A NOTE ON LIOUVILLIAN PICARD-VESSIOT EXTENSIONS

Ursashi Roy and Varadharaj R. Srinivasan

ABSTRACT. In this paper, we prove a new characterization theorem for Picard-Vessiot extensions whose differential Galois groups have solvable identity components.

1. INTRODUCTION

Throughout this article, we fix a differential field\(^1\) \(F\) of characteristic zero with an algebraically closed field of constants \(C := \{x \in F \mid x' = 0\}\). Let \(E\) be a Picard-Vessiot extension of \(F\), \(K\) be a differential field intermediate to \(E\) and \(F\) and \(T(K|F)\) be the set of all solutions in \(K\) of all linear homogeneous differential equations over \(F\). It is known that \(T(E|F)\) is a finitely generated simple differential \(F\)-algebra whose field of fractions \(Q(T(E|F))\) equals the differential field \(E\). However, if \(r \in E\) and \(f, g \in T(E|F)\) are elements such that \(r = f/g\) then it is possible that neither \(f\) nor \(g\) belong to the differential field \(\langle r \rangle\), generated by \(F\) and \(r\). Thus \(Q(T(K|F))\) could be a proper subfield of \(K\). For example, consider the ordinary differential field \(\langle \mathbb{C}(x), \cdot \rangle\) of complex rational functions with derivation \(\cdot := d/dx\). Let \(E\) be a Picard-Vessiot extension of the Airy differential equation \(\mathcal{L}(Y) := Y'' - xy = 0\). Then the differential Galois group is isomorphic to \(SL(2, \mathbb{C})\) as algebraic groups. The differential field \(K\) fixed by the subgroup of upper triangular matrices in \(SL(2, \mathbb{C})\) is of the form \(K = \mathbb{C}(x)(w)\), where \(w\) is transcendental over \(\mathbb{C}(x)\) and \(w\) is a solution of the Ricatti equation \(w' = x - w^2\) and that \(T(K|\mathbb{C}(x)) = T(E|\mathbb{C}(x)) \cap K = \mathbb{C}(x)\) ([Mag99], pp. 86-87). Therefore, it is natural to ask for a characterization theorem of those Picard-Vessiot extensions whose intermediate differential fields \(K\) are the field of fractions of \(T(K|F)\).

A differential field extension \(E\) of \(F\) is called a liouvillian Picard-Vessiot extension if \(E\) is a liouvillian extension as well as a Picard-Vessiot extension of \(F\). Liouvillian Picard-Vessiot extensions are characterized by their differential Galois groups having a solvable identity component ([vdPS03], Theorem 1.43). Using this fact and the well-known structure theorem of \(T(E|F)\) ([Mag99], Theorem 5.12), we prove that if \(E\) is a Picard-Vessiot extension of \(F\) then \(Q(T(K|F)) = K\) for every differential field intermediate to \(E\) and \(F\) if and only if \(E\) is a liouvillian Picard-Vessiot extension of \(F\); in which case, we also show that \(T(K|F)\) is a finitely generated simple differential \(F\)-algebra (Theorem 3.1). If the differential Galois group of a liouvillian Picard-Vessiot extension \(E\) of \(F\) is connected then given any intermediate differential subfield \(K\), we find a tower of differential fields

\[
F = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_{m-1} \subseteq K_m = K,
\]

such that for each \(1 \leq i \leq m\), there is a \(t_i \in T(E|F)\) such that \(K_i = K_{i-1}(t_i)\) and \(t'_i = a_it_i + b_i\) for some \(a_i \in F\) and \(b_i \in K_{i-1}\) (Corollary 3.2).

We also prove that if \(E\) is an arbitrary Picard-Vessiot extension of \(F\) and \(K\) is an intermediate differential field then \(K\) contains a finitely generated simple differential \(F\)-subalgebra \(R\) such that \(Q(R) = K\) (Theorem 4.3). A structure theorem, similar to Corollary 3.2, for relatively algebraically closed intermediate...
differential subfields of liouvillian extensions can be found in [Sri20]. For fundamental results on Picard-Vessiot theory, we refer the reader to [Mag99] and [vdPS03].

2. PRELIMINARIES

In this section we record few definitions and results from Picard-Vessiot theory that are used in our proofs. Let \(F[\partial] \) be the ring of differential operators over \(F \) and \(\mathcal{L} \in F[\partial] \) be a monic operator of order \(n \). A Picard-Vessiot extension \(E \) of \(F \) for \(\mathcal{L} \) is a differential field extension of \(F \) having the same field of constants as \(F \) and satisfying the following conditions:

(a) The \(C \)-vector space \(V \) of all solutions of \(\mathcal{L}(Y) = 0 \) in \(E \) is of dimension \(n \).

(b) \(E = F(V) \), that is, the smallest differential field containing \(F \) and \(V \) is \(E \).

