On the maximum number of distinct intersections in an intersecting family

Peter Frankl*, Sergei Kiselev†, Andrey Kupavskii‡

Abstract

For \(n > 2k \geq 4 \) we consider intersecting families \(\mathcal{F} \) consisting of \(k \)-subsets of \(\{1, 2, \ldots, n\} \). Let \(\mathcal{I}(\mathcal{F}) \) denote the family of all distinct intersections \(F \cap F', \ F \neq F' \) and \(F, F' \in \mathcal{F} \). Let \(\mathcal{A} \) consist of the \(k \)-sets \(A \) satisfying \(|A \cap \{1, 2, 3\}| \geq 2 \). We prove that for \(n \geq 50k^2 \) \(|\mathcal{I}(\mathcal{F})| \) is maximized by \(\mathcal{A} \).

1 Introduction

Let \(n, k \) be positive integers, \(n > 2k \). Let \(X = \{1, 2, \ldots, n\} \) be the standard \(n \)-element set and let \(\binom{X}{k} \) be the collection of all its \(k \)-subsets. For a family \(\mathcal{F} \subset \binom{X}{k} \) let \(\mathcal{I}(\mathcal{F}) := \{ F \cap F' : F, F' \in \mathcal{F}, F \neq F' \} \) be the family of all distinct pairwise intersections. Recall that a family \(\mathcal{F} \) is called intersecting if \(F \cap F' \neq \emptyset \) for all \(F, F' \in \mathcal{F} \).

One of the cornerstones of extremal set theory is the Erdős–Ko–Rado Theorem:

Theorem 1.1 ([EKR]). Suppose that \(\mathcal{F} \subset \binom{X}{k} \) is intersecting. Then

\[
|\mathcal{F}| \leq \binom{n-1}{k-1}.
\]
For a fixed element $x \in X$ define the full star S_x by $S_x := \{ S \in \binom{X}{k} : x \in S \}$. Clearly S_x is intersecting and it provides equality in (1.1). Subfamilies of S_x are called stars. If we permit $n = 2k$ then there are many other intersecting families attaining equality in (1.1). However, Hilton and Milner [HM] proved that for $n > 2k$ the full stars are the only intersecting families with this property.

For a family $G \subset 2^X$ define the family of transversals:

$$\mathcal{T}(G) := \{ T \subset X : |T| \leq k, T \cap G \neq \emptyset \text{ for all } G \in G \}.$$

With this definition $G \subset \binom{X}{k}$ is intersecting iff $G \subset \mathcal{T}(G)$. For $G \subset 2^X$ and $0 \leq \ell \leq n$ define the ℓ-th level of G by $G^{(\ell)} := \{ G \in G, |G| = \ell \}$.

An intersecting family $\mathcal{F} \subset \binom{X}{k}$ is called saturated if $\mathcal{F} \cup \{ G \}$ ceases to be intersecting for all $G \in \binom{X}{k} \setminus \mathcal{F}$.

Observation 1.2. An intersecting family $\mathcal{F} \subset \binom{X}{k}$ is saturated iff $\mathcal{F} = \mathcal{T}(\mathcal{F})^{(k)}$.

The aim of the present paper is to investigate the maximum size of $\mathcal{I}(\mathcal{F})$ over intersecting families $\mathcal{F} \subset \binom{X}{k}$. Since $\mathcal{F} \subset \tilde{\mathcal{F}}$ implies $\mathcal{I}(\mathcal{F}) \subset \mathcal{I}(\tilde{\mathcal{F}})$, in the process we may assume that \mathcal{F} is saturated.

Unless otherwise stated, all considered intersecting families are supposed to be saturated. We need the following lemma that was essentially proved in [F78]. In order to state it, recall that a family \mathcal{B} is called an antichain if $B \not\subset B'$ holds for all distinct members $B, B' \in \mathcal{B}$. Recall also that an antichain $\{ A_1, \ldots, A_p \}$ is called a sunflower of size p with center C if

$$A_i \cap A_j = C \text{ for all } 1 \leq i < j \leq p.$$

Lemma 1.3. Suppose that $\mathcal{F} \subset \binom{X}{k}$ is a saturated intersecting family. Let $\mathcal{B} = \mathcal{B}(\mathcal{F})$ be the family of minimal (w.r.t. containment) sets in $\mathcal{T}(\mathcal{F})$. Then

(i) \mathcal{B} is an intersecting antichain,

(ii) $\mathcal{F} = \{ H \in \binom{X}{k} : \exists B \in \mathcal{B}, B \subset H \}$,

(iii) \mathcal{B} contains no sunflower of size $k + 1$.

