Work-related injuries and illnesses account for an estimated $250 billion annually in medical expenses and indirect costs, such as lost earnings and benefits, and reduced productivity at home; these costs are 12% more than the cost of all cancers and 30% more than costs for diabetes (1). Traditional state-wide surveillance systems often rely on employer-reported data to describe work-related injury and illness, which underestimate the magnitude. Studies estimate that the Bureau of Labor Statistics’ Survey of Occupational Injuries and Illnesses (BLS SOII) undercount 20%–70% of cases compared with workers’ compensation, which has also been shown to underestimate cases (2,3). These surveillance systems also lack information on potential individual-level risk factors, such as health status and risk behaviors. Data were analyzed from the Washington State Behavioral Risk Factor Surveillance System (WA BRFSS) to demonstrate an opportunity to enhance current occupational health surveillance systems. During 2011–2014, 6.4% of Washington workers reported work-related injuries or illnesses during the previous year. Work-related injuries or illnesses were significantly associated with industry and occupation, male gender, lower socioeconomic status, chronic health conditions, and substance use. Because BRFSS does not rely on employer report and contains information on workers not available in traditional occupational health surveillance systems, it is a useful tool for identifying and examining work-related injury and illness.

BRFSS is a CDC-sponsored, statewide telephone survey conducted annually to collect information on health outcomes and behaviors. The sample includes adults aged ≥18 years in a private residence or college housing. Since 1995, the WA BRFSS has added questions* to collect information on industry and occupation. Trained coders assign industry and occupation codes to verbatim responses through automated and manual coding processes. During 2011–2014, WA BRFSS also collected work-related injury or illness information on working adults with a state-added question.† The response rates in Washington during this period ranged from 31% to 44%.

Among the 51,335 respondents to the 2011–2014 WA BRFSS, 25,493 (50.0%) were eligible to answer the work-related injury or illness question, including those currently employed for wages (20,028, 78.5%), self-employed (4,059, 15.9%), and out of work for <1 year (1,406, 5.5%). Among all eligible respondents, 24,650 (96.7%) participated in the optional work-related injury or illness module.

Associations between work-related injury or illness and select demographics, health conditions,§ and risk behaviors¶ were examined. Results were weighted to the adult population in Washington. Statistical significance was determined using Rao-Scott chi-square tests, at α=0.05.

During 2011–2014, an estimated 6.4% (190,076 annually) of employed Washington residents reported having a work-related injury or illness during the previous year (Table 1). The percentage of workers with work-related injuries or illnesses varied significantly by respondent’s reported industry and occupation, with the highest prevalences reported among workers in the Transportation and Warehousing (9.2%), and Construction industries (8.9%), and the Installation, Repair, and Maintenance (11.1%), Service (9.7%), and Transportation and Material Moving (9.6%) occupations (Table 1). The percentage of workers reporting work-related injury or illness was lowest among females (5.7%), married persons (5.4%), persons with ≥4 years of college (4.1%), and persons with an annual household income ≥$75,000 (4.4%) (Table 2).
The percentage of respondents reporting work-related injuries or illnesses was higher among persons with chronic health conditions, such as heart disease, depression, arthritis, blindness or difficulty seeing, and asthma, than among workers not reporting these conditions (Table 3). Reporting of these health conditions was not significantly higher among workers within high-risk industries and occupations (≥7 work-related injuries or illnesses reported per 100 workers) compared with workers in lower-risk (<7 per 100 workers) industries and occupations (data not shown).

The percentage of work-related injury or illness was significantly higher among respondents who reported use of pain killers to get high (15.9%) or marijuana (8.9%), being a current smoker (10.0%), and binge drinking (7.4%), compared with workers who did not report these behaviors (Table 3).

