In this work we used a generalized Frenkel-Kontorova model to study the mobility of water molecules inside carbon nanotubes with small radius at low temperatures. Our simulations show that the mobility of the confined water decreases monotonically increasing the amplitude of the substrate potential at fixed commensurations. On the other hand, the mobility of the water molecules shows a non-monotonic behavior when varying the commensuration. This result indicates that the mobility of the confined fluid presents different behavior regimes depending on the amplitude of the water-nanotube interaction. In order to understand qualitatively these results, we study analytically the driven Frenkel-Kontorova model at finite temperatures. This analysis allows us to obtain the curves of the mobility versus commensurations, at fixed substrate potentials. Such curves shows the existence of three regimes of mobility behavior as a function of the commensuration ratio. Additionally, our study indicates a nontrivial and strong dependence of the mobility with a quantity that can be interpreted as an effective amplitude of the substrate potential, depending on the bare amplitude of the substrate potential, the commensuration ratio and temperature.
I. INTRODUCTION

A fluid in nanoscale confinement can present a dramatic change in its properties when compared with its bulk behavior. This occurs mainly due to the confining surface that, in this scale, is structured and smooth.

Single-wall carbon nanotubes (CNTs) have a periodic structure which allows the confined fluid to present anomalous behavior. Moreover, they present excellent electronic and mechanical properties, which makes them a promising nanochannel for a variety of applications in nanotechnology, specially in the biotechnology field. Therefore, the behavior of water confined inside CNTs has been extensively studied. This studies showed that, under confinement, water presents an anomalous flow when compared with predictions of classical hydrodynamic theory.

However, this anomalous behavior is not entirely understood. Experimental results showed that the water flow enhancement factor can vary from one to three orders of magnitude, while simulations studies shows an enhancement of up to five orders of magnitude. Beyond the results range issue, there is not consensus about the enhancement factor behavior. Some previous works present a monotonic enhancement with decreasing the radius, while others present a discontinuous enhancement factor. A simple explanation to the water mobility behavior was proposed by Falk et al. They found that the nanotube curvature, given by the inverse of the nanotube radius, has a strong effect on water-CNT commensuration ratio: for more curved nanotubes she found more misfits water molecules over internal nanotube surface, leading to a higher mobility; while for a flat surface (in slab geometry) the mobility is independent of confinement (slab separation). So, for Falk et al., the high mobility is mainly related with the curvature-induced water-carbon incommensurability.

The water has a complex phase diagram and there is no model to describe its behavior entirely. Several atomistic models were proposed in order to describe water’s behavior, usually at ambient pressure and temperature. Besides these models, effective models have been widely employed in order to study anomalous behavior in bulk water-like systems. In these effective models is considered that bulk water form small clusters of four water molecules, and that these clusters come together to form water bicyclo-octamers of different densities. However, in confined systems, these structures are completely different and heavily
dependent of the tube geometry and water model employed \cite{2,12,26,28}. For CNTs with radius sufficiently small the confined water molecules form single-file chains, an arrangement that is an almost one-dimensional and highly oriented hydrogen-bonded network. Therefore, the choice of the inter-particle water potential is not trivial.

Understanding the water flow inside CNTs is a very complex task because the current available technology has a limited capacity to directly “look” at the dynamics of the confined molecules \cite{29,30}. So, to model the water-CNT system, theoreticians need to have some insight from a known nanoscopic system, for example, the dynamics of atoms or molecules on a surface. For study the nanoscale friction several experimental methods have been developed to measure directly or indirectly the mobility of atoms or molecules on a surface. In this context, it is preferable to talk in terms of friction and mobility, rather than flow.

The most prominent apparatus developed to study the nanoscale friction was the atomic force microscope (AFM). AFM studies show that on the nanoscale the same physical system can exhibit a dry friction (like solid-solid friction) or wet friction (like liquid-solid friction), depending on several factors as module of shear stress, applied time of shear stress, etc.\cite{31–33} This behavior is completely different from that observed for macroscopic or even mesoscopic system. Through the quartz crystal microbalance (QCM), a novel experimental method developed by J. Krim, it was observed systematically that wet friction can indeed occur in structured systems.\cite{34–36} The results of QCM introduce a new key question to be answered, what is the main way of dissipation of energy in the nanoscale wet friction: the internal excitation due the interactions with the surface topology (phononic friction)\cite{37–40} or the process of excitation of low-energy electron-hole pairs on the surface (electronic friction)\cite{41–46} To answer this question several and beautiful arranges were developed (from experimental perspective), even systems on superconducting state were analyzed.\cite{36,47} From theoretical perspective almost all work was address by molecular dynamics simulation using a generalized Frenkel-Kontorova (FK) model as a paradigm.\cite{37–39,48,49}

