Adaptive Selection of Informative Path Planning Strategies via Reinforcement Learning

Taeyeong Choi1 and Grzegorz Cielniak1

\begin{abstract}
In our previous work, we designed a systematic policy to prioritize sampling locations to lead significant accuracy improvement in spatial interpolation by using the prediction uncertainty of Gaussian Process Regression (GPR) as “attraction force” to deployed robots in path planning. Although the integration with Traveling Salesman Problem (TSP) solvers was also shown to produce relatively short travel distance, we here hypothesise several factors that could decrease the overall prediction precision as well because sub-optimal locations may eventually be included in their paths. To address this issue, in this paper, we first explore “local planning” approaches adopting various spatial ranges within which next sampling locations are prioritized to investigate their effects on the prediction performance as well as incurred travel distance. Also, Reinforcement Learning (RL)-based high-level controllers are trained to adaptively produce blended plans from a particular set of local planners to inherit unique strengths from that selection depending on latest prediction states. Our experiments on use cases of temperature monitoring robots demonstrate that the dynamic mixtures of planners can not only generate sophisticated, informative plans that a single planner could not create alone but also ensure significantly reduced travel distances at no cost of prediction reliability without any assist of additional modules for shortest path calculation.
\end{abstract}

I. INTRODUCTION

Mobile robotic agents can act as very useful sensory instruments for automatic monitoring of spatio-temporal phenomena, especially when the field of interest is too large or too risky for humans to explore, or when the frequent updates are required due to continuous changes over time. Therefore, a wide range of potential applications have been introduced to utilise autonomous samplers offering precise estimation of spatial attributes such as air temperature [1], plankton density under water [2], or compaction or moisture level in soil [3], [4]. In realistic scenarios, however, robots also have some limitations related to their physical properties (e.g., velocity) and resources (e.g., battery life) implying that their navigation plan must be strategically designed in the sense of Informative Path Planning (IPP) [5] to best learn the environmental model by prioritizing gathering of information-rich samples whilst travelling for a limited amount of time [1].

In our previous work [3], we proposed to employ Ordinary Kriging (OK) algorithm — a form of Gaussian Process Regression (GPR) — to not only learn the holistic environmental model from the sparse measurements of soil compaction but also utilise the estimation uncertainty as the “driving force” in choosing the next sampling locations. Though this uncertainty-based planning led to significant improvements in overall estimation accuracy as in other similar applications [2], [6], long travels could inevitably be caused by the nature of Global Search (GS), in which the prediction uncertainties over the field were all globally considered for planning (c.f., 2nd in Fig. 2).

To alleviate this issue, we also suggested reframing the path planning as Traveling Salesman Problem (TSP) to regularly compute the shortest path through least-confident locations (4th in Fig. 2) [3]. Yet, here we claim that this modification could not warrant a high degree of reliability in prediction, first because some arbitrary points are included for the initial path generation, and also because later waypoints may become more certain and less informative while visiting earlier ones.

In this paper, we thus propose a novel approach for IPP to maintain the high precision of interpolation over the explored field as well as to significantly reduce the total travel distance. In particular, we first explore several Local Search (LS) strategies with various “spatial ranges” only within which highly uncertain locations are determined as the next waypoints (e.g., 3rd in Fig. 2). In addition, Reinforcement Learning (RL)-based high-level controllers are designed to adaptively switch between the low-level LS plan-
ners depending on the state of spatial estimation so that the combined execution could inherit distinct strengths from the low-level policies (Fig. 1). We also demonstrate practical use cases to validate our model in which mobile robots generate informative, efficient paths to provide accurate estimates of air quality (e.g., temperature or humidity) in indoor environment. Lastly, the extensive tests on 120 instances with real temperature readings show that the RL controllers can successfully solve IPP by exhibiting dynamic mixtures of plans in adaptive manner as well as significantly shorter routes can be planned without loss of prediction precision.

