The Kodaira-Spencer map for minimal toric hypersurfaces

Julius Giesler
University of Tübingen
November 21, 2023

Abstract
In this article we study infinitesimal deformations of toric hypersurfaces. We introduce a Kodaira-Spencer map and compute its kernel. By introducing some new Laurent polynomials we make our computation as explicit as possible. This widely generalizes results of Griffiths for projective hypersurfaces.

1 Introduction
We start with an \(n \)-dimensional lattice polytope \(\Delta \) and a nondegenerate Laurent polynomial \(f \) with Newton polytope \(\Delta \) and set
\[
Z_f := \{ f = 0 \} \subset T.
\]
By results from \((\text{Bat22})\) there is (under a mild condition \(F(\Delta) \neq \emptyset \)) a projective toric variety \(\mathbb{P} \) to a simplicial fan \(\Sigma \), such that the closure \(Y_f \) of \(Z_f \) in \(\mathbb{P} \) has at most terminal singularities and the canonical divisor \(K_{Y_f} \) is nef. We say that \(Y_f \) is a minimal model of \(Z_f \).

The toric variety \(\mathbb{P} \) does not depend on \(f \). Therefore we vary \(f \) over all such polynomials, write \(f \in B := B(\Delta) \) to obtain a family of minimal toric hypersurfaces
\[
\mathcal{X} := \{ (x, f) \in \mathbb{P} \times B \mid x \in Y_f \}^{pr2} B.
\]
Next to a tangent vector
\[
\text{Spec } \mathbb{C}[\epsilon]/(\epsilon^2) \to B
\]
at \(f \in B \) we associate a first-order infinitesimal deformation of \(Y_f \) (in \(X \)) by base change along \(v \). These infinitesimal deformations and all those in \(\mathbb{P} \) are parametrized by Kodaira Spencer maps

\[
\kappa_{\mathbb{P},f} : H^0(Y, N_{Y/\mathbb{P}}) \to \text{Ext}^1_{\mathcal{O}_Y}(\Omega^1_Y, \mathcal{O}_Y), \\
\kappa_f : H^0(Y, N_{Y/X}) \to \text{Ext}^1_{\mathcal{O}_Y}(\Omega^1_Y, \mathcal{O}_Y).
\]

In fact \(H^0(Y, N_{Y/X}) \subset H^0(Y, N_{Y/P}) \) and \(\kappa_f \) equals the restriction of \(\kappa_{\mathbb{P},f} \) (see section 9). In Theorem 6.1 we identify the kernel of \(\kappa_{\mathbb{P},f} \) with the Lie algebra of the automorphism group of \(\mathbb{P} \):

Theorem 1.1. Let \(\Delta \) be an \(n \)-dimensional lattice polytope, where \(n \geq 2 \), with \(l^* (\Delta) > 0 \). If \(n = 2 \) assume that \(l^* (\Delta) \geq 2 \). Then given \(f \in B \)

\[
\ker(\kappa_{\mathbb{P},f}) \cong \text{Lie Aut}(\mathbb{P})
\]

where \(l^* (\Delta) \) denotes the number of interior lattice points of \(\Delta \). The proof is cohomological. Concerning the cokernel of \(\kappa_{\mathbb{P},f} \) we prove:

Corollary 1.2. Given the conditions of the theorem if \(n \geq 4 \) then the following sequence is exact

\[
0 \to \text{Im}(\kappa_{\mathbb{P},f}) \to \text{Ext}^1_{\mathcal{O}_Y}(\Omega^1_Y, \mathcal{O}_Y) \to \text{Ext}^1_{\mathcal{O}_P}(\Omega^1_Y, \mathcal{O}_P) \to 0
\]

that is all infinitesimal deformations of \(Y_f \) arise from \(\text{Im}(\kappa_{\mathbb{P},f}) \) or from infinitesimal deformations of \(\mathbb{P} \).

A more detailed description of the second term is a topic of current research (see [ITu18], [Pet20]) and ([Mav03]) for the case that \(Y_f \) is Calabi-Yau.

To be more explicit on \(\ker(\kappa_{\mathbb{P},f}) \) we recall the definition of the **canonical closure** \(C(\Delta) \) of \(\Delta \), a polytope that might be slightly larger than \(\Delta \). Given \(P \subset M_{\mathbb{R}} \) let \(L(P) \) be the \(\mathbb{C} \)-vector space with basis \(x^m \), \(m \in P \cap M \). Then

\[
H^0(Y, N_{Y/X}) \cong L(\Delta)/\mathbb{C} \cdot f \\
H^0(Y, N_{Y/P}) \cong L(C(\Delta))/\mathbb{C} \cdot f.
\]

We apply results from ([BG99]) to identify a basis of \(\ker(\kappa_{\mathbb{P},f}) \) explicitly with certain Laurent polynomials having support on \(C(\Delta) \) (Corollary 8.4):

2
Corollary 1.3. Given the conditions of Theorem 1.1, let

\[f = \sum_{m \in M \cap \Delta} a_m x^m \in B \]

Then

\[\text{ker}(\kappa_{P,f}) \cong \left\langle x_i \cdot \frac{\partial f}{\partial x_i} \mid i = 1, \ldots, n \right\rangle \oplus \bigoplus_{\alpha \in R(N, \Sigma)} w_{-\alpha}(f) \cdot \mathbb{C} \]

where \(R(N, \Sigma) \subset M \) denote the (Demazure) roots of \(\Sigma \) and \(w_{-\alpha}(f) \) denote certain Laurent polynomials. Concerning the kernel of \(\kappa_f \) we prove

Theorem 1.4. Given the conditions of Theorem 1.1 then

\[\text{ker}(\kappa_f) \cong \left\langle x_i \cdot \frac{\partial f}{\partial x_i} \mid i = 1, \ldots, n \right\rangle \oplus \bigoplus_{\alpha \in R(N, \Sigma \Delta)} w_{-\alpha}(f) \cdot \mathbb{C} \]

Application: Let \(n = 3 \). Then \(Y \) is smooth and thus

\[\text{Ext}^1_{\mathcal{O}_Y}(\Omega^1_Y, \mathcal{O}_Y) \cong H^1(Y, T_Y). \] (2)

There is a period map

\[\mathcal{P}_{B,f} : f \mapsto [H^{2,0}(Y_f)]. \]

This map is holomorphic and by a result of Griffiths the differential \(d\mathcal{P}_{B,f} \) factors as

\[\frac{L(C(\Delta))}{\mathbb{C}} \cdot f \xrightarrow{\kappa_{P,f}} H^1(Y, T_Y) \xrightarrow{\Phi_f} \text{Hom}(H^{2,0}(Y_f), H^{1,1}(Y_f)) \]

The infinitesimal Torelli theorem for \(Y_f \) asks if \(\Phi_f \) is injective. If we know \(\text{ker}(d\mathcal{P}_{B,f}) \) we may check if

\[\text{ker}(d\mathcal{P}_{B,f}) \supseteq \text{ker}(\kappa_f) \] (3)

is an equality, in which case we get

\[\text{ker}(\Phi_f|_{\text{Im} \kappa_{Y,f}}) = 0 \]
giving a partial result towards the ITT. A calculation of \(\ker(dP_{B,f}) \) should work with jacobian rings. In the dissertation (\cite{Gie23}) we worked this out for \(n = 3 \). In fact these methods should also apply to higher dimensions.

One might be also interested in subfamilies of \(X \to B \): Given \(B^0 \subseteq B \) with restriction \(\kappa_f^0 \) of \(\kappa_f \) it is obvious that

\[
x_1 \cdot \frac{\partial f}{\partial x_1}, \ldots, x_n \cdot \frac{\partial f}{\partial x_n} \in \ker(\kappa_f^0)
\]

but hard to say when \(w_\alpha(f) \in \ker(\kappa_f^0) \). We show that if \(B^0 \) equals the set of vertices of \(\Delta \) then under some additional condition on the polytope \(\Delta \) none of the \(w_\alpha(f) \)'s contribute to \(\ker(\kappa_f) \) (see Lemma \ref{lemma:10.3}).

