Clinical evaluation of FAPlus/FNPlus bottles compared with the combination of SA/SN and FA/FN bottles in the BacT/Alert blood culture system

Takuya Hattori, Hideki Nishiyama, Shinobu Ikegami, Makoto Minoshima, Hideki Kato, and Norihiro Yuasa

INTRODUCTION

Bloodstream infections are associated with a high morbidity and mortality (1). Blood culture is still essential for detecting bloodstream infections, although direct molecular detection methods have been developed in recent years (2). Advancements in blood culture techniques occurred in the 1990s following the introduction of automated incubators with continuous monitoring and enrichment of culture media (3). The BacT/Alert automated blood culture system (BioMérieux Co., Ltd., Tokyo, Japan) is one of the main systems used worldwide for the detection of bloodstream infections (4).

BioMérieux Co., Ltd. initially introduced standard aerobic (SA) and standard anaerobic (SN) culture bottles, followed by fastidious aerobic (FA) and anaerobic antibiotic neutralization (FN) bottles. SA/SN bottles, which contain supplemented soy-bean-casein digest broth medium, use 1 : 9 blood : broth dilution ratio. Because of this low dilution, these bottles were shown to have low detection rates and false-negative results in hospitalized patients who had received antimicrobial therapy before collection of blood (5). In fact, approximately 50%-90% of inpatients had already received antimicrobial therapy at the time of blood culture (6, 7), and the presence of antibiotics in the blood might inhibit the growth of microorganisms, particularly in SA/SN bottles. Unlike SA/SN bottles, FA/FN bottles contain absorbent charcoal and were developed to avoid the effect of antimicrobial agents and other substances in the blood that could inhibit bacterial growth (8). However, the presence of charcoal represents a major limiting factor for the application of Gram-staining, direct mass spectrometry (MS), and molecular methods (9, 10).

FAPlus/FNPlus bottles, which contain adsorbent polymeric beads and thus prevent difficulty in interpreting Gram-staining results, became available in December 2011. Several clinical studies have already demonstrated the advantages of FAPlus/FNPlus bottles over the earlier blood culture bottles (90) in terms of TTP. J. Med. Invest. 67:90-94, February, 2020

Keywords : BacT/Alert, Blood culture, Helicobacter cinaedi, Time to positivity

RESULTS

The microorganism detection rate was significantly higher in the later period than in the earlier period (11.2% vs. 9.6%, \(P < 0.001 \)), particularly for Enterococcus and Streptococcus species, nonfermentative Gram-negative bacilli, and Helicobacter cinaedi. TTP for pathogens was longer when FAPlus/FNPlus bottles were used than when a combination of SA/SN and FA/FN bottles was used (14.9 vs. 13.3 h, \(P = 0.014 \)), particularly, in the case of Gram-negative bacilli including Escherichia coli.

CONCLUSION

The microorganism detection rate was improved with the use of FAPlus/FNPlus bottles compared with the combination of SA/SN and FA/FN bottles; however, FAPlus/FNPlus bottles seemed to be inferior to SA/SN and FA/FN bottles in terms of TTP.
infections were cultured as directed by the physicians as part of routine patient care. Throughout the study, we collected data on the types of blood culture bottles, bacterial identification results, and TTPs using the Laboratory Information System.

Blood culture bottles were incubated at 37°C under aerobic and anaerobic conditions in an automated BacT/Alert 3D system until a positive result was obtained or for up to 6 days. Microorganisms from positive blood cultures were further identified by using the Vitek MS system (BioMérieux Co., Ltd.) according to our routine procedures (14) and were further classified as pathogens or contaminants. When a blood culture yielded microorganisms commonly considered to be contaminants (e.g., coagulase-negative staphylococci, Corynebacterium species, Bacillus species, or Cutibacterium acnes), the culture was considered to be contaminated as in previous studies (15-17). The TTP was defined as the interval from loading bottles into the automated blood culture system until the growth signal was obtained, and it was automatically recorded by the blood culture system. If multiple species of microorganisms were detected in one bottle, which was defined as a polymicrobial culture, the first positive result was used to determine the TTP. Both clinical and laboratory blood culture procedures were unchanged during the study period, except the introduction of FAPlus/FNPlus bottles.

