Evolutionary Optimization in Code-Based Test Compression
Ilia Polian, Alejandro Czutro, Bernd Becker

To cite this version:
Ilia Polian, Alejandro Czutro, Bernd Becker. Evolutionary Optimization in Code-Based Test Compression. DATE’05, Mar 2005, Munich, Germany. pp.1124-1129. hal-00181283

HAL Id: hal-00181283
https://hal.archives-ouvertes.fr/hal-00181283
Submitted on 23 Oct 2007

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Evolutionary Optimization in Code-Based Test Compression

Ilia Polian Alejandro Czutro Bernd Becker
Albert-Ludwigs-University
Georges-Köhler-Allee 51
79110 Freiburg i. Br., Germany
{polian|aczutro|becker}@informatik.uni-freiburg.de

Abstract

We provide a general formulation for the code-based test compression problem with fixed-length input blocks and propose a solution approach based on Evolutionary Algorithms. In contrast to existing code-based methods, we allow unspecified values in matching vectors, which allows encoding of arbitrary test sets using a relatively small number of codewords. Experimental results for both stuck-at and path delay fault test sets for ISCAS circuits demonstrate an improvement compared to existing techniques.

Keywords: Test compression, code-based compression, evolutionary algorithms

1 Introduction

Test data compression becomes increasingly popular for distributing test complexity between automatic test equipment and on-chip structures. By transferring compressed information from the tester and decompressing it on-chip, the requirements on IC’s pin throughput can be significantly reduced while on-chip hardware cost is kept in check. Most test compression techniques proposed so far are based either on codes or on reseeding.

Code-based approaches assign a codeword $C(v)$ to a sequence of test data v (an input block). For instance, v could be 10011101, and $C(v)$ could be 110. Then, if 110 is transmitted from the tester, an on-chip decoder would generate the sequence 10011101 and apply it to the circuit under test. Schemes based on run-length codes [1], selective Huffman codes [2], Golomb codes [3], frequency directed codes [4], VIHC codes [5], LZ77 [6], mutation codes [7], packet-based codes [8] and non-linear combinational codes [9] have been proposed.

Reseeding is a technique that is applied to a pseudorandom pattern generator in order to omit those parts of its sequence that are not needed for testing. If the control information (on which patterns to omit) is fed by the tester, reseeding becomes a test compression method. Pseudorandom pattern generators used in reseeding architectures so far include LFSRs [10, 11], multiple-polynomial LFSRs [12, 13], twisted-ring counters [14] and folding counters [15].

Further test compression techniques include Embedded Deterministic Test [16], which is based on a ring generator unfolding low-bandwidth test data from the tester and feeding them into the scan chains of the circuit under test. It has been proposed to use a reconfigurable switch [17] or a reconfigurable interconnection network [18] for this purpose. A test compression architecture based on reconfiguring some of the scan flip flops into pseudo-random pattern generators is presented in [19].

In general, reseeding-based solutions embed test vectors into a pseudo-random sequence, which makes them attractive for testing combinational circuits. However, their applicability to sequential (non-scan), delay or functional test sets is limited. Embedded deterministic test is also designed for full-scan-based circuits. In contrast, code-based compression techniques precisely reproduce the original encoded test set (possibly specifying the don’t-care bits); they do not reorder the test set or add new vectors to it. Hence, code-based methods have applications for which they are inherently better suited than other compression techniques, irrespective of the achieved compression rates.

Recently, Tehranipour et al. [20] have proposed a fixed-length input block compression technique based on exactly nine codes (9C compression). The codes are defined with respect to an even number K which is the length of an input block. For instance, let K be 6. Then, the test set is partitioned into 6-bit long pieces, i.e. input blocks. Every input block is mapped to one of the following nine matching vectors (MVs): $v^{(1)} = 000 000; v^{(2)} = 111 111; v^{(3)} = 000 111; v^{(4)} = 111 000; v^{(5)} = 111 UUU; v^{(6)} = UUU 111; v^{(7)} = 000 UUU; v^{(8)} = UUU 000; v^{(9)} = UUU UUU$. Every vector $v^{(i)}$ is assigned a codeword $C(v^{(i)})$. For example, if 111000 appears in the test sequence, it will be encoded by $C(v^{(4)})$.

