Vitamin B$_{12}$ and transcobalamin in bovine milk: Genetic variation and genome-wide association with loci along the genome

Grum Gebreyesus,1* Nina Aagaard Poulsen,2 Mette Krogh Larsen,2,3 Lotte Bach Larsen,2 Esben Skipper Sørensen,4 Christian Würtz Heegaard,4 and Bart Buitenhuis1

Summary

This study reports significant associations between the log-transformed transcobalamin content in the Danish Holstein milk and 28 single nucleotide polymorphisms (SNPs) across Bos taurus autosomes (BTA). Of these 28 significantly associated SNPs, 24 were on BTA17, where strong associations were detected, with −log$_{10}$(P-value) up to 62.93. The QTL region on BTA17 spanned between 71.71 and 71.79 Mbp.

Highlights

- High heritability (0.61 ± 0.13) was found for milk transcobalamin content in Danish Holstein.
- Moderate heritability (0.37 ± 0.18) was found for vitamin B$_{12}$ content in Danish Holstein.
- Twenty-eight SNPs were detected with strong association to the milk content of transcobalamin.
- A strong QTL region was detected for transcobalamin on BTA17 (71.71–71.79 Mbp).

1Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark, 2Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark, 3Arla Foods Amba, Mæalkevejen 4, DK-6920 Videbæk, Denmark, 4Molecular Nutrition, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark. *Corresponding author: grum.gebreyesus@qqg.au.dk. © 2021, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Received October 27, 2020. Accepted January 19, 2021.
Vitamin B$_{12}$ and transcobalamin in bovine milk: Genetic variation and genome-wide association with loci along the genome

Grum Gebreyesus,¹* Nina Aagaard Poulsen,² Mette Krogh Larsen,²,³ Lotte Bach Larsen,² Esben Skipper Sørensen,⁴ Christian Würtz Heegaard,⁴ and Bart Buitenhuis¹

Abstract: In human nutrition, bovine milk is an essential source of bioavailable vitamin B$_{12}$ and B$_{12}$-binding proteins, including transcobalamin. In this study, we estimated genetic parameters for milk content of vitamin B$_{12}$ and transcobalamin using milk samples from 341 and 663 Danish Holstein cows, respectively. Additionally, we conducted whole-genome association analysis to identify SNP and genes associated with vitamin B$_{12}$ and transcobalamin. Our results indicated moderate to high heritability for vitamin B$_{12}$ (0.37 ± 0.18) and transcobalamin (0.61 ± 0.13) content in the Danish Holstein. With a significance threshold of –log$_{10}$ P-value > 5.87, significant associations were detected between SNP in Bos taurus autosome (BTA)17 and the log-transformed transcobalamin content of milk; no significant association was detected for vitamin B$_{12}$. The significant region in BTA17 was imputed to full sequence for further fine mapping, and the SNP with the most significant associations to transcobalamin were assigned to the transcobalamina (TCN2) gene.

In human nutrition, milk and dairy products are important sources for several vitamins, including cobalamin (vitamin B$_{12}$; Rooke et al., 2010). The primary origin of water-soluble vitamins, including B$_{12}$, is through microorganism biosynthesis in the rumen (Schwab et al., 2006) and products from ruminants, such as milk and meat, which are generally rich in B$_{12}$ vitamins. Studies have established links between vitamin B$_{12}$ deficiency and some serious disorders in humans, including neurodegeneration and anemia (Hahn et al., 1988; Green and Lindsay, 2017). Humans are ultimately dependent on animal sources of vitamin B$_{12}$, and deficiency is caused by inadequate intake, inadequate bioavailability, or malabsorption. Deficiency can affect individuals at all ages but particularly elderly individuals and vegetarians (Song et al., 2010; Green and Lindsay, 2017).

