Probiotic research in neonates with congenital gastrointestinal surgical conditions – Now is the time

Shripada C. Rao1,2,* and Sanjay K. Patole2,3
1 Neonatal Intensive Care Unit, Perth Children’s Hospital, Hospital Avenue, Nedlands, WA 6009, Australia.
2 Centre for Neonatal Research and Education, University of Western Australia, Perth, WA, Australia.
3 Neonatal Directorate, King Edward Memorial Hospital for Women, Perth, WA, Australia.

The major congenital gastrointestinal surgical conditions (CGISC) include oesophageal atresia, gastrochisis, exomphalos, malrotation and volvulus, duodenal atresia, intestinal atresia, meconium ileus, hypoplastic colon, meconium peritonitis, intestinal stenosis, congenital short bowel syndrome, Hirschspring disease (HD), anorectal malformations and others. In addition to surgical repair, strategies for managing such conditions include early commencement of enteral feeds, standardization of feeding advancement, strict hand hygiene and aseptic precautions for indwelling catheters (Graham, 2010; Lauriti et al., 2014; Savoie et al., 2016; Dama et al., 2017). Despite such best practices and advances in surgical techniques, morbidities including feed intolerance, healthcare-associated infections, cholestatic jaundice, growth failure and neurodevelopmental disabilities continue to impose significant health burden on this cohort (Willis et al., 2010; Bishay et al., 2012; Wang et al., 2014; Dwyer et al., 2016; Hong et al., 2018). Additional strategies are hence required to improve their outcomes.

Gut dysbiosis in infants with CGISC

Neonatal gut microbiota develops rapidly after birth and achieves an adult-like composition and stability by 2–3 years of age (Arrieta et al., 2014). The evolution of gut microbiota is affected in infants with CGISC admitted in intensive care units (ICUs). These infants receive parenteral nutrition (PN), get exposed to multiple courses of antibiotics, do not receive early enteral feeding and optimal maternal skin to skin contact. Decontamination of the skin for surgery, exposure to gastric acid suppressants, breakdown of natural barriers due to invasive procedures and indwelling tubes and catheters, colonization of the ICU room surfaces and hands of the healthcare providers also contribute to the risk of gut dysbiosis in infants with CGISC (Donnell et al., 2002; van Saene et al., 2003; Hussey et al., 2011; Fouhy et al., 2012; Ralls et al., 2016; Rogers et al., 2016; Kitsios et al., 2017).

(i) PN and gut dysbiosis: The role of PN in gut dysbiosis deserves attention as it is often the main/only source of nutrition in infants with CGISC. Lavallee et al. (2017) randomized neonatal piglets to receive total parenteral nutrition (TPN) or sow feeds (SF) for 14 days. Ileal segments and mucosal scrapings were used to assess the microbiota composition by 16S rRNA gene sequencing. Significant dysbiosis was noted in the TPN group, especially in those which received soy-based lipids. In another study, using a mouse model, Ralls et al. (2016) reported permeation of TPN-derived nutrients into the gut lumen, where they were preferentially utilized by Enterobacteriaceae, which then flourished.

(ii) Antibiotics and gut dysbiosis: Fouhy et al. (2012) compared the gut microbiota of nine newborn infants treated with parenteral ampicillin and gentamicin, with that of nine matched healthy infants. Gut microbiota of the antibiotic-treated infants showed significantly higher proportions of Proteobacteria and lower proportions of Actinobacteria and the associated genus Bifidobacterium, as well as the genus Lactobacillus compared with the untreated controls 4 weeks after the cessation of treatment. Even by week 8, Proteobacteria levels remained significantly higher in the treated infants (Fouhy et al., 2012). Increased abundance of Proteobacteria is a concern because it is considered as a potential diagnostic signature of dysbiosis and risk of disease (Shin et al., 2015).

