Mapping the consequences of artificial light at night for intertidal ecosystems
Garratt, Matthew; Jenkins, Stuart; Davies, Thomas

Science of the Total Environment

DOI:
10.1016/j.scitotenv.2019.07.156

Published: 15/11/2019

Publisher's PDF, also known as Version of record

Citation for published version (APA):
Garratt, M., Jenkins, S., & Davies, T. (2019). Mapping the consequences of artificial light at night for intertidal ecosystems. Science of the Total Environment, 691, 760-768. https://doi.org/10.1016/j.scitotenv.2019.07.156

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Mapping the consequences of artificial light at night for intertidal ecosystems

Matthew J. Garratt, Stuart R. Jenkins, Thomas W. Davies *

School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK

HIGHLIGHTS

• Our coasts are increasingly polluted by artificial light at night (ALAN).
• We studied the potential effects of ALAN in an intertidal sandy shore ecosystem.
• Macrofaunal community structure significantly changed across a gradient in ALAN.
• 47% of non-rare taxa displayed significant relationships to illuminance.
• Relationships with key environmental drivers were accounted for.

GRAPHICAL ABSTRACT

ABSTRACT

Widespread coastal urbanization has resulted in artificial light pollution encroaching into intertidal habitats, which are highly valued by society for ecosystem services including coastal protection, climate regulation and recreation. While the impacts of artificial light at night in terrestrial and riparian ecosystems are increasingly well documented, those on organisms that reside in coastal intertidal habitats are less well explored. The distribution of artificial light at night from seaside promenade lighting was mapped across a sandy shore, and its consequences for macroinvertebrate community composition quantified accounting for other collinear environmental variables known to shape biodiversity in intertidal ecosystems (shore height, wave exposure and organic matter content). Macroinvertebrate community composition significantly changed along artificial light gradients. Greater numbers of species and total community biomass were observed with increasing illumination, a relationship that was more pronounced (increased effects size) with increasing organic matter availability. Individual taxa exhibited different relationships with artificial light illuminance; the abundances of 27% of non-rare taxa [including amphipods (Amphipoda), catworms (Nephtys spp.), and sand mason worms (Lanice conchilega)] decreased with increasing illumination, while 20% [including tellins (Tellinidae spp.), lugworms (Arenicola marina) and ragworms (Nereididae spp.)] increased. Possible causes of these relationships are discussed, including direct effects of artificial light on macroinvertebrate behaviour and indirect effects via trophic interactions. With increasing light pollution in coastal zones around the world, larger scale changes in intertidal ecosystems could be occurring.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords:
Artificial light at night
Illuminance
High pressure sodium
Intertidal ecosystems
Sandy shore
Macroinvertebrates
Community structure

* Corresponding author.
E-mail addresses: osu470@bangor.ac.uk (M.J. Garratt), s.jenkins@bangor.ac.uk (S.R. Jenkins), thomas.davies@bangor.ac.uk (T.W. Davies).

https://doi.org/10.1016/j.scitotenv.2019.07.156
0048-9697/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Today around a quarter of the Earth’s surface is polluted by artificial light at night (Falchi et al., 2016), originating from industry, residential areas and transportation networks (Bennie et al., 2014; Gaston et al., 2015). A wide range of ecological impacts of this pollution have been identified, including effects on physiology (Navara and Nelson, 2007; Dominoni et al., 2013), navigation (Tuxbury and Salmon, 2005; Rodríguez et al., 2012), reproductive behaviour (Jokiel et al., 1985; van Geffen et al., 2015), predation success (Santos et al., 2010; Underwood et al., 2017), community structure (Davies et al., 2012; Bolton et al., 2017) and ecosystem services (Lyytimäki, 2013).