The differential Galois group, denoted by \(\mathcal{G}(E|F) \), is the group of all field automorphisms of \(E \) that fixes the elements of \(F \) and commutes with the derivation of \(E \). The differential Galois group stabilizes \(V \) and thus it acts as a group of \(C \)-vector space (differential) automorphisms of \(V \). Since \(E = F(V) \), the induced map \(\phi : \mathcal{G}(E|F) \to GL(V) \) is a faithful representation of groups. In fact, \(\phi(\mathcal{G}(E|F)) \) can be shown to be a Zariski closed subgroup of \(GL(V) \) and in this sense, \(\mathcal{G}(E|F) \) is seen as a linear algebraic group. The fundamental theorem of Picard-Vessiot theory provides a bijective correspondence between differential subfields intermediate to \(E \) and \(F \) and the Zariski closed subgroups of \(\mathcal{G}(E|F) \) in a way that closely resembles the polynomial Galois theory. If \(\mathcal{H} \) is a closed subgroup of \(\mathcal{G}(E|F) \) and \(K \) is an intermediate differential field then the bijective correspondence is given by the maps

\[
K \mapsto \mathcal{G}(E|K) := \{ \sigma \in \mathcal{G}(E|F) | \sigma(u) = u \text{ for all } u \in K \} \\
\mathcal{H} \mapsto E^\mathcal{H} := \{ u \in E | \sigma(u) = u \text{ for all } \sigma \in \mathcal{H} \}.
\]

The field fixed by \(\mathcal{G}(E|F) \) is \(F \); that is, \(E^{\mathcal{G}(E|F)} = F \). Let \(K \) be a differential field intermediate to \(E \) and \(F \). Then \(K \) is a Picard-Vessiot extension of \(F \) if and only if \(\mathcal{G}(E|K) \) is a closed normal subgroup of \(\mathcal{G}(E|F) \) and in which case, the differential Galois group \(\mathcal{G}(K|F) \) is isomorphic to the quotient group \(\mathcal{G}(E|F)/\mathcal{G}(E|K) \).

If an intermediate differential field \(K \) is stabilized by the differential Galois group then \(\mathcal{G}(E|K) \) is a normal subgroup of \(\mathcal{G}(E|F) \) and consequently, \(K \) is a Picard-Vessiot extension of \(F \). The algebraic closure of \(E \) in a finite Galois extension, which we denote by \(F(x) \). Clearly, \(F(x) \) is stabilized by \(\mathcal{G}(E|F) \) and in fact, \(F(x) = E^{\mathcal{G}(E|F)^0} \), where \(\mathcal{G}(E|F)^0 \) is the connected component of \(\mathcal{G}(E|F) \). The quotient group \(\mathcal{G}(E|F)/\mathcal{G}(E|F)^0 \) coincides with the ordinary Galois group of \(F(x) \) over \(F \).

The differential \(F \)-algebra \(T(E|F) \), consisting of all solutions in \(E \) of linear homogeneous differential equations over \(F \), plays a very important role in Picard-Vessiot theory and it is well understood. The following facts on \(T(E|F) \) are well-known: The differential Galois group stabilizes \(T(E|F) \), \(Q(T(E|F)) = E \) and if the \(\mathcal{G}(E|F) \) orbit set of an element \(y \in E \) spans a finite dimensional \(C \)-vector space then \(y \in T(E|F) \). There is a structure theorem that describes \(T(E|F) \) in terms of the coordinate ring of \(\mathcal{G}(E|F) \) ([Mag99], Theorem 5.12): If \(\mathcal{T} \) is an algebraic closure of \(F \) then there is an \(\mathcal{T} \)-algebra isomorphism

\[
\mathcal{T} \otimes_F T(E|F) \to \mathcal{T} \otimes_C C[\mathcal{G}(E|F)].
\]

Furthermore, the above isomorphism respects the \(\mathcal{G}(E|F) \) action. Here \(\mathcal{G}(E|F) \) acts trivially on \(\mathcal{T} \) and acts as right translations on the coordinate ring \(C[\mathcal{G}(E|F)] \) of \(\mathcal{G}(E|F) \). When \(\mathcal{G}(E|F) \) is a connected solvable group, it is also known that

\[
T(E|F) \simeq F \otimes_C C[\mathcal{G}(E|F)],
\]

where again, the isomorphism is compatible with the action of \(\mathcal{G}(E|F) \) ([Mag99], Corollary 5.29).

In this article we will be studying the \(F \)-algebra \(T(K|F) \), where \(K \) is an intermediate differential field of a Picard-Vessiot extension of \(F \). In view of the fundamental theorem, if \(\mathcal{H} \) is a closed subgroup then \(\mathcal{H} = \mathcal{G}(E|K) \) for some intermediate differential field \(K \) and we have \(T(K|F) = T(E|F) \cap K = T(E|F)^\mathcal{H} \).