(iii) The ICU ecosystem and gut dysbiosis: In a study in adult ICU patients, McDonald et al. (2016) showed...
evidence of extreme dysbiosis. The phylogenetic diversity at discharge was significantly lower than at admission. Faecal samples tended to have a lower relative abundance of Firmicutes and Bacteroidetes and an increased relative abundance of Proteobacteria and well-recognized pathogens such as Enterobacter and Staphylococcus (McDonald et al., 2016). In a study in paediatric ICUs, Rogers et al. (2016) reported taxonomic alterations in the gut microbiota. These included enrichments of gut pathogens such as Enterococcus and Staphylococcus at multiple body sites and depletion of commensals such as Faecalibacterium and Ruminococcus from stool samples. Alpha and beta diversity were unstable over time (Rogers et al., 2016).

Studies have shown an association between gut dysbiosis and morbidities such as hospital-acquired infections in neonates with surgical conditions (Donnell et al., 2002; van Saene et al., 2003) and Hirschsprung-associated enterocolitis (HAEC) (Li et al., 2016).

Probiotics for CGISC

Given that gut dysbiosis occurs and is associated with morbidities in infants with CGISC, optimization of gut microbiota by probiotics is a potentially beneficial strategy to improve their outcomes.

Probiotics are defined as live microorganisms that when administered in adequate amounts confer health benefits on people with specific illnesses (Hill et al., 2014). Probiotics inhibit gut colonization with pathogenic bacteria (Sassone-Corsi and Raffatellu, 2015), enhance gut barrier function (Bron et al., 2017), facilitate colonization with healthy commensals (Garrido et al., 2012), protect from enteropathogenic infection through production of acetate (Fukuda et al., 2011), reduce antimicrobial resistance (Taft et al., 2018), enhance innate immunity (Giorgetti et al., 2015) and increase maturation of the enteric nervous system and promote gut peristalsis (Hyland and Cryan, 2016; De Vadder et al., 2018). Through these mechanisms, probiotics have the potential to decrease the risk of sepsis, improve feed tolerance and minimize parenteral nutrition-associated cholestasis in infants with CGISC.

(i) **Evidence from studies in adult patients:** A recent meta-analysis of 20 RCTs \(N = 1374 \) concluded that probiotic/symbiotic supplementation decreases the risk of surgical site and urinary tract infections in patients undergoing abdominal surgery (Lytvyn et al., 2016). Another meta-analysis that included 28 RCTs \(n = 2511 \) involving adult patients undergoing gastrointestinal surgery came to similar conclusions (Yang et al., 2017). The durations of hospital stay and antibiotic therapy were shorter in the probiotics/symbiotic group vs controls (Yang et al., 2017). The need for caution in interpreting the results was emphasized considering the high risk of bias in included studies (Lytvyn et al., 2016; Yang et al., 2017).

(ii) **Evidence from studies in paediatric patients:** In a RCT, 30 children (<15 years) with various surgical (majority gastrointestinal) conditions were supplemented with probiotic *Bifidobacterium breve* BBG-01 or placebo daily from 7 days before the surgery until discharge. Probiotic supplementation was safe. It improved the gut flora, increased the concentration of faecal acetic acid and decreased the risk of sepsis (Okazaki et al., 2016). A recent meta-analysis that included 198 infants with HD (two RCTs, three observational studies) reported that the incidence of HAEC 22.6% in the probiotic group vs. 30.5% in the controls, but the difference was not statistically significant (OR 0.72; 95% CI 0.37–1.39; \(P = 0.33 \); Nakamura et al., 2018). Majority of the infants in the included studies were outside the neonatal period.

(iii) **Evidence from studies in neonates:** A systematic review (Rao et al., 2018) that focussed on CGISC exclusively in the neonatal population found only two small RCTs (Murakami et al., 2016; Powell et al., 2016). The Powell et al. (2016) RCT included 24 neonates with gastrochisis (Probiotics: 12, Placebo: 12). The probiotic supplement was administered for 6 weeks or until hospital discharge, whichever came first. Significant dysbiosis was noted in the study infants, and it was partially attenuated by administration of *Bifidobacterium longum* subsp. infantis (Powell et al., 2016). In the RCT by Murakami et al. (2016), four surgical neonates (duodenal atresia, anorectal malformations) received probiotics, four received no probiotics. Bifidobacteriaceae was more abundant in neonates who had not received probiotics. It was concluded that surgical stress appeared to affect the intestinal microbiota considerably. The need for further RCTs in this area was emphasized.

