Good upper bounds for the
total rainbow connection of graphs*

Hui Jiang, Xueliang Li, Yingying Zhang
Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China
E-mail: jhuink@163.com; lxl@nankai.edu.cn; zyydlwyx@163.com

Abstract

A total-colored graph is a graph G such that both all edges and all vertices of G are colored. A path in a total-colored graph G is a total rainbow path if its edges and internal vertices have distinct colors. A total-colored graph G is total-rainbow connected if any two vertices of G are connected by a total rainbow path of G. The total rainbow connection number of G, denoted by $trc(G)$, is defined as the smallest number of colors that are needed to make G total-rainbow connected. These concepts were introduced by Liu et al. Notice that for a connected graph G, $2diam(G) - 1 \leq trc(G) \leq 2n - 3$, where $diam(G)$ denotes the diameter of G and n is the order of G. In this paper we show, for a connected graph G of order n with minimum degree δ, that $trc(G) \leq 6n/(\delta + 1) + 28$ for $\delta \geq \sqrt{n-2} - 1$ and $n \geq 291$, while $trc(G) \leq 7n/(\delta + 1) + 32$ for $16 \leq \delta \leq \sqrt{n-2} - 2$ and $trc(G) \leq 7n/(\delta + 1) + 4C(\delta) + 12$ for $6 \leq \delta \leq 15$, where $C(\delta) = e^{\frac{21\log(\delta^3 + 2\delta^2 + 2\delta + 3) - 3(\log 3 - 1)}{\delta - 3}} - 2$.

This implies that when δ is in linear with n, then the total rainbow number $trc(G)$ is a constant. We also show that $trc(G) \leq 7n/4 - 3$ for $\delta = 3$, $trc(G) \leq 8n/5 - 13/5$ for $\delta = 4$ and $trc(G) \leq 3n/2 - 3$ for $\delta = 5$. Furthermore, an example shows that our bound can be seen tight up to additive factors when $\delta \geq \sqrt{n-2} - 1$.

Keywords: total-colored graph; total rainbow connection; minimum degree; 2-step dominating set.

AMS subject classification 2010: 05C15, 05C40, 05C69, 05D40.

*Supported by NSFC No.11371205 and PCSIRT.
1 Introduction

In this paper, all graphs considered are simple, finite and undirected. We refer to book [2] for undefined notation and terminology in graph theory. Let G be a connected graph on n vertices with minimum degree δ. A path in an edge-colored graph G is a rainbow path if its edges have different colors. An edge-colored graph G is rainbow connected if any two vertices of G are connected by a rainbow path of G. The rainbow connection number, denoted by $rc(G)$, is defined as the smallest number of colors required to make G rainbow connected. Chartrand et al. [6] introduced these concepts. Notice that $rc(G) = 1$ if and only if G is a complete graph and that $rc(G) = n - 1$ if and only if G is a tree. Moreover, $diam(G) \leq rc(G) \leq n - 1$. A lot of results on the rainbow connection have been obtained; see [13, 14].

From [4] we know that to compute the number $rc(G)$ of a connected graph G is NP-hard. So, to find good upper bounds is an interesting problem. Krivelevich and Yuster [11] obtained that $rc(G) \leq 20n/\delta$. Caro et al. [3] obtained that $rc(G) \leq \ln n (1 + o(1))$. Finally, Chandran et al. [5] got the following benchmark result.

Theorem 1. [5] For every connected graph G of order n and minimum degree δ, $rc(G) \leq 3n/(\delta + 1) + 3$.

The concept of rainbow vertex-connection was introduced by Krivelevich and Yuster in [11]. A path in a vertex-colored graph G is a vertex-rainbow path if its internal vertices have different colors. A vertex-colored graph G is rainbow vertex-connected if any two vertices of G are connected by a vertex-rainbow path of G. The rainbow vertex-connection number, denoted by $rvc(G)$, is defined as the smallest number of colors required to make G rainbow vertex-connected. Observe that $diam(G) - 1 \leq rvc(G) \leq n - 2$ and that $rvc(G) = 0$ if and only if G is a complete graph. The problem of determining the number $rvc(G)$ of a connected graph G is also NP-hard; see [7, 8]. There are a few results about the upper bounds of the rainbow vertex-connection number. Krivelevich and Yuster [11] proved that $rvc(G) \leq 11n/\delta$. Li and Shi [12] improved this bound and showed the following results.