With widespread coastal urbanization, the impact of artificial light at night on marine ecosystems has become a topic of increasing concern (Becker et al., 2013; Davies et al., 2014; Davies et al., 2016; Bolton et al., 2017). 75% of the world’s megacities (populations >10 million) are now located in coastal regions (Luijendijk et al., 2018), and <22% of shorelines worldwide are light-polluted (Davies et al., 2014). The effects of artificial light on shallow marine species, including fish (Becker et al., 2013), amphipods (Navarro-Barranco and Hughes, 2015) and sessile invertebrates (Davies et al., 2015), have been documented in recent years. The consequences of lighting intertidal habitats – which provide valuable ecosystem services globally (Costanza et al., 1997; Barbier et al., 2013) and are likely most exposed among marine ecosystems to light pollution – have more recently become a focus for research (Luarte et al., 2016; Duarte et al., 2019).

Daily, monthly and seasonal natural light cycles play an important role in intertidal ecosystems, synchronising mass spawning and hatching events, partitioning feeding and swimming activity, and regulating migrations (Jansson and Källander, 1968; Forward, 1986; Robles et al., 1989; Naylor, 2001). Species interactions across trophic levels are also guided by light availability, determining the timing and success of predatory activity and the ability of prey to avoid predation (Viherluoto and Viitasalo, 2001; Santos et al., 2010; Underwood et al., 2017). Perhaps most importantly, intertidal invertebrate larvae are guided by light during settlement site selection, which determines subsequent survival and reproductive success (Thorson, 1964; Davies et al., 2014). These key ecological processes that shape intertidal ecosystems are likely affected by light pollution from streets, promenades, piers, jetties, harbours and marinas (Davies et al., 2014). Recent data has demonstrated strong evidence of artificial light impacts including reduced activity and growth rates on individual species that reside in sandy shores (Davies et al., 2014). Results from 54 sampling stations across the measured illumination gradient at each station occupied a 50 cm elevation zone, relative to Ordnance Datum Newlyn: high shore (1 to 1.5 m), middle shore (−0.25 to 0.25 m) and low shore (−1.5 to −1 m); and contained 18 sampling stations positioned randomly within 40 m intervals along the transect. Sampling was undertaken either side of the smaller groyne to control for effects of potentially collinear variables known to influence community composition (ground level illuminance) was examined using a

2. Methods

2.1. Summary

Ground level night-time artificial illuminance (Lux) was measured across Llandudno West Shore beach in North-West Wales, UK (53.320°N, 3.846°W) and the data used to produce a 6 m resolution light map. Macroinvertebrate communities, sediment grain size (a good proxy of wave exposure [Burt et al., 2016]), and organic matter content were sampled at low, mid and high shore elevations across a gradient in illumination parallel to the shoreline. The relationships between response variables (macroinvertebrate community composition, species richness, species dominance, the total number of individuals, total community biomass, and the presence of individual taxa) and artificial light exposure were quantified accounting for potentially collinear gradients in shore height, median grain size and organic matter concentration.

2.2. Study site

This study was conducted at Llandudno West Shore Beach, a west-facing, macrotidal, sandy beach on the North Wales coast. The northern half of the shore is illuminated by adjacent High Pressure Sodium promenade lighting such that gradients of decreasing illumination are established from high to low shore, and north to south (Fig. 1). The site contains two fish-tail groynes, the larger of which (Gogarth Breakwater) brackets the northern limit of the shore.

2.3. Light mapping

Ground level illuminance was mapped at night at 6 m resolution across 4 transects parallel to the shore (at approximately 0, 40, 100 and 200 m from the sea wall) using a Skye® LUX sensor logging every 5 s. Measures were GPS linked so that a prediction surface map of illuminance could be interpolated from the data using an exponential kriging model in ArcGIS. The light data was collected between 12:30 and 2:30 am on the 11th of June 2018 during a new moon to avoid moonlight interference.

