A refinement of the Browder–Göhde–Kirk fixed point theorem and some applications

Janusz Matkowski

Abstract. The following generalization of the Browder–Göhde–Kirk fixed point theorem is proved: if C is a nonempty bounded closed and convex subset of a uniformly convex normed space X and T is a self-mapping of C such that $\|Tx - Ty\| \leq \beta (\|x - y\|)$ for all $x, y \in C, x \neq y$, where a function $\beta : (0, \infty) \to [0, \infty)$ is such that $\lim_{t \to 0^+} \frac{\beta(t)}{t} = 1$, then T has a fixed point. Two modifications of this theorem as well as some accompanying results on Lipschitz-type mappings are given. An application in the theory of L^p-solutions of an iterative functional equation, and some refinements of the Radamacher theorem are proposed.

Mathematics Subject Classification. Primary 47H10, 47H09.

Keywords. Generalization of nonexpansive operator, Lipschitz operator, fixed-point theorem.

1. Introduction

Basing on an observation that every continuous map of a convex set satisfying a restricted Lipschitz condition must be Lipschitz continuous (see [12]), we present some generalizations of Browder–Göhde–Kirk fixed point (Browder [1], Göhde [7], Kirk [9], see also [4,6,15,16]), and propose their applications, including an extension of the classical Radamacher theorem.

Section 2 contains the auxiliary results characterizing the Lipschitz continuous functions with the aid of some weaker conditions.

In Sect. 3, we present two fixed point theorems. Let X be a uniformly convex Banach space, $C \subset X$ a nonempty bounded convex closed set, and T a selfmapping of C. Theorem 1 says that T has a fixed point, if for some function $\beta : (0, \infty) \to [0, \infty)$ satisfying the conditions

$$\limsup_{t \to 0^+} \frac{\beta(t)}{t} < +\infty, \quad \liminf_{t \to 0^+} \frac{\beta(t)}{t} = 1,$$

we have

$$\|Tx - Ty\| \leq \beta (\|x - y\|), \quad x, y \in C, \ x \neq y.$$
The second result, Theorem 2, says that the last inequality can be significantly weakened, namely, \(T \) has a fixed point, if \(T \) is continuous and, for a certain function \(\beta : (0, \infty) \to [0, \infty) \) and a zero sequence \((t_n) \) of positive numbers such that

\[
\lim_{n \to \infty} \frac{\beta(t_n)}{t_n} = 1,
\]

we have, for all \(n \in \mathbb{N} \) and for all \(x, y \in C \),

\[
\|x - y\| = t_n \implies \|T(x) - T(y)\| \leq \beta(\|x - y\|).
\]

In Sect. 4, we use Theorem 1 to get a result on the existence and uniqueness of \(L^p \)-solutions \((1 < p < +\infty) \) of the iterative functional equation

\[
\varphi(x) = h(x, \varphi[f(x)]).
\]

In Sect. 5, we give some refinements of the classical Radamacher theorem on the differentiability of the Lipschitz mappings.

2. Some auxiliary results on Lipschitz continuity

We begin with the following

Lemma 1. Let \(X, Y \) be normed spaces, \(C \subset X \) a convex set, \(T : C \to Y \) a mapping, and \(\beta : (0, \infty) \to [0, \infty) \) a real function such that

\[
\|Tx - Ty\| \leq \beta(\|x - y\|), \quad x, y \in C, \quad x \neq y.
\]

If

\[
\limsup_{t \to 0^+} \frac{\beta(t)}{t} < +\infty,
\]

then

\[
\|Tx - Ty\| \leq L \|x - y\|, \quad x, y \in C,
\]

where

\[
L := \liminf_{t \to 0^+} \frac{\beta(t)}{t}.
\]

Proof. Note that conditions (2) and (1) imply that \(T \) is continuous. Indeed, from (2) there are some real positive \(M \) and \(\delta \) such that \(\beta(t) \leq Mt \) for all \(t \in (0, \delta) \), and (1) implies that \(\|Tx - Ty\| \leq M \|x - y\| \) for all \(x, y \in C \) such that \(\|x - y\| < \delta \).

