RECENT DEVELOPMENTS IN VORTON THEORY

Brandon Carter

D.A.R.C., Observatoire de Paris
92 Meudon, France

Contribution to 1996 Peyresq Meeting

Abstract This article provides a concise overview of recent theoretical results concerning the theory of vortons, which are defined to be (centrifugally supported) equilibrium configurations of (current carrying) cosmic string loops. Following a presentation of the results of work on the dynamical evolution of small circular string loops, whose minimum energy states are the simplest examples of vortons, recent order of magnitude estimates of the cosmological density of vortons produced in various kinds of theoretical scenario are briefly summarised.

1 introduction

It is rather generally accepted[1] that among the conceivable varieties of topological defects of the vacuum that might have been generated in early phase transitions, the vortex type defects describable on a macroscopic scale as cosmic strings are the kind that is most likely to actually occur – at least in the post inflationary epoch – because the other main categories, namely monopoles and walls, would produce a catastrophic cosmological mass excess. Even a single wall stretching across a Hubble radius would by itself be too much, while in the case of monopoles it is their collective density that would be too high unless the relevant phase transition occurred at an energy far below that of the G.U.T. level, a possibility that is commonly neglected on the grounds that no monopole formation occurs in the usual models for the transitions in the relevant range, of which the most important is that of electroweak symmetry breaking.

The case of cosmic strings is different. One reason is that (although they are not produced in the standard electroweak model) strings are actually produced at the electroweak level in many of the commonly considered (e.g. supersymmetric) alternative models. A more commonly quoted reason why the case of strings should be different, even if they were formed at the G.U.T level, is that – while it may have an important effect in the short run as a seed for galaxy formation – such a string cannot be cosmologically dangerous just by itself, while a distribution of cosmic strings is also cosmologically harmless because (unlike “local” as opposed to “global” monopoles) they will ultimately radiate away their energy and progressively disappear. However while this latter consideration is indeed valid in the case of ordinary Goto-Nambu type strings, it was pointed out by Davis and Shellard[2] that it need not apply to “superconducting” current-carrying strings of the kind originally introduced by Witten[3]. This is because the occurrence of stable currents allows loops of string to be stabilized in states known as “vortons”, so that they cease to radiate.

The way this happens is that the current, whether timelike or spacelike, breaks the Lorentz invariance along the string worldsheet [4, 5, 6, 7], thereby leading to the possibility of rotation, with velocity v say. The centrifugal effect of this rotation, may then
compensate the string tension T in such a way as to produce an equilibrium configuration, i.e. what is known as a vorton, in which

$$T = v^2 U,$$ \hspace{1cm} (1)

where U is the energy per unit length in the corotating rest frame\cite{5, 8}. This condition is interpretable as meaning that the circulation velocity v is the same as the velocity of extrinsic (transverse) “wiggle” type perturbation – so that relatively backward moving “wiggles” will be effectively static deformations. Such a vorton state will be stable, at least classically, if it minimises the energy for given values of the pair of conserved quantities characterising the current in the loop, namely the phase winding number N say, and the corresponding particle number Z say, whose product

$$J = NZ$$ \hspace{1cm} (2)

is interpretable in the case of a circular loop as the magnitude of its angular momentum. If the current is electromagnetically coupled, with charge coupling constant e, then the latter will determine a corresponding vorton charge $Q = Ze$.

Whereas the collective energy density of a distribution of non-conducting cosmic strings will decay in a similar manner to that of a radiation gas, in contrast, for a distribution of relic vortons, the energy density will scale like that of ordinary matter. Thus, depending on when and how efficiently they were formed, and on how stable they are in the long run, such a distribution of vortons might eventually come to dominate the density of the universe. It has been rigorously established\cite{9, 10, 11} that circular vorton configurations of this kind will commonly (though not always) be stable in the dynamic sense at the classical level, but very little is known so far about non-circular configurations or about the question of stability against quantum tunnelling effects, one of the difficulties being that the latter is likely to be sensitively model dependent.

