High Gain Transformer-Less Double-Duty-Triple-Mode DC/DC Converter for DC Microgrid

MAHAJAN SAGAR BHASKAR®, (Member, IEEE), MOHAMMAD MERAJ¹, (Student Member, IEEE), ATIF IQBAL®, (Senior Member, IEEE), SANJEEVIKUMAR PADMANABAN®, (Senior Member, IEEE), PANDAV KIRAN MAROTI¹, (Member, IEEE), AND RASHID ALAMMARI¹, (Senior Member, IEEE)

¹Department of Electrical Engineering, Qatar University, Doha 2714, Qatar
2Department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark

Corresponding author: Atif Iqbal (atif.iqbal@qu.edu.qa)

This publication was made possible by the National Priorities Research Program (NPRP) under Grant X-033-2-007 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors. Furthermore, this is to acknowledge that the publication charges of this article was funded by the Qatar National Library, Doha, Qatar.

Abstract

High-gain DC/DC converters with high efficiency are needed in dc microgrid owed to the low voltage of power sources, e.g., photovoltaic-cell and fuel-cell. This paper proposed a new high-gain double-duty-triple-mode (DDTM) converter for dc-microgrid applications. The proposed DDTM converter operates in three modes to achieve higher voltage gain without utilizing transformer, coupled inductor, voltage multiplier, and multiple voltage lifting techniques, e.g., triple, quadruple voltage lift. The modes of operation of the converter are controlled through three switches with two distinct duty ratios (double duty) to achieve wide range duty ratio. The operating principle, voltage gain analysis, and efficiency analysis of the proposed converter are discussed in detail and to show its benefits comparison is provided with the existing high-gain converters. The boundary operating condition for continuous conduction mode (CCM) and discontinuous conduction mode (DCM) is presented. The prototype of the proposed converters with 500-W power is implemented in the laboratory and experimentally investigated, which validate the performance and feasibility of the proposed converter. Due to double duty control, the proposed converter can be controlled in different ways and the thorough discussion on controlling of the converter is provided as a future scope.

Index Terms

DC/DC, double duty, high gain converter, dc microgrid, transformer-less, triple mode, wide duty range.

Nomenclature

Symbol	Description	Symbol	Description
S1, S2, and S3	Active switches	L1 and L2	Inductors
R51(ON), R52(ON), and R53(ON)	On state resistance of switches	RL1 and RL2	Effective series resistance of inductor L1 and L2 (\(RL1 = RL2 = RL_{ESR}\))
P1 and P2	Input and output power	C1, C2, and C3	Capacitors
η	Efficiency	D, D1, and D2	Diodes
P51−SW, P52−SW, and P53−SW	Switching power loss of switches	DFD1, RDFD2	Forward resistance of diode D1 and D2
P5−SW	Total switching power loss	VD1−TH and VD2−TH	Threshold voltage of diode D1 and D2
τr−S1, τr−S2, τr−S3	Rising switching time for switches	R	Load
τf−S1, τf−S2, τf−S3	Falling switching time for switches	TS	Time required for one switching cycle
	S1, S2, S3	fS	Switching frequency

The associate editor coordinating the review of this manuscript and approving it for publication was Yijie Wang.
Due to penetration of renewable energy sources, the power converter configurations are gaining more attraction in DC microgrid [1]. Owing to the low terminal voltage of power sources e.g. photovoltaic-cell (PV cell) and fuel-cell, high gain DC/DC converters with high efficiency are needed in DC microgrid [2], [3]. Fig. 1 shows the typical block diagram of a DC microgrid system where DC-DC converter and proposed configurations are employed to uplift the low generated voltage (12-48V) to an adequate voltage level (200-400V) [4]. Practically, in present, the classical boost converter is not a suitable solution to accomplish high step-up voltage gain due to the effect of the series resistance of capacitor and inductor, effective electromagnet interference (EMI), and high rating components and semiconductor devices. Additionally, the reverse recovery of the diode problem is arising when the converter operates at a high duty ratio to achieve high voltage gain [5], [6]. In literature, to overcome these issues, several DC/DC converter configurations are recently proposed with high gain, high efficiency, and small volume etc., e.g. [7], [8]. The isolated DC/DC converters e.g. push-pull, half and full bridge, flyback, and forward converters are proposed in that high voltage gain is achieved by adjusting the turn of the transformer [8]–[11]. Nonetheless, due to the leakage inductance of the transformer, these configurations are suffered from high power dissipation and a high spike in voltage across switches [4]. Therefore, to overcome these issues, additional active clamping technique and snubber circuits are used [12], [13]. Nevertheless, high side driver and additional control switches increase the cost of the circuitry. Furthermore, transformer core saturation is the other problem associated with isolated converters. In [14], the interleaved converter technique is employed to achieve high gain, reduce filter size, and high efficiency using a reduced number of control switches. Nevertheless, complexity and drive circuitry is increased due to the parallel connection of several converters. Moreover, high loss of energy, high voltage/current stress, and complex switching control logic are other drawbacks of this technique. Therefore, transformer-less DC/DC converters can be a solution where galvanic isolation is not necessary and to achieve high voltage gain, reduced size and cost [15], [16].

I. INTRODUCTION

Duty ratio

\(d_1 \) and \(d_2 \)

Magnetizing angle of Inductor \(L_1 \) in mode I and II (CCM)

\(\alpha'_1 \) and \(\alpha''_1 \)

Magnetizing angle of Inductor \(L_2 \) in mode I and II (CCM)

\(\beta'_1 \) and \(\beta''_1 \)

Demagnetizing angle of Inductor \(L_1 \) and \(L_2 \) in mode III (CCM)

\(\delta'_1 \)

Magnetizing angle of Inductor \(L_1 \) in mode I and II (DCM)

\(\delta''_1 \)

Magnetizing angle of Inductor \(L_2 \) in mode I and III (DCM)

\(\gamma''_1 \) and \(\gamma''_2 \)

Demagnetizing angle of Inductor \(L_1 \) and \(L_2 \) in mode II and III (DCM)

\(I_{L1} \) and \(I_{L2} \)

Current through inductor \(L_1 \) and \(L_2 \)

\(V_{L1} \) and \(V_{L2} \)

Voltage across inductor \(L_1 \) and \(L_2 \)

\(I_{L1}^{(max1)} \) and \(I_{L1}^{(max2)} \)

Peak of current through inductor \(L_1 \) in mode I and II

\(I_{L2}^{(max1)} \) and \(I_{L2}^{(max2)} \)

Peak of current through inductor \(L_2 \) in mode I and II

\(I_{L1}^{(min)} \) and \(I_{L2}^{(min)} \)

Lower peak of current through inductor \(L_1 \) and \(L_2 \)

\(\Delta I_{L1} \) and \(\Delta I_{L2} \)

Peak to peak ripples of inductor \(L_1 \) and \(L_2 \)

\(V_{C1} \) and \(V_{C2} \)

Voltage across capacitor \(C_1 \) and \(C_2 \)

\(V_{C1} \) and \(V_{C2} \)

Average voltage across capacitor \(C_1 \) and \(C_2 \)

\(v_{D1} \) and \(v_{D2} \)

Voltage across diodes \(D_1 \) and \(D_2 \)

\(V_{D1} \) and \(V_{D2} \)

Average voltage across diodes \(D_1 \) and \(D_2 \)

\(i_{S1}, i_{S2}, \) and \(i_{S3} \)

Current through switches \(S_1, S_2, S_3 \)

\(v_{S1} \) and \(v_{S2} \)

Voltage across switches \(S_1 \) and \(S_2 \)

\(\varphi_{AB} \)

Voltage across AB junction (diode \(D + \) switch \(S_3 \))

\(v_1 \) and \(v_2 \)

Input and output voltage (average value of \(V_1 \) and \(V_2 \))

\(R_1 \)

Series resistance of input voltage

\(i_1 \) and \(i_2 \)

Input and output current

\(I_1 \) and \(I_2 \)

Average value of Input and output current

\(V_{GMS1}, V_{GMS2}, \) and \(V_{GMS3} \)

Voltage magnitude of gate pulse for switches \(S_1, S_2, S_3 \)

\(I, II \) and \(III \) (in superscript)

Defines the values in Mode I, II and III

\(X_B \)

Boundary normalized inductor time constant

\(X \)

