Medicinal Uses of Single Garlic in Hyperlipidemia by Fatty Acid Synthase Enzyme Inhibitory: Molecular Docking

Sri Rahayu Lestari*, Betty Lukiati, Siti Nur Arifah, Alif Rofiqotun Nurul Alimah, Abdul Gofur
Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5 Malang 65145, Indonesia

*Corresponding author: srirahayulestari@um.ac.id

Abstract. Lipid is a substance needed for the body as various activities, such as forming a plasma membrane. Lipid will be digested and absorbed through the digestive system in the form of fatty acids and glycerol. Metabolism of lipid into fatty acids and glycerol and the absorption process in the body involves various kinds of enzymes; one of them is Fatty Acid Synthase (FAS). Excess lipid in the body will cause various diseases, such as obesity and cardiovascular diseases. Treatment for excess in lipid level is usually by using synthetic drugs such as statins, but excessive consumption of drug cause various side effects. Single garlic (Allium sativum) (SG) is widely used as an herb that can treat diverse diseases. SG contains organosulfur compounds including Allicin, Alliin, and Ajoene (E-Ajoene and Z-Ajoene). This study aimed to determine the potential of organosulfur compounds in SG as inhibitors of fatty acid synthase (FAS) enzymes which play a role in the process of lipid metabolism. The molecular docking was used to determine the interaction of organosulfur compounds compared with controls (Statins) in the FAS enzyme. Molecular Docking began by taking organosulfur SG compounds and enzymes in PubChem online services and GDP in sequence. The enzyme was sterilized using PyMol software, followed by a docking process, visualization and interaction of ligands on enzyme were carried out using PyRx, PyMol, and LigPlot+ software consecutively. The results showed that organosulfur SG compounds had potential as inhibitor of FAS enzymes. The Allicin, E-Ajoene, and Z-Ajoene had the same binding site with Statins in the FAS enzyme. Based on molecular docking results, it is known that the active compounds found in SG could act as an inhibitor for FAS enzymes which play a role in de novo lipogenesis.

Keywords: Single garlic, hyperlipidemia, fatty acid synthase, molecular docking

1. Introduction
Lipids are biomolecules that play an important and varied roles in the body [1]. Lipids are transported in blood circulation in lipoproteins form. Lipoprotein contains apolipoprotein, cholesterol esters, free cholesterol, triglycerides (TG), and phospholipids [2]. Lipids in enterocytes bond with lipoproteins, specifically apo B-48, A-I, A-II, and A-IV, become chylomicrons. TG and cholesterol are synthesized endogenously in the liver and very low-density lipoprotein (VLDL) particles as a product. VLDL is released in the bloodstream. VLDL and CM interact with high-density lipoprotein (HDL), receive apo
C-II and apo E. Apo C-II then activates lipoprotein lipase (LPL) which has functions to hydrolyze TG in VLDL and release free fatty acids (FFA) and remnants CM. FFA will be transported to tissues and also can be stored in adipose tissue [3].

The homeostasis of lipid metabolisms was influenced by various lipogenic proteins that play a role in the process of lipogenesis and lipolysis, such as fatty acid synthase (FAS). FAS plays a role in de novo lipogenesis to catalyze the transformation of acetyl-CoA into malonyl-CoA [4]. The excess FAS results in impaired lipid metabolism and has an impact on uncontrolled lipid accumulation which causes various risks of diseases such as obesity, type 2 diabetes, cardiovascular disease, atherosclerosis, to liver steatosis [5]. One of the drugs used to treat diseases caused by hyperlipidemia is statin.

Statins are drugs that act as a competitive inhibitor of the HMG-CoA reductase enzyme in the liver. This inhibition results in the inhibited conversion of HMG-CoA to mevalonate, and the result is a reduction of cholesterol product [6]. HMG-CoA regulates carboxylase and FAS enzymes. Thus the activity of both enzymes can also be affected by statins [7]. Statins are generally tolerated in the body, but statins have side effects such as liver and muscle poisoning, liver dysfunction and renal insufficiency [1]. The current research aimed to find natural ingredients that can be used as an alternative medicine with the benefit that the natural compound has few side effects. One of the herbal medications is garlic (*Allium sativum*).

