Long noncoding RNAs are emerging as important regulators of cellular functions, but little is known of their role in the human immune system. Here we investigated long intergenic noncoding RNAs (lincRNAs) in 13 subsets of T lymphocytes and B lymphocytes by next-generation sequencing–based RNA sequencing (RNA-seq analysis) and de novo transcriptome reconstruction. We identified over 500 previously unknown lincRNAs and described lincRNA signatures. Expression of linc-MAF-4, a chromatin-associated lincRNA specific to the CD4+ T subset of helper T cells, was inversely correlated with expression of MAF, a TH2-associated transcription factor. Downregulation of linc-MAF-4 skewed T cell differentiation toward the TH2 phenotype. We identified a long-distance interaction between the genomic regions of the gene encoding linc-MAF-4 and the chromatin modifiers LSD1 and EZH2; this suggested that linc-MAF-4 regulated a key role for lincRNA in T lymphocyte differentiation.
We identified several lymphocyte subset–specific lincRNA signatures during T cell differentiation and of LincR-Ccr2-5′AS, a lincRNA specific to CD4+ T helper type 2 cells (TH2 cells) that is involved in regulating the migration of CD4+ T helper type 2 lymphocytes28. Although such studies highlight the relevance of lincRNAs in regulating immune responses, a thorough analysis of their expression profile and function in the human immune system is still lacking.

The present study was based on the analysis of 13 highly purified primary human lymphocytes subsets by high-throughput sequencing technologies for cDNA (RNA-seq analysis). We performed de novo transcriptome reconstruction (the creation of a transcriptome without the aid of a reference genome)29 and discovered over 500 protein-coding domains catalogued in the Pfam database of protein families36. We used PhyloCSF, a comparative genomics method that assesses conservativity multilayered analysis we identified 563 previously unknown lincRNAs expressed in human lymphocytes, we used three de novo transcriptome–reconstruction strategies based on the combination of two different sequence mappers, TopHat and Star2,31, with two different tools for de novo transcript assembly, Cufflinks and Trinity34,35. We identified lincRNAs among the newly described transcripts by exploiting the following process. We selected transcripts that were longer than 200 nucleotides and multixenic that did not overlap with protein-coding genes (and thus included unreliable single-exon fragments assembled by RNA-seq). We excluded transcripts with a conserved protein-coding region and those with open reading frames encoding protein domains catalogued in the Pfam database of protein families38. We used PhyloCSF, a comparative genomics method that assesses multilayered analysis we identified 563 previously unknown lincRNA-encoding genes, which increased by 11.8% the number of lincRNAs known to be expressed in human lymphocytes.

The various classes of RNAs were evenly distributed among various lymphocyte subsets (Supplementary Fig. 1b), and the ratio of already annotated and newly identified
As observed in various cell types, lincRNAs were also generally expressed at lower abundance than were protein-coding genes in human lymphocytes (Supplementary Fig. 1e) and across various lymphocyte subsets (Supplementary Fig. 1f). However, when we categorized transcripts on the basis of their cell-specific expression and non–cell-specific expression (Supplementary Fig. 1f), we found that cell-specific lincRNAs and cell-specific protein-coding genes displayed similar expression levels (Supplementary Fig. 1e–g).

Lymphocytes subsets display very different migratory abilities and effector functions, yet they are very closely related from the differentiation point of view. As lincRNAs are generally more tissue specific than are protein-coding genes, we assessed the lymphocyte cell–subset specificity of lincRNAs. We therefore classified genes according to their expression profiles by unsupervised K-means clustering and found that lincRNAs were defined by 15 clusters and protein-coding genes were defined by 24 clusters (Fig. 2a and Supplementary Fig. 2a). Notably, the frequency of genes assigned to the clusters specific...
for the various lymphocyte subsets was higher for lincRNAs (71%) than for protein-coding genes (34%) (Fig. 2b). This superiority stood out even when we compared lincRNAs with genes encoding membrane receptors (40%) (Fig. 2c), which are generally considered the most accurate markers of various lymphocyte subsets. We obtained similar results with the heuristic expression threshold of FPKM > 1 (Supplementary Fig. 2b). Thus, by RNA-seq analyses of highly purified subsets of primary T lymphocytes and B lymphocytes, we were able to provide a comprehensive landscape of lincRNA expression in human lymphocytes. By exploiting de novo transcriptome reconstruction, we discovered 563 previously unknown lincRNAs and found that lincRNAs were effective in marking lymphocyte identity.

Identification of lincRNA signatures in lymphocytes

Next we investigated our data set for the presence of lincRNA signatures in the various lymphocyte subsets. We therefore looked for lincRNAs with a difference in expression of more than 2.5-fold in a given cell subset relative to their expression in all the other subsets (P < 0.05 (nonparametric Kruskal-Wallis test)) that were expressed in at least three of five donors and found 172 lincRNAs that met these criteria (Fig. 3a and Supplementary Table 1). We integrated the human transcriptome database with our newly identified transcripts and thus created a new reference with which to assess more thoroughly their expression in other human tissues. Assessing lincRNA signatures in a panel of 16 human tissues (from the Human BodyMap 2.0 project), we found that not only were lymphocyte signature lincRNAs expressed very poorly in nonlymphoid tissues but also most signature lincRNAs were not detectable even in lymphoid tissues (Fig. 3a,b). These findings emphasized the importance of assessing the expression of lincRNAs (as well as of any highly cell-specific transcripts) in purified primary cells rather than in total tissues in which a given cell subset–specific transcript is diluted by the transcripts of all the other cell types of the tissue. We note that the newly identified lincRNAs defined as signatures were more abundant (Fig. 3c) and more cell specific (Supplementary Table 1) than the already annotated lincRNAs defined as signatures. We present here data obtained from the CD4+ T H1 cell subset (Fig. 2b); we obtained similar results for all the other subsets (Supplementary Table 1).

