Local curvature estimates for the Laplacian flow

Yi Li

Received: 15 July 2018 / Accepted: 31 October 2020 / Published online: 18 January 2021
© The Author(s) 2021

Abstract
In this paper we give local curvature estimates for the Laplacian flow on closed G_2-structures under the condition that the Ricci curvature is bounded along the flow. The main ingredient consists of the idea of Kotschwar et al. (J Funct Anal 271(9):2604–2630, 2016) who gave local curvature estimates for the Ricci flow on complete manifolds and then provided a new elementary proof of Sesum’s result (Sesum in Am J Math 127(6):1315–1324, 2005), and the particular structure of the Laplacian flow on closed G_2-structures. As an immediate consequence, this estimates give a new proof of Lotay and Wei’s (Geom Funct Anal 27(1):165–233, 2017) result which is an analogue of Sesum’s theorem. The second result is about an interesting evolution equation for the scalar curvature of the Laplacian flow of closed G_2-structures. Roughly speaking, we can prove that the time derivative of the scalar curvature $R_{g(t)}$ is equal to the Laplacian of $R_{g(t)}$, plus an extra term which can be written as the difference of two nonnegative quantities.

Mathematics Subject Classification Primary 53C44, 53C10

1 Introduction

Let \mathcal{M} be a smooth 7-manifold. The Laplacian flow for closed G_2-structures on \mathcal{M} introduced by Bryant [1] is to study the torsion-free G_2-structures

$$\partial_t \varphi(t) = \Delta \varphi(t) \varphi(t), \quad \varphi(0) = \varphi,$$

where $\Delta \varphi(t) \varphi(t) = dd^* \varphi(t) + d^* d \varphi(t)$ is the Hodge Laplacian of $g_{\varphi(t)}$ and φ is an initial closed G_2-structure. Since $d \partial_t \varphi(t) = \partial_t d \Delta \varphi(t) \varphi(t) = 0$, we see that the flow (1.1) preserves the closedness of $\varphi(t)$. For more background on G_2-structures, see Sect. 2. When

Communicated by A. Malchiodi.

The author is supported in part by the Fonds National de la Recherche Luxembourg (FNR) under the OPEN scheme (Project GEOMREV O14/7628746, 2015–2018), in part by start-up funding of Southeast University No. 4307012071 and in part by NSFC No. 12026409.

✉️ Yi Li
yilicsms@gmail.com

1 School of Mathematics and Shing-Tung Yau Center of Southeast University, Southeast University, Nanjing 211189, China
\(\mathcal{M} \) is compact, the flow (1.1) can be viewed as the gradient flow for the Hitchin functional introduced by Hitchin [18]

\[
\mathcal{H} : [\varphi]_+ \longrightarrow \mathbb{R}^+, \quad \varphi \longrightarrow \frac{1}{\ell} \int_{\mathcal{M}} \varphi \wedge \psi = \int_{\mathcal{M}} *\varphi 1. \tag{1.2}
\]

Here \(\varphi \) is a closed \(G_2 \)-structure on \(\mathcal{M} \) and \([\varphi]_+ \) is the open subset of the cohomology class \([\varphi] \) consisting of \(G_2 \)-structures. Any critical point of \(\mathcal{H} \) gives a torsion-free \(G_2 \)-structure.

The study of Laplacian flows on some special 7-manifolds, Laplacian solitons, and other flows on \(G_2 \)-structures can be found in [13–16,19,24,29,33,34,38,39].

Recently, Donaldson [7–10] studied the co-associative Kovalev-Lefschetz fibrations \(G_2 \)-manifolds and \(G_2 \)-manifolds with boundary.

1.1 Notions and conventions

To state the main results, we fix our notions used throughout this paper. Let \(\mathcal{M} \) be as before a smooth 7-manifold. The space of smooth functions and the space of smooth vector fields are denoted respectively by \(C^\infty(\mathcal{M}) \) and \(\mathfrak{X}(\mathcal{M}) \). The space of \(k \)-tensors (i.e., \((0, k) \)-covariant tensor fields) and \(k \)-forms on \(\mathcal{M} \) are denoted, respectively, by \(\otimes^k(\mathcal{M}) = C^\infty(\otimes^k(T^*\mathcal{M})) \) and \(\wedge^k(\mathcal{M}) = C^\infty(\wedge^k(T^*\mathcal{M})) \). For any \(k \)-tensor field \(T \in \otimes^k(\mathcal{M}) \), we locally have the expression \(T = T_{i_1 \cdots i_k} dx^{i_1} \otimes \cdots \otimes dx^{i_k} =: T_{i_1 \cdots i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k} \). A \(k \)-form \(\alpha \) on \(\mathcal{M} \) can be written in the standard form as \(\alpha = \frac{1}{k!} \alpha_{i_1 \cdots i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k} \), where \(\alpha_{i_1 \cdots i_k} \) is fully skew-symmetric in its indices. Using the standard forms, if we take the interior product \(\iota_X \alpha \) of a \(k \)-form \(\alpha \in \wedge^k(\mathcal{M}) \) with a vector field \(X \in \mathfrak{X}(\mathcal{M}) \), we obtain the \((k-1) \)-form \(X \cdot \alpha = \frac{1}{(k-1)!} X^m a_{m i_1 \cdots i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k-1} \), which is also in the standard form. In particular, consider the vector space \(\otimes^2(\mathcal{M}) \) of 2-tensors. For any \(2 \)-tensor \(A = A_{ij} dx^i \wedge dx^j \), define \(A^\ominus := \frac{1}{2}(A_{ij} + A_{ji}) dx^i \wedge dx^j \) and \(A^\wedge := \frac{1}{2}(A_{ij} - A_{ji}) dx^i \wedge dx^j \). Then \(A^\ominus \) is an element of \(\mathfrak{g}^\circ(\mathcal{M}) \), the space of symmetric 2-tensors. Since \(dx^i \wedge dx^j = dx^j \wedge dx^i \), it follows that \(A^\wedge = \frac{1}{2} A_{ij} dx^i \wedge dx^j \). Define \(\alpha^A := \frac{1}{2} \alpha^A_{ij} dx^i \wedge dx^j \wedge dx^k \wedge dx^l \) with \(\alpha^A_{ij} := A_{ij} \). Then we see that \(\alpha^A = A^\wedge \in \wedge^2(\mathcal{M}) \) and \(\mathfrak{g}^\circ(\mathcal{M}) \oplus \wedge^2(\mathcal{M}) \).

A given Riemannian metric \(g \) on \(\mathcal{M} \) determines two isomorphisms between vector fields and 1-forms: \(\varphi_g : \mathfrak{X}(\mathcal{M}) \longrightarrow \wedge^1(\mathcal{M}) \) and \(\varphi^g : \wedge^1(\mathcal{M}) \longrightarrow \mathfrak{X}(\mathcal{M}) \), where, for every vector field \(X = X^i \frac{\partial}{\partial x^i} \) and 1-form \(\alpha = \alpha^i dx^i \), \(\varphi_g(X) = X^i g_{ij} dx^j \) and \(\varphi^g(\alpha) = g^{ij} \frac{\partial}{\partial x^j} \). Using these two natural maps, we can frequently raise or lower indices on tensors. The metric \(g \) also induces a metric on \(k \)-forms \(g(dx^{i_1} \wedge \cdots \wedge dx^{i_k}) = \sum_{\sigma \in \mathfrak{S}_k} \text{sgn}(\sigma) g^{i_1 \sigma(1)} \cdots g^{i_k \sigma(k)} \) where \(\mathfrak{S}_k \) is the group of permutations of \(k \) letters and \(\text{sgn}(\sigma) \) denotes the sign \((\pm)\) of an element \(\sigma \) of \(\mathfrak{S}_k \). The inner product \(\langle \cdot, \cdot \rangle_g \) of two \(k \)-forms \(\alpha, \beta \in \wedge^k(\mathcal{M}) \) now is given by \(\langle \alpha, \beta \rangle_g = \frac{1}{k!} \alpha_{i_1 \cdots i_k} \beta^{i_1 \cdots i_k} = \frac{1}{k!} \alpha_{i_1 \cdots i_k} \beta_{j_1 \cdots j_k} g^{i_1 j_1} \cdots g^{i_k j_k} \).

Given two \(2 \)-tensors \(A, B \in \otimes^2(\mathcal{M}) \), with the forms \(A = A_{ij} dx^i \wedge dx^j \) and \(B = B_{ij} dx^i \wedge dx^j \). Define \(\langle A, B \rangle_g := A_{ij} B_{ij} \). There are two special cases which will be used later:

1. In our convention, for any 2-form \(\alpha = \frac{1}{2} \alpha_{ij} dx^i \wedge dx^j \), we have

\[
\alpha \left(\frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^l} \right) = \frac{1}{2} \alpha_{ij} \left(dx^i \wedge dx^j - dx^j \wedge dx^i \right) \left(\frac{\partial}{\partial x^k}, \frac{\partial}{\partial x^l} \right) = \frac{1}{2} \alpha_{ij} \left(g_{ik} g_{jl} - g_{il} g_{jk} \right) = \frac{1}{2} (\alpha_{kl} - \alpha_{lk}) = \alpha_{kl}
\]

which justifies the notation \(\alpha_{kl} \) as \(\alpha(\partial/\partial x^k, \partial/\partial x^l) \). In general, for any \(k \)-form \(\alpha = \frac{1}{k!} \alpha_{i_1 \cdots i_k} dx^{i_1} \wedge \cdots \wedge dx^{i_k} \) we have \(\alpha_{i_1 \cdots i_k} = \alpha(\partial/\partial x^{i_1}, \cdots, \partial/\partial x^{i_k}) \), because \(dx^{i_1} \wedge \cdots \wedge dx^{i_k} = \sum_{\sigma \in \mathfrak{S}_k} \text{sgn}(\sigma) dx^{\sigma(1)} \wedge \cdots \wedge dx^{\sigma(k)} \).

\(\copyright \) Springer
(1) \(\alpha = \frac{1}{2}\alpha_{ij} dx^i \wedge dx^j \in \wedge^2(M) \) and \(\beta = B_{ij} dx^i \wedge dx^j \in \Omega^2(M) \). In this case, \(\alpha \) can be written as a 2-tensor \(A^\alpha = A^\alpha_{ij} dx^i \wedge dx^j \) with \(A^\alpha_{ij} = \alpha_{ij} \). Then \(\langle \langle \alpha, B \rangle \rangle_g := \langle \langle A^\alpha, B \rangle \rangle_g = \alpha_{ij} B^{ij} \).

(2) \(\alpha = \frac{1}{2}\alpha_{ij} dx^i \wedge dx^j \) and \(\beta = \frac{1}{2}\beta_{ij} dx^i \wedge dx^j \in \wedge^2(M) \). In this case, \(\alpha, \beta \) can be both written as 2-tensors \(A^\alpha = A^\alpha_{ij} dx^i \wedge dx^j \) and \(B^\beta = B^\beta_{ij} dx^i \wedge dx^j \) with \(A^\alpha_{ij} = \alpha_{ij} \) and \(B^\beta_{ij} = \beta_{ij} \). Then \(\langle \langle \alpha, \beta \rangle \rangle_g := \langle \langle A^\alpha, B^\beta \rangle \rangle_g = \alpha_{ij} \beta^{ij} = 2 \langle \alpha, \beta \rangle_g \).

The norm of \(A \in \Omega^2(M) \) is defined by \(||A||^2_g := \langle \langle A, A \rangle \rangle_g = A_{ij} A^{ij} \), while the norm of \(\alpha \in \wedge^k(M) \) is \(|\alpha|^2_g := \langle \langle \alpha, \alpha \rangle \rangle_g = g^{ikl...} \alpha_{i1...k} \alpha^{1i...lk} \). In particular, \(||X||^2_g = X_i X^i = |\nabla g(X)|^2_g \) and \(||\alpha||^2_g = 2 ||\alpha||^2_g \) for any vector field \(X \in \mathfrak{X}(M) \) and 2-form \(\alpha \).

The Levi–Civita connection associated to a given Riemannian metric \(g \) is denoted by \(\nabla \) or simply \(\nabla \). Our convention on Riemann curvature tensor is \(R^m_{ijk} \frac{\partial}{\partial x^m} := Rm(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}) \frac{\partial}{\partial x^k} = (\nabla_i \nabla_j - \nabla_j \nabla_i) \frac{\partial}{\partial x^k} \) and \(R_{ijkl} := R^m_{ijk} g_{ml} \). The Ricci curvature of \(g \) is given by \(R_{jk} := R_{ijk} g^{il} \). We use \(dV_g \) and \(*_g \) to denote the volume form and Hodge Star operator, respectively, on \(M \) associated to a metric \(g \) and an orientation.

We use the standard notation \(A \ast B \) to denote some linear combination of contractions of the tensor product \(A \otimes B \) relative to the metric \(g(t) \) associated the \(\varphi(t) \). In Theorem 1.4 and its proof, all universal constants \(c, C \) below depend only on the given real number \(p \).

1.2 Main results

Applying De Turck’s trick and Hamilton’s Nash-Moser inverse function theorem, Bryant and Xu [2] proved the following local time existence for (1.1).

Theorem 1.1 *(Bryant-Xu [2])* For a compact 7-manifold \(M \), the initial value problem \((1.1) \) has a unique solution for a short time interval \([0, T_{max})\) with the maximal time \(T_{max} \in (0, \infty) \) depending on \(\varphi \).

As in the Ricci flow, we can prove following results on the long time existence for the Laplacian flow (1.1).

Theorem 1.2 *(Lotay-Wei [32])* Let \(M \) be a compact 7-manifold and \(\varphi(t), t \in [0, T) \), where \(T < \infty \), be a solution to the flow (1.1) for closed \(G_2 \)-structures with associated metric \(g(t) = g_\varphi(t) \) for each \(t \).

(a) If the velocity of the flow satisfies

\[\sup_{M \times [0, T)} ||\Delta_{g(t)} \varphi(t)||_{g(t)} < \infty, \]

then the solution \(\varphi_t \) can be extended past time \(T \).

(b) If \(T = T_{max} \), then

\[\limsup_{t \to T_{max}} \sup_{M} \left(||Rm_{g(t)}||_{g(t)}^2 + ||\nabla g(t) T(t)||_{g(t)}^2 \right) = \infty. \]

Here \(T(t) \) is the torsion of \(\varphi(t) \) [see (2.14)].

In this paper, we give a new elementary proof of Theorem 1.2, based on the idea of [25] and the structure of the Eq. (1.1).
Theorem 1.3 Let \mathcal{M} be a compact 7-manifold and $\varphi(t), t \in [0, T)$, where $T < \infty$, be a solution to the flow (1.1) for closed G_2-structures with associated metric $g(t) = g(\varphi(t))$ for each t. Suppose that

\[
K := \sup_{\mathcal{M} \times [0, T)} \|\text{Ric}_{g(t)}\|_{g(t)} < \infty, \quad \Lambda := \max_{\mathcal{M}} \|\text{Rm}_{g(0)}\|_{g(0)}.
\]

Then

\[
\sup_{\mathcal{M} \times [0, T)} \|\text{Rm}_{g(t)}\|_{g(t)} < \infty,
\]

where the bound depends only on n, K, T and Λ.

When \mathcal{M} is compact, the theorem immediately implies the part (a) in Theorem 1.2. Indeed, we shall show that [see (3.10) and (3.29)]

\[
\sup_{\mathcal{M} \times [0, T)} \|\Delta_{g(t)} \varphi(t)\|_{g(t)} < \infty \iff \sup_{\mathcal{M} \times [0, T)} \|\text{Ric}_{g(t)}\|_{g(t)} < \infty.
\]

In the compact case, Theorem 1.3 shows that, if the conclusion in part (a) does not hold, then $T = T_{\text{max}}$ and $\sup_{\mathcal{M} \times [0, T_{\text{max}})} \|\text{Rm}_{g(t)}\|_{g(t)} < \infty$ which implies the quantity $\sup_{\mathcal{M} \times [0, T_{\text{max}})} (\|\text{Rm}_{g(t)}\|_{g(t)}^2 + \|\nabla g(t) T(t)\|_{g(t)}^2)$ is finite, since the norm $\|\nabla g(T) T(t)\|_{g(t)}^2$ can be controlled by $\|\text{Rm}_{g(t)}\|_{g(t)}^2$ [see (3.58)]. However, by part (b) in Theorem 1.2, it is impossible. Therefore, the conclusion in part (a) is true.

As remarked in [25], to prove Theorem 1.3, it suffices to establish the following integral estimate.

Theorem 1.4 Let \mathcal{M} be a smooth 7-manifold and $\varphi(t), t \in [0, T)$, where $T < \infty$, be a solution to the flow (1.1) for closed G_2-structures with associated metric $g(t) = g(\varphi(t))$ for each t. Assume that there exist constants $A, K > 0$ and a point $x_0 \in \mathcal{M}$ such that the geodesic ball $B_{g(0)}(x_0, A/\sqrt{K})$ is compactly contained in \mathcal{M} and that

\[
|Ric_{g(t)}|_{g(t)} \leq K \quad \text{on} \quad B_{g(0)} \left(x_0, \frac{A}{\sqrt{K}} \right) \times [0, T].
\]

Then, for any $p \geq 5$, there exists $c = c(p) > 0$ so that

\[
\int_{B_{g(0)}(x_0, A/2\sqrt{K})} \|\text{Rm}_{g(t)}\|_{g(t)}^p dV_t \\
\leq c(1 + K)e^{cK T} \int_{B_{g(0)}(x_0, A/\sqrt{K})} \|\text{Rm}_{g(0)}\|_{g(0)}^p dV_{g(0)} \\
+ cK^p (1 + A^{-2p}) e^{cK T} \text{Vol}_{g(t)} \left(B_{g(0)} \left(x_0, \frac{A}{\sqrt{K}} \right) \right)
\]

(1.3)

for all $t \in [0, T]$.

