AIM
To evaluate the use of fully covered self-expandable metal stents (FCSEMSs) for pancreatic duct strictures in children with chronic pancreatitis.

METHODS
Eight patients with refractory benign dominant stricture of the main pancreatic duct (MPD) were enrolled through chart reviews between December 2014 and June 2017 in a single center. Endoscopic retrograde cholangiopancreatography (ERCP) with placement of a 6-mm FCSEMS with dual flaps was performed. Endoscopic removal of FCSEMSs was performed with a snare or rat-tooth forceps. All procedures were performed by a pediatric gastroenterologist. For the assessment of outcomes, technical and clinical success, adverse events, and stent patency were evaluated retrospectively.
RESULTS
The placement and removal of the FCSEMSs were successful in all 8 patients. Five patients were boys and 3 were girls. The median age at initial FCSEMS placement was 12 years (range, 5-18 years). The diameters of all the inserted stents were 6 mm, and the lengths were 4-7 cm. The median indwelling time was 6 mo (range, 3-10 mo). No pancreatic sepsis, pancreatitis, cholestasis, or mortality occurred. There was no proximal and distal migration. All subjects showed a patent stent. On follow-up ERCP, the mean diameter of the stricture improved from 1.1 mm to 2.8 mm (P < 0.05), whereas that of upstream dilation improved from 8.4 mm to 6.3 mm (P < 0.05).

CONCLUSION
This initial experience showed that temporary FCSEMS placement is feasible and safe for the management of refractory benign MPD stricture in children.

Key words: Chronic pancreatitis; Pancreatic duct; Self-expandable metal stent; Child; Endoscopic retrograde cholangiopancreatography

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This study reports the initial experience with the use of fully covered self-expandable metal stents (FCSEMSs) for recurrent benign pancreatic duct strictures in children. We indwelled 6-mm FCSEMSs with dual flaps in the pancreatic duct of pediatric patients for 6 mo. The placement and removal of the FCSEMSs were technically and clinically successful. There were no adverse events or stent obstruction. The findings support the applicability of FCSEMSs to the pediatric population.

Jeong IS, Lee SH, Oh SH, Park DH, Kim KM. Metal stents placement for refractory pancreatic duct stricture in children. World J Gastroenterol 2018; 24(3): 408-414 Available from: URL: http://www.wjgnet.com/1007-9327/full/v24/i3/408.htm DOI: http://dx.doi.org/10.3748/wjg.v24.i3.408

INTRODUCTION
Plastic stents (PSs) or metal stents have been widely used for the management of biliary and pancreatic duct strictures in endoscopic interventions[1]. The fully covered self-expandable metal stent (FCSEMS) was designed to compensate for the defects of PSs and uncovered self-expandable metal stents (SEMSs). The SEMS has the advantages of longer patency and resolution of main pancreatic duct (MPD) strictures because its lumen diameter is larger than that of the PS[2,3]. Meanwhile, the FCSEMS has been shown to improve tissue embedding by wrapping around the frame of the uncovered SEMSs[4].

As SEMSs were initially used for malignant biliary obstruction[5], FCSEMSs have been widely used for the management of biliary and pancreatic duct strictures in adults[6]. FCSEMSs have proven to be a particularly useful intervention for malignant biliary obstruction[7,8], and their use in the management of benign biliary strictures has been expanding steadily[9]. In recent studies, FCSEMSs were increasingly used for the management of MPD strictures refractory to PS placement in adults[10].

In general, studies on the application of stents in pediatric patients are lacking. However, most pediatric studies of endoscopic retrograde cholangiopancreatography (ERCP), including our previous study, investigated the use of PSs; therefore, stenting is an important indication in pediatric ERCP[11-13]. One pediatric study showed that PS placement was effective for reducing the recurrence of pancreatitis[14].

For these reasons, FCSEMSs may be useful even in pediatric populations. In this study, we evaluated the feasibility, safety, and therapeutic effect of FCSEMSs for the management of benign MPD strictures in pediatric patients with chronic pancreatitis (CP).

