Time-Varying Transformation-based Adaptive Tracking Control of Uncertain Robotic Systems with Event-triggered Mechanism

LEI ZHANG¹, DAN LI¹, XIAOCHUN LIU¹, HAILONG LIU¹, YONGCHENG ZHOU²

¹Department of Automation, College of Rail Transit and Intelligent Control, Hunan Railway Professional Technology College, No.18 Tianxin Road, Shifeng District, Zhuzhou, Hunan, 412001, China (e-mail:364105807@qq.com, ld1246087616@163.com, 502120402@qq.com, 452850917@qq.com)
²School of Automation, Chongqing University, No.174 Shazhengjie, Shapingba, Chongqing, 400044, China (e-mail: zhouyongcheng_024@163.com)

Corresponding author: Dan Li (e-mail: ld1246087616@163.com)

This work was partially supported by the project supported by the Natural Science Foundation of Hunan Province (No. 2021JJ60067).

ABSTRACT In this paper, an adaptive global event-triggered control scheme for uncertain robotic systems, capable of guaranteeing adjustable tracking performance, is developed. Compared with most of the existing results, the proposed control exhibits some features. Firstly, to improve the transient tracking performance without the requirement of large control effort, a time-varying scaling diagonal matrix and an error transformation are constructed so that each element of the tracking error has its own convergence rate, which can be adjusted by selecting the design parameters. Secondly, due to the consideration of decreasing the consumption of network resources, some additional diagonal matrices embedded in the new closed-loop system make the new control gain matrix not symmetric and positive definite, then the stability analysis becomes rather more challenging. To solve this issue, an alternative Lyapunov function is constructed to circumvent the above obstacles. The effectiveness of the proposed approach is verified by a 2-DOF robotic manipulator.

INDEX TERMS Accelerated adaptive control, Event-triggering mechanism, Robotic systems, Error transformation.

I. INTRODUCTION

In order to improve the quality of products in the manufacturing industry and to safely implement the dangerous yet significant tasks in the practical systems, the rigid robot manipulators have got a broad application in many fields [1]–[5]. Therefore, the study of uncertain robots has received great attention in both research and industry communities during the past decade. There are a lot of efficient methods in the literature, such as gravity-compensation control [6], adaptive control [7], computed torque control [8], [9], sliding mode control [10] and other control methods [11]. However, for the above existing literature, the corresponding methods for uncertain robotic systems are based on fixed periodic time-driven sampling. Noting that this fixed periodic form of sampling may procedure redundant control input, then it will result in the waste of communication resources. Hence, how to effectively use the communication bandwidth has been one of the most interesting topics in the field of robotic control. Since the event-triggered-based strategy has the ability to decrease the consumption of network resources, there are many results on event-triggered control of nonlinear/linear systems [12]–[17]. In [12], by using the hybrid system tools, an event-triggered stabilization control for a class of nonlinear systems was developed. However, the precondition of corresponding stability analysis is that the considered system must satisfy the input-to-state stability (ISS), which is difficult to identify this point. To avoid the ISS condition, in [15] an adaptive backstepping control with event-triggered rules were designed simultaneously for a class of strict-feedback nonlinear systems. Inspired by the idea of event-triggering mechanism, some meaningful results for robotic systems have been proposed in the past decade. In [18], by utilizing the event-triggering strategy and some hybrid theory techniques, a tracking control method was proposed for mobile robots in the presence of malicious denial-of-service attacks. In [19], a neuro-adaptive event-triggered
feedback control framework for uncertain robot manipulators was developed so that the system output tracks the predefined trajectory closely. Furthermore, to solve the problem of model predictive control (MPC) optimization problem in online computation and communication resources, a novel MPC-based trajectory tracking controller for mobile robots was proposed in [20] by using the event-triggering mechanism. Nevertheless, how to improve the transient tracking performance of robotic systems is not considered in the above works.

Furthermore, some researchers focus on improving the transient tracking performance of uncertain robotic manipulators [7], [21], [22]. In [7], an improved prescribed performance control was developed for state-constrained robotic systems such that the tracking error converges to a pre-given region within a prescribed time. In [21], by relaxing the assumption on controllability of the system and the requirement for a priori knowledge on the reference trajectory, a novel prescribed performance fault-tolerant control strategy for Euler-Lagrange systems in the presence of output constraint and actuator faults was presented. In [22], by constructing an error-based transformation, an adaptive prescribed performance control approach for robotic manipulators was developed so that the tracking error is able to converge to a pre-specified residual set with a pre-given decay rate. However, the implementation of the works in [7], [21], [22] must rely on the initial conditions and the corresponding results belong to semi-global results. If the reference signal or the initial state is changed, we must re-select the design parameters and re-implement the control algorithm. To relax the requirement on the initial condition, a filtered-error-based adaptive control scheme for uncertain robots was developed in [23], however, the issue of communication resources is not considered and only the transient performance for filter error (rather than the tracking error) is ensured.

Motivated by the above works, in this paper we propose an accelerated adaptive event-triggering control strategy for uncertain robotic manipulators. To improve the transient performance of the tracking error without involving large control effort, different from the normally employed filtered-error-based methods, we propose a time-varying diagonal matrix and construct a novel error transformation to facilitate the control design. Moreover, to reduce the communication resources for signal transmit, an event-triggering mechanism is utilized for control design. The contributions of this paper are summarized as:

- To our best knowledge, it is the first time to design a global adaptive event-triggered control method for uncertain rigid robotic systems, which is able to guarantee the adjustable transient tracking performance without involving large initial control input;
- By imposing a time-varying diagonal matrix, with the aid of error transformation, the developed control not only ensures the global result but also guarantees that the tracking error converges to an adjustable region with a pre-specified convergence rate, which is at the user’s disposal; and
- Due to the introduction of time-varying diagonal matrix and the event-triggering mechanism, the new virtual control gain matrix does not satisfy the positive definite property, which dramatically increases the difficulty of stability analysis. In this paper, by utilizing the information of available matrices, an alternative Lyapunov function candidate (rather than the quadratic one) is constructed, so that the stability of closed-loop systems is ensured.

The remaining of this paper is given as follows. In Section II, some preliminaries and the event-triggering mechanism, as well as the control goals, are introduced, respectively. To improve the transient tracking performance and to reduce the communication resources, an adaptive control scheme for uncertain robotic systems is developed in Section III, which ensures that all signals in the closed-loop systems are globally bounded. In Section IV, a simulation study on the 2-DOF robotic manipulator is carried out, which verifies the effectiveness of the developed control scheme. Finally, we conclude this paper in Section V.

