Effect of MoS$_2$ Nanosheet Fillers on Poly(vinyl alcohol) Nanofibre Composites Obtained by the Electrospinning Method

DOI: 10.5604/01.3001.0013.9020

Abstract
The graphene-like two dimensional (2D) inorganic materials have been shown great interest for a variety of applications. In this work, polymer composite nanofibres containing molybdenum disulfide (MoS$_2$) nanosheets were obtained by electrospinning. The MoS$_2$ nanosheets were well dispersed inside the fibres, and the nanofibres maintained the fibre morphology well with the MoS$_2$ nanosheets embedded. This work comprises an extensive approach to producing a novel 2D inorganic-composite structure, which should be applicable for membrane engineering with enhanced thermal and mechanical stability.

Key words: electrospinning, MoS$_2$ nanosheet, poly(vinyl alcohol), composite, nanofibres.

Introduction
Electrospinning has been demonstrated to be a simple and versatile technique for producing fibres and networks from polymer and composite materials. Such fibres and porous polymer membranes allow wide engineering applications, such as tissue engineering, water filtration, and energy and environment-related. In particular, many inorganic materials, such as carbon nanotube and graphene, have been used as nanofillets to improve the performance of fibre composites. Accordingly, it is desired that some new materials with attractive properties be prepared as nanofillets in fibres by electrospinning.

The molybdenum disulfide (MoS$_2$) nanosheet is an attractive inorganic graphene analogue (IGA) among the various 2D materials. The basic unit of MoS$_2$ is comprised of two layers of sulfur atoms, forming a sandwich structure, with a layer of molybdenum atoms in the middle. Usually, the bulk MoS$_2$ material is made of 2D layers stacked together by weak van der Waals interaction, which allows to obtain MoS$_2$ layers via chemical or mechanical exfoliation of bulk material. The MoS$_2$ layers exhibit unique properties like optical, luminescence, mechanical, and electrical, making them attractive for the application of optics, sensors, electronics, catalysts and transistors. The fascinating properties of the MoS$_2$ layers make it desirable to investigate whether MoS$_2$ would be good a nanofillet for electrospun nanofibres. Previously, many reports have shown the compatibility of MoS$_2$ nanosheets with polymers by incorporating them into a variety of polymer matrices. For example, composites of MoS$_2$ and polyaniline or polyporphene were fabricated to study their electronic properties. Recently, Coleman and other researchers prepared MoS$_2$ nanosheets by liquid exfoliation and obtained composites with different polymers. It has been suggested that MoS$_2$ nanosheets could enhance the thermal, mechanical and fire safety properties of the composites. To date, most of the aforementioned researches on MoS$_2$-polymer composites have been based on dense film composites prepared by the casting process. Fabric nanocomposites containing MoS$_2$ nanosheets have hardly been reported.

In this work, we successfully prepared 1D poly(vinyl alcohol) (PVA) nanofibres containing 2D MoS$_2$ nanosheet materials via the electrospinning process. We mainly focused on what effect the 2D MoS$_2$ nanosheets would have on the nanofibre. PVA was chosen as the electrospun polymer for its biocompatibility, biodegradability and water-solubility. We undertook MoS$_2$ nanosheet dispersion in water, and then the PVA/MoS$_2$ composite solution was electrospun into nanofibres. The morphology and structure of the fibres are strongly dependent on the electrospinning parameters and the properties of the spinning solution. The influence of process conditions on the nanofibre morphology were systematically investigated, including PVA concentrations of the spinning solution and the MoS$_2$ filler concentration, as well as the applied voltage. Moreover, thermal and mechanical properties of the composite fibres were studied.

Experimental

Materials
Molybdenum disulfide (MoS$_2$) powder and n-butyllithium (n-BuLi) were purchased from Sigma Inc. Polyvinyl alcohol (PVA, 87-89% hydrolysed, M.W = 88,000-97,000) was obtained from Alfa Aesar Inc. The high voltage supply for electrospinning was from Dongwen Inc. (Tianjing, China).

