Accurate tumor staging is essential for dogs and cats affected by neoplasia.1–9 Lymph node evaluation is an important initial step in the management of these patients, providing accurate prognostic information, and helps to guide treatment.1–9 Many studies3–9 have revealed that lymph node size as assessed by palpation or advanced diagnostic imaging correlates poorly with the presence or absence of tumor metastasis. Cytologic examination of cells aspirated from a lymph node is a readily available, inexpensive diagnostic procedure that has good sensitivity and specificity for detecting neoplastic cell infiltration. However, fine-needle aspiration of a palpable lymph node is easier, compared with aspiration of nonpalpable lymph nodes.10,11 Despite good sensitivity and specificity, cytologic examination may still yield inaccurate results mainly because of the small amount of aspirated material and the inability to evaluate tissue structure and organization.3–8,11–13 As such, neoplastic cell infiltration of lymph nodes may not be determinable. Noninvasive techniques for identifying neoplastic cells in lymph nodes, such as contrast-enhanced ultrasonography and CT, sonoelastography, and lymphoscintigraphy, have been investigated, but histologic examination of lymph node tissue remains the most accurate method, especially in cases of micrometastasis.7,14–17 Sentinel (the first lymph node to which tumor cells are most likely to spread from a primary tumor) or regional lymphadenectomy and histologic examination of the excised lymph nodes allow for identification of overt metastasis, small metastatic aggregates, and micrometastatic foci, especially when examination includes application of

Ultrasound-guided placement of an anchor wire or injection of methylene blue to aid in the intraoperative localization and excision of peripheral lymph nodes in dogs and cats

Matteo Rossanese, DVM, MSc1*; Alessio Pierini, DVM, PhD2; Guido Pisani, DVM2; Alistair Freeman, BVM&S, PhD2; Rachel Burrow, BVetMed1; Malcolm Booth, BVSc1; Veronica Marchetti, DVM, PhD3; Riccardo Finotello, DVM, PhD1

1Department of Small Animal Clinical Science, Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Neston, Liverpool, UK
2Centro Veterinario Dott.ri Pisani-Carli-Chiodo, Luni, La Spezia, Italy
3Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa, Italy
*Corresponding author: Dr. Rossanese (matteo.rossanese@gmail.com)

OBJECTIVE
To evaluate ultrasound-guided placement of an anchor wire (AW) or injection of methylene blue (MB) to aid in the intraoperative localization of peripheral lymph nodes in dogs and cats.

ANIMALS
125 dogs and 10 cats with a total of 171 lymphadenectomies.

PROCEDURES
Medical records of dogs and cats that underwent peripheral lymphadenectomies with or without (N) the AW or MB localization technique were reviewed. Data retrieved included clinical, surgical, and histologic findings. The proportions of successful lymphadenectomies, lymph node characteristics, and complications among the 3 groups were analyzed.

RESULTS
143 (84%) lymph nodes were successfully excised. Lymphadenectomy success was significantly affected by the localization technique, with 94% for group AW, 87% for group MB, and 72% for group N. Lymph node size was smaller in groups AW and MB, compared with group N. Duration of lymphadenectomy was shorter in group AW, compared with groups MB and N, and in group MB, compared with group N. Intra- (7%) and postoperative (10%) complications and final diagnosis did not significantly differ among groups.

CONCLUSIONS AND CLINICAL RELEVANCE
Both lymph node localization techniques were highly successful and reduced surgery time, compared with unassisted lymphadenectomy. Specifically, these techniques were effective for localization of normal-sized and nonpalpable lymph nodes and were efficient and practical options for peripheral lymphadenectomies, particularly for those that were small or nonpalpable.
Early detection of lymph node metastasis in people with various cancers is associated with a decreased risk of nodal recurrence and distant metastasis and an earlier start of chemotherapy, thus leading to a survival benefit. \(^2,5,6\) The evidence for this association in dogs and cats is weak, although tumor staging that includes lymph node evaluation is routinely requested by many veterinary oncologists. \(^1,4–8\) Excision of nonpalpable or normal-sized regional lymph nodes can be challenging and may increase surgery time and patient morbidity and lead to extensive surgical dissection and ultimately unsuccessful lymph node localization. \(^5,6,9\) In addition, not all peripheral lymph nodes are readily accessible owing to their anatomic location, their size, or the patient’s conformation. \(^5,9,13\) In human medicine, different lymph node localization techniques, such as the use of methylene blue (MB) and anchor wire (AW), for tissue biopsy or lymphadenectomy have been widely implemented. \(^2,18,19\)

MB is a small-molecular-weight dye that is successfully used as a contrast-enhancing agent for the identification of the thoracic duct and for sentinel lymph node mapping in dogs and cats. \(^20–23\) AW localization uses needles that contain a hooked wire and are placed with ultrasound guidance to help to localize nonpalpable breast lesions or deeply located lymph nodes in people. \(^18,24–26\) When the needle is positioned in or near a lymph node, the hooked wire is extruded from the needle and anchored in place to guide the surgeon during lymph node dissection. \(^24,26\) Recently, this technique was used to easily localize inguinal lymph nodes in 4 dogs without perioperative complications. \(^27\)

The objective of the present study was to compare the outcomes of regional lymphadenectomy between the MB and AW lymph node localization techniques and between these techniques and unassisted lymph node localization. The hypotheses were that the use of the MB or AW localization technique would be associated with greater success of lymphadenectomy, compared with unassisted localization; that AW would be associated with greater success of lymphadenectomy, compared with MB; and that the duration of lymphadenectomy and the size of a lymph node associated with the MB or AW localization technique would be less, compared with unassisted localization.