Normalized inductor time constant

FIGURE 1. Typical blocks of 400V DC microgrid system using proposed converter.
voltage multiplier are utilized to achieve higher voltage gain [17]–[20]. However, a large number of reactive components, semiconductor, switched capacitor and switched inductors stages increase the complexity and price of the converter. In cascaded configurations, it is noteworthy that the requirement of high rating components is increased as the number of cascaded cells increases. Moreover, complex driver circuitry is required to control several switches [16], [21]. In [22], switch voltage stress is reduced by employing additional semiconductor devices and capacitor in a quadruple converter configuration. In [23], non-isolated coupled inductors based converter is proposed to achieve high efficiency and high voltage gain. Using this techniques energy recovery leakage inductance, high efficiency, high voltage, reduced switch stress is achieved by adjusting the turns and coupling factor of coupled inductors. Nevertheless, the large time is required for diode reverse recovery due to coupled inductor leakage inductance. Moreover, the complexity, size, and price of the converter circuitry are increased due to the utilization of coupled inductors. In coupled inductor based converters, the high ripple in the input current is a result of high turns ratio of coupled inductor. Therefore, the stage of the input filter is needed to minimize current ripples, which additionally increases the circuitry and cost of the converter [24]. In [25], capacitor and diode circuitry i.e similar to the switched capacitor is utilized to achieve higher voltage gain with a minimum number of inductor and control switches. In this technique, the capacitors perform similarly to serially connected voltage sources. Later, in [26] active network is combined with a switched capacitor with n cell structure to increase the voltage gain. However, the use of converter is restricted in practical application due to size, low efficiency, high cost, and several components in each cell. Moreover, complex control drive circuitry, additional inductor and active control switch are the other drawbacks of this configuration. Voltage-lift is another boosting technique in which the voltage gain is increased by utilizing the structure of capacitors and inductors, the technique is well presented in [27]. In this technique, inductors are serially discharged with a charged capacitor to increase the voltage at the output side. The main benefits of this structure are high power density, simple structure, less cost, minimum control switches (thus, simple control), small output voltage ripple, and higher efficiency. In [28], three different converters are proposed in that when switches are turned ON and OFF inductors are charged and discharged in parallel and series, respectively. Although using two switches and two inductors along with additional capacitor and diodes, the voltage gain is sufficiently high. In [29], the new non-isolated converter is proposed to achieve high gain for microgrid application. The voltage gain of this converter is adjusted by two duty ratios. However, the voltage gain is limited even though using three high voltage switches and two inductors. To increase the voltage gain, the inductor structure is replaced with stages of the switched inductor [30]. However, the voltage gain is restricted due to the use of several inductors and diodes. In this structure, the energy is transfer to load via multiple loops which degrade the efficiency and performance. Moreover, unequal inductances in the converter affect the characteristics of the converter.

In this paper, a new high gain Transformer-less Double-Duty-Triple-Mode (DDTM) converter is proposed for DC microgrid application. The proposed configuration is capable to provide high voltage gain with wide duty range and reduced switch voltage stress. Moreover, the converter is designed without using transformer, voltage multiplier, and multiple switched capacitor and switched inductor. The main benefits of the proposed configuration are flexibility in selection of duty ratios, the operating range is increased due to double duty ratio, and converter can be controlled in several ways when the input side voltage is perturbed. Moreover, the energy is transfer from input to output without using multiple energy transfer loops which increases the efficiency and performance. Wide duty range and high voltage gain with higher efficiency make proposed converter promising topology for DC microgrid applications.

The paper is organized as follows. Power circuitry of the proposed converters is explained in section II. The steady state analysis in CCM, DCM mode with boundary operating condition is given in section II. The effect of non-ideality of inductors and semiconductor devices on voltage gain and efficiency of the proposed configurations is analyzed in section III. The comparison of DDTM with existing converters is provided in section IV. The experimental investigation results are provided in section V. The thorough discussion on controlling of the converter is provided as a future scope in section VI. Finally, the conclusion is provided in section VII.

FIGURE 2. Power circuitry of the double-duty-triple-mode converter.

II. DOUBLE-DUTY-TRIPE-Mode (DDTM) CONVERTER

A. POWER CIRCUIT

The power circuit of DDTM converter is depicted in Fig. 2. The power circuit is designed with the help of two switches S_1 and S_2, one unidirectional current switch S_3 (diode D is connected in series to make unidirectional), two identical inductors L_1 and L_2, two capacitors C_1 and C_2, and two diodes D_1 and D_2. The output voltage is taken across the capacitor C_2 and power is delivered to load (R). Based on the operation, both inductors L_1 and L_2 considered as identical inductors and have inductance L. Therefore, $L = L_1 = L_2$. Ideal components and semiconductors devices are considered.
in order to explain the characteristics and operating principle. Let’s consider, one switching cycle time period and switching frequency for all the switches are T_S and f_S, respectively. Switches S_1 and S_2 are controlled by the same gate pulse with duty ratio d_1 and the switch S_3 is controlled by gate pulse with duty ratio d_2 with time delay $d_1 T_S$. Using these pulses, the converter is operates in three modes.

B. CCM OPERATION AND ANALYSIS

The CCM operation of the converter is explained as follows.

Fig. 3 depicts the typical characteristics of DDTM converter. Let’s consider α_1, α_1^{II} and α_2, α_2^{II} are the inductor L_1 and L_2 magnetizing angles; where superscript is defines the mode of operation (I and II) and subscript defines the inductor. Also consider β_1^{III} and β_2^{III} are the inductor L_1 and L_2 demagnetizing angles in mode III. The typical inductor current and voltage waveforms are shown in Fig. 4. Due to same characteristics of inductor L_1 and L_2, the areas covered by both inductor voltage waveforms are same. In Fig. 4, A, B, and C are the areas under voltage waveform of inductor L_1, L_2 and capacitor C_1, C_2 voltage and average input current can be

1) **MODE I** $[t_0 \text{ TO } t_1]$

Fig. 5(a) depicts the mode I equivalent power circuit of DDTM converter in which switches S_1 and S_2 are turned ON and the switch S_3 is turned OFF. In this mode, inductors L_1 and L_2 are magnetized by input voltage v_1 through switches S_1 and S_2, respectively. Also, capacitor C_1 is charged by the input voltage v_1 through diode D_1 and switch S_1. Throughout this mode, diodes D_1 and D_2 are forward biased and reversed biased, respectively and the capacitor C_2 is discharged through load (R). The average inductor L_1, L_2 and capacitor C_1, C_2 voltage and average input current can be

![FIGURE 4. Typical voltage and current waveforms for inductor L_1 and L_2 in CCM.](image-url)

![FIGURE 5. Equivalent circuitry of DDTM converter. (a) Mode I, (b) Mode II, (c) Mode III.](image-url)
expressed as follows,

\[
\begin{align*}
V'_L &= V'_{L1} = V'_{L2} = V_1; \quad V'_C = V_1; \quad V''_{C2} = V_2 \\
I'_1 &= I'_{L1} + I'_{L2} + I'_{C1} \\
I''_1 &= I''_{L1} + I''_{L2} + I''_{C1}
\end{align*}
\] (1)

The “I” is expressed in the superscript for mode I. It is noteworthy that the current waveform of inductors \(L_1\) and \(L_2\) is linearly increased with slope \(\alpha'_1\) and \(\alpha'_2\). Moreover, the magnetizing angle of inductors \(L_1\) and \(L_2\) current is same and expressed as follows,

\[
\begin{align*}
\alpha'_1 &= \tan^{-1} \left(\frac{I^{(\max 1)}_{L1} - I^{(\min)}_{L1}}{d_1 T_S} \right) = \tan^{-1} \left(L^{-1}_1 V_1 \right) \\
\alpha'_2 &= \tan^{-1} \left(\frac{I^{(\max 1)}_{L2} - I^{(\min)}_{L2}}{d_1 T_S} \right) = \tan^{-1} \left(L^{-1}_2 V_1 \right)
\end{align*}
\] (2)

we have \(L = L_1 = L_2\), \(\therefore \alpha = \alpha'_1 = \alpha'_2\)

2) MODE II \([t_1 \text{ TO } t_2]\)

Fig. 5(b) depicts the mode II equivalent power circuitry of DDTM converter in which switches \(S_1\) and \(S_2\) are turned OFF and the switch \(S_3\) is turned ON. In this mode, inductors \(L_1\) and \(L_2\) are magnetized in series by input voltage \(v_1\) through switches \(S_3\). In this mode, diodes \(D_1\) and \(D_2\) are reversed biased due to capacitor \(C_1\) and \(C_2\) voltages, respectively. Throughout this mode, the capacitor \(C_2\) discharged through load \((R)\). The average inductor \(L_1\), \(L_2\) and capacitor \(C_1\), \(C_2\) voltage and average input current can be expressed as follows,

\[
\begin{align*}
V''_L &= V''_{L1} = V''_{L2} = \frac{V_1}{2}; \quad V''_{C1} = V_1; \quad V''_{C2} = V_2 \\
I''_{L1} &= I''_{L1} = I''_{L2}
\end{align*}
\] (3)

