SMAFIRA-c: A benchmark text corpus for evaluation of approaches to relevance ranking and knowledge discovery in the biomedical domain

CURRENT STATUS: UNDER REVIEW

BMC Bioinformatics ▼ BMC Series

Daniel Butzke
Bundesinstitut fur Risikobewertung

Corresponding Author
ORCID: https://orcid.org/0000-0002-4800-4655

Nadine Dulisch
GESIS Leibniz-Institut fur Sozialwissenschaften in Koln

Sebastian Dunst
Bundesinstitut fur Risikobewertung

Matthias Steinfath
Bundesinstitut fur Risikobewertung

Mariana Neves
Bundesinstitut fur Risikobewertung

Brigitte Mathiak
GESIS Leibniz-Institut fur Sozialwissenschaften in Koln

Barbara Grune
Bundesinstitut fur Risikobewertung

DOI:
10.21203/rs.3.rs-16454/v1

SUBJECT AREAS
Bioinformatics

KEYWORDS
Relevance ranking, knowledge discovery, case study, biomedicine, animal use alternatives
Abstract

Background The engineering of elaborate and innovative tools to navigate the ever growing biomedical knowledge base, instanced in PubMed/Medline, must be guided by genuine case studies addressing `real world´ user needs. Furthermore, algorithm-based predictions regarding `similarity´, `relatedness´ or `relevance´ of pieces of information (e.g. relevance ranking) should be transparent and comprehensible to users.

Results We here present a corpus of abstracts (n = 300) annotated on document level representing three case studies in the experimental biomedical domain. The SMAFIRA corpus mirrors `real-world´ information retrieval needs, i.e. the identification of potential alternatives to given animal experiments that support `equivalent´ scientific purposes while using basically different experimental methodology. Since in most cases not even the authors of `relevant´ research papers are aware of such a possible implication of their experimental approaches, our case studies actually illustrate knowledge discovery. Annotation of abstracts (regarding `equivalence´) was conducted by one researcher with broad domain knowledge (in one case study supported by a second opinion from a domain expert) and was informed by a newly created model describing distinguishable stages in experimental biomedicine. Furthermore, such stages were linked to generic scientific purposes. This perspective thus may share some commonalities with topic modelling approaches. Annotation of `relevance´ (i.e. `equivalence´ of scientific purpose plus alternative methodology) relied on expert knowledge in the domain of animal use alternatives. The case studies were used for an evaluation of rankings which were provided by the `similar articles´ algorithm employed in PubMed.

Conclusions Building on approved techniques utilized in the domain of intellectual property, we have adapted the concept of `equivalence´ to support a transparent, reproducible and stringent comparison of biomedical textual documents with regards to the implied scientific objectives. This concept may allow for text mining with improved resolution and may aid the retrieval of appropriate animal use alternatives. Computer science researchers in the field of biomedical knowledge discovery may also use our corpus, which is designed to grow essentially in the near future, as a reliable and informative benchmark for the evaluation of algorithms supporting such a goal. Annotations are
available from GitHub.

Background
In the biosciences, information retrieval (IR) is as important as DNA-sequencing, protein biochemistry or cell imaging, since all new experimental findings must be interpreted in light of the existing biomedical knowledge base.

A prominent resource for biomedical text-based IR is PubMed/MEDLINE. Currently, PubMed provides access to more than 29 million citations for biomedical literature. Besides keyword-based queries, PubMed supports publication `similarity´-based queries. The retrieval of such `similar articles´ is fueled by the pmra-algorithm (1) which considers `content similarity´, i.e. `similarity´ “in terms of the topics or concepts that they are about”. The number of `similar articles´ assigned to single citations in PubMed can vary from some dozens to some tens of thousands. Since more than 80% of PubMed users (2) only consider results from the first page (i.e. by default n = 20 for `similar articles´) there is a need for ranking. Thus, `similar articles´ are ranked according to their `similarity score´ with regards to the reference publication, from highest to lowest. The most `relevant´ information to a given retrieval need, however, must not necessarily be included in such a top-20 collection, but may be positioned at much later ranks. In especially, regarding our case studies - i.e. the identification of potential alternatives to given animal experiments that support `equivalent´ scientific purposes while using basically different experimental methodology (animal use alternatives, see below) - a `similar articles´ search is only partially helpful, since the most `similar´ research to any animal experiment, as judged by pmra, always is another animal experiment (with `similar´ scientific objectives).

Nevertheless, pmra does principally retrieve information too which is `relevant´ in terms of animal use alternatives. But such information may be ranked at positions, which are too distant from the top-20 to be considered by users). Nested searching with specific terms, e.g. MeSH `animal use alternatives´, on PubMed-similar-articles-corpora is possible, but – unfortunately – it requires that a priori annotation with respective terms had been conducted by MEDLINE indexing personnel already.

To assign such terms, however, the indexers (or supporting tools like NLM Medical Text Indexer (3)) rely on clear indications that a given piece of information belongs to the class `animal use
alternatives´. Such a clear indication could be a publication in a special journal like ATLA (Alternatives to Laboratory Animals) for instance. If there is no such indication, possibly relevant information is mistakenly excluded from the MeSH-`animal use alternatives´-cluster. In fact, when inspecting the MeSH-terms assigned to the publications judged `relevant´ in this study (n = 33), we found, that none was labeled as `animal use alternative´.

Information retrieval as legal act
Researchers who plan to perform a scientific project involving animal experimentation in one of the Member States of the European Union have to file an application for project authorization (Article 37, Directive 2010/63/EU (4)). This application shall include information (specified in Annex VI, Directive 2010/63/EU (4)) which must be gathered via an evaluation of the current scientific knowledge. The legally required information includes 1.) the relevance and justification of the use of animals, 2.) the application of methods to “replace, reduce and refine” the use of animals in procedures (3R principle(5)), and 3.) the avoidance of unjustified duplication of procedures. Since PubMed/MEDLINE is a prominent resource representing the current biomedical knowledge, researchers routinely use this resource (and its search tools) to fulfill these legal requirements. An appealing approach with apparent ease is to employ the `similar articles´ tool depicted above: just pinpoint a related publication describing `similar´ in vivo research and then screen the `similar articles´ collection for `relevant´ abstracts. While the pmra-algorithm may well be suited to address information need number three (”avoidance of duplication”) by helping to retrieve `similar´ research, it is not yet optimized to help users with retrieving publications about methods to replace the use of animals (i.e. information need number two).

Introducing the SMAFIRA project
We have initiated a project that aims to support a 3R relevant IR. The SMAFIRA project (smart feature based interactive re-ranking) so far has resulted in the completion of a tool for the preparation of annotated test sets (case studies in the domain of biomedicine) and the assessment of algorithms implemented in the WEKA library (6) using these case studies. Annotations for seven case studies were assigned on document level and comprised judgements on `equivalence´, `relevance´ and
`animal use´. `Equivalence´ regards accordance in scientific objective(s) and comparability of experimental results, and thereby consequently ignores methodology (animal experimentation in particular). `Relevance´ considers the possible impact of the used methodology with regard to the 3R principle, and `animal use´ regards the kind of animal use deducible from the abstracts of citations (e.g. in vivo AND/OR ex vivo). `Relevance´ was determined based upon the stipulations of Directive 2010/63/EU: thus, any `relevant´ experimental approach would be appropriate to replace the use of live vertebrate animals (or cephalopods). Research using live invertebrate animals (e.g. flies) instead of mice would be deemed `relevant´ as well, although such research indeed is undertaken in vivo, since flies are not protected under the animal protection law.

