The connections between the properties of associative rings that are Lie-solvable (Engel, n-Engel, locally finite, respectively) and the properties of their adjoint subgroups are investigated.

Keywords Engel ring · Solvable group · Lie nilpotent ring · Local ring · Derivation Group of unit

Mathematics Subject Classification 20C05 · 16S34 · 20F45 · 20F19 · 16W25

1 Introduction

Let \(R = (R, +, \cdot) \) be an associative ring (not necessary with unity). The set of all elements of \(R \) forms a semigroup with respect to the circle operation “\(\circ \)” defined by the rule \(a \circ b = a + b + a \cdot b \) for each \(a, b \in R \). The set

\[
R^\circ = \{ a \in R \mid a \circ b = 0 = b \circ a \text{ for some } b \in R \}
\]

is a group (so-called the adjoint group of \(R \)). If \(R \) has unity and \(U(R) \) is the unit group of \(R \), then

\[
R^\circ \ni a \mapsto 1 + a \in U(R)
\]

is a group isomorphism. If \(R = R^\circ \), then \(R \) is called radical.

We study properties of associative rings and their adjoint groups which are connected with solvability, Engel conditions and periodicity.

\[\text{Department of Applied Mathematics, Cracow University of Technology, Cracow, Poland} \]

\[\text{UAEU, Al Ain, United Arab Emirates} \]
We always assume that p is a prime number, \mathbb{N} is the set of positive integers, \mathbb{F} is a field, \mathbb{Z}_n is the ring of integers modulo n. Let $n, k \in \mathbb{N}$, $m \in \mathbb{Z}$ and let $x, g \in R$. We introduce the following notation:

\[
\mu_n(x) = \sum_{k=1}^{n} \binom{n}{k} x^k,
\]

\[
[x, g] = [x, g] = x \cdot g - g \cdot x, \quad [x, n+1 g] = [x, n g], g,
\]

$C_R(g) = \{x \in R \mid xg = gx\}$ is the centralizer of g in R,

$J(R)$ is the Jacobson radical of R,

$N(R)$ is the set of all nilpotent elements of R,

$g^{(m)}$ is the m-th power of g in R,

$F(R) = \{x \in R \mid x$ is of finite order in $R^+\}$ is the torsion part of the additive group R^+,

$\text{char } R$ is the characteristic of R,

$Z(R)$ is the center of R,

$\mathbb{P}(R)$ is the prime radical of R (i.e., the intersection of all prime ideals of R),

$N^*_R(R)$ is the nil radical of R (i.e., the sum of all nil ideals),

$N_f(R)$ is the sum of all nil right ideals of R (moreover, $N_f(R)$ is the sum of all nil left ideals of R and, therefore, $N_f(R)$ is a two-sided ideal of R),

$[A, B]$ is the additive subgroup of R^+ generated by all $[a, b]$, where $a \in A, b \in B$ and $A, B \subseteq R$,

$C(R)$ is the commutator ideal of R (i.e., an ideal of R generated by all $[g, x]$),

$D = \text{Der } R$ is the set of all derivations of R,

$\Delta(R)$ is the ideal of R generated by all $\delta(R)$, where $\emptyset \neq \Delta \subseteq \text{Der } R$ and $\delta \in \Delta$,

$\gamma_1 R = [R, R]$ and $\gamma_{n+1} R = [\gamma_n R, R]$,

$\delta_0 R = R$ and $\delta_{n+1} R = [\delta_n R, \delta_n R]$,

$\langle X \rangle_{rg}$ is a subring of R generated by $X \subseteq R$ (if $X = \emptyset$, then $\langle X \rangle_{rg} = 0$).

If $\Delta = (\Delta, +[-, -])$ is a Lie ring, then

\[
\gamma_1 \Delta := \Delta, \ldots, \gamma_{k+1} \Delta := [\gamma_k \Delta, \Delta], \ldots \quad (k \in \mathbb{N}).
\]

and $\Delta^{(1)} := \Delta, \ldots, \Delta^{(n+1)} := [\Delta^{(n)}, \Delta^{(n)}]$.

Let G be a group and let $\tau(G)$ be the set of all torsion elements of G.

Recall that a ring R is called:

- **nil** if each $x \in R$ is nilpotent, i.e., there exists $n = n(x) \in \mathbb{N}$ such that $x^n = 0$; if there exists $n \in \mathbb{N}$ such that $x^n = 0$ for any $x \in N(R)$, then R is of bounded index of nilpotency (of bounded index for short),

- **local** if $R \ni 1$ and $R/J(R)$ is a simple ring,

- **right Artinian** in case for each ascending chain

 \[
 I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots
 \]

 of right ideals I_j of R ($j = 1, 2, \ldots$), there exists $n \in \mathbb{N}$ such that $I_{n+1} = I_n$,

- **right Noetherian** in case for each descending chain

 \[
 I_1 \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq \cdots
 \]

 of right ideals I_j of R ($j \in \mathbb{N}$), there exists $n \in \mathbb{N}$ such that $I_{n+1} = I_n$,

- **semilocal** if $R/J(R)$ is a left Artinian ring,

- **right Goldie** if it has no infinite direct sum of left ideals and has the ascending chain condition on right annihilators,

- **Lie nilpotent** of class n if n is a minimal positive integer such that $\gamma_{n+1} R = 0$,

- **locally nilpotent** if each its finitely generated subring is nilpotent.
locally Lie nilpotent if each finitely generated subring of R is Lie nilpotent,

- Lie soluble of length at most n if $\delta_n R = 0$,
- Lie metabelian if $\delta_2 R = 0$,
- Lie centrally metabelian if $\delta_2 R \subseteq Z(R)$,
- Engel (or equivalently R satisfies the Engel condition) if, for each x, $y \in R$, there exists $n = n(x, y) \in \mathbb{N}$ such that $[x, n y] = 0$,
- n-Engel (or equivalently R satisfies the n-Engel condition or R is bounded Engel) if $[x, n y] = 0$ for any x, $y \in R$,
- semiprime if it has no nonzero nilpotent ideals,
- prime if the product of each two nonzero ideals is nonzero,
- simple if $R^2 \neq 0$ and 0, R are the only ideals of R,
- reduced if $N(R) = 0$,
- 2-primal if $\mathbb{P}(R) = N(R)$,
- right quasi-duo if each maximal right ideal is two-sided,
- of stable range 1 if $R \ni 1$ and, for each a, b, x, $y \in R$ with $ax + by = 1$, there exists $h \in R$ such that $a + bh \in U(R)$,
- abelian if its all idempotents are central,
- π-regular if, for each $a \in R$, there exists $b \in R$ such that $a^n = a^n ba^n$ for some $n \in \mathbb{N}$,
- right weakly π-regular if, for each $a \in R$, there exists $n = n(a) \in \mathbb{N}$ such that $a^n R = (a^n R)^2$.

We shall use freely the following well known facts: Right Artinian rings are π-regular and π-regular rings are weakly π-regular. An associative ring R is Lie nilpotent (Engel, respectively) if and only if R^L is nilpotent (Engel, respectively). Each (Lie or associative) locally nilpotent ring is Engel. Each Lie nilpotent ring of nilpotency class n is n-Engel. A radical ring R is Lie nilpotent if and only if its adjoint group R° is nilpotent [38].

In certain papers (see, for example, [5, 13, 58, 72] and others) by many authors was investigated properties of Lie soluble rings and its relations with groups. Each radical ring R with soluble adjoint group R° is Lie soluble [4, Theorem A]. As a consequence, if R is a semilocal ring with the soluble unit group $U(R)$, then R is Lie soluble.

Each 2-torsion-free Lie soluble ring R has a nilpotent ideal I such that R/I is Lie centre-by-metabelian (and so R° is soluble) (see [58, 72]). There exists a Lie center-metabelian (and so it is Lie soluble) total (2×2)-matrices ring $M_2(R)$ over an infinite commutative domain R of characteristic 2, but its adjoint group $M_2(R)^\circ$ is non-solvable. The group of units $U(R)$ of a Lie metabelian unitary ring R is metabelian (see [59] and [43, Theorem 1]).

Our result is the following.

Theorem 1 Let R be a ring. The following statements hold:

(i) if R is Lie nilpotent, then the adjoint group R° is nilpotent-by-abelian;

(ii) if R° is soluble-by-finite, then $[J(R), R] \subseteq \mathbb{P}(R)$ and $J(R)C(R) \subseteq \mathbb{P}(R)$;

(iii) if R is 2-torsion-free Lie soluble, then:

(a) $C(R) \subseteq \mathbb{P}(R) = N(R)$ (i.e., R is 2-primal and right quasi-duo), $N(R)$ is the locally nilpotent ideal of R and R° is (locally nilpotent)-by-abelian. Moreover, if R has unity, then it is abelian;

(b) if R° is torsion, then it is locally nilpotent;

(c) if $N(R)^+$ is torsion-free divisible, then R° is nilpotent-by-abelian.

In the local case we obtain the following.
Theorem 2 Let R be a local ring. The following statements hold:

(i) if the unit group $U(R)$ is solvable, then:

 (a) $C(R) \subseteq L(R) = N(R)$ is a locally nilpotent ideal of R, where $L(R)$ is the Levitzki radical of R;

 (b) R is Lie solvable;

 (ii) if R is a Lie solvable \mathbb{Q}-algebra, then R° is nilpotent-by-abelian.

Recall that the Levitzki radical $L(R)$ of R is its unique maximal locally nilpotent ideal.

An additive map $\delta : R \rightarrow R$ is called a derivation of R if $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in R$. The set D of all derivations of R is a Lie ring. Properties of a ring R which induced by the Engel condition of the derivation ring D gives the following.

