Numerical simulations of transverse oscillations in radiatively cooling coronal loops

N. Magyar, T. Van Doorsselaere and A. Marci

1 Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, bus 2400, 3001 Leuven, Belgium
2 Babes-Bolyai University Cluj-Napoca, str. Mihail Kogalniceanu nr.1, Cluj-Napoca, Romania

October 30, 2015

ABSTRACT

Aims. We aim to study the influence of radiative cooling on the standing kink oscillations of a coronal loop.

Methods. Using the FLASH code, we solve the 3D ideal MHD equations. Our model consists of a straight, density enhanced and gravitationally stratified magnetic flux tube. We perturb the system initially, leading to a transverse oscillation of the structure, and follow its evolution for a number of periods. A realistic radiative cooling is implemented. Results are compared to available analytical theory.

Results. We find that in the linear regime (i.e. low amplitude perturbation and slow cooling) the obtained period and damping time are in a good agreement with theory. The cooling leads to an amplification of the oscillation amplitude. However, the difference between the cooling and non-cooling cases is small (around 6% after 6 oscillations). For a review on coronal heating, see, e.g. [Parnell & De Moortel 2012].

Since their first observation in 1998, numerous theoretical, numerical and observational works have been done (for a review on coronal loop oscillations, see [Ruderman & Erdélyi 2009]). In general, the coronal loops are not in a steady state and evolve during the oscillations. Previous studies mostly assume a static background loop. In a paper by [Aschwanden & Terradas 2008], it was pointed out that the intensities of most observed coronal loops in a single EUV waveband vary, consistent with a plasma cooling scenario. They suggested that a proper MHD study of oscillating coronal loops should include the density and temperature changes due to the plasma cooling. In the first, zeroth-order analytical study of oscillating, radiatively cooling loops by [Morton & Erdélyi 2009], it was shown that cooling leads to damping of the oscillations. However, in another study of the phenomenon [Ruderman 2011a], it was indicated that the cooling leads to an amplification of the oscillations. They found out that neglecting the flow caused by the radiative plasma cooling resulted in the damping behaviour in [Morton & Erdélyi 2009].

A common property of observed transverse coronal loop oscillations is that they are damped quickly, usually within a few oscillation periods. It is now generally accepted that the main damping mechanism is resonant absorption [Sakurai et al. 1991].

Goossens et al. 1992; Ruderman & Roberts 2002. It was shown that cooling leads to damping of the oscillations. However, in another study of the phenomenon [Ruderman 2011a], it was indicated that the cooling leads to an amplification of the oscillations. They found out that neglecting the flow caused by the radiative plasma cooling resulted in the damping behaviour in Morton & Erdélyi (2009).

Anive of the oscillations. Previous studies mostly assume a static background loop. In a paper by Aschwanden & Terradas (2008), it was pointed out that the intensities of most observed coronal loops in a single EUV waveband vary, consistent with a plasma cooling scenario. They suggested that a proper MHD study of oscillating coronal loops should include the density and temperature changes due to the plasma cooling. In the first, zeroth-order analytical study of oscillating, radiatively cooling loops by Morton & Erdélyi (2009), it was shown that cooling leads to damping of the oscillations. However, in another study of the phenomenon Ruderman (2011a), it was indicated that the cooling leads to an amplification of the oscillations. They found out that neglecting the flow caused by the radiative plasma cooling resulted in the damping behaviour in Morton & Erdélyi (2009).

A common property of observed transverse coronal loop oscillations is that they are damped quickly, usually within a few oscillation periods. It is now generally accepted that the main damping mechanism is resonant absorption (Sakurai et al. 1991).

Goossens et al. 1992; Ruderman & Roberts 2002. It was shown that cooling leads to damping of the oscillations. However, in another study of the phenomenon Ruderman (2011a), it was indicated that the cooling leads to an amplification of the oscillations. They found out that neglecting the flow caused by the radiative plasma cooling resulted in the damping behaviour in Morton & Erdélyi (2009).

100 s). In this case, the difference in amplitude after nearly 3 oscillation periods for the low amplitude case is 21% between cooling and non-cooling cases. We strengthen the results of previous analytical studies stating that the amplification due to cooling is ineffective, and its influence on the oscillation characteristics is small, at least for the cases shown here. Furthermore, the presence of a relatively strong damping in the high amplitude runs even in the fast cooling case indicates that it is unlikely that cooling could account alone for the observed, flare related undamped oscillations of coronal loops. These results may be significant in the field of coronal seismology, allowing its application to coronal loop oscillations with observed fading-out or cooling behaviour.

