Comparing the un-comparable: Olyset Plus and Olyset, different malaria impact

Ole Skovmand*

Abstract

Background: In a recent article in The Lancet, Protopopoff et al. stated that insecticide resistance must be tackled and concluded that adding the insecticide synergist piperonyl butoxide (PBO) to a bed net with a pyrethroid as principal insecticide might be a part of the response.

Main text: The study in Tanzania compares malaria prevalence between users of two different nets with the principal insecticide permethrin: Olyset and Olyset Plus (Olyset+), the latter also holding the synergist molecule PBO, the first not. The article is based on randomized cluster trial of very high quality, but Olyset+ exposes much more permethrin at the surface so the higher efficacy may not be because of the added PBO.

Conclusion: Data published by the World Health Organization (WHO) when evaluating Olyset+ as well of the study of Protopopoff et al. showed that much more permethrin is available on the surface of Olyset+ than on the surface of Olyset and the relatively small and rapidly dwindling dosage of PBO may have nothing to do with the superior effect of Olyset+. The WHO should not change politics for “PBO nets” based on this study alone.

Keywords: Bed net, Insecticide resistance, Olyset Plus, Permethrin, WHO

Background

Pyrethroid resistance has been reported for most of the major malaria vectors in sub-Saharan Africa and this has often been used as an argument to explain reduced effect of long-lasting insecticidal bed nets (LLINs). Several bed net producers have responded to this by adding the synergist piperonyl butoxide (PBO) to a net with a pyrethroid thus targeting one of the resistance mechanisms identified, the P450 cytochrome or mixed function oxidase that can metabolize pyrethroids. One such net is Olyset Plus (Olyset+) that has added PBO and has been compared in a randomized, multi-cluster study in Tanzania to Olyset that only has permethrin [1].

The World Health Organization (WHO) has until recently recommended PBO nets to be placed among the same product class as with pyrethroid only LLINs, cautiously underlining that there was no proof of the additive effect of PBO in areas of resistance. This caution was further enforced when a multi-country study showed that pyrethroid-only nets worked as well in countries with high pyrethroid resistance as in countries with no pyrethroid resistance, and that coverage and use rate drove the efficacy, not resistance problems [2].

However, WHO has now recommended that the PBO nets may be in a new product class following evidence from the Tanzanian study comparing Olyset+ (permethrin+ PBO) to Olyset (permethrin only) [3]. The present article refers published data to show that this decision is not well founded and add technical information to explain why the nets are different beside the content of PBO.

Main text

First, it should be remarked that the amount of synergist added in the Olyset+ is relatively small. In most products combining the synergist with a pyrethroid or pyrethrins (like in aerosol cans), 3–10 more PBO is used than that of the pyrethroid, here the level is the half.

However, the major issue is that the release rate of permethrin is different in the yarns of the two nets. This was reported in the WHO evaluation reports of 2012 on...
depends on the matrix, especially the crystalline density the surface concentration has. The speed of the migrationicide inside the yarn has no impact on mosquitoes, only the matrix of the yarn to the surface. The dosage of insecticide inside the yarn is based on the matrix, especially the crystalline density of the matrix. The denser, the slower the migration and the less on the surface, since the surface concentration is a result of this migration, evaporation from the surface and washing and rubbing off. Therefore, even Olyset and Olyset+ has the same amount of permethrin incorporated from start, the concentration at the surface of the yarns caused by different "bleeding rates" of the insecticide is very different. How are these differences obtained? These nets are made of polyethylene. Most of the yarns consist of High Density Polyethylene (HDPE) which provides a strong yarn but allows for very little insecticide migration. Contrary to that, Low Density Polyethylene (LDPE and LLDPE) is much less crystalline and thus allows for a higher migration of additives, which is the reason that e.g. EU has different rules for polyethylene products in contact with food for HDPE than for LDPE/LLDPE. In line with this, the producer of Olyset have issued several patents applications on the best mix of high and low-density polyethylene to have an optimal migration of permethrin and PBO [7, 8]. Olyset+ is based on these patents, but Olyset is outside this range with too much HDPE and, therefore, little surface permethrin.

This does not mean that so-called PBO nets will not work better than so-called standard nets that only holdspermethrin to mosquitoes than Olyset does and the difference between the effect cannot be attributed to the low and rapidly dwindling amount of PBO. The WHO must find a better study to change policy for PBO nets.

Conclusion

The published study [1] comparing Olyset+ to Olyset showed that Olyset+ has larger impact on malaria than Olyset using the best methodology for comparing two products in a randomized, multi-cluster study. However, the methodology does not reveal why Olyset+ is better, but this is reported in the WHO studies published [4] when the net was recommended: Olyset+ exposure much more permethrin to mosquitoes than Olyset does and the difference between the effect cannot be attributed to the low and rapidly dwindling amount of PBO. The WHO should take a better look on their own data before claiming a policy shift.

Authors' contributions

The author read and approved the final manuscript.

Acknowledgements

Not relevant.

Competing interests

The author works for and owns the consultancy company Intelligent Insect Control SARL that advises companies on vector control tools. The author thus have an interest in the promotion of PBO nets in general.
Consensus
This Opinion only has one author and the author agrees to the analysis to be published.

Data availability
All data exploited here are public available.

Ethics approval and consent to participate
This is not a study and therefore no ethical committee is needed, the quoted main study was reviewed by ethic committees.

Funding
The author has not received any funding to write this opinion.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 30 October 2018 Accepted: 23 November 2018
Published online: 30 November 2018

References
1. Protopopoff N, Mosha JF, Lukole E, Charlwood JD, Wright A, Mwalimu CD, et al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial. Lancet. 2018;391:15788.
2. Kleinschmidt I, Bradley J, Bellamy Knox TB, Mnzava AP, Kafy HT, Mbogo C, et al. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study. Lancet Infect Dis. 2018;18:640–9.
3. WHO. Conditions for deployment of mosquito nets treated with pyrethroid and piperonyl butoxide. Geneva: World Health Organization Global Malaria Programme; 2017.
4. WHO. Report of the fifteenth WHOPES working group meeting. Geneva: World Health Organization, 18–22 June 2012; WHO/HTM/NTD/WHOPE/2012.5. http://apps.who.int/iris/bitstream/10665/75304/1/9789241504089_eng.pdf.
5. WHOPES. Guidelines for laboratory and field testing of long-lasting insecticidal nets. WHO/HTM/NTD/WHOPE/2013.3. Geneva: World Health Organization; 2013.
6. Corbel V, Chandre F, Brenquess C, Akoqbeo M, Lardeux F, Hougard JM, et al. Dosage-dependent effects of permethrin-treated nets on the behaviour of Anopheles gambiae and the selection of pyrethroid resistance. Malar J. 2004;3:22.
7. Ejini S, Nagamatsu T. Resin composition for filament, filament and process for production of the filament. WO 20081927 A2 for Sumitomo, 2008.
8. Sasaki T, Takano M. Insect repellent net. JP 2009196952A for Sumitomo, 2009.