Basic Study

Genetic association and epistatic interaction of the interleukin-10 signaling pathway in pediatric inflammatory bowel disease

Zhenwu Lin, Zhong Wang, John P Hegarty, Tony R Lin, Yunhua Wang, Sue Deiling, Rongling Wu, Neal J Thomas, Joanna Floros

Zhenwu Lin, Yunhua Wang, Neal J Thomas, Joanna Floros, CHILD Research, Department of Pediatrics, the Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States

Zhong Wang, Rongling Wu, Division of Biostatistics, Department of Public Health Science, the Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States

John P Hegarty, Tony R Lin, Sue Deiling, Department of Surgery, the Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States

Joanna Floros, Department of Obstetrics and Gynecology, the Pennsylvania State University, College of Medicine, Hershey, PA 17033, United States

Zhenwu Lin, Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 17033, United States

Author contributions: Lin Z and Wang Z contributed equally to this work; Lin Z designed the experimental approach and was responsible for troubleshooting, data collection and organization and the overall supervision of the project and he worked with the statistician for data analysis, manuscript writing and submission, and the response to reviewers; Wang Z and Wu R contributed to the data analysis and presentation of the results, manuscript writing and revision; Hegarty JP was involved in grant writing, preliminary data preparation and genotype analysis; Lin TR contributed to IL-10 genotype and genotyping data analysis (adult IBD and youth IBD), as well as of IL-10 gene expression in patients with different genotype; Wang Y performed genotype analysis by PCR, gel electrophoresis, genotype scoring, and prepared the data sheet for analysis; Deiling S contributed to clinical sample collection and documentation; Thomas NJ was involved in study subject recruitment, clinical sample collection and manuscript writing; Floros J was involved in experimental design, management of the research team, oversight of the project, data collection and presentation, manuscript writing, final critical reading before submission, response to reviewers and revising the manuscript for resubmission.

Supported by a Children Miracle Network Research Grant, No. 132698 to Lin Z (P.I.) and Thomas NJ (Co-P.I.) (2011-2013), and Floros J (P.I.) (2013-2014).

Institutional review board statement: All study protocols were approved by the Penn State University College of Medicine Institutional Review Board, Study ID: PRAMS020105-A Jane 8, 2016. ATCC Material transfer agreement (MTA) Aug 28, 2012.

Conflict-of-interest statement: No conflict of interest exists for all authors.

Data sharing statement: Data will be shared freely to whoever requests them via contact of Zhenwu Lin (zxl13@psu.edu).

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Zhenwu Lin, PhD, Senior Research Scientist, Department of Pediatrics, the Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033, United States. zxl13@psu.edu

Telephone: +1-717-2198591
Fax: +1-717-5310215

Received: November 27, 2016
Peer-review started: November 28, 2016
First decision: January 19, 2017
Revised: February 18, 2017
Abstract

AIM
To study the genetic association and epistatic interaction of the interleukin (IL)-10 and IL-10/STAT3 pathways in pediatric inflammatory bowel disease (IBD).

METHODS
A total of 159 pediatric inflammatory IBD patients (Crohn’s disease, n = 136; ulcerative colitis, n = 23) and 129 matched controls were studied for genetic association of selected single nucleotide polymorphisms (SNPs) of the IL-10 gene and the genes IL10RA, IL10RB, STAT3, and HO1, from the IL-10/STAT3 signaling pathway. As interactions between SNPs from different loci may significantly affect the associated risk for disease, additive (a) and dominant (d) modeling of SNP interactions was also performed to examine higher-order epistasis between combinations of the individual SNPs.

RESULTS
The results showed that IL-10 rs304496 was associated with pediatric IBD (P = 0.022), but no association was found for two other IL-10 SNPs, rs1800872 and rs2034498, or for SNPs in genes IL10RA, IL10RB, STAT3, and HO1. However, analysis of epistatic interaction among these genes showed significant interactions: (1) between two IL-10 SNPs rs1800872 and rs3024496 (additive-additive P = 0.00015, Bonferroni P value (Bp) = 0.003); (2) between IL-10RB rs2834167 and HO1 rs2071746 (dominant-additive, P = 0.0018, Bp = 0.039); and (3) among IL-10 rs1800872, IL10RB rs2834167, and HO1 rs2071746 (additive-dominant-additive, P = 0.00015, Bp = 0.005), as well as weak interactions among IL-10 rs1800872, IL-10 rs3024496, and IL-10RA (additive-dominant-additive, P = 0.003; Bp = 0.099), and among IL10RA, IL10RB, and HO1 genes (additive-dominant-additive, P = 0.008, Bp = 0.287).

CONCLUSION
These results indicate that both the IL-10 gene itself, and through epistatic interaction with genes within the IL-10/STAT3 signaling pathway, contribute to the risk of pediatric IBD.

Key words: Pediatric inflammatory bowel disease; Interleukin-10; HO1; Single nucleotide polymorphism; IL10-STAT3 pathway; Epistatic interaction

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Inflammatory bowel disease (IBD) affects not only adults, but also children and newborn infants. Of the 163 genes currently associated with risk for development of IBD, only a few have been studied in pediatric patients. In this study, we found that one interleukin (IL)-10 genetic variation, rs304496, is associated with risk for pediatric IBD. IL-10 restricts excessive immune responses during intestinal inflammation. We also demonstrated epistatic interactions between genetic variants within the IL-10/STAT3 signaling pathway that contribute to a higher associated risk for pediatric IBD. These findings emphasize the importance of the IL-10 pathway in a subgroup of IBD patients.

INTRODUCTION
Pediatric inflammatory bowel disease (IBD) has a distinct clinical phenotype from adult IBD[1]. Few of the 163 genes identified to be associated with adult IBD have been identified and functionally studied in pediatric IBD. A genome-wide association study (GWAS) in the Polish population revealed that the genetic architecture is different between pediatric and adult-onset IBD[2]. Adult IBD-associated genes NOD2 (Leu1007insC) and IRGM have been shown to be associated with increased risk of Crohn’s disease (CD) and ORMDL3 variant with susceptibility to ulcerative colitis (UC) in Lithuanian early-onset IBD patients[3]. The TRIM22-NOD2 network, signaling pathways and genetic factors are associated with very early-onset (VEO) and adult IBD. Functional studies showed that variants of the tripartite motif containing 22 gene (TRIM22) disrupted its ability to regulate NOD2-dependent activity of interferon-β signaling and nuclear factor-kappa B (NF-κB)[4].

In addition, novel association of major histocompatibility complex haplotype with pediatric-onset IBD has been reported[5]. The multi-drug resistance gene MDR1 single nucleotide polymorphisms (SNPs) C1236T and G2577A/T have also been shown to be associated with CD in an Algerian pediatric CD population[6].

Mutations in IL-10 and IL-10 receptors IL10RA and IL10RB have been linked to VEO IBD[7-12]. Knockout mice lacking IL-10 develop IBD[13]. IL-10 and STAT3 have been identified as IBD-associated genes in children and adults[10,14-20]. The IL-10 gene encodes an anti-inflammatory cytokine and the IL-10/STAT3 signaling pathway plays an important role in controlling inflammation and protecting the intestine tissue from
damage[21,22]. During the IL-10 signaling transduction, IL-10 binds to receptors IL10RA and IL10RB, and activates Jak1 and Tyk2, leading to phosphorylation of STAT3. Then, the activated STAT3 translocates into the nucleus and regulates target gene transcription to promote an anti-inflammatory response[23,24]

Despite pronounced evidence of the role of the genes comprising IL-10 and genes within the IL-10/STAT3 signaling pathway, our knowledge about how they may interact with each other to determine IBD development is still very limited. Genetic interactions between different loci, i.e., epistasis, have been thought to be of paramount importance in complex diseases[25,26]. Given the underlying complex pathways, it is reasonable to hypothesize that the genes detected affect IBD through a network of gene-gene interactions between genes, or SNP-SNP interactions within a gene. In this paper, we used a computational model[27] to analyze how epistatic interactions among polymorphic loci in the IL-10 gene and IL-10/STAT3 pathways govern pediatric IBD in a case-control setting. The model cannot only estimate low-order epistasis between a pair of loci, but also detect higher-order epistasis among three loci, whereby it is equipped with a capacity to unravel etiological complexities of pediatric IBD. Furthermore, by integrating classic quantitative theory, this model dissects overall epistatic interaction into its underlying components. With this, one may better understand the genetic machinery of this disease from a mechanistic aspect.