Box 1: Glossary

`Equivalence´	Overlap in critical scientific entities with regard to the scientific objectives of two publications under comparison (completely or partly). The critical scientific entities for comparison are itemized in a chart.
`Relevance´	Experimental approaches that would be appropriate to replace the use of live vertebrate animals (or cephalopods) in a given research project with defined scientific objective. Subset of the 3R principle.

The basic problem in setting up such sets of annotated test publications for evaluation of algorithms is boiled down to an essence in (7): “Evaluating the performance of ... algorithms is a challenging task. It is challenging not only because manually created gold standards are required, but also because creating such gold standards is not a well-defined task.”

With SMAFIRA, we therefore attempted to render the task of our gold-standard-creation (regarding the annotated label `equivalence´) as much `well-defined´ as possible and built on a technique already accredited in another context:

In the domain of intellectual property the infringement of a patent can be considered with the aid of an `infringement analysis´. The elements of the patent’s claims are listed in a `claim chart´ and then, the presence of these elements in an allegedly infringing device or patent are considered (8).

Since we can build on experience with semantic analyses of patent infringements (9) we reasoned whether it would be possible to consider `equivalence´ of experimental biomedical research in an
analogous manner. Biomedical publications, however, lack the structured itemization of claims (or ‘critical´ scientific objectives, respectively) that is present in patents. We therefore figured out strategies to deduce such ‘critical´ elements in a robust and reproducible way from unstructured scientific abstracts. The result was a model depicting distinguishable stages in biomedical research and generic scientific purposes linked with these stages. Based upon this model, the ‘critical´ scientific elements were deduced from reference abstracts, and test publications were judged ‘equivalent´ or ‘partly equivalent´ only, if the same elements were present (completely or partly). The scientific entities or elements exploited by us to consider the ‘equivalence´ of biomedical research are essentially different from the ones used by other groups to distinguish research. Please see (10) for a comprehensive survey of such elements and annotated corpora.

Furthermore, we wondered whether it would be possible, to assign individual ‘critical´ scientific elements (i.e. original words from abstracts) to semantic types of the Unified Medical Language System (UMLS) semantic network (11) that would be generally ‘critical´ for any analysis of ‘equivalence´ in the biomedical domain (e.g. “neurodegeneration” → [finding]). The collection of such ‘critical´ types would possibly help to identify a subset of semantic types that could be focused on during attempts to retrieve animal use alternatives from the literature.

Eventually, we evaluated the rankings that were provided by PubMed, when retrieving the `similar articles´ corpora of our case studies, and characterized the retrieval performance of PubMed regarding our information needs.

Results: A Model To Inform Our Annotations

Since the model to determine `critical scientific entities´ in abstracts of biomedical publications - besides the annotated case studies themselves - is a chief result of our efforts, we present and explain it early in this article within the results section. Results for single case studies and evaluation of PubMed-rankings will follow subsequently.

`Stages in biomedical research´

Our model describes biomedical research as a sequence of distinguishable `stages´ with generic `experimental purposes´, e.g. `model validation´, `target identification´, `assay development´. The
model is based upon publications describing the early drug development pipeline (12-15) and complemented by connections inferred by us while studying the biomedical literature [see Additional file 1 for a detailed explanation].

Figure 1, subtitle: `Stages in biomedical research´ with generic `experimental purposes´. PDD: Phenotypic drug discovery.

Authors of articles describing biomedical research only occasionally do specify such stages explicitly. Therefore, the `stage in biomedical research´ exemplifies a `latent´ hidden topic in most publications. Nevertheless, this topic in most cases is deducible from meaningful combinations of entities in abstracts by a trained researcher, sometimes helped by informative details of `here-we´-sentences, e.g.: “Here, we describe the development and characterization of ...” (see PubMed Identifier (PMID) 21494637). Such `Here-we´-sentences sometimes are present in large proportions of publication collections, e.g. ~ 90% of `similar articles´ from PMID 21494637. A python-script/Jupyter-notebook to pinpoint such sentences in PubMed-abstracts may be retrieved from GitHub (16). We annotated the `stage(s) of research´ to the first 50 test publications of each case study [see Additional file 4].

A chart for analysis of `equivalence´

We developed the `scientific objective chart´ to support an `equivalence´ analysis of the contents of publications. It helps with the identification of the `critical´ elements of biomedical research as portrayed in an abstract. What actually is `critical´ among the variety of scientific entities present in an abstract is determinated by the chosen `stage´. At the `heart of the chart´ is the diagnosis of a disease or a syndrome, i.e. in terms of an ICD-10 classification, e.g. G20 for Parkinson’s disease (17). There are other classifications available, that may be used to pin down the disease under consideration even more specifically, e.g. Orphanet (ORPHA:411602 = autosomal dominant late-onset Parkinson disease). Any `equivalent´ research must meet this diagnosis as accurately as possible. The innermost ring then represents the knowledge base that is available at the start of the project. Such knowledge stems from clinical findings or experimental research focusing on related diseases (see above section). The available knowledge base is divided into the three main entities of disease, i.e. the cause (or etiology), the pathomechanism, and the clinical signs and symptoms (phenotypic
abnormalities). The available prior knowledge commonly is introduced in the `background section` of any scientific abstract of a publication.

Box 2: The criteria of validity for animal models of human diseases (according to (18))

Homological validity	Choice of `adequate´ species or strain
Pathogenic validity	`Similarity` of the processes that lead to disease
Mechanistic validity	`Similarity` of the mechanism we suppose or know is working in disease
Face validity	`Similarity` in observable phenotypes (e.g. behavior, biomarkers)
Predictive validity	`Resemblance` of the apparent impact of the etiological factors and of the treatment on the observable effects

To initiate experimental research, a valid disease model has to be developed. Such model development builds upon the available knowledge base, e.g. when deciding, what are valid causes (`pathogenic validity´, e.g. relevant gene mutations) or phenotypes with clinical relevance (`face validity´). The next stage in research starts with experiments seeking to determine pathomechanistic entities (e.g. involved cellular pathways like Wnt). This stage often is called “basic research”, when no prior knowledge is available. Where causal information is completely lacking, the biological identity of a trigger may be addressed first (e.g. presence of a pathogen, a subpopulation of cells, genetic polymorphisms). Furthermore, candidate targets (or biomarkers) are identified and validated (see above section). The next adjoining rings are omitted in the depicted chart, but would represent `drug discovery´ and `preclinical testing´.

Figure 2, subtitle

The `scientific objective chart´.

To determine `equivalence´ of two publications reflecting two individual research projects (e.g. in vivo vs. in vitro), the stages of the projects have to be considered (e.g. `model development´) and the test publication has to be examined for presence of the `critical´ scientific entities characterizing the reference publication, as determined with support of the chart. For such a comparison, a certain level of abstraction may be helpful. Thus, the original terms retrieved from the reference publication may be translated to `concepts´ available from UMLS semantic network. Thereby, the `critical´ scientific entities may be cleaned from the author’s linguistic usage. An example of such a completed chart (still with original terminology derived from the abstract of the reference publication) is depicted in
Fig. 3.

