Frailty Predicts Severe Postoperative Complication after Elective Hepatic Resection

Hirohisa Okabea, b, Hiromitsu Hayashia, Takaaki Higashia, Hidetoshi Nittaa, Yoshiaki Ikutaa, Toshihiko Yusaa, Hideaki Takeyamaa, Katsuhiro Ogawaa, Nobuyuki Ozakia, Shinichi Akahoshia, Kenichi Ogataa, Takayuki Osakic, Hideo Babab, Hiroshi Takamoria

aDepartment of Surgery, Saiseikai Kumamoto Hospital, Kumamoto, Japan; bDepartment of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, Kumamoto, Japan; cDepartment of Rehabilitation, Saiseikai Kumamoto Hospital, Kumamoto, Japan

Keywords
Frailty · Sarcopenia · Morbidity · Hepatectomy

Abstract
Background: Frail patients are likely to suffer from postoperative complication, but this assumption has not been well confirmed. Objectives: This study aims to clarify the importance of frailty in patients undergoing hepatectomy for predicting severe postoperative complications. Method: One hundred and forty-three patients aged > 65 years undergoing hepatectomy between 2011 and 2016 were enrolled in this study. The relevance of frailty versus sarcopenia for postoperative outcome was assessed. We defined clinical frailty (CF) as a CF scale > 4. Sarcopenia was defined by the total muscle area at the level of the third lumbar vertebra measured on computed tomography. Results: There were 16 patients (11%) with CF and 80 patients (56%) with sarcopenia. CF was associated with high age ($p < 0.0001$), severe postoperative complications (Clavien-Dindo classification ≥ 3) ($p = 0.0059$), and postoperative in-hospital stay ($p = 0.0013$). On the other hand, sarcopenia was not associated with postoperative outcome. Logistic regression analysis revealed that only CF was an independent predictor of severe postoperative complication (risk ratio of 4.2; $p = 0.017$). The occurrence of organ/space surgical site infection was significantly higher in the frailty group than in the non-frailty group. Conclusion: CF, but not sarcopenia, is a robust predictor of severe postoperative complications for patients undergoing hepatectomy.
Introduction

Frailty is multidimensional, heterogeneous, and unstable; thus, it is different from disability or ageing alone [1]. Frailty is commonly measured by summative impairment lists and algorithms derived from clinical judgement [1–4]. Since the number of older patients requiring surgical treatment has been increasing with the development of surgery and anesthesia, the preoperative risk for such treatment in older patients needs to be properly assessed in terms of both the cure of disease and the maintenance of the quality of life. Frailty was introduced to be of great importance in predicting surgical outcomes in older patients [4].

Sarcopenia has been recognized to be involved in vulnerability and has been appreciated for reflecting frailty in patients [5]. Sarcopenia is basically determined by evaluating skeletal muscle in many ways, measuring the total skeletal muscle at the level of the third lumbar vertebra (L3), psoas density, psoas volume, and rectus femoris with computed tomography (CT), ultrasonography, or magnetic resonance imaging [6–9]. The clinical impact of sarcopenia on postoperative morbidity and mortality has been reported so far; but the outcome of such investigations depends on both the surgical procedure and method of measuring sarcopenia [9–14].

Hepatic resection is a widely accepted curative treatment for patients with liver cancer or biliary tract carcinoma. Although the surgical procedure and the management of anesthesia have advanced, hepatectomy is not without problems of morbidity and mortality. Perioperative mortality ranged from 0 to 14.8% around the world in the past two decades and occurs in <2% of the patients in Japan [15, 16]. Recently, postoperative morbidity and mortality for both patients with hepatocellular carcinoma and patients with colorectal liver metastasis turned out to be not only associated with short-term outcomes but also with poorer long-term outcomes [17, 18]. Thus, the effort of decreasing severe postoperative complication is of great importance not only for the economic perspective but also for the prognostic perspective.

We have prospectively evaluated patients’ frailty with clinical frailty scale (CFS) for selecting patients requiring extended perioperative rehabilitation and promoted enhanced recovery of surgery [2]. The aim of the current study is to assess the clinical impact of frailty on postoperative outcome in patients undergoing hepatic resection. Since sarcopenia has already been shown to be involved in predicting the surgical outcome in patients undergoing hepatectomy [19], we here compared the clinical impact of frailty to that of sarcopenia.

