Physical Mixing Of N-Doped Graphene Quantum Dots Functionalized TiO$_2$ For Sustainable Degradation Of Methylene Blue

Kah Hon Leong1*, Sean Yang Fong1, Ping Feng Lim1, Lan Ching Sim1, Pichiah Saravanan2

1Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Perak, Malaysia
2Department of Environmental Science and Engineering, Indian Institute of Technology (ISM) Dhanbad, Jharkhand, India

E-mails: khleong@utar.edu.my; fseanyang.syf@gmail.com; raven_lim@hotmail.com; simcl@utar.edu.my; pichiahsaravanan@gmail.com

Abstract. An in-situ physical assisted mixing was applied for uniform incorporation of N-doped graphene quantum dots (N-GQDs) with TiO$_2$ nanoparticles to construct N-GDQs/TiO$_2$. The unique characteristics of N-doped graphene quantum dots enable it to act as a rich optical light harvesting. The strong absorption under the UV-Vis spectroscopy shows the efficacy in absorbing visible and Near Infrared (NIR) photon. The photocatalysis of the synthesized composite was evaluated through the efficiency of photodegradation of Methylene Blue in aqueous solution under direct sunlight irradiation. A complete degradation was achieved within 150 mins for 1.5% N-GQDs/TiO$_2$ composite as compare to pure. The vast improvement of this photocatalysis efficiency is much attributed to the strong light absorbance in the entire solar spectrum. Hence, the formation of N-GQDs/TiO$_2$ could be broadly used as future sustainable photocatalyst for treating various organic pollutants in the field of aquatic environmental remediation.

1. Introduction
With the rapid industrialization increases the water pollution where various toxic matters enter the water bodies. This directly influences the quality of water in our water bodies. One of the main pollutants that happen in Malaysia is dyes. These pollutants are manufactured from many sources such as textile, plastics, paper industries and many others. Methylene Blue (MB) is the most common industrial dye which causes severe environmental issues due to its high toxicity and accumulation in the environment. Therefore, it is important to address this issue effectively and photocatalysis nanotechnology could be a vital solution.

Semiconductor mediated photocatalyst has attracted enormous attention worldwide as it has proven its ability in eliminating environmental pollutants and generating energy. In the context of efficiently harness abundant sunlight for sustainable environmental remediation, the visible and near infrared light sensitive photocatalyst is necessary to be developed. This makes them an appropriate tool to address the alarming environmental issues such as dyes and organic pollutant in the near future by utilizing the entire solar spectrum. To date, titania (TiO$_2$) is considered a well-known and promising photocatalyst due to its several unique characteristics such as chemically stable, environmentally...
friendly product, cheap and etc [1,2]. Regrettably, it retarded its ability in extending the light absorption to longer than 390 nm due to its relatively wide band gap energy of 3.2 eV [3].

Massive modifications have been studied to extend to higher wavelength such as doping with metal and non-metal elements [4], depositing with noble metal [5,6], sensitizing with organic dyes [7,8] and so on. However, recently N-doped graphene quantum dots have turned out to be a new candidate in harvesting visible and near-infrared light [9]. N-doped graphene quantum dots, a zero dimensional allotrope of graphitic carbon have gradually become a promising photocatalysts due to its tunable band gap, stable photoluminescence and good biocompatibility [10]. It has been used in various applications such as biosensors, drug carriers, nuclear targeted drug delivery and other energy conversion [11-13].

Herein, we incorporate TiO$_2$ with N-doped graphene quantum dots through a facile physical mixing route to enhance its utilization of the entire solar spectrum for photodegradation of Methylene Blue.

2. Experimental

2.1. Materials
Titanium (IV) Oxide (Anatase TiO$_2$, ≥99%, Sigma Aldrich), urea powder and citric acid were purchased from Sigma Aldrich and ethanol was purchased from R&M Chemical. All chemicals were analytical grade and used as received without any further purification.

