Supplementary material for the article:

“A phylogenomics approach for selecting robust sets of phylogenetic markers”

Salvador Capella-Gutierrez, Frank Kauff, and Toni Gabaldón

Content:
1. Supplementary tables.
2. Supplementary figures.
3. Pipeline description in pseudo-code.
1. Supplementary tables.

Table 1.
List of 63 completely sequenced Cyanobacterial genomes used in the analyses. Columns indicate, in this order, the taxonomic group, the species, the source from where proteomes were obtained, and date of acquisition. Gray boxes indicate which species were used as query in the orthology search. Yellow boxes indicate which species were used for the validation phase.

Taxonomic Group	Scientific Name	Source	As of	
Chroococcales	*Microcystis aeruginosa* (strain NIES-843)	integr8	2010/01	
Synechococcales	*Synechocystis sp.* (strain PCC6803)	integr8	2010/01	
Chroococcales	*Crocosphaera watsonii* (strain WH8501)	integr8	2010/05	
Chroococcales	*Cyanothece sp.* (strain ATCC 51142)	integr8	2010/01	
Chroococcales	*Cyanothece sp.* (strain PCC 7424)	integr8	2010/01	
Chroococcales	*Cyanothece sp.* (str. PCC7425/ATCC29141)	integr8	2010/05	
Chroococcales	*Cyanothece sp.* (strain PCC 8801)	integr8	2010/05	
Chroococcales	*Cyanothece sp.* (strain PCC 8802)	integr8	2010/01	
Synechococcales	*Synechococcus elongatus*	integr8	2010/01	
Synechococcales	*Synechococcus elongatus* (str. PCC7942)	integr8	2010/01	
Synechococcales	*Synechococcus sp.* (strain PCC6301)	integr8	2010/05	
Synechococcales	*Synechococcus sp.* (strain PCC7002)	integr8	2010/05	
Synechococcales	*Synechococcus sp.* (strain CC9311)	integr8	2010/05	
Synechococcales	*Synechococcus sp.* (strain CC9605)	integr8	2010/05	
Synechococcales	*Synechococcus sp.* (strain CC9902)	integr8	2010/05	
Synechococcales	*Synechococcus sp.* (strain JA-2-3B)	integr8	2010/01	
Synechococcales	*Synechococcus sp.* (strain JA-3-3Ab)	integr8	2010/05	
Synechococcales	*Synechococcus sp.* (strain RCC307)	integr8	2010/01	
Synechococcales	*Synechococcus sp.* (strain WH7803)	integr8	2010/01	
Synechococcales	*Synechococcus sp.* (strain WH7805)	integr8	2010/05	
Synechococcales	*Synechococcus sp.* (strain WH8102)	integr8	2010/05	
Clade	Species	Repository	Date	
------------------------	--	------------	-------	
Synechococcales	*Synechococcus* sp. (strain WH5701)	integr8	2010/05	
Synechococcales	*Cyanobacterium* UCYN-A NCBI 2011/03	NCBI	2011/03	
Synechococcales	*Cyanobium* sp. (strain PCC7001)	NCBI	2011/03	
Chroococcales	*Cyanothece* sp. (strain CCY0110)	NCBI	2011/03	
Chroococcales	*Cyanothece* (strain PCC7822)	NCBI	2011/03	
Chroococcales	*Gloeoethece* sp. (strain PCC6909/1)	NCBI	2011/03	
Synechococcales	*Synechococcus* sp. (strain WH8109)	NCBI	2011/03	
Synechococcales	*Synechococcus* sp. (strain PCC7335)	NCBI	2011/03	
Synechococcales	*Synechococcus* sp. (strain RS9916)	NCBI	2011/03	
Synechococcales	*Synechococcus* sp. (strain RS9917)	NCBI	2011/03	
Synechococcales	*Synechococcus* sp. (strain CB0101)	NCBI	2011/03	
Synechococcales	*Synechococcus* sp. (strain CB0205)	NCBI	2011/03	
Synechococcales	*Synechococcus* sp. (strain BL107)	NCBI	2011/03	
Gloeobacterales	*Gloeobacter violaceus*	integr8	2010/01	
Nostocales	*Nodularia* spumigena (strain CCY9414)	integr8	2010/05	
Nostocales	*Nostoc punctiforme* (strain PCC73102)	integr8	2010/01	
Nostocales	*Anabaena* sp. (strain PCC7120)	integr8	2010/01	
Nostocales	*Anabaena variabilis* (strain PCC7937)	integr8	2010/01	
Nostocales	*Raphidiopsis brookii* (strain D9)	NCBI	2011/03	
Nostocales	*Nostoc azollae* (strain 0708)	NCBI	2011/03	
Nostocales	*Cylindrospermopsis raciborskii* (str.CS-505)	NCBI	2011/03	
Oscillatoriales	*Lyngbya* sp. (strain PCC8106)	integr8	2010/05	
Oscillatoriales	*Arthrospira maxima* (strain CS-328)	integr8	2010/05	
Oscillatoriales	*Trichodesmium erythraeum* (str. IMS101)	integr8	2010/01	
Oscillatoriales	*Microcoleus chthonoplastes* (str. PCC7420)	NCBI	2011/03	
Oscillatoriales	*Oscillatoria* (strain PCC6506)	NCBI	2011/03	
Synechococcales	*Prochlorococcus marinus* (strain AS9601)	integr8	2010/01	
Synechococcales	*Prochlorococcus marinus* (str. MIT 9211)	integr8	2010/05	
Synechococcales	*Prochlorococcus marinus* (str. MIT 9215)	integr8	2010/05	
Synechococcales	*Prochlorococcus marinus* (str. MIT 9301)	integr8	2010/01	
Synechococcales	*Prochlorococcus marinus* (str. MIT 9303)	integr8	2010/01	
Taxonomic Group	Scientific Name	Round	Source	As of
---------------------	---	-------	----------------	-----------
		1 2 3		
Eurotiomycetes	*Arthroderma benhamiae*		The Broad Institute	2011/06
