Model Independent Analysis of the Solar Neutrino Data *

Hisakazu MINAKATA
Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa Hachioji-shi, Tokyo 192-0397, Japan, minakata@phys.metro-u.ac.jp

Hiroshi NUNOKAWA
Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas - UNICAMP, P.O. Box 6165, 13083-970 Campinas SP Brazil, nunokawa@ifi.unicamp.br

Abstract

We perform an updated model-independent analysis using all the latest solar neutrino data, including the one coming from remarkably high statistics SuperKamiokande experiment. We confirm that the astrophysical solutions to the solar neutrino problem are extremely disfavored. We also present a new way of illuminating the suppression pattern of various solar neutrino flux, which indicates that the strong suppression of 7Be neutrinos is no more true once the neutrino flavor conversion is taken into account.

1. Introduction

The solar neutrino problem [2] is now established essentially independent of any details of the standard solar models (SSM). The so called model-independent analysis was performed by several authors [3,10,4,19,16,24,5,17,13] which revealed that the 7Be neutrinos must be strongly depleted compared to the SSM prediction. From these analyses one can conclude that the solar neutrino problem cannot be explained by astrophysical mechanisms unless some assumptions in the standard electroweak theory and/or solar neutrino experiments are grossly incorrect.

In this work, we repeat the model-independent analysis using the latest solar neutrino data as well as the new updated theoretical prediction by Bahcall

* Talk presented by H. Nunokawa at the symposium, "New Era in Neutrino Physics", Tokyo Metropolitan University, Japan, 11-12 June 1998, to be published in the proceedings.

1
and Pinsonneault (BP98) [7]. Our analysis will indicate that astrophysical solution such as the low-\(T\) model [2] is convincingly excluded by the present data. We also present a new way of illuminating the suppression pattern of various solar neutrino flux originated from different fusion reactions in a less model-dependent fashion. We will observe that the statement of the missing \(^7\)Be neutrinos is no more true in the presence of neutrino flavor conversion.

Table 1. Observed solar neutrino event rates used in this analysis and corresponding theoretical predictions [7]. The quoted errors are at 1\(\sigma\).

Experiment	Data ±(stat.) ±(syst.)	Ref.	Theory [7]	Units
Homestake	2.56 ± 0.16 ± 0.15	[11]	7.7±1.2	SNU
SAGE	69.9±8.0±3.9	[14]	129±8	SNU
GALLEX	76.4 ± 6.3±4.9	[18]	129±8	SNU
SuperKam	2.44 ± 0.05±0.09	[23]	5.15±0.98	\(10^6\) cm\(^{-2}\) s\(^{-1}\)

2. The Data

The latest solar neutrino data, including the \(^8\)B neutrino flux measured during 504 days in the SuperKamiokande experiment [23], which will be used in our analysis are tabulated in Table 1. From these data, by adding the statistical and the systematic errors quadratically, we obtain,

\[
S_{\text{obs}}^{\text{Cl}} = 2.56 ± 0.23 \text{ SNU},
\]

\[
S_{\text{obs}}^{\text{Ga}} = 72.4 ± 6.6 \text{ SNU},
\]

\[
S_{\text{obs}}^{\text{SK}} = (2.44 ± 0.10) \times 10^6 \text{ cm}^{-2}\text{s}^{-1},
\]

where, to be conservative, we always take the larger values of statistical and systematic errors, whenever errors are asymmetric, in each experiment before we combine.

Our analysis in the present work is based only upon the total rate of each experiment, and the information of the energy spectrum of \(^8\)B neutrinos obtained by SuperKamiokande experiment, is not taken into account. Thus, it is to illuminate the global features of the suppression of the solar neutrino spectrum.

3. Model-Independent Analysis

The fundamental assumptions in our analyses are as follows: (i) The sun shines due to the nuclear fusion reactions from which and only from which the solar neutrinos come, (ii) the relevant reactions responsible for creating neutrinos
in the sun are assumed to be those postulated in the SSM, (iii) the sun is quasi-stable during the time scale of 0.1-1 million years.

