The Feasibility of Antioxidants Avoiding Oxidative Damages from Reactive Oxygen Species in Cryopreservation

Xiangjian Liu1, Yiming Xu2, Fenglin Liu1, Yuxin Pan1, Lu Miao1, Qubo Zhu1 and Songwen Tan1*

1Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China, 2School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China

Cryopreservation prolongs the storage time of cells and plays an important role in modern biology, agriculture, plant science and medicine. During cryopreservation, cells may suffer many damages, such as osmotic dehydration, large ice puncture and oxidative damages from reactive oxygen species (ROS). Classic cryoprotectants (CPAs) are failing to dispose of ROS, while antioxidants can turn ROS into harmless materials and regulate oxidative stress. The combination of antioxidants and CPAs can improve the efficiency of cryopreservation while negative results may occur by misuse of antioxidants. This paper discussed the feasibility of antioxidants in cryopreservation.

Keywords: cryopreservation, cryoprotectants, reactive oxygen species, oxidative damages, antioxidants

INTRODUCTION

Cryopreservation is a technique for preserving cells at low temperatures, which can prolong their storage time. However, organisms are easy to be damaged during freezing for the following two reasons: osmotic damage and mechanical damage. Osmotic damage is caused by the freezing of the extracellular solution, leading to increases in the concentrations of the solutes. Subsequently, the cells are damaged by osmotic dehydration. Mechanical damage refers to the puncture damage of cells by sharp ice crystals (Yang et al., 2017). Therefore, many cryoprotectants (CPAs) have been developed to reduce damages. Permeable CPAs, such as DMSO (Ock and Rho, 2011) and glycerol (Rogers et al., 2018), can enter cells to adjust osmotic pressure and reduce osmotic damage. Impermeable CPAs, such as antifreeze protein (Xiang et al., 2020) can decrease the size of extracellular ice crystals to reduce mechanical damage. The addition of CPAs can improve the efficiency of cryopreservation.

However, recent studies have shown that oxidative stress occurs in cells during cryopreservation. Oxidative stress refers to a state of imbalance between oxidation and anti-oxidation, which is caused by the massive production of reactive oxygen species (ROS) in extreme conditions such as low temperatures in cells (Evangelista-Vargas and Santiani, 2017). Cellular antioxidants, such as glutathione and thioredoxin, can resist ROS by participating the reduction process when the concentration of ROS is low (Yang et al., 2018; Alhayaza et al., 2020). However, the large amount of ROS produced during cryopreservation can cause the oxidation of proteins, lipids and nucleic acids (Chen and Li, 2020). These may cause irreversible damages to cells and even lead to apoptosis (Len et al., 2019). Classic permeable and impermeable CPAs are failing to reduce oxidative damage to cells.
Antioxidants, such as ascorbate acid (Mathew et al., 2019), glutathione (Diengdoh et al., 2019), mitoquinone (Sui et al., 2018), salidroside (Aloitaib et al., 2016), resveratrol (Longobardi et al., 2017) and so forth, can resist the oxidative stress and reduce the damages from ROS. Therefore, antioxidants and CPAs can be used together to comprehensively reduce the harm in cryopreservation. It must be noted that the misuse of antioxidants could cause negative effects. So appropriate antioxidants must be carefully selected in cryopreservation. In this paper, the source, species, properties, mechanisms and damages of ROS are introduced in detail. The results of the combination with CPAs and antioxidants are also concluded to promote the development of cryopreservation.