Figure 3, subtitle

The completed `scientific objective chart´ of PMID 21494637 depicting only the `critical´ entities.

Original terms from the abstract were filled into the respective field. The `stage´ of this research was determined `model development´.

The completed chart then serves as a kind of `search profile´ for the determination of `equivalent´ research (using other methodology). An exemplary chart of a test publication that was judged `partly equivalent´ and `relevant´ by the human rater is depicted below (Fig. 4).

Figure 4, subtitle

The completed `scientific objective chart´ of PMID 18258746 depicting only the `critical´ entities.

Original terms from the abstract were filled into the respective field. The `stage´ of this research was determined `model development´ (1). The respective abstract was judged `partly equivalent´ to the reference publication shown in Fig. 3. Note, that the abstract lacks a clear indication of `homologic validity´ (i.e. what structures are meant by `selective´?).

Please note that coincidence of a `critical´ scientific entity doesn’t always imply identical experimental results of two research projects regarding this entity. `Equivalence´ also regards research with comparable experimental results. For example, two research projects may use the same disease symptom (e.g. motor dysfunction) for evaluation of face validity of their models, but only one model may succeed (i.e. present with motor dysfunction). Such projects then would be labelled `equivalent´ (regarding this entity) nonetheless, since their results are directly comparable.

The rationale behind this decision is that one of the information needs addressed by our case studies is “avoidance of unjustified duplication of procedures” (see introduction). To satisfy this need, any research with `equivalent´ scientific objectives may be noteworthy, independently of outcome.

Chart transferability (informed interrater reliability)

After our first domain expert developed the model and the scientific objective chart, we tested the interrater reliability by having a second domain expert annotate the same corpus. Thus, the results reflect the utility of the `chart´ as a means to support a transparent and reproducible judgement. Of the 97 test publications 74 (~ 76%) were annotated with identical labels by the two raters (66: `not
equivalent´, 5: `partly equivalent´, 3: `Limbo´). 21 test publications (~ 22%) were labeled conclusively only by one rater (15: `not equivalent´, 6: `partly equivalent´, Note: conclusive labels were adopted as the final annotations). The other rater in these cases chose the label `Limbo´. Only 2 of 97 test publications (~ 2%) were annotated with conflicting labels (`partly equivalent´ versus `not equivalent´) by the two raters. After discussion the conflict was resolved and the latter test publications were labeled `Limbo´ and `not equivalent´ in the final annotations. Basically, the domain expert judged in a less cautious manner than the first rater with broad scientific expertise (8 `Limbo´ versus 19 `Limbo´).

Deduction of general `critical´ semantic types valid for any `equivalence analysis´ in the biomedical domain

The resulting `master chart´ is depicted in [Additional File 3]. Up to now, it comprises 15 distinct semantic types that are `critical´ for `equivalence analyses´ regarding our 3 case studies. Of course, the `critical´ semantic types identified in this work can only serve as a starting point for subsequent comprehensive studies regarding such `critical´ elements. Anyway, we hope to narrow down the number of such types essentially, given 127 semantic types available in UMLS (at the time of writing).

Results: Three Case Studies With Annotated Test Publications

The sections below depict the results for each of the three case studies separately. A brief introduction into the respective scientific backgrounds is provided first.

Case study PMID 24204323 (19)
The initial PubMed-similar-articles-corpus consisted of 188 publications (April 2019). These were downloaded to the SMAFIRA assessment tool and 101 publications were annotated by the first rater (`equivalence´, `relevance´).

The reference publication PMID 24204323 was assigned to ICD 10 chapter VI (Diseases of the nervous system) and category G10 (Huntington’s disease). Huntington’s disease (HD) is an inherited neurodegenerative disease, which is caused by the excessive expansion of a DNA triplet (CAG) repeat within the HTT gene. The inherited CAG stretch further is expanded in some affected individuals in somatic tissues (expansion = expansion-biased instability). The length of the extended CAG section in HTT is the primary determinant of disease pathogenesis and somatic expansion is predicted to
accelerate the disease process. Experimentally, the disease is caused by modifying mice genetically, introducing very long CAG repeats in the Huntington's disease homologue (Hdh(Q111) mice, i.e. 111 CAG repeats). Severity and onset of disease to some extent are modifiable by genetic factors. Such factors may regulate instability (expansion-biased or contraction-biased, respectively) of CAG stretches. The identification of such modifiers, the presence of which may differ in individual patients or different strains of laboratory animals, could lead to the development of novel therapies. The `stage´ of this reference was concluded to be `target discovery´, comprising the generic experimental purposes `target identification´, `target validation´ and `mechanistic study´:

1.) Purpose `target identification´ is characterized by the genetic comparison of diseased subgroups (mouse strains C57BL/6 and 129) with similar genetic trigger (i.e. Q111) but different levels of somatic HTT CAG expansion in the striatum. As result, the mismatch repair (MMR) gene Mlh1 was identified as the most likely candidate modifier of CAG instability.

2.) Purpose `target validation´ is characterized by the demonstration, that absence of Mlh1 (= Mlh1 null background) abolishes the somatic CAG expansions. Furthermore, absence of Mlh3, another constituent of the MutLγ mismatch repair complex, also abolishes somatic expansion of Hdh(Q111). Both potential therapeutical targets (Mlh1 and Mlh3) were as critical to somatic expansion as the (already identified) genes Msh2 and Msh3 of the DNA mismatch recognition complex MutSβ.

3.) Purpose `mechanistic study´ is characterized by the search for an explanation of the observed difference in somatic expansion, based on the presumed role of Mlh1. It was shown by the authors, that the Mlh1 locus is highly polymorphic ("diverse") between the mouse strains and that a dose-sensitive Mlh1-dependent DNA repair mechanism explains the difference in somatic expansion.

Please, see [Additional file 2] for the elaborated `scientific objective chart´ and [Additional file 5] for case study-specific judgement guidelines.

Table 1

Label	Number of test publications
`equivalent`	1
`partly equivalent`	12
`noteworthy`	12
`not equivalent`	76
`relevant`	10

Case study PMID 24204323 provides 1 test publication labelled `equivalent´ and 12 labelled `partly equivalent´. 12 publications were recovered from `Limbo´ and were labelled `noteworthy´. 76 test
publications were labelled `not equivalent` (in scientific objective) by the human rater. Of the 101 publications annotated with an `equivalence` label, 10 publications were also labeled `relevant`, i.e. describing research that potentially embodies an `animal use alternative` (Table 1).

Case study PMID 21494637 (20)

The initial PubMed-similar-articles-corpus consisted of 195 publications (April 2019). These were downloaded to the SMAFIRA assessment tool and 102 publications were annotated by the first human rater (`equivalence`, `relevance`).

The reference publication PMID 21494637 was assigned to ICD 10 chapter VI (Diseases of the nervous system) and category G20 (Parkinson’s disease, PD). The specific type is `late-onset, autosomal dominant familial Parkinson’s disease` which can be distinguished from an `early-onset` type (21).