2 Dynamics of circular string loops.

Using the kind of string model\cite{12} that is appropriate for describing the effect of a Witten type current, Larsen and Axenides\cite{13} have recently carried out an analytic treatment of the special case of a free circular string loop for which the angular momentum J vanishes, so that there is no centrifugal effect to prevent the ultimate collapse of the loop. Extending this to the case for which a centrifugal is present barrier, Peter, Gangui, and the present author have undertaken a systematic analysis\cite{14} of the dynamics of a free circular string loop carrying a Witten type in the generic case for which both N and Z have non-zero values. These values will be given in terms of a pair of Bernoulli type constants of integration, B and C say, by

$$N = \frac{B}{2\pi \sqrt{\kappa_0}}, \hspace{1cm} Z = C\sqrt{\kappa_0},$$ \hspace{1cm} (3)

where κ_0 is a constant of the order of unity that depends on the particular form of the string model. The kind of string model needed for representing the macroscopic effect of a Witten type “superconducting” vacuum vortex is specified\cite{12} by a Lagrangian function \mathcal{L} depending on a single scalar variable w that is proportional to the squared magnitude
of the scalar phase variable (whose loop integral specifies the winding number N) with
k_0 as the proportionality constant. An important role in the analysis is played by derived
function K that is obtainable the Lagrangian using the formula

$$ K = -\left(\frac{2dL}{dw} \right)^{-1}, \quad (4) $$

and that is adjusted (by the convention used to fix the normalisation of k_0) so that K
tends to unity in the null current limit, i.e. as w tends to zero.

The solutions fall generically into two distinct classes, namely those for which
$B^2 > C^2$, in which the string current remains always spacelike, i.e. $w > 0$, and those for
which $B^2 < C^2$, in which the current remains always timelike, i.e. $w < 0$. Intermediate
between these classes is the special “chiral” limit case characterised by $B^2 = C^2$, in which
the current remains always null, i.e. $w = 0$. A key intermediate step in the analysis is the
establishment of a relation of the form

$$ \ell^2 = \frac{B^2 - C^2 K^2}{w}, \quad (5) $$

which determines the loop circumference $\ell = 2\pi r$ as a function of w and thus implicitly
determines the state variable w as a function of ℓ, except in the special “chiral” limit case
$B^2 = C^2$ for which $w = 0$ so that the right hand side is indeterminate. The outcome of
the analysis[14] is that that the string radius r is governed by an equation of the form

$$ M^2 \dot{r}^2 = M^2 - \Upsilon^2, \quad (6) $$

(using a dot for time differentiation) in which M is the constant mass energy of the loop
and Υ is an effective potential that is determined as a function of the loop circumference
in the form

$$ \Upsilon = \frac{C^2 K}{\ell} - \mathcal{L}\ell, \quad (7) $$

where the coefficients K and \mathcal{L} have constant values (the former being just unity) in the
“chiral” case, while in general they will be determined as (rather slowly varying) functions
of ℓ by the relation (5). It is to be observed that there is an asymptotic confining potential
contribution that rises linearly with the radius, and that (unlike the familiar Keplerian
particle problem for which the centrifugal barrier goes as the inverse square of the radius)
in the present case the effective centrifugal barrier goes just as the inverse first power of
the radius.

It is evident in the “chiral” case, and can be verified in general, that the
effective potential given by (7) will have a gradient given by

$$ \frac{d\Upsilon}{d\ell} = -\frac{B^2}{K\ell^2} - \mathcal{L}, \quad (8) $$

which vanishes at the minimum of Υ where

$$ B^2 \left(\mathcal{L} + \frac{w}{K} \right) = C^2 K^2 \mathcal{L}. \quad (9) $$

It can be seen from (8) that the value of Υ at this minimum will also be the minimum
admissible value of the mass parameter for the given values of B and C, and that when M
has this minimum value the loop will be in a state of equilibrium with radius given by the
solution of \(\mathcal{L} \), which can be shown to be equivalent to the vorton equilibrium condition
(1) that was quoted at the outset.

