کارکاه های آموزشی مرکز اطلاعات علمی جهاد دانشگاهی

کارکاه آنلاین
کاربرد نرم افزار SPSS در پژوهش

کارکاه آنلاین
اصول تنظیم قراردادها

کارکاه آنلاین
پروپوزال نویسی
Prevalence and morphological characterizations of *Linguatula serrata* nymphs in camels in Isfahan Province, Iran

Farid Rezaei1, Mousa Tavassoli1*, Moosa Javdani2

1Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran; 2Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.

Key words: *Linguatula serrata* Nymph Camel Isfahan Province Iran

Correspondance: Mousa Tavassoli, DVM, PhD Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. E-mail: mtavassoli2000@yahoo.com

Received: 26 February 2011
Accepted: 19 June 2011

Abstract

Linguatula serrata, well known as tongue worm; is an aberrant cosmopolitan parasite, which inhabits the canine respiratory system (final host). The discharged eggs infect many plant feeder animals including human causing visceral and nasopharyngeal linguatulosis which is known as “Marrara syndrome”. In current study, the prevalence of infection with *L. serrata* nymphs in mesenteric lymph nodes (MLNs) of slaughtered camels was investigated in Isfahan Province, Iran. The MLNs of 232 slaughtered camels, including 115 females and 117 males, were examined for *L. serrata* nymphs. Camels were categorized into four age groups, namely under six months, six months to two years, two to four years and greater than four years. Also, the morphometrics of the nymphs were measured using the classic parasitology methods. Results showed that 21.12% of examined camels were infected with *L. serrata*. Age and sex had no significant effect on the prevalence of this parasite in camels. The size of the different parts of nymphs’ body were recorded and evaluated. The infection rate to the nymphs of parasite in hemorrhagic and black-coloured lymph nodes were significantly (*P* ≤ 0.05) higher than the infection rate in normal-coloured nodes. Also, results showed that in soft lymph nodes, the infection rate was significantly (*P* ≤ 0.05) more than those of normal and hard nodes. A high prevalence of infection in camels suggests possibility of similar high rate of infection in other animals, and people in the investigated area. This, in turn, emphasizes the need for more preventive measures to reduce the risk of zoonotic outbreaks.

Introduction

Linguatula serrata, a cosmopolitan parasite, is a member of small group of parasite from phylum Pentastomida.1,2 Adult infects the nasal sinuses and nasopharynx of carnivorous mammal, especially Canidae and probably Hyaenidae and Felidae.3,4 A wide range of mammals are intermediate hosts for *L. serrata*, but herbivores such as cattle, goats, sheep, camels and other ruminants are the best hosts for development of parasite’s nymphal stages.5 Eggs containing fully developed larvae are discharged into the environment by nasal secretion and ingested by the intermediate hosts in which they develops to nymphal stage in the various organs, particularly in Mesenteric Lymph Nodes (MLNs).6-8 Man is occasionally infected with both adult and nymphal stages of *L. serrata*.9-11 Linguatulosis in humans has been reported from various parts of the world, particularly in the Middle-East, Africa, and America and in South-East Asia.12-17 Nasopharyngeal linguatulosis, known also as Halzoun or Marrara syndrome, is the common form of infection in man and is often produced following consumption of raw or undercooked infected viscera (liver, lung and lymph nodes) of infected animals.14,18,19 This parasite has been reported in people in Iran.20-23 Several studies have been carried out as regards the prevalence of *L. serrata* infection in animals including, dogs,9,12,26-28 camels,29-33 buffaloes,24,35 sheep,35-39 cattle,25,41 and goats.42-44

The adult females grow up to 130mm, while males reach only 20mm. They are also flat or annulated and have four hooks surrounding a central mouth.10 They keep attached at the wall of the respiratory system by means of their mouth hooks. Females excrete thousands (up to 5,000,000) eggs per day.10,24 These eggs, which contained fully developed larvae, are discharged from the definitive host’s nasopharyngeal secretions and then ingested by the plant feeder animals (including human). Nymphal stages of *L. serrata* in intermediate hosts grow up to 60mm and have
four hooks, a mouth, annular rings and spines. If these nymphs are eaten by the final hosts, the larvae invade the nasal system and reach maturity within 6-7 months and live for about 15 months.