The “II” is expressed in the superscript for mode II. It is noteworthy that the current waveform of inductors \(L_1\) and \(L_2\) is linearly increased with slope \(\alpha''_1\) and \(\alpha''_2\). Moreover, the magnetizing angle of \(L_1\) and \(L_2\) current is same and expressed as follows,

\[
\begin{align*}
\alpha''_1 &= \tan^{-1} \left(\frac{L^{-1}_1 V_1}{2} \right) = \tan^{-1} \left(\frac{I^{(\max 2)}_{L1} - I^{(\min)}_{L1}}{d_2 T_S} \right) \\
\alpha''_2 &= \tan^{-1} \left(\frac{L^{-1}_2 V_1}{2} \right) = \tan^{-1} \left(\frac{I^{(\max 2)}_{L2} - I^{(\min)}_{L2}}{d_2 T_S} \right)
\end{align*}
\] (4)

we have \(L_1 = L_2\), \(\therefore \alpha = 2\alpha''_1 = 2\alpha''_2\)

3) MODE III \([t_2 \text{ TO } t_3]\)

Fig. 5(c) depicts the mode III equivalent power circuitry of DDTM converter in which all the switches \(S_1\), \(S_2\), and \(S_3\) are turned OFF. In this mode, the series connection of input voltage \(v_1\), inductor \(L_1\) and \(L_2\), and capacitor \(C_1\) supplied power to load \((R)\) and also charges the capacitor \(C_2\). Hence, inductor \(L_1\) and \(L_2\) are demagnetized and capacitor \(C_1\) is discharged serially through load \((R)\). Throughout this mode, diodes \(D_1\) and \(D_2\) are reversed biased and forward biased, respectively. The average inductor \(L_1\), \(L_2\) and capacitor \(C_1\), \(C_2\) voltage and average input current can be expressed as follows,

\[
\begin{align*}
V''''_L &= V''''_{L1} = V''''_{L2} = V_1 - V_2 + V_{C1} = \frac{2V_1 - V_2}{2} \\
V''''_{C2} &= V_2, \quad I''''_{L1} = I''''_{L2} = I''''_{L1} = I''''_{L2}
\end{align*}
\] (5)

The “III” is expressed in the superscript for mode III. It is noteworthy that the current waveform of inductors \(L_1\) and \(L_2\) is linearly decreased with slope \(\beta''''_1\) and \(\beta''''_2\). Moreover, the demagnetizing angle of \(L_1\) and \(L_2\) current is same and expressed as follows,

\[
\begin{align*}
\beta''''_1 &= \tan^{-1} \left(\frac{V_1 - V_2}{L_1} \right) = \tan^{-1} \left(\frac{I^{(\min)}_{L1} - I^{(\max 2)}_{L1}}{L_1 \left(1 - d_1 T_S - d_2 T_S\right)} \right) \\
\beta''''_2 &= \tan^{-1} \left(\frac{V_1 - V_2}{L_2} \right) = \tan^{-1} \left(\frac{I^{(\min)}_{L2} - I^{(\max 2)}_{L2}}{L_2 \left(1 - d_1 T_S - d_2 T_S\right)} \right)
\end{align*}
\] (6)

we have \(L_1 = L_2\), \(\beta = \beta''''_1 = \beta''''_2\)

From Fig. 4, the area covered by the inductor \((i.e. L_1, L_2)\) voltage waveform in Mode I, II, III are relates as follows,

\[
\int_{A}^{B} V'_L dt + \int_{B}^{C} V''_L dt + \int_{C}^{\left(1-d_1-d_2\right)T_S} V''''_L dt = 0
\] (7)

By substituting (1), (3), and (5) in (7), the voltage gain for CCM is obtained as follows

\[
G_{CCM} = \frac{V_2}{V_1} = \frac{2 - d_2}{1 - d_1 - d_2}
\] (8)

The plot of voltage gain versus duty ratio \(d_1\) and \(d_2\) is shown in Fig. 6. It is noteworthy that the proposed converter gives high voltage gain by selecting appropriate duty ratios \(d_1\) and \(d_2\). The region is shaded in which the proposed DDTM converter provides a voltage gain in the range 10 to 20. Further to explain Fig. 6, the effects of each duty ratio \(d_1\) and \(d_2\) on voltage gain are shown in Fig. 7(a) and 7(b). It is noteworthy that Fig. 6 is a combined version of Fig. 7(a) and Fig. 7(b). In Fig. 7(a), the plot of voltage gain in CCM versus duty ratio \(d_1\) is given by considering the different values for the duty ratio \(d_2\). It is observed that in each case the voltage gain is increased if duty ratio \(d_2\) is constant and duty ratio \(d_1\) is increased. When addition of duty ratios \(d_1\) and \(d_2\) i.e. \(d_1 + d_2\) is constant in between 0 to 1, it is observed that the voltage gain is increased if duty ratio \(d_2\) is decreased (The example is shown in Fig. 7(a) for \(d_1 + d_2 = 0.8\) and \(d_1 + d_2 = 0.9\)). In Fig. 7(b), the plot of voltage gain in CCM versus duty ratio \(d_2\) is given with considering the different values for the duty ratio \(d_1\). It is observed that in each case the voltage gain is increased if duty ratio \(d_1\) is constant and duty ratio \(d_2\) is increased. When addition of \(d_1\) and \(d_2\) i.e. \(d_1 + d_2\) is constant in between 0 to 1, it is observed that the gain is decreased if duty ratio \(d_1\) is decreased (The example is shown in Fig. 7(b) for \(d_1 + d_2 = 0.8\) and \(d_1 + d_2 = 0.9\)).
C. DCM OPERATION AND ANALYSIS

The DDTM converter DCM operation is divided in four modes. Fig. 8 depicts the typical DCM characteristics of DDTM converter. Let’s consider δ_1^I, δ_1^II, δ_2^I, and δ_2^II are the inductor L_1 and L_2 magnetizing angles; where superscript is defines the mode of operation (I and II) and subscript defines the inductor. Also consider γ_1^{III}, γ_2^{III} are the inductor L_1 and L_2 demagnetizing angles in mode III. The typical inductor current and voltage waveforms in DCM are shown in Fig. 9. Due to same characteristics of inductor L_1 and L_2, the areas covered by both inductors voltage waveforms are same. In Fig. 9, M, N, O, and P are the areas under voltage waveform of inductor L_1 and L_2 for modes I, II, III, and IV, respectively. The DCM operation of the DDTM converter is explained as follows,
1) MODE I \([t_0 \text{ TO } t_1]\)

The equivalent circuit is same as mode I of CCM (Fig. 5(a)). In this mode, switches \(S_1\) and \(S_2\) are turned ON and the switch \(S_3\) is turned OFF. For this mode, the maximum amplitude of current through inductor \(L_1\) and \(L_2\) can be expressed as follows,

\[
\begin{align*}
I_{L1}^{\text{(Max1)}} &= L_1^{-1} V_1 d_1 T_S = d_1 T_S \tan(\delta_1^I) \\
I_{L2}^{\text{(Max1)}} &= L_2^{-1} V_1 d_1 T_S = d_1 T_S \tan(\delta_2^I) \\
\end{align*}
\]

we know \(L = L_1 = L_2\), \(\delta_1^I = \delta_2^I\)

\[
I_{L1}^{\text{(Max1)}} = I_{L1}^{\text{(Max2)}} = I_{L2}^{\text{(Max2)}}
\]

2) MODE II \([t_1 \text{ TO } t_2]\)

The equivalent circuit is same as mode II of CCM (Fig. 5(b)). In this mode, switches \(S_1\) and \(S_2\) are turned OFF and the switch \(S_3\) is turned ON. For this mode, the maximum amplitude of current through inductor \(L_1\) and \(L_2\) can be expressed as follows,

\[
\begin{align*}
I_{L1}^{\text{(Max2)}} &= \left(L_1^{-1} V_1 \right) \frac{d_2}{2} T_S \\
&= \frac{d_1 T_S \tan(\delta_1^I) + d_2 T_S \tan(\delta_2^I)}{2} \\
I_{L2}^{\text{(Max2)}} &= \left(L_2^{-1} V_1 \right) \frac{d_2}{2} T_S \\
&= \frac{d_1 T_S \tan(\delta_1^I) + d_2 T_S \tan(\delta_2^I)}{2} \\
\end{align*}
\]

we know \(L = L_1 = L_2\), \(\delta_1^I = 2\delta_2^I = \delta_1^I = \delta_2^I\)

\[
I_{L1}^{\text{(Max2)}} = I_{L2}^{\text{(Max2)}}
\]

