Discovering the drivers of clonal hematopoiesis

Oriol Pich1,4, Iker Reyes-Salazar1, Abel Gonzalez-Perez1,2✉ & Nuria Lopez-Bigas1,2,3✉

Mutations in genes that confer a selective advantage to hematopoietic stem cells (HSCs) drive clonal hematopoiesis (CH). While some CH drivers have been identified, the compendium of all genes able to drive CH upon mutations in HSCs remains incomplete. Exploiting signals of positive selection in blood somatic mutations may be an effective way to identify CH driver genes, analogously to cancer. Using the tumor sample in blood/tumor pairs as reference, we identify blood somatic mutations across more than 12,000 donors from two large cancer genomics cohorts. The application of IntOGen, a driver discovery pipeline, to both cohorts, and more than 24,000 targeted sequenced samples yields a list of close to 70 genes with signals of positive selection in CH, available at http://www.intogen.org/ch. This approach recovers known CH genes, and discovers other candidates.
Clonal hematopoiesis (CH) is a condition related to aging across the human population1–9, driven by somatic alterations that appear in hematopoietic stem cells (HSGs) and confer them a selective advantage. It was recognized through cytogenetic studies in the 1960s and its genetic bases and prevalence with aging were first discovered through studies of non-random X chromosome inactivation in women10,11. In recent decades, genomic studies of thousands of donors without any hematologic phenotype identified CH causal somatic variants in genes known to be associated to hematopoietic malignancies, such as \textit{DNMT3A}, \textit{TET2}, \textit{ASXL1}, \textit{TP53}, \textit{JAK2} and \textit{SF3B1}12–15. The progeny of an HSC bearing mutations of one of these genes develops in a process of clonal expansion. The presence of CH, in turn, is known to be associated with other health risks, such as the development of hematopoietic malignancies or increased incidence of cardiovascular disease2,4,5,7,16.

The aforementioned human genomic studies, and more recent analyses16–22 have identified a list of CH-causing somatic variants. Nevertheless, their identification is hampered by the fact that the clonal expansion related to CH is rather modest, and therefore, it presents with low variant allele frequency (VAF). This has determined the development of two main strategies of detection of CH drivers. On the one hand, some projects with access to deep sequencing data of particular sites of the human genome (e.g., tumor panel sequencing) identify CH with exquisite sensitivity, but only if the causative variant overlaps with the sites sequenced14,16–18,20. On the other hand, whole-genome or whole-exome sequencing data has been exploited to identify blood somatic variants exploring the region of VAF below the one corresponding to germline variants13,21–23. This approach is thus only able to detect relatively large CH clones. One important caveat of both approaches is that not all genes affected by mutations across blood samples (even known cancer driver genes) are drivers of CH. Whereas sequencing more blood samples will lead to the identification of more recurrently mutated suspicious genes, many of them are prone to be passengers of this clonal expansion process.

Thus, an accurate and complete list of CH-related genes remains elusive to date. Completing it is essential to comprehensively identify CH in individuals, to ascertain their risk to complete our knowledge of the development of hematopoietic malignancies or increased incidence of cardiovascular disease2,4,5,7,16.

Results
Identifying somatic mutations in blood samples. We reasoned that low-coverage whole-genome sequencing of blood samples routinely carried out in cancer genomics projects may be repurposed to detect CH. To this end, we obtained the DNA sequences of blood and tumor samples (paired samples) from two large cancer cohorts. The first cohort comprised 3785 paired samples obtained from metastatic solid cancer patients (metastasis cohort) sequenced at the whole-genome level27. The second included 8530 paired samples collected from primary solid tumor patients (primary cohort) sequenced at the whole-exome level28. In both cohorts, we focused only on donors with solid tumors because in hematopoietic malignancies a full clonal expansion associated with the cancer is present in the blood sample.

Although possible, the identification of somatic mutations in the blood samples taken from the donors of these cohorts is extremely challenging due to the low coverage employed to sequence them. In this scenario, subclonal mutations are hard to distinguish from random sequencing errors. Moreover, germline variants may be falsely called somatic if a somatic mutations calling is carried out on the blood sample alone. We reasoned that this problem could be overcome using the second (tumor) sample taken from the same patient as a reference of their germline genome. A comparison of the variants identified in the blood sample and the tumor sample with respect to the human reference genome would then reveal the somatic mutations specific to hematopoietic cells (Fig. 1a).

We thus-inspired by a previous approach to identify early mutations in the development of the hematopoietic system30–32 implemented a pipeline to systematically carry out this “reverse” somatic mutation calling on the paired samples of the two cohorts (Fig. 1b; Supp. Figure 1a; Supp. Note 1). First, blood mutations are identified using a somatic mutation caller widely employed in cancer genomics studies31, and a set of filters are applied to guarantee that these are true somatic mutations rather than germline variants or random sequencing errors. In the metastasis cohort, this yields ~1 million candidate whole-genome somatic mutations across 3785 blood samples. We call this the full catalog of somatic mutations. Two further filtered sets are obtained applying one of two criteria (Fig. 1b): mutations also identified by a second widely-employed somatic caller32 (mutect catalog), or mutations also identified as likely somatic by MosaicForecast, an algorithm trained for this task using phased mutations33 (mosaic catalog; Supp. Figure 1b). Importantly, the reverse calling approach empowers the detection of variants in known CH genes at values of VAF unattainable by a typical calling of germline variants (hereafter, germline calling) on a single whole-genome sequenced blood sample (Fig. 1c). Taking as example three well known CH drivers (\textit{TET2}, \textit{DNMT3A} and \textit{ASXL1}), more than 30% of all mutations identified by the reverse calling are missed by a germline calling. Across 15 well-known CH driver genes34 37% of all variants are identified by the reverse calling, but missed by the germline calling. More importantly, 91% (1566 out of 1714) of all variants that the germline calling would identify across these genes are likely not somatic, as evidenced by the fact that they are not identified by the reverse calling (Fig. 1c). These two comparisons highlight that the reverse calling attains higher sensitivity and specificity in the identification of blood somatic mutations than the germline calling.