These assumptions (i) to (iii) imply that the solar neutrino flux generated by various nuclear fusion reactions must obey the luminosity constraint [21,22,15,24,5],

$$L_{\odot} = \frac{1}{4\pi R^2} \sum_{\alpha} \left(\frac{Q}{2} - \langle E \rangle_{\alpha} \right) \Phi(\alpha)$$

where $L_{\odot} = 3.844 \times 10^{33}$ (erg/s), $R = 1$ A.U. (1.469×10^{13} cm), $Q = 26.73$ MeV is the energy release when one 4He is created, $\langle E \rangle_{\alpha}$ and $\Phi(\alpha)$, ($\alpha = pp, ^7$Be, 8B,...), are the average energy loss by neutrinos and the neutrino flux, respectively.

By normalizing the neutrino flux to those of the SSM of BP98 [7] as,

$$\phi^{\alpha} = \frac{\Phi(\alpha)}{\Phi(\alpha)_{SSM}} \quad (\alpha = pp, ^7$Be, 8B,...),

the luminosity constraint is simply given by,

$$1 = 0.907\phi^{pp} + 0.0755\phi^{^7$Be} + 4.97 \times 10^{-5}\phi^{^8$B},$$

where we have neglected the contribution from CNO and pep neutrinos.

In this section we make the following two more specific assumptions in addition to the fundamental assumptions (i) - (iii): (1) The energy spectra of the solar neutrinos are not modulated, (2) neutrino flavor transformation does not occur after neutrinos are created in the sun until they reach the detectors. Then the luminosity constraint is effective, and the flux Φ is the actual flux to be detected by the terrestrial detectors.

The expected solar neutrino signal to the 37Cl, 71Ga and SuperKamiokande solar neutrino experiments are given in terms of neutrino flux by,

$$S_{^{37}$Cl}^{th} = 5.9\phi^{^8$B} + 1.15\phi^{^7$Be} \quad \text{SNU},
$$

$$S_{^{71}$Ga}^{th} = 12.4\phi^{^8$B} + 34.4\phi^{^7$Be} + 69.6\phi^{pp} \quad \text{SNU},
$$

$$R_{SK}^{th} = \phi^{^8$B},$$

where we have neglected the contribution from the pep and the CNO neutrinos because the inclusion of them does not affect our conclusion in this section.

Using Eqs. (7-8) as well as the observed solar neutrino data summarized in Table I we perform a simple χ^2 analysis. After eliminating ϕ^{pp} from (8) by using the luminosity constraint we freely vary the two flux, $\phi^{^8$B}$ and $\phi^{^7$Be}$ and compute the χ^2. The minimum χ^2 is reached when $\phi^{^7$Be}$ takes a negative value but we impose the condition $\phi^{^7$Be} \geq 0$ to be physically meaningful.

We plot in Fig. 1 the contours of χ^2 corresponding to 1σ, 2σ, ... 5σ, for two free parameters. We also plot in Fig. 1 the curve, $\phi^{^7$Be} = (\phi^{^8$B})^{10/24}$ which
Fig. 1. Contour plot of the χ^2 values in the $\Phi_{8B} - \Phi_{7Be}$ plane for different combinations of the solar neutrino experiments. The solid curves correspond to 1σ to 5σ, with step size 1, from inside to outside. We also indicate the 1, 2 and 3σ theoretical range predicted by BP98, by the solid, dotted and dashed lines, respectively. Along the dashed curve, $\phi^{7Be} = (\phi^{8B})^{10/24}$, the crosses indicate, from left to right, the point where the central temperatures are 0.85, 0.9, 0.95, 0.98, 1 and 1.01 with respect to the prediction by the SSM.

corresponds to the case where the central temperature of the sun T_c is varied freely, but keeping the relationship between the two fluxes as [6], $\phi^{7Be} \propto T^{10}_{c}$ and $\phi^{8B} \propto T^{24}_{c}$.