Theorem 3 Let R be a ring. If $\emptyset \neq \Delta \subseteq D$, then

(i) if Δ is a nilpotent Lie ring and $R\Delta \subseteq \Delta$ modulo $C(R)$, then $\Delta(R)^m \subseteq C(R)$ (in particular, if D is Lie nilpotent, then $D(R)^m \subseteq C(R)$) for some $m \in \mathbb{N}$;

(ii) if Δ is a nilpotent Lie ring of the nilpotent length n and $R\Delta \subseteq \Delta$ modulo $C(R)$, then $d^n(R)d \subseteq C(R)$ for some $d \in \Delta^{(n-1)}$;

(iii) if Δ is an Engel Lie ring and $R\Delta \subseteq \Delta$ modulo $C(R)$, then, for each $a \in R$ and $\delta \in \Delta$, there exists $n = n(\delta, a) \in \mathbb{N}$ such that $\delta^n(a) \delta(R) \subseteq C(R)$.

If the unit group $U(R)$ of a semi-local ring R is m-Engel, then $U(R)$ is locally nilpotent and, furthermore, R is n-Engel provided that R is generated by $U(R)$ (bibliography in this way see in [6, 50]). Moreover, a local ring R is Lie nilpotent if and only if $U(R)$ is nilpotent [64] and that is this case the classes of nilpotency of both structures coincide. We prove the next.

Theorem 4 Let R be a n-Engel local ring. If $F(R) = 0$, then R is Lie nilpotent.

A ring R is called locally finite if each finite subset of R generates a finite semigroup multiplicatively. The class of locally finite rings is closed under formation of subrings, homomorphic images and direct sums (see [37, Proposition 2.1]). A finite subset of a locally finite ring generates a finite subring (not necessary with unity) [37, Theorem 2.2] and a locally finite ring is strongly π-regular [37, Lemma 2.4(ii)]. Recall that a ring R is called strongly π-regular if, for each $a \in R$, there exist $n = n(a) \in \mathbb{N}$ and $b \in R$ such that $a^n = a^{n+1}b$. A ring R is strongly π-regular [9] if and only if it satisfies the descending chain condition on principal right ideals of the form

$$aR \supseteq a^2R \supseteq \cdots \supseteq a^nR \supseteq \cdots \quad (\forall a \in R).$$

Local rings with the nil Jacobson radical and semilocal rings with the nil Jacobson radical of bounded index are strongly π-regular [37, Lemma 3.1 and Corollary 3.3]. The Jacobson radical $J(R)$ of a locally finite ring R is a locally nilpotent ring (in view of [2, Corollaries 1 and 4] and Lemma 16(ii)). We precise [37, Propositions 2.5, 2.10 and 2.11] in the following

Proposition 5 Let R be a 2-torsion-free locally finite ring with unity. The following statements hold:

(i) each prime ideal of R is maximal as a right ideal (and so R is π-regular);

(ii) R is an abelian exchange ring of stable range 1, $C(R) \subseteq P(R) = N(R) = J(R)$ and $R/J(R)$ is a subdirect product of locally finite fields (so each element of R is a sum of a unit and a central element).
Each absolute field (i.e., a field in which each nonzero element is a root of 1) is a locally finite ring. In a locally finite field \(\mathbb{F} \) every finite subset \(X \subseteq \mathbb{F} \) generates a finite subfield. Since the unit group \(U(\langle X \rangle_{rg}) \) is cyclic, we deduce that a locally finite field is absolute. A locally finite right Noetherian ring is right Artinian (see Proposition 22).

Rings with torsion adjoint groups were intensively studied in [2, 30–32, 44, 45, 60, 65] and others. It is well known [31, Theorem 8] that a division ring \(D \) with the torsion multiplicative group \(D^* \) is commutative. Moreover, a torsion normal subgroup of the multiplicative group \(U(D) \) of a skew field \(D \) is central [71, Lemma 10]. Each torsion subgroup of a linear group over a field is locally finite by classical results of W. Burnside and I. Schur. A torsion subgroup of the unit group \(U(R) \) of a unitary \(PI \)-ring is locally finite by results of C. Procesi and A.I. Shirshov. Each locally finite subgroup of the adjoint group \(R^\circ \) of a radical ring \(R \) is locally nilpotent [2, Corollary 1].

We have the following.

Proposition 6 Let \(R \) be a ring such that \(R^\circ \) is torsion and \(F(R) = 0 \). The following statements hold:

(i) \(R \) is commutative or without zero-divisors,

(ii) if \(R \) is prime with unity, then \(R \) is a domain such that \(J(R) = 0 \) and the unit group \(U(R) \) is finite of one of the following types:

(a) \(U(R) \) is a cyclic group of order 2 such that \(\langle U(R) \rangle_{rg} \cong \mathbb{Z} \);

(b) \(U(R) \) is a cyclic group of order 4 such that \(\langle U(R) \rangle_{rg} \cong \mathbb{Z}[i] \) is the ring of Gaussian integers;

(c) \(U(R) \) is a cyclic group of order 6 such that \(\langle U(R) \rangle_{rg} \cong \mathbb{Z}[\zeta_3] \) is the subring of integer elements of the Eisenstein field \(\mathbb{Q}[\sqrt{3}] \);

(d) \(U(R) \) is the quaternion group of order 8 such that \(\langle U(R) \rangle_{rg} \cong \mathbb{Z}[i, j] \) is the ring of quaternions with integer coefficients;

(e) \(U(R) = \langle a, b \mid a^3 = b^2 = (ab)^2 \rangle \) is the dicyclic group of order 12 such that \(\langle U(R) \rangle_{rg} \cong \mathbb{Z} \cdot 1 + \mathbb{Z} \cdot \alpha + \mathbb{Z} \cdot \beta + \mathbb{Z} \cdot \gamma \) is the ring with the following Cayley table of multiplication:

\[
\begin{array}{cccc}
\alpha & \beta & \gamma \\
\alpha & -1 & \gamma & -\beta \\
\beta & -\alpha - \gamma & -1 - \beta & \alpha \\
\gamma & 1 + \beta & -\alpha - \gamma & -1 \\
\end{array}
\]

(f) \(U(R) = \langle a, b \mid a^3 = b^3 = (ab)^2 = 1 \rangle \) is the binary tetrahedral group of order 24 such that \(\langle U(R) \rangle_{rg} \) is a subring of the skew field \(\mathbb{Q}(i, j) \) of quaternions which is generated by \(i, j \) and \(\frac{1+i+j+k}{2} \).

Any unexplained terminology is standard as in [25, 55].

2 Semiprime rings

The unit group \(U(R) \) of a unitary \(n \)-Engel ring \(R \) is \(m \)-Engel for some \(m = m(n) \in \mathbb{N} \) depending on \(n \) (see [54, Corollary 1] and [57, Corollary]). The adjoint group \(R^\circ \) of a radical ring \(R \) is \(n \)-Engel if and only if \(R \) is an \(m \)-Engel ring for some \(m = m(n) \in \mathbb{N} \) [4, Main Theorem]. Each \(n \)-Engel Lie algebra is locally nilpotent and each \(n \)-Engel Lie algebra over a field of characteristic zero is nilpotent [73–75].
If a group G contains a non-trivial p-element and the unit group $U(\mathbb{F}[G])$ of the group algebra $\mathbb{F}[G]$ is bounded Engel, then $\mathbb{F}[G]$ is bounded Engel [14] (see also [15–17]). An unitary associative bounded Engel algebra A over a field of prime characteristic has the bounded Engel group $U(A)$ [57], which is locally nilpotent [57, Remark]. In the case of zero characteristic, $U(A)$ is nilpotent and A is Lie nilpotent (see [40, 54]). Each bounded Engel subgroup of the adjoint group R° of a radical ring R is locally nilpotent [2, Corollary 1].

It is known that $N_r(R) \subseteq R^\circ$, $N^a(R) \subseteq J(R) \subseteq R^\circ$,
$$\mathbb{P}(R) \subseteq L(R) \subseteq N^a(R) \subseteq N_r(R) \subseteq N(R).$$
If R is an n-Engel ring, then its commutator ideal $C(R)$ is nil (for example, see [28, Application 2]) and, additionally, $C(R) \subseteq L(R)$ [4, Lemma 3.1].

We use the following.

Lemma 7 [47, Theorem 1] Let $L \neq 0$ be a left ideal of a prime ring R. Let D be the Lie ring of all derivations of R. Let $k, n \in \mathbb{N}$ and let $0 \neq \delta \in D$. If
$$[\delta(x^k), n x^k] = 0, \quad (\forall x \in L)$$
then R is commutative.

As a consequence, we have the next.

Corollary 8 Let R be an n-Engel ring. The following statements hold:

(i) $C(R) \subseteq \mathbb{P}(R) = N(R) \subseteq J(R)$ (i.e., R is 2-primal and right quasi-duo);

(ii) if $R \ni 1$, then R is abelian;

(iii) the adjoint group R° is (locally nilpotent)-by-abelian and $N(R)$ is a locally nilpotent ideal of R;

(iv) if $F(N(R)) = 0$, then R° is nilpotent-by-abelian.

Proof (i) The quotient ring R/P is n-Engel for each prime ideal P of R and each inner derivation δ of R/P satisfies (2.1), so we conclude that R/P is commutative by Lemma 7. That yields $C(R) \subseteq \mathbb{P}(R) = N(R)$ and $N(R)$ is locally nilpotent as a PI-ring. Thus, each maximal right ideal of R is two-sided.

(ii) If R has unity, then it is abelian by [69, 3.20].

(iii) The set $N(R)$ is an ideal in view of the part (i), $N(R)^\circ$ is m-Engel for some $m \in \mathbb{N}$ [4, Main Theorem] and $N(R)^\circ$ is locally nilpotent [4, Lemma 2.2]. Then $N(R)$ is locally nilpotent by [2, Lemma 3].

(iv) If $F(N(R)) = 0$, then $N(R)^\circ$ is torsion-free. Since $N(R)^\circ$ is m-Engel for some $m \in \mathbb{N}$ [4, Main Theorem], it is nilpotent [74].

Lemma 9 (See [22, Theorem 3]) Let R be a ring with $N_r(R) = 0$. If, for given $x, y \in R$ there exist positive integers $m = m(x, y), n = n(x, y)$ and $k = k(x, y)$ such that
$$[x^m, k y^n] = 0,$$
then R is commutative.