2.4. Shore sampling

One macroinvertebrate and two sediment samples were extracted from 54 sampling stations across the measured illumination gradient along horizontal transects (approximately 900 m in length) at three shore heights representative of the full gradient of zonation (Fig. 1). Each transect occupied a 50 cm elevation zone, relative to Ordnance Datum Newlyn: high shore (1 to 1.5 m), middle shore (−0.25 to 0.25 m) and low shore (−1.5 to −1 m); and contained 18 sampling stations positioned randomly within 40 m intervals along the transect. Sampling was undertaken either side of the smaller groyne to control for effects of potentially collinear variables known to influence community composition (ground level illuminance) was examined using a

2.5. Statistical analysis

Data analysis was performed using R statistical software. The relationship between macroinvertebrate community composition and artificial light exposure (ground-level illuminance) was examined using a
permutational multivariate analysis of variance (adonis, CRAN: vegan), performed on Bray-Curtis dissimilarity matrices calculated from log-transformed species abundance and biomass, accounting for shore height, particle size and organic matter. All first order effects and second order interactions with light were included in the model.

The relationships between macroinvertebrate community metrics (total number of individuals [\(n\ m^{-2}\]), total biomass [g m\(^{-2}\)], species richness [species count] and species dominance [1 – Pielou’s evenness]) and environmental variables (artificial illuminance, shore height, particle size, organic matter) were quantified using multiple regression models fitted using either spatially autocorrelated mixed effects models (corrHLfit, CRAN: spaMM) or generalised linear models with appropriate error distributions where spatial autocorrelation was not identified in the response variable of interest (determined using Mantel tests).

Model selection (model.sel, CRAN: MuMin) was used to compare the small-sample-size corrected values of Akaike’s Information Criterion (AIC) of a series of candidate regression models, including the global model (\(~\text{illuminance} \times \text{shore height} + \text{illuminance} \times \text{particle size} + \text{illuminance} \times \text{organic matter}\)), all possible nested models of the global model, and a null (~intercept only) model (Table 2). The most parsimonious models were tested for significance by comparing to a null model using a likelihood ratio test. Where the most parsimonious models were significantly different from the null, and included the illuminance predictor variable, the significance of this variable was further tested using a likelihood ratio test comparing the model with a nested model in which the illuminance variable was omitted. If the model included a second order effect of illuminance, the significance of the effect was determined by testing the model against itself but with the interaction removed.

The relationships between the abundances of individual macroinvertebrate species and environmental variables were also examined using multiple regression model selection, as previously described, identifying the most parsimonious model for each species and testing the significance of illuminance when present as a predictor variable. The abundances of rarer species were summed by genus or family (Table 3) to reduce zero inflation. Analyses were performed on numerical abundance data for taxa present in >50% of samples, and presence-absence data for taxa present in <50% of samples, with appropriate error
distributions fitted in each case. Any taxa that were present in <10% of the samples were deemed too rare to be reliably incorporated in the analysis.

3. Results

The light data displayed an exponentially decreasing gradient in illuminance from high to low shore adjacent to the lamp-posts (Fig. 1), ranging from 5 lx on the promenade, equivalent to a typical residential side street (Gaston et al., 2013), to 0.006 lx, with the lowest values found in the far south and on the low shore directly next to Gogarth Breakwater. Median grain size on the intertidal shore ranged from 142 to 169 μm (fine sand), with the organic matter concentration of the sediment between 0.3 and 0.9%. Gradients in grain size and organic matter were not collinear with illuminance (variance inflation factor [VIF] values <3).

The beach contained an abundance of intertidal macroinvertebrates (median: 180 n m⁻²), with a total of 1984 individuals collected, representing 45 species and 26 families. The macroinvertebrate assemblages on the shore predominately consisted of crustaceans (70%), polychaetes (26%) and bivalves (3%) [percentages by abundance]. There was no significant difference in the structure of the community sampled between different survey days, with regard to abundance (F_(1,30) = 1.29, p = 0.29), biomass (F_(1,30) = 0.84, p = 0.48), species richness (F_(1,30) = 1.84, p = 0.15) or species dominance (F_(1,30) = 0.94, p = 0.43).