Table 1 Study samples

Sample	n	Sex, n	Race, n	Age at diagnosis
IBD	159	Male, 85; female, 74	White, 153; black, 6	13.1
CD	136	Male, 77; female, 59	White, 130; black, 6	13.1
CCFA	118	Male, 65; female, 53	White, 112; black, 6	13.0
Hershey	18	Male, 12; female, 6	White, 18	13.4
UC	23	Male, 9; female, 14	White, 23	13.3
CCFA	10	Male, 5; female, 5	White, 10	12.9
Hershey	13	Male, 4; female, 9	White, 13	13.6
Control	129	Male, 65; female, 64	White, 121; black, 7; unknown, 1	17.5

IBD: Inflammatory bowel disease; CD: Crohn’s disease; CCFA: Crohn’s and Colitis Foundation of America; UC: Ulcerative colitis.

MATERIALS AND METHODS

Study samples

Genomic (g)DNA samples obtained from 159 pediatric IBD patients (CD, n = 136; UC, n = 23) were studied. The age of diagnosis for all patients was < 17-years-old. The patients were Caucasian (n = 153) and African American (n = 6). gDNA samples were obtained from the Crohn’s and Colitis Foundation of America (CCFA) DNA Databank (IBD, n = 128 including 118 with CD and 10 with UC) and the Pennsylvania State University IBD Biobank (IBD, n = 31 including 18 with CD and 13 with UC)[28]. Healthy gDNA control samples (n = 129) were obtained from CCFA (n = 70) and the Hershey Medical Center (n = 59). The race, age and sex of the controls were matched to the study cases; none of the controls were identified with gastrointestinal-related diseases (Table 1).

Informed consent was obtained for all patient samples retrieved from the Pennsylvania State University IBD Biobank and the Hershey Medical Center. All study protocols were approved by the Penn State University College of Medicine Institutional Review Board. CCFA gDNAs were collected from samples originating from the University of North Carolina at Chapel Hill, University of Chicago, Cedars-Sinai Hospital, Massachusetts General Hospital, University of Pittsburgh, and Mt. Sinai Hospital, with written informed parental or guardian consent.

DNA isolation

gDNA samples were obtained from CCFA as noted above. The gDNA from Hershey Medical Center was isolated from blood samples or Epstein Bar virus-immortalized B cell lines using QiaGen DNA Mini Kits (QiaGen Inc., Valencia, CA, United States). After DNA concentration was measured with a Nanodrop ND-2000 spectrophotometer (Thermo Scientific, Waltham, MA, United States), the gDNA samples were stored at -80 °C until use.

Selection criteria and study of SNPs from IL-10, IL10RA, IL10RB, STAT3, and HO1

Seven SNPs from these five genes were studied. These are rs1800872 (C-592>A), rs3024498 and rs3024496 from IL-10[29]; rs3135932 from IL10RA[30]; rs2834167 from IL10RB[7-29]; rs744166 from STAT3; and rs2071746 from HO1[30,31]. The criteria for SNP selection were based (1) on the potential relevance of these SNPs in the function and the regulation of genes, which have been associated with IBD and other diseases, and/or play a role in inflammatory processes; (2) on the gene location, either within the coding region that changes the encoded amino acid, or at 5’ upstream or 3’UTR potentially affecting RNA transcription, RNA stability or protein translation; and (3) being polymorphic in the study samples as tested in our preliminary study and having minor allele frequency information in existing databases. A summary of these SNPs is provided in Table 2, including genetic variation, chromosomal position, gene location, and disease implication.

Genotype analysis

The genotypes of all seven SNPs were determined with PCR-based RFLP/cRFLP as described previously[32]. The PCR primers and related information are given in Table 3. Briefly, 100 ng DNA were used for PCR in a 30 µL reaction volume. The PCR cycling profile
was as follows: 95°C for 2 min, 5 cycles at 95°C for 30 s, 50°C for 1 min, and 72°C for 1 min, then 30 cycles at 95°C for 30 s, 58°C for 1 min, and 72°C for 1 min, followed by a final extension step at 72°C for 4 min. PCR products (5 µL) were digested with an appropriate restriction enzyme (Table 3) according to manufacturer’s instructions. The digested PCR products were separated by polyacrylamide gel electrophoresis (8%), and the genotypes were scored according to the gel pattern of the digested PCR products.

Statistical analysis

Single SNP analysis was statistically assessed by associating each single SNP with the disease. Specifically, we calculated the genotype-based OR and P value based on Fisher’s exact test. We also calculated 95% CIs for each OR. The difference was considered as significant when P < 0.05.

Epistatic interaction analysis of IL-10 and IL-10 pathway genes

Epistatic analysis: Epistasis, due to the interaction between different loci, may play an important role in disease progression. By using two different SNPs simultaneously, epistasis may detect information that cannot be detected by single SNP analysis. We have developed a model of epistatic detection which allows high-order epistasis due to the interaction among more than two loci to be characterized. This model was used to test high-order epistasis between, IL-10 and IL-10 receptors, IL-10 and STAT3, IL-10 and HO1, and STAT3 and HO1. This model not only allows the testing of additive (a) and dominant (d) effects at single SNPs, but is also able to detect the epistatic effects between two or three SNPs in a case-control study.

Four types of epistatic interactions for two SNPs, namely additive-additive (aa), additive-dominant (ad), dominant-additive (da), and dominant-dominant (dd) and eight types of epistatic interactions for three SNPs, namely aaa, aad, ada, add, dda, dad, dda and ddd, were estimated and are discussed in this paper.

We estimated the pair-wise linkage disequilibria (LD) between these epistatic loci, which were detected to be non-significant, showing that these loci are segregating randomly in the population.

Table 2	Study single nucleotide polymorphisms for IL-10, IL10RA, IL10RB, STAT3 and HO1 genes					
Gene	SNP ID	Chromosomal position	Variation	Gene location	Disease implication	Ref.
IL-10	rs1800872	206946407	C>50>A	5'-upstream	associated with IBD	[37]
	rs3024498	206941529	c>T>C	3’-unrelated region	associated with colorectal cancer	[41]
	rs3024496	206941864	A>G	3’-unrelated region	associated with IBD and colorectal cancer, with decreased IL-10, with increased IgE levels	[37-39,41]
IL10RA	rs3135932	117864063	c.A247>G, p.Ser159Gly	coding region	mutations (other than the studied SNP) associated with pediatric IBD	[7,10,12]
IL10RB	rs2834167	34640788	c.A>G, p.Lys(A)47Glu(G)	coding region	mutations (other than the studied SNP) associated with pediatric IBD	[7-11]
STAT3	rs744166	404514201	A>G	Intron 1 (closer to exon2)	associated with IBD	[20]
HO1	rs2071746	3577672	A413>T	5'-upstream	no association with IBD, associated with asthma and allergy, anti-inflammation, anti-oxidant	[30,31]

Table 3 | PCR-RFLP method for genotyping IL-10, IL10RA, IL10RB, STAT3 and HO1 genes

Gene	SNP ID	Variant	PCR amplification	RFLP	Recognition site
IL-10	rs1800872	G>T	IL-2: 5' -AACCTAGGCGATCCATGCTTAC3'	Scal	T yes; G No
	rs3024498	T>C	IL-5f: 5'-GCTCCGTGTTTCTCTCTAAG-3'	HpyCHV4	C yes; T No
	rs3024496	A>G	IL-4f: 5'-CTATGACATGATCCATCAGG-3'	NalIII	G yes; A No
IL10RA	rs3135932	A>G	IL-10: 5'-AAGTGAGGCTAGTGGAG-3'	Mnl	G yes; A No
IL10RB	rs2834167	A>G	IL-12: 5'-AGTTCCCAATGGCACACAAG-3'	Carl	G yes; A No
STAT3	rs744166	A>G	ST2: 5'-AGTTCCCAATGGCACACAAG-3'	Alul	A yes; G No
HO1	rs2071746	A>T	HOM: 5'-TCAGCAGAGGATTCCACAGCAGC-3'	BfaI	A yes; T No

Lowercase letter indicates a mismatched nucleotide.

