Grx4 Monothiol Glutaredoxin Is Required for Iron Limitation-Dependent Inhibition of Fep1

Mehdi Jbel, Alexandre Mercier, and Simon Labbé*

Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada

Received 28 January 2011/Accepted 7 March 2011

The expression of iron transport genes in Schizosaccharomyces pombe is controlled by the Fep1 transcription factor. When iron levels exceed those needed by the cells, Fep1 represses iron transport genes. In contrast, Fep1 is unable to bind chromatin under low-iron conditions, and that results in activation of genes involved in iron acquisition. Studies of fungi have revealed that monothiol glutaredoxins are required to inhibit iron-dependent transcription factors in response to high levels of iron. Here, we show that the monothiol glutaredoxin Grx4 plays an important role in the negative regulation of Fep1 activity in response to iron deficiency. Deletion of the grx4 gene led to constitutive promoter occupancy by Fep1 and caused an invariant repression of iron transport genes. We found that Grx4 and Fep1 physically interact with each other. Grx4 contains an N-terminal thioredoxin (TRX)-like domain and a C-terminal glutaredoxin (GRX)-like domain. Deletion mapping analysis revealed that the TRX domain interacts strongly and constitutively with the N-terminal region of Fep1. As opposed to the TRX domain, the GRX domain associates weakly and in an iron-dependent manner with the N-terminal region of Fep1. Further analysis showed that Cys35 of Grx4 is required for the interaction between the Fep1 C terminus and the TRX domain, whereas Grx4 Cys172 is necessary for the association between the Fep1 N terminus and the GRX domain. Our results describe the first example of a monothiol glutaredoxin that acts as an inhibitory partner for an iron-regulated transcription factor under conditions of low iron levels.

Redox-active transition metals such as iron present a dilemma to cells. They are cofactors essential for cell survival but can also be cytotoxic under certain conditions (10, 15). Iron is a micronutrient that serves as a catalytic and a structural cofactor for many enzymes intimately linked to essential cellular functions. Examples include DNA synthesis, the energy-generating respiratory chain, and lipid metabolism, all of which require iron (44). On the other hand, due to its proclivity to undergo changes in redox status within the cell, ferrous iron [Fe(II)] can react with hydrogen peroxide to produce the highly toxic hydroxyl radical (9). Consequently, in order to keep adequate, but not excessive, iron levels, organisms have developed regulated mechanisms for acquiring sufficient iron while at the same time preventing the buildup of concentrations that could lead to cell death.

In the model organism Schizosaccharomyces pombe, Fep1 and Php4 act as key regulators of iron homeostasis by controlling iron acquisition and iron utilization, respectively (21, 27, 34). In response to elevated concentrations of iron, the GATA-type transcription factor Fep1 represses the expression of several genes, including those encoding components of the reductive (e.g., fpr1, fio1, and fip1) nonreductive (e.g., str1, str2, and str3), and vacuolar (abc3) iron transport systems (34–37). Another member of the Fep1 regulon is php4 (27). When the availability of iron is limited, Fep1 fails to act as a repressor resulting in php4 transcription. The CCAAT-binding subunit Php4 coordinates the iron-sparing response by downregulating the genes that encode the components of iron-requiring metabolic pathways such as the tricarboxylic acid (TCA) cycle, the electron transport chain, and the iron-sulfur cluster biogenesis machinery (28). Php4 associates with its target genes by recognition of the CCAAT-binding complex, which is composed of Php2, Php3, and Php5 (25, 27). The Php2/Php3/Php5 heterotrimer binds CCAAT cis-acting elements, whereas Php4 lacks DNA-binding activity. Php4 is responsible for the capability of the Php complex to repress transcription in response to iron starvation. It has been demonstrated that the gene encoding the transcriptional repressor Fep1 is regulated by Php4, creating a reciprocal regulatory loop between both iron-responsive sensors (28).

Using a chromatin immunoprecipitation (ChIP) technique and a functional TAP-fep1 (where TAP is a tandem affinity purification tag) fusion allele, we demonstrated that TAP-Fep1 strongly associates with iron-responsive and GATA-containing promoters in iron-replete cells in vivo. In contrast, we found that conditions of iron starvation inhibit the binding of TAP-Fep1 to chromatin (14). Deletion mapping analysis revealed that the N-terminal 241-residue segment of Fep1 is necessary and sufficient for maximal iron-dependent binding to chromatin (14). The N-terminal 241-amino-acid region of Fep1 contains two Cys2/Cys2-type zinc finger motifs, denoted ZF1 and ZF2. In addition, there is also a conserved 27-residue segment containing four invariant Cys residues that is positioned between the two zinc finger motifs (36). Mutation of two of the conserved Cys residues to Ala resulted in the inability of Fep1 to bind to chromatin, irrespective of the cellular iron status (14). Further analysis by ChIP showed that the region encompassing the Cys-rich domain and ZF2 constitutes the minimal...
module required for the iron-dependent binding of Fep1 to chromatin, whereas the truncation of ZFT1 led to a decrease in its binding ability (14). In *Histoplasma capsulatum*, an Fep1-like repressor (denoted Sre1) has been shown to directly bind ferric iron (2). Thus, a current working model for repression by the GATA-type regulators with similar functions and sequences to Fep1 posits that, when bound by iron, the iron-responsive repressors bind to their target GATA sequences within the promoters of the target genes to downregulate transcription. In contrast, when intracellular iron is limited, Fep1 orthologs dissociate from the chromatin, thus allowing the transcription of the target gene. Although these sequences of events are still under investigation, less attention has been paid to the characterization of the mechanism by which Fep1 and its orthologs are inactivated under conditions of iron deprivation.

Studies of *Saccharomyces cerevisiae* have provided additional clues with respect to iron sensing (4, 20, 31, 32, 38, 42). *S. cerevisiae* genes encoding proteins that function in high-affinity iron transport are regulated by Aft1. When iron is scarce, Aft1 accumulates in the nucleus, where it binds to DNA and activates transcription (45, 46, 50). Although the mechanism by which Aft1 is activated remains unclear, it has been shown that the iron-dependent inhibition of Aft1 requires the production of mitochondrial Fe-S clusters (4, 42). That said, the mechanism by which mitochondrial Fe-S cluster synthesis negatively affects Aft1 activity remains unclear. Subsequent studies have shown that the *S. cerevisiae* monothiol glutaredoxins Grx3 and Grx4 are key regulators of Aft1 (32, 38). When cells undergo a transition from iron-limiting to iron-sufficient conditions, it has been proposed that Grx3 and Grx4, with the aid of Fra2 and possibly Fra1, transmit an as-yet-unidentified mitochondrial signal which leads to Aft1 inactivation and its subcellular translocation (20, 23, 24).

In *S. pombe*, we found that the GRX domain of Grx4 associates weakly with the N-terminal region of Fep1 in an iron-dependent manner. Site-directed mutagenesis identified Cys 35 of Grx4 as being required for this iron-dependent association. Collectively, the findings reported here provide convincing evidence that Grx4 is a binding partner of Fep1 and that it plays a critical role in inhibiting Fep1 function under conditions of iron deficiency.