Macroinvertebrate community composition across the shore was significantly related to the degree of exposure to artificial light at night, accounting for other environmental variables (shore height, particle size and organic matter), and regardless of whether abundance or biomass was used (n individuals m⁻²: F_(1,30) = 2.26, p < 0.05; g m⁻²: F_(1,30) = 2.52, p < 0.01; Table 1).

Artificial illuminance (lux) was included in the most parsimonious models describing the species richness and total community biomass of macroinvertebrates (Table 2). The relationship between light and these responses was modulated by organic matter content (Species richness: x² = 46.90, p < 0.01; Biomass: x² = 8.42, p < 0.01). The selected model (Lux + Organic) described significantly more of the variability in these responses compared to a null (-intercept only) model (Species richness: x² = 81.56, p < 0.01; Biomass: x² = 2.72, p < 0.001). Species richness and biomass (Fig. 2) increased with increasing illuminance; relationships that became more positive with increasing organic matter availability (Fig. 3). The cumulative abundance and species dominance of the macroinvertebrate community were not strongly related to artificial light exposure, with the illuminance model (−Lux) describing no more variation in the responses than the null model (Abundance: x² = 0.56, p = 0.11; Dominance: x² = 0.01, p = 0.67).

Out of the 15 common taxa of macroinvertebrates found on the shore, the abundances of 7 taxa (47%) displayed significant relationships with artificial light exposure accounting for other environmental variables (Table 3). Four of these taxa decreased in abundance or probability of occurrence with increasing illuminance, including amphipods (Bathyurea elegans and Haustorius arenarius), catworms (Nephys spp.) and sand mason worms (Lanice conchilega), while the remaining 3 taxa increased in probability of occurrence with increasing illuminance: Tellinidae spp., Arenicola marina and Nereididae spp. (Fig. 4).

4. Discussion

Macroinvertebrate community composition is known to be affected by artificial light at night in a variety of ecosystems, including terrestrial ground-dwelling communities (Davies et al., 2012; Davies et al., 2017; Manfrin et al., 2017), sessile marine epifaunal communities (Davies et al., 2015; Bolton et al., 2017) and riparian ecosystems (Meyer and Sullivan, 2013). To our knowledge the results presented here represent the first evidence of artificial light altering macroinvertebrate community structure and composition in a sandy shore ecosystem. Macroinvertebrate assemblages in sandy shore habitats - which make up around 75% of the world’s ice-free coastlines (Brown and McLachlan, 2002) - are critical to ecosystem functioning and connectivity. They contribute to sediment aeration, facilitating organic matter mineralisation and nutrient cycling, form planktonic linkages between distant habitats, and provide important resources for top consumers such as birds and fish (Brauns, 2008; Schlacher et al., 2008).

Our study found changes in the community composition, species richness and cumulative biomass of macroinvertebrates that were related to the level of exposure to artificial light pollution from adjacent High Pressure Sodium promenade lighting with illuminances equivalent to residential side streets (Gaston et al., 2013). While our study was limited to one shore line, the relationships between macroinvertebrate community descriptors and artificial illumination were quantified accounting for key structural drivers in intertidal ecosystems (shore elevation, and wave exposure), which are also strongly linked with groyne proximity, hence we are confident that the results presented constitute evidence of artificial light impacts in the focal study system. The effects of anthropogenic structures such as groynes on sandy shore ecosystems are well established (French and Livesey, 2000;
Martin et al., 2005; Walker et al., 2008; Fanini et al., 2009). Reduced wave exposure on the intertidal shore due to sheltering by anthropogenic structures often leads to changes in the sediment characteristics of the beach with regard to particle sizes and organic content, which in turn drive changes in macroinvertebrate assemblages (Martin et al., 2005; Rodil et al., 2007; Walker et al., 2008). These effects were given careful consideration during study design, and controlled for by sampling either side of the groyne structures, and in the analysis by including median grain size and organic matter content as candidate variables during the model selection procedure. We are therefore confident that the results reported here are not artefacts of groyne effects.