3) MODE III \([t_2 \text{ TO } t_3]\)

The equivalent circuit is same as mode III of CCM (Fig. 5(c)). In this mode, all the switches \(S_1\), \(S_2\) and \(S_3\) are turned OFF and at the end of this mode (at \(t = t_3\)), the inductor \(L_1\) and \(L_2\) currents reached to zero. For this mode, the maximum amplitude of current through inductor \(L_1\) and \(L_2\) can be expressed as follows,

\[
\begin{align*}
I_{L1}^{\text{(Max2)}} &= \frac{V_{C2} - V_{C1} - V_1}{2} L_1^{-1} d_3 T_S \\
&= \frac{(V_2 - 2V_1)}{2} L_1^{-1} d_3 T_S = d_3 T_S (\gamma_1^{III}) \\
I_{L2}^{\text{(Max2)}} &= \frac{V_{C2} - V_{C1} - V_1}{2} L_2^{-1} d_3 T_S \\
&= \frac{(V_2 - 2V_1)}{2} L_2^{-1} d_3 T_S = d_3 T_S (\gamma_2^{III}) \\
\end{align*}
\]

we know \(L = L_1 = L_2\), \(\gamma_1^{III} = \gamma_2^{III}\)

\[
I_{L1}^{\text{(Max2)}} = I_{L2}^{\text{(Max2)}}
\]

4) MODE IV \([t_3 \text{ TO } t_4]\)

In this mode, all the switches \(S_1\), \(S_2\) and \(S_3\) are turned OFF and inductor \(L_1\) and \(L_2\) currents are zero. The equivalent circuitry for this DCM mode is shown in Fig. 10. Throughout this mode, the inductor \(L_1\) and \(L_2\) energy is zero and capacitor \(C_2\) discharged through to load. Using (10) and (11), the value of \(d_3\) is can be obtained as follows,

\[
d_3 = \frac{V_1 (2d_1 + d_2)}{V_2 - 2V_1}
\]

The average capacitor \(C_2\) current can be expressed as follows,

\[
\begin{align*}
I_{C2}^{\text{Max2}} &= \frac{L_1^{-1} V_1 (d_3 T_2 - 2d_2 T_S)}{2} \frac{d_2}{2} T_S \\
&= \frac{I_{L1}^{\text{Max2}} d_3}{2} - I_2 \\
I_{C2}^{\text{Max2}} &= \frac{\sqrt{L_1^{-1} V_1}}{4 (V_2 - 2V_1)} \frac{(d_2 + 2d_1)}{T_2} - \frac{V_2}{R}
\end{align*}
\]

At steady state, the average current through any capacitor is zero. Therefore,

\[
\begin{align*}
\left(\frac{V_1^2 (d_2 + 2d_1)^2 T_S}{4R (V_2 - 2V_1)} \right) &= \frac{V_2}{R}
\end{align*}
\]

Using (14), the voltage gain for DCM is obtained as follows

\[
G_{DCM} = \frac{V_2}{V_1} = 1 + \sqrt{1 + \frac{(d_2 + 2d_1)^2}{4\chi}}, \chi = L/RT_s
\]
FIGURE 11. Plot voltage gain in DCM and effect of duty ratio (a) Plot of voltage gain versus duty ratio \(d_1\) and \(d_2\), (b) voltage gain versus duty ratio \(d_1\) by considering the different values for duty ratio \(d_2\), (c) voltage gain versus duty ratio \(d_2\) by considering the different values for duty ratio \(d_1\).

The voltage gain in DCM versus duty ratio \(d_2\) is given by considering different values for duty ratio \(d_1\). It is observed that in each case of Fig. 11(c), the voltage gain is increased if duty ratio \(d_1\) is constant and duty ratio \(d_2\) is increased. When addition of \(d_1\) and \(d_2\) (i.e. \(d_1 + d_2\)) is constant in between 0 to 1, it is observed that the voltage gain is decreased if duty ratio \(d_1\) is decreased (The example is shown for \(d_1 + d_2 = 0.9\)).

Using (8) and (15), the boundary for CCM and DCM can be obtained as follows,

\[
\chi_B = \frac{(d_2 + 2d_1)(1 - d_1 - d_2)^2}{4(2 - d_2)}
\]

where boundary normalized inductor time constant is \(\chi_B\).

In Fig. 12(a), the plot of \(\chi_B\) versus duty ratio \(d_1\) is shown by considering various values of duty ratio \(d_2\). This graph clearly explained the effect of duty ratio \(d_1\) on \(\chi_B\). It is investigated that after attaining the peak value there is decrement in normalized inductor time constant \(\chi_B\) when duty ratio \(d_1\) is increased. Moreover, at constant \(d_1\), the magnitude of \(\chi_B\) is reduced when duty ratio \(d_2\) is increases.

In Fig. 12(b), the plot of \(\chi_B\) versus duty ratio \(d_2\) is shown by considering various values of duty ratio \(d_1\). This graph clearly explained the effect of duty ratio \(d_2\) on \(\chi_B\). It is investigated that after attaining the peak value there is a decrement in normalized inductor time constant \(\chi_B\) when duty ratio \(d_2\) is increased. Moreover, at constant \(d_2\), the magnitude of \(\chi_B\) is reduced when duty ratio \(d_1\) is increases.

The boundary surface of DCM and CCM is dependent on duty ratios \(d_1\), \(d_2\), and \(\chi_B\). Hence, to understand the combined effect of duty ratio \(d_1\), \(d_2\), and \(\chi_B\) on boundary of DCM and CCM, the surface plot of \(\chi_B\) versus duty ratios \(d_1\) and \(d_2\) is plotted in Fig. 13(a). In Fig. 13(a), the area under the drawn surface is DCM region and area outside the surface is CCM region. Additionally, DCM region is shown in Fig. 13(b) by varying duty ratio \(d_1\) for various values of duty ratio \(d_2\). It is clearly visible that DCM region is reduced when the value of duty ratio \(d_2\) is increased. It is also investigated that the DCM region becomes narrow when the duty ratio \(d_2\) is decreased.
and duty ratio d_2 is constant. Hence, the DCM operation is dependent on the both duty ratios d_1 and d_2, and χ_B. When χ_B is higher than χ then DCM occurs for DDTM converter. Nevertheless, the condition in order to operate converter in CCM is as follows,

$$\frac{(d_2 + 2d_1)(1 - d_1 - d_2)^2}{4(2 - d_2)} < \left(\frac{\chi}{R_{T_S}} \right)$$ \hspace{1cm} (17)

III. EFFICIENCY INVESTIGATION OF DDTM CONVERTER

The non-idealities are considered in order to analyze the efficiency of DDTM converter. The power circuit of DDTM converter is shown in Fig. 14 with non-idealities. The series resistances R_{L_1} and R_{L_2} are considered as non-ideality of inductor L_1 and L_2, respectively. The resistance R_1 is considered in series with input voltage as a non-ideality of input voltage source. The switches S_1, S_2 and S_3 non-ideality is shown by ON state resistance $R_{S1(ON)}$, $R_{S2(ON)}$, and $R_{S3(ON)}$, respectively. For simplicity, non-ideality of diode D is neglected. The diode D_1 and D_2 non ideality is shown by forward resistance R_{F-D1}, R_{F-D2} and threshold voltage V_{D1-TH} and V_{D2-TH}, respectively.

A. MODE I [t_0 TO t_1]

The average current and voltage through/across inductor and capacitor is obtained as follows,

$$i_{C1}^L \approx I_{1}^L - I_{L1}^H - I_{L2}^H; \quad i_{C2}^L \approx -(V_2R_1^{-1})$$

$$V_{L1}^H \approx V_1 - I_{L1}^H R_{L1} - I_{S1}^H R_{S1(ON)} - I_1^R R_1$$

$$V_{L2}^H \approx V_1 - I_{L2}^H (R_{L1} + R_{S2(ON)}) - I_1^R R_1$$

$$V_{C1}^L \approx V_1 - I_{L1}^H R_{1} - V_{D1-TH} - I_{D1}^H (R_{F-D1}) - I_{S1}^H R_{S1(ON)}$$

\hspace{1cm} (18)

B. MODE II [t_1 TO t_2]

The average current and voltage through/across inductor and capacitor is obtained as follows,

$$V_{L1}^H + V_{L2}^H = V_1 - I_{L1}^H (R_{L1} + R_{L2}) - I_1^H (R_1 + R_{S3(ON)})$$

$$I_{L1}^H = I_{C1}^L = I_{L2}^H; \quad I_{C2}^L \approx -(V_2R_1^{-1})$$

\hspace{1cm} (19)
C. MODE II [t2 TO t3]

The average current and voltage of inductor and capacitor is obtained as follows,

\[
\begin{align*}
V_{L1}^{III} + V_{L2}^{III} & = V_1 + V_{C1} - V_2 \\
- I_{L1}^{III} (R_{L1} + R_{L2}) & + I_{L2}^{III} (R_{L1} + R_{L2}) + V_{D2-TH} \\
I_1^{III} & = I_{L1}^{III} + I_{L2}^{III} \approx I_1^{III} - (V_2 R^{-1})
\end{align*}
\]

(20)

To design the DDTM converter, identical inductor L1 and L2 i.e (L = L1 = L2) are considered with same effective series resistance R_{L1} = R_{L2} = R_{L-ESR}. All the control switches are identical and ON state resistance of all the switches are same, that means R_{S1(ON)} = R_{S2(ON)} = R_{S3(ON)} = R_{S(ON)}. Identical diodes are considered with same forward resistance R_{F-D1} = R_{F-D2} = R_{F-D} and same threshold voltage i.e means V_{D-TH} = V_{D1-TH} = V_{D2-TH}.