As noted in the introduction section, it can happen that \(T(K|F) = F \). The characterization theorem we
prove in this article says that \(\mathcal G(E|F)^0 \) is solvable if and only if \(T(K|F) \) has “enough elements” in the sense that \(Q(T(K|F)) = K \) for every intermediate differential field \(K \). For the proof of our theorem, we will rely on the structure theorem described in Equation 2.1 along with the following proposition.

Proposition 2.1. Let \(F \) be a differential field of characteristic zero with an algebraically closed field of constants. Let \(E \) be a Picard-Vessiot extension of \(F \) and \(F(x) \) be the algebraic closure of \(F \) in \(E \). Let \(K \) be a differential field intermediate to \(F \) and \(E \). Then

(a) \(T(K(x)|F(x)) = T(K(x)|F) \).

(b) \(T(K(x)|F) \) is an integral extension of \(T(K|F) \).

Proof. Every differential equation over \(F \) is also a differential equation \(F(x) \) and thus it is clear that \(T(K(x)|F) \subseteq T(K(x)|F(x)) \). Since \(F(x) \) is finite dimensional \(F \)-vector space, for any \(y \in F(x) \), there must be a nonnegative integer \(m \) such that \(y, y', \ldots, y^{(m)} \) are \(F \)-linearly dependent. Therefore, \(F(x) \subseteq T(K(x)|F) \). Now let \(y \in T(K(x)|F(x)) \setminus F(x) \) and \(\mathcal L = \partial^{(n)} + a_{n-1} \partial^{(n-1)} + \cdots + a_0 \in F(x)[\partial] \) be a monic operator of order \(n \geq 1 \) such that \(\mathcal L(y) = 0 \). Let \(V \) be the set of all solutions of \(\mathcal L \) in \(E \) and for any \(\sigma \in \mathcal G(E|F) \), let \(V_\sigma \) be the set of all solutions of \(\mathcal L_\sigma = \partial^{(n)} + \sigma(a_{n-1}) \partial^{(n-1)} + \cdots + \sigma(a_0) \) in \(E \). Observe that \(\sigma(V) = V_\sigma \). Since \(a_i \in F(x) \) for each \(i \) and \(E^G(E|F) = F(x) \), the orbit set of \(a_i \) under the action of \(\mathcal G(E|F) \) is a finite set for each \(i \). Therefore, there are only finitely many \(\mathcal L_\sigma \). Let \(\sigma_0 \in \mathcal G(E|F) \) be the identity and \(\mathcal L = \mathcal L_{\sigma_0}, \mathcal L_{\sigma_1}, \ldots, \mathcal L_{\sigma_k} \) be the distinct operators. Let \(W = V_{\sigma_0} + V_{\sigma_1} + \cdots + V_{\sigma_k} \). Clearly, \(W \) is a finite dimensional \(C \)-vector space. For any \(\sigma \in \mathcal G(E|F) \) and \(y \in V_{\sigma_i} \), we have \(\sigma(y) \in V_{\sigma_i} \subseteq W \). This implies that \(W \) is also a \(\mathcal G(E|F) \)-module. Thus, any \(y \in W \) must be a solution of some operator in \(F[\partial] \). That is, \(y \in T(K(x)|F) \). Hence

\[
T(E|F) = T(E|F(x)).
\]

(2.2)

Let \(r \in T(K(x)|F) \). Since \(F(x) \) is a finite Galois extension of \(F \), so is \(K(x) \) over \(K \). Then the ordinary Galois group \(\text{Aut}(K(x)|K) \) equals the differential Galois group \(\mathcal G(K(x)|K) \) ([vdPS03], Exercise 1.24). Let \(\{r = r_1, r_2, \cdots, r_m\} = \{\sigma(r) \mid \sigma \in \mathcal G(K(x)|K)\} \). Then for \(\sigma \in \mathcal G(K(x)|K) \), we have \(\sigma(r) \in T(K(x)|F) \) and thus \(r_i \in T(K(x)|F) \) for all \(i \). The coefficients of the monic irreducible polynomial of \(r \) over \(K \) are symmetric polynomials in \(r_1, \cdots, r_m \). Therefore the coefficients of the irreducible polynomial belong to \(T(K(x)|F) \cap K = T(K|F) \).

This shows that \(T(K(x)|F) \) is an integral extension of \(T(K|F) \).

\[\square\]

3. LIouvillian Picard-Vessiot Extensions

A differential field extension \(E \) of \(F \) is called a **liouvillian extension** of \(F \) if there exists a tower of fields

\[
E = E_n \supseteq E_{n-1} \supseteq \cdots \supseteq E_0 = F
\]

such that \(E_i = E_{i-1}(t_i) \) and that either \(t_i \) is algebraic over \(E_{i-1} \) or \(t'_i \in E_{i-1} \) or \(t_i \neq 0 \) and \(t'_i/t_i \in E_{i-1} \). We recall that a Picard-Vessiot extension \(E \) of \(F \) is called a **liouvillian Picard-Vessiot extension** if \(E \) is a liouvillian extension as well as a Picard-Vessiot extension and that the identity component of the differential Galois group of a liouvillian Picard-Vessiot extension is solvable.

