Effect of Artificial Short Day Conditions on Growth and Flowering of Chrysanthemum (Chrysanthemum morifolium Ramat.) Genotypes

Ranjit Singh* and Madhu Bala

Department of floriculture and Landscaping, Punjab Agricultural University
Ludhiana-141004, Punjab, India

*Corresponding author

ABSTRACT

In India, it is popular among the farmers as Guldaudhi is a commercial flower which is grown for cut flowers, loose flowers, pot mum as well as bedding plant. Flowering in Chrysanthemum morifolium Ramat. is photoperiodically controlled and it is a qualitative short day plant. Under sub-tropical climatic conditions of North India, chrysanthemum produces flowers from October to December. Limited duration of flower production in chrysanthemum is a major bottleneck for the commercialization of this crop in this region. Thus the artificial short days play an important role in altering the flowering of chrysanthemum plants through the manipulations in the daily day length or photoperiod has been successfully used for production of chrysanthemum flowers throughout the year in many countries. Study was conducted to investigate the effect of artificial short day conditions during summer months on growth and flowering of spray type chrysanthemum genotypes. It was found that genotypes Banlgori Local and Yellow Delight are highly suitable for early induction flowering as these are having comparatively high tolerance towards heat delay for year round cultivation programmes using black outs to impose short day conditions.

Keywords

Chrysanthemum (Chrysanthemum morifolium Ramat.)

Introduction

Florist’s chrysanthemum (Chrysanthemum morifolium Ramat.) belongs to the family Asteraceae. This flower crop is popularly known with some other names in different parts of the world such as “Autumn Queen” or “Queen of the East” (Koley and Sarkar, 2013). The word Chrysanthemum is derived from two Greek words that is ‘chryso’ means golden and ‘anthos’ means flower (Gortzing and Gillow, 1964). In India, it is popular among the farmers as Guldaudhi is a commercial flower which is grown for cut flowers, loose flowers, pot mum as well as bedding plant. Flowering in Chrysanthemum morifolium Ramat.) is photoperiodically controlled and it is a qualitative short day plant that requires 14.5 h photoperiod for flower initiation and 13.5 h light period for bud development (Runkle and Fisher, 2004). Under sub-tropical climatic conditions of North India, chrysanthemum produces flowers from October to December. Limited duration of flower production in chrysanthemum is a major bottleneck for the commercialization of
this crop in this region. Thus the artificial short days play an important role in altering the flowering of chrysanthemum plants as reported that the manipulations in the daily day length or photoperiod has been successfully used for production of chrysanthemum flowers throughout the year in many countries (Dutta and Gupta, 2012).

Materials and Methods

The experiment was conducted at department of floriculture and Landscaping, Punjab Agricultural University during 2015-16.

Experimental layout

The plants of 10 genotypes of belonging to spray type chrysanthemum, namely Banglori Local, Boris Becker, Reagan White, Kelvin Mandarin, NBRI Sunil, Reagan Emperor, Otome Pink, Jaya, Punjab Shyamli and Yellow Delight, were through the rooting of terminal cuttings during February –March. The terminal cuttings measuring 2-3 cm long were treated with NAA (500 mg l⁻¹) for 30 sec and planted in propagation trays using burnt rice husk as rooting medium. The trays were placed under shading net and sprayed thrice with water daily, to maintain high relative humidity.

After two weeks, when the cuttings had produced sufficient roots, they were removed from the trays along with ball of burnt rice husk to prevent breaking of roots. The rooted cuttings were transplanted in the pots of 20 cm diameter containing mixture of garden soil and well rottened farm yard manure (2:1) along with diammonium phosphate @1kg per cubic feet. The pots were placed under artificially created short day conditions from 15th June to 15th August. The short days were provided as night extension by using black polythene(100 micron) sheet from civil twilight in the morning to 9.30 am everyday. There after the plants were be shifted to natural day length on 1st September.

