Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Clinical and Radiologic Manifestations: (a) coarse facial features, flat nasal bridge, stubby nose, and protuberant upper lip; (b) thickened palms and soles with an abnormal dermatoglyphic pattern, short digits, palmar flexion contracture, and hypoplastic fingernails; (c) hydronephrosis resulting from ureteral stenosis; bicornuate uterus; (d) inguinal hernia; (e) low-pitched hoarse voice; (f) failure to develop motor control, bifid uvula, and so forth.

Reference

Rüdiger RA et al: Severe developmental failure with coarse facial features, distal limb hypoplasia, thickened palmar creases, bifid uvula, and ureteral stenosis: a previously unidentified familial disorder with lethal outcome, J Pediatr 79:977, 1971.

SAETHRE-CHOTZEN SYNDROME

MIM#: 101400.

Synonyms: Acrocephalosyndactyly, Saethre-Chotzen type (ACS3); SCS.

Mode of Inheritance: Autosomal dominant with marked penetrance and variable expressivity; locus: 7p21, mutations in TWIST gene

Clinical Manifestations: (a) craniofacial dysmorphism: brachycephaly and/or acrocephaly; facial asymmetry; visual defects; esotropia, exotropia; ptosis of the eyelids; lacrimal duct abnormalities; malformed ears; impaired hearing (Lee et al, 2003); flattened nasofrontal angle; beaked nose; cleft palate; highly arched palate; low-set frontal hairline; labial pits at the corners of the mouth; deviation of nasal septum; low-set ears; hypertelorism; strabismus; (b) mental subnormality in some cases; (c) syndactyly (partial; soft tissue); (d) other reported abnormalities: (1) head and neck: epicanthic folds; downslanting palpebral fissures; abnormal eyebrows (sparse medially; heavy laterally); irregular eyelid margins; optic atrophy; blepharophimosis; dacryostenosis; dental anomalies (malocclusion; supernumerary teeth; enamel hypoplasia) (Goho, 1998); (2) skeletal: short arms; short and broad hands; brachydactyly; fingerlike thumbs; clinodactyly; hypoplastic distal phalanges of the hands, shortened fourth metacarpals; short feet and toes; hallux valgus; broad great toes; dorsiflexion of the fourth toes; partially bifid distal phalanges of the great toes; (3) miscellaneous: short stature; renal anomalies (incomplete renal Fanconi syndrome) (Oktenli et al, 2002); congenital heart disease; cryptorchidism; simian palmar creases; dermatoglyphic alterations; imperforate anus; recurrent infections; seizures; neoplasms; defective neutrophil chemotaxis; hyper IgE syndrome (Boeck et al, 2001); congenital adrenal hyperplasia; familial translocation at chromosome 7p22; mirror image unilateral coronal synostosis in twins.

Radiologic Manifestations: (a) variable degrees of craniosynostosis associated with plagiocephaly and facial asymmetry; maxillary hypoplasia; microcephaly; absent or underdeveloped frontal sinuses and mastoids; abnormal cephalometric findings; dilatation of lateral ventricles; increased intracranial pressure; (b) partial cutaneous syndactyly of fingers and toes; brachyphalangy (21/28), clinodactyly (17/28), carpal fusions—usually trapezium trapezoid (8/24), cone-shaped epiphyses (9/17) (Tresen et al, 2003); (c) other reported abnormalities: (1) skull: large sella turcica; parietal foramina; metopic suture synostosis; large fontanels; delayed closure of fontanels; calvarial ossification defect; (2) skeletal system: cervical vertebral fusion (9/20) (Anderson et al, 1997; Tresen et al, 2003); vertebral anomalies; small ilia and large ischia; coxa valga; short clavicles with distal hypoplasia; radioulnar synostosis.

Note: (1) Auralcephalosyndactyly has been used in describing familial cases of craniosynostosis of coronal sutures, syndactyly (third, fourth and fifth toes), and small pinnae. This may represent a variant of Saethre-Chotzen syndrome or a separate entity (Legius et al, 1999); (2) Mueneke craniosynostosis syndrome very similar to SCS phenotype, FGFR3 mutation (Pro250Arg), with coronal craniosynostosis, calcaneo-cuboid fusion, carpal coalition, brachydactyly, Klippel Feil (Graham et al, 1998; Lowry et al, 2001; Mueneke et al, 1997; Tresen et al, 2003); (3) Fountaine-Farriaux craniosynostosis syndrome (two cases): craniosynostosis with gray matter nodular heterotopia (Priolo et al, 2001).

References

Anderson PJ et al: The cervical spine in SCS, Cleft Palate Craniofac J 34:79, 1997.
Boeck A et al: SCS and hyper IgE syndrome, Am J Med Genet 104:53, 2001.
Chun K et al: Genetic analysis of patients with Saethre-Chotzen phenotype, Am J Med Genet 110:136, 2002.
Cristofori G et al: Saethre-Chotzen syndrome with trigonocephaly, Am J Med Genet 44:611, 1992.
Etzioni A et al: Saethre-Chotzen syndrome associated with defective neutrophil chemotaxis, Acta Paediatr Scand 79:375, 1990.
Evans CA et al: Cephalic malformations in Saethre-Chotzen syndrome: acrocephaIosynDactyly type III, Radiology 121:399, 1976.
Goho C: Dental findings in SCS, ASDC J Dent Child 65:136, 1998.
Graham JM Jr et al: Syndrome of coronal craniosynostosis with brachydactyly and carpal/tarsal coalition Pro250Arg mutation in FGFR3, Am J Med Genet 77:322, 1998.
Kosan C et al: Identification and characterisation of the TWIST NEIGHBOR, CytoGenet Genome Res 97:167, 2002.
Lee S et al: A child with SCS, sensorineural hearing loss and TWIST mutation, Cleft Palate Craniofac J 39:110, 2002.
Legius E et al: Auralcephalosyndactyly: a new craniosynostosis syndrome or a variant of the Saethre-Chotzen syndrome? J Med Genet 26:522, 1989.
Legius E et al: Syndrome of coronal craniosynostosis, Klippel-Feil anomaly, and Sprengel shoulder with and without Pro250Arg mutation in the FGFR3 gene, Am J Med Genet 104:112, 2001.
Muenke M et al: A unique point mutation in the FGFR 3 gene, Am J Hum Genet 60:555, 1997.
Okteni C et al: SCS presenting with incomplete renal Fanconi syndrome, Nephrol 92:463, 2002.
McKeen EA et al: The concurrence of Saethre-Chotzen syndrome and malignancy in a family with in vitro immune dysfunction, Cancer 54: 2946, 1984.
Niemann-Seyde S et al: Saethre-Chotzen syndrome (ACS III) in four generations, Clin Genet 40:271, 1991.
Priolo M et al: Fountaine-Farriaux craniosynostosis second report in literature, Am J Med Genet 100:214, 2001.
Reardon W et al: Cytogenet evidence that the Saethre-Chotzen gene maps to 7p21.2, Am J Med Genet 47:633, 1993.
Reardon W et al: Saethre-Chotzen syndrome, J Med Genet 31:393, 1994 (review article).
Tresen A et al: The pattern of skeletal anomalies in the cervical spine, hands, cryptorchidism; inguinal hernia. Alopecia; skin atrophy; congenital heart disease; small penis; ment of the fibulas on the femora; (e) other abnormalities: bowed femora, hypoplastic tibias (d) an unusual malformation of the knee region consisting polydactyly of the hands; (c) brachydactyly of the hands; polydactyly and syndactyly of the feet; (d) an unusual malformation of the knee region consisting of bowed femora, hypoplastic tibias, and posterior displacement of the fibulas on the femora; (e) other abnormalities: alopecia; skin atrophy; congenital heart disease; small penis; cryptorchidism; inguinal hernia.

Reference

Sakati N, Nyhan WL: A new syndrome with acrocephalopolysyndactyly, cardiac disease, and distinctive defects of the ear, skin, and lower limbs, J Pediatr 79:104, 1971.

SAKATI SYNDROME

MIM#: 101120.

Synonyms: Acrocephalopolysyndactyly, Sakati type; ACPS III.

Clinical and Radiologic Manifestations: (a) acrocephaly; craniosynostosis; (b) unusual facies; dysplastic ears; (c) brachydactyly of the hands; polydactyly and syndactyly of the feet; (d) an unusual malformation of the knee region consisting of bowed femora, hypoplastic tibias, and posterior displacement of the fibulas on the femora; (e) other abnormalities: alopecia; skin atrophy; congenital heart disease; small penis; cryptorchidism; inguinal hernia.

SAILLA DISEASE

MIM#: 604369.

Synonym: Sialuria, Finnish type.

Mode of Inheritance: Autosomal recessive; locus: 6q14-15; mutation in SLC17A5 gene.

Frequency: High incidence in Finland; Sweden: 23 patients (2002), mostly Finnish origin (Erickson et al, 2002).

Clinical Manifestations: Onset in infancy or early childhood (a) mental and physical retardation; (b) ataxia, athetosis, abnormal deep tendon reflexes, inability to walk, impaired speech, and epileptic fits; (c) moderate to marked increase in the excretion of free N-acetylneuraminic acid (sialic acid) in urine; prenatal detection (increased free sialic acid in amniocytes, mutational analysis); (d) other reported abnormalities: exotropia; slight corneal opacities; pale optic disc; hypertelorism; inguinal hernia; abnormal electroencephalographic findings; congenital ascites; (e) phenotypic spectrum (Varho et al, 2002).

Radiologic Manifestations: Thick calvarium in adult patients; brain atrophy in some; MRI: hypomyelination of cerebral white matter (rarely cerebellar), T2: higher signal intensity white > gray matter (Linnankivi et al, 2003; Sonninen et al, 1999); MRS: increased N-acetyl, creatine, decreased choline (Varho et al, 1999); PET: increased glucose utilization (Suonen-Polvi et al, 1999).

Note: The eponym Salla disease refers to the geographic area in northern Finland from which the patients originated; an adult form of sialic acid storage disease; allelic to infantile sialic acid storage disease.

References

Aula P et al: Salla disease: a new lysosomal storage disorder, Arch Neurol 36:88, 1979.
Erickson A et al: Free sialic storage (Salla) disease in Sweden, Acta Paediatr 91:1324, 2002.
Linnankivi T et al: A case of Salla disease with involvement of cerebellar white matter, Neuroradiology 45:107, 2003.
Renlund M et al: Prenatal detection of Salla disease based upon increased free sialic acid in amniocytes, Am J Med Genet 28:377, 1987.
Salomaki P et al: Prenatal detection of free sialic acid storage diseases, Prenat Diagn 21:354, 2001.
Sonninen P et al: Brain involvement in Salla disease, AJNR 20:433, 1999.
Suonen-Polvi H et al: Increased brain glucose utilization in Salla disease, J Nucl Med 40:12, 1999.
Varho T et al: A new metabolite contributing to N-acetyl signal in 1H MRS Salla disease, Neurology 52:1668, 1999.
Varho TT et al: Phenotypic spectrum of Salla disease, Pediatr Neurol 26:267, 2002.
Ylitalo V et al: Salla disease variants, Neuropediatrics 17:44, 1986.

SAMS SYNDROME

MIM#: 602471.

Mode of Inheritance: AR.

Frequency: Two cases to 2002.

Clinical and Radiologic Manifestations: (1) acronym: Short stature, Auditory canal atresia, Mandibular hypoplasia, Skeletal abnormalities; (2) scapulo-humeral synostosis; humeral hypoplasia; radial head dislocation; delayed pubic ossification; (3) other reported abnormalities: genitourinary (GU) anomalies, DDH, club feet.

References

Lemire EG et al: SAMS: provisionally unique, Am J Med Genet 75:256, 1998.
Ter Heide H et al: Auditory canal atresis, humeroscapular synostosis and other skeletal abnormalities: “SAMS” syndrome, Am J Med Genet 110:359, 2002.

SANDIFER SYNDROME

Frequency: About 50 published cases to 2003 (Bruckheimer et al, 1991).

Clinical Manifestations: (a) abnormal movement or positioning of the head, neck, and upper part of trunk during or after eating: sudden extension, continual movement from side to side, and flexion of the upper portion of the trunk and neck; (b) other reported abnormalities: vomiting; abdominal pain; gastroesophageal reflux with or without hiatus hernia;
esophagitis; manometric demonstration of low amplitude and slow propagation of esophageal peristalsis (improved when head tilted to one side); occurrence in children with brain damage or metabolic defects; association with Brachmann-de Lange syndrome; good response to medical or surgical antireflux treatment (subsidence of the abnormal movements); rare in breast-fed infants.

Radiologic Manifestations: With the clinically described contortions, the gastroesophageal junction rises, and the upper portion of the stomach enters the thoracic cavity (hiatal hernia); delayed gastric emptying (US) (Fig. SYME–S–1).

Note: (a) Torticollis has been reported in association with gastroesophageal reflux without a hiatal hernia; (b) two of the original patients reported by Kinsbourne were the cases of the neurologist Paul Sandifer whose name is associated with the syndrome.

References

Bruckheimer E et al: Sandifer’s syndrome reported and reviewed, *Pediatr Surg Int* 6:210, 1991.
Cardi E et al: Delayed gastric emptying in infant with Sandifer syndrome, *Ital J Gastroenterol* 28:518, 1996.
Corrado G et al: Sandifer syndrome in breast-fed infant, *Am J Perinatol* 17:147, 2000.
Keren G et al: Sandifer’s syndrome following reverse gastric tube operation (Gavriliu’s operation), *J Pediatr Surg* 18:632, 1983.
Kinsbourne M: Hiatus hernia with contortions of the neck, *Lancet* 1:1058, 1964.
Mandel H et al: Sandifer syndrome reconsidered, *Acta Paediatr Scand* 78:797, 1989.
Puntis JWL et al: Effect of dystonic movements on oesophageal peristalsis in Sandifer’s syndrome, *Arch Dis Child* 64:1311, 1989.
Ramenofsky ML et al: Gastroesophageal reflux and torticollis, *J Bone Joint Surg Am* 60:1140, 1978.
Sommer A: Occurrence of Sandifer complex in the Brachmann-de Lange syndrome, *Am J Med Genet* 47:1026, 1993.

![Sandifer syndrome](image-url)
SARCOIDOSIS

MIM#: 181000 (rare familial cases, AD).

Clinical Manifestations:
(A) General Symptoms: Fever, weight loss.

(B) Respiratory Manifestations: Dyspnea; productive or nonproductive cough; chest pain; wheezing; abnormal pulmonary function tests (impaired dynamic lung compliance and lung transfer factor for CO; etc.); abnormal cell on bronchoalveolar lavage (Chadelat et al, 1993; Sharma, 1985).

(C) Extrathoracic Manifestations: (a) skin, eyes (orbital pseudotumor), central nervous system (5%–16%), kidney, testicles, breast, salivary glands, nose, paranasal sinuses, larynx, liver, and lymph node involvement; (b) abdominal pain; nausea; vomiting; skeletal pain; muscular pain; arthralgia; arthritus (Besnier, 1889; Boeck, 1889; Campo et al, 1984; Friedman et al, 1983; Fye et al, 1991; Haas et al, 1986; Otake, 2001; Patel et al, 1991; Pattishall et al, 1986; Schaumann, 1917; Shaikh et al, 2000; Sharma, 1985; Torralba et al, 2003).

(D) Immunologic Changes: Depression of delayed-type hypersensitivity; hyperactive circulating antibody response; serum KL-6 monitoring; (Finke et al, 1986; Kondo et al, 2001; Pattishall et al, 1986; Schaumann, 1917). Deposition of IgG, IgM, and IgA in the lung occurs in a third of patients with sarcoidosis; (Besnier, 1889; Boeck, 1889; Campo et al, 1984; Friedman et al, 1983; Fye et al, 1991; Haas et al, 1986; Otake, 2001; Patel et al, 1991; Pattishall et al, 1986; Schaumann, 1917; Shaikh et al, 2000; Sharma, 1985; Torralba et al, 2003).

(E) Cardiac Manifestations: Arrhythmias; conduction disturbances; cardiomyopathy (Sharma, 1985).

(F) Laboratory Findings: Low-grade anemia; hypercalcemia; hypercalcioria; high levels of serum alkaline phosphatase and cholesterol; elevated serum globulin levels, particularly the g fraction; elevation of the serum angiotensin-converting enzyme level; chronic thrombocytopenia (Field et al, 1987; Sharma, 1985).

(G) Other Reported Abnormalities: Muscular sarcoidosis (nodosal and myopathic types); association with liver cirrhosis; splenomegaly; protein-losing enteropathy; simultaneously occurring sarcoidosis and scleroderma; positive Kveim test (some false positives; safety questioned); interferon-induced sarcoidosis; isolated cavernous sinus syndrome; necrotizing sarcoid granulomatosis is rare in childhood (four cases), pulmonary sarcoid in infancy is rare; (du Bois et al, 1993; Finke et al, 1986; Groen et al, 1993; Heinrich et al, 2003; Maddrey, 1983; Popovic et al, 1980; Rubinowitz et al, 2003; Rudzki et al, 1975; Sharma, 1985; Tsagris et al, 1999; Zarei et al, 2002).

Radiologic Manifestations:
(A) Respiratory System: (a) airways: laryngeal obstruction (laryngeal infiltration; epiglottic enlargement; epiglottic and subglottic polyoid masses; tracheal stenosis); extrinsic tracheal compression; cystic bronchial dilatation; (b) lungs: hilar haze; pulmonary infiltrates; ground-glass opacities; lung distortion; “crazy paving” pattern (CT); spherical (alveolar) masslike opacities, “sarcoid galaxy” sign; granulomatous nodules; irregularly thickened bronchovascular bundles (CT); small nodules along vessels (CT); granulomas adjacent to the visceral pleura (CT); bullae; thick wall cavities; atelectasis; peripheral pulmonary infiltrates; fibrosis and end-stage lung disease; (c) mediastinum: eggshell calcification in the hilar and mediastinal lymph nodes; MRI of lymphadenopathy variable (high or low intensity on T2-weighted images); mediastinal emphysema; (d) pleura: granulomas in the pleural; pleural thickening; fibrothorax; pleural effusion; chylothorax; pneumothorax (Bergin et al, 1989; Brauner et al, 1989; Johnson et al, 1984; Judson et al, 1993; McHugh et al, 1993; Mendelson et al, 1992; Merten et al, 1980; Miller, 1981; Nakatsu et al, 2002; Nishimura et al, 1993; Rockoff et al, 1985; Rossi et al, 2003; Visco et al, 1979).

(B) Central Nervous System (CNS): cerebral hemispheres, cerebellar and mesencephalic structures, cranial nerves, particularly II and VII, and pituitary gland most common sites; brainstem and spinal cord less common sites: (a) meningeal lesions causing nodular granulomatous masses; adhesive meningitis causing obstructive hydrocephalus; communicating hydrocephalus with sarcoid arachnoiditis; (b) intraparenchymal CNS lesions: CT demonstration of a contrast-enhanced mass or masses; hypodense white matter lesions (CT); great variability on magnetic resonance imaging (iso- or hypointense relative to the cerebral cortex on T1- and T2-weighted images or hyperintense on T2-weighted images); enhancement of sensitivity of MR imaging by the use of gadopentetate dimeglumine; MRI: nonspecific findings, periventricular/white matter mimics multiple sclerosis (MS) (46%), supra/infratentorial lesion mimics metastases (36%), solitary intraaxial mass mimics astrocytoma (9%), leptomeningeal enhancement (36%) (Pickuth et al, 2000); (c) spinal cord lesions: intramedullary expansion; areas of patchy, multifocal, parenchymal enhancement and areas of linear peripheral enhancement on MR imaging (Christoforidis et al, 1999; Lexa et al, 1994; Nesbit et al, 1989; Seltzer et al, 1992).

(C) Osteoarticular Manifestations: Oval or spheroid lytic lesion of the phalanges; “lace work” type of destructive lesions of the phalanges; lytic lesion and subperiosteal new bone formation of the long bones; radiolucent calvarial defects; scattered radiodense lesions (low signal intensity on T1-weighted images; low central signal zone surrounded by a high signal rim on T2-weighted images); arthritis; osseous lesions (5%); calcaneal involvement (rare); cervical spine sclerotic lesions; (Allanore et al, 2001; Dally et al, 1987; Godin et al, 1977; Golzarian et al, 1994; Grossman et al, 1999; Lexa et al, 1994; Nesbit et al, 1989; Seltzer et al, 1992).

(D) Cardiovascular System: Cardiomegaly; cardiac failure; pericardial effusion; cardiomyopathy; left ventricular aneurysm; pulmonary artery narrowing; cardiac MRI: nodular increased signal intensity on T2, contrast enhanced images (Vignaux et al, 2002).

(E) Digestive System: Nodular lymphoid hyperplasia of the small intestine; antral and pyloric stiffening and narrowing; gastric and duodenal ulcers; abnormal mucosal pattern; sacculles (Britt et al, 1991; Davis et al, 1970; Levine et al, 1989).
(F) **Genitourinary**: Enlargement of the kidneys resulting from sarcoid granulomas; nephrocalcinosis; poor concentration of contrast medium on excretory urography; ureteral obstruction (Duszlak et al, 1982; Nocton et al, 1992; Schoenfeld et al, 1985; Tammela et al, 1989).

(G) **Liver and Spleen**: (a) hepatomegaly; splenomegaly; (b) US: normal or increased hepatic parenchymal echogenicity; coarsening of the liver parenchyma with or without discrete nodules; splenic nodules; focal calcifications; (c) CT: heterogeneous enhancement with hypodense areas; (d) MR: hepatic and splenic contour irregularity; abnormal signal intensity; spiculation of small hepatic vascular branches; high periportal signal intensity; (e) granulomatous biliary tract obstruction; (f) portal hypertension (Bloom et al, 1978; Britt et al, 1991; Iko et al, 1982; Kessler et al, 1993; Le Verger et al, 1977; Mathieu et al, 1986).

(H) **Skeletal Muscles**: Muscular sarcoid: 4 types (nodular, chronic myopathy, acute myositis, asymptomatic) (a) US: hyperchoic center with hypoechoic periphery; (b) MRI: star-shaped central structure of decreased signal intensity; enhancement of the peripheral in post-contrast images; (c) 67Ga scintigraphy: increased uptake in the nodules (Otake, 2001).

(I) **Eyes**: Lacrimal glands, optic nerve and its sheath, and ocular bulb involvement; anterior uveitis; choroid involvement with subretinal fluid collection (Frohman et al, 2001; Signorini et al, 1984; Som et al, 1982).

(J) **Salivary Glands**: Ectasia; spreading apart of the ducts in the early phase; displacement of the ducts resulting from swelling in the later phase; destruction of the duct system (Iko et al, 1986; Som et al, 1981).

(K) **Radioisotope Scanning**: (a) 99mTc pyrophosphate or pyridiphosphate compounds: uptake in the involved regions: bones, lacrimal glands, salivary glands, paranasal sinuses, mediastinum, lung, and inguinal areas; (b) 67Ga citrate: uptake in pulmonary and extrapulmonary foci; (c) a distinctive intrathoracic lymph node 67Ga uptake pattern, resembling the Greek letter lambda; (d) symmetrical lacrimal and parotid gland 67Ga uptake (panda appearance); (e) positive scintigraphy with J001 macrophage targeting glycolipopeptide; somatostatin receptor imaging (111In-pentetreotide) (Diot et al, 1992; Iko et al, 1982, 1986; Johnson et al, 1984; Kwekkeboom et al, 1998; Patel et al, 1991; Sohn et al, 2001; Sulavik et al, 1990).

(L) **Other Reported Abnormalities**: Empty sella turcica; association with tumoral calcinosis; abdominal adenopathy; pancreatic lesions; female pelvic visceral involvement; subcutaneous imaging: striped/mesh pattern; thymic carcinoma (rare) (Britt et al, 1991; Chiang et al, 1984; Friedman et al, 1983; Ohmichi et al, 1997; Shinozaki et al, 1998; Wolpe et al, 1987) (Fig. SYME–S–2).

Therapy: Corticosteroids effective (Paramothayan et al, 2002).

Figure SYME–S–2 = Sarcoidosis in a 15-year-old girl with an oval lytic lesion of the proximal phalanx of the fourth digit (arrows).

Note: (1) MRI findings (musculoskeletal): early, but nonspecific (Moore et al, 2003); (2) mimics metastatic disease (Ludvig et al, 2003), cardiac sarcoid mimick right ventricular dysplasia (Shiraishi et al, 2003); MRI useful in all areas of involvement (MAna, 2002).

References

Allanore Y et al: Management of a patient with sarcoid calcaneitis and dactylitis, *Joint Bone Spine* 68:175, 2001.

Bergin CJ et al: Sarcoidosis: correlation of pulmonary parenchymal pattern at CT with results of pulmonary function tests, *Radiology* 171:619, 1989.

Besnier E: Lupus pernio de la face, synovites fongueuses (scrofulotuberculosis) symétriques des extrémités supérieures, *Ann Dermatol Syph (Paris)* 10:333, 1889.

Bloom R, et al: Granulomatous biliary tract obstruction due to sarcoidosis, *Am Rev Respir Dis* 117:783, 1978.

Boeck C: Multiple benign sarcoid of the skin, *J Cutan Gcanturin* Dis 17:543, 1889.

Brauner MW et al: Pulmonary sarcoidosis: e valuation with high-resolution CT, *Radiology* 172:467, 1989.

Britt AR et al: Sarcoidosis: abdominal manifestations at CT, *Radiology* 178:91, 1991.

Campos RV et al: Choroidal granuloma in sarcoidosis, *Am J Ophthalmol* 97:419, 1984.

Chadela K et al: Pulmonary sarcoidosis in children; serial evaluation of bronchoalveolar lavage cells during corticosteroid treatment, *Pediatr Pulmonol* 16:41, 1993.

Chiang R et al: Empty sella turcica in intracranial sarcoidosis. Pituitary insufficiency, primary polydipsia, and changing neuroradiologic findings, *Arch Neurol* 41:662, 1984.

Christoforidis GA et al: Mr of CNS sarcoidosis, *AJNR* 20:655, 1999.

Dalley RW et al: Computed tomography of calvarial and petrous bone sarcoidosis, *J Comput Assist Tomogr* 11:884, 1987.

Davis SD et al: Nodular lymphoid hyperplasia of the small intestine and sarcoidosis, *Arch Intern Med* 126:668, 1970.

Diot P et al: Scintigraphy with J001 macrophage targeting glycolipopeptide: a new approach for sarcoidosis imaging, *Chest* 102:670, 1992.

du Bois RM et al: Moratorium on Kveim test, *Am Rev Respir Dis* 342:173, 1993.

Duszlak EJ Jr et al: Pelvic sarcoidosis, *Radiology* 172:467, 1989.

Field SK et al: Sarcoidosis presenting as chronic thrombocytopenia, *West J Med* 146:481, 1987.

Finke R et al: Sarcoidosis and immunocytoma, *Am J Med* 80:939, 1986.

Friedman HZ et al: Sarcoidosis of the pancreas, *Arch Intern Med* 143:2182, 1983.
SATOYOSHI SYNDROME

MIM#: 600705.

Synonym: Komuragaeri disease (calf-spasm).

Frequency: Approximately 50 reported cases to 2003 (Kamat).

Clinical Manifestations: (a) painful muscle spasms with onset in childhood; slowly progressive course; involving masticatory muscles and the muscles of neck, trunk, and limbs; (b) alopecia; (c) diarrhea; malabsorption(d) short stature.

Radiologic Manifestation: Irregularity and widening of the physes and a mixture of translucent and sclerotic areas in the metaphyses (mimicking metaphyseal chondrodysplasia); slipping of the epiphyses (proximal humerus; distal radius; phalanges of the hands; proximal femur; distal femur), and patellae (Wisuthsarewong et al, 2001); acroosteolysis; osteolysis (clavicle; trochea); cystic bone lesions; bone fragmentation at tendinous insertion sites; fatigue fracture; osteoarthrosis; (Haymon et al, 1997).

Therapy: (1) IVIG (Kamat et al, 2003); (2) corticoid steroids (Cecchin et al, 2003; Wisuthsarewong et al, 1967); (3) botulinum toxin (Merello et al, 1994).

Note: (1) Bone lesions may be resulting from repeated injuries to the growth plates, associated with recurrent vigorous muscle spasms (Ikegawa et al, 1993); (2) unilateral presentation (Uddin et al, 2002); (3) hyperthermia, acute renal/respiratory failure, rhabdomyolysis, cardiac arrest following midazolam therapy (Adachi et al, 1998); (4) adult-onset: milder with just muscle spasm and alopecia (Ikeda et al, 1998).

References

Adachi H et al: A case of Satoyoshi syndrome, Rinsho Shinkeigaki 38:637, 1998.

Cecchin CR et al: Satoyoshi syndrome in Caucasian girl improved with glucocorticoids, Am J Med Genet 118A:52, 2003.

Haymon ML et al: Radiological and orthopedic abnormalities in Satoyoshi syndrome, Pediatr Radiol 27:415, 1997.

Ikedo K et al: Satoyoshi syndrome in an adult, Intern Med 37:784, 1998.

Ikegawa S et al: A case of Satoyoshi’s syndrome, J Pediatr Orthop 13:793, 1993.

Ikegawa S et al: Skeletal abnormalities in Satoyoshi syndrome: a radiographic study of eight cases, Skeletal Radiol 22:321, 1993.

Kamat D et al: A case of Satoyoshi syndrome: a multisystem disorder, Clin Pediatr 42:745, 2003.

Merello M et al: Masticatory muscle spasm in a non-Japanese patient with Satoyoshi syndrome successfully treated with botulinum toxin, Mov Disord 9:104, 1994.

Satoyoshi E, et al: Recurrent muscle spasm of central origin, Arch Neurol 16:254, 1967.

Uddin AB et al: A unilateral presentation of Satoyoshi syndrome, Parkinsonism Relat Disord 8:211, 2002.

Wisuthsarewong W et al: Satoyoshi syndrome, Pediatr Dermatol 18:406, 2001.

SCAPULOILIAC DYSOSTOSIS (DYSPLASIA)

MIM#: 169550, 260660.

Synonyms: Pelvis-shoulder dysplasia; Kosenow syndrome; pelvis-scapular dysplasia.

Mode of inheritance: AD (milder cases); AR (severe cases) (Amor et al, 2000; Elliott et al, 2000).

Frequency: 13 cases reported to 2003.

Clinical Manifestations: Varied, not consistent; eyes: epicanthic folds/narrow palpebral fissures (6/11); microphthalmos (4/11); ectopic pupils; coloboma of the retina (3/11); corneal opacification; ears: small, malformed and low-set ears (7/11); central nervous system (CNS): hydranencephaly, cerebral atrophy (4/11); craniofacial: micrognathia, microglossia, cleft palate (4/11); genitourinary (GU): ambiguous genitalia, hydrenephrosis (3/11); (Elliott et al, 2000).

Radiologic Manifestations: (a) extreme hypoplasia of the scapula and ilium; (b) hypoplasia of the clavicle; (c) lordosis of lumbosacral spine; rounded appearance of the lumbar vertebral bodies in infancy; (d) faulty development of ribs; overconstriction of the shaft of the femora and tibias; (e) other reported abnormalities: absent fibulae (3/11); cranium bifidum; micrognathia, radio-ulnar synostosis; synostosis
of the distal portions of the clavicles to the scapulae; clinodactyly of the fingers; simple partial syndactyly (Fig. SYME–S–3).

Note: (1) Emx2 gene knockout mouse: similar phenotype (Williams, 2003); spectrum of disorder(s) (Elliott et al, 2000).

References

Amor DJ et al: Autosomal dominant inheritance of scapuloiliac dysostosis, Am J Med Genet 95:507, 2000.

Elliott AM et al: Scapuloiliac dysostosis (Kosenow syndrome, pelvis shoulder dysplasia) spectrum, Am J Med Genet 95:496, 2000.

Blane CE et al: Scapuloiliac dysostosis, Br J Radiol 57:526, 1984.

Cousin J et al: Dysplasie pelvi-scapulaire familiale avec anomalies épiphy- saires, nanisme et dysmorphies: un nouveau syndrome? Arch Fr Pediatr 39:173, 1982.

Hauser SE et al: Pelvis-shoulder dysplasia, Pediatr Radiol 28:681, 1998.

Kosenow W, Niederle J, Sinios A: Becken-Schulter dysplasia, Fortschr Rontgenstr 113:39, 1970.

Thomas PS et al: Pelvis-shoulder dysplasia, Pediatr Radiol 5:219, 1977.

Williams MS: Developmental anomalies of the scapula—the “omo”st forgotten bone, Am J Med Genet 120A:583, 2003.

SCHILDER DISEASE

MIM#: 272100.

Synonyms: Inflammatory myelinoclastic diffuse sclerosis; sudanophilic cerebral sclerosis; myelinoclastic diffuse sclerosis; encephalitis periaxialis diffusa.

Clinical Manifestations: Slowly progressive or episodic course: (a) pyramidal tract signs, blindness, deafness, extracoc- lar muscle paralysis, nystagmus, and dysarthria; (b) psychi- atric disturbances; mental retardation; (c) other reported abnormalities/associations: Turner syndrome (one case) (Stachniak et al, 1995).

Radiologic Manifestations: (a) CT: decreased density in the periventricular white matter; ventricular dilatation; rim enhancing at the border of the cerebral white matter lesions; cavitary white matter lesions; fluctuating contrast enhancement in the zones of active inflammation; mass effects; (b) MR: course of demyelination from the periventricular white matter distally (increased signal intensity on T2-weighted images; multiple mass lesions mimick neoplasms, abscess: extensive perilesional edema (Kotil et al, 2002; Kurul et al, 2003; Nejat et al, 2002); (c) spinal cord involvement (demyelination), recurrences (Fitzgerald et al, 2000).

Differential Diagnosis: (a) adrenoleukodystrophy (presence of abnormal very-long-chain fatty acids; lesions in the occipital lobes more symmetrical); (b) progressive multifocal leukoencephalopathy; (c) Pelizaeus-Merzbacher disease; (d) childhood multiple sclerosis; cerebral sclerosis, Scholtz type, X-linked (MIM# 302700).

Note: (a) The criteria established by Poser et al. for the diagnosis of Schilder disease are (1) a subacute or chronic demyelinating disorder involving the centrum semiovale of the cerebral hemispheres with one or two symmetric bilateral plaques measuring at least 2 × 3 cm; (2) there should be no involvement of the peripheral nervous system or the adrenal glands; (3) absence of very-long-chain fatty acids of cholesterol esters; (4) histologic findings identical to those of multiple sclerosis; (b) a variant of multiple sclerosis (Fitzgerald et al, 2000; Gallucci et al, 2001).

References

Cobb SR et al: Wallerian degeneration in a patient with Schilder disease: MR imaging demonstration, Radiology 162:521, 1987.

Ehlen F et al: Myelinoclastic diffuse sclerosis (Schilder’s disease): clinic-coneuroradiologic correlations, Neurology 41:589, 1991.

Fitzgerald MJ et al: Recurrent myelinoclastic diffuse sclerosis, Pediatr Radiol 30:861, 2000.

Gallucci M et al: Acquired inflammatory white matter disease, Childs Nerv Syst 17:202, 2001.

Konkol RJ et al: Schilder’s disease: additional aspects and a therapeutic option, Neuropediatrics 18:149, 1987.

Kotil K et al: Myelinoclastic diffuse sclerosis (Schilder disease), Br J Neurosurg 16:316, 2002.

Kurul S et al: Schilder disease, J Child Neurol 18:58, 2003.

Mehler MF et al: Inflammatory myelinoclastic diffuse sclerosis (Schilder’s disease): neuroradiologic findings, AJNR 10:176, 1989.

Nejat F et al: Decompressive aspiration in Schilder disease, J Neurosurg 97:1447, 2002.

Poser CM et al: Schilder’s myelinoclastic diffuse sclerosis, Pediatrics 77:107, 1986.

Schilder P: Zur Kenntnis der sogenannten diffusen Sklerose, Z Ges Neurol Psychiatr 10:1, 1912.

Stachniak JB et al: Myelinoclastic diffuse sclerosis presenting as mass lesion in Turner syndrome, Pediatr Neurosurg 22:266, 1995.
SCHINZEL-GIEDION SYNDROME

MIM#: 269150.

Synonym: SGS.

Mode of Inheritance: Probably autosomal recessive.

Frequency: More than 30 cases reported to 2003 (Grosso et al, 2003).

Clinical Manifestations: (a) coarse facial features, gingival hyperplasia (Kondoh et al, 2001); frontal bossing, wide sutures and anterior fontanelle, midfacial hypoplasia, orbital hypertelorism, alacrima, corneal hypoesthesia (Manouvrier-Hanu, 2003; Minn et al, 2002); short and upturned nose, and low-set ears; deafness; (b) seizures (33%); profound motor and intellectual retardation; infantile spasms (West syndrome 25%) (Grosso et al, 2003); (c) genitourinary anomalies: hydronephrosis; hypospadias; hypoplastic scrotum; short penis; deep interlabial sulcus; hypoplasia of the labia majora or minora; hymeneal atresia; (d) clubfeet; hymeneal atresia; (e) other abnormalities: failure to thrive; clubfeet; hypoplasia of the distal phalanges in the hands (4/13); (f) cardiac abnormalities: hypoplasia of the dural ridges; hyperconvex nails; (g) other abnormalities: failure to thrive; renal anomalies (Joss et al, 2002).

Radiologic Manifestations: (a) short and sclerotic base of the skull; poor skull vault mineralization; steep base of the skull; wide supraoccipital “synchronosis”; multiple wormian bones; orbital hypertelorism; wide cranial sutures and fontanelle; brain MRI: neurodegeneration (Alembik et al, 1999; Shah et al, 1999); temporal bone CT: “tuning fork” stapes anellae; brain MRI: neurodegeneration (Alembik Y et al, 1999; Minn D et al, 2002); short and upturned nose, and low-set ears; deafness; (b) seizures (33%); profound motor and intellectual retardation; infantile spasms (West syndrome 25%) (Grosso et al, 2003); (c) genitourinary anomalies: hydronephrosis; hypospadias; hypoplastic scrotum; short penis; deep interlabial sulcus; hypoplasia of the labia majora or minora; hymeneal atresia; (d) clubfeet; (e) hypertrichosis; hypoplasia of the dermal ridges; hyperconvex nails; (f) cardiac abnormalities: failure to thrive; choanal stenosis; microcornea; corneal opacity; postaxial hypoplasia of liver (2/3); (g) other abnormalities: failure to thrive; renal anomalies (Joss et al, 2002).

Differential Diagnosis: (a) Rüdiger syndrome; (b) hypothyroidism; (c) mucopolysaccharidoses; (d) gangliosidosis; (e) SGS-like syndrome: milder phenotype, no cardiac renal abnormalities (Joss et al, 2002).

References

Alembik Y et al: SGS with severe deafness and neurodegenerative process, Ann Genet 42:225, 1999.

Grosso S et al: SGS: A further case of West syndrome, Brain Dev 25:294, 2003.

Herman TE et al: Schinzel-Giedion syndrome and congenital megalacys, Pediatr Radiol 23:111, 1993.

Joss S et al: A SGS-like syndrome—a milder version or separate condition, Clin Dysmorphol 11:271, 2002.

Kondoh T et al: A case of SGS complicated with severe gingival hyperplasia, Pediatr Int 43:181, 2001.

Labrune P et al: Three new cases of Schinzel-Giedion syndrome and review of the literature, Am J Med Genet 50:90, 1994 (review article).