Studies indicate that vitamin B$_{12}$ in milk from cows has a high bioavailability (Matte et al., 2014). Bovine bulk milk contains approximately 2 to 6 μg/L of vitamin B$_{12}$ (Duplessis et al., 2016); therefore, 1 L of milk contains more than the current recommended dietary allowance for adults (2.4 μg/d; Institute of Medicine, 1998). In milk from cows, B$_{12}$ is evenly distributed between the whey and the casein micelle fraction, bound to transcobalamin (TC) in the whey, and via coordination to histidine residues of the caseins, respectively (Fedosov et al., 2018, 2019). In humans, TC functions primarily as a circulatory protein, which binds B$_{12}$ following its absorption and delivers it to peripheral tissues via the receptor CD320. Recently, we found that cow milk-derived TC–B$_{12}$ complex was more effective at stimulating receptor-mediated passage of B$_{12}$ across polarized monolayers of human intestinal epithelial (Caco-2) cells than human TC–B$_{12}$ complex (Juul et al., 2019). Clinical studies have shown that 8 wk of daily intake of whey protein isolate improved biomarkers of B$_{12}$ status in elderly Australians with subclinical B$_{12}$ deficiency and, more recently, long-term daily whey powder intake was shown to reinforce B$_{12}$ status in healthy elderly Danes (Dhillon et al., 2017; Greibe et al., 2020). Furthermore, it has been reported that whey powder supplement provided over 4 wk was as efficient as synthetic B$_{12}$ vitamin pills in improving biomarkers of B$_{12}$ deficiency in lactovegetarians (Naik et al., 2019).

Despite the acknowledged value of bovine milk as a B$_{12}$ source (Rooke et al., 2010), very few studies have documented the drivers for B$_{12}$ and TC content variation in milk within and across bovine breeds. Rutten et al. (2013) quantified B$_{12}$ in 544 first-lactation Dutch Holstein-Friesian cows and found an average content of 4.40 mg/L (range 1.0 to 12.9 mg/L). The study estimated a moderate heritability of 0.37, suggesting that vitamin B$_{12}$ content in milk could be altered through genetic selection. A genome-wide association study identified 68 significant SNP associated with B$_{12}$, but none of these was associated with genes involved in B$_{12}$ transport (Rutten et al., 2013).

The aim of this study was to determine the contents of B$_{12}$ and TC in milk from Danish Holstein cows and estimate genetic influence on these traits. An additional aim was to identify QTL associated with the variability in milk B$_{12}$ and TC contents. To our knowledge, this is the first study to screen B$_{12}$ and TC at the same time in milk from a large number of cows.

Morning milk samples were collected from 663 Danish Holstein cows in 21 herds in Denmark, as described by Gebreyesus et al. (2017). Of the collected milk samples, only 341 were used to quantify B$_{12}$, whereas TC was quantified in all samples.
All procedures to collect the samples followed the protocols approved by the National Guidelines for Animal Experimentation and the Danish Animal Experimental Ethics Committee. Milk sampling was restricted to routine on-farm procedures that did not cause any inconvenience or stress to the animals; hence, no specific permission was required.

Total B\textsubscript{12} was measured by the standard procedure for the Advia Centaur CP System (Siemens Healthcare Diagnostics), using hydroxo-B\textsubscript{12} as standard. The endogenous B\textsubscript{12} was extracted from the milk samples as previously described (Fedosov et al., 2019). The in-house bovine TC ELISA protocol was performed as previously described (Fedosov et al., 2019). A custom-made polyclonal rabbit antibody and a monoclonal antibody, both raised against recombinant bovine TC, were used as capture and detect antibodies, respectively. Recombinant bovine TC was used as calibrator.

Genotyping was performed as described in Buitenhuis et al. (2013). In short, genomic DNA was extracted from ear tissues of 663 Danish Holstein cows. In total, 341 animals were genotyped with the BovineHD BeadChip (Van Tassell et al., 2008), whereas the remaining 322 animals were genotyped with the Bovine50K BeadChip (Illumina Inc.). The genotyping was accomplished using an Illumina Infinium II Multisample assay device. iScan and Beadstudio version 3.1 software (Illumina Inc.) were used for scanning and analysis of the SNP chips. Quality parameters for the selection of SNP were as outlined by Buitenhuis et al. (2013), and individuals with average GenCall scores <0.65 were excluded, following Teo et al. (2007). Based on the overlap between the 2 SNP chips,

Table 1. Descriptive statistics and genetic parameters for milk vitamin B\textsubscript{12} and milk transcobalamin contents in milk from Danish Holstein cows1

