Isolation, Identification and Bioactivities of Abietane Diterpenoids from Premna szemaoensis

De-Bing Pu†,§,⊥, Ting Wang‡,⊥, Xing-Jie Zhang†, Jun-Bo Gao§,#, Rui-Han Zhang†, Xiao-Nian Li§, Yong-Mei Wang§,#, Xiao-Li Li†,* He-Yao Wang§,* Wei-Lie Xiao†,§,*

†Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, School of Chemical Science and Technology, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, People’s Republic of China
‡State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People’s Republic of China
§State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People’s Republic of China
#University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

Corresponding author contact detail:
*E-mail: lixiaoli@ynu.edu.cn. Tel: (86) 871-67357014.
*E-mail: hywang@simm.ac.cn. Tel: (86) 021-50805785.
*E-mail: xiaowei@ynu.edu.cn. Tel: (86) 871-67357014.
Contents

Figure 1S-9S. NMR, MS, UV, and IR spectra of compound 1.................................3
Figure 10S-18S. NMR, MS, UV, and IR spectra of compound 2...............................8
Figure 19S-27S. NMR, MS, UV, and IR spectra of compound 3...............................13
Figure 28S-36S. NMR, MS, UV, and IR spectra of compound 4...............................18
Figure 37S-45S. NMR, MS, UV, and IR spectra of compound 5...............................23
Figure 46S-54S. NMR, MS, UV, and IR spectra of compound 6...............................28
Figure 55S-63S. NMR, MS, UV, and IR spectra of compound 7...............................33
Figure 64S-72S. NMR, MS, UV, and IR spectra of compound 8...............................38
Figure 73S-81S. NMR, MS, UV, and IR spectra of compound 9...............................43
Figure 82S-90S. NMR, MS, UV, and IR spectra of compound 10.............................48
Figure 91S-99S. NMR, MS, UV, and IR spectra of compound 11.............................53
Figure 100S-108S. NMR, MS, UV, and IR spectra of compound 12..........................58
Figure 109S. The pack drawing of compound 1..63
Figure 110S. The pack drawing of compound 3...64
Figure 111S. The pack drawing compound 10..65
Table 1S. Crystal data and structure refinement for 1...66
Table 2S. Crystal data and structure refinement for 3...67
Table 3S. Crystal data and structure refinement for 10..68
Figure 1S-9S. NMR, MS, UV, and IR spectra of compound 1

Figure 1S. 1H NMR spectrum of (1) recorded in CD$_3$OD at 600 MHz

Figure 2S. 13C NMR spectrum of (1) recorded in CD$_3$OD at 150 MHz
Figure 3S. HSQC spectrum of (1) recorded in CD$_3$OD

Figure 4S. HMBC spectrum of (1) recorded in CD$_3$OD
Figure 5S. 1H-1H COSY spectrum of (1) recorded in CD$_3$OD

Figure 6S. ROESY spectrum of (1) recorded in CD$_3$OD
Figure 7S. HRESIMS spectrum of (1)
Figure 8S. UV spectrum of (1)

Figure 9S. IR spectrum of (1)
Figure 10S-18S. NMR, MS, UV, and IR spectra of compound 2

Figure 10S. 1H NMR spectrum of (2) recorded in CD$_3$OD at 600 MHz

Figure 11S. 13C NMR spectrum of (2) recorded in CD$_3$OD at 150 MHz
Figure 12S. HSQC spectrum of (2) recorded in CD$_3$OD

Figure 13S. HMBC spectrum of (2) recorded in CD$_3$OD
Figure 14S. 1H-1H COSY spectrum of (2) recorded in CD$_3$OD

Figure 15S. ROESY spectrum of (2) recorded in CD$_3$OD
Figure 16S. HRESIMS spectrum of (2)
Figure 17S. UV spectrum of (2)

Figure 18S. IR spectrum of (2)
Figure 19S-27S. NMR, MS, UV, and IR spectra of compound 3

Figure 19S. 1H NMR spectrum of (3) recorded in CD$_3$OD at 600 MHz

Figure 20S. 13C NMR spectrum of (3) recorded in CD$_3$OD at 150 MHz
Figure 21S. HSQC spectrum of (3) recorded in CD$_3$OD

Figure 22S. HMBC spectrum of (3) recorded in CD$_3$OD
Figure 23S. 1H-1H COSY spectrum of (3) recorded in CD$_3$OD

Figure 24S. ROESY spectrum of (3) recorded in CD$_3$OD
Figure 25S. HRESIMS spectrum of (3)
Figure 26S. UV spectrum of (3)

Figure 27S. IR spectrum of (3)
Figure 28S-36S. NMR, MS, UV, and IR spectra of compound 4

Figure 28S. 1H NMR spectrum of (4) recorded in CD$_3$OD at 600 MHz

Figure 29S. 13C NMR spectrum of (4) recorded in CD$_3$OD at 150 MHz
Figure 30S. HSQC spectrum of (4) recorded in CD$_3$OD

Figure 31S. HMBC spectrum of (4) recorded in CD$_3$OD
Figure 32S. 1H-1H COSY spectrum of (4) recorded in CD$_3$OD

