Role of the $N^*(1535)$ in the $\Lambda_c^+ \rightarrow \bar{K}^0\eta p$ decay

Ju-Jun Xie1 and Li-Sheng Geng2

1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
2School of Physics and Nuclear Energy Engineering and International Research Center for Nuclear and Particles in the Cosmos and Beijing Key Laboratory of Advanced Nuclear Materials and Physics, Beihang University, Beijing 100191, China

(Dated: March 6, 2018)

The nonleptonic weak decay of $\Lambda_c^+ \rightarrow \bar{K}^0\eta p$ is analyzed from the viewpoint of probing the $N^*(1535)$ resonance, which has a big decay branching ratio to ηN. Up to an arbitrary normalization, the invariant mass distribution of ηp is calculated with both the chiral unitary approach and an effective Lagrangian model. Within the chiral unitary approach, the $N^*(1535)$ resonance is dynamically generated from the final state interaction of mesons and baryons in the strangeness zero sector. For the effective Lagrangian model, we take a Breit-Wigner formula to describe the distribution of the $N^*(1535)$ resonance. It is found that the behavior of the $N^*(1535)$ resonance in the $\Lambda_c^+ \rightarrow \bar{K}^0N^*(1535) \rightarrow \bar{K}^0\eta p$ decay within the two approaches is different. The proposed Λ_c^+ decay mechanism can provide valuable information on the properties of the $N^*(1535)$ and can in principle be tested by facilities such as BEPC II and SuperKEKB.

PACS numbers: 13.75.Jz, 14.20.-c, 11.30.Rd

I. INTRODUCTION

Understanding the nature of the $N^*(1535)$ with spin parity $J^P = 1/2^-$ has always been one of the most challenging topics in hadron physics [1, 2]. In classical constituent quark models, the $N^*(1535)$ is mainly composed of three valence quarks, and its mass should be lower than the radial excitation, the $N^*(1440)$, with $J^P = 1/2^+$. This is the long-standing mass reverse problem for the lowest spatial excited nucleon states. Another peculiar property of the $N^*(1535)$ is that it couples strongly to the channels with strangeness, such as ηN and $K\Lambda$, which is also difficult to understand in the naive constituent quark models.

Renouncing the picture of baryons as three-quark bound states, a different point of view consists in describing meson-baryon scattering reactions by taking mesons and baryons as the relevant degrees of freedom at low energies. Then, baryon excited states manifest themselves as poles of the meson-baryon scattering amplitude in a certain Riemann sheet in the complex energy plane. For example, the unitary extensions of chiral perturbation theory have brought new light to studies of baryon resonances from meson-baryon interactions [3, 4]. In the chiral unitary coupled-channels approach it was found that the $N^*(1535)$ resonance is dynamically generated as a meson-baryon state with its mass, width, and branching ratios in fair agreement with experiments [5, 13]. The numerical results obtained in those studies differ to some extent, but it was found that the $N^*(1535)$ resonance couples strongly to the ηN channel. Furthermore, it couples more strongly to $K\Sigma$ and $K\Lambda$ than to πN [5, 13].

In the phenomenological studies, besides the large coupling of the $N^*(1535)$ to ηN, a large value of the coupling of the $N^*(1535)$ to $K\Lambda$ is deduced in Refs. [14, 16] by a simultaneous fit to the BES data on $J/\psi \rightarrow \eta\gamma$, $pK^-\Lambda + pK^+\Lambda$, the COSY data on $pp \rightarrow pK^+\Lambda$, and the CLAS data on $\gamma p \rightarrow K^+\Lambda$ reaction. There is also evidence for a large coupling of the $N^*(1535)$ to $\eta'N$ from the analysis of the $\gamma p \rightarrow \eta'p$ reaction [17] and $pp \rightarrow pp\eta'$ reaction [18], and a large coupling of the $N^*(1535)$ to ϕN from the $\pi^-p \rightarrow \eta\phi$, $pp \rightarrow pp\phi$ and $pn \rightarrow d\phi$ reactions [19, 21].

The above-mentioned strange decay properties of the $N^*(1535)$ resonance can be easily understood if it contains large five-quark components [14, 22, 23]. Within the pentaquark picture, the $N^*(1535)$ resonance could be the lowest $L = 1$ orbital excited uud state with a large admixture of $[ud][us][s]$ pentaquark component having $[ud]$, $[us]$, and s in the ground state. This makes the $N^*(1535)$ heavier than the $N^*(1440)$ and also gives a natural explanation of its larger couplings to the channels with strangeness [24].