Notation: \mathbb{R} represents the set of real numbers, \mathbb{R}^+ denotes the nonnegative real numbers, \mathbb{R}^m is the set of n-dimensional real vectors, $\mathbb{R}^{m \times n}$ represents the set of $m \times n$ real matrices, and \mathbb{Z}^+ is the positive integer set. $\| \cdot \|$ represents the Frobenius norm of matrix \bullet and Euclidean norm of vector \bullet, respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. DYNAMICS MODEL

The dynamic model of rigid robotic systems is described in the following form:

$$H(x_1)x_1 + C(x_1,x_2)x_2 + G_f(x_1) + G_T(x_2) = u$$ \hspace{1cm} (1)

where $x_1 \in \mathbb{R}^m$ and $x_2 \in \mathbb{R}^m$ denote the joint position and velocity vectors, respectively, $H(x_1) \in \mathbb{R}^{m \times m}$ is the inertia matrix which is symmetric and positive definite, $C(x_1,x_2) \in \mathbb{R}^{m \times m}$ represents the centripetal-coriolis matrix, $G_f(x_1) \in \mathbb{R}^m$ is the gravitation vector, $G_T(x_2) = G_f + G_d$ with G_f being the static or dynamic frictional force and $G_d \in \mathbb{R}^m$ being the external disturbance, and $u = [u_1, u_2, \cdots, u_m] \in \mathbb{R}^m$ is the control input.

Let $x_1 = [x_{11}, \cdots, x_{1m}]^T \in \mathbb{R}^m$ and $\dot{x}_1 = x_2 = [x_{21}, \cdots, x_{2m}]^T \in \mathbb{R}^m$, then (1) becomes

$$\begin{cases}
\dot{x}_1 = x_2, \\
\dot{x}_2 = Mu + F(\cdot)
\end{cases}$$ \hspace{1cm} (2)

where $M(\cdot) = H^{-1}(x_1)$ and $F(\cdot) = M(-C_2 - G_f - G_d)$. Furthermore, the considered robot systems have the following well-known structural properties [8], [9], [24]:

Property 1: The inertia matrix H and its inverse matrix M are positive definite and symmetric. In addition, there exist some positive constants λ_{max} and λ_{min} such that

$$\lambda_{\text{min}} \leq \|M\| \leq \lambda_{\text{max}},$$ \hspace{1cm} (3)

$$\lambda_{\text{max}} \|x\|^2 \leq x^T M x \leq \lambda_{\text{min}} \|x\|^2, \quad \forall x \in \mathbb{R}^m$$ \hspace{1cm} (4)
Property 2: For any x_1 and x_2, there exist some positive constants γ_1, γ_2, and γ_3 such that

$$\begin{align*}
\|H(x_1)\| &\leq \gamma_1, \|G_p(x_1)\| \leq \gamma_2, \\
\|C(x_1,x_2)\| &\leq \gamma_3 |x_2|
\end{align*}$$

(5)

B. EVENT-TRIGGERING MECHANISM

To decrease the communication burden, motivated by the results in [15] and [25], we design an event-triggered mechanism in the controller-to-actuator channel, which is described as:

- Control input:

$$u_k(t) = v_k(t_k), \quad \forall t \in [t_k,t_{k+1})$$

(6)

for $k = 1, \ldots, m$.

- Event-triggering mechanism:

$$t_{k+1} = \inf \{t \in R_+: |v_k(t) - u_k(t)| \geq \sigma_{1k} |u_k(t)| + \sigma_{2k}\}$$

(7)

for $j = 1, \ldots, m$ and $0 < \sigma_{1k} < 1$ and $\sigma_{2k} > 0$ are design parameters, t_{k+1} is the corresponding time of event triggering, $v_k(t)$ is the “virtual” control law which is a continuous signal, $\tilde{e}_k(t)$ is the measurement error between $v_k(t)$ and $u_k(t)$, i.e., $\tilde{e}_k(t) = v_k(t) - u_k(t)$, t_j is the update time in the j-th actuator channel, namely, if (7) is triggered, the corresponding time instant will be marked as t_{k+1}, and the virtual signal $v_k(t_{k+1})$ will be transmitted to the j-th actuator. In all, for $\forall t \in [t_k,t_{k+1})$, the control signal is always kept as a constant and no signal is transmitted from the controller to the actuator, i.e., $u_k(t) = v_k(t_k)$ for $\forall t \in [t_k,t_{k+1})$.

As the control signal must be updated to $v_k(t_k)$ at the triggering time instant t_k, it is seen from (7) that, for $\forall t \geq 0$, one has

$$|v_k(t) - u_k(t)| \leq \sigma_{1k} |u_k(t)| + \sigma_{2k}$$

(8)

When $u_k(t) \geq 0$, we have

$$-\sigma_{1k} u_k(t) - \sigma_{2k} \leq v_k(t) - u_k(t) \leq \sigma_{1k} u_k(t) + \sigma_{2k}$$

(9)

it is easily checked that

$$v_k(t) - u_k(t) = \rho_{1k}(t) \sigma_{1k} u_k(t) + \rho_{2k}(t) \sigma_{2k}$$

(10)

with $\rho_{1k}(t)$ and $\rho_{2k}(t)$ being time-varying continuous parameters and satisfying $|\rho_{1k}(t)| \leq 1$ and $|\rho_{2k}(t)| \leq 1$. Moreover, there exist some positive constants $\overline{\rho}_{1k}$ and $\overline{\rho}_{2k}$ such that $|\rho_{1k}(t)| \leq \overline{\rho}_{1k}$ and $|\rho_{2k}(t)| \leq \overline{\rho}_{2k}$. The similar result can also be ensured for the case $u_k(t) < 0$. Therefore, it is reduced that

$$v_k(t) = [1 + \rho_{1k}(t) \sigma_{1k}] u_k(t) + \rho_{2k}(t) \sigma_{2k}$$

(11)

which can be rewritten in another form:

$$u_k(t) = \frac{v_k(t)}{1 + \rho_{1k}(t) \sigma_{1k}} - \frac{\rho_{2k}(t) \sigma_{2k}}{1 + \rho_{1k}(t) \sigma_{1k}}$$

(12)

Then (12) becomes:

$$u(t) = \eta_1(t)v(t) + \eta_2(t)$$

(13)

where

$$\eta_1(t) = \text{diag} \left\{ \frac{1}{1 + \rho_{1k}(t) \sigma_{1k}} \right\} \in \mathbb{R}^{m \times m},$$

$$\eta_2(t) = \left[-\frac{\rho_{21}(t) \sigma_{21}}{1 + \rho_{11}(t) \sigma_{11}}, \ldots, -\frac{\rho_{2m}(t) \sigma_{2m}}{1 + \rho_{1m}(t) \sigma_{1m}} \right]^T,$$

$$v(t) = [v_1(t), \ldots, v_m(t)]^T$$

(15)

Substituting (13) into (2), one obtains

$$\begin{align*}
\{ x_{1} = x_{2}, \\
\dot{x}_{2} = F + M \eta_1 v + M \eta_2
\end{align*}$$

(17)

Remark 1: Note that $1 - \sigma_{1k} \leq 1 + \rho_{1k}(t) \sigma_{1k} \leq 1 + \sigma_{1k}$ and $|\rho_{2k}(t) \sigma_{2k}| \leq \sigma_{2k}$, then it follows that

$$\frac{1}{1 + \sigma_{1k}} \leq \frac{1}{1 + \rho_{1k}(t) \sigma_{1k}} \leq \frac{1}{1 - \sigma_{1k}}$$

which implies that η_1 is positive definite and η_2 is bounded, i.e., there exist positive constants $\overline{\eta}_1$, $\overline{\eta}_1$, and $\overline{\eta}_2$ such that $\overline{\eta}_1 \leq |\eta_1| \leq \overline{\eta}_1$ and $|\eta_2| \leq \overline{\eta}_2$.