What is known in the direction of our results: For \(Y_f \subset \mathbb{P}^n \) a smooth degree \(d \) hypersurface by (\cite[Ch.6]{Voi03})

\[
\ker(\kappa_f) \cong \ker(\kappa_{\mathbb{P},f}) \cong J_{d,f,\text{griff}}^d,
\]

where \(J_{d,f,\text{griff}}^d \) denotes the \(d \)-th homogeneous component of

\[
J_{f,\text{griff}} := \left(\frac{\partial f}{\partial x_0}, \ldots, \frac{\partial f}{\partial x_n} \right) \subseteq \mathbb{C}[x_0, \ldots, x_n].
\]

In Example \ref{example:8.3} we show that if \(d \geq n + 1 \) then our results specialize to this assertion. There are generalizations of this results to quasismooth hypersurfaces in weighted projective spaces (\cite[Thm.4.3.2]{Dol82}). In the dissertation (\cite{Koe91}) it is dealt with families of nondegenerate curves in toric surfaces. In (\cite{Mav03}) both the kernel and the cokernel of the Kodaira-Spencer map is dealt with for anticanonical hypersurfaces and in (\cite{Ok87}) the Kodaira-Spencer map has been studied for \(\Delta \) an \(n \)-simplex.

The author declares no conflicts of interest. Data sharing is not applicable to this article as no new data were created or analyzed in this study. The data that support the findings of this study are openly available at arXiv:2203.01092 [math.AG]

2 Notation and Background

Let \(M \) and \(N \) be dual lattices and \(T = N \otimes \mathbb{Z} \mathbb{C}^* \cong (\mathbb{C}^*)^n \) the \(n \)-dimensional torus. We fix an \(n \)-dimensional lattice polytope \(\Delta \subset M_{\mathbb{R}} \) and denote the
normal fan of a lattice (or more generally rational) polytope F by Σ_F. We denote the projective toric variety defined via Σ by P_F. $\Sigma[1]$ denote the rays of the fan Σ and D_i (or D_ν) the toric divisor to the ray ν_i (or ν).

Throughout this article we assume f to be a Laurent polynomial with Newton polytope Δ, written

$$f = \sum_{m \in M \cap \Delta} a_m x^m.$$

Set $Z_F := \{f = 0\} \subset T$ and given another n-dimensional rational polytope F let $Z_{F,f}$ or just Z_F be the closure of Z_f in \mathbb{P}_F. We repeat some results and notions introduced in ([Bat22]):

Remark 2.1. The linear equivalence class of $Z_{F,f}$ just depends on Δ. More precisely let

$$\operatorname{Min}_\Delta(\nu) := \min_{m \in \Delta} \langle m, \nu \rangle$$

for $\nu \in N \setminus \{0\}$. Then

$$Z_{F,f} \sim_{\text{lin}} - \sum_{\nu \in \Sigma_F[1]} \operatorname{Min}_\Delta(\nu) \cdot D_\nu$$

([Bat22 Prop.7.1]). Therefore we usually omit f from the notation.

The nondegeneracy of f, written $f \in U_{\text{reg}}(\Delta)$, means that Z_f is smooth and for every k-dimensional face Γ of Δ

$$f|_\Gamma, \frac{\partial f|_\Gamma}{\partial x_1}, \ldots, \frac{\partial f|_\Gamma}{\partial x_n},$$

(4)

where $f|_\Gamma := \sum_{m \in M \cap \Gamma} a_m x^m$, have no common zero in the torus orbit $(\mathbb{C}^*)^k \subset \mathbb{P}_\Delta$ corresponding to Γ. Write

$$\Delta = \{x \in M_\mathbb{R} \mid \langle x, \nu \rangle \geq \operatorname{Min}_\Delta(\nu) \quad \forall \nu \in N \setminus \{0\}\}. \quad (5)$$

we consider the *Fine interior*

$$F(\Delta) := \{x \in M_\mathbb{R} \mid \langle x, \nu \rangle \geq \operatorname{Min}_\Delta(\nu) + 1 \quad \forall \nu \in N \setminus \{0\}\}.$$

In general $F(\Delta)$ is a rational polytope contained in Δ and contains all interior lattice points of Δ. It is constructed by moving every hyperplane touching Δ one step into the interior of Δ. Let

$$S_F(\Delta) := \{\nu \in N \setminus \{0\} \mid \operatorname{Min}_{F(\Delta)}(\nu) = \operatorname{Min}_\Delta(\nu) + 1\}$$
denote the support of $F(\Delta)$ to Δ (those hyperplanes that touch Δ and moved by one touch $F(\Delta)$).

![Figure 1: Figure: On the left a polygon Δ, on the right the rays of Σ_Δ. $F(\Delta)$ equals the interior lattice point of Δ. The illustrations shows that $(0,-1) \in S_F(\Delta)$. In general the support vectors $S_F(\Delta)$ are contained in the convex span of the rays $\Sigma_\Delta[1]$ (see [Bat22, Prop.3.11])](image)

Definition 2.2. ([Bat22, Def.3.13])

Let Δ be a lattice polytope with presentation as in (5) and with $F(\Delta) \neq \emptyset$. The polytope

$$C(\Delta) := \{x \in M_\mathbb{R} | \langle x, \nu \rangle \geq \min_{\Delta}(\nu) \ \forall \nu \in S_F(\Delta)\}$$

is called the canonical closure of Δ.

Remark 2.3. It is clear from the definition that $C(\Delta)$ is a rational polytope and contains Δ. The operators of taking the Fine interior F, the canonical closure C and the support S_F could be defined analogously for rational polytopes.

Proof. The first formula follows from the exact sequence (9), the vanishing $H^1(\mathbb{P}, \mathcal{O}_{\mathbb{P}}) = 0$ due to Demazure and formula (6). The second follows from Remark 3.10. □

Theorem 2.4. ([Bat22, Thm.8.2])

Assume $F(\Delta) \neq \emptyset$. Then there is a complete simplicial fan Σ with $\Sigma[1] = S_F(\Delta)$ and with associated toric variety \mathbb{P} such that with $Y = Y_f$ the closure of Z_f in \mathbb{P}

- \mathbb{P} has \mathbb{Q}-factorial terminal singularities
- the adjoint divisor $K_\mathbb{P} + Y$ is nef.
Corollary 2.5. ([Bat22, Thm.8.2])
$Y \subset \mathbb{P}$ has at most terminal singularities and K_Y is nef. We say that $Y = Y_f$ is a minimal model of Z_f.

Proposition 2.6. ([Bat22, Prop.7.4])
$Y \subset \mathbb{P}$ defines a nef and big \mathbb{Q}-Cartier divisor.

Lemma 2.7. Let F be a torus orbit of \mathbb{P}. If
$$\emptyset \neq F \cap Y \subsetneq F$$
then Y intersects F transversely in a subset of codimension 1.

Proof. Choose a common refinement $\tilde{\Sigma}$ of Σ and Σ_Δ in N such that the toric variety $\tilde{\mathbb{P}}$ to $\tilde{\Sigma}$ is smooth. Let \tilde{Y} denote the closure of Z_f in $\tilde{\mathbb{P}}$. Then for $\tilde{F} \subset \tilde{\mathbb{P}}$ a torus orbit either \tilde{Y} is disjoint from \tilde{F} (if \tilde{F} contracts to a torus fixed point on \mathbb{P}_Δ) or intersects \tilde{F} transversely in a subset of codimension 1 ([Bat94, Prop.3.2.1]).

There is a birational toric morphism $\tilde{\mathbb{P}} \to \mathbb{P}$ inducing a birational morphism $\tilde{Y} \to Y$. Assume that \tilde{F} contracts onto F. If $\tilde{Y} \cap \tilde{F} \neq \emptyset$ then $Y \cap F \neq \emptyset$ and either Y contains F or intersects F transversely in a subset of codimension 1.

Remark 2.8. The singular loci both of \mathbb{P} and Y are of codimension ≥ 3 since they are terminal. It will be important to choose smooth open subset $V \subset \mathbb{P}$ and $U \subset Y$ such that $U = V \cap Y$ and V is toric. This works if we define V as the union of all torus orbits of dimension $\geq n - 2$.

