Mindfulness and Behavior Change

Zev Schuman-Olivier

Harvard Medical School

Let us know how access to this document benefits you.
Follow this and additional works at: https://escholarship.umassmed.edu/psych_pp

Part of the Alternative and Complementary Medicine Commons, Behavioral Medicine Commons, Health Psychology Commons, Integrative Medicine Commons, Mental and Social Health Commons, Movement and Mind-Body Therapies Commons, Neuroscience and Neurobiology Commons, Psychiatry Commons, and the Psychiatry and Psychology Commons

Repository Citation
Schuman-Olivier Z, Trombka M, Lovas DA, Brewer JA, Vago DR, Gawande R, Dunne JP, Lazar SW, Loucks EB, Fulwiler CE. (2020). Mindfulness and Behavior Change. Psychiatry Publications. https://doi.org/10.1097/HRP.0000000000000277. Retrieved from https://escholarship.umassmed.edu/psych_pp/957

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This material is brought to you by eScholarship@UMassChan. It has been accepted for inclusion in Psychiatry Publications by an authorized administrator of eScholarship@UMassChan. For more information, please contact Lisa.Palmer@umassmed.edu.
Mindfulness and Behavior Change

Zev Schuman-Olivier, MD, Marcelo Trombka, MD, David A. Lovas, MD, Judson A. Brewer, MD, PhD, David R. Vago, PhD, Richa Gawande, PhD, Julie P. Dunne, PhD, RN, PMHNP-BC, Sara W. Lazar, PhD, Eric B. Loucks, PhD, and Carl Fulwiler, MD, PhD

Abstract: Initiating and maintaining behavior change is key to the prevention and treatment of most preventable chronic medical and psychiatric illnesses. The cultivation of mindfulness, involving acceptance and nonjudgment of present-moment experience, often results in transformative health behavior change. Neural systems involved in motivation and learning have an important role to play. A theoretical model of mindfulness that integrates these mechanisms with the cognitive, emotional, and self-related processes commonly described, while applying an integrated model to health behavior change, is needed. This integrative review (1) defines mindfulness and describes the mindfulness-based intervention movement, (2) synthesizes the neuroscience of mindfulness and integrates motivation and learning mechanisms within a mindful self-regulation model for understanding the complex effects of mindfulness on behavior change, and (3) synthesizes current clinical research evaluating the effects of mindfulness-based interventions targeting health behaviors relevant to psychiatric care. The review provides insight into the limitations of current research and proposes potential mechanisms to be tested in future research and targeted in clinical practice to enhance the impact of mindfulness on behavior change.

Keywords: health behavior, mental disorders, mindfulness, motivation, neuroscience, self-management, self-regulation

INTRODUCTION

Health behavior refers to any behavior that affects physical or mental health or quality of life. Unhealthy behaviors such as tobacco smoking, alcohol and substance use, excessive eating, and nonadherence to medical regimens account for a substantial proportion of global disease morbidity and mortality, and for 40%–50% of the risk of early death in the United States. All-cause mortality is inversely associated with healthy lifestyle behaviors, and changes in unhealthy behaviors can lead to improved physical and mental health outcomes. Despite widespread awareness, it remains exceptionally difficult to initiate and maintain health behavior change.

Health behavior theories are used to understand and predict health behaviors, and several behavior-change interventions have become popular. A growing body of evidence suggests that mindfulness-based interventions (MBIs) are effective in reducing harmful health behaviors, catalyzing chronic disease self-management and health behavior change, and improving physical and mental health outcomes. This article provides a narrative review with three main aims: (1) to define mindfulness and describe the evolving context and content for the MBI movement, (2) to describe an updated “mindful self-regulation” model that integrates motivation and learning mechanisms essential for behavior change and is grounded in emerging neuroscientific evidence, and (3) to synthesize current clinical research on MBIs targeting health behaviors relevant to psychiatry.

MINDFULNESS AND MBIs

Mindfulness is commonly defined as the awareness that arises when paying attention to the present moment nonjudgmentally. In 1881, the English scholar Rhys Davids translated the word mindfulness from the Pali word sati found in Buddhist texts, which meant “memory, recollection, calling-to-mind, being-aware-of, certain specified facts” but which has also been described as “lucid awareness” or “bare attention.”
The terms *mindfulness* and *meditation* are increasingly conflated. General integrative practices (e.g., visualization, yoga) are often described as “mindfulness” in public discourse, diluting the word’s meaning. Importantly, not all meditation is mindfulness and not all mindfulness is meditation. Meditation is a practice that self-regulates the body and mind by engaging a specific attentional set. In *mindfulness meditation* (MM), the practice is to pay attention to present-moment experience with an orientation of curiosity, openness, acceptance, nonreactivity, and nonjudgment.

Several core types of MM are taught in MBIs, along an attentional continuum that ranges from *focused attention*, which involves directing and sustaining attention on an object, disengaging from distractors (e.g., mind wandering), and returning attention to the object, to *open monitoring*, which has no explicit focus but cultivates metacognitive monitoring with a nonreactive awareness of the flow of cognition, emotions, and sensations. MBIs also use other evocative meditations to cultivate specific emotions (e.g., compassion, loving-kindness) that support MM practice.

MINDFUL SELF-REGULATION

Self-regulation is the ability to adaptively regulate one’s attention, emotions, cognition, and behavior to respond effectively to internal as well as environmental demands. Self-regulation impairment is linked to poorer outcomes in school/academics and also to poorer physical and mental health. Self-regulation theory proposes several critical processes for people to initiate and maintain behavior change and to prevent self-regulatory failure, including the capacity for standard setting, motivation to meet standards, self-monitoring, and willpower. We will build on the seminal neuroscience-based frameworks proposed by Holzel and colleagues and Vago and colleagues, which outlined several relevant synergistic neurocognitive systems that underlie the effects of mindfulness on self-regulation, including attentional control, cognitive control, emotion regulation, and self-related processes. Importantly, we...
will describe how these self-regulation mechanisms interact with basic neural mechanisms for motivation and learning, which are well studied in the addiction and behavioral medicine literature. We will describe how each of these systems may play a role in facilitating the way that MM affects a person’s capacity for behavior change (Figure 1). The reviews aim to fill the gap in previous models of mindfulness and self-regulation by describing how, as MM practice develops, it may begin to enhance motivation for change by affecting processes of reward, associative and extinction learning, and habit formation, thereby shifting the balance from unhealthy to healthier behavioral repertoires.

Attention and Cognitive Control

Cognitive control is a fundamental capacity of human cognition that regulates access to specific goal-relevant information to facilitate the performance of specific behaviors. Executive functions are cognitive processes necessary for initiating and maintaining behavior change, and also for selecting and monitoring behavior toward attainment of goals; mental set shifting, information updating and monitoring, and inhibition are of particular importance. The subcomponents of cognitive control and executive function include attentional control/regulation, cognitive inhibition, inhibitory control, working memory, decision making, and cognitive flexibility. Attentional control can be further subdivided into (1) volitional orienting of attention to task-relevant information (e.g., breath, body sensations), (2) alerting to and successfully sustaining attention and vigilance for unexpected stimuli, and (3) conflict monitoring among task-relevant internal thoughts, feelings, and responses. These attentional processes contribute to recognizing both the consequences of ongoing unhealthy behavior and the affective precursors to avoidance or appetitive behaviors, contributing to adaptive behavior change.

MM may contribute to self-management of clinical symptoms, which are affected by unhealthy behaviors or maladaptive cognitive coping strategies, through explicit cognitive control processes. Two highly cited models suggest that mindfulness involves attention regulation (improvement in orienting, alerting/stability, bias, meta-awareness/monitoring) and inhibition/switching (decentering, inhibitory control, flexible engagement/disengagement). While individual studies support these models, meta-analyses of the effects of mindfulness on behavioral-cognitive assays demonstrate substantial heterogeneity, possibly related to diversity in mindfulness techniques, small sample sizes, nonspecific effects of common factors (e.g., group effects, empathic therapists), and multiple strategies for performing behavioral tasks. Moreover, populations with unique cognitive-dysfunction profiles (e.g., substance use, bipolar disorder, depression, age-related cognitive decline, or mild cognitive impairment) may experience improvement of disorder-specific dysfunction, whereas healthy participants may be sensitive to ceiling effects. In addition, the mindfulness effect may simply be making the brain more efficient, requiring less effort for a similar result.

Functional neuroimaging research demonstrates that these interrelated cognitive control processes generally engage overlapping higher-order brain networks, including a central executive network, salience network, dorsal and ventral attention networks, and default mode network (DMN). These networks are anchored through a frontoparietal network that acts as a flexible hub interconnecting these networks, depending on the contextual and functional demands of cognition. This superordinate frontoparietal network, also referred to as the cognitive control network, includes the dorsolateral (dl) prefrontal cortex (PFC), posterior parietal cortex, anterior insula cortex, anterior cingulate cortex

Figure 1. Mindfulness influences on self-regulation and behavior change.
Emotion Regulation

Emotions influence our perception, thinking, and behavior, and are made up of subjective, physiological, and behavioral components. Emotion regulation is the ability to modulate emotional experiences, enabling adaptive engagement with internal and external experience, which is essential for well-being and social adaptation. A variety of emotion-regulation strategies have been identified, including modifying the situation, altering attention toward it, modifying thoughts about it, and modulating the response to emotional experiences. Effective strategies decrease the subjective experience of negative emotion and its physiological correlates, and are associated with long-term efficacy in daily life. The best-studied strategy is cognitive reappraisal, the conscious reinterpretation of a situation in a way that alters its meaning and lessens the emotional impact. Reappraisal may be one of the mechanisms through which MM improves emotion regulation and ameliorates anxiety and depression. According to one model with empirical support, mindfulness facilitates reappraisal by interrupting automatic reactions, allowing for conscious reflection. With ongoing practice, some theorize that MM practitioners transition from using reappraisal strategies to cultivating states of nonappraisal and equanimity, though longitudinal research is needed. The available evidence also provides some support for exposure and extinction as key mechanisms for mindfulness-related emotion regulation. Rather than engaging in experiential avoidance or thought suppression, MBPs promote the ability to focus awareness on a difficult experience when it arises, creating a condition of exposure to negative emotional reactions. This change in focus is often aided by the capacity to shift experiential perspective—to step outside one’s immediate subjective experience to a more objective, non-identified awareness of one’s experience, which is called decentering. Meta-cognitive monitoring, or meta-awareness. With practice, repeated acceptance and awareness of emotional and physiological responses lead to reduction and even extinction of emotional reactivity. Therefore, whereas meditation often causes state changes with enhanced autonomic parasympathetic activity, exposure through MM practice may create greater trait implicit control over parasympathetic tone, possibly initially through ACC control, and then possibly, with ongoing practice, through ventromedial (vm) PFC modulation of the amygdala. Finally, as people learn to be mindful of emotions, the capacity for emotion differentiation may be enhanced, which is associated with an enhanced ability for emotion regulation. Functional neuroimaging research implicates both distinct and overlapping networks involved in different emotion-regulation strategies. Explicit cognitive strategies like reappraisal are associated with activation of the frontoparietal executive network involved in selective attention, working memory, and response inhibition, and with deactivation of the amygdala. Neural mechanisms of mindfulness-based emotion regulation appear to differ, depending on the subjects’ experience level. Naive subjects given brief training in mindfulness induction for a laboratory study appear to employ top-down control by PFC regions in fashion similar to that of subjects instructed to use cognitive reappraisal. By contrast, for experienced meditators, downregulation of emotional reactivity when in a mindful state appears to involve deactivation of the DMN without deactivation of the amygdala. MBSP completers show decreased amygdala reactivity accompanied by increased amygdala–vmPFC functional coupling, consistent with the finding that symptom improvement in anxiety patients correlates with increased amygdala–vmPFC coupling after MBSR. Long-term meditators, in contrast to eight-week MBSR completers, employ implicit emotion-regulation systems involving the insula and vmPFC to modulate emotional reactivity.
suggest that, over time, long-term mindfulness practice promotes greater awareness and acceptance of emotional experience rather than the suppression of emotions by top-down inhibitory control.\(^{148,153,156,157}\)

Healthy emotion regulation is important for behavior change to modulate emotions in alignment with one’s goals.\(^{159,160}\) Without it, feelings of stress, anxiety, and depression may thwart one’s intention to engage in health behaviors related, for example, to diet, exercise, or smoking—which promote positive health outcomes.\(^{161–164}\) Similarly, for patients with chronic illnesses facing a variety of physical and psychological challenges, emotion regulation is critical for maintaining optimal cognitive functioning and emotional balance.\(^{165}\) Mindfulness may also improve the chances of successful behavior change by increasing awareness of how emotions influence decisions and behaviors.\(^{137}\) A recent study of primary care patients with chronic illness reported that an eight-week MBI facilitated emotion regulation and catalyzed health behavior change.\(^{20}\) Our recent meta-analysis found that subjects receiving MBPs, compared to controls, significantly improved on emotion-regulation measures,\(^{166}\) suggesting that mindfulness may engage emotion-regulation processes that can improve behavioral outcomes.\(^{67,137,167,168}\)

Self-Related Processes

Cognitive science describes a continuum of self-related processes that aligns closely with large-scale neural networks discovered through functional connectivity studies—networks that are affected by MM.

