SARS-CoV–Related Pandemic Outbreaks and Mental Disorder Risk

Xiangling Deng, MD,* Mengyang He, MD,* Jinhe Zhang, MD,† Jinchang Huang, PhD,‡ Minjing Luo, MD,* Zhixin Zhang, PhD,§ and W enquan Niu, PhD||

Abstract: This study aimed to quantify the association between exposure to pandemic outbreaks and psychological health via a comprehensive meta-analysis. Literature retrieval, study selection, and data extraction were completed independently and in duplicate. Effect-size estimates were expressed as odds ratio (OR) with 95% confidence interval (CI). Data from 22 articles, involving 40,900 persons, were meta-analyzed. Overall analyses revealed a significant association of exposing to SARS-CoV–related pandemics with human mental health (OR, 1.32; 95% CI, 1.24–1.40; $p < 0.001$). Subgroup analyses showed that anxiety (OR, 1.37; 95% CI, 1.19–1.58; $p < 0.001$), depression (OR, 1.28; 95% CI, 1.15–1.42; $p < 0.001$), posttraumatic stress (OR, 1.36; 95% CI, 1.17–1.58; $p < 0.001$), and psychological distress (OR, 1.25; 95% CI, 1.11–1.40; $p < 0.001$) were all obviously related to pandemic diseases. In the context of infectious disease outbreaks, the mental health of general population is clearly vulnerable. Therefore, all of us, especially health care workers, need special attention and psychological counseling to overcome pandemic together.

Key Words: COVID-19, SARS, pandemic, mental health, psychological distress

Growing epidemiologic data have demonstrated that pandemics can cause a broad spectrum of issues involving both physical and mental health in human beings (Holmes et al., 2020; Norris et al., 2002). In particular, pandemics, such as severe acute respiratory syndrome (SARS) in 2003, influenza virus with the H1N1 subtype in 2009, Middle East respiratory syndrome (MERS) in 2012, Ebola virus in 2014, and coronavirus disease 2019 (COVID-19), during the past two decades are highly contagious and have caused heavy public health burdens regionally and globally (Fisman and Laupland, 2009; Klenk, 2014; Lam et al., 2004; Li et al., 2020b). More recently, the terrible COVID-19 have caused 42,055,863 confirmed cases, including 1,141,567 deaths as of October 24, 2020, and these numbers keep rising at an alarming rate. An equally serious problem is the profound consequence on spiritual damage to mankind, as researchers have proposed that patients who survived severe and life-threatening illnesses are at an enhanced risk of experiencing mental disorder. Factors such as long duration of quarantine, fears for infection, inadequate information, stigma, or financial loss were found to be more or less related to negative psychological impact (Brooks et al., 2020). In 2003, SARS outbreak had caused 50% of recovered patients who remained anxious and 29% of health care workers who experienced probable emotional distress (Nickell et al., 2004; Tsang et al., 2004). As demonstrated in the recent meta-analysis by Krishnamoorthy and colleagues, COVID-19 pandemic raised stress disorder by 40%, anxiety by 30%, burnout by 28%, depression by 24%, and posttraumatic stress disorder by 13% (Krishnamoorthy et al., 2020). Yet, the magnitude of the association between pandemic and mental disorder is still an open question, due to the sustainable skyrocketed growth of confirmed cases and death for COVID-19. Meanwhile, the pooled prevalence rate of psychological morbidities could not intuitively represent the association between the outbreak of pandemic and mental health.

To quantify the association between exposure to pandemic outbreaks and psychological health, we synthesized the results of cross-section studies in medical literature through a comprehensive meta-analysis.

METHODS

The performance of meta-analysis adhered to the guidelines in the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement (Page et al., 2021). The PRISMA checklist is presented in Supplementary Table 1 (Supplemental Digital Content 1, http://links.lww.com/JNMD/A147).

This study is a meta-analysis on published studies, and so ethical approval and informed consent are not needed.

Search Strategy

Literature search was conducted by scanning PubMed, EMBASE, and Web of Science databases as of August 4, 2020. The following medical topic terms are used: (obsession compulsion*) OR (depression) OR (depressive symptom*) OR (anxiety disorder*) OR (neurotic anxiety state) OR (hostility) OR (phobic disorder) OR (phobic*) OR (paranoid disorder) OR (paranoid*) OR (suicide*) OR (mental health*) OR (mental*) OR (psychiatric disorder) OR (psychiatric*) OR (psychological*) OR (psychos*) [Title/Abstract] AND (Acute Respiratory Syndrome Virus*) OR (SARS-Related*) OR (SARS-CoV) OR (Urbani SARS-Associated Coronavirus) OR (Influenza in Bird) OR (Avian Flu*) OR (H1N1 Virus*) OR (Swine-Origin Influenza A H1N1 Virus) OR (novel coronavirus vaccine) OR (coronavirus disease 2019 vaccine*) OR (2019 novel coronavirus vaccine) OR (SARS 2 vaccine*) OR (Wuhan coronavirus vaccine) OR (Zika*) OR (Middle East Respiratory Syndrome*) [Title/Abstract].

The reference lists of major retrieved articles were also manually searched to avoid potential missing hits.