This study was aimed to determine the prevalence of *L. serrata* nymphs in MLNs of camels (*Camelus dromedarius*) slaughtered in Isfahan Province, Central Iran. In addition, in this study morphological characterizations of collected nymphs from camels' MLNs were analyzed.

Materials and Methods

Lymph nodes of 232 slaughtered camels at the slaughterhouses of Isfahan Province were examined for *L. serrata* nymphs from April to October 2010. After determining the sex, camels were divided into four age groups (under 6 months, 6-24 months, 2-4 years and more than 4 years) using the eruption of permanent incisor teeth criteria as already described. At least, three MLNs for each animal and totally 928 nymphs were collected in PBS and transferred to the Parasitology Laboratory of Faculty of Veterinary Medicine of Urmia University. According to Tavassoli *et al.*, Lymph nodes were categorized based on their color (normal, red or hemorrhagic and black) and consistency (normal, soft and hard). After recording the gross appearance, each lymph node was cut longitudinally and examined using a dissecting microscope for *L. serrata* nymphs. The number of collected nymphs from each node was recorded and then nymphs stored in PBS at 4°C for further studies. The nymphal morphometrics including body length, body width, mouth, hooks, spines and annuli size and some other morphological characterizations were measured using the classic methods of parasitology. In this regard, 50 nymphs were evaluated and their morphological data have been recorded.

The Chi-Square test (SPSS version 17.0) was used to compare the relative frequency of infection among different age and sexes, and among different groups of lymph nodes based on color and consistency. *P* values of equal or less than 0.05 were considered statistically significant.

Results

The results showed that MLNs in 49 camels (21.12%) were infected with *L. serrata* nymphs. The number of collected nymphs from each infected lymph node varied from 1 to 29. Table 1 shows the distribution of infection in different age groups and sexes. Figures 1 and 2, show infection rates according to age and sex, respectively. Nymphs appeared tongue-shaped with an anterior swollen body and posterior narrow end. The mean length of nymphs' body was 4.86 mm (from 3.88 to 5.40 mm) and the mean size of the body width in apical part of nymphs was 1.04 mm (from 0.93 to 1.11 mm). The body width in the end part of nymphs was 0.31 mm at mean (from 0.28 to 0.38 mm).

The mouth flanked by two pairs of hooks that surrounded by separated suckers (Fig. 3A). Nymphs had segmented body with transversally striated spines and average of 42 per segment, at the posterior edge of each abdominal segment (Fig. 3B). The total number of abdominal segments observed in nymphs was 85. The results of morphometric characterizes of *L. serrata* nymphs are shown in Table 2 and Fig. 4.
10.40% of normal-colored and 77.60% of hemorrhagic (red) lymph nodes were infected with *L. serrata* nymphs. Also 89.60% of black lymph nodes were infected with nymphs of *L. serrata*. When lymph nodes ranked based on their consistency, 15.60% of normal, 98.00% of soft 29.10% of hard lymph nodes were found infected. Table 3 shows the infection rate of *L. serrata* nymphs in different lymph groups based on color and consistency.

Table 2. Morphological data of *L. serrata* nymphs collected from MLNs of camels (50 nymphs evaluated).