Preparation of MoS$_2$ nanosheets
MoS$_2$ nanosheets were prepared by the Li$^+$ intercalation and exfoliation process. Typically, 100 mg of dry MoS$_2$ powder was added into 5 ml of dry hexane in a nitrogen atmosphere. Then 10 ml of n-BuLi was gradually dropped into the mixture at -78 °C. Then the solution was slowly heated to reflux and reacted for 72 h. The intercalated samples were washed with hexane several times to remove any unreacted n-BuLi. The intercalated sample was exfoliated by ultrasonication with DI water in a closed vial, during which process prosef gas was released and an opaque suspension of the nanosheets was formed. The suspension was dialysed for 72 h with DI water in a dialysed bag (450 nm).

Nanofibre fabrication by electrospinning
The spinning solution for electrospinning was prepared by dissolving PV A in water at 80 °C and subsequent mixing...
with different amounts of MoS$_2$ solution. The solution obtained was transparent with a light brown colour, indicating good dispersion of the MoS$_2$ nanosheets in the PVA solution. For the electrospinning process, the needle of a solution loaded syringe was connected to a high-voltage supply. The distance between the tip of the needle and the collector was set at 10 cm. The feed rate of the spinning solution was set at 5 L min$^{-1}$ by a syringe pump. The fibres were collected on an Al foil negative electrode under certain applied potential. The morphology of the fibres could be adjusted by changing various parameters of the fabrication process, such as PVA, MoS$_2$ concentrations and the applied voltage. All the samples prepared at different parameters are listed in Table 1, labelled with ticks. The concentration of PVA and MoS$_2$ represent their weight ratio to the total spinning solution.

Characterisation

Transmission electron microscopy (TEM, Tecnai-G2-F30) were performed by directly spinning fibres on a TEM grid. The morphology of the fibres was characterised using a scanning electron microscope (SEM, Hitachi S-4800) and atom force microscopy (AFM, Agilent 5400). X-ray diffraction (XRD, XRD-6000 Bruker) were conducted at an interval of 0.2 degree. Thermogravimetric (TG) analysis was performed at a heating rate of 10 °C min$^{-1}$ (1090B TG instrument, DuPont Inc). Dynamic mechanical thermal analysis (DMTA) was performed using a DMTA Q800 (TA, USA). Fibre samples were cut to 5 × 20 mm with a thickness of around 30 μm.

Results and discussion

Miromophology of MoS$_2$ nanosheets and PVA/MoS$_2$ fibres

Typical TEM images of MoS$_2$ nanosheets by the Li$^+$ intercalation and exfoliation process are shown in Figure 1.a. It is obvious that 2D MoS$_2$ nanosheets of several hundred nanometers diameter were obtained. Actually, MoS$_2$ nanosheets with a wide range of diameters were prepared by this process. MoS$_2$ nanosheets obtained by this method are highly crystallised, which can be confirmed by the clear lattice feature of (100) in Figure 1.b. The typical morphology of the fibres produced (14% PVA, 0.025% MoS$_2$, 12 kV) was measured by SEM. It is shown that the PVA/MoS$_2$ fibres have a smooth surface without obvious protuberance on the fibre (Figure 1.c). The average diameter of the nanofibre is around 600 nm. Interestingly, the fibre structure shows ribbon-like morphology, in contrast to the round shape of commonly reported nanofibres. This ribbon-like structure can be clearly observed from the side view of the fibre (Figure 1.d), in which the width is around 1.5 μm, while the thickness is less than 100 nm. In particular, the ribbon-like fibre in Figure 1.d is suspended but not adhered to the substrate, which indicates that this morphology is not directly caused by the substrate effect. The PVA/ MoS$_2$ fibre produced was also characterised by TEM measurement (Figure 1.e and 1.f). The MoS$_2$ sheets are apparently embedded inside the PVA fibres. Importantly, with the existence of MoS$_2$ sheets, there is a larger diameter of the composite fibre. The results in Figure 1 imply the important role of MoS$_2$ in the morphology of PVA/MoS$_2$ composite fibres.