Remark 2.9. To a toric divisor
$$D = \sum_{i=1}^r a_i D_i \subset \mathbb{P}$$
we associate a polytope
$$P_D := \{ x \in M_{\mathbb{R}} \mid \langle x, \nu_i \rangle \geq -a_i \quad \forall n_i \in \Sigma[1] \}$$
counting the global sections of D, that is $H^0(\mathbb{P}, \mathcal{O}_\mathbb{P}(D)) \cong L(P_D)$ (compare [CLST11, Prop.4.3.2]). By the formula in Remark 2.1 and by ([Bat22, Prop.4.3]) to Y is associated the polytope $C(\Delta)$ that is
$$H^0(\mathbb{P}, \mathcal{O}_\mathbb{P}(Y)) \cong L(C(\Delta)). \quad (6)$$
It follows in the same way that to $Y + K_{\mathbb{P}}$ is associated $F(\Delta)$.

7
Corollary 2.10. $Y \subset \mathbb{P}$ is Cartier if and only if $C(\Delta)$ is a lattice polytope.

Proof. By Remark 2.1

$$Y \sim_{\text{lin}} - \sum_{\nu \in \Sigma[1]} \text{Min}_{\Delta}(\nu)D_{\nu} = - \sum_{\nu \in \Sigma[1]} \text{Min}_{C(\Delta)}(\nu)D_{\nu}.$$

The function $\text{Min}_{C(\Delta)} : \mathbb{N}_{\mathbb{R}} \to \mathbb{R}$ has the advantage that it is linear on the cones of Σ since Σ refines the normal fan of $C(\Delta)$. Thus $Y \subset \mathbb{P}$ is Cartier if and only if $\text{Min}_{C(\Delta)}$ is a support function for Y, that is

$$\text{Min}_{C(\Delta)}(N) \subset \mathbb{Z}.$$

Obviously this is the case if and only if $C(\Delta)$ is a lattice polytope.

Remark 2.11. In particular if $C(\Delta) = \Delta$ then Y will be Cartier. In ([Bat22, Ex.3.1.5]) there is mentioned an example of a 5-dimensional lattice polytope Δ for which $C(\Delta)$ is not a lattice polytope.

3 Reflexive sheaves and MCM-sheaves

Throughout this section X denotes an n-dimensional normal irreducible variety with $j : U \to X$ the inclusion of the smooth locus of X.

Definition 3.1. A coherent sheaf \mathcal{F} on X is called reflexive if the natural map $\mathcal{F} \to \mathcal{F}^{**}$ is an isomorphism, where \mathcal{F}^{**} denotes the double dual of the sheaf \mathcal{F}. \mathcal{F}^{**} is called the reflexive hull of \mathcal{F}.

Remark 3.2. ([CLS11, Prop.8.0.1, Thm.8.0.4])

Given an open subset $j : U \subset X$ with $\text{codim}_X(X \setminus U) \geq 2$ a reflexive sheaf is uniquely determined by its restriction to U, that is

$$\mathcal{F} \cong j_*(\mathcal{F}|_U).$$

Furthermore if \mathcal{F} is a coherent sheaf with $\mathcal{F}|_U$ locally free and $\text{codim}_X(X \setminus U) \geq 2$ then $j_*(\mathcal{F}|_U)$ is reflexive ([Sch08, Prop.2.12]). The dual of a coherent sheaf on a normal variety is always reflexive. In particular the reflexive hull of a coherent sheaf is reflexive.
The tensor product of two reflexive is defined by
\[\mathcal{F} \otimes_r \mathcal{G} := (\mathcal{F} \otimes \mathcal{G})^{**}. \]

Given two Weil divisors \(D, D' \) on \(X \) we have \(\mathcal{O}(D + D') \cong \mathcal{O}(D) \otimes_r \mathcal{O}(D') \).

Definition 3.3. Let
\[\Omega^p_X := j_* \Omega^p_U \quad 1 \leq p \leq n, \]
\[T_X := (\Omega^1_X)^*, \]
be the sheaf of differential \(p \)-forms and the tangent sheaf. The sheaf
\[N_{Y/P} := \iota_* \mathcal{O}_U(Y_{|U}) \]
is called the normal sheaf of \(Y \) in \(\mathbb{P} \).

Remark 3.4. There is a different method for the construction of \(T_X \): Let \(\Omega^p_{X,\text{Kähl}} \) denote the sheaf of Kähler \(p \)-differentials on \(X \) and
\[T_{X,\text{Kähl}} := (\Omega^1_{X,\text{Kähl}})^*. \]

Then \(\Omega^1_{X,\text{Kähl}} \) is coherent and thus by Remark 3.2 its dual \(T_{X,\text{Kähl}} \) is reflexive and coincides with \(T_X \) on the smooth locus \(U \) of \(X \). Since both sheaves are reflexive
\[T_{X,\text{Kähl}} \cong T_X. \]

By ([MuOd15 Ch.VI.1])
\[H^0(X, T_{X,\text{Kähl}}) \cong \text{Lie}(\text{Aut}(X)), \] (8)
where \(\text{Lie}(\text{Aut}(X)) \) denotes the Lie algebra of the automorphism group of \(X \).

In order to apply Serre duality we need sheaves with the following property

Definition 3.5. ([CLS11 Def. before Thm.9.2.12], [Kol13 Def.5.2])
Let \(\mathcal{F} \) be a coherent sheaf on \(X \). Then \(\mathcal{F} \) is called maximal Cohen-Macaulay (for short: MCM) if for all \(x \in X \) the stalk \(\mathcal{F}_x \) is a Cohen-Macaulay module over \(\mathcal{O}_{X,x} \) of dimension \(n \).
Proposition 3.6. [CLS11, Proof of Thm.9.2.10]
Let V be an n-dimensional complete toric variety to a simplicial fan and D a \mathbb{Q}-Cartier divisor on V. Then the sheaves Ω^p_V for $p = 0, \ldots, n$ and $\mathcal{O}_V(D)$ are MCM.

Let \mathcal{F} be a MCM-sheaf on X. Then Serre duality ([KM98, Thm.5.71, Prop.5.75]) gives

$$H^k(X, \mathcal{F}) \cong H^{n-k}(X, \text{Hom}(\mathcal{F}, \mathcal{O}_X(K_X)))^*.$$

For $Z \subset X$ a closed subset, \mathcal{F} a coherent sheaf on X, we work with the local cohomology groups $H^k_Z(X, \mathcal{F})$ on X. This allows us to extend exact sequences which exist on the smooth locus U of X to all of X. First we recall a vanishing Theorem:

Theorem 3.7. ([HaKo04, Prop.3.3])
Let X be an n-dimensional algebraic variety and $Z \subset X$ a closed subset with $\text{codim}_X(Z) \geq r$. Let \mathcal{F} be a coherent sheaf on X which is MCM. Then

$$H^k_Z(X, \mathcal{F}) = 0 \quad k = 0, \ldots, r - 1.$$

Proposition 3.8. The sequence of sheaves

$$0 \to \mathcal{O}_P \to \mathcal{O}_P(Y) \to N_{Y/P} \to 0$$ \hspace{1cm} (9)

is exact.

Proof. If $Y \subset \mathbb{P}$ is Cartier (see Corollary 2.10 for a criterion) then there is nothing to show, but in general Y just defines a \mathbb{Q}-Cartier divisor. We may assume that $n = \dim \mathbb{P} \geq 3$. Let $\iota: V \to \mathbb{P}$ be the inclusion of the union of all torus orbits of dimension $\geq n - 2$ and $U := V \cap Y$. If we take the pushforward under ι_* of an ideal sheaf sequence for $U \subset V$ we get

$$0 \to \mathcal{O}_P \to \mathcal{O}_P(Y) \to N_{Y/P} \to R^1\iota_*(\mathcal{O}_V).$$

$R^1\iota_*(\mathcal{O}_V)$ is the sheaf associated to the presheaf

$$W \mapsto H^1(W \cap V, \mathcal{O}_{W \cap V}).$$

Assume that $W \subset \mathbb{P}$ is affine, $V \subset W$ an open subset such that $\text{codim}_W(Z) \geq 3$ for $Z := W \setminus V$. We have to show that $H^1(V, \mathcal{O}_V) = 0$. There is a local cohomology exact sequence ([Gro67, Cor.1.9])

$$\cdots \to H^1(W, \mathcal{O}_W) \to H^1(V, \mathcal{O}_V) \to H^2_Z(W, \mathcal{O}_W) \to H^2(W, \mathcal{O}_W).$$

Since W is affine $H^1(W, \mathcal{O}_W) = 0$ by Serre’s criterion and $H^2_Z(W, \mathcal{O}_W) = 0$ by Theorem 3.7 since \mathcal{O}_P is MCM and $\text{codim}_W(Z) \geq 3$.