MATERIALS AND METHODS

Yeast strains and growth conditions. The genotypes of the *S. pombe* strains used in this study were as follows: FY435 (*h*~s~7-his-366 leu1-32 ura4-D18 ade6-M210), pph4Δ (*h*~s~ hi5-366 leu1-32 ura4-D18 ade6-M210 pph4Δ::KAN), fep1Δ (*h*~s~ hi5-366 leu1-32 ura4-D18 ade6-M210 fep1Δ::KAN), grx4Δ (*h*~s~ hi5-366 leu1-32 ura4-D18 ade6-M210 grx4Δ::KAN), fep1Δ pph4Δ pph4Δ (*h*~s~ hi5-366 leu1-32 ura4-D18 ade6-M210 pph4Δ::KAN), pph4Δ grx4Δ (*h*~s~ hi5-366 leu1-32 ura4-D18 ade6-M210 pph4Δ::KAN), fep1Δ pph4Δ grx4Δ (*h*~s~ hi5-366 leu1-32 ura4-D18 ade6-M210 pph4Δ::KAN). All seven strains were cultured in yeast extract supplemented medium containing 0.5% yeast extract and 3% glucose that was supplemented with 225 mg/liter of adenine, histidine, leucine, uracil, and lysine, unless otherwise stated.

Stains for which plasmid integration was required were grown in synthetic Edinburgh minimal medium (EMM) lacking the specific nutrients required for plasmid selection and maintenance. Cells were seeded at an *A*~OD600~ of 0.5, grown to exponential phase (*A*~OD600~ ~1.0), and then either cultured in the presence of 2’,5’-dipridyl (Dip) (250 μM) or FeCl3 (100 or 250 μM) or left untreated for 90 min, unless otherwise indicated. *S. pombe* grx4Δ, pph4Δ grx4Δ, and fep1Δ pph4Δ grx4Δ disruption strains, as well as control strains, were grown in culture jars under microaerobic conditions using a BD GasPack EZ system (BD Diagnostic System, Sparks, MD). In the case of two-hybrid experiments, *Saccharomyces cerevisiae* strain L40 [MATα his3Δ200 trp1-901 leu2-3112 ade2 LYS2::LEU2 αHIS3 URA3::LACZ] (47) was grown in a synthetic minimal medium containing 83 mg/liter of histidine, adenine, uracil, and lysine plus 2% dextrose, 50 mM MES [2-(N-morpholino)ethanesulfonic acid] buffer (pH 6.1), and 0.67% yeast nitrogen base lacking copper and iron (MP Biomedical, Solon, OH).

Plasmids. The pK-1478NTAfp1 plasmid has been described previously (12). To create the pBPade6-1478-TRX-RFP plasmid, pK-1478fp1-TRX-GFP (where GFP is green fluorescent protein) was cotransfected with SacI and Sall and thereby allowing the purification of a DNA fragment containing the *fp1* gene along with its promoter. The purified DNA fragment was cloned into SacI-Sall-digested pBPade6-T vector (1). The *S. pombe* and *S. cerevisiae* strains were used to insert, in frame, a copy of the red fluorescent protein (RFP) gene (kind gift of Richard Rachubinski, University of Alberta, Canada). The pK-1200grx4 plasmid was constructed via a three-piece ligation protocol by simultaneously introducing the SacI-BamHI grx4~4~ promoter fragment and the BamHI-Sall grx4~4~ fragment into the SacI-Sall-digested pJK210 vector (16). The GFP coding sequence with *S. pombe* and *S. cerevisiae* strains at the 5’ and 3’ termini, respectively, of the GBP gene was derived from pSF-GFP1 (18) by PCR. The resulting DNA fragment
was used to clone the GFP gene into the pkK-1200gpd4+ plasmid to which Schizosaccharomyces pombe and AspS715 restriction sites, placed immediately before the gpd4+ stop codon, had previously been introduced by PCR. For this particular construct, the Schizosaccharomyces pombe AspS715 GFP-encoded fragment was placed in frame with the C-terminal region of Grx4. A copy of the TAP coding sequence was generated by PCR from the pEA500-194promTAP42-GFP plasmid (26) using primers that contained BamHI and AspS715 sites and then was exchanged with the BamHI-AspS715 DNA fragment (pkK-1476gpd4+) (36). The resulting recombinant vector expressed the TAP alone under the control of the fep1+ promoter.

For two-hybrid interaction assays, either the complete or the truncated versions of the fep1+ gene were generated by PCR using primers that contained BamHI and NotI restriction sites. Subsequently, the purified DNA fragments were digested with these enzymes and cloned into the corresponding sites of pVP16 (47) as described previously (51). To clone the grx4+ gene and its mutant derivatives into the plExn-A vector (47), primers designed to generate BamHI and SalI restriction sites at the upstream and downstream termini of the coding sequences were used. The grx4+ mutant alleles containing either site-specific mutations (e.g., C35A or C172A) or N- or C-terminal deletions (e.g., grx4ΔTRYX or grx4ΔGRX) were created by the overlap-extension method (12). The final PCR products were digested with BamHI and SalI and then were cloned into the corresponding sites of plExn-A. The plExn-Tap11 and VP16-Fep1 fusion protein constructs were prepared as described for the two-hybrid analysis (51).

Analysis of gene expression. Total RNA was extracted using a hot phenol method as described previously (3). RNA samples were quantified spectrophotometrically, and 15 μg of RNA per sample was used for RNase protection assays, which were carried out as described previously (28). The riboprobes derived from the plasmids psKSkfi1+ (14), psKfio1+ (34), and psKact1+ (27) were used to detect fio1+, fep1+, and act1+ transcripts, respectively. The act1+ riboprobe was used to detect act1+ mRNA as an internal control for normalization during quantification of the RNase protection products. The riboprobes derived from the plasmids psKact1+ (22) and psKskpvi6+ (26) were used to detect the act1+ (from S. cerevisiae) and VP16+ mRNA levels, respectively.

Chromatin immunoprecipitation. The preparation of chromatin was carried out as described previously (14). Immunoprecipitation of TAP-tagged Fep1 with immunoglobulin G (60) Sepharose beads and subsequent elution of the immunocomplexes were performed as described previously (14). To reverse the formaldehyde cross-links, both the eluted DNA and the DNA of the input control were first incubated at 65°C for 18 h and then at 37°C for 2 h in the presence of 50 μg of proteinase K. Free DNA was then purified as described previously prior to PCR analysis (14). PCR amplifications were performed essentially as described by Komarinski et al. (19), except that the PCR program consisted of 2 min at 94°C, followed by 25 cycles of 1 min at 94°C, 1 min at 55°C, and 2 min at 72°C, with a final 4-min step at 72°C. Radiolabeled PCR products were purified using Quick Spin columns (Roche Diagnostics, Indianapolis, IN) and were resolved in 6% polyacrylamide–10% Triton X-100 gel. For Western blotting of TAP-Fep1, Grx4-GFP, and PCNA, the following primary antisera were used: polyclonal anti-mouse IgG antibody (ICN Biomedicals, Aurora, OH), monoclonal anti-GFP antibody B-2 (Santa Cruz Biotechnology, Santa Cruz, CA), and monoclonal anti-PCNA antibody PC10 (Sigma-Aldrich). A monoclonal anti-3-phosphoglycerate kinase (PGK) antibody (Molecular Probes, Eugene, OR) was used to detect PGK that served as an internal control.