Influence of spinning voltage on the morphology of PVA and PVA/MoS$_2$ fibres

To check the voltage effect, we firstly produced PVA nanofibres at different voltages: 6, 8, 10 & 12 kV, using 14% PVA solution. For all the applied voltages, there are stable injections for the electrospinning, and smooth fibres are collected on the negative substrate, which means that the electrical repulse force induced by the high voltage can balance the surface tension. The fibre collecting yield at 12 kV is obviously higher than that at 6 kV, due to the high electrical charge on the Taylor cone surface. The nanofibre morphology gradually changed from ribbon-like to a round shape as the electrical potential increased from 6 to 12 kV (Figure 2.a-2.d). In previous reports, Satya Shivkumar et. al obtained a ribbon-like shape of PVA fibres at 30 kV/10 cm by increasing the concentration or molecular weight of the PVA, in which the high

Samples	Voltage, kV	6 kV	8 kV	10 kV	12 kV
PVA Nanofiber	PVA: 14%	✓	✓	✓	✓
PVA/MoS$_2$ Nanofiber	MoS$_2$: 0.0125% PVA: 14%	✓	✓	✓	✓
	MoS$_2$: 0.025% PVA: 14%	✓	✓	✓	✓
	MoS$_2$: 0.05% PVA: 14%	✓	✓	✓	✓
	MoS$_2$: 0.15% PVA: 8%	✓	✓		✔
	MoS$_2$: 0.25% PVA: 16%	✓	✓		✔

Table 1. Parameters of voltage, MoS$_2$ and PVA concentrations for the fibre preparation.

![Figure 1. a-b) TEM images of MoS$_2$, c-d) SEM and e-f) TEM images of PVA/MoS$_2$.](image)
viscosity of the spinning solution is the main factor.

When MoS₂ nanosheets were added into the PVA solution, a remarkable difference was observed compared with plain PVA fibre (Figure 2e-2h). Firstly, at voltages from 6-10 kV, all the fibres presented a regular ribbon-like shape. Especially, at a high voltage of 10 kV, ribbon-like fibres are still very uniform in width. When the voltage was increased to 12 kV, the width of the fibres was not very uniform, and there was the appearance of a small number of round fibres; however, most fibre remained of ribbon-like morphology. Moreover, the average width of the PVA/MoS₂ fibre is 2.9, 1.5, 0.9 & 0.75 μm, obtained at 6, 8, 10 & 12 kV, respectively, which is larger than that of plain PVA fibre obtained at the same voltage. Figure 2 suggests that PVA/MoS₂ composite fibres present a ribbon-like shape more than pure PVA, which probably resulted from the surface tension change of the polymer solution.

This morphology change also demonstrated the large interaction between the nanosheets and PVA.

Influence of MoS₂ concentration on the morphology of PVA/MoS₂ fibres

We also checked the effect of MoS₂ nanosheet concentration on PVA/MoS₂ morphology, in which the PVA concentration was kept at 14%. From the SEM results (Figure 3), it was found that a certain quantity of MoS₂ nanosheets is favorable for yielding a ribbon-like structure. For example, when the MoS₂ concentration is 0.0125% (Figure 3a), the fibres obtained have a round shape similar to pure PVA fibres. While using a 0.025% (Figure 3b) or higher MoS₂ concentration (Figure 3c), the fibre shape presents ribbon-like morphology.

