ON HIGHER MONOIDAL ∞-CATEGORIES

TAKESHI TORII

Abstract. In this paper we introduce a notion of O-monoidal ∞-categories for a finite sequence O^\otimes of ∞-operads, which is a generalization of the notion of higher monoidal categories in the setting of ∞-categories. We show that the ∞-category of coCartesian O-monoidal ∞-categories and right adjoint lax O-monoidal functors is equivalent to the opposite of the ∞-category of Cartesian O_{rev}-monoidal ∞-categories and left adjoint oplax O_{rev}-monoidal functors, where O_{rev} is a sequence obtained by reversing the order of O^\otimes.

1. Introduction

The purpose of this paper is twofold: Firstly, we generalize the notion of duoidal ∞-categories and introduce higher monoidal ∞-categories. Secondly, we prove that the ∞-category of higher monoidal ∞-categories and right adjoint lax monoidal functors is equivalent to the opposite of the ∞-category of higher monoidal ∞-categories and left adjoint oplax monoidal functors.

A duoidal category is a category equipped with two monoidal structures in which one is (op)lax monoidal with respect to the other. The notion of duoidal category was introduced in [1] and developed further by [3, 4, 5, 6, 12]. In [14] we have introduced duoidal ∞-categories which are analogues of duoidal categories in the setting of ∞-categories. In this paper we will consider generalizations of duoidal ∞-categories to higher monoidal ∞-categories.

Higher monoidal categories was also introduced in [1, Chapter 7]. Roughly speaking, n-monoidal category is a category equipped with n ordered monoidal structures related by interchange laws. We will define a notion of coCartesian O-monoidal ∞-categories for a finite sequence O^\otimes of ∞-operads over perfect operator categories. This is a generalization of higher monoidal categories and it is appropriate setting to consider lax O-monoidal functors. In order to consider oplax monoidal functors, we also introduce a notion of Cartesian O-monoidal ∞-categories. We will show that the notion of coCartesian O-monoidal ∞-categories is equivalent to that of Cartesian O_{rev}-monoidal ∞-categories (Corollary 3.22), where O_{rev}^\otimes is a sequence obtained by reversing the order of O^\otimes.

Furthermore, by combining these notions, we also introduce mixed (O, P)-monoidal ∞-categories to discuss bilax (O, P)-monoidal functors.

In [13, Proposition 5] we have shown that the left adjoint of a lax monoidal functor between monoidal ∞-categories is an oplax monoidal functor. Furthermore, Haugseng [3] and Hebestreit-Linskens-Nuiten [9] have independently shown that the ∞-category of O-monoidal ∞-categories and left adjoint oplax monoidal functors is equivalent to the opposite of the ∞-category of O-monoidal ∞-categories and right adjoint lax monoidal functors for any ∞-operad O^\otimes.

Our main theorem is a generalization of this equivalence to higher monoidal ∞-categories. We denote by $\text{Mon}^{\text{lax}, R}(\text{Cat}_\infty)$ the ∞-category of coCartesian O-monoidal ∞-categories and right adjoint lax O-monoidal functors and by $\text{Mon}^{\text{oplax}, L}(\text{Cat}_\infty)$ the ∞-category of Cartesian O_{rev}-monoidal ∞-categories and left adjoint oplax O_{rev}-monoidal functors.
Theorem 1.1 (Theorem 4.7). There exists an equivalence
\[\text{Mon}^\text{lax,\,R}(\text{Cat}_{\infty}) \simeq \text{Mon}^\text{oplax,\,L}(\text{Cat}_{\infty})^\text{op} \]
of ∞-categories.

The organization of this paper is as follows: In §2 we introduce notions of S-(co)Cartesian fibrations and (op)lax S-morphisms for a finite sequence S of ∞-categories. We also define mixed (S, T)-fibrations and bilax (S, T)-morphisms by combining S-coCartesian fibrations and T-Cartesian fibrations. In §3 we define higher monoidal ∞-categories and study (op)lax monoidal functors between them. We introduce notions of coCartesian O-monoidal ∞-categories and lax O-monoidal functors, where O° is a finite sequence of ∞-operads over perfect operator categories. We also introduce Cartesian O-monoidal ∞-categories and oplax O-monoidal functors. By combining these notions, we also define mixed (O, P)-monoidal ∞-categories and bilax (O, P)-monoidal functors. In §4 we study adjoints of (op)lax monoidal functors between higher monoidal ∞-categories, and prove the main theorem (Theorem 4.7).

Notation. We denote by Cat_{∞} the ∞-category of ∞-categories. For an ∞-category C, we denote by C^\simeq the underlying ∞-groupoid. We write $\text{Map}_C(x, y)$ for the mapping space in C. For ∞-categories C and D, we write $\text{Fun}(C, D)$ the ∞-categories of functors from C to D.

For ∞-categories S and T, we let $\pi_S : S \times T \to S$ be the projection. For a functor $p : X \to S \times T$ of ∞-categories and an object $s \in S$, we set $p_S = \pi_S \circ p$. For an object $s \in S$, we denote by X_s the fiber of p_S at s and $p_s : X_s \to T$ the restriction of p to X_s.

Let $S = (S_1, S_2, \ldots, S_n)$ be a finite sequence of ∞-categories. We write $l(S)$ for the length of S. For an integer i, we set $S_{\geq i} = (S_i, S_{i+1}, \ldots, S_n)$ and $S_{\neq i} = (S_1, \ldots, S_{i-1}, S_{i+1}, \ldots, S_n)$, etc. We also set $S^{\text{op}} = (S_1^{\text{op}}, \ldots, S_n^{\text{op}})$ and $S^{\text{rev}} = (S_n, S_{n-1}, \ldots, S_1)$. We denote by $\prod S$ the product $S_1 \times S_2 \times \cdots \times S_n$. For finite sequences $S = (S_1, \ldots, S_n)$ and $T = (T_1, \ldots, T_m)$ of ∞-categories, we set $[S, T] = (S_1, S_2, \ldots, S_n, T_1, \ldots, T_m)$.

Acknowledgements. The author would like to thank Jonathan Beardsley for letting him know the references [8] and [9]. The author was partially supported by by JSPS KAKENHI Grant Numbers JP17K05253.

2. Iterated (co)Cartesian fibrations and mixed fibrations

In this section we introduce notions of iterated (co)Cartesian fibrations and mixed fibrations in a subcategory Z of Cat_{∞}/Z and study their basic properties. In §2.1 we recall the notions of Cartesian fibrations and coCartesian fibrations in Z studied in [14]. In §2.2 we generalize mixed fibrations introduced in [14] §3.2] to mixed fibrations in Z. In §2.3 we define S-coCartesian fibrations and lax S-morphisms, and T-Cartesian fibrations and oplax T-morphisms for finite sequences S and T of ∞-categories by iterating the constructions in §2.4. We also define mixed (S, T)-fibrations by combining S-coCartesian fibrations and T-Cartesian fibrations.

2.1. Cartesian fibrations and coCartesian fibrations in Z. In this subsection we recall the notions of Cartesian fibrations and coCartesian fibrations in subcategory of Cat_{∞}/Z studied in [14].

Let S and Z be ∞-categories. Suppose that Z is a replete subcategory of Cat_{∞}/Z. In [14] Definition 3.1 we introduced an ∞-category $\text{Fun}(S, Z)$. In this paper we call an object of $\text{Fun}(S, Z)$ a coCartesian fibration over S in Z. We write $\text{coCart}_{/S}(Z)$ for the ∞-category of coCartesian fibrations over S in Z instead of $\text{Fun}(S, Z)$. For the convenience of readers, we will explicitly describe objects and morphisms of $\text{Fun}(S, Z)$.
Definition 2.1. A coCartesian fibration over S in \mathcal{Z} is a functor $p : X \to S \times Z$ of ∞-categories that satisfies the following conditions:

(1) The composite $p_S : X \to S$ is a coCartesian fibration and the functor p takes p_S-coCartesian morphisms to π_S-coCartesian morphisms.
(2) For each $s \in S$, the restriction $p_s : X_s \to Z$ is an object of \mathcal{Z}.
(3) For each morphism $s \to s'$ in S, the induced functor $X_s \to X_{s'}$ over Z is a morphism in \mathcal{Z}.

A morphism between coCartesian fibrations $p : X \to S \times Z$ and $q : Y \to S \times Z$ over S in \mathcal{Z} is a functor $f : X \to Y$ over $S \times Z$ that satisfies the following conditions:

(1) The functor f takes p_S-coCartesian morphisms to q_S-coCartesian morphisms.
(2) For each $s \in S$, the restriction $f_s : X_s \to Y_s$ over Z is a morphism in \mathcal{Z}.

We define $\text{coCart}_{/S}(\mathcal{Z})$ to be the subcategory of $\text{Cat}_{\infty/S \times Z}$ with coCartesian fibrations over S in \mathcal{Z} and morphisms between them.

By [14, Proposition 3.2], we have the following lemma.

Lemma 2.2 ([14, Proposition 3.2]). There is an equivalence

$$\text{Fun}(S, \mathcal{Z}) \simeq \text{coCart}_{/S}(\mathcal{Z})$$

of ∞-categories.

We also define lax morphisms between coCartesian fibrations over S in \mathcal{Z}.

Definition 2.3. A lax morphism between coCartesian fibrations $p : X \to S \times Z$ and $q : Y \to S \times Z$ over S in \mathcal{Z} is a functor $f : X \to Y$ over $S \times Z$ that satisfies the following condition: For each $s \in S$, the restriction $f_s : X_s \to Y_s$ over Z is a morphism in \mathcal{Z}.

We define $\text{coCart}_{/S}^{\text{lax}}(\mathcal{Z})$ to be the subcategory of $\text{Cat}_{\infty/S \times Z}$ with coCartesian fibrations over S in \mathcal{Z} and lax morphisms between them.

Since an equivalence in $\text{coCart}_{/S}^{\text{lax}}(\mathcal{Z})$ is a morphism of coCartesian fibrations over S in \mathcal{Z}, we obtain the following lemma.

Lemma 2.4. The inclusion functor $\text{coCart}_{/S}^{\text{lax}}(\mathcal{Z}) \to \text{coCart}_{/S}(\mathcal{Z})$ induces an equivalence

$$\text{coCart}_{/S}^{\text{lax}}(\mathcal{Z}) \simeq \text{coCart}_{/S}(\mathcal{Z})$$

of the underlying ∞-groupoids.

