Chemical Composition and Repellency Effect of Ferulago Angulate Plant Against Malaria Vector, Anopheles Stephensi

Masoumeh Pirmohammadi
Tehran University of Medical Sciences

Mansoureh Shayeghi
Tehran University of Medical Sciences

Mohammad Reza Abai
Tehran University of Medical Sciences

Hassan Vatandoost (hvatandoost1@yahoo.com)
Tehran University of Medical Sciences

Sara Rahimi
Tehran University of Medical Sciences

Zeynab Barghamadi
Tehran University of Medical Sciences

Research

Keywords: Anopheles stephensi, protection time, malaria, Ferulago angulate

DOI: https://doi.org/10.21203/rs.3.rs-123450/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Malaria is a health problem globally. There are several vector control measures. Using repellent to protect human from biting of vectors is one of the best ways. The aim of this study is to evaluate the efficacy of plant against biting of malaria vector, An.stephensi under laboratory conditions.

Methods

Chemical constituents of Ferulago angulate plant were determined by using gas chromatography-mass spectrometry. Efficacy and the protection time of plant were evaluated on Anopheles stephensi.

Results

A total of 40 compounds were identified in plant. Flourensiadiol (17.4%) dehydro-sabina keton (13.3%), β-maaliene (8.8%) was the highest in the plant. The mean assessed protection time and efficacy for plant was 60 and 100 minutes respectively. ED$_{50}$ and ED$_{90}$ values for this plant were 18.12 and 93.19 µl/cm2 respectively.

Conclusion

Results showed that plant has an acceptable protection time, therefore, this plant could be considered as a good herbal repellent against anopheles mosquitoes.

1. Introduction

Malaria is the main vector borne diseases worldwide. According to the recent record of World Health Organization, 228 million cases have been reported in 2018 mainly in in African region [1]. According to the report of Ministry of Health of Iran, less than 89 locally-transmitted cases in 2017 have been reported. The aim of country is to eliminate the disease by 2025 [2]. Malaria continues to be a main vector-borne public health problem in Iran. Using insecticide caused resistant in the vectors. There are several reports on resistant status of malaria vectors including An.stephensi [3-5] An.maculipenis [6] , An.culicifacies ([7-9]) An. [10]). At the present, biopesticides are in the spotlight due to inflicting of chemical pesticide hazards to humans, livestock, environment as well as the occurrence of the inducing resistance to different groups of insecticides among human and animal disease vectors. A lot of attention is being paid to natural products in vector control as they are environmentally safe, degradable and target-specific. Recent studies have demonstrated that use of repellents is one of the effective ways to control [11]. There are 9 species of plant in Iran including: F. contracta, F. macrocarpa, F. phialocarpa, F. stellate, F. angulate, F. Bernardi, F. carduchorum, F. subvelutina, F. trifida

F. angulate is known as Chavil in the country. It is a perennial endemic aromatic herb from the nine Ferulago species growing particularly in Iran [12-13]. Its leaves have been traditionally used as antiseptic,
pain reliever, in digestive disorders, to treat intestinal worms, snake bites, hemorrhoids, chronic ulcers, and ailments of the spleen [14]. Furthermore, in Western Iran, this plant has been consumed as spice, and used as air freshener, decay preventer and flavoring oil [15]. In a study to assess the influence of geographical factors on essential oil composition, along with antiradical potential and phytochemical contents of *Ferulago angulata* (Apiaceae) extracts. Thirty-nine compounds were identified from the Eos of nine populations. α-Pinene was the predominant component. It can be considered as a perspective raw material in food and phytopharmaceutical industries [16]. Antioxidant and antibacterial activities of the essential oils of *F. angulata* collected from different natural habitats in the alpine regions of southwestern Iran showed positive results. The essential oil of *F. angulate* could be serving as a potential source for use in the food, cosmetic and pharmaceutical industries [17]. Cytotoxic activities of *Ferulago angulata* extract on human leukemia and lymphoma cells by induction of apoptosis were determined [18]. This study was conducted to measure the chemical contents and to evaluate the repellent properties of plant essential oil against *An. stephensi* under laboratory condition on animal model.

2. Materials And Methods

2.1. Collection, identification and extraction of plant, *Ferulago angulate*.

The plant of *Ferulago angulate* were collected in Chaharmahal and Bakhtiari Province in south-west of Iran (Fig.1) They were rapidly transported to the School of Public Health, Tehran University of Medical Sciences.

2.2. Plant identification: The plant was identified by experts in Department of Plant Sciences, Tehran University. (Fig.2)

2.3. Mosquitoes rearing

Susceptible strain of *An. stephensi* were reared and maintained at 28±2 °C and 65±5% relative humidity (RH) under a 16:8 (L: D) photoperiod. Under insectary situation, guinea pigs is used as blood feeding female mosquitoes for maturing the eggs.