Safety of probiotics

Evidence from over 35 RCTs with a total sample size of nearly 12 000 and observational studies with over 14 000 participants show that probiotics are beneficial and safe in preterm non-surgical infants (Olsen et al., 2016; Rao et al., 2016; Sawh et al., 2016; Dermyshi et al., 2017). Even a large RCT that did not show benefits of probiotic supplementation acknowledged that short-term safety of probiotics was good in preterm infants (Costeloe et al., 2016). Recent meta-analyses have shown that probiotics do not increase or decrease the risk of intraventricular
haemorrhage, chronic lung disease, retinopathy of prematurity and neurodevelopmental outcomes in preterm non-surgical infants (Cavallaro et al., 2017; Villamor-Martinez et al., 2017; Upadhyay et al., 2018). These findings provide reassurance regarding medium-term safety of probiotics in preterm infants. However, there are few case reports of sepsis due to probiotic organisms (Ohishi et al., 2010; Vallabaneni et al., 2015; Brecht et al., 2016). Hence, constant vigilance and quality assurance of the product while conducting RCTs of probiotic supplementation in infants with CGISC are warranted.

Ongoing RCTs of probiotics in infants with CGISC

To our knowledge, currently, there are two ongoing RCTs evaluating the role of probiotics in this area. One trial is being conducted in Calgary (Canada) and aims to recruit 88 infants born between 23 and 42 weeks of gestation who require gastrointestinal surgery (Mugarab-Samedi et al., 2017). The probiotic supplement is FloraBabyTM (Renew Life Canada, Oakville, ON, Canada). Each sachet (1 g) will have 4 billion colony-forming units (CFU) of probiotics, consisting of Bifidobacterium breve (HA-129), Lactobacillus rhamnosus (HA111), Bifidobacterium bifidum (HA-132), Bifidobacterium longum subsp. infantis (HA-116) and Bifidobacterium longum subsp. longum (HA-135). Placebo is maltodextrin. The primary outcome of interest is length of hospital stay. Stool microbial analysis using culture-independent 16S rRNA studies will be undertaken.

The other study (ours) is being conducted in Western Australia (Rao et al., 2017). Sixty infants (≥35 weeks’ gestation) with major CGISC will be recruited. The probiotic group will receive 3 × 10⁹ CFU/day (i.e. 3 billion organisms) in 1.5 ml of the expressed breast milk or sterile water, given as a single daily dose via the orogastric/nasogastric feeding tube or orally. The probiotic sachet (Morinaga Industries, Tokyo, Japan) will contain a mixture of three strains (B. breve M-16V, B. longum subsp. infantis M-63 and B. longum subsp. longum BB536 (1 × 10⁹ CFU of each strain per 1 g sachet)). Placebo is maltodextrin. Supplementation will be commenced as soon as possible after admission once the baseline stool samples are collected and will be continued until discharge. Primary outcome will be gut microbiota (using 16 s ribosomal RNA Pyrosequencing studies for phylogenic profiling) on stool samples. Secondary outcomes will be stool short-chain fatty acids and relevant clinical outcomes.

Conclusions

In summary, probiotic supplementation has the potential to minimize gut dysbiosis and improve clinical outcomes of neonates with CGISC. Though small, the completed and ongoing RCTs will provide important data and confidence to embark on adequately powered large RCTs in this exciting area.

Conflict of interest

None declared.

References

Arrieta, M.C., Stiensma, L.T., Amenyogbe, N., Brown, E.M., and Finlay, B. (2014) The intestinal microbiome in early life: health and disease. Front Immunol 5: 427.

Bishay, M., Pichler, J., Horn, V., Macdonald, S., Ellmer, M., Eaton, S., et al. (2012) Intestinal failure-associated liver disease in surgical infants requiring long-term parenteral nutrition. J Pediatr Surg 47: 359–362.

