The objective of the experiment reported here was to investigate and compare the amino acid (AA) digestibility of distillers' dried grains (DDG), distillers' dried grains with solubles (DDGS), high protein distillers' dried grains (HP-DDG), and high protein distillers' dried grains with solubles (HP-DDGS) in growing pigs. Five semi-purified diets consisting of DDG, DDGS, HP-DDG, HP-DDGS, and nitrogen-free diet (NFD) were fed to pigs fitted with simple T-cannula for 5 observations per diet. Endogenous losses of AA at the terminal ileum of pigs that received the NFD were used to calculate standardized ileal digestibility (SID) of AA from apparent ileal digestibility (AID) of AA. The AID of Lys in DDGS was lower \((P < 0.05)\) than that in DDG, which was also lower \((P < 0.05)\) than that in HP-DDG. There were no differences in AID of Met among DDG, DDGS and HP-DDGS, but was greater \((P < 0.05)\) in HP-DDG than in DDG or DDGS. The AID of Thr in HP-DDG was greater \((P < 0.05)\) than that in DDGS but not different from that in DDG or HP-DDGS. The branched-chain AA Ile and Leu had greater \((P < 0.05)\) AID in HP-DDG than in DDG, DDGS or HP-DDGS, and there was no difference among DDG, DDGS, and HP-DDGS. The AID of Trp in DDG and DDGS or HP-DDG and HP-DDGS were not different, but the AID of Trp in HP-DDGS was greater \((P < 0.05)\) than that of DDGS. The greatest SID of the indispensable AA was in HP-DDG. Except for Arg and Lys in which DDG had greater \((P < 0.05)\) digestibility, there was no difference between DDG and DDGS in the SID of the indispensable AA. The SID of Lys in DDG was greater \((P < 0.05)\) than that of DDGS but there was no difference between that of DDG and HP-DDGS. Only His, Ile, and Met had lower \((P < 0.05)\) SID in HP-DDGS than HP-DDG within the indispensable AA. The SID of Ala, Asp, Cys, Glu, Gly, Ser and Tyr were lower \((P < 0.05)\) in DDGS than in HP-DDG. There SID of dispensable AA in DDG was not different from that of HP-DDGS. The current study provided apparent and standardized ileal amino acids digestibility values for traditional and high-protein corn distillers' dried grains coproducts for use in formulating swine diets. Amino acid digestibility was generally higher in HP-DDG than in other tested co-products of the dry grind processing of corn for ethanol.

1. Introduction

Corn distillers' dried grains (DDG) is a co-product of the dry grind processing of corn for ethanol production \((\text{Adeola et al., 2010; Kingsly et al., 2010})\). As ethanol producers implement new processes that more efficiently utilize starch from grain cereals, new co-products are being made available for use in swine feed formulation. Appropriate use of any new co-product in diets requires information on nutrient utilization and profile. Two fractionation processes have been implemented by the industry that can separate components of corn kernels to be further processed into discrete components. A back-end fractionation process takes post-fermentation DDG and separates fractions into protein and
fibrer subunits. The other process is a front-end or pre-fermentation fractionation process wherein individual corn kernels are divided into 3 segments: the endosperm, the pericarp, and the germ (Zhao et al., 2010). The high-fiber fragment, the pericarp, is processed into a human food product, animal feed or biomass fuel substrate. The portion which is relatively high in oil, the germ, is segregated to extract the oil with the remainder being processed into corn germ meal. The endosperm is high in starch and protein and is the fragment used within the ethanol plant as substrate for microbes to produce ethanol. Following the fermentation process, the remaining co-product is the eventual high-protein distillers' dried grains (HP-DDG; Jacela et al., 2010). When the HP-DDG or DDG is combined with condensed distillers' solubles, the resulting product is high-protein distillers' dried grains with solubles (HP-DDGS) or distillers' dried grains with solubles (DDGS).

Because of a dearth of information on the SID and AID of amino acids (AA) in HP-DDG and HP-DDGS, the experiment reported here was conducted to investigate and compare digestibility of AA in DDG, DDGS, HP-DDG, and HP-DDGS when fed to growing pigs.