1. Introduction

Coronal loops gained much attention from the scientific community, both observationally and theoretically, since the first observational evidence of transverse MHD oscillations (Aschwanden et al. 1999) [Nakariakov et al. 1999], which had been theorized decades before their discovery (Zaitsev & Stepanov 1975; Ryutov & Ryutova 1976; Edwin & Roberts 1983). The study of coronal loop oscillations is important for two main reasons: on the one hand, standing modes are excellent tools for coronal seismology, see De Moortel & Nakariakov (2012). On the other hand, since wave heating is a proposed mechanism for the mysteriously high temperature of the corona, ubiquitous propagating waves may contribute to energizing the coronal plasma (for a review on coronal heating, see, e.g. [Parnell & De Moortel 2012]).

Since their first observation in 1998, numerous theoretical, numerical and observational works have been done (for a review on coronal loop oscillations, see Ruderman & Erdélyi 2009). In general, the coronal loops are not in a steady state and evolve during the oscillations. Previous studies mostly assume a static background loop. In a paper by Aschwanden & Terradas (2008) it was pointed out that the intensities of most observed coronal loops in a single EUV waveband vary, consistent with a plasma cooling scenario. They suggested that a proper MHD study of oscillating coronal loops should include the density and temperature changes due to the plasma cooling. In the first, zeroth-order analytical study of oscillating, radiatively cooling loops by Morton & Erdélyi (2009) it was shown that cooling leads to damping of the oscillations. However, in another study of the phenomenon Ruderman (2011a), it was indicated that the cooling leads to an amplification of the oscillations. They found out that neglecting the flow caused by the radiative plasma cooling resulted in the damping behaviour in Morton & Erdélyi (2009).

A common property of observed transverse coronal loop oscillations is that they are damped quickly, usually within a few oscillation periods. It is now generally accepted that the main damping mechanism is resonant absorption (Sakurai et al. 1991).

Goossens et al. 1992; Ruderman & Roberts 2002. It was shown that cooling leads to damping of the oscillations. However, in another study of the phenomenon Ruderman (2011a), it was indicated that the cooling leads to an amplification of the oscillations. They found out that neglecting the flow caused by the radiative plasma cooling resulted in the damping behaviour in Morton & Erdélyi (2009).

Anive of the oscillations. Previous studies mostly assume a static background loop. In a paper by Aschwanden & Terradas (2008), it was pointed out that the intensities of most observed coronal loops in a single EUV waveband vary, consistent with a plasma cooling scenario. They suggested that a proper MHD study of oscillating coronal loops should include the density and temperature changes due to the plasma cooling. In the first, zeroth-order analytical study of oscillating, radiatively cooling loops by Morton & Erdélyi (2009) it was shown that cooling leads to damping of the oscillations. However, in another study of the phenomenon Ruderman (2011a), it was indicated that the cooling leads to an amplification of the oscillations. They found out that neglecting the flow caused by the radiative plasma cooling resulted in the damping behaviour in Morton & Erdélyi (2009).

A common property of observed transverse coronal loop oscillations is that they are damped quickly, usually within a few oscillation periods. It is now generally accepted that the main damping mechanism is resonant absorption (Sakurai et al. 1991).

Goossens et al. 1992; Ruderman & Roberts 2002. It was shown that cooling leads to damping of the oscillations. However, in another study of the phenomenon Ruderman (2011a), it was indicated that the cooling leads to an amplification of the oscillations. They found out that neglecting the flow caused by the radiative plasma cooling resulted in the damping behaviour in Morton & Erdélyi (2009).

A common property of observed transverse coronal loop oscillations is that they are damped quickly, usually within a few oscillation periods. It is now generally accepted that the main damping mechanism is resonant absorption (Sakurai et al. 1991).

Goossens et al. 1992; Ruderman & Roberts 2002. It was shown that cooling leads to damping of the oscillations. However, in another study of the phenomenon Ruderman (2011a), it was indicated that the cooling leads to an amplification of the oscillations. They found out that neglecting the flow caused by the radiative plasma cooling resulted in the damping behaviour in Morton & Erdélyi (2009).

A common property of observed transverse coronal loop oscillations is that they are damped quickly, usually within a few oscillation periods. It is now generally accepted that the main damping mechanism is resonant absorption (Sakurai et al. 1991).

Goossens et al. 1992; Ruderman & Roberts 2002. It was shown that cooling leads to damping of the oscillations. However, in another study of the phenomenon Ruderman (2011a), it was indicated that the cooling leads to an amplification of the oscillations. They found out that neglecting the flow caused by the radiative plasma cooling resulted in the damping behaviour in Morton & Erdélyi (2009).

A common property of observed transverse coronal loop oscillations is that they are damped quickly, usually within a few oscillation periods. It is now generally accepted that the main damping mechanism is resonant absorption (Sakurai et al. 1991).
denote the interior and exterior plasma respectively, and p_i, p_e is thermal pressure, the subscripts i,e denote the interior and exterior plasma respectively, and $g = 274$ m/s2 is the Sun’s surface gravity.

\[\frac{d p_{i,e}(z)}{dz} = -\rho_{i,e}(z) g \sin \left(\frac{\pi}{4L} z \right) \]

(1)

where p is thermal pressure, ρ is mass density, the subscripts i,e denote the interior and exterior plasma respectively, and $g = 274$ m/s2 is the Sun’s surface gravity.

