Risk Factors for Herpes Zoster Infection: A Meta-Analysis

Fawziah Marra¹, BSc (Pharm), PharmD, Kamalpreet Parhar¹, Bill Huang¹, Nirma Vadlamudi¹

¹ Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC Canada

Running title: HZ-related risk factors

Word count:

Keywords: Herpes zoster, risk factors, meta-analysis, age, immunocompromised

Corresponding Author:

Dr. Fawziah Marra, Professor of Pharmacy, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, fawziah@mail.ubc.ca; Tel: (604) 822-7898, E-mail: fawziah@mail.ubc.ca
Abstract

Background: The burden of herpes zoster (HZ) is significant worldwide, with millions affected and the incidence rising. Current literature has identified some risk factors for this disease, however there is yet to be a comprehensive study that pools all evidence to provide estimates of risk. Therefore, the purpose of this study is to identify various risk factors, excluding immunosuppressive medication, that may predispose an individual to developing herpes zoster.

Methods: The literature search was conducted in MEDLINE, EMBASE, Cochrane Central, yielding case control, cohort and cross-sectional studies that were pooled from January 1966 to September 2017. Search terms included: zoster OR herpe* OR postherpe* OR shingle* AND risk OR immunosupp* OR stress OR trauma OR gender OR ethnicity OR race OR age OR diabetes OR asthma OR chronic obstructive pulmonary disease OR diabetes. Risk ratios for key risk factors were calculated via natural logarithms and pooled using random effects modeling.

Results: From a total of 4417 identified studies, 88 were included in analysis (N=3,768,691 HZ cases). Immunosuppression through HIV/AIDS (RR 3.22; 95% CI 2.40-4.33) or malignancy (RR 2.17; 95% CI 1.86-2.53) significantly increased the risk of HZ compared to controls. Family history was also associated with a greater risk (RR 2.01; 95% CI 1.39-2.91) and older age (RR 1.65; 95% CI 1.37-1.97). A slightly smaller risk was seen those with psychological stress, females, and comorbidities such as diabetes, rheumatoid arthritis, cardiovascular diseases, renal disease, SLE, and IBD compared to controls (RR range: 2.08 to 1.23). We found that black race had lower rates of HZ development RR 0.69 (95% CI 0.56-0.85).

Conclusions: This study demonstrated a number of risk factors for development of herpes zoster infection. However, many of these characteristics are known well in advance by the patient and clinician and may be used to guide discussions with patients for prevention by vaccination.
Introduction

Herpes zoster (HZ) or shingles, as its commonly known, results from reactivation of the varicella zoster virus (VZV), which lies dormant in the spinal and cranial sensory ganglia following primary infection in childhood. Herpes zoster presents as a painful, erythematous, maculopapular rash in which lesions become fluid-filled before crusting over. Unique features that distinguish HZ from other dermatological rashes are unilateral presentation and restriction to a single dermatome. Through various mechanisms, VZV is reactivated to cause HZ. Although treatment is available via antiviral therapy, there are many ophthalmic, vascular, visceral and neurological complications of herpes zoster. These complications lead to increased all-cause total healthcare cost and place financial burdens on patients. The major complication associated with HZ is post herpetic neuralgia (PHN), pain persisting for over 90 days after shingles onset, that occurs within 20% of HZ patients with an estimated prevalence of 0.5-1 million.

It is clear from the literature that millions of individuals are affected each year by shingles or herpes zoster infection around the globe; in the United States, over one million new cases of herpes zoster are reported every year. The incidence of herpes zoster ranges from 3 to 5 per 100,000 in North America, Europe and Asia, but more importantly, the incidence seems to be increasing with time, and it is unclear what this may be related to. Numerous studies have identified risk factors associated with reactivation of varicella zoster virus, many of which are related to a decrease in T-cell immunity, such as aging and immunosuppression, but some are related to family history or stress. We have previously conducted a meta-analysis which pooled data from randomized clinical trials and observational studies to determine the magnitude of risk with different immunosuppressive regimens in patients with rheumatoid arthritis, systemic lupus erythematosus, and inflammatory bowel disease. This time, we have focused on pooling data from all studies evaluating the risk of developing herpes zoster infection except those studies evaluating risk with taking immunosuppressive medications.

Methods

This systematic review and meta-analysis was reported according to the MOOSE guidelines for the reporting of observational studies, in accordance with the PRISMA guidelines for conducting a meta-analysis.

Data Sources and Search Strategy

We conducted a search of MEDLINE, EMBASE, Cochrane Central, Cochrane Systematic Reviews, Web of Science, CAB Direct for articles reporting on herpes zoster infection and associated risk from January 1, 1966 to January 31, 2019. Search terms as keywords, Mesh terms and subject headings included: zoster OR herpe* OR postherpe* OR shingle* AND risk OR
immunosupp* OR stress OR trauma OR gender OR ethnicity OR race OR age OR diabetes OR asthma OR chronic obstructive pulmonary disease OR diabetes. After pooling the articles and deleting duplicates, a manual review of titles was conducted screening for relevant topics and keywords. Another final manual review of article abstract was conducted on shortlisted articles. The literature search was performed by an author (BH), and a university librarian, the article review was conducted by two authors (BH/NV), while uncertainty and revisions were resolved by consensus.

Inclusion and Exclusion Criteria

We included all English studies which evaluated the risk factors associated with herpes zoster in the population. We excluded cases and case series reports, and literature reviews. We also excluded all studies that used immunosuppressive medications, including biologics, disease-modifying anti-rheumatic drugs (DMARDs), and/or corticosteroids.

Data Extraction, Study Verification and Quality Assessment

Data was extracted independently by two authors using a standardized abstraction form, with discrepancies being resolved through consensus. Data extracted from the studies included the author, date of the study, type of study, inclusion and exclusion criteria, risk factor, number of patients, confounders adjusted for, demographics and study outcome data. Quality assessment of the studies was conducted by two authors independently using the Newcastle-Ottawa quality assessment scale 16.

Statistical Analysis

Pooled risk ratios (RRs) with 95% confidence intervals (CI) were calculated for the risk of HZ associated with key risk factors, using natural logarithm of reported effect estimates, and their corresponding confidence interval. As these observational studies were conducted in different geographic locations, the true effect estimate will likely vary and represent a random sample of effect estimates, therefore pooled estimates were obtained using a random effects model.