The symbol U denotes an unspecified value. For instance, 111100 and 111011 both match $v^{(3)}$ (as do other 6 input blocks). In order to distinguish between these 8 possible input blocks, the fill values for the U positions are spec-
Suppose that the circuit has \(2^n \) inputs and the number of test patterns is \(T \). Let \(t_{p(i)} \) denote the \(i \)-th test pattern, and let \(t_{j}^{(i)} \) denote the \(j \)-th bit position of the \(i \)-th test pattern \(\left(t_{j}^{(i)} \in \{ 0, 1, X \}; 1 \leq i \leq T; 1 \leq j \leq n \right) \). Note that \(X \) denotes a don’t-care value that can be set to 0 or 1 without violating the fault coverage targets. The overall number of bit positions in a test set is \(T \cdot n \). We consider the complete test set as one large string of information \(t_1 t_2 \ldots t_{T_n} := t_{p(1)}^{(1)} t_{p(2)}^{(1)} \ldots t_{p(T)}^{(1)} \ldots t_{p(T)}^{(T)} \). Our target is to efficiently encode this string of information.

Let \(K \) be a positive integer number. (Note that in contrast to 9C compression it is not required to be odd.) The test set string \(t_1 \ldots t_{T_n} \) is partitioned into fixed-length input blocks of length \(K \), as formalized in the next definition. \(K \) should be a divisor of the length \(T_n \) of the test set string; if that is not the case, the test set string is filled up by adding \(K \cdot \left[\frac{T_n}{K} \right] - T_n \) test vectors.

Definition: An input block is a subsequence \(t_{(j-1)K+1} t_{(j-1)K+2} \ldots t_{jK} \) of the test set string \(t_1 \ldots t_{T_n} \) (which has the length \(K \)), where \(1 \leq j \leq T_n/K \) (remember that \(K \) is a divisor of \(T_n \)). The \(k \)-th input block is denoted as \(ib^{(k)} \in \{ 0, 1, X \}^K \).

The fixed-length input block encoding is based on matching vectors to which the input blocks are mapped if they match.

Definition: A matching vector (MV) \(v \) consists of \(K \) bit positions \(v_{i_1} \ldots v_{i_K} \), where \(v_j \in \{ 0, 1, U \}, 1 \leq j \leq K \) (where \(U \) stands for “unspecified”). An MV \(v \) matches an input block \(ib \) if there is no bit position \(j \) for which either \(v_{i_j} = 1 \) and \(v_j = 0 \) or \(v_{i_j} = 0 \) and \(v_j = 1 \). (I.e. 1 matches with 0, and \(X \) and \(U \) match with arbitrary values.)

Let \(L \) be the number of MVs, and let the set of MVs be \(\{ v^{(1)}, v^{(2)}, \ldots, v^{(L)} \} \). Note that as the MVs can contain the \(U \) value, different MVs can match the same input block.

Every MV \(v^{(i)} \) is assigned a codeword \(C(v^{(i)}) \in \{ 0, 1 \}^* \). We allow the codewords to have different length, but we require the whole code \(\{ C(v^{(1)}), C(v^{(2)}), \ldots, C(v^{(L)}) \} \) to be a prefix code, i.e. no codeword is identical to a beginning of a different codeword. An input block that matches an MV is encoded by the codeword of that MV followed by the \(U \) values in the same block corresponding to unspecified values (\(Us \)) in the MV:

Definition: Let a matching vector \(v \) have \(N_U(v) \) unspecified values \(U \) at the positions \(u_1, \ldots, u_{N_U(v)} \) (i.e. \(v_u = \ldots = v_{u_{N_u(v)}} = U \), \(0 \leq N_U(v) \leq K \)). Let an input block \(ib \) be matched by \(v \). The encoding \(C(ib,v) \) of \(ib \) by \(v \) is given by \(C(v)ib_{u_1}ib_{u_2} \ldots ib_{u_{N_U(v)}} \). The length of the encoding \(|C(ib,v)| \) is the sum of the length of \(C(v) \) and the number \(N_U(v) \) of the unspecified values in \(v \). Note that \(|C(ib,v)| \) is independent from \(ib \).

