On the Divisibility of Character Values of the Symmetric Group

Jyotirmoy Ganguly, Amritanshu Prasad, and Steven Spallone

Abstract. Fix a partition \(\mu = (\mu_1, \ldots, \mu_m) \) of an integer \(k \) and positive integer \(d \). For each \(n > k \), let \(\chi_\mu^\lambda \) denote the value of the irreducible character of \(S_n \) at a permutation with cycle type \((\mu_1, \ldots, \mu_m, 1^{n-k})\). We show that the proportion of partitions \(\lambda \) of \(n \) such that \(\chi_\mu^\lambda \) is divisible by \(d \) approaches 1 as \(n \) approaches infinity.

Let \(k \) be a positive integer, and \(\mu = (\mu_1, \ldots, \mu_m) \) a partition of \(k \). For a partition \(\lambda \) of an integer \(n \geq k \), let \(\chi_\mu^\lambda \) denote the value of the irreducible character of \(S_n \) corresponding to \(\lambda \) at an element with cycle type \((\mu_1, \ldots, \mu_m, 1^{n-k})\). The purpose of this article is to prove:

Main Theorem. For any positive integers \(k \) and \(d \), and any partition \(\mu \) of \(k \),

\[
\lim_{n \to \infty} \frac{\#\{\lambda \vdash n \mid \chi_\mu^\lambda \text{ is divisible by } d\}}{p(n)} = 1.
\]

Here \(p(n) \) denotes the number of partitions of \(n \).

In particular, for any integer \(d \), the probability that an irreducible character of \(S_n \) has degree divisible by \(d \) converges to 1 as \(n \to \infty \).

Recall the theorem of Lassalle [4, Theorem 6], which implies that there exists an integer \(A_\mu^\lambda \) such that

\[
\chi_\mu^\lambda = \frac{f_\lambda}{(n)_k} A_\mu^\lambda.
\]

Here \((n)_k = n(n-1) \cdots (n-k+1) \), and \(f_\lambda \) is the degree of the irreducible character of \(S_n \) corresponding to \(\lambda \). Therefore, in order to prove the
main theorem, we focus on the divisibility properties of f_λ. For each prime number q, let $v_q(m)$ denote the q-adic valuation of an integer m, in other words, $q^{v_q(m)}$ is the largest power of q that divides m. Also write $\log n = \log_q n$. The main theorem will follow from the following result:

Theorem A. For every prime number q and non-negative integer m,
$$\lim_{n \to \infty} \frac{\# \{ \lambda \vdash n \mid v_q(f_\lambda) \leq m + (q-1)\log n \}}{p(n)} = 0.$$

In the rest of this article, we first prove Theorem A, and then show that it implies the main theorem.

1. **Proof of Theorem A**

The proof of Theorem A is based on the theory of q-core towers. This construction originated in the seminal paper [5] of Macdonald, and was developed further by Olsson in [6]. We now recall the relevant aspects.

Let $[q]$ denote the set $\{0, \ldots, q-1\}$, and consider the disjoint union
$$T_q = \coprod_{i=0}^{\infty} [q]^i.$$
The set T_q can be regarded as a rooted q-ary tree with root \emptyset. The children of a vertex $(a_1, \ldots, a_i) \in [q]^i$ are the vertices $(a_1, \ldots, a_i, a_{i+1})$, where $a_{i+1} \in [q]$. A partition λ is said to be a q-core if no cell in its Young diagram has hook length divisible by q. Denote the set of all q-core partitions by C_q. The q-core tower construction associates to each partition λ of n a function $T^\lambda_q : T_q \to C_q$ known as the q-core tower of λ. For a partition λ, define:

$$w_i(\lambda) = \sum_{x \in [q]^i} \card{T^\lambda_q(x)}.$$

Then the q-core tower satisfies the following constraint:

$$\sum_{i=0}^{\infty} w_i(\lambda)q^i = n. \quad (2)$$

In particular, $T^\lambda_q(x) = \emptyset$ for all $i > \log_q n$. This function $\lambda \mapsto T^\lambda_q$ is a bijection from the set of partitions of n onto the set of q-core towers satisfying the condition (2).

Let n be a positive integer with q-ary expansion:
\begin{equation*}
n = a_0 + a_1q + \cdots + a_rq^r,
\end{equation*}
with $a_i \in [q]$ for $i = 1, \ldots, r$, and $a_r > 0$.

Define \(a(n) = \sum_{i=0}^{r} a_i \).

