Magneto-optical investigation of spin–orbit torques in metallic and insulating magnetic heterostructures

Mohammad Montazeri1,*, Pramey Upadhyaya1,*, Mehmet C. Onbasli2, Guoqiang Yu1, Kin L. Wong1, Murong Lang1, Yabin Fan1, Xiang Li1, Pedram Khalili Amiri1, Robert N. Schwartz1, Caroline A. Ross2 & Kang L. Wang1

Manipulating magnetism by electric current is of great interest for both fundamental and technological reasons. Much effort has been dedicated to spin–orbit torques (SOTs) in metallic structures, while quantitative investigation of analogous phenomena in magnetic insulators remains challenging due to their low electrical conductivity. Here we address this challenge by exploiting the interaction of light with magnetic order, to directly measure SOTs in both metallic and insulating structures. The equivalency of optical and transport measurements is established by investigating a heavy-metal/ferromagnetic-metal device (Ta/CoFeB/MgO). Subsequently, SOTs are measured optically in the contrasting case of a magnetic-insulator/heavy-metal (YIG/Pt) heterostructure, where analogous transport measurements are not viable. We observe a large anti-damping torque in the YIG/Pt system, revealing its promise for spintronic device applications. Moreover, our results demonstrate that SOT physics is directly accessible by optical means in a range of materials, where transport measurements may not be possible.
Current-induced manipulation of magnetic order through spin–orbit torques (SOTs) has attracted much attention, with the potential of enabling novel spintronic devices for memory and logic applications1–14. Specifically, metallic magnets incorporating high spin–orbit elements have been used to realize magnetic memory devices with fast switching and ultralow power consumption8–10. Beyond metallic structures, interests in magnetic insulators and controlling their dynamics by SOTs have been rising due to the inherently zero charge current and low energy dissipation of these materials15–24.

To date, current-induced SOT physics is predominantly studied via electrical transport measurements. In metallic magnets, spin–orbit effects have been measured using both (i) direct measurement of current-induced magnetization dynamics49,10,25, utilizing the non-zero electrical conductivity and the presence of magnetoresistance/anomalous-Hall (AH) effects; and (ii) its Onsager reciprocal process of dynamic magnetization-induced spin/charge pumping5,8,13,26. On the other hand, although the reciprocal spin pumping has been observed in insulators15,27–30, with virtually zero conductivity, the direct quantitative electrical measurement of SOTs in such materials has proven a challenging task21,31–33.

Light interacts with the magnetic order of both metallic and insulating materials through the magneto-optical (MO) Kerr effect. In particular, the linear and nonlinear dynamics of the magnetization in virtually any direction, and with high spatial and time resolution, can be studied by employing various microscopy and sub-picosecond pump–probe techniques34–41.

To date, however, very limited efforts, specifically only on selected metallic structures, have been performed to partially incorporate the strength of MO measurements for investigating current-induced dynamics in magnetic heterostructures and time resolution, can be studied by employing various microscopy and sub-picosecond pump–probe techniques34–41.

In particular, the nonlinear MO response of SOTs has not been utilized in previous works.

Here we exploit MO measurements to directly probe the spin–orbit fields (SOFs) in two contrasting material systems, one a metallic thin film stack and the other an insulating magnetic heterostructure. The equivalency of MO and transport measurements is established by investigating SOFs of a micrometre-size ultra-thin Ta/CoFeB/MgO device wherein an excellent agreement between the optical and transport methods is found. In contrast to the metallic structures, the SOFs of a 50-nm-thick magnetic insulator yttrium iron garnet (YIG; Y\textsubscript{3}Fe\textsubscript{5}O\textsubscript{12}), in contact with 4-nm-thick Pt, are then directly measured by optical means wherein analogous transport measurements on YIG/Pt are shown to be dominated by other phenomena such as spin-Seebeck effect.

Unlike the perpendicular magnetization of the metallic stack, the YIG/Pt structure exhibits in-plane (IP) magnetization. Moreover, we find that both current-induced IP and out-of-plane (OOP) low-frequency oscillations of the magnetization are optically accessible through nonlinear MO terms, and can be separated by tuning the polarization of the incident light. The revealed polarization response of SOFs is unique to the optical measurements, with no analogous counterpart in transport measurements. We quantify a relatively large anti-damping field with a magnitude of \(2.89 \times 10^{-7} \text{ Oe} \cdot \text{A}^{-1} \cdot \text{cm}^2\) in YIG/Pt, which suggests its potential for spintronic devices based on magnetic insulators. Our results provide a direct and quantitative measurement of SOFs in insulating systems.