As in the previous analyses [15,10,4,19,16,24,17] χ^2_{min} is achieved at vanishing ^{7}Be flux not only in Fig. 1 (a) where all the experiments are taken into account but also in Fig. 1 (b-d) where only two experiments are included. By comparing Fig. 1, for example, with those of [15] and by [24], we can clearly see that width of the contours has been greatly shrunk along the ϕ^{8B} axis, indicating how significantly the result is affected by the high statistics data from SuperKamiokande.

From Fig. 1 we see that solar neutrino data are in strong disagreement with the SSM prediction as also concluded in ref. [8]. We conclude from Fig. 1 that the
standard solar model BP98 is ruled out by the current solar neutrino data at the significance level much higher than 5σ under our fundamental assumptions (i)-(iii) and the additional ones (1)-(2). We have also confirmed that the astrophysical solution of the solar neutrino problem, such as low-T model is strongly disfavored by the data. We stress that our basic conclusions do not change even if we neglect one of the three types of experiments.

4. **Suppression Pattern of Neutrino Flux implied by the current Solar Neutrino Data**

In this section we describe a new way of illustrating the suppression pattern of most relevant neutrino flux, required to explain the current solar neutrino experiments. We do this by taking into account the possibility of occurrence of either the active conversion, $\nu_e \rightarrow \nu_{\mu,\tau}$ or the sterile one $\nu_e \rightarrow \nu_s$ in between the solar core and the terrestrial detectors.

To obtain global understanding of the suppression pattern we propose to combine the p_{cp} and CNO neutrinos into the 7Be neutrinos and denote them as the intermediate energy neutrinos. While it is more reasonable, in the context of model-independent analysis, to combine the p_{cp} neutrinos with the pp's because they are competing partners in the pp I chain, here, we combine the flux when their energy regions overlap.

We assume, in this section (except in Subsec. 4.3), that neutrino production rates from each source are the same as the ones predicted by the BP98 SSM. Then the expected signal in each experiment in the presence of neutrino conversion, $\nu_e \rightarrow \nu_{\mu,\tau}$, is given by,

\[
S_{th}^{Cl} = 5.9\langle P_B \rangle + 1.83\langle P_I \rangle \text{ SNU},
\]

\[
S_{th}^{Ga} = 12.4\langle P_B \rangle + 46.9\langle P_I \rangle + 69.6\langle P_{pp} \rangle \text{ SNU},
\]

\[
P_{th}^{SK} = \langle P_B \rangle + r(1 - \langle P_B \rangle),
\]

where $\langle P_B \rangle$, $\langle P_I \rangle$ and $\langle P_{pp} \rangle$ are the average survival probabilities for 8B, intermediate energy and pp neutrinos, respectively. They are regarded as the average over the neutrino flux times the cross section, and as well as the detection efficiency in the case of the SuperKamiokande experiment. In eq. (12) r is essentially given by the ratio of the scattering cross section of $\nu_{\mu(\tau)}$ to that of ν_e off electron, i.e., $r \equiv \langle \sigma_{\nu_{\mu e}} \rangle / \langle \sigma_{\nu_{e e}} \rangle \simeq 0.16$. When we consider the case (in Subsec. 4.2) where the 8B ν_e's are converted into some sterile states, we set $r = 0$ in eq. (12).

In eqs. (12-14) we simply assume that the average survival probability for all the intermediate energy p_{cp}, CNO and 7Be neutrinos are the same and denote it as $\langle P_I \rangle$ so that the coefficient of $\langle P_I \rangle$ in eqs. (12) and (13) now includes the
contribution not only from \(^7\)Be but also from pep and CNO neutrinos (cf. eqs. (7) and (8)). Furthermore, we take, as an approximation, \(\langle P_i \rangle (i = pp, I, ^8\text{B})\) to be equal for all the experiments because the energy dependences of the flux times cross section (times the detection efficiency for the SuperKamiokande) are rather similar among different experiments, as first noticed by Kwong and Rosen [19].