Whether such a vorton equilibrium state is actually attainable depends on
whether the minimality condition (9) actually has a solution in the admissible range of
string states. The explicit form of the relevant string model\[12\] is given by
\[
\mathcal{L} = -m^2 - m_s^2 \ln \sqrt{\mathcal{K}},
\]
with
\[
\mathcal{K} = 1 + \frac{w}{m_s^2},
\]
where \(m \) and \(m_s \) are constants. The first one, \(m \), is the relevant Kibble mass, as char-
acterised by the condition that \(m^2 \) should be the common limit of the tension \(T \) and the
energy density \(U \) in the zero current limit. The other one, \(m_s \), is the mass scale associated
with the carrier field responsible for the Witten current. The validity of this model is
limited to the range
\[
e^{-2m^2/m_s^2} < \mathcal{K} < 2,
\]
the lower bound being where the tension \(T \) tends to zero in the timelike current regime
while the upper bound is the saturation limit in the timelike current regime. It can be seen
that the loop will oscillate periodically without approaching either of these “dangerous”
limits provided the ratio \(B/C \) is not too far from unity (i.e. from the “chiral” value).

3 Order of magnitude estimates

Whether or not it is exactly circular (as assumed in the analytic treatment that has just
been described) the numerical value of the total mass \(M \) of a vorton state characterised
by the quantum numbers \(N \) and \(Z \) will be given\[8, 15\] in rough order of magnitude by a
formula of the form
\[
M \approx |NZ|^{1/2} m
\]
where \(m \) is the relevant Kibble mass, which will normally be given approximately by the
mass of the Higgs field responsible for the relevant vacuum symmetry breaking.

In the earliest crude quantitative estimates\[2, 15\] of the likely properties of a
cosmological vorton distribution produced in this way, it was assumed not only that the
current was stable against leakage by tunnelling, but also that the Witten mass scale \(m_s \)
characterising the relevant carrier field was of the same order of magnitude as the Kibble
mass scale \(m \) characterising the string itself. The most significant development in the
more detailed investigations carried out more recently\[16, 17\] is the extension to cases in
which \(m_s \) is considerably smaller than \(m \). A rather extreme example that immediately
comes to mind is that for which \(m \) is postulated to be at the G.U.T. level, while \(m_s \) is at
the electroweak level, in which case it is found that the resulting vorton density will be
far too low to be cosmologically significant.

The simplest scenarios are those for which (unlike the example just quoted)
the relation
\[
\sqrt{m_s} \geq m
\]
is satisfied in dimensionless Planck units as a rough order of magnitude inequality. In this case the current condensation would have occurred during the regime in which (as pointed out by Kibble[18] in the early years of cosmic string theory) the dynamics was dominated by friction damping. Under these circumstances it is estimated[16, 17] that the typical value of the quantum numbers of vortons in the resulting population will be given very roughly by

\[N \approx Z \approx m^{1/2}m_*^{-3/4}, \tag{15} \]

which by (13) implies a typical vorton mass given by

\[M \approx \left(\frac{m}{\sqrt{m_*}} \right)^{3/2}, \tag{16} \]

which, in view of (14), will never exceed the Plank mass. When the cosmological temperature has fallen to a value \(\Theta \) say, the estimated number density \(n \) of the vortons is given as a constant fraction of the corresponding number density \(\approx \Theta^3 \) of black body photons by the rough order of magnitude formula

\[\frac{n}{\Theta^3} \approx \left(\frac{\sqrt{m_*}}{m} \right)^3 m_*^3. \tag{17} \]

It follows in this case that, in order to avoid producing a cosmological mass excess, the value of \(m_* \) in this formula should not exceed a limit that works out to be of the order of \(10^{-9} \), and the limit is even be smaller, around \(10^{-11} \), when the two scales \(m_* \) and \(m \) are comparable.