Figure 1 | MO probe of SOFs. (a) Schematic of the current-induced magnetization dynamics by SOFs, which is directly investigated for both metallic and insulating magnetic structures through the interaction of light with the magnetic order. The direction of applied and SOFs are shown by black arrows. \(H_0\), \(H_{FL}\), and \(H_{AL}\) represent applied, field-like and anti-damping-like fields, respectively. Owing to spin–orbit interaction in heavy metal, a lateral current \(j\) produces a spin current \(j_s\) which propagates in perpendicular direction. (b) The optical microscope image of the central region of the device in which the laser (white spot) is tightly focused near the centre of the device. The laser spot size is measured at \(\sim 1 \mu\text{m}\), which is much smaller than the dimensions of the device, implying the imaging capabilities of the optical probe. (c) Schematic of the experimental set-up depicting the IP current and magnetic field and the backscattering geometry of the probe laser beam. A linearly polarized light is focused on the device using a microscope objective. The intensity of the light is modulated by a photoelastic modulator at 100 kHz. The polarization of the reflected beam is analysed using a half-wave plate at 45°, Wollaston prism and balanced photodiode. Two successive lock-in amplifiers are used to measure the Kerr rotation \(\theta_K\) and the modulated Kerr signal \(\Delta \theta_K\) induced by an IP a.c. current \(j\) with frequency of \(\sim 277 \text{ Hz}\) while the external magnetic field is IP.
probed through the MO Kerr rotation (θ_K). The dynamics are induced through the SOTS via an IP a.c. current $j = j_{ac} \sin \omega t$, while, at the same time, the adiabatic current-induced change of the magnetization ($\Delta \theta_K$) at the laser spot is measured. In this backscattering geometry, the Kerr angle is linearly proportional to the OOP component of the magnetization, while the IP magnetization contributes through a second-order term, which is sensitive to the polarization of the incident light. Thus, θ_K is given by (Supplementary Note 1)

$$\theta_K = f_i m_2 + f_\parallel m_1, \quad (1)$$

where m_2 is the OOP magnetization, m_1 and m_2 are longitudinal and transverse components of the IP magnetization with respect to the polarization of the light, and f_i and f_\parallel are the first- and second-order MO coefficients that parameterize the strength of the coupling of the light to the OOP and the IP magnetization.

The current-induced magnetization dynamics can be described by the Landau–Lifshitz–Gilbert equation given by

$$\partial_t m = -\gamma m \times H_{\text{eff}} + \alpha m \times \partial_t m, \quad (2)$$

where $m = M/M_s$ is the magnetization unit vector normalized to the spontaneous magnetization M_s, γ is the gyromagnetic constant and α parameterizes the damping. The effective field H_{eff} is given by

$$H_{\text{eff}} = H_s + H_m m_m + H_{\text{Oe}} + H_{\text{FL}} + H_{\text{AL}} \quad (3)$$

where H_s is the applied external magnetic field, H_m is the effective perpendicular anisotropy field and H_{Oe} is the current-induced Oersted field. The last two terms are the SOFs, namely field-like (FL) and anti-damping-like (AL) components, with $H_{\text{FL}} = \lambda_{\text{FL}} z \times j$ and $H_{\text{AL}} = \lambda_{\text{AL}} (j \times z) \times m$ (ref. 9). Here, j is the current density, z is the unit vector normal to the plane and λ’s quantify the strength of the SOFs. Since the low-frequency-current-induced dynamics (with frequency of $\sim 10^3$ Hz) are orders of magnitude slower than the magnetization precession frequency ($\sim 10^6$ Hz), it is reasonable to assume that the magnetization adiabatically follows the H_{eff} and thus the quasi-equilibrium condition is described by $m \times H_{\text{eff}} = 0$. Furthermore, we treat the SOT-induced low-frequency oscillation of the magnetization as a perturbation on the equilibrium condition defined by $j = 0$.

SOFs in metallic Ta/CoFeB/MgO. To validate the optical probe, first we investigate an ultra-thin metallic stack of Ta(5 nm)/Co$_{20}$Fe$_{50}$B$_{20}$(1.1 nm)/MgO(2.0 nm) with perpendicular magnetic anisotropy. The advantage of the metallic example is that the optical measurements can be directly compared and correlated with standard transport methods. The device is in a single domain state at the applied bias field and shows current-induced switching that is locally probed at the laser spot (Supplementary Note 2 and Supplementary Fig. 1).