Single garlic (SG) (*A. sativum*) is a plant that is widely used as a treatment for the various diseases. The active compounds (especially organosulfur) in an SG has a higher concentration than regular garlic. Active compounds in SG were Allii (411.4 mg/mL), Allicin (268.2 mg/mL) and ajoene differentiated into E-ajoene (101.5 mg/mL), and Z-ajoene (251.4 mg/mL) [8]. Organosulfur compounds are the main active compounds which have hypolipidemic and hypocholesterolemic effects [9]. Other studies have shown that garlic extract had various inhibitory effects on several different stages of cholesterol biosynthesis pathways in human liver cells, Allilin is a compound that inhibits cholesterol biosynthesis in hepatocytes, thus contributes to lowering serum cholesterol [10,11]. Bhatt & Patel (2013) reported that raw garlic had scavenging activity in a case to decrease free radicals [12]. Garlic also significantly decreased malondialdehyde (MDA) in rats fed with high-cholesterol diet [13]. The treatment using single clove garlic also has the ability to increase endogenous antioxidants such as catalase (CAT) and superoxide dismutase (SOD) [14]. The studies of garlic showed that garlic has more capability as a treatment for hyperlipidemia compared with the statin.

Molecular docking is a method used in the process of found new compounds which has potential as a drug candidate. This method is the most significant theoretical method used to determine the orientation of the ligand on the binding site. The binding energy produced from ligand-receptor interactions plays a role in designing new candidates of drugs effectively [15]. Molecular docking is used to predict and design the drugs for various diseases; one of the diseases is caused by the imbalance of lipid metabolism. Allicin derivatives such as Ajoene have a beneficial effect on cardiovascular disease [16]. Based on this, this study aimed to determine the drug candidates from active compounds in SG (Allii, Allicin, E-Ajoene and Z-Ajoene) and to inhibit over-expression of FAS using molecular docking methods.

2. Methods

The 3D structure of the organosulfur SG compounds (Allii, Allicin, E-Ajoene, and Z-Ajoene) and Statins were obtained from the PubChem data collection (https://pubchem.ncbi.nlm.nih.gov). The 3D structure of the FAS enzyme was attained from a data set of Protein Bank Data or GDP (http://www.rcsb.org). The 3D enzyme structure was sterilized using PyMol software (Python Molecular Viewer) to remove water molecules and all the ligands in the enzyme.

Molecular docking processes were carried out between all organosulfur and statin compounds in the FAS enzyme. The molecular docking processes were in 3 stages, namely 1) molecular docking between organosulfur compounds and statin in FAS enzyme using PyRx 0.8 software Autodock Vina
program, 2) the visualization of binding positions in amino acid using PyMol software, 3) the display of hydrophobic interaction using LigPlot+ software. The data of molecular docking processes were used to determine the potential of organosulfur compounds as inhibitors of FAS enzyme. This potential was known through a comparison between organosulfur compounds in the SG with a statin (control). The comparisons included binding affinity values, amino acid residues, and hydrophobic interactions.

3. Results
The 3D structure of single garlic organosulfur compounds and Statins (control) in the PubChem online service (Figure 1).

![3D structure of the organosulfur compound in SG and statin. A. Statin; B. Allin; C. Allicin; D. E-Ajoene; E. Z-Ajoene (PubChem, 2017)](image)

Figure 1. 3D structure of the organosulfur compound in SG and statin. A. Statin; B. Allin; C. Allicin; D. E-Ajoene; E. Z-Ajoene (PubChem, 2017)

The 3D structure of FAS enzyme was taken in the RCSB GDP online service (Figure 2a). PyMol software was then used for removing water molecule and other ligands in FAS enzyme (Figure 2b).