RESULTS

Fep1 is inhibited by a Php4-independent mechanism. When S. pombe cells are grown under low iron conditions, the CCAAT-binding factor Php4 is synthesized and interacts with the Php2/Php3/Php5 heterotrimer to mediate repression of the fep1+ gene (28). Surprisingly, we have observed that even in the absence of Php4 (php4Δ mutant), Fep1 was inactivated under conditions of iron deficiency. In these circumstances, its target genes (e.g., fio1+) were clearly upregulated in response to iron starvation (Fig. 1A and B; also data not shown).

This Php4-independent mechanism was not active at the transcriptional level because the fep1+ mRNA levels were constitutive and were unaffected by iron deprivation (Fig. 1C and D). To gain further insight into the mechanism of the Php4-independent inactivation of Fep1 under conditions of iron starvation, we created a series of mutants in which several putative homoeostasis genes were disrupted in combination with the php4Δ gene. Using these mutant strains, we discovered that a phpΔ strain in which the grx4+ gene was insertionally inactivated (phpΔ grx4Δ) exhibited very low fio1+ mRNA levels, even in the presence of the iron chelator Dip (Fig. 1A and B). As a control, wild-type cells (FY435) displayed fio1+ transcript levels that were repressed only in the presence of basal and high iron concentrations, whereas fio1+ mRNAs were induced exclusively in response to iron starvation (Fig. 1A and B). Importantly, the negative effect of the deletion of Grx4 on fio1+ expression was corrected by inactivating the fep1+ allele (phpΔ grx4Δ fep1Δ), revealing that the repression observed in phpΔ grx4Δ mutant cells required a functional Fep1 protein (Fig. 1A and B).

As previously shown in the case of the fep1Δ single mutant (14, 34, 36), phpΔ cells harboring an inactivated fep1+ gene (phpΔ fep1Δ) exhibited a strong constitutive transcription of fio1+ regardless of the iron status (Fig. 1A and B). Concomitantly, the fep1+ transcript levels were validated. fep1+ mRNA was detected in strains expressing fep1+, whereas it was absent in fep1Δ mutant cells. As a control for normal
transcriptional regulation, we verified that the steady-state levels of *fio1⁺* in a wild-type strain were downregulated when the cells were grown under low-iron conditions and upregulated under basal and iron-replete conditions (Fig. 1C and D, WT). Therefore, the fact that the *fio1⁺* transcription was strongly repressed in *php4Δ* *grx4Δ* cells (even in the presence of Dip) suggested that Fep1 failed to respond to iron deficiency. These results further suggested that the elimination of Grx4 led to a constitutive activation of Fep1. Under these conditions, the genes under the control of Fep1 were repressed irrespective of the cellular iron status.

Dissociation of Fep1 from chromatin requires the Grx4 monothiol glutaredoxin. We tested the possibility that Grx4 regulated the function of Fep1 by interfering with its ability to bind to chromatin under iron-limiting conditions. We used a ChIP method to assess the levels of promoter occupancy by Fep1 in the absence or presence of Grx4. Cell lysates were prepared from *php4Δ* *fep1Δ* double or *php4Δ* *fep1Δ* *grx4Δ* triple mutant strains in which a functional *fep1⁺* gene containing a TAP tag inserted immediately after the initiator codon (TAP-Fep1) was returned by integration. Before cell lysis preparation, the strains were maintained under microaerobic conditions in the presence of the iron chelator Dip (100 μM). At mid-logarithmic phase, each cell culture was harvested, washed, and resuspended in a selective medium containing either Dip (250 μM) or FeCl₃ (250 μM) for 90 min. The results of the ChIP analysis showed that TAP-Fep1 occupied the *fio1⁺* promoter at high levels when *php4Δ* *fep1Δ* *grx4Δ* triple mutant cells had been cultured in the presence of iron or Dip (Fig. 2). Anti-mouse IgG antibodies immunoprecipitated 7.5-fold more TAP-Fep1 associated with the *fio1⁺* promoter DNA in *php4Δ* *fep1Δ* *grx4Δ* cells grown in the presence of Dip (250 μM) than in *php4Δ* *fep1Δ* *grx4Δ* cells grown under the same iron starvation conditions. When chromatin was prepared from *php4Δ* *fep1Δ* *grx4Δ* and *php4Δ* *fep1Δ* *grx4Δ* strains grown under iron-replete conditions, TAP-Fep1 pulled down elevated amounts of the *fio1⁺* promoter sequence compared to the intergenic region reference (Fig. 2). In the case of the *php4Δ* *fep1Δ* *grx4Δ* cells, TAP-Fep1 occupied the *fio1⁺* promoter at a maximum level (100%) under iron-replete conditions. Similarly, in the case of the *php4Δ* *fep1Δ* *grx4Δ* cells, we found that the association of TAP-Fep1 with the *fio1⁺* promoter was elevated, with an occupancy 4.3-fold higher than that of the *php4Δ* *fep1Δ* *grx4Δ* strain grown under low-iron conditions (Fig. 2). Parallel experiments using *php4Δ* *fep1Δ* cells provided evidence that any effects of either iron or Dip on TAP-Fep1 were independent of any potential changes in TAP-fep1⁺ expression. As previously reported, and irrespective of whether or not the proteins were cross-linked to chromatin, TAP-Fep1 was clearly produced under both iron-limiting and iron-replete conditions (14; also data not shown). In addition, we found that cross-linked and un-cross-linked Fep1 was retained on IgG-Sepharose beads because the presence of TAP-Fep1 was detected in the immunoprecipitates obtained from cells grown in the ab-
The functional integrative plasmids harboring grx4 that, in the presence of Grx4, TAP-Fep1 associates with the also data not shown). Taken together, the results indicated we used a action between Grx4 and Fep1. To begin to address this point, Grx4 in iron-starved cells was intrinsically linked to an inter-

Both Grx4 and Fep1 colocalize in the nucleus and physically interact with each other. Based on the data obtained, we asked whether the inactivation of Fep1 measured in the presence of Grx4 in iron-starved cells was intrinsically linked to an inter-

FIG. 2. Deletion of the grx4 gene results in a constitutive ability of TAP-Fep1 to bind to the fio1 promoter in vivo. ChIP analysis of the fio1 promoter in a php4Δ fep1Δ double mutant or a php4Δ fep1Δ grx4Δ triple mutant strain was performed. Both mutant strains were transformed with the integrative plasmid that encodes a functional TAP-tagged fep1 allele. The strains were preincubated in the presence of 100 μM Dip, allowed to grow to an A600 of ~1.0, washed, and then incubated (90 min) in the presence of 250 μM Dip or 250 μM FeCl₃ (Fe). Chromatin was immunoprecipitated with anti-mouse IgG antibodies, and a specific region of the fio1 promoter was analyzed by PCR to determine Fep1 occupancy. The upper band represents the fio1-specific signal while the lower band is an internal background control derived from a nontranscribed region (i.e., the intergenic region). The lower panel shows a graphic representation of the quanti-

sence or presence of iron (14; also data not shown). As ex-
pected, immunoprecipitates were not detectable in the case of fep1Δ php4Δ cells expressing the untagged fep1Δ allele (14; also data not shown). Taken together, the results indicated that, in the presence of Grx4, TAP-Fep1 associates with the fio1 promoter in iron-replete cells, whereas it dissociates from this promoter in response to iron starvation. In contrast, when Grx4 was deleted, the association between TAP-Fep1 and the fio1 promoter became sustained, allowing Fep1 to act as a constitutive repressor on its target gene regardless of iron availability.