We compared the risk of HZ in those with 1) innate risk factors, such as race, sex, age, and family history; 2) immunosuppression (HIV/AIDS or malignancy); 3) co-morbidities including asthma, chronic obstructive pulmonary disease (COPD), cardiovascular diseases (CVD), inflammatory bowel disease (IBD), depression, diabetes, chronic renal disease, systemic lupus erythematos (SLE); and 4) other studies (physical trauma, psychological stress, smoking).

We measured heterogeneity across studies using the I² statistic, with higher values reflecting increasing heterogeneity 17. Sources of heterogeneity were assessed by subgroup analysis and by meta-regression 18. Subgroup analyses included disease sub-types, mean age, sex ratio and study type.
Using funnel plots, publication bias was assessed, and asymmetry was assessed by conducting the Egger test. Statistical analyses were conducted in R version 3.3.2. All analyses were two sided with p<0.05 defining statistical significance.

Results

Search Results, Trial Characteristics and Risk of Bias

The literature and manual references search identified 4417 studies (Figure 1). Majority of these studies were excluded based on the title and/or abstract screening and removal of duplicate records (N=4192). Two hundred and twenty five studies were included for a full article review and 88 studies were included, corresponding to 68 cohort studies and 20 case-control studies. Reasons for exclusion were mainly irrelevant topic, immnosuppressive therapy focus, study design, studies were evaluating herpes treatment and vaccine effect rather than risk factors, complications associated with herpes zoster infection or lack of quantitative data on the incidence of HZ associated with individual risk factors. One percent of the studies were published between 1965-1969, 5% from 1990-1999, 17% from 2000-2009 and 77% from 2010-2018).

A summary of the baseline characteristics of patients included for analysis are presented in Supplementary eTable 1. A total study population of 198,751,846 was included, with 3,768,691 HZ cases reported in the included studies. The age ranged from 3 months to 104 years, the percentage of women in studies ranged from 0 to 100% and the follow-up duration ranged from 1-62 years. Most studies were conducted in North America (Canada and the United States of America; N=35), followed by Asia (China, Iran, Israel, Japan, South Korea, Taiwan; N=31), and Europe (Belgium, Denmark, France, Germany, Italy, Spain, Netherlands, United Kingdom; N=20). Overall quality of the included studies ranged from fair to good, based on the Newcastle Ottawa scale assessment, ranging from 6-9 for cohort studies, 4-9 for case control studies (Supplemental eTable 2, and 3).

Risk of Herpes Zoster

The estimates are presented in (Figure 2),and detailed forest plots for each outcome can be found in Supplemental eFigure 1-18).

Within our categorization of innate characteristics, 56 studies evaluated gender and 39 studies looked at age as potential risk factors for development of HZ. A smaller number of studies evaluated race (N=17) and family history of zoster (N=9). Family history was strongly associated with an increased risk of HZ than controls (RR 2.48, 95% CI 1.70-3.60; I²=94.4%) (Figure 2). Both older age (RR 1.65, 95% CI 1.37-1.97; I²=100%) and gender (OR 1.19, 95% CI 1.14-1.24; I²=99.4%) were associated with an increased HZ risk, but less so than family history. Of note, a lower risk of HZ was associated with black race (RR 0.69, 95% CI 0.56-0.85; I²=97.2%).
We found 40 studies that reported risk of HZ from malignancies and 18 studies on HIV/AIDS. HIV/AIDS was strongly associated with an increased risk of HZ compared to controls (RR 3.22, 95% CI 2.40-4.33; I²=98.1%). Malignancies, such as lymphoma and leukemia, were also strongly associated with risk of HZ (RR 2.17, 95% CI 1.86-2.53; I²=99.6%). Numerous studies evaluated risk of HZ with various concurrent illnesses including diabetes (N=34), chronic renal disease (N=18), cardiovascular disease (N=16), depression (N=14), chronic obstructive pulmonary disease (N=13), systemic lupus erythematosus (N=13), asthma (N=12), rheumatoid arthritis (N=12), and inflammatory bowel disease (N=8). Most of these co-morbidities increased risk of HZ, RR ranging from 2.08 to 1.23, particularly SLE (RR 2.08, 95% CI 1.56-2.78; I²=98.00%) and rheumatoid arthritis (RR 1.51, 95% CI 1.31-1.75; I²=99.10%).

Other non-medical factors evaluated in studies included psychological stress (N=8), physical trauma (N=6) and smoking (N=8); HZ was strongly associated with physical trauma (RR 2.01, 95% CI 1.39-2.91; I²=92.5%), but the rest were not significant.

A considerable amount of heterogeneity was found through visual inspection of funnel plot assessment (data not shown), but after evaluation with Egger’s test only handful of the risk factors (family history, systemic lupus erythematosus, psychological stress and depression) were found to possess statistically significant heterogeneity. Most of the heterogeneity was found to be associated with study design, population and geographic location.

Discussion

This is the most comprehensive systematic review assessing risk factors for herpes zoster infection. Our meta-analysis indicates immunosuppression through HIV/AIDS or malignancy places individuals at significant risk of reactivating the latent viral suppression. Family history of zoster, physical trauma and older age also significantly increased risk. Although the risk is present with female gender, psychological stress, or presence of comorbidities, such as diabetes, rheumatoid arthritis, cardiovascular diseases, renal disease, SLE, and IBD, it was slightly less than the former risk factors.

The elevated risk in the older patients is likely due to immunosenescence, in which the immune system progressively deteriorates as individuals age. Varicella zoster-virus is normally kept dormant in dorsal root sensory ganglia via specific cell-mediated immunity (CMI). CMI naturally declines over time, but is normally boosted by exogenous and endogenous methods, thereby limiting VZV’s ability to reactivate and cause HZ. Exogenous boosting occurs through repeated exposures to wild-type VZV causing subclinical infections which are immediately mediated by cellular processes. Endogenously, subclinical reactivation of VZV stimulates CD4+ cells to release cytokines, including tumor necrosis factor-alpha, interferon-gamma, and interleukin-2 (IL-2). The latter agent enables T helper cells to stimulate neutrophils and macrophages that phagocytize the
zoster virus. In addition, IL-2 promotes CD8+ cells to release proteases, interferon-gamma and lysins to destroy viral cells. Finally, CD4+ cells also play a role in memory B-cell stimulation and IgG mediated B-cell proliferation. In elderly patients with reduced immune function, VZV specific T-cell immunity (CD4, CD8 and memory T-cells) is below the clinical threshold of maintaining virus latency, thus placing this population at elevated risk of developing HZ. In our meta-analysis, most of the studies were conducted in the population aged 60 years and over (N=36), with only one study reporting HZ risk in those aged 40 years and over, and two studies in individuals 50 years and above; the lack of data in these at-risk individuals meant we were unable to further characterize risk in these age groups.