Theorem 2. [12] For a connected graph G of order n and minimum degree δ, $rvc(G) \leq 3n/4 - 2$ for $\delta = 3$, $rvc(G) \leq 3n/5 - 8/5$ for $\delta = 4$ and $rvc(G) \leq n/2 - 2$ for $\delta = 5$. For sufficiently large δ, $rvc(G) \leq (b \ln \delta)n/\delta$, where b is any constant exceeding 2.5.

Theorem 3. [12] A connected graph G of order n with minimum degree δ has $rvc(G) \leq 3n/(\delta + 1) + 5$ for $\delta \geq \sqrt{n - 1} - 1$ and $n \geq 290$, while $rvc(G) \leq 4n/(\delta + 1) + 5$ for $16 \leq \delta \leq \sqrt{n - 1} - 2$ and $rvc(G) \leq 4n/(\delta + 1) + C(\delta)$ for $6 \leq \delta \leq 15$, where $C(\delta) = e^{3 \log(26^2 + 3) - 3 \log(3 - 1) - 2}$.

2
Recently, Liu et al. [15] proposed the concept of total rainbow connection. A total-colored graph is a graph G such that both all edges and all vertices of G are colored. A path in a total-colored graph G is a total rainbow path if its edges and internal vertices have distinct colors. A total-colored graph G is total-rainbow connected if any two vertices of G are connected by a total rainbow path of G. The total rainbow connection number, denoted by $trc(G)$, is defined as the smallest number of colors required to make G total-rainbow connected. It is easy to observe that $trc(G) = 1$ if and only if G is a complete graph. Moreover, $2diam(G) - 1 \leq trc(G) \leq 2n - 3$. The following proposition gives an upper bound of the total rainbow connection number.

Proposition 1. [15] Let G be a connected graph on n vertices and q vertices having degree at least 2. Then, $trc(G) \leq n - 1 + q$, with equality if and only if G is a tree.

From Theorem 1 and 3, one can see that $rc(G)$ and $rvc(G)$ are bounded by a function of the minimum degree δ, and that when δ is in linear with n, then both $rc(G)$ and $rvc(G)$ are some constants. In this paper, we will use the same idea in [12] to obtain upper bounds for the number $trc(G)$, which are also functions of δ and imply that when δ is in linear with n, then $trc(G)$ is a constant.

2 Main results

Let G be a connected graph on n vertices with minimum degree δ. Denote by $Leaf(G)$ the maximum number of leaves in any spanning tree of G. If $\delta = 3$, then $Leaf(G) \geq n/4 + 2$ which was proved by Linial and Sturtevant (unpublished). In [8, 10], it was proved that $Leaf(G) \geq 2n/5 + 8/5$ for $\delta = 4$. Moreover, Griggs and Wu [11] showed that if $\delta = 5$, then $Leaf(G) \geq n/2 + 2$. For sufficiently large δ, $Leaf(G) \geq (1 - b \ln \delta/\delta)n$, where b is any constant exceeding 2.5, which was proved in [10]. Thus, we can get the following results.

Theorem 4. For a connected graph G of order n with minimum degree δ, $trc(G) \leq 7n/4 - 3$ for $\delta = 3$, $trc(G) \leq 8n/5 - 13/5$ for $\delta = 4$ and $trc(G) \leq 3n/2 - 3$ for $\delta = 5$. For sufficiently large δ, $trc(G) \leq (1 + b \ln \delta/\delta)n - 1$, where b is any constant exceeding 2.5.