Finally, to confirm and extend our signature data, we assessed expression of the signature lincRNAs of CD4+ T H1 cells (Fig. 3b) by
Figure 4 Gene-ontology semantic similarity matrix of ‘protein-coding’ genes proximal to lincRNA signatures. Semantic similarity scores for all gene-ontology (GO) term pairs clustered by a hierarchical clustering method (left), with adjusted P values for each GO term (middle), as well as common ancestors (right); red bars indicate gene-ontology terms with significant enrichment.

Figure 5 Linc-MAF-4 contributes to Th1 differentiation. (a) Quantitative RT-PCR analysis of the expression of linc-MAF-4 and MAF in activated CD4+ naive T cells differentiated in Th1- or Th2-polarizing conditions (additional information, Supplementary Fig. 4b,c). AU, arbitrary units. (b) Occupancy of H3K4me3 and RNA polymerase II at the MAF locus (top) or the control IFNG locus (bottom) in CD4+ naive T cells differentiated in Th1- or Th2-polarizing conditions at day 8 after activation, analyzed by chromatin immunoprecipitation followed by quantitative PCR and presented relative to input DNA. (c) Quantitative RT-PCR analysis of the expression of linc-MAF-4 and MAF in activated CD4+ naive T cells (in the absence of polarizing cytokines) 72 h after transfection of small interfering RNA (siRNA) targeting linc-MAF-4 or control (ctrl) siRNA. (d) Gene set–enrichment analysis, presented as enrichment score profiles for genes in activated CD4+ naive T cells after transfection of siRNA targeting linc-MAF-4 or control siRNA compared with that of the CD4+ Th1 cell reference gene set or the Th2 cell reference gene set, respectively. Nominal P < 0.05. (e) Quantitative RT-PCR analysis of the expression of GATA3 and IL4 transcripts in activated CD4+ naive T cells transfected with siRNA as in d. *P < 0.05 and **P < 0.01 (one-tailed t-test). Data are representative of four independent experiments (a; average ± s.e.m.) or are from at least five (b, top) or ten (b, bottom) independent experiments (average and s.e.m.), six independent experiments (c,e; average and s.e.m.) or four independent experiments (d; average).

Downregulation of linc-MAF-4 skews CD4+ T cells toward Th2 cells

As lincRNAs have been reported to influence the expression of neighboring genes, we sought to determine whether protein-coding genes proximal to the signature lincRNAs of lymphocytes were involved in key cell functions. For this we used the Fatigo tool from the Babelomics suite for functional enrichment analysis and found that lincRNA signatures during their activation-driven differentiation from naive cells to memory cells.
protein-coding genes adjacent to signature lincRNAs showed enrichment for gene ontology terms correlated with the activation of lymphocyte T cells (Fig. 4), which indicated a possible role for signature lincRNAs in lymphocyte function. To obtain proof of concept of this hypothesis, we chose to characterize in depth linc-MAF-4 (linc-MAF-2 in the LNCipedia database)22, a signature lincRNA of T11 cells located 139.5 kilobases upstream of MAF. This gene encodes transcription factor c-Maf, which is involved in T12 differentiation35 but is also required for the efficient development of T117 cells44 and controls transcription of the gene encoding interleukin 4 in CD4+ follicular helper T cells35. Our sequencing data showed that high expression of linc-MAF-4 correlated with a low abundance of MAF transcripts in CD4+ T11 cells; conversely, T112 cells had low expression of linc-MAF-4 and abundant MAF transcripts (data not shown). The anti-correlation of expression between lincRNAs and their neighboring genes is not a common feature of all lincRNAs12,16 and is probably restricted to a limited number of cis-acting lincRNAs. We also confirmed this observation in our data set (data not shown). Moreover, we observed no correlation between the expression of linc-MAF-4 and its proximal upstream protein-coding genes CDYL2 and DYNLRB2 (Supplementary Fig. 4a).

We observed a similar inverse relation between linc-MAF-4 and MAF when we differentiated naive CD4+ T cells in vitro toward the T11 or T12 phenotype. In T lymphocytes differentiating toward the T11 phenotype, MAF transcripts increased up to day 3 and then decreased thereafter (Fig. 5a). Conversely, linc-MAF-4 was poorly expressed for the first 3 d but then increased progressively (Fig. 5a). In CD4+ T lymphocytes differentiating toward the T12 phenotype, the abundance of both MAF transcripts and c-Maf protein increased constantly up to day 8, while linc-MAF-4 remained constantly low (Fig. 5a and Supplementary Fig. 4c), similar to what we observed for CD4+ T lymphocytes differentiating toward the T117 phenotype (Supplementary Fig. 4d).

We further characterized the transcriptional regulation of MAF by assessing the abundance of histone H3 trimethylated at Lys4 (H3K4me3) and occupancy by RNA polymerase II at the MAF promoter region in T11 and T112 cells. Consistent with the higher active transcription of MAF in CD4+ T12 cells, we found enrichment for H3K4me3 in T12 cells relative to its abundance in T11 cells and that binding of RNA polymerase II at MAF promoter was higher in T12 than in T11 cells (Fig. 5b). Notably, knockdown of linc-MAF-4 in activated CD4+ naive T cells led to increased MAF expression (Fig. 5c and Supplementary Fig. 4e). All the results presented above indicated that modulation of MAF transcription in T cells depended on tuning of its promoter setting, and suggested direct involvement of linc-MAF-4 in the regulation of MAF transcription.