MATERIALS AND METHODS

Patients
This was a retrospective study of data collected through medical chart reviews between December 2014 and June 2017 at Asan Medical Center Children’s Hospital in Seoul, South Korea. Eight patients with CP and benign dominant MPD stricture refractory to PS placement were enrolled (Table 1). Patients with MPD dilatation due to a malignant cause or trauma were excluded. Five patients were boys and 3 were girls. Their median age was 12 years (range, 5-18 years). The patients in this study had pancreatic divisum and/or gene mutations. The genetic mutations were PRSS1 p.Gly208Ala, PRSS1 p.Arg122His, SPINK1 p.Asn34Ser, SPINK1 p.ThrT53Ilefs*41, SPINK1 IVS3(+2)T>C, and CFTR p.Gln1352His. The strictures were located at the pancreatic head in 5 patients, at the pancreatic neck in 2 patients, and at the pancreatic body in 1 patient. The subjects had a history of previous PS trials after endoscopic sphincterotomy. The median number of days and total duration of PS placement were 2 d (range, 1-7 d) and 57 d (range, 1-431 d), respectively. The stricture was verified using imaging methods [ultrasonography, computed tomography, endoscopic retrograde pancreatography (ERP), or magnetic resonance cholangiography]. A dominant stricture was defined when the contrast medium on the ERP film was not washed out and the upstream MPD dilation was ≥ 6 mm in diameter[15].

Procedure
The first session of placement and removal of FCSEMS
was performed by an adult and pediatric gastroenterologist. Thereafter, all procedures were performed by a pediatric gastroenterologist. ERP was performed using either an adult duodenoscope (JF; Olympus Optical, Tokyo, Japan) or a therapeutic duodenoscope (TJF, Olympus Optical, Tokyo, Japan). Commercially available 6-mm FCSEMSs (Hanarostent Biliary dual flap; M.I. Tech, Seoul, South Korea) that consisted of nitinol material with a silicone covering membrane were used (Figure 1). After the endoscopic sphincterotomy, which had been described elsewhere, dilatation of the stricture was performed with a Soehendra stent retriever (Wilson Cook Medical, Winston-Salem, NC, United States) and/or a Hurricane dilator balloon (Boston Scientific, Natick, MA, United States) prior to stent placement. The insertion length of the stent was determined such that at least 1 cm of ampulla and normal area at the end of the stenosis were each covered. Repositioning was carried out until the stent was fully inflated and placed in the targeted location. On the basis of previous studies in adults,[8] stent removal was planned with rat-tooth forceps at 6 mo after placement, unless adverse events or episodes of pancreatitis had occurred. Informed consent was obtained from the parents of the patients, after the risks and benefits of the procedure and alternative treatments were explained. The study protocol was approved by the institutional review board of Asan Medical Center (2017-0210).

Measurement of outcome

Feasibility was evaluated in terms of technical success, migration, and patency. Technical success was determined in accordance with the success of stent placement and removal. Successful stenting was attained when the stent passed through the stricture and the mesh spread easily, followed by a flow of pancreatic juice or washing fluid into the lumen of the stent. Successful removal was attained when the entire stent was removed without ductal leakage during contrast medium injection. Stent patency was assessed via visual inspection when the FCSEMS was removed. Efficacy was evaluated according to the improvements of the stricture and reduction of pancreatic pain and pancreatitis. Stricture improvement was evaluated by measuring the diameter of the stricture and the upstream dilation of the MPD as shown on pancreatography after the removal of the first metal stent. Safety was evaluated based on the occurrence of adverse events such as pancreatitis, cholestasis, bowel perforation, sepsis, or mortality. Blood pressure, heart rate, body temperature, laboratory tests (complete blood count and C-reactive protein, total bilirubin, direct bilirubin, amylase, and lipase levels), and abdominal

Table 1 Baseline characteristics of the 8 patients with refractory benign dominant main pancreatic duct strictures treated with a fully covered self-expandable metal stent

Case no.	Sex	Anatomical abnormality	Genetic mutation	No. of previous plastic stent placements	Placement time for each plastic stent (d), median (range)	Age at first insertion of a FCSEMS (yr)	Location of the stricture	Diameter and length of the stent (mm/cm)
1	F	Pancreas divisum	PRSS1	2	25.5 (19-32)	17	Head	6/4
2	M	-	SPINK1	7	42.0 (4-93)	12	Head	6/5
3	M	Incomplete pancreas divisum	-	4	126.5 (63-431)	10	Head	6/6
4	M	Pancreas divisum	CFTR	3	57.0 (1-109)	12	Body	6/7
5	F	-	PRSS1	1	46.0	18	Neck	6/7
6	M	-	PRSS1	2	58 (24-92)	5	Head	6/4
7	F	-	SPINK1	1	87	9	Head	6/4
8	M	-	SPINK1	1	29	16	Neck	6/7

*Single and multiple stents were used in our study. FCSEMS: Fully covered self-expandable metal stent.
The diameter of the upstream dilatation showed improvement from 8.4 ± 2.5 cm to 6.3 ± 1.6 cm after stenting ($P < 0.05$).