The proof is given in the next section.

Define the intersecting family $\mathcal{A} = \mathcal{A}(n,k)$ on the ground set $X = \{1, \ldots, n\}$ by

$$\mathcal{A} := \left\{ A \in \binom{X}{k} : |A \cap \{1, 2, 3\}| \geq 2 \right\}.$$
The main result of the present paper is

Theorem 1.4. Suppose that \(n \geq 50k^2 \), \(k \geq 2 \) and \(\mathcal{F} \subset \binom{X}{k} \) is intersecting. Then

\[
|I(\mathcal{F})| \leq |I(A)|.
\]

Let us note that it is somewhat surprising that the maximum is attained for \(A \) and not the full star which is much larger. Let us present the formula for \(|I(A)| \).

Proposition 1.5.

\[
|I(A)| = 3 \sum_{0 \leq i \leq k-2} \binom{n-3}{i} + 3 \sum_{0 \leq i \leq k-3} \binom{n-3}{i} + \sum_{0 \leq i \leq k-4} \binom{n-3}{i}.
\]

Proof. Let \(A, A' \in \mathcal{A} \). Then there are seven possibilities for \(A \cap A' \cap \{1, 2, 3\} \), namely, all non-empty subsets of \(\{1, 2, 3\} \). If \(A \cap A' \cap \{1, 2, 3\} = \{1\} \) then \(A \cap \{1, 2, 3\} \) and \(A' \cap \{1, 2, 3\} \) are \(\{1, 2\} \) and \(\{1, 3\} \) in some order. Since \(n > 2k \) it is easy to see \(A \cap A' = \{1\} \cup D \) is possible for all \(D \subset \{4, \ldots, n\} \), \(|D| \leq k-2 \).

The remaining six cases can be dealt similarly.

Note that the RHS of (1.3) can be simplified to

\[
3 \sum_{0 \leq i \leq k-2} \binom{n-3}{i} + \sum_{0 \leq i \leq k-4} \binom{n-3}{i}.
\]

In comparison

\[
|I(S_x)| = \sum_{0 \leq i \leq k-2} \binom{n-1}{i} = 2 \sum_{0 \leq i \leq k-2} \binom{n-2}{i} - \binom{n-2}{k-2}.
\]

That is,

\[
|I(S_x)| < \frac{2}{3} |I(A)|.
\]

Doing more careful calculations, one can replace \(\frac{2}{3} \) with \(\frac{n}{3(n-k)} \).

The paper is organized as follows. In Section 2 we prove Lemma 1.3 and the main lemma (Lemma 2.3) which provides some upper bounds concerning \(\mathcal{B}(\mathcal{F}) \). In Section 3 we prove Theorem 1.4. In Section 4 we mention some related problems.
2 Preliminaries and the main lemma

Proof of Lemma 1.3. The fact that B is an antichain is obvious. Suppose for contradiction that $B, B' \in B$ but $B \cap B' = \emptyset$. If $|B| = |B'| = k$ then $B, B' \in \mathcal{F}$ and $B \cap B' \neq \emptyset$ follows. By symmetry suppose $|B| = |B'| < k$. Now $B, B' \in \mathcal{T}(\mathcal{F})$ implies that $B' \cap F \neq \emptyset$ for all $F \in \mathcal{F}$. Choose a k-element superset F' of B' with $B \cap F' = \emptyset$. Since $B' \in \mathcal{T}(\mathcal{F})$, we have $F' \in \mathcal{T}(\mathcal{F})$. By Observation 1.2, $F' \in \mathcal{F}$. However, $B \cap F' = \emptyset$ contradicts $B \in \mathcal{T}(\mathcal{F})$. This proves (i). Statement (ii) is immediate from the definition of B.

