CONTRIBUTION OF MRI IN LUNG CANCER STAGING*

A. Khalil1,2, T. Bouhela1, M.-F. Carette1,2

Major advances in the WB-MRI in the initial evaluation and follow-up of patients with lung cancer have been performed in recent years. Multicentric studies using different magnet systems are necessary to confirm these promising results.

Key-word: Lung neoplasms, MR.

Lung cancer is the leading cause of cancer-related death worldwide, with a dismal 5-year survival rate of 15% (1). It accounts for 12.2% of all new cases of cancer in Europe in 2008 (1) and 14% of all new cases of cancer in the USA in 2011 (2). Accurate staging is mandatory to select the most appropriate therapy and to determine prognosis.

The two advanced imaging methods used for this staging were CT-scan and 18F-FDG PET/CT. However, both technics had some limitations. Limitations of 18F-FDG PET/CT are particularly limited spatial resolution (3) and low specificity in distinguishing malignant nodule or lymphadenopathy from inflammatory changes, resulting in a considerable number of false-positive findings (4). The 18F-FDG PET/CT is not recommended for brain staging. Moreover, PET/CT is associated with a considerable radiation burden to patients and medical personnel. Limitations of CT-scan are the use of morphological (aspect and size of the nodule, size of the small diameter of the lymphadenopathy) data without functional or biological information.

Magnetic resonance imaging (MRI) is currently the only technique that enables non-invasive whole-body assessment without ionizing radiation. Another strength of MRI is its capability to create high soft tissue contrast without external contrast agents and with high spatial resolution. Currently, MRI is recommended in the assessment of lung cancer extension to the lung apices (superior sulcus or Pancoast-Tobias tumor), to the spinal cord, and to the cardiac cavity. For metastases issues, MRI is also recommended for its high sensitivity and specificity for brain, bone, liver and adrenal metastases diagnosis. Recent advances in

*Meeting "Lung Cancer Imaging in 2012: Updates and innovations", Tervuren, 10.11.2012.
1. Radiology Department, Tenon Hospital, Paris, 2. CNRS UMR 7241/INSERM U1050, Early Development and Pathologies Center for Interdisciplinary Research in Biology, Collège de France, Paris, 3. University of Pierre et Marie Curie, Paris VI, Paris, France.
MRI IN LUNG CANCER STAGING — KHALIL et al

133

compared (10-12). MRI in all these studies was superior to CT for the assessment of brachial plexus invasion related to the multiplanar MR imaging and contrast resolution. No data are available comparing multidetector CT and MR (7).

MR imaging of superior sulcus tumors is performed by using a protocol described by Bruzzi et al. (7) using a modification of a previous protocol described by Demondion et al. (13, 14). This protocol includes axial, sagittal, and coronal T1-weighted sequences and sagittal T2-weighted sequence. To optimize sensitivity for the small structures in the thoracic inlet, such as the brachial plexus nerve roots and trunks, imaging is performed by using a neurovascular neck coil. T1-weighted sequences are acquired by using thin section (3.0 mm) with a minimal gap (< 0.3 mm) and both cardiac gating and respiratory triggering are used to minimize motion and pulsation artifact. Sagittal T1-weighted sequences provide the most detailed anatomic information and should be performed first in case imaging has to be interrupted or aborted, because the sagittal images alone may provide sufficient diagnostic information.

MRI are made around the tumor functional exploration including a whole body exploration. This functional exploration focuses on the specific cellular and vascular architecture of tumors using MRI spectroscopy, perfusion MRI and diffusion-weighted images (DWI). The image contrast of DWI is based on the diffusion properties of water molecules and reflects tissue parameters like cellular density especially in tumor and tissue architecture (5). In the last few years, DWI has been investigated successfully in many fields of oncology (6).

In this review we present the contribution of MRI in lung cancer staging including the validated indications and the current development especially with DWI.

Validated indication of MRI in lung cancer staging

In the initial staging, MRI is the gold standard in the detection of brain metastases and the chest wall invasion especially of the superior sulcus tumor (7). It is also recommended in cases of suspected vertebral or epidural localization and in the characterization of suspected lesions of liver and adrenal.

