Recent Progress in Hybridized Nanogenerators for Energy Scavenging

Tongtong Zhang,1,4 Tao Yang,2 Mei Zhang,2 Chris R. Bowen,3 and Ya Yang1,4,5,*

SUMMARY
As the world’s demand for alternative energy increases, the development of green energy harvesters becomes ever more important. As a result, the creation of triboelectric (TENG), piezoelectric (PENG), and pyroelectric nanogenerators, electromagnetic generators (EMG), solar cells, and electrochemical cells is attracting interest in an effort to convert mechanical, thermal, magnetic, solar, and chemical energy into electricity. In order to take advantage of the ambient energies from our surrounding environment, the design of hybridized generator units that can simultaneously scavenge energy in a variety of forms continues to develop. These systems are being considered to satisfy the energy needs of a range of electronic devices and adapt to a variety of working environments. This review demonstrates the latest progress in hybridized nanogenerators in accordance with their structure, operating principle, and applications. These studies demonstrate new approaches to developing hybrid techniques and novel assemblies for efficiently harvesting environmental energy from a number of sources.

INTRODUCTION
With the rapid growth in social concerns regarding worldwide energy needs and the consequences of global climate change, the use of renewable and green energy sources is becoming increasingly more significant. In addition, there is need for a reduced reliance on the use of batteries that provide power to electronic items and the Internet of Things. As a result, nanogenerators (Wang, 2017) are being considered to harvest many forms of energy surrounding us in our daily life. These include vibrational energy (Quan and Yang, 2016), human body motion (Zhang et al., 2018a, 2019a, 2019c), mechanical triggering of tire rotation (Zhao et al., 2017b), wind flow energy (Chen et al., 2018a, 2018b; Jiang et al., 2017, 2018), solar energy (Ji et al., 2018), blue energy (Gao et al., 2020), thermoelectric energy (Yang et al., 2012a, 2012c, 2012d), and so on (Ji et al., 2019; Yang et al., 2012b). However, the mode of operation and the operating conditions of any harvesting device is one of the most significant factors that influence the output performance of nanogenerators. Currently, there is a drive to achieve the goal of self-supplied operation of electronic devices to reduce their reliance on power cables or batteries. However, achieving this goal remains challenging to provide sufficient levels of continuous power.

Hybridized nanogenerators (Zhang et al., 2017, 2019b) are of interest in this context as they aim to combine several diverse nanogenerators into a single unit, which can utilize numerous energy sources individually or simultaneously, enabling the use of any available ambient forms of energy at any time. On the other hand, there is an increase in the total electric power generated by carefully integrating two or more forms of harvesters that can harvest various kinds of energy from surrounding. Such devices can be used in a variety of situations, such as wearable products (Lee et al., 2014), self-powered sensors (Zhang et al., 2014b), charging Li-ion batteries (Gao et al., 2017; Zhao et al., 2017c), and charging supercapacitors (Zhao et al., 2017a).

Here we summarize latest advancements in the development of hybridized nanogenerators. The review begins with an introduction of the key theoretical background and energy generation mechanisms, such as the electromagnetic, triboelectric, and piezoelectric effects. After introducing the fundamentals of nanogenerators, the wide variety of hybridized nanogenerators are then introduced. The range of applications of hybridized nanogenerators are then described in detail, including self-powered transducer and wearable devices. Finally, we summarize the present status of hybridized nanogenerators and highlight key issues and their vision for the future.

1CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
2College of Materials Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, P. R. China
3Department of Mechanical Engineering, University of Bath, Bath BA27AK, UK
4School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
5Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
*Correspondence: yayang@binn.cas.cn
https://doi.org/10.1016/j.isci.2020.101689
Obtaining energy that is present in our daily life is an intriguing method to satisfy the energy needs of the Internet of Things (Wang et al., 2016a), which are built on low-power electronics. It provides users with many potential ways to drive electronic devices. In recent years, several techniques and mechanisms have been exploited by a number of researchers, such as the photovoltaic effect, triboelectric effect (Fan et al., 2012; Gao et al., 2019; Olsen et al., 2019; Zhao et al., 2019), biochemical reactions, and piezoelectric effect. This wide range of techniques can be used to collect the surrounding energy in several ways, ranging from mechanical energy (Zhang et al., 2014c), light change, the difference of temperature, to the variation in magnetic fields. Figure 1 compares and summarizes the basic technologies to harvest environmental energy.

Figure 1. Schematic of Different Types of Nanogenerators

(A) Triboelectric nanogenerator (TENG) working modes.
(B) Electromagnetic generator (EMG) working modes.
(C) Piezoelectric nanogenerator (PENG) working modes.
(D) Principle diagram of electrochemical cell.
(E) Principle diagram of solar cell.
(F) Principle diagram of pyroelectric nanogenerator. Reproduced with permission, from Chen et al. (2020b), Copyright 2020, Elsevier.

THE FUNDAMENTALS OF NANOGENERATORS

Obtaining energy that is present in our daily life is an intriguing method to satisfy the energy needs of the Internet of Things (Wang et al., 2016a), which are built on low-power electronics. It provides users with many potential ways to drive electronic devices. In recent years, several techniques and mechanisms have been exploited by a number of researchers, such as the photovoltaic effect, triboelectric effect (Fan et al., 2012; Gao et al., 2019; Olsen et al., 2019; Zhao et al., 2019), biochemical reactions, and piezoelectric effect. This wide range of techniques can be used to collect the surrounding energy in several ways, ranging from mechanical energy (Zhang et al., 2014c), light change, the difference of temperature, to the variation in magnetic fields. Figure 1 compares and summarizes the basic technologies to harvest environmental energy.
(Chen et al., 2020b; Zhang et al., 2018b), which include triboelectric nanogenerators (TENG), electromagnetic generators (EMGs), piezoelectric nanogenerators (PENGs), electrochemical cells, solar cells, and pyroelectric nanogenerators.