There are six genes that are unequivocally linked to heritable (familial) monogenic PD (SNCA, LRRK2, Parkin, PINK1, DJ-1, ATP13A2). Mutations in LRRK2 (Leucine-rich repeat kinase 2) are sufficient to elicit the autosomal-dominant form of PD, with G2019S being the most common mutation. The hallmark pathology underlying the clinically observed motor systems of PD (i.e. tremor, rigidity, postural instability and bradykinesia) is the progressive degeneration of nigrostriatal dopaminergic neurons (20). The pathomechanism leading from LRRK2-G2019S mutation to neuronal degeneration and PD pathology however is unknown. Therefore, the development of disease models allowing for pathomechanistic studies is desirable. There already had been attempts to model LRRK2-linked PD. The hallmark pathology (dopaminergic neuronal degeneration) had been achieved in Drosophila but not in transgenic mice. Mice, however, possess a homologous nigrostriatal pathway in their brains.

The scientific objective of the reference publication therefore was to develop LRRK2-G2019S transgenic mice that feature the hallmark pathology in a homologous (to humans) structure.

The `stage` of this reference was judged to be `model development`, comprising the single `critical` generic experimental purpose `model validation` (with some additional `noncritical` elements of `model characterization`):

1.) Purpose `model validation` is characterized by the enumeration of experimental details and diagnostic findings, supporting the validity of the developed disease model: `Pathogenic validity` is supported by the experimental induction of (monogenic) Parkinson’s disease via (transgenic) expression of human
LRRK2 bearing clinically relevant mutations R1441C or G2019S (“... familial PD mutations ...”).

“Homologic validity’, ‘mechanistic validity’ and ‘face validity’ are supported by the finding, that expression of a relevant mutation (G2019S) induces the degeneration of nigrostriatal pathway dopaminergic neurons (in transgenic mice) in an age-dependent manner, which is a (post mortem) pathological hallmark of late-onset familial Parkinson’s disease in human patients.

2.) Purpose ‘model characterization’ is characterized by the description of additional observations regarding pathological features (e.g. markedly reduced neurite complexity of cultured dopaminergic neurons). Such putative ‘intermediate endpoints’ may guide subsequent ‘pathomechanistic studies’ (“... provide important tools for understanding the mechanism(s) ...”). Please note, that ‘neurite complexity of cultured dopaminergic neurons’ is an in vitro (ex vivo) endpoint!

Please, see Fig. 3 above for the elaborated ‘scientific objective chart’ and [Additional File 5] for case study-specific judgement guidelines.

Table 2

Label	Number of test publications
`equivalent´	1
`partly equivalent´	31
`noteworthy´	8
`Limbo´	5
`not equivalent´	57
`relevant´	19

Case study PMID 21494637 provides 1 test publication labelled `equivalent´ and 31 `partly equivalent´. 8 publications were labelled `noteworthy´, and 57 test publications were labelled `not equivalent´ (in scientific objective) by the human rater. 5 publications were labelled `Limbo´. Of the 102 publications annotated with an `equivalence´ label, 19 publications were also labeled `relevant´, i.e. describing research that potentially embodies an `animal use alternative´ (Table 2).

Case study PMID 19735549 (22)
The initial PubMed-similar-articles-corpus consisted of 127 publications (April 2019). These were downloaded to the SMAFIRA assessment tool and 97 publications were annotated by the first human rater (`equivalence´, `relevance´). The same 97 publications were additionally annotated by a second human rater, who was a scientific expert of the respective research domain (DCIS), using the same `scientific objective chart´ and guideline (see below).

The reference publication PMID 19735549 was assigned to ICD 10 chapter II (Neoplasms) and categories D05 (Carcinoma in situ of breast) or C50 (Malignant neoplasm of breast), respectively,
since the progression to invasion of initially non-invasive tumor cells was addressed. Ductal carcinoma in situ (DCIS) is “a premalignant proliferation of neoplastic epithelial cells contained within the lumen of mammary ducts” (“intraductal”) (23). DCIS is separated from the breast stroma by an intact basement membrane, but in cases where the tumor gets invasive the barrier is hurdles (progression to invasion). Such progression, however, does not always occur (~40% of cases). Since it is currently not possible to predict which patients with DCIS will develop invasive breast cancer (IBC), the majority of patients have to undergo surgical treatment followed by radiation and/or chemotherapy (as precautionary measure). Thus, reliable biomarkers that predict the likelihood of progression to invasive breast cancer would be most desirable. Analyses of single tumor cells retrieved from DCIS and matched IBC samples via microdissection revealed a high level of intra-tumor heterogeneity (see (23)). Observations like this stimulate the theory that progression to invasive cancer may be a result of clonal selection of distinct subpopulations of neoplastic cells. The identification of such malignant subpopulations (see ‘scientific objective chart’: ‘identity’) therefore would allow for pinpoint pathomechanistic studies.

The ‘stages’ of the reference research were judged to be ‘model development’, comprising the generic experimental purpose ‘model validation’, and ‘target discovery’ embodied by the generic purpose ‘basic research/pathomechanism’:

Main topic ‘model development’ is introduced by the statement of the scientific aim (objective), i.e. “... development of an in vivo model whereby the natural progression of human DCIS might be reproduced and studied.” Furthermore, the name of the model is introduced: intraductal human-in-mouse (HIM) transplantation model. Please note that details regarding in vivo methodology are neglected in the following listing, since we aimed to find equivalent research not using laboratory animals.

1.) Purpose ‘model validation’ here again (like in PMID 21494637) is characterized by the enumeration of experimental details and diagnostic findings, supporting the validity of the developed disease model: ‘Pathogenic validity’ is supported by the experimental induction of breast lesions (in mice) with human DCIS cell lines (MCF10DCIS.COM and SUM-225) that represent relevant subtypes (basal-like, HER-2+) of the disease. Furthermore, primary human DCIS cells (FSK-H7) were injected. ‘Face validity’ is supported by the finding that induced lesions histologically were almost identical to those clinically...
observed in human DCIS and the actual progression to invasion in some cases. ‘Homologic validity’ is achieved by transplanting human cells into an adequate environment, i.e. within the lumen of mammary ducts (intraductal).

2.)
Purpose ‘basic research/pathomechanism’ is characterized by statement of a respective hypothesis: “... whether subtypes of human DCIS might contain distinct subpopulations of tumor-initiating cells” (a probable clinical predictor of progression to invasive cancer). Furthermore, the methodological approach to identify (see [Additional File 3]: ‘identity’) such populations was touched upon and also the resulting finding: “... various subtypes of human DCIS appeared to contain distinct subpopulations ...”. Thus, the model was shown to “allow the study of ... mechanisms of breast cancer progression.” Note: In this case study, the stage ‘target discovery’ also may include a ‘prognostic biomarker discovery’.

The depiction of the purposes discussed above is fragmented between the 4 paragraphs of the abstract, due to the structured arrangement in introduction, methods, results and conclusions.

Please, see [Additional File 2] for the elaborated ‘scientific objective chart’ and [Additional File 5] for case study-specific judgement guidelines.

Table 3

Label	Number of test publications
partly equivalent	11
Limbo	4
not equivalent	82
relevant	9

Case study PMID 19735549 (after pooling the results from two human raters, see below) provides 11 test publications labeled ‘partly equivalent’ and 4 publications labeled ‘Limbo’. 82 test publications were labeled ‘not equivalent’ (in scientific objective) and 9 of the 97 test publications were labelled ‘relevant’ (Table 3).