Measured Region	Minimum (µm)	Maximum (µm)	Average (µm)	SEM
Body length	3888.00	5400.00	4869.00	133.63
Maximum body width	936.00	1116.00	1044.00	59.45
Minimum body width	288.00	381.00	333.90	31.55
Intestine length	306.00	3996.00	3510.33	314.13
Intestine width	85.68	99.96	89.25	6.45
Mouth length	128.52	171.36	146.37	16.25
Mouth width	71.40	86.20	79.50	6.12
Hook diameter	108.00	128.52	116.91	5.42
Hook width	64.80	86.40	78.24	5.93
Total hook length	144.00	162.00	155.40	7.49
Inter segments space	39.60	64.80	55.57	10.70
Distance of mouth from apex	157.08	199.92	180.88	15.32
Distance of mouth from margin	285.60	357.00	304.68	28.77
Spine length	28.80	32.40	30.20	1.68
Spine width	7.20	9.10	7.90	0.81

*Standard error of the mean.

Table 3. Comparison of relative frequency of infection to *L. serrata* lymph nodes categorized based on their color and consistency.

Lymph nodes appearance	Number of examined lymph nodes	Total	Non-infected	Infected	Relative frequency of infection (%)
Color					
Normal	747	669	78	10.4	
Hemorrhagic	85	19	66	77.6	
Black	106	11	95	89.6	
Consistency					
Normal	772	651	121	15.6	
Soft	101	2	99	98	
Hard	55	39	16	29.1	

Discussion

The prevalence of linguatulosis in dogs has been determined in different part of Iran such as 76.20% in Shiraz, 65.50% in Shahre-Kord, and 76.47% in Fars province. In Bursa, Turkey, 20.00% of dogs have been reported infected. In recent study, from 232 examined camels, the parasite was found in MLNs of 49 camels, that was higher than the reports of Oryan et al. and Wahba et al. with infection rate of 7.5% and 4.9%, respectively. However, our data were less than that reported by Tajik et al. and Pourjafar et al. with infection rate of 75.00% and 35.00%, respectively. Therefore, our results showed that Isfahan Province is an endemic area of linguatulosis for camels, and probably for other ruminants and dogs. However, in camels under six months *L. serrata* nymphs only observed in one sample (4.00%). There was not any significant difference among different age groups. Similarly, there was no significant difference in the rate of infection between male and female camels. As camel meat is rather popular in central part of Iran such as Isfahan Province, the high rate of infection with the *L. serrata* nymphs in camels in this area clearly highlights the risk of transmission of the disease through consumption of raw or undercooked camel viscera to human beings. These results also show that infection rate in final hosts such as dogs must be high, and this is the other risk factor for human and ruminants’ linguatulosis. Furthermore, camels offal’s can transmit the infection to the final hosts and cause the life cycle of parasite continue in this area. Based on high prevalence of infection in camels, we supposed that the range of problems associated with linguatulosis in humans is higher than previously thought. Therefore, evaluation of prevalence of infection in human population is needed. In addition, a careful control and treatment strategy are needed for prevention of infections in both intermediate and final hosts of parasite.

In some studies, morphometric characteristics of *L. serrata* (adult and nymph) and other species of *Linguatula* were investigated. For example, SEM (Scanning Electron Microscope) studies of adult stage of *L. arctica* collected from reindeer and nymphal stage of *L. serrata* collected from MLNs of goats were studied. In other studies, some morphological data of nymphal stage of *Linguatula* spp.
were measured and recorded. For example the number of abdominal segments was reported to be in the range of 72-97 (mean = 82) in L. serrata and 186-232 (mean = 210) in L. multianulata. Also, body length of L. serrata nymph has been reported to be between 3.40-4.70 mm.50 In other study, the number on annuli was 85, body length was between 3.40-4.00 mm and average number of spines in each segment was 42 in collected nymphs from MLNs of slaughtered buffaloes.34 Pourjafar et al. reported similar data in nymphal stage of L. serrata collected from MLNs of slaughtered camels.32 In current study, the number of annuli (85) and body length (4.80 mm at mean) were in consistent with previous reports, the other morphological characterizes such as size of mouth, spines, hooks and intestine, the body width in apex and base part of nymphs, were analyzed in our survey (Table 2). However, our results showed that the length of nymphs was more variable (4869.00 ± 133.64 µm) than that of other measured factors in examined nymphs (Table 2).

