Ignjatović, S.; Blawert, C.; Serdechnova, M.; Karpushenkov, S.; Damjanović, M.; Karlova, P.; Wieland, D.C.F.; Starykevich, M.; Stojanović, S.; Damjanović-Vasilić, L.; Zheludkevich, M.L.: Formation of multi-functional TiO2 surfaces on AA2024 alloy using plasma electrolytic oxidation.
In: Applied Surface Science. Vol. 544 (2021) 148875.

First published online by Elsevier: 26.12.2020

https://dx.doi.org/10.1016/j.apsusc.2019.144552
Formation of multi-functional TiO$_2$ surfaces on AA2024 alloy using plasma electrolytic oxidation

S. Ignjatovića, C. Blawertb, M. Serdechnovab,*, S. Karpushenkovc, M. Damjanovića, P. Karlovab, D.C.F. Wielandb, M. Starykevichd, S. Stojanoviće, Lj. Damjanović-Vasiliće, M. L. Zheludkevichb,f

aChemical Agronsava, Krajnjevacka bb, 22310 Simanovci, Serbia
bInstitute of Materials Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany
cBelarusian State University, Faculty of Chemistry, Nezavisimosti Avenue 4, 220030 Minsk, Belarus
dDepartment of Materials and Ceramic Engineering, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
eUniversity of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
fInstitute for Materials Science, Faculty of Engineering, University of Kiel, Kaisenstraße 2, 24143 Kiel, Germany

ABSTRACT

Plasma electrolytic oxidation (PEO) was applied to functionalise the surface of AA2024 alloy. A potassium titanium-oxide oxalate dihydrate based aqueous electrolyte was used, which allowed the direct formation of a TiO$_2$ surface layer on the aluminium alloy substrate. The effect of PEO treatment time and the additional presence of anatase particles in the electrolyte solution on the surface layer and its properties (corrosion, wear and photocatalytic activity) were investigated.

It was found that the coating thickness and surface morphology are strongly dependent on the PEO processing time. However, the phase composition is not much affected by the treatment time and the main coating phase is rutile with a smaller amount of anatase. Adding additional anatase in the form of particles increases the amount of anatase in the coatings. The additional particle addition has only minor effect on the corrosion resistance, but reduces the wear resistance remarkably. Interestingly, the addition of anatase particles and the PEO treatment time are not effective in increasing the photocatalytic activities of the samples.

1. Introduction

Plasma electrolytic oxidation, also known as micro arc oxidation or anodic spark deposition is a surface engineering technology, which is considered to be one of the most cost-effective and environmentally friendly ways to produce stable oxide coatings on the surface of lightweight metals (aluminium, magnesium, titanium, etc.) and their alloys.

The main constituents of the PEO coating are high-temperature oxide phases, which are synthesized inside the dielectric discharge channels out of substrate and electrolyte species. This is possible due to high local temperatures and instantaneous plasma formation, which lead to rapid heating and cooling of the oxide layer [1–8]. Such coatings consist of not only substrate metal oxides, but also products of physicochemical transformations of electrolyte components under the effect of electrical discharges. The latter makes it possible to influence directly the composition and properties of coatings by varying the electrolyte composition [9–12].

In the PEO formation process, the ceramic coating growth takes place at the sites of the micro-discharges, as it grows inwards to the alloy substrate and outwards to the coating surface simultaneously. For the coating growth, there are three simultaneous processes taking place: the electrochemical reactions, the plasma chemical reactions and thermal diffusion, which makes PEO coating growth mechanism a complex process. Over the last decade, significant progress has been made in both the understanding and utilization of the plasma in order to obtain coatings with desired properties, as well as understanding the micro-discharge phenomena and the coating growth mechanisms [6,8,13–16]. The coating microstructure and phase composition are typically a result of the discharges [6,15]. Rapid localized heating is quickly cooled by the electrolyte, which leads to production of a mixture of high-temperature crystalline and amorphous oxide phases. With the additional influence of electrolyte and substrate a large variety of...
different coating compositions exist [17], but it is quite difficult to produce pure oxide coatings different from the substrate metal material. For example, specific coatings obtained by the PEO process can improve the electrical insulation properties of the metal alloy surface beside offering wear and corrosion resistance [1–6,13,18–26]. Such possibilities to add additional functionalities and to create multifunctional surfaces are getting more and more into the focus of research. TiO2 coatings combine good chemical stability, tribological properties and photocatalytic activity [27–31]. Titania exists in the form of different polymorphs, but the most common forms are the anatase and rutile crystal structures. Anatase exhibits a higher photocatalytic activity compared to rutile, while rutile is characterized with better tribological properties and stability [32]. The difficulty is to adjust the ratio of the two polymorphs, as anatase tends to transform to rutile at temperatures higher than 600 °C [33]. Titania coatings obtained by PEO processing have been widely investigated [34,35] due to their potential applications, such as biocompatible materials, structural ceramics, photocatalysts or optical coatings. However, TiO2 is the most widely used photocatalyst, because it is quite stable even in harsh environments, in spite of allowing only the degradation of organic pollutants under UV light irradiation, due to its relatively wide band gap (~3.2 eV for anatase form) [27,28].

Application of TiO2 layers on Ti alloys and to produce functionalised PEO coatings is well established. The formation of TiO2 was reported for PEO treatment of titanium alloys, mostly Ti-6Al-4V, for biomedical applications in prosthetic implants [36–38] and photocatalytic applications [31,39]. However, there are only a few studies about the formation of TiO2 layers on other substrates such as an aluminium surface by PEO [30,40,41,63]. The formation of pure TiO2 coatings by PEO on Al based substrates is a big challenge. Mostly, TiO2 is added directly to the electrolytes in form of particles in order to produce Al2O3/TiO2 or mixed oxide/TiO2 coatings, depending on the electrolyte composition and processing conditions. The coatings offered high hardness, excellent wear and corrosion properties, as well as high thermal resistance or photocatalytic activity. The TiO2 particles immersed in the electrolyte contributed also to lower porosity of the coatings [41], but pure TiO2 coatings are not obtained on aluminium substrates. The later was also observed using potassium titanyl oxalate as a low concentrated additive to a silicate based electrolyte [63]. Considering applications like wastewater cleaning it can be interesting to fix the photocatalytic active substance on sheets for easier handling (compared to powders which have to be separated by filtering from the cleaned water). To have a lighter and cheaper sheet substrate is also interesting, thus if aluminium is used instead of titanium. However, the direct deposition/formation of almost pure TiO2 layers on Al without the use of particles was reported only once to the knowledge of the authors [42]. Latter approach required an aqueous solution containing tetraethyl orthotitanate, acetylacetone, isopropanol and Agitan® as an antifoaming agent. The components except Agitan® are flammable and acetylacetone is toxic. Thus, the idea of present study is to create a TiO2 coating on Al, but using a simpler and easier to handle electrolyte. From previous works, it was known that a simple aqueous solution of 40 g/L potassium titanium-oxide oxalate dihydrate (K2[TiO(C2O4)2]⋅2H2O). The starting pH and the conductivity of the electrolyte were 2.7 and 13.3 mS/cm, respectively. The same treatments were repeated with addition of 5 g/L anatase particles (Sigma-Aldrich, TiO2, 99.8% anatase powder of 200 nm average single particle size, agglomerated to an average size of 1 µm but not bigger than 5 µm (Fig. 1)) to the base electrolyte. In both cases, compressed air bubbling and a cooling system kept the electrolyte and particle dispersion homogenous and its temperature at 20 ± 0.1 °C during the whole process.