2. Materials and methods

2.1. Pigs, test ingredients, and diets

Crossbred Hampshire × Duroc × Yorkshire × Landrace barrows, obtained from the Purdue University Animal Research Farm, were used in the study. Pig surgery with simple T-cannula and animal care protocols were approved by the Purdue University Animal Care and Use Committee. The procedures were similar to those recently described by Zhai and Adeola (2011) and Cotten et al. (2016). Pigs were allowed at least 14 days to recover from surgery before initiation of the study. Average body weights of pigs at the beginning and end of the study were 50.2 kg (SD 4.5) and 54 kg (SD 5.2), respectively. Analyzed chemical composition of the test ingredients, DDG, DDGS, HP-DDG, and HP-DDGS, supplied by Mor Technology LLC (Metropolis, Illinois, USA), are presented in Table 1 and ingredient and chemical composition of the 5 diets used in the study are presented in Table 2. The nitrogen-free diet (NFD) was used to estimate basal endogenous losses of AA. Feed allowance for each pig was based on approximately 4% of body weight in 2 equal daily meals at 08:00 and 20:00. Each period lasted 7 d consisting of 5 d for the pigs to adapt to the experimental diets, followed by a 2 d collection period of ileal digesta during which a plastic tubular bag was attached to the externalized T-cannula on d 6 and 7. To reduce proliferation of bacteria in the ileal samples, each bag contained 10 mL of 5% formic acid, and ileal contents were stored at -20°C between collections. Chromic oxide was added as an indigestible marker calculation of ileal nutrient digestibility by the index method.

2.2. Analyses

Diet and freeze-dried ileal digesta were ground through a 0.5-mm screen prior to analyses. Samples were dried at 100°C for 24 h to determine the dry matter (AOAC, 2006). Chromium (Cr) concentration was determined by the inductively coupled plasma atomic emission spectroscopy method following wet ash digestion with nitric and perchloric acid. Nitrogen (N: AOAC, 2006) was determined by the combustion method (model FP2000, LECO Corp., St. Joseph, MI, USA) using EDTA as a standard. Analyses of AA (AOAC, 2006) were conducted at the Experimental Station Chemical Laboratory, University of Missouri, Columbia, MO, USA. Sample hydrolysis used 6 mol/L HCl at 100°C for 24 h under N atmosphere. For the sulfur AA (Met and Cys), performic acid oxidation occurred prior to acid hydrolysis. Barium hydroxide was used to hydrolyze tryptophan during analysis. High pressure liquid chromatography (HPLC) after post-column derivatization was used to determine AA concentrations in hydrolysate.

The apparent ileal digestibility (AID) of AA was calculated as: AID (%) = 100 × [1 - (Cr in diet/Cr in digesta) × (AA in digesta/AA in diet)]; ileal endogenous loss (IEL) of AA in mg AA per kg of dry matter intake (DMI) was calculated as: AA in ileal digesta (mg/kg) × [Cr in diet (mg/kg)/Cr in digesta (mg/kg)]; standardized ileal digestibility (SID) of AA was calculated as: SID (%) = AID (%) + [(IEL/AA in diet) × 100]. Data was analyzed using the MIXED procedure of SAS (SAS Inst. Inc., Cary, NC, USA) for a Latin square design, with pig as the experimental unit. The model included the fixed effects of the diet, with block, period, and pig as random effects. The LSMEANS statement in SAS was used to generate means, which were separated using the possible difference option in SAS and a probability level of 5% was considered significant.