We then assessed the overall effect of the knockdown of linc-MAF-4 on the differentiation of CD4+ T cells by transcriptome profiling...
and gene set–enrichment analysis. We defined as reference gene sets the groups of genes upregulated in CD4+ naive T cells differentiated in vitro toward the Th1 or Th2 phenotype (Supplementary Table 2). We found that the CD4+ Th2 cell gene set showed enrichment for genes overexpressed in cells in which linc-MAF-4 was knocked down, whereas the CD4+ Th1 cell gene set showed depletion of those same genes (Fig. 5d). Concordant with those findings, the expression of GATA3 and IL4, two genes characteristic of Th12 cells, was increased after knockdown of linc-MAF-4 (Fig. 5e and Supplementary Fig. 4f). Together these results demonstrated that downregulation of linc-MAF-4 contributed to skewing of the differentiation of CD4+ T cells toward the Th12 phenotype.

Epigenetic regulation of MAF transcription by linc-MAF-4

Since the gene encoding linc-MAF-4 maps in relative proximity to MAF (within 139.5 kilobases), we sought to determine whether linc-MAF-4 was able to downregulate MAF transcription, and we investigated whether their genomic regions could physically interact. We exploited chromosome-conformation capture analysis to determine the relative crosslinking frequencies among regions of interest. We assessed the conformation of the genomic regions of the gene encoding linc-MAF-4 (called ‘linc-MAF-4’ here) and MAF in differentiated CD4+ Th1 cells. We used common reverse-primer mapping of the MAF promoter region in combination with a set of primers spanning the locus and analyzed interactions by PCR. We detected specific interactions between the MAF promoter and the 5’ and 3’ end regions of linc-MAF-4 (Fig. 6a and Supplementary Fig. 5a,b), which indicated the existence of an in cis chromatin-looping conformation that brought linc-MAF-4 in close proximity to the MAF promoter. Notably, subcellular fractionation of CD4+ Th1 lymphocytes differentiated in vitro revealed considerable enrichment for linc-MAF-4 in the chromatin fraction (Fig. 6b). Because other chromatin-associated lincRNAs regulate neighboring genes by recruiting specific chromatin remodelers, we assessed by RNA-immunoprecipitation assay the interaction of linc-MAF-4 with various chromatin modifiers, including activators and repressors (data not shown), and found specific enrichment for linc-MAF-4 in the immunoprecipitates of two chromatin modifiers, EZH2 and LSD1 (Fig. 6c and Supplementary Fig. 5c). In agreement with those findings, we found that knockdown of linc-MAF-4 in activated CD4+ naive T cells reduced the abundance of both EZH2 and LSD1 and correlated with lower enzymatic activity of EZH2 at the MAF promoter, as demonstrated by a lower abundance of H3K27me3 at this locus (Fig. 6d). Notably, the content of H3K27me3 was not diminished at either the MYOD1 promoter region (a known target of EZH2) or at a region within the chromatin loop between linc-MAF-4 and MAF marked by H3K27me3 (Supplementary Fig. 5d). Together these results demonstrated a long-distance interaction between the genomic regions of linc-MAF-4 and MAF, through which linc-MAF-4 might act as a scaffold to recruit both EZH2 and LSD1 and modulate the enzymatic activity of EZH2 on the MAF promoter and thus regulate its transcription (Fig. 6e).

DISCUSSION

Mammalian genomes encode more long noncoding RNAs than initially thought and the identification of lincRNAs with a role in cellular processes is growing steadily. As there are relatively few examples of functional long noncoding RNAs in the immune system, with the present study we have presented a comprehensive landscape of the expression of lincRNAs in 13 subsets of human primary lymphocytes. Moreover, we have identified a lincRNA (linc-MAF-4) that seemed to have a key role in the differentiation of CD4+ helper T cells.

LincRNAs have been reported to have high tissue specificity, and our study of lincRNA expression in highly pure primary human lymphocyte has provided added value because it allowed the identification of lincRNAs whose expression was restricted to a given lymphocyte subset. Notably, we found that lincRNAs defined cellular identity better than protein-coding genes did, including those that encode surface receptors that are generally considered the most precise markers of lymphocyte subsets. Due to their specificity of expression, human lymphocyte lincRNAs that are not yet annotated in public resources would have not been identified without de novo transcriptome reconstruction. Indeed, by exploiting three different de novo strategies, we identified 563 previously unknown lincRNAs and increased by 11.8% the number of lincRNAs known to be expressed in human lymphocytes. As our conservative analysis was limited to 13 cellular subsets, it remains unclear how many novel lincRNAs could be identified by transcriptome analysis of all of the several hundreds of human cell types.

We compared our data with published analyses of lincRNA expression in the mouse immune system, exploiting the LNCipedia database. We found that 51% of the human lincRNA signature was conserved in mice, which is similar to the overall conservation between human lincRNAs and mouse lincRNAs (60%). However, further studies will be needed to assess whether their function is also conserved.

Given our findings, signature lincRNAs might be exploited to discriminate and differentiate at the molecular level those cell subsets that cannot be distinguished easily on the basis of cell surface markers because of their cellular heterogeneity, such as CD4+ regulatory T cells. However, as lincRNA expression in a tissue is averaged across all the cell types that compose that tissue, transcriptome analysis of unfractionated tissue-derived cells may underestimate the expression of cell-specific lincRNAs. In fact, the great majority of our lymphocyte lincRNA signatures could not be detected among RNA extracted from total lymphoid tissues (peripheral blood and lymph nodes), although these same tissues contained cells from all of the lymphocyte subsets we assessed.