II. RELATED WORK

A. Informative Path Planning

IPP has been studied over the last decades, and due to its complexity as a NP-hard problem [5], a number of approaches have been proposed to provide approximate optimal paths by considering proxy metrics of “informativeness”. In particular, GPR has been widely adopted to build the spatial maps of property online and utilise learnt covariance matrices to calculate “mutual information” between the visited locations and the rest of the environment [7], [8]. Also, as in our previous methods [3], [4], prediction variance from GPR can be used by planning modules to set the least certain location as the “next-best-view” waypoint after each update of the GPR model with a new observation [2]. Additionally, path planners for TSP can be employed to construct the shortest travelling routes for robot navigation [3], [8]. However, our RL model here is not a substitute for any of these but instead focused on learning the best mixtures of such strategies with an assumption that novel strengths from different combinations could be revealed in resulting plans to better solve IPP.

More recently, Wei and Zheng in [9] have also suggested using RL for IPP, but their application is limited to speeding up the computation of the shortest paths on the locations already chosen by some information-theoretic metric. In contrast, ours is designed to draw a new policy from multiple strategies with unique advantages. Furthermore, the performance of their model has only been reported in terms of mutual information from selected paths, while our testbeds are directly validated using prediction error with real sensory measurements.

B. Blending Controllers

In the context of IPP, Ma et al. have formulated a “soft-blending” function [8] in which each candidate location is evaluated with weighted summation of the travel distance and GPR’s estimation variance to balance between the final performance in precision and efficiency. In [10], a more relevant model, outside IPP, was built with multi-armed bandits upon two types of specialised robotic controllers — one of high performance and one of high safety — for mobile robots to best perform the collision avoidance in autonomous navigation. The main distinction in our work is that the low-level specialised controllers are not the expensive products of RL, and instead our goal is to combine relatively cheap planners to produce a sophisticated, complementary plan that could not be generated by simply using any of them alone.

III. PROBLEM DESCRIPTION

In this section, we first formally describe IPP problem, and then introduce a specific use case scenario of robots monitoring temperature which will also be tested with datasets collected from real sensor measurements.

A. Informative Path Planning

We consider a path planning problem for a mobile robot \(\rho \) deployed in a discretised two-dimensional field \(F \subseteq \mathbb{R}^2 \) of \(N \) grid locations, indexed as \(\ell \in \{1,2,...,N\} \), to estimate an unknown density function \(Z \) returning the environmental attribute \(z_\ell \in \mathbb{R} \) associated with location \(\ell \). In particular, we can assume that \(F \) is obstacle-free space, and robot \(\rho \) must physically visit a specific location \(\ell \) to assess \(z_\ell = Z(\ell) \).

In general, the objective in IPP is to discover the optimal policy \(\pi^* \) to generate a path \(I_T = (\ell_1, \ell_2, ..., \ell_T) \) at discrete timesteps \(1 \leq t \leq T \) and use the observations \(z_T = (z_{\ell_1}, z_{\ell_2}, ..., z_{\ell_T}) \) to minimise the prediction error of interpolator \(f \), which can be evaluated by the Root Mean-Squared Error (RMSE):

\[
\text{RMSE}(\hat{Z}_T, Z) = \sqrt{\frac{1}{N} \sum_{t=1}^{N} (\hat{z}_t - z_t)^2},
\]

where \(\hat{Z}_T \) is the prediction of function \(Z \) from interpolator \(f(\zeta_T; \theta_T) \). Note here that \(f \) can be parameterized by \(\theta_T \) learnt from the observations \(\zeta_T \), and thus, IPP can be also seen as active learning [11], in which \(\pi^* \) is discovered to choose the optimal stream of observations to learn \(\theta^* \) that can best model the true environmental function \(Z \). Similarly, our novel strategy is to approximate \(\pi^* \) by selecting among a set of suboptimal policies \(\{\pi_1, \pi_2, ..., \pi_k\} \) at each time of planning for \(\ell_t \) so that the resulting sequential observations \(\zeta_t \) can minimise the final prediction error in Equation 1.