Proof. We can choose a spanning tree T with the most leaves. Denote ℓ the maximum number of leaves. Then color all non-leaf vertices and all edges of T with $2n - \ell - 1$ colors, each receiving a distinct color. Hence, $trc(G) \leq 2n - \ell - 1$. \qed

Theorem 5. For a connected graph G of order n with minimum degree δ, $trc(G) \leq 6n/(\delta + 1) + 28$ for $\delta \geq \sqrt{n - 2} - 1$ and $n \geq 291$, while $trc(G) \leq 7n/(\delta + 1) + 32$ for
16 ≤ δ ≤ \sqrt{n - 2} - 2 and trc(G) ≤ 7n/(δ + 1) + 4C(δ) + 12 for 6 ≤ δ ≤ 15, where
\[C(δ) = e^{\frac{3 \log(n^4 + 2δ^2 + 3) - 31\log(3 - 1)}{4}} - 2. \]

Remark 1. The same example mentioned in [3] can show that our bound is tight up to additive factors when δ ≥ \sqrt{n - 2} - 1.

In order to prove Theorem 5, we need some lemmas.

Lemma 1. [11] If G is a connected graph of order n with minimum degree δ, then it has a connected spanning subgraph with minimum degree δ and with less than n(δ + 1/(δ + 1)) edges.

Given a graph G, a set D ⊆ V(G) is called a 2-step dominating set of G if every vertex of G which is not dominated by D has a neighbor that is dominated by D. A 2-step dominating set S is k-strong if every vertex which is not dominated by S has at least k neighbors that are dominated by S. If S induces a connected subgraph of G, then S is called a connected k-strong 2-step dominating set. These concepts can be found in [11].

Lemma 2. [12] If G is a connected graph of order n with minimum degree δ ≥ 2, then G has a connected δ/3强 2-step dominating set S whose size is at most 3n/(δ + 1) − 2.

Lemma 3. [1] (Lovász Local Lemma) Let A₁, A₂, ..., Aₙ be the events in an arbitrary probability space. Suppose that each event Aᵢ is mutually independent of a set of all the other events Aⱼ but at most d, and that P[Aᵢ] ≤ p for all 1 ≤ i ≤ n. If ep(d + 1) < 1, then Pr[\bigcap_{i=1}^{n} \bar{A}_i] > 0. □

Now we are arriving at the point to give a proof for Theorem 5.

Proof of Theorem 5: The proof goes similarly for the main result of [12]. We are given a connected graph G of order n with minimum degree δ. Suppose that G has less than n(δ + 1/(δ + 1)) edges by Lemma 1. Let S denote a connected δ/3-strong 2-step dominating set of G. Then, we have |S| ≤ 3n/(δ + 1) − 2 by Lemma 2. Let N¹(S) denote the set of all vertices at distance exactly k from S. We give a partition to N¹(S) as follows. First, let H be a new graph constructed on N¹(S) with edge set \[E(H) = \{ uv : u, v \in N¹(S), uv \in E(G) or \exists w \in N²(S) such that uwv is a path of G \}. \]

Let Z be the set of all isolated vertices of H. Moreover, there exists a spanning forest F of V(H)\Z. Finally, choose a bipartition defined by this forest, denoted by X and Y. Partition N²(S) into three subsets: A = \{ u \in N²(S) : u \in N(X) \cap N(Y) \}, B = \{ u \in N²(S) : u \in N(X)\backslash N(Y) \} and C = \{ u \in N²(S) : u \in N(Y)\backslash N(X) \}; see Figure 1(a).

Case 1. δ ≥ \sqrt{n - 2} - 1.
Next we give a coloring to the edges and vertices of G. Let $k = 2|S| - 1$ and T be a spanning tree of $G[S]$. Color the edges and vertices of T with k distinct colors such that $G[S]$ is total rainbow connected. Assign every $[X, S]$ edge with color $k + 1$, every $[Y, S]$ edge with color $k + 2$ and every edge in $N^1(S)$ with color $k + 3$. Since the minimum degree $\delta \geq 2$, every vertex in Z has at least two neighbors in S. Color one edge with $k + 1$ and all others with $k + 2$. Assign every $[A, X]$ edge with color $k + 3$, every $[A, Y]$ edge with color $k + 4$ and every vertex of A with color $k + 5$. We assign seven new colors from $\{i_1, i_2, ..., i_7\}$ to the vertices of X such that each vertex of X chooses its color randomly and independently from all other vertices of X. Similarly, we assign another seven colors to the vertices of Y. Assign seven colors from $\{j_1, j_2, ..., j_7\}$ to the edges between B and X as follows: for every vertex $u \in B$, let $N_X(u)$ denote the set of all neighbors of u in X; for every vertex $u' \in N_X(u)$, if we color u' with i_t ($t \in \{1, 2, ..., 7\}$), then color uu' with j_t. In a similar way, we assign seven new colors to the edges between C and Y. All other edges and vertices of G are uncolored. Thus, the number of all colors we used is

