Study of kinetic and thermal decomposition from municipal solid waste pellets using model-fitting methods

S R H Siregar, D Nursani, M I B Setyawan, and A Surjosatyo*

Department of Mechanical Engineering, University of Indonesia, Kampus UI Depok 16424, Indonesia

* Email: adisur@eng.ui.ac.id

Abstract. Reaction rate model could be determined from kinetic characteristics. Kinetic and thermal decomposition of municipal solid waste (MSW) pellets, consist of organic material, plastic, paper and leaves, with tapioca flour as binder (0%, 3%, and 6%) were studied in thermogravimetric analyzer from temperature 50 °C to 800 °C at heating rate 10 °C/min in N₂ atmospheres. The kinetic parameter were determined by Model Fitting or Coats Redfern Methods with different kinetic reaction model. Results of this study have shown that MSW pellets in various binder has activation energy values 64.64 kJ/mol and 22.06 kJ/mol for 0%, 68.83 kJ/mol and 21.99 kJ/mol for 3%, and 69.29 kJ/mol and 22.62 kJ/mol for 6% at temperature ranges between 200 °C – 400 °C and 400 °C – 500 °C respectively in typical three dimensional diffusion (D3) mechanism kinetic reaction model.

Keywords: kinetic study, Model-Fitting methods, municipal solid waste, pellet, thermal decomposition

1. Introduction

Population growth and lifestyle changes are inseparable parts of life in the world. However, these developments often have a negative impact on the surrounding environment, one of which is the presence of large amounts of municipal solid waste (MSW) [1–3]. On average, organic waste (food scraps and garden waste) is the largest part of the world's MSW, followed by paper and cardboard, plastics, glass, metal, wood, rubber and leather, and other waste [4]. The composition of MSW depends on each country's current level of development; More developed the country often the lower amount of organic waste [5]. In Indonesia, the average waste generation reaches 0.24 - 0.33 kg / capita / day with a composition that is dominated by organic waste [6–8].

There are many technologies for treating municipal solid waste, such as landfill, recycling, biological treatment, and thermal treatment. The cost of biological treatments is cheaper than the latter, but it is difficult to control bacterial growth and it takes a long time to reduce MSW [5]. That is why thermal treatment is more commonly chosen as a treatment for MSW in developed country. MSW is a very variable and heterogeneous multi-component material [9], so its calorific values are inconsistent. The use of MSW as fuels in thermal treatment especially gasification process results the low energy efficiency, so that to increase the efficiency, uniformity and compaction is required. Therefore, MSW is pelletized to reach uniformity.
Kinetic and thermal decomposition of pelletized MSW are needed for modelling reactors, like gasification and incineration reactors. Reaction rate of pelletized MSW can determine on how devolatization begins and how much contents of devolatization process products are. Currently, MSW can be approached as lignocellulose fuel since organic waste is the highest share of MSW. Usually, researchers use Di Blasi’s reaction rates to model a pyrolysis process of lignocellulose fuel [10]. However, the simulation results might be unreliable due to heterogeneity of MSW. That is why this research would find the kinetic of pelletized MSW.

This research would analyze kinetic characterization of pelletized MSW using thermogravimetric analysis (TGA). TGA is a powerful deformation tool commonly used in materials analysis [11]. There are researches that used TGA to determine thermal decomposition mechanism of organic wastes and MSW [12–16]. To perform kinetics analysis, there are many methods that can be used, but the method most often used is the Coats-Redfern method or call model fitting method. This method use an appropriate model of the integral function from various reaction mechanism [17,18]. Although many researches related to the kinetic characteristics of MSW have been conducted, the composition of MSW has unique variations in each region. In this study, which continues previous research [19], we examined the kinetics and thermal decomposition of MSW pellets using the composition of the waste entering the Bantargebang landfill from DKI Jakarta, Indonesia.

2. Material and methods

2.1. Material

The materials used are pellet from municipal solid waste with tapioca as binder. Composition of municipal solid waste simulated the composition of waste generation in Jakarta, which consist of 70% organic waste, 12% plastic, 10% paper and 8% leaves. Tapioca which one of favorite binder for mass production added 0%, 3%, and 12% in pellet production. Before used, tapioca flour diluted with water in a ratio of 1:4 and cooked.