We will use this exact sequence and the vanishing $H^1(\mathbb{P}, \mathcal{O}_\mathbb{P}) = 0$ in Remark 2.9 to compute $H^0(Y, N_{Y/\mathbb{P}})$ by identifying $Y \subset \mathbb{P}$ with a torus invariant divisor.

Corollary 3.9. The normal sheaf $N_{Y/\mathbb{P}}$ is MCM.

Proof. Consider the exact sequence (9). For $y \in Y$ the \mathcal{O}_Y,y-module $(N_{Y/P})_y$ has dimension $n - 1$ and by ([Kol13, Cor.2.62(3)]) it is Cohen-Macaulay since both $\mathcal{O}_\mathbb{P}$ and $\mathcal{O}_\mathbb{P}(Y)$ are MCM sheaves. □

Remark 3.10. The normal sheaf $N_{Y/X}: = (I_{Y_f} \otimes_{\mathcal{O}_X} \mathcal{O}_{Y_f})^*$ is trivial of rank $l(\Delta) - 1$, where \mathcal{I}_{Y_f} denotes the ideal sheaf of $Y_f \subset \mathcal{X}$.

Corollary 3.11.

$$H^0(Y, N_{Y/\mathbb{P}}) \cong L(C(\Delta))/\mathbb{C} \cdot f,$$

$$H^0(Y, N_{Y/X}) \cong L(\Delta)/\mathbb{C} \cdot f.$$

4 Kodaira-Spencer maps

Let B be the image of $U_{reg}(\Delta)$ in $\mathbb{P}L(\Delta)$. We consider the following natural family

$$\mathcal{X} := \{(x, f) \in \mathbb{P} \times B | x \in Y_f\} \stackrel{pr_2}{\rightarrow} B.$$

Definition 4.1. Given a full-dimensional rational polytope $P \subset M_\mathbb{R}$ let $L(P)$ be the \mathbb{C}-vector space with basis x^m, $m \in \Delta \cap M$ and $l(P) = \#(P \cap M)$ its dimension.

Let $D := \text{Spec } \mathbb{C}[\varepsilon]/(\varepsilon^2)$ denote the dual numbers. Given a tangent vector $\phi : D \rightarrow B$ of B at f the pullback

$$\mathcal{X} \times_B D \rightarrow D$$

defines an *infinitesimal deformation* (of first order) of Y_f in \mathcal{X}. Passing from $\mathcal{X} \rightarrow B$ to $\mathcal{X} \times_B D \rightarrow D$ some information gets lost. Still we can extract interesting information out of the situation (compare Kodaira [Kod86, Thm.4.3]). There are isomorphisms

$$H^0(Y, N_{Y/\mathcal{X}}) \cong \{\text{Inf. def. of } Y_f \text{ in } \mathcal{X}\}/\text{iso.}$$

$$H^0(Y, N_{Y/\mathbb{P}}) \cong \{\text{Inf. def. of } Y_f \text{ in } \mathbb{P}\}/\text{iso.}$$

$$\text{Ext}^1_{\mathcal{O}_Y}(\Omega^1_Y, \mathcal{O}_Y) \cong \{\text{Inf. def. of } Y_f\}/\text{iso.}.$$
Let us derive two Kodaira-Spencer maps in this context: There is an isomorphism

\[H^1(U, T_U) \cong \text{Ext}^1_{\mathcal{O}_U}(\Omega^1_U, \mathcal{O}_U). \]

since \(U \) is smooth. Besides by ([KM92, Lemma (12.5.6)])

\[\text{Ext}^1_{\mathcal{O}_Y}(\Omega^1_Y, \mathcal{O}_Y) \cong \text{Ext}^1_{\mathcal{O}_U}(\Omega^1_U, \mathcal{O}_U) \cong H^1(U, T_U). \]

since \(\text{codim}_Y(Y \setminus U) \geq 3 \). For \(V \subset \mathbb{P} \) an open subset as in Remark (2.8) with \(V \cap Y = U \) the Kodaira-Spencer map

\[H^0(U, N_{U/V}) \to H^1(U, T_U) \]

is the coboundary map in the tangent sheaf sequence for \(U \subset V \). We derive one Kodaira-Spencer map \(\kappa_{\mathbb{P}, f} \) from the commutative diagram

\[
\begin{array}{c}
0 \to H^0(U, T_U) \to H^0(U, T_V|_U) \to H^0(U, N_{U/V}) \to H^1(U, T_U) \\
\downarrow \cong \downarrow \cong \downarrow \cong \\
0 \to H^0(Y, T_Y) \to H^0(Y, T^*_{\mathbb{P}|Y}) \to H^0(Y, N_{Y/\mathbb{P}}) \to \text{Ext}^1_{\mathcal{O}_Y}(\Omega^1_Y, \mathcal{O}_Y)
\end{array}
\]

The other Kodaira-Spencer map \(\kappa_f : H^0(Y, N_{Y/X}) \to \text{Ext}^1_{\mathcal{O}_Y}(\Omega^1_Y, \mathcal{O}_Y) \) is gotten similarly by working with \(X \) instead of \(\mathbb{P} \). These two maps associate two a deformation in \(\mathbb{P}(X) \) its equivalence class.

5 Mavlyutov’s vanishing Theorem

Theorem 5.1. ([Mav08, Thm.2.4], [CLS11, Thm.9.3.3])

Let \(V \) be an \(n \)-dimensional complete toric variety to a simplicial fan. If \(D \) is a nef Cartier divisor on \(V \), then

\[H^p(V, \Omega^q_V \otimes \mathcal{O}(D)) = 0 \]

for \(p > q \).

Construction 5.2. (Multiplication morphism)

([Fuj06, 2.5, Prop.3.2], [CLS11, Lemma 9.2.6, Proof of Thm. 9.3.1])

Let \(V \) be a normal (not necessarily complete) toric variety. There is a useful construction to reduce computations of cohomology groups of \(\mathbb{Q} \)-Cartier Weil divisors \(D \) to cohomology of multiples \(mD \) of \(D \), which are Cartier.
Namely for \(l \in \mathbb{N}_{\geq 1} \) the map \(\phi_l : N \to N \) given by
\[
n \mapsto l \cdot n
\]
yields a toric morphism \(\phi_l : V \to V \). \(\phi_l \) induces an injection
\[
H^p(V, \Omega^q_V \otimes_r \mathcal{O}(D)) \to H^p(V, \Omega^q_V \otimes_r \mathcal{O}(lD)) \\
\cong H^p(V, \Omega^q_V \otimes \mathcal{O}(lD)), \quad p \geq 0,
\]
where the last isomorphism follows since \(\mathcal{O}(lD) \) is Cartier.
For us this result is powerful in connection with Theorem 5.1 above.