Dually, we call an object of $\text{Fun}^{\prime}(S, \mathcal{Z})$ in [14, Remark 3.3] a Cartesian fibration over S in \mathcal{Z}, and write $\text{Cart}_{/S}(\mathcal{Z})$ for the ∞-category of Cartesian fibrations over S in \mathcal{Z} instead of $\text{Fun}^{\prime}(S, \mathcal{Z})$.

Definition 2.5. A Cartesian fibration over S in \mathcal{Z} is a functor $p : X \to S \times Z$ of ∞-categories that satisfies the following conditions:

(1) The composite $p_S : X \to S$ is a Cartesian fibration and the functor p takes p_S-Cartesian morphisms to π_S-Cartesian morphisms.
(2) For each $s \in S$, the restriction $p_s : X_s \to Z$ is an object of \mathcal{Z}.
(3) For each morphism $s' \to s$ in S, the induced functor $X_s \to X_{s'}$ over Z is a morphism in \mathcal{Z}.
A morphism between Cartesian fibrations \(p : X \to S \times Z \) and \(q : Y \to S \times Z \) over \(S \) in \(Z \) is a functor \(f : X \to Y \) over \(S \times Z \) that satisfies the following conditions:

1. The functor \(f \) takes \((\pi_S \circ p)\)-Cartesian morphisms to \((\pi_S \circ q)\)-Cartesian morphisms.
2. For each \(s \in S \), the induced map \(f_s : X_s \to Y_s \) over \(Z \) is a morphism in \(Z \).

We define \(\text{Cart}_{/S}(Z) \) to be the subcategory of \(\text{Cat}_{\infty/S \times Z} \) with Cartesian fibrations over \(S \) in \(Z \) and morphisms between them.

Definition 2.6. An oplax morphism between Cartesian fibrations \(p : X \to S \times Z \) and \(q : Y \to S \times Z \) over \(S \) in \(Z \) is a functor \(f : X \to Y \) over \(S \times Z \) that satisfies the following condition: For each \(s \in S \), the restriction \(f_s : X_s \to Y_s \) over \(Z \) is a morphism in \(Z \).

We define \(\text{Cart}_{/S}^{\text{oplax}}(Z) \) to be the subcategory of \(\text{Cat}_{\infty/S \times Z} \) with Cartesian fibrations over \(S \) in \(Z \) and oplax morphisms between them.

In the same way as the case of coCartesian fibrations, we obtain the following two lemmas.

Lemma 2.7 ([14, Remark 3.3]). There is an equivalence
\[
\text{Fun}(S^{\text{op}}, Z) \simeq \text{Cart}_{/S}(Z)
\]
of \(\infty \)-categories.

Lemma 2.8. The inclusion functor \(\text{Cart}_{/S}^{\text{oplax}}(Z) \to \text{Cart}_{/S}(Z) \) induces an equivalence
\[
\text{Cart}_{/S}^{\text{oplax}}(Z) \simeq \overset{\simeq}{\text{Cart}_{/S}(Z)}
\]
of the underlying \(\infty \)-groupoids.

Remark 2.9. Notice that \(\text{coCart}_{/S}^{\text{ax}}(Z) \) and \(\text{Cart}_{/S}^{\text{oplax}}(Z) \) are replete subcategory of \(\text{Cat}_{\infty/S \times Z} \).
Thus, we can iterate the constructions \(\text{coCart}_{/S}^{\text{ax}}(-) \) and \(\text{Cart}_{/S}^{\text{oplax}}(-) \).

We need the following lemma in §3.2.

Lemma 2.10. If the inclusion functor \(\hookrightarrow : \text{Cat}_{\infty/S} \to \text{CoCat}_{\infty/S} \) create finite products, then the inclusion functors \(\text{coCart}_{/S}^{\text{ax}}(Z) \to \text{Cat}_{\infty/S \times Z} \) and \(\text{Cart}_{/S}^{\text{oplax}}(Z) \hookrightarrow \text{Cat}_{\infty/S^{\text{op}} \times Z} \) also create finite products.

Proof. We will show that \(\text{coCart}_{/S}^{\text{ax}}(Z) \to \text{Cat}_{\infty/S \times Z} \) creates finite products. The other case can be proved similarly.

It is easy to see that a final object of \(\text{Cat}_{\infty/S} \) is also a final object of \(\text{coCart}_{/S}^{\text{ax}}(Z) \). Let \(p : X \to S \times Z \) and \(q : Y \to S \times Z \) be objects of \(\text{coCart}_{/S}^{\text{ax}}(Z) \). By Lemma 2.2, we regard \(p \) and \(q \) as objects of \(\text{Fun}(S, Z) \). By the assumption on \(Z \), finite products of \(\text{Fun}(S, Z) \) are created in \(\text{Fun}(S, \text{Cat}_{\infty/Z}) \). Thus, \(X \times_{S \times Z} Y \to S \times Z \) is a product of \(p \) and \(q \) in \(\text{coCart}_{/S}(Z) \). We can easily verify that \(X \times_{S \times Z} Y \to S \times Z \) is a product of \(p \) and \(q \) in \(\text{coCart}_{/S}^{\text{ax}}(Z) \). \(\square \)

2.2 Mixed fibrations in \(Z \)

In [14] §3.2 we introduced mixed fibrations. In this subsection we generalize them and introduce mixed fibrations in \(Z \).

Definition 2.11. Let \(S \) and \(T \) be \(\infty \)-categories. A mixed fibration over \((S, T)\) in \(Z \) is a functor \(p : X \to S \times T \times Z \) of \(\infty \)-categories that satisfies the following conditions:

1. The composite \(p_S : X \to S \) is a coCartesian fibration and the functor \(p \) takes \(p_S \)-coCartesian morphisms to \(\pi_S \)-coCartesian morphisms.
A bilax morphism between mixed fibrations

Definition 2.13. A bilax morphism between mixed fibrations $p : X \to T$ is a Cartesian fibration and the functor p takes p_T-Cartesian morphisms to p_T-Cartesian morphisms.

Remark 2.12. For each $(s, t) \in S \times T$, the restriction $p_{(s,t)} : X_{(s,t)} \to Z$ is an object of Z.

Remark 2.14. Finally, we show that the ∞-category of mixed fibrations over (S, T) can be described in terms of the constructions of coCart$^\infty_{/S}(-)$ and Car$^\infty_{/T}(-)$.

We define bilax morphisms between mixed fibrations.

Definition 2.13. A bilax morphism between mixed fibrations $p : X \to S \times T \times Z$ and $q : Y \to S \times T \times Z$ is a functor $f : X \to Y$ over $S \times T \times Z$ that satisfies the following conditions:

1. The functor f takes p_S-coCartesian morphisms to q_S-coCartesian morphisms.
2. The functor f takes p_T-Cartesian morphisms to q_T-Cartesian morphisms.
3. For each $(s, t) \in S \times T$, the restriction $f_{(s,t)} : X_{(s,t)} \to Y_{(s,t)}$ over Z is a morphism in Z.

We define

$$\text{Mix}_{/(S,T)}(Z)$$

to be the subcategory of $\text{Cat}_{\infty/S \times T \times Z}$ with mixed fibrations over (S,T) in Z and morphisms between them.

Remark 2.12. If $p : X \to S \times T \times Z$ is a mixed fibration over (S,T) in Z, then the composite $p_{S \times T} : X \to S \times T$ is a mixed fibration over (S,T) in the sense of [14] Definition 3.15.

We also define bilax morphisms between mixed fibrations.

Definition 2.13. A bilax morphism between mixed fibrations $p : X \to S \times T \times Z$ and $q : Y \to S \times T \times Z$ over (S,T) in Z is a functor $f : X \to Y$ over $S \times T \times Z$ that satisfies the following condition: For each $(s, t) \in S \times T$, the restriction $f_{(s,t)} : X_{(s,t)} \to Y_{(s,t)}$ over Z is a morphism in Z.

We define an ∞-category

$$\text{Mix}^\text{bilax}_{/(S,T)}(Z)$$

to be the subcategory of $\text{Cat}_{\infty/S \times T \times Z}$ with mixed fibrations over (S,T) in Z and bilax morphisms between them.

Remark 2.14. When $Z = \text{Cat}_{\infty/[0]} \simeq \text{Cat}_{\infty}$, there is an equivalence

$$\text{Mix}^\text{bilax}_{/(S,T)}(Z) \simeq \text{Mfib}_{/(S,T)}$$

of ∞-categories, where the right hand side is the ∞-category of mixed fibrations over (S,T) defined in [14] Definition 3.15.

We easily obtain the following two lemmas.

Lemma 2.15. There is an equivalence

$$\text{Mix}_{/(S,T)}(Z) \simeq \text{Fun}(S \times T^{\text{op}}, Z)$$

of ∞-categories.

Lemma 2.16. The inclusion functor $\text{Mix}^\text{bilax}_{/(S,T)}(Z) \to \text{Mix}_{/(S,T)}(Z)$ induces an equivalence

$$\text{Mix}^\text{bilax}_{/(S,T)}(Z) \xrightarrow{\simeq} \text{Mix}_{/(S,T)}(Z)$$

of the underlying ∞-groupoids.
Theorem 2.17. There are equivalences
\[
\text{coCart}^{\text{lax}}_{/S}(\text{Cart}^{\text{oplax}}_{/T}(Z)) \simeq \text{Mix}^{\text{bilax}}_{/(S,T)}(Z) \simeq \text{Cart}^{\text{oplax}}(\text{coCart}^{\text{lax}}_{/S}(Z))
\]
of ∞-categories.

In order to prove Theorem 2.17 we need the following lemmas.

Lemma 2.18. Let \(p : X \to S \times T \times Z \) be a mixed fibration over \((S,T)\) in \(Z\). For each \(s \in S \), the restriction \(p_s : X_s \to T \) is a Cartesian fibration over \(T \) in \(Z \).