Take arbitrary \(x, y \in C, \ x \neq y \). By (3), for every \(\varepsilon > 0 \) there is a \(t_\varepsilon > 0 \) and a unique \(n = n_\varepsilon \in \mathbb{N}_0 \) such that

\[
\frac{\beta(t_\varepsilon)}{t_\varepsilon} \leq L + \varepsilon,
\]

\[
0 \leq \|x - y\| - n(\varepsilon)t_\varepsilon < t_\varepsilon,
\]

and

\[
\lim_{\varepsilon \to 0} t_\varepsilon = 0.
\]
Put
\[z_k = x + kt\varepsilon \frac{y-x}{\|y-x\|}, \quad k = 0, 1, \ldots, n(\varepsilon). \]

Then, by the convexity of \(C \),
\[z_k \in C, \quad k = 0, 1, \ldots, n(\varepsilon); \]
clearly
\[\|z_k - z_{k+1}\| = t\varepsilon, \quad k = 0, 1, \ldots, n(\varepsilon); \quad (7) \]
and, by (5),
\[\|z_{n(\varepsilon)} - y\| = (\|y-x\| - nt\varepsilon) < t\varepsilon. \quad (8) \]
Hence, applying in turn: the triangle inequality, condition (1), some obvious identities, (4), (7) and (5), we get
\[
\|Tx - Ty\| = \left\| \sum_{k=0}^{n(\varepsilon)-1} (Tz_k - Tz_{k+1}) + (Tz_{n(\varepsilon)} - Ty) \right\|
\leq \sum_{k=0}^{n(\varepsilon)-1} \|Tz_k - Tz_{k+1}\| + \|Tz_{n(\varepsilon)} - Ty\|
\leq \sum_{k=0}^{n(\varepsilon)-1} \beta(\|z_k - z_{k+1}\|) + \|Tz_{n(\varepsilon)} - Ty\|
= \sum_{k=0}^{n(\varepsilon)-1} \beta(t\varepsilon) + \|Tz_{n(\varepsilon)} - Ty\|
= n(\varepsilon)\beta(t\varepsilon) + \|Tz_{n(\varepsilon)} - Ty\|
= \frac{\beta(t\varepsilon)}{t\varepsilon} (n(\varepsilon) t\varepsilon) + \|Tz_{n(\varepsilon)} - Ty\|
\leq (L + \varepsilon) n(\varepsilon) t\varepsilon + \|Tz_{n(\varepsilon)} - Ty\|
\leq (L + \varepsilon) \|x - y\| + \|Tz_{n(\varepsilon)} - Ty\|,
\]
that is
\[
\|Tx - Ty\| \leq (L + \varepsilon) \|x - y\| + \|Tz_{n(\varepsilon)} - Ty\|.
\]
Since the continuity of \(T \) and the conditions (6) and (8) imply that
\[
\lim_{\varepsilon \to 0} \|Tz_{n(\varepsilon)} - Ty\| = 0,
\]
letting \(\varepsilon \to 0 \) in the above inequality, we obtain
\[
\|Tx - Ty\| \leq L \|x - y\|,
\]
which completes the proof. \(\square \)

Remark 1. If \(\beta : (0, \infty) \to [0, \infty) \) is subadditive, then
\[
\limsup_{t \to 0^+} \frac{\beta(t)}{t} = \liminf_{t \to 0^+} \frac{\beta(t)}{t}.
\]
(see [8, p. 250, Theorem 7.11.1], also [11]). In this case, instead of (3) it is enough to assume that \(L < +\infty \).