Now by the standard De Giorgi–Nash–Moser iteration (our manifold is compact and the Ricci curvature is uniformly bounded), under the condition in Theorem 1.4, we can prove

\[
\|\text{Rm}_{g(T)}\|_{g(T)}(x_0) \leq d_1(d_2 + \Lambda_0),
\]

(1.4)

where d_1, d_2 are constants depending on K, T, A, and

\[
\Lambda_0 := \sup_{B_{g(0)}(x_0, A/\sqrt{K})} \|\text{Rm}_{g(0)}\|_{g(0)}.
\]
Actually, this follows from the same argument in [25] by noting that
\[
(\Delta g(t) - \partial_t)\|\text{Rm}_{g(t)}\|_{g(t)} \geq -c\|\text{Rm}_{g(t)}\|_{g(t)}^2. \tag{1.5}
\]
To verify (1.5), we use (2.26), (3.56) and (3.60) to deduce that
\[
\|\nabla_{g(t)} T(t)\|_{g(t)} \leq c\|\text{Rm}_{g(t)}\|_{g(t)}
\]
and
\[
\|\nabla^2_{g(t)} T(t)\|_{g(t)} \leq c\|\nabla_{g(t)} \text{Rm}_{g(t)}\|_{g(t)} + c\|\text{Rm}_{g(t)}\|_{g(t)}^{3/2}.
\]
Then, by (3.23) and the Cauchy inequality
\[
\|\nabla g(t) \text{Rm}_{g(t)}\|_{g(t)}^2 \leq -\frac{1}{2}(\partial_t - \Delta g(t))\|\text{Rm}_{g(t)}\|_{g(t)}^2 + c\|\text{Rm}_{g(t)}\|_{g(t)}^3
\]
\[
+ c\|\text{Rm}_{g(t)}\|_{g(t)}^{3/2}\|\nabla_{g(t)} \text{Rm}_{g(t)}\|_{g(t)}
\]
\[
\leq -\frac{1}{2}(\partial_t - \Delta g(t))\|\text{Rm}_{g(t)}\|_{g(t)}^2
\]
\[
+ c\|\text{Rm}_{g(t)}\|_{g(t)}^3 + \|\nabla_{g(t)} \text{Rm}_{g(t)}\|_{g(t)}^2
\]
which implies (1.5). Now the estimate (1.4) yields Theorem 1.3.

The analogue of Theorem 1.2 in the Ricci flow was proved by Hamilton [17] (for part (b)) and Sesum [37] (for part (a)). It is an open question (due to Hamilton, see [3]) that the Ricci flow will exist as long as the scalar curvature remains bounded. For the Kähler–Ricci flow [40] or type-I Ricci flow [11], this question was settled. For the general case, some partial result on Hamilton’s conjecture was carried out in [3].

For the Ricci-harmonic flow introduce by List [30,31] (see also, [35,36]), the analogue of Theorem 1.2 was proved in [30,31] (see also, [35,36]) and [4] (see [28] for another proof). The author [26,27] extended Cao’s result [3] to the Ricci-harmonic flow. The same Hamilton’s conjecture was asked by the author in [26,27].

We can ask the same question for the Laplacian flow on closed G_2-structures. In [32] (see p. 171, line -6 to -3, or Open Problem (3) in p. 230), Lotay and Wei asked that whether the Laplacian flow on closed G_2-structures will exist as long as the torsion tensor or scalar curvature remains bounded. Let $g(t)$ be the associated metric of $\phi(t)$. Then the evolution equation for g_t is given by
\[
\partial_t g_{ij} = -2R_{ij} - \frac{4}{3}|T(t)|_{g(t)}^2 g_{ij} - 4T_i^k T_{kj}. \tag{1.6}
\]
For the Laplacian flow on closed G_2-structures, the torsion $T(t)$ is actually a 2-form for each t, hence we use the norm $| \cdot |_{g(t)}$ in (1.6). The standard formula for the scalar curvature $R_{g(t)}$ gives [see (3.15)]
\[
\partial_t R_{g(t)} = \Delta g(t) R_{g(t)} + 2|\text{Ric}_{g(t)}|_{g(t)}^2 - \frac{2}{3}R_{g(t)}^3 + 4R_{ijk\ell} T^{ik} T_{j\ell} + 4(\nabla j T^{ik})(\nabla_i T_{jk}). \tag{1.7}
\]
Now the above mentioned open problem states that
\[
\text{Is it true that } \limsup_{t \to T_{\max}} R_{g(t)} = -\infty? \]

The “minus infinity” comes from the fact that along the Laplacian flow on closed G_2-structures the scalar curvature is always nonpositive [see (2.26)]. The following Proposition 1.5 is motivate to solve this problem, and starts from the basic evolution Eq. (1.7) where the last two terms on the right-hand side do not have good signature. However, using the
closedness of $\varphi(t)$ [in particular, the identity (3.15)], we can prove the following interesting evolution equation for $R_g(t)$.

Proposition 1.5 Let M be a smooth 7-manifold and $\varphi(t)$, $t \in [0, T)$, where $T \in (0, \infty)$, be a solution to the flow (1.1) for closed G_2-structures with associated metric $g(t) = g_{\varphi(t)}$ for each t. Then the scalar curvature $R_g(t)$ satisfies

$$
\partial_t R_g(t) = \Delta_g(t) R_g(t) + \left\{ 2 \left| R_{ij} + \frac{2}{3} T(t) g_{ij} \right|^2_{g(t)} + \frac{1}{2} \left| R_{ijab} R^{ij}_{mn} - \psi_{abmn} \right|^2_{g(t)} \right. \\
+ \frac{1}{2} \left| 2 T_{ia} T_{jb} R^{ij}_{mn} - \psi_{abmn} \right|^2_{g(t)} \right. \\
+ \frac{1}{2} \left| 2 \hat{T}_{am} \hat{T}_{bn} - \psi_{abmn} \right|^2_{g(t)} + 2 \left| \hat{T}(t) \right|^2_{g(t)} \\
+ 4 \left| \nabla_{g(t)} T(t) \right|^2_{g(t)} \right\} - \left\{ \left| R_{m} g(t) \right|^2_{g(t)} + \frac{26}{9} R_{g(t)}^2 + \frac{1}{2} \left| R_{ijab} R^{ij}_{mn} \right|^2_{g(t)} \right. \\
+ \frac{1}{2} \left| T_{ia} T_{jb} R^{ij}_{mn} \right|^2_{g(t)} + 2 \left| \hat{T}(t) \right|^4_{g(t)} + 210 \right\}.
$$

(1.8)

Here $\hat{T}_{ij} = T_{i}^{k} T_{kj}$.

The evolution Eq. (1.8) can be written simply as

$$
\partial_t R_g(t) = \Delta_g(t) R_g(t) + A(t) - B(t)
$$

(1.9)

for some suitable time-dependent nonnegative functions $A(t)$ and $B(t)$. By the maximum principle we obtain

$$
R_{\text{max}}(0) + \int_{0}^{t} \max_{M} [A(\tau) - B(\tau)] d\tau \geq R_{g(t)} \geq R_{\text{min}}(0) + \int_{0}^{t} \min_{M} [A(\tau) - B(\tau)] d\tau.
$$

Here $R_{\text{max}}(0) := \max_{M} R_{g(0)}$ and $R_{\text{min}}(0) := \min_{M} R_{g(0)}$. Observe that the above well-arranged evolution equation can give us a weakly lower bound for $R_g(t)$, which can not prove or disprove the conjecture of Lotay and Wei.

We give an outline of the current paper. We review the basic theory in Sect. 2 about G_2-structures, G_2-decompositions of 2-forms and 3-forms, and general flows on G_2-structures. In Sect. 3, we rewrite results in Sect. 2 for closed G_2-structures, and the local curvature estimates will be given in the last subsection.

2 Basic theory of G_2-structures

In this section, we view some basic theory of G_2-structures, following [1,20–23,32]. Let $\{e_1, \ldots, e_7\}$ denote the standard basis of \mathbb{R}^7 and let $\{e^1, \ldots, e^7\}$ be its dual basis. Define the 3-form

$$
\phi := e^{1^\wedge 2^\wedge 3} + e^{1^\wedge 4^\wedge 5} + e^{1^\wedge 6^\wedge 7} + e^{2^\wedge 4^\wedge 6} - e^{2^\wedge 5^\wedge 7} - e^{3^\wedge 4^\wedge 7} - e^{3^\wedge 5^\wedge 6},
$$

where $e^{i^\wedge j^\wedge k} := e^i \wedge e^j \wedge e^k$. The subgroup G_2, which fixes ϕ, of $\text{GL}(7, \mathbb{R})$ is the 14-dimensional Lie subgroup of $\text{SO}(7)$, acts irreducibly on \mathbb{R}^7, and preserves the metric and orientation for which $\{e_1, \cdots, e_7\}$ is an oriented orthonormal basis. Note that G_2 also preserves the 4-form

$$
* \phi = e^{4^\wedge 5^\wedge 6^\wedge 7} + e^{2^\wedge 3^\wedge 6^\wedge 7} + e^{2^\wedge 3^\wedge 4^\wedge 5} + e^{1^\wedge 3^\wedge 5^\wedge 7} - e^{1^\wedge 3^\wedge 4^\wedge 6} - e^{1^\wedge 2^\wedge 5^\wedge 6} - e^{1^\wedge 2^\wedge 4^\wedge 7}.
$$
where the Hodge star operator \ast_{φ} is determined by the metric and orientation. For a smooth 7-manifold \mathcal{M} and a point $x \in \mathcal{M}$, define as in [32]

$$\wedge^3_+(T^*_x \mathcal{M}) := \left\{ \varphi_x \in \wedge^3(T^*_x \mathcal{M}) : u^*\varphi = \varphi_x \text{ for some invertible map } u \in \text{Hom}_\mathbb{R}(T_x \mathcal{M}, \mathbb{R}^2) \right\}$$

and the bundle

$$\wedge^3_+(T^* \mathcal{M}) := \bigsqcup_{x \in \mathcal{M}} \wedge^3_+(T^*_x \mathcal{M}).$$

We call a section φ of $\wedge^3_+(T^* \mathcal{M})$ a positive 3-form on \mathcal{M} or a G_2-structure on \mathcal{M}, and denote the space of positive 3-forms by $\wedge^3_+(\mathcal{M})$. The existence of G_2-structures is equivalent to the property that \mathcal{M} is oriented and spin, which is equivalent to the vanishing of the first and second Stiefel–Whitney classes. From the definition of G_2-structures, we see that any $\varphi \in \wedge^3_+(\mathcal{M})$ uniquely determines a Riemannian metric g_{φ} and an orientation dV_{φ}, hence the Hodge star operator \ast_{φ} and the associated 4-form

$$\psi := \ast_{\varphi}\varphi. \quad (2.1)$$

We also have the isomorphisms $b_{\varphi} := b_{g_{\varphi}}$ and $\sharp_{\varphi} := \sharp_{g_{\varphi}}$. For a given G_2-structure $\varphi \in \wedge^3_+(\mathcal{M})$, we denote by $\langle \cdot, \cdot \rangle_{\varphi}$, $\langle \cdot, \cdot \rangle_{g_{\varphi}}$, $\langle \cdot, \cdot \rangle_{\ast_{\varphi}}$, the corresponding inner products $\langle \cdot, \cdot \rangle_{g_{\varphi}}$, $\langle \cdot, \cdot \rangle_{\ast_{\varphi}}$ and norms $\| \cdot \|_{g_{\varphi}}$, $\| \cdot \|_{\ast_{\varphi}}$.

Given a G_2-structure $\varphi \in \wedge^3_+(\mathcal{M})$. We say that φ is torsion-free if φ is parallel with respect to the metric g_{φ}. Equivalently, φ is torsion-free if and only if $\varphi \nabla \varphi = 0$, where $\varphi \nabla$ is the Levi–Civita connection of g_{φ}.

Theorem 2.1 (Fernández-Gray [12]) The G_2-structure φ is torsion-free if and only if φ is both closed (i.e., $d\varphi = 0$) and co-closed (i.e., $d \ast_{\varphi} \varphi = d\psi = 0$).

When \mathcal{M} is compact, the above theorem says that a G_2-structure φ is torsion-free if and only if φ is harmonic with respect to the induces metric g_{φ}.

We say that a G_2-structure φ is closed (resp., co-closed) if $d\varphi = 0$ (resp., $d\psi = 0$). Theorem 2.1 can be restated as that a G_2-structure is torsion-free if and only if it is both closed and co-closed.

2.1 G_2-decompositions of $\wedge^2(\mathcal{M})$ and $\wedge^3(\mathcal{M})$

A G_2-structure φ induces splittings of the bundles $\wedge^k(T^* \mathcal{M})$, $2 \leq k \leq 5$, into direct summands, which we denote by $\wedge^k(T^* \mathcal{M}, \varphi)$ with ℓ being the rank of the bundle. We let the space of sections of $\wedge^k(T^* \mathcal{M}, \varphi)$ by $\wedge^k(\mathcal{M}, \varphi)$. Define the natural projections

$$\pi^k_\ell : \wedge^k(\mathcal{M}, \varphi) \longrightarrow \wedge^k_\ell(\mathcal{M}, \varphi), \quad \alpha \mapsto \pi^k_\ell(\alpha). \quad (2.2)$$

We mainly focus on the G_2–decompositions of $\wedge^2(\mathcal{M})$ and $\wedge^3(\mathcal{M})$. Recall that

$$\wedge^2(\mathcal{M}) = \wedge^2_2(\mathcal{M}, \varphi) \oplus \wedge^2_4(\mathcal{M}, \varphi), \quad (2.3)$$

$$\wedge^3(\mathcal{M}) = \wedge^3_1(\mathcal{M}, \varphi) \oplus \wedge^3_4(\mathcal{M}, \varphi) \oplus \wedge^3_27(\mathcal{M}, \varphi). \quad (2.4)$$

Here each component is determined by

$$\wedge^2_2(\mathcal{M}, \varphi) = \{ \psi \varphi : \psi \in \mathcal{X}(\mathcal{M}) \} = \{ \beta \in \wedge^2(\mathcal{M}) : \ast_{\varphi}(\varphi \wedge \beta) = 2\beta \},$$

$$\wedge^2_4(\mathcal{M}, \varphi) = \{ \beta \in \wedge^2(\mathcal{M}) : \varphi \wedge \beta = 0 \} = \{ \beta \in \wedge^2(\mathcal{M}) : \ast_{\varphi}(\varphi \wedge \beta) = -\beta \},$$

$$\wedge^3_1(\mathcal{M}, \varphi) = \{ \beta \in \mathcal{X}(\mathcal{M}) : \varphi \wedge \beta = 0 \} = \{ \beta \in \wedge^3(\mathcal{M}) : \ast_{\varphi}(\varphi \wedge \beta) = \beta \},$$

$$\wedge^3_4(\mathcal{M}, \varphi) = \{ \beta \in \wedge^3(\mathcal{M}) : \varphi \wedge \beta = 0 \} = \{ \beta \in \wedge^3(\mathcal{M}) : \ast_{\varphi}(\varphi \wedge \beta) = -\beta \},$$

$$\wedge^3_27(\mathcal{M}, \varphi) = \{ \beta \in \mathcal{X}(\mathcal{M}) : \varphi \wedge \beta = 0 \} = \{ \beta \in \wedge^3(\mathcal{M}) : \ast_{\varphi}(\varphi \wedge \beta) = \beta \}.$$
\[\wedge^1(M, \varphi) = \{ f \varphi : f \in C^\infty(M) \}, \]
\[\wedge^2(M, \varphi) = \{ *_{\varphi}(\varphi \wedge \alpha) : \alpha \in \wedge^1(M) \} = \{ X \varphi \psi : X \in \mathfrak{X}(M) \}, \]
\[\wedge^3(M, \varphi) = \{ \eta \in \wedge^3(M) : \eta \wedge \varphi = \eta \wedge \psi = 0 \}. \]

For any 2-form \(\beta = \frac{1}{2} \beta_{ij} dx^i \wedge dx^j \in \wedge^2(M) \), its two components \(\pi^2_7(\beta) \) and \(\pi^2_{14}(\beta) \) are determined by

\[\pi^2_7(\beta) = \frac{\beta + *_{\varphi}(\varphi \wedge \beta)}{3} = \frac{1}{2} \left(\frac{1}{3} \beta_{ab} + \frac{1}{6} \beta^{\ell m} \psi_{\ell mab} \right) dx^{ab}, \]
\[\pi^2_{14}(\beta) = \frac{2 \beta - *_{\varphi}(\varphi \wedge \beta)}{3} = \frac{1}{2} \left(\frac{2}{3} \beta_{ab} - \frac{1}{6} \beta^{\ell m} \psi_{\ell mab} \right) dx^{ab}. \]

To decompose 3-forms, recall two maps introduce by Bryant [1]

\[i_{\varphi} : \wedge^2(M) \rightarrow \wedge^3(M), \quad j_{\varphi} : \wedge^3(M) \rightarrow \wedge^2(M), \]

where

\[i_{\varphi}(h) := h_{ij} g^{i \ell} dx^i \wedge \left(\frac{\partial}{\partial x^\ell} \varphi \right) = \frac{1}{2} h_{i \ell} \varphi \, ^{\ell} jak_\ell dx^{ijk} \]
\[= \frac{1}{6} \left(h_{i \ell} \varphi \, ^{\ell} jak + h_{j \ell} \varphi \, ^{\ell} k + h_{k \ell} \varphi \, ^{\ell} i \right) dx^{ijk}, \quad h = h_{ij} dx^{ij} \in \wedge^2(M), \]

and

\[\left(j_{\varphi}(\eta) \right)(X, Y) := *_{\varphi}((X \varphi) \wedge (Y \varphi) \wedge \eta). \]

Then \(i_{\varphi} \) is injective and is isomorphic onto \(\wedge^3(M, \varphi) \oplus \wedge^3_{27}(M, \varphi) \), and \(j_{\varphi} \) is an isomorphism between \(\wedge^3(M, \varphi) \oplus \wedge^3_{27}(M, \varphi) \) and \(\wedge^2(M) \). Moreover, for any 3-form \(\eta \in \wedge^3(M) \), we have

\[\eta = i_{\varphi}(h) + X \varphi \psi \]

for some symmetric 2-tensor \(h \in \wedge^2(M) \) and vector field \(X \in \mathfrak{X}(M) \). Then

\[\eta = h_{i \ell} dx^i \wedge \left(\frac{\partial}{\partial x^\ell} \varphi \right) + X^\ell \left(\frac{\partial}{\partial x^\ell} \varphi \right) = \frac{1}{2} h_{i \ell} \varphi \, ^{\ell} jak dx^{ijk} + \frac{1}{6} X^\ell \psi \, ^{\ell} i jk dx^{ijk} \]
\[= \frac{1}{6} \left(3 h_{i \ell} \varphi \, ^{\ell} jak + X^\ell \psi \, ^{\ell} i jk \right) dx^{ijk} = \frac{1}{6} \eta_{ijk} dx^{ijk}. \]

Write \(h \) as \(h_{ij} = \bar{h}_{ij} + \frac{1}{3} \text{tr}_\varphi(h) g_{ij} \), where \(\bar{h} \in \wedge^2_0(M) \) is the trace-free part of \(h \), one has

\[\eta = \frac{3}{2} \left(i_{\varphi}(h) \right) + \frac{1}{2} \bar{h}_{ij} \varphi \, ^{\ell} jak dx^{ijk} + \frac{1}{6} X^\ell \psi \, ^{\ell} i jk dx^{ijk}. \]

2.2 The torsion tensors of a G_2-structure

By Hodge duality we obtain the \(G_2 \)-decompositions of 4-forms \(\wedge^4(M) = \wedge^4_1(M, \varphi) \oplus \wedge^4_{27}(M, \varphi) \) and 5-forms \(\wedge^5(M) = \wedge^5_1(M, \varphi) \oplus \wedge^5_{14}(M, \varphi) \), respectively. By definition, we can find forms \(\tau_0 \in C^\infty(M) \), \(\tau_1, \tilde{\tau}_1 \in \wedge^1(M) \), \(\tau_2 \in \wedge^2_{14}(M, \varphi) \), and \(\tau_3 \in \wedge^3_{27}(M, \varphi) \) such that

\[d\varphi = \tau_0 \psi + 3 \tau_1 \wedge \varphi + *_{\varphi} \tau_3, \quad d\psi = 4 \tilde{\tau}_1 \wedge \psi - *_{\varphi} \tau_2. \]
Since \(\tau_2 \in \bigwedge_{14}^2(\mathcal{M}, \varphi) \), it follows that \(\tau_2 \wedge \varphi = -\star \varphi \tau_2 \). Then (2.12) can be written as in the sense of Bryant [1]

\[
d\varphi = \tau_0 \psi + 3 \tau_1 \wedge \varphi + 3 \tau_2 \wedge \psi, \quad d\psi = 4\tau_1 \wedge \psi + \tau_2 \wedge \varphi.
\] (2.13)

It can be proved that \(\tau_1 = \tilde{\tau}_1 \) (see [23]). We call \(\tau_0 \) the scalar torsion, \(\tau_1 \) the vector torsion, \(\tau_2 \) the Lie algebra torsion, and \(\tau_3 \) the symmetric traceless torsion. We also call \(\tau_\varphi := \{\tau_0, \tau_1, \tau_2, \tau_3\} \) the intrinsic torsion forms of the \(G_2 \)-structure \(\varphi \).

