Addition of lattice potentials helps to produce new species of stable fundamental and vortical quantum droplets in two dimensions.
and 2D vortex solitons is well known to be an especially challenging problem, for the theoretical and experimental studies alike [28]. As a relevant illustration, Fig. 1 displays examples of stable and unstable profiles of the local density, $|\psi(x, y)|^2$, in stable vortex solitons with winding numbers (topological charges) $S = 1, 2, 3$ (stable) and $S = 4$ (unstable). Note that the angular momentum (4) of the soliton is determined by S and the norm, $M = SN$.

A very recent brief review of the recent experimental and theoretical results for QDs, in both 3D and effectively 2D settings, is given in Ref. [29]. The review addresses the condensates with contact and dipole-dipole interactions. The theoretical part includes results for QDs with embedded vorticity, which have not yet been created in the experiment.

Another ingredient of various 2D and 3D models which helps to stabilize zero-vorticity and vortical solitons is a spatially periodic (lattice) potential [30, 31]. In the experiment, such a potential can be readily induced in the form of an optical lattice, i.e., a spatially periodic force exerted onto atoms in BEC by a resonant optical field, created by pairs of laser beams illuminating the condensate in opposite directions [1, 32]. A paper, just now published in Frontiers of Physics [33], makes an important step forward in the theoretical analysis of 2D QDs, by adding a lattice potential, with spatial periodicities in the x and y directions, to Eq. (2). The potential is represented by the term $V_0 \left[\cos^2 (\pi x / D) + \cos^2 (\pi y / D) \right] \psi$. Systematic numerical analysis of the model has produced new families of soliton solutions, with $S = 0$ and $S = 1$. The solitons, i.e., localized (self-trapped) states, are effectively characterized by the number of excited cells of the underlying lattice, i.e., cells in which the local density is essentially different from zero.

It is relevant to mention that 1D models which combine the above-mentioned self-attractive beyond-MF term and a 1D lattice potential (that may also be induced in the form of an optical lattice) were recently introduced in Refs. [34] and [35]. Those models, in particular, make it possible to predict the existence of stable dipole modes, i.e., bound states of fundamental 1D solitons with opposite signs [34], as well as stable multipeak modes, which may be considered as bound states of a large number of fundamental solitons [35]. The multipeak modes bifurcate from delocalized Bloch states of the underlying linearized system with the periodic potential [34]. These modes with different numbers of peaks realize multistability, in the sense that they may coexist as stable solutions for the same value of the chemical potential. On the other hand, the dipole modes may be considered as 1D counterparts of 2D vortex solitons [34]. The mobility, i.e., a possibility of robust motion of a kicked 1D soliton across the underlying lattice potential, was also demonstrated in Ref. [34]. A full quantum many-body treatment of the 1D model with the lattice potential, including the prediction of QDs in this case, was recently elaborated in Ref. [36].

Note that, unlike 2D axisymmetric solutions in free space, such as ones displayed in Fig. 1, the presence of the lattice potential does not make it possible to find axisymmetric solutions, and the potential, breaking the spatial uniformity and isotropy, also breaks the conservation of the linear and angular momenta. Nevertheless, the winding number S of vortex solitons, found as solutions of Eq. (2) including the lattice potential, can be defined as phase circulation of the stationary complex solution, produced by a circumferential trip around the vortex’s pivot, divided by 2π [30, 31].

Solitons of both types, with $S = 0$ and 1, have been constructed in Ref. [33] in two varieties, viz., onsite and intersite-centered (OC and IC) ones. The OC modes have their pivot placed at a particular site of the underlying lattice, while the IC states place their central point between sites. Stability of the solitons of all these types was identified by means of direct simulations of Eq. (2) for the evolution of perturbed solitons (stable solitons keep their shape, while unstable ones are destroyed by perturbations). Thus, stability areas for the solitons were delineated in the parameter space of the model. Further, the consideration of values of Hamiltonian (3) of the modes demonstrates that the zero-vorticity states are non-degenerate ones, in terms of the energy, while the states with $S = 1$ are degenerate, in the sense that two different vortex modes with equal numbers of excited sites may have equal energies.