There was concern about the stability of the electrolyte, because already after the first treatment a change in colour from clear to yellow in combination with a strong increase of the pH value from 2.7 to 4.7 was observed for the electrolyte. As consequence, the pH was monitored throughout the full set of treatments (40 in total; 5 treatments for each time with and without particles) and the obtained coating thickness was measured for each specimen directly after the treatment (Fig. 2). There was no renewal of the electrolyte and the full set of 40 treatments was performed in the same electrolyte except the addition of 5 g/L anatase particles after 20 treatments. The strong increase of pH became weaker, but throughout the full set of treatments, there was an increasing trend for the pH with some recovery after longer treatment breaks. During this monitoring and during the post-characterisation, there was no indication that the observed electrolyte changes had influenced the treatment result. There are larger thickness variations at longer treatment times, but without a clear trend related to the pH. It is likely, that the colour change is related to the formation of pertitanic acid in the electrolyte according to the following reactions (1) and (2) [44]:

\[
[\text{TiO(C2O4)2}]^{2-} \rightarrow \text{TiO}^{2+} + 2 \text{C2O4}^{-} \quad (1)
\]

\[
\text{TiO}^{2+} + \text{H}_2\text{O} \rightarrow [\text{TiOH(OH)}^{2+} \quad (2)
\]

However, the equilibrium is obviously more on the side of the TiO-oxalate. Latter is still available for the coating forming process as a negatively charged ion, which is attracted towards the surface during the PEO processing. Both oxalic and pertitanic acid are relatively weak acids and may recombine with H+ resulting in the observed increase of

2. Experimental

2.1. Material, electrolyte and setup

Rectangular samples of 2024 Al alloy (3.8–4.9% Cu, 0.35–0.5% Fe, 0.1% Cr, 1.2–1.8% Mg, 0.3–0.9% Mn, 0.5% Si, 0.1–0.15% Ti, 0.25% Zn, 0.15% others and Al balance) of 30 mm in length, 20 mm in width and 1.5 mm in thickness were subjected to the PEO treatment. PEO treatments were carried out using a laboratory rig, which consists of a Hameg analogue oscilloscope HM400 40 MHz, a self-made pulse generator and a 3000 W EA-PS 8720-15 DC power supply. The samples were treated for 2.5, 5, 10 and 15 min in constant current mode by applying 50 mA/cm² and a pulse ratio of \(t_{on} : t_{off} = 1\text{ ms} : 9\text{ ms} \).

For the treatments the samples were immersed in an aqueous standard electrolyte containing 40 g/L of potassium titanium-oxide oxalate dihydrate (K₂[TiO(C₂O₄)₂]₂⋅2H₂O). The starting pH and the conductivity of the electrolyte were 2.7 and 13.3 mS/cm, respectively. The same treatments were repeated with addition of 5 g/L anatase particles (Sigma-Aldrich, TiO₂, 99.8% anatase powder of 200 nm average single particle size, agglomerated to an average size of 1 µm but not bigger than 5 µm (Fig. 1)) to the base electrolyte. In both cases, compressed air bubbling and a cooling system kept the electrolyte and particle dispersion homogenous and its temperature at 20 ± 0.1 °C during the whole process.

There was concern about the stability of the electrolyte, because already after the first treatment a change in colour from clear to yellow in combination with a strong increase of the pH value from 2.7 to 4.7 was observed for the electrolyte. As consequence, the pH was monitored throughout the full set of treatments (40 in total; 5 treatments for each time with and without particles) and the obtained coating thickness was measured for each specimen directly after the treatment (Fig. 2). There was no renewal of the electrolyte and the full set of 40 treatments was performed in the same electrolyte except the addition of 5 g/L anatase particles after 20 treatments. The strong increase of pH became weaker, but throughout the full set of treatments, there was an increasing trend for the pH with some recovery after longer treatment breaks. During this monitoring and during the post-characterisation, there was no indication that the observed electrolyte changes had influenced the treatment result. There are larger thickness variations at longer treatment times, but without a clear trend related to the pH. It is likely, that the colour change is related to the formation of pertitanic acid in the electrolyte according to the following reactions (1) and (2) [44]:

\[
[\text{TiO(C2O4)2}]^{2-} \rightarrow \text{TiO}^{2+} + 2 \text{C2O4}^{-} \quad (1)
\]

\[
\text{TiO}^{2+} + \text{H}_2\text{O} \rightarrow [\text{TiOH(OH)}^{2+} \quad (2)
\]

However, the equilibrium is obviously more on the side of the TiO-oxalate. Latter is still available for the coating forming process as a negatively charged ion, which is attracted towards the surface during the PEO processing. Both oxalic and pertitanic acid are relatively weak acids and may recombine with H⁺ resulting in the observed increase of

Fig. 1. SEM micrograph of the anatase powder used in the experiments.
the nano focused endstation of P03 beamline [48] with an X-ray energy distribution were studied at PETRA III (DESY, Hamburg, Germany) at a voltage of 40 kV and a current of 40 mA. The pH value of the electrolyte as a function of number of treatments per treatment.

Fig. 2. pH value of the electrolyte as a function of number of treatments performed and thickness of the coating as indicator of reproducibility of the treatment.

the pH.

