PHARMACOGNOSTICAL AND PHYTOCHEMICAL STUDIES ON CURCUMA AMADA (LINN.) RHIZOME (ZINGIBERACEAE)

M. CHITRA and J. E. THOPPIL

Genetics and Plant Breeding Division Department of Botany, University of Calicut
Kerala – 673 635, India.

Received: 5.10.2002 Accepted : 20.10.2002

ABSTRACT: The macroscopic and microscopic characters, physical constant values, extractive values, ash values and the behaviour of powder drug on treatment with different chemical regents, microchemical and histochemical analyses were conducted to characterize some pharmacognostical parameters of Curcuma amada linn. (Zingiberaceae).

Key words: Curcuma amada, Zingiberaceae, Pharmacognostic study Phytochemistry.

INTRODUCTION

Curcuma amada Linn. belonging to Zingiberaceae family is known as mango ginger in English; Manghainchi and Kathumachal in Malayalam; Amragangadiharidra, Karpuraharidra, Darve, Darveebheda, Amragandha, Surabhidaru, Darooka, Daroo, Padmapatra, and Suraniyika in Sanskrit. (Wealth of India, 1952; Warrier et al., 1994; Kirtikar & Basu, 1984).

The plant is found wild in Bengal, Tamil Nadu, Konkan and on the hills of West Cost of India and Often cultivated in gardens in rotation with vegetable crops (Warrier et al., 1994; Kirtikar & Basu, 1984 Nadkarni et al., 1954). The rhizomes are bitter, aromatic, cooling, appetizer, carminative, digestive, demulcent, febrifugal, aphrodisiac, diuretic and antipyretic (Warrier et al., 1994). The paste of drug with the juice of Jasminum grandiflora is applied to skin complaints of children (Nadkarni et al., 1954). In the present study attempts are made to evaluate this plant pharmacognostically by studying its macroscopic and microscopical features, histological characters, qualitative physical, chemical and analytical characteristics, etc.

MATERIALS AND METHODS

The rhizome of Curcuma amada were collected locally from mature plants during October – January 2001.

The plant material was identified and authenticated. The voucher specimens were deposited in the Herbarium, Department of Botany, University of Calicut for future reference. The collected rhizomes were washed with tap water to remove adhering dust, followed by rinsing with distilled water, shade dried and used for the study.

The macroscopic characters of the rhizome were observed (Wallis, 1985). Thinnest possible section of the rhizome was taken and treated with 5% KOH to make the section clear. Sections were stained with safranin and mounted.

The microslides were scanned under a compound microscope and the anatomical
details were drawn with the help of a prism type camera Lucida.

Measurements of the cells/tissues were made with the help of micrometers under a compound microscope (Johansen, 1940). The characteristics of the drug powder was analysed (Wallis, 1985) after homogenizing the shade dried, flaked rhizomes with the help of a mortar and pestle. The ash values, alcohol soluble and water soluble extractive values of rhizomes were determined as per the Indian pharmacopoeial methods (Kokate, 1994; Anonymous, 1990). Other extractive values were determined by extracting the plant material successively by Soxhlet extraction apparatus with various solvents in increasing order of polarity (Kokate, 1994; Anonymous, 1990). The behaviour of the powdered rhizome with different chemical reagents was studied (Siddique et al., 1989).

Preliminary phytochemical tests of different extracts were performed by using specific reagents (Trease & Evans, 1983; Harborne, 1973).

RESULTS AND DISCUSSION

Macroscopic Characters of C. amada Rhizome

Length : 3.0 -15 cm
Width : 1.5 – 3.5 cm
Branching : Sympodial
Nodes and Internodes : Present

Surface characters : The outer surface in pale brown in colour
Surface characters : Externally demarcated into modal and internodal ragions. The branches arise obliquely from the rhizome and terminate in depressed scars or in undeveloped buds. Scale leaves are present at the nodal region while the rest of the portion is smooth.

Odour : Aromatic
Teste : pungent

Roots : The roots are Cylindrical, fragrant and slightly curved. They occur along with rhizome and are rarely found separate.

Fracture : Short
Direction of growth : Horizontal

Histological Studies

The transverse sections of the rhizome of Curcuma amada Linn. (Fig.1) shows the following characters.

Periderm: Consists of 8-10 Layers of thin walled cork cells.

Cortex: The inner cortical region consists of three rings of collateral closed vascular bundles. Scattered in the cortex are numerous oil cells.

Endodermis: Composed of vessels with annular or spiral thickening.

Vascular bundles: Stelar bundles are scattered. The ground mass of the stele is composed of parenchyma containing prismatic crystals of calcium oxalate, starch grains and numerous oil cells.

Starch grains: are flattened and ovoid oblong and have concentric striations.

Powder Characteristics
The powder is light yellow in colour with mango like odour and pungent taste. It show the following characters.

1. Fragments of brown thin walled cork cells are present.
2. Parenchyma cells are filled with starch grains and oleoresin containing yellow colouring matter.
3. Vessels are abundant with annular, spiral, scalariform or reticulate thinkening.
4. Starch grains are elliptical, ovoid elongated or globular, hilum being in the centre with prominent striations.