Recently, it has been shown that the nonleptonic weak decays of charmed hadrons provide a useful platform to study hadronic resonances, some of which are subjects of intense debate about their nature [25, 26]. For instance, the $\Lambda_c^+ \rightarrow \pi^+MB$ weak decays are studied in Ref. [27] from the viewpoint of probing the $\Lambda(1405)$ and $\Lambda(1670)$ resonances, where M and B stand for mesons and baryons. In Ref. [28], the $\pi\Sigma$ mass distribution was studied in the $\Lambda_c^+ \rightarrow \pi^+\pi\Sigma$ decays with the aim of extracting the $\pi\Sigma$ scattering lengths. In Ref. [29], the $\alpha_0(980)$ and $\Lambda(1670)$ states are investigated in the $\Lambda_c^+ \rightarrow \pi^+\eta\Lambda$ decay taking into account the $\pi^+\eta$ and $\eta\Lambda$ final state interactions. The pure $I = 1$ nature of the $\pi^+\eta$ channel is particularly beneficial to the study of the $\alpha_0(980)$ state. The role of the $\Sigma^*(1380)$ state with $J^P = 1/2^+$ in the $\Lambda_c^+ \rightarrow \eta\pi^+\Lambda$ decay is also studied in Ref. [30] where the color-suppressed W-exchange diagram is considered for the production of the $\Sigma^*(1385)$ with $J^P = 3/2^+$. In Ref. [31] the role of the exclusive

*Electronic address: lisheng.geng@buaa.edu.cn
Λ_c^+ decays into a neutron in testing the flavor symmetry and final state interaction was investigated. It was shown that the three body nonleptonic decays are of great interest to explore the final state interactions in Λ_c^+ decays.

Along this line, in the present work, we study the role of the $N^*(1535)$ resonance in the $\Lambda_c^+ \rightarrow \bar{K}^0\eta p$ decay by taking the advantage of the strong coupling of the $N^*(1535)$ to the ηN channel and its large $uu\bar{d}s\bar{s}$ component. We calculate the invariant ηp mass distribution within the chiral unitary approach and an effective Lagrangian model. First, we follow the same approach used in Ref. [27] to study the $\Lambda_c^+ \rightarrow \pi^+ MB$ decays, but with the hadronization of the $u\bar{u}$ $d\bar{d}$ rather than the $s\bar{s}$ $d\bar{d}$ cluster to get the final ηp and from the $s\bar{s}$ pair to get the \bar{K}^0.

In this respect, the $N^*(1535)$ resonance is dynamically generated from the final state interaction of mesons and baryons in the $I = 1/2$ sector where we have assumed that the $u\bar{u}$ di-quark with $I = 0$ in the Λ_c^+ is a spectator. Second, we study the $\Lambda_c^+ \rightarrow \bar{K}^0 N^*(1535) \rightarrow \bar{K}^0\eta p$ decay at the hadron level by taking a Breit-Wigner formula to describe the distribution of the $N^*(1535)$ resonance within the effective Lagrangian model. The contributions from other low-lying N^* and Σ^* resonances are discussed. Fortunately, it is found that these contributions may not affect much the results obtained here.

This article is organized as follows. In Sec. [II] we present the theoretical formalism of the decay of $\Lambda_c^+ \rightarrow \bar{K}^0\eta p$, explaining in detail the hadronization and final state interactions of the ηp pair. Numerical results and discussions are presented in Sec. [III] followed by a short summary in the last section.

II. FORMALISM

As shown in Refs. [27, 29, 32], a Cabibbo allowed mechanism for the Λ_c^+ decay is that the charmed quark in Λ_c^+ turns into a strange quark with a $u\bar{d}$ pair by the weak interaction as shown in Fig. 1.

In addition to the c quark decay process described above, in principle one can also have contributions from internal W-exchange ($c + d \rightarrow s + u$) diagrams. As discussed in Refs. [27, 29, 32, 33], these contributions are smaller than the c decay process. Furthermore, including such contributions, the decay amplitudes would become more complex due to additional parameters from the weak interaction, and we cannot determine or constrain these parameters at present. Hence, we will leave these contributions to future studies when more experimental data become available.

A. The $N^*(1535)$ as a dynamically generated state from meson-baryon scattering

We first discuss the decay of Λ_c^+ to produce the \bar{K}^0 from the $s\bar{s}$ pair and the insertion of a new $\bar{q}q$ pair with the quantum numbers of the vacuum, $uu + dd + ss$, to construct the intermediate meson-baryon state MB from the uud cluster with the assumption that the $u\bar{u}$ and $d\bar{d}$ quarks in the Λ_c^+ are spectators in the weak decay corresponding to the mechanism of Fig. 2. Thus, after the hadronization these u and d quarks in the Λ_c^+ are part of the baryon, and the u quark originated from the weak decay forms the meson. Furthermore, the uud cluster with strangeness zero is combined into a pure $I = 1/2$ state

$$\frac{1}{\sqrt{2}} (u(ud - du)).$$

Following the procedure of Refs. [27, 29, 32, 31, 33], one can straightforwardly obtain the meson-baryon states after the $\bar{q}q$ pair production as

$$|MB\rangle = \frac{\sqrt{3}}{3} |\eta p\rangle + \frac{\sqrt{2}}{2} |\pi^0 p\rangle + |\pi^+ n\rangle - \frac{\sqrt{6}}{3} |K^+ \Lambda\rangle,$$

where we have omitted the $\eta'p$ term because of its large mass threshold compared to other channels that we considered.