At one end of the self-related process continuum, the experiential self is the self-as-subject, the embodied self that is supported by phenomenological body awareness unextended in time—that is, the sense of “I am in this moment.”\(^{169–171}\) Interoception is the sensory experience of homeostatic afferents related to the body’s physiologic state, producing the feeling of present-moment self in the body.\(^{172}\) Broader definitions of interoceptive awareness include the tendency to listen to and trust body sensations as occurring within a dynamic relationship with appraisal and interoceptive regulation processes.\(^{173,174}\) Mindfulness training enhances interoceptive awareness and function.\(^{20}\) Most MM starts with the body and seems to develop greater interoceptive accuracy.\(^{175,176}\) Interoceptive dysfunction may lead to difficulties predicting body states and to allostatic dyscontrol.\(^{177}\) Interoceptive regulation may be enhanced through MM by increasing the capacity for perceptual-inference strategies (i.e., bringing the desired interoceptive state to what is sensed) instead of focusing only on active-inference strategies (i.e., trying to change the experience to the desired state).\(^{178}\) Numerous recent studies suggest an impact of MM on improving interoceptive measures.\(^{20,179}\) Meta-analysis and mediation studies are needed to examine the full impact of mindfulness on interoceptive awareness and its effect on behavior change.

Mindfulness neuroscience describes a phenomenological experiential-self network,\(^{171}\) involving activation of the anterior insula,\(^{40}\) which is altered after MM training.\(^{180}\) The insula provides an efficient means for processing large-scale interpersonal information in real time.\(^{181}\) Interoceptive activity and functional connectivity in the insula is disrupted in depression,\(^{182}\) which may be associated with a lack of emotional feeling in the body\(^{183}\) and may be associated with alexithymia.\(^{184,185}\) Functional connectivity studies of large-scale networks propose a key role of the insula in a salience network, which is posited to shift attention between internal (e.g., internal body sensations) and external stimuli (e.g., external perception) with dorsal attentional and ventral emotional components.\(^{111}\) Among MM practitioners, the experiential-self network may use moment-to-moment bodily experience in context to establish saliency for attention and regulation of cognitive resources.

At the other end of the self-related process continuum, a narrative self\(^{170}\) emerges during development, starting in late latency,\(^{186}\) then consolidating during adolescence\(^{187}\) and emerging adulthood,\(^{188}\) represented by autobiographical self-monitoring and social-cognitive and evaluative functions—in short, the self-as-object, “story of me as a person,” temporally extended into the past or future.\(^{170}\) These cognitive science concepts align with cognitive clinical models of self-related processes, which have an emphasis on self-discrepancy\(^{189}\) between the actual and idealized narrative self through positive (self-esteem and self-worth\(^{190}\)) and negative self-evaluation\(^{191,192}\) (self-devaluation, self-criticism, and self-critical rumination).\(^{74,193,194}\) Emerging therapeutic approaches also include self-schema\(^{195–197}\) or multiple self-like parts\(^{198,199}\) to explain the clinical complexity of narrative self-related processes. The narrative self overlaps with many functions of the DMN, the most prominent large-scale brain network underlying self-related processes.\(^{200}\) The DMN engages medial cortical regions involved in self-monitoring, self-judgment, self-referential mental activity, episodic-memory retrieval, autobiographical memory, self-related social-cognitive processes, and value-based decision making.\(^{201,202}\) The DMN connects during adolescent identity formation,\(^{203}\) increasingly potentiating self-criticism and negative self-evaluative rumination. Among adults, high levels of DMN connectivity are associated with depression.\(^{204}\) Importantly, DMN activity and connectivity are reduced among experienced mindfulness meditators.\(^{205}\) In a recent meta-analysis, the posterior cingulate cortex, which is a core DMN node involved in self-related processing,\(^{206}\) is reliably deactivated during both focused-attention and open-monitoring MM.\(^{118}\)

Rumination is a response to distress that involves repetitively and passively focusing on symptoms of distress and the possible causes and consequences of these symptoms.\(^{207,208}\) Rumination predicts depression,\(^{209}\) bulimia, substance use, self-injurious behaviors, impaired problem solving,\(^{208}\) and aggressive behaviors.\(^{210}\) One meta-analysis demonstrated that reductions in rumination partially mediated improved psychological functioning.\(^{151}\) Another recent meta-analysis found MBPs reduced negative self-related rumination, with a strong effect among six studies with inactive control groups, and potential...
for benefit among two studies with active controls.166 A meta-analysis of brain-imaging studies reports a strong association between DMN core regions, especially the dorsomedial (dm) PFC, and rumination.211 Reducing negative self-related rumination through MBPs may improve emotion regulation, reducing depressive symptoms and self-criticism. In this way, MM might prevent the detrimental repetition of negative global self-attributions that come when a person has a brief slip of unhealthy behavior after a period of sustained abstinence—which often leads persons to dive into a full-blown relapse, a process that Marlatt18 named the abstinence violation effect.

Other self-related processes on the continuum are the sense of agency212 related to the experience of one’s actions and decision making as an individual agentic self, and self-efficacy, which is one’s belief in one’s ability to succeed in specific situations or accomplish a task.213 A frontoparietal cognitive control network may provide flexible control in self-related processing214—involving coupling between other frontal networks, depending on internally or externally directed task demands.91,112,114,215 The overarching cognitive control network is therefore recruited to support control of belief and goal-directed strategies, flexibility creating a sense of self-agency that contributes to resiliency.216,217 The dlPFC, which is a core node of the central executive network, is often activated during MM; MM enhances connectivity between the dlPFC and other executive-function regions.218,219 As MM practice continues over time, the central executive network and other frontal networks may regulate the DMN in control of cognition.220

Two small studies have demonstrated increases in task-specific self-efficacy, though the increases were not statistically significant compared with controls.221,222 An uncontrolled, prospective cohort study reported increased chronic illness self-efficacy after eight weeks of MBSR but less self-efficacy at one year.223 Two larger RCTs of an eight-week MBP with self-efficacy as a secondary outcome reported within-group improvements in self-efficacy (d = 0.3 – 0.43), though this result was not significantly different from a low-dose mindfulness comparator.20,224 The ability to practice mindfulness may lead to a greater sense of one’s ability to make health behavior change; however, it is also possible that initial difficulty attaining expected levels of mindfulness practice may cause an opposite, deleterious effect on global self-efficacy and that the feedback from this failure may affect the capacity to succeed in self-regulation itself.225,226 Closer analysis of self-efficacy and self-agentic beliefs are needed to understand their role in mindful self-regulation models.

Finally, the warmth with which one relates to one’s self is a self-related process that affects self-regulation and behavior. Self-compassion involves responding with a warm, kind, and understanding orientation toward oneself, as one would to a close friend, when we suffer, fail, or feel inadequate.227 Self-compassion may be a mechanism through which MM supports behavior change228,229 and engagement in health-promoting behaviors230,231 in the context of diabetes.232 Disordered eating,233 exercise-related goals in the face of setbacks,234 and sexual HIV risk behaviors.235 Self-compassion has been proposed to have a direct effect on self-regulation236 in part by neurobiologically mimicking a supportive compassionate other, activating the soothing-affiliation system.237 A meta-analysis demonstrated a strong effect of MBPs for increasing self-compassion in four studies with inactive controls (d = 0.73), though the result was insignificant versus active comparators.166 A rigorous RCT comparing an eight-week MBP versus a 60-minute mindfulness comparator reported significant effects of mindfulness dose on self-compassion (d = 0.41).20 MM lowered levels of self-criticism, which was associated with reduced activation in dMPFC nodes of the DMN,238 initially through dlPFC-mediated self-compassionate reappraisal strategies.239 Kindness toward self may clarify that one is worthy of being cared about, thereby enhancing motivation for self-care. MBPs focused primarily on attentional aspects of mindfulness in initial manuals/manuscripts, but a beneficial implicit “hidden curriculum” emerged for cultivating warmth and self-kindness.240 More recently, Kabat-Zinn241 clarified that “mindfulness” is the same as “heartfulness,” acknowledging the importance of love, kindness, and compassion. In this way, mindfulness practice may be described as “warmly being with present moment experience.” “Warm” mindfulness infused with self-compassion may be a more effective rapid emotion-regulation strategy than a response of “cool” mindful acceptance alone.242 Interventions and programs that focus explicitly on cultivating inner compassion, which includes and extends beyond self-kindness, may help facilitate behavior change, particularly for individuals who are prone to excess self-criticism, shame, or unworthiness.243

Motivation and Learning

In self-regulation theories, motivation relies on an anticipatory proactive system (i.e., setting standards) and a reactive negative feedback system (i.e., evaluative judgment) for reducing the discrepancy between goals/standards and behavior.72–74 Early self-regulation theories, based on control theory72 or homeostasis (feedback error correction),244 emphasize the role of evaluative judgment to generate motivation for change. Importantly, control of motivation can be stimulus driven in response to an external stimulus or control driven, which is motivated by, and directed toward, a specific outcome (e.g., interventions, goal setting).245 The motivation for unhealthy behavior is often driven by external and interoceptive stimuli246 through associative learning—for example, operant conditioning with positive or negative reinforcement. While MBPs may initially engage negative feedback systems utilizing discrepancy through evaluative judgment or predictive error to generate motivation for practice (e.g., “I hate being depressed, so I am motivated to practice mindfulness”), evaluative judgment is deemphasized during MBPs in favor of developing a focus on acceptance, intention setting, and attention toward experiential monitoring rather than self-evaluation.247–249
Evaluative judgment and feedback occur at least partially through the phasic activity of midbrain dopamine neurons in the ventral tegmental area that encode a prediction error used to guide associative learning throughout the frontal cortex and the basal ganglia.250 Activity in ventral tegmental area dopaminergic neurons that project to the nucleus accumbens (NAc) may signal that a person’s estimate of the value of current and future events is in error, and also indicate the error magnitude.251 This dopaminergic signaling process for reward-based learning begins with the acquisition of a reward after a behavior and leads to operant conditioning (e.g., incentive to repeat a pleasant, rewarding state). This gives way to wanting through incentive salience for cue-elicited behaviors,252 which causes automaticity and habit formation with the behavior eventually becoming epigenetically encoded in the dorsal striatum,253–255 making it harder to unlearn.256

Aversive learning happens through several mechanisms. Avoidance action learning, also referred to as negative reinforcement (e.g., action to avoid an unpleasant negative affect or aversive withdrawal state), depends on dopaminergic signaling in the NAc, though possibly through a different mechanism than approach learning.246,257 Pavlovian fear conditioning258 is due to signaling in the basolateral amygdala, which gets transmitted to the central amygdala, leading to the startle/freeze response to a stimulus.246,259–261 In cases where successful avoidance action takes place, however, a signal from the vmPFC blocks signal transmission to the central amygdala; instead of freezing, there is a predictive error signal in the NAc.246 Therefore, with aversive experiential learning, the freeze response and fear memory get conditioned first, but then successful avoidance action gets conditioned through engagement from the NAc and vmPFC, priming people to initiate avoidance action when a cue related to the previously aversive stimuli is experienced.246 Thus, the conditioned action urges that are at the heart of reward and experiential avoidance seem to be encoded in the prediction error in the NAc modulated by the vmPFC, which is the cortical region involved in subjective self-related valuation and self-regulatory goals.262–264

Fear memories either get continually reconsolidated after cue exposure or move toward extinction if the feared conditioned effects do not arise through a NMDA receptor-mediated process in the basolateral amygdala.265,266 Extinction learning is the process of inhibiting conditioned fear responses and developing new learning that competes with prior conditioning.266,267 It also involves prediction error–related vmPFC activity,268 which may explain why approach and avoidance conditioning often interact when trying to reverse conditioning.269,270 Therefore, both negative and positive reinforcement approaches may rely on this dopaminergic error-prediction system and modulation from the vmPFC self-related valuation system, which together are likely candidates for the negative feedback evaluative judgment system in self-regulation theory.

New theories based on recent neuroscientific developments also propose that prediction-error processes may be widely distributed throughout the brain’s architecture (including theinsula) for interoceptive regulation and allostatics, with a key role in emotion and behavioral regulation.271,272 These neural models of allostatics propose that efficient self-regulation requires anticipating needs and preparing to satisfy them before they arise through a process of predictive error prevention.256

As described above, external rewards and punishments can lead to associative learning through Pavlovian and operant conditioning, and lead to habits that persist with ongoing positive and negative reinforcement. Exposure and associative learning can also be employed both for removing unhealthy habitual behavior and for developing and reinforcing healthy habitual behavior.41 Mindfulness practice, in particular, is itself a unique healthy behavior that may have the capacity to accelerate the process of extinguishing and replacing unhealthy behavioral repertoires.273,274 Traditionally, MM has been effectively taught in retreat settings lacking most unhealthy habitual behavior.275 In community MBPs, however, participants live in high-risk, cue-laden contexts,276 which can be more challenging. Despite this increased challenge, the social context of the group helps people spend time away from unhealthy behavior-activating cues and in a social environment that values collective learning of mindfulness.277 As community MBP practice continues, autonomic stability increases,152 allowing for a “window of tolerance,”278,279 within which exposure, response prevention, reconsolidation, associative learning, and extinction learning processes150,280 may begin to unwind the habit learning273 and fear conditioning281 that were maintaining unhealthy habits.