![3D structure of FAS enzyme from RCSB GDP; (b) 3D structure of FAS enzyme after removing water molecules and other ligands](image)

Figure 2. (a) 3D structure of FAS enzyme from RCSB GDP; (b) 3D structure of FAS enzyme after removing water molecules and other ligands
The results of molecular docking between organosulfur compounds in SG (Alliin, Allicin, E-Ajoene, and Z-Ajoene) with FAS enzyme (after removing water molecules and other ligands) used AutoDock Vina program on the PyRx software with the following results (Table 1).

Table 1. The results of molecular docking between the organosulfur compounds in SG and statin with FAS enzyme.

Compound	Binding affinity (kcal/mol)	Amino acid residues	The distance of hydrogen bonding (Å)	Hydrophobic interaction
Statin	-5.0	Glu2251	3.20	Phe2423, Gln2374, Phe2371, Leu2222
		Arg2482	2.99	
			3.17	
Alliin	-4.5	Gln2272	2.87	Met2232, Ser2253, Val2224, Ser2221, Leu2223, Arg2220
		Thr2254	2.93	
			3.08	
		Thr2255	2.87	3.09
E-Ajoene	-4.4	Ser2308	2.88	Phe2371, Leu2222, Phe2375, Glu2251, Gin2374, Ile2250
		Asp2338	2.51	
		His2481	3.08	
		Arg2482	3.05	
Z-Ajoene	-4.2	Ser2308	2.96	
		Asp2338	2.51	
		His2481	3.03	
		Arg2482	3.04	
Allicin	-3.8	Ser2308	2.96	Phe2370, Phe2423, Leu2427, Ala2367, Arg2428, Tyr2424, Ala2363, Glu2366, Phe2370, Ile2250, Phe2423, Leu2427, Tyr2309
		Asp2338	2.51	
		His2481	3.03	
		Arg2482	3.04	

The results of molecular docking showed that statin had the highest binding affinity for FAS enzymes compared to organosulfur compounds (-5.0 kcal/mol). The visualization of binding position using PyMol software showed that the organosulfur compounds (E-Ajoene, Z-Ajoene, and Allicin) had the same binding site with statin in FAS enzyme. The binding site of ligands and protein is shown in Figure 3. Ligands are shown in red (Alliin), magenta (Allicin), blue (E-Ajoene), orange (Z-Ajoene), and white (Statin).
The interactions visualized using LigPlot+ software showed that Allicin and Z-Ajoene were in one site with statins through amino acid residues and the same hydrophobic interactions (Figure 4). The same amino acid residue was Arg2482, while the same hydrophobic interactions, i.e Phe2423, Leu222, Gln2374, Ile2250. The hydrophobic interaction Phe2433 indicated the same binding site between E-Ajoene and Statins. The visualization of the interactions in the FAS enzyme did not show any similar site between Alliin and Statins but Alliin had several amino acid residues and hydrophobic interactions in the FAS enzyme. Amino acid residues and hydrophobic interactions indicated that Alliin had the potential to inhibit the FAS enzymes (Figure 4).

Figure 3. A & B. The visualization of the binding site in organosulfur compounds and statin to FAS enzyme; C. The magnification of the visualization of an organosulfur compound and statin binding site; D. The visualization of all compounds. The white arrow shows the position of organosulfur compounds and statin in the FAS enzyme.

Figure 4. The visualization of the interaction of each organosulfur compound and statin in the FAS enzyme. 1. Statin; 2. E-Ajoene; 3. Z-Ajoene; 4. Alliin; 5. Allicin
4. Discussion

Lipids were obtained from food or through de novo synthesis in the liver. The fatty acids were produced in lipid metabolism mainly stored as triglycerides. Excess production and accumulation of triglycerides harm the metabolism and can cause various diseases [17]. The synthesis of triglycerides in the body involves a variety of proteins with different mechanisms; one of them is FAS. FAS is a treatment target which is responsible for plaque development and inflammation of atherosclerosis [18,19].