Based on the consideration, (18)-(20) rewritten as follows,

\[
\begin{align*}
I_{C1}^{I} & \approx I_1^I - I_{L1}^I - I_{L2}^I; \quad I_{C2}^{I} \approx -(V_2 R^{-1}) \\
V_{L1}^{I} & \approx V_{L2}^{I} \approx V_1 - I_{L1}^{I} (R_{L-ESR} + R_{S(ON)}) - I_{L2}^{I} R_1 \\
V_{C1}^{I} & \approx V_1 - I_{L1}^{I} R_1 - V_{D-TH} - I_{D1}^{I} (R_{F-D} - R_{S1(ON)}) \\
V_{L1}^{II} + V_{L2}^{II} & = V_1 - I_{L1}^{II} (2 R_{L-ESR}) - I_{L2}^{II} (R_1 + (R_{S(ON)})) \\
I_{L1}^{II} & = I_{L2}^{II} \approx I_1^{II} - (V_2 R^{-1}) \\
V_{L1}^{III} + V_{L2}^{III} & = V_1 + V_{C1} - V_2 \\
- I_{L1}^{III} (R_{L-ESR}) & + I_{L2}^{III} (R_{L-ESR}) + V_{D2-TH} \\
I_1^{III} & = I_{L1}^{III} + I_{L2}^{III} \approx I_1^{III} - (V_2 R^{-1})
\end{align*}
\]

(21)

(22)

(23)

The current through inductors L1 and L2 can be expressed as follows,

\[
\begin{align*}
d_1 T_S & \int_0 (I_{L1}^{II}) dt + d_2 T_S \int_0 (I_{L2}^{II}) dt + T_S (1 - d_1 - d_2) \\
0 & \int_0 (I_{C2}^{II}) dt = 0
\end{align*}
\]

\[
I_L = (1 - d_1 - d_2)^{-1} V_2 R^{-1}
\]

(24)

The output voltage is obtained as follows,

\[
\begin{align*}
d_1 T_S & \int_0 (V_{L1}^{I}) dt + d_2 T_S \int_0 (V_{L2}^{I}) dt + T_S (1 - d_1 - d_2) \\
V_2 & = \left[\frac{2 R_S d_1 + R_S d_2 + 2 R_{L-ESR}}{V_1} + V_{D-TH} \right] (1 - d_1 - d_2) + (1 - d_1 - d_2) \left[\frac{V_{C1}}{V_1} \right]
\end{align*}
\]

\[
\begin{align*}
(1 + d_1) \quad \frac{\eta}{(1 - d_1 - d_2)^{-1}} & + \frac{2 n V_C C_1 d_1}{T_S} + P_{SW}
\end{align*}
\]

(25)

(26)

(27)

(28)

Let’s assume, power loss due to switching of switches S1, S2, and S3 is P_{S1-SW}, P_{S2-SW}, and P_{S3-SW}, respectively. The total switching power loss P_{S-SW} can be calculated as follows,

\[
P_{S-SW} = \sum_{i=1, 2, 3} P_{Si-SW} = \frac{1}{T_S} \begin{pmatrix} (t_{r1} + t_{r1})(V_{S1} \times I_{S1}) \\ (t_{r2} + t_{r2})(V_{S2} \times I_{S2}) \\ (t_{r3} + t_{r3})(V_{S3} \times I_{S3}) \end{pmatrix}
\]

(29)

IV. COMPARISON OF DDTM WITH EXISTING CONVERTER

Table-1 tabulates the detail comparison of proposed DDTM converter and existing converter. In [15], diode, capacitor and switched inductor network is used with SEPIC and ZETA converter to enhance the voltage gain. However, the voltage gain is not enhanced with high factor although using multiple capacitors and switched inductor network. In [28], three different converter circuits (converter-1, 2, 3) are proposed by using two switches and diode-capacitor network. However, there is only slight improvement in voltage gain compared to switched inductor boost converter though using two inductor and capacitor network along with two switches. Moreover, these converters operation is dependent on the single duty. Therefore, these configurations are not suitable solution to achieve higher voltage gain with wide range of duty ratio. Compared to the proposed converter, the converter mentioned in case 7 of table 1 utilizing one additional capacitor to lift the voltage. If consider d = d1 + d2, theoretically, the gain of the converter of case 7 provides a higher voltage gain. However, in structure of the converter (case 7), extra clamping
TABLE 1. DDTM converter comparison with recently proposed DC-DC converter for higher voltage.

G_{DCM} = V_1/V_2	Normalized intermediate capacitor voltage rating (V_1/V_2)	Normalized PIV of diode	Normalized switch voltage	Number of switches (N_c)
1	1/(1-d)	-1	-1	1
2	(1-d)/(1-d)	-1	-1	1
3	(1+d)/(1-d)	-(G_{DCM}+1)/2G_{DCM}	-(G_{DCM}+1)/2G_{DCM}	1
4	(2-d)/(1-d)	(G_{DCM}+1)/G_{DCM}	(G_{DCM}+1)/G_{DCM}	1
5	(1+d)/(1-d)	-(G_{DCM}+1)/2G_{DCM}	-(G_{DCM}+1)/2G_{DCM}	1
6	2/(1-d)	-1	-1/2	2
7	(3-d)/(1-d)	1/G_{DCM}	-(G_{DCM}+1)/2G_{DCM}	2
8	(1-d)/(1-d)/(1-d)	-1	-1	3
9	(2-d)/(1-d)/(1-d)	1/G_{DCM}	-(G_{DCM}+1)/2G_{DCM}	3

1: Classical boost converter, 2: Boost converter with switched inductor [28], 3: Converter derived from ZETA converter [15], 4: Converter derived from SEPIC [15], 6: converter-2 [28], 7: converter-3 [28], 8: converter in [29], 9: Proposed DDTM converter, N_c: Number of switches, N_c:

V. EXPERIMENTAL RESULTS

A. PROTOTYPE DESCRIPTION

The prototype is developed in the laboratory to investigate and validate the performance and theoretical analysis of the DDTM converter. The designed prototype is shown in Fig. 15 and the parameters are shown in Table 2. The prototype is built with considering the parameters: power 500W, output/input voltage 400V/38V, and typical duty ratio d_1 = 50% and d_2 = 35%. Two ferrite core identical inductor L_1 and L_2 with inductance 500µH, capacitor C_1 with 100µF/50V (two 50µF/50V capacitors in parallel), capacitor C_2 with 100µF/450V (two 50µF/450V capacitors in parallel), Flat-type heat sink for diodes (STTH30R04) and
FIGURE 16. Block diagram of switching gate pulse generation scheme used for proposed DDTM converter.

FIGURE 17. Waveform associated with pulse generation scheme.

switches FDP19N40 are used to design the circuitry of the DDTM converter.

