A SUFFICIENT CONDITION FOR NILPOTENCY OF THE COMMUTATOR SUBGROUP

R. Bastos and P. Shumyatsky

Abstract: Let G be a finite group with the property that if a and b are commutators of coprime orders, then $|ab| = |a||b|$. We show that G' is nilpotent.

DOI: 10.1134/S0037446616050037

Keywords: finite group, commutator

The following criterion of nilpotency of a finite group was established by Baumslag and Wiegold in [1]:

Theorem 1. Let G be a finite group in which $|ab| = |a||b|$ whenever a and b have coprime orders. Then G is nilpotent.

Here $|x|$ stands for the order of an element x in a group G. In this article we establish a similar criterion of nilpotency for the commutator subgroup G'. Recall that $g \in G$ is a commutator if $g = x^{-1}y^{-1}xy$ for suitable $x, y \in G$. By definition, the commutator subgroup G' is the subgroup of G generated by all commutators. The purpose of this article is to prove

Theorem 2. Let G be a finite group in which $|ab| = |a||b|$ whenever a and b are commutators of coprime orders. Then G' is nilpotent.

In view of the above theorem one might suspect that a similar phenomenon holds for other group-words. Recall that a group-word $w = w(x_1, \ldots, x_s)$ is a nontrivial element of the free group $F = F(x_1, \ldots, x_s)$ on free generators x_1, \ldots, x_s. A word is a commutator word if it belongs to the commutator subgroup F'. Given a group-word w, it can be viewed as function defined on every group G. The subgroup of G generated by the w-values is called the verbal subgroup of G corresponding to the word w. It is usually denoted by $w(G)$. The following question might be asked: Let w be a commutator word and let G be a finite group with the property that if a and b are w-values of coprime order, then $|ab| = |a||b|$. Is the verbal subgroup $w(G)$ nilpotent?

A similar question for noncommutator words would not be interesting since an easy counterexample is provided just by each nonabelian simple group G, say of exponent e, and the word x^n, where n is a divisor of e such that e/n is prime. Even in the case of commutator words the answer to the question is negative: Kassabov and Nikolov showed in [2] that for every $n \geq 7$ the alternating group A_n admits a commutator word whose every nontrivial value has order 3. We suspect that the answer to the question is positive in case of multilinear commutator words, i.e., the words having a form of a multilinear Lie monomial (for example, $[[x_1, x_2, x_3], [x_4, x_5]]$).

Throughout the sequel G denotes a finite group satisfying the hypothesis of Theorem 2. We denote by X the set of commutators in G. As usual, $\pi(K)$ stands for the set of primes dividing the order of a group K. The Fitting subgroup of K is denoted by $F(K)$.

Lemma 3. Let $x \in X$ and let N be a subgroup normalized by x. If $|(x)|, |N| = 1$, then $[x, N] = 1$.

Proof. Choose $y \in N$. The order of $[x, y]$ is prime to that of x. Therefore we must have $|x[x, y]| = |x|[x, y]$. However $x[x, y] = y^{-1}xy$. This is a conjugate of x and so $|x[x, y]| = |x|$. Hence, $[x, y] = 1$. □

The authors were supported by the CNPq-Brazil.
Lemma 4. If G is soluble, then G' is nilpotent.

Proof. Arguing by induction on $|G|$, we can assume that the second commutator subgroup G'' is nilpotent. Suppose that there are two different primes $p \in \pi(G')$ and $q \in \pi(G'')$. Let P be a Sylow p-subgroup of G' and Q, a Sylow q-subgroup of G''. It is straightforward from the Focal Subgroup Theorem [3, Theorem 7.3.4] that P is generated by $P \cap X$. By Lemma 3 $[Q, x] = 1$ if $x \in P \cap X$. Therefore $[Q, P] = 1$. It follows that P is normal in PG'' and so $P \leq F(PG'')$. Since PG'' is normal in G', we conclude that $P \leq F(G)$. This holds for any prime p such that G'' is not a p-group. Therefore if G'' is divisible by at least two different primes, all Sylow subgroups of G' belong to $F(G)$ and so G' is nilpotent. If G'' is a q-group then the Sylow q-subgroup of G' is obviously normal in G and so again we conclude that all Sylow subgroups of G' belong to $F(G)$. The proof is complete. □

Proof of Theorem 2. Suppose now that G is a counterexample of minimal order. So all proper subgroups in G are soluble and we can assume that $G = G'$. Let R be the soluble radical in G. It follows that G/R is nonabelian simple. By Lemma 4 R' is nilpotent. Suppose that G is nonsimple and $R \neq 1$ and, for a prime q, let Q be the Sylow subgroup of $F(G)$. Let T be the subgroup of G generated by all commutators that are q'-elements. By the Focal Subgroup Theorem, all Sylow p-subgroups of G' for $p \neq q$ are contained in T. Therefore the commutator subgroup of G/T is a q-group. Since $G = G'$, we conclude that $G = T$. Combining Lemma 3 with the Focal Subgroup Theorem, we deduce now that $F(G) \leq Z(G)$.

Further, we remark that for every $x \in G$ the subgroup $\langle x, R \rangle$ is soluble and so $\langle x, R' \rangle$ is nilpotent. It follows that $[R, x] \leq F(G) = Z(G)$ and so $R = Z_2(G)$. In particular, R is nilpotent and so $R = Z(G)$. Thus, G is quasisimple.

Since G does not possess a normal 2-complement, it follows from the Frobenius Theorem [3, Theorem 7.4.5] that G contains a 2-subgroup H and an element of odd order $b \in N_G(H)$ such that $[H, b] \neq 1$. By Thompson’s Theorem [3, Theorem 5.3.11] we can assume that H is of nilpotency class at most 2 and $H/Z(H)$ is elementary abelian. We claim that G contains an element a such that a is a 2-element, $a \in X$, and a has order 2 modulo $Z(G)$.

Indeed, since H is of class at most 2, all elements in $[H, g]$ are commutators for every $g \in H$. If for some $g \in H$ the subgroup $[H, g]$ does not lie in $Z(G)$, every element of $[H, g]$, having order 2 modulo $Z(G)$, enjoys the required properties. Therefore we assume that $[H, g]$ lies in $Z(G)$ for every $g \in H$. In particular $H' \leq Z(G)$. It follows that $[H, b] \cap C_G(b) \leq Z(G)$ and all elements in $[H, b]$ are commutators modulo $Z(G)$. If $d \in [H, b]$ such that $d \notin Z(G)$ and $d^2 \in Z(G)$, then $[d, b]$ is as required. This proves the existence of a with the above properties.

Now, we fix such an element a. Since $G/Z(G)$ is nonabelian simple, it follows from the Baer–Suzuki Theorem [3, Theorem 3.8.2] that there exists $t \in G$ such that the order of $[a, t]$ is odd. On the one hand, it is clear that a inverts $[a, t]$. On the other hand, by Lemma 3, a must commute with $[a, t]$. This is a contradiction. □

References

1. Baumslag B. and Wiegold J., A Sufficient Condition for Nilpotency in a Finite Group. arXiv:1411.2877v1[math.GR].
2. Kassabov M. and Nikolov N., “Words with few values in finite simple groups,” Q. J. Math., 64, 1161–1166 (2013).
3. Gorenstein D., Finite Groups, Chelsea Publ. Co., New York (1980).

R. Bastos; P. Shumyatsky
Department of Mathematics, University of Brasilia, Brasilia, Brazil
E-mail address: bastos@mat.unb.br; pavel@unb.br