47% of non-rare taxa were individually found to either increase or decrease in abundance (or the probability of occurrence) with increasing illumination, accounting for shore height and sediment characteristics, including common intertidal species such as polychaetes (Nephtys spp., Lanice conchilega, Arenicola marina, Nereididae spp.), amphipods (Bathyporeia elegans, Haustorius arenarius) and bivalves (Tellinidae spp.). Although the mechanisms responsible for these relationships are uncertain, there are a range of possible explanations based on the known influences of light in intertidal systems, which encompass direct effects of artificial light on macroinvertebrate life cycles, and indirect effects due to trophic interactions.

Multiple aspects of marine macroinvertebrate reproductive biology are guided by natural light cues, including synchronised broadcast spawning, larval phototaxis, and recruitment (Thorson, 1964; Bentley et al., 2001; Naylor, 2001). The adult stages of mobile marine macroinvertebrates can also be highly photosensitive with taxa displaying both positive and negative phototaxis (Tranter et al., 1981; Del Portillo and Dimock Jr, 1982; Adams, 2001). Marine amphipods, for example, are known to be strongly attracted to artificial lights (Meekan et al., 2001; Hughes and Ahyong, 2016), with assemblages of subtidal amphipods aggregating in halogen light traps with intensities equivalent to average levels of coastal light pollution (Navarro-Barranco and Hughes, 2015). As is the case for many taxa displaying this aggregation response (for example Lepidoptera, Araneae and Coleoptera), the mechanism of disruption remains unclear. Orientation using the lunar and solar compass is, however, common in some intertidal amphipod species (Ugolini et al., 2005; Ugolini et al., 2012), and artificial light disruption of this compass is plausible.

As with many other groups (Rydell, 1992; Becker et al., 2013), aggregation in illuminated areas will increase the vulnerability of intertidal macroinvertebrates to predation. Increases in the abundance of predators as a result of artificial light has been previously reported in a variety of ecosystems and species, from coastal fish (Becker et al., 2013) to bats (Rydell and Racey, 1995) and ground-dwelling insects and arachnids (Davies et al., 2012), and can lead to significant changes in the composition of prey communities within illuminated areas (Bolton et al., 2017). In the same manner that bats target moths and other flying insects around streetlights (Rydell, 1992; Acharya and Fenton, 1999; Minnaar et al., 2015), wading birds are attracted to the nocturnal foraging opportunity posed by light-polluted intertidal shores (Santos et al., 2010). Taking advantage of artificial illumination, these birds alter

![Fig. 2. Macroinvertebrate community structure metrics that were significantly related to artificial light exposure from High Pressure Sodium promenade lighting: A) species richness (species count); B) cumulative biomass (g m$^{-2}$).](image-url)
their feeding strategy from tactile to sight-based foraging (Dwyer et al., 2013), displaying increased intake rates of macroinvertebrate prey compared to non-illuminated regions (Santos et al., 2010).

The negative effect of artificial light exposure on the prevalence of amphipods (Bathyporeia elegans and Haustorius arenarius) in the current study, which constitute the prey of wading birds (Goss-Custard and Jones, 1976; Evans et al., 1980), could be due to light-attracted aggregations being targeted by foragers. Similarly, two polychaete taxa also displayed negative relationships to artificial illuminance: catworms (Nephtys spp.) and sand mason worms (Lanice conchilega), which are two of the most common prey groups in the diet of intertidal foraging birds (Goss-Custard and Jones, 1976; Yates et al., 1993; Petersen and Klaus-Michael, 1999).