Remark 2. The reasoning in the proof of Lemma 1 simplifies, if
\[
\lim_{t \to 0^+} \frac{\beta(t)}{t} = L.
\]
Indeed, if this condition holds, then for every \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that
\[
\beta(t) \leq (L + \varepsilon) t, \quad t \in (0, \delta).
\]
Take arbitrary \(x, y \in C, x \neq y \), choose \(n \in \mathbb{N} \) such that
\[
\|x - y\|_n < \delta,
\]
and put
\[
z_k := x + \frac{k}{n} (y - x), \quad k = 0, 1, \ldots, n.
\]
Of course
\[
\|z_k - z_{k+1}\| = \frac{\|x - y\|}{n}, \quad k = 0, 1, \ldots, n - 1;
\]
\[
z_0 = x, \quad z_n = y,
\]
and, by the convexity of \(C \),
\[
z_k \in C, \quad k = 0, 1, \ldots, n.
\]
Applying the triangle inequality and (1), we hence get
\[
\|Tx - Ty\| = \left\| \sum_{k=0}^{n-1} (Tz_k - Tz_{k+1}) \right\| \leq \sum_{k=0}^{n-1} \|Tz_k - Tz_{k+1}\| \leq \sum_{k=0}^{n-1} \beta(\|z_k - z_{k+1}\|)
\]
\[
= \sum_{k=0}^{n-1} \beta \left(\frac{\|x - y\|}{n} \right) \leq \sum_{k=0}^{n-1} (L + \varepsilon) \frac{\|x - y\|}{n} = (L + \varepsilon) \frac{\|x - y\|}{n},
\]
that is
\[
\|Tx - Ty\| \leq (L + \varepsilon) \frac{\|x - y\|}{n}.
\]
Since \(\varepsilon > 0 \) is chosen arbitrarily, letting \(\varepsilon \to 0 \), we conclude that \(T \) is \(L \)-Lipschitzian.

A much weaker necessary and sufficient condition for a continuous map to be Lipschitz continuous gives the following

Lemma 2. Let \(X \) and \(Y \) be real normed spaces and \(C \subset X \) a bounded convex set. Suppose that \(T : C \to Y \) is continuous. If there are a nonnegative real \(L \) and two positive sequences \((t_n) \), \((c_n) \),
\[
\lim_{n \to \infty} t_n = 0, \quad \lim_{n \to \infty} c_n = L,
\]
such that for every \(n \in \mathbb{N} \) and for all \(x, y \in C \),
\[
\|x - y\| = t_n \implies \|T(x) - T(y)\| \leq c_n t_n,
\]
then \(T \) is Lipschitz continuous, and
\[
\|Tx - Ty\| \leq L \|x - y\|, \quad x, y \in C.
\]
Proof. Take arbitrary $x, y \in C$, $x \neq y$. For every $n \in \mathbb{N}$, there is a unique $m_n \in \mathbb{N} \cup \{0\}$ such that

$$m_n t_n \leq \|x - y\| < (m_n + 1) t_n.$$

Put

$$z_k := x + \frac{kt_n}{\|y - x\|} (y - x), \quad k = 0, 1, \ldots, m_n.$$

(10)

Since

$$0 \leq \frac{m_n t_n}{\|y - x\|} \leq 1,$$

and, for each $k = 0, 1, \ldots, m_n$,

$$z_k = \left(1 - \frac{kt_n}{\|y - x\|}\right)x + \frac{kt_n}{\|y - x\|}(y - x),$$

the convexity of C implies that

$$z_k \in C, \quad k = 0, 1, \ldots, m_n.$$

Moreover, by (10),

$$\|z_k - z_{k+1}\| = t_n, \quad k = 0, 1, \ldots, m_n - 1,$$

(11)

and, for $k = m_n$,

$$z_{m_n} - y = \left(x + \frac{kt_n}{\|y - x\|}(y - x)
ight) - y = \left(\frac{kt_n}{\|y - x\|} - 1\right)(y - x),$$

we have

$$\|z_{m_n} - y\| = \|y - x\| - m_n t_n < t_n.$$

(12)

