Experimental based Comparative Analysis and Characteristics of DC Series Motor by using Different Techniques

Mohsin Ali Koondhar¹, Ali Asif Malak¹, Masood Ali Koondhar¹, Irfan Ali Channa²

Abstract:

In this paper, distinct techniques of speed controlling of a Direct Current (DC) motor and its characteristics are discussed. The Direct Current (DC) motor has a wide range of speed control, which can be used in robots, drilling, cutting, and household applications due to affordable cost and low complexity of control configuration for speed and torque control. As DC Motors are considered as the best type of motors, in view of the speed control and speed regulation, numerous approaches are available to control the motor rotational speed. DC series motor control by using a resistive controller with and without a Programmable Logic Controller (PLC) is proposed. The motor voltage can be changed by inserting a resistor in series with DC motor. In this paper, through an experimental work armature resistive drive control technology and motor control PLC technology is used to control motor speed. PLC is used to control the resistance of the motor, thereby reducing driving voltage to change the speed. The results confirm the authentic efficiency of the proposed method of controlling motor speed.

Keywords: DC Series Motor, PLC, Torque, Resistive controller.

1. Introduction

The DC drives are used in rolling, wine winders, cranes, paper mills, machine tools, printing press, and textile mills, etc. DC motors have irregular essentials and used largely in uncertain speed. DC motor can produce immense origin torque and it is still achievable to gain speed control by the immense range [1]. DC Motors have variable characteristics and are used extensively in variable speed drives. DC motor can provide a high starting torque and it is also possible to obtain speed control over a wide range [2].

Generally, DC motor is used in several applications like robotics and domestic appliances due to affordable cost and low complexity of control configuration for speed and torque control [3]. DC Motors are considered as the best type of motors, in view of the speed control and speed regulation. Numerous approaches are available to control the motor rotational speed and armature voltage control is one method among these methods [4, 6].

The DC machine by a DC power source for determining the inductance in a DC machine disables some difficulties related to traditional methods using AC source [7, 8].

¹ Department of Electrical Engineering, Quaid-e-Awam University of Engineering, Science and Technology Nawabshah, Pakistan
² Department of Automation, Beijing University of Chemical Technology, Beijing China
Corresponding Author: engr.mohsinkoondhar@quest.edu.pk
DC machines are versatile energy conversion devices. These can be used for loads of high starting torques and to meet loads of high accelerating and decelerating torques [9]. For DC motors, the armature and field current are the same because the connection between them is standard [10, 11]. Armature voltage/armature control methods can be used to control the speed of dc motor [12, 13].

2. Conventional Controllers

Speed control of a motor escape intended to replace speed render to the demand of the workload connected with the motor. This preserve if done by mechanical expedients, such as by using stepped simple machines.

Nevertheless, speed control by the electrical way has greater advantages over mechanical. In many applications, DC motor is preferred over other types of motors because DC Motors offer easy speed control.

DC Motor Speed control methods depend upon,

a. Armature Control Method and
b. Armature Voltage Control Method [14].

2.1 Armature Control Method

It can apply during speeds where loading speed is not required. Supply voltage usually invariable, by place a flexible rheostat in series with armature circuit, the voltage across armature may change shown in figure 1.

To decrease the armature speed potential difference beyond armature is dropped by increasing the value of resistance in the controller. For load-torque, speed is closely comparative to potential difference over the armature [15].

Armature resistance control is simple for small motors while it wastes energy and unusable with large motors [16].

2.2 Armature Voltage Control Method

The speed of armature-controlled DC motor is controlled by armature voltage V_a and utilizes a constant field current shown in figure 2.

The armature controlled can be expressed by equations as:

$$I\omega = -b_1\omega + K_i i_a T_L$$ \hspace{1cm} (1)

$$V_a - V_b = L_a \frac{dia}{dt} + R_a i_a$$ \hspace{1cm} (2)

Where $V_b = K_b \cdot \omega$

In the state-space form, the equation of DC Motor is:
Mohsin Ali et al., Experimental based Comparative Analysis and Characteristics of DC Series Motor by using Different Techniques (pp. 1-15)

3. Programmable Logic Controller

DC motors are one of the devices that can be connected and controlled by PLC [17]. The PLC-based control system is a microprocessor-based controller. In this, a memory specifically programmable memory is used to store the instructions and various functions. Presently Programmable Logic Controller is vastly used in industry [6]. The PLC is a functional computer employed in the machines where the control and operation of completion manner [18, 19]. It is the function of the programmable retention, accumulation guidance, and finishing including ON and OFF shown in figure 4.