Somatic mutations in blood samples show evidences of clonal hematopoiesis. Only variants shared by enough blood cells–those that derive from the clonal expansion underlying CH– are expected to appear above the limit of detection of the sequencing. Therefore, the detection of these somatic mutations through the
reverse calling approach is an evidence of CH in the samples of both cohorts (Fig. 1b and Supp. Figure 1a).

We expect that these mutations exhibit a tri-nucleotide profile characteristic of variants spontaneously appearing as HSCs divide.35 The identification of mutational signatures active in the blood samples of the metastatic cohort yielded 6 distinct profiles. Some of these are similar to signatures previously associated with sequencing artifacts (Supp. Figure 1c, d; Supp. Data file 1). Nevertheless, the most pervasive mutational signature in the cohort shows a profile that is virtually identical (cosine similarity = 0.96) to that of the known hematopoiesis signature (Fig. 1d). This constitutes further evidence that a set of somatic mutations contributed by hematopoiesis are present across these healthy blood samples. Moreover, it is further indication that CH is present across at least some of the donors.

We also expect that blood somatic mutations contributed by HSC divisions increase with the age of the donors35,37. First, the chance of appearance of a CH mutation (a mutation affecting a CH driver), and in consequence the chance of the expansion of a HSC clone, increases with age. Second, the number of hematopoietic mutations in this HSC clone founder (which become amplified due to the clonal expansion), also increases with age, because hematopoietic mutations are acquired at a steady rate with every HSC division. Third, the longer the time elapsed between the beginning of the clonal expansion and the obtention of the sample (which naturally increases with the age of the donors), the greater the number of somatic mutations that are likely to be present in the sample. Finally, we also expect that blood somatic mutations contributed by HSC divisions increase with the age of the donors35,37.
Discovery of clonal hematopoiesis drivers. We reasoned that, as is the case in the clonal expansion related to tumorigenesis, the mutational patterns of CH-associated genes should exhibit signals of positive selection across donor blood samples. Therefore, methods that have been developed to identify these signals of positive selection in cancer could be applied to somatic mutations in blood samples to identify the genes with significant deviations from their expected patterns of mutations under neutrality. Anchored in these methods, cancer genomics researchers have set the goal of uncovering the compendium of cancer driver genes. Analogously, exploiting these methods empowers us to open a roadmap to the compendium of CH driver genes.

To test this concept, we applied the IntOGen pipeline (which runs seven state-of-the-art driver discovery methods and combines their results) to blood somatic mutations in the primary and metastatic cohorts (Fig. 2a). We filtered out blood somatic mutations with VAF above 0.4, to minimize the risk that falsely called mutations enter the discovery process (Supp. Note 1). Each of these methods identifies one or more signals of positive selection (e.g., abnormally high recurrence of mutations, unexpected clustering of mutations in certain regions of the gene, or exceptionally high functional impact of the observed mutations) in the mutational pattern of genes across samples (Fig. 2a and Supp. Note 1). False positive genes identified by a particular method are filtered out by the combination of their outputs through a voting-based approach. Finally, 15 genes that are significant according to the combination approach are filtered out as they are deemed suspicious after a careful vetting that considers gene expression across HSCs, somatic hypermutation processes, common sequencing artifacts and frequent false positive genes of the driver discovery process (Supp. Note 1).

We also applied the IntOGen pipeline to the somatic mutations identified across 24,146 targeted-sequenced paired blood/tumor samples (targeted cohort) in which a mutation calling filtering variants in common with the tumor sample was carried out (Supp. Note 1). The lists of CH drivers are composed of 26 genes identified in the metastasis cohort, 21 genes from the primary cohort, and 43 in the targeted cohort (Fig. 2b; Supp. Data file 1 and 2). All fifteen well-known CH-related genes, obtained from Fuster et al. (CH known drivers) are identified. Validation of the involvement of 26 other genes (such as ATM and CHEK2) comes from the fact that they have been identified as drivers of hematopoietic malignancies (Fig. 2b). We did not find previous reports of involvement of the remaining 23 genes, some of which (e.g., ABL2, FOXP1 and TP63) are known cancer drivers, in CH. Nevertheless, several lines of evidence gathered across the literature (summarized in Supp. Data file 2) support the involvement of the majority of them in CH. We – as others
before– observe an important overlap between CH drivers and known cancer drivers. Mutations affecting these genes and conferring mutant HSCs a growth davantage are likely to be under positive selection in CH development, similarly to their role in tumorigenesis. While much less is known of the potential role of purifying selection in the evolution of CH, a recent report suggests that it is probably not negligible51.

In summary, the identification of signals of positive selection in the pattern of somatic mutations of the genes across blood samples of individuals without hematologic disease is an effective way to discover CH-related genes, it recovers most known CH genes and has the power to discover others. This compendium–the snapshot presented in this work–comprises the genes identified across the primary, the metastasis and the targeted cohorts and is available in Supplementary Data file 2 and through https://www.intogen.org/ch.