After the production of a meson-baryon pair, the final state interaction between them takes place, which can be parameterized by the re-scattering shown in Fig. 3 at the
hadronic level for the $\Lambda^+_c \rightarrow \bar{K}^0 \eta p$ decay. The final-state interaction of MB, in $I = 1/2$, leads to the dynamical generation of the $N^*(1535)$ resonance \cite{8,20}. In Fig. 4 we also show the tree level diagram for the $\Lambda^+_c \rightarrow \bar{K}^0 \eta p$ decay.

According to Eq. (2), we can write down the $\Lambda^+_c \rightarrow \bar{K}^0 \eta p$ decay amplitude of Fig. 3 as \cite{37},

$$T^{MB} = V_p \left(\frac{\sqrt{3}}{3} + \frac{\sqrt{2}}{3} G_{\eta p}(M_{\eta p}) t_{\eta p \rightarrow \eta p}(M_{\eta p}) + \frac{\sqrt{2}}{2} G_{\pi p}(M_{\eta p}) t_{\pi \eta p \rightarrow \eta p}(M_{\eta p}) + G_{\pi n}(M_{\eta p}) t_{\pi n \rightarrow \eta p}(M_{\eta p}) - \frac{\sqrt{6}}{3} G_{K^+L}(M_{\eta p}) t_{K^+L \rightarrow \eta p}(M_{\eta p}) \right), \quad (3)$$

where V_p expresses the weak and hadronization strength, which is assumed to be a constant and independent of the final state interaction. In the above equation, G_{MB} denotes the one-meson-one-baryon loop function, which depends on the invariant mass of the final ηp system, $M_{\eta p}$. The meson-baryon scattering amplitudes $t_{MB \rightarrow \eta p}$ are those obtained in the chiral unitary approach, which depend also on $M_{\eta p}$. Details can be found in Refs. \cite{8,36}.

B. Effective Lagrangian approach and the $N^*(1535)$ resonance as a Breit-Wigner resonance

On the other hand, because the $N^*(1535)$ has a large $uuds\bar{s}$ component, it can also be produced via the process shown in Fig. 3(a), similar to the P^-_c states produced in the $\Lambda^+_b \rightarrow K^- P^+_c$ decay \cite{38}. After the $N^*(1535)$ is formed with $uuds\bar{s}$, it decays into ηp, which is the dominant decay channel of the $N^*(1535)$ resonance. We show the hadron level diagram for the decay of $\Lambda^+_c \rightarrow \bar{K}^0 N^*(1535) \rightarrow \bar{K}^0 \eta p$ in Fig. 4(b).

Before going further, we emphasize that the strangeness component of $N^*(1535)$ can not be guaranteed from the decay process shown in Fig. 3. Indeed, the $N^*(1535)$ can also be produced from the process shown in Fig. 2 where the sd forms the \bar{K}^0, while the $N^*(1535)$ is constructed from the uud cluster and then it decays into ηp because of its large coupling to this channel.

The general decay amplitudes for $\Lambda^+_c \rightarrow \bar{K}^0 N^*(1535)$ can be decomposed into two different structures with the corresponding coefficients A and B,

$$\mathcal{M} = i\bar{u}(q)(A + B\gamma_5)u(p), \quad (4)$$

where q and p are the momentum of the $N^*(1535)$ and Λ_c^+, respectively. The coefficients A and B for charmed baryons decaying into ground meson and baryon states, in general, can be calculated in the framework of the pole model \cite{39} or within the perturbative QCD approach \cite{40}. In the present case, because the $N^*(1535)$ resonance is not well understood in the classical quark model, the values of A and B in Eq. (4) are very difficult to be pinned down, and we have to determine them with future experimental data. In this work, we take $A = B$ and we come back to this issue later.