B. Use Case: Temperature Monitoring Robots

As an application scenario, we propose to deploy a mobile robot for autonomous monitoring of air quality — for example, temperature or humidity. For realistic testbeds, the Intel Berkeley Lab dataset\(^1\) is used as in [11], [5], [12], in which 54 sensors were placed in an indoor office to collect values of spatio-temporal air quality once every 31 seconds for over a month in 2004. In particular, we utilise the data of temperature as a representative attribute \(Z \) to explore,

\(^1\)http://db.csail.mit.edu/labdata/labdata.html
ignoring the readings from four sensors which feature faulty or missing values. Similarly to [3, 4], spatial interpolation using Kriging (c.f. Section IV-A) was also performed on the remaining values, and then an image-rescaling technique was applied to gain \((32 \times 32)\) dense “surrogate” instances as realistic ground truth data as shown in Fig. 1 and Fig. 2. Finally, we randomly chose 240 instances with an exclusive split of 120 and 120 for training and test, respectively.

IV. UNCERTAINTY-DRIVEN PLANNING

Here, we explain OK interpolation techniques and our previous planning method based upon them. In addition, several potential limitations are discussed to present motivation for our proposed approach, introduced in Section V.

A. Ordinary Kriging for Spatial Interpolation

As interpolator \(f \) we employ Ordinary Kriging (OK), which is a GPR technique in which prior knowledge of global mean is not required, whereas naïve GPR, analogous to Simple Kriging (SK), assumes the zero mean or utilises the global mean is not required, whereas naïve GPR, analogous to Simple Kriging (SK), assumes the zero mean or utilises

\[
\hat{z}(t) := \sum_{i=1}^{t} w_i z_{t_i}
\]

where \(w_i \in \mathbb{R} \) is essentially designed to depend on the distance to \(t_i \), and \(\sum_{i=1}^{t} w_i = 1 \) to ensure the unbiased estimator. Also, \(w = [w_1, w_2, ..., w_t]^T \) can be gained by solving the following system in matrix formulation [13]:

\[
\begin{bmatrix}
\lambda \\
\Gamma_{ij}
\end{bmatrix} = \begin{bmatrix}
1 & 1 \\
\Gamma_{ij} & \Gamma_{0j}
\end{bmatrix}^{-1}
\begin{bmatrix}
1 \\
\Gamma_{00}
\end{bmatrix},
\]

where \(\lambda \) is the Lagrange multiplier, \(\Gamma_{ij} = \left[\gamma(\ell_{01}), \gamma(\ell_{02}), ..., \gamma(\ell_{0n})\right]^T \) with the variogram function \(\gamma \), which takes the distance between \(\ell_i \) and \(\ell_0 \) as input, and similarly, \(\Gamma_{ij} \) is the symmetric variogram matrix for all possible pairs of visited locations \((\ell_i, \ell_j) \) — i.e., \(\Gamma \) plays a similar role of the covariance matrix in basic GPR models. Specifically, we adopt the spherical model of variogram function \(\gamma \) to produce \(\rho \left(\frac{h}{a} - \frac{h^2}{a^2} \right) + b \) if \(h \leq a \), and \(p + n \) otherwise, where \(h \) is the input distance, and \(p, r, \) and \(n \) are the learnt parameters in \(\beta \) called partial sill, range, and nugget, respectively, based on the historical measurements \(\ell_i \). In this work, we keep three locations with \(xy \)-coordinates \(((1, 1), (2, 2), (3, 3)) \) as a seed set \(L_3 \) for OK-based methods to perform initial estimation of those parameters.

B. Global Search for Uncertain Locations

In [3], our GS approach was to build a “next-best-view” planning policy \(\pi \) utilising the estimated prediction variance \(\sigma^2_{\ell_0} \), called Krigeing Variance (KV), from true target value to quantify the uncertainty of each prediction outcome. More specifically, once the OK system in Equation 3 has

been solved, the KV for each \(\ell_0 \) can easily be calculated as follows: \(\sigma^2_{\ell_0} = \lambda + w^T \Gamma_{00} \). Therefore, \(\pi \) evaluates this quantity over the entire field to guide robots to the location \(\ell^KV \) of its highest level because in [3], we discovered a strong correlation between the KV at sampling locations and the reduction amount of interpolation error. However, note here that in this work, particularly, we instead utilise noisy KV, i.e., \(\sigma^2_{\ell_0} + b \) where \(b \sim N(0, 10^{-12}) \), to induce some randomness in \(\pi \), which we have found more useful for robots to be more exploratory to improve prediction accuracy.