2.2. Characterization of pellets

This study is a continuation of the previous paper[19]. In the previous paper, the physical characteristics of the MSW pellets have been described. Pellets have a diameter range of 7.8–8.2 mm with a length of 23.6–24.0 mm and a weight of 1.16–1.36 grams per unit of pellet. Other characteristics can be seen in Table 1.

Binder Adding	Density (kg/m³)	Durability (%)	Moisture Content (%)	Hardness (kgF)	Caloric Value (kCal/kg)
0%	490.9	0.704	5.19	12.1	4360.84
3%	435.1	0.532	8.09	10.4	3783.02
6%	383.9	0.686	13.21	10.0	3290.71

2.3. Thermogravimetric Analyzer (TGA).

Pellets are tested in Center for Materials Processing and Failure Analysis (CMPFA) University of Indonesia using Simultaneous Thermal Analyzer (STA) 6000 - Perkin Elmer. Approximately 10-15 mg of sample was put into TGA (STA 6000) and heated from temperatures 50 °C to 800 °C at heating rate 10 °C/min in N₂ atmospheres.

2.4. Coats redfern methods

Kinetics is the study of the dependence of chemical reactions on time and temperature. Material kinetics can be studied by measuring the properties of a material when heated (non-isothermal) or under
isothermal conditions [20]. In this process, there is a change in the sample weight which can be written by weight loss rate equation (1).

\[\alpha = \frac{W_0 - W_t}{W_0 - W_f} \]

(1)

Where \(\alpha \) is the conversion or weight loss rate, \(W_0 \) is the initial weight of the sample (mg), \(W_t \) is the weight of the sample at a given time (mg) and \(W_f \) is the final mass of the sample (mg). In isothermal conditions, the solid fuel decomposition rate is a linear function of the reaction rate constant (k) with the conversion function \(f(\alpha) \) as expressed in Eq. (2). However, in non-isothermal conditions, the solid fuel decomposition rate will be affected by the heating rate \(\frac{dT}{dt} \) or \(\beta \), so the equation may be define as in Eq (3).

\[\frac{d\alpha}{dt} = kf(\alpha) \]

(2)

\[\frac{d\alpha}{dt} = \frac{d\alpha}{dT} \frac{dT}{dt} = \beta \frac{d\alpha}{dT} \]

(3)

\[\frac{d\alpha}{dt} = \frac{d\alpha}{dT} \frac{dT}{dt} = \beta \frac{d\alpha}{dT} \]

(3)

The reaction rate constant is described in the Arrhenius equation as follows on Eq (4)

\[k = Ae^{\left(\frac{E}{RT}\right)} \]

(4)

Where \(A \) is the pre-exponential factor (min\(^{-1}\)), \(E \) is the activation energy (kJ/mol), \(R \) is the universal gas constant (8.314 Jmol\(^{-1}\)K\(^{-1}\)) and \(T \) is the absolute temperature (K). By substitution Arrhenius equation to solid fuel decomposition rate equation under non-isothermal conditions, gives on Eq (5).

\[\frac{d\alpha}{dT} = \frac{A}{R} e^{\left(\frac{-E}{RT}\right)} f(\alpha) \]

(5)

Equation (5) is known as the general equation of TGA curve [20]. Integration this equation, gives on Eq (6), where \(g(\alpha) \) is the integrated reaction model and this is dependent on the reaction mechanism followed by the solid fuel.

\[g(\alpha) = \int_0^\alpha \frac{d\alpha}{f(\alpha)} = \frac{A}{\beta} \int_0^T e^{\left(\frac{-E}{RT}\right)} dT \]

(6)

Various reaction mechanism of \(g(\alpha) \) are listed in Table 2. Coats-Redfern Methods uses asymptotic series for the resolution of Eq (6), gives Eq (7).

\[\ln \left(\frac{g(\alpha)}{T^2} \right) = \ln \left[\frac{AR}{BE} \left(1 - \frac{2RT}{E} \right) \right] - \frac{E}{RT} \]

(7)

Since asymptotic approximation used to solve integral equations, the number of \(\frac{2RT}{k} \ll 1 \), so this number is neglected [16,18] and gives the final equation for this method, shown in Eq (8).
\[\ln \left(\frac{g(\alpha)}{T^2} \right) = \ln \left(\frac{AR}{\beta E} \right) - \frac{E}{R T} \] (8)

By linear fitting of \(\ln \left(\frac{g(\alpha)}{T^2} \right) \) versus \(\frac{1}{T} \) for each reaction mechanism, the reaction order can be achieved. Energy activation (E) determined from the slope and pre-exponential factor (A) determined from the intercept of linear fitting equation. The highest coefficient of determination \((R^2) \) among linear fittings represent a possible model of the reaction mechanism that occurs.

