Magnetic properties of icosahedral quasicrystals and their cubic approximants in the Cd–Mg–RE (RE = Gd, Tb, Dy, Ho, Er, and Tm) systems

Farid Labib1,3, Daisuke Okuyama1, Nobuhisa Fujita1, Tsunetomo Yamada2, Satoshi Ohhashi1, Taku J Sato1 and An-Pang Tsai1

1 Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai 980-8577, Japan
2 Faculty of Science, Department of Applied Physics, Tokyo University of Science, Katsushika-ku, Tokyo, Japan

E-mail: labib.farid.t2@dc.tohoku.ac.jp

Received 27 February 2020, revised 27 April 2020
Accepted for publication 14 May 2020
Published 15 July 2020

Abstract
A systematic investigation has been performed to elucidate effects of rare earth type and structural complexity on magnetic properties of icosahedral quasicrystal (iQC) and their cubic approximants (APs) in the ternary Cd–Mg–RE (RE = Gd, Tb, Dy, Ho, Er, and Tm) systems. At low temperatures, iQCs and 2/1 APs exhibit spin-glass-like freezing for RE = Gd, Tb, Dy, and Ho, while for Er and Tm they do not show freezing behavior down to the base temperature \(\sim 2 \) K. The 1/1 APs exhibit either spin-glass-like freezing or antiferromagnetic (AFM) ordering depending on their constituent Mg content. The \(T_f \) values show increasing trend from iQC to 2/1 and 1/1 APs. In contrast, the absolute values of Weiss temperature for iQCs are larger than those in 2/1 and 1/1 APs, indicating that the total AFM interactions between the neighboring spins are larger in aperiodic, rather than periodic systems. Competing spin interactions originating from the long-range Ruderman–Kittel–Kasuya–Yoshida mechanism along with chemical disorder of Cd/Mg ions presumably account for the observed spin-glass-like behavior in Cd-Mg-RE iQCs and APs.

Keywords: quasicrystals, magnetism, spin glass, antiferromagnetism, magnesium alloys

3 Author to whom any correspondence should be addressed.

1. Introduction
Icosahedral quasicrystals (iQCs), as aperiodically-ordered intermetallic compounds, generate sharp Bragg reflections with 5-fold rotational symmetry, indicating the presence of a long-range positional order without periodicity in their atomic configuration [1, 2]. Based on their atomic structure, iQCs can be classified into three sub-types, namely the Mackay- [3], Bergman- [4] and Tsai-types [5]. The Tsai-type iQCs, in particular, including those found in the binary Cd–RE [6], ternary Cd-Mg-RE [7, 8] (RE = Y, Gd–Yb, where RE stands for ‘rare earth’), and Ag–In–Yb [9], and Au–Al–RE (RE = Yb, Tm) [10, 11] systems, are the most abundant in all the iQCs reported to date. Figure 1(a) illustrates shell structure of the basic cluster unit of Tsai-type iQCs [12, 13]. The magnetic properties of the Tsai-type iQCs in the Cd-RE and Cd-Mg-RE systems with trivalent REs (e.g. Y, Gd–Tm) have been investigated...
in a number of studies [14–19]. The results are summarized as follows: the temperature dependence of the magnetization follow the Curie–Weiss law at high temperatures. The effective magnetic moments are consistent with free RE$^{3+}$ ions. At low temperatures, these iQCs exhibit spin-glass-like freezing behavior. Meanwhile, short-range-magnetic correlations in the spin-glass-like state has been observed in the Cd–Mg–RE iQCs at low temperatures using neutron scattering [14]. The magnetic properties of the iQCs in both binary Cd–RE and ternary Cd–Mg–RE systems) are summarized in table 1.

In a close proximity of iQCs yet with slightly different compositions, the same rhombic tricontahedron (RTH) clusters can be arranged with translational symmetry generating their crystalline counterpart, so-called approximants (APs) [13]. 2/1 APs (space group, Pa$\bar{3}$) are structurally closer to iQCs (Pm$\bar{3}$5) than 1/1 APs (Im$\bar{3}$) [20, 21]. The configurations of RE atoms within the unit cells of the 1/1 and 2/1 APs are illustrated schematically in figures 1(b) and (c), respectively. Note that in the former, there exist 24 RE sites that are symmetrically equivalent. They form the icosahedral shells of the RTH clusters. In the latter, on the other hand, the 104 RE sites are divided into five Wyckoff orbits, represented by spheres of different colors in figure 1(c), all of which except RE4 belong to the icosahedral shells of the RTH clusters (see figure 1(a)). The four dimers of RE4 sites are arranged on the long body diagonals of the four acute rhombohedron units which fill in the gaps between the RTH clusters [12].

As represented in figure 2, the shortest RE–RE distances in both 1/1 and 2/1 APs (within a range of 3.4 to 6.2 Å) can be classified into the following seven categories: (I) icosahedral edge, (II) side edge of trigonal antiprisms, each of which has base triangles belonging to an adjacent pair of icosahedra aligned along a 3-fold axis, (III) side edge of rectangles, each of which connects parallel edges from an adjacent pair of icosahedra aligned along a 2-fold axis. For the 2/1 APs, additional categories are required: (IV-1, IV-2, and IV-3) three distinct distances between RE4 sites to icosahedral sites, and (V) short distance between two RE4 sites comprising a dimer associated with acute rhombohedron units. The 2- and 3-fold linkages between the cluster centers are represented by thick light blue and yellow bonds, respectively, in figures 1(b) and (c).

Magnetic properties of the Tsai-type 1/1 APs have been investigated in several systems. While ternary 1/1 APs tend to show spin-glass-like freezing, the binary Cd$_6$RE [15, 22–24] and ternary Au–SM–RE (RE = Gd and SM = Si, Ge) compounds [25–27] are of particular interest since they exhibit long-range antiferromagnetic (AFM) and ferromagnetic (FM) orderings, respectively. Moreover, the binary Cd$_6$RE compounds are reported to exhibit multiple anomalies in the temperature dependence of their magnetic susceptibilities (see table 1), indicating the existence of several distinct AFM phases [22, 23].

