QUANTIZATION OF SOME MODULI SPACES OF PARABOLIC VECTOR BUNDLES ON $\mathbb{C}P^1$

INDRANIL BISWAS, CARLOS FLORENTINO, JOSÉ MOURÃO, AND JOÃO P. NUNES

Abstract. We address quantization of the natural symplectic structure on a moduli space of parabolic vector bundles of parabolic degree zero over $\mathbb{C}P^1$ with four parabolic points and parabolic weights in $\{0, 1/2\}$. Identifying such parabolic bundles as vector bundles on an elliptic curve, we obtain explicit expressions for the corresponding non-abelian theta functions. These non-abelian theta functions are described in terms of certain naturally defined distributions on the compact group SU(2).

Contents

1. Introduction 1
2. A moduli space of parabolic vector bundles over $\mathbb{C}P^1$ 3
3. Determinant line bundle and Kähler form on \mathcal{M}_P 6
4. Non-abelian theta functions 11
 4.1. $\text{SL}_n(\mathbb{C})$ non-abelian theta functions on an elliptic curve 14
 4.2. Non-abelian theta functions on \mathcal{M}_P 16
Acknowledgements 16

1. Introduction

Let X be a compact connected Riemann surface, or equivalently a smooth complex projective curve. It is well known that the moduli spaces of vector bundles over X have a canonical symplectic structure [Go], with integral symplectic form. Indeed, being naturally identified with spaces of flat connections on a compact oriented surface, these are important classical phase spaces of Chern-Simons theory. The natural question of their quantization was addressed in many articles [Hi], [AdPW].

The geometric quantization of moduli spaces \mathcal{N} of vector bundles over X in a so-called Kähler polarization leads to what is known as spaces of non-abelian theta functions. More concretely, the Kähler polarized Hilbert spaces, at level $k = 1, 2, \ldots$, are the spaces

2000 Mathematics Subject Classification. 53D50, 14H60.
Key words and phrases. Quantization, parabolic bundles, moduli space, elliptic curve.
where \(L \) is a determinant line bundle, endowed with a natural Chern connection, whose curvature coincides with the symplectic form. A projectively flat connection was constructed by Hitchin on the space of complex structures on \(N \) [Hi], providing a way of identifying different choices of Kähler polarized Hilbert spaces.

However, an explicit identification between Kähler polarized quantizations and real polarized ones has only been found in a few examples, notably the case when \(X \) is an elliptic curve [AdPW, FMN2], using the relationship between the moduli spaces in this case and a certain class of abelian varieties. In turn, a comparison between real and Kähler quantizations for abelian varieties was obtained using a coherent state transform [FMN2, FMN1, BMN].

In this article, we follow the analogous geometric quantization program for the moduli space \(\mathcal{M}_P(r) \) of parabolic bundles of rank \(r \) over \(\mathbb{C}P^1 \) with four parabolic points and parabolic weights in \(\{0, 1/2\} \) with parabolic degree zero [MS, MY]. It is known that, as in the case of vector bundles, there is a determinant line bundle \(\zeta_P \) over the moduli space of parabolic bundles endowed with a natural Chern connection, whose curvature is the (generally singular) Kähler form.

Let \(X \) be the elliptic curve which has a degree two map to \(\mathbb{C}P^1 \) ramified over the parabolic points. Using the description of the parabolic bundles of above type as holomorphic vector bundles over \(X \) equipped with a lift of the involution corresponding to the degree two covering [Bi1], we see that, for a given choice of parabolic structures on these 4 points, \(\mathcal{M}_P(r) \) has dimension \(d \leq r/2 \) and we have a canonical isomorphism

\[
\mathcal{M}_P(r) \cong X^d/\Gamma_d \cong \mathbb{C}P^d,
\]

where \(\Gamma_d \) is the semi-direct product \((\mathbb{Z}/2\mathbb{Z})^d \rtimes \Sigma_d\) for the natural action on \((\mathbb{Z}/2\mathbb{Z})^d\) of the symmetric group \(\Sigma_d \) for \(d \) elements. Moreover, for the natural polarization line bundle \(L \) on the abelian variety \(X^d \) (associated to a Kähler form of area one on \(X \)), we obtain an isomorphism \(\phi^*\zeta_P \cong L^2 \), where \(\zeta_P \rightarrow \mathcal{M}_P(r) \) is the determinant line bundle and \(\phi : X^d \rightarrow \mathcal{M}_P(r) \) is the natural quotient (see Sections 2 and 3).

This very concrete description allows the expression of the quantization Hilbert space at level \(k \), namely \(H^0(\mathcal{M}_P, \zeta_P^k) \), in terms of the (abelian) theta functions of level \(2k \) on \(X^d \), and the comparison of real and Kähler polarized Hilbert spaces. For this, we need to apply the framework of [FMN2] for non-abelian theta functions over the moduli space of rank 2 vector bundles, with trivial determinant, over \(X \) (see Section 4). The so-called coherent state transform for Lie groups [Ha] is an analytic tool which, given an invariant Laplacian on a compact Lie group \(K \), associates holomorphic functions on the complexification \(K_C \) to square integrable functions on \(K \). This set up can be extended to appropriate spaces of distributions on \(K \) [FMN1]. Non-abelian theta functions of level \(k \) on \(\mathcal{M}_P \) are then described in terms of \(Ad \)-invariant holomorphic functions on the group \(SL(2, \mathbb{C}) \) with special quasi-periodicity properties. These holomorphic functions are obtained from elements in a vector space of distributions on the compact real form \(SU(2) \) by applying the coherent state transform, for time \(1/(k + 2) \) (see Theorem 4.7).
2. A moduli space of parabolic vector bundles over \mathbb{CP}^1

Fix a point $p_0 \in \mathbb{CP}^1 \setminus \{0, 1, \infty\}$. Consider the divisor
\begin{equation}
S := \{0, 1, \infty, p_0\} \subset \mathbb{CP}^1.
\end{equation}
Let
\begin{equation}
f : X \rightarrow \mathbb{CP}^1
\end{equation}
be the unique double cover ramified exactly over D. Therefore, X is a complex elliptic curve. Let $\text{Pic}^0(X)$ be the moduli space of topologically trivial holomorphic vector bundles on X.

Lemma 2.1. Any polystable vector bundle E over X of rank r and degree zero is isomorphic to a direct sum $\bigoplus_{i=1}^r L_i$, where $L_i \in \text{Pic}^0(X)$.

The isomorphism classes of line bundles L_i, $1 \leq i \leq r$, are uniquely determined by E up to a permutation of $\{1, \cdots, r\}$.

Proof. The first statement follows immediately from Atiyah’s classification of holomorphic vector bundles on X (see [At2]). This also follows from the facts that E is given by a representation of the abelian group $\pi_1(X)$ in $U(r)$ [NaSe].

