Egg Yolk Antibodies for Disease Prevention

Abstract

The general structure of the egg yolk antibody, containing of two light and two heavy chains, is comparable to that of mammalian immunoglobulins. Oral administration of specific egg yolk antibody is an attractive approach against gastrointestinal infection in humans and animals. The use of IgY as antibiotic-alternative therapy have advantages: (1) The production of IgY is a non-invasive and inexpensive method; (2) Handling of animal is easy; (3) Don’t need to bleeding of laboratory animals; (4) A laying hen is able to produce more than 20 g of IgY per year; (5) Eggs are normal dietary components and there is no risk of toxic side effects of IgY. The increasing number of antibiotic resistant bacteria confirm the need to find alternative to antibiotics such as IgY. Yolk antibodies have been shown in several studies to prevent bacterial and viral infections. The example of a successful prophylactic use of IgY is the treatment of diseases with specific IgY antibodies against Escherichia coli, Helicobacter pylori, Salmonella spp, Streptococcus mutans, Porphyromonas gingivalis, Pseudomonas aeruginosa, Candida albicans, rotavirus and coronaviruses.

Keywords: Egg yolk antibody; Prevention; Prophylactic; Pathogens bacteria; Diarrheal disease; Ovotransferrin avidin

Introduction

Diarrheal disease caused by viral and bacterial pathogens remains the main cause of mortality in children in the developing world. The role of the gastrointestinal tract-associated lymphoid tissue in the prevention of diarrheal disease is important. The gastrointestinal tract-associated lymphoid tissue is the production of specific immunoglobulin A (IgA). This immunoglobulin assists in protection against pathogens bacteria by inhibiting binding, preventing colonization and neutralizing toxins.

A hen egg is a storeroom of variable nutrients; carbohydrates, lipids, protein and other biologically active substance that are needed to produce a chick. In point of fact, when a fertilized egg is kept at 37°C in a humid environment for 21 days, this optimum environment for the growth of bacteria. Yolk of egg is a rich source of immunoglobulin. Egg yolks from immunized hens can easily be protected in the prevention of bacterial diarrheal disease. The avian egg contains all of the necessary nutrients and growth factors required for the developing embryo, including antibodies that are transported from the blood of the hen into the egg yolk to provide immunity to the chick.

The hen egg is protected against infection by lysozyme, ovotransferrin avidin, cystatin and ovomucin in egg white and phosbitin and antibody in egg yolk. Chicken antibodies are low-level of serum immunoglobulins can be transported to the egg yolk, for protection of future generations. Egg yolk antibodies, now called immunoglobulin Y (IgY). Similar in function to the IgG but immunoglobulin Y with different physicochemical properties and biological activity as mammalian IgG. The structure of immunoglobulin Y differs considerably from mammalian IgG [1].

The use of chickens for antibody production has increased. Advantage of using birds is that the antibodies can be harvested from the egg yolk instead of serum. Therefore, the antibody productivity of an egg-laying hen is much greater than that of a similar sized mammal. The mass of antibody that can be yielded from one egg of an immunized hen is as much as that can be obtained from 300 ml of rabbit blood. The use of chicken for the antibody production, display both a refinement and a reduction in animal use. The chicken is an excellent producer of antibodies. IgY is more highly localized in egg yolk than it is in serum of hen [2].

Chicken egg yolk antibodies have been applied successfully for scientific, therapeutic, prophylactic and diagnostic purposes. The antibody in egg yolk of immunized hens provides passive immunity to those who take the antibody orally. This oral passive immunization is a way of preventing gastrointestinal infection. This paper introduce egg yolk antibody (IgY) and applications of egg yolk antibodies in passive immunity [3].

Egg Antibody

The general structure of the IgY molecule, consisting of two light and two heavy chains, is comparable to that of mammalian immunoglobulins. Their light (18,660 kDa) and heavy (designated as upsilon, υ, 65,105 kDa) chains are also composed of V and C regions [4]. The light chain contains one V and one C domain, and the heavy chain contains one V domain and four C domains (C1a, C2, C3 and C4) [5]. The MW of IgY was found by mass spectrometry to be 167,250 Da (that of IgG is about 160,000 Da). Egg yolk immunoglobulins do not bind to bacterial Fc receptors and react with mammalian IgG or IgM, nor binding to the rheumatoid factor. The major differences observed between IgY and IgG are described in Table 1.

