CASE REPORT

First report of a clinical isolate of Candida haemulonii in Brazil

João Nobrega de Almeida Jr.,1 Adriana Lopes Motta,1 Flávia Rossi,1 Edson Abdala,1 Ligia Camera Pierrotti,1 Adriana Satie Gonçalves Kono,1 Maria Del Pilar Estevez Diz,1 Gil Benard,1 Gilda Maria Barbaro Del Negro1

1Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Microbiology Section, Divisão de Laboratório Central, São Paulo/SP, Brazil.
2Instituto do Câncer, Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil.
3Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo e Instituto de Medicina Tropical da Universidade de São Paulo, Laboratory of Medical Mycology (LIM-53) – Clinical Dermatologic Division, São Paulo/SP, Brazil.

Email: jnaj99@gmail.com
Tel.: 55 11 2661-6136

INTRODUCTION

The spectrum of Candida species associated with invasive fungal infections is evolving. New microbiology diagnostic tools, the increasing number of immunosuppressed patients with invasive devices and the use of prophylaxis with fluconazole could contribute to this phenomenon (1). In recent years, an increasing number of rare species with reduced susceptibility to antifungal molecules have been described, including C. ciferrii, C. inconspicua, C. guilliermondii, C. humicola, C. lambica, C. lipolytica, C. norvegensis, C. palmioides, C. rugosa, C. valida, C. fermentati, and C. lusitaniae (2-5). Data from the SENTRY Antimicrobial Surveillance Program-Fungal Objective (5) concerning bloodstream infections from 2008 and 2009 show that 4.5% of 348 episodes from 10 centers in Latin America were caused by species other than C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei.

In 1984, Lavarde et al. (6) reported the first clinical isolate of C. haemulonii from a blood culture. Since then, rare cases of human infections with C. haemulonii have been reported worldwide, including central venous catheter (CVC)-related bloodstream infections in patients from Argentina, Korea, and China (7-11); in preterm neonates receiving parenteral nutrition in Kuwait (12); and in a 37-year-old French patient with osteomyelitis of the left hallux (13). This pathogen has not been identified in previous reports of candidemia from Brazil (14-17).

The present paper reports for the first time a case of fungemia caused by C. haemulonii in a tertiary hospital in the city of São Paulo. Clinical features and laboratory analyses, including phenotypic and molecular identification and antifungal susceptibility testing (AST), are described.

CASE DESCRIPTION

A 26-year-old woman diagnosed with ovarian carcinoma with a low degree of differentiation two months before hospitalization was admitted to the Institute of Cancer in May 2010 for abdominal pain. The patient was submitted to laparotomy and tumor resection. Four days later, the patient developed fever and low back pain, and a diagnosis of pyelonephritis was established. Piperacillin/tazobactam 4.5 g three times per day was prescribed. Because of persistent clinical deterioration, the antimicrobial therapy was changed to imipenem 0.5 g four times per day and vancomycin 1 g two times per day. After stabilization of the patient’s clinical condition and the cessation of antibiotics, chemotherapy comprising carboplatin and paclitaxel was started through a CVC. In June 2010, after the second cycle of chemotherapy, the patient was diagnosed with febrile neutropenia, and two sets of Bactec™ aerobic bottles (Becton Dickinson Diagnostics, USA) were collected for blood cultures. Imipenem and vancomycin were reinitiated. After two days, a provisional analysis of the blood culture showed the presence of budding yeast cells. Due to the poor prognosis and the lack of response to chemotherapy, all antibiotics were stopped, and no antifungal agent was prescribed. The patient died six days after the positive blood culture.

Microbial growth was detected after 24 hours in Bactec 9249 incubator (Becton Dickinson Diagnostics, USA). Gram staining of the positive blood cultures showed the presence of yeast. The samples were seeded on CHROMagar Candida™ medium (Becton Dickinson Diagnostics, USA). Pink colonies grew after 24 hours of incubation at 37°C. After 72 hours, the colonies developed darker violet central pigmentation. Further phenotypic identification was conducted using API 20C™ AUX panels (BioMérieux, Marcy-L’Etoile, France) but was inconclusive. A VITEK 2™ system (BioMérieux, Marcy-L’Etoile, France) identified the isolate as C. haemulonii with 97% certainty.