The role of lincRNAs in differentiation has been described for various cell types. In the mouse immune system, it has been found that lincRNA expression changes during the differentiation of naive CD8+ T cells into memory CD8+ T cells and during the differentiation of naive CD4+ T cells into distinct lineages of helper T cells. We have shown for human primary lymphocytes that activation-induced differentiation of CD4+ naive T cells was associated with increased expression of lincRNAs belonging to the CD4+ Th1 cell signature, which suggests that upregulation of Th1 cell lincRNAs is part of the cell-differentiation transcriptional program. Indeed, linc-MAF-4, one of the Th1 cell signature lincRNAs, had low expression in Th12 cells, and its experimental downregulation skewed differentiating helper T cells toward a Th12 transcription profile. We found that linc-MAF-4 regulated transcription by exploiting a chromosomal loop that brought its genomic region close to the promoter of MAF. We propose that the chromosome organization of this region allows a linc-MAF-4 transcript to recruit both EZH2 and LSD1 and to modulate the enzymatic activity of EZH2 that negatively regulates MAF transcription via a mechanism of action similar to that shown for the lincRNAs HOTAIR and MEG3 (ref. 50). We therefore have provided mechanistic proof of the concept that lincRNAs can be important regulators of CD4+ T cell differentiation. Given the number of specific lincRNAs expressed in various lymphocyte subsets, it can be postulated that many other lincRNAs might contribute to cell differentiation and to the definition of identity in human
lymphocytes. These findings and the high cell specificity of lincRNAs suggest that lincRNAs might be highly specific molecular targets for the development of new therapies for diseases (such as autoimmunity, allergy and cancer) in which altered CD4+ T cell functions have a pathogenic role.

METHODS

Methods and any associated references are available in the online version of the paper.

Accession codes. ArrayExpress: E-MTAB-2319.

Note: Any Supplementary Information and Source Data files are available in the online version of the paper.

ACKNOWLEDGMENTS

We thank C. Cheroni for support in statistical analysis; M. Moro and M.C. Crotti for technical assistance with cell sorting; S. Biffo, D. Gabellini, P. Della Bona and A. Lanzavecchia for discussions and critical revision of the manuscript; B.J. Haas and A. Dobin for help with the integration of genome-guided Trinity with STAR aligner; the Istituto Nazionale Genetica Molecolare Bioinformatics Facility for support; and the Google Summer of Code Project for supporting C. Wheeler in the development of tools used here for the open-source bioinformatics library BioRuby that adds support for the multiple-alignement format (https://github.com/csw/bioruby-mal). Supported by Il Consiglio Nazionale delle Ricerche–Il Ministero dell’Istuzione dell’Università e della Ricerca (EPIGEN), Fondazione Cariplo (2013-0955), the Associazione Italiana per la Ricerca sul Cancro (IG2013-ID14596), the European Research Council (269022 to S.A.; 617978 to M.P.).

AUTHOR CONTRIBUTIONS

V.R., A.A. and R.J.P.B. set up all the bioinformatics pipelines, performed the bioinformatics analyses and contributed to the preparation of the manuscript; G.R. and I.P. designed and performed the main experiments, analyzed the data and contributed to the preparation of the manuscript; S.C., F.G.-E., P.E.S. and B.B. performed experiments and analyzed the data; M.M., R.D.E. and J.G. discussed results, provided advice and commented on the manuscript; S.A. and M.P. designed the study, supervised research and wrote the manuscript; and all authors discussed and interpreted the results.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Zhu, J., Yamane, H. & Paul, W.E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).
2. Zhou, L., Chong, M.M. & Littman, D.R. Plasticity of CD4 T cell lineage differentiation. Immunity 30, 646–655 (2009).
3. O’Shea, J.J. & Paul, W.E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327, 1098–1102 (2010).
4. Kanno, Y., Vahedi, G., Hirahara, K., Singleton, K. & O’Shea, J.J. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol. 30, 707–731 (2012).
5. O’Connell, R.M., Rao, D.S., Chaudhuri, A.A. & Baltimore, D. Physiological and enforcement of the naive state in CD4+ T cells by the microRNA miR-125b. Nat. Immunol. 12, 796–803 (2011).
6. Cabili, M.N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).
7. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).
8. Hrdlickova, B. et al. Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity. Genome Med. 6, 88 (2014).
9. Fatica, A. & Bozzoni, I. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15, 7–21 (2014).
10. Guttmann, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).
11. Guttmann, M. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295–300 (2011).
12. Khalil, A.M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106, 11667–11672 (2009).
13. Yoon, J.H. et al. LincRNA-p21 suppresses target mRNA translation. Mol. Cell 47, 648–655 (2012).
14. Kreutz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231–235 (2013).
15. Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010).
16. Sumazin, P. et al. An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147, 370–381 (2011).
17. O’Connell, R.M. et al. A long non-coding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).
18. Pan, K.C. et al. Genome-wide identification of long non-coding RNAs in CD8+ T cells. J. Immunol. 182, 7738–7748 (2009).
19. Collier, S.P., Collins, P.L., Watson, C.L., Brenchley, M.J., Aune, T.M. Cutting edge influence of Tmeg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J. Immunol. 189, 2084–2088 (2012).
20. Gomez, J.A. et al. The NeST long ncRNA controls microbial susceptibility and antiviral activation of the interferon-γ locus. Cell 152, 743–754 (2013).
21. Carpenter, S. et al. A long non-coding RNA mediates both activation and repression of immune response genes. Science 341, 789–792 (2013).
22. Hu, G. et al. Expression and regulation of intergenic long non-coding RNAs during T cell development and differentiation. Nat. Immunol. 14, 1190–1198 (2013).
23. Haas, B.J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).
24. Zhu, J., Komori, H.K., LaMere, S., Podshivalova, K. & Salomon, D.R. Finding the active genes in deep RNA-seq gene expression studies. BMC Genomics 14, 778 (2013).
25. Flicke, P. et al. Ensemble 2013. Nucleic Acids Res. 41, D485–D555 (2013).
26. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
27. Trapnell, C., Pachter, L. & Salzberg, S.L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).
28. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).
29. Rhind, N. et al. Comparative functional genomics of the fission yeasts. Science 332, 930–936 (2011).
30. Cabili, M.N. et al. The Pfam protein families database. Nucleic Acids Res. 38, D211–D222 (2012).
31. Lin, M.F., Jungreis, I. & Kelis, M. PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 27, i275–i282 (2011).
32. Guttmann, M., Russell, P., Ingolia, N.T., Weissman, J.S. & Lander, E.S. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154, 240–251 (2013).
33. Mercer, T.R., Dinger, M.E., Sunkin, S.M., Mehler, M.F. & Mattick, J.S. Specific expression of long noncoding RNAs in the mouse brain. Proc. Natl. Acad. Sci. USA 105, 716–721 (2008).
34. Brom, U.A. et al. Long non-coding RNAs with enhancer-like function in human cells. Cell 143, 45–58 (2010).
35. Al-Shahrour, F., Minguez, P., Vaquerizas, J.M., Conde, L. & Dopazo, J. BABELOMICS: a suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments. Nucleic Acids Res. 33, W472–W476 (2005).
36. Volders, P.J. et al. LCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 41, D246–D251 (2013).
37. Ho, J.C., Lo, D. & Glimcher, L.H. H-1 maf promotes T helper cell type 2 (Th2) and attenuates Th1 differentiation by both interleukin 4-dependent and -independent mechanisms. J. Exp. Med. 188, 1859–1866 (1998).
38. Liu, X., Nuneva, R.J. & Dong, C. Transcriptonal regulation of follicular T-helper (Tfh) cells. Annu. Rev. Immunol. 31, 185–214 (2013).
39. Sato, K. et al. Marked induction of c-Maf protein during Th17 cell differentiation and its implication in memory Th cell development. J. Biol. Chem. 286, 14963–14971 (2011).
40. Mattick, J.S. The genetic signatures of noncoding RNAs. Nat. Rev. Cancer 11, 1004–1015 (2011).
ONLINE METHODS