IBD: Inflammatory bowel disease; SNPs: Single nucleotide polymorphisms.
RESULTS

IL-10 rs304496 is associated with pediatric IBD

There is limited information in terms of genetic association studies for pediatric IBD. The present study of pediatric IBD builds upon and extends findings from our previous genetic association study on adult IBD. We initially wished to confirm previous findings [20] as to whether IL-10 was involved in pediatric IBD. Since published studies of IL-10 were done in adult IBD, we carried out a pilot study with adult IBD. We studied IL-10 association with 122 adult IBD (74 with CD, 48 with UC) cases (mean age of 51 years) and 172 unrelated healthy controls from Hershey Medical Center using the SNPlex Genotyping System [33,34]. The results indicated that two IL-10 SNPs are significantly associated with IBD: rs1800872 $P = 0.0056$, OR = 1.753, and 95%CI: 1.190-2.643; and rs304498 $P = 0.0008$ OR = 0.43, and 95%CI: 0.26-0.7. This pilot genetic association study as well as other association studies of adult IBD, guided our selection of genes and SNPs for the present study.

In the present study, we wished to know whether IL-10, shown previously to be associated with adult IBD is associated with pediatric IBD, and whether the IL-10/STAT3 pathway plays a role in pediatric IBD. The study samples were 159 IBD (136 with CD and 23 with UC) and the three SNPs genotyped were rs1800872, rs3024498, and rs3024496. The results indicated (Table 4) that neither of the two SNPs, rs1800872 and rs3024498, that have been previously observed to be associated with adult IBD were associated with pediatric IBD ($P = 0.71$ and $P = 0.616$, respectively). The rs3024496 was the only SNP found to significantly associate with pediatric IBD ($P = 0.022$). No association with pediatric IBD was found for the IL-10 pathway genes, IL10RA, IL10RB, STAT3, and HO1

The IL10-STAT3 signaling pathway plays an important role in controlling inflammation in intestine. The IL10RA, IL10RB and STAT3 are critical players in this pathway. IL-10 and STAT3 have previously been demonstrated to be associated with early-onset IBD. The activated STAT3 pathway regulates expression of several critical anti-inflammatory genes, including HO1, a potent anti-inflammation and anti-oxidant

Gene	SNP ID	Genotype	Disease, n	Control, n	OR	95%CI	P value
IL-10	rs1800872	CC	89	78	0.863	0.564-1.313	0.71
		CA	68	50			
		AA	2	1			
	rs3024498	C allele	246	206			
		A allele	72	52			
		CC	86	77	0.830	0.552-1.244	0.616
		CT	65	47			
		TT	8	5			
		C allele	237	201			
		T allele	81	57			
IL10RA	rs3135932	AA	108	85	0.925	0.595-1.433	0.160
		AG	39	40			
		GG	12	4			
		A allele	183	123			
		G allele	185	135			
IL10RB	rs2834167	AA	91	64	1.318	0.884-1.968	0.203
		AG	66	50			
		GG	2	5			
		A allele	248	188			
		G allele	63	48			
STAT3	rs744166	GG	64	49	0.943	0.662-1.340	0.352
		AG	66	63			
		AA	29	17			
		A allele	194	161			
		G allele	124	97			
HO1	rs2071746	AA	32	30	0.957	0.680-1.348	0.634
		AT	96	71			
		TT	31	28			
		A allele	158	131			
		T allele	160	127			

SNP: Single nucleotide polymorphism.

Table 4 Genetic association of IL-10, IL10RA, IL10RB, STAT3 and HO1 genes with pediatric inflammatory bowel disease
July 21, 2017 | Volume 23 | Issue 27 | 4902

Lin Z et al. IL-10 signaling interaction in pediatric IBD

Table 5 Epistatic interaction between two single nucleotide polymorphisms in three IL-10 single nucleotide polymorphisms studied

Epistatic model	rs3024496, P = 0.022; Bp = 0.0226	rs3024498, P = 0.616; Bp = 1
rs1800872, P = 0.71; Bp = 1	aa: P = 0.00015; Bp = 0.003	P = 0.638; Bp = 1
	ad: P = 0.057; Bp = 1	P = 0.605; Bp = 1
	da: P = 0.010; Bp = 0.216	P = 0.977; Bp = 1
	dd: P = 0.239; Bp = 1	P = 0.049; Bp = 1
rs3024496, P = 0.022, Bp = 0.0226	aa: P = 0.371; Bp = 1	P = 0.167; Bp = 1
	ad: P = 0.022; Bp = 1	P = 0.584; Bp = 1
	da: P = 0.176; Bp = 1	P = 0.038; Bp = 1

The P and Bp values for each SNP are shown next to each SNP; the P and Bp values for each of two SNP interactions are shown in the 3rd and 4th column. In the 2nd column (epistatic model), a: Additive; d: Dominant. For a two SNP interaction, four different types of interactions may occur: additive-additive (aa), additive-dominant (ad), dominant-additive (da), and dominant-dominant (dd). Bp: Bonferroni P value; SNP: Single nucleotide polymorphism.

Table 6 Gene-gene interaction between IL-10 with IL10RA, IL10RB, STAT3, or HO1 in pediatric inflammatory bowel disease

Gene	SNP	Epistatic model	IL10RA rs3135932, P = 0.160; Bp = 1	IL10RB rs2834167, P = 0.203; Bp = 1	STAT3 rs744166, P = 0.352; Bp = 1	HO1 rs2071746, P = 0.634; Bp = 1
IL-10	rs1800872	aa: P = 0.046; Bp = 1	P = 0.029; Bp = 1	P = 0.248; Bp = 1	P = 0.910; Bp = 1	
		ad: P = 0.739; Bp = 1	P = 0.107; Bp = 1	P = 0.954; Bp = 1	P = 0.617; Bp = 1	
		da: P = 0.056; Bp = 1	P = 0.376; Bp = 1	P = 0.117; Bp = 1	P = 0.269; Bp = 1	
		dd: P = 0.126; Bp = 1	P = 0.166; Bp = 1	P = 0.036; Bp = 1	P = 0.671; Bp = 1	
	rs3024498	aa: P = 0.330; Bp = 1	P = 0.062; Bp = 1	P = 0.143; Bp = 1	P = 0.898; Bp = 1	
		ad: P = 0.068; Bp = 1	P = 0.629; Bp = 1	P = 0.032; Bp = 1	P = 0.840; Bp = 1	
		da: P = 0.884; Bp = 1	P = 0.307; Bp = 1	P = 0.316; Bp = 1	P = 0.607; Bp = 1	
		dd: P = 0.265; Bp = 1	P = 0.644; Bp = 1	P = 0.029; Bp = 1	P = 0.790; Bp = 1	
	rs3024496	aa: P = 0.021; Bp = 0.433	P = 0.425; Bp = 1	P = 0.538; Bp = 1	P = 0.346; Bp = 1	
		ad: P = 0.020; Bp = 0.426	P = 0.495; Bp = 1	P = 0.306; Bp = 1	P = 0.741; Bp = 1	
		da: P = 0.081; Bp = 1	P = 0.189; Bp = 1	P = 0.234; Bp = 1	P = 0.297; Bp = 1	
		dd: P = 0.967; Bp = 1	P = 0.570; Bp = 1	P = 0.402; Bp = 1	P = 0.457; Bp = 1	
IL10RB	rs2834167	aa: P = 0.403; Bp = 1	P = 0.251; Bp = 1	P = 0.128; Bp = 1	P = 0.128; Bp = 1	
		ad: P = 0.384; Bp = 1	P = 0.956; Bp = 1	P = 0.369; Bp = 1	P = 0.369; Bp = 1	
		da: P = 0.518; Bp = 1	P = 0.776; Bp = 1	P = 0.0018; Bp = 0.039	P = 0.0018; Bp = 0.039	
		dd: P = 0.176; Bp = 1	P = 0.072; Bp = 1	P = 0.289; Bp = 1	P = 0.289; Bp = 1	