TABLE 1. Micrometrial measurement of cells/Tissues of C. amada rhizome

Cells/Tissue	Size in microns
Cork cells	40-85 µ x 25-35 µ
Parenchyma cells	80-11 µ x 80-95 µ
Endodermal cells	50-75 x 40-50 µ
Xylem vessels	40-80 µ
Tracheids	25-30 µ
Starch grains	15-38 µ

TABLE 2. Ash values of C. amada rhizome

Nature of ash	% age (W/W) ash
Total ash	20
Acid insoluble ash	0.94
Water soluble extractive	19.53

TABLE 3. Extractive values of C. amada rhizome

Solvent used	Percentage of extractive value
Petroleum ether (60-80oC)	4.94
Benzene	1.12
Chloroform	0.44
Acetone	0.38
Methanol (90%)	1.52
Distilled water	7.2
TABLE 4 The colour and consistency of the extracts of C. amada rhizome

Extract	Colour	Consistency
Petroleum ether	Blackish brown	Sticky
Benzene	Brown	Sticky
Chloroform	Yellowish brown	Powdery
Acetone	Brown	Slightly sticky
Methanol	Pale brown	Sticky
Distilled water	Brown	Powdery

TABLE 5. Histochemical analyses of the T.S. of rhizomes of C. amada

Reagents	Test for	Nature of change	Histological zone	Result
Phloroglucinol +conc. HCl +alcohol	Lignin	Pink	Xylem vessel	+
Iodine solution	Starch	Black	Cortex & Stele	+
Aqueous ferric Chloride	Tannin	Yellow	Whole section	-
Sudan III	Oil	Pink	Cortex & stele	+
H2SO4 (20%)	Calcium Oxalate	Diminishes Slowly & is replaced by crystals of calcium sulphate	Stele	+
Methylene blue	Mucilage	No Change	Whole section	-

TABLE 6. Behaviour of root powder of C. amada with Different chemical reagents

Treatment	Colour developed
Powder as such	Light yellow
Picric acid	Yellowish brown
Nitric acid (sp. gr 1.42)	Pale orange
Hydrochloric acid (sp. gr. 1.16)	Brown
Chemical	Color
--------------------------	---------------------
H2SO4 (80%)	Black
Glacial acetic acid	Pale Brown
Sodium hydroxide (5N) aq. Soln.)	Brown
Iodine solution (aq.)	Blackish Brown
Ferric chloride (5% aq.soln.)	Pale Brown
Antimony trichloride (5% aq.soln.)	Blackish Brown
Potassium hydroxide (5N) aq.soln.	Brown

The macroscopic as well as microscopic studies of Curcuma amada Linn revealed that by using these diagnostic features one can identify this plant easily from adulterants. The information obtained from ash values and extractive values are useful during the time of collection of rhizomes and also during extraction process. Using these standards, especially histological and chemical studies the plant can be authenticated, identified and differentiated from other related species, also these pharmacognostic parameters help in the detection of adulteration in commercial samples.

REFERENCES

Anonymous, the Indian Pharmacopoeia, Vol. 2A, pp.53, Government of India, Ministry of Health & family Welfare, New Delhi (1990).

Harborne, J.B., Phytochemical Methods, a Guide to Modern Techniques of Plant analysis, PP.182 -189, Chapman & Hall, London (1973).

Johansen, D.A., Plant Microtechnique, 1st Edn. PP. 182-197, McGraw Hill Book Co., New York (1940).

Kirtikar, K.R. and Basu, B.D., Indian Medicinal Plants, 2nd Edn., Vol 4, PP. 2423, Bishen Singh & Mahendra Pal Singh, Dehra Dun(1984).

Kokate, D.K., Practical Pharmacognosy, 4th Edn., Pp.115-117 & 121, Vallabh Prakashan, Bombay (1994).

Nadkarni, K.M. Nadkarni, A.K. and Chopra, R.N., Indian Materia Medica, Vol I, 412-413, Popular Prakasan, Bombay (1954).

Siddique, T.O., Ahmed, J., Javed, K. and Khan M.S.Y., Indian Drugs 26(5), 208 (1989).
Trease, G.H. and Evans, W.C., *Text Book of Pharmacognosy*, 12th Edn., pp. 485 - 486, Bailliere Tindal (1983).

Wallis, T.E., *Text Book of Pharmacognosy*, 3rd Edn., CBS Publishers and Distributors, New Delhi (1985).

Warrier, P.K., Nambiar, V.P.K. and Ramankutty, C., *Indian Medical Plants – A compendium of 500 species*, Vol 2, pp. 251, Orient Longman publication, Madras (1994).

Wealth of India, Raw materials, Vol.3, pp.21, CSIR Publication, New Delhi (1952).

LEGENDS FOR THE FIGURES PROCIDED

Fig 1-13. Macroscopic and microscopic details of curcuma amada rhizome

(1) Macroscopic appearance of the rhizome of Curcuma amada.
(2) T.S of the primary rhizome showing cork, cortex, endodermis and stele.
(3) T.S of the secondary rhizome showing cork, cortex, endodermis and stele.
(4) A portion of epidermis and cortex.
(5) A portion of endodermis with vascular strands X 450
(6) Cortical bundle X 450
(7) Stelar bundle X 450
(8) Starch grains X 450
(9) Xylem fibres X 100
(10) Xylem tracheids X 100
(11) Xylem vessels X 100
(12) Oil cell X 100
(13) Calcium oxalate crystals X 100