The drivers of clonal hematopoiesis. To characterize the discovered CH-related genes, we probed the association of their mutations with several physiological and clinical variables relevant to the development of CH (Fig. 3a, b). As previously reported17, across patients in the metastasis cohort, we found that the emergence of CH is positively influenced by age and by the exposure to cytotoxic (but not non-cytotoxic) anticancer treatments (Fig. 3a). This positive association with age is maintained when mutations in CH-related genes that are not in the list of well-known CH drivers across the primary cohort are analyzed as a group (Supp. Figure 2a)–and some of them, individually–, supporting the involvement of these genes in the development of age-related CH. We also recapitulated the prior knowledge that mutations in certain genes, such as PPM1D and CHEK2 are positively associated with prior exposure to platinum-based drugs (Fig. 3b). Indeed, mutations in a group of three DNA-damage response genes (TP53, PPM1D, CHEK2) appear significantly associated with the exposure to platinum (Fig. 3b), probably because HSCs carrying them possess a better chance at survival than others when exposed to these DNA-damaging chemotherapeutics52. When the representation of cancer types across donors in the primary cohort is taken into consideration, a strong significant relationship between thymomas and CH cases is apparent. This could be related with the appearance of autoimmunity mediated by the clonal expansion of T-cells that is observed in thymomas52. A weaker negative association with cases of breast and bladder cancer is also observed. In any event, the detection of CH showed no significant association with the majority of malignancies represented in the primary cohort (Supp. Figure 2b), indicating that CH frequency in this cohort likely reflects the underlying risk of CH in the general population. There are no apparent differences in the distribution of VAF of the somatic mutations affecting known CH drivers, known myeloid drivers and other putative CH drivers across the primary and metastasis cohorts (Supp. Figure 2c).

We then asked whether the pattern of CH-related mutations of known cancer genes differ from that of their oncogenic counterparts (Fig. 3c and Supp. Figure 3a). In the case of DNMT3A, one of the main hotspots of CH-related mutations (affecting residue 882) also appears recurrently mutated across tumors, while two other hotspots (residue 635 and 736) seem to be more specific to CH. In the case of TP53 mutations in both CH and cancer cases appear clustered within the DNA binding domain. The distribution of mutations of PPM1D is very similar across CH and cancer cases. In both scenarios, PPM1D truncating mutations close to the C-terminal yield a protein product lacking a degron, which is thus abnormally stable and results in the down-regulation of DNA-damage response and the proliferation of cells in the presence of such damage53. Mutations across CH and cancer cases are also very similarly distributed along the gene in the case of MYD88 (with one dominant hotspot), but their distributions differ in IDH2. The pattern of mutations observed in these CH genes across the primary and metastasis cohorts resembles those obtained across the targeted cohort (Supp. Figure 4a). The distribution of mutations along the sequence of other genes in the compendium is shown in Supplementary Figure 3a.

While many CH drivers exhibit similar frequency of truncating mutations across both CH and myeloid cancer cases, in some, a clear enrichment (TET2, PPM1D) or depletion (NOTCH1, ARID2) of truncating mutations is observed across CH (Fig. 3d). Interestingly, the rate of truncating mutations in CH driver genes across donors of the primary and metastatic cohorts is very similar to that observed in the targeted cohort (Supp. Figure 4b).

The case of NOTCH1, mutations of which are related with the development of hematopoietic malignancies, such as ALL and CLL, could indicate that different selective constraints underlie the development of CH and these malignancies54. (The low share of truncating mutations of NOTCH1 is observed across the three cohorts analyzed; Supp. Figure 4b.) Overall, the observed differences between CH and cancer may have their origin not only in different evolutionary constraints in the development of both processes, but also in the disparate array of mutational processes active in healthy blood and tumors.

Detecting clonal hematopoiesis across ~12,000 donors. We then identified all patients across the primary and metastasis cohorts with a potential protein-affecting somatic mutation in one or more genes in the compendium of CH drivers (Fig. 4a). The rate of mutations of the most frequently mutated CH genes varies between both cohorts (Fig. 4b), likely reflecting differences in mutational processes and evolutionary constraints related to CH emergence. The most frequent mutational hotspots affect JAK2 and DNMT3A (Fig. 4c). Interestingly, while more than three-quarters of the patients with mutations affecting CH drivers across both cohorts present only one mutation affecting a CH gene, more than one are identified in 18% (Fig. 4d). These co-occurring mutations affect some CH-related genes more frequently (Fig. 4e; Supp. Fig. 5a) with FOXP1, SF3B1 and PPM1D among the genes with most frequent co-mutations.

The range of VAF of the mutations in these genes reveals a wide spectrum of clonal expansion across CH cases (Supp. Fig. 5b). The rate of hematopoiesis mutations –that is, the activity of the hematopoiesis mutational signature– per year of age detected in patients with an identified mutation in a CH-related gene is significantly greater than that detected across patients without an identifiable CH-related mutation (Fig. 4f; Supp. Fig. 5c). The explanation for this finding is that hematopoietic mutations are more likely to appear above the threshold of detection of bulk sequencing the greater the CH clone. In samples carrying a mutation in a bona fide CH driver, it is more likely that this clone has expanded enough to identify a set of hitchhiking mutations through the reverse calling. Conversely, among samples without a CH-related mutation it is more likely that the clone is smaller or not present at all (detected hematopoietic mutations may be false positives of the reverse calling). In either case, the number of identified mutations is expected to be smaller across these patients.