REACTIVE OXYGEN SPECIES

Properties

ROS mainly includes superoxide anion radical (O₂⁻), hydrogen peroxide (H₂O₂) and hydroxyl radical (·OH) in cryopreservation (Huang et al., 2018). Under normal physiological conditions, ROS can regulate cell growth and differentiation (Len et al., 2019). However, ROS could be overwhelmingly produced at low temperature and cause damages to cells (Jia et al., 2017). Generally, O₂⁻ derives from complex III in mitochondria. Coenzyme Q intermediate ·Q легко transfers electrons to O₂ and O₂⁻ is formed (Finkel and Holbrook, 2000). O₂⁻ is moderately active with a short half-life (about 1 μs), and it is the main source of other ROS in cells (Sharma et al., 2012). The high solubility of O₂⁻ makes it difficult to penetrate the cell membrane (Mumbengegwi et al., 2008), and O₂⁻ cannot react with most biomolecules (Halliwell, 2006). Under the existence of superoxide dismutase (SOD) or by spontaneous dismutation, O₂⁻ can react with H⁺ to form H₂O₂ (Marocco et al., 2017). H₂O₂ is moderately active with a half-life of 1 ms. Unlike other ROS, H₂O₂ has no strong membrane permeability (Bienert et al., 2007). O₂⁻ and H₂O₂ can produce ·OH by the Haber-Weiss reaction. ·OH contains an active unpaired single electron that can react with most biological molecules. So ·OH is considered to be the most toxic ROS (Sharma et al., 2012).

Damages

In cryopreservation, the damage caused by ROS can be attributed to lipid peroxidation (Banday et al., 2017), protein oxidation (Mostek et al., 2017) and DNA damage (Ladeira et al., 2019). Lipid peroxidation (LPO) refers to the decomposition of lipids into aldehydes such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA) under the action of ROS. The content of MDA in cells can reflect the degree of LPO (Tsikas, 2017). LPO seriously affects cells’ function due to lipid is an important part of cell membranes (Uchendu et al., 2010). Besides, MDA is highly toxic and can react with nucleic acids and proteins, further causing damages to cells (Long et al., 2009). Proteins can be converted into carbonyl proteins by ROS, and the content of carbonyl in proteins can indicate the degree of protein oxidation (Li et al., 2010). Protein oxidation can induce DNA damage, lipid damage, cell secondary damage, and lower enzyme efficiency (Davies, 2016). Furthermore, gene mutation, double/single strand breaking occur in DNA in the presence of ROS (Len et al., 2019), causing serious damage such as apoptosis (Zhao et al., 2016). Comet assay is a standard test to quantitatively detect the degree of DNA damage (Ladeira et al., 2019). All the damages caused by ROS can seriously affect the physiological function of cells and reduce the efficiency of cryopreservation.

THE EFFECTS OF ANTIOXIDANTS

Antioxidants are powerful substances to counter ROS. The use of specific antioxidants at appropriate concentrations can significantly reduce the damages from ROS and improve the efficiency of cryopreservation. However, the wrong use of antioxidants can result in negative results.

Positive Effects

In cryopreservation, antioxidants can reduce oxidative stress (Mathew et al., 2019), regulate the synthesis of mitochondrial proteins (Banday et al., 2017), decrease ROS production (Zhu et al., 2019), clear intracellular ROS (Len et al., 2019), enhance the activity of antioxidant enzyme (Azadi et al., 2017), resist to LPO and DNA fragmentation (Yousefian et al., 2018). Specifically, for germ cells such as sperm, antioxidants can increase motility parameters (Toker et al., 2016), acrosomal integrity (Lone et al., 2018), mitochondrial membrane potential (Fontoura et al., 2017) and pregnancy rates (Ren et al., 2018). Therefore, the combination of antioxidants and CPAs may reduce the damages to cells caused by osmotic dehydration, large ice puncture and ROS during freezing and thawing, and improve the efficiency of cryopreservation (as shown in Table 1 and Figure 1).

Negative Effects

There are some negative effects of using antioxidants in cryopreservation. For instance, when ascorbic acid is used for cryopreservation of *Aranda Broga* Blue orchid, the growth regeneration percentage will be reduced from 5 to 1.7% (Khor et al., 2020). In the cryopreservation of human semen, the addition of ascorbic acid, vitamin E, and L-carnitine can adversely affect sperm motility, especially at high concentrations (Banhazi and Alawneh, 2019). The reason may be that antioxidants not only reduce ROS but also have negative effects on the endogenous antifreeze mechanism of cells (Khor et al., 2020). Furthermore, the high concentrations of antioxidants transform cells from oxidative stress to reductive stress, which may also have negative effects on...
TABLE 1 | The applications of antioxidants.