Influence of PVA concentration on the morphology of PVA/MoS₂ fibres

For electrospun PVA nanofibres, it is generally concluded that high polymer concentration may result in a ribbon-like structure. Herein, different PVA concentrations were applied to study the morphology of PVA/MoS₂ fibres, where the MoS₂ concentration was kept at 0.025%. For the 8% PVA solution (Figure 4a), we only obtain a round shape of PVA/MoS₂ fibres, even when a low voltage of 8 kV was applied. When a higher concentration of 14 and 16% PVA were used (Figure 4b and 4c), the fibres showed a ribbon-like morphology. Figure 3 and Figure 4 indicate that the concentrations of both PVA and MoS₂ are important to...
PVA/MoS₂ fibre morphology. In our experimental condition, ribbon-like fibres were obtained only when the PVA and MoS₂ concentrations were higher than 14% and 0.025%, respectively.

AFM analysis

The fibre morphology was further characterised by the tapping mould AFM technique. Nanofibres from the spinning solution (14% PVA, 0.025% MoS₂) were collected on a clean and hydrophilic silica wafer and dried under a lamp bulb. Before AFM measurement, the silica with fibres was submerged in a crosslink solution (glutaraldehyde in ethanol) for 24 h, and then dried in air. This treatment fixed the fibres tightly to the silica substrate without destroying the original morphology or size of the fibres. It is indicated that the fibres obtained at different voltages possess a remarkable ribbon-like structure (Figure 5). The width is much larger than the thickness of the fibres. Interestingly, the thickness at the two edges is larger than that in the central domain. This phenomenon was also observed with other polymers before. As the voltage increases, the fibres obtained become much narrower and thicker, which is consistent with the results of SEM measurement.

XRD and TG analysis

X-ray diffraction (XRD) was used for determining whether MoS₂ nanosheets were indeed present as separated sheets in the nanofibres. In the XRD patterns (Figure 6.a), pure PVA exhibits a broad diffraction peak around 19.51°, resulting from its (101) crystal planes, and the strongest peak (20 = 14.4°) was observed corresponding to the (002) plane of bulk MoS₂ (JCPDF No: 24-0513). After the MoS₂ nanosheets were electrospun into PVA nanofibres, the XRD pattern of the PVA/MoS₂ nanocomposite only showed the diffraction peak of PVA, with no such observation for MoS₂ powder. It can be seen that no bulk MoS₂ exists in the nanofibres and that the MoS₂ nanosheets are separated from each other with no aggregation. Furthermore, TG analysis was used for rapid evaluation of the thermal stability for various polymers (Figure 6.b). Both pristine PVA and PVA/MoS₂ nanofibres decompose in a two-step process. When the first major weight loss occurs at ~330 °C, the decomposition pattern and mass loss (~58%) are nearly the same for the two samples, which can be attributed to the degradation of PVA chains. The second mass loss stage occurs from 360 to 470 °C, and is due to dehydration in the PVA chains. However, the mass loss of the PVA/MoS₂ nanocomposite is slower compared to that of pure PVA at the second stage. The mass loss of the composites is only around 82%, which is obviously lower compared with the mass reduction of 91.5% for pure PVA fibres at 470 °C. The TG analysis results suggest that the existence of MoS₂ nanosheets inside PVA/MoS₂ would retard the thermal degradation of PVA chains, which might be attributed to the limit of the motions of polymer chains through the interactions between MoS₂ nanosheets and PVA.

DMTA analysis

To better understand the PVA/MoS₂ interaction, we also performed dynamic mechanical thermal analysis (DMTA) measurements for pure PVA and PVA/MoS₂.
composite nanofibres. In the DMTA test, the storage modulus (E') is a measurement of the stiffness, which is proportional to the energy stored elastically. The loss modulus (E''), on the other hand, measures the energy transferred to heat. The temperature at the maximum of tan δ is usually taken as the glass transition temperature (Tg). The storage modulus (E') is a measure of the stiffness, which is proportional to the elastic modulus of a polymer decreases rapidly, whereas the loss modulus and tan δ reach a maximum when the polymer is heated up through the Tg region. The samples for DMTA measurement were prepared at the following condition: 14% PVA, 0.025% MoS₂, and 12 kV. As can be seen, the PVA/MoS₂ fibres show an 7.5% increase in the storage modulus E' compared with that of pure PVA fibres at 40 °C (Figure 7.a). A similar increase in the elastic modulus of PVA polymer films made from 2D materials was reported. It can be observed that the Tg value of PVA is around 98.7 °C at the maximum of tan δ (Figure 7.b), which is consistent with the value in the literature. In contrast, no obvious change in Tg was observed for the PVA/MoS₂ nanofibres, which was perhaps due to the low weight percentage of the embedded MoS₂ nanosheet. The DMTA results show that the storage modulus of PVA fibres could be improved with MoS₂ nanosheets.