Search process was independently conducted by two investigators (X.D. and M.H.) using the same medical topic terms. All references retrieved were combined, and duplicates were removed.

Inclusion/Exclusion Criteria

Our analysis was restricted to articles that met the following criteria: (1) study participants, aged 218 years old; (2) end points, related mental disorder; (3) study design, cross-sectional or cohort studies; (4) baseline exposure, different kinds of exposure to pandemic diseases; and (5) odds ratio (OR) as effect-size estimate. Articles were excluded if they involved study participants with serious diseases or if they are case reports or case series, editorials, and narrative reviews.

Data Extraction

Two investigators (M.H. and X.D.) independently extracted data from each qualified article, including first author, year of publication,
country where study was conducted, sample size, sex, baseline age, study type, the type of exposed infectious disease, the method of assessing mental health, the type of psychological-related questionnaire, effect estimation, and severity of exposure to pandemic diseases, if available. The divergence was resolved through joint reevaluation of original articles, and if necessary, by a third author (W. N.).

Quality Assessment

The quality of all eligible studies was assessed using the 11-item checklist, which was recommended by Agency for Healthcare Research and Quality (AHRQ) (Rostom et al., 2004). The item would be scored “0” if the answer was “no” or “unclear,” whereas “1” represented the answer “yes.” Article quality was assessed to three different grades: low quality (0–3); moderate quality (4–7); and high quality (8–11). Differences in article quality were discussed to reach a final agreement.

Statistical Analyses

Data management and analysis were handled using the STATA software version 14.1 for Windows (Stata Corp, College Station, TX). Effect-size estimates were expressed as OR with 95% confidence interval (CI). Pooled effect-size estimates were derived under the random-effects Mantel-Haenszel model, irrespective of the magnitude of between-study heterogeneity.

The inconsistency index (I^2), which represents the percent of diversity that is due to heterogeneity rather than chance, is used to quantify between-study heterogeneity. The I^2 greater than 50% denotes significant heterogeneity, and a higher percentage indicates a higher degree of heterogeneity. To account for possible sources of between-study heterogeneity from clinical and methodological aspects, a large number of prespecified subgroup analyses were done according to major exposure subjects, the level of development of the countries, the different pandemic diseases, and the different kinds of exposure respectively.

The probability of publication bias was evaluated by both Beggs's funnel plots and Egger's regression asymmetry tests at a significance level of 10%. The trim-and-fill method was used to estimate the number of theoretically missing studies.

RESULTS

Eligible Studies

After searching prespecified public databases using predefined medical subject terms, a total of 1073 articles were initially identified, and 22 of them were qualified for analysis, including 40,900 study participants (Abdessater et al., 2020; Cao et al., 2020; Chan and Huak, 2004; Choi et al., 2020; Gómez-Salgado et al., 2020; Gualano et al., 2020; Guo et al., 2020; Huang and Zhao, 2020; Lai et al., 2020; Leung et al., 2005; Li et al., 2020a; Lu et al., 2020; Peng et al., 2010; Rossi et al., 2020; Shacham et al., 2020; Sim et al., 2004; Tam et al., 2004; Verma et al., 2004; Wu et al., 2009; Xiao et al., 2020; Yang et al., 2020; Ying et al., 2020). The detailed selection process is schematized in Figure 1.