The ethics committee of our hospital waived the need for ethical approval and informed consent because of the retrospective and anonymized nature of the study.

Statistical analysis

Differences of nominal data were evaluated using the χ²-test. If a patient had multiple sets of positive blood cultures, the shortest TTP was used. The normality of the distribution of numerical data was examined by the Kolmogorov-Smirnov test, and the Mann-Whitney U test was performed if normality was not confirmed. All the tests were two-tailed, and P < 0.05 was considered to be statistically significant. Statistical analyses were performed with StatView 4.5 software (Abacus Concepts, Berkeley, CA) or modified R software (The R Foundation for Statistical Computing, Perugia, Italy).

RESULTS

The microorganism detection rate

During the first and second consecutive 12-month periods, 8771 and 8035 blood culture sets were obtained from 3362 and 2802 patients, respectively. Among them, the overall positive rates were 9.6% and 11.2%, respectively (Figure 1A). The microorganism detection rate was significantly higher when FAPlus/FNPlus bottles were used than when a combination of SA/SN and FA/FN bottles was used (P < 0.001). When pathogens and contaminants were assessed separately (Figure 1B), the detection rate of pathogens was significantly higher when FAPlus/FNPlus bottles were used (9.6%) than when SA/SN and FA/FN bottles were used (7.9%, P < 0.001). However, no significant difference was found in the detection rate of contaminants between the two sets of bottles (1.7% vs. 1.6%, P = 0.515). Further analysis revealed that a significantly higher detection rate of Gram-positive cocci including Enterococcus and Streptococcus species, nonfermentative Gram-negative bacilli (e.g., Pseudomonas aeruginosa and Serratia marcescens), Helicobacter cinaedi, and polymicrobial cultures was observed with FAPlus/FNPlus bottles than with the combination of SA/SN and FA/FN bottles (Table 1). Interestingly, H. cinaedi, which was included with other Gram-negative bacilli, was not detected when SA/SN and FA/FN bottles were used, but it was found in nine culture sets when FAPlus/FNPlus bottles were used (P < 0.001).

Time to positivity

The TTP data for the two sets of bottles are compared in Table 2; overall TTP was not significantly different in both the sets (median, 15 vs. 16 h; P = 0.145), whereas the TTP for pathogens was significantly longer with FAPlus/FNPlus bottles than with SA/SN and FA/FN bottles (median, 14.9 vs. 13.3 h; P = 0.014). Further analysis revealed that the TTP for Gram-negative bacilli including Escherichia coli, Aeromonas species, Aggregatibacter segnis, Capnocytophaga ochracea, Capnocytophaga sputigena, Eikenella corrodens, Haemophilus influenzae, Brevibacillus laterosporus, and non-identifiable Gram-negative bacilli were significantly longer.
when FAPlus/FNPlus bottles were used. The median TTP for *H. cinaedi* was 90 h [95% confidence interval (CI); range, 79.6-136.7 h]. After excluding *H. cinaedi*, TTP for pathogens was also longer when FAPlus/FNPlus bottles were used (median, 14.8 h; 95% CI; range, 12.8-14.2 h; *P* = 0.036).

DISCUSSION

This study showed that the microorganism detection rate was higher and the TTP for pathogens was significantly longer when FAPlus/FNPlus bottles were used than when SA/SN and FA/FN bottles were used.

Some researchers have already reported the superiority of FAPlus/FNPlus bottles over either SA/SN bottles or FA/FN bottles (4, 11, 12); however, the comparison of the performance of FAPlus/FNPlus bottles and combination of SA/SN and FA/FN bottles is not yet reported. Interestingly, our study showed that FAPlus/FNPlus bottles might be superior for detecting Gram-positive cocci including *Enterococcus* and *Streptococcus* species, nonfermentative Gram-negative bacilli, and *H. cinaedi*. Furthermore, polymicrobial cultures were significantly more often found in FAPlus/FNPlus bottles. Because the mortality rate was reported to be 2.15 times higher in patients with polymicrobial bloodstream infections than in those with monomicrobial infections (18), the increased detection rate for polymicrobial cultures could have a profound clinical impact.

