ORIGINAL ARTICLE

Health-Related Quality of Life of Patients with Type 2 Diabetes Mellitus and Hypertension in Addis Ababa, Ethiopia

Tariku Shimels1*, Rodas Asrat Kassu2, Gelila Bogale3, Mahteme Bekele Muleta1, Gizachew Tadesse Akalu4, Abrham Getachew1, Zewdneh Shewamene5, Melsew Getnet1, and Mebratu Abraha1

ABSTRACT

BACKGROUND: The aim of this study was to assess the health-related quality of life of patients with T2DM and hypertension attending public health facilities in Addis Ababa, Ethiopia.

METHODS: A cross-sectional study was conducted from 1st through 30th August 2020 at the selected institutions. Health facilities were chosen purposively based on patient load. Participants were drawn after proportional to size allocation. A translated EQ-5D-3L and EQ-VAS instrument was used to collect the data. Analysis was done using SPSS v.26.0. Both parametric and non-parametric models were applied in the analysis.

RESULTS: Of the 409 participants included, the majority were in the age group of 46-60 (36.0%), females (56.0%), from hospitals (54.8%), jobless (25.4%), and married (63.3%). Over two-thirds of the patients reported no problems with self-care, usual activity, and depression/anxiety. All dimensions showed an increasing proportion of moderate to severe problems in the age group beyond 45. Facility type, comorbid condition and age showed a statistically significant score difference for QoL. The overall prevalence of any problem was 59.0%. Education level, visit to a health center, and marriage showed lower odds of affected HRQoL whereas, lower monthly income and presence of comorbidities were opposite.

CONCLUSION: HRQoL of patients in the study settings was suboptimal and below the general population. Attributes, such as education, facility type, marital status, income level, and comorbid status have a statistically significant association with HRQoL. Arrangement of a safe and quality health services is paramount, especially, during the COVID-19 pandemic.

KEYWORDS: Addis Ababa, EQ-VAS, Ethiopia, EQ-5D-3L, HRQoL, Quality of life, T2DM and hypertension

INTRODUCTION

According to the World Health Organization (WHO), quality of life (QoL) is defined as individuals' perceptions of their position in life in the context of the culture and value systems in which they live and about their goals, expectations, standards, and
concomitant occurrence, is scarce.

and hypertensive patients, with or without
global quality of life (GQoL) for both T2DM
However, adequate evidence on HRQoL or
influenced by diabetic nephropathic pain (9).

from

healthcare settings in Ethiopia (7, 8). A finding
patients with type 2 diabetes mellitus (T2DM) at

disease such as cancer.

are applied to measure HRQoL for a specific
values. On

to score patient preferences, and generate index

(3), the EuroQol five
dimensional (EQ

include two core concepts: subjectivity and
multidimensionality. While the subjectivity
emphasizes obtaining input from (or at least on
behalf of) the affected person, the
multidimensional aspect of the definition is a
reminder that a full appreciation of the impact of
illness and treatment requires an assessment of
important life domains. It consists of at least
three broad domains: physical, psychological,
and social functioning, which are affected by
one’s disease and/or treatment (5). Accordingly,
there are two main sets of instruments to
measure HRQoL. One group is generic HRQoL
measures which ask questions that are usually
general enough to apply to almost everyone.
Though more options are available in this set
(3), the EuroQol five-dimensional (EQ-5D)
standardized questionnaire (6) is being popular
to apply to almost everyone. On the other hand, targeted instruments are applied to measure HRQoL for a specific
disease such as cancer.

Studies reported the level of HRQoL in
patients with type 2 diabetes mellitus (T2DM) at
healthcare settings in Ethiopia (7, 8). A finding
from Addis Ababa showed HRQoL to be
influenced by diabetic nephropathic pain (9).
However, adequate evidence on HRQoL or
global quality of life (GQoL) for both T2DM
and hypertensive patients, with or without
concomitant occurrence, is scarce.

This study aims to present a comprehensive
analysis of the HRQoL of patients with chronic
non-communicable diseases (NCDs) in Ethiopia
during the era of COVID-19. Potential factors
associated with the affected HRQoL were also
assessed.