The DNA from the isolate was extracted as described by Loffler et al. (18) using 250 μg/mL of recombinant lyticase (L-4276, Sigma-Aldrich, St. Louis, MO, USA) and the QIAamp DNA Mini kit (QIAGEN, Hilden, Germany) according to the manufacturer’s protocol. Amplification targeted the Candida ITS sequence and was performed in a total volume of 25 μl containing 1 × enzyme buffer, 200 mM dNTPs, 0.4 mM each of the ITS1 and ITS4 primers (19), 2 mM MgCl2, 2.5 U of Taq DNA polymerase (Invitrogen, São Paulo, Brazil) and 5 ng of the template DNA (A from the Candida isolate. The PCR was conducted in a thermocycler (Veriti, Applied Biosystems, Carlsbad, CA, USA) with an
initial denaturation step at 95°C for 5 minutes; 30 cycles of 1 minute at 95°C, 1 minute at 55°C and 1 minute at 72°C; and a final extension at 72°C for 5 minutes. The amplification product was purified using the PureLink™ PCR purification kit (Invitrogen, Carlsbad, CA, USA) and sequenced in both directions in a MegaBace-1000 analyzer (GE Healthcare, Buckinghamshire, UK). The sequences were compared with the reference sequences available in GenBank using BLAST (http://blast.ncbi.nlm.nih.gov).

The results of the phenotypic and molecular analyses are summarized in Table 1. Molecular methods confirmed the identity of C. haemulonii.

Antifungal susceptibility testing (AST) was performed using Sensititre YeastOne™ colorimetric plates (Trek Diagnostic Systems, Cleveland, USA) according to the manufacturer’s instructions, and interpretation was performed according to the breakpoints established by the Clinical Laboratory Standards Institute (CLSI) (20). The drugs included in these panels and their concentrations were as follows: posaconazole (0.004-8 mg/L), fluconazole (0.125-256 mg/L), itraconazole (0.008-16 mg/L), ketoconazole (0.008-16 mg/L), 5-flucytosine (0.03-64 mg/L), caspofungin (0.008-16 mg/L) and amphotericin (0.008-16 mg/L). Reference strains (C. parapsilosis ATCC 22019 and C. krusei ATCC 6258) were used for quality control purposes. The AST results are summarized in Table 2. The isolate had elevated minimal inhibitory concentrations (MICs) for amphotericin and flucytosine.

DISCUSSION

Sunyoung Kim et al. (11) identified reports of C. haemulonii bloodstream infections in the literature and summarized the clinical characteristics of the patients who developed these infections. These authors found that among ten cases, nine were related to CVCs. Most isolates had elevated MICs for amphotericin, fluconazole and itraconazole, and treatment failure occurred when one of these drugs was prescribed (11). Among four patients treated with an echinocandin, only one experienced treatment failure (11).

Mi-Na Kim et al. (9) described eight cases of fungemia caused by C. haemulonii and C. pseudohaemulonii in five hospitals in Korea. Four of these patients had received previous antifungal therapy, and all of the patients had a severe underlying disease and a CVC (9).

Oh et al. (21) investigated the in vitro production of biofilms by C. haemulonii and C. pseudohaemulonii. The formation of biofilms reflects the potential of these two species to cause catheter-related bloodstream infections. In accordance with these previous reports, our patient had a severe underlying disease and a CVC when candidemia was diagnosed.

The darker violet central pigmentation of the colonies after 72 hours of incubation in chromogenic medium is not a characteristic specific to C. haemulonii. Hospenthal et al. (22) studied the appearance of 83 isolates of different Candida species on CHROMagar™ Candida medium (CHROMagar Microbiology, Paris, France) and found that C. glabrata also developed darker violet pigmentation after three or four days of incubation.

Ruan et al. (10) described three C. haemulonii infections that were identified by VITEK2™ and confirmed by ITS and 18S rRNA sequencing. However, Mi-Na Kim et al. (9) showed that most isolates obtained from blood cultures that are identified as C. haemulonii by VITEK2™ were determined to be C. pseudohaemulonii based on the sequences of D1/D2 regions of the rRNA gene. These authors also reported that these two species are closely related according to phylogenetic analysis (9). Genotypic identification of the present isolate by ITS sequencing showed 100% identity with C. haemulonii but only 94% identity with C. pseudohaemulonii, thus confirming the identification of our isolate as the former species according to the CLSI MM-18A guidelines (23). Fluconazole, caspofungin, voriconazole, and posaconazole showed good in vitro activity. According to other reports, most isolates of C. haemulonii related to candidemia are resistant to amphotericin and fluconazole (10). Table 3 summarizes the antifungal susceptibility profile of C. haemulonii isolates from Argentina, Korea, Kuwait, China, and Brazil.