Maclellan AC et al: Neurosonography and pathology in the Schinzel-Giedion syndrome, J Med Genet 28:547, 1991.

Manouvrier-Hanu: SGS and alacrima, Am J Med Genet 120A: 292, 2003.

Minn D et al: Further clinical and sensorial delineation of SGS, Am J Med Genet 109:211, 2002.

Rittinger O et al: Bilateral hydronephrosis due to megacalicosis as prenatal sonographic finding in SGS, Clin Dysmorphol 8:291, 1999.

Robin NH et al: New finding of Schinzel-Giedion syndrome: a case with a malignant sacrococcygeal teratoma, Am J Med Genet 47:852, 1993.

Sandri A et al: SGS with sacral teratoma, J Pediatr Hematol Oncol 25:558, 2003.

Schinzel A, Giedion A: A syndrome of severe midface retraction, multiple skull anomalies, clubfeet, and cardiac and renal malformations in sibs, Am J Med Genet 1:361, 1978.

Shah AM et al: SGS: evidence for neurodegenerative process, Am J Med Genet 82:344, 1999.

Verloes A et al: Schinzel-Giedion syndrome, Eur J Pediatr 152:241, 1993.

SCHNITZLER SYNDROME

Frequency: About 50 cases reported to 2004.

Clinical Manifestations: Urticarial eruption; monoclonal IgM gammopathy; intermittent fever; joint/bone pain; adenopathy, hepato/splenomegaly; malignancy risk: lymphoplasmacytic (15%) (Lipsker et al, 2001).

Radiologic Manifestations: (1) plain film: paracortical osteosclerosis, periosteal reaction, joint swelling; osteolysis; (2) bone scan: increased uptake (early: bone/joint areas, late dimetaphyseal region uptake); (3) MRI: long bones (low signal-T1, high signal T2 in marrow); (4) US: liver (dense homogenous parenchyma, portal veins); (5) CT: hyperostosis both cortical and cancellous bone (De Waele et al, 2000; Ferrando et al, 1994; Lecompte et al, 1998).

Differential Diagnosis: (1) lymphoma; (2) rheumatoid arthritis; (3) lupus, CINCA, Muckle-Wells syndrome, Waldenstrom disease, POEMS syndrome.

References

De Waele S et al: Schnitzler syndrome: an unusual cause of bone pain with suggestive imaging features, AJR 175:1325, 2000.

Ferrando FJ et al: Schnitzler syndrome: report of case with bone osteolysis, J Invest Allergol Clin Immunol 4:203, 1994.

Lauwers A et al: A case of Schnitzler syndrome with nodular regenerative hyperplasia of liver, Rev Rheum Engl Ed 66:281, 1999.

Lecompte M et al: Schnitzler syndrome, Skeletal Radiol 27:294, 1998.

Lipsker D et al: The Schnitzler syndrome. Four new cases and review of the literature, Medicine 80:37, 2001.

SCHWARTZ-JAMPEL SYNDROME

MIM#: 255800.

Synonyms: Chondrodystrophic myotonia; osteochondromuscular dystrophy; Aberfeld syndrome; SJS.

References

Lipsker D et al: The Schnitzler syndrome. Four new cases and review of the literature, Medicine 80:37, 2001.
Mode of Inheritance: Autosomal recessive, variable expressivity; SJS 1 locus: 1p36.1, mutations in perlecan gene (Arikawa-Hirasawa et al, 2002).

Frequency: More than 120 cases to 2003.

Clinical Manifestations: Progressive disease with an onset of symptoms in infancy: (a) “masklike” facies, blepharophimosis, microstomia, recessed chin, and full cheeks; (b) short stature; stiff posture; crouched stance; short neck; short trunk; waddling gait; pectus carinatum; kyphosis or kyphoscoliosis; (c) prolonged myotonic responses; firm hypertrophic muscles; muscular weakness and wasting; depressed tendon reflexes; (d) large-joint stiffness and contracture; carpal tunnel syndrome (Cruz Martinez et al, 1998); (e) high-pitched voice; (f) immunologic abnormalities (humoral and cellular); (g) manifestations in neonates: short stature; contractures; myotonia (electromyographic; clinical); muscle hypertrophy, muscle rigidity; choking; respiratory difficulty; apnea; abnormal faces (blepharophimosis; microstomia; etc.); death resulting from asphyxia; (h) other reported abnormalities: compression myopathy; abnormal electromyogram (non-specific); central nervous system (CNS) dysfunction (Paradis et al, 1997; Singh et al, 1997); some degree of mental retardation; facial expression of crying when asked to smile; malignant hyperthermia (a potentially lethal complication during anesthesia); sleep apnea (Cook et al, 1997); orodental complications (Stephen et al, 2002).

Radiologic Manifestations: (a) triangular deformity of the pelvis; flared iliac wings; (b) hip disorders: coxa vara or coxa valga; delay in appearance of femoral head ossification; fragmentation of the femoral head; flat femoral head; slipped capital femoral epiphysis; (c) slender diaphysis of the long bones; anterior bowing of the long bones; irregularity of the femoral and tibial epiphyses in the knee region; (d) spine and skull: scoliosis; kyphoscoliosis; marked platyspondyly; coronally cleft vertebral bodies; failure of ossification of the anterior half of some vertebral bodies; basilar invagination, platybasia, Chiari 1 malformation (CT, MRI) (Samimi et al, 2003); (e) pectus carinatum; (f) increased bone density in neonates; (g) ultrasound: increased echogenicity of muscle; computed tomography: high and low attenuation in varying muscle groups, increased muscle bulk with normal attenuation (Iwata et al, 2000); (h) prenatal ultrasonography in at risk fetus: constant flexion of the fingers, decreased fetal activity, and shortening and bowing of the femora (Fig. SYME–S–4).

Therapy: (1) mexiletine (Yang et al, 2002); increased doses of rocuronium (Eikermann et al, 2002).

Differential Diagnosis: (a) Freeman-Sheldon syndrome; (b) Marden-Walker syndrome; (c) urofacial syndrome (facial expression when laughing); (d) blepharophimosis-epicanthus inversus MIM# 110100; (e) myotonia with skeletal abnormalities and MR MIM# 255710.

Note: (1) Giedion classification: type 1A: childhood presentation, moderate bone dysplasia; type 1b: newborn presentation, resembles Kniest dysplasia; type 2: newborn presentation, high mortality, metaphyseal widening (Stuve-Wiedemann-like (Di Rocco et al, 2003; Giedion et al, 1997); SJS 2 and Stuve-Wiedemann dysplasia are identical (or allelic) (Superti-Furga...
SYNDROMES AND METABOLIC DISORDERS

SCIMITAR SYNDROME

MIM#: 106700.

Synonyms: Venolobar syndrome; Halarz syndrome.

Mode of Inheritance: Some familial cases have been reported (AD, AR).

Pathology: (a) hypoplasia of the right lung and right pulmonary artery; absent pulmonary artery (five cases) (Saltik et al, 1999); (b) dextroposition of the heart; (c) anomalous systemic vessels to an abnormal segment originating totally or in part from the thoracic aorta, abdominal aorta, or even the celiac axis; (d) anomalous venous drainage of part or all of the right lung usually into the inferior vena cava, portal vein, hepatic vein, or rarely the lower right atrium; drainage into left atrium (milder phenotype; ±12 cases) (Holt et al, 2004); anomalous pulmonary venous connection at the supracardiac, cardiac and infracardiac levels in a single case (Geggel, 1993); (e) anomalies of the diaphragm on the affected side (accessory diaphragm; hernia; cyst); (f) extrapleural soft tissues replacing missing lobe(s); (g) associated congenital heart defects (atrial septal defect; coarctation of the aorta; ventricular septal defect; patent ductus arteriosus; tetralogy of Fallot (three cases) (Azhari et al, 2000); and so forth; (h) other reported abnormalities: horseshoe lung deformity (Takahashi et al, 1997); absent right pulmonary artery, the “inverse scimitar” (all the pulmonary veins joining behind the heart, forming a long, tortuous channel at the base of the right lung, and then coursing through the lung in a cranial direction, emptying into the superior vena cava); left-sided scimitar syndrome (Rutledge et al, 2001); secondary pulmonary hemosiderosis (Cannon et al, 2001); pulmonary arteriovenous (AV) fistulas (Le Rochais et al, 1999); Knobloch syndrome (two cases); Langer-Giedion syndrome (Sinzig et al, 1999); scimitar syndrome plus: iris coloboma, enlarged cysterna magna, myelination abnormality (Ruggieri et al, 2003).

Clinical Manifestations: May be asymptomatic or symptomatic: (a) recurrent respiratory infection; (b) decrease in breath sounds on the right side of the chest; (c) small right hemithorax.

Radiologic Manifestations: (a) shift of the heart and mediastinum to the right; (b) unsharp right cardiac border (resulting from a strong rotation of the heart into the right hemithorax); and right hemidiaphragm; (c) scimitar-shaped vein located in the right supradiaphragmatic region and draining into the inferior vena cava (partial or total anomalous drainage); other forms of anomalous venous drainage: “double-scimitar” venous drainage into the inferior vena cava; simultaneous venous return from the right lung to both the inferior vena cava and the left atrium or scimitar-type vein draining into the left atrium without connection to the inferior vena cava or dual connection to both (Tortoriello et al, 2002); association with a crossover lung segment; left-sided scimitar syndrome (anomalous left pulmonary venous drainage to the inferior vena cava and through the pericardiophrenic vein to the innominate vein); meandering right pulmonary vein (Salazar-Mena et al, 1999); (d) CT, 3D CT: hypertal relation of the right bronchus to the pulmonary artery; the course and drainage site of the scimitar vein; mediastinal shift; unusual fissures; abnormal bronchial tree, and pulmonary lobation, horseshoe lung (Inoue et al, 2002); gadolinium-enhanced, velocity-encoded cine MRI (Gilkeson et al, 2000; Henk et al, 1997; Marco de Lucas et al, 2003; Puvaneswaray et al, 2003); (e) bronchiectasis of the right lung; (f) fetal diagnosis, 2D, 3D Doppler: cardiac dextroposition (Abdullah et al, 2000; Michailidis et al, 2001; Valsangiacomo et al, 2003); (g) other reported abnormalities: stenosis of the anomalous vein draining into the inferior vena cava; pulmonary hypertension; scimitar sign with partially hypoplastic right lung; systemic arterial supply and pulmonary vein drainage into the left atrium (Cukier et al, 1994) (Figs. SYME–S–5 and SYME–S–6).
Differential Diagnosis: (1) nonsyndromic total anomalous pulmonary venous return (TAPVR); bronchial stenosis (Hsieh et al., 1997); (2) primary pulmonary hypoplasia (familial) (Green et al., 1999).

Note: The following represent the major components of “congenital pulmonary venolobar syndrome” with the first two most constantly occurring components: (1) lobar aplasia, or hypoplasia; (2) partial anomalous pulmonary venous drainage; (3) absence of a pulmonary artery; (4) pulmonary sequestration; (5) systemic arterialization of the lung; (6) absence of the inferior vena cava; (7) accessory diaphragm (Woodring et al., 1994).

References

Abdullah MM et al: fetal cardiac dextroposition in the absence of intrathoracic mass: sign of significant right lung hypoplasia, J Ultrasound Med 19:669, 2000.
Azhari N et al: Tetralogy of Fallot associated with scimitar syndrome, Cardiol Young 10:70, 2000.
Beitzke A et al: Scimitar syndrome with absence of the right pulmonary artery: a case with volume-induced, reversible, left-sided pulmonary hypertension, Pediatr Cardiol 13:119, 1992.
Cannon ML et al: Pulmonary hemosiderosis in scimitar syndrome, Pediatr Crit Care Med 2:274, 2001.
Clements BS et al: The crossover lung segment: congenital malformation associated with a variant of scimitar syndrome, Thorax 42:417, 1987.
Cooper G: Case of malformation of the thoracic viscera: consisting of imperfect development of right lung, and transposition of the heart, London Med Gazette 18:600, 1836.
Cukier A et al: Scimitar sign with normal pulmonary venous drainage and systemic arterial supply: scimitar syndrome or bronchopulmonary sequestration? Chest 105:294, 1994.
Dupuis C et al: The “adult” form of the scimitar syndrome, Am J Cardiol 70:502, 1992.
Gao YA et al: Scimitar syndrome in infancy, J Am Coll Cardiol 22:873, 1993.
Geggel RL: Scimitar syndrome associated with partial anomalous pulmonary venous connection at the supracardiac, cardiac, and infracardiac levels, Pediatr Cardiol 14:234, 1993.
Gilkeson RC et al: Gadolinium-enhanced MRA in scimitar syndrome, Tex Heart Inst J 27:309, 2000.
Godwin JD et al: Scimitar syndrome: four new cases examined with CT, Radiology 159:15, 1986.
Green RAR et al: Familial pulmonary hypoplasia, Pediatr Radiol 29:455, 1999.
Halasz N et al: Bronchial and arterial anomalies with drainage of the right lung into the inferior vena cava, Circulation 14:826, 1956.
Henk CB et al: Scimitar syndrome: Mr assessment of hemodynamic significance, J Comput Assist Tomogr 21:628, 1997.
Holt PD et al: Scimitar vein draining to left atrium, Pediatr Radiol 34:409, 2004.
Hsieh SC et al: Bronchial stenosis mimicking the scimitar syndrome, Zhonggu Min Guo Xiao Er Ke Yi Xue Hui Za Zhi 38:232, 1997.
Inoue T et al: 3-D CT showing partial APVR complicated by Scimitar syndrome, Circulation 105:663, 2002.
Le Rochais JP et al: Scimitar syndrome with pulmonary AV fistulas, Ann Thorac Surg 68:1416, 1999.
Marco de Lucas et al: Scimitar syndrome: diagnosis with gadolinium-enhanced and velocity-encoded cine MRI, Pediatr Radiol 33:716, 2003.
Michailidis GD et al: Retrospective prenatal diagnosis of scimitar syndrome aided by 3-D power Doppler imaging, Ultrasound Obstet Gynecol 17:449, 2001.
Morgan JR et al: Syndrome of hypoplasia of the right lung and dextroposition of the heart: “scimitar sign” with normal pulmonary venous drainage, Circulation 43:27, 1971.
Muller-Leisse Von C et al: Scimitar-Syndrom in der MRT, Fortschr Rontgenstr 152:609, 1990.
Partridge JB et al: Scimitar syndrome with pulmonary AV fistulas, Clin Thorac Surg 68:1416, 1999.
Platia EV et al: MRI of partial APVR (scimitar syndrome), Australas Radiol 47:92, 2003.
Puvaneswary M et al: MRI of APVR (scimitar syndrome), J Comput Assist Tomogr 33:716, 2003.
Saltik IL et al: Scimitar syndrome with absence of right pulmonary artery, J Comput Assist Tomogr 33:716, 2003.
Sohn SB et al: Scimitar syndrome, Eur J Pediatr 159:15, 1986. Used by permission.)
SCLERODERMA

MIM#: 181750.

Synonyms: Systemic sclerosis; progressive systemic sclerosis; systemic scleroderma; acrosclerosis syndromes.

Frequency: An incidence of about 12 new cases per million population per year (Maddison et al, 1993); approximately 100 reported cases in children and adolescents; rarely familial (AD).

Clinical Manifestations: Scleroderma includes a group of heterogeneous connective tissue diseases ranging from localized scleroderma to progressive systemic sclerosis involving skin and internal organs:

(A) Skin: Edema, induration, and finally atrophy.

(B) Alimentary System: Dysphagia; nausea and vomiting; constipation, or diarrhea; abdominal distension; intestinal pseudo-obstruction; secondary malabsorption (abnormal intraluminal bacterial flora); featalith formation associated with constipation; acute abdominal manifestation (obstruction; bowel perforation; peritonitis; ischemia; bowel infarction; hemorrhage resulting from telangiectasia) (Campbell et al, 1986; Kaye et al, 1994).

(C) Cardiovascular System: Pericardial disease (acute process with chest pain, dyspnea; fever, and a pericardial friction rub or a chronic picture of pericardial effusion); myocardial fibrosis (diffuse and patchy distribution; abnormalities of myocardial perfusion); disorders of cardiac rhythm and conduction; decreased right ventricular ejection fraction; decreased left ventricular ejection fraction; stress-induced reversible myocardial perfusion abnormalities; hypoxic pulmonary vasoconstriction; cold-induced reversible myocardial ischemia; pulmonary hypertension; cor pulmonale (Arroliga et al, 1992; Follansbee et al, 1993); Raynaud phenomenon (in about 60%), gangrene of the extremities.

(D) Respiratory System: Abnormalities of pulmonary function (restrictive ventilatory defect; air flow obstruction; depressed diffusing capacity for carbon monoxide); pulmonary hypertension (Morgan et al, 1991); severe restrictive lung disease (15%) (White, 2003).

(E) Neurologic Manifestations: Autonomic dysfunction (parasympathetic impairment and sympathetic overactivity); peripheral nerve dysfunction; necrotizing encephalitis; brain abnormalities adjacent to the cutaneous manifestations (Dessein et al, 1992; Lüer et al, 1990; Schady et al, 1991).

(F) Antinuclear Antibodies: Association of different types of sclerodermas with specific immunologic markers (Blaszczyk et al, 1991; Kahaleh, 1993; Maddison et al, 1993).

(G) Other Reported Abnormalities: Joint pain; skeletal myopathy; abnormal renal physiology (renovascular disease; elevated plasma renin activity; reduced para-aminohippurate); association of linear scleroderma and melorheostosis; scleroderma renal crisis; association with hypothyroidism or hyperthyroidism, impotence, malignancies (Clements et al, 1994; Follansbee et al, 1993; Nicholson et al, 1986; Nowlin et al, 1986; Wenzel, 2002).

(H) Overlap syndromes: (1) lupus (SLE); (2) rheumatoid arthritis; (3) Sjogren syndrome; (4) polymyositis; portal hypertension (10 cases) (Pope, 2002; Tsuneyama et al, 2002).

Radiologic Manifestations:

(A) Skeletal System: (a) absorption of the distal phalanges; absorption of carpal bones and the distal portions of the radius and ulna (rare); foot involvement less common than hand (La Montagna et al, 2002); (b) periarticular soft tissue swelling; joint destruction; (c) soft tissue calcification; paraspinal calcinosis (van de Perre et al, 2003); (d) generalized osteoporosis; (e) carpal synostosis; (f) periosteal new bone formation of the long bones; (g) thickening of the skin (ultrasonographic measurement of the finger: 3.3 +/- 0.7 mm as compared with normal control subjects of 2.5 +/- 0.2 mm); (h) other manifestations: ankylosis of the interphalangeal joints; intra-articular calcification associated with bone erosion; osteolytic of the calcaneus in a child with localized scleroderma; rib erosion; resorption of ribs and the medial ends of the clavicles (Bassett et al, 1981; Doyle et al, 1990; Greenberg et al, 1991; Resnick et al, 1978; Shanks et al, 1983).

(B) Alimentary Tract: (a) wide and atonic esophagus with decreased peristalsis; stricture; Barrett esophagus; wide-mouth sacculations (Coggins et al, 2001); (b) atomic dilated stomach; (c) gastroesophageal reflux; (d) dilatation and sacculation of the small bowel with decreased motility and peristaltic activity; prolonged transit time; increased fluid; diverticula; packed valvulae; (e) areas of sacculation and narrowing of the colon and thickened longitudinal folds in the narrowed segment; increased fluid; postevacuation residua; increased length; lack of haustations; megacolon; thin section endo anal MRI: incontinence (deSouza et al, 1998); (f) other manifestations: corrugated mucosal pattern of the esophagus; atypical wide-mouthed esophageal diverticula (Agha et al, 1985; Bhalla et al, 1993; Campbell et al, 1986; Drane et al, 1986; Horowitz et al, 1973; Shamberger et al, 1983).

(C) Heart: Cardiomegaly; pericardial effusion (2/18) (Anvari et al, 1992; Thompson et al, 1998).

(D) Respiratory System: Small cystic areas in the lung; diffuse lung fibrosis; detection of interstitial lung disease by
high-resolution computed tomography (subpleural lines; honeycombing; parenchymal bands); pleural effusions (7%); lymphadenopathy with diffuse lung disease (75%) (Arroliga et al, 1992; Remy-Jardin et al, 1993; Schurwitzki et al, 1990; Seely et al, 1998; Singsen, 1986; Thompson et al, 1998; Wechsler et al, 1996).

(E) Other Reported Abnormalities: Widening of the peri-odontal membrane; dilatation of the pulmonary artery and main branches in patients with pulmonary arterial hypertension; diffuse spotty lucencies on the nephrogram phase of renal arteriography; MRI: hyperintense areas adjacent to cutaneous and bony lesions; intraspinous calcifications; pneumoperi- toneum; mediastinal lymphadenopathy; asymptomatic cere-bral hypoperfusion (CT SPECT); 13 megahertz US skin: “flattened yō-yō” appearance; In-antimyosin scintigraphy: cardiac involvement (Bhalla et al, 1993; Cosnes et al, 2003; Cutolo et al, 2000; Lekakis et al, 1999; Singsen, 1986; von Reinbold et al, 1986; Walden et al, 1990; Winograd et al, 1976) (Fig. SYME–S–7).

Therapy: Vasodilators, immunosuppressants, antifibrotics, new therapies (Sapadin et al, 2002; Sule et al, 2003).

Differential Diagnosis: (a) childhood scleromyositis; (b) mixed connective tissue disease; dermatomyositis; (c) scleroderma-like cutaneous syndromes (Mori et al, 2002) including Shulman syndrome (eosinophilic fasciitis); a scleroderma-like lesion, flexion contractures, limitation of joint movements, and firm taut skin (Hirai et al, 1992).

Note: (a) Focal scleroderma (fibrosis of the skin and subcutaneous tissues with frequent extension into underlying muscle and bone) is more common in children; morphea or linear scleroderma, joint contracture, limb deformity, leg length discrepancy, functional abnormalities, and cerebral abnormalities (Buckley et al, 1993; Liu et al, 1994); (b) scleroderma in childhood (rare): tuft resorption and soft tissue calcification in the fingers are more common in child scleroderma; small-bowel involvement, hand contractures, and erosive arthropathy are less frequent in children as compared with adults (Blaszczyk et al, 1991; Foedlvari, 2002; Shanks et al, 1983; Singsen, 1986); (c) soft tissue calcification is more common in females and in patients with extensive skin changes; the hands are the most common sites of calcification; other reported sites: knees, elbows, paraspinal, intraspinous, intervertebral disks, and so forth; (d) linear scleroderma and brain calcifications (Flores-Alvarado et al, 2003).

References

Agha FP et al: Barrett’s esophagus complicating scleroderma, Gastrointest Radiol 10:325, 1985.
Anvari A et al: Cardiac involvement in systemic sclerosis, Arthritis Rheum 35:1356, 1992.
Arroliga AC et al: Pulmonary manifestations of scleroderma, J Thorac Imaging 7(2):30, 1992.
Bassett LW et al: Skeletal findings in progressive systemic sclerosis (sclero-derma), AJR 136:1121, 1981.
Bhalla M et al: Chest CT in patients with scleroderma: prevalence of asym- ptomatic esophageal dilatation and mediastinal lymphadenopathy, AJR 161:269, 1993.
Blaszczzyk M et al: Childhood scleromyositis: an overlap syndrome associated with PM–ScI antibody, Pediatr Dermatol 8:1, 1991.
Buckley SL et al: Focal scleroderma in children: an orthopaedic perspective, J Pediatr Orthop 13:784, 1993.
Campbell WL et al: Specificity and sensitivity of esophageal muscle abnor-mality in systemic sclerosis (scleroderma) and related diseases: a cineradiography study, Gastrointest Radiol 11:218, 1986.
Clements PJ et al: Abnormalities of renal physiology in systemic sclerosis, Arthritis Rheum 37:67, 1994.
Coggins CA et al: Wide-mouthed sacculations in the esophagus in sclero-derma, AJR 176:953, 2001.
Cosnes et al et al: 13-megahertz US probe: diagnosing localized scleroderma, Br J Dermatol 148:724, 2003.
Cutole M et al: Evidence of cerebral hypoperfusion in scleroderma patients, Rheumatology 39:1366, 2000.
DeSouza NM et al: Fecal incontinence in scleroderma: thin-section endoanal MRI, Radiology 208:529, 1998.
Dessein PH et al: Autonomic dysfunction in systemic sclerosis: sympathetic overactivity and instability, Am J Med 93:143, 1992.
Doyle T et al: The radiographic changes of scleroderma in the hands, Australas Radiol 34:53, 1990.
Drane WE et al: Progressive systemic sclerosis: radionuclide esophageal scintigraphy and manometry, Radiology 160:73, 1986.
Flores-Alvarado DE et al: Linear scleroderma en coup de sabre and brain calcifications, J Rheumatol 30:193, 2003.
Foedlvari I: Scleroderma in children, Curr Opin Rheumatol 14:699, 2002 (review).
Follansbee WP et al: Cardiac and muscle disease in systemic sclerosis (scleroderma): a high risk association, Am Heart J 125:194, 1993.
Greenberg SB et al: Ischaemia of the small intestine in patients with systemic sclerosis (scleroderma), Am J Med 93:143, 1992.
Lüer W et al: Scleroderma heart disease: an unusual cause of positive antimyosin cardiac imaging, J Nucl Cardiol 6:91, 1999.
Liu P et al: Localized scleroderma: imaging features, Pediatr Radiol 24:207, 1994.
Lue W et al: Progressive inflammatory lesions of the brain parenchyma in localized scleroderma of the head, J Neurol 237:379, 1990.
Maddison PJ et al: Connective tissue disease and autoantibodies in the kin-dreds of 63 patients with systemic sclerosis, Medicine (Baltimore) 72:103, 1993.
Morgan JM et al: Hypoxic pulmonary vasoconstriction in systemic sclerosis and primary pulmonary hypertension, Chest 99:551, 1991.
Mori Y et al: Scleroderma-like cutaneous syndromes, Curr Rheumatol Rep 4:113, 2002 (review).

Figure SYME–S–7: Scleroderma. Osseous resorption (arrows) as transverse bands across the shafts of the distal phalanges. (From Bassett LW et al: Skeletal findings in progressive systemic sclerosis (scleroderma), AJR 136:1121, 1981. Copyright © by American Roentgen Ray Society. Used by permission.)
Scurvy

Synonyms: Vitamin C (ascorbic acid) deficiency; Barlow disease.

Clinical Manifestations:

(A) **Children:** Onset of symptoms usually between 3 months and 2 years of age: (a) irritability; (b) pain, swelling, tenderness, pseudoparalysis of the legs, knee–leg position, and external hemorrhage (skin, mucous membranes); painful limp; (c) swelling of the gums; (d) costal rosaries; limb deformities; (e) anemia.

(B) **Adults:** (a) muscle fatigue; (b) petechiae, purpura, ecchymoses, and subcutaneous and mucosal bleeding; (c) swelling, pain, and discoloration of the lower limbs; decreased range of motion of the ankle and knee joints; (d) enlargement and hyperkeratosis of the hair follicles with a red hemorrhagic halo; corkscrew deformity and swan neck deformity of hair; (e) anemia; (f) death in 16-18 century; (g) contributing factors: elderly, alcoholism, restricted diets, multiple inoculations (Clemetson), anorexia nervosa (Christopher).

Radiologic Manifestations: (a) generalized osteoporosis; ground-glass appearance; thickening of the provisional zone of calcification (Fränkel sign); white rim about the epiphyseal center (Wimberger sign); metaphyseal zone of demineralization; “corner sign” (subepiphyseal infraction); (b) fracture with epiphyseal slipping; subperiosteal hemorrhage; subperiosteal calcifying hemotoma; (c) metaphyseal cupping; ball-in-socket deformity of the epiphyseal–metaphyseal junction; improvement of the deformity in a long-range follow-up; premature closure of central epiphyseal growth plate (*cone epiphysis*) (Hoeffel et al, 1993).

Differential Diagnosis: (a) child abuse; (b) syphilis; (c) copper deficiency; (d) Menkes syndrome; (e) tyrosinosis.

Note: (1) Humans, unlike most mammals, cannot synthesize ascorbic acid.

Historical Note: (1) Scurvy in 10% of Egyptian mummy skeletons (Nerlich et al, 1993); (2) 1535, Canadian Indians exhibited cure for scurvy (tree extract) (Martini, 2002); (3) 1768, “Captain Cook’s beer” (beer/malt) for sailors to prevent scurvy (Stubb, 2003).

References

Chiw D et al: Vitamin C deficiency in patients with sickle cell anemia, *Am J Pediatr Hematol/Oncol* 12:262, 1990.

Christopher K et al: Early scurvy complicating anorexia nervosa, *South Med J* 95:1065, 2002.

Clemetson CA: Barlow’s disease, *Med Hypothesis* 59:52, 2002.

Ghobani AJ et al: Scurvy, *J Am Acad Dermatol* 30:881, 1994.

Gómez-Carrasco JA et al: Scurvy in adolescence, *J Pediatr Gastroenterol Nutr* 19:118, 1994.

Hirsch M et al: Neonatal scurvy: report of a case, *Pediatr Radiol* 4:251, 1976.

Hoeffel JC et al: Cone epiphysis of the knee and scurvy, *Eur J Pediatr Surg* 3:186, 1993.

Martini E: Jacques Cartier witness treatment for scurvy, *Vesalius* 8:2, 2002.

Nerlich A et al: Anthropological and paleopathological analysis in upper Egypt, *Anthropol Anz* 58:321, 2000.

Quiles M et al: Epiphyseal separation in scurvy, *J Pediatr Orthop* 8:223, 1988.

Reuler JB et al: Adult scurvy, *JAMA* 253:805, 1985.

Silverman FN: Recovery from epiphyseal invagination: sequel to an unusual complication of scurvy, *J Bone Joint Surg Am* 52:384, 1970.

Stubb BS: Captain Cook’s beer: the ascorbic use of malt and beer in late 18 century sea voyages, *Asia Pac J Clin Nutr* 12:129, 2003.

SEABLUE HISTIOCYTE SYNDROME

MIM#: 269600.

Mode of Inheritance: AR; locus:19q13.2, mutations in APOE gene (Nguyen et al, 2000).

Clinical Manifestations: (a) abnormal cells (histiocytes) containing large blue cytoplasmic granules in the bone marrow, skin, lung, gastrointestinal tract, nervous system, and spleen; (b) splenomegaly; hepatomegaly; progressive hepatic cirrhosis; lymphadenopathies; (c) periodic hemorrhagic diathesis associated with thrombocytopenia; (d) other reported abnormalities: retinal involvement; nervous system involvement; (e) associations: cholesterol ester storage disease, Niemann-Pick disease (type B) and liver lesion (Strigaris et al, 1993),
parenteral nutrition (Bigorgne et al, 1998), myelofibrosis (Yamauchi et al, 1995), myelodysplastic syndromes (Howard et al, 1993).

Radiologic Manifestations: (a) pulmonary nodular densities, hilar adenopathy; (b) hepatosplenomegaly.

References

Ashwal S et al: A new form of sea-blue histiocytosis associated with progressive anterior horn cell and axon degeneration, Ann Neurol 16:184, 1984.
Besley GTN et al: Cholesterol ester storage disease in an adult presenting with sea-blue histiocytosis, Clin Genet 26:195, 1984.
Bigorgne C et al: Sea-blue histiocyte syndrome secondary to total parenteral nutrition, Leuk Lymphoma 28:523, 1998.
Howard MR et al: Sea-blue histiocytosis: in myelodysplastic syndromes, J Clin Pathol 46:1030, 1993.
Jones B et al: Sea-blue histiocyte disease in siblings, Lancet 2:73, 1970.
Nguyen TT et al: Familial splenomegaly: associated with apolipoprotein E mutation, J Clin Endocrinol Metab 85:4354, 2000.
Sawitzky A et al: An unidentified reticuloendothelial cell in bone marrow, Lancet

SECKEL SYNDROME

MIM#: 210600.

Synonyms: Bird-headed dwarfism; Virchow-Seckel dwarfism; microcephalic primordial dwarfism I.

Mode of Inheritance: Probably autosomal recessive; clinically and genetically heterogeneous; loci: 3q22.1-q24, 18p11.31-., 14q23 (Borglum et al, 2001; Favier et al, 2002; Goodship et al, 2000; Kilinc et al, 2003), splicing mutation (O’Driscoll et al, 2003).

Clinical Manifestations: (a) low birth weight; dwarfism; (b) mental retardation; (c) “bird-headed appearance”: microcephaly; beaklike protrusion of the nose; hypoplasia of the cheek bones; prominent eyes; ocular hypertelorism; pigmentary retinopathy (Guirgis et al, 2001); micrognathia; (d) other reported abnormalities: low-set ears; lobeless ears; high-arched or cleft palate; cryptorchidism; various urogenital anomalies; cardiac anomalies; flexion contracture of the elbows; malignant hypertension (Sorof et al, 1999); hematologic abnormalities (25%): myelodysplasia (Chanan-Khan et al, 2003); hypoplastic anemia; aplastic anemia; pancytopenia; chromosomal instability (Bobabilla-Morales et al, 2003); acute myeloid leukemia.

Radiologic Manifestations: (a) microcrania; ocular hypertelorism; hypoplasia of the maxillae and mandible; (b) hand and wrist: ivory epiphyses; cone-shaped epiphyses in the proximal phalanges; disharmonic skeletal maturation (carpals; phalanges); alteration in tubular bone length; small carpal bones; angular carpal bone configuration; normal or increased cortical thickness of the metacarpals; incurring of the distal phalanges; clubbing of fingers; hypoplastic thumb; (c) other reported abnormalities: premature closure of cranial sutures; MRI: Chiari I malformation (Hopkins et al, 2003), agenesis corpus callosum, neuronal migration disorder, cerebral dysgenesis (three cases) (Shanske et al, 1998), normal brain (Carfagnini et al, 1999); intracranial aneurysms (D’Angelo et al, 1998); missing or atrophic teeth; kyphoscoliosis; sternal anomalies; absence of patellae; absence of tibiofibular joints; short fibulas; dislocations (hip; knee; elbow); rhizomelic shortening of the humeri and femora; (d) prenatal US: downsizing palpebral fissures (Mielke et al, 1997).

Differential Diagnosis: (a) osteodysplastic primordial dwarfism, other types; (b) cephaloskeletal dysplasia; (c) Seckel-like syndrome: microphthalmos, coloboma, cloudy cornea, genitourinary (GU) anomalies, cardiac defects, anal stenosis (Fryns et al, 1997); (d) Kennerknecht syndrome: ambiguous/normal genitalia, GU anomalies, diaphragmatic defect, Seckel-like dwarfism (AR, 3 sibships) (Silengo et al, 2001); (e) Seckel-like syndrome: severe hydropic hydrocephalus (Arnold et al, 1999); (f) ring chromosome 4 mosaicism (Anderson et al, 1997).

Note: Also see: Microcephalic osteodysplastic primordial dwarfism (types).

References

Anderson CE et al: Ring chromosome 4 mosaicism and signs of Seckel syndrome, Am J Med Genet 72:281, 1997.
Arnold SR et al: Seckel-like syndrome in 3 siblings, Pediatr Dev Pathol 2:180, 1999.
Bobabilla-Morales L et al: Chromosome instability in Seckel syndrome patients, Am J Med Genet 123A: 148, 2003.
Bondeson J: Caroline Crachiami, the Sicilian fairy: a case of bird-headed dwarfism, Am J Med Genet 44:210, 1992.
Borglum AD et al: A new locus for Seckel syndrome 18p11.31-q11.2, Eur J Hum Genet 9:753, 2001.
Carfagnini F et al: MR findings in Seckel syndrome, Pediatr Radiol 29:849, 1999.
Cervera J et al: Seckel’s dwarfism: analysis of chromosome breakage and sister chromatid exchanges, Ann Dis Child 133:555, 1979.
Chanan-Khan A et al: T-cell clonality and myelodysplasia with features of Seckel syndrome, Haematologia 88:ECR 14, 2003.
D’Angelo VA et al: Multiple intracranial aneurysms in a patient with Seckel syndrome, Childs Nerv System 14:82, 1998.
Esperou-Bourdeau H et al: Aplastic anemia associated with “bird-headed” Seckel syndrome (Seckel syndrome), Nouv Rev Fr Hematol 35:99, 1993.
Favier L et al: Clinical and genetic heterogeneity of Seckel syndrome, Am J Med Genet 112:379, 2002.
Frys JP et al: Prenatal growth retardation, microphthalmos/iris coloboma, Clin Genet 51:164, 1997.
Goodship J et al: Autozygosity mapping of Seckel syndrome 3q22.1-q24, Am J Hum Genet 67:498, 2000.
Guirgis MF et al: Ocular manifestations of Seckel syndrome, Am J Ophthalmol 132:596, 2001.
Hayani A: Acute myeloid leukaemia in a patient with Seckel syndrome, J Med Genet 31:148, 1994.
Hopkins TE et al: Rapid development of Chiari I with Seckel syndrome and craniosynostosis …, J Neurosurg 98:1113, 2003.
Kilinc MO et al: Is the novel SCKL3 at 14q23 the predominant Seckel locus? Eur J Hum Genet 11:851, 2003.
Krishna AG et al: Seckel syndrome in a Yemeni family in Saudi Arabia, Am J Med Genet 51:224, 1994.
Senior Syndrome

MIM#: 113477.

Synonyms: Brachymorphism-onychodysplasia-dysphalangism syndrome; BOD.

Frequency: About 12 reported cases to 2003.

Clinical and Radiologic Manifestations: (a) short stature at birth; (b) minute toenails (one or more small toes bilaterally); (c) dysphalangism: brachydactyly; hypoplasia/aplasia or fusion of the distal phalanges of the fifth finger and toe; brachymesophalangism V; incurving of the fifth fingers; (d) other reported abnormalities: mild intellectual impairment; microcephaly; sparse hair; facial dysmorphism: broad nose; wide mouth; cardiac defects (Ounap et al, 1998).

Differential Diagnoses: (1) Coffin-Siris syndrome; (2) BOD-like (AD): large boxy head, hypertelorism, no MR (Elliott et al, 2000).

References

Elliott AM et al: New AD syndrome reminiscent of Coffin-Siris syndrome and BOD syndrome, Clin Dysmorphol 9:15, 2000.

Ounap K et al: Two sisters with growth failure, microcephaly, peculiar facies and apical dystrophy, Clin Dysmorphol 7:45, 1998.

Senior B: Impaired growth and onychodysplasia: short children with tiny toenails, Am J Dis Child 122:771, 1971.

Verloes A et al: Brachymorphism-onychodysplasia-dysphalangism syndrome, J Med Genet 30:158, 1993.

Figure SYME–S–8 * Shapiro syndrome. A 25-year-old man with a central defect in temperature regulation. Magnetic resonance imaging showing absence of corpus callosum. (From Walker BR, Anderson J, Edwards CRW: Clonidine therapy for Shapiro’s syndrome, Q J Med 82:235, 1992. By permission of Oxford University Press.)

SHAPIRO SYNDROME

Synonym: Spontaneous periodic hypothermia.

Frequency: About 21 reported cases to 2003.

Clinical Manifestations: (a) episodic hyperhidrosis and hypothermia (a central defect in temperature regulation); (b) abnormal electroencephalographic findings; (c) other reported abnormalities: seizures; primary organic polydipsia; insufficient antidiuretic hormone secretion; pituitary dwarfism; precocious puberty; behavioral disturbances during attack; altered norepinephrine (NE) metabolism (increased NE release rate into the extravascular compartment and decreases in NE clearance and volume of distribution of NE in the intravascular compartment); “reverse Shapiro syndrome” (agenesis of corpus callosum associated with periodic hyperthermia).