Brecht, M., Garg, A., Longstaff, K., Cooper, C., and Andersen, C. (2016) Lactobacillus sepsis following a laparotomy in a preterm infant: a note of caution. Neonatology 109: 186–189.

Bron, P.A., Kleerebezem, M., Brummer, R.J., Cani, P.D., Mercenier, A., MacDonald, T.T., et al. (2017) Can probiotics modulate human disease by impacting intestinal barrier function? Br J Nutr 117: 93–107.

Cavallaro, G., Villamor-Martinez, E., Filippi, L., Mosca, F., and Villamor, E. (2017) Probiotic supplementation in preterm infants does not affect the risk of retinopathy of prematurity: a meta-analysis of randomized controlled trials. Sci Rep 7: 13014.

Costeloe, K., Hardy, P., Juszczak, E., Wilks, M., and Millar, M.R. (2016) Bifidobacterium breve BBG-001 in very preterm infants: a randomised controlled phase 3 trial. Lancet (London, England) 387: 649–660.

Dama, M., Rao, U., Gollow, I., Bulsara, M., and Rao, S. (2017) Early commencement of enteral feeds in gastroschisis: a systematic review of literature. Eur J Pediatr Surg 27: 503–515.

De Vadder, F., Grasset, E., Manneras Holm, L., Karsenty, G., Macpherson, A.J., Ollofsson, L.E., and Backhed, F. (2018) Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc Natl Acad Sci USA 115: 6458–6463.

Dermynsi, E., Wang, Y., Yan, C., Hong, W., Qiu, G., Gong, X., and Zhang, T. (2017) The “golden age” of probiotics: a systematic review and meta-analysis of randomized and observational studies in preterm infants. Neonatology 112: 9–23.

Donnell, S.C., Taylor, N., van Saene, H.K., Magnall, V.L., Pierro, A., and Lloyd, D.A. (2002) Infection rates in surgical neonates and infants receiving parenteral nutrition: a five-year prospective study. J Hosp Infect 52: 273–280.

Dwyer, G.M., Walker, K., Baur, L., and Badawi, N. (2016) Developmental outcomes and physical activity behaviour in children post major surgery: an observational study. BMC Pediatr 16: 123.

Fouhy, F., Guinane, C.M., Hussey, S., Wall, R., Ryan, C.A., Dempsey, E.M., et al. (2012) High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota (using 16 s ribosomal RNA Pyrosequencing studies for phylogenic profiling) on stool samples. Secondary outcomes will be stool short-chain fatty acids and relevant clinical outcomes.
microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob Agents Chemother 56: 5811–5820.

Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., et al. (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469: 543–547.

Garrido, D., Barile, D. and Mills, D.A. (2012) A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv Nutr (Bethesda, Md.) 3, 415s–421s.

Giorgetti, G., Brandimarte, G., Fabiocchi, F., Ricci, S., Flamini, P., Sandri, G., et al. (2015) Interactions between innate immunity, microbiota, and probiotics. J Immunol Res 2015: 501361.

Graham, P.L. 3rd (2010) Simple strategies to reduce healthcare associated infections in the neonatal intensive care unit: line, tube, and hand hygiene. Clin Perinatal 37: 645–653.

Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., et al. (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11: 506–514.

Hong, C.R., Zurakowski, D., Fullerton, B.S., Ariagno, K., Jaksic, T., and Mehta, N.M. (2018) Nutrition delivery and growth outcomes in infants with gastrochisis. J Parenter Enteral Nutr 42: 913–919.

Hussey, S., Wall, R., Gruffman, E., O’Sullivan, L., Ryan, C.A., Murphy, B., et al. (2011) Parenteral antibiotics reduce bifidobacteria colonization and diversity in neonates. Int J Microbiol 2011, pii: 130574.

Hyland, N.P., and Cryan, J.F. (2016) Microbe-host interactions: influence of the gut microbiota on the enteric nervous system. Dev Biol 417: 182–187.