2.2. Synthesis of N-GQDs & N-GQDs/TiO$_2$
N-GQDs were synthesized by mixing 1 mmol of citric acid and 3 mmol of urea and dissolve into 5 ml of distilled water. Solution was then stirred gently until clear solution was formed. Then transfer it to an 80 ml Teflon-lined-stainless-steel autoclave and heated at 160℃ for 8 hours in an oven. The obtained N-GQDs resulted in a green luminescence solution. Different percentage amount of obtained N-GQDs (0.5% and 1.5%) are physically mixed with 0.4 g TiO$_2$ under 2500 rpm for an hour. The resulted solution was then washed with ethanol and distilled water repeatedly. The samples were dried at 80℃ overnight.

2.3. Characterization
The morphology of the composite was investigated by field emission scanning electron microscope (FESEM, Hitachi SU-8000) equipped with an energy dispersive X-ray spectroscopy (EDS, Zeiss Auriga). The images were recorded at an accelerating voltage of 20 kV. High resolution transmission electron microscope (HRTEM, JEM-2100F, Jeol) images were obtained at 200 kV. UV-Vis diffuse reflectance spectra (UV-DRS) were performed through Shimadzu UV-2600 spectrophotometer equipped with an integrating sphere attachment to characterize the optical properties. The absorption spectra were obtained with BaSO$_4$ as a reference.

2.4. Photocatalysis Experiment
The photocatalytic performance of the developed composites was studied by degrading Methylene Blue (MB). All the photocatalysis experiments were performed in a simple 500 ml borosilicate beaker with a working volume of 250 ml. The initial concentration of the dye was set to 20 mg/L with 1 g of photocatalyst under continuous stirring conditions. One hour dark reaction was performed to achieve the absorption and desorption equilibrium. Then, the experiment is continue under bright sunlight for a duration of 180 mins. Control experiment was carried out with the absent of photocatalysts. The residual concentrations of MB in the samples were estimated through UV-Vis spectrometer.

3. Results And Discussion
The morphology of the synthesized composites is illustrated in Fig. 1. As shown, it is clearly indicate the homogenous nature and well dispersed of TiO$_2$ with N-GQDs as captured by FESEM analysis. From the HRTEM image (Fig. 1b), the N-GQDs/TiO$_2$ photocatalysts are nearly spherical in shape with lattice spacing of 0.21 nm, which corresponds well to the graphitic carbon (100) plane [14]. This
correlate well with the formation of sp2 hybridized carbon nanostructures. Moreover, it proves that the simple physical mixing is capable in incorporating both TiO$_2$ and N-GQDs.

![FESEM and HRTEM image of 1.5% N-GQDs/TiO$_2$.](image)

Figure 1. (a) FESEM and (b) HRTEM image of 1.5% N-GQDs/TiO$_2$.

Fig. 2 shows the obtained optical absorbance spectra of the synthesized composites. As shown in Fig. 2, pure TiO$_2$ exhibits low absorption in the region of 390 – 800 nm due to its wide band gap energy of 3.2 eV. This limiting the capability of TiO$_2$ in harvesting of UV light only. However, the composites show obvious enhancement in light absorption especially in the visible and NIR light region after incorporating with N-GQDs. This enhancement is contributed to the unique characteristics of N-GQDs that promoted red shift towards higher wavelength. This is attributed to the n-π^* transition of graphene quantum dots [15]. Moreover, the absorption intensity of N-GQDs/TiO$_2$ increases with increasing amount of N-GQDs.

![UV-Vis absorption spectra of (a) TiO$_2$, (b) 0.5% N-GQDs/TiO$_2$ and (c) 1.5% N-GQDs/TiO$_2$.](image)

Figure 2. UV-Vis absorption spectra of (a) TiO$_2$, (b) 0.5% N-GQDs/TiO$_2$ and (c) 1.5% N-GQDs/TiO$_2$.

The photoluminescence of the synthesized composites was performed under the excitation wavelength of 315 nm and it is shown in Fig. 3. Pure TiO$_2$ exhibited a high and strong emission peaks at about 540-550 nm indicating its drawback of having high recombination rate of electron and hole pairs. However, this was eradicated with the incorporation of N-GQDs. The presence of N-GQDs has drastically separated the electron and hole pairs from recombine to generate heat. This enhanced separation had resulted to a low PL counts that was achieved by the composite (0.5% and 1.0% N-GQDs/TiO$_2$) and it is clearly shown in Fig. 3. The higher percentage of N-GQDs give rise to a better electron and hole pairs separation. Hence, its prolonged the lifetime of these charge carriers. The separated electrons and holes will then undergo redox reactions and formed access of active radicals. These active radicals are responsible for the photodegradation of MB and will result to an enhanced photocatalytic activity.
Figure 3. Photoluminescence spectra of (a) TiO$_2$, (b) 0.5% N-GQDs/TiO$_2$ and (c) 1.5% N-GQDs/TiO$_2$.

