Effects of a Clonidine Taper on Dexmedetomidine Use and Withdrawal in Adult Critically Ill Patients—A Pilot Study

Krupa Bhatt, PharmD, BCCCP1; Ashley Thompson Quan, PharmD, BCCCP2; Laura Baumgartner, PharmD, BCPS, BCCCP3; Shawn Jia, MD4; Rhiannon Croci, BSN, RN-BC5; Kathleen Puntillo, RN, PhD, FAAN, FCCM6; James Ramsay, MD7; Rima H Bouajram, PharmD, BCCCP2

Objectives: Prolonged use of dexmedetomidine has become increasingly common due to its favorable sedative and anxiolytic properties. Hypersympathetic withdrawal symptoms have been reported with abrupt discontinuation of prolonged dexmedetomidine infusions. Clonidine has been used to transition patients off dexmedetomidine infusions for ICU sedation. The objective of this study was to compare the occurrence of dexmedetomidine withdrawal symptoms in ICU patients transitioning to a clonidine taper versus those weaned off dexmedetomidine alone after prolonged dexmedetomidine infusion.

Design: This was a single-center, prospective, double cohort observational study conducted from November 2017 to December 2018.

Setting: Medical-surgical, cardiothoracic, and neurosurgical ICUs in a tertiary care hospital.

Patients: We included adult ICU patients being weaned off dexmedetomidine after receiving continuous infusions for at least 3 days.

Interventions: Patients were either weaned off dexmedetomidine alone or with a clonidine taper at the discretion of the providers.

Measurements and Main Results: The primary outcome was the incidence of at least two dexmedetomidine withdrawal symptoms during a single assessment within 24 hours of dexmedetomidine discontinuation. Time on dexmedetomidine after wean initiation and difference in medication cost were also evaluated. Forty-two patients were included in this study: 15 received clonidine (Group C) and 27 weaned off dexmedetomidine alone (Group D). There was no significant difference in the incidence of two or more withdrawal symptoms between groups (73% in Group C vs 59% in Group D; p = 0.51). Patients in Group C spent less time on dexmedetomidine after wean initiation compared with patients in Group D (19 vs 42 hr; p = 0.02). An average cost savings of $1,553.47 per patient who received clonidine was observed. No adverse effects were noted.

Conclusions: Our study demonstrated that patients receiving clonidine were able to wean off dexmedetomidine more rapidly, with a considerable cost savings and no difference in dexmedetomidine withdrawal symptoms, compared with patients weaned off dexmedetomidine alone. Clonidine may be a safe, effective, and practical option to transition patients off prolonged dexmedetomidine infusions.

Key Words: adrenergic alpha-2 receptor agonists; clonidine; dexmedetomidine; hypnotics and sedatives; substance withdrawal syndrome; symptom assessment

Dexmedetomidine, an alpha-2 adrenergic agonist, is Food and Drug Administration-approved for sedation in the ICU for up to 24 hours of continuous infusion (1). Its safety and efficacy have been demonstrated in studies for up to 5 days of use (2, 3), with bradycardia and hypotension being the most frequently cited adverse effects (1). In practice, dexmedetomidine is often used for prolonged periods of time due to its favorable sedative, anxiolytic, and analgesic characteristics (4–9). Recent data, however, suggest that abrupt discontinuation of prolonged
Clonidine, another alpha-2 adrenergic agonist, has been used in recent years to transition patients off of dexmedetomidine infusions (24–28). Although dexmedetomidine and clonidine share similar pharmacologic properties, clonidine's high oral bioavailability, longer half-life, ease of administration, and lower medication cost provide a convenient and tolerable taper option for patients on prolonged dexmedetomidine infusions (29, 30). However, no studies have specifically assessed the effect of clonidine on the incidence of dexmedetomidine withdrawal symptoms after prolonged exposure to dexmedetomidine in adult critically ill patients. The objective of this study was to compare the incidence of dexmedetomidine withdrawal symptoms in ICU patients transitioning to a clonidine taper versus those weaned off dexmedetomidine alone after at least 3 days of continuous infusion.