To prove (iii) suppose for contradiction that $B_0, B_1, \ldots, B_k \in B$ form a sunflower with center C. Since B is an antichain, C is a proper subset of B_0. Consequently $C \notin \mathcal{T}(\mathcal{F})$. Thus we may choose $F \in \mathcal{F}$ satisfying $C \cap F = \emptyset$. However this implies $F \cap B_i = \emptyset$, a contradiction. □

In what follows, $B := B(\mathcal{F})$ is as in Lemma 1.3: the family of minimal transversals of \mathcal{F}. Let us recall the Erdős–Rado Sunflower Lemma.

Lemma 2.1 ([ER]). Let $\ell \geq 1$ be an integer and $\mathcal{D} \subset \binom{X}{\ell}$ a family which contains no sunflower of size $k + 1$. Then

\[(2.1) \quad |\mathcal{D}| \leq \ell! k^\ell.\]

The following statement is both well-known and easy.

Lemma 2.2. Suppose that $\mathcal{E} \subset \binom{X}{2}$ is intersecting, then either \mathcal{E} is a star or a triangle.

We are going to use the standard notation: for integers $a \leq b$ we set $[a, b] = \{i: a \leq i \leq b\}$ and $[n] = [1, n]$. We also write (x, y) instead of $\{x, y\}$ if $x \neq y$.

Based on Lemma 2.1 we could prove (1.2) for $n > k + 50k^3$. To get a quadratic bound we need to improve it under our circumstances. To state our main lemma we need some more definitions.

Define $t = t(\mathcal{B}) := \min\{|B|: B \in \mathcal{B}\}$. The covering number $\tau(\mathcal{B})$ is defined as follows: $\tau(\mathcal{B}) := \min\{|T|: T \cap B \neq \emptyset \text{ for all } B \in \mathcal{B}\}$. Since \mathcal{F} is a saturated intersecting family, using (ii) of Lemma 1.3 we have $\tau(\mathcal{B}) = t$.

Now we can present our main lemma that is a sharpening of a similar result in [F17]. Put $\mathcal{B}^{(\leq \ell)} := \bigcup_{i=1}^{\ell} \mathcal{B}^{(i)}$.

4
Lemma 2.3. Let ℓ be an integer, $k \geq \ell \geq 2$. Suppose that $F \subset \binom{X}{k}$ is a saturated intersecting family, $B = B(F)$, $t \geq 2$. Assume that $\tau(B^{(\leq \ell)}) \geq 2$. Then

\begin{equation}
|B(\ell)| \leq t \cdot \ell \cdot k^{\ell-2}.
\end{equation}

Proof. For the proof we use a branching process. We need some notation. During the proof a sequence is an ordered sequence of distinct elements of X: (x_1, x_2, \ldots, x_s). Sequences are denoted by S, S_1 etc. and we let \hat{S} denote the underlying unordered set: $\hat{S} = \{x_1, x_2, \ldots, x_s\}$.

To start the branching process, we fix a set $B_1 \in B$ with $|B_1| = t(B)$ and for each element $y_1 \in B_1$ we assign weight $t(B) - 1$ to the sequence (y_1).

At the first stage, we replace each 1-sequence (y_1) with at most ℓ^2-sequences: using $\tau(B^{(\leq \ell)}) \geq 2$ we choose an arbitrary $B(y_1) \in B$ satisfying $y_1 \notin B(y_1), |B(y_1)| \leq \ell$, and assign weight $(t(B) \cdot |B(y_1)|)^{-1} \geq (t(B) \cdot \ell)^{-1}$ to each sequence $(y_1, y_2), y_2 \in B(y_1)$. Note that the total weight assigned is exactly 1.

At each subsequent stage we pick a sequence $S = (x_1, \ldots, x_p)$ with weight $w(S)$ such that there exists $B \in B$ satisfying $\hat{S} \cap B = \emptyset$. Then we replace S by the $|B|$ sequences $(x_1, \ldots, x_p, y), y \in B$, and assign weight $\frac{w(S)}{|B|}$ to each of them.

We continue until $\hat{S} \cap B \neq \emptyset$ holds for all sequences S and all $B \in B$. Since X is finite, this eventually happens. Importantly, the total weight assigned is still 1.