Superior sulcus tumor

MRI advantages in the evaluation of superior sulcus tumor and determining their resectability include multiplanar capabilities, superior contrast resolution (compared with the other modalities), and lack of ionizing radiation (Fig. 1). MRI is superior to CT in the visualization of tumor extension to the chest wall, extending into the foramina and spinal canal, and the involvement of the brachial plexus (8-11). Although tumor invasion of these structures can be inferred scan data in many cases, MRI allows direct representation of participation and thus improve reader confidence (10). Disadvantages of MRI include its limited availability compared to that of CT, as well as longer time image acquisition and increased sensitivity to motion artifacts and patient claustrophobia. There have been a limited number of prospective studies, conducted in the late 1980s and early 1990s, with small number of patients in which the relative merits of CT and MR imaging of the superior sulcus were compared (10-12). MRI in all these studies was superior to CT for the assessment of brachial plexus invasion related to the multiplanar MR imaging and contrast resolution. No data are available comparing multidetector CT and MR (7).

MR imaging of superior sulcus tumors is performed by using a protocol described by Bruzzi et al. (7) using a modification of a previous protocol described by Demondion et al. (13, 14). This protocol includes axial, sagittal, and coronal T1-weighted sequences and sagittal T2-weighted sequence. To optimize sensitivity for the small structures in the thoracic inlet, such as the brachial plexus nerve roots and trunks, imaging is performed by using a neurovascular neck coil. T1-weighted sequences are acquired by using thin section (3.0 mm) with a minimal gap (< 0.3 mm) and both cardiac gating and respiratory triggering are used to minimize motion and pulsation artifact. Sagittal T1-weighted sequences provide the most detailed anatomic information and should be performed first in case imaging has to be interrupted or aborted, because the sagittal images alone may provide sufficient diagnostic information.
Indications of contrast medium are in patients in whom vascular invasion or intraforaminal extension is suspected to be present (Fig. 2); in patients who have undergone neo-adjuvant therapy before a planned resection, in whom posttreatment fibrosis may result in blurring of the intermuscular fat planes and difficulty in visualizing the primary tumor; and in patients in whom a recurrence is suspected after definitive treatment (7).

Brain metastases

MRI of the brain is more sensitive and may be more specific for metastases than CT (15, 16). Cerebral metastases occur commonly in lung cancer, particularly from poorly differentiated tumors and adenocarcinoma. MRI with contrast enhancement is the image technique of choice (17). It has particular advantages in showing lesions in the posterior fossa and adjacent to the skull. Given its overall higher sensitivity, MRI is therefore currently preferred over CT when screening patients with lung cancer for brain metastases.

Liver metastases

MR imaging with gadolinium chelates offers an accurate non-radiation based imaging test for detection of liver metastases (18). Liver specific MR contrast agents (hepatobiliary and reticuloendothelial agents) offer greater lesion-to-liver contrast than the conventional extracellular agents (gadolinium chelates).Liver specific MR contrast agents may be used in selected clinical situations when the goal is to achieve the highest detection rate for liver focal lesions, for example, when a patient is being evaluated for curative liver resection (19). The diagnostic performance of DWI is equal to that of Gd-MRI. DWI alone can be used in patients where gadolinium contrast administration is not allowed. Combination of Gd-MRI and DWI significantly increases diagnostic accuracy (20).

Bone metastases

MRI is both sensitive and specific for diagnosing skeletal metastases (Fig. 3), and previous limitations have been overcome with the introduction of whole-body MRI (21, 22).

Adrenal metastases

The discovery of an adrenal gland mass more than 5 cm in the context of lung cancer most often corresponds to a metastatic lesion, except
myelolipoma and adrenal cyst, the characteristics of their content, with fat for first and liquid for the second, are easily identified. The problem is especially for small lesions less than 3 cm and having a density enhancement after injection. In most cases, insofar as it is an initial assessment, no previous review is available. The problem of finding these adrenal lesions can be studied by the structural approach in differentiating benign and malignant lesions on the basis of the presence or absence of intracytoplasmic lipids. In benign lesions, lipids are observed, whereas in malignant lesions, the cells containing them are destroyed (Fig. 4). Chemical shift MRI uses a technique based on hydrogen and fat protons, which resonate at different frequencies. By using different time parameters during the same MRI examination, it is possible to identify lipid-rich adenomas. These adenomas show signal loss on out-of-phase imaging, as opposed to imaging when the protons are in phase. In contrast, nonadenomas do not show signal loss on out-of-phase imaging (23). Recent studies have shown that 60 to 89 percent of lesions measuring between 10 and 30 HU on unenhanced CT can be characterized using chemical shift MRI (24,25).