To our knowledge, this is the first report of a clinical isolate of C. haemulonii in Brazil. VITEK2™ correctly identified the etiologic agent, but DNA sequencing was necessary for final identification. Echinocandins and voriconazole should be empirical treatment options when C. haemulonii infection is suspected and an antifungigram is not available.

Table 1 - Identification of Candida haemulonii by two commercial biochemical systems and by sequencing analysis.

VITEK 2 (%ID*)	API 20AUX (%ID*)	ITS sequencing alignment score (%ID*)
97% C. haemulonii	52.2% C. parapsilosis 34.2% C. guilliermondii 13.1% C. famata	100% C. haemulonii 94% C. pseudohaemulonii 94%

*:Percentual identification given; **:CBS6915 – GenBank access number AB118790; #: GenBank access number EU881976.1

Table 2 - Antifungal susceptibility profile of Candida haemulonii determined using a Sensititre YeastOne™ panel.

Drug	MIC (mg/L)	CLSI Interpretation (M23-A3)
Amphotericin	4	*
Fluconazole	8	5
Itraconazole	0.25	SDD
Voriconazole	0.064	5
Caspofungin	0.25	S
Posaconazole	0.125	**
Flucytosine	64	R

S: susceptible; SDD: susceptible dose dependent; R: resistant; *: likely resistant when MIC>1 mg/L; **: breakpoints not established by CLSI.
Table 3 - Comparison of the antifungal susceptibility of Candida haemulonii bloodstreamisolates according to author and the year of publication.

Author	Year of Report	Country	Isolate	AMB***	FLU	VOR	CAS	ITRA
Rodero et al. (7).	2002	Argentina	1 4	325-DD	NT	NT	0.125	
Giusiano et al. (8).	2006	Argentina	1 1	325-DD	NT	NT	MD/R	
Khan et al. (12).	2007	Kuwait	1 4	96/R	0.047/S	0.5/S	2/R	
Mi-Na Kim et al. (9).	2009	Korea	1 1	64/R	1/S	0.125/S	0.023/S	2/R
Ruan et al. (10).	2010	China	1 2	16/S-DD	0.25/S	1/S	0.25-S/DD	
Sunyong Kim et al. (11).	2010	Korea	1 0.5	8/S	0.5/S	0.125/S	0.25-S/DD	
Almeida Junior et al. (12).	2012	Brazil	1 4	8/S	0.064/S	0.25/S		

MIC: minimal inhibitory concentration; AMB: amphotericin B; FLU: fluconazole; VOR: voriconazole; CAS: caspofungin; ITRA: itraconazole; *interpretation according to CLSI breakpoints document M27; **likely resistant if MIC >1 mg/L; S: susceptible; S-DD: susceptible dose dependent; R: resistant; NT: not tested; MD: missing data.

ACKNOWLEDGMENTS

We thank Vagner Oliveira Carvalho for his assistance with the sequencing of the isolate and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support (grant #2010/09715-4).

AUTHOR CONTRIBUTIONS

Almeida Junior JN, Motta AL, and Del Negro GM provided experimental data. Ross F, Abdala E, Bernard G and Del Negro GM designed the study. Pierroli LC, Koto ASG and Diaz ML provided clinical data. Almeida Junior JN, Bernard G and Del Negro GM wrote the paper.