$$k + 33 = 2|S| - 1 + 33 \leq 2\left(\frac{3n}{\delta + 1} - 2\right) - 1 + 33 = \frac{6n}{\delta + 1} + 28.$$

We have the following claim for any $u \in B (C)$.

Claim 1. For any $u \in B (C)$, we have a coloring for the vertices in $X (Y)$ with seven colors such that there exist two neighbors u_1 and u_2 in $N_X(u)$ ($N_Y(u)$) that receive different colors. Hence, the edges uu_1 and uu_2 are also colored differently.
Notice that for every vertex $v \in X$, v has two neighbors in $S \cup A \cup Y$. Moreover, $(\delta + 1)^2 \geq n - 2$. Thus, v has less than $(\delta + 1)^2$ neighbors in B. For every vertex $u \in B$, u has at least $\delta/3$ neighbors in X since S is a connected $\delta/3$-strong 2-step dominating set of G. Let A_u denote the event that $N_X(u)$ receives at least two distinct colors. Fix a set $X(u) \subset N_X(u)$ with $|X(u)| = \lceil \delta/3 \rceil$. Let B_u denote the event that all vertices of $X(u)$ are colored the same. Hence, $Pr[B_u] \leq 7^{-\lceil \delta/3 \rceil + 1}$. Moreover, the event B_u is independent of all other events B_v for $v \neq u$ but at most $((\delta + 1)^2 - 1)\lceil \delta/3 \rceil$ of them. Since $e \cdot 7^{-\lceil \delta/3 \rceil + 1}(((\delta + 1)^2 - 1)\lceil \delta/3 \rceil + 1) < 1$, for all $\delta \geq \sqrt{n - 2} - 1$ and $n \geq 291$, we have $Pr[\bigwedge_{u \in B} \bar{B}_u] > 0$ by Lemma 5. Therefore, $Pr[A_u] > 0$.

We will show that G is total-rainbow connected. Take any two vertices u and w in $V(G)$. If they are all in S, there is a total rainbow path connecting them in $G[S]$. If one of them is in $N^1(S)$, say u, then u has a neighbor u' in S. Thus, $uu'Pu$ is a required path, where P is a total rainbow path in $G[S]$ connecting u' and w. If one of them is in $X \cup Z$, say u, and the other is in $Y \cup Z$, say w, then u has a neighbor u' in S and w has a neighbor w' in S. Hence, $uu'Pu_w$ is a required path, where P is a total rainbow path connecting u' and w' in $G[S]$. If they are all in X, then there exists a $u' \in Y$ such that u and u' are connected by a single edge or a total rainbow path of length two. We know that u' and w are total-rainbow connected. Therefore, u and w are connected by a total rainbow path. If one of them is in $A \cup B$, say u, and the other is in $A \cup C$, say w, then u has a neighbor u' in X, and w has a neighbor w' in Y. Thus, they are total-rainbow connected. If they are all in B, by Claim 1 u has two neighbors u_1 and u_2 in X such that u_1, u_2, uu_1 and uu_2 are colored differently. Similarly, we also have that w has two neighbors w_1 and w_2 in X such that w_1, w_2, ww_1 and ww_2 are colored differently. Hence, u and w are total-rainbow connected. We can check that u and w are total-rainbow connected in all other cases.

Case 2. $6 \leq \delta \leq \sqrt{n - 2} - 2$.