Fig. 4 portrays the photodegradation profile of MB with the presence of synthesized composite photocatalysts. The N-GQDs/TiO$_2$ shows great photocatalysis enhancement as compare to pure TiO$_2$. Result revealed that, 1.5% N-GQDs/TiO$_2$ only required 150 mins for a complete removal of MB under bright sunlight as compare to pure TiO$_2$ (180 mins). The superiority degradation efficacy of 1.5% N-GQDs/TiO$_2$ is due to the presence of N-GQDs that extended the light absorption range of pure TiO$_2$ to visible and near-infrared region as shown in the above UV-vis spectra analysis. With the strong light absorption capacity has increase the massive generation of electron and holes pairs in the synthesized photocatalysts. The free generated electrons will then formed the superoxide anion radicals (\cdotO$_2^-$) and followed by protonation that yields \cdotHO$_2$ radicals. These instable radicals will further form H$_2$O$_2$ and lead to the formation of hydroxyl radicals \cdotOH . Hence, this active radical are the key species in eliminating MB. However, 0.5% N-GQDs/TiO$_2$ could not achieve a complete degradation under the same duration is due to the weak absorption of visible and NIR light. This leads to a lower generation of free electrons in the photocatalysts. The low generation of free electron will resulted to minimum formation of active radicals to eliminate methylene blue dyes.

Figure 4. Photodegradation of Methylene Blue under dark and sunlight irradiation.

4. Conclusions
The present study shows the successful synthesized of N-GQDs functionalized TiO$_2$ through a simple physical mixing route to extend light absorption towards visible and near infrared light. Various characterizations proved the homogenous incorporation of N-GQDs with TiO$_2$. A complete removal of
Methylene Blue was achieved in 150 mins by 1.5% N-GQDs/TiO$_2$ under sunlight irradiation. The improved photocatalysis was contributed by the red shift toward higher wavelength that enhanced the light absorption capacity of TiO$_2$ after incorporation with N-GQDs. This resulted to the massive generation of active radicals that responsible for photodegradation of MB. The absorption over the full solar spectrum laid a sustainable pathway for future practical applications. Hence, the synthesized composite will play a dynamic role as a sunlight sensitive photocatalyst in promoting sustainable environmental remediation in the near future.

Acknowledgment
This research work was supported by Universiti Tunku Abdul Rahman Research Fund, UTARRF (IPSR/RMC/UTARRF/2016-C2/L05)