From (11) and (9), we get

$$\|Tz_k - Tz_{k+1}\| \leq c_n t_n, \quad k = 0, 1, \ldots, m_n - 1,$$

so, by the triangle inequality,

$$\|Tx - Ty\| = \left\| \sum_{k=0}^{m_n-1} (Tz_k - Tz_{k+1}) + (Tz_{m_n} - Ty) \right\|$$

$$\leq \sum_{k=0}^{m_n-1} \|Tz_k - Tz_{k+1}\| + \|Tz_{m_n} - Ty\|$$

$$\leq m_n c_n t_n + \|Tz_{m_n} - Ty\|$$

$$= c_n (m_n t_n) + \|Tz_{m_n} - Ty\|$$

whence, taking into account that $m_n t_n \leq \|x - y\|$, by (12), we get

$$\|Tx - Ty\| \leq c_n \|x - y\| + \|Tz_{m_n} - Ty\|.$$

(13)

Since, by (12), $\|z_{m_n} - y\| < t_n$, we have

$$\lim_{n \to \infty} \|z_{m_n} - y\| = 0,$$

and, in view of the assumed continuity of T,

$$\lim_{n \to \infty} \|Tz_{m_n} - Ty\| = 0.$$
Hence, letting $n \to \infty$ in (13), and taking into account that $\lim_{n \to \infty} c_n = L$, we conclude that

$$\|Tx - Ty\| \leq L\|x - y\|,$$

which was to be shown. \hfill \Box

3. Fixed-point theorems

Recall that a real normed vector space $(X, \|\cdot\|)$ is called \textit{uniformly convex}, if for every $\varepsilon \in (0, 2]$ there is some $\delta > 0$ such that for any two vectors $x, y \in X$ with $\|x\| = \|y\| = 1$, the condition $\|x - y\| \geq \varepsilon$ implies that $\left\| \frac{x + y}{2} \right\| \leq 1 - \delta$ (Goebel and Reich [6]; see also [13] for a generalization).

Applying Lemma 1 with $L = 1$ we obtain the following generalization of the Browder–Göhde–Kirk theorem.

Theorem 1. Let X be a uniformly convex Banach space, $C \subset X$ a nonempty bounded convex closed set and T a selfmapping of C. If there exists a function $\beta : (0, \infty) \to [0, \infty)$ such that

$$\|Tx - Ty\| \leq \beta(\|x - y\|), \; x, y \in C, \; x \neq y,$$

and

$$\limsup_{t \to 0^+} \frac{\beta(t)}{t} < +\infty, \quad \liminf_{t \to 0^+} \frac{\beta(t)}{t} = 1,$$

then T has a fixed point in C.

Proof. Applying Lemma 1 with $L = 1$, we get

$$\|Tx - Ty\| \leq L\|x - y\|, \quad x, y \in C,$$

that is T is nonexpansive, and the result follows from the original version of the Browder–Göhde–Kirk theorem. \hfill \Box

In particular, the thesis of Browder–Göhde–Kirk theorem remains true, if the nonexpansivity of the mapping T is replaced for instance, by the inequality

$$\|Tx - Ty\| \leq \exp(\|x - y\|) - 1, \quad x, y \in C, \; x \neq y.$$

Lemma 2 and the Browder–Göhde–Kirk theorem yield the following:

Proposition 1. Let X be a uniformly convex Banach space and $C \subset X$ a nonempty bounded closed and convex set. Suppose that $T : C \to C$ is continuous. If there exist two positive sequences $(t_n), (c_n)$,

$$\lim_{n \to \infty} t_n = 0, \quad \lim_{n \to \infty} c_n = 1,$$

such that for every $n \in \mathbb{N}$ and for all $x, y \in C$,

$$\|x - y\| = t_n \implies \|T(x) - T(y)\| \leq c_n t_n,$$

then T has a fixed point.
This proposition improves the relevant result in [11] where the uniform continuity of T is assumed.

The main result of this section reads as follows.