Because H₂O₂ was not added directly to the electrolyte, it must be assumed that it forms as a side product in the discharges, which is likely as OH radicals are quite often observed in optical emission spectra recorded during PEO processing [45–47] and they may recombine to H₂O₂. The presence of the yellow [Ti(OH)₂O₂]²⁻ complex in the treatment solution was cross check by a decolorisation due to fluoride addition (reaction 3):

\[
[Ti(OH)₂O₂]²⁻ \text{ (yellow)} + 6F⁻ + 2H² → [TiF₆]²⁻ \text{ (clear)} + H₂O₂ + H₂O \quad (3)
\]

2.2. Coating characterization

2.2.1. SEM/EDS

Scanning electron microscope (Vega 3, Tescan, Brno, Czech Republic) equipped with energy dispersive X-ray (EDS) spectrometer (EDS, Heidenrod, Germany) were used to observe surface morphology of the coatings, and to evaluate porosity distribution across the surface. N650 plano-carbon was applied to the surface of the specimens prior to observation, in order to prevent surface charging effects. The specimens were observed using secondary electron and backscattered electron detectors. Furthermore, the cross sections of selected coatings (10 min with/without anatase) were studied and elemental mapping was performed to visualise the distribution of the elements in the layer. For preparation of the cross sections normal metallographic preparation techniques, including cutting, grinding and polishing were applied.

2.2.2. Thickness measurement

After PEO treatment the samples were rinsed with water and dried in air. For non-destructive thickness measurements, a thickness gauge (MiniTest 2100, Elektro Physik, Germany) was used. A minimum of 10 measurements were taken randomly on the surface to calculate the average values.

2.2.3. X-Ray diffraction

The integral phase composition of the coatings was analyzed by applying X-ray diffraction (XRD), using a Bruker D8 Advance diffractometer with a Ni filtered Cu Kα radiation source. A step size of 0.02° and a scan range from 10° to 80° in 20 scan mode was used, with a glancing angle of 3° and a scan speed of 0.5 s per step. For X-ray generation, a voltage of 40 kV and a current of 40 mA was used.

The coating’s crystallographic structural composition and the local distribution were studied at PETRA III (DESY, Hamburg, Germany) at the nano focused endstation of P03 beamline [48] with an X-ray energy of 19.7 keV and a beam size of 1.5 µm by 1.5 µm. The interface region was investigated by performing a mesh scan with a size of 80 per 80 µm with a step size of 2 µm and 4 µm, in perpendicular and lateral directions, respectively. An Eiger 9 M detector (pixel size 75 by 75 µm) with an acquisition time of 0.5 sec for each measuring point was used. Data averaging was done by the software package PyFAI [49]. 2θ values of each diffraction pattern was recalculated to Cu Kα radiation for easier comparison with the integral diffraction results.

2.2.4. Glow discharge optical emission spectroscopy

Glow discharge optical emission spectroscopy (GDOES) depth profile analysis of the coatings was conducted with a HORIBA GD-Profilor 2 instrument. A standard 4 mm copper tube anode was used for this purpose, with an anode to sample gap of 0.1 mm. Argon was used as the plasma gas, at operating conditions of 650 Pa pressure and 30 W power. No special sample preparation method was used prior to the analysis, neither was any residue contaminant removing method applied.

2.2.5. Electrochemical impedance spectroscopy

The corrosion resistance of the PEO coated specimens was evaluated by applying electrochemical impedance spectroscopy (EIS) using a computer controlled potentiostat (Interface1000, Gamry), as well as Echem Analyst software (Gamry) for analysis of the data. A sample surface of 0.5 cm² was exposed to 330 ml of unstirred 3.5% NaCl corrosive solution, prepared with deionised water.

Tests were carried out in an electrochemical cell using a standard three-electrode setup consisting of an Ag/AgCl (saturated KCl) reference electrode, a Pt counter electrode and the PEO coated specimen as the working electrode. The measurements were performed at room temperature. In order to exclude external interferences, the cell was kept in a Faraday cage while the tests were running. The impedance spectra were recorded after 1, 3, 6, 12, 24, 48, 96 and 168 h from the moment the specimens were exposed to the solution. The potentiostatic EIS tests at open circuit potential (OCP) were set with an initial frequency of 100 kHz and a final frequency of 50 mHz, with an amplitude of ±10 mV. For comparison, the bare surface of the aluminium alloy was subjected to the same test.

2.2.6. Photocatalytic activity

The photocatalytic activities of all samples were tested by measuring the degradation of methyl orange (MO) [27]. The experiment was performed in a glass cell with 10 ml aqueous solution of 8 mg/L MO under constant stirring (400 rpm) and illumination. The catalyst (specimen surface) was settled on a perforated holder (the same dimension as the sheet, and 4 mm of height) with a magnetic stirrer beneath it. To keep the reaction solutions at room temperature (25 °C), the photocatalytic reactor was equipped with water circulation system. In order to attain adsorption-desorption equilibrium, the catalyst and the solutions were stirred in the dark for 30 min, before illumination. Simulated solar irradiation was carried out using a lamp with an illumination intensity of 16,000 lx (Osram Vitalux 300 W). The lamp was fixed at a distance of 25 cm above the surface of the solution. The total irradiation time was 8 h.

Aliquots (1 ml) were withdrawn every 2 h and the concentration of MO was measured at the maxima (λ = 464 nm) of the absorption spectra. Afterwards the aliquots were taken back to the original solution. UV–Vis spectra of aliquots were collected with a Thermo Scientific Evolution 220 spectrophotometer in the range from 250 to 700 nm. The measured absorbance was converted to concentration in accordance to a standard curve showing a linear relationship between the concentration of MO and the absorbance at the wavelength of 464 nm. In order to examine its stability, prior to the photocatalysis, the MO solution was tested for photolysis in the absence of the photocatalyst. No change in the MO concentration after 8 h of irradiation revealed that it was stable under applied conditions, and that degradation was a result of the presence of the photocatalyst. The degree of MO degradation was given as \(\left(\frac{C_0 - C}{C_0}\right)\), where \(C_0\) is the initial MO concentration and \(C\) is the concentration of MO after irradiation.

Fig. 2. pH value of the electrolyte as a function of number of treatments performed and thickness of the coating as indicator of reproducibility of the treatment.