While no previous study has been reported on the magnetic properties of the APs in the ternary Cd–Mg–RE systems, it has recently been revealed that iQCs and their successive cubic 2/1 and 1/1 APs can be obtained in the ternary Cd–Mg–RE (RE = Gd, Tb, Dy, Ho, Er, and Tm) alloy systems.
Table 1. Magnetic properties of the binary Cd–RE and ternary Cd–Mg–RE (RE: rare earth) icosahedral quasicrystals (iQCs) and approximants (APs). Θ_w is the Weiss temperature, T_f is the spin freezing temperature, μ_{eff} is the experimental effective moment and μ_{calc} is the calculated free-ion value.

iQC/AP System	μ_{eff} (μ_B/REion)	μ_{calc} (μ_B/REion)	Θ_w (K)	T_f (K)	T_{N1} (K)	T_{N2} (K)	T_{N3} (K)	T_{N4} (K)	Reference
iQC Cd$_{62}$Mg$_{35}$Gd$_{10}$	7.24		-37.8	4.3					[34]
iQC Cd$_{62}$Gd			-41	4.6					[18]
1/1 AP Cd$_{62}$Gd	7.94	7.94	-32	18.9	13.2	7.3	2.5		[23]
iQC Cd$_{62}$Mg$_{35}$Tb$_{10}$	9.74		-24.5	5.9					[16, 34]
iQC Cd$_{62}$Tb			-21	5.3					[18]
1/1 AP Cd$_{62}$Tb	9.8	9.72	-17	24	19	2.4			[22, 23]
iQC Cd$_{62}$Mg$_{35}$Dy$_{10}$	10.59		-18.4	3.2					[34]
iQC Cd$_{62}$Dy			-11	3					[18]
1/1 AP Cd$_{62}$Dy	10.9	10.63	-5.1	17.8					[23]
iQC Cd$_{62}$Mg$_{35}$Ho$_{10}$	10.42		-7	12.5					[34]
iQC Cd$_{62}$Ho			-6	1.76					[18]
1/1 AP Cd$_{62}$Ho	10.5	10.60	-1	8.4	6.8	3.4			[23]
iQC Cd$_{62}$Mg$_{35}$Er$_{10}$	9.71		-6	4.4					[34]
iQC Cd$_{62}$Er			-4	1.11					[18]
1/1 AP Cd$_{62}$Er	9.1	9.59	-0.9	2.8					[23]
iQC Cd$_{62}$Mg$_{35}$Tm$_{15}$	7.08		-2						[34]
iQC Cd$_{62}$Tm			-2	0.63					[18]
1/1 AP Cd$_{62}$Tm	7.4	7.57	-3.1	2.2					[23]

Figure 2. Seven categories of shortest RE–RE distances in the 1/1 and 2/1 APs (within a range of 3.4 to 6.2 Å). (a) An edge of an icosahedron (I) and a side edge of a trigonal antiprism connecting triangular faces of adjacent icosahedra aligned along a 3-fold axis (II). (b) A side edge of a rectangle connecting parallel edges from adjacent icosahedra aligned along a 2-fold axis (III). (c) Three kinds of distances between an RE$_4$ site to icosahedral sites (IV-1, IV-2, and IV-3) as well as a short distance within an RE$_4$–RE$_4$ dimer (V). (a) and (b) are common arrangements to both the 1/1 and 2/1 APs, whereas (c) is for the 2/1 AP only. The typical values of distances for the Cd–Mg–Er 2/1 AP are as follows: (I): 5.73 Å, (II): 5.75 Å, (III): 6.12 Å, (IV-1): 6.04 Å, (IV-2): 5.64 Å, (IV-3): 5.59 Å, and (V): 3.47 Å.

This allows us to perform a systematic investigation of the magnetic properties of iQCs, 2/1 and 1/1 APs, and is likely to provide important insights into the nature of magnetic freezings in aperiodic systems. The present research, therefore, intends to perform magnetic susceptibility measurements on iQCs, 2/1 and 1/1 APs in the Cd–Mg–RE (RE = Gd, Tb, Dy, Ho, Er, and Tm) systems to show if there are any systematic trends, which could possibly serve as a useful guideline for tuning or tailoring the magnetic properties.