MATERIALS AND METHODS
This was a single-center, prospective, double cohort study conducted from November 2017 to December 2018. All adult patients in the medical-surgical, cardiothoracic, or neurological ICUs that were being weaned off dexmedetomidine after at least 3 days of continuous infusion were considered for study enrollment. A minimum of 3 days of dexmedetomidine administration was used based on previous definitions of prolonged infusion and based on the time after which withdrawal symptoms have been cited in previous reports (15, 16). Exclusion criteria included patients with active substance or medication withdrawal and patients with primary neurologic disease which could interfere with the assessments. This study protocol was approved by the Institutional Review Board prior to initiation of the study.

Patients were divided into two groups: those who received clonidine in order to transition off of dexmedetomidine (Group C) and those who were weaned off dexmedetomidine alone (Group D). The decision to use clonidine was at the discretion of the medical team and was not influenced by study investigators. Of note, clonidine was used off-label in this context for ICU sedation (24–29).

The primary outcome was the incidence of at least two dexmedetomidine withdrawal symptoms during a single assessment within 24 hours of dexmedetomidine discontinuation. In the absence of a validated instrument for iatrogenic withdrawal in the hospital setting, withdrawal symptoms included in this study were chosen based on previous literature describing dexmedetomidine withdrawal (10–22). The endpoint of two or more symptoms was deemed to be clinically significant given the presence of these symptoms would prompt an increase in dexmedetomidine infusion rate or prevention of wean in clinical practice at our institution. The five withdrawal symptoms evaluated were as follows: (1) agitation as per a RASS greater than +1, (2) delirium as per a positive Confusion Assessment Method for the ICU assessment, (3) withdrawal as per a Withdrawal Assessment Tool Version 1 (WAT-1) score greater than 2, (4) tachycardia defined as heart rate (HR) greater than 90 beats per minute (beats/min), and (5) hypertension defined as systolic blood pressure (SBP) greater than 140 mm Hg or mean arterial pressure greater than 90 mm Hg. Although the WAT-1 (Appendix C, Supplemental Digital Content 3, http://links.lww.com/CCX/A393) is only validated to evaluate opioid and benzodiazepine withdrawal in pediatric patients, it includes several hypersympathetic symptoms that overlap with dexmedetomidine withdrawal in adult patients and has been successfully used to evaluate dexmedetomidine withdrawal in pediatric studies (17, 21, 26, 32, 33). Secondary outcomes included incidence of individual withdrawal symptoms, incidence of pain (as defined by a Numerical Pain Rating Scale ≥ 4 for patients able...
Observational Study

Critical Care Explorations

www.ccejournal.org

738 patients screened

696 patients excluded:
- 31 alternate substance withdrawal
- 15 inability to assess prior to wean
- 3 on neuromuscular blocking agents
- 2 incarcerated
- 645 dexmedetomidine use for <72 hours

42 patients included

15 in Group C

27 in Group D

Table 2 presents outcomes in both groups. There was no statistically significant difference between groups in the incidence of at least two dexmedetomidine withdrawal symptoms during a single assessment within the wean period (73% in Group C vs 59% in Group D; \(p = 0.27\)). In the subset of patients with simultaneous withdrawal assessments, inter-rater reliability was good (0.89) between assessors. A total of 54 simultaneous assessments were performed. In evaluating individual withdrawal symptoms (Fig. 2), patients in Group C exhibited more agitation per a RASS greater than +1 compared with patients in Group D (40% vs 11%; \(p = 0.05\)). There was no statistically significant difference in positive WAT-1 scores between groups. Across both groups, the most common symptoms recorded from the WAT-1 tool were loose stools, fever, and agitation. Notably, patients in Group C had a higher median number of withdrawal assessments conducted than patients in Group D (3.7 vs 2.7; \(p < 0.01\)).