Current development of MR in lung cancer

Powered by tremendous advances in image quality over the past few years, diffusion-weighted imaging with or without background signal suppression has drawn strong interest from the radiologic community and major MR vendors. DW imaging is increasingly used in the thorax, particularly in lung nodules and masses, with promising results for lung nodule lesion detection and characterization. DW imaging can be easily implemented in clinical protocols, as it can be performed relatively quickly (as short as two breath-hold acquisitions or during free breathing or with respiratory triggering) and does not require contrast agent injection, which makes it attractive in patients with decreased renal function, who cannot receive gadolinium-based contrast agents. This recent development of DW leads to other promising opportunities than the detection and characterization of pulmonary lesions, such as the initial staging of lung cancer with the TNM staging and to monitor treatment.

Tissues characterization

Tissue characterization in lung nodule or mass, like other organs, stays a challenge even with the development of 18F-FDG PET/CT and the kinetic contrast enhancement using CT or MR. Some DWI MR studies focus on tumor detection and characterization of lung nodules or
masses (26-33) (Table I). MR is as accurate as 18F-FDG PET/CT for nodule or masses characterization (Fig. 5). MR is more specific comparing to 18F-FDG PET/CT in characterization of lung masses or mediastinal lymphadenopathies. In a recent meta-analysis on nodule or mass characterization Wu et al, confirm this assessment because it is influenced by the target biopsy (Fig. 6). In the latter situations to reduce the failure of application of this method in clinical practice. They speculate that additional improvement of the technology will increase its role in the future. Additional, larger, prospective, directly comparative studies involving 18F-FDG PET/CT would be required to determine the true value of DWI for the diagnosis of lymph node metastasis in patients with NSCLC.

To go further in the characterization, Matoba et al. (34) reported the ADC value of lung cancer based on its histological type. This study covers only 30 lesions. ADC values of the means were 2.12+/-0.6 10^-3mm²/sec (adenocarcinoma), 1.63+/-0.5 10^-3mm²/sec (squamous cell carcinoma), 1.97+/-0.4 10^-3mm²/sec (large cell carcinoma) and 2.09+/-0.3 10^-3mm²/sec (small cell carcinoma). The value of the ADC adenocarcinomas was significantly higher than that of squamous cell carcinomas and large cell carcinomas (p < 0.05). In addition to the value of the ADC well-differentiated adenocarcinomas (2.52+/-0.4 10^-3mm²/sec) was significantly higher than that of poorly differentiated adenocarcinoma and squamous cell carcinoma.

DWI has its place in some special situations to reduce the failure of transthoracic biopsy for large partially necrotic masses (direct biopsy area to which the cell density is highest, the lowest ADC) and differentiates atelectasis from tumor to show the target biopsy (Fig. 6). In the latter situation the DWI is more accurate as 18F-FDG PET/CT for nodule or masses characterization (Fig. 5).

Table I. — Sensitivity, specificity, and accuracy of diffusion-weighted imaging on the diagnosis of lung nodules or masses.