6 Computation of \(\ker(\kappa_{\mathbb{P},f}) \)

Theorem 6.1. Let \(\Delta \) be an \(n \)-dimensional lattice polytope, where \(n \geq 2 \), with \(l^*(\Delta) > 0 \). If \(n = 2 \) assume that \(l^*(\Delta) \geq 2 \). Then given \(f \in B \)
\[
\ker(\kappa_{\mathbb{P},f}) \cong \text{Lie Aut}(\mathbb{P}). \quad (10)
\]

Proof. We write \(Y \) and \(\kappa_{\mathbb{P}} \) for \(Y_f \) and \(\kappa_{\mathbb{P},f} \). By the exact sequence from section 4
\[
\ker(\kappa_{\mathbb{P}}) \cong H^0(Y, T_{\mathbb{P}|Y}^{**})/H^0(Y, T_Y).
\]
By Lemma (6.3) below if \(n \geq 3 \) then
\[
H^0(Y, T_Y) = 0.
\]
If \(n = 2 \) this follows from \(g(Y) \geq 2 \) since the Fine interior is not a point. By Remark 3.4 we are left to show that
\[
H^0(Y, T_{\mathbb{P}|Y}^{**}) \cong H^0(\mathbb{P}, T_\mathbb{P}).
\]

Lemma 6.2. There is an exact sequence
\[
0 \to T_\mathbb{P} \otimes \mathcal{O}(-Y) \to T_\mathbb{P} \to T_{\mathbb{P}|Y}^{**} \to 0.
\]

Proof. Let \(\iota : V \subset \mathbb{P} \) be the inclusion of the union of all torus orbits of dimension \(\geq n - 2 \) and \(U = V \cap Y \). Consider the exact sequence
\[
0 \to T_V \otimes \mathcal{O}(-Y|_V) \to T_V \to T_{V|U} \to 0
\]
and take the pushforward under ι. Let

$$F := \Omega^{n-1}_P \otimes r \mathcal{O}(-Y - K_P) \cong T_P \otimes r \mathcal{O}(-Y).$$

Then $R^1_{\iota_*}(F|_V) = 0$ since given $x \in V$ choose an affine toric neighborhood W of x and (using Construction 5.2) replace $\mathcal{O}_W(-Y - K_P)$ by an m-times multiple which is Cartier in the definition of F. Then by Proposition 3.6 $F|_W$ is MCM and the vanishing

$$H^1(V \cap W, F|_{V \cap W}) = 0$$

follows as in the proof of Proposition 3.8 from a local cohomology sequence. \hfill \Box

Take the long exact cohomology sequence

$$0 \to H^0(P, T_P \otimes r \mathcal{O}(-Y)) \to H^0(P, T_P) \to H^0(Y, T_{\mathbb{P}|Y}) \to H^1(P, T_P \otimes r \mathcal{O}(-Y)).$$

Write

$$T_P \otimes r \mathcal{O}(-Y) \cong \Omega^{n-1}_P \otimes r \mathcal{O}(-Y - K_P).$$

By Construction 5.2 we have

$$H^k(P, \Omega^{n-1}_P \otimes r \mathcal{O}(-Y - K_P)) \subset H^k(P, \Omega^{n-1}_P \otimes \mathcal{O}(-mY - mK_P))$$

where $m \geq 1$ is such that mY, mK_P are Cartier. Now use Serre duality and Theorem 5.1 to deduce

$$H^k(P, \Omega^{n-1}_P \otimes \mathcal{O}(-mY - mK_P)) \cong H^{n-k}(P, \Omega^1_P \otimes \mathcal{O}(mY + mK_P)) = 0$$

for $k = 0, 1$ if $n \geq 3$. If $n = 2$ the vanishing for $k = 1$ follows from the precise formula in ([Mav08, Cor.2.7]) (to $Y + K_P$ is associated the polytope $F(\Delta)$, see Remark 2.9). \hfill \Box

Lemma 6.3. Let Δ be an n-dimensional lattice polytope with $n \geq 3$ and $l^*(\Delta) > 0$. Then

$$H^0(Y, T_Y) = 0.$$
Proof. Using an ideal sheaf sequence we get

$$0 \to T_Y \to \Omega_{Y}^{n-1} \to \ldots$$

where we have used $\Omega_{Y}^{n-1} \cong T_Y \otimes_r \mathcal{O}(K_Y)$ and $h^0(Y, \mathcal{O}(K_Y)) = l^*(\Delta) > 0$. Thus

$$h^0(Y, T_Y) \leq h^0(Y, \Omega_{Y}^{n-1}) = 0$$

For the last vanishing: Take a common toric resolution of singularities $\mathbb{P} \xrightarrow{\pi} \tilde{\mathbb{P}} \to \mathbb{P}_\Delta$ with closure \tilde{Y} of Z_f in $\tilde{\mathbb{P}}$. Then $h^0(\tilde{Y}, \Omega_{\tilde{Y}}^{n-1}) = 0$ by ([DK86]) and $p_* \Omega_{\tilde{Y}}^{n-1} = \Omega_Y^{n-1}$.

We guess that the weaker assumption $F(\Delta) \neq \emptyset$ is sufficient for the above Lemma.

7 The cokernel of $\kappa_{P,f}$

Corollary 7.1. Given the conditions of the theorem if $n \geq 4$ then the following sequence is exact

$$0 \to Im(\kappa_{P,f}) \to Ext^1_{\mathcal{O}_Y}(\Omega_{Y}^1, \mathcal{O}_Y) \to Ext^1_{\mathcal{O}_{\mathbb{P}}}(\Omega_{\mathbb{P}}^1, \mathcal{O}_{\mathbb{P}}) \to 0$$

that is all infinitesimal deformations of Y_f arise from $Im(\kappa_{P,f})$ or from infinitesimal deformations of \mathbb{P}.

Proof. Let V denote the smooth locus of \mathbb{P}, $Z = \mathbb{P} \setminus V$ and $U = V \cap Y$. Then Z has codimension ≥ 3 in \mathbb{P} and $Y \setminus U$ has codimension ≥ 2 in Y. We could extend the upper exact sequence in Section 4 to

$$0 \to H^0(U, T_U) \to H^0(U, T_{V|U}) \to H^0(U, N_{U/V}) \xrightarrow{k} H^1(U, T_U)$$

$$\to H^1(U, T_{V|U}) \to H^1(U, N_{U/V})$$

By the exact sequence (9) $H^1(Y, N_{Y/\mathbb{P}}) = 0$. Relate $H^1(U, N_{U/V})$ and $H^1(Y, N_{Y/\mathbb{P}})$ via a local cohomology sequence and use (Lemma 3.9, Theorem 3.7)

$$H^k_{Z \cap Y}(Y, N_{Y/\mathbb{P}}) = 0 \quad k < n - 1.$$
It follows $H^1(U, N_{U/V}) = 0$. For $T_{V|U}$ use an ideal sheaf sequence

$$H^1(V, T_V \otimes \mathcal{O}(-Y_{|V})) \to H^1(V, T_V) \to H^1(U, T_{V|U}) \to H^2(V, T_V \otimes \mathcal{O}(-Y_{|V})).$$

V is a toric variety and by Construction 5.2

$$H^k(V, T_V \otimes \mathcal{O}(-Y_{|V})) = H^k(V, \Omega^1_{V|V} \otimes \mathcal{O}(-mY_{|V} - mK_{P|V}))$$

where mY, mK_P are Cartier. We show that these terms vanish for $k = 1, 2$ and the result follows since

$$H^1(V, T_V) \simeq \operatorname{Ext}^1_{\mathcal{O}_V}(\Omega^1_{P}, \mathcal{O}_P)$$

as in section 4. Use a local cohomology sequence

$$H^k(P, F) \to H^k(V, F_{|V}) \to H^{k+1}_Z(P, F)$$

where

$$F := \Omega^1_{P} \otimes \mathcal{O}(-mY - mK_P).$$

F is CM by Lemma 3.9. As in the Lemma above

$$H^k(P, F) \simeq H^{n-k}(P, \Omega^1_{P} \otimes \mathcal{O}(mY + mK_P)) = 0 \quad k = 1, 2.$$

Further by Theorem 3.7

$$H^k_Z(P, F) = 0 \quad k < n - 1.$$

Example 7.2. If $P = P^3$, $\Delta = 4 \cdot \Delta_3$ then $\dim \operatorname{Im}(\kappa) = 19$ and $H^1(P, T_P) = 0$. But $h^1(Y, T_Y) = 20$ since Y is a K3 surface. The above Corollary does not apply since $n = 3$.

8 An explicit basis for $\ker(\kappa_{P,f})$

Let

$$R(N, \Sigma) := \{ \alpha \in M \mid \langle \alpha, n(\alpha) \rangle = 1 \text{ for some } n(\alpha) \in \Sigma[1] \text{ and } \langle \alpha, n_j \rangle \leq 0 \text{ for } n_j \in \Sigma[1] \setminus \{n(\alpha)\} \}$$
denote the roots of Σ. Likewise we define $R(N, \Sigma_{C(\Delta)})$ and $R(N, \Sigma_{\Delta})$ by replacing Σ by $\Sigma_{C(\Delta)}$ and Σ_{Δ}.