Radiologic Manifestations: Agenesis of the corpus callosum (Fig. SYME–S–8).
Differential Diagnosis: (1) paroxysmal episodic central thermoregulatory failure (Magnifico et al, 2002); (2) Shapiro syndrome-like disorder: forebrain abnormality (Klein et al, 2001); (3) ectodermal dysplasia, hypohydrosis, hypothryoidism, agenesis of corpus callosum (MIM# 225040).

References

Hirayama K et al: Reverse Shapiro syndrome: a case of agenesis of corpus callosum associated with periodic hyperthermia, Arch Neurol51:494, 1994.

Klein CJ et al: Basal forebrain malformation with hyperhidrosis and hyperthermia: variant Shapiro syndrome, Neurology 56:254, 2001.

Magnifico F et al: Paroxysmal episodic central thermoregulatory failure, Neurology 58:1300, 2002.

Sanfield JA et al: Altered norepinephrine metabolism in Shapiro’s syndrome, Arch Neurol 46:53, 1989.

Segeren CM et al: Agenesis of corpus callosum associated with paroxysmal episodic central thermoregulatory failure (Magnifico et al, 2002); (2) Shapiro syndrome, Neth J Med 50:29, 1997.

Shapiro WR et al: Spontaneous recurrent hypothermia accompanying age
ness of corpus callosum, Brain 92:423, 1969.

Walker BR et al: Clonidine therapy for Shapiro’s syndrome, Q J Med 82:235, 1992.

SHEEHAN SYNDROME

Pathology: Necrosis of the pituitary during the postpartum period; secondary atrophy of thyroid, adrenal cortex, and ovaries.

Clinical Manifestations: (a) acute postpartum shock followed by asthenia; failure of lactation; amenorrhea or menstrual irregularity; pallor; anorexia; brachycardia; hypotension; weight loss; cachexia; clinical manifestations of hypothryoidism, adrenal insufficiency, diabetes insipidus (Kan et al, 1998), and gonadal insufficiency; (b) lower than normal response to provoked combined pituitary stimulation (Dash et al, 1993).

Radiologic Manifestations: (a) small sella turcica; (b) empty sella turcica (partial or complete); visible pituitary stalk; pituitary residue usually less than one third normal size; hypodense (CT) residual pituitary gland; (c) MR imaging in pituitary apoplexy (sudden degeneration of pituitary gland); enhancement of adjacent dura after injection of contrast medium has been observed (Koenigsberg et al, 1994), empty sella/optic chiasma invagination (Scheller et al, 1997); MRI, gad-enhanced: enlarged pituitary, rim of increased signal, isointense central area (Vaphiades et al, 2003).

Note: In Burma, a bite by a Russell’s viper has been reported to be a common cause of anterior pituitary failure in long-term survivors.

References

Bakiri F et al: The sella turcica in Sheehan’s syndrome: computerized study in 54 patients, J Endocrinol Invest 14:193, 1991.

Burke CW: The anterior pituitary, snakebite and Sheehan’s syndrome, Q J Med 74:331, 1990.

Dash RJ et al: Sheehan’s syndrome: clinical profile, pituitary hormone response and computed sellar tomography, Austral NZ J Med 23:26, 1993.

Kan AK et al: A case report of Sheehan syndrome presenting with diabetes insipidus, Aust N Z J Obstet Gynaecol 38:224, 1998.

Koenigsberg RA et al: Pituitary apoplexy associated with dural (tail) enhancement, AJR 163:227, 1994.

Reye von: Die ersten klinischen Symptom bei Schwund des Hypophysenvorderlappens (Simmondsche Krankheit) und ihre erfolgreiche Behandlung, Dtsch Med Wochenscr 54:696, 1928.

Scheller TF et al: MRI in Sheehan syndrome, Endocrine Pract 3:82, 1997.

Sheehan HL: Post-partum necrosis of the anterior pituitary, J Pathol Bacterial 45:189, 1937.

Simmonds M: Ueber Hypohyposischwund mit tödlichem Ausgang, Dtsch Med Wochenscr 40:322, 1914.

Tolis G et al: Sheehan’s syndrome: in vivo diagnosis with the use of comput-erized axial tomography and pituitary provocative testing, Fertil Steril 41:146, 1984.

Vaphiades MS et al: Sheehan syndrome: a splinter of the mind, Surv Ophthal-34:32, 1993.

SHONE COMPLEX

Frequency: About 50 cases reported to 2003 (children, few adults) (Prunier et al, 2001).

Clinical and Radiologic Manifestations: (1) components: (a) “parachute mitral valve” (all the mitral chords insert into one papillary muscle or muscle group); (b) supravalvular ring of the left atrium; (c) subaortic stenosis; (d) coarctation of the aorta; (e) pulmonary vein atresia (Cheng et al, 1999); (2) MRI characterization: (a) regurg/stenotic mitral flow; (b) abnormal valve motion/papillary muscle; (c) narrow/abnormal flow subaortic region; (d) coarctation (Roche et al, 1998).

Associations: (1) Adams-Oliver syndrome (Lin et al, 1998); (2) CHILD syndrome (Hebert et al, 1987).

References

Cheng CF et al: Pulmonary vein atresia with Shone anomaly in an infant, Acta Cardiol 54:287, 1999.

Draulans-Noe HAY et al: Single papillary muscle (“parachute valve”) and double-orifice left ventricle in atriocentric septal defect convergence of chordal attachment: surgical anatomy and results of surgery, Pediatr Cardiol 11:29, 1990.

Hebert AA et al: The CHILD syndrome, Arch Dermatol 123:503, 1987.

Lin AE et al: Adams-Oliver syndrome associated with cardiovascular malformations, Clin Dysmorphol 7:235, 1998.

Prunier F et al: Discovery of parachute mitral valve complex Shone anomaly) in an adult, Echocardiography 18:179, 2001.

Roche KJ et al: MR findings in Shone complex of left heart obstructive lesions, Pediatr Radiol 28:841, 1998.

Shone JD et al: The developmental complex of “parachute mitral valve,” supravalvular ring of left atrium, subaortic stenosis, and coarctation of aorta, Am J Cardiol 11:714, 1963.

Yu J et al: Shone’s anomaly: report of one case, Acta Paediatr Sin 34:32, 1993.

SHORT-BOWEL SYNDROME

Etiology: (a) congenital (rare); familial cases (Sabharwal et al, 2004); (b) acquired: (1) postsurgical: atresia; volvulus; gastrochisis (Ramsden); total intestinal aganglionosis; necrotizing enterocolitis, particularly in cases with an absence of the distal portion of the ileum and ileocecal valve or resection of more than two thirds of the small bowel.
(Davenport et al, 2001); (2) mesenteric thrombosis, various etiologies (Oguzkurt et al, 2000).

Pathology: Adaptation changes in the bowel wall: increased diameter of the intestine; increase in villus height; increase in crypt depth; hyperplasia-increased cell proliferation and migration rate; increased rate of DNA synthesis and total DNA, RNA, and protein concentrations; increase in water, electrolyte, and nutrient transport per centimeter of small intestine; increase in mucosal enzymes per centimeter of small intestine; changes in tissue metabolism accompanied by regeneration and growth.

Clinical Manifestations: (a) diarrhea; steatorrhea; dehydration; malnutrition; failure to thrive; vomiting; gastric hypersecretion; metabolic acidosis resulting from D-lactic acidosis related to abnormal intestinal bacterial flora; encephalopathy resulting from D-lactic acidosis; oxaluria; (b) noninfectious colitis associated with short gut syndrome and parenteral nutrition; (c) complications: gallstones, kidney stones; synovial lipomatosis (Siva et al, 2002); pneumatosis intestinalis (Kurbegov et al, 2001).

Radiologic Manifestations: increased diameter of the small intestine; thickening and hypertrophy of the bowel wall, plain films: multiple air/fluid levels; prenatal diagnosis (US): dilated short loops of bowel (Aviram et al, 1998).

Therapy: (1) electrical stimulation (Lin et al, 2002); (2) dietary management (Ukleja et al, 2002), pharmacotherapy/growth factors (Schwartz et al, 2001); (3) intestinal transplantation (Pirenne et al, 2001; Reyes, 2001); (4) serial transverse enteroplasty-bowel lengthening (STEP) (Kim et al, 2003), serosal matching (Freud et al, 2001).

Note: A syndrome with autosomal recessive inheritance and a congenitally short small bowel in association with malrotation, functional intestinal obstruction, and in a high percentage of cases, hypertrophic pyloric stenosis has been reported (Kern et al, 1990); pseudo-short bowel syndrome radiographically: gnotoschisis without infarction, bowel dilatation/air-fluid levels secondary to amnionic fluid bathing (Lachman).

References

Aviram R et al: Congenital short-bowel syndrome: prenatal sonographic findings of a fatal anomaly, J Clin Ultrasound 26:106, 1998.

Davenport M et al: Closed gastrochisis: antenatal and postnatal features, J Pediatr Surg 36:1834, 2001.

Freud E et al: Insights from animal models for growing intestinal neomucosa with serosal patching, Lab Anim 35:180, 2001.

Galea MH et al: Short-bowel syndrome: a collective review, J Pediatr Surg 27:592, 1992.

Kern IB et al: Congenital short gut, malrotation, and dysmotility of the small bowel, J Pediatr Gastroenterol Nutr 11:411, 1990.

Kim HB et al: Serial transverse enteroplasty (STEP), J Pediatr Surg 38:425, 2003.

Kurbegov AC et al: Pneumatosis intestinalis in non neonatal pediatric patients, Pediatrics 108:402, 2001.

Lachman RS: personal experience.

Lin Z et al: Advances in gastrointestinal electrical stimulation, Crit Rev Biomed Eng 30:419, 2002.

Nordgaard I et al: Colon as a digestive organ in patients with short bowel, Lancet 343:373, 1994.

Oguzkurt P et al: Mesenteric vascular occlusion resulting in intestinal necrosis in children, J Pediatr Surg 35:1161, 2000.

Pirenne J et al: Recent advances in transplantation, Pediatr Transplant 5:452, 2001.

Ramsden WH et al: Gastroschisis: a radiological and clinical review, Pediatr Radiol 27:166, 1997.

Reyes J: Intestinal transplantation for children with short bowel syndrome, Semin Pediatr Surg 10:99, 2001.

Sabharwal G et al: Congenital short-gut syndrome, Pediatr Radiol 34:424, 2004.

Schwartz MZ et al: Pharmacotherapy and growth factors in treatment of short bowel syndrome, Semin Pediatr Surg 10:81, 2001.

Sigalet DL: Short bowel syndrome in infants and children, Semin Pediatr Surg 10:49, 2001 (review).

Siva C et al: Synovial lipomatosis affecting multiple joints in short bowel syndrome, J Rheumatol 29:1088, 2002.

Taylor SF et al: Noninfectious colitis associated with short gut syndrome in infants, J Pediatr 119:24, 1991.

Ukleja A et al: Nutritional management of short bowel syndrome, Semin Gastrointest Dis 13:161, 2002.

SHOULDER IMPINGEMENT SYNDROME

Synonyms: Rotator cuff impingement syndrome; SIS.

Clinical Manifestations: Because of pressure on the supraspinatus tendon by the anterior portion of the acromion with the arm in abduction and/or forward flexion, resulting in edema and hemorrhage into the rotator cuff in the early stage followed by fibrosis, tendinosis, tears of the rotator cuff, and biceps tendon rupture: pain during abduction and external rotation of the arm; neck pain (Gorski et al, 2003); bursoscopy with normal histology of undersurface acromion: impingement at coracoclavicular ligament (Suenaga et al, 2002).

Associations and Etiologies: (1) familial agenesis of acromion (Hermans et al, 1999); (2) os acromiale (Swain et al, 1996).

Radiologic Manifestations: (a) subacromial proliferation of bone, spurring of the interior aspect of the acromioclavicular joint, degenerative changes in the humeral tuberosities, and decreased coraco-humeral distance; scapular rotational tilt impaired on AP view (Endo et al, 2001); (b) magnetic resonance imaging: increased signal intensity in the tendinous portion of the rotator cuff (resulting from degeneration and inflammation); supraspinatus tear; arm elevation position acromiohumeral distance; decreased (discriminant) (Hebert et al, 2003); after therapeutic injection (<24 hours); fluid may not be pathologic (Major, 1999); (c) dynamic sonography (lateral and anterior elevation of the arm): fluid collection in subacromial-subdeltoid bursal system, with gradual distension of the bursa and lateral pooling of fluid to the subdeltoid portion while the arm is elevated; (d) arthro-MR (Lee et al, 2000), arthro-CT: for tendon tears (Beltran et al, 1986; Godefroy et al, 2001); cine-MR (Allmann et al, 1997).

Note: (1) drooping shoulder syndrome: inferior subluxation of glenohumeral joint (fracture, brachial plexus injury, hemiplegia, arthropathy, calcific tendinitis-rotator cuff); (Prato et al, 2003).
References

Allman KH et al: Cine-MRI of the shoulder, *Acta Radiol* 38:1043, 1997.
Beltran J et al: Rotator cuff lesions of the shoulder: evaluation by direct sagittal CT arthrography, *Radiology* 160:161, 1986.
Endo K et al: Radiographic assessment of scapular rotational tilt in chronic SJS, *J Orthop Sci* 6:3, 2001.
Farin PU et al: Shoulder impingement syndrome: sonographic evaluation, *Radiology* 176:845, 1990.
Godeffroy D et al: Shoulder imaging: what is best modality, *J Radiol 82:317*, 2001.
Gorski JM et al: Shoulder impingement presenting as neck pain, *J Bone Joint Surg Am* 85:635, 2003.
Hebert LJ et al: Acromiohumeral distance in seated position with impingement syndrome, *J Magn Reson Imaging* 18:72, 2003.
Hermans JJ et al: Familial congenital bilateral agenesis of acromion, *Surg Radiol Anat* 21:337, 1999.
Jim YF et al: Shoulder impingement syndrome: impingement view and arthrography study based on 100 cases, *Skeletal Radiol* 21:449, 1992.
Kilcoyne RF et al: Optimal plain film imaging of the shoulder impingement syndrome, *AJR* 153:795, 1989.
Lee SU et al: MR and MR arthrography to identify in shoulder joint, *Eur J Radiol* 35:126, 2000.
Major NM: MRI after therapeutic injection of subacromial bursa, *Skeletal Radiol* 28:628, 1999.
Prato N et al: Calcific tendinitis of rotator cuff as cause of drooping shoulder, *Skeletal Radiol* 32:82, 2003.
Suenaga N et al: The correlation between bursoscopic and histologic findings with SIS, *Arthroscopy* 18:16, 2002.
Swain RA et al: The os acromiale: another cause of impingement, *Med Sci Sports Exerc* 28:1459, 1996.

SHPRINTZEN-GOLDBERG SYNDROME

MIM#: 182212.

Mode of Inheritance: AD; locus 15q21.1, mutation in fibrillin-1 gene.

Frequency: About 17 cases to 2003.

Clinical and Radiologic Manifestations: Marfanoid features: (a) craniosynostosis, hydrocephalus; abnormal CI, C2; Chiari I malformation; (Greally et al, 1998); (b) exopthalmos; (c) maxillary and mandibular hypoplasia; (d) soft tissue hypertrophy of the palatal shelves; (e) low-set, pliable auricles; (f) atrioventricular, camptodactyly; marfanoid habitus; (g) abdominal hernias; (h) obstructive apnea; (i) mental retardation, development delay; (j) joint contractures; osteopenia (Hassad et al, 1997), thin (slightly twisted) ribs, tall vertebrae, overmodeled diaphyses (Nishimura et al, 1996); (k) cardiovascular: aortic root dilatation, mitral valve prolapse (Fukunaga et al, 1997).

Differential Diagnosis: (1) Marfan syndrome; (2) fronto-metaphyseal dysplasia.

Note: (1) Shprintzen omphalocele syndrome: dysmorphic facies, pharyngeal/laryngeal hypoplasia, scoliosis MIM#: 182212; (2) Shprintzen-Goldberg-like: web neck, aortic dilatation, pneumothoraces (Lee et al, 2000); (3) Shprintzen-Goldberg plus: glucocorticoid deficiency (17OH deficiency) (Adachi et al, 1999); contiguous gene ? (tetrasomy 15q25-qter): also bilateral Wilms tumor (Hu et al, 2002).

References

Adachi M et al: A male patient presenting with corticoid deficiency and skeletal dysplasia, *Endocr J* 46:285, 1999.
Fukunaga S et al: Aortic root replacement for annuloaortic ectasia in Shprintzen-Goldberg syndrome: a case report, *J Heart Valve Dis* 6:181, 1997.
Greally MT et al: Shprintzen-Goldberg syndrome: a clinical analysis, *Am J Med Genet* 76:202, 1998.
Hassed S et al: Shprintzen-Goldberg syndrome with osteopenia and progressive hydrocephalus, *Am J Med Genet* 70A:450, 1997.
Hu J et al: Tetrasomy 15q25.3-pter, *Am J Med Genet* 113:82, 2002.
Lee YC et al: Marfanoid habitus, dysmorphic features, web neck, *South Med J* 93:1197, 2000.
Nishimura G et al: Radiographic findings in Shprintzen-Goldberg syndrome, *Pediatr Radiol* 26:775, 1996.
Shprintzen RJ, Goldberg RB: A recurrent pattern syndrome of craniosynostosis associated with arachnodactyly and abdominal hernias, *J Craniofac Genet Dev Biol* 2:65, 1982.

SHY-DRAGER SYNDROME

MIM#: 146500.

Synonyms: Progressive autonomic nervous system failure; multiple system atrophy.

Mode of Inheritance: Possibly autosomal dominant.

Pathology: Symmetrical degeneration in the tractus intermediolateralis, hypothalamus, caudate nuclei, Onuf nucleus of the sacral cord (Lu et al, 1997); ? complete autonomic failure (Parikh et al, 2002).

Clinical Manifestations: (a) orthostatic hypotension without acceleration of the pulse; supine hypertension (50%) (Biaggione et al, 2002); (b) urinary and fecal incontinence; abnormal urodynamic study results (detrusor areflexia; detrusor hyperreflexia; lower neuron lesion involving periurethral striated muscle); (c) erectile impotence; (d) anhidrosis; (e) other reported abnormalities: paralysis of the laryngeal abductor muscles (vocal cords); association with: pheochromocytoma; iris atrophy; external ocular palsies; rigidity; tremor; fasciculations; myasthenia; anterior horn cell neuropathy; olfactory dysfunction (anosmia or microsmia); bullous pemphigoid (Okazaki et al, 1998); Ménéière disease.

Radiologic Manifestations: (a) magnetic resonance imaging: a decrease in signal intensity of the putamina, particularly along their lateral and posterior portions (T2-weighted sequences and T1-weighted spin-echo sequences); loss of signal intensity in the pallidum of moderate to marked degree; loss of signal intensity in the substantia nigra and, to a lesser degree in the red nucleus (Lu et al, 1997); high signal rim-putamen (Naka et al, 2002); PET: cerebral blood flow regulation is spared (Ogawa et al, 1998); (b) open vesical neck at rest; (c) other reported abnormalities: duplication (fenestration) basilar artery (Tutsushi et al, 2002).

Therapy: (1) vasopressin (Vallejo et al, 2002).
Sialic Acid Storage Diseases

Classification and Manifestations:

1. **Sialidosis (neuraminidase deficiency).**
2. Salla disease.
3. Sialuria (MIM# 269921): Hepatosplenomegaly, developmental delay, difficulty with fine motor skills, etc.; urinary excretion of free sialic acid.
4. Infantile sialic acid storage disease (MIM# 269920): loci: 6q14-15, mutations in SLC17A5 (Salla) gene (Kleta et al, 2003): A rapidly progressive neurovisceral storage disorder with onset of symptoms in early infancy: unusually fair complexion, coarse facial features, severe mental and motor retardation, dystonia, hepatosplenomegaly, nephrosis, vacuolization of peripheral lymphocytes, short life span.
5. Nephrosialidosis (MIM# 256150): early glomerulonephropathy, dystosis multiplex, early death.
6. Galactosialidosis (MIM# 256540): dystosis multiplex, combination of neuraminidase and beta-galactosidase deficiency.

References

Bawa R et al: Bilateral vocal cord paralysis with Shy-Drager syndrome, Arch Otolaryngol Head Neck Surg 109:911, 1993.
Biaggione I et al: Hypotension in orthostatic hypotension and autonomic dysfunction, Cardiol Clin 20:291, 2002.
Chadenas D et al: Pheochromocytome associé a un syndrome de dysautonomie de Shy et Drager, Presse Med 16:965, 1987.
Hinton AE et al: Shy-Drager syndrome presenting as Ménière's disease, Am J Otol 14:407, 1993.
Koike Y et al: Autonomic dysfunction in Parkinson disease, Eur Neurol 38(suppl)1, 1997.
Lu X et al: Correlative studies of MR findings with neuropathology in SHY-Drager syndrome, Chin Med J 110:628, 1997.
Naka H et al: Characteristic MRI findings in multiple system atrophy: comparison of 3 subtypes, Clin Auton Res 3:281, 1993.
Ogawa M et al: Cerebral blood flow Shy-Drager syndrome type: a PET study, J Neurol Sci 158:173, 1998.
Ogata T et al: Bullous pemphigoid associated with Shy-Drager syndrome, J Dermatol 25:465, 1998.
Parikh SM et al: The nature of autonomic dysfunction in multiple system atrophy, J Neurol Sci 109:911, 1993.
Paschke E et al: Storage material from urine and tissue in the nephropathic phenotype of infantile sialic acid storage disease, J Inher Metab Dis 15:47, 1992.

SIALIDOSIS

MIM#: 256550.

Definition: A group of inborn errors of metabolism caused by the intracellular accumulation of sialic acid-containing oligosaccharides; two clinical forms (a) type I: no dysmorphism, late onset; type II: dysmorphism, dysostosis multiplex, variable onset (see forms) (Rodriguez-Criado et al, 2003).

Mode of Inheritance: Autosomal recessive; locus: 6p21.3, mutations in sialidase gene NEU1 (Seyrantepe et al, 2003); clinical severity related to mutation type (Bonten et al, 2000).

Enzyme Deficiency: Glycoprotein-specific N-acetylneuraminidase.

Frequency: 1:4.2 million live births (Meikle et al, 1999).

Clinical Manifestations:

(A) Early Infantile Form (Congenital Sialidosis):
Nonimmune hydrops fetalis, ascites, hepatosplenomegaly, failure to thrive, and recurrent infections; death usually occurs within the first year of life; refractory ascites (Sergi et al, 1999); prenatal diagnosis (cultured amniotic cells).

(B) Late Infantile Form: Motor retardation, progressive neurologic deterioration, axial hypotonia, limb hypertonicity, hepatosplenomegaly, coarse facial features, and recurrent infections; death in early childhood;

(C) Juvenile Form (previously known as “mucolipidosis I”):
Progressive neurologic deterioration, impaired hearing, impaired speech, Hurler-like appearance in early childhood, hernias, myoclonus, ataxia, cherry-red macular spot, mental retardation, and hepatosplenomegaly; survival into early adulthood.

(D) Adult Form (cherry-red spot–myoclonus syndrome): Onset in adolescence, progressive myoclonus, bilateral macular cherry-red spots, gradual visual loss, and normal or near normal intelligence; death in the fourth decade of life.

(E) Other Reported Abnormalities: Coincident neuraminidase and aspartoacylase deficiency associated with
chromosome 9q paracentric inversion in a family; nephrosis in infantile sialic acid storage disease.

Radiologic Manifestations:

(A) Infantile Form: Coarsened bony trabecular pattern mainly in the long bones; metaphyseal irregularity and increased density; striplike intracranial echogenicities in the region of the basal ganglia with color Doppler demonstrating blood flow within the echogenicities (vasculopathy).

(B) Juvenile Form: (a) mild to moderate dysostosis multiplex: flat vertebral bodies; beaking of vertebral bodies; irregular vertebral end plates; small and flared iliac wings; shallow acetabular roofs; flat capital femoral epiphyses; coxa valga; thickened calvaria; mandibular prognathism; osteopenia; thin cortex of the tubular bones; cystic-type changes of the phalanges; bifid ossification of the calcaneus; (b) skeletal maturation retardation; (c) cardiomegaly; (d) persistent pulmonary infiltrates.

(C) Type I: (a) MRI: cerebellar/ pontine atrophy cerebrum/ corpus callosum, early 4th ventricular dilatation (Palmeri et al, 2000); (b) SPECT: decreased blood flow occipital lobes; PET: decreased glucose metabolism occipital lobes (Nishiyama et al, 1997) (Fig. SYME–S–9).

References

Beck M et al: Neuraminidase deficiency presenting as non-immune hydrops fetalis, Eur J Pediatr 143:135, 1984.
Bonten RJ et al: Novel mutations in lysosomal neuraminidase determine clinical severity in sialidosis, Hum Mol Genet 9:2715, 2000.
Gascon GG et al: Coincident neuraminidase and aspartoacylase deficiency associated with chromosome 9q paracentric inversion in a Saudi family, J Child Neurol 7(suppl):S73, 1992.
Meikle PJ et al: Prevalence of lysosomal storage disorders, JAMA 281:249, 1999.
Nishiyama Y et al: Neuroradiological findings on cerebral blood flow in adult onset sialidosis, Rinsho Shinkeigaku 37:982, 1997.
Palmeri S et al: Type I sialidosis: neuroradiological study, Eur Neurol 43:88, 2000.

Figure SYME–S–9 = Sialidosis in a 2-year-old girl with wide ribs and mild cardiomegaly. (From Kelly TE et al: Mucolipidosis I (acid neuraminidase deficiency), Am J Dis Child 135:703, 1981. Used by permission.)

Ries M et al: Colour Doppler imaging of the intracranial vasculopathy in severe infantile sialidosis, Pediatr Radiol 22:179, 1992.
Rodriguez-Criado G et al: Clinical variability of type II sialidosis by C808T mutation, Am J Med Genet 116A:368, 2003.
Sasagasako N et al: Prenatal diagnosis of congenital sialidosis, Clin Genet 44:8, 1993.
Sergi C et al: Refractory congenital ascites as a manifestation of neonatal sialidosis, Am J Perinatol 16:133, 1999.
Seyrantepe V et al: Molecular pathology of NEU1 gene in sialidosis, Hum Mutat 22:343, 2003.
Spel W et al: Nephrosis in two siblings with infantile sialic acid storage disease, Eur J Pediatr 149:477, 1990.
Spranger J: Mini review: inborn errors of complex carbohydrate metabolism, Am J Med Genet 28A:489, 1987.
Staalman CR et al: Mucolipidosis I. Roentgenographic follow-up, Skeletal Radiol 12:153, 1984.
Young ID et al: Neuraminidase deficiency: case report and review of the phenotype, J Med Genet 24:283, 1987.

SICKLE CELL ANEMIA

MIM#: 603903.

Mode of Inheritance: Autosomal recessive.

Frequency: Sickle cell hemoglobin present in 8% of the black population of the United States; 1 in 625 has sickle cell disease (homozygous for hemoglobin S).

Etiology: The presence of abnormal b-chain in HbS (valine substituted for glutamic acid) results in erythrocyte sickling at a reduced oxygen tension; the deformed and fragmented erythrocyte associated with an increase in blood viscosity leads to occlusion of small blood vessels and infarct (Herrick, 1910); mutation in beta globulin; genetic modifiers (Chui et al, 2001).

Classification: (a) homozygous sickle cell disease (SS disease), severe anemia; (b) sickle cell–hemoglobin C disease (SC disease), mild anemia; (c) sickle cell–α thalassemia (SS-α thalassemia), severe anemia; (d) sickle cell–β thalassemia, mild to severe anemia (Sebes, 1989).

Clinical Manifestations:

(A) General Manifestations: (a) anemia; (b) jaundice; liver and biliary tract dysfunction; hepatomegaly; splenomegaly in the early stage; splenic fibrosis in a later stage; (c) abdominal crisis (intravascular thrombosis; infarcts); pain; vomiting; distension; splenic sequestration crises (Gage et al, 1983); (d) chronic leg ulcer; “ulcer osteoma” (Norris et al, 1993; Wiggins et al; 1986).

(B) Skeletal System: (a) painful limbs: bone infarcts; hand-foot syndrome (swelling; tenderness; fever; leukocytosis); orbital infarction (two cases) (Naran et al, 2001); osteomyelitis (Salmonella or staphylococcal infections); (b) arthralgia; arthritis; hemorrhosis; osteonecrosis capital femoral epiphysis (CFE) (37%); (Mukisi-Mukaza et al, 2000; Sebes, 1989).

(C) Respiratory System: Pulmonary infarcts (especially after hypertransfusion and DFO therapy [Sheth et al, 1997]); recurrent pneumonias; acute chest syndrome: etiologies,
infection/fat embolism (10%)/hypoxia-driven adhesion-related vascular occlusion (Stuart et al, 2001); rbc exchange is therapeutic (Lombardo et al, 2003), 51% associated with Mycoplasma disease (Neumary et al, 2003); restrictive ventilatory defect characterized by low vital capacity and total lung capacity; sleep-related upper airway obstruction and baseline hypoxemia; abnormally small lungs (particularly in those with SS hemoglobin); diffuse lung fibrosis and cor pulmonale (rare) (Ballas et al, 1991; Bowen et al, 1990; Pianosi et al, 1993; Samuels et al, 1992; Siddiqui et al, 2003).

(D) Cardiovascular System: Cardiomegaly; congestive heart failure; abnormal septal Q waves; ventricular dysfunction (cardiomyopathy), mitral valve prolapse; pulmonary hypertension; cor pulmonale (Lester et al, 1990; Lippman et al, 1985).

(E) Nervous System: Stroke in 6 to 16% of children with sickle cell anemia, (several candidate genes associated [Hoppe et al, 2003]); seizures; hemiplegia; stupor; coma; cerebral infarction; intracranial hemorrhage; spinal cord infarction; isolated neuropathies resulting from anatomic proximity to infarcted bones; ocular manifestations; recurrent cerebral ischemia during hypertransfusion therapy; neuropsychologic impairment in school-aged children; sensorineural hearing loss in sickle cell crisis; high leukocyte count and an acute decrease of hemoglobin reported as risk factors for stroke in patients with homozygous sickle cell disease; severe hypoxemia secondary to acute sternal infarction; moyamoya effectively treated with EDAS procedure (Elwany et al, 1988; Fryer et al, 2003; Wang et al, 1992; Wasserman et al, 1991).

(F) Genitourinary System: Focal glomerular sclerosis; urinary concentration defect; impaired renal acidification and potassium excretion; proteinuria; supranormal proximal tubular function (increased reabsorption of phosphate and increased secretion of creatinine); hematuria; papillary necrosis; renal failure; renal medullary carcinoma; testicular infarction (Allon, 1990; Bruno et al, 2001; Falk et al, 1992; Kontessis et al, 1992; Noguera-Irizarry et al, 2003).

(G) Prenatal Diagnosis: First-trimester diagnosis with chorionic villus sampling (enzymatic DNA test); amniocentesis in the second trimester (Embry, 1987).

(H) Other Reported Abnormalities: (a) painful crises (acute chest syndrome, abdominal crises); (b) growth disturbances; abnormal body shape: reduction in weight, height, sitting height, limb length, interacromial and intercristal diameters, and skinfold thickness; increased anteroposterior chest diameter; (c) retinopathy; exophthalmos associated with bone infarction; (d) fat embolism (bone marrow necrosis); ischemic colitis; myonecrosis secondary to muscle infarction; myofibrosis; (e) priapism (indication of severe disease in adults); (f) bacteremia; liver abscess; (g) miscellaneous: lymphadenopathy; mitral valve prolapse; vitamin C deficiency; hypothyroidism in adults receiving multiple blood transfusions (iron overload); association with sarcoidosis; aortic thrombus (one case) (Chiu et al, 1990; Chong et al, 1993; Filipak et al, 2000; Gage et al, 1983; Lippman et al, 1985; Phillips et al, 1992; Sharpsteen et al, 1993; Valeriano-Marcet et al, 1991; Zwerdling et al, 1993); anesthetic management (general rather than local) (Frietsch et al, 2001).

Radiologic Manifestations: General imaging (Crowley et al, 1999; Papadaki et al, 2003).

(A) Skeletal system:

1. Skull: granular pattern; widening of diploic space; decreased width of the outer table; hair-on-end appearance; decreased calvarial density; focal radiolucent areas; focal or diffuse osteosclerosis; radiolucency and coarsening of the bony trabeculae of the mandible/maxilla; prominent lamina dura; orbital bone infarction; labyrinthine hemorrhage; calvarial infarction; iron deposition in cranial bone marrow (transfusion therapy) (Faber et al, 2002; Kaneko et al, 1993; Rebsamen et al, 1993; Reynolds, 1987; Rothchild et al, 1981; Whitehead et al, 1998).

2. Spine and pelvis: osteoporosis (“codfish vertebrae”); depression of end plates with a squared-off appearance of the indentation (“Reynold spine sign”); prominent vertical bony trabeculae; secondary “tower (high) vertebrae” (Marlow et al, 1998); increased thoracic kyphosis and lumbar lordosis; prominence and persistence of anterior vascular foramina of the thoracic vertebral bodies in children; pelvic osteomyelitis; osteitis pubis; protrusio acetabuli; infarction of the ilia (Frush et al, 1991; Mandell et al, 1993; Martinez et al, 1984; Reynolds, 1987).

3. Thorax: sternal infarction; sternal cupping; patchy areas of rarefaction and/or sclerosis of the ribs; rib infarction (demonstrated by 99mTc-diphosphonate bone scan) in patient with acute chest syndrome (Ballas et al, 1991; BenDridi et al, 1987; Gelfand et al, 1993; Levine et al, 1982; Rucknagel et al, 1991).

4. Long bones: (a) diaphyseal infarction (mottled and strandy medullary sclerotic densities; cortex-within-cortex pattern; cortical fissuring; massive infarct of the entire shaft in children; scintigraphic demonstration of infarcted segment); soft tissue abnormalities with marrow infarcts (MRI, US) (Frush; William et al, 2000); (b) epiphyseal infarction (proximal humeral and femoral epiphyses most common sites; osteonecrosis; commonly collapse and disintegration; osteosclerosis); (c) osteomyelitis (Salmonella; Staphylococcus aureus; etc.); (d) infection versus infarction (gd-enhanced MRI) (Umans et al, 2000); (e) miscellaneous: pathologic fractures; “ulcer osteoma” (chronic ulcer in the superficial tissues adjacent to the involved bone); tibiotaral slant (BenDridi et al, 1987; David et al, 1993; Frush et al, 1999; Hernigou et al, 2003; Piehl et al, 1993; Sadat-Ali, 1993; Sebes et al, 1983; Shaub et al, 1975; Skaggs et al, 2001; Stark et al, 1991; Weinberg, 1982; Wiggins et al, 1986).

5. Hands and feet: hand-foot syndrome in infancy (most frequent between 6 months and 2 years of age; “dactylitis”; soft tissue swelling; bone resorption in infarcted or infected areas; periosteal elevation and subperiosteal new bone formation); slender marfanoid fingers or brachydactyly associated with cone-shaped epiphyses
and concave metaphyses of the metacarpal bones and phalanges; terminal phalangeal sclerosis; erosive disease of the calcaneus (loss of definition of the cortical margin in the superior aspect of the bone) (Bennett, 1992; Sebes, 1989; Silver et al, 1984).

6. Retarded skeletal maturation.
7. Arthropathy: joint effusion (noninflammatory); septic arthritis; hemorrhathosis (Sebes).
8. Bone infarction (Frush et al, 1991, 1999; Lanzer et al, 1984; Rebsamen et al, 1993; Rucknagel et al, 1991; Sebes, 1989); (a) radionuclide scintigraphy: photopenic defect in the femoral or humeral head as an earliest manifestation of avascular necrosis; cortical bone-seeking radiopharmaceuticals (99mTc phosphate compounds) may show a similar picture to that of osteomyelitis in cases with medullary osteonecrosis; bone marrow scanning with 99mTc-sulfur colloid demonstrating decreased marrow activity in bone infarction; Ga-citrate imaging very useful in differentiating bone marrow infarction and osteomyelitis (Frush et al, 1991; Sebes, 1989); (b) MR: various patterns in avascular necrosis: T1-weighted images: low signal intensity (homogeneous, heterogeneous, or ringlike pattern of decreased signal surrounding the high signal intensity of fatty marrow); T2-weighted images: double-line ring (high signal bordering the ring); edema in acute infarction; cystic lesions; MRI helpful in differentiating between acute and chronic marrow infarcts; significant inhomogeneity of bone marrow in asymptomatic patients; MRI not helpful in differentiating acute infarct and acute osteomyelitis (Bonnerot et al, 1994; Rebsamen et al, 1993; Sebes, 1989); (c) CT: “asterisk sign” of femoral head (normal central density with star-shaped appearance): loss of rays of asterisk, increased peripheral density, sclerosis, deformity, and intraosseous cyst; CT not useful for early detection of avascular necrosis of epiphyses (Sebes, 1989).

(B) Chest: (a) acute chest syndrome resulting from pneumonia or infarction (or idiopathic) (chest radiography and ventilation–perfusion scintigraphy are not diagnostic in differentiating pneumonia and pulmonary infarct; if new infiltrate on admission-infectious etiology likely, if normal/unchanged film—idiopathic); 3-mm chest CT helpful in differential diagnosis by demonstrating a ground-glass attenuation in microvascular occlusion; pleural effusion; rib infarction (Bhalla et al, 1993; Gelfand et al, 1993; Martin et al, 1997); (b) pulmonary hypertension and cor pulmonale following repeated episodes of pulmonary vascular occlusion; cardiomegaly; congestive heart failure; increased left atrial, left ventricular, and aortic root dimensions; increased left ventricular wall thickness (Lester et al, 1990); (c) extramedullary hematopoiesis (masses in the paravertebral region) (Gumbs et al, 1987; Papavasiliou et al, 1990).

(C) Urinary System (Allon, 1990): (a) renal enlargement; thickening of the renal medulla; focal cortical hypotrophy; calicical clubbing; papillary necrosis; (b) pyelonephritis; (c) perirenal hematoma; (d) renal arteriography: focal cortical hypertrophy; “pseudobrain” nephrogram resulting from a mixture of hypertrophy and scar formation; thinning of the cortex; medullary hypertrophy; pruning of the arterial tree; (e) MRI of sickle-cell nephropathy: decreased relative cortical signals, most evident on T2-weighted images; (f) renal vein thrombosis; (g) unusual renal accumulation of 99mTc phytate and 99mTc HMDP (Binnur et al, 1992); (h) focal and diffuse increased echogenicity in the renal parenchyma (Zinn et al, 1993).