METHODS

Study setting, design and period: This study
was conducted in Addis Ababa, the capital city
of Ethiopia. As per the 2007 national census
(10), its total population was 3,384,569 with an
annual growth rate of 3.8% . There are 12 public
hospitals in the city (11), six of which and 103
health centers. This study was conducted at
seven health facilities comprising of two
hospitals namely; Saint Paul’s Hospital
Millennium Medical College (SPHMMC) and
Ras Desta Damtew Memorial Hospital
(RDDMH) as well as five health centers namely;
Arada, Lideta, Nifas Silk Lafto Wereda 9, Akaki
Kality and Bulbula health centers. A cross-
sectional design was employed from 1st through
30th of August 2020.

Study population: Adult outpatients with at
least one chronic illness, have been taking
medications for at least six months, visiting the
facilities regularly, and those willing to
participate in the study were included. Patients
with any long term or temporal psychiatric
problem, those admitted to the
emergency/inpatient department, and patients
aged below 14 were excluded.

Sample size and sampling technique: The single
population proportion formula was employed to
estimate the required sample size. The

factors

population

estimated

assumed

95% confidence level and a
5% tolerable error were used. Considering a
10% contingency for nonresponse, the final
required number of respondents was 423. We
employed purposive sampling to include
facilities whereas, participants were recruited
consequitively. Allocation per T2DM and
hypertensive cases was determined based on
follow-up loads during the study period.

Variables: The dependent variables were
HRQoL and GQoL, whereas the independent
variables included sociodemographic (age, sex,
marital status, education, occupation, substance
use history, income level, type of relationship, number of people around), clinical(type of chronic illness, number of comorbidities, time since diagnosis and initiation of treatment), and type of follow-up facility.

Instrument, procedure and quality management: Data was collected using a structured interviewer-administered questionnaire. Patients’ HRQoL was measured using the standardized EQ-5D-3L generic tool (6). The tool has five dimensions, namely: mobility, self-care, usual activities, pain/discomfort, and depression/anxiety on three levels; no problem, some or moderate problem, and severe problem. Patients’ subjective judgment about their current state health was measured using the Euroqol visual analogue scale (EQ-VAS) (6) anchored with adapted patient aiding terms (12).

Data quality was ensured by training, continuous supervision, and the application of a pre-tested instrument. Furthermore, the instrument was translated to Amharic and back-translated to English for consistency. Content validity was checked by the study team. A Cronbach’s alpha test was done to measure the reliability of the EQ-5D-3L scale on similar populations to health centres and hospitals (10%) and the score showed high internal consistency both for the hospitals (α=0.91) and health centres (α=0.85).

Operational definitions

Affected HRQoL: A cumulative score from mobility, self-care, usual activities, pain/discomfort, and depression/anxiety aspects of a patient and summing up to 6 or more on the EQ-5D-3L instrument. Score sums of 5 were considered not affected.

Global quality of life (GQoL): Patients’ self-rating of their own current health status on the EQ-VAS scale ranging from 0 (worst imaginable health state) to 100 (best imaginable health state).

Any problem: refers a patient's experience of at least one or a combination of problems to a moderate to severe degree on the EQ-5D-3L score.

Ethical approval: Ethical approval was obtained from Saint Paul’s hospital millennium medical college (SPHMMC) and Addis Ababa regional health bureau (AARHB) research ethics committee. An informed verbal consent or ascent was sought from all study participants as appropriate. Data and information acquired through the study were kept confidential. No individual identifiers were collected and analysis was made in aggregate. Inclusion in the study was of voluntarily.

Data analysis: Data was coded, manually cleaned, and entered into SPSS version 26.0 for Windows. Both descriptive statistics binary logistics regression were used in data analysis. A 95% confidence level with a statistical significance of p≤0.2 (rule of thumb cut-off) for the bi-variable, and p≤0.05 for the multivariable model was used. A Shapiro-Wilk test was considered for checking the normality of GQoL scores. Because the data exhibited a non-parametric distribution (W(409)=0.94, p≤0.001), mean difference by sex, comorbid condition, and facility type were tested using the Mann Whitney U test. The potential difference by diagnosis type was tested using the Kruskal Wallis test. The ranked median difference test for Age category vs. GQoL was tested using Spearman’s rank correlation coefficient.