Other than these assumptions, we do not consider any specific mechanism of neutrino flavor transformation in this analysis but aim at illuminating global features of the modification of the solar neutrino spectrum. We try to determine the reduction rates of the flux of low, intermediate, and high energy neutrinos at the earth in such a way that the experimental data can be fitted.

![Fig. 2. Allowed range of neutrino flux determined by all the solar neutrino experiments with the condition \(\chi^2 = \chi^2_{\text{min}} + 3.5\) (1\(\sigma\)) and 8.0 (2\(\sigma\)) (for three free parameters) assuming the neutrino conversion \(\nu_e \rightarrow \nu_{\mu,\tau}\) or \(\nu_s\). We show in (a) the active and in (b) the sterile conversions cases. The allowed ranges are projected into each plane, indicated by the solid curves (1\(\sigma\)) and the dotted curves (2\(\sigma\)). The best fitted reduction rates of the neutrino fluxes are, \(\langle P_B \rangle, \langle P_I \rangle, \langle P_{pp} \rangle\) = (0.37, 0.19, 0.84) for active conversion with \(\chi^2 \approx 0\), and \(=\) (0.47, 0, 0.96) for sterile conversion with \(\chi^2 \approx 0.8\).]

4.1. The case of active neutrinos

We present our results in Fig. 2 (a) for the case of active conversion. We note that \(\langle P_B \rangle\) is determined most accurately, as expected from the large statistics of the SuperKamiokande experiment. On the other hands, the other two, \(\langle P_I \rangle\) and \(\langle P_{pp} \rangle\), have larger uncertainties at the present stage of the solar neutrino data. We stress that the proposed experiments such as Borexino [1], Hellaz [20] and Heron
[9] are needed in order to determine the 7Be and pp neutrino flux more accurately, especially if the conversion mechanism is unknown. We also tabulate the range of allowed values of the survival probabilities with their 1σ uncertainties in Table 2.

From Fig. 2 and Table 2 we can see that strong suppression of intermediate energy neutrinos, the one best fit by negative flux, is no more true when the neutrino flavor conversion is taken into account. This feature is in sharp contrast with the results of the model-independent analysis in Sec. 3 and of the flavor conversion into sterile neutrinos to be discussed below.

We also note that the suppression rate of the intermediate-energy neutrinos depends rather sensitively on the presence or absence of the pep and CNO neutrinos. If we ignore their contribution the best fit value of $\langle P_I \rangle (= \langle P_{^7Be} \rangle)$ becomes larger by a factor of 2 (see Table 2).

Case	$\langle P_B \rangle$	$\langle P_I \rangle$	$\langle P_{pp} \rangle$
Active (a)	0.33 – 0.42	0 – 0.46	0.6 – 1
Active (b)	0.33 – 0.42	0 – 0.74	0.55 – 1
Sterile (a)	0.43 – 0.50	0 – 0.16	0.77 – 1
Sterile (b)	0.43 – 0.50	0 – 0.26	0.76 – 1

4.2. The case of sterile neutrinos

We next consider the case where the neutrinos are converted into sterile species. Since only the water-Cherenkov experiment can be sensitive to the difference between conversions into active and sterile neutrinos any change in our result from the active case solely comes from 8B neutrinos. The results for the sterile neutrino conversion is presented in Fig. 2 (b) and in Table 2. By comparing Fig. 2(a) and (b), we can clearly see that the stronger suppression of 7Be neutrinos is required than the case of active conversion in the case with $\phi^{^8B} = 1$. We note that the best fit is obtained when the flux of intermediate energy neutrino is negative.