It is well known that immunosuppressive conditions such as HIV/AIDS and malignancies result in decreased CMI that increases the risk of viral infections, such as zoster. In general, these individuals have low CD4+, CD8+ cells and impaired lymphocyte proliferation. We were not able to do a separate analysis according to CD4 count as most studies reported HZ in HIV patients with >350 CD4 cell count and at the beginning of ART therapy. Immunosuppression also impacts recovery of CMI post therapy, specifically towards IL-2 and CD4+, which play a significant role in limiting VZV reactivation to cause HZ. Autoimmune diseases such as RA, IBD and SLE also cause impaired CMI. A study by Park et al. found lower CD4+ cell counts (including TNF-alpha and interferon-gamma) in patients with SLE, which they stated may place individuals at higher risk of HZ. Furthermore, a study conducted by Nagasawa et al also discussed that SLE patients show altered immune function via tests for delayed hypersensitivity reactions, CD8+ activity, interferon production and T cell transformations. Elevated risk factors for both immunosuppressive conditions and autoimmune diseases were identified in our meta-analysis.

Only one other meta-analysis studied the impact of family history on developing HZ. Lai and Yew evaluated this relationship, as well as dose-response relationships and whether the number of relatives affected HZ rates. They included 5 case-control studies (N=4169) and identified a statistically significant increase in the risk of family history with first-degree relatives (OR 3.03; 95% CI, 1.86-4.94). One proposed genetic mechanism, discussed by Lai and Yew, involves human leukocyte antigens (HLA’s), specifically HLA-A which is responsible for presenting peptides to CD8+ receptors to elicit an immune response. IE6862 is a VZV transcription factor protein and one of the main peptides responsible for eliciting CD8+ response; a study conducted by Meysnman et al found that patients in Belgium who had lower HLA-A presentation ability of IE62 protein had a 60% greater risk of HZ.

Our meta-analysis found female gender places individuals at a slightly higher risk of HZ but there is no definite explanation for this difference. However, a review conducted by Fleming et al, proposed gender biases during diagnosis may be a factor; another probable cause may be due to hormonal or biological differences between genders.
Black race was seen to be protective against HZ in comparison to white individuals. There are few documented reasons for this occurrence. A possible explanation is due to differences in household composition; black individuals may have elevated exposure to varicella, which boosts CMI. Other explanations may lie in genetic variations, racial differences in reporting disease or the frequency of medical interactions. Finally, it may also be related to lower rates of health care access among black individuals, which may be due to mistrust or lack of a consistent healthcare source, and this may contribute to lower numbers of patients seen with HZ by a healthcare professional.

Currently, there are two vaccines on the market, Zostavax (a live vaccine) and Shingrix (a recombinant zoster vaccine). Both vaccines increase cellular mediated immunity. Zostavax is no longer the recommended vaccination for HZ because vaccine effectiveness after three years is only slightly above 50% and is further diminished to ≤24% after 4 years. Additionally, Zostavax is less effective in older individuals and is contraindicated in immunosuppressive conditions (HIV/AIDS, malignancies), during immunosuppressive drug therapy and pregnancy. Shingrix contains a recombinant VZV glycoprotein E and an adjuvant component which increase VZV-specific CMI and enhances specific humoral immunity respectively. Shingrix is recommended to all adults ≥50 years old, in two separate IM injections 2-6 months apart. However, vaccination rates are still low and substantial efforts by healthcare professionals are required to increase uptake.

Our study was not without limitations. Most studies selected were observational (cohort or case-control studies) and due to design, have a higher likelihood of bias. The potential for recall bias is possible in the studies that reported on family history and physical trauma. Family history may have differential recall depending on various factors, such as the number of years since HZ events, variations in awareness of family history or the strength of the relationships between families. Physical trauma can either impair patient’s ability to recall events or strengthen their memory of coinciding events. Finally, selection bias may also be present in studies that collected HZ cases from specialist clinics such as those from dermatologists. However, bias was accounted for via risk of bias assessment, in which all studies scored low. Due to study design, studies were also at risk of confounding, although most studies minimized the risk by adjusting for some of the variables such as age, sex or other comorbidities. It is likely that a patient with multiple risk factors is at higher risk for HZ compared to someone with single risk factor, however because of the differences in study design and population, we were not able to determine cumulative risk in our study. Administrative data was the preferred method of data collection by a majority of the studies selected. This form of data can be miscoded, incorrect or vary between practitioners. Most studies accounted for the possible error through various methods such as: only including patients with first diagnosis of HZ, selecting databases that were validated for correctness and accuracy, or incorporating various sources to confirm diagnosis (ICD codes + anti-viral prescriptions). Heterogeneity was high, which may be attributed to variations in study design, differences in outcome ascertainment (record linkage, hospital records, diagnosis by physician), characteristics of populations (age, gender, size) and countries studies were conducted in.
Conclusion

In conclusion, HIV/AIDS, immunosuppression, family history, older age, trauma, females, and presence of comorbid conditions place individuals at an increased risk of HZ. With two vaccinations available on the market, physicians and other health care providers can target patient education based on their risk factors and improve the uptake of zoster vaccination.
Declarations

1. Ethics Approval & Consent to Participate
Not applicable.

2. Consent for Publication
Not applicable.

3. Availability of Data & Material
Not applicable.

4. Competing interests
Not applicable.

5. Funding
This was an unfunded study

6. Author’s Contributions
The contribution of the authors to the study are as follows: Conception and design of the study (FM), literature search (BH), acquisition of data (KP,BH,NV), data analysis (NV), interpretation of data (FM, NV, BH, KP), first draft of the article (FM, KP, NV), revised it critically for important intellectual content (FM, NV, KP, BH) and final approval of the version to be published (FM, NV, KP, BH).

