A Classification System for Defining and Estimating Dietary Intake of Live Microbes in US Adults and Children

Maria L Marco,1 Robert Hutkins,2 Colin Hill,3,4 Victor L Fulgoni, III,5 Christopher J Cifelli,6 Jaime Gahche,7 Joanne L Slavin,8 Daniel Merenstein,9 Daniel J Tancredi,10 and Mary E Sanders11

1Department of Food Science and Technology, University of California Davis, Davis, CA, USA; 2Department of Food Science and Technology, University of Nebraska–Lincoln, Lincoln, NE, USA; 3APC Microbiome Ireland, University College Cork, Cork, Ireland; 4School of Microbiology, University College Cork, Cork, Ireland; 5Nutrition Impact, LLC, Battle Creek, MI, USA; 6National Dairy Council, Rosemont, IL, USA; 7Office of Dietary Supplements, NIH, Bethesda, MD, USA; 8Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA; 9Department of Family Medicine, Georgetown University School of Medicine, Washington, DC, USA; 10Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, USA; and 11International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA

ABSTRACT

Background: Consuming live microbes in foods may benefit human health. Live microbe estimates have not previously been associated with individual foods in dietary databases.

Objectives: We aimed to estimate intake of live microbes in US children (aged 2–18 y) and adults (≥19 y) (n = 74,466; 51.2% female).

Methods: Using cross-sectional data from the NHANES (2001–2018), experts assigned foods an estimated level of live microbes per gram [low (Lo), <10⁴ CFU/g; medium (Med), 10⁴–10⁷ CFU/g; or high (Hi), >10⁷ CFU/g]. Probiotic dietary supplements were also assessed. The mean intake of each live microbe category and the percentages of subjects who ate from each live microbe category were determined. Nutrients from foods with live microbes were also determined using the population ratio method. Because the Hi category comprised primarily fermented dairy foods, we also looked at aggregated data for Med or Hi (MedHi), which included an expanded range of live microbe–containing foods, including fruits and vegetables.

Results: Our analysis showed that 52%, 20%, and 59% of children/adolescents, and 61%, 26%, and 67% of adults, consumed Med, Hi, or MedHi foods, respectively. Per capita intake of Med, Hi, and MedHi foods was 69, 16, and 85 g/d for children/adolescents, and 106, 21, and 127 g/d for adults, respectively. The proportion of subjects who consumed live microbes and overall per capita intake increased significantly over the 9 cycles/18-y study period (0.9–3.1 g/d per cycle in children across categories and 1.4 g/d per cycle in adults for the Med category).

Conclusions: This study indicated that children, adolescents, and adults in the United States steadily increased their consumption of foods with live microbes between the earliest (2001–2002) and latest (2017–2018) survey cycles. Additional research is needed to determine the relations between exposure to live microbes in foods and specific health outcomes or biomarkers.

Keywords: NHANES, fermented food, probiotics, live dietary microbes, International Scientific Association for Probiotics and Prebiotics, ISAPP

Introduction

Ingested microorganisms are increasingly recognized for their potential positive contributions to human health (1). There is strong evidence that probiotics, defined as “live microorganisms that, when administered in adequate amounts, confer a health benefit on their host” (2), are able to affect intestinal and systemic diseases and conditions (3). Epidemiologic and intervention studies on fermented foods containing live microbes (for example, yogurt and kimchi) have also indicated that consumption of those foods can improve metabolic and immune health (4–6). These observations are consistent with, and expand upon, the “old friends hypothesis” which states that exposure to commensal or nonharmful microbes in foods is an important, beneficial source of microbial stimuli for the immune system (7). Such immune regulatory activities may affect contemporary chronic immune, metabolic, and other “lifestyle” diseases linked to Western diets (8).
However, links between human health and ingested live microorganisms in whole diets have yet to be directly investigated. With few exceptions, studies on fermented foods have not separated health outcomes resulting from the contributions of live microorganisms in fermented foods from the effects of those foods as a whole (9). Moreover, living microbes are found not just in fermented foods, but also in a wide range of other foods. Although fermented foods that are not processed to remove or inactivate microbes frequently harbor >10^7 cells/g (10), microbial cell numbers can range from 10^6 to 10^9 CFU/g on raw, unpeeled fruits and vegetables (11–13). These cell quantities contrast with shelf-stable, processed foods that are commercially sterile or pasteurized and contain very low levels of viable microorganisms (<10^4 CFU/g) (14–16). Similarly, refrigerated pasteurized foods including milk (17) and deli meats (18) contain low cell numbers, at least before spoilage. Unlike nutrients such as proteins, carbohydrates, and fats, the microbial contents of foods are not available in dietary composition databases.