Evaluation of PubMed ‘similar articles’ algorithm

The case studies were used to evaluate PubMed’s ‘similar articles’ ranking. Tables 4 & 5 depict the values determined for precision and recall for the top positions of the hit list retrieved from the PubMed-GUI (rankings retrieved via NCBI Elink may slightly differ).
Performance of PubMed’s `similar articles´ ranking with regards to `equivalence´ and `relevance´ of test publications. Values for precision and recall were determined as described in Methods, e.g. P5 specifies precision for the first 5 positions, Rec20 specifies recall for the first 20 positions. PMIDs specify the case studies. Figures in brackets indicate values that would be expected from random distribution of test publications within the hit list. `Equivalent´ and `partially equivalent´ publications were summarized under the headline `equivalence´ here.

While PubMed’s ranking algorithm positively selects for `equivalent´ publications in all case studies, there is no such positive selection for `relevant´ publications in case studies PMID 24204323 and PMID 21494637. Distribution of the latter within the hit list essentially corresponds to random distribution (see Fig. 5), with slight negative inflection for the top ranks (i.e. position 1 to 20). In case study PMID 19735549, however, `equivalent´ AND `relevant´ publications were highly concentrated within the first 50 positions of the hit list, with recall values of 0.91 and 0.78, respectively.

Figure 5, subtitle
Profiles of hitlists derived from PubMed’s `similar articles´ ranking algorithm for 3 case studies (black lines). A, C and E depict the distribution of `equivalent´ publications within the hitlists of PMIDS 24204323 (A), 21494637 (C) and 19735549 (E), B, D and F depict the distribution of `relevant´ publications within the hitlists of PMIDS 24204323 (B), 21494637 (D) and 19735549 (F). The black lines represent the actually determined cumulative number of `equivalent’ or `relevant’ publications, equal or below a given rank. The red lines represent the corresponding (theoretical) accumulation of `equivalent’ or ‘relevant’ publications expected from a random distribution within the hitlist and no ‘positive selection’ of sought-after contents. Green lines represent the (theoretical) optimal enrichment of sought-after contents at the first ranks of the hitlists.
We have generated the seed of an inventory of annotated case studies illustrating our `real world´ information need, i.e. to retrieve possible alternatives to animal experiments from the scientific knowledgebase (herein represented by PubMed/MEDLINE). Thus far, the inventory comprises only three case studies from two ICD 10 chapters (i.e. II Neoplasms and VI Diseases of the nervous system), but we plan to achieve better coverage of all ICD 10 chapters (and subcategories) which are connected to great proportions of animal experimentation (24).

During our first attempts to annotate such case studies we realized, that `similarity´ or `relatedness´ are concepts too `vague´ to distinguish research that fulfills our information need from research that doesn´t. Since we can rely on some background regarding `interference´ in the domain of intellectual property (patents), we adapted techniques employed during an `infringement analysis´ (i.e. `claim charting´, `all elements test´) to support a stringent determination of `equivalence´. Thus, only if all the `critical´ elements of a reference research project (as depicted in a PubMed abstract) are present in another research project (PubMed abstract) such research is termed `equivalent´. To include possible alternatives to animal experimentation into such stringent definition, however, elements referring to methodology are exempted.

But what are `critical´ elements of research? In contrast to patents, PubMed abstracts do not provide an itemization of (scientific) claims that represent `critical´ elements. As result, such elements have to be deduced from abstracts in a way that is practicable (for researchers with average domain knowledge) and credible. Again, we built on our long-term experience in the biomedical domain and elaborated a model to support the itemization of `critical´ scientific elements in a visually guided manner, i.e. with `scientific objective charts´. Depending on the `stage of research´, the chart suggests `critical´ scientific entities that should be addressed in the abstract, e.g. “given stage: `model validation´ → question: is entity `pathogenic validity´ addressed?”. In particular, `critical´ entities describe indispensable steps towards achievement of milestones, specific for a certain stage (e.g. a `valid druggable target´ is the milestone result of `target discovery´). The actual `stage of research´ has to be determined by a trained user yet. However, we hope to inspire the elaboration of tools to achieve a full user support regarding such assessment. A possible first step into this direction
will be evaluation of existing topic modeling algorithms (25). To help an adaption of such techniques to our problem, we have assigned `stages of research´ to 50% of our test publications and plan to assign such stages to all test publications of our growing corpus. Such prior-knowledge annotations then may be used to guide the topic-modeling process (semi-supervised models)(26).

Thus far, our chart is elaborated to primarily cover the stages of `model development´ and `target discovery´, since the three initial case studies reflect research of these stages only. Anyway, with more case studies to come the chart will be extended to cover later stages as well. The utility of a completed `scientific objective chart´ as means to communicate an information need was proven to be `very good´. This was exemplified with case study PMID 19735549 where such a chart, authored by the first human rater, was used to inform annotations by the second rater. Informed interrater reliability was determined to be 76% (when counting identical labels only) or 98% (when subtracting conflicting labels only). The divergence is due to test publications labeled `Limbo´ (= undecided) by only one of the raters. Our result with regard to the reproducibility of an `equivalence analysis´ is highly considerable, since the test publications prior to annotation already were prefiltered for `similarity´ by the PubMed-algorithm, making any subsequent judgement even more intricate. Thus, it is achievable to reproducibly increase the resolution of `similarity labels´ beyond the value `similar´ (`related´ → `similar´ → `equivalent´).

The amount of publications being judged `equivalent´ or `partly equivalent´, respectively, was quite variable among the three case studies, ranging from 11 (in 97, PMID 19735549) and 13 (in 101, PMID 24204323) to no less than 32 (in 102, PMID 21494637). Research that was judged fully `equivalent´ was present only twice in our corpus, one test publication in case studies PMID 21494637 and 24204323 each. Anyway, since only information provided in abstracts (and titles) was considered for the judgement, a subsequent inspection of full text from `partly equivalent´ publications may reveal more `equivalent´ research than that discovered at first glance. The same is true for publications judged `noteworthy´ (or `Limbo´). In such cases, the abstracts may merely contain information too insufficient for unambiguous judgement. Full text inspection then may bring clarification.

Evaluation of PubMed’s ranking algorithm revealed a clear positive selection of `equivalent´ research
with most conclusive results for case study PMID 21494637 (e.g. P5 = 1, Rec50 = 0.75). Full profiles of the distributions of `equivalent´ publications after ranking by PubMed, however, revealed more complex results for `equivalents´ (see Fig. 5): thus, after positive selection of some test publications at the first ranks, the remaining `equivalents´ are distributed more or less similarly to a random distribution (PMID 21494637, parallel increases), or are clustered at much later ranks (ranks 44–63, PMID 24204323). We have screened the latter case study and found, that test publications in the early cluster (ranks 1-12) are rather `not relevant´ (5 of 6 test publications), whereas publications of the late cluster rather are `relevant´ (4 of 5 test publications). Thus, there may be a `negative co-selection´ (see below) of such test publications in some case studies. In contrast to the aforementioned, `equivalent´ AND `relevant´ publications are both positively selected for in case study 19735549. Thus, any occurrences of positive or negative co-selection of test publications may depend on the particular corpus `background´.

So far, we have not included test publications judged `noteworthy´ in the evaluation of ranking performance. But we will show results of a full-blown comparative evaluation of the original PubMed `similar articles´ algorithm versus an empirically calibrated version of the algorithm in a parallel publication (manuscript in preparation).