7. Acknowledgements
Not applicable.
References

1. Weller TH. Varicella and herpes zoster. Changing concepts of the natural history, control, and importance of a not-so-benign virus. *New England Journal of Medicine*. 1983;309(23):1434-1440.

2. Cohen JI. Herpes zoster. *New England Journal of Medicine*. 2013;369(3):255-263.

3. Oxman MN. Clinical manifestations of herpes zoster. In: Arvin AM, Gershon AA, eds. *Varicella-Zoster Virus: Virology and Clinical Management*. Cambridge: Cambridge University Press; 2000:246-275.
https://www.cambridge.org/core/product/identifier/CBO9780511601194A024/type/book_part. Accessed April 18, 2019.

4. Somayaji R, Elliott JA, Sibbald RG. Dermatologic manifestations of herpes zoster. In: Watson CPN, Gershon AA, Oxman MN, eds. *Herpes Zoster: Postherpetic Neuralgia and Other Complications: Focus on Treatment and Prevention*. Cham: Springer International Publishing; 2017:103-115.
https://doi.org/10.1007/978-3-319-44348-5_10. Accessed May 2, 2019.

5. Kovac M, Lal H, Cunningham AL, et al. Complications of herpes zoster in immunocompetent older adults: Incidence in vaccine and placebo groups in two large phase 3 trials. *Vaccine*. 2018;36(12):1537-1541.

6. Rausch DA, Levin M, Meyers J, et al. Cost of diagnosed herpes zoster complications in patients age ≥50 years: A U.S claims data analysis. *Innovations in Aging*. 2017;1(suppl_1):902-902.

7. Kost RG, Straus SE. Postherpetic neuralgia--pathogenesis, treatment, and prevention. *New England Journal of Medicine*. 1996;335(1):32-42.

8. Philip A, Thakur R. Post herpetic neuralgia. *Journal of Palliative Medicine*. 2011;14(6):765-773.

9. Oxman MN, Levin MJ, Johnson GR, et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. *New England Journal of Medicine*. 2005;352(22):2271-2284.

10. Pinchinat S, Cebrián-Cuenca AM, Bricout H, Johnson RW. Similar herpes zoster incidence across Europe: results from a systematic literature review. *Biomed Central Infectious Diseases*. 2013;13(1):170.

11. Kawai K, Gebremeskel BG, Acosta CJ. Systematic review of incidence and complications of herpes zoster: towards a global perspective. *British Medical Journal Open*. 2014;4(6):e004833.

12. Thomas SL, Hall AJ. What does epidemiology tell us about risk factors for herpes zoster? *The Lancet Infectious Diseases*. 2004;4(1):26-33.

13. Marra F, Lo E, Kalashnikov V, Richardson K. Risk of herpes zoster in individuals on biologics, disease-modifying antirheumatic drugs, and/or corticosteroids for autoimmune diseases: A
systematic review and meta-analysis. Open Forum Infectious Diseases. 2016;3(4).
https://academic.oup.com/ofid/article/3/4/ofw205/2649125. Accessed April 18, 2019.

14. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. Journal of American Medical Association. 2000;283(15):2008-2012.

15. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. British Medical Journal. 2009;339:b2535.

16. Wells G, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Health Institute.

17. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. British Medical Journal (Clinical research ed). 2003;327(7414):557-560.

18. Baker WL, White CM, Cappelleri JC, Kluger J, Coleman CI, Health Outcomes, Policy, and Economics (HOPE) Collaborative Group. Understanding heterogeneity in meta-analysis: the role of meta-regression. International Journal of Clinical Practice. 2009;63(10):1426-1434.

19. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. Journal of Clinical Epidemiology. 2001;54(10):1046-1055.

20. Antoniou T, Zheng H, Singh S, Juurlink DN, Mamdani MM, Gomes T. Statins and the risk of herpes zoster: A population-based cohort study. Clinical Infectious Diseases. 2014;58(3):350-356.

21. Ban J, Takao Y, Okuno Y, et al. Association of cigarette smoking with a past history and incidence of herpes zoster in the general Japanese population: the SHEZ Study. Epidemiology & Infection. 2017;145(6):1270-1275.

22. Blank LJ, Polydefkis MJ, Moore RD, Gebo KA. Herpes zoster among persons living with HIV in the current antiretroviral therapy era. Journal of Acquired Immune Deficiency Syndromes. 2012;61(2):203.

23. Borkar DS, Tham VM, Esterberg E, et al. Incidence of herpes zoster ophthalmicus: results from the pacific ocular inflammation study. Ophthalmology. 2013;120(3):451-456.

24. Buchbinder SP, Katz MH, Hessol NA, et al. Herpes zoster and human immunodeficiency virus infection. The Journal of Infectious Diseases. 1992;166(5):1153-1156.

25. Cebrián-Cuenca AM, Diez-Domingo J, Rodríguez MS-M, Puig-Barberá J, Navarro-Pérez J, the “Herpes Zoster Research Group of the Valencian Community.” Epidemiology of herpes zoster infection among patients treated in primary care centres in the Valencian community (Spain). BioMed Central Family Practice. 2010;11(1):33.

26. Chao DY, Chien YZ, Yeh YP, Hsu PS, Lian IB. The incidence of varicella and herpes zoster in Taiwan during a period of increasing varicella vaccine coverage, 2000–2008. Epidemiology & Infection. 2012;140(6):1131-1140.
27. Chen H-H, Chen Y-M, Chen T-J, Lan J-L, Lin C-H, Chen D-Y. Risk of herpes zoster in patients with systemic lupus erythematosus: a three-year follow-up study using a nationwide population-based cohort. *Clinics*. 2011;66(7):1177-1182.

28. Chen H-H, Lin C-L, Yeh C-J, Yeh S-Y, Kao C-H. Statins can increase the risk of herpes zoster infection in Asia. *European Journal of Clinical Microbiology Infectious Diseases*. 2015;34(7):1451-1458.

29. Chen H-H, I-Ching L, Hsuan-Ju C, Su-Yin Y, Kao C-H. Association of herpes zoster and type 1 diabetes mellitus. *Public Library of Science One; San Francisco*. 2016;11(5):e0155175.

30. Chen D, Li H, Xie J, Zhan Z, Liang L, Yang X. Herpes zoster in patients with systemic lupus erythematosus: Clinical features, complications and risk factors. *Experimental and Therapeutic Medicine*. 2017;14(6):6222-6228.