Purification of primary immunological cell subsets. Blood buffy coat cells of healthy donors were obtained from Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca'Granda Ospedale Maggiore Policlinico in Milan, and peripheral blood mononuclear cells were isolated by ficoll-hypaque density-gradient centrifugation. The ethical committee of Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’Granda Ospedale Maggiore Policlinico approved the use of peripheral blood mononuclear cells from healthy donors for research purposes, and informed consent was obtained from subjects. Human blood primary lymphocyte subsets were purified to a purity of >95% by cell sorting through the use of various combinations of surface markers (Table 1). In *vitro* differentiation experiments, resting naive CD4+ T cells were purified to a purity of >95% by negative selection with magnetic beads with an isolation kit for human CD4+ Naive T cells (Miltenyi) and were stimulated with Dynabeads Human T-Activator CD3/CD28 (Life Technologies). Interleukin 2 (IL-2) was added at 20 IU/ml (202-IL; R&D Systems). T H1 polarization was initiated with 10 ng/ml IL-12 (219-IL; R&D Systems) and anti-IL-12 (2 µg/ml; MAB3007; R&D Systems). T H2 polarization was induced by activation with phytohemagglutinin (4 µg/ml; L2769; Sigma) in the presence of IL-4 (10 ng/ml; 204-IL; R&D Systems), and neutralizing anti-IFN-γ (2 µg/ml; MAB 285; R&D Systems) and anti-IL-12 (2 µg/ml; MAB219; R&D Systems). For intracellular staining of GATA-3 and c-Maf, cells were harvested and then were fixed for 30 min at 4 °C in Fixation/Permeabilization Buffer (eBioscience). Cells were stained for 30 min at 4 °C with anti-GATA-3 (TWAJ; eBioscience) and anti-c-Maf (sym0F1; eBioscience) in washing buffer. Cells were then washed two times, resuspended in autoMACS buffer (Miltenyi) and analyzed by flow cytometry.

RNA isolation and RNA sequencing. Total RNA was isolated with an mirVana Isolation Kit. Libraries for Illumina sequencing were constructed from 100 ng of total RNA with the Illumina TruSeq RNA Sample Preparation Kit v2 (Set A). The libraries generated were loaded on to the Biot automated clonal amplification application (Illumina) for clustering on a HiSeq Flow Cell v3. The libraries clustered on a HiSeq Flow Cell v3 were then sequenced with a HiScanSQ optical imaging system (Illumina). A paired-end run (with a read length of 101 bases) was performed with an SBS Kit v3 DNA sequencing kit (Illumina). Real-time analysis and base calling was performed with HiSeq Control Software Version 1.5 (Illumina).

RNA-seq. RNA-seq data representative of 13 lymphocyte populations were collected for transcriptome reconstruction. Five biological replicates were analyzed for all populations except for CD8+ T CEM cells and CD5+ B cells (four samples). The whole data set was aligned to human genome assembly GRCh37 (Genome Reference Consortium Human Build 37) with TopHat software (version 1.4.1)13 for a total of over 1.7 × 10⁸ mapped paired-end reads (30 million reads per sample on average). These data were also mapped with the aligner STAR (version 2.2.0)35. RNA-seq data sets of 16 human tissues belonging to the Illumina Human BodyMap 2.0 project (ArrayExpress accession code E-MTAB-513) were mapped according to the same criteria.