The genotypes were subjected to pinching one month after planting. The observations were recorded on plant height, spread, number of branches per plant, leaf area index, number of stomata per unit area, leaf weight ratio, days taken for bud appearance, days to flowering, flower size, anthocyanin and carotenoids content, duration of flowering, number of flowers per plant and vase life.

Statistical analysis

Experiment was laid out with three replications consisting five pots each in completely randomized design. The effect of artificially created short days was noted down on flowering and vegetative parameters at the time of bud emergence. Statistical analysis was performed using SAS software and the means were compared using Duncan Multiple Range Test (DMRT) at 5% level of significance (Duncan, 1955).

Results and Discussion

Effect of artificial short days on plant height, spread and number of branches

In Chrysanthemum morifolium genotypes (spray type), the photoperiodic treatments significantly (p<0.05) influenced the plant height, plant spread and number of branches per plant were recorded at time of visible bud appearance (Table 1).

The highest plant height (85.33 cm, 86.00 cm) was observed in genotype Boris Becker which was at par with genotype Punjab Shyamli (82.33 cm, 82.33 cm) in 2015 and 2016, respectively. Whereas, the minimum plant height was observed in genotype Banglori Local (63.00 cm, 65.33 cm) which was at par with genotype Kelvin Mandarin (67.33 cm, 69.67 cm).
Effect of artificial short days on leaf area index, number of stomata per unit area and leaf weight ratio

The short day treatments showed non-significant (p<0.05) affect on the Leaf area Index and number of stomata per unit area in *Chrysanthemum morifolium* spray type genotypes (Table 2).

The highest leaf area index (0.321 and 0.317) was observed in genotype Banglori Local in 2015 and 2016, respectively. Whereas, minimum leaf area index (0.183 and 0.207) was observed in genotype Yellow Delight in 2015 and 2016, respectively. In case of number of stomata per unit area the highest number was 57.00 and 57.33 in genotype Otome Pink, whereas, the lowest number was 53.00 and 53.33 in genotype Boris Becker during 2015 and 2016, respectively.

The effect of short day treatments was significantly among all the genotypes for days to flowering. The highest days to flowering (185.33, 186.00) were in genotype Reagan Emperor during 2015 and 2016, respectively. The values were at par with genotype Boris Becker, Regan white, Kelvin Mandarin and Otome Pinkin 2015 and 2016. Whereas, the minimum days to flowering (132.67, 131.33) was observed in genotype Yellow Delight in 2015 and 2016, respectively.

Dutta and Gutpa (2012) have also reported the response of small flowered *Chrysanthemum* to artificial short days. They have classified the genotypes according to their response to short days. However, the delay in flowering of other genotypes may be attributed due to ‘heat delay’ as reported by Shibata and Kawata (1997). ‘Heat delay’ is reported to be severe problem in year around cultivation of *Chrysanthemum* which is caused by high temperature under blackouts (Furuta and Nelson 1953).
Table 1 Effect of artificial short-day conditions on plant height, spread and number of branches per plant in spray chrysanthemum

S. No.	Genotype	Plant height (cm)	Plant spread (cm)	Number of branches/plant			
		2015	2016	2015	2016	2015	2016
1	Banglori Local	63.00^d	65.33^c	13.33^e	13.33^d	2.00^b	2.00^b
2	Boris Becker	85.33^a	86.00^a	19.33^{ab}	18.67^{ab}	3.00^a	2.67^b
3	Reagan White	65.00^d	65.67^c	14.33^{de}	13.33^d	3.00^b	3.00^b
4	Kelvin Mandarin	67.33^d	68.00^b	15.00^{de}	15.00^{cd}	3.00^b	2.67^b
5	NBRI Sunil	73.00^c	75.00^c	15.00^{de}	15.33^{bed}	2.33^b	2.67^b
6	Reagan Emperor	64.00^d	66.33^c	18.00^{abc}	17.00^{abc}	2.00^b	2.00^b
7	Otome Pink	64.00^d	65.67^c	20.33^a	20.00^a	2.00^b	2.00^b
8	Jaya	77.67^{bc}	78.00^b	16.67^{bed}	17.00^{abc}	4.33^a	4.33^a
9	Punjab Shyamli	82.33^{ab}	82.33^a	14.00^{de}	15.00^{cd}	5.00^a	5.00^a
10	Yellow Delight	65.33^d	65.67^c	15.67^{de}	15.67^{bed}	2.00^b	2.00^b