FIGURE 1. Flowchart of records retrieved, screened, and included in this meta-analysis.
First Author	Year	Country	Gender	Age, y	Exposure Subjects	Sample Size	Study Type	Infectious Disease	Method	Type of Questionnaire	Assessment of Different Kinds of Exposures	Mental Disorder	Effect Size	95% LL	95% UL
Chan	2004	Singapore	All	>18	Health care workers	661	Cross-section study	SARS	Questionnaire	GHQ	Direct contact with suspected patients	Psychological distress	1.60	1.10	2.50
Chan	2004	Singapore	All	>18	Health care workers	661	Cross-section study	SARS	Questionnaire	GHQ	Direct contact with suspected patients	Psychological distress	1.40	1.02	2.00
Tam	2004	China	All	33	Health care workers	652	Cross-section study	SARS	Questionnaire	GHQ	Direct contact with suspected patients	Psychological distress	1.00	0.73	1.38
Verma	2004	Singapore	All	>18	Health care workers	721	Cross-section study	SARS	Questionnaire	GHQ	Direct contact with suspected patients	Psychological distress	2.90	1.30	6.30
Sim	2004	Singapore	All	>18	Health care workers	661	Cross-section study	SARS	Questionnaire	GHQ	Direct contact with suspected patients	Psychological distress	0.82	0.39	1.72
Sim	2004	Singapore	All	>18	Health care workers	277	Cross-section study	SARS	Questionnaire	GHQ	Direct contact with suspected patients	Psychological distress	0.51	0.17	1.50
Leung	2005	China	All	>18	General population	480	Longitudinal study	SARS	Random-digit dialing	STAI	Exposed to epidemics	Anxiety	2.63	1.43	4.48
Leung	2005	China	All	>18	General population	480	Longitudinal study	SARS	Random-digit dialing	STAI	Exposed to epidemics	Anxiety	2.95	1.56	5.60
Leung	2005	China	All	>18	General population	272	Longitudinal study	SARS	Random-digit dialing	STAI	Exposed to epidemics	Anxiety	0.87	0.42	1.81
Leung	2005	China	All	>18	General population	272	Longitudinal study	SARS	Random-digit dialing	STAI	Exposed to epidemics	Anxiety	1.04	0.43	2.51
Wu	2009	China	All	>18	Health care workers	549	Cross-section study	SARS	Questionnaire	IES-R	Exposed to epidemics	Posttraumatic stress	3.47	1.90	6.20
Wu	2009	China	All	>18	Health care workers	549	Cross-section study	SARS	Questionnaire	IES-R	Exposed to epidemics	Posttraumatic stress	3.74	1.80	7.60
Peng	2010	China	All	≥18	Health care workers	1278	Cross-section study	SARS	Random-digit dialing	BSRS	Perceived epidemics as serious	Psychological distress	1.27	0.54	2.98
Cao	2020	China	All	≥18	Students	7143	Cross-section study	COVID-19	Questionnaire	GAD	Relatives or friends infected	Anxiety	3.01	2.38	3.80
Choi	2020	China	All	≥18	General population	500	Cross-section study	COVID-19	Questionnaire	PHQ	Perceived epidemics as serious	Depression	1.86	1.37	2.52
Choi	2020	China	All	≥18	General population	500	Cross-section study	COVID-19	Questionnaire	GAD	Perceived epidemics as serious	Anxiety	1.73	1.25	2.40
Gualano	2020	Italy	All	≥18	General population	1515	Cross-section study	COVID-19	Questionnaire	PHQ	Direct contact with suspected patients	Depression	0.99	0.73	1.34
Gualano	2020	Italy	All	≥18	General population	1515	Cross-section study	COVID-19	Questionnaire	GAD	Direct contact with suspected patients	Anxiety	1.41	1.04	1.89
Gómez-Salgado	2020	Spain	All	≥18	General population	4180	Cross-section study	COVID-19	Questionnaire	GAD	Direct contact with suspected patients	Anxiety	1.24	1.03	1.50
Gómez-Salgado	2020	Spain	All	≥18	General population	4180	Cross-section study	COVID-19	Questionnaire	GAD	Direct contact with suspected patients	Anxiety	1.20	0.98	1.46
Gómez-Salgado	2020	Spain	All	≥18	General population	4180	Cross-section study	COVID-19	Questionnaire	GAD	Direct contact with suspected patients	Anxiety	1.26	1.05	1.50
Gómez-Salgado	2020	Spain	All	≥18	General population	4180	Cross-section study	COVID-19	Questionnaire	GAD	Relatives or friends infected	Psychological distress	1.08	0.88	1.32
Author	Year	Country	Age	Setting	Study Design	Questionnaire	Exposure	Outcomes	Odds Ratio	95% CI Lower	95% CI Upper				
----------	------	---------	-----	---------	--------------	---------------	----------	----------	------------	--------------	--------------				
Gómez-Salgado	2020	Spain	≥18	General population	Cross-section study	COVID-19 Questionnaire	GHQ	Relatives or friends infected	Psychological distress	1.11	0.69	1.80			
Guo	2020	China	≥18	General population	Cross-section study	COVID-19 Questionnaire	GHQ	PTSD	Direct contact with suspected patients	Posttraumatic stress	1.21	0.92	1.60		
Guo	2020	China	≥18	General population	Cross-section study	COVID-19 Questionnaire	GHQ	PTSD	Direct contact with suspected patients	Depression	1.39	1.08	1.80		