(D) Central Nervous System:

1. Vascular occlusion of major arteries or distal branches (partial or complete) (Partington et al, 1994); (a) MRI, MRA: cerebrovascular disease (Gillams et al, 1998; Wiznitzer et al, 1990); (b) ultrasonography: cerebral vascular stenosis resulting in elevated flow velocity shown by transcranial and extracranial Doppler ultrasonography; increased velocity in ophthalmic artery and middle cerebral artery; decreased resistive index secondary to increased diastolic flow; reversal of flow especially in ophthalmic artery; absence of detectable flow in the middle cerebral artery or anterior cerebral artery when good flow is detected in posterior cerebral artery; increased velocity in posterior cerebral and/or increased velocity in vertebral and basilar circulation; decreased velocity in vessel supplying infarcted area, TCDI lower velocities than just duplex imaging; transcranial color doppler (Bulas et al, 2000; Jones et al, 2001; Kogutt et al, 1994; Mohr, 1992; Seibert et al, 1993); (c) abnormalities on localized proton resonance spectroscopy in stroke (Wang et al, 1993); PET for ischemia (Reed); (d) stable Xenon-enhanced CT: decreased cerebral blood flow (total, hemispherical, or regional) (Numaguchi); (e) MRI: CNS parenchymal changes, particularly in the general regions of arterial border zones between the major cerebral arteries and adjacent deep white matter (distal small-vessel disease), screening valuable; MRI, MRA, transcranial Doppler can all be negative with significant symptomatology; MRA abnormalities in asymptomatic patients, silent infarcts (Gillams et al, 1998; Kirkham et al, 2001; Pegelow et al, 2001; Seibert et al, 1993; Steen et al, 2003; Wiznitzer et al, 1990).

2. Extramedullary hemopoiesis: extramedullary mass within the spinal canal, displacing the cord (Papavasiliou et al, 1990).

3. Other reported abnormalities: intracranial hemorrhage (intracerebral; subarachnoid); intracranial aneurysm(s); retro-orbital and epidural hematoma (associated with bone infarct); postangiographic blindness; vein of Galen and straight sinus thrombosis (Anson et al, 1991; Baltarak et al, 1992; Banna et al, 1992; Oguz et al, 1994; Oyesiku et al, 1991).

(E) Abdomen: (a) spleen: infarcts; rupture; hemorrhage; calcification; acute splenic sequestration crisis (patent splenic vein; enlarged spleen; hypoechoic lesions; low attenuation on CT); hyperintense lesions on both T1- and T2-weighted MR images suggestive of subacute hemorrhage); rounded intrasplenic masses (preserved tissue) (Levin et al, 1996; Roshkow et al, 1990; Sheth et al, 2000); (b) liver: infarcts; hepatic vein thrombosis; abscess (Chong et al, 1993); (c) biliary tract: cholelithiasis (calcium bicarbonate);
biliary sludge; gallbladder wall thickening; abnormal biliary scintigraphy (delayed gallbladder visualization consistent with chronic cholecystitis (D’Alonzo et al, 1985; Nzeh et al, 1989); (d) bowel distension (related to vascular occlusion; (e) other reported abnormalities: appendicitis; focal hepatic nodular hyperplasia; focal echogenic lesions in the spleen in patients with no symptoms related to the spleen; transfusional hemosiderosis of liver and pancreas (shown by ultrasonography and MR imaging, hepatic magnetic susceptibility by superconducting or MR); retroperitoneal fibrosis (in sickle cell trait) (Brittenham et al, 2001; Flyer et al, 1993; Heaton et al, 1991; Siegelman et al, 1994; Walker et al, 1993).

(F) Soft Tissues: Soft tissue changes (edema; inflammation; and ischemia) with or without adjacent bone marrow abnormalities; myonecrosis (Feldman et al, 1993; Mani et al, 1993); altered muscle metabolism shown by magnetic resonance spectroscopy in patients with leg ulcers (Norris et al, 1993) (Figs. SYME–S–10 and SYME–S–11).

Therapy (recent): (1) bone marrow transplantation (Hoppe et al, 2001).

Note: (a) in vitro studies have shown that nonionic contrast medium causes significantly less sickling than ionic contrast agent does (Visipaque) (Losco et al, 2001); (b) magnetic fields and radiofrequency (RF) energy affect sickle erythrocytes in vitro; no changes in sickle blood cell flow have been shown during MRI in vivo; (c) post-transfusion hypertension in association with seizures and intracranial hemorrhage has been reported as a characteristic syndrome in sickle cell disease; the association of sickle cell disease, priapism, exchange transfusion, and neurologic events is referred to as “ASPEN syndrome” (Siegel et al, 1993).

Historical Note: Herrick’s interesting discovery (Haller et al, 2001).

References

Allon M: Renal abnormalities in sickle cell disease, Arch Intern Med 150:501, 1990.
Sickle Cell Anemia

Anson JA et al: Subarachnoid hemorrhage in sickle-cell disease, J Neurosurg 75:552, 1991.

Balkaran B et al: Stroke in cohort of patients with homozygous sickle cell disease, J Pediatr 120:360, 1992.

Ballas SK et al: Severe hypoxemia secondary to acute sternal infarction in sickle cell anemia, J Nucl Med 32:1617, 1991.

Banna M et al: Post-angiographic blindness in a patient with sickle cell disease, Invest Radiol 27:179, 1992.

BenDridi MF et al: Radiological abnormalities of the skeleton in patients with sickle-cell disease, Pediatr Radiol 17:296, 1987.

Bennett OM: Salmonella osteomyelitis and the hand-foot syndrome in sickle cell disease, J Pediatr Orthop 12:534, 1992.

Bhalia M et al: Acute chest syndrome in sickle cell disease: CT evidence of microvascular occlusion, Radiology 187:45, 1993.

Binnur K et al: Tc-99m HMDP uptake by the kidney in sickle cell disease, Clin Nucl Med 17:236, 1992.

Bonnerot V et al: Gadolinium-DOTA enhanced MRI of painful osseous crises in children with sickle cell anemia, Pediatr Radiol 24:92, 1994.

Bowen EF et al: Peak expiratory flow rate and the acute chest syndrome in homozygous sickle cell disease, Arch Dis Child 65:330, 1990.

Brittenham GM et al: Noninvasive methods for iron overload in sickle cell disease, Semin Hematol 38(suppl 1):37, 2001.

Bruno D et al: GU complications of sickle cell disease, J Urol 166:803, 2001.

Bulas D et al: Transcranial Doppler screening for stroke prevention in sickle cell disease, Pediatr Radiol 30:733, 2000.

Chiu D et al: Vitamin C deficiency in patients with sickle cell anemia, Am J Pediatr Hematol/Oncol 12:262, 1990.

Chui DH et al: Sickle cell disease: no longer a single gene disorder, Curr Opin Pediatr 13:22, 2001.

Chong SKF et al: Liver abscess as an unusual complication in sickle cell anemia, J Pediatr Gastroenterol Nutr 16:221, 1993.

Crowley JJ et al: Imaging of sickle cell disease, Pediatr Radiol 29:646, 1999.

D’Alonzo WA et al: Biliary scintigraphy in children with sickle cell disease, Radiology 187:168, 1994.

D’Alonzo WA et al: Biliary scintigraphy in children with sickle cell disease, Pediatr Radiol 18:137, 2001.

D’Alonzo WA et al: Biliary scintigraphy in children with sickle cell disease, Pediatr Radiol 17:279, 1991.

Faber TD et al: Fourier analysis reveals increased trabecular spacing in sickle cell disease, J Dent Res 81:214, 2002.

Falk RJ et al: Prevalence and pathologic features of sickle cell nephropathy and response to inhibition of angiotensin-converting enzyme, N Engl J Med 326:910, 1992.

Feldman F et al: MRI of soft tissue abnormalities: a primary cause of sickle cell crisis, Skeletal Radiol 22:501, 1993.

Filipek MS et al: Transient aortic thrombus in sickle cell patient with chest pain, AJR 175:1287, 2000.

Fokas E et al: Hematopoietic stem cell transplantation in children with sickle cell disease, Pediatr Blood Cancer 39:398, 2003.

Fryer RH et al: Sickle cell anemia with moyamoya disease, Pediatr Neurol 22:501, 1993.

Gillams AR et al: MRA of intracranial circulation in asymptomatic patients with sickle cell disease, Pediatr Radiol 31:43, 2001.

Gilliam J et al: Thoracic extramural hematopoiesis in sickle-cell disease, AJR 149:889, 1987.

Gilliam J et al: Thoracic extramural hematopoiesis in sickle-cell disease, AJR 149:889, 1987.

Gilliam J et al: Thoracic extramural hematopoiesis in sickle-cell disease, AJR 149:889, 1987.

Grubb RM et al: Thoracic extramural hematopoiesis in sickle-cell disease, AJR 149:889, 1987.

Haller JO et al: Sickle cell anemia: the legacy of the patient (Walter Clement Noel), the interne (Ernest Irons), and the attending physician (James Herrick) and the facts of its discovery, Pediatr Radiol 31:889, 2001.

Heaton ND et al: Focal nodular hyperplasia of the liver: a link with sickle cell disease, Arch Dis Child 66:1073, 1991.

Hernigou P et al: The natural history of symptomatic osteonecrosis in adults with sickle cell disease, J Bone Joint Surg Am 85A:500, 2003.

Herrick JB: Peculiar elongated and sickle shaped red blood corpuscles in a case of severe anemia, Arch Intern Med 6:517, 1910.

Hoppe CC et al: Bone marrow transplantation in sickle cell anemia, Curr Opin Oncol 13:85, 2001.

Hoppe C et al: Gene interactions and stroke risk in children with sickle cell disease, Blood, 2003.

Jones AM et al: Comparison of transcranial color Doppler imaging (TCDI) and transcranial Doppler (TCD) in children with sickle-cell anemia, Pediatr Radiol 31:461, 2001.

Kaneko K et al: Iron deposition in cranial bone marrow with sickle cell disease: MR assessment using a fat suppression technique, Pediatr Radiol 23:435, 1993.

Kirkham FJ et al: MRI and MRA in the evaluation of sickle cell disease patients with prior stroke, Pediatr Radiol 24:204, 1994.

Kontessis P et al: Renal involvement in sickle cell-beta thalassemia, Nephron 61:10, 1992.

Lanzer W et al: Avascular necrosis of the lunate and sickle cell anemia, Clin Orthop 187:168, 1984.

Lester LA et al: Cardiac abnormalities in children with sickle cell anemia, Chest 98:1169, 1990.

Levin TL et al: Intrasplenic masses of “preserved” functioning splenic tissue in sickle cell disease, Pediatr Radiol 26:646, 1996.

Levine MS et al: Sternal cupping: a new finding in childhood sickle cell anemia, Radiology 142:367, 1982.

Lippman SM et al: Mitral valve prolapse in sickle cell disease, Arch Intern Med 145:435, 1985.

Lombardo T et al: Acute chest syndrome: role of erythro-exchange in sickle cell disease in Sicily, Transfus Apher Sci 29:59, 2003.

Losco P et al: Comparison of effects of radiographic contrast media in hemoglobin S, Am J Hematol 68:149, 2001.

Mandell GA et al: Infarctions of the ilia in young patients with sickle hemoglobinopathies, Clin Nucl Med 18:558, 1993.

Mani S et al: Sickle myonecrosis revisited, Am J Med 95:525, 1993.

Marlow TJ et al: “Tower vertebra”: a new observation in sickle cell disease, Skeletal Radiol 27:195, 1998.

Martin L et al: Acute chest syndrome of sickle cell disease: radiographic and clinical analysis of 70 cases, Pediatr Radiol 27:637, 1997.

Martinez S et al: Protrusio acetabuli in sickle-cell anemia, Radiology 151:43, 1984.

Mohr JP: Sickle cell anemia, stroke, and transcranial Doppler studies, N Engl J Med 326:637, 1992.

Mukisi-Mukaza M et al: Prevalence, clinical features, and risk factors of osteonecrosis of femoral head in sickle cell disease, Orthopedics 23:357, 2000.

Naran AD et al: Sickle cell disease with orbital infarction, Pediatr Radiol 31:257, 2001.

Neumayr L et al: Mycoplasma disease and acute chest syndrome in sickle cell disease, Pediatrics 112:87, 2003.

Noguera-irizarry WG et al: Renal medullary carcinoma, Am J Clin Oncol 26:489, 2003.

Norris SL et al: Altered muscle metabolism shown by magnetic resonance spectroscopy in sickle cell disease with leg ulcers, Magn Res Image 11:119, 1993.

Numaguchi Y et al: Cerebral blood flow mapping using stable xenon-enhanced CT in sickle cell cerebrovascular disease, Neuroradiology 32:289, 1990.

Nzeh DA et al: Sonographic pattern of gallbladder disease in children with sickle cell anemia, Pediatr Radiol 19:290, 1989.

Oruz M et al: Vein of Galen and sinus thrombosis with bilateral thalamic infarcts in sickle cell anemia: CT follow-up and angiographic demonstration, Neuroradiology 36:155, 1994.

Oyelusi NM et al: Intracranial aneurysms in sickle-cell anemia: clinical features and pathogenesis, J Neurosurg 75:356, 1991.

Papadaki MG et al: Abdominal US findings in patients with sickle cell anemia, Am J Roentgenol 153:515, 2003.

Papavasiliou C et al: CT and MRI of symptomatic spinal involvement by extramedullary haemopoiesis, Clin Radiol 42:91, 1990.

Partington MD et al: Sickle cell trait and stroke in children, Pediatr Neurosurg 20:148, 1994.

Pegelow CH et al: Silent infarcts in children with sickle cell anemia and abnormal cerebral arterial velocity, Arch Neurol 58:2017, 2001.

739
Silent Sinus Syndrome

Clinical and Radiologic Manifestations:
1. Painless, spontaneous enophthalmos; maxillary sinus disease and hypoplasia (maxillary collapse, imploding antrum); 2. Other associated abnormalities: nasogastric tube intubation (Burroughs et al., 2003) iatrogenic (post-surgical) (Rose et al., 2003); 3. Imaging features: CT, complete/almost complete opacification, lateral uncinate process retraction with sinus obstruction, inward retraction of sinus walls, osteopenia; MRI, same findings plus downward retraction of orbital floor into sinus; (Illner et al., 2002; Vander Meer et al., 2001).

References

Burroughs JR et al: Misdiagnosis of silent sinus syndrome, *Ophthal Plast Reconstr Surg* 19:449, 2003.
Hobbs CG et al: Spontaneous enophthalmos: silent sinus syndrome, *Laryngol Otol* 118:310, 2004.
Illner A et al: The silent sinus syndrome: clinical and radiographic findings, *AJNR* 17:503, 2002.
Rose GE et al: Clinical features and treatment “imploding antrum” (silent sinus syndrome), *Ophthalmol* 110:819, 2003.
Vander Meer JB et al: The silent sinus syndrome: review, *Laryngoscope* 119:975, 2001.

Silver-Russell Syndrome

MIM#: 180860.

Synonyms: Silver syndrome; *Russell-Silver syndrome*; SRS.

Mode of Inheritance: The majority of the reported cases sporadic; familial cases (25 families); twins, discordant monozigotic (Samn et al., 1990); locus: 7p12-14; 7% to 10% show maternal uniparental disomy (UPD7) (Meyer et al., 2003).

Frequency: Approximately 200 reported cases (Ramirez-Dunhas et al., 1992).

Clinical Manifestations: (a) Low birth weight at full term; short stature (Russel, 1954; Silver et al., 1953); (b) Partial or...
total asymmetry (face; trunk; limbs) in about two thirds of the cases (Russell, 1954; Silver et al, 1953); (c) craniofacial morphology (Bergman et al, 2003); pseudohydrocephalic appearance; frontal bossing; small triangular face; small mandible; downturned corners of the mouth (Russell, 1954; Silver et al, 1953); (d) short and/or incurved fifth fingers; (e) mental retardation in some cases; (f) metabolic-endocrine dysfunctions: hypoglycemia; ketoaciduria and dicarboxylic aciduria; abnormal pattern of sexual development (increased serum or urinary gonadotropin levels in the prepubertal age; precocious sexual development; premature mcosa elongation; sexual ambiguity); growth hormone deficiency; corticotropin deficiency; panhypopituitarism (Cazgan et al, 1994; Nishi et al, 1982); (g) genitourinary system: cryptorchidism; male with ambiguous genitalia; clitoromegaly; urinary tract infections; testicular cancer (Arai et al, 1988; Haslam et al, 1973; Weiss et al, 1981); (h) chromosome abnormalities (Midro et al, 1993; Ramirez-Dunñas et al, 1992); (i) gastrointestinal (GI) abnormalities (77%): reflux, esophagitis (Anderson); (j) other reported abnormalities: large anterior fontanelle; poor muscular development; feeding problems (Blissett et al, 2001); café-au-lait spots, achromia patch (Perkins et al, 2002); hand syndactyly; syndactyly of the feet; disproportionately short arms, optic nerve asymmetry (Siegel et al, 1998); difficult pregnancy; blue sclerae in infancy; cardiac defects.

Radiologic Manifestations: (a) clinodactyly; fifth digit phalangeal hypoplasia (middle or distal); camptodactyly (22%) (Price et al, 1999); syndactyly, Kirner deformity; ivory phalangeal hypoplasia (middle or distal); second metacarpal pseudoephisphysis (Herman et al, 1987; Moseley et al, 1966); (b) asymmetry; (c) skeletal maturation retardation; difference in skeletal maturation of the two sides (Herman et al, 1987; Moseley et al, 1966); (d) urinary system anomalies: horseshoe kidney deformity; hydronephrosis; enlarged kidneys; posterior urethral valve; anterior urethral valve; multiple polypoid bladder masses (US) (Arai et al, 1988; Haslam et al, 1973; Ortiz et al, 1991; Steele et al, 2003); (e) other reported abnormalities: slender long bones; hypoplasia or absence of phalanges; elbow dislocation; hip dislocation; irregularities of the end plates of the vertebrae; hypoplasia of the sacrum and coccyx; Legg-Calve-Perthes disease (Hotokebuchi et al, 1994; Moseley et al, 1966).

Therapy: (1) growth hormone (not alter limb asymmetry) (Rizzo et al, 2001); (2) mandibular distraction osteogenesis (Kisnisci et al, 1999).

Differential Diagnosis: (a) SRS phenotype in chromosomal abnormalities: (18p–; 18 trisomy/normal mosaicism; triploid/normal mosaicism; interstitial deletion of proximal 8q; small deletion on chromosome 13; 1q32–42; partial trisomy 7q/mosaicomy 15q with glaucoma) (Kato et al, 1991; Schinzel et al, 1994; van Haelst et al, 2002; Wahlström et al, 1993); (b) Mulibrey nanism; (c) Noonan syndrome; (d) 3-M syndrome; (e) McCune-Albright syndrome; (f) hemihypertrophy; (g) polyostotic fibrous dysplasia.

Note: (1) The diversity and the nonspecificity of the diagnostic criteria for the "syndrome" are responsible for the inclusion of heterogeneous conditions with overlapping clinical features under the title of Silver-Russell syndrome/phenotype; (2) UPD7 cases clinically indistinguishable (Bernard et al, 1999); (3) associated with Mayer-Rokitansky syndrome (Bellver-Pradas et al, 2001).

References
Anderson J et al: Gastrointestinal complications of Russell-Silver syndrome, Am J Med Genet 113:15, 2002.
Arai Y et al: Horseshoe kidney in Russell-Silver syndrome, Urology 31:321, 1988.
Bellver-Pradas J et al: Silver-Russell syndrome associated to Mayer-Rokitansky-Kuster-Hauser syndrome, diabetes and hirsutism, Arch Gynecol Obstet 265:155, 2001.
Bergman A et al: Craniofacial morphology and dental age in children with Silver-Silver syndrome, Orthod Craniofac Res 6:54, 2003.
Bernard LE et al: Clinical and molecular findings in Russell-Silver syndrome and UPD7, Am J Med Genet 87:230, 1999.
Blissett J et al: Feeding problems in Silver-Russell syndrome, Dev Med Child Neurol 43:39, 2001.
Cazgan AL et al: Medical dysfunction in Silver-Russell syndrome, J Inherit Metab Dis 17:244, 1994.
Herman TE et al: Hand radiographs in Russell-Silver syndrome, Pediatrics 79:743, 1987.
Hotokebuchi T et al: Legg-Calve-Perthes’ disease in the Russell-Silver syndrome: a report of two cases and the review of the literature, Int Orthop 18:32, 1994.
Kato R et al: Congenital glaucoma and Silver-Russell phenotype in trisomy 7q and monosomy 15q, Am J Med Genet 194:319, 2001.
Kisnisci RS et al: Distraction osteogenesis in Silver-Russell syndrome to expand mandible, Am J Orthod Dentofacial Orthop 116:25, 1999.
Meyer E et al: Genomic characterization of C7orf10 in Silver-Russell syndrome patients, J Med Genet 40:e44, 2003.
Midro AT et al: Second observation of Silver-Russel syndrome in a carrier of a reciprocal translocation with one breakpoint at site 17q25, Clin Genet 44:53, 1993.
Moseley JE et al: The Silver syndrome: congenital asymmetry, short stature and variations in sexual development; roentgen features, AJR 97:74, 1966.
Nishi Y et al: Silver-Russell syndrome and growth hormone deficiency, Acta Paediatr Scand 71:1035, 1982.
Oritz C et al: Urethral valves in Russell-Silver syndrome, J Pediatr 119:776, 1991.
Perkins RM et al: The Russell-Silver syndrome, Pediatr Dermatol 19:546, 2002.
Peters SM et al: The spectrum of Silver-Russell syndrome, J Med Genet 36:837, 1999.
Ramirez-Dunñas ML et al: Severe Silver-Russell syndrome and translocation (17;20)(q25;q13), Clin Genet 41:51, 1992.
Rizzo V et al: Growth hormone treatment does not alter lower limb asymmetry in Russell-Silver syndrome, Horm Res 56:114, 2001.
Russell A: Syndrome of "intra-uterine" dwarfism recognizable at birth with craniofacial dysostosis, disproportionately short arms and other anomalies (5 examples), Proc R Soc Med 47:1040, 1954.
Saito S et al: Russell-Silver syndrome in a male with ambiguous genitalia, Pediatr Surg Int 4:424, 1989.
Samm M et al: Monoyzogotic twins discordant for the Russell-Silver syndrome, Am J Med Genet 35:543, 1990.
Schinzel AA et al: An interstitial deletion of proximal 8q (q11-13) in a girl with Silver-Russell syndrome-like features, Clin Dysmorphol 3:63, 1994.
Siegel LM et al: Optic nerve asymmetry in child with Russell-Silver syndrome, Am J Med Genet 75:223, 1998.
Silver HK et al: Syndrome of congenital hemihyper trophy, shortness of stature and elevated urinary gonadotropins, Pediatrics 12:368, 1953.
Steele B et al: Sonographic appearance of bladder malakoplakia, Pediatr Radiol 33:253, 2003.
Saito S et al: Russell-Silver syndrome in a male with ambiguous genitalia, Pediatr Surg Int 4:424, 1989.
Samm M et al: Monoyzogotic twins discordant for the Russell-Silver syndrome, Am J Med Genet 35:543, 1990.
Schinzel AA et al: An interstitial deletion of proximal 8q (q11-13) in a girl with Silver-Russell syndrome-like features, Clin Dysmorphol 3:63, 1994.
Siegel LM et al: Optic nerve asymmetry in child with Russell-Silver syndrome, Am J Med Genet 75:223, 1998.
Silver HK et al: Syndrome of congenital hemihyper trophy, shortness of stature and elevated urinary gonadotropins, Pediatrics 12:368, 1953.
Steele B et al: Sonographic appearance of bladder malakoplakia, Pediatr Radiol 33:253, 2003.
Van Haelst et al: Silver-Russell phenotype in patient with pure trisomy 1q32.1-q42.1, J Med Genet 39:582, 2002.
Vahlström J et al: Silver-like syndrome and a small deletion on chromosome 13, Acta Paediatr 82:993, 1993.
Weiss GR et al: Testicular cancer in a Russell-Silver dwarf, J Urol 126:836, 1981.
SIMPSON-GOLABI-BEHMEL SYNDROME

MIM#: 312870 (type 1); 300209 (type 2).

Synonyms: Golabi-Rosen syndrome; gigantism-dysplasia syndrome; bulldog syndrome; SGBS.

Mode of Inheritance: X-linked recessive; carrier females may show partial expression of the phenotype; locus: Xq26 (1992).

References

Behmel A et al: A new X-linked dysplasia gigantism syndrome: Identical with Simpson-Golabi dysplasia? Hum Genet 67:409, 1984.

Chen E et al: Simpson-Golabi-Behmel syndrome: congenital diaphragmatic hernia and radiologic findings in two patients and follow-up of a previously reported case, Am J Med Genet 46:574, 1993.

Garganta CI et al: Report of another family with Simpson-Golabi-Behmel syndrome and a review of the literature, Am J Med Genet 44:129, 1992 (review article).

Golabi M Rosen L: A new X-linked mental retardation-overgrowth syndrome, Am J Hum Genet 44:136, 1992.

Hughes-Benzie RM et al: Simpson-Golabi-Behmel syndrome associated with renal dysplasia and embryonal tumor: localization of the gene to Xqcen-q21, Am J Hum Genet 43:428, 1982.

Kim S et al: Choledochal cyst in SGBS, Am J Med Genet 87:267, 1999.

König R et al: Simpson-Golabi-Behmel syndrome with severe cardiac arrhythmias, Am J Med Genet 38:244, 1991.

Krimmel M et al: Br J Oral Maxillofac Surg 38:221, 2000.

Li M et al: GPC 3 mutation analysis in a spectrum of SGBS, Am J Med Genet 102:161, 2001.

Lin AE et al: Cardiac anomalies in SGBS, Am J Med Genet 83:378, 1999.

Opitz JM et al: Simpson-Golabi-Behmel syndrome: follow-up of the Michigan family, Am J Med Genet 30:301, 1988.

Poetke M et al: Diffuse neonatal hemangiomatosis associated with SGBS, Eur J Pediatr Surg 12:59, 2002.

Simpson JL et al: A previously unrecognized X-linked syndrome of dysmorphia, Birth Defects XI (2): 18, 1975.

Taniyama T et al: Craniofacial morphology in patient with SGBS, Cleft Palate Craniofac J 40:550, 2003.

Terespolsky D et al: Infantile lethal variant of SGBS associated with hydrops fetalis, Am J Med Genet 59:329, 1995.

SINGLETON-MERTEN SYNDROME

MIM#: 182250.

Mode of Inheritance: Possibly autosomal dominant (Feigenbaum et al, 1988).

References

Feigenbaum A et al: Singleton-Merten (S-M) syndrome: autosomal dominant transmission with variable expression, Am J Hum Genet 43:A48, 1988 (abstract).

Gay BB et al: A syndrome of widened medullary cavities of bone, aortic calcification, abnormal dentition, and muscular weakness (the Singleton-Merten syndrome), Radiology 118:389, 1976.
SIRENOMELIA

Synonyms: Mermaid syndrome; sympus apus.

Frequency: 1.5-4.2 per 100,000.

Etiology and Pathogenetic Mechanisms: (1) caudal and medial ilial displacement correlates with severity of limb defects (iliac-sacral distance) (Kjaer et al, 2003); (2) lack of fission of lower limb progenitor fields; (3) regression of midline structures secondary to abnormal blood supply.

Clinical Manifestations: (a) rotation and fusion of the lower limbs; (b) absence of anus; imperforate anus; (c) defective or absent external genitalia; (d) surviving infants (four cases) (Stanton et al, 2003); (e) other reported abnormalities: association with Potter syndrome; single umbilical artery; association with twinning in 5% of the reported cases (most often monozygotic); association with limb-body-wall complex; combined pentalogy of Cantrell and sirenomelia; esophageal atresia; hydrocephalus (Onyeije et al, 1998); cyclopia, cebopcephaly (Chen et al, 1998a; Martinez-Frias et al, 1998); neural tube defect (Chen et al, 1998b); association with a “vanishing twin”; four successive offspring with sirenomelia associated with bilateral renal dysplasia and megacystis secondary to urethral obstruction; history of cocaine exposure during the first trimester of pregnancy; retinoic acid-induced in mouse (Padmanabhan, 1998).

Radiologic Manifestations: (a) skeletal anomalies: contracted lesser pelvis (small pelvic outlet syndrome); sacral dysplasia; medial position, fusion, or absence of fibulas; (b) genitourinary anomalies, in particular renal agenesis; absent bladder (Stanton et al, 2003); (c) gastrointestinal anomalies: blind ending colon, imperforate anus, etc.; (d) oligohydramnios; (e) prenatal diagnosis first trimester (US): “froglike” position lower extremities (Monteagudo et al, 2002; Schiesser et al, 2003) (Fig. SYME–S–13).

Note: (a) According to the number of feet, sirenomelia is divided into three types: sympus apus, sympron monopus, and sympron dipus; (b) sirenomelia is considered to represent an extreme form of “caudal regression syndrome” (diabetic embryopathy) (Akbiyik et al, 2000); (c) overlap with two other entities: (1) small pelvic outlet syndrome: association of contracted lesser pelvis, imperforate anus, absent or severely dysplastic kidneys, and absent or severely hypoplastic ureters, bladder, and urethra; (2) limb-body-wall complex:
Sjögren-Larsson Syndrome

Figure SYME–S–13 Sirenomelia. Note fusion of the lower limbs and pelvic anomalies. (From Raabe RD et al: Ultrasonographic antenatal diagnosis of “mermaid syndrome.” Fusion of fetal lower extremities, J Ultrasound Med 2:463, 1983. Used by permission.)

cerebral and facial malformations; thoracoschisis; cardiovascular anomalies; pulmonary dysplasia; diaphragmatic defects; agenesis of gallbladder; abnormal kidneys; absence of genitalia; scoliosis; limb defects; amniotic rupture and bands; oligohydramnios; small placenta; short umbilical cord; (d) a relationship between sirenomelia and VACTERL association has been suggested (Schüler et al, 1994).

Historical Note: Medieval manuscript (1270 AD) depicts “Antipodes” sirenomelia (Bos et al, 1999).

References

Abkiyik F et al: Type I sirenomelia in one of male twins, with imperforate anus in other male twin, Clin Dysmorphol 9:227, 2000.
Bos CA et al: Cynocephali and Blemmyae, Ned Tijdschr Geneeskd 143:2580, 1999 (Dutch).
Chen CP et al: Cephalohy ... sirenomelia in a stillbirth, J Med Genet 35:263, 1998a.
Chen CP et al: Sirenomelia with uncommon osseous fusion associated with neural tube defect, Pediatr Radiol 28:293, 1998b.
Currarino G et al: From small pelvic outlet syndrome to sirenomelia, Pediatr Pathol 11:195, 1991.
Di Lorenzo M et al: Sirenomelia in an identical twin, J Pediatr Surg 26:1334, 1991.
Duncan PA et al: Sacrococygeal dysgenesis association, Am J Med Genet 41:153, 1991.

Egan JFX et al: Combined pentalogy of Cantrell and sirenomelia, Am J Perinatol 10:327, 1993.
Kapur RP et al: Sirenomelia associated with a “vanishing twin,” Teratology 43:103, 1991.
Kjaer KW et al: Sirenomelia sequence according to distance between first sacral vertebra and the ilia, Am J Med Genet 120A: 505, 2003.
Martínez-Frias ML et al: New case of limb body-wall complex associated with sirenomelia, Am J Med Genet 44:583, 1992.
Martínez-Frias ML et al: Cyclopia and sirenomelia in liveborn infant, J Med Genet 35:263, 1998.
Monteagudo A et al: Sirenomelia sequence: first trimester diagnosis with both 2D and 3D sonography, J Ultrasound Med 21:915, 2002.
Onyeje CI et al: Prenatal diagnosis of sirenomelia with bilateral hydrocephalus, Am J Perinatol 15:193, 1998.
Padmanabhan R: Retinoic acid induced caudal regression syndrome in mouse fetus, Reprod Toxicol 12:139, 1998.
Rodriguez JJ et al: Craniorachischisis totalis and sirenomelia, Am J Med Genet 43:732, 1992.
Sarpong S et al: Sirenomelia accompanying exposure of the embryo to cocaine, South Med J 85:545, 1992.
Schüller M et al: Sirenomelia, detection in the first trimester, Prenat Diagn 23:493, 2003.
Schüller L et al: Patterns in multifal malformed babies and the question of the relationship between sirenomelia and VACTERL, Am J Med Genet 49:29, 1994.
Selim AM et al: Renal dysplasia, megalocystis, and sirenomelia in four siblings, Teratology 47:65, 1993.
Sonnur S et al: Sirenomelia with esophageal atresia, Adv Clin Path 4:165, 2000.
Stanton MP et al: A surviving infant with sirenomelia with absent bladder, J Pediatr Surg 38:1266, 2003.

SJÖGREN-LARSSON SYNDROME

MIM#: 270200.

Mode of Inheritance: Autosomal recessive; locus: 17p11.2; mutation FALDH gene (Willemsen et al, 2001).

Frequency: More than 200 reported cases; more prevalent in Sweden than in any other country (Carney et al, 1993; Iselius et al, 1989).

Enzyme Deficiency: Fatty alcohol: NAD+ oxidoreductase.

Clinical Manifestations: Preterm birth: (a) congenital ichthyosis; (b) spastic diplegia or tetraplegia; (c) mental retardation; speech defects; (d) retinopathy (retinal “glistening dots”), macular dystrophy (Willemsen et al, 2000); superficial punctate epithelial erosions of the cornea; conjunctivitis; blepharo- itis; photophobia; (e) short stature; (f) reduced activity of the fatty alcohol: NAD+ oxidoreductase activity in cultured skin fibroblasts and peripheral leukocytes; carrier detection by measurement of fatty alcohol: NAD+ oxidoreductase complex (FAO) and fatty aldehyde dehydrogenase component of FAO in cultured skin fibroblasts; (g) prenatal diagnosis: skin biopsy (hyperkeratosis), mutation analysis (Sillen et al, 1997); (h) other reported abnormalities: seizures; joint hyperextensibility (Levisohn et al, 1991); increased muscle tone; increased deep tendon reflexes; kyphoscoliosis; defective sweating; enamel hypoplasia; dermatoglyphic anomalies; (i) therapy: more effective if begun in early infancy (Auada et al, 2002).

Radiologic Manifestations: (a) demyelination in the cerebral white matter; corticospinal and vestibulospinal
tracts; internal hydrocephalus (Di Rocco et al, 1994); MRI: diffuse white matter abnormality (periventricular, sparing of overlying cortex, most prominent in frontal region (Altinok et al, 1999; van Mieghem et al, 1997); proton MRS: abnormal accumulation of fatty acids/lipids (even in heterozygotes) (Kaminaga et al, 2001); (b) short metacarpals and metatarsals; epiphyseal–metaphyseal dysplasia; foot deformities and flexion contractures; widening of the symphysis pubis; nonossified pubis; hypoplasia of the femoral heads; retarded skeletal maturation (c) other reported abnormalities: dental dysplasia; hypertelorism; basilar impression; Dandy-Walker malformation.

Differential Diagnosis: (1) Sjögren-Larsson like, without central nervous system (CNS)/eye involvement (MIM# 270220); (2) syndrome of congenital ichthyosis, hypogonadism, short stature, facial dysmorphism, myogenic dystrophy (Stoll et al, 1999); (3) “Rud” syndrome (Kaufman, 1998).

References

Altinok D et al: MRI of 3 siblings with Sjögren-Larsson syndrome, Pediatr Radiol 29:766, 1999.

Auada MP et al: Sjögren-Larsson syndrome, Eur J Dermatol 12:263, 2002.

Carney S et al: What is syndrome? Pediatr Dermatol 10:289, 1993.

Di Rocco M et al: Sjögren-Larsson syndrome: nuclear magnetic resonance imaging of the brain in a 4-year-old boy, J Inher Metab Dis 17:112, 1994.

Fivenson DP et al: Sjögren-Larsson syndrome associated with the Dandy-Walker malformation, Pediatr Dermatol 6:312, 1989.

Gomori JM et al: Computed tomography in Sjögren-Larsson syndrome, Neuroradiology 29:557, 1987.

Iselius L et al: Sjögren-Larsson syndrome in Sweden: distribution of the gene, Clin Genet 35:272, 1989.

Kaminaga T et al: Proton MRS of Sjögren-Larsson syndrome heterozygotes, Magn Reson Med 45:1112, 2001.

Kaufman LM: A syndrome of retinitis pigmentosa, congenital ichthyosis, hypergonadotropic hypogonadism, short stature, mental retardation, cranial dysmorphism, and abnormal electroencephalogram, Ophthalmic Genet 19:69, 1998.

Kelson TL et al: Carrier detection for Sjögren-Larsson syndrome, J Inher Metab Dis 15:105, 1992.

Kousoul P et al: Prenatal diagnosis of Sjögren-Larsson syndrome, J Pediatr 101:998, 1982.

Levisohn D et al: Sjögren-Larsson syndrome: case reports, Pediatr Dermatol 8:217, 1991.

Mulder LJMM et al: Cranial CT in the Sjögren-Larsson syndrome, Neuroradiology 29:560, 1987.

Ozsnoff MB et al: Sjögren-Larsson syndrome with epiphyseal–metaphyseal dysplasia, Pediatr Dermatol 19:69, 1998.

Sillen A et al: First prenatal diagnosis by mutation analysis in Sjögren-Larsson syndrome, Prenat Diagn 17:1147, 1997.

Sjögren T, Larsson T: Oligophrenia in combination with congenital ichthyosis and spastic disorders, Acta Psychiatr Scand 32 (Suppl 113):1, 1957.

Stoll C et al: A syndrome of congenital ichthyosis, hypogonadism, small stature, facial dysmorphism, scoliosis and myogenic dystrophy, Acta Genet 42:45, 1999.

Van Mieghem F et al: MR of the brain in Sjögren-Larsson syndrome, AJNR 18:1561, 1997.

Williams MA et al: Juvenile macular dystrophy in Sjögren-Larsson syndrome, Ann J Ophthalmol 130:782, 2000.

Williamsen MA et al: Clinical, biochemical and molecular genetic characteristics in Sjögren-Larsson Syndrome, Brain 124:1426, 2001.

Yamaguchi K et al: Sjögren-Larsson syndrome: postmortem brain abnormalities, Pediatr Neurol 18:338, 1998.

Sjögren Syndrome

MIM#: 270150, 109092.

Synonyms: Sicca syndrome; Gougerot-Sjögren syndrome; Gougerot-Houver-Sjögren syndrome; Gougerot-Mikulicz-Sjögren syndrome.

Definition and Classification: An autoimmune exocrinopathy with production of multiple antibodies, lymphocytic infiltration of glandular and extraglandular organs, and polyclonal B-cell proliferation: (a) primary; (b) secondary: rheumatoid arthritis, systemic lupus erythematosus, and so forth (Vitali et al, 1993); increase in caspase cascade (Hayashi et al, 2003).

Clinical Manifestations: Onset of symptoms usually in middle age (women in particular); childhood (rare) (Nikitakis et al, 2003):

(A) **Skin and Mucous Membranes:** (a) xerostomia; painless swelling of the parotid glands; pharyngolaryngitis sicca; rapid destruction of the teeth; rhinitis sicca; inflammation of labial salivary glands (Daniels et al, 1994; Gougerot, 1925; Tabbara et al, 2000); (b) keratoconjunctivitis; (c) dry skin and vagina (Sjögren, 1933).

(B) **Polyarthitis** (in 50% to 60%).

(C) **Respiratory System:** Chronic bronchitis; recurrent pneumonitis; interstitial lymphocytic pneumonia; restrictive ventilatory impairment; interstitial fibrosis; small-airway disease; desiccation of the upper respiratory tract; large-airway obstruction; pleuritic pain; pulmonary lymphoma (Kelly et al, 1991).

(D) **Nervous System Disease** (in approximately 20% of patients with primary Sjögren syndrome): The clinical picture resembling multiple sclerosis; aseptic meningoencephalitis; vasculitic neuropathy; progressive transverse myelopathy (17 cases) (Williams et al, 2001); psychiatric abnormalities (affective disturbances; etc.); hemiparesis; transient aphasia; chronic progressive sensory ataxic neuropathy; peripheral neuropathy; concurrent cerebral venous sinus thrombosis and myeloladiculopathy; segmental anhidrosis in the spinal dermatomes (Kumazawa et al, 1993; Pou Serradell et al, 1993; Sobue et al, 1993; Tanaka et al, 1985).