Theorem 3.1. Let \(F \) be a differential field with an algebraically closed field of constants and \(E \) be a Picard-Vessiot extension of \(k \). Then \(E \) is a liouvillian extension of \(F \) if and only if \(Q(T(K|F)) = K \) for any differential field \(K \) intermediate to \(E \) and \(F \); in which case \(T(K|F) \) is a finitely generated simple differential \(F \)-algebra.

Proof. Let \(E \) be a liouvillian extension of \(F \), \(K \) be an intermediate differential subfield and \(\mathcal H := \mathcal G(E|K) \). First we assume that \(\mathcal G(E|F) \) is connected. Then we have \(T(E|F) \cong F \otimes_C \mathcal G(E|F) = F[\mathcal G(E|F)] \). Since \(\mathcal G(E|F) \) is solvable, from [CPS77], Theorem 4.3, we have that closed subgroups of \(\mathcal G(E|F) \) are observable. Now from [ByBHM63], Theorem 3, we obtain \(Q(F[\mathcal G(E|F)]^\mathcal H) = Q(F[\mathcal G(E|F)])^\mathcal H \). Thus
Let $\mathcal{G}(E|F)$ be a differential field containing $F(x)$ such that $\mathcal{G}(E|F)$ is not connected. Then $E^\mathcal{G}(E|F)$ is a field containing E and $E^\mathcal{G}(E|F)$ is not connected. From Proposition 2.1, $T(K(x)|F(x)) = T(K(x)|F)$ and thus $K(x) = Q(T(K(x)|F))$. We also know that $T(K(x)|F)$ is an integral extension of $T(K|F)$. Let $S = T(K|F) \setminus \{0\}$. Then $S^{-1}T(K(x)|F)$ is also an integral extension of $S^{-1}T(K|F)$. Since the latter is a field, so is the former. However, $K(x) = Q(T(K(x)|F))$ is the smallest field containing $T(K(x)|F)$ and thus $S^{-1}T(K(x)|F) = K(x)$. Now for any $r \in K$, we have $r = f/g$, where $f \in T(K(x)|F)$ and $g \in S = T(K|F) \setminus \{0\}$. Therefore, $f = gr \in T(K(x)|F) \cap K = T(K|F)$ and this proves that $Q(T(K|F)) = K$.

To prove the converse, we suppose that E is not a liouvillian extension of F. Let $F(x) = E^\mathcal{G}(E|F)^0$ be the algebraic closure of F in E. Then the identity component $\mathcal{G}(E|F)^0$ is not solvable and therefore it contains a nontrivial Borel subgroup B. Let $K = E^\mathcal{G}$ and $r \in T(E|F(x))^B$. Since E is a Picard-Vessiot extension of $F(x)$ with Galois group $\mathcal{G}(E|F)^0$, the orbit set O_r of r under the action of $\mathcal{G}(E|F)^0$ is contained in a finite dimensional C-vector space which is also $\mathcal{G}(E|F)^0$-stable. Moreover, the quotient $\mathcal{G}(E|F)^0/B$ has the structure of a projective variety. Therefore, the induced map $\phi : \mathcal{G}(E|F)^0/B \to O_r$, given by $\phi(\sigma) = \sigma(r)$ for $\sigma \in \mathcal{G}(E|F)^0$, is a morphism from a projective variety into some affine space containing O_r. Thus ϕ must be a constant. That is, $r \in T(E|F(x))^B = F(x)$ and thus $F(x) = T(E|F(x))^B$. Note that

$$Q(T(K|F)) = Q(T(E|F)^B) = Q(T(E|F(x))^B) = F(x) \neq K.$$

This proves the converse.

Next, we shall show that $T(K|F)$ is a finitely generated differential F-algebra. First assume that $\mathcal{G}(E|F)$ is a connected solvable group. Let \mathcal{H} be a closed subgroup of $\mathcal{G}(E|F)$ and $K := E^\mathcal{H}$. We have $T(E|F) \simeq F \otimes_C C[\mathcal{G}(E|F)]$ and therefore

$$T(K|F) = T(E|F)^\mathcal{H} \simeq (F \otimes_C C[\mathcal{G}(E|F)])^\mathcal{H} = F \otimes_C C[\mathcal{G}(E|F)]^\mathcal{H}.$$

Since $\mathcal{G}(E|F)$ is solvable, the homogeneous space $\mathcal{G}(E|F)/\mathcal{H}$ is affine ([CPS77], Theorem 4.3 and Corollary 4.6) and we obtain $C[\mathcal{G}(E|F)]^\mathcal{H} = C[\mathcal{G}(E|F)/\mathcal{H}]$ is a finitely generated C-algebra. This in turn implies $T(K|F) \simeq F \otimes_C C[\mathcal{G}(E|F)]^\mathcal{H}$ is a finitely generated F-algebra. Now assume that only $\mathcal{G}(E|F)^0$ is solvable. Let $F(x) = E^\mathcal{G}(E|F)^0$ and observe that $\mathcal{G}(E|F(x)) = \mathcal{G}(E|F)^0$ is connected. Then we know $T(K(x)|F(x))$ is a finitely generated F-algebra and it follows that $T(K(x)|F(x))$ is a finitely generated F-algebra as well. Since $T(K(x)|F(x)) = T(K(x)|F)$ is an integral extension of $T(K|F)$, by Artin-Tate Theorem ([Eis95], p.143) we obtain that $T(K|F)$ is a finitely generated F-algebra.