Theorem 2. Let X be a uniformly convex Banach space and $C \subset X$ a nonempty bounded closed and convex set. Suppose that $T : C \to C$ is continuous. If there exist a function $\beta : (0, \infty) \to [0, \infty)$ and a sequence of positive real (t_n), $\lim_{n \to \infty} t_n = 0$ satisfying the condition

$$
\lim_{n \to \infty} \frac{\beta(t_n)}{t_n} = 1,
$$

such that for every $n \in \mathbb{N}$ and for all $x, y \in C$,

$$
\| x - y \| = t_n \implies \| T(x) - T(y) \| \leq \beta(\| x - y \|),
$$

then T has a fixed point.

Proof. Setting $c_n := \frac{\beta(t_n)}{t_n}$ we have $\lim_{n \to \infty} c_n = 1$ and for every $n \in \mathbb{N}$ and for all $x, y \in C$, if $\| x - y \| = t_n$, then

$$
\| T(x) - T(y) \| \leq c_n t_n = \beta(t_n),
$$

and the result follows from Proposition 1. \qed

4. An application in the theory of iterative functional equations

For a measure space (Ω, Σ, μ) and a real $p > 1$, denote by $(L^p(\Omega), \| \cdot \|_p)$ the Banach space of all (equivalence classes with respect to the μ-a.e. equality) of Σ-measurable functions $\varphi : \Omega \to \mathbb{R}$ such that $|\varphi|^p$ is μ-integrable, and

$$
\| \varphi \|_p = \left(\int_{\Omega} |\varphi|^p d\mu \right)^{1/p}.
$$

It is well known that $(L^p(\Omega), \| \cdot \|_p)$ is a uniformly convex Banach space (Clarkson [3]).

In this section, we consider solutions $\varphi \in L^p(\Omega)$ of the iterative-type functional equation

$$
\varphi(x) = h(x, \varphi[f(x)]).
$$

We assume that (Ω, Σ, μ) the given functions f and h satisfy the following conditions:

(i) $k \in \mathbb{N}$; $\Omega \subset \mathbb{R}^k$ is an open set; μ is the Lebesgue measure, $\mu(\Omega) = 1$; and $f : \Omega \to \Omega, f = (f_1, \ldots, f_k)$, is a locally Lipschitzian homeomorphic mapping;

(ii) $h : \Omega \times \mathbb{R} \to \mathbb{R}$ is such that: for every $y \in \mathbb{R}$ the function $\Omega \ni x \mapsto h(x, y)$ is Lebesgue measurable, and $\mathbb{R} \ni y \mapsto h(x, y)$ is continuous for almost all $x \in \Omega$ (with respect to μ);

(iii) $p \in \mathbb{R}, p > 1$, and there are $g_1, g_2 \in L^p(\Omega)$, $g_1 \leq g_2$ a.e. in Ω such that for all $x \in \Omega$ and $y \in \mathbb{R}$, the following implication holds true:
\[g_1(f(x)) \leq y \leq g_2(f(x)) \implies g_1(x) \leq h(x, y) \leq g_2(x). \]

Applying Theorem 1, we prove the following:

Theorem 3. Let conditions (i)–(iii) be satisfied. Assume that there are a Lebesgue measurable function \(\alpha : \Omega \to [0, \infty) \), and a function \(\beta : [0, \infty) \to [0, \infty) \) such that

\[
|h(x, y_1)| \leq \alpha(x) \beta(|y_1 - y_2|), \quad x \in \Omega, \ y_1, y_2 \in \mathbb{R}; \quad (14)
\]

\[
[\alpha(x)]^p \leq |J_f(x)| \quad \text{a.e. in } \Omega, \quad (15)
\]

where, for \(f = (f_1, \ldots, f_k) \) and \(x = (x_1, \ldots, x_k) \), the symbol \(J_f(x) := \frac{\partial(f_1, \ldots, f_k)}{\partial(x_1, \ldots, x_k)} \) stands for the Jacobian of \(f \);

the function

\[
[0, \infty) \ni t \mapsto \left[\beta\left(t^\frac{1}{p}\right) \right]^p \text{ is concave};
\]

and

\[
\lim_{t \to 0} \frac{\beta(t)}{t} \leq 1. \quad (17)
\]