C. Integration with TSP Solvers & Potential Limitations

Albeit KV was an useful indicator in our previous GS model, impractical paths with overly long travel distances tended to be generated as in Fig. 2 because all locations over the field were considered in comparison of KV’s. To tackle this issue, we further suggested using TSP solvers as an additional module in [3] to compute shortest paths whenever a newly sampled observation was acquired. In fact, this integration was shown to assist in producing shorter travel distances, but we here hypothesize that there may exist several critical factors in the TSP’s involvement which might significantly degrade overall prediction reliability.

1) TSP random samples: The TSP module requires arbitrary locations \(\ell_{\text{rand}} \) to be drawn in the queue for initial path planning, and these could remain to eventually be sampled as next waypoints for robots to visit, although a high degree of informativeness cannot be ensured from those locations.

2) Delays until visit: The visit to a location \(\ell \) in the planning queue often occurs some steps after it was actually added since in the meantime, closer locations \(\ell' \) to the robot are visited first. Consequently, \(\ell \) may not have the largest KV at the timing of visit because the earlier observations from \(\ell' \) may have changed prediction certainty over the field.

To validate these hypotheses, extensive evaluations are performed in Section VI-B.1.

V. PROPOSED METHODOLOGY

In this section, we explain core components of our novel framework to ultimately generate efficient but most informative paths for robotic sampling.
A. Local-Search Strategies

We perform here closer investigations on the behavior of the next-best-view policy π with some modifications — i.e., inspired by “fixed-window location selection” in [2], we build LS policies to locally search for the next locations only within “preset distances” as displayed in Fig. 2.

1) Reliability vs Efficiency: Figure 3a visualizes the average estimation error and travel distance after 15th sample when the LS models such as LS-1, LS-2, and LS-3 with ranges of 10, 20, and 30, respectively, are compared with our previous GS model to clearly reveal: (1) Robots with wider coverages tend to produce lower errors, (2) Smaller ranges more likely incur shorter travel distances, and as a result, (3) The trade-off between the two metrics may imply that minimising one would necessarily maximise the other when utilising the KV-based models.

2) LS-winning Examples: Although the GS method can achieve significantly more accurate predictions than short LS models (e.g., LS-1 and LS-2), we also have discovered field instances in which the local searches can outperform GS in precision. To be specific, LS-1 wins in 27 (23%) out of 120 test fields, and LS-2 also does in 42 (35%) instances implying that global-maximum KV can generally be a “good” indicator used for guidance but can be a nonoptimal choice in some conditions. LS-3’s similar performance to GS may also support this intuition. In other words, if short- and long-range planners are collaboratively used at effective times, the estimation error and the travel cost both could be minimised simultaneously taking advantage of their unique strengths — an ideal policy to overcome the trade-off discussed above.

Motivated by these observations, we design a higher-level controller to decide which strategy to use for planning by considering contextual information.

B. Mixture of Plans via Reinforcement Learning

1) Markov Decision Process: RL problems can be represented by a Markov Decision Process (MDP), in which at each discrete time step t, the RL agent ρ uses its policy function Π_ρ to select an action a_t from environmental state s_t and receive a scalar reward signal r_t which would reflect the performance of the agent in the task. The aim of RL is to discover the optimal policy Π^*_ρ to maximise the expected cumulative reward from time instant t [14]:

$$R_t = \mathbb{E}_{\tau \sim \Pi_\rho} \left[\sum_{i=t}^{T} \gamma^{T-i} r_i \right]$$

where $\gamma \in [0,1]$ is a discount factor to more prioritize immediate rewards with $\gamma = 0$ or treat all rewards equally with $\gamma = 1$. The expectation is not directly accessible in practical scenarios, in which the transition function P mapping from (s_t, a_t) to (s_{t+1}) is unknown, and thus, approximation is performed by sampling a number of trajectories $\tau = (s_t, a_t, r_t, ..., s_T, a_T, r_T)$ by repeated execution of Π_ρ.