Our aim in this work is to study the relation between confined water mobility and the CNT topology. To do this, we performed molecular dynamics simulations using a generalized Frenkel-Kontorova model. The potentials were chosen to effectively reproduce the water behavior when confined in carbon nanotubes with very small radius (single-file state). The effect of the nanotube can be illustrated by a naive analogy with an egg carton, being the energy landscape smoother for nanotubes with smaller radius\cite{18} and the behavior of single-
file water can be approximated as a one-dimensional chain of particles interacting through a two length scale isotropic potential. To capture the topological effects on water mobility using the FK model, simulations should be performed in the low temperature regime. To avoid the water freezing, perfect commensuration ratios (0.5, 1.0) were avoided as well. Additionally, using an analytical analysis we found a relation between the mobility’s behavior as a function of temperature (as predicted phenomenologically50,51) and corrugation. This paper is organized as follow: in section II we present the generalized Frenkel-Kontorova model used in the characterization of the mobility of a confined water-like fluid. In section III we present and discuss the simulational results. To continue, section IV shows an analytical analysis of the FK model at finite temperatures. Finally, in section V our conclusions are presented.

II. A GENERALIZED FRENKEL-KONTOROVA MODEL

In this section we present the model used to study the dynamics of water molecules in a single file structure flowing inside a carbon nanotube. Our system of particles is study by means of a one-dimensional generalized Frenkel-Kontorova model. In this way the single file structure is regarded as a chain of particles with mass m, interacting through a core-softened potential $V(x_{ij})$ (Eq. 2), where $x_{ij} = x_i - x_j$, represents the distance between particles i and j. Moreover we modeled the influence of the structured nanotube by the presence of an external periodic potential, $U(x_i)$ (Eq. 3). To induce a net flow of particles in a given direction we applied an external force F on each particle of the system.

Additionally, the temperature is fixed adding a stochastic force, $f_i(t)$, and a viscous damping force, $-m\eta_{ad}\dot{x}_i$. The stochastic force is related with temperature and with the \textit{ad hoc} damping constant (η_{ad}) by means of the fluctuation-dissipation theorem: $\langle f_i(t)f_j(0) \rangle = 2\eta_{ad}mk_BT\delta_{ij}\delta(t)$. Here k_B is the Boltzmann constant and η_{ad} can be thought as resulting of the influence of certain degrees of freedom inherent of real physical systems that are not included in our model. With such ingredients the equation of motion of our system is given by the following Langevin equation:

$$m\ddot{x}_i(t) + \eta_{ad}\dot{x}_i(t) = -\frac{dU(x_i)}{dx_i} - \frac{dV(x_{ij})}{dx_i} + f_i(t) + F_i. \quad (1)$$

The interaction between particles, $V(x_{ij})$, is a potential obtained by the addition of 3
different Fermi-Dirac distributions:

\[V(x_{ij}) = \sum_{k=1}^{3} \frac{\epsilon_k}{\exp\left(\frac{x_{ij} - r_{0k}}{\sigma_k}\right) + \alpha_k}, \quad (2) \]

where \(x_{ij} = |x_j - x_i| \) is the distance between two water-like particles. Table I shows the parameters used for \(V(x_{ij}) \) in our simulations. The periodic potential \(U(x_i) \) representing the water-CNT interaction is:

\[U(x_i) = u_0 \cos\left(\frac{2\pi}{a} x_i\right), \quad (3) \]

being \(a \) and \(u_0 \) the periodicity and the amplitude of the potential respectively. The amplitude of potential is also called corrugation. We choose the parameters for the potentials \(V(x_{ij}) \) and \(U(x_i) \) to effectively reproduce the water-water and water-CNT interactions for the TIP3P water model confined in a nanotube. The complete discussion for these potentials determinations can be found in the supplemental material at section VI.

In what follows we take the equilibrium distance between two oxygens of molecules forming a hydrogen bond as \(r_I \), the energy of the hydrogen bond as \(E_I \), and the mass \(m \) of a water molecule as the fundamental units of the problem. Consequently all physical quantities are expressed in reduced units, this is:

\[
\begin{align*}
 x^* &\equiv x r_I^{-1}, & F^* &\equiv F r_I E_I^{-1}, \\
 T^* &\equiv T k_B E_I^{-1}, & t_0 &\equiv r_I (m / E_I)^{1/2}, \\
 V^* &\equiv V E_I^{-1}, & t^* &\equiv t t_0^{-1},
\end{align*}
\]

where \(t \) is time.

TABLE I. Parameters for the potential \(V(x_{ij}) \) in reduced units of \(m, E_I \) and \(r_I \).