Recall that a \(G_2 \)-structure \(\varphi \) is torsion-free if and only if \(d\varphi = d\psi = 0 \) by Theorem 2.1. From (2.12) we see that \(\varphi \) is torsion-free if and only if the intrinsic torsion forms \(\tau_\varphi \equiv 0 \); that is, \(\tau_0 = \tau_1 = \tau_2 = \tau_3 = 0 \).

Lemma 2.2 (Fernández-Gray, [12]) For any \(X \in \mathfrak{X}(\mathcal{M}) \), the 3-form \(\nabla_X \varphi \) lines in the space \(\bigwedge_{14}^3(\mathcal{M}, \varphi) \). Therefore the covariant derivative \(\nabla \varphi \in \bigwedge_{1}^1(\mathcal{M}) \otimes \bigwedge_{14}^3(\mathcal{M}) \).

Consequently, there exists a 2-tensor \(T = T_{ij} dx^i \otimes dx^j \), called the full torsion tensor, such that

\[
\nabla_{\ell} \varphi = T_{\ell}^{\quad n} \psi_{nabc}.
\] (2.14)

Equivalently,

\[
T_{\ell m} = \frac{1}{24} (\nabla_{\ell} \varphi_{abc}) \psi_{mabc}.
\] (2.15)

Write

\[
\tau_1 = (\tau_1)_i dx^i \in \bigwedge^1(\mathcal{M}),
\] (2.16)

\[
\tau_2 = \frac{1}{2} (\tau_2)_{ab} dx^{ab} \in \bigwedge_{14}^2(\mathcal{M}),
\] (2.17)

\[
\tau_3 = \frac{1}{2} (\tau_3)_i \varphi_{ij} dx^{ijk} \in \bigwedge_{27}^3(\mathcal{M}, \varphi).
\] (2.18)

The associated 2-tensor \(\tau_3 := (\tau_3)_i dx^i \otimes dx^j \) of \(\tau_3 \) lies in the space \(\bigwedge_{14}^2(\mathcal{M}) \). With this convenience, the full torsion tensor \(T_{\ell m} \) is determined by

\[
T_{\ell m} = \frac{\tau_0}{4} g_{\ell m} - (\tau_3)_{\ell m} - \left(\flat \varphi (\tau_1) \cdot \varphi \right)_{\ell m} - \frac{1}{2} (\tau_2)_{\ell m}
\] (2.19)

or as 2-tensors,

\[
T = \frac{\tau_0}{4} g - \tau_3 - \flat \varphi (\tau_1) \cdot \varphi - \frac{1}{2} \tau_2.
\] (2.20)

Here the 2-form \(\flat \varphi (\tau_1) \cdot \varphi \) is defined by

\[
\flat \varphi (\tau_1) \cdot \varphi = \frac{1}{2} \left(\flat \varphi (\tau_1) \cdot \varphi \right) dx^{ab} = \frac{1}{2} \left((\tau_1)_k \varphi_{ab}^k \right) dx^{a \wedge b}.
\]

As an application, this gives another proof of Theorem 2.1.

For fixed indices \(i \) and \(j \), set

\[
R_{ij k \ell} := R_{ijk \ell} \text{ is skew-symmetric in } k \text{ and } \ell,
\] (2.21)

where

\[
R_{ij \bullet \bullet} := \frac{1}{2} R_{ij k \ell} dx^{k \ell} = \frac{1}{2} R_{ijk \ell} dx^{k \ell} \in \bigwedge^2(\mathcal{M}).
\] (2.22)

Then, according to (2.5) and (2.6)

\[
R_{ijk \ell} = R_{ijk \ell} = (\pi^2_{ij} R_{ij \bullet \bullet})_{k \ell} + (\pi^2_{14} (R_{ij \bullet \bullet}))_{k \ell},
\]
where

\[
\left(\pi_7^2(R_{ij\bullet\bullet})\right)_{k\ell} = \frac{1}{3} R_{ij|k\ell} + \frac{1}{6} R_{ij|ab} \psi^{ab}_{k\ell} = \frac{1}{3} R_{ij\ell k} + \frac{1}{6} R_{ij|ab} \psi^{ab}_{k\ell},
\]

\[
\left(\pi_{14}^2(R_{ij\bullet\bullet})\right)_{k\ell} = \frac{2}{3} R_{ij|k\ell} - \frac{1}{6} R_{ij|ab} \psi^{ab}_{k\ell} = \frac{1}{3} R_{ij\ell k} - \frac{1}{6} R_{ij|ab} \psi^{ab}_{k\ell}.
\]

Karigiannis [23] (see also the equivalent formula obtained by Bryant in [1]) proved that the Ricci curvature is given by

\[
R_{jk} = R_{ij\ell k} g^{i\ell} = 3 \left(\pi_7^2(R_{ij\bullet\bullet})\right)_{k\ell} g^{i\ell} = \frac{3}{2} \left(\pi_{14}^2(R_{ij\bullet\bullet})\right)_{k\ell} g^{i\ell}
\]

\[
= - (\nabla_i T_{jm} - \nabla_j T_{im}) \psi^{m\ell}_{k} - T_j^i T_{ik} + (\text{tr}_\varphi T) T_{jk} + T_{jb} T_{ia} \psi^{ab}_{k},
\]

\[
= -\nabla_i \left(T_j^n \varphi_{nk}^i\right) + \nabla_j \left(T_i^n \varphi_{nk}^i\right) - T_j^i T_{ik} + (\text{tr}_\varphi T) T_{jk} - T_{jb} T_{ia} \psi^{ab}_{k}.
\]

(2.23)

Cleyton and Ivanov [6] also derived a formula for the Ricci tensor for closed G_2-structures in terms of $d_\varphi^* \varphi$. Taking the trace of (2.23), we obtain Bryant’s formula [1] for the scalar curvature

\[
R = -12 \nabla^\ell (\tau_1)_\ell + \frac{21}{8} \tau_0^2 - ||\tau_3||^2_{\varphi} + 5 ||Z_{\varphi}(\tau_1)_{\varphi}\varphi||^2 - \frac{1}{4} ||\tau_2||^2_{\varphi},
\]

\[
= -12 \nabla^\ell (\tau_1)_\ell + \frac{21}{8} \tau_0^2 - ||\tau_3||^2_{\varphi} + 30 |\tau_1|^2_{\varphi} - \frac{1}{2} |\tau_2|^2_{\varphi}.
\]

(2.24)

For a closed G_2-structure, we have $\tau_0 = \tau_1 = \tau_3 = 0$ and then $R = -\frac{1}{4} ||\tau_2||^2_{\varphi} \leq 0$. On the other hand, we have $(\tau_2)_{ij} = -2 T_{ij}$ by (2.20). Thus the full torsion tensor T is actually a 2-form

\[
T = \frac{1}{2} T_{ij} dx^{ij} \in \wedge^2(M)
\]

(2.25)

and the scalar curvature can be written in terms of T

\[
R = -||T||^2_{\varphi} = -2 |T|^2_{\varphi} \leq 0.
\]

(2.26)

Hence, for closed G_2-structures, scalar curvatures are always non-positive.

Finally, we mention a Bianchi type identity

\[
\nabla_i T_{j\ell} - \nabla_j T_{i\ell} = - \frac{1}{2} R_{ijab} \varphi^{ab}_{\ell} - T_{ia} T_{jb} \varphi^{ab}_{\ell} = - \left(\frac{1}{2} R_{ijab} + T_{ia} T_{jb}\right) \varphi^{ab}_{\ell}.
\]

(2.27)

The proof can be found in [23].

2.3 Basic theory of closed G_2-structures

Let $\wedge^3_{+\bullet}(M) \subset \wedge^3_+(M, \varphi)$ be the set of all closed G_2-structures on M. If $\varphi \in \wedge^3_{+\bullet}(M)$ is closed, i.e., $d\varphi = 0$, then τ_0, τ_1, τ_3 are all zero, so the only nonzero torsion form is

\[
\tau \equiv \tau_2 = \frac{1}{2} (\tau_2)_{ij} dx^{ij} = \frac{1}{2} \tau_{ij} dx^{ij}.
\]

(2.28)

According to (2.20) and (2.25), we have $T_{ij} = -\frac{1}{2} \tau_{ij}$ so that

\[
T \equiv \frac{1}{2} T_{ij} dx^{ij} \text{ or equivalently } T = -\frac{1}{2} \tau,
\]

(2.29)
is a 2-form. Since \(d\psi = \tau \wedge \varphi = -*\varphi \tau \), we get \(d^*\varphi = *\varphi d*\varphi \tau = -*\varphi d^2\psi = 0 \) which is given in local coordinates by
\[
\nabla^i \tau_{ij} = 0
\]
(2.30)

For a closed \(G_2 \)-structure \(\varphi \), according to (2.23), the Ricci curvature is given by (in this case \(T_{ij} \) is a 2-form)
\[
R_{jk} = (\nabla_j T_{im} - \nabla_i T_{jm}) \varphi^m k^i - T^i j T_{ik} + T_{jb} T_{ia} \psi^{jab} k.
\]
Since \(\tau \in \wedge^2_{14}(M, \varphi) \) and \(T_{ij} = -\frac{1}{2} \tau_{ij} \), it follows from [32] (see pp. 179–180) that
\[
(\nabla_j T_{im}) \varphi^m k^i = 2T^\ell j T_{\ell k}.
\]
and therefore, for a closed \(G_2 \)-structure \(\varphi \), the Ricci curvature is given by
\[
R_{jk} = -(\nabla_j T_{jm}) \varphi^m k^i - T^i j T_{ik}.
\]
Taking the trace of (2.32) yields (2.26). Moreover, the factor \(\nabla_i T_{jm} \) in (3.6) can be expressed as (see Proposition 2.4 in [32])
\[
\nabla_i T_{jk} = -\frac{1}{2} R_{ijmn} \varphi^m k^i - \frac{1}{4} R_{kjmn} \varphi^m \varphi^i j mn + \frac{1}{2} T_{im} T_{jm} \varphi^m j mn - \frac{1}{2} T_{im} T_{jm} \varphi^{i mn} + \frac{1}{2} T_{im} T_{km} \varphi^{j mn}.
\]
(2.33)

If \(\varphi \) is a closed \(G_2 \)-structure, Section 2.2 in [32] shows that \(\pi\Delta \varphi = \psi (\Delta \varphi) = 0 \) and hence, according to (2.10),
\[
\Delta \varphi \varphi = \iota_\varphi (h) \in \wedge^1_1(M, \varphi) \oplus \wedge^2_2(M, \varphi),
\]
(2.34)
where
\[
h_{ij} = \frac{1}{2} \nabla m T_{ni} \varphi^m j mn - \frac{1}{6} |\tau|_\varphi^2 g_{ij} - \frac{1}{4} \tau^i j \tau^\ell j = -R_{ij} - \frac{2}{3} |T|_\varphi^2 g_{ij} - 2T_{\ell k} T_{\ell k}.
\]
Here \(|T|_\varphi^2 = \frac{1}{2} T_{\ell k} T^{\ell k} = \frac{1}{2} \|T\|_\varphi^2 \).

2.4 General flows on \(G_2 \)-structures

For any family \(\varphi(t) \) of \(G_2 \)-structures, according to the decomposition (2.10), we can consider the general flow
\[
\partial_t \varphi(t) = \iota_{\varphi(t)} (h(t)) + X(t) \cdot \psi(t)
\]
(2.36)
where \(h(t) \in \mathcal{O}^2(M) \) and \(X(t) \in \mathfrak{X}(M) \). The general flow (2.36) locally can be written as
\[
\partial_t \varphi \varphi_{ijk} = h^i \varphi \varphi_{\ell jk} + h^j \varphi \varphi_{i \ell k} + h^k \varphi \varphi_{ij \ell} + X^\ell \varphi \varphi_{ij \ell k}.
\]
(2.37)
We write for \(g(t) \) and \(dV_{g(t)} \) the metric and volume form associated to \(\varphi(t) \), respectively.

Theorem 2.3 Under the general flow (2.36), we have
\[
\partial_t g_{ij} = 2h_{ij},
\]
(2.38)
\[
\partial_t g^{ij} = -2h^{ij},
\]
(2.39)
\[
\partial_t dV_{g(t)} = (\text{tr}_{g(t)} h(t)) dV_{g(t)},
\]
(2.40)
\[
\partial_t T_{pq} = T^m p h_{mq} - T^m p X^\ell q_{kmq} - (\nabla k h_{ip}) \varphi^{ki} q + \nabla p X_q.
\]
(2.41)
These evolution equations can be found in [23].
3 Laplacian flows on closed G_2-structures

We now consider the Laplacian flow for closed G_2-structures

$$\partial_t \varphi(t) = \Delta_{\varphi(t)} \varphi(t) = \Delta_{g(t)} \varphi(t), \quad \varphi(0) = \varphi, \quad (3.1)$$

where $\Delta_{\varphi(t)} \varphi(t) = \partial^* \varphi(t) + \partial^* \varphi(t)$ is the Hodge Laplacian of $g(\varphi(t))$ and φ is an initial closed G_2-structure. The short time existence for (3.1) on compact manifolds was proved by Bryant and Xu [2], see also Theorem 1.1.

A criterion for the long time existence for the Laplacian flow on compact manifolds was given in Theorem 1.2. In this section, we give a new elementary proof of Lotay-Wei’s result in compact case.

3.1 Evolution equations along the Laplacian flow

Since the Laplacian flow (3.1) preserves the closedness of $\varphi(t)$, it follows from (3.10) that we have

$$\Delta_{\varphi(t)} \varphi(t) = i_{\varphi(t)}(h(t)) \in \wedge^3_1(\mathcal{M}, \varphi(t)) \oplus \wedge^3_{27}(\mathcal{M}, \varphi(t)), \quad (3.2)$$

where

$$h_{ij} = -R_{ij} - \frac{2}{3} |T(t)|^2_{g(t)} g_{ij} - 2T^k_i T^j_k. \quad (3.3)$$

From Theorem 2.3, we see that the associated metric tensor $g(t)$ evolves by

$$\partial_t g_{ij} = 2h_{ij} = -2R_{ij} - \frac{4}{3} |T(t)|^2_{g(t)} g_{ij} - 4T^k_i T^j_k, \quad (3.4)$$

and the volume form $dV_{g(t)}$ evolves by

$$\partial_t dV_{g(t)} = (\text{tr}_{g(t)} h(t)) dV_{g(t)} = \left(-R_{g(t)} - \frac{14}{3} |T(t)|^2_{g(t)} + 4|T(t)|^2_{g(t)}\right) dV_{g(t)}$$

$$= \left(2 - \frac{14}{3} + 4\right) |T(t)|^2_{g(t)} dV_{g(t)} = \frac{4}{3} |T(t)|^2_{g(t)} dV_{g(t)}. \quad (3.5)$$

Hence, along the flow (3.1), the volume of $g(t)$ is nondecreasing.

Introduce the following notions

$$\Box_{g(t)} := \partial_t - \Delta_{g(t)}, \quad |\cdot|_{g(t)} := |\cdot|_{\varphi(t)}, \quad \Delta_{g(t)} := \Delta_{\varphi(t)}, \quad (3.6)$$

where $\Delta_{g(t)} := g^{ij} \nabla_i \nabla_j$ is the usual Laplacian of $g(t)$ and $\Delta_{g(t)}$ is the Hodge Laplacian of $g(t)$, and also the 2-tenor $S_{g(t)}$ with components

$$S_{ij} := R_{ij} + \frac{2}{3} |T(t)|^2_{g(t)} g_{ij} + 2T^k_i T^j_k = -h_{ij}. \quad (3.7)$$

Then the evolution Eq. (3.4) can be written as

$$\partial_t g_{ij} = -2S_{ij}. \quad (3.8)$$

The trace of $S_{g(t)}$ is exactly the scalar curvature, up to a multiplying constant,

$$S_{g(t)} := \text{tr}_{g(t)} S_{g(t)} = R_{g(t)} + \frac{14}{3} |T(t)|^2_{g(t)} - 4|T(t)|^2_{g(t)} = -\frac{4}{3} |T(t)|^2_{g(t)} = \frac{2}{3} R_{g(t)}. \quad (3.9)$$
It was proved in [32] that

\[
| \Delta g(t) \varphi(t) |^2_{g(t)} = (\text{tr}_{g(t)} h(t))^2 + 2||h(t)||^2_{g(t)} = \frac{16}{9} | T(t) |^4_{g(t)} + 2|| \text{Sic}_{g(t)} ||^2_{g(t)}. \tag{3.10}
\]

This identity together with (2.26) shows that the boundedness of \(\Delta g(t) \varphi(t) \) is equivalent to the boundedness of \(\text{Ric}_{g(t)} \).