The basic principle of triboelectric nanogenerators (Gao et al., 2018; Liu et al., 2018a) is the coupling of triboelectrification and electrostatic induction between the surfaces of two different friction materials during periodic contact/separation, as illustrated in Figure 1A. In addition, Figure 1A presents the TENG’s four fundamental working modes (Wang et al., 2015a; Yang et al., 2014).

An electromagnetic generator (EMG) (Zhang et al., 2014a) is a common and efficient method for electricity production in modern society, which is based on Faraday’s law of electromagnetic induction. An induction of an electromotive force is obtained as a result of a change in magnetic flux during the motion between the magnet and the coil. Figure 1B presents the electromagnetic generator’s rudimentary working modes.

The direct piezoelectric effect is the fundamental mechanism for the operation of piezoelectric nanogenerators (PENG) (Qin et al., 2008; Wang and Song, 2006). Many materials exhibit the piezoelectric effects; these include piezoelectric ZnO nanowires (Wang and Song, 2006), ferroelectric lead zirconate titanate (PZT) ceramics (Chen et al., 2010; Park et al., 2013), ferroelectric polyvinylidene fluoride (PVDF) (Chen et al., 2017), and its copolymers. As Figure 1C shows, when a deformation is induced by a mechanical force applied to the material surface, the piezoelectric material will generate negative and positive charges on opposing surfaces owing to a change in polarization. When the mechanical force is removed the charge is no longer present since the polarization returns to its original state. However, if the piezoelectric is connected to an electrical load, the charges can be collected to generate power during this process.

The solar cell is the typical light energy harvester (Lee et al., 2012), whose mode of operation is based on the photovoltaic effect (Hara et al., 2004). When a solar cell is illuminated by the sun, electron-hole pairs can be excited by the absorbed light in a semiconductor, as illustrated in Figure 1E. When attracted by a p-n junction electric field, the electron-hole pairs can separate and be transmitted, thus generating a photocurrent. As shown in Figures 1D and 1F, there are other types of nanogenerators (Liu et al., 2017), such as electrochemical cells (Wang and Yang, 2019) and pyroelectric nanogenerators (Zhao et al., 2020).

It can be easily seen that the range of sources of power in Figure 1 are only available in certain circumstances. For example, the solar cell only can be used with sunlight and the wind energy can only be obtained with wind. In the last few years, a variety of hybridized nanogenerators have been exploited, concentrating on structural designs to optimize the scavenged energy by harvesting a range of energy sources from the ambient environment (Wu et al., 2014). Such hybrid systems have the potential to provide a more continuous source of power, and potentially at a higher level. The classification of hybridized nanogenerators is now discussed.

THE CLASSIFICATION OF HYBRIDIZED NANOGENERATORS

Mechanical Energy Harvesting Systems

Hybridized Electromagnetic-Triboelectric Nanogenerator

The triboelectric and electromagnetic effect can both collect mechanical energy (Wu et al., 2015), such as wind energy, water wave energy, and rotational energy (Zhong et al., 2015). By combining a TENG and EMG (Zhang et al., 2016b) in a single device, a composite mechanical energy collection technique can increase the total output of the device significantly. The fundamental mode of operation of a TENG is a constant contact/separation to realize the constant transfer of charge, whereas Faraday's law of magnetic induction is the basic principle of EMG, as shown in Figures 2A and Figure 2B. To scavenge air-flow energy, Wang et al. developed a hybridized triboelectric-electromagnetic (TENG-EMG) device, shown in Figure 2C, which included two TENGs and two EMGs. When the air flow blows, the magnet on the Kapton film vibrates to change the flux through the copper coil. Meanwhile, the vibration of the Kapton film can drive the TENG to develop power. The hybridized TENG-EMG was based on a cubic structure with a weight of 42.3 g and dimensions of 6.7 cm x 4.5 cm x 2 cm. The hybridized triboelectric-electromagnetic nanogenerator was used to charge a 3,300-μF capacitor, which was able to continuously drive four self-driven temperature transducers to implement a temperature sensor network, when subjected to an air flow velocity of 18 m/s (Wang et al., 2015b). In 2016, a self-powered wireless traffic transducer was reported by Zhang et al. The sensor included a TENG and an EMG. The structure of the equipment is based on rotating disk, which is
shown in Figure 2D. This hybridized nanogenerator can generate 17.5 mW of output power, amounting to a 55.7 W/m³ volume power density with a load resistance of 700Ω (Zhang et al., 2016a). Quan et al. developed a hybridized EMG-TENG that could harvest mechanical motion and exploited a shared-electrode, which is illustrated in Figure 2E. By using power management circuits to connect the two devices in parallel, the product can be used to power acceleration sensor systems (Quan et al., 2016). In 2015, Zhang et al. recorded a spring-structured hybridized EMG-TENG (Figure 2F) that was able to harvest human motion energy through walking. The main configuration of the device is a double-layered acrylic substrate, which was
Hybridized Piezoelectric-Triboelectric Nanogenerator

The piezoelectric effect is highly sensitive to external stimulus and can be easily integrated at a micro- and nano-scale. Although the conversion efficiency of materials such as ZnO is low, ferroelectric materials such as lead zirconate titanate can exhibit higher conversion efficiencies. Both the piezoelectric and triboelectric effects are able to generate power from continuous external slapping and other mechanical motion, as shown in Figure 3A and Figure 2B. Singh et al. reported a hybridized PENG-TENG based on flexible ZnO-PVDF/PTFE (Figure 3B). They observed that the addition of zinc oxide can improve both the piezoelectric properties of PVDF and the triboelectric properties. The output power of a hybrid nanogenerator based on flexible ZnO-PVDF/PTFE is ~2.5 times higher than hybridized nanogenerator based on pure PVDF (Singh and Khare, 2018). To achieve improved performance from nanogenerators, Shi et al. developed a hybridized piezoelectric-triboelectric nanogenerator (PTNG) and a packaged self-powered system based on the PTNG. The working mode of a PTNG is contact-separation of a multi-layered structure, as illustrated in Figure 3C. This hybridized nanogenerator was able to generate up to 60 V and 1 μA, and the connectors were one of the most significant part of the PSNGS; therefore, several designs of the connectors were discussed to achieve a broader field of applications (Shi et al., 2016). To achieve a good performance at high temperature, Sun et al. reported a soft hybridized PENG-TENG (Figure 3D) on the basis of piezoelectric ceramic particles. This device exhibited good temperature stability at a temperature of 200°C and can generate an output power of 560 nA and 150 V (Sun et al., 2020). Chen et al. analyzed the basic principle of contact-mode hybridized generator (Figure 3E) from the transfer of charge, current, voltage, and average output power from hybridized nanogenerator’s material properties, structural parameters, and operational conditions. Their work provides researchers with the fundamental principles to progress the development of new hybrid systems (Chen et al., 2017a).