At around four weeks of practice, nonclinical MBI participants generally begin to automatically pay attention to the present moment.282 MM may be utilizing the same neural circuitry and associative-learning mechanisms to establish the habit of mindfulness, which can lead to a process of therapeutics staged neuroplasticity.283 Mindfulness practice associates readily available cues (e.g., the breath, present-moment sensations in the body, the physical experience of stress) with the internal mindful action of warmly being with present-moment experience with constant, accepting awareness of the experience’s changing nature—a process traditionally called Sampajanna in the Pali language, meaning “clear comprehension of impermanence.”26 This then sets in motion an automatic, internal behavioral repertoire that uses exposure and extinction processes to uproot deeply programmed, unhealthy conditioned behavioral patterns, while developing insight and ability to distinguish which behavioral patterns are healthier and do no harm.197,274,284 By combining this mindful acceptance with deepening interoceptive awareness, MM then begins to sidestep standard interoceptive feedback processes that drive automatic behaviors, thereby shifting interoceptive regulation toward use of the perceptual-inference instead of active-inference strategies. This change provides
an efficient pathway for discrepancy resolution that reduces predictive errors and refines allostatic regulation. The stimulus-driven approach to learning and motivation dissipates as motivation for mindfulness becomes fully internalized and intrinsic motivation for healthy behaviors awakens.

Self-determination theory suggests motivation is derived from competence, relatedness, and autonomy. The motivation for initiating and maintaining behavior change exists on a continuum from amotivation to extrinsic (external pressure), introjected (internal pressure/guilt/shame), identified (feels useful/important), internalized (aligns with deeply held values), and most optimally intrinsic (interesting/enjoyable). Initially, mindfulness and paying attention may come from introjected or identified motivation (e.g., feeling I should meditate or that meditation is important for me). As practice continues and one witnesses the moment-to-moment consequences of unhealthy behaviors and identifies what is deeply valued, motivation for healthy behaviors become increasingly internalized, and people become self-motivated. As behavior aligns with internal standards, one develops more proactive systems (e.g., intention setting), reducing the burden from reliance on overreactive, judgment-driven negative feedback systems. Competence and autonomy are enhanced, and intrinsic motivations for wellness are progressively uncovered. Curiosity, which is a key aspect of the mindful state, may also modulate midbrain dopaminergic systems. Mindfully taking interest in health behaviors and its effects may generate greater levels of intrinsic motivation, enhancing overall motivational vigor and cognitive control through tonic dopamine release from the ventral tegmental area to the frontal central executive network. As mindfulness practice proceeds, mindful savoring of healthy, pleasant experiences may restructure reward processes and dopaminergic tone to restate value to natural rewards. Negative emotions have specific action urges, while positive emotions tend to broaden and build a person’s repertoire of thought-action patterns. Therefore, emotions are often experienced as intrinsic motivation, and emotion differentiation and reappraisal through mindfulness may help reduce emotionally driven unhealthy behaviors and build internalized and intrinsic motivation for healthy behaviors. Finally, kindness and compassion increase relatedness with others and potentially make people more sensitive to affiliative motivational systems, through which oxytocin may drive dopaminergic learning and reward in the ventral tegmental area and NAc.

Mindful Self-Regulation: Synergy and Integration
Mindful self-regulation integrates attentional/cognitive control, emotion regulation, and self-related processes in synergy with mechanisms for motivation and learning as the practice of MM deepens. Mindful self-regulation starts with attentional control and curiosity about present-moment experience, leading to the development of interoceptive awareness and alternatives to self-critical rumination. Reappraisal of mental content, decentering, and acceptance downregulates autonomic reactivity, allowing for exposure to aversive internal stimuli and ultimately developing equanimity. Yet, for people with high levels of limbic dysregulation (e.g., unresolved trauma, marginalized or disempowered status) or baseline attentional/cognitive impairments, this standard, “cool” MM pathway offers some challenges. In this context, a “warm” MM pathway that starts with establishing safety through a “window of tolerance,” while cultivating self-compassion and inner warmth, may be more effective. By reducing self-criticism, autonomic reactivity, and internal conflict, the focus shifts from unhealthy patterns toward self-care. By slowly reducing the limbic load on cognitive control resources, attentional training becomes more accessible and effective. The most effective MM teachers often engage both pathways in tandem, helping practitioners more quickly come into smooth regulation and potentially reducing adverse experiences; yet, this key perspective has not been fully appreciated in previously proposed models of mindful self-regulation. As one begins to pay attention, consistent curiosity and kind awareness allow greater goal-driven control based on values, increased levels of internalized motivation, greater access to intrinsic motivation, and less reliance on stimulus-driven conditioning and evaluative negative feedback systems, eventually unwinding associative learning related to harmful behaviors. Behavior begins to emerge that puts positive cues in the environment, potentially activating healthy behaviors and supporting the behavior of mindful noticing itself, which leads to a positive feedback loop in favor of healthy behavior change. In this way, over time MM may cause an evolution toward greater efficiency in the human self-regulation system within a socio-environmental context, leading to greater feelings of interconnection and relatedness, and ultimately even supporting experiences of self-transcendence.

MBIs’ Effects on Psychiatrically Relevant Behavior Change
Substance Use Disorders
Evidence supporting the impact of MBIs for alcohol (AUD) and substance use (SUD) disorders has been growing, supporting a few key mechanisms underlying the effect. A meta-analysis of 42 studies in 2017 reported a small effect of MBIs on substance misuse (standardized mean difference = −0.33) and a moderate effect on substance-related craving (standardized mean difference = −0.68). A three-arm RCT enrolled abstinent intensive outpatient and inpatient residential treatment program completers with SUD (n = 286), comparing mindfulness-based relapse prevention versus relapse prevention versus treatment as usual on substance use outcomes over 12 months. This study demonstrated mindfulness-based relapse prevention had fewer drug use and heavy-drinking days at 12 months compared with relapse prevention alone. Mindfulness-based relapse prevention is the most commonly studied MBI for SUD, while other
MBIs and mindfulness-informed interventions are also being studied for various substances and stages of treatment (e.g., mindfulness-oriented recovery enhancement). While the strength of evidence for mindfulness effects on certain SUDs during specific stages of treatment is strong (e.g., AUD), evidence for mindfulness and other SUDs is still emerging (e.g., methamphetamine, opioid use disorder). MBI studies for AUD/SUD support the general self-regulation mechanisms above while also focusing on disorder-specific deficits (e.g., reward processing, executive function, cue reactivity). For instance, mindfulness reduces impulsivity among people with opioid use disorder receiving methadone. MM may strengthen top-down cognitive control and repair executive-function deficits among people with SUD (e.g., working memory, inhibitory control) by increasing ACC/PFC activity and restoring frontal-striatal connectivity. Mindfulness practice appears to partially decrease substance use through reductions in craving. Craving reduction may be from mindfulness strategies for centering, acceptance, and attentional control that reduce intrusive cognitive elaboration (i.e., dwelling in positive recollections or attempts to suppress them) and that prevent cascades of emotional and physiologic reactivity. Mindfulness enhances emotion regulation, decoupling depression/negative affect from craving. MM encourages acceptance, reducing thought suppression, which may reduce craving since the suppression of thoughts/urges often amplifies craving. Mindfulness dampens limbic reactivity and enhances vagal tone, reducing the amplitude and elaboration of physiologic responses to stress and drug cues associated with craving. Mindfulness also seems to facilitate physiological recovery (e.g., high-frequency heart rate variability) with faster attentional disengagement after substance-related cues and stress. Evidence is also emerging that MM and mindful savoring practice may lead to restructuring reward processing, potentially remediating opioid use disorder–related hedonic dysregulation. By exposing practitioners to imaginal and interoceptive substance-related cues during practice and providing rewarding experiences (e.g., feelings of tranquility, curiosity about the novelty of present-moment experience), MM may allow extinction learning and a reversal of operant conditioning, unwinding years of habit formation. Despite the meta-analyses and efficacy and mechanistic studies supporting a role for mindfulness in AUD/SUD treatment, critical issues remain: establishing an evidence base to support real-world implementation in clinical settings; adapting interventions for various levels of care, patient readiness, and stages of treatment; determining the necessary dose of training at each level; and investigating issues of scalability for diverse populations.

Eating Behavior/Diet
The efficacy of MBIs on food-related behavior and weight loss has been documented across multiple reviews and meta-analyses. Among RCTs, MBIs have large effects on the reduction of binge eating, emotional eating, and eating when not feeling physically hungry, and moderate effects on the improvement of eating attitudes. Small to moderate effects were noted for weight loss. MBI studies that include both formal and informal practices (e.g., mindful eating) or that are combined with cognitive-behavioral therapy appear particularly beneficial.

MBIs may promote enhanced self-regulation and interoceptive regulation through increased ability to notice automatic thoughts or affective cues, accurate appraisal of internal stimuli, or increased awareness of craving, hunger, fullness, and other factors influencing eating patterns. For example, mindful eating promotes present-moment enjoyment of food while reducing both overall caloric intake and craving-related eating. Across studies of individuals who are obese or overweight, MBIs reduced levels of depression and anxiety with medium effect. This improvement in psychological health may disrupt cycles of reactive or emotional eating, foster self-compassion, and improve self-concept. Overall, MBIs promote healthier behaviors around food and enhance psychological well-being, resulting in weight loss or weight maintenance. More research is needed to examine the efficacy of MBIs on sustained weight loss.

In line with broader research on eating-related behaviors and obesity, MBIs, including mindfulness-based eating awareness training (MB-EAT), appear useful for the treatment of binge eating disorder via similar mechanisms of action. In a meta-analysis, studies of persons with binge eating disorder demonstrated large effects for the reduction of eating pathology, emotional eating, negative affect, and body dissatisfaction, along with a small effect for weight loss. Additional research is needed to compare the efficacy of MBIs to traditional approaches (e.g., cognitive-behavioral therapy) for this pathology. Little is known about MBIs in bulimia nervosa and anorexia nervosa. Initial meta-analytical reports are favorable, showing reduced eating pathology, emotional eating, and body dissatisfaction with medium effect, as well as weight gain in some under-weight participants. Across eating disorders, including binge eating disorder, compassion-focused techniques and mindfulness-informed interventions (e.g., DBT) may be useful. Given the unique clinical characteristics of restrictive eating disorders, mindful eating may be distressing for some individuals, especially with acute symptoms. While MBIs show promise, more rigorous research is needed to understand their utility for eating disorder treatment.

Tobacco Smoking
The past decade has seen an evolution of treatments and studies on MBIs for tobacco smoking cessation, with mixed evidence. Two meta-analyses, both of which included four smoking-specific RCTs, found that MBIs were superior to other evidence-based treatments. One reported a moderate effect (d = 0.42), and the other a relative risk of abstinence of 1.88 (1.04–3.40). A 2017 meta-analysis with ten RCTs found that mindfulness-informed interventions (including

www.harvardreviewofpsychiatry.org
brief and mobile interventions) did not differ from comparators. In a now somewhat dated 2015 systematic review, only 13 of 198 articles on mindfulness and smoking were controlled empirical studies, with the majority being pilot or feasibility trials. The first RCT in 2011 compared mindfulness training to cognitive-behavioral therapy (American Lung Association’s Freedom from Smoking), in which they found a five-times greater cessation rate with mindfulness, which a secondary analysis demonstrated was moderated by baseline levels of nonjudgment, with less self-judgment of inner experience supporting greater cessation with mindfulness training. Another analysis showed mindfulness training decoupled key links in the smoking reinforcement-learning pathway (craving and smoking). As treatment has moved digital, app-based paradigms have been tested, reporting similar decoupling mechanisms. Recent work demonstrated that app-based mindfulness training serves to target DMN brain networks involved in “getting caught up” in craving, in a dose-dependent manner, with the degree of brain activity reduction in the posterior cingulate cortex predicting smoking reductions, especially among women. More work is needed to replicate and extend findings.

Chronic Disease Self-Management
Self-management of chronic illness for common conditions is a priority for improving health care. As chronic physical illness is highly comorbid with mental illness, helping patients develop skills to self-manage chronic illness is essential in psychiatry. Chronic illness is often comorbid with anxiety, depression, trauma, and stress. Meta-analysis shows small effects for MBIs on enhancing quality of life and reducing anxiety, depression, and stress during chronic illness. Reducing mental health symptoms through MM may support greater chronic disease self-management. For instance, an eight-week MBI—integrated as health care treatment for primary care patients with comorbid mental and physical chronic illnesses—demonstrated increased rates of health-related action plan initiation compared with participants randomized to a low-dose mindfulness comparator (OR = 2.91). A pilot eight-week MBSR group adapted for hypertension demonstrated significant changes in modifiable determinants of blood pressure—physical activity, diet, and alcohol consumption—for those who were nonadherent to American Heart Association guidelines at baseline, and changes were maintained at one year. Patients with chronic obstructive pulmonary disease who participated in an eight-week group program followed by ten monthly sessions reported increased health behavior changes and improvement in coping with illness. Qualitative findings from 41 individuals with long-term conditions participating in MBSR emphasized that “starting where I am” facilitated changes related to coping with and managing their illnesses. Mindfulness training helped lower blood glucose levels and hemoglobin A1C among those with type 2 diabetes but not among emerging adults with type 1 diabetes, suggesting further research is required. Longer-term continuation groups beyond eight weeks and the addition of kindness and compassion elements may be an important adaptation for helping those living with chronic illness.