With our geometry, the optical measurements on Ta/CoFeB/MgO are dominantly sensitive to the change of the OOP component of the magnetization, with only a minor contribution from the IP oscillations. Figure 2a,b show θ_K ($\sim m_2$) and $\Delta \theta_K$ ($\sim \Delta m_2$) for the magnetic field parallel to the current density of 4.6×10^6 A cm$^{-2}$. At fields larger than H_s, the magnetization is aligned with the external field, which is evident by a nearly

![Figure 2](https://example.com/figure2.png)

Figure 2 | Optical measurements of metallic Ta/CoFeB/MgO. Experimentally measured Kerr angle (θ_K) and (normalized) differential Kerr angle ($\Delta \theta_K$) for the magnetic field parallel (a,b) or perpendicular (c,d) to the current with current density of 4.6×10^6 A cm$^{-2}$ and with $\theta_K = \theta_K(H_s = 0)$. The schematics in a.b show the direction of the magnetic field with respect to the current. The arrow balls in a schematically show the direction of the magnetic moment at various magnetic fields. The θ_K and $\Delta \theta_K$ are proportional to m_2 and Δm_2, respectively. The sharp edges in c,d indicate OOP switching of the magnetization due to a small OOP component of the external field. The asymmetric and symmetric line shapes in b,d reflect the symmetries of the anti-damping-like and field-like spin-orbit effective fields under magnetization reversal, respectively. The current-induced dynamics of magnetization m and relevant directions of SOFs are schematically demonstrated in b,d. For $j \perp H_s$, the anti-damping field is quantified by fitting equation (4) to the experiment at large fields (solid red lines in b). For $j \parallel H_s$, the field-like effective field is measured from the curvature of θ_K (solid red line in c) and the slope of $\Delta \theta_K$ (solid red line in d). Comparison of optical (red box) and transport (blue circle) measurements of anti-damping-like and field-like effective fields at various current densities for Ta/CoFeB/MgO is shown in e,f, respectively. In e,f, the solid red lines are linear fits to the optical probe, whereas the dashed blue lines are linear fits to the transport results. In e, the fits quantify the anti-damping-like coefficients λ_{AL} at $(2.01 \pm 0.01) \times 10^{-6}$ and $(1.87 \pm 0.01) \times 10^{-6}$ Oe$^{-1}$ cm$^{-2}$ for optical and transport probes, respectively. In f, the field-like coefficients λ_{FL} for the optical and transport probes are measured at $(3.28 \pm 0.03) \times 10^{-6}$ and $(3.34 \pm 0.02) \times 10^{-6}$ Oe$^{-1}$ cm$^{-2}$, respectively. The error bars in e,f are obtained by linear regression. The error bars in e are smaller than symbols. The consistency demonstrates the equivalency and relevance of the MO probe technique for investigating the SOFs in magnetic structures.
investigated by aligning H_a perpendicular to the current (Fig. 2c,d). In this case, at low fields, H_{FL} oscillates the magnetization in the y–z plane while the H_{AL} causes an IP oscillation, which does not contribute to $\Delta \theta_K$. For the current density of $4.6 \times 10^6 \text{A cm}^{-2}$ shown in Fig. 2c,d, the FL effective field is measured at $H_{FL} = 14.9 \pm 0.7 \text{Oe}$ (see Supplementary Note 3 for details).

The current dependence of H_{AL} and H_{FL} is summarized in Fig. 2e,f and are compared with the second-harmonic analysis of the AH voltage on the same device. The details of the transport measurements and comparisons are presented in Supplementary Note 3 and Supplementary Figs 2 and 3. For both optical and transport measurements shown in Fig. 2e, while the H_{AL} shows a linear dependence on the current densities up to $\sim 3.5 \times 10^6 \text{A cm}^{-2}$, at larger current a nonlinearity emerges that could be either due to Joule heating or deviation of the dynamics from the linear regime. Linear fits to the lower side of the data yields $\Delta H_{AL} = (2.01 \pm 0.01) \times 10^{-6} \text{Oe A}^{-1} \text{cm}^2$ and $\Delta H_{FL} = (1.87 \pm 0.01) \times 10^{-6} \text{Oe A}^{-1} \text{cm}^2$ for the optical and transport measurements, respectively. These values, both the magnitudes and the signs, are in agreement with that reported in the literature for a similar structure. The optically measured ΔH_{AL} is $\sim 7\%$ larger than that of the transport measurement, which may be due to the contribution of the planar-Hall effect and other nonlinear terms to the AH resistance in the transport or higher-order terms in the optical measurements. The measured FL coefficients are $\Delta H_{FL} = (3.28 \pm 0.03) \times 10^{-6} \text{Oe A}^{-1} \text{cm}^2$ and $\Delta H_{FL} = (3.34 \pm 0.02) \times 10^{-6} \text{Oe A}^{-1} \text{cm}^2$, consistent with a previous report.

To summarize this part, the consistency of the MO and transport measurements of SOFs in metallic Ta/CoFeB/MgO establishes both the equivalency and the relevance of the optical probe for investigating SOT-related phenomena.
Furthermore, the low-frequency OOP oscillation is induced by \(H_{\text{AL}} \) and competes against the \(H_F \) with a \(1/(H_F - H_{\text{AL}}) \) dependence, while the free IP oscillation is partly driven by \(H_F \) and diverges at \(H_F = 0 \). Comparing with the experimental data in Fig. 3b, we find that the diverging-like and the slow-decaying components are associated with the current-induced IP and OOP oscillations, respectively. The experimental data fit very well to equation (5) using the individual contributions of the IP and OOP oscillations that are reported in Fig. 3c.