The evolution Eq. (2.41) implies that for the Laplacian flow on closed \(G_2 \)-structures, the torsion \(T_{ij} \) evolves by evolves

\[
\partial_t T_{ij} = T_{ik} h_{kj} - (\nabla_m h_{ni}) \varphi_{jm}. \tag{3.11}
\]

Furthermore, we can prove

Proposition 3.1 *Under the flow (3.1), we have*

\[
\Box_{g(t)} T_{ij} = 3 R_{j}^{k} T_{ki} - R_{ij} T_{kj} - \frac{1}{2} R_{ijm} T^{mk} - \frac{1}{2} R_{mpi}^{k} R_{qk} \varphi_{jp} \varphi_{qm} - \frac{2}{3} | T(t) |^2_{g(t)} T_{ij}
\]

\[
+ \nabla_p T_{qi} \left(T_{pq}^{k} \varphi_{kj} - 2 T_{qk}^{k} \varphi_{jp} \right) - \frac{2}{3} \varphi_{ji} m \nabla_m | T(t) |^2_{g(t)} - 4 T_{1i} T_{k}^{m} T_{mj}. \tag{3.12}
\]

Proof See [32].

For a geometric flow \(\partial_t g_{ij} = \eta_{ij} \), where \(\eta_{ij} \) is a family of symmetric 2-tensors, we have (e.g. see formula (2.66), (2.29), and (2.30) in [5])

\[
\partial_t R_{ijk}^\ell = \frac{1}{2} g^{\ell p} \left(\nabla_i \nabla_j \eta_{kp} + \nabla_i \nabla_k \eta_{jp} - \nabla_i \nabla_p \eta_{jk} - \nabla_j \nabla_i \eta_{kp} - \nabla_j \nabla_k \eta_{ip} + \nabla_j \nabla_p \eta_{ik} \right),
\]

\[
\partial_t R_{ij} = \frac{1}{2} g^{pq} \left(\nabla_i \nabla_j \eta_{kp} + \nabla_i \nabla_k \eta_{jp} - \nabla_i \nabla_p \eta_{jk} - \nabla_j \nabla_i \eta_{kp} - \nabla_j \nabla_k \eta_{ip} + \nabla_j \nabla_p \eta_{ik} \right),
\]

\[
\partial_t R_{g(t)} = - \Box_{g(t)} \eta(t) + \text{div}_{g(t)}(\text{div}_{g(t)} \eta(t)) - R_{ij} h^{ij},
\]

where \((\text{div}_{g(t)} \eta(t))_j = \nabla_i \eta_{ij} \). Applying those evolution equations to \(\eta_{ij} = -2 R_{ij} - \frac{4}{3} | T(t) |^2_{g(t)} g_{ij} - 4 T_{1i} T_{k}^{m} T_{kj} = -2 S_{ij} \) we have

\[
\text{tr}_{g(t)} \eta(t) = -2 R_{g(t)} - \frac{28}{3} | T(t) |^2_{g(t)} + 8 | T(t) |^2_{g(t)} = \frac{8}{3} | T(t) |^2_{g(t)},
\]

\[
(\text{div}_{g(t)} \eta(t))_j = -2 \nabla_i R_{ij} - \frac{4}{3} \nabla_j | T(t) |^2_{g(t)} - 4 \nabla^i \tilde{T}_{ij}
\]

\[
= - \nabla_j R_{g(t)} - \frac{4}{3} \nabla_j | T(t) |^2_{g(t)} - 4 \nabla^i \tilde{T}_{ij},
\]

\[
\text{div}_{g(t)}(\text{div}_{g(t)} \eta(t)) = \nabla^i (\text{div}_{g(t)} \eta(t))_j
\]

\[
= - \Box_{g(t)} R_{g(t)} - \frac{4}{3} \Box_{g(t)} | T(t) |^2_{g(t)} - 4 \nabla^i \nabla^j \tilde{T}_{ij},
\]

where the symmetric 2-tensor \(\tilde{T}(t) \) is given by

\[
\tilde{T}_{ij} := T_{ik} T_{kj}. \tag{3.13}
\]

Plugging those identities into the above evolution equation for \(R_{g(t)} \), we get

\[
\partial_t R_{g(t)} = -4 \Box_{g(t)} | T(t) |^2_{g(t)} - \Box_{g(t)} R_{g(t)} - 4 \nabla^i \nabla^j \tilde{T}_{ij}
\]
On the other hand, from the Ricci identity (2.29) and (2.30), to simplify those two terms. Using the identity (3.15),

\[\nabla^i T_{ij} = 0 \]

(3.15)

follows from from (2.29) and (2.30), to simplify those two terms. Using the identity (3.15),

the term \(\nabla^j \nabla^i \tilde{T}_{ij} \) can be simplified as follows.

\[
\nabla^j \nabla^i \tilde{T}_{ij} = \nabla^j \nabla^i \left(T_i^k T_{kj} \right) = \nabla^j \left[(\nabla^i T_i^k) T_{kj} + T_i^k (\nabla^i T_{kj}) \right] = T^{ik} (\nabla^j \nabla^i T_k^j) - (\nabla^i T^{ik})(\nabla^j T_{jk}).
\]

On the other hand, from the Ricci identity

\[
\nabla^j \nabla^i T_{kj} = \nabla_i \nabla_j T_{kj} - R_{jik\ell} T_{k\ell j} - R_{ij\ell j} T_{k\ell k} = R_{jik\ell} T_{k\ell j} + R_{ij\ell j} T_{k\ell k},
\]

we see that the evolution Eq. (3.14) is equivalent to

\[
\Box_g R_g(t) = 2\|\text{Ric}_g(t)\|^2_{g(t)} - \frac{2}{3} R^2_{g(t)} + 4 R_{ijk\ell} T^{ik} T_{j\ell} + 4 (\nabla^i T^{ik})(\nabla^j T_{jk}).
\]

(3.16)

From (3.7) and (3.13) we can rewrite the term \(\|\text{Ric}_g(t)\|^2_{g(t)} \) in (3.16) in terms of \(\text{Sic}_{g(t)} \) according to the following relation:

\[
\|\text{Sic}_{g(t)}\|^2_{g(t)} = \left(R_{ij} + \frac{2}{3} |T(t)|^2_{g(t)} g_{ij} + 2 \tilde{T}_{ij} \right) \left(R^{ij} + \frac{2}{3} |T(t)|^2_{g(t)} g^{ij} + 2 \tilde{T}^{ij} \right)
\]

\[
= \|\text{Ric}_g(t)\|^2_{g(t)} + \frac{16}{3} |T(t)|^2_{g(t)} R_{g(t)} + 4 \langle\langle \text{Ric}_g(t), \tilde{T}(t) \rangle\rangle_{g(t)} + \frac{28}{9} |T(t)|^4_{g(t)} + \frac{8}{3} |T(t)|^2_{g(t)} \text{tr}_{g(t)} \tilde{T}(t) + 4 \|\tilde{T}(t)\|^2_{g(t)}
\]

\[
= \|\text{Ric}_g(t)\|^2_{g(t)} + 2 \frac{2}{3} R^2_{g(t)} + 4 \langle\langle \text{Ric}_g(t), \tilde{T}(t) \rangle\rangle_{g(t)} + \frac{17}{9} R^2_{g(t)} - \frac{4}{3} R^2_{g(t)} + 4 \|\tilde{T}(t)\|^2_{g(t)}
\]

\[
= \|\text{Sic}_{g(t)}\|^2_{g(t)} + 4 \|\tilde{T}(t)\|^2_{g(t)} + 4 \langle\langle \text{Ric}_g(t), \tilde{T}(t) \rangle\rangle_{g(t)} - \frac{11}{9} R^2_{g(t)}
\]

where we used the identities \(\text{tr}_{g(t)} \tilde{T}(t) = g^{ij} T_{ik} T_{kj} = T_{ik} T^{ki} = -2 |T(t)|^2_{g(t)} \) and \(R_{g(t)} = -2 |T(t)|^2_{g(t)} \). Replacing \(R_{g(t)} \) by \(S_{g(t)} \) according to the identity (3.9), we can rewrite (3.16) as

\[
\Box_g S_{g(t)} = \frac{4}{3} \|\text{Sic}_{g(t)}\|^2_{g(t)} - \frac{16}{3} \|\tilde{T}(t)\|^2_{g(t)} - \frac{16}{3} \langle\langle \text{Ric}_g(t), \tilde{T}(t) \rangle\rangle_{g(t)} + \frac{32}{27} R^2_{g(t)}
\]

\[
+ \frac{8}{3} R_{ijk\ell} T^{ik} T_{j\ell} + \frac{8}{3} (\nabla^j T^{ik})(\nabla^i T_{jk}).
\]
Similarly, replacing $\langle\langle \text{Ric}_g(t), \hat{T}(t) \rangle \rangle_{g(t)}$ by $\langle\langle \text{Sc}_g(t), \hat{T}(t) \rangle \rangle_{g(t)}$ with respect to the identity

$$\langle\langle \text{Sc}_g(t), \hat{T}(t) \rangle \rangle_{g(t)} = \left(R_{ij} + \frac{2}{3} |T(t)|^2 g_{ij} + 2 \hat{T}_{ij} \right) \hat{T}^{ij} = \langle\langle \text{Ric}_g(t), \hat{T}(t) \rangle \rangle_{g(t)} - \frac{1}{3} R^2_{g(t)} + 2 |\hat{T}(t)|^2_{g(t)},$$

we obtain the following evolution equation for $S_{g(t)}$.

$$\Box_{g(t)} S_{g(t)} = \frac{4}{3} \left[||\text{Sc}_{g(t)} - 2 \hat{T}(t)||^2_{g(t)} - S^2_{g(t)} \right] + \frac{8}{3} \left[R_{ijkl} T^{ik} T^{j\ell} + (\nabla^j T^{ik})(\nabla_i T_{jk}) \right]. \quad (3.17)$$

Next, we try to deal with the last bracket in (3.17), which contains two terms $R_{ijkl} T^{ik} T^{j\ell}$ and $(\nabla^j T^{ik})(\nabla_i T_{jk})$. Using (2.27) and (2.33), the term $(\nabla^j T^{ik})(\nabla_i T_{jk})$ is equal to

$$(\nabla^j T^{ik})(\nabla_i T_{jk}) = \left[\nabla^i T^{jk} + \left(\frac{1}{2} \gamma^{i}{}_{ab} + T^i_a T^j_b \right) \phi^{kab} \right] \nabla_i T_{jk} = ||\nabla g(t) T(t)||_{g(t)}^2 + \frac{1}{2} \left(\frac{1}{2} \gamma^{i}{}_{ab} + T^i_a T^j_b \right) \left[- \frac{1}{2} R_{ijkl} \phi^{mn} \gamma^{kab} - \frac{1}{2} R_{ijkl} \phi^{mn} \gamma^{kab} \right. \\
+ \frac{1}{2} R_{ikmn} \phi^{mn} \gamma^{kab} - T_{km} T_{jn} \phi^{mn} \gamma^{kab} + T_{im} T_{kn} \phi^{mn} \gamma^{kab}$$

By symmetry the term

$$\left(\frac{1}{2} \gamma^{i}{}_{ab} + T^i_a T^j_b \right) \left(\frac{1}{2} R_{ijkl} \phi^{mn} \gamma^{kab} - \frac{1}{2} R_{ijkl} \phi^{mn} \gamma^{kab} \right)$$

is equal to, interchanging $i \leftrightarrow j$ and $a \leftrightarrow b$ in the second term,

$$\left(\frac{1}{2} \gamma^{i}{}_{ab} + T^i_a T^j_b \right) \left(\frac{1}{2} R_{ijkl} \phi^{mn} \gamma^{kab} \right) + \left(\frac{1}{2} \gamma^{i}{}_{ba} + T^i_b T^j_a \right) \left(\frac{1}{2} R_{ikmn} \phi^{mn} \gamma^{kba} \right)$$

which is zero. Similarly, we have, by interchanging $m \leftrightarrow n$ and then $i \leftrightarrow j, \ a \leftrightarrow b$ in the first term,

$$\left(\frac{1}{2} \gamma^{i}{}_{ab} + T^i_a T^j_b \right) \left(- T_{km} T_{jn} \phi^{mn} \gamma^{kab} + T_{im} T_{kn} \phi^{mn} \gamma^{kab} \right)$$

Therefore, using the identity $\phi \gamma_{ijk} \phi^{kab} = g_{ia} g_{jb} - g_{ib} g_{ja} + \psi_{ijab}$ (see [23]), we arrive at

$$(\nabla^j T^{ik})(\nabla_i T_{jk}) = ||\nabla g(t) T(t)||_{g(t)}^2 \\
- \frac{1}{2} \left(\frac{1}{2} \gamma^{i}{}_{ab} + T^i_a T^j_b \right) \left(\frac{1}{2} R_{ij} \phi^{mn} + T^i_j T^m_n \right) \phi^{mn} \gamma^{kab}$$
= ||\nabla g(t)T(t)||^2_{g(t)} - \frac{1}{2} \left(\frac{1}{2} R^{ij}_{ab} + T^i_a T^j_b \right)
\cdot \left(\frac{1}{2} R^{mn}_{ij} + T^m_i T^n_j \right) \left(\delta^a_m \delta^b_n - \delta^a_n \delta^b_m + \psi_{mn}^{ab} \right)
= ||\nabla g(t)T(t)||^2_{g(t)} - \frac{1}{8} (R_{ijab} + 2T^a_{ia}T^b_{jb}) \left[(R^{ij}_{ab} + 2T^{ia}_{jb}) \right.
- \left. (R^{jba} + 2T^{ib}_{ja}) + (R^{jm}_{ab} + 2T^{im}_{jn} \psi_{mn}^{ab}) \right].

Since, by our convention,

\((R_{ijab} + 2T^a_{ia}T^b_{jb}) \left(R^{ij}_{ab} + 2T^{ia}_{jb} \right) = ||R_{g(t)}||^2_{g(t)} + 4R_{ijab}T^{ia}_{jb} + 4||T(t)||^4_{g(t)} \)

and

\((R_{ijab} + 2T^a_{ia}T^b_{jb}) \left(R^{jba} + 2T^{ib}_{ja} \right) = -||R_{g(t)}||^2_{g(t)} - 4R_{ijab}T^{ia}_{jb} + 4||\hat{T}(t)||^2_{g(t)} \),

it follows that

\((\nabla^j T^k)(\nabla T^j_k) = ||\nabla T(t)||^2_{g(t)} + \frac{1}{8} \left[-2||R_{g(t)}||^2_{g(t)} - 8R_{ijab}T^{ia}_{jb} - 4||T(t)||^4_{g(t)} \right. \)

\(+ 4||\hat{T}(t)||^2_{g(t)} - (R_{ijab} + 2T^a_{ia}T^b_{jb}) \left(R^{jm}_{ab} + 2T^{im}_{jn} \psi_{mn}^{ab} \right) \)

and (3.17) can be written as

\(\Box_{g(t)} S_{g(t)} = \frac{4}{3} \left| Sic_{g(t)} - 2\hat{T}(t) \right|_{g(t)}^2 + \frac{8}{3} \left| \nabla g(t)T(t) \right|_{g(t)}^2 + \frac{4}{3} ||\hat{T}(t)||^2_{g(t)} \)

- \frac{2}{3} ||R_{g(t)}||^2_{g(t)} - \frac{13}{3} S_{g(t)}^2

- \frac{1}{3} (R_{ijab} + 2T^a_{ia}T^b_{jb}) \left(R^{jm}_{ab} + 2T^{im}_{jn} \psi_{mn}^{ab} \right). \tag{3.18} \)

Finally, we deal with the last term \(J \) on the right-hand side of (3.18). From the identity \(\psi_{ijk}\psi_{ij\ell} = 168 \), we find that

\(J := -\frac{1}{3} (R_{ijab} + 2T^a_{ia}T^b_{jb}) \left(R^{jm}_{ab} + 2T^{im}_{jn} \psi_{mn}^{ab} \right) \)

\(= \frac{1}{3} \left(-R^{i\ell}_{a b} R^{jm}_{b} \psi_{m n a b} - 4T^{i a}_{j b} R^{jm}_{n} \psi_{m n a b} - 4T^{i a}_{b} T^{i m}_{j n} \psi_{m n a b} \right) \)

\(= \frac{1}{3} \left[\left| R^{ij}_{ab} R^{jm}_{ab} - \frac{1}{2} \psi_{abmn} \right|_{g(t)}^2 - \left| R^{ij}_{ab} R^{jm}_{ab} \right|_{g(t)}^2 - \frac{168}{4} \right. \)

\(+ \left| 2T^{i a}_{j b} R^{jm}_{n} - \psi_{abmn} \right|_{g(t)}^2 - 4 \left| T^{i a}_{b} T^{i m}_{j n} \psi_{m n a b} \right|_{g(t)}^2 - 168 \)

\(+ \left| 2\hat{T}^{a m}_{b n} - \psi_{abmn} \right|_{g(t)}^2 - 4 ||\hat{T}(t)||^4_{g(t)} - 168 \). \]

Plugging the expression for \(J \) into (3.18), we obtain

Proposition 3.2 The scalar curvature \(R_{g(t)} \) or \(S_{g(t)} \) evolves by

\(\Box_{g(t)} S_{g(t)} = \frac{4}{3} \left| Sic_{g(t)} - 2\hat{T}(t) \right|_{g(t)}^2 + \frac{8}{3} \left| \nabla g(t)T(t) \right|_{g(t)}^2 + \frac{13}{3} S_{g(t)}^2 - 126 \)
Since $S_{g(t)} = \frac{2}{3} R_{g(t)}$, it follows from the above theorem that (1.8) holds true.