Proof. It suffices to show that \(p_s : X_s \to T \) is a Cartesian fibration and \(p_s : X_s \to T \times Z \) preserves Cartesian morphisms for each \(s \in S \). This follows from [14 Remark 3.18]. □

Lemma 2.19. If \(p : X \to S \times T \times Z \) is an object of \(\text{Mix}^{\text{bilax}}_{/(S,T)}(Z) \), then \(p \) is a mixed fibration over \((S,T)\) in \(Z\).

Proof. It suffices to show that \(p_T : X \to T \) is a Cartesian fibration and \(p \) preserves Cartesian morphisms. We can prove this in the same way as the proof of [13 Proposition 3.25]. □

Proof of Theorem 2.17. We shall show that \(\text{Mix}^{\text{bilax}}_{/(S,T)}(Z) \) is equivalent to \(\text{coCart}^{\text{lax}}_{/S}(\text{Cart}^{\text{oplax}}_{/T}(Z)) \).

By the symmetry of the definition of mixed fibrations, we can prove the other equivalence similarly.

We can identify the objects of \(\text{Mix}^{\text{bilax}}_{/(S,T)}(Z) \) with those of \(\text{coCart}^{\text{lax}}_{/S}(\text{Cart}^{\text{oplax}}_{/T})(Z) \) by Lemmas 2.18 and 2.19. Thus, it suffices to show that we can also identify the morphisms in \(\text{Mix}^{\text{bilax}}_{/(S,T)}(Z) \) with those in \(\text{coCart}^{\text{lax}}_{/S}(\text{Cart}^{\text{oplax}}_{/T})(Z) \).

Let \(f : X \to Y \) be a functor over \(S \times T \times Z \), where \(p : X \to S \times T \times Z \) and \(q : Y \to S \times T \times Z \) are mixed fibrations over \((S,T)\) in \(Z\). The functor \(f \) is a morphism of mixed fibrations if and only if \(f_{s,t} : X_{(s,t)} \to Y_{(s,t)} \) over \(Z \) is a morphism in \(Z \) for each \((s,t) \in S \times T \). On the other hand, \(f \) is a morphism in \(\text{coCart}^{\text{lax}}_{/S}(\text{Cart}^{\text{oplax}}_{/T})(Z) \) if and only if \(f_s : X_s \to Y_s \) over \(T \times Z \) is a morphism in \(\text{Cart}^{\text{oplax}}_{/T}(Z) \) for each \(s \in S \). This is equivalent to the condition on \(f \) being a morphism of mixed fibrations. This completes the proof. □

2.3. Iterated (co)Cartesian fibrations in \(Z\). In this subsection we will define \(S\)-coCartesian fibrations and lax \(S\)-morphisms, and \(T\)-Cartesian fibrations and oplax \(T\)-morphisms for finite sequences \(S\) and \(T\) of ∞-categories by iterating the constructions in §2.1. We also define mixed \((S,T)\)-fibrations by combining \(S\)-coCartesian fibrations and \(T\)-Cartesian fibrations.

Definition 2.20. Let \(S = (S_1, S_2, \ldots, S_n) \) be a finite sequence of ∞-categories. We define an ∞-category
\[
\text{coCart}^{\text{lax}}_{/S}(Z)
\]
by induction on \(l(S) \) as follows: When \(l(S) = 0 \), we set \(\text{coCart}^{\text{lax}}_{/S}(Z) = Z \). When \(l(S) > 0 \), we define
\[
\text{coCart}^{\text{lax}}_{/S}(Z) = \text{coCart}^{\text{lax}}_{/S_1}(\text{coCart}^{\text{lax}}_{/S_2}(Z)).
\]
We call \(\text{coCart}^{\text{lax}}_{/S}(Z) \) the ∞-category of \(S\)-coCartesian fibrations and lax \(S\)-morphisms in \(Z\).

Dually, we define an ∞-category of \(T\)-Cartesian fibration and \(T\)-oplax morphisms in \(Z\).

Definition 2.21. Let \(T = (T_1, T_2, \ldots, T_n) \) be a finite sequence of ∞-categories. We define an ∞-category
\[
\text{Cart}^{\text{oplax}}_{/T}(Z)
\]
by induction on \(l(T) \) as follows: When \(l(T) = 0 \), we set \(\operatorname{Cart}^{\oplax}_{/T}(Z) = Z \). When \(l(T) > 0 \), we define

\[
\operatorname{Cart}^{\oplax}_{/T}(Z) = \operatorname{Cart}^{\oplax}_{/T_1}(\operatorname{Cart}^{\oplax}_{/T_2}(Z)).
\]

We call \(\operatorname{Cart}^{\oplax}_{/T}(Z) \) the \(\infty \)-category of \(T \)-Cartesian fibrations and oplax \(T \)-morphisms in \(Z \).

Remark 2.22. The notions of \(S \)-coCartesian fibrations and \(T \)-Cartesian fibrations are related to Gray fibrations and Gray tensor products. See \([8, 9]\) of Definition 2.23. We define

\[
\operatorname{Corollary 2.26.} \text{There is an equivalence of } \infty \text{-categories. By Corollary 2.26, we can see that a coCartesian } \infty \text{-category determines a Cartesian } \infty \text{-category, and vice versa. For a coCartesian or Cartesian } S \text{-fibration } p : X \to \prod S, \text{ we denote by } p^\vee : X^\vee \to \prod S^\rev \text{ the corresponding Cartesian or coCartesian } S^\rev \text{-fibration, and we call } p^\vee \text{ the dual fibration to } p.
\]

Definition 2.23. We define

\[
\operatorname{Mix}^{\oplax}_{/(S,T)}(Z)
\]

to be the \(\infty \)-category \(\operatorname{coCart}^{\oplax}_{/(S,T)}(\operatorname{Cart}^{\oplax}_{/T}(Z)) \) and call it the \(\infty \)-category of mixed \((S,T) \)-fibrations and bilax \((S,T) \)-morphisms.

Remark 2.24. By Theorem 2.17 there is an equivalence

\[
\operatorname{Mix}^{\oplax}_{/(S,T)}(Z) \simeq \operatorname{Cart}^{\oplax}_{/T}(\operatorname{coCart}^{\oplax}_{/S}(Z))
\]

of \(\infty \)-categories.

Let \(U \) be an \(\infty \)-category. We describe the mapping space \(\operatorname{Map}_{\operatorname{Cat}_{\infty}}(U, \operatorname{Mix}^{\oplax}_{/(S,T)}(Z)) \) in terms of mixed fibrations in \(Z \).

Theorem 2.25. There are natural equivalences

\[
\operatorname{Mix}^{\oplax}_{/([U,S],T)}(Z)^\simeq \operatorname{Map}_{\operatorname{Cat}_{\infty}}(U, \operatorname{Mix}^{\oplax}_{/(S,T)}(Z)) \simeq \operatorname{Mix}^{\oplax}_{/(S,[U,T]^{\op})}(Z)^\simeq
\]

of \(\infty \)-groupoids.

Proof. We shall show that \(\operatorname{Map}_{\operatorname{Cat}_{\infty}}(U, \operatorname{Mix}^{\oplax}_{/(S,T)}(Z)) \simeq \operatorname{Mix}^{\oplax}_{/(U,[S],T)}(Z)^\simeq \). The other equivalence can be proved similarly.

By Lemmas 2.22 and 2.3, we have an equivalence

\[
\operatorname{Map}_{\operatorname{Cat}_{\infty}}(U, \operatorname{Mix}^{\oplax}_{/(S,T)}(Z)) \simeq \operatorname{coCart}^{\oplax}_{/U}(\operatorname{Mix}^{\oplax}_{/(S,T)}(Z))^{\simeq}
\]

of \(\infty \)-groupoids. By definition, there is an equivalence

\[
\operatorname{coCart}^{\oplax}_{/U}(\operatorname{Mix}^{\oplax}_{/(S,T)}(\operatorname{Cat}_{\infty})) \simeq \operatorname{Mix}^{\oplax}_{/(U,[S],T)}(\operatorname{Cat}_{\infty})
\]

of \(\infty \)-categories. Combining these equivalences, we obtain the desired equivalence. \(\square \)

Corollary 2.26. There is an equivalence

\[
\operatorname{coCart}^{\oplax}_{/S}(Z)^\simeq \operatorname{Cart}^{\oplax}_{/S^\rev}(Z)^\simeq
\]

of the underlying \(\infty \)-groupoids.

Definition 2.27. By Corollary 2.26 we can see that a coCartesian \(S \)-fibration canonically determines a Cartesian \(S^\rev \)-fibration, and vice versa. For a coCartesian or Cartesian \(S \)-fibration \(p : X \to \prod S \), we denote by \(p^\vee : X^\vee \to \prod S^\rev \) the corresponding Cartesian or coCartesian \(S^\rev \)-fibration, and we call \(p^\vee \) the dual fibration to \(p \).
3. Higher monoidal ∞-categories

In this section we introduce higher monoidal ∞-categories and study (op)lax monoidal functors between them. In §3.1 we define O-monoidal ∞-categories for an ∞-operad \(O^\otimes \) over a perfect operator category. In §3.2 we generalize the notion of duoidal ∞-categories to that of O-monoidal ∞-categories, where \(O^\otimes \) is a finite sequence of ∞-operads over perfect operator categories. We also define and study (op)lax O-monoidal functors between them.

3.1. O-monoidal ∞-categories over perfect operator categories. In this subsection we define O-monoidal ∞-categories for an ∞-operad \(O^\otimes \) over a perfect operator category, and introduce lax and oplax O-monoidal functors between O-monoidal ∞-categories. We also consider mixed \((O, P)\)-monoidal ∞-categories and mixed \((O, P)\)-monoidal functors.