2.4. Repellency test

Females of *An. stephensi* were used for the repellency tests. 12 hour before starting the experiments, the sucrose solution was picked up from the cage. Various repellency tests including protection time, failure time, effective dose and killing effects of EOs were carried out according ASTM E951-9 against 5-8 old female *An. stephensi*.

2.5. Extraction of essential oil of plant

All the extraction was carried out at Faculty of Pharmacology, Tehran University of Medical Sciences. Essential oils (EOs) of native medicinal plant of *Ferulago angulata*, were hydrodistilled in a Clevenger-type
apparatus for 4-6 h and dried over anhydrous sodium sulfate. The EOs were stored in the dark sealed vials at 4 °C until starting the repellency tests maximum after 2 days past of EO preparation.

2.6. Plant essential oils analysis

Chemical composition of plant was analyzed using an Agilent 7890–5975 gas chromatography mass spectrometer. With a HP- 5MS (5% Phenyl Methyl Silox) capillary column (30m×0.25mm, film thickness 0.25μm), split ratio, 1: 1, and using a flame ionization detector. The GC was programmed at 50 °C for 0.5 min and then increased at 5 °C/min to 280 °C, and finally held with an isothermal for 3min. The injector temperature was 280 °C. The flow rate of the carrier gas was 1ml/min. The identification of compounds was performed by comparing their retention times and mass spectra with mass spectra from Wiley library [19]

2.7. Plants essential oils analysis

Chemical composition of plant was analyzed using an Agilent 7890–5975 gas chromatography mass spectrometer. With a HP- 5MS (5% Phenyl Methyl Silox) capillary column (30m×0.25mm, film thickness 0.25μm), split ratio, 1: 1, and using a flame ionization detector. The GC was programmed at 50 °C for 0.5 min and then increased at 5 °C/min to 280 °C, and finally held with an isothermal for 3min. The injector temperature was 280 °C. The flow rate of the carrier gas was 1ml/min. The identification of compounds was performed by comparing their retention times and mass spectra with mass spectra from Wiley library.

3. Results

3.1. GC-mass analysis

One microliter of each essential oil was injected to GC-mass. A total of 40 compounds were identified in plant. Flourensiadiol (17.4%) dehydro-sabina keton (13.3%), β-maaliene (8.5%) was the highest in the plant (Table 1).

Table 1. Chemical constituents of stem essential oil from Ferulago angulate
NO	tR (Minutes)	compound	%	RI
1	1.80	isovaleric acid	0.3	833
2	2.02	(Z)-3-hexenol	6.3	856
3	5.27	dehydro-sabina ketone	13.3	1120
4	5.44	α-campholenal	0.6	1135
5	5.47	cis-p-mentha-2,4-dien-1-ol	0.3	1137
6	5.71	camphene	0.5	1157
7	5.84	borneol	1	1168
8	5.92	ethyl-benzoate	1.4	1174
9	6.27	n-decanal	1	1201
10	6.52	trans-carveol	1	1221
11	6.60	nerol	3.2	1228
12	6.96	geraniol	1	1256
13	7.66	undecanal	1.2	1308
14	8.04	d-elemene	1.5	1339
15	8.58	β-maaliene	8.5	1381
16	9.43	geranyl acetone	1.2	1451
17	9.60	a-acoradiene	1.4	1465
18	9.82	germacrene D	1.4	1483
19	10.48	a-cadinene	11	1539
20	10.56	elemol	0.6	1546
21	11.62	hinesol	0.4	1639
22	11.92	bulnesol	3	1666
23	12.21	8-cedren-13-ol	0.36	1692
24	12.92	xanthorrizol	1.2	1753
25	13.15	benzyl-benzoate	1.1	1772
26	13.43	nootkatone	1	1794
27	13.77	isopropyl tetradecanoate	0.5	1821
28	13.90	isopropyl tetradecanoate	3	1831
The ED\textsubscript{50} and ED\textsubscript{90} values of plant was 15.88 and 89.52 µl/cm2, respectively (Table 2).

Table 2. Effective dose of stem essential oil of \textit{F. angulate} against \textit{Anopheles stephensi} on animal subject under laboratory condition

p-Value	\(\chi^2\) table (df)	\(\chi^2\) (heterogeneity)	ED\textsubscript{90} (µl /cm2) ± 95\%C.L.	ED\textsubscript{50} (µl /cm2) ± 95\%C.L.	b ± SE	a	plant
0.01	2	0.29	93.19 (61.70-190.21)	18.12 (14.42-22.67)	1.8±0.26	-2.2	0.01

The protection time of essential oil of plant was 60 minutes. The failure time of 100 minutes was observed against \textit{An. stephensi} on animal (table 3).