To address this gap in knowledge, we recently outlined steps to rigorously test the hypothesis that the regular consumption of safe, live microbes confers health-promoting properties that affect disease risk (19). We noted the need to use existing dietary databases and to conduct new prospective and randomized controlled trials to determine if there are quantifiable health benefits from consuming living microbes (19).

Whereas nutrient intakes from foods and beverages are available in dietary surveys such as What We Eat in America (WWEIA; the dietary component of the NHANES), numbers of live microbes must first be estimated for the most common foods and beverages eaten in America. Thus, our primary aim was to assess the number of live microbes that are consumed in the diet by estimating amounts in foods and beverages reported by NHANES participants, a necessary first step in estimating exposure of microbes from the diet.

The International Scientific Association for Probiotics and Prebiotics (ISAPP) funded the NHANES analysis, which was conducted by Nutrition Impact, Battle Creek, MI. The ISAPP had no role in the design, implementation, analysis, or interpretation of the data.

Author disclosures: CH serves in the unpaid position of member of the ISAPP board of directors. DM has consulted for Bayer and Howaru, has done legal work for VSL#3, and serves in the unpaid position of president of the ISAPP board of directors. CJC serves as Vice President of Nutrition Research, National Dairy Council. DJT has served as a statistical consultant for IFF and Synbiotic Health, and serves in the unpaid position of member of the ISAPP board of directors. MES has been compensated for consulting, giving presentations, or serving on advisory boards for Associated British Foods, Bayer, Bill and Melinda Gates Foundation, Bloom, California Dairy Research Foundation, Cargill, Church & Dwight, Danone North America, Danone Research, Fairlife, GlaxoSmithKline, Kerry, Mead Johnson, OmniBiotic/AllergoPep, Pepsico, Probi, Sanofi, Trouv Nutrition, Wincolove Probiotics, and Yakult. MLM serves in the unpaid position of vice president of the ISAPP board of directors. RH has received recent grants or honoraria from Mead Johnson Nutrition, Pharmavite, and Danone; is a co-owner of Synbiotic Health; and serves in the unpaid position of member of the ISAPP board of directors. VLF serves as Senior Vice-President of Nutrition Impact, provides food and nutrition consulting services for food and beverage companies, and also conducts analyses of NHANES data for members of the food industry. All other authors report no conflicts of interest.

Supplemental Tables 1 and 2 are available from the “Supplementary data” link in the online posting of the article and from the same link in the online table of contents at https://academic.oup.com/jn/.

Address correspondence to MES (e-mail: maryellen@isappprobiotics.org).

Abbreviations used: Hi, estimated to contain >10^7 CFU/g; Lo, estimated to contain <10^5 CFU/g; Med, estimated to contain 10^5–10^6 CFU/g; MedHi, estimated to contain >10^4 CFU/g; NCHS, National Center for Health Statistics.

Methods

Data set

NHANES is a large, ongoing, nationally representative, cross-sectional survey of the noninstitutionalized civilian population designed to monitor the nutritional, dietary, and health status of Americans. Currently, the data are continuously collected and released every 2 y by the National Center for Health Statistics (NCHS) of the CDC. Participants are selected using a complex, stratified, multistage cluster sampling probability design. Data are collected via an in-home interview for demographic and basic health information and a comprehensive diet and health examination in a mobile examination center. Detailed descriptions of the subject recruitment, survey design, and data collection procedures are available online (20). Because NHANES survey cycles are conducted using consistent state-of-the-art techniques and standardized procedures, extremely large data sets (>60,000 subjects) can be obtained by combining multiple cycles of data. All data obtained from this study are publicly available (20). The NHANES protocol was approved by the NCHS Ethics Review Board and all participants or proxies provided signed written informed consent. This study was a secondary data analysis that lacked personal identifiers and, therefore, was exempt from additional approvals by Institutional Review Boards.

Participants

Data from children (age 2–18 y) and adults (age ≥ 19 y) participating in 9 NHANES cycles (2001–2002, 2003–2004, 2005–2006, 2007–2008, 2009–2010, 2011–2012, 2013–2014, 2015–2016, and 2017–2018) were extracted for the current analysis. However, participants with unreliable data, incomplete 24-h dietary recalls, and pregnant or lactating females were excluded (n = 10,163). The final sample size was 74,466 children and adults: 37,856 (51.2%) females and 36,610 (48.8%) males. Importantly, all surveys were conducted in the United States and reflect dietary habits only of US respondents. In addition, the US focus also affected how estimates were determined, because many fermented foods produced in the United States are heat-treated.