Hybridized Electromagnetic-Piezoelectric-Triboelectric Nanogenerator

In the development of triboelectric-electromagnetic and piezoelectric-triboelectric hybridized nanogenerators, there are a range of reported hybridized EMG-TENG-PENG devices to scavenge mechanical energy. As the operating conditions in which they are used to produce electricity are similar, all three types of energy can be harvested and utilized simultaneously in the same movement. Deng et al. demonstrated a self-powered insole plantar mapping system based on the pressure generated from feet, as presented in Figure 4A. The device was composed of a hybridized TENG-EMG to provide electricity and a PENG to detect the movement of the foot as a pressure sensor. The electrical charge generated can be converted to a signal that can be detected by a smart phone by Bluetooth. The application of the device provides a new way to realize the design of sports shoes and provides information of sport/exercise biomechanics (Deng et al., 2018). Du et al. reported on a hybridized EMG-TENG-PENG to scavenge mechanical vibrational energy, as shown in Figure 4B. By combining the system with transformers and rectifiers, the maximum output power density is up to 100 W/m². It can also be converted to direct current via a power management circuit (Du et al., 2018). In 2018, He et al. reported on a hybridized EMG-TENG-PENG that contained a TENG, two EMGs, and two PENGs. Its core component is a magnetic suspension structure,
as illustrated in Figure 4C. The device is based on a columnar structure with an upper and lower symmetry. The magnet that is located in the middle of the device oscillates up and down to change the magnetic flux of the coil and collides with the lead zirconate titanate (PZT) piezoelectric plate to generate a current due to the direct piezoelectric effect. This structure serves to collect energy from small vibrations, such as small impacts or a smoothly running car. The TENG, EMG\textsubscript{1}, EMG\textsubscript{2} and PENG\textsubscript{1}, PENG\textsubscript{2} can generate a power density of 78.4 μW, 36 mW, 38.4 and 122 mW, 105 mW, respectively (He et al., 2018). To harvest energy during walking, Rodrigues et al. combined a TENG, EMG, and PENG in a stratified structure device that can be embedded within shoes. The device includes a TENG that is an optimized parallel plate structure, an EMG and a PENG. The structure and image of this hybridized nanogenerator is presented in Figure 4D. One of the most significant parts is the sponge between the triboelectric nanogenerator and electromagnetic nanogenerator, which allows the distance between the magnet and planar coil change regularly during walking. They also studied the energy storage when using a range of capacitors and found that the
larger load capacitances took more time to achieve their saturation voltage compared with the smaller load capacitances (Rodrigues et al., 2019). In 2019, Ma et al. reported a hybridized triboelectric-piezoelectric-electromagnetic nanogenerator on the basic of a permanent and movable magnet to scavenge rotational motion energy. The structure and image are shown in Figure 4E, where the device has two TENGs, an EMG, and a PENG. Magnet I has three important roles in the device. The first is to set up a repulsive force between itself and Magnet II; then the flux in the copper coil can circularly change, which can induce energy by Faraday electromagnetic induction. Finally, the force between the permanent magnet and Magnet I can generate power by the piezoelectric effect by making the piezoelectric cantilever bend. On this basis, a single motion cycle can generate three power modes, which improves the energy collection efficiency and realizes higher energy conversion (Ma et al., 2019).
Solar and Mechanical Energy Harvesting System

The working environment of electronic devices and the available energy sources for harvesting are likely to change with time. As a result, it is of considerable interest to harvest a variety of energy sources to extend their working life. Solar cell is an important and promising way to harvest green energy that can constantly draw energy from the sun. Although solar cells benefit from good performance, low cost, and large-scale production, their output is easily affected by weather or light intensity. In order to overcome the solar cells’ weather-dependent nature, the hybridization of solar cells with a TENG or EMG is necessary to continuously obtain energy from the environment. A transparent and flexible polymer material constitutes the TENG, which can be utilized as a part of triboelectric nanogenerator and also acts as a protective coating for solar cells. Ren et al. reported a new-style pliable and self-cleaning hybridized energy collection system (Figure 5B) that included an autonomous single-electrode triboelectric nanogenerator and a soft organic solar cell. The device can also be attached to a garment so that when the wearer swings their shoulders, the TENG will obtain energy from the resulting mechanical motion. Meanwhile, it is able to harvest energy from sunlight by the solar cell in an outdoor environment (Ren et al., 2020). Liu et al. created an energy harvester (Figure 5C) consisting of a solar cell and a triboelectric nanogenerator to scavenge energy from water droplets and sunlight. The solar cell was based on heterojunction silicon (Si) and shared a cooperative function electrode of a poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate) layer with the TENG.

This combination is expected to be an attractive method to obtain energy from the surrounding under different meteorological conditions (Liu et al., 2018b). The solar cell can also be associated with a PENG to harvest mechanical energy and solar energy. Yoon et al. discussed a hybrid power generator (Figure 5D) that included a PENG and an organic solar cell (Yoon et al., 2015). Wu et al. developed a fan-shaped hybrid energy harvester (Figure 5E) that can work together or individually, to collect wind energy, chemical energy, and solar energy. This form of hybrid energy harvester consists of an electrochemical cell, a TENG and a solar cell by attaching a solar cell to the top of the device and placing the Cu and Al electrodes in the acrylic tube of the TENG (Wu et al., 2014). In 2016, Wang et al. introduced and applied this idea to the construction of smart cities (Figure 5F), where they designed a hybridized nanogenerator that included both a TENG and a solar cell. Compared with the traditional wind turbines and solar cells, this hybridized nanogenerator occupies a smaller area and is less expensive, so it can be used on a large scale in cities (Wang et al., 2016a).