S. Ignjatovic et al. Applied Surface Science 544 (2021) 148875
2.2.7. Wear test

The dry sliding wear resistance of the PEO coatings was evaluated using an oscillating wear tester (TRIBO Technic, France). A 5 mm diameter steel ball (100Cr6) was used as counter-part. The sliding distance was 12 m, at a linear velocity of 5 mm/s. The applied loads varied from 3 to 9 N, depending on the specimen to determine the load level at which the coatings fail. A new ball was used for each test.

3. Results

3.1. Voltage – time response

The voltage-time response for PEO of AA2024 alloy in potassium titanate-oxide dihydrate electrolyte is shown in Fig. 3. Under the driving current density of 50 mA/cm², the voltage increased rapidly from the beginning of the oxidation process, reaching 400 V after about 70 s. The nanoparticle additions have relatively minor influences on the voltage – time response and the two curves are overlapping to a large extent.

It is possible to identify four discharge stages in the PEO process, according to the voltage-time curve, as shown in Fig. 3. The stages are distinguished primarily by the change of the slope of the voltage-time curve, but changes in colour, intensity and number of discharges can be noted as well. The discharges start approximately 30 s after the beginning of the PEO process. At first, the micro-discharges are small with a white colour but grow in size and turn yellow/orange at later stages. The size of micro-discharges becomes larger with increasing time of PEO processing, while their population decreases. Generally, as PEO process time increases, the density of micro-discharges decreases, but their intensity and size increase [1]. Many other authors reported a similar PEO process stage classification [6,7,23,47,50–52]:

- Stage I (S1): In this stage similar to conventional anodic oxidation, a sharp increase in voltage can be observed, but the breakdown voltage is not reached yet. It mainly involves the rapid electrochemical formation of an initial insulating oxide film. Decrease in the voltage ramp rate and intensive gas liberation can be observed shortly before the start of discharges.
- Stage II (S2): This stage is characterised by the start of the breakdown of the oxide layer after around 30 s and reaching 300 V. The appearance of first discharges goes together with an increase in temperature and therefore, melting of the substrate surface and an increase in the coating growth rate. The voltage ramp decreases further in this stage, which is visible by micro-arcs increasing in number and covering eventually completely the macroscopic specimen surface.
- Stage III (S3): This stage, where the voltage is increasing slowly, but continuously, comprises the longest treatment period and is characterized by larger but slower moving discharges, which become more intense, but lower in number. The appearance of the micro-discharges in stage III of the process of coating formation is shown in Fig. 4. As the oxide layer grows, its electrical resistance increases and therefore the nature of the plasma changes. Post analysis of the surface morphology also revealed the start of surface discharges due to the presence of bubbles at the surface. By eye, the different discharges are not notable.
- Stage IV (S4): In this stage, the rate of voltage increase is even slower than in stage III. The process becomes more steady state, discharges appear as relatively large, and long lasting sparks, while their population decreases remarkable. However, the occurrence of the strong discharges is less frequent than in stage III due to the thicker coating causing more difficulty in the initiation of such discharges. For some cases, such strong discharges may cause irreversible damage to the coatings in stage IV.

The final voltages recorded after the end of each parameter setting tested are displayed in Table 1. It is obvious that the effect of the particle addition on the voltage-time response can be neglected.

3.2. Coating thickness and oxidation kinetics

The thickness of the coatings with and without anatase particle addition as a function of treatment time is shown in Fig. 5a. The overall coating thickness reached after 15 min is about 17 ± 2.5 µm in the standard electrolyte and with the addition of anatase, it is about 19 ± 0.5 µm. The average growth rate of the coating in the standard electrolyte decreases from an average of 2.2 µm/min in the beginning of the treatment to 1.2 µm/min after 10 min, as shown in Fig. 5b. After 15 min, the growth rate is still around 1.2 µm/min. The calculated growth rates in each time interval (0–2.5 min; 2.5–5 min; 5–10 min; 10–15 min) indicate that a steady state is not reached (Fig. 4b). The growth rate drops to 0.7 µm/min between five and ten minutes before it is increasing again for the last interval to 1.1 µm/min. This can indicate a change in the growth mechanism.

For the PEO treatment with 5 g/L anatase addition, the differences in coating thickness are small compared to the standard electrolyte. However, the average coating growth rate varies from 2.05 µm/min at the beginning to 1.3 µm/min at longer treatment times (Fig. 5b). Thus, anatase addition seems to reduce the growth rate in the earlier stages of the process, while it is increasing the growth rate at longer processing times (Fig. 5b). The coating growth rate calculated for each time interval shows that there is similar behaviour at the beginning of the treatment (from 0 to 2.5 and from 2.5 to 5 min) regardless if particles are present or
not. However, there is less reduction (only to 1 \(\mu \text{m/min} \)) of the growth rate in the interval between 5 and 10 min and a more significant increase to 1.4 \(\mu \text{m/min} \) in the final interval if particles are present (Fig. 5b) indicating that particles play a more important role in the later stages of the treatment.

3.3. Surface morphology and coating microstructure

Fig. 6 a-d shows the surface morphologies of the coatings prepared in the standard and anatase containing electrolyte for different treatment times. It is clearly visible, that the coatings have quite different surface morphologies after the different treatment times.

The surface shows a large amount of pores that are remains of “solidified” discharge channels and entrapped bubbles of the gases that are generated during the process. Please note that we are considering the solidified discharge channels as one part of the overall porosity of the coatings. During plasma discharges, processes including melting and re-solidification continuously occur in the outer layer, causing a repetitive fluctuation in surface temperature. The molten ceramic components cool down rapidly in contact with the electrolyte and the gas and vapours dissolved in it will be trapped while the coating is formed. The micro-discharges are generated by a dielectric breakdown at thin/weak coating areas, thus, passing the PEO. The number of those sites is reduced as the coating thickness increases e.g. by longer treatment times. However, there is less reduction (only to 1 \(\mu \text{m/min} \)) of the growth rate in the interval between 5 and 10 min and a more significant increase to 1.4 \(\mu \text{m/min} \) in the final interval if particles are present (Fig. 5b) indicating that particles play a more important role in the later stages of the treatment.

3.4. Phase composition

The XRD results of the PEO specimens treated in the different
conditions are shown in Fig. 10.