REFERENCES

1. Miceli MH, Diaz JA, Lee SA. Emerging opportunistic yeast infections. The Lancet infectious diseases. 2011;11(2):142-51, http://dx.doi.org/10.1016/S1473-3099(10)70218-8.
2. Lockhart SR, Messer SA, Pfaffer MA, Diekema DJ. Identification and Susceptibility Profile of Candida fermentsae from a worldwide collection of Candida guilliermondii clinical isolates. J Clin Microbiol. 2009;47(1):242-4, http://dx.doi.org/10.1128/JCM.01898-08.
3. Chen SC, Marriott D, Playford EG, Nguyen Q, Ellis D, Meyer W, et al. Candidaemia with uncommon Candida species: predisposing factors, outcome, antifungal susceptibility, and implications for management. Clin Microbiol Infect. 2009;15(7):662-9, http://dx.doi.org/10.1111/j.1469-0691.2009.02821.x.
4. Pfaffer MA, Diekema DJ, Gibbs DL, Newell VA, Ellis D, Meyer W, et al. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida Species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol. 2010;48(4):1366-77, http://dx.doi.org/10.1128/JCM.02117-09.
5. Pfaffer MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009). J Clin Microbiol. 2011;49(1):396-9, http://dx.doi.org/10.1128/JCM.01396-11.
6. Lavarde V, Daniel F, Saez H, Arnold M, Fugger B. Peritonitis mycosique a Torulopsis haemulonii. Bull Soc Fr Mycol Med. 1984;13:173-6.
7. Ruan SY, Kuo YW, Huang CT, Hsueh PR. Infections due to Candida haemulonii species identification, antifungal susceptibility and outcomes. Int J Antimicrob Agents. 2010;35(1):85-8, http://dx.doi.org/10.1016/j.ijantimicag.2009.08.009.
8. Kim S, Ko KS, Moon SY, Lee MS, Lee MY, Sen JS. Catheter-related Candidemia Caused by Candida haemulonii in a Patient in Long-term Hospital Care. J Korean Med Sci. 2011;26(2):297-300, http://dx.doi.org/10.3344/jkms.2011.26.2.297.
9. Khan ZU, Al-Sweih NA, Ahmad S, Al-Kazemi N, Khan S, Joseph L, et al. Outbreak of fungemia among neonates caused by Candida haemulonii resistant to amphotericin B, itraconazole, and fluconazole. J Clin Microbiol. 2009;47(6):2025-7, http://dx.doi.org/10.1128/JCM.00222-07.
10. Luo G, Mitchell TG. Rapid identification of pathogenic fungi directly from the SENTRY Antimicrobial Surveillance Program (2008 to 2009). J Clin Microbiol. 2010;48(6):839-42, http://dx.doi.org/10.3109/13693780903580121.
11. Kim S, Ko KS, Moon SY, Lee MS, Lee MY, Son JS. Catheter-related Candidemia Caused by Candida haemulonii in a Patient in Long-term Hospital Care. J Clin Microbiol. 1997;35:3311-2.
12. Khan ZU, Al-Sweih NA, Ahmad S, Al-Kazemi N, Khan S, Joseph L, et al. Outbreak of fungemia among neonates caused by Candida haemulonii resistant to amphotericin B, itraconazole, and fluconazole. J Clin Microbiol. 2009;47(6):2025-7, http://dx.doi.org/10.1128/JCM.00222-07.
13. Crousset J, Sotto A, Picard E, Lachaud L,ourg. N. A case of Candida haemulonii osteitis: clinical features, biochemical characteristics and antifungal resistance profile. Clin Microbiol Infect. 2011;17(7):1068-70, http://dx.doi.org/10.1111/j.1469-0691.2011.05471.x.
14. Colombo AL, Nucci M, Park BJ, Noour SA, Arthington-Skaggs B, da Matta DA, et al. Brazilian Network Candidemia Study. Epidemiology of candidemia in Brazil: a nationwide sentinel surveillance of candidemia in eleven medical centers. J Clin Microbiol. 2006;44(8):2816-23, http://dx.doi.org/10.1128/JCM.00773-06.
15. Colombo AL, Guimarães T, Silva LR, de Almeida Monfardini LP, Cunha AK, Rady P, Alves T, et al. Prospective observational study of candidemia in São Paulo, Brazil: incidence rate, epidemiology, and predictors of mortality. Infect Control Hosp Epidemiol. 2007;28(5):570-6, http://dx.doi.org/10.1086/513615.
16. Motta AL, Almeida Junior JN, Buratini MN, Ross F. Epidemiology and susceptibility profile of Candida haemulonii in the largest Brazilian teaching hospital complex. Braz J Infect Dis. 2010;14(5):441-4, http://dx.doi.org/10.1590/S1413-86702010000500004.
17. Pereira GH, Müller PR, Szews MW, Levin AS, Melhem MS. Five-year evaluation of bloodstream yeast infections in a tertiary hospital: the predominance of non-C. albicans Candida species. Med Mycol. 2010;48(6):839-42, http://dx.doi.org/10.3109/13693780903580121.
18. Loffler J, Hebart H, Schumacher U, Reitze E, Inselle H. Comparison of different methods for extraction of DNA of fungal pathogens from cultures and blood. J Clin Microbiol 1997;35:3311-2.
19. Luo G, Mitchell TG. Rapid identification of pathogenic fungi directly from cultures by using multiplex PCR. J Clin Microbiol. 2002;40(8):2860-5, http://dx.doi.org/10.1128/JCM.40.8.2860-2865.2002.
20. Clinical Laboratory Standards Institute. Reference Method for Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition. CLSI document M27-A3. Wayne, PA: CLSI, 2008.
21. Oliveira Carvalho, V. (2010). Identification of Bacteria and Fungi by DNA Target Sequencing; Approved Guideline. CLSI document MM18-A: Wayne, PA: CLSI, 2008.