To get the whole decay amplitude of $\Lambda^+_c \rightarrow \bar{K}^0 N^*(1535) \rightarrow \bar{K}^0 \eta p$ as shown in Fig. 3(b), we use the effective Lagrangian density of Refs. \cite{14,19,41} for the $N^*(1535)\eta N$ vertex,

$$\mathcal{L}_{N^*, \eta N} = -ig_{N^*, \eta N} \bar{N}_{\eta N^*} + \text{h.c.}, \quad (5)$$

where N, η, and N^* represent the fields of the proton, the η meson, and the $N^*(1535)$ resonance, respectively.
The invariant decay amplitude of the $\Lambda^+_c \to K^0 N^*(1535) \to K^0 np$ decay is

$$T^{N^*} = ig_{N^* N_R} \bar{u}(p_3, s_p) G_{N^*}(q)(A + B\gamma_5)u(p, s_{\Lambda^+_c}),$$

(6)

where p_3 is the momentum of the final proton. The s_p and $s_{\Lambda^+_c}$ are the spin polarization variables for the proton and Λ^+_c baryon, respectively. The $G_{N^*}(q)$ is the propagator of the $N^*(1535)$, which is given by a Breit-Wigner (BW) form as,

$$G_{N^*}(q) = \frac{g + M_{N^*}}{q^2 - M_{N^*}^2 + iM_{N^*}\Gamma_{N^*}(q^2)},$$

(7)

where M_{N^*} and $\Gamma_{N^*}(q^2)$ are the mass and total decay width of the $N^*(1535)$, respectively. We take $M_{N^*} = 1535$ MeV as in the PDG [4]. For $\Gamma_{N^*}(q^2)$, since the dominant decay channels for the $N^*(1535)$ resonance are πN and ηN [4], we take the following form as used in Refs. [42,43],

$$\Gamma_{N^*}(q^2) = \Gamma_{N^* \to \pi N}(q^2) + \Gamma_{N^* \to \eta N}(q^2) + \Gamma_0,$$

(8)

with

$$\Gamma_{N^* \to \pi N}(q^2) = \frac{3g_{N^* \pi N}^2}{4\pi} \sqrt{\frac{\bar{p}_{N^*}}{q^2}} |\bar{p}_{N^*}|, \quad (9)$$

$$\Gamma_{N^* \to \eta N}(q^2) = \frac{g_{N^* \eta N}^2}{4\pi} \sqrt{\frac{\bar{p}_{\eta N}}{q^2}} |\bar{p}_{\eta N}|. \quad (10)$$

Here

$$|\bar{p}_{N^*}| = \frac{\lambda^{1/2}(q^2, m_{\pi}^2, m_n^2)}{2\sqrt{q^2},}$$

(11)

$$|\bar{p}_{\eta N}| = \frac{\lambda^{1/2}(q^2, m_{\eta}^2, m_n^2)}{2\sqrt{q^2}},$$

(12)

where λ is the Källen function with $\lambda(x, y, z) = (x - y - z)^2 - 4yz$. In the present work, we take $g_{N^* \pi N}^2/4\pi = 0.037$ and $g_{N^* \eta N}^2/4\pi = 0.28$ as used in Ref. [43]. With these values we can get $\Gamma_{N^* \to \pi N} = 67.5$ MeV and $\Gamma_{N^* \to \eta N} = 63$ MeV if we take $\sqrt{q^2} = 1535$ MeV. In this work, we choose $\Gamma_0 = 19.5$ MeV for $\Gamma_{N^* \to \eta N}(\sqrt{q^2} = 1535$ MeV) = 150 MeV.

In the effective Lagrangian approach, the sum over polarizations and the Dirac spinors can be easily done thanks to

$$\sum_{s_p} \bar{u}(p_3, s_p)u(p_3, s_p) = \frac{\not{p}_3 + m_p}{2m_p},$$

(13)

$$\sum_{s_{\Lambda^+_c}} \bar{u}(p, s_{\Lambda^+_c})u(p, s_{\Lambda^+_c}) = \frac{\not{p} + M_{\Lambda^+_c}}{2M_{\Lambda^+_c}},$$

(14)

Finally, we obtain

$$\frac{1}{2} \sum_{s_{\Lambda^+_c}} \sum_{s_p} |T^{N^*}|^2 = \frac{g_{N^* N_R}^4}{2m_p M_{\Lambda^+_c}^2 |D|^2} \times$$

$$\left[(ap \cdot q + bp_3 \cdot p + cM_{\Lambda^+_c}) A^2 + (ap \cdot q + bp_3 \cdot p - cM_{\Lambda^+_c}) B^2 \right],$$

(15)

with

$$D = q^2 - M_{\Lambda^+_c}^2 + iM_{N^*} \Gamma_{N^*}(q^2),$$

(16)

$$a = 2(p_3 \cdot q + m_p M_{N^*}),$$

(17)

$$b = M_{\Lambda^+_c}^2 - q^2,$$

(18)

$$c = m_p (M_{N^*}^2 + q^2) + 2M_{N^*} p_3 \cdot q,$$

(19)

and

$$p \cdot q = \frac{M_{\Lambda^+_c}^2 + M_{np}^2 - m_{K^0}^2}{2},$$

(20)

$$p_3 \cdot q = \frac{M_{np}^2 + m_{\eta}^2 - m_{K^0}^2}{2},$$

(21)

$$p_3 \cdot p = \frac{(M_{\Lambda^+_c}^2 + M_{np}^2 - m_{K^0}^2)(M_{np}^2 + m_{\eta}^2 - m_{K^0}^2)}{2M_{np}^2},$$

(22)

with $M_{np}^2 = q^2$.