C. OBJECTIVES AND ASSUMPTIONS

Define the position tracking error as

$$E = x_1 - y_d = [e_1, e_2, \ldots, e_m]^T$$

(18)

where $y_d = [y_{d1}, y_{d2}, \ldots, y_{dm}]^T \in \mathbb{R}^m$ is the reference signal. The goal of this paper is to develop an event-triggered strategy for rigid robotic systems such that:

1) all signals of the closed-loop robot dynamics are globally bounded;
2) the tracking performance on tracking error can be improved by adjusting the design parameters; and
3) the Zeno behavior [26] can be avoided in the sense that there exists a finite time $t^*_k > 0$ so that the inter execution interval $t_{k+1} - t_k$ is lower bounded by t^*_k, $\forall j \in Z_+$.

To achieve the above control goals, the following assumptions and lemma are imposed.

Assumption 1: The desired trajectory y_d and its time derivatives $y^{(i)}_d$, $i = 1, 2, 3$, are known, bounded, and piecewise continuous.

Assumption 2: The system states x_1 and x_2 are measurable.

Assumption 3: There exists an unknown positive constant γ_3 such that $\|G_\tau(x_2)\| \leq \gamma_3 (1 + \|x_2\|)$.

Remark 2: We give a detailed explanation about Assumption 3. In this paper, $G_f \in \mathbb{R}^m$ denotes the static and/or dynamic frictional force and $G_d(t) \in \mathbb{R}^m$ is a bounded external disturbance. In the existing literatures for robotic systems, the frictional dynamic G_f covers the following several types [27], [28]:

$$G_f = \theta_1 x_2 + \theta_2 \text{sgn}(x_2)$$

(19)

$$G_f = \theta_1 \left(\theta_2 + e^{-\theta_3 \|x_2\|} + \theta_4 \|x_2\| \right) \text{sgn}(x_2), \quad \theta_3 > 0$$

(20)
with \(\theta_i (i = 1, \cdots, 4)\) being unknown parameters. From the forms of friction in (19) and (20), it is obvious that
\[
||G_f|| \leq c_1 + c_2||x_2||
\]
(21)
where \(c_i (i = 1, 2)\) are non-negative and bounded constants. As \(G_f\) is bounded, then there exists a positive constant \(c_3\) so that \(||G_d|| \leq c_3\). Hence, \(G_c\) can be upper bounded by
\[
||G_c|| \leq ||G_f|| + ||G_d|| \leq c_1 + c_2||x_2|| + c_3 \leq \gamma_d (1 + ||x_2||)
\]
(22)
where \(\gamma_d = \max \{c_1 + c_2, c_3\}\) is an unknown parameter, which implies that Assumption 3 is reasonable.

Lemma 1: [29] Considering the dynamic system with the positive constants \(\gamma, \sigma\), and the non-negative function \(h(t)\):
\[
\dot{w}(t) = \gamma h(t) - \sigma w(t), \quad w(0) \geq 0
\]
(23)
then it is not difficult to prove that \(w(t) \geq 0\) for \(\forall t \geq 0\) and \(w(0) \geq 0\).

III. MAIN RESULT

A. ERROR TRANSFORMATION

To improve the tracking performance of robotic systems, different from most existing works, by introducing a diagonal matrix \(\beta\) we construct the following error transformation:
\[
\zeta = \beta E
\]
(24)
where \(E = \text{diag}\{e_i\} \in R^n \times m\) is a time-varying scaling matrix and the element of \(\beta\) is defined as
\[
\beta_i(t) = \frac{1}{(1 - b_{ij}) \kappa(t) + b_{ij}}, \quad i = 1, 2, \cdots, m
\]
(25)
with \(0 < b_{ij} < 1\) being a design parameter and the real function \(\kappa(t) \in R\) satisfying the following properties:

- The initial value of \(\kappa(0)\) is 1, i.e., \(\kappa(0) = 1\);
- \(\kappa(t) > 0\) is strictly monotonously decreasing with respect to \((w.r.t.)\) time \(\forall t \in [0, \infty)\) and converges to zero as \(t \to \infty\), i.e., \(\lim_{t \to \infty} \kappa(t) = 0\).
- \(\kappa_i^{(k)} (t) \equiv 0\) for \(k = 1, 2, 3\), is known, bounded, and piecewise continuous; and
- \(\lim_{t \to \infty} \kappa_i^{(k)} (t) = 0\) for \(k = 1, 2, 3\).

It is not difficult to show that many functions satisfy the above properties, i.e., \(\kappa_i = \exp(-t), (1 - e^{-t}), \frac{1}{1 + t}, \frac{1}{1 + t^2}\). With such a function \(\kappa_i\), it is easy to prove that the time-varying function \(\beta_i(t)\) has the following features:

1. The initial value of \(\beta_i(t)\) is 1, i.e., \(\beta_i(0) = 1\);
2. \(\beta_i\) is monotonically increasing w.r.t. time and converges to a positive constant \(\frac{1}{b_{ij}}\) as \(t \to \infty\), namely, \(\beta_i \in [1, \frac{1}{b_{ij}}]\); and
3. \(\beta_i^{(k)} (i = 1, 2, 3)\) is known, bounded, and piecewise continuous for \(\forall t \geq 0\).

Remark 3: According to the properties of \(\beta_i(t)\), it is readily verified that the diagonal matrix \(\beta(t)\) is positive definite and invertible, so is \(\beta^{-1}\). Furthermore, its derivatives \(\beta_i^{(k)}\), \(k = 1, 2, 3\), are available for control design.

Noting that \(E = x_1 - y_d\), then its time derivatives are
\[
\dot{E} = \dot{x}_1 - \dot{y}_d = x_2 - \dot{y}_d
\]
(26)
and
\[
\ddot{E} = \ddot{x}_2 - \ddot{y}_d
\]
(27)
Then the derivatives of \(\zeta\) as defined in (24) along (26) and (27) are
\[
\dot{\zeta} = \dot{\beta} E + \beta \dot{E} = \dot{\beta} E + \beta (x_2 - \dot{y}_d)
\]
(28)
and
\[
\ddot{\zeta} = \ddot{\beta} E + \dot{\beta} \dot{E} + \dot{\beta} E + \beta (\ddot{x}_2 - \ddot{y}_d)
\]
(29)
To facilitate the control design, different from the normally employed tracking-error-based filtered error, we introduce the following \(\zeta\)-based filtered error:
\[
z = \lambda_1 \zeta + \ddot{\zeta}
\]
(30)
where \(\lambda_1 > 0\) denotes a design parameter. Then the derivative of \(z\) along (28)-(29) is
\[
\dot{z} = \lambda_1 \dot{\zeta} + \dddot{\zeta}
\]
(31)
Substituting the expression of \(\dot{x}_2\) as shown in (17) into (31), one has
\[
\dot{z} = \lambda_1 \dot{\zeta} + \ddot{\beta} E + 2 \dot{\beta} \dot{E} + \beta (\dddot{x}_2 - \dddot{y}_d)
\]
(32)
with
\[
\Delta = \lambda_1 \dot{\zeta} + \ddot{\beta} E + 2 \dot{\beta} \dot{E} - \beta \dddot{y}_d
\]
(33)
being computable for control design.