An unitary associative PI-algebra R with the Engel condition over a field of any characteristic has the nil commutator ideal by [53, Proposition 2.3]. Furthermore, each nil ring is Engel by [66, Proposition 4.2], but there exist nil rings R (which also are algebras over arbitrary fields) such that their adjoint groups R° are not Engel [61, Theorem 1.5]. Inasmuch as an Engel ring R satisfies (2.2), we obtain the following.
Corollary 10 Let R be an Engel ring. The following statements hold:

(i) \(C(R) \subseteq N_r(R) = N(R) \subseteq J(R)\), \(N(R)\) is an ideal of \(R\) (i.e., \(R\) is right (left) quasi-duo) and \(R^o\) is Engel-by-abelian;

(ii) if \(R\) is locally Lie nilpotent, then the adjoint group \(R^o\) is (locally nilpotent)-by-abelian;

(iii) if \(R\) has unity, then it is abelian.

Proof The part (i) follows from Lemma 9. Assume that \(R\) is locally Lie nilpotent. If \(x, y \in R\), then the subring \(\langle x, y \rangle_{rg}\) is Lie nilpotent and so there exist \(n = n(x, y) \in \mathbb{N}\) such that \([x, n y] = 0\). This means that \(R\) is Engel, the adjoint group \(N(R)^o\) is locally nilpotent in view of [3, Main Theorem] and so \(R^o\) is (locally nilpotent)-by-abelian. All maximal right ideals in unitary Engel ring \(R\) are two-sided so \(R\) is abelian by [69, 3.20].

Every domain of characteristic 0 that is Engel (as a Lie ring) is commutative [11, Theorem 4]. If the unit group \(U(D)\) is \(m\)-Engel, then a division ring \(D\) is commutative by [6, Lemma 4.1]. We obtain an affirmative answer on [24, Question 1.2].

Proposition 11 Each Engel division ring is commutative.

Proof The assertion holds from Corollary 10.

Our next result confirm a conjecture of [24, Hypothesis 1.1].

Proposition 12 An Engel adjoint group \(R^o\) of a right Artinian ring \(R\) is nilpotent.

Proof The Jacobson radical \(J(R)\) is a nilpotent ideal of \(R\), so \(J(R)^o\) is a nilpotent group. We can assume that \(J(R)^2 = 0\). Since \(R\) is a right Noetherian [25, Theorem 18.3, in Russian translation], \(J(R)\) is a finite direct sum of minimal ideals of \(R\) and \(J(R) \subseteq Z(R)\) by [24, Lemma 2.1]. Thus \(R^o\) is a nilpotent group by a well-known Ph. Hall’s Theorem.

3 Torsion subgroups

It is well known the following.

Lemma 13 Let \(R\) be a ring with 1. The following statements hold:

(i) \(U(R)\) is a torsion group if and only if the Jacobson radical \(J(R)\) is nil with the torsion additive group \(J(R)^+\) and \(U(R/J(R))\) is torsion [44, Lemma 1.1];

(ii) if \(F(R) = 0\) and \(U(R)\) is torsion, then \(J(R) = 0\) and \(R\) is reduced [44, Corollary 1.2];

(iii) if \(F(R) = 0\), then \(U(R)\) is torsion if and only if \(U(R)\) is locally finite ([44, Theorem 3.3] and [60, Proposition 2]).

We precise [70, Corollary 2.10] as the following.

Proposition 14 Let \(R\) be a ring with the additive \(p\)-group \(R^+\). The set \(N(R)\) is a subring of \(R\) if and only if \(N(R)^o\) is a normal Sylow \(p\)-subgroup of \(R^o\).

Proof Clearly, \(pR\) is an ideal of \(R\) such that \(pR \subseteq N(R)\). The groups \((R/pR)^o\) and \(R^o/(pR)^o\) are isomorphic, so we can assume that \(pR = 0\).

\((\Rightarrow)\) Suppose that \(N(R)\) is a subring. Then \(N(R)^o\) is a \(p\)-subgroup of \(R^o\) in view of [1, Lemma 2.4] and \(N(R)^o\) is contained in some maximal (Sylow) \(p\)-subgroup \(S\) of \(R^o\). If \(g \in S \setminus N(R)^o\), then

\[0 = g(p^n) = \mu_{p^n}(g) = g^{p^n}\]
for some $n \in \mathbb{N}$, so $g \in N(R)$, a contradiction. Hence $N(R)^\circ$ is a Sylow p-subgroup of R°. If S_1 is a maximal (Sylow) p-subgroup of R° and $h \in S_1$ has order p^m, then $0 = h^{p^m} = h^m$, so $h \in N(R)$ and $S_1 = S$. Consequently, S is normal in R°.

(\iff) Since $N(R)$ is closed under the circle operation “\circ”, $N(R)$ is a subring of R by [70, Theorem 2.1].

Let $Dz(R)$ be the set of all left and right zero divisors and $0 \in Dz(R)$.

Proof of Proposition 6

(i) Let R be not commutative and let $g \in N(R)$. If $g^2 = 0$, then

\[0 = g^{(n)} = \mu_n(g) = ng \]

for some $n \in \mathbb{N}$ and so $g = 0$. This means that $N(R) = 0$. It follows that if $ab = 0$ for some nonzero $a, b \in R$, then $(ba)^2 = 0$ what implies that $ba = 0$. Therefore $Dz(R)$ is commutative and, consequently, $Dz(R)$ is an ideal of R by [42, Theorem 5.5]. Moreover, $Dz(R)C(R) = 0$ [42, Lemma 5.4], so $C(R)^3 = 0$. Thus $C(R) = 0$, which is a contradiction.

(ii) Indeed, $J(R) = N(R) = 0$ by Lemma 13. If $ac = 0$ for some $a, c \in R$, then $(ca)^2 = c(ac)a = 0$ implies that $ca = 0$. As a consequence, $0 = a(cR) = cRa$ and $c = 0$ or $a = 0$ by the primeness of R. Hence R is a domain. The rest follows from [60, Proposition 4].

Proposition 15 Let R be an unitary domain of characteristic $p > 0$. If $U(R)$ is torsion, then it is a p'-group and the following statements hold:

(i) $R^\circ\setminus\{0\} \subseteq U(R)$ and $I \cap R^\circ = 0$ for any proper right (left) ideal I of R; in particular, $J(R) = 0$;

(ii) if S is a subring of R and $S \cap R^\circ \neq 0$, then $1 \in S$.

Proof Obviously, $N(R) = 0$. Since $g^{(p)} = \mu_p(g) = g^p$ for $g \in R^\circ$, we deduce that $g^{(p)} \neq 0$ and R° is a p'-group.

(i) Let I be a proper right (left) ideal of R. If $0 \neq b \in I \cap R^\circ$, then

\[0 = b^{(n)} = \mu_n(b) = b \left(n + \sum_{k=2}^{n} \binom{n}{k} b^{k-1}\right) \]

for some $n \in \mathbb{N}$. If the great common divisor $\text{GCD}(n, p) = 1$, then $n \in I$ and there exist $u, v \in \mathbb{Z}$ such that $r = (nr)u + (pr)v \in I$ for any $r \in R$. Consequently, $I = R$, a contradiction. This implies that $I \cap R^\circ = 0$.

Inasmuch as $x \in (Rx)^\circ \cap R^\circ$ ($x \in (xR)^\circ \cap R^\circ$, respectively) for each $x \in R^\circ$, we conclude that $xR = R = Rx$, so each nonzero quasi-invertible element is invertible in R.

(ii) If S is a nonzero subring of R and $0 \neq b \in S \cap R^\circ$, then, as above, $n \in S$ and consequently $1 \in S$.

According to Proposition 15, we can ask the following questions:

Q1. Does there exist a unitary infinite non-commutative simple ring R of characteristic $p > 0$ with the torsion unit group $U(R)$?

Q2. Does there exist a unitary (infinite) non-commutative ring R which is not a skew field, such that $R^\circ\setminus\{0\} \subseteq U(R)$?
4 Locally finite rings

We start with some properties of locally finite rings.

Lemma 16 If R is a locally finite ring with unity, then the following statements hold:

(i) R^+ is a torsion π-group for some set π of primes;
(ii) $U(R)$ is locally finite;
(iii) $1 + J(R)$ is a locally nilpotent π-group.

Proof (i) Obviously.
(ii) If X is a finite subset of $U(R)$, then $\langle X \rangle \subseteq \langle X \rangle^R$ and so the subgroup $\langle X \rangle$ is finite.
(iii) The unipotent subgroup $1 + J(R)$ of $U(R)$ is locally nilpotent [2, Corollary 1]. Since $J(R)$ is nil, $1 + J(R)$ is a π-group in view of [1, Lemma 2.4].

\[\square\]

Lemma 17 If P is a minimal prime ideal of a 2-torsion-free ring R, then $\text{char } R/P \neq 2$.

Proof Let $X = \{2^n a \mid a \in R \setminus P \text{ and } n \in \mathbb{N} \cup \{0\}\}$. Clearly, X is non-empty, $0 \notin X$ and X is an m-system (in the sense of [49]). Therefore, there exists a two-sided ideal M of R which is maximal to being disjoint from X (then M is prime by [49, Lemma 4] and $M \subseteq R \setminus X$). Since $R \setminus P \subseteq X$, we conclude that $M \subseteq P$ and consequently $M = X$. Hence $\text{char } R/P \neq 2$.

If for each $x \in R$ there exists $n \in \mathbb{N}$ with $x^n = x$, then R is commutative by a well-known theorem of N. Jacobson. A ring R is called periodic if, for each $x \in R$, there exist different positive integers m and n, such that $x^m = x^n$.

Lemma 18 Let R be a locally finite ring with unity. The following statements hold:

(i) R is periodic;
(ii) if R is 2-torsion-free semiprime, then it is commutative;
(iii) if R is prime of $\text{char } R \neq 2$, then it is a field;
(iv) if R is 2-torsion-free, then $C(R) \subseteq \mathbb{P}(R) = N(R) = J(R)$ (i.e., R is 2-primal and right quasi-duo).