The molecular docking showed that organosulfur compounds in SG such as Alliin, Allicin, E-ajoene, and Z-ajoene had the potential as FAS inhibitors. These potentials were determined by the binding affinity, amino acid residues, and hydrophobic interactions between each ligand-receptor. The amino acid residues formed and linked to the presence of hydrogen bonds indicated that the organosulfur compounds in SG was bond to the active side of the receptor. These interactions proved that ligands play an important role in inhibiting protein function [20]. Hydrophobic interactions formed between ligand-receptors serve to stabilize ligands in conformation to protein structure [21] and increase ligand-receptor binding affinity and increase biological activity from ligands [22]. SG (A. sativum) has an ability as a therapeutic agent because it can inhibit the invasion of carcinoma, provide cardiovascular protection, lower cholesterol and blood pressure, anti-platelet activity, and thromboxane formation [23]. FAS encoded by Fasn gene is an enzyme that catalyzed the biosynthesis of saturated fatty acids from the de novo lipogenesis pathway. The first product in the FAS reaction is palmitate. FAS substrates are acetyl-Co-A, malonyl-Co-A, and NADPH. The fatty acid extends from the initial acetyl-CoA by repeated condensation with malonyl-CoA, which gives two carbons in each condensation cycle. Palmitic synthesis requires seven cycles of the addition of malonyl-Co-A to primary acetyl-Co-A to produce saturated lipid, i.e. 16 carbon fatty acids [24]. FAS is a 273 kDa homodimer subunit. Each monomer contains seven domains of proteins needed for the synthesis of fatty acids, namely acyl carrier, acyltransferase, β-ketoacyl synthase, -ketoacyl reductase, β-hydroxylakyl dehydratase, enoyl reductase, and thioesterase. However, enzymatic FAS is only active in the form of dimers [25,26]. FAS dissolves protein and is localized in the cytoplasm, although specifically, its subcellular localization is largely unknown. The distribution of FAS happens in tissues with the highest level, such as liver, adipose tissue, and lungs [26,27].

FAS is categorized as a protein in the liver involved in the synthesis of lipid for energy storage. Recent research has shown that liver FAS is also involved in the signaling process which includes the activation of the Peroxisome Proliferator-Activated Receptor (PPARα) [24]. The activation of PPARα mediates an adaptive response by promoting the transcription of genes involved in the absorption and catabolism of fatty acids [4]. FAS removal can cause the death of mice suggesting that de novo lipogenesis is needed early during development [28] and perhaps FAS is necessary to provide lipids in the embryo's growing cell membranes.

The activity of FAS in the liver has increased along with the presence of obesity and fatty liver [29], but the mechanism of occurrence of the two related things has not been clearly explained. 26 ± 7% of liver triglycerides is originated from de novo lipogenesis in non-alcoholic fatty liver disease (NAFLD) patients [30]. Another research reported that elimination of specific FAS in the liver rats showed that it was not protected from lipid accumulation, but there was hepatic steatosis while rats were fed with non-fat diet [25]. This mechanism occurred when the deficiency of FAS decreased the expression of PPARα and dietary fat caused the hypothesis that the "new" fat derived from de novo lipogenesis could activate PPARα, while the "old" fat originated from peripheral tissue or stored in the liver could not activate PPARα. The inhibition of Carbohydrate Response Element Binding Protein (ChREBP) as a transcription factor for FAS enzyme in the obese model, showed the decrease in lipid accumulation and lipogenesis in the liver [31]. That research showed that the activation FAS as a lipogenic enzyme is closely related to obesity. The organosulfur compounds in SG had an inhibitory activity of FAS enzyme; thus, it could decrease synthesis of fatty acid.
5. Conclusion
The results of molecular docking method showed that organosulfur compounds in SG had potential as drug candidates by inhibiting the FAS enzyme. The visualization of the binding site showed that the organosulfur compounds (E-Ajoene, Z-Ajoene, and Allicin) in SG had the same binding site with Statins in FAS enzyme. FAS is an enzyme which plays a role in the biosynthesis of lipid. The inhibition of FAS could reduce the production of fatty acid. Therefore, the SG could be used as an alternative medicine for various diseases caused by hyperlipidemia.