3. Results

Table 3 shows the comparative AID of AA in DDG, DDGS, HP-DDG, and HP-DDGS. The AID of Lys in DDGS was lower (P < 0.05) than in DDG, which was also lower (P < 0.05) than in HP-DDG. There were neither differences in AID of Lys between HP-DDG and DDGS nor between HP-DDGS and DDG. Other cationic AA, Arg and His, followed similar trends as Lys relative to differences among ingredients but the digestibility of those AA were much greater than that of Lys (Table 3). The AID of Met was not different among DDG, DDGS and HP-DDG, but was greater (P < 0.05) in HP-DDG than in DDG or DDGS. The AID of Thr in HP-DDG was greater (P < 0.05) than that in DDG but not different from that in DDG or HP-DDGS. The branched-chain AA, Ile and Leu, had greater (P < 0.05) AID in HP-DDG than DDG, DDGS or HP-DDGS, and there was no difference among DDG, DDGS, and HP-DDGS. The AID of
of Val in HP-DDG was greater ($P < 0.05$) than that in DDG or DDGS but not different from that in HP-DDGS. There was no difference between the AID of Trp in DDG and DDGS as well as between the AID of Trp in HP-DDG and HP-DDGS, although HP-DDG was numerically greater. The AID of dispensable AA in DDGS was not different from that of HP-DDG. The SID of dispensable AA in DDGS was greater ($P < 0.05$) in DDGS than in HP-DDG. The SID of dispensable AA in DDGS was greater ($P < 0.05$) than that of DDGS, although HP-DDG was numerically greater. The SID of Pro in DDGS was not different from that of HP-DDG. However, the SID of Ala, Asp, Cys, Gly, Leu, and Tyr were lower ($P < 0.05$) in DDGS than in HP-DDG. The SID of dispensable AA in DDGS was not different from that of HP-DDGS (Table 5).

### 4. Discussion

Appropriate use of any new co-product in swine diets requires information on nutrient profile and utilization. The current experiment was conducted to contribute to the sparse pool of knowledge on the SID of AA in HP-DDG and HP-DDGS for pigs and compare digestibility of AA in DDG, DDGS, HP-DDG, and HP-DDGS. The crude protein and AA composition of the DDG used in the current study...
are similar to those reported by Applegate et al. (2009) and Kim a,b,c Means in a row with common superscripts are not different at P<0.05.

| Item             | DDG   | DDGS | HP-DDG | HP-DDGS |
|------------------|-------|------|--------|---------|
| Number of observations | 5     | 5    | 5      | 5       |
| Indispensable AA, % |       |      |        |         |
| Arg              | 96.8a | 93.1a | 98.6a  | 96.0ab  | 1.0     |
| His              | 91.7b | 89.1a | 95.3c  | 91.7ab  | 1.2     |
| Ile              | 91.6b | 86.9a | 95.9c  | 92.4a   | 1.1     |
| Leu              | 93.7c | 92.0a | 96.9c  | 94.1c   | 0.9     |
| Lys              | 88.6b | 79.9a | 94.6b  | 85.8a   | 2.5     |
| Met              | 93.9b | 92.8a | 91.1c  | 94.6c   | 0.6     |
| Phe              | 93.0c | 90.7a | 96.2c  | 93.6b   | 1.0     |
| Thr              | 92.5b | 88.4a | 95.7c  | 93.5c   | 1.6     |
| Trp              | 95.4b | 92.6a | 97.0c  | 97.0c   | 1.3     |
| Val              | 91.4b | 88.4a | 95.5c  | 92.3b   | 1.4     |
| Dispensable AA, % |       |      |        |         |
| Ala              | 94.1b | 91.4a | 96.9c  | 94.1b   | 1.0     |
| Asp              | 91.3b | 86.0a | 94.3b  | 91.2b   | 1.7     |
| Cys              | 91.7b | 87.3a | 94.5a  | 90.8b   | 1.5     |
| Gln              | 91.9b | 91.6a | 96.8a  | 93.7b   | 1.0     |
| Gly              | 101.3b| 90.7a | 101.1c | 99.2c   | 2.6     |
| Pro              | 112.0a| 101.8a| 110.6a | 103.9a  | 2.9     |
| Ser              | 94.8b | 91.0a | 96.7a  | 95.1c   | 1.3     |
| Tyr              | 93.9a | 91.9a | 96.9a  | 94.2b   | 0.9     |

Sources: a,b,c Means in a row with common superscripts are not different at P<0.05.