Patients and Methods

Patients

This observational study included 143 patients aged >65 years who underwent elective, curative surgery for histologically confirmed colorectal cancer at the Saiseikai Kumamoto Hospital between January 2011 and August 2016. Data collected from inpatient records included demographic data and tumor-specific data. Nutritional status of the patients was also examined by the prognostic nutritional index (PNI) [20] calculated based on the serum albumin concentration and peripheral blood total lymphocyte count. Written informed consent was obtained before surgery. Since the previous report suggested that high-risk surgical procedures such as anterior segmentectomy, central bisegmentectomy, or total caudate lobectomy were associated with the occurrence of bile leakage after hepatectomy [21], we assessed if the surgical procedure was associated with the outcome. This study was approved by the Human Ethics Review Committee of Saiseikai Kumamoto hospital (Kumamoto, Japan).

Assessment of CFS

Frailty was assessed with CFS introduced by Rockwood et al. [2] based on clinical judgement. CFS 1 (Very fit): robust, active, energetic, well-motivated, and fit; these people commonly exercise regularly and
are in the fittest group for their age; CFS 2 (Well): without active disease but less fit than people in category CFS 1; CFS 3 (Well with treated comorbid disease): disease symptoms are well controlled compared with those in category CFS 4; CFS 4 (Apparently vulnerable): although not frankly dependent, these people commonly complain of being “slowed up” or having disease symptoms; CFS 5 (Mildly frail): limited dependence on others for instrumental activities of daily living; CFS 6 (Moderately frail): help is needed with both instrumental and noninstrumental activities of daily living; CFS 7 (Severely frail): completely dependent on others for the activities of daily living or terminally ill. In this study, we determined frailty as CFS ≥4.

CT Image Analysis and Sarcopenia

The skeletal muscle area was retrospectively measured on CT scans performed before surgery at the level of the L3 in the inferior direction with the patient in the supine position. Briefly, we used a three-dimensional image analysis system to measure pixels using a window width of −30 to 150 HU to delineate the muscle compartments and compute the cross-sectional area of each in centimeters squared (cm²). The cross-sectional area of muscles (cm²) at the L3 level computed from each image was normalized by the square of the height (m²) to obtain the skeletal muscle index (cm²/m²). All measurements and calculations described above were performed by two trained examiners (H.O. and H.N.), both of whom were blinded to the surgical outcomes at the time of quantification. All evaluations were performed independently. In this study, we applied the sarcopenia definition proposed by Martin et al. [8]. According to this definition, sarcopenia is defined as a skeletal muscle index = ([skeletal muscle area at L3] / [height]²) of <43 cm²/m² in males with a BMI of <25, <53 cm²/m² in males with a BMI of ≥25, and <41 cm²/m² in females.

Statistics

We compared the clinical characteristics between the two groups using a χ² analysis for noncontinuous variables and the t test or the Wilcoxon test for continuous variables. We conducted a logistic regression analysis to determine the associations between clinicopathologic factors and severe postoperative complication. Interobserver agreement for image findings of tumor was determined by calculating the κ coefficient. All reported p values are two-sided, and p < 0.05 was considered statistically significant. All analyses were performed using the commercial software (JMP Version 10®; SAS Institute, Cary, NC, USA).

Results

CFS Is Associated with Postoperative Outcomes in Patients Undergoing Hepatectomy

To objectively evaluate CFS, the interobserver agreement of frailty (CFS ≥4) was measured by the kappa statistic. Kappa was calculated to be 0.769, suggesting that agreement was substantial. There were 16 (11.2%) frail patients. Frailty was associated with high age (p < 0.0001), biliary reconstruction (p = 0.0250), sarcopenia (p = 0.0345), high incidence of severe complication (p = 0.0059), and postoperative length of stay (p = 0.0126) (Table 1). On the other hand, frailty showed no significant correlation with a high BMI and PNI.

Sarcopenia Is Not Associated with Postoperative Outcomes in Patients Undergoing Hepatectomy

There were 80 (55.9%) sarcopenic patients. Sarcopenia was associated with female (p = 0.0067) and low BMI (p < 0.0001). However, sarcopenia had no correlation with postoperative outcomes such as severe complication and postoperative length of stay (Table 2).