Materials and Methods

Study design and animal eligibility criteria

This retrospective study was approved by the University of Liverpool (protocol No. VREC933) and University of Pisa (protocol No. 48/2019) Research Ethics Committees. The medical records from the University of Liverpool Small Animal Teaching Hospital and Centro Veterinario Dott.ri Pisani-Carli-Chiodo were searched for dogs and cats that had undergone excision of ≥1 peripheral lymph nodes between January 2015 and March 2020. Data retrieved included signalment, body condition score (range, 1 to 9), primary tumor histotype, number of excised lymph nodes and their anatomical locations, presence of palpable peripheral lymphadenomegaly (determined through comparison with the contralateral or other lymph nodes), diagnostic imaging used for tumor staging at the time of the initial examination, lymph node diameter determined via diagnostic imaging, duration of preparation, results of histologic examination of the excised lymph nodes, intra- and postoperative complications, and any further surgical intervention or medical treatment. Complications were classified as minor, defined as those that did not require additional surgical or medical treatment to resolve, or major, defined as those that required further surgical or medical treatment to resolve. Lymphadenectomy was performed for diagnostic or therapeutic purposes for all animals. The lymph node to be excised was determined on the basis of lymph node size at the time of physical examination, location of the primary tumor, nodal appearance in diagnostic radiographic or ultrasonographic images, previous results of lymph node cytologic examination, results of (sentinel) lymph node mapping by use of lymphangiography, and site of anatomic drainage when lymphangiographic mapping was not performed. Successful lymphadenectomy was defined as accurate lymph node localization and excision as confirmed by histologic examination.

For an animal to be included in this study, each lymph node had to be excised with a separate surgical approach from that for the excision of the primary tumor or the other lymph nodes and had to have a minimal follow-up period of 14 days. For animals that underwent many lymphadenectomies, each lymph node was included as 1 case only if it was from a different lymphoid center. A lymph node was also considered as a new case if lymphadenectomies were performed at other time points because of lymph node changes that were noted during tumor restaging or when another tumor was diagnosed. Animals were excluded if a lymphadenectomy was performed through the same surgical field as another lymph node (ie, lymph nodes were from the same lymphoid center or a ventral approach was used for bilateral cervical lymphadenectomies) or the primary tumor or a lymph node was included in the tissue excised with the primary tumor (eg, limb amputations and radical mastectomies). Popliteal lymphadenectomies were not included in this study because assisted localization was usually unnecessary in our experience.
Localization techniques

The patients were anesthetized, their hair was clipped, and their skin was aseptically prepared prior to the use of any localization technique; preoperative ultrasonography was performed aseptically approximately 15 minutes before surgery by a board-certified radiologist or an experienced ultrasonographer, with the patient positioned for optimal access to the desired lymph node. Patients were grouped on the basis of the localization technique used as follows.

Group N (unassisted localization)—Unassisted localization and surgeon-requested preoperative ultrasonography were used to determine the size and position of the regional lymph node.

Group MB (localization with MB)—On the basis of a lymph node’s location and its depth and on the patient’s size and body condition score, 0.1 to 0.5 mL of a 1% aqueous solution of MB was aseptically injected with a 23- to 27-gauge needle and a 1-mL syringe into the lymph node or perinodal tissue with ultrasound guidance. If the surgeon requested, an MB track from the lymph node to the skin was created by depositing approximately 0.01 mL of MB every few millimeters as the needle was removed from the lymph node to serve as a guide for surgical dissection. Animals that had peritumoral MB injection for sentinel lymph node identification were excluded.

Group AW (localization with AW placement)—The ultrasound probe was positioned above the lymph node. With an aseptic technique and ultrasound guidance, a 20-gauge, 70-mm localization needle (IM-IMX, 01M2007; Biomedical Srl) was passed immediately adjacent to or in a lymph node (Supplementary Figure S1). The point of introduction of the wire guide was agreed to with the surgeon on the basis of the planned surgical approach, or the needle was introduced perpendicular to the skin over the lymph node as close as possible to the intended site of the surgical incision. The beveled needle tip was positioned centrally in or adjacent to the lymph node. The wire component protruded beyond the base of the needle and was used to gently push the hook out of the needle when the needle tip position was satisfactory. The hook was deployed by fixing the needle firmly with one hand and gently advancing the wire with the other hand until a click was audible or palpable or the black mark on the wire was no longer visible, indicating that the AW had been deployed. At that point, the hook wire was anchored in the tissue and could not be retracted. The needle was removed over the wire until the thread extending from the tip of the hook wire was visible on the skin surface. The ultrasound probe was positioned again over the lymph node to verify the correct placement of the AW, and the wire was trimmed approximately 2 cm from the skin at the insertion site.