Conclusions

We succeeded in synthesising MoS₂ nanosheets and producing PVA/MoS₂ composite nanofibres by the electrospinning process. In comparison with pure PVA polymer fibres, the PVA/MoS₂ fibres obtained tend to form a ribbon-like morphology. The PVA and MoS₂ concentration, as well as the spinning voltage applied are important for the formation of ribbon-shaped PVA/MoS₂ composite fibres. The higher the concentration of PVA and filled MoS₂ and the lower the spinning voltage, the easier the formation of ribbon-shaped PVA/MoS₂ composite fibres. Moreover, the incorporation of MoS₂ nanosheets can improve the thermal stability and enhance the storage modulus of the composite nanofibres. This work comprises an extensive approach to producing composite nanofibres containing other 2D inorganic materials, such as BN, NbSe₂, Co₃S₄ and MoSe₂.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21501140, 21403165, 51604218), and the Science and Technology Department of Shaanxi Province (2016JQ2002, 2015JQ2047).

References

1. Jiang T, Carbone E J, Lo KWH, Lauren cin CT. Electrospinning of Polymer Nano fibers for Tissue Regeneration. Prog. Polym. Sci. 2015; 46(5): 1-24.
2. Ktitsara M, AGBULUT O, KONTZIAM PASIS D, Chen Y, Menasche P. Fibers For Hearts: A Critical Review On Electrospinning For Cardiac Tissue Engineering. Acta Biomater., 2017; 48(1): 20-40.
3. Ahmed FE, Lalia BS, Hashaikeh R. A Review On Electrospinning for Membrane Fabrication: Challenges and Applications. Desalination 2015; 356(1): 15-30.
4. Zhou Z, Lin W, Wu X F. Electrospinning Ultrathin Continuous Cellulose Acetate Fibers for High-Flux Water Filtration. Colloids Surf., A, 2016; 494(1): 21-29.
5. Aruna ST, Balaji LS, Kumar SS, Prakash BS. Electrospinning in Solid Oxide Fuel Cells – A Review. Renewable Sustainable Energy Rev. 2017; 67(5): 673-682.
6. Boland CS, Barwich S, Khan U, Coleman JN. High Stiffness Nano-Composite Fibres from Polyvinylalcohol Filled with Graphene and Boron Nitride. Carbon 2016; 99(4): 280-288.
7. Naebe M, Lin T, Staiger MP, Dai L, Wang X. Electrospin Single-Walled Carbon Nanotube/Polyvinyl Alcohol Composite Nanofibres: Structure-Property Relationships. Nanotechnology 2008; 19(30): 305702.
8. Zeng Z, Yin Z, Huang X, Li H, He Q, Lu G, Boey F, Zhang H. Single-Layer Semiconducting Nanosheets: High-Yield Preparation and Device Fabrication. Angew. Chem. Int. Ed., 2011; 50(47): 11093-11097.
9. Matte HS, Gomathi A, Manna AK, Late DJ, Datta R, Pati SK, Rao CN, MoS2 and WS2 Analogues of Graphene. Angew. Chem. Int. Ed. 2010; 49(24): 4059-4062.
10. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvelves IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveon EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011; 331(6017): 568-571.
11. Chang MJ, Cui WN, Liu J, Wang K, Du HL, Qiu L, Fan SM, Luo ZM. Construction of Novel TiO2/Bi4Ti3O12/MoS2 Core/Shell Nanofibers for Enhanced Visible Light Photocatalysis. J. Mater. Sci. Technol. 2020; 36(1): 97-105.
12. Xiang Q, Yu J, Jaroniec M. Synergetic Effect of MoS2 and Graphene as Catalysts for Enhanced Photocatalytic H2 Production Activity of TiO2 Nanoparticles. J. Am. Chem. Soc., 2012; 134(15): 6575-6578.