Dothideomycetes	*Alternaria brassicicola*		JGI	2011/06
Eurotiomycetes	*Aspergillus clavatus*		JGI	2011/06
Eurotiomycetes	*Aspergillus carbonarius*		JGI	2011/06
Pezizomycotina	*Ajellomyces capsulatus*		JGI	2011/06
Eurotiomycetes	*Aspergillus flavus*		JGI	2011/06
Eurotiomycetes	*Aspergillus fumigatus*		The Broad Institute	2011/06
Eurotiomycetes	*Aspergillus niger*		JGI	2011/06
Eurotiomycetes	*Aspergillus nidulans*		JGI	2011/06
Eurotiomycetes	*Aspergillus oryzae*		JGI	2011/06
Kingdom	Order	Species	Institute	Date
----------------	------------------------	-----------------------------------	----------------	------------
Eurotiomycetes	Arthroderma otae		The Broad Institute	2011/06
Pezizomycotina	Aspergillus terreus		JGI	2011/06
Pezizomycotina	Botryotinia fuckeliana		JGI	2011/06
Eurotiomycetes	Ajellomyces dermatitidis		The Broad Institute	2011/06
Sordariomycetes	Chaetomium globosum		JGI	2011/06
Ascomycetes	Cochliobolus heterostrophus		JGI	2011/06
Sordariomycetes	Colletotrichum higginsianum		The Broad Institute	2011/06
Eurotiomycetes	Coccidioides immitis		The Broad Institute	2011/06
Eurotiomycetes	Coccidioides posadasii		The Broad Institute	2011/06
Sordariomycetes	Cryphonectria parasitica		JGI	2011/06
Sordariomycetes	Fusarium oxysporum		The Broad Institute	2011/06
Sordariomycetes	Gibberella moniliformis		The Broad Institute	2011/06
Sordariomycetes	Glomerella graminicola		The Broad Institute	2011/06
Sordariomycetes	Gibberella zeae		JGI	2011/06
Dothideomycetes	Mycosphaerella fijiensis		JGI	2011/06
Dothideomycetes	Mycosphaerella graminicola		JGI	2011/06
Eurotiomycetes	Microsporum gypseum		The Broad Institute	2011/06
Dothideomycetes	Mycosphaerella pini		JGI	2011/06
Sordariomycetes	Magnaporthe oryzae		JGI	2011/06
Dothideomycetes	Mycosphaerella populorum		JGI	2011/06
Sordariomycetes	Myceliophthora populorum		JGI	2011/06
Ascomycetes	Neurospora thermophila		JGI	2011/06
Ascomycetes	Neurospora crassa		JGI	2011/06
Ascomycetes	Neurospora discreta		JGI	2011/06
Eurotiomycetes	Neosartorya fischeri		JGI	2011/06
Sordariomycetes	Nectria haematococca		JGI	2011/06
Ascomycetes	Neurospora tetrasperma		JGI	2011/06
Sordariomycetes	Podospora anserina		JGI	2011/06
Eurotiomycetes	Paracoccidioides brasiliensis		The Broad Institute	2011/06
Eurotiomycetes	Penicillium chrysogenum		JGI	2011/06
Dothideomycetes	Phaeosphaeria nodorum		JGI	2011/06
Dothideomycetes	Pyrenophora tritici-repentis		The Broad Institute	2011/06
Kingdom	Genus	Source	Date	
-------------	------------------------	-------------	----------	
Leotiomycetes	Sclerotinia sclerotiorum	JGI	2011/06	
Sordariomycetes	Trichoderma atroviride	JGI	2011/06	
Eurotiomycetes	Trichophyton equinum	The Broad Institute	2011/06	
Pezizomycetes	Tuber melanosporum	KEGG	2011/06	
Eurotiomycetes	Trichophyton rubrum	The Broad Institute	2011/06	
Sordariomycetes	Hypocrea jecorina	JGI	2011/06	
Eurotiomycetes	Trichophyton tonsurans	The Broad Institute	2011/06	
Sordariomycetes	Thielavia terrestris	JGI	2011/06	
Eurotiomycetes	Trichophyton verrucosum	The Broad Institute	2011/06	
Sordariomycetes	Hypocrea virens	JGI	2011/06	
Eurotiomycetes	Uncinocarpus reesii	The Broad Institute	2011/06	
Sordariomycetes	Verticillium albo-atrum	The Broad Institute	2011/06	
Sordariomycetes	Verticillium dahliae	The Broad Institute	2011/06	
Saccharomycetes	Ashbya gossypii	YGOB	2011/06	
Saccharomycetes	Candida albicans	The Broad Institute	2011/06	
Saccharomycetes	Candida dubliniensis	KEGG	2011/06	
Saccharomycetes	Candida glabrata	Genolevures	2011/06	
Saccharomycetes	Clavispora lusitaniae	The Broad Institute	2011/06	
Saccharomycetes	Candida parapsilosis	The Broad Institute	2011/06	
Saccharomycetes	Candida tropicalis	The Broad Institute	2011/06	
Saccharomycetes	Debaryomyces hansenii	Genolevures	2011/06	
Saccharomycetes	Kluyveromyces lactis	Genolevures	2011/06	
Saccharomycetes	Vanderwaltozyma polyspora	YGOB	2011/06	
Saccharomycetes	Lachancea waltii	Duke	2011/06	
Saccharomycetes	Lodderomyces elongisporus	JGI	2011/06	
Saccharomycetes	Lachancea thermotolerans	JGI	2011/06	
Saccharomycetes	Meyerozyma guilliermondii	JGI	2011/06	
Saccharomycetes	Pichia pastoris	JGI	2011/06	
Saccharomycetes	Scheffersomyces stipitis	JGI	2011/06	
Saccharomycetes	Saccharomyces bayanus	YGOB	2011/06	
Saccharomycetes	Naumovia castellii	YGOB	2011/06	
Table 3.
List of 28 completely sequenced Basidiomycota genomes. Columns indicate, in this order, the taxonomic group, the species, the source from where proteomes were obtained, and the date the data was acquired. Gray boxes indicate which species were used as queries for the orthology searches.