Both Grx4 and Fep1 colocalize in the nucleus and physically interact with each other. Based on the data obtained, we asked whether the inactivation of Fep1 measured in the presence of Grx4 in iron-starved cells was intrinsically linked to an inter-

As previously reported, the insertion of TAP at the N terminus of Fep1 does not interfere with its function (Fig. 3C) (14, 36). Indeed, php4Δ fep1Δ cells expressing a TAP-tagged fep1Δ allele were able to repress fio1 mRNA expression (~18- to 20-fold) under both standard (untreated) and iron-replete conditions. Importantly, fio1 mRNA levels in the php4Δ fep1Δ grx4Δ mutant strain coexpressing the grx4Δ-GFP allele in conjunction with TAP-fep1Δ were also downregulated under basal (~17-fold) and iron-replete (~20-fold) conditions.
We therefore concluded that when Grx4-GFP and TAP-Fep1 were coexpressed in php4Δ fep1Δ grx4Δ mutant cells, they functionally conferred iron-dependent regulation of fio1 expression in a manner similar to that of the wild-type Grx4 and Fep1 proteins in the parental strain (Fig. 3C).

To further investigate the association between Grx4 and Fep1, a two-hybrid analysis was performed using the full-length grx4Δ gene fused to the lexA coding region as bait and the fep1Δ gene fused to the coding region of the VP16 activation domain as prey. Coexpression of the full-length Grx4
fused to LexA with the VP16-Fep1 fusion protein resulted in the detection of high levels of β-galactosidase activity (~801 ± 58 Miller units) (Fig. 3D), indicating a very strong interaction between these two proteins. As positive controls, we used the LexA-Tup11 and VP16-Fep1 fusion proteins, which are known to strongly interact with each other (51). Coimmunoprecipitation experiments of S. pombe cell extracts suggested that the interaction between Grx4 and Fep1 was not modulated by iron (Fig. 3B). To determine whether the association between the LexA-Grx4 and VP16-Fep1 fusion proteins in bakers’ yeast was insensitive to iron in a manner that paralleled the coimmunoprecipitation results, the two full-length fusion proteins were coexpressed under both iron-limited and iron-replete conditions. The results of two-hybrid analysis showed that the full-length LexA-Grx4 and VP16-Fep1 proteins associate with each other in an iron-independent manner, resulting in very high levels of β-galactosidase activity in both cases (Fig. 3D).

Grx4 interacts strongly with the C-terminal region of Fep1 but associates only weakly with its N-terminal region. Because analogous results were obtained using both methods of protein-protein interaction analysis, we used the two-hybrid technology to delineate the region(s) of Fep1 that predominantly interacted with Grx4. We first investigated the possibility of interaction between Grx4 with the N-terminal residues 2 to 241 and 2 to 359 of Fep1 (Fep1²⁴¹ and Fep1³⁵⁹, respectively) and the C-terminal 323 amino acid residues of Fep1 (residues 242 to 564 [Fep1⁵⁶⁴]). β-Galactosidase assays of VP16-Fep1²⁴¹ and VP16-Fep1³⁵⁹ coexpressed with LexA-Grx4 revealed only weak activity levels (7.1 ± 1.9 and 14.9 ± 1.6 Miller units, respectively). However, these levels of β-galactosidase activity were significantly higher than the background values of pairs of noninteracting proteins (Fig. 4A). We then tested whether the C-terminal region of residues 242 to 564 of Fep1 was involved in the interaction with Grx4. In these experiments, VP16-Fep1⁵⁶⁴ showed very high levels of β-galactosidase activity (742 ± 112 Miller units), similar to the activity observed with the full-length VP16-Fep1 fusion protein (664 ± 83 Miller units) (Fig. 4A). Immunoblot analyses of protein extracts using anti-LexA and anti-VP16 antibodies clearly indicated that the fusion proteins were expressed in the cotransformed cells (Fig. 4B). Although we consistently detected LexA alone, full-length LexA-Grx4 protein, VP16-Fep1 protein, and its truncated derivatives, we were unable to detect the VP16 polypeptide alone. This observation may be due to its very low predicted molecular mass (~8 kDa). Overall, the results suggested that the C-terminal region encompassing amino acids 242 to 564 of Fep1 is needed to form a stable interaction with Grx4.

To gain additional insight into the C-terminal region of residues 242 to 564 of Fep1 that was responsible for interaction with Grx4, seven chimeric proteins were generated using different segments of the Fep1 protein. These segments comprised residues 319 and 564 (VP16-Fep1³¹⁹), 405 to 564 (VP16-Fep1⁴⁰⁵), 432 to 564 (VP16-Fep1⁴³²), 450 to 541 (VP16-Fep1⁴⁵⁰), 450 to 501 (VP16-Fep1⁴⁵⁰), 405 to 480 (VP16-Fep1⁴⁰⁵), and 405 to 457 (VP16-Fep1⁴⁰⁵). β-Galactosidase assays of VP16-Fep1³¹⁹ or VP16-Fep1⁴³² coexpressed with LexA-Grx4 showed only very weak activity levels (1.1% and 0.9%, respectively) relative to that of the VP16-Fep1²⁴² fusion protein (Fig. 5A). In contrast, constructs encoding VP16-Fep1²³¹, VP16-Fep1⁴⁰⁵, VP16-Fep1⁴⁵⁰, and VP16-Fep1⁵⁴¹ had high levels of β-galactosidase activity (97%, 118%, 106%, and 102%, respectively) that were similar to the level of VP16-Fep1²⁴² (Fig. 5). Coexpression of VP16-Fep1⁴⁰⁵ with LexA-Grx4 exhibited significantly reduced levels of β-galactosidase activity; specifically, levels were reduced to 29% of the level of the VP16-Fep1²⁴² fusion protein (Fig. 5). Importantly, the interaction between LexA-Grx4 and the VP16-Fep1²⁴², VP16-Fep1³¹⁹, VP16-Fep1⁴⁰⁵, VP16-Fep1⁴³², VP16-Fep1⁴⁵⁰, VP16-Fep1⁴⁵⁷, or VP16-Fep1⁵⁴¹ fusion proteins using two-hybrid analysis was not found to be modulated by iron availability (data not shown). All fusion proteins tested for two-hybrid interactions were detected by immunoblot analyses, except the chimeric VP16-Fep1⁴⁰⁵ and VP16-Fep1⁴⁵⁷ proteins (Fig. 5B). Given this situation, we assayed the levels of mRNA expression of VP16 alone and VP16-fep1⁺ fusion constructs (full-length and the truncated derivatives) using RNase protection assays. The results showed that VP16 used without or with the wild-type or truncated fep1 constructs was clearly expressed, with transcripts being detected in the case of each prey construct (Fig. 5C). Based on the two-hybrid assay, we concluded that the C-terminal segment of Fep1 encompassing amino acid residues 242 to 564 is required for a full-strength interaction with Grx4. Furthermore, within this region, a domain corresponding to amino acids 405 to 501 constitutes a minimal module that is sufficient for maximal interaction between Fep1 and Grx4.