13. Wu S, Zeng Z, He Q, Wang Z, Wang SJ, Du Y, Yin Z, Sun X, Chen W, Zhang H. Electrochemically Reduced Single-Layer MoS2 Nanosheets: Characterization, Properties, and Sensing Applications. Small, 2012; 8(14): 2264-2270.

14. Tai SY, Liu CJ, Chou SW, Chien FSS. Other tests: for textiles: mass per unit area using small samples, thickness.

15. Lee HS, Min SW, Chang YG, Park MK. Thickness-Modulated Optical Energy Gap. Nano Lett., 2012; 12(7): 3695-3700.

16. Townsen AB, Kegnaes S, Dahl S, Chorkendorff I. Molybdenum Sulfides – Efficient and Viable Materials for Electro- and Photoelectrocatalytic Hydrogen Evolution. Energy Environ. Sci. 2012; 5(2): 5577-5591.

17. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011; 6(3): 147-150.

18. Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam D W, Tok AI, Zhang Q, Zhang H. Fabrication of Single- and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature. Small 2012; 8(1): 63-67.

19. Bissessur R, White W. Novel Alkyl Substituted Polyanilines/Molybdenum Disulfide Nanocomposites. Mater. Chem. Phys. 2006; 99(2-3): 214-219.

20. Lin BZ, Ding C, Xu BH, Chen ZJ, Chen YL. Preparation and Characterization of Polythiophene/Molybdenum Disulfide Intercalation Material. Mater. Res. Bull. 2009; 44(4): 719-723.

21. Zhou K, Jiang S, Bao C, Song L, Wang B, Tang G, Hu Y, Gui Z. Preparation Of Poly(Vinyl Alcohol) Nanocomposites With Molybdenum Disulfide (MoS2): Structural Characteristics and Markedly Enhanced Properties. RSC Adv. 2012; 2(31): 11695-11703.

22. Liu J, Chang M J, Du HL. Facile Preparation of Cross-Linked Porous Poly(Vinyl Alcohol) Nanofibers by Electrospinning. Mater. Lett. 2016; 183(21): 318-321.

23. Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol., 2003;63(15):2223-2233.

24. Tao J, Shivkumar S. Molecular weight dependent structural regimes during the electrospinning of PVA. Mater. Lett., 2007;61(11-12):2325-2328.

25. Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Leikis PI. Electrospun protein fibers as matrices for tissue engineering. Biomaterials, 2005;26(30):6999-6008.

26. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater., 2009;19(14):2297-2302.

27. Bai H, Li C, Wang X, Shi G. A pH-sensitive graphene oxide composite hydrogel. Chem. Commun., 2010;46(14):2376-2378.

28. Yang S, Taha-Tijerina J, Serrato-Diaz V, Hernandez K, Lozano K. Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene. Composites Part B, 2007;38(2):228-235.

The Laboratory is active in testing fibres, yarns, textiles and medical products. The usability and physico-mechanical properties of textiles and medical products are tested in accordance with European EN, International ISO and Polish PN standards.