Fig. 1. Plots showing the mass density at $t = 0$: cross section along the axis of the loop (left) and perpendicularly to the loop at its footpoint (right). In the right plot, the mesh (numerical cells) is also shown.

Table 1. The values of principal physical parameters used in the simulations.

Parameter	Value
Loop length (L)	120 Mm
Loop radius (R)	1.5 Mm
Magnetic Field	12.5 Gauss
Loop footpoint density (ρ_f)	$2.5 \cdot 10^{-12}$ kg/m3
Density ratio at footpoint (ρ_i/ρ_e)	5
Loop temperature	0.9 MK
Background plasma temperature	4.5 MK
Plasma β	0.06

Due to stratification, there will be a pressure imbalance at the loop boundary, which leads to a jump in total pressure. This is rapidly equilibrated once the simulation is started, resulting in a slightly increased and stratified magnetic field inside the loop. The perturbation caused by this imbalance has no effect on the long-timescale evolution, even if we do not let the system settle before we trigger the kink mode. We implement a step density profile for the loop. However, due to the numerical diffusivity, a thin boundary layer evolves at the interface. The presence of this inhomogeneous layer allows for resonant absorption in the system. Values of the principal physical parameters used in the simulation are given in Table 1.

2.1. Radiative Cooling

At low coronal temperatures (below 1 MK), the radiative cooling time is of the order $t_{rad} \approx 10^3$ s for typical coronal loops. This is 2 orders of magnitude smaller than the conductive cooling time, making the radiative loss the dominant cooling mechanism (Aschwanden & Terradas 2008). Thus, we neglect thermal conduction. Potential implications of this are discussed in the Conclusions section. We do not consider any heating mechanisms present during the simulation period.

The cooling module used in the simulation models the radiative loss rate $E(T)$ for an optically thin plasma (Peres et al.)
are considered to be equal, and \(P \) less, relative amplitude of the perturbation (\(A \) velocity inside the loop, at its footpoints, and Fig. 2. Plasma emissivity as a function of temperature, according to Rosner et al. (1978) (thin solid line), and to version 7 of the CHIANTI spectral code (Landi et al. 2012) (thick solid line). The red line represents the piecewise emissivity used in our simulations. Adapted from Reale & Landi (2012).

\[
E(T) = P(T)n_in_e
\]

(2)

where \(n_i \) and \(n_e \) is the ion and electron number density, which are considered to be equal, and \(P(T) \) is the plasma emissivity function, which is strongly dependent on the temperature. In the simulations, the radiative loss rate \(E(T) \) is calculated at each time step and is used then in the energy equation:

\[
\frac{\partial \rho E}{\partial t} + \nabla \cdot (\rho vE + pT) - B(v \cdot B) = \rho \frac{\partial \mathbf{v}}{\partial t} + \epsilon + \frac{\partial \mathbf{v}}{\partial \mathbf{v}}
\]

(3)

where \(E = \frac{1}{2} \epsilon + \frac{1}{2} \rho \mathbf{v}^2 \) is the specific total energy with \(\epsilon \) the specific internal energy, \(pT = p + \frac{\mathbf{v}^2}{2} \) the total pressure and the other variables have their usual meaning. The radiative cooling affects the whole system, however the background plasma cools much slower than our loop structure, due to its higher temperature and lower density. The used function for \(P(T) \) follows closely the one computed with CHIANTI (Landi et al. 2012), shown in Fig. 2 where it can also be seen that for some temperature ranges (e.g. 0.5-2 MK), the emissivity calculated with CHIANTI is four times larger than previously assumed, thus cooling the coronal loops faster than with older emissivity functions. This is due to improvements in atomic models with the inclusion of more accurate atomic data and transition rates, or lines previously unavailable.

For comparison with analytical results, we use a decreased cooling (realistic cooling multiplied by a constant \(< 1 \) factor), in order to allow for a slower and linear plasma evolution.