Antioxidants	CPAs	Cryopreservation objects	Positive results	Cryopreservation method	References
Ascorbate acid	Sucrose and PVS2⁴	Kiwifruit shoot tips	Lipid peroxides↓; Protein carbonyls↓; Regeneration↑	Droplet vitrification⁶	Mathew et al. (2019)
	TEYCAFG⁵	Cross-bred cattle bull semen	Live spermatozoa↑; Acrosomal integrity↑; Sperm abnormalities↓; MDA↓; SOD↑	4°C for 4 h, programmatically cool to −140°C and transfer into LN	Singh et al. (2020a)
Glutathione, ascorbate acid and vitamin E	Sucrose	Mint shoot tips	Stable samples percentage↑	Vitrification	González-Benito et al. (2016)
Catalase and malate dehydrogenase	None	Paeonia and Magnolia pollen	Germination rate↑; SOD↑	Vitrification	Jia et al. (2018)
Glutathione	Sucrose and PVS2	Orchids protocorms	Post-thaw recovery↑; Vitrification	Encapsulation-vitrification	Diengdoh et al. (2019)
Single-wall carbon nanotubes	PVS2	Agapanthus praecox embryonic callus	ROS↓; Cells oxidative injury↑; Survival rate↑; Viability↑	Vitrification	Ren et al. (2020)
N-acetyl-L-cysteine	DMSO⁶	Human cord blood nucleated cells	ROS↓; Viability↑	Cool at 1–3°C/min to −80°C, then transfer into LN	Makashova et al. (2016)
Catalase and α-tocopherol	DMSO and fetal bovine serum	Spermatogonial stem cells	Preservation rate↑; ROS↑; The number of cells↑; Cells quality↑; Viability↑	Store at −80°C for 1 day then transfer into LN	Alikabari et al. (2017)
Mitoquinone	VS83⁷	Heart valve tissue	Tissue viability↑	Programmatically cool to −130°C for 24 h and transfer into LN for 2 months Vitrification	Alotaibi et al. (2016)
Salidroside	Glycerol or trehalose	Sheep red blood cells	Hemolysis↓; Protein oxidation↓; Lipid oxidation↓		
Taurine	Tris extender⁹	Crossbred ram sperm	Percent sperm motility↑; Live sperm count↑; MDA↓; Glutathione↓	Programmatically cool to −140°C transfer into LN	Banday et al. (2017)
Leptin	SpermFreeze⁸	Human sperm	DNA fragmentation↓; Antioxidant enzymes activity↑	Store at LN vapor phase then transfer into LN	Fontoura et al. (2017)
MitoTEMPO	SpermFreeze	Human sperm	Sperm motility↑; Viability↑; Membrane integrity↑; Mitochondrial membrane potential↑	Place in vapor LN and transfer into LN	Lu et al. (2018)
Coenzyme Q₁₀	Soybean lecithin-based extender¹	Buck spermatozoa	Total motility↑; Sperm viability↑; Plasma membrane functionality↑; Sperm abnormality↓; Mitochondrial activity↑	4°C for 2 h, LN vapor phase for 12 min; last transfer into LN	Yousefian et al. (2018)
Lycopene	Triladyl¹	Bovine sperm	Mitochondrial activity↑; ROS↓; Protein carbonyls↓; Lipid peroxidation↓; DNA damage↓	4°C for 2 h, programmatically cool to −140°C and transfer into LN	Tvrda et al. (2017)
Lycopene and alpha-lipoic acid	Extender II¹	Goat spermatozoa	Sperm motility↑; Acrosome integrity↑; Membrane integrity↑; Mitochondrial activity↑; Pregnancy rates↑	4°C for 2 h, programmatically cool to −5°C and transfer into vapor LN	Ren et al. (2018)

(Continued on following page)
the structure and function of cells (Bisht and Dada, 2017). It is noticeable that the use of antioxidants in cryopreservation is not always satisfactory.