Reference annotation. An initial custom reference annotation of unique, non-redundant transcripts was built by integration of the Ensembl database (version 67 from May 2012) with the lincRNAs identified by another group13 through the use of the Cuffcompare tool (version 2.1.1) of the Cufflinks suite44. The annotated human lincRNAs were extracted from Ensembl through the use of the BioMart software suite (version 67) and were categorized by gene biotype ‘lincRNA’ (5,804 genes). Other classes of genes were integrated in the annotation: the list of protein-coding genes (21,976 genes), the collection of receptor-encoding genes defined in BioMart under GO term GO:000487 (2,043 genes encoding molecules with receptor activity function) and the class of genes encoding molecules involved in metabolic processes corresponding to GO term GO:0008152 (7,756 genes). Hence, the complete reference annotation consisted of 195,392 transcripts that referred to 62,641 genes, 11,170 of which were nonredundant lincRNA-encoding genes.

De novo genome-based transcripts reconstruction. A comprehensive catalog of lincRNAs specifically expressed in human lymphocyte subsets was generated with a *de novo* genome-based transcripts reconstruction procedure by three different approaches. Two aligners were used: TopHat (version 1.4.1) and STAR (version 2.2.0). The *de novo* transcriptome assembly was performed on the aligned sequences (samples of the same population were concatenated into one ‘population alignment’) generated by STAR and TopHat using Cufflinks (version 2.1.1) with reference annotation to guide the assembly (-g option) coupled with multi-read (-u option) and fragment-bias correction (-b option) to improve the accuracy with which transcript abundance was estimated. By this method, about 3 × 10⁴ to 5 × 10⁴ previously unknown transcripts were identified in each lymphocyte population. The third approach used genome-guided Trinity software (additional information available at http://pass.sourceforge.net/#A_ComprehensiveTranscriptome), which generates novel transcripts by local assembly on previously mapped reads from specific location. STAR was used instead of the Trinity default aligner52. Each candidate transcript was then processed via the PASA ‘pipeline’ (Program to Assemble Spliced Alignments; a genome annotation tool), which reconstructs the complete transcript and gene structures, resolving incongruences derived from transcript misalignments and alternatively splices events, refining the reference annotation when there was enough evidence and proposing new transcripts and genes in case no previous annotation was able to explain the new data (Supplementary Note).

Identification of previously unknown lincRNA-encoding genes. Annotated transcripts and previously unknown isoforms of known genes were discarded, and only previously unknown genes and their isoforms located in intergenic positions were retained. To filter out artifactual transcripts due to transcriptional noise or low polymerase fidelity, only multi-exonic transcripts longer than 200 bases were retained. Then, the HMMER3 algorithm52 was run for each transcript to identify occurrences of any protein family domain documented in the Pfam database (release 26; both PfamA and PfamB were used). All six possible frames were considered for the analysis, and the matching transcripts were excluded from the final catalog.

The coding potential for all the remaining transcripts was then evaluated by the PhyloCSF comparative genomics method (phylogenetic codon substitution frequency)17, which was run on a multiple sequence alignment of 29 mammalian genomes (in multi-alignment file (MAF) format) (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/multiz46way/) to obtain the open reading frames that encoded proteins of over 29 amino acids in length across all three reading frames and had the best scores. For efficient accessing of the MAFs, the biogem plugin of the bio-maf Ruby (MAF parser for the BioRuby open-source bioinformatics library for Ruby programming code; https://github.com/csw/bioruby-maf)51 was used. This library provides indexed and sequential access to MAF data, and also uses fast manipulations on it and writes modified MAFs. Transcripts with at least one open reading frame with a PhyloCSF score of over 100 were excluded from the final catalog. The threshold of 100 for the PhyloCSF score was determined as described13 to optimize specificity and sensitivity for the classification of coding and noncoding transcripts annotated in the RefSeq reference sequence database of the National Center for Biotechnology Information (RefSeq coding and RefSeq lincRNAs). A PhyloCSF score of 100 corresponds to a false-negative rate of 6% for coding genes (i.e., 6% of coding genes are classified as noncoding) and a false-positive rate of ~10% (i.e., 9.5% of noncoding transcripts are classified as coding).

De novo transcriptome data integration. Duplicates among the transcripts identified with the same *de novo* method were resolved through the use of Cuffcompare (version 2.1.1). In the same way, the resulting three data sets were further merged to generate a nonredundant atlas of lincRNAs in human lymphocytes and only those genes identified by at least two of the three software programs used were considered. A unique name was given to each newly identified lincRNA gene composed by the prefix ‘linc-’ followed by the Ensembl gene name of the nearest protein-coding gene (irrespective of the strand). The additional designation ‘up’ or ‘down’ defines the location of the lincRNA relative to the sense of transcription of the nearest protein-coding gene. In addition, either ‘sense’ or ‘antisense’ was added to describe the concordance of transcription between the lincRNA and its nearest coding gene. A numerical counter only of newly identified lincRNAs related to the same protein-coding gene is added as suffix (such as ‘linc-geneX-(up|down)-(sense|antisense)_#n’). This final nonredundant
catalog of newly identified lincRNAs includes 4,666 previously unknown transcripts referencing 3,005 previously unknown genes.

Definition of lincRNA signatures. Analysis of differences in expression among the 13 cell subsets profiled was performed with the Cuffdiff program of Cufflinks (version 2.1.1). This analysis was run using multi-read correction (-o option) and upper-quartile normalization (--library-norm-method quartile) to improve robustness of ‘calls’ for differences in expression for less-abundant genes and transcripts. Only genes expressed at an FPKM value over 0.21 (ref. 29) were considered in the downstream analysis to filter out genes that are merely byproducts of ‘leaky’ gene expression, sequencing errors, and/or off-target read mapping. After a pseudo-count of 1 was added to the raw FPKM value for each gene, with the application of log2 transformation and z-score normalization, K-means clustering with Euclidean metric was performed on lincRNA expression values with the MultiExperiment Viewer tool (version 4.6) (Supplementary Note). The same procedure was then applied to the expression values of genes encoding proteins, products involved in metabolic processes and receptors. The Silhouette function22 was used to select an appropriate K value (number of clusters). K values ranging from 13 to 60 were tested, and the value associated with the highest Silhouette score for each class of genes was selected. The number of clusters that maximized the Silhouette score was 15 for lincRNA (Supplementary Fig. 2a), 24 for protein-coding genes, 23 genes encoding receptors and 36 for genes encoding products involved in metabolic processes. The centroid expression profile of each cluster was then evaluated to associate each cluster to a single cellular population (Fig. 2).