Bp: Bonferroni P value; SNP: Single nucleotide polymorphism.

Our genetic association study results indicate that none of these genes is significantly associated with pediatric IBD (Table 4).

Epistatic interaction of SNP-SNP (rs3024496 and rs1800872) within the IL-10 gene in pediatric IBD

Based on previous genetic studies of the studied genes and their role in the IL-10 pathway, we speculated that some of the SNPs contribute to disease by interacting with other genes. To test this hypothesis we used our recently developed model[27] that has been demonstrated to be genetically meaningful in our previous studies on IBD susceptibility genes[30,35,36].

First, we studied SNP-SNP interaction among three SNPs (rs1800872 and rs3024496, rs1800872 and rs3024498, and rs3024496 and rs3024498) within the IL-10 gene of all possible combinations of a and d models.

A significant epistatic interaction was only observed for rs1800872 and rs3024496 (P = 0.00015; Bp = 0.003) (Table 5). A graphical depiction of this aa model is shown in Figure 1. Although the IL-10 rs1800872 was shown by itself to associate with adult IBD but not associate with pediatric IBD (P = 0.71) (Table 4), the present data indicate that it may still contribute to pediatric IBD via interaction with another IL-10 SNP, namely rs3024496.

Epistatic interaction of the IL-10 gene with the IL-10 signaling pathway genes, IL10RB and HO1, in pediatric IBD

We further analyzed gene-gene interactions between IL-10 and the other four genes, IL10RA, IL10RB, STAT3, and HO1, involved in the IL-10 signaling pathway. The results showed that none of the three IL-10 SNPs significantly interacted with the SNPs of the other four genes (Table 6). Although a low P-value was observed for the IL-10 rs1800872 with either the IL10RA (aa, P = 0.046), IL10RB (aa, P = 0.029), or STAT3 (dd, P = 0.036), and for the IL-10 rs3024498 with the STAT3 (ad, P = 0.032; dd P = 0.029), none of these stood as significant after Bonferroni correction was applied. Only the interaction of the IL-10 rs3024496 with the IL10RA rs3135932 showed a low Bp (aa, P = 0.021, Bp = 0.433; ad, P = 0.020, Bp = 0.426) (Table 6). A graphic depiction of the
interaction model of IL-10 with IL10RA is shown in Figure 2A. From a single association study as described above, none of the SNPs of the four genes in the IL-10 signaling pathway was associated with pediatric IBD. However, we found that SNPs of the IL-10RB and HO1 genes contribute to pediatric IBD (da, $P = 0.0018$, Bp = 0.039) (Table 6) via gene-gene interaction. Graphical depictions for the model interactions between IL10RB and HO1 are shown in Figure 2B.

Epistatic interaction of the IL-10 pathway genes IL10RA, IL10RB, STAT3, and HO1 in pediatric IBD

Based on the epistatic interaction of IL10RB with HO1 (Table 6, Figure 2B), we further analyzed the effect of the IL10RB and HO1 interaction in each of the four models (aa, ad, da, and dd) on the contribution to IBD in conjunction with IL-10, IL10RA and STAT3. Eight types of epistatic interactions in each set of three SNPs were studied. As shown in Table 8, a significant effect interaction of IL-10 with other genes. As shown in Table 7, in the presence of the two IL-10 SNPs, the association of IL10RA rs3135932 is increased remarkably from $P = 0.16$ (when analyzed by itself), to $P = 0.046$ (with rs1800872), $P = 0.021$ (with rs3024496) (Table 5) to $P = 0.003$ (with both rs1800872 and rs3024496) (Table 7). This epistatic interaction is an aaa model (Figure 3). However, the interaction of the two IL-10 SNPs did not exhibit any further observed effect on IL-10 interaction with the other genes, IL10RB, STAT3, and HO1 (Table 7).

Epistatic interaction of two IL-10 single nucleotide polymorphisms, rs1800872 and rs3024496, with IL10RA, IL10RB, STAT3 and HO1 in pediatric inflammatory bowel disease

Graphic depiction of epistatic interaction of the IL-10 SNPs rs3024496 and rs1800872 with the IL10RA rs3135932. All the interaction models analyzed for the IL-10 SNPs rs3024496 and rs1800872 with the IL10RA rs3135932 are shown. However, only one significant interaction model additive-additive-additive (a1a2a3) was observed ($P = 0.003$, Bp = 0.099). Levels of Bp values are shown in the bar as shades of blue color from none (Bp = 1) to high (Bp = 0.001). a1, d1, a2, d2, a3, d3: Letters, a and d, are for interaction model additive and dominant respectively; Numbers 1, 2, and 3 depict the combination of the two and three SNPs; such as, a1a2 for SNPs 1 and 2, and a1a2a3 for SNPs 1, 2, and 3. Bp: Bonferroni P value; SNPs: Single nucleotide polymorphisms.

Epistatic interaction between IL-10 single nucleotide polymorphisms rs3024496 and rs1800872

Figure 1 Epistatic interaction between IL-10 single nucleotide polymorphisms rs3024496 and rs1800872. Graphic depiction of epistatic interaction between the IL-10 SNPs rs3024496 and rs1800872. Four interaction models for rs3024496 and rs1800872 are shown. The additive-additive model is significant (Bp = 0.003), the additive-dominant model is weak (Bp = 0.216), and the other two models are not observed (Bp = 1, no color). Bp: Bonferroni P value; SNPs: Single nucleotide polymorphisms.

Graphic depiction of gene-gene interaction between IL10 and IL10RA

Figure 3 Epistatic interaction of two IL-10 single nucleotide polymorphisms, rs1800872 and rs3024496, with IL10RA, IL10RB, STAT3 and HO1 in pediatric inflammatory bowel disease. Graphic depiction of epistatic interaction of the IL-10 SNPs rs3024496 and rs1800872 with the IL10RA rs3135932. All the interaction models analyzed for the IL-10 SNPs rs3024496 and rs1800872 with the IL10RA rs3135932 are shown. However, only one significant interaction model additive-additive-additive (a1a2a3) was observed ($P = 0.003$, Bp = 0.099). Levels of Bp values are shown in the bar as shades of blue color from none (Bp = 1) to high (Bp = 0.001). a1, d1, a2, d2, a3, d3: Letters, a and d, are for interaction model additive and dominant respectively; Numbers 1, 2, and 3 depict the combination of the two and three SNPs; such as, a1a2 for SNPs 1 and 2, and a1a2a3 for SNPs 1, 2, and 3. Bp: Bonferroni P value; SNPs: Single nucleotide polymorphisms.
Table 7 Epistatic interaction among the two IL-10 single nucleotide polymorphisms, rs1800872 and rs3024496, and IL10RA, IL10RB, STAT3, or HO1