CFS Is an Independent Factor Predicting Severe Postoperative Complication in Patients Undergoing Hepatectomy

There were 30 Clavien 3/4 complications among 143 patients (21.0%). The distribution of Clavien 3/4 complications was as follows: bile leakage (n = 9), organ/space surgical site infection (SSI [n = 13]), intraperitoneal bleeding (n = 1), pleural effusion (n = 2), brain infarction (n = 2), hypercapnia (n = 1), and anastomotic bleeding (n = 1). There was no mortality. Univariate and multivariate analysis of frailty and other perioperative risk factors
are shown in Table 3. Multivariate regression analysis identified only frailty as an independent predictor of the development of severe complications (odds ratio, 4.19; CI 1.30–13.58; \(p = 0.0171 \)). Detailed analysis on severe complications revealed that the incidence of organ/space SSI was significantly higher in the frailty group than that in the non-frailty group among all severe complications (\(p = 0.0049 \)) (Table 4).

Discussion

The current study firstly indicates that frailty, but not sarcopenia, has a robust impact on the incidence of severe postoperative complications in patients undergoing hepatectomy. Vulnerability could be easily assessed by general appearance at the first checkup; however,
the quantification of the vulnerability has not been established. We focused on CFS, which is easy to use based on the clinical judgement and powerfully correlates to the surgical outcome. Score ≥ 4 was determined as frailty in the current study. The basic concept of this setting is that patients who somehow slow up, require some support for daily life, or suffer from disease are likely to have life-threatening morbidity after surgical treatment irrespective of medicines they are taking or previous illness such as brain infarction, chronic kidney disease, and heart failure. Correlation of CFS and other established measurement tools such as the frailty index based on clinical deficits has already been confirmed [2], and we also confirmed it in the beginning of the study at our institution. As a result, prospective data collection demonstrated that frailty has a clear and robust correlation with severe complications after curative surgery in patients undergoing hepatectomy.

Although frailty is correlated with sarcopenia, sarcopenia by itself was never correlated with any postoperative outcomes in this study. Recently, sarcopenia was associated with postoperative morbidity and mortality in patients undergoing hepatectomy. Although we assessed the skeletal muscle on CT scans, there are many ways of assessing sarcopenia, and the surgical outcome seems to be dependent on how to quantify sarcopenia. By quantifying the total muscle area at the level of the L3 as we did in the current study, sarcopenia was not

Table 3. Multivariate logistic regression analysis for severe postoperative complication

Variable	Univariate, p value	Multivariate, odds ratio (95% CI)	p value
Male	0.5661		
Age ≥ 74 years	0.3591		
2/3 sectionectomy	0.0327	2.00 (0.69–5.60)	0.1989
High-risk surgical procedures b	0.7375	1.67 (0.46–5.66)	0.4253
Biliary reconstruction	0.0293		
Experienced operator	0.7208		
Operation time ≥ 337 min	0.0443	1.49 (0.56–4.03)	0.4192
Bleeding ≥ 320 g	0.0244	2.02 (0.80–5.34)	0.1355
Sarcopenia	0.6147		
Frailty	0.0057	4.19 (1.30–13.58)	0.0171

a Median values are used for the cutoff value. *b* Anterior segmentectomy, central bisegmentectomy, or total caudate lobectomy [21].

Table 4. Severe complications (Clavien-Dindo classification 3/4)

Clinicopathological factors	Frailty (+) (n = 16)	Frailty (−) (n = 127)	p value
Total	8 (50)	22 (17)	0.0059
Bile leakage	2 (13)	7 (6)	0.5902
SSI (organ/space)	5 (31)	8 (6)	0.0049
Intrapleural bleeding	0	1 (1)	0.5564
Pleural effusion	0	2 (2)	0.5326
Brain infarction	1 (6)	1 (1)	0.5326
Hypercapnia	0	1 (1)	0.5564
Anastomotic bleeding	0	1 (1)	0.5564

Figures in parentheses are percentages. SSI, surgical site infection.
associated with the postoperative complication rate in patients with colorectal liver metastasis undergoing hepatectomy [13]. On the other hand, by quantifying psoas area, sarcopenia was associated with Clavien grade ≥3 complication in patients with colorectal liver metastasis undergoing hepatic resection [19]. By quantifying psoas volume, sarcopenia was associated with postoperative Clavien-Dindo ≥3 complication in patients undergoing hepatic resection or liver transplantation [22]. By quantifying psoas density, sarcopenia was associated with 1-year mortality in patients undergoing hepato-pancreato-biliary surgery, whereas psoas area was not efficient for assessing sarcopenia [12]. Since we did not try other methods of assessing sarcopenia, it is possible that sarcopenia might not have been properly determined in our patient cohort.