(E) **Immune Disorders:** Antibodies to Ro/SS-A or La/SS-B antigens; antinuclear antibodies; rheumatoid factor; immune thrombocytopenia; autoimmune hemolytic anemia in sisters (Boling et al, 1983; Ramakrishna et al, 1992; Vitali et al, 1993).

(F) **Endocrine and Exocrine:** Recurrent parotid gland enlargement as an initial manifestation in children; exocrine pancreatic impairment; sclerosing cholangitis in association with pancreatitis; hypothyroidism; acrosclerosis associated with telangiectasia and myxedema.

(G) **Syndromes Association:** CREST syndrome; myelodysplastic syndrome; Raynaud phenomenon (Albert et al, 1982).
Sjögren Syndrome

(H) Tumor Association: Lymphoproliferative neoplasms (lymphoma, 6%); pseudolymphoma (Tonami et al, 2002a).

(I) Other Reported Abnormalities: Renal tubular acidosis (in 20%); association of primary Sjögren syndrome with multiple sclerosis; lymphoproliferative neoplasms; familial Sjögren syndrome and salivary gland lymphoma; inclusion body myositis; retroperitoneal fibrosis; adherence of “lips to the teeth” sign; infrequent familial occurrence; combination of Sjögren syndrome with HIV disease (Ramos-Casals et al, 2001); association with HLA-DR3; increased HLA-B8 in primary sicca syndrome; mastitis; temporomandibular abnormalities (Gentric et al, 1987; Gregoir et al, 1991; Gutmann et al, 1985; List et al, 1999; Miro et al, 1990; Ruiz-Arguelles et al, 1986).

Radiologic Manifestations:
(A) Salivary Glands: sialectasia (punctate; globular; cavitary; destructive); atrophy of the salivary ducts; bilateral cystic lesions; parotid pseudotumors: (a) CT: salivary gland enlargement; heterogeneous attenuation having a multilocular appearance; salivary gland calcification; (b) MR: multiple hypointense mixed with hyperintense foci on T1- and T2-weighted images; good accuracy (Izumi et al, 1998; Tonami et al, 2002b); (c) ultrasonography: hypoechoic areas 2 to 5 mm in diameter within the gland (homogeneous or nonhomogeneous) representing parotid lobules replaced by lymphocytic infiltration; (d) parotid sialography (imaging procedure of choice (Kalk et al, 2002); (e) salivary SPECT (single-photon emission computed tomography) useful in diagnosing the syndrome by evaluating the uptake ratio of the submandibular gland to parotid gland (Bradus et al, 1988; March et al, 1989; Nakamura et al, 1991; Takashima et al, 1992; Takashima et al, 1992; Tonami 1998, 2002b).

(B) Chest: Reticular-nodular infiltrate, bilateral; patchy infiltrate; hilar lymph node enlargement; bronchiectasis; enlarged mediastinal nodes; CT: interstitial and bronchopulmonary (Franquet et al, 1997; Meyer et al, 1997).

(C) Lymphatic System: Enlarged nodes with a foamy reticular pattern (lymphography); MALT lymphoma (Tonacci et al, 2002b).

(D) Skeletal System: Destructive juxta-articular changes; renal rickets.

(E) Digestive System: Mucosal atrophy of the esophagus, achalasia of the cardia, gastric hypersecretion (Hradsky et al, 1967).

(F) Central Nervous System (CNS): Nonenhancing (CT) lucencies in the brain in patients with clinical manifestations in the central nervous system; the lesions best detected by magnetic resonance imaging (predominantly within the subcortical and periventricular white matter) (Tanaka et al, 1985; Urban et al, 1994).

(G) Other Reported Abnormalities: Nephrocalcinosis; distended gallbladder (Tanaka et al, 1985); decreased thyroid uptake of 99mTc (Taura et al, 2002) (Fig. SYME–S–14).

Figure SYME–S–14 = Sjögren syndrome. A parotid sialogram shows peripheral c cylindric and punctate sialectases. (From Gonzalez L, Mackenzie AH, Tarar RA: Parotid sialography in Sjögren's syndrome, Radiology 97:91, 1970. Used by permission.)

Differential Diagnosis: (1) TINU syndrome (tubulointerstitial nephritis/uveitis) (Sessa et al, 2000); (2) hepatitis C infection (Ramos-Casals et al, 2001).

Note: The diagnosis of the syndrome requires the presence of at least two of the following major manifestations: (a) keratoconjunctivitis sicca; (b) xerostomia; (c) evidence of systemic autoimmune disease (Vitali et al, 1993).

References
Albert J et al: Association d’un syndrome de Gougerot-Sjögren et d’un syndrome C.R.S.T. avec calcifications intraarticulaires et lésions ostéolytiques inhabituelles, J Radiol 63:757, 1982.
Boling EP et al: Primary Sjögren syndrome and autoimmune hemolytic anemia in sisters: a family study, Ann Med 74:1066, 1983.
Bradus RJ et al: Parotid gland: US findings in Sjögren syndrome: work in progress, Radiology 169:749, 1988.
Daniels TE et al: Association of patterns of labial salivary gland inflammation with keratoconjunctivitis sicca: analysis of 618 patients with suspected Sjögren’s syndrome, Arthritis Rheum 37:869, 1994.
Franquet T et al: Primary Sjögren syndrome and associated lung disease: CT findings in 50 patients, AJR 169:655, 1997.
Gentric A et al: Fibrose rétropéritonéale idiopathique et syndrome de Gougerot-Sjögren, Presse Med 16:1702, 1987.
Gutmann C et al: Mastite aigue au cours d’une polyarthrite rheumatoide avec syndrome de Gougert-Sjögren traitée par tiopronine (Acadione), Rev Rheumatol 58:203, 1991.
Gougerot H: Insuffisance progressive et atrophie des glandes salivaires et muqueuses de la bouche, des conjonctives (et parfois des muqueuses nasale, laryngée, vulvaire), “sécheresse” de la bouche, des conjonctives, etc, Bull Soc Fr Dermatol Syph 32:376, 1925.
Gutmann et al: Inclusion body myositis and Sjögren’s syndrome, Arch Neurol 42:1021, 1985.
Hayashi Y et al: The role of caspase cascade on development of primary Sjögren syndrome, J Med Invest 50:32, 2003.
Hradsky M et al: Oesophageal abnormalities in Sjögren’s syndrome, Scand J Gastroenterol 2:200, 1967.
Izumi M et al: MR features of the lacrimal gland in Sjögren’s syndrome, AJR 170:1661, 1998.
Kalk WW et al: Parotid sialography for diagnosing Sjögren syndrome, Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94:131, 2002.
SLEEP APNEA SYNDROME

MIM#: 107650, 207720 (with glaucoma) 137763.

Clinical Manifestations:
(A) Diagnostic Criteria for Obstructive Sleep Apnea Syndrome (Carroll et al, 1992): (a) the patient has a complaint of excessive sleepiness or insomnia. Occasionally the patient may be unaware of clinical features that are observed by others; (b) frequent episodes of obstructive breathing during sleep; (c) associated features: loud snoring, morning headaches, a dry mouth on waking, chest retrac-
tion during sleep in young children; (d) polysomnographic monitoring: (1) more than five obstructive apneas, greater than 10 seconds in duration, per hour of sleep, and one or more of the following: frequent arousal from sleep associated with apneas, brachytychycardia, arterial oxygen desatu-
ration in association with the apneic episodes, with or without an MSLT that demonstrates a mean sleep latency of less than 10 minutes; (e) can be associated with other medical disorders: tonsillar enlargement, and so forth; (f) other sleep disorders may be present: periodic limb movement disorder or narcolepsy, and so forth.

(B) Other Reported Abnormalities: Increase in blood pressure associated with a decrease in heart rate and cardiac output during apneic episodes; nocturnal angina associated with heart failure and near-miss sudden death; nocturnal oxymoglobin desaturation; association with chronic renal disease; neuroendocrine dysfunction and reversal by continuous positive airways pressure therapy, depression; cognitive impairment; associated with craniofacial junction (Chiari 1, etc.) malformations (Hershberger et al, 2003; Reybet-Degat, 2001).

Radiologic Manifestations: (a) airway obstruction (somnofluoroscopy): type 1, obstruction at the level of the soft palate only; type 2, obstruction occurs initially at the level of the soft palate followed by closure of the more distal part of the airway; type 3, obstruction initially occurs distal to the soft palate; airway at the soft-palate level may close or remain open; (b) computed tomography: measurement of tongue size to evaluate its predictive value for the result of corrective surgery (uvulopalatopharyngoplasty); “hooked soft palate” (Pepin et al, 1999); (c) pulmonary edema; (d) ultrafast spoiled GRASS MR imaging of the pharyngeal airway: occlusion or narrowing; cine MRI (Donnelly; Jager et al, 1998); volumetric MRI: volume of tongue and lateral walls increase risk, continuous narrowing anterior 2/3 of pharyngeal airway (Arens et al, 2003; Schwab et al, 2003); (e) altered intracranial hemodynamics shown by transcranial Doppler ultrasonography (increased cerebral blood flow velocity during apnea, followed by a rapid decrease during snoring); (f) functional MRI: aberrant response in multiple brain areas (Macey et al, 2003); (g) sedation precautions (Donnelly et al, 2001).

Therapy: (1) Distraction osteogenesis (Li et al, 2002; Petit et al, 2002); (2) postobstructive pulmonary edema (Burke et al, 2001).

Note: (1) obstructive apnea syndrome features in children (Carroll et al, 1992): snoring often continuous; excessive daytime sleepiness and obesity present in minority of the cases; daytime mouth breathing commonly present; enlarged tonsils and adenoids common etiologic factor; obstructive hypopventilation present; complications (cardiopulmonary; growth; behavior; developmental); (2) relationship to sudden infant death syndrome (SIDS) MIM# 272120.
SLIT VENTRICLE SYNDROME

Synonym: Noncompliant ventricle syndrome.

Clinical and Radiologic Manifestations: (1) impairment (excessive drainage) in shunted hydrocephalic patients; the

recommended diagnostic triad (Rekate, 1993): (a) intermittent headaches lasting 10 to 30 minutes; (b) smaller than normal ventricles on imaging studies (“slit-ventricles”); (c) slow refill of shunt-pumping devices; (2) neuropathologic findings: glial adhesions, aqueduct obstruction, periventricular astrogliosis (Del Bigio, 2002); (3) therapy: shunt removal (Baskin et al, 1998), lumboperitoneal shunt (Le et al, 2002), subtemporal decompression (Buxton et al, 1999); (4) other reported abnormalities and associations: ophthalmologic leading to blindness (Nguyen et al, 2002); arachnoid cyst-peritoneal shunt (Sunami et al, 2002); suture closure (Albright et al, 2001).

References

Albright AL et al: Slit ventricle secondary to shunt induced suture osification, Neurosurgery 48:764, 2001.
Baskin JJ et al: Ventricular shunt removal: the ultimate treatment of slit ventricle syndrome, J Neurosurg 88:478, 1998.
Bruce DA et al: The slit ventricle syndrome, Neurosurg Clin North Am 12:709, 2001 (review).
Buxton N et al: Subtemporal decompression: treatment of non compliant ventricle syndrome, Neurosurgery 44:513, 1999.
Del Bigio MR: Neuropathological findings in child with slit ventricle syndrome, Pediatr Neurosurg 37:148, 2002.
Di Rocco C: Is the slit ventricle syndrome always a slit ventricle syndrome? Childs Nerv Syst 10:49, 1994.
Le H et al: Lumboperitoneal shunting as treatment for slit ventricle syndrome, Pediatr Neurosurg 36:178, 2002.
Nguyen TN et al: Ophthalmic complications of slit ventricle syndrome in children, Ophthalmology 109:520, 2002.
Rekate HL: Classification of slit-ventricle syndromes using intracranial pressure monitoring, Pediatr Neurosurg 19:15, 1993.
Sunami K et al: Slit ventricle syndrome after cyst-peritoneal shunting, Brain Dev 24:776, 2002.

SMALL LEFT COLON SYNDROME

Clinical Manifestations: (a) symptoms of intestinal obstruction within the first 2 days of life; (b) high incidence of an association with maternal diabetes; (c) other associated conditions: hypoglycemic cardiomyopathy; persistent fetal circulation, meconium plug: maternal ingestion of psychotropic drugs; association with neonatal intussusception; association with cystic fibrosis; occurrence in twins.

Radiologic Manifestations: (a) intestinal distension; (b) significant narrowing of the colon extending from the splenic flexure to the anus; repeat enemas show normalization (Lachman); (c) intestinal perforation (small bowel; colon); (d) association with meconium plug syndrome; (e) increased subcutaneous fat thickness in infants of diabetic or gestational diabetic mothers (Fig. SYME–S–15).

Differential Diagnosis: Hirschsprung disease.

References

Cohen MD et al: Neonatal small left colon syndrome in twins, Gastrointest Radiol 7:283, 1982.
Cohen Jr MM: Infants of diabetic mothers and neonatal small left colon, Am J Med Genet 122A:301, 2003.

SLIT VENTRICLE SYNDROME

Historical Note: (1) Morgagni (1750s) described sleep apnea with obesity (Enzi et al, 2003); (2) Dormouse disease (as in Alice in Wonderland—Lewis Carroll) (Williams, 1983).

References

Arens R et al: Upper airway size analysis by MRI in obstructive sleep apnea syndrome, Am J Respir Crit Care Med 167:65, 2003.
Burke AJ et al: Incidence of pulmonary edema after tracheotomy for obstructive sleep apnea, Otolaryngol Head Neck Surg 125:319, 2001.
Caroll JL et al: Diagnostic criteria for obstructive sleep apnea syndrome in children, Pediatr Pulmonol 14:71, 1992.
Donnelly LF et al: Is sedation safe during dynamic sleep fluoroscopy in sleep apnea, AJR 177:1031, 2001.
Donnelly LF et al: Upper airway motion depicted at cine MRI in sleep apnea, Radiology 227:239, 2003.
Enzi G et al: Historical perspective: visceral obesity, Int J Obes Relat Metab Disord 27:534, 2003.
Gautier CI et al: Syndrome d’apnées obstructives du sommeil du nourrisson et de l’enfant, Arch Fr Pediatr 48:429, 1991.
Grunstein RR et al: Neuroendocrine dysfunction in sleep apnea: reversal by continuous positive airways pressure therapy, J Clin Endocrinol Metab 68:532, 1989.
Hegstrom T et al: Obstructive sleep apnea syndrome: preoperative radiologic evaluation, AJR 150:67, 1988.
Hersherberger ML et al: Arnold-Chiari malformation type I and sleep disorders. J Oral Maxillofac Surg 58:56, 2000.
Hillarp B et al: Videoradiography at submental electrical stimulation during sleep apnea, Acta Radiol 32:256, 1991.
Hoffstein V et al: Roentgenographic dimensions of the upper airway in snoring patients with and without obstructive sleep apnea, Chest 100:81, 1991.
Jager L et al: Fluoroscopic MR with obstructive sleep apnea, AJNR 19:1205, 1998.
Katsantonis GP et al: Somnolofluoroscopy: its role in the selection of candidates for uvulopalatopharyngoplasty, Arch Otolaryngol Head Neck Surg 94:56, 1986.
Larsson SG et al: Computed tomography of the oropharynx in obstructive sleep apnea, Acta Radiol 29:401, 1988.
Li KK et al: Distraction osteogenesis in adult obstructive sleep apnea surgery, J Oral Maxillofac Surg 60:6, 2002.
Macey PM et al: Functional MRI in sleep apnea, Respir Physiol Neurobiol 138:275, 2003.
Pepin JL et al: Obstructive sleep apnea syndrome: hooked appearance, Radiology 210:163, 1999.
Petit FX et al: Mandibular advancement devices: rate of contraindications in sleep apnea patients, Am J Respir Crit Care Med 166:274, 2002.
Reybet-Degat O: Pathology of craniocervical junction and sleep disorders, Rev Neurol 157:516, 2001.
Schwab RJ et al: Identification of upper airway anatomic risk factors for sleep apnea with volumetric MRI, Am J Respir Crit Care Med 168:522, 2003.
Shellock FG et al: Occulsion and narrowing of the pharyngeal airway in obstructive sleep apnea: evaluation by ultrafast spoiled GRASS MR imaging, AJR 158:1019, 1992.
Shepard JW Jr: Cardiopulmonary consequences of obstructive sleep apnea, Mayo Clin Proc 65:1250, 1990.
Siebler M et al: Cerebral hemodynamics in obstructive sleep apnea, Chest 103:1118, 1993.
Suto Y et al: Evaluation of the pharyngeal airway patient with sleep apnea: value of ultrafast MR imaging, AJR 160:311, 1993.
Williams AJ: Dormouse disease? Chest 83:591, 1983.
SMITH-LEMLI-OPITZ SYNDROME TYPE I

MIM#: 270400.

Synonyms: RSH syndrome; SLO syndrome, SLOS.

Mode of Inheritance: Autosomal recessive; chromosomal males in the majority of the reported cases; affected sibling in more than 40% of the cases; reported in twins; locus: 11q12-13; mutations in sterol delta-7-reductase gene (DRCH7).

Frequency: More than 120 reported cases to 1991 (Tzouvelekis et al, 1991); estimated incidence of 1 in 10,000 to 1 in 60,000 births.

Clinical Manifestations (Goldenberg et al, 2003; Nowaczyk et al, 2001c): A metabolic–multiple congenital anomalies–mental retardation syndrome: (a) low birth weight; failure to thrive; (b) hypotonia at birth; progressive spasticity in childhood; (c) moderate to severe mental retardation; (d) typical facies: microcephaly, blepharoptosis, inner epicanthal folds, strabismus, short nose with a broad bridge, anteverted nostrils, broad maxillary anterior alveolar ridge, micrognathia, and slanted auricles or low-set ears; (e) short neck; (f) short and narrow shoulders, postaxial polydactyly, syndactyly of the second and third toes; (g) urogenital anomalies: hypospadias; cryptorchidism; cleft scrotum; pseudohermaphroditism; microenism; microurethra; hypoplastic scrotum, 46,XY with female external genitalia; renal agenesis (Nowaczyk et al, 2003); (h) ocular abnormalities: cataracts; absence of lacrimal punctae; posterior synechiae; ptosis; epicanthal folds; choroidal hemangiomata; pale disks; neuronal atrophy; abnormal rod/photoreceptor responses (Elías et al, 2003); (i) defect in biosynthesis of cholesterol: low level of blood cholesterol; high concentration of 7-dehydrocholesterol (cholesterol precursor); deficiency in normal bile acids in urine and presence of abnormal species (Irons et al, 1994; Nwokoro et al, 1994); (j) hepatomegaly; pancreatic anomalies; adrenal insufficiency (Irons et al, 1994; Nowaczyk et al, 1994); (k) other reported abnormalities: high arch or cleft palate; long tapered fingers; sacral dimple; cardiovascular abnormalities (atrioventricular [AV] canal, TAPVR) (Lin et al, 1997); abnormal electroencephalographic and electrocardiographic findings; acrocyanosis of the hands and feet; skin photosensitivity (Anstey et al, 1999); hypoplasia of the thymus; irritability; typical shrill screaming; frequent vomiting and regurgitation; abnormal dermatoglyphics; Hirschsprung disease; prematurity; few cases reported in adults; early death.

Radiologic Manifestations: (a) microcephaly; scaphocephaly; holoprosencephaly (Nowaczyk et al, 2001a); micrognathia; (b) mild to moderate hydrocephalus involving one or more ventricles; hypoplasia of the frontal lobes, the corpus callosum, the cerebellum, and the brainstem; paucity of white matter in cerebellum; periventricular gray matter heterotopias, irregular frontal gyri; pachygyria; MRI/MRS: abnormal 5/18, callosal abnormalities, Dandy-Walker variant, arachnoid cyst (Caruso et al, 2003); hippocampal malrotation (Fitoz et al, 2003); (c) soft tissue syndactyly of the second and third toes; (d) swallowing mechanism dysfunction in early infancy; gastroesophageal regurgitation and recurrent pneumonia; (e) urinary tract anomalies: ureteropelvic junction obstruction; vesicoureteral reflux; hydronephrosis; collecting system duplication; positional renal abnormalities; renal cystic dysplasia; renal agenesis; etc.; (f) prenatal diagnosis: (US) IUGR, nuchal edema, cardiac/renal anomalies, polydactyly, genital anomalies (Goldenberg et al, 2004); (g) other reported abnormalities: congenital heart disease; pyloric stenosis; polydactyly; brachydactyly; clinodactyly; hypoplasia of the thumbs, which are low-set on the hands; clubfoot; stippled epiphyses (Fig. SYME–S–16).

Differential Diagnosis: (a) Pallister-Hall syndrome; (b) Meckel syndrome; (c) Smith-Lemli-Opitz syndrome type II; (d) SLO-like with cerebellar vermis aplasia and Meckel syndrome features (MIM# 213010); (e) desmosterolosis: macrocephaly, thick alveolar ridges, gingival nodules, short
limbs, ambiguous genitalia, osteosclerosis (MIM# 602398); (f) Faciothoracicgenic syndrome: SLO and Aarskog-like (MIM# 227320); (g) SLO-like with intrauterine growth retardation (IUGR), feeding difficulties, hypotonia, psychomotor delay, toe syndactyly 2/3 (Nguyen et al, 2003); (h) chromosomal disorder (unbalanced translocation 3q:5p) (Rossi et al, 2002).

References
Anstey AV et al: Characterization of photosensitivity in the SLO syndrome, Br J Dermatol 141:406, 1999.
Buyse ML et al: Magnetic resonance imaging findings in an adult with Smith-Lemli-Opitz syndrome, Dysmorphol Clin Genet 4:145, 1990.
Caruso PA et al: MRI and (1)H MRS findings in SLO syndrome, Neuroradiology, 2003
Elias ER et al: Rod photoreceptor responses in SLO syndrome, Arch Ophthalmol 121:1738, 2003.
Fitz S et al: Hippocampal malrotation with normal corpus callosum in Opitz syndrome, Clin Imaging 27:75, 2003.
Goldenberg A et al: Clinical characteristics and diagnosis of SLO syndrome and tentative phenotype-genotype correlation: report of 45 cases, Arch Pediatr 10:4, 2003.
Goldenberg A et al: Antenatal manifestations of SLO syndrome, Am J Med Genet 124A:423, 2004.
Irons M et al: Abnormal cholesterol metabolism in the Smith-Lemli-Opitz syndrome: report of clinical and biochemical findings in four patients and treatment in one patient, Am J Med Genet 50:347, 1994.
Lacombe D et al: Gonadal function in Smith-Lemli-Opitz syndrome, Am J Med Genet 45:119, 1993.
Lin AE et al: Cardiovascular malformations in SLO syndrome, Am J Med Genet 68:270, 1997.
Joseph DB et al: Genitourinary abnormalities associated with the Smith-Lemli-Opitz syndrome, J Urol 137:719, 1987.
Nguyen K et al: MCA/MA syndrome with hypcholesterolemia, Am J Med Genet 121A:109, 2003.
Nowaczyk MJM et al: Fetus with renal agenesis and SLO syndrome, Am J Med Genet 103:75, 2001a.
Nowaczyk MJM et al: Adrenal insufficiency and hypertension in SLO syndrome, Am J Med Genet 103:223, 2001b.
Nowaczyk MJM et al: The Smith-Lemli-Opitz syndrome, Clin Genet 59:375, 2001c (mini review).
Nowaczyk MJM et al: Fetus with renal agenesis and SLO syndrome, Am J Med Genet 120A:305, 2003.
Nwokoro NA et al: Smith-Lemli-Opitz syndrome: biochemical before clinical diagnosis; early dietary management, Am J Med Genet 50:375, 1994.
Opitz JM et al: Smith-Lemli-Opitz (RSH) syndrome bibliography: 1964-1993, Am J Med Genet 50:339, 1994.
Opitz JM: RSH/SLO (“Smith-Lemli-Opitz”) syndrome: historical, genetic, and developmental considerations, Am J Med Genet 50:344, 1994
Rossi M et al: Unbalanced translocation (3;5) (q26.1;p14), Am J Med Genet 110:353, 2002.
Smith DW, Lemli L, Opitz JM: A newly recognized syndrome of multiple congenital anomalies, J Pediatr 64:210, 1964.
Tzouvelekis G et al: Smith-Lemli-Opitz syndrome in female, monozygotic twins, Clin Genet 40:229, 1991.

Mode of Inheritance: Autosomal recessive; locus: 11q12-13; mutations in DRCH7; allelic with or same as SLOS I (Rakheja et al, 2003).

Clinical Manifestations: More severe than SLO I: (a) intrauterine growth retardation; oligohydramnios; birth asphyxia; (b) distinctive face (round face, ptosis, epicanthal folds, broad nasal bridge, and antevorted nares); facial heman-giomata; microcephaly; micrognathia; cleft palate; small tongue; tongue cysts; redundant sublingual tissues; (c) short neck with redundant skin folds; (d) postaxial polydactyly (hands and/or feet); soft tissue syndactyly of second and third toes; (e) genital ambiguity or pseudohermaphroditism in XY males; (f) congenital heart defect; (g) internal organ abnormalities: pulmonary hypoplasia; unilobated lungs; large adrenals; pancreatic islet cell hyperplasia; Hirschprung disease; pyloric stenosis; renal agenesis; renal cystic dysplasia; (h) other reported abnormalities: cataracts; developmental delay; maternal estriol levels unrecordable during the late stage of pregnancy and suppression of maternal adrenal function; poor suck and feeding; vomiting, abdominal distension; recurrent respiratory infections; short limbs; joint contractures; de novo balanced translocation involving 7q32; abnormalities of cholesterol and bile acid biosynthesis (Cunniff et al, 1994).

Radiologic Manifestations: (a) prenatal ultrasonographic findings: growth retardation, heart defect, limb shortening, finger anomalies, renal anomaly, breech presentation, decreased fetal movement, and so forth; (b) central nervous system (CNS): microcephaly, hydrocephaly, absent corpus callosum, polymicrogyria, cerebellar hypoplasia, holoprosencephaly, cerebral atrophy, lipoma of the sella turcica, lumbar meningomyelocele (Herman et al, 1993); (c) other reported abnormalities: persistent open posterolateral fontanelle, thin ribs, hypoplastic thumb metacarpals, high ovoid lumbar bodies, increased number of sternal ossification centers (Herman et al, 1993) (see Fig. SYME–S–16).

Differential Diagnosis: (a) Meckel syndrome; (b) Pallister-Hall syndrome; (c) Smith-Lemli-Opitz syndrome type I.

References
Bialer MG et al: Female external genitalia and Mullerian duct derivatives in a 46,XY infant with the Smith-Lemli-Opitz syndrome, Am J Med Genet 28:723, 1987.
Cunniff C et al: Clinical and biochemical findings in patients with the Smith-Lemli-Opitz syndrome, Proceedings of XV David W. Smith Workshop on Malformations and Morphogenesis, Tampa, Florida, August 1-9, 1994, p 45.
Curry CJR et al: Smith-Lemli-Opitz syndrome type II: multiple congenital anomalies with male pseudohermaphroditism and frequent early lethality, Am J Med Genet 26:45, 1987.
Herman TE et al: Smith-Lemli-Opitz syndrome type II: report of a case with additional radiographic findings, Pediatr Radiol 23:37, 1993.
Hobkins JC et al: Transvaginal ultrasonography and transabdominal embryoscopy in the first-trimester diagnosis of Smith-Lemli-Opitz syndrome type II, Am J Obstet Gyn 171:546, 1994.
Johnson JA et al: Prenatal diagnosis of Smith-Lemli-Opitz syndrome, type II, Am J Med Genet 49:240, 1994.
Lachman MF et al: A 46,XY phenotypic female with Smith-Lemli-Opitz syndrome, Clin Genet 39:136, 1991.
Le Merrer M: Acrodyssgenital dwarfism or Smith-Lemli-Opitz type II syndrome, Clin Genet 40:252, 1991.

SMITH-LEMLI-OPITZ SYNDROME TYPE II

MIM#: 268670.

Synonyms: Acrodyssgenital dwarfism; Lowry-Miller-MacLean syndrome; Rutledge lethal MCA syndrome.
SMITH-MAGENIS SYNDROME

MIM#: 182290.

Synonyms: SMS; 17p interstitial deletion syndrome.

Mode of Inheritance: locus: 17p11.2 deletion; variable size deletions; also ? contiguous gene syndrome.

Frequency: More than 50 reported cases to 1994 (Fan et al., 1994).

Clinical and Radiologic Manifestations: Variable phenotype, no pathognomonic features (Potocki et al., 2003); (a) growth failure; (b) brachycephaly; midfacial hypoplasia; microcephaly; upward slanting of palpebral fissures, upper lip turned at corner, progonathism (Allanson et al., 1999); (c) mental retardation; hyperactivity; infant spasms (Roccella et al., 1999); self-mutilation (Finucane et al., 2001); seizures; (d) short and broad hands: brachydactyly (especially of distal bones), nonspecific pattern profile, enlarged proximal phalax of thumb and middle phalanx of fifth digit (Schlesinger et al., 2003); clinodactyly of fifth fingers; abnormal palmar creases; finger pads; (e) eye abnormalities: strabismus; Brushfield spots; high myopia; retinal detachment; macular scars (Babovic-Vuksanovic et al., 1998); (f) prenatal diagnosis (two cases) (Thomas et al., 2000); (g) other reported abnormalities: cardiac defect (45%); genital/renal anomalies (19%), vesicoureteral reflux (Chou et al., 2002); delayed dentition; malpositioned ears; hearing loss; hoarse/deep voice; scoliosis, flat feet (Spilsbury et al., 2003); hypercholesterolemia (Smith et al., 2002); mosaicism for deletion 17p11.2; infant born to a mother having a mosaic 17p11.2p12 deletion and minimal findings of Smith-Magenis syndrome.

Note: (1) large deletion presenting with both SMS and Joubert syndrome phenotype (Natacci et al., 2000).

References

Allanson JE et al: The face of Smith-Magenis syndrome, J Med Genet 36:394, 1999.
Babovic-Vuksanovic D et al: Visual impairment due to macular disciform scars in SMS: another ophthalmologic complication, Am J Med Genet 80:373, 1998.
Chou IC et al: SMS with bilateral vesicoureteral reflux, J Formos Med Assoc 101:726, 2002.
De Leersnyder H et al: Inversion of circadian rhythm of melatonin in SMS, J Pediatr 139:111, 2001.
Fan Y-S et al: Prenatal diagnosis of interstitial deletion of 17p11.2 (Smith-Magenis syndrome), Am J Med Genet 49:253, 1994.
Finucane BM et al: Eye abnormalities in the Smith-Magenis contiguous gene deletion syndrome, Am J Med Genet 45:445, 1993.
Finucane BM et al: Mosaicism for deletion 17p11.2 in a boy with the Smith-Magenis syndrome, Am J Med Genet 45:447, 1993.
Finucane BM et al: Characterization of self injurious behavior in SMS, Am J Ment Retard 106:52, 2001.
Kondo I et al: Diagnostic hand anomalies in Smith-Magenis syndrome: four new patients with del (17)(p11.2p11.2), Am J Med Genet 41:225, 1991 (review article).
Natacci F et al: Patient with large 17p11.2 deletion presenting with SMS and Joubert syndrome phenotype, Am J Med Genet 95:467, 2000.
Potacki L et al: Variability in clinical phenotype in SMS (del(17)(p11.2p11.2)), Genet Med 5:430, 2003.
Roccella M et al: The SMS: a new case with infant spasms, Minerva Pediatr 51:65, 1999.
Schlesinger AE et al: The hand in SMS: evaluation by metacarpophalangeal pattern profile analysis, Pediatr Radiol 33:173, 2003.
SNAPPING HIP SYNDROME

Synonym: Coxa saltans, snapping tendon syndrome; iliopsoas syndrome.

Clinical and Radiologic Manifestations: (1) definition and etiologies: 3 types; external: thick iliobibial band (gluteus maximus) over greater trochanter, internal: slip of iliopsoas tendon over iliopectineal eminence, intra-articular: joint lesions (Allen et al, 1995; Tatu et al, 2001); consequent to Perthes disease (Yamamoto et al, 2004); idiopathic hip instability (Bellabarba et al, 1998); (2) imaging: plain film, dynamic US, CT, MRI; findings: hypoechoic band, thickened band; fluid collections; jerky/abnormal movement (Choi et al, 2002; Janzen et al, 1996; Pelsser et al, 2001; Vaccaro et al, 1995; Wunderbaldinger et al, 2001).

Note: (1) snapping scapula syndrome (Carlson et al, 1997; Mozes et al, 1999).

References

Allen WC et al: Coxa saltans: the snapping hip revisited, *J Am Acad Orthop Surg* 3:303, 1995.
Bellabarba C et al: Idiopathic hip instability, an unrecognized cause of coxa saltans in the adult, *Clin Orthop* 355:261, 1998.
Carlson HL et al: Snapping scapula syndrome, *Arch Phys Med Rehabil* 78:506, 1997.
Choi YS et al: Dynamic sonography of external snapping hip syndrome, *J Ultrasound Med* 21:753, 2002.
Janzen DL et al: The snapping hip: clinical and imaging findings, *Can Assoc Radiol J* 47:202, 1996.
Mozes G et al: The use of 3D CT in evaluating snapping scapula syndrome, *Orthopedics* 22:1029, 1999.
Pellser V et al: Extraarticular snapping hip: sonographic findings, *AJR* 176:67, 2001.
Tatu L et al: Descriptive anatomy. Anatomical basis of anterior snapping hip, *Surg Radiol Anat* 23:371, 2001.
Vaccaro JP et al: Iliopsoas bursa imaging: internal snapping hip syndrome, *Eur Radiol* 11:1743, 2001.
Wunderbaldinger P et al: Efficient radiological assessment of internal snapping hip syndrome, *Eur Radiol* 11:1743, 2001.
Yamamoto Y et al: A case of intra-articular snapping hip in Perthes disease, *Arthroscopy* 20:650, 2004.

SNEDDON SYNDROME

MIM #: 182410.

Mode of Inheritance: Autosomal dominant; commonly sporadic.

Clinical Manifestations: Onset of symptoms in early adulthood; more common in females: (a) generalized livedo reticularis (skin changes often precede central nervous symptoms by a number of years); most commonly occurring at the trunk and the proximal part of the limbs; (b) recurrent strokes; long symptom-free intervals; most symptoms related to medium-sized cerebral artery occlusions; epileptic fits; (c) mental deficiency associated with cerebral atrophy; (d) migraine (Tietjen et al, 2002); (e) other reported abnormalities: systemic hypertension; Raynaud phenomenon; ischemic heart disease; disturbed sexual function in men; complicated pregnancies; multifactorial, association with: antiphospholipid antibodies (in about one third of the cases) (Charles et al, 1994; Frances et al, 1999), high concentration of anticardiolipin antibodies, factor V Leiden mutation, platelet abnormalities (Matsumura et al, 2001), arylsulphatase A pseudodeficiency (Parmeggiani et al, 2000).

Radiologic Manifestations: (a) vascular occlusion; irregularities of the vessel walls in the periphery, atypical moyamoya; (b) cerebral blood flow study (HMPAO-brain SPECT): disturbed regional cerebral flow shown before irreversible ischemic insults occur; (c) MRI: progressive white matter lesions, brain atrophy (Tourbah et al, 1997) (Fig. SYME–S–17).

Differential Diagnosis: (1) Divry-van Bogaert syndrome (Sneddon-like but no antibodies) (Stone et al, 2001).

Note: (1) relationship with Lupus (SLE) (Frances et al, 2000).

References

Charles PD et al: Sneddon and antiphospholipid antibody syndromes causing bilateral thalamic infarction, *Pediatr Neurol* 10:262, 1994.
Frances C et al: Sneddon syndrome with or without antiphospholipid antibodies, *Medicine* 78:209, 1999.
Frances C et al: The mystery of Sneddon syndrome, *J Autoimmune* 15:139, 2000.
Kalashnikova LA et al: Anticardiolipin antibodies in Sneddon’s syndrome, *Neurology* 40:464, 1990 (review article).
Matsumura Y et al: Sneddon syndrome with multiple cerebral infarctions: a possible involvement of platelet activation, *J Dermatol* 28:508, 2001.
Menzel C et al: Cerebral blood flow in Sneddon syndrome, *J Nucl Med* 35:461, 1994.

Figure SYME–S–17 = Sneddon syndrome. Anteroposterior, maximum-intensity projection MRA (three-dimensional time of flight with magnetization transfer contrast; TR = 38, TE = 8), demonstrating a relatively low signal intensity of the right pericallosal artery, consistent with slow flow or a narrowed vessel lumen. (From Pettee AD et al: Familial Sneddon’s syndrome: clinical, hematologic, and radiographic findings in two brothers, *Neurology* 44:399, 1994. Used by permission.)
SOLITARY RECTAL ULCER SYNDROME

Synonym: Rectal ulcer syndrome.

Frequency: More than 15 cases reported in children (De la Rubia et al, 1993; Ertem et al, 2002; Godbole et al, 2000; Kiristioglu et al, 2000).

Clinical Manifestations: (a) rectal bleeding; mucus discharge; (b) anorectal pain; chronic constipation; prolonged straining; rectal prolapse (Gopal et al, 2001); (c) benign mucosal lesion in the distal wall of the rectum: fibrous obliteration of the lamina propria; disruption of the lamina muscularis mucosae; extension of muscle fibers into the lamina propria; (d) associations: nonspecific colitis (Haboubi et al, 2001); rectal stenosis (Baskonus et al, 2001); hemophilia (Bishop et al, 2001); spinal cord injury (Wang et al, 2001); rectal malignancy simulation (Li et al, 1998; Tsuchida et al, 1998).

Radiologic Manifestations: (a) granularity of the rectal mucosa, thickened rectal folds; rectal stricture; (b) defecography: intussusception of the rectal wall; rectocele; rectal prolapse; failure of relaxation of the puborectalis that prevents passage of a bolus, abnormal perineal descent; (c) transrectal sonography: thick hypoechoic growth disrupting the echogenic margin of the perirectal fat.

Therapy: (1) surgical (Marchal et al, 2001); (2) nonsurgical (biofeedback) (Bishop et al, 2002; Malouf et al, 2001).

References

Baskonus I et al: Solitary rectal ulcer syndrome: an unusual cause of rectal stricture, *Chir Ital* 53:563, 2001.

Bishop PR et al: Solitary rectal ulcer: hemophilia A, *J Clin Gastroenterol* 33:72, 2001.

Bishop PR et al: Nonsurgical therapy for solitary rectal ulcer syndrome, *Curr Treat Options Gastroenterol* 5:215, 2002.

Cruveilheir J: Ulcer chronique du rectum. In *Anatomie Pathologique du corps humain*, vol. 2, livre 25: maladies du rectum, Paris, 1830 JB Balliere (cited by Figueroa-Colon).

De la Rubia L et al: Solitary rectal ulcer syndrome in a child, *J Pediatr* 122:733, 1993.

Ertem D et al: A rare and often unrecognized cause of solitary rectal ulcer syndrome, *Pediatrics* 110:e79, 2002.

Figueroa-Colon R, et al: Solitary ulcer syndrome of the rectum in children, *J Pediatr Gastroenterol Nutr* 8:408, 1989.

Godbole P et al: Solitary rectal ulcer syndrome in children, *J R Coll Surg Edinb* 45:411, 2000.