It is noted that the differential Kerr of the IP oscillation is sensitive to the polarization of the incident light, whereas the AL component is insensitive to the polarization; as verified experimentally. This polarization dependence is unique to the MO probe and has no analogous counterpart in transport experimentally. This polarization dependence is unique to the AL component is insensitive to the polarization; as is verified using the individual contributions of the IP and OOP oscillations, that the diverging-like and the slow-decaying components are associated with the current-induced IP and OOP oscillations, respectively. The experimental data fit very well to equation (5) using the individual contributions of the IP and OOP oscillations that are reported in Fig. 3c.

Figure 4 summarizes the polarization dependence of \(\Delta \theta_k \) at a given current density. The diverging-like component, corresponding to the IP reorientation, shows a strong polarization dependence with minimum and maximum amplitudes at \(\phi_p = 0^\circ \) and \(90^\circ \), respectively. On the other hand, the \(\Delta \theta_k \) at higher fields, corresponding to the \(H_{\text{AL}} \)-induced OOP oscillations, shows no obvious polarization dependence as illustrated in Fig. 4c. The relative amplitude of the \(h_{||} \) versus polarization is extracted from a theoretical fit of equation (5) to the experimental data in Fig. 4b and is plotted in Fig. 4d. The data fit well to \(\cos 2\phi_p \), as predicted by equation (5). The small shift in vertical direction might be due to possible IP anisotropy or higher-order effects that are ignored here. These observations strongly support the attribution of the OOP and IP oscillations to the slow-decaying and the diverging-like components of \(\Delta \theta_k \), respectively. Although in principle it is possible to extract the value of the \(H_{\text{E}} \) here however we expect that the \(H_{\text{OE}} \) dominates the IP oscillation (Supplementary Note 5 and Supplementary Fig. 5). Furthermore, it is noted that the contribution of the IP oscillation is completely suppressed at \(\phi_p \approx 40^\circ \) and thus, at this polarization the signal is dominantly induced by the anti-damping field.

In a sharp contrast to the metallic case, the harmonic analysis of the transverse-Hall magnetoresistance of YIG/Pt \(^{19,32,49,50} \) system is significantly dominated by other nonlinear effects, for example, the spin-Seebeck effect \(^{51} \). To demonstrate this, it is instructive to define a dimensionless quantity \(\eta \) that relates the MO and transport measurements to the magnetization dynamics through the identity

\[
\eta = \frac{\Delta m_z}{m_S} = \frac{\Delta \theta_k}{f_{\parallel}} = \frac{2R_{xy}^2}{r_{\perp}}
\]

where \(R_{xy}^2 \) is the second-harmonic transverse-Hall resistance \(R_{xy} = r_1 m_z + r_2 m_r m_r \), where the coefficients \(r_1 \) and \(r_2 \) depend on intrinsic material properties (refs 18,51, Supplementary Note 6 and Supplementary Fig. 6). Noting that the identity (equation (6)) is also valid for the anomalous Hall (AH) effect (Supplementary Note 3), Fig. 5a,b compares \(\eta_{\text{MO}} \) and \(\eta_{\text{AH}} \) for Ta/CoFeB/MgO with the OOP and IP anisotropy (\(H_F > 0 \) and \(H_F < 0 \), respectively) wherein the values of \(\eta_{\text{MO}} \) and \(\eta_{\text{AH}} \) are extracted from either MO or AH measurements, respectively. The coefficients \(r_1 \) and \(f_{\parallel} \) for the IP Ta/CoFeB/MgO are separately measured by applying magnetic field normal to the plane and are demonstrated in Fig. 5c. Note here that the current is parallel to \(H_F \) resulting in the dominant contribution of the \(H_{\text{AL}} \). In both cases, the identity in equation (6) is verified, which indicates that both the optical and transport signals in Ta/CoFeB/MgO originate in the SOT, regardless of the sign of \(H_F \). In sharp contrast, for the YIG/Pt device the identity (equation (6)) is violated showing \(\eta_{\text{MR}} \gg \eta_{\text{MO}} \) as illustrated in Fig. 5d, where \(\eta_{\text{MO}} \) is expanded by 1,000 times for...
T a/CoFeB/MgO with IP anisotropy (\(d\)) second-harmonic anomalous-Hall/transverse-Hall (black boxes) measurements for \(c\) in the superiority of MO measurements for studying SOTs in insulating systems. (Supplementary Note 7 and Supplementary Fig. 9). These observations strongly suggest device are presented in Supplementary Notes 6 and 7 and Z Note 6). Furthermore, the \(f_\perp\) for both the current direction being parallel and at \(45^\circ\) minimized for \(Z\) remains finite at large fields (even up to 1 T). In addition, with \(x = 45^\circ\), the presence of the diverging-like signal is not consistent with current-induced IP reorientation (Supplementary Note 6 and Supplementary Fig. 7). These observations strongly suggest that the contribution of \(H_\text{Al}\) to the transverse-Hall signal is significantly overwhelmed by other nonlinear effects such as the spin-Seebeck effect (Supplementary Note 6, Supplementary Fig. 8 and ref. 51) and thus may not provide a clean nor direct measurement of the SOTs. It is noted that such nonlinear effects do not contribute to the optical measurements since \(\Delta \theta_K \propto j\) while the measured second-harmonic transverse voltage \(V_{xy} \propto j^2\).