Safety
No adverse events such as pancreatitis, cholestasis, sepsis, bowel perforation, or mortality occurred during FCSEMS placement (Table 3).

DISCUSSION
We, herein, report the first case series of the use of FCSEMSs in pediatric patients with CP and MPD strictures refractory to PS placement. Despite the small sample size and lack of long-term follow-up, this preliminary study presents evidence of the feasibility of the use of FCSEMS even in children, with technical and functional success. The disadvantages of PSs include migration and occlusion by sludge, resulting in necessary replacement at around 3 mo [17]. In a previous study, FCSEMSs in the management of MPD stricture showed efficacy and safety at 6-mo intervals in adults [16]. We suggest that our short-term outcomes are similar to the results for adults in terms of the improvement of strictures and the safety of the procedure [17]. Uncovered SEMSs are associated with tissue ingrowth through the stent mesh, which makes their removal difficult [18]. Tissue hyperplasia was reported in 23% of patients with partially covered stents [19]. When the stent was pulled using rat-tooth forceps at the scheduled removal time, the stent moved easily out of the pancreatic duct without resistance. Initially, the introduction of FCSEMSs solved the tissue ingrowth issue but led to greater stent migration, with an incidence as high as 41% [20]. To overcome this challenge, fins and flaps have been incorporated into these devices [8,21]. During our procedure with a dual-flapped FCSEMS, we did not encounter any bleeding, ulcers, or migration problems. In terms of bioavailability, the nitinol materials and silicone membranes of the FCSEMSs applied in the present study series have been used safely in a previous study on the drainage of walled-off necrosis in children [22].

Table 2 Resolution of pancreatic duct strictures after the first placement of a fully covered self-expandable metal stent

Case no.	Duration of stenting (mo)	Diameter of the stricture (cm)	Diameter of the dilated segment 1 (cm)		
		Pre	Post	Pre	Post
1	3	0.8	3.0	6.5	4.9
2	10	1.5	2.0	12.1	8.7
3	6	1.2	3.4	11.3	7.1
4	6	0.9	3.4	8.1	6.4
5	6	1.0	4.4	7.1	5.0
6	6	0.9	0.9	6.0	5.2
7	6	1.6	2.1	9.4	6.1
8	6	0.8	3.0	7.0	7.0
mean ± SD	62	1.1 ± 0.3	2.8 ± 0.9	8.4 ± 2.5	6.3 ± 1.6

1The diameter was measured at the dilated segment upstream of the pancreatic duct stricture; 2Expressed as a median value. NA: Not applicable.

Statistical analyses
The Wilcoxon signed-rank test was used to compare changes in the diameter of the pancreatic duct between pre- and post-FCSEMS measurements. The IBM SPSS Statistics ver. 23.0 (IBM Co., Armonk, NY, United States) software was used for statistical analysis, and the stenting duration and patency are expressed as median values and ranges. P values < 0.05 were considered statistically significant.

RESULTS
Evaluation of feasibility
In all 8 patients, the placement of the FCSEMS with dual flaps was technically successful. The diameters of all inserted stents were 6 mm, and the lengths were 4-7 cm. The stents were successfully removed in all patients. The median indwelling time of stenting was 6 mo (range, 3-10 mo; Table 2). One patient had the stent removed 4 mo later than the planned time of removal because of personal reasons. However, stent embedding and occlusion did not develop (Figure 2). The patency of the stent lumen in the 8 patients with an FCSEMS had been maintained upon assessment at the time of stent removal. No stent migrations were observed.

Evaluation of efficacy
Recurrent pancreatitis and pancreatic pain did not develop in 4 patients during FCSEMS placement. In 1 patient, pain developed 3 mo after stenting, resulting in an early removal that revealed remnant stones blocking the distal MPD, although the lumen of the FCSEMS was patent. Following the removal of the stone and reinsertion of the stent, the pain disappeared and statistically significant improvements in stricture and upstream dilation were observed. The mean stricture diameter was 1.1 ± 0.3 cm before stenting and 2.8 ± 0.9 cm after stenting ($P < 0.05$).

The diameter of the upstream dilatation showed improvement from 8.4 ± 2.5 cm to 6.3 ± 1.6 cm after stenting ($P < 0.05$).

Radiographs were conducted at 3 d and 14-21 d after FCSEMS placement to evaluate for short-term adverse events.

d2Expressed as a median value. NA: Not applicable.
The major cause of CP in pediatric patients is hereditary pancreatitis rather than gallstones and alcoholism\(^2\)\(^3\). Furthermore, because the pancreas reserve of pediatric patients may worsen over time, considering total pancreatectomy with autologous islet transplantation (TP-IAT) may be much more important in children\(^2\)\(^5\). Surgery can result in a reduction of chronic pain through TP-IAT, which was shown to have a more protective effect against negative developments such as postoperative diabetes in preadolescence\(^2\)\(^6\). However, insulin dependency was still present in approximately 40% of postoperative patients\(^2\)\(^7\). Surgical burdens including morbidity, gastric motility dysfunction, and endocrine and exocrine replacement may also occur\(^2\)\(^8\)\(^9\). Given that the cause of CP differs between adults and children, adult guidelines for treating this condition as well as surgical recommendations cannot be automatically applied to pediatric cases. Therefore, until these problems are definitively resolved, endoscopic rather than surgical treatment should be considered in children.

In conclusion, this study showed that the use of FCSEMSs is feasible and safe and may be effective for the management of children with refractory benign MPD strictures. A future long-term investigation with a greater number of patients is warranted.

ARTICLE HIGHLIGHTS

Research background

Plastic stents (PSs) or metal stents have been widely used for the management of biliary and pancreatic duct strictures in endoscopic interventions. The fully...
covered self-expandable metal stent (FCSEMS) was designed to compensate for the defects of PSs and uncovered self-expandable metal stents (SEMSs). FCSEMSs have been widely used for the management of biliary and pancreatic duct strictures in adults. In general, studies on the application of stents in pediatric patients are lacking. This study reported our experience with using FCSEMS as part of the treatment for benign main pancreatic duct (MPD) strictures in pediatric patients with chronic pancreatitis (CP).

Research motivation

The major cause of CP in pediatric patients is hereditary pancreatitis rather than gallstones and alcoholism, unlike in adults. Pediatric patients experience mental and physical repetitive pain from complications of MPD stricture during their long life. Stenting is an important indication in pediatric ERCP. In a previous study, the use of FCSEMSs in the management of MPD stricture showed efficacy and safety at 6-mo intervals in adults. We report that our short-term outcomes in children are similar to the results obtained for adults, in terms of the improvement of strictures and the safety of the procedure.

Research objectives

This study evaluated the feasibility, safety, and therapeutic effect of FCSEMSs for the management of benign MPD strictures in pediatric patients with CP.

Research methods

This was a retrospective study of data collected through medical chart reviews between December 2014 and June 2017 at Asan Medical Center Children’s Hospital in Seoul, Korea. Eight patients with CP and benign dominant MPD stricture refractory to PS placement were enrolled. A dominant stricture was defined when the contrast medium on the endoscopic retrograde pancreatography film was not washed out and the upstream MPD dilation was ≥ 6 mm in diameter. Feasibility was evaluated based on technical success, migration, and patency. Technical success was determined in accordance with the success of stent placement and removal. Stricture improvement was evaluated by measuring the diameter of the stricture and the upstream dilation of the MPD. Safety was evaluated based on the occurrence of adverse events at 3 d and 14-21 d after FCSEMS placement. The Wilcoxon signed-rank test was used to compare changes in the diameter of the pancreatic duct between pre- and post-FCSEMS measurements. The IBM SPSS Statistics ver. 23.0 software was used for statistical analysis, and the stenting duration and patency are expressed as median values and ranges.

Research results

In all 8 patients, the placement of the 6-mm FCSEMS with dual flaps was technically successful. The median indwelling time of stenting was 6 mo (range, 3-10 mo). Stent embedding and occlusion did not develop. The patency of the stent lumen in the 8 patients with an FCSEMS had been maintained upon assessment at the time of stent removal. No stent migrations, adverse events, and mortalities were observed. After the removal of the stone and insertion of the stent, the pain disappeared and statistically significant improvements in stricture and upstream dilation were observed. The mean stricture diameter was 1.1 ± 0.3 cm before stenting and 2.8 ± 0.9 cm after stenting (P < 0.05). The diameter of the upstream dilation showed improvement from 8.4 ± 2.5 cm to 6.3 ± 1.6 cm after stenting (P < 0.05). A future study with a larger sample size could clarify the usefulness of FCSEMSs in children with benign MPD dilatation.

Research conclusions

This is the first study to investigate the efficacy and safety of the placement of the 6-mm FCSEMS with dual flaps in children. Despite the technical success and satisfactory clinical outcomes in these 8 children, the present study had certain limitations, including its retrospective design, relatively small sample size, and short follow-up period. In this study, we report our experience with using FCSEMS as part of the treatment of benign MPD strictures in pediatric patients with CP, providing valuable information about useful treatment for such patients. FCSEMS placement is an effective and safe management strategy for MPD strictures in pediatric patients with CP.

Research perspectives

We report the first case series of the use of FCSEMSs in the pediatric population with CP and MPD strictures refractory to PS placement. Despite the small sample size and lack of long-term follow-up, this preliminary study presents evidence of the feasibility of using FCSEMS even in children, with technical and functional success. A future long-term investigation with a greater number of patients is warranted.

REFERENCES

1. Mangiavillano B, Pagano N, Baron TH, Arena M, Iabichino G, Consolo P, Opochev E, Luigiano C. Biliary and pancreatic stenting: Devices and insertion techniques in therapeutic endoscopic retrograde cholangiopancreatography and endoscopic ultrasonography. *World J Gastrointest Endosc* 2016; 8: 143-156 [PMID: 26862364 DOI: 10.4253/wjge.v8.i3.143]
2. Almadi MA, Barkun A, Martel M. Plastic vs. Self-Expandable Metal Stents for Palliation in Malignant Biliary Obstruction: A Series of Meta-Analyses. *Am J Gastroenterol* 2017; 112: 260-273 [PMID: 27845340 DOI: 10.1038/ajg.2016.512]
3. Seicean A, Vultur S. Endoscopic therapy in chronic pancreatitis: current perspectives. *Clin Exp Gastroenterol* 2014; 8: 11-1 [PMID: 25565876 DOI: 10.2147/CEG.S43096]
4. Shin HP, Kim MH, Jung SW, Kim JC, Choi EK, Han J, Lee SS, Seo DW, Lee SK. Endoscopic removal of biliary self-expandable metallic stents: a prospective study. *Endoscopy* 2006; 38: 1250-1255 [PMID: 17163328 DOI: 10.1055/s-2006-944969]
5. Neuhäusler T, Hagenmüller F, Classen M. Self-expanding biliary stents: preliminary clinical experience. *Endoscopy* 1989; 21: 225-228 [PMID: 2792016 DOI: 10.1055/s-2007-1012954]
6. Hawes RH. Diagnostic and therapeutic uses of ERCP in pancreatic and biliary tract malignancies. *Gastrointest Endosc* 2002; 56: S201-S205 [PMID: 12447268 DOI: 10.1067/mge.2002.129003]
7. Eum J, Park DH, Ryu CH, Kim HJ, Lee SS, Seo DW, Lee SK, Kim MH. EUS-guided biliary drainage with a fully covered metal stent as a novel route for natural orifice transluminal endoscopic biliary interventions: a pilot study (with videos). *Gastrointest Endosc* 2010; 72: 1279-1284 [PMID: 20870224 DOI: 10.1016/j.gie.2010.07.026]
8. Tsuchiya T, Ito T, Gotoda T, Kuraoka K, Sofuni A, Itokawa F, Kurihara T, Ishii K, Tsuji S, Ikeuchi N, Tanaka R, Umeda J, Moriyasu F. A multicenter prospective study of the short-term outcome of a newly developed partially covered self-expandable metallic biliary stent (WallFlex®). Dig Dis Sci 2011; 56: 1889-1895 [PMID: 21298481 DOI: 10.1007/s00464-011-1581-6]
9. Tarantino I, Mangiavillano B, Di Mriti R, Barresi L, Moccio F, Granata A, Masci E, Curcio G, Di Pisa M, Marino A, Traina M. Fully covered self-expandable metallic stents in benign biliary strictures: a multicenter study on efficacy and safety. *Endoscopy* 2012; 44: 923-927 [PMID: 22893134 DOI: 10.1055/s-0032-1310011]
10. Park DH, Kim MH, Moon SH, Lee SS, Seo DW, Lee SK. Feasibility and safety of placement of a newly designed, fully covered self-expandable metal stent for refractory benign pancreatic ductal strictures: a pilot study (with video). *Gastrointest Endosc* 2008; 68: 1182-1189 [PMID: 19028228 DOI: 10.1016/j.gie.2008.07.027]
11. Troedndle DM, Barth BA. Pediatric Considerations in Endoscopic Retrograde Cholangiopancreatography. *Gastrointest Endosc Clin N Am* 2016; 26: 119-136 [PMID: 26616900 DOI: 10.1016/j.geclinac.2015.08.004]
12. Cho JM, Jeong IS, Kim HJ, Oh SH, Kim KM. Early adverse events and long-term outcomes of endoscopic sphincterotomy in a pediatric population: a single-center experience. *Endoscopy* 2017; 49: 438-446 [PMID: 28399669 DOI: 10.1055/s-0043-103956]
13. Agarwal J, Nageshwar Reddy D, Talukdar R, Lakhtakia S, Ramchandani M, Tandan M, Gupta R, Prapat N, Rao GV. ERCP in the management of pancreatic diseases in children. *Gastrointest Endosc* 2014; 79: 271-278 [PMID: 24060520 DOI: 10.1016/j.gie.2013.07.060]
14. Oracz G, Pertkiewicz J, Kierkus J, Dadalski M, Socha J, Ryzko J. Efficiency of pancreatic duct stenting therapy in children with...
chronic pancreatitis. Gastrointest Endosc 2014; 80: 1022-1029 [PMID: 24852105 DOI: 10.1016/j.gie.2014.04.001]

Dumonceau JM, Delhaye M, Tringali A, Domínguez-Munoz JE, Foley JW, Arvantiaki M, Costamagna G, Costea F, Devière J, Eisendrath P, Lakhtakia S, Reddy N, Fockens P, Ponchon T, Bruno M. Endoscopic treatment of chronic pancreatitis: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. Endoscopy 2012; 44: 784-800 [PMID: 22752888 DOI: 10.1055/s-0032-1309840]

Ogura T, Onda S, Takagi W, Kitano M, Sano T, Okuda A, Miyano A, Masuda D, Takeuchi T, Fukunishi S, Higuchi K. Placement of a 6 mm, fully covered metal stent for main pancreatic head duct stricture due to chronic pancreatitis: a pilot study (with video). Therap Adv Gastroenterol 2016; 9: 722-728 [PMID: 27582885 DOI: 10.1177/1756283X16651855]

England RE, Martin DF, Morris J, Sheridan MB, Frost R, Freeman A, Lawrie B, Deakin M, Fraser I, Smith K. A prospective randomised multicentre trial comparing 10 Fr Teflon Tannenbaum stents with 10 Fr polyethylene Cotton-Leung stents in patients with malignant common duct strictures. Gut 2000; 46: 395-400 [PMID: 10673303]

Cantú P, Villa F, Baroni S, Brunati S. Comment to “Precut sphincterotomy, repeated cannulation and post-ERCP pancreatitis in patients with bile duct stone disease”. Dig Liver Dis 2012; 44: 625-626 [PMID: 22459567 DOI: 10.1016/j.dld.2012.02.011]

Deviere J, Cremer M, Baize M, Love J, Sugai B, Vandermeeren A. Management of common bile duct stricture caused by chronic pancreatitis with mesh self-expandable stents. Gut 1994; 35: 122-126 [PMID: 8307432]

Deviere J, Nageshwar Reddy D, Pispok A, Ponchon T, Bruno MJ, Bourke MT, Neuhaus H, Roy A, González-Huix Lladó F, Barkun AN, Kortan PP, Navarrete C, Peetermans J, Blero D, Lakhtakia S, Dolak W, Lepilliez V, Foley JW, Tringali A, Costamagna G; Benign Biliary Stenoses Working Group. Successful management in patients with bile duct stone disease. Gastrointest Endosc 2014; 147: 385-395; quiz e15 [PMID: 24801350 DOI: 10.1016/j.gastro.2014.04.043]

Park DH, Lee SS, Lee TH, Ryu CH, Kim HJ, Seo DW, Park SH, Lee SK, Kim MH, Kim SJ. Anchoring flap versus flared end, fully covered self-expandable metal stents to prevent migration in patients with benign biliary strictures: a multicenter, prospective, comparative pilot study (with video). Gastrointest Endosc 2011; 73: 64-70 [PMID: 21184871 DOI: 10.1016/j.gie.2010.09.039]

Nabi Z, Lakhtakia S, Bashal J, Chavan R, Ramchandani M, Gupta R, Kalapala R, Darisetty S, Talukdar R, Reddy DN. Endoscopic Ultrasound-guided Drainage of Walled-off Necrosis in Children With Fully Covered Self-expanding Metal Stents. J Pediatr Gastroenterol Nutr 2017; 64: 592-597 [PMID: 27977545 DOI: 10.1097/MPA.0b013e31830b0149]

Schwarzenberg SJ, Bellin M, Husain SZ, Ahuja M, Barth B, Davis H, Durie PR, Fishman DS, Freedman SD, Gariepy CE, Giefer MJ, Gonska T, Heyman MB, Himes R, Kumar S, Morinville VD, Lowe ME, Nuehring NE, Ooi CY, Pohl JF, Troendle D, Welin SL, Wilschanski M, Yen E, Uc A. Pediatric chronic pancreatitis is associated with genetic risk factors and substantial disease burden. J Pediatr 2015; 166: 890-896.e1 [PMID: 25556020 DOI: 10.1016/j.jpeds.2014.11.019]

Lee YJ, Kim KM, Choi JH, Lee BH, Kim GH, Yoo HW. High incidence of PRSS1 and SPINK1 mutations in Korean children with acute recurrent and chronic pancreatitis. J Pediatr Gastroenterol Nutr 2011; 52: 478-481 [PMID: 21415673 DOI: 10.1097/MPG.0b013e31820e2126]

Chinnakotla S, Beilman GJ, Dunn TB, Bellin MD, Freeman ML, Radosevich DM, Arai M, Amateau SK, Mallery JS, Schwarzenberg SJ, Clavel A, Wilhelm J, Robertson RP, Berry L, Cook M, Hering BJ, Sutherland DE, Pruett TL. Factors Predicting Outcomes After a Total Pancreatectomy and Islet Autotransplantation Lessons Learned From Over 500 Cases. Ann Surg 2015; 262: 610-622 [PMID: 26366540 DOI: 10.1097/SLA.0000000000001453]

Bellin MD, Carlson AM, Kobayashi T, Gruessner AC, Hering BJ, Moran A, Sutherland DE. Outcome after pancreatectomy and islet autotransplantation in a pediatric population. J Pediatr Gastroenterol Nutr 2008; 47: 37-44 [PMID: 18607267 DOI: 10.1097/MPA.0b013e31815ca89]

Kobayashi T, Manivel JC, Bellin MD, Carlson AM, Moran A, Freeman ML, Hering BJ, Sutherland DE. Correlation of pancreatic histopathologic findings and islet yield in children with chronic pancreatitis undergoing total pancreatectomy and islet autotransplantation. Pancreas 2010; 39: 57-63 [PMID: 19745778 DOI: 10.1097/MPA.0b013e3181b6f7f1]

Bhayani NH, Enomoto LM, Miller JL, Ortenzi G, Kaifi JT, Kimchi ET, Staveley-O’Carroll KF, Gusani NJ. Morbidity of total pancreatectomy with islet cell auto-transplantation compared to total pancreatectomy alone. HPB (Oxford) 2014; 16: 522-527 [PMID: 23992021 DOI: 10.1111/hpb.12168]

Radomski M, Zureikat AH. Total pancreatectomy and islet cell autotransplantation: outcomes, controversies and new techniques. JOP 2015; 16: 1-10 [PMID: 25640776 DOI: 10.6092/1590-8577/2892]