2.2. Perturbation and boundary conditions

Initially, we perturb the transverse component of velocity inside the loop with a pulse \(\mathbf{v}_p = A_e v_{\perp e} \cos(\pi z/L) \), which excites a standing kink mode. Here, \(v_{\perp e} \approx 0.7 \) Mm/s is the Alfvén velocity inside the loop, at its footpoints, and \(A_e \) is the dimensionless, relative amplitude of the perturbation (\(A_e \ll 1 \) for linear regime). We focus on modeling standing kink coronal loop oscillations triggered by a flaring event, and not the recently observed ubiquitous small amplitude kink oscillations (Nisticò et al. 2013; Anfinogentov et al. 2013), which are triggered by footpoint excitations. The initial perturbation acts only inside the loop, and is constant in radial direction. Note that, due to stratification, the pulse does not correspond exactly to the fundamental kink eigenmode, but higher harmonics are also excited to a small extent (see Andries et al. 2005b). Exploiting the symmetric properties of standing kink waves, only half of the loop in both longitudinal (\(z \) axis) and transverse (\(x \) axis) direction is modeled, thus reducing the computational time four-fold. For these planes, in order to simulate the whole loop, symmetric boundary conditions are used, which are the following: in the \(x - y \) plane (at the apex), \(v_x, B_x, B_y \) change sign, thus are antisymmetric, while the other variables are symmetric. In the \(y - z \) plane (the plane cutting the loop in half along it), only \(v_y \) and \(B_z \) are antisymmetric. Note that we do not employ a realistic solar atmosphere model (i.e. with photosphere, chromosphere, transition region). In order to mimic coronal loops anchored in the dense photosphere, the loop footpoint is fixed. At this boundary, the line-tying condition is used, setting the velocities in all directions to zero, implying that plasma cannot leave the domain through loop footpoints. Furthermore, the thermodynamic properties and the flow inside the loop are not significantly altered by the line-tying condition (this can be appreciated by comparing Fig. 8 and Fig. 10). The correct condition for the other variables at this boundary is that of a continuation of the hydrostatic equilibrium with constant temperature in the ghost cells. The other boundaries, in order to minimize their influence on the dynamics, are placed at a safe distance from the loop (13 \(R \) in the direction of the displacement), i.e. \(y \) axis and 4 \(R \) for the \(x \) axis). At these boundaries, the outflow or open boundary condition is used, which allows waves to leave the domain.

2.3. Numerical method and grid

The 3D ideal MHD problem is solved using the FLASH code, which implements a second order unsplit Godunov method (Lee & Deane 2009; Lee 2013) and constrained transport for keeping the solenoidal constraint on the magnetic field. We use the ‘mc’ slope limiter and the Roe-type solver. An adaptively refined mesh is used, in order to have high resolution only in the domain of interest, i.e. around the loop, with 5 levels of refinement. The variable used for triggering mesh refinement (calculated with Löhner’s error estimator) is the density. Initially, the grid consists of \(24 \times 40 \times 32 \) numerical cells, thus the resolution is bigger in the \(x - y \) plane, in order to resolve the small-scale phenomena which appear around the loop edge, such as instabilities and resonant absorption. In the \(z \) direction, the solution is smooth (wavelength of the order of box length). The effective resolution then (if the whole box would be refined), with 5 levels of refinement is \(1280 \times 384 \times 32 \) in the \(x - y \) plane, which translates in cell sizes of 31.25 km, or 0.02 \(R \). Test simulations with 6 levels of refinement show an effect on the small scales (instabilities) present in the perpendicular direction, but no relevant changes to oscillation characteristics (period, damping rate).

Article number, page 3 of 8
3. Results and discussion

3.1. Low amplitude perturbations

Initially, we consider relatively low amplitude initial velocity perturbations \((\Delta v_0 = 0.02 \text{ or } \tau_0 = 14 \text{ km/s}) \), in order to remain in the linear regime, necessary for comparing our results with available analytical calculations. This also implies that we change from the realistic radiative cooling to a slower cooling, by multiplying the radiative loss function with a constant factor to get a cooling time \(t_{\text{cool}} \approx 1500 \text{ s} \). Simulations are performed both with and without cooling. The perturbation leads to a maximum displacement of the loop at the apex of 0.15 R or 225 km, thus a peak-to-peak displacement of 450 km. We let the system evolve until \(t_f = 1200 \text{ s} \), in which we observe approximately 6 periods of oscillation, with a mean period of 204 s for the non-cooling case, very close to the analytically predicted value for the standing fundamental kink oscillations of a uniform flux tube with densities (inside and outside) equal to the weighted mean density of our stratified loop (Edwin & Roberts 1983; Andries et al. 2005b):

\[
P = \frac{2L}{C_k} = 2L \sqrt{\frac{\langle \rho_i \rangle + \langle \rho_e \rangle}{\langle \rho_i \rangle (\Omega_{A,i}^2) + \langle \rho_e \rangle (\Omega_{A,e}^2)}} = 206 \text{ s}
\]

(4)

where \(\rho_{A,i,e} \) are the internal and external Alfvén speeds, and the weighting function used to obtain the mean values is \(\cos^2 \left(\frac{\pi z}{L_z} \right) \).