With increasing treatment time the coating thickness is increasing, which is indicated by the reduced intensity of the aluminium substrate peaks. The coating itself is composed of anatase and rutile, while the latter is the dominating phase. The rutile crystals seems to have a preferential orientation in the coating, as the expected (110) peak at 27.3° [54] is not the strongest peak, but the (101) peak at 36°. In the case of the standard electrolyte the ratio between anatase and rutile is changing with treatment time. Dividing the intensities of the strongest rutile peaks (101) at 36° by the intensities of the strongest anatase peaks (101) at 25.2° [55], the highest amount of anatase is reached at 5 min treatment time and with increasing time the ratio becomes larger again (Fig. 11). With longer treatment times, there is obviously a decreasing amount of anatase compared to rutile present in the coating.

Fig. 6. SEM micrographs showing surface morphology of PEO coatings produced without (a-d) and with (e-g) anatase addition and different treatment times – (a, e) 2.5 min; (b, f) 5 min; (c, g) 10 min; (d, h) 15 min.
After the addition of 5 g/L anatase particles to the electrolyte (Fig. 10b), the same trend, as it was observed for the pure electrolyte, could be visible. The highest amount of anatase was obtained after 5 min treatment, reaching almost the same amount as rutile. In general, the amount of anatase is higher in the coating as compared to the standard electrolyte (Fig. 11). In addition, the negative effect by prolonging treatment time is weakened.

There seems to be an effective increase of anatase in the coating by the up-take of anatase particles from the electrolyte. However, it seems to be possible that longer treatment times and higher final voltages (higher energy in the discharges) are leading to a partial conversion of the anatase particles to rutile, but on the other hand larger pore size should allow additional up-take of particles. To learn more about the distribution of the two TiO₂ phases within the coating high resolution, should allow additional up-take of particles. To learn more about the distribution of the two TiO₂ phases within the coating high resolution XRD measurements. This mixed oxide layer is richer in Ti₂O close to the surface and richer in Al₂O₃ closer to the interface with the substrate. In the following transition region (zone III) the intensity of aluminium signal starts increasing remarkably, while the intensity of titanium signal decreases and reaches almost zero at the end of the transition region. Zone III indicates that the PEO layer and substrate alloy are sputtered at the same time. The transition from zone I/II to zone IV (alloy substrate) is not sharp. Thus, it is likely that the coating is not uniform in thickness, that the interface between coating and substrate is rough or that different distribution of phases in the coating lead to different sputter rates. Region IV is the substrate and is characterized by high levels of base alloy elements, such as copper, and mostly aluminium.

Compared to the standard electrolyte the addition of the anatase particles has no remarkable effect on the zones of the depth profiles. The same regions are visible and the already observed slowing down effect on the growth rate of the coating in the earlier stages of PEO coating formation and the enhancing effect at longer treatment durations is confirmed.

3.6. Corrosion behaviour

The electrochemical impedance spectroscopy results (Bode plots) for selected PEO coatings (2.5 and 15 min) produced in the standard electrolyte after immersion for 1, 3, 6, 12, 24, 48, 96 and 168 h in 3.5% NaCl are shown in Fig. 14. For comparison, the EIS results of bare Al sample are also shown. The time dependent degradation of all coatings is shown in Fig. 15.

As expected, the starting impedance values of all coated specimens are much higher than the one for the uncoated substrate in full frequency range. Although the values of all coated samples decrease over time, they are still higher at the end of the tests after 168 h. The 2.5 min sample treated in the standard electrolyte shows the highest impedance modulus values at low frequencies throughout the whole test (Figs. 14 and 15). As |Z| at low frequencies correlates in a certain way with the corrosion resistance, it means that the 2.5 min sample demonstrates an improved corrosion resistance. In the 1 h measurement the |Z| value was around 2·10⁷ Ω cm², which is considerably higher compared to all the other specimens treated in the standard electrolyte and it decreased only to approximately 2·10⁶ Ω cm² after 168 h immersion.

All thicker specimens from the standard electrolyte have a starting |Z| value of approximately 5·10⁶ Ω cm² and decrease only slightly after 1 h of immersion (Fig. 15). The corrosion resistance of the 5 min specimen remains quite stable during the full immersion period. It decreases...
Fig. 8. Cross-sections of two selected regions of the 10 min treated coatings a) standard (no anatase); b) 5 g/L anatase addition and c) elemental mapping of two different regions of the 10 min standard and 5 g anatase samples.
slightly in the beginning to a \(|Z| \) of around 104 \(\Omega \text{cm}^2 \) and recovers to 105 \(\Omega \text{cm}^2 \) at the end of the test. The 10 min sample was able to maintain its low frequency \(|Z| \) value of around 105 \(\Omega \text{cm}^2 \) until 24 h of immersion. From 48 h on the \(|Z| \) value drops continuously and reaches 2.4 \(\times 10^4 \Omega \text{cm}^2 \) after 168 h. The 15 min specimen also demonstrates an excellent corrosion resistance with a \(|Z| \) value above 105 \(\Omega \text{cm}^2 \) throughout the whole test. At the end, the impedance was still at around 105 \(\Omega \text{cm}^2 \).

Similar to the results of the specimens produced in the standard electrolyte, the impedance modulus values of all samples with particle addition decrease over time (Figs. 14 and 15). The 2.5 min sample, once again, shows the highest impedance modulus values at the beginning of the test, but it degrades faster compared to the specimens produced in the standard electrolyte. In the 1 h measurement the \(|Z| \) value was around 1.5-10^7 \(\Omega \text{cm}^2 \), which is by an order of magnitude higher compared to all the other specimens and it decreased to roughly 8-10^6 \(\Omega \text{cm}^2 \) after 168 h immersion, which is almost one order lower than the specimens treated for 10 and 15 min. In the 12 and 24 h measurement, the coating seems to have recovered in a certain way, as it shows impedance values of approximately 3-10^6 \(\Omega \text{cm}^2 \).

The 5 min sample showed a \(|Z| \) value at low frequencies of around 6-10^6 \(\Omega \text{cm}^2 \) after 1 h of immersion, dropping below 1-10^7 after 3 h and further to 4-10^6 \(\Omega \text{cm}^2 \) after 168 h (Fig. 15). The specimens that have been subjected to the PEO process for 10 and 15 min have a starting \(|Z| \) value in the range of 1-10^6–3-10^6 \(\Omega \text{cm}^2 \) after 1 h immersion. The 10 min sample demonstrates very good stability of corrosion resistance as its \(|Z| \) value drops continuously throughout the whole test to only slightly less than 1-10^6 \(\Omega \text{cm}^2 \) after 168 h, so it is characterized with the lowest \(|Z| \) value drop from the beginning to the end of the test. The same could be noted for the 15 min sample, as it was able to maintain its impedance values higher than 1-10^6 \(\Omega \text{cm}^2 \) until 48 h of immersion, to drop only to slightly below 1-10^6 \(\Omega \text{cm}^2 \) after 168 h.