Additional Types of Hybridized Nanogenerators

Additional types of energy can also be harvested by nanogenerators, such as chemical energy and thermal energy. Electrochemical cells can transform chemical energy into electrical energy while pyroelectric effects are commonly used to collect heat energy from changes in temperature with time. Since chemical energy, mechanical energy, and thermal energy do not always exist together in the environment, there is a need to develop energy units that can simultaneously collect the two energies separately by utilizing combined devices. Yang et al. reported an electrochemical cell operated cooperatively with a TENG to scavenge chemical and mechanical energy effectively. Figure 6A is an example of the hybridized nanogenerator structure’s principle scheme. One of the electrodes is a Cu/NaCl solution/Al structure where copper and aluminum films are used as energy collecting materials and electrode materials. A TENG was formed by the separation between the aluminum electrode and PDMS. The PDMS membrane can be used not only as the friction material of a TENG but also as a protective layer for the electrochemical cells. This device was used to illuminate up to 30 green LEDs (Yang et al., 2013).

Lee et al. presented a soft hybridized generator to collect mechanical energy and thermal energy sources. A diagram of the vertically stacked hybrid device is shown in Figure 6B that could scavenge thermal energy and mechanical energy from human movement and temperature. The TENG component was formed using ZnO nanowires for harvesting the energy associated with human body movement. The thermoelectric nanogenerator operates on the basis of thermoelectric materials that consisted by BiTe-Se and BiSb-Te powers (Lee et al., 2013). Wang et al. developed a composite nanogenerator based on one-structure to scavenge thermal and mechanical energy sources by a combination of tribo-piezoelectric effects. Figure 6C shows a diagram of the hybridized nanogenerator and its assembly. The hybridized nanogenerator contains a PDMS composite film, PVDF nanowires, and a poled PVDF film along with indium tin oxide transparent electrodes covering both surfaces. The composite nanogenerator can illuminate two light bulbs (Wang et al., 2016b). As a result of the limit in working time of batteries, Liu et al. showed a TENG combined with a Li-ion battery that shared same electrodes. A schematic of the hybrid power device is shown in Figure 6D. The solid Li-ion battery includes TiO₂ nanotubes acting as an anode, whereas the
The cathode is based on LiMn₂O₄ (LMO) nanoparticles and the solid electrolyte is based on a polyethylene oxide-Li₁₀Ti₂O₃Al₄(P₂O₇)₃ (PEO–LATP) material. The PEO–LATP–LMO and the TiO₂ nanotubes can produce electricity from its periodic contact separation, which operates as a TENG. The TENG component of the devices can produce a ~33.5 μA output current, while the output voltage can reach 188 V. The solid Li-ion battery component can store electric energy up to 15μAh (Liu et al., 2017).
Zi et al. reported hybridized pathogenesis to harvest mechanical energy associated with sliding friction. The hybridized nanogenerator combines a pyroelectric-piezoelectric hybrid generator with triboelectric nanogenerator. The device structure and its working mechanism are depicted in Figure 6E. The TENG size was 62.5 cm² and produced a power density of 0.15 W/m² at a 4.41 Hz sliding frequency. Meanwhile, the pyroelectric-piezoelectric hybrid cell can scavenge thermal energy from mechanical energy induced from a normal force and friction-induced heat (Zi et al., 2015).

APPLICATION OF HYBRIDIZED NANOGENERATORS

Wearable electronics are at a risk of a loss of power owing to the limited working time of batteries and they need to be recharged or replaced. The invention of a variety of hybridized nanogenerators, which can simultaneously harvest mechanical energy, solar energy, and other forms of energy, provides new ideas to solve the need for a continuous energy source for self-powered electronic devices. The different parts of the energy harvesting unit may work simultaneously or individually, or they may be used in parallel or series to dramatically increase current or voltage, respectively. In recent years, hybridized nanogenerators have acted as wearable devices, self-powered sensors (Jiang et al., 2019) and have been used to power electric devices.

The hybridized triboelectric-electromagnetic nanogenerator and hybridized triboelectric-piezoelectric nanogenerator can be employed in a variety of scenarios, such as wearable devices and self-powered sensors. To scavenge blue energy, Wen et al. presented a hybridized TENG-EMG nanogenerator. The device can serve as a source of energy to illuminate several LEDs without any storage or power regulating devices;
a diagram of the device is shown in Figure 7A. In addition, they have developed an energy-harvesting panel floating in the sea, which can include several generators to harvest wind energy, solar energy, and mechanical energy (Wen et al., 2016). Zhang et al. used a hybridized TENG-EMG nanogenerator inside shoes to scavenge biomechanical energy sources, as illustrated in Figure 7B. The device was installed on the shoes’
heels to illuminate a circle of LEDs. A Li-ion battery can be effectively charged by the device, and it can power a pedometer sensor that can count people’s steps, energy, and distance results (Zhang et al., 2015). Quan et al. illustrated a composite nanogenerator that was able to scavenge biomechanical energy from wrist movement to power a watch, as shown in Figure 7C. The watch can operate for 456 s after charging the 100-μF capacitor in 39 s. When the device charges a Li-ion battery for approximately 32 min, the watch can operate for 218 min (Quan et al., 2015). Askari et al. reported a hybridized TENG-EMG transducer including four freestanding TENG and four EMG to monitor road traffic, as demonstrated in Figure 7D. When a car passes speed bumpers, the sensor can harvest energy from the speed bumpers’ mechanical vibration and convert them to an electrical signal to monitor traffic. Compared with a single EMG or TENG, the hybridized electromagnetic-triboelectric nanogenerator can produce a high charging voltage and a short charging period (Askari et al., 2017). To scavenge ocean wave energy, Feng et al. presented a honeycomb-like nanogenerator that contains an electromagnetic nanogenerator and a triboelectric nanogenerator. The hybridized nanogenerator can power 108 green LEDs, as shown in Figure 7E (Feng et al., 2018). Rahman et al. presented a hybridized generator that contains two contact-mode TENG and a nonlinear EMG. They examined the output performance of different forms of motion, such as walking, running, and handshaking, as given in Figure 7F. The hybridized generator can be installed in a backpack to harvest the vibrational energy generated by jogging as a portable device. The hybridized generator can also recharge a commercial smart band and a commercial smartphone (Rahman et al., 2020). Shi et al. presented a hybridized piezoelectric-triboelectric nanogenerator. To enable the nanogenerator to charge portable electronics, they have projected a number of universal plugs and sockets, such as a commercial thermometer, LED light and a temperature transducer, which is shown in Figure 7G (Shi et al., 2016). Guo et al. presented a hybridized piezoelectric-enhanced triboelectric nanogenerator based on an all-fiber construction that can be used as smart clothing (Figure 7H). As an important part of a self-powered microsystem, the device can easily assemble sensor devices and ultimately integrate seamlessly with the wearer’s clothing. The device can monitor the motion of the arm to send different signals by computer and smart phone and send an SOS distress message to a mobile phone (Guo et al., 2019).