The uniqueness of L_i up to a permutation of $\{1, \cdots, r\}$ follows immediately from [At1, p. 315, Theorem 2(ii)]. \hfill \Box

We will consider parabolic vector bundles over \mathbb{CP}^1 with S (see (2.1)) as the parabolic divisor. Let E be a holomorphic vector bundle on \mathbb{CP}^1. A *quasi-parabolic* structure on E is a filtration of subspaces
\begin{equation}
E_y =: F_{y,1} \supset \cdots \supset F_{y,j} \supset \cdots \supset F_{y,a_y} \supset F_{y,a_y+1} = 0
\end{equation}
over each point $y \in S$. A *parabolic* structure on E is a quasi-parabolic structure as above together with real numbers
\begin{equation}
0 \leq \alpha_{y,1} < \cdots < \alpha_{y,j} < \cdots < \alpha_{y,a_y} < 1
\end{equation}
associated to the quasi-parabolic flags. (See [MS], [MY].) The numbers $\alpha_{y,j}$ in (2.3) are called parabolic weights. The multiplicity of the parabolic weight $\alpha_{y,j}$ is $\dim \mathbb{C} F_{y,j}/F_{y,j+1}$.

For notational convenience, a parabolic vector bundle $(E, \{F_{y,j}\}, \{\alpha_{y,j}\})$ defined as above will also be denoted by E_*. The *parabolic degree* is defined to be
\begin{equation}
\text{par-deg}(E_*) := \text{degree}(E) + \sum_{y \in S} \sum_{j=1}^{a_y} \alpha_{y,j} \cdot \dim(F_{y,j}/F_{y,j+1}).
\end{equation}

Fix an integer $r \geq 2$. For each point $y \in S$, fix an integer $m_y \in [0, r]$. Let \mathcal{M}_P be the moduli space of semistable parabolic vector bundles E_* on \mathbb{CP}^1 of rank r, with S as the parabolic divisor, such that the parabolic weights at a parabolic point y are $1/2$ with multiplicity m_y and 0 with multiplicity $r - m_y$, and
\begin{equation}
\text{par-deg}(E_*) = 0.
\end{equation}
The moduli spaces of parabolic bundles are irreducible normal complex projective varieties. We will see later that the above moduli space M_P is smooth. Note that M_P is empty if $\sum_{y \in S} m_y$ is an odd integer.

We will assume that $\sum_{y \in S} m_y$ is an even integer.

For any integer $m \geq 1$, we will construct a finite group Γ_m equipped with an action of it on the Cartesian product $\text{Pic}^0(X)^m$.

Let Σ_m be the group of permutations of $\{1, \cdots, m\}$. This group acts on the Cartesian product $(\mathbb{Z}/2\mathbb{Z})^m$ by permuting the factors. So any permutation $\tau \in \Sigma_m$ sends any $(z_1, \cdots, z_m) \in (\mathbb{Z}/2\mathbb{Z})^m$ to $(z_{\tau^{-1}(1)}, \cdots, z_{\tau^{-1}(m)})$. Let

(2.4) $\Gamma_m := (\mathbb{Z}/2\mathbb{Z})^m \rtimes \Sigma_m$

be the semi-direct product corresponding to this action. So Γ_m fits in a short exact sequence

(2.5) $e \longrightarrow (\mathbb{Z}/2\mathbb{Z})^m \longrightarrow \Gamma_m \longrightarrow \Sigma_m \longrightarrow e$

of groups. We will construct a natural action of Γ_m on $\text{Pic}^0(X)^m$.

Consider the action of group $\mathbb{Z}/2\mathbb{Z}$ on $\text{Pic}^0(X)$ defined by the involution $L \mapsto L^*$. Acting coordinate-wise, it produces an action of $(\mathbb{Z}/2\mathbb{Z})^m$ on $\text{Pic}^0(X)^m$. On the other hand, the permutation group Σ_m acts on $\text{Pic}^0(X)^m$; as before, the action of any $\tau \in \Sigma_m$ sends any $(z_1, \cdots, z_m) \in \text{Pic}^0(X)^m$ to $(z_{\tau^{-1}(1)}, \cdots, z_{\tau^{-1}(m)})$. These two actions together produce an action of Γ_m (constructed in (2.4)) on $\text{Pic}^0(X)^m$. Let

(2.6) $\text{Pic}^0(X)^m \longrightarrow \text{Pic}^0(X)^m / \Gamma_m$

be the quotient for this action. The quotient $\text{Pic}^0(X)^m / (\mathbb{Z}/2\mathbb{Z})^m$ for the subgroup in (2.5) is identified with $(\text{Pic}^0(X)/(\mathbb{Z}/2\mathbb{Z}))^m$. Hence

$$\text{Pic}^0(X)^m / \Gamma_m = \text{Sym}^m(\text{Pic}^0(X)/(\mathbb{Z}/2\mathbb{Z})).$$

Since $\text{Pic}^0(X)/(\mathbb{Z}/2\mathbb{Z}) = \mathbb{CP}^1$, we have

$$\text{Pic}^0(X)^m / \Gamma_m = \text{Sym}^m(\mathbb{CP}^1) = \mathbb{CP}^m.$$

Note that the quotient map in (2.6) factors through the projection

$$\text{Pic}^0(X)^m \longrightarrow \text{Sym}^m(\text{Pic}^0(X)) := \text{Pic}^0(X)^m / \Sigma_m.$$

But the surjective map

$$\text{Sym}^m(\text{Pic}^0(X)) \longrightarrow \text{Pic}^0(X)^m / \Gamma_m$$

in general is not a quotient for a group action because Σ_m is not a normal subgroup of Γ_m.

Proposition 2.2. Let d be the (complex) dimension of \mathcal{M}_P. Then $d \leq r/2$. If $d > 0$, then the variety \mathcal{M}_P is canonically isomorphic to the quotient $\text{Pic}^0(X)^d / \Gamma_d$ constructed in (2.6).
Proof. Let
\[\sigma : X \longrightarrow X \]
be the unique nontrivial deck transformation for the covering \(f \) in (2.2).

Let \(E_* \in \mathcal{M}_P \) be a polystable parabolic vector bundle. It corresponds to a unique holomorphic vector bundle \(V \longrightarrow X \) equipped with a lift of the involution \(\sigma \) in (2.7) as an isomorphism of order two
\[\tilde{\sigma} : V \longrightarrow \sigma^*V \]
of vector bundles [Bi1]; this means that \(\tilde{\sigma} \) is a holomorphic isomorphism of vector bundles, and the composition
\[V \xrightarrow{\tilde{\sigma}} \sigma^*V \xrightarrow{\sigma^*\tilde{\sigma}} \sigma^*\sigma^*V = V \]
is the identity map. We have
\[\text{degree}(V) = 0 \]
because \(\text{par-deg}(E_*) = 0 \) [Bi1, p. 318, (3.12)]. The vector bundle \(V \) is polystable because \(E_* \) is polystable [BBN, pp. 350–351, Theorem 4.3]. Therefore, from Lemma 2.1 we know that
\[V = \bigoplus_{i=1}^{r} L_i, \]
where \(L_i \in \text{Pic}^0(X) \). Recall from Lemma 2.1 that the line bundles \(L_i \) are uniquely determined up to a permutation.