Dietary intakes

Dietary intakes were estimated using data from 24-h dietary recall which were collected through in-person interviews that asked participants detailed information about all foods and beverages, including amounts consumed on the previous day (midnight to midnight). Complete descriptions of the dietary interview methods for NHANES are provided elsewhere (20). Energy and nutrients for each food and beverage consumed were determined using the NHANES cycle-specific Food and Nutrient Database for Dietary Studies of the USDA (21, 22).

Estimating viable microbial cell numbers in foods and beverages

The estimated quantities of live microbes (per gram) for 9388 food codes contained in 48 subgroups in the NHANES database were determined by 4 experts in the field (MLM, MES, RH, and CH). Because of the expected variation in the numbers of living microorganisms in each food type, the foods were assigned to categories with ranges defined as low (Lo; <10^4 CFU/g), medium (Med; 10^4–10^7 CFU/g), or high (Hi; >10^7 CFU/g) levels of live microbes. These levels of Lo, Med, and Hi were chosen to reflect the approximate numbers of viable microbes expected to be present in pasteurized foods (<10^4 CFU/g), fresh fruits and vegetables eaten unpeeled (10^5–10^7 CFU/g), and unpasteurized fermented foods and probiotic supplements (10^7–10^8 CFU/g).

As a first step, food subgroups estimated to contain only food codes having <10^4 CFU/g were identified by 3 individuals (MLM, MES, and RH) (Supplemental Table 1). For these assessments, experts relied on reported values in the primary literature (10–15, 17, 18, 23–32) authoritative reviews (33), or inferred values based on known effects of food processing (for example, pasteurization) on microbial viability. Next, the remaining 6317 food codes contained in 25 food subgroups were assessed by the experts working in teams of 2.
Assignment of Lo, Med, and Hi designations to food codes

Supplemental Table 2 lists the NHANES food codes and the assigned categories. Out of the 9388 food codes in the NHANES database, 8954 were estimated to contain low numbers of living microbes (<10⁴ CFU/g). Processed foods that ordinarily are heat-treated (milk; prepared meat; pork, poultry, and seafood dishes; sauces and gravies) were considered to have very low levels of microorganisms and were assigned to Lo. Likewise, raw meat, pork, poultry, and seafood were assumed to be cooked before consumption and also were assigned to Lo (the exception being the few such foods stipulated as being consumed raw). Uncooked mixed salads, such as tuna, macaroni, and beef salad, and sushi, were assumed to be composed primarily of low-CFU/g components, and were assigned to Lo. Fresh fruit and vegetables peeled before consumption were assigned to the Lo category.

The top 2 foods assigned to Med were those composed of fresh vegetables and fruits: 41% and 39%, respectively. Fresh fruit juices, such as fruit smoothies, were assigned to Med. Beverages, condiments, and sauces provided >10% of the foods in Med. Some fermented foods (for example, miso and sauerkraut) were assigned to Med.

Fermented dairy products comprised the majority of foods assigned to Hi (Supplemental Table 2). Yogurts and other cultured milks were assigned to Hi unless present as a constituent of other foods. Codes containing a large content of fermented foods (such as yogurt or sour cream) were assigned to Hi. Most cheeses were assigned to Hi, except long-aged cheese (e.g., Parmesan) (10), pizza-type cheeses that are typically heated before consumption, and American (processed) cheese, which is a pasteurized product. Cheese-containing sandwiches (unless made with American cheese or heated) were assigned to Hi. Foods containing cheese as a minor component were assigned to either Lo or Med, depending on their relative quantity in the food product.

Consumption of live microbes

The numbers of individuals consuming live microbes and their per capita intakes were examined based on the food code assignments of Lo, Med, and Hi. In order to span the range of foods with live microbes, we also analyzed MedHi. Approximately 52%, ∼20%, and ∼59% of children/adolescents (age 2–18 y), and ∼61%, ∼26%, and ∼67% of adults (age ≥ 19 y) were consumers of Med, Hi, and MedHi, respectively (Table 1). Only 0.81% of children/adolescents (age 2–18 y) and 2.30% of adults (age ≥ 19 y) were consumers of probiotic supplements (Table 1). Per capita intake of Med, Hi, and MedHi was 69, 16, and 85 g/d, respectively, for children/adolescents (age 2–18 y), and 106, 21, and 127 g/d, respectively, for adults (age ≥ 19 y) (Table 2). Approximately 12% more children (age 2–8 y) than adolescents (age 9–18 y) and 8% more older adults (age ≥ 51 y) than younger adults (age 19–50 y) were consumers of MedHi, and these groups had ∼7% and ∼14% higher intakes of MedHi foods, respectively.