Discussion

This is the first study to demonstrate the utility of the BRFSS as an occupational health surveillance system by examining associations of work-related injuries or illnesses with selected worker demographics, health conditions, and behaviors. The associations reported here are corroborated elsewhere in the literature (4–7), further supporting the use of BRFSS as a potential surveillance tool. For example, the industries with the highest percentages of work-related injury or illness identified in this report are consistent with high-risk industries...
TABLE 2. Self-reported work-related injury or illness among employed adults, by demographic characteristics — WA BRFSS, Washington, 2011–2014

Characteristic	No. in sample	Weighted percent with work-injury/illness (95% CI) p value
Total	24,650	6.4 (5.9–6.8)
Sex		
Male	11,715	6.9 (6.3–7.6) 0.005
Female	12,935	5.7 (5.1–6.3)
Age group (yrs)		
18–24	1,286	6.2 (4.6–7.7) 0.045
25–34	2,906	7.0 (5.8–8.1)
35–44	4,474	5.7 (4.8–6.6)
45–54	6,356	6.7 (5.9–7.5)
55–64	6,958	6.7 (5.9–7.6)
≥65	2,408	3.7 (2.6–4.8)
Race/Ethnicity*		
White	20,401	6.3 (5.8–6.7) 0.111
Black or African American	405	8.8 (5.6–12.0)
Asian	545	4.6 (2.4–6.8)
Native Hawaiian/Other	408	5.4 (2.5–8.3)
Pacific Islanders		
American Indian/Alaskan Native	181	9.5 (2.6–12.8)
Other	247	9.3 (3.4–15.6)
Multiracial	490	9.6 (5.7–13.5)
Hispanic	1,684	6.5 (5.0–8.0)
Marital status		
Married	14,877	5.4 (4.9–5.8) 0.001
Divorced	3,481	9.6 (8.0–11.2)
Widowed	1,355	8.7 (6.1–11.3)
Separated	3,741	6.4 (5.3–7.5)
Never married	1,052	7.4 (5.4–9.5)
Children		
Yes	15,819	6.5 (5.9–7.1) 0.480
No	8,839	6.2 (5.5–6.8)
Education		
< High school diploma	1,067	8.1 (5.9–10.3) <0.001
High school graduate	4,706	7.2 (6.2–8.2)
College 1–3 yrs	7,192	7.5 (6.7–8.3)
College ≥4 yrs	11,648	4.1 (3.6–4.5)
Income (dollars)		
<20,000	1,745	7.2 (5.5–8.9) <0.001
20,000–<25,000	1,403	7.0 (5.4–9.2)
25,000–<35,000	1,994	8.5 (6.7–10.4)
35,000–<50,000	3,140	8.5 (7.0–9.9)
50,000–<75,000	4,399	6.7 (5.7–7.7)
≥75,000	9,829	4.4 (3.8–5.0)
Veteran status (ever)		
Yes	2,717	9.2 (7.7–10.7) <0.001
No	21,913	6.0 (5.6–6.5)
Sexual orientation		
Heterosexual	22,976	6.4 (5.9–6.8) 0.719
Homosexual, bisexual, or other	894	6.0 (4.0–8.8)

Abbreviations: CI = confidence interval; WA BRFSS = Washington State Behavioral Risk Factor Surveillance System.

* Race/ethnicity was coded into mutually exclusive categories.

TABLE 3. Self-reported work-related injury or illness among employed adults, by selected health and behavior characteristics — WA BRFSS, Washington, 2011–2014