Epistatic model	IL10RA rs3135932, P = 0.16; Bp = 1	IL10RB rs2834167, P = 0.203; Bp = 1	STAT3 rs744166, P = 0.352; Bp = 1	HO1 rs2071746, P = 0.634; Bp = 1		
Two IL-10 SNPs:	aaa	P = 0.003;	P = 0.080;	P = 0.175;	P = 0.216;	
rs1800872 and rs3024496		Bp = 0.099;	Bp = 1	Bp = 1	Bp = 1	
aa: P = 0.0002;			P = 0.150;	P = 0.340;	P = 0.920;	P = 0.140;
Bp = 0.003			Bp = 1	Bp = 1	Bp = 1	Bp = 1

The additive-additive (aa) interaction model for the two IL-10 SNPs (rs1800872 and rs3024496) from Figure 1 was chosen for further analysis, in order to study the interaction of these two IL-10 SNPs with SNPs of four other genes. The two interaction models, aa and aad, were for the two IL-10 SNPs and SNPs from each of the four genes. A significant P value (P = 0.003) was observed only with the IL10RA SNP (rs3135932). Bp: Bonferroni P value; SNPs: Single nucleotide polymorphisms.

Table 8 Epistatic interaction of IL10RB and HO1 with IL-10 (three single nucleotide polymorphisms), IL10RA, or STAT3

Epistatic model	IL-10 rs1800872, P = 0.71; Bp = 1	IL-10 rs3024496, P = 0.616; Bp = 21	IL-10 rs3024496, P = 0.222; Bp = 0.0226	IL10RA rs3135932, P = 0.16; Bp = 1	STAT3 rs744166, P = 0.352; Bp = 1	
aa IL10RB rs2834167 and HO1 rs2071746	aaaa	P = 0.029;	P = 0.545;	P = 0.255;	P = 0.023;	P = 0.049;
aa: P = 0.127;		Bp = 1				
Bp = 0.096						
ad IL10RB rs2834167 and HO1 rs2071746	adda	P = 0.976;	P = 0.490;	P = 0.327;	P = 0.044;	P = 0.436;
Bp = 1		Bp = 1				
dda IL10RB rs2834167 and HO1 rs2071746	ddda	P = 0.199;	P = 0.408;	P = 0.0015;	P = 0.072;	P = 0.140;
Bp = 1		Bp = 1				

Pathway function by regulating anti-inflammatory activity in pediatric IBD.

DISCUSSION

In the present study, we identified a genetic association of the IL-10 gene and the IL-10 signaling pathway with pediatric IBD and demonstrated that both SNP-SNP and gene-gene epistatic interactions contribute to pediatric IBD. The specific findings include the following: (1) IL-10 rs3024496 is identified to be associated with pediatric IBD; (2) an aa interaction was found between IL-10 SNPs rs3024496 and rs1800872; (3) the SNP-SNP interaction in the IL-10 gene affects its action with the IL-10 receptor IL10RA; (4) the IL-10 signaling pathway genes IL10RB and HO1 together are significantly associated with pediatric IBD via SNP-SNP interaction; and (5) a significant association of the three genes, IL-10, IL10RB, and HO1, with pediatric IBD was identified from epistatic interaction analysis among three SNPs.

The IL-10 gene has been shown to be associated with pediatric IBD.
with adult IBD by GWASs. The most studied IL-10 SNP, rs1082432 (rs1800896), is thought of as having potential for gene transcription regulation[14,15,37]. The IL-10 SNP rs3024496 is shown to be related to inflammatory response with increased levels of IgE to dust mite[46], or decreased production of IL-10 by peripheral blood leukocytes[47,48], and with prostate[49] and colorectal[50] cancer, but has not been shown to be associated with IBD. The IL-10 rs1800872 is associated with IBD[51] and also with increased serum IL-10 levels in CD[52,53], as well as with irritable bowel syndrome[54] and cancer susceptibility[50,51,52,53]. In this study, we found that IL-10 rs3024496 is associated with pediatric IBD, and rs1800872, although by itself is not associated with pediatric IBD, appears to contribute to pediatric IBD via epistatic interaction with rs3024496.

Although currently more than 163 genes have been identified to be associated with IBD[47,50], only few of them have been studied in pediatric IBD. The estimate that a genetic contribution of the identified genes collectively represents only < 20% of the overall disease risk[47,51-55] indicates that other genetic/genomic and environmental factors may play a role in IBD pathogenesis. In the present study, we studied IL-10 gene contribution in pediatric IBD by analyzing its association with disease as well as its epistatic interaction with IL-10 pathway genes. Our results indicate, in addition to disease association of IL-10 itself, that SNP-SNP and gene-gene interactions contribute significantly to pediatric IBD.

Our results support that epistasis plays an important role in the formation and progression of human diseases[56,57]. Understanding gene-gene interaction is crucial to our understanding of the regulation of physiological function. When epistasis occurs, the presence of two or more particular loci may increase or reduce the risk of a disease more than would be expected from their independent effects[58]. A host of statistical models have been developed to analyze epistatic effects in different genetic designs[59,60].

Our recently developed model for multilocus epistatic interactions in case-control studies has proven to be genetically meaningful through the incorporation of traditional quantitative genetic principles into statistical models[27]. Using this model we have previously studied epistatic interaction between SNPs within the DLG5 gene and between IBD genes DLG5, OCTN1, IL23R and NOD2[28,35,36], and found that epistatic interaction is an important component in IBD pathogenesis. In this study, we used the same method to study gene-gene interaction in IL-10 signaling transduction pathway. IL-10 signaling transduction occurs through binding of IL-10 to its receptors IL10RA and IL10RB to form a complex, with downstream molecules, Jak1 and Tyk2, activating STAT3[24,25]. IL10RA is specific to IL-10, but IL10RB also interacts with several other cytokines. When either IL10RA or IL10RB is mutated, the signals from IL-10 cannot be received and the resulting inflammation causes tissue damage in the gastrointestinal system[23,24]. A significant epistatic interaction was observed between two IL-10 SNPs, resulting in a significant effect of IL-10 interaction with IL10RA, but not with IL10RB (Table 7). This indicates that IL-10 may interact with receptor IL10RA, which plays a role in the initiation of the signaling pathway.

We also observed a significant epistatic interaction between IL-10, IL10RB, and the downstream pathway target HO1 gene (Table 8). The key factor for interaction of these three genes is IL10RB that interacts strongly with HO1. This finding indicates that the IL-10 receptors IL10RA and IL10RB are likely to function differently in the IL-10 pathway in pediatric IBD. Although HO1 was not found to be associated with IBD[61], it has been shown to be associated with other diseases such as asthma and allergy[54,62]. HO1 is a potent enzyme of anti-inflammation, and has a very important function of the IL-10 pathway in controlling inflammation[54].
Although STAT3 is a critical component of the IL-10/STAT3 pathway, no significant interaction was observed between IL-10 and/or IL-10 receptors with STAT3, indicating that other factor(s) may play a role between these two genes in the pathway. We know that in the IL-10 pathway, upon binding of IL-10 to cell receptors IL10RA and IL10RB, the IL-10 receptor complex members Jak1 and Tyk2 are activated and catalyze phosphorylation of themselves and then of IL10RA, thereby forming a docking site for STAT3. STAT3 is phosphorylated by Jak1 and Tyk2, and this phosphorylation causes STAT3 dimerization and translocation to the nucleus where it can induce expression of its target genes including HO-1. Therefore, we speculate that Jak1 and Tyk2 play a role in pediatric IBD by their activity in the phosphorylation and activation of STAT3 in IL-10 signaling pathway.