Kitsios, G.D., Morowitz, M.J., Dickson, R.P., Huffnagle, G.B., McVerny, B.J., and Morris, A. (2017) Dysbiosis in the intensive care unit: microbiome science coming to the bedside. J Crit Care 38: 84–91.

Lauriti, G., Zani, A., Auferri, R., Cananzi, M., Chiesa, P.L., Eaton, S., and Pierno, A. (2014) Incidence, prevention, and treatment of parenteral nutrition-associated cholestasis and intestinal failure-associated liver disease in infants and children: a systematic review. J Parenter Enteral Nutr 38: 70–85.

Lavalleé, C.M., MacPherson, J.A.R., Zhou, M., Gao, Y., Wizzard, P.R., Wales, P.W., et al. (2017) Lipid emulsion formulation of parenteral nutrition affects intestinal microbiota and host responses in neonatal piglets. J Parenter Enteral Nutr 41: 1301–1309.

Li, Y., Poroyko, V., Yan, Z., Pan, L., Feng, Y., Zhao, P., et al. (2016) Characterization of intestinal microbiomes of hirschsprung’s disease patients with or without enteroocolitis using illumina-miseq high-throughput sequencing. PLoS ONE 11: e0162079.

Lytvyn, L., Quach, K., Banfield, L., Johnston, B.C., and Mertz, D. (2016) Probiotics and symbiotics for the prevention of postoperative infections following abdominal surgery: a systematic review and meta-analysis of randomized controlled trials. J Hosp Infect 92: 130–139.

McDonald, D., Ackermann, G., Khailova, L., Baird, C., Heyland, D., Kozar, R., et al. (2016) Extreme dysbiosis of the microbiome in critical illness. mSphere 1, pii: e00199-16.

Mugarab-Samed, V., Howlett, A., Hicks, M., Arrieta, M.-C., Beaudry, P., Dersch-Mills, D., and Alshaikh, B. (2017) Probiotics supplementation and length of hospital stay in neonates with gastrointestinal surgery. Int J Surg Protoc 6: 13–16.

Murai, H., Shimomura, Y., Matsumoto, M., Lane, G.J., Yamataka, A., and Okawada, M. (2016) Intestinal microbiota in neonates requiring urgent surgery: assessing the role of probiotics using fecal DNA sequencing. Pediatr Surg Int 32: 37–43.

Nakamura, H., Lim, T., and Puri, P. (2018) Probiotics for the prevention of histocompatibility-associated enterocolitis: a systematic review and meta-analysis. Pediatr Surg Int 34: 189–193.

Ohishi, A., Takahashi, S., Ito, Y., Ohishi, Y., Tsukamoto, K., Nanba, Y., et al. (2010) Bifidobacterium septicemia associated with postoperative probiotic therapy in a neonate with omphalocoele. J Pediatr 156: 679–681.

Okazaki, T., Asahara, T., Yamataka, A., Ogasawara, Y., Lane, G.J., Nomoto, K., et al. (2016) Intestinal microbiota in pediatric surgical cases administered bifidobacterium breve: a randomized controlled trial. J Pediatr Gastroenterol Nutr 63: 46–50.

Olsen, R., Greisen, G., Schroder, M., and Brok, J. (2016) Prophylactic probiotics for preterm infants: a systematic review and meta-analysis of observational studies. Neonatology 109: 105–112.

Powell, W.T., Borghese, R.A., Kolanetra, K.M., Mirmiran, M., Mills, D.A., and Underwood, M.A. (2016) Probiotic administration in infants with gastrochisis: a pilot randomized placebo-controlled trial. J Pediatr Gastroenterol Nutr 62: 852–857.

Ralls, M.W., Demehri, F.R., Feng, Y., Raskind, S., Ruan, C., Schintimie, A., et al. (2016) Bacterial nutrient foraging in a mouse model of enteral nutrient deprivation: insight into the gut origin of sepsis. Am J Physiol Gastrointest Liver Physiol 311: G734–G743.

Rao, S.C., Athalye-Jape, G.K., Deshpande, G.C., Simmer, K.N., and Patole, S.K. (2016) Probiotic supplementation and late-onset sepsis in preterm infants: a meta-analysis. Pediatrics 137: e20153684.