Goei R et al: The solitary rectal ulcer syndrome: diagnosis with defecography, *AJR* 149:933, 1987.

Gopal DV et al: Solitary rectal ulcer syndrome presenting with rectal prolapse, *Can J Gastroenterol* 15:479, 2001.

Haboubi NY et al: Non-specific colitis, *Colorectal Dis* 3:263, 2001.

Kiristioglu I et al: Solitary rectal ulcer syndrome in children, *Turk J Pediatr* 42:56, 2000.

Li SC et al: Malignant tumors in rectum simulating solitary rectal ulcer syndrome, *Am J Surg Pathol* 22:106, 1998.

Malde HM et al: Solitary rectal ulcer syndrome: transrectal sonographic findings, *AJR* 160:1361, 1993.

Malouf AJ et al: Results of behavioral treatment (biofeedback) for solitary rectal ulcer syndrome, *Dis Colon Rectum* 44:72, 2001.

Marchal F et al: Solitary ulcer syndrome, *Int J Colorectal Dis* 16:228, 2001.

Tsuchida K et al: Solitary rectal ulcer syndrome: a series of 13 patients operated with a mean follow-up of 4.5 years, *Am J Gastroenterol* 93:2235, 1998.

Wang F et al: Solitary rectal ulcer syndrome in spinal cord injury patients, *Arch Phys Med Rehabil* 82:260, 2001.

SOMATOSTATINOMA SYNDROME

Etiology: Pancreatic tumor producing somatostatinlike immunoreactivity and bioactivity; carcinoid type (Fulfar et al, 1998).

Clinical and Radiologic Manifestations: (a) dry mouth, dyspepsia, postprandial fullness, steatorrhea, and diabetes melitus; (b) normocytic, normochromic anemia; (c) pancreatic tumor or extrapancreatic tumor (duodenum or papilla of Vater, resulting in chronic pancreatitis); diabetes (Sessa et al, 1997); (d) metastases relate to size (>2 cm) (Tanaka et al, 2000); (e) MRI: heterogeneous, nonspecific (Semelka et al, 2000); CT (Hamissa et al, 1999); somatostatin receptor scintigraphy (111 In-pentetreotide) (Schillaci et al, 1997); (f) other reported abnormalities: associations of somatostatinoma: with neurofibromatosis type I (Green et al, 2001); hypercalcaemia (somatostatin increase) (Sugimoto et al, 1998); congenital pseudoarthritis; cholelithiasis; multiple endocrine neoplasia (MEN) I (Lin et al, 2003); erythrocytosis and von Hippel-Landau disease (Karasawa et al, 2001); sprue (one case) (Frick et al, 2000); ectopic pancreas (Chetty et al, 1999).

References

Chetty R et al: Heterotopic pancreas, peripancreatic somatostatinoma and type I NF, *Pathology* 31:95, 1999.

Farr CM et al: Duodenal somatostatinoma with congenital pseudoarthrosis, *J Clin Gastroenterol* 13:195, 1991.

Frick EJ et al: Somatostatinoma of ampulla of Vater in celiac sprue, *J Gastrointest Surg* 4:388, 2000.

Fulfar F et al: Carcinoid somatostatinoma of duodenum, *Eur J Surg Oncol* 24:601, 1998.

Green BT et al: Duodenal somatostatinoma presenting with complete somatostatinoma syndrome, *J Clin Gastroenterol* 33:415, 2001.

Hamissa S et al: CT detection of ampullary somatostatinoma in patient with von Recklinghausen disease, *AJR* 173:503, 1999.

Karasawa Y et al: Duodenal somatostatinoma and erythrocytosis in von Hippel-Landau type 2A, *Intern Med* 40:38, 2001.

Lin FC et al: Atypical thymic carcinoid and malignant somatostatinoma in type I MEN syndrome, *Am J Clin Oncol* 26:270, 2003.

Schillaci O et al: Somatostatin receptor scintigraphy of malignant somatostatinoma, *J Nucl Med* 38:886, 1997.

Semelka RC et al: Neuroendocrine tumors of pancreas: spectrum on MRI, *J Magn Reson Imaging* 11:141, 2000.
Sorsby Syndrome

Syndromes and Metabolic Disorders

Sorsby Syndrome

Sorsby A: Congenital coloboma of the macula, together with an account of the familial occurrence of bilateral macular coloboma in association with apical dystrophy of the hands and feet, Br J Ophthalmol 19:65, 1935. Thompson EM et al: Sorsby syndrome: a report on further generations of the original family, J Med Genet 25:313, 1988.

Sorsby Syndrome

MIM#: 120400.

Mode of Inheritance: Autosomal dominant.

Frequency: 11 members of a single family (Thompson et al, 1988).

Clinical and Radiologic Manifestations: (a) bilateral macular colobomas; horizontal pendular nystagmus; visual loss; (b) hand and foot anomalies: brachydactyly type B, shortening of the middle and terminal phalanges of the second to fifth digits; absent or hypoplastic nails, broad or bifid thumbs and halluces; syndactyly; absence of the distal phalanges (in some); (c) other reported abnormalities: unilateral absence of a kidney; duplication of the uterus and vagina.

Note: Another Sorsby syndrome: fundus (eye) dystrophy MIM# 136900.

References

Sorsby A: Congenital coloboma of the macula, together with an account of the familial occurrence of bilateral macular coloboma in association with apical dystrophy of the hands and feet, Br J Ophthalmol 19:65, 1935. Thompson EM et al: Sorsby syndrome: a report on further generations of the original family, J Med Genet 25:313, 1988.

Sotos Syndrome

MIM#: 117550.

Synonym: Cerebral gigantism.

Frequency: More than 200 reported cases to 1994 (Cole et al, 1994); many cases since to 2003.

Mode of Inheritance: Sporadic in the majority of the cases; autosomal dominant; mutations/microdeletions in NSD1 gene (60%–75%) (Nagai et al, 2003; Rio et al, 2003; Visser et al, 2003); allelic to Weaver syndrome.

Clinical Manifestations: (a) acromegalic appearance (Sotos et al, 1964, 1977); (b) large head; dolichocephaly; prominent forehead and supraorbital ridges; downslant of palpebral fissures; ocular hypertelorism; prominent jaw; pointed chin; high-arched palate (Cole et al, 1994; Sotos et al, 1964, 1977); (c) birth weight above average; very rapid growth in height and weight (above the 90th percentile) (Cole et al, 1994; Sotos et al, 1964, 1977); (d) long arm span; large hands and feet; (e) mental retardation; poor motor coordination; behavioral problems: tantrums; destructiveness; aggressive behavior; social withdrawal; autistic disorder; eating and sleeping difficulties (Rutter et al, 1991); (f) absence of precocious sexual development; (g) chromosomal aberrations: deletions (chromosome 15); duplication (chromosome 15); translocation (chromosomes 2, 3, 5, 6, 8, 12, and 15); pericentric inversion of chromosome Y; trisomy 20p. (Faivre et al, 2000; Haeusler et al, 1993; Imaizumi et al, 2002; Maroun et al, 1994); (h) neoplasms: hepatocarcinoma; epidermoid carcinoma; Wilms tumor; neuroblastoma; sacrococcygeal teratoma; leukemia; lymphoma; small cell carcinoma; vaginal carcinoma; gastric carcinoma; osteochondroma; pulmonary blastoma; cardiac fibroma; (Cohen, 1999; Hersh et al, 1992; Le Marc et al, 1999; Leonard et al, 2000; Maldonado et al, 1984; Marci et al, 2001; Nance et al, 1990; Sugarman et al, 1977); (i) other reported abnormalities: (1) skin: cutis laxa-like (Robertson et al, 1999); pigmented nevus; thin and brittle nails; enamel hypoplasia (Inokuchi et al, 2001); (2) metabolic/endocrine: thyrotoxicosis; Kocher-Debré-Sémelaigne syndrome; glucose intolerance; low somatomedin levels; increased urinary excretion of 17-ketosteroids and 17-hydroxysteroids; abnormal plasma amino acids; (3) neuromuscular: hypotonia; muscle weakness; increased tendon reflexes; abnormal electroencephalogram (nonspecific; diffuse); autonomic failure with persistent fever; (4) ocular manifestations: moderate to high refractive error (hyperopia); retinal degeneration (Inoue et al, 2000); glaucoma (Yen et al, 2000); nystagmus, strabismus; (5) congenital heart defects (8%–10%) (Miyamoto et al, 2003); cardiac conduction defects (Wolff-Parkinson-White) (Sharma et al, 2003); (6) miscellaneous: feeding difficulties in infancy; premature eruption of teeth; cavernous heman gioma; polycystic kidney disease (Cefle et al, 2002); ovarian fibromas (Chen et al, 2002); leg length asymmetry; growth hormone hypersecretion; carpal tunnel syndrome (Ambler et al, 1993; Kaneko et al, 1987; Maino et al, 1994); (7) anesthesia (Adhami et al, 2003).

Radiologic Manifestations: (a) large dolichocephalic skull, ocular hypertelorism, high-rising orbital roofs, normal-size sella turcica (Poznanski et al, 1967); (b) disproportionately large hands and feet; abnormal metacarpophalangeal pattern profile (a major peak in the proximal phalangeal area and a smaller peak in the metacarpal area, with the distal hand bones being relatively short; a relative short metacarpal one and long distal phalanx one; heterogeneity in the profile) (Butler et al, 1988; Cole et al, 1994; Dijkstra et al, 1994; Nance et al, 1990; Poznanski et al, 1967); (c) advanced skeletal maturation, dis harmonic maturation of the phalanges and carpal bones (the phalanges more advanced as compared with the carpals; delayed appearance of the scaphoid ossification) (Cole et al, 1994; Poznanski et al, 1971); (d) other reported abnormalities: (1) central nervous system (CNS): megencephaly, enlarged subarachnoid space, dilated cerebral ventricles, cavum septum pellucidum, cavum velum interpositum, absent corpus callosum (al Rashed et al, 1999; Aoki et al, 1998; Poznanski et al, 1967; Schaefer et al, 1997); (2) skeletal: posteriorly inclined dorsum sella turcica, presence of an anterior fontanelle bone, vertebra plana, intervertebral disk herniation, kyphosis or kyphoscoliosis (Sweeney et al, 2002), syndactyly,
unequal leg length, pes planus, genu valgus, genu varus, valgoid feet, congenital hip dislocation (Cole et al, 1994; Poznanski et al, 1967); (3) miscellaneous: hydronephrosis, functional megacolon (Adam et al, 1986) (Figs. SYME–S–18 and SYME–S–19).

Differential Diagnosis: Macrocephaly-autism syndrome (605309) (Cole, 1991); Nevo syndrome (MIM# 601451); Soto-like syndrome: dysmorphic, overgrowth, normal bone age, severe developmental delay (Amiel et al, 2002), probably NSD1 defect (Lachman); Bannayan-Smith-Ruvalcaba syndrome; Beckwith-Wiedemann syndrome; Fragile X syndrome; Trisomy 8 mosaicism; Weaver syndrome.

Note: (1) diagnostic mandatory criteria: macrocephaly, facial dysmorphology; less firm criteria: overgrowth, advanced bone age (Rio et al, 2003); (2) deletion causes greater mental retardation (Rio et al, 2003).

References

Adam KAR et al: Cerebral gigantism with hydronephrosis: a case report, *Clin Genet* 29:178, 1986.

Adhami EJ et al: Anaesthesia in child with Sotos syndrome, *Paediatr Anaesth* 13:835, 2003.

Al. Rashed AA et al: Sotos syndrome: a clinical and radiological study of 14 cases, *Ann Trop Paediatr* 19:197, 1999.

Ambler GR et al: Growth hormone hypersecretion in Sotos’ syndrome? *Acta Paediatr* 82:214, 1993.

Amiel J et al: Dysmorphism, variable overgrowth, normal bone age: a “Sotos-like” syndrome, *J Med Genet* 39:148, 2002.

Aoki N et al: Serial neuroimaging studies in Sotos syndrome, *Neurol Res* 20:149, 1998.

Butler MG et al: Metacarpophalangeal pattern profile analysis in Sotos syndrome: a follow-up report on 34 subjects, *Am J Med Genet* 29:143, 1988.

Celle K et al: Chronic renal failure in patient with Sotos syndrome due to AD polycystic kidney disease, *Int J Clin Pract* 56:316, 2002.

Chen CP et al: Bilateral calcified ovarian fibromas in Sotos syndrome, *Fertil Steril* 77:1285, 2002.

Cohen MM Jr: Tumors and nontumors in Sotos syndrome, *Am J Med Genet* 84:173, 1999.

Cole TRP, Hughes HE: Autosomal dominant macrocephaly: benign familial macrocephaly or a new syndrome? *Am J Med Genet* 41:115, 1991.

Cole TRP et al: Sotos syndrome: a study of the diagnostic criteria and natural history, *J Med Genet* 31:20, 1994 (review article).

Dijkstra PF et al: Metacarpophalangeal pattern profile analysis in Sotos and Marfan syndrome, *Am J Med Genet* 51:55, 1994.

Faivre L et al: Apparent Sotos syndrome in child with trisomy 20p11.2-p12.1 mosaicism, *Am J Med Genet* 91:273, 2000.

Haeusler G et al: Constitutional chromosome anomalies in patients with cerebral gigantism (Sotos syndrome), *Clin Pediatr* 205:351, 1993.

Hersh JH et al: Risk of malignancy in Sotos syndrome, *J Pediatr* 120:572, 1992.

Imazumi K et al: Sotos syndrome associated with de novo translocation t(5;8)(q35;q24.1), *Am J Med Genet* 107:58, 2002.

Inokuchi M et al: Sotos syndrome with enamel hypoplasia, *J Clin Pediatr Dent* 25:313, 2001.

Inoue K et al: Optic disk pallor and retinal atrophy in Sotos syndrome, *J Ophthalmol* 25:313, 2001.

Kaneko H et al: Congenital heart defects in Sotos sequence, *Am J Med Genet* 26:569, 1987.

Lachman RS: (personal comment, see Rio).

Le Marc B et al: Gastric carcinoma in Sotos syndrome, *Ann Genet* 42:113, 1999.

Leonard NJ et al: Sacrococcygeal teratoma in 2 cases of Sotos syndrome, *Am J Med Genet* 95:182, 2000.

Lippert MM et al: Malignancy in Sotos syndrome, *J Pediatr* 122:328, 1993 (letter).

Maino DM et al: Ocular manifestations of Sotos syndrome, *Am J Ophthalmol* 65:339, 1994.

Maldonado V et al: Cerebral gigantism associated with Wilms’ tumor, *Am J Med Genet* 138:486, 1984.

Marcu M et al: Fibroma of left ventricle in Sotos syndrome, *Echocardiography* 18:171, 2001.

Maroun C et al: Child with Sotos phenotype and a 5:15 translocation, *Am J Med Genet* 50:291, 1994.

Miyamoto T et al: Total cavopulmonary connection in Sotos syndrome, *Asian Cardiovasc Thorac Ann* 11:342, 2003.

Nagai T et al: Sotos syndrome and haploinsufficiency of NSD 1, *J Med Genet* 40:285, 2003.

Nance MA et al: Neuroblastoma in a patient with Sotos’ syndrome, *J Med Genet* 27:130, 1990.

Poznanski AK et al: Radiographic findings in hypothalamic acceleration of growth associated with cerebral atrophy and mental retardation (cerebral gigantism), *Radiology* 88:446, 1967.
Spherocytosis

MIM#: 182900.

Synonym: Minkowski-Chauffard disease.

Mode of Inheritance: Autosomal dominant in about 75% of the cases; sporadic or autosomal recessive inheritance in other cases; AD: locus:8p11.2, many private mutations of 5 proteins in RBC membranes (Tse et al, 1999); AR: (MIM# 270970, mutation in alpha-spectrin gene).

Frequency: Approximately 1 in 5000 persons of northern European ancestry (Agre, 1989).

Pathophysiology: Deficiency of spectrin (a protein of the erythrocyte membrane skeleton) resulting in the formation of spherocytes that lack normal strength; the spherocytes trapped in the splenic red pulp have a short survival period and are destroyed.

Clinical Manifestations: Variable clinical severity: (a) jaundice; (b) splenomegaly; (c) chronic hemolytic anemia with an onset in childhood or adolescence; spherocytes in the peripheral blood; increased osmotic fragility of erythrocytes; shortened life span of erythrocytes from an affected person in a normal recipient; rapid hemolysis of spherocytes in the spleen; (d) diagnosis in newborn infants: increased osmotic fragility of fresh and incubated red blood cells, moderately increased autohemolysis, and partial reduction of autohemolysis by the addition of glucose; (e) other reported abnormalities: atypical hyperbilirubinemia in newborns; aplastic crisis; leg ulcerations; congestive heart failure; myeloproliferative disorders.

Radiologic Manifestations: (a) bilirubin stones; (b) osteoporosis; widening of the medullary canal of tubular bone; widening of the diploic space; hair-on-end appearance of the calvaria; (c) extramedullary hematopoiesis (paravertebral) (Granjo et al, 2002), adrenal (Calhoun et al, 2001); (d) secondary hemochromatosis (related to repeated transfusions); (e) splenomegaly, usually with a homogeneous increased echogenicity; well-defined focal defects of high echogenicity relative to the normal spleen (soft areas composed of dilated sinuses and extramedullary hemopoiesis); splenic rupture; (f) ischemic cerebral accident, moyamoya (two cases) (Holtz et al, 1998; Tokunaga et al, 2001).

Therapy: (1) partial splenectomy (de Buys Roessingh et al, 2002); (2) laparoscopic surgical approach.

References

Agre P: Hereditary spherocytosis, JAMA 262:2887, 1989.

Calhoun SK et al: Extramedullary hematopoiesis in child with hereditary spherocytosis: adrenal mass, Pediatr Radiol 31:879, 2001.

Conti JA et al: Hereditary spherocytosis and hematologic malignancy, New Jersey Med 91:95, 1994.

Costa FF et al: Linkage of dominant hereditary spherocytosis to the gene for the erythrocyte membrane-skeleton protein ankyrin, N Engl J Med 323:1046, 1990.

De Buys Roessingh AS et al: Followup partial splenectomy in children with hereditary spherocytosis, J Pediatr Surg 37:1459, 2002.

Granjo E et al: Extramedullary hematopoiesis in hereditary spherocytosis, Int J Hematol 76:153, 2002.

Gupta R et al: Unusual ultrasound appearance of the spleen—a case of hereditary spherocytosis, Br J Radiol 59:284, 1986.

Holtz A et al: Moyamoya disease in patient with hereditary spherocytosis, Pediatr Radiol 28:95, 1998.

Morita M et al: Hereditary spherocytosis with congestive heart failure: report of a case, Surg Today 23:458, 1993.

Mosley FE: Skeletal changes in the anemias, Senin Roentgenol 9:169, 1974.

Pulson A et al: Mediastinal extramedullary hematopoiesis as first manifestation of hereditary spherocytosis, Ann Hematol 65:196, 1992.

Schröter W et al: Diagnosis of hereditary spherocytosis in newborn infants, J Pediatr 103:460, 1983.

Tokunaga Y et al: Moyamoya syndrome with spherocytosis, Pediatr Neurol 25:75, 2001.

Tse WT et al: Red blood cell membrane disorders, Br J Haematol 104:2, 1999.

SPLENIC FLEXURE SYNDROME

Synonyms: Acute flexura lienalis syndrome; Payr syndrome.

Clinical Manifestations: (a) left upper abdominal pain; (b) tenderness over the left upper portion of the abdomen; (c) abdominal distension in some.

Radiologic Manifestations: (a) localized gaseous distension of the splenic flexure of the colon with/without contrast studies demonstrating interposition of the splenic flexure of the colon between the diaphragm, stomach, and spleen.

Note: The existence of the syndrome is questionable.

References

Kozlowski K: Acute flexura lienalis syndrome, Am J Dis Child 122:239, 1971.

Oppermann HC et al: Das Flexura-lienalis-Syndrom in Kindesalter, Z Kinderchir 22:33, 1977.

Payr E: Ueber eine eigentümliche, durch abnorm starke Klickunge und Adhäsionen bedingte gusartige Stenose der Flexura lienalis und hepaticus coli, Verh Dtsch Keng Inn Med 27:276, 1910.
SPLENOGONADAL FUSION/ LIMB DEFORMITY

MIM#: 183300.

Synonym: SGFLD.

Classification and Pathology of Splenogonadal Fusion:
(a) types: (1) continuous splenogonadal fusion: spleen connected to the left gonad by a cord of splenic or fibrous tissue or by bandlike masses of splenic tissue; (2) accessory splenic tissue attached to the gonad; (b) other associated anomalies (usually continuous type): (1) limb defects, bifold vertebrae; (2) abdomen: diaphragmatic hernia; partial situs inversus microgastria; bowel obstruction; anal malformations; Meckel diverticulum; bilobed spleen; hepatolienal fusion; abnormal fissures of the liver; abnormal fissuring of the spleen; accessory spleen; adrenogonadal fusion; hypospadias; double uterus; (3) chest: abnormal fissures of the lungs; hypoplastic lungs; congenital cardiovascular defects; (4) polymicrogyria.

Frequency and Mode of inheritance: Approximately 150 reported cases of splenogonadal fusion (McPherson et al, 2003); 33 reported cases of splenogonadal fusion in association with limb deformity/associated anomalies (McPherson et al, 2003); high incidence of occurrence in males; sporadic.

Clinical Manifestations: (a) limb malformation (amelia; peromelia; phocomelia; ectromelia; hemimelia; clubfoot); (b) inguinal hernia; cryptorchidism (31%) (Cortes et al, 1996); scrotal “mass”; (c) micrognathia (20/33); (d) other reported abnormalities: malformed ears; asymmetrical skull; Möbius syndrome; tumors: germ cell testicular tumors (three cases) (Imperial et al, 2002); laparoscopic diagnosis (Braga et al, 1999).

Radiologic Manifestations: (a) 99mTc sulfur colloid imaging for ectopic splenic tissue localization (Steinmetz et al, 1997); (b) demonstration of splenogonadal fusion by various imaging techniques: US, homogeneous mass adjacent to testes (Cirillo et al, 1999; Cochlin, 1992; Henderson et al, 1991; Lombay et al, 1999); CT, contiguous mass (Jequier et al, 1998); (c) limb deformities, hip dislocation (Fig. SYME–S–20).

Differential Diagnosis: (1) paratesticular neoplasms (Akbar et al, 2003); (2) translocation 46XX t(2;12) (p25.1;q24.1): pero/phocomelia without splenogonadal

Figure SYME–S–20 Splenogonadal fusion syndrome. A, Postmortem photograph of an infant with peromelia of the lower limbs and micrognathia. B, Roentgenogram of the lower limbs. The right femur is shorter than the left one, and an absent left tibia and fibula, short right tibia and absent right fibula, and feet deformity are present. At postmortem examination fusion of a splenic mass and the left testicle ventral to the left kidney was found. (From Gouw ASH et al: The spectrum of splenogonadal fusion: case report and review of 84 reported cases, Eur J Pediatr 144:316, 1985. Used by permission.)
fusional nor micrognathia (Murray et al, 2002); (3) Roberts syndrome (De Ravel et al, 1997; Lipson, 1995).

Note: (1) relationship to Hanhart, femoral-facial syndromes (McPherson et al, 2003); (2) hepatogonadal fusion (one case) (Ferro et al, 1996).

References

Akbar SA et al: Multimodality imaging of paratesticular neoplasms and their rare mimics, Radiographics 23:1461, 2003.

Braga LH et al: Anatomic and embryologic aspects of the amniotic bands syndrome, Fetal Diagn Ther 13:95, 1999.

Chen G et al: Ultrasound appearance of the amniotic bands syndrome, Ultrasound Obstet Gynecol 13:453, 2001.

Cortes D et al: The pathogenesis of cryptorchidism and hepatogonadal fusion, Br J Urol 77:285, 1996.

Dilger JF et al: Case report of a rare anatomic variant of the lower extremity, Urology 120A:518, 2003. (review)

Evers AG et al: Ultrasonic findings in amniotic bands syndrome, Clin Radiol 44:117, 1991.

Jequier S et al: Splenogonadal fusion, Clin Radiol 55:2265, 1995.

Korn H et al: Spleen scintigraphy, J Nucl Med 29:876, 1999.

Lombay B et al: Sonographic findings in splenogonadal fusion, Pediatr Radiol 29:73, 1999.

Pilarski RT et al: Karsch-Neugebauer syndrome: split foot/split hand and cleft palate, Pediatr Radiol 15:465, 1999.

Roscioli MJ et al: Pathogenesis of adontia in a Porphyria cutanea tarda patient, J Pediatr Orthop 16:146, 2001.

Steinmetz AP et al: Splenogonadal fusion diagnosed by spleen scintigraphy, J Nucl Med 38:1153, 1997.

SYNDROMES AND METABOLIC DISORDERS

SPLIT-HAND/SPLIT-FOOT DEFORMITIES (SYNDROME)

Synonyms: Lobster-claw deformity; ectrodactyly; SHFM.

Definition: Defect in development of the central rays of the hands/feet; in the monodactylos type, the fifth digit is usually present.

Classification:

(A) Isolated Malformation: Type 1 (locus 7q21); Type 2 (locus q26); Type 3 (10q24; dactylin gene [Basel et al, 2003]); Type 4 (mutation tp63 gene [Duijf et al, 2003]).

(B) Syndromic: More than 60 syndromes reported (also see gamut: ectrodactyly). (a) acrorenal syndrome (Dieker-Opitz syndrome; Curran syndrome); (b) ADULT syndrome (Acro-Dermato-Ungual-Lacrimal-Tooth syndrome); ectrodactyly, excessive flexion, onychodysplasia, obstruction of lacrimal ducts, and hypodontia and/or early loss of permanent teeth (TP63 gene mutation) (Amiel et al, 2001); (c) anonychia with ectrodactyly; (d) ectrodactyly with cleft palate (MIM# 129830), without cleft lip/palate (MIM# 129810); (e) EEC syndrome (Ectrodactyly; Ectodermal dysplasia; Cleft lip and/or cleft palate); (f) Karsch-Neugebauer syndrome: split hand with congenital nystagmus, fundal changes, and cataract; (g) split hands and/or split feet associated with other limb reduction defects (absence of long bones of upper and/or lower limbs), SFHM with absentibia (possibly AR (Witters et al, 2001), MIM# 119100), SFHM with fibular aplasia (47 cases) (Evans et al, 2002); autosomal dominant in most families with wide variability in expression; locus heterogeneity (Helal et al, 1993); (h) split hand and/or split foot with mandibulofacial dysostosis; (i) split hand/foot with perceptive deafness (contiguous gene, with type 1, MIM# 605617) (Fukushima et al, 2003); (j) SHFM with coloboma, hypospadias, sperm abnormalities (Giltay et al, 2004).

Imaging Abnormalities: (1) fetal US (Haak et al, 2001; Lepaire et al, 2002); (2) SHFM3: supernumerary ossicle-distal phalanx of thumb (Roscioili et al, 2004).

Note: (1) AR inheritance in SHFM (Gui et al, 2002); (2) p63 mutations in SHFM and many other limb deformity syndromes (Brunner et al, 2002).

Historical Note: SFHM nonsyndromic family members sterilized by Nazi eugenics law of 1933 (Busch et al, 2002).

References

Amiel J et al: TP63 gene mutation in ADULT syndrome, Eur J Hum Genet 9:642, 2001.

Basal D et al: Split hand foot malformation is associated with reduced levels of dactylin gene expression, Clin Genet 64:350, 2003.

Brunner HG et al: P63 gene mutations and human developmental syndromes, Am J Med Genet 112:284, 2002.

Busch R et al: Ectrodactyly and Germany’s eugenics law of 14 July 1933, Am J Med Genet 110:184, 2002.

Duijf PH et al: Pathogenesis of SHFM, Hum Mol Genet 12(spec no 1): R31, 2003.

Evans JA et al: Fibular aplasia with ectrodactyly, Am J Med Genet13:52, 2002.

Fukushima K et al: Deletion mapping of SHFM with hearing impairment, Hum Radiat Oncology 17:1273, 2003.

Giltay JC et al: Split hand/split foot, iris/choroid coloboma, hypospadias, Clin Dysmorphol 11:231, 2002.

Guil D et al: Evidence for AR inheritance of SHFM, Clin Dysmorphol 11:183, 2002.

Haak MC et al: First trimester diagnosis of SHFM by transvaginal US, Fetal Diagn Ther 16:146, 2001.

Helal A et al: Six generations of a family with multiple limb deficiencies, J Pediatr Orthop 13:210, 1993.

Lee SH et al: Anonychia with ectrodactyly; clinical and linkage data, Ann Hum Genet 22:69, 1957.

Leiter E et al: Genitorurinary tract anomalies in lobster claw syndrome, J Urol 115:339, 1975.

Lepaire O et al: SHFM: ultrasound detection in first trimester, J Pediatr Orthop 17:146, 2001.

Majewski F et al: Aplasia of tibia with split-hand/split-foot deformity: report of six families with 35 cases and considerations about variability and penetrance, Hum Genet 70:136, 1985.

Patterson TJS et al: Cranio-facial dysostosis and malformations of the feet, J Med Genet 1:112, 1964.

Pilarski RT et al: Karsch-Neugebauer syndrome: split foot/split hand and congenital nystagmus, Clin Genet 27:97, 1985.

Roscioli MJ et al: The 10q24-linked split hand/split foot syndrome (SHFM3), Am J Med Genet 124A:136, 2004.

Salmon MA et al: The nasolacrimal duct and split hand/split foot syndrome, Dev Med Child Neurol 19:418, 1977.

Tentamty S, McKusick VA: Split hands as a part of syndromes, Birth Defects 14(3):157, 1978.
SPLIT NOTOCHORD SYNDROME

Frequency: Approximately 25 reported cases to 2003.

Pathology: (a) vertebral anomalies: anterior and posterior spina bifida; (b) neural anomalies: split notochord; meningo-myelocele; meningocele; developmental anomalies of the hindbrain and cervical spinal cord; (c) intestinal anomalies: mediastinal cysts of foregut origin (neuroenteric cysts); enteric duplication, diverticulum; dorsal enteric fistula (passage of bowel through the spinal cleft) (Kanmaz et al, 2002); partial agenesis of the colon; malrotation of the bowel; intussuscepted cecum; enteric fistula opening into the rectum, sigmoid, closed colonic loop or lower part of the small intestine; imperforate anus (six cases); annular pancreas; meconium peritonitis; (d) genitourinary anomalies: malformed kidney; bicornuate uterus; bladder exstrophy; penoscotal transposition; (e) miscellaneous: diaphragmatic hernia; wandering spleen (Dindar et al, 1999); common mesentery; spinal cord herniation into cyst (Aydin et al, 2003); intraabdominal leg (Fowler, 1998); (e) embryology, experimental: partial separation of notochord (Emura et al, 2003).

Clinical Manifestations: (a) external deformities related to the anomalies listed under Pathology (spina bifida cystica, enteric fistula, etc.); (b) neurologic deficit associated with spinal cord anomalies.

Radiologic Manifestations: Well-demonstrated on MRI (a) spina bifida (anterior and posterior); (b) spinal cord and nerve defects; split cord; (c) intestinal anomalies including intestinal herniation through the dorsal cleft; (d) genitourinary anomalies; (e) neuroenteric cyst; (f) prenatal diagnosis: US, polyhydramnios, cyst vertebral anomalies (Almog et al, 2001) (Fig. SYME–S–21).

References

Almog B et al: Split notochord syndrome-prenatal US diagnosis, Prenat Diagn 21:1159, 2001.

Aydin K et al: Case report: spinal cord herniation into neuroenteric cyst: CT and MRI findings, Br J Radiol 76:132, 2003.

Bentley JFR et al: Developmental posterior enteric remnants and spinal malformations, Arch Dis Child 35:76, 1960.

Dindar H et al: The split notochord syndrome with dorsal enteric fistula, meningomyelocele and imperforate anus, Turk J Pediatr 41:147, 1999.

Ebisu T et al: Neuroenteric cysts with meningomyelocele or meningocele: split notochord syndrome, Child Nerv Syst 6:465, 1991.

Emura T et al: Case report: split notochord syndrome, Pediatr Surg Int 19:147, 2003.

Fowler CL: Intraabdominal leg: unique variant of split notochord syndrome, J Pediatr Surg 33:522, 1998.

Hoffman CH et al: Split notochord syndrome with dorsal enteric fistula, AJNR 14:622, 1993.

Kanmaz T et al: The split notochord syndrome with dorsal enteric fistula, Indian J Pediatr 69:729, 2002.

Kheradpir MH et al: Dorsal herniation of the gut with posterior opening of the terminal colon: a rare manifestation of the split notochord syndrome, Z Kinderchir 38:186, 1983.

Ökten A et al: Dorsal mesodermal sinus associated with annular pancreas and meconium peritonitis, Pediatr Radiol 24:302, 1994.

SPONDYLOCARPOTARSAL FUSION (SYNOSTOSIS) SYNDROME

Synonyms: Congenital synspondylism; spondylocarpotarsal synostosis with/without unsegmented bar.

Mode of Inheritance: Autosomal recessive; probably a NOG gene defect (Lachman).

Frequency: About 20 cases reported to 2002 (Honeywell et al, 2002).

Clinical Manifestations: (a) progressive scoliosis; (b) short stature; (c) other reported abnormalities: hearing loss; flat feet; cinodactyly of fifth fingers; cleft palate; enamel hypoplasia; cervical instability (odontoid hypoplasia, three cases) (Seaver et al, 2000).

Radiologic Manifestations: (a) scoliosis; vertebral fusion; narrow intervertebral disks; unilateral unsegmented
vertebral bar; (b) carpal and tarsal fusion; (c) generalized epiphyseal ossification delay (Honeywell et al, 2002). (Fig. SYME–S–22).

References

Akbarnia B et al: Familial congenital scoliosis with unilateral unsegmented bar: case report in two siblings, J Bone Joint Surg Am 60:259, 1978.
Coelho KE et al: Three new cases of spondylocarpotarsal synostosis syndrome, Am J Med Genet 77:12, 1998.
Honeywell C et al: Spondylocarpotarsal synostosis with epiphyseal dysplasia, Am J Med Genet 109:318, 2002.
Lachman RS: personal comment.
Langer LO et al: Spondylocarpotarsal synostosis syndrome (with or without unilateral unsegmented bar, Am J Med Genet 51:1, 1994.

Seaver LH et al: Spondylocarpotarsal synostosis and cervical instability, Am J Med Genet 91:340, 2000.
Wiles CR et al: Congenital synspondylism, Am J Med Genet 42:288, 1992.

SPONDYLO-COSTAL (SPONDYLO-THORACIC) DYSOSTOSES

MIM#: 122600, 277300.

Synonyms: Spondylocostal dysplasia; spondylothoracic dysplasia; hereditary costovertebral dysplasia, Jarcho-Levin syndrome; SCDO; segmentation anomalies vertebrae/ribs.

Figure SYME–S–22 ■ Spondylocarpotarsal fusion syndrome. A, AP hands: carpal fusions, bilateral. B, AP spine: vertebral body fusions, secondary scoliosis.
Frequency: More than 100 cases of Jarcho-Levin syndrome reported to 2002 (Rastogi et al, 2002).

Mode of Inheritance and Classification (Cornier et al, 2003, 2004; Martinez-Frias, 2004): A heterogeneous disorder of vertebral segmentation anomalies: (1) Jarcho-Levin syndrome (spondylocostal dysostosis type I); autosomal recessive inheritance; (severe phenotype) predominance in Hispanic families; reduced levels of PAX1, PAX9 in chondrocytes (Bannykh et al, 2003); (2) autosomal dominant spondylocostal dysostosis; variable gene expression; (milder phenotype); (3) autosomal recessive; most frequent type, (intermediate phenotype), variable gene expression; locus: 19q13.1-.3, mutations in DLL3 (Notch signaling) (Dunwoodie et al, 2003, 2004; Martinez-Frias, 2004): A heterogeneous disorder (Turnpenny et al, 2003; Whittock et al, 2004). 2002). 3) autosomal recessive, most frequent type, (intermediate phenotype), variable gene expression; locus: 19q13.1-.3, mutations in DLL3 (Notch signaling) (Dunwoodie et al, 2003; Hull et al, 2001; Kauffmann et al, 2003; Lam et al, 1997; Wong et al, 1998) (Fig. SYME–S–23).

Clinical Manifestations:

A Jarcho-Levin Syndrome: (a) marked shortness of the neck and posterior aspect of the chest; increased anteroposterior diameter of the thoracic cage; protuberant abdomen; (b) prominent occiput; broad forehead; wide nasal bridge; prominent philtrum; antverted nares; inverted V-shaped mouth; (c) long, thin limbs with tapering digits; (d) often lethal; (e) other reported clinical and pathologic abnormalities (Duran et al, 2001): (1) limbs: soft tissue syndactyly; camptodactyly; hammertoes; (2) genitourinary: hydronephrosis; bilobed bladder; urethral atresia; undescended testes; hydrocele; absent external genitalia; uterus didelphys; anal atresia; (3) central nervous system (CNS): cerebral polygyria; rachischisis; diastematomyelia; Arnold-Chiari malformation with thoracolumbar meningomyelocele; (4) miscellaneous: lower airway deformity and obstruction; congenital heart disease (Hatakeyama et al, 2003; McMahon et al, 2001; Shimizu et al, 1997); aortic root dilatation (Galguera et al, 1997); pulmonary hypoplasia; difficult delivery resulting from trunk deformity; single umbilical artery; inguinal hernia; abdominal wall hernias; (e) death often resulting from respiratory insufficiency, pulmonary hypertension; survival to childhood rare (66%) (Cornier, 2004; McCall et al, 1994; Rastogi et al, 2002).

Differential Diagnosis: (1) COVESDEM syndrome (costo-vertebral segmentation defect with mesomelia) (Wadia et al, 1978); (2) SCDO-like with multiple pterygia and arthrogryposis (AR, six cases, MIM# 601809) (Johnson et al, 1997); (3) absent vertebral ossification, ribs (missing, posterior gaps), nephrogenic rests, AR (Prefumo et al, 2003); (4) SCDO phenotype with 46XX 6;15 translocation (Crow et al, 1997), with 18q22 deletion (Dowton et al, 1997); (5) SCDO phenotype with malignant hyperthermia, central core disease (RYR1 gene abnormality) (Rueffert et al, 2004); (6) cerebrofaciothoracic dysplasia (MIM# 213980): MR, facial dysmorphism, SCDO vertebral/rib changes.

Note: (a) the distribution and severity of the costovertebral anomalies do not seem to be entirely helpful in the differential diagnosis of the various genetic types of the disease because mild and severe clinical manifestations have been reported in the same family (Lorenz et al, 1990); (b) important genetic counseling information: SCDO with congenital malformations, that is, genitourinary (GU), gastrointestinal (GI) external, and so forth are most commonly sporadic (Mortier et al, 1996); (c) associated abnormalities with severe spondylocostal dysostosis: neural tube defects; central nervous system (CNS) anomalies; tracheal agenesis; diaphragmatic defect; hernia/agenesis; polydactyly, camptodactyly; caudal dysgenesis complex (limb deficiencies; urinary tract anomalies including renal agenesis; genital anomalies; imperforate anus) (Day et al, 2003; Martinez-Frias et al, 1998, 2004; Shehata et al, 2000; Swietlinski et al, 2002); Casamassima syndrome: SCDO with GU anomalies, anal atresia (Casamassina et al, 1981; Martinez-Frias et al, 1998).