Our goal is to efficiently encode a test set string \(t_1 t_2 \ldots t_{T_n} \) (which aggregates the whole test set) divided into \(T_n/K \) input blocks. We formulate the following sub-problems:

Problem Formulation Given the test set (i.e. the sequence of input blocks \(ib_{1},ib_{2}, \ldots,ib_{T_n/K} \)), the size \(K \) and the number of MVs \(L \), determine:

1. \(L \) MVs \(v^{(1)}, v^{(2)}, \ldots, v^{(L)} \), where \(v^{(i)} \in \{ 0, 1, U \}^K, 1 \leq i \leq L \), and
3 Solution Approach

We solve the problem formulated above by iteratively applying the following process to the sequence of input blocks corresponding to the test set:

1. Determine L matching vectors (MVs).
2. (Covering) Assign an MV to each input block; calculate the frequency-of-use for each MV.
3. (Encoding) Encode the input blocks using the collected frequency-of-use data.

Suppose that the L MVs are fixed. Covering is done by selecting an input block and identifying an MV that matches it. If multiple MVs match an input block, we select the one with the lowest number of Us, as the encoding is more compact for such MVs (Note that it is possible that none of the L MVs matches the input block; in this case, encoding is impossible with this set of L MVs. This can be ruled out by setting all positions of one of the MVs to U.) Encoding is done using Huffman's algorithm.

The solution space for determining L MVs of dimension K (i.e., the number of different sets of L K-dimensional vectors over $\{0, 1, U\}$ is 3^{KL} (or $3^{KL}/(L!)$), observing that the ordering of the test vectors is irrelevant), which is a huge number even for relatively small values of K and L. Hence, we apply an evolutionary algorithm for this sub-problem. Details are reported in the sections below.

3.1 Matching vector determination

We employ Evolutionary Optimization [21, 22] to determine L matching vectors (MVs). We define an individual as a set of L K-dimensional MVs, i.e., a string $v_1^{(1)} v_2^{(1)} \ldots v_K^{(1)} v_1^{(2)} \ldots v_K^{(2)} \ldots v_1^{(L)} \ldots v_K^{(L)}$ of length KL over the alphabet $\{0, 1, U\}$. Figure 1 shows the pseudocode for an Evolutionary Algorithm (EA). The algorithm starts with a random initial population of S individuals. For each individual, its fitness is calculated by running covering and encoding procedures (described below) and determining the reached compression rate, which is given as $100\% - \text{size of compressed data}/\text{original test set size}$. Higher fitness corresponds to a higher encoding efficiency. Fitness of an individual for which covering is impossible is set to a sufficiently small number, such that it is lower than the fitness of an individual leading to a valid solution.

C new individuals (children) are generated by applying evolutionary operators (namely crossover, mutation and inversion) to randomly selected individuals from the initial population. The fitness of each of the C children is determined in the same way as for the individuals in the initial population. From these $S + C$ individuals, S having highest fitness (thus leading to the highest compression) are selected to form the new population (second generation).

The crossover operator takes two individuals (parents) and produces two children by exchanging bit positions (genes) of the parents. Note that for our encoding, an individual has KL genes. The resulting children have genes of one parent in several positions and the genes of the other parent in others. The mutation operator generates one child from one parent by replacing one randomly selected gene of a parent by a random value. The inversion operator produces a child by reverting the ordering of the genes between two random positions of a parent.