Then there exists \(\varphi \in L^p(\Omega) \), \(g_1 \leq \varphi \leq g_2 \) a.e. in \(\Omega \), such that

\[
\varphi(x) = h(x, \varphi[f(x)]) \quad \text{a.e. for } x \in \Omega; \quad (18)
\]

moreover, if \(\beta(t_n) \neq t_n \) for a sequence of \(t_n > 0 \), \(\lim_{n \to \infty} t_n = 0 \), then such \(\varphi \) is unique, and for any \(\varphi_0 \in L^p(\Omega) \), \(g_1 \leq \varphi_0 \leq g_2 \) a.e. in \(\Omega \), the sequence \((\varphi_n) \) defined recursively by

\[
\varphi_n(x) = h(x, \varphi_{n-1}[f(x)]) \quad \text{a.e. for } x \in \Omega; \ n \in \mathbb{R},
\]

converges to \(\varphi \) in the norm \(\| \cdot \|_p \).

Proof. Put

\[
C := \{ \varphi \in L^p(\Omega) : g_1 \leq \varphi \leq g_2 \text{ a.e. in } \Omega \}.
\]

It is easy to see that \(C \) is a nonempty, convex and closed subset of \(L^p(\Omega) \). Define the mapping \(T \) on \(C \) by

\[
T(\varphi)(x) := h(x, \varphi[f(x)]), \quad x \in \Omega.
\]

Take an arbitrary \(\varphi \in C \). Then, in view of Carathéodory theorem [2], conditions (ii) imply that the function \(T(\varphi) \) is Lebesgue measurable. Since \(g_1 \leq \varphi \leq g_2 \) a.e. in \(\Omega \) we have, for a.e. \(x \in \Omega \)

\[
g_1[f(x)] \leq \varphi[f(x)] \leq g_2[f(x)],
\]

whence, in view of condition (iii),

\[
g_1(x) \leq h(x, \varphi[f(x)]) \leq g_2(x)
\]

for a.e. \(x \in \Omega \), that is \(T(\varphi) \in C \), which proves that \(T \) maps \(C \) into itself.

Take arbitrary \(\varphi_1, \varphi_2 \in C \). Making use in turn of: the definition of \(T \); (14) (we use here the measurability of \(\alpha \) and \(\beta \)); (15); the theorem on change of the variables under integral (see Łojasiewicz [10]), the inclusion \(f(\Omega) \subset \Omega \); an obvious equality; the assumption that the Lebesgue measure of \(\Omega \) is 1 and
the Jensen integral inequality for the concave function (16); and the definition of the norm \(\|\cdot\|_p\), we obtain
\[
\|T(\phi_1) - T(\phi_2)\|_p = \left(\int_{\Omega} |h(x, \phi_1[f(x)]) - h(x, \phi_2[f(x)])|^p \, dx \right)^{1/p} \\
\leq \left(\int_{\Omega} |\alpha(x)\beta(|\phi_1[f(x)] - \phi_2[f(x)]|)|^p \, dx \right)^{1/p} \\
\leq \left(\int_{\Omega} |J_f(x)||\beta(|\phi_1[f(x)] - \phi_2[f(x)]|)|^p \, dx \right)^{1/p} \\
= \left(\int_{f(\Omega)} [\beta(|\phi_1(x) - \phi_2(x)|)]^p \, dx \right)^{1/p} \\
\leq \left(\int_{\Omega} [\beta(|\phi_1(x) - \phi_2(x)|)]^p \, dx \right)^{1/p} \\
= \left(\int_{\Omega} \left[\beta \left(\left| \phi_1(x) - \phi_2(x) \right|^p \right) \right]^p \, dx \right)^{1/p} \\
\leq \beta \left(\|\phi_1 - \phi_2\|_p \right),
\]
which, taking into account (17), proves that \(T\) satisfies the conditions of Theorem 1. Since \((L^p(\Omega), \|\cdot\|_p)\) is a uniformly convex Banach space, all the assumptions of Theorem 1 are satisfied. Consequently, there is a function \(\phi \in C\) such that \(\phi = T(\phi)\).