31. Côté-Daigneault J, Bessisow T, Nicolae MV, et al. Herpes zoster incidence in inflammatory bowel disease patients: A population-based study. *Inflammatory Bowel Diseases*. October 2018.

32. Di Legami V, Gianino MM, Atti MCD, et al. Epidemiology and costs of herpes zoster: Background data to estimate the impact of vaccination. *Vaccine*. 2007;25(43):7598-7604.

33. Esteban-Vasallo MD, Domínguez-Berjón MF, Gil-Prieto R, Astray-Mochales J, Miguel ÁG de. Sociodemographic characteristics and chronic medical conditions as risk factors for herpes zoster. *Human Vaccines & Immunotherapeutics*. 2014;10(6):1650-1660.

34. Fleming DM, Cross KW, Cobb WA, Chapman RS. Gender difference in the incidence of shingles. *Epidemiology & Infection*. 2004;132(1):1-5.

35. Gialloreti LE, Merito M, Pezzotti P, et al. Epidemiology and economic burden of herpes zoster and post-herpetic neuralgia in Italy: A retrospective, population-based study. *BioMed Central Infectious Diseases*. 2010;10(1):230.

36. Glesby MJ, Hoover DR, Tan T, et al. Herpes zoster in women with and at risk for HIV: Data from the women’s interagency HIV study. *Journal of Acquired Immune Deficiency Syndromes*. 2004;37(5):1604.

37. Gonzalez Chiappe S, Sarazin M, Turbelin C, et al. Herpes zoster: Burden of disease in France. *Vaccine*. 2010;28(50):7933-7938.

38. Guignard AP, Greenberg M, Lu C, Rosillon D, Vannappagari V. Risk of herpes zoster among diabetics: a matched cohort study in a US insurance claim database before introduction of vaccination, 1997–2006. *Infection*. 2014;42(4):729-735.

39. Gupta G, Lautenbach E, Lewis JD. Incidence and risk factors for herpes zoster among patients with inflammatory bowel disease. *Clinical Gastroenterology and Hepatology*. 2006;4(12):1483-1490.

40. Hales CM, Harpaz R, Joesoef MR, Bialek SR. Examination of links between herpes zoster incidence and childhood varicella vaccination. *Annals Of Internal Medicine*. 2013;159(11):739-745.
41. Harpaz R, Leung JW, Brown CJ, Zhou FJ. Psychological stress as a trigger for herpes zoster: might the conventional wisdom be wrong? *Clinical Infectious Diseases*. 2015;60(5):781-785.

42. Harpaz R, Dahl RM. Administrative data to explore the role of family history as a risk factor for herpes zoster. *Mayo Clinic Proceedings*. 2018;93(6):747-751.

43. Hata A, Kuniyoshi M, Ohkusa Y. Risk of herpes zoster in patients with underlying diseases: a retrospective hospital-based cohort study. *Infection*. 2011;39(6):537-544.

44. Hodge WG, Seiff SR, Margolis TP. Ocular opportunistic infection incidences among patients who are HIV positive compared to patients who are HIV negative11The authors have no financial or proprietary interest in any good or service mentioned in this article. Performed at the San Francisco General Hospital of the University of California, San Francisco, California. *Ophthalmology*. 1998;105(5):895-900.

45. Hope-Simpson RE. The nature of herpes zoster: A long-term study and a new hypothesis. *Proceedings of the Royal Society of Medicine*. 1965;58(1):9-20.

46. Insgina RP, Itzler RF, Pellissier JM, Saddler P, Nikas AA. The incidence of herpes zoster in a United States administrative database. *Journal of General Internal Medicine*. 2005;20(8):748-753.

47. Jih J-S, Chen Y-J, Lin M-W, et al. Epidemiological features and costs of herpes zoster in Taiwan: a national study 2000 to 2006. *Acta Dermato-Venereologica*. 2009;89(6):612-616.

48. Johnson BH, Palmer L, Gatwood J, Lenhart G, Kawai K, Acosta CJ. Annual incidence rates of herpes zoster among an immunocompetent population in the United States. *BMC Infectious Diseases*. 2015;15(501).

49. Kawai K, Yawn BP, Wollan P, Harpaz R. Increasing incidence of herpes zoster over a 60-year period from a population-based study. *Clinical Infectious Diseases*. 2016;63(2):221-226.

50. Kim M-C, Yun S-C, Lee S-O, et al. Statins increase the risk of herpes zoster: A propensity score-matched analysis. *Public Library of Science One*. 2018;13(6):e0198263.

51. Kuo C-C, Lee C-T, Lee I-M, Ho S-C, Yang C-Y. Risk of herpes zoster in patients treated with long-term hemodialysis: A matched cohort study. *American Journal of Kidney Diseases*. 2012;59(3):428-433.

52. Langan SM, Smeeth L, Margolis DJ, Thomas SL. Herpes zoster vaccine effectiveness against incident herpes zoster and post-herpetic neuralgia in an older US population: a cohort study. *Public Library of Science Medicine*. 2013;10(4).

53. Li Y, An Z, Yin D, et al. Disease burden due to herpes zoster among population aged ≥50 years old in China: A community based retrospective survey. *Public Library of Science One; San Francisco*. 2016;11(4):e0152660.
54. Liao C-H, Chang C-S, Muo C-H, Kao C-H. High prevalence of herpes zoster in patients with depression. *The Journal of Clinical Psychiatry*. 2015;76(9):1099-1104.

55. Lin S-Y, Liu J-H, Lin C-L, et al. A comparison of herpes zoster incidence across the spectrum of chronic kidney disease, dialysis and transplantation. *American Journal Of Nephrology*. 2012;36(1):27-33.

56. Lin S-Y, Liu J-H, Yeh H-C, et al. Association between herpes zoster and end stage renal disease entrance in chronic kidney disease patients: a population-based cohort study. *European Journal of Clinical Microbiology & Infectious Diseases*. 2014;33(10):1809-1815.

57. Liu B, Heywood AE, Reekie J, et al. Risk factors for herpes zoster in a large cohort of unvaccinated older adults: a prospective cohort study. *Epidemiology & Infection*. 2015;143(13):2871-2881.