Radiologic Manifestations: (a) neurovertebral anomalies: block vertebrae; hemivertebrae; butterfly deformity; sagittal clefts; widely open neural arches; missing vertebral bodies; diastematomyelia; meningocele; spinal cord anomalies; (b) fan-shaped appearance of the ribs in the posteroanterior direction with posterior convergence of the ribs (Jarcho and Levin, 1938); fused, hypoplastic, missing ribs (less severe forms); (c) prenatal diagnosis US (Eliyahu et al, 1997; Hull et al, 2001; Kauffmann et al, 2003; Lam et al, 1999; Wong et al, 1998) (Fig. SYME–S–23).

Figure SYME–S–23 = Spondylocostal dysostosis, dominant type, in a newborn female with truncal dwarfism, a prominent occiput, and normal limbs. Block vertebrae, hemivertebrae, butterfly vertebrae, and rib anomalies (dysplasia, fusion, and abnormal position) are present. Vertebral anomalies were also noted in the cervical and lumbar sacral segments. The father (of Puerto Rican origin) had similar rib and vertebral anomalies in the cervical, thoracic, and lumbar sacral regions. The cranium and limbs of the father appeared normal. (Courtesy Dr. Robert E. Sharkey, Hayward, Calif.)
Stagnant Small-Bowel Syndrome

References

Bannbicky SL et al: Ablentant PAX1 and PAX9 expression in Jarcho-Levin syndrome, Am J Med Genet 120A:241, 2003.
Casamassima AC et al: Spondylocostal dysostosis associated with anal and urogenital abnormalities in a stillborn, Am J Med Genet 8:117, 1981.
Cornier AS: Phenotype characterization and natural history of spondylothoracic dysplasia syndrome, Am J Med Genet 128A:120, 2004.
Cornier AS et al: Controversies surrounding Jarcho-Levin syndrome, Curr Opin Pediatr 15:614, 2003.
Crow YJ et al: Spondylocostal dysostosis associated with a 46, XX, dic(6;15)(q25;q11.2) translocation, Clin Dysmorphol 6:347, 1997.
Day R et al: Diaphragmatic hernia and preaxial polydactyly in spondylothoracic dysplasia, Clin Dysmorphol 12:277, 2003.
Dowton SB et al: Chromosome 18q22.2—qter deletion with multiple segmentations defects, J Med Genet 34:414, 1997.
Dunwoodie SL et al: Axial skeletal defects caused by mutation in spondylocostal dysplasia/pudgy gene DII3, Development 129:1795, 2002.
Duran MA et al: Extrakneatal malformations in Jarcho-Levin syndrome, Pediatr Pathol Mol Med 20:197, 2001.
Eliyahu E et al: Early sonographic diagnosis of Jarcho-Levin syndrome, Ultrasound Obstet Gynecol 9:314, 1997.
Flore S et al: Spondylocostal dysostosis: an example of autosomal dominant transmission in a large family, Clin Genet 36:236, 1989.
Galguera MA et al: Jarcho-Levin syndrome: aortic root dilatation, Bol Asoc Med PR 89:134, 1997.
Hatakeyama K et al: Jarcho-Levin syndrome associated with complex congenital heart anomaly, Pediatr Cardiol 24:86, 2003.
Hull AD et al: Detection of Jarcho-Levin syndrome at 12 weeks’ gestation by nuchal translucency screening and three-dimensional ultrasound, Prenat Diagn 21:390, 2001.
Jarcho S, Levin PM: Hereditary malformation of the vertebral bodies, Bull Johns Hopkins Hosp 62:216, 1938.
Johnson VP et al: New syndrome of spondylospinal thoracic dysostosis with multiplepterygia and arthrogryposis, Am J Med Genet 69:73, 1997.
Karnes PS et al: Jarcho-Levin syndrome: four new cases and classification of subtypes, Am J Med Genet 40:264, 1991 (review article).
Kaufmann E et al: Case report: a prenatal case of Jarcho-Levin syndrome, Prenat Diagn 23:163, 2003.
Kozlowski K: Spondylo-costal dysplasia: a further report—review of 14 cases, Fortschr Rontgenstr 140:204, 1984.
Lam YH et al: Prenatal sonographic features of spondylocostal dysostosis and diaphragmatic hernia in first trimester, Ultrasound Obstet Gynecol 13:213, 1999.
Lorenz P et al: Spondylocostal dysostosis: dominant type, Am J Med Genet 35:219, 1990.
Martinez-Frias ML: Segmentation anomalies of vertebrae and ribs, Am J Med Genet 128A:127, 2004.
Martinez-Frias ML et al: Jarcho-Levin and Casamassima syndrome, An Esp Pediatr 48:510, 1998.
McCall CP et al: Jarcho-Levin syndrome: unusual survival in a classical case, Am J Med Genet 99:328, 1994.
McMahon CJ et al: Subclavian steal syndrome in anomalous connection of left subclavian artery to pulmonary artery, Pediatr Cardiol 22:60, 2001.
Morrier GR et al: Multiple Vertebral segmentation defects: analysis and review of literature, Am J Med Genet 61:310, 1996.
Prefumo F et al: A newly recognized AR syndrome with abnormal vertebral ossification, rib abnormalities and nephrogenic rests, Am J Med Genet 120A:386, 2003.
Rastogi D et al: Pulmonary hypertension in Jarcho-Levin syndrome, Am J Med Genet 107:250, 2002.
Rodriguez MM et al: Spondylocostal dysostosis with perinatal death and meningoemoycele, Pediatr Pathol 14:53, 1994.
Rimoin DL et al: Spondylocostal dysostasia: a dominantly inherited form of short-trunked dwarfism, Am J Med 45:948, 1968.
Rueffert H et al: A new mutation in (Ryr1) malignant hyperthermia, central core disease, and severe skeletal malformation, Am J Med Genet 124A:248, 2004.
Schulman M et al: Airway abnormalities in Jarcho-Levin syndrome: a report of two cases, J Med Genet 30:875, 1993.
Shehata SM et al: Spondylothoracic dysplasia with diaphragmatic defect, Eur J Pediatr Surg 10:337, 2000.
Shimazu K et al: Jarcho-Levin syndrome associated with atrial septal defect and partial APVR, J Card Surg 12:198, 1997.
Sparrow DB et al: Diverse requirements for notch signalling in mammals, Int J Dev Biol 46:365, 1997.
Swiecretski J et al: Spondylothoracic dysplasia associated with diaphragmatic hernia and campiodactyly, Genet Couns 13:309, 2002.
Turnpenny P et al: Mesoderm Posterior 2 (MESP2) a transcription factor in somatogenesis is rare cause of spondylocostal dysostosis in man, Abstract/Presentation 6th International Skeletal Dysplasia Meeting Aug. 2003, Washington, D.C.
Wadia RS et al: Recessively inherited costovertebral segmentation defect with mesomelia and peculiar facies (COVESDE syndrome): a new genetic entity? J Med Genet 15:123, 1978.
Whittock NV et al: Molecular genetic prenatal diagnosis for AR spondylocostal dysostosis, Prenat Diagn 23:575, 2003.
Whittock NV et al: Mutated MESP2 causes Spondylocostal dysostosis in humans, Am J Hum Genet 74:1249, 2004.
Wong G et al: Jarcho-Levin syndrome: 2 consecutive pregnancies in Porto Rican couple, Ultrasound Obstet Gynecol 12:70, 1998.
You S et al: Arnold-Chiari malformation in Jarcho-Levin syndrome, J Child Neurol 4:229, 1989.

STAGNANT SMALL-BOWEL SYNDROME

Synonyms: Blind loop syndrome; blind pouch syndrome.

Etiology: Small-bowel stenosis or stricture; gastrointestinal fistula; ileocolic fistula; small-bowel diverticula; Crohn disease; blind loop (segment of the small intestine completely bypassed); blind pouch (side-to-side anastomosis associated with persistence of the residual afferent and efferent ends of the intestine).

Clinical Manifestations: (a) weight loss; growth retardation; malnutrition; (b) abdominal cramp; abdominal distension; (c) malabsorption; (d) macrocytic anemia; (e) multiple vitamin deficiencies; (f) abnormal jejunal bile acid concentration resulting from abnormal bacterial flora; (g) hypertrophy of the bowel wall, edema, inflammation, and ulceration; (h) other reported abnormalities: bleeding; arthritis-dermatitis syndrome; spinocerebellar degeneration in the blind loop syndrome with vitamin E malabsorption.

Radiologic Manifestations: (a) spherical, tubular, or club-shaped gas-containing structures on plain films of the abdomen; (b) pseudotumor if filled with fluid or food debris; demonstration of distended bowel by a contrast study of the bowel; (c) diagnosis by scintigraphy (In-111 labeled leukocytes) (Patel et al, 1999).

References

Botsford TW et al: Blind pouch syndrome: a complication of side to side intestinal anastomosis, Am J Surg 113:486, 1967.
Brin MF et al: Blind loop syndrome, vitamin E malabsorption, and spinocerebellar degeneration, Neurology 35:338, 1985.
Camuz F et al: Percutaneous duodenostomy in blind loop syndrome, AJR 150:1199, 1988.
Hurtubise M et al: Stenose de l’intestin grêle: syndrome de l’anse stagnante associé et malabsorption, Can Assoc Radiol J 25:227, 1974.
SYNDROMES AND METABOLIC DISORDERS

STERNAL-CARDIAC MALFORMATIONS ASSOCIATION

Clinical Manifestations:
- **atypical parkinsonism:** (Amar, 2003; Diroma et al., 2003).
- **supranuclear ophtalmoplegia:** pseudobulbar palsy; dystonia; axial rigidity; dementia ("subcortical dementia"); (b) cerebellar and pyramidal signs and symptoms minor or absent; (c) absence of startle response to an unexpected auditory stimulus; (d) clinically difficult to differentiate from related disorders (Litvan et al., 1997); pathology: neurofibrillary tangles–brainstem striatum (Arnold et al., 2002a, 2002b).

Radiologic Manifestations:
- (1) positron-emission tomography: a global decrease in blood flow and oxygen utilization; more marked in the frontal region; (2) reduced dopamine receptor binding, MRI: no multiple signal hyperintensities (Arnold et al., 2002a, 2002b); MRS: “eye of the tiger” sign (high signal-globus pallidus/surrounding ring of low signal) (3/9 cases) (Davie et al., 1997).

Note: (1) most sporadic, familial cases, probably AD; (2) case with mutation in parkin gene (Morales et al., 2002).

References

Chidambram B et al: Currarino-Silverman syndrome (pectus carinatum type 2 deformity) and mitral valve disease, *Chest* 102:780, 1992.

Cottrill CM et al: Sternal defects associated with congenital pericardial and cardiac defects, *Cardiol Young* 8:100, 1998.

Curarrino G, Silverman FN: Premature obliteration of the sternal sutures and muscular atrophy, *Hum Genet* 60:357-360, 1981.

Davie CA et al: Proton MRS in Steele-Richardson-Olszewski syndrome, *Mov Disord* 17:1374, 2002.

Davie CA et al: Proton MRS in Steele-Richardson-Olszewski syndrome, *Mov Disord* 17:1374, 2002.

Davie CA et al: Proton MRS in Steele-Richardson-Olszewski syndrome, *Mov Disord* 17:1374, 2002.

STERNAL MALFORMATION-ANGIODYSPLASIA ASSOCIATION

Clinical Manifestations:
- (a) hemangiomas; telangiectasis (face; scalp; neck; trunk; upper respiratory tract; abdominal); (b) other reported abnormalities: skin changes over the
Sternocostoclavicular Hyperostosis

Syndromes and Metabolic Disorders

Sterno-Costo-Clavicular Hyperostosis

Synonyms: Hyperostosis (multiple); Köhler disease; Synovitis-Acne-Pustulosis Hyperostosis-Osteomyelitis syndrome; SAPHO syndrome; sternocostoclavicular hyperostosis; (unifying concept; Boutin et al, 1998).

Clinical Manifestations: Presentation between 30 and 50 years of age: (a) pain in the upper part of the chest and shoulder; limitation of motion; exacerbation and remission; (b) palma-plantar pustulosis: intermittent pustular, and exfoliative dermatitis of the palms and soles; (c) moderate elevation of the sedimentation rate and C-reactive protein concentration; elevated serum globulin levels (a1 and a2); polyclonal gammopathy; mildly elevated serum alkaline phosphatase concentration; (d) biopsy: nonsuppurative acute and chronic inflammation of bones, muscles, and entheses; ligamentous fibrosis; ligamentous ossification; lymphocytes, plasma cells, and polymorphonuclear leukocytes within the wall of small vessels; (e) other reported findings and associations: (1) Behçet disease (Caravatti et al, 2002); (2) transient hemiparesis (childhood) (Vanin et al, 2002); (3) inflammatory bowel disease (Girelli et al, 2001; Hayem et al, 1999).

Radiologic Manifestations (Davies et al, 1999; Earwaker et al, 2003; Hyodoh et al, 2001): (a) hyperostosis and cortical thickening, (clavicles; sternum; upper ribs; spondylodiscitis (1/3) (Toussirot et al, 1997); sclerotic changes in the sacroiliac joint region; mandible: characteristic pattern, mixed osteolytic/osteoblastic, solid periosteal reaction, bone enlargement (Suei et al, 2003); (b) increased uptake on skeletal scintigraphy (especially with 99mTc MDP (Bhosale et al, 2001); “bullhead/bullhorn” sign (sternocostoclavicular region, manubrium = skull/sternal joints = horns) (Freyschmidt et al, 1998); (c) other imaging: MRI guided bone biopsy at CT (Kirchhoff et al, 2003); FDG PET (Kohlfuert et al, 2003; Pichler et al, 2003); MRI spine: discitis/osteitis (Nachtigal et al, 1999); (d) other reported abnormalities: pleural effusion, pulmonary infiltrates; cervical spine (Tohme-Noun et al, 2003); iliac vein thrombosis (MRI) (Legoupil et al, 2001); calvarial lesion (one case) (DiMeco et al, 2000); tarsal bone involvement (Su et al, 1996) (Fig. SYME–S–24).

Therapy: (1) Pamidronate (Guignard et al, 2002).

Differential Diagnosis: (1) condensing osteitis of the clavicle (noninflammatory sclerosis of the sternal end of the clavicle) (Jurik, 1994); (2) psoriatic arthropathy.

Note: (1) chronic recurrent multifocal osteomyelitis (CRMO of childhood) possible continuum of SAPHO (Anderson et al, 2003; Azouz et al, 1998; Slavotinek AM et al, Report of child with aortic aneurysm, orofacial clefting, hemangioma, possible PHACE syndrome, Am J Med Genet 90:243, 2000).

References

Garel C et al: Upper sternal cleft and angiodysplasia association. In the Proceedings of 29th Congress of European Society of Pediatric Radiology; Budapest; April 27-May 1, 1992.

Hersh JH et al: Sternal malformation/vascular dysplasia association, Am J Med Genet 21:177, 1985.

James PA et al: Complete overlap of PHACE syndrome and sternal malformation-vascular dysplasia association, Am J Med Genet 110:78, 2002.

Kaplan LC et al: Anterior midline defects: association with ectopia cordis or vascular dysplasia defines two distinct entities, Am J Med Genet 21:203, 1985 (letter).

Rass-Rothschild A et al: Giant congenital aortic aneurysm with cleft sternum, supraumbilical raphe and hemangiomatosis, Am J Med Genet 90:243, 2000.

Slavotinek AM et al: Report of child with aortic aneurysm, orofacial clefting, hemangioma, possible PHACE syndrome, Am J Med Genet 110:283, 2002.

Tastekin A et al: Superior sternal cleft and minor hemangiomas in newborn, Genet Couns 14:349, 2003.

Yapicioglu H et al: A newborn with sternal malformation /vascular dysplasia association, Genet Couns 13:35, 2002.

Figure SYME–S–24 = Sterno-costo-clavicular hyperostosis. CT: A. There is an ossified bridge over the sternoclavicular joints. The medial end of the right clavicle is sclerotic. The joint spaces are preserved. B, Lower level. Both cartilage surfaces are ossified (arrows). There is hyperostosis of the sternum. (From Economou G et al: Computed tomography in sternocostoclavicular hyperostosis, Br J Radiol 66:1118, 1993. Used by permission.)
References

Andersen SE et al: Imaging of chronic recurrent multifocal osteomyelitis of childhood with primary spinal involvement, Skeletal Radiol 32:328, 2003.

Azouz EM et al: Sternocostoclavicular hyperostosis in children, AJR 171:461, 1998.

Bereneck L et al: Hyperostose multiple avec sacro-iliite unilaterale. Une nouvelle spondyloarthropathie, Presse Med 13:2001, 1984.

Benhamou CL et al: Synovitis-acne-pustulosis hyperostosis-osteomyelitis syndrome (SAPHO): a new syndrome among the spondyloarthropathies? Clin Exp Rheumatol 6:109, 1988.

Bhosale P et al: The SAPHO syndrome, Clin Nucl Med 26:619, 2001.

Boutin RD et al: The SAPHO syndrome: an evolving concept, AJR 170:585, 1998.

Caravati M et al: Coincidence of Behçet's disease and SAPHO syndrome, Clin Rheumatol 21:324, 2002.

Davies AM et al: SAPHO syndrome: 20 year follow-up, Skeletal Radiol 28:159, 1999.

DiMeco F et al: Synovitis, acne, pustulosis and osteitis presenting as primary calvarial lesion, J Neurosurg 93:693, 2000.

Eardwaker IWS et al: SAPHO: syndrome or concept? Imaging findings, Skeletal Radiol 32:311, 2003.

Economou G et al: Computed tomography in sternoclavicular hyperostosis, Br J Radiol 66:1118, 1993.

Freyenschmidt J et al: The bullhead sign: scintigraphic pattern of sternocostoclavicular hyperostosis and pustulotic arthroosteitis, Eur Radiol 8:807, 1998.

Girelli CM et al: Gastric Crohn's disease and SAPHO syndrome, Clin Exp Rheumatol 19:356, 2001.

Guignard S et al: Pamidronate treatment in SAPHO syndrome, Joint Bone Spine 69:392, 2002.

Hayem G et al: SAPHO syndrome: long term followup of 120 cases, Semin Arthritis Rheum 29:159, 1999.

Hyooh K et al: Pustulotic arth-osteitis: defining the radiologic spectrum, Semin Musculoskelet Radiol 5:89, 2001.

Jurik AG: Anterior chest wall involvement in patients with pustulosis palmaris, Skeletal Radiol 19:271, 1990.

Jurik AG: Noninflammatory sclerosis of the sternal end of the clavicle: a follow-up study and review of the literature, Skeletal Radiol 23:373, 1994.

Kirchoff T et al: Diagnostic management of patients with SAPHO syndrome: use of MRI to guide bone biopsy at CT, Eur Radiol 13:2304, 2003.

Kohlfuerst S et al: FDG PET helpful for diagnosing SAPHO syndrome, Clin Nucl Med 28:838, 2003.

Köhler H et al: Sternocostoclavicular hyperostosis: painful swelling of the sternum, clavicles, and upper ribs, Ann Intern Med 87:192, 1977.

Legoupil N et al: Iliac vein thrombosis complicating SAPHO syndrome: MRI and histologic features of soft tissue lesions, Joint Bone Spine 68:79, 2001.

Majeed HA et al: The syndrome of CRMO and congenital dyserythropoietic anaemia, Eur J Pediatr 160:705, 2001.

Nachtigal A et al: Vertebral involvement in SAPHO syndrome: MRI findings, Skeletal Radiol 28:163, 1999.

Pichler R et al: Bone scintigraphy using Tc-99m DPD and F18-FDG in SAPHO syndrome, Scand J Rheumatol 32:58, 2003.

Suei Y et al: Diagnostic points and possible origin of osteomyelitis in SAPHO syndrome: a radiographic study, Rheumatology 42:1398, 2003.

Su J, S et al: Hyperostotic and osteosclerotic changes of tarsal navicular associated with pustularis palmaris and plantaris, Skeletal Radiol 25:377, 1996.

Tohme-Noun C et al: Cervical involvement in SAPHO syndrome, Skeletal Radiol 32:103, 2003.

Toussirot E et al: Spondylodiscitis in SAPHO syndrome, Ann Rheum Dis 56:52, 1997.

Vanin E et al: SAPHO syndrome and transient hemiparesis in a child, J Rheumatol 29:384, 2002.

STEVENS-JOHNSON SYNDROME

Etiology: Various factors have been implicated: infections (mycoplasma pneumoniae [Tay et al, 1996]); drugs; collagen diseases; contactants; foods; visceral malignancies; radiation therapy.

Clinical Manifestations: (a) systemic symptoms; (b) erythema multiforme-like lesions, toxic epidermal necrolysis; (c) vesicular lesions of the mucous membranes (stomatitis; urethritis; conjunctivitis); (d) other reported abnormalities: angular webbing; ulcerative colitis; ulcerative proctitis; nephritis; nephrotic syndrome; uremia, pericarditis; pericardial effusion; atrial arrhythmias; anonychia; oral mucosal scarring; chronic obliterative bronchitis; dysphagia; ocular cicatrical pemphigoid (a sequela); blindness; familial occurrence (rare).

Radiologic Manifestations: (a) patchy atypical pneumonia; pneumothorax; pneumomediastinum; subcutaneous emphysema; chronic lung disease (Basker et al, 1997); (b) cardiomegaly (pericardial effusion); (c) calcification of the bladder wall; (d) esophageal stricture; obliteration of the piriform sinus (Fig. SYME-S-25).

Note: Erythema multiforme major is a separate entity, associated with herpes virus (Roujeau, 1997).

![Figure SYME-S-25](https://example.com/figure) Stevens-Johnson syndrome. An esophagogram shows a short (3 mm) segment of mild (1.4 cm) narrowing (arrow) and a web with marked compromise (4 mm) of the lumen (arrowhead). (From Peters ME, Gourley G, Mann FA: Esophageal stricture and web secondary to Stevens-Johnson syndrome, Pediatr Radiol 13:290, 1983. Used by permission.)
STEWART-TREVES SYNDROME

Definition (Etiology): Angiosarcoma developing in chronic lymphedema; (1) lymphedema immunologically rich for neoplasm development (Ruocco et al, 2002).

Clinical Manifestations: (1) most common postmastectomy (Chung et al, 2000); (2) usually upper extremity (Komorowski et al, 2003); (3) can mimic: Kaposi sarcoma (Allan et al, 2001), Masson’s pseudoangiosarcoma (Romani et al, 1997).

Radiologic Manifestations: (1) MRI: low intensity on T1, intermediate on T2, persisting enhancement with gadolinium (Nakazono et al, 2000) (Fig. SYME–S–26).

References
Allan AE et al: Two cases of Kaposi sarcoma mimicking Stewart-Treves syndrome, Am J Dermatopathol 23:431, 2001.
Case record of the Massachusetts General Hospital (case 18-1993), N Engl J Med 328:1337, 1993.
Chung KC et al: Lymphangiosarcoma (Stewart-Treves syndrome) in postmastectomy patients, J Hand Surg (Am) 25:1163, 2000.
Kaufmann T et al: Post-mastectomy lymphangiosarcoma (Stewart-Treves syndrome): report of two long-term survivors, Br J Radiol 64:857, 1991.
Kazerouei E et al: CT appearance of angiosarcoma associated with chronic lymphedema, AJR 156:543, 1991.

Figure SYME–S–26 = Stewart-Treves syndrome. Angiosarcoma associated with chronic lymphedematous leg: Stewart-Treves syndrome, South Med J 96:807, 2003.
Lowenstein S: Der Aetiologische Zusammengang zwischen akutem und malignem Trauma und Sarkom, Beitr Klin Chir 48:708, 1906.
Nakazono T et al: Angiosarcoma associated with chronic lymphedema (Stewart-Treves syndrome) of leg: MR imaging, Skeletal Radiol 29:413, 2000.
Romani J et al: Masson’s intravascular papillary endothelial hyperplasia mimicking Stewart-Treves syndrome, Cutis 59:148, 1997.
Ruocco V et al: Lymphangiosarcoma: an immunologically vulnerable site for development of neoplasms, J Am Acad Dermatol 47:124, 2002.
Stewart F-W, Treves N: Lymphangiosarcoma after postmastectomy lymphedema: report of 6 cases in elephantiasis chirurgica, Cancer 1:64, 1948.

STICKLER SYNDROME/DYSPLASIA

MIM#: 108300 (STL I); 604841 (STL II); 184840 (STL III).

Synonyms: Arthro-ophthalmopathy; Wagner-Stickler syndrome; STL.

Classification: Stickler type I (membranous vitreous); Stickler type II (beaded vitreous); Stickler type III (monocular type).

Mode of Inheritance: AD; All are collagenopathies: STL I, mutations in COL2A1 gene; STL II, locus: 1p21, mutations in COL 11A1 gene; AR, STL III, locus 6p21.3, mutations in COL11A2 gene; (STL IV, other COL mutations excluded [Wilkin et al, 1998]).

Clinical Manifestations: A group of connective tissue disorders: (a) severe progressive myopia to minus 18 D; retinal detachment; glaucoma; amblyopia; astigmatism; strabismus; lenticular opacities; (b) typical facial features (less pronounced with age): midfacial hypoplasia; broad nasal bridge; long
Bennett JT et al: Stickler syndrome, *J Pediatr Orthop* micrognathia (Soulier et al, 2002) (Fig. SYME–S–27).

cord myelopathy (Rose et al, 2001a). vertebral bodies; scoliosis; cervical spinal stenosis and cervi-

(74%); Scheuermann-like changes, Schmorl changes, almost all STL I); (a) narrowness of the diaphyses of
long bones; thin cortices; normal width of the metaphyses; irregularity in ossification; flattening and underdevelopment of some epiphyses; coxa valga (21%); wide femoral neck; sub-
luxation of the femoral head; protrusio acetabuli (10%); hypoplasia of the iliac wings; arthritic changes in young adults (34%) (Rose et al, 2001b); synovial osteochondro-

matosis (Tins et al, 2003); (b) irregularity of the end plates of the vertebrae (74%); Scheuermann-like changes, Schmorl nodes (43/64%); thoracic kyphosis; anterior wedging of the vertebral bodies; scoliosis; cervical spinal stenosis and cerva-
cal cord myelopathy (Rose et al, 2001a).

(C) Other: (a) prenatal US: polyhydranmios, cleft palate, micrognathia (Soulier et al, 2002) (Fig. SYME–S–27).

Differential Diagnosis:
(a) type II collagenopathies: Kniest dysplasia; spondyloepiphyseal dysplasia congenita; STS-like with vitreoretinopathy, brachydactyly (phalangeal epiphyseal changes) (Richards et al, 2002); (b) spondylo-

ocular syndrome: lens malformation, cataract, retinal detachment, platyspondyly with osteoporosis (AR) (Rudolph et al, 2003).

Note: (a) OSMED (with Weissbacher-Zweymuller phenotype) is STL III (Giedion, 2001), (see OSMED, W-Z phenotype); (b) Col 2A1 (STL I) with exon 2 mutations have minimal to no systemic findings (Donoso et al, 2003; Parma et al, 2002).

References

Ahmad N et al: Prevalence of mitral valve prolapse in Stickler syndrome, *Am J Med Genet* 116A:234, 2003.

Bennett JT et al: Stickler syndrome, *J Pediatr Orthop* 10:760, 1990.

Donoso LA et al: Clinical variability of Stickler syndrome: role of exon 2, *Surv Ophthalmol* 48:191, 2003.

Giedion A: Differential diagnosis of Stickler syndrome, *Skeletal Radiol* 30:357, 2001.

Jacobson J et al: Hearing loss in Stickler’s syndrome: a family case study, *J Am Acad Audiol* 13:57, 1990.

Korkko J et al: Mutation in type II procollagen (COL2A1) that substitutes aspartate for glycine a1-67 and that causes cataracts and retinal detachment: evidence for molecular heterogeneity in the Wagner syndrome and the

Radiologic Manifestations:
(A) Infants: (STL III); rhizomelic limb shortening; wide metaphyses; vertebral coronal clefts.

(B) Children, Adolescents, Adults: (Chondroosseous changes, almost all STL I); (a) narrowing of the diaphyses of long bones; thin cortices; normal width of the metaphyses; irregularity in ossification; flattening and underdevelopment of some epiphyses; coxa valga (21%); wide femoral neck; subluxation of the femoral head; protrusio acetabuli (10%); hypoplasia of the iliac wings; arthritic changes in young adults (34%) (Rose et al, 2001b); synovial osteochondromatosis (Tins et al, 2003); (b) irregularity of the end plates of the vertebrae (74%); Scheuermann-like changes, Schmorl nodes (43/64%); thoracic kyphosis; anterior wedging of the vertebral bodies; scoliosis; cervical spinal stenosis and cervical cord myelopathy (Rose et al, 2001a).

Figure SYME–S–27 = Stickler syndrome in an 8-year-old girl with hypoplasia of the iliac wing, narrow sciatic notches, flattening and irregularity of the femoral epiphyses, a wide femoral neck, and coxa valga. (From Spranger JW: Arthro-ophthalmopathia hereditaria, *Ann Radiol (Paris)* 11:359, 1968. Used by permission.)

Sticker syndrome (arthro-ophthalmopathy), *Am J Hum Genet* 53:55, 1993.

Lisi V et al: Linkage analysis for prenatal diagnosis in Stickler syndrome, *Genet Couns* 13:163, 2002.

Noel S et al: Unusual occurrence of cervical myelopathy in a case of Stickler’s syndrome, *J Med Genet* 29:200, 1992.

Parma ES et al: Radial perivascular retinal degeneration: a key to ocular variant of Stickler syndrome with minimal or no systemic manifestations, *Am J Ophthalmol* 134:728, 2002.

Richards AJ et al: Vitreoretinopathy with phalangeal epiphyseal dysplasia, a type II collagenopathy, *J Med Genet* 39:661, 2002.

Rose PS et al: Thoracolumbar spine abnormalities in Stickler syndrome, *Spine* 26:403, 2001.

Rose PS et al: The hip in Stickler syndrome, *J Pediatr Orthop* 21:657, 2001.

Rudolph G et al: Spondylo-ocular syndrome: a new entity, *Am J Ophthalmol* 135:681, 2003.

Soulier M et al: Prenatal diagnosis of Pierre-Robin sequence as part of Stickler syndrome, *Prenat Diagn* 22:567, 2002.

Spranger JW: Arthro-ophthalmopathia hereditaria, *Ann Radiol (Paris)* 11:359, 1968.

Stickler GB et al: Hereditary progressive arthro-ophthalmopathy, *Mayo Clin Proc* 40:433, 1965.

Szymko-Bennett YM et al: Auditory dysfunction in Stickler syndrome, *Am J Med Genet* 116A:234, 2003.

Tins B et al: Synovial osteochondromatosis in hereditary arthroophthal-
mopathy, *Skeletal Radiol* 32:302, 2003.

Wagner H: Ein bisher unbekanntes Erbleiden des Auges (Degeneratio hyaloideo-retinalis hereditaria), beobachtet im Kanton Zuerich, *Klin Monatsbl Augenheilkd* 100:840, 1938.

Wilkin DJ et al: Correlation of linkage data with phenotype in 8 families with Stickler syndrome, *Am J Med Genet* 80:121, 1998.

Zlotogora J et al: Prenatal exclusion of Stickler syndrome, *Prenat Diagn* 14:145, 1994.
STIFF-MAN SYNDROME

MIM#: 184850.

Synonyms: Moersch-Woltmann syndrome; SMS.

Clinical Manifestations: An autoimmune disorder (heterogeneity related to autoantibodies): (a) progressive symmetric muscle rigidity, in particular, those of the back (extensors) and abdominal wall; (b) painful muscle spasms with profuse sweating and tachycardia that are precipitated by stimuli or movements; increased tendon reflexes (occasionally); movement in block (tin soldier); (c) paroxysmal autonomic dysfunctions: transient hyperventilation; diaphoresis; tachypnea; tachycardia; pupillary dilatation; arterial hypertension; (d) antibodies directed against glutamic acid decarboxylase (60% of the cases), glutamate receptors; organ-specific autoimmune disease (insulin-dependent diabetes mellitus; hyperthyroidism) (Karlson et al, 1994); (e) electromyography: continuous motor unit activity with superimposed bursts (at rest or with activity) that are abolished by nerve block, curare, general anesthesia, sleep, and benzodiazepines; abnormal contractions of antagonistic muscles; positive head retraction reflex; (f) normal intellect; (g) SMS variants/plus (Brown et al, 1999; Meinck et al, 2002); (h) other reported abnormalities: solid tumor; sudden death (Grimaldi et al, 1993; Mitsumoto et al, 1991).

Radiologic Manifestations: (a) fractures resulting from muscular spasm; (b) hypertrophic arthropathy of the spinal column; (c) brain atrophy.

Differential Diagnosis: (1) Kok disease (stiff baby syndrome) MIM# 149400; (2) Isaac-Mertens syndrome (continuous muscle fiber activity) MIM# 121020.

References

Berger: Head retraction reflex in stiff-man syndrome, Mov Disord 18:906, 2003.
Brown P et al: The stiff man syndrome and stiff man plus syndromes, J Neurology 246:648, 1999.
Grimaldi LME et al: Heterogeneity of autoantibodies in stiff-man syndrome, Ann Neurology 34:57, 1993.
Karlson EW et al: Heterogeneity of autoantibodies in stiff-man syndrome, Proc Natl Acad Sci USA 96:1406, 1999.
Li L et al: Identification of autoantibody epitopes of glutamic acid decarboxylase in stiff-man syndrome patients, J Immunol 163:551, 2000.
Maida E et al: Stiff-man syndrome with abnormalities in CSF and computed tomography findings, Arch Neurol 37:182, 1980.
Meinck H-M et al: Stiff man syndrome: neuropsychological findings in eight patients, J Neurology 242:134, 1995.
Meinck H-M et al: Stiff man syndrome and related conditions, Mov Disord 17:853, 2002.
Mitsumoto H et al: Sudden death and Paroxysmal autonomic dysfunction in stiff-man syndrome, J Neurology 238:91, 1991.
Moersch FP, Woltmann HW: Progressive fluctuating muscular rigidity and spasms (“stiff-man” syndrome): report of a case and some observations in 13 other cases, Proc Staff Meet Mayo Clin 31:421, 1956.
Moore WT et al: Familial dwarfism and “stiff joints”: report of a kindred, Arch Intern Med 115:398, 1965.
Stayer C et al: Stiff-man syndrome: an overview, Neurologia 13:83, 1998.

STOKES-ADAMS SYNDROME

MIM#: 140400, 113900.

Clinical Manifestations: Associated with paroxysmal or chronic atrioventricular block (50% to 60%), sinoatrial block (30% to 40%), or paroxysmal tachycardia or fibrillation (0 to 5%); (a) sudden change in heart rate with a transient and abrupt loss of consciousness with or without convulsions; (b) decrease in cardiac output; (c) fall in blood pressure; (d) paleness; (e) flushing of the face with resumption of heart beats; (f) abnormal electrocardiographic and electrophysiologic studies confirming the diagnosis.

Radiologic Manifestations: Depend on etiologic factors: congenital heart anomalies; myocarditis (Wang et al, 2002); acquired valvular diseases; myocardial infarction; metabolic diseases; infiltrative diseases of the myocardium; toxic agents; electrolyte disturbances; metastatic and primary neoplastic diseases.

Historical Note: Adams also described the thick medial cortex of femoral neck, 1836 (“Adam’s bogen” or bend, arch) (Bartonicek, 2002).

References

Adams R: Cases of diseases of the heart, accompanied with pathological observations, Dublin Hosp Rep 4:353, 1827.
Bartonicek J: Internal architecture of proximal femur, Arch Orthop Trauma Surg 122:551, 2002.
Stokes W: Observations on some cases of permanently slow pulse, Dublin Q J Med Soc 2:73, 1846.
Pearl W: Stokes-Adams attacks in congenital complete heart block, Pediatr Cardiol 9:125, 1988.
Sigurd B et al: Management of Stokes-Adams syndrome, Cardiology 77:195, 1990.
Wang JN et al: Complete AV block following myocarditis in children, Pediatr Cardiol 23:518, 2002.

STRAIGHT BACK SYNDROME

Clinical Manifestations: (a) dyspnea (rare); (b) ejection systolic murmur at the base of the heart or a late systolic murmur; (c) right axis deviation, an rSr’ pattern in lead V1; (d) pressure gradient between the right and main pulmonary arteries; (e) eustachian valve; (f) other reported abnormalities and associations: mitral valve prolapse, bicuspid aortic valve; post-scoliosis distraction/fusion (Danielsson et al, 2001); facioscapulohumeral dystrophy (Nakayama et al, 1999).

Radiologic Manifestations: (a) straight dorsal spine; (b) narrow anteroposterior diameter of the thoracic cage; (c) heart flattened and displaced to the left; (d) prominent pulmonary artery segment, prominent right hilus and pulmonary vasculature in the right lower lung field; (e) pulmonary venous obstruction and dilatation (very rare).
References

Ansari A: The “straight back” syndrome: current perspective more often associated with valvular heart disease than pseudohearth disease: a prospective clinical, electrocardiographic, roentgenographic, and echocardiographic study of 50 patients, Clin Cardiol 8:290, 1985.
Danielsson AJ et al: Radiologic findings and curve progression in adolescent idiopathic scoliosis, Spine 26:516, 2001.
Kumar UN et al: Abnormal pulmonary vasculature in an asymptomatic man, Chest 70:527, 1976.
Nakayama T et al: Cardiac deformity and dysfunction in facioscapulo-humeral dystrophy, Rinsho Shinkeigaku 39:610, 1999.
Rawlings MS: The “straight back” syndrome: a new cause of pseudoheart thromboses; (c) calcium deposition around blood vessels. 6 months) (Adamsbaum et al, 1996); cerebrovascular (Kuhl et al, 1972; Ton-That et al, 1990).
Sapen HD et al: The straight back syndrome, Neth J Med 36:29, 1990.
Twigg HL et al: Straight back syndrome: radiographic manifestations, Radiology 88:274, 1967.

STURGE-WEBER SYNDROME

MIM#: 185300.

Synonyms: Encephalotrigeminal angiomatosis; Sturge-Weber-Dimitri disease; SWS.

Mode of Inheritance: No definite evidence of heredity, almost always sporadic in occurrence.

Pathology: (a) angiomatous skin lesions; (b) venous angiomas (leptomeninges, choroid plexus in association with enlargement of the choroid plexus); accelerated myelination (<6 months) (Adamsbaum et al, 1996); cerebrovascular thromboses; (c) calcium deposition around blood vessels.

Clinical Manifestations: (a) angiomatous lesions (port-wine nevi) of the face in a trigeminal facial distribution, giviva and alveolar ridges (Sturge, 1879; Weber, 1922; Yeakley et al, 1992); lymphatic/venous malformation of mandible (Ramli et al, 2003); acral arteriovenous (AV) tumor (Carrasco et al, 2003); (b) ocular manifestations: hemangiomas of the conjunctiva, episclera, choroid, and retina; retinal vascular tortuosity; glaucoma; buphthalmos; iris heterochromia; retinal detachment; strabismus (Sullivan et al, 1992); (c) contralateral hemiplegia; homonymous hemianopia; (d) seizures (Sturge, 1879; Weber, 1922); (e) mental retardation; (f) other reported abnormalities: external ear deformity; coarctation of the aorta; coloboma of the iris; cortical blindness; Klippel-Trenaunay syndrome; Klippel-Trenaunay, bilateral neonatal Sturge-Weber syndrome; contralateral leptomeningeal involvement; SWS without facial nevus (Aydin et al, 2000; Deutsch et al, 1976; Vissers et al, 2003; Widdess-Walsh et al, 2003; Yeakley et al, 1992).