\(\epsilon_1,2,3 \)	\(r_0^* \)	\(\sigma_1,2,3 \)	\(\alpha_{1,2,3} \)
1.0	-0.001	0.940	0.005
-0.999	1.025	0.005	0.0
0.005	1.105	0.005	1.0
0.005	0.005	0.005	1.0

The length of the chain of particles is fixed, consequently in order to impose periodic boundary conditions we have the following constraint: \(Ma = N r_I \), where \(a \) was defined in
Eq. 3. \(N \) corresponds to the number of particles in our chain and \(M \) represent the number of minimums of the potential within the chain. Now we define the so called commensuration ratio:

\[
\zeta = \frac{a}{r_I} = \frac{N}{M}.
\]

(4)

Since \(E_I \) and \(r_I \) were taken as fundamental units, changes in the structure of the confined water are reflected in a commensuration variation while little changes in the CNT geometry are treated through a corrugation variation18. Therefore, \(u_0 \) and \(\zeta \) are our key parameters in the mobility study of the chain particles.

Equation (3) is numerically integrated using a brownian molecular dynamics algorithm53 for \(N = 4096 \) particles with a time step \(dt = 0.001t_0 \) at \(T^* = 0.05 \). We allow the system to relax during a time interval of \(2000t_0 \), in the sequence an external force \(F^* = 0.0003 \) is applied; after another transient period of order \(6000t_0 \) the system reaches the steady state and the external force is turned off making the velocity of particles decay back to zero. Figure 1 shows the typical behavior of the center-of-mass velocity of the chained particles during simulation.

![Figure 1](image)

FIG. 1. Typical behavior of the center-of-mass velocity of the chain particles versus time. In this case \(\zeta = 0.68 \) and \(u_0^* = 0.04 \).

The autocorrelation function of the velocities between several different samples, in the decay region (after the driving force is turned off), has the following exponential form54

\[
\gamma(t - t') = \exp (-\eta|t - t'|),
\]

(5)
where η will be the effective microscopic friction coefficient. An exponential decay of the velocity autocorrelation function as the one given by equation 5 is characteristic of fluid on solid systems. We expect that the measured η to be higher than the ad hoc damping constant (η_{ad}), which was set it to $5 \times 10^{-3} t_0^{-1}$. Finally all simulations were carried out at fixed temperature, volume and number of particles.

III. COMPUTATIONAL RESULTS

We carried out simulations with several commensuration ratios between 0.55 and 0.91 and corrugation values from 0.01 to 0.10. For all these parameters, a wet friction was observed. In all cases the coefficient of friction was obtained from fits according to Equation 5. To calculate the velocity autocorrelation function we used fifty different samples of the velocity relaxation.

Figure 2 shows the total friction coefficient as a function of the corrugation for some commensuration ratios. These results show that as the corrugation increases the friction experienced by the water-like particles increases. An analysis of the curves $\eta \times u_0$ shows that these curves present a power law behavior given by:

$$\eta = \eta_0 + cu_0^n,$$

(6)

furthermore in the limit of corrugation going to zero ($u_0 \to 0$) the coefficient η_0 has an average value equal to the ad hoc damping constant: $\eta_0 = 0.005 \pm 0.001$. Therefore, it is natural to assume that the topological influence in the mobility is represented by the second term of equation 6 cu_0^n, where the average value of n obtained from the best fit is equal to 1.9 ± 0.3. It is worth noticing that a number of previous analytical and numerical works report a quadratic behavior of the friction with the corrugation amplitude: for fluid on surface, for a fluid slab confined between parallel solid walls, and for TIP3P water confined in carbon nanotubes.

The central quantity in our study is the mobility, B, of the particles chain, which is defined as the inverse of the friction coefficient η: $B = \eta^{-1}$. In Figure 3 we showed the normalized mobility as a function of the commensuration ratios. The mobility decreases as the corrugation increases for all studied corrugation amplitudes, but the relation between commensuration and mobility is non-monotonic. The mobility as expected does have local
minimum for commensuration ratios close to \(1/2\) and 1. For commensuration ratios between these values the mobility increases reaching a local maximum value in a region close to \(\zeta = 3/4\). In addition, for corrugations higher than \(u_0 = 0.05\), the mobility presents a change of curvature at \(\zeta\) close to \(2/3\). These results indicate the existence of different mobility regimes depending on the amplitude of interaction between water-like particles and CNT surface.

At this point it is interesting take into consideration the work of Braun and Kivshar,\(^{50}\) which study the behavior of the mobility as a function of temperature and commensurations, at fixed corrugation for the Frenkel-Kontorova model. Although our results for the mobility were obtained for a different model and varying corrugation and commensuration at fixed low temperature, we will show shortly that there is a close relation between our results and those of Braun and Kivshar\(^{50}\).

In that work the authors present a phenomenological approach that describe the transport properties in terms of moving defects (kinks) in the density of particles along the chain. Kinks describe local expansions or compressions of the chain which are at the core of the mechanism producing the mass transportation. It is expected that the higher the concentration of kinks the greater the mobility. Accordingly to reference\(^{50}\) at high temperatures the concentration of kinks produced due to thermal fluctuations has a maximum at \(\zeta = 3/4\),
FIG. 3. Normalized mobility in function of commensuration ratio for some substrate potential amplitude u_0^*, where B_0 is the mobility in the limit of absence of corrugation ($u_0 \to 0$). Error bars are omitted, because they are smaller than the size of the symbols.

correspondently the mobility have a local maximum in this region.