Acknowledgements
We would like to thank Nur Fitriana whohelped the analysis. The research was supported by the Ministry of Research, Technology and Higher Education of the Republic of Indonesia no grant 1.3.46/UN.32.14.LT/2018.

References
[1] Sonawane A and Robin P 2014 Tracking Lipid Changes in Blood to Predict Onset of Cancer International Journal of Pharma and Bio Science 5 942–8
[2] Silva I T da, Almeida-Pititto B de and Ferreira S R G 2015 Reassessing lipid metabolism and its potentialities in the prediction of cardiovascular risk Archives of Endocrinology and Metabolism 59 171–80
[3] Mehta V and Bhatt K 2017 Lipids and its Metabolism Journal of Cardiology & Cardiovascular Therapy 4 001–6
[4] Solinas G, Borén J and Dulloo A G 2015 De novo lipogenesis in metabolic homeostasis: More friend than foe? Molecular Metabolism 4 367–77
[5] Syamsunarno M R A A, Iso T, Hanaoka H, Yamaguchi A, Obokata M, Koitabashi N, Goto K, Hishiki T, Nagahata Y, Matsu H, Sano M, Kobayashi M, Kikuchi O, Sasaki T, Maeda K, Murakami M, Kitamura T, Suematsu M, YoshitoTsushima, Endo K, Hotamisligil G S and Kurabayashi M 2013 A Critical Role of Fatty Acid Binding Protein 4 and 5 (FABP4/5) in the Systemic Response to Fasting ed R Berdeaux PLoS ONE 8 e79386
[6] Meor Anuar Shuhaili M F R, Samsudin I N, Stanslas J, Hasan S and Thambiah S C 2017 Effects of Different Types of Statins on Lipid Profile: A Perspective on Asians International Journal of Endocrinology and Metabolism 15 e43319
[7] Sahebkar A, Simental-Mendia L E, Pedone C, Ferretti G, Nachtigal P, Bo S, Derosa G, Maffioli P and Watts G F 2016 Statin therapy and plasma free fatty acids: a systematic review and meta-analysis of controlled clinical trials: Statin therapy and free fatty acids British Journal of Clinical Pharmacology 81 807–18
[8] Lestari S . and Rifa‘i M 2017 Daily Administration of Single Garlic Oil Extract in Mice as Sub-Chronic Toxicity Assesment The 5th International Conference on Biological Sciences
[9] Yeh Y-Y and Liu L 2001 Cholesterol-Lowering Effect of Garlic Extracts and Organosulfur Compounds: Human and Animal Studies The Journal of Nutrition 131 989–93
[10] Lu Y, He Z, Shen X, Xu X, Fan J, Wu S and Zhang D 2012 Cholesterol-Lowering Effect of Allicin on Hypercholesterolemic ICR Mice Oxidative Medicine and Cellular Longevity 2012 1–6
[11] Ugwu C E and Suru S M 2016 The Functional Role of Garlic and Bioactive Components in Cardiovascular and Cerebrovascular Health: What We Do Know Journal of Biosciences and Medicines 04 28–42
[12] Bhatt A and Patel V 2013 Antioxidant activity of garlic using conventional extraction and in vitro gastrointestinal digestion Free Radicals and Antioxidants 3 30–4
[13] Seham S ., Magda S . and Madiha M . 2015 Effect of some plant oils and garlic on lipids of rats fed on high cholesterol diet International Food Research Journal 22 1307–14
[14] Naji K M, Al-Shaibani E S, Alhadi F A, Al-Soudi S A and D’souza M R 2017 Hepatoprotective and antioxidant effects of single clove garlic against CCl4-induced hepatic damage in rabbits BMC Complementary and Alternative Medicine 17
[15] Elokely K M and Doerksen R J 2013 Docking Challenge: Protein Sampling and Molecular Docking Performance Journal of Chemical Information and Modeling 53 1934–45