Characteristic	No. in sample	Weighted percent with work-injury/illness (95% CI) p value
Total	24,105	6.3 (5.9–6.8)
Body mass index (BMI)		
Underweight and normal (BMI<25.0)	8,344	5.8 (5.0–6.5) 0.045
Overweight (25.0≤BMI<30.0)	8,611	6.5 (5.8–7.3)
Obese (BMI ≥30.0)	6,370	7.3 (6.4–8.1)
Coronary heart disease (ever)		
Yes	512	9.5 (5.9–13.2) 0.038
No	24,048	6.3 (5.9–6.8)
Diabetes (ever)		
Yes	1,937	7.6 (5.8–9.4) 0.125
No	22,684	6.3 (5.8–6.7)
Depression (ever)		
Yes	4,710	10.1 (8.8–11.4) <0.001
No	19,843	5.5 (5.0–5.9)
Arthritis (ever)		
Yes	5,554	10.4 (9.1–11.6) <0.001
No	18,959	5.5 (5.1–6.0)
Blind or serious difficulty seeing	2,649	10.6 (8.8–12.4) <0.001
No	21,757	5.9 (5.4–6.3)
Asthma (current)		
Yes	2,098	8.2 (6.7–9.8) 0.007
No	22,364	6.2 (5.7–6.7)
Average hours of sleep in 24-hour period (2013–2014 only)	3,090	9.4 (8.0–10.9) <0.001
<6	6,975	5.0 (4.4–5.7)
>6		
Use pain killer to get high (any use in past 30 days)	135	15.9 (6.5–25.2) 0.002
No	21,131	6.2 (5.8–6.7)
Marijuana use (any use in past 30 days)	1,428	8.9 (6.9–10.8) 0.002
No	19,758	6.1 (5.6–6.6)
Smoker (current)		
Yes	3,168	10.0 (8.6–11.4) <0.001
No	21,191	5.6 (5.2–6.1)
Binge drinking (male: ≥5drinks; female: ≥4 drinks, on any occasion)	4,169	7.4 (6.3–8.4) 0.023
No	19,852	6.1 (5.6–6.6)

Abbreviations: CI = confidence interval; WA BRFSS = Washington State Behavioral Risk Factor Surveillance System.

reported from other data sources, including Transportation and Warehousing; Construction; and Agriculture, Forestry, Fishing, Hunting, and Mining (4). Work injury and illness disparities by gender, education, and income described here replicate a body of evidence demonstrating higher unintentional injury risk among males and the relation of lower income and education attainment with overall poor health status (5). The WA BRFSS data presented in this analysis also reproduced important associations between several chronic conditions, such as
Summary

What is already known about this topic?

Work-related injuries and illnesses are frequent and have lasting negative economic and social consequences. Comprehensive surveillance is critical for identifying and evaluating effective control strategies and populations at risk.

What is added by this report?

Data from the Washington State Behavioral Risk Factor Surveillance System (WA BRFSS) were used to gather information on work-related injury or illness. During 2011–2014, 6.4% of Washington workers reported work-related injuries or illnesses during the previous year. Work-related injuries or illnesses were significantly associated with industry and occupation, male gender, lower socioeconomic status, chronic health conditions, and substance use.

What are the implications for public health practice?

Because BRFSS does not rely on employer report and contains information on workers not available in traditional occupational health surveillance systems, it is a useful tool for identifying and examining work-related injury and illness. BRFSS provides opportunities to enhance ability to track injury and illness trends, identify and describe disparities among workers by industry and occupation of employment, and generate hypotheses for control measures. Future research should consider further assessment of health status as a potential contributor to occupational injury risk.

The findings in this report are subject to at least five limitations. First, BRFSS findings are limited because of the survey’s cross-sectional design. This prevents identification of causal factors for work-related injury or illness and the ability to determine whether reported health conditions existed before, or resulted from a work-related injury or illness. Second, because responses are self-reported, the findings are also subject to recall and social desirability biases, which could result in differential recall of more severe or recent events. Third, the survey question used to collect reports of work-related injury or illness here prevents characterization by severity or distinguishing conditions. Fourth, workers’ or physicians’ definitions of a work-related injury or illness might differ from legally reportable definitions, so results are not directly comparable to state-level employer-reported data, such as the BLS SOII. Finally, BRFSS does not collect information on other factors known to cause work-related injuries and illnesses such as physical, chemical, biological or ergonomic hazards.