It is also noteworthy that nine cases of *H. cinaedi* infection were detected by the FAPlus/FNPlus bottles. *H. cinaedi* causes enteric or bloodstream infections, and bacteremia seems to be more common in Japan (19). Reports of the detection of *H. cinaedi* using the BacT/Alert blood culture system have been very limited (20); however, to the best of our knowledge, the present study is the first to show that the detection rate of *H. cinaedi* was increased when FAPlus/FNPlus bottles were used. Better detection of *H. cinaedi* is important and has a great clinical impact, particularly in immunocompromized patients. Lee et al. reported that FAPlus/FNPlus bottles detected more pathogens, although a lower mean volume of blood was inoculated into FAPlus/FNPlus bottles than into SA/SN bottles (12). Considering all our results together, the threshold of FAPlus/FNPlus bottles for positive blood culture is potentially lower than that of SA/SN or FA/FN bottles.

An increase of microorganism detection may be caused at the expense of a higher contamination rate (21, 22). However, our results showed that there was no significant difference in the contamination rates between the two sets of bottles. The contamination rate in our study (1.6%-1.7%) was below the optimal contamination rates described in CLSI guidelines (23). The reason for this is not clear, but a possible explanation is good compliance of phlebotomists with the blood culture procedure throughout the two study periods with different sets of bottles.

TTP for pathogens is important with regard to patient management. Several studies have demonstrated a significant decrease in TTP with FAPlus/FNPlus bottles compared with FA/FN or SA/SN bottles (11, 12). However, our findings were different; a significantly longer TTP was observed with pathogens, particularly Gram-negative bacilli including *E. coli*, in FAPlus/FNPlus bottles than in SA/SN and FA/FN bottles. Indeed, a previous study investigated a small number of samples (11), and the other study did not comply with the recommended blood inoculation volume (12). Our results show that FAPlus/FNPlus bottles might be inferior to SA/SN or FA/FN bottles in terms of TTP.

Table 1. Microorganisms detected in blood cultures comparing the two periods

Microorganism(s)	Sep 2012-Aug 2013 (SA/SN and FA/FN)	Sep 2013-Aug 2014 (FAPlus/FNPlus)	*P* value
Pathogens	694 (7.9)	772 (9.6)	<0.001
Gram-positive cocci	228 (2.6)	272 (3.4)	<0.001
Staphylococcus aureus	89 (1.0)	90 (1.1)	0.506
Enterococcus species	32 (0.4)	50 (0.6)	0.017
Streptococcus species	97 (1.1)	124 (1.5)	0.013
Other Gram-positive cocci	10 (0.1)	8 (0.1)	0.775
Gram-negative bacilli	354 (4.0)	374 (4.7)	0.048
Enterobacteriales	311 (3.5)	280 (3.5)	0.830
Nonfermentative Gram-negative bacilli	27 (0.3)	73 (0.9)	<0.001
Other Gram-negative bacilli	16 (0.2)	21 (0.3)	0.275
Helicobacter cinaedi	0 (0.0)	9 (0.1)	0.001
Gram-negative cocci	5 (0.1)	0 (0.0)	0.064
Gram-positive bacilli	4 (0.0)	7 (0.1)	0.296
Anaerobes	36 (0.4)	33 (0.4)	0.998
Fungi	18 (0.2)	20 (0.2)	0.551
Polymicrobial cultures	49 (0.6)	66 (0.8)	0.039
Contaminants	151 (1.7)	128 (1.6)	0.515
Coagulase-negative *Staphylococci*	106 (1.2)	85 (1.1)	0.357
Bacillus species	25 (0.3)	24 (0.3)	0.870
Corynebacterium species	6 (0.1)	12 (0.1)	0.109
Cutibacterium acnes	14 (0.2)	7 (0.1)	0.184
All microorganisms	845 (9.6)	900 (11.2)	<0.001
This study had some limitations. The first was its before-vs.-after design, which introduces some confounders and is less powerful than a direct, synchronous comparison. It was also impossible to exclude selection bias such as changes in hospital care, patient characteristics, and infectious diseases. However, the two study periods were consecutive, and there were no changes in the blood culture procedures of our hospital. Indeed, the contamination rate was extremely low during both the periods. Second, we did not investigate whether patients received antimicrobial therapy before blood collection, so we could not assess the microorganism detection capacity of the FAPlus/FNPlus bottles for patients taking antimicrobial therapy. Kirn et al. reported an improved performance of FAPlus/FNPlus bottles compared with FA/FN bottles regardless of antimicrobial treatment (11). The superior performance of FAPlus/FNPlus bottles may be related to the inactivation of antibiotics as well as the inactivation of toxic compounds and cytokines. Finally, we did not record the blood volumes of each bottle. Blood volume is known to be the most important factor affecting the quality of a blood culture (24). Accordingly, a further study including blood volume information is warranted.