IgY has been successfully used in conventional immunoassay, immunocytochemistry, immunoprecipitation, immunohistochemistry, cell sorting and cell staining. IgY-based...
immunoassays are being used to measure the concentration of proteins via RIAs, ELISAs or other assays in basic research. Although IgY antibodies have also been shown to have advantages in different applications, such as diagnostics and antibiotic-alternative therapy but One of the most valorous and hopeful areas of IgY research is its use for passive immunization to treat and prevent human and animal diseases. The adherence ability of many bacterial pathogens is a major essential for the successful colonisation of an organism, it has been shown that specific IgY antibodies are able to inhibit the sticking of bacteria to the epithelial cells [6].

The use of specific IgY antibodies has been proven effective against a variety of intestinal pathogens, such as human and bovine rotaviruses, bovine coronavirus, enterotoxigenic Escherichia coli, Edwardsiella, Salmonella spp., Yersinia, Pseudomonas, and Staphylococcus. Therefore, IgY antibodies are a promising alternative for the treatment and prevention of enteric infections, and passive immunotherapy application. However, its application is partly limited by its sensitivity to human gastrointestinal conditions [7,8]. Effective protection against Salmonella enteritidis, Salmonella typhimurium, Campylobacter jejuni, Escherichia coli ETEC, bovine rotavirus and corona virus infections in mice, pig and calves has been obtained with the use of passively-administered egg yolk-derived antibodies [9].

Orally administered Yolk immunoglobulins are subjected to denaturation by the acidic pH of the stomach and degradation by proteases. The authors observed that part of the antibodies remain intact in stomach proteases (pepsin & trypsin) digests. The fragments of cleavage by pepsin and trypsin still have the ability to bind to the antigen and display neutralizing activity.

Eggs are normal dietary components and there is actually no risk of toxic side effects of yolk immunoglobulin. Use of eggs is accepted in most cultures. Powdered whole eggs or yolks have been used as an inexpensive alternative for the yolk immunoglobulin treatment of enteric diseases. The mean egg use is 0.5-1 egg in day. This amount of IgY is similar or higher than the amounts used in immunotherapy.

Table 1: Comparison of IgY and IgG antibodies.

Comparison	Mammalian IgG	Avian IgY
Animal	Mammal	Birds, reptiles, amphibia
Main sources	Plasma	Egg yolk
Molecular Weight	Whole: 150 kDa	Whole: 180 kDa
(SDS PAGE)	L chines: 22kDa ×2	L chines: 21kDa ×2
	H chines: 50kDa ×2	H chines: 70kDa ×2
Basic structure differences	Flexible hinge region, shorter Fc stem with 2 pairs of carbohydrate groups	Less Flexible hinge, longer Fc region with 3 pairs of carbohydrate group
Stability	Stable at pH 3-10, up to 70°C	Stable at pH 4-9, up to 65°C
Antibody titer to mammalian antigens	Frequently low	Frequently high
Binding to Protein A/Protein G	++ +	–
Binding to mammalian cell Fc receptor	++ +	–
Immunocomplexes activate mammalian complement system	++ +	–
Sustained antibody production	From 60th day in rabbits	From 30th day in chickens
Antibody production capacity	50–70ml sera/90 immunization day; 500–700mg of IgG	1 egg per day and 60 eggs/90 immunization days: 3–6g of IgY
Therapeutics	Well developed	To be further developed such as in antibiotic-alternative therapy
Applications	RIA, IRMA, ELISA, Western blot, FACS, etc.	RIA, IRMA, ELISA, Western blot, FACS, etc

Immunization

The protocols of hen immunization, using different adjuvants, volume and dose of antigen, way of injection, vaccination frequency and interval were described. For the first injection the antigen was emulsified in the complete Freund’s adjuvant and for two subsequent boosters in the incomplete adjuvant. Basically different immunizing protocols for each antigen and for each animal species have to be tested to find out which method induces the highest serum and egg yolk antibody titer. Usually 10-100µg of protein antigen in a final volume of 0.5-1ml is applied subcutaneously or intramuscularly in the breast muscle at two or three injection sites of 7-8 week-old chicken (0.1mg/dose/animal) [1].