Proof (i) For the proof, see [36, Corollary 2].
Let R be a 2-torsion-free ring.
(ii) It holds in view [12, Thereom 4.5] and the part (i).
(iii) It follows from the part (i) and the fact that any periodic domain is a field.
(iv) It is a consequence of parts (ii)–(iii) and Lemma 17.

\[\square\]

Proof of Proposition 5. (i) The quotient ring R/P is a field for each prime ideal P of R by [37, Corollary 2.6] and Lemma 18(ii). Thus the part (i) holds.
(ii) Since R is strongly π-regular and $J(R) \subseteq N(R)$ by [35, Theorem 1], we conclude that $J(R) = N(R)$ in view of Lemma 18(ii). Hence R is exchange of stable range 1 by [69, Theorem 5.23 and Proposition 5.6]. Moreover, R is abelian by [69, 3.20(3)], $R/J(R)$ is a subdirect product of fields and so each element of R is a sum of an invertible and a central elements by [69, Thereom 6.29].

Corollary 19 A locally finite 2-torsion-free ring R is right (left) Ore, i.e., there exists the classical right (left) quotient ring $Q(R)$.
Proof The assertion holds in view of Lemma 18(iii), Proposition 5(ii) and [41, Theorem 2.1 and Proposition 1.9(5)]. □

Since each 2-torsion-free locally finite ring is abelian π-regular, we provide the following.

Corollary 20 An abelian π-regular ring \(R \) satisfies the Köthe’s conjecture, i.e., the sum of two nil left ideals is always nil.

Proof The set \(N(R) \) of nilpotent elements is an ideal of \(R \) by [10, Theorem 2]. The rest follows from [41, Lemma 1.4(2) and Theorem 2.1(2)]. □

Lemma 21 [25, Lemma 18.34B] Let \(R \) be a right Noetherian ring. If \(R/P \) is an Artinian ring for each prime ideal \(P \) of \(R \), then \(R \) is a prime ring or \(R \) is a right Artinian ring.

Proposition 22 A ring \(R \) is locally finite right Noetherian if and only if it is a locally finite right Artinian.

Proof (⇐) Each right Artinian ring is right Noetherian by [25, Theorem 18.13, in Russian translation].

(⇒) Since \(R/P \) is a field for each prime ideal \(P \) of \(R \) (see Lemma 18(iii)), we deduce that \(R \) is right Artinian in view of Lemmas 21 and 18(iii). □

Proposition 23 Let \(R \) be a semilocal ring. The following conditions are equivalent:

(i) \(R \) is a locally finite ring;
(ii) the unit group \(U(R) \) is locally finite;
(iii) \(R^+ \) is a torsion group, \(J(R) \) is a locally nilpotent ideal and \(R/J(R) = \bigoplus_{i=1}^{n} M_{m_i}(D_i) \) is a finite direct sum of rings of \(m_i \times m_i \) matrices over locally finite fields \(D_i \) with \(i = 1, \ldots, n \).

Proof (i) ⇒ (ii) It follows from Lemma 16(ii).

(ii) ⇒ (i) It is clear that \(R/J(R) \) is a finite direct ring sum and each direct summand is a locally finite field or a finite total matrix ring. The unipotent group \(1 + J(R) \) is locally nilpotent group. That yields the subring \((J(R)^0)_{rg} = J(R) \) is locally nilpotent by [2, Lemma 3].

Let \(X \) be a finite subset of \(R \). There exists an additive group isomorphism

\[
(\langle X \rangle_{rg} + J(R))/J(R) \cong \langle X \rangle_{rg}/(\langle X \rangle_{rg} \cap J(R))
\]

and

\[
(\langle X \rangle_{rg} + J(R))/J(R) = \langle X + J(R) \rangle_{rg}
\]

is a finite subring of \(R/J(R) \). The subring \(B := \langle X \rangle_{rg} \cap J(R) \) is finitely generated by [48, Theorem 2]. Clearly, it is nilpotent and so \(B/B^2 \) is a finitely generated \(\mathbb{Z}_n \)-module for some \(n \in \mathbb{N} \). It implies that the subring \(B^2 \) is finitely generated by [48, Theorem 2]. Using induction on the nilpotency index of \(B \), we obtain that \(B \) (and consequently \(\langle X \rangle_{rg} \)) is finite.

(ii) ⇒ (iii) For each \(D_i \) \((i = 1, \ldots, n)\) there exists a chain \(F_1 \subseteq F_2 \subseteq \cdots \) such that \(D_i = \bigcup_j F_j \) and each \(F_j \) is a finite subfield of the field \(F_{j+1} \). Thus \((R/J(R))^0 \) is locally finite. Moreover, the adjoint group \(J(R)^0 \) is locally finite, \((R/J(R))^0 \cong R^0/J(R)^0 \) and so \(R^0 \) is locally finite.

(iii) ⇒ (ii) It is obvious. □

Corollary 24 A locally finite semilocal ring is semiperfect.
5 Properties induced by derivations

Proposition 25. Let R be a commutative ring with unity. If R has a derivation δ with the finite kernel $\text{Ker} \, \delta$, then R is a locally finite ring. The prime radical $\mathcal{P}(R)$ has finite index in R and $\delta(R) \subseteq \mathcal{P}(R)$.

Proof. Assume that R is infinite. Obviously, $\delta(1) = 0$ and $\text{Ker} \, \delta \neq 0$. This implies that $nR = 0$ for some $n \in \mathbb{N}$ and R is a finite direct ring sum of p-components F_p, where the prime p divides n and

$$F_p = \{ r \in R \mid p^kr = 0 \text{ for some } k = k(r) \in \mathbb{N} \cup \{0\} \}.$$

Consequently, without loss of generality, we can assume that $n = p^s$ for some $s \in \mathbb{N}$. Since

$$\varphi : R/pR \ni a + pR \mapsto p^k a + p^{k+1}R \in p^k R/p^{k+1}R$$

is an additive group isomorphism, $p^k R/p^{k+1}R$ is infinite for any $k = 0, \ldots, s - 1$. If $\delta(R) \subseteq pR$, then $\delta(p^{s-1}R) = 0$ and so $p^{s-1}R \subseteq \text{Ker} \, \delta$, a contradiction. Hence $\delta(R) \not\subseteq pR$.

Inasmuch as $\delta(pR) \subseteq pR$, the rule

$$\Delta : R/pR \ni a + pR \mapsto \delta(a) + pR \in R/pR$$

determines a nonzero derivation Δ of R/pR and $\text{Ker} \, \Delta$ is finite. Then $\Delta(\beta p) = 0$ for any $\beta \in R/pR$ and so the set $\{\alpha_p \mid \alpha \in R/pR\}$ is finite. If $\alpha, \beta \in R/pR$ are distinct elements and $\alpha p - \beta p = 0$, then $\alpha - \beta \in \mathcal{P}(R/pR)$. This implies that the index $|R/pR : \mathcal{P}(R/pR)| < \infty$.

However $pR \subseteq \mathcal{P}(R)$ and so $|R : \mathcal{P}(R)| < \infty$.

Since $\mathcal{P}(R)$ is nil with the torsion additive group $\mathcal{P}(R)^+$, we conclude that the adjoint group $\mathcal{P}(R)^+$ is locally finite. Thus R is a semiperfect ring with the torsion unit group $U(R)$, so R is locally finite by Proposition 23.

Proof of Theorem 3. (i) Assume that R is commutative, $d \in \Delta$, $\delta \in Z(\Delta)$ and $a \in R$.

Then

$$0 = [\delta, ad] = \delta(a)d + a[\delta, d] = \delta(a)d. \quad (5.1)$$

The ideal of R generated by the set $\{\mu(R) \mid \mu \in Z(\Delta)\}$ we denote by $\Delta_1(R)$. Then $\Delta_1(R)^2 = 0$ in view of (5.1). Since $d(\delta(R)) = \delta(d(R)) \subseteq \delta(R)$, we conclude that $\Delta_1(R)$ is a Δ-ideal of R and so

$$\overline{\Delta} : R/\Delta_1(R) \ni a + \Delta_1(R) \mapsto d(a) + \Delta_1(R) \in R/\Delta_1(R) \quad (5.2)$$

is a derivation of $B := R/\Delta_1(R)$. Then $\overline{\Delta} = \{\overline{\delta} \mid d \in \Delta\}$ is a subring of the Lie ring Der B and a left B-module. As before, $\Delta_1(B)$ (and its inverse image in R) is nilpotent, where $\Delta_1 := \{\overline{\delta} \mid d \in \Delta_2\}$ and Δ_2 is an inverse image of $Z(\Delta/Z(\Delta))$ in Δ. Thus $\Delta(R)$ is nilpotent according to the induction on nilpotent length of Δ.

Now, assume that R is not necessary commutative. If $\delta \in \Delta$, then $\delta(C(R)) \subseteq C(R)$ and the rule

$$\overline{\delta} : R/C(R) \ni x + C(R) \mapsto \delta(x) + C(R) \in R/C(R)$$

determines a derivation of $R/C(R)$. Since $\overline{\Delta} = \{\overline{\delta} \mid \delta \in \Delta\}$ is a left $(R/C(R))$-module, $\overline{\delta}(R/C(R))^m = 0$ for some $m \in \mathbb{N}$ and consequently $\Delta(R)^m \subseteq C(R)$.

Springer
(ii) Suppose that \(\gamma_{n+1}(\Delta) = 0 \) and \(R \) is commutative. If \(d \in \Delta^{(n-1)}, a \in R \), then
\[
\begin{align*}
 d(a)d &= [d, ad] \in \gamma_2(\Delta), \\
 d^2(a)d &= [d, d(a)d] \in \gamma_3(\Delta), \\
 &\vdots \\
 d^{n-1}(a)d &= [d, d^{n-2}(a)d] \in \gamma_n(\Delta), \\
 d^n(a)d &= [d, d^{n-1}(a)d] \in \gamma_{n+1}(\Delta) = 0.
\end{align*}
\]
This implies that \(d^n(R)d = 0 \). Since \(d(C(R)) \subseteq C(R) \), the result can be obtained similarly to that of the part (i).