C. Invariant mass distributions of the $\Lambda^+_c \to K^0 np$ decay

With all the ingredients obtained in the previous subsection, one can write down the invariant np mass distribution of the $\Lambda^+_c \to K^0 np$ decay as:

$$\frac{d\Gamma}{dM_{np}} = \frac{1}{16\pi^3 m_p p_{K^0} p_{\eta}^*} |T|^2,$$

(23)

where T is the total decay amplitude. The p_{K^0} and p_{η}^* are the three-momenta of the outgoing K^0 meson in the Λ^+_c rest frame and the outgoing η meson in the center of mass frame of the final np system, respectively. They are given by

$$p_{K^0} = \frac{\lambda^{1/2}(M_{\Lambda^+_c}^2, M_{np}^2, m_{K^0}^2)}{2M_{\Lambda^+_c}},$$

(24)

$$p_{\eta}^* = \frac{\lambda^{1/2}(M_{np}^2, m_{\eta}^2, m_{\eta}^2)}{2M_{np}}.$$
III. NUMERICAL RESULTS AND DISCUSSION

In this section, we first show the numerical results for the $d\Gamma/dM_{\eta p}$ with three models: Model I takes $T = T^{MB}$; Model II takes $T = T^{N^*}$ and Γ_{N^*} is energy dependent as in Eq. (8); Model III takes $T = T^{N^*}$ and $\Gamma_{N^*} = 150$ MeV as a constant. Next, we will discuss the impact of the contributions from other N^* and Σ^* states.

A. Invariant ηp mass distributions

State	Mass (MeV)	Spin-parity (J^P)
Λ^+_c	2286.46	$\frac{3}{2}^+$
K^0	497.61	0^-
η	547.86	0^-
p	938.27	$\frac{1}{2}^+$

Table I: Masses and spin-parities of the particles studied in the present work.

In Fig. 5 we show the ηp invariant mass distribution obtained with the mass values shown in Table I, where the solid, dashed and dotted curves represent the numerical results obtained with Model I, II, and III, respectively. The results of Model I are obtained with $V_p = 1$ MeV$^{-1}$. The results of Model II with $A = B = 45.2$ and Model III with $A = B = 47.4$ are normalized to the peak of Model I.

![Invariant ηp mass distribution](image)

FIG. 5: Invariant ηp mass distribution for the $\Lambda^+_c \rightarrow K^0\eta p$ decay. The solid, dashed, and dotted curves represent the results obtained in Model I, II, and III, respectively.

For Model I, a peak around 1524 MeV corresponding to the $N^*(1535)$ resonance can be clearly seen as in Refs. [8].

The peaks of Model II and III move to 1532 and 1553 MeV, respectively. The peak position of Model II is very close to the central value, 1535 MeV, estimated in the PDG [4] for the $N^*(1535)$. The peak position of Model I is also close to the value 1535 MeV, but with a narrow width. For Model III where a constant decay width of the $N^*(1535)$ is used, the peak position moves 20 MeV away from the Breit-Wigner mass 1535 MeV. Besides, the resonant shapes of Model II and III are broader than the result of Model I.

Because the mass of the $N^*(1535)$ is close to the ηN threshold and has a large coupling to this channel, the approximation of a BW form with a constant width is not very realistic [14]. We should take the coupled channel BW formula as in Eq. (8), which will reduce the BW mass of the $N^*(1535)$ [14].

From the results of Model I and II shown in Fig. 5 we see that these two different descriptions of the $N^*(1535)$ resonance give different invariant ηp mass distributions. The findings here are similar to that obtained in Refs. [15, 20]. For the $N^*(1535)$, the amplitude square obtained with the chiral unitary approach does not behave like an usual BW resonance, even at the peak position (see Fig. 1 of Ref. [15]). It is expected that future experimental measurements may test our model predictions and clarify this issue.

One might be tempted to think that the discrepancy between Model I and II (or III) is due to the inclusion of the p-wave contribution for Model II and III shown in Eq. (4) with the B term. We have explored such a possibility from the comparison of the contributions of the A and B terms. For doing this, we first rewrite $d\Gamma/dM_{\eta p}$ for Model II and III as,

$$
\frac{d\Gamma}{dM_{\eta p}} = f_1 A^2 + f_2 B^2.
$$

Then we define the ratio R as

$$
R = \frac{f_2 B^2}{f_1 A^2} = \frac{f_2}{f_1}.
$$

In the last step, we have taken $A = B$.