Intertidal macroinvertebrates are known to be threatened by a variety of anthropogenic pressures, such as coastal development, pollution discharge and climate change (Brown and McLachlan, 2002; Schlacher et al., 2003).

Table 3
Examining the relationships between the abundances of common macroinvertebrate taxa and exposure to High Pressure Sodium promenade lighting in a sandy shore ecosystem. Commonality is defined as the percentage of samples individual taxa were found in. The percentage contribution of each taxon to the total abundance and biomass of the macroinvertebrate community is also displayed, along with the formula of the most parsimonious model describing those predictor variables which shaped either the abundance or presence of each taxon. Taxa affected by artificial light underlined.

Taxon	Proportion of samples (%)	Proportion of abundance (%)	Proportion of biomass (%)	Model formula
Nephtys spp.a	70.4	8.7	9.9	Lux + Organic + D50
Bathyporeia pilosaa	66.7	49.9	4.0	Shore height
Spionidae spp.b	50.0	4.8	3.6	Shore height
Orbinsiidae spp.b	37.0	2.4	7.5	Organic
Crangon crangona	35.2	2.6	1.5	Lux + Organic + D50
Tellinidae spp.b	35.2	2.3	14.3	Lux + Organic
Limnaeidae conchilega	33.3	6.4	4.8	Lux + Organic + D50
Bathyporeia elegana	25.9	3.8	0.2	Lux + Shore height
Haustorius arenarius	24.1	2.7	2.8	Lux + Organic
Phyllodocidae spp.b	22.2	0.8	0.04	Shore height
Eurydice pulchraa	18.5	10.5	1.2	Shore height
Cerastoderma edulea	14.8	0.7	34.1	Null
Arenicola marinaa	13.0	0.5	11.9	Lux
Nereididae spp.a	13.0	1.2	1.7	Lux
Semelidae spp.a	11.1	0.4	0.01	Null
Sum	NA	97.6	97.6	NA

a Poisson GLM performed on raw abundance (n m⁻²) data.

b Binomial GLM performed on presence/absence data.

c Spatially autocorrelated binomial model (corrHLfit) performed on presence/absence data.

Fig. 3. The effects of artificial light at night from High Pressure Sodium lighting on macroinvertebrate species richness and biomass at high (a–b), medium (c–d), and low (e–f) organic matter content in a sandy shore ecosystem. Relationships (dashed lines) are presented from the most parsimonious generalised linear models (Table 2) which included artificial light exposure and were significantly different from a null (intercept only) model. A significant interaction between artificial light exposure and organic matter content was present in both cases, presented here using the lower quartile, median and upper quartile values of organic matter concentration (%). Grey regions indicate the 95% confidence intervals of these relationships.
et al., 2007; Defeo et al., 2009). However the impact of artificial light pollution remained unconsidered until recent years (Luarte et al., 2016; Duarte et al., 2019). This study demonstrates that artificial light pollution can alter intertidal macroinfaunal communities in sandy beach ecosystems. With 75% of the world’s megacities located near coastlines (Luijendijk et al., 2018), the potential for widespread artificial light at night in coastal regions (Davies et al., 2014) to alter the biogeographical distributions of intertidal organisms is clear. It may prove possible to

Fig. 4. Intertidal macroinvertebrate taxa with abundances or occurrences significantly related to artificial light at night from High Pressure Sodium promenade lighting in a sandy shore ecosystem. The relationship between artificial light exposure and each abundance measure (dashed lines) were identified as the most parsimonious generalised linear models that were significantly different from a null (intercept only) model. Grey regions indicate the 95% confidence intervals of these relationships. Nephtys spp. and Haustorius arenarius were analysed using Poisson GLMs performed on abundance data, while binomial GLMs performed on presence/absence data were used for the remaining taxa.
reduce these impacts by limiting the period, intensity and dispersal of lighting, as well as altering the types of lights used and their spectral composition (Gaston et al., 2012; Rajkhowa, 2012).