Authors	Year	MRI System	Study design	% of patients	Nodules Malign / Benign	b s/mm²	Cutoff	Sensitivity (95% CI)	Specificity (95% CI)	Accuracy (95% CI)
Mori et al. (27)	2008	Achieva	Prospective	114	106/34	0 / 1000	1.1	0.7 (0.6-0.79)	0.97 (0.84-1.00)	0.76 (0.69-0.84)
Satoh et al. (30)	2008	Interia	Retrospective	51	36/18	0 / 1000	ND	0.89 (0.74-0.97)	0.81 (0.73-0.83)	0.80 (0.69-0.90)
Ohba et al. (29)	2009	Achieva	Retrospective	110	96/28	0 / 1000	1.2	0.84 (0.74-0.91)	0.93 (0.86-1.00)	0.78 (0.71-0.85)
Uto et al. (33)	2009	Sigma	Prospective	28	18/10	0 / 1000	0.834	0.72 (0.47-0.90)	0.10 (0.00-0.45)	0.5 (0.42-0.68)
Liu et al. (26)	2010	Twin-Speed	Retrospective	62	54/12	0 / 500	1.4	0.83 (0.69-0.92)	0.74 (0.45-0.92)	0.7 (0.59-0.81)
Ohba et al. (28)	2011	Achieva	Prospective	58	58/18	0 / 1000	1.68	0.91 (0.84-0.99)	0.94 (0.83-1.00)	0.92 (0.86-0.98)
Ohba et al. (37)	2011	Achieva	Prospective	58	58/18	0 / 1000	1.85	0.90 (0.82-0.96)	0.94 (0.83-1.00)	0.91 (0.85-0.97)
Tondo et al. (32)	2011	Achieva	Retrospective	34	30/4	0 / 500 / 1000	1.25	0.90 (0.73-0.98)	1.00 (0.40-1.00)	0.91 (0.82-1.00)
Sommer et al. (31)	2012	Avanto	Prospective	31	28 / 3	0 / 800	ND	0.93 (0.84-1.00)	0.5 (0.00-1.00)	0.89 (0.77-1.00)
Fig. 5. — Right upper lobe alveolar nodule in a 58-year-old smoker woman. A: Axial CT-scan on parenchymal window shows the alveolar nodule with spiculated margins. B: Axial TSE T2-weighted Fat sat with the PROPELLER technique image with respiratory-gated shows clearly the nodule with high signal intensity and spiculated margins. C, D: Axial diffusion-weighted images \((b = 1000 \text{ sec/mm}^2) \) with inverted grey scale (C) shows higher signal on the periphery. The mean ADC value (D) on the periphery is \(1.13 \times 10^{-9} \text{ mm}^2/\text{sec} \). E: Fusion of both axial images of the TSE T2-weighted Fat sat with the PROPELLER technique and the diffusion-weighted image \((b = 1000 \text{ sec/mm}^2) \) shows the exact location of the high cellular area. F: Trans-thoracic needle biopsy directed toward the highest cell density area diagnoses an adenocarcinoma.

Table II. — Sensitivity, specificity, and accuracy of diffusion-weighted imaging on the mediastinal and hilar nodal staging.

Authors	Year	MRI System	Study design	N \text{\# of patients}	Lymph nodes	\text{Malign / Benign}	b \text{ s/mm}^2	Cutoff	Sensitivity (95\% CI)	Specificity (95\% CI)	Accuracy (95\% CI)
Hasegawa et al.	2008	Achieva	Prospective	42	5/37	/1000	ND	0.8	(0.68-0.92)	(0.92-1.03)	0.95 (0.87-1.02)
Nomori et al.	2008	Intera	Prospective	88	36/698	0 / 1000	1.6	0.67	(0.52-0.82)	(0.98-1.0)	0.98 (0.97-0.98)
Nakayama et al.	2010	Avanto	Retrospective	70	13/54	50 / 1000	ND	0.69	(0.58-0.80)		0.94 (0.88-1.0)
Chen et al.	2010	Avanto	Retrospective	56	97/38	0 / 1000	ND	0.91	(0.87-0.95)	(0.90-0.96)	0.9 (0.85-0.96)
Ohno et al.	2011	Achieva	Prospective	250	157/93	0 / 1000	2.5	0.75	(0.7-0.8)	(0.84-0.91)	0.81 (0.75-0.86)
Usuda et al.	2011	Avanto	Prospective	63	44/275	0 / 800	1.7	0.75	(0.71-0.79)	(0.98-1.0)	0.95 (0.93-0.97)
Sommer et al.	2012	Avanto	Prospective	31	28 / 3	0 / 800	ND	0.44	(0.19-0.68)	(0.87-0.99)	0.85 (0.72-0.97)
value and signal intensity can be useful in the differentiation of malignant and benign mediastinal lymph nodes (39). DWI can be used in place of 18F-FDG PET/CT for N staging of NSCLC, especially in hospitals in which MRI examinations can be done but 18F-FDG PET/CT examinations cannot.