The evolutionary optimization process stops when a termination condition is satisfied. We used limits on the number of generated legal solutions and on the number of generations in which no fitness improvement was registered as termination conditions. Then, the MV set given by the fittest individual is returned.

3.2 Covering

Once the L matching vectors (MVs) are generated, they are sorted in the order of increasing number of Us: $N_U(v_1^{(1)}) \leq N_U(v_2^{(2)}) \leq \cdots \leq N_U(v_L^{(L)})$. When matching an input block ib, this sorted list is processed, and the first matching MV $v_{ib}^{(i)}$ is taken. We will comment on the implications of this technique on the optimality of the overall algorithm in the next section. For every MV $v_{ib}^{(i)}$, we calculate its fre-
Given the \(L \) MVs \(v^{(1)}, \ldots, v^{(L)} \) and their frequencies \(F_1, \ldots, F_L \), the optimal prefix code is obtained by Huffman coding [29]. However, the problem formulation is slightly different here: first, an MV with a frequency of 0 can be simply left out without allocating a codeword to it. Second, due to the existence of the unspecified values (\(U \)) one MV may be subsumed by another. The following example demonstrates a situation in which the Huffman coding algorithm leads to a suboptimal solution due to these specifics:

Example: Suppose that the MVs are \(v^{(1)} = 111U \) with frequency \(F_1 = 5 \), \(v^{(2)} = 1111 \) with frequency 3 and \(v^{(3)} = 0000 \) with frequency 2. Huffman coding yields \(C(v^{(1)}) = '0' \), \(C(v^{(2)}) = '10' \) and \(C(v^{(3)}) = '11' \). Since \(v^{(1)} \) contains one \(U \) value, it is encoded by \(|0|' + 1 = 2 \) bits; \(v^{(2)} \) and \(v^{(3)} \) are encoded by \(|10|' = 2 \) bits and \(|11|' = 2 \) bits, respectively, resulting in the total size of compressed data of \(5 \cdot 2 + 3 \cdot 2 + 2 \cdot 2 = 20 \) bits.

However, 3 input blocks that are matched by \(v^{(2)} = 1111 \) are also matched by \(v^{(1)} = 111U \). If we omit \(v^{(2)} \) altogether, we can encode \(v^{(1)} \) as \('0' \) and \(v^{(3)} \) as \('1' \). Since \(v^{(1)} \) now subsumes \(v^{(2)} \), its frequency is now \(5 + 3 = 8 \). Its encoding is still 2 bits long, while the encoding of \(v^{(3)} \) is 1 bit long. The total size of compressed data is \(8 \cdot 2 + 2 \cdot 1 = 18 \) bits, which is less than 20 bits calculated by the Huffman algorithm. □

The suboptimal result of the example is a consequence of the covering algorithm from the previous section: if the three input blocks had been covered by \(v^{(1)} \) rather than \(v^{(2)} \), the Huffman algorithm would have produced the optimal result.

Handling such cases explicitly could improve the compression rate.

4 Experimental Results

We applied our method to unexpanded stuck-at test sets with don’t-cares obtained by the method from [30] for ISCAS 85 and combinational parts of ISCAS 89 circuits, and to unexpanded path delay test sets with don’t-cares for combinational parts of ISCAS-89 circuits generated by the tool TIP [31, 32] (with 100% robust path delay coverage). We used the package GAME [33] for evolutionary optimization.

Table 1 summarizes the results for stuck-at test sets. The first two columns contain the name of the circuit and the size of the test set (note that the circuits are sorted with respect to increasing test set size). All other columns quote the compression rate 100% \(\cdot \) \(\frac{\text{size of compressed data}}{\text{original test set size}} \) of various methods. The compression is better for higher values of this number.