For any line bundle \(L \) on \(X \) of degree zero, the line bundle \(L \otimes \sigma^*L \) descends to \(\mathbb{C}P^1 \), where \(\sigma \) is defined in (2.7). Since \(\text{Pic}^0(\mathbb{C}P^1) = \{O_{\mathbb{C}P^1}\} \), it follows that
\[\sigma^*L = L^* \]
for all \(L \in \text{Pic}^0(X) \).

Since \(V \) in (2.9) is isomorphic to \(\sigma^*V \) (see (2.8)), using (2.10),
\[\bigoplus_{i=1}^{r} L_i = \bigoplus_{i=1}^{r} L_i^* \]
(2.11)
Therefore, all vector bundles on \(X \) corresponding to points of \(\mathcal{M}_P \) are of the form
\[\bigoplus_{i=1}^{a} (\xi_i \oplus \xi_i^*) \oplus \bigoplus_{j=1}^{r-2a} \eta_j, \]
(2.12)
where \(\eta_j \) are fixed line bundles on \(X \) (these line bundles \(\eta_j \) depend on the numbers \(m_y \) but are independent of the point of the moduli space \(\mathcal{M}_P \)), and the line bundles \(\xi_i, 1 \leq i \leq a \), move over \(\text{Pic}^0(X) \). From (2.11) it follows that
\[\eta_j = \eta_j^* \]
(2.13)
for all \(j \). We note that any vector bundle as in (2.12) satisfying (2.13) admits a lift of the involution \(\sigma \). Indeed, each \(\eta_j \) has a lift because (2.13) holds. Also, \(\xi_i \oplus \xi_i^* \) has a natural lift of the involution \(\sigma \) because \(\sigma^*\xi_i = \xi_i^* \). Note that the involution of \(\xi_i \oplus \xi_i^* \) interchanges the two direct summands.
Hence we get a surjective morphism
\begin{equation}
\text{Pic}^0(X)^a \longrightarrow M_P
\end{equation}
that sends any \((\xi_1, \cdots, \xi_a)\) to
\[
\bigoplus_{i=1}^a (\xi_i \oplus \xi_i^\ast) \oplus \bigoplus_{j=1}^{r-2a} \eta_j.
\]
This morphism clearly factors through the quotient \(\text{Pic}^0(X)^a/\Gamma_a\) in (2.6).

For a vector bundle
\[
W = \bigoplus_{i=1}^a (\xi_i \oplus \xi_i^\ast),
\]
the unordered pairs \(\{\xi_i, \xi_i^\ast\}\) are uniquely determined by \(W\) up to a permutation of \(\{1, \cdots, a\}\) [At1, p. 315, Theorem 2(ii)]. Using this it follows that the above morphism
\[
\text{Pic}^0(X)^a/\Gamma_a \longrightarrow M_P
\]
is an isomorphism. This completes the proof of the proposition.

3. Determinant line bundle and Kähler form on \(M_P\)

Consider the moduli space \(M_P\) of parabolic vector bundles defined in the previous section. It has a natural (possibly singular) Kähler form; this Kähler form will be denoted by \(\omega_P\). There is a determinant line bundle
\begin{equation}
\zeta \longrightarrow M_P.
\end{equation}
This line bundle \(\zeta\) has a hermitian structure such that the curvature of the corresponding Chern connection coincides with \(\omega_P\). (See [BR], [Bi2], [TZ].)

Consider the dimension \(d\) in Proposition 2.2. Let \(\Gamma_d\) be the group defined in (2.4). The quotient \(\text{Pic}^0(X)^d/\Gamma_d\) is identified with the moduli space \(M_P\) by Proposition 2.2. Let
\begin{equation}
\phi : \text{Pic}^0(X)^d \longrightarrow \text{Pic}^0(X)^d/\Gamma_d = M_P
\end{equation}
be the morphism in (2.14). Since \(\phi\) is the quotient map for the action of \(\Gamma_d\) on \(\text{Pic}^0(X)^d\), the pulled back line bundle \(\phi^*\zeta\) is equipped with a lift of the action of \(\Gamma_d\) on \(\text{Pic}^0(X)^d\), where \(\zeta\) is the determinant line bundle in (3.1).

Let
\begin{equation}
L_0 := \mathcal{O}_{\text{Pic}^0(X)}(\mathcal{O}_X) \longrightarrow \text{Pic}^0(X)
\end{equation}
be the holomorphic line bundle of degree one defined by the point of \(\text{Pic}^0(X)\) corresponding to the trivial line bundle \(\mathcal{O}_X\) on \(X\). For each \(i \in [1, d]\), let
\begin{equation}
q_i : \text{Pic}^0(X)^d \longrightarrow \text{Pic}^0(X)
\end{equation}
be the projection to the \(i\)-th factor. The action of \(\Sigma_d\) on \(\text{Pic}^0(X)^d\) that permutes the factors in the Cartesian product has a natural lift to an action of \(\Sigma_d\) on the line bundle
\[
\bigotimes_{i=1}^d q_i^* L_0 \longrightarrow \text{Pic}^0(X)^d,
\]
where L_0 is the line bundle in (3.3).

Recall that the group $(\mathbb{Z}/2\mathbb{Z})^d$ acts on $\text{Pic}^0(X)^d$ using the action of $\mathbb{Z}/2\mathbb{Z}$ on $\text{Pic}^0(X)$ given by the involution $L \mapsto L^*$. Let

$$\sigma_d : (\mathbb{Z}/2\mathbb{Z})^d \rightarrow \text{Aut}(\text{Pic}^0(X)^d)$$

be the corresponding homomorphism.

Theorem 3.1. For any $g \in (\mathbb{Z}/2\mathbb{Z})^d$, there is a canonical isomorphism of holomorphic line bundles

$$\sigma_d(g)^*(\bigotimes_{i=1}^d q_i^*L_0) \sim \bigotimes_{i=1}^d q_i^*L_0,$$

where σ_d is the homomorphism in (3.5), and L_0 is the line bundle in (3.3).

The line bundle $(\bigotimes_{i=1}^d q_i^*L_0)^{\otimes 2}$ has a canonical lift of the action of Γ_d on $\text{Pic}^0(X)^d$.

There is a Γ_d-equivariant isomorphism of line bundles

$$\bigotimes_{i=1}^d (q_i^*L_0)^{\otimes 2} \sim \phi^*\zeta,$$

where ϕ and ζ are defined in (3.2) and (3.1) respectively.