We then set out to detect all CH cases across the metastasis (Fig. 4g) and primary cohorts (Supp. Fig. 5c–e). First, we determined that 141 CH cases in the metastasis cohort would be detected just by identifying somatic variants affecting genes in the list of 15 known CH drivers on the bases of the blood germline calling (4% of the patients in the metastasis cohort).
Using the reverse calling to identify somatic variants affecting these genes would add 99 CH cases (ascending to 7% of the total number). The addition of all CH-related genes to the compendium in this paper identifies 110 further CH cases (up to 10%), with 59 (ascending to 11%) more added if the set of CH driver genes identified across the targeted cohort is also considered.

Across donors in the primary cohort, 27% are detected as CH cases following the same criteria (Supp. Fig. 5d,e).

Finally, we assumed that any sample with a rate of hematopoiesis mutations per year above the median of the distribution of values observed for samples carrying CH-related mutations is a case of CH, even in the absence of identified driver
Fig. 3 The drivers of clonal hematopoiesis. a Logistic regression showing the relationship between several factors and the development of CH across 3121 donors with treatment annotation in the metastasis cohorts. For this analysis, a donor is considered to suffer CH if they bear a nonsilent mutation in a CH gene discovered in the analysis of the primary and/or metastasis cohorts. The age of the donors in these cohorts as well as their prior exposure to cytotoxic therapies significantly increase their likelihood of presenting clonal hematopoiesis. The bars represent the 95% confidence interval of the regression coefficients. P-values correspond to the results of the logistic regression. b Logistic regression showing the relationship between the presence of mutations in several genes and the prior exposure of donors in the metastasis cohort to platinum-based therapies across 3121 donors with treatment annotation in the metastasis cohort. Mutations in CHEK2 and PPM1D are significantly more likely detected across platinum-exposed donors. The bars represent the 95% confidence interval of the regression coefficients. P-values correspond to the results of the logistic regression corrected by multiple tests carried out separately for different treatments. c Distribution of blood somatic mutations affecting seven genes selected from the CH drivers compendium across donors of the primary and metastasis cohorts (above the horizontal axis) in comparison to those observed in the same genes across 28076 tumors analyzed by the IntOGen resource25 (below the horizontal axis). d Relationship between the fraction of truncating variants identified in genes with 10 or more mutations across blood samples in the primary and metastasis cohorts and across several cohorts of tumors25. The mutations in tumor samples have been obtained from the IntOGen resource. The p-value corresponds to the Pearson’s correlation coefficient. Source data for panels a, b, c, and d are provided as Source Data files.

The main contribution of this work to the study of CH is the demonstration that cancer donor cohorts may be successfully repurposed—using tools developed for cancer genomics—to unbiasedly identify CH driver genes. First, we demonstrate that the existence of a second non-blood sample of the same donor refines the identification of somatic mutations in a blood sample, even if this is sequenced at low depth. The reverse calling implemented and tested here identifies blood somatic mutations with more sensitivity (across all discovery CH drivers) and more specificity (owing to the tumor paired sample) than a regular germline calling on a single blood sample, as done by previous studies22. (Importantly, the identification of mutational signatures active in a blood sample that may be the result of sequencing artifacts calls to caution when interpreting these blood mutations.) Second, we show that CH-related genes may be systematically and unbiasedly identified through the repurposing of tools aimed at identifying genes under positive selection in tumorigenesis.

The compendium of CH drivers that the combination of these two elements brings within reach will improve the identification of CH across healthy individuals. Importantly, some CH cases may be driven by noncoding mutations. Whole-genome sequenced blood samples could in principle be employed to identify such non-coding driver mutations. This is not an easy task, as demonstrated by the search for non-coding cancer driver events55,56. The possibility is nevertheless opened by the reverse calling demonstrated here to set out to identify signals of positive selection in the observed pattern of mutations of different non-coding genomic elements. This is demonstrated with the results of OncodriveFML42, MutSigCV_NC56 and DriverPower57 on mosaic mutations in non-coding genomic elements (Supp. Fig. 6a and Supp. Data file 3). The results of such analyses need to undergo a rigorous vetting process, as the distribution of mutations under neutrality in non-coding regions is still very difficult to model58. Alternatively, the functional effect of mutations overlapping particular non-coding regulatory elements, such as the binding site of a transcription factor in an enhancer element, may be assessed. For example, Supplementary Figure 6b illustrates the potential disruption of a binding site for RARA in an enhancer element regulating TET2 according to geneHancer59. Supplementary Figure 6c (see more examples in Supp. Data file 4) presents the potential creation of a SALL4 binding site in an enhancer regulating the expression of GNAS.

Discussion

The extent of CH across patients with no known hematologic phenotype is currently not well gauged, although population studies have revealed that it is probably higher than anticipated a few years ago2,3,13,14,16,21,22. Understanding this extent and comprehensively identifying CH across healthy individuals is key to predicting potential future health hazards. One stepping stone in this path is the identification of all genes with mutations capable of driving CH. Moreover, the identification of all CH-related genes is a requisite to understanding the mechanisms behind this process and its relationship with disease conditions, as has been done for mutations affecting chromatin remodelling and DNA damage response genes classically associated with the condition2,16,17,55. In this regard, the discovery of CH-related genes across populations of various ethnicities and with different lifestyles, will allow us to understand the different constraints faced by hematopoietic cells in their evolution.

mutation (Fig. 4f). Thus, 562 (totalling 15%) blood samples in the metastasis cohort with no detectable CH-related mutations exhibit a rate of hematopoietic mutations comparable to that of samples with a mutation in a bona fi de CH driver (Fig. 4g). We reasoned that at least some of these CH cases—with an appreciable clonal expansion—could be driven by mutations affecting yet unidentified CH drivers or may have resulted from expansion of HSCs due to non-genetic mechanisms.