The amount of publications judged `relevant´ was in the range of ~10% (PMIDs 19735549, 24204323) to ~20% (PMID 21494637), provided that combinations of label `alternative methodology´ with labels `limbo´ OR `noteworthy´ are also deemed `relevant´. This amount is decreased, however, if only the most stringent rule is applied, i.e. `relevance´ means `equivalence´ (at least `partial equivalence´) + `alternative methodology´. Then, case study PMID 24204323 holds 7, case study PMID 21494637 holds 13 and case study PMID 19735549 9 `relevant´ publications. It is worthy to note, that the PubMed ranking algorithm in some cases seems to negatively select `relevant´ abstracts from top ranks and as result locates them at lower ranks (see Fig. 5, PMIDs 21494637 and 24204323). Thus, precision and recall at upper ranks (P20, Rec20) with regards to `relevance´ are decreased even under values expected for a random distribution. This finding - if it can be substantiated with more than 2 case studies in the future - appears plausible since `similarity´ as
calculated by PubMed of course includes methodological features of any given research, with in vivo experiments being more `similar´ to other in vivo experiments than e.g. in vitro experiments. The latter, in spite of `equivalent´ scientific objectives, would be ranked lower in a respective PubMed hit list (i.e. `negative selection´).

This “shortcoming” (with regards to our information need) of PubMed is exactly what we are addressing in the SMAFIRA project¹ (see section “Endnotes” for explanation of note). We aim at positive selection of `relevant´ publications and positioning at the top ranks, i.e. rank 1 to 20. To achieve this goal, however, we need a kind of `selected equivalence´ algorithm that skips any information being present in abstracts regarding methodology and focusses on information regarding scientific objective. Such selective determination of `equivalence´ may be enabled by a filtering step in text preprocessing (e.g. via MetaMap) selecting only `critical´ semantic types for downstream calculations of `equivalence´. Thus far, we have identified 15 `critical´ semantic types and have projected them onto a `master chart´. Futhermore, “zoning” of abstracts and elimination of sections that focus on methodology during preprocessing may also improve the selection of `relevant´ publications in the hitlist, by reversing any `negative selection´ due to alternative methodology (27).

We will use the SMAFIRA-c corpus to further evaluate such ideas. Anyway, there may be completely different approaches to identify `alternatives to animal experiments´ in a `database-wide´, i.e. whole PubMed/MEDLINE, manner. We therefore provide our growing SMAFIRA-c corpus to the community, hoping it will be utilized to inspire such approaches.

Conclusions

Building on approved techniques utilized in the domain of intellectual property, we have adapted the concept of `equivalence´ to support a transparent, reproducible and stringent comparison of biomedical publications. To exemplify such comparison we have elaborated the SMAFIRA corpus consisting of three case studies and `equivalence´ annotations. This concept may allow for text clustering and ranking with improved resolution (`high-resolution´) compared to concepts `relatedness´ and `similarity´. `Equivalence´ of publications may be determined using our model of `stages in biomedical research´ and our generic `experimental purposes´. Since our understanding of
`equivalence´ ignores aspects of experimental methodology, our approach should be suitable to identify a varied portfolio of experimental techniques to address a given scientific problem (e.g. in vivo, in vitro, in silico). Such an unbiased information retrieval is particularly necessary to enable the detection of alternatives to animal use in the experimental biomedical research. We invite computer science researchers in the fields of biomedical text mining and knowledge discovery to use our corpus, which is designed to grow essentially in the near future, as a reliable and informative benchmark for the design and evaluation of algorithms supporting such a goal.

Methods

The SMAFIRA-c corpus basically was set up in a cooperative research project involving BfR and GESIS. It was updated and enriched by BfR scientists subsequently.

Choice of case studies and reference abstracts

All reference abstracts (PMID 19735549, 21494637, 24204323) describe experimental in vivo research in the biomedical domain. Reference abstract PMID 21494637 (20) was chosen because of respective inhouse knowledge regarding Parkinson’s disease gained during preparation of case studies for the AnimAltZEBET-database. The corresponding AnimAltZEBET-case studies can be accessed via Advanced Search for Method No(s): 1, 2, 4 and 5. Reference abstracts PMID 19735549 (DCIS, ductal carcinoma in situ (22)) and 24204323 (Huntington’s disease (19)) were chosen because of a priori knowledge of available in vitro methodology (i.e. `relevant´ publications) and availability of expert level knowledge in our group (S.D.). The case studies were assigned to ICD-10 (International Statistical Classification of Diseases and Related Health Problems, 10th Revision) classes, since we plan to elaborate at least one case study for each ICD-10 class involving considerable experimental in vivo research in Germany as determined by (24).

Model building

Presented models were elaborated empirically during iterative annotations of three precursor SMAFIRA case studies (not shown: PMIDs 11489449, 11932745 and 16850029). The goal was a reproducible identification of scientific entities `critical´ for determination of `equivalence´. Model building was informed by publications describing the early drug development pipeline (12-15).

Retrieval of test sets and annotation of document level labels (`equivalence´, `relevance´)
For annotation of labels regarding the `equivalence´ and the `relevance´ of test publications with respect to a given reference publication (e.g. PMID 19735549) the freely available SMAFIRA-Assessment Tool (29) was used. The Grails2-based tool was engineered by N. Dulisch during the cooperation project. Please refer to the GitHub repository for documentation.

In brief, a reference abstract and the corresponding PubMed-similar-articles-corpus were retrieved by the SMAFIRA-retrieval-GUI via the NCBI E-utility URL (30) after entering the respective PMID (PubMed Identifier) and title. The SMAFIRA-assessment-GUI was then used to assign preset labels4 (`equivalent´, `partly equivalent´, `Limbo´, `not equivalent´) to each test publication after screening the scientific content of title and abstract. MeSH-terms were not considered.

The basic annotation was conducted by one researcher (D. Butzke) with a biomedical background, i.e. drug development (31), and training in the detection of patent infringements (9). Assessment followed a fixed routine: After getting acquainted with the respective experimental domain (by reading the reference article and some illustrative reviews) a preliminary `scientific objective chart´ specifying the most `critical´ scientific entities for comparison was framed by the researcher (see below). For being judged `equivalent´ those `critical´ entities had to be present in a test publication (`all elements rule´). Partial presence was indicated as `partly equivalent´. A screen of the top-ranked (by pmra algorithm) 20 `similar articles´ then was conducted and the usefulness of the preliminary chart to judge `equivalence´ of test publications was probed. In all cases, the chart was adjusted (e.g. scope of validity was extended when reasonable variations of a `scientific entity´ were encountered - e.g. other (grading) schemes to differentiate tumor subtypes in DCIS were allowed). Thus, the level of abstraction/comprehension was increased for scientific entities2 (see paragraph “Endnotes” for explanation).

Then, a first comprehensive screen and assessment of the top-ranked 100 `similar articles´ was conducted, and the `scientific objective chart´ was fine-tuned subsequently. The fine-tuned charts of the 3 reference publications are shown in Fig. 3 and Additional File 2. Eventually, based on the fine-tuned charts, `equivalence´-annotations of the top-ranked 100 abstracts were revised. This resulted
in the final annotations as recorded in the SMAFIRA-c corpus. In addition to labels `equivalent`, `partly equivalent` and `not equivalent`, labels `Limbo` and `skipped` were annotated to abstracts, whenever the rater was undecided or when the contents of a publication were too scanty for a judgement. `Limbo` was later improved to `noteworthy` in cases where such an appreciation was justifiable and supported by evidence (see below, and [Additional file 6]). Test publications that were labelled `skipped` were not included in the SMAFIRA-c corpus. The label `relevance` was assigned in parallel.

