Full control of quadruple quantum dot circuit charge states in the single electron regime

M. R. Delbecq, T. Nakajima, T. Otsuka, S. Amaha, J. D. Watson, M. J. Manfra, and S. Tarucha

Citation: Applied Physics Letters 104, 183111 (2014); doi: 10.1063/1.4875909
View online: http://dx.doi.org/10.1063/1.4875909
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/104/18?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Charge state hysteresis in semiconductor quantum dots
Appl. Phys. Lett. 105, 183505 (2014); 10.1063/1.4901218

Cluster states in charge qubits based on coupled quantum dots
AIP Conf. Proc. 893, 1105 (2007); 10.1063/1.2730283

Quantum control of electron and nuclear spin qubits in the solidstate
AIP Conf. Proc. 869, 119 (2006); 10.1063/1.2400641

Electronic control and readout of qubits based on single impurity states in semiconductors
Appl. Phys. Lett. 89, 153127 (2006); 10.1063/1.2362584

Controlled decoherence of a charge qubit in a double quantum dot
J. Vac. Sci. Technol. B 22, 2035 (2004); 10.1116/1.1771679
Full control of quadruple quantum dot circuit charge states in the single electron regime

M. R. Delbecq, T. Nakajima, T. Otsuka, S. Amaha, J. D. Watson, M. J. Manfra, and S. Tarucha

RIKEN, Center for Emergent Matter Science, 3-1 Wako-shi, Saitama 351-0198, Japan
Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

(Received 11 March 2014; accepted 27 April 2014; published online 9 May 2014)

We report the realization of an array of four tunnel coupled quantum dots in the single electron regime, which is the first required step toward a scalable solid state spin qubit architecture. We achieve an efficient tunability of the system but also find out that the conditions to realize spin blockade readout are not as straightforwardly obtained as for double and triple quantum dot circuits. We use a simple capacitive model of the series quadruple quantum dots circuit to investigate its complex charge state diagrams and are able to find the most suitable configurations for future Pauli spin blockade measurements. We then experimentally realize the corresponding charge states with a good agreement to our model. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4875909]

Quantum dot (QD) circuits have demonstrated to be particularly good systems for studying electronic transport and for implementing solid state qubits. They notably offer the possibility to control the spin of confined single electrons to realize spin qubits.2 These are especially attracting for the possibility to control the spin of confined single electrons to realize spin qubits. We furthermore demonstrate an efficient tunability of the system in this regime, with which we are able to realize the proper charge state configurations for spin blockade readout.

The scanning electron microscopy (SEM) image of the device studied here is shown in Fig. 1(a). The quantum dots are formed in a 91 nm deep two-dimensional electron gas (2DEG) formed in a GaAs/AlGaAs heterostructure. The positions of the QDs are defined by a series of gates, L, P1, Tj, and R, and a long back wall gate C. The plunger gates P1, P4, with VP1 and VP4, allow for controlling the rf QD (QD1) energy, while the tunnel gate Tj allow for controlling the tunnel coupling between the two adjacent QDj and QDJ+1. The device is prepared with a micro-magnet so as to fit future requirements.

Realization of a scalable architecture of semiconductor spin qubits is one of the remaining challenge that has to be overcome for implementing more complex algorithms. Steps toward this direction have been taken by experimentally realizing triple QD (TQD) circuits10,11 or quadruple QD (QQD) circuits formed by two capacitively coupled QDQDs.12 In these systems however, the number of implemented qubits is still limited to one or two. A square-like configuration of tunnel coupled QQD device has also been demonstrated,13 in the single electron regime already. This particular configuration is however a priori less suitable for scalability than the series configuration discussed in this Letter. Very recently, a tunnel coupled series-QQD device has been realized and studied in the multiple electrons regime,14 showing a good control of the tunnel couplings and gate potentials to form the dots. In this Letter, we show that by following the same architecture, we can reach the single electron regime for each QD, which is a mandatory condition for making four spin qubits. We furthermore demonstrate an efficient tunability of the system in this regime, with which we are able to realize the proper charge state configurations for spin blockade readout.

FIG. 1. (a) SEM image of the QQD device. The locations of the QDs are indicated by dashed white circles. The ohmic contacts are shown as crossed white boxes. Throughout this paper, the measurements are performed using the left charge sensor, as indicated by the white arrow, defined by the gates S1L, S1R, and S1P. Charge sensing is done by rf-reflectometry measurement. (b) Charge stability diagram of the QQD in the plane defined by plunger gates P1 and P4, with VP2 = −125 mV and VP3 = −10 mV. The color code is the derivative of the rf demodulated signal with respect to VP1. The QQD empty state (0,0,0,0) is observed in the lower left corner.
for forming and manipulating spin qubits.7 Two sets of three gates, visible on top of gate C, allow for forming QDs in multiple electrons regime for charge sensing purpose. Each of these charge sensors can be used as radio frequency (rf) charge sensor.15–17 Throughout this paper, we use the rf-sensor on the left, whose resonant circuit frequency is \(f = 203.9 \text{ MHz} \). All the measurements are performed at the base temperature of around 10 mK.