2. Experiment

As-cast Cd–Mg–RE (RE = Gd, Tb, Dy, Ho, Er, and Tm) alloys were prepared by encapsulating three grams of starting elements into stainless-steel tubes employing arc-welding under Ar atmosphere. The tubes were further placed inside quartz tubes under depressurized Ar gas (∼550 Torr). Based on the developed pseudo-binary phase diagram [28, 29], the APs are stable at ∼773 K, while the iQCs are stabilized at lower temperatures. Except the 2/1 APs that have very strict compositions (i.e., Cd$_{62.65}$Mg$_{22.25}$RE$_{13}$), both the 1/1 APs and iQCs occur inside relatively large and elongated single-phase domains with varying Cd/Mg ratios in the ternary phase diagrams. Such a high solubility of Mg in the Cd-based systems is usually discussed by almost similar atomic size and valence number of Mg and Cd whereby the replacement of Cd by Mg would thus not cause much strain or change in electron concentration. However, for unknown reasons, the single domains of the 1/1 APs, i.e., (Cd, Mg)$_6$RE, behave differently depending on the RE element. The largest domain is observed for RE = Tb, where it spans up to Cd$_{65}$Mg$_{20}$RE$_{15}$ in the ternary phase diagram. For RE = Dy, Ho and Er, on the other hand, the single 1/1 AP domains shrink to ≈10 at% Mg. Given that the 2/1 AP forms inside a very strict compositional area close to Cd$_{63.5}$Mg$_{22.5}$RE$_{14}$, we tried to keep the Mg content of the iQCs and 1/1 APs as close as possible to ≈20–25 at%. Consequently, alloys with nominal compositions...
of Cd_{65}Mg_{22.5}Gd_{13}, Cd_{62}Mg_{25}Tb_{13} and Cd_{65+x}Mg_{20−x}RE_{15} (x = 0 for RE = Tb, and x = 10 for RE = Dy, Ho, Er) were carefully selected to synthesize single-phase polycrystalline iQCs, 2/1 and 1/1 APs, respectively. Despite several attempts, no 2/1 AP but only 1/1 AP is detected in an alloy with nominal composition of Cd_{65}Mg_{22}Gd_{13}. Investigating the effects of Mg addition on magnetic behaviors of the 1/1 APs falls outside the scope of the current paper and thus is left for future work. The heat treatment protocols for synthesizing iQC and APs are as follows: after an initial melting of the prepared alloys at 973 K, iQC and APs were isothermally annealed at 673 K for over 140 h and 773 K for over 100 h, respectively. Microstructures and local compositions of the prepared samples were analyzed by scanning electron microscopy (SEM) equipped with energy dispersive x-ray (EDX) spectrometer. The specimens for TEM observation were prepared using ‘crush-and-float’ method during which the samples were crushed in ethanol for TEM observation were prepared using ‘crush-and-float’ method during which the samples were crushed in ethanol and lightly floated pieces were then transferred to a Cu grid. For electron backscatter diffraction (EBSD) analysis, the surface of the samples was polished by ion bombardment machine with accelerated voltage, gun current, milling time and ion angle of 2 kV, 2 mA, 3 h, and 12°, respectively. Powder x-ray diffractometry (XRD; Rigaku Ultima IV) with Cu-Kα was used for the phase identification of the prepared alloys. The temperature dependence of the dc magnetic susceptibility was measured in a temperature range of 2–300 K under 100 Oe using superconducting quantum interfering device (SQUID) magnetometer (Quantum Design, MPMS-XL). The data collection was conducted for both zero-field cooled (ZFC) and field cooled (FC) conditions. The ac magnetic susceptibility measurements were carried out with frequencies varying from 1 to 100 Hz in a temperature range of 2–20 K under zero external magnetic field.

3. Results and discussion

The nominal and analyzed compositions of the investigated samples are listed in table 2. The table evidences a good agreement between the two sets of values. Detailed elemental analyses as well as the obtained EDX spectra from all the samples are provided in the supplementary information (stacks.iop.org/JPCM/32/415801/mmedia). The obtained data show no sign of Fe, O, or C as a possible contamination from the synthesis procedure. Typical backscattering SEM images from microstructures of the Cd_{65}Mg_{25}Tb_{13}, Cd_{62}Mg_{25}Tb_{13} and Cd_{68}Mg_{25}Tb_{13}, which can be assigned as single-phase iQC, 2/1 and 1/1 APs, are presented in figures 3(a)–(c). The EDX analysis of the specified regions are shown on top right corner of the images. The atomic concentration of the magnetic Tb shows gradual increase from 12.56 at% in iQC to 14.26 at% in 1/1 AP. The corresponding EBSD Kikuchi patterns are displayed in figures 3(d)–(f). As shown, the iQC and 2/1 AP exhibit almost undistinguishable patterns with obvious pentagon-shaped Kikuchi bands, at the center of which the bands intersect at a unique point (marked as 5-fold [211 111] and pseudo-5-fold [805] in iQC and 2/1 AP, respectively). This indicates high resemblance in atomic structures of the iQC and 2/1 AP. However, the Kikuchi pattern obtained from the 1/1 AP reveals split Kikuchi bands forming a distorted pentagonal band with pseudo-5-fold [503] pole at the center suggesting a significant deviation of the 1/1 AP structure from the iQC one. Figures 3(g)–(i) provide selected area electron diffraction (SAED) patterns of the iQC and APs taken with incidences along their 3-fold axes. As seen, while the iQC represents sharp diffraction spots inflating in τ order, the pattern obtained from the 2/1 AP in figure 3(h) exhibits zig-zag array of diffraction peaks (indicated by arrows) originating from a linear phonon phase in the atomic structure [30]. The SAED pattern of the 1/1 AP in figure 3(i) represents a larger displacement of diffraction spots from ideal positions indicating a larger magnitude of linear phonon strain in the structure compared to the 2/1 AP. The results provided in figure 3 evidence a systematic and successive deviation of the atomic structure in, respectively, 2/1 and 1/1 APs from an ideal iQC symmetry. This is of special interest in the present study since it offers a unique opportunity to obtain a possible trend in their magnetic behavior by performing magnetic susceptibility measurements.

Table 2. Nominal and analyzed compositions of the investigated alloys

iQC/AP	Nominal composition	Analyzed composition
iQC	Cd_{65}Mg_{22}Gd_{13}	Cd_{65.42}Mg_{22.93}Gd_{12.65}
1/1 AP	Cd_{65}Mg_{22}Gd_{13}	Cd_{65.42}Mg_{22.93}Gd_{12.65}
iQC	Cd_{62}Mg_{25}Tb_{13}	Cd_{62.53}Mg_{24.95}Tb_{13.29}
2/1 AP	Cd_{62}Mg_{25}Tb_{13}	Cd_{62.53}Mg_{24.95}Tb_{13.29}

where p and q indicates AP indices, e.g., p = 1, q = 2 for 2/1 AP, and τ is the golden mean [20]. Clearly, a_q increases from 5.588 Å for the CdMgTm 2/1 AP to 5.652 Å for i-CdMgGd. Provided that the RTH structure is identical, such increment of a_q in i-QCs can be viewed as the effect of RE atomic size on the expansion of the RTH cluster.
Figure 3. (a)–(c) Backscattered scanning electron microscopy (SEM) images, (d)–(f) electron backscatter diffraction (EBSD) Kikuchi patterns and (g)–(i) selected area electron diffraction (SAED) patterns taken with incidences along 3-fold axes of (a, d, g) iQC, (b, e, h) 2/1 AP and (c, f, i) 1/1 AP in the Cd–Mg–Tb system. The energy dispersive x-ray (EDX) analysis of specific regions are shown on top right corner of the figures (a)–(c).