Certain similarities in the EIS results between the standard and 5 g/L anatase specimens can be observed, especially for the 2.5 and 15 min samples (Fig. 14), which are both attributed with good corrosion protection properties. In both cases, the 2.5 min sample \(|Z| \) value at low frequencies starts from roughly 2-10^7 \(\Omega \text{cm}^2 \), which are the highest starting values compared to the other specimens, but the degradation of the coating is faster. The 15 min samples in both cases are characterized with the smallest \(|Z| \) value drop, meaning they were able to maintain decent corrosion protection throughout the whole test. Looking at the differences between the specimens with or without particle addition (Fig. 15), the 5 g anatase samples show generally higher starting impedance values at low frequencies compared to the standard...
specimens, as well as higher values at the end of the tests especially for the 10 and 15 min samples. Thus to summarize, it can be stated, that the corrosion resistance of the specimens is improved due to the particle addition.

3.7. Photocatalytic activity

Fig. 16a shows the rate of degradation of methyl orange as a function of time for the different coatings produced in the standard electrolyte. Surprisingly, there is no trend visible. The best photocatalytic activity was observed for the coating that was treated for 10 min, showing that 25.7% of the original MO was degraded. The worst result was obtained for the coating treated for 15 min, degrading only 9.4% of MO after 8 h. The 2.5 min and 5 min specimens were able to degrade 17.3% and 15.5% of MO, respectively.

The influence of the anatase addition is shown in Fig. 16b. The specimens treated for 2.5 min and 5 min revealed the best performance with 22% and 21.8% of MO degraded, respectively. The 10 min and 15 min specimens were able to degrade 10% and 17.6% of the total MO concentration.

From these results, it is obvious that the treatment time is not an essential parameter when it comes to photocatalytic activity. The addition of 5 g/L of anatase increased the photocatalytic activity of all specimens, except for the sample treated for 10 min. Out of all specimens, the 10 min sample produced in the standard electrolyte showed the best photocatalytic activity. It seems as if the concentration of anatase directly at the surface is the most influencing parameter, but from the results it is difficult to correlate the concentration with treatment time or the addition of anatase particles.

3.8. Wear behaviour

The wear tests were performed with increasing loads to identify the load bearing capacity of the coatings. Fig. 17 shows, as an example, the changes of the friction coefficients \(fc \) as a function of time for the specimens prepared in standard electrolyte and with anatase particle addition to demonstrate the two possible cases when coating survives or fails. There is a running in period observed in each test when the friction coefficient is increasing with time, which is most likely due to increasing contact area due to increasing wear of the ball and the coating. The \(fc \) is rather low (less than 0.2) at the beginning of the tests, and then has a sudden increase to around 0.6 in the running in period. At the end of the running in period, either the coating fails and the \(fc \) is dropping down to 0.4 or the coating is surviving, approaching a final stable range of \(fc \). All this happens normally within the first 500 s of the test. The average stabilised \(fc \) of the coating in contact with the 100Cr6 steel is around 0.7 to 0.8. In the case of a coating defect and AA2024/steel contact the \(fc \) is around 0.4 with higher fluctuations of the values, because of fretting wear between the two metals. The addition of 5 g/L anatase particles does not significantly affect the \(fc \) of the coatings.

However, the addition of particles decreases dramatically the load bearing capacity of the coatings (Fig. 18). Interestingly, this occurs in spite of the thicker coatings being formed at longer treatment times. In contrast to the standard electrolyte where an expected increase in load bearing capacity with increasing coating thickness is observed, this is not the case for the particle addition. Regardless of 5, 10 or 15 min treatment time, the coatings do fail all at a relatively low load of 6 N, mostly in less than 100 s after the beginning of the test (Fig. 17).

Fig. 19 display images taken from representative areas found inside the wear tracks formed on the coated samples of different thicknesses that were subjected to different loads. Fig. 19 a-c displays images of wear tracks formed on specimens that could not withstand the load applied, and Fig. 19 d-f shows wear tracks formed on samples that were able to withstand the applied loads.

The average width of the wear tracks seems to increase as a function of the applied load. This can be explained by the fact that the ball and specimen suffered wear and the area of contact increased between them as the applied load increased (Fig. 19). The micrographs in Fig. 19 a-c show the complete removal of the coating in along the wear track leaving the substrate exposed. The substrate experiences a considerable damage by a combination of adhesive (fretting) and abrasive wear. The high stresses generated during the test produce severe plastic deformations in certain regions of the substrate. The thinner brittle coatings with lower load bearing capacity could not follow this deformation and started to crack and being delaminated from the substrate. Those coating flakes are working as a third body in the wear process and accelerates the wear of the substrate (Fig. 20 a). However, when the thickness and load bearing capacity is high enough, the coatings remained adhered to the substrate and the samples show only accumulated debris and wear products from the ball in the wear track (Figs. 19 d-f, 20b). Interestingly, the load bearing capacity is not improved by the particle addition and it might be speculated at this moment that anatase TiO\(_2\) particles sticking at the surface may act as hard relative loose third body particles in the wear process leading to an earlier damage of the coatings. Furthermore, rutile is considered as the more wear resistant phase [32], which may also play a role if the anatase content is increased by the treatment.