Although the greater infection of MLNs, based on their colors and consistencies, found in this study was in comparable with results from previous study that conducted on sheep,37 they findings have not been reported in camels. Our results demonstrated that the rate of infection in hemorrhagic and black-colored MLNs was significantly ($P \leq 0.05$) more than that of in normal-colored ones. However, there was no significant difference ($P > 0.05$) between the infection rate in hemorrhagic and block-colored MLNs. Statistical analysis revealed that the relative frequency of infection in soft lymph nodes was significantly ($P \leq 0.05$) higher than those in normal and hard lymph nodes; and hard lymph nodes were more frequently infected than normal ones ($P \leq 0.05$). The results from this research suggest that presence of such gross changes in the color and consistency of the MLNs could be considered as an indication of infection of nymphs with L. serrata and elimination of such lymph nodes is a necessary step to interrupt the life cycle of parasite.

Acknowledgments

This project was funded by the Urmia University. We also thank Mr. Armen Badali, Mr. Ako Shabrandi and Mr. Farhad Farhangpajooh for their technical support.

References

1. Gosling PJ. Dictionary of Parasitology. 1st ed. Boca Raton: CRC Press 2005; 209.
2. Muller R. Worm and Human Diseases. 2nd ed. Wallingford: CABl Publishing Co. 2002; 240-242.
3. Khalil GM. Incidence of Linguatula serrata infection in Cairo mongrel dogs. J Parasitol 1970; 56: 458.
4. Riley J. The biology of Pentastomids. Adv Parasitol 1986; 25: 45-128.
5. Alcala-Canto Y, Alberti-Navarro A, Ibbara-Velarde F. Serin protease activity demonstrated in larval stage of the Pentastomid Linguatula serrata. Parasitol Res 2007; 100: 1011-1014.
6. Berger SA, Marr JS. Human Parasitic Diseases Source Book. Sudbury: Jones & Bartlett Publishers, 2006; 294.
7. Khalil GM, Schacher JF. Linguatula serrata—in relation to halzoun and the marrara syndrome. Am J Trop Med Hyg 1965; 15: 736-746.
8. Soulsby EJL. Helminths Arthropods and Protozoa of Demestocated Animals, 7th ed. London: Bailliere Tindall, 1982; 497-498.
9. Oryan A, Sadjadi SM, Mehrabani D, et al. The status of Linguatula serrata infection of stray dogs in Shiraz, Iran. Comp Clin Pathol 2008; 17: 55-60.
10. Mehlborn H. Encyclopedia of Parasitology. 3rd ed, New York: Springer 2008; 120-122.
11. Symmers WS, Valteris K. Two cases of human infestation by larvae of Linguatula serrata. J Clin Pathol 1950; 3: 212-219.
12. Gardiner CH, Dyke JW, Shirley SF. Hepatic granuloma due to a nymph of Linguatula serrata in a woman from Michigan: a case report and review of the literature. Am J Trop Med Hyg 1984; 33: 187-189.
13. Baird JK, Kassebaum LJ, Ludwig GK. Hepatic granuloma in a man from the North of America caused by a nymph of Linguatula serrata. Pathol 1988; 20: 198-199.
14. El-Hassan AM, Eltoum IA, El-Asa BMA. The Marara syndrome: isolation of Linguatula serrata nymph from a patient and the viscera of goats. Trans R Soc Trop Med Hyg 1991; 85: 309.
15. Yagi H, El-Bahari S, Mohamed HA, et al. The Marrara syndrome: a hypersensitivity reaction of the upper respiratory tract and buccopharyngeal mucosa to nymphs of Linguatula serrata. Acta Trop 1996; 62: 127-134.
16. Lazo RF, Hidalgo E, Lazo JE, et al. Ocular linguatulosis in Ecuador: A case report and morphometric study of the larva of L. serrata. Am J Trop Med Hyg 1999; 60: 405-406.
17. Acha PN, Szyfres B. Pentastomosis. In: Acha PN, Szyfres B. Eds. Zoonosis and communicable diseases common to man and animals (parasitosis). 3rd ed, Washington, D.C: Scientific and technical publication, 2003; 345-380.
18. Beaver PC, Jung ROC, Cup EW. Crustacea, linguatulid, millipeds, centipeds, scorpions, spiders, ticks and mites. In: Beaver PC, Jung ROC, Cup EW. Eds. Clinical Parasitology, 9th ed. Philadelphia: Lea and Febiger 1984; 572-573.
19. Drabick JJ. Pentastomiasis. Rev Infect Dis 1987; 9: 1087-1094.
20. Hodjati MH, Naghili B. Report of a case with nasopharyngeal pentastomiasis from West Azerbaijan. Med J Tabriz Univ Med Sci 1987; 23: 42-50.
21. Fata A, Elahi MR, Berenji F, et al. Pentastomiasis and report of the first case of Halazoun syndrome in Khorasan Province. Med J Mashhad Univ Med Sci 1994; 37: 137-142.