Surgical approach

After ultrasonography, each patient was transferred to the operating room and skin preparation with an alcohol-based solution was repeated over the surgical field. Lymphadenectomy was performed by an experienced surgeon or by a small animal surgery resident under direct supervision by an experienced surgeon and, where a localization technique was used, the procedure was performed before excision of the primary tumor in all patients in the AW group and in most patients in the MB group. The surgical procedure for each animal in each group was as follows.

Group N—The skin was incised over the lymph node, and a combination of blunt and sharp dissection and electrosurgery was used to identify and excise the lymph node.

Group MB—The skin was incised over the lymph node or where the MB track was visible on the skin. Careful blunt and sharp dissection was used to trace the MB track or to locate the MB stain within the lymph node or perinodal tissue.

Group AW—The skin was incised at the exit site of the wire. A combination of blunt and sharp dissection was used to follow the wire until the lymph node was located.

Once the lymph node was located, the associated vasculature was coagulated or ligated, and without disrupting its capsule, the lymph node was excised. Closure of the surgical site was routine.

Statistical analysis

Statistical analyses were performed with commercially available software (Excel version 14.00 2011 [Microsoft Corp] and SPSS version 26.0 [IBM Corp]). Descriptive statistics were reported for all variables. The Shapiro-Wilk test confirmed that the data were not normally distributed (P < 0.001), so the data were reported as median and range. Assessed continuous explanatory variables were age, body weight, lymph node width, and duration of lymphadenectomy. Assessed categorical variables were species, sex, neuter status, body condition score, presence of palpable lymphadenomegaly, occurrence of intra- and postoperative complications, successful lymphadenectomy, and histologic diagnosis (metastatic vs nonmetastatic disease).

A Kruskal-Wallis H test was used to determine whether any significant association existed between the continuous variables and the localization techniques, and a χ² test was used to determine whether any significant association existed between the categorical variables and the localization techniques. When a significant association was confirmed, the Fisher exact test for categorical variables and the Mann-Whitney U test for continuous variables were used to characterize the results. Values of P < 0.05 were considered significant.

Results

A total of 171 peripheral lymphadenectomies from 125 dogs and 10 cats met the inclusion criteria. Mixed breed (n = 25 [20%]) was the most common
type of dog and domestic shorthair (7 [70%]) was the most common type of cat. Patient characteristics, physical examination findings, lymph node characteristics, lymph node localization techniques, duration of lymphadenectomy, and perioperative complications are summarized in Table 1. Age, body weight, neuter status, sex, species, and body condition score did not significantly differ among the groups.

Lymphadenomegaly was more common in group N than in groups MB (P = 0.038) and AW (P = 0.012), whereas the frequency of lymphadenomegaly did not significantly differ between groups MB and AW (Supplementary Table S1).

Table 1—Patient characteristics, physical examination findings, lymph node characteristics, duration of lymphadenectomy, and perioperative complications associated with 171 lymphadenectomies in 125 dogs and 10 cats classified by lymph node localization method, unassisted localization (N), methylene blue (MB) injection, or anchor wire (AW) placement.

Variable	Group N (n = 57)	Group MB (n = 67)	Group AW (n = 47)	P value
Species, No. (%)	Dog 46 (55)	48 (62)	31 (42)	0.361
Cat 2 (2)	4 (5)	4 (5)		
Sex, No. (%)	Spayed females 24 (21)	32 (28)	17 (12)	0.490
Neutered males 24 (19)	20 (15)	18 (14)		
Age (mo)*	98 (45–168)	108 (27–228)	100 (37–178)	0.167
Body weight (kg)*	22.4 (16.6–48.2)	20.9 (26.5–51.5)	23.3 (31–51)	0.130
Body condition score†	5 (3–8)	6 (3–9)	6 (3–8)	0.319
Large lymph nodes, No. (%)	19 (33)	12 (18)	5 (11)	0.026
Lymph node width (mm)*	8 (3–40)	6 (2.7–30)	5 (2–30)	< 0.001
Duration of lymphadenectomy (min)†	32 (15–95)	25 (15–65)	15 (4–35)	< 0.001
Lymph node excision, No. (%)	41 (72)	58 (87)	44 (94)	0.009
Mandibular 18/19 (95)	16/16 (100)	6/6 (100)		
Retropharyngeal 4/6 (67)	5/8 (63)	2/2 (100)		
Prescapular 11/12 (92)	15/16 (94)	3/3 (100)		
Axillary 1/6 (17)	4/6 (67)	7/9 (78)		
Inguinal 7/14 (50)	18/21 (86)	26/27 (96)		
Histologic diagnosis, No. (%)	Consistent with tumor metastasis 28 (68)	48 (83)	30 (68)	0.110
Consistent with nonmetastatic change 13 (32)	10 (17)	14 (32)		
Complications, No. (%)	Intraoperative 1 (1.8)	6 (9)	5 (9)	0.153
Postoperative 6 (11)	9 (13)	1 (3)	0.197	

*Median (range). †Body condition was scored between 1 and 9. ‡Duration of lymphadenectomy recorded for only 123 (72%) lymphadenectomies.