Proof. Consider the automorphism of $\text{Pic}^0(\text{Pic}^0(X))$ induced by the involution of $\text{Pic}^0(X)$ defined by $L \mapsto L^*$. It fixes the line bundle L_0 defined in (3.3), because the above involution $L \mapsto L^*$ fixes the point of $\text{Pic}^0(X)$ corresponding to the trivial line bundle \mathcal{O}_X on X. Note that $\text{Pic}^0(\text{Pic}^0(X))$ is identified with $\text{Pic}^0(X)$ by sending any $\xi \in \text{Pic}^0(X)$ to $\mathcal{O}_{\text{Pic}^0(X)}(\xi - \mathcal{O}_X)$. This identification commutes with the involutions. Since the point of $\text{Pic}^0(X)$ corresponding to \mathcal{O}_X is fixed by the involution, it follows that

$$\sigma_d(g)^*(\bigotimes_{i=1}^d q_i^*L_0) = \bigotimes_{i=1}^d q_i^*L_0$$

for all $g \in (\mathbb{Z}/2\mathbb{Z})^d$. This proves the first statement of the theorem.

Let $z_0 := (\mathcal{O}_X, \ldots, \mathcal{O}_X) \in \text{Pic}^0(X)^d$ be the point. Note that $\sigma_d(g)(z_0) = z_0$ for all $g \in (\mathbb{Z}/2\mathbb{Z})^d$. In view of (3.6), there is a unique isomorphism

$$\rho : \sigma_d(g)^* \bigotimes_{i=1}^d q_i^*L_0 \rightarrow \bigotimes_{i=1}^d q_i^*L_0$$

which coincides with the identity map of the fiber $(\bigotimes_{i=1}^d q_i^*L_0)_{z_0}$ over the point z_0.

Consider the action of $(\mathbb{Z}/2\mathbb{Z})^d$ on $\text{Pic}^0(X)^d$ defined by the homomorphism σ_d in (3.5). For any $g \in (\mathbb{Z}/2\mathbb{Z})^d$, there is a canonical lift of the involution $\sigma_d(g)$ of $\text{Pic}^0(X)^d$ to the line bundle

$$(\bigotimes_{i=1}^d q_i^*L_0) \otimes \sigma_d(g)^*(\bigotimes_{i=1}^d q_i^*L_0).$$
Using the isomorphism ρ in (3.7), these lifts of the involutions $\sigma_d(g)$, $g \in (\mathbb{Z}/2\mathbb{Z})^d$, together produce a lift of the action of $(\mathbb{Z}/2\mathbb{Z})^d$ on $\text{Pic}^0(X)^d$ to the line bundle
\[
\left(\bigotimes_{i=1}^d q_i^* L_0 \right)^{\otimes 2} \longrightarrow \text{Pic}^0(X)^d.
\]

We already noted that the action of Σ_d on $\text{Pic}^0(X)^d$ has a natural lift to an action of Σ_d on the line bundle $\bigotimes_{i=1}^d q_i^* L_0$. This lift to $\bigotimes_{i=1}^d q_i^* L_0$ produces a lift to $(\bigotimes_{i=1}^d q_i^* L_0)^{\otimes 2}$ of the action of Σ_d on $\text{Pic}^0(X)^d$. This action of Σ_d on $(\bigotimes_{i=1}^d q_i^* L_0)^{\otimes 2}$ and the action of $(\mathbb{Z}/2\mathbb{Z})^d$ on $(\bigotimes_{i=1}^d q_i^* L_0)^{\otimes 2}$ constructed above together produce a lift to $(\bigotimes_{i=1}^d q_i^* L_0)^{\otimes 2}$ of the action of Γ_d on $\text{Pic}^0(X)^d$. This proves the second statement of the theorem.

Let $\mathcal{N}_X(r)$ denote the moduli space of semistable vector bundles on X of rank r and degree zero. So, $\mathcal{N}_X(r) = \text{Sym}^r(\text{Pic}^0(X)) := \text{Pic}^0(X)^r/\Sigma_r$.

Let
\[
\beta : \text{Pic}^0(X)^d \longrightarrow \mathcal{N}_X(r)
\]
be the morphism defined by
\[
(L_1, \ldots , L_d) \longmapsto \bigoplus_{i=1}^d (L_i \oplus L_i^*) \oplus \bigoplus_{j=1}^{r-2d} \eta_j
\]
(see (2.12)). Let
\[
\gamma : \mathcal{M}_P \longrightarrow \mathcal{N}_X(r)
\]
be the morphism that sends any parabolic vector bundle on \mathbb{CP}^1 to the corresponding vector bundle on X (see the proof of Proposition 2.2). Clearly,
\[
\beta := \gamma \circ \phi ,
\]
where ϕ is constructed in (3.2).

Let ζ_r be the determinant line bundle on the moduli space $\mathcal{N}_X(r)$. We will quickly recall the definition/construction of ζ_r. Let
\[
\mathcal{P} \longrightarrow X \times \text{Pic}^0(X)
\]
be a Poincaré line bundle; this means that for each point $\alpha \in \text{Pic}^0(X)$, the restriction $\mathcal{P}_{|_{X \times \{\alpha\}}}$ lies in the isomorphism class of line bundles defined by the point α. Let
\[
\pi_2 : X \times \text{Pic}^0(X) \longrightarrow \text{Pic}^0(X)
\]
be the natural projection. Define the line bundle
\[
\mathcal{L} := (\bigwedge^\text{top} R^0 \pi_2^* \mathcal{P})^* \otimes (\bigwedge^\text{top} R^1 \pi_2^* \mathcal{P}) \longrightarrow \text{Pic}^0(X).
\]
It can be shown that \mathcal{L} is independent of the choice of the Poincaré line bundle \mathcal{P}. To see this note that any other Poincaré bundle is of the form $\mathcal{P}_1 := \mathcal{P} \otimes \pi_2^* A$, where A is a line bundle on $\text{Pic}^0(X)$. Form the projection formula,
\[
(\bigwedge^\text{top} R^0 \pi_2^* \mathcal{P})^* \otimes (\bigwedge^\text{top} R^1 \pi_2^* \mathcal{P}) = (\bigwedge^\text{top} R^0 \pi_2^* \mathcal{P}_1)^* \otimes (\bigwedge^\text{top} R^1 \pi_2^* \mathcal{P}_1) \otimes A^\otimes \chi ,
\]
where χ is the Euler characteristic of degree zero line bundles on X. Since $\chi = 0$, we have $\mathcal{L} = (\Lambda^\text{top} R^0_\pi \mathcal{P}_1)^* \otimes (\Lambda^\text{top} R^1_\pi \mathcal{P}_1)$.

We will show that \mathcal{L} coincides with L_0 defined in (3.3). To prove this, we first note that \mathcal{O}_X is the unique line bundle on X such that $\chi(\mathcal{O}_X) = 0 \neq H^0(X, \mathcal{O}_X)$. From this it follows that the point of $\text{Pic}^0(X)$ defined by \mathcal{O}_X is the canonical theta divisor. This immediately implies that \mathcal{L} is canonically identified with L_0.