22. Sadjjadi SM, Ardehali SM, Shojaei A. A case report of Linguatula serrata in human pharynx from Shiraz, Southern Iran. Med Islamic Rep Iran 1998; 12: 193-194.

23. Maleky F. A case report of Linguatula serrata in human throat from Tehran, Central Iran. Ind J Med Sci 2001; 55: 439-441.

24. Tajik H, Tavassoli M, Javadi S, et al. The prevalence rate of Linguatula serrata nymphs in Iranian River Buffalo. Asian J of Anim and vet Adv 2008; 3 (3): 174-178.

25. Hami M, Naddaf SR, Mobedi I, et al. Prevalence of Linguatula serrata infection in domestic bovids slaughtered in Tabriz abattoir, Iran. Iranian J Parasitol 2009; 4(3): 25-31.

26. Oryan A, Sadjjadi SM, Rezaei M, et al. Prevalence of Linguatula serrata in stray dogs of Shiraz. In Proceedings: The 2nd National Congress of Parasitic diseases. Tehran, Iran. 1997; 176.

27. Tavassoli M, Javadi S, Hadian M. Canine linguatulosis in Urmia, West Azarbaijan of Iran. In Proceedings: WSAVA FECAVA Voorjaarsdagen Congress, The Netherlands. 2000; 528.

28. Meshgi B, Asgarian O. Prevalence of Linguatula serrata infestation in stray dogs of Shahrekord, Iran. J Vet Med 2003; B 50: 466-467.

29. Mobedi I, Bazargani T, Mohaddess A, et al. Survey of condemned organs and study of parasites of camel in slaughterhouses of Tehran. In Proceedings. Scientific Seminar of the Veterinary Organization, vol 1. Tehran 1988; 1-20.

30. Oryan A, Moghadar N, Hanifepour MR. Arthropods recovered from the visceral organs of camel with special reference to their incidence and pathogenesis in Fars Provinces of Iran. Indian J Anim Sci 1993; 63: 290-293.

31. Tajik H, Tavassoli M, Khani H, et al. Prevalence of Linguatula serrata nymphs in slaughtered camels of Iran. J Camel Prac Res 2007; 14(1): 69-71.

32. Pourjafar M, Azizi H, Darabi S, et al. The prevalence of nymphal stage of Linguatula serrata in camels (Camelus dromedaries) in Najaf-Abad, Iran. J Camel Prac Res 2007; 14(2): 171-173.

33. Shakerian A, Shekarforoush SS, Ghafari-Rad H. Prevalence of Linguatula serrata nymphs in Najaf-Abad, Iran. Research in Vet Sci 2008; 44: 243-245.

34. Sisakumar P, Sankar M, Nambi PA et al. The occurrence of nymphal stage of Linguatula serrata in water buffaloes (Bubalus bubalis): Nymphal morphology and lymph node pathology. J Vet Med 2005; A52: 506-509.