First, we briefly recall the notion of ∞-operads over a perfect operator category introduced in [2]. Let \(\Phi \) be a prefect operator category in the sense of [2] Definitions 1.2 and 4.6. Associated to \(\Phi \), we have the Leinster category \(\Lambda(\Phi) \) equipped with collections of inert morphisms and active morphisms. According to [2] Definition 7.8, an ∞-operad over \(\Phi \) is a functor \(p : O^\otimes \to \Lambda(\Phi) \) of ∞-categories satisfying the following conditions:

1. For every inert morphism \(\phi : I \to J \) of \(\Lambda(\Phi) \) and every object \(x \in O^\otimes_I \), there is a p-coCartesian morphism \(x \to y \) in \(O^\otimes \) covering \(\phi \).
2. For any objects \(I, J \in \Lambda(\Phi) \), any objects \(x \in O^\otimes_I \) and \(y \in O^\otimes_J \), any morphism \(\phi : I \to J \) of \(\Lambda(\Phi) \), and any p-coCartesian morphisms \(\{ y \to y_j \mid j \in |J| \} \) lying over the inert morphisms \(\{ \rho_j : J \to \{ j \} \mid j \in |J| \} \), the induced map

\[
\text{Map}^\phi_{O^\otimes}(x, y) \to \prod_{j \in |J|} \text{Map}^{\rho_j}_{O^\otimes}(x, y_j)
\]

is an equivalence.
3. For any object \(I \in \Lambda(\Phi) \), the p-coCartesian morphisms lying over the inert morphisms \(\{ I \to \{ i \} \mid i \in |I| \} \) together induce an equivalence

\[
O^\otimes_I \to \prod_{i \in |I|} O^\otimes_{\{ i \}}.
\]

For an ∞-operad \(p : O^\otimes \to \Lambda(\Phi) \) over \(\Phi \), a morphism of \(O^\otimes \) is said to be inert if it is a p-coCartesian morphism over an inert morphism, and active if it covers an active morphism of \(\Lambda(\Phi) \). A morphism of ∞-operads over \(\Phi \) between \(O^\otimes \to \Lambda(\Phi) \) and \(P^\otimes \to \Lambda(\Phi) \) is a functor \(f : O^\otimes \to P^\otimes \) over \(\Lambda(\Phi) \) that preserves inert morphisms.

Example 3.1. Let \(F \) be the category of finite sets. By [2] Example 4.9.3, \(F \) is a perfect operator category. By [2] Example 6.5, \(\Lambda(F) \) is equivalent to the category \(\text{Fin}_* \) of pointed finite sets. By [2] Example 7.9, the notion of ∞-operads over \(F \) coincides with that of Lurie’s ∞-operads in [11] Chapter 2.

Example 3.2. Let \(O \) be the category of ordered finite sets. By [2] Example 4.9.2, \(O \) is a perfect operator category. By [2] Example 6.6, \(\Lambda(O) \) is equivalent to \(\Delta^\text{op} \). The notion of ∞-operads over \(O \) coincides with that of non-symmetric ∞-operads in [7] §3.

For a perfect operator category \(\Phi \), we denote by \(\text{Op}_\Phi \) the ∞-category of ∞-operads over \(\Phi \). By definition, a perfect operator category \(\Phi \) has a final object \(* \) (see [2] Definition 1.2.1 for the definition of operator categories). For an ∞-operad \(O^\otimes \to \Lambda(\Phi) \), we denote by \(O \) the fiber \(O^\otimes_* \) at \(* \in \Lambda(\Phi) \) and say that it is the ∞-category of colors of \(O^\otimes \).

We define a coCartesian \(O \)-monoidal ∞-category for an ∞-operad \(O^\otimes \) over \(\Phi \).
Definition 3.3. Let \(C^\otimes \to O^\otimes \) be a morphism of \(\infty \)-operads over \(\Phi \). We say that \(C \) is a coCartesian \(O \)-monoidal \(\infty \)-category if the functor \(C^\otimes \to O^\otimes \) is a coCartesian fibration. When it is clear from the context, we simply say that it is an \(O \)-monoidal \(\infty \)-category.

Let \(C^\otimes \to O^\otimes \) be a coCartesian \(O \)-monoidal \(\infty \)-category. For each color \(x \in O \), we write \(C_x \) for \(C^\otimes \) and call it the underlying \(\infty \)-category of \(C^\otimes \) over \(x \).

By the same proof of \([11]\) Proposition 2.1.2.12], we have the following lemma.

Lemma 3.4. Let \(p : O^\otimes \to \Lambda(\Phi) \) be an \(\infty \)-operad over \(\Phi \), and let \(f : C^\otimes \to O^\otimes \) be a coCartesian fibration. Then the following conditions are equivalent:

(a) The composite \(q : C^\otimes \xrightarrow{1} O^\otimes \xrightarrow{p} \Lambda(\Phi) \) is an \(\infty \)-operad over \(\Phi \).

(b) For every \(x \in O^\otimes \), the \(p \)-coCartesian morphisms \(\{ x \to x_i \mid i \in |I| \} \) covering the inert morphisms \(\{ I \to \{i\} \mid i \in |I| \} \) induce an equivalence \(C^\otimes_x \to \prod_{i \in |I|} C_{x_i} \) of \(\infty \)-categories.

A coCartesian \(O \)-monoidal \(\infty \)-category \(C \) is equipped with multiplications indexed by active morphisms in \(O^\otimes \) as in \([11]\) Remark 2.1.2.16]. Let \(x, y \in O^\otimes \) with \(p(x) = I \) and \(p(y) = 1 \). We have a unique active morphism \(a : I \to 1 \) in \(\Lambda(\Phi) \). Let \(\{ x \to x_i \mid i \in |I| \} \) be inert morphisms of \(O^\otimes \) covering the inert morphisms \(\{ I \to \{i\} \mid i \in |I| \} \). For every \(\theta \in \Map_{O^\otimes}(x, y) \), we have a multiplication map

\[\otimes_{\theta} : \prod_{i \in |I|} C_{x_i} \xrightarrow{\sim} C^\otimes_x \xrightarrow{\theta} C_y, \]

where \(\theta \) is a functor induced by \(\theta \) by using the coCartesian fibration \(C^\otimes \to O^\otimes \).

We denote by \(\Op_{\infty/O^\otimes}(\Phi/O^\otimes) \) the \(\infty \)-category of \(\infty \)-operads over \(O^\otimes \).

Definition 3.5. A lax \(O \)-monoidal functor between coCartesian \(O \)-monoidal \(\infty \)-categories is a morphism in \(\Op_{\infty/O^\otimes}(\Phi/O^\otimes) \). Furthermore, if it preserves coCartesian morphisms, then we say that it is a (strong) \(O \)-monoidal functor.

Definition 3.6. We define an \(\infty \)-category

\[\Mon^\text{lax}_O(Cat_{\infty}) \]

to be the subcategory of \(\text{coCart}^\text{lax}_{\Phi/O^\otimes}(\Cat_{\infty}) \) with coCartesian \(O \)-monoidal \(\infty \)-categories as objects and lax \(O \)-monoidal functors as morphisms.

We write

\[\Mon^\text{lax}_O(Cat_{\infty}) \]

for the wide subcategory of \(\Mon^\text{lax}_O(Cat_{\infty}) \) with (strong) \(O \)-monoidal functors as morphisms.

Let \(\mathcal{X} \) be an \(\infty \)-category with finite products. Let \(p : O^\otimes \to \Lambda(\Phi) \) be an \(\infty \)-operad over a perfect operator category \(\Phi \). We say that a functor \(F : O^\otimes \to \mathcal{X} \) is an \(O \)-monoid object of \(\mathcal{X} \) if the functor

\[F(x) \to \prod_{i \in |I|} F(x_i) \]

is an equivalence in \(\mathcal{X} \) for any \(x \in O^\otimes \), where \(p(x) = I \) and \(\{ x \to x_i \mid i \in |I| \} \) are \(p \)-coCartesian morphisms lying over inert morphisms \(\{ I \to \{i\} \mid i \in |I| \} \). We denote by

\[\Mon_O(\mathcal{X}) \]

the full subcategory of \(\text{Fun}(O^\otimes, \mathcal{X}) \) spanned by \(O \)-monoid objects.

To a coCartesian \(O \)-monoidal \(\infty \)-category \(C \), by the straightening functor of coCartesian fibrations \([11] \) §3.2], we can associate a functor \(C : O^\otimes \to \Cat_{\infty} \), which is an \(O \)-monoid object in \(\Cat_{\infty} \).

Furthermore, by Lemma 3.4 there is an equivalence

\[\Mon_O(\Cat_{\infty}) \simeq \Mon_\Phi(Cat_{\infty}) \]
of ∞-categories.

Let $C : \mathcal{O} \to \text{Cat}_{\infty}$ be an \mathcal{O}-monoid object corresponding to a coCartesian \mathcal{O}-monoidal ∞-category $C^\circ \to \mathcal{O}^\circ$. By the unstraightening functor of Cartesian fibrations [10 §3.2], we obtain a Cartesian fibration $(C^\circ)^{\vee} \to (\mathcal{O}^\circ)^{\text{op}}$. We call it a Cartesian \mathcal{O}-monoidal ∞-category.

We write C^{\vee} for $(C^\circ)^{\vee}$. For a color $x \in \mathcal{O}$, we write C^\vee_x for $(C^\circ)^{\vee}_x$ and call it the underlying ∞-category of $(C^\circ)^{\vee}$ over x. Note that there are equivalences

$$C_x \simeq C(x) \simeq C^\vee_x$$

for any $x \in \mathcal{O}$.

We say that a morphism of $(C^\circ)^{\vee}$ is inert if it is a Cartesian morphism over an inert morphism of $(\mathcal{O}^\circ)^{\text{op}}$.

Definition 3.7. Let $(C^\circ)^{\vee} \to (\mathcal{O}^\circ)^{\text{op}}$ and $(D^\circ)^{\vee} \to (\mathcal{O}^\circ)^{\text{op}}$ be Cartesian \mathcal{O}-monoidal ∞-categories. An oplax \mathcal{O}-monoidal functor from C^{\vee} to D^{\vee} is a functor $(C^\circ)^{\vee} \to (D^\circ)^{\vee}$ over $(\mathcal{O}^\circ)^{\text{op}}$ which preserves inert morphisms.

We define an ∞-category

$$\text{Mon}^\text{oplax}_\mathcal{O}(\text{Cat}_{\infty})$$

to be the subcategory of $\text{Cat}^\text{oplax}_{/\mathcal{O}}(\text{Cat}_{\infty})$ with Cartesian \mathcal{O}-monoidal ∞-categories as objects and oplax \mathcal{O}-monoidal functors as morphisms.