This report demonstrates the utility of the WA BRFSS as a statewide occupational health surveillance system, which unlike other current surveillance systems, collects work-related injury or illness data. The WA BRFSS identifies cases by worker-report and, therefore is not subject to the same underreporting biases present in systems that rely on physician or employer reports of injury and illness. The WA BRFSS also collects demographic, health status and behavior information on workers that is not available in other sources of occupational injury and illness data, allowing for more complete characterization of persons with recent work-related injuries and illnesses. The WA BRFSS could serve as a model for other states to include similar questions to collect work-related injury and illness data to enhance their occupational surveillance capabilities, and allow for opportunities to aggregate state data for evaluation of this outcome on a larger scale. Further research might help to determine if there is segregation of workers by their demographic, health, and behavior characteristics into high-risk industries and occupations, or if these characteristics are causally related to injury and illness. Assessment of health status and behaviors as potential contributors to occupational injury risk might inform future prevention activities, but does not mitigate the employer’s responsibility in providing a workplace free from hazards.

Acknowledgments

Sara Wuei, Safety and Health Assessment and Research for Prevention Program Washington State Department of Labor and Industries; Deborah Fulton-Kehoe, Department of Environmental and Occupational Health Services, University of Washington; Aaron Sussell, Taylor Shockey, CDC.

1Safety and Health Assessment and Research for Prevention Program, Washington State Department of Labor and Industries; 2Department of Health Services, University of Washington, Seattle, Washington.

Corresponding author: Jennifer L. Marcum, jennifer.marcum@lni.wa.gov, 360-902-4789.
References

1. Leigh JP. Economic burden of occupational injury and illness in the United States. Milbank Q 2011;89:728–72. https://doi.org/10.1111/j.1468-0009.2011.00648.x
2. Fan ZJ, Bonauto DK, Foley MP, Silverstein BA. Underreporting of work-related injury or illness to workers' compensation: individual and industry factors. J Occup Environ Med 2006;48:914–22. https://doi.org/10.1097/01.jom.0000226253.54138.1e
3. Wiatrowski WJ; Bureau of Labor Statistics. Examining the completeness of occupational injury and illness data: an update on current research. Monthly Labor Review. Washington, DC: US Department of Labor, Bureau of Labor Statistics; 2014. http://www.bls.gov/opub/mlr/2014/article/examining-the-completeness-of-occupational-injury-and-illness-data-an-update-on-current-research.htm
4. Bureau of Labor Statistics. Incidence rates of nonfatal occupational injuries and illnesses by industry and case types, Washington, 2014. Washington, DC: US Department of Labor, Bureau of Labor Statistics; 2015. http://www.bls.gov/iif/oshwc/osh/os/pr146wa.pdf
5. Office of Disease Prevention and Health Promotion. Healthy people 2010: understanding and improving health. 2nd ed. Washington, DC: U.S. Department of Health and Human Services, Office of Disease Prevention and Health Promotion; 2010. http://www.healthypeople.gov/2010/Publications
6. Kubo J, Goldstein BA, Cantley LF, et al. Contribution of health status and prevalent chronic disease to individual risk for workplace injury in the manufacturing environment. Occup Environ Med 2014;71:159–66. https://doi.org/10.1136/oemed-2013-101653
7. Hymel PA, Loeppke RR, Baase CM, et al. Workplace health protection and promotion: a new pathway for a healthier—and safer—workforce. J Occup Environ Med 2011;53:695–702. https://doi.org/10.1097/JOM.0b013e318238ee22
8. Ramchand R, Pomeroy A, Arkes J. The effects of substance use on workplace injuries. Santa Monica, CA: RAND Corporation, 2009. http://www.rand.org/pubs/occasional_papers/OP247.html
9. Wang D, Mueller K, Hashimoto D. Interstate variations in use of narcotics. Cambridge, MA: Workers Compensation Research Institute; 2011.