Trends of live microbe consumption

The fraction (percentage unit change/cycle) of children/adolescents (age 2–18 y) consuming live microbes-containing foods significantly increased from 2001–2002 to 2017–2018 for score categories Hi (β = 1.20 ± 0.20, P-trend < 0.0001) and MedHi (β = 0.71 ± 0.26,

TABLE 1 Percentages of all subjects by age group with intake of Med, Hi, and MedHi foods and consuming a probiotic supplement

Age, y	Med	Hi	MedHi	Probiotic supplement	
≥2	74,466	59.0 ± 0.5	24.4 ± 0.4	65.1 ± 0.5	1.95 ± 0.15
2–18	28,375	52.3 ± 0.6	20.3 ± 0.6	59.2 ± 0.6	0.81 ± 0.14
2–8	11,626	55.0 ± 0.9	23.8 ± 0.8	63.1 ± 0.8	1.29 ± 0.24
9–18	16,749	50.5 ± 0.7	18.0 ± 0.6	56.4 ± 0.7	0.47 ± 0.12
≥19	46,091	61.0 ± 0.5	25.7 ± 0.5	67.0 ± 0.5	2.30 ± 0.17
19–50	25,071	58.8 ± 0.6	25.8 ± 0.5	64.6 ± 0.6	1.70 ± 0.17
≥51	21,020	64.5 ± 0.6	25.6 ± 0.6	70.3 ± 0.6	3.16 ± 0.30

1Values are % ± SE of consumers. Sex-combined data from NHANES 2001–2018. Hi and Med were categories assigned to food codes; MedHi represented aggregated consumers of foods from Med, Hi, or both Med and Hi. Med, estimated to contain 10^4–10^7 CFU/g; MedHi, estimated to contain >10^7 CFU/g.

P-trend = 0.0082] but did not change for score category Med (P-trend = 0.3898) (Figure 1). The percentage of adults (age ≥ 19 y) consuming foods in specific live microbe categories significantly increased for Hi (β = 1.41 ± 0.16, P-trend < 0.0001), significantly decreased for Med (β = −0.63 ± 0.19, P-trend = 0.0011), and did not change for MedHi (P-trend = 0.9522) during the 18 y under study (Figure 1). The proportion of participants consuming probiotic supplements also increased significantly over the 18 y (β = 0.25 ± 0.06, P-trend = 0.0001 for age 2–18 y; β = 0.54 ± 0.07, P-trend = 0.0001 for age ≥ 19 y) (Figure 1).

Per capita intake (g/d per cycle) significantly increased for Med (β = 2.24 ± 0.49, P-trend < 0.0001), Hi (β = 0.86 ± 0.21, P-trend = 0.0001), and MedHi (β = 3.10 ± 0.61, P-trend < 0.0001) for children/adolescents (age 2–18 y) over the last 9 cycles of NHANES (Figure 2). For adults (age ≥ 19 y), per capita intake significantly increased for Hi (β = 1.35 ± 0.23, P-trend < 0.0001), but did not change for Med (P-trend = 0.6864) and MedHi (P-trend = 0.0556), over the last 9 cycles of NHANES (Figure 2).

Food groups providing live microbes

Vegetables, fruits, and milk and dairy were the top 3 food groups contributing live microbes to the diet. Over 85% of food codes assigned Med or Hi contained vegetables, fruits, or milk and dairy. Vegetables and fruits were the top 2 sources of Med foods, providing 41% and 39%, respectively, whereas milk and dairy provided >93% of Hi foods (Table 3). Beverages, and condiments and sauces ranked next after vegetables, fruits, and milk and dairy, providing >9% of MedHi foods and >10% of Med foods. Fats and oils provided ~5% of Hi foods (Table 3).

Nutrient contribution by live microbe–containing foods

Foods estimated to contain >10^4 CFU/g live microbes (i.e., MedHi foods) provided >5% of daily nutrients obtained from foods for dietary fiber (9.1%), total sugars (5.6%), calcium (8.7%), phosphorus (5.6%), potassium (6.4%), vitamin A (9.9%), vitamin C (10.3%), and vitamin K (14.8%) in children/adolescents (age 2–18 y), and protein (5.4%), total fat (5.2%), dietary fiber (10.7%), total sugars (6.9%), calcium (12.6%), copper (5.4%), magnesium (5.6%), phosphorus (7.1%), potassium (8.4%), zinc (5.6%), vitamin A (15.3%), riboflavin (5.4%), vitamin C (16.2%), vitamin E (5.5%), and vitamin K (25.2%) in adults (age ≥ 19 y) (Table 4). Foods estimated to contain >10^4 CFU/g live microbes also provided 3.7% and 4.5% of daily energy in children/adolescents (age 2–18 y) and adults (age ≥ 19 y), respectively (Table 4).