Hybridized nanogenerators based on the solar cell and other types of nanogenerators can harvest the energy from sunlight, chemical energy, and so on. Li et al. reported a wearable solar-thermal-piezoelectric nanogenerator that can achieve high power output by using polarized polyvinylidene fluoride and modified reduced graphene oxide. Its output performance can be up to 21.3 mW/m². They adapted the hybridized nanogenerator into a wearable outdoor bracelet (Figure 8A) that can scavenge mechanical energy by the movement of wrist and the solar energy. Between the “hand down” and the “hand up,” there is a temperature difference of 5°C; therefore, the thermal effect can be used to generate electricity from a nanogenerator (Li et al., 2020). Wang et al. reported a hybridized nanogenerator that contains one electromagnetic nanogenerator, one triboelectric nanogenerator (TENG), and one thermoelectric generator (ThEG). The device can be assembled in a bicycle, which is shown in Figure 8B. The TENG, EMG, and ThEG can illuminate a globe light, respectively. When a person rides the bicycle, the electricity generated by the hybridized nanogenerator can charge a mobile phone. In addition, it can also power a high light beam, which can be used to ride a bicycle at night (Wang et al., 2016c). Qian et al. demonstrated a self-driven disaster monitoring transducer network on the basis of a hybridized TENG-EMG nanogenerator and a solar energy cell that can scavenge energy from wind and sunlight. They demonstrated three self-driven transducer systems that consist of a vibration sensor to monitor earthquakes (Figure 8C1), a wireless transceiver to reserve alarm information and a temperature sensor to detect forest fires (Figure 8C2). The self-powered wireless natural disaster monitoring network’s flow chart is shown in Figure 8C3. The study provides people with a new way to monitor natural disasters (Qian and Jing, 2018).

CONCLUSION AND PERSPECTIVES

Recycling ambient forms of energy from the surrounding environment is an attractive method to satisfy the world’s sustainable development and long-term energy needs and to reduce our reliance on batteries by providing self-powered operation to electronic items, sensors, and Internet-of-Things devices. In recent years, materials and devices have been exploited to convert a number of forms of energies into electricity. The collection of mechanical energy can be achieved using a triboelectric nanogenerator, piezoelectric nanogenerator, and electromagnetic generator. In addition, pyroelectric nanogenerators and thermoelectric nanogenerators both can scavenge heat energy, whereas electrochemical energy and solar energy can be obtained from electrochemical cells and solar cells, respectively.
Hybridized nanogenerators are attractive as they have two main benefits. First, the integrated structure can be used to collect different forms of energy anytime and anywhere. Thus, devices and sensors can always be continuously powered by the range of available energy in the environment. Second, the different parts of the device unit can be in parallel or series to increase the output current or voltage, respectively. Therefore, a hybridized energy unit can be designed to collect energy in two or more ways.

In the next few years, we should focus on the following aspects to further develop hybridized nanogenerators: First, the output performance should be promoted to drive more types of electronics; this can be achieved by materials development or improved device design. There is also a need to understand in greater detail the impact of the hybrid approach on the collective efficiencies of the system to develop successful hybridized generators. Then, the structure and materials should be more stable to accommodate energy harvesting in a variety of environments. In addition, the application of the hybridized nanogenerators can focus on wearable devices and textile-based devices. With the progress of these technologies and the continuous efforts of researchers, the hybridized nanogenerator will continually make breakthroughs and wide applications.

ACKNOWLEDGMENTS
This work was supported by the National Key R&D Program of China (Grant No. 2016YFA0202701), “Practical Training Program” Project of Cross-training High-level Talents in Beijing Universities, the University of Chinese Academy of Sciences (Grant No. Y8540XX2D2), the National Natural Science Foundation of China
AUTHOR CONTRIBUTIONS

T.Z. and Y.Y. wrote the manuscript and prepared the figures. T.Y., M.Z., C.R.B., and Y.Y. discussed and revised the manuscript.

REFERENCES

Askari, H., Asadi, E., Saadatnia, Z., Khajepour, A., Khamsehe, M.B., and Zu, J. (2017). A hybridized electromagnetic-triboelectric self-powered sensor for traffic monitoring: concept, modelling, and optimization. Nano Energy 32, 105–116.

Chen, X., Xu, S.Y., Yao, N., and Shi, Y. (2010). A 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10, 2133–2137.