Two domains of Grx4 are involved in the interaction with Fep1, but only the GRX domain interacts in an iron-dependent manner with the N-terminal region of Fep1. The identification of the amino acid regions of Fep1 required for its association with Grx4 prompted elucidation of the region on Grx4 that was necessary for this interaction. The monothiol glutaredoxin Grx4 from the fission yeast S. pombe includes two major domains that exhibit a high overall sequence homology with most family members of monothiol glutaredoxins (11). These two domains are denoted thioredoxin (TRX)-like and glutaredoxin (GRX)-like. The N-terminal TRX-like domain of Grx4 contains a WAAPC⁵⁵K sequence that is reminiscent of the thioredoxin active site motif WCGPCK (11). The C-terminal GRX-like domain of Grx4 contains the highly conserved residues C¹⁷²GFS that are required for monothiol glutaredoxin cellular functions (11). We designed truncated segments of the N- and C-terminal ends of Grx4, leaving only its GRX and TRX domains, respectively. The construct in which the TRX domain of Grx4 was removed (LexA¹⁰⁵Grx4²⁴⁴) did not exhibit β-galactosidase activity when it was coexpressed with VP16-Fep1⁵⁰¹ (Fig. 6A). This result suggested that the TRX domain was needed to interact with the C-terminal region of residues 405 to 501 of Fep1. Importantly, the chimeric LexA^{-Grx4¹⁴²} (domain TRX) molecule displayed a 6% decrease in the activity of the reporter β-galactosidase compared to that of the full-length LexA^{-Grx4²⁴⁴} fusion protein (Fig. 6A). However, when the Cys³⁵ residue located within the TRX domain (LexA-Grx4^{C35A}) mutant) was mutated, β-galactosidase activity was abolished. Consistent with the fact that the TRX domain was required for the association between Grx4 and the Fep1 C-terminal region, when the Cys¹⁷² residue located within the GRX domain was mutated, the reporter β-galactosidase was still highly expressed (93%). We then investigated whether the ability of the TRX domain of Grx4 to interact with the C-ter-
minal region of Fep1 was affected by iron. Results showed that the interaction between the TRX domain of Grx4 and the amino acid region consisting of residues 405 to 501 of Fep1 was independent of the iron status (Fig. 6A). To ensure that the LexA-Grx4 protein and its mutant derivatives, as well as the chimeric VP16-405Fep1501 molecule, were expressed in the cotransformed cells, immunoblot analyses of protein extracts were carried out using both anti-LexA and anti-VP16 antibodies. Chimeric proteins were detected under conditions of both low and high levels of iron (Fig. 6B).

Two-hybrid analyses (Fig. 4) showed that coexpression of the full-length LexA-Grx4 with the VP16-Fep1 protein or its truncated derivatives produced low, but significant, levels of β-galactosidase activity (14.9 ± 1.6 Miller units), indicating an interaction between Grx4 and the Fep1 amino acid fragment consisting of residues 2 to 359. To further delineate the region of Grx4 that interacts with the N- and C-terminal regions of Fep1, the latter region making a much stronger interaction than the former.

(A) The LexA-Grx4 fusion protein was coexpressed with the full-length VP16-Fep1 protein or its truncated derivatives. The amino acid sequences of the Grx4, Fep1, and Tup11 proteins are numbered relative to their first initiator codons. Each set of constructs was coexpressed in the S. cerevisiae strain L40 under basal conditions. As a measure of protein-protein interactions, liquid β-galactosidase assays were carried out, and the results shown are the means of triplicate determinations ± standard deviations. The LexA-Tup11 and VP16-Fep1 fusion proteins were used as positive controls (51). (B) Cell lysates from aliquots of the cultures described in panel A were analyzed by immunoblotting with anti-LexA, anti-VP16, or anti-phosphoglycerate kinase (PGK) (as an internal control) antibodies. The positions of protein standards are indicated to the left. NS, nonspecific signal.
acted with the N-terminal region of residues 2 to 359 of Fep1, we created four different chimeric LexA-Grx4 molecules, LexA-2Grx4142 (domain TRX), LexA-105Grx4244 (domain GRX), LexA-Grx4 with the mutation C172A [LexA-Grx4(C172A)], and LexA-Grx4(C35A). The LexA-2Grx4142, LexA-105Grx4244 (domain GRX), and LexA-Grx4(C35A) fusion proteins produced significant levels of β-galactosidase activity (23.8 ± 1.1, 20.5 ± 2.1, and 20.1 ± 2.2 Miller units,
respectively) under conditions of low iron levels when coexpressed with VP16-2Fep1359 (Fig. 7A). In contrast, when these three cotransformants were incubated in the presence of iron, \(\beta\)-galactosidase activity decreased by 75%, 77%, and 78%, respectively (Fig. 7A). When the GRX domain was removed (LexA-2Grx4142) or mutated [LexA-Grx4(C172A)] and then tested for interaction with VP16-2Fep1359, no significant \(\beta\)-galactosidase activity was detected, irrespective of the cellular iron status. Western blot analysis revealed equivalent expression levels of the LexA-Grx4 fusion protein and its derivatives, regardless of the iron status (Fig. 7B). Based on these data, we concluded that the Grx4 GRX domain interacts with the N
terminus of Fep1 in an iron-dependent manner. Furthermore, the Cys172 residue within the GRX domain of Grx4 is absolutely required as its removal abrogates the physical interaction between the LexA-Grx4 and VP16-2Fep1359 fusion proteins.

Based on the data obtained (Fig. 6 and 7), the full-length VP16-Fep1 fusion protein was tested for interaction with separate domains of Grx4 as a function of iron availability. Although the strength of the interaction between the GRX domain (LexA-105Grx4244) and VP16-2Fep1564 was low (~23.0 ± 2.0 Miller units), based on β-galactosidase activity, it was significantly higher than the interactions of the negative controls (which consist of vectors only). In addition, we observed that high concentrations of iron resulted in a decrease in β-galactosidase activity (~48%), revealing a weaker interaction of the GRX domain with Fep1 (Fig. 8A). Similarly, the mutant LexA-Grx4(C35A) (in which the TRX domain was mutated) exhibited a decreased (~47%) physical interaction with Fep1 in the presence of high levels of iron (Fig. 8A). In subsequent assays, coexpression of the TRX domain (LexA-2Grx4142) with the VP16-2Fep1564 fusion protein produced cotransformants exhibiting high levels of β-galactosidase activity that were not modulated by iron (Fig. 8A). Analogous to the interaction between the TRX domain and Fep1, cells coexpressing LexA-Grx4(C172A) (in which the GRX domain was mutated) and

![Diagram](image-url)
VP16-2Fep1⁵⁶⁴ exhibited very high levels of β-galactosidase activity that were independent of the iron status (Fig. 8A). Western blot analyses of protein extracts using anti-LexA and anti-VP16 antibodies showed that the fusion proteins were expressed in the cotransformed cells independently of the iron levels (Fig. 8B).

