First inland record of bull shark *Carcharhinus leucas* (Carcharhiniformes: Carcharhinidae) in Indonesian Borneo

MUHAMMAD IQBAL¹, ARUM SETIAWAN²* & INDRA YUSTIAN²

¹Biology Program, Faculty of Science, Sriwijaya University, Jalan Padang Selasa 524, Palembang, Sumatera Selatan 30129, Indonesia.

²Department of Biology, Faculty of Science, Sriwijaya University, Jalan Raya Palembang-Prabumulih km 32, Indralaya, Sumatera Selatan 30662, Indonesia.

* Corresponding author. E-mail: arum.setiawan@unsri.ac.id

Received 16 October 2019 | Accepted by V. Pešić: 27 November 2019 | Published online 2 December 2019.

Abstract
An individual of bull shark *Carcharhinus leucas* (Müller & Henle, 1839) with c. 600-700 mm of total length was caught and photographed on 2019 in Barito River, South Kalimantan province, Indonesia. This finding is considered as a first inland record of *C. leucas* in Indonesian Borneo (Kalimantan). Collecting data using citizen science is needed to asses the occurrence of *C. leucas* and evaluate the importance of riparian system in Kalimantan waters as nursery area or ranging habitat for this species.

Key words: elasmobranch, evidence, freshwater, Indonesia, Kalimantan.

Introduction
The requiem sharks or family Carcharhinidae are the dominant sharks (often in biodiversity, abundance and biomass) in tropical waters on continental shelves and offshores, but they also found in subtropical and warm temperate seas (Compagno & Niem 1998; Ebert et al. 2013). Most species of requiem sharks inhabit tropical continental coastal and offshore marine waters, with a few occuring in freshwater rivers and lakes (Ebert et al. 2013). A few requiem species (the little-known river shark *Glyphis* spp and the bull shark *Carcharhinus leucas*) appear to be the only living sharks that can live in freshwater for extended periods (Compagno et al. 2005).

At least 15 Indo-West Pacific species (6% of the total inshore-freshwater fauna) are possibly marginal freshwater elasmobranchs, and may occur in fresh water but may not travel up rivers to any great extent (Compagno 2002). *Carcharhinus leucas* (Müller & Henle, 1839) is a cosmopolitan elasmobranch in most Indo-West Pacific waters (including freshwater and brackish rivers and lakes) that occur in Indonesian and Bornean waters (Kottelat et al. 1993; Last et al. 2010). Unfortunately, there is no information if *C. leucas* has been recorded inland in Indonesian Borneo or Kalimantan. In this paper, we summarize first inland record of *C. leucas* in Indonesian Borneo.
Materials and Methods

An individual of *C. leucas* (c. 600-700 mm of total length and 4 kg of weight) was caught and photographed on 28 September 2019 at Barito river, Ulu Benteng, Marabahan subdistrict, Barito Kuala district, South Kalimantan province, Indonesia (02°56'19''S, 114°45'57''E) (Fig. 1). The site is in inland freshwater habitat located c. 70 km distance from mouth of river. The presence of *C. leucas* in inland freshwater habitat in Barito river was reported by local online media in Indonesia (Kurniawan 2019; Rendy 2019). The shark was identified by combination of morphological features. Unfortunately, due to the lack of preservation facility, neither tissue sample nor the body part was collected. Instead, the specimen was processed by villagers as dry salted fish for local consumption (Alkaf 2019).

![Figure 1. Location of known *C. leucas* in Borneo. Red circles are *C. leucas* recorded in Borneo after Last et al. (2010), and yellow circle is recent inland record from Barito river, Indonesia.](image-url)
Results and Discussions

The *C. leucas* found in Barito River has features of requiem sharks family: eyes on side of head; mouth large, arched and elongated, and extending well behind eyes; two dorsal fins, the first dorsal fin moderately large, much shorter than the caudal fin, its base located over the interspace between pectoral and pelvic fin bases. This shark is identified as *C. leucas* by greyish back and white belly; snout short; small eyes; first dorsal fin high; pectoral fins broad, with narrow pointed; tip of second dorsal and caudal fins dark (indicate a young individual) (Fig. 2). The features above are fitted well to the characters of *C. leucas* (Compagno & Niem 1998; Compagno *et al.* 2005; Ebert *et al.* 2013). Based on freshwater habitat localities, this specimen could be a species of freshwater shark from genus *Glyphis*, which also occur in Indonesia waters (Last & Stevens 1994; Fahmi & Adrim 2009; Fahmi 2010). However, It was shortly recognized that these specimens differ from *Glyphis* by its small second dorsal fin, while *Glyphis* has large relative size of the second dorsal-fin (Last & Stevens 1994; Fahmi & Adrim 2009).

![Figure 2](image). The *C. leucas* which caught by local fisherman in Barito river at Ulu Benteng, Barito Kuala district, South Kalimantan province (Photo: Rendy).