58. Long MD, Martin C, Sandler RS, Kappelman MD. Increased risk of herpes zoster among 108 604 patients with inflammatory bowel disease. *Alimentary Pharmacology & Therapeutics*. 2013;37(4):420-429.

59. Mirmirani P, Hessol NA, Maurer TA, et al. Prevalence and predictors of skin disease in the Women’s Interagency HIV Study (WIHS). *Journal of the American Academy of Dermatology*. 2001;44(5):785-788.

60. Morant-Talamante N, Diez-Domingo J, Martinez-Úbeda S, Puig-Barberá J, Alemán-Sánchez S, Pérez-Breva L. Herpes zoster surveillance using electronic databases in the Valencian Community (Spain). *BioMed Central Infectious Diseases*. 2013;13(1):463.

61. Morgan D, Mahe C, Malamba S, Okongo M, Mayanja B, Whitworth J. Herpes zoster and HIV-1 infection in a rural Ugandan cohort: *AIDS*. 2001;15(2):223-229.

62. Mullooly JP, Riedlinger K, Chun C, Weinmann S, Houston H. Incidence of herpes zoster, 1997–2002. *Epidemiology & Infection*. 2005;133(2):245-253.

63. Muñoz-Quiles C, López-Lacort M, Ampudia-Blasco FJ, Diez-Domingo J. Risk and impact of herpes zoster on patients with diabetes: A population-based study, 2009-2014. *Human Vaccines & Immunotherapeutics*. 2017;13(11):2606-2611.

64. Muñoz-Quiles C, López-Lacort M, Diez-Domingo J. Risk and impact of herpes zoster among COPD patients: a population-based study, 2009-2014. *BioMed Central Infectious Diseases*. 2018;18(1):203.

65. Ogunjimi B, Buntinx F, Bartholomeeusen S, et al. Herpes zoster is associated with herpes simplex and other infections in under 60 year-olds. *Journal of Infection*. 2015;70(2):171-177.

66. Opstelten W, Van Essen GA, Schellevis F, Verheij TJM, Moons KGM. Gender as an independent risk factor for herpes zoster: A population-based prospective study. *Annals of Epidemiology*. 2006;16(9):692-695.
67. Peng Y-H, Fang H-Y, Wu B-R, et al. Adult asthma is associated with an increased risk of herpes zoster: A population-based cohort study. *Journal of Asthma*. 2017;54(3):250-257.

68. Sato K, Adachi K, Nakamura H, et al. Burden of herpes zoster and postherpetic neuralgia in Japanese adults 60 years of age or older: Results from an observational, prospective, physician practice-based cohort study. *The Journal of Dermatology*. 2017;44(4):414-422.

69. Schmader K, George LK, Burchett BM, Pieper CF, Hamilton JD. Racial differences in the occurrence of herpes zoster. *The Journal of Infectious Diseases*. 1995;171(3):701-704.

70. Schmader K, George LK, Burchett BM, Pieper CF. Racial and psychosocial risk factors for herpes zoster in the elderly. *The Journal of Infectious Diseases*. 1998;178:S67-S70.

71. Smitten AL, Choi HK, Hochberg MC, et al. The risk of herpes zoster in patients with rheumatoid arthritis in the United States and the United Kingdom. *Arthritis Care & Research*. 2007;57(8):1431-1438.

72. Suaya JA, Chen S-Y, Li Q, Burstin SJ, Levin MJ. Incidence of herpes zoster and persistent post-zoster pain in adults with or without diabetes in the United States. *Open Forum Infectious Diseases*. 2014;1(2). https://academic.oup.com/ofid/article/1/2/ofu049/1464082. Accessed February 2, 2019.

73. Tanuseputro P, Zagorski B, Chan KJ, Kwong JC. Population-based incidence of herpes zoster after introduction of a publicly funded varicella vaccination program. *Vaccine*. 2011;29(47):8580-8584.

74. Takao Y, Miyazaki Y, Okeda M, et al. Incidences of herpes zoster and postherpetic neuralgia in Japanese adults aged 50 years and older from a community-based prospective cohort study: The SHEZ study. *Journal of Epidemiology*. 2015;25(10):617-625.

75. Tsai S-Y, Yang T-Y, Lin C-L, Tsai Y-H, Kuo C-F, Kao C-H. Increased risk of varicella zoster virus infection in inflammatory bowel disease in an Asian population: a nationwide population-based cohort study. *International Journal of Clinical Practice*. 2015;69(2):228-234.

76. Tseng HF, Smith N, Harpaz R, Bialek SR, Sy LS, Jacobsen SJ. Herpes zoster vaccine in older adults and the risk of subsequent herpes zoster disease. *Journal of American Medical Association*. 2011;305(2):160-166.

77. Tung Y-C, Tu H-P, Wen-Chan T, et al. Increased incidence of herpes zoster and postherpetic neuralgia in adult patients following traumatic brain injury: A nationwide population-based study in Taiwan. *Public Library of Science One; San Francisco*. 2015;10(6):e0129043.

78. Ultsch B, Siedler A, Rieck T, Reinhold T, Krause G, Wichmann O. Herpes zoster in Germany: Quantifying the burden of disease. *BioMed Central Infectious Diseases*. 2011;11(1):173.

79. Veetil BMA, Myasoedova E, Matteson EL, Gabriel SE, Green AB, Crowson CS. Incidence and time trends of herpes zoster in rheumatoid arthritis: A population-based cohort study. *Arthritis Care & Research*. 2013;65(6):854-861.
80. Weitzman D, Shavit O, Stein M, Cohen R, Chodick G, Shalev V. A population based study of the epidemiology of herpes zoster and its complications. *Journal of Infection*. 2013;67(5):463-469.

81. Wu M-Y, Hsu Y-H, Su C-L, Lin Y-F, Lin H-W. Risk of herpes zoster in CKD: A matched-cohort study based on administrative data. *American Journal of Kidney Diseases*. 2012;60(4):548-552.

82. Wu P-H, Lin Y-T, Lin C-Y, Huang M-Y, Chang W-C, Chang W-P. A nationwide population-based cohort study to identify the correlation between heart failure and the subsequent risk of herpes zoster. *BioMed Central Infectious Diseases*. 2015;15(1):17.

83. Yang Y-W, Chen Y-H, Wang K-H, Wang C-Y, Lin H-W. Risk of herpes zoster among patients with chronic obstructive pulmonary disease: a population-based study. *Canadian Medical Association Journal*. 2011;183(5):E275-80.