Acknowledgements

The research leading to this publication was supported by the European Regional Development Fund through the Welsh Government [grant number 80761-BU-134 awarded to T.W.D.J] and the Natural Environment Research Council [grant number NE/S003533/1 awarded to T.W.D and S.J]. Our thanks to Dr. Dei Huws and the technical staff at the School of Ocean Sciences for providing laboratory resources and any necessary training.

CRediT author statement

Matthew J. Garratt: Methodology, Formal Analysis, Investigation, Writing-Original Draft, Visualisation. Stuart R. Jenkins: Writing-Review & Editing, Supervision, Project Administration, Funding Acquisition. Thomas W. Davies: Conceptualization, Methodology, Formal Analysis, Writing-Review & Editing, Visualisation, Supervision, Project Administration, Funding Acquisition.

References

Acharya, L., Fenton, M.B., 1999. Bat attacks and morphological defences: an adaptive arms race. Anim. Behav. 57 (2), 37–42.

Bennie, J., Matthews, J., Gaston, K.J., 2012. Street lighting changes the composition of invertebrate communities in Lakes. Sci. Total Environ. 419 (1), 57–63.

Blount, J.Z., Pye, K., Wotton, M.B., 2008. The influence of artificial night-time lighting of the environment. Environ. Rev. 16 (1), 1–16.

Boulton, D., Mather, P., Cuthbertson, J.H., 2010. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 158 (12), 3391–3397.

Bouwman, A.F., Ball, J.S., Bath, A., 1995. The impact of artificial light on natural systems. J. Exp. Mar. Biol. Ecol. 189 (2), 145–163.

Brown, A.C., McLaughlan, A., 2002. Sandy shore ecosystems and the threats facing them: some predictions for the year 2025. Environ. Conserv. 29 (1), 62–77. doi.org/10.1079/0370394022000055.

Bull, C.E.J., Davis, A.M., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 189, 143–148.

Burt, J., Foody, G.D., Macpherson, I.G., 2003. Artificial light at night affects terrestrial ecosystems. Biol. Conserv. 112 (2–3), 183–191.

Bürgi, K.E., 2002. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 119 (3), 201–214.

Cáceres, M.J.H., 2012. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 160 (10), 2311–2315.

Clement, A.P., Reynolds, J.F., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 172, 279–288.

Côté, I.M., 2003. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 126 (2), 209–221.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 172, 279–288.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.