To select specifically expressed lincRNA genes, K-means results were subsequently intersected with the Jaccard score, a cell-specificity measure based on Jensen–Shannon divergence, and only the genes assigned to the same cellular population by both techniques were retained for further analysis (Supplementary Note). The estimation procedure for the Jaccard score was adapted by the building of a reference model composed of 13 cell subsets. For the lincRNAs selected, the intrapopulation consistency among different samples was subsequently evaluated to minimize the biological variability: only genes expressed in at least three of five of the samples profiled (or three of four replicates for CD8+ TCM cells and CD5+ B cells) whose maximal expression value was >2.5-fold that in all other lymphocyte subsets were considered. Finally, a nonparametric Kruskal–Wallis test was applied to select only lincRNA genes with a significant difference in expression across the medians of the different lymphocyte populations: a P value lower than 0.05 was considered, and the lincRNA genes that meet these selection criteria were selected as signature genes.

GO enrichment analysis. A GO enrichment analysis was performed for biological process terms associated with protein-coding genes that are proximal to lincRNA signatures at the genomic level. For each lincRNA signature, the proximal protein-coding gene was selected regardless of the sense of transcription. The Fatigo tool of the Babelomics suite (version 4.3.0) was used to identify the GO terms that showed enrichment, among the 158 protein-coding genes (input list). All protein-coding genes that were expressed in lymphocyte subsets (19,246 genes) (except the genes proximal to a lincRNA signature gene (input list)) defined the background list. Only GO terms with adjusted P value lower than 0.01 were considered (10 GO terms). Moreover, we performed a GO semantic similarity analysis on the 51 GO terms with adjusted P value lower than 0.1, which resulted from previous analysis with the G-SIMILAR (gene semantic similarity analysis and measurement) tool. This analysis provides as a result a symmetric matrix in which each value represents a score for similarity between GO term pairs. Then, we carried out a hierarchical clustering based on semantic similarity matrix to group together all GO terms with common GO ‘parent’.

Transfection of siRNA into naive CD4+ T cells. 300 nM fluorescein isothiocyanate (FITC)-labeled-siRNA targeting linc-MAF-4 or FITC-labeled-ALLStars negative control (Qiagen) was transfected into activated CD4+ naive T cells through the use of Lipofectamine 2000 according to the manufacturer’s protocol (Life Technologies). FITC+ cells were sorted and lysed 72 h after transfection. siRNAs sequences are provided in Supplementary Table 3.

Gene-expression analysis. Gene expression in transfected activated CD4+ naive cells was analyzed by Illumina Direct Hybridization Assays according to the standard protocol (Illumina). Total RNA was isolated, underwent quality control and was quantified as described above; for each sample, 500 ng total RNA was reverse transcribed according to the Illumina TotalPrep RNA Amplification kit (AMMI1791; LifeTechnologies) and cRNA was generated by 14 h of in vitro transcription. Samples were hybridized according to the standard Illumina protocol on Illumina HumanHT-12 v4 Expression BeadChip arrays (BD-103-0204; Illumina). Scanning was performed on an Illumina HiScanSQ System and data were processed with Genome Studio; arrays underwent quantile normalization, with no subtraction of background values, and average signals were calculated on the gene level data for genes whose detection P value was lower than 0.001 in at least one of the cohorts considered.

Gene set–enrichment analysis (GSEA). GSEA is a statistical methodology used to evaluate whether a given gene set shows significant enrichment for a list of gene markers (ranked by their correlation with a phenotype of interest). To evaluate this degree of enrichment, the software calculates an enrichment score (ES) by moving down the ranked list; i.e., it increases the value of the sum if the marker is included in the gene set and decreases this value if the marker is not in the gene set. The value of the increase depends on the gene-phenotype correlation. GSEA was performed by comparison of gene-expression data obtained from activated CD4+ naive T cells transfected with siRNA specific for linc-MAF-4 or control siRNA. The experimentally generated data set from cells differentiating in vitro (in Th1- or Th2-polarizing conditions) from CD4+ naive T cells of the same donors in which linc-MAF-4 was downregulated were used to construct reference gene sets for Th1 and Th2 cells. RNA for analysis of gene expression in differentiating Th1 and Th2 cells was collected 72 h after activation (i.e., the same time point of RNA collection in the linc-MAF-4-downregulation experiments), but a fraction of cells was further differentiated up to day 8 to assess the production of IFN-γ and IL-13 by Th1 and Th2 cells. The Th1 and Th2 data sets were ranked as log2 ratios of the expression values for each gene in the two conditions (Th1/Th2), and the genes with the greatest upregulation or downregulation (with log2 ratios ranging from [3] to [0.6]) were assigned to the Th1 or Th2 reference sets, respectively.

Genes from the Th1 gene list that were downregulated in a comparison of Th1 cells versus cells transfected with control siRNA and genes from the Th2 gene list that were downregulated in a comparison of Th2 cells versus cells transfected with control siRNA were filtered out, which resulted in a Th1 cell–specific gene set (74 genes) and a Th2 cell–specific gene set (141 genes) (Supplementary Table 2). GSEA was then performed on the data set for the comparison of cells transfected linc-MAF-4–specific siRNA versus cells transfected with control siRNA. The metric used for the analysis is the log2 ratio of classes, with 1,000 gene set permutations for testing of significance.