Let \mathcal{Z} be a replete subcategory of Cat_{∞}/Z. We assume that the inclusion functor $\mathcal{Z} \hookrightarrow \text{Cat}_{\infty}/Z$ creates finite products. As in [13 §3.1], we will introduce ∞-categories $\text{Mon}^\text{lax}_\mathcal{O}(\mathcal{Z})$ and $\text{Mon}^\text{oplax}_\mathcal{O}(\mathcal{Z})$ by generalizing $\text{Mon}^\text{lax}_\mathcal{O}(\text{Cat}_{\infty})$ and $\text{Mon}^\text{oplax}_\mathcal{O}(\text{Cat}_{\infty})$.

Definition 3.8. We define an ∞-category

$$\text{Mon}^\text{lax}_\mathcal{O}(\mathcal{Z})$$

to be a subcategory of $\text{coCart}^\text{lax}_{/\mathcal{O}}(\mathcal{Z})$ as follows. An object of $\text{Mon}^\text{lax}_\mathcal{O}(\mathcal{Z})$ is an object $p : C^\circ \to \mathcal{O}^\circ \times Z$ of $\text{coCart}^\text{lax}_{/\mathcal{O}}(\mathcal{Z})$ that satisfies the following condition: For each $x \in \mathcal{O}^\circ$, the Segal morphism

$$C^\circ_x \xrightarrow{\simeq} \prod_{\mathcal{I}} Z C^\circ_{x,i},$$

is an equivalence in \mathcal{Z}, where the right hand side is a product in Cat_{∞}/Z.

A morphism of $\text{Mon}^\text{lax}_\mathcal{O}(\mathcal{Z})$ between objects $p : C^\circ \to \mathcal{O}^\circ \times Z$ and $q : D^\circ \to \mathcal{O}^\circ \times Z$ is a morphism $f : C^\circ \to D^\circ$ in $\text{coCart}^\text{lax}_{/\mathcal{O}^\circ}(\mathcal{Z})$ that takes $p\mathcal{O}^\circ$-coCartesian morphisms over inert morphisms of \mathcal{O}° to $q\mathcal{O}^\circ$-coCartesian morphisms.

Dually, we define an ∞-category

$$\text{Mon}^\text{oplax}_\mathcal{O}(\mathcal{Z})$$

to be the subcategory of $\text{Cart}^\text{oplax}_{/\mathcal{O}}(\mathcal{Z})$ as follows. An object of $\text{Mon}^\text{oplax}_\mathcal{O}(\mathcal{Z})$ is an object $p : C^\circ \to (\mathcal{O}^\circ)^{\text{op}} \times Z$ of $\text{Cart}^\text{oplax}_{/\mathcal{O}}(\mathcal{Z})$ that satisfies the following condition: For each $y \in (\mathcal{O}^\circ)^{\text{op}}$, the Segal morphism

$$C^\circ_y \xrightarrow{\simeq} \prod_{\mathcal{I}} Z C^\circ_{y,i},$$

is an equivalence in \mathcal{Z}, where the right hand side is a product in Cat_{∞}/Z.

A morphism of $\text{Mon}^\text{oplax}_\mathcal{O}(\mathcal{Z})$ between objects $p : C^\circ \to (\mathcal{O}^\circ)^{\text{op}} \times Z$ and $q : D^\circ \to (\mathcal{O}^\circ)^{\text{op}} \times Z$ is a morphism $f : C^\circ \to D^\circ$ in $\text{Cart}^\text{oplax}_{/\mathcal{O}}(\mathcal{Z})$ that takes $p_{\mathcal{O}}\text{op}$-Cartesian morphisms over inert morphisms of $(\mathcal{O}^\circ)^{\text{op}}$ to $q_{\mathcal{O}}\text{op}$-Cartesian morphisms.
We will show that the underlying ∞-groupoids of \(\text{Mon}^{\text{hax}}_\infty(Z) \) and \(\text{Mon}^{\text{op lax}}_\infty(Z) \) are equivalent to that of \(\text{Mon}_\infty(Z) \).

Lemma 3.9. The inclusion functors induce equivalences

\[
\text{Mon}^{\text{hax}}_\infty(Z) \cong \text{Mon}_\infty(Z) \cong \text{Mon}^{\text{op lax}}_\infty(Z)
\]

of the underlying ∞-groupoids.

Proof. By Lemma 2.10, the inclusion functor \(\text{coCart}^{\text{hax}}_\Theta(Z) \rightarrow \text{coCart}_\Theta(Z) \) induces an equivalence \(\text{coCart}^{\text{hax}}_\Theta(Z) \cong \text{coCart}_\Theta(Z) \) of the underlying ∞-groupoids. This induces an equivalence between \((\text{Mon}^{\text{hax}}_\infty(Z))^\simeq \) and \((\text{Mon}_\infty(Z))^\simeq \). The other equivalence can be proved similarly by using Lemma 2.8.

In [13, Definition 4.18] we introduced the ∞-category \(\text{Duo}^{\text{bilax}}_\infty \) of duoidal ∞-categories and bilax monoidal functors. By [13, Theorem 4.20 and Remark 4.21], we showed that there are equivalences

\[
\text{Mon}^{\text{hax}}_\infty(\text{Mon}^{\text{op lax}}_\infty(\text{Cat}_\infty)) \cong \text{Duo}^{\text{bilax}}_\infty \cong \text{Mon}^{\text{op lax}}_\infty(\text{Mon}^{\text{hax}}_\infty(\text{Cat}_\infty))
\]

of ∞-categories. In the following of this subsection we will generalize these equivalences.

First, we prove the following lemma, which guarantees that we can iterate the constructions \(\text{Mon}^{\text{hax}}_\infty(-) \) and \(\text{Mon}^{\text{op lax}}_\infty(-) \).

Lemma 3.10. The ∞-category \(\text{Mon}^{\text{hax}}_\infty(Z) \) is a replete subcategory of \(\text{Cat}_\infty/\Theta \), and the inclusion functor \(\text{Mon}^{\text{hax}}_\infty(Z) \hookrightarrow \text{Cat}_\infty/\Theta \) creates finite products. Similarly, \(\text{Mon}^{\text{op lax}}_\infty(Z) \) is a replete subcategory of \(\text{Cat}_\infty/\Theta \), and the inclusion functor \(\text{Mon}^{\text{op lax}}_\infty(Z) \hookrightarrow \text{Cat}_\infty/\Theta \) creates finite products.

Proof. By Remark 2.9, we can easily see that \(\text{Mon}^{\text{hax}}_\infty(Z) \) and \(\text{Mon}^{\text{op lax}}_\infty(Z) \) are replete subcategories. Using Lemma 2.10, we can verify that the inclusion functors \(\text{Mon}^{\text{hax}}_\infty(Z) \hookrightarrow \text{Cat}_\infty/\Theta \) and \(\text{Mon}^{\text{op lax}}_\infty(Z) \hookrightarrow \text{Cat}_\infty/\Theta \) create finite products.

Next, we define mixed \((\mathcal{O}, \mathcal{P})\)-monoidal ∞-categories in \(Z \) and bilax \((\mathcal{O}, \mathcal{P})\)-monoidal functors between them.

Definition 3.11. Let \(\Theta \rightarrow \Lambda(\Phi) \) and \(\Phi \rightarrow \Lambda(\Psi) \) be ∞-operads over perfect operator categories over \(\Phi \) and \(\Psi \), respectively. A mixed \((\mathcal{O}, \mathcal{P})\)-monoidal ∞-category in \(Z \) is a mixed fibration \(p : \mathcal{C} \rightarrow \mathcal{O} \times (\mathcal{P}^{\text{op}} \times Z) \) over \((\mathcal{O}^{\text{op}}, (\mathcal{P}^{\text{op}})^{\text{op}})\) in \(Z \) that satisfies the following conditions:

1. For each \(x \in \mathcal{O} \), the Segal morphism

\[
\mathcal{C}_x \longrightarrow \prod_{i \in I} (\mathcal{P}^{\text{op}})^{\text{op}} \times Z \mathcal{C}_x^i
\]

is an equivalence in \(\text{Cat}^{\text{op lax}}_\Lambda(\Phi) \), where the right hand side is a product in the ∞-category \(\text{Cat}_\infty/(\mathcal{P}^{\text{op}})^{\text{op}} \).

2. For each \(y \in (\mathcal{P}^{\text{op}})^{\text{op}} \), the Segal morphism

\[
\mathcal{C}^y \longrightarrow \prod_{j \in J} (\mathcal{O} \times Z)^{\text{op}} \mathcal{C}^y_j
\]

is an equivalence in \(\text{coCart}^{\text{hax}}_\Theta(Z) \), where the right hand side is a product in \(\text{Cat}_\infty/(\mathcal{O} \times) \).

A bilax \((\mathcal{O}, \mathcal{P})\)-monoidal functor between mixed \((\mathcal{O}, \mathcal{P})\)-monoidal ∞-categories \(p : \mathcal{C} \rightarrow \mathcal{O} \times (\mathcal{P}^{\text{op}} \times Z) \) and \(q : \mathcal{D} \rightarrow \mathcal{O} \times (\mathcal{P}^{\text{op}})^{\text{op}} \times Z \) in \(Z \) is a bilax \((\mathcal{O}^{\text{op}}, (\mathcal{P}^{\text{op}})^{\text{op}})\)-morphism \(f \) that satisfies the following conditions:
(1) The functor \(f \) takes \(p_{\mathcal{O}^\otimes}\)-coCartesian morphisms over inert morphisms of \(\mathcal{O}^\otimes \) to \(q_{\mathcal{O}^\otimes}\)-coCartesian morphisms.

(2) The functor \(f \) takes \(p_{(\mathcal{P}^\otimes)^{op}}\)-Cartesian morphisms over inert morphisms of \((\mathcal{P}^\otimes)^{op} \) to \(q_{(\mathcal{P}^\otimes)^{op}}\)-Cartesian morphisms.

We define

\[
\text{Mon}^{\text{bilax}}_{\mathcal{O}, \mathcal{P}}(\mathcal{Z})
\]

to be the subcategory of \(\text{Mix}^{\text{bilax}}_{\mathcal{O}, (\mathcal{P}^\otimes)^{op}}(\mathcal{Z}) \) with mixed \((\mathcal{O}, \mathcal{P})\)-monoidal \(\infty \)-categories and bilax \((\mathcal{O}, \mathcal{P})\)-monoidal functors.