SMAFIRA-assessment-GUI allows to record additional information in a free text field. We used this field to record the `stage in biomedical research` of reference and test publications according to our model (see Fig. 1). 50 test publications of each case study were annotated accordingly.

Evidence-based evaluation of undecided test publications (`Limbo` to `noteworthy`)

Since there was a considerable amount of undecided test publications in all case studies and among them were several abstracts judged `relevant`, we wondered, whether it would be possible to retrospectively come to a conclusion based upon evidence comprising:

1. 1.) human rater `Limbo` judgements,
2. 2.) author indications of `similar` or `related` research in the introductory sections of reference publications,
3. 3.) results from `selected bibliographic coupling`.

If such evidence could be collected in favor of an appreciation, the abstract was labeled `noteworthy` (see [Additional file 6] for details). Test publications judged `equivalent` but were NOT supported by such evidence were labelled with index ns. Test publications judged `not equivalent` but were supported by `selected bibliographic coupling` were labelled with index ns also (i.e. the negative judgement regarding `equivalence` was NOT supported by a coincident lack of `relatedness` as tested with `selected bibliographic coupling`). No test publication judged `not equivalent`, however, was mentioned as `similar` or `related` research by the author of the reference publication (see [Additional file 6] for details).
Inference of `critical´ concepts and semantic types from UMLS semantic network

Reference abstracts and titles were screened for `critical´ entities as described above. Such entities are represented by single or complex terms. After collecting such terms, the corresponding UMLS concept(s) and semantic type(s) were retrieved manually from NCI metathesaurus (32). For instance, `critical´ entities (regarding `homologic´, `mechanistic´ and `face validity´) in reference publication PMID 21494637 are mentioned in the sentence “the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner.” This expression translates to 1.) `neuropathology shows neuronal degeneration´ [finding], 2.) `neuronal loss in the substantia nigra´ [finding], 3.) `loss of dopaminergic neurons in the substantia nigra´ [finding], and 4.) `age-dependent penetrance´ [finding] in the NCI metathesaurus. Such generic semantic types ([finding] in this example) were then projected onto a `master-chart´.

Chart transferability (informed interrater reliability)
The first raters annotations assigned to the PMID 19735549 test collection were compared to a second rating from a scientific expert of this specific domain (S.D., DCIS). This expert used the `scientific objective chart´ that had been elaborated by the first rater and was instructed how to use it. Such informed interrater reliability was calculated as percent agreement in annotations. In cases of disagreement (e.g. `partly equivalent´ versus `not equivalent´), raters discussed their judgements, and the annotation agreed on eventually was recorded in SMAFIRA-c. In cases, where only one conclusive judgement was available because one rater judged the respective test publication as `Limbo´, the conclusive judgement was recorded in SMAFIRA-c. Single rater annotations are recorded in the data that may be retrieved from GitHub.

Evaluation of PubMed `similar articles´ ranking: calculation of precision and recall
We determined such values for the rankings provided by the `similar articles´ algorithm employed in PubMed (33). Briefly, `similar articles´ collections were retrieved for the three reference publications from PubMed in April 2019. Format of the hit list was switched to PMID list and downloaded to MS EXCEL. The first entry of the hit list, i.e. the reference PMID itself, was deleted and SMAFIRA
annotations were aligned. PMIDs with no SMAFIRA annotations were deleted3. Precision with regards to `equivalence` and `relevance`, respectively, was calculated as number of positives/number of all. P5 considered the first 5 positions, P10 the first 10 positions and so on. Recall was calculated as number of retrieved positives/all available positives in the sample. Rec20 considered the first 20 positions, Rec50 the first 50 positions.

Diagrams showing the cumulative increases in positive publications with growing position numbers were produced as follows: For each rank the number of equivalent or relevant publications on that rank and below were added up. These numbers are represented by the red lines. For comparison the number resulting from a random distribution of these publications among all selected publications were calculated. These numbers are represented by the black lines.

Declarations

Availability and format

SMAFIRA\textsubscript{c}-corpus annotations are available from (16). They are stored as csv-file (";") generated from an EXCEL-table. The respective PubMed-abstracts may be retrieved from (30).

List of abbreviations

PMID, PubMed Identifier

MeSH, Medical Subject Heading

PDD, Phenotypic drug discovery

pmra, PubMed Related Articles

Endnotes

1 MeSH term based filtering, albeit an apparently obvious solution, in our hands proved to be too unreliable to be systematically used for addressing our information need in a `database-wide` manner. 2 In the mentioned example, the `critical` entity is NOT the actual grading scheme of a tumor BUT the attempt to use biomarkers for stratification regarding prognosis. 3 Case study PMID \textbf{24204323}: PMIDs 30312299, 29856032, 29529236, 29075942 and 28729730 were deleted from the
first 50 positions. Case study PMID **21494637**: PMIDs 29386392, 25000966, 29268033, 29088368 were deleted from the first 50 positions. Case study PMID **16850029**: no PMID was deleted. The original labels of the SMAFIRA-annotation tool (‘very similar’, ‘similar’, ‘undecided’, ‘not similar’) were used as ‘equivalent’, ‘partly equivalent’, ‘Limbo’, ‘not equivalent’.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Availability of data and material

The annotations generated during the current study are available in the ‘GitHub/SMAFIRA/c_corpus´ repository (16).

The respective PubMed-Abstracts may be retrieved from (30).

The datasets supporting the conclusions of this article are included within the article (and its additional files).

Competing interests

The authors declare that they have no competing interests

Funding

This work was funded by the Federal Institute for Risk Assessment, Berlin

Authors’ contributions

DB elaborated the models (‘stages in biomedical research´, ‘chart for equivalence analysis´), chose
and annotated the case studies, conducted the `evidence-based evaluation´ of annotations, deduced `critical semantic types´ from the case studies, prepared all but one figure (Fig. 5) and all tables, and drafted the manuscript. ND elaborated the SMAFIRA assessment tool that was used for annotation. SD annotated one case study (PMID 19735549). MS evaluated the PubMed-similar-articles ranking, prepared Fig.5 and drafted the respective text sections. MN and BM provided fruitful discussions and revised the manuscript. BG allocated resources (funding and workforce) to the SMAFIRA project and revised the manuscript.

All authors read and approved the final manuscript.

Acknowledgements

Not applicable

References

1. Lin J, Wilbur WJ. PubMed related articles: a probabilistic topic-based model for content similarity. BMC Bioinformatics. 2007;8:423.

2. Fiorini N, Lipman DJ, Lu Z. Towards PubMed 2.0. eLife. 2017;6:e28801.

3. Mork J, Aronson A, Demner-Fushman D. 12 years on - Is the NLM medical text indexer still useful and relevant? J Biomed Semant. 2017;8.

4. Directive 2010/63/EU. European parliament and the counscil of the European union. 2010. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF. Accessed 11 Feb 2020.