B. CONTROL DESIGN

Due to the consideration of improving tracking performance and reducing communication burden, the diagonal matrices \(\beta\) and \(\eta_1\) are imposed in the new system dynamics (32), it makes the normally employed quadratic function \(\frac{1}{2} z^T \zeta\) not applicable for stability analysis, then how to design an effective control algorithm and to select a proper Lyapunov function candidate to guarantee the stability is a challenging topic. This is because that, although the matrices \(\beta, M, \eta_1\) are positive definite, the multiplication \(BM\eta_1\) may not be positive definite, then the traditional control methods in [30], [31], [32] for MIMO nonlinear systems are no longer available.

To circumvent the obstacles caused by the event-triggering rule and the error transformation and to decrease the difficulty of control design, instead of \(\frac{1}{2} z^T \zeta\), we construct the following positive definite function
\[
V_1 = \frac{1}{2} z^T \Omega z
\]
(34)
as a part of Lyapunov function candidate, where Ω is defined as
\[
\begin{align*}
\Omega &= \eta_1 \beta^{-1} = \text{diag}\{\omega_k\} \\
\omega_k &= \eta_{1k} \beta^{-1} = (1 - b_{kf}) \kappa_k(t) + b_{kf} \\
&\quad + \eta_{1k} \beta^{-1} = (1 - b_{kf}) \kappa_k(t) + b_{kf} \frac{1}{1 + \rho_{1k} \sigma_{1k}}
\end{align*}
\]
Its derivative is
\[
\dot{V}_1 = z^T \Omega z + \frac{1}{2} z^T \dot{Y} z
\]
with $Y = \text{diag}\{e_k\} = \frac{d}{dt} \Omega = \frac{d}{dt} (\eta_1 \beta^{-1})$, where
\[
e_k = \frac{d}{dt} (\eta_{1k} \beta^{-1}) = \frac{d}{dt} \left(1 - \frac{b_{kf}}{1 + \rho_{1k} \sigma_{1k}}\right)
\]
Noting that κ_k and its derivative $\dot{\kappa}_k$ are bounded, it is readily seen that e_k is bounded, then it implies that there exist some positive constants \bar{e}_k and \bar{Y} so that $|e_k| \leq \bar{e}_k$ and $\|\bar{Y}\| \leq \bar{Y}$.

Substituting (32) into (35), one has
\[
\dot{V}_1 = z^T \eta_1 M \eta_1 v + \mathcal{F}
\]
where $\mathcal{F} = z^T \eta_1 (F + M \eta_2 + \beta^{-1} \Delta) + \frac{1}{2} z^T \dot{Y} z$ is the lumped uncertainty.

According to the Properties 1-2 of robotic systems and Assumption 3, together with the definition of F, we have
\[
\|F(\cdot)\| \leq \lambda_{\max} \left[\gamma_1 \|x_2\|^2 + \gamma_2 + \gamma_4 (1 + \|x_2\|)\right] \\
\leq \lambda_{\max} \max \{\gamma_2, \gamma_3, \gamma_4\} (2 \|x_2\|^2 + 3) \\
\leq a \phi
\]
where
\[
a = \lambda_{\max} \max \{\gamma_2, \gamma_3, \gamma_4\}
\]
is an unknown parameter and
\[
\phi = 2 \|x_2\|^2 + 3
\]
is an available function for control design.

Upon using the Young’s inequality, together with Remark 1, one has
\[
\begin{align*}
z^T \eta_1 F &\leq \|z\| \|\eta_1\| \|F\| \leq a^2 \bar{\eta}_1^2 \|z\|^2 \phi + \frac{1}{4} \\
z^T \eta_1 M \eta_2 &\leq \|z\| \bar{\eta}_1 \lambda_{\max} \bar{\eta}_2 \leq \bar{\eta}_1^2 \lambda_{\max} \bar{\eta}_2^2 \|z\|^2 + \frac{1}{4} \\
z^T \eta_1 \beta^{-1} \Delta &\leq \|z\| \|\eta_1\| \|\beta^{-1} \Delta\| \\
&\leq \bar{\eta}_1 \|z\|^2 \|\beta^{-1} \Delta\|^2 + \frac{1}{4}
\end{align*}
\]
Furthermore, note that
\[
\frac{1}{2} z^T \dot{Y} z \leq \frac{1}{2} \|\bar{Y}\| \|z\|^2
\]
Therefore, \mathcal{F} can be upper bounded by
\[
\mathcal{F} \leq b \|z\|^2 \phi + \frac{3}{4}
\]
with
\[
b = \max \left\{\bar{\eta}_1^2, \bar{T}, a^2 \bar{\eta}_1^2, \bar{\eta}_1^2 \lambda_{\max} \bar{\eta}_2^2\right\}
\]
\[
\Phi = \phi^2 + \|\beta^{-1} \Delta\|^2 + \frac{3}{2}
\]
Then (36) becomes
\[
\dot{V}_1 \leq z^T \eta_1 M \eta_1 v + b \|z\|^2 \Phi + \frac{3}{4}
\]
(45)
The global adaptive event-triggered controller is designed as:
\[
v = - (c + \hat{b} \Phi) z
\]
where $c > 0$ denotes a design parameter, \hat{b} is the estimate of unknown parameter b and is updated by the following form:
\[
\hat{b} = \gamma \|z\|^2 \Phi - \sigma \hat{b}, \quad \hat{b}(0) \geq 0
\]
with γ and σ being positive design parameters. Furthermore, it must be emphasized that as $\gamma \|z\|^2 \Phi \geq 0$, with the aid of Lemma 1, it is guaranteed that $\hat{b}(t) \geq 0$ for $\forall t \in [0, \infty)$ and $\hat{b}(0) \geq 0$.

The stability analysis of the closed-loop robotic systems under the proposed adaptive controller (46)-(47) is summarized in the following theorem.

Theorem 1: Consider the uncertain robotic system (2) with event-triggering mechanism. Suppose Assumptions 1-3 hold, if the event-triggered adaptive control scheme as designed in (46)-(47) is applied, then it is ensured that:

1) all signals in the closed-loop robot dynamics are globally bounded;
2) the tracking performance can be improved by adjusting the design parameters; and
3) the Zeno behavior is avoided.

Proof. According to the definition of adaptive controller (46), it is seen that
\[
z^T \eta_1 M \eta_1 v = - (c + \hat{b} \Phi) (\eta_1 z)^T M (\eta_1 z)
\]
where the fact that $z^T \eta_1 = z^T \eta_1^T = (\eta_1 z)^T$ is utilized.