A specimen of *C. leucas* found in Barito River show specific features of early young individual. Another recent finding of early young juveniles of *C. leucas* in Sumatra (Iqbal *et al.* 2019) indicate freshwater habitat as a nursery area for this species in Western Indonesia. Young individuals of *C. leucas* readily tolerate low salinities, and some of them born in freshwater (Compagno & Niem 1998). Early young individual of *C. leucas* in Barito River meet to other records of the juveniles of this species from around the world, including presence of early young *C. leucas* in Brisbane River, Australia, and a number of 14 small specimens of *C. leucas* in brackish Indian River lagoon system on the central east coast of Florida, USA (Snelson *et al.* 1984; Pillans 2006). The early youngs of *C. leucas* have the osmoregulatory plasticity to acclimate to salt water; and their preference for the freshwater inland of rivers where salinity is low therefore likely to be for avoiding predator and increased of prey abundance rather than because of a physiological constraint (Pillans *et al.* 2004).
Carcharhinus leucas is most wide ranging requiem shark inhabiting marine, shallow waters, estuarine and up to upstream of large river (Compagno & Niem, 1998; Compagno et al. 2005; Ebert et al. 2013). Inland record of *C. leucas* has been reported in Malaysian Borneo, when a species has been reported as a dried fin provided by a villager in Sukau (Sabah) in 1996 and a juvenile (identification was made based on photographs) was caught in 2010 in main Kinabatangan River close to the Malbumi estate (freshwater habitat approximately 40 km upriver from the estuary) (Manjaji 2002; Min 2013). Recent finding of *C. leucas* in Barito River could be represent a first known inland record for Indonesian Borneo. The record of *C. leucas* c. 70 km in Barito River also represent further inland of this species in Bornean waters. A worldwide of global freshwater records of the *C. leucas* was compiled by Gausmann (2018). Previous known incidences presence of the *C. leucas* in freshwater area from around the world are: a freshwater record of 120 km inland in Zambesi River, Zimbabwe; recorded up to 420 km inland in Karun River, Iran; recorded of up to the distance of 130 km far inland in Lake Jamur, West Papua, Indonesia; a confirmed as far as 115 km inland at Wyrallah, Richmond River, Australia; a female *C. leucas* was reported in the Mearim River, 80 km far from the river’s mouth, Maranhão State, Brazil; 67 juveniles *C. leucas* were monitored in Caloosahatchee River between 2003 and 2006 using 25 acoustic receivers, ranged 0 to 14 km with most more 5 km from the river’s mouth, southwest Gulf Coast of Florida, United States; and recently a record of up to 75 km inland in Musi River, South Sumatra, Indonesia (Martin 2005; Heupel et al. 2010; Feitosa et al. 2016; Gausmann 2018; Iqbal et al. 2019).

The adaptation to freshwater environments has occurred independently many times in elasmobranch evolution (Lucifora et al. 2015). However, the factors affecting the poor penetration of elasmobranchs into freshwater environments are currently unknown, however, an important consideration may be the high urea requirement of many proteins in marine elasmobranchs (Ballantyne & Robinson 2010). It is more likely that *C. leucas* had not been reported because elasmobranch of Indonesian and Bornean waters had not been explored enough than species recently colonized in this area. Recent works suggest that few species of elasmobranch had been known occur locally but lacking for publication, such as *Carcharhinus melanopterus*, *C. leucas*, *Fluvitrygon oxyrhynchus* and *Urogymnus polylepis* (Iqb& Yustian 2016; Iqbal et al. 2017; Iqbal et al. 2019a, b).

An individual of *C. leucas* found in Barito River has black tip of fins and size around c. 600-700 mm of total length, show specific characters of young individual (Compagno & Niem 1998). The young individual of *C. leucas* in Barito River is meet to other records of the young individual of this species from Indonesia, including presence of two species of *C. leucas* in Musi River, South Sumatra province (Iqbal et al. 2019a). The young *C. leucas* readily tolerate low salinities, and some are born in freshwater (Compagno & Niem 1998). In the future, collecting data using citizen science is needed to assess the occurence of *C. leucas* and evaluate the importance of riparian systems in Kalimantan waters as nursery area or ranging habitat for this species.

Acknowledgements
We would like to thank Nia Kurniawan and Rendy who draw our attention to the presence of *Carcharhinus leucas* in Barito River and providing us photos. We thank anonymous reviewers who provided invaluable suggestions for this paper.

References
Alkaf, B. (2019) *Masuk Sungai Barito, ikan predator langsung 'digarih' (Enter the Barito River, the predatory fish is directly become 'dry fish')* https://apahabar.com/2019/09/masuk-sungai-barito-ikan-predator-langsung-digarih/ accessed on 12.11.2019. [in Indonesian]

Ballantyne, J.S. & Robinson, J.W. (2010) Freshwater elasmobranchs: a review of their physiology and biochemistry. *Journal of Comparative Physiology B*, 180(4), 475-93.

Compagno, L.J.V. (2002) Freshwater and estuarine elasmobranch surveys in the Indo-Pacific Region: threats, distribution and speciation. In: Fowler, S.L., Reed, T.M. & Dipper, F.A. (Eds), *Elasmobranch Biodiversity, conservation and management: Proceedings of the International seminar and workshop, Sabah, Malaysia, July 1997*. IUCN SSC Shark Specialist Group, Switzerland and Cambridge. pp 185-193.

Ecologica Montenegrina, 24, 2019, 52-57
Compagno, L.J.V. & Niem, V.H. (1998) Carcharhinidae. Requiem sharks. In: Carpenter K.E. & Niem, V.H. (Eds.), FAO identification guide for fishery purposes. The living marine resources of the Western Central Pacific) Volume 2. Cephalopods, crustaceans, holothurians and sharks. FAO, Rome. pp 1312-1360.

Compagno, L., Dando, M. & Fowler, S. (2005) A field guide to the sharks of the world. Princeton University Press, New Jersey. 368 p.

Ebert, D., Fowler, S. & Compagno, L. (2013) Sharks of the world, a fully illustrated guide. Wild Nature Press, Plymouth. 528 p.

Fahmi. (2010) Sharks and rays in Indonesia. Marine Research in Indonesia. 35(1), 43-54.

Fahmi. & Adrim, M. (2009) The first record of a shark of the genus Glyphis in Indonesia. The Raffles Bulletin of Zoology, 57(1), 113–118.

Feitosa, L.M., Martins, A.P.B. & Nunes, J.L. (2018). Synopsis of global freshwater occurrences of the bull shark (Carcharhinus leucas Valenciennes 1839, Carcharhinididae) with comments on the geographical range. Unpublished report.

Heupel, M.R., Yeiser, B.G., Collins, B.G., Ortega, C.L. & Simpfendorfer, C.A. (2010) Long-term presence and movement patterns of juvenile bull sharks, Carcharhinus leucas, in an estuarine river system. Marine and Freshwater Research, 61, 1-10.

Iqbal, M., Nurnawati, E., Setiawan, A., Dahlan, Z. & Yustian, I. (2019) First photographic inland records of bull shark Carcharhinus leucas (Carcharhiniformes: Carcharhinidae) in Sumatran waters, Indonesia. Ecologica Montenegro, 22, 171-176.