Figure 33S. ROESY spectrum of (4) recorded in CD$_3$OD
Figure 34S. HRESIMS spectrum of (4)
Figure 35S. UV spectrum of (4)

Figure 36S. IR spectrum of (4)
Figure 37S-45S. NMR, MS, UV, and IR spectra of compound 5

Figure 37S. 1H NMR spectrum of (5) recorded in CD$_3$OD at 600 MHz

Figure 38S. 13C NMR spectrum of (5) recorded in CD$_3$OD at 150 MHz
Figure 39S. HSQC spectrum of (5) recorded in CD$_3$OD

Figure 40S. HMBC spectrum of (5) recorded in CD$_3$OD
Figure 41S. 1H-1H COSY spectrum of (5) recorded in CD$_3$OD

Figure 42S. ROESY spectrum of (5) recorded in CD$_3$OD
Figure 43S. HRESIMS spectrum of (5)
Figure 44S. UV spectrum of (5)

Figure 45S. IR spectrum of (5)
Figure 46S-54S. NMR, MS, UV, and IR spectra of compound 6

Figure 46S. 1H NMR spectrum of (6) recorded in CD$_3$OD at 600 MHz

Figure 47S. 13C NMR spectrum of (6) recorded in CD$_3$OD at 150 MHz
Figure 48S. HSQC spectrum of (6) recorded in CD$_3$OD

Figure 49S. HMBC spectrum of (6) recorded in CD$_3$OD
Figure 50S. 1H-1H COSY spectrum of (6) recorded in CD$_3$OD

Figure 51S. ROESY spectrum of (6) recorded in CD$_3$OD
Figure 52S. HRESIMS spectrum of (6)
Figure 53S. UV spectrum of (6)

Figure 54S. IR spectrum of (6)
Figure 55S-63S. NMR, MS, UV, and IR spectra of compound 7

Figure 55S. 1H NMR spectrum of (7) recorded in CD$_3$OD at 600 MHz

Figure 56S. 13C NMR spectrum of (7) recorded in CD$_3$OD at 150 MHz
Figure 57s. HSQC spectrum of (7) recorded in CD$_3$OD

Figure 58s. HMBC spectrum of (7) recorded in CD$_3$OD
Figure 59S. 1H-1H COSY spectrum of (7) recorded in CD$_3$OD

Figure 60S. ROESY spectrum of (7) recorded in CD$_3$OD
Figure 61S. HRESIMS spectrum of (7)
Figure 62S. UV spectrum of (7)

Figure 63S. IR spectrum of (7)
Figure 64S. NMR, MS, UV, and IR spectra of compound 8

Figure 64S. 1H NMR spectrum of (8) recorded in CD$_3$OD at 600 MHz

Figure 65S. 13C NMR spectrum of (8) recorded in CD$_3$OD at 150 MHz
Figure 66S. HSQC spectrum of (8) recorded in CD$_3$OD

Figure 67S. HMBC spectrum of (8) recorded in CD$_3$OD
Figure 68S. 1H-1H COESY spectrum of (8) recorded in CD$_3$OD

Figure 69S. ROESY spectrum of (8) recorded in CD$_3$OD
Figure 70S. HRESIMS spectrum of (8)
Figure 71S. UV spectrum of (8)

Figure 72S. IR spectrum of (8)
Figure 73S-81S. NMR, MS, UV, and IR spectra of compound 9

Figure 73S. 1H NMR spectrum of (9) recorded in CD$_3$OD at 600 MHz

Figure 74S. 13C NMR spectrum of (9) recorded in CD$_3$OD at 150 MHz
Figure 75S. HSQC spectrum of (9) recorded in CD$_3$OD

Figure 76S. HMBC spectrum of (9) recorded in CD$_3$OD
Figure 77S. 1H-1H COSY spectrum of (9) recorded in CD$_3$OD

Figure 78S. ROESY spectrum of (9) recorded in CD$_3$OD
Figure 79S. HRESIMS spectrum of (9)
Figure 80S. UV spectrum of (9)

Figure 81S. IR spectrum of (9)
Figure 82S. NMR, MS, UV, and IR spectra of compound 10

Figure 82S. 1H NMR spectrum of (10) recorded in acetone-d_6 at 600 MHz

Figure 83S. 13C NMR spectrum of (10) recorded in acetone-d_6 at 150 MHz
Figure 84S. HSQC spectrum of (10) recorded in acetone-d_6

Figure 85S. HMBC spectrum of (10) recorded in acetone-d_6
Figure 86S. 1H-1H COSY spectrum of (10) recorded in acetone-d_6

Figure 87S. ROESY spectrum of (10) recorded in acetone-d_6
Figure 88S. HRESIMS spectrum of (10)
Figure 89S. UV spectrum of (10)

Figure 90S. IR spectrum of (10)
Figure 91S-99S. NMR, MS, UV, and IR spectra of compound 11

Figure 91S. 1H NMR spectrum of (11) recorded in acetone-d_6 at 600 MHz

Figure 92S. 13C NMR spectrum of (11) recorded in acetone-d_6 at 150 MHz
Figure 93S. HSQC spectrum of (11) recorded in acetone-d_6

Figure 94S. HMBC spectrum of (11) recorded in acetone-d_6
Figure 95S. 1H-1H COSY spectrum of (11) recorded in acetone-d_6.