There are inclusions

$$\Sigma_{C(\Delta)[1]} \subset \Sigma[1] \subset \text{Convhull}(\Sigma_{\Delta}[1]). \quad (11)$$

Lemma 8.1. Let Δ be an n-dimensional lattice polytope with $F(\Delta) \neq \emptyset$. Then

$$R(N, \Sigma_{\Delta}) \subset R(N, \Sigma) = R(N, \Sigma_{C(\Delta)}).$$

Proof. To the second equality: Let $\alpha \in R(N, \Sigma_{C(\Delta)})$, that is

$$\langle \alpha, n(\alpha) \rangle = 1, \quad \langle \alpha, n_j \rangle \leq 0 \quad \text{for } n_j \in \Sigma_{C(\Delta)}[1] \setminus \{n(\alpha)\}.$$

$\Rightarrow \langle \alpha, n_j \rangle \leq 0$ for $n_j \in \Sigma[1] \setminus \{n(\alpha)\}$, that is $\alpha \in R(N, \Sigma)$. Conversely assume $\alpha \in R(N, \Sigma)$. If $n_i \notin \Sigma_{C(\Delta)}[1]$ then α would have scalar product ≤ 0 with all vectors in $\Sigma_{C(\Delta)}[1]$ and thus would be zero since Σ refines $\Sigma_{C(\Delta)}$, a contradiction. The first inclusion follows similarly by using (11). \[\square\]

We ask for a basis of Laurent polynomials for

$$\text{Lie Aut}(\mathbb{P}) \subset L(C(\Delta))/\mathbb{C} \cdot f.$$

Remember the results from ([BG99]): Given $f \in B$ there is a map

$$\phi_f : T \to B$$

$$(t_1, t_2, t_3) \mapsto \left((x_1, x_2, x_3) \mapsto f(t_1x_1, t_2x_2, t_3x_3)\right).$$

By differentiating ϕ_f we get an injective homomorphism $(d\phi_f)_e : \text{Lie}(T) \to T_{B,f}$ where $e = (1, 1, 1)$ with

$$\text{Im}(d(\phi_f)_e) = \left\langle x_1 \cdot \frac{\partial f}{\partial x_1}, ..., x_3 \cdot \frac{\partial f}{\partial x_3} \right\rangle.$$

For $m \in M \cap C(\Delta)$ and $\alpha \in R(N, \Sigma_{C(\Delta)})$ define

$$ht_{-\alpha}(m) := \max\{k \in \mathbb{N}_{\geq 0} \mid m - k \cdot \alpha \in C(\Delta)\}. \quad (12)$$

Given $\alpha \in R(N, \Sigma_{C(\Delta)})$ we denote by $\Gamma_{-\alpha} \leq C(\Delta)$ the facet to which $n(\alpha)$ is normal.
Remark 8.2. Assuming
\[\Gamma_{-\alpha} = \{ x \in M_R | \langle x, n_\Gamma \rangle = b_\Gamma \} \cap C(\Delta) \]
and \(m \in M \cap C(\Delta) \) then
\[ht_{-\alpha}(m) = \langle m, n_\Gamma \rangle - b_\Gamma. \tag{13} \]

Figure 2: A lattice polytope with a column vector \(v \) and \(ht_v(m) = 2 \).

Let \(S_{C(\Delta)} \) denote the graded semigroup \(\mathbb{C} \)-algebra over \(\text{Cone}(C(\Delta) \times \{1\}) \cap (M \times \mathbb{Z}) \)

Then the function \(ht_{-\alpha} \) continues to a map \(S_{C(\Delta)} \to S_{C(\Delta)} \) which respects the grading on \(S_{C(\Delta)} \). For \(\lambda \in \mathbb{C} \) define a graded automorphism \(e_{-\alpha}^\lambda : S_{C(\Delta)} \to S_{C(\Delta)} \) by
\[e_{-\alpha}^\lambda(x^m) := x^m \cdot (1 + \lambda x^{-\alpha})^{ht_{-\alpha}(m)} \]

Corollary 8.3. ([BG99, Lemma 3.1, Thm.3.2b), Thm.5.4])
Lie \(\text{Aut}(\mathbb{P}) \) has a basis of derivations, which act on \(L(C(\Delta)) \) as follows

\[x_i \frac{\partial}{\partial x_i} : x^m \mapsto m_i \cdot x^m, \quad i = 1, ..., n, \]
\[\frac{\partial e_{-\alpha}^\lambda}{\partial \lambda} |_{\lambda=0} : x^m \mapsto ht_{-\alpha}(m) \cdot x^{m-\alpha}, \quad \alpha \in R(N, \Sigma_{C(\Delta)}). \]

By definition of the tangent sheaf sequence the homomorphism
\[j : H^0(\mathbb{P}, T_{\mathbb{P}}) \cong H^0(Y, T_{\mathbb{P}|Y}^{**}) \to H^0(Y, N_{Y/\mathbb{P}}) \]
is given by applying the derivations from Corollary 8.3 to
\[f = \sum_{m \in \Delta \cap M} a_m x^m \in U_{\text{reg}}(\Delta) \]
and restricting to \(Y = Y_f \).

Corollary 8.4. Given the conditions of Theorem 6.1 \(\ker(\kappa_{P,f}) \) has the basis
\[x_1 \cdot \frac{\partial f}{\partial x_1}, ..., x_n \cdot \frac{\partial f}{\partial x_n}, \]
\[w_{-\alpha}(f) := \sum_{m \in \Delta \cap M} ht_{-\alpha}(m) \cdot a_m \cdot x^{m-\alpha}, \quad \alpha \in R(N, \Sigma_{C(\Delta)}). \]

Figure 3: On the left: The column vector \(-\alpha\) with facet \(\Gamma_{-\alpha}\) and all lattice points \(m \in C(\Delta)\) with \(ht_{-\alpha}(m) > 0\). On the right: \(w_{-\alpha}(f)\) has support on the thick lattice points.

Example 8.5. If \(\Delta = d \cdot \Delta_n, \quad f \in U_{\text{reg}}(\Delta) \), then
\[C(\Delta) = \Delta, \quad \Sigma = \Sigma_{\Delta}, \quad P = P^n \]
and \(Y_f \) is a smooth degree \(d \) hypersurface in \(P^n \). For such an hypersurface it is shown in ([Voi03, Lemma 6.15]) that
\[\ker(\kappa_f) \cong J_{f,\text{griff}}^d, \]
(14)
if we work with the family \(X \rightarrow U_{\text{reg}}(\Delta) \) (if we projectivize then we have to mod out \(f \) from the kernel). Here \(J_{f,\text{griff}}^d \) denotes the \(d \)-th homogeneous component of *Griffiths Jacobian ideal*
\[J_{f,\text{griff}} := (\frac{\partial f}{\partial x_0}, ..., \frac{\partial f}{\partial x_n}) \leq \mathbb{C}[x_0, ..., x_n]. \]
The roots of \(\Sigma \) are given by
\[
\pm e_i, \quad i = 1, \ldots, n, \quad \pm e_i \pm e_j, \quad i, j = 1, \ldots, n, \quad i \neq j
\]
and if \(d \geq n + 1 \) then Theorem 8.4 restricts to the result (14) up to homogenization.