Now it only remains to show that $T(K|F)$ is a simple differential F-algebra. As done earlier, we shall first prove simplicity when $\mathcal{G}(E|F)$ is connected. Let I be a nonzero differential ideal of $T(K|F)$ and choose $0 \neq y \in I$ so that $\mathcal{L}(y) = 0$ for some $\mathcal{L} \in F[\partial]$ of smallest positive order n. Since the Galois group is connected, $\mathcal{L} = \mathcal{L}_{n-1}\mathcal{L}_1$ for $\mathcal{L}_{n-1}, \mathcal{L}_1 \in F[\partial]$ of order $n - 1$ and 1 ([Kol48], p.38). Let $\mathcal{L}_1 = \partial - a$ for $a \in F$ and observe that $\mathcal{L}_1(y) = y' - ay \in I$. Now since $0 = \mathcal{L}(y) = \mathcal{L}_{n-1}(\mathcal{L}_1(y))$, from the choice of n, we obtain that $y' - ay = b \in F$. Thus $b = \mathcal{L}_1(y) \in I$. If $b \neq 0$ then $I = T(K|F)$. On the other hand if $b = 0$ then $y' = ay$ and therefore $(1/y)' = -a/1(y)$. Thus $1/y \in T(K|F)$ and we again obtain $I = T(K|F)$.

This completes the proof when $\mathcal{G}(E|F)$ is connected. For an arbitrary liouvillian Picard-Vessiot extension E of F, we have $T(K(x)|F(x)) = T(K(x)|F)$ to be a finitely generated simple differential F-algebra, where $F(x)$ is the algebraic closure of F in E. Suppose that $T(K|F)$ is not simple and let $I \neq T(K|F)$ be a differential ideal that is maximal among all differential ideals not intersecting $\{I\}$. Then I is known to be a prime ideal. Let I^e be the extension ideal in $T(K(x)|F)$. It is easy to see that I^e is a differential ideal and therefore $I^e = T(K(x)|F)$. Since $T(K(x)|F)$ is integral over $T(K|F)$ and that I is prime, there must exist a prime ideal of $T(K(x)|F)$ that contracts to I. But any such prime ideal must contain $I^c = T(K(x)|F)$, a contradiction.

A liouvillian Picard-Vessiot extension E of F is known to have the following structure ([Mag99], Proposition 6.7): Let $E^\mathcal{G}(E|F)^0 = F(x)$ and \mathcal{V} be the unipotent radical of $\mathcal{G}(E|F)$. Then $\mathcal{V} \subseteq \mathcal{G}(E|F)^0$ and that
have found an element \(E \) such that \(E \) is a Picard-Vessiot extension of \(F(x) \) with a differential Galois group isomorphic to a maximal torus of \(\mathcal{G}(E[F])^0 \).

From the inverse problem for tori ([Mag99], p.99 or [vdPS03], Exercise 1.41), one can assume further that the \(F(x) \)-algebraically independent \(\xi_i \) are chosen so that \(\xi_i/\xi_i \in F(x) \) (as opposed to \(\xi_i/\xi_i \in F(x)(\xi_1, \ldots, \xi_{i-1}) \)). Using this description of \(E \), in the next corollary, we shall resolve \(K \) into a tower of differential fields such that each differential field in the tower is obtained from its predecessor by adjoining a solution of a first order equation of a special kind.

Corollary 3.2. Let \(F \) be a differential field of characteristic zero with an algebraically closed field of constants. Let \(E \) be a liouvillian Picard-Vessiot extension of \(F \) and \(\mathcal{G}(E[F]) \) be connected. Let \(K \) be a differential field intermediate to \(E \) and \(F \). Then \(K = F(t_1, \ldots, t_n) \), where for each \(i \), \(t_i \in T(K|F) \), \(t_i = a_i t_i + b_i \) for \(a_i \in k \) and \(b_i \in F(t_1, \ldots, t_{i-1}) \). Furthermore, if \(\mathcal{G}(E[F]) \) is a unipotent algebraic group then each \(a_i \) can be taken to be zero and if \(\mathcal{G}(E[F]) \) is a torus then each \(b_i \) can be taken to be zero.