As M is positive definite, it leads to $(\eta_1 z)^T M (\eta_1 z) \geq \lambda_{\min} z^T \eta_1 \eta_1 z$. It is seen from Remark 1 that the diagonal matrix $\eta_1 \eta_1$ is also positive definite, then there exists a positive constant λ_{η} so that $z^T \eta_1 \eta_1 z \geq \lambda_{\eta} \|z\|^2$, which implies from (48) that
\[
z^T \eta_1 M \eta_1 v \leq - \lambda_{\eta} (c + \hat{b} \Phi) \|z\|^2
\]
with $\lambda_{\eta} = \lambda_{\min} \lambda_{\eta}$. Thus, (45) becomes
\[
\dot{V}_1 \leq - \lambda_{\eta} (c + \hat{b} \Phi) \|z\|^2 + b \|z\|^2 \Phi + \frac{3}{4}
\]
\[
= - \lambda_{\eta} c \|z\|^2 + b \|z\|^2 \Phi + \frac{3}{4}
\]
with $\hat{b} = b - \hat{b}$ being the parameter estimate error.

To prove the stability of the considered systems, we select the following form of Lyapunov function candidate:
\[
V = V_1 + \frac{1}{2 \lambda_{\eta}^2} \hat{b}^2
\]
with $\gamma > 0$. Then the time derivative of V along (50) yields
\[
V \leq - \lambda_{\eta} c \|z\|^2 + b \|z\|^2 \Phi + \frac{3}{4} + \frac{1}{2 \lambda_{\eta}^2} \hat{b} (b - \hat{b})
\]
(52)
Note that b is an unknown constant, it follows that $\dot{b} = 0$, then (52) further becomes

$$V \leq -\frac{\lambda c}{\gamma} \|z\|^2 + \|\dot{z}\|^2 \Phi + \frac{3}{4} + \frac{1}{\gamma} \dot{b} \left(-\dot{b}\right)$$ \hspace{1cm} (53)

Invoking the adaptive law as given in (47) into (53), one has

$$V \leq -\frac{\lambda c}{\gamma} \|z\|^2 + \frac{3}{4} + \frac{1}{\gamma} \ddot{b} \left(-\gamma \|z\|^2 \Phi + \sigma \dot{b}\right)$$

$$= -\frac{\lambda c}{\gamma} \|z\|^2 + \frac{3}{4} + \frac{\sigma}{\gamma} \ddot{bb}$$ \hspace{1cm} (54)

As $\ddot{b} = \frac{b - \ddot{b}}{\dot{b}}$, then it follows that

$$\frac{\sigma}{\gamma} \ddot{bb} = \frac{\sigma}{\gamma^2} \ddot{b} (b - \ddot{b}) = \frac{\sigma}{\gamma^2} (bb - \dot{b}^2)$$

By utilizing the Young’s inequality, we have $\ddot{bb} \leq \frac{1}{Z} \dot{b}^2 + \frac{1}{Z} b_i^2$, then

$$\frac{\sigma}{\gamma} \ddot{bb} \leq \frac{\sigma}{2\gamma^2} (\dot{b}^2 + b_i^2)$$

which indicates that

$$\dot{V} \leq -\frac{\lambda c}{\gamma} \|z\|^2 - \frac{\sigma}{2\gamma^2} \ddot{b}^2 + \Theta$$

with $\Theta = \frac{3}{4} + \frac{\sigma}{2\gamma^2} b_i^2$ being an unknown positive constant.

As Ω is also positive definite and bounded, then there exist positive constants λ_Ω and $\bar{\lambda}_\Omega$ such that

$$\lambda_\Omega \|z\|^2 \leq \zeta^T \Omega z \leq \bar{\lambda}_\Omega \|z\|^2$$

it is checked that

$$-\bar{\lambda}_\Omega \|z\|^2 \leq -\zeta^T \Omega z$$

which leads to

$$-\frac{\lambda c}{\bar{\lambda}_\Omega} \|z\|^2 \leq -\dot{\zeta}^T \Omega \zeta$$

Then (57) becomes

$$\dot{V} \leq -\frac{2\lambda c}{\bar{\lambda}_\Omega} \zeta^T \Omega \zeta - \frac{\sigma}{2\gamma^2} \ddot{b}^2 + \Theta \leq -\Gamma \dot{V} + \Theta$$

where

$$\Gamma = \min \left\{ \frac{2\lambda c}{\bar{\lambda}_\Omega}, \sigma \right\} > 0$$

Solving the equation (61) on $[0, t]$, one has

$$V(t) \leq \frac{\Theta}{\Gamma} + \left(V(0) - \frac{\Theta}{\Gamma}\right) \exp(-\Gamma t)$$

Then we guarantee the following results.

We first prove that all signals in the closed-loop systems are bounded. It is from (62) seen that $V(t)$ is bounded, then from the definition of Lyapunov function candidate, one has z and \dot{b} are bounded. As $\ddot{b} = b - \lambda_{\min} \dot{b}$ and b and λ_{\min} are positive constants, then it is shown that \ddot{b} is also bounded. In addition, note that $z = \lambda_1 \zeta + \tilde{\zeta}$, then it is not difficult to prove that ζ and $\tilde{\zeta}$ are bounded. According to the boundedness of β and \dot{b}, together with Assumption 2, it is ensured that E and \dot{E} are bounded, which further implies that λ_1 and λ_2 are bounded. As the matrices η_3^{-1} and γ are bounded, then the computational function Φ is also bounded, then from the definitions of control law and adaptive law as defined in (46)-(47), respectively, it follows that \dot{v} and \ddot{b} are bounded for $\forall t \geq 0$.

Next we analyze the tracking performance of each component of the tracking error. Denote $z = [z_1, \cdots, z_m]^T \in R^m$ and $\zeta = [\zeta_1, \cdots, \zeta_m]^T \in R^m$, then it follows from (30) that

$$\zeta_i = -\lambda_1 \zeta_i + z_i, \ i = 1, \cdots, m$$

Solving the above equation yields

$$\zeta_i(t) = \zeta_i(0) \exp(-\lambda_1 t) + \exp(-\lambda_1 t) \int_0^t \exp(\lambda_1 \tau) z_i(\tau) d\tau$$

Note that $|z_i| \leq \|z\| \leq \tau$ with τ being a positive constant, then (64) becomes

$$|\zeta_i(t)| \leq |\zeta_i(0)| \exp(-\lambda_1 t) + \frac{\tau}{\lambda_1} \leq |\zeta_i(0)| + \frac{\tau}{\lambda_1} = B_i$$

As $E = [e_1, \cdots, e_m]^T \in R^m$ and $z_i = \beta_i e_i$, then $e_i = \beta_i^{-1} \zeta_i$, $i = 1, 2, \cdots, m$, which further expresses as

$$\begin{cases}
e_i(t) = \beta_i^{-1}(t) \zeta_i(t) = b_i \beta_i^{-1}(t) \zeta_i(t) + (1 - b_i) \kappa_i(t) \zeta_i(t) \leq b_i \beta_i^{-1}(t) \zeta_i(t) + (1 - b_i) \kappa_i(t) \beta_i(t) \leq b_i \beta_i^{-1}(t) \zeta_i(t) + (1 - b_i) \kappa_i(t) \beta_i(t) \end{cases}$$

and

$$\begin{cases}
e_i(t) = b_i \beta_i^{-1}(t) \zeta_i(t) \quad t \to \infty \\
|e_i(t)| \leq b_i |\zeta_i(t)| \leq b_i |\beta_i(t)| \quad t \to \infty$$