Iqbal, M., Saputra, R.F., Setiawan, A. & Yustian, I. (2019) First photographic inland record of blacktip reef sharks Carcharhinus melanopterus (Carcharhiniformes: Carcharhinidae) in Indonesian waters. Ecologica Montenegro, 24, 6-10.

Iqbal, M., Setiawan, D. & Ajiman. (2017) Presence of Fluviorygon oxyrhynchus in Sumatra, Indonesia (Chondrichthyes: Dasyatididae). Ichthyological Exploration of Freshwaters, 28(1), 83-86.

Iqbal, M. & Yustian, I. (2016) Occurrence of the giant freshwater stingray Urogaumus polyplepis in Sumatra, Indonesia (Chondrichthyes: Dasyatidae). Ichthyological Exploration of Freshwaters, 27, 333 –336.

Kottelat, M., Whitten, A.J., Kartikasari, S.N. & Wirjoatmodjo, S. (1993) Freshwater fishes of Western Indonesia and Sulawesi. Periplus, Hong Kong. 259 pp.

Kurniawan, N. (2019) Hiu masuk Sungai Barito tertangkap jaring jadi ikan kering, begini penjelasan ahli (Sharks entering the Barito River are caught by nets into dried fish, this is the expert's explanation). https://banjarmasin.tribunnews.com/2019/09/29/hiu-masuk-sungai-barito-tertangkap-jaring-jadi-ikan-kering-begini-penjelasan-ahli accessed on 12.11.2019. [in Indonesian]

Last, P.R. & Stevens, J.D. (1994) Sharks and Rays of Australia. CSIRO, Australia. 513 p.

Last, P.R., White, W. T., Cairns, J. N., Dharmadi. Fahmi., Jensen, K., Lim, A.P.K., Manjaji-Matsumoto, B.M., Naylor, G.J.P., Pogonoski, J.J., Stevens, J.D. & Yearsley, G.K. (2010) Sharks and rays of Borneo. CSIRO, Collingwood. 298 p.

Lucifora, L.O., de Carvalho,M.R., Kyne, P.M. & White, W.T. (2015) Freshwater sharks and rays. Current Biology, 25, R971–R973.

Manjaji, B.M. (2002) Elasmobranchs Recorded from Rivers and Estuaries in Sabah. In: Fowler, S.L., Reed, T.M. & Dipper, F.A. (Eds), Elasmobranch Biodiversity, conservation and management: Proceedings of the International seminar and workshop, Sabah, Malaysia, July 1997. IUCN SSC Shark Specialist Group, Switzerland and Cambridge. pp 194–198.

Martin, R.A. (2005) Conservation of freshwater and euryhaline elasmobranchs: a review. Journal of the Marine Biological Association of the United Kingdom, 85, 1049-1073.

Min, P.T. (2013) Conservation status of sharks and rays in the lower Kinabatangan: preliminary findings. Kinabatangan River Spirit Initiative, Sabah. 7 p.Pillans, R.D. (2006) The physiological ecology of the bull shark Carcharhinus leucas in the Brisbane River. PhD Thesis, School of Integrative Biology, University of Queensland.

Pillans, R.D., Good, J.P., Anderson, W.G., Hazon, N. & Franklin, C.E. (2005) Freshwater to seawater acclimation of juvenile bull sharks (Carcharhinus leucas): plasma osmoles and K+/K+-ATPase activity gill, rectal gland, kidney and intestine. Journal of Comparative Physiology B, 175(1), 37-44.
Pillans, R.D. & Franklin, C.E. (2004). Plasma osmolyte concentrations and rectal gland mass of bull sharks *Carcharhinus leucas*, captured along a salinity gradient. *Comparative Biochemistry and Physiology Part A*, 138(3), 363-71.

Rendy. (2019) *Warga was-was ada hiu lebih besar di Sungai Barito* (Residents are wary of bigger sharks on the Barito River). https://www.kanalkalimantan.com/warga-ada-hiu-lebih-besar-di-sungai-barito/ accessed on 12.11.2019. [in Indonesian]

Snelson, F.F., Mulligan, T.J. & Williams, S.E. (1984) Food habits, occurrence, and population structure of the bull shark, *Carcharhinus leucas* in florida coastal lagoons. *Bulletin of Marine Science*, 34(1), 71-80.
Ecologica Montenegrina

Country: Montenegro

Subject Area and Category:
- Agricultural and Biological Sciences
- Animal Science and Zoology
- Ecology, Evolution, Behavior and Systematics
- Insect Science
- Plant Science

Publisher: Journals

ISSN: 23370173, 23369744

Coverage: 2014-2020

Scope: Ecologica Montenegrina (ISSN 2336-9744 (online) | ISSN 2337-0173 (print)) is a peer-reviewed journal in which scientific articles and reports are quickly published. The papers are in the fields of taxonomy, biogeography and ecology (for example: new taxa for science, taxonomic revision, and/or fundamental ecology and biogeography papers). Open access publishing option is strongly encouraged for authors with research grants and other funds. For those without grants/funds, all accepted manuscripts will be published but access is secured for subscribers only.

Homepage

How to publish in this journal

Contact

Join the conversation about this journal
Not every article in a journal is considered primary research and therefore "citable", this chart shows the ratio of a journal's articles including substantial research. The ratio of a journal's items, grouped in three years windows, that have been cited at least once vs. those documents not cited during the following year. The chart shows the evolution of the average number of citations and journal's self-citation ratio. Self-citation measures the percentage of citations a journal receives from its own documents during the three previous years.

The SJR is a measure of scientific influence of the average article in a journal. It measures the ratio of a journal's documents to its total citations. The SJR is a size-independent prestige indicator that ranks journals by their 'average prestige per article'. It is based on the idea that 'all citations are not created equal'. SJR is a size-independent prestige indicator that ranks journals by their average prestige per article. It is based on the idea that 'all citations are not created equal'. The two years line is equivalent to journal impact factor times documents published in a journal in the past two years and divided by the documents published in that journal.