84. Yang W-S, Hu F-C, Chen M-K, et al. High risk of herpes zoster among patients with advance acute kidney injury – A population-based study. *Scientific Reports*. 2015;5:13747.

85. Yawn BP, Saddier P, Wollan PC, St. Sauver JL, Kurland MJ, Sy LS. A population-based study of the incidence and complication rates of herpes zoster before zoster vaccine introduction. *Mayo Clinic Proceedings*. 2007;82(11):1341-

86. Yawn BP, Wollan PC, St. Sauver JL, Butterfield LC. Herpes zoster eye complications: Rates and trends. *Mayo Clinic Proceedings*. 2013;88(6):562-570.

87. Yenikomshian MA, Guignard AP, Haguinet F, et al. The epidemiology of herpes zoster and its complications in Medicare cancer patients. *BioMed Central Infectious Diseases*. 2015;15(1):106.

88. Ansar A, Farshchian M, Ghaseemzadeh M, Sobhan MR. Association between family history and herpes zoster: a case-control study. *Journal of Research in Health Sciences*. 2014;14(2):111-114.

89. Chang K, Lee H-S, Kim Y-J, et al. Increased risk of herpes zoster infection in patients with inflammatory bowel diseases in korea. *Clinical Gastroenterology and Hepatology*. 2018;16(12):1928-1936.e2.

90. Chung S-D, Tsai M-C, Liu S-P, Lin H-C, Kang J-H. Herpes zoster is associated with prior statin use: A population-based case-control study. *Public Library of Sciences One; San Francisco*. 2014;9(10):e111268.

91. Forbes HJ, Bhaskaran K, Thomas SL, Smeeth L, Clayton T, Langan SM. Quantification of risk factors for herpes zoster: population based case-control study. *British Medical Journal*. 2014;348:g2911.

92. Hansson E, Forbes HJ, Langan SM, Smeeth L, Bhaskaran K. Herpes zoster risk after 21 specific cancers: population-based case–control study. *British Journal of Cancer*. 2017;116(12):1643-1651.

93. Heymann AD, Chodick G, Karpati T, et al. Diabetes as a risk factor for herpes zoster infection: Results of a population-based study in Israel. *Infection*. 2008;36(3):226-230.

94. Hernandez PO, Javed S, Mendoza N, Lapolla W, Hicks LD, Tyring SK. Family history and herpes zoster risk in the era of shingles vaccination. *Journal of Clinical Virology*. 2011;52(4):344-348.
95. Hicks LD, Cook-Norris RH, Mendoza N, Madkan V, Arora A, Tyring SK. Family history as a risk factor for herpes zoster: A case-control study. *Archives of Dermatology.* 2008;144(5):603-608.

96. Joesoef RM, Harpaz R, Leung J, Bialek SR. Chronic medical conditions as risk factors for herpes zoster. *Mayo Clinic Proceedings.* 2012;87(10):961-967.

97. Ke C-C, Hui-Chin L, Ching-Heng L, et al. Increased risk of herpes zoster in diabetic patients comorbid with coronary artery disease and microvascular disorders: A population-based study in Taiwan. *Public Library of Science One; San Francisco.* 2016;11(1):e0146750.

98. Kwon HJ, Bang DW, Kim EN, et al. Asthma as a risk factor for zoster in adults: A population-based case-control study. *Journal of Allergy and Clinical Immunology.* 2016;137(5):1406-1412.

99. Lasserre A, Blaizeau F, Gorwood P, et al. Herpes zoster: Family history and psychological stress—a case-control study. *Journal of Clinical Virology.* 2012;55(2):153-157.

100. Marin M, Harpaz R, Zhang J, Wollan PC, Bialek SR, Yawn BP. Risk factors for herpes zoster among adults. *Open Forum Infectious Diseases.* 2016;3(3). https://academic.oup.com/ofid/article/3/3/ofw119/2593261. Accessed January 31, 2019.

101. Matthews A, Turkson M, Forbes H, Langan SM, Smeeth L, Bhaskaran K. Statin use and the risk of herpes zoster: a nested case-control study using primary care data from the U.K. clinical research practice datalink. *British Journal of Dermatology.* 2016;175(6):1183-1194.

102. Pope JE, Krizova A, Ouimet JM, Goodwin JL, Lankin M. Close association of herpes zoster reactivation and systemic lupus erythematosus (SLE) diagnosis: case-control study of patients with SLE or noninflammatory musculoskeletal disorders. *The Journal of Rheumatology.* 2004;31(2):274-279.

103. Schmidt SAJ, Vestergaard M, Pedersen HS, et al. Partner bereavement and risk of herpes zoster: Results from two population-based case-control studies in Denmark and the United Kingdom. *Clinical Infectious Diseases.* 2017;64(5):572-579.

104. Schmidt SAJ, Langan SM, Pedersen HS, et al. Mood disorders and risk of herpes zoster in 2 population-based case-control studies in Denmark and the United Kingdom. *American Journal of Epidemiology.* 2018;187(5):1019-1028.

105. Suo L, Lu L, Li J, et al. A case control study on family history as a risk factor for herpes zoster and associated outcomes, Beijing, China. *BioMed Central Infectious Diseases.* 2017;17(1):334-334.

106. Tseng HF, Chi M, Hung P, et al. Family history of zoster and risk of developing herpes zoster. *International Journal of Infectious Diseases.* 2018;66:99-106.

107. Zhang JX, Joesoef RM, Bialek S, Wang C, Harpaz R. Association of physical trauma with risk of herpes zoster among medicare beneficiaries in the United States. *The Journal of Infectious Diseases.* 2013;207(6):1007-1011.

108. Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for an ageing population. *Immunology.* 2007;120(4):435-446.
109. Arvin AM. Varicella-zoster virus: Pathogenesis, immunity, and clinical management in hematopoietic cell transplant recipients. *Biology of Blood and Marrow Transplantation*. 2000;6(3):219-230.

110. Oxman MN. Herpes zoster pathogenesis and cell-mediated immunity and immunosenescence. *The Journal of the American Osteopathic Association*. 2009;109(6_suppl_2):S13-S17.