Figure 3 shows the basic arrangement of PLC incorporated within the trainer. There are 20 I/O connectors, from which 10 for input and 10 for output, and a voltage stabilizer is used to maintain the required voltage.

4. PLC Ladder Diagram

For ease of programming, the programmable controller is advanced by adopting existing relay ladder design and expressions to take as program logics, necessary to control the machine or process. A relay ladder diagram is shown in figure 6.
4.1 DC Motor Characteristics with Armature Controller

The characteristic of the motor means the determination relationship between speed, power, and current without load. Figure 7 shows the experimental setup of the dc series motor with the Armature controller.

![Experimental setup of DC Series Motor with Armature Controller](image)

Table 1: Torque Speed Characteristics with Armature Controller

Torque (N-M)	V=30 v	V=35 v	V=40 v	V=45 v	V=50 v
	Speed (RPM)				
0	1125	1440	1750	1980	2280
0.1	1065	1380	1690	1930	2265
0.2	1034	1336	1620	1890	2110
0.3	1000	1278	1555	1850	2080
0.4	968	1240	1510	1740	1960
0.5	924	1210	1470	1680	1910
0.6	886	1170	1400	1580	1703
0.7	868	1135	1340	1500	1680
0.8	852	1090	1290	1430	1660
0.9	809	1030	1280	1370	1600
1	770	1008	1222	1340	1530

4.1.1 Torque vs. speed characteristics of DC Motor with Armature Controller

The characteristic result of torque vs. speed of dc series motor is presented in Table 1 and graphically present shown in figure 8. In this table there are different levels of supply voltages are supplied and different torque are applied as a load from 0 Nm to 1 Nm in equal of 1 step respectively in order to observe the effectiveness of torque on the speed of DC Motor. It is clearly mentioned in the table that if the value of torque increased from 0.1 Nm to 1 Nm than the speed of DC Motor decreased.

Figure 8 illustrates that as supply voltages raises from 30 to 50 voltages the speed of DC series motor is increased but as torque increases simultaneously the speed of dc series motor decreases.
4.1.2 Torque vs. Current characteristics of DC Series Motor with Armature Controller

Result of torque and current characteristic of DC series motor presented in table 2 and graphically present in figure 9. In this table there are different levels of supply voltages are supplied and different torque are applied as a load from 0 Nm to 1 Nm in equal of 1 step respectively in order to observe the effectiveness torque on the speed of DC Motor. Clearly mention in the table that if the value of torque varies from 0.1 N-m to 1 N-m than the speed of DC Motor decreased.

Table 2: Torque Current characteristics DC Series Motor

Torque (N-M)	V=30V	V=35V	V=40V	V=45 V	V=50V
Armature Controller	Current (A)				
0	0.8	0.7	0.7	0.7	0.7
0.1	0.8	0.8	0.8	0.8	0.8
0.2	0.8	0.9	0.9	0.9	0.9
0.3	0.9	0.9	0.9	0.9	0.9
0.4	0.9	0.9	0.9	0.9	0.9
0.5	1	1	1	1	1
0.6	1	1	1	1	1
0.7	1	1	1	1	1
0.8	1	1	1	1	1
0.9	1	1	1	1	1
1	1	1	1	1	1
4.1.3 Torque vs. Power characteristics of DC Series Motor with Armature Controller

The characteristic result of the torque and power of DC Series Motor is presented in table 3 and graphically present shown in figure 10. In this table there are different levels of supply voltages are supplied and different torque are applied as a load from 0 Nm to 1 Nm in equal of 1 step respectively to observe the effectiveness of torque on the speed of DC Motor. Here clearly mention in the table that if the value of torque increased from 0.1 Nm to 1 Nm than the speed of DC Motor decreased.

Table 3 Torque Power characteristics DC Series Motor

Torque (N-M)	V=30 V	V=35 V	V=40 V	V=45 V	V=50 V
	Power (Watt)				
0	24	24.5	28	31.5	35
0.1	24	28	32	36	40
0.2	24	28	32	36	40
0.3	24	31.5	36	40.5	40
0.4	27	31.5	36	40.5	45
0.5	27	31.5	36	40.5	45
0.6	27	31.5	36	40.5	45
0.7	30	35	40	45	50
0.8	30	35	40	45	50
0.9	30	35	40	45	50
1	30	35	40	45	50
4.2 Experimental setup of DC Series Motor with PLC

Experimental setup is illustrated in figure 11.