The chart shows the evolution of the number of total citation per document and external citation per document (i.e. journal self-citations received by a journal's published documents). It expresses how central to the global output a journal is and the importance or prestige of journals that accounts for both the number of citations and the importance or prestige of the journals where such citations come from. The journal's self-citation is denoted as the number of citation from a journal citing article to articles published by the same journal. Percentage of international collaboration accounts for the articles that have been produced by researchers from several countries. The chart shows the ratio of a journal's items, grouped in three years windows, that have been cited at least once vs. those documents not cited during the following year. The chart shows the evolution of the average number of citations and journal's self-citation ratio. Self-citation measures the percentage of citations a journal receives from its own documents during the three previous years. The SJR is a measure of scientific influence of the average article in a journal. It measures the ratio of a journal's documents to its total citations. The SJR is a size-independent prestige indicator that ranks journals by their 'average prestige per article'. It is based on the idea that 'all citations are not created equal'. SJR is a size-independent prestige indicator that ranks journals by their average prestige per article. It is based on the idea that 'all citations are not created equal'. The two years line is equivalent to journal impact factor times documents published in a journal in the past two years and divided by the documents published in that journal. The chart shows the evolution of the average number of citations and journal's self-citation ratio. Self-citation measures the percentage of citations a journal receives from its own documents during the three previous years. The SJR is a measure of scientific influence of the average article in a journal. It measures the ratio of a journal's documents to its total citations. The SJR is a size-independent prestige indicator that ranks journals by their 'average prestige per article'. It is based on the idea that 'all citations are not created equal'. SJR is a size-independent prestige indicator that ranks journals by their average prestige per article. It is based on the idea that 'all citations are not created equal'. The two years line is equivalent to journal impact factor times documents published in a journal in the past two years and divided by the documents published in that journal.
Ecologica Montenegrina

Editorial Team

Editor in Chief

Vladimir Pešić, Department of Biology, University of Montenegro, Montenegro

Editorial Board

Badamdorj Bayartogtokh, National University of Mongolia, Mongolia
Holger Braun, Museo de La Plata, Argentina
Dr Patricia De los Rios Escalante, Universidad Católica de Temuco, Chile
Sergey G. Ermilov, Tyumen State University, Tyumen, Russia, Russian Federation
Igor Dovygal, A. Kovalevsky Institute of Marine Biological Research, Russian Federation
Thibaut Datry, Istrea, UR MALY, Centre de Lyon-Villeurbanne, France
Zoltán Fehér, Natural History Museum Vienna 3rd Zoology Department, Austria
Dilan Georgiev, University of Plovdiv, Bulgaria
Reinhard Gerecke
Wolfram Graf, University of Natural Resources and Life Sciences, Vienna, Austria
Michal Grabowski, Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Poland
Clemens Grosser, Germany
Boris Gueorguiev, National Museum of Natural History, Sofia, Bulgaria
Sead Hadžiablahović, Environmental Protection Agency of Montenegro, Montenegro
Dr Laith A. Jawad, Flat Bush, Manukau, Auckland, New Zealand, New Zealand
Dr Roman Yakovlev, Altai State University, Russian Federation
Max Kasparek, Zoology in the Middle East, Germany
Gordan S. Karaman, Montenegrin Academy of Sciences, Montenegro
Jeno Kontschán, Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences., Hungary
Andrey Kostianoy, P.P.Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia, Russian Federation
Katarina Liubisavljević, Montenegro
Dr Andrzej Zawal, Department of Invertebrate Zoology & Limnology, University of Szczecin, Szczecin, Poland, Poland
Slobodan Evgenij Makarov, University of Belgrade Faculty of Biology, Serbia
David Murányi, Hungarian Natural History Museum Department of Zoology
Baross u. 13, H-1088 Budapest, Hungary, Hungary
Momir M Jašin, Institute for Biological Research "Sinisa Stankovic" University of Belgrade Republic of Serbia Bulevar despot Stefan 142, 11000 Belgrade, Serbia, Serbia
Radoslav Petanović, University of Belgrade - Faculty of Agriculture Department of Entomology and Agricultural Zoology Nemanjina 6, P.O. BOX 127 11080 Belgrade - Zemun SERBIA, Serbia
Prof. Alireza Saboori, University of Tehran, Iran, Islamic Republic of
Zoltán Sándor Varga, University of Debrecen, Hungary
Dr Anton V. Volynkin, Altai State University
Paul Selden, University of Kansas, United States
Nelli Gripperveya Tan, Institute of Marine Biological Researches RAS, Russian Federation
Harry Smit, Naturalis Biodiversity Center, Netherlands
Boris Sket, Univerza v Ljubljani, Slovenia
 Vesna Vukasinovic Pesic, Department of Technology, University of Montenegro, Podgorica, Montenegro

ISSN: 2336-9744

https://www.biotaxa.org/em/about/editorialTeam
Ecologica Montenegrina

Vol 24 (2019)

Table of Contents

Articles

A Description of a new Valvata (Mollusca: Valvatidae) from Armenia
Frank Walther, Peter Glöer
PDF 1-5

First photographic inland record of blacktip reef sharks
Carcharhinus melanopterus (Carcharhiniformes: Carcharhinidae) in Indonesian waters
Muhammad Iqbal, Rio Firman Saputra, Arum Setiawan, Indra Yustian
PDF 6-10

Linking a gap, First record of dusky-gilled mudskipper
Periophthalmus variabilis Eggert, 1935 (Perciformes: Gobiidae) in southern Sumatra, Indonesia
Arum Setiawan, Muhammad Iqbal, Bela Friscillia, Pormansyah , Doni Setiawan, Indra Yustian
PDF 11-16

The first investigation record of threatened horseshoe crabs in the Banyuasin estuarine, South Sumatra, Indonesia
Fauziyah ,, Anna I.S. Purwiyanto, Wike A.E. Putri, Fitri Agustriani, Apon Z. Mustopa, Fatimah .
PDF 17-24

A new Contradens from Laos (Bivalvia: Unionidae: Contradentini)
Ekaterina S. Konopleva, Ivan N. Bolotov, Vitaly M. Spitsyn, Alexander V. Kondakov, Mikhail Yu. Gofarov, Ilya V. Vikhrev
PDF 25-31

A new Najadicola species (Acari: Hydrachnidia: Pionidae) from Asia
Yulia E. Chapurina, Ilya V. Vikhrev, Alexander V. Kondakov, Kitti Tanmuangpak
PDF 32-37