Proof. To avoid triviality, we shall assume \(F \neq K \) and \(K \neq E \). Let \(M \) be any differential field such that \(F \subseteq K \subseteq \mathcal{G}(E[F]) \). We claim that there is a \(y \in T(K|F) \setminus M \) such that \(y' = a y + b \) for some \(a \in F \) and \(b \in M \) and that \(a \) can be taken to be zero if \(\mathcal{G} \) is unipotent and that \(b \) can be taken to be zero if \(\mathcal{G}(E[F]) \) is a torus. To prove this claim, we first observe from Theorem 3.1 that \(T(K|F) \setminus M \neq \emptyset \). Choose \(y \in T(K|F) \setminus M \) and \(\mathcal{L} \in F[\partial] \) of smallest positive degree \(m \) such that \(\mathcal{L}(y) = 0 \). Since \(\mathcal{G}(E[F]) \) is connected, \(\mathcal{L} = \mathcal{L}_{m-1} \mathcal{L}_1 \), where \(\mathcal{L}_{m-1}, \mathcal{L}_1 \in F[\partial] \) are of order \(m - 1 \) and \(1 \) respectively. Let \(\mathcal{L}_1 = \partial - a \), \(a \in F \). Observe that \(\mathcal{L}_1(y) \in T(K|F) \) and \(\mathcal{L}_{m-1}(\mathcal{L}_1(y)) = 0 \). Therefore, from our choice of \(m \), \(\mathcal{L}_1(y) \in T(M|F) \subset M \). Thus we have found an element \(y \in T(K|F) \setminus M \) such that \(y' = a y + b \) where \(a \in F \) and \(b \in M \). If \(\mathcal{G}(E[F]) \) is unipotent then \(E = F[\xi_1, \ldots, \xi_s] \) where \(\xi_i' / \xi_i \in F \) for each \(i \). If \(b \neq 0 \) then apply [Sri20], Proposition 2.2. Thus, in this case, we may choose \(\mathcal{L}_1 = \partial - (a'/a) \) and obtain an element \(\alpha y / \alpha \in T(K|F) \) such that \((\alpha y / \alpha)' = b / \alpha \in M \). Finally suppose that \(\mathcal{G}(E[F]) \) is a torus. Then \(E = F[\xi_1, \ldots, \xi_s] \), where \(\xi_i' / \xi_i \in F \) for each \(i \). If \(b = 0 \) then apply [Sri20], Proposition 2.2 to the extension \(M(\xi_1, \ldots, \xi_s) \) of \(M \) with \(\mathcal{L}(y) = y' - a y = b \) and obtain \(\alpha \in M \) such that \(a' = a \alpha = b \). Now \(y - \alpha \in T(K|F) \setminus M \) and \((y-\alpha)'/(y-\alpha) = a / \in F \). This proves the claim. Now taking \(M = F \) one finds \(t_i \) and taking \(M = F(t_i, \ldots, t_{i-1}) \), one finds \(t_i \in T(K|F) \setminus M \), with the desired properties. Since \(K \), as a field, is finitely generated over \(F \), there must be an \(n \) such that \(K = F(t_1, \ldots, t_n) \). \(\square \)

Remark 3.3. In the above corollary, the hypothesis that \(\mathcal{G}(E[F]) \) is connected allowed us to factor the differential operator \(\mathcal{L} \) over \(F[\partial] \), which was a crucial step in the proof. In fact, the assumption that \(\mathcal{G}(E[F]) \) is connected cannot be dropped. For example, consider the liouvillian extension \(E = \mathbb{C}(x)(\sqrt{\mathbb{C}}, e^{\sqrt{\mathbb{C}}}) \), where the derivation is \(\prime := d/dx \). Then \(E \) is a liouvillian Picard-Vessiot extension of \(\mathbb{C}(x) \) for the differential equation

\[
\mathcal{L}(Y) = Y'' + \frac{1}{2x} Y' - \frac{1}{4x} Y = 0.
\]

The set \(V := \text{span}_e \{ e^{\sqrt{\mathbb{C}}}, e^{-\sqrt{\mathbb{C}}} \} \) is the set of all solutions of \(\mathcal{L}(Y) = 0 \) in \(E \). Since \(E \) contains the algebraic extension \(\mathbb{C}(x)(\sqrt{\mathbb{C}}), \mathcal{G}(E[F]) \) is not connected\(^2\). One can show that the intermediate differential field \(K := \mathbb{C}(x)(e^{\sqrt{\mathbb{C}}}, e^{-\sqrt{\mathbb{C}}}) \) contains no elements satisfying a first order equation over \(\mathbb{C}(x) \) other than the elements of \(\mathbb{C}(x) \) itself ([Sri20], p.376).