The characteristic result of torque vs. speed of DC series motor is presented in Table 4 and graphically presented shown in figure 12. In this table there are different levels of supply voltages are supplied and different torque are applied as a load from 0 Nm to 1 Nm in equal of 1 step respectively to observe the effectiveness of torque on the speed of DC Motor. It’s clearly mentioned in the table that if the value of torque increased from 0.1 Nm to 1 Nm than the speed of dc motor decreased.
Table 4: DC Series Motor Torque vs. Speed characteristics with PLC

Torque (N-M)	V=30 v	V=35 v	V=40 v	V=45 v	V=50 v
	Speed (RPM)				
0	1000	1200	1530	1736	1940
0.1	982	1150	1520	1690	1700
0.2	950	1130	1480	1650	1680
0.3	880	1070	1320	1470	1590
0.4	870	1060	1300	1460	1580
0.5	850	978	1150	1290	1400
0.6	800	950	1140	1230	1380
0.7	670	900	1040	1200	1250
0.8	650	833	1000	1100	1230
0.9	630	820	935	1060	1220
1	594	800	900	980	1150

Fig 12: DC Series Motor Torque vs. Speed characteristics with PLC [5]

Torque vs. current characteristics of DC Series Motor with PLC

The characteristic result of torque and current of DC series motor is presented in table 5 and graphically present shown in figure 13. In this table there are different levels of supply voltages are supplied and different torque are applied as a load from 0 Nm to 1 Nm in equal of 1 step respectively to observe the effectiveness of torque on the speed of DC Motor. It is clearly mentioned in the table that if the value of torque varies from 0.1 Nm to 1 Nm than the speed of DC motor decreased.
4.2.2 DC Series Motor Torque power characteristics with PLC

Characteristic result of torque power of DC series motor presented in table 6 and graphically present in figure 14. In this table respectively to observe the effectiveness of torque on the speed of DC Motor. It is clearly mentioned in the table that if the value of torque increased from 0.1 Nm to 1 Nm than the speed of DC motor decreased.

Table 5: DC Series Motor Torque Current characteristics with PLC

Torque (N·M)	V = 30 v	V = 35 v	V = 40 v	V = 45 v	V = 50 v
	Current (A)				
0	0.8	0.8	0.8	0.9	0.9
0.1	0.9	0.9	0.9	0.9	0.9
0.2	0.9	0.9	0.9	0.9	0.9
0.3	0.9	0.9	0.9	0.9	0.9
0.4	0.9	0.9	0.9	0.9	0.9
0.5	1	1	1.1	1.1	1.1
0.6	1.2	1	1.1	1.1	1.1
0.7	1.2	1.2	1.2	1.2	1.2
0.8	1.2	1.2	1.2	1.2	1.3
0.9	1.2	1.2	1.2	1.2	1.3
1	1.3	1.3	1.3	1.3	1.3

Fig 13: DC series Motor Torque vs. Current characteristics of with PLC
Table 6 Torque Power characteristics DC Series Motor with PLC

Torque (N·M)	V=30V	V=35V	V=40V	V=45V	V=50V
	Power (Watt)				
0	24	28	32	40.5	45
0.1	27	31.5	36	40.5	45
0.2	27	31.5	36	40.5	45
0.3	27	31.5	36	40.5	45
0.4	27	31.5	36	40.5	45
0.5	30	35	44	49.5	55
0.6	36	35	44	49.5	55
0.7	36	42	48	54	60
0.8	36	42	48	54	65
0.9	36	42	48	54	65
1	39	45.5	52	58.5	65

Fig14: DC Series Motor Torque vs. Power characteristics with PLC
Table 7 Comparison of Torque Speed characteristics DC Series Motor PLC with Armature Controller

Torque (N.m)	Speed (rpm)									
	V = 30v	V = 35v	V = 40v	V = 45v	V = 50v					
	With PLC									
0	1125	100	1440	120	1750	153	1980	173	2280	194
0.1	1065	982	1380	115	1690	152	1930	169	2265	170
0.2	1034	950	1336	113	1620	148	1890	165	2110	168
0.3	1000	880	1278	107	1555	132	1850	147	2080	159
0.4	968	870	1240	106	1510	130	1740	146	1960	158
0.5	924	850	1210	978	1470	115	1680	129	1910	140
0.6	886	800	1170	950	1400	114	1580	123	1703	138
0.7	868	670	1135	900	1340	104	1500	120	1680	125
0.8	852	650	1090	833	1290	100	1430	110	1660	123
0.9	809	630	1030	820	1280	935	1370	106	1600	122
1	770	594	1008	800	1222	900	1340	980	1530	115

4.3 Characteristics comparison of DC Series Motor with PLC and Armature Controller

A comparison between PLC and armature controller here is presented.