The voltage applied to gate C is \(V_C = -450 \text{ mV} \), below the pinch off voltage of the 2DEG \(V_{\text{pinch-off}} = -350 \text{ mV} \). We can form the four QDs as indicated by white circles in Fig. 1(a) by applying negative voltages to the other gates. Fig. 1(b) shows the stability diagram obtained by modulating \(V_{P1} \) and \(V_{P4} \), the voltages, respectively, applied to plunger gates \(P_1 \) and \(P_4 \). The measured signal is the derivative of the rf demodulated signal amplitude with respect to \(V_{P1} \), so as to display the charge transition lines of each QD. Four different slopes are identifiable, corresponding to the four different QDs. The stability diagram is in accordance with the device geometry as the slopes of each QD are directly related to the QD distance to the modulating plunger gates. Therefore, we can assign the charge state \((N_1, N_2, N_3, N_4)\), with \(N_i \) the number of electrons in QD \(i \). We find that the single electron regime is already demonstrated in this stability diagram, as the charge state \((0,0,0,0)\) is observed for \(V_{P1} \leq -50 \text{ mV} \) and \(V_{P4} \leq -170 \text{ mV} \).

We model our QQD device as shown in Fig. 2(a). This purely classical model is an extension of the capacitive DQD model18 to four QDs. We consider each QD \(i \) to be capacitively coupled to its plunger gate via \(C_{Gi} \), to the nearest neighbor plunger gate via \(C_{mi} \), and to the nearest QD via the mutual capacitance \(C_{mi} \). QD1 and QD4 are also coupled to the left and right leads via \(C_L \) and \(C_R \), respectively. We therefore have 15 parameters to adjust in this model. However, thanks to the symmetry of the device pattern and the slopes of the transition lines measured in the stability diagram, we can reproduce with good agreement the transition lines around the \((1,1,1,1)\) region as shown in Figs. 2(b) and 2(c) with \(C_{Gi} = C_{mi} = C_L = C_R = 10 \text{ aF} \) and \(C_{i+1,i} = 1 \text{ aF} \) for \(i = 1, 2, 3, 4 \). Note that we chose to only consider first neighbor plunger gate cross-capacitive coupling. This model already gives good qualitative and quantitative agreements with our data and as such is a good trade-off with more complete models requiring additional parameters.

We then need to consider the realization of spin readout. This mandatory feature for any purpose of quantum information manipulation is usually performed by Pauli spin blockade technique (PSB). It can be performed by DC measurements of the current in the biased regime19 or by pulse measurement techniques at high frequencies.1 In both of these schemes, it is necessary that two neighboring QDs have for adjacent charge states \((2,0)\) (or \((0,2)\)) and \((1,1)\).

This scheme can in principle be extended to larger number of series QDs, by applying the pulsed PSB scheme to successive DQDs of the array. In the case of a TQD circuit, the PSB measurement would be done on the left DQD, \((2,0,1) \leftrightarrow (1,1,1)\), and right DQD \((1,0,2) \leftrightarrow (1,1,1)\), with the center QD being common.10 For QQDs, we are similarly looking for PSB conditions on the left DQD, \((2,0,1) \leftrightarrow (1,1,1)\), and right DQD \((1,1,0,2) \leftrightarrow (1,1,1,1)\). The boundaries of the charge state \((1,1,1,1)\) is defined by a transition line of each QD. However, to meet the conditions of PSB for one DQD, we need to have the transition lines of the corresponding two QDs to cross and form one corner of the \((1,1,1,1)\) region. Figs. 2(b) and 2(c) show that none of the required conditions for PSB are met as neither the \((2,0,1,1)\) nor the \((1,1,0,2)\) charge states are adjacent to the \((1,1,1,1)\) region. In this diagram, in order to achieve the PSB condition on the left DQD, one has to push the transition line of QD2 towards more positive \(V_{P1} \) so that it crosses the second transition line of QD1 above the transition line of QD3 along \(V_{P4} \). Similarly, to obtain the PSB condition on the right DQD, one has to push the transition line of QD3 towards more positive \(V_{P4} \) so that it crosses the second transition line of QD4 along \(V_{P1} \). Following this procedure, and with the help of the QQD capacitive model, we find that there exists no configuration in which the left and right DQDs PSB conditions can be met on a single stability diagram defined by two plunger gates. This fact sets a clear gap with TQD devices in the search of a scalable architecture, as both PSB conditions can be found on the same stability diagram for TQD. It implies that more complex manipulations of the QQD system are necessary to fully operate and measure the spin state of each QDs.