Before giving local curvature estimates for Laplacian flow in the next subsection, we derive evolution equations for $\text{Ric}_{g(t)}$, $\text{Rm}_{g(t)}$, and $\mathbf{T}(t)$ in different forms. Using the Lichnerowicz Laplacian

$$\Box_{L,g(t)} \eta_{jk} := \eta_{jk} - R_{j}^{p} \eta_{pk} - R_{k}^{p} \eta_{jp} + 2 R_{pjkq} h^{qp},$$

we see that the evolution equation for R_{ij} can be written as

$$\partial_{t} R_{ij} = -\frac{1}{2} \left[\Box_{L,g(t)} \eta_{jk} + \nabla_{j} \nabla_{k} \text{tr}_{g(t)} \eta(t) + \nabla_{j} (d^{*}_{g(t)} \eta_{ij} + d^{*}_{g(t)} \eta_{ij}) \right],$$

where $(d^{*}_{g(t)} \eta_{ij})_{k} := -\nabla_{j} \eta_{ik}$. For $\eta_{ij} = -2 R_{ij} - \frac{4}{3} ||\mathbf{T}(t)||_{g(t)}^{2} R_{ij} - 4 T_{i}^{k} T_{kj}$ we have proved $\text{tr}_{g(t)} \eta(t) = \frac{8}{3} ||\mathbf{T}(t)||_{g(t)}^{2}$ and $(d^{*}_{g(t)} \eta_{ij})_{j} = \nabla_{j} R_{g(t)} + \frac{4}{3} \nabla_{j} ||\mathbf{T}(t)||_{g(t)}^{2} + 4 \nabla^{i} \hat{T}_{ij}$ with $\hat{T}_{ij} = T_{i}^{k} T_{kj}$. Then

$$\partial_{t} R_{jk} = \Box_{L,g(t)} \left(R_{jk} + \frac{2}{3} ||\mathbf{T}(t)||_{g(t)}^{2} g_{jk} + 2 \hat{T}_{jk} \right) - \frac{1}{2} \nabla_{j} \left(\nabla_{k} R_{g(t)} + \frac{4}{3} \nabla_{k} ||\mathbf{T}(t)||_{g(t)}^{2} \right) - \frac{1}{2} \nabla_{k} \left(\nabla_{j} R_{g(t)} + \frac{4}{3} \nabla_{j} ||\mathbf{T}(t)||_{g(t)}^{2} + 4 \nabla^{i} \hat{T}_{ij} \right) - 2 \nabla_{j} \nabla^{i} \hat{T}_{ij} - \frac{2}{3} \nabla_{j} \nabla_{k} ||\mathbf{T}(t)||_{g(t)}^{2}.$$

But the first term is equal to

$$\Box_{L,g(t)} \left(R_{jk} + \frac{2}{3} ||\mathbf{T}(t)||_{g(t)}^{2} g_{jk} + 2 \hat{T}_{jk} \right) = \Box_{g(t)} R_{jk} - 2 R_{j}^{p} R_{pk} + 2 R_{pjkq} R^{pq},$$

$$+ \left[\frac{2}{3} \left(|\mathbf{T}(t)||_{g(t)}^{2} g_{jk} + 2 \Box_{g(t)} \hat{T}_{jk} - 2 R_{j}^{p} \hat{T}_{pk} - 2 \hat{T}_{j}^{p} R_{pk} + 4 R_{pjkq} \hat{T}_{pq} \right) \right],$$

we have

$$\Box_{g(t)} R_{ij} = -2 R_{i}^{p} R_{pj} + 2 R_{pikj} R^{ip} + \left[\frac{2}{3} \left(|\mathbf{T}(t)||_{g(t)}^{2} \right) g_{ij} + 2 \Box_{g(t)} \hat{T}_{ij} - 2 R_{i}^{p} \hat{T}_{pj} - 2 \hat{T}_{i}^{p} R_{pj} + 4 R_{pikj} \hat{T}_{pq} - 2 \nabla_{i} \nabla^{p} \hat{T}_{pj} - 2 \nabla_{j} \nabla^{p} \hat{T}_{pi} - \frac{2}{3} \nabla^{i} \nabla_{j} ||\mathbf{T}(t)||_{g(t)}^{2} \right].$$

Consequently, the norm of $\text{Ric}_{g(t)}$ satisfies

$$\Box_{g(t)} ||\text{Ric}_{g(t)}||_{g(t)}^{2} = -2 ||\nabla_{g(t)} \text{Ric}_{g(t)}||_{g(t)}^{2} + \left[\frac{4}{3} R_{g(t)} \Box_{g(t)} ||\mathbf{T}(t)||_{g(t)}^{2} \right].$$
evolution inequality (3.26) becomes

\[+ 8 R^k_{ij} \hat{T}^k_{i\ell} R^{ij} + \frac{8}{3} |\text{Ric}_{g(t)}|_{g(t)}^2 |T(t)|_{g(t)}^2 + 4 R_{kij\ell} \hat{R}^{k\ell} R^{ij} \\
+ 4 R^{ij} \mathcal{A}_{g(t)} \hat{T}_{ij} - 8 R^{ij} \nabla_i \nabla^k \hat{T}_{kj} - \frac{4}{3} R^{ij} \nabla_i \nabla_j |T(t)|_{g(t)}^2 \right]. \]

(3.21)

The general formula (e.g. formula (2.66) in [5]) for \(R^\ell_{ijk} \) gives

\[
\partial_t R^\ell_{ijk} = -\nabla_i \nabla_k R^\ell_j - \nabla_j \nabla^\ell R_{ik} + \nabla_i \nabla^\ell R_{jk} + \nabla_j \nabla_k R^\ell_i + R_{i\ell jk} q R^{\ell q} + R_{i\ell jk} q R_{kp} \\
+ 2 R_{ijk\ell} q \hat{T}^\ell_q + 2 R_{ij\ell q} \hat{T}^\ell_{kp} - \frac{2}{3} \left(\nabla_i \nabla_k |T(t)|_{g(t)}^2 \right) g^\ell_j - 2 \nabla_i \nabla_k \hat{T}_{j\ell} \\
- 2 \nabla_j \nabla^\ell \hat{T}_{ik} + 2 \nabla_i \nabla_k \hat{T}_{j\ell} - \frac{2}{3} \left(\nabla_j \nabla^\ell |T(t)|_{g(t)}^2 \right) g_{ik} \\
+ \frac{2}{3} \left(\nabla_i \nabla^\ell |T(t)|_{g(t)}^2 \right) g_{jk} + \frac{2}{3} \left(\nabla_j \nabla^\ell |T(t)|_{g(t)}^2 \right) g_{ik}. \]

(3.22)

Hence, the evolution equation for \(|\text{Rm}_{g(t)}|_{g(t)}^2 \) is given by

\[
\partial_t |\text{Rm}_{g(t)}|_{g(t)}^2 = \nabla^2_{g(t)} |\text{Ric}_{g(t)}| * \text{Rm}_{g(t)} + |\text{Rm}_{g(t)}| * \text{Rm}_{g(t)} + |\text{Rm}_{g(t)}| * \text{Rm}_{g(t)} \\
+ \text{Rm}_{g(t)} * \text{Rm}_{g(t)} * \hat{T}(t) + \text{Ric}_{g(t)} * \nabla^2_{g(t)} |T(t)|_{g(t)}^2 \\
+ \text{Rm}_{g(t)} * \nabla^2_{g(t)} \hat{T}(t) + \frac{8}{3} |T(t)|_{g(t)}^2 |\text{Rm}_{g(t)}|_{g(t)}^2. \]

(3.23)

Moreover, it was proved in [32] that

\[
|\nabla_{g(t)} \text{Rm}_{g(t)}|^2_{g(t)} \leq -\frac{1}{2} \mathcal{B}_{g(t)} |\text{Rm}_{g(t)}|_{g(t)}^2 + C_1 |\text{Rm}_{g(t)}|_{g(t)}^3 + C_1 |\text{Rm}_{g(t)}|_{g(t)}^{3/2} \\
\cdot |\nabla_{g(t)}^2 |T(t)|_{g(t)}^2 + C_1 |\text{Rm}_{g(t)}|_{g(t)} |\nabla_{g(t)} T(t)|_{g(t)}^2. \]

(3.24)

where \(C_1 \) is some universal constant, and

\[
\mathcal{B}_{g(t)} T(t) = \text{Rm}_{g(t)} * T(t) + \text{Rm}_{g(t)} * T(t) * \psi(t) \\
+ \nabla_{g(t)} T(t) * T(t) * \phi(t) + T(t) * T(t) * T(t). \]

(3.25)

Squaring (3.25) gives

\[
|\nabla_{g(t)} T(t)|_{g(t)}^2 \leq -\frac{1}{2} \mathcal{B}_{g(t)} |T(t)|_{g(t)}^2 + C_2 |\text{Rm}_{g(t)}|_{g(t)} |T(t)|_{g(t)}^2 \\
+ C_2 |\nabla_{g(t)} T(t)|_{g(t)}^2 + C_2 |T(t)|_{g(t)}^4. \]

(3.26)

for another universal constant \(C_2 \) which may differs from \(C_1 \). The Cauchy-Schwartz inequality shows \(2 C_2 |\nabla_{g(t)} T(t)|_{g(t)} |T(t)|_{g(t)}^2 \leq |\nabla_{g(t)} T(t)|_{g(t)}^2 + C^2_2 |T(t)|_{g(t)}^4 \), so that the evolution inequality (3.26) becomes

\[
|\nabla_{g(t)} T(t)|_{g(t)}^2 \leq -\mathcal{B}_{g(t)} |T(t)|_{g(t)}^2 \\
+ C_3 |\text{Rm}_{g(t)}|_{g(t)} |T(t)|_{g(t)}^2 + C_3 |T(t)|_{g(t)}^4. \]

(3.27)

Here \(C_3 \) is a universal constant.
3.2 Main idea of proving Theorem 1.4

In this section, we consider the Laplacian flow (3.1) on $\mathcal{M} \times [0, T]$, where $T \in (0, T_{\text{max}})$. From now on we always omit the time subscripts from all considered quantities. From (3.7), (3.21), (3.23), (3.24), and (3.27) we have

\[
||\nabla R||^2 = -\frac{1}{2} ||R||^2 + R * R * R - \frac{1}{3} (\Box R) R - \frac{2}{3} ||R||^2 R
\]

\[
+ 2 \langle\langle R, \Box R \rangle\rangle + \frac{1}{3} \langle\langle R, \nabla^2 R \rangle\rangle + R * \hat{T} * Rm + R * \nabla^2 \hat{T},
\]

\[
||\nabla Rm||^2 \leq -\frac{1}{2} ||Rm||^2 + C ||Rm||^3 + C ||Rm||^{3/2} ||\nabla^2 T|| + C ||Rm|| ||\nabla T||^2,
\]

\[
\partial_t ||Rm||^2 = \nabla^2 R * Rm + R * Rm * Rm + Rm * Rm * \hat{T}
\]

\[
+ R * \nabla^2 ||T||^2 + Rm * \nabla^2 \hat{T} + \frac{4}{3} ||T||^2 ||Rm||^2,
\]

\[
||\nabla T||^2 \leq -\frac{1}{2} ||T||^2 + C ||Rm|| ||\nabla T||^2 + C ||T||^4,
\]

\[
\partial_t dV = \frac{2}{3} ||T||^2 dV, \quad R = -||T||^2.
\]

Choose an open domain Ω of \mathcal{M} and assume that

\[
||Ric|| \leq K
\]

on $\Omega \times [0, T]$. Then the torsion T satisfies $||T|| \lesssim K^{1/2}$ and metrics $g(t)$ are all equivalent to $g(0)$. We also observe from (2.25) and (3.11) that

\[
||Ric|| \lesssim 1 \iff |\Delta \varphi| \lesssim 1
\]

and the following simple fact

\[
\partial_t ||A||^2 = \frac{p}{2} ||A||^{p-2} \partial_t ||A||^2
\]

for any tensor A.

Choose a Lipschitz function η with support in Ω (and independent of time t) and consider the quantity

\[
\frac{d}{dt} \int \int_{\mathcal{M}} ||Rm||^p \eta^{2p} dV, \quad \int : = \int_{\mathcal{M}},
\]

where $p \geq 5$. As in [28], we introduce the following “good” quantities

\[
A_1 : = \int ||Rm||^p \eta^{2p} dV, \quad A_2 : = \int ||Rm||^{p-1} \eta^{2p} dV,
\]

\[
A_3 : = \int ||Rm||^{p-1} ||\nabla \eta||^2 \eta^{2p-1} dV, \quad A_4 : = \int ||Rm||^{p-1} ||\nabla \eta||^2 \eta^{2p-2} dV
\]

and also “bad” quantities

\[
B_1 : = \frac{1}{K} \int ||\nabla Ric||^2 ||Rm||^{p-1} \eta^{2p} dV, \quad B_2 : = \int ||\nabla Rm||^2 ||Rm||^{p-3} \eta^{2p} dV.
\]

We split the proof of Theorem 1.4 into four steps.

\footnote{Here $A \lesssim B$ means that $A \leq CB$ for some positive constant C independent of t.}
(a) In the first step, we can show that, see Lemma 3.3,
\[
\frac{d}{dt} A_1 \leq B_1 + c K B_2 + c K A_4 + c K A_1 + c K^2 A_2 \\
+ c \int (-\|T\|^2) ||Rm||^{p-1}\eta^{2p} dV.
\]

(b) In the second step, we can prove that the term
\[
c \int (-\|T\|^2) ||Rm||^{p-1}\eta^{2p} dV
\]
is bounded from above by [see (3.42)]
\[
B_1 + c K B_2 + c K^2 A_2 + c K A_1 - \frac{d}{dt} \left[\int c(-R)||Rm||^{p-1}\eta^{2p} dV \right].
\]
Observe that the above integral is nonnegative, since the scalar curvature \(R \) is nonpositive along the Laplacian flow on closed \(G_2 \)-structures. Hence we obtain from the first step that, see Lemma 3.4,
\[
\frac{d}{dt} A_1 \leq 2B_1 + c K B_2 + c K A_4 + c K A_1 + c K^2 A_2 \\
- \frac{d}{dt} \left[\int c(-R)||Rm||^{p-1}\eta^{2p} dV \right].
\]

(c) In the next two steps, we estimate the bad terms \(B_1 \) and \(B_2 \). In the third step, \(B_1 \) is estimated by [see (3.52)]
\[
B_1 \leq c K B_2 + c K A_4 + c K A_1 + c K^2 A_2 \\
- \frac{d}{dt} \left[\frac{1}{K} \int ||Rm||^{p-1}||\text{Ric}||^{2}\eta^{2p} dV + c \int (-R)||Rm||^{p-1}\eta^{2p} dV \right].
\]
Then the second step can be simplified as, see Lemma 3.5,
\[
\frac{d}{dt} A_1 \leq c K B_2 + c K A_4 + c K A_1 + c K^2 A_2 \\
- \frac{d}{dt} \left[\frac{1}{K} \int ||Rm||^{p-1}||\text{Ric}||^{2}\eta^{2p} dV + c \int (-R)||Rm||^{p-1}\eta^{2p} dV \right].
\]

(d) Finally, we estimate the term \(B_2 \). In this step we shall use the assumption that \(p \geq 5 \) (a technical assumption). Using the inequality \(||\nabla T|| \lesssim ||Rm|| \) and \(||\nabla^2 T|| \lesssim ||\nabla Rm|| + ||Rm|| ||T|| + ||\nabla T|| ||T|| + ||T||^3 \), we can prove [see (3.62)]
\[
B_2 \leq c A_4 + c A_1 - \frac{d}{dt} \left[\frac{1}{p-1} \int ||Rm||^{p-1}\eta^{2p} dV \right].
\]
Plugging it into the third step, we arrive at, see Lemma 3.6,
\[
\frac{d}{dt} (A_1 + c K A_2) \leq c K (A_1 + c K A_2) + c K A_4 \\
- \frac{d}{dt} \left[\frac{c}{K} \int ||Rm||^{p-1}||\text{Ric}||^{2}\eta^{2p} dV \\
+ c \int (-R)||Rm||^{p-1}\eta^{2p} dV \right].
\]
The proof of Theorem 1.4 As in [25,28], we choose a geodesic ball $\Omega := B_g(0)(x_0, \rho/\sqrt{K})$ and a cut-off function

$$\eta = \left(\frac{\rho/\sqrt{K} - d_g(0)(x_0, \cdot)}{\rho/\sqrt{K}}\right)_+.$$

Then, for all $t \in [0, T]$,

$$e^{-cKt} g(0) \leq g(t) \leq e^{cKt} g(0), \quad ||\nabla g(t)||_{g(t)} \leq e^{cKt} ||\nabla g(0)||_{g(0)} \leq \frac{\sqrt{K}e^{cKt}}{\rho}.$$

Define

$$U := \int ||\text{Rm}||^p \eta^2 p dV + cK \int ||\text{Rm}||^{p-1} \eta^2 p dV$$

$$+ \frac{c}{K} \int ||\text{Rm}||^{p-1} ||\text{Ric}||^2 \eta^2 p dV + c \int (-R)||\text{Rm}||^{p-1} \eta^2 p dV.$$

Then (3.64) (see below) yields

$$U' \leq cKU + cKA_4.$$

For A_4, using the Young inequality, we have

$$A_4 = \int ||\text{Rm}||^{p-1} ||\nabla \eta||^2 \eta^2 p^2 dV \leq \int \left[\frac{(||\text{Rm}||^{p-1} \eta^{2p-2})^2}{p} \cdot \frac{(p-2)}{p} \right] dV$$

$$\leq A_1 + K^p \rho^{-2} p e^{cKt} \text{Vol}_g(t) \left(B_g(0) \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right)$$

$$\leq U + cK^p e^{cKt} \rho^{-2} p \text{Vol}_g(t) \left(B_g(0) \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right).$$

Thus

$$U' \leq cKU + cK^{p+1} e^{cKt} \rho^{-2} p \text{Vol}_g(t) \left(B_g(0) \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right).$$

As in the proof of [25], one can easily deduce from above that

$$\int_{B_g(0)(x_0, \frac{\rho}{\sqrt{K}})} ||\text{Rm}_g(t)||^p dV_g(t) \leq c(1 + K)e^{cKt} \int_{B_g(0)(x_0, \frac{\rho}{\sqrt{K}})} ||\text{Rm}_g(0)||^p dV_g(0)$$

$$+ cK^p (1 + \rho^{-2}p) e^{cKt} \text{Vol}_g(t) \left(B_g(0) \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right).$$

Indeed, writing $A := cK$ and $B := cK^{p+1} e^{cKt} \rho^{-2} p$, we get

$$U' \leq AU + B \text{Vol}_g(t) \left(B_g(0) \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right)$$

and then

$$e^{-At} U(t) \leq U(0) + \int_0^t B e^{-A\tau} \text{Vol}_g(\tau) \left(B_g(0) \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right) d\tau.$$
On the other hand, the estimate $e^{-cKt} g(0) \leq g(t) \leq e^{cKt} g(0)$ yields
\[
\text{Vol}_{g(t)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right) \leq e^{cKT} \text{Vol}_{g(t)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right).
\]
Consequently,
\[
U(t) \leq e^{AT} \left[U(0) + \frac{B}{A} e^{cKT} \text{Vol}_{g(t)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right) \right], \quad t \in [0, T].
\]
At last, we estimate from (3.28) and Young’s inequality
\[
U(0) = \int_{\mathcal{M}} ||\text{Rm}_{g(0)}||_{g(0)}^p \eta^{2p} dV_{g(0)} + cK \int_{\mathcal{M}} ||\text{Rm}_{g(0)}||_{g(0)}^{p-1} \eta^{2p} dV_{g(0)}
\]
\[
+ \frac{c}{K} \int_{\mathcal{M}} ||\text{Rm}_{g(0)}||_{g(0)}^{p-1} ||\text{Ric}_{g(0)}||_{g(0)}^2 \eta^{2p} dV_{g(0)}
\]
\[
+ c \int_{\mathcal{M}} (-R_{g(0)}) ||\text{Rm}_{g(0)}||_{g(0)}^{p-1} \eta^{2p} dV_{g(0)}
\]
\[
\leq \int_{\mathcal{M}} ||\text{Rm}_{g(0)}||_{g(0)}^p \eta^{2p} dV_{g(0)} + cK \int_{\mathcal{M}} ||\text{Rm}_{g(0)}||_{g(0)}^{p-1} \eta^{2p} dV_{g(0)}
\]
\[
\leq \int_{\mathcal{M}} ||\text{Rm}_{g(0)}||_{g(0)}^p \eta^{2p} dV_{g(0)} + C \int_{\mathcal{M}} \left[\left(||\text{Rm}_{g(0)}||_{g(0)}^{p-1} \eta^{2(p-1)} \right)^{\frac{p}{p-1}} dV_{g(0)}
\right]
\]
\[
+ \int_{\mathcal{M}} (K \eta^{2})^p dV_{g(0)}
\]
\[
\leq (1 + K) \int_{\mathcal{M}} ||\text{Rm}_{g(0)}||_{g(0)}^p \eta^{2p} dV_{g(0)} + CK^p \text{Vol}_{g(0)} \left(B_{g(0)} \left(x_0, \frac{\rho}{K} \right) \right)
\]
\[
\leq C(1 + K) \int_{\mathcal{M}} ||\text{Rm}_{g(0)}||_{g(0)}^p \eta^{2p} dV_{g(0)} + CK^p e^{cKT} \text{Vol}_{g(t)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right)
\]
which implies (3.33).