It is shown from (66) that the tracking error e_i includes two components: the first one is $b_i \beta_i^{-1}(t) \zeta_i(t)$, it is seen from the above analysis that $b_i \beta_i^{-1}(t) \zeta_i(t)$ is always within the residual region $b_i \beta_i$ during the whole control process. The second one is $(1 - b_i) \kappa_i(t) \zeta_i(t)$, the decay rate is not only governed by the term $\kappa_i(t)$, but more importantly influenced by the real function $\kappa_i(t)$. Here we must emphasize that this function κ_i is not only at user’s disposal but also is independent of system initial conditions and any other design parameters. Hence, we have the freedom to choose the real function κ_i properly to improve the decay rate and mode for $(1 - b_i) \kappa_i(t) \zeta_i(t)$, so that the transient tracking performance of $e_i(t)$ can be significantly improved.

Furthermore, it is also seen from (67) that the steady-state performance of tracking error can be improved by decreasing the design parameter b_i and the size of B_i. Noting that the size of B_i relies on the design parameter λ_1 and the size of z_i, then it is shown that the size of z_i may effect the steady-state tracking performance. Noting that (57) can be expressed as

$$\dot{V} \leq -\frac{2\lambda c}{\bar{\lambda}_\Omega} \|z\|^2 + \Theta \leq -\Gamma \dot{V} + \Theta$$

Then it is easily proved that z will enter into and remain within the compact set

$$\Omega_z := \left\{ \in R^m \ ||z| \leq \sqrt{\frac{\Theta + \mu}{\gamma}} \right\}$$

where μ is a small positive constant. As the size of z is proportional to c and γ, then increasing the design parameters c and γ and decreasing σ will lead to smaller z. In addition, it is seen from (65) that larger λ_1 may also lead to smaller ζ_i. Volume 4, 2016
Then increasing c, γ, λ_1 and decreasing σ may decrease the magnitude of ξ_k. However, larger c might lead to larger control effort. Therefore, certain compromise between control performance and control effort should be made in practice as with many other adaptive control methods.

Finally we show that the Zeno behavior [26] is avoided. As $\hat{e}_k(t) = v_k(t) - u_k(t)$, it is deduced that:

$$\frac{d}{dt}|\hat{e}_k| = \frac{d}{dt}(\hat{e}_k \ast \hat{e}_k)^{\frac{1}{2}} = \text{sign}(\hat{e}_k) \hat{e}_k \leq |v_k| \tag{68}$$

From the definition of $v(t)$ as shown in (46), we have $v_k = \frac{\partial z}{\partial x} \hat{z}_k + \frac{\partial \Phi}{\partial \Phi} \hat{b}$. As \hat{z}_k, Φ, and \hat{b} are all continuous functions, then it is indicated that v_k must be continuous. Noting that \hat{v}_k is a function of all bounded closed-loop signals, then there exists a constant $\chi_k > 0$ so that $|\hat{v}_k| \leq \chi_k$. According to the presented event-triggering mechanism, it follows that $\hat{e}_k \ast \hat{e}_k = 0$ and $\lim_{t \to t_k^+} \hat{e}_k(t) = |\sigma_{1k} u_k(t)| + |\sigma_{2k} > \sigma_{2k}$, then we obtain that there exists a lower bound of inter-execution interval t_k^+ and it satisfies $t_k^+ \geq \frac{\sigma_{1k}}{\xi_k}$. Therefore, the Zeno behavior is avoided. The proof is completed. \blacksquare

To recap the main design procedure, a control diagram that clearly illustrates the structure of the control loop is presented in Fig. III-B.

Remark 4: If the error transformation (24) is not imposed, i.e., $\beta = I$, the proposed adaptive control scheme (46)-(47) reduces to

$$\begin{cases}
\xi = E \\
\zeta = \lambda_1 \zeta + \dot{\xi} \\
u = -(c + \hat{b}) \Phi \\
\dot{\hat{b}} = \gamma \|z\|^2 \Phi - \sigma \hat{b}, \hat{b}(0) \geq 0 \\
\Phi = \phi^2 + |\Delta|^2 + \frac{1}{\xi} \\
\phi = 2 \|x_2\|^2 + 3, \Delta = \lambda_1 \dot{y} - \ddot{y}_d
\end{cases} \tag{69}$$

then (69) is a special case of (46)-(47) and is referred to as the traditional event-triggered control method. Under this control scheme, although the boundedness of all signals in the closed-loop systems can be ensured, there is no any systematically guidance for improving the transient tracking performance. The normally method is to adjust the design parameters by the method of trial and error, however, this may lead to a large magnitude of control law in the initial period. In this paper, by constructing a time-varying scaling matrix and introducing a meaningful error transformation, the proposed control not only ensures the boundedness of all signals but also achieves adjustable transient performance without involving large control inputs, which is very important for the control implementation in the practical engineering systems.

Remark 5: Compared with the references [33]–[36] with or without event-triggered mechanism, the main difference is that in this paper the tracking transient performance is considered, which implies that the corresponding methods are no longer applicable. In this paper, by imposing a time-varying scaling function matrix in the control design, together with an event-triggered mechanism and an alternative form of Lyapunov function, the proposed method not only circumvents the obstacle caused by the event-triggered mechanism, but also guarantees the adjustable tracking performance for uncertain robotic manipulators.

Remark 6: Compared with the existing literature about the robotic control, the main contributions and the shortcoming of this study are discussed in the following:

- Due to the consideration of transient tracking performance, the original filtered-error-based control scheme is no longer applicable as the normally method on improving the transient performance is to adjust the design parameters by the method of trial and error, leading to a large magnitude of control input in the initial period and a adverse effort on the actuator. In this paper, in order to achieve the adjustable transient performance without involving large control law, by imposing a time-varying diagonal matrix, together with a error transformation, the developed global approach is able to ensure that the tracking error converges to an adjustable region with a adjustable decay rate without involving large control input;

- Noting that the diagonal matrices β and η_1 are imposed in the new system dynamics (32), it makes the control gain matrix $\beta M \eta_1$ not symmetric and positive definite at all, which further implies that the quadratic function $\frac{1}{2}z^T z$ is no longer applicable for stability analysis. Therefore, in this paper, different from the normally employed quadratic function, an alternative Lyapunov function candidate $\frac{1}{2}z^T \Omega z$ is constructed so that not only the difficulty caused by the time-varying diagonal matrix and the event-triggering mechanism is circumvented, but also the stability of the closed-loop systems can be guaranteed.

- Although the proposed control of robotic control is able to achieve the global result with adjustable tracking performance, it is seen from (65) the control precision of tracking error depends on some unknown terms, which cannot be pre-specified by the control scheme. Therefore, we will focus on studying the global prescribed performance event-triggered control of uncertain robotic systems such that the control precision can be pre-assigned.