For lower temperatures the concentration of kinks depends on the degree of frustration in the system’s geometry. When the mean distance between particles coincides with the distance between two minima of the external periodic potential ($\zeta = 1/2$ and 1) the system is in a commensurate ground state and particles are pinned. For commensurations between these values there is a nonzero probability to find particles close to the maximum of the external potential which increases the kinks concentration. This produces an increment of the particles mobility. For commensuration equal to the golden mean $\zeta = 2/(1 + \sqrt{5})$ the geometric frustration is maximal as well as the kinks concentration, therefore a local maximum in the mobility occurs. However, in this conditions, for sufficiently low temperature due to the high density of kinks a regular lattice of kinks is formed decreasing the mobility strongly. This behavior is observed first for commensurations close to the Golden mean. From this state a further decrease of temperature produce similar falls in mobility for commensurations such as $3/4$, $3/5$ or $4/5$.\(^{51}\)

As we mention before, this phenomenological description is directly related to changes in temperature. However our computational results were obtained keeping temperature fixed at a low value while the corrugation was varied. Even so, some similarities arise. The Figure
3 presents two important results. First, the mobility depends on the commensuration ratio as described by Braun and Kivshar. Second, the mobility presents different regimes depending on the substrate amplitude. From the theoretical background at nanoscale friction, we have different mobility regimes due to the activation of geometric or thermal kinks, depending on the system temperature. The similarities between the Braun and Kivshar results for the mobility at constant corrugation varying temperature and ours obtained varying corrugation at fixed temperatures motivates us to pursue further investigation of the corrugation versus temperature interplay. The main objective of this investigation is to provide an explanation for the existence of different mobility regimes as a function of the corrugation observed in Figure 3.

IV. THEORETICAL DISCUSSION

In order to explain the previously obtained results for the mobility, in both the classic and in our generalized Frenkel-Kontorova model, we decided to study analytically the behavior of the mobility in the classic FK model at finite temperatures. We begin considering the following equation of motion for the system of interacting particles:

$$m\ddot{x}_i + \eta\dot{x}_i = K(x_{i-1} + x_{i+1} - 2x_i) - \frac{dU}{dx}(x_i) + F + f_i(t),$$ \hspace{1cm} (7)

where $U(x)$ represent the substrate potential taken as $U(x) = -u_0 \cos(k_0x)$. Choosing now $l_0 = k_0^{-1}$ and $\sqrt{m/K}$, as units of length and time respectively, we can rewrite our system of equations in terms only of dimensionless variables:

$$\ddot{r}_i + \tilde{\eta}\dot{r}_i = (r_{i-1} + r_{i+1} - 2r_i) - g \sin(r_i) + \tilde{F} + \tilde{f}_i(\tilde{t}),$$ \hspace{1cm} (8)

where r and \tilde{t} represent the dimensionless position and time, while $\tilde{\eta} = \eta/\sqrt{mK}$, $g = u_0k_0^2/K$, $\tilde{F} = k_0F/K$ and $\tilde{f}_i(\tilde{t}) = k_0f_i(t)/K$. In what follows we will omit tildes in dimensionless quantities to simplify the notation.

In order to calculate analytically the stationary mobility of the system, defined as the ratio of the driving force divided by the average stationary velocity of the particles, we need to determine the stationary state of the system described by Eq.8. A procedure to find such stationary state have been developed in reference. Nevertheless such technique can not be applied directly in our case due to the presence of the thermal noise. However, if
we perform an average over thermal noise realizations in each term of equation 8, we will recover a deterministic equation for which techniques developed by Strunz and Elmer57 can be applied. Performing such average we reach to:

\[
\ddot{\langle r_i \rangle} + \eta \dot{\langle r_i \rangle} = \left(\langle r_{i-1} \rangle + \langle r_{i+1} \rangle - 2 \langle r_i \rangle \right) \\
- g \langle \sin(r_i) \rangle + F. \tag{9}
\]

To proceed we need to calculate the thermal average of \(\sin(r_i) \). This term can be evaluated by using the following mean field argument: first we consider that the stationary sliding state is uniform and in this sense this means that within the mean field approximation, we could use a single particle Fokker-Planck equation to study the dynamics of a single particle density and conclude that within such approximation the average time dependent single particle probability distribution will be:

\[
P(x, t) = \sqrt{\frac{K}{\pi k_B T}} \exp \left(-\frac{k(x - vt)^2}{k_B T} \right). \tag{10}
\]