4. Intermediate Differential Subfields of Picard-Vessiot Extensions

Let \((\mathbb{C}(x), d/dx)\) be the ordinary differential field of complex rational functions with derivation \(\prime := d/dx \). Let \(E \) be a Picard-Vessiot extension of the Airy differential equation \(\mathcal{L}(Y) := Y'' - x Y = 0 \). As noted in Section 1, for the differential field \(K = \mathbb{C}(x)(w) \), where \(w \) satisfies the Ricatti equation \(w' = x - w^2 \), we

\(^2\)The differential Galois group \(\mathcal{G}(E[C(x)]) \) is isomorphic to \(G_n \times \mathbb{Z}_2 \).
have $T(K|\mathbb{C}(x)) = \mathbb{C}(x)$. Nonetheless, the differential ring $\mathbb{C}(x)[w]$ is in fact a (finitely generated) simple differential F–algebra whose field of fractions is K. To see this, it is enough to show that the differential ring $\mathbb{C}(x)[w]$ is simple. Suppose that I is a differential ideal of $\mathbb{C}(x)[w]$. Then I must be a principal ideal, say $I = (v)$ for some monic irreducible polynomial $v \in \mathbb{C}(x)[w]$. Write $v = \prod_{i=1}^{m} w - \alpha_i$, for distinct algebraic elements α_i of $\mathbb{C}(x)$. We have

\[v' = \sum_{j} (w' - \alpha_j') \prod_{i\neq j} (w - \alpha_i). \]

Since v divides v', $w - \alpha_i$ must divide $w' - \alpha_i'$ and it follows that $\alpha_i' = x - \alpha_i^2$. This contradicts the fact that the Ricatti equation $w' = x - w^2$ has no solutions algebraic over $\mathbb{C}(x)$. Thus $\mathbb{C}(x)[w]$ is a (finitely generated) simple differential F–algebra. This example motivates us to ask whether intermediate differential fields K of arbitrary Picard-Vessiot extensions can be obtained as field of fractions of some finitely generated simple differential F–subalgebras of K? In Theorem 4.3, we shall answer this question affirmatively.

Proposition 4.1. Let K be a finitely generated differential field extension of F. Then K contains a finitely generated differential F–algebra whose field of fractions is K.

Proof. Let y_1, \ldots, y_{n-1} be a transcendence base of K over F and $F(y_1, \ldots, y_{n-1})[y_1] = K$, for $y_i \in K$ algebraic over $F(y_1, \ldots, y_{n-1})$. For each y_i, we shall construct a finitely generated differential F–algebra R_i whose field of fractions is $F(y_i) = F(y_i, y_i', \ldots)$. Then the smallest F–algebra R containing R_1, \ldots, R_t will be a finitely generated differential F–algebra whose field of fractions is K.

Let $y \in \{y_1, \ldots, y_{n-1}\}$. Consider the differential field $F(y)$. Let n_1 be the smallest integer so that $y, y', \ldots, y^{(n_1-1)}$ are algebraically independent over F and that $y^{(n_1)}$ be algebraic over the subalgebra $F[y, y', \ldots, y^{(n_1-1)}]$ of K. Let

\[P(X) := \sum_{i=0}^{m} a_i X^i \in F[y, y', \ldots, y^{(n_1-1)}][X] \]

be a minimal polynomial of $y^{(n_1)}$ with $a_m \neq 0$. Now $P(y^{(n_1)}) = 0$ implies

\[\sum_{i=0}^{m} a_i (y^{(n_1)})^i + \left(\sum_{i=0}^{m} ia_i (y^{(n_1)})^{i-1} \right) y^{(n_1+1)} = 0. \]

From the minimality of n_1, we have $r := \sum_{i=0}^{m} ia_i (y^{(n_1)})^{i-1} \neq 0$ and therefore

\[y^{(n_1+1)} = -\sum_{i=0}^{m} a_i (y^{(n_1)})^i \in F[y, y', \ldots, y^{(n_1)}][r^{-1}], \]

Since $y^{(n_1+1)} \in R_y := F[y, y', \ldots, y^{(n_1)}]$, it is clear for Equation 4.1 that R_y contains all the derivatives of y. Also $(1/r)' = -r'/r^2 \in R_y$ and thus R_y is a finitely generated differential F–algebra whose field of fractions is $F(y)$. \hfill \square

Proposition 4.2. Let F be a differential field of characteristic zero with an algebraically closed field of constants. Let E be a Picard-Vessiot extension of F and S be a differential F–subalgebra of E such that $T(E|F) \subseteq S$. Then S is a simple differential F–algebra.

Proof. Let I be a nonzero differential ideal of S and $0 \neq a \in I$. Then $a = f/g$ for $f, g \in T(E|F) \subseteq S$ and we have $ga = f \in I^* = T(E|F) \cap I$. Since the contraction ideal I^* is a differential ideal and that $T(E|F)$ is a simple differential ring, we have $1 \in I^* \subseteq I$. This implies that S is a simple differential ring. \hfill \square

Theorem 4.3. Let F be a differential field of characteristic zero with an algebraically closed field of constants. Let E be a Picard-Vessiot extension of F and let $F \subseteq K \subseteq E$ be an intermediate differential field. Then K contains a finitely generated simple differential F–algebra whose field of fractions is K.