Radiologic Manifestations: (A) Skull Radiograph: Asymmetry with a smaller hemicranium on the involved side; enlarged vascular channels of the skull; enlarged frontal sinus (rare); occasionally ipsilateral enlargement of a hemicranium; double-contour “gyriform” patterns of intracranial calcification in the subcortical region, primarily in the parietal and occipital regions (Wilms et al, 1992), often bi-hemispheric calcification (Maria et al, 1998).

(B) CT of Brain: Cerebral calcification (unilateral or bilateral); contrast enhancement of leptomeningal angiomas; ipsilateral cortical atrophy; enlargement of the ipsilateral ventricle; decreased volume of the ipsilateral hemicranium (very rarely increased volume); enlarged subarachnoid space in cases with an enlarged ipsilateral hemicranium; enlargement and increased enhancement of the choroid plexus on the same side as the facial and intracranial lesions; choroidal angioma (Laufer et al, 1994; Marti-Bonmati et al, 1992; Stimac et al, 1986; Wilms et al, 1992; Yeakley et al, 1992).

(C) MR of Brain and MR Angiography: Thickened cortex with decreased convolutions; accelerated myelination in the normal cerebral hemisphere; cerebral atrophy; enlarged choroid plexus; cerebellar involvement (uncommon); MRI shows more extensive involvement than CT; enhancement in the brain cortex after contrast injection, which is considered to be due to blood-brain barrier breakdown; cerebral and retinal angiomas; pial angiomas; reduced flow of the transverse sinuses and jugular veins; prominent deep collateral venous system; lack of superficial cortical veins; reduced arterial flow signal; proptosis (Benedikt et al, 1993; Decker et al, 1994; Griffiths et al, 1997; Laufer et al, 1994; Marti-Bonmati et al, 1992; Stimac et al, 1986; Vogl et al, 1993; Yeakley et al, 1992).

(D) Scintigraphy of Brain: Widened cap of radioactivity over the affected cerebral convexity; identical radioactivity in hemispheres in studies performed 1 to 3 hours following the injection of isotopic material; regional cerebral hypoperfusion shown by 99mTc HMPAO (hexamethylpropylenamineoxime) imaging and xenon 133 inhalation technique (Kuhl et al, 1972; Ton-That et al, 1990).

(E) Angiography of Brain: Arterial occlusion (rare); capillary or venous angiomatosus stains; various venous abnormalities (nonfilling of the superior sagittal sinus; tortuosity; segmental ectasia; bizarre course of the cerebral veins and absence, deformity, and caliber irregularities of the deep veins).

(F) Positron Emission Tomography (PET) of Brain, MR SPECT: Depressed local cerebral glucose utilization (Ichinose et al, 2003); elevated choline (early) (Lin et al, 2003).

(G) Other Reported Abnormalities: (a) calcification: cortical brain calcification present at birth; atypical intracranial calcifications (bilateral in about 15% of the cases); calcifications contralateral to the bulk of the facial nevus; isolated frontal lobe calcification; intracranial calcification and abnormalities of the superficial cortical veins with pathologic features of Sturge-Weber syndrome without facial angioma (Alonso et al, 1979; Hatfield et al, 1988; Yeakley et al, 1992); (b) vascular anomalies: magelencephaly and hydrocephalus resulting from impaired cerebral venous return; development of abnormal drainage channels via the periorbital veins in association with an absence of the deep cerebral veins, persistent trigeminal artery (Laufer et al, 1994; Loenver et al, 1992); (c) esophageal foreign bodies (Watson et al, 2003) (Figs. SYME–S–28 and SYME–S–29).
Differential Diagnosis: Gyriform calcification: tuberous sclerosis; glioma; infarction; purulent meningitis; viral encephalitis; ossifying meningoencephalitis; leukemia following intrathecal administration of methotrexate and skull irradiation; subarachnoid fat (Wilms et al, 1992); (2) SWS-like syndrome: cardiac (pulmonary atresia/ventricular septal defect [VSD]), facial port-wine stain, abnormal retinal vasculature (Tan et al, 2003).

Note: (1) MR imaging is better than CT in demonstrating the extent and degree of brain parenchymal atrophy, cranial diploe prominence, extent and patency of the leptomeningeal angiomatous malformation and the parenchymal venous anomalies; (2) Capillary/AV malformations (as in SWS) caused by RASA 1 mutations (Eerola et al, 2003); (3) SWS is a form of phakomatosis pigmentovascularis type II B.

References
Adamsbaum C et al: Accelerated myelination in early SWS: MRI-SPECT correlations, *Pediatr Radiol* 26:759, 1996.
Alonso A et al: Intracranial calcification in a neonate with the Sturge-Weber syndrome and additional problems, *Pediatr Radiol* 8:39, 1979.
Aydin A et al: SWS without facial nevus, *Pediatr Neurol* 22:400, 2000.
Benedikt RA et al: Sturge-Weber syndrome: cranial MR imaging with Gd-DTPA, *AJNR* 14:409, 1993.
Carrasco L et al: Acral AV tumor developed within nevus flammeus in SWS, *Am J Dermatopathol* 25:341, 2003.
Decker T et al: Sturge-Weber syndrome with posterior fossa involvement, *AJNR* 15:389, 1994.
Deutsch J et al: Kombination von Sturge-Weber und Klippel-Trenaunay syndrom, *Klin Paediatr* 188:464, 1976.
Eerola I et al: Capillary malformation-AV malformation, a new clinical and genetic disorder caused by RASA 1 mutations, *Am J Hum Genet* 73:1240, 2003.
Griffiths PD et al: 99m Tc technetium HMPAO imaging in children with SWS, *Neuroradiology* 39:219, 1997.
Hatfield M et al: Isolated frontal lobe calcification in Sturge-Weber syndrome, *AJNR* 9:203, 1988.
Ichinose T et al: Discrepancy between 18 fluorodeoxyglucose and 11C-methionine PET findings in SWS, *Neurol Med Chir* 43:461, 2003.
Kuhl DE et al: The brain scan in Sturge-Weber syndrome, *Radiology* 103:621, 1972.
Laufer L et al: Sturge-Weber syndrome associated with a large left hemispheric arteriovenous malformation, *Pediatr Radiol* 24:272, 1994.
Lin DD et al: Early characteristics of SWS shown by perfusion MRI and proton MR SPECT imaging, *AJNR* 24:1912, 2003.
Loeher I et al: Persistent trigeminal artery in a patient with Sturge-Weber syndrome, *AJR* 158:872, 1992.
Subclavian Steal Syndrome

Pathophysiology: Circulation to an arm via the vertebral artery in a patient with subclavian or innominate artery obstruction proximal to the origin of the vertebral artery with ischemia of the brain and/or arm as a result.

Etiology: Arteriosclerosis; thrombosis; tumor; Takayasu syndrome (Roldan-Valadez et al, 2003); congenital anomaly (hypoplasia, atresia, or isolation of the subclavian artery with a right or cervical aortic arch (Singh et al, 2001), with left arch (one case) (Engleman et al, 1998); vascular rings; coarctation of the aorta with obliteration of the subclavian artery orifice; coarctation of aorta and interrupted aortic arch; extravascular obstruction resulting from a fibrous band and surgically corrected congenital anomalies; granulation tissue secondary to cannulation of an artery; trauma; surgical procedures: Blalock-Taussig procedure, coronary bypass using internal mammary artery (Mulvihill et al, 2003), dialysis arteriovenous (AV) fistula (Schenk, 2001), post angioplasty/stent placement (Gao Wang et al, 2001); subclavian artery aneurysm; during extracorporeal membrane oxygenation; and so forth.

Clinical Manifestations: (a) pain and numbness of the arm and hand, claudication; (b) dizziness; light-headedness; syncopal episodes; headache; vertigo; visual defect; coldness; fatigue during activity; aphasia; hearing loss; and so forth; (c) absent radial pulse; a difference in brachial artery pressure greater than 20 mm Hg (screening tool [Tan et al, 2002]); supraclavicular bruit; (d) congenital subclavian steal usually asymptomatic in childhood.

Radiologic Manifestations: (a) angiographic demonstration of arterial obstruction to an arm and reverse direction of flow of contrast medium from the vertebral artery to the arm; increased or decreased jugular vein opacity as compared with the opposite side; (b) Doppler sonography: negative flow indicating backflow from brain (Paivansalo et al, 1998); color-coded Doppler (Kaneko et al, 1998); (c) MR angiography (phase encoded): demonstration of the normal flow indicating backflow from brain (Paivansalo et al, 1998); color-coded Doppler (Kaneko et al, 1998); (c) MR angiography (phase encoded): demonstration of the normal flow indicating backflow from brain.
and abnormal flow direction in the vertebral arteries, MRI (flow encoded) (Van Grinberge et al., 2000); (d) 99mTc sestamibi imaging (Rossom et al., 2000).

References

Ayrelo F et al: Bilateral subclavian steal syndrome, AJR 127:688, 1976.
Avezac P: Unusual cause of subclavian-steal syndrome, N Eng J Med 295:2626, 1976.
Baker RA et al: Segmental intervertebral anastomosis in subclavian steal, Br J Radiol 48:101, 1975.
Brill CB et al: Isolation of the right subclavian artery with subclavian steal in a child with Klippel-Feil anomaly: an example of the subclavian artery supply disruption sequence, Am J Med Genet 26:933, 1987.
Contomori L: The true story of the “subclavian steal syndrome” or “Harrison and Smyth’s syndrome”, J Cardiovasc Surg 14:408, 1973.
Dreg KH et al: Doppler sonographic diagnosis of subclavian steal in infants with coarctation of the aorta and interrupted aortic arch, Pediatr Radiol 19:163, 1989.
Engelmann DA et al: Congenital subclavian steal syndrome in adult with left aortic arch, Tex Heart J 25:216, 1998.
Flyn PD et al: Magnetic resonance angiography in subclavian steal syndrome, Br Heart J 70:193, 1993.
Gao Wang Z et al: Iatrogenic subclavian steal syndrome, Int J Angiol 10:24, 2001.
Grazini LJ et al: Electroencephalographic, neuroradiologic, and neurodevelopmental studies in infants with subclavian steal during ECMO, Pediatr Neurolog 10:97, 1994.
Kaneko A et al: Color-coded Doppler imaging of subclavian steal syndrome, Intern Med 37:259, 1998.
Midgley FM et al: Subclavian steal syndrome in the pediatric age group, Ann Thorac Surg 24:252, 1977.
Mulvihill NT et al: Percutaneous treatment of coronary subclavian steal syndrome, J Intrav Cardiol 15:390, 2003.
Otto R et al: Subclavian aneurysm producing the subclavian steal syndrome, Cardiovasc Intervent Radiol 9:90, 1986.
Paviaansalo M et al: Duplex US in subclavian steal syndrome, Acta Radiol 39:183, 1998.
Reichert M et al: Reversal of blood flow through the vertebral artery and its effect on cerebral circulation, N Eng J Med 265:878, 1961.
Roldan-Valadez E et al: Imaging diagnosis of subclavian steal syndrome secondary to Takayasu arteritis, Arch Med Res 34:433, 2003.
Rossom AC et al: Evaluation of coronary subclavian steal syndrome using sestamibi imaging, Clin Cardiol 23:226, 2000.
Rowe DM et al: Right subclavian steal associated with aberrant right subclavian artery, AJNR 9:604, 1988.
Schenk WG III: Subclavian steal syndrome from high-output brachiocephalic AV fistula, J Vasc Surg 33:883, 2001.
Singh B et al: Right aortic arch with isolated left brachiocephalic artery, Clin Anat 14:47, 2001.
Smith JM et al: Subclavian steal syndrome: a review of 59 consecutive cases, J Cardiovasc Surg 35:11, 1994.
Tan TY et al: Subclavian steal syndrome: can the blood pressure difference between arms predict the severity of steal? J Neuroimaging 12:131, 2002.
Turjman F et al: Demonstration of subclavian steal by MR angiography, J Comput Assist Tomography 16:756, 1992.
Van Grinberge F et al: Role of MR in diagnosis of subclavian steal syndrome, J Magn Reson Imaging 12:339, 2000.
Webster MW et al: The effect of arm exercise of regional cerebral blood flow in the subclavian steal syndrome, Am J Surg 168:91, 1994.
Yip PK et al: Subclavian steal phenomenon: a correlation between duplex sonographic and angiographic findings, Neuroradiol 34:279, 1992.

Superior Mesenteric Artery Syndrome

Synonym: Arteriomesenteric duodenal compression; Wilkie syndrome; SMAS.

Definition: Compression of the third portion of the duodenum secondary to an increase in acuteness of the aorto-superior mesenteric artery angle.

Etiology and Associations: Rapid weight loss; rapid growth without weight gain; hyperextension of the vertebral column (body brace, cast), scoliosis surgery (Shah et al., 2003); duodenal hypotonia; familial (a father and his four daughters) (Oritz et al., 1990); identical twins (Iwaoka et al., 2001); prenatal (Caspi et al., 2003); severe traumatic brain injury; spastic paraquadruparesis (four cases) (Laffont et al., 2002); acquired immunodeficiency syndrome (AIDS) (Hoffman et al., 2000); eating disorders (Adson et al., 1997); diabetes mellitus (Azami, 2001); abdominal aneurysm (Komai et al., 1999); “nutcracker syndrome.”

Clinical Manifestations: Postprandial epigastric fullness, nausea, vomiting, abdominal cramps, weight loss, and slender habitus; laparoscopic management (Bermas et al., 2003).

Radiologic Manifestations: (a) dilatation of the duodenum proximal to a vertical linear extrinsic pressure defect of third portion of the duodenum; marked “to-and-fro” peristaltic waves proximal to the obstruction; gastric dilatation (in some); relief of the obstruction in the prone position; (b) narrow aorto-mesenteric angle (10 to 12 degrees as compared with the normal of 45 to 65 degrees) and a decrease in the aortomesenteric distance (2 to 3 mm as compared with the normal of 7 to 20 mm); (c) computed tomography/ CT angio: duodenal distension and the close proximity of superior mesenteric vessels and aorta (Konen et al., 1998; Ooi et al., 1997); (d) endoscopic US (Lippi et al., 2002) (Fig. SYME–S–30).

Therapy: (1) laparoscopy (Richardson et al., 2001).

Differential Diagnosis: (1) ectopic pancreas (Verma et al., 2003).

References

Adson DE et al: The SMAS and acute gastric dilatation in eating disorders, Int J Eat Disord 21:103, 1997.
Azami Y: Diabetes mellitus associated with SMAS, Intern Med 40:736, 2001.
Bermas H et al: Laparoscopic management of SMAS, JLSIS 7:151, 2003.
Caspi B et al: Prenatal manifestation of SMAS, Prenat Diag 23:932, 2003.
Hoffman RJ et al: A pediatric AIDS patient with SMAS, AIDS Patient Care STDS 14:3, 2000.
Iwaoka Y et al: SMAS in identical twins, J Vasc Surg 33:883, 2001.
Konen E et al: CT angiography of SMAS, AJR 171:1279, 1998.
Laffont I et al: Late SMAS in paraplegia, Spinal Cord 40:88, 2002.
Lippi F et al: SMAS: diagnosis and treatment from gastroenterologist’s view, J Gastroenterol 37:640, 2002.
Milner EA et al: Superior mesenteric artery syndrome in a burn patient, Nutr Clin Prac 8:264, 1993.
Ooi GC et al: CT of the SMAS, Clin Imaging 21:210, 1997.
SUPERIOR VENA CAVA SYNDROME

SYNONYM: SVCS.

ETIOLOGY: (a) mediastinitis; (b) mediastinal tumors, lung cancer (Wudel et al, 2001); (c) vascular: aneurysms; fistula; vasculitis; thrombosis; long-term peritoneovenous shunt; transvenous pacemaker implantation; after the Mustard procedure; central venous catheter sequelae (Broviac or Hickman catheters), dialysis access induced (Madan et al, 2002); (d) pneumomediatinum; pneumothorax; apical tense bulla; (e) mediastinal hematoma, lymphadenopathy (Roy et al, 1998); (f) other reported causes: Behçet syndrome (Terzioglu et al, 1998); silicosis; sarcoidosis; intravascular papillary endothelial hyperplasia of superior vena cava; goiter; right-sided diaphragmatic hernia; bone-marrow transplant/aspergillosis (Takatsuka et al, 2002).

CLINICAL MANIFESTATIONS: (a) headache; vertigo; somnolence; syncope; convulsions; (b) hoarseness; respiratory distress; (c) epistaxis; (d) cyanosis and edema of the face, neck, shoulder, and arms; (e) engorgement and tortuosity of veins of the neck, thorax, and arms; (f) vascular congestion of the eyes and nasal mucosa.

RADIOLOGIC MANIFESTATIONS: (a) irregular widening of the mediastinum; tortuous density parallel to the spine (azygos and hemiazygos); dilated left superior intercostal vein; rib notching (rare); (b) hydrothorax, hydropericardium; (c) venographic demonstration of the site of obstruction and collaterals: between the innominate tributaries and azygos tributaries; between the superior vena cava (SVC) and inferior vena cava systems along the posterior and anterior portions of the trunk; collaterals between the arm and thorax; between the anterior and posterior veins and collaterals across the midline; (d) radionuclide venography (Mahmud et al, 1998); increased liver uptake of isotopes (apitide scintigraphy) (Sherman et al, 2002); (e) CT: SVC obstruction and demonstration of the etiologic factor; increased size and greater numbers of chest wall collaterals; (f) ultrasonography: absence of normal respiratory rhythmicity and response to a sudden sniff maneuver (venous collapse in a rapid, transient manner secondary to the sudden decrease in intrathoracic pressure); (g) central nervous system (CNS): communicating hydrocephalus secondary to SVC obstruction; CT: diffuse low-density lesions in paraventricular white matter.

THERAPY: (1) stenting (Gross et al, 1997; Hochrein et al, 1998).

REFERENCES

Bankoff MS et al: Bronchogenic cyst causing superior vena cava obstruction: CT appearance, *J Comput Assist Tomogr* 9:951, 1985.

Bechtold RE et al: Superior vena caval obstruction: detection using CT, *Radiology* 157:485, 1985.

Brown G et al: Mediastinal widening—a valuable radiographic sign of superior vena cava thrombosis, *Clin Radiol* 47:415, 1993.

Carter MM et al: The “aortic nipple” as a sign of impending superior vena caval syndrome, *Chest* 87:773, 1985.

Crowley DC et al: Superior vena cava obstruction: complication of pulmonary artery ectasia in levo-transposition of the great arteries, *Cardiovasc Intervent Radiol* 4:27, 1981.

Curci MR et al: Bilateral chylothorax in a newborn, *J Pediatr Surg* 15:663, 1980.

Eckhauser FE et al: Superior vena cava obstruction associated with long-term peritoneovenous shunting, *Ann Surg* 190:758, 1979.

Fukuda M et al: White matter changes on CT associated with superior vena cava syndrome: a case report, *Pediatr Radiol* 23:53, 1993.

Giacoia GP: Right-sided diaphragmatic hernia associated with superior vena cava syndrome, *Am J Perinatol* 11:129, 1994.

Gooding GAW et al: Obstruction of the superior vena cava or subclavian veins: sonographic diagnosis, *Radiology* 159:663, 1986.

Gross CM et al: Stent implantation in patients with SVCS, *AJR* 169:429, 1997.

Haddad JL et al: SVC syndrome as a late complication of ascending aortic aneurysm repair: MR diagnosis, *J Comput Assist Tomogr* 17:982, 1993.

Hochrein J et al: Percutaneous stenting of SVCS, *Am J Med* 104:78, 1998.

Kim H-J et al: CT diagnosis of superior vena cava syndrome: importance of collateral vessels, *AJR* 161:539, 1993.

Oritz C et al: Familial superior mesenteric artery syndrome, *Pediatr Radiol* 20:588, 1990.

Philip PA: Superior mesenteric artery syndrome: an unusual cause of intestinal obstruction in brain-injured children, *Brain Inj* 6:351, 1992.

Richardson WS et al: Superior mesenteric artery syndrome, *Pediatr Radiol* 21:154, 1991.

Shah MA et al: SMAS in scoliosis surgery, *J Pediatr Orthop* 23:665, 2003.

Verma R et al: Ectopic pancreas mimicking SMAS, *Indian J Gastroenterol* 22:105, 2003.

Von Rokitansky C: *Lehrbuch der pathologischen anatomie*, Vienna, 1855-1861, Braumüller & Seidel.

Wilkie DPD: Chronic duodenal ileus, *Br Med J* 2:793, 1921.
SUSAC SYNDROME

Synonyms: (1) encephalopathy-hearing loss-visual loss syndrome; (2) SICRET syndrome (Mala et al, 1998).

Clinical and Radiologic Manifestations: Small vessel vasculopathy; (1) recurrent episodes: neurologic symptoms (global encephalopathy, 44%), fluctuating hearing loss (cochlea disorder), retinal artery occlusion; recurrence (Pettty et al, 2001); (2) imaging: MRI (distinctive pattern), multisitofocal supratentorial white matter lesions (100%), basal ganglia, thalamus (70%), leptomeningeal enhancement (33%); FLAIR imaging most sensitive (Do et al, 2004; Susac et al, 2003; White et al, 2004).

Differential Diagnosis: (1) inflammatory vasculitis: lupus, Behçet syndrome; (2) multiple sclerosis; (3) noninflammatory vasculopathies: postpartum angiopathy, CADASIL, Sneddon syndrome (Bousser et al, 2004; Saw et al, 2000).

References

Bousser MG et al: Small vessel vasculopathies affecting the CNS, J Neuroophthalmol 24:56, 2004.
Do TH et al: Susac syndrome: report of 4 cases and review of literature, AJNR 25:382, 2004.
Gross M et al: Susac syndrome, Otol Neurotol 25:470, 2004.
Mala L et al: Small retinal, cochlear, and cerebral infarctions in the young patient, “SICRET” syndrome of Susac syndrome, J Fr Ophthalmon 21:375, 1999.
O’Halloran HS et al: Microangiopathy of brain, retina, and cochlea (Susac syndrome), Ophthalmology 105:1038, 1998.
Pettty GW et al: Recurrence of Susac syndrome, Mayo Clin Proc 76:958, 2001.
Saw VP et al: Susac syndrome: microangiopathy of retina, cochlea and brain, Clin Experience Ophthalmol 28:373, 2000.
Susac JO et al: MRI findings in Susac syndrome, Neurology 61:1783, 2003.
White ML et al: Evolution of lesions in Susac syndrome at serial MRI with diffusion-weighted imaging, AJNR 25:706, 2004.

SWEET SYNDROME

Synonym: Acute febrile neutrophilic dermatosis.

Clinical and Radiologic Manifestations: (1) paraneoplastic syndrome (a) fever; (b) raised painful plaques on the extremities, face, and neck; (c) dense dermal cellular infiltrate with neutrophils; (d) polymorphonuclear leukocytosis; (e) association with: malignancies (hematologic; metastatic breast carcinoma); therapy with granulocyte colony-stimulating factor in a woman with breast cancer; infections; myeloproliferative disorders, multiple myeloma (one case) (Bayer-Garner et al, 2003); lymphoproliferative disorders; myelodysplastic syndrome; Fanconi anemia, gastrointestinal (GI) tract involvement (McDermott et al, 2001); neuro-Behçet disease, “neuro-Sweet” disease (with benign recurrent encephalitis (Hisanaga et al, 1999); chronic granulomatous disease of childhood; pigmented villonodular synovitis (Gosheger et al, 2002); trisomy 8 in bone marrow cells (aplastic anemia) (Ohga et al, 2002); (2) pulmonary infiltrates (Lazarus et al, 1986).

Differential Diagnosis: (1) neutrophilic dermatosis (pustular vasculitis) (DiCaudo et al, 2002).

References

Baron F et al: Cutaneous and extracutaneous neutrophilic infiltrates (Sweet syndrome) in three patients with Fanconi anemia, J Pediatr 115:726, 1989.
Bayer-Garner IB et al: Sweet syndrome in multiple myeloma, J Cutan Pathol 30:261, 2003.
Boatman BW et al: Sweet’s syndrome in association with solid tumors, J Dermatol Dermatol Surg 25:34, 2001.
Burrall B: Sweet syndrome (acute febrile neutrophilic dermatosis), Arch Dermatol 138:361, 2002.
Dunn TR et al: Sweet syndrome in a neonate with aseptic meningitis, Pediatr Dermatol 9:288, 1992.
Gosheger G et al: Sweet syndrome associated with pigmented villonodular synovitis, Acta Orthop Belg 68:68, 2002.
Grigby PW et al: Sweat’s syndrome in association with solid tumors, Am J Med 82:1084, 1987.
Hisanaga K et al: “Neuro-sweet disease”: benign recurrent encephalitis with neutrophilic dermatosis, Arch Neurol 56:1010, 1999.
Lazarus AA et al: Pulmonary involvement in Sweet’s syndrome (acute febrile neutrophilic dermatosis): preleukemic and leukemic phases of acute myelogenous leukemia, Chest 90:922, 1986.
Maleville J et al: Acute neutrophilic dermatosis in childhood (Sweet syndrome), Pediatr Dermatol 10:298, 1993 (letter).
McDermott MB et al: Extracutaneous Sweet syndrome involving the GI tract in patient with Fanconi anemia, J Pediatr Hematol Oncol 25:39, 2001.
Meudlers Q et al: Sweet’s syndrome and myelodysplastic syndrome in a patient with metastatic breast carcinoma, Am J Med 86:138, 1989.
Ohga S et al: Expansion of trisomy 8 and Sweet syndrome, J Pediatr Hematol Oncol 24:64, 2002.
Park JW et al: The Sweet syndrome during therapy with granulocyte colony-stimulating factor, Ann Intern Med 116:996, 1992.
Sedel D et al: Sweet syndrome as the presenting manifestation of chronic granulomatous disease in an infant, Pediatr Dermatol 11:237, 1994.
SWYER-JAMES SYNDROME

Synonyms: Unilateral hyperlucent lung syndrome; hypogenic lung syndrome; Macleod syndrome; Swyer-James-Macleod syndrome; SJS.

Etiology: (a) sequela of various lung insults: bronchiolitis; bronchiolitis obliterans (Chang et al, 1998); measles; Mycoplasma pneumoniae; pertussis; adenovirus pneumonia; foreign-body aspiration; hydrocarbon pneumonia; radiotherapy; (b) idiopathic; bilateral (Erkazar et al, 2002); (c) associations myocardial bridge (congenital systolic narrowing of coronary artery) (Yilmaz et al, 2003); lung abscess (Wang et al, 2000).

Clinical Manifestations: (a) history of recurrent pulmonary infections in childhood; (b) usually asymptomatic in adult life; however, the subject may have a cough, chronic and repeated pulmonary infections, decreased exercise tolerance, hemoptysis, and arterial blood desaturation; (c) therapy: endoscopic bullectomy (Inoue et al, 2002).

Radiologic Manifestations: (a) unilateral small, hyperlucent lung (or lobe); (b) poor air exchange and change of lung density between inspiration and expiration; (c) diminished pulmonary vasculature; small hilar shadow of the involved side; (d) bronchographic demonstration of dilatation of the bronchi and lack of alveolarization of the contrast medium (pruned-tree appearance); hyperdistensible bronchial diameter shown by functional bronchography (inflation under 50 cm H₂O pressure); (e) angiographic demonstration of diminished size and number of pulmonary vessels in the portion of the involved lung; (f) radionuclide lung scan: decreased perfusion and ventilation; may reveal otherwise unsuspected bilateral involvement (Kiratli et al, 1999; Salmanzadeh et al, 1997); (g) CT: more accurate than plain chest radiography (in particular using ultrafast high resolution method) in demonstration of the abnormalities including bilateral involvement: hyperlucency; air-trapping; small pulmonary vessels; (Ghossain et al, 1997); (h) MRI, MRA (Vrachliotis et al, 1996); (i) other reported abnormalities: unilateral pulmonary edema (Swyer-James syndrome protecting the affected lung from pulmonary edema) (Figs. SYME–S–31 and SYME–S–32).

Differential Diagnosis: Bronchial obstruction; congenital hypoplastic pulmonary artery; unilateral external muscular anomalies; bronchiolitis obliterans syndrome post lung transplantation (Luckraz et al, 2003).

Note: Another syndrome under the title of Swyer-James syndrome: 46,XY pure gonadal dysgenesis (Guidozzi et al, 1994).

References

Chang AB et al: Post-infectious bronchiolitis obliterans: sequeli, Pediatr Radiol 28:23, 1998.

SYMPHALANGISM-BRACHYDACTYLY SYNDROME

MIM#: 186500.

Synonyms: Facio-audio-symphalangism syndrome; multiple synostoses with conductive hearing impairment; symphalangism-surdi ty syndrome; WL syndrome; deafness-symphalangism syndrome of Herrmann; multiple synostosis syndrome 1; SYNS 1.

Mode of Inheritance: Autosomal dominant; locus:17q22 (Krakow et al, 1998), mutations in Noggin gene.

Clinical Manifestations: (a) progressive conductive deafness with onset in childhood; fixation of the foot plate of the stapes in the oval window (Ensink et al, 1999); (b) distinct facial features: long and narrow face; broad and hemicylindrical nose; lack of alar flare; broad nasal bridge; thin upper lip; low-set ears; asymmetrical mouth; internal strabismus; (c) proximal symphalangia of the fingers (2, 3, 4) and toes (2, 3, 4); brachydactyly; clinodactyly; hypoplasia or aplasia of the distal segments of the fingers and/or toes and corresponding nails; hypoplasia of the thenar and hypothenar muscles; cutaneous syndactyly of the fingers (2, 3, 4) and toes (2, 3).
Radiologic Manifestations: (a) proximal symphalangism: progressive narrowing of the interphalangeal joints resulting in fusion of the phalanges (proximal interphalangeal joints of the fingers and distal interphalangeal joints of the toes usually involved); thumbs and great toes usually not affected; (b) brachydactyly; (c) other reported abnormalities: (1) limbs: short arm; cubitus valgus; humeroradial fusion; dislocated head of the radius; carpal and tarsal fusion; clinodactyly; hypoplastic/aplastic middle phalanx; hypoplastic/dysplastic distal phalanx; short legs; overtubulation of tibia and fibula; genus valgus; pes planovalgus; short foot; short hallux; (2) thorax and spine: pectus excavatum; short sternum; wide costochondral junctions; Klippel-Feil anomaly; cervical spine stenosis (Edwards et al, 2000) (Fig. SYME–S–33).

Differential Diagnosis: (1) SYNS-like: symphalangism, multiple frenula, polydactyly, dysplastic ears, dental abnormalities (Kantaputra et al, 2003); (2) SYNS-like: distal symphalangism, hypoplastic carpals, dental anomalies, narrow zygomatic arch (AD) (Kantaputra et al, 2002); (3) SYNS-like: proximal symphalangism, coarse facies, hearing loss, nephropathy (Morimoto et al, 2001); (4) WL syndrome-like: stapes ankylosis, broad thumbs, hyperopia (AD) (Hilhorst-Hofstee et al, 1997).

Note: (1) A claim was made by Drinkwater that hereditary symphalangism was present in 14 generations of the Talbot family, tracing the anomaly back to John Talbot (1388–1453), the first Earl of Shrewbury. The validity of this claim has been questioned (Drinkwater, 1917; Elkington et al, 1967; Perme et al, 1994); (2) see multiple synostosis syndrome; (3) proximal symphalangism (MIM# 185800) is allelic with Noggin mutation (see: Noggin mutations table).
SYNDROME OF INAPPROPRIATE SECRETION OF ANTIDIURETIC HORMONE

Synonyms: Inappropriate secretion of antidiuretic syndrome; SIADH.

Etiology: Ectopic production of antidiuretic hormone induced by nonosmotic stimuli: (a) neoplasia at various sites, particularly bronchogenic carcinoma; (b) infections in various organs; (c) central nervous system diseases including trauma, infection (hypothalamic encephalitis) (Ishikawa et al, 2001), vascular occlusion, neoplasm, vasculitis, multiple sclerosis (Tsui et al, 2002), cerebral atrophy, hypoplastic corpus callosum, hydrocephalus (Yoshino et al, 1999); surgery; (Singh et al, 2002); (d) medications (Bhargava et al, 1991): antidepressants and antipsychotics (serotonin-reuptake inhibitors) (Arinzon et al, 2002), antineoplastics, contrast agents, hypoglycemics, nonsteroidal antiinflammatory agents, and thiazide diuretics; (e) others: acute asthma; acute bronchitis; chronic obstructive pulmonary disease; pneumothorax; psychosis; spinal fusion; pregnancy; and so forth.

Types: (a) transient and self-limited; (b) chronic and persistent.

Clinical Manifestations: (a) normovolemic or nearnormovolemic hyponatremia in a patient with unrestricted water intake; (b) inappropriately high urine osmolarity; (c) high urinary excretion of sodium; (d) normal renal function; (e) correction of the hyponatremia by fluid restriction; (f) neonate (Shirland, 2001); (g) familial SIADH (Tanaka et al, 2001).

Radiologic Manifestations: Those of the etiologic factors (reversible MRI changes) (Tsui et al, 2002).

Note: (1) care about water loading for US exam (Bhargava et al, 1991; Halperin et al, 2001).
SYNDROMES AND METABOLIC DISORDERS

Syndrome X

SYNDROME X

Synonyms: Metabolic syndrome; microvascular angina; cardiac syndrome X.

Clinical and Radiologic Manifestations: (a) angina pectoris; (b) ischemic-appearing result on exercise test; (c) normal coronary arteriograms; (d) no other explanation for the symptoms (hypertension; valve disease; cardiomyopathy); (e) etiologies abnormal subendocardial perfusion (MRI, adenosine provoked) (Panting et al, 2002); PPRAgamma (Koutnikova et al, 2002); SREBP-1 (gene regulation) (Muller-Wieland et al, 2002); (f) higher female incidence (Kaski, 2002); (g) other reported abnormalities and associations: diabetes (insulin resistance syndrome [hyperinsulinemia]); high concentrations of triglyceride and low levels of high density lipoprotein cholesterol in nonobese men; thallium defects in the presence of normal coronary arteriograms (“microvascular angina”) (Wienecke et al, 1999); echocardiographically silent myocardial ischemia during dipyridamole echocardiography test; abnormal autonomic control of the cardiovascular system.

References

Arinzon ZH et al: Delayed recurrent SIADH associated with SSRIs, Ann Pharmacother 36:1175, 2002.
Anmuth CJ et al: Chronic syndrome of inappropriate secretion of antidiuretic hormone in a pediatric patient after traumatic head injury, Arch Phys Med Rehab 74:1219, 1993.
Bartter FC et al: The syndrome of inappropriate secretion of antidiuretic hormone, Am J Med 42:790, 1967.
Bhargava R et al: Water intoxication: a complication of pelvic US in a patient with syndrome of inappropriate antidiuretic hormone secretion, Radiology 180:723, 1991.
Halperin MI et al: Integrative physiology of basal water permeability in distal nephron, Clin Nephrol 56:339, 2001 (review).
Ishikawa S et al: Hypothalamic encephalitis with bradycardia, Intern Med 40:805, 2001.
Shirland L: SIADH: a case review, Neonatal Netw 20:25, 2001 (review).
Singh S et al: Cerebral salt wasting: truths, Crit Care Med 30:2575, 2002 (review).
Sklar C et al: Chronic syndrome of inappropriate secretion of antidiuretic hormone in childhood, Am J Dis Child 139:733, 1985.
Sutton RA et al: Transient syndrome of inappropriate antidiuretic hormone secretion during pregnancy, Am J Kidney Dis 21:444, 1993.
Tanaka Y et al: Impaired urinary water excretion in 3-generation family, Pediatr Nephrol 16:820, 2001.
Tsui KY et al: Reversible MRI changes of hypothalamus in a MS patient, Eur Radiol 12(suppl 3):S28, 2002.
Yoshino M et al: SIADH associated with idiopathic normal pressure hydrocephalus, Intern Med 38:290, 1999.
SYNOVIAL FOLD SYNDROMES

Synonyms: Plica syndrome; medial synovial shelf plica syndrome; mediopatellar plica syndrome.

Locations: Knee; elbow (Awaya et al., 1984); hip (Atlihan et al., 1990); ankle (Masciocchi et al., 1997).

Pathogenesis: Plicas (folds) are normal structures (three often seen normally within the knee); can produce pathologic change especially after trauma (adolescent athletes) (Ewing, 1993; Irha et al., 2003; Kinnard et al., 1984).

Radiologic Manifestations: (1) arthrography (cross-table views) (Aprin et al., 1984; Lupi et al., 1990); (2) MRI: (axial and sagittal views; T2 and fat suppressed) thickened band of low signal intensity with synovitis/cartilage erosion (García-Valtuille et al., 2002); (3) other test: arthroscopy.

References

Aprin H et al: Arthrography (plica views) in plica syndrome, *Clin Orthop* (183):90, 1984.

Atlihan D et al: Arthroscopic treatment of symptomatic hip plica, *Clin Orthop* (411):174, 2003.

Awaya H et al: Elbow synovial fold syndrome: MRI findings, *AJR* 177:1377, 2001.

Ewing JW: Plica: pathologic or not, *J Am Acad Orthop Surg* 1:117, 1993.

García-Valtuille R et al: Anatomy and MRI appearances of synovial plicae of the knee, *Radiographics* 22:775, 2002.

Irha E et al: Medial synovial plica syndrome of the knee, *J Pediatr Orthop* 12B: 44, 2003.

Jee WH et al: The Plica syndrome: diagnostic value of MRI, *J Comput Assist Tomogr* 22:814, 1998.

Kinnard P et al: The plica syndrome. A syndrome of controversy, *Clin Orthop* (183):141, 1984.

Lupi L et al: Arthrography of the plica syndrome, *Eur J Radiol* 11:15, 1990.

Masciocchi C et al: Overload syndromes of peritalar region, *Eur J Radiol* 26:46, 1997.

TAKAYASU ARTERITIS

MIM#: 207600.

Synonyms: Aortitis syndrome; middle aortic syndrome; aortic arch syndrome; pulseless disease; aortoarteritis.

Clinical Manifestations: Two clinical stages: early systemic, followed by an occlusive phase: (a) asthenia; weight loss; fever; (b) dyspnea; palpitations; angina pectoris; myocardal infarction; hemoptysis; intermittent claudication; (c) pulse deficit; atherosclerosis (Numano et al., 2000); vascular bruit; heart failure; mitral insufficiency; aortic insufficiency; peripheral rub; elevated blood pressure; (d) headache; syncope; seizures; visual disturbances; ambylopia; retinopathy; hemiplegia; paraplegia; abnormal fundi; (e) abdominal pain; diarrhea; vomiting; pulmonary-renal syndrome (Savage et al., 2003); (f) other reported abnormalities: renovascular hypertension; association with tuberculosis; arthralgia; peripheral gangrene; annuloaortic ectasia associated with Hashimoto disease, Crohn disease, hyperthyroidism (Kettaneh et al., 2003); close association with two B-cell alloantigens; (g) occurrence of familial cases (AR); (h) disease activity markers: erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), matrix metalloproteinases (Matsuyama et al., 2003), immunopathology (Seko, 2000).

Radiologic Manifestations: Multiple and diffuse arterial involvement: (a) partial or total systemic arterial obstruction; single or multiple sites, particularly the aorta and major branches (carotids at their origin and subclavian arteries...