As an immediate consequence of the inequality (3.33) we give another proof of the part (a) in Theorem 1.2.

3.3 Proving four steps (a) — (d)

We are going to carry out the above mentioned four steps. From (3.23) and the above evolution equations, we have
\[
\frac{d}{dt} \int ||\text{Rm}||^p \eta^{2p} dV
\]
\[
= \int \left(\partial_t ||\text{Rm}||^p \right) \eta^{2p} dV + \int ||\text{Rm}||^p \eta^{2p} \partial_t dV
\]
\[
= \int \frac{p}{2} ||\text{Rm}||^{p-2} \left(\partial_t ||\text{Rm}||^2 \right) \eta^{2p} dV + \int ||\text{Rm}||^p \eta^{2p} \left(-\frac{2}{3} R \right) dV
\]
\[
= \int \frac{p}{2} ||\text{Rm}||^{p-2} \left[\nabla^2 \text{Ric} * \text{Rm} + \text{Ric} * \text{Rm} + \text{Rm} \right] \eta^{2p} dV
\]
\[
+ \frac{2}{3} \int R ||\text{Rm}||^p \eta^{2p} dV
\]
\[\begin{align*}
& \leq c \int \| Rm \|^{p-2} \left[\nabla^2 \text{Ric} \ast Rm + K \| Rm \|^2 + K \| Rm \|^2 + \nabla^2 \| T \|^2 \ast \text{Ric} \\
& + \nabla^2 \hat{T} \ast Rm \right] \eta^2 \, dV + cK \int \| Rm \|^{p-2} \eta^2 \, dV \\
& \leq c \int \| Rm \|^{p-2} \left[\nabla^2 \text{Ric} \ast Rm + \nabla^2 \| T \|^2 \ast \text{Ric} + \nabla^2 \hat{T} \ast Rm \right] \eta^2 \, dV \\
& + cK \int \| Rm \|^{p-2} \eta^2 \, dV. \quad (3.34)
\end{align*} \]

It was proved in [25] that the first integral in (3.34) is bounded by
\[\begin{align*}
& c \int \| Rm \|^{p-2} \left(\nabla^2 \text{Ric} \ast Rm \right) \eta^2 \, dV \leq \frac{1}{K} \int \| \nabla \text{Ric} \|^2 \| Rm \|^{p-1} \eta^2 \, dV \\
& + cK \int \| \nabla Rm \|^2 \| Rm \|^{p-3} \eta^2 \, dV + cK \int \| Rm \|^{p-1} \| \nabla \eta \|^2 \eta^2 \, dV. \quad (3.35)
\end{align*} \]

Since \(\| T \|^2 = -R \), the same inequality holds for the integral
\[c \int \| Rm \|^{p-2} \left(\nabla^2 \| T \|^2 \ast \text{Ric} \right) \eta^2 \, dV. \]

To deal with the last term in the bracket of (3.34), we use the same argument of [25] to conclude
\[\begin{align*}
& c \int \| Rm \|^{p-2} \left(\nabla^2 \hat{T} \ast Rm \right) \eta^2 \, dV = c \int \left(\nabla \| Rm \|^{p-2} \ast \nabla \hat{T} \ast Rm \right) \eta^2 \, dV \\
& + c \int \left(\| Rm \|^{p-2} \ast \nabla \hat{T} \ast \nabla Rm \right) \eta^2 \, dV \\
& + c \int \left(\| Rm \|^{p-2} \ast \nabla \hat{T} \ast Rm \ast \nabla \eta \right) \eta^2 \, dV \\
& \leq c \int \| Rm \|^{p-2} \| \nabla Rm \| \| \nabla \hat{T} \| \eta^2 \, dV \\
& + c \int \| Rm \|^{p-2} \| \nabla \hat{T} \| \| \nabla Rm \| \| \nabla \eta \| \eta^2 \, dV \\
& + c \int \| Rm \|^{p-2} \| \nabla \hat{T} \| \| \nabla \eta \| \eta^2 \, dV \\
& \leq c \int \| Rm \|^{p-2} \| \nabla Rm \| \| \nabla \hat{T} \| \| \nabla \eta \| \eta^2 \, dV \\
& + c \int \| Rm \|^{p-2} \| \nabla \hat{T} \| \| \nabla \eta \| \eta^2 \, dV.
\end{align*} \]

According to the Cauchy-Schwartz inequality, the first and second integrals are bounded by
\[\begin{align*}
& \int \| Rm \|^{p-2} \| \nabla Rm \| \| \nabla \hat{T} \| \eta^2 \, dV \\
& \leq cK \int \| \nabla Rm \|^2 \| Rm \|^{p-3} \eta^2 \, dV + \frac{1}{K} \int \| \nabla \hat{T} \|^2 \| Rm \|^{p-1} \eta^2 \, dV \\
\text{and} \\
& \int \| Rm \|^{p-1} \| \nabla \hat{T} \| \| \nabla \eta \| \eta^2 \, dV.
\end{align*} \]
\begin{align*}
\leq \frac{1}{K} \int ||\nabla \hat{T}||^2 ||\text{Rm}||^{p-1} \eta^2 \eta^2 dV + cK \int ||\text{Rm}||^{p-1} ||\nabla \eta||^2 \eta^2 dV.
\end{align*}

Hence we obtain
\begin{align*}
c \int ||\text{Rm}||^{p-2} (\nabla^2 \hat{T} \ast \text{Rm}) \eta^2 \eta^2 dV & \leq \frac{1}{K} \int ||\nabla \hat{T}||^2 ||\text{Rm}||^{p-1} \eta^2 dV \\
& + cK \int ||\nabla \text{Rm}||^2 ||\text{Rm}||^{p-3} \eta^2 \eta^2 dV \\
& + cK \int ||\text{Rm}||^{p-1} ||\nabla \eta||^2 \eta^2 \eta^2 dV. \quad (3.36)
\end{align*}

Using \(\hat{T} = T \ast T \) and \(R = -||T||^2 \) yields
\begin{align*}
\frac{1}{K} \int ||\nabla \hat{T}||^2 ||\text{Rm}||^{p-1} \eta^2 \eta^2 dV \\
& \leq \frac{c}{K} \int ||\nabla T||^2 ||T||^2 ||\text{Rm}||^{p-1} \eta^2 \eta^2 dV \leq c \int ||\nabla T||^2 ||\text{Rm}||^{p-1} \eta^2 \eta^2 dV \\
& \leq c \int \left(-\frac{1}{4} ||T||^2 + c ||\text{Rm}|| ||T||^2 + c ||T||^4 \right) ||\text{Rm}||^{p-1} \eta^2 \eta^2 dV \\
& = c \int \left(-||T||^2 \right) ||\text{Rm}||^{p-1} \eta^2 \eta^2 dV \\
& + cK \int ||\text{Rm}||^{p} \eta^2 \eta^2 dV + cK^2 \int ||\text{Rm}||^{p-1} \eta^2 \eta^2 dV. \quad (3.37)
\end{align*}

Hence, using (3.35), (3.36), and (3.37), we arrive at

Lemma 3.3 One has
\begin{align*}
A_1' & \equiv \frac{d}{dt} A_1 \leq B_1 + cK B_2 + cK A_4 + cK A_1 + cK^2 A_2 \\
& + c \int \left(-||T||^2 \right) ||\text{Rm}||^{p-1} \eta^2 \eta^2 dV. \quad (3.38)
\end{align*}

In the following computations, we are mainly going to estimate or simplify the bad terms \(B_1, B_2 \), and also the term involving \(-||T||^2 \). Integration by parts on the last integral in (3.38) and using \(R = -||T||^2 \), we obtain
\begin{align*}
c \int \left(-||T||^2 \right) ||\text{Rm}||^{p-1} \eta^2 \eta^2 dV & = c \int (\partial_t - \Delta) R ||\text{Rm}||^{p-1} \eta^2 \eta^2 dV \\
& = c \int (\partial_t R) ||\text{Rm}||^{p-1} \eta^2 \eta^2 dV \\
& + c \int \left(\nabla R, \nabla \left(||\text{Rm}||^{p-1} \eta^2 \right) \right) dV \\
& = \frac{d}{dt} \left(c \int R ||\text{Rm}||^{p-1} \eta^2 \eta^2 dV \right) \\
& - c \int R \left(\partial_t ||\text{Rm}||^{p-1} \right) \eta^2 \eta^2 dV \\
& - c \int R ||\text{Rm}||^{p-1} \eta^2 \partial_t dV \\
& + c \int \left(\nabla R, ||\text{Rm}||^{p-3} \text{Rm} \ast \nabla \text{Rm} \right) \eta^2 \eta^2 dV.
\end{align*}
\[+ c \int \langle \nabla R, \|Rm\|^{p-1} \eta^{2p-1} \nabla \eta \rangle \, dV \]
\[\leq c \int \|Rm\|^{p-2} \langle \nabla R, \nabla Rm \rangle \eta^{2p} \, dV \]
\[+ c \int \|Rm\|^{p-1} \|\nabla R\| \|\nabla \eta\| \eta^{2p-1} \, dV \]
\[+ c \int R^2 \|Rm\|^{p-1} \eta^{2p} \, dV \]
\[- c \int R (\partial_t \|Rm\|^{p-1}) \eta^{2p} \, dV \]
\[+ \frac{d}{dt} \left(c \int R \|Rm\|^{p-1} \eta^{2p} \, dV \right). \]

The first two integrals can be simplified by using the Cauchy–Schwarz inequality as follows:

\[c \int \|Rm\|^{p-2} \langle \nabla R, \nabla Rm \rangle \eta^{2p} \, dV \]
\[\leq c \int \|\nabla \text{Ric}\| \|\nabla Rm\| \|Rm\|^{p-2} \eta^{2p} \, dV \]
\[\leq c \int \left(\|\nabla Rm\| \|Rm\|^{p-3} \|\eta\| \right) \left(\|\nabla \text{Ric}\| \|\eta\|^{p} \right) \, dV \]
\[\leq \frac{1}{50} B_1 + cK B_2 \]

and

\[c \int \|Rm\|^{p-1} \|\nabla R\| \|\nabla \eta\| \eta^{2p-1} \, dV \]
\[\leq c \int \|Rm\|^{p-1} \|\nabla \text{Ric}\| \|\nabla \eta\| \eta^{2p-1} \, dV \]
\[\leq c \int \left(\|Rm\|^{p-1} \|\nabla \eta\| \eta^{p-1} \right) \left(\|\nabla \text{Ric}\| \|\eta\| \right) \, dV \]
\[\leq \frac{1}{50} B_1 + cK A_4. \]

Therefore

\[c \int \left(-\|\mathbf{T}\|^2 \right) \|Rm\|^{p-1} \eta^{2p} \, dV \leq \frac{2}{50} B_1 + cK B_2 + cK A_4 + cK^2 A_2 \]
\[+ \frac{d}{dt} \left(c \int R \|Rm\|^{p-1} \eta^{2p} \, dV \right) \]
\[- c \int R (\partial_t \|Rm\|^{p-1}) \eta^{2p} \, dV. \quad (3.39) \]

Now, the second integral in (3.39) is equal to

\[- c \int R (\partial_t \|Rm\|^{p-1}) \eta^{2p} \, dV = c \int (-R) \|Rm\|^{p-3} (\partial_t \|Rm\|^{2}) \eta^{2p} \, dV \]
\[= c \int (-R) \|Rm\|^{p-3} \left[\nabla^2 \text{Ric} \ast Rm + \text{Ric} \ast Rm \ast \text{Rm} + \text{Rm} \ast \text{Rm} \ast \hat{T} \right] \]
\[+ \text{Ric} \star \nabla^2 |T|^2 + \text{Rm} \star \nabla^2 \hat{T} + \frac{4}{3} |T|^2 ||\text{Rm}||^2 \right] \eta^2 p \, dV \]

\[\leq c \int (-R)||\text{Rm}||^{p-3} \left[\nabla^2 \text{Ric} \star \text{Rm} - \text{Ric} \star \nabla^2 R + \nabla^2 \hat{T} \star \text{Rm} \right] \eta^2 p \, dV + c K^2 A_2.\]

Using the identity, where \(p \geq 5, \)

\[\nabla ||\text{Rm}||^{p-3} = \frac{p-3}{2} \left(||\text{Rm}||^2 \right)^{\frac{p-3}{2}-1} \nabla ||\text{Rm}||^2 = ||\text{Rm}||^{p-5} \text{Rm} \star \nabla \text{Rm}\]

we obtain

\[c \int (-R)||\text{Rm}||^{p-3} \eta^2 p (\nabla^2 \text{Ric} \star \text{Rm}) \, dV \]

\[= c \int (-R)||\text{Rm}||^{p-3} \eta^2 p (\nabla \text{Ric} \star \nabla \text{Rm}) \, dV \]

\[+ c \int \left\{ \nabla \left[(-R)||\text{Rm}||^{p-3} \phi^2 p \right] \right\} \nabla \text{Ric} \star \text{Rm} \, dV \]

\[= c \int (-R)||\text{Rm}||^{p-3} \eta^2 p (\nabla \text{Ric} \star \nabla \text{Rm}) \, dV \]

\[+ c \int ||\text{Rm}||^{p-3} \eta^2 p (\nabla R \star \nabla \text{Ric} \star \text{Rm}) \, dV \]

\[+ c \int (-R) \eta^2 p \left(\nabla ||\text{Rm}||^{p-3} \star \nabla \text{Ric} \star \text{Rm} \right) \, dV \]

\[+ c \int (-R)||\text{Rm}||^{p-3} \eta^{2p-1} (\nabla \phi \star \nabla \text{Ric} \star \text{Rm}) \, dV \]

\[\leq c \int ||\text{Rm}||^{p-2} \eta^2 p ||\nabla \text{Ric}|| ||\nabla \text{Rm}|| \, dV \]

\[+ c \int ||\nabla \text{Ric}|| ||\nabla R|| ||\text{Rm}||^{p-2} \eta^2 p \, dV \]

\[+ c \int ||\text{Rm}||^{p-2} ||\nabla \text{Ric}|| ||\nabla \text{Rm}|| \eta^2 p \, dV \]

\[+ c \int ||\text{Rm}||^{p-1} \eta^{2p-1} ||\nabla \eta|| ||\nabla \text{Ric}|| \, dV \]

\[\leq c \int \left(||\nabla \text{Ric}|| ||\text{Rm}||^{\frac{p-1}{2}} \eta^p \right) \left(||\nabla \text{Rm}|| ||\text{Rm}||^{\frac{p-3}{2}} \eta^p \right) \, dV \]

\[+ c \int \left(||\nabla \text{Ric}|| ||\text{Rm}||^{\frac{p-1}{2}} \eta^p \right) \left(||\nabla \phi|| ||\text{Rm}||^{\frac{p-1}{2}} \eta^{p-1} \right) \, dV \]

\[\leq \frac{1}{50} B_1 + c K B_2 + c K A_4.\]

Similarly, we can prove

\[c \int (-R)||\text{Rm}||^{p-3} (-\text{Ric} \star \nabla^2 R) \eta^2 p \, dV \leq \frac{1}{50} B_1 + c K B_2 + c K A_4.\]

Using \(\nabla \hat{T} = \nabla T \star T \leq c ||\nabla T|| ||T|| \leq c K^{1/2} ||\nabla T|| \) yields

\[c \int (-R)||\text{Rm}||^{p-3} \eta^2 p (\nabla^2 \hat{T} \star \text{Rm}) \, dV \]
\[c \int (-R)||Rm||^{p-3}\eta^2 p (\nabla \widehat{T} \ast \nabla Rm) dV \]
\[+ c \int \{ \nabla [(-R)||Rm||^{p-3}\eta^2 p] \ast \nabla \widehat{T} \ast Rm \} dV \]
\[= c \int (-R)||Rm||^{p-3}\eta^2 p (\nabla \widehat{T} \ast \nabla Rm) dV \]
\[+ c \int ||Rm||^{p-3}\eta^2 p (\nabla R \ast \nabla \widehat{T} \ast Rm) dV \]
\[+ c \int (-R)\eta^2 p \ (\nabla ||Rm||^{p-3} \ast \nabla \widehat{T} \ast Rm) \ dV \]
\[+ c \int (-R)||Rm||^{p-3}\eta^{p-1} (\nabla \eta \ast \nabla \widehat{T} \ast Rm) \ dV \]
\[\leq c \int \left(||Rm||^{p-2}\eta^2 p ||\nabla Rm|| + ||Rm||^{p-1}\eta^{p-1} ||\nabla \eta|| \right) \left(\nabla T \right) ||K^{1/2}||Rm||^{p-1} \eta^p \ dV \]
\[+ \int \left(||\nabla \eta|| ||Rm||^{p-1} \eta^{p-1} \right) \left(||\nabla T||^{K^{1/2}} ||Rm||^{p-1} \eta^p \right) \ dV \]
\[\leq c c \int ||\nabla T||^2 ||Rm||^{p-1}\eta^2 p \ dV + \frac{c K}{\epsilon} B_2 + \frac{c K}{\epsilon} A_4. \]