Variable	Mean	CV (%)	\(\sigma_a^2\) (SE)	\(\sigma_e^2\) (SE)	\(h^2\) (SE)
B\textsubscript{12} (µg/L)	3.93	41.0	0.008 (0.090)	0.014 (0.118)	0.37 (0.18)
Transcobalamin (pmol/L)	557.00	81.0	0.036 (0.190)	0.023 (0.151)	0.61 (0.13)

1 \(\sigma_a^2\) = genetic variation, \(\sigma_e^2\) = residual variation, and \(h^2\) = heritability; genetic and residual variation and heritability were estimated based on the log-transformed data.

Figure 1. Manhattan plot for association analysis of log\textsubscript{10} B\textsubscript{12} (top) and log\textsubscript{10} transcobalamin (bottom) using 50K genotype data.
37,458 SNP were used to calculate the genomic relationship matrix and the initial association analysis. Genomic relationship matrix was calculated following method 1 of VanRaden (2008).

Genotype on BTA17 was imputed to full sequence in a 2-step procedure, as described in detail in Gebreyesus et al. (2016). First, the group of cows genotyped using the Bovine50K chip were imputed to the BovineHD (777K) level using a reference of 3,383 animals, including the 341 cows from the current study. In this step, only the 50K SNP that passed quality control (i.e., minor allele frequency >0.05 and GenCall scores ≥0.65) were used in the target population. Subsequently, the true and imputed high-density data for both groups of cows were merged, and imputation was undertaken to the whole-genome sequence level for BTA17 using a reference of 1,228 animals from run4 of the 1,000 Bull Genomes project (Daetwyler et al., 2014). In both steps, data sets of different densities were pre-phased with Beagle 4 r1398 (Browning and Browning, 2013) and imputed using IMPUTE2 v2.3.1 (Howie et al., 2011). After imputation, a total of 391,026 variants were available on BTA17 for the fine-mapping study. The SNP positions were based on the Bos taurus genome assembly UMD 3.1 (Zimin et al., 2009).

Records for both B12 and TC were log-transformed for the genetic analyses following tests for normality. The REML approach in DMU (Madsen and Jensen, 2007) was used to estimate the genetic parameters and variance components using the following model in the analysis

\[Y_{ijkl} = \mu + \text{herd}_i + \text{parity}_j + b_1 \text{DIM}_k + b_2 e^{-0.05 \times \text{DIM}_k} + \text{animal}_l + e_{ijkl}, \]

where \(Y_{ijkl} \) represents the phenotype of individual \(l \) in herd \(i \) and parity \(j \), \(\mu \) is the overall mean, \(\text{herd}_i \) (\(i = 1, 2, \ldots, 21 \) for TC, and \(i = 1, \ldots, 3 \) for B12) and \(\text{parity}_j \) (\(j = 1, 2, \ldots, 5 \)) are fixed effects; \(b_1 \) and \(b_2 \) are regression coefficients for \(\text{DIM}_k \) and \(e^{-0.05 \times \text{DIM}_k} \), respectively, where \(\text{DIM}_k \) is a covariate of days in milk (d 4 to 877), and \(e^{-0.05 \times \text{DIM}_k} \) is the Wilmink adjustment of DIM (Wilmink, 1987); \(\text{animal}_l \) is a random additive genetic effect of animal \(l \) based on the genomic relationship matrix \(G \); and \(e_{ijkl} \) is the random residual effect.

Milk samples were collected once on each farm and during the same season across farms; therefore, a season effect was not fitted into the model.

Heritability \((h^2)\) estimate was defined as

\[h^2 = \frac{\sigma_a^2}{\left(\sigma_a^2 + \sigma_e^2\right)}, \]

where \(\sigma_a^2 \) is the genetic variation, and \(\sigma_e^2 \) is the residual variation based on univariate analyses.