Taxonomic Group	Scientific Name	Source	As of
Agaricomycotina	Tremella mesenterica	JGI	2011/06
Agaricomycotina	Phanerochaete chrysosporium	JGI	2011/06
Agaricomycotina	Trametes versicolor	JGI	2011/06
Agaricomycotina	Schizophyllum commune	JGI	2011/06
Agaricomycotina	Agaricus bisporus	JGI	2011/06
Agaricomycotina	Coprinopsis cinerea	JGI	2011/06
Agaricomycotina	Laccaria bicolor	JGI	2011/06
Agaricomycotina	Fomitopsis pinicola	JGI	2011/06
Agaricomycotina	Stereum hirsutum	JGI	2011/06
Agaricomycotina	Ceriporiopsis subvermisporae	JGI	2012/04
Agaricomycotina	Coniophora puteana	JGI	2011/06
Agaricomycotina	Wolfiporia cocos	JGI	2011/06
Agaricomycotina	Gloeophyllum trabeum	JGI	2011/06
Table 4.
Results obtained when one-genome-at-the-time test was applied to the 19 cyanobacterial genomes belonging to the Testing set. Columns indicate, in this order, the scientific name of the studied species; the number of selected markers found in each species (out of 6); the number of all marker genes found (out of 203 initial set); the Robinson & Foulds distance (RF) (18), which measures topological differences, between the tree inferred using the selected markers and all available marker genes when each species is considered; percentage of wrong splits as a normalized measure of topological differences between the trees inferred using the selected markers or all available markers for a given species.