To reach such a result it is implicit that in thermal equilibrium the average distance between particles is equal to the equilibrium distance between them in the absence of all external forces. With equation 10 in mind we can conclude that:

\[
\langle \sin(r_i(t)) \rangle = \sin(\langle r_i(t) \rangle) \exp \left(-\frac{k^2 k_B T}{4K} \right). \tag{11}
\]

This relation implies that Eq. 9 can be written as:

\[
\ddot{\langle r_i \rangle} + \eta \dot{\langle r_i \rangle} = \left(\langle r_{i-1} \rangle + \langle r_{i+1} \rangle - 2 \langle r_i \rangle \right) \\
- g_r \sin(\langle r_i \rangle) + F; \tag{12}
\]

where \(g_r = g \exp \left(-\frac{k^2 k_B T}{4K} \right) \). Interestingly these results implies that the dynamics of the driven Frenkel-Kontorovoa model at finite temperatures is equivalent to the one at zero temperature, with a modified effective potential substrate amplitude. Now we can apply directly the techniques developed by Strunz and Elmer57 to study the stationary uniform sliding state of equation 12.

The afore mentioned method propose an anzats for the stationary form of the position of the particles as a function of time. The proposed functionality is given by:

\[
r_i = \psi + ai + vt + f(\psi + ai + vt), \tag{13}
\]
where \(\psi \) represent an arbitrary phase, \(a = k_0 l \) is the equilibrium distance between particles in units of \(k_0^{-1} \) and \(v \) corresponds to the stationary velocity of the system of particles. Moreover the function \(f(x) \) is the so-called hull function, which is a zero mean periodic function characterizing the oscillation of the particle over its uniform translational movement due to presence of the periodic potential.

To continue we substitute the previous ansatz for \(r_i(t) \) into our equation of motion (Eq. 12). This procedure leads us to the following differential equation for the hull function.

\[
v^2 f''(\phi) + \eta v (1 + f'(\phi)) = (f(\phi - a) + f(\phi + a) - 2f(\phi)) \nonumber \\
- g \sin(\phi + f(\phi)) + F \tag{14}
\]

Considering now that \(f(\phi) \) must be a periodic function with zero mean we know that we can write the hull function as: \(f(\phi) = \sum_{n=1}^{\infty} a_n \cos(n\phi) + b_n \sin(n\phi) \), where \(a_n \) and \(b_n \) represent the Fourier expansion coefficients of the hull function. If the Fourier expansion for \(f(\phi) \) is substitute in equation 14 we can reach to the following system of equation for the Fourier coefficients:

\[
[v^2 n^2 + 2(\cos(na) - 1)] a_n - \eta v n b_n =
\]
\[
g \int_0^{2\pi} \frac{d\phi}{\pi} \sin(\phi + f(\phi)) \cos(n\phi)
\]
\[
[v^2 n^2 + 2(\cos(na) - 1)] b_n + \eta v n a_n =
\]
\[
g \int_0^{2\pi} \frac{d\phi}{\pi} \sin(\phi + f(\phi)) \sin(n\phi). \tag{15}
\]

Once the Fourier coefficients have been determined, the driving force \(F \) can be calculated in terms of \(v \) and the set of Fourier coefficients \(a_n, b_n \). This relation can be proven to be:

\[
F = \eta v \left(1 + \frac{1}{2} \sum_{n=1}^{\infty} n^2(a_n^2 + b_n^2)\right). \tag{16}
\]

Considering that the method outlined allows nets to calculate the values of stationary velocity \(v \) for a given driving force \(F \), now we can calculate the mobility of the system. The computational study presented focused on the role of the commensuration in the behavior of the mobility, at different amplitudes of the substrate potential. Now we will determine similar curves numerically for the Frenkel-Kontorova model for comparison with the computational results from simulations.
To continue we need to write all our dimensionless parameters in terms of the commensuration parameter ζ defined as $2\pi/a$ and an appropriate energy scale, such energy scale is chosen as Kl^2. This leads us to the following relations:

$$g = u_0 \frac{4\pi^2}{\zeta^2} \exp\left(-\frac{\pi^2}{\zeta^2} \tilde{T}\right)$$

$$F = \frac{2\pi}{\zeta} \tilde{F}$$

$$a = \frac{2\pi}{\zeta}$$

where $u_0 = u/(Kl^2)$, $\tilde{T} = (k_B T)/(Kl^2)$ and $\tilde{F} = F/(Kl)$. To conclude we set $\eta = 1$ and proceed with the numerical study.

The first thing that is worth noticing is the non-trivial dependence of the effective lattice potential g in terms of the commensuration ζ. As we can observe from Fig.4 the effective potential to which particles are submitted in general varies strongly with the commensuration and at the same time such variation depends critically on temperature. More important than this is to note from equations (17) that the effective corrugation g depends on both the bare corrugation and the temperature. In fact at fixed commensuration the effective corrugation is an increasing monotonic function of u_0 and a decreasing monotonic function of temperature. Equations (17) clarifies the interplay between temperature and substrate potential and ultimately allows us to establish a connection between the behavior of the mobility, varying corrugation at fixed temperature and varying temperature at fixed corrugation. To explore the consequences of our analytical calculations we proceed with the calculus of the mobility curves varying the corrugation at fixed temperatures.