9 An explicit basis for \(\ker(\kappa_f) \)

Theorem 9.1. Given the conditions of Theorem 6.1, \(\ker(\kappa_f) \) has the basis
\[
x_i \frac{\partial f}{\partial x_i}, \quad i = 1, \ldots, n, \quad w_{-\alpha}(f), \quad \alpha \in R(N, \Sigma_\Delta).
\]

We first prove the following Proposition which reduces the proof to a combinatorial argument

Proposition 9.2. Let \(\Delta \) be an \(n \)-dimensional lattice polytope with \(F(\Delta) \neq \emptyset \). Then \(\kappa_f \) equals the restriction of \(\kappa_{\mathbb{P}, f} \) to \(L(\Delta)/\mathbb{C} \cdot f \) and thus
\[
\ker(\kappa_f) \cong \ker(\kappa_{\mathbb{P}, f}) \cap L(\Delta). \tag{15}
\]

Proof. The following reduction step is similar to ([Koe91, Ch.2.1] and [Voi03, Lemma 6.15]): Let \(V \subset \mathbb{P} \) be the union of all torus orbits of dimension \(\geq n-2 \). Then \(U = U_f := V \cap Y_f \) is smooth and \(\text{codim}_{Y_f}(Y_f \setminus U_f) \geq 2 \) for every \(f \in B \). Let
\[
W := (V \times B) \cap \mathcal{X}.
\]
Consider the differential
\[
(pr_1)_*: T_W|_U \rightarrow T_V|_U
\]
of the first projection. All the sheaves we consider are reflexive, therefore there is no difference in working with \(Y, \mathcal{X} \) and \(\mathbb{P} \). \(pr_1 \) restricts to an isomorphism
\[
Y_f \times \{f\} \rightarrow Y_f,
\]
thus \((pr_1)_* \) restricts to the identity on \(T_Y \). The map
\[
(pr_1)_*: N_{Y/X} \cong H^0(Y, N_{Y/X}) \otimes \mathcal{O}_Y \subset H^0(Y, N_{Y/\mathbb{P}}) \otimes \mathcal{O}_Y \rightarrow N_{Y/\mathbb{P}}
\]
is given by multiplication of sections. In effect we obtain a commutative diagram

\[
\begin{array}{cccccc}
0 & \longrightarrow & H^0(Y, Ty) & \longrightarrow & H^0(Y, T^*_XY) & \longrightarrow & H^0(Y, N_{Y/X}) \\
\downarrow{id} & & \downarrow{(pr_1)_*} & & \downarrow{id} & & \downarrow{id} \\
0 & \longrightarrow & H^0(Y, Ty) & \longrightarrow & H^0(Y, T^*_YP|Y) & \longrightarrow & H^0(Y, N_{Y/P}) \\
\end{array}
\]

and

\[
\ker(\kappa_f) \cong H^0(Y, T^*_XY) \cong H^0(Y, T^*_YP|Y) \cap L(\Delta) \cong \ker(\kappa_{P,f}) \cap L(\Delta).
\]

The \(\partial f/\partial x_i\) obviously belong to \(L(\Delta)\) but the \(w_{-\alpha}(f)\) need not have support on \(\Delta\) as the following example shows:

Example 9.3. Consider the polytope

\[
\Delta = \langle \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 5 \\ 1 \\ 10 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \rangle
\]

\(\Delta\) has 3 interior lattice points, \(F(\Delta)\) is 1-dimensional and \(C(\Delta)\) has the additional vertex \((1, -1, 1)\). We obtain a family of elliptic surfaces \(X \rightarrow B\). There are 7 roots

\[
R(N, \Sigma) = \{ \begin{pmatrix} -3 \\ -1 \\ -2 \end{pmatrix}, \begin{pmatrix} -1 \\ -4 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ -3 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \end{pmatrix} \}
\]

and one root \((-1, 0, -1)\) not belonging to \(R(N, \Sigma)_\Delta\). The column vector \(-\alpha = (1, 0, 1)\) belongs to the facet

\[
\Gamma_{-\alpha} = \langle \begin{pmatrix} 5 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ 10 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} \rangle
\]

of \(C(\Delta)\). The vertex \((-1, -1, -1)\) does not lie on \(\Gamma_{-\alpha}\) and

\[-\alpha + (-1, -1, -1) = (0, -1, 0) \notin \Delta.
\]

Thus only 6 of the roots in \(R(N, \Sigma)\) reduce the number of moduli.
(Proof of Theorem 9.1)

The proof is rather technical. By Proposition 9.2

\[\ker(\kappa_f) = \ker(\kappa_{\varphi,f}) \cap L(\Delta) \]

and \(R(N, \Sigma_\Delta) \subset R(N, \Sigma_{C(\Delta)}) \) by Lemma 8.1. Let \(R := R(N, \Sigma_{C(\Delta)}) \setminus R(N, \Sigma_\Delta) \). The Theorem is a consequence of the three points below.

- \(\alpha \in R(N, \Sigma_\Delta) \Rightarrow w_{-\alpha}(f) \in L(\Delta) \).
- \(\alpha \in R \Rightarrow w_{-\alpha}(f) \notin L(\Delta) \).
- Varying \(\alpha \in R \) the \(w_{-\alpha}(f) \) are linearly independent in \(L(C(\Delta))/L(\Delta) \).

The necessity of the first two points is obvious and the last point assures that no linear combination of the \(w_{-\alpha}(f) \), where \(\alpha \in R \), lies in \(\ker(\kappa_f) \).

First point: To \(\alpha \in R(N, \Sigma_\Delta) \) is associated both \(\Gamma_{-\alpha} \leq \Delta \) and \(\Gamma'_{-\alpha} \leq C(\Delta) \). We show

\[\Gamma_{-\alpha} \subset \Gamma'_{-\alpha}, \quad (16) \]

since then for \(m \in M \cap \Delta, m \notin \Gamma_{-\alpha} \) we get \(m - \alpha \in \Delta \), that is \(w_{-\alpha}(f) \in L(\Delta) \).

Concerning (16): Given \(n_i \in \Sigma_\Delta[1] \) with \(\langle \alpha, n_i \rangle = 1 \) and \(n_j \in \Sigma_{C(\Delta)}[1] \) with \(\langle \alpha, n_j \rangle = 1 \) then \(n_i = n_j \) by (11). It follows \(\Gamma_{-\alpha} \subset \Gamma'_{-\alpha} \) since

\[\min_{C(\Delta)}(n_i) = \min_{\Delta}(n_i). \]

Thus \(\Gamma_{-\alpha} \subset \Gamma'_{-\alpha} \).

Second point: There is a facet \(\Gamma_{-\alpha} \) of \(C(\Delta) \) such that

\[m - \alpha \in C(\Delta) \quad \text{for} \quad m \in C(\Delta) \cap M, \quad m \notin \Gamma_{-\alpha}. \]

First assume that \(\Gamma_{-\alpha} \cap \Delta \) is also a facet of \(\Delta \). There is \(n_j \in \Sigma_\Delta[1] \setminus \{ n_{\Gamma_{-\alpha}} \} \) with \(\langle \alpha, n_j \rangle > 0 \) since \(\alpha \notin R(N, \Sigma_\Delta) \). Given \(m \in \text{Vert}(\Gamma_j) \), then \(m \in \text{Supp}(f) \) and \(m - \alpha \notin \Delta \) since

\[\langle m - \alpha, n_j \rangle < \min_{\Delta}(n_j). \]
⇒ $w_{-\alpha}(f) \notin L(\Delta)$. Assume that $\Gamma_{-\alpha} \cap \Delta$ is a face of Δ of dimension $< n - 1$. The convex span
\[\langle m \in Vert(\Delta) \mid m - \alpha \notin \Delta \rangle \]
is of dimension $\geq n - 1$. ⇒ there is $m \in Vert(\Delta)$ with
\[m \notin \Gamma_{-\alpha}, \ m - \alpha \notin \Delta, \]
that is $w_{-\alpha}(f) \notin L(\Delta)$.

Third point: Given a fixed facet $\Gamma = \Gamma_{-\alpha}$ of $C(\Delta)$ all
\[\alpha \in R(N, \Sigma_{C(\Delta)}) \setminus R(N, \Sigma_\Delta) \]
with $\Gamma_{-\alpha} = \Gamma$ build the lattice points on a lattice polytope $P \subset M_\mathbb{R}$.
Given $\alpha \in Vert(P)$ there is $m \in \text{Supp}(f)$ such that $x^{m-\alpha}$ does not appear in the support of any other $w_{-\alpha'}(f)$. Thus $w_{-\alpha}(f)$ does not appear with nonzero coefficient in any relation between the $w_{-\alpha'}(f)$. We then break down P vertex by vertex.