Purification of IgY

Purification by saltwater

Akita and Nakai was modified the method for preparation of water-soluble fractions of yolk for the use of tap water as follows:
Aliquots (10 ml) of mixture yolks stored in 1:1 mixture with were further diluted 2-5 times with tap water, pH adjusted to 5.0 with 0.5 M HCl, and the mixture frozen in polypropylene centrifugation tubes at -20°C. After spontaneous thawing the aggregated egg yolk granules were sedimented by centrifugation at 13,500 g for 15 min at 4°C and water-soluble fraction collected. Conditions for the IgY precipitation with NaCl were optimized. To the aliquots (30ml) of yolk water fraction, solid NaCl was added to prepare samples containing up to 2 M NaCl. Each sample was divided into two parts and pH was adjusted with 0.5 M HCl to 4.0 or 7.2 to check the behavior at different pH and concentration combinations. Mixtures were stirred for 2 hrs at room temperature and then centrifuged at 3,700 g for 20 min at 4°C. Supernatants were discarded and the pellets dissolved in PBS (3ml). The purity and recovery of IgY in soluble fraction were monitored by the SDS-PAGE [6,3].

Purification by PEG

Polson introduced polyethylene glycol 6000 (PEG) precipitation method for IgY purification as a reference method. Briefly, an aliquot (100ml) of the mixed yolk was diluted (1:2) in PBS and precipitated with PEG to a final concentration of 3.5%. IgY were precipitated from the resulting supernatant using 12% PEG, then dissolved in PBS and re-precipitated with 12% PEG. Final IgY preparation was stored at 4°C [4,3].

Prevention and Treatment of Bacterial Infections

The oral administration of yolk antibodies specific for any of the causative agents of diarrhea has proven successful for treatment of gastrointestinal infections. Oral administration of IgY specific against Salmonella has been shown to prevent salmonellosis in calves. The IgY could protect against Salmonella infections [10].

Yolk preparations from chickens immunized with antigens of Salmonella have also been tested in mouse models of experimental salmonellosis. The group treated with specific IgY had a significantly higher survival rate than other groups that treated with normal egg yolk [11]. IgY antibodies have also been used to protect neonatal piglets against experimental enterotoxigenic Escherichia coli infections. The use of IgY specific against Cryptosporidium caused a significant parasite reduction in mouse model. Oral treatment with IgY specific against E. coli have also been shown to prevent diarrhea in rabbits and reduced the mortality. Oral administered yolk immunoglobulin have also been shown to protect suckling mice against bovine rotavirus induced diarrhea and protected against bovine coronavirus induced diarrhea in neonatal calves.

The protection against dental plaque formation was achieved with anti-Streptococcus mutans IgY. A mouth rinse with IgY antibodies specific against Streptococcus mutans has been used to reduce the establishment of these bacteria in dental plaque [12]. The egg yolk antibodies inhibited Streptococcus mutans adherence to saliva-coated hydroxyapatite discs and reduced the percentage of Streptococcus mutans per total streptococci. Other researchers also shown that gargling with specific IgY antibodies against Pseudomonas aeruginosa (anti-Pa IgY) prevents the colonization of these bacteria in the lungs of patients with cystic fibrosis [13]. Oral treatment with bovine anti rotavirus antibody resulted in a reduction of rotavirus associated diarrhea in newborn calves and reduced the infection rate in children [14]. Oral treatment with anti-human rotavirus IgY Antibodies resulted in a significant protective effect and was also effective [15]. The protective effects of anti-venom IgY against snake and scorpion toxins has been shown in animal [16,17]. The authors have successfully produced specific IgY antibodies against botulinum and ricin toxin, which have been used for neutralization [18]. The researchers shown that the prophylactic and therapeutic application of anti-SEB IgY completely protected rhesus monkeys against a lethal staphylococcal enterotoxin B (SEB) aerosol challenge. SEB is a potential biological warfare agent [19] (Table 2).

Table 2: Uses of IgY for passive immunization.

Agent	Effects of IgY	Reference
Escherichia coli	Protected against infection by E. coli and toxin of E. coli O157:H7	[20,21]
Salmonella spp.	Reduced rate of Salmonella-contaminated eggs and colonization	[22]
Eimeria spp.	Protected chicks against avian coccidiosis	[23]
Pseudomonas aeruginosa	Prevented or reduced colonization in lungs of cystic fibrosis patients	[13,24]
Helicobacter pylori	Reduced bacterial growth, gastric mucosal injury and Suppressed H. pylori infection	[25]
Porphyromonas gingivalis	Reduced levels of P. gingivalis of periodontitis patients	[26]
Streptococcus mutans	reduced the incidence and severity of dental caries	[27]
Edwardsiella tarda	Prevented and induced mortality in eels	[28]
Yersinia ruckeri	Reduced mortality and infection rates	[29]
Vibrio anguillarum	Protected against vibrio	[30]
Candida albicans	Reduced C. albicans colonization	[31]
Clostridium botulinum	Blocked activity of neurotoxin	[18,32]
Staphylococcus aureus	Protected monkeys from a lethal dose of SEB	[19]
Venom	neutralize pharmacological effects of venoms	[16,17]