M staging with Whole body MR including DWI

Ohno et al. (21) prospectively compared whole-body DWI alone, whole-body DWI combined with conventional whole-body MRI, and 18F-FDG PET/CT for M-stage assessment in 203 NSCLC patients. The final M-stage and metastasis of a given site were determined on the basis of the results of conventional radiologic, 18F-FDG PET/CT, and whole-body MRI examinations and on the basis of pathologic results from endoscopic, CT-guided, or surgical biopsies, as well as on the basis of the results of follow-up examinations performed on every patient for more than 12 mo. The area under the ROC curve of whole-body DWI (0.79) was significantly lower ($P < 0.05$) than that of 18F-FDG PET/CT (0.89). However, the area under the curve of whole-body DWI combined with conventional whole-body MRI (0.87) was not significantly different from that of 18F-FDG PET/CT. The authors concluded that whole-body MRI with DWI can be used for M-stage assessment in patients with NSCLC with accuracy (area under the curve, 0.87) as good as that of 18F-FDG PET/CT (area under the curve, 0.89).

In a more recent study of Chen et al. (42), 62 lesions were considered as metastases based on initial findings, 37 distant metastatic lesions (brain, three; liver, six; adrenal gland, two; and bone, 26) and six lung metastatic lesions were validated by biopsy or radiologic follow-up. A total of 35 distant metastases were detected based on DWI. Three lesions of lung metastases, sized less than 10 mm, were not detected at DWI; there was one false-positive bone lesion with DWI. Meanwhile, 37 distant metastases were detected with 18F-FDG PET/CT; five lung metastatic lesions were detected by 18F-FDG PET/CT. Only one lung metastatic lesion was missed and no false-positive result at 18F-FDG PET/CT. DWI was found to be sensitive in osseous metastasis. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy for detection of metastasis for DWI

Fig. 6. — Right upper lobe mass in a 62-year-old woman. A: Axial enhanced CT scan shows the tumor (T) and sub-carinal lymphadenopathies (L). B: Axial T2-weighted TSE image with fat suppression and with the PROPELLER technique and respiratory-gated shows the tumor (T), the lymphadenopathy (L), and probably an obstructive pneumonitis. C: Axial diffusion-weighted images ($b = 1000$ sec/mm2) with inverse grey scale shows a hyper intense tumor and lymphadenopathy but there is no residual signal for lung collapse and obstructive pneumonia. D: Fusion of both axial images of the TSE T2-weighted Fat sat with the PROPELLER technique and the diffusion-weighted image ($b = 1000$ sec/mm2) shows the exact location of the high cellular area related to the tumor process.
were 0.8; 0.95; 0.97; 0.83 and 0.92 respectively. The sensitivity, specificity, positive predictive value, negative predictive value and accuracy for detection of metastasis for integrated 18F-FDG PET/CT were 0.98, 1; 1; 0.95 and 0.98 respectively.

Conclusion

Major advances in the WB-MRI in the initial evaluation and follow-up of patients with lung cancer have been performed in recent years. Multicentric studies using different magnet systems are necessary to confirm these promising results. One thing is certain, for metastatic and lymph node staging, that whole-body MRI with the information obtained by WB-DWI and WB-MRI is greater than the scanner including staging and

Fig. 7. — Left lower lobe non-small cell lung cancer in a 69-year-old patient. A: Axial diffusion-weighted image ($b = 1000$ sec/mm²) shows a high signal intensity lesion in the left supra clavicular area (arrow). Note artefacts related to this echo-planar imaging (arrowheads). B: Axial STIR T2-weighted image shows a high signal intensity lesion in the left supra clavicular area (arrow). C: Coronal reformattting of axial diffusion-weighted images ($b = 1000$ sec/mm²) shows clearly the left supra clavicular lymphadenopathy. D, E: A new lecture of axial image (D) and coronal reformattting (E) shows the supra clavicular lymphadenopathy.
lymph node metastasis. Data comparing MRI whole body PET-CT are rare. The preliminary examination of this technique requires a thorough knowledge of MRI, including the management of artifacts generated by echo-planar sequence.