Violence, Suicide/Self-Injury, and Other High-Risk Behaviors
Impulsive violence and aggression are critical high-risk behaviors commonly monitored in psychiatry. A systematic review on the effect of mindfulness on aggression and violence included 22 adult studies (4 RCTs), concluding that MBIs and mindfulness-informed interventions (not including DBT) had a significant impact, with effect sizes from 0.21 to 0.87. Mindfulness skills may decrease impulsive thought and aggressive behavior through improved awareness of internal experience, reduction of experiential avoidance, and attentional shifting. An RCT with 58 patients with borderline personality disorder found decreased impulsive behavior after DBT versus treatment as usual. An RCT with 101 adults with recent partner aggression comparing ACT versus support group reported ACT was more efficacious in reducing physical and psychological aggression. An RCT with 56 healthy adults comparing MBSR versus waitlist reported MBSR decreased anger suppression and aggressive anger expression. In conclusion, empirical evidence suggests MBIs and mindfulness-informed interventions may reduce impulsive and aggressive behaviors. More methodologically rigorous research and meta-analyses are needed to confirm this hypothesis.

Dispositional mindfulness is negatively associated with suicidal ideation (SI) and nonsuicidal self-injury. DBT has the most evidence for decreasing suicidal and self-injurious behavior. In their systematic review, Chesin and colleagues found six studies of MBIs and suicidal behavior. Four studies reported inferential statistics on the effect of MBIs on SI, with three reporting significant reductions. The study that did not find a significant reduction had relatively low baseline rates of SI, suggesting a possible baseline effect. Since that review, other studies have also shown salubrious effects of MBIs on SI with and without DBT appearing to uncouple the association between depressive symptoms and SI. MBIs remediate some cognitive factors and self-related processes shown to be risk factors for SI—for example, self-critical rumination, hopelessness, and cognitive reactivity to suicide—but they do not mediate the improvement in SI. Thus, while MBIs may help reduce SI, more needs to be studied regarding potential mechanisms. The strongest evidence for nonsuicidal self-injury has been for DBT, which is effective in reducing nonsuicidal self-injury urges and behaviors in RCTs and meta-analyses, with particularly consistent and strong evidence among adolescents. Studies of the effects of MBIs on nonsuicidal self-injury have been proposed, but results have not yet been published to our knowledge. One RCT, however, and several open-label trials for ACT show promise.
Dispositional mindfulness is positively correlated with inhibitory control and negatively correlated with impulsivity and with compulsive and high-risk sexual behavior.391,413–420 One RCT with 28 adults comparing 12 individual ACT sessions to a waitlist control condition to evaluate sexual impulsivity related to pornography showed a positive effect of the intervention on compulsive sexual behaviors.421 Cross-sectional data suggest that mindfulness training could reduce hypersexual behavior.20,422 Spiritual self-schema therapy, a psychotherapy that includes MM as its primary component, showed increased motivation to reduce HIV risk behavior (i.e., sex without a condom) in an RCT with 72 drug users,274 and completers of the intervention had decreased impulsiveness on the Barratt Impulsiveness Scale.197

DISCUSSION

Limitations of Current MBP Research

Many of the populations who may benefit from health-related behavior change—those with a disproportionate burden and comorbidity of chronic illness, substance use, and high-risk behaviors—are underrepresented in current research on mindfulness and compassion-based programs. These populations include trauma survivors,423,424 ethno-racial minorities425,426 (particularly those who identify as African American, Latinx, or indigenous), sexual or gender minorities,166,427,428 refugee/immigrant populations,429 and those at the intersection of these marginalized groups.430 While MBPs may be beneficial for addressing difficulties experienced by these populations (e.g., mindfulness-based relapse prevention may be more effective when delivered within groups composed primarily of ethnic/racial minorities),431,432 the current research base disproportionately represents well-educated, Caucasian, economically advantaged individuals.166,425 The paucity of ethno-racial diversity in both MBP researchers433 and MBP research participants166,425 mirrors the lack of diversity in psychological and biomedical research.334

While the level of MM practice engagement is often predictive of outcomes,435 trait mindfulness can be measured in the general non-meditating population, where it contributes to self-regulated behavior and positive affect.436 Moreover, even though eight weeks of MBP group training with a silent day of practice (23 hours in total) was more effective than a one-hour introduction to MM in catalyzing health behavior change, evidence supporting what dose intensity is required for behavior change is not yet definitive.20,437 Many doorways to discovering mindfulness likely exist, and those that are culturally inclusive of marginalized populations are more likely to be experienced as open doors, supporting greater access.438 While MBPs are well researched, with reliable dose-related effects within certain demographic groups,433,439 MBPs as currently designed are unlikely to be the exclusive optimal format for all. Innovations like rolling admissions in mindfulness-based relapse prevention represent an initial step toward accessibility.440 Overall, demands for the consistency and integrity of MBPs need to be balanced with cultural accessibility in clinical dissemination research.

The future accessibility, relevance, and ethical dissemination of existing MBPs will depend on adequate training of diverse MBP teachers/facilitators and on research agendas that prioritize overlapping areas of cultural humility, cultural accessibility, and trauma-sensitive delivery of MBPs, particularly for those affected by historical and intergenerational traumas.441 Given the potential relationship between intercourse and social power,442 internalized oppression,443 and chronic illness,173,444,445 future research is needed on interventions that cultivate embodiment and interoception,285 including movement,446 drumming,447,448 music,449–452 and dance453—which may be more culturally accessible and specifically helpful for people with intergenerational trauma,454 and serve to foster social connectedness for marginalized populations with chronic illnesses.433

Future Directions: Adverse Effects, Trauma-Informed Training, Dose Effects

Adverse effects have been largely undocumented in the MBP research field. A systematic review of mindfulness-based stress-reduction or cognitive-therapy RCTs reported that only 15.6% of 231 studies included any statement about adverse events.455 Yet, potential adverse effects may include panic, physical pain, reexperiencing of traumatic memories, and dissociative symptoms.301 More needs to be understood about how program, participant, and teacher/leader factors contribute to adverse events.456 Britton457 and Grant and Schwartz458 propose a research agenda that takes into account that unwanted effects may emerge when aspects of mindfulness, such as decentering, focus on body sensations, and present-moment focus, are overemphasized. As the forms of adverse effects and reactions to symptoms vary based on individual and context, teachers and leaders should train in how to best monitor for, and respond to, adverse effects in MBP research.459,460

Program design and training must be sensitive to potential adverse effects experienced by trauma survivors. A majority of individuals will experience a traumatic life event, and a subset of these will develop posttraumatic stress disorder (PTSD).461 During MBPs, trauma survivors may be more likely to experience certain adverse effects such as traumatic flashbacks301 and dissociation.462 Trauma-informed training assumes that everyone might have a trauma history and focuses on offering choice, de-shaming adverse effects, supporting individual agency, and responding skillfully to trauma-related effects when they arise.424,460 MBPs have the potential to substantially reduce PTSD symptomology and to support neurobiological changes in networks implicated in PTSD psychopathology.111,463–469 Future research is needed on interventions that incorporate self-compassion, as it may mitigate and transform the shame-based nature of PTSD.470 When patients with PTSD are immersed within a safe, validating, healing community, such as well-designed trauma-informed
MBP groups featuring self-compassion, they are likely to successfully initiate meaningful behavior changes.20

Finally, future clinical trials should include validated assays in clinical settings measuring the impact of dose effects on the self-regulation components described herein, and the extent to which each component mediates health behavior change.371 More dismantling and dose-response studies could help clarify the most active components and their individual contributions.120,472 Care should be taken with this investigatory approach, however, since it carries risks of oversimplifying MBPs to just a collection of techniques in a toolbox.473 When mindfulness programs are offered solely from this instrumental dimension of a skill to be acquired,241 then the synergistic, holistic, and seemingly paradoxical approach to cultivating mindfulness, which many patients experience as engaging and deeply healing in MBPs, may be unwittingly sacrificed.

CONCLUSION

A growing evidence base supports the benefits of mindfulness for behavior change. A mindful self-regulation model based on an integration of neuroscientific findings describes the complex and synergistic effects of attention/cognitive control, emotion regulation, and self-related processes, as well as motivation and learning mechanisms that may provide a unique pathway toward sustainable behavior change. While evidence supports the impact of mindfulness on behavior change for key health behaviors related to psychiatric practice, more high-quality research is needed, especially with objective measures, larger samples, replication studies, active controls, and formal monitoring of adverse events.474 The field will also benefit from additional research on the impact of integrating compassion practices and from a focus on trauma-sensitive adaptations for diverse populations.

Declaration of interest: Dr. Brewer is the founder of MindSciences, the company that developed the mindfulness app for smoking cessation described in this article. He owns stock in, and serves as a noncompensated scientist for, the company and has previously served on the board of directors. This financial interest has been disclosed to and is being managed by Brown University, in accordance with its Conflict of Interest and Conflict of Commitment policies.

We would like to thank Willoughby Britton, Marcelo Demarzo, Gaille Desbordes, Rebecca Ferrer, Elizabeth Hoge, Jean King, Jared Lindahl, Ethan Moitra, Neusa Rocha, and Jason Samlin for their contributions to this project.

REFERENCES

1. Tombor I, Michie S. Methods of health behavior change. In: Braddock O, ed. Oxford research encyclopedias: psychology. New York: Oxford University Press, 2017.
2. Nielsen L, Riddle M, King JW, et al. The NIH Science of Behavior Change Program: transforming the science through a focus on mechanisms of change. Behav Res Ther 2018;101:3–11.
3. Mokdad AH, Marks JS, Stroup DF, Gerberding JL. Actual causes of death in the United States, 2000. JAMA 2004;291:1238–45.
4. Danaei G, Ding EL, Mozaffarian D, et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med 2009;6:e1000358.
5. Crimmins EM, Preston SH, Cohen B. International differences in mortality at older ages: dimensions and sources. Washington, DC: National Academies, 2011.
6. Schroeder SA. We can do better—improving the health of the American people. N Engl J Med 2007;357:1221–8.
7. Loef M, Walach H. The combined effects of healthy lifestyle behaviors on all cause mortality: a systematic review and meta-analysis. Prev Med 2012;55:163–70.
8. Noar SM, Zimmerman RS. Health behavior theory and cumulative knowledge regarding health behaviors: are we moving in the right direction? Health Educ Res 2005;20:275–90.
9. Michie H, West S, Campbell R, Brown R, Ginnforth J, eds. The behaviour change wheel: a guide to designing interventions. London: Silverback, 2014.
10. Prochaska JO, DiClemente CC. Stages and processes of self-change of smoking toward an integrative model of change. J Consult Clin Psychol 1983;51:390–5.
11. Rosenstock IM. Why people use health services. Milbank Mem Fund Q 1966;44:94–124.
12. Bandura A. Social cognitive theory: an agentic perspective. Annu Rev Psychol 2001;52:1–26.
13. Painter JE, Borba CPC, Hynes M, Mays D, Glanz K. The use of theory in health behavior research from 2000 to 2005: a systematic review. Ann Behav Med 2008;35:358–62.
14. Glanz K, Rimer B. Theory at a glance: a guide for health promotion practice. San Francisco, CA: U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, National Cancer Institute, 2005.
15. Ajzen I. Theories of cognitive self-regulation: the theory of planned behavior. Organ Behav Hum Decis Process 1991;50:179–211.
16. Perkins HW. Social norms and the prevention of alcohol misuse in collegiate contexts. J Stud Alcohol Suppl 2002;(14):164–72.
17. Miller WR, Rollnick S. Motivational interviewing: helping people change. 3rd ed. New York: Guilford, 2013.
18. Marlatt GA, Donovan DM. Relapse prevention: maintenance strategies in the treatment of addictive behaviors. 2nd ed. New York: Guilford, 2005.
19. Salmoirago-blotcher E, Hunsinger M, Morgan L, Fischer D, Carmody J. Mindfulness-based stress reduction and change in health-related behaviors. 2013;18:243–7.
20. Gawande R, To MN, Pine E, et al. Mindfulness training enhances self-regulation and facilitates health behavior change for primary care patients: a randomized controlled trial. J Gen Intern Med 2019;34:293–302.
21. Carlson LE. Mindfulness-based interventions for physical conditions: a narrative review evaluating levels of evidence. ISRN Psychiatry 2012;2012:61583.
22. Goldberg SB, Tucker RP, Greene PA, et al. Mindfulness-based interventions for psychiatric disorders: a systematic review and meta-analysis. Clin Psychol Rev 2018;59:52–60.
23. Li W, Howard MO, Garland EL, Mcgovern P, Lazar M. Mindfulness treatment for substance misuse: a systematic review and meta-analysis. J Subst Abuse Treat 2017;75:62–96.
24. Kabat-Zinn J. Full catastrophe living: using the wisdom of your body and mind to face stress, pain and illness. New York: Delacorte, 1990.
25. Sun J. Mindfulness in context: a historical discourse analysis. Contemp Buddhism 2014;15:394–415.
67. Loucks EB, Schuman-Olivier Z, Britton WB, et al. Mindfulness and cardiovascular disease risk: state of the evidence, plausible mechanisms, and theoretical framework. Curr Cardiol Rep 2015;17:112.