Citation: Barati B, Ebrahimi F, Nazarian S (2016) Egg Yolk Antibodies for Disease Prevention. J Bacteriol Mycol Open Access 3(2): 00058. DOI: 10.15406/jbmoa.2016.03.00058.
Conclusion

Use of laying hens is a cost-efficient method for the production of large quantities of specific antibodies. Eggs are normal dietary components and thus there is practically no risk of toxic side effects of IgY. Oral immunotherapy with IgY antibodies is an attractive approach for treatment of gastrointestinal infections in humans and animals. The increasing number of antibiotic resistant bacteria emphasize the need to find alternative to antibiotics. Therapeutic IgY administration could reduce the clinical use of antibiotics, and so could lower the risk that bacteria will develop antibiotic resistance.

References

1. Schade R, Calzado EG, Sarmiento R, Chacana PA, Perunkiewicz Asplund J, et al. (2005) Chicken egg yolk antibodies (IgY)technology. A review of progress in production and use in research and human and veterinary medicine. Altern Lab Anim 33(2): 129-154.
2. Schade R, Zhang XY, Terzolo-HR (2007) Use of IgY antibodies in human and veterinary medicine. Bioactive Egg Compounds pp.213-22.
3. Chalghoumi R, Beckers Y, Portetelle D, The wis A (2009) Hen egg yolk antibodies (IgY), production and use for passive immunization against bacterial enteric infections in chicken. Biotechnol Agron Soc Environ 13: 295-308.
4. Sun S, Mo W, Ji Y, Liu S (2001) Preparation and mass spectrometric study of egg yolk antibody (IgY) against rabies virus. Rapid Commun Mass Spectrom 15(9): 708-712.
5. Zhao Y, Rabbani H, Shimizu A, Hammarstrom L (2000) Mapping of the chicken immunoglobulin heavy-chain constant region gene locus reveals an inverted alpha gene upstream of a condensed epsilon gene. Immunology 101(3): 348-353.
6. Rahman S, Nguyen S, Icatlo F, Umeda K, Kodama Y (2013) A novel solution for prevention and treatment of alimentary tract diseases. Hum Vaccines Immunotherapeutics 9(5): 1039-1048.
7. Kayaceticin S, Güreşçi S (2014) What is gastritis? What is gastropathy? How is it classified? Turk J Gastroenterol 25(3): 233-247.
8. Hatta H, Kapoor MP, Juneja LR (2008) Bioactive components in egg yolk. Egg Bioscience and Biotechnology, John Wiley Sons Inc, NJ, USA, pp. 185-237.
9. Karlsson M, Kolberg H, Larsson A (2004) Chicken IgY: utilizing the evolutionary advantage. World Poult Sci J 60(3): 341-347.
10. Dias da Silva W, Tambourgi DV (2010) IgY: A promising antibody for use in immunodiagnostic and in immunotherapy. Vet Immunol Immunopathol 135(3-4): 173-180.
11. Chalghoumi R, Thewis A, Beckers Y, Marq c, Portetelle D, et al. (2009) Adhesion and growth inhibitory effect of chicken egg yolk antibody (IgY) on Salmonella enterica serovars Enteritidis and Typhimurium in vitro. Foodborne Pathog Dis 6(5): 593-604.
12. Kruger C, Pearson SK, Koda yama Y, Vacca Smith, Bowen WH, et al. (2004) The effects of egg-derived antibodies to glucosyltransferases on dental caries in rats. Caries Res 38(1): 9-14.
13. Nilsson E, Larsson A, Olesen HV, W ejlæker PE, Kolberg H (2008) Good effect of IgY against Pseudomonas aeruginosa infections in cystic fibrosis patients. Pediatr Pulmonol 43(9): 892-899.
14. Vega C, Bok M, Chacana P, Saif L, Fernandez F, et al. (2011) Egg yolk IgY: protection against rotavirus induced diarrhea and modulatory effect on the systemic and mucosal antibody responses in newborn calves. Vet Immunol Immunopathol 142(3-4): 156-169.