Figure 4. Variation of the quasilattice parameter (a_q), defined as the edge length of the RTH clusters in Cd–Mg–RE iQCs (Cd$_{65}$Mg$_{22.5}$RE$_{12.5}$), 2/1APs (Cd$_{62}$Mg$_{25}$RE$_{13}$) and 1/1 APs (Cd$_{65}$Mg$_{20}$Tb$_{15}$ and Cd$_{65}$Mg$_{22}$Gd$_{13}$) consisting 20–25 at% Mg.

Figure 5 presents the temperature dependence of the dc magnetic susceptibility (χ) and inverse magnetic susceptibility ($1/\chi$) for the iQC and APs measured under 100 Oe in the temperature range of 2–300 K. The magnified low-temperature susceptibilities from 2 to 30 K are also shown in the inset. Open and filled circles in figure 5 represent FC and ZFC curves, respectively. At high temperatures ($100 \text{ K} < T < 300 \text{ K}$), the temperature dependence of inverse magnetic susceptibility in all samples falls on a line following the Curie–Weiss law:

$$\chi(T) = \chi_0 + \frac{N_A \mu_{\text{eff}}^2 \mu_B^2}{3k_B(T - \theta_w)}$$

(2)

where N_A, k_B, μ_B, μ_{eff}, θ_w and χ_0 are Avogadro’s number, the Boltzmann factor, Bohr magneton, effective magnetic moment, Weiss temperature and the temperature-independent magnetic susceptibility, respectively. θ_w values representing a sum of all exchange interactions are obtained by extrapolating the least-squares fitting of the susceptibility data within 100–300 K to the temperature axis. It turns out that the values of χ_0 for all investigated samples fall within a range of -0.01 to -0.005, which are comparable to the experimental uncertainties, so that χ_0 is henceforth assumed to be 0. The freezing temperature T_f was obtained from the cusp on the ZFC curve. The transition temperature T_N for AFM ordering was also obtained from the cusp on the ZFC and FC curves. Table 3 summarizes the estimated μ_{eff}, θ_w, and T_f or T_N. The

Table 3 summarizes the estimated μ_{eff}, θ_w, and T_f or T_N. The
uncertainty in estimation of θ_w corresponds to standard deviation arising from least-squares fitting of the susceptibility data over different temperature ranges. As seen, the effective moments μ_{eff} are close to the calculated values for free RE$^{3+}$ ions, $\mu_{\text{Re}^{3+}} = g\sqrt{J(J+1)}\mu_B$ (where g and J stand for the Landé g-factor and total magnetic angular moment, respectively), indicating that RE atoms are trivalent. Moreover, all samples exhibit negative θ_w values, indicating that RE–RE exchange interactions are dominantly antiferromagnetic.

At low temperatures, as shown in the insets of figure 5, the magnetic susceptibility of the iQC and 2/1 APs for the RE atoms except Tm and Er exhibits bifurcation between the ZFC and FC curves below T_f. Such bifurcation is associated with the spin-glass-like freezing. For further confirmation of the spin-freezing phenomenon, the temperature dependence of the ac magnetic susceptibility of the 2/1 AP in the Cd–Mg–Ho system was measured under selected frequencies between 1 to 100 Hz. The result is shown in figure 6(a). The position of the cusp (T_f) is shifted about 0.6 K to the higher temperatures, and the magnitude is reduced by 9.43%, as the frequency is increased from 1 to 100 Hz. The imaginary part χ'' in figure 6(b) illustrates a sharp rise near T_f. Such a frequency dependent variation of the χ'' offers a reliable criterion for distinguishing a spin-glass-like material from other magnetic systems [31, 32]. Note that this is the first observation of the spin-glass-like feature in the cubic 2/1 and 1/1 APs in the ternary Cd–Mg–RE systems. In the case of iQCs (RE = Ho and Er), 2/1 and 1/1 APs (RE = Er and Tm) no cusp has been observed down to 2 K.

For some of the samples, such as the iQC and 1/1 AP in the Cd-Mg-Tb system, the cusps in both the ZFC and FC susceptibility curves shown in figure 5 are smoothen out significantly. Such behavior accords with earlier observations in Tb-contained binary i-CdREs [18] and ternary i-CdMgREs [16] and may possibly originate from a gradual blocking of the spin rotations causing the magnetic system to slowly fall into the frozen state. Sebastian et al. [16], however, associated such behavior with a possible presence of magnetic impurities such as oxides. Moreover, magnetic susceptibilities in figures 5(c) and (e) evidence separation of the FC and ZFC curves at higher temperatures than the T_f for iQC and APs in Cd–Mg–RE (RE = Tb and Dy) systems. This behavior is also consistent with earlier reports in binary i-Cd–Dy/Tb [6] and ternary i-Cd–Mg–Tb [16] systems and is attributed to the intrinsic tendency of these compounds to have a distribution in freezing temperature [14]. In figures 5(e) and (g), the low temperature magnetic susceptibility of the 1/1 APs in Cd–Mg–RE (RE = Dy and Ho) systems is shown. It does not exhibit spin-glass-like bifurcation of FC and ZFC but a conventional AFM ordering; one sharp anomaly at $T_N = 7$ K in Cd$_{75}$Mg$_{10}$Ho$_{15}$ and two anomalies at $T_N = 5$ and 11 K in Cd$_{75}$Mg$_{10}$Dy$_{15}$, are clearly seen in figures 5(e) and 5(g). The magnetic ordering in these compounds may originate from their lower Mg content (i.e. 10 at%), compared to the rest of the alloys that contain 20–25 at% Mg (see table 3). One may expect substantially less chemical disorder for the Cd/Mg mixed sites, and this less disorder may suppress the spin-glass freezing, resulting in the AFM ordering, as commonly