Table 2. Expressions of \(g(\alpha) \) based on various reaction mechanisms [18,21]

Reaction Mechanism	Symbol	\(g(\alpha) \)
Nucleation reaction models		
Avrami-Erofè (n=2)	A2	\([-ln(1 - \alpha)]^{1/2}\)
Avrami-Erofè (n=3)	A3	\([-ln(1 - \alpha)]^{1/3}\)
Avrami-Erofè (n=4)	A4	\([-ln(1 - \alpha)]^{1/4}\)
Power law	P2	\(\alpha^{1/2} \)
Power law	P3	\(\alpha^{1/3} \)
Power law	P4	\(\alpha^{1/4} \)
Phase boundary reaction models		
2D, shrinking cylinder	R2	\(1 - (1 - \alpha)^{1/2} \)
3D, contraction of sphere	R3	\(1 - (1 - \alpha)^{1/3} \)
Diffusion controlled models		
One-dimensional diffusion	D1	\(\alpha^2 \)
Two-dimensional diffusion, cylindrical symmetry	D2	\(\alpha + [(1 - \alpha) \times \ln(1 - \alpha)] \)
Three-dimensional diffusion, spherical symmetry (Jander)	D3	\(1 - (1 - \alpha)^{1/3} \) \] ^2
Three-dimensional diffusion, cylindrical symmetry	D4	\(1 - \frac{2\alpha}{3} - (1 - \alpha)^{2/3} \)
Chemical reaction models		
First order	F1	\(-ln(1 - \alpha) \)
Second order	F2	\([(1 - \alpha)^{-1} - 1] \)
Third order	F3	\([(1 - \alpha)^{-2} - 1] /2 \)

3. Results and Discussion

3.1. Thermal decomposition

Figure 1 shows the results of thermo gravimetric (TG) analysis and derivative of thermo gravimetric (DTG) analysis for pellet of municipal solid waste in various binder composition. Based on **Figure 1**, the thermal behaviour between various binders composition have a same trends and range of peak temperature [16].

The TG curve shows three main stage of degradation. First stage in temperature less than 200 °C is evaporation of moisture content and highly volatile materials by 4% - 7%. The second stage in temperature ranges 200 °C - 400 °C is degradation of lignocellulose biomass by 33% - 46%. The third stage in temperature 400 °C - 500 °C is plastic degradation and hemicellulose degradation by 8% - 11%. The residue after 800 °C is ranging from 28% - 50%. The activation energy (E) is presented on Table 3.
Figure 1. TG and DTG curves of various pellets sample.

Table 3. Calculation of activation energy (E) and pre-exponential factor (A).

	0%	3%	6%
R²			
E			
A			

Peak 1 (Temperature 200 °C – 400 °C)

	R²	E	A							
A2		0.9343	10.67	7.26E-03	0.9516	11.71	9.57E-03	0.9549	11.86	1.01E-02
A3		0.8152	4.03	7.64E-04	0.8765	4.73	1.01E-03	0.8860	4.83	1.06E-03
A4		0.1893	0.71	7.12E-05	0.4563	1.24	1.36E-04	0.4974	1.31	1.47E-04
P2		0.8561	6.65	1.67E-03	0.9039	7.72	2.36E-03	0.9098	7.77	2.40E-03
P3		0.3351	1.35	1.32E-04	0.5807	2.07	2.30E-04	0.5995	2.10	2.35E-04
R2		0.9610	26.33	1.44E-01	0.9712	28.45	2.28E-01	0.9734	28.63	2.41E-01
R3		0.9637	27.70	1.42E-01	0.9728	29.80	2.22E-01	0.9748	30.02	2.37E-01
D1		0.9658	54.33	6.69E+01	0.9747	58.60	1.57E+02	0.9765	58.78	1.66E+02
D2		0.9701	59.11	1.20E+02	0.9777	63.35	2.76E+02	0.9793	63.65	3.02E+02
D3		0.9736	64.64	1.15E+02	0.9797	68.83	2.58E+02	0.9812	69.29	2.93E+02
D4		0.9715	60.94	4.34E+01	0.9785	65.17	9.90E+01	0.9802	65.52	1.09E+02
F1		0.9676	30.58	9.61E-01	0.9746	32.66	1.48E+00	0.9761	32.97	1.61E+00
F2		0.9696	40.47	1.46E+01	0.9715	42.41	2.11E+01	0.9714	43.05	2.49E+01
F3		0.9632	52.11	3.27E+02	0.9611	53.85	4.38E+02	0.9595	54.90	5.74E+02