Rao, S., Simmer, K., Patole, S., Gollow, I., Bilsara, M., Conway, P. and Keil, A. (2017). Probiotic supplementation in neonates with major gastrointestinal surgical conditions: Protocol for a Pilot Randomized Double Blind Placebo Controlled Trial. ACTRN12617001401347. URL https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=373705&isReview=true.

Rao, S., Simmer, K., and Patole, S. (2018) Probiotic supplementation in neonates with major gastrointestinal surgical conditions: a systematic review. J Matern Fetal Neonatal Med 31: 1517–1523.

Rogers, M.B., Ferek, B., Shi, M., Yeh, A., Brower-Sinning, R., Aveson, V., et al. (2016) Disruption of the microbiota across multiple body sites in critically ill children. Microbiome 4: 66.

Sassone-Corsi, M., and Raffatellu, M. (2015) No vacancy: how beneficial microbes cooperate with immunity to
provide colonization resistance to pathogens. *J Immunol* (Baltimore, Md.: 1950) **194**: 4081–4087.

Savoie, K.B., Bachier-Rodriguez, M., Jones, T.L., Jeffreys, K., Papraniku, D., Sevilla, W.M.A., et al. (2016) Standardization of feeding advancement after neonatal gastrointestinal surgery: does it improve outcomes? *Nutr Clin Pract* **31**: 810–818.

Sawh, S.C., Deshpande, S., Jansen, S., Reynaert, C.J., and Jones, P.M. (2016) Prevention of necrotizing enterocolitis with probiotics: a systematic review and meta-analysis. *PeerJ* **4**: e2429.

Shin, N.R., Whon, T.W., and Bae, J.W. (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. *Trends Biotechnol* **33**: 496–503.

Taft, D.H., Liu, J., Maldonado-Gomez, M.X., Akre, S., Huda, M.N., Ahmad, S.M., et al. (2018) Bifidobacterial dominance of the gut in early life and acquisition of antimicrobial resistance. *mSphere* **3**, pii: e00441-18.

Upadhayay, R.P., Taneja, S., Chowdhury, R., Strand, T.A. and Bhandari, N. (2018) Effect of prebiotic and probiotic supplementation on neurodevelopment in preterm very low birth weight infants: findings from a meta-analysis. *Pediatr Res*. [Epub ahead of print].

Vallabhaneni, S., Walker, T.A., Lockhart, S.R., Ng, D., Chiller, T., Melchreit, R., et al. (2015) Notes from the field: Fatal gastrointestinal mucormycosis in a premature infant associated with a contaminated dietary supplement—Connecticut, 2014. *MMWR* **64**: 155–156.

van Saene, H.K., Taylor, N., Donnell, S.C., Glynn, J., Magnall, V.L., Okada, Y., et al. (2003) Gut overgrowth with normal flora: the missing link in parenteral nutrition-related sepsis in surgical neonates. *Eur J Clin Nutr* **57**: 548–553.

Villamor-Martinez, E., Pierro, M., Cavallaro, G., Mosca, F., Kramer, B. and Villamor, E. (2017) Probiotic supplementation in preterm infants does not affect the risk of bronchopulmonary dysplasia: a meta-analysis of randomized controlled trials. *Nutrients* **9**, pii: E1197.

Wang, J., Du, L., Cai, W., Pan, W., and Yan, W. (2014) Prolonged feeding difficulties after surgical correction of intestinal atresia: a 13-year experience. *J Pediatr Surg* **49**: 1593–1597.

Willis, T.C., Carter, B.A., Rogers, S.P., Hawthorne, K.M., Hicks, P.D., and Abrams, S.A. (2010) High rates of mortality and morbidity occur in infants with parenteral nutrition-associated cholestasis. *JPEN* **34**: 32–37.

Yang, Z., Wu, Q., Liu, Y., and Fan, D. (2017) Effect of perioperative probiotics and synbiotics on postoperative infections after gastrointestinal surgery: a systematic review with meta-analysis. *JPEN* **41**: 1051–1062.