RESULTS

Sociodemographic profiles: Of the 423 participants who fulfilled the inclusion criteria, 409 completed the investigator-administered questionnaire. The median age of respondents was 59 years (range: 19 to 95). About 229 (56.0%) were female and 224 (54.8%) were from hospitals. A total of 174 (42.5%) respondents were either able or not to read and write, whereas 165 (40.4%) attended primary or secondary education. About 104 (25.4%) were jobless and 97 (23.7%) were housewives. The majority were married (63.3%) and from the orthodox Christian faith (71.4%). The average monthly income ranged from 0 to 120000 with a mean (SD) of 2996.5 (6593) and a median of 2000 Ethiopian Birr (ETB). Over half (54.3%) of the patients are above the World Bank line of extreme poverty class (Table 1).
Table 1: socio-demographic characteristics of patients with T2DM and hypertension attending public health facilities in Addis Ababa, Ethiopia, August 2020 (n=409).

Characteristic	Category	Frequency	Percent
Age a	<=45 years	88	21.5
	46-60 years	147	35.9
	>=61 years	174	42.5
Sex	Male	180	44
	Female	229	56
Facility level	Health centers	185	45.2
	Hospitals	224	54.8
Education	Able/Not able to read and write	174	42.5
	Primary/secondary education	165	40.4
	College/University education	70	17.1
Occupation	Merchant	26	6.4
	Government employee	63	15.4
	Private employee	74	18.1
	Housewife	97	23.7
	Jobless	104	25.4
	Others b	45	11.0
Marital status	Unmarried	53	13.0
	Married	259	63.3
	Divorced/separated/widowed	97	23.7
Religion	Orthodox	292	71.4
	Protestant	44	10.8
	Muslim	61	14.9
	Others c	12	2.9
Average monthly income (ETB) d	<=1995	187	45.7
	>=1996	222	54.3
Current history of any substance use e	Yes	32	7.8
	No	377	92.2

a Is considered based on the average age for onset of T2dm in the sub-Saharan region (13) and Ethiopian age of retirement; *b* Includes students, daily laborers, and prostitutes; *c* Includes Catholic, Waqefeta, and Hawaryawi; *d* Is categorized based on the World Bank's poverty line definition for developing countries (14) and US Dollar exchange rate during the study period; *e* Refers to a patient reporting for having used any of either alcohol, Khat or cigarettes in the past three months.

EQ-5D-3L measurement of patients’ HRQoL:

The HRQoL of patients was measured using the EQ-5D-3L generic questionnaire. As shown in Table 2, majority of the patients do not have problems with mobility (261, 63.8%) self-care (323, 79.0%), performing usual activities (290, 70.9%), pain/discomfort (217, 53.1%) and depression/anxiety (280, 68.5%). Pain/discomfort (39.6%), mobility (31.3%), and depression/anxiety (28.6%) were the most frequently mentioned moderate problems. Only a few participants reported severe problems with each dimension.
Table 2: EQ-5D-3L frequencies reported by dimension and level among patients with T2DM and hypertension attending public health facilities in Addis Ababa, Ethiopia, August 2020 (n=409).

	Mobility N (%)	Self-care N (%)	Usual activities N (%)	Pain/discomfort N (%)	Depression/anxiety N (%)
Level 1	261(63.8)	323(79.0)	290(70.9)	217(53.1)	280(68.5)
Level 2	128(31.3)	67(16.4)	91(22.2)	162(39.6)	117(28.6)
Level 3	20(4.9)	19(4.6)	28(6.8)	30(7.3)	12(2.9)
Total	409(100)	409(100)	409(100)	409(100)	409(100)

Key: Level 1: no problems, Level 2: some/moderate problems, Level 3: severe problems

The age-wise distribution of specific dimensions with three levels of the scale showed that the presence of any problems progressed with advancing age. Problems related to mobility, self-care, and usual activity were minimal compared to scores for pain/discomfort and depression/anxiety among the patients aged below 46. On the other hand, all dimensions showed an increasing proportion of moderate to severe problems in the subsequent age groups (Table 3).

The pattern of HRQoL has also been assessed with respect to the gender of respondents. Overall, the proportion of males with no problems was higher for all dimensions compared to females, whereas, sever problems accounted for the reverse magnitude (Table 3).

Table 3: Age and sex-wise classification of EQ-5D-3L dimension and level among patients with T2DM and hypertension attending public health facilities in Addis Ababa, Ethiopia, August 2020.