(iii) Let \(\delta \in \Delta \). If \(R \) is commutative, then \(a\delta \in \Delta \) for any \(a \in R \) and so
\[
(-1)^n\delta^n(a)\delta = (-1)^n[a\delta, \underbrace{\delta, \ldots, \delta}_{n \text{ times}}] = 0
\]
for some \(n \in \mathbb{N} \). Hence \(\delta^n(a)\delta = 0 \).

Now, assume that \(R \) is not necessarily commutative. Then \(\delta(C(R)) \subseteq C(R) \) and, by the same argument as in the part (i), there exist \(n = n(\delta, a) \in \mathbb{N} \) such that \(\delta^n(a)\delta(R) \subseteq C(R) \) and the assertion holds.

\[\square\]

If \(x \in R \), then the rule \(\partial_x : R \ni a \mapsto (ax - xa) \in R \) determines a derivation \(\partial_x \) of \(R \); this derivation is called an inner derivation of \(R \) (induced by \(x \)). The set \(\text{IDer} R \) of all inner derivations of \(R \) is an ideal of the Lie ring \(D \).

Proposition 26 Let \(R \) be a ring. The following statements hold:

(i) \(R \) is Lie solvable (Lie nilpotent, \(n \)-Engel, Engel, locally Lie nilpotent, locally Lie solvable, respectively) if and only if the Lie ring \(\text{IDer} R \) is solvable (nilpotent, \(n \)-Engel, Engel, locally nilpotent, locally solvable, respectively);

(ii) if \(D \) is solvable (nilpotent, \(n \)-Engel, Engel, locally nilpotent, locally solvable, respectively), then \(R \) is Lie solvable (Lie nilpotent, \(n \)-Engel, Engel, locally Lie nilpotent, locally Lie solvable, respectively);

(iii) if \(R \) is 2-torsion-free semiprime and \(D \) (\(\text{IDer} R \), respectively) is solvable, then \(D = 0 \) (\(R \) is commutative, respectively);

(iv) if \(R \) is with unity of characteristic 0 (\(\text{char}(R/\mathbb{P}(R)) = 0 \), respectively) and \(D \) is solvable, then \(C(R) \subseteq D(R) \subseteq \mathbb{P}(R) \);

(v) if \(R \) consists from countable many elements and \(D \) (\(\text{IDer} R \), respectively) is Lie solvable, then \(D = 0 \) (\(R \) is commutative, respectively);

(vi) if \(R \) is commutative and \(D \) is locally nilpotent, then, for each \(a \in R \) and \(\delta \in D \) there exists \(n = n(a, \delta) \in \mathbb{N} \) such that \(\delta^n(a)\delta = 0 \). Moreover, if \(R \) is reduced, then \(\delta^n(a) = 0 \);

(vii) if \(R \) is a semiprime ring with the \(n \)-Engel derivation ring \(D \) (\(\text{IDer} R \), respectively), then \(R \) is commutative and, for each \(\delta \in D \) (\(\delta \in \text{IDer} R \), respectively), there exists \(n = n(\delta) \in \mathbb{N} \) such that \(\delta^n(R) = 0 \). Moreover, if \(F(R) = 0 \), then \(D = 0 \).

Proof (i) Since \([\partial_{x_1}, \partial_{x_2}, \ldots, \partial_{x_n}] = \partial_{[x_1, x_2, \ldots, x_n]} \) for any \(x_1, x_2, \ldots, x_n \in R \) and
\[
\text{IDer} \ni \partial_x \mapsto x + Z(R) \in R^L/Z(R)
\]
is a Lie ring isomorphism, the result is obvious.

(ii) It is immediately.
(iii) If $A \subseteq R$, then by Δ_A we denote the set $\{\partial_a \mid a \in A\}$. If A is a Lie ideal of R, then Δ_A is an ideal of $\text{IDer} R$. Assume that D is solvable of length $n > 1$. If $D^{(n-1)} \cap \text{IDer} R \neq 0$, then

$$I_{D^{(n-1)}} := \{a \in R \mid \partial_a \in D^{(n-1)} \cap \text{IDer} R\}$$

is a Lie ideal of R and

$$0 = [D^{(n-1)}, D^{(n-1)}] \supseteq [\Delta_{I_{D^{(n-1)}}}, \Delta_{I_{D^{(n-1)}}}] = \Delta_{[I_{D^{(n-1)}}, I_{D^{(n-1)}}]}$$

what gives that $[I_{D^{(n-1)}}, I_{D^{(n-1)}}] \subseteq Z(R)$. Thus $I_{D^{(n-1)}} \subseteq Z(R)$ by [30, Lemma 1] and consequently $\Delta_{I_{D^{(n-1)}}} = 0$, a contradiction. Hence $D^{(n-1)} \cap \text{IDer} R = 0$. This implies that R is commutative, $D(R)^m = 0$ for some $m \in \mathbb{N}$ by Theorem 3(i) and $D(R) = 0$ by the semiprimeness of R. We conclude the result.

(iv) Each minimal prime ideal of R is closed with respect to each $\delta \in D$ by [26, Proposition 1.3]. The map

$$\overline{\delta} : R/P \ni a + P \mapsto \delta(a) + P \in R/P \quad (5.3)$$

is a derivation of a prime ring R/P of characteristic $\neq 2$ by Lemma 17 and $\text{Der}(R/P) = 0$ by the part (iii). Thus $C(R) \subseteq D(R) \subseteq \mathbb{P}(R)$ ($C(R) \subseteq \mathbb{P}(R)$, respectively).

(v) There exists a collection of prime ideals P_{β} ($\beta \in \Gamma$) by [21, Theorem 2.1] such that

$$\bigcap_{\beta \in \Gamma} P_{\beta} = 0 \quad \text{and} \quad \delta(P_{\beta}) \subseteq P_{\beta} \quad (\forall \delta \in D \text{ and/or } \forall \delta \in \text{IDer} R, \text{ respectively}).$$

Consequently, $\overline{\delta}$ defined by the rule (5.3) is a derivation of R/P for any $P = P_{\beta}$ and $\text{Der}(R/P) = 0$ by the part (iii). Hence

$$C(R) \subseteq D(R) \subseteq \bigcap_{\beta \in \Gamma} P_{\beta} = 0$$

and the assertion holds.

(vi) The subring of D generated by derivations d and ad ($a \in R$ and $d \in D$) is nilpotent and the result holds by the same argument as in the proof of Theorem 3(ii).

(vii) Since R is n-Engel it is commutative by Corollary 8. If $\delta \in D$ ($\delta \in \text{IDer} R$, respectively), then by the same argument, as in the proof of Theorem 3(ii), we obtain that $\delta^n(R) = 0$ for some $n \in \mathbb{N}$.

Let $F(R) = 0$. We prove that $\delta = 0$ using induction by n. If $\delta^2(R) = 0$, then $\delta = 0$ by [19, Corollary 1]. Let $n > 2$ and suppose that $\delta^{n-1}(R) = 0$ implies that $\delta = 0$. Assuming $\delta^n(R) = 0$ we see that

$$0 = \delta^n(a\delta^{n-2}(b)) = (n-1)\delta^{n-1}(a)\delta^{n-1}(b) \quad (\forall a, b \in R)$$

what implies that $(\delta^{n-1}(R))^2 = 0$ and hence $\delta^{n-1}(R) = 0$ by the semiprimeness of R. Thus $\delta = 0$. \hfill \square

Recall that the commutator ideal $C(R)$ of a 2-torsion-free Lie solvable ring R is nil (see [58, Theorem 2.1] and [72, Theorem]). Proposition 26(v) precise this result in the countable case.

Corollary 27 Let R be an algebra over a field \mathbb{F} of characteristic 0. If the Lie \mathbb{F}-algebra D ($\text{IDer} R$, respectively) is Engel, then R is Lie nilpotent.
Proof Since $\text{IDer } R$ is an Engel Lie algebra over $Z(R)$ and $\text{IDer } R$ and $R/Z(R)$ are isomorphic as Lie algebras, R is Lie Engel and so it is nilpotent by [52, Theorem B]. □

Note that examples of the rings derivations $\text{Der } R$ of certain rings R can be found in [8].

6 Solvability

Lemma 28 Each Lie solvable nil ring R is locally nilpotent. Moreover, if R is a \mathbb{Q}-algebra, then it is Lie nilpotent.

Proof The ring R contains a nilpotent ideal I such that R/I satisfies the identity

$$[x_1, [x_2, x_3], [x_4, x_5]] = 0$$

(see [58, Theorem 2.1] and [72, Theorem]). This implies that every finitely generated subring of R/I is nilpotent (see e.g. [56, Theorems 6.3.3 and 6.3.39]), so R is a locally nilpotent ring. If R is a \mathbb{Q}-algebra, then R is locally nilpotent as an algebra and, by [52, Theorem B], it is Lie nilpotent. □

Proof of Theorem 1. (i) The quotient ring $R/\mathbb{P}(R)$ is semiprime and so its adjoint group $(R/\mathbb{P}(R))^\circ$ is abelian by Corollary 8. Moreover, $(R/\mathbb{P}(R))^0 \cong R^0/\mathbb{P}(R)^0$ and $\mathbb{P}(R)^0$ is nilpotent by [38].

(ii) Let P be a prime ideal of R. If $J(R/P)$ is nonzero, then $[J(R), R] \subseteq P$ in view of [20, Theorem A]. This implies that $[J(R), R] \subseteq \mathbb{P}(R)$. Since $R/\mathbb{P}(R)$ is semiprime, then $J(R) \subseteq \mathbb{P}(R)$ or $J(R/\mathbb{P}(R))$ is commutative in view of [20, Theorem B]. From this it follows that $J(R/\mathbb{P}(R))^2 \cdot C(R/\mathbb{P}(R)) = 0$ and consequently $J(R/\mathbb{P}(R)) \cdot C(R/\mathbb{P}(R)) = 0$ what gives that

$$J(R) \cdot C(R) \subseteq \mathbb{P}(R).$$

(iii) Let R be a 2-torsion-free Lie solvable ring.