Table 3. Protection time and failure time of \textit{Ferulago angulate} against \textit{An. stephensi} on animal subject under laboratory condition

Failure time (hour)	Protection time (hour)	Elavation (m)	Locality of collection	District
Mean	Range	Mean	Range	
2.06 h = 100 min	1.5 – 2.0	1.0 h = 60.0 min	1.0 – 1.0	1502
			Bazoft	Koohrang
Discussion

In this research a total of 40 compounds were identified in plant. Flourensiadiol (17.4%) dehydro-sabina keton (13.3%), β-maaliene (8.8%) was the highest in the plant. The mean assessed protection time and efficacy for plant was 60 and 100 minutes respectively. ED$_{50}$ and ED$_{90}$ values for this plant were 18.12 and 93.19 µl/cm2 respectively.

The major constituents of the essential oils from *F. angulate* were a-pinene, and cis-b-ocimene [17]. There are several report on larvicidal activities of *Ferulago* species against malaria vectors worldwide. *Ferulago carduchorum* was effective against *Anopheles stephensi* with LC$_{50}$ and LC$_{90}$ values of 12.78 and 47.43 ppm, respectively [20]. LC$_{50}$ of stem, root, aerial parts, fruits, and flowers essential oils of *Ferulago trifida* against larvae of An. stephensi were equal with 10.46, 22.27, 20.50, 31.93 and 79.87ppm respectively [21].

The LC$_{50}$ of the total extract, chloroform, ethyl acetate and methanol fractions of *Ferulago carduchorum* were 0.4799, 0.2361, 0.7437 and 3.7017 ppm, respectively. The LC$_{90}$ of the total extract, chloroform, ethyl acetate and methanol fractions were 1.5090, 0.4547, 1.8918 and 10.8857 ppm, respectively [22]. Results of efficacy of different Iranian native plants against malaria vector *An. stephensi* at the LC$_{50}$ and LC$_{90}$ levels are presented. From these results it can be concluded that *Mentha spicata* and *Eucalyptus camaldulensis*, had the lowest and highest LC$_{50}$ respectively [23].

Conclusion

The plant of have been used for medicinal purposes. It repellency and killing effect also evaluated against medically important arthropods and agricultural pests. The appropriate formulation of plant should be prepared for vector and pest control. The results indicated that this plant could be used as larvicida and repellent against mosquitoes.

Declarations

Ethics approval and consent to participate: There is not applicable

Consent for publication: applicable

Availability of data and material: applicable

Competing interests: *The author declare that there is no conflict of interest*

Funding: This study was supported by the Ministry of Health and Medical Education of Iran with NIMAD Project Number 971065.

Authors’ contributions: All the authors were involved
Acknowledgments: This study was funded and supported by Tehran University of Medical Sciences (TUMS).

References

1. World Health Organization. World Malaria Report: 2019. Geneva: WHO, pp 232.

2. Vatandoost H, Raeisi A, Saghafipour A, Mikpour F, Nejati J. Malaria situation in Iran: 2002–2017. Mala J. 2019a; 18(200), 1-7.

3. Abbasi M, Hanafi-Bojd AA, Yaghoobi-Ershadi MR, Vatandoost H, Oshaghi MA, Hazratian T, et al. Resistance status of main malaria vector, Anopheles stephensi Liston (Diptera: Culicidae) to insecticides in a malaria Endemic Area, Southern Iran. Asian Pacific J Trop Med. 2019; 12 (1): 43-48.

4. Vatandoost H, and Hanafi-Bojd AA. Indication of pyrethroid resistance in the main malaria vector, Anopheles stephensi from Iran. Asian Pacific J Trop Med. 2019; (9): 722–726.

5. Vatandoost H, Mashayekhi M, Abaie MR, Aflatoonian MR, Hanafi-Bojd AA, Sharifi I. Monitoring of insecticides resistance in main malaria vectors in a malarious area of Kahnooj district, Kerman province, southeastern Iran. J Vect Borne Dis. 2005; 42: 100–108.

6. Vatandoost H, and Zahimia AH. Responsiveness of Anopheles maculipennis to different imagicides during resurgent malaria. Asian Pacific J Trop Med. 2010; 3:360–363.

7. Vatandoost H, Zahirnia AH, Nateghpour M. Status of insecticide resistance in Anopheles culicifacies (Diptera: Culicidae) in Ghasreghand district, Sistan and Baluchistan province. Acta Med Iranica. 1999; 37(3):128-133.