68. Tang Y-Y, Holzel BK, Posner MI. The neuroscience of mindfulness meditation. Nat Rev Neurosci 2013;16:213–25.

69. Neff KD, Germer CK. A pilot study and randomized controlled trial of the mindful self-compassion program. J Clin Psychol 2013;69:28–44.

70. Tang Y-Y, Posner MI, Rothbart MK. Meditation improves self-regulation over the life span. Ann N Y Acad Sci 2014;1307:104–11.

71. Dimidjian S, Arch JJ, Schneider RL, Desormeau P, Felder JN, Segal ZV. Considering meta-analysis, meaning, and metaphor: a systematic review and critical examination of “third wave” cognitive and behavioral therapies. Behav Ther 2016;47:886–905.

72. Carver CS, Scheier MF. On the self-regulation of behavior. New York: Cambridge University Press, 1998.

73. Baumeister RF, Heatherton TF. Self-regulation failure: an overview. Psychol Inq 1996;7:1–15.

74. Bandura A. Social cognitive theory of self-regulation. Organ Behav Hum Decision Process 1991;50:248–47.

75. Blair C, Razza RP. Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Dev 2007;78:647–63.

76. Duckworth AL, Tsukayama E, May H. Establishing causality using longitudinal hierarchical linear modeling: an illustration predicting achievement from self-control. Soc Psychol Personal Sci 2010;1:311–7.

77. Evans GW, Fuller-Rowell TEDS. Childhood cumulative risk and obesity: the mediating role of self-regulatory ability. Pediatrics 2012;129:e68–73.

78. Trindade A. The longitudinal effects of emotion regulation on physical and psychological health: a latent growth analysis exploring the role of cognitive fusion in inflammatory bowel disease. Br J Health Psychol 2017;22:171–85.

79. Forbes EE, Dahl RE. Neural systems of positive affect: relevance to understanding child and adolescent depression? Dev Psychopathol 2005;17:827–50.

80. Amstadter A. Emotion regulation and anxiety disorders. J Anxiety Disord 2008;22:211–21.

81. Shiels K, Hawk LH Jr. Self-regulation in ADHD: the role of error processing. Clin Psychol Rev 2010;30:951–61.

82. Kuntsche E, Knibbe R, Engels R, Gmel G. Drinking motives as mediators of the link between alcohol expectancies and alcohol use among adolescents. J Stud Alcohol Drugs 2007;68:76–8.

83. Deblois ME, Kubansky LD. Childhood self-regulatory skills predict adolescent smoking behavior. Psychol Health Med 2016;21:138–51.

84. Zlotnick C, Wolfdorf BA, Johnson B, et al. Impaired self-regulation and suicidal behavior among adolescent and young adult psychiatric inpatients. Arch Suicide Res 2003;7:149–57.

85. Wagner DD, Heatherton TF. Self-regulation and its failure: the seven deadly threats to self-regulation. In: Mikulincer M, Shaver PR, Borgia E, Bargh JA, eds. APA handbook of personality and social psychology, vol. 1: Attitudes and social cognition. Washington DC: American Psychological Association, 2014.

86. Baumeister RF, Tice DM, Vohs KD. The strength model of self-regulation: conclusions from the second decade of willpower research. Perspect Psychol Sci 2018;13:141–5.

87. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. Conflict monitoring and cognitive control. Psychol Rev 2001;108:624–52.

88. Miller EE. The prefrontal cortex and cognitive control. Nat Rev Neurosci 2000;1:59–65.

89. Cole MW, Schneider W. The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage 2007;37:343–60.

90. Botvinick M, Braver T. Motivation and cognitive control: from behavior to neural mechanism. Annu Rev Psychol 2015;66:83–113.

91. Breukelaar IA, Antees C, Grieve SM, et al. Cognitive control network anatomy correlates with neurocognitive behavior: a longitudinal study. Hum Brain Mapp 2017;38:631–43.

92. Miyake A, Friedman NP, Emerson MJ, Wizski AH, Howarter A, Wagner TD. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol 2000;41:49–100.

93. Eysenck MW, Derakshan N, Santos R, Calvo MG. Anxiety and cognitive performance: attentional control theory. Emotion 2007;7:336–53.

94. Randall JG, Oswald FL, Beier ME. Mind-wandering, cognition, and performance: a theory-driven meta-analysis of attention regulation. Psychol Bull 2014;140:1411–31.

95. Diamond A. Executive functions. Annu Rev Neurosci 2013;64:135–68.

96. Posner MI, Petersen SE. The attention system of the human brain. Annu Rev Neurosci 1990;13:25–42.

97. Jha AP, Krompinger J, Baime MJ. Mindfulness training modifies subsystems of attention. Cogn Affect Behav Neurosci 2007;7:109–19.

98. Flavell JH. Metacognition and cognitive monitoring: a new area of cognitive-developmental inquiry. Am Psychol 1979;34:906–11.

99. Hussain D. Meta-cognition in mindfulness: a conceptual analysis. Psychol Thought 2015;8:132–41.

100. Safran J, Segal ZV. Interpersonal process in cognitive therapy. Oxford: Jason Aronson, 1996.

101. Lau MA, Bishop SR, Segal ZV, et al. The Toronto Mindfulness Scale: development and validation. J Clin Psychol 2006;62:1445–67.

102. Heeren A, Van Broeck N, Philippot P. The effects of mindfulness on executive processes and autobiographical memory specificity. Behav Res Ther 2009;47:403–9.

103. Chiesa A, Serretti A. Mindfulness based cognitive therapy for psychiatric disorders: a systematic review and meta-analysis. Psychiatry Res 2011;187:441–53.

104. Lao S-A, Kissane D, Meadows G. Cognitive effects of MBSR/MBCT: a systematic review of neuropsychological outcomes. Cognistic Cogn 2016;43:109–23.

105. Garland EL, Boettiger CA, Gaylord S, Chanon VW, Howard MO. Mindfulness is inversely associated with alcohol attentional bias among recovering alcohol-dependent adults. Cogn Ther Res 2012;36:441–50.

106. Andreu CI, Cosmelli D, Slagter HA, Franken IHA. Effects of a brief mindfulness-meditation intervention on neural measures of response inhibition in cigarette smokers. PLoS One 2018;13:e0191661.

107. Stange JP, Eisner LR, Holzel BK, et al. Mindfulness-based cognitive therapy for bipolar disorder: effects on cognitive functioning. J Psychiatr Pract 2011;17:410–9.

108. Shapero BG, Greenberg J, Mischoulon D, Pedrelli P, Meade K, Lazar SW. Mindfulness-based cognitive therapy improves cognitive functioning and flexibility among individuals with elevated depressive symptoms. Mindfulness (N Y) 2018;9:1457–69.

109. Gard T, Holzel BK, Lazar SW. The potential effects of meditation on age-related cognitive decline: a systematic review. Ann N Y Acad Sci 2014;1307:89–103.

110. Wong WP, Coles J, Chambers R, Wu DB-C, Hassed C. The effects of mindfulness on older adults with mild cognitive impairment. J Alzheimers Dis Rep 2017;1:181–93.
Mindfulness and Behavior Change

111. Bressler SL, Menon V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci 2010;14: 277–90.

112. Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver TS. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 2013;16:348–55.

113. Schultz DH, Ito T, Solomyak LI, et al. Global connectivity of the fronto-parietal cognitive control network is related to depression symptoms in the general population. Neur Neurosci 2018;3:107–23.

114. Zanto TP, Gazzaley A. Fronto-parietal network: flexible hub of cognitive control. Trends Cogn Sci 2013;17:602–3.

115. Amer T, Campbell KL, Hasher L. Cognitive control as a broad construct. Mind Brain Dev 2018;115:E1598–E1607.

116. Dixon ML, De La Vega A, Mills C, et al. Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci U S A 2018;115:E1598–E1607.

117. Fox KCR, Dixon ML, Nijeboer S, et al. Functional neuroanatomy of meditation: a review and meta-analysis of 78 functional neuroimaging investigations. Neurosci Biobehav Rev 2016;65: 208–28.

118. Marzetti L, Di Lanzo C, Zappasodi F, Chella F, Raffone A, Pizzella V. Magnetoencephalographic alpha band connectivity reveals differential default mode network interactions during focused attention and open monitoring meditation. Front Hum Neurosci 2014;8:832.

119. Britton WB, Davis JH, Loucks EB, et al. Dismantling mindfulness-based cognitive therapy: creation and validation of 8-week focused attention and open monitoring interventions within a 3-armed randomized controlled trial. Behav Res Ther 2018;101:92–107.

120. Botvinick MM, Cohen JD, Carter C. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 2004;8: 539–46.

121. Pouuelos JP, Mead BR, Rueda MR, Malinowski P. Short-term mindful breath awareness training improves inhibitory control and response monitoring. Prog Brain Res 2019;244:137–63.

122. Teng Y-Y, Lu Q, Feng H, Tang R, Posner MI. Default and dorsal attention networks. Proc Natl Acad Sci U S A 2018;115:E1598–E1607.

123. Gross JJ, Thompson R. Emotion regulation: conceptual foundations. In: Gross JJ, ed. Handbook of emotion regulation. New York: Guilford, 2007.

124. Gross J, John O. Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. J Pers Soc Psychol 2003;85:348–62.

125. Ng W, Diener E. Personality differences in emotions: does emotion regulation play a role? J Individ Differ 2009;30:100–6.

126. Gross JJ. The emerging field of emotion regulation: an integrative review. Rev Gen Psychol 1998;2:271–99.

127. Gross JJ, Thompson R. Emotion regulation and psychopathology: a conceptual framework. In: Kring AM, Sloan DM, eds. Emotion regulation and psychopathology: a transdiagnostic approach to etiology and treatment. New York: Guilford, 2010;13–37.

128. Hofmann SG, Sawyer AT, Witt AA, Oh D. The effect of mindfulness-based therapy on anxiety and depression: a meta-analytic review. J Consult Clin Psychol 2010;78:169–83.

129. Goyal M, Singh S, Sibinga EMS, et al. Meditation programs for psychological stress and well-being: a systematic review and meta-analysis. JAMA Intern Med 2014;174:357–68.

130. Garland EL, Hanley AW, Goldin PR, Gross JJ. Testing the mindfulness-to-meaning theory: evidence for mindful positive emotion regulation from a reanalysis of longitudinal data. PLoS One 2017;12:e0187727.

131. Slagter HA, Lutz A, Greischar LL, et al. Mental training affects distribution of limited brain resources. PLoS Biol 2007;5:e138.

132. Garland EL, Hanley A, Farb NA, Froeliger BE. State mindfulness during meditation predicts enhanced cognitive reappraisal. Mindfulness (N Y) 2015;6:234–42.

133. Hayes SC, Strosahl K, Wilson KG, et al. Measuring experiential avoidance: a preliminary test of a working model. Psychol Res 2004;54:553–78.

134. Abramowitz JS, Blakey SM, eds. Clinical handbook of fear and anxiety: maintenance processes and treatment mechanisms. Washington, DC: American Psychological Association, 2020.

135. Goyal M, Singh S, Sibinga EMS, et al. Meditation programs for psychological stress and well-being: a systematic review and meta-analysis. JAMA Intern Med 2014;174:357–68.

136. Bernstein A, Hadash Y, Lichtash Y, Tanay G, Shepherd K, Howard MO. Effects of mindfulness-oriented recovery enhancement versus social support on negative affective interference during inhibitory control among opioid-treated chronic pain patients: a pilot mechanistic study. Annu Behav Med 2019; 53:865–76.
151. Gu J, Strauss C, Bond R, Cavanagh K. How do mindfulness-based cognitive therapy and mindfulness-based stress reduction improve mental health and wellbeing? A systematic review and meta-analysis of mediation studies. Clin Psychol Rev 2015;35:71-12.

152. Tang Y-Y, Ma Y, Fan Y, et al. Central and autonomic nervous system interaction is altered by short-term meditation. Proc Natl Acad Sci U S A 2009;106:8865-70.

153. Kral TRA, Schuyler BS, Mumford JA, Rosenkranz MA, Lutz A, Davidson RJ. Impact of short- and long-term mindfulness meditation training on amygdala reactivity to emotional stimuli. Neuroimage 2018;181:301–13.

154. Barrett LF, Gross J, Christensen TC, Benvenuto M. Knowing what you’re feeling and knowing what to do about it: mapping the relation between emotion differentiation and emotion regulation. Cogn Emot 2001;15:713–24.

155. Etkin A, Büchel C, Gross JJ. The neural bases of emotion regulation. Nat Rev Neurosci 2015;16:693–700.

156. Lutz J, Herwig U, Opialla S, et al. Mindfulness and emotion regulation—an fMRI study. Soc Cogn Affect Neurosci 2013;9:776–85.