Now we can describe the protocol followed for the numerical solution of equation (15). As input parameters we have the friction coefficient η, set it to one, the geometrical parameter a, the effective corrugation potential g and the stationary mean velocity v. With the numerical solution at hand the calculation of the driving force F producing such stationary velocity can be carried out directly applying Eq.(16). This procedure is used to calculated the normalized mobility defined as $B = (\eta v)/F$ following Eq.(16). As can be noticed from this equation the normalized mobility is always a quantity lower than one, being one only in the limit of zero corrugation potential.

We proceed next with the construction of families of normalized mobility curves varying commensuration, for various amplitudes of the corrugation potential at fixed temperature.
FIG. 4. Effective substrate amplitude potential as a function of the commensuration at different temperatures for $u_0 = 0.1$. As shown in the figure the effective substrate potential as a function of xi depends critically on temperature.

and driving force. We construct this families for two relatively low temperatures arbitrarily chosen: $\tilde{T}_1 = 0.038$ (Fig.5) and $\tilde{T}_2 = 0.05$ (Fig.6). At the same time the bare corrugation potential u_0 was let it range from 0.01 to 0.1 and the driving force in all cases was taken as 0.13. It is worth noticing that although all numerical values were selected arbitrarily, since the values of the temperature strongly affects the effective value of the substrate potential, much higher temperatures will result in very small g leading the system to a trivial regime out of the scope of the present work.

In figures 5 and 6 a number regularities appears, as a reflection of a robust physics over variations of temperature and substrate potential. To understand qualitatively the behavior of the mobility we make use of the picture given by Braun et al.50,51 previously discussed in section III. First it is important to notice that the maximum of the mobility should be reached when the concentration of kinks is maximum as well. As we know there are two sources of kinks, those produced by the geometric frustration and those due to thermal fluctuations. According to Braun et al.50,51 in the high temperature regime, or equivalently in the low substrate potential regime (as discussed previously), we have a maximum of the total number of kinks at commensurations around $\zeta = 3/4$, reflecting in a maximum of the mobility at such commensurations, as observed in our figures 5 and 6.

Lowering temperatures, or increasing u_0, the population of thermally activated kinks
decreases considerably making the geometrical frustration the leading mechanism to increase the kinks concentration. As expected in this regime, a maximally geometric frustrated system should exhibit the maximum of the mobility. According to the literature the maximal geometric frustration occurs when the commensuration is equal to the golden mean, i.e.
ζ = 2/(√5 + 1). This fact explains why in figures 5 and 6 the mobility at intermediate values or substrate potential have a maximum at a value close to the golden mean. In such condition a further increase of the substrate potential, or analogously a decrease of temperature, produce a sort of solidification of the dense system of strongly interacting kinks, which reflects in a sudden decrease of the mobility exactly at the same commensurations where originally the mobility use to have a maximum.

V. CONCLUSIONS

In this work we used a generalized Frenkel-Kontorova model to study the mobility of water confined in a carbon nanotube with very small radius. In this highly confined regime the water molecules form an almost one-dimensional network of highly oriented particles linked by the hydrogen bound. We described such system as a one-dimensional chain of particles interacting through a core-softened potential of two length scales.

We performed Langevin's simulations for a system of water-like particles and study the behavior of the total friction coefficient in low temperature regime. For all parameters adopted in this work, we observed wet friction. Our computational results shows a quadratic increasing monotonic behavior of the friction coefficient as a function of the corrugation, at fixed commensurations. At the same time the friction coefficient shows a non-monotonic behavior varying commensurations at fixed amplitudes of the substrate potential. Such result for the friction coefficient is better observed in our family of mobility versus commensuration curves, for different corrugations. These two behaviors obtained corroborate the results reached through atomistic simulations of TIP3P water confined in carbon nanotubes developed by Falk et al.,18 where they concluded that the incommensurability between water and the carbon nanotube is the main result for the high flux observed in this system. Additionally, although obtained from an effective model, our results opens a path for the understanding of the physical phenomenon responsible for the variety of results obtained for the water flow in CNT.10–18 From a computational perspective, each atomistic model of water has its own geometric parameters. These small geometric differences between the various water models result in different lengths for hydrogen bonds, for example. Therefore, different water models have different commensuration ratios with the nanotube, and as our results consistently show, even small changes in commensuration ratio, affects the mobility.
The mobilities curves not only shows a non-monotonic behavior of this quantity varying commensuration, but also indicates the existence of different regimes depending on the amplitude of the corrugated potential. In order to understand qualitatively the computational results for the mobility we study analytically a simplified version of our model, the driven Frenkel-Kontorova model at finite temperatures. As a result we obtain numerically the curves of mobility versus commensurations at fixed substrate potentials which as discussed previously shows the existence of three regimes of behavior of such quantity with variations of commensurations. This regimes can be related with the density and dynamic of the defects in our chain of particles in a scenario analogous to the one proposed by Braun et al.,50,51 considering a sort of inverse relation between temperature and amplitude of the substrate potential.