Scientific Name	Selected Markers (6)	All Markers (203)	R&F distance	% Wrong splits
Cyanobacterium UCYN-A	5	162	0	0%
Oscillatoria sp. PCC 6506	5	189	0	0%
Cyanothece sp. CCY0110	6	198	0	0%
Gloeoeche sp. PCC 6909/1	6	198	0	0%
Table 5.

Results for the concatenation of traditionally used marker genes in Cyanobacteria (22, 23). Only coding-protein genes were considered for the comparison in order to use the same methodology regarding the BLAST search, multiple sequence alignment and phylogenetic tree reconstruction. Since \textit{nifD} was absent, present in multiple copies or with a low coverage for many species, we constructed a second set of marker genes without it. Comparisons in terms of topological differences, were performed against the different reference species trees for the training, testing and all cyanobacterial species.

Combination of marker genes	Training (43 species)	Testing (19 species)	All (62 species)			
	(1)	(2)	(1)	(2)	(1)	(2)
\textit{gyrB + rpoC1 + rpoD1 + nifD}	12	14.63%	2	5.88%	32	26.67%
\textit{gyrB + rpoC1 + rpoD1}	14	17.07%	4	11.76%	24	20%

(1): R&F distance
(2): % Wrong splits
Table 6.

Results for the concatenation of all possible combinations of three and four genes of the final set of marker genes for cyanobacteria. The logic behind this comparison is to compare the performance of the combination of markers with similar size against the two possible combinations (of 3 and 4 genes) of the traditional coding-protein markers. Comparisons, in terms of topological differences, were performed against the different reference species trees for the training, testing and all cyanobacterial species.