Fep1 function is inactivated through the action of the GRX domain under conditions of iron starvation. Given the fact that two-hybrid assays showed that the strength of the interaction between the two Grx4 domains and Fep1 were different, we further investigated the effect of these domains on Fep1 function. These experiments were in keeping with the fact of the importance of the regulation of <i>fio1</i>⁺, a gene known to encode a component of the iron transport machinery. Plasmids expressing the mutant proteins (Fig. 9) were transformed into an <i>S. pombe</i> <i>php4</i>Δ <i>fep1</i>Δ <i>grx4</i>Δ strain. In addition, each transformant coexpressed the Fep1-RFP fusion protein that served as a marker of nuclei. The Grx4(C35A)-GFP, Grx4(C172A)-GFP, and Grx4(C172A)-GFP fusion proteins were detected in the nucleus and the cytoplasm (Fig. 9A, C35A, TRX, and C172A). Importantly, the nuclear portion of all three of the above-mentioned Grx4 mutant proteins colocalized with the Fep1-
FIG. 9. The TRX domain is required for the maximal in vivo association between Grx4 and Fep1, while the GRX domain is necessary for the inhibition of Fep1 activity in response to iron deficiency. (A) php4Δ fep1Δ grx4Δ cells containing a functional fep1Δ-RFP allele were transformed with grx4(C35A)-GFP (C35A), grx4(C172A)-GFP (C172A), or grx4(C35A)-GFP (GRX). The cells were analyzed by fluorescence microscopy so as to reveal both RFP and GFP expression and were then examined by Nomarski microscopy for cell morphology. Merged images of Fep1-RFP coexpressed with the indicated grx4 mutants are shown (bottom panels). (B) Cells harboring a php4Δ fep1Δ grx4Δ triple deletion were cotransformed with TAP-fep1 plus grx4-C35A-GFP (C35A), TAP-fep1 plus grx4(C172A)-GFP (C172A), or TAP-fep1 plus grx4(C172A)-GFP (GRX). Mid-logarithmic-phase cultures were incubated in the presence of Dip (250 μM) or FeCl₃ (100 μM) (Fe) for 90 min. Lysates (total) were incubated with an IgG-Sepharose resin. Following washing, the bound fractions were analyzed by immunoblotting using the anti-GFP antibody. As controls, aliquots of both the cell lysates and bound fractions were probed with an anti-mouse IgG antibody and an anti-PCNA antibody. A portion of the total protein lysates (2%) was also analyzed to verify the presence of the immunoblotted proteins prior to chromatography. (C) RNase protection analysis of the fio1 transcript levels in wild-type (WT), fep1Δ, grx4Δ, and php4Δ grx4Δ strains exposed to 250 μM Dip or 100 μM FeCl₃ or left untreated (–). Cells harboring a php4Δ grx4Δ double deletion were transformed with the grx4Δ-GFP, grx4(C35A)-GFP (C35A), grx4(C172A)-GFP (TRX), grx4(C172A)-GFP (C172A), or grx4(C172A)-GFP (GRX) alleles. The steady-state levels of the fio1 and act1 mRNAs are indicated with arrows. (D) Quantification of the fio1 transcript levels after the various treatments. The histogram values represent the averages of triplicate determinations ± standard deviations.
RFP fusion protein. Interestingly, the $^{105}\text{Grx4}^{244}$-GFP mutant, which expressed only the Grx domain, was predominantly observed in the cytoplasm (Fig. 9A). Only a very small fraction of $^{105}\text{Grx4}^{244}$-GFP colocalized with the Fep1-RFP protein in the nucleus (Fig. 9A). We then examined whether mutated forms of Grx4 affected its ability to interact with Fep1 in S. pombe. We coexpressed TAP-Fep1 with the GFP tag fused to either the C-terminal region of Grx4 or its mutant derivatives. Each combination was coexpressed in a $\text{php4}^{\Delta} \text{fep1}^{\Delta} \text{grx4}^{\Delta}$ mutant strain, and commounprecipitation experiments were performed in cells cultured in the presence of either the iron chelator Dip or FeCl$_3$ (Fig. 9B). Western blot analysis of the proteins retained by the beads (bound fraction) using an anti-GFP antibody revealed that both wild-type Grx4-GFP and Grx4(C172A)-GFP were present in the immunoprecipitate fraction under iron-limiting and iron-replete conditions (Fig. 9B). In contrast, regardless of the iron levels, neither Grx4(C35A)-GFP nor $^{105}\text{Grx4}^{244}$-GFP was found in the bound fraction of cells expressing the full-length TAP-Fep1 protein (Fig. 9B, C35A and GRX). Notably, weak protein-protein interactions might not be detectable using the less-sensitive commounprecipitation method, especially compared to the exquisitely sensitive yeast two-hybrid method. The specificity of the commounprecipitation experiments was ascertained using total cell lysates. Proteins retained by the beads were analyzed by Western blotting using an antibody directed against PCNA, a soluble protein like TAP-Fep1, Grx4-GFP, or its mutant derivatives. PCNA was found to be present in the total cell extracts but not in the retained protein fraction (Fig. 9B). Furthermore, interaction between the Grx4-GFP and TAP proteins was not observed when TAP was coexpressed alone with the GFP tag fused to Grx4 (Fig. 3B and data not shown). To assess the steady-state protein levels of TAP-Fep1, immuno blot analyses of both the protein preparations and the bound fractions were carried out using anti-IgG antibody (Fig. 9B). Together, the commounprecipitation data show that the TAP-Fep1 and either the Grx4-GFP or the Grx4(C172A)-GFP fusion proteins specifically interacted with each other to form a stable heteroprotein complex that could be pulled down from whole-cell extracts.

To assess the effect of the expression of different Grx4 mutants on Fep1 function, we carried out RNase protection analysis to examine the relative transcriptional profile of the Fep1-regulated target gene fio1^+ (Fig. 9C). $\text{php4}^{\Delta} \text{grx4}^{\Delta}$ cells expressing the $^{1}\text{Grx4}^{142}$-GFP (TRX domain) mutant, in which the GRX domain was absent, displayed a constitutive repression of fio1^+ irrespective of the iron status. Similarly, when $\text{php4}^{\Delta} \text{grx4}^{\Delta}$ mutant cells were transformed with the $\text{grx4}(C172A)$ allele (in which the conserved Cys172 of the glutaredoxin active site was substituted for an Ala residue), fio1^+ transcripts were still largely repressed, even in the presence of Dip, indicating that the Fep1 repressor failed to respond to low-iron conditions. Surprisingly, $\text{php4}^{\Delta} \text{grx4}^{\Delta}$ cells expressing the $^{105}\text{grx4}^{244}$-GFP (GRX) allele displayed a low, but significant, increase (8.2-fold) in fio1^+ transcript levels in the presence of Dip compared to the $^{1}\text{grx4}^{142}$-GFP (TRX) allele expressed under the same conditions (Fig. 9C). Moreover, $\text{php4}^{\Delta} \text{grx4}^{\Delta}$ cells expressing $\text{grx4}(C35A)$-GFP and grx4^{Δ}-GFP alleles consistently showed an iron-dependent regulation of the fio1^+ gene. fio1^+ mRNA levels were induced (21.8- and 22.2-fold, respectively, compared with basal levels of expression observed in untreated cells) in cells cultured in the presence of Dip, whereas in both untreated and iron-replete cells, fio1^+ transcript levels were repressed as in the case of the wild-type strain (Fig. 9C). As expected, fio1^+ transcript levels were increased only in wild-type cells cultured in the presence of Dip (33.1-fold) compared with the level of transcripts detected from control (untreated) cells. fio1^+ expression was constitutively repressed in a grx4^{Δ} single mutant strain, whereas fio1^+ mRNA levels were strongly increased in a fep1^{Δ} single mutant strain (Fig. 9C). Taken together, these findings supported the interpretation that the strong interaction between the C terminus of Fep1 and the TRX domain of Grx4 is not necessary for iron limitation-dependent inhibition of Fep1. In contrast, the weaker interaction between the N terminus of Fep1 and the GRX domain of Grx4 appears to play a critical role for inactivation of Fep1 function in response to iron starvation.