Limits in roughly the same range, round about \(10^{-10} \) (about midway between the G.U.T. value \(10^{-3} \) and the electroweak value \(10^{-16} \)) are also obtained[17] for \(m_\sigma \) in scenarios for which, instead of (14),

\[\sqrt{m_*} \ll m, \tag{18} \]

but in this case the analysis is more complicated and also more uncertain, since the result is sensitive to the value of an efficiency factor \(\varepsilon \) that is expected to be of order unity, but whose exact evaluation will require numerical work that will have to be much more advanced than has been possible so far. In terms of this quantity the relevant analogue of (17) is expressible as

\[\frac{n}{\Theta^3} \approx \left(\frac{\sqrt{m_*}}{m} \right)^3 \left(\frac{\sqrt{m_*}}{m} \right)^{(3+q)/(3-q)}, \tag{19} \]

which means that the vorton number density \(n \) will typically be very much lower than in the preceding case, but this is compensated, as far as their contribution to the mass density of the universe is concerned, by the fact that the typical vorton mass \(M \) will be much higher: the relevant analogue of (16) is

\[M \approx \frac{m^2}{m_*}, \tag{20} \]

which, in view of (18), will always exceed the Planck mass.

Even if they contribute only a negligibly small fraction of the density of the universe, the vortons may nevertheless give rise to astrophysically interesting effects: in particular it has recently been suggested by Bonazzola and Peter[13] that they might account for otherwise inexplicable cosmic ray events.
References

[1] E. P. S. Shellard & A. Vilenkin, Cosmic strings and other topological defects, Cambridge University Press (1994).

[2] R. L. Davis, E. P. S. Shellard, Phys. Rev. D38, 4722 (1988); Nucl. Phys. B 323, 209 (1989);

[3] E. Witten, Nucl. Phys. B 249, 557 (1985).

[4] B. Carter, Phys. Lett. B 224, 61 (1989) and B 228, 466 (1989).

[5] B. Carter, in Formation and Interactions of Topological Defects (NATO ASI B349), ed R. Brandenberger & A-C. Davis, pp 303-348 (Plenum, New York, 1995).

[6] P. Peter, Phys. Rev. D45, 1091 (1992).

[7] P. Peter, Phys. Rev. D46, 3335 (1992).

[8] B. Carter, Phys. Lett. 238, 166 (1990).

[9] B. Carter, X. Martin, Ann. Phys. 227, 151 (1993).

[10] X. Martin, Phys. Rev. D50, 749 (1994).

[11] X. Martin, P. Peter, Phys. Rev D51, 4092 (1995).

[12] B. Carter, P. Peter, Phys. Rev. D52, pp 1744-1748 (1995).

[13] A.L. Larsen, M. Axenedes, preprint (Alberta Thy 13-96, 1966) [hep-th/9604135].

[14] B. Carter, P. Peter, A. Gangui, preprint (SISSA, 1996) [hep-ph/9609401].

[15] B. Carter, Ann. N.Y. Acad.Sci., 647, 758 (1991).

[16] B. Carter, Proceedings of the XXXth Rencontres de Moriond, Villard-sur-Ollon, Switzerland, 1995, Edited by B. Guideroni and J. Tran Thanh van (Editions Frontieres, Gif-sur-Yvette, 1995) [hep-ph/9511225].

[17] R. Brandenberger, B. Carter, A-C. Davis & M. Trodden, Phys.Rev. D54, pp 6059-6071 (1966) [hep-ph/9605382].

[18] T. W. B. Kibble, J. Math. Phys. A 9, 1387 (1976); Phys. Rep. 67, 183 (1980).

[19] S. Bonazzola & P. Peter, preprint (Obs. Paris-Meudon, 1997) [hep-ph/9701240].