Recently, pediatric/VEO IBD has been suggested to be a distinct form of IBD, and SNPs in IL-10 and IL-10 receptors have been associated with VEO IBD. In the present study, we identified IL-10 SNP of rs3024496 to be associated with pediatric IBD; this has not been shown to be associated with adult IBD. However, our results did not show a genetic association of the IL-10 rs1800872 and STAT3 rs744166 with pediatric IBD, which have been shown to be associated with adult IBD. Our present study also showed that epistatic interactions of IL-10 with genes IL10RA, IL10RB, STAT3, and HO1 contribute to pediatric IBD. Their physiological function in the regulation of the anti-inflammatory pathway in response to pro-inflammatory stimulation, and protection of diseased tissues from damage is currently not well studied. IBD is a major gastrointestinal disease affecting 1.4 million people in the United States. About 15%-25% of IBD patients are diagnosed in childhood. Specific investigation targeting the IL-10 signaling pathway in pediatric IBD pathogenesis will help to understand the pathogenesis of pediatric IBD, and may provide target molecules and pathways to potentially develop anti-inflammatory agents for clinical treatment of pediatric IBD.

Other cytokines are also shown to be involved in the inflammatory process of IBD. Studies on correlation between NO and IL17A, IL-23 and IL-6 levels in plasma of IBD patients indicated that the IL-23/IL17A axis and NO synthase pathway are involved in inflammation regulation in IBD.

In summary, IL-10 is associated with pediatric IBD, and the IL-10 signaling pathway that plays an important role in anti-inflammation. We propose, as depicted in Figure 5, that in pediatric IBD pathogenesis, (1) IL-10 via its interaction with receptor IL10RA, and then together with receptor IL10RB are critical for the initial step of the signaling transduction; (2) IL-10 via its interaction with receptor IL10RB plays a key role in regulating gene transcription of anti-inflammatory enzymes, such as HO1, that may lead to an anti-inflammatory response; and (3) no significant interaction was found between IL-10 and IL-10 receptors with STAT3, a key molecule in the IL-10 pathway. However, further investigation may provide insight as to whether Jak1 and Tyk2 are involved in pediatric IBD, via potential interactions with IL10RA and IL10RB where together their gene products could phosphorylate and activate STAT3.

ACKNOWLEDGMENTS

Study samples were provided by the Crohn’s and Colitis Foundation of America, the Pennsylvania State University Hershey Medical Center and Hershey Biobank.

COMMENTS

Background

Knockout mice lacking IL-10 develop inflammatory bowel disease (IBD), and mutations in IL-10 and IL-10 receptor genes IL10RA and IL10RB have been linked to very early-onset (VEO) IBD. Both IL-10 and STAT3 have been identified as IBD-associated genes in adults, but these are not well studied in pediatric IBD.

Research frontiers

Mutations of IL-10 and genes encoding its receptors have been identified recently in VEO IBD. The authors studied genetic association of IL-10 and genes in the IL-10/STAT3 pathway with pediatric IBD. Genetic interactions between different loci, i.e., epistasis, have been thought to be of paramount importance in complex diseases. In this paper, we used a computational model...
to analyze how epistatic interactions among polymorphic loci in the IL-10 gene and IL-10/STAT3 pathway govern pediatric IBD in a case-control setting.

Innovations and breakthroughs
Despite pronounced evidence of the role of the genes comprising IL-10 and genes within the IL-10/STAT3 signaling pathway, our knowledge about how they interact with each other to determine IBD development is still very limited. In this paper, they have identified IL-10 variation associated with pediatric IBD, and found a number of epistatic interactions of IL-10 with genes in the IL-10/STAT3 pathway contributing to pediatric IBD. The contribution of interactions of the IL-10/STAT3 pathway and anti-inflammatory HO1 gene to IBD indicated that IL-10 plays a role in the control of inflammation in IBD.

Applications
The findings may help to understand the function of IL-10 and the IL-10 pathway in the control of inflammation in IBD, and identify target molecules for clinical investigation and drug discovery for controlling inflammation in IBD.

Peer-review
The authors report novel data. The obtained results indicate that both the IL-10 gene and its epistatic interaction with genes within its signaling pathway are related to pediatric IBD.

REFERENCES
1. Van Limbergen J, Russell RK, Drummond HE, Aldhouse MC, Round NK, Nimmo ER, Smith L, Gillett PM, McGropgan P, Weaver LT, Bisset WM, Mahdi G, Arnott ID, Satingsi J, Wilson DC. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease. Gastroenterology 2008; 135: 1114-1122 [PMID: 18725221 DOI: 10.1053/j.gastro.2008.06.081].
2. Ostrowski J, Paziwańska A, Łazowska I, Ambrozikiewicz F, Goryca K, Kulecka M, Rawa T, Karczmarski J, Dabrowska M, Zeber-Lubecka N, Tomecki R, Kluska A, Balabas A, Pietkowska M, Pazcikowska K, Kierkus J, Socha P, Lodgyna M, Rydzewska G, Klopocka M, Mierzwia G, Iwaniczak B, Krowiesiek E, Baka-Drabik K, Walkowiak J, Kliczewicz B, Radwan P, Grzybowska-Chlebowczyk U, Landowski P, Jankowska A, Korczowski B, Starzynska T, Albrecht P, Mikula M. Genetic architecture differences between pediatric and adult-onset inflammatory bowel diseases in the Polish population. Sci Rep 2016; 6: 39831 [PMID: 28008909 DOI: 10.1038/srep39831].
3. Pranculienė G, Steponaitienė R, Skieciujevičienė J, Kučišnienė R. Kučielis G, Adamonis K, Kupčinskas L. Associations between NOD2, IRGM and ORM1L3 polymorphisms and pediatric-onset inflammatory bowel disease in the Lithuanian population. Medicina (Kaunas) 2016; 52: 325-330 [PMID: 27932194 DOI: 10.1016/j.medici.2016.11.006].
4. Li Q, Lee CH, Peters LA, Mastropasqua LA, Theoii C, Eldakir A, Schwed T, Zhu J, Zhang B, Zhao Y, Hao K, Dinaro A, Hoffman G, Kidd BA, Murchie R, Al Adham Z, Guo C, Klotzlar D, Cutz E, Walters TD, Shouval DS, Curran M, Robins T, Brumell J, Hu M, Nanan R, Sanner-Nanan B, Wong M, Le Deist F, Haddad E, Roifman CM. Estlander D. Griffiths AM, Gaskin KJ, Uhlig HH, Schreiber R. Diefenbach U, Kroll JS, Rauhau T, Boletzky S, Schreiber R. Inflammatory bowel disease in children with neonatal-onset Crohn’s disease and intractable ulcerating enterocolitis. Eur J Gastroenterol Hepatol 2013; 25: 1235-1240 [PMID: 23839161 DOI: 10.1097/MEG.0b013e328361a49].
5. Shim JO, Seo JK. Very early-onset inflammatory bowel disease (IBD) in infancy is a different disease entity from adult-onset IBD, one form of interleukin-10 receptor mutations. J Hum Genet 2014; 59: 337-341 [PMID: 24785691 DOI: 10.1038/jhg.2014.32].
6. Moran CJ, Wolters TD, Guo CH, Kugathasan S, Klein C, Turner D, Wolters VM, Bandsma RH, Mouzaki M, Zachos M, Langer JC, Cutz E, Benseler SM, Roifman CM, Silverberg MS, Griffiths AM, Snapper SB, Muise AM. IL-10R polymorphisms are associated with very-early-onset ulcerative colitis. Inflamm Bowel Dis 2013; 19: 115-123 [PMID: 22550014 DOI: 10.1002/ibd.22974].
7. Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75: 263-274 [PMID: 8402911 DOI: 10.1016/0092-8674(93)90066-P].
8. Shim JO, Seo JK. Pediatric inflammatory bowel disease (IBD): phenotypic, genetic and therapeutic differences between early-onset and adult-onset IBD. Korean J Ped Gastroenterol Nutr 2011; 14: 1-25 [DOI: 10.5223/kjpgn.2011.14.1.1].
9. Doeeke JD, Simms LA, Zhao ZZ, Huang N, Hanigan K, Krishnaprasad K, Roberts AL, Andrews JM, Mahy B, Gampston P, Lewindon P, Florin T, Lawrance IC, Gearry RB, Montgomery GW. Genetic susceptibility in IBD: overlap between ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis 2013; 19: 240-245 [PMID: 23348120 DOI: 10.1097/MIB.0b013e3182810041].
10. Ruemmele FM, El Khoury MG, Talbotte C, Maurage C, Mougenot JF, Schmitz J, Mouzaki M, Inflammatory bowel disease with onset during the first year of life. J Pediatri Gastroenterol Nutr 2006; 43: 603-609 [PMID: 17130735 DOI: 10.1097/01.mpg.0000237938.12674.e3].
11. Benchimol EI, Gottumukkala A, Griffiths AM, Robindeau S, Hines H, Mack DR, Brill H, Howard J, Gajewski T. Increasing incidence of paediatric inflammatory bowel disease in infancy is a different disease entity from adult-onset IBD. J Pediatri Gastroenterol Nutr 2006; 43: 603-609 [PMID: 17130735 DOI: 10.1097/01.mpg.0000237938.12674.e3].
12. Benchimol EI, Fortinsky KJ, Gozdrya P, Van den Heuvel M, Van Limbergen J, Griffiths AM. Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends. Inflamm Bowel Dis 2011; 17: 423-439 [PMID: 20564651 DOI: 10.1002/ibd.21349].
13. Baldassano RN, Piccoli DA. Inflammatory bowel disease in pediatric and adolescent patients. Gastroenterol Clin North Am 1999; 28: 445-458 [PMID: 10372276 DOI: 10.1016/S0889-8553(05)70064-9].
14. Franke A, Balschun T, Karlsten TH, Hedderich J, May S, Lu T, Schultd D, Nikolaus S, Rosenstiel P, Krawczak M, Schreiber
Lin Z et al. IL-10 signaling interaction in pediatric IBD

S. Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nat Genet 2008; 40: 713-715 [PMID: 18438405 DOI: 10.1038/ng.148]

21 Murray PJ. Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr Opin Pharmacol 2006; 6: 379-386 [PMID: 16713356 DOI: 10.1016/j.coph.2006.01.010]

22 Brand S. Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut 2009; 58: 1152-1167 [PMID: 19592695 DOI: 10.1136/gut.2008.163667]

23 Bernstein CN, Blanchard JF. The epidemiology of Crohn’s disease. Gastroenterology 1999; 116: 1503-1504 [PMID: 10391738 DOI: 10.1016/S0016-5085(99)70522-6]

24 Shouval DS, Biswas A, Goettel JA, McCann K, Conaway E, Redhu NS, Mascanfroni ID, Al Adham Z, Lavoie S, Ibourk M, Nguyen DD, Samson JN, Escher JC, Somech R, Weiss B, Beier R, Conklin LS, Ebens CL, Santos FG, Ferreira AR, Sherlock M, Bhan AK, Müller W, Mora JR, Quintana FJ, Klein C, Muise AM, Horwitz BH, Snapper SB. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 2014; 40: 706-719 [PMID: 24792912 DOI: 10.1016/j.immuni.2014.03.011]

25 Carlborg O, Haley CS. Epistasis: too often neglected in complex trait studies? Nat Rev Genet 2004; 5: 618-625 [PMID: 15266444 DOI: 10.1038/nrg1247]

26 Mackay TF, Moore JH. Why epistasis is important for tackling complex human disease genetics. Genome Med 2014; 6: 12 [PMID: 25031624 DOI: 10.1186/gm561]

27 Wang Z, Liu T, Lin Z, Hegarty J, Koltun WA, Wu R. A general model for multilocus epistatic interactions in case-control studies. PLoS One 2010; 5: e11384 [PMID: 20814428 DOI: 10.1371/journal.pone.0011384]

28 Lin Z, Hegarty JP, John G, Berg A, Wang Z, Sehgal R, Pastor DM, Wang Y, Harris LR 3rd, Portz LS, Schreiber S, Koltun WA. NOD2 mutations affect muramyl dipeptide stimulation of human B lymphocytes and interact with other IBD-associated genes. Dig Dis Sci 2013; 58: 2599-2607 [PMID: 23709157 DOI: 10.1007/s10620-013-2696-8]

29 Tseng LH, Storer B, Petersdorf E, Lin MT, Chien JW, Grogan BM, Malkki M, Chen PJ, Zhao LP, Martin PJ, Hansen JA. IL10 and IL10 receptor gene variation and outcomes after unrelated and related hematopoietic cell transplantation. Transplantation 2009; 87: 704-710 [PMID: 19295315 DOI: 10.1097/TP.0b013e318195f474]

30 Andersen V, Ernst A, Christensen J, Østergaard M, Jacobsen BA, Tjønneland A, Krarup HB, V ogel U. The polymorphism rs3024505 proximal to IL-10 is associated with risk of ulcerative colitis and inflammatory bowel disease and complementary to R30Q in disease susceptibility. Swiss Med Wkly 2011; 141: w13290 [PMID: 22065243 DOI: 10.4441/smw.2011.13290]

31 Zhu H, Lei X, Liu Q, Wang Y. Interleukin-10-1082A/G polymorphism and inflammatory bowel disease susceptibility: a meta-analysis based on 17,585 subjects. Cytokine 2013; 61: 146-153 [PMID: 23046617 DOI: 10.1016/j.cyto.2012.09.009]

32 Hunninghake GM, Soto-Quiros ME, Lasky-Su J, Avila L, Ly NP, Liang C, Klandermand JB, Raby BA, Gold DR, Weiss ST, Celeménd JC. Dust mite exposure modifies the effect of functional IL10 polymorphisms on allergy and asthma exacerbations. J Allergy Clin Immunol 2008; 123: 93-98, e1-98.e5 [PMID: 18440625 DOI: 10.1016/j.jaci.2008.03.015]

33 Figueiredo CA, Barreto ML, Alcantara-Neves NM, Rodrigues LC, Cooper PJ, Cruz AA, Pontes-de-Carvalho LC, Lemaire DC, dos Santos Costa R, Amorim LD, Vergara C, Rafaelis N, Gao L, Foster C, Campbell M, Mathias RA, Barnes KC. Coassociations between IL10 polymorphisms, IL-10 production, helminth infection, and asthma/wheeze in an urban tropical population in Brazil. J Allergy Clin Immunol 2013; 131: 1683-1690 [PMID: 23273955 DOI: 10.1016/j.jaci.2012.10.043]

34 Wang MH, Helezsouer KJ, Smith MW, Hoffman-Bolton JA, Clipp SL, Grinberg V, De Marzo AM, Isaacs WB, Drake CG, Shugart YY, Platz EA. Association of IL10 and other immune response and obesity-related genes with prostate cancer in CLUE II. Prostate 2009; 69: 874-885 [PMID: 19267370 DOI: 10.1002/pros.20093]

35 Tsilidis KK, Helezsouer KJ, Smith MW, Grinberg V, Hoffman-Bolton J, Clipp SL, Visvanathan K, Platz EA. Association of common polymorphisms in IL10, and in other genes related to inflammatory response and obesity with colorectal cancer. Cancer Causes Control 2009; 20: 1739-1751 [PMID: 19760027 DOI: 10.1007/s10552-009-9427-7]