IV. SIMULATION VERIFICATION

To verify the effectiveness of the proposed event-triggered control method, we consider a 2-DOF robotic manipulator with the following detailed expressions:

$$H = \begin{bmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{bmatrix}, \quad C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

$$G_g = [g_1, g_2]^T, \quad G_f = \theta_1 (\theta_2 + \exp(-\theta_3 \|x_2\|)) + \theta_4 \|x_2\|)$$

$$G_d = [\sin(t), \sin(t)]^T$$

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3161134, IEEE Access
where

\[
\begin{align*}
H_{11} &= m_1 p_1^2 + m_2 (p_1^2 + p_4^2 + 2p_1 p_4 \cos(x_{12})) + I_1 + I_2, \\
H_{12} &= H_{21} = m_2 (p_1^2 + p_1 p_4 \cos(x_{12})) + I_2, \\
H_{22} &= m_2 p_4^2 + I_2, \\
C_{11} &= -m_2 p_1 p_4 x_{22} \sin(x_{12}), \\
C_{12} &= -m_2 p_1 p_4 x_{22} (x_{21} + x_{22}) \sin(x_{12}), \\
C_{21} &= m_2 p_1 p_4 x_{21} \sin(x_{12}), \\
C_{22} &= 0, \\
G_{g1} &= (m_1 p_3 + m_2 p_1) g \cos(x_{11}) + m_2 p_4 g \cos(x_{11} + x_{12}), \\
G_{g2} &= m_2 p_4 g \cos(x_{11} + x_{12}), \\
\tau_{d1} &= p_5 \sin(x_{11}), \\
\tau_{d2} &= p_6 \sin(x_{12}).
\end{align*}
\]

The system parameters are given as:

\[
p = [p_1, p_2, p_3, p_4, p_5, p_6] = [1, 1, 0.5, 0.5, 0.5, 0.5],
\]

\[
[\theta_1, \theta_2, \theta_3, \theta_4] = [0.5, 0.6, 0.8, 0.3], \\
I_1 = I_2 = 0.5 kg \cdot m^2, \\
m_1 = m_2 = 1 kg, \ g = 9.81 m/s^2.
\]

The objective in the simulation is to utilize the proposed event-triggered control scheme (46)-(47) for the 2-DOF robotic systems such that the system output \(x_1\) tracks the known reference signal \(y_d(t) = [1.2 \sin(t), 0.5 \sin(t)]^T (\text{rad})\) with excellent transient tracking performance. To show the effectiveness of the proposed control, the initial conditions are given as: \(x_{11}(0) = 1.3 (\text{rad}), x_{12}(0) = 1 (\text{rad}), x_{21}(0) = -1 (\text{rad/s}), x_{22}(0) = -1 (\text{rad/s}), \) and \(\dot{b}(0) = 0.\) The design parameters for the proposed control are given as \(c = 1, \lambda_i = 1.5, \gamma = 0.001, \sigma = 0.1, b_{if} = 0.08, \) and \(\kappa_i = \exp(-t), \) \(i = 1, 2.\)

The simulation results are shown in Fig. 2-Fig. 9. The evolutions of \(x_{1k}\) and \(y_{dk}\) are plotted in Fig. 2-Fig. IV, respectively. The trajectories of tracking errors \(e_{11}\) and \(e_{12}\) are shown in Fig. IV, from which it is seen that under the proposed control, the tracking error exhibits good tracking performance. In addition, the evolutions of control inputs \(u_1\) and \(u_2\) are plotted in Fig. IV and Fig. IV, respectively. The trajectory of parameter estimate \(\hat{b}\) is given in Fig. 7. It is seen that all signals are bounded for \(\forall t \geq 0.\) Furthermore, the event triggered times for the event-triggering mechanism in the controller-to-actuator channels are shown in Fig. 8 and Fig. 9, respectively, from which it is checked that the numbers of events triggered within 10s are 133 and 431.

Furthermore, to verify that the proposed control is able to adjust the transient tracking performance by choosing different real function \(\kappa_i(t),\) three different functions for \(\kappa_i (i = 1, 2)\) are considered, i.e., \(\kappa_i(t) = \frac{1}{\mu + t}, \exp(-t), \) and
exp(−3τ). For fair comparison, all shared parameters and the initial values of the developed control scheme are set to be the same, the simulation results are shown in Fig. IV and Fig. IV, from which it is seen that different $\kappa_i(t)$ can produce different tracking performance and the evolutions of tracking error can be adjusted, which confirms our theoretical analysis.

V. CONCLUSION

In this paper, we have developed a novel adaptive event-triggered control strategy for uncertain robotic systems with adjustable transient tracking performance. With the aid of diagonal matrix β, the tracking error-based transformation is employed so that the tracking performance caused by the event triggering mechanism is compensated and successfully improved. Furthermore, the proposed control has also ensured the global boundedness of all closed-loop signals in robot dynamics.

REFERENCES

[1] L. G. Lin, and M. Xin, “Computational enhancement of the sdre scheme: general theory and robotic control system,” IEEE Transactions on Robotics, vol. 36, no. 3, pp. 875–893, 2020.

[2] G. Saridis, “Intelligent robotic control,” IEEE Transactions on Automatic Control, vol. 28, no. 5, pp. 547–557, 1983.
[3] W. Wang, J. Huang, and C. Wen, “Prescribed performance bound-based adaptive path-following control of uncertain nonholonomic mobile robots,” International Journal of Adaptive Control and Signal Processing, vol. 31, no. 5, pp. 805–822, 2017.

[4] S. Zhang, Y. Dong, Y. Ouyang, Z. Yin, and K. Peng, “Adaptive neural control for robotic manipulators with output constraints and uncertainties,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 11, pp. 5554–5564, 2018.

[5] Q. Zhou, S. Zhao, H. Li, R. Lu, and C. Wu, “Adaptive neural network tracking control for robotic manipulators with dead zone,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 12, pp. 3611–3620, 2018.

[6] M. Takegaki, S. Arimoto, “A new feedback method for dynamic control of manipulators,” Journal of Dynamic Systems, Measurement, and Control, vol. 103, no. 2, pp. 119-125, 1981.

[7] K. Zhao, Y. D. Song, T. Ma, and L. He, “Prescribed performance control of uncertain euler–lagrange systems subject to full-state constraints,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29, no. 8, pp. 3478–3489, 2018.

[8] J. J. E. Slotine, and W. Li, “Composite adaptive control of robot manipulators,” Automatica, vol. 25, no. 4, pp. 509–519, 1989.

[9] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control, John Wiley & Sons, 2020.

[10] V. I. Utkin, Sliding modes in control and optimization, Springer Science & Business Media, 2013.

[11] F. L. Lewis, “Neural network control of robot manipulators,” IEEE Expert, vol. 11, no. 3, pp. 64-75, 1996.

[12] A. Adalido, F. Alderisio, D. Lisarza, G. Shi, D. V. Dimarogonas, M. Di Bernardo, and K. H. Johansson, “Event-triggered pinning control of switching networks,” IEEE Transactions on Control of Network Systems, vol. 2, no. 2, pp. 204-213, 2015.