15. Volk RN, Leister F, Wee SB, Miskuff R, Vonderfecht S (1998) Antibodies to rotaviruses in chicken’s eggs: a potential source of antiviral immunoglobulins suitable for human consumption. Pediatrics 81(2): 291-295.
16. Arausso AS, Lobato ZI, Chaves Ortegoui C, Velarde DT (2010) Brazilian IgY-Bothrops antivenom: studies on the development of a process in chicken egg yolk. Toxicon 55(4): 739-744.
17. Liu S, Dong W, Kong T (2010) Preparation and characterization of immunoglobulin yolk against the venom of Naja atra. Indian J Exp Biol 48(8): 778-785.
18. Pauly D, Dorner M, Zhang X, Hlinak A, Dorner B, et al. (2009) Monitoring of laying capacity, immunoglobulin Y concentration, and antibody titer development in chickens immunized with ricin and botulinum toxins over a two-year period. Poult Sci 88(2): 281-290.
19. Le Claire RD, Hunt RE, Bavari S (2002) Protection against bacterial staphylococcal enterotoxin B by passive vaccination. Infect Immun 70(5): 2278-2281.
20. Wang Q, Hou XJ, Cai K, Li T, Liu YN, et al. (2010) Passive protection of purified egg immunoglobulin administered against Shiga toxin 1 in mouse models. Can J Microbiol 56(12): 10031010.
21. Mahdavi AH, Rahmani HR, Nili N, Samie AH, Soleimanian Zad S, et al. (2010) Effects of dietary egg yolk antibody powder on growth performance, intestinal Escherichia coli colonization, and immunocompetence of challenged broiler chicks. Poult Sci 89(3): 484-494.
22. Rahimi S, Moghadam Shiraz Z, Zahrabi Salehi T (2007) Prevention of Salmonella infection in poultry by specific egg-derived antibody. Int J Poult Sci 6(4): 230-235.
23. Lee SH, Lillehoj HS, Park DW, Jang SI, Morales A, et al. (2009) Protective effect of hyperimmune egg yolk IgY antibodies against Eimeria tenella and Eimeria maxima infections. Vet Parasitol 163(1-2): 123-126.
24. Nilsson E, Kolberg H, Johannesson M, W ejlæker PE, Carlander D, et al. (2007) More than 10 years’ continuous oral treatment with specific immunoglobulin Y for the prevention of Pseudomonas aeruginosa infections: a case report. J Med Food 10(2): 375-378.
25. Malertheiner P, Megraud F, O Morain CA, John Atherton (2012) Management of helicobacter pylori infection—the Maastricht IV/Florence consensus report. Gut 61(5): 646-464.
26. Yokoyama K, Sugano N, Shimada T, Shofigur RA, Ibrahim el SM, et al. (2007) Effects of egg yolk antibody against Porphyromonas gingivalis gingipains in periodontitis patients. J Oral Sci 49(3): 201-206.
27. Dinesh MD, Uma MS, Anjali VM, Shanmugam V, Meenatchisundaram S, et al. (2013) Characterization and in vitro neutralization of Streptococcus mutans egg yolk antibodies (IgY). Int J Pharm Pharm Sci 5(2): 258-262.
28. Hatta H, Mabe K, Kim M (1994) Prevention of fish disease using egg yolk antibody. In: Sim JS & Nakai S (Eds.), Egg Uses and Processing Technologies, New Developments, pp. 241-249.
29. Lee SB, Mine Y, Stevenson RM (2000) Effects of hen egg immunoglobulin in passive protection of rainbow trout against Yersinia ruckeri. J Agric Food Chem 48(1): 110-115.
Egg Yolk Antibodies for Disease Prevention

30. Arasteh N, Aminirissehei A, Yousif A (2004) Passive immunization of rainbow trout (Oncorhynchus mykiss) with chicken egg yolk immunoglobulins (IgY). Aquaculture 231: 23-26.

31. Ibrahim el SM, Rahman AK, Isoda R, Umeda K, Van Sa N, et al. (2008) *In vitro and in vivo* effectiveness of egg yolk antibody against Candida albicans (anti-CA IgY). Vaccine 26(17): 2073-2080.

32. Trott DL, Yang M, Gonzalez J, Larson AE, Tepp WH, et al. (2009) Egg yolk antibodies for detection and neutralization of Clostridium botulinum type A neurotoxin. J Food Prot 72(5): 1005-1011.