4.3. Varying 8B flux

Finally, we discuss the sensitivity of our results against the change in the neutrino flux from those of the SSM. Since the pp neutrino flux is essentially fixed by the solar luminosity and also the 7Be neutrino flux are better determined
Fig. 3. Two sigma allowed range of neutrino flux, projected into each plane, assuming the neutrino conversion $\nu_e \to \nu_\mu$ or ν_τ, for different values of ϕ^B are plotted by the dotted curves (except for the $\phi^B = 1$ case). The five curves in the each plane correspond, from left to right, to the case where $\phi^B = 2.5$, 2.0, 1.5, 1.0 and 0.5. The corresponding best fitted reduction rates, indicated by open diamonds are, $(\langle P_B \rangle, \langle P_I \rangle, \langle P_{pp} \rangle) = (0.1, 1.0, 0.35), (0.18, 0.81, 0.46), (0.28, 0.50, 0.65), (0.37, 0.19, 0.84)$ and $(0.46, 0.0, 0.96)$.

compared to the 8B flux which is subject to the uncertainty of the nuclear cross section S_{17}, we only vary the 8B flux and examine the sensitivity of the required reduction rates against its change.

We will perform this exercise only for the active neutrino conversion case since for the sterile case the result presented in Fig. 2 (b) still holds if $\langle P_B \rangle$ is regarded as $\langle P_B \rangle \phi^B$ if we vary ϕ^B, whereas for the active case, this is not true, because in the water-Cherenkov experiment, the event rate depends not only on $\phi^B \langle P_B \rangle$ but also on ϕ^B itself.

In Fig. 3 we plot the allowed range of the reduction rates of the neutrino flux by (artificially) varying the 8B neutrino flux prediction of the SSM. The result of the exercise indicates that as the ϕ^B gets larger, preferred value of $\langle P_I \rangle$ becomes larger, while $\langle P_{pp} \rangle$ gets smaller as seen in the plot. This feature is consistent with one obtained by Smirnov in Table I of [25].

Let us note that the arbitrariness of the interpretation of which ϕ^B or $\langle P_B \rangle$ are changed from the standard theory can be removed if we combine the results of the SuperKamiokande and either one of charged or (preference) neutral current data from the SNO experiment [12]. One can separately estimate the flux of 8B neutrinos and the survival probability by combining these two experiments.
5. Conclusions

We have performed the updated model-independent analysis of the current solar neutrino data. We confirmed, with current data of any two sets out of the three, the ^{37}Cl, the ^{71}Ga and the SuperKamiokande experiments that: (1) the SSM prediction can be convincingly rejected, and (2) the ^{7}Be neutrinos is strongly suppressed unless ^{8}B neutrinos are converted into another active flavor. We have shown that the low-T model is excluded by more than 5σ (3σ) with data of the three (two out of the three) experiments. The best fitted value of ^{7}Be neutrino flux is always negative even if we do not impose the luminosity constraint.

On the other hand, if we assume that neutrino flavor conversion of $\nu_e \rightarrow \nu_{\mu}$ or ν_{τ} is occurring, the best fitted flux of ^{7}Be (or intermediate energy) neutrino is no longer negative. The current solar neutrino data suggest, as the best fit in our analysis, that $(\langle P_B \rangle, \langle P_I \rangle, \langle P_{pp} \rangle) \sim (0.4, 0.2, 0.8)$. While it is still suppressed the value of the intermediate energy neutrinos makes most notable difference between cases with and without neutrino flavor conversion. We hope that this point is resolved by the future solar neutrino experiments.

More detailed discussions and relevant references are found in ref. [21].

Acknowledgements

This work was triggered by enlighting comments by Kenzo Nakamura at Hachimantai meeting in October 28-30, 1997, Iwate, Japan, to whom we are grateful. H. M. is partly supported by Grant-in-Aid for Scientific Research Nos. 09640370 and 10140221 of the Japanese Ministry of Education, Science and Culture, and by Grant-in-Aid for Scientific Research No. 09045036 under the International Scientific Research Program, Inter-University Cooperative Research. H. N. has been supported by a postdoctoral fellowship from Brazilian funding agency FAPESP. H. N. thanks A. Rossi for useful discussion.