In this sense, the main result of this work is the existence of a relation between the effective substrate potential with temperature, commensuration and the bare substrate potential. This relation although simple shows that even in our simplified model there is a nontrivial and strong dependence of the effective substrate potential with the models parameters (temperature, commensuration and substrate potential), which at the same time makes the mobility of the system strongly dependent of this quantities. This result adds one more ingredient to the discussion of the differences between works on water flow.10–18 As we have already discussed, the commensuration ratio certainly plays an important role for the mobility, but others parameters of the system like temperature and corrugation are relevant as well.

When we compare the analytic and the simulational results for the mobility varying commensuration, at fixed substrate potential, some similarities arise. Although it is expected that the form of the potential exert a critical influence on the detailed form of the mobility curves, we can indeed identify in both cases a regime for small amplitudes of the potential in which we have a displacement of the maximum of the mobility from higher to lower values of the commensuration. This crossover was theoretically identify as a result of the variation in the relative population of geometric and thermal kinks. We expect the same mechanism to be responsible for the observed behavior in the generalized Frenkel-Kontorova model. Increasing the substrate potential our model for water-like particles develops a change in the curvature of the mobility curves evident as an additional drop in the mobility at commensurations close to the golden mean. This behavior in our generalized FK model
could be explained by the same mechanism that produce a drop in the mobility for the FK model, i.e. a structuring of a large number of geometric induced defects in the system.

Although we are aware that further studies are needed to confirm the proposed mechanisms as the responsible for the observed features of the mobility curves, in the generalize FK model, we expect that the present work motivates and shed some light on the physics involving the transport process of water particles in extreme confinement conditions.

Finally, we would like that this work motivates the use of the various experimental and theoretical methods developed originally for the study of sliding friction in nanoscale, to understand the water behavior in nano-confined conditions.

VI. SUPPLEMENTARY MATERIAL

See the supplementary material for the complete description of $V(x_{ij})$ and $U(x_i)$ determination.

VII. ACKNOWLEDGMENTS

This work is partially supported by Brazilian agency CNPq (project 151262/2009-8), CAPES (project 23038002179/2012-50), Universidade Federal do Rio Grande do Sul and Universidade Federal de Santa Catarina.

REFERENCES

1. T. I. S. Iijima, Nature 363, 603 (1993).
2. A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Phys. Rev. Lett. 93, 035503 (2004).
3. N. Naguib, H. Ye, Y. Gogotsi, A. G. Yazicioglu, C. M. Megaridis, and M. Yoshimura, Nano Letters 4, 2237 (2004).
4. W. Wu, S. Wieckowski, G. Pastorin, M. Benincasa, C. Klumpp, J.-P. Briand, R. Gennaro, M. Prato, and A. Bianco, Angew Chem Int Ed Engl 44, 6358 (2005).
5. A. Barroug and M. J. Glimcher, Journal of Orthopaedic Research 20, 274 (2002).
6. P. Pai, K. Nair, S. Jamade, R. Shah, V. Ekshinge, and N. Jadhav, Current Pharma Research Journal 1, 11 (2006).
7D. Pantarotto, C. D. Partidos, J. Hoebeke, F. Brown, E. Kramer, J.-P. Briand, S. Muller, M. Prato, and A. Bianco, Chemistry & Biology 10, 961 (2003).

8N. W. S. Kam, M. O’Connell, J. A. Wisdom, and H. Dai, Proceedings of the National Academy of Sciences of the United States of America 102, 11600 (2005).

9R. G. Ding, G. Q. Lu, Z. F. Yan, and M. A. Wilson, Journal of Nanoscience and Nanotechnology 1, 7 (2001).

10J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, Science 312, 1034 (2006).

11M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, Nature 438, 44 (2005).

12X. Qin, Q. Yuan, Y. Zhao, S. Xie, and Z. Liu, Nano Letters 11, 2173 (2011).

13J. P. N. G. Hummer, J. C. Rasaiah, Nature 414, 188 (2001).

14A. Kalra, S. Garde, and G. Hummer, Proceedings of the National Academy of Sciences 100, 10175 (2003).

15J. A. Thomas and A. J. H. McGaughey, Nano Letters 8, 2788 (2008).

16J. A. Thomas and A. J. H. McGaughey, Phys. Rev. Lett. 102, 184502 (2009).

17M. H. Kohler, J. R. Bordin, L. B. da Silva, and M. C. Barbosa, Phys. Chem. Chem. Phys. 19, 12921 (2017).