In our particular case, the state s_t after $(t-1)$th sample is defined as the tuple of the last Kriging-prediction mean and variance $M_{t-1}, V_{t-1} \in \mathbb{R}^{H \times W}$, the current position of robot $P_t \in \mathbb{R}^{H \times W}$, which is a zero matrix with a value of 1 only at the current location, and the normalized scalar of current sampling step $t' = t/T$ where T is the targeted number of samples in budget. Π_ρ selects its action policy $a_t \in \{\pi_1, \pi_2, ..., \pi_k\}$ to execute and gather in history ζ_t the corresponding observation $z_t = Z(t)$ from the location $l_t = a_t(s_t)$ in order to ultimately predict \hat{Z}_t.

For calculation of reward signal r_t, our approach is first to evaluate improved performance Δ_t by taking action a over any other hypothetical actions \bar{a} (so-called “hallucination” in [15]):

$$\Delta_t = \min_{a \in \{\pi_1, ..., \pi_k\} \setminus \{\bar{a}\}} \text{RMSE}(\hat{Z}^a_t, \hat{Z}) - \text{RMSE}(\hat{Z}_t, \hat{Z}).$$

(4)

Then, the reward r_t is obtained as follows:

$$r_t = \frac{t'}{(C - \text{RMSE}(\hat{Z}_t, \hat{Z}))^\beta} \text{sgn}(\Delta^t),$$

(5)

where C is an arbitrary constant large enough to keep the denominator positive, $\text{sgn}(x)$ is set to return 1 if $x \geq 0$ and -1 otherwise, $t' = t/T$ to present higher rewards for low errors at later visits, and β is a hyperparameter to control the weight on the estimation error. Basically, Π_ρ is punished unless the chosen action a brings about the lowest prediction error among others, and the magnitude of signal r_t can be determined by the prediction error. Yet, t' would generally allow for risks of high error at earlier sampling steps to minimise the final error after T. From our empirical results, we set $C = 1$ and $\beta = 4\epsilon$ for stable learning progress.

2) Optimization with DQN: For optimization purpose, R_t can be described in the form of Q-value function with direct relation to states and actions in Π_ρ [14]:

$$Q_{\Pi_{\theta}}(s, a) = \mathbb{E}_{\tau \sim P_{\tau}} \left[r + \gamma \max_{a'} Q_{\theta}(s', a') | s, a \right],$$

(6)

where s' and a' are the state and the action at the next step, respectively, and especially, s' is determined by the transition function P in the environment. As in [16], we also adopt “Deep Q-Networks” (DQN) with parameters θ as a function approximator of Q^*, and thus, the following loss function is used to minimise at each iteration τ:

$$\mathcal{L}(\theta) = \mathbb{E}_{s, a \sim P} \left[(y_t - Q(s, a; \theta))^2 \right],$$

(7)

where $y_t = \mathbb{E}_{s' \sim P} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{t-1}) | s, a \right]$, and $\Gamma(s, a)$ is a probability distribution over encountered sequences of states and actions, which is approximated via a number of interactions in trajectory τ.

C. Neural Network Architectures

Since our input state s_t contains a set of two dimensional vectors $\{M_{t-1}, V_{t-1}, P_t\}$, four convolutional layers with 64, 128, 256, and 256 (3×3) filters are mainly deployed in
As stated in Section III-B, temperature data is used with 120 instances to test all models as well as an exclusive set of 120 instances to train RL models. Also, 15 samples are set to the budget T for sampling since we have found that further sampling offers sufficient observations for most baselines to reach a similar, small error in final prediction. Furthermore, first three seed locations L_3 at $((1, 1), (2, 2), (3, 3))$ are used for all methods to learn initial parameters of OK as explained in Section IV-A. Moreover, prediction errors are measured by RMSE in Equation 1, and travel distances are by the sum of Euclidean distances between consecutive traversed points in paths. In particular, PyKrige3 in Python is utilized to solve the OK system in Section IV-A, and also, we implement DQN models for RL using Stable-Baselines4. Figure 3b displays an instance of learning progress in our RL model performing 100K interactions for an hour on a NVIDIA GeForce GTX 1080Ti GPU and a Ryzen 9 3950X CPU.