Cox, T.A., 2013. Artificial light at night affects organismal circadian rhythms. Environ. Pollut. 178, 261–267.
Naylor, E., 2001. Marine animal behaviour in relation to lunar phase. Earth Moon Planet. 85, 291–302.
Petersen, B., Klaus-Michael, E., 1999. Predation of waders and gulls on Lanice conchilega tidal flats in the Wadden Sea. Mar. Ecol. Prog. Ser. 178, 229–240. https://doi.org/10.3354/meps178229.
Rajkhowa, R., 2012. Light pollution and impact of light pollution. International Journal of Science and Research (IJSR) ISSN (Online Impact Factor) 3 (10), 2319–7064 Retrieved from www.ijsr.net.
Robles, C., Sweetnam, D.A., Dittman, D., 1989. Diel variation of intertidal foraging by Cancer productus L. in British Columbia. J. Nat. Hist. 23 (5), 1041–1049.
Rodil, I., Lastra, M., Lopez, J., 2007. Macrofauna community structure and biochemical composition of sedimentary organic matter along a gradient of wave exposure in sandy beaches (NW Spain). Hydrobiologia 579 (1), 301–316. https://doi.org/10.1007/s10750-006-6443-2.
Rodríguez, A., Rodríguez, B., Ciurliónis, G., Pérez, A., Marrero, S., Negro, J.J., 2012. Factors affecting mortality of shearwaters stranded by light pollution. Anim. Conserv. 15 (5), 519–526. https://doi.org/10.1111/j.1469-1795.2012.00544.x.
Rydell, J., 1992. Exploitation of insects around streetlamps by bats in Sweden. Funct. Ecol. 6 (6), 744–750. https://doi.org/10.1093/functec/6.6.744.
Rydell, J., Racey, P.A., 1995. Street lamps and the feeding ecology of insectivorous bats. Symp. Zool. Soc. Lond. 67, 291–307.
Santos, C.D., Miranda, A.C., Granadeiro, J.P., Lourenço, P.M., Saraiva, S., Palmeirim, J.M., 2010. Effects of artificial illumination on the nocturnal foraging of waders. Acta Oecol. 36 (2), 166–172. https://doi.org/10.1016/j.actao.2009.11.008.
Schlacher, T.A., Schoeman, D.S., Dugan, J., Lastra, M., Jones, A., Scapini, F., McLachlan, A., 2008. Sandy beach ecosystems: key features, sampling issues, management challenges and climate change impacts. Mar. Ecol. 29, 70–90. https://doi.org/10.1111/j.1439-0485.2007.00204.x.
Schlacher, Thomas A., Dugan, J., Schoeman, D.S., Lastra, M., Jones, A., Scapini, F.,... Defeo, O., 2007. Sandy beaches at the brink. Divers. Distrib. 13 (5), 556–560. https://doi.org/10.1111/j.1472-4642.2007.00363.x.
Thorson, G., 1964. Light as an ecological factor in the dispersal and settlement of larvae of marine bottom invertebrates. Ophelia 1 (1), 167–208. https://doi.org/10.1080/00308816401441627.
Tranter, D.J., Bulleid, N.C., Campbell, R., Higgins, H.W., Rowe, F., Tranter, H.A., Smith, D.F., 1981. Nocturnal movements of phototactic zooplankton in shallow waters. Mar. Biol. 61 (4), 317–326. https://doi.org/10.1007/BF00401571.
Tuxbury, S., Salmon, M., 2005. Competitive interactions between artificial lighting and natural cues during seafinding by hatching marine turtles. Biol. Conserv. 121 (2), 311–316.
Ugolini, A., Galanti, G., Mercatelli, L., 2012. The skylight gradient of luminance helps sandhoppers in sun and moon identification. J. Exp. Biol. 215 (16), 2814–2819. https://doi.org/10.1242/jeb.069542.
Ugolini, Alberto, Boddi, V., Mercatelli, L., Castellini, C., Morgagni, V., 2005. Moon orientation in adult and young sandhoppers under artificial light. Proc. R. Soc. B 272, 2189–2194. https://doi.org/10.1098/rspb.2005.3199.
Underwood, C.N., Davies, T.W., Queiró, A.M., 2017. Artificial light at night alters trophic interactions of intertidal invertebrates. J. Anim. Ecol. 86 (4), 781–789. https://doi.org/10.1111/1365-2656.12670.
Vihreäaho, M., Väisaalo, M., 2001. Effect of light on the feeding rates of pelagic and littoral mysid shrimps: a trade-off between feeding success and predation avoidance. J. Exp. Mar. Biol. Ecol. 261, 237–244.
Walker, S.J., Schlacher, T.A., Thompson, L.M.C., 2008. Habitat modification in a dynamic environment: the influence of a small artificial groyne on macrofaunal assemblages of a sandy beach. Estuar. Coast. Shelf Sci. 79 (1), 24–34. https://doi.org/10.1016/j.ecss.2008.03.011.
Yates, M.G., Goss-Custard, J.D., McGorothy, S., Lakhani, K.J., Le, V., Dit Durell, S.E.A., Clarke, R.T.,... Frost, A.J., 1993. Sediment characteristics, invertebrate densities and shorebird densities on the inner banks of the wash. J. Appl. Ecol. 30 (4), 599–614. https://doi.org/10.2307/2404240.