In addition to that, the lattice potential makes it possible to construct more general localized solutions, which may be interpreted as bound states of fundamental solitons. Such complexes may feature stable asymmetric shapes, in comparison with the symmetry of the underlying lattice potential.

The work may be developed by considering mobility of the solitons, that is a nontrivial issue in the presence of the trapping lattice potential, which tends to suppress the mobility, by means of the corresponding Peierls–Nabarro
potential [37, 38]. A challenging direction for the extension of the work can be the consideration of the full 3D model, by adding a spatially periodic potential to Eq. (1), and constructing various solutions of that equation. On the other hand, it may be relevant too to consider the 2D model with an axisymmetric potential, instead of its spatially periodic lattice counterpart. Such a system conserves angular momentum (4), making it relevant to construct axisymmetric solutions for vortex solitons, and may also make it possible to find compact solitons off-shifted from the center and performing circular motion along a circular (or elliptic) trajectory, cf. Ref. [39].

References

1. L. P. Pitaevskii and S. Stringari, Bose–Einstein Condensation, Oxford University Press, Oxford, 2003
2. S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of ultracold atomic Fermi gases, Rev. Mod. Phys. 80(4), 1215 (2008)
3. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Tonks–Girardeau gas of ultracold atoms in an optical lattice, Nature 429(6989), 277 (2004)
4. T. Kinoshita, T. Wenger, and D. S. Weiss, Observation of a one-dimensional Tonks–Girardeau gas, Science 305(5687), 1125 (2004)
5. H. Zhai, Degenerate quantum gases with spin–orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001 (2015)
6. D. S. Petrov, Quantum mechanical stabilization of a collapsing Bose–Bose mixture, Phys. Rev. Lett. 115(15), 155302 (2015)
7. D. S. Petrov and G. E. Astrakharchik, Ultradilute low-dimensional liquids, Phys. Rev. Lett. 117(10), 100401 (2016)
8. C. R. Cabrera, L. Tarruell, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture of Bose–Einstein condensates, Science 359(6373), 301 (2018)
9. P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell, Bright soliton to quantum droplet transition in a mixture of Bose–Einstein condensates, Phys. Rev. Lett. 120(13), 135301 (2018)
10. G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, Self-bound quantum droplets in atomic mixtures, Phys. Rev. Lett. 120(23), 235301 (2018)
11. G. Ferioli, G. Semeghini, L. Masi, G. Giusti, G. Modugno, M. Inguscio, A. Gallemí, A. Recati, and M. Fattori, Collisions of self-bound quantum droplets, Phys. Rev. Lett. 122(9), 090014 (2019)
12. I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116(21), 215301 (2016)
13. L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid, Phys. Rev. X 6(4), 041039 (2016)
14. L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep. 303(5–6), 259 (1998)
15. P. Zin, M. Pylak, T. Wasak, M. Gajda, and Z. Idziaszek, Quantum Bose–Bose droplets at a dimensional crossover, Phys. Rev. A 98, 051603(R) (2018)
16. T. Ilg, J. Kumlin, L. Santos, D. S. Petrov, and H. P. Büchler, Dimensional crossover for the beyond-mean-field correction in Bose gases, Phys. Rev. A 98, 051604(R) (2018)
17. G. E. Astrakharchik and B. A. Malomed, Dynamics of one-dimensional quantum droplets, Phys. Rev. A 98(1), 013631 (2018)
18. M. Tylutki, G. E. Astrakharchik, B. A. Malomed, and D. S. Petrov, Collective excitations of a one-dimensional quantum droplet, Phys. Rev. A 101, 051601(R) (2020)
19. B. A. Malomed, Multidimensional solitons: Well-established results and novel findings, Eur. Phys. J. Spec. Top. 225(13–14), 2507 (2016)
20. Y. Kartashov, G. Astrakharchik, B. Malomed, and L. Torner, Frontiers in multidimensional self-trapping of nonlinear fields and matter, Nature Reviews Physics 1(3), 185 (2019)
21. Y. V. Kartashov, B. A. Malomed, L. Tarruell, and L. Torner, Three-dimensional droplets of swirling superfluids, Phys. Rev. A 98(1), 013612 (2018)
22. Y. Li, Z. Luo, Y. Liu, Z. Chen, C. Huang, S. Fu, H. Tan, and B. A. Malomed, Two-dimensional solitons and quantum droplets supported by competing self- and cross-interactions in spin–orbit-coupled condensates, New J. Phys. 19(11), 113043 (2017)
23. Y. Li, Z. Chen, Z. Luo, C. Huang, H. Tan, W. Pang, and B. A. Malomed, Two-dimensional vortex quantum droplets, Phys. Rev. A 98(6), 063602 (2018)
24. Y. V. Kartashov, B. A. Malomed, and L. Torner, Metastability of quantum droplet clusters, Phys. Rev. Lett. 122(19), 193902 (2019)
25. X. Zhang, X. Xu, Y. Zheng, Z. Chen, B. Liu, C. Huang, B. A. Malomed, and Y. Li, Semidiscrete quantum droplets and vortices, Phys. Rev. Lett. 123(13), 133901 (2019)
26. Y. V. Kartashov, B. A. Malomed, and L. Torner, Structured hetero-symmetric quantum droplets, Phys. Rev. Research 2(3), 033522 (2020)
27. E. Shamriz, Z. Chen, and B. A. Malomed, Suppression of the quasi-two-dimensional quantum collapse in the attraction field by the Lee–Huang–Yang effect, Phys. Rev. A 101(6), 063628 (2020)
28. B. A. Malomed, Vortex solitons: Old results and new perspectives, Physica D 399, 108 (2019)
29. Z. Luo, W. Pang, B. Liu, Y. Li, and B. A. Malomed, A new form of liquid matter: Quantum droplets, Front. Phys. 16(3), 32201 (2021)
30. B. B. Baizakov, B. A. Malomed, and M. Salerno, Multidimensional solitons in periodic potentials, *Europhys. Lett.* 63(5), 642 (2003)