References

Adedokun SA, Adeola O, Parsons CM, Lilburn MS, Applegate TJ. Standardized ileal amino acid digestibility of plant feedstuffs in broiler chickens and turkey pouls using a nitrogen-free or casein diet. Poult Sci 2008;87:2535–48.

Adeola O, Jenidza JA, Southern IL, Powell S, Owusu-Asiedu A. Contribution of exogenous dietary carbohydrates to the metabolizable energy value of corn distillers grains for boiler chickens. Poult Sci 2010;89:1947–54.

AOAC. Int., Official methods of analysis. 18th ed. Arlington, VA: Assoc. Offic. Anal. Chem.; 2006.
Applegate TJ, Troche C, Jiang Z, Johnson T. The nutritional value of high-protein corn distillers dried grains for broiler chickens and its effect on nutrient excretion. Poult Sci 2009;88:354–9.

Cotten B, Ragland D, Thomson JE, Adeola O. Amino acid digestibility of plant protein feed ingredients for growing pigs. J Anim Sci 2016;94:1073–82.

Jacela JY, Frobosel HL, DeRouchey JM, Tokach MD, Dritz SS, Goodband RD, et al. Amino acid digestibility and energy concentration of high-protein corn dried distillers’ grains and high-protein sorghum dried distillers grains with solubles for swine. J Anim Sci 2010;88:3617–23.

Jansman AJM, Smink W, van Leeuwen F, Rademacher M. Evaluation through literature data of the amount and amino acid composition of basal endogenous crude protein at the terminal ileum of pigs. Anim Feed Sci Technol 2002;98:49–60.

Jung B, Batal A. The nutrient digestibility of high-protein corn distillers dried grains and the effect of feeding various levels on the performance of laying hens. J Appl Poult Res 2009;18:741–51.

Kim EJ, Utterback PL, Applegate TJ, Parsons CM. Comparison of amino acid digestibility of feedstuffs determined with the precision-fed cecrectomized rooster assay and the standardized ileal amino acid digestibility assay. Poult Sci 2011;90:2511–9.

Kingsly ARP, Ileleji KE, Clementson CL, Garcia A, Maier DE, Stroshine RL, et al. The effect of process variables during drying on the physical and chemical characteristics of corn dried distillers grains with solubles (DDGS) — plant scale experiment. Bioresour Technol 2010;101:193–9.

NRC. Nutrient requirements of swine. 11th rev. ed. Washington, DC: Natl. Acad. Press; 2012.

Pahm AA, Pedersen C, Hoeberl D, Stein HH. Factors affecting the variability in ileal amino acid digestibility in corn distillers dried grains with solubles fed to growing pigs. J Anim Sci 2008;86:2180–9.

Stein HH, Gibson ML, Pedersen C, Boersma MG. Amino acid and energy digestibility in ten samples of distillers’ dried grain with solubles fed to growing pigs. J Anim Sci 2006;84:853–60.

Stein HH, Shurson GC. BOARD-INVITED REVIEW: the use and application of distillers dried grains with solubles in swine diets. J Anim Sci 2009;87:1292–303.

Urriola PE, Hoeberl D, Pedersen C, Stein HH, Shurson GC. Amino acid digestibility of distillers dried grains with solubles, produced from sorghum, a sorghum-corn blend, and corn fed to growing pigs. J Anim Sci 2009;87:2574–80.

Xue PC, Ragland D, Adeola O. Determination of additivity of apparent and standardized ileal digestibility of amino acids in diets containing multiple protein sources fed to growing pigs. J Anim Sci 2014;92:3937–44.

Zhao R, Wu X, Bean S, Wang D. Ethanol from grain crops. In: Singh BP, editor. Industrial crops and uses. Cambridge, MA, USA: CABI International; 2010. p. 84–103.

Zhai H, Adeola O. Apparent and standardized ileal digestibilities of amino acids for pigs fed corn-soybean meal-based diets at varying crude protein levels. J Anim Sci 2011;89:3626–33.