Proof. Since Picard-Vessiot extensions are finitely generated field extensions, we apply Proposition 4.1 and obtain a finitely generated differential F–algebra R, whose field of fractions is K. Let
We first enlarge $T(E|F)$ to a finitely generated simple differential F–algebra S so that R becomes a subalgebra of S. To do so, let S be the subring of E generated by $T(E|F)$ and the set \(\{ \frac{1}{y_i} \mid 1 \leq i \leq n \} \). Since $T(E|F) \subseteq S$, from Proposition 4.2 it follows that S is a finitely generated simple differential algebra.

Next, we shall find a suitable candidate for r. Let E be an algebraic closure of E and \overline{E} be the algebraic closure of F in \overline{E}. Note that \overline{E} is an algebraically closed field. Let R and S be the rings generated by R and S over \overline{E}, respectively. Clearly $R \subseteq S$. $R \subseteq S$ and that \overline{R} and \overline{S} are integral extensions of R and S respectively. The domains \overline{R} and \overline{S} are finitely generated \overline{E}–algebras and therefore they are coordinate rings of some irreducible affine varieties X and Y. Let $\phi : Y \rightarrow X$ be the morphism induced by the inclusion $\overline{R} \subseteq \overline{S}$. Then ϕ is dominant and therefore $\phi(Y)$ must contain an open set U of X. Choose $f \in \overline{R}$ so that $X_f := \{ x \in X \mid f(x) \neq 0 \} \subseteq U$. Since f must be integral over the domain R, there is a monic polynomial $P(X) = X^n + r_{n-1}X^{n-1} + \cdots + r \in R[X]$ such that $P(f) = 0$ and $r \neq 0$. Then $(f^{n-1} + r_{n-1}f^{n-2} + \cdots + r) = -r$ and we have $X_f \subseteq X_f \subseteq U \subseteq \phi(Y)$. Thus ϕ naturally restricts to a surjective morphism from X_f to X_f. Observe that $\phi^{-1}(Y)$ is a non-empty subset of X_f. Hence there is a prime ideal r of $\overline{R}[1/r]$. Since $X_f \subseteq \phi(Y)$, we obtain that $\phi^{-1}(\phi^{-1}(Y))$ is a non-empty subset of Y_f. Then $\phi^{-1}(\phi^{-1}(Y)) \subseteq Y_f$. Let I' be the extension of I in $\overline{S}[1/r]$ and therefore I' is also a proper ideal of $\overline{S}[1/r]$.

Now we shall prove that $R[1/r]$ is a simple differential ring. Suppose that a is a nonzero proper differential ideal of $R[1/r]$. Since every differential ideal is contained in a maximal differential ideal and maximal differential ideals are prime, we have a nonzero prime differential ideal p containing a. But $\overline{R}[1/r]$ is an integral extension of $R[1/r]$ and therefore there is a prime ideal q in $\overline{R}[1/r]$ such that $q \cap R[1/r] = p$. Let p' be the extension ideal of p in $\overline{R}[1/r]$. Clearly $p' \subseteq q$ and therefore p' is a proper ideal of $\overline{R}[1/r]$. Let b be the extension ideal of p' in $\overline{S}[1/r]$. Then from our earlier observation, b is a proper ideal. Since p is a differential ideal, b is also a differential ideal.

\[\begin{align*}
R & := F[x_1, y_1, x_2, y_2, \ldots, x_n, y_n], \text{ where } x_i, y_i \in T(E|F). \text{ We shall find an element } r \in R \text{ so that } R[1/r] \text{ is a simple differential } F–\text{algebra and this would complete the proof.}
\end{align*} \]

\[\text{Acknowledgement} \]

The authors thank Chetan Balwe, Andy Magid and Kapil Paranjape for useful discussions.

References

[ByHM63] A. Bialynicki Birula, G. Hochschild, and G. D. Mostow, Extensions of representations of algebraic linear groups, Amer. J. Math. 88 (1966), 131–144. MR 1559583

[CPM77] Edward Cline, Brian Parshall, and Leonard Scott, Induced modules and affine quotients, Math. Ann. 230 (1977), no. 1, 1–14. MR 470094

[Eis95] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995, With a view toward algebraic geometry. MR 1322960

[Kol48] E. R. Kolchin, Algebraic matrix groups and the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Ann. of Math. (2) 49 (1948), 1–42. MR 24884

[Mag99] Andy R. Magid, Differential Galois theory, Notices Amer. Math. Soc. 46 (1999), no. 9, 1041–1049. MR 1710665

[Sri20] Varadaraj R. Srinivasan, Differential subfields of liouvillian extensions, J. Algebra 550 (2020), 358–378. MR 4098220

[vdPS03] Marius van der Put and Michael F. Singer, Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 328, Springer-Verlag, Berlin, 2003. MR 1960772

Indian Institute of Science Education and Research, Sector 81, Mohali 140306, India