The association analysis was performed based on an extension of the linear model [1] with an allele substitution effect \((b_3)\) and a covariate \(S N P_{m} \), indicating whether a SNP was heterozygous (1) or homozygous (0, 2). The effect of the SNP was tested using a Wald test with a null hypothesis of \(H_0: b = 0 \). For both traits, SNP effects were declared significant if the corresponding \(-\log_{10} P\)-value was >5.87 (based on genome-wide Bonferroni correction). Additional association analysis was implemented to fine-map QTL regions

\[\text{Log}_{10} \text{Transcobalamin} \]

\[-\log_{10}(P) \]

\[\text{Chromosome 17 position (Mbp 61 - 75)} \]

Figure 2. Manhattan plot for the association analysis of log_{10} transcobalamin using imputed full sequence data on BTA17. The SNP within the TCN2 gene region are highlighted in green.

JDS Communications 2021; 2: 127–131
detected in BTA17 using imputed sequence variants and using a similar model.

Table 1 presents descriptive statistics and genetic parameters for milk B12 and TC content in the Danish Holstein. The mean B12 content was 3.93 µg/L, with a coefficient of variation of 41%. Accordingly, B12 content in the Danish Holstein varied from 1.06 to 4,672 pmol/L, with a relatively higher coefficient of variation (81%). To our knowledge, TC has never been evaluated in such a large number of milk samples from individual cows, although the mean value found here is in line with those reported for a pooled sample of milk from Danish Holstein cows (Fedosov et al., 2019).

Genetic variance explained a substantial part of the variation, and estimated heritabilities were moderate to high for B12 (0.37 ± 0.18) and TC (0.61 ± 0.13), respectively. The heritability estimate found for B12 in this study was similar to the estimate for the Dutch Holstein-Friesian (h² = 0.37; Rutten et al., 2013) but higher than estimates reported for the Scottish Holstein-Friesian (h² = 0.10; Denholm et al., 2019).

Performing a GWAS on the log-transformed data revealed no significant SNP for B12 (Figure 1). This is in contrast to the findings of Rutten et al. (2013), which reported 68 SNP that showed significant association with milk B12 content in the Dutch Holstein-Friesian. This could be partly explained by the stringent significance threshold used in this study (−log₁₀ P-value = 5.87) compared with the less stringent significance threshold used in the study of Rutten et al. (2013) (−log₁₀ P-value = 3.0).

In contrast, 28 significant SNP were associated with TC (Figure 1). For the significant SNP, minor allele frequency ranged between 0.07 and 0.49. A very strong QTL was detected for TC on BTA17, and significant associations were detected with 24 SNP. Further estimates reported for the Scottish Holstein-Friesian (Akins, M. S., S. J. Bertics, M. T. Socha, and R. D. Shaver. 2013. Effects of co-balt supplementation and vitamin B12 injections on lactation performance and metabolism of Holstein dairy cows. J. Dairy Sci. 96:1755–1768. https://doi.org/10.3168/jds.2012-5979.

Browning, B. L., and S. R. Browning. 2013. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194:459–471. https://doi.org/10.1534/genetics.113.150029.

Buitenhuis, A. J., U. K. Sundelike, N. A. Poulsen, H. C. Bertram, L. B. Larsen, and P. Sorensen. 2013. Estimation of genetic parameters and detection of quantitative trait loci for metabolites in Danish Holstein milk. J. Dairy Sci. 96:3285–3295. https://doi.org/10.3168/jds.2012-5914.

Daetwyler, H. D., A. Capitan, H. Pausch, P. Stothard, R. van Binsbergen, R. F. Brondum, X. Liao, A. Dijari, S. C. Rodriguez, C. Grohs, D. Esquierre, O. Bouchez, M.-N. Rossignol, C. Klopp, D. Rocha, S. Fritz, A. Egggen, P. J. Bowman, D. Coote, A. J. Chamberlain, C. Anderson, C. P. VanTassell, I. Hulsegge, M. E. Goddard, B. Guldbrandsen, M. S. Lund, R. F. Verkamp, D. A. Boichard, R. Fries, and B. J. Hayes. 2014. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nat. Genet. 46:858–865. https://doi.org/10.1038/ng.3034.

Denholm, S. J., A. A. Sneddon, T. N. McNeilly, S. Bashir, M. C. Mitchell, and E. Wall. 2019. Phenotypic and genetic analysis of milk and serum element concentrations in dairy cows. J. Dairy Sci. 102:11180–11192. https://doi.org/10.3168/jds.2019-16960.