We report the current dependence of \(\Delta \theta_K\) of YIG/Pt in Fig. 6 with the polarization set to \(\phi_p = 40^\circ\) for which only \(H_\text{Al}\) makes a contribution. The data fit very well to the first term of equation (6) providing a quantitative measure of the \(H_\text{Al}\). The coefficient \(f_\perp\) in equation (6) is independently measured (Supplementary Note 7 and Supplementary Fig. 9). Figure 6b

Figure 5 | Comparison of MO and transport measurements. Comparison of \(\eta_{\text{MO}} = \Delta \eta_K / f_\perp\) from MO (red circles) and \(\eta_{\text{AH/MR}} = \Delta R_{xy} / r_\perp\) from second-harmonic anomalous-Hall/transverse-Hall (black boxes) measurements for a metallic Ta/CoFeB/MgO with OOP anisotropy (\(H_\parallel > 0\)), (b) Ta/CoFeB/MgO with IP anisotropy (\(H_\parallel < 0\)) and (c) insulating YIG/Pt. In a, \(f_\perp\) and \(r_\perp\) are readily available from MO/AH measurements. For IP Ta/CoFeB/MgO in b,c shows MOKE and AH measurements with OOP field to extract \(f_\perp\) and \(r_\perp\), respectively. In a,b the current is parallel to the field while in c \(\eta_{\text{MR}}\) is demonstrated for both current being parallel (black boxes) and at \(45^\circ\) to the field (blue triangles) corresponding to \(z = 0^\circ\) and \(45^\circ\), respectively. In d \(\eta_{\text{MO}}\) is expanded by \(\times 1,000\) for clarity while the direct comparison of \(\eta\)’s is shown in e. Equation (6) is validated for Ta/CoFeB/MgO regardless of the sign of the anisotropy as shown in a,b demonstrating that both optical and transport signals in Ta/CoFeB/MgO originate in SOT. In a sharp contrast the equation (6) is violated for YIG/Pt system as demonstrated in d,e. In YIG/Pt, the contribution of SOT in transport measurements is significantly overwhelmed by other nonlinear effects (for example, spin-Seebeck effect) resulting in \(\eta_{\text{MR}} \gg \eta_{\text{MO}}\) as illustrated in d. This comparison demonstrates the superiority of MO measurements for studying SOTs in insulating systems.
values for M_s of 75 emu cm$^\text{-3}$ and 700 emu cm$^\text{-3}$ for YIG and CoFeB, respectively (Supplementary Note 4 and ref. 53). Overall, our data suggest that λ_{AL} in YIG/Pt is relatively large and can potentially be used to switch the magnetization by reducing the thickness and perhaps the lateral dimensions of the YIG, as well as using materials with higher spin-Hall angle such as topological insulators.

Because of the experimental limitations inherent in the transport techniques, very limited efforts have been reported to quantify the strength of the SOTs in YIG-based devices. As discussed earlier, the transverse-Hall magnetoresistance is significantly dominated by other nonlinear transport mechanisms such as the spin-Seebeck effect51. Magnetic resonance force microscopy has been employed to investigate the mechanical resonance of a magnetic cantilever dipole coupled to a micro-disk of YIG/Pt where a rate of 0.5 Oe mA$^{-1}$ × 1.7 × 10$^{-7}$ Oe A$^{-1}$ cm2 change in the linewidth, including inhomogeneous broadening, for 20-nm-thick YIG was reported21. Spin pumping at ferromagnetic resonance and spin-Hall magnetoresistance rectification has also recently been used to investigate a thin size YIG/Pt structure where one can calculate an anti-damping field of 1.8–2.0 × 10$^{-7}$ Oe A$^{-1}$ cm2 from the reported results for 55-nm-thick YIG30. However, the dominant contribution of the Oersted field and the complex line shape of the resonance signal demand thickness-dependent measurements along with extensive numerical simulations, which thus limits the quantitative measure of the magnitude of the SOT34. While our work suggest that spin-Seebeck and other possible nonlinear effects have a dominant contribution, it might be possible to account for these effects in all-electrical resonance measurements. The MO measurements, however, overcome these limitations and provide a superior direct and quantitative probe of the SOTs in virtually any magnetic-insulator structure with diffraction-limited spatial resolution, regardless of thickness and geometry.