The morphometric variability of the mangrove horseshoe crab (Carcinoscorpius rotundicauda) from Banyuasin estuarine of South Sumatra, Indonesia
Fauziyah,, Wike A.E. Putri, Anna I.S. Purwiyanto, Fitri Agustriani, Apon Z. Mustopa, Fatimah .
PDF 38-46

First record Neostethus bicornis (Phallostethidae: Atheriniformes) for Sumatran waters, Indonesia
Laila Hanum, Muhammad Iqbal, Yuanita Windsusari, Winda Indriati, Indra Yustian
PDF 47-51

First inland record of bull shark Carcharhinus leucas (Carcharhiniformes: Carcharhinidae) in Indonesian Borneo
Muhammad Iqbal, Arum Setiawan, Indra Yustian
PDF 52-57

Comparative Characteristics of the Greek Juniper (Juniperus excelsa Beieb.) Populations in the Southeastern Crimea
Viktoria Yu. Letukhova, Irina L. Potapenko
PDF 58-65

Invasion of the common percarrina Percarina demidoffii (Percidae, Perciformes) in the Dnieper River upstream
Roman Novitskiy, Leonid Manilo, Viktor Gasso, Nadiia Hubanova
PDF 66-72
First inland record of bull shark
Carcharhinus leucas (Carcharhiniformes: Carcharhinidae) in Indonesian Borneo

By Arum Setiawan
First inland record of bull shark *Carcharhinus leucas* (Carcharhiniformes: Carcharhinidae) in Indonesian Borneo

MUHAMMAD IQBAL¹, ARUM SETIAWAN² & INDRA YUSTIAN²

¹Biology Program, Faculty of Science, Sriwijaya University, Jalan Prof. Dr. H. Solo 324, Palembang, Sumatera Selatan 30129, Indonesia.
²Department of Biology, Faculty of Science, Sriwijaya University, Jalan Prof. Dr. H. Solo 324, Palembang-Indonesia 30129, Indonesia.
* Corresponding author. E-mail: arum.setiawan@unsri.ac.id

Received 16 October 2019 | Accepted by V. Pešić: 27 November 2019 | Published online ... December 2019.

Abstract

An individual of bull shark *Carcharhinus leucas* (Müller & Henle, 1839) with c. 600-700 mm of total length was caught and photographed on 2019 in Barito River, South Kalimantan province, Indonesia. This finding is considered as a first inland record of *C. leucas* in Indonesian Borneo (Kalimantan). Collecting data using citizen science is needed to assess the occurrence of *C. leucas* and evaluate the importance of riparian system in Kalimantan waters as nursery area or ranging habitat for this species.

Key words: elasmobranch, evidence, freshwater, Indonesia, Kalimantan.

Introduction

The requiem sharks or family Carcharhinidae are the dominant sharks (often in biodiversity, abundance and biomass) in tropical waters on continental shelves and offshore, but they also found in subtropical and warm temperate seas (Compagno & Niem 1998; Ebert et al. 2013). Most species of requiem sharks inhabit tropical continental coastal and offshore marine waters, with a few occurring in freshwater rivers and lakes (Ebert et al. 2013). A few requiem species (the little-known river shark * Glyphis* spp and the bull shark *Carcharhinus leucas*) appear to be the only living sharks that can live in freshwater for extended periods (Compagno et al. 2005).

At least 15 Indo-West Pacific species (6% of the total inshore-freshwater fauna) are possibly marginal freshwater elasmobranchs, and may occur in fresh water but may not travel up rivers to any great extent (Compagno 2002). *Carcharhinus leucas* (Müller & Henle, 1839) is a cosmopolitan elasmobranch in most Indo-West Pacific waters (including freshwater and brackish rivers and lakes) that occur in Indonesian and Bornean waters (Kottekat et al. 1993; Last et al. 2010). Unfortunately, there is no information if *C. leucas* has been recorded inland in Indonesian Borneo or Kalimantan. In this paper, we presented first inland record of *C. leucas* in Indonesian Borneo.
Materials and Methods

An individual of *C. leucas* (c. 600-700 mm of total length and 4 kg of weight) was caught and photographed on 28 September 2019 at Barito river, Ulu Benteng, Marabahan subdistrict, Barito Kuala district, South Kalimantan province, Indonesia (02°56'19"S, 114°45'57"E) (Fig. 1). The site is in inland freshwater habitat located c. 70 km distance from mouth of river. The presence of *C. leucas* in inland freshwater habitat in Barito river was reported by local online media in Indonesia (Kurniawan 2019, Rendy 2019). The shark was identified by combination of morphological features. Unfortunately, due to the lack of preservation facility, neither tissue sample nor the body part was collected. Instead, the specimen was processed by villagers as dry salted fish for local consumption (Alkaf 2019).

![Figure 1. Location of known *C. leucas* in Borneo. Red circles are *C. leucas* recorded in Borneo after Last et al. (2010), and yellow circle is recent inland record from Barito river, Indonesia.](image-url)
Results and Discussions

The C. leucas found in Barito River has features of requiem sharks family: eyes on side of head; mouth large, arched and elongated, and extending well behind eyes; two dorsal fins, the first dorsal fin moderately large, much shorter than the caudal fin, its base located over the interspace between pectoral and pelvic fin bases. This shark is identified as C. leucas by greyish back and white belly; snout short, small eyes; first dorsal fin high; pectoral fins broad, with narrow pointed; tip of second dorsal and caudal fins dark (indicate a young individual) (Fig. 2). The features above are fitted well to the characters of C. leucas (Compagno & Niem 1998; Compagno et al. 2005; Ebert et al. 2013). Based on freshwater habitat localities, both specimens could be a species of freshwater shark from genus Glyphis, which also occur in Indonesia waters (Last & Stevens 1994; Fahmi & Adrim 2009; Fahmi 2010). However, it was shortly recognized that these specimens differ from Glyphis by its small second dorsal fin, while Glyphis has large relative size of the second dorsal-fin (Last & Stevens 1994; Fahmi & Adrim 2009).