Claim 2.4. For each $B \in B^{(\ell)}$ there is some sequence S with $\hat{S} = B$.

Proof. Let us suppose the contrary. Since B is intersecting, a sequence with $\hat{S} = B$ is not getting replaced by a longer sequence during the process. Let $S = (x_1, \ldots, x_p)$ be a sequence of maximal length that occurred at some stage of the branching process satisfying $\hat{S} \subsetneq B$. Since \hat{S} is a proper subset of B, $\hat{S} \cap B' = \emptyset$ for some $B' \in B$. Thus at some point we picked S and chose some $\tilde{B} \in B$ disjoint to it. Since B is intersecting, $B \cap \tilde{B} \neq \emptyset$. Consequently, for each $y \in B \cap \tilde{B}$ the sequence $(x_1, x_2, \ldots, x_p, y)$ occurred in the branching process. This contradicts the maximality of p. \hfill \Box

Let us check the weight assigned to S with $|\hat{S}| = \ell$. It is at least $1 / (t(B) \ell k^{\ell-2})$. Since the total weight is 1, (2.2) follows. \hfill \Box
We should remark that the same $B \in \mathcal{B}(\ell)$ might occur as \widehat{S} for several sequences S and for many sequences $|\widehat{S}| \neq \ell$ might hold. This shows that there might be room for considerable improvement.

Let us mention that if $\mathcal{F} \subset \binom{X}{k}$ is a saturated intersecting family with $\tau(\mathcal{F}) = k$ then $\mathcal{B}(\mathcal{F}) = \mathcal{F}$ and (2.2) reduces to $|\mathcal{F}| \leq k^k$, an important classical result of Erdős and Lovász [EL].

3 The proof of Theorem 1.4

Since the case $k = 2$ trivially follows from Lemma 2.2, we assume $k \geq 3$. Take any saturated intersecting \mathcal{F} and let $\mathcal{B} = \mathcal{B}(\mathcal{F})$. First recall that for the full star S_x,

$$|\mathcal{I}(S_x)| = \sum_{0 \leq \ell \leq k-2} \binom{n-1}{\ell},$$

which is less than $|\mathcal{I}(\mathcal{A})|$, and so we may assume that \mathcal{F} is not the full star, i.e., $\mathcal{B}^{(1)} = \emptyset$.

Recall that $t = \min\{|B| : B \in \mathcal{B}\}$. Let us first present two simple inequalities for sums of binomial coefficients that we need in the sequel.

$$\frac{n-a}{i} / \frac{n-a}{i-1} = \frac{n-a-i+1}{i} \geq \frac{n-k}{k-1}$$

for $k > i > 0$, $a \geq 0$ and $i + a \leq k + 1$. Thus for every $1 \leq s \leq k-1$

$$\sum_{0 \leq i \leq s} \binom{n-2}{i} \geq \frac{n-k}{k-1} \sum_{0 \leq i \leq s-1} \binom{n-2}{i}.$$

Thus

$$\frac{n-2}{i} / \frac{n}{i} = \frac{(n-i)(n-i-1)}{n(n-1)} > \left(1 - \frac{k}{n}\right)^2 \text{ for } 1 < i < k.$$

Let us partition \mathcal{F} into $\mathcal{F}^{(1)} \cup \ldots \cup \mathcal{F}^{(k)}$ where $F \in \mathcal{F}^{(\ell)}$ if $\ell = \max\{|B| : B \in \mathcal{B}, B \subset F\}$.