CONCLUSION AND PROSPECT

Cryopreservation is more and more widely used nowadays. Many CPAs have been developed to reduce damages during freezing and thawing. ROS produced at low temperatures can cause lipid peroxidation, protein oxidation and DNA damage, seriously affect the structure and function of cells, and even cause cell apoptosis. Traditional CPAs cannot resist ROS. Antioxidants can decrease oxidative stress, reduce the production of ROS, convert ROS into harmless substances, and increase the activity of ROS enzymes. Therefore, the use of antioxidants and CPAs in cryopreservation may increase cells’ survival rate, motility and reproductive capacity, reduce lipid peroxidation, protein oxidation and DNA damage, decrease the osmotic and mechanical damages by ice, so the efficiency of cryopreservation is increased. It must be noted that the use of antioxidants does not always have a positive effect, especially when the concentration of antioxidants is relatively high. This may be that antioxidants can destroy the natural antifreeze mechanism of cells and transform cells from oxidative stress to reductive stress. This suggests that antioxidants are a double-edged sword, and good results only occur when antioxidants are used properly.

At present, there are the following research directions of antioxidants in cryopreservation.

1. Expanding applications. Currently, antioxidants are mainly used for the cryopreservation of cells and plant tissues. In the future, antioxidants can be used cautiously in the cryopreservation of human tissues and organs to promote
the development of organ transplantation, regenerative medicine and cryomedicine.

(2) Exploring mechanisms. The microcosmic interaction between antioxidants and ROS in cells is still unclear. The study of mechanisms can guide the development and application of antioxidants.

(3) Using untapped antioxidants. Many natural and artificial antioxidants may have potential in cryopreservation and not be used yet. Using untapped antioxidants with proper CPAs may increase the efficiency of cryopreservation cheaply and effectively.

(4) Revealing effective conditions. Sometimes antioxidants may cause negative results in cryopreservation. For the development of antioxidants in cryopreservation, it is important to reveal the conditions that positive results will occur.

AUTHOR CONTRIBUTIONS

XL has made substantial contributions to the conception and design of this work. YX, FL, YP, LM, QZ have took part in revising work critically for important intellectual content. ST has revised work and approved the final version to be published.

REFERENCES

Alhayaza, R., Haque, E., Karbasiafshar, C., Sellke, F. W., and Abid, M. R. (2020). The relationship between reactive oxygen species and endothelial cell metabolism. *Front. Chem.* 8, 592688. doi:10.3389/fchem.2020.592688

Aliakbari, F., Sedighi Gilani, M. A., Yazdekhasti, H., Koruji, M., Asgari, H. R., Baazm, M., et al. (2017). Effects of antioxidants, catalase and α-tocopherol on cell viability and oxidative stress variables in frozen-thawed mice spermatogonial stem cells. *Artif. Cell Nanomed Biotechnol.* 45, 63–68. doi:10.3109/21691401.2016.1138491

Alotaibi, N. A. S., Slater, N. K. H., and Rahmoune, H. (2016). Salidroside as a novel protective agent to improve red blood cell cryopreservation. *PLoS One.* 11, e0162748. doi:10.1371/journal.pone.0162748

Azadi, L., Tavaalee, M., Deemeh, M. R., Arababian, M., and Nasr-Esfahani, M. H. (2017). Effects of tempol and quercetin on human sperm function after cryopreservation. *Cryo Lett.* 38, 29–36.

Banday, M. N., Lone, F. A., Rasool, F., Rashid, M., and Shikari, A. (2017). Use of antioxidants reduce lipid peroxidation and improve quality of crossbred ram sperm during its cryopreservation. *Cryobiology* 74, 25–30. doi:10.1016/j.cryobiol.2016.12.008

Banihani, S. A., and Alawneh, R. F. (2019). Human semen samples with high antioxidant reservoir may exhibit lower post-cryopreservation recovery of sperm motility. *Biomolecules* 9, 111. doi:10.3390/biom9030111

Bienert, G. P., Møller, A. L., Kristiansen, K. A., Schulz, A., Møller, I. M., Schjoerring, J. K., et al. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. *J. Biol. Chem.* 282, 1183–1192. doi:10.1074/jbc.M603761200

Bish, S., and Dada, R. (2017). Oxidative stress: major executioner in disease pathology, role in sperm DNA damage and preventive strategies. *Front. Biosci. (Schol Ed.)* 9, 420–447. doi:10.2741/s495

Chen, W., and Li, D. (2020). Reactive oxygen species (ROS)-Responsive nanomedicine for solving ischemia-reperfusion injury. *Front. Chem.* 8, 00732. doi:10.3389/fchem.2020.00732