There was no difference in the incidence of significant pain scores between groups (47% in Group C vs 41% in Group D; \(p = 0.75\)). However, patients in Group D had a trend toward higher OME use in the 48 hours prior to wean initiation as well as during the first and second days of the wean as compared to patients in Group C, although this was not statistically significant (Table 3). There was no difference between groups in the use of propofol, antipsychotics, benzodiazepines, or ketamine during the wean period. Patients in Group C had a higher average daily dexmedetomidine rate in microgram/kilogram/hr (µg/kg/hr) compared with patients in Group D. Total infusion dose in µg/hr was not significantly different between groups.

Patients in Group C spent significantly less time on dexmedetomidine after wean initiation compared with patients in Group D (19 vs 43 hr; \(p = 0.02\)). Furthermore, 93% of patients in Group C were able to discontinue dexmedetomidine within 24 hours of clonidine initiation. This difference in time on dexmedetomidine resulted in an average drug cost savings of $1,553.47 per patient who received clonidine when taking into account the medication cost of dexmedetomidine and clonidine alone. Costs of nursing titration and monitoring were not included in this assessment. Patients in Group C had a trend toward longer median ICU length of stay than patients in Group D, although this was not statistically significant (22.7 vs 17 d; \(p = 0.3\)). There was no difference in time to ICU discharge after wean initiation (7.2 in Group C vs 7 d in Group D; \(p = 0.69\)). There were no reported events of bradycardia or hypotension during the wean period for all patients in either group.

RESULTS

Out of the 738 patients screened, 42 patients were included in the final analysis: 15 in Group C and 27 in Group D (Fig. 1). Baseline characteristics are shown in Table 1. Of note, patients in Group C had a higher median daily RASS score 2 days prior to wean initiation (0 vs –1; \(p = 0.04\)) and were more likely to have received antipsychotics prior to study enrollment (8 vs 2 patients; \(p = 0.005\)).

Figure 1. Patient flowchart. Group C = patients administered clonidine taper, Group D = patients weaned off dexmedetomidine alone.

to self-report or a Critical Care Pain Observation Tool ≥ 3 for those who were not), oral morphine equivalents (OMEs) administered during the wean period (calculated based on our institutional standard equivalency chart for all opiates, described in Appendix D, Supplemental Digital Content 4, http://links.lww.com/CCX/A394), use of concomitant propofol, antipsychotics, benzodiazepines, and ketamine during the wean period, average daily dexmedetomidine infusion rate throughout the total infusion duration, time to successful dexmedetomidine discontinuation, difference in drug cost using average wholesale price, time to transfer out of the ICU, and incidence of hypotension (SBP < 90 mm Hg) or bradycardia (HR < 60 beats/min) at any time during the wean period.

Descriptive statistics were used to summarize baseline demographic information. Analysis of the primary outcome and other categorical variables was performed using the chi-square or Fisher exact test. Secondary continuous outcomes were assessed using either the Student \(t\) test or Wilcoxon rank-sum test. Inter-rater reliability during simultaneous assessments was analyzed using the Krippendorff alpha score. All \(p\) values less than or equal to 0.05 were considered significant using an alpha value of 0.05. All statistical analyses were conducted using Stata Version 15 (StataCorp LP, College Station, TX).

Table 2 presents outcomes in both groups. There was no statistically significant difference between groups in the incidence of at least two dexmedetomidine withdrawal symptoms during a single assessment within the wean period (73% in Group C vs 59% in Group D; \(p = 0.27\)). In the subset of patients with simultaneous withdrawal assessments, inter-rater reliability was good (0.89) between assessors. A total of 54 simultaneous assessments were performed. In evaluating individual withdrawal symptoms (Fig. 2), patients in Group C exhibited more agitation per a RASS greater than +1 compared with patients in Group D (40% vs 11%; \(p = 0.05\)). There was no statistically significant difference in positive WAT-1 scores between groups. Across both groups, the most common symptoms recorded from the WAT-1 tool were loose stools, fever, and agitation. Notably, patients in Group C had a higher median number of withdrawal assessments conducted than patients in Group D (3.7 vs 2.7; \(p < 0.01\)).