4.3.1 Comparison Torque vs. speed characteristics of DC Series Motor with PLC and Armature Controller

A comparison between torque and speed are shown in table 7 and graphically represented in figure 15.
Fig 15: Graphically representation of Torque and Speed of DC Series motor with PLC and Armature controller [5].

4.3.2 Characteristics Comparison of Torque vs. current of DC Series Motor with PLC and Armature Controller

Comparison between torque and current are shown in table 8 and graphically represented in figure 16.

Table 8 Comparison of Torque Current characteristics DC Series Motor PLC with Armature Controller

Torque (NM)	V =30v Without PLC	V =30v With PLC	V =35v Without PLC	V =35v With PLC	V =40v Without PLC	V =40v With PLC	V =45v Without PLC	V =45v With PLC	V =50v Without PLC	V =50v With PLC
0	0.8	0.8	0.7	0.8	0.7	0.8	0.7	0.9	0.7	0.9
0.1	0.8	0.9	0.8	0.9	0.8	0.9	0.8	0.9	0.8	0.9
0.2	0.8	0.9	0.8	0.9	0.8	0.9	0.8	0.9	0.8	0.9
0.3	0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.8	0.9
0.4	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
0.5	0.9	1	0.9	1	0.9	1.1	0.9	1.1	0.9	1.1
0.6	0.9	1.2	0.9	1.2	0.9	1.1	0.9	1.1	0.9	1.1
0.7	1	1.2	1	1.2	1	1.2	1	1.2	1	1.2
0.8	1	1.2	1	1.2	1	1.2	1	1.2	1	1.2
0.9	1	1.2	1	1.2	1	1.2	1	1.2	1	1.2
1	1	1.3	1	1.3	1	1.3	1	1.3	1	1.3
Fig 16: Graphically representation of Torque and Current of DC Series motor with PLC and Armature controller

4.3.3 **Comparison Torque power characteristics of DC Series Motor with PLC and Armature Controller**

Comparison between torque and current are shown in table 9 and graphically represented in figure 17.

Table 9 Comparison of Torque Power characteristics DC Series Motor PLC with Armature Controller

Torque (N-M)	Power	Without PLC	With PLC								
	V =30v	24	24	24.5	28	28	32	31.5	40.5	35	40
0.1	V =35v	24	27	28	31.5	32	36	40.5	40	40	45
0.2	V =40v	24	27	28	31.5	32	36	40.5	40	40	45
0.3	V =45v	24	27	31.5	31.5	36	36	40.5	40	45	45
0.4	V =50v	24	27	31.5	31.5	36	44	40.5	45	45	55
0.5	V =50v	27	30	31.5	35	36	44	40.5	49.5	45	55
0.6	V =50v	27	36	31.5	35	36	44	40.5	49.5	45	55
0.7	V =50v	30	36	35	42	40	48	45	54	50	60
0.8	V =50v	30	36	35	42	40	48	45	54	50	65
0.9	V =50v	30	36	35	42	40	48	45	54	50	65
1	V =50v	30	39	35	45.5	40	52	45	58.5	50	65
Fig 17: Graphically representation of Torque and Power of DC Series motor with PLC and Armature controller.

Figure 17 represents the relationship between power with respect to torque with and without PLC. At different voltages from 30 to 50 V as torque gradually increases from 0 NM to 1 NM power is increased.

5 Conclusion and Future Work

In this paper, the characteristics results of DC Series Motor have been obtained by using different controller techniques such as PLC and Armature controllers. In the above results and discussion, it can be easily understood that the best results are obtained by using PLC as compare to the armature controller.

By this research work, speed and torque of DC Motor can be controlled for laboratories and industrial applications.

This work can be further enhanced in the future in the following ways.

- It can be applied in industry.
- It is also used in an educational institute.
- An adaptive controller can be used for Motor control.
- Combined controlling techniques with PLC can be used to observe torque vs. speed characteristics.
- Matlab based Motor can be simulated for power drives and medical appliances.