Of the 135 animals, 30 (22%) had undergone only lymphadenectomy, whereas 105 (78%) had also undergone another surgery during the same anesthetic period, including cutaneous or subcutaneous mass excision (n = 81), pinnectomy (6), scar excision (3), mandibulectomy (3), thyroidectomy (3), medial iliac lymphadenectomy (3), splenectomy (3), nasal planum excisional biopsy (2), pelvic limb amputation (2), enucleation (1), digit amputation (1), radical mastectomy (1), orchectomy (1), and arytenoid lateralization (1). Several peripheral lymphadenectomies were performed during the same anesthetic period in 37 (27%) animals. The most common tumor was mast cell tumor (n = 89), followed by melanoma (12), mammary carcinoma (7), thyroid carcinoma (6), soft tissue sarcoma (6), lymphoma (4), adenocarcinoma (3), squamous cell carcinoma (3), plasma- cytoma (2), systemic histiocytosis (2), fibrosarcoma (2), hemangiosarcoma (2), and myxosarcoma (1). In 1 dog, granulomatous inflammation was diagnosed.

Histologic examination of 143 lymph nodes revealed the presence of neoplastic cells in 106 (74%), and 56 (53%) of these lymph nodes were of normal size or nonpalpable. Neoplastic cells were not seen in the remaining 37 (26%).

Ultrasound-guided MB injection of or AW placement in each lymph node required < 5 minutes. The median duration for preoperative ultrasonography was 5 minutes (range, 5 to 20 minutes) for the MB group and 6 minutes (range, 5 to 15 minutes) for the AW group. The difference in duration between the 2 groups was not significant (P = 0.206).

The AW technique was used for 47 lymphadenectomies. The location of the AW was intranodal in 9 cases and perinodal in 36. In 2 dogs, the AW dislodged during surgery. The MB injection technique was used for 67 lymphadenectomies. The location of the MB was intranodal in 14 cases, perinodal in 32, and not recorded in 21. Duration of lymphadenectomy was recorded for 123 (72%) cases, and the median duration was 25 minutes (range, 4 to 95 minutes).
Duration of lymphadenectomy was significantly ($P < 0.001$) shorter for groups AW (median, 15 minutes) and MB (median, 25 minutes), compared with group N (median, 32 minutes), and for group MB, compared with group N ($P = 0.026$). Antimicrobial and analgesic treatments were prescribed postoperatively at the discretion of the surgeon, and all animals returned to the soft tissue surgery or oncology service by 14 days after surgery for reexamination or follow-up treatment.

Successful lymphadenectomy was achieved in 143 of the 171 (84%) cases, whereas the lymph node could not be located or excised in the remaining 28 (16%) cases; in 1 animal in group N, the mandibular salivary gland was excised instead of the mandibular lymph node. Successful lymphadenectomy was significantly ($P = 0.009$) affected by the use (vs non-use) of a localization technique; more lymph nodes in groups MB (58/67 [87%]; $P = 0.044$) and AW (44/47 [94%]; $P = 0.005$) were successfully excised than in group N (41/57 [72%]). The success of lymph node localization and lymphadenectomy did not significantly ($P = 0.354$) differ between groups MB and AW. Among the 3 groups, mandibular lymphadenectomy was the most successful procedure (40/41 [98%]), followed by prescapular (29/31 [94%]), inguinal (51/62 [82%]), and retropharyngeal (11/16 [69%]) lymphadenectomies. Axillary lymphadenectomy was the least successful procedure (12/21 [57%]). The proportions of mandibular and prescapular lymphadenectomies performed successfully were similar among the 3 groups, but proportionally, the AW technique was better for retropharyngeal lymphadenectomy, compared with the MB technique and N, whereas the use of a localization technique was better for axillary and inguinal lymphadenectomies.

Surgery was uncomplicated in 159 of 171 (93%) lymphadenectomies. Twelve intraoperative complications occurred in 11 dogs. One dog in group N had self-limiting hemorrhage during excision of an inguinal lymph node. Lymph node localization was impaired in 6 of 67 (9%) dogs because of leakage of MB into the subcutaneous tissue. In the AW group, 5 complications occurred intraoperatively: 2 AWS dislodged during surgery, but lymph node localization was not affected, and 3 AWS fragmented during excision of 2 axillary lymph nodes in 1 dog and 1 inguinal lymph node in 2 dogs. These 3 AWS could not be retrieved despite the use of radiography and fluoroscopy; the 2 axillary lymph nodes were not localized, whereas the inguinal lymph node was localized. During the follow-up period of 189 days for one of the dogs and 191 days for the other, no further complications were reported.

In the postoperative period, 17 (10%) complications occurred. Sixteen were considered minor and included seroma (n = 9), wound breakdown (4), erythema (2), and cellulitis (1). One complication was considered major: 1 dog had a surgical site infection at the lymphadenectomy site that resolved after antimicrobial treatment. All complications occurred within 14 days after surgery. The median postoperative follow-up time was 115 days (range, 21 to 1,028 days), and follow-up time did not significantly differ among the groups.

Discussion

The results of the present study reveal that both AW and MB techniques were successful for facilitating peripheral lymphadenectomy, and proportionally, success did not significantly differ between these techniques. The American Society of Breast Surgeons suggested that any lymph node localization technique should be ≥ 85% successful. 28 As demonstrated in the present study, both localization techniques were ≥ 85% successful (group MB, 87%; group AW, 94%) and were significantly more successful for regional lymph node localization, compared with unassisted localization (group N, 72%). In addition, use of these techniques significantly reduced the duration of lymphadenectomy, but lymphadenectomy following the AW technique took less time than lymphadenectomy following the MB technique.