In Fig. 6 we show the numerical results for R as a function of $M_{\eta p}$. We see clearly that R is less than 2.8 percent for the whole possible $M_{\eta p}$ in the $\Lambda^+_c \rightarrow K^0\eta p$ decay. This means that the contribution of the p-wave B term is rather small in comparison with the contribution from the s-wave A term and can be neglected safely. This study provides further support for the factorization scheme of the hard process (the weak decay and hadronization) for Model I where only the s-wave contribution is considered between any two particles of the final $K^0\eta p$. Such a factorization scheme seems to work fairly well in the present case.

It should be noted that the B term is very small compared with the A term, which is tied to the fact that we take $A = B$. A model independent calculation of the values of A and B is most welcome and will ultimately test our model calculations.
B. Contributions from other processes

Up to now, we have considered only the contribution from \(N^*(1535) \), while the contributions from other nucleon resonances, such as, \(N^*(1650) \), \(N^*(1710) \), and \(N^*(1720) \), are not taken into account. The \(N^*(1710) \) and \(N^*(1720) \) decay into \(np \) in \(p \)-wave and the decay of \(\Lambda_+^* \rightarrow \bar{K}^0 N^*(1710) \) and \(\Lambda_+^* \rightarrow \bar{K}^0 N^*(1720) \) have very limited phase space, hence, their contributions should be much suppressed.

It is interesting to note that both \(N^*(1535) \) and \(N^*(1650) \) are dynamically generated from the analysis of the \(s \)-wave \(\pi N \) scattering. We list the results obtained in Refs. [9, 10, 12, 13] for \(N^*(1535) \) and \(N^*(1650) \) in Table II, where we show also the BW mass and width, branching ratios to \(\pi N \) and \(\eta N \) of \(N^*(1535) \) and \(N^*(1650) \) that are estimated by PDG [4] for comparison. We see that the \(N^*(1650) \) and \(N^*(1535) \) are much separated in mass. Therefore, the contribution from \(N^*(1650) \) will not overlap too much with that from \(N^*(1535) \). Furthermore, the branching ratio of \(N^*(1650) \) to \(\eta N \) is very small compared with the one to \(\pi N \). We thus conclude that the contribution from \(N^*(1650) \) to the invariant \(np \) mass distribution is small or at least it will not change too much the numerical results shown in Fig. 5 even if it has a sizable contribution.

On the other hand, there should be also contributions from \(\Sigma^* \) resonances that have significant branching ratio to \(\bar{K}^0 p \). Those \(\Sigma^* \) resonances are: \(\Sigma^*(1660) \), \(\Sigma^*(1670) \), and \(\Sigma^*(1750) \). We show the Dalitz plot for the \(\Lambda_+^* \rightarrow \bar{K}^0 np \) decay in Fig. 6. In the \(N^*(1535) \) energy region, the Dalitz plot overlaps with these \(\Sigma^* \) resonances from 1600 to 1800 MeV in the \(\bar{K}^0 p \) channel, which may make the analysis of \(N^*(1535) \) difficult.

Fortunately, the \(\Sigma^*(1660) \) and \(\Sigma^*(1750) \) decay into \(\bar{K}^0 p \) in \(p \)-wave and \(D \)-wave, respectively. These contributions will be suppressed because of the higher partial waves involved. For the \(\Sigma^*(1750) \), it decays into \(\bar{K}^0 p \) in \(s \)-wave. However, it lies in the kinematic end-point region and therefore the decay of \(\Lambda_+^* \rightarrow \eta \Sigma^* \) has a relative small phase space.

![Diagram](image_url)

FIG. 6: Ratio \(R \) of the \(B \) and \(A \) terms as a function of the \(np \) invariant mass.

![Graph](image_url)

FIG. 7: Dalitz plot for \(M_{np}^2 \) and \(M_{\bar{K}^0 p}^2 \) in the \(\Lambda_+^* \rightarrow \bar{K}^0 \eta p \) decay. The \(N^*(1535) \) energy is shown by the vertical dotted line, which the horizontal band represents the masses of \(\Sigma^* \) states from 1600 to 1800 MeV.

![Table](image_url)

TABLE II: Mass (\(M_R \)) and width (\(\Gamma_R \)) for \(N^*(1535) \) and \(N^*(1650) \) found in Refs. [9, 10, 12, 13]. The masses and widths from Ref. [4] are deduced from a Breit-Wigner fit. The values of masses and widths are given in MeV.

Reference	\(N^*(1535) \)	\(N^*(1650) \)		
	\(M_R \)	\(\Gamma_R \)	\(M_R \)	\(\Gamma_R \)
[7]	1496.5 ± 0.4	83.3 ± 0.7	1684.3 ± 0.7	194.3 ± 0.8
[9]	1506 ± 280	1692	76	
[10, 11]	1556 ± 94	1639	56	
[12]	1504 ± 110	1668	134 ±	
[13]	1508.1 ± 90.3	1672.3	158.2	
[4]	1535 ± 10	150 ± 25	1655 ± 15	140 ± 30
\(\text{Br}(\rightarrow \pi N) \)	35 ~ 55%	50 ~ 70%		
\(\text{Br}(\rightarrow \eta N) \)	32 ~ 52%	14 ~ 22%		

* A twin pole structure for \(N^*(1650) \) is obtained in Ref. [9].