Mean values in each column with the same letter are not significantly different at p < 0.05 according to DMRT. *Significant at p< 0.05

Table 2 Effect of short artificial short-day conditions on plant leaf area index, leaf weight ratio and number of stomata unit area in spray chrysanthemum

S. No.	Genotype	Leaf area index	Leaf weight ratio	Number of stomata per unit area			
		2015	2016	2015	2016	2015	2016
1	Banglori Local	0.32^a	0.32^a	0.170^b	0.167^b	56.67^a	57.33^a
2	Boris Becker	0.31^{ab}	0.30^a	0.184^{ab}	0.183^{ab}	53.00^a	53.33^a
3	Reagan White	0.25^{abc}	0.25^a	0.217^{ab}	0.213^{ab}	56.00^a	55.33^a
4	Kelvin Mandarin	0.25^{abc}	0.26^a	0.144^b	0.145^b	54.33^a	55.00^a
5	NBRI Sunil	0.25^{abc}	0.26^a	0.159^b	0.159^b	55.00^a	56.33^a
6	Reagan Emperor	0.25^{abc}	0.91^a	0.149^b	0.150^b	56.67^a	57.00^a
7	Otome Pink	0.23^{bc}	0.27^a	0.293^a	0.292^a	57.00^a	57.00^a
8	Jaya	0.32^a	0.30^a	0.192^{ab}	0.191^{ab}	56.67^a	57.33^a
9	Punjab Shyamli	0.31^{ab}	0.28^a	0.163^b	0.162^b	55.00^a	56.00^a
10	Yellow Delight	0.18^c	0.21^a	0.218^{ab}	0.217^{ab}	55.00^a	55.67^a

Mean values in each column with the same letter are not significantly different at p < 0.05 according to DMRT. *Significant at p< 0.05
Table 3: Effect of short artificial short-day conditions on days to bud appearance, flowering and flower size in spray chrysanthemum

S. No.	Genotype	Days taken for bud appearance	Days to flowering	Flower size (cm)	
		2015	2016	2015	2016
1	Banglori Local	117.00c	110.00c	134.67d	133.67d
				5.33cd	5.32cd
2	Boris Becker	155.33a	156.00a	184.33a	185.33a
				6.33abc	6.30abc
3	Reagan White	154.00a	157.67a	184.00a	183.00a
				7.00a	7.05a
4	Kelvin Mandarin	145.33a	152.33a	174.67a	181.67a
				3.67e	3.65e
5	NBRI Sunil	141.33b	142.33b	162.33bc	163.33bc
				4.00e	4.02e
6	Reagan Emperor	156.00a	160.67a	185.33a	186.00a
				6.67abc	6.67ab
7	Otome Pink	143.33b	144.67b	177.33a	175.33a
				4.67de	4.67de
8	Jaya	131.00bc	132.00bc	156.67	155.67
				7.00a	7.12a
9	Punjab Shyamli	122.33c	123.67c	155.67c	154.00c
				7.13a	7.25a
10	Yellow Delight	108.00d	107.67d	132.67d	131.33d
				5.67bcd	5.58bcd
Mean		137.30a	138.70a	164.78	164.93
				5.75a	5.76a

Mean values in each column with the same letter are not significantly different at p < 0.05 according to DMRT. *Significant at p < 0.05

Table 4: Effect of artificial short-day conditions on number anthocyanin and carotenoids in spray chrysanthemum