![Image](image_url)

Figure 2. The C. leucas which caught by local fisherman in Barito river at Ulu Benteng, Barito Kuala district, South Kalimantan province (Photo: Rendy).

A specimen of C. leucas found in Barito River show specific features of early young individual. Another recent finding of early young juveniles of C. leucas in Sumatra (Iqbal et al. 2019) indicate freshwater habitat as a nursery area for this species in Western Indonesia. Young individuals of C. leucas readily tolerate low salinities, and some of them born in freshwater (Compagno & Niem 1998). Early young individual of C. leucas in Barito River are met to other records of the juveniles of this species from around the world, including presence of early young C. leucas in Brisbane River, Australia, and a number of 14 small specimens of C. leucas in brackish Indian River lagoon system on the central east coast of Florida, USA (Seelson et al. 1984; Pillans 2006). The early youngs of C. leucas have the osmoregulatory plasticity to acclimate to salt water; and their preference for the freshwater inland of rivers where salinity is low therefore likely to be for avoiding predator and increased of prey abundance rather than because of a physiological constraint (Pillans et al. 2004).
Carcharhinus leucas is most wide-ranging requiem shark inhabiting marine, shallow waters, estuarine and up to upstream of large river (Compagno & Niem, 1998; Compagno et al. 2005; Ebert et al. 2013). Inland record of C. leucas has been reported in Malaysian Borneo, when a species has been reported as a dried fin provided by a villager in Sukau (Sabah) in 1996 and a juvenile (identification was made based on photographs) was caught in 2010 in main Kinabatangan River close to the Malaluan estate (freshwater habitat approximately 40 km upriver from the estuary) (Manjuy 2002; Min 2013). Recent finding of C. leucas in Barito River could be represent a first known inland record for Indonesian Borneo. The record of C. leucas c. 70 km in Barito River also represent further inland of this species in Bornean waters. A worldwide of global freshwater records of the C. leucas was compiled by Gaumann (2018). Previous known incidences presence of the C. leucas in freshwater area of this species of sharks from around the world area: freshwater record of 120 km inland in Zambezi River, Zimbabwe; recorded up to 429 km inland in Karun River, Iran, recorded up to the distance of 130 km far inland in Lake Jamur, West Papua, Indonesia; a confirmed as far as 115 km inland at Wyrrallah, Richmond River, Australia; a female C. leucas was reported in the Murrumbidgee River, 80 km far from the river’s mouth, Maranhão State, Brazil; 67 juveniles C. leucas were monitored in Caloosahatchee River between 2003 and 2006 using 25 acoustic receivers, ranged 0 to 14 km with most more 5 km from the river’s mouth, southwest Gulf Coast of Florida, United States; and recently a record of up to 75 km inland in Musi River, South Sumatra, Indonesia (Martin 2003; Heupel et al. 2010; Ferlosa et al. 2016; Gaumann 2018; Iqbal et al. 2019).

The invasion of and adaptation to freshwater environments has occurred independently many times in elasmobranch evolution (Lucifora et al. 2015). However, the factors affecting the poor penetration of elasmobranchs into freshwater environments are currently unknown, however, an important consideration may be the high area requirement of many species in marine elasmobranchs (Ballantyne & Robinson 2010). It is more likely that C. leucas has not been reported because elasmobranch of Indonesian and Bornean waters had not been explored enough since species recently colonized this area. Recent works suggest that few species of elasmobranch had been known occur locally but lacking for publication, such as Carcharhinus melanopterus, C. leucas, Pseudobatis oxyrhynchos and Urogymnus polylepis (Iqbal & Yustian 2016; Iqbal et al. 2017; Iqbal et al. 2019a, b).

An individual of C. leucas found in Barito River has black tip of fins and size around c. 600-700 mm of total length, show specific characters of young individual (Compagno & Niem 1998). The young individual of C. leucas in Barito River is meet to other records of the young individual of this species from Indonesia, including presence of two species of C. leucas in Musi River, South Sumatra province (Iqbal et al. 2019a). The young C. leucas readily tolerate low salinities, and some are born in freshwater (Compagno & Niem 1998). In the future, collecting data using citizen science is needed to assess the occurrence of C. leucas and evaluate the importance of riparian systems in Kalimantan waters as nursery area or ranging habitat for this species.

Acknowledgements

We would like to thank Nia Kurniawati and Rendi who draw our attention to the presence of Carcharhinus leucas in Barito River and providing us photos. We thank anonymous reviewers who provided invaluable suggestions for this paper.

References

Alkaf, B. (2019) Musuk Sungai Barito, ikan predator langsung ‘digarih’ (Enter the Barito River, the predatory fish is directly become ‘dry fish’) https://upubahar.com/2019/09/musuk-sungai-barito-ikan-predator-langsung-digarih/accessed on 12.11.2019. [in Indonesian]

Ballantyne, J.S & Robinson, J.W. (2010) Freshwater elasmobranchs: a review of their physiology and biochemistry. Journal of Comparative Physiology B, 180(4), 475-93.

Compagno, L.J.V (2002) Freshwater and estuarine elasmobranch surveys in the Indo-Pacific Region threats, distribution and speciation. In: Fowler, S.L., Reed, T.M. & Dipper, F.A. (Eds), Elasmobranch Diversity, conservation and management: Proceedings of the International seminar and workshop, Sabah, Malaysia, July 1997. IUCN SSC Shark Specialist Group, Switzerland and Cambridge. pp 185-193.
Compagno, L.J.V. & Niem, V.H. (1998) Carcharhinidae. Requiem sharks. In: Carpenter K.E. & Niem, V.H. (Eds.), FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific Volume 2. Chondrichthyans, holostei, and sharks. FAO, Rome. pp 1512-1560.

Compagno, L., Dando, M. & Fowler, S. (2005) A field guide to the sharks of the world. Princeton University Press, New Jersey. 368 p.

Ebait, D., Fowler, S. & Compagno, L. (2013) Sharks of the world, a fully illustrated guide. Wild Nature Press, Plymouth. 528 p.

Fahmi. (2010) Sharks and rays in Indonesia. Marine Research in Indonesia, 35(1), 43-54.