Theorem 3.12. There are equivalences

\[
\text{Mon}^{\text{bilax}}_{\mathcal{O}}(\text{Mon}^{\text{plax}}_{\mathcal{P}}(\mathcal{Z})) \simeq \text{Mon}^{\text{bilax}}_{\mathcal{O}, \mathcal{P}}(\mathcal{Z}) \simeq \text{Mon}^{\text{plax}}_{\mathcal{P}}(\text{Mon}^{\text{bilax}}_{\mathcal{O}}(\mathcal{Z}))
\]

of \(\infty \)-categories.

Proof. We will prove \(\text{Mon}^{\text{bilax}}_{\mathcal{O}, \mathcal{P}}(\mathcal{Z}) \simeq \text{Mon}^{\text{plax}}_{\mathcal{P}}(\text{Mon}^{\text{bilax}}_{\mathcal{O}}(\mathcal{Z})) \). The other equivalence can be proved similarly.

By Theorem 2.17, we have an equivalence

\[
\text{Mix}^{\text{bilax}}_{\mathcal{O}, (\mathcal{P}^\otimes)^{op}}(\mathcal{Z}) \cong \text{coCart}^{\text{plax}}_{\mathcal{O}^\otimes}(\text{Cart}^{\text{plax}}_{(\mathcal{P}^\otimes)^{op}}(\mathcal{Z})).
\]

Under this equivalence, we can easily verify that an \((\mathcal{O}, \mathcal{P})\)-monoidal \(\infty \)-category in \(\mathcal{Z} \) corresponds to an object of \(\text{Mon}^{\text{plax}}_{\mathcal{P}}(\text{Mon}^{\text{bilax}}_{\mathcal{O}}(\mathcal{Z})) \), and vice versa, by using the same argument in the proof of [14, Proposition 4.13]. Furthermore, we see that a bilax \((\mathcal{O}, \mathcal{P})\)-monoidal functor between \((\mathcal{O}, \mathcal{P})\)-monoidal \(\infty \)-categories corresponds to a morphism of \(\text{Mon}^{\text{plax}}_{\mathcal{P}}(\text{Mon}^{\text{bilax}}_{\mathcal{O}}(\mathcal{Z})) \) by using the argument in the proof of [14, Theorem 4.20]. \(\square \)

3.2. Higher monoidal \(\infty \)-categories

In this subsection we generalize the notion of duoidal \(\infty \)-categories to that of \(\mathcal{O} \)-monoidal \(\infty \)-categories, where \(\mathcal{O}^\otimes \) is a finite sequence of \(\infty \)-operads over perfect operator categories.

Let \(\mathcal{O}^\otimes = (\mathcal{O}_1^\otimes, \ldots, \mathcal{O}_n^\otimes) \) be a finite sequence of \(\infty \)-operads over perfect operator categories \(\Phi_1, \ldots, \Phi_n \), respectively. We set \(\mathcal{O} = (\mathcal{O}_1, \ldots, \mathcal{O}_n) \).

First, we define an \(\infty \)-category of coCartesian \(\mathcal{O} \)-monoidal \(\infty \)-categories and lax \(\mathcal{O} \)-monoidal functors by induction on \(l(\mathcal{O}) \).

Definition 3.13. When \(l(\mathcal{O}) = 0 \), we set \(\text{Mon}^{\text{lax}}_{\mathcal{O}}(\text{Cat}_\infty) = \text{Cat}_\infty \). When \(l(\mathcal{O}) > 0 \), we define

\[
\text{Mon}^{\text{lax}}_{\mathcal{O}}(\text{Cat}_\infty) = \text{Mon}^{\text{lax}}_{\mathcal{O}_{\geq 2}}(\text{Mon}^{\text{lax}}_{\mathcal{O}_1}(\text{Cat}_\infty)).
\]

For the convenience of readers, we explicitly describe objects and morphisms of \(\text{Mon}^{\text{lax}}_{\mathcal{O}}(\text{Cat}_\infty) \).

Definition 3.14. Let \(p : \mathcal{C}^\otimes \to \prod \mathcal{O}^\otimes \) be a functor of \(\infty \)-categories.

When \(l(\mathcal{O}) = 0 \), we say that any functor \(p : \mathcal{C}^\otimes \to [0] \) is a coCartesian \(\mathcal{O} \)-monoidal \(\infty \)-category, where \([0]\) is a final object of \(\text{Cat}_\infty \). A lax \(\mathcal{O} \)-monoidal functor between coCartesian \(\mathcal{O} \)-monoidal \(\infty \)-category is a morphism in \(\text{Cat}_\infty/\{0\} \simeq \text{Cat}_\infty \).

When \(l(\mathcal{O}) > 0 \), we say that \(p \) is a coCartesian \(\mathcal{O} \)-monoidal \(\infty \)-category if it satisfies the following conditions:

1. The composite map \(p_{\mathcal{O}_i^\otimes} : \mathcal{C}^\otimes \to \mathcal{O}_i^\otimes \) is a coCartesian fibration, and \(p \) takes \(p_{\mathcal{O}_i^\otimes} \)-coCartesian morphisms to \(p_{\mathcal{O}_i^\otimes} \)-coCartesian morphisms.
2. For each \(x \in \mathcal{O}_i^\otimes \), the restriction \(\mathcal{C}^\otimes_x \to \prod \mathcal{O}^\otimes_{\geq 2} \) is a coCartesian \(\mathcal{O}_{\geq 2} \)-monoidal \(\infty \)-category.
3. For each morphism \(x \to x' \) in \(\mathcal{O}_i^\otimes \), the induced functor \(\mathcal{C}^\otimes_x \to \mathcal{C}^\otimes_{x'} \) over \(\prod \mathcal{O}^\otimes_{\geq 2} \) is a lax \(\mathcal{O}_{\geq 2} \)-monoidal functor.
(4) For each $x \in O_1^\otimes$, the Segal morphism

$$C^\otimes_x \xrightarrow{\simeq} \prod_{i \in |I|} \prod_{O_2^\otimes} C^\otimes_{x_i},$$

is an equivalence of $O_{\geq 2}$-monoidal ∞-categories, where the right hand side is a product in $\text{Cat}_{\infty}/\prod_{O_2^\otimes}$.

A lax O-monoidal functor between coCartesian O-monoidal ∞-categories $p : C^\otimes \to \prod O^\otimes$ and $q : D^\otimes \to \prod O^\otimes$ is a functor $h : C^\otimes \to D^\otimes$ over $\prod O^\otimes$ that satisfies the following conditions:

1. The functor h takes $p_{O_1^\otimes}$-coCartesian morphisms over inert morphisms of O_1^\otimes to $q_{O_1^\otimes}$-coCartesian morphisms.
2. For each $x \in O_1^\otimes$, the induced functor $h_x : C^\otimes_x \to D^\otimes_x$ over $\prod O_{\geq 2}^\otimes$ is a lax $O_{\geq 2}$-monoidal functor.

Unwinding the definition, we obtain the following theorem.

Theorem 3.15. The ∞-category $\text{Mon}_O^{\text{lax}}(\text{Cat}_{\infty})$ is a subcategory of $\text{Cat}_{\infty}/\prod O^\otimes$ with coCartesian O-monoidal ∞-categories as objects and lax O-monoidal functors as morphisms.

Example 3.16. Let $F : C^\otimes \to \Lambda(F)$ be a symmetric monoidal ∞-category. We obtain a coCartesian O-monoidal ∞-category for any finite sequence O of ∞-operads over F by taking pullback of p along the map $\prod O^\otimes \to \prod \Lambda(F) \to \Lambda(F)$, where the second map is a smash product functor in \prod Notation 2.2.5.9.

Example 3.17. Let $O^\otimes = (O_1^\otimes, \ldots, O_n^\otimes)$ be a finite sequence of ∞-operads over F. We denote by $\otimes O^\otimes$ the Boardman-Vogt tensor product $O_1^\otimes \otimes \cdots \otimes O_n^\otimes$. Let $p : C^\otimes \to \otimes O^\otimes$ be an $\otimes O^\otimes$-monoidal ∞-category. We obtain a coCartesian O-monoidal ∞-category by taking pullback of p along the map $\prod O^\otimes \to \otimes O^\otimes$.

Example 3.18. Let E_k^\otimes be the little k-cubes operad. Suppose that $C^\otimes \to E_k^\otimes_{m+n}$ is a presentable E_{m+n}-monoidal ∞-category and that A is an E_{m+n}-algebra object of C. Then there exists a coCartesian (E_m, E_n)-monoidal ∞-category $D^\otimes \to E_k^\otimes_m \times E_k^\otimes_n$ such that the underlying ∞-category $D^\otimes_{(1,1)}$ is equivalent to the ∞-category $\text{Mod}_{A}^{E_k}(C)$ of E_k-A-modules. See [15] for more details.

Dually, we define an ∞-category of Cartesian O-monoidal ∞-categories and oplax O-monoidal functors.

Definition 3.19. When $l(O) = 0$, we set $\text{Mon}_O^{\text{oplax}}(\text{Cat}_{\infty}) = \text{Cat}_{\infty}$. When $l(O) > 0$, we define

$$\text{Mon}_O^{\text{oplax}}(\text{Cat}_{\infty}) = \text{Mon}_O^{\text{oplax}}(\text{Mon}_O^{\text{oplax}}(\text{Cat}_{\infty})).$$

We call it the ∞-category of Cartesian O-monoidal ∞-categories and oplax O-monoidal functors.

For finite sequences O^\otimes and P^\otimes of ∞-operads over perfect operator categories, we also define an ∞-category of (O, P)-monoidal ∞-categories and bilax (O, P)-monoidal functors.

Definition 3.20. We define

$$\text{Mon}_{(O, P)}^{\text{bilax}}(\text{Cat}_{\infty}) = \text{Mon}_O^{\text{lax}}(\text{Mon}_P^{\text{oplax}}(\text{Cat}_{\infty})).$$

Note that there is an equivalence $\text{Mon}_{(O, P)}^{\text{bilax}}(\text{Cat}_{\infty}) \simeq \text{Mon}_P^{\text{oplax}}(\text{Mon}_O^{\text{oplax}}(\text{Cat}_{\infty}))$ by Theorem 3.12.