Sr. No.	Genotype	Anthocyanin content (mg/g)	Carotenoids content (mg/g)		
		2015	2016	2015	2016
1	Banglori Local	NDb	NDb	6.00f	5.67f
2	Boris Becker	9.00b	9.32b	46.33a	45.67a
3	Reagan White	NDb	NDb	23.00f	22.67c
4	Kelvin Mandarin	1.00b	1.31b	5.67f	5.67f
5	NBRI Sunil	NDb	NDb	6.67f	7.00f
6	Reagan Emperor	1.33b	1.34b	30.00b	29.33b
7	Otome Pink	0.33b	0.30b	44.33a	43.67a
8	Jaya	42.00a	41.67a	3.33g	3.00f
9	Punjab Shyamli	NDb	NDb	17.67d	17.00d
10	Yellow Delight	NDb	NDb	10.33e	10.00e
Mean		4.96a	5.39a	19.33a	18.97a

Mean values in each column with the same letter are not significantly different at p < 0.05 according to DMRT. *Significant at p < 0.05

ND – Not detected
Table 5 Effect of short artificial short-day conditions on duration of flowering, number of flowers per plant and vase life in spray chrysanthemum

Sr. No.	Genotype	Duration of flowering (days)	Number of flowers/plant	Vase life (Days)			
		2015	2016	2015	2016		
1	Banglori Local	22.33^c	23.00^c	27.20^b	12.00^d	7.00^{ef}	7.00^e
2	Boris Becker	25.33^b	24.33^b	13.33^{de}	14.33^{cd}	6.33^f	6.33^f
3	Reagan White	26.67^b	25.67^b	15.33^d	22.67^{bc}	10.67^a	10.00^a
4	Kelvin Mandarin	28.67^b	28.33^b	25.67^b	22.67^{bc}	10.33^{ab}	10.00^{ab}
5	NBRI Sunil	30.00^a	29.33^a	25.33^b	22.00^{bc}	7.67^{def}	7.67^{def}
6	Reagan Emperor	30.00^a	28.61^a	23.67^b	21.67^{bc}	10.33^{ab}	10.33^{ab}
7	Otome Pink	29.00^b	29.67^a	19.67^c	21.67^{bc}	8.33^{bc}	8.33^{bc}
8	Jaya	26.00^b	25.33^b	27.67^b	28.67^a	9.67^{bc}	9.67^{bc}
9	Punjab Shyaml	32.67^a	31.33^a	45.33^a	45.33^a	9.67^{bc}	9.00^{bc}
10	Yellow Delight	21.33^c	22.67^c	24.67^b	15.33^{cd}	8.67^{cde}	8.33^{cde}
Mean		27.20^a	26.83^a	24.79^a	22.63^a	8.87^a	8.67^a

Mean values in each column with the same letter are not significantly different at p < 0.05 according to DMRT. *Significant at p< 0.05
Shibata and Kawata (1997) have mentioned heat tolerance in some genotypes of *Chrysanthemum*, so while creating artificial short days using black polythene (100 micron) has lead to increase in termapture inside the polythene upto 40°C. Based on the observations it was found that genotypes Banglori Local and Yellow Delight were tolerant to ‘heat delay’ as compared to other genotypes under study.

The short day treatments significantly affect the flower size of all genotypes. The highest value (7.13 cm, 7.25cm) was in genotype Punjab Shyamli which was at par with genotype Jaya (7.00 cm, 7.12 cm) and Regan White (7.00 cm, 7.05 cm) during 2015 and 2016. The minimum flower size (3.67 cm, 3.65 cm) was found in genotype Kelvin Mandarin which was at par with NBRI Sunil (4.00 cm, 4.02cm) during 2015 and 2016. The findings are in accordance with those as reported by Gupta and Dutta (2012). They have also reported variation in flower size in response to artificial short days.

Effect of artificial short days on anthocyanin and carotenoids content

The short day treatment significantly (p<0.05) influenced the anthocyanin content, carotenoids content in *Chrysanthemum morifolium* (spray type) genotypes (Table 4).

The maximum anthocyanin content (42.00 mg/g, 41.67 mg/g) was observed in genotype Jayain 2015 and 2016, respectively. Whereas, the minimum anthocyanin content was in genotype during 2015,

The highest carotenoids content (46.33 mg/g, 45.67 mg/g) was in genotype Boris Becker in 2015 and 2016, respectively. Whereas, minimum carotenoids content (3.33 mg/g, 3.00 mg/g) was observed in genotype Jayaduring2015and 2016, respectively. The variations in anthocyanin and carotenoids contents have also been documented by Shisa *et al.*, (2017) and Park *et al.*, (2015).