Chen, S., Tao, X., Zeng, W., Yang, B., and Shang, S. (2017a). Quantifying energy harvested from contact-mode hybrid nanogenerators with cascaded piezoelectric and triboelectric units. Adv. Energy Mater. 7, 1601569.

Chen, B., Yang, N.N., Jiang, Q., Chen, W.S., and Yang, Y. (2018a). Transparent triboelectric nanogenerator-induced high voltage pulsed electric field for self-powered handheld printer. Nano Energy 44, 468–475.

Chen, B., Yang, Y., and Wang, Z.L. (2018b). Scavenging wind energy by triboelectric nanogenerators. Adv. Energy Mater. 8, 1702649.

Chen, X., Gao, L., Chen, J., Lu, S., Zhou, H., Wang, T., Wang, A., Zhang, Z., Guo, S., Mu, X., et al. (2020a). A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 69, 104440.

Chen, X.L., Li, X.M., Shao, J.Y., An, N.L., Tian, H.M., Wang, C., Han, T.Y., Wang, L., and Lu, B.H. (2017b). High-performance piezoelectric nanogenerators with imprinted PVDF-TrFE/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 13, 1604245.

Chen, X., Ren, Z., Han, M., Wan, J., and Zhang, H. (2020b). Hybrid energy cells based on triboelectric nanogenerator: from principle to system. Nano Energy 75, 104980.

Deng, C., Tang, W., Liu, L., Chen, B., Li, M., and Wang, Z.L. (2018). Self-powered insole plantar pressure mapping system. Adv. Funct. Mater. 28, 1801666.

Du, X., Zhao, S., Xing, Y., Li, N., Wang, J., Zhang, X., Cao, R., Liu, Y., Yuan, Z., Yin, Y., et al. (2018). Hybridized nanogenerators for harvesting vibrational energy by triboelectric-piezoelectric-electromagnetic effects. Adv. Mater. Technol. 3, 1800019.

Fan, F.R., Tian, Z.Q., and Wang, Z.L. (2012). Flexible triboelectric generator! Nano Energy 1, 328–334.

Feng, L., Liu, G., Guo, H., Tang, Q., Pu, X., Chen, J., Wang, X., Xi, Y., and Hu, C. (2018). Hybridized nanogenerator based on honeycomb-like three electrodes for efficient ocean wave energy harvesting. Nano Energy 47, 217–223.

Gao, T.T., Zhao, K., Liu, X., and Yang, Y. (2017). Implanting a solid Li-ion battery into a triboelectric nanogenerator for simultaneously scavenging mechanical and harvesting wind energy. Nano Energy 41, 210–216.

Gao, L.X., Hu, D.L., Qi, M.K., Gong, J., Zhou, H., Chen, X., Chen, J.F., Cai, J., Wu, L.K., Hu, N., et al. (2018). A double-helix-structured triboelectric nanogenerator enhanced with positive charge traps for self-powered temperature sensing and smart-home control systems. Nanoscale 10, 19781–19790.

Gao, L.X., Chen, X., Lu, S., Zhou, H., Xie, W.B., Chen, J.F., Qi, M.K., Yu, H., Mu, X.J., Wang, Z.L., et al. (2019). Enhancing the output performance of triboelectric nanogenerator via grating-electrode-enabled surface plasmon excitation. Adv. Energy Mater. 9, 1902725.

Gao, L.X., Lu, S., Xie, W.B., Chen, X., Wu, L.K., Wang, T.T., Wang, A.B., Yue, C.Q., Tong, D.Q., Lei, W.Q., et al. (2020). A self-powered and self-functional tracking system based on triboelectric-electromagnetic hybridized blue energy harvesting module. Nano Energy 72, 104684.

Guo, Y., Zhang, X-S., Wang, Y., Gong, W., Zhang, Q., Wang, H., and Brugger, J. (2018). All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 48, 152–160.

Hara, K., Dan-Oh, Y., Kasada, C., Ohga, Y., Shimpo, A., Suga, S., Sayama, K., and Arakawa, H. (2004). Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells. Langmuir 20, 4205–4210.

He, J., Wen, T., Qian, S., Zhang, Z., Tian, Z., Zhu, J., Mu, J., Hou, X., Geng, W., Cho, J., et al. (2018). Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system. Nano Energy 43, 326–339.

Ji, Y., Zhang, K., and Yang, Y. (2018). A one-structure-based multi-effects coupled nanogenerator for simultaneously scavenging thermal, solar, and mechanical energies. Adv. Sci. 5, 1700022.

Ji, Y., Gao, T.T., Wang, Z.L., and Yang, Y. (2019). Configuration design of BiFeO3 photovoltaic devices for self-powered electronic watch. Nano Energy 64, 103909.

Jiang, Q., Chen, B., Zhang, K.W., and Yang, Y. (2017). Ag nanoparticle-based triboelectric nanogenerator to scavenge wind energy for a self-charging power unit. ACS Appl. Mater. Interfaces 9, 43716–43723.

Jiang, Q., Chen, B., and Yang, Y. (2018). Wind-driven triboelectric nanogenerators for scavenging biomechanical energy. ACS Appl. Energy Mater. 1, 4269–4276.

Jiang, Y.T., Wang, Y., Wu, H.T., Wang, Y.H., Zhang, R.Y., Olin, H., and Yang, Y. (2019). Laser-etched stretchable graphene-polymer composite array for sensitive strain and viscosity sensors. Nano-Micro Lett. 11, 99.

Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., and Snait, H.J. (2012). Efficient hybrid solar cells based on meso-structured organometal halide perovskites. Science 338, 643–647.

Lee, S., Bae, S.-H., Lin, L., Ahn, S., Park, C., Kim, S.-W., Cha, S.N., Park, Y.J., and Wang, Z.L. (2013). Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies. Nano Energy 2, 817–825.

Lee, S., Hinchet, R., Lee, Y., Yang, Y., Lin, Z.H., Ardila, G., Montes, L., Mouis, M., and Wang, Z.L. (2014). Ultrathin nanogenerators as self-powered/active skin sensors for tracking eye ball motion. Adv. Funct. Mater. 24, 1163–1168.