Dhillon, V. S., D. Zabaras, T. Almond, P. Cavaudo, G. James-Martin, and M. Fenech. 2017. Whey protein isolate improves vitamin B12 and folate status in elderly Australians with subclinical deficiency of vitamin B12. Mol. Nutr. Food Res. 61:1600915. https://doi.org/10.1002/mnfr.201600915.

Duplessis, M., D. Pellerin, R. I. Cue, and C. L. Girard. 2016. Short communication: Factors affecting vitamin B12 concentration in milk of commercial dairy herds: An exploratory study. J. Dairy Sci. 99:4886–4892. https://doi.org/10.3168/jds.2016-10416.

Fedosov, S. N., E. Nexo, and C. W. Heegaard. 2018. Binding of aquo-cobalamin to bovine casein and its peptides via coordination to histidine residues. Int. Dairy J. 76:30–39. https://doi.org/10.1016/j.idairyj.2017.08.005.

Fedosov, S. N., E. Nexo, and C. W. Heegaard. 2019. Vitamin B12 and its binding proteins in milk from cow and buffalo in relation to bioavailability of B12. J. Dairy Sci. 102:4891–4905. https://doi.org/10.3168/jds.2018-15016.

Gebreyesus, G., M. S. Lund, B. Buitenhuis, H. Bovenhuis, N. A. Poulsen, and L. G. Janss. 2017. Modeling heterogeneous (co)variances from adjacent-SNP groups improves genomic prediction for milk protein composition traits. Genet. Sel. Evol. 49:89. https://doi.org/10.1186/s12711-017-0364-8.

Gebreyesus, G., M. S. Lund, L. Janss, N. A. Poulsen, L. B. Larsen, H. Bovenhuis, and A. J. Buitenhuis. 2016. Short communication: Multi-trait estimation of genetic parameters for milk protein composition traits in the Danish Holstein. J. Dairy Sci. 99:2863–2866. https://doi.org/10.3168/jds.2015-10501.

Green, R., L. Allen, A. L. Bjørke-Monsen, A. Brito, J. L. Guéant, J. W. Miller, A. M. Molloy, E. Nexo, S. Stabler, B. H. Toh, P. M. Ueland, and C. Janyk-bre. 2017. Vitamin B12 deficiency. Nat. Rev. Dis. Primers 3:17040. https://doi.org/10.1038/ndp.2017.40.

Greibe, E., S. Reitelseder, R. L. Becschaft, J. Bülow, G. W. Højfeldt, S. R. Schacht, M. L. Knudsen, I. Tetens, M. S. Ostenfeld, U. R. Mikkelsen, C. W. Heegaard, E. Nexo, and L. Holm. 2020. Effects of prolonged whey protein supplementation and resistance training on biomarkers of vitamin B12 status: A 1-year randomized intervention in healthy older adults (the CALM study). Nutrients 12.2015. https://doi.org/10.3390/nu12072015.

Hahn, J. S., D. K. Nam, E. J. Lee, S. J. Lee, Y. W. Ko, I. N. Sunwoo, and K. S. Lee. 1988. A case of vitamin B12 deficiency megablastic anemia following total gastrectomy. Jpnse Med. J. 29:270–277. https://doi.org/10.3334/jjmhs.1988239.270.

Howie, B., J. Marchini, and M. Stephens. 2011. Genotype imputation with thousands of genomes. G3 (Bethesda) 1:457–470. https://doi.org/10.1534/g3.111.001198.

Institute of Medicine. 1998. Dietary Reference Intakes: Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Institute of Medicine Food and Nutrition Board. National Academies Press.

Juul, C. B., S. N. Fedosov, E. Nexo, and C. W. Heegaard. 2019. Kinetic analysis of transcellular passage of the cobalamin-transcobalamin complex in Caco-2 monolayers. Mol. Biol. Cell 30:467–477. https://doi.org/10.1091/mbc.E18-09-0571.

Madsen, P., and J. Jensen. 2007. A User’s Guide to DMU: A Package for Analyzing Multivariate Mixed Models. Version 6, release 4.7. http://dmu.agrsci.dk.