In summary, we demonstrate that SOT physics of magnetic heterostructures are directly accessible and can be accurately measured by optical means, regardless of their electrical conductivity. The relevance of the MO probe is established by investigating a metallic Ta/CoFeB/MgO structure, and is then extended to an insulating YIG/Pt structure where the transport techniques are considerably limited. We reveal that in the optical probe, the polarization of the light also carries information on SOTs, whereas there is no analogous counterpart in transport measurements. Our specific result on YIG/Pt quantifies a relatively large anti-damping field of 2.89 × 10$^{-7}$ Oe A$^{-1}$ cm2. Our work opens up exciting opportunities in revealing SOT physics, particularly for investigating the spin-transfer mechanisms and spin-wave physics in magnetic insulators as well as magnetization dynamics of devices with internal magnetic textures.

Methods

Ta/CoFeB/MgO. Material stacks consisting of Ta(5 nm)/Co$_20$Fe$_{60}$B$_{20}$(1.1 nm)/ MgO(2.0 nm)/TaO$_x$ layers are sputter deposited at room temperature on a thermally oxidized Si/SiO$_2$ substrate. The 2 nm MgO is grown by rf-sputtering from an MgO insulator target. The TaO$_x$ layer is formed by oxidizing a 1.5-nm Ta layer under an O$_2$/Ar plasma for protection. The films are annealed to enhance the perpendicular magnetic anisotropy. Further details can be found in ref. 53.

YIG/Pt. Yttrium iron garnet (Y$_3$Fe$_5$O$_{12}$, YIG) films were grown on GGG (Gd$_3$Ga$_5$O$_{12}$) (111) substrates using pulsed laser deposition (see Supplementary Note 4 and ref. 23,48 for details). The Pt layer of 4 nm thickness was deposited by d.c. magnetron sputtering at room temperature.

Device fabrication. The films are patterned into 20 × 130-μm Hall bar devices by standard photolithographic and dry etching techniques.

Discussion

In our measurements, the sign of the λ_{AL} in YIG/Pt is similar to the positive sign obtained in Ta/CoFeB/MgO. However, in the YIG/Pt, the Pt is on the top of the magnetic structure, whereas in the Ta/CoFeB/MgO the heavy metal (Ta) is at the bottom side of the structure resulting in a sign reversal in each structure with respect to the other. Thus, the λ_{AL} in Pt has the opposite sign compared with Ta, which is consistent with their relative signs of the spin-Hall angle52. The magnitude of λ_{AL} in YIG/Pt is nearly one order of magnitude smaller than that observed for Ta/CoFeB/MgO. One should note however that the 50-nm-thick YIG is substantially thicker than the 1.1-nm-thick CoFeB. Furthermore, the spin transmission efficiency at the YIG/Pt interface could be as small as 0.15 (ref. 21). A more direct comparison can be obtained by noting that $\lambda_{\text{AL}} \sim T\theta_{\text{SH}}/(t_{\text{FM}}M_s)$; where θ_{SH} is the spin-Hall angle of the heavy metal, t_{FM} is the thickness of the magnetic layer and T characterizes the effective spin transmission at the interface of heavy metal and magnetic layer21. Using the experimentally measured λ_{AL}’s for YIG/Pt and Ta/CoFeB/MgO, we obtain $(T\theta_{\text{SH}})_{\text{YIG/Pt}}/(T\theta_{\text{SH}})_{\text{Ta/CoFeB}} = 0.69$. Here we used