B. PULSE GENERATION SCHEME AND LOGIC

Fig. 16 depicts the block diagram of switching gate pulse generation scheme which is used to test the performance of the proposed converter at different set of duty ratios. The switching gate pulse generation scheme is designed by using multiplexer, comparator, logic, constant, and counter blocks. The waveform associated with pulse generation scheme is shown in Fig. 17. Two 8:1 multiplexers (Mux-1 and Mux-2) are used to select the value of duty ratio. Four different values (50%, 45%; 40%, 35%) are provided for the duty ratio d_1 and the required value is selected through Mux-1. Mux-2 is used to select the value of $d_1 + d_2$ from the given four different values (85%, 80%; 75%, 70%). Using counter block, sawtooth carrier waveform is generated and compared with output of Mux-1 to generate switching gate pulses (A in Fig. 17) for switches S_1 and S_2. The output of Mux-2 is compared with generated sawtooth carrier to generate pulse with duty ratio $d_1 + d_2$ (C in Fig. 17). Finally, the waveform A is XOR with waveform C to generate pulse (B in Fig. 17) for switch S_3. The 50kHz switching pulses with different 7 sets of duty ratios ($d_1 = 50\%$, $d_2 = 35\%$ (typical set); $d_1 = 45\%$, $d_2 = 35\%$; $d_1 = 40\%$, $d_2 = 35\%$; $d_1 = 35\%$, $d_2 = 35\%$; $d_1 = 35\%$, $d_2 = 35\%$; $d_1 = 35\%$, $d_2 = 40\%$; $d_1 = 35\%$, $d_2 = 45\%$; $d_1 = 35\%$, $d_2 = 50\%$) are generated using FPGA in order to investigate the effect duty ratios on voltage gain, performance, and efficiency of the DDTM converter. According to logic, switches S_1 and S_2 are turned ON with same switching pulse whereas switch S_3 is turned ON when switches S_1 and S_2 are turned OFF. Therefore, in mode I, switches S_1, S_2, and S_3 are turned ON, ON, OFF, respectively. In mode II, switches S_1, S_2, and S_3 are turned OFF, OFF, ON, respectively. In mode-III; all the switches S_1, S_2, S_3 are turned OFF.
C. EXPERIMENTAL RESULTS AT TYPICAL DUTY RATIO

The above discussed pulse generation scheme is utilized to generate two gate pulses; one for switch S_1 and S_2 with duty ratio 50% (d_1), and second for switch S_3 with delay 50% of T_S (d_2), and duty ratio 35% (d_2).

Fig. 18(a) shows experimental observed waveforms of input, output voltage (v_1, v_2) and input, output current (i_1, i_2). The observed average values of input voltage (V_1), output voltage (V_2), input current (I_1), and output current (I_2) is 38.2V, 400.32V, 1.24A, 13.61A, respectively. Fig. 18(b) shows experimental observed waveforms of inductor L_1 and L_2 (i_1, and i_2) currents along with input, output voltage (v_1, v_2). The observed average value of inductor L_1 current (i_{L1}), inductor L_2 current (i_{L2}) is 9.23A and 9.17A, respectively. It is clearly visible that both inductors L_1 and L_2 are charged in mode I and mode II. In Fig. 18(b), it is practically seen that the magnetizing angles for both inductors in mode II are nearly half of the magnetizing angles for both inductors in mode I (i.e $\alpha_1' = 2\alpha_1'' = \alpha_2' = 2\alpha_2''$) which is expected according to theory. It is noteworthy that both the inductors are charging with same magnetizing angles (i.e $\alpha_1' = \alpha_2'$ and $\alpha_1'' = \alpha_2''$). It is clearly visible that both inductors L_1 and L_2 are discharged in mode III with same demagnetizing angle (i.e $\beta_1''' = \beta_2'''$).

Fig. 18(c) shows experimental observed waveforms of input current (i_1), output voltage (v_2), inductor L_1 and L_2 current (i_{L1} and i_{L2}). It is clearly visible that the both inductor currents (i_{L1} and i_{L2}) in mode II and III are same as input current. In starting mode I, the transient current observed in the input current due to charging of capacitor C_1 as shown in Fig. 18(e). Fig. 18(d) shows experimental observed waveforms of capacitor C_1 and C_2 voltages with along inductor L_1 and L_2 (i_{L1} and i_{L2}) currents. The observed value of capacitor C_1 voltage (V_{C1}), capacitor C_2 voltage (V_{C2}) is 37.7V, and 400.33V, respectively. It is notable that the voltage across capacitor C_1 is nearly equal to input and voltage across capacitor C_2 is equal to output voltage with is expected. Fig. 18(e) shows experimental observed waveforms of voltage across switches S_1, S_2, S_3, and inductor L_1 current, (f) voltage across diode D_1 and D_2, input current (i_1), and output voltage (v_2).

D. EXPERIMENTAL RESULTS WITH REGULATION IN DUTY RATIO

At constant load $R = 320\Omega$, duty ratio $d_2 = 35\%$, and input voltage 38V; the duty ratio d_1 is regulated from 50 to 35\% with the interval of 5\% in order to investigate effect duty ratio on voltage gain, performance, and efficiency of the DDTM converter. The obtained waveform of input, output voltage (v_1, v_2) and input, output current (i_1, i_2) is shown in Fig. 19. When $d_1 = 50\%$ and $d_2 = 35\%$ (W in Fig. 19), the average output voltage, output current, input current are 400.32V, 1.24A, and 13.61A, respectively. When $d_1 = 45\%$ and $d_2 = 35\%$ (X in Fig. 19), the average output voltage,
When input current are 282.83V, 0.88A, and 7.06A, respectively. (Y in Fig. 20), the average output voltage, output current, and duty ratio on voltage gain, performance, and efficiency of the DDTM converter. The obtained waveform of input, output voltage (v1, v2) and input, output current (i1, i2), W: d1 = 50%, d2 = 35%; X: d1 = 45%, d2 = 35%; Y: d1 = 40%, d2 = 35%; Z: d1 = 35%, d2 = 35%.

At constant load R = 320Ω, duty ratio d1 = 35%, and input voltage 38V; the duty ratio d2 is regulated from 35 to 50% with the interval of 5% in order to investigate effect duty ratio on voltage gain, performance, and efficiency of the DDTM converter. The obtained waveform of input, output voltage (v1, v2) and input, output current (i1, i2) is shown in Fig. 20. When d1 = 35% and d2 = 35% (W in Fig. 20), the average output voltage, output current, input current are 244.11V, 0.64A, and 3.77A, respectively. When d1 = 35% and d2 = 40% (X in Fig. 20), the average output voltage, output current, input current are 205.11V, 0.80A, and 5.62A, respectively. When d1 = 35% (Y in Fig. 19), the average output voltage, output current, input current are 358.2V, 0.95A, and 8.20A, respectively. Based on the experimental investigation, the efficiency graphs are plots by considering two duty ratios, when the voltage changed the operation of proposed converter can be controlled in three possible ways 1) fixed duty ratio d1 and variation in duty ratio d2, 2) variation in duty ratio d1 and fixed duty ratio d2, and 3) variation in both duty ratio d1 and d2.

VI. FUTURE SCOPE-DIFFERENT CONTROL SCHEMES

The output voltage of proposed DDTM converter is based on the two duty ratios d1 and d2. Owing to advantages of two duty ratios, when the voltage changed the operation of proposed converter can be controlled in three possible ways 1) fixed duty ratio d1 and variation in duty ratio d2, 2) variation in duty ratio d1 and fixed duty ratio d2, and 3) variation in both duty ratio d1 and d2.

A. CONTROL SCHEME-1: FIXED DUTY RATIO d1 AND VARIATION IN DUTY RATIO d2

In this scheme, during perturbations of input voltage V1, the output voltage V2 is controlled at constant value by variation in duty ratio d2. The pulses associated this operation is shown in Fig. 22, where duty ratio d2 is changed by +/-Δd2 to achieve required output voltage V2. The value of +/-Δd2 is based on the perturbation in input voltage -/+ΔV1.

B. CONTROL SCHEME-2: FIXED DUTY RATIO d1 AND VARIATION IN DUTY RATIO d1

In this scheme, during perturbations of input voltage V1, the output voltage V2 is controlled at constant value by variation in duty ratio d1. The pulses associated this operation is shown in Fig. 23, where duty ratio d1 is changed by +/-Δd1 to achieve required output voltage V2. It is noticeable that the duty ratio d2 is constant; however position is changed according to new duty ratio d1. The value of +/-Δd1 is based on the perturbation in input voltage -/+ΔV1.
FIGURE 20. Experimental observed waveforms: input, output voltage \(v_1, v_2\) and input, output current \(i_1, i_2\), W: \(d_1 = 35\%\), \(d_2 = 35\%\), X: \(d_1 = 35\%, d_2 = 40\%\), Y: \(d_1 = 35\%, d_2 = 45\%\), Z: \(d_1 = 35\%, d_2 = 50\%\).

FIGURE 21. Efficiency of the DDTM converter at the different set of duty ratios (a) variation in duty ratio \(d_1\) with maintain constant load and duty ratio \(d_2 = 35\%\), (b) variation in duty ratio \(d_2\) with maintain constant load and duty ratio \(d_1 = 35\%\).

