, Silman J, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18(6):756–764

Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6(3):197–208

Eliezer D (2009) Biophysical characterization of intrinsically disordered proteins. Curr Opin Struct Biol 19:23–30

Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(9):5857–5893

Fuxreiter M, Tompa P, Simon I, Uversky VN, Hansen JC, Asturias FJ (2008) Malleable machines take shape in eukaryotic transcriptional regulation. Nat Chem Biol 4(12):728–737

Henriques J, Cragnell C, Skepö M (2015) Molecular Dynamics simulations of intrinsically disordered proteins: force field validation and comparison with experiment. J Chem Theory Comput 11(7):3420–3431

Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472

Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A 31(3):1695–1697

Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65(3):712–725

Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C, Brook S, Brook S, Brook S (2016) Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins 65(3):712–725

Huang J, Mackerell AD (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34(25):2135–2145

Huang J, Mackerell AD (2018) Force field development and simulations of intrinsically disordered proteins. Curr Opin Struct Biol 48:40–48

Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, Grubmüller H, Mackerell AD (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14(1):71–73
Simulate intrinsically disordered proteins using CHARMM36m with modified water model

RESEARCH ARTICLE

Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK (2002) Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323(3):573–584

Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865

Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637

Kjaergaard M, Teilm K, Poulsen FM (2010) Conformational selection in the molten globule state of the nuclear coactivator binding domain of CBP. Proc Natl Acad Sci USA 107(28):12535–12540

Knott M, Best RB (2012) A preformed binding interface in the unbound ensemble of an intrinsically disordered protein: evidence from molecular simulations. PLoS Comput Biol 8(7):e1002605

Lee J, Cheng X, Swails JM, Yeom MS, Eastman PK, Lemkul JA, Wei S, Buckner J, Jeong JC, Qi Y, Jo S, Pande VS, Case DA, Brooks CL, MacKerell AD, Klauda JB, Im W (2016) CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput 12(1):405–413

Lin CH, Hare BJ, Wagner G, Harrison SC, Maniatis T, Fraenkel E (2001) A small domain of CBP/p300 binds diverse proteins: solution structure and functional studies. Mol Cell 8(3):581–590

Metallo SJ (2010) Intrinsically disordered proteins are potential drug targets. Curr Opin Chem Biol 14(4):481–488

Naganathan AN, Orozco M (2011) The native ensemble and folding of a protein molten-globule: functional consequence of downhill folding. J Am Chem Soc 133(31):12154–12161

Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511

Oldfield CJ, Meng J, Yang JY, Yang MQ, Uversky VN, Dunker AK (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9(Suppl 1):S1

Palazzesi F, Prakash MK, Bonomi M, Barducci A (2014) Accuracy of current all-atom force-fields in modeling protein disordered states. J Chem Theory Comput 11:2-7

Pall S, Abraham MJ, Kutzner C, Hess B, Lindahl E (2015) Tackling exascale software challenges in molecular dynamics simulations with GROMACS. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) pp 3–27

Papaole E, Camilloni C, Teilm K, Vendruscolo M, Lindorff-Larsen K (2018) Molecular dynamics ensemble refinement of the heterogeneous native state of NCBD using chemical shifts and NOEs. PeerJ 6:e5125

Piana S, Klepeis JL, Shaw DE (2014) Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struct Biol 24:98–105

Rauscher S, Gapsys V, Gajda MJ, Zweckstetter M, De Groot BL, Grubmüller H (2015) Structural ensembles of intrinsically disordered proteins depend strongly on force field: a comparison to experiment. J Chem Theory Comput 11(11):5513–5524

Sapienza PJ, Lee AL (2010) Using NMR to study fast dynamics in proteins: methods and applications. Curr Opin Pharmacol 10(6):723–730

Smock RG, Giersch LM (2009) Sending signals dynamically. Science (New York, NY) 324(5924):198–203

Su X, Wang K, Liu N, Chen J, Li Y, Duan M (2019) All-atom structure ensembles of islet amyloid polypeptides determined by enhanced sampling and experiment data restraints. Proteins 87:541

Toman P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27(10):527–533

Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recogit 18(5):343–384

Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D² concept. Annu Rev Biophys 37(1):215–246

Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC (2014) Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 114(13):6844–6879

Wang W, Ye W, Jiang C, Chen H (2014) New force field on modeling intrinsically disordered proteins. Chem Biol Drug Des 84:253–84269

Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

Ye W, Ji D, Wang W, Luo R, Chen H (2017) Test and evaluation of ff99IDPs force field for intrinsically disordered proteins. J Chem Inf Model 57(5):1021–1029

Yengo CM, Berger CL (2010) Fluorescence anisotropy and resonance energy transfer: powerful tools for measuring real time protein dynamics in a physiological environment. Curr Opin Pharmacol 10(6):731–737

Zhang W, Ganguly D, Chen J (2012) Residual structures, conformational fluctuations, and electrostatic interactions in the synergistic folding of two intrinsically disordered proteins. PLoS Comput Biol 8(1):e1002353