Peak 2 (Temperature 400 °C – 500 °C)

	R²	E	A							
R2		0.7772	2.68	1.54E-04	0.5245	2.69	1.52E-04	0.4305	2.90	1.72E-04
R3		0.8959	5.07	3.28E-04	0.7184	5.04	3.18E-04	0.6312	5.36	3.61E-04
D1		0.9260	6.00	6.94E-04	0.8399	6.14	7.12E-04	0.7545	6.15	7.23E-04
D2		0.9650	12.28	3.06E-03	0.9020	12.37	3.03E-03	0.8496	12.56	3.24E-03
D3		0.9749	22.06	1.03E-02	0.9193	21.99	9.73E-03	0.8789	22.62	1.14E-02
D4		0.9703	15.44	1.71E-03	0.9105	15.48	1.66E-03	0.8639	15.81	1.83E-03
F1		0.9484	10.69	6.92E-03	0.8394	10.57	6.51E-03	0.7778	11.16	7.73E-03
F2		0.9684	34.18	2.90E+00	0.9008	33.57	2.44E+00	0.8608	35.51	3.70E+00
F3		0.9709	65.34	3.22E+03	0.9117	64.07	2.32E+03	0.8763	67.85	4.93E+03
3.2. Activation Energy
Activation energy is minimum amount of energy that is required to activate atoms or molecules to a condition in which they can undergo chemical transformation or physical transport. Table 3 shows the calculation of activation energy in various reaction mechanism for peak 1 or temperature range 200 °C - 400 °C and for peak 2 or temperature range 400 °C - 500 °C.

Based on Table 3, variations of binder composition do not affect the value of the activation energy. The activation energy value of pellets is in the range 64.64 kJ/mol - 69.29 kJ/mol for peak 1 and the range 21.99 kJ/mol - 22.62 kJ/mol for peak 2. Pre-exponential factor has a value of 1.15x10^2 min^(-1) - 2.92x10^2 min^(-1) and 9.73x10^3 min^(-1) - 1.03x10^3 min^(-1), respectively.

3.3. Kinetic reaction model.
There are four major groups of reaction mechanisms calculated in this study, namely nucleation reaction models (A2, A3, A4, P2, P3, and P4), phase boundary reaction models (R2 and R3), diffusion controlled models (D1, D2, D3, and D4) and chemical reaction models (F1, F2, and F3). In this calculation the reaction mechanism which gives a negative activation energy value will be ignored [22]. The results show that the reaction mechanism that comes closest to the process that occurs is the Three-dimensional diffusion, spherical symmetry (Jander) mechanism (D3).

4. Conclusion
In this study, kinetics and thermal decomposition of municipal solid waste pellet were investigated using thermogravimetric analyzer. The results shown that thermal decomposition were divided in three stage, such as evaporation of moisture content, degradation of lignocellulose, and plastic degradation and hemicellulose degradation. There is no significant different due to addition of binder in thermal decomposition. In parallel results the activation energy values in various binder has 64.63 kJ/mol and 22.05 kJ/mol for 0 %, 68.83 kJ/mol and 21.99 kJ/mol for 3 %, and 69.29 kJ/mol and 22.62 kJ/mol for 6 % at temperature ranges between 200 °C – 400 °C and 400 °C – 500 °C respectively in typical three dimensional diffusion (D3) mechanism kinetic reaction model.

Acknowledgment
This work is supported by Hibah PITTA B 2019 funded by DRPM Universitas Indonesia No NKB-0692/UN2.R3.1/HKP.05.00/2019.