6
Set $\mathcal{I}_\ell = \{F \cap F' : F \in \mathcal{F}(\ell), F' \in \mathcal{F}(\ell') \cup \ldots \cup \mathcal{F}(\ell)\}$. In human language, if $F \in \mathcal{F}(\ell)$, $F' \in \mathcal{F}(\ell')$ then we put $F \cap F'$ into \mathcal{I}_ℓ iff $\ell' \leq \ell$. It should be clear that

$$|\mathcal{I}(\mathcal{F})| \leq \sum_{\ell \leq k} |\mathcal{I}_\ell|.$$

The point is that for $F \in \mathcal{F}(\ell)$ and $B \subset F$, $B \in \mathcal{B}(\ell)$, for an arbitrary $F' \in \mathcal{F}$, $F \cap F'$ is partitioned as

$$F \cap F' = (B \cap F') \cup ((F \setminus B) \cap F').$$

Here there are at most $2^\ell - 1$ possibilities for $B \cap F'$ and $(F \setminus B) \cap F'$ is a subset of X of size at most $k - \ell$. This proves

Lemma 3.1. For any $t \leq \ell \leq k$ such that $\tau(\mathcal{B}(\leq \ell)) \geq 2$ we have

$$(3.4) \quad |\mathcal{I}_\ell| \leq (2^\ell - 1)|\mathcal{B}(\ell)| \sum_{0 \leq i \leq k-\ell} \binom{n}{i} < 2^\ell \cdot \ell^2 k^{\ell-2} \sum_{0 \leq i \leq k-\ell} \binom{n}{i} =: f(n, k, \ell).$$

Note that if $\tau(\mathcal{B}(2)) = 2$ then \mathcal{F} coincides with \mathcal{A} and we have nothing to prove. Let α be the smallest integer such that $\tau(\mathcal{B}(\leq \alpha)) \geq 2$. We have $\alpha \geq 3$. The family $\mathcal{F}' := \bigcup_{i=1}^{\alpha-1} \mathcal{F}(i)$ is a trivial intersecting family, and thus

$$(3.5) \quad \left| \bigcup_{i=1}^{\alpha-1} \mathcal{I}_i \right| \leq |\mathcal{I}(\mathcal{S}_x)|.$$

On the other hand, using (3.2) it is clear that for $\ell \geq 2$

$$f(n, k, \ell) / f(n, k, \ell + 1) > \frac{(n - k)\ell^2}{2k^2(\ell + 1)^2} \geq 6 \quad \text{for } n \geq 50k^2.$$

Hence

$$(3.6) \quad \sum_{\ell=\alpha}^{k} |\mathcal{I}_\ell| < \sum_{3 \leq \ell \leq k} f(n, k, \ell) < \frac{6}{5} f(n, k, 3).$$

Summing the right hand sides of (3.5) and (3.6), we get that

$$|\mathcal{I}(\mathcal{F})| \leq \sum_{0 \leq i \leq k-2} \binom{n-1}{i} + \frac{432}{5} \sum_{0 \leq i \leq k-3} \binom{n}{i}.$$
\[
\begin{align*}
&< \binom{n-2}{k-2} + \left(\frac{432k}{5} + 2 \right) \sum_{0 \leq i \leq k-3} \binom{n}{i} \\
&\quad \leq \binom{n-2}{k-2} + 90 \frac{k(k-1)}{n-k} \sum_{0 \leq i \leq k-2} \binom{n}{i} \leq \binom{n-2}{k-2} + 1.8 \sum_{0 \leq i \leq k-2} \binom{n}{i} \\
&\quad < \binom{n-2}{k-2} + 2 \sum_{0 \leq i \leq k-2} \binom{n-2}{i} < |\mathcal{I}(\mathcal{A})|.
\end{align*}
\]

4 Concluding remarks

Let \(n_0(k) \) be the smallest integer such that Theorem 1.4 is true for \(n \geq n_0(k) \). We proved \(n_0(k) \leq 50k^2 \). One can improve on the constant 50 by being more careful in the analysis. The following example shows that \(n_0(k) \geq (3 - \varepsilon)k \).

For \(1 \leq p \leq k, n > 2k \), define the family \(\mathcal{B}_p(n,k) \) by

\[
\mathcal{B}_p(n,k) := \left\{ A \in \binom{[n]}{k} : |A \cap [2p-1]| \geq p \right\}.
\]

Note that \(\mathcal{S}_1 = \mathcal{B}_1(n,k) \) and \(\mathcal{A} = \mathcal{B}_2(n,k) \). It is easy to verify that

\[
|\mathcal{I}(\mathcal{B}_p(n,k))| = \sum_{i=1}^{p-1} \binom{2p-1}{i} \sum_{j=0}^{k-p} \binom{n-2p+1}{j} + \sum_{i=p}^{2p-1} \binom{2p-1}{i} \sum_{j=0}^{k-i-1} \binom{n-2p+1}{j}.
\]

By doing some calculations, one can see that \(|\mathcal{I}(\mathcal{B}_3(n,k))| > |\mathcal{I}(\mathcal{B}_2(n,k))| \) for \(n < (3 - \varepsilon)k \). It would be interesting do decide, whether for \(n > (1 + \varepsilon)k \) the maximum is always attained on one of the families \(\mathcal{B}_p(n,k) \).