![Figure 6 | Optically measured anti-damping field of YIG/Pt. (a) Current dependence of the differential Kerr signal of YIG/Pt device with the polarization of the light set to $\phi_o \approx 40^\circ$ to minimize the contribution of the IP oscillation. Solid red lines in a are theoretical fits of the anti-damping-induced component of equation (6) to the experimental data. Dashed lines in a mark $\Delta H_K = 0$. (b) The measured anti-damping field in YIG/Pt versus the current density through the Pt device. The error bars in b (obtained by linear regression) are smaller than the symbols. The solid red line in b is a linear fit to the data that yields the anti-damping coefficient $\lambda_{\text{AL}} = (2.89 \pm 0.02) \times 10^{-7}$ Oe A$^{-1}$ cm2.](image-url)
Optical measurements. The devices are mounted on a custom built XYZ translational stage and a linearly polarized laser beam is tightly focused on the device using a 50× 0.24 NA (numerical aperture) long working-distance microscope objective. Special care was taken to ensure the optical axis is normal to the plane of the sample with better than 1° accuracy, excluding the finite NA of the objective. The laser spot size is measured at ~1 μm, which is much smaller than the 20 μm width and 130 μm length of the device and is placed at the centre of the device, both in the lateral and longitudinal directions. At the lateral centre of the device the normal component of the Oersted field vanishes and thus m_z is not directly modulated by the Oersted field. At the maximum current density used in our measurements, the IP component of the Oersted field is estimated at <2 Oe. The back-reflected light is collected by the same microscope objective and rotation of the polarization plane is analysed using a Wollaston prism and a balanced silicon photodetector. To improve the signal-to-noise ratio, the intensity of the laser was modulated at ~100 kHz using a combination of a photoelastic modulator and a linear polarizer. To modulate the magnetization through SOTs, an a.c. current of $j=J_{ac}$, sin ωt with frequency of ~277 Hz, variable amplitude and zero d.c offset is used. Two phase-sensitive amplifiers were employed to analyse the output signal of the balanced photodetector. While the first lock-in (time constant of 100 μs), locked to the frequency of the photoelastic modulator, measures the relative magnitude of the Kerr angle θ_K, the second lock-in (time constant of 300 ms) is locked to the frequency of the current source and probes any change in the Kerr angle induced by the current ($\Delta \theta_K$). It should be noted that nonlinear components in $\Delta \theta_K$, such as heating, may appear at higher harmonics and thus makes a minor contribution to our first-harmonic measurements. The external magnetic field is kept IP with some small OOP component ($<2^°$) such that $m_y>0$ for positive IP fields. The presented data for Ta/CoFeB/MgO are obtained by employing a 80 kHz mode-locked Ti:Sapphire laser centered at 840 nm. The same results are reproduced by 632.8- and 780 nm CW lasers. For YIG/PT structure, to improve the transmission of the laser through the Pt, a laser beam of 420 nm is employed, which was generated through second-harmonic generation by a beta barium borate crystal pumped by a 840 nm mode-locked laser. This significantly improved the signal-to-noise ratio against lock-in with 840 nm mode-locked or CW lasers. For both Ta/CoFeB/MgO and YIG/PT, the signal is linearly proportional to the intensity of the laser with no obvious laser-induced heating effects. The presented data are for a laser average intensity of ~20 μW/cm2 for both the metallic and insulating cases. Measurements are performed at ambient condition.

Transport measurements. Transport measurements are performed immediately after the optical measurements without altering the geometry and with the laser beam being blocked.