The aim of regional lymph node evaluation is to determine the spatial extent of neoplastic disease, thereby helping to guide optimal treatment decisions and possibly influencing prognosis. 17,29 The decision of whether to perform a lymphadenectomy is based on the results of preoperative diagnostic imaging, cytologic examination of cells aspirated from a lymph node, and primary tumor type. Lymphadenectomy can be associated with increased surgery time and patient morbidity and a lack of documented clinical benefit for some tumors. 9

Fifty percent of normal-sized lymph nodes determined via palpation or nonpalpable lymph nodes that were excised for tumor staging in dogs with mast cell tumors had neoplastic mast cells that were confirmed with histologic examination. 5 Possibly, tumor staging without regional lymphadenectomy and subsequent histologic evaluation would have led to different decisions regarding patient monitoring. 5

In our experience, excision of nonpalpable and normal-sized lymph nodes (determined through palpation) is a surgical challenge. Excision of these lymph nodes may increase surgery time and morbidity because additional incisions or an extensive approach and more tissue dissection are needed; moreover, lymph node localization may be unsuccessful. Therefore at our institutions, the lymph node localization techniques MB and AW were instituted to overcome this surgical challenge.

MB has been used in various diagnostic and therapeutic procedures because it is generally considered safe, readily available, and inexpensive. However, in people, it may induce a hypersensitivity reaction that ranges from skin rashes to life-threatening anaphylaxis, an intense tissue reaction that may result in skin necrosis when it is injected intradermally.
raphy to be aware of how the wire is deployed and its
surgeon should be present at the time of ultrasonog-
logic condition. Therefore, given our experience, the
accuracy of resection of a lesion, reduce surgery time, and
This technique was designed to improve the accu-
tase activity, and kidney failure. 20,35–43
pseudocyanosis, increased serum alkaline phospha-
IV administration of MB includes Heinz body anemia,
Reported complications for dogs and cats following
hemoglobin, and permanent skin staining. 9,19,28,30–34
ous decrease in intraoperative oxygen saturation of
S80
lesion, depending on the local anatomy and patho-
relationship of the peripheral lymph nodes with
lymph nodes.4,14,35 The localization techniques eval-
iques have been developed to localize the sentinel
nical locations. 14 Various mapping tech-
tnodes; and the surgeon's experi-
body mass index; tumor size, location, and grade; type of previous biopsy; and the surgeon's experi-
node failure to locate peripheral lymph
nodes, including those that were not senti-
el lymph nodes. Sentinel lymph nodes can be the
nodes with the AW technique is associated with age;
and they could not be retrieved. No complications
were reported during the follow-up period for these
dogs, but close postoperative monitoring is advised
when wire fragmentation occurs.

In people, failure to locate peripheral lymph
nodes with the AW technique is associated with age;
body mass index; tumor size, location, and grade; type of previous biopsy; and the surgeon's experi-
ence.9 Prospective studies with large sample sizes of
dogs and cats are needed to minimize selection bias
and to evaluate the potential risk factors for failing to
locate lymph nodes with the MB or AW techniques.

The present study was focused on the ability of
these techniques to help locate various peripheral
lymph nodes, including those that were not senti-
el lymph nodes. Sentinel lymph nodes can be the
regional lymph nodes but can also be lymph nodes at
distant anatomic locations.14 Various mapping tech-
niques have been developed to localize the sentinel
lymph nodes.1,14,35 The localization techniques eval-
uated in the present study may be combined with
those mapping techniques to guide excision of the
sentinel lymph node for accurate tumor staging.

No differences in the proportions of successful
lymphadenectomies or complications were noted
between the MB and AW groups, but the target lymph
nodes were significantly smaller in the AW group, and
the duration of lymphadenectomy was significantly
less, compared with the MB group. The use of the
AW technique significantly reduced surgery time and
facilitated the localization of small and nonpalpable
lymph nodes.

The main limitation of the present study was its
retrospective nature, such that patient management
position, allowing for improved dissection along the
wire tract and adequate lesion resection.24
When the AW technique was first used, the aim
was to place the AW in the lymph node; however, in
many animals, the AWs were found in the perinodal
tissue. This may have occurred because of the small
size of many of the lymph nodes, AW dislodgement
during surgical preparation of the skin after preop-
erative ultrasonography, or the diagnostic imaging
team's lack of experience with placement of AWs. The
exact location of the AW was not clinically relevant
in the present study because lymph node localization
and excision were highly successful. However, feed-
back from the surgeon following surgery is important
to determine whether AW placement in a lymph node
is optimal or required.

Wire transection and migration during sur-
gery and damage to vital structures near lesions
are well-known complications reported for the AW
technique.49 Intraoperatively, the thin wire may be
inadvertently transected such that the removal of
the target lesion may be compromised and the wire frag-
ment may be retained in the body, which happened
in 1 dog during bilateral axillary lymphadenectomy
and in another dog during inguinal lymphadenec-
tomy. The wires had fragmented during dissection,
and they could not be retrieved. No complications
were reported during the follow-up period for these
dogs, but close postoperative monitoring is advised
when wire fragmentation occurs.