The weighting function represents the wave energy density distribution along the loop of the fundamental mode (see Andries et al. 2005b). In the non-cooling case, the oscillation is damped due to the energy transfer between the global kink mode and local torsional Alfvén modes, i.e. resonant absorption, resulting in a damping time \(\tau_D \approx 1074 \text{ s} \). If we assume that the density varies sinusoidally in the inhomogeneous layer (which is not exactly the case for our data) the theory predics a damping time (Ruderman & Roberts 2002; Goossens et al. 2002; Arregui et al. 2005):

\[
\tau_D = \frac{2 a}{\pi I} \left(\frac{\langle \rho_i \rangle + \langle \rho_e \rangle}{\langle \rho_i \rangle - \langle \rho_e \rangle} \right) P = 1463 \text{ s}
\]

(5)

where \(\Delta \) is the total to inhomogeneous layer width ratio. Keeping in mind the uncertainties of the inhomogeneous layer profile and width (for a linear profile with the same width, \(\tau_D = 927 \text{ s} \)), we can just state that the damping time obtained from the simulation lies inside the range of values predicted by the theory (see Soler et al. 2013, 2014). Now we look at the differences between the two runs, i.e. oscillations in cooling and non-cooling case. The obvious difference between the two lies in the longitudinal evolution. More specifically, cooling of the plasma induces a flow inside the loop, which rearranges plasma towards the footpoints. Thus, there is a density increase close to the footpoints and a decrease at the loop tops (see Fig. 3 and Fig. 4).

This effect can be easily seen from the continuity equation: if we have a time-dependent density (due to cooling), it will give rise to a varying velocity. The resulting flow speeds in the low amplitude run are of the order of few tens of km/s, being at the lower boundary of the observed downflow speeds, in the range 40 – 120 km/s (Schrijver 2001). As mentioned in Section 2.2 there are no outflows throughout the loop footpoints. Simulations with included realistic atmosphere (hyperbolic tangent temperature, see, e.g. Konkol et al. 2010) without velocity perturbations show that plasma evolution near the footpoint is approximated well by the simpler line-tying boundary condition (see again Fig. 8 and Fig. 10). We could not employ the realistic atmosphere in our study of the oscillations because of disturbances originating from the transition region due to radiative cooling, which could have altered the oscillation characteristics. Now, we compare our oscillation amplitude evolution with the analytically predicted one from Ruderman (2011a), which includes the effects of both resonant absorption and cooling on the oscillation characteristics. We solve Eq. (98) from the paper numerically for our parameters and obtain the amplitude over time, resulting in a damping time \(\tau_D \approx 1090 \text{ s} \). Note that in the analytical studies it is assumed that the hydrostatic formula is valid throughout the evolution, arguing that the flow effect on the density distribution in weak. This implies that the loop foot-point density is considered constant and that there is a net outflow of plasma through these footpoints. Thus, the comparison with analytical results should only be qualitative. However, the two evolutions (numerical and analytical) are in a good agreement (Fig. 5).

We can see that the difference in amplitude between the cooling and non-cooling cases is minimal (\(\approx 6\% \)), thus the effects of cooling on the oscillation are very small. The efficiency of amplification due to cooling strongly depends on the characteristics of the loop (boundary layer thickness (\(\ell \)), density scale height, etc.), but probably most importantly on its hydrodynamic evolution, reflected in the cooling time. In our case, the inefficiency might come from the relatively thick boundary layer (\(\ell / R \approx 0.19 \)), created by numerical diffusion. In Ruderman (2011a), it is stated that, for typical conditions and cooling times, for the oscillations of coronal loops to be undamped, the boundary layer should be extremely thin (\(\ell / R \approx 0.02 \)). However, such a thin boundary layer might be very unlikely for oscillating solar coronal loops, as will be argued in what follows.

3.2. High amplitude perturbations

Now, we consider a higher initial perturbation, with \(A_0 = 0.1 \), thus a velocity perturbation of \(\tau_0 = 70 \text{ km/s} \) (5 times bigger than in the low amplitude setup), which leads to an initial displacement of 1.6 Mm, or around one loop radius. The displacement produced by the high perturbation is, however, at the lower boundary of the flare related, typically observed displacements (see Aschwanden & Schrijver 2011, Terradas et al. 2008). The realistic radiative loss used now leads to a faster cooling (\(t_{\text{cool}} \approx 800 \text{ s} \)), and new features are observed when compared to the previous linear evolution, the most important for the oscillation characteristics being the presence of instabilities at the loop edge, namely the Kelvin-Helmholtz instability, which deforms the loop drastically (see Fig. 6). In Antolin et al. (2014) it is stated that even for low amplitudes, the instability sets in. However, in our low amplitude case, the shear instabilities does not evolve, or their growth time is longer than our 6 period simulation time. This might be caused by the higher radius-length ratio of our loop or (and) a higher numerical viscosity of the scheme that we use, which might greatly affect the growth rate of the Kelvin-Helmholtz instability.

From Fig. 7 we see that the damping of high amplitude oscillation is faster than in the low amplitude case. This is an important effect of the instabilities present in the system. The damping is faster for two reasons: firstly, the development of the instability dissipates kinetic energy, and secondly, due to the mixing caused by the instability, a wider inhomogeneous layer develops around the loop, which affects the effectiveness of resonant absorption.