For each $i \in [1, r]$, let \mathcal{O}_i be the projection of $\text{Pic}^0(X)^r$ to the i–th factor. The line bundle
\begin{equation}
\bigotimes_{i=1}^r \mathcal{O}_i \mathcal{L} \to \text{Pic}^0(X)^r
\end{equation}
has a natural action of the group Σ_r of permutations of $\{1, \cdots, r\}$. Using this action, the line bundle in (3.13) descends to the quotient $\text{Sym}^r(\text{Pic}^0(X))$ of $\text{Pic}^0(X)^r$. This descended line bundle is the determinant line bundle ζ_r on $\mathcal{N}_X(r) = \text{Sym}^r(\text{Pic}^0(X))$.

For the map γ in (3.9), the pullback $\gamma^* \zeta_r$ coincides with the determinant line bundle ζ on \mathcal{M}_P [BR], [Bi2]. Therefore, from (3.10) we get an isomorphism
\begin{equation}
\phi^* \zeta \sim (3.14) \beta^* \zeta_r.
\end{equation}
Using the fact that each η_j in (3.8) is a fixed line bundle of order two, from the construction of ζ_r described above it is easy to see that $\beta^* \zeta_r$ has a canonical lift of the action of Γ_d on $\text{Pic}^0(X)^d$. As noted earlier, the line bundle $\phi^* \zeta$ is equipped with an action of Γ_d, where ϕ is constructed in (3.2). It is straightforward to check that the isomorphism in (3.14) intertwines the actions of Γ_d.

For any Poincaré line bundle $\mathcal{P} \to X \times \text{Pic}^0(X)$ (see (3.11)), the pullback
\begin{equation}
(\text{Id}_X \times \sigma_1)^* \mathcal{P}^* \to X \times \text{Pic}^0(X)
\end{equation}
is also a Poincaré line bundle, where σ_1 is the involution in (3.5) defined by $L \mapsto L^*$. Therefore,
\begin{equation}
(3.15) \bigotimes^\text{top} R^0_\pi \mathcal{P}^* \otimes \bigotimes^\text{top} (R^1_\pi \mathcal{P}^*) = \sigma_1^* \mathcal{L},
\end{equation}
where π_2 is the projection in (3.12). Since $\mathcal{L} = L_0$,
\begin{equation}
(3.16) \sigma_1^* \mathcal{L} = \sigma_1^* L_0 = L_0;
\end{equation}
the last isomorphism follows from the fact that the point of $\text{Pic}^0(X)$ corresponding to \mathcal{O}_X is fixed by σ_1 (see also (3.3)). Combining (3.15) and (3.16),
\begin{equation}
(3.17) \bigotimes^\text{top} R^0_\pi \mathcal{P}^* \otimes \bigotimes^\text{top} (R^1_\pi \mathcal{P}^*) = L_0.
\end{equation}
Using (3.17), from the constructions of the line bundle ζ_r and the morphism β in (3.8) it follows that
\begin{equation}
\beta^* \zeta_r = (\bigotimes_{i=1}^d q_i^* L_0)^{\otimes 2}.
\end{equation}
In the second part of the theorem we constructed an action of the group Γ_d on the line bundle $(\bigotimes_{i=1}^{d} q_i^* L_0)^{\otimes 2}$. We noted earlier that $\beta^* \zeta_r$ is equipped with a lift of the action of Γ_d on $\text{Pic}^0(X)^d$. The above isomorphism of $\beta^* \zeta_r$ with $(\bigotimes_{i=1}^{d} q_i^* L_0)^{\otimes 2}$ is Γ_d-equivariant.

In view of the fact, noted earlier, that the isomorphism in (3.14) intertwines the actions of Γ_d, this completes the proof of the theorem. □

There is a unique translation invariant Kähler form h_0 on $\text{Pic}^0(X)$ of total volume one. Let

$$\omega := \sum_{i=1}^{d} q_i^* h_0$$

be the Kähler form on $\text{Pic}^0(X)^d$, where q_i is the projection in (3.4). As before, the Kähler form on \mathcal{M}_P will be denoted by ω_P.

Proposition 3.2. For the morphism ϕ in (3.2),

$$\phi^* \omega_P = 2 \omega.$$

Proof. Let ω_r be the Kähler form on the moduli space $\mathcal{N}_X(r)$. For the map γ in (3.9),

(3.18) $$\gamma^* \omega_r = \omega_P$$

(see [BR]).

It can be shown that

(3.19) $$\beta^* \omega_r = 2 \omega,$$

where β is constructed in (3.8). To prove (3.19), we first recall that ω_r is constructed using the unique unitary flat connection on polystable vector bundles of degree zero over X. More precisely, consider the unique unitary flat connection ∇ on a polystable vector bundle

$$E := \bigoplus_{i=1}^{r} L_i \in \mathcal{N}_X(r)$$

(the flat hermitian metric on E is not unique, but the flat hermitian connection is unique). Let $\tilde{\nabla}$ be the flat connection on $\text{End}(E) = E \otimes E^*$ induced by ∇. The tangent space $T_E \mathcal{N}_X(r)$ is identified with

(3.20) $$\bigoplus_{i=1}^{r} H^1(X, \text{End}(L_i)) = H^1(X, \mathcal{O}_X)^{\oplus r} \subset H^1(X, \text{End}(E)).$$

Using the flat unitary structure on $\text{End}(E)$, we can represent elements of $H^1(X, \text{End}(E))$ by the harmonic forms. This yields a L^2-metric on $H^1(X, \text{End}(E))$. The restriction of this form to the subspace $H^1(X, \mathcal{O}_X)^{\oplus r}$ in (3.20) coincides with the Kähler form ω_r on $T_E \mathcal{N}_X(r)$.

The equality in (3.19) follows from the above description of ω_r. Note that the factor 2 in (3.19) appears because the map β constructed in (3.8) involves both L_i and L_i^*, and the involution of $\text{Pic}^0(X)$ defined by $L \mapsto L^*$ preserves the translation invariant Kähler form h_0 on $\text{Pic}^0(X)$.

The proposition follows from (3.18), (3.19) and (3.10). □
There is a unique additive complex Lie group structure on X with $f^{-1}(0)$ as the identity element, where f is the map in (2.2). We fix this Lie group structure on X. The identity element $f^{-1}(0)$ will be denoted by e.

There is a natural complex group homomorphism

$$X \rightarrow \text{Pic}^0(X)$$

defined by $x \mapsto \mathcal{O}_X(x - e)$. This isomorphism will be useful here.

4. Non-abelian theta functions

In [FMN2], non-abelian theta functions on the moduli space of trivial determinant vector bundles of rank of n on the elliptic curve X were studied in terms of Weyl anti-invariant distributions in $SU(n)$. Let us recall briefly that construction, paying particular attention to the case $n = 2$, which will be especially relevant for the description of the Hilbert space associated to the quantization of the moduli space of parabolic bundles \mathcal{M}_P.