36 Chen TK, Lee JH, Yu HH, Yang YH, Wang LC, Lin YT, Chiang BL. Association between human IL-10 gene polymorphisms and serum IL-10 level in patients with food allergy. J Forms Med Assoc 2012; 111: 686-692 [PMID: 23265747 DOI: 10.1016/j.jfma.2011.11.027]

37 Xie G, Myint PK, Zaman MJ, Li Y, Zhao L, Shi P, Ren F, Wu Y. Relationship of serum interleukin-10 and its genetic variations with ischemic stroke in a Chinese general population. PLoS One 2013; 8: e74126 [PMID: 24040186 DOI: 10.1371/journal.pone.0074126]

38 Qin SY, Jiang HX, Lu DH, Zhou Y. Association of interleukin-10 polymorphisms with risk of irritable bowel syndrome: a meta-analysis. World J Gastroenterol 2013; 19: 9472-9480 [PMID: 24409078 DOI: 10.3748/wjg.v19.i48.9472]

39 Sun JM, Li Q, Gu HY, Chen YJ, Wei JS, Zhu Q, Chen L. Interleukin 10 rs1800872 T>TgG polymorphism was associated with an increased risk of esophageal cancer in a Chinese population. Asian Pac J Cancer Prev 2013; 14: 3443-3447 [PMID: 23886125 DOI: 10.7314/apjc.2013.14.34.3443]

40 Zhang YM, Zhou XC, Xu Z, Tang CJ. Meta-analysis of epidemiological studies of association between two polymorphisms in the interleukin-10 gene promoter and colorectal cancer risk. Genet Mol Res 2012; 11: 3389-3397 [PMID: 23079832 DOI: 10.4238/2012.09.Sep.25.7]

41 Xavier RJ, Riouxf JD. Genome-wide association studies: a new window into immune-mediated diseases. Nat Rev Immunol 2008; 8: 631-643 [PMID: 18654571 DOI: 10.1038/nri2361]

42 Imieliński M, Baldassano RN, Griffiths A, Russell RK, Amnese V, Dubinsky M, Kugathasan S, Bradford JP, Walters TD, Sleiman P, Kim CE, Muise A, Wang K, Glessner JT, Saeed S, Zhang H, Frackelton EC, Hou C, Flory JH, Ottino G, Chiavacci RM, Grundmeier R, Castro M, Latiano A, Dallapiccola B, Steenpak J.
Abrams DJ, Taylor K, McGovern D; Western Regional Alliance for Pediatric IBD, Silger G, Wrobel I, Quiros A; International IBD Genetics Consortium, Barrett JC, Hanouš S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barnuda MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhardt AH, Targan SR, Xavier RJ; NIDDK IBD Genetics Consortium, Libourelle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot JP, de Vos M, Vermeire S, Louis E; Belgian-French IBD Consortium; Wellcome Trust Case Control Consortium, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T, Prescott NJ, Omnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead S, Guillaume R, Tremelling M, Delukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ, Heyman MB, Ferry GD, Kirshner B, Lee J, Essers J, Grand R, Stephens M, Levine A, Piccoli D, Van Limbergen J, Cucchiara S, Monos DS, Guthery SL, Denson L, Wilson DC, Grant SF, Daly M, Silverberg MS, Satsangi J, Hakonarson H. Common variants at five new loci associated with early-onset inflammatory bowel disease. *Nat Genet* 2009; 41: 1335-1340 [PMID: 19915574 DOI: 10.1038/ng.489]

50 Parkes M, McGovern DP, Franke A, Taylor K. 33 New Crohn’s disease susceptibility genes and loci identified by the international IBD Genetics Consortium. *Gastroenterology* 2010; 138: S115 Available from: URL: https://www.ibdgenetics.org/assets/ddw-cd-parkes.pdf

51 Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. *Nat Rev Immunol* 2008; 8: 458-466 [PMID: 18500230 DOI: 10.1038/nri2340]

52 Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW, Shugart YY, Griffiths AM, Targan SR, Ippoliti AF, Bernard EJ, Mei L, Nicolae DL, Regueiro M, Schumpp LP, Steinhardt AH, Rotter JI, Duerr RH, Cho JH, Daly MJ, Brant SR. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. *Nat Genet* 2007; 39: 596-604 [PMID: 17435756 DOI: 10.1038/ng2003]

53 Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature* 2007; 447: 661-678 [PMID: 17554300 DOI: 10.1038/nature05911]

54 Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, Steinhart AH, Abraham C, Regueiro M, Griffiths A, Dassopoulos T, Bitton A, Yang H, Targan S, Datta LW, Kistner EO, Schumm LP, Lee AT, Gregersen PK, Barmada MM, Rotter JI, Nicolae DL, Cho JH. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. *Science* 2006; 314: 1461-1463 [PMID: 17068223 DOI: 10.1126/science.1135245]

55 Yamazaki K, McGovern D, Ragoussis J, Paolucci M, Butler H, Jewell D, Cardon L, Takaezo M, Tanaka T, Ichimori T, Saito S, Sekine A, Iida A, Takahashi A, Tsunoda T, Lathrop M, Nakamura Y. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. *Hum Mol Genet* 2005; 14: 3499-3506 [PMID: 16221758 DOI: 10.1038/hmg/dd379]

56 Martin MP, Gao X, Lee JH, Nelson GW, Detels R, Goedert JJ, Buchbinder S, Hoits K, Vlahov D, Trowsdale J, Wilson M, O’Brien SJ, Carrington M. Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. *Nat Genet* 2002; 31: 429-434 [PMID: 12134147 DOI: 10.1038/ng934]

57 Gabutero E, Moore C, Mallal S, Stewart G, Williamson P. Interaction between allelic variation in IL12B and CCR5 affects the development of AIDS: IL12B/CCR5 interaction and HIV/AIDS. *AIDS* 2007; 21: 65-69 [PMID: 17148969 DOI: 10.1097/QAD.0b013e3280117f49]

58 Moore JH, Williams SM. Epistasis and its implications for personal genetics. *Am J Hum Genet* 2009; 85: 309-320 [PMID: 19733727 DOI: 10.1016/j.ajhg.2009.08.006]

59 Zhang Y, Liu JS. Bayesian inference of epistatic interactions in case-control studies. *Nat Genet* 2007; 39: 1167-1173 [PMID: 17721534 DOI: 10.1038/ng2110]

60 Gayán J, González-Pérez A, Bermudo F, Sáez ME, Royo JL, Quintas A, Galan JI, Morín FJ, Ramírez-Loreca R, Real LM, Ruiz A. A method for detecting epistasis in genome-wide studies using case-control multi-locus association analysis. *BMC Genomics* 2008; 9: 360 [PMID: 18660789 DOI: 10.1186/1471-2164-9-360]

61 Shah N, Kammermeier J, Elawad M, Glocke EO. Interleukin-10 and interleukin-10-receptor defects in inflammatory bowel disease. *Curr Allergy Asthma Rep* 2012; 12: 373-379 [PMID: 22890722 DOI: 10.1007/s11890-012-0286-z]

62 Ruemmele FM. Pediatric inflammatory bowel diseases: coming of age. *Curr Opin Gastroenterol* 2010; 26: 332-336 [PMID: 20571385 DOI: 10.1097/MOG.0b013e328339ec2d]

63 Rafa H, Saoula H, Belkhelfa M, Medjibeer O, Soufi I, Touni R, de Launoit Y, Moralès O, Nakmouche M, Delhem N, Touil-Boukoffa C. IL-23/IL-17A axis correlates with the nitric oxide pathway in inflammatory bowel disease: immunomodulatory effect of retinoic acid. *J Interferon Cytokine Res* 2013; 33: 355-368 [PMID: 23472658 DOI: 10.1089/jir.2012.0063]

P- Reviewer: Amnese V, Touil-Boukoffa C S- Editor: Gong ZM L- Editor: Filipodia E- Editor: Zhang FF