DISCUSSION

Excess iron accumulation in the fission yeast S. pombe triggers the transcription factor Fep1 to repress the expression of the genes involved in the acquisition of iron (15, 21, 35). In contrast, when these cells undergo a transition from conditions of iron sufficiency to iron deficiency, the activity of Fep1 must be shut down to allow *de novo* synthesis of high-affinity iron transporters. Although the mechanism by which Fep1 is inactivated by iron starvation is crucial, the molecular components and features that dictate how Fep1 is inhibited are still poorly understood. Our group has already identified one mechanism that operates at the transcriptional level (28). We determined that fep1^+ gene expression is under the control of the CCAAT-binding factor Php4 and that its expression is downregulated under conditions of iron starvation (>0.01 μM) and upregulated under conditions of both low (0.74 μM) and high levels (100 μM) of iron (28). In the present study, we have identified a second mechanism that takes place at the posttranslational level. Using a biological system in which the Php4 protein was absent, thus allowing us to unlink iron starvation-dependent behavior of the Fep1 protein from its transcriptional regulation by Php4, we determined that the presence of a functional grx4^+ gene was required to inactivate Fep1 in response to iron deficiency. This result was rather unexpected since monothiol glutaredoxins are known to inhibit iron-regulatory transcription factors in response to excess iron but not under conditions of iron deficiency. For instance, it is known that the *S. cerevisiae* transcription factor Aft1 activates high-affinity iron transport gene expression in response to iron deficiency. In contrast, Aft1 is inactivated by iron repletion (48, 49). Although the precise mechanism of iron-dependent inhibition of Aft1 activity remains unclear, it has been shown that the presence of different cellular components, including glutathione, the Fra1 and Fra2 proteins, and the monothiol glutaredoxins Grx3 and Grx4, are required to communicate cellular iron levels to Aft1 as well as to inhibit its function upon iron repletion (15). It has been shown that Grx3 and Grx4 interact directly with Aft1 (20, 32, 38). However, the association of Grx3 and Grx4 with Aft1 was shown to be independent of the iron levels (32). Similarly, in the present study, we determined by two-hybrid assays that the interaction of the full-length Grx4 with Fep1 was constitu-
tive and not modulated by iron. We found that both the TRX and the GRX domains of Grx4 interacted with Fep1. Surprisingly, we observed that the TRX domain of Grx4 interacted more strongly with Fep1 than with the GRX domain. Furthermore, the experiments revealed that the GRX domain interacted in an iron-dependent manner with the N-terminal region of Fep1. These results were different from those reported in the case of the S. cerevisiae monothiol glutaredoxins Grx3 and Grx4 with respect to their associations with Aft1 (38). In this case, two-hybrid experiments showed that each of the GRX and TRX domains of Grx3 and Grx4 interacted positively with Aft1, exhibiting similar levels of β-galactosidase activity, with no specification with respect to the interactions (between these polypeptides) as a function of iron availability. Although the nature of the difference between these respective observations is unclear, it is possible that the composition and length of the GRX and TRX domains may be contributing factors that would explain the differences between the results reported here and the results of other investigators (38). In this context, the GRX domains of S. cerevisiae Grx3 (residues 197 to 285) and Grx4 (resides 160 to 244) contain 88 and 84 amino acid residues, respectively, whereas the GRX domain (resides 105 to 244) of S. pombe Grx4 harbors 139 amino acid residues. Similarly, the TRX domains of S. cerevisiae Grx3 (resides 1 to 136) and Grx4 (resides 1 to 98) are shorter than the TRX domain of S. pombe Grx4 (resides 2 to 142). Alternatively, the differences between the respective results of the two-hybrid studies may be due to the fact that Fep1 (S. pombe) and Aft1 (S. cerevisiae) do not share significant amino acid sequence identity (only 15.2%). It is possible that these two proteins use distinct mechanisms or partners in their interactions with monothiol glutaredoxins.

When iron is abundant, Fep1 binds to DNA and forms a complex with Tup11 and probably Tup12, and the complexes act as corepressors to inhibit gene expression (51). We have previously shown that a minimal domain encompassing amino acid residues 405 to 541 of Fep1 is necessary for interaction with Tup11 (51). In the present study, deletion mapping experiments of the VP16-2Fep1564 fusion protein showed that the C-terminal amino acid residues 405 to 501 are required for the interaction of Fep1 with the Grx4 protein. This minimal C-terminal region failed to interact with Tup11 (data not shown). Interestingly, this minimal module contains leucine-proline dipeptide repeats that have been suggested to play a role in protein-protein interactions (33). One of these repeats, 414Leu-Pro-Pro-Ile-Leu-Pro119, is also found in other iron-responsive transcriptional repressors, including SreA from Aspergillus nidulans (8), SreA from Aspergillus fumigatus (43) and SreP from Penicillium chrysogenum (7). Consistently, removal of amino acid residues 405 to 431 (in which the 414Leu-Pro-Pro-Ile-Leu-Pro119 is located) abolished the association between the LexA-Grx4 and the VP16-322Fep1564 fusion proteins (Fig. 5). However, the precise contribution of the 414Leu-Pro-Pro-Ile-Leu-Pro119 motif, or of other residues located in the region encompassing amino acid residues 405 to 431 of Fep1, to the interaction between Fep1 and Grx4 must await a fine mapping of this minimal region. The region on Grx4 that is required for interaction with amino acid residues 405 to 501 of Fep1 is the TRX domain. This finding represents a novel function for this domain which is required for establishing a strong and iron-independent association with Fep1. A recent study (39) has shown that the TRX domains of both Grx3 and Grx4 of S. cerevisiae participate in the regulation of the actin cytoskeleton. However, whether their contribution to the re-polarization of the actin cytoskeleton involves protein-protein interactions has not yet been ascertained. The TRX domain has also been proposed to be required for the targeting of the monothiol glutaredoxin Grx3 to the nucleus in S. cerevisiae (30). When the TRX and GRX domains of S. pombe Grx4 were separately tagged with GFP, cells expressing the TRX-GFP allele exhibited a pan-cellular fluorescence signal, with a large proportion being located to the nucleus (Fig. 9A). On the other hand, analysis by fluorescence microscopy showed that cells harboring the GRX domain fused to GFP appeared to have significantly less nuclear accumulation of fluorescence compared to that of the TRX-GFP fusion protein. However, presumably due to its small size (~42 kDa), the GRX-GFP still diffused across the nuclear envelope since its expression was sufficient to cause a slight derepression of the fo111 gene when the cells were grown under low-iron conditions (Fig. 8). As previously reported (30), our results also suggested that the TRX domain may significantly contribute to monothiol glutaredoxin Grx4 nuclear localization.