4.1. $SL_n(\mathbb{C})$ non-abelian theta functions on an elliptic curve. We start by writing the elliptic curve X in the form:

$$X = \mathbb{C}/(\mathbb{Z} \oplus \tau \mathbb{Z}), \text{ for some } \tau \in \mathbb{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}.$$

Let \mathfrak{h} be the Cartan subalgebra of $sl_n(\mathbb{C})$ consisting of diagonal matrices of trace zero, and let $\hat{\Lambda}$ denote its coroot lattice. To be concrete, we identify $sl_n(\mathbb{C})$ with the space of traceless $n \times n$ complex matrices and \mathfrak{h} with the space of diagonal matrices of trace zero.

Let $\mathcal{M}_X(n)$ be the moduli space semistable vector bundles E over X of rank n with $\bigwedge^n E = \mathcal{O}_X$.

Consider the abelian variety

$$M = X \otimes \hat{\Lambda} \cong \mathfrak{h}/(\hat{\Lambda} \oplus \tau \hat{\Lambda}).$$

The Weyl group W of $sl_n(\mathbb{C})$, given by the permutations of $\{1, \cdots, n\}$, acts naturally on M, via its natural action on \mathfrak{h}. As shown in [Lo, La], the moduli space $\mathcal{M}_X(n)$ can be naturally identified with the quotient under this action

$$\mathcal{M}_X(n) = M/W \cong \mathbb{C}P^{n-1}.$$

To consider the quantization of $\mathcal{M}_X(n)$, we use the symplectic form ω induced from the symplectic structure on X and the determinant line bundle $L \rightarrow \mathcal{M}_X(n)$ whose curvature form coincides with ω [Qu].

Let

$$p : \mathbb{C}/\mathbb{Z} \cong \mathbb{C}^* \rightarrow \text{Pic}^0(X) \cong X$$

be the projection defined by $z + \mathbb{Z} \mapsto z + \mathbb{Z} + \tau \mathbb{Z}$, where $z \in \mathbb{C}$. The maximal torus of diagonal matrices in $SL_n(\mathbb{C})$ will be denoted by $T_\mathbb{C}$ and is canonically identified with $\mathfrak{h}/\hat{\Lambda}$. Let

$$q : SL_n(\mathbb{C}) \rightarrow SL_n(\mathbb{C})/SL_n(\mathbb{C}) \cong T_\mathbb{C}/W$$
be the quotient map for the conjugation action of $\text{SL}_n(\mathbb{C})$ on itself. We have the following commutative diagram:

$$
\begin{align*}
\text{SL}_n(\mathbb{C}) & \xrightarrow{q} T_C / W & & \leftarrow T_C = \mathfrak{h} / \tilde{\Lambda} \\
\mathcal{M}_X(n) & \leftarrow M & & \leftarrow \mathfrak{h},
\end{align*}
$$

(4.3)

where the composition $\text{SL}_n(\mathbb{C}) \to T_C / W \to \mathcal{M}_X(n)$ corresponds to the Schottky map described in [FMN2].

Note that the Verlinde numbers are:

$$
\dim H^0(\mathcal{M}_X(n), L^k) = \binom{n - 1 + k}{k}.
$$

(4.4)

Let $H(V)$ be the space of all holomorphic functions on a complex manifold V. Given a level k, the subspace of $H(\mathfrak{h})$ consisting of functions θ satisfying the identity

$$
\theta(v + \tilde{\alpha} + \tau \tilde{\beta}) = \left(e^{-2\pi i \beta(v) - \pi i r(\beta, \beta)}\right)^k \theta(v), \quad \tilde{\alpha}, \tilde{\beta} \in \tilde{\Lambda}
$$

will be relevant for us.

Proposition 4.1 ([FMN2]). The space of non-abelian theta functions $H^0(\mathcal{M}_X(n), L^k)$ is naturally identified with

$$
H^+_k, n := \{ \theta \in H(\mathfrak{h}) : \theta \text{ satisfies (4.5) and } w\theta = \theta, \forall w \in W \}.
$$

We remark that since the quasi-periodicity condition in (4.5) does not depend on the first summand (i.e., $\tilde{\alpha}$) of the lattice $\tilde{\Lambda} \oplus \tau \tilde{\Lambda}$, the non-abelian theta functions in the proposition can be also considered to be Weyl invariant holomorphic functions on $T_C = \mathfrak{h} / \tilde{\Lambda}$, or equivalently, Ad–invariant holomorphic functions on $\text{SL}_n(\mathbb{C})$.

Motivated by the Segal–Bargmann–Hall or “coherent state” transform for Lie groups, we will now describe a way of obtaining such Ad–invariant holomorphic functions on $G = \text{SU}(n)$ starting from Ad–invariant distributions on the maximal compact subgroup $K = \text{SU}(n)$.

Let Λ^+_W denote the set of dominant weights, in one to one correspondence with irreducible representations R_λ of $K = \text{SU}(n)$. For $x \in K$, the expression

$$
f = \sum_{\lambda \in \Lambda^+_W} \text{tr}(A_\lambda R_\lambda),
$$

(4.6)

where $A_\lambda \in \text{End}(R_\lambda)$ are endomorphism–valued coefficients, defines a distribution under appropriate growth conditions on the operator norm of the A_λ (see [FMN2]).

Let $c_\lambda \geq 0$ be the eigenvalue of $-\Delta_K$, where Δ_K is the Laplace-Beltrami operator on K associated with the Ad-invariant inner product on \mathfrak{su}_n for which the roots have squared length 2, on functions of the form $\text{tr}(A_\lambda R_\lambda(x))$, $A_\lambda \in \text{End}(R_\lambda)$.

Given a positive parameter $t > 0$, and $\tau \in \mathbb{H}$, the (generalized) coherent state transform (CST for short) is given by associating to a distribution f as in (4.6) the holomorphic
function on $\text{SL}_n(\mathbb{C})$
\[
C_t f(g) := \sum_{\lambda \in \Lambda^+_m} e^{it\tau c_\lambda} \text{tr}(A_\lambda R_\lambda(g)).
\]

Recall from [Lo, FMN2] that non-abelian theta functions on $\mathcal{M}_X(n)$ are more conveniently described in terms of Weyl anti-invariant theta functions on \mathfrak{h}. Denote by θ^{-n}_n the unique (up to scale) W-anti-invariant theta function of level n on \mathfrak{h}.

Let now ρ be the Weyl vector given by half the sum of the positive roots and let σ be the denominator of the Weyl character formula analytically continued to $\text{SL}_n(\mathbb{C})$. Let $\hat{\alpha}$ be the longest root in $\mathfrak{sl}_n(\mathbb{C})$ and let
\[
D_{k,n} := \{ \lambda \in \Lambda^+_W : \langle \lambda, \hat{\alpha} \rangle \leq k \}
\]
be the parameter space for integrable representations of the level k affine Kac-Moody algebra $\tilde{\mathfrak{sl}}_n(\mathbb{C})_k$. Note that $\#D_{k,n} = \binom{n-1+k}{k}$, which equals the Verlinde number (4.4).