FIGURE 1 | The freeze cell with/without CPAs and antioxidants. CPAs can adsorb in ice surface to inhibit ice growth, and regulate osmotic pressure to reduce dehydration. Antioxidants can reduce the production of ROS and turn ROS into harmless materials, so as to relieve the damages by ROS. The antioxidants and CPAs can use together to reduce the damages from cryopreservation comprehensively.
Longobardi, V., Zullo, G., Salzano, A., De Canditiis, C., Cammarano, A., De Luise, L., et al. (2017). Resveratrol prevents capacitation-like changes and improves in vitro fertilizing capability of buffalo frozen-thawed sperm. Theriogenology 88, 1–8. doi:10.1016/j.theriogenology.2016.04.016

Lu, X., Zhang, Y., Bai, H., Liu, J., Li, J., and Wu, B. (2018). Mitochondria-targeted antioxidant MitoTEP improves the post-thaw sperm quality. Cryobiology 80, 26—29. doi:10.1016/j.cryobiol.2017.12.009

Lv, C., Larbi, A., Wu, G., Hong, Q., and Quan, G. (2019). Improving the quality of cryopreserved goat semen with a commercial bull extender supplemented with resveratrol. Anim. Reprod. Sci. 208, 106127. doi:10.1016/j.anireprosci.2019.106127

Małakosowa, O. E., Babijchuk, L. O., Zubova, O. L., and Zubov, P. M. (2016). Optimization of cryopreservation technique for human cord blood nucleated cells using combination of cryoprotectant DMSO and antioxidant N-acetylcysteine. Probl. Cryobiol. Cryomedicine. 26, 295—307. doi:10.15407/cryo26.04.295

Marrocco, I., Altieri, F., and Peluso, L. (2017). Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid. Med. Cell. Longev. 2017, 6501046. doi:10.1155/2017/6501046

Mathew, L., Burtitt, D. J., Mclachlan, A., and Pathirana, R. (2019). Combined pre-treatments enhance antioxidant metabolism and improve survival of cryopreserved kiwifruit shoot tips. Plant Cell Tissue Organ. Cult. 138, 193-205. doi:10.1007/s11240-019-01617-3

Mostek, A., Dietrich, M. A., Slowińska, M., and Ciereszko, A. (2017). Cryopreservation of bull semen is associated with carboxylation of sperm proteins. Theriogenology 92, 95–102. doi:10.1016/j.theriogenology.2017.01.011

Mumbengewegi, D. R., Li, Q., Li, C., Bear, C. E., and Engelhardt, J. F. (2008). Evidence for a supraoxide permeability pathway in endothelial membranes. Mol. Cell. Biol. 28, 3700–3712. doi:10.1128/MCB.02038-07

Ock, S.-A., and Rho, G.-J. (2011). Effect of dimethyl sulfoxide (DMSO) on cryopreservation of porcine mesenchymal stem cells (pMSCs). Cell Transpl. 20, 1231–1239. doi:10.3727/096388110X5553833

Ren, F., Feng, T., Dai, G., Wang, Y., Zhu, H., and Hu, J. (2018). Lycopene and alpha-lipoic acid improve semen antioxidant enzymes activity and cashmere goat sperm function after cryopreservation. Cryobiology 84, 27–32. doi:10.1016/j.cryobiol.2018.08.006

Ren, L., Deng, S., Chu, Y., Zhang, Y., Zhao, H., Chen, H., et al. (2020). Single-wall carbon nanotubes improve cell survival rate and reduce oxidative injury in cryopreservation of Agapanthus praecox embryogenic callus. Plant Methods. 16, 130. doi:10.1186/s13007-020-00674-6

Rienzi, L., Gricaci, C., Magg ripple, R., Labarbera, A. R., Kaser, D. J., Ubaldi, F. M., et al. (2016). Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum. Reprod. Update. 23 (2), 139–155. doi:10.1093/humupd/dmw038

Rogers, S. C., Dosier, L. B., McMahan, T. J., Zhu, H., Timm, D., Zhang, H., et al. (2018). Red blood cell phenotype fidelity following glycerol cryopreservation optimized for research purposes. PLoS One. 13, 21. doi:10.1371/journal.pone.0209210