157. Taylor VA, Grant J, Daneault V, et al. Impact of mindfulness on the neural responses to emotional pictures in experienced and beginner meditators. Neuroimage 2011;57:1524–33.

158. Holzel BK, Hoge EA, Greve DN, et al. Neural mechanisms of symptom improvements in generalized anxiety disorder following mindfulness training. Neuroimage Clin 2013;2:448–58.

159. Gross JJ. Emotion regulation in adulthood: timing is everything. Curr Dir Psychol Sci 2001;10:214–9.

160. Gross JJ, Muñoz RF. Emotion regulation and mental health. Clin Psychol Sci Pract 1995;2:151–64.

161. Smyth JM, Arigo D. Recent evidence supports emotion-regulation interventions for improving health in at-risk and clinical populations. Curr Opin Psychiatry 2009;22:205–10.

162. Groesz LM, McCoy S, Carl J, et al. What is eating you? Stress and the drive to eat. Appetite 2012;58:717–21.

163. Chew B-H, Shariff-Ghazali S, Fernandez A. Psychological associations of antecedent- and response-focused emotion regulation strategies with midlife cardiovascular disease risk. Ann Behav Med 2014;48:246–55.

164. de Riddler D, Geenen R, Kuijer R, van Middendorp H. Psychotherapy perspectives from analytical, phenomenological, and Indian traditions. In: Siderits M, Thompson E, Zahavi D, eds. Self, no self? Perspectives from analytical, phenomenological, and Indian traditions. Oxford: Oxford University Press, 2011.

165. Gallagher S. Philosophical conceptions of the self: implications for cognitive science. Trends Cogn Sci 2000;4:14–21.

166. Groesz LM, McCoy S, Carl J, et al. What is eating you? Stress and the drive to eat. Appetite 2012;58:717–21.
235. Dawson Rose C, Webel A, Sullivan KM, et al. Self-compassion and risk behavior among people living with HIV/AIDS. Res Nurs Health 2014;37:98–106.

236. Terry ML, Leary MR. Self-compassion, self-regulation, and health. Self Identity 2011;10:352–62.

237. Gilbert P. Compassion and cruelty. In: Compassion and cruelty: a biopsychosocial approach. London: Brunner-Routledge, 2005.

238. Lutz J, Bruhl AB, Doering, N, et al. Altered processing of self-related emotional stimuli in mindfulness meditators. Neuroimage 2016;124(Pt A):958–67.

239. Lutz J, Berry MP, Napadow V, et al. Neural activations during self-related processing in patients with chronic pain and effects of a brief self-compassion training—a pilot study. Psychiatry Res Neuroimaging 2020;304:111155.

240. Elana R. The heart of mindfulness-based stress reduction: a MBSR guide for clinicians and clients. Ashland, OR: Pesi, 2017.

241. Kabat-Zinn J. Too early to tell: the potential impact and risk behavior among people living with HIV/AIDS. Res Nurs Health 2011;34:352–62.

242. Terry ML, Leary MR. Self-compassion, self-regulation, and health. Self Identity 2011;10:352–62.

243. Gilbert P, Procter S. Compassionate mind training for people with high shame and self-criticism: overview and pilot study of a group therapy approach. Clin Psychol Psychother 2006;13:353–79.

244. Cannon WB. The wisdom of the body. 2nd ed. Oxford: Norton, 1939.

245. O’Doherty JP, Cockburn J, Pauli WM. Learning, reward, and decision making. Annu Rev Psychol 2017;68:73–100.

246. LeDoux JE, Moscarello J, Sears R, Campose V. The birth, death and resurrection of avoidance: a reconceptualization of a troubled paradigm. Mol Psychiatry 2017;22:24–36.

247. Shapiro SL, Schwartz GE. The role of intention in self-regulation: the identity-value model. Psychol Inq 2017;28:77–98.

248. Bell J, Scott V, Beitel M, Schuman-Olivier Z, Avants SK. A conceptualization of a motivational and neuropsychotidgic hub: anatomical and functional diversity within the nucleus accumbens shell. Neuron 2019;102:529–32.

249. Hunt WA, Matarazzo JD, Weiss SM, Gentry WD. Associative learning, habit, and health behavior. J Behav Med 1979;2:11–24.

250. Maren S, Fanselow MS. The amygdala and fear conditioning: has the nut been cracked? Neuron 1996;16:237–40.

251. Malvaez M, Greenfield VY, Matheos DP, et al. Habits are negatively regulated by histone deacetylase 3 in the dorsal striatum. Biol Psychiatry 2018;84:383–92.

252. Sterling P. Allostasis: a model of predictive regulation. Physiol Behav 2012;106:5–15.

253. Castro DC, Bruchas MR. A motivational and neuropsychotidgic hub: anatomical and functional diversity within the nucleus accumbens shell. Neuron 2019;102:529–32.

254. Hunt WA, Matarazzo JD, Weiss SM, Gentry WD. Associative learning, habit, and health behavior. J Behav Med 1979;2:11–24.

255. Maren S, Fanselow MS. The amygdala and fear conditioning: has the nut been cracked? Neuron 1996;16:237–40.

256. Sengupta A, Yau JOY, Jean-Richard-Dit-Bressel P, et al. Basolateral amygdala neurons maintain aversive emotional salience. J Neurosci 2018;38:3001–12.

257. Skelly MJ, Ariwodula OJ, Weiner JL. Fear conditioning selectively disrupts noradrenergic facilitation of GABAergic inhibition in the basolateral amygdala. Neuropharmacology 2017;113(Pt A):231–40.

258. D’Argembeau A. On the role of the ventromedial prefrontal cortex in self-processing: the valuation hypothesis. Front Hum Neurosci 2013;7:372.

259. Hiser J, Koenigs M. The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biol Psychiatry 2018;83:638–47.

260. Bell J, Scott V, Beitel M, Schuman-Olivier Z, Avants SK. A conceptualization of a motivational and neuropsychotidgic hub: anatomical and functional diversity within the nucleus accumbens shell. Neuron 2019;102:529–32.

261. Malvaez M, Ariwodula OJ, Weiner JL. Fear conditioning selectively disrupts noradrenergic facilitation of GABAergic inhibition in the basolateral amygdala. Neuropharmacology 2017;113(Pt A):231–40.

262. Lee JLC, Milton AL, Everit BJ. Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J Neurosci 2006;26:10051–6.

263. Myers KM, Davis M. Mechanisms of fear extinction. Mol Psychiatry 2007;12:120–50.

264. Milad MR, Quirk GJ. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol 2012;63:129–51.

265. Lange I, Goossens L, Michielse S, et al. Neural responses during extinction learning predict exposure therapy outcome in phobia: results from a randomized-controlled trial. Neuropharmacology 2020;163:1–11.

266. Naser HM, McNally GP. Neural correlates of appetitive-aversive interactions in Pavlovian fear conditioning. Learn Mem 2013;20:220–8.

267. Bulganin I, Bach D, Wittmann B. Prior fear conditioning and reward learning interact in fear and reward networks. Front Behav Neurosci 2014;8:67.

268. Barrett LF, Quirk KS, Hamilton P. An active inference theory of allosthosis and interoception in depression. Philos Trans R Soc Lond B Biol Sci 2016;371:20160011.

269. Barrett LF. The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci 2017;12:1–23.

270. Brewer D. Mindfulness training for addictions: has neuroscience revealed a brain hack by which awareness subverts the addictive process? Curr Opin Psychol 2019;28:198–203.

271. Margolin A, Beitel M, Schuman-Olivier Z, Avants SK. A conceptualization of a motivational and neuropsychotidgic hub: anatomical and functional diversity within the nucleus accumbens shell. Neuron 2019;102:529–32.

272. Barrett LF, Quirk KS, Hamilton P. An active inference theory of allosthosis and interoception in depression. Philos Trans R Soc Lond B Biol Sci 2016;371:20160011.

273. Barrett LF. The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci 2017;12:1–23.

274. Brewer J. Mindfulness training for addictions: has neuroscience revealed a brain hack by which awareness subverts the addictive process? Curr Opin Psychol 2019;28:198–203.

275. Margolin A, Beitel M, Schuman-Olivier Z, Avants SK. A conceptualization of a motivational and neuropsychotidgic hub: anatomical and functional diversity within the nucleus accumbens shell. Neuron 2019;102:529–32.

276. Marlatt GA, Gordon JR. Relapse prevention: maintenance interventions. Qual Health Res 2017;28:1125.

277. Gilmorph PW. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proc Natl Acad Sci U S A 2011;108(suppl 3):15647–54.

278. Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 1998;28:309–69.

279. Brewer JA, Potenza MN. The neurobiology and genetics of impulse control disorders: relationships to drug addictions. Biochem Pharmacol 2008;75:63–75.

280. Malvaez M, Wassum KM. Regulation of habit formation in the dorsal striatum. Curr Opin Behav Sci 2018;20:67–74.

281. Malvaez M, Greenfield VY, Matheos DP, et al. Habits are negatively regulated by histone deacetylase 3 in the dorsal striatum. Biol Psychiatry 2018;84:383–92.

282. Sterling P. Allostasis: a model of predictive regulation. Physiol Behav 2012;106:5–15.
279. Corrigan FM, Fisher JJ, Nutt DJ. Autonomic dysregulation and the Window of Tolerance model of the effects of complex emotional trauma. J Psychopharmacol 2011;25:17–25.

280. Kummar AS. Mindfulness and fear extinction: a brief review of its current neuropsychological literature and possible implications for posttraumatic stress disorder. Psychol Rep 2017;121:792–814.

281. Höfkel BK, Brunsch V, Gard T, et al. Mindfulness-based stress reduction, fear conditioning, and the uncinate fasciculus: a pilot study. Front Behav Neurosci 2016;10:124.

282. Demarzo MMP, Montero-Marín J, Cuijpers P, et al. The efficacy of mindfulness-based interventions in primary care: a meta-analytic review. Ann Fam Med 2015;13:573–82.

283. Kalivas PW, O 'Connor BJ. Mindfulness and addiction: implications for psychiatric disorders. Curr Opin Psychiatry 2009;22:320–5.

284. Marcotte D, Avants SK, Margolin A. Spiritual self-schema therapy, drug abuse, and HIV. J Psychoactive Drugs 2003;35:389–91.

285. Farb N, Daubenmier J, Price CJ, et al. Interoceptive, contemplative practice, and health. Front Psychol 2015;6:763.

286. Deci EL, Ryan RM. The “why” and “what” of goal pursuits: human needs and the self-determination of behavior. Psychol Inq 2000;11:227–68.

287. Schultz P, Ryan R. The “why,” “what,” and “how” of healthy self-regulation: mindfulness and well-being from a self-determination theory perspective. In: Ostafin BD, Robinson MD, Meier BP, eds. Handbook of mindfulness and self-regulation. New York: Springer, 2015.

288. Gruber MJ, Ranganath C. How curiosity enhances hippocampus-dependent memory: the prediction, appraisal, curiosity, and exploration (PACE) framework. Trends Cogn Sci 2019;23:1014–25.

289. Gruber MJ, Gelman BD, Ranganath C. States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron 2014;84:486–96.

290. Deci EL, Ryan RM, Schultz PP, Niemiec CP. Being aware and functioning fully: mindfulness and interest taking within self-determination theory. In: Brown KW, Creswell JD, Ryan RM, eds. Handbook of mindfulness: theory, research, and practice. New York: Guilford, 2015.

291. Manohar SG, Finzi RD, Drew D, Husain M. Distinct motivational effects of contingent and noncontingent rewards. Psychol Sci 2017;28:1016–26.

292. Beierholm U, Guitart-Masip M, Economides M, et al. Dopamine modulates reward-related vigor. Neuropsychopharmacology 2013;38:1495–503.

293. Yee DM, Braver TS. Interactions of motivation and cognitive control. Curr Opin Behav Sci 2018;19:83–90.

294. Garland EL, Froeliger B, Howard MO. Effects of mindfulness-oriented recovery enhancement on reward responsiveness and opioid cue-reactivity. Psychopharmacol 2014;231:3229–38.

295. Fredrickson BL. The broaden-and-build theory of positive emotions. Philos Trans R Soc Lond B Biol Sci 2004;359:1367–78.

296. Vandercammen L, Hofmans J, Theuns P. Relating specific emotions to intrinsic motivation: on the moderating role of positive and negative emotion differentiation. PLoS One 2014;9:e115396.

297. Bora E, Yucel M, Allen NB. Neurobiology of human affiliative behaviour: implications for psychiatric disorders. Curr Opin Psychiatry 2009;22:320–5.

298. Engen HG, Singer T. Compassion-based emotion regulation up-regulates experienced positive affect and associated neural networks. Soc Cogn Affect Neurosci 2015;10:1291–301.

299. da Silva J. Trauma-sensitive mindfulness: practices for safe and transformative healing. Trans Anal J 2018;48:288–90.

300. Renpenning K, Taylor SG, eds. Self-care theory in nursing: selected papers of Dorothea Orem. New York: Springer, 2003.

301. Lindahl JR, Fisher NE, Cooper DJ, Rosen RK, Britton WB. The varieties of contemplative experience: a mixed-methods study of meditation-related challenges in Western Buddhists. PLoS One 2017;12:e0176239.