Li, H., Koh, C.S.L., Lee, Y.H., Zhang, Y., Phan-Quang, G.C., Zhu, C., Liu, Z., Chen, Z., Sim, H.Y.F., Lay, C.L., et al. (2020). A wearable solar-thermal-pyroelectric harvester: achieving high power output using modified rGO-PEI and polarized PVDF. Nano Energy 73, 104723.

Liu, X., Zhao, K., Wang, Z.L., and Yang, Y. (2017). Unity convoluted design of solid Li-ion battery and triboelectric nanogenerator for self-powered wearable electronics. Adv. Energy Mater. 7, 1701629.

Liu, X., Zhao, K., and Yang, Y. (2018a). Effective polarization of ferroelectric materials by using a triboelectric nanogenerator to scavenge wind energy. Nano Energy 53, 622–629.

Liu, Y., Sun, N., Liu, J., Wen, Z., Sun, X., Lee, S.T., and Sun, B. (2018b). Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops. ACS Nano 12, 2893–2899.

Ma, T., Gao, Q., Li, Y., Wang, Z., Lu, X., and Cheng, T. (2019). An integrated triboelectric–electromagnetic–piezoelectric hybrid energy harvester induced by a multifunction magnet for rotational motion. Adv. Energy Mater. 22, 1900872.

Olsen, M., Zhang, R.Y., Ortengren, J., Andersson, H., Yang, Y., and Olin, H. (2019). Frequency and...
revi

tage response of a wind-driven fluttering triboelectric nanogenerator. Sci. Rep. 9, 5343.

Park, K., Jeong, C.K., Ryu, J., Hwang, G.T., and Lee, K.J. (2013). Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv. Energy Mater. 3, 1539–1544.

Qian, J., and Jing, X. (2018). Wind-driven hybridized triboelectric-electromagnetic nanogenerator and solar cell as a sustainable power unit for self-powered natural disaster monitoring sensor networks. Nano Energy 52, 78–87.

Qin, Y., Wang, X.D., and Wang, Z.L. (2008). Microfibre-nanowire hybrid structure for energy scavenging. Nature 457, 809–810.

Quan, T., and Yang, Y. (2016). Fully enclosed hybrid electromagnetic-triboelectric nanogenerator to scavenge vibrational energy. Nano Res. 9, 2226–2233.

Quan, T., Wang, X., Wang, Z.L., and Yang, Y. (2015). Hybridized electromagnetic-triboelectric nanogenerator for a self-powered electronic watch. ACS Nano 9, 12301–12310.

Quan, T., Wang, Z.L., and Yang, Y. (2016). A shared-electrode-based hybridized electromagnetic-triboelectric nanogenerator. ACS Appl. Mater. Interfaces 8, 19573–19578.

Rodrigues, C., Gomes, A., Ghosh, A., Pereira, A., and Ventura, J. (2019). Power-generating footwear based on a triboelectric-triboelectric-piezoelectric hybrid nanogenerator. Nano Energy 62, 660–666.

Shi, B., Zhang, G., Jiang, W., Yan, L., Wang, X., Liu, H., Yao, Y., Li, Z., and Wang, Z.L. (2016). A self-powered self-power system with universal connectors based on hybridized nanogenerators. Adv. Mater. 28, 846–852.

Singh, H.H., and Khare, N. (2018). Flexible ZnO-PVDF/PTFE based piezo-tribo hybrid nanogenerator. Nano Energy 51, 216–222.

Sun, Y., Lu, Y., Li, X., Yu, Z., Zhang, S., Sun, H., and Cheng, Z. (2020). Flexible hybrid piezoelectric energy harvester with high power density workable at elevated temperatures. J. Mater. Chem. A 8, 12003–12012.

Wang, Z.L. (2017). On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20, 74–82.

Wang, Z.L., and Song, J.H. (2006). Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242–246.

Wang, Y., and Yang, Y. (2019). Superhydrophobic surfaces-based rediso-induced electricity from water droplets for self-powered wearable electronics. Nano Energy 56, 547–554.

Wang, S.H., Mu, X.J., Yang, Y., Sun, C.L., Gu, A.Y., and Wang, Z.L. (2015a). Flow-driven triboelectric generator for directly powering a wireless node. Adv. Mater. 27, 240–248.

Wang, X., Wang, S., Yang, Y., and Wang, Z.L. (2015b). Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS Nano 9, 4553–4562.

Wang, S., Wang, X., Wang, Z.L., and Yang, Y. (2016a). Efficient scavenging of solar and wind energies in a smart city. ACS Nano 10, 5697–5700.

Wang, S., Wang, Z.L., and Yang, Y. (2016b). A one-structure-based hybridized nanogenerator for scavenging mechanical and thermal energy by triboelectric-piezoelectric-pyroelectric effects. Adv. Mater. 28, 2881–2887.

Wang, X., Wang, Z.L., and Yang, Y. (2016c). Hybridized nanogenerator for simultaneously scavenging mechanical and thermal energies by electromagnetic-triboelectric-thermoelectric effects. Nano Energy 26, 164–171.

Wen, Z., Guo, H., Li, Z., Yeh, M.H., Wang, X., Deng, J., Wang, J., Li, S., Hu, C., Zhu, L., et al. (2016). Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator. ACS Nano 10, 6526–6534.

Wu, Y., Zhong, X., Wang, X., Yang, Y., and Wang, Z.L. (2014). Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano Res. 7, 1631–1639.

Wu, Y.C., Wang, X., Yang, Y., and Wang, Z.L. (2015). Hybrid energy cell for harvesting mechanical energy from one motion using two approaches. Nano Energy 11, 162–170.

Yang, Y., Guo, W.X., Pradel, K.C., Zhu, G., Zhou, Y.S., Zhang, Y., Hu, Y.F., Lin, L., and Wang, Z.L. (2012a). Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett. 12, 2833–2838.