According to (3.39) we get

\[c \int ||\nabla T||^2 ||Rm||^{p-1}\eta^2 p \ dV \]
\[\leq c \int (-\nabla ||T||^2) ||Rm||^{p-1}\eta^2 p \ dV + c K A_1 + c K^2 A_2 \]
\[\leq \frac{2}{50} B_1 + c K B_2 + c K A_4 + c K^2 A_2 + c K A_1 \]
\[+ \frac{d}{dt} \left(c \int R ||Rm||^{p-1}\eta^2 p \ dV \right) - c \int R \left(\partial_t ||Rm||^{p-1} \right) \eta^2 p \ dV \]
\[\leq \frac{2}{50} B_1 + c K B_2 + c K A_4 + c K^2 A_2 + c K A_1 \]
\[+ \frac{d}{dt} \left(\int c R ||Rm||^{p-1}\eta^2 p \ dV \right) + c \int (-R)||Rm||^{p-3} \left(\partial_t ||Rm||^2 \right) \eta^2 p \ dV. \]

Hence

\[c \int (-R)||Rm||^{p-3} \left(\partial_t ||Rm||^2 \right) \eta^2 p \ dV \]
\[\leq \frac{2}{50} B_1 + c K B_2 + c K A_4 + \frac{c K}{\epsilon} B_2 + \frac{c K}{\epsilon} A_4 \]
\[+ \epsilon \left[\frac{2}{50} B_1 + c K B_2 + c K A_4 + c K^2 A_2 + c K A_1 \right] \]
\[+ \frac{d}{dt} \left(\int c R ||Rm||^{p-1}\eta^2 p \ dV \right) \]
\[+ \epsilon c \int (-R) ||Rm||^{p-3} (|\partial_t||Rm|^2) \eta^2 p dV. \]

Choosing \(\epsilon = \frac{1}{2} \) yields
\[
\frac{c}{2} \int (-R) ||Rm||^{p-3} (|\partial_t||Rm|^2) \eta^2 p dV
\leq \frac{3}{50} B_1 + cK B_2 + cK A_4 + cK^2 A_2 + cK A_1 + \frac{d}{dt} \left(\int cR ||Rm||^{p-1} \eta^2 p dV \right)
\]
and
\[
c \int ||\nabla T||^2 ||Rm||^{p-1} \eta^2 p dV
\leq \frac{8}{50} B_1 + cK B_2 + cK^2 A_2 + cK A_1 + \frac{d}{dt} \left(\int 2cR ||Rm||^{p-1} \eta^2 p dV \right).
\]

Thus
\[
c \int (-R) ||Rm||^{p-3} (|\partial_t||Rm|^2) \eta^2 p dV
\leq \frac{3}{50} B_1 + cK B_2 + cK A_4 + cK^2 A_2 + cK A_1 + \frac{d}{dt} \left(\int cR ||Rm||^{p-1} \eta^2 p dV \right) \tag{3.40}
\]
and
\[
c \int ||\nabla T||^2 ||Rm||^{p-1} \eta^2 p dV
\leq \frac{8}{50} B_1 + cK B_2 + cK^2 A_2 + cK A_1 + \frac{d}{dt} \left(\int 2cR ||Rm||^{p-1} \eta^2 p dV \right) \tag{3.41}
\]
and
\[
c \int (-||T||^2) ||Rm||^{p-1} \eta^2 p dV
\leq \frac{5}{50} B_1 + cK B_2 + cK^2 A_2 + cK A_1 + \frac{d}{dt} \left(\int cR ||Rm||^{p-1} \eta^2 p dV \right). \tag{3.42}
\]

From (3.38) and (3.42) we arrive at

Lemma 3.4 One has
\[
A'_1 \leq 2B_1 + cK B_2 + cK A_4 + cK^2 A_2 + cK A_1 + \frac{d}{dt} \left(\int cR ||Rm||^{p-1} \eta^2 p dV \right). \tag{3.43}
\]

We next estimate \(B_1 \) and \(B_2 \). Actually, we shall see that \(B_1 \) can be estimated in terms of \(B_2 \). Hence the key step is to estimate \(B_2 \). For \(B_1 \), using
\[
||\nabla Ric||^2 = -\frac{1}{2} ||Ric||^2 + Ric \ast Ric \ast Rm - \frac{1}{3} (\nabla R) T - \frac{2}{3} R ||Ric||^2
+ 2(\langle Ric, \tilde{T} \rangle) + \frac{1}{3} (\langle Ric, \nabla^2 R \rangle) + Ric \ast \tilde{T} * Rm + Ric \ast \nabla^2 \tilde{T}.
\]
we obtain
\[
B_1 \leq \frac{1}{2K} \int ||Rm||^{p-1} \eta^2 p (\nabla - \partial_t) ||Ric||^2 dV + cK A_1.
\]
Consider the term Local curvature estimates for the Laplacian flow
Page 29 of 37

\[
\int ||\text{Rm}||^{p-1} \eta^{2p} \, dV
= \int (||\nabla \text{Ric}||^2 \ast \nabla (||\text{Rm}||^{p-1} \eta^{2p}))
+ \int \left(\int ||\text{Rm}||^{p-1} \eta^{2p} \, dV \right)
- \frac{d}{dt} \left[\int ||\text{Rm}||^{p-1} \eta^{2p} \, dV \right]
\]

From the estimates \(\nabla ||\text{Ric}||^2 \lesssim ||\text{Ric}|| ||\nabla \text{Ric}||, \nabla ||\text{Rm}||^{p-1} \lesssim ||\text{Rm}||^{p-2} ||\nabla \text{Rm}||, \) and \(\partial_t ||\text{Rm}||^{p-1} = \frac{p-1}{p} ||\text{Rm}||^{p-3} \partial_t ||\text{Rm}||^2, \) we have

\[
\int ||\text{Rm}||^{p-1} \eta^{2p} (\Delta - \partial_t) ||\text{Ric}||^2 \, dV
\]

\[
\leq cK \int ||\nabla \text{Ric}|| ||\nabla \text{Rm}|| ||\text{Rm}||^{p-2} \eta^{2p} \, dV + cK \int ||\nabla \text{Ric}|| ||\nabla \eta|| ||\text{Rm}||^{p-1} \eta^{2p} \, dV
\]

\[
+ c \int ||\text{Rm}||^{p-3} (\partial_t ||\text{Rm}||^2) \eta^{2p} ||\text{Ric}||^2 \, dV + cK^2 A_1
\]

Thus

\[
\int ||\text{Rm}||^{p-1} \eta^{2p} \, dV \leq \frac{2}{50} K B_1 + cK^2 B_2 + cK^2 A_4 + cK^2 A_1
+ c \int ||\nabla \text{Ric}||^2 ||\text{Rm}||^{p-3} \eta^{2p} (\partial_t ||\text{Rm}||^2) \, dV
- \frac{d}{dt} \left[\int ||\text{Rm}||^{p-1} ||\text{Ric}||^2 \eta^{2p} \, dV \right].
\]

Consider the term

\[
c \int ||\nabla \text{Ric}||^2 ||\text{Rm}||^{p-3} \eta^{2p} (\partial_t ||\text{Rm}||^2) \, dV = c \int ||\nabla \text{Ric}||^2 ||\text{Rm}||^{p-3} \eta^{2p}
\left[\nabla^2 \text{Ric} \ast \text{Rm} + \text{Ric} \ast \nabla^2 \text{Rm} + \text{Rm} \ast \text{Rm} \ast \nabla^2 \text{T} + \text{Ric} \ast \nabla^2 ||\text{T}||^2 + \text{Rm} \ast \nabla^2 \text{T} \right]
\]
\[+ \frac{4}{3} ||T||^2 ||Rm||^2 \] \, dV \leq c \int ||Ric||^2 ||Rm||^{p-3} \eta^{2p} \left[\nabla^2 Ric \ast Rm - \nabla^2 R \ast Ric + \nabla^2 \tilde{T} \ast Rm \right] \, dV + cK^2 A_2. \]

The three terms in the bracket can be estimated as follows. Firstly

\[c \int ||Ric||^2 ||Rm||^{p-3} \eta^{2p} (\nabla^2 Ric \ast Rm) \, dV = c \int ||Ric||^2 ||Rm||^{p-3} \eta^{2p} (\nabla Ric \ast \nabla Rm) \, dV + c \int \{ \nabla \left[||Ric||^2 ||Rm||^{p-3} \eta^{2p} \right] \ast \nabla Ric \ast Rm \} \, dV \]

\[= c \int ||Ric||^2 ||Rm||^{p-3} \eta^{2p} (\nabla Ric \ast \nabla Rm) \, dV + c \int ||Rm||^{p-3} \eta^{2p} (\nabla ||Ric||^2 \ast \nabla Ric \ast Rm) \, dV + c \int ||Ric||^2 ||Rm||^{p-3} \eta^{2p-1} (\nabla \eta \ast \nabla Ric \ast Rm) \, dV \]

\[\leq cK \int ||Rm||^{p-2} \eta^{2p} ||\nabla Ric|| ||\nabla Rm|| \, dV + cK \int ||Rm||^{p-1} \eta^{2p-1} ||\nabla Ric|| ||\nabla \eta|| \, dV \]

\[\leq cK \left(\epsilon B_1 + \frac{K}{\epsilon} B_2 \right) + cK \left(\epsilon B_1 + \frac{K}{\epsilon} A_4 \right) \leq \frac{1}{50} KB_1 + cK^2 B_2 + cK^2 A_4. \]

The same estimate holds for

\[c \int ||Ric||^2 ||Rm||^{p-3} \eta^{2p} (-\nabla^2 R \ast Ric) \, dV. \]

Finally,

\[c \int ||Ric||^2 ||Rm||^{p-3} \eta^{2p} (\nabla^2 \tilde{T} \ast Rm) \, dV = c \int ||Ric||^2 ||Rm||^{p-3} \eta^{2p} \]

\[(\nabla \tilde{T} \ast \nabla Rm) \, dV + c \int \{ \nabla \left[||Ric||^2 ||Rm||^{p-3} \eta^{2p} \right] \ast \nabla \tilde{T} \ast Rm \} \, dV \]

\[\leq c \int ||Ric||^2 ||Rm||^{p-3} \eta^{2p} (K^{1/2} ||\nabla T|| ||\nabla Rm||) \, dV + c \int (\nabla ||Ric||^2) ||Rm||^{p-3} \eta^{2p} ||\nabla \tilde{T}|| ||Rm|| \, dV \]

\[+ c \int ||Rm||^{p-2} (\nabla ||Rm||^{p-3}) \eta^{2p} ||\nabla \tilde{T}|| ||Rm|| \, dV + c \int ||Ric||^2 ||Rm||^{p-3} \eta^{2p-1} ||\nabla \eta|| ||\nabla \tilde{T}|| ||Rm|| \, dV \]

\[\leq cK \int ||Rm||^{p-2} \eta^{2p} (K^{1/2} ||\nabla T|| ||\nabla Rm||) \, dV + cK \int ||Rm||^{p-1} \eta^{2p-1} (K^{1/2} ||\nabla \eta|| ||\nabla T||) \, dV \]
\[
\leq K \left[cK B_2 + \frac{cK}{\epsilon} A_4 + c \epsilon \int \|\nabla T\|^2 \|\text{Rm}\|^{p-1} \eta^2 \rho \ dV \right]
\]
\[
\leq \frac{8}{50} K B_1 + c K^2 B_2 + c K^2 A_4 + c K^2 A_2 + c K^2 A_1 + \frac{d}{dt} \left[cK \int R \|\text{Rm}\|^{p-1} \eta^2 \rho \ dV \right]
\]

Therefore
\[
c \int \|\text{Ric}\|^{p-3} \eta^2 \rho \left(\partial_t \|\text{Rm}\| \right) \ dV \leq \frac{10}{50} K B_1 + c K^2 B_2 + c K^2 A_4 + c K^3 A_2
\]
\[
+ c K^2 A_1 + c K \frac{d}{dt} \left[\int R \|\text{Rm}\|^{p-1} \eta^2 \rho \ dV \right]
\]

and
\[
\frac{1}{2K} \int \|\text{Rm}\|^{p-1} \eta^2 \rho \left(\mathbf{A} - \partial_t \right) \|\text{Ric}\|^2 \ dV \leq \frac{6}{50} B_1 + c K B_2 + c K A_4 + c K^2 A_2 + c K A_1
\]
\[
- \frac{1}{K} \frac{d}{dt} \left[\int \|\text{Rm}\|^{p-1} \|\text{Ric}\|^2 \eta^2 \rho \ dV \right] + c \frac{d}{dt} \left[\int R \|\text{Rm}\|^{p-1} \eta^2 \rho \ dV \right]
\]
\[
\leq \frac{6}{50} B_1 + c K B_2 + c K A_4 + c K^2 A_2 + c K A_1
\]
\[
- \frac{d}{dt} \left[\frac{1}{K} \int \|\text{Rm}\|^{p-1} \|\text{Ric}\|^2 \eta^2 \rho \ dV + c \int (-R) \|\text{Rm}\|^{p-1} \eta^2 \rho \ dV \right].
\]

In the following, we estimate the left four terms in (3.44). We start from terms involving the scalar curvature.

\[
\frac{1}{3K} \int (-R) \|\text{Rm}\|^{p-1} \eta^2 \rho \Delta R \ dV = - \frac{1}{3K} \int \nabla R \cdot \nabla (-R) \|\text{Rm}\|^{p-1} \eta^2 \rho \ dV
\]
\[
= - \frac{1}{3K} \int \nabla R \cdot \left[- \nabla R \|\text{Rm}\|^{p-1} \eta^2 \rho + (-R) \nabla \|\text{Rm}\|^{p-1} \eta^2 \rho + 2 p (-R) \|\text{Rm}\|^{p-1} \eta^{2p-1} \nabla \eta \right] \ dV \leq \frac{1}{3K} \int \|\nabla R\|^2 \|\text{Rm}\|^{p-1} \eta^2 \rho \ dV
\]
\[
+ \frac{c}{K} \int (-R) \|\text{Rm}\|^{p-2} \|\nabla R\| \|\nabla \text{Rm}\| \eta^2 \rho \ dV
\]
\[
+ \frac{c}{K} \int (-R) \|\text{Rm}\|^{p-1} \eta^{2p-1} \|\nabla R\| \|\nabla \eta\| \ dV
\]
\[
\leq \frac{1}{3K} \int \|\nabla R\|^2 \|\text{Rm}\|^{p-1} \eta^2 \rho \ dV
\]
\[
+ \frac{1}{3K} \int \|\nabla R\|^2 \|\text{Rm}\|^{p-1} \eta^2 \rho \ dV + c K B_2
\]
\[
+ \frac{1}{3K} \int \|\nabla R\|^2 \|\text{Rm}\|^{p-1} \eta^2 \rho \ dV + c K A_4
\]
\[
\leq \frac{1}{K} \int \|\nabla R\|^2 \|\text{Rm}\|^{p-1} \eta^2 \rho \ dV + c K B_2 + c K A_4.
\]

The another term involving the scalar curvature can be estimated by

\[
\frac{1}{3K} \int \langle \text{Ric}, \nabla^2 R \rangle \|\text{Rm}\|^{p-1} \eta^2 \rho \ dV = - \frac{1}{3K} \int \nabla^j R \nabla^i \left[R_{ij} \|\text{Rm}\|^{p-1} \eta^2 \rho \right] \ dV
\]
\[
= - \frac{1}{3K} \int \nabla^j R \left[\frac{1}{2} \nabla^i R \|\text{Rm}\|^{p-1} \eta^2 \rho + R_{ij} \nabla^i \|\text{Rm}\|^{p-1} \eta^2 \rho \right]
\]
+ R_{ij} ||Rm||^{p-1}2p\eta^{2p-1}\nabla_i \eta \right] dV \leq -\frac{1}{6K} \int ||\nabla R||^2 ||Rm||^{p-1}\eta^{2p} dV \\
+ \frac{c}{K} \int ||Ric|| ||\nabla R|| ||Rm||^{p-2} ||\nabla Rm|| \eta^{2p} dV \\
+ \frac{c}{K} \int ||\nabla R|| \int ||Ric|| ||Rm||^{p-1}\eta^{2p-1} ||\nabla \eta|| dV \\
\leq -\frac{1}{6K} \int ||\nabla R||^2 ||Rm||^{p-1}\eta^{2p} dV + \frac{1}{18K} \int ||\nabla R||^2 ||Rm||^{p-1}\eta^{2p} dV + cKB_2 \\
+ \frac{1}{18K} \int ||\nabla R||^2 ||Rm||^{p-1}\eta^{2p} dV + cKA_4 \leq cKB_2 + cKA_4. \quad (3.49)

Using (3.41) we obtain

\[
\frac{2}{K} \int \langle \langle Ric, \Delta \hat{T} \rangle \rangle ||Rm||^{p-1}\eta^{2p} dV = \frac{1}{K} \int (Ric \ast \Delta \hat{T}) ||Rm||^{p-1}\eta^{2p} dV \\
= \frac{1}{K} \int (\nabla Ric \ast \nabla \hat{T}) ||Rm||^{p-1}\eta^{2p} dV + \frac{1}{K} \int Ric \ast \nabla \hat{T} \ast \nabla (||Rm||^{p-1}\eta^{2p}) dV \\
\leq \frac{c}{K} \int ||\nabla Ric|| ||\nabla \hat{T}|| ||Rm||^{p-1}\eta^{2p} dV + \frac{c}{K} \int ||\nabla Ric|| ||\nabla \hat{T}|| ||Rm||^{p-2} ||\nabla Rm|| \eta^{2p} dV \\
+ \frac{c}{K} \int ||\nabla Ric|| ||\nabla \hat{T}|| ||Rm||^{p-1}\eta^{2p-1} ||\nabla \eta|| dV \\
\leq \frac{1}{50}B_1 + c \int ||\nabla T||^2 ||Rm||^{p-1}\eta^{2p} dV + cKB_2 \\
+ c \int ||\nabla T||^2 ||Rm||^{p-1}\eta^{2p} dV + cKA_4 + c \int ||\nabla T||^2 ||Rm||^{p-1}\eta^{2p} dV \\
\leq \frac{1}{50}B_1 + cKB_2 + cKA_4 + c \int ||\nabla T||^2 ||Rm||^{p-1}\eta^{2p} dV \\
\leq \frac{9}{50}B_1 + cKB_2 + cKA_4 + cK^2A_2 + cKA_1 + \frac{d}{dt} \left[\int cR ||Rm||^{p-1}\eta^{2p} dV \right]. \quad (3.50)