Circuit	Test set size	Compression rate	
s349	624	23.0% 30.0%	54.2% 55.8%
s344	624	25.0% 33.0%	51.8% 55.8%
s298	629	19.0% 27.0%	45.2% 51.2%
s208	722	26.0% 32.0%	47.8% 50.4%
s400	984	29.0% 36.0%	54.4% 56.4%
s382	1008	29.0% 36.0%	52.0% 54.2%
s386	1157	0.0% 13.0%	30.4% 30.6%
s444	1176	40.0% 43.0%	54.4% 57.8%
s628	1216	8.0% 19.0%	17.6% 20.4%
s510	1850	42.0% 45.0%	57.6% 57.6%
c432	1944	26.0% 36.0%	49.2% 50.4%
s526	1944	25.0% 29.0%	46.4% 46.4%
s1494	2324	-1.0% 11.0%	23.0% 28.9%
s420	2380	53.0% 55.0%	54.4% 56.2%
s1488	2436	2.0% 15.0%	25.6% 30.0%
s832	3404	35.0% 38.0%	43.8% 43.8%
s820	3496	31.0% 35.0%	42.8% 43.4%
c499	3854	43.0% 51.0%	45.0% 51.6%
s713	4104	51.0% 52.0%	61.4% 61.8%
s641	4212	51.0% 52.0%	60.2% 62.2%
s880	4680	40.0% 42.0%	47.8% 49.8%
c1908	4950	-2.0% 10.0%	18.4% 19.0%
s953	5220	51.0% 53.0%	61.6% 63.2%
c1355	5289	38.0% 45.0%	40.8% 44.8%
s1196	6016	34.0% 38.0%	46.2% 46.2%
s1238	6240	34.0% 37.0%	44.0% 45.8%
s1423	8463	59.0% 59.0%	61.0% 61.6%
s838	8509	67.0% 68.0%	66.2% 68.6%
s3540	10350	36.0% 39.0%	43.8% 44.2%
c2670	33086	70.0% 70.0%	70.4% 70.6%
c5315	33108	65.0% 65.0%	66.2% 67.0%
c7552	60030	63.0% 64.0%	63.2% 63.2%
s3378	71262	73.0% 73.0%	76.8% 76.8%
s9234	118560	75.0% 75.0%	76.2% 76.4%
s35932	133988	71.0% 71.0%	73.8% 73.8%
s15850	305500	80.0% 80.0%	83.0% 83.0%
s13207	410200	83.0% 83.0%	85.8% 85.9%
s38584	1250256	82.0% 82.0%	86.2% 86.2%
s38417	2068352	84.0% 84.0%	87.0% 87.9%

Table 1: Experimental results for stuck-at test sets

Column ‘9C’ reports the compression rate obtained by our reimplementation of the 9C compression method from [20] for \(K = 8 \) (which yielded best results in that paper). Note that our numbers do not match the figures in that paper, as we use different test sets. Since the compression rates are higher for the test sets that we use than the rates reported in [20], it would be unfair to quote those results. We did not
implement further compression methods, however [20] contains comparisons with several techniques.

Matching vectors (MVs) have a fixed encoding in [20]: ‘0’ for 000000; 10 for 111111; 110000 for 000111; ‘11001’ for 111000; ‘11010’ for 111UUU; ‘11011’ for UUU111; ‘11100’ for 000UUU; ‘11101’ for UUU000; and ‘11111’ for UUUUUU (for $K = 6$; the same assignment applies for other K values). We ran the reimplemented 9C algorithm with this encoding replaced by Huffman coding and report the results in column ‘9C+HC’.

The results of our proposed approach are given in column ‘EA’. We used $L = 64$ and $K = 12$; in the evolutionary algorithm, we used the population size S of 10, the number of children C of 5, the crossover probability of 30%, the mutation probability of 30% and the inversion probability of 10%. One of the MVs was set to all-U, such that there were no insolvable instances. We report the average over 5 algorithm runs.

Table 2: Experimental results for path delay test sets

We generated data for numerous values of K and L. While the space does not allow us to include all data, we report our best results in the last column. Additional improvements could be achieved by varying the parameters of the evolutionary algorithm, which we did not do.