Figure 96S. ROESY spectrum of (11) recorded in acetone-d_6.
Figure 97S. HRESIMS spectrum of (11)
Figure 98S. UV spectrum of (11)

Figure 99S. IR spectrum of (11)
Figure 100S-108S. NMR, MS, UV, and IR spectra of compound 12

Figure 100S. 1H NMR spectrum of (12) recorded in acetone-d_6 at 600 MHz

Figure 101S. 13C NMR spectrum of (12) recorded in acetone-d_6 at 150MHz
Figure 102S. HSQC spectrum of (12) recorded in acetone-d_6

Figure 103S. HMBC spectrum of (12) recorded in acetone-d_6
Figure 104S. 1H-1H COSY spectrum of (12) recorded in acetone-d_6

Figure 105S. ROESY spectrum of (12) recorded in acetone-d_6
Figure 106S. HRESIMS spectrum of (12)
Figure 107S. UV spectrum of (12)

Figure 108S. IR spectrum of (12)
Figure 109S. The pack drawing of compound 1

Figure 109S. View of the Pack drawing motif of 1

(Hydrogen-bonds are shown as dashed lines)
Figure 110S. The pack drawing of compound 3

Figure 110S. View of the pack drawing of 3.

(Hydrogen-bonds are shown as dashed lines)
Figure 111S. The pack drawing compound 10

Figure 111S. View of the pack drawing of 10

(Hydrogen-bonds are shown as dashed lines)
Table 1S. Crystal data and structure refinement for 1

Property	Value
Identification code	cu_xpp40_0m
Empirical formula	C26 H38 O11
Formula weight	526.56
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system, space group	Monoclinic, P 21
Unit cell dimensions	a = 5.70480(10) Å, b = 23.8602(5) Å, c = 9.3419(2) Å
Volume	1271.53(4) Å³
Z, Calculated density	2, 1.375 Mg/m³
Absorption coefficient	0.898 mm⁻¹
F(000)	564
Crystal size	0.67 x 0.62 x 0.38 mm
Theta range for data collection	3.70 to 69.31 deg.
Limiting indices	h: -6 to 6, k: -26 to 24, l: -11 to 11
Reflections collected / unique	10232 / 3499 [R(int) = 0.0328]
Completeness to theta	93.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7267 and 0.5846
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	3499 / 1 / 344
Goodness-of-fit on F²	1.113
Final R indices [I>2σ(I)]	R1 = 0.0300, wR2 = 0.0884
R indices (all data)	R1 = 0.0300, wR2 = 0.0885
Absolute structure parameter	0.17(14)
Table 2S. Crystal data and structure refinement for 3

Parameter	Value
Identification code	cu_xpp57_0m-sr
Empirical formula	C104 H146 O45
Formula weight	2116.20
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	P2\(_1\)2\(_1\)2\(_1\)
Unit cell dimensions	a = 17.5477(6) Å, b = 21.7199(7) Å, c = 33.3592(12) Å, \(\alpha = 90^\circ\), \(\beta = 90^\circ\), \(\gamma = 90^\circ\)
Volume	12714.3(8) Å\(^3\)
Z	4
Density (calculated)	1.106 Mg/m\(^3\)
Absorption coefficient	0.728 mm\(^{-1}\)
F(000)	4520
Crystal size	0.980 x 0.660 x 0.470 mm\(^3\)
Theta range for data collection	2.427 to 69.708°.
Index ranges	-21 <= h <= 21, -26 <= k <= 25, -37 <= l <= 40
Reflections collected	112641
Independent reflections	23429 [R(int) = 0.0484]
Completeness to theta = 67.679°	99.7%
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F\(^2\)
Table 3S. Crystal data and structure refinement for 10

Identification code	cu_xpp14_0m
Empirical formula	C20 H26 O5
Formula weight	346.41
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system, space group	Monoclinic, P21
Unit cell dimensions	a = 11.5843(7) Å
	b = 9.5501(6) Å
	c = 15.2093(10) Å
Volume	1680.53(18) Å³
Z, Calculated density	4, 1.369 Mg/m³
Absorption coefficient	0.794 mm⁻¹
F(000)	744
Crystal size	0.40 x 0.28 x 0.02 mm
Theta range for data collection	2.91 to 69.25 deg.
Limiting indices	-14 ≤ h ≤ 13, -11 ≤ k ≤ 11, -18 ≤ l ≤ 17
Reflections collected / unique	10384 / 4801 [R(int) = 0.0536]
Description	Value
---	--------------------------------------
Completeness to theta = 69.25	92.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9843 and 0.7419
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4801 / 1 / 464
Goodness-of-fit on F^2	1.058
Final R indices [I>2sigma(I)]	R1 = 0.0627, wR2 = 0.1682
R indices (all data)	R1 = 0.0701, wR2 = 0.1743
Absolute structure parameter	0.0(2)
Largest diff. peak and hole	0.444 and -0.561 e.A^{-3}