Fahmi. & Adin, M. (2009) The first record of a shark of the genus Glyphis in Indonesia. The Raffles Bulletin of Zoology, 57(1), 113-118.

Feitosa, L.M., Martins, A.P.B. & Nunes, J.L. (2016) New record of Carcarhinus leucas (Valenciennes, 1839) in an equatorial river system. Marine Biodiversity Records 9, 1-4.

Gausmann, P. (2018) Synopsis of global freshwater occurrences of the bull shark (Carcharhinus leucas Valenciennes, 1839, Carcharhinidae) with comments on the geographical range. Unpublished report.

Heupel, M.R., Yeiser, B.G., Collins, B.G., Ortega, C.L. & Simpfendorfer, C.A. (2010) Long-term presence and movement patterns of juvenile bull sharks, *Carcharhinus leucas*, in an estuarine river system. *Marine and Freshwater Research*, 61, 1-10.

Iqbal, M., Nurwawati, E., Setiawan, A., Dahlan, Z. & Yustian, I. (2019) First photographic inland records of bull shark *Carcharhinus leucas* (Carcharhiniformes: Carcharhinidae) in Sumatra waters, Indonesia. *Ecologica Montenegrina*, 22, 171-176.

Iqbal, M., Saputro, R.F., Setiawan, A. & Yustian, I. (2019) First photographic inland record of bluefin roof sharks *Carcharhinus melanopterus* (Carcharhiniformes: Carcharhinidae) in Indonesian waters. *Ecologica Montenegrina*, 24, 6-10.

Iqbal, M., Setiawan, D. & Ajman. (2017) Presence of *Histiophryne oxyrhynchus* in Sumatra, Indonesia (Chondrichthyes: Dasyatidae). *Ichthyological Exploration of Freshwaters*, 28(1), 83-86.

Iqbal, M. & Yustian, I. (2016) Occurrence of the giant freshwater stingray *Urogymnus polygus* in Sumatra, Indonesia (Chondrichthyes: Dasyatidae). *Ichthyological Exploration of Freshwaters*, 27, 333–336.

Kottelat, M., Whitten, A.J., Kartikasari, S.N. & Wirjoatmodjo, S. (1993) Freshwater fishes of Western Indonesia and Sulawesi. Periplus, Hong Kong. 259 pp.

Kurniawan, N. (2019) *Hiu masuk Sungai Barito tertangkap jaring jadi ikan kering, begini penjelasan ahli* (Sharks entering the Barito River are caught by nets into dried fish, this is the expert’s explanation). https://bangarmasin.tribunnews.com/2019/09/29/hiu-masuk-sungai-barito-tertangkap-jaring-jadi-ikan-kering-begini-penjelasan-ahli accessed on 12.11.2019. [in Indonesian]

Last, P.R. & Stevens, J.D. (1994) *Sharks and Rays of Australia*. CSIRO, Australia. 513 p.

Last, P.R., White, W. T., Cairns, J. N., Diarmund. Fahmi., Jensen, K., Lim, A.P.K., Manjaji-Matsumoto, B.M., Naylor, G.I.P., Pogonowski, J.J. Stevens, J.D. & Yeelesley, G.K. (2010) *Sharks and rays of Borneo*. CSIRO, Collingwood. 298 p.

Lucifora, I.O., de Carvalho,M.R., Kyne, P.M. & White, W.T. (2015) Freshwater sharks and rays. *Current Biology*, 25, R971-R973.

Manjaji, B.M. (2002) Elasmobranchs Recorded from Rivers and Estuaries in Sabah. In: Fowler, S.L., Reed, T.M. & Diper, F.A. (Eds), Elasmobranch Biodiversity, conservation and management: Proceedings of the International seminar and workshop. Sabah, Malaysia. July 1997. IUCN SSC Shark Specialist Group, Switzerland and Cambridge. pp 194-198.

Martin, R.A. (2005) Conservation of freshwater and estuarine elasmobranchs: a review. *Journal of the Marine Biological Association of the United Kingdom*, 85. 1049-1073.

Min, P.T. (2013) *Conservation status of sharks and rays in the lower Kinabatangan: preliminary findings*. Kinabatangan River Spirit Initiative, Sabah. 7 p.

Pillans, R.D. (2006) The physiological ecology of the bull shark *Carcharhinus leucas* in the Brisbane River. PhD Thesis, School of Integrative Biology, University of Queensland.

Pillans, R.D., Good, J.P., Anderson, W.G., Hazon, N & Franklin, C.E. (2005) Freshwater to seawater acclimation of juvenile bull sharks (*Carcharhinus leucas*): plasma osmoles and Na+K+ATPase activity Gill, rectal gland, kidney and intestine. *Journal of Comparative Physiology B, 175*(1), 37-44.
Pillans, R.D. & Franklin, C.E. (2004). Plasma osmolyte concentrations and rectal gland mass of bull sharks *Carcharhinus leucas*, captured along a salinity gradient. *Comparative Biochemistry and Physiology Part A, 138*(3), 363-71.

Rendy. (2015) *Warga wau-wau ada hiu lebih besar di Sungai Barito* (Residents are wary of bigger sharks on the Barito River). https://www.kanalkalimantan.com/warga-ada-hiu-lebih-besar-di-sungai-barito/ accessed on 12.11.2019. [in Indonesian]

Snelson, F.F., Timothy J. Mulligan, T.J. & Williams, S.E. (1984) Food habits, occurrence, and population structure of the bull shark, *Carcharhinus leucas* in Florida coastal lagoons. *Bulletin of Marine Science, 34*(1), 71-80.
First inland record of bull shark *Carcharhinus leucas* (Carcharhiniformes: Carcharhinidae) in Indonesian Borneo
Jurnal Artikel Ilmiah : First inland record of bull shark *Carcharhinus leucas* (Carcharhiniformes: Carcharhinidae) in Indonesian Borneo

Penulis Artikel Ilmiah : Arum Setiawan

Identitas Jurnal Artikel Ilmiah :
- a. Nama Jurnal : Ecologica Montenegrina
- b. Nomor/Volume/Hal : 1/24/S2-57
- c. Edisi (bulan/tahun) : Oktober/2019
- d. Penerbit : Center for Biodiversity of Montenegro
- e. Jumlah Halaman : 6