Discussion

We previously proposed the need to interrogate nationally representative databases to determine if there are quantifiable benefits from consuming live dietary microbes (19). In this study, we completed the first step in this process by estimating the numbers of live microbes present in foods as well as the number of live microbes consumed. Our cross-sectional analysis examined dietary data across 9 NHANES cycles and showed that >50% of children and adults were consumers of Hi foods. In addition, in general, the proportions of children and adults who consumed live microbes and overall per capita intake increased significantly from 2001–2002 to 2017–2018.

To our knowledge, only 1 prior study has attempted to enumerate the numbers of microbes consumed in different diets (35). Examination of 3 meal plans showed that 2 of the plans provided <10^7 CFU/d, whereas the third meal plan, which included yogurt, provided >10^9 CFU/d. These results contrast with the levels of ingested microbes (between 10^8 and 10^12 CFU/d) from fermented foods and probiotics estimated by Derrien and van Hylckama Vlieg (36). Our results build significantly upon these studies by estimating the number of live microbes present in all foods contained in a major dietary database and using that estimate to determine the approximate number of live microbes consumed by children and adults in the US population. We showed that the estimated intakes of foods with live microbes were seemingly low (~85 and 127 g/d for...
children and adults, respectively) despite consumer interest in fermented foods. These estimates are similar to those observed in the study by Lang et al. (35), indicating that the average diet lacks consistent sources of fermented foods.

In our analysis, fruits, vegetables, and fermented dairy were the top 3 food groups providing live microbes to the diet. The finding that fermented dairy products were one of the primary sources of live microbes was not surprising because of their association with health-promoting microorganisms since the beginning of the 20th century. In contrast, fruits and vegetables were the main sources of live microbes in this study despite pre- and postharvest approaches to minimizing bacterial load for food safety purposes. Although previous work has reported that the microbial contents of fruits and vegetables were often <10^6 CFU/g (23), the amounts consumed by average US children and adults make these food groups an important source of live microbes. Beyond providing live microbes, the data also showed that these foods contributed a meaningful amount of key nutrients that are lacking in the diets of children and adults, including 3 of the 4 nutrients of public health concern—calcium, fiber, and potassium—as defined by the Dietary Guidelines Advisory Committee (37). Indeed, the most recent Dietary Guidelines for Americans noted that both children and adults do not meet the recommendations for fruits, vegetables, and dairy (38). Therefore, simply meeting dietary recommendations for these food groups would increase the numbers of live microbes and amounts of essential nutrients consumed in the diet. Further, it is reasonable to hypothesize

![Figure 1](image1)

FIGURE 1 Percentages of children (age 2–18 y; n = 28,373) (A) and adults (age ≥ 19 y; n = 45,088) (B) with intake of live microbe–containing foods (Med, Hi, and MedHi) and percentages of subjects consuming a PS by NHANES study periods. Sex-combined data. All β and P values represent regression coefficients and significance for change over time. Hi and Med were categories assigned to food codes; MedHi represented aggregated consumers of foods from Med, Hi, or both Med and Hi. Hi, estimated to contain >10^7 CFU/g; Med, estimated to contain 10^4–10^7 CFU/g; MedHi, estimated to contain >10^4 CFU/g; PS, probiotic supplement.

![Figure 2](image2)

FIGURE 2 Per capita intake of live microbe–containing foods (Med, Hi, and MedHi) for children (age 2–18 y; n = 28,373) (A) and adults (age ≥ 19 y; n = 45,088) (B) by NHANES study period. Sex-combined data. All β and P values represent regression coefficients and significance for change over time. Hi and Med were categories assigned to food codes; MedHi represented aggregated consumers of foods from Med, Hi, or both Med and Hi. Hi, estimated to contain >10^7 CFU/g; Med, estimated to contain 10^4–10^7 CFU/g; MedHi, estimated to contain >10^4 CFU/g.
based on the evidence presented here that a recommendation for specific fermented foods within the fruit, vegetable, and dairy food groups would lead to greater intakes of safe, beneficial microbes as well.

The strengths of this study include the use of a large nationally representative sample that included both children and adults, for whom live microbe consumption was estimated over a long period of time. Another strength of the present study was that we examined whole-food consumption, based on detailed 24-h dietary recall, to estimate the numbers of live microbes in foods and in the diet.

However, we also recognize the challenges of our approach. A major limitation of this study is the use of a cross-sectional study design, which cannot be used to determine cause and effect nor the effects of temporal changes in diet over time. The dietary intake data in NHANES are also self-reported relying on memory and are potentially subject to reporting bias. Moreover, although we accounted for a number of covariates in our statistical models, residual confounding cannot be ruled out. Further, our analysis is specific to the United States; national differences in eating patterns cannot be ruled out.