References

1. Arpesella, C. et al., BOREXINO proposal, Vols. 1 and 2, ed. by Bellin, G. et al. (University of Milano, Milano, 1992); Raghavan, S., 1995, Science 267, 45.
2. Bahcall, J. N., 1989 Neutrino Astrophysics, Cambridge Univ. Press, Cambridge.
3. Bahcall, J. N. and Bethe, H. A., 1990, Phys. Rev. Lett. 65, 2233.
4. Bahcall, J. N., 1994, Phys. Lett. B338, 276.
5. Bahcall, J. N. and Krastev, P. I., 1996, Phys. Rev. D53, 4211.
6. Bahcall, J. N. and Ulmer, A., 1996, Phys. Rev. D53, 4202.
7. Bahcall, J. N., Basu, S. and Pinsonneault, M.H., 1998, Phys. Lett. B 433, 1.
8. Bahcall, J. N., Krastev P. I. and Smirnov, A. Yu., 1998, Phys. Rev. D58, 096016.
9. Bandler, S.R. et al., 1993, J. Low Temp. Phys. 93, 785; Lanou, R.E., Maris, H.J. and Seidel, G.M., 1987, Phys. Rev. Lett. 58, 2498.
10. Bludman, S., Kenneday, D. Hata, N. and Langacker, P., 1993, Phys. Rev. D47, 2220; Castellani, V., Degl'Innocenti, S., Fiorentini, G., 1993, Astron. Astrophys. 271, 601; Berezinsky, V., 1994 Comm. Nucl. Part. Phys. 21, 249; Degl'Innocenti, S., Fiorentini, G. and Lissia, M., 1995, Nucl. Phys. Proc. Suppl. 43, 66; Castellani, V. et. al., 1997, Phys. Rep. 281, 309; Castellani, V., Degl’Innocenti S. and Fiorentini, G., 1993, Phys. Lett. B303, 68.
11. Cleveland, B. T. et al., 1998, Astrophys. J. 496, 505; Lande, K. (Homestake Collaboration), Talk given at XVIII International Conference on Neutrino Physics and Astrophysics (Neutrino ’98), June, 1998, Takayama, Japan, to appear in the proceedings.
12. Ewan, G. T., et al., SNO collaboration, Sudbury Neutrino Observatory Proposal, SNO-87-12 (1987).
13. M. Fukugita, Talk at Oji International Seminar on Elementary Processes in Dense Plasma, Tomakomai, Japan, June 27-July 1, 1994; preprint YITP-K-1086, August, 1994.
14. Gavrin, V. N. (SAGE Collaboration) in Neutrino ’98 [11].
15. Hata, N., Bludman, S. and Langacker, P., 1994 Phys. Rev. D49, 3622.
16. Hata, N. and Langacker, P., 1995, Phys. Rev. D52, 420.
17. Heeger, K. H. and Robertson, R. G. H., 1996, Phys. Rev. Lett. 77, 3270.
18. Kristen, T. (GALLEX Collaboration), in Neutrino ’98 [11].
19. Kwong, W. and Rosen, S. P., 1994, Phys. Rev. Lett, 73, 369.
20. Laurenti, G. et al., in Proceedings of the Fifth International Workshop on Neutrino Telescopes, Venice, Italy, 1993, edited by M. Baldo Ceolin (Padua University, Padua, Italy, 1994), p. 161; Bonvicini, G., 1994, Nucl. Phys. B35, 438.
21. Minakata, H. and Nunokawa, H., 1998, hep-ph/9810387.
22. Spiro, M. and Vignaud, D., 1990, Phys. Lett. B242, 279.
23. Suzuki, Y. (SuperKamiokande Collaboration), in Neutrino ’98 [11].
24. Parke, S., 1995, Phys. Rev. Lett, 74, 839.
25. Smirnov, A. Yu. in the proceedings of XVII International conference on Neutrino Physics and Astrophysics, (Neutrino ’96) Helsinki, Finland, 1996, June, p38.