Still, some CH cases may be driven by noncoding mutations. Whole-genome sequenced blood samples could in principle be employed to identify such non-coding driver mutations. This is not an easy task, as demonstrated by the search for non-coding cancer driver events55,56. The possibility is nevertheless opened by the reverse calling demonstrated here to set out to identify signals of positive selection in the observed pattern of mutations of different non-coding genomic elements. This is demonstrated with the results of OncodriveFML42, MutSigCV_NC56 and DriverPower57 on mosaic mutations in non-coding genomic elements (Supp. Fig. 6a and Supp. Data file 3). The results of such analyses need to undergo a rigorous vetting process, as the distribution of mutations under neutrality in non-coding regions is still very difficult to model58. Alternatively, the functional effect of mutations overlapping particular non-coding regulatory elements, such as the binding site of a transcription factor in an enhancer element, may be assessed. For example, Supplementary Figure 6b illustrates the potential disruption of a binding site for RARA in an enhancer element regulating TET2 according to geneHancer59. Supplementary Figure 6c (see more examples in Supp. Data file 4) presents the potential creation of a SALL4 binding site in an enhancer regulating the expression of GNAS.
Fig. 4 Clonal hematopoiesis across 12,000 donors. a Blood somatic mutations in the 20 most recurrently mutated genes in the compendium across the metastasis (top) and primary (bottom) cohorts. b Frequency of mutation of CH drivers across the metastasis and primary cohorts. c The 16 most recurrently mutated hotspots in genes in the CH drivers compendium. d Number of donors in the two cohorts with mutations in one or more CH drivers. e Frequency of co-occurring mutations in genes in the CH drivers compendium. f Distribution of the rate of hematopoietic mosaic mutations per year (total number of HSC mutations divided by age) across (left) donors bearing a mutation in genes discovered across the primary or metastasis cohorts; fourth, donors with mutations in CH genes discovered in the targeted cohort; excluding outliers. The two distributions were compared using the two-tailed Wilcoxon-Mann-Whitney test. f Distribution of the rate of hematopoietic mosaic mutations per year (total number of HSC mutations divided by age) across (left) donors bearing a mutation in genes discovered across the primary or metastasis cohorts; fourth, donors with mutations in CH genes discovered in the targeted cohort; excluding outliers. The two distributions were compared using the two-tailed Wilcoxon-Mann-Whitney test. g Number of donors (above the bars) in the metastasis cohort with clonal hematopoiesis recognizable using different criteria (cumulative bars). First, donors with mutations (detected in the germline calling) in any of the 15 known CH genes; second, donors with variants in known CH genes identified in reverse calling; third, donors with mutations in CH genes discovered across the primary or metastasis cohorts; fourth, donors with mutations in CH genes discovered in the targeted cohort; fifth, donors with no mutation in any gene within the compendium of CH drivers, but with more hematopoiesis mutations per year of age of the donor than the median rate of hematopoiesis mutations across donors in the four previous groups. Source data for panels a, b, c, d, e, f and g are provided as Source Data files.
now makes possible to undertake. Importantly, the fact that some CH genes reported in the compendium are not common across hematopoietic malignancies suggests that at least in some cases, CH and hematopoietic tumors may present totally different evolutionary paths. Still, CH cases underpinned by mutations in these genes may have known (e.g., cardiovascular disease or hypertension) or novel long-term effects on the health of carriers. The unbiased snapshot of the compendium of CH drivers identified has a series of implications for both CH and cancer research. It may be directly employed in the research of the molecular mechanisms underlying CH in different scenarios. The list of 64 genes discovered can also be employed to refine the identification of the condition across human donors. Such donor-wise identification of CH would require the analysis of a single blood sample, identifying variants affecting the genes in the compendium. An important warning arising from this work is that not all blood mutations affecting cancer driver genes play a role in CH. Thus, the results from sequencing panels that include mutations without signals of positive selection in CH need to be carefully interpreted. In the cancer research field, our results support the idea that sequencing cell-free DNA isolated from blood samples with the aim of identifying tumor mutations in circulating genetic material may produce false-positive results caused by the detection of CH mutations62,63.

Whereas the compendium of CH drivers is a prerequisite for the detection of CH across individuals, a second necessary step consists in evaluating the capability of individual mutations in CH drivers to provide a selective advantage to HSCs. If only mutations with experimentally validated effect on CH or identified through epidemiological studies are considered as CH drivers, the prevalence of CH is underestimated. On the other hand, taking into consideration all mutations affecting CH drivers probably leads to an overestimation of CH. We envision that the approach of in silico saturation mutagenesis of genes involved in tumorigenesis recently developed by us will become useful in this task.64

Methods

Sequences of samples from the primary and metastasis cohorts. The sequences of solid tumors and their paired blood samples (BAM files) were obtained from the Genomic Data Commons (GDC; https://portal.gdc.cancer.gov) portal upon dbGAP request (phs000178.v11.p8 dataset; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000178.v11.p8) for the primary cohort (N = 8530) and from the Hartwig Medical Foundation (HMF) (https://www.hartwigmedicalfoundation.nl) repository, upon request to HMF for the metastatic cohort (N = 3785).

HMF genome calling. The germline variant calls carried out using the HaplotypeCaller64 for the metastasis cohort were obtained as part of the HMF dataset35. All mutations, independently of the quality filters, were used to compare the sensitivity of this germline calling with the reverse calling developed in the paper (see below). This produces very conservative estimations.