C. CONTROL SCHEME-3: VARIATION IN BOTH DUTY RATIOS \(d_1\) AND \(d_2\)

In this scheme, during perturbations of input voltage \(V_1\), the output voltage \(V_2\) is controlled at constant value by variation in both duty ratios \(d_1\) and \(d_2\). The pulses associated this operation is shown in Fig. 24, where duty ratios \(d_1\) and \(d_2\) are changed by \(+/-\Delta d_1\) and \(+/-\Delta d_2\) to achieve required output voltage \(V_2\). It is noticeable that the duty ratios \(d_1\) and \(d_2\) is varied as well as the position of duty ratio \(d_2\) is changed according to new duty ratio \(d_1\). The value of \(+/-\Delta d_1\) and \(+/-\Delta d_2\) is based on the perturbation in input voltage \(-/+\Delta V_1\). For this scheme, variation of both duty ratios \(d_1\) and \(d_2\) can be possible in six different ways (given in Table-3). It is noticeable that increment or decrement in one duty ratio and decrement or increment in another duty ratio also possible to achieved desired output voltage.
TABLE 3. Summary of possible control scheme during perturbation of input voltage.

Control Scheme	Perturbation in input voltage	Previous duty ratio \((d_1)\)	New duty ratio \((d_1')\)	Previous duty ratio \((d_2)\)	New duty ratio \((d_2')\)	changed in position of duty ratio \((d_2)\)
1	\(V_1 + \Delta V_1\)	\(d_1\)	\(d_1\)	\(d_2\)	\(d_2 + \Delta d_2\)	No
	\(V_1 - \Delta V_1\)	\(d_1\)	\(d_1\)	\(d_2\)	\(d_2 - \Delta d_2\)	No
2	\(V_1 + \Delta V_1\)	\(d_1\)	\(d_1 - \Delta d_1\)	\(d_2\)	\(d_2\)	Yes
	\(V_1 - \Delta V_1\)	\(d_1\)	\(d_1 - \Delta d_1\)	\(d_2\)	\(d_2 + \Delta d_2\)	Yes
3	\(V_1 + \Delta V_1\)	\(d_1\)	\(d_1 + \Delta d_1\)	\(d_2\)	\(d_2 + \Delta d_2\)	Yes
	\(V_1 - \Delta V_1\)	\(d_1\)	\(d_1 + \Delta d_1\)	\(d_2\)	\(d_2 + \Delta d_2\)	Yes

The control scheme-1 and scheme-2 can be called half or independent control schemes. Since during perturbation of input voltage \(v_1\), only one duty ratio is varied to achieve required output voltage \(V_2\) and the value of another duty ratio is fixed throughout the operations \((d_1\) is fixed in scheme-1 and \(d_2\) is fixed in scheme-2). The control scheme-3 is called full or dependent control schemes. During perturbation of input voltage \(v_1\), the value of both duty ratio \(d_1\) and \(d_2\) is varied and dependent on each other throughout the operation.

Due to high voltage gain, unidirectional power flow, wide duty range operation, and flexibility in control and selection of duty ratio, the proposed converter is more suitable and good choice for 400V DC microgrid PV application.

Additional advantages could be a scenario in that, in future the proposed converter provides an option that one may use one duty ratio for MPPT tracking and another to control output voltage.

VII. CONCLUSION

A new Double-Duty-Triple-Mode (DDTM) converter is proposed with high voltage gain for DC microgrid application. The proposed converter topology is transformer-less and has wide duty ratio range. The higher voltage gain is achieved without employing any complex techniques like multiplier, coupled inductor, and multiple lifting techniques. The operating principle, CCM and DCM characteristics waveform, and efficiency analysis is presented in detail. The main advantages of the DDTM converter is that the voltage gain is adjusted by controlling two different duty ratios and thus, offers wide operating duty range which is not possible through any single switch converter. The DDTM converter is compared with existing topologies and it is noteworthy that the proposed converter provides a good choice to attain high voltage with reduced voltage stress on semiconductor and component count. The future scope and advantages of two duty ratios in proposed circuit and its control is discussed. The experimental results are presented which validate the performance and theoretical analysis.
ACKNOWLEDGMENT

This publication was made possible by the National Priorities Research Program (NPRP) under Grant X-033-2-2007 from the Qatar National Research Fund (a member of the Qatar Foundation). The statements made herein are solely the responsibility of the authors. Furthermore, this is to acknowledge that the publication charges of this article was funded by Qatar Foundation. (Qatar National Research Fund). The statements made herein are solely the M. Sagar Bhaskar

REFERENCES

[1] T. Cheng, D. D.-C. Lu, and L. Qin, "Non-isolated single-inductor DC/DC converter with fully reconfigurable structure for renewable energy applications," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 3, pp. 351–355, Mar. 2018.

[2] O. Cornea, G.-D. Andreescu, N. Muntean, and D. Hulea, "Bidirectional power flow control in a dc microgrid through a switched-capacitor cell based DC–DC converter," IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 3012–3022, Apr. 2017.

[3] B. S. Revathi and M. Prabhakar, "Analysis and design of ultra-high step up converter for DC microgrids," in Proc. Conf. Ann. IEEE India Conf. (INDICON), Mumbai, India, vol. 13, Dec. 2013, pp. 1–6.

[4] Y.-P. Hsieh, J.-F. Chen, T.-J. Liang, and L.-S. Yang, "A novel high step-up DC–DC converter for a microgrid system," IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1127–1136, Apr. 2011.

[5] K.-J. Wai, C.-Y. Lin, R.-Y. Duan, and Y.-R. Chang, "High-efficiency DC-DC converter with high voltage gain and reduced switch stress," IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 354–364, Feb. 2007.

[6] S. Padmanaban, M. S. Bhaskar, P. K. Maroti, F. Blaabjerg, and V. Fedák, "An original transformer and switched-capacitor (T & SC)-based extension for DC-DC boost converter for high-voltage/low-current renewable energy applications: Hardware implementation of a new T & SC boost converter," Energies, vol. 11, no. 4, p. 783, Apr. 2018.

[7] A. Richelli, S. Comenos, and Z. M. Kovács-Vajna, "A DC/DC boosting technique and power management for ultralow-voltage energy harvesting applications," IEEE Trans. Power Electron., vol. 59, no. 6, pp. 2701–2708, Jun. 2012.

[8] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, "Step-up DC–DC converters: A comprehensive review of voltage-booster techniques, topologies, and applications," IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143–9178, Dec. 2017.

[9] H.-L. Jou, J.-J. Huang, J.-C. Wu, and K.-D. Wu, "Novel isolated multilevel DC–DC power converter," IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2690–2694, Apr. 2016.

[10] D. Murthy-Bellur and M. K. Kazimierczuk, "Isolated two-transistor Zeta converter with reduced transistor voltage stress," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 1, pp. 41–45, Jan. 2011.

[11] Y. Deng, Q. Kong, W. Li, Y. Zhao, J. Shi, and X. He, "Single-switch high step-up converters with built-in transformer voltage multiplier cell," IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3557–3567, Aug. 2012.

[12] K. I. Hwu and Y. T. Yau, "High step-up converter based on coupling inductor and bootstrap capacitors with active clamping," IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2655–2660, Jun. 2014.

[13] J. M. Kwon and B. H. Kwon, "High step-up active-clamp converter with input-current doubler and output-voltage doubler for fuel cell power systems," IEEE Trans. Power Electron., vol. 24, no. 1, pp. 108–115, Jan. 2009.

[14] N. Genc and I. Ikender, "DSP-based current sharing of average current controlled two-cell interleaved boost power factor correction converter," IET Power Electron., vol. 4, no. 9, pp. 1015–1022, Nov. 2011.

[15] E. H. Ismail, M. A. Al-Saffar, A. J. Sabzali, and A. A. Fardoun, "A family of single-switch PWM converters with high step-up conversion ratio," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 4, pp. 1159–1171, May 2008.

[16] F. L. Tofoli, D. de Castro Pereira, W. J. de Paula, and D. de Sousa Oliveira Júnior, "Survey on non-isolated high-voltage step-up DC–DC topologies based on the boost converter," IET Power Electron., vol. 8, no. 10, pp. 2044–2057, 2015.

[17] N. Mukherjee and D. Strickland, "Control of cascaded DC–DC converter-based hybrid battery energy storage systems—Part I: Stability issue," IEEE Trans. Ind. Appl., vol. 63, no. 4, pp. 2340–2349, Apr. 2016.

[18] J. Leyva-Ramos, R. Mota-Varona, M. G. Ortiz-Lopez, L. H. Diaz-Saldiver, and D. Langarica-Cordoba, "Control strategy of a quadratic boost converter with voltage multiplier cell for high-voltage gain," IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 4, pp. 1761–1770, Dec. 2017.