References

[1] P. Malviya and M. Dubey, 2015, “Speed control of DC Motor a Review”, International Journal of Engineering Sciences and Research Technology, 4(8), pages 298-305.

[2] N. Tripathi, R. Singh and R. yadav, 2015, “Analysis of Speed Control of DC Motor –A review study”, International Research Journal of Engineering and Technology, 2(8).

[3] S. B. Kumar, M. H. Ali and A. Sinha, 2014, “Design and Simulation of Speed Control of DC Motor by Artificial Neural Network Technique”, International Journal of Scientific and Research Publications, 4(7).

[4] M. A. Koondhar, A. K. Junejo, A. S. Saand, and M. U. Keerio, 2016, “Speed Control of DC Series Motor with Conventional and PLC Techniques”, International Journal of Information Technology and Electrical Engineering, 4(5), pages 21-26.

[5] Koondhar, M.A, “Speed and Torque control of DC Series Motor by using PLC”, Master Thesis, 2016.
[6] V. Naveen and T. B. Isha, 2017 “ A low cost speed estimation technique for closed loop control of BLDC motor drive”, IEEE International Conference on Circuit, Power and Computing Technologies (ICCPCT), April 2017, pages 1-5.

[7] S. S. Keream, K.G. Mohammed and M.S. Ibrahim, 2018, “Analysis Study In Principles of Operation of DC Machine”, Journal of Advance Research in Dynamical and Control Systems, 10(2), pages 2323-2329.

[8] N. Chuang, T. J. Gale, and R. A. Langman, 2016, “Developing measuring inductance strategies on a direct current machine using a DC source with magnetic saturation”, International Journal of Circuit Theory and Applications, 44, pages 1094-1111.

[9] D. Rajesh and D. Ravikumar, S.K.Bharadwaj and B. K. S. Vastav, 2016, “Design and Control of Digital DC Drives in Steel Rolling Mills”, IEEE International Conference on Inventive Computing Technologies, 3, pages 1-5.

[10] H. T. H. Thabet and M. A. Qasim, 2016, “Measurement of a DC Series Motor Torque Based on PLC Techniques” Kufa Journal of Engineering, 7(1), pages 93-103.

[11] N. K. Nambisan and B. N. Sarkar, 2014, “Study of speed control of DC series motor using DC chopper”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3(8), pages 11116-11123.

[12] A. Mohammad and S. B. Billah, 2015, “Analysis of speed control of series DC motor using diverter and observation of speed saturation point”, International Conference on Electrical Engineering and Information Communication Technology, May 2015, pages 1-4.

[13] Mehta, V. K., and Mehta, R. (2008). Principle of electrical Machines. S. Chand.

[14] R. Radra and R. Banerjee, 2017, “ Modeling and Simulation of DC Motor Speed Regulation by Field Current Control Using MATLAB”, International Journal of Computer Electrical Engineering, 2(9), pages 502-512.

[15] B. L. Theraja and A. K. Theraja, 2017, Textbook of Electrical Technology Volume I, In SI System of Units. S. Chand, 2017.

[16] H. F. Frayyeh, M. A. Mukhilif, A.M. Abbood and S. S. Keream, 2019, “Speed control of direct current motor using Mechanical Characteristics”, Journal of Southwest Jiaotong University, 54(4).

[17] M.S. Saleh, K. G. Mohammed, Z.S. Al-Sagar and A. Z. Sameen, 2018, “Design and Implementation of PLC-Based Monitoring and Sequence Controller System”, Journal of Advance Research in Dynamical and Control Systems, 10(2), pages 2281-2289.

[18] J. R. Monfared, M. Fazeli and Y. Lotfi, 2015, “Design and PLC implementation for speed control of DC Motor using Fuzzy Logic”, Journal of Electrical and Computer Engineering Innovations, 3(2), pages 71-75.

[19] L. Guo P. Pecen, 2008, “Design projects in a programmable logic controller (PLC) course in electrical engineering technology”, In American Society for Engineering Education, 1(10), pages 1-10.

[20] K. Venkateswarlu and C. Chengaiah, 2014, “Comparative study on DC motor speed control using various controllers”, Global Journal of Research In Engineering.

[21] S. Sharma, S. S. Oberoi and S. Nair, 2014, “Speed Control Method OF DC series motor”, International Journal of Innovative Research in Technology, 1(6), pages 1450-1453.