35. Esmail-Nia K, Hadizadeh-Moalem S, Derakhshanfa A, et al. A study on the prevalence of Linguatula serrata infestation in small ruminants of Mazandaran Province in babol abattoir. Pajohesh and Sazandegi 2000; 54: 94-95.

36. Shekarforoush SS, Razavi SM, Izadi M. Prevalence of Linguatula serrata nymph in sheep in Shiraz, Iran. Small Rumin Res 2004; 52: 99-101.

37. Tavassoli M, Tajik H, Dalir-Naghadeh B, et al. prevalence of Linguatula serrata nymphs and gross changes of infected mesenteric lymph nodes in sheep in Urmi, Iran. Sml Rumin Res 2007; 72: 73-76.

38. Ravindran R, Lakshmanan B, Ravishankar C, et al. Prevalence of Linguatula serrata in domestic ruminants in South India, Southeast Asia. J Trop Med Public Health 2008; 39(5): 808-812.

39. Nourollahi-Fard SR, Kheirandish R, Nourozi-Asl E, et al. Mesenteric and mediastinal lymph node infection with Linguatula serrata nymphs in sheep slaughtered in Kerman slaughterhouse, Southeast Iran. Trop Anim Health Prod 2011; 43: 1-3.

40. Tajik H, Tavassoli M, Dalir-Naghadeh B, et al. Mesentric lymph nodes in infection with Linguatula serrata nymphs in cattle. Iranian J Vet Res Univ Shiraz 2006; 7: 82-85.

41. Nourollahi-Fard SR, Kheirandish R, Nourozi-Asl E, et al. The prevalence of Linguatula serrata nymphs in mesenteric lymph nodes in cattle. Am J Anim Vet Sci 2010; 5(2): 155-158.

42. Saiyari M, Mohammadian B, Sharma RN. Linguatula serrata (Forlich 1789) nymphs in lungs of goats in Iran. Trop Anim Health Prod 1996; 28: 312-314.

43. Razavi SM, Shekarforoush SS, Izadi M. Prevalence of Linguatula serrata nymph in goats in Shiraz, Iran. Small Rumin Res 2004; 54(3): 213-217.

44. Nourollahi-Fard SR, Kheirandish R, Nourozi-Asl E, et al. The prevalence of Linguatula serrata nymphs in goats slaughtered in Kerman slaughterhouse, Kerman, Iran. Vet Parasitol 2010; 171: 176-178.

45. Curraisson G. Le chameau Estses maladies. Paris: Vigotfreres 1947; 188-237.

46. Akyol CU, Coskun SZ, Omez G et al. Linguatula serrata in Bursa strain dogs and its importance from the point of public health. Turkije Parazitoloji Dergissi 1995; 19(2): 261-271.

47. Wahba AA, Shehab GJ, El-Refaii MAH. Some parasitological and pathological studies on two camel parasites, Dicrocoelium dendriticum (rudolphi, 1819) and Linguatula serrata (Frolich, 1789) in Egypt. Assiat Vet Med J 1997; 36(72): 153-156.

48. Nikande S, Saari S. A SEM study of the reindeer sinus worm (Linguatula arctica). Rangifer 2006; 26(1): 15-24.

49. Banaja AA. Scanning electron microscopy examination of larval Linguatula serrata Frolich (Linguatulidae: Pentastomida). Zeitschrift Fur Parasitenkunde 1983; 69(2): 271-277.

50. Sachs R, Rack G, Woodford MH. Observation on Pentastomids infestation of East African game animals. Bull Epizoot Dis Afr 1973; 21: 401-409.
کارگاه های آموزشی مرکز اطلاعات علمی جهاد دانشگاهی

کارگاه آنلاین اصول تنظیم قراردادها
کارگاه آنلاین پرورش ال نویسی
کارگاه آنلاین کاربرد نرم افزار SPSS در پژوهش
سرویس ترجمه تخصصی
لوازم
กลาง
مرکز اطلاعات علمی
سامانه ویرایشی
فیلم های آموزشی
سرویس های ویژه ویژه