If \(\beta(t_n) \neq t_n\) for a sequence of \(t_n > 0\) such that \(\lim_{n \to \infty} t_n = 0\), then, by the concavity of \(\beta\), it is increasing and
\[
\beta(t) < t, \quad t > 0.
\]
Since \(\lim_{n \to \infty} \beta^n(t) = 0\) for every \(t > 0\), the “moreover” result follows from Theorem 1.2 in [14].

In one-dimensional case, if \(\beta = \text{id}_{[0, \infty)}\) and \(p \geq 1\), the theory of \(L^p\)-solutions of the considered functional equation simplifies. Namely, from [14], Corollary 3.1 and Theorem 3.2, we have the following

Remark 3. [14] Let \(\Omega = (0, a)\) where \(0 < a \leq \infty\), and \(p \geq 1\). Assume that:

- \(f : \Omega \to \Omega\) is absolutely continuous and \(0 < f(x) < x\), \(x \in \Omega\);
- \(h : \Omega \times \mathbb{R} \to \mathbb{R}\) is such that for every \(y \in \mathbb{R}\) the function \(\Omega \ni x \mapsto h(x, y)\) is Lebesgue measurable, the function \(\mathbb{R} \ni y \mapsto h(x, y)\) is continuous for almost all \(x \in \Omega\);
- moreover, for some \(x_0 \in \Omega\) and a function \(\alpha : (0, x_0) \to [0, \infty)\); we have \(|h(x, y_1)| \leq \alpha(x) |y_1 - y_2|, \quad x \in (0, x_0), \ y_1, y_2 \in \mathbb{R}\.\)
Then
(a) if for some \(x_0 \in \Omega \) we have
\[
\alpha^p(x) \leq f'(x) \quad \text{a.e. in } (0, x_0),
\]
then there exists at most one solution \(\varphi \in L^p(\Omega) \) of (18);
(b) if for some \(x_0 \in \Omega \) and \(c \in [0, 1) \) we have
\[
\alpha^p(x) \leq cf'(x) \quad \text{a.e. in } (0, x_0),
\]
then there exists exactly one solution \(\varphi \in L^p(\Omega) \) of Eq. (18).

5. A refinement of Radamacher’s theorem

Applying Lemma 1 we obtain the following refinement of the classical Radamacher’s theorem (see, for instance [5, Theorem 3.1.6], or [10, p.161]).

Theorem 4. Let \(\Omega \subset \mathbb{R}^k \) be an open convex set and \(f : \Omega \to \mathbb{R}^m \) for some \(k, m \in \mathbb{N} \). If there is a function \(\beta : (0, \infty) \to [0, \infty) \) such that
\[
\lim \sup_{t \to 0^+} \frac{\beta(t)}{t} < +\infty,
\]
and
\[
\|f(x) - f(y)\| \leq \beta(\|x - y\|), \quad x, y \in \Omega, \ x \neq y,
\]
where \(\|\cdot\| \) denotes the respective Euclidean norm, then \(f \) is differentiable almost everywhere in \(\Omega \); that is, the points in \(\Omega \) at which \(f \) is not differentiable form a set of Lebesgue measure zero.

Proof. Assume first that \(\Omega \) is convex. By Lemma 1, we have
\[
\|f(x) - f(y)\| \leq L\|x - y\|, \quad x, y \in \Omega,
\]
where
\[
L := \lim \inf_{t \to 0^+} \frac{\beta(t)}{t} < +\infty.
\]
In view of Radamacher’s theorem, the function \(f \) is differentiable almost everywhere in \(\Omega \).