Up to now, we only considered the stability diagram of the QQD in the \((V_{P1}, V_{P4})\) plane. We however have a set of four available plunger gates to explore the complete manifold of the QQD charge states. Within this picture, each charge state region is 4-dimensional and can be explored along the axes \(V_{P1}, V_{P2}, V_{P3}, \) and \(V_{P4} \). Our simple capacitive model then reveals especially useful to explore the charge states space along any combination of these axes.
Figs. 3(a) and 3(b) show the calculation of the stability diagrams (where the first two electrons of each QDs are considered) in the planes (V_{P1}, V_{P2}) and (V_{P3}, V_{P4}), respectively. The PSB conditions for each DQD is naturally found in each respective plane. The corresponding stability diagrams measurements are shown in Figs. 3(c) and 3(d). Fig. 3(a) (Fig. 3(b)) shows that we should expect the transition lines of QDs 2, 3, and 4 (1, 2, and 3) to have similar slopes, little influenced by V_{P1} (V_{P4}). The transition line spacing ΔV_i between two consecutive charge states of each QD, is also directly related to the distance of each QD$_i$ to the driving plunger gates, respectively, giving $\Delta V_2 \leq \Delta V_3 \leq \Delta V_4$ and $\Delta V_1 \leq \Delta V_2 \leq \Delta V_1$. These features are well observed in Figs. 3(c) and 3(d), confirming the agreement of the capacitive model of Fig. 2(a) with our device. The comparison between theory and experiment allows us to clearly identify each QD transition line and find out the PSB conditions $(2, 0, 1, 1) \rightarrow (1, 1, 1, 1)$ in the plane (V_{P1}, V_{P2}) and $(1, 1, 0, 2) \rightarrow (1, 1, 1, 1)$ in the plane (V_{P3}, V_{P4}) as depicted by the white arrows.

An additional advantage of this scheme is that the transition lines of the two QDs where the PSB condition is met form a standard DQD honeycomb pattern in the corresponding plunger gate voltage plane. It provides better clarity for implementing the left and right DQDs and allows for direct implementation of the standard DQD PSB schemes. This should particularly help limiting the modulation of gates potential and orbital coupling of the two other QDs, which could give rise to spurious effects such as states mixing.

Ideally, one can first find the $(1,1,1,1)$ region in the (V_{P1}, V_{P4}) plane. Then, from that charge state, the charge stability diagram is explored in the other planes. One would then readily find the PSB conditions for each DQD with the minimum number of gate operations.

We thank J. Medford, J. Beil, F. Kuemmeth, C. M. Marcus, J. I. Colless, and D. J. Reilly for helpful technical discussions. This work was supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), the Grant-in-Aid for Young Scientists B from the Japan Society for the Promotion of Science, the IARPA project “Multi-Qubit Coherent Operations” through Copenhagen University, the Toyota Physical and Chemical Research Institute Scholars and the RIKEN Incentive Research Project.

\[1\] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Science 309, 2180 (2005).

\[2\] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen, Nature 442, 766 (2006).

\[3\] D. P. DiVincenzo, Science 270, 255 (1995).

\[4\] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).

\[5\] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).

\[6\] M. Pioro-Ladriere, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, and S. Tarucha, Nature Phys. 4, 776 (2008).

\[7\] T. Obata, M. Pioro-Ladriere, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, and S. Tarucha, Phys. Rev. B 81, 085317 (2010).

\[8\] R. Brunner, Y.-S. Shin, T. Obata, M. Pioro-Ladriere, T. Kubo, K. Yoshida, T. Taniyama, Y. Tokura, and S. Tarucha, Phys. Rev. Lett. 107, 146801 (2011).

\[9\] J. M. Taylor, H.-A. Engel, W. Dur, A. Yacoby, C. M. Marcus, P. Zoller, and M. D. Lukin, Nature Phys. 1, 177 (2005).

\[10\] J. Medford, J. Beil, J. M. Taylor, E. I. Rashba, H. Lu, A. C. Gossard, and C. M. Marcus, Phys. Rev. Lett. 111, 050501 (2013).

\[11\] F. R. Braakman, P. Barthelmy, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen, Nat. Nanotechnol. 8, 432 (2013).

\[12\] M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V. Umandsky, and A. Yacoby, Science 336, 202 (2012).

\[13\] R. Thalineau, S. Hermelin, A. D. Wieck, C. Bauerle, L. Saminadayar, and T. Meunier, Appl. Phys. Lett. 101, 103102 (2012).

\[14\] T. Takakura, A. Noiri, T. Obata, O. Takahashi, K. Yoshida, and S. Tarucha, Appl. Phys. Lett. 104, 113109 (2014).

\[15\] D. J. Reilly, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Appl. Phys. Lett. 91, 162101 (2007).

\[16\] M. C. Cassidy, A. S. Dzurak, R. G. Clark, K. D. Petersson, I. Farrer, D. A. Ritchie, and C. G. Smith, Appl. Phys. Lett. 91, 222104 (2007).

\[17\] T. Muller, K. Vollenweider, T. Ihn, R. Schleser, M. Siggist, K. Esslin, M. Reinwald, and W. Wegscheider, AIP Conf. Proc. 893, 1113–1114 (2007).

\[18\] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2002).

\[19\] K. Tanino, D. G. Austing, Y. Tokura, and S. Tarucha, Science 297, 1313 (2002).

\[20\] Note 1, ΔV_i includes both the charging energy E_C and the orbital spacing Δ, of each dot QD$_i$ adjusted by the lever-arm of the driving plunger gates. Hence, similar charging energies and orbital spacing lead to different transition lines separations, depending on the plane they are displayed in.

\[21\] Note 2, the transition line separations, depending on the plane they are displayed in.