302. Dakwar E, Levin FR. The emerging role of meditation in addressing psychiatric illness, with a focus on substance use disorders. Harv Rev Psychiatry 2009;17:254–67.

303. Hoppes K. The application of mindfulness-based cognitive interventions in the treatment of co-occurring addictive and mood disorders. CNS Spectr 2006;11:829–51.

304. Zgierska A, Rabago D, Chawla N, Kushner K, Koehler R, Marlett A. Mindfulness meditation for substance use disorders: a systematic review. Subst Abuse 2009;30:266–94.

305. Sancho M, De Gracia M, Rodriguez RC, et al. Mindfulness-based interventions for the treatment of substance and behavioral addictions: a systematic review. Front Psychiatry 2018;9:95.

306. Priddy SE, Howard MO, Hanley AW, Riquino MR, Friberg-felsted K, Garland EL. Mindfulness meditation in the treatment of substance use disorders and preventing future relapse: neurocognitive mechanisms and clinical implications. Subst Abuse Rehabil 2018;16:103–14.

307. Spears CA. Mindfulness-based interventions for addictions among diverse and underserved populations. Curr Opin Psychol 2019;30:11–6.

308. Byrne SP, Haber P, Baillie A, Costa DSJ, Fogliati V, Morley K. Systematic reviews of mindfulness and acceptance and commitment therapy for alcohol use disorder: should we be using third wave therapies? Alcohol Alcohol 2019;54:159–66.

309. Brewer JA, Bowen S, Smith JT, Marlatt GA, Potenza MN. Mindfulness-based treatments for co-occurring depression and substance use disorders: what can we learn from the brain? Addiction 2010;105:1698–706.

310. Black DS. Mindfulness-based interventions: an antidote to suffering in the context of substance use, misuse, and addiction. Subst Use Misuse 2014;49:487–91.

311. Tang YY, Posner MI, Rothbart MK, Volkow ND. Circuity of self-control and its role in reducing addiction. Trends Cogn Sci 2015;19:439–44.

312. Garland EL, Howard MO. Mindfulness-based treatment of addiction: current state of the field and envisioning the next wave of research. Addict Sci Clin Pract 2018;13:14.

313. Bowen S, Witkiewitz K, Clifftsea SL, et al. Relative efficacy of mindfulness-based relapse prevention, standard relapse prevention, and treatment as usual for substance use disorders: a randomized clinical trial. JAMA Psychiatry 2014;71:547–56.

314. Garland EL, Schwartz NM, Kelly A, Whitt A, Howard MO. Mindfulness-oriented recovery enhancement for alcohol dependence: therapeutic mechanisms and intervention acceptability. J Soc Work Pract Addict 2012;12:242–63.

315. Price CJ, Thompson EA,Crowell S, Pike K. Longitudinal effects of interoceptive awareness training through mindful awareness in body-oriented therapy (MABT) as an adjunct to women's substance use disorder treatment: a randomized controlled trial. Drug Alcohol Depend 2019;198:140–9.

316. Vidrine JI, Spears CA, Heppner WL, et al. Efficacy of mindfulness-based addiction treatment (MBAT) for smoking cessation and lapse recovery: a randomized clinical trial. J Consult Cogn Psychol 2016;84:824–38.

317. Tang YY, Tang R, Posner MI. Brief meditation training induces smoking reduction. Proc Natl Acad Sci U S A 2013;110:13971–5.

318. Luoma JB, Kohlenberg BS, Hayes SC, Fletcher L. Slow and steady wins the race: a randomized clinical trial of acceptance
and commitment therapy targeting shame in substance use disorders. J Consult Clin Psychol 2012;80:43–53.

319. Bowen S, Witkiewitz K, Chifasei SL, et al. Relative efficacy of mindfulness-based relapse prevention, standard relapse prevention, and treatment as usual for substance use disorders: a randomized clinical trial. JAMA Psychiatry 2015;71:547–56.

320. Glasner-Edwards S, Mooney LJ, Ång A, et al. Mindfulness-based relapse prevention for stimulant dependent adults: a pilot randomized clinical trial. Mindfulness (N Y) 2017;8:126–35.

321. Hamidi F, Kheirian S. Mindfulness-based relapse prevention to reduce high risk behaviors of people addicted to methamphetamine. Int J High Risk Behav Addict 2019;8:e92609.

322. Chen XJ, Wang DM, Zhou LD, et al. Mindfulness-based relapse prevention combined with virtual reality cue exposure for methamphetamine use disorder: study protocol for a randomized controlled trial. Contemp Clin Trials 2018;70:99–105.

323. Bloom-Foster J, Mehil-Madrona L. An ultra-brief mindfulness-based intervention for patients in treatment for opioid addiction with buprenorphine: a primary care feasibility pilot study. J Altern Complement Med 2020;26:34–43.

324. Sokol R, LaVeert AE, Morrill D, Albanese C, Schuman-Olivier Z. Group-based treatment of opioid use disorder with buprenorphine: a systematic review. J Subst Abuse Treat 2018;84:78–87.

325. Yaghubi M, Zargar F, Akbari H. Comparing effectiveness of mindfulness-based relapse prevention with treatment as usual on impulsivity and relapse for methadone-treated patients: a randomized clinical trial. Addict Health 2017;9:156–65.

326. Valls-Serrano C, Caracuel A, Verdejo-Garcia A. Goal management training and mindfulness meditation improve executive functions and transfer to ecological tasks of daily life in polysubstance users enrolled in therapeutic community treatment. Drug Alcohol Depend 2016;165:9–14.

327. Witkiewitz K, Bowen S. Depression, craving, and substance use following a randomized trial of mindfulness-based relapse prevention. J Consult Clin Psychol 2010;78:362–74.

328. Garland EL, Roberts-Lewis A, Kelley K, Ttronnic C, Hanley A. Cognitive and affective mechanisms linking trait mindfulness to craving among individuals in addiction recovery. Subst Use Misuse 2014;49:525–35.

329.Bowen S, Witkiewitz K, Dillworth TM, Marlatt GA. The role of thought suppression in the relationship between mindfulness meditation and alcohol use. Addict Behav 2007;32:2324–8.

330. Levin ME, Luoma JB, Haeger JA. Decoupling as a mechanism of change in mindfulness and acceptance: a literature review. Behav Modif 2015;39:870–911.

331. Moss AC, Erskine JAK, Albery IP, Allen JR, Georgiou GJ. To suppress, or not to suppress? That is repression: controlling intrusive thoughts in addictive behaviour. Addict Behav 2015;44:65–70.

332. Price CJ, Merrill JO, McCarty RL, Pike KC, Tsui JL. A pilot study of mindful body awareness training as an adjunct to office-based medication treatment of opioid use disorder. J Subst Abuse Treat 2020;108:123–8.

333. Brewer JA, Sinha R, Chen JA, et al. Mindfulness training and stress reactivity in substance abuse: results from a randomized, controlled stage I pilot study. Subst Abus 2009;30:306–17.

334. Westbrook C, Creswell JD, Tabibnia G, Julson E, Kober H, Tindle HA. Mindful attention reduces neural and self-reported cue-induced craving in smokers. Soc Cogn Affect Neurosci 2013;8:73–84.

335. Garland EL. Trait mindfulness predicts attentional and autonomic regulation of alcohol cue-reactivity. J Psychophysiol 2011;25:180–9.

336. Carroll H, Lustyk MKB. Mindfulness-based relapse prevention for substance use disorders: effects on cardiac vagal control and craving under stress. Mindfulness (N Y) 2018;9:488–99.

337. Garland EL. Restructuring reward processing with mindfulness-oriented recovery enhancement: novel therapeutic mechanisms to remediate hedonic dysregulation in addiction, stress, and pain. Ann N Y Acad Sci 2016;1373:25–37.

338. Garland EL, Atcheson RM, Hanley AW, Zubieta J-K, Froeliger B. Mindfulness-oriented recovery enhancement mediates hedonic dysregulation in opioid users: neural and affective evidence of target engagement. Sci Adv 2019;5:eaax1569.

339. Carrière K, Khoury B, Gunak MM, Knäuper B. Mindfulness-based interventions for weight loss: a systematic review and meta-analysis. Obes Rev 2017;19:164–77.

340. Godfrey KM, Gallo LC, Afari N. Mindfulness-based interventions for binge eating: a systematic review and meta-analysis. J Behav Med 2014;38:348–62.

341. Katterman SN, Kleiman BM, Hood MM, Nackers LM, Corsica JA. Mindfulness meditation as an intervention for binge eating, emotional eating, and weight loss: a systematic review. Eat Behav 2014;15:197–204.

342. Z Mantzos M, Wilson JC. Mindfulness, eating behaviours, and obesity: a review and reflection on current findings. Curr Obes Rep 2015;4:141–6.

343. O’Reilly GA, Cook L, Spruit-Metz D, Black DS. Mindfulness-based interventions for obesity-related eating behaviours: a literature review. Obes Rev 2014;15:453–61.

344. Rodgers JM, Ferrari M, Mosely K, Lang CP, Brennan L. Mindfulness-based interventions for adults who are overweight or obese: a meta-analysis of physical and psychological health outcomes. Obes Rev 2016;18:51–67.

345. Olson KL, Emery CF. Mindfulness and weight loss: a systematic review. Psychosom Med 2015;77:59–67.

346. Warren JM, Snith N, Ashwell M. A structured literature review on the role of mindfulness, mindful eating and intuitive eating in changing eating behaviours: effectiveness and associated potential mechanisms. Nutr Res Rev 2017;30:272–83.

347. Roche AI, Kroska EB, Denburg NL. Acceptance- and mindfulness-based interventions for binge eating, emotional eating, and obesity: a systematic review. Obes Rev 2015;16:105–13.

348. Brewer JA, Ruff A, Beccia AL, et al. Can mindfulness address maladaptive eating behaviors? Why traditional diet plans fail and how new mechanistic insights may lead to novel interventions. Front Psychol 2018;9:1418.

349. Reed JR, Yates BC, Houdek J, Pullen CH, Briner W, Schmid KK. Eating self-regulation in overweight and obese adults: a concept analysis. Nurs Forum 2015;51:105–16.

350. Baer RA, Fischer S, Huss DB. Mindfulness and acceptance in the treatment of disordered eating. J Ration Emot Cogn Behav Ther 2005;23:281–300.

351. Schmid KK. Eating self-regulation in overweight and obese adults: a concept analysis. Nurs Forum 2015;51:105–16.

352. Mason AE, Jhaveri K, Cohn M, Brewer JA. Testing a mobile mindfulness app for binge eating, emotional eating, and weight loss: a systematic review. JAMA Psychiatry 2015;71:1944–50.

353. Caldwell K, Baime M, Wolever RQ. Mindfulness-based stress reduction for methamphetamine use disorder: study protocol for a randomized controlled trial. Addict Health 2017;9:156–65.

354. Kristeller JL, Wolever RQ. Mindfulness-based eating awareness training as an intervention for obesity and weight loss maintenance. J Ment Health Couns 2012;34:269–82.

355. Corsica JA. Mindfulness meditation as an intervention for binge eating, emotional eating, and weight loss: a systematic review. Eat Behav 2014;15:197–204.

356. Mason AE, Jhaveri K, Cohn M, Brewer JA. Testing a mobile mindfulness app for binge eating, emotional eating, and weight loss: a systematic review. JAMA Psychiatry 2015;71:1944–50.

357. Roche AI, Kroska EB, Denburg NL. Acceptance- and mindfulness-based interventions for binge eating, emotional eating, and obesity: a systematic review. Obes Rev 2014;15:453–61.

358. Rogers JM, Ferrari M, Mosely K, Lang CP, Brennan L. Mindfulness-based interventions for adults who are overweight or obese: a meta-analysis of physical and psychological health outcomes. Obes Rev 2016;18:51–67.

359. Olson KL, Emery CF. Mindfulness and weight loss: a systematic review. Psychosom Med 2015;77:59–67.

360. Warren JM, Smith N, Ashwell M. A structured literature review on the role of mindfulness, mindful eating and intuitive eating in changing eating behaviours: effectiveness and associated potential mechanisms. Nutr Res Rev 2017;30:272–83.

361. Roche AI, Kroska EB, Denburg NL. Acceptance- and mindfulness-based interventions for health behavior change: systematic reviews and meta-analyses. J Context Behav Sci 2019;13(April):74–93.

362. Brewer JA, Ruff A, Beccia AL, et al. Can mindfulness address maladaptive eating behaviors? Why traditional diet plans fail and how new mechanistic insights may lead to novel interventions. Front Psychol 2018;9:1418.
Z. Schuman-Olivier et al.

394. Zarling A, Lawrence E, Marchman J. A randomized controlled trial of acceptance and commitment therapy for aggressive behavior. J Consult Clin Psychol 2015;83:199–212.

395. Robins CJ, Keng S, Ekblad AG, Brantley JG. Effects of mindfulness-based stress reduction on emotional experience and expression: a randomized controlled trial. J Clin Psychol 2012;68:117–31.