There was no difference in the incidence of significant pain scores between groups (47% in Group C vs 41% in Group D; \(p = 0.75\)). However, patients in Group D had a trend toward higher OME use in the 48 hours prior to wean initiation as well as during the first and second days of the wean as compared to patients in Group C, although this was not statistically significant (Table 3). There was no difference between groups in the use of propofol, antipsychotics, benzodiazepines, or ketamine during the wean period. Patients in Group C had a higher average daily dexmedetomidine rate in microgram/kilogram/hr (µg/kg/hr) compared with patients in Group D. Total infusion dose in µg/hr was not significantly different between groups.

Patients in Group C spent significantly less time on dexmedetomidine after wean initiation compared with patients in Group D (19 vs 43 hr; \(p = 0.02\)). Furthermore, 93% of patients in Group C were able to discontinue dexmedetomidine within 24 hours of clonidine initiation. This difference in time on dexmedetomidine resulted in an average drug cost savings of $1,553.47 per patient who received clonidine when taking into account the medication cost of dexmedetomidine and clonidine alone. Costs of nursing titration and monitoring were not included in this assessment. Patients in Group C had a trend toward longer median ICU length of stay than patients in Group D, although this was not statistically significant (22.7 vs 17 d; \(p = 0.3\)). There was no difference in time to ICU discharge after wean initiation (7.2 in Group C vs 7 d in Group D; \(p = 0.69\)). There were no reported events of bradycardia or hypotension during the wean period for all patients in either group.
DISCUSSION

This is the first study to evaluate the effect of clonidine on dexmedetomidine withdrawal symptoms in adults being weaned off of prolonged dexmedetomidine infusions. Given there was no difference in the incidence of two or more withdrawal symptoms with the use of clonidine versus when weaning off dexmedetomidine alone, clonidine can be considered an effective alternative to dexmedetomidine for sedation wean after prolonged dexmedetomidine infusion.

No studies have evaluated clonidine’s impact on dexmedetomidine withdrawal symptoms in adult patients. Lardieri et al (26) used the WAT-1 assessment to evaluate the effect of clonidine on dexmedetomidine withdrawal in pediatric patients. They found no difference in WAT-1 scores between groups, although patients in the clonidine group displayed a trend toward fewer elevated WAT-1 scores while weaning from dexmedetomidine. Our study also found no difference in WAT-1 scores or its components between groups. Notably, several components of the WAT-1 assessment were not seen at all in this study, suggesting that the WAT-1 may not be an accurate measure of dexmedetomidine withdrawal in adult ICU patients. Since the completion of our study, Capilnean et al (34) confirmed this finding when they evaluated the validity and reliability of the WAT-1 in critically ill adults and found that it was not a valid tool for assessing iatrogenic withdrawal syndrome in this patient population. In a post hoc analysis of our data excluding WAT-1, we found no difference in the incidence of two or more withdrawal symptoms between groups \((p = 0.56) \), further suggesting the WAT-1 may not be a necessary component of future withdrawal assessments.

A few studies have assessed the safety and efficacy of transitioning from dexmedetomidine to clonidine for ICU sedation after short-term use of dexmedetomidine (< 48 hr). Terry et al (25) conducted a retrospective assessment of 26 adult patients and found that over 65% of patients were able to safely discontinue short-term dexmedetomidine as early as 8 hours after initiating clonidine for ICU sedation. Gagnon et al (24) conducted a prospective study of 20 adult patients and found that 75% of patients were able to successfully transition from short-term