Variable	EQ-5D-3L scale					
	Mobility N (%)	Self-care N (%)	Usual activities N (%)	Pain/discomfort N (%)	Depression / anxiety N (%)	
Age						
<=45	Level 1	74(84.1)	86(97.7)	81(92.0)	61(69.3)	66(75.0)
	Level 2	13(14.8)	1(1.1)	6(6.8)	23(26.1)	19(21.6)
	Level 3	1(1.1)	1(1.1)	1(1.1)	4(4.5)	3(3.4)
46-60	Level 1	104(70.7)	123(83.7)	113(76.9)	91(61.9)	109(74.1)
	Level 2	39(26.5)	21(14.3)	26(17.7)	51(34.7)	36(24.5)
	Level 3	4(2.7)	3(2.0)	8(5.4)	5(3.4)	2(1.4)
>60	Level 1	83(47.7)	114(65.5)	96(55.2)	65(37.4)	105(60.3)
	Level 2	76(43.7)	45(25.9)	59(33.9)	88(50.6)	62(35.6)
	Level 3	15(8.6)	15(8.6)	19(10.9)	21(12.1)	7(4.7)
Sex						
Male	Level 1	120(66.7)	143(79.4)	128(71.1)	101(56.1)	132(73.3)
	Level 2	55(30.5)	32(17.8)	43(23.8)	70(38.9)	44(24.5)
	Level 3	5(2.8)	5(2.8)	9(5.0)	9(5.0)	4(2.2)
Female	Level 1	141(61.5)	180(78.6)	162(70.7)	116(50.6)	148(64.6)
	Level 2	73(32.0)	35(15.3)	48(21.0)	92(40.2)	73(32.0)
	Level 3	15 (6.5)	14(6.1)	19(8.3)	21(9.2)	8(3.4)
Difference or correlation between GQoL score and patient attributes: The mean (SD) score of GQoL was 69.44 (18.5) and the median was 70, with an interquartile range of 25 (85-60). The ranked mean difference for diagnosis type, sex, comorbidity, and facility type was tested against GQoL scores. No variation was noted by being under a specific diagnosis or combination, namely, T2DM only, hypertension only, or both (H (2) =4.282, P=0.118). A Mann Whitney test indicated that the distribution of GQoL is the same across both sexes (U=18722.000, P=0.106). Meanwhile, the same test has also shown a statistically significant rank difference between patients with single and any additional chronic comorbidities on GQoL score (U=13248.00, P≤0.001). Patients with a single chronic condition are more likely to have a higher mean rank of GQoL compared to those with any chronic comorbid conditions (Figure 1).

![Figure 1: Mean rank difference of GQoL between single versus any additional chronic comorbidity among patients with T2DM and hypertension attending public health facilities in Addis Ababa, Ethiopia, August 2020](image)

Similarly, the presence of mean rank difference was tested between health facility types over GQoL score distribution. A statistically significant difference was noted (U=16651, P≤0.001) where a higher rank of mean was scored among patients visiting health centers (Figure 2).
The correlation between age and GQoL of patients was tested using Spearman's rank correlation statistic. It was found that age showed a statistically significant negative correlation with GQoL score. The magnitude, however, is weak ($r_s=-0.27$, $p\leq 0.001$).

Affected HRQoL and associated factors: Of all, 242 (59.2%) of the patients reported any problems based on the EQ-5D-3L questionnaire. This was regarded as affecting HRQoL, covering moderate to severe health-related problems on the scale. The remaining proportion of the patients has been reported to be in the best imaginable health state.

Compared to the age group 45 or below, the odds of developing any problems in the HRQoL dimensions was not statistically significant until the age of 60. About a 2.23 times higher likelihood of an affected HRQoL was noted in the subsequent age group (AOR: 2.23; 95% CI: 1.10-4.50). The odds of affected HRQoL among patients attending hospitals is higher by 75% (AOR: 1.75; 95%CI: 1.07-2.86) as compared to those visiting health centers. As education level increased, the likelihood of developing any problems decreased by 54% among those with primary education (AOR: 0.46; 95%CI: 0.27-0.81) and by 61% among those with college/university education (AOR: 0.39; 95%CI: 0.18-0.84) compared to those who are able to read and write. The odds of affected HRQoL among married patients were 60% lower as compared to the unmarried group (AOR: 0.40; 95%CI: 0.20-0.81). Being under the World Bank extreme poverty line (1.90USD per person per day) increased the odds of affected HRQoL by 77% (AOR: 1.77; 95%CI: 1.08-2.88). Similarly, presence of any chronic comorbidity increased the odds of affected HRQoL by 95% (AOR: 1.95; 95%CI: 1.22-3.14) (Table 4).
Table 4: Factors associated with affected HRQoL among patients with T2DM and hypertension attending public health facilities in Addis Ababa, Ethiopia, August 2020 (n=409)