We partition X into two subsets X_1 and X_2. For any $u \in X$, if u has at least $(\delta + 1)^2$ neighbors in B, then $u \in X_1$; otherwise, $u \in X_2$. Similarly, we partition Y onto two subsets Y_1 and Y_2. Note that $|X_1 \cup Y_1| \leq n/(\delta + 1)$ since G has less than $n(1 + 1/(\delta + 1))$ edges. Partition B into two subsets B_1 and B_2. For any $u \in B$, if u has at least one neighbor in X_1, then $u \in B_1$; otherwise, $u \in B_2$. In a similar way, we partition C into two subsets C_1 and C_2; see Figure 1(b).

For $16 \leq \delta \leq \sqrt{n - 2} - 2$, assume that $C(\delta) = 5$; for $6 \leq \delta \leq 15$, assume that $C(\delta) = e^{(3 \log(\delta^3 + 2\delta^2 + 3) - 3(\log \delta - 1))} - 2$. Now we give a coloring to the edges and vertices of G. Let $k = 2|S| - 1$ and T be a spanning tree of $G[S]$. Color the edges and vertices of T with k distinct colors. Assign every $[X, S]$ edge with color $k + 1$, every $[Y, S]$ edge with color $k + 2$ and every edge in $N^1(S)$ with color $k + 3$. Since every vertex in Z has at least two neighbors in S, color one edge with $k + 1$ and all others with $k + 2$. Assign every
For every vertex \(u \in C \), similarly, we assign another \(X \) set. Thus, color the edge incident with \(X \) new colors to the vertices of \(Y \). Randomly and independently from all other vertices of \(C \), we have \(P \geq 2 \) -strong \(2 \)-step dominating set of \(G \). Moreover, the event that all vertices of \(X \) are colored the same. Therefore, \(Pr[|X| \leq 1] \leq (C(\delta) + 2)^{-[\delta/3]+1} \). Moreover, the event \(B_u \) is independent of all other events \(B_v \) for \(v \neq u \) but at most \(((\delta + 1)^2 - 1)[\delta/3] \) of them. Since \(e \cdot (C(\delta) + 2)^{-[\delta/3]+1}(((\delta + 1)^2 - 1)[\delta/3] + 1) < 1 \), we have \(Pr[\bigcup_{u \in B_2} B_u] > 0 \) by Lemma 3. Hence, we have \(Pr[A_u] > 0 \).

Similarly, we can check that \(G \) is also total-rainbow connected.

The proof is now complete.

References

[1] N. Alon, J.H. Spencer, The Probabilistic Method, 3rd Ed, Wiley, New York, 2008.

[2] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

[3] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron J. Combin. 15 (2008), R57.
[4] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for Rainbow connection, *J. Combin. Optim.* **21** (2010) 330-347.

[5] L. Chandran, A. Das, D. Rajendraprasad, N. Varma, Rainbow connection number and connected dominating sets, *J. Graph Theory* **71** (2012) 206-218.

[6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, *Math. Bohemica* **133** (2008) 85-98.

[7] L. Chen, X. Li, H. Lian, Further hardness results on the rainbow vertex connection number of graphs, *Theoret. Comput. Sci.* **481** (2013) 18-23.

[8] L. Chen, X. Li, Y. Shi, The complexity of determining the rainbow vertex-connection of graphs, *Theoret. Comput. Sci.* **412** (2011) 4531-4535.

[9] J.R. Griggs, M. Wu, Spanning trees in graphs with minimum degree 4 or 5, *Discrete Math.* **104** (1992) 167-183.

[10] D.J. Kleitman, D.B. West, Spanning trees with many leaves, *SIAM J. Discrete Math.* **4** (1991) 99-106.

[11] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, *J. Graph Theory* **63** (2010) 185-191.

[12] X. Li, Y. Shi, On the rainbow vertex-connection, *Discuss. Math. Graph Theory* **33** (2013) 307-313.

[13] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, *Graphs Combin.* **29(1)** (2013) 1-38.

[14] X. Li, Y. Sun, *Rainbow Connections of Graphs*, SpringerBriefs in Math., Springer, New York, 2012.

[15] H. Liu, Â. Mestre, T. Sousa, Total rainbow k-connection in graphs, *Discrete Appl. Math.* **174** (2014) 92-101.