Compared to Fig. 5 the effects of cooling on the wave amplitude become measurable after \(t \approx t_{\text{cool}} \), but are not significant when looking at the whole evolution. The best-fit exponential
Fig. 3. Time-slice plot of the density at the loop apex ($z = 0$), for cooling (left) and non-cooling (right) cases, showing the evolution of the oscillation over time. The colour scale shows the density and is given in units of 10^{-12} kg/m3. The colour scale is common for the two images.

Fig. 4. Time-slice plot of the evolution of both the temperature (left) and density (right) at the axis of the loop, over time, for the cooling case. Temperatures are in K, while density is in units of 10^{-15} kg/m3. The horizontal z axis spans from the loop footpoint (left end) to the apex (right end).

Fig. 5. Graph of normalized loop displacement at the apex for both cooling (red dots) and non-cooling (black dots), over time. The red curve represents the best-fit exponential decay, while the blue curve is the analytically predicted amplitude [Ruderman 2011a], both shown for the cooling case. The displacements were obtained by center-of-mass tracking in the apex cross-section of the loop.

damping time is 805 s for the cooling and 710 s for the non-cooling loop. Thus, the cooling only results in a 12% weaker damping. Another effect is the decrease of the oscillation period for the cooling case, an effect which was shown in analytical studies [Morton & Erdélyi 2009; Ruderman 2011b]. For our cooling case, the ratio between the initial oscillation period and that at the last anti-node (at $t_f \approx 1000$ s, with the periods measured by hand) is $P_i/P_f \approx 0.85$, which is a smaller deviation than predicted by the linear theory after the same amount of time ($P_i/P_f \approx 0.57$, by solving Eq. (28) from Morton & Erdélyi 2009 with our parameters). This deviation comes from the already mentioned differences between the analytical and numerical studies, i.e. in the analytical study, the footpoint density is kept constant thus plasma leaves the loop while in our studies, it accumulates at the footpoint.

Another feature present in the high amplitude runs (due to the realistic radiative cooling) is the different late stage evolution (compare the density evolution from Fig. 4 to that of Fig. 8). At around $t = t_{\text{cool}} \approx 750$ s, there is a sudden draining of mass towards the footpoints with flow speeds of up to 100 km/s, (downflow speeds typically observed in the corona), generated by a runaway cooling of the accumulated plasma. However, this effect is of secondary importance for the present study.

As stated above, the displacement observed in the high amplitude setup is still small compared to the typical displacements observed for flare related oscillating coronal loops. Thus, if the instabilities truly develop in oscillating solar coronal loops, for which there is no observational evidence yet (Terradas et al. 2008 but see Antolin et al. 2014 where they claim it could be observed as loop strands), the existence of a very thin inhomogeneous layer for several oscillation periods is highly unlikely, thus implying heavy limitations on the effectiveness of cooling induced amplification.
3.3. High density runs

To extend the scope of our study and conclusions, a series of simulations with fast cooling were run. The faster cooling was achieved by setting the density ratio three times higher than in the previous setups ($\rho_0/\rho_\text{MK} = 15$) while keeping the same temperature and magnetic field strength, resulting in a footpoint density inside the loop of $\rho_\text{MK} \approx 7.5 \times 10^{12} \text{ kg/m}^3$. Note that this results in an increased plasma-β inside the loop. The cooling time is extremely short for these runs ($t_{\text{cool}} \approx 800$ s). Although it is much faster than the usually observed cooling times in the range 500-2000 s (see, e.g., Aschwanden & Terradas 2008), it is important to see whether such a high energy loss can alter significantly the oscillation characteristics. The resulting flow towards the footpoint is steadily increasing, peaking at 140 km/s around $t_f \approx 830$ s, the end of simulation time. The resulting displacements over time for three cases, cooling with low and high amplitudes (perturbations with the same fraction of footpoint Alfvén speeds as in the previous runs), and non-cooling with low amplitude, can be seen in Fig. 9.

For the low amplitude case, the linear theory (Ruderman 2011a) predicts that the oscillation amplitude should grow in time, in discrepancy with our results which show damping behaviour.

However, the effects of the cooling in the low amplitude case are now stronger than for our previous runs, as expected: after ≈ 750 s, or 3 maximum displacements, the cooling case has a 21% higher amplitude than the non-cooling case. The effect on the oscillation period is also more significant, the ratio of oscillation periods between the two cases being $P_{\text{cool}}/P_{\text{nocol}} \approx 0.6$ after the same time.

Looking at the high amplitude run, we still observe a strong damping, despite the fast cooling. This indicates that observed undamped high amplitude kink oscillations of coronal loops are likely not due solely to plasma cooling.