Figure 5. Temperature dependence of the (a, c, e, g, j, l) magnetic susceptibilities and (b, d, h, k, m) inverse magnetic susceptibilities of the iQC, 2/1 and 1/1 APs in the Cd–Mg–RE (RE = Gd, Tb, Dy, Ho, Er and Tm) systems measured under $H = 100$ Oe showing both field cooled (FC) and zero field cooled (ZFC) behaviors. Open and close circles represent FC and ZFC curves, respectively.
On the other hand, the linear scaling for T_f is less obvious; serious deviation can be found for $RE = Gd$. This is most likely due to the difference in the single ion anisotropy; because of the vanishing orbital component, Gd^{3+} is exceptionally isotropic among other RE ions in crystalline electric field, giving rise to the lower transition temperature. In addition to the de Gennes scaling, the T_f is largest for 1/1 AP, while the smallest T_f is found for iQC. In striking contrast, the θ_w/θ_0 values for iQCs are larger than those in 2/1 and 1/1 APs, respectively, suggesting that the total AFM interaction is increasing from 1/1 AP to 2/1 AP and further to the iQC. This indicates that the empirical frustration parameter θ_w/θ_0 is largest for 1/1 AP, while the smallest θ_w/θ_0 is found for iQC. In other magnetic systems, such as 10 in binary Cd–Gd [6], 4.5 in ternary Zn–Mg–Tb [35, 36], 2.4–17 in ternary Ag–In–RE [37], and 2.3–3.6 in ternary Au–Al–Tm [38] systems. Larger θ_w/θ_0 values for iQCs than APs (see table 3). The same conclusion can also be drawn by careful inspection of the magnetic parameters for the binary Cd–RE iQCs and 1/1 APs, as summarized in table 1.

Large θ_w/θ_0 values have also been reported in iQCs and APs in other alloys systems such as 10 in binary Cd–Gd [6], 4.5 in ternary Zn–Mg–Tb [35, 36], 2.4–17 in ternary Ag–In–RE [37], and 2.3–3.6 in ternary Au–Al–Tm [38] systems. Larger θ_w/θ_0 values for iQCs than APs may be interpreted as an evidence for higher competition of the magnetic interactions in aperiodic, rather than periodic systems.

To gain some insight into the difference in the competitions of interactions between iQC and APs, we show the multiplicity of RE^{3+}–RE^{3+} distances and the distance dependence of Ruderman–Kittel–Kasuya–Yosida (RKKY)-type interactions. Larger θ_w/θ_0 values for iQCs than APs may be interpreted as an evidence for higher competition of the magnetic interactions in aperiodic, rather than periodic systems.

Table 3. Weiss temperature (θ_w), the freezing temperature (T_f), and effective magnetic moment (μ_{eff}) of the iQC, 2/1 and 1/1 APs

| iQC/AP | Composition | μ_{eff} (μ_B/RE atom) | μ_{calc} (μ_B/RE atom) | θ_w (K) | T_f (K) | T_N (K) | $|$|\theta_w/T_f||
|---|---|---|---|---|---|---|---|
| iQC | Cd$_{65}$Mg$_{22.5}$Gd$_{12.5}$ | 7.8 ± 0.2 | 7.94 | -31.0 ± 1.5 | 5.0 ± 0.5 | — | 6.2 ± 1.5 |
| 1/1 AP | Cd$_{65}$Mg$_{22.5}$Gd$_{12.5}$ | 7.6 ± 0.2 | -26.5 ± 1.5 | 12.5 ± 0.5 | — | 2.0 ± 1.5 |
| iQC | Cd$_{65}$Mg$_{22.5}$Tb$_{12.5}$ | 9.8 ± 0.2 | 9.72 | -25.5 ± 1.5 | 6.0 ± 0.5 | — | 5.1 ± 1.5 |
| 2/1 AP | Cd$_{65}$Mg$_{22.5}$Tb$_{12.5}$ | 9.8 ± 0.2 | -23.0 ± 1.5 | 11.0 ± 0.5 | — | 2.0 ± 1.5 |
| 1/1 AP | Cd$_{65}$Mg$_{22.5}$Tb$_{12.5}$ | 9.7 ± 0.2 | -17.5 ± 1.5 | 13.0 ± 0.5 | — | 1.3 ± 1.5 |
| iQC | Cd$_{65}$Mg$_{22.5}$Dy$_{12.5}$ | 10.8 ± 0.2 | 10.63 | -17.0 ± 2.0 | 3.0 ± 0.5 | — | 5.5 ± 1.5 |
| 2/1 AP | Cd$_{65}$Mg$_{22.5}$Dy$_{12.5}$ | 10.6 ± 0.2 | -13.5 ± 1.5 | 4.0 ± 0.5 | — | 2.7 ± 1.5 |
| 1/1 AP | Cd$_{65}$Mg$_{22.5}$Dy$_{12.5}$ | 10.0 ± 0.2 | -8.0 ± 2.0 | — | 11.0 ± 0.5 | 0.8 ± 1.5 |
| iQC | Cd$_{65}$Mg$_{22.5}$Ho$_{12.5}$ | 10.7 ± 0.2 | 10.60 | -7.0 ± 2.0 | — | — |
| 2/1 AP | Cd$_{65}$Mg$_{22.5}$Ho$_{12.5}$ | 10.5 ± 0.2 | -5.5 ± 1.5 | 4.0 ± 0.5 | — | 1.7 ± 1.5 |
| 1/1 AP | Cd$_{65}$Mg$_{22.5}$Ho$_{12.5}$ | 10.2 ± 0.2 | -4.0 ± 1.5 | — | 7.0 ± 0.5 | 0.8 ± 1.5 |
| iQC | Cd$_{65}$Mg$_{22.5}$Er$_{12.5}$ | 9.6 ± 0.2 | 9.59 | -3.5 ± 1.5 | — | — |
| 2/1 AP | Cd$_{65}$Mg$_{22.5}$Er$_{12.5}$ | 9.5 ± 0.2 | -4.0 ± 1.5 | — | — |
| 1/1 AP | Cd$_{65}$Mg$_{22.5}$Er$_{12.5}$ | 9.3 ± 0.2 | -1.5 ± 1.5 | — | 2.5 ± 0.5 | 0.5 ± 1.5 |
| 2/1 AP | Cd$_{65}$Mg$_{22.5}$Tm$_{13}$ | 7.2 ± 0.2 | 7.57 | -0.5 ± 1.5 | — | — |