Variable	Category	HRQoL	COR (95%CI)	AOR (95%CI)	
		Affected (n)	Not affected (n)		
Age	<=45 years	40	48	1	1
	46-60 years	1.18(0.70-2.01)	1.03(0.55-1.90)		
	>=61 years	3.44(2.01-5.90)	2.23(1.10-4.50)		
Facility level	Health centers	1	1		
	Hospitals	1.53(1.03-2.28)	1.75(1.07-2.86)		
Education	Able/Not able to read and write	1	1		
	Primary/secondary education	0.45(0.29-0.70)	0.46(0.27-0.81)		
	College/University education	0.28(0.16-0.50)	0.39(0.18-0.84)		
Marital status	Unmarried	32	21	1	1
	Married	0.70(0.39-1.28)	0.40(0.20-0.81)		
	Divorced/separated/widowed	2.38(1.14-4.94)	0.98(0.42-2.30)		
Average monthly income (ETB)	<=1995	130	57	2.24(1.49-9.37)	1.77(1.08-2.88)
	>=1996	112	110	1	1
Comorbid condition	No	71	88	1	1
	Yes	2.68(1.78-4.05)	1.95(1.22-3.14)		

DISCUSSION

Evaluation of HRQoL of patients with chronic illness aids to understand the impact of an illness or the effect of an intervention (15). The present study showed that over half of the patients at the selected study units have an affected quality of life in terms of at least one dimension of the EQ-5D-3L instrument. About two-thirds of the patients reported no problems (Level I) with self-care, usual activity, and depression or anxiety. Pain/discomfort (39.6%), mobility (31.3%), and depression/anxiety (28.6%) were the most frequently mentioned moderate problems. This could be because such dimensions are frequently experienced among patients with chronic diseases (16). There is also a shred of evidence for mutual correlation and pathophysiologic mechanisms of pain and depression in this population (17). The study also identified that there is a notable influence that the COVID-19 pandemic posed on patients with chronic conditions in resource-limited settings (18). A high magnitude of COVID-19 related psychosocial distress was also reported by the general community (19). The distribution of moderate to severe levels of each dimension was noted to surge with increasing age. The fact that the majority was below the age of 60, after which functional and physical statuses are often reported to decline (20), may contribute to a higher average per dimension score. The fact that males have reported fewer problems and women experienced more with severe problems was in agreement with a report in the literature (21). A possible reason could be that women receive an extensive responsibility in households, and often suffer from socio-economic disparities in societies.
The mean GQoL score of patients in the present study (mean=69.44±18.5) is comparable with reports in a similar population (22). Slightly higher figures were documented from Japan (23) and India (24). Whereas comparators with the same measurement and population are lacking in the study area, the figure is smaller against the population-based EQ-VAS valuation score (mean=87.27±13.63) for Ethiopians (25). Yet, this result is almost the same as the EQ-VAS score of breast cancer patients (mean =69.94±20.36) at Tikur Anbessa Specialized Hospital in the same setting (26).

The mere co-presence of hypertension and T2DM may not be associated with an impaired quality of life (27). While co-occurrence is a common situation, this could be likely because it is often the further complications to come that affect a patient’s HRQoL in both groups (28). However, there was a statistically significant difference between those with the single main diagnoses vs. co-presence of other comorbidities. The presence of reported complications such as stroke, heart disease, nerve problems, chronic kidney disease and other diseases such as chronic asthma might contribute to changes in QoL. Patients visiting health centers showed a better quality of life compared to those attending hospitals (mean rank=226.99 vs. 186.84). This could be attributed to differences in stage of the disease whereby patients with advanced states might be referred to hospitals. The fact that the majority of the patients from the hospitals reported at least one additional problem compared to their health center counterparts (68% vs. 53%) may support this argument.