8. Vatandoost H, Shahi M, Hanafi-Bojd AA, Abai MR, Oshaghi MA, Rafii F. Ecology of Anopheles dthali Patton in Bandar Abbas district, Hormozgan province, southern Iran. Iran J Arthropod-Borne Dis. 2007; 1(1): 21-27.

9. Vatandoost H, Hanafi-Bojd AA, Raeisi A, Abai MR, Nikpour F. Ecology, monitoring and mapping of insecticide resistance of malaria vector, Anopheles culicifacies (Diptera: Culicidae) to different imagicides in Iran. Asian Pacific J Trop Dis. 2017; 7(1):53-56.

10. Hanafi-Bojd AA, Vatandoost H, Jafari R. (2006). Susceptibility status of Anopheles dthali and An. fluvialitis to commonly used larvicides in an endemic focus of malaria, southern Iran. J Vector Borne Dis. 2006; 43:34–38.

11. Vatandoost H, Hanafi-Bojd. 2008. Laboratory evaluation of 3 repellents against Anopheles stephensi in the Islamic Republic of Iran. Easter Meditter Health J. 2008; 14(2):261-267.

12. Mozaffarian V, (1996) .A Dictionary of Iranian Plant Names’, Farhang Moaser, Tehran, 1996, p. 228–230.

13. Mozaffarian V, (2007) ‘Flora of Iran, Umbelliferae’, Publication of Research Institute of Forests and Rangelands, Tehran, 2007.
14. Bagci E, Aydin E, Mihasan M, Maniu C, Hritcu L. ‘Anxiolytic and antidepressant-like effects of Ferulago angulata essential oil in the scopolamine rat model of Alzheimer’s disease’, Flavour Fragrance J. 2016; 31:70–80.

15. Amiri MS, Joharchi MR. Ethnobotanical knowledge of Apiaceae family in Iran: A review’, Avicenna J Phytopharm. 2016; 6: 621–635.

16. Bagherifar S, Mahmoodi Sourestani M, Zolfaghari M, Mottaghipisheb J, Zomborszki ZP, Csupor D. Variation of chemical constituents and antiradical capacity of nine Ferulago angulata populations from Iran. Chem Biodiversity 2019; 16; 4-11.

17. Ghasemi Pirbalouti A, Izadi A, Fatemeh Malek Poorand E, Hamedi B. Chemical composition, antioxidant and antibacterial activities of essential oils from Ferulago angulata. Pharmacol. Biol. 2016; 54 (11): 2515–252.

18. Zare Shahneh F, Valiyari S, Azadmehr A, Hajiaghaee R, Bandehagh A, Baradaran B. Cytotoxic activities of Ferulago angulata extract on human leukemia and lymphoma cells by induction of apoptosis. Med Planta Res. 2013; 7(11): 677-682.

19. Pirmohammadi M, Shayeghi M, Vatandoost H, Abai MR, Mohammadi A, Bagheri A, Khoobdel M, Bakhshi H, Pirmohammadi M, Tavassoli M. Chemical composition and repellent activity of Achillea vermiculata and Satureja hortensis against Anopheles stephensi. J Arthropod-Borne Dis. 2016; 10(2), 201–210.

20. Golfakhrabadi F, Khanavi M, Ostad SN, Saeidnia S, Vatandoost H, Abai MR et al. Biological Activities and Composition of Ferulago carduchorum Essential Oil. J Arthropod-Borne Dis. 2015; 9(1): 104–115.

21. Tavakoli S, Vatandoost S, Zeidabadinezhad R, Hajiaghaee R, Hadiakhoondi A, Abai MR, Yassa N.. Gas Chromatography, GC/Mass analysis and bioactivity of essential oil from aerial parts of Ferulago trifida: antimicrobial, antioxidant, ache inhibitory, general toxicity, MTT assay and larvicidal activities. J Arthropod-Borne Dis. 2017; 11(3): 414–426.

22. Khanavi M, Baghernezhadian A, GolfFakhrabadi F, Abai MR, Vatandoost H, Hadiakhoondi A. (2016) Larvicidal activity of Ferulago carduchorum Boiss. & Hausskn. against the main malaria vector, Anopheles stephensi. Res J Pharmacogn (RJP) 2016; 3(1), 2016: 19-22.

23. Vatandoost H, Nikpour F, Hanafi-Bojd AA, Abai MR, Khanavi M, Hajiakhoondi A, Raesi A, Nejati J. efficacy of extractions of Iranian native plants against main malaria vector, Anopheles stephensi in Iran for making appropriate formulation for disease control. J Arthropod-Borne Dis. 2019b; 13(4): 344–352.