Given the previous investigations focusing on the impact of nutritional index on postoperative complications [23], we speculated that the nutritional index might partially be the cause or outcome of frailty. If frail patients are also impaired in taking the nutrition, we expected that they could be supported by nutritional intervention before or after surgery. However, there was no significant correlation between PNI and frailty index. Frailty defined by CFS is fundamentally discriminated from nutritional disorder and thereby does not seem to be supported by perioperative nutritional intervention.

Since robust correlation between frailty and morbidity was confirmed in the current observational study, our next concern is if improvement of frailty before surgery could decrease morbidity. In patients undergoing lung resection, preoperative exercise-based training improves pulmonary function before surgery and reduces in-hospital length of stay and postoperative complications [24]. Given the previous exploratory investigations [25, 26], surgical short outcome such as length of stay and the occurrence of complication did not dramatically improve by the intervention of rehabilitation before surgery, suggesting that not all patients (including fit patients) but frail patients might be appropriate candidates for preoperative intervention of those prehabilitation measures to reduce the high possibility of severe postoperative complication.

In conclusion, frailty, but not sarcopenia, independently predicts severe complication in patients undergoing hepatic resection and therefore needs to be clinically emphasized with careful attention. Frailty is conceptually accepted as being similar to sarcopenia, but not eventually collaborative with it based on the current study. The current study suggests that the management of deep/organ SSI should be considered for frail patients undergoing hepatic resection, and further intervention of perioperative rehabilitation should be addressed.

Statement of Ethics

All patients enrolled in this study have given their written informed consent. The study protocol has been approved by the institute’s committee on human research.

Disclosure Statement

The authors have no conflicts of interest to disclose.

Funding Sources

The authors did not receive any funding.
Author Contributions

Study design: Okabe H., Osaki T., and Takamori H.
Collection of data: Hayashi H., Higashi T., Nitta H., Ikuta Y., Yusa T., Takeyama H., Ogawa K., Ozaki N., Akahoshi S., and Ogata K.
Edition of the manuscript: Baba H.