Detecting somatic mutations in blood samples across the primary and metastasis cohort (reverse calling). The variant calling was carried out using the Google Cloud Platform (metastasis cohort) and our in-house computer cluster (primary cohort). Briefly, the matched blood and tumor BAM files–masked and deduplicated using GATK60–of 3785 whole-genome samples (metastasis cohort) and 8530 whole-exome sequenced samples (primary cohort) were obtained as described above. The variant calling was carried out using Strelka231 (employing default parameters) with the blood sample as the tumoral input and the tumor sample as control (reverse calling). In the case of patients with more than one tumor sample, one of them was randomly selected and included in the calling. All variants with two or more supporting reads matching the caller PASS filter and with VAF < 0.5 were kept. Mutations in lowly mappable regions as defined by the DUST algorithm67 (K = 30) and UMATA68 (36-kmers) were excluded. Contiguous variants were merged into double-base substitutions. Variants with greater frequency across the cohorts than the DNM73A R882H or JAK2 V617F hotspot in a cohort-specific Panel of Normals, or PoN (obtained from GDC and HMF for the primary and metastasis cohorts, respectively) and in gnomAD69 V2.1 were removed. This was equivalent to discarding variants present in these datasets with a minor allele frequency greater than 0.002 in PoN TCGA, 0.008 in PoN HMF and 0.0003 in gnomAD v2.1. Additionally, common SNPs defined by the snps135k and UCSC track60 and dBSNP64 were excluded. Mutations with within segmental duplications, simple repeats and masked regions as defined in UCSC tracks were also removed. Finally, samples with the mutation count above the 97.5 percentile of the mutation burden across the cohort were deemed unreliable and excluded for further analyses. We call the set of variants obtained after the application of these filters the full set.

Two more conservative subsets were generated from the full set in the primary and metastasis cohorts. The first (mutect set) comprises only variants that were also identified by Mutect230 (only for the metastasis cohort). Mutect2 was executed with the following parameters: gatk –java-options -Xmx4g Mutect2 -R {} -I {} -tumor {} -I {} -normal {} --germline-resource {} --panel-of-normals {} -L {} -O {} --QUIET

The MergeMutectStats and FilterMutectCalls commands were then run subsequently.

Blood somatic mutations in targeted-sequenced samples. Somatic blood mutations identified across 24,146 targeted-sequenced blood samples17 were directly obtained from cBioportal (https://www.cbioportal.org)72.

Detection of mutational signatures. To identify mutational signatures active in the metastasis cohort, we employed the mosaic set and applied a non-negative matrix factorization approach73, using the SigProfilerRufia (bitbucket.org/bbglab/sigprofiler-rufia) implementation prepared in our lab53 of the algorithm developed by Alexandrov et al.73. Only samples with more than 100 mutations were included in the analysis. The resulting signatures were then compared to the PCAWG COSMIC V36 catalog using the cosine similarity measure. No signature was extracted from the mutations identified in the primary (exome-sequenced) cohort due to their low number.

Whole-genome somatic variants of 23 blood samples from healthy donors of different ages were obtained upon request to the authors of Osorio et al.31. The Hematopoietic Stem Cell Signature (HSC signature) was computed as the average number of mutations observed across the 23 healthy blood samples in each of the 96 tri-nucleotide channels normalized by the total number of mutations observed.

Discovering the compendium of CH drivergenes. The discovery of genes with signals of positive selection was carried out using the IntOGen pipeline55. Briefly, the IntOGen pipeline implements seven complementary methods to identify signals of positive selection in the mutational pattern of genes and integrates their outputs. The pipeline first pre-processes the somatic mutations across samples to filter out hypermutator samples, map all mutations to the GRCh38 assembly of the human genome and retrieve information necessary for the operation of the seven driver detection methods. Then, the methods are executed and their outputs combined using a weighted voting approach with weights adjusted depending on the credibility awarded to each method. Finally, in a post-processing step, spurious genes that result from known artifacts are automatically filtered out (see Supp. Note 1). The version of the pipeline used in this study is described at length at www.intogen.org/faq and in Martínez-Jiménez et al.34.

The IntOGen pipeline was run on the full set, the mutect set (metastasis cohort) and the mosaic set of mutations independently. Subsequently, genes that were identified as having signals of positive selection only in the full set were required to possess extra evidence (either identified by the pipeline run on a filtered set, or included within the Cancer Gene Census50 to be included in the final list. To compare CH-related genes according to this unbiased discovery to the prior knowledge on the genetics of this process, we used i) a list of genes involved in CH (ground truth of known CH genes34), ii) genes known to drive myeloid malignancies17,21, and iii) all genes annotated in the Cancer Gene Census50. Only a subset of the methods (capable of building a background mutations model from the set of exome probes in the panel) were run on the set of somatic mutations identified in the blood samples of the targeted cohort. OncodriveCLUSTL, OncodriveML, dNdScv (without genome-wide mutation rate covariates, as in ref. 77), and HotMaps were run through the IntOGen pipeline, and their individual outputs collected. Significant genes (with a FDR cutoff of 0.01) in the analysis of any method (that is, a union of the lists) were considered CH drivers in this cohort. The final snapshot of the compendium of CH driver genes was integrated by the union of the lists of genes identified across the three cohorts.

Identification of blood samples with clonal hematopoiesis. To identify individual donors in the metastasis cohort with clonal hematopoiesis, we considered all mutations that putatively affected the protein sequence of any gene discovered as CH-related across the cohort in the present study (separated in the different
categories presented in Fig. 4g). We then computed the median rate of hematopoiesis mutations per year of age across the blood samples of these donors. All donors with no mutation in a discovery CH gene but with a rate of hematopoiesis mutations per year of age greater than this median value were also considered as CH cases (the final group in Fig. 4g).