Summarising, the best tribological performance was found for the 15 min PEO treatment in the standard electrolyte, with a thickness of approximately 17 \(\mu \)m. Such coatings were able to endure loads of up to 8 N without major damage of the coating. All coatings that were subjected to 9 N loads were removed completely during the wear test. Only small parts of the coating remained adhered to the substrate in some regions of the wear track.
4. Discussion

The possibilities of plasma electrolytic oxidation, as an environmentally friendly technology with excellent prospects for numerous applications are now widely recognized. The PEO technique has been used to modify the surface of aluminium alloys by producing well-adhered coatings of high hardness, involving micro-arc formation on the work-piece under immersed conditions in a temperature controlled

Fig. 13. Qualitative depth profiles measured by GDOES of PEO coated AA2024 – with and without anatase particle addition (example of elemental distribution after 10 min of treatment in the coatings and the respective coating/substrate zones (a, e) and depth distribution of the three main coating forming elements as a function of treatment time (b, f – Ti; c, g – O; d, h – Al).
aqueous electrolyte [13,19,20–22]. Due to the inherent porosity of the coatings, they can be impregnated with functional (e.g. catalytic) particles, which was also used in the present study to extend their possible field of applications. As the PEO treatment time is increasing, the morphologies of the coatings are changing which is obvious and expected (Fig. 6). Three types of different structures can be noticed: pores, craters and nodules. Pores and craters were formed due to melting and resolidification of the surface under the discharges and the related periodical temperature fluctuations, as well as the gases generated in the process, which are solved in the liquid melt and entrapped during solidification. The number of pores and their density decreases with increasing PEO processing time, but the pores grow in size. The thicker the PEO coating is, the bigger is the size of the open craters. This happens due to the higher energy needed for the breakdown of the dielectric barrier of the coating and to create the micro-discharges, which consequently get more intense. However, our data indicates that two kinds of discharges are present. There are those discharges which occur due to a potential difference across the coating and which form the typical crater-like open discharge channels. If the processing time is extended to 10 min a second type of discharges occurs which are not destructive for the coating but form large craters without discharge channel in the centre. We assume those originate via a potential difference between the coating surface and isolating gas phase. A similar type of craters was also observed in a previous study of in-situ incorporation of PTFE particles during PEO processing [53]. The crater formation was related to micro bubbles sticking at the surface leading to an increased intensity of the electric field at the edge of the bubbles and facilitating rapid sintering of PTFE particles. Similar behaviour can be expected for the TiO-complexes [TiO(C2O4)2]2− in the case of the present electrolyte. The addition of anatase particles doesn’t change too much the discharge behaviour, as obvious from a similar voltage-time response (Fig. 3). Visibly, the open craters are in the same size and number as in the standard electrolyte, which is consistent with similar coating thicknesses and final process voltages. Concerning the second type of “surface” discharges, an earlier occurrence is observed and typical craters are already visible after 5 min treatment. As the anatase particles also contribute to coating formation the formed craters seem to growth a little bit faster compared with the standard electrolyte. Furthermore, the particles influence the viscosity.

Fig. 14. Electrochemical impedance spectroscopy results (Bode plots) for bare AA2024 alloy as well as PEO coated (2.5 and 15 min) with and without anatase particles additions. The spectra are recorded after 1, 3, 6, 12, 24, 48, 96 and 168 h of immersion.
of the electrolyte and the surface roughness, which in return obviously allows slightly larger bubbles to stick at the surface before they are released to the electrolyte. The consequences are craters, which are forming earlier and which are up to 50 µm in diameter after 15 min of treatment if particles are present.

The thickness of the coatings depends on the treatment time, but there is no linear correlation between treatment time and coating thickness. In the beginning of the PEO process, the average coating growth rate is higher, decreases with time, and may reach a constant steady state value at longer times (10 to 15 min). However, a closer look at the actual growth rates in the respective intervals indicates that there is a minimum growth rate at around 10 min before it is increasing again in the last period. Interestingly, this growth behaviour correlates with the appearance of the second type of discharges. The addition of 5 g/L of anatase particles slowed down the coating formation in the beginning, but at longer periods it contributed to an increase of coating thickness compared to the standard electrolyte. The coating formation seems to be a mixture of a classical PEO growth and an in-situ deposition process.

Fig. 15. Evolution of low frequency resistance module (at 50 mHz) as function of immersion time for PEO coatings with different treatment time.

![Fig. 15](image)
the classical PEO process, the coating formation is a result of a combination of substrate and electrolyte compounds reacting and forming the coating. During the in-situ deposition process only components from the electrolyte are deposited and sintered to form the coating. The GDOES depth profiles confirm the existence of 4 zones in the PEO coatings. Zone I represents the surface layer, which is rich in Ti and O. According to the XRD results, this surface layer is TiO$_2$ and actually a mixture of rutile and anatase depending on the processing parameters. The presence of Ti and absence of Al means that it is formed only from components of the electrolyte. Obviously, it is more a classical deposition process, where the charged TiO-complexes $[\text{TiO(C}_2\text{O}_4)_2]^{2-}$ are attracted towards the surface, decompose under the discharges conditions and form TiO$_2$. The repetitive discharges are responsible to sinter the TiO$_2$ into a relatively dense coating. Thus, it is obviously not the classical PEO formation process, where the coating is composed of parts from the electrolyte and coating at the same time. Here a deposition process of TiO$_2$ as decomposition product of the potassium titanium-oxide oxalate or another TiO$_2$ based complex forming in the electrolyte seems to be the main coating formation step. The deposition is stimulated by the discharges, but no extensive mixing of substrate and electrolyte components occurs. There is only a quite thin interface region (zone II) of around 1.5 µm, where both oxides (TiO$_2$ and Al$_2$O$_3$) do appear at the same time (Figs. 8, 12, 13). Probably, the process starts classically with the formation of an Al$_2$O$_3$ dielectric layer but with the start of discharges the dominant mechanisms shifts from substrate conversion to deposition out of the electrolyte. An explanation might be that the start of TiO$_2$ deposition fully blocks the diffusion of Al through the TiO$_2$ layer just maintaining this relatively sharp border between the two oxide phases. Interestingly, the addition of the particles does not affect the type of zones or the phases forming them, except that the ratio of anatase to rutile and the thickness of the zones can be influenced. This is understandable because oxide particles such as TiO$_2$ can already develop a negative zeta-potential if they are immersed in slightly acidic electrolytes with the potential getting more negative with increasing pH [56]. Thus, they should behave in a similar manner as the negative charged TiO-oxalate $[\text{TiO(C}_2\text{O}_4)_2]^{2-}$ in the standard electrolyte. They retard in the beginning the formation of a dense dielectric barrier layer, but later increase the growth rate of the coatings because of a higher concentration of Ti compounds, which form the coating in the deposition controlled coating formation phase. This change of coating growth rate with particle addition was observed with increasing treatment time (Fig. 5). However, it needs further detailed studies to identify the involved mechanisms. The cross sections and the elemental mappings are in agreement with GDOES results (Figs. 8, 12, 13). They demonstrate the highest presence...
of Ti in the outer layer (TiO₂) of the coating and of Al in the substrate, with those two elements mixing in the intermediate layer as Al₂TiO₅. Thus, oxygen is present in the outer layer almost purely as TiO₂ and as a mixture of TiO₂ and Al₂O₃ in different ratios in the intermediate layer. The XRD results confirm that the final coating contains mainly TiO₂ in the form of rutile and anatase. In the case of the standard electrolyte, a significantly lower amount of anatase compared to rutile can be noted. Adding 5 g/L anatase particles to the electrolyte was effective in increasing the amount of anatase remarkably. However, the ratio of anatase to rutile phase decreases, with an increase of PEO treatment time, which can be interpreted as a result of polymorphic transformation (starting at around 600 °C) of anatase into rutile at higher PEO energies [33,57].