Now, we show that mixed higher monoidal ∞-categories can canonically be identified with coCartesian higher monoidal ∞-categories or Cartesian higher monoidal ∞-categories.
Theorem 3.21. There are natural equivalences
\[\text{Mon}^\text{lax}_{P_{\text{rev}},O}(\text{Cat}_\infty)^\simeq \simeq \text{Mon}^\text{bilax}_{(O,P)}(\text{Cat}_\infty)^\simeq \simeq \text{Mon}^\text{oplax}_{O_{\text{rev}},P}(\text{Cat}_\infty)^\simeq \]
of the underlying ∞-groupoids.

Proof. For an ∞-operad Q^\otimes over a perfect operator category, it suffices to show that the equivalence in Theorem 2.26 restricts to natural equivalences
\[\text{Mon}^\text{bilax}_{(Q,O),P}(\text{Cat}_\infty)^\simeq \simeq \text{Mon}_Q(\text{Mon}^\text{bilax}_{(O,P)}(\text{Cat}_\infty))^\simeq \simeq \text{Mon}^\text{bilax}_{(Q,O),P}(\text{Cat}_\infty)^\simeq. \]
By Lemma 3.19 we have equivalences
\[\text{Mon}_Q(\text{Mon}^\text{bilax}_{(O,P)}(\text{Cat}_\infty))^\simeq \simeq \text{Mon}^\text{lax}_Q(\text{Mon}^\text{bilax}_{(O,P)}(\text{Cat}_\infty))^\simeq \simeq \text{Mon}^\text{bilax}_{(Q,O),P}(\text{Cat}_\infty)^\simeq. \]
The other equivalence can be proved similarly. □

Corollary 3.22. The equivalence in Corollary 2.26 restricts to a natural equivalence
\[\text{Mon}^\text{lax}_O(\text{Cat}_\infty)^\simeq \simeq \text{Mon}^\text{oplax}_{O_{\text{rev}}}(\text{Cat}_\infty)^\simeq \]
of the underlying ∞-groupoids.

By Corollary 3.22 a coCartesian O-monoidal ∞-category canonically determines a Cartesian O_{rev}-monoidal ∞-category, and vice versa, by taking dual fibrations.

Next, we give a fiberwise criterion on bilax monoidal functors.

Proposition 3.23. Let $f: C^\otimes \to D^\otimes$ be a bilax $(O^\otimes, (P^\otimes)^{\text{op}})$-morphism between (O, P)-monoidal ∞-categories. Then f is a bilax (O, P)-monoidal functor if and only if the following two conditions hold:

(a) $f_{(s',t)}$ is a lax O_1-monoidal functor for each $(s', t) \in \prod O_{s,t}^\otimes \times \prod (P^\otimes)^{\text{op}}$.

(b) $f_{(s',t)}$ is an oplax P_1-monoidal functor for each $(s, t') \in \prod O^\otimes \times \prod (P_{s,t'})^{\text{op}}$.

Proof. It is clear that if f is a bilax (O, P)-monoidal functor, then (a) and (b) holds. Thus, it suffices to show that if f satisfies (a) and (b), then f is a bilax (O, P)-monoidal functor.

We may assume that $l(O) + l(P) > 1$. We suppose that $l(O) > 0$. The case $l(P) > 0$ can be proved similarly.

We let $p_1: C^\otimes \to O_1^\otimes$ and $q_1: D^\otimes \to O_1^\otimes$ be the projection. Then f is bilax (O, P)-monoidal if

(1) f takes p_1-coCartesian morphisms over inert morphisms of $O_{s,t}^\otimes$ to q_1-coCartesian morphisms, and

(2) $f_x: C_x^\otimes \to D_x^\otimes$ is a bilax $(O_{\geq 2}, P)$-monoidal functor for every $x \in O_1^\otimes$. By Lemma 3.19, (1) is equivalent to the condition that f_y is lax O_1-monoidal for every $y \in \prod O_{s,t}^\otimes \times (P_{s,t'})^{\text{op}}$.

Thus, by induction on $l(O)$, f is bilax (O, P)-monoidal if f satisfies (a) and (b). □

4. ADJoints of (op)lax monoidal functors

In this section we study adjoints of (op)lax monoidal functors between higher monoidal ∞-categories. For this purpose, we study adjoints of (op)lax morphisms between S-(co)Cartesian fibrations in [1]. In [12] we prove the main theorem (Theorem 4.7) which says that the ∞-category of coCartesian O-monoidal ∞-categories and right adjoint lax O-monoidal functors is equivalent to the opposite of the ∞-category of Cartesian O_{rev}-monoidal ∞-categories and left adjoint oplax O_{rev}-monoidal functors.
4.1. Adjoints of (op)lax morphisms between S-(co)Cartesian fibrations. In this subsection we study adjoints of (op)lax morphisms between S-(co)Cartesian fibrations. We show that the ∞-category of coCartesian S-fibrations and right adjoint lax S-morphisms is equivalent to the opposite of the ∞-category of Cartesian S_{rev}^{op}-fibrations and left adjoint oplax S_{rev}^{op}-morphisms.

Definition 4.1. Let $S = (S_1, \ldots , S_n)$ be a finite sequence of ∞-categories. We write

$$\coCart_{/S}^{\text{lax}, R}(\Cat_{\infty})$$

for the wide subcategory of $\coCart_{/S}^{\text{lax}}(\Cat_{\infty})$ spanned by those lax S-morphisms $f : X \to Y$ over $\prod S$ that satisfy the following condition: For each $s \in \prod S$, the restriction $f_s : X_s \to Y_s$ is a right adjoint functor.

Dually, we write

$$\Cart_{/S}^{\text{oplax}, L}(\Cat_{\infty})$$

for the wide subcategory of $\Cart_{/S}^{\text{oplax}}(\Cat_{\infty})$ spanned by those oplax S-morphisms $f : X \to Y$ over $\prod S$ that satisfy the following condition: For each $s \in \prod S$, the restriction $f_s : X_s \to Y_s$ is a left adjoint functor.

The goal of this subsection is to prove the following theorem.

Theorem 4.2. There is a natural equivalence

$$\coCart_{/S}^{\text{lax}, R}(\Cat_{\infty}) \simeq \Cart_{/S_{\text{rev}}^{\text{op}}}^{\text{oplax}, L}(\Cat_{\infty})^{\text{op}}$$

of ∞-categories, which is given on objects by taking dual fibrations and on morphisms by taking adjoints fiberwise.

We recall that a biCartesian fibration is both a Cartesian fibration and a coCartesian fibration. See [11, §4.7.4] for the relationship between biCartesian fibrations and adjoint functors. In particular, if a coCartesian fibration $p : X \to S$ in which the induced functor $X_s \to X_{s'}$ admits a right adjoint for each morphism $s \to s'$ in S, then p is a biCartesian morphism. Dually, if a Cartesian fibration $q : Y \to T$ in which the induced functor $Y_t \to Y_{t'}$ admits a left adjoint for each morphism $t' \to t$ in T, then q is a biCartesian fibration.

Notation 4.3. We write

$$\bCart_{/U}^{\text{bilax}}(\Cat_{\infty})$$

for the full subcategory of \Cat_{∞}/U spanned by biCartesian fibrations over U.

Lemma 4.4. There are natural equivalences

$$\Cart_{/U}^{\text{oplax}}(\coCart_{/S}^{\text{lax}, R}(\Cat_{\infty})) \simeq \coCart_{/U}^{\text{lax}}(\bCart_{/U}^{\text{bilax}}(\Cat_{\infty})),$$

$$\coCart_{/U}^{\text{lax}}(\Cart_{/S}^{\text{oplax}, L}(\Cat_{\infty})) \simeq \Cart_{/S}^{\text{oplax}}(\bCart_{/U}^{\text{bilax}}(\Cat_{\infty}))$$

of ∞-categories.

Proof. The first equivalence follows from the fact that the both sides are full subcategories of $\Mix_{/S \times U}(\Cat_{\infty})$ spanned by those mixed fibrations $p : X \to \prod S \times U$ such that $p_s : X_s \to U$ is a coCartesian fibration for each $s \in \prod S$. The second equivalence can be proved similarly. □

Proof of Theorem 4.2. First, we shall show that there exists a natural equivalence

$$\Map_{\Cat_{\infty}}(U, \coCart_{/S}^{\text{lax}, R}(\Cat_{\infty})) \simeq \Map_{\Cat_{\infty}}(U, \Cart_{/S_{\text{rev}}^{\text{op}}}^{\text{oplax}, L}(\Cat_{\infty})^{\text{op}})$$

of ∞-groupoids for any ∞-category U.

By Lemmas 2.7 and 2.8 we have natural equivalences
\[\text{Map}_{\text{Cat}_{\infty}}(U, \text{coCart}^{\text{lax,R}}_{/S} (\text{Cat}_{\infty})) \simeq \text{Cart}_{/U}^{\text{lax,R}}(\text{coCart}^{\text{lax,R}}_{/S} (\text{Cat}_{\infty}))^{\ast}\]
\[\simeq \text{Cart}_{/U}^{\text{op}}(\text{coCart}^{\text{lax,R}}_{/S} (\text{Cat}_{\infty}))^{\ast}\]

Similarly, by Lemmas 2.2 and 2.3 we have natural equivalences
\[\text{Map}_{\text{Cat}_{\infty}}(U, \text{Cart}^{\text{op,plax,L}}_{/S_{\text{rev}}} (\text{Cat}_{\infty})^{\ast}) \simeq \text{Map}_{\text{Cat}_{\infty}}(U^{\ast}, \text{Cart}^{\text{op,plax,L}}_{/S_{\text{rev}}} (\text{Cat}_{\infty}^{\ast}))\]
\[\simeq \text{coCart}_{/U}^{\text{op}}(\text{Cart}^{\text{op,plax,L}}_{/S_{\text{rev}}} (\text{Cat}_{\infty}))^{\ast}\]
\[\simeq \text{coCart}_{/U}^{\text{lax}}(\text{Cart}^{\text{op,plax,L}}_{/S_{\text{rev}}} (\text{Cat}_{\infty}))^{\ast}\]

By Lemma 4.4 and Corollary 2.28 we obtain the desired equivalence.