Yang, Y., Lin, L., Zhang, Y., Jing, Q.S., Hou, T.C., and Wang, Z.L. (2012b). Self-powered magnetic sensor based on a triboelectric nanogenerator. ACS Nano 6, 10376–10383.

Yang, Y., Pradel, K.C., Jing, Q.S., Wu, J.M., Zhang, F., Zhou, Y.S., Zhang, Y., and Wang, Z.L. (2012c). Thermoelectric nanogenerators based on single Sb-doped ZnO micro/nanobelts. ACS Nano 6, 6984–6989.

Yang, Y., Zhou, Y.S., Wu, J.M., and Wang, Z.L. (2012d). Single micro/nanowire pyroelectric nanogenerators as self-powered temperature sensors. ACS Nano 6, 8456–8461.

Yang, Y., Zhang, H., Chen, J., Lee, S., Hou, T.C., and Wang, Z.L. (2013). Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy Environ. Sci. 6, 1744–1749.

Yang, J., Chen, J., Yang, Y., Zhang, H.L., Yang, W.Q., Bai, P., Su, Y.J., and Wang, Z.L. (2016). Broadband vibrational energy harvesting based on a triboelectric nanogenerator. Adv. Energy Mater. 4, 1301322.

Yoon, G.C., Shin, K.S., Gupta, M.K., Lee, K.Y., Lee, J.H., Wang, Z.L., and Kim, S.-W. (2015). High-performance hybrid cell based on an organic photovoltaic device and a direct current piezoelectric nanogenerator. Nano Energy 12, 547–555.

Zhang, K.W., and Yang, Y. (2016). Linear-grating hybridized electromagnetic-triboelectric nanogenerator for sustainably powering portable electronics. Nano Res. 9, 974–984.

Zhang, C., Tang, W., Han, C.B., Fan, F.R., and Wang, Z.L. (2014a). Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv. Mater. 26, 3580–3591.

Zhang, H.L., Yang, Y., Su, Y.J., Chen, J., Adams, K., Lee, S., Hu, C.G., and Wang, Z.L. (2014b). Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor. Adv. Funct. Mater. 24, 1401–1407.

Zhang, H.L., Yang, Y., Zhang, X.D., Su, Y.J., Zhou, Y.S., Hu, C.G., and Wang, Z.L. (2014c). Single-electrode-based rotating triboelectric nanogenerator for harvesting energy from tires. ACS Nano 8, 680–689.

Zhang, K., Wang, X., Yang, Y., and Wang, Z.L. (2015). Hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy for sustainably powering wearable electronics. ACS Nano 9, 3521–3529.

Zhang, B.B., Chen, J., Jin, L., Deng, W.L., Zhang, L., Zhang, H.T., Zhu, M.H., Yang, W.D., and Wang, Z.L. (2016a). Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 10, 6241–6247.

Zhang, K.W., Wang, Z.L., and Yang, Y. (2016b). Conductive fabric-based stretchable hybridized nanogenerator for scavenging biomechanical energy. ACS Nano 10, 4728–4734.

Zhang, K.W., Wang, S.H., and Yang, Y. (2017). A one-structure-based piezo-tribo-pyro-photoelectric effects coupled nanogenerator for simultaneously scavenging mechanical, thermal, and solar energies. Adv. Energy Mater. 7, 1601852.

Zhang, R.Y., Hummelgard, M., Ortegren, J., Olsen, M., Andersson, H., Yang, Y., and Olin, H. (2018a). Human body constituted triboelectric–thermoelectric nanogenerators as energy harvesters, code transmitters, and motion sensors. ACS Appl. Energy Mater. 1, 2955–2960.

Zhang, X.-S., Han, M., Kim, B., Bao, J.-F., Brugger, J., and Zhang, H. (2018b). All-in-one self-powered flexible microsystems based on triboelectric nanogenerators. Nano Energy 47, 410–426.

Zhang, D., Song, Y.D., Ping, L., Xu, S.W., Yang, D., Wang, Y.H., and Yang, Y. (2019a). Photo-
thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing. Nano Res. 12, 2982–2987.

Zhang, K.W., Wang, Y.O.H., and Yang, Y. (2019b). Structure design and performance of hybridized nanogenerators. Adv. Funct. Mater. 29, 1806435.

Zhang, R.Y., Hummelgard, M., Ortegren, J., Yang, Y., Andersson, H., Balliu, E., Blomquist, N., Engholm, M., Olsen, M., Wang, Z.L., et al. (2019c). Sensing body motions based on charges generated on the body. Nano Energy 63, 103842.

Zhao, K., Qin, Q.Q., Wang, H.F., Yang, Y., Yan, J.A., and Jiang, X.M. (2017a). Antibacterial triboelectric membrane-based highly-efficient self-charging supercapacitors. Nano Energy 36, 30–37.

Zhao, K., Wang, X., and Yang, Y. (2017b). Ultra-stable electret nanogenerator to scavenge high-speed rotational energy for self-powered electronics. Adv. Mater. Technol. 2, 1600233.

Zhao, K., Yang, Y., Liu, X., and Wang, Z.L. (2017c). Triboelectricity-enabled self-charging lithium-ion batteries. Adv. Energy Mater. 7, 1700103.

Zhao, X., Chen, B., Wei, G.D., Wu, J.M., Han, W., and Yang, Y. (2019). Polyimide/graphene nanocomposite foam-based wind-driven triboelectric nanogenerator for self-powered pressure sensor. Adv. Mater. Technol. 4, 1800723.

Zhao, K., Ouyang, B., Bowen, C.R., Wang, Z.L., and Yang, Y. (2020). One-structure-based multi-effects coupled nanogenerators for flexible and self-powered multi-functional coupled sensor systems. Nano Energy 71, 104632.

Zhong, X.D., Yang, Y., Wang, X., and Wang, Z.L. (2015). Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy 13, 771–780.

Zi, Y., Lin, L., Wang, J., Wang, S., Chen, J., Fan, X., Yang, P.-K., Yi, F., and Wang, Z.L. (2015). Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 27, 2340–2347.