On the other hand, attendance in hospitals may demand patients for long waiting times (due to high patient loads), less consultation time, and lower satisfaction with service, also documented elsewhere (29) and in Ethiopia (30). Likely, as hospitals were centers for COVID-19 management, patients might experience a greater degree of fear and anxiety, as the results showed (4.5% vs. 1.1%). Though skilled professional and technology capabilities are integral to being questionable in the present setting, a report also exists showing that better patient care services are delivered at community health centers (31). The age of patients exhibited a statistically significant negative correlation with the EQ-VAS score. Despite variation in tools used and diseases under consideration, studies support the inverse impact age has on patients’ overall QoL (32).

In line with Spearman's correlation test result between GQoL and age, the multivariable logistic regression illustrated that lower age (below 60), in the present setting, showed a protective effect on the odds of affected health-related quality of life by 53%. This is likely as physical (33) and psychological (34) functioning diminishes with age, leading to comorbidities and the onset of complications (35). This also may highlight that routine psychological supports be integrated in NCD follow-up care. Set-ups with access to behavioral healthcare services improve patients’ emotional dimension of health a study reported (36). Similarly, the affected HRQoL of patients decreased with higher education level and marriage. This accords with a report where educated and married (37) patients have reported having a better EQ 5D score, implying that they practice better prevention strategies and a healthy lifestyle. Conversely, the odds of affected HRQoL increased among patients visiting hospitals, those under the World Bank extreme poverty line, and the presence of any comorbid condition. Patients with extreme poverty conditions (those earning below 1.9 USD/per day per person) are less likely than others to engage in preventive and rehabilitative behavior. As most were either jobless, private employees or engaged in irregular income sources, the odds of affected HRQoL in this group can be understood as caused. While this holds among the general population (38) and other chronic diseases (39), patients with T2DM (40) and hypertension are affected most (41).

This study has tried to assess the HRQoL aspects of patients with T2DM and hypertension. Given these diseases often co-occur in most patients, the inclusion of varied socioeconomic diversity may also uncover the QoL of patients during the COVID-19 pandemic. However, results should be interpreted with caution due to lack of a probability sampling process and an unavailable validity report for the EQ-5D-3LVAS
instrument among chronic patients in Ethiopia. Future studies with better design and probability sampling techniques are recommended.

Overall, about 59% of the patients have reported at least any problem based on the EQ-5D-3L instrument. Age showed a negative correlation with GQoL score. While education level, visiting a health center, and marriage were associated with lower odds of an affected HRQoL, the likelihood of the same outcome was increased with lower monthly income and presence of comorbidities. Enhanced pain management and psychosocial support systems could be integrated with NCD care in the study settings. It also appears that eligible and comfortable patients obtain follow-up services at the health centers. Understanding the emotional aspect of chronic illness, and updating all health professionals with the skills of psychosocial healthcare would be imperative. Further, a focused and holistic approach should be followed to improve QoL among those in the old age.

ACKNOWLEDGMENT

The authors would like to thank all the patients who provided their consent to participate in this study.