4. Conclusions

We aimed to perform the first three dimensional numerical study of a particular and often observed phenomenon: coronal loop oscillations in a cooling coronal loop. For a better estimate of hard-to-measure parameters using coronal seismology, theoretical models must take into account several physical effects that might have an influence on observable oscillation characteristics, and cooling is one of them. We find that, in the linear regime (i.e. small amplitude oscillations and long cooling times), the effect of cooling is negligible. This may be attributable to the relatively thick inhomogeneous layer in our simulations, which arises solely due to numerical diffusion. Even if there are differences regarding boundary conditions between the available analytical results and our simulations, the resulting amplitude evolutions are in a good agreement.

Increasing the initial velocity perturbation five-fold, resulting in a total displacement which lies at the low end of the observed, flare related kink oscillations and employing realistic radiative losses shows different evolution compared to the linear regime run: instabilities strongly affect the outer layers of the loop, and mixing causes a wider inhomogeneous layer to evolve, which in turn affects resonant absorption. The Kelvin-Helmholtz instability develops where the velocity shear is the strongest, at the edges of the loop perpendicular to the direction of motion. This is important for our study because the growth of such instabilities drains energy from the transverse oscillation, thus leading to increased damping. The effects of cooling appear negligible when looking at the entire evolution even in the high amplitude case, aside from its effect on the period, which is increased due to the lower inertia at the loop apex. With higher density runs, resulting in as small a cooling time as 100 s, the high amplitude run still shows strong damping.

Fig. 6. A sequence of cross-section plots of the density at the loop apex, at different times (written at the left-top of each plot, in seconds), for the high amplitude case. Axis units are in Mm, while density is in units of 10^{12} kg/m^3.

Fig. 7. Same as in Fig. 5 (cooling with red dots and non-cooling with black dots), but for the high amplitude case. The red curve is the best-fit exponential decay for the non-cooling, low amplitude case (thus showing the added damping due to the presence of the instability). Note that $t_f \approx 1000$ s and a realistic cooling for the high-amplitude runs, with $t_{\text{cool}} \approx 800$ s.
The caveats of our study are the lack of a realistic solar atmosphere and the lack of thermal conduction, without which the present hydrodynamic evolution may not be proper (see, e.g. Mariska et al. 1982). Furthermore, a parametric survey of initial plasma properties, such as temperature, would be insightful. It has been shown (Bradshaw & Cargill 2005, 2010) that during the so-called radiative cooling phase, the losses from the transition region lead to enhanced energy loss from the corona, in the form of an enthalpy flux. This leads to an enhanced mass loss and could enhance the effects of cooling on the oscillations. In addition, thermal conduction could cool the loops even faster. However, the cooling time in the high density runs is short enough to allow for an appreciation of the effects of a higher energy loss. The presence of damping in the high amplitude runs even with fast energy loss indicates that is unlikely that cooling could explain alone the observed, flare related undamped oscillations of coronal loops. These results have implications in the tool of coronal seismology: since the effects of loop cooling with the usually observed cooling times (in our case with $t_{\text{cool}} \approx 800$ s) on the oscillations are negligible, it can also be applied for observations of flare related coronal loop oscillations which show similar cooling behaviour.

Acknowledgements. N.M. acknowledges the Fund for Scientific Research–Flanders (FWO-Vlaanderen). TV.D. was supported by an Odysseus grant, the Belspo IAP P7/08 CHARM network and the GOA-2015-014 (KU Leuven). A.M. and N.M. was supported by a grant of the Romanian National Authority of Scientific Research, Program for research – Space Technology and Advanced Research – STAR, project number 72/29.11.2013. The software used in this work was developed in part by the DOE NNSA ASC- and DOE Office of Science ASCR-supported Flash Center for Computational Science at the University of Chicago. Visualization was done with the help of VisIt software (Childs et al. 2012).