Huang	2020	China	≥18	General population	Cross-section study	COVID-19 Questionnaire	GAD	Direct contact with suspected patients	Anxiety	1.30	0.82	2.08			
Huang	2020	China	≥18	General population	Cross-section study	COVID-19 Questionnaire	GAD	Direct contact with suspected patients	Depression	1.02	0.58	1.81			
Huang	2020	China	≥18	General population	Cross-section study	COVID-19 Questionnaire	GAD	Perceived epidemics as serious	Anxiety	0.80	0.38	1.69			
Huang	2020	China	≥18	General population	Cross-section study	COVID-19 Questionnaire	GAD	Perceived epidemics as serious	Depression	1.12	0.42	3.02			
Lai	2020	China	26–40	Health care workers	Cross-section study	COVID-19 Questionnaire	PHQ	Direct contact with suspected patients	Depression	1.52	1.11	2.09			
Lai	2020	China	26–40	Health care workers	Cross-section study	COVID-19 Questionnaire	GAD	Direct contact with suspected patients	Anxiety	1.57	1.22	2.02			
Lai	2020	China	26–40	Health care workers	Cross-section study	COVID-19 Questionnaire	IES-R	Direct contact with suspected patients	Psychological distress	1.60	1.25	2.04			
Li	2020	China	≥19	Health care workers	Cross-section study	COVID-19 Questionnaire	PHQ	Relatives or friends infected	Depression	1.39	1.16	1.66			
Li	2020	China	≥19	Health care workers	Cross-section study	COVID-19 Questionnaire	GAD	Relatives or friends infected	Anxiety	1.32	0.94	1.87			
Lu	2020	China	≥18	Health care workers	Cross-section study	COVID-19 Questionnaire	NRS	Direct contact with suspected patients	Fear	1.30	0.99	1.73			
Lu	2020	China	≥18	Health care workers	Cross-section study	COVID-19 Questionnaire	NRS	Direct contact with suspected patients	Fear	1.41	1.03	1.93			
Lu	2020	China	≥18	Health care workers	Cross-section study	COVID-19 Questionnaire	HAMA	Direct contact with suspected patients	Anxiety	1.31	0.89	1.92			
Lu	2020	China	≥18	Health care workers	Cross-section study	COVID-19 Questionnaire	HAMA	Direct contact with suspected patients	Anxiety	2.06	1.35	3.15			
Lu	2020	China	≥18	Health care workers	Cross-section study	COVID-19 Questionnaire	HAMD	Direct contact with suspected patients	Depression	1.39	0.80	2.43			
Lu	2020	China	≥18	Health care workers	Cross-section study	COVID-19 Questionnaire	HAMD	Direct contact with suspected patients	Depression	2.02	1.10	3.69			
Xiao	2020	China	≥17	Students	Cross-section study	COVID-19 Questionnaire	GAD	Perceived epidemics as serious	Anxiety	1.07	0.90	1.27			
Xiao	2020	China	≥17	Students	Cross-section study	COVID-19 Questionnaire	GAD	Perceived epidemics as serious	Anxiety	1.01	0.90	1.13			
Rossi	2020	Italy	>18	Health care workers	Cross-section study	COVID-19 Questionnaire	GPS-PTSD	Direct contact with suspected patients	Posttraumatic stress	1.37	1.05	1.80			
Rossi	2020	Italy	>18	Health care workers	Cross-section study	COVID-19 Questionnaire	PHQ	Direct contact with suspected patients	Depression	1.04	0.76	1.42			
Rossi	2020	Italy	>18	Health care workers	Cross-section study	COVID-19 Questionnaire	GAD	Direct contact with suspected patients	Anxiety	1.13	0.80	1.59			
Rossi	2020	Italy	>18	Health care workers	Cross-section study	COVID-19 Questionnaire	PSS	Direct contact with suspected patients	Posttraumatic stress	1.16	0.84	1.60			
First Author	Year	Country	Gender	Age,	Exposure Subjects	Sample Size	Study Type	Infectious Disease	Method	Type of Questionnaire	Assessment of Different Kinds of Exposures	Mental Disorder	Effect Size	95% LL	95% UL
--------------	------	---------	--------	------	--------------------	-------------	------------	-------------------	--------	---------------------	--	---------------	------------	--------	--------
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	GPS-PTSD	Direct contact with suspected patients	Posttraumatic stress	1.22	0.81	1.55
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	PHQ	Direct contact with suspected patients	Depression	1.36	0.95	1.96
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	GAD	Direct contact with suspected patients	Anxiety	1.09	0.74	1.61
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	PSS	Direct contact with suspected patients	Posttraumatic stress	0.74	0.51	1.08
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	GPS-PTSD	Direct contact with suspected patients	Depression	1.20	0.86	1.67
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	PHQ	Direct contact with suspected patients	Depression	0.71	0.48	1.05
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	GAD	Direct contact with suspected patients	Anxiety	0.96	0.64	1.44
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	PSS	Direct contact with suspected patients	Posttraumatic stress	0.75	0.51	1.11