REFERENCES

1. Orley J. World Health Organization: Programme on Mental Health. Journal of Mental Health. 1996;5(3):319-22.
2. Cella D, Nowinski CJ. Measuring quality of life in chronic illness: the functional assessment of chronic illness therapy measurement system. Arch Phys Med Rehabil. 2002; 83(Suppl. 2):10-7.
3. Patrick DL, Erickson P. Health status and health policy: quality of life in health care evaluation and resource allocation. New York. Oxford University Press.1993.
4. Staquet MJ, Hays RD, Fayers PM. Quality of life assessment in clinical trials. New York. Oxford University Press. 1998.
5. Sprangers MA. Quality-of-life assessment in oncology. Achievements and challenges. Acta Oncol. 2002;41:229-37.
6. EuroQol research foundation. EQ-5D user guide 2018. EuroQol Group. Available at; http://www.euroqol.org/publications/user.guide
7. Aschalew AY, Yitayal M. & Minyihun A. Health-related quality of life and associated factors among patients with diabetes mellitus at the University of Gonder referral hospital. Health Qual Life Outcomes. 2020;18:62. https://doi.org/10.1186/s12955-020-01311-5
8. Gebremedhin T, Workicho A, Angaw DA. Health-related quality of life and its associated factors among adult patients with type II diabetes attending Mizan Tepi University Teaching Hospital, Southwest Ethiopia. BMJ Open Diabetes Res Care. 2019; 20,7(1):e000577. doi: 10.1136/bmjdrd-2018-000577. PMID: 30899526; PMCID: PMC6398819.
9. Degu H, Wondimagegnehu A, Yifru YM, Belachew A. Is health related quality of life influenced by diabetic neuropathic pain among type II diabetes mellitus patients in Ethiopia? PLoS ONE. 2019; 14(2): e0211449. https://doi.org/10.1371/journal.pone.0211449
10. Central Statistical Agency (CSA) of Ethiopia. Census-2007 report. Central statistical Agency. 2013. Available at: http://www.csa.gov.et/index.php/census-report/complete-report/census-2007.
11. Asemahagn, MA. Knowledge and experience sharing practices among health professionals in hospitals under the Addis Ababa health bureau, Ethiopia. BMC Health Serv Res. 2014; 14:431. https://doi.org/10.1186/1472-6963-14-431
12. Hyland ME. & Sodergren SC. Which global quality of life scale is most reliable and most preferred? Quality of Life Research. 1997: 6 (Abstracts: 4th Annual Conference of ISOQOL, 167); 662-63.
13. Mbanya JC, Ramiaya K. Diabetes Mellitus. In: Jamison DT, Feachem RG, Makgoba MW, et al., editors. Disease and Mortality in Sub-Saharan Africa. 2nd edition. Washington (DC). The International Bank for Reconstruction and Development / The World Bank. 2006. Chapter 19. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2291/
14. Castañeda A, Doan D, Newhouse D, Nguyen MC, Uematsu H, Azevedo JP. Who Are the Poor in the Developing World? Poverty and Shared Prosperity Report 2016: Taking on Inequality. Policy Research Working Paper 7844. World Bank Group. 2016. Available at: http://econ.worldbank.org Accessed on 10 October 2020.

15. Megari K. Quality of Life in Chronic Disease Patients. *Health Psychol Res.* 2013;1(3):e27. doi:10.4081/hpr.2013.e27

16. da Silva MR, Ferretti F, Pinto SS, and Filho OF. Depressive symptoms in the elderly and its relationship with chronic pain, chronic diseases, sleep quality and physical activity level. *Br J Psych.* 2018; 1(4): 293-298.

17. Sheng J, Liu S, Wang Y, Cui R, Zhang X. The Link between depression and chronic pain: neural mechanisms in the brain. *Neural Plast.* 2017; 2017:9724371. doi:10.1155/2017/9724371.

18. Mukona DM, Zvinavashe M. Self-management of diabetes mellitus during the Covid-19 pandemic: recommendations for a resource limited setting. *Diabetes Metab Syndr.* 2020;14(6):1575-1578.

19. Kassaw C. The magnitude of psychological problem and associated factor in response to COVID-19 pandemic among communities living in Addis Ababa, Ethiopia, March 2020: A cross-sectional study design. *Psychology Research and Behavior Management.* 2020:13 631–640.

20. Cadore EL, Izquierdo M. Exercise interventions in polypathological aging patients that coexist with diabetes mellitus: improving functional status and quality of life. *Age (Dordr).* 2015;37(3):64.

21. Bailey H, Janssen MF, La Foucade A, Kind P. EQ-5D-5L population norms and health inequalitiesfor Trinidad and Tobago. *Plos ONE.* 2019;14(4):e0214283.

22. Abedini MR, Bijari B, Miri Z. Emampour F, Abbasi A. The quality of life of the patients with diabetes type 2 using EQ-5D-5 L in Birjand. *Health Qual Life Outcomes.* 2020;18, 18. https://doi.org/10.1186/s12955-020-1277-8

23. Sakamaki H, Ikeda S, Ikegami N, Uchigata Y, Iwamoto Y, Origasa H et al. Measurement of HRQL using EQ-5D in patients with type 2 diabetes mellitus in Japan. *Value in health.* 2006;9(1):47-53. doi10.1111/j.1524-4733.2006.00080.x

24. Parik PC, Patel VJ. Health-related quality of life of patients with type 2 diabetes mellitus at a tertiary care hospital in india using EQ-5D-5L. *Indian J Endocrinol Metab.* 2019;23(4):407-411.

25. Welie AG, Fenta TG, Beedemariam G, Stolk EA, Mukuria C, Krahn M, et al. PMU86 - valuing health-state: an EQ-5D-5L value set for ethiopians. *Value in Health.* 2018;21:S322.