18K. Falk, F. Sedlmeier, L. Joly, R. R. Netz, and L. Bocquet, Nano Letters 10, 4067 (2010).

19C. Vega and J. L. F. Abascal, Phys. Chem. Chem. Phys. 13, 19663 (2011).

20P. Mark and L. Nilsson, The Journal of Physical Chemistry A 105, 9954 (2001).

21L. Xu, N. Giovambattista, S. V. Buldyrev, P. G. Debenedetti, and H. E. Stanley, The Journal of Chemical Physics 134, 064507 (2011).

22A. B. de Oliveira, P. A. Netz, T. Colla, and M. C. Barbosa, The Journal of Chemical Physics 124, 084505 (2006).

23S. Buldyrev, G. Franzese, N. Giovambattista, G. Malescio, M. Sadr-Lahijany, A. Scala, A. Skibinsky, and H. Stanley, Physica A: Statistical Mechanics and its Applications 304, 23 (2002).

24N. M. Barraz, E. Salcedo, and M. C. Barbosa, The Journal of Chemical Physics 131, 094504 (2009).

25A. B. de Oliveira, P. A. Netz, T. Colla, and M. C. Barbosa, The Journal of Chemical Physics 125, 124503 (2006).

26A. Alexiadis and S. Kassinos, Chemical Engineering Science 63, 2793 (2008).
27. R. J. Mashl, S. Joseph, N. R. Aluru, and E. Jakobsson, Nano Letters 3, 589 (2003).
28. J. Wang, Y. Zhu, J. Zhou, and X.-H. Lu, Phys. Chem. Chem. Phys. 6, 829 (2004).
29. S. Guo, E. R. Meshot, T. Kuykendall, S. Cabrini, and F. Fornasiero, Advanced Materials 27, 5726 (2015).
30. E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria, and L. Bocquet, Nature 537, 210 (2016).
31. C. M. Mate, G. M. McClelland, R. Erlandsson, and S. Chiang, Phys. Rev. Lett. 59, 1942 (1987).
32. M. L. Gee, P. M. McGuiggen, J. N. Israelachvili, and A. M. Homola, The Journal of Chemical Physics 93, 1895 (1990).
33. S. Granick, Science 253, 1374 (1991).
34. J. Krim, D. H. Solina, and R. Chiarello, Phys. Rev. Lett. 66, 181 (1991).
35. E. T. Watts, J. Krim, and A. Widom, Physical Review B 41, 3466 (1990).
36. A. Dayo, W. Alnasrallah, and J. Krim, Phys. Rev. Lett. 80, 1690 (1998).
37. M. Cieplak, E. D. Smith, and M. O. Robbins, Science 265, 1209 (1994).
38. E. D. Smith, M. O. Robbins, and M. Cieplak, Phys. Rev. B 54, 8252 (1996).
39. B. Persson and A. Nitzan, Surface Science 367, 261 (1996).
40. M. S. Tomassone, J. B. Sokoloff, A. Widom, and J. Krim, Phys. Rev. Lett. 79, 4798 (1997).
41. W. L. Schaich and J. Harris, Journal of Physics F: Metal Physics 11, 65 (1981).
42. F. Sols and F. Flores, Solid State Communications 42, 687 (1982).
43. B. N. J. Perssson, Phys. Rev. B 44, 3277 (1991).
44. B. N. J. Perssson and A. I. Volokitin, The Journal of Chemical Physics 103, 8679 (1995).
45. J. B. Sokoloff, Phys. Rev. B 52, 5318 (1995).
46. A. Liebsch, Physical Review B 55, 13263 (1997).
47. I. Altfeder and J. Krim, Journal of Applied Physics 111, 094916 (2012).
48. A. Liebsch, S. Gonçalves, and M. Kiwi, Phys. Rev. B 60, 5034 (1999).
49. E. S. Torres, S. Goncalves, C. Scherer, and M. Kiwi, Physical Review 73, 035434 (2006).
50. O. M. Braun and Y. S. Kivshar, Phys. Rev. B 50, 13388 (1994).
51. O. M. Braun, T. Dauxois, M. V. Paliy, and M. Peyrard, Phys. Rev. B 54, 321 (1996).
52. E. Salcedo, N. M. Barraz, and M. C. Barbosa, The Journal of Chemical Physics 138, 164502 (2013).
53M. P. Allen, Molecular Physics 47, 599 (1982).
54J. Krim and A. Widom, Phys. Rev. B 38, 12184 (1988).
55B. Bhushan, J. N. Israelachvili, and U. Landman, Nature 374, 607 (1995).
56J.-L. Barrat and L. Bocquet, Faraday Discuss 112, 119 (1999).
57T. Strunz and F.-J. Elmer, Phys. Rev. E 58, 1601 (1998).
58M. Peyrard and S. Aubry, Journal Physical C 16, 1593 (1983).