Figure 6. (a) The real and (b) imaginary parts of the ac susceptibility of the Cd–Mg–Ho 2/1 AP measured under $f_e = 1–100$ Hz.
interaction in figure 8. For indirect RKKY-type interactions, the interaction strength oscillates with distance between the spins \(r\) and fades away in sufficiently long-ranged distances as \((1/r)^3\) [23, 31, 39]. By assuming a free-electron model, the coupling constant \(J(r)\) between spins is expressed by the following relation [39]:

\[
J(r) = -\pi \frac{N}{V} \frac{J_0}{\varepsilon_F} f \left(2k_Fr_j\right),
\]

where \(f(x)\) is given as:

\[
f(x) = (-x \cos x + \sin x) / x^4.
\]

In equation 3, \(N/V, J_0, \varepsilon_F, r_j\) and \(k_F\) denote the number of electrons per unit cell, the RKKY coupling strength, the Fermi energy, the distance between two spins and the Fermi wave vector. Under the approximation of spherical symmetry, the Fermi wave vector is determined as:

\[
k_F = \left(\frac{3\pi^2 N}{V}\right)^{1/3}
\]

which only depends on the electron concentration.

The oscillatory behavior of the RKKY interaction leads to the occurrence of competing FM and AFM interactions alternatively [31]. Based on the preliminary structure analysis [40], the 1/1 and 2/1 AP unit cells contain 176 and 702 atoms, respectively. By assuming Cd and Mg to be divalent and RE elements to be trivalent (based on the obtained effective moments in table 3), the number of free electrons within a unit cell is estimated to be 376 and 1482 in 1/1 and 2/1 APs, respectively. Considering the lattice parameter of the 1/1 AP (resp. 2/1 AP) to be 1.54 (resp. 2.49 nm), the Fermi wave vector \(k_F\) is calculated to be \(1.45 \times 10^{10}\) m\(^{-1}\) (resp. \(1.44 \times 10^{10}\) m\(^{-1}\)). Note that the afore-mentioned structure parameters of the 1/1 and 2/1 AP belong to, respectively, Cd–Mg–Y and Cd–Mg–Er systems, as typical examples. Figure 8 plots variation of \(f(2k_Fr_j)\) and distribution of RE\(^{3+}\) spins as a function of interspin distance \(r_j\) for 1/1 and 2/1 APs up to 10 Å. Note that each set of the symmetrically equivalent REs in the 2/1 AP, i.e. RE\(_{1–3}\)–RE\(_{5}\), as illustrated in figure 2, has distinct local environment and thus exhibits different distribution of RE–RE distances in figures 8(b)–(f). A bin width of \(\delta = 0.07\) Å is applied to the histograms of nearest-neighbor distances. While multiple RE\(^{3+}\)–RE\(^{3+}\) distances exist in the 2/1 AP (figures 8(b)–(f)), only a few ones occur in the 1/1 AP (figure 8(a)). This larger variation of interspin distances in 2/1 AP may result in much pronounced competition for 2/1 AP. This explains the measured larger \(|\theta_u/T_1|\) values for the 2/1 AP in table 3 compared to those obtained for 1/1 AP. Taking into account high structural resemblance between the iQC and 2/1 AP [12], it may be reasonable to assume that the RE\(^{3+}\) spin distribution and RKKY oscillation in the iQC would be similar to that of the 2/1 AP, presumably resulting in similar or even more pronounced competition of magnetic interactions in iQC. Note that similar approach using simplest free-electron model was already applied to explain composition-driven spin glass to ferromagnetic transition in the quasicrystal approximant in the Au–Al–Gd system [39]. It should be mentioned that although figure 8 captures an unevenness in the RE–RE pair distributions and thus evidences a more pronounced competition among FM and AFM exchanges in the 2/1 AP than 1/1 AP using the free-electron model, it is still deficient in depicting realistic RKKY oscillation regarding the sign of the \(J(r)\). Resolving this inconsistency requires more quantitative analysis, whereby it is necessary to go beyond the simplest free-electron model.

We note that to discuss the origin of the spin-glass behavior in the present samples, the chemical disorder of the Cd/Mg should be taken into account. This can be inferred from the observation that the long-range antiferromagnetic order in the 1/1 APs with less Mg composition is replaced by the spin-glass-like freezing by increasing Mg composition. One may
also consider the orientational disorder of the central tetrahedron of the RTH clusters as another source of disorder contributing to the observed spin-glass-like behavior of the present samples. This kind of disorder was considered to be magnetically equivalent to the chemical disorder in iQC and APs in ternary Au–Al–RE systems [38, 41], which are isostructural with those in Cd–RE system. Quite recently, the importance of the chemical disorder was also indicated directly by measuring crystalline-electric-field splitting in Au–Si–Tb 1/1 AP [42]. Therefore, it seems reasonable to assume that the combination of chemical disorder and competition between FM and AFM couplings due to oscillating RKKY interaction is responsible for the spin-glass-like feature in the present samples.