Similarly, we can prove

\[
\frac{1}{K} \int (Ric \ast \nabla^2 \hat{T}) ||Rm||^{p-1}\eta^{2p} dV = \frac{1}{K} \int (\nabla Ric \ast \nabla \hat{T}) ||Rm||^{p-1}\eta^{2p} dV \\
+ \frac{1}{K} \int Ric \ast \nabla \hat{T} \ast \nabla (||Rm||^{p-1}\eta^{2p}) dV \leq \frac{1}{K} \int (\nabla Ric \ast \nabla \hat{T}) ||Rm||^{p-1}\eta^{2p} dV \\
+ \frac{c}{K} \int ||\nabla Ric|| ||\nabla \hat{T}|| ||Rm||^{p-2} ||\nabla Rm|| \eta^{2p} dV \\
+ \frac{c}{K} \int ||\nabla Ric|| ||\nabla \hat{T}|| ||Rm||^{p-1}\eta^{2p-1} ||\nabla \eta|| dV \\
\leq \frac{c}{K} \int ||\nabla Ric|| ||\nabla \hat{T}|| ||Rm||^{p-1}\eta^{2p} dV + \frac{c}{K} \int ||\nabla Ric|| ||\nabla \hat{T}|| ||Rm||^{p-2} ||\nabla Rm|| \eta^{2p} dV \\
+ \frac{c}{K} \int ||\nabla Ric|| ||\nabla \hat{T}|| ||Rm||^{p-1}\eta^{2p-1} ||\nabla \eta|| dV \\
\leq \frac{9}{50}B_1 + cKB_2 + cKA_4 + cK^2A_2 + cKA_1 + \frac{d}{dt} \left[\int cR ||Rm||^{p-1}\eta^{2p} dV \right]. \quad (3.51)
\]
Plugging (3.45) and (3.48)–(3.51) into (3.44), and using (3.41) and \(|| \nabla R ||^2 \leq c K || \nabla T ||^2 \), we obtain

\[
B_1 \leq \frac{6}{50} B_1 + c K B_2 + c K A_4 + c K^2 A_2 + c K A_1 \\
- \frac{d}{dt} \left[\frac{1}{K} \int || \text{Rm} ||^{p-1} || \text{Ric} ||^2 \eta^{2p} dV + c \int (-R) || \text{Rm} ||^{p-1} \eta^{2p} dV \right] \\
+ \frac{1}{K} \int || \nabla R ||^2 || \text{Rm} ||^{p-1} \eta^{2p} dV + \frac{18}{50} B_1 - \frac{d}{dt} \left[c \int (-R) || \text{Rm} ||^{p-1} \eta^{2p} dV \right]
\]

\[
\leq \frac{32}{50} B_1 + c K B_2 + c K A_4 + c K^2 A_2 + c K A_1 \\
- \frac{d}{dt} \left[\frac{1}{K} \int || \text{Rm} ||^{p-1} || \text{Ric} ||^2 \eta^{2p} dV + c \int (-R) || \text{Rm} ||^{p-1} \eta^{2p} dV \right].
\]

Thus

\[
B_1 \leq c K B_2 + c K A_4 + c K^2 A_2 + c K A_1 \\
- \frac{d}{dt} \left[\frac{1}{K} \int || \text{Rm} ||^{p-1} || \text{Ric} ||^2 \eta^{2p} dV + c \int (-R) || \text{Rm} ||^{p-1} \eta^{2p} dV \right].
\] (3.52)

From (3.43) and (3.52), we can conclude that

Lemma 3.5 One has

\[
A'_1 \leq c K B_2 + c K A_4 + c K^2 A_2 + c K A_1 \\
- \frac{d}{dt} \left[\frac{c}{K} \int || \text{Rm} ||^{p-1} || \text{Ric} ||^2 \eta^{2p} dV + c \int (-R) || \text{Rm} ||^{p-1} \eta^{2p} dV \right].
\] (3.53)

Observe that two terms in the bracket are both nonnegative, since \(R = -|| T ||^2 \leq 0 \).

Finally, we estimate the term \(B_2 \). Using the evolution inequality

\[
|| \nabla \text{Rm} ||^2 \leq -\frac{1}{2} \Box || \text{Rm} ||^2 + c || \text{Rm} ||^3 + c || \nabla^2 T || \cdot || \text{Rm} ||^{3/2} + c || \text{Rm} || || \nabla T ||^2
\]

we obtain

\[
B_2 = \int || \nabla \text{Rm} ||^2 || \text{Rm} ||^{p-3} \eta^{2p} dV \leq \int \left[-\frac{1}{2} \Box || \text{Rm} ||^2 + c || \text{Rm} ||^3 \\
+ c || \nabla^2 T || \cdot || \text{Rm} ||^{3/2} + c || \text{Rm} || || \nabla T ||^2 \right] || \text{Rm} ||^{p-3} \eta^{2p} dV
\]

\[
\leq -\frac{1}{2} \int (\Box || \text{Rm} ||^2) \cdot || \text{Rm} ||^{p-3} \eta^{2p} dV + c A_1 \\
+ c \int || \nabla^2 T || \cdot || \text{Rm} ||^{p-3/2} \eta^{2p} dV + c \int || \nabla^2 T ||^2 \cdot || \text{Rm} ||^{p-2} \eta^{2p} dV.
\] (3.54)

For the first integral one has

\[
-\frac{1}{2} \int (\Box || \text{Rm} ||^2) \cdot || \text{Rm} ||^{p-3} \eta^{2p} dV = \frac{1}{2} \int (\Box || \text{Rm} ||^2) \cdot || \text{Rm} ||^{p-3} \eta^{2p} dV
\]

\[
-\frac{1}{2} \int (\partial_t || \text{Rm} ||^2) \cdot || \text{Rm} ||^{p-3} \eta^{2p} dV = -\frac{1}{2} \int (\partial_t || \text{Rm} ||^2) \cdot || \text{Rm} ||^{p-3} \eta^{2p} dV
\]

\[
-\frac{1}{2} \int \nabla || \text{Rm} ||^2 \left[(\nabla || \text{Rm} ||^{p-3}) \eta^{2p} + || \text{Rm} ||^{p-3} (\nabla \eta^{2p}) \right] dV
\]
In particular, the inequality (3.58) yields
\[
\leq \frac{1}{50} B_2 + c A_4 - \frac{1}{2} \int (\partial_t ||\text{Rm}||^2) ||\text{Rm}||^{-3} \eta^2 p dV.
\]
Here we used the assumption that \(p \geq 5 \). On the other hand,
\[
-\frac{1}{2} \int (\partial_t ||\text{Rm}||^2) ||\text{Rm}||^{-3} \eta^2 p dV = -\frac{1}{2} \frac{d}{dt} \left[\int ||\text{Rm}||^{-1} \eta^2 p dV \right] + \frac{1}{2} \int ||\text{Rm}||^2 (\partial_t ||\text{Rm}||^{-3}) \eta^2 p dV + \frac{1}{2} \int ||\text{Rm}||^{-1} \eta^2 (\partial_t dV)
\]
\[
\leq \frac{p - 3}{4} \int ||\text{Rm}||^{-3} (\partial_t ||\text{Rm}||^2) \eta^2 p dV + c A_1 - \frac{1}{p - 1} \frac{d}{dt} \left[\int ||\text{Rm}||^{-1} \eta^2 p dV \right].
\]
so that
\[
-\frac{1}{2} \int (\partial_t ||\text{Rm}||^2) ||\text{Rm}||^{-3} \eta^2 p dV \leq c A_1 - \frac{1}{p - 1} \frac{d}{dt} \left[\int ||\text{Rm}||^{-1} \eta^2 p dV \right].
\]

Therefore
\[
-\frac{1}{2} \int (\Box ||\text{Rm}||^2) ||\text{Rm}||^{-3} \eta^2 p dV \leq \frac{1}{50} B_2 + c A_4 + c A_1 - \frac{1}{p - 1} \frac{d}{dt} \left[\int ||\text{Rm}||^{-1} \eta^2 p dV \right]. \tag{3.55}
\]

To estimate the remainder two integrals, we recall from (2.35) that
\[
\nabla T = \text{Rm} \ast \varphi + T \ast T \ast \varphi \tag{3.56}
\]
and from (2.14) that
\[
\nabla \varphi = T \ast \psi. \tag{3.57}
\]

From (3.56) we get
\[
||\nabla T|| \leq c ||\text{Rm}|| + c ||T||^2 \leq c ||\text{Rm}||. \tag{3.58}
\]

In particular, the inequality (3.58) yields
\[
\int ||\nabla T||^{2} ||\text{Rm}||^{-2} \eta^2 p dV \leq c \int ||\text{Rm}||^p \eta^2 p dV \leq c A_1. \tag{3.59}
\]

Taking the derivative of (3.56) and using (3.57) we obtain
\[
\nabla^2 T = \nabla \text{Rm} \ast \varphi + \text{Rm} \ast T \ast \psi + \nabla T \ast T \ast \psi + \nabla T \ast T \ast \nabla \varphi. \tag{3.60}
\]

The particular case \(||\nabla^2 T|| \leq c ||\nabla \text{Rm}|| + c ||\text{Rm}|| ||T|| + c ||\nabla T|| ||T|| + c ||T||^3 \) leads to
\[
c \int ||\nabla^2 T|| ||\text{Rm}||^{-3/2} \eta^2 p dV \leq c \int \left[||\nabla \text{Rm}|| + ||\text{Rm}|| ||T|| + ||\nabla T|| ||T|| + ||T||^3 \right] ||\text{Rm}||^{-3/2} \eta^2 p dV
\[
+ c \int ||\text{Rm}||^p \eta^2 p dV \leq \frac{1}{50} B_2 + c A_1. \tag{3.61}
\]
Plugging (3.55), (3.59), and (3.61) into (3.54) we arrive at
\[B_2 \leq cA_4 + cA_1 - \frac{d}{dt} \left[\frac{1}{p-1} \int ||Rm||^{p-1} \eta^{2p} dV \right]. \] (3.62)
Together with (3.53) and (3.62) we finally obtain
\[(A_1 + cKA_2)' \leq cK(A_1 + cKA_2) + cKA_4 \]
\[- \frac{d}{dt} \left[\frac{c}{K} \int ||Rm||^{p-1} ||\text{Ric}||^2 \eta^{2p} dV + c \int (-R)||Rm||^{p-1} \eta^{2p} dV \right]. \] (3.63)
Equivalently,

Lemma 3.6 If \(||\text{Ric}|| \leq K \) and \(p \geq 5 \), one has
\[\frac{d}{dt} \left[A_1 + cKA_2 + \frac{c}{K} \int ||Rm||^{p-1} ||\text{Ric}||^2 \eta^{2p} dV + c \int (-R)||Rm||^{p-1} \eta^{2p} dV \right] \]
\[\leq cK(A_1 + cKA_2) + cKA_4. \] (3.64)

Acknowledgements The main result was carried out during the Young Geometric Analysts Forum 2018, 29th January–2th February, in Tsinghua Sanya International Mathematics Forum. The author, together with other six friends, thanks Yuhui Wu who personally provided us 14, the dimension of \(G_2 \), very fresh coconuts during the forum. The author thanks Joel Fine, Brett Kotschwar, Chengjian Yao, Yong Wei, and Anton Thalmaier for useful discussion on the Laplacian flows and the earlier version of this paper. He also thanks Jason Lotay for his interested in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bryant, R.L.: Some remarks on \(G_2 \)-structures. In: Proceedings of Gökova Geometry-Topology Conference (GGT) 2005, pp. 75–09, Gökova (2006). MR2282011
2. Bryant, R.L., Xu, F.: Laplacian flow for closed \(G_2 \)-structures: short time behavior. arXiv: 1101.2004
3. Cao, Xiaodong: Curvature pinching estimate and singularities of the Ricci flow. Commun. Anal. Geom. 19(5), 975–990 (2011). MR2886714
4. Cheng, Liang, Zhu, Anqiang: On the extension of the harmonic Ricci flow. Geom. Dedicata 164, 179–185 (2013). MR3054623
5. Chow, B., Lu, P., Ni, L.: Hamilton’s Ricci flow, Graduate Studies in Mathematics, 77, American Mathematical Society, Providence, RI; Science Press Beijing, New York, 2006. xxxvi+608 pp. ISBN: 978-0-8218-4231-7; 0-8218-4231-5. MR2274812
6. Cleyton, R., Ivanov, S.: On the geometry of closed \(G_2 \)-structure. Commun. Math. Phys. 270(1), 53–67 (2007). MR2276440
7. Donaldson, S.: Adiabatic Limits of Co-associative Kovalev–Lefschetz Fibrations, Algebra, Geometry, and Physics in the Tewnty-first century, Progress in Mathematics, vol. 324, pp. 1–29. Springer, Cham (2017), MR2276440
8. Donaldson, S.: Boundary Value Problems in Dimensions 7, 4 and 3 Related to Exceptional Holonomy, Geometry and Physics, pp. 115–134. Oxford University Press, Oxford (2018). MR3932259
9. Donaldson, S.: An elliptic boundary value problem for \(G_2 \) structures. Ann. Inst. Fourier (Grenoble) 68(7), 2783–2809 (2018). MR3959094
10. Donaldson, S.: Remarks on G_2-manifolds with Boundary, Surveys in Differential Geometry 2017, Celebrating the 50th anniversary of the Journal of Differential Geometry, Surveys in Differential Geometry, vol. 22, pp. 103–124. International Press, Somerville, MA (2018). MR3838115
11. Enders, J., Müller, R., Topping, P.M.: On type-I singularities in Ricci flow. Commun. Anal. Geom. 19(5), 905–922 (2011). MR2886712
12. Fernández, M., Gray, A.: Riemannian manifolds with structure group G_2. Ann. Mat. Pura Appl. 4(132), 19–45 (1982). MR0696037
13. Fernández, M., Fino, A., Manero, V.: Laplacian flow of closed G_2-structures inducing nilsolitons. J. Geom. Anal. 26(3), 1808–1837 (2016)
14. Fine, J., Yao, C.: Hypersymplectic 4-manifolds, the G_2-Laplacian flow and extension assuming bounded scalar curvature. Duke Math. J. 167(18), 3533–3589 (2018). MR3881202
15. Grigorian, S.: Short-time behavior of a modified Laplacian coflow of G_2-structures. Adv. Math. 248, 378–415 (2013). MR3107516
16. Grigorian, S.: Modified Laplacian coflow of G_2-structures on manifolds with symmetry. Differ. Geom. Appl. 46, 39–78 (2016). MR3475531
17. Hamilton, R.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982). MR0664497
18. Hitchin, N.: The geometry of three-forms in six dimensions. J. Differ. Geom. 55(3), 547–576 (2000). MR1863733
19. Huang, H., Wang, Y., Yao, C.: Cohomogeneity-one G_2-Laplacian flow on 7-torus. J. Lond. Math. Soc. 98(2), 349–368 (2018). MR3873112
20. Karigiannis, S.: Deformations of G_2 and Spin(7)-structures on manifolds, Ph. D. Thesis, Harvard University (2003)
21. Karigiannis, S.: Deformations of G_2 and Spin(7)-structures on manifolds. Can. J. Math. 57(5), 1012–1055 (2005). MR2164593
22. Karigiannis, S.: Some Notes on G_2 and Spin(7) Geometry, Recent Advances in Geometric Analysis, Advanced Lectures in Mathematics, vol. 11, pp. 129–146. International Press, Somerville (2010). MR2648941
23. Karigiannis, S.: Flows of G_2 structures, I. Q. J. Math. 60(4), 487–522 (2009). MR2559631
24. Karigiannis, S., McKay, B., Tsui, M.-P.: Soliton solutions for the Laplacian coflow of some G_2-structures with symmetry. Differ. Geom. Appl. 30(4), 318–333 (2012). MR2926272
25. Kotschwar, B., Munteanu, O., Wang, J.: A local curvature estimate for the Ricci flow. J. Funct. Anal. 271(9), 2604–2630 (2016). MR3545226
26. Li, Y.: Long time existence of Ricci-harmonic flow. Front. Math. China 11(5), 1313–1334 (2016). MR3547931
27. Li, Y.: Long time existence and bounded scalar curvature in the Ricci-harmonic flow. J. Differ. Equ. 265, 69–97 (2018). MR3782539
28. Li, Y.: Local curvature estimates for Ricci-harmonic flow. arXiv: 1810.09760v1 (submitted)
29. Lin, C.: Laplacian solitons and G_2-geometry. J. Geom. Phys. 64, 111–119 (2013). MR3004019
30. List, B.: Evolution of an extended Ricci flow system, Ph. D. thesis, AEI Potsdam (2005)
31. List, B.: Evolution of an extended Ricci flow system. Commun. Anal. Geom. 16(5), 1007–1048 (2008). MR2471366
32. Lotay, J.D., Wei, Y.: Laplacian flow for closed G_2-structures: Shi-type estimates, uniqueness and compactness. Geom. Funct. Anal. 27(1), 165–233 (2017). MR3613456
33. Lotay, J.D., Wei, Y.: Stability of torsion-free G_2-structures along the Laplacian flow. J. Differ. Geom. 111(3), 495–526 (2019). MR3934598
34. Lotay, J.D., Wei, Y.: Laplacian flow for closed G_2-structures: real analyticity. Commun. Anal. Geom. 27(1), 73–109 (2019). MR3951021
35. Müller, R.: The Ricci flow coupled with harmonic map flow, Ph. D. thesis, ETH Zürich. (2009). https://doi.org/10.3929/ethz-a-005842361
36. Müller, R.: Ricci flow coupled with harmonic map flow. Ann. Sci. Éc. Norm. Supér. 45(1), 101–142 (2012). MR2961788
37. Sesum, N.: Curvature tensor under the Ricci flow. Am. J. Math. 127(6), 1315–1324 (2005). MR2183526
38. Weiss, H., Witt, F.: A heat flow for special metrics. Adv. Math. 231(6), 3288–3322 (2012a). MR2980500
39. Weiss, H., Witt, F.: Energy functionals and soliton equations for G_2-forms. Ann. Glob. Anal. Geom. 42(4), 585–610 (2012b). MR2995206
40. Zhang, Z.: Scalar curvature behavior for finite-time singularity of Kähler–Ricci flow. Michigan Math. J., 59(2), 419–433 (2010). MR2677630

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.