[13] H. Ma, H. Li, R. Lu, and T. Huang, “Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances,” Science China Information Sciences, vol. 63, no. 5, pp. 1–15, 2020.

[14] Z. G. Wu, Y. Xu, R. Lu, Y. Wu, and T. Huang, “Event-triggered control for consensus of multiagent systems with fixed/switching topologies,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 48, no. 10, pp. 1736–1746, 2017.

[15] L. Xing, C. Wen, Z. Liu, H. Su, and J. Cai, “Event-triggered adaptive control for a class of uncertain nonlinear systems,” IEEE Transactions on Automatic Control, vol. 62, no. 4, pp. 2071-2076, 2016.

[16] R. Yang, H. Zhang, G. Feng, H. Yan, and Z. Wang, “Robust cooperative output regulation of multi-agent systems via adaptive event-triggered control,” Automatica, vol. 102, pp. 129–136, 2019.

[17] Y. Zhang, H. Li, J. Sun, and W. He, “Cooperative adaptive event-triggered control for multiagent systems with actuator failures,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 9, pp. 1759–1768, 2018.

[18] Y. Tang, D. Zhang, D. W. Ho, W. Yang, and B. Wang, “Event-based tracking control of mobile robot with denial-of-service attacks,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 9, pp. 3300–3310, 2018.

[19] V. Narayanan, S. Jaganathan, and K. Ramkumar, “Event-sampled output feedback control of robotic manipulators using neural networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 30, no. 6, pp. 1651–1658, 2018.

[20] N. He, L. Qi, R. Li, and Y. Liu, “Design of a Model Predictive Trajectory Tracking Controller for Mobile Robot Based on the Event-Triggering Mechanism,” Mathematical Problems in Engineering, vol. 2021: 5573467, 2021.

[21] J. X. Zhang, and G. H. Yang, “Fault-tolerant output-constrained control of unknown euler-lagrange systems with prescribed tracking accuracy,” Automatica, vol. 111: 108606, 2020.

[22] C. P. Becchioulis, Z. Douglis, and G. A. Rovithakis, “Guaranteeing prescribed performance and contact maintenance via an approximately free robot force/position controller,” Automatica, vol. 48, no. 2, pp. 360-365, 2012.

[23] Y. D. Song, and K. Zhao, “Accelerated adaptive control of nonlinear uncertain systems,” 2017 American Control Conference, pp. 2471-2476, 2017.

[24] Y. D. Song, “Adaptive motion tracking control of robot manipulators-regressor based approach,” International Journal of Control, vol. 63, no. 1, pp. 41–54, 1996.

[25] T. Lei, W. Meng, K. Zhao, and L. Chen, “Adaptive asymptotic tracking control of constrained multi-input multi-output nonlinear systems via event-triggered strategy,” International Journal of Robust and Nonlinear Control, vol. 31, no. 5, pp. 1479-1496, 2021.

[26] K. H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry, “On the regularization of Zeno hybrid automata,” Systems & Control Letters, vol. 38, no. 3, pp. 141-150, 1999.

[27] J. J. Craig, Adaptive Control of Mechanical Manipulators, Addison-Wesley, New York, 1998.

[28] B. Friedland, and Y. J. Park, “On adaptive friction compensation,” IEEE Transactions on Automatic Control, vol. 37, no. 10, pp. 1609-1612, 1992.

[29] L. Ding, S. Li, Y. J. Liu, H. Gao, C. Chen, and Z. Deng, “Adaptive neural network-based tracking control for full-state constrained wheeled mobile robotic system,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 8, pp. 2410-2419, 2017.

[30] X. Jin, “Adaptive finite-time fault-tolerant tracking control for a class of MIMO nonlinear systems with output constraints,” International Journal of Robust and Nonlinear Control, vol. 27, no. 5, pp. 722-741, 2017.

[31] Y. D. Song, and J. Guo, “Neuro-adaptive fault-tolerant tracking control of lagrange systems pursuing targets with unknown trajectory,” IEEE Transactions on Industrial Electronics, vol. 64, no. 5, pp. 3913–3920, 2016.

[32] Y. D. Song, X. Huang, and C. Wen, “Robust adaptive fault-tolerant pid control of mimo nonlinear systems with unknown control direction,” IEEE Transactions on Industrial Electronics, vol. 64, no. 6, pp. 4876–4884, 2017.

[33] W. Qi, G. Zong, and W. X. Zheng, “Adaptive event-triggered SMC for stochastic switching systems with semi-Markov process and application to boost converter circuit model,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 2, pp. 786-796, 2020.

[34] W. Qi, Y. Hou, G. Zong, and C. K. Ahn, “Finite-time event-triggered control for semi-Markovian switching cyber-physical systems with FDI attacks and applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 6, pp. 2665-2674, 2021.

[35] J. Kong, B. Niu, Z. Wang, P. Zhao, and W. Qi, “Adaptive output-feedback neural network tracking control for uncertain switched MIMO nonlinear systems with time delays,” International Journal of Systems Science, vol. 52, no. 13, pp. 2813-2830, 2021.

[36] W. Su, B. Niu, H. Wang, and W. Qi, “Adaptive neural network asymptotic tracking control for a class of stochastic nonlinear systems with unknown control gains and full state constraints,” International Journal of Adaptive Control and Signal Processing, vol. 35, no. 10, pp. 2007-2024, 2021.

LEI ZHANG received the M.S. degree from control theory and control engineering in Zhongyuan University of Technology, Zhengzhou, China, in 2013. Now, she is working at the Hunan Railway Professional Technology College. Her research interests include the electrical engineering and industrial robots.

DAN LI was born in Hunan Province, China in 1991. She obtained the master’s degree in electrical engineering from Hunan University of technology in 2016. She once worked as a professional technician in Hunan Xiangdian Test and Research Institute Co., Ltd from 2016 to 2018. Since 2018, she joined in Hunan Railway Vocational and Technical College as a lecturer and intermediate engineer. Her research interests include machine learning, cooperative control, robotic control and application, and distribution network state analysis.
XIAOCHUN LIU graduated with the major in high voltage technology from Huazhong University of Science and Technology, Wuhan, China, in 1995. From 1995 to now, she is working in Hunan Railway Vocational and Technical College and focus on teaching and scientific research in the fields of electrical engineering and automatic control.

HAILONG LIU was born in 1986 in Jiangxi Province, China. He received the master’s degree in control Engineering from East China Jiaotong University in 2012 and is currently an associate professor. Prior to 2013, He had been working as a control engineer at Feida Electric Equipment Co., LTD. From 2013 to now, he is working as an associate professor at Hunan Railway Vocational and Technical College. His research interests include intelligent control, industrial robotics, and artificial intelligence.

YONGCHENG ZHOU received M.S. degrees in control engineering from the Chongqing University, Chongqing in 2016, where he is currently pursuing the Ph.D. degree at the School of Automation, Chongqing University. He was a control engineer at CRRC in 2016. Since 2018, he has been a researcher and senior engineer with the Research Institute of Ruijie, Ruijie Networks Co., Ltd. His research interest includes machine learning, deep learning, cooperation control and applications, adaptive control.