As seen in [FMN2], there is a (τ-independent) finite-dimensional space of Ad-invariant distributions $V_{k,n}$ on $\text{SU}(n)$ which has an orthonormal basis labelled by the elements of $D_{k,n}$, such that the following holds:

Theorem 4.2 ([FMN2]). Let $n > 2$ and $C^\infty(\text{SU}(n))^{\text{Ad}} \supset L^2(\text{SU}(n))$ denote the space of Ad-invariant distributions on $\text{SU}(n)$. Restricting the CST to $V_{k,n}$, we obtain
\[
V_{k,n} \hookrightarrow C(\text{SU}(n))^{\text{Ad}} \overset{C_t}{\longrightarrow} \mathcal{H}(\text{SL}_n(\mathbb{C}))^{\text{Ad}}.
\]
Moreover, the composition of maps
\[
\varphi_{k,\tau} \circ C_{k+n} : V_{k,n} \longrightarrow H^0(\mathcal{M}_X(n), L^k) \subset \mathcal{H}(\text{SL}_n(\mathbb{C}))^{\text{Ad}},
\]
where
\[
\varphi_{k,\tau}(f) = e^{\frac{||\rho||^2}{4\tau} t \sigma \rho} f,
\]
is an isomorphism; we identify a W-invariant theta function on \mathfrak{h} with an Ad-invariant function on $\text{SL}_n(\mathbb{C})$ using (4.3) and (4.5).

Remark 4.3. Note that the map $\varphi_{k,\tau}$ is well defined only on $C_{k+n}^{-1} (V_{k,n})$, since these holomorphic functions are divisible by θ^{-n}_n [Lo, FMN2].

Let $\tau_2 = \text{Im}(\tau) > 0$, and define the hermitian inner product on $H^0(\mathcal{M}_X(n), L^k)$ by
\[
\langle \langle F_1, F_2 \rangle \rangle := \int_{q^{-1}(\mathfrak{h}_0)} T_1 F_2 |q^* \theta^{-n}_n|^2 d\nu_{\frac{\tau_2}{k+n}}
\]
(see [AdPW]), where q was defined in equation (4.2), $d\nu_{\frac{\tau_2}{k+n}}$ denotes what is known as the heat kernel measure of $\text{SL}_n(\mathbb{C})$, at time $\frac{\tau_2}{k+n}$, and $\mathfrak{h}_0 \subset \mathfrak{h}$ is a fundamental domain for the action of the semi-direct product $W \ltimes (\Lambda \oplus \tau \tilde{\Lambda})$.

Theorem 4.4 ([FMN2]). The map $\varphi_{k,\tau} \circ C_{k+n} : V_{k,n} \longrightarrow H^0(\mathcal{M}_X(n), L^k)$ is a unitary isomorphism.
Let us now consider the (slightly different) case $n = 2$, which will be especially relevant in the next section, and for which the distributions in the previous theorem can be written in a simple way. For simplicity, we will state the result only for even level, which is the case we will need.

The space $V_{2k,2} \subset C(SU(2))'^{Ad}$ is the k-dimensional \mathbb{C}-span of the distributions

$$\psi_{j,2k}(x) = \frac{1}{\sigma} \sum_{n \in \mathbb{Z}} \left(e^{2\pi i(j+2kn)x} - e^{-2\pi i(j+2kn)x} \right) \in C^\infty(SU(2))', j = 1, \ldots, k$$

(see [FMN2]).

Consider the basis of level $2k + 4$ theta functions for the elliptic curve X, namely

$$\{\theta_{j,2k+4}\}_{0 \leq j < 2k+4},$$

with

$$\theta_{j,2k+4}(z) = \sum_{m \in \mathbb{Z}} \exp \left(\frac{\pi i}{2k+4} \left(j + (2k+4)m \right)^2 + 2\pi i (j + (2k+4)m)z \right), \quad 0 \leq j < 2k+4.$$

The Weyl anti-invariant theta function of level 4 on X is given by $\theta_{-4} = \theta_{1,4} - \theta_{3,4}$.

Recall from [Lo, FMN2] that the space of Weyl invariant theta functions of level $2k$ on X can be conveniently described in terms of Weyl anti-invariant theta functions of level $2k + 4$,

$$H^0(X, L_{2k}^0)^- \cong H^0(X, L_{2k}^0)^+ / \theta_4^-,$$

where θ_4^- is the (unique up to nonzero multiplicative constant) Weyl anti-invariant theta function of level 4 on X. The bundle of conformal blocks (of level k) over M_1, which is associated to the moduli space of semistable rank two vector bundles with trivial determinant on X, has a natural hermitian structure which is easily expressed in terms of theta functions in $H^0(X, L_{2k}^0)^-$ as described above [AdPW, FMN2].

Theorem 4.5. The composition of maps

$$V_{2k,2} \xrightarrow{\varphi_{k,\tau}} C_{1/2}^{1} (V_{2k,2}) \xrightarrow{\varphi_{k,\tau}} H^0(M_X(2), L^{2k}) \subset \mathcal{H}(SL_2(\mathbb{C}))^{Ad}$$

where $\varphi_{k,\tau}(f) = e^{2\pi i \tau \sigma/\theta_4} f$, is an isomorphism. The image of the natural basis $\{\psi_{j,2k}\}_{j=1,\ldots,k}$ is given by

$$\{\vartheta_{j,2k}\}_{j=1,\ldots,k},$$

where $\vartheta_{j,2k} = (\theta_{j,2k+4} - \theta_{2k+4-j,2k+4})/\theta_4^-$. [FMN2].

4.2. **Non-abelian theta functions on \mathcal{M}_P.** Let Λ be the coroot lattice of $sl_2(\mathbb{C})$, and let \mathfrak{h}, as before, be the Cartan subalgebra. The abelian variety from the previous subsection is now $M = X \otimes \Lambda \cong X$.

From Proposition 2.2, we have

$$\mathcal{M}_P \cong \text{Pic}^0(X)^d / \Gamma_d \cong M^d / \Gamma_d,$$

where $\Gamma_d = \mathbb{Z}^d_2 \rtimes \Sigma_d$. We have the isomorphism of abelian varieties

$$M^d = (\mathfrak{h} / \Lambda \oplus \tau \Lambda)^d.$$
Let $p : M^d \rightarrow M^d/\Gamma_d$ be the natural projection. From above, the pull-back of the determinant line bundle by p gives the line bundle $\bigotimes_{i=1}^d (q_i^* L_0)^2$ over M^d. Therefore, non-abelian theta functions of level k on \mathcal{M}_P will be described by Γ_d invariant products of level $2k$ theta functions on each of the factors $\mathfrak{h}/\Lambda \oplus \tau \Lambda$.