References

1. Hogan DB, MacKnight C, Bergman H; Steering Committee, Canadian Initiative on Frailty and Aging. Models, definitions, and criteria of frailty. *Aging Clin Exp Res.* 2003 Jun;15(3 Suppl):1–29.
2. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, et al. A global clinical measure of fitness and frailty in elderly people. *CMAJ.* 2005 Aug;173(5):489–95.
3. Rolffson DB, Majumdar SR, Tsuyuki RT, Tahir A, Rockwood K. Validity and reliability of the Edmonton Frail Scale. *Age Ageing.* 2006 Sep;35(5):526–9.
4. Makary MA, Segev DL, Pronovost PJ, Syin D, Bandeen-Roche K, Patel P, et al. Frailty as a predictor of surgical outcomes in older patients. *J Am Coll Surg.* 2010 Jun;210(6):901–8.
5. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. *Lancet Oncol.* 2008 Jul;9(7):629–35.
6. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, Lyons G, Gallagher D, Ross R. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computed tomography. *J Appl Physiol (1985).* 1998 Jul;85(1):115–22.
7. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al; European Working Group on Sarcopenia in Older People. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. *Age Ageing.* 2010 Jul;39(4):412–23.
8. Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. *J Clin Oncol.* 2013 Apr;31(12):1539–47.
9. Mueller N, Murthy S, Tainter CR, Lee J, Riddell K, Fintelmann FJ, et al. Can Sarcopenia Quantified by Ultrasound of the Rectus Femoris Muscle Predict Adverse Outcome of Surgical Intensive Care Unit Patients as well as Frailty? A Prospective, Observational Cohort Study. *Ann Surg.* 2016 Dec;264(6):1116–24.
10. Gani F, Buettner S, Margonis GA, Sasaki K, Wagner D, Kim Y, et al. Sarcopenia predicts costs among patients undergoing major abdominal operations. *Surgery.* 2016 Nov;160(5):1162–71.
11. Nishigori T, Tsunoda S, Okabe H, Tanaka E, Hisamori S, Hosogi H, et al. Impact of Sarcopenic Obesity on Surgical Site Infection after Laparoscopic Total Gastrectomy. *Ann Surg Oncol.* 2016 Aug;23(S4 Suppl 4):524–31.
12. Wagner D, Büttner S, Kim Y, Gani F, Xu L, Margonis GA, et al. Clinical and morphometric parameters of frailty for prediction of mortality following hepatopancreatobiliary surgery in the elderly. *Br J Surg.* 2016 Jan;103(2):e83–92.
13. Lodewick TM, van Nijnatten TJ, van Dam RM, van Mierlo K, Dello SA, Neumann UP, et al. Are sarcopenia, obesity and sarcopenic obesity predictive of outcome in patients with colorectal liver metastases? *HPB (Oxford).* 2015 May;17(5):438–46.
14. Sheetz KH, Waits SA, Terjimanian MN, Sullivan J, Campbell DA, Wang SC, et al. Cost of major surgery in the sarcomeric patient. *Am Coll Surg.* 2013 Nov;217(5):813–8.
15. Asiyambio B, Chang D, Gleisner AL, Nathan H, Choti MA, Schulick RD, et al. Operative mortality after hepatic resection: are literature-based rates broadly applicable? *Gastrointest Surg.* 2008 May;12(5):842–51.
16. Takahara T, Wakahayashi G, Konno H, Gotoh M, Yamaue H, Yanaga K, et al. Comparison of laparoscopic major hepatectomy with propensity score matched open cases from the National Clinical Database in Japan. *J Hepatobiliary Pancreat Sci.* 2016 Nov;23(11):721–34.
17. Harimoto N, Shirabe K, Ikegami T, Yoshizumi T, Maeda T, Kajiya K, et al. Postoperative complications are predictive of poor prognosis in hepatocellular carcinoma. *J Surg Res.* 2015 Dec;199(2):470–7.
18. Mavros MN, de Jong M, Dogeas E, Hyder O, Pawlik TM. Impact of complications on long-term survival after resection of colorectal liver metastases. *Br J Surg.* 2013 Apr;100(5):711–8.
19. Peng PD, van Veldder MG, Tsai S, de Jong MC, Makary M, Ng J, et al. Sarcopenia negatively impacts short-term outcomes in patients undergoing hepatic resection for colorectal liver metastasis. *HPB (Oxford).* 2011 Jul;13(7):439–46.
20. Onodera T, Goseli N, Kosaki G; Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. *Nihon Geka Gakai Zasshi.* 1984;85(9):1001-1005.
22 Valero V 3rd, Amini N, Spolverato G, Weiss MJ, Hirose K, Dagher NN, et al. Sarcopenia adversely impacts postoperative complications following resection or transplantation in patients with primary liver tumors. *J Gastrointest Surg*. 2015 Feb;19(2):272–81.

23 Nozoe T, Kimura Y, Ishida M, Saeki H, Korenaga D, Sugimachi K. Correlation of pre-operative nutritional condition with post-operative complications in surgical treatment for oesophageal carcinoma. *Eur J Surg Oncol*. 2002 Jun;28(4):396–400.

24 Sebio García R, Yáñez Brage MI, Giménez Moolhuyzen E, Granger CL, Deney L. Functional and postoperative outcomes after preoperative exercise training in patients with lung cancer: a systematic review and meta-analysis. *Interact Cardiovasc Thorac Surg*. 2016 Sep;23(3):486–97.

25 Li C, Carli F, Lee L, Charlebois P, Stein B, Liberman AS, et al. Impact of a trimodal prehabilitation program on functional recovery after colorectal cancer surgery: a pilot study. *Surg Endosc*. 2013 Apr;27(4):1072–82.

26 Minnella EM, Awasthi R, Gillis C, Fiore JF Jr, Liberman AS, Charlebois P, et al. Patients with poor baseline walking capacity are most likely to improve their functional status with multimodal prehabilitation. *Surgery*. 2016 Oct;160(4):1070–9.