Dataset	Number of genes	Training (43 species)	Testing (19 species)	All (62 species)			
		(1)	(2)	(1)	(2)	(1)	(2)
01	3	14	32.56%	0	0%	18	29.03%
02	3	8	18.60%	2	10.53%	10	16.13%
03	3	8	18.6%	2	10.53%	10	16.13%
04	3	12	27.91%	2	10.53%	12	19.35%
05	3	10	23.26%	0	0%	20	32.26%
06	3	8	18.60%	2	10.53%	22	35.48%
07	3	8	18.60%	4	21.05%	18	29.03%
08	3	10	23.26%	2	10.53%	24	38.71%
09	3	10	23.26%	0	0%	26	41.94%
10	3	6	13.95%	2	10.53%	16	25.81%
11	3	6	13.95%	4	21.05%	22	35.48%
12	3	12	27.91%	2	10.53%	20	32.26%
13	3	4	9.302%	4	21.05%	14	22.58%
14	3	10	23.26%	0	0%	18	29.03%
15	3	4	09.30%	0	0%	10	16.13%
16	3	10	23.26%	0	0%	16	25.81%
17	3	2	04.65%	0	0%	14	22.58%
18	3	8	18.60%	0	0%	22	35.48%
19	3	6	13.95%	0	0%	16	25.81%
20	3	8	18.60%	2	10.53%	14	22.58%
21	3	8	18.60%	2	10.53%	12	19.35%
22	3	4	09.30%	0	0%	8	12.90%
23	3	6	13.95%	0	0%	14	22.58%
24	3	4	09.30%	0	0%	16	25.81%
25	3	2	04.65%	0	0%	16	25.81%
26	3	10	23.26%	4	21.05%	16	25.81%
27	3	12	27.91%	2	10.53%	26	41.94%
28	3	10	23.26%	0	0%	18	29.03%
29	3	6	13.95%	10	52.63%	18	29.03%
---	---	---	---	---	---		
30	3	8	18.60%	0	0%	16	25.81%
31	3	4	09.30%	0	0%	22	35.48%
32	3	10	23.26%	4	21.05%	18	29.03%
33	3	8	18.60%	2	10.53%	12	19.35%
34	3	10	23.26%	2	10.53%	16	25.81%
35	3	6	13.95%	2	10.53%	14	22.58%
36	4	0	0%	0	0%	12	19.35%
37	4	0	0%	0	0%	10	16.13%
38	4	8	18.60%	0	0%	14	22.58%
39	4	8	09.30%	0	0%	14	22.58%
40	4	0	0%	2	10.53%	14	22.58%
41	4	0	0%	2	10.53%	12	19.35%
42	4	4	09.30%	2	10.53%	14	22.58%
43	4	4	09.30%	2	10.53%	12	19.35%
44	4	8	18.6%	0	0%	8	12.90%
45	4	2	04.65%	0	0%	8	12.90%
46	4	0	0%	0	0%	18	29.03%
47	4	4	09.30%	2	10.53%	16	25.81%
48	4	10	23.26%	0	0%	14	22.58%
49	4	6	13.95%	2	10.53%	18	29.03%
50	4	8	18.60%	0	0%	16	25.81%
51	4	2	04.65%	0	0%	14	22.58%
52	4	0	0%	4	21.05%	14	22.58%
53	4	10	23.26%	0	0%	14	22.58%
54	4	6	13.95%	2	10.53%	14	22.58%
55	4	6	13.95%	0	0%	12	19.35%
56	4	0	0%	0	0%	14	22.58%
57	4	10	23.26%	0	0%	20	32.26%
58	4	2	04.65%	0	0%	12	19.35%
59	4	8	18.60%	0	0%	16	25.81%
60	4	2	04.65%	0	0%	18	29.03%
61	4	0	0%	0	0%	14	22.58%
62	4	6	13.95%	0	0%	14	22.58%
63	4	2	04.65%	0	0%	8	12.90%
64	4	4	09.30%	0	0%	10	16.13%
65	4	2	04.65%	0	0%	10	16.13%
66	4	10	23.26%	4	21.05%	24	38.71%
67	4	6	13.95%	4	21.05%	12	19.35%
68	4	8	18.60%	0	0%	12	19.35%
69	4	6	13.95%	0	0%	16	25.81%
70	4	6	13.95%	2	10.53%	14	22.58%
Table 7.
Results obtained when one-genome at the time test was applied to the 28 fungal genomes from Ascomycota belonging to the testing set. In this order, the scientific name of the studied species, the number of selected markers found in each species (out of 4); the number of all marker genes found (out of 169 initial set); the Robinson & Foulds distance (RF) (18), which measures topological differences, between the tree inferred using the selected markers and all available marker genes when each species is considered; percentage of wrong splits as a normalized measure of topological differences between the trees inferred using the selected markers or all available markers for a given species.