Kategori Publikasi Jurnal Ilmiah :
- Jurnal Ilmiah Internasional Bereputasi [✓]
- Jurnal Ilmiah Internasional []
- Jurnal Ilmiah Nasional Terakreditasi S1, S2 []
- Jurnal Ilmiah Nasional Terakreditasi S3, S4 []
- Jurnal Ilmiah Nasional Tidak Terakreditasi []

I. Hasil Penilaian Validasi :

No.	ASPEK	URAIAN/KOMENTAR PENILAIAN
1	Indikasi Plagiasi	7 %
2	Linearitas	Sudah linier dengan bidang biologi konservasi

II. Hasil Penilaian Peer Review :

Komponen Yang Dinilai	Nilai Maksimal Jurnal Ilmiah (isikan di kolom yang sesuai)	Nilai Akhir Yang Diperoleh			
	Internasional Bereputasi (Maks 40)	Internasional (Maks 20)	Nasional Terakreditasi S1, S2 Maks 25	Nasional Terakreditasi S3, S4 Maks 20	Nasional tidak Terakreditasi (maks 10)
Kelengkapan dan Kesesuaian unsur isi jurnal (10%)	4				
Ruang lingkup dan kedalaman pembahasan (30%)	12				11
Kecukupan dan Kemutahiran data/informasi dan metodologi (30%)	12				12
Kelengkapan unsur dan kualitas penerbit (30%)	12				12
Total = (100%)	40				39
Kontribusi Pengusul (Penulis Pertama /Anggota Utama)	Anggota Utama (0,4x39) = 15,6				15,6

KOMENTAR/ULASAN PEER REVIEW

- **Kelengkapan dan Kesesuaian Unsur:**

Paper terkait deskripsi ikan *Carcharhinus leucas* di perairan Kalimantan. Isi paper sudah memenuhi kaidah-kaidah karya ilmiah dan sudah sesuai dengan bidang biologi konservasi

- **Ruang Lingkup dan Kedalaman Pembahasan:**

Hasil penelitian dibahas cukup komprehensif dengan penyampaian pembanding dari temuan-temuan penelitian lainnya dan teori terkait. Referensi yang diacu dalam pembahasan sudah cukup update untuk bidang kajian ini.

- **Kecukupan & Kemutahiran Data & Metodologi:**

Data-data hasil penelitian sudah baik dan didukung peta lokasi sampling dan gambar yang ditampilkan menarik. Data didapatkan dengan menggunakan metode yang standard.

- **Kelengkapan Unsur & Kualitas Penerbit:**

Penerbit Center for Biodiversity of Montenegro berkualitas baik, tidak termasuk predatory publisher, dan jurnal masuk di Q2.
Surabaya, 15 Mei 2020
Penilai 1

Prof. Hery Purnobasuki, M.Si., Ph.D.
NIP 196705071991021001
Unit Kerja : Jurusan Biologi FST Unair
Bidang Ilmu : Biologi
Jabatan/Pangkat : Guru Besar/ Pembina Utama Madya
Jurnal Artikel Ilmiah

Nama Jurnal: Ecologica Montenegrina
Nomor/Volume/Hal: 1/24/52-57
Edisi (bulan/tahun): Oktober/2019
Penerbit: Center for Biodiversity of Montenegro
Jumlah Halaman: 6

Kategori Publikasi Jurnal Ilmiah

Kategori Publikasi Jurnal Ilmiah	Merujuk pada Kategori yang Tepat
Jurnal Ilmiah Internasional Bereputasi	✓
Jurnal Ilmiah Internasional	
Jurnal Ilmiah Nasional Terakreditasi S1, S2	
Jurnal Ilmiah Nasional Terakreditasi S3, S4	
Jurnal Ilmiah Nasional Tidak Terakreditasi	

Hasil Penilaian Validasi:

No.	ASPEK	URAIAN/KOMENTAR PENILAIAN
1.	Indikasi Plagiasi	7%
2.	Linearitas	V

Hasil Penilaian Peer Review:

Komponen Yang Dinilai	Internasional Bereputasi (Maks 40)	Internasional (Maks 20)	Nasional Terakreditasi S1, S2 (Maks 25)	Nasional Terakreditasi S3, S4 (Maks 20)	Nasional tidak Terakreditasi (maks 10)	Nilai Maksimal Jurnal Ilmiah (isikan di kolom yang sesuai)	Nilai Akhir Yang Diperoleh
Kelengkapan dan Kesesuaian unsur isi jurnal (10%)	4						3
Ruang lingkup dan kedalaman pembahasan (30%)	12						10
Kecukupan dan Kemutakhiran data/informasi dan metodologi (30%)	12						11
Kelengkapan unsur dan kualitas penerbit (30%)	12						12
Total = (100%)	40						36

| Komponen Pengusul (Penulis Pertama / Anggota Utama) | Ecologica Montenegrina 24: 52-57 2019. Impact Factor 0,79. Penulis Korespondensi. Nilai maksimal 90%. Nilai pengusul:

\[(0,4 \times 0,9 \times 40)=14,4\] |

KOMENTAR/ULasan Peer Review

- **Kelengkapan dan Kesesuaian Unsur:** Ada abstrak. Narasi cukup dan sesuai dengan di referensi. Acuan cukup dan terkait.
- **Ruang Lingkup dan Kedalaman Pembahasan:** Masih dalam lingkup Biologi. Pembahasan sangat terbatas.
- **Kecukupan & Kemutakhiran Data & Metodologi:** Data termasuk minim sekali. Metode sudah biasa dilakukan.
- **Kelengkapan Unsur & Kualitas Penerbit:** Penerbit termasuk baik dan lengkap.

Yogyakarta, 14 Juni 2026

Penilai: [Tanda Tangan]

Prof. Dr. Suwarno Hadisusanto
NIP 195411161983031002
Unit Kerja: Fakultas Biologi UGM
Bidang Ilmu: Biologi/Ekologi
Jabatan/Pangkat: Guru Besar/ Pembina Utama Madya