Logistic regressions. Inspired in a previous work17, we used multivariable logistic regression to assess the association between clonal hematopoiesis and therapy, age, and gender. We also used it to compute the association between tumors in specific genes (or groups thereof) and the exposure of donors to specific chemotherapy drugs. Multiple test correction (Benjamini-Hochberg FDR) was used for gene-specific analyses.

Identifying expressed CH-related genes. We computed the distribution of the expression of each gene across bone marrow CD34+ cells obtained from The Gene Expression Omnibus (GSE96811)79. These cells are phenotypically the closest to the HSCs. We deemed a gene expressed across the cells when the maximum value of its distribution was above 15 fpkm.

Comparison of blood somatic mutations with tumor mutations. The distribution of mutations in CH driver genes observed across blood samples from the primary and metastasis cohorts was compared to that observed across hematopoietic malignancies in IntOGen35. ClinV variant pathogenic and likely pathogenic variants were obtained from ref.77.

Non-coding blood somatic variants in CH. Three state-of-the-art methods designed to detect positive selection in the mutational patterns of non-coding genomic elements (OncodriveFML34, DriverPower29, MutSigCV29) were run with default parameters. The non-coding genomic elements were obtained from the PanCancer Analysis of Whole Genomes (PCAWG)36. A FDR cutoff of 0.2 was applied.

The set of transcription factor (TF) binding motifs was obtained from ref.79. Models with A,B and C qualities were kept. Only TF expressed in CD34+ cells according to GSE96811 were allowed in the analysis. H3K27ac ChIP data for CD34+ samples was obtained from ENCODE77. Enhancer element coordinates, as well as their defined target genes, were retrieved from geneHancer26 via the UCSC genome browser. Briefly, mutations intersecting with H3K27ac peaks and an enhancer defined by geneHancer were expanded 15 bp upstream and downstream. Then, using FIMO80 the binding affinity of these sequences was determined for both the mutant and the reference allele. When the significance of the binding was less than 6.0001 in the reference but not in the mutant, we labeled the instance as disruption (and creation, if the case is the opposite). We retained only results for which the gene closest to the disruption/creation of a TF is a CH driver.

Visualization of the genomic context of the mutations represented in Supplementary Figure 6 was performed using pyGenomeTracks81.

References

1. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. *Science* **366**, eaan673 (2019).

2. Bowman, R. L., Busque, L. & Levine, R. L. Clonal Hematopoiesis and Evolution to Hematopoietic Malignancies. *Cell Stem Cell* **22**, 157–170 (2018).

3. Busque, L., Buscaret, M., Mollica, L. & Levine, R. L. Concise Review: Age-Related Clonal Hematopoiesis: Stem Cells Tempting the Devil. *STEM CELLS* **36**, 1287–1294 (2018).

4. Libby, P. et al. Clonal Hematopoiesis: Crossroads of Aging, Cardiovascular Disease, and Cancer. *JACC Review Topic of the Week. J. Am. Coll. Cardiol.* **74**, 567–577 (2019).

5. Jaiswal, S. Clonal hematopoiesis and nonhematologic disorders. *Blood* **136**, 1606–1614 (2020).

6. Warren, J. T. & Link, D. C. Clonal hematopoiesis and risk for hematologic malignancy. *Blood* **136**, 1599–1605 (2020).

7. Jaiswal, S. & Libby, P. Clonal hematopoiesis connecting ageing and inflammation in cardiovascular disease. *Nat. Rev. Cardiol.* **17**, 137–144 (2020).

8. Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal hematopoiesis. *Science* **367**, 1449–1454 (2020).

9. Papa, V. et al. Translating Evidence from Clonal Hematopoiesis to Cardiovascular Disease: A Systematic Review. *J. Clin. Med.* 9, 2480 (2020).

10. Busque, L. et al. Recurrent Somatic TET2 Mutations in Normal Elderly Individuals With Clonal Hematopoiesis. *Nat. Genet.* **44**, 1179–1181 (2012).

11. Busque, L. et al. Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. *Blood* **88**, 59–65 (1996).

12. Liggert, L. A. & Sankaran, V. G. Unraveling Hematopoiesis through the Lens of Genomics. *Cell* **182**, 1384–1400 (2020).

13. Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. *N. Engl. J. Med.* **371**, 2488–2498 (2014).

14. Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. *Nat. Commun.* 7, 12484 (2016).

15. Shloush, I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. *Nature* **506**, 328–333 (2014).

16. Coombs, C. C. et al. Therapy-Related Clonal Hematopoiesis in Patients with Non-hematologic Cancers Is Common and Associated with Adverse Clinical Outcomes. *Cell Stem Cell* **21**, 374–382.e1 (2017).

17. Bolton, K. L. et al. Cancer therapy shapes the fitness landscape of clonal hematopoiesis. *Nat. Genet.* **52**, 1219–1226 (2020).

18. Mouhieddine, T. H. et al. Clonal hematopoiesis is associated with adverse outcomes in multiple myeloma patients undergoing transplant. *Nat. Commun.* **11**, 2996 (2020).

19. Chen, S. et al. Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathways. *Nat. Commun.* **10**, 5649 (2019).

20. Midic, D. et al. Prevalence and dynamics of clonal hematopoiesis caused by leukemia-associated mutations in elderly individuals without hematologic disorders. *Leukemia* **34**, 2198–2205 (2020).

21. Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. *Blood* **130**, 742–752 (2017).

22. Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. *Nat. Med.* **20**, 1472–1478 (2014).

23. Genovese, G. et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood DNA Sequence. *N. Engl. J. Med.* **371**, 2477–2487 (2014).