(a) First, assume that R is prime of solvable length $n > 1$. Since $[R^{(n-1)}, R^{(n-1)}] = 0$, we conclude that $R^{(n-1)} \subseteq Z(R)$ by [30, Lemma 1]. But then $[R^{(n-2)}, R^{(n-2)}] \subseteq R^{(n-1)}$ and we obtain a contradiction in view of [30, Lemma 1]. Hence R is commutative. This implies that $C(R) \subseteq \mathbb{P}(R) = N(R)$ in general case. If R has unity, then R is abelian in view of [69, 3.20] and $N(R)$ is a locally nilpotent ring by Lemma 28.

(b) If R^0 is torsion, then it is locally finite (and so it locally nilpotent by [2, Corollary 2]).

(c) If $N(R)^+$ is torsion-free divisible, then $N(R)$ is a locally nilpotent \mathbb{Q}-algebra and so it satisfies the Engel condition. The algebra $N(R)$ is Lie nilpotent by [52, Theorem B] and $N(R)^0$ is nilpotent by [38], as required. □

Corollary 29 Let R be a right Goldie ring (or R satisfies the ascending chain condition on both left and right annihilators) with unity. If R satisfies one of the conditions:

(i) R is Engel as a Lie ring;

(ii) R is 2-torsion-free locally finite,

then R is Lie solvable and the unit group $U(R)$ is nilpotent-by-abelian.

Proof We have that $C(R) \subseteq N(R)$ by Corollary 10 (by Lemma 18, respectively), and so $N(R)$ is an ideal of R. Since $N(R)$ is nilpotent by [46, Theorem 1] (by [33, Theorem 1], respectively) and $R/N(R)$ is commutative, R is Lie solvable and the unit group $U(R)$ is nilpotent-by-abelian. □
Remark 30 If R is a right Goldie n-Engel ring of prime characteristic $p > 0$ and $n < p$, then it is Lie nilpotent in view of [34].

7 Local rings

Proof of Theorem 2. (i) The group unit $U(R/J(R))$ is solvable what gives that $[R, R] \subseteq J(R)$ by [71, Theorem 2]. Since $J(R)^{o}$ is solvable, we deduce that $J(R)$ (and consequently R) is Lie solvable by [5, Theorem A]. Moreover, the Levitzki radical $L(R)$ of R is a PI-ring by [5, Theorem B(2)] and so it is locally nilpotent. If $B = R/L(R)$, then $J(B)$ is commutative in view of [5, Theorem B] what implies that $C(B)^{3} = 0$ and consequently B is commutative. Hence $C(R) \subseteq L = N(R)$.

(ii) Since $N(R)$ is a locally nilpotent ideal of R, the \mathbb{Q}-algebra $N(R)$ is Lie nilpotent by [52, Theorem B] and so the adjoint group $N(R)^{o}$ is nilpotent by [38].

Proposition 31 Let R be a local ring. The following statements are equivalent:

(i) the unit group $U(R)$ is torsion;
(ii) $J(R)$ is nil and $R/J(R)$ is an absolute field of characteristic $p > 0$;
(iii) $U(R) \cong (1 + J(R)) \rtimes U(R/J(R))$, where $1 + J(R)$ is a p-group and $U(R/J(R))$ is a p^{k}-group.

Therefore, a local ring R with the torsion unit group $U(R)$ is a locally finite ring.

Proof (i) \Rightarrow (ii) Since $R/J(R)$ is a skew field and the unit group $U(R/J(R))$ is torsion, we deduce that $J(R)$ is commutative and $p(R/J(R)) = 0$ for some prime p. Hence $pR \subseteq J(R)$ and $p^{k}R = 0$ for some $k \in \mathbb{N}$ in view of Lemma 13(i). Since $U(R/J(R))$ is torsion, $R/J(R)$ is an absolute field.

(ii) \Rightarrow (iii) and (iii) \Rightarrow (i) are obviously. □

Lemma 32 Let R be a local ring which is Engel as a Lie ring. If $F(R) = 0$, then either R is a Lie nilpotent \mathbb{Q}-algebra or $pR \subseteq J(R)$ for some prime p, $C(R) \subseteq N_{r}(R) = N(R)$ and $N(R)^{o}$ is a torsion-free group. Moreover, if in the last case, R is n-Engel, then it is Lie solvable and $N(R)^{o}$ is nilpotent (the R^{o} is nilpotent-by-abelian and R is Lie solvable).

Proof If R^{+} is a divisible group, then R is a \mathbb{Q}-algebra and so it is Lie nilpotent by [52, Theorem B]. Therefore, we assume in the next that pR is proper in R for some prime p. Then $pR \subseteq J(R)$ and $C(R) \subseteq N_{r}(R) = N(R)$ by Corollary 10. Consequently, $N(R)$ is an ideal of R and the adjoint group $N(R)^{o}$ is torsion-free by [1, Lemma 2.4].

Assume that R is n-Engel. Since $N(R)^{o}$ is m-Engel for some $m \in \mathbb{N}$ by [4, Main Theorem], it is nilpotent by the theorem of Zelmanov [74]. Then $N(R)$ is Lie nilpotent by [38] and consequently R is Lie solvable. □

Proof of Theorem 4. In view of Lemma 32, we assume that $pR \subseteq J(R)$ for some prime p. Since $C(R) \subseteq N(R) \subseteq J(R)$ and $(J(R)/C(R))^{o} \cong J(R)^{o}/C(R)^{o}$ is abelian, we deduce that $N(R)$ is an ideal of R and $J(R)^{o}$ is a solvable group. Moreover, $J(R)^{o}$ is m-Engel group for some $m \in \mathbb{N}$ depending on n by [4, Main Theorem]. Then the adjoint group $J(R)^{o}$ is locally nilpotent by [27, Theorem 1].

If $0 \neq a \in \tau(J(R)^{o})$, then

$$0 = a^{(n)} = a \left(n + \sum_{k=2}^{n} \binom{n}{k} a^{k-1} \right) \quad \text{(for some } n \in \mathbb{N} \text{)}.$$
Hence $n \in J(R)$. Obviously, the order of each element of $U(R/J(R))$ is relatively prime with p and, thus, $1 \in J(R)$, a contradiction. Hence $\tau(J(R)^0) = 0$ and, by theorem of Zelmanov [74], $J(R)^0$ is nilpotent as a locally nilpotent m-Engel torsion-free group. Since $pR \subseteq J(R)$, $\gamma_{n+1}(pR) = 0$ for some integer $n \geq 0$ and

$$\gamma_1(pR) = pR, \quad \gamma_2(pR) = [pR, pR] = p^2[R, R] = p^2\gamma_2(R),$$

$$\vdots$$

$$\gamma_{n+1}(pR) = [\gamma_n(pR), \gamma_n(pR)] = p^{n+1}[\gamma_n(R), \gamma_n(R)] = p^{n+1}\gamma_{n+1}(R).$$

Thus we conclude that $\gamma_{n+1}(R) = 0$, i.e., R is Lie nilpotent.

Lemma 33 Let R be a local ring with the nil Jacobson radical $J(R)$. If R is Engel and $\text{char} R/J(R) = 0$, then R is Lie nilpotent.

Proof If $0 \neq a \in R$ and $pa = 0$ for some prime p, then $a \cdot pR = 0$ and therefore $pR \subseteq J(R)$, a contradiction. Hence $F(R) = 0$. If $qR \neq R$ for some prime q, then $qR \subseteq J(R)$ and, for any $x \in R$, there exists $k = k(x) \in \mathbb{N}$ such that $q^kx^k = 0$, a contradiction. Hence R^+ is a divisible group. As a consequence, R is an algebra over the rational numbers field \mathbb{Q} and R is Lie nilpotent by [52, Theorem B]. \qed

8 Corollaries

There are large number of articles which extend the Cohen’s Theorem [23] and Kaplansky Theorem [39, Theorem 12.3] (see e.g. [51, 68] and others). We also present the following generalizations of these theorems.

Corollary 34 Let R be a ring with unity. If the commutator ideal $C(R)$ is nil (in particular, R is Engel), then the following statements hold:

(i) if prime ideals of R are finitely generated as right ideals, then the quotient ring $R/C(R)$ is a commutative Noetherian ring;

(ii) if R is a right Noetherian ring and each its maximal right ideal is principal, then $R/C(R)$ is a commutative principal ideal ring;

(iii) if each prime ideal of R is principal as a right ideal, then $R/C(R)$ is a commutative principal ideal ring;

(iv) if R is right Noetherian and $R/P(R)$ is finite, then $R/C(R)$ is finite.

Proof (i)–(iii) Since $1 + C(R)$ is an ideal of R for its any right ideal I, the result follows from Cohen’s Theorem [23] and Kaplansky Theorem [39, Theorem 12.3].

(iv) Without loss of generality, assume that $P(R) \neq 0$. Obviously, $C(R)$ is nilpotent by [46, Theorem 1] and Corollary 8 and $C(R) \subseteq P(R) \subseteq P$ for any nonzero prime ideal P of R. Finally, R is Artinian by Lemma 21 and so $R/C(R)$ is finite by [7, Lemma 22]. \qed

Remark 35 If R is a Lie nilpotent algebra over a field of characteristic 0 and $I = I^2$ is a f.g. ideal (as a one-sided ideal) of R, then $I = eR$ for some central idempotent $e \in R$.

In fact, this follows from [67, Theorem 1] and Corollary 8(ii).

Proposition 36 Let R be a nil ring. The following statements hold:
(i) if \(R \) is \(n \)-Engel as a Lie ring and \(F(R) = 0 \), then \(R^o \) is nilpotent (and so \(R \) is Lie nilpotent);
(ii) if \(R \) is \(n \)-Engel of bounded index, then \(R/F(R) \) is Lie nilpotent (and so the adjoint group \(R^o \) is locally nilpotent and torsion-by-(torsion-free nilpotent)).