The analog of diagram (4.3) is now

$$
\begin{array}{c}
\text{SL}_2(\mathbb{C})^d \rightarrow T^d_{c}/W^d \leftarrow T^d_{c} = (\mathfrak{h}/\Lambda)^d \\
\mathcal{M}_P \xrightarrow{\varrho} \mathcal{M}_X(2)^d \leftarrow M^d \leftarrow \mathfrak{h}^d.
\end{array}
$$

Let K be a compact Lie group. The CST on K^d equipped with the product metric can be applied to Σ_d-invariant functions. Since the averaged heat kernel measures are the product of the d measures on each of the factors of K, we have the following commutative diagram

$$
\begin{array}{c}
(C^\infty(K^d)^{\Sigma_d} \hookrightarrow C^\infty(K^d)^{t} \\
\downarrow C^\otimes_d_t \downarrow C^\otimes_d_t \\
\mathcal{H}_d(G)^{\Sigma_d} \hookrightarrow \mathcal{H}_d(G).
\end{array}
$$

where the CST for K^d is given by

$$
C^\otimes_d_t = C_t \otimes \cdots \otimes C_t,
$$

in terms of the CST C_t for K.

Definition 4.6. Let $V_k \subset C^\infty((SU(2)^d)^{\Sigma_d}$ be the vector space with basis $\{\Psi_{J,k}\}_{J=\{j_1,\ldots,j_d\},1 \leq j_i \leq k}$, where

$$
\Psi_{J,k} = \sum_{\sigma \in \Sigma_d} \psi_{j_{\sigma_1},2k} \otimes \cdots \otimes \psi_{j_{\sigma_d},2k},
$$

and the distributions $\psi_{j,2k} \in C^\infty(SU(2))^t$ are given in (4.10).

Let $\varphi^\otimes_{k,\tau} = \otimes \varphi_{k,\tau}$ be defined on $C^\otimes_{k,\tau}(V_k) \subset \mathcal{H}_d(\text{SL}_2(\mathbb{C})^d)$, where $\varphi_{k,\tau}$ was defined in (4.8).

Theorem 4.7. The CST $C^\otimes_{k,\tau}$ establishes an isomorphism between the space V_k of distributions on $SU(2)^d$ and the space of non-abelian theta functions $H^0(\mathcal{M}_P,\xi^k)$ of level k, meaning the map

$$
\varphi^\otimes_{k,\tau} \circ C^\otimes_{k,\tau} : V_k \rightarrow H^0(\mathcal{M}_P,\xi^k)
$$

is an isomorphism. The image of the natural basis (Definition 4.6) is given by $\{\phi_{J,k}\}_{J=\{j_1,\ldots,j_d\},1 \leq j_i \leq k}$, where

$$
\phi_{J,k}(z_1,\ldots,z_d) = \sum_{\sigma \in \Sigma_d} \vartheta_{j_{\sigma_1},2k}(z_1) \cdots \vartheta_{j_{\sigma_d},2k}(z_d).
$$
Proof. Recall that the determinant line bundle ξ on the moduli space of parabolic bundle \mathcal{M}_P, satisfies $\xi \cong \otimes_{i=1}^d (q_i^* L_0)^2$, where $q_i : M^d \to M$ is the projection on the ith factor. Therefore, elements in $H^0(\mathcal{M}_P, \xi^k)$ are given by Γ_d invariant theta functions of level $2k$ on M^d. From Theorem 4.5 it follows that applying $\varphi_{k,\tau}^{\otimes d} \circ C_{\chi+2}^{\otimes d}$ to $\Psi_{J,k}$ we get $\phi_{J,k}$. □

Remark 4.8. We see that the Verlinde number is equal to the dimension of the space of degree k polynomials in d variables, which is consistent with $\xi \cong O(1)$ on $\mathcal{M}_P \cong \mathbb{P}^d$.

Remark 4.9. Non-abelian theta functions $H^0(\mathcal{M}_P, \xi^k)$ of level k can therefore be described as the image, by a coherent state transform, of the finite dimensional space of distributions on the compact group $SU(2)^d$. In particular, following [FMN1, FMN2], in this case the CST can also be interpreted as the parallel transport of a unitary connection on the bundle of conformal blocks over $\mathcal{M}_{0,4}$.

Acknowledgements

The authors were partially supported by the Center for Mathematical Analysis, Geometry and Dynamical Systems, IST, Portugal. The first author wishes to thank Instituto Superior Técnico, where the work was carried out, for its hospitality; his visit to IST was funded by the FCT project PTDC/MAT/099275/2008.

References

[AdPW] S. Axelrod, S. Della Pietra and E. Witten, Geometric quantization of Chern-Simons theory, Jour. Diff. Geom. 33 (1991), 787–902.
[At1] M. F. Atiyah, On the Krull–Schmidt theorem with application to sheaves, Bull. Soc. Math. Fr. 84 (1956), 307–317.
[At2] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7 (1957), 412–452.
[BMN] T. Baier, J. Mourão and J. P. Nunes, Quantization of abelian varieties: distributional sections and the transition from Kähler to real polarizations, Jour. Funct. Anal. 258 (2010), 3388–3412.
[BBN] V. Balaji, I. Biswas and D. S. Nagaraj, Principal bundles over projective manifolds with parabolic structure over a divisor, Tohoku Math. Jour. 53 (2001), 337–367.
[Bi1] I. Biswas, Parabolic bundles as orbifold bundles, Duke Math. Jour. 88 (1997), 305–325.
[Bi2] I. Biswas, Determinant line bundle on moduli space of parabolic bundles, Ann. Global Anal. Geom. 40 (2011), 85–94.
[BR] I. Biswas and N. Raghavendra, Determinants of parabolic bundles on Riemann surfaces, Proc. Indian Acad. Sci. (Math. Sci.) 103 (1993), 41–71.
[FMN1] C. Florentino, J. Mourão and J. P. Nunes, Coherent state transforms and abelian varieties, Jour. Funct. Anal. 192 (2002), 410–424.
[FMN2] C. Florentino, J. Mourão and J. P. Nunes, Coherent state transforms and vector bundles on elliptic curves, Jour. Funct. Anal. 204 (2003), 355–398.
[Go] W. M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984), 200–225.
[Ha] B. Hall, The Segal-Bargmann coherent state transform for compact Lie groups, Jour. Funct. Anal. 122 (1994), 103–151.
[Hi] N. J. Hitchin, Flat connections and geometric quantization, Comm. Math. Phys. 131 (1990), 347–380.
[La] Y. Laszlo, About G-bundles over elliptic curves, Ann. Inst. Fourier 48 (1998), 413–424.
[Lo] E. Looijenga, Root systems and elliptic curves, Invent. Math. 38 (1976), 17–32.
M. Maruyama and K. Yokogawa, Moduli of parabolic stable sheaves, *Math. Ann.* **293** (1992), 77–99.

V. B. Mehta and C. S. Seshadri, Moduli of vector bundles on curves with parabolic structures, *Math. Ann.* **248** (1980), 205–239.

M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, *Ann. of Math.* **82** (1965), 540–567.

D. G. Quillen, Determinants of Cauchy-Riemann operators on Riemann surfaces, *Funct. Anal. Appl.* **19** (1985), 37–41.

L. A. Takhtajan and P. Zograf, The first Chern form on moduli of parabolic bundles, *Math. Ann.* **341** (2008), 113–135.