Note that for \(n = 2k, k \geq 14 \), it is possible to construct an intersecting family \(\mathcal{F} \) with \(|\mathcal{I}(\mathcal{F})| = \sum_{i=0}^{k-1} \binom{n}{i} \) using an argument from [FKKP]. We say that a family \(\mathcal{F} \) almost shatters a set \(X \subset [n] \) if for any \(A \subset X, A \not\in \{\emptyset, X\} \), there is \(F \in \mathcal{F} \) such that \(F \cap X = A \). Take a random intersecting family \(\mathcal{F} \) by picking a \(k \)-set from each pair \((A, [n] \setminus A) \) independently at random. In [FKKP, Theorem 7] it is proved, that with positive probability \(\mathcal{F} \) almost shatters every \(X \in \binom{[2k]}{k} \). Fix such a family \(\mathcal{F} \); then, by applying the almost shattering property two times, it is easy to show that, for each \(I \subset [n], 1 \leq |I| < k \), there are two sets \(F_1, F_2 \in \mathcal{F} \), such that \(I \subset F_1 \) and \(F_1 \cap F_2 = I \).
Another natural problem is to consider \(\tilde{I}(\mathcal{F}) = \{ F \cap F': F, F' \in \mathcal{F} \} = \mathcal{I}(\mathcal{F}) \cup \mathcal{F} \). Essentially the same proof shows that \(\tilde{I}(\mathcal{F}) \) is maximised by \(\mathcal{F} = \mathcal{S}_x \) for \(n \geq 50k^2 \) and one can verify that \(|\mathcal{I}(\mathcal{B}_2(n,k))| > |\mathcal{I}(\mathcal{S}_x)| \) for \(n < (5 - \varepsilon)k \).

In [F20] the analogous problem for the number of distinct differences \(F \setminus F' \) was considered. Improving those results in [FKK], we proved that for \(n > 50k \cdot \log k \) the maximum is attained for the full star, \(\mathcal{S}_x \). We showed also that it is no longer true for \(n = ck, 2 \leq c < 4, k > k_0(c) \).

The methods used in [FKK] are completely different.

References

- **[EKR]** P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, *The Quart. J. Math. Oxford, Ser. (2)* 12 (1961), 313–320.
- **[EL]** P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related questions. In: *Infinite and Finite Sets (Proc. Colloq. Math. Soc. J. Bolyai 10)*, edited by A. Hajnal et al., North-Holland, Amsterdam, 1975, 609–627.
- **[ER]** P. Erdős and R. Rado, Intersection theorems for systems of sets, *J. London Math. Soc.* 35 (1960), 85–90.
- **[F78]** P. Frankl, On intersecting families of finite sets, *J. Combinatorial Theory A* 24 (1978), 146–161.
- **[F17]** P. Frankl, Antichains of fixed diameter, *Moscow J. Combinatorics and Number Theory* 7 (2017), 189–219.
- **[F20]** P. Frankl, On the number of distinct differences in an intersecting family, *Discrete Mathematics* 344.2 (2021): 112210.
- **[FKK]** P. Frankl, S. Kiselev and A. Kupavskii, Best possible bounds on the number of distinct differences in intersecting families, arXiv preprint arXiv:2106.05355 (2021).
- **[FKKP]** N. Frankl, S. Kiselev, A. Kupavskii and B. Patkós, VC-saturated set systems, arXiv preprint arXiv:2005.12545 (2020).
- **[HM]** A. J. W. Hilton and E. C. Milner, Some intersection theorems for systems of finite sets, *Quart. J. Math. Oxford (2)* 18 (1967), 369–384.