Our proposed approach outperforms the original 9C algorithm for all circuits except s838 (but our best result is higher for this circuit). This could be ruled out by adding the 9C matching vector set to the initial population (which we did not). If 9C compression is combined with Huffman coding, it outperforms our method with default values for 6 circuits, and it is more efficient than our best results for two circuits (out of 39). This can be explained by the large size of the solution space; a larger population size or a reduced evolutionary pressure might be appropriate for such circuits.

The last line of the table quotes the average values. It can be seen that our results are considerably better on average than those obtained by 9C compression, both with and without Huffman coding. It can also be seen that the difference between our technique with default values and the best compression rate is relatively small. We conclude that our algorithm is relatively stable with respect to the parameters K and L.

The structure of Table 2 is similar to that of Table 1. We report the results for the proposed method for $L = 9$ and $K = 8$ (column ‘EA1’) and $L = 64$ and $K = 12$ (column ‘EA2’). Both values are averages over 5 successful algorithm runs with termination after 500 populations without improvement. The All-U MV was included into the population. The proposed methods yields best results for all but two circuits (s420 and s838), and the second set of parameters results in an improvement of the compression from 48.7% for the original 9C compression to 58.6%, on average.

5 Conclusions

We provided an Evolutionary Optimization-based solution for test set encoding with fixed-length input blocks. For the first time, our problem formulation allows unspecified values (Us) at arbitrary positions of the matching vectors. This enables the employment of compact on-chip decoders for arbitrary test sets. No decoder re-design is required in case of a test set modification, if an all-U matching vector is used; however, the compression rate might suffer. A reconfigurable decoder, into which the codeword/matching vector information can be loaded, would solve this problem.

Experimental results show the superiority of our technique. However, further improvements are possible by fitting the parameters of the Evolutionary Optimization, such as population size and operator probabilities. Another direction for further research is the application of our method in a multiple scan chain environment.
Acknowledgment

We would like to thank Kohei Miyase and Seiji Kajihara for providing the stuck-at test sets for ISCAS circuits containing don’t-care values.

6 References

[1] A. Jas and N.A. Touba. Test vector decompression using cyclical scan chains and its application to testing core-based designs. In Int'l Test Conf., pages 458–464, 1998.
[2] A. Jas, J. Ghosh-Dastidar, and N.A. Touba. Scan vector compression/decompression using statistical coding. In VLSI Test Symp., pages 114–120, 1999.
[3] A. Chandra and K. Chakrabarty. Test data compression for system-on-a-chip using golomb codes. In VLSI Test Symp., pages 113–120, 2000.
[4] A. Chandra and K. Chakrabarty. Frequency-directed run length codes (FDR) codes with application to system-on-a-chip test data compression. In VLSI Test Symp., pages 42–47, 2001.
[5] P.T. Gonciari, B. Al-Hashimi, and N. Nicolici. Improving compression ratio, area overhead, and test application time for system-on-a-chip test data compression/decompression. In Design, Automation and Test in Europe, pages 604–611, 2002.
[6] F.G. Wolff and C. Papachristou. Multiscan-based test compression and hardware decompression using lz77. In Int’l Test Conf., pages 331–339, 2002.
[7] S. Reda and A. Orailoglu. Reducing test application time through test data mutation encoding. In Design, Automation and Test in Europe, pages 387–393, 2002.
[8] A. Khoche E.H. Volkerink and S. Mitra. Packet-based input test data compression techniques. In Int’l Test Conf., pages 154–163, 2002.
[9] S.M. Reddy, K. Miyase, S. Kajihara, and I. Pomeranz. On test data volume reduction for multiple scan chain designs. In VLSI Test Symp., pages 103–108, 2002.
[10] C.V. Krishna, A. Jas, and N.A. Touba. Test vector encoding using partial LFSR reseeding. In Int’l Test Conf., pages 885–893, 2001.
[11] N. Zacharia, J. Rajski, and J. Tyszer. Decompression of test data using variable-length seed LFSRs. In Int’l Test Conf., pages 426–433, 1995.
[12] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois. Built-in test for circuits with scan based on reseeding of multiple-polynomial linear feedback shift register. IEEE Trans. on Comp., 44(2):223–233, February 1995.
[13] S. Hellebrand, S. Tarnick, B. Courtois, and J. Rajski. Generation of vector patterns through reseeding of multiple-polynomial linear feedback shift registers. In Int’l Test Conf., pages 120–129, 1992.
[14] K. Chakrabarty, B.T. Murray, and V. Iyengar. Built-in test pattern generation for high performance circuits using twisted-ring counters. In VLSI Test Symp., pages 22–27, 1999.
[15] S. Hellebrand, H.G. Liang, and H.J. Wunderlich. A mixed-mode BIST scheme based on reseeding of folding counters.