TABLE 1. Demographics and Baseline Characteristics
Variables
Age (yr), median (IQR)
Male sex, \(n (%) \)
Weight (kg), median (IQR)
Sequential Organ Failure Assessment score, median (IQR)
Type of ICU, \(n (%) \)
Medical/surgical
Cardiovascular
Neurologic
Reason for ICU admission, \(n (%) \)
Respiratory
Cardiac surgery
Cardiovascular
Abdominal surgery
Infection/sepsis
Neurologic
Trauma
Median daily Richmond Agitation-Sedation Scale score 2 d prior to wean initiation, median (IQR)
Time on dexmedetomidine prior to first assessment (hr), median (IQR)
Propofol used within 2 d prior to wean initiation, \(n (%) \)
Antipsychotics used within 2 d prior to wean initiation, \(n (%) \)
Benzodiazepines used within 2 d prior to wean initiation, \(n (%) \)
Ketamine used within 2 d prior to wean initiation, \(n (%) \)

IQR = interquartile range.
dexmedetomidine to clonidine within 48 hours with no significant differences in pain, sedation, or hemodynamic variables. These findings are similar to those of our study, where patients in Group C were able to transition off of dexmedetomidine in a median of 19 hours, with no differences in withdrawal symptoms or adverse effects.

In terms of efficacy, there was a higher incidence of elevated RASS scores in Group C when compared with Group D. This
may be in part due to the higher median RASS scores in Group C prior to dexmedetomidine wean initiation, also reflected by the greater antipsychotic use at baseline in this group. Additionally, patients in Group C had a higher average daily dexmedetomidine dose administered of 0.9 µg/kg/hr compared with 0.7 µg/kg/hr in Group D. In a previous analysis by our research team, we found a greater risk for withdrawal symptoms in patients receiving peak dexmedetomidine doses greater than 0.8 µg/kg/hr and cumulative daily doses of dexmedetomidine greater than 12.9 µg/kg/d (22). The higher RASS scores may have been impacted by greater cumulative dosing per body weight of dexmedetomidine in Group C. Despite this finding, no difference in two or more withdrawal symptoms was found, potentially reflecting the efficacy of clonidine in circumventing additional withdrawal symptom development.

Although there was no difference in pain scores between groups, there was a trend toward higher OME used during the wean period by patients in Group D, which may also have impacted level of sedation in the patients weaning off of dexmedetomidine alone compared with patients receiving clonidine. Both dexmedetomidine and clonidine have been described in the literature as having opioid-sparing qualities (6–9, 35–38). Mariappan et al (38) found intraoperative dexmedetomidine to have a greater opioid-sparing effect than preoperative single-dose clonidine in spinal surgery patients. It is possible that the difference in analgesic effects in our study was impacted by differences in dexmedetomidine and clonidine dosing. Our diverse patient sample also included surgical patients, who may require more analgesic medications than nonsurgical patients. Given the small sample size, a small difference in surgical patients between groups may have contributed to the difference in OME requirements. Finally, patients in Group C were assessed more frequently than patients in Group D, which may have increased the chance of investigators detecting withdrawal symptoms in Group C.

Based on the difference in duration of dexmedetomidine after wean initiation, we calculated an average cost savings of $1,553.47 per patient that received clonidine. This only includes medication cost and does not take into account the additional costs associated with dexmedetomidine, such as a dedicated ICU bed with close monitoring and titration. Thus, the decreased duration of dexmedetomidine infusion upon initiation of clonidine may be economically significant. Although a difference in time to ICU discharge with the use of clonidine was not observed, this study may have been underpowered to detect such a difference. The initiation of clonidine at provider discretion may also have impacted the ability to effectively evaluate this measure. Larger, randomized studies are needed to evaluate the impact of clonidine on ICU and hospital length of stay.

There were several limitations to this study. First, the study included a small sample size at a single institution. Although this is the largest prospective study to date, it may have been underpowered to detect a subtle change in withdrawal symptoms. There was also potential for selection bias in this study, as providers decided which patients were administered

Time	Patients Administered Clonidine Taper (n = 15)	Patients Weaned Off Dexmedetomidine Alone (n = 27)	p
2 d prior to wean, median (IQR)	105 (60–321.8)	435 (375–1,022)	0.17
1 d prior to wean, median (IQR)	105 (30–4275)	390 (45–1,002)	0.14
Wean day 1, median (IQR)	120 (18.75–445)	390 (