[19] B. Axelrod, Y. Berkovich, and A. Ioinovic, "Switched-capacitor switcht-inductor structures for getting transformerless hybrid DC–DC PWM converters," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 2, pp. 687–696, Mar. 2008.

[20] A. Iqbal, M. S. Bhaskar, M. Meraj, and S. Padmanaban, "DC-transformer modelling, analysis and comparison of the experimental investigation of a non-inverting and non-isolated Nx multilevel boost converter (Nx MBC) for low to high DC voltage applications," IEEE Access, vol. 6, pp. 70935–70951, 2018.

[21] M. G. Ortiz-Lopez, J. Leyva-Ramos, L. H. Diaz-Saldiver, and E. E. Carbajal-Gutierrez, "Multiloop controller for N-stage cascade boost converter," in Proc. Conf. IEEE Ind. Conf. Control Appl., Singapore, Oct. 2007, pp. 587–592.

[22] C.-T. Pan, C.-F. Chuang, and C.-C. Chu, "A novel transformerless-leg applicable voltage quadrupler DC converter with low switch voltage stress," IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4787–4796, Sep. 2014.

[23] K.-C. Tseng, J.-T. Lin, and C.-C. Huang, "High step-up converter with three-winding coupled inductor for fuel cell energy source applications," IEEE Trans. Power Electron., vol. 30, no. 2, pp. 574–581, Feb. 2015.

[24] S. Dwari and L. Parsa, "An efficient high-step-up interleaved DC–DC converter with a common active clamp," IEEE Trans. Power Electron., vol. 26, no. 1, pp. 66–78, Jan. 2011.

[25] S. V. Cheong, S. H. Chung, and A. Ioinovic, "Development of power electronics converters based on switched-capacitor circuits," in Proc. IEEE Int. Symp. Circuits Syst., San Diego, CA, USA, vol. 4, May 1992, pp. 1907–1910.

[26] Y. Tang, T. Wang, and Y. He, "A switched-capacitor-based active-network converter with high voltage gain," IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2959–2968, Jun. 2014.

[27] Y. He and F. L. Luo, "Analysis of Luo converters with voltage-lift circuit," IEEE Proc.-Electr. Power Appl., vol. 152, no. 5, pp. 1239–1252, Sep. 2005.

[28] L.-S. Yang, T.-J. Liang, and J.-F. Chen, "Transformerless DC-DC converters with high step-up voltage gain," IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3144–3152, Aug. 2009.

[29] M. Lakshmi and S. Hemamalini, "Nonisolated high gain DC–DC converter for DC microgrids," IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1205–1212, Feb. 2018.

[30] E. Babaei, H. M. Maheri, M. Sabahi, and S. H. Hosseini, "Extendable nonisolated high gain DC–DC converter based on active-passive inductor cells," IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9478–9487, Dec. 2018.
MOHAMMAD MERAJ (S’17) received the bachelor’s degree in electrical engineering from Osmania University, Hyderabad, India, in 2012, and the M.Tech. degree in electrical engineering from IIT Kharagpur, Kharagpur, India, in 2014. He is currently pursuing the Ph.D. degree in electrical engineering from Qatar University, Qatar. He was with Phillips, Bengaluru, in 2013, and a Research Associate with the Department of Electrical Engineering, Qatar University, from 2014 to 2017. He has published scientific papers in the field of power electronics, with particular reference to multiphase dc/ac converter, dc/dc converter, and renewable energy. His research interests include power electronics converters, control, and electric drives.

SANJEVKUMAR PADMANABAN (M’12–SM’15) received the bachelor’s degree from the University of Madras, India, in 2002, the master’s degree (Hons.) from Pondicherry University, India, in 2006, and the Ph.D. degree from the University of Bologna, Italy, in 2012. He was an Associate Professor with VIT University, from 2012 to 2013. In 2013, he joined the National Institute of Technology, Puducherry, India, as a Faculty Member. In 2014, he was invited as a Visiting Researcher with Qatar University, Qatar, funded by the Qatar National Research Foundation (Government of Qatar) and was also a Lead Researcher with the Dublin Institute of Technology, Ireland. He was an Associate Professor with the Department of Electrical and Electronics Engineering, University of Johannesburg, South Africa, from 2016 to 2018. Since 2018, he has been a Faculty Member with the Department of Energy Technology, Aalborg University, Esbjerg, Denmark. He has authored over 300 scientific papers. He is a Fellow of the Institute of Electronics and Telecommunication Engineers, India, and the Institute of Engineers, India. He has been involved as a member on invitation in various capacities in the committees for several international conferences, including the IEEE and the IET. He has received the Best Paper cum Most Excellence Research Paper Award from IET-SEISCON’13 and IET-CEAT’16 and five Best Paper Awards from ETAEERE’16 sponsored Lecture Note in Electrical Engineering, Springer book series. He serves as an Editor/Associate Editor/or in the Editorial Board of many refereed journals, in particular, the IEEE SYSTEMS Journal, the IEEE ACCESS, and the IET Power Electronics, and serves as a Subject Editor for IET Renewable Power Generation, the IET Generation, Transmission and Distribution, and FACTS journal, Canada, and an Associate Editor for Journal of Power Electronics.

PANDAV KIRAN MAROTI (S’17–M’19) received the bachelor’s degree in electronics and telecommunication from Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India, in 2011, and the M.Tech. degree (Hons.) in power electronics and drives from the Vellore Institute of Technology, Vellore, India, in 2014. He is currently pursuing the Ph.D. degree in power electronics with the University of Johannesburg, South Africa, under the guidance of Prof. S. Padmanaban (the IEEE Senior Member) and the co-guidance of Prof. F. Blaabjerg (the IEEE Power Electronics President and Fellow). He received the Global Experience Scholarship (GES) for his Ph.D. degree. He was an Assistant Professor with the Marathwada Institute of Technology, Aurangabad, India, from 2014 to 2016. He is also a Research Assistant with the National Priorities Research Program (NP RP), Qatar University. He has published scientific papers in the field of power electronics (multilevel dc/dc and dc/ac converter, and multiphase open winding inverter). He is a Reviewer Member of various reputed International conferences and journal, including the IEEE ACCESS, TPEL, and TIE.

RASHID ALAMMARI (M’96–SM’15) received the B.S. degree from Qatar University, in 1985, the M.Sc. degree from Washington State University, USA, in 1989, and the Ph.D. degree from Strathclyde University, Glasgow, U.K., in 1996, all in electrical engineering with a specialization in power systems. He started his career as a Teaching Assistant with an industry experience partnership with the Ministry of Electricity and Water, where he was an Assistant Professor, in 1996, and was promoted to Associate Professor, in 2003. He was appointed as the Head of the QU Foundation Program, from 1998 to 2000, and the Chairman of the Department of Electrical Engineering, from 2000 to 2004, leading the Department to its first ABET accreditation. He was the Dean of the College of Engineering, Qatar University, from 2012 to 2016. He was a Published Author of many academic studies on power systems and power quality. He received the University Distinguished Faculty Research Award, in 2004, and the State of Qatar Incentive Award in Electrical Engineering, in 2012. He also received a scholarship from Qatar University.

ATIF IQBAL (M’08–SM’11) received the B.Sc. degree (Hons.) and the M.Sc.Eng. degree in power system and drives from Aligarh Muslim University (AMU), Aligarh, India, in 1991 and 1996, respectively, and the Ph.D. degree from Liverpool John Moores University, Liverpool, U.K., in 2006. He was a Full Professor of electrical engineering with AMU, where he has been a Lecturer with the Department of Electrical Engineering, since 1991, and a Full Professor, since 2016. He has supervised several large R&D projects. He is currently with the Department of Electrical Engineering, Qatar University, Doha, Qatar. He has published widely in international journals and conferences. His research findings related to power electronics and renewable energy sources. He has authored or co-authored more than 350 research papers, and one book and three chapters in two other books. His research interests include the modeling and simulation of power electronic converters, control of multi-phase motor drives, and renewable energy sources. He was a Fellow of IET, U.K., in 2018, and IE, India, in 2012. He was a recipient of the Outstanding Faculty Merit Award, from 2014 to 2015, and the Research Excellence Award at Qatar University. He was also an Assistant Professor, in 1996, and was promoted to Associate Professor, in 2003. He was appointed as the Head of the QU Foundation Program, from 1998 to 2000, and the Chairman of the Department of Electrical Engineering, from 2000 to 2004, leading the Department to its first ABET accreditation. He was the Dean of the College of Engineering, Qatar University, from 2012 to 2016. He was a Published Author of many academic studies on power systems and power quality. He received the University Distinguished Faculty Research Award, in 2004, and the State of Qatar Incentive Award in Electrical Engineering, in 2012. He also received a scholarship from Qatar University.