Recall the following Theorem:

Theorem 1 ([5 Equation (3.3)]). For a partition \(\lambda \), let \(w(\lambda) = \sum_{i=0}^{r} w_i(\lambda) \). For any partition \(\lambda \) of \(n \) and any prime \(q \),

\[
v_q(f_\lambda) = \frac{w(\lambda) - a(n)}{q - 1}.
\]

Theorem [1] can be used to find constraints on partitions with small values of \(v_q(f_\lambda) \). Suppose that \(v_q(f_\lambda) \leq b \). By Theorem [1] this is equivalent to

\[
w(\lambda) \leq a(n) + b(q - 1).
\]

The expansion (*) implies that \(r \leq \log n < r + 1 \), so that \(a(n) \leq (q - 1)(r + 1) \leq (q - 1)(\log n + 1) \). So if \(v_q(f_\lambda) \leq b \), then

\[
w(\lambda) \leq (q - 1)(\log n + 1 + b).
\]

Thus an upper bound for the number \(p_b(n) \) of partitions \(\lambda \) of \(n \) such that \(v_q(f_\lambda) \leq b \) can be obtained by counting the number of \(q \)-core towers with \((q - 1)(\log n + 1 + b) \) or fewer cells. The total number of vertices in the first \(r + 1 \) rows of \(T_q \), i.e., in \(\coprod_{i=0}^{r}[q]^i \), is:

\[
1 + q + \cdots + q^r = \frac{q^{r+1} - 1}{q - 1} < qn,
\]

since \(q^r \leq n \). Let \(c_q(n) \) denote the number of \(q \)-core partitions of \(n \). Set \(N_b = (q - 1)(\log n + b + 1) \). Let \(\tilde{c}_q(n) \) denote \(\max\{c_q(i) \mid 1 \leq i \leq n\} \). There are \((w + N - 1) \) ways to distribute \(w \) cells into \(N \) nodes. Thus

\[
p_b(n) \leq \tilde{c}_q(N_b)^N_b \left(\frac{qn + N_b}{N_b} \right)
\]

\[
\leq \tilde{c}_q(N_b)^N_b (qn + N_b)^N_b
\]

It is known that, for every integer \(q \), there exists a polynomial \(f_q(n) \) such that \(\tilde{c}_q(n) \leq f_q(n) \) for all \(n \geq 0 \). Indeed, for \(q = 2 \), it is well-known that \(c_2(n) \leq 1 \), and for \(q = 3 \), using a formula of Granville and Ono [2 Section 3, p. 340], \(c_3(n) \leq 3n + 1 \). For \(q \geq 4 \), the existence of \(f_q(n) \) follows from Anderson [1 Corollary 7].

We get:

\[
p_b(n) \leq f_q(N_b)^N_b (qn + N_b)^N_b,
\]

whence

\[
\log p_b(n) \leq N_b[\log f_q(N_b) + \log(qn + N_b)].
\]
Taking $b = m + (q - 1) \log n$ gives $N_b = (q - 1)(q \log n + m + 1)$. Thus $\log p_b(n) = o(n^\epsilon)$ for every $\epsilon > 0$. On the other hand, the Hardy-Ramanujan asymptote [3] for $p(n)$ implies that $\log p(n)$ grows faster than $n^{2-\epsilon}$ for any $\epsilon > 0$. Thus Theorem A follows.

2. Proof of the Main Theorem

The identity (1) implies that

$$v_q(\chi^\lambda_{\mu}) \geq v_q(f_\lambda) - v_q((n)_k).$$

Using Legendre’s formula on the valuation of a factorial, that $v_q(n!) = \frac{n-a(n)}{q-1}$, we have:

$$v_q((n)_k) = v_q\left(\frac{n!}{(n-k)!}\right) = k + \frac{a(n-k) - a(n)}{q-1} \leq k + (q - 1) \log n.$$

Hence if $v_q(f_\lambda) \geq m + (q - 1) \log n$, then $v_q(\chi^\lambda_{\mu}) \geq (m - k)$. Thus taking $m = k + b$ in Theorem A tells us that

$$\lim_{n \to \infty} \frac{\#\{\lambda \vdash n \mid v_p(\chi^\lambda_{\mu}) \leq b\}}{p(n)} = 0.$$

From this the main theorem follows.

References

[1] J. Anderson. An asymptotic formula for the t-core partition function and a conjecture of Stanton. *J. Number Theory*, 128(9):2591–2615, 2008.

[2] A. Granville and K. Ono. Defect zero p-blocks for finite simple groups. *Trans. Amer. Math. Soc.*, 348(1):331–347, 1996.

[3] G. H. Hardy and S. Ramanujan. Asymptotic formulæ in combinatory analysis. *Proc. London Math. Soc. (2)*, 17(1):75–115, 1918.

[4] M. Lassalle. An explicit formula for the characters of the symmetric group. *Math. Ann.*, 340(2):383–405, 2008.

[5] I. G. Macdonald. On the degrees of the irreducible representations of symmetric groups. *Bull. London Math. Soc.*, 3:189–192, 1971.

[6] J. B. Olsson. McKay numbers and heights of characters. *Math. Scand.*, 38(1):25–42, 1976.