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	GPS-PTSD	Direct contact with suspected patients	Posttraumatic stress	1.75	1.03	2.97
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	PHQ	Direct contact with suspected patients	Depression	0.98	0.53	1.82
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	GAD	Direct contact with suspected patients	Anxiety	1.05	0.53	2.08
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	PSS	Direct contact with suspected patients	Posttraumatic stress	1.18	0.66	2.11
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	GPS-PTSD	Direct contact with suspected patients	Posttraumatic stress	1.54	1.10	2.16
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	PHQ	Direct contact with suspected patients	Depression	1.39	0.95	2.03
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	GAD	Direct contact with suspected patients	Anxiety	1.18	0.78	1.77
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	PSS	Direct contact with suspected patients	Posttraumatic stress	1.93	1.30	2.85
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	GPS-PTSD	Direct contact with suspected patients	Posttraumatic stress	1.59	1.21	2.09
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	PHQ	Direct contact with suspected patients	Depression	1.38	1.00	1.90
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	GAD	Direct contact with suspected patients	Anxiety	1.19	0.85	1.67
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	PSS	Direct contact with suspected patients	Posttraumatic stress	1.66	1.19	2.32
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	GPS-PTSD	Direct contact with suspected patients	Posttraumatic stress	1.23	0.93	1.62
Rossi	2020	Italy	All	>18	Health care workers	1379	Cross-section study	COVID-19	Questionnaire	PHQ	Direct contact with suspected patients	Depression	1.54	1.11	2.14
Authors	Year	Country	Age range	Setting	Instrument	Domain	LL	UL	LR						
-------------	------	---------	-----------	--------------------------	---	---	----	----	----						
Rossi	2020	Italy	All >18	Health care workers	1379 Cross-section study COVID-19 Questionnaire	GAD Direct contact with suspected patients	Anxiety	1.14	0.81	1.62					
Rossi	2020	Italy	All >18	Health care workers	1379 Cross-section study COVID-19 Questionnaire	PSS Direct contact with suspected patients	Posttraumatic stress	1.01	0.73	1.41					
Shacham	2020	Israel	24–74	Health care workers	338 Cross-section study COVID-19 Online survey	K6 Direct contact with suspected patients	Psychological distress	0.91	0.64	1.28					
Shacham	2020	Israel	24–74	Health care workers	338 Cross-section study COVID-19 Online survey	K6 Direct contact with suspected patients	Psychological distress	2.11	1.24	3.60					
Abdesater	2020	French	All 29.5	Health care workers	275 Cross-section study COVID-19 Questionnaire	GHQ Direct contact with suspected patients	Posttraumatic stress	1.85	0.98	3.59					
Yang	2020	South Korea	All 20–50	Health care workers	65 Cross-section study COVID-19 Questionnaire	PHQ Relatives or friends infected	Depression	1.52	0.26	20.90					
Yang	2020	South Korea	All 20–50	Health care workers	65 Cross-section study COVID-19 Questionnaire	GAD Relatives or friends infected	Anxiety	0.68	0.12	9.19					
Ying	2020	China	All 37	General population	285 Cross-section study COVID-19 Questionnaire	PHQ Direct contact with suspected patients	Depression	1.04	0.77	1.42					
Ying	2020	China	All 37	General population	406 Cross-section study COVID-19 Questionnaire	GAD Direct contact with suspected patients	Anxiety	1.41	1.05	1.89					
Ying	2020	China	All 37	General population	47 Cross-section study COVID-19 Questionnaire	PHQ Direct contact with suspected patients	Depression	1.20	0.68	2.07					
Ying	2020	China	All 37	General population	70 Cross-section study COVID-19 Questionnaire	GAD Direct contact with suspected patients	Anxiety	1.43	0.84	2.42					
Ying	2020	China	All 37	General population	112 Cross-section study COVID-19 Questionnaire	PHQ Direct contact with suspected patients	Depression	0.89	0.51	1.52					
Ying	2020	China	All 37	General population	112 Cross-section study COVID-19 Questionnaire	GAD Perceived epidemics as serious	Depression	1.15	0.68	1.94					
Ying	2020	China	All 37	General population	212 Cross-section study COVID-19 Questionnaire	GHQ Perceived epidemics as serious	Depression	1.54	1.01	2.35					
Ying	2020	China	All 37	General population	212 Cross-section study COVID-19 Questionnaire	GAD Perceived epidemics as serious	Anxiety	1.95	1.28	2.96					