4. Conclusion

The present research set out to compare the magnetic properties of the iQC, 2/1 and 1/1 APs in the ternary Cd–Mg–RE (RE = Gd–Tm) systems. The conclusions drawn are as follows: At higher temperatures (100 K < T < 300 K), all the iQCs and APs follow the Curie–Weiss law. The estimated μ_{eff} are close to the calculated values for free RE$^{3+}$. The θ_w
values are negative indicating that RE–RE exchange interactions are dominantly AFM. On the other hand, at lower temperatures, iQCs and 2/1 APs exhibit spin-glass-like anomalies for the RE atoms except Tm and Er. The 1/1 APs exhibit either spin-glass-like freezing or AFM ordering depending on Mg content. The Tg values show increasing trend from iQC to 2/1 and 1/1 APs. In contrast, |\theta_g| values for iQCs are larger than those for 2/1 and 1/1 APs, indicating that the total AFM interactions between the adjacent spins are larger in aperiodic systems than periodic ones. The combination of chemical disorder and competition between FM and AFM couplings due to the oscillating RKKY interaction, is presumably responsible for the spin-glass-like feature that is observed in most of the present compounds.

Acknowledgments

This work was supported in part by Japan Society for the Promotion of Science through Grants-in-Aid for Scientific Research (Grant Nos. JP19H05819, JP17K18744, JP19H01834, JP19K21839, JP19H05824 and JP19K03709). This work was also supported partly by the research program ‘dynamic alliance for open innovation bridging human, environment, and materials’.

ORCID iDs

Farid Labib https://orcid.org/0000-0003-2912-2004

References

[1] Shechtman D, Blech I, Gratias D and Cahn J W 1984 Metallic phase with long-range orientational order and no translational symmetry Phys. Rev. Lett. 53 1951–3
[2] Duneau M and Katz A 1985 Quasiperiodic patterns Phys. Rev. Lett. 54 2688–91
[3] Elser V and Henley C L 1985 Crystal and quasicrystal structures in Al–Mn–Si alloys Phys. Rev. Lett. 55 2883–6
[4] Henley C L and Elser V 2007 Quasicrystal structure of (Al, Zn)43Mg29, Phil. Mag. B 53 L59–66
[5] Tsai A P, Guo J Q, Abe E, Takakura H and Sato T J 2000 A stable binary quasicrystal Nature 408 537
[6] Goldman A I, Kong T, Kreyssig A, Jesche A, Ramananoglu M, Dennis K W, Bud’ko S L and Canfield P C 2013 A family of binary magnetic icosahedral quasicrystals based on rare earths and cadmium Nat. Mater. 12 714–8
[7] Guo J, Abe E and Tsai A P 2000 Stable icosahedral quasicrystals in the Cd–Mg–R (R=rare earth element) systems Appl. Phys. 390 779
[8] Guo J Q, Abe E and Tsai A P 2002 Stable Cd–Mg–Yb and Cd–Mg–Ca icosahedral quasicrystals with wide composition ranges Phil. Mag. Lett. 82 27–35
[9] Guo J Q and Tsai A P 2002 Stable icosahedral quasicrystals in the Ag–In–Ca, Ag–In–Yb, Ag–In–Ca–Mg and Ag–In–Yb–Mg systems Phil. Mag. Lett. 82 349–52
[10] Ishimasa T, Tanaka Y and Kashimoto S 2011 Icosahedral quasicrystal and 1/1 cubic approximant in Au–Al–Yb alloys Phil. Mag. 91 4218–29
[11] Tanaka K, Tanaka Y, Ishimasa T, Nakayama M, Matsukawa S, Deguchi K and Sato N K 2014 Tsai-type quasicrystal and its approximant in Au–Al–Tm alloys Acta Phys. Pol. A 126 603–7
[12] Takakura H, Gómez C P, Yamamoto A, De Boissieu M and Tsai A P 2006 Atomic structure of the binary icosahedral Yb–Cd quasicrystal Nat. Mater. 6 58–63
[13] Gómez C P and Lidin S 2003 Comparative structural study of the disordered MCd6 quasicrystal approximants Phys. Rev. B 68 024203
[14] Sato T J 2005 Short-range order and spin-glass-like freezing in A–Mg–R (A = Zn or Cd; R = rare-earth elements) magnetic quasicrystals Acta Crystallogr. A 61 39–50
[15] Goldman A I 2014 Magnetism in icosahedral quasicrystals: current status and open questions Sci. Technol. Adv. Mater. 15 044801
[16] Sebastian S E, Huie T, Fisher I R, Dennis K W and Kramer M J 2004 Magnetic properties of single grain R–Mg–Cd primitive icosahedral quasicrystals (R = Y, Gd, Tb or Dy) Phil. Mag. 84 1029–37
[17] Sato T J, Takakura H, Guo J, Tsai A P, Sato T J, Takakura H, Guo J, Tsai A P and Ohyama K 2002 Magnetic correlations in the Cd–Mg–Tb icosahedral quasicrystal J. Alloys Compd. 342 365–8
[18] Kong T, Bud S L, Jesche A, Mccarthur J, Kreyssig A, Goldman A I and Canfield P C 2014 Magnetic and transport properties of i–R–Cd icosahedral quasicrystals (R = Y, Gd–Tm) J. Phys. Rev. B 90 014424
[19] Yamada T, Takakura H, Kong T, Das P, Jayasekara W T, Kreyssig A, Beutier G, Canfield P C, De Boissieu M and Goldman A I 2016 Atomic structure of the i–R–Cd quasicrystals and consequences for magnetism Phys. Rev. B 94 060103(R)
[20] Fujiwara T and Ishi Y 2008 Quasicrystals: Handbook of Metal Physics (Amsterdam: Elsevier)
[21] Takakura H, Gómez C P, Yamamoto M A, De Boissieu M and Tsai A P 2007 Atomic structure of the binary icosahedral Yb–Cd quasicrystal Nat. Mater. 6 58–63
[22] Tamura R, Muro Y, Hiroto T, Nishimoto K and Takabatake T 2010 Long-range magnetic order in the quasicrystalline approximant Cd6/Tb Phys. Rev. B 82 220201
[23] Ori A M, Ta H O, Oshiuichi S Y, Wakawa K I, Aga Y T, Irose Y H, Akeuchi T T, Amamoto E Y and Aga Y H 2012 Electrical and magnetic properties of quasicrystal approximants RCo5 (R=rare earth) J. Phys. Soc. Japan 81 1–10
[24] Kreyssig A, Beutier G, Hiroto T, Kim M G, Tucker G S, Boissieu M D, Tamura R and Goldman A I 2013 Antiferromagnetic order and the structural order-disorder transition in the Cd6Ho quasicrystal approximant Phil. Mag. Lett. 93 512–20
[25] Gebresembut G, Andersson M S, Beran P, Manuel P, Nordblad P, Sahlberg M and Gomez C P 2014 Long range ordered magnetic and atomic structures of the quasicrystal approximant in the Tb–Au–Si system J. Phys.: Condens. Matter 26 322202
[26] Hiroto T, Tokiwa K and Tamura R 2014 Sign of canted ferromagnetism in the quasicrystal approximants Au–Sr–R (SM = Si, Ge and Sn/R = Tb, Dy and Ho) J. Phys.: Condens. Matter 26 216004
[27] Hiroto T and Gebresembut G H 2013 Ferromagnetism and re-entrant spin-glass transition in quasicrystal approximants Au–Sm–Gd (SM = Si, Ge) J. Phys. Condens. Matter 25 426004
[28] Labib F, Fujita N, Ohhashi S and Tsai A P 2020 Icosahedral quasicrystals and their cubic approximants in the Cd–Mg–RE (RE = Y, Sm, Gd, Tb, Dy, Ho, Er, Tm) systems J. Alloys Compd. 822 153541
[29] Labib F, Ohhashi S and Tsai A P 2019 Formation and crystallographic orientation study of quasicrystal, 2/1 and 1/1 approximants in Cd–Mg–Y system using electron backscattering diffraction (EBSD) Phil. Mag. 99 1528–50
[30] Tsai A P 2013 Discovery of stable icosahedral quasicrystals: progress in understanding structure and properties. Chem. Soc. Rev. 42 5352–65
[31] Mydosh J a 1993 *Spin Glasses: An Experimental Introduction* (London: Taylor & Francis)