In people, failure to locate peripheral lymph
nodes with the AW technique is associated with age;
body mass index; tumor size, location, and grade; type of previous biopsy; and the surgeon's experi-
ence.9 Prospective studies with large sample sizes of
dogs and cats are needed to minimize selection bias
and to evaluate the potential risk factors for failing to
locate lymph nodes with the MB or AW techniques.

The present study was focused on the ability of
these techniques to help locate various peripheral
lymph nodes, including those that were not senti-
el lymph nodes. Sentinel lymph nodes can be the
regional lymph nodes but can also be lymph nodes at
distant anatomic locations.14 Various mapping tech-
niques have been developed to localize the sentinel
lymph nodes.1,14,35 The localization techniques eval-
uated in the present study may be combined with
those mapping techniques to guide excision of the
sentinel lymph node for accurate tumor staging.

No differences in the proportions of successful
lymphadenectomies or complications were noted
between the MB and AW groups, but the target lymph
nodes were significantly smaller in the AW group, and
the duration of lymphadenectomy was significantly
less, compared with the MB group. The use of the
AW technique significantly reduced surgery time and
facilitated the localization of small and nonpalpable
lymph nodes.

The main limitation of the present study was its
retrospective nature, such that patient management

a blue discoloration of the operating field, a spuri-
ous decrease in intraoperative oxygen saturation of
hemoglobin, and permanent skin staining.9,19,28,30–34
Reported complications for dogs and cats following
IV administration of MB includes Heinz body anemia,

In a recent study55 of the detection and excision
of sentinel lymph nodes following peritumoral injec-
tion of a radionuclide and MB, no short- or long-term
adverse effects were reported; however, MB injection
was peritumoral, and the peritumoral tissues were
excised with the tumor. Despite the difference in MB
techniques between the present and previous stud-
ies, no perioperative adverse reactions, including skin
necrosis, were noted in either study. Other adverse
effects, such as anemia and kidney failure, which
often occur within days following MB injection, or
granuloma formation, which may occur weeks fol-
lowing MB injection, were also not seen in the present
study. Moreover, no differences in postoperative com-
lications were reported between the techniques.

One problem that was encountered with the MB
technique in the present study was occasional leak-
age of MB into the subcutaneous tissue, such that the
leakage interfered with the surgeon's ability to iden-
tify the lymph node. In these situations, all the stained
tissue was excised en bloc. Given the close anatomic
relationship of the peripheral lymph nodes with
major regional vessels, en bloc resection could result
in vascular injury and hemorrhage; therefore, caution
is recommended when performing the MB technique.
However, vascular injury and hemorrhage were not
noted in the affected dogs in the present study.

MB is usually easily visible in the subcutaneous
tissue because of its color, so we recommend using a
small quantity of MB when injecting it into the peri-
nodal tissue. For deep (vs superficial) lymph nodes, a
track of MB from the lymph node to the skin proved
helpful in maintaining orientation during surgery and
guiding surgical dissection.

Ultrasound-guided AW placement is a well-
established, minimally invasive technique adopted in
people for the surgical approach of nonpalpable mam-
mary nodules and sentinel axillary lymph nodes; the
AW technique has also been used in revision surgeries;
foreign body removal; and excision of benign masses,
pulmonary nodules, and head and neck lesions (eg, cervical lymph nodes and thyroid tumors).2,24,25,44–49
This technique was designed to improve the accu-
resection of a lesion, reduce surgery time, and
limit damage to nearby structures;44,25,46,47 the tech-
nique has similar advantages when used for the exci-
sion of inguinal lymph nodes in dogs.27

The AWs may be deployed within or near to the
lesion, depending on the local anatomy and patho-
logic condition. Therefore, given our experience, the
surgeon should be present at the time of ultrasonog-
raphy to be aware of how the wire is deployed and its
varied. Although the patients were followed for a minimum of 14 days after surgery, long-term complications may have been missed. The size of the lymph nodes may have led to a selection bias because the attending clinician may have not elected to use a localization technique for a lymph node that was easily palpable. The techniques were used to localize only 1 lymph node from each lymphoid center, but they may be beneficial for the localization of multiple lymph nodes from the same lymphoid center. Additional studies are needed to assess these techniques’ ability to help in identifying multiple lymph nodes from the same lymphoid centers.

In conclusion, ultrasound-guided injection of MB and placement of an AW were safe and accurate techniques to locate various peripheral lymph nodes. The AW technique may be particularly beneficial to reduce surgery time and minimize invasiveness associated with the excision of small or nonpalpable lymph nodes. The AW technique may be particularly beneficial for the localization of multiple lymph nodes from the same lymphoid center. Additionally, they may be beneficial for the localization of a lymph node that was the attending clinician may have not elected to use. A limitation of this study may have led to a selection bias because complications may have been missed. The size of the lymph node may have led to a selection bias because the attending clinician may have not elected to use a localization technique for a lymph node that was easily palpable. The techniques were used to localize only 1 lymph node from each lymphoid center, but they may be beneficial for the localization of multiple lymph nodes from the same lymphoid center. Additional studies are needed to assess these techniques’ ability to help in identifying multiple lymph nodes from the same lymphoid centers.

Acknowledgments

No external funding was used in this study. The authors declare that there were no conflicts of interest.

The authors acknowledge Biomedical Srl for providing the pictures of the anchor needles that were used in this study.