Sharma, P., Jha, A. B., Dubey, R. S., and Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidant defense mechanism in plants under stressful conditions. J. Bot. 26, 217037. doi:10.1155/2012/217037

Singh, P., Agarwal, S., Singh, H., Singh, S., Verma, P. K., Butt, M. S., et al. (2020a). Effects of Ascorbic acid as antioxidant semen additive in cryopreservation of cross-bred cattle bull semen. Int. J. Curr. Microbiol. App. Sci. 9, 3089–3099. doi:10.20546/icmajs.2020.907.364

Singh, P., Agarwal, S., Singh, H., Verma, P. K., Pandey, A., and Kumar, S. (2018). Antioxidant effects of Aloe vera as semen additive in cryopreservation of bull semen. Int. J. Curr. Microbiol. App. Sci. 9, 1625–1635. doi:10.20546/icmajs.2020.909.202

Sui, Y. L., Fan, Q., Wang, B., Wang, J. X., and Chang, Q. (2018). Ice-free cryopreservation of heart valve tissue: the effect of adding MitoQ to a VS83 formulation and its influence on mitochondrial dynamics. Cryobiology 81, 153–159. doi:10.1016/j.cryobiol.2018.01.008

Toker, M. B., Alcay, S., Gokce, E., and Ustuner, B. (2016). Cryopreservation of ram semen with antioxidant supplemented soybean lecithin-based extenders and impacts on incubation resilience. Cryobiology 72, 205–209. doi:10.1016/j.cryobiol.2016.05.001
Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. *Anal. Biochem.* 524, 13–30. doi:10.1016/j.ab.2016.10.021

Tvrda, E., Mackovich, A., Greifova, H., Hashim, F., and Lukac, N. (2017). Antioxidant effects of lycopene on bovine sperm survival and oxidative profile following cryopreservation. *Vet. Med.* 62, 429–436. doi:10.17221/86/2017-VETMED

Tvrda, E. E., Leonard, S. W., Traber, M. G., and Reed, B. M. (2010). Vitamins C and E improve regrowth and reduce lipid peroxidation of blackberry shoot tips following cryopreservation. *Plant Cell Rep.* 29, 25. doi:10.1007/s00299-009-0795-y

Xiang, H., Yang, X., Ke, L., and Hu, Y. (2020). The properties, biotechnologies, and applications of antifreeze proteins. *Int. J. Biol. Macromol.* 153, 661–675. doi:10.1016/j.ijbiomac.2020.03.040

Yang, H., Villani, R. M., Wang, H., Simpson, M. J., Roberts, M. S., Tang, M., et al. (2018). The role of cellular reactive oxygen species in cancer chemotherapy. *J. Exp. Clin. Cancer Res.* 37, 266. doi:10.1186/s13046-018-0909-x

Yang, J., Pan, C., Zhang, J., Sui, X., Zhu, Y., Wen, C., et al. (2017). Exploring the potential of biocompatible osmoprotectants as high efficient cryoprotectants. *ACS Appl. Mater. Inter.* 9, 42516–42524. doi:10.1021/acsami.7b12189

Yousefian, I., Emamverdi, M., Karamzadeh-Dehaghi, A., Sabzian-Melei, R., Zhandi, M., and Zare-Shahneh, A. (2018). Attenuation of cryopreservation-induced oxidative stress by antioxidant: impact of Coenzyme Q10 on the quality of post-thawed buck spermatozoa. *Cryobiology* 81, 88–93. doi:10.1016/j.cryobiol.2018.02.005

Zhao, X., Ren, X., Zhu, R., Luo, Z., and Ren, B. (2016). Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. *Aquat. Toxicol.* 180, 56–70. doi:10.1016/j.aquatox.2016.09.013

Zhu, Z., Li, R., Fan, X., Lv, Y., Zheng, Y., Hoque, S., et al. (2019). Resveratrol improves Boar sperm quality via 5AMP-activated protein kinase activation during cryopreservation. *Oxid. Med. Cel. Longev.* 2019, 5921503. doi:10.1155/2019/5921503

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Liu, Xu, Pan, Miao, Zhu and Tan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.