Proof
(i) The adjoint group \(R^o \) is \(m \)-Engel for some \(m \in \mathbb{N} \) by [4, Main Theorem] and, therefore, it is locally nilpotent by [4, Lemma 2.2]. As a consequence, \(R^o \) is nilpotent by [74] (see e.g. [2, Corollary 1]) and \(R \) is Lie nilpotent by [38].

(ii) In view of the result of Levitzky [29, Lemma 1.1], the ring \(R \) is locally nilpotent and so \(R^o \) is a locally nilpotent group. If \(F(R) = 0 \), then \(R^o \) is nilpotent by [74] and hence \(R \) is Lie nilpotent by [38].

\[\blacksquare \]

Proposition 37 Let \(R \) be a ring such that \(Dz(R) \) is commutative. The following holds:

(i) either \(Dz(R)^2 \neq 0 \) and \(R \) is Lie metabelian (then the adjoint group \(R^o \) is metabelian) or \(Dz(R)^2 = 0 \) (i.e., \(R \) is 2-primal); in the last case \(R \) is commutative or \(Dz(R) \) is completely prime ideal of \(R \);
(ii) if \(R \) is Engel (2-torsion-free Lie solvable, 2-torsion-free locally finite, respectively) with unity, then it is Lie metabelian and \(C(R)^3 = 0 \).

Proof
Assume that \(R \) is non-commutative.

(i) The set \(N(R) \) is an ideal of \(R \) by [42, Theorem 5.7]. If \(Dz(R)^2 \neq 0 \), then \(R \) is Lie metabelian by [42, Theorem 5.7].

Now, assume that \(Dz(R)^2 = 0 \). Thus \(Dz(R) = N(R) \) and \(ab \in Dz(R) \) implies that \(a \in Dz(R) \) or \(b \in Dz(R) \) for each \(a, b \in R \) what means that \(Dz(R) \) is completely prime.

(ii) If \(Dz(R)^2 = 0 \), then \(N(R)^2 = 0 \) and therefore \(R \) is Lie metabelian in view of Corollary 10 (Theorem 1(iii), Lemma 18(iv), respectively).

From [42, Theorem 5.7] it follows that \(R \) is Lie metabelian also in the case \(Dz(R)^2 \neq 0 \).

If \(D(R)^2 \neq 0 \), then \(D(R)^2 C(R) = 0 \) by [42, Lemma 5.4] and so \(C(R)^3 = 0 \).

Finally, \(Dz(R)^2 C(R) = 0 \) by [42, Lemma 5.4] and so \(C(R)^3 = 0 \).

\[\blacksquare \]

Remark 38 Let \(R \) be a ring such that the set \(N(R) \) is commutative. If \(R \) is an Engel (2-torsion-free Lie solvable, 2-torsion-free locally finite, respectively), then \(N(R) \) is an ideal of \(R \), \(C(R) \subseteq N(R) \) and \(N(R)^2 \cdot C(R) = 0 \).

In fact, \(C(R) \subseteq N(R) \) by Corollary 10 (by Theorem 1, Lemma 18(iv), respectively) what gives that \(N(R) \) is an ideal of \(R \) and the result follows.

Corollary 39 Let \(R \) be a ring with unity. The following statements hold:

(i) if \(R \) is right Noetherian \(\pi \)-regular and satisfies the \(n \)-Engel condition (is 2-torsion-free Lie solvable, respectively), then it is a field or right Artinian;
(ii) if \(R \) is an Engel ring of bounded index and \(J(R) \) is nil, then
\[
C(R) \subseteq \mathbb{P}(R) = N(R) = J(R),
\]

\(N(R) \) is a locally nilpotent ideal of \(R \) and \(U(R) \) is (locally nilpotent)-by-abelian.

Proof
(i) The ring \(R \) is abelian by Corollary 8 (by Theorem 1, respectively) and, therefore, \(R/P \) is a field for any prime ideal \(P \) by [10, Theorem 5]. Hence each prime ideal is a maximal right ideal. In view of Lemma 21 and Corollary 8(i), \(R \) is a field or right Artinian.
(ii) We obtain that $C(R) \subseteq N(R) = J(R)$ by Corollary 10. Then R/P is commutative for each prime ideal P of R and so $C(R) \subseteq P(R)$. The ideal $N(R)$ is locally nilpotent in view of [29, Lemma 1.1] and so the unit group $U(R)$ is (locally nilpotent)-by-abelian.

Finitely generated non-commutative radical rings need not be nil [62]. Each nil ring is Engel [66, Proposition 4.2] and the adjoint group R^o of a nil algebra R is locally graded (i.e., each finitely generated infinite subgroup of R^o contains a proper subgroup of finite index) [63, Theorem 1]. We extend this result in the following way.

Corollary 40 For each Engel (2-torsion-free Lie solvable, 2-torsion-free locally finite, respectively) algebra R, its adjoint group R^o is locally graded.

Proof The set $N(R)$ is an ideal of R by Corollary 10 (by Theorem 1(iii) and Proposition 5(ii), respectively) and $N(R)^o$ is locally graded by [63, Theorem 1]. Inasmuch as $R^o/N(R)^o$ is abelian, we deduce that R^o is locally graded.

Proposition 41 If R is a ring of bounded index, then the following statements hold:

(i) $P(R) = N(R)$ is a locally nilpotent ring (and so $P(R)^o$ is a locally nilpotent group);

(ii) if R is Engel (2-torsion-free locally solvable, 2-torsion-free locally finite, respectively), then R^o is a (locally nilpotent)-by-abelian group;

(iii) if R is n-Engel and $F(R) = 0$, then $N(R)$ is nilpotent and R^o is (torsion-free nilpotent)-by-abelian;

(iv) if R is n-Engel, then $N(R)^o$ is (torsion locally nilpotent)-by-(torsion-free nilpotent).

Proof (i) Obviously, $P(R) \subseteq N(R)$ and so $N(R/P(R)) = 0$ in view of [29, Lemma 1.1]. Thus $P(R) = N(R)$. Since each nonzero homomorphic image of $P(R)$ contains a nonzero nilpotent ideal, $P(R)$ is locally nilpotent. If $S = \langle g_1, \ldots, g_n \rangle$ for $g_1, \ldots, g_n \in N(R)$, then $S \subseteq (\langle g_1, \ldots, g_n \rangle_{rg})^o$. Hence S is nilpotent and $P(R)^o$ is locally nilpotent.

(ii) Inasmuch as $C(R) \subseteq N(R) = P(R)$ by Corollary 10 (Theorem 1(iii), Lemma 18(iv), respectively), the ideal $N(R)$ is locally nilpotent in view of [29, Lemma 1.1] and the result follows.

(iii) We get that $C(R) \subseteq P(R) = N(R)$ by Corollary 8 and $N(R)^o$ is a torsion-free locally nilpotent m-Engel group for some $m \in \mathbb{N}$ in view of the part (i) and [4, Main Theorem]. Consequently, $N(R)^o$ is nilpotent in view of [74] and $(R/N(R))^o$ is abelian.

(iv) The quotient group $N(R)^o/F(N(R))^o$ is torsion-free locally nilpotent m-Engel for some $m \in \mathbb{N}$ and so it is nilpotent. Furthermore, $F(N(R))^o$ is locally nilpotent by [2, Corollary 2].

Finally, we have also the following.

Proposition 42 If the set $N(R)$ of nilpotent elements of a ring R is finite and $C(R) \subseteq N(R)$, then the following statements hold:

(i) R is an FC-ring (i.e., the centralizer $C_R(a) = \{ r \in R \mid ra = ar \}$ is of finite index in the additive group R^+ for any $a \in R$ [7, 18]);

(ii) R^o is a finite-by-abelian group with the finite commutator subgroup (i.e., R^o is a BFC-group (see e.g. [55])).

Proof (i) The quotient group $R^+ / \ker \partial_x$ is isomorphic to the image $\text{Im} \partial_x$ for any $x \in R$. Inasmuch as $\text{Im} \partial_x \subseteq C(R)$, we conclude that R is an FC-ring.
(ii) Since $N(R)^o$ is a finite normal subgroup of R^o and $R^o/N(R)^o \cong (R/N(R))^o$, the assertion is true.

\begin{flushright}
\Box
\end{flushright}

Acknowledgements The authors would like to express their gratitude to the referee for valuable remarks and suggestions. The research was supported by the UAEU UPAR Grant No. G00002160.