24. Bailey, M. H. et al. Comprehensive Characterization of Cancer Driver Genes Discovered in Tumors. *Cell* **173**, 371–385.e18 (2018).

25. Martínez-Jiménez, F. et al. A compendium of mutational cancer driver genes. *Nat. Rev. Cancer* **20**, 555–572 (2020).

26. Campbell, P. J. et al. Pan-cancer analysis of whole genomes. *Nature* **578**, 82–93 (2020).

27. The Cancer Genome Atlas Research Network et al. The Cancer Genome Atlas Pan-Cancer analysis project. *Nat. Genet.* **45**, 1113–1120 (2013).

28. Elliott, K. et al. Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines. *Cell Sys.* **6**, 27–281.e7 (2018).

29. Prietl, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. *Nature* **575**, 210–216 (2019).
30. Ju, Y. et al. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature 543, 714–718 (2017).
31. Kim, S. et al. Strickler2: fast and accurate calling of germline and somatic variants. Nat. Methods 15, 591–594 (2018).
32. Benjamin, D. et al. Calling Somatic SNVs and Indels with Mutect2. bioRxiv 861054 https://doi.org/10.1101/861054 (2019).
33. Dou, Y. et al. Accurate detection of mosaic variants in sequencing data without matched controls. Nat. Biotechnol. 38, 314–319 (2020).
34. Fuster José, J. & Kenneth, Walsh Somatic Mutations and Clonal Hematopoiesis. Circ. Res. 122, 523–532 (2018).
35. Osiro, F. G. et al. Somatic Mutations Reveal Lineage Relationships and Age-Related Mutagenesis in Human Hematopoiesis. Cell Rep. 25, 2308–2316.e4 (2018).
36. Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).
37. Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402–1407 (2015).
38. Tamborero, D. et al. Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci. Rep. 3, 2650 (2013).
39. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).
40. Dees, N. D. et al. MuSiC: identifying mutational significance in cancer genomes. Genome Res. 22, 1589–1598 (2012).
41. Gonzalez-Perez, A. & Lopez-Bigas, N. Functional impact bias reveals cancer drivers. Nucleic Acids Res. 40, e169 (2012).
42. Mularoni, L., Sabarinathan, R., Deu-Pons, J., Gonzalez-Perez, A. & Lopez-Bigas, N. OncodriveFMKL: a general framework to identify coding and non-coding regions with cancer driver mutations. Genomics, Informatics, Bioinformatics, 35, 478–490 (2017).
43. Dietlein, F. et al. Identification of cancer driver genes based on nucleotide context. Nat. Genet. 52, 208–218 (2020).
44. Weghorn, D. & Sunyaev, S. Bayesian inference of negative and positive biological noise in cell-free DNA analyses. Nature 489, 218–220 (2012).
45. Tokheim, C. et al. Exome-scale discovery of hotspot mutation regions in human cancer using 3D protein structure. Cancer Res. 76, 3719–3721 (2016).
46. Martincorena, I. et al. Universal Patterns of Selection in Cancer and Somatic Tissues. Cell 171, 1029–1041.e21 (2017).
47. Martinez-Jimenez, F., Muiños, F., Lopez-Bigas, N. & Gonzalez-Perez, A. Systematic analysis of alterations in the ubiquitin proteolysis system reveals its contribution to driver mutations in cancer. Nat. Cancer 1, 122–135 (2020).
48. Cheng, D. T. et al. MSK-IMPACT: A Hybridization Capture-Based Next-Generation Sequencing Clinical Assay for Solid Tumor Molecular Oncology. J. Mol. Diagn. 17, 251–264 (2015).
49. Sondka, Z. et al. The COSMIC Cancer Gene Census: describing genetic dysfunction across cancer types. Cancers 4, R56 (2012).
50. Skeld, K. et al. Interacting evolutionary pressures drive mutation dynamics and health outcomes in aging blood. Nat. Commun. 12, 4921 (2021).
51. Radovich, M. et al. The integrated genomic landscape of thymic epithelial tumors. Cancer Cell 33, 244–258.e10 (2018).
52. Hsu, J. I. et al. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cyclophosphamide. Cell Stem Cell 23, 700–713.e6 (2018).
53. Grabher, C., von Boeheim, H., & Look, A. T. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukemia. Nat. Rev. Cancer 6, 347–359 (2006).
54. Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578, 102–111 (2020).
55. Sabarinathan, R. et al. The whole-genome panorama of cancer drivers. bioRxiv https://doi.org/10.1101/190330 (2017).
56. Shuai, S., Gallinger, S. & Stein, L. Combined burden and functional impact tests for cancer driver discovery using DriverPower. Nat. Commun. 11, 734 (2020).
57. Gonzalez-Perez, A., Sabarinathan, R. & Lopez-Bigas, N. Local Determinants of the Mutational Landscape of the Human Genome. Cell 177, 101–114 (2019).
58. Fishilevich, S. et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database J. Biol. Databases Curation 2017, bax028 (2017).
59. Gao, T. et al. Interplay between chromosomal alterations and gene mutations shapes the evolutionary trajectory of clonal hematopoiesis. Nat. Commun. 12, 338 (2021).
60. Bick, A. et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586, 763–768 (2020).
61. Liu, J. et al. Biological background of the genomic variations of cf-DNA in human circulating cell-free DNA. Oncol. J. Eur. Evol. Med. Oncol. 30, 464–470 (2017).
62. Abbosh, C., Swanton, C. & Birkbak, N. J. Clonal haematopoiesis: a source of biological noise in cell-free DNA analyses. Ann. Oncol. 30, 358–359 (2019).