LL, lower limit; UL, upper limit; GHQ, General Health Questionnaire; PHQ, Patient Health Questionnaire; GAD, Generalized Anxiety Disorder scale; STAI, State Trait Anxiety Inventory; PTSD, posttraumatic stress disorder; IES-R, Impact of Event Scale–Revised; BSRS, five-item Brief Symptom Rating Scale; NRS, Numeric Rating Scale; HAMA, Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale; GPS, Global Psychotrauma Scale; PSS, Perceived Stress Scale; K6, Kessler's K6.
Study Characteristics

Table 1 shows the baseline characteristics of studies that respectively recorded OR in this meta-analysis. Because of the lack of data on other pandemics, the present analysis was only restricted to SARS and COVID-19.

Of 22 eligible articles, eight looked at the relationship between pandemic disease and psychological distress (Chan and Huak, 2004; Gómez-Salgado et al., 2020; Lai et al., 2020; Peng et al., 2010; Shacham et al., 2020; Sim et al., 2004; Tam et al., 2004; Verma et al., 2004), 11 articles related to anxiety (Cao et al., 2020; Choi et al., 2020; Gualano et al., 2020; Huang and Zhao, 2020; Lai et al., 2020; Leung et al., 2005; Li et al., 2020a; Lu et al., 2020; Rossi et al., 2020; Xiao et al., 2020; Yang et al., 2020), nine involved in depression (Choi et al., 2020; Gualano et al., 2020; Guo et al., 2020; Huang and Zhao, 2020; Lai et al., 2020; Li et al., 2020a; Lu et al., 2020; Rossi et al., 2020; Yang et al., 2020), and four studies connected to posttraumatic stress (Abdessater et al., 2020; Guo et al., 2020; Rossi et al., 2020; Wu et al., 2009). In terms of study subjects, 14 concerned the mental health of the health care workers (Abdessater et al., 2020; Chan and Huak, 2004; Gualano et al., 2020; Lai et al., 2020; Li et al., 2020a; Lu et al., 2020; Peng et al., 2010; Rossi et al., 2020; Shacham et al., 2020; Sim et al., 2004; Tam et al., 2004; Verma et al., 2004; Wu et al., 2009; Yang et al., 2020), 13 adopted the general population (Abdessater et al., 2020; Chan and Huak, 2004; Gómez-Salgado et al., 2020; Guo et al., 2020; Huang and Zhao, 2020; Leung et al., 2005; Ying et al., 2020), and two pointed to college students (Cao et al., 2020; Xiao et al., 2020). Meanwhile, seven studies assessed SARS (Chan and Huak, 2004; Leung et al., 2005; Peng et al., 2010; Sim et al., 2004; Tam et al., 2004; Verma et al., 2004; Wu et al., 2009), and the other 15 regarded COVID-19 (Abdessater et al., 2020; Cao et al., 2020; Choi et al., 2020; Gómez-Salgado et al., 2020; Gualano et al., 2020; Guo et al., 2020; Huang and Zhao, 2020; Lai et al., 2020; Li et al., 2020a; Lu et al., 2020; Rossi et al., 2020; Shacham et al., 2020; Xiao et al., 2020; Yang et al., 2020). On the basis of different countries, all studies were divided into developed countries (Abdessater et al., 2020; Chan and Huak, 2004; Gómez-Salgado et al., 2020; Gualano et al., 2020; Rossi et al., 2020; Shacham et al., 2020; Sim et al., 2004; Verma et al., 2004; Yang et al., 2020) and developing countries (Cao et al., 2020; Choi et al., 2020; Guo et al., 2020; Huang and Zhao, 2020; Lai et al., 2020; Leung et al., 2005; Li et al., 2020a; Lu et al., 2020; Peng et al., 2010; Tam et al., 2004; Wu et al., 2009; Xiao et al., 2020; Ying et al., 2020). Assessment tools used in the studies were various questionnaires; more details were presented in Table 1. As to the assessment of different kinds of exposures, we excluded the diverse ways of expression from the initial studies and concluded them to similar expression of unity. For example, we treated “worried about being infected by COVID-19” and “concerns about the COVID-19 pandemic,” “time to think about COVID-19 per day (hours)” and “time to think about COVID-19 per day (hours) (>3 hours)” as “perceived pandemic as serious,” and viewed the expressions such as “working frontline,” “high-risk contact,” and “low-risk contact” in health care workers as “direct contact with suspect or probable patients.” All of the different kinds of exposures were seen as the psychological impact of the pandemic.

Quality Assessment

Table 2 shows the quality assessment of all eligible articles by using the AHRQ cross-sectional study evaluation criteria. The average total score was 5.55 (range, 3 to 8).

Overall Analyses

A statistically significant association of exposing to pandemic with humans’ mental health was observed based on the overall analysis (OR, 1.32; 95% CI, 1.24–1.40; \(p < 0.001; I^2, 62.0\% \)) (Table 3), which was calculated by random-effects model (\(p < 0.05 \)) with between-study heterogeneity. Four groups of mental disorders were analyzed separately, including anxiety (OR, 1.37; 95% CI, 1.19–1.58; \(p < 0.001; F^2, 75.7\% \)), depression (OR, 1.28; 95% CI, 1.15–1.42; \(p < 0.001; F^2, 35.2\% \)), posttraumatic stress (OR, 1.36; 95% CI, 1.17–1.58; \(p < 0.001; F^2, 66.6\% \)), and psychological distress (OR, 1.25; 95% CI, 1.11–1.40; \(p < 0.001; F^2, 44.2\% \)) (Fig. 2).

Cumulative and Influential Analyses

In cumulative analysis, the first two published studies by Sim and Tam made in 2004 concluded the pandemic as a protective factor for human mental disorder; since then, other studies all got completely opposite conclusions consistently, and the trend tended to stabilize. The influential analyses revealed no significant impact of any single studies on overall effect-size estimates.

Publication Bias

Figure 3 shows the Begg’s and filled funnel plots on the association of pandemic disease with mental health. The overall analysis of pandemic disease revealed that no publication bias relies on Egger’s test (\(p = 0.14 \)). Similarly, there were evidences of symmetry of study effects.
Group	No. Qualified Studies	All Types	Anxiety	Depression	Posttraumatic Stress	Psychological Distress
		OR (95% CI); P				
Overall analyses		F²	F²	F²	F²	F²
Mental disorders	83/27/21/18/15	1.32 (1.24–1.40); <0.001	1.37 (1.19–1.58); <0.001	1.28 (1.15–1.42); <0.001	1.36 (1.17–1.58); <0.001	1.25 (1.11–1.40); <0.001
Anxiety	62%	75.7%	35.2%	66.6%	44.2%	
Depression						
Posttraumatic stress						
Psychological distress						

Subgroup analyses

By source of participants						
General population	27/12/9/*/15	1.30 (1.19–1.42); <0.001	1.50 (1.26–1.78); <0.001	1.24 (1.04–1.48); 0.017	1.21 (0.92–1.60); 0.177	1.20 (1.09–1.31); <0.001
Health care workers	53/12/12/7/10	1.31 (1.22–1.41); <0.001	1.27 (1.13–1.43); <0.001	1.30 (1.14–1.49); <0.001	1.38 (1.17–1.62); <0.001	1.32 (1.05–1.65); 0.019
Students	3/3/*/1	1.47 (0.83–2.60); 0.186	1.47 (0.83–2.60); 0.186	97.1%	*	*