From the protection perspective, thicker coatings should be more resistant against the penetration of the electrolyte and delay the corrosion process better than thin ones. In practice, in the case of PEO coatings it is not only the coating thickness that determines the corrosion resistance, but also the number of open discharge channels, pores and cracks [58-60]. Thus, some authors report a decrease in the corrosion resistance of thicker layers because of the higher porosity of the ceramic coating, which is a result of the nature of the micro-discharges during PEO process [61]. Others suggest that an increase in the thickness improves the corrosion resistance of the PEO coated material by preventing the electrolyte to penetrate into the inner coating regions [62]. In the present study the latter seems to be true for the long term corrosion behaviour of the thicker coatings prepared at longer treatment times and in the presence of anatase particles, as their corrosion resistance abilities seem to be quite stable over time. This implies that the coatings do have a reduced internal open porosity, which might be related to the blocking of pores by the particles. Due to the combined deposition and discharge processes involved in the coating formation the internal coating porosity is relatively low even at longer treatment times (Fig. 8), increasing the resistance and importance of the outer layer in the overall corrosion performance. However, in the beginning of the testing the thinnest coatings treated for 2.5 min do have the higher resistance values and without particle addition, it even remains the best coating throughout the full 168 h immersion period, although the degradation rate is faster. This good performance is attributed to the denser inner layer of the mixed oxides, which can form a barrier against corrosion of the substrate. Without particle addition, it contains fewer defects as particles are distributed preferentially closer to the interface. This clearly shows that the thickness is not the only dominating factor for the corrosion resistance. However, thickness and porosity (number, size, length and total volume of pores) in the outer TiO₂ layer and the inner mixed oxide barrier layer, determines the diffusivity of the ions through the layers and the time when aggressive ions do reach the substrate. Furthermore, in smaller pore volumes and thicker coatings it is easier to reach favourable conditions of concentration and pH in the coatings, which allows the formation of stable corrosion products blocking the pores if solubility limits of certain compounds are exceeded. In the long term, the thicker samples prepared in 5 g/L anatase electrolyte showed better corrosion resistance due to the longer diffusion paths within the coating and less pore volume compared to the standard samples.

Regarding the photocatalytic activity, no clear trend is visible. The best performance with degradation of 26% of initial concentration of MO was found for the 10 min treated specimen in the standard electrolyte. With anatase addition the best performance was reached at short treatment times, which allows for higher PEO treatment time and increases the content dramatically. Adding anatase particles is a solution, but suffers from two drawbacks which makes it difficult to control the amount and localisation of anatase within the coating. There is first the polymorphic transformation of the anatase phase into rutile under the discharges and second the particles do enter the coating via the open pores with the highest anatase concentration at the interface. Furthermore, only the corrosion resistance could benefit from the particle addition but the wear resistance is suffering.

In order to obtain coatings with significantly improved photocatalytic properties, short treatment times at lower voltages in anatase containing electrolytes seems to be the right way. However, thin coatings with poor wear and corrosion properties are the drawback. On the other hand, thicker coatings without anatase addition could solve the problem of wear and corrosion resistance, but photoactivity is supposed to be low. While particle addition is not affecting corrosion resistance, it reduces wear resistance drastically. Thus, it seems to be difficult to produce coatings, which have a good combination of all three properties.

5. Summary and conclusions

The results of the current studies suggest that:
1) PEO processing of aluminium alloys in a simple aqueous solution of 40 g/L potassium titanium-oxide oxalate dihydrate can produce TiO2 layers on their surface.
2) A two layer structure is forming consisting of a TiO2 top layer and an inner mixed oxide (Al2TiO5) barrier layer.
3) The coatings growth mechanism appears to be a combination of deposition and sintering discharges. While the early coating formation stage is a classical PEO process resulting in the mixed oxide barrier layer composed out of substrate (Al) and electrolyte components (Ti), the top TiO2 layer growth is deposition controlled where only electrolyte components are incorporated and sintered by the discharges.
4) At least two type of discharges occur and are responsible for the coating formation. Up to 5 min treatment time, mainly discharges due to the potential difference across the coating occur, while at longer treatment times surface discharges at the edges of gas bubbles sticking at the surface become more dominant. The appearance of the second type of discharges can be correlated with a change of coating growth rate.
5) The addition of anatase particles has only minor effect on the PEO processing, but influence the coating growth rate and can affect the coating properties strongly. Generally, the corrosion resistance is improved, the photoactivity is more predictable, but the wear resistance is reduced by the particle addition.

6) It is possible to produce TiO2 layers on aluminium alloys via PEO processing, which have the potential to combine good wear and corrosion resistance with photoactivity. Thus, they can be considered as multifunctional surfaces. However, it is difficult to control and improve all three properties at the same time.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements
This work was partially supported by Research Executive Agency (European Commission) in frame of Horizon2020-MSCA/RIZE-2018 FUNCOAT project (Grant agreement No. 823942, “Development and design of novel multiFUNCTIONal PEO COATings”). The authors thank Anton Davydok for the experimental support within DESY beamline experiments. We also thank PETRA III (Hamburg, Germany) for granting the P03 proposal I-20190157 for localized phase composition analysis.

References
[1] A. Ayad, M. Durman, Growth characteristics of plasma electrolytic oxidation coatings on aluminium alloys, Acta Phys. Pol. A 127 (4) (2015) 866–887.
[2] E. Mätykina, R. Arrabal, P. Skeldon, G.E. Thompson, Investigation of the growth processes of coatings formed by AC plasma electrolytic oxidation of aluminium, Electrochim. Acta 54 (27) (2009) 6767–6776.