B. Comparative Evaluation

Figure 4a shows every approach presents a constant decline of error as more observations are collected, but the rate of reduction can vary. For instance, the random planning is the slowest in error reduction implying that KV obviously offers useful guidance to obtain informative observations reconfirming our claim in [3]. Also, GS-TSP underperforms other KV methods despite its shortest travel distance in Fig. 4b, and our further analysis on potential factors are described in Section VI-B.1.

In addition, RL-32 and RL-21 can achieve similar levels of accuracy to their counterparts, LS-3 and LS-2, respectively, while traveling significantly shorter paths as shown in Fig. 4b. Particularly, RL-32 reduces 19% of total travel distance to provide equivalent accuracy to the GS method. These results essentially support our hierarchical design of RL-based controller over lower-level strategies to maintain the maximised prediction accuracy from efficient navigation plans. The same could not be easily realised by employing a single strategy only as discussed in Fig. 3a. Still, the lower performance of RL-321 than LS-3 indicates the need of improved design to better learn with larger action spaces.

1) Negative Factors in GS-TSP: We first have investigated the rate of “TSP random samples” (c.f., Section IV-C) finally visited by the robot, and three individual runs of GS-TSP have shown that out of 12 sampling locations after three initial seeds, 3 locations belong to the TSP’s initial random set in average. Moreover, the locations that were of the highest KV when added to the planning queue are eventually ranked at only top 34% at the time of visit. These observations empirically prove the relatively low “utility” of samples in GS-TSP, and in result, higher prediction errors when compared to other KV-based planners in Fig. 4a.

C. Adaptive Action Selection and its Positive Impacts

Figure 5 visualizes the series of average actions selected by RL-21 for each location decision in test instances. Most

A. Baselines & Protocols

- **Rand**: Random policy to choose T arbitrary locations for path planning.
- **GS**: KV-based policy with global search for the largest KV [3].
- **GS-TSP**: GS with TSP solvers [3], for which Python TSP Solver2 is used for efficient approximation.
- **LS-R**: KV-based policy with the application of local planning radius $R \times 10$ where $R \in \{2, 3\}$.
- **RL-K**: Proposed RL-based controller, denoted with $K \in \{32, 21, 332\}$ indicating which LS policies are considered for action — e.g., RL-32 for $\{LS-3, LS-2\}$.

2https://github.com/fillipe-gsm/python-tsp

3https://pykrige.readthedocs.io

4https://stable-baselines3.readthedocs.io

our DQN to extract useful spatial features. Each output from convolutions is downsampled by max pooling operations to finally produce the flattened output $v_1 \in \mathbb{R}^{1024}$ from the last convolutional layer. Furthermore, the input scalar t^+ is processed by a dense layer with 8 nodes to compute a vector representation $v_2 \in \mathbb{R}^8$, and then v_1 and v_2 are concatenated as an input to two serial dense layers with 1024 and $|A|$ nodes, respectively, where $|A|$ is the number of actions to learn Q values for corresponding actions in the output layer. Every layer employs the \textit{LeakyReLU} function for activation except the last output layer with linear activation.

VI. EXPERIMENTS

In this section, we show experimental results to validate our aforementioned hypotheses in Section IV-C and novel model designs in Section V compared to other baselines. Additionally, qualitative analyses are conducted with visualizations of adaptive selection among planning policies to discuss meaningful regularities of strategy choice.

A. Baselines & Protocols

- **Rand**: Random policy to choose T arbitrary locations for path planning.
- **GS**: KV-based policy with global search for the largest KV [3].
- **GS-TSP**: GS with TSP solvers [3], for which Python TSP Solver2 is used for efficient approximation.
- **LS-R**: KV-based policy with the application of local planning radius $R \times 10$ where $R \in \{2, 3\}$.
- **RL-K**: Proposed RL-based controller, denoted with $K \in \{32, 21, 332\}$ indicating which LS policies are considered for action — e.g., RL-32 for $\{LS-3, LS-2\}$.