By country development						
Developing countries	38	1.46 (1.30–1.63); <0.001	*	*	*	*
Developed countries	45	1.22 (1.14–1.30); <0.001	*	*	*	*

By type of pandemics								
SARS	13/4/*/2/7	1.61 (1.20–2.17); 0.002	1.70 (0.92–3.14); <0.091	66.9%	*	3.58 (2.27–5.65); <0.001	0.0%	
COVID-19	70/23/21/16/8	1.29 (1.21–1.38); <0.001	1.34 (1.16–1.54); <0.001	76.5%	1.28 (1.15–1.42); <0.001	0.01 %	52.8%	1.24 (1.10–1.40); 0.001

By kinds of exposure						
Direct contact with suspect patients	57	1.27 (1.20–1.34); <0.001	37.1%	*	*	*
Exposed to epidemic	5	1.99 (1.17–3.39); 0.012	67.7%	*	*	*
Relatives or friends infected	10	1.54 (1.13–2.09); 0.006	83.4%	*	*	*
Perceived epidemics as serious	11	1.29 (1.07–1.56); 0.007	67.7%	*	*	*

Data are unavailable.
in terms of anxiety ($p = 0.23$), depression ($p = 0.47$), posttraumatic stress ($p = 0.11$), and psychological distress ($p = 0.84$).

Further investigation using the "trim-and-fill" method produced that there was one theoretically missing study aforementioned required for a further test of symmetry in overall analysis. Meanwhile, three missing studies were requested for both comparisons to make the Begg's funnel plots symmetrical in posttraumatic stress. After adjusting, the ORs for influencing mental health and getting posttraumatic stress were 1.31 (95% CI, 1.23–1.40; $p < 0.001$) and 1.24 (95% CI, 1.05–1.46; $p = 0.01$), respectively. Concerning the group of having anxiety, depression, and psychological distress, they did not produce any correction to the original estimates.

Subgroup Analyses

Between-study heterogeneity existed in the overall analysis for exposing to pandemic associated with human's mental disorder ($I^2 = 62.0\%$). A series of prespecified subgroup analysis were done to explore possible sources of between-study heterogeneity (Table 3). By major exposure subjects, in general population, there was a remarkably significant association of exposing to pandemic with mental disorder (OR, 1.30; 95% CI, 1.19–1.42; $p < 0.001$), including anxiety (OR, 1.50; 95% CI, 1.26–1.78; $p < 0.001$), depression (OR, 1.24; 95% CI, 1.04–1.48; $p = 0.017$), posttraumatic stress (OR, 1.21; 95% CI, 0.92–1.60; $p = 0.177$), and psychological distress (OR, 1.20; 95% CI, 0.92–1.56; $p = 0.177$).
FIGURE 3. The Begg’s and filled funnel plots of the association of pandemic disease with mental health.
1.09–1.31; p < 0.001). In health care workers, synthetic analysis demonstrated the risk magnitude, and the OR was 1.31 (95% CI, 1.22–1.41; p < 0.001), containing anxiety (OR, 1.27; 95% CI, 1.13–1.43; p < 0.001), depression (OR, 1.30; 95% CI, 1.14–1.49; p < 0.001), post-traumatic stress (OR, 1.38; 95% CI, 1.17–1.62; p < 0.001), and psychological distress (OR, 1.32; 95% CI, 1.05–1.65; p = 0.019). At the same time, no detectable significance was observed in students, although the OR was 1.47 (95% CI, 0.83–2.60; p = 0.186).

By different levels of development, developing countries were illustrated to have a high risk of experiencing mental disorder (OR, 1.46; 95% CI, 1.30–1.63; p < 0.001), and developed countries satisfied this relationship as well (OR, 1.22; 95% CI, 1.14–1.30; p < 0.001).

In terms of different infectious diseases, there was a remarkably significant association of SARS with mental disorder (OR, 1.61; 95% CI, 1.20–2.17; p = 0.002), and it was the same in COVID-19 (OR, 1.29; 95% CI, 1.21–1.38; p < 0.001).

With regard to different kinds of exposure, the OR of subjects who directly contacted with suspected patients was 1.27 (95% CI, 1.20–1.34; p < 0.001), that of those who were exposed to pandemic was 1.99 (95% CI, 1.17–3.39; p = 0.012), and that of those whose relatives or friends were infected was 1.54 (95% CI, 1.13–2.09; p = 0.006). Meanwhile, those who perceived a pandemic as serious also experienced high risk of mental disorder (OR, 1.29; 95% CI, 1.07–1.56; p = 0.007).