Effect of artificial short days on duration of flowering, number of flowers per plant and vase life

The effect of artificial short day treatments significantly (p<0.05) influenced the duration of flowering, number of flowers per plant and vase life in *Chrysanthemum morifolium* (spray type) genotypes (Table 5).

The maximum duration of flowering (32.67, 31.33) was observed in genotype Punjab Shyamli in 2015 and 2016, respectively. The value was at par with genotypes NBRI Sunil, Reagan Emperor and Otome Pink, whereas, the minimum duration of flowering was 21.33 in genotype Banglori Local during 2015, however, the value was 16.67 in genotype Yellow Delight during 2016. However, Banglori Local and Yellow Delight were at par during during two years.

The highest number of flowers per plant was 45.33 in genotype Punjab Shyamli in 2015 and 2016, whereas, minimum number of flowers per plant (13.33) was observed in genotype Boris Becker in 2015 and 12.00 in genotype Banglori Local during 2016.Chrysanthemum genotypes exhibit considerable variable in flower vase life and number of flowers per plant which are genetically determined characteristics (Larson 1992, Dutta 2006, Dutta and Gupta 2012).

References

Dutta, S. K. 2006. *Advances in Ornamental Horticulture* (S K Bhattacharjee ed). Pointer Publishers, Jaipur.

Dutta, S. K. and Gupta, V. N. 2012. *Year round cultivation of garden chrysanthemum* (Chrysanthemum
morifolium Ramat) through photoperiodic response. *Sci & Cult* 78: 71-77.

Furuta, T. and Nelson, K. S. 1953. The effects of high night termaprature on the development of chrysanthemum flower buds. *Proc Am Soc Hort Sci* 61: 548-50.

Gortzing, C. and Gillow, I. 1964. Chrysanthemum: a manual of the culture. The New York State, Extension Bulletin, pp: 9-17.

Kaur, P. 2014. *Regulation of flower production and post-harvest keeping quality in chrysanthemum (Chrysanthemum morifolium)* Ramat). Ph.D. Dissertation. Punjab Agricultural University, Ludhiana, India.

Larson, R. A. 1992. *Introduction to Flower culture.* 2nd Edn. Academic Press Inc. Sand Diego, California.

Park, C. H., Chae, S. C., Park, S. Y., Kim, J. K., Kim, Y. J., Chung, S. O., Arasu, M. V., Al-Dhabi, N. A. and Park, S. U. 2015. Anthocyanin and carotenoid contents in different cultivars of chrysanthemum (*Dendranthema grandiflorum* Ramat.) flower. *Molecules* 20: 11090-11102.

Runkle, E. and Fisher, P. 2004. Photoperiod and flowering. In: Fisher P R and Runkle E (eds). *Lighting up Profits: Understanding Greenhouse Lighting.* Pp. 25-32. Meister Media Worldwide, Willoughby, Ohio.

Shibrata, M. and Kawata, J. 1997. The introduction of heat tolerance for flowering from Japanese summer flowering chrysanthemum into year around chrysanthemums. *Act Hort* 197: 77-82.

Shisa, U. P., Namita, Singh, K.P., and Panwar, S. 2017. Cluster analysis of chrysanthemum (*Chrysanthemum × morifolium* Ramat.) genotypes on the basis of anthocyanin and carotenoid pigments. *J Orn Hort* 20:46-53.

How to cite this article:

Ranjit Singh and Madhu Bala. 2018. Effect of Artificial Short Day Conditions on Growth and Flowering of Chrysanthemum (*Chrysanthemum morifolium* Ramat.) Genotypes. *Int.J.Curr.Microbiol.App.Sci.* 7(09): 3770-3777. doi: https://doi.org/10.20546/ijcmas.2018.709.466