To end the proof, it is enough to note that every open set \(\Omega \subset \mathbb{R}^k \) is a countable sum of convex sets. \(\square \)

Similarly, making use of Lemma 2, we obtain the following improvement of Radamacher’s theorem.

Theorem 5. Let \(k, m \in \mathbb{N}, \ \Omega \subset \mathbb{R}^k \) be an open convex set and \(f : \Omega \to \mathbb{R}^m \) be continuous. If for some function \(\beta : (0, \infty) \to [0, \infty) \) there is a positive sequence \((t_n) \) with \(\lim_{n \to \infty} t_n = 0 \), such that
\[
\lim_{n \to \infty} \frac{\beta(t_n)}{t_n} < \infty,
\]
the function \(f \) is such that for every \(n \in \mathbb{N} \) and for all \(x, y \in \Omega \),
\[
\|x - y\| = t_n \implies \|f(x) - f(y)\| \leq \beta(\|x - y\|),
\]
where \(\| \cdot \| \) denotes the Euclidean norm, then \(f \) is differentiable almost everywhere in \(\Omega \).

The results of this section show that condition (i) in Theorem 3 can be replaced by a significantly weaker one.

Author contributions The manuscript wrote JM.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

[1] Browder, F.E.: Nonexpansive nonlinear operators in a Banach space. Proc. NAS USA 54, 1041–1044 (1965)
[2] Carathéodory, K.: Vorlesungen über reelle Funktionen. Leipzig, Berlin (1927)
[3] Clarkson, A.: Uniformly convex spaces. Trans. Am. Math. Soc. 40, 396–414 (1936)
[4] Dugundji, J., Granas, A.: Fixed Point Theory, vol. 1. Monografie Matematyczne, vol. 61. Polish Scientific Publishers, Warszawa (1982)
[5] Federer, H.: Geometric Measure Theory. Die Grundlehren der Mathematischen Wissenschaften, vol. 153. Springer, Berlin (1969)
[6] Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Marcel Dekker, New York (1984)
[7] Göhde, D.: Zum Prinzip der kontraktiven Abbildung. Math. Nachr. 28, 251–258 (1965)
[8] Hille, E., Phillips, R.S.: Functional Analysis and Semi-groups, vol. 31. AMS Colloquium Publications, Providence (1957)
[9] Kirk, W.A.: A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 72, 1004–1006 (1965)
[10] Lojasiewicz, St.: An Introduction to the Theory of Real Functions. With Contributions by M. Kosiek, W. Mlak and Z. Opial, 3rd edn. Translated from
the Polish by G. H. Lawden. Translation edited by A. V. Ferreira. A Wiley-Interscience Publication. Wiley, Chichester (1988)

[11] Matkowski, J.: On a generalization of Browder–Göhde–Kirk fixed point theorem. Sci. Bull. Lódź Tech. Univ. 687, 71–75 (1993)

[12] Matkowski, J.: Remarks on Lipschitzian mappings and some fixed point theorems. Banach J. Math. Anal. 2, 237–244 (2007)

[13] Matkowski, J.: Fixed point theorem in a uniformly convex paranormed space and its application. Topol. Appl. 160(3), 524–531 (2013)

[14] Matkowski, J.: Integrable solutions of functional equations. Diss. Math. 127 (1975)

[15] Reich, S.: The fixed point property for nonexpansive mappings, I. Am. Math. Mon. 83, 266–268 (1976)

[16] Reich, S.: The fixed point property for nonexpansive mappings, II. Am. Math. Mon. 87, 292–294 (1980)

Janusz Matkowski
Institute of Mathematics
University of Zielona Góra
Szafrana 4A
65-516 Zielona Góra
Poland
e-mail: J.Matkowski@wmie.uz.zgora.pl

Accepted: September 8, 2022.