** FIG. 7**: Dalitz plot for \(M_{np}^2 \) and \(M_{\bar{K}^0 p}^2 \) in the \(\Lambda_+^* \rightarrow \bar{K}^0 \eta p \) decay. The \(N^*(1535) \) energy is shown by the vertical dotted line, which the horizontal band represents the masses of \(\Sigma^* \) states from 1600 to 1800 MeV.
In summary, the contributions from other N^* and Σ^* resonances should be small compared with the contribution from the $N^*(1535)$, and we expect that their contributions will not change much the model predictions presented in the present work. On the other hand, if future experimental measurements provide enough data to disentangle the contributions from these resonances, one can also study them. It should be kept in mind that our study made some assumptions and hence it can be improved once more data become available.

IV. CONCLUSIONS

In the present work we have studied the invariant ηp mass distribution in the $\Lambda_c^+ \to K^0\eta p$ decay to better understand the $N^*(1535)$ resonance. First, we employed the molecular picture where the $N^*(1535)$ is dynamically generated from the meson-baryon interaction. In such a scenario, the weak interaction part is dominated by the c quark decay process: $c(ud) \to (s + u + d)(ud)$, while the hadronization part takes place by the uud cluster picking up a $q\bar{q}$ pair from the vacuum and hadronizes into a meson-baryon pair, while the sd pair from the weak decay turns into a K^0. The following final state interactions of the meson-baryon pairs are described in the chiral unitary model that dynamically generates the $N^*(1535)$ resonance in the $I = 1/2$ sector. Second, we studied the $\Lambda_c^+ \to K^0 N^*(1535) \to K^0 \eta p$ decay with a Breit-Wigner formula to describe the distribution of the $N^*(1535)$ in the effective Lagrangian model. The above two descriptions for the $N^*(1535)$ resonance give different invariant ηp mass distributions. Furthermore, we showed in a qualitative way that the contributions from other N^* and Σ^* resonance are relatively small and will not affect much the results obtained in the present study.

On the experimental side, the decay mode $\Lambda_c^+ \to K^0 \eta p$ has been observed \cite{CLAS} and the branching ratio $\text{Br}(\Lambda_c^+ \to K^0 \eta p)$ is determined to be $(1.6 \pm 0.4)\%$, which is one of the dominant decay modes of the Λ_c^+ state. For the decay of $\Lambda_c^+ \to K^0 \eta p$, the final ηp is in pure isospin $I = 1/2$. Hence, this decay can be an ideal process to study the $N^*(1535)$ resonance, which has a large branching ratio to ηN and decays into ηN in s-wave. Future experimental measurements of the invariant ηp mass distribution studied in the present work will be very helpful to test our model calculations and constrain the properties of the $N^*(1535)$ resonance. For example, a corresponding experimental measurement could in principle be done at BESIII \cite{BESIII} and Belle.

V. ACKNOWLEDGMENTS

This work is partly supported by the National Natural Science Foundation of China under Grant No.11475227, No. 11375024, No. 11522539, No. 11505158, No. 11475015, and No. 11647601. It is also supported by the Youth Innovation Promotion Association CAS (No. 2016367).