Scientific Name	Selected Markers (4)	All Markers (169)	R&F distance	% Wrong splits		
Saccharomyces kudriavzevii	3	132	0	0 %		
Schizosaccharomyces octosporus	3	146	0	0 %		
Saccharomyces bayanus	4	135	0	0 %		
Sclerotinia sclerotiorum	4	143	0	0 %		
Gibberella moniliformis	4	143	0	0 %		
Uncinocarpus reesii	4	145	0	0 %		
Candida tropicalis	4	146	0	0 %		
Verticillium dahliae	4	147	0	0 %		
Trichoderma atroviride	4	147	0	0 %		
Mycosphaerella graminicola	4	147	0	0 %		
Ajellomyces dermatitidis	4	147	0	0 %		
Gibberella zeae	4	148	0	0 %		
Trichophyton verrucosum	4	149	0	0 %		
Mycosphaerella pini	4	150	0	0 %		
Pyrenophora tritici-repentis	3	147	2	1.85 %		
Tuber melanosporum	4	139	2	1.85 %		
Alternaria brassicicola	4	140	2	1.85 %		
Saccharomyces paradoxus	4	145	2	1.85 %		
Species	Training	Testing	All			
-------------------------------	----------	---------	------			
	(55 species)	(28 species)	(83 species)			
	(1)	(2)	(1)	(2)		
tef1 + tub2 + tsr1 + cdc47p	12	11.32%	6	11.54%	20	12.35%
trs1 + cdc47p	8	7.55%	6	11.54%	24	14.81%

(1): R&F distance
(2): % Wrong splits

Table 8.
Results for the concatenation of marker genes for the fungal Species Tree. On this comparison only coding-protein genes were considered in order to use the same methodology for the BLAST search, Multiple Sequence Alignment and phylogenetic tree reconstruction as for our set of marker genes. Two datasets were used on this analysis, one containing 4 broadly used markers and the other one containing the two markers proposed by (3). Tree topologies comparisons were performed for the training, testing and all sets of species considered on this study.

Table 9.
Sets of selected marker genes for the two additional rounds performed on Ascomycota. Protein information was retrieved from UNIPROT using either *Saccharomyces cerevisiae* (Ascomycota - round 2) or *Candida glabrata* (Ascomycota - round 3).
Round	Uniprot Id	Length (AA)	Annotation
2	P17883	1432	Superkiller protein 3
2	P32855	1065	Exocyst complex component SEC8
2	Q02939	513	RNA polymerase II transcription factor B subunit 2
2	Q12059	462	NEDD8-activating enzyme E1 regulatory subunit
2	Q03290	321	RNA polymerase II transcription factor B subunit 3
3	Q6FLD0	963	mRNA transport regulator MTR10
3	Q6FSR7	889	phosphatidylinositol 3-kinase
3	Q6FNC4	634	Translation initiation factor eIF-2B subunit delta
3	Q6FP41	504	RNA polymerase II transcription factor B subunit 2
3	Q6FQP1	296	ATP synthase subunit gamma

Table 10.
Pearson's correlation for alternative distances to the Robinson and Foulds distance (RF) (18). Tree certainty (TC) (6), Nodal distance (ND) (35), K-tree score (KT) (20) and likelihood ratio (LK) were computed for all datasets and its corresponding correlation to the RF used along this study.

Dataset / Distances	TC	ND	KT	LK				
	1	2	1	2	1	2	1	2
Cyanobacteria	-0.9273	9.56e-088	0.7503	5.62e-038	0.4787	5.02e-013	0.1199	8.83e-002
Ascomycota - Round 1	-0.8973	3.46e-061	0.8108	1.10e-040	0.5213	3.68e-013	0.3307	1.12e-005
Ascomycota - Round 2	-0.9135	1.41e-074	0.8262	3.17e-048	0.5518	2.28e-016	0.3552	5.70e-007
Ascomycota - Round 3	-0.9407	6.90e-063	0.8339	2.35e-035	0.5477	1.07e-011	0.2734	1.51e-003
Ascomycota - Round 4	-0.9313	1.96e-109	0.8825	3.00e-082	0.6256	3.06e-028	0.4650	1.19e-014
Basidiomycota	-0.9225	1.38e-236	0.8253	7.76e-143	0.4521	5.22e-030	0.5097	6.05e-039

(1) Pearson's r
(2) p-value
2. Supplementary figures.