DISCUSSION

To the best of our knowledge, this is thus far the most comprehensive meta-analysis that has explored the relationship between pandemic exposure and mental disorder by using the OR as the analytical indicator. Our key findings indicated that people who experienced a pandemic could increase approximately 1.32 times the risk of having psychological problems, including 1.37 times the risk of getting anxiety, 1.28 times the risk of getting depression, 1.36 times the risk of having post-traumatic stress, and 1.25 times the risk of having psychological distress. Moreover, our subsidiary analyses demonstrated that different major exposure subjects, countries’ level of development, infectious disease, and kinds of exposure were possible sources of between-study heterogeneity. Comprehensive evaluation made by our study focused on the magnitude of the outbreak of pandemic, and we found the related risk factors including contacted with suspect patients directly, exposed to the pandemic, whose relatives or friends were infected, and perceived pandemic as serious. We highlighted the importance and the necessity for a sustained, efficient mental health care delivery along with a pandemic.

Pandemics, with filled unpredictability and uncertainty, had posed numerous and unprecedented challenges and threats worldwide during each outbreak. Although much of the early scholarly work had focused on intensive, emergency, and primary care, a long time of searching precautionary measures had proposed that the role of mental health clinicians was key on multiple levels. A recent review concluded that negative psychological effects caused by pandemic were widespread and stressors were also diversified, including longer quarantine duration, infection fears, frustration, boredom, inadequate supplies, inadequate information, financial loss, and stigma (Brooks et al., 2020). Simultaneously, evidence showed that these maladaptive reactions can be long-lasting, as the study illustrated that mental disorder, such as posttraumatic and depressive symptoms, and general psychological distress were reported after periods ranging from 6 months up to 3 years after the pandemic outbreak (Liu et al., 2012; Mauder et al., 2006). Long-term behavioral changes such as vigilant handwashing and avoidance of crowds were described in a qualitative study among general population; for some, the return to normality was delayed by many months (Cava et al., 2005). The same is true of health care workers. Researchers found that alcohol abuse or dependency symptoms were positively related to quarantined health care workers even 3 years after the SARS outbreak (Wu et al., 2008).

In this sense, public health should not only increase mental health literacy but provide clear and concise information about infection rates and risk of infection to reduce uncertainty. Our meta-analysis was based on researches involved in people at high or low risk of exposure to a pandemic, with such OR to describe the risk of getting mental disorder, not relied on the prevalence of stress, anxiety, and depression in the general population after the pandemic. We got the statistically significant association of exposing to pandemic with humans' mental health, especially for health care workers. Studies investigated the possible work-related features connected to mental health outcomes, including working in high-risk units, contacting affected patients directly, being quarantined, having relatives or friends get infected, sharper at disease-related risk perception (Preti et al., 2020). These were consistent with our causal analysis.

There were several limitations in this study. First of all, this meta-analysis only included SARS and COVID-19; influenza caused by the virus subtype H1N1, MERS, and Ebola virus disease were not concluded, which limited the representativeness of this study. Second, the degree of exposures was ranked from least to most in the original articles, with different assessments of exposures; the present secondary analysis could not avoid the fuzzy definition of control groups. Meanwhile, all of the studies in our analysis were cross-section studies, which could reflect the psychological state of the population over a period. Hence, more studies on account of a longer and more forward-looking period observation can be helpful in further identification of mental health status.

CONCLUSIONS

In the context of infectious disease outbreaks, the mental health of general populations is clearly vulnerable. Both the general population and health care workers all experienced a high risk of developing mental health problems. Therefore, all of us need urgent attention and psychological counseling to overcome pandemic together.

DISCLOSURE

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate were received by each involved study in this meta-analysis.

The data sets used and/or analyzed during the current meta-analysis are available from the corresponding author upon reasonable request.

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

All authors read and approved the final manuscript before submission.

W.N. and Z.Z. conceived and designed the experiments. X.D., J.H., and M.H. performed the experiments. X.D., M.H., J.Z., and W.N. analyzed the data. X.D., M.H., J.Z., M.L., and Z.Z. contributed the materials/analysis tools. X.D. and W.N. wrote the article. X.D., M.H., and J.Z. shared first authors.

REFERENCES

Abdessater M, Roupé M, Misrai V, Matillon X, Gondran-Tellier B, Freton L, Vallée M, Dominique I, Felber M, Khene ZE, Fortier E, Lannes F, Michiels C, Grevez T, Szabla N, Boustany J, Bardet F, Kaulanján K, Seizilles de Mazancourt E, Ploussard G, Pinar U, Pradere B (2020) COVID19 pandemic impacts on anxiety of French urologist in training: Outcomes from a national survey. Prog Urol. 30: 448–455.

Brooks SK, Webster RK, Smith LE, Orme M, Dominique I, Felber M, Khene ZE, Fortier E, Lannes F, Michiels C, Grevez T, Szabla N, Boustany J, Bardet F, Kaulanján K, Seizilles de Mazancourt E, Ploussard G, Pinar U, Pradere B (2020) COVID19 pandemic impacts on anxiety of French urologist in training: Outcomes from a national survey. Lancet 395:912–920.

Cao W, Fang Z, Hou G, Han M, Xu X, Dong J, Zheng J (2020) The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet. 395:912–920.

Cao W, Fang Z, Hou G, Han M, Xu X, Dong J, Zheng J (2020) The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Res. 287:112934.

Cava MA, Fay KE, Beanlands HJ, McCoy EA, Wignall R (2005) The experience of quarantine for individuals affected by SARS in Toronto. Public Health Nurs. 22:398–406.