Quantitative RT-PCR analysis. For reverse transcription, equal amounts of DNA-free RNA (500 ng) were reverse-transcribed with SuperScript III in the conditions suggested by the manufacturer (LifeTechnologies). Diluted cDNA was then used as input for quantitative RT-PCR to assess the expression of MAF (Hs00193519_m1), IL4 (Hs01076119_m1), IL17 (Hs01076119_m1), Linc00339 (Hs04331223_m1), MALAT1 (Hs01910777_s1), RNU2.1 (Hs03023892_g1) and GAPDH (Hs02758991_g1) with InVitroMan Gene Expression assays (LifeTechnologies). For assessment of linc-MAF-4 and confirmation of CD4+ Th1 cell signature lincRNAs, specific primers were designed, and 2.5 μg RNA from CD4+ Th1 cells, regulatory T cells or naive cells was used for reverse transcription with SuperScript III (LifeTechnologies). Quantitative RT-PCR was performed on diluted cDNA with PowerSyrberGreen (LifeTechnologies), and the specificity of each amplified product was monitored through the use of melting curves at the end of each amplification reaction. The primers used in quantitative PCR are listed in Supplementary Table 3.

Cell fractionation. Th1 cells differentiated in vitro were resuspended for 10 min on ice in RLN1 buffer (50 mM Tris-HCl pH 8, 140 mM NaCl, 1.5 mM MgCl2, 0.5% NP-40) supplemented with SUPERaseIn (Ambion). After a centrifugation at 300g for 2 min, the supernatant was collected as the cytoplasmic fraction. The pellet was resuspended for 10 min on ice in RLN2
buffer (50 mM Tris-HCl, pH 8.0, 500 mM NaCl, 1.5 mM MgCl2 and 0.5% NP-40) supplemented with RNase inhibitors. Chromatin was pelleted at maximum speed for 3 min. The supernatant represented the nuclear fraction. All fractions were resuspended in TRIZol (Ambion) to a volume of 1 ml, and RNA was extracted following a standard protocol.

RNA immunoprecipitation. T11 cells differentiated in vitro underwent crosslinking by ultraviolet irradiation in ice-cold Dulbecco’s PBS and then were pelleted at 1,350g for 5 min. The pellet was resuspended in ice-cold lysis buffer (25 mM Tris-HCl pH 7.5, 150 mM NaCl and 0.5% NP-40) supplemented with 0.5 mM β-mercaptoethanol, Protease Inhibitor Cocktail Tablets cOmplete, EDTA-free (Roche) and SUPERaseIN (Ambion) and was incubated with rocking at 4 °C until lysis was complete. The debris were centrifuged at 13,000g for 10 min. The lysate was precleared for 30 min at 4 °C with Dynabeads Protein G (Novex) and then was incubated for 2 h with 7 μg anti-EZH2 (39875; Active Motif) or anti-LSD1 (ab17721; Abcam), or with anti-β-actin (sc7392; Santa Cruz) as mock control. The lysate was coupled with 7 μl Dynabeads Protein G (Novex). Immunoprecipitates were washed for five times with lysis buffer. RNA was then extracted according to the protocol of the miRvana miRNA Isolation Kit (Ambion). The abundance of RNA transcripts encoding linc-MAF-4 or the negative controls β-actin, RNU2.1 and a region upstream the TSS of linc-MAF-4 (linc-MAF-4 control) was assessed by quantitative RT-PCR.

Chromatin immunoprecipitation. T11 and T12 cells differentiated in vitro were crosslinked for 10 min in their medium with 1:10 dilution of 1.25 M glycine and were centrifuged at 1,350g for 5 min at 4 °C. Cells were lysed at 4 °C in LB1 (50 mM HEPES-KOH, pH 7.5, 10 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40 and 0.25% Triton X-100) supplemented with protease inhibitors. Nuclei were pelleted at 1,350g for 5 min at 4 °C and then were resuspended with a syringe in 200 µl LB2 (10 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA and 0.5 mM EGTA) supplemented protease inhibitors. Nuclei were again pelleted at 1,350g for 5 min at 4 °C and then underwent digestion overnight at 37 °C with 800 U of BglII (New England BioLabs). DNA was purified by phenol-chloroform extraction after digestion with RNase A (Sigma) and proteinase K (Sigma). As controls, bacterial artificial chromosomes corresponding to the region of interest were digested overnight at 37 °C with 100 U BglII in NEB3 buffer in a volume of 50 µl. Then, fragments underwent ligation overnight at 22 °C with 400 U T4 DNA ligase in a volume of 40 µl. PCR products amplified with GoTaq Flexi (Promega) for bacterial artificial chromosomes and samples were separated by electrophoresis through 2.5% agarose gels and quantified with ImageJ software. Primers are listed in Supplementary Table 3.

Statistical analysis. Unless indicated otherwise in the figure legend(s), a one-tailed, paired t-test was performed on experimental data with Prism (GraphPad Software). For multiple comparisons of human lymphocytes subsets, a non-parametric Kruskal-Wallis test was used. Analysis of variance and Dunnet post-hoc test was applied for statistical analysis of RNA-immunoprecipitation experiments in Figure 6c.

51. Bonnal, R.J. et al. Biogem: an effective tool-based approach for scaling up open source software development in bioinformatics. Bioinformatics 28, 1035–1037 (2012).
52. Rousseauw, P.J. & Leroy, A.M. John Wiley & Sons, in Wiley Series in Probability and Mathematical Statistics Applied Probability and Statistics (Wiley, New York, 1987).
53. Bodega, B. et al. Remodeling of the chromatin structure of the facioscapulohumeral muscular dystrophy (FSHD) locus and upregulation of FSHD-related gene 1 (FRG1) expression during human myogenic differentiation. BMC Biol. 7, 41 (2009).