111. Gershon AA, Marin M, Seward JF. 62 - Varicella Vaccines. In: Plotkin SA, Orenstein WA, Offit PA, Edwards KM, eds. *Plotkin's Vaccines (Seventh Edition)*. Elsevier; 2018.1145-1180.e17. http://www.sciencedirect.com/science/article/pii/B9780323357616000626. Accessed April 23, 2019.

112. Park H-B, Kim K-C, Park J-H, et al. Association of reduced CD4 T cell responses specific to varicella zoster virus with high incidence of herpes zoster in patients with systemic lupus erythematosus. *The Journal of Rheumatology*. 2004;31(11):2151-2155.

113. Waller DG, Sampson AP. 38 - The immune response and immunosuppressant drugs. In: Waller DG, Sampson AP, eds. *Medical Pharmacology and Therapeutics (Fifth Edition)*. Elsevier; 2018:439-449. http://www.sciencedirect.com/science/article/pii/B9780702071676000385. Accessed April 23, 2019.

114. Weinberg ED, Levin MJ. Current topics in microbiology and immunology. Volume 72. *Microchemical Journal*. 1977;22(4):590.

115. Chen S-Y, Suaya JA, Li Q, et al. Incidence of herpes zoster in patients with altered immune function. *Infection*. 2014;42(2):325-334.

116. Kang D-H, Weaver MT, Park N-J, Smith B, McArdle T, Carpenter J. Significant impairment in immune recovery after cancer treatment: *Nursing Research*. 2009;58(2):105-114.

117. Nagasawa K, Yamauchi Y, Tada Y, Kusaba T, Niho Y, Yoshikawa H. High incidence of herpes zoster in patients with systemic lupus erythematosus: An immunological analysis. *Annals of the Rheumatic Diseases*. 1990;49(8):630-633.

118. Lai YC, Yew YW. Risk of herpes zoster and family history: A meta-analysis of case-control studies. *Indian Journal of Dermatology*. 2016;61(2):157-162.

119. Meysman P, De Neuter N, Bartholomeus E, et al. Increased herpes zoster risk associated with poor HLA-A immediate early 62 protein (IE62) affinity. *Immunogenetics*. 2018;70(6):363-372.

120. Kawai K, Yawn BP. Risk factors for herpes zoster: A systematic review and meta-analysis. *Mayo Clinic Proceedings*. 2017;92(12):1806-1821.

121. Schmader K, George LK, Burchett BM, Hamilton JD, Pieper CF. Race and stress in the incidence of herpes zoster in older adults. *Journal of the American Geriatrics Society*. 1998;46(8):973-977.
122. Lee TJ, Hayes S, Cummings DM, et al. Herpes zoster knowledge, prevalence, and vaccination rate by race. *Journal of American Board of Family Medicine*. 2013;26(1):45-51.

123. Hua C, Bardo AR, Brown JS. Mistrust in Physicians does not explain black-white disparities in primary care and emergency department utilization: the importance of socialization during the Jim Crow era. *Journal of National Medical Association*. 2018;110(6):540-546.

124. Mayberry RM, Mili F, Ofili E. Racial and ethnic differences in access to medical care. *Medical Care Research and Review*. 2000;57:108-145.

125. Shingles vaccination | Herpes Zoster | CDC. https://www.cdc.gov/vaccines/vpd/shingles/index.html. Published August 3, 2018. Accessed February 24, 2019.

126. Dooling K, Guo A, Leung J, Belonga E, Harpaz R. Performance of zoster vaccine live (Zostavax): A systematic review of 12 years of experimental and observational evidence. *Open Forum Infectious Diseases*. 2017;4(suppl_1):S412-S413.

127. Keating GM. Shingles (herpes zoster) vaccine (Zostavax®): A review in the prevention of herpes zoster and postherpetic neuralgia. *BioDrugs*. 2016;30(3):243-254.

128. Sly JR, Harris AL. Recombinant zoster vaccine (Shingrix) to prevent herpes zoster. *Nursing for Women’s Health*. 2018;22(5):417-422.

129. Product monograph including patient medication information Shingrix herpes zoster vaccine (non-live recombinant, AS01B adjuvanted) suspension for injection active immunizing agent. https://ca.gsk.com/media/1350788/shingrix_pm-2017-10-13.pdf. Accessed April 23, 2019.

130. ACIP zoster vaccine recommendations | Shingles | CDC. https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/shingles.html. Published February 16, 2018. Accessed February 24, 2019.

131. Szklo M, Nieto FJ. *Epidemiology: Beyond the Basics*. Third Edition. Burlington, MA: Jones & Bartlett Learning; 2014.

132. Using administrative data: Good practice guidance for statisticians – GSS. https://gss.civilservice.gov.uk/policy-store/using-administrative-data-good-practice-guidance-for-statisticians-2/. Accessed February 24, 2019.
Figure 1

Records identified (N = 4117)
- Embase, N = 1470
- MEDLINE, N = 2600
- COCHRANE, N = 341

Duplicates excluded (N = 776)

Records after duplicates removed (N = 3341)

Records excluded (N = 3436)
- Differences in language, N = 582
- Irrelevant to question, N = 623
- Irrelevant to inclusion criteria, N = 563
- Irrelevant study design (Case-Brief, Case series, letter to editor, cross-sectional, ecological), N = 155
- AD treatment, N = 21
- Non-English, N = 10
- Complications of AD, N = 229
- Trust issues, N = 157

Articles excluded in the review (N = 337)
- AD pathogenesis, N = 146
- Alzheimer's disease, N = 29
- Exposure, N = 1
- Not English, N = 1

Articles included in the review (N = 88)
Figure 2

Risk Factor	No. of Studies	Effect Estimate	Pooled Effect Estimate with 95% CI	F²	P Value
Innate Characteristics					
Family History	9				
Age	39				
Sex (Women)	56*				
Race (Black)	17*				
Immunosuppression					
HIV/AIDS	16*				
Malignancies	40*				
Co-morbidities					
Systemic Lupus Erythematosus	13				
Rheumatoid Arthritis	12				
Chronic Obstructive Pulmonary Disease	12				
Cardiovascular conditions	18				
Inflammatory Bowel Disorder	6				
Chronic Renal Disease	18				
Asthma	12*				
Diabetes	32*				
Depression	14*				
Other Studies					
Physical Trauma	6				
Psychological Stress	8*				
Smoking	8				

--- Reduced HZ Risk ---

--- Increased HZ Risk ---