Jour. of Electronic Testing: Theory and Applications, 17(3-4):159–170, February 2001.
[16] J. Rajski, J. Tyszer, M. Kassab, and N. Mukherjee. Embedded deterministic test. IEEE Trans. on CAD, 23(5):776–792, 5 2004.
[17] H. Tang, S.M. Reddy, and I. Pomeranz. On reducing test data volume and test application time for multiple scan chain designs. In Int’l Test Conf., pages 1079–1088, 2003.
[18] L. Li and K. Chakrabarty. Deterministic BIST based on a reconfigurable interconnection network. In Int’l Test Conf., pages 460–469, 2003.
[19] C.V. Krishna and N.A. Touba. 3-stage variable length continuous-flow scan vector decompression scheme. In VLSI Test Symp., pages 79–86, 2004.
[20] M. Tehranipour, M. Nourani, and K. Chakrabarty. Nine-coded compression technique with application to reduced pin-count testing and flexible on-chip decomposition. In Design, Automation and Test in Europe, pages 173–178, 2004.
[21] T. Bäck. Evolutionary Algorithms in Theory and Practice. Oxford University Press, 1996.
[22] D.E. Goldberg. Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley Publisher Company, Inc., 1989.
[23] P. Mazumder and E. Rudnick. Genetic Algorithms for VLSI Design, Layout and Test Automation. Prentice-Hall PTR, 1999.
[24] R. Drechsler. Evolutionary Algorithms for VLSI CAD. Kluwer Academic Publisher, 1998.
[25] P. Girard, C. Landrault, S. Pravossoudovitch, and B. Rogeriguez. A diagnostic atpg for delay faults based on genetic algorithms. In Int’l Test Conf., pages 286–293, 1996.
[26] M. Keim, N. Drechsler, R. Drechsler, and B. Becker. Combining GAs and Symbolic Methods for High Quality Tests of Sequential Circuits. Journal of Electronic Testing - Theory and Applications, 17(1):37–51, 2001.
[27] C. Ökmen, M. Keim, R. Krieger, and B. Becker. On optimizing BIST architecture by using OBDD-based approaches and genetic algorithms. In VLSI Test Symp., pages 426–431, 1997.
[28] I. Polian, B. Becker, and S.M. Reddy. Evolutionary optimization of Markov sources for pseudo random scan BIST. In Design, Automation and Test in Europe, pages 1184–1185, 2003. (poster).
[29] D.A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of the I.R.E., pages 1098–1102, 9 1952.
[30] S. Kajihara and K. Miyase. On identifying don’t care inputs of test patterns for combinational circuits. In Int’l Conf. on CAD, pages 364–369, 2001.
[31] M. Henfiling and H. Wittmann. Bit Parallel Test Pattern Generation for Path Delay Faults. In European Design and Test Conf., pages 521–525, Mar. 1995.
[32] P. Tafertshofer, A. Ganz, and M. Henfiling. A SAT-based implication engine for efficient ATPG, equivalence checking, and optimization of netlists. In Int’l Conf. on CAD, pages 648 – 655, 1997.
[33] N. Göckel, R. Drechsler, and B. Becker. GAME: A software environment for using genetic algorithms in circuit design. In Applications of Computer Systems, pages 240–247, 1997.