5. Russell WMS, Burch RL. The principles of humane experimental technique. London, Methuen. 1959.

6. Frank E, Hall MA, Witten IH. The WEKA Workbench. Online Appendix for: Kaufmann M. Data Mining: Practical Machine Learning Tools and Techniques. 4th ed. 2016. https://www.cs.waikato.ac.nz/ml/weka/Witten_et_al_2016_appendix.pdf. Accessed 11
7. Yeganova L, Kim S, Balasanov G, Wilbur WJ. Discovering themes in biomedical literature using a projection-based algorithm. BMC Bioinformatics. 2018;19(1):269.

8. The Intellectual Property Enterprise Court Guide. HM Courts & Tribunals Service. 2019. https://www.gov.uk/government/publications/intellectual-property-enterprise-court-guide. Accessed 11 Feb 2020.

9. Bergmann I, Butzke D, Walter L, Fuerste JP, Moehrle MG, Erdmann VA. Evaluating the risk of patent infringement by means of semantic patent analysis: The case of DNA chips. R and D Management. 2008;38(5):550-62.

10. Neves M, Butzke D, Grune B. Evaluation of Scientific Elements for Text Similarity in Biomedical Publications. Proceedings of the 6th Workshop on Argument Mining. 2019:124-135. https://www.aclweb.org/anthology/W19-4500.pdf. Accessed 11 Feb 2020.

11. Bodenreider O. The UMLS Semantic Network. Bethesda (MD): National Library of Medicine (US). https://semanticnetwork.nlm.nih.gov/. Accessed 11 Feb 2020.

12. Hughes JP, Rees SS, Kalindjian SB, Philpott KL. Principles of early drug discovery. British Journal of Pharmacology. 2011;162(6):1239-49.

13. Lindsay MA. Target discovery. Nature Reviews Drug Discovery. 2003;2(10):831-8.

14. Neitz RJ, Chen S, Supek F, Yeh V, Kellar D, Gut J, et al. Lead identification to clinical candidate selection: drugs for Chagas disease. Journal of biomolecular screening. 2015;20(1):101-11.

15. Moffat JG, Vincent F, Lee JA, Eder J, Prunotto M. Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nature reviews Drug discovery. 2017;16(8):531-43.

16. Butzke D.GitHub/SMAFIRA-repository. 2019. https://github.com/SMAFIRA/. Accessed
17. International Classification of Diseases (ICD) Information Sheet. World Health Organization. 2020. https://www.who.int/classifications/icd/factsheet/en/. Accessed 11 Feb 2020.

18. Belzung C, Lemoine M. Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression. Biology of mood & anxiety disorders. 2011;1(1):9.

19. Pinto RM, Dragileva E, Kirby A, Lloret A, Lopez E, St Claire J, et al. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches. PLoS genetics. 2013;9(10):e1003930.

20. Ramonet D, Daher JP, Lin BM, Stafa K, Kim J, Banerjee R, et al. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PloS one. 2011;6(4):e18568.

21. Klein C, Westenberger A. Genetics of Parkinson's disease. Cold Spring Harbor Perspectives in Medicine. 2012;2(1).

22. Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC, et al. An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast cancer research : BCR. 2009;11(5):R66.

23. Cowell CF, Weigelt B, Sakr RA, Ng CK, Hicks J, King TA, et al. Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Molecular oncology. 2013;7(5):859-69.

24. Bert B, Dorendahl A, Leich N, Vietze J, Steinfath M, Chmielewska J, et al. Rethinking 3R strategies: Digging deeper into AnimalTestInfo promotes transparency in in vivo biomedical research. PLoS biology. 2017;15(12):e2003217.

25. Liu L, Tang L, Dong W, Yao S, Zhou W. An overview of topic modeling and its current
applications in bioinformatics. SpringerPlus. 2016;5(1):1608.

26. Wood J, Tan P, Wang W, Arnold C. Source-LDA: Enhancing probabilistic topic models using prior knowledge sources. Proc Int Conf Data. 2017:411-22.

27. Neves M, Butzke D, Grune B. Evaluation of Scientific Elements for Text Similarity in Biomedical Publications. Proceedings of the 6th Workshop on Argument Mining. 2019:124-135. https://www.aclweb.org/anthology/W19-4500.pdf. Accessed 11 Feb 2020.

28. AnimAlTZEBET - database. Bundesinstitut für Risikobewertung. 1997 - 2012. https://apps.bfr.bund.de/animalt-zebet/index.cfm. Accessed 11 Feb 2020.

29. Dulisch N. SMAFIRA Assessment Tool. 2015. https://github.com/nadul/smafira. Accessed 11 Feb 2020.

30. A general introduction to the E-utilities. In: Entrez Programming Utilities Help. Bethesda (MD): National Center for Biotechnology Information (US). https://www.ncbi.nlm.nih.gov/books/NBK25497. Accessed 3 Mar 2020.

31. Butzke D, Machuy N, Thiede B, Hurwitz R, Goedert S, Rudel T. Hydrogen peroxide produced by Aplysia ink toxin kills tumor cells independent of apoptosis via peroxiredoxin I sensitive pathways. Cell death and differentiation. 2004;11(6):608-17.

32. NCI Metathesaurus. Rockville (MD): National Cancer Institute (US). https://ncim.nci.nih.gov/ncimbrowser/. Accessed 11 Feb 2020.

33. Computation of Similar Articles. In: PubMed Help. Bethesda (MD): National Center for Biotechnology Information (US). https://www.ncbi.nlm.nih.gov/books/NBK3827/. Accessed 11 Feb 2020.

Figures
Figure 1

A model of experimental biomedical research Figure 1, subtitle: `Stages in biomedical research´ with generic `experimental purposes´. PDD: Phenotypic drug discovery.
Figure 2

Critical entities for the consideration of `equivalence` Figure 2, subtitle: The `scientific objective chart`.
Figure 3

Scientific objectives of PMID 21494637 Figure 3, subtitle: The completed `scientific objective chart´ of PMID 21494637 depicting only the `critical´ entities. Original terms from the abstract were filled into the respective field. The `stage´ of this research was determined `model development´.
Scientific objectives of PMID 18258746 Figure 4, subtitle: The completed `scientific objective chart´ of PMID 18258746 depicting only the `critical´ entities. Original terms from the abstract were filled into the respective field. The `stage´ of this research was determined `model development´ (1). The respective abstract was judged `partly equivalent´ to the reference publication shown in Figure 3. Note, that the abstract lacks a clear indication of `homologic validity´ (i.e. what structures are meant by `selective´?).
Figure 5

Performance of PubMed’s `similar articles´-ranking

Figure 5, subtitle: Profiles of hitlists derived from PubMed’s `similar articles´ ranking algorithm for 3 case studies (black lines). A, C and E depict the distribution of `equivalent´ publications within the hitlists of PMIDS 24204323 (A), 21494637 (C) and 19735549 (E). B, D and F depict the distribution of `relevant´ publications within the hitlists of PMIDS 24204323 (B), 21494637 (D) and 19735549 (F). The black lines represent the actually determined cumulative number of `equivalent´ or `relevant´ publications, equal or below a given rank. The red lines represent
the corresponding (theoretical) accumulation of `equivalent’ or ‘relevant’ publications expected from a random distribution within the hitlist and no `positive selection´ of sought-after contents. Green lines represent the (theoretical) optimal enrichment of sought-after contents at the first ranks of the hitlists.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

Figure S3.png
Figure S2.png
Additional file 3.docx
Additional file 5.docx
Additional file 4.docx
Additional file 6.docx
Figure S1.png
Additional file 2.docx
Additional file 1.docx