References
[1] M.N. Chong, B. Jin, C.W.K. Chow and C. Saint, “Recent Developments in Photocatalytic Water Treatment Technology: A review” Water Res 44, 2010, 2997-3027 doi: 10.1016/j.watres.2010.02.039.
[2] J. Zhang, X. Zhang, S. Dong, X. Zhou and S. Dong, “N-doped Carbon Quantum Dots/TiO$_2$ Hybrid Composites With Enhanced Visible Light Driven Photocatalytic Activity Toward Dye Wastewater Degradation And Mechanism Insight” J Photoch Photobio A 325, 2016, 104-110 doi: 10.1016/j.jphotochem.2016.04.012.
[3] H. Xie, C. Hou, H. Wang, Q. Zhang and Y. Li, “S, N Co-Doped Graphene Quantum Dot/TiO$_2$ Composites For Efficient Photocatalytic Hydrogen Generation” Nanoscale Res Lett 12, 2017, 400 doi: 10.1186/s11671-017-2101-1.
[4] F.T. Li, Y. Zhao, Y.J. Hao, X.J. Wang, R.H. Liu, D.S. Zhao and D.M. Chen, “N-Doped P25 TiO$_2$-amorphous Al$_2$O$_3$ composites: One-step solution Combustion Preparation And Enhanced Visible-Light Photocatalytic Activity” J Hazard Mater 239, 2012, 118-127 doi: 10.1016/j.jhazmat.2012.08.016.
[5] H. Wang, T.T. You, W.W. Shi, J.H. Li and L. Guo, “Au/TiO$_2$/Au As A Plasmonic Coupling Photocatalyst” J Phys Chem C 116, 2012, 6490-6494 doi: 10.1021/jp212303q.
[6] K.H. Leong, H.Y. Chu, S. Ibrahim and P. Saravanan, “ Palladium Nanoparticles Anchored To Anatase TiO$_2$ For Enhanced Surface Plasmon Resonance-Stimulated, Visible-Light-Driven Photocatalytic” Beilstein J Nanotech 6, 2015, 428-437 doi: 10.3762/bjnano.6.43.
[7] W.J. Youngblood, S.H. Lee, Y. Kobayashi and E.A. Hernandez-Pagan, P.G. Hoertz, T.A. Moore, A.L. Moore, D. Gust, T.E. Mallouk, “Photoassisted Overall Water Splitting In A Visible Light-Absorbing Dye-Sensitized Photoelectrochemical Cell” J Am Chem Soc 131, 2009, 926-927 doi: 10.1021/ja809108y.
[8] J.X. Wang, J. Huang, H.L. Xie, A.L. Qu, “Synthesis of g-C$_3$N$_4$/TiO$_2$ With Enhanced Photocatalytic Activity For H$_2$ Evolution By A Simple Method” J Hydrogen Energy 39, 2014, 6354-6363 doi: 10.1016/j.jhydene.2014.02.020.
[9] T. Majumder and S.P. Mondal, “Advantages Of Nitrogen-doped Graphene Quantum Dots As A Green Sensitizer With ZnO Nanorod Based Photoanodes For Solar Energy Conversion” J Electroanal Chem 769, 2016, 48-52 doi: 10.1016/j.jelechem.2016.03.018.
[10] W. Liu, X. Yan, J. Chen, Y. Feng and Q. Xue, “Novel And High-Performance Asymmetric Micro-Supercapacitors Based On Graphene Quantum Dots And Polyaniline Nanofibers” Nanoscale 5, 2013, 6053-6062 doi: 10.1039/C3NR01139A.
[11] X. Yan, Y. Song, C. Zhu, J. Song, D. Du, X. Su and Y. Lin, “Graphene Quantum Dot-MnO$_2$ Nanosheet Based Optical Sensing Platform: A Sensitive Fluorescence “Turn Off-On” Nanosensor For Glutathione Detection And Intracellular Imaging” ACS Appl Mater Interfaces 8, 2016, 21990-21996 doi: 10.1021/acsami.6b05465.
[12] P. Zhang, X. Zhao, Y. Ji, Z. Ouyang, X. Wen, J. Li, Z. Su and G.Wei, “Electrospinning Graphene Quantum Dots Into A Nanofibrous Membrane For Dual-Purpose Fluorescent And
Electrochemical Biosensors” J Mater Chem B 3, 2015, 2487-2496 doi: 10.1039/C4TB02092H.

[13] D. Xiong, X. Li, H. Shan, B. Yan, D. Li, C. Langford and X. Sun, “Scalable Synthesis Of Functionalized Graphene As Cathodes In Li-ion Electrochemical Energy Storage Devices” Appl Energy 175, 2016, 512-521 doi: 10.1016/j.apenergy.2016.03.105.

[14] A.B. Ganganboina, A.D. Chowdhury and R. Doong, “Nano Assembly Of N-Doped Graphene Quantum Dots Anchored Fe3O4/halloysite Nanotubes For High Performance Supercapacitor” Electrochim Acta 245, 2017, 912-923 doi: 10.1016/j.electacta.2017.06.002.

[15] D. Qu, Z.Sun, M. Zheng, J. Li, Y. Zhang, G. Zhang, H. Zhao, X. Liu, Z. Xie, “Three Colors Emission From S, N, Co-Doped Graphene Quantum Dots For Visible Light H2 Production And Bioimaging” Adv. Optic. Mater 3, 2015, 360-367 doi: 10.1016/j.jelechem.2016.03.018.