Tests within the accreditation procedure:
- linear density of fibres and yarns, mass per unit area using small samples, elasticity of yarns, breaking force and elongation of fibres, yarns and medical products, loop tenacity of fibres and yarns, bending length and specific flexural rigidity of textile and medical products

Other tests:
- for fibres: diameter of fibres, staple length and its distribution of fibres, linear shrinkage of fibres, elasticity and initial modulus of drawn fibres, crimp index, tenacity.
- for yarn: yarn twist, contractility of multifilament yarns, tenacity.
- for textiles: mass per unit area using small samples, thickness.
- for films: thickness-mechanical scanning method, mechanical properties under static tension.
- for medical products: determination of the compressive strength of skull bones, determination of breaking strength and elongation at break, suture retention strength of medical products, perforation strength and dislocation at perforation.

The Laboratory of Metrology carries out analyses for:
- research and development work, consultancy and expertise

Main equipment:
- Instron tensile testing machines, electrical capacitance tester for the determination of linear density unevenness – Uster type C, LANAMETER
The Łukasiewicz Research Network

Europe’s third largest research network

- A bridge between the research and the economy
- A transfer of knowledge into the economy
- Research in areas of strategic importance for the country’s development
- Strengthening the international position of Polish research
- Research and analytical resources for the Polish Government

Innovation for Economy

Close cooperation between science and business is crucial for the full development of Poland’s economy. The Ministry of Science and Higher Education creates solutions beneficial for both scientists and entrepreneurs.

Innovations for Economy mean:
- Benefits for entrepreneurs,
- Benefits for scientists,
- Benefits for society,
- Providing financial instruments for innovation.

THE ŁUKASIEWICZ RESEARCH NETWORK A BRIDGE BETWEEN THE RESEARCH AND THE ECONOMY

The result of cooperation between Members of the Parliament, the Ministry of Science and Higher Education, and the Ministry of Entrepreneurship and Technology. Its foundation is a part of the governmental Strategy for Responsible Development.

37 research institutes join forces with the Polish Centre for Technology Development

- Institute of Organization and Management in Industry
- Institute of Macromolecular Chemistry
- Institute of Biotechnology and Anticancer
- Institute of Ceramics and Building Materials
- Institute of Chemical Research Institute
- Institute of Heavy Organic Synthesis (IACHOWIA)
- The Information Technology Institute
- Pharmaceutical Research Institute
- Institute of Engineering of Polymer Materials and Fibres
- Institute of Logistics and Warehousing
- Institute of Aviation
- Institute of Precision Mechanics
- Institute of Mechanical Construction and Rock Mining
- Institute of Non-Ferrous Metals
- Stanisław Staszic Institute for Ferrous Metallurgy
- KOCIE, Institute
- New Chemical Synthesis Institute
- Metallurgical Institute
- Foundry Research Institute
- Marcin Iwaniuk Institute of Applied Optics

A cure against excessive fragmentation

Until recently, there were 89 research institutes in Poland, operating under the supervision of ministries. This led to redundancy, fragmentation of human, financial and intellectual resources. The institutes were not able to access what is known as the economies of scale. The Łukasiewicz Research Network focuses on uniform and simple rules of cooperation with businesses, commercialisation of knowledge, development, and use of academic infrastructure. More cooperation instead of destructive competition and fragmented resources.

ADDITIONAL INSTRUMENTS TO SUPPORT INNOVATION

National Centre for Research and Development: comprehensive and effective R&D support

- Development of support programmes for applied research and R&D activities
- State and EU funds for commercialisation of research and transfer of the results into the economy
- Support for young researchers

Good legislation for innovation – tax reliefs and support to reinforce cooperation between the research and business sectors

- The first Innovation Law, regarded as the best legislative act of 2017 in the area of taxation (according to the Delegation report published by the Employers of Polish organisation)
- The second Innovation Law, in force since 1 January 2018, which increases the R&D tax relief up to 100%, makes it easier to finance startups, enables the HE institutions and Polish Academy of Sciences bodies to establish companies in order to manage research infrastructure

Industrial doctorate – Cooperation between research and business sectors

- Doctoral thesis are of practical nature and the results may be implemented nearly immediately
- Companies are able to deduct 100% of staff expenses related to the employment of Ph.D. students
- Ph.D students are able to develop their professional and academic careers at the same time