By the Yoneda Lemma, we obtain an equivalence between the \(\infty\)-categories \(\text{coCart}^{\text{lax,R}}_{/S} (\text{Cat}_{\infty})\) and \(\text{Cart}^{\text{op,plax,L}}_{/S_{\text{rev}}} (\text{Cat}_{\infty})^{\ast}\). We can verify that this equivalence is given on objects by taking dual fibrations and on morphisms by taking adjoints fiberwise. \(\square\)

4.2. Monoidal adjoints of higher monoidal \(\infty\)-categories. Let \(O^{\otimes} = (O_1^{\otimes}, \ldots, O_n^{\otimes})\) be a finite sequence of \(\infty\)-operads over perfect operator categories. In this subsection we show that the \(\infty\)-category of \(\text{coCartesian} \ O\text{-monoidal} \ \infty\text{-categories}\) and right adjoint lax \(O\text{-monoidal}\) functors is equivalent to the opposite of the \(\infty\)-category of Cartesian \(O_{\text{rev}}\text{-monoidal} \ \infty\text{-categories}\) and left adjoint oplax \(O_{\text{rev}}\text{-monoidal}\) functors (Theorem 4.7).

Definition 4.5. We define an \(\infty\)-category
\[\text{Mon}_{O}^{\text{lax,R}}(\text{Cat}_{\infty})\]
to be the wide subcategory of \(\text{Mon}_{O}^{\text{lax}}(\text{Cat}_{\infty})\) spanned by those lax \(O\text{-monoidal}\) functors \(f : C^{\otimes} \to D^{\otimes}\) that satisfy the following condition: For each \(x \in \prod O\), the restriction \(f_x : C_x \to D_x\) is a right adjoint functor.

Dually, we define an \(\infty\)-category
\[\text{Mon}_{O}^{\text{op,plax,L}}(\text{Cat}_{\infty})\]
to be the wide subcategory of \(\text{Mon}_{O}^{\text{op,plax}}(\text{Cat}_{\infty})\) spanned by those oplax \(O\text{-monoidal}\) functors \(f : C^{\otimes} \to D^{\otimes}\) that satisfy the following condition: For each \(x \in \prod O^{\ast}\), the restriction \(f_x : C_x \to D_x\) is a left adjoint functor.

Remark 4.6. Notice that \(\text{Mon}_{O}^{\text{lax,R}}(\text{Cat}_{\infty})\) is a subcategory of \(\text{coCart}_{/O_{\otimes}}^{\text{lax,R}}(\text{Cat}_{\infty})\). This follows from the fact that the restriction \(f_x : C_x^{\otimes} \to D_x^{\otimes}\) for \(x = (x_1, \ldots, x_n) \in \prod O^{\otimes}\) with \(p(x_i) = I_i\) \((1 \leq i \leq n)\) is equivalent to a product of \(f_x\) for \(x = (x_{1,i}, \ldots, x_{n,i}) \in \prod O\) over \(i_1 \in |I_1|, \ldots, i_n \in |I_n|\).

Similarly, \(\text{Mon}_{O}^{\text{op,plax,L}}(\text{Cat}_{\infty})\) is a subcategory of \(\text{Cart}_{/(O_{\otimes})^{\ast}}^{\text{op,plax,L}}(\text{Cat}_{\infty})\).

The following is the main theorem of this paper.

Theorem 4.7. The equivalence of Theorem 4.2 restricts to an equivalence
\[\text{Mon}_{O}^{\text{lax,R}}(\text{Cat}_{\infty}) \simeq \text{Mon}_{O_{\text{rev}}}^{\text{op,plax,L}}(\text{Cat}_{\infty})^{\ast}\]
of \(\infty\)-categories, which is given on objects by taking dual fibrations and on morphisms by taking adjoints fiberwise.

Corollary 4.8. The left adjoint of a lax \(O\text{-monoidal}\) functor between \(\text{coCartesian} \ O\text{-monoidal} \ \infty\text{-categories}\) is canonically an oplax \(O_{\text{rev}}\text{-monoidal}\) functor between the corresponding Cartesian \(O_{\text{rev}}\text{-monoidal} \ \infty\text{-categories}\), and vice versa.
Proof of Theorem 4.7. We will prove the theorem by induction on \(l(\mathbf{O}) \). When \(l(\mathbf{O}) = 0 \), this follows from Theorem 4.2 for \(\mathbf{S} = \emptyset \).

Suppose \(l(\mathbf{O}) > 0 \). First, we note that an equivalence

\[
\text{coCart}^{\text{lax}, R}_{/\mathbf{S}}(\text{Cat}_{\infty}) \cong \text{Cart}^{\text{oplax}, L}_{/\mathbf{S}_{\text{rev}}} \cong \text{Cart}^{\text{oplax}, L}_{/\mathbf{S}_{\text{rev}}} \cong \text{Cart}^{\text{oplax}, L}_{/\mathbf{S}_{\text{rev}}}
\]

induced by the equivalence in Theorem 4.2 restricts to an equivalence

\[
\text{Mon}^{\text{lax}, R}_{/\mathbf{O}}(\text{Cat}_{\infty}) \cong \text{Mon}^{\text{oplax}, L}_{/\mathbf{O}}(\text{Cat}_{\infty}) \cong \text{Mon}^{\text{oplax}, L}_{/\mathbf{O}}(\text{Cat}_{\infty}) \cong \text{Mon}^{\text{oplax}, L}_{/\mathbf{O}}(\text{Cat}_{\infty})
\]

of \(\infty \)-groupoids.

Thus, by symmetry, it suffices to show the following claim: Suppose that \(f : \mathcal{C}^{\otimes} \to \mathcal{D}^{\otimes} \) is a lax \(\mathbf{O} \)-monoidal functor between coCartesian \(\mathbf{O} \)-monoidal \(\infty \)-categories. We assume that \(f_x \) is a right adjoint functor for each \(x \in \prod \mathbf{O} \). Let \(f : (\mathcal{D}^{\otimes})^{\vee} \to (\mathcal{C}^{\otimes})^{\vee} \) be a corresponding oplax \(\mathbf{O}_{\text{rev}} \) morphism under the equivalence in Theorem 4.2.

By Proposition 4.22 it suffices to show that \(g_x : (\mathcal{D}^{\otimes})^{\vee}_x \to (\mathcal{C}^{\otimes})^{\vee}_x \) is an oplax \(\mathbf{O}_i \)-monoidal functor for each \(x \in \prod \mathbf{O} \). Let \(x \to x' \) be an inert morphism of \(\mathbf{O}_i \). Since \(f \) is a lax \(\mathbf{O} \)-monoidal functor, \(f_x : \mathcal{C}^{\otimes}_x \to \mathcal{D}^{\otimes}_x \) is a lax \(\mathbf{O}_i \)-monoidal functor. This implies that there is a commutative diagram

\[
\begin{array}{ccc}
\mathcal{C}^{\otimes}_{(x,x)} & \xrightarrow{f_{(x,x)}} & \mathcal{D}^{\otimes}_{(x,x)} \\
\downarrow & & \downarrow \\
\mathcal{C}^{\otimes}_{(x,x')} & \xrightarrow{f_{(x,x')}} & \mathcal{D}^{\otimes}_{(x,x')}
\end{array}
\]

Since the vertical arrows are projections, the above commutative diagram is left adjointable. Hence we obtain a commutative diagram

\[
\begin{array}{ccc}
(\mathcal{C}^{\otimes})^{\vee}_{(x,x)} & \xleftarrow{g_{(x,x)}} & (\mathcal{D}^{\otimes})^{\vee}_{(x,x)} \\
\downarrow & & \downarrow \\
(\mathcal{C}^{\otimes})^{\vee}_{(x,x')} & \xleftarrow{g_{(x,x')}} & (\mathcal{D}^{\otimes})^{\vee}_{(x,x')}
\end{array}
\]

This means that \(g_x \) is an oplax \(\mathbf{O}_i \)-monoidal functor. \(\square \)

References

[1] M. Aguiar and S. Mahajan, Monoidal functors, species and Hopf algebras, CRM Monograph Series, 29. American Mathematical Society, Providence, RI, 2010.
[2] C. Barwick, From operator categories to higher operads, Geom. Topol. 22 (2018), no. 4, 1893–1959.
[3] M. Batanin and M. Markl, Centers and homotopy centers in enriched monoidal categories, Adv. Math. 230 (2012), no. 4–6, 1811–1858.
[4] G. Böhm, Y. Chen, and L. Zhang, On Hopf monoids in duoidal categories, J. Algebra 394 (2013), 139–172.
[5] G. Böhm, S. Lack, Hopf comonads on naturally Frobenius map-monoidales, J. Pure Appl. Algebra 220 (2016), no. 6, 2177–2213.
[6] T. Booker and R. Street, Tannaka duality and convolution for duoidal categories, Theory Appl. Categ. 28 (2013), No. 6, 166–205.
[7] D. Gepner and R. Haugseng, Enriched \(\infty \)-categories via non-symmetric \(\infty \)-operads. Adv. Math. 279 (2015), 575–716.
[8] R. Haugseng, A fibrational mate correspondence for \(\infty \)-categories, preprint, arXiv:2011.08808.
[9] F. Hebestreit, S. Linskens, and J. Nuiten, Orthofibrations and monoidal adjunctions, preprint, arXiv:2011.11042.
[10] J. Lurie, Higher topos theory, Annals of Mathematics Studies, 170. Princeton University Press, Princeton, NJ, 2009.
[11] J. Lurie, Higher algebra, available at http://www.math.harvard.edu/~lurie/.
[12] R. Street, Monoidal categories in, and linking, geometry and algebra, Bull. Belg. Math. Soc. Simon Stevin 19 (2012), no. 5, 769–821.
[13] T. Torii, On Quasi-Categories of Comodules and Landweber Exactness, Bousfield Classes and Ohkawa’s Theorem, Springer Proceedings in Mathematics & Statistics, vol 309, 2020, 325–380, Springer, Singapore.
[14] T. Torii, On duoidal ∞-categories, preprint, [arXiv:2106.14121](https://arxiv.org/abs/2106.14121).
[15] T. Torii, Examples of duoidal and higher monoidal ∞-categories, in preparation.

Department of Mathematics, Okayama University, Okayama 700–8530, Japan

Email address: torii@math.okayama-u.ac.jp