[32] Wang P, Stadnik Z M, Al-Qadi K and Przewoźnik J 2009 A comparative study of the magnetic properties of the 1/1 approximant $\text{Ag}_{50}\text{In}_{36}\text{Gd}_{14}$ and the icosahedral quasicrystal $\text{Ag}_{50}\text{In}_{36}\text{Gd}_{14}$ *J. Phys.: Condens. Matter* **21** 436007

[33] Labib F, Okuyama D, Fujita N, Yamada T, Ohashi S, Sato T J, Tsuda K, Morikawa D and Tsai A P *J. Phys.: Condens. Matter* submitted.

[34] Sato T J, Guo J and Tsai A P 2001 Magnetic properties of the icosahedral Cd–Mg-rare-earth quasicrystals *J. Phys.: Condens. Matter* **13** L105–11

[35] Hattori Y, Niikura A, Tsai A P, Inue A, Masumoto T, Fukamichi K, Aruga-Katori H and Goto T 1995 Spin-glass behaviour of icosahedral Mg–Gd–Zn and Mg–Tb–Zn quasi-crystals *J. Phys.: Condens. Matter* **7** 2313–20

[36] Fisher I R, Cheon K O, Panchula A F, Canfield P C, Chernikov M, Ott H R and Dennis K W 1999 Magnetic and transport properties of single-grain R–Mg–Zn icosahedral quasicrystals [R=Y, (Y1,3Gd), (Y1,3Tb), Tb, Dy, Ho, and Er] *Phys. Rev. B* **59** 308–21

[37] Ibuka S, Iida K and Sato T J 2011 Magnetic properties of the Ag–In-rare-earth 1/1 approximants *J. Phys.: Condens. Matter* **23** 056001–8

[38] Nakayama M, Tanaka K, Matsukawa S, Deguchi K, Imura K, Ishimasa T and Sato N K 2015 Localized electron magnetism in the icosahedral Au–Al–Tm quasicrystal and crystalline approximant *J. Phys. Soc. Japan* **84** 5–10

[39] Ishikawa A, Hiroto T, Tokiwa K, Fujii T and Tamura R 2016 Composition-driven spin glass to ferromagnetic transition in the quasicrystal approximant Au–Al–Gd *Phys. Rev. B* **93** 1–6

[40] Yamada T, Labib F and Fujita N in preparation

[41] Matsukawa S, Tanaka K, Nakayama M, Deguchi K, Imura K, Takakura H, Kashimoto S, Ishimasa T and Sato N K 2014 Valence change driven by constituent element substitution in the mixed-valence quasicrystal and approximant Au–Al–Yb *J. Phys. Soc. Japan* **83** 1–5

[42] Hiroto T, Sato T J, Cao H, Hawai T, Yokoo T, Itoh S and Tamura R 2019 Noncoplanar ferrimagnetism and local crystalline-electric-field anisotropy in the quasicrystal approximant Au70Si17Tb13 (arXiv:1912.13180)