Let Γ_1, Γ_2 be two different facets of $C(\Delta)$ and $\alpha_1, \alpha_2 \in R(N, \Sigma_{C(\Delta)}) \setminus R(N, \Sigma_\Delta)$ roots to these facets. Given a relation in
\[L(C(\Delta))/L(\Delta) \]
in which both $w_{-\alpha_1}(f)$ and $w_{-\alpha_2}(f)$ appear with nonzero coefficients there is $v \in \text{Supp}(f)$ with
\[\langle v - \alpha_1, n_1 \rangle < \text{Min}_\Delta(n_1), \ v - \alpha_1 + \alpha_2 \in M \cap \Delta. \]
Then
\[\langle v - \alpha_1 + \alpha_2, n_1 \rangle \geq \text{Min}_\Delta(n_1), \]
but $\langle \alpha_2, n_1 \rangle \leq 0$ since α_2 is a root for $n_2 \neq n_1$, a contradiction. \hfill \Box

Remark 9.4. Given a common toric resolution of singularities

\[
\begin{array}{ccc}
\mathbb{P}_\Sigma & \xrightarrow{\kappa_f} \mathbb{P} & \xleftarrow{\hat{\kappa}_f} \mathbb{P}_\Delta \\
\end{array}
\]
there is a deformation of smooth toric hypersurfaces $\tilde{X} \to B$. Take the Kodaira-Spencer map $\tilde{\kappa}_f$. Then $R(N, \Sigma) \subset R(N, \Sigma_\Delta)$ and ker$(\tilde{\kappa}_f)$ is gotten as ker(κ_f) but with $\alpha \in R(N, \bar{\Sigma})$ instead of $\alpha \in R(N, \Sigma_\Delta)$.

23
10 The number of moduli for subfamilies

Remark 10.1. Let \(\Delta \) be an \(n \)-dimensional polytope with \(F(\Delta) \neq \emptyset \) and \(A \subset M \cap \Delta \) a subset containing all vertices of \(\Delta \). Let

\[
 f := \sum_{m \in A} a_m x^m.
\]

Then for \((a_m)_{m \in A} \) generic \(f \) is nondegenerate with respect to \(\Delta \) (see [GKZ94, Ch.10] and [Bat03, Prop.2.16]). Denote the resulting open subset of \(\mathbb{C}^{|A|} \) by \(U_A \) and the restriction of \(\mathcal{X} \) to \(U_A \) by \(\mathcal{X}_A \). Taking the quotient by the Laurent polynomials

\[
 f, \quad x_i \frac{\partial f}{\partial x_i} \quad i = 1, ..., n
\]

will reduce the number of moduli of the subfamily \(\mathcal{X}_A \to U_A \) by \(n + 1 \). Concerning the \(w_{-\alpha}(f) \) it seems to be difficult to decide in general if there are \(c_\alpha \in \mathbb{C} \) with

\[
 \sum_\alpha c_\alpha w_{-\alpha}(f) \in T_{U_A,f} \setminus \{0\}.
\]

Therefore we restrict to some special cases:

Example 10.2. Assume that \(\Delta \) is an \(n \)-dimensional simplex with \(F(\Delta) \neq \emptyset \) and \(A \) equals the set of vertices of \(\Delta \). Then by varying the coefficients to \(A \) we obtain a family with \(\kappa = 0 \). This generalizes:

Lemma 10.3. Given the conditions of Theorem 6.1 let \(A \) denote the set of vertices of \(\Delta \). Assume that for every facet

\[
 \Gamma = \Delta \cap \{ x \in M_{\mathbb{R}} \mid \langle x, n_\Gamma \rangle = b_\Gamma \}
\]

with \(n_\Gamma \in \Sigma_{\Delta}[1] \) there is no vertex of \(\Delta \) lying in the plane

\[
 H_{\Gamma,+1} := \{ x \in M_{\mathbb{R}} \mid \langle x, n_\Gamma \rangle = b_\Gamma + 1 \}
\]

Then the subfamily to \(A \) has

\[
 \#\{\text{vertices}\} - n - 1
\]

type of moduli.

Proof. Given a root \(\alpha \) and a lattice point \(m \) on \(\Delta \) then \(m - \alpha \) lies exactly one step closer to the facet \(\Gamma_{-\alpha} \) (and not closer to any other facet). Assume that \(m \) and \(m - \alpha \) are vertices of \(\Delta \). Then \(m - \alpha \) lies on \(\Gamma_{-\alpha} \) since else \(m, m - 2\alpha \in \Delta \) and \(m - \alpha \) would not be a vertex. But then \(m \in H_{\Gamma_{-\alpha},+1} \) contradicting the assumption. \(\square \)
References

[Bat94] V. V. Batyrev, Dual Polyhedra and Mirror Symmetry for Calabi-Yau Hypersurfaces in Toric Varieties, Journal of Algebraic Geometry 3 (1994), no. 3, 493–535.

[Bat03] V. V. Batyrev, Cohomology, Periods and the Hodge structure of toric hypersurfaces, (2003), https://www.math.arizona.edu/ swc/aws/2004/04BatyrevNotes.pdf

[Bat22] V. V. Batyrev, Canonical models of toric hypersurfaces, (2022), arXiv:2008.05814v1 [math.AG]

[BG99] W. Bruns, J. Gubeladze, Polytopal Linear Groups, Journal of Algebra 218, 715-737 (1999).

[CLS11] D. A. Cox, J. B. Little and H. K. Schenck, Toric varieties, Graduate Studies in Mathematics, 124, Amer. Math. Soc., Providence, RI, (2011).

[DK86] V. I. Danilov, A. G. Khovanskii, Newton polyhedra and an algorithm for calculating Hodge-Deligne numbers, Izv. Akad Nauk SSSR Ser Mat 50 (1986), 925–945.

[Dol82] I. Dolgachev, Weighted projective varieties, Lecture Notes in Mathematics book series (LNM, volume 956), (1982).

[Fuj06] O. Fujino, Multiplication maps and vanishing theorems for toric varieties, Math. Z. 257, 631–641, (2007).

[Gie23] J. Giesler, Hodge theory of nondegenerate minimal toric hypersurfaces, (2023), unpublished.

[GKZ94] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Springer-Birkhäuser, (1994).

[Gro67] A. Grothendieck, Local cohomology, Lecture Notes in Mathematics, Springer Verlag (1961).

[HaKo04] B. Hassett, S. J. Kovács, Reflexive Pull-backs and base extension, Journal of Algebraic Geometry, 13, 233-247, (2004).
[IlTu18] N. Ilten, C. Turo, *Deformations of Smooth Complete Toric Varieties: Obstructions and the Cup Product*, (2018), arXiv:1812.09254 [math.AG].

[Kod86] K. Kodaira, *Complex Manifolds and Deformation of Complex Structures*, First Edition A Series of Comprehensive Studies in Math. 283 Springer-Verlag, (1986).

[Koe91] R. J. Koelman, *The number of moduli of families of curves on toric surfaces*, PhD Thesis, University of Nijmegen, (1991).

[Kol13] J. Kollár, *Singularities of the Minimal Model Program*, Cambridge University Press, (2013).

[KM92] J. Kollár, S. Mori, *Classification of Three-Dimensional Flips*, Journal of the American Mathematical Society, Vol. 5, (1992).

[KM98] J. Kollár and S. Mori, *Birational Geometry of Algebraic Varieties*, Vol. 134 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge (1998).

[Mav03] A. Mavlyutov, *Embedding of Calabi-Yau deformations into toric varieties*, Mathematische Annalen volume 333, pages 45–65 (2005).

[Mav08] A. Mavlyutov, *Cohomology of rational forms and a vanishing theorem on toric varieties*, Journal für die reine und angewandte Mathematik, (2008).

[MuOd15] D. Mumford, T. Oda, *Algebraic Geometry II*, Texts and Readings in Mathematics, (2015).

[Ok87] M. Oka, *On the deformation of a certain type of algebraic varieties*, Preprint, (1987).

[Pet20] A. Petracci, *Homogeneous deformations of toric pairs*, Manuscripta Math. 166 (2021), no. 1-2, 37-72.

[Sch08] K. Schwede, *Generalized divisors and reflexive sheaves on normal varieties*, (2008), https://www.math.utah.edu/~schwede/Notes/GeneralizedDivisors.pdf

[Voi03] C. Voisin, *Hodge Theory and Complex Algebraic Geometry II*, Cambridge University Press, (2003).