2https://github.com/fillipe-gsm/python-tsp

3https://pykrige.readthedocs.io

4https://stable-baselines3.readthedocs.io

As stated in Section III-B, temperature data is used with 120 instances to test all models as well as an exclusive set of 120 instances to train RL models. Also, 15 samples are set to the budget T for sampling since we have found that further sampling offers sufficient observations for most baselines to reach a similar, small error in final prediction. Furthermore, first three seed locations L_3 at $((1, 1), (2, 2), (3, 3))$ are used for all methods to learn initial parameters of OK as explained in Section IV-A. Moreover, prediction errors are measured by RMSE in Equation 1, and travel distances are by the sum of Euclidean distances between consecutive traversed points in paths. In particular, PyKrige3 in Python is utilized to solve the OK system in Section IV-A, and also, we implement DQN models for RL using Stable-Baselines4. Figure 3b displays an instance of learning progress in our RL model performing 100K interactions for an hour on a NVIDIA GeForce GTX 1080Ti GPU and a Ryzen 9 3950X CPU.

B. Comparative Evaluation

Figure 4a shows every approach presents a constant decline of error as more observations are collected, but the rate of reduction can vary. For instance, the random planning is the slowest in error reduction implying that KV obviously offers useful guidance to obtain informative observations reconfirming our claim in [3]. Also, GS-TSP underperforms other KV methods despite its shortest travel distance in Fig. 4b, and our further analysis on potential factors are described in Section VI-B.1.

In addition, RL-32 and RL-21 can achieve similar levels of accuracy to their counterparts, LS-3 and LS-2, respectively, while traveling significantly shorter paths as shown in Fig. 4b. Particularly, RL-32 reduces 19% of total travel distance to provide equivalent accuracy to the GS method. These results essentially support our hierarchical design of RL-based controller over lower-level strategies to maintain the maximised prediction accuracy from efficient navigation plans. The same could not be easily realised by employing a single strategy only as discussed in Fig. 3a. Still, the lower performance of RL-321 than LS-3 indicates the need of improved design to better learn with larger action spaces.

1) Negative Factors in GS-TSP: We first have investigated the rate of “TSP random samples” (c.f., Section IV-C) finally visited by the robot, and three individual runs of GS-TSP have shown that out of 12 sampling locations after three initial seeds, 3 locations belong to the TSP’s initial random set in average. Moreover, the locations that were of the highest KV when added to the planning queue are eventually ranked at only top 34% at the time of visit. These observations empirically prove the relatively low “utility” of samples in GS-TSP, and in result, higher prediction errors when compared to other KV-based planners in Fig. 4a.

C. Adaptive Action Selection and its Positive Impacts

Figure 5 visualizes the series of average actions selected by RL-21 for each location decision in test instances. Most
samples involve highly variable selections of LS policies depending on appearing state contexts in prediction though for the first sample of ℓ_4, the action is optimized to consistently execute LS-2 for any instance. This may be because starting with an observation from a larger range could provide a better understanding of the environmental model for future planning especially when our current configuration sets the seed data points to be gathered only from a narrow region.

1) Utility of Contextual Input: Here, we design a simplistic method for action selection relying solely on the empirical probabilities discovered from Fig. 5 so as to investigate whether this context-free approach can still achieve the equivalent performance to our RL model. $P'(a_t=LS-2)=.62$ and $P'(a_t = LS-1) = .38$ were first calculated, and the average performance over 10 separate runs of each method demonstrated the significant superiority of RL-21 in precision because it led the error of 4.00 (±.006) against 4.15 (±.014) with $t(18) = 2.976$, $p = .011$ in t-test. Furthermore, the margin appears more significant at earlier steps (e.g., $p = .001$ and $p = .002$ after 13 and 14 samples, respectively). In other words, our RL agent does not perform arbitrary action selections but makes use of the contextual information provided in input, and also, this context-aware adaptive behavior is essential to maximise the overall prediction reliability when multiple plans are blended.