31. J. Yang and Z. H. Musslimani, Fundamental and vortex solitons in a two-dimensional optical lattice, *Opt. Lett.* 28(21), 2094 (2003)

32. O. Morsch and M. Oberthaler, Dynamics of Bose–Einstein condensates in optical lattices, *Rev. Mod. Phys.* 78(1), 179 (2006)

33. Y. Zheng, S. Chen, Z. Huang, S. Dai, B. Liu, Y. Li, and S. Wang, Quantum droplets in two-dimensional optical lattices, *Front. Phys.* 16(2), 22501 (2021)

34. Z. Zhou, X. Yu, Y. Zou, and H. Zhong, Dynamics of quantum droplets in a one-dimensional optical lattice, *Commun. Nonlinear Sci. Numer. Simul.* 78, 104881 (2019)

35. L. Dong, W. Qi, P. Peng, L. Wang, H. Zhou, and C. Huang, Multi-stable quantum droplets in optical lattices, *Nonlinear Dyn.* 102(1), 303 (2020)

36. I. Morera, G. E. Astrakharchik, A. Polls, and B. Juliá-Díaz, Quantum droplets of bosonic mixtures in a one-dimensional optical lattice, *Phys. Rev. Research* 2, 022008(R) (2020)

37. R. A. Vicencio and M. Johansson, Discrete mobility in two-dimensional arrays with saturable nonlinearity, *Phys. Rev. E* 73, 046602 (2006)

38. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Soliton shape and mobility control in optical lattices, *Prog. Opt.* 52, 63 (2009)

39. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Rotary solitons in Bessel optical lattices, *Phys. Rev. Lett.* 93(9), 093904 (2004)