Figure S1.
Percentage of wrong splits against the reference tree, at each step of the progressive concatenation of 201 gene-sets. Progressive concatenation was performed according to the distance of individual gene-sets to the reference topology. As indicated on the figure, at least 35 genes are needed to recover the same topology as the reference species tree. The reference species tree was reconstructed after concatenating 203 sets of single-copy widespread genes across 43 cyanobacterial species from the training set.
Figure S2.
Percentage of wrong splits of the progressive concatenation of 167 gene-sets compared to the reference species tree. Progressive concatenation was performed following the order of the distance of individual markers to the reference topology using different alternative measurements: Robinson and Foulds distance (blue line), Tree Certainty (red line), K-tree score (green line) and Likelihood ratio (cyan line). On the figure is marked how many genes are needed, for each ranking approximation, to concatenate for recovering the reference tree topology. The reference species tree was reconstructed after concatenating 169 sets of single-copy widespread genes across 55 ascomycotal fungal species from the training set.
Figure S3.
Percentage of wrong splits for 615 concatenated gene-sets. Gene-sets were constructed as random combinations of the initial marker genes sets (6 gene-sets). The combination yielding the same topology as the reference which was used for downstream analyses is marked on the figure with stars.
Figure 4.
Percentage of wrong splits, as compared with the reference tree, for 1,000 different combinations of 4 marker genes selected among the available ones for the Ascomycota - Round 1 experiment. The idea behind this experiment is to measure how often a combination of 4 marker genes, the size of the one selected in our experiment, are found. Considering the average (8.9440) and the standard deviation (+/- 3.7538) of the distribution, having a value of 0% (same reference topology) is further than (avg + 2std) which covers the 95% of the expected values.
Figure S5.
Basidiomycota fungal species tree comprising 28 species used as an additional validation step for the selection of 4 gene markers set on Ascomycota. The same tree topology was recovered using either the concatenation of the 4 gene markers set or the concatenation of 313 single-copy widespread genes present in all species. Gray boxes indicate which species were used as query to perform the BLAST search of orthologous genes.
3. Pipeline description in pseudo-code.

1) Divide the initial set of species into non-overlapping training (T-set) and validation (V-set) sets. Size of each set is optional, by default 2:1 (T:V) size ratio is used.

2) Identify marker genes as genes with single copy orthologs in 100% (by default) of the species in the T-set. 100% can be optionally lowered.

3) For each marker gene identified in step 2, reconstruct a multiple sequence alignment (MSA).

4) Generate the reference topology for the T-set by concatenating all alignments generated in step 3.

5) Rank individual markers by their distance to the reference topology using any desired metric (e.g. Robinson and Foulds distance, Tree Certainty, Likelihood ratio)

6) Generate, progressively, concatenated alignments from the most similar to the most dissimilar markers up to reaching a given threshold. By default, the threshold is set to recover exactly the same reference topology (distance = 0). Even when the threshold is reached, the process can be extended to explore all progressively concatenated markers.

7) The set of concatenated markers for which, for the first time, a given threshold is reached constitutes the initial markers set. Depending on the size of such set, it could be tested directly (go to step 9) or start random concatenation of markers to reduce the size of this set.

8) In order to reduce the initial markers set size, smaller sets can be randomly generated using either only markers from the initial set or from the whole set of markers. The number of randomly concatenated sets can be set to a given number, e.g. 100 or 1000, or explored completely when the number of combinations is affordable. For instance, there are 1,024 possible combinations of sizes 2 to 9 for an initial marker set of 10 genes, conversely, for an initial set of 20 markers there are 1,048,576 possible combinations.

9) Identify which previously identified markers are on the V-set of species. Markers are required to be single copy but not widespread across all species.

10) Reference topologies are reconstructed following two approximations:

 10A) a reference tree is reconstructed only for species in the V-set by concatenating the markers found in step 9.

 10B) a tree for each individual species in the validation set is reconstructed which includes species in the training set plus each individual species.
11) Following a similar strategy to step 10, trees using only markers identified in steps 7 or 8 are reconstructed. Then, tree topologies recovered for the selected markers are compared against the one rendered using all markers found in V-set. In this way, the phylogenetic signal carried by the set of markers is evaluated. It is also evaluated the presence or not of individual markers on the newly set of species.

12) Depending on the results in the previous step, a set of markers can be proposed as the outcome of the experiment, if satisfactory. If new sets of markers are needed, go to step 8 exploring more random combination or increasing the upper limit of the marker genes set size.

13) A final tree including all species used in the study is reconstructed using either all available marker or only the selected ones. Comparison of both topologies gives an idea about the potential of the selected set of marker genes for resolving large species trees.