26. Sibhat SG, Fenta TG, Sander B, Gebretekel GB. Health-related quality of life and its predictors among patients with breast cancer at Tikur Anbessa Specialized Hospital, Addis Ababa, Ethiopia. *Health Qual Life Outcomes.* 2019; 17: 165. https://doi.org/10.1186/s12955-019-1239-1

27. Zhang L, Guo X, Zhang J, Chen X, Zhou C, Gen D et al. Health-related quality of life among adults with and without hypertension: a population-based survey using EQ-5D in Shandong, China. *Sci Rep.* 2017;7:14960. https://doi.org/10.1038/s41598-017-15083-4

28. Diena MA, Ahmad ON, Ragia HG, Alaa AB, Almetwazi M, Nujud AB et al. The impact of diabetes mellitus on health-related quality of life in Saudi Arabia. *Saudi Pharmaceutical Journal.* 2020. Doi: https://doi.org/10.1016/j.jspsj.2020.09.018. Available at: http://www.sciencedirect.com/science/article/pii/S1319016420302243 accessed on 18 Oct 2020.

29. Ho ET. Improving waiting time and operational clinic flow in a tertiary diabetes center. *BMJ Qual Improv Rep.* 2014;2(2):u201918.w1006.

30. Gedefaw M, Setargie F, Awoke W. Satisfaction of chronic illness patients at Felege Hiwot Referral Hospital, Bahir Dar City, and Northwest Ethiopia. *Open Journal of Epidemiology.* 2014; 04:217-23.
31. Hu R, Liao Y, Du Z, Hao Y, Liang H, Shi L. Types of health care facilities and the quality of primary care: a study of characteristics and experiences of Chinese patients in Guangdong province, China. *BMC Health Serv Res*. 2016;16:335. https://doi.org/10.1186/s12913-016-1604-2

32. Borges JB, Barros RT, Carvalho SM, Silva MA. Correlation between quality of life, functional class and age in patients with cardiac pacemaker. *Rev Bras Cir Cardiovasc*. 2013;28(1):47-53. English, Portuguese. doi: 10.5935/1678-9741.20130008.

33. Thein M, Ershler WB, Artz AS, Tecson J, Robinson B, Rothstein G et al. Diminished quality of life and physical function in community-dwelling elderly with anemia. *Medicine*. 2009;88(2):107-114.

34. Gerino E, Rollè L, Sechi C, Brustia P. Loneliness, resilience, mental health, and quality of life in old age: a structural equation model. *Front Psychol*. 2017;8:2003. doi:10.3389/fpsyg.2017.02003

35. Huang ES, Laiteerapong N, Liu JY, John PM, Moffet HH, Karter AJ. Rates of complications and mortality in older patients with diabetes mellitus: the diabetes and aging study. *JAMA Intern Med*. 2014;174(2):251–258.

36. Turner J, Kelly B. Emotional dimension of chronic disease. *West J Med*. 2000;172(2):124-8.

37. Zhang Y, Zhou Z, Gao J, Wang D, Zhang Q, Zhou Z et al. Health-related quality of life and its influencing factors for patients with hypertension: evidence from the urban and rural areas of Shaanxi Province, China. *BMC Health Serv Res*. 2016; 16: 277. https://doi.org/10.1186/s12913-016-1536-x

38. Cindy Lo Kuen Lam, Vivian Yawei Guo, Carlos King Ho Wong, Esther Yee Tak Yu, Colman Siu Cheung Fung. Poverty and health-related quality of life of people living in Hong Kong: comparison of individuals from low-income families and the general population. *Journal of Public Health*. 2017;39(2):258–265,

39. Cunningham W, Hays R, Williams K, Beck K, Dixon W, & Shapiro M. Access to medical care and health-related quality of life for low-income persons with symptomatic human immunodeficiency virus. *Medical Care*. 1995; 33(7):739-754.

40. Al Hayek AA, Robert AA, Al Saeed A, Alzaid AA, Al Sabaan FS. Factors associated with health-related quality of life among Saudi patients with type 2 diabetes mellitus: A cross-sectional survey. *Diabetes Metab J*. 2014;38(3):220-229.

41. Alefishat E, Jarab AS, Farha RA. Factors affecting health-related quality of life among hypertensive patients using the EQ-5D tool. *IJCP*. 2020; 74(9): e13532.