[16] Qidwai W and Ashfaq T 2013 Role of Garlic Usage in Cardiovascular Disease Prevention: An Evidence-Based Approach Evidence-Based Complementary and Alternative Medicine 2013 1–9

[17] Jo Y, Okazaki H, Moon Y-A and Zhao T 2016 Regulation of Lipid Metabolism and Beyond International Journal of Endocrinology 2016 1–2

[18] Furuhashi M and Hotamisligil G S 2008 Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets Nature Reviews Drug Discovery 7 489–503

[19] Furuhashi M, Tuncman G, Görgün C Z, Makowski L, Atsumi G, Vaillancourt E, Kono K, Babaev V R, Fazio S, Linton M F, Sulsky R, Robl J A, Parker R A and Hotamisligil G S 2007 Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2 Nature 447 959–65

[20] Sahoo M, Jena L, Daf S and Kumar S 2016 Virtual Screening for Potential Inhibitors of NS3 Protein of Zika Virus Genomics & Informatics 14 104

[21] Patil R, Das S, Stanley A, Yadav L, Sudhakar A and Varma A K 2010 Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing ed S Hannenhalli PLoS ONE 5 e12029

[22] Qian S-B, Waldron L, Choudhary N, Klevit R E, Chazin W J and Patterson C 2009 Engineering a Ubiquitin Ligase Reveals Conformational Flexibility Required for Ubiquitin Transfer Journal of Biological Chemistry 284 26797–802

[23] Upadhyay R K Garlic: A potential source of pharmaceuticals and pesticides: A review International Journal of Green Pharmacy 10 1–28

[24] Jensen-Urstad A P L and Semenovich C F 2012 Fatty acid synthase and liver triglyceride metabolism: Housekeeper or messenger? Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1821 747–53

[25] Chakravarthy M V, Pan Z, Zhu Y, Tordjman K, Schneider J G, Coleman T, Turk J and Semenovich C F 2005 “New” hepatic fat activates PPARα to maintain glucose, lipid, and cholesterol homeostasis Cell Metabolism 1 309–22

[26] Chan D I and Vogel H J 2010 Current understanding of fatty acid biosynthesis and the acyl carrier protein Biochemical Journal 430 1–19

[27] Mahmoud A A, Mohammad A N and Ezat M A W 2016 Evaluation of Circulating Fatty Acid Synthase as a Biomarker in Non-Alcoholic Fatty Liver Disease Open Journal of Gastroenterology 06 229–37

[28] Chirala S S, Chang H, Matzuk M, Abu-Elheiga L, Mao J, Mahon K, Finegold M and Wakil S J 2003 Fatty acid synthesis is essential in embryonic development: Fatty acid synthase null mutants and most of the heterozygotes die in utero Proceedings of the National Academy of Sciences 100 6358–63

[29] Iizuka K, Miller B and Uyeda K 2006 Deficiency of carbohydrate-activated transcription factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice American Journal of Physiology-Endocrinology and Metabolism 291 E358–64

[30] Donnelly K L, Smith C I, Schwarzenberg S J, Jessurun J, Boldt M D and Parks E J 2005 Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease Journal of Clinical Investigation 115 1343–51

[31] Dentin R, Benhamed F, Hainault I, Fauveau V, Foufelle F, Dyck J R B, Girard J and Postic C 2006 Liver-Specific Inhibition of ChREBP Improves Hepatic Steatosis and Insulin Resistance in ob/ob Mice Diabetes 55 2159–70