References
1. Ferlay J., Parkin D.M., Steiriara-Foucher E.: Estimates of cancer incidence and mortality in Europe in 2008. *Eur J Cancer*, 2010, 46: 765-81.
2. Siegel R., Ward E., Brawley O., Jemal A.: Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA: a cancer journal for clinicians, 2011, 61: 212-236.
3. Aquino S.L., Kuster L.B., Muse V.V., Halpern E.F., Fischman A.J.: Accuracy of transmission CT and FDG-PET in the detection of small pulmonary nodules with integrated PET/CT. *Eur J Nucl Med and Mol Imag*, 2008, 33: 692-696.
4. Roberts P.F., Follette D.M., von Haug D., Park J.A., Yank L.P., Pounds T.R., et al.: Factors associated with false-positive staging of lung cancer by positron emission tomography. *Ann Thorac Surg*, 2000, 70: 1154-1159.
5. Koh D.M., Collins D.J.: Diffusion-weighted MRI in the body: applications and challenges in oncology. *AJR*, 2011, 198: 1622-1635.
6. Padhani A.R., Koh D.M., Collins D.J.: Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. *Radiology*, 2011, 261: 700-718.
7. Buzzi J.F., Komaki R., Welsh G.L., Truong M.T., Gladish G.W., Munden R.F., et al.: Imaging of non-small cell lung cancer of the superior sulcus: part 2: initial staging and assessment of resectability and therapeutic resection. *Radiographics*, 2008, 28: 561-572.
8. Takasugi J.E., Rapoport S., Shaw C.: Superior sulcus tumors: the role of imaging. *J Thorac Imag*, 1988, 4: 41-48.
9. Beale R., Slater R., Hennington M., Keagy B.: Pancoast tumor: use of MRI for tumor staging. *South Med J*, 1992, 85: 1260-1263.
10. Heelan R.T., Demas B.E., Caravelli L.W., P.M., H.D.: Role of diffusion-weighted imaging in the evaluation of pulmonary lesions. *AJR*, 2004, 183: 215-219.
11. Haider M.A., Ghai S., Jhaveri K., et al.: Detection of bone metastases in patients with non-small cell lung cancer: whole-body MR examination for M-stage assessment – a preliminary study. *Eur Radiol*, 2011, 21: 1016-1023.
12. Okoh Y., Koyama H., Onishi Y., Takenaka D., Nomagami M., Yoshikawa T., et al.: Non-small cell lung cancer: whole-body MR examination for M-stage assessment – utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. *Radiology*, 2008, 248: 643-654.
13. Takenaka Y., Sato Y., Matsumoto K., Aoyama A., Onishi Y., Koyama H., et al.: Diagnosis of liver metastases: can diffusion-weighted imaging (DWI) be used as a stand alone sequence? *Eur Radiol*, 2012, 81: 1016-1023.
14. Mori T., Nomori H., Mori T., Ikeda K., Kobayashi H., et al.: Diffusion-weighted magnetic resonance imaging superior to positron emission tomography with fluordeoxyglucose F 18 in imaging non-small cell lung cancer? *J Thorac Cardiovasc Surg*, 2009, 188: 1622-1635.
15. Foucher E.: Estimates of cancer incidence and mortality in Europe in 2008. *Eur J Cancer*, 2010, 46: 765-81.
16. Siegel R., Ward E., Brawley O., Jemal A.: Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA: a cancer journal for clinicians, 2011, 61: 212-236.
17. Aquino S.L., Kuster L.B., Muse V.V., Halpern E.F., Fischman A.J.: Accuracy of transmission CT and FDG-PET in the detection of small pulmonary nodules with integrated PET/CT. *Eur J Nucl Med and Mol Imag*, 2008, 33: 692-696.
18. Roberts P.F., Follette D.M., von Haug D., Park J.A., Yank L.P., Pounds T.R., et al.: Factors associated with false-positive staging of lung cancer by positron emission tomography. *Ann Thorac Surg*, 2000, 70: 1154-1159.
19. Koh D.M., Collins D.J.: Diffusion-weighted MRI in the body: applications and challenges in oncology. *AJR*, 2011, 198: 1622-1635.
20. Padhani A.R., Koh D.M., Collins D.J.: Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. *Radiology*, 2011, 261: 700-718.
21. Buzzi J.F., Komaki R., Welsh G.L., Truong M.T., Gladish G.W., Munden R.F., et al.: Imaging of non-small cell lung cancer of the superior sulcus: part 2: initial staging and assessment of resectability and therapeutic resection. *Radiographics*, 2008, 28: 561-572.
22. Takasugi J.E., Rapoport S., Shaw C.: Superior sulcus tumors: the role of imaging. *J Thorac Imag*, 1988, 4: 41-48.
23. Beale R., Slater R., Hennington M., Keagy B.: Pancoast tumor: use of MRI for tumor staging. *South Med J*, 1992, 85: 1260-1263.
24. Heelan R.T., Demas B.E., Caravelli L.W., P.M., H.D.: Role of diffusion-weighted imaging in the evaluation of pulmonary lesions. *AJR*, 2004, 183: 215-219.
25. Haider M.A., Ghai S., Jhaveri K., et al.: Detection of bone metastases in patients with non-small cell lung cancer: whole-body MR examination for M-stage assessment – a preliminary study. *Eur Radiol*, 2011, 21: 1016-1023.
26. Okoh Y., Koyama H., Onishi Y., Takenaka D., Nomagami M., Yoshikawa T., et al.: Non-small cell lung cancer: whole-body MR examination for M-stage assessment – utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. *Radiology*, 2008, 248: 643-654.
27. Takenaka Y., Sato Y., Matsumoto K., Aoyama A., Onishi Y., Koyama H., et al.: Diagnosis of liver metastases: can diffusion-weighted imaging (DWI) be used as a stand alone sequence? *Eur Radiol*, 2012, 81: 1016-1023.
28. Mori T., Nomori H., Mori T., Ikeda K., Kobayashi H., et al.: Diffusion-weighted magnetic resonance imaging superior to positron emission tomography with fluordeoxyglucose F 18 in imaging non-small cell lung cancer? *J Thorac Cardiovasc Surg*, 2009, 188: 1622-1635.
38. Nakayama J., Miyasaka K., Omatsu T., Onodera Y., Terae S., Matsumo Y., et al.: Metastases in mediastinal and hilar lymph nodes in patients with non-small cell lung cancer: quantitative assessment with diffusion-weighted magnetic resonance imaging and apparent diffusion coefficient. J Comput Assist Tomogr, 2010, 34: 1-8.