References

1. Amberg, B., Dickenschied, O.: On the adjoint group of a radical ring. Can. Math. Bull. 38(3), 262–270 (1995)
2. Amberg, B., Dickenschied, O., Sysak, Y.P.: Subgroups of the adjoint group of a radical ring. Can. J. Math. 50(1), 3–15 (1998)
3. Amberg, B., Sysak, Y.: Associative rings whose adjoint semigroup is locally nilpotent. Arch. Math. (Basel) 76(6), 426–435 (2001)
4. Amberg, B., Sysak, Y.P.: Radical rings with Engel conditions. J. Algebra 231(1), 364–373 (2000)
5. Amberg, B., Sysak, Y.P.: Radical rings with soluble adjoint groups. J. Algebra 247(2), 692–702 (2002)
6. Amberg, B., Sysak, Y.P.: Associative rings with metabelian adjoint group. J. Algebra 277(2), 456–473 (2004)
7. Artemovych, O.: FC^*-rings. Miskolc Math. Notes 18(2), 623–637 (2017)
8. Artemovych, O.D., Bovdi, V.A., Salim, M.A.: Derivations of group rings. Acta Sci. Math. (Szeged) 86(1–2), 51–72 (2020)
9. Azumaya, G.: Strongly π-regular rings. J. Fac. Sci. Hokkaido Univ. Ser. I. 13, 34–39 (1954)
10. Badawi, A.: On abelian π-regular rings. Commun. Algebra 25(4), 1009–1021 (1997)
11. Bell, H., Klein, A.: On rings with Engel cycles. Can. Math. Bull. 34(3), 295–300 (1991)
12. Bell, H., Yaqub, A.: On commutativity of semiperiodic rings. Res. Math. 53(1–2), 19–26 (2009)
13. Bokut, L., L"{u}v, I., Kharchenko, V.: Noncommutative rings. In: Current Problems in Mathematics. Fundamental Directions, Vol. 18 (Russian), Itogi Nauki i Tekhniki, pp. 5–116. Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1988. Noncommutative rings. Identities, Translation by E. Behr, Translation edited by A. I. Kostrikin and I. R. Shafarevich
14. Bovdi, A.: Group algebras with an Engel group of units. J. Aust. Math. Soc. 80(2), 173–178 (2006)
15. Bovdi, A., Khripta, I: The Engel property of the multiplicative group of a group algebra. Math. USSR-Sb 72(1), 121–134 (1992)
16. Bovdi, V.: Group algebras whose unit group is locally nilpotent. J. Aust. Math. Soc. 109(1), 17–23 (2020)
17. Bovdi, V.: Modular group algebras whose group of unitary units is locally nilpotent. Acta Sci. Math. (Szeged) 1–5 (2022)
18. Bovdi, V.A.: On elements in algebras having finite number of conjugates. Publ. Math. Debrecen 57(1–2), 231–239 (2000)
19. Carini, L.: Derivations on Lie ideals in semiprime rings. Rend. Circ. Mat. Palermo (2) 34(1), 122–126 (1985)
20. Catino, F., Miccoli, M., Sysak, Y.: On the adjoint group of semiprime rings. Commun. Algebra 35(1), 265–270 (2007)
21. Chuan, C.-L., Lee, T.-K.: Semiprime rings with prime ideals invariant under derivations. J. Algebra 302(1), 305–312 (2006)
22. Chuan, C.-L., Lin, J.-S.: On a conjecture by Herstein. J. Algebra 126(1), 119–138 (1989)
23. Cohen, I.S.: Commutative rings with restricted minimum condition. Duke Math. J. 17, 27–42 (1950)
24. Evstafev, R.Y.: On Artinian rings satisfying the Engel conditions. Ukrain. Mat. Zh. 58(9), 1264–1270 (2006)
25. Fels, K.: Algebra: koltsa, moduli i kategorii. II. Mir, Moscow, 1979. Translated from the English by Koffman, L.A., Mikhailov, A.V., Tolskaya, T.S., Tsukerman, G.M., Dorofeeva, M.P.: Edited by Skornjakov, L.A.
26. Goodearl, K.R., Warfield, R.B., Jr.: Primitivity in differential operator rings. Math. Z. 188(4), 503–523 (1982)
27. Gruenberg, K.: Two theorems on Engel groups. Proc. Camb. Philos. Soc. 49, 377–380 (1953)
28. Herstein, I.: A remark on rings and algebras. Michigan Math. J. 10, 269–272 (1963)
29. Herstein, I.: Topics in Ring Theory. The University of Chicago Press, Chicago (1969)
30. Herstein, I.: On the Lie structure of an associative ring. J. Algebra 14, 561–571 (1970)
31. Herstein, I.: Multiplicative commutators in division rings. Isr. J. Math. 31(2), 180–188 (1978)
32. Herstein, I.: Multiplicative commutators in division rings. II. Rend. Circ. Mat. Palermo (2) 29(3), 485–489 (1981)
33. Herstein, I., Small, L.: Nil rings satisfying certain chain conditions. Can. J. Math. 18(4), 771–776 (1964)
34. Higgins, P.: Lie rings satisfying the Engel condition. Proc. Camb. Philos. Soc. 50, 8–15 (1954)
35. Hirano, Y.: Some studies on strongly π-regular rings. Math. J. Okayama Univ. 20(2), 141–149 (1978)
36. Hirano, Y.: On periodic P.I. rings and locally finite rings. Math. J. Okayama Univ. 33, 115–120 (1991)
37. Huh, C., Kim, N.K., Lee, Y.: Examples of strongly π-regular rings. J. Pure Appl. Algebra 189(1–3), 195–210 (2004)
38. Jennings, S.: Radical rings with nilpotent associated groups. Trans. Roy. Soc. Canada. Sect. III. 3(49), 31–38 (1955)
39. Kaplansky, I.: Elementary divisors and modules. Trans. Am. Math. Soc. 66, 464–491 (1949)
40. Kemer, A.: Nonmatrix varieties. Algebra i Logika 19(3), 255–283 (1980)
41. Kim, N.K., Kwak, T.K., Lee, Y.: On a generalization of right duo rings. Bull. Korean Math. Soc. 53(3), 925–942 (2016)
42. Klein, A., Bell, H.: Rings with commuting nilpotents and zero divisors. Res. Math. 51(1–2), 73–85 (2007)
43. Krasilnikov, A.: On the group of units of a ring whose associated Lie ring is metabelian. Uspekhi Mat. Nauk. 47(6), 217–218 (1992)
44. Krempa, J.: Rings with periodic unit groups. In: Abelian Groups and Modules (Padova, 1994), volume 343 of Mathematical Applications, pp. 313–321. Kluwer Academic Publishers, Dordrecht (1995)
45. Krempa, J.: Rings with periodic groups of units. II. In Groups St. Andrews 1997 in Bath, II, volume 261 of London Mathematical Society Lecture Note Series, pp. 503–511. Cambridge University Press, Cambridge (1999)
46. Lanski, C.: Nil subrings of Goldie rings are nilpotent. Can. J. Math. 21, 904–907 (1969)
47. Lanski, C.: An Engel condition with derivation for left ideals. Proc. Amer. Math. Soc. 125(2), 339–345 (1997)
48. Lewin, J.: Subrings of finite index in finitely generated rings. J. Algebra 8, 84–88 (1967)
49. McCoy, N.: Prime ideals in general rings. Am. J. Math. 71, 823–833 (1949)
50. Picelli, E.: Semilocal rings with Engel conditions. Arch. Math. (Basel) 87(4), 289–294 (2006)
51. Reyes, M.: Noncommutative generalizations of theorems of Cohen and Kaplansky. Algebr. Represent. Theory 15(5), 933–975 (2012)
52. Riley, D.: Algebras with collapsing monomials. Bull. Lond. Math. Soc. 30(5), 521–528 (1998)
53. Riley, D.: Generalised nilpotence conditions in n-Engel Lie algebras. Commun. Algebra 28(10), 4619–4634 (2000)
54. Riley, D.M., Wilson, M.C.: Associative rings satisfying the Engel condition. Proc. Amer. Math. Soc. 127(4), 973–976 (1999)
55. Robinson, D.: A course in the theory of groups. Graduate Texts in Mathematics, vol. 80. Springer, New York-Berlin (1982)
56. Rowen, L.: Ring Theory. Vol. II, volume 128 of Pure and Applied Mathematics. Academic Press, Boston (1988)
57. Shalev, A.: On associative algebras satisfying the Engel condition. Isr. J. Math. 67(3), 287–290 (1989)
58. Sharma, R., Srivastava, J.: Lie solvable rings. Proc. Amer. Math. Soc. 94(1), 1–8 (1985)
59. Sharma, R., Srivastava, J.: Lie centrally metabelian group rings. J. Algebra 151(2), 476–486 (1992)
60. Shlyafer, A.: Periodic multiplicative subgroups of rings and algebras. In: Abelian Groups and Modules, No. 9 (Russian), pp. 136–152, 159. Tomsk. Gos. University, Tomsk (1990)
61. Smoktunowicz, A.: On Engel groups, nilpotent groups, rings, braces and the Yang–Baxter equation. Trans. Amer. Math. Soc. 370(9), 6535–6564 (2018)
62. Smoktunowicz, A., Puczylowski, E.: A polynomial ring that is Jacobson radical and not nil. Isr. J. Math. 124, 317–325 (2001)
63. Sozutov, A., Alexandrova, I.: On some properties of adjoint groups of associative nil algebras. Zh. Sib. Fed. Univ. Mat. Fiz. 10(4), 503–508 (2017)
64. Stolz, B.: Nilpotenzbedingungen für radikale und lokale Rings. Diplomarbeit Johannes Gutenberg-Universität Mainz, pp. 1–30 (2002)
65. Sysak, Y.: Periodic subgroups of the adjoint group of a radical ring. In: Topics in Infinite Groups, volume 8 of Quad. Mat., pp. 327–333. Dept. Math., Seconda Univ. Napoli, Caserta (2001)
66. Sysak, Y.P.: The adjoint group of radical rings and related questions. In: Ischia Group Theory 2010, pp. 344–365. World Science Publishers, Hackensack, NJ (2012)
67. Szigeti, J.: Idempotent ideals in Lie nilpotent rings. In: Methods in ring theory (Levico Terme, 1997), volume 198 of Lecture Notes in Pure and Application Mathematics, pp. 287–292. Dekker, New York (1998)
68. Szigeti, J., Van Wyk, L.: On Lie nilpotent rings and Cohen’s theorem. Commun. Algebra 43(11), 4783–4796 (2015)
69. Tuganbaev, A.: Semiregular, weakly regular, and \(\pi \)-regular rings. J. Math. Sci. (New York) 109(3), 1509–1588 (2002)
70. Šter, J.: Rings in which nilpotents form a subring. Carpathian J. Math. 32(2), 251–258 (2016)
71. Zalesskii, A.: Solvable groups and crossed products. Mat. Sb. (N.S.) 67(109), 154–160 (1965)
72. Zalesskii, A., Smirnov, M.: Associative rings satisfying the identity of Lie solvability. Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk. 2, 15–20, 123 (1982)
73. Zelmanov, E.: Engel Lie algebras. Dokl. Akad. Nauk SSSR 292(2), 265–268 (1987)
74. Zelmanov, E.: Some problems in the theory of groups and Lie algebras. Mat. Sb. 180(2), 159–167 (1989)
75. Zelmanov, E.: Solution of the restricted Burnside problem for groups of odd exponent. Izv. Akad. Nauk SSSR Ser. Mat. 54(1), 42–59, 221 (1990)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.