In conclusion, the pathogen detection rate was higher with FAPlus/FNPlus bottles than with the combination of SA/SN and FA/FN bottles. In particular, there was a significant increase in the detection of *Enterococcus* and *Streptococcus* species, nonfermentative Gram-negative bacilli, *H. cinaedi*, and polymicrobial cultures. However, FAPlus/FNPlus bottles might be inferior to SA/SN and FA/FN bottles in terms of TTP. Our study suggests a lower threshold for positive blood cultures and lower bacterial growth rates in FAPlus/FNPlus bottles than in SA/SN and FA/FN bottles.

Table 2. Time to positivity in blood cultures comparing the two periods

Microorganism(s)	Sep 2012-Aug 2013 (SA/SN and FA/FN)	Sep 2013-Aug 2014 (FAPlus/FNPlus)	P value
	No. Median 95% CI	No. Median 95% CI	
Pathogens	493 13.3 12.8-14.2	541 14.9 14.3-15.9	0.014
Gram-positive cocci	163 14.1 13.2-15.5	185 14.8 13.7-15.8	0.407
Staphylococcus aureus	59 14.6 13.2-18.4	60 17.5 14.8-18.3	0.288
Enterococcus species	27 15.5 12.6-16.7	40 15.7 14.3-18.8	0.247
Streptococcus species	68 12.9 11.1-14.0	80 12.1 11.2-13.8	0.668
Other Gram-positive cocci	9 24.7 20.1-27.7	5 38.8 17.4-76.5	0.364
Gram-negative bacilli	239 11.8 11.1-12.4	252 14.0 12.9-14.6	<0.001
Enterobacteriales	205 11.1 10.8-11.9	185 12.3 11.9-13.0	0.032
Escherichia coli	98 10.9 10.1-11.8	112 12.0 11.3-13.0	0.043
Klebsiella pneumoniae	59 10.8 9.6-13.7	29 12.2 10.5-15.8	0.303
Klebsiella oxytoca	11 12.8 9.7-24.9	5 10.2 NA 0.743	
Proteus mirabilis	7 17.4 8.2-59.2	6 13.1 6.2-14.3	0.352
Enterobacter cloacae complex	10 11.9 6.3-13.0	5 11.3 NA 0.667	
Other *Enterobacteriales*	20 14.2 13.0-28.9	28 15.2 14.0-23.7	0.917
Nonfermentative Gram-negative bacilli	22 21.6 18.4-29.1	51 21.1 19.6-22.3	0.568
Other Gram-negative bacilli	12 21.1 10.0-52.5	16 79.6 46.1-90.0	0.013
Helicobacter cinaedi	0 90.0 79.6-136.7	112 22.0 19.6-25.1	0.972
Other Gram-negative bacilli	12 21.1 10.0-51.1	9 39.8 21.5-69.4	0.345
Gram-negative cocci	4 22.1 15.0-62.2	0 0 0.057	
Gram-positive bacilli	3 22.9 17.4-25.2	5 39.4 20.9-60.4	0.393
Anaerobes	27 51.5 28.8-64.8	28 36.6 31.1-41.3	0.386
Fungi	17 38.3 33.4-52.1	16 36.1 24.3-59.1	0.829
Polymicrobial cultures	40 15.2 12.1-20.6	55 14.1 12.8-17.8	0.684
Contaminants	131 22.8 20.2-24.2	101 22.5 19.6-25.1	
Coagulase-negative *Staphylococci*	94 23.1 21.7-24.7	69 21.8 19.4-24.4	0.241
Bacillus species	23 12.2 11.6-13.2	16 12.0 10.8-18.7	0.710
Corynebacterium species	6 43.9 29.1-69.8	10 36.0 32.0-45.6	0.492
Cutibacterium acnes	8 118.3 111.3-133.8	6 130.7 114.1-137.0	0.491
All microorganisms	624 15.0 14.1-15.8	642 16.0 14.9-17.3	0.145