References
1. Ando, K. et al. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008).
2. Mihai Ioni, L. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).
3. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).
4. Pi, U. H. et al. Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer. Appl. Phys. Lett. 97, 162507 (2010).
5. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).
6. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized nanowire layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).
7. Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).
8. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
9. Garello, K. et al. Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8, 587–593 (2013).
10. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta/CoFeB/MgO. Nat. Mater. 12, 240–245 (2013).
11. Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic in ferromagnetic heterostructures. Nat. Mater. 13, 699–704 (2014).
12. Rojas-Sánchez, J.-C. et al. Spin pumping and inverse spin Hall effect in platinum: the essential role of spin-memory loss at metallic interfaces. Phys. Rev. Lett. 112, 106602 (2014).
13. Wang, Z., Sun, Y., Wu, M., Tiberkevich, V. & Slavin, A. Control of spin waves in a thin film ferromagnetic insulator through interfacial spin scattering. Phys. Rev. Lett. 107, 146602 (2011).
14. Hahn, C. et al. Comparative measurements of inverse spin Hall effects and magnetoresistance in YIG/PT and YIG/Ta. Phys. Rev. B 87, 174417 (2013).
15. Hwang, S. et al. Chiral spin torque in nanometer-thick yttrium iron garnet system. Appl. Phys. Lett. 103, 082408 (2013).
16. Chiba, T., Bauer, G. W. & Takahashi, S. Current-induced spin torque resonance for magnetic insulators. Physical Review Applied 2, 034003 (2014).
17. Iguchi, R., Sato, K., Hirobe, D., Daimon, S. & Saitoh, E. Effect of spin Hall magnetoresistance on spin pumping measurements in insulating metal/metal systems. Appl. Phys. Express 7, 013003 (2014).
18. Miao, B. F., Huang, S. Y., Qin, D. & Chen, C. L. Physical origins of the new magnetoresistance in Pt/YIG. Phys. Rev. Lett. 112, 236601 (2014).
19. Wang, W. X. et al. Joule heating-induced coexistence of spin Seebeck effect and YIG magnetoresistance in the platinum/Y3Fe5O12 structure. Appl. Phys. Lett. 105, 182403 (2014).
20. Moog, E. R. & Bader, S. D. Smoke signals from ferromagnetic monolayers: Pt(1×1)Fe/Au(100). Superlattices Microstruct. 1, 543–552 (1985).
21. Straub, M., Vollmer, R. & Kirschner, J. Surface magnetism of ultrathin γ-Fe films investigated by nonlinear magneto-optical Kerr effect. Phys. Rev. Lett. 77, 743–746 (1996).
22. Rasing, T. Nonlinear magneto-optics. J. Magn. Magn. Mater. 175, 35–50 (1997).
23. Qu, Z. Q. & Bader, S. D. Surface magneto-optic Kerr effect. Rev. Sci. Instrum. 71, 1243–1255 (2000).
24. Sih, V. et al. Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases. Nat. Phys. 1, 31–35 (2005).
25. Stern, N. P., Steuerman, D. W., Mack, S., Gossard, A. C. & Awschalom, D. D. Drift and diffusion of spins generated by the spin Hall effect. Appl. Phys. Lett. 91, 062109 (2007).
26. Kirilyuk, A., Kinel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic moments. Rev. Mod. Phys. 82, 2731–2784 (2014).
27. von Kort Schwimng, C. et al. Imaging ultrafast demagnetization dynamics after a spatially localized optical excitation. Phys. Rev. Lett. 112, 217203 (2014).
28. Fan, E. et al. Quantifying interface and bulk contributions to spin-orbit torque in magnetic bilayers. Nat. Commun. 5, 1 (2014).
29. Erve, O. M. J. et al. Optical detection of spin Hall effect in metals. Appl. Phys. Lett. 104, 172402 (2014).
30. Emori, S., Bauer, U., Woo, S. & Beach, G. S. D. Large voltage-induced modification of spin-orbit torques in Pt/Co/GdOx. Appl. Phys. Lett. 105, 222401 (2014).
31. Postava, K. et al. Anisotropy of quadratic magneto-optic effects in reflection. J. Appl. Phys. 91, 7293–7295 (2002).
32. Mewis, T., Nembach, H., Rickart, M. & Hillebrands, B. Separation of the first- and second-order contributions in magneto-optic Kerr effect magnetometry of epitaxial FeMn/NiFe bilayers. J. Appl. Phys. 95, 5324–5329 (2004).
33. Hamrle, J. et al. Huge quadratic magneto-optic Kerr effect and magnetization reversal in the Co2FeSi Heusler compound. J. Phys. Appl. Phys. 40, 1563–1569 (2007).
34. Lang, M. et al. Proximity induced high-temperature magnetic ordering in topological insulator—ferromagnetic insulator heterostructure. Nano Lett. 14, 3459–3465 (2014).
35. Althammer, M. et al. Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids. Phys. Rev. B 87, 224401 (2013).
36. Lin, T., Tang, C., Aalyahaei, H. M. & Shi, J. Experimental investigation of the nature of the magnetoresistance effects in Pt-YIG hybrid structures. Phys. Rev. Lett. 113, 037203 (2014).
51. Vlietstra, N. et al. Simultaneous detection of the spin-Hall magnetoresistance and the spin-Seebeck effect in platinum and tantalum on yttrium iron garnet. *Phys. Rev. B* **90**, 174436 (2014).

52. Hoffmann, A. Spin Hall effects in metals. *IEEE Trans. Magn.* **49**, 5172–5193 (2013).

53. Yu, G. et al. Magnitization switching through spin-Hall-effect-induced chiral domain wall propagation. *Phys. Rev. B* **89**, 104421 (2014).

54. Harder, M., Cao, Z. X., Gui, Y. S., Fan, X. L. & Hu, C.-M. Analysis of the line shape of electrically detected ferromagnetic resonance. *Phys. Rev. B* **84**, 054423 (2011).

Acknowledgements

This work was supported by the National Science Foundation (DMR-1411085) and was supported in part by the FAME Center, one of six centers of STARnet, a Semiconductor Research Corporation Program sponsored by MARCO and DARPA. Partial support is also acknowledged from the NSF Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems (TANMS). Helpful discussions with Yaroslav Tserkovnyak are gratefully acknowledged.

Author contributions

M.M., P.U. and K.L.W. conceived the research; M.M. designed and performed the experiments and data analysis with contributions from P.U., P.K.A., R.N.S. and K.L.W.; M.M. and P.U. designed the theoretical model; M.C.O. grew the YIG film; G.Y. grew the Ta/CoFeB/MgO and Pt films; K.W. and M.L. fabricated the devices; M.M., P.U., P.K.A. and K.L.W. wrote the paper; all authors discussed the results and commented on the manuscript; the study was carried out under supervision of K.L.W.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Montazeri, M. et al. Magneto-optical investigation of spin–orbit torques in metallic and insulating magnetic heterostructures. *Nat. Commun.* 6:8958 doi: 10.1038/ncomms9958 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/