396. Cheng S, Banks K, Barrlett BA, Miguel GS, Vujanovic AA. Posttraumatic stress and mindfulness facets in relation to suicidal ideation severity among psychiatric inpatients. Mindfulness (N Y) 2019;7:976–72.

397. Zeng W, Ma Z, Li H. Mindfulness and suicidal ideation in Chinese older adults: perceived stress as mediator. Soc Behav Pers 2017;45:733–40.

398. Garisch JA, Wilson MS. Prevalence, correlates, and prospective predictors of non-suicidal self-injury among New Zealand adolescents: cross-sectional and longitudinal survey data. Child Adolesc Psychiatr Ment Health 2015;9:28.

399. Heath NL, Carseley D, De Rigg ME, Mills D, Mettler J. The relationship between mindfulness, depressive symptoms, and non-suicidal self-injury amongst adolescents. Arch Suicide Res 2016;20:635–49.

400. Méndez-Bustos P, Calati R, Rubio-Ramírez F, Olié E, Courtet P, Lopez-Castroman J. Effectiveness of psychotherapy on suicidal risk: a systematic review of observational studies. Front Psychol 2019;10:277.

401. DeCou CR, Comtois KA, Landes SJ. Dialectical behavior therapy is effective for the treatment of suicidal behavior: a meta-analysis. Behav Ther 2019;50:60–72.

402. Chesin MS, Interman A, Kline A, Benjamin-Phillips C, Latorre M, Stanley B. Reviewing mindfulness-based interventions for suicidal behavior. Arch Suicide Res 2016;20:507–27.

403. Le TN, Gobert JM. Translating and implementing a mindfulness-based youth suicide prevention intervention in a native American community. J Child Fam Stud 2013;24:12–23.

404. Barnhofer T, Crane C, Hargus E, Amarasinghe M, Winder R, Williams JMG. Mindfulness-based cognitive therapy as a treatment for chronic depression: a preliminary study. Behav Res Ther 2009;47:366–73.

405. Lu R, Zhou Y, Wu Q, et al. The effects of mindfulness training on suicide ideation among left-behind children in China: a randomized controlled trial. Child Care Health Dev 2019;45:371–9.

406. Forrkmann T, Brakemeier E-L, Teissmann T, Schramm E, Michalak J. The effects of mindfulness-based cognitive therapy and cognitive behavioral analysis system of psychotherapy added to treatment as usual on suicidal ideation in chronic depression: results of a randomized-clinical trial. J Affect Disord 2016;200:51–7.

407. Barnhofer T, Crane C, Brennan K, et al. Mindfulness-based cognitive therapy (MBCT) reduces the association between depressive symptoms and suicidal cognitions in patients with a history of suicidal depression. J Consult Clin Psychol 2015;83:1013–20.

408. Chesin MS, Benjamin-Phillips CA, Keilp J, Fertuck EA, Brodsky BS, Stanely B. Improvements in executive attention, rumination, cognitive reactivity, and mindfulness among high-suicide risk patients participating in adjunct mindfulness-based cognitive therapy: preliminary findings. J Altern Complement Med 2016;22:642–9.

409. McCauley E, Berk MS, Asarnow JR, et al. Efficacy of dialectical behavior therapy for adolescents at high risk for suicide a randomized controlled trial. JAMA Psychiatry 2018;75:777–85.

410. Mehlum L, Ramberg M, Tørmoen AJ, et al. Dialectical behavior therapy compared with enhanced usual care for adolescents with repeated suicidal and self-harming behavior: outcomes over a one-year follow-up. J Am Acad Child Adolesc Psychiatry 2016;55:295–300.

411. Rees CS, Hasking P, Breen LJ, Lipp OV, Mamotte C. Group mindfulness based cognitive therapy vs group support for self-injury among young people: study protocol for a randomised controlled trial. BMC Psychiatry 2015;15:154.

412. Tighe J, Nicholas J, Shand F, Christensen H. Efficacy of acceptance and commitment therapy in reducing suicidal ideation and deliberate self-harm: systematic review. JMMR Ment Health 2018;5:10732.

413. Oberle E, Schonert-reichl KA, Lawlor MS, Kimberly C. Mindfulness and inhibitory control in early adolescence. J Early Adolesce 2012;32:565–88.

414. Eisenlohr-Moul TA, Peters JR, Pond RS, DeWall CN. Both trait and state mindfulness predict lower aggressiveness via anger rumination: a multi-level mediation analysis. Mindfulness (N Y) 2016;7:713–26.

415. Kelley TM, Lambert EG. Mindfulness as a potential means of attenuating anger and aggression for prospective criminal justice professionals. Mindfulness (N Y) 2012;3:261–74.

416. Feldman G, Greeson J, Renna M, Robbins-Monteith K. Mindfulness predicts less texting while driving among young adults: examining attention- and emotion-regulation motives as potential mediators. Pers Individ Dif 2011;51:856–61.

417. Murphy C, Mackillop J. Living in the here and now: interrelationships between impulsivity, mindfulness, and alcohol misuse. Psychopharmacology (Berl) 2012;219:527–36.

418. Black DS, Sussman S, Johnson CA, Milam J. Testing the indirect effect of trait mindfulness on adolescent cigarette smoking through negative affect. J Subst Abuse 2012;17:417–29.

419. Lakey CE, Campbell WK, Warren K, Goodie AS. Dispositional mindfulness as a predictor of the severity of gambling outcomes. Pers Individ Dif 2007;43:1698–710.

420. Shorey RC, Elmqquist J, Gawrysiak MJ, Anderson S, Stuart GL. The relationship between mindfulness and compulsive sexual behavior in a sample of men in treatment for substance use disorders. Mindfulness (N Y) 2016;7:866–73.

421. Crosby JM, Twohig MP, Crosby JM. Acceptance and commitment therapy for problematic internet pornography use: a randomized trial. Behav Ther 2016;47:355–66.

422. Reid RC, Bramen JE, Anderson A, Cohen MS. Mindfulness, emotional dysregulation, impulsivity, and stress proneness among hypersexual patients. J Clin Psychol 2014;70:313–21.

423. Brattström O, Eriksson M, Larsson E, Oldner A. Socio-economic status and co-morbidity as risk factors for trauma. Eur J Epidemiol 2014;30:151–7.

424. Goodman A, Sommers-Flanagan J, Treleaven DA. Trauma-sensitive mindfulness: practices for safe and transformative healing. J Contemp Psychother 2018;49:127–8.

425. Waldron EM, Hong S, Moskowitz JT, Burnett-Zeigler I. A systematic review of the demographic characteristics of participants in US-based randomized controlled trials of mindfulness-based interventions. Mindfulness (N Y) 2018;9:1671–92.

426. Cook BL, Trinh N-H, Li Z, Hou SS-Y, Progovac AM. Trends in racial-ethnic disparities in access to mental health care, 2004–2012. Psychiatr Serv 2017;68:9–16.

427. Budge SL, Adelson JL, Howard KAS. Anxiety and depression in transgender individuals: the roles of transition status, loss, social support, and coping. J Consult Clin Psychol 2013;81:545–57.

428. Gilman SE, Cochran SD, Mays VM, Hughes M, Ostrow D, Kessler RC. Risk of psychiatric disorders among individuals reporting same-sex sexual partners in the National Comorbidity Survey. Am J Public Health 2001;91:933–9.

429. Khullar D, Chokshi DA. Challenges for immigrant health in the USA—the road to crisis. Lancet 2019;393:2168–74.

430. Crenshaw KW. Twenty years of critical race theory: looking back to move forward. Conn Law Rev 2011;43:1253–354.
431. Witkiewitz K, Greenfield BL, Bowen S. Mindfulness-based relapse prevention with racial and ethnic minority women. Addict Behav 2013;38:2821–4.

432. Greenfield BL, Roos C, Hagler KJ, Stein E, Bowen S, Witkiewitz KA. Race/ethnicity and racial group composition moderate the effectiveness of mindfulness-based relapse prevention for substance use disorder. Addict Behav 2018;81:96–103.

433. Proulx J, Croff R, Oken B, et al. Considerations for research and development of culturally relevant mindfulness interventions in American minority communities. Mindfulness (N Y) 2018;9:361–70.

434. George S, Duran N, Norris K. A systematic review of barriers and facilitators to minority research participation among African Americans, Latinos, Asian Americans, and Pacific Islanders. Am J Public Health 2014;104:e16–31.

435. Carmody J, Baer RA. Relationships between mindfulness practice and levels of mindfulness, medical and psychological symptoms and well-being in a mindfulness-based stress reduction program. J Behav Med 2008;31:23–33.

436. Brown KW, Ryan RM. The benefits of being present: mindfulness and its role in psychological well-being. J Pers Soc Psychol 2003;84:822–48.

437. Carmody J, Baer RA. How long does a mindfulness-based stress reduction program need to be? A review of class contact hours and effect sizes for psychological distress. J Clin Psychol 2009;65:627–38.

438. Davidson RJ, Kaszniaik AW. Conceptual and methodological issues in research on mindfulness and meditation. Am Psychol 2015;70:581–92.

439. Norris CJ, Creem D, Hendler R, Koher H. Brief mindfulness meditation improves attention in novices: evidence from ERPs and moderation by neuroticism. Front Hum Neurosci 2018;12:315.

440. Roos C, Kirouac M, Stein E, Wilson A, Bowen S, Witkiewitz K. An open trial of rolling admission mindfulness-based relapse prevention (Rolling MBRP): feasibility, acceptability, dose-response relations, and mechanisms. Mindfulness (N Y) 2019;10:1062–73.

441. Mohatt NV, Thompson AB, Thai ND, Tebes JK. Historical trauma as public narrative: a conceptual review of how history impacts present-day health. Soc Sci Med 2014;106:128–36.

442. Moewi-Jazani M, Knoefler K, de Molière L, Gatti E, Moeini-Jazani M, Knoefler K, de Molière L, Gatti E, Landerers. Am J Public Health 2014;104:e16.

443. Rose L, Critchley HD, Garfinkel SN. The neurobiology of response relations, and mechanisms. Mindfulness (N Y) 2019;10:1062–73.

444. van der Kolk BA, Stone L, West J, et al. Yoga as an adjunctive treatment for posttraumatic stress disorder. JAMA 2015;314:456–65.

445. Kearney DJ, McDermott K, Malte C, Martinez M, Simpson TL. Effects of participation in a mindfulness program for veterans with posttraumatic stress disorder: a randomized controlled pilot study. J Clin Psychol 2012;69:14–27.

446. Banks K, Newman E, Saleem J. An overview of the research on mindfulness-based interventions for treating symptoms of posttraumatic stress disorder: a systematic review. J Clin Psychol 2015;71:935–62.

447. Afifi T, Asmundson G, Sareen J. Epidemiology of traumatic stress and the implications for dance/movement therapy. Contemp Psychology 2014;15:274–9.

448. Boyd JE, Lanius RA, McKinnon MC. Mindfulness-based treatments for posttraumatic stress disorder: a review of the treatment literature and neurobiological evidence. J Psychiatry Neurosci 2018;43:7–23.

449. Polusny MA, Erbes CR, Thuras P, et al. Mindfulness-based stress reduction for posttraumatic stress disorder among veterans: a randomized clinical trial. JAMA 2015;314:456–65.

450. Treleaven J, Asmundson G, Sareen J. Epidemiology of traumatic events and posttraumatic stress disorder. In: Nutt DJ, Stein MB, Zohar J, eds. Posttraumatic stress disorder: diagnosis, management and treatment. Boca Raton, FL: Taylor & Francis, 2009.

451. Compson J. Meditation, trauma and suffering in silence: raising questions about how meditation is taught and practiced in Western contexts in the light of a contemporary trauma resiliency model. Contemp Buddhism 2014;15:274–97.

452. Keegan T, Erickson TM, Giardino ND, et al. A pilot study of group mindfulness-based cognitive therapy (MBCT) for combat veterans with posttraumatic stress disorder (PTSD). Depression Anxiety 2013;30:638–45.

453. Kearney DJ, Malte CA, McManus C, Martinez ME, Fellemann B, Simpson TL. Loving-kindness meditation for posttraumatic stress disorder: a pilot study. J Trauma Stress 2013;26:426–34.
469. Bormann JE, Oman D, Walter KH, Johnson BD. Mindful attention increases and mediates psychological outcomes following mantram repetition practice in veterans with posttraumatic stress disorder. Med Care 2014;52:S13–8.

470. Herman JL. Posttraumatic stress disorder as a shame disorder. In: Shame in the therapy hour. Dearing RL, Tangney JP, eds. Washington, DC: American Psychological Association, 2011.

471. Dimidjian S, Segal ZV. Prospects for a clinical science of mindfulness-based intervention. Am Psychol 2015;70:593–620.

472. Stein E, Witkowitz K. Dismantling mindfulness-based programs: a systematic review to identify active components of treatment. Mindfulness (N Y) 2020;25 Jul [Epub ahead of print].

473. Powell SK. Mindfulness: another tool in the case managers’ toolbox. Prof Case Manag 2014;19:159–60.

474. Van Dam NT, van Vugt MK, Vago DR, et al. Mind the hype: a critical evaluation and prescriptive agenda for research on mindfulness and meditation. Perspect Psychol Sci 2018;13:36–61.