NA, not applicable because of insufficient number of samples

*a Other *Enterobacteriales* includes *Klebsiella aerogenes*, *Citrobacter koseri*, *Citrobacter freundii*, *Citrobacter amalonaticus*, *Serratia marcescens*, *Cronobacter sakazakii*, *Cronobacter malonaticus*, *Morunella morganti*, *Pantea dispersa*, *Salmonella group*, *Proteus vulgaris*, *Raoultella planticola*, *Raoultella ornithinolytica*, *Edwardsiella hoshinae*, *Edwardsiella tarda*, *Hafnia alvei*, and *Leclercia adenoscarborylata*.

*b Other Gram-negative bacilli excluding *H. cinaedi* includes *Aeromonas* species, *Aggregatibacter segnis*, *Capnocytophaga ochracea*, *Capnocytophaga spautigena*, *Elkenella corrodens*, *Haemophilus influenzae*, *Brevibacillus laterosporus*, and non-identifiable Gram-negative bacilli.*
CONFLICT OF INTEREST
None

ACKNOWLEDGEMENT
This research was funded by Japanese Red Cross, Nagoya 1st. Hospital Research Grant (NFRCH 19-0005).

REFERENCES
1. Cohen J, Vincent JL, Adhikari NK, Machado FR, Angus DC, Calandra T, Jaton K, Giulieri S, Delaloye J, Opal S, Tracey K, van der Pol T, Pelfrene E : Sepsis : a roadmap for future research. Lancet Infect Dis 15 : 581-614, 2015
2. Vincent JL, Brealey D, Libert N, Abidi NE, O’Dwyer M, Zacharowski K, Mikaszewska-Sokolowicz M, Schrenzel J, Simon F, Wilks M, Picard-Maureau M, Chalfin DB, Ecker DJ, Sampath R, Singer M : Rapid Diagnosis of Infection in the Critically Ill, a Multicenter Study of Molecular Detection in Bloodstream Infections, Pneumonia, and Sterile Site Infections. Crit Care Med 43 : 2283-2291, 2015
3. Kennedy GT, Barr-JG, Goldsmith C : Detection of bacteremia by the continuously monitoring BacT/Alert system. J Clin Pathol 48 : 912-914, 1995
4. Amasy-Guerle R, Mougari F, Jacquier H, Oliary J, Bennansour H, Riahi J, Bercot B, Raskine L, Cambau E : High medical impact of implementing the new polymeric bead-based BacT/ALERT(R) FANplus and FNplus blood culture bottles in standard care. Eur J Clin Microbiol Infect Dis 34 : 1031-1037, 2015
5. Darby JM, Linden P, Pasculle W, Saul M : Utilization and diagnostic yield of blood cultures in a surgical intensive care unit. Crit Care Med 25 : 989-994, 1997
6. Kang H, Kim S : Clinical Features Associated with Blood Cultures According to the Use of Antimicrobial Agents Prior to Blood Collection. Korean Journal of Clinical Microbiology 15 : 21, 2012
7. Zadrega R, Williams DN, Gottschall R, Hanson K, Nordberg V, Deike M, Kuskowski M, Carlson L, Nicolau DP, Sutherland C, Hansen GT : Comparison of 2 blood culture media shows significant differences in bacterial recovery in patients on antimicrobial therapy. Clin Infect Dis 56 : 790-797, 2013
8. McDonald LC, Fune J, Gaido LB, Weinstein MP, Reimer LG, Flynn TM, Wilson ML, Mirrett S, Reller LB : Clinical importance of increased sensitivity of BacT/Alert FAN aerobic and anaerobic blood culture bottles. J Clin Microbiol 34 : 2180-2184, 1996
9. Romero-Gomez MP, Mingorance J : The effect of the blood culture bottle type in the rate of direct identification from positive cultures by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry. J Infect 62 : 251-253, 2011
10. Ratnayake L, Olver WJ : Rapid PCR detection of methicillin-resistant Staphylococcus aureus and methicillin-sensitive S. aureus samples from charcoal-containing blood culture bottles. J Clin Microbiol 49 : 2382, 2011