References

1. Green K, Boston SE. Bilateral removal of the mandibular and medial retropharyngeal lymph nodes through a single ventral midline incision for staging of head and neck cancers in dogs: a description of surgical technique. Vet Comp Oncol. 2017;15:208–214.

2. Plecha D, Bai S, Patterson H, et al. Breast cancer with ultrasound-guided wire localization of biopsy proven metastatic lymph nodes. Ann Surg Oncol. 2015;22:4241–4246.

3. Skinner OT, Boston SE, Souza CHM. Patterns of lymph node metastasis identified following bilateral mandibular and medial retropharyngeal lymphadenectomy in 31 dogs with malignancies of the head. Vet Comp Oncol. 2017;15:881–889.

4. Beer P, Pozzi A, Rohrer Bley C, et al. The role of sentinel lymph node mapping in small animal veterinary medicine: a comparison with current approaches in human medicine. Vet Comp Oncol. 2018;16:178–187.

5. Ferrari R, Marconato L, Buracco P, et al. The impact of extrapulmonary metastasis of non-palpable/normal-sized regional lymph nodes on staging of canine cutaneous mast cell tumours: a multicentric retrospective study. Vet Comp Oncol. 2018;16:505–510.

6. Marconato L, Polton G, Stefanello D, et al. Therapeutic impact of regional lymphadenectomy in canine stage II cutaneous mast cell tumours. Vet Comp Oncol. 2018;16:580–589.

7. Skinner OT, Boston SE, Giglio RF, et al. Diagnostic accuracy of contrast-enhanced computed tomography for assessment of mandibular and medial retropharyngeal lymph node metastasis in dogs with oral and nasal cancer. Vet Comp Oncol. 2018;16:562–570.

8. Grimes JA, Mestrinho LA, Berg J, et al. Histologic evaluation of mandibular and medial retropharyngeal lymph nodes during staging of oral malignant melanoma and squamous cell carcinoma in dogs. J Am Vet Med Assoc. 2019;254:938–943.

9. Liptak JM, Boston SE. Nonselective lymph node dissection and sentinel lymph node mapping and biopsy. J Clin North Am Small Anim Pract. 2019;49:793–807.

10. Cohen M, Bohling MW, Wright JC, et al. Evaluation of sensitivity and specificity of cyto logical examination: 269 cases (1999–2000). J Am Vet Med Assoc. 2005;227:964–967.

11. Amores-Fuster I, Cripps P, Graham P, et al. The diagnostic utility of lymph node cytology samples in dogs and cats. J Small Anim Pract. 2015;56:125–129.

12. Grimes JA, Matz BM, Christopherson PW, et al. Agreement between cytology and histopathology for regional lymph node metastasis in dogs with melanocytic neoplasms. Vet Pathol. 2017;54:579–587.

13. Ku C-K, Kass PH, Christopher MM. Cytologic-histologic concordance in the diagnosis of neoplasia in canine and feline lymph nodes: a retrospective study of 367 cases. Vet Comp Oncol. 2017;15:1206–1217.

14. Worley DR. Incorporation of sentinel lymph node mapping in dogs with mast cell tumours: 20 consecutive procedures. Vet Comp Oncol. 2014;12:215–226.

15. Belotta AF, Gomes MC, Rocha NS, et al. Sonography and sonoelastography in the detection of malignancy in superficial lymph node of dogs. J Vet Intern Med. 2019;33:1403–1415.

16. Grimes JA, Secrest SA, Northrup NC, et al. Indirect computed tomography lymphangiography with aqueous contrast for evaluation of sentinel lymph nodes in dogs with tumors of the head. Vet Radiol Ultrason. 2017;58:559–564.

17. Rossi F, Körner M, Suárez J, et al. Computer tomographic lymphography as a complementary technique for lymph node staging in dogs with malignant tumors of various sites. Vet Radiol Ultrason. 2018;59:155–162.

18. Nour A. Efficacy of methylene blue dye in localization of sentinel lymph node in breast cancer patients. Breast J. 2004;10:388–391.

19. Gupta V, Raju K, Subramanyeshwar Rao T, et al. A randomized trial comparing the efficacy of methylene blue dye alone versus combination of methylene blue and radioactive sulfur colloid in sentinel lymph node biopsy for early stage breast cancer patients. Indian J Surg Oncol. 2020;11:216–222.

20. Enwiller TM, Radlinsky MG, Mason DE, et al. Poptiletal and mesenteric lymph node injection with methylene blue for coloration of the thoracic duct in dogs. Vet Surg. 2003;32:359–364.

21. Bayer BJ, Dujowich M, Krebs AI, et al. Injection of the diaphragmatic crus with methylene blue for coloration of the canine thoracic duct. Vet Surg. 2014;43:829–835.

22. Brissot HN, Edery EG. Use of indirect lymphography to identify sentinel lymph node in dogs: a pilot study in 30 tumours. Vet Comp Oncol. 2017;15:740–755.

23. Dickerson VM, Grimes JA, Secrest SA, et al. Abdominal lymphatic drainage after thoracic duct ligation and cisterna chyli ablation in clinically normal cats. Am J Vet Res. 2019;80:885–890.