References
[1] Deng Y, Gong B, Chao Y, Dong T, Yang W, Hong M, Shi X, Wang G, Jin Y and Chen Z G 2018 Sustainable utilization of municipal solid waste incineration fly ash for ceramic bricks with eco-friendly biosafety Mater. Today Sustain.
[2] Salwa Khamis S, Purwanto H, Naili Rozhan A, Abd Rahman M and Mohd Salleh H 2019 Characterization of Municipal Solid Waste in Malaysia for Energy Recovery IOP Conf. Ser. Earth Environ. Sci. 264
[3] Omari A M 2013 Characterization of municipal solid waste for energy recovery J. Multidiscip. Eng. Sci. Technol. 2 230–7
[4] Sharma K D and Jain S 2020 Municipal solid waste generation, composition, and management: the global scenario Soc. Responsib. J.
[5] Sudibyo H, Majid A I, Pradana Y S, Budhijanto W, Deendarlanto and Budiman A 2017 Technological Evaluation of Municipal Solid Waste Management System in Indonesia Energy Procedia
[6] Saraghi B R, Siregar S R H and Surjosatyo A 2018 Evaluation of Waste Potential in TPST Bantargebang Through Modified Triangular Method E3S Web of Conferences vol 67 (EDP Sciences) p 2040
[7] Sudibyo H, Pradana Y S, Budiman A and Budhijanto W 2017 Municipal solid waste management
in Indonesia-A study about selection of proper solid waste reduction method in DI Yogyakarta Province Energy Procedia 143 494–9

[8] Dhokhikah Y, Trihadiningrum Y and Sunaryo S 2015 Community participation in household solid waste reduction in Surabaya, Indonesia Resour. Conserv. Recycl. 102 153–62

[9] Ciuta S, Tsiamis D and Castaldi M J 2017 Gasification of waste materials: technologies for generating energy, gas, and chemicals from municipal solid waste, biomass, nonrecycled plastics, sludges, and wet solid wastes (Academic Press)

[10] Di Blasi C and Branca C 2001 Kinetics of primary product formation from wood pyrolysis Ind. Eng. Chem. Res. 40 5547–56

[11] Chandrasekaran S R and Sharma B K 2019 - From Waste to Resources: How to Integrate Recycling Into the Production Cycle of Plastics Plastics Design Library ed S M B T- P to E Al-Salem (William Andrew Publishing) pp 345–64

[12] Carrier M, Loppinet-Serani A, Denux D, Lasnier J-M, Ham-Pichavant F, Cansell F and Aymonier C 2011 Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass Biomass and Bioenergy 35 298–307

[13] Varhegyi G, Jakab E, Till F and Szekely T 1989 Thermogravimetric-mass spectrometric characterization of the thermal decomposition of sunflower stem Energy & Fuels 3 755–60

[14] Lai Z, Ma X, Tang Y and Lin H 2012 Thermogravimetric analysis of the thermal decomposition of MSW in N2, CO2 and CO2/N2 atmospheres Fuel Process. Technol. 102 18–23

[15] Mutua N A, Ouma A B and Atieno O S 2017 Kinetic study of the thermal decomposition for mixed municipal solid waste using thermogravimetric analysis Period. Eng. Nat. Sci. 5 355–63

[16] Omari A M, Kichongs B and Chaula Z A 2019 Kinetics Properties and Thermal Behavior of Pine Sawdust and Municipal Solid Waste J. Energy Res. Rev. 3 1–9

[17] Cai J and Bi L 2008 Precision of the Coats and Redfern Method for the Determination of the Activation Energy without Neglecting the Low-Temperature End of the Temperature Integral Energy & Fuels 22 2172–4

[18] Boumanchar I, Chhiyt Y, M’hami Alaoui F E, Elkhouakhi M, Sahibed-dine A, Bentiss F, Jama C and Bensitel M 2019 Investigation of (co)-combustion kinetics of biomass, coal and municipal solid wastes Waste Manag. 97 10–8

[19] Nursani D, Siregar S R H and Surjosatyo A 2020 Effect of Binder Adding to the Physical Properties of Municipal Solid Waste (MSW) Pellets IOP Conf. Ser. Earth Environ. Sci. 520

[20] Çepelioğullar, Haykiri-Açma H and Yaman S 2016 Kinetic modelling of RDF pyrolysis: Model-fitting and model-free approaches Waste Manag. 48 275–84

[21] Azam M, Jahromy S S, Raza W, Jordan C, Harasek M and Winter F 2019 Comparison of the combustion characteristics and kinetic study of coal, municipal solid waste, and refuse-derived fuel: Model-fitting methods Energy Sci. Eng. 7 2646–57

[22] Mian I, Li X, Jian Y, Daures O D, Zhong M, Liu J, Ma F and Rahman N 2019 Kinetic study of biomass pellet pyrolysis by using distributed activation energy model and Coats Redfern methods and their comparison Bioresour. Technol. 294 122099