11. Kirn TD, Mirrett S, Reller LB, Weinstein MP : Controlled clinical comparison of BacT/Alert FA plus and FN plus blood culture media with BacT/alert FA and FN blood culture media. J Clin Microbiol 52 : 839-843, 2014
12. Lee DH, Kim SC, Bae IG, Koh EH, Kim S : Clinical evaluation of BacT/Alert FA plus and FN plus bottles compared with standard bottles. J Clin Microbiol 51 : 4150-4155, 2013
13. Baron Ed, Weinstein MP, Dunne WM, Yagupsky P, Welch DP, Wilson DM : Cumitech 1C, blood cultures IV. ASM Press, Washington, DC, 2005
14. Hattori T, Minami M, Narita K, Nakata T, Itomi S, Kubota K, Oya T, Nishiyama H, Kato H, Yuasa N : Recurrent bacteremia with different strains of Streptococcus pyogenes in an immunocompromised child. J Infect Chemother 22 : 421-423, 2016
15. Hattori T, Nishiyama H, Kato H, Ikegami S, Nagayama M, Asami S, Usami M, Suzuki M, Murakami I, Minoshima M, Yamagishi H, Yuasa N : Clinical value of procalcitonin for patients with suspected bloodstream infection. Am J Pathol 141 : 43-51, 2014
16. Kiedel S, Melendez JH, An AT, Rosenbaum JE, Zelmin JM : Procalcitonin as a marker for the detection of bacteremia and sepsis in the emergency department. Am J Pathol 135 : 182-189, 2011
17. Nichols C, Cruz Espinoza LM, von Kalckreuth V, Aaby P, Ahmed El Tayeb M, Ali M, Aseffa A, Bjeregaard-Andersen M, Breiman RF, Cosma L, Crump JA, Dekker DM, Gassama Sow A, Gasmelseed N, Hertz JT, Im J, Kabore LP, Keddy KH, Konings F, Valborg Lofberg S, Meyer CG, Montgomery JM, Niang A, Njarahirinjakamampionona A, Olack B, Pak GD, Panzner U, Park JK, Park SE, Rbezaneahary H, Rakotondrainiarivelo JP, Rakotozandrindrainy R, Raminosoa TM, Rubach MP, Teferi M, Seo JJ, Sooka A, Soura A, Tall A, Toy T, Yeshitela B, Clemens JD, Wierzb TF, Baker S, Marks F : Bloodstream Infections and Frequency of Pretreatment Associated With Age and Hospitalization Status in Sub-Saharan Africa. Clin Infect Dis 61 Suppl 4 : S372-379, 2015
18. McKenzie FE : Case mortality in polymicrobial bloodstream infections. J Clin Epidemiol 59 : 760-761, 2006
19. Araoka H, Baba M, Kimura M, Abe M, Inagawa H, Yoneyama A : Clinical characteristics of bacteremia caused by Helicobacter cinaedi and time required for blood cultures to become positive. J Clin Microbiol 52 : 1519-1522, 2014
20. Kawamura Y, Tomida J, Morita Y, Fujii S, Okamoto T, Akaike T : Clinical and bacteriological characteristics of Helicobacter cinaedi infection. J Infect Chemother 20 : 517-526, 2014
21. Mirrett S, Petti CA, Woods CW, Magadia R, Weinstein MP, Reller LB : Controlled clinical comparison of the BacT/ALERT FN and the standard anaerobic SN blood culture medium. J Clin Microbiol 42 : 4581-4585, 2004
22. Wilson ML, Mirrett S, Meredith PT, Weinstein MP, Scotto V, Reller LB : Controlled clinical comparison of BACTEC plus anaerobic/F to standard anaerobic/F as the anaerobic companion bottle to plus aerobic/F medium for culturing blood from adults. J Clin Microbiol 39 : 983-989, 2001
23. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing ; 19th informational supplement. CLSI document M100-S19. Wayne, PA, 2009
24. Clinical and Laboratory Standards Institute. Principles and procedures for blood cultures ; approved guideline. CLSI document M47-A. Wayne, PA, 2007