24. Christodoulou D, Bajwa J, Gok G, et al. Application of ultrasound-guided wire placement in head and neck cancer biopsy: where are we now? Imaging Med. 2011;5:725–730.

25. Tardiol S, Ballelio L, Gugli S, et al. Wire-guided localization in non-palpable breast cancer: results from monocentric experience. Anticancer Res. 2016;36:2425–2427.

26. Hayes MK. Update on preoperative breast localization. Radiol Clin North Am. 2017;55:591–605.

27. Cattai A, Pierini A, Carusi U, et al. Minimally invasive excision of non-palpable lymph nodes after preoperative ultrasound-guided hook-wire localization in dogs. Veterinary (Cremona). 2020;34:81–87.

28. Li H, Zhang J, Ge Z-C, et al. Factors that affect the false negative rate of sentinel lymph node mapping with methylene blue dye—a safe and effective alternative for sentinel lymph node localization. Vet Comp Oncol. 2014;12:215–226.

29. Varghese P, Abdel-Rahman AT, Akberali S, et al. Methylene blue dye: a safe and effective alternative for sentinel lymph node localization. Breast J. 2008;14:61–67.
31. Brahma B, Putri RI, Karsono R, et al. The predictive value of methylene blue dye as a single technique in breast cancer sentinel node biopsy: a study from Dharmais Cancer Hospital. World J Surg Oncol. 2017;15:41.

32. Vishnoi JR, Kumar V, Gupta S, et al. Outcome of sentinel lymph node biopsy in early-stage squamous cell carcinoma of the oral cavity with methylene blue dye alone: a prospective validation study. Br J Oral Maxillofac Surg. 2019;57:755–759.

33. Deka H, Bhosale SJ, Kumar K, et al. A study of sentinel lymph node biopsy with methylene blue dye in early carcinoma of breast. J Evol Med Dent Sci. 2017;6:1701–1704.

34. Li J, Chen X, Qi M, et al. Sentinel lymph node biopsy with methylene blue dye in early carcinoma of breast. J Evol Med Dent Sci. 2017;6:1701–1704.

35. Ferrari R, Chiti LE, Manfredi M, et al. Biopsy of sentinel lymph nodes after injection of methylene blue and lymphoscintigraphic guidance in 50 dogs with mast cell tumors. Vet Surg. 2020;49:1099–1108.

36. Fingeroth JM, Smeak DD, Jacobs RM. Intravenous methylene blue infusion for intraoperative identification of parathyroid gland and pancreatic islet-cell tumors in dogs. I. Experimental determination of dose-related staining efficacy and toxicity [1988]. J Am Anim Hosp Assoc. 1988;24:165–173.

37. Fingeroth JM, Smeak DD. Intravenous methylene blue infusion for intraoperative identification of pancreatic islet-cell tumors in dogs. II. Clinical trials and results in four dogs. J Am Anim Hosp Assoc. 1988;24:175–182.

38. Fingeroth JM, Smeak DD. Intravenous methylene blue infusion for intraoperative identification of parathyroid gland tumors in dogs. III. Clinical trials and results in three dogs. J Am Anim Hosp Assoc. 1988;24:675–678.

39. Houston DM, Myers SL. A review of Heinz-body anemia in the dog induced by toxins. Vet Hum Toxicol. 1993;35:158–161.

40. Osuna DJ, Armstrong PJ, Duncan DE, et al. Acute renal failure after methylene blue infusion in a dog. J Am Anim Hosp Assoc. 1990;26:410–412.

41. Fingeroth JM, Smeak DD. Methylene blue infusion. J Am Anim Hosp Assoc. 1991;27:259.

42. Traynor S, Adams JR, Andersen P, et al. Appropriate timing and velocity of infusion for the selective staining of parathyroid glands by intravenous methylene blue. Am J Surg. 1998;176:15–17.

43. Martin RA, Richards DLS, Barber DL, et al. Transdiaphragmatic approach to thoracic duct ligation in the cat. Vet Surg. 1988;17:22–26.

44. Bryant JA, Siddiqui NJ, Loveday EJ, et al. Presurgical, ultrasound-guided anchor-wire marking of impalpable cervical lymph nodes. J Laryngol Otol. 2005;119:627–628.

45. Thomas RH, Burke C, Howlett D. A technical note: preoperative ultrasound-guided wire localization in head and neck surgery. Eur Arch Otorhinolaryngol. 2011;268:743–746.

46. Fletcher AM, Preston TW, Kuehn DM, et al. Ultrasound-guided needle localization of recurrent paratracheal thyroid cancer. Ann Otol Rhinol Laryngol. 2009;118:475–478.

47. Hoang JK, De Jesus R, Eastwood JD, et al. CT-guided hookwire placement: a technical innovation for preoperative localization of nonpalpable cervical lymph nodes. Am J Neuroradiol. 2012;33:E104–E106.

48. Kleedehn M, Kim DH, Lee FT, et al. Preoperative pulmonary nodule localization: a comparison of methylene blue and hookwire techniques. AJR Am J Roentgenol. 2016;207:1354–1359.

49. Kapoor MM, Patel MM, Scoggins ME. The wire and beyond: recent advances in breast imaging preoperative needle localization. Radiographics. 2019;39:1886–1906.

Supplementary Materials

Supplementary materials are posted online at the journal website: avmajournals.avma.org