VII. CONCLUSION & FUTURE WORK

We have proposed a novel framework to build RL-based controllers to adaptively select IPP strategies based on the latest states of interpolation. In a scenario of an autonomous temperature monitoring, we have demonstrated the utility of combining multiple local-range planners over relying only on a single planning policy by showing the maximised accuracy of predicted environmental model while more efficient paths are planned for spatial sampling. Lastly, the dynamic policy selection has revealed that intermediate outcomes from interpolator can be a useful source of information to increase adaptability in informative planning.

In future work, real mobile robots could be implemented to further validate the reliability of the RL model under noisy environments. In addition, our framework could be extended to incorporate the travel distance explicitly into the cost function in optimization to mathematically satisfy resource constraints. Moreover, the transferability of learned parameters in neural networks could be tested between datasets of different geographical regions or spatial attributes. Similarly, generalizable learning methods could be invented to adapt the policy learnt from a local region to the entire field area.

REFERENCES

[1] W. Luo and K. Sycara, “Adaptive sampling and online learning in multi-robot sensor coverage with mixture of gaussian processes,” in IEEE Int. Conf. Robot. Autom. (ICRA), 2018.
[2] S. Manjanna, A. Q. Li, R. N. Smith, I. Rekleitis, and G. Dudek, “Heterogeneous multi-robot system for exploration and strategic water sampling,” in IEEE Int. Conf. Robot. Autom. (ICRA), 2018.
[3] J. P. Fentanes, I. Gould, T. Duckett, S. Pearson, and G. Cieniak, “3-D soil compaction mapping through kriging-based exploration with a mobile robot,” IEEE Robot. Autom. Lett., vol. 3, no. 4, pp. 3066–3072, 2018.
[4] J. Pulido Fentanes, A. Badiee, T. Duckett, J. Evans, S. Pearson, and G. Cieniak, “Kriging-based robotic exploration for soil moisture mapping using a cosmic-ray sensor,” J. Field Robot., vol. 37, no. 1, pp. 122–136, 2020.
[5] A. Meliou, A. Krause, C. Guestrin, and J. M. Hellerstein, “Nonmyopic informative path planning in spatio-temporal models,” in AAAI, 2007.
[6] J. A. Caley and G. A. Hollinger, “Environment prediction from sparse samples for robotic information gathering,” in IEEE Int. Conf. Robot. Autom. (ICRA), 2020.
[7] J. Binney, A. Krause, and G. S. Sukhatme, “Optimizing waypoints for monitoring spatiotemporal phenomena,” The Int. J. Robot. Res., vol. 32, no. 8, pp. 873–888, 2013.
[8] K.-C. Ma, L. Liu, and G. S. Sukhatme, “Informative planning and online learning with sparse gaussian processes,” in 2017 IEEE Int. Conf. Robot. Autom. (ICRA), 2017.
[9] Y. Wei and R. Zheng, “Informative path planning for mobile sensor with reinforcement learning,” in Proc. IEEE INFOCOM, 2020.
[10] P. Gohari, F. Djeumou, A. P. Vinod, and U. Topcu, “Blending controllers via multi-objective bandits,” arXiv preprint arXiv:2007.15755, 2020.
[11] M. Fang, Y. Li, and T. Cohn, “Learning how to active learn: A deep reinforcement learning approach,” arXiv preprint arXiv:1708.02583, 2017.
[12] W. Luo, C. Nam, G. Kantor, and K. Sycara, “Distributed environmental modeling and adaptive sampling for multi-robot sensor coverage,” in Proc. of the 18th Int. Conf. on Auton. Agent. Multi. Agent. Syst. (AAMAS), 2019.
[13] A. Lichtenstein, “Kriging methods in spatial statistics,” 2013.
[14] L. Graesser and W. L. Keng, Foundations of deep reinforcement learning: theory and practice in Python. Addison-Wesley Professional, 2019.
[15] T. Choi and T. P. Pavlic, “Automatic discovery of motion patterns that improve learning rate in communication-limited multi-robot systems,” in IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst. (MFIS), 2020.
[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.