Matte, J. J., M. Britten, and C. L. Girard. 2014. The importance of milk as a source of vitamin B12 for human nutrition. Anim. Front. 4:32–37. https://doi.org/10.2527/af.2014-00112.

Naik, S., N. Mahalle, E. Greibe, M. S. Ostenfeld, C. W. Heegaard, E. Nexo, and S. N. Fedosov. 2019. Cyanoc-B12 or whey powder with endogenous hydroxo-B12 for supplementation in B12 deficient lactovegetarians. Nutrients 11:2382. https://doi.org/10.3390/nu110202382.

Rooker, J. J. Frolick, and N. Sparks. 2010. The potential for increasing the concentrations of micro-nutrients relevant to human nutrition in meat, milk, and eggs. J. Agric. Sci. 148:603–614. https://doi.org/10.1017/S002185961000477X.
Rutten, M. J. M., A. C. Bouwman, R. C. Sprong, J. A. M. van Arendonk, and M. H. P. W. Visker. 2013. Genetic variation in vitamin B-12 content of bovine milk and its association with SNP along the bovine genome. PLoS One 8:e62382. https://doi.org/10.1371/journal.pone.0062382.

Schwab, E. C., C. G. Schwab, R. D. Shaver, C. L. Girard, D. E. Putnam, and N. L. Whitehouse. 2006. Dietary forage and nonfiber carbohydrate contents influence B-vitamin intake, duodenal flow, and apparent ruminal synthesis in lactating dairy cows. J. Dairy Sci. 89:174–187. https://doi.org/10.3168/jds.S0022-0302(06)72082-3.

Song, S. M., K. W. Bae, H. S. Yoon, H. J. Im, and J. J. Seo. 2010. A case of anemia caused by combined vitamin B12 and iron deficiency manifesting as short stature and delayed puberty. Korean J. Pediatr. 53:661–665. https://doi.org/10.3345/kjp.2010.53.5.661.

Teo, Y. Y., M. Inouye, K. S. Small, R. Gwilliam, P. Deloukas, D. P. Kwiatkowski, and T. G. Clark. 2007. A genotype calling algorithm for the Illumina BeadArray platform. Bioinformatics 23:2741–2746. https://doi.org/10.1093/bioinformatics/btm443.

Van Tassell, C. P., T. P. L. Smith, L. K. Matukumalli, J. F. Taylor, R. D. Schnabel, C. T. Lawley, C. D. Haudenschild, S. S. Moore, W. C. Warren, and T. S. Sonstegard. 2008. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat. Methods 5:247–252. https://doi.org/10.1038/nmeth.1185.

VanRaden, P. M. 2008. Efficient methods to compute genomic predictions. J. Dairy Sci. 91:4414–4423. https://doi.org/10.3168/jds.2007-0980.

Wilmink, J. B. M. 1987. Adjustment of test-day milk, fat and protein yield for age, season and stage of lactation. Livest. Prod. Sci. 16:335–348. https://doi.org/10.1016/0301-6226(87)90003-0.

Zimin, A. V., A. L. Delcher, L. Florea, D. R. Kelley, M. C. Schatz, D. Puig, F. Hanrahan, G. Pertea, C. P. Van Tassell, T. S. Sonstegard, G. Marçais, M. Roberts, P. Subramanian, J. A. Yorke, and S. L. Salzberg. 2009. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10:R42. https://doi.org/10.1186/gb-2009-10-4-r42.

Notes

Grun Gebreyesus @ https://orcid.org/0000-0003-4757-3060
Nina Aagaard Poulsen @ https://orcid.org/0000-0001-9983-9663
Lotte Bach Larsen @ https://orcid.org/0000-0001-9674-0107
Esben Skipper Sorensen @ https://orcid.org/0000-0002-7050-3354
 Christian Würtz Heegaard @ https://orcid.org/0000-0002-7989-2624
Bart Buitenhuis @ https://orcid.org/0000-0002-4953-3081

The study used data from the Danish-Swedish Milk Genomics Initiative (www.milkgenomics.dk) and the Milk Levy Fund (Denmark) projects “The importance of the metagenome for milk composition and quality” and “Breeding high value milk: BigMilk.”

The authors declare that they have no competing interests.