A second iron-responsive factor, denoted Php4, is critical for repressing the expression of the genes encoding iron-using proteins when iron levels are low in S. pombe (27, 28). Php4 is a subunit of the CCAAT-binding protein complex. In response to iron deficiency, Php4 is synthesized and interacts with the Php2/Php3/Php5 heterotrimer to mediate gene repression. When iron levels are high, Php4 is inhibited. grx4A mutant cells show a marked decrease in the transcription of the genes encoding iron-using proteins as a result of the presence of the constitutively active Php4. Under iron-replete conditions, Grx4 exerts an iron-dependent inhibitory effect on Php4 function, leading to Php4 inactivation. Grx4-mediated inactivation of Php4 involves an association between Grx4 and the C-terminal region of Php4 that encompasses amino acid residues 152 to 254 (26). Although the iron-dependent mechanism by which Grx4 inactivates Php4 function remains unclear, we determined that in cells undergoing a transition from low to high iron, Php4 (presumably with its partners) is exported from the nucleus to the cytoplasm by the exportin Crm1. Based on our studies, S. pombe represents an interesting model with which to investigate the iron-mediated signaling to iron regulators as the monothiol glutaredoxin Grx4 serves as a regulatory binding partner for both Fep1 and Php4 under conditions of low and high concentrations of iron, respectively.

The results show that Grx4 is required for the inhibition of Fep1 function in response to iron deficiency. How might this occur? Using coimmunoprecipitation experiments and two-hybrid analyses, we showed that Grx4 interacts with the C-terminal portion of Fep1 via its TRX domain. The association between the TRX domain and Fep1 was very strong and unmodified by cellular iron status. Under conditions of iron starvation, the GRX domain of Grx4 associated with Fep1 through its N terminus. This association between Grx4 and Fep1 would induce an inhibitory conformational change that inactivates the Fep1 DNA binding domain, blocking its interaction with chromatin and subsequently preventing its repressive effect on target gene expression. Conversely, under conditions of iron
excess, the GRX domain dissociates from the N-terminal portion of Fep1, resulting in the ability of Fep1 to bind to chro-
matin and thereby repressing the transcription of the target
genes. Given the fact that it has been shown that Fep1 and
monothiol glutaredoxin can form homodimers (13, 24, 36), one
could propose that, under iron-limiting conditions, a dimer of
Fep1 may associate with two GRX domains of Grx4, generat-
ing two Fep1 molecules clasps with two Grx4 molecules. In
contrast, under iron-replete conditions, the two GRX domains
of Grx4 would coordinate by themselves an iron-sulfur cluster,
instigating conformational changes that would make the N
terminus of Fep1 free and available for high-affinity DNA
binding. Clearly, further studies will be needed to understand
the reason why iron starvation-dependent inactivation of Fep1
function requires a monothiol glutaredoxin, a molecular deter-
mnent which is usually known to inactivate metalloregulators
in response to high iron levels, not under low iron-supply con-
ditions.

ACKNOWLEDGMENTS

We are grateful to Gilles Dupuis and William Home for critically
reading the manuscript and for their valuable comments. We thank
Jude Beaudoin for help with preliminary experiments and stimulating
discussions. We are thankful to Richard Rachubinski for the pmRFP-
SKL plasmid encoding the red fluorescent protein.

M.J. and A.M. were recipients of studentships from the Fonds Qué-
becois de la Recherche sur la Nature et les Technologies and the
Fonds de la Recherche en Santé du Québec, respectively. This work
was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) Grant MOP-238238-2010 to S.L. S.L. is
supported by a Senior scholarship from the Fonds de la Recherche en
Santé du Québec.

REFERENCES

1. Beaudoin, J., J. Laliberté, and S. Labbé. 2006. Functional dissection of Ctr4 and
Ctr5 amino-terminal regions reveals motifs with redundant roles in
copper transport. Microbiology 152:209–222.

2. Chao, L. Y., M. A. Marletta, and J. Rine. 2006. Functional domains in the
three monothiol glutaredoxins in Saccharomyces cerevisiae. Biochem. Bio-
phys. Res. Commun. 336:604–610.

3. Chen, O. S., et al. 2008. Site-directed mutagenesis by overlap extension using the polymerase chain
reaction. Gene 418:33–37.

4. Chen, D., et al. 2004. Transcription of the yeast iron regulon does not
respond directly to iron but rather to iron-sulfur cluster biosynthesis. J. Biol.
Chem. 279:29513–29518.

5. Chung, W. H., K. D. Kim, Y. J. Cho, and J. H. Roe. 2004. Differential expression
and role of two dithiol glutaredoxins Grx1 and Grx2 in Schizo-
Saccharomyces pombe. Biochem. Biophys. Res. Commun. 312:922–929.

6. Chung, W. H., K. D. Kim, and J. H. Roe. 2005. Localization and function of
three monothiol glutaredoxins in Saccharomyces cerevisiae. Biochem. Bio-
phys. Res. Commun. 333:473–479.

7. Chao, L. Y., M. A. Marletta, and J. Rine. 2006. Functional domains in the
three monothiol glutaredoxins in Saccharomyces cerevisiae. Biochem. Bio-
phys. Res. Commun. 336:604–610.

8. Chen, D., et al. 2004. Transcription of the yeast iron regulon does not
respond directly to iron but rather to iron-sulfur cluster biosynthesis. J. Biol.
Chem. 279:29513–29518.

9. Chung, W. H., K. D. Kim, Y. J. Cho, and J. H. Roe. 2004. Differential expres-
sion and role of two dithiol glutaredoxins Grx1 and Grx2 in Schizo-
Saccharomyces pombe. Biochem. Biophys. Res. Commun. 312:922–929.

10. Chung, W. H., K. D. Kim, and J. H. Roe. 2005. Localization and function of
three monothiol glutaredoxins in Saccharomyces cerevisiae. Biochem. Bio-
phys. Res. Commun. 333:473–479.
43. Schreitl, M., et al. 2008. SreA-mediated iron regulation in *Aspergillus fumigatus*. Mol. Microbiol. 70:27–43.
44. Shakoury-Elizeh, M., et al. 2010. Metabolic response to iron deficiency in *Saccharomyces cerevisiae*. J. Biol. Chem. 285:14823–14833.
45. Ueta, R., N. Fujiwara, K. Iwai, and Y. Yamaguchi-Iwai. 2007. Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in *Saccharomyces cerevisiae*. Mol. Biol. Cell 18:2980–2990.
46. Ueta, R., A. Fukunaka, and Y. Yamaguchi-Iwai. 2003. Pse1p mediates the nuclear import of the iron-responsive transcription factor Aft1p in *Saccharomyces cerevisiae*. J. Biol. Chem. 278:50120–50127.
47. Vojtek, A. B., J. A. Cooper, and S. M. Hollenberg. 1997. Searching for interacting proteins with the two-hybrid system II, p. 29–42. In P. Bartel and S. Fields (ed.), *The yeast two-hybrid system: a practical approach*. Oxford University Press, New York, NY.
48. Yamaguchi-Iwai, Y., A. Dancis, and R. D. Klausner. 1995. AFT1: a mediator of iron regulated transcriptional control in *Saccharomyces cerevisiae*. EMBO J. 14:1231–1239.
49. Yamaguchi-Iwai, Y., R. Stearman, A. Dancis, and R. D. Klausner. 1996. Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J. 15:3377–3384.
50. Yamaguchi-Iwai, Y., R. Ueta, A. Fukunaka, and R. Sasaki. 2002. Subcellular localization of Aft1 transcription factor responds to iron status in *Saccharomyces cerevisiae*. J. Biol. Chem. 277:18914–18918.
51. Znaidi, S., B. Pelletier, Y. Mukai, and S. Labbé. 2004. The *Schizosaccharomyces pombe* corepressor Tup11 interacts with the iron-responsive transcription factor Fep1. J. Biol. Chem. 279:9462–9474.