[1] E. Klempt and A. Zaitsev, Phys. Rept. 454, 1 (2007).
[2] V. Crede and W. Roberts, Rept. Prog. Phys. 76, 076301 (2013).
[3] S. Capstick and W. Roberts, Prog. Part. Nucl. Phys. 45, S241 (2000) doi:10.1016/S0146-6410(00)00109-5 [nucl-th/0008028].
[4] C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, 100001 (2016).
[5] N. Kaiser, P. B. Siegel and W. Weise, Phys. Lett. B 362, 23 (1995).
[6] N. Kaiser, T. Waas and W. Weise, Nucl. Phys. A 612, 297 (1997).
[7] J. Nieves and E. Ruiz Arriola, Phys. Rev. D 64, 116008 (2001).
[8] T. Inoue, E. Oset and M. J. Vicente Vacas, Phys. Rev. C 65, 035204 (2002).
[9] P. C. Bruns, M. Mai and U. G. Meissner, Phys. Lett. B 697, 254 (2011).
[10] J. Nieves, A. Pich and E. Ruiz Arriola, Phys. Rev. D 84, 096002 (2011).
[11] D. Gamermann, C. Garcia-Recio, J. Nieves and L. L. Salcedo, Phys. Rev. D 84, 056017 (2011).
[12] K. P. Khemchandani, A. Martinez Torres, H. Nagahiro and A. Hosaka, Phys. Rev. D 88, 114016 (2013).
[13] E. J. Garzon and E. Oset, Phys. Rev. C 91, 025201 (2015).
[14] B. C. Liu and B. S. Zou, Phys. Rev. Lett. 96, 042002 (2006).
[15] L. S. Geng, E. Oset, B. S. Zou and M. Doring, Phys. Rev. C 79, 025203 (2009).
[16] T. Mart, Phys. Rev. C 87, 042201 (2013).
[17] M. Dugger et al. [CLAS Collaboration], Phys. Rev. Lett. 96, 062001 (2006) Erratum: [Phys. Rev. Lett. 96, 169905 (2006)].
[18] X. Cao and X. G. Lee, Phys. Rev. C 78, 035207 (2008).
[19] J. J. Xie, B. S. Zou and H. C. Chiang, Phys. Rev. C 77, 015206 (2008).
[20] M. Doring, E. Oset and B. S. Zou, Phys. Rev. C 78, 025207 (2008).
[21] X. Cao, J. J. Xie, B. S. Zou and H. S. Xu, Phys. Rev. C 80, 025203 (2009).
[22] C. Helminen and D. O. Riska, Nucl. Phys. A 699, 624 (2002).
[23] B. S. Zou, Eur. Phys. J. A 35, 325 (2008).
[24] B. S. Zou, Nucl. Phys. A 835, 199 (2010).
[25] V. Crede and C. A. Meyer, Prog. Part. Nucl. Phys. 63, 74 (2009).
[26] H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Phys. Rept. 639, 1 (2016).
[27] K. Miyahara, T. Hyodo and E. Oset, Phys. Rev. C 92, 055204 (2015).
[28] T. Hyodo and M. Oka, Phys. Rev. C 84, 035201 (2011).
[29] J. J. Xie and L. S. Geng, Eur. Phys. J. C 76, 496 (2016).
[30] J. J. Xie and L. S. Geng, [arXiv:1703.09502 [hep-ph]].
C. D. Lü, W. Wang and F. S. Yu, Phys. Rev. D 93, 056008 (2016).

K. Miyahara, T. Hyodo, M. Oka, J. Nieves and E. Oset, Phys. Rev. C 95, 035212 (2017).

J. J. Xie, L. R. Dai and E. Oset, Phys. Lett. B 742, 363 (2015).

L. Roca, M. Mai, E. Oset and U. G. Meißner, Eur. Phys. J. C 75, 218 (2015).

J. J. Xie, L. R. Dai and E. Oset, Phys. Lett. B 742, 363 (2015).

L. Roca, M. Mai, E. Oset and U. G. Meißner, Eur. Phys. J. C 75, 218 (2015).

A. Feijoo, V. K. Magas, A. Ramos and E. Oset, Phys. Rev. D 92, 076015 (2015).

M. Doring, E. Oset and D. Strottman, Phys. Rev. C 73, 045209 (2006).

J. A. Oller and E. Oset, Nucl. Phys. A 629, 739 (1998).

R. Aaij et al. [LHCb Collaboration], Phys. Rev. Lett. 115, 072001 (2015).

H. Y. Cheng and B. Tseng, Phys. Rev. D 46, 1042 (1992) Erratum: [Phys. Rev. D 55, 1697 (1997)].

C. D. Lü, Y. M. Wang, H. Zou, A. Ali and G. Kramer, Phys. Rev. D 80, 034011 (2009).

J. Z. Bai et al. [BES Collaboration], Phys. Lett. B 510, 75 (2001).

J. J. Wu, S. Dulat and B. S. Zou, Phys. Rev. C 81, 045210 (2010).

J. J. Xie, B. C. Liu and C. S. An, Phys. Rev. C 88, 015203 (2013).

Q. F. Lü, R. Wang, J. J. Xie, X. R. Chen and D. M. Li, Phys. Rev. C 91, 035204 (2015).

R. A. Arndt, I. I. Strakovsky, R. L. Workman and M. M. Pavan, Phys. Rev. C 52, 2120 (1995).

A. V. Anisovich, R. Beck, E. Klempt, V. A. Nikonov, A. V. Sarantsev and U. Thoma, Eur. Phys. J. A 48, 15 (2012).

V. Shklyar, H. Lenske and U. Mosel, Phys. Rev. C 87, 015201 (2013).

V. Shklyar, H. Lenske, U. Mosel and G. Penner, Phys. Rev. C 71, 055206 (2005) Erratum: [Phys. Rev. C 72, 019903 (2005)].

R. Ammar et al. [CLEO Collaboration], Phys. Rev. Lett. 74, 3534 (1995).

M. Ablikim et al. [BESIII Collaboration], Phys. Rev. Lett. 116, 052001 (2016).