References

Andries, J., Arregui, I., & Goossens, M. 2005a, ApJ, 624, L57
Andries, J., Goossens, M., Hollweg, J. V., Arregui, I., & Van Doorsselaere, T. 2005b, A&A, 430, 1109
Anfinogentov, S., Nisticò, G., & Nakariakov, V. M. 2013, A&A, 560, A107
Antolin, P., Yokoyama, T., & Van Doorsselaere, T. 2014, ApJ, 787, L22
Arregui, I., Andries, J., Van Doorsselaere, T., Goossens, M., & Poellets, S. 2007, A&A, 463, 333
Arregui, I., Van Doorsselaere, T., Andries, J., Goossens, M., & Kimpe, D. 2005, A&A, 441, 361
Aschwanden, M. J., de Pontieu, B., Schrijver, C. J., & Title, A. M. 2002, Sol. Phys., 206, 99
Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D. 1999, ApJ, 520, 880
Aschwanden, M. J., Nightingale, R. W., Andries, J., Goossens, M., & Van Doorsselaere, T. 2003, ApJ, 598, 1375
Aschwanden, M. J. & Schrijver, C. J. 2011, ApJ, 736, 102
Aschwanden, M. J. & Terradas, J. 2008, ApJ, 686, L127
Bradshaw, S. J. & Cargill, P. J. 2005, A&A, 437, 311
Bradshaw, S. J. & Cargill, P. J. 2010, ApJ, 717, 163
Chluba, H., Brugger, E., Whitlock, B., et al. 2012, in High Performance Visualization—Enabling Extreme-Scale Scientific Insight, 357–372
De Moortel, I. & Nakariakov, V. M. 2012, Royal Society of London Philosophical Transactions Series A, 370, 3193
Dymova, M. V. & Ruderman, M. S. 2005, Sol. Phys., 229, 79
Edwin, P. M. & Roberts, B. 1983, Sol. Phys., 88, 179
Goossens, M., Andries, J., & Aschwanden, M. J. 2002, A&A, 394, L39
Goossens, M., Erdelyi, R., & Ruderman, M. S. 2011, Space Sci. Rev., 158, 289
Goossens, M., Hollweg, J. V., & Sakurai, T. 1992, Sol. Phys., 138, 233
Heyvaerts, J. & Priest, E. R. 1983, A&A, 117, 220
Konkol, P., Murawski, K., Lee, D., & Weide, K. 2010, A&A, 521, A34
Landi, E., Del Zanna, G., Young, P. R., Dere, K. P., & Mason, H. E. 2012, ApJ, 744, 99
Lee, D. 2013, Journal of Computational Physics, 243, 269
Lee, D. & Deane, A. E. 2009, Journal of Computational Physics, 228, 952
Mariska, J. T., Doschek, G. A., Boris, J. P., Oran, E. S., & Young, Jr., T. R. 1982, ApJ, 255, 783
Morton, R. J. & Erdelyi, R. 2009, ApJ, 707, 750
Nakariakov, V. M. & Ofman, L. 2001, A&A, 372, L53
Nakariakov, V. M., Ofman, L., Deluca, E. E., Roberts, B., & Davila, J. M. 1999, Science, 285, 862
Nisticò, G., Nakariakov, V. M., & Verwichte, E. 2013, A&A, 552, A57
Ofman, L., Davila, J. M., & Steinolfson, R. S. 1994, Geophys. Res. Lett., 21, 2259
Parnell, C. E. & De Moortel, I. 2012, Royal Society of London Philosophical Transactions Series A, 370, 3217
Pérez, G., Serio, S., Vaiana, G. S., & Rosner, R. 1982, ApJ, 252, 791
Reale, F. & Landi, E. 2012, A&A, 543, A90
Rosner, R., Tucker, W. H., & Vaiana, G. S. 1978, ApJ, 220, 643
Fig. 10. Time-slice plots showing the evolution of flow speed (v_z, left) and the density (right) with included lower solar atmosphere, for the same conditions as in Fig. 8 along the loop axis, over time. The saw-tooth appearance of wave fronts is due to the limited number of snapshots (100). Flow speed is in Mm/s, while density in units of 10^{-12} kg/m3.

Ruderman, M. S. 2007, Sol. Phys., 246, 119
Ruderman, M. S. 2011a, A&A, 534, A78
Ruderman, M. S. 2011b, Sol. Phys., 271, 41
Ruderman, M. S. & Erdélyi, R. 2009, Space Sci. Rev., 149, 199
Ruderman, M. S. & Roberts, B. 2002, ApJ, 577, 475
Ruderman, M. S., Verth, G., & Erdélyi, R. 2008, ApJ, 686, 694
Ryutov, D. A. & Ryutova, M. P. 1976, Soviet Journal of Experimental and Theoretical Physics, 43, 491
Sakurai, T., Goossens, M., & Hollweg, J. V. 1991, Sol. Phys., 133, 227
Schrijver, C. J. 2001, Sol. Phys., 198, 325
Soler, R., Goossens, M., Terradas, J., & Oliver, R. 2013, ApJ, 777, 158
Soler, R., Goossens, M., Terradas, J., & Oliver, R. 2014, ApJ, 781, 111
Terradas, J., Andries, J., Goossens, M., et al. 2008, ApJ, 687, L115
Terradas, J. & Goossens, M. 2012, A&A, 548, A112
Terradas, J. & Ofman, L. 2004, ApJ, 610, 523
Terradas, J., Oliver, R., & Ballester, J. L. 2006, ApJ, 650, L91
Van Doorsselaere, T., Debosscher, A., Andries, J., & Poedts, S. 2004, A&A, 424, 1065
Van Doorsselaere, T., Nakariakov, V. M., & Verwichte, E. 2007, A&A, 473, 959
Verth, G. & Erdélyi, R. 2008, A&A, 486, 1015
Wang, T., Ofman, L., Davila, J. M., & Su, Y. 2012, ApJ, 751, L27
Zaitsev, V. V. & Stepanov, A. V. 1975, ssled. Geomagn. Aerom. Fiz. Solntsa, 37, 3