39. Nomori H., Morii T., Ikeda K., Kawanaka K., Shiraishi S., Katahira K., et al.: Diffusion-weighted magnetic resonance imaging can be used in place of positron emission tomography for N staging of non-small cell lung cancer with fewer false-positive results. J Thorac Cardiovasc Surg, 2008, 135: 816-822.

40. Ohno Y., Koyama H., Yoshikawa T., Nishio M., Aoyama N., Onishi Y., et al.: N stage disease in patients with non-small cell lung cancer: efficacy of quantitative and qualitative assessment with STIR turbo spin-echo imaging, diffusion-weighted MR imaging, and fluorodeoxyglucose PET/CT. Radiology, 2011, 261: 605-615.

41. Usuda K., Zhao X.T., Sagawa M., Matoba M., Kuginuki Y., Taniguchi M., et al.: Diffusion-weighted imaging is superior to positron emission tomography in the detection and nodal assessment of lung cancers. Ann Thorac Surg, 2011, 91: 1689-1695.

42. Chen W., Jian W., Li H.T., Li C., Zhang Y.K., Xie B., et al.: Whole-body diffusion-weighted imaging vs. FDG-PET for the detection of non-small-cell lung cancer. How do they measure up? Magn Reson Imaging, 2010, 28: 613-620.