In conclusion, this study showed that children and adults have steadily increased their consumption of foods with live microbes over an 18-y period of time. Linking food or nutrients with health requires the ability to estimate the amount of the food or nutrient of interest consumed by the test population. The same is true of live microbes. Assessing the intake of live microbes in diets is critical for determining the relation between live microbes and health. This study represents the first estimate of the numbers of live microbes in foods and diets consumed by US children and adults. Future work should analyze the data by age, sex, and race to understand live microbe consumption and to explore if there are differences between subgroups of the US population. Future research is also needed that examines the relations between the consumption of live microbes in foods and specific health outcomes or biomarkers. These additional studies will further elucidate the role dietary microbes play in health and help move us closer to making science-based dietary recommendations on live microbes.
TABLE 4 Nutrient contribution of MedHi food codes among children (age 2–18 y) and adults (age ≥ 19 y)1

Nutrient	Amount	% Daily	Amount	% Daily
Energy, kcal/d	72.7 ± 1.4	3.73 ± 0.07	98.3 ± 1.7	4.54 ± 0.08
Carbohydrate, g/d	9.41 ± 0.22	3.63 ± 0.08	11.5 ± 0.2	4.43 ± 0.08
Protein, g/d	3.03 ± 0.07	4.41 ± 0.10	4.44 ± 0.09	5.36 ± 0.10
Total fat, g/d	2.91 ± 0.08	3.98 ± 0.10	4.33 ± 0.09	5.20 ± 0.11
Dietary fiber, g/d	1.22 ± 0.03	9.10 ± 0.19	1.79 ± 0.3	10.7 ± 0.10
Total sugars, g/d	7.15 ± 0.18	5.63 ± 0.14	8.06 ± 0.16	6.87 ± 0.14
Added sugars, tsp eq/d	0.31 ± 0.01	1.63 ± 0.07	0.32 ± 0.01	1.72 ± 0.08
Calcium, mg/d	87.7 ± 2	8.69 ± 0.18	120 ± 2	12.6 ± 0.2
Copper, µg/d	0.04 ± 0.001	4.37 ± 0.09	0.07 ± 0.001	5.35 ± 0.09
Iron, mg/d	0.24 ± 0.01	1.69 ± 0.04	0.46 ± 0.01	3.07 ± 0.05
Magnesium, mg/d	1.0.0 ± 0.2	4.33 ± 0.08	16.9 ± 0.3	5.64 ± 0.08
Phosphorus, mg/d	70.1 ± 1.5	5.59 ± 0.12	98.1 ± 1.9	7.12 ± 0.12
Potassium, mg/d	139 ± 3	6.36 ± 0.13	226 ± 4	8.38 ± 0.13
Selenium, µg/d	2.21 ± 0.06	2.36 ± 0.06	3.40 ± 0.08	3.01 ± 0.07
Sodium, mg/d	93.9 ± 2.4	3.06 ± 0.07	149 ± 3	4.16 ± 0.08
Zinc, mg/d	0.44 ± 0.01	4.22 ± 0.09	0.66 ± 0.02	5.60 ± 0.14
Vitamin A, RE/d	58.0 ± 2.1	9.89 ± 0.32	97.1 ± 2.4	15.3 ± 0.3
Thiamin, mg/d	0.03 ± 0.001	2.01 ± 0.04	0.05 ± 0.001	3.21 ± 0.06
Riboflavin, mg/d	0.08 ± 0.002	4.02 ± 0.08	0.12 ± 0.002	5.35 ± 0.10
Niacin, mg/d	0.23 ± 0.01	1.09 ± 0.03	0.45 ± 0.01	1.78 ± 0.04
Folate, DFE, µg/d	11.0 ± 0.3	2.11 ± 0.05	25.0 ± 0.5	4.64 ± 0.08
Vitamin B-6, mg/d	0.05 ± 0.001	3.19 ± 0.07	0.10 ± 0.002	4.65 ± 0.08
Vitamin B-12, µg/d	0.18 ± 0.005	3.78 ± 0.10	0.26 ± 0.01	4.92 ± 0.11
Vitamin C, mg/d	8.18 ± 0.3	10.3 ± 0.3	13.7 ± 0.3	16.2 ± 0.3
Vitamin D, µg/d	0.15 ± 0.005	2.71 ± 0.08	0.20 ± 0.01	4.25 ± 0.11
Vitamin E [ÂTE], mg/d	0.24 ± 0.01	3.68 ± 0.09	0.46 ± 0.01	5.53 ± 0.10
Vitamin K, µg/d	8.86 ± 0.43	14.8 ± 0.5	27.8 ± 0.7	25.2 ± 0.5
Total choline, mg/d	7.75 ± 0.19	3.10 ± 0.08	12.8 ± 0.3	3.81 ± 0.08

1Values are mean ± SE. Sex-combined data from NHANES 2001–2016. Hi and Med were categories assigned to food codes; MedHi represented aggregated consumers of foods from Med, Hi, or both Med and Hi. Hi, estimated to contain >10^7 CFU/g; Med, estimated to contain 10^6–10^7 CFU/g; MedHi, estimated to contain >10^6 CFU/g. ATE, alpha tocopherol equivalents; DFE, dietary folate equivalents; RE, retinol equivalents.

2n for total choline was 20,781 and 36,376 for children and adults, respectively.

Acknowledgments

The authors’ responsibilities were as follows—CH, RH, MLM, and MES: conducted categories to all NHANES food codes; VLF: conducted the NHANES analysis, wrote most of the Results and Methods sections, and developed most of the figures and tables; MEH: wrote Supplemental Table 1, wrote part of the Methods section and the key takeaways, and compiled the paper; MLM: edited the paper; and CJC: wrote the introduction and helped write the abstract. All authors: developed the concept of the project, edited the paper, and read and approved the final manuscript.

References

1. Roselli M, Natella F, Zinno P, Guantarino B, Canali R, Schifano E, et al. Colonization ability and impact on human gut microbiota of foodborne microbes from traditional or probiotic-added fermented foods: a systematic review. Front Nutr 2021;8:689084.

2. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014;11(8):306–14.

3. Merenstein DJ, Sanders ME, Tancredi DJ. Probiotics as a Tx resource in primary care. J Fam Pract 2020;69(3):E1–E10.

4. Dimidi E, Cox SR, Rossi M, Whelan K. Fermented foods: definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients 2019;11(8):1806.

5. Savaiano DA, Hutkins RW. Yogurt, cultured fermented milk, and health: a systematic review. Nutr Rev 2021;79(5):599–614.

6. Wastyn HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, et al. Gut-microbiota-targeted diets modulate human immune status. Cell 2021;184(16):4137–53.

7. Rook GA. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: Darwinian medicine and the ‘hygiene’ or ‘old friends’ hypothesis. Clin Exp Immunol 2010;160(1):70–9.

8. Margina D, Ungarianu A, Purdel C, Toukalas D, Sarandi E, Thanasoula M, et al. Chronic inflammation in the context of everyday life: dietary changes as mitigating factors. Int J Environ Res Public Health 2020;17(11):4135.

9. Marco ML, Sanders ME, González M, Arrieta MC, Cotter PD, De Vuyst L, et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat Rev Gastroenterol Hepatol 2021;18(3):196–208.

10. Rezac S, Kok CR, Heermann M, Hutkins R. Fermented foods as a dietary source of live organisms. Front Microbiol 2018;9:1785.
and bagged sprouts from chain supermarkets. J Health Popul Nutr 2014;32(3):391–9.

12. Johnston LM, Jaykus LA, Moll D, Martinez MC, Ancisco J, Mora B, et al. A field study of the microbiological quality of fresh produce. J Food Prot 2005;68(9):1840–7.

13. Valentín-Bon I, Jacobson A, Monday SR, Feng PC. Microbiological quality of bagged cut spinach and lettuce mixes. Appl Environ Microbiol 2008;74(4):1240–2.

14. Institute of Food Technologists. Evaluation and definition of potentially hazardous foods. A Report of the Institute of Food Technologists for the Food and Drug Administration of the United States Department of Health and Human Services [Internet]. Silver Spring, MD: FDA; 2001[cited 3 July, 2020]. Available from: https://www.fda.gov/food/published/evaluation-and-definition-of-potentially-hazardous-foods.pdf.

15. Feroz F, Shimizu H, Nishioka T, Mori M, Sakagami Y. Bacterial and fungal counts of dried and semi-dried foods collected from Dhaka, Bangladesh, and their reduction methods. Biocontrol Sci 2016;21(4):243–51.

16. Alp D, Bulanetkin O. The microbiological quality of various foods dried by applying different drying methods: a review. Eur Food Res Technol 2021;247:1333–1343.

17. Ziyaina M, Govindan BN, Rasco B, Coffey T, Sablani SS. Monitoring shelf life of pasteurized whole milk under refrigerated storage conditions: predictive models for quality loss. J Food Sci 2018;83(2):409–18.

18. Montville R, Schaffner DW. Statistical distributions describing microbial quality of surfaces and foods in food service operations. J Food Prot 2004;67(1):162–7.

19. Marco ML, Hill C, Hutkins R, Slavin J, Tancredi DJ, Merenstein D, et al. Should there be a recommended daily intake of microbes? J Nutr 2020;150(12):3061–7.

20. CDC, National Health and Nutrition Examination Survey [Internet]. Atlanta, GA: CDC; 2021[cited 9 December, 2021]. Available from: http://www.cdc.gov/nchs/nhanes/.

21. Haytowitz DB, Ahuja JKC, Wu Z, Somanchi M, Nickle M, Nguyen QA, et al. USDA National Nutrient Database for Standard Reference, Legacy Release [Internet]. Beltsville, MD: USDA Agricultural Research Service; 2019[cited 9 December, 2021]. Available from: https://data.nal.usda.gov/dataset/usda-national-nutrient-database-standard-reference-legacy-release.

22. USDA Agricultural Research Service (ARS). USDA Food and Nutrient Database for Dietary Studies [Internet]. Beltsville, MD: USDA ARS; 2021[cited 9 December, 2021]. Available from: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/?(PMU)?fndds/.

23. Becker B, Stoll D, Schulz P, Kulling S, Huch M. Microbial contamination of organically and conventionally produced fresh vegetable salads and herbs from retail markets in Southwest Germany. Foodborne Pathog Dis 2019;16(4):269–75.

24. Dees NW, Lysæe E, Nordskog B, Brurberg MB. Bacterial communities associated with surfaces of leafy greens: shift in composition and decrease in richness over time. Appl Environ Microbiol 2015;81(4):1530–9.

25. Guo Q, Goldberg JZ, Humphrey C, El Dib R, Johnston BC. Probiotics for the prevention of pediatric antibiotic-associated diarrhea. Cochrane Database Syst Rev 2019;4(4):CD004827.

26. Jackson CR, Randolph KC, Osburn SL, Tyler HL. Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiol 2013;13(1):274.

27. Lynch MF, Tauxe RV, Hedberg CW. The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect 2009;137(3):307–15.

28. Sonnenburg ED, Sonnenburg JL. The ancestral and industrialized gut microbiota and implications for human health. Nat Rev Microbiol 2019;17(6):383–90.

29. Tournas VH, Katsoudas E. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int J Food Microbiol 2005;105(1):11–17.

30. Yu AO, Leveau JHJ, Marco ML. Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria. Environ Microbiol Rep 2021;12(1):16–26.

31. Zwielenhner J, Handschur M, Michaelson A, Irez S, Demel M, Denner BE, et al. DGGE and real-time PCR analysis of lactic acid bacteria in bacterial communities of the phyllosphere of lettuce. Mol Nutr Food Res 2008;52(5):614–23.

32. Ranieri ML, Hark JR, Sonnen M, Barbano DM, Boor KJ. High temperature, short time pasteurization temperatures inversely affect bacterial numbers during refrigerated storage of pasteurized fluid milk. J Dairy Sci 2009;92(10):4823–32.

33. Roberts TA, Cordier J-L, Gram L, Tompkin RB, Pitt JI, Gorris LGM, et al., editors. Micro-organisms in foods 6: microbial ecology of food commodities. 2nd ed. London, United Kingdom: Springer; 2005.

34. Beresford TP, Fizsimons NA, Brennan NL, Cogan TM. Recent advances in cheese microbiology. Int Dairy J 2001;11(4–7):259–74.

35. Lang JM, Eisen JA, Zivkovic AM. The microbes we eat: abundance and taxonomy of microbes consumed in a day’s worth of meals for three diet types. PeerJ 2014;2:e659.

36. Derrien M, van Hylckama Vlieg JE. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 2015;23(6):354–66.

37. USDA and US Department of Health and Human Services (DHHS). Dietary Guidelines for Americans, 2020–2025 [Internet]. 9th ed. Washington (DC): USDA and US DHHS; 2020[cited 21 October, 2021]. Available from: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf.

38. Dietary Guidelines Advisory Committee. Scientific Report of the 2020 Dietary Guidelines Advisory Committee: Advisory Report to the Secretary of Agriculture and the Secretary of Health and Human Services [Internet]. Washington (DC): USDA Agricultural Research Service; 2020[cited 21 October, 2021]. Available from: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf.

39. Sonnenborn U. Escherichia coli strain Nissle 1917—from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiol Lett 2016;363(19):fnw212.

40. USDA Agricultural Research Service (ARS). What We Eat in America [Internet]. Beltsville, MD: USDA ARS; 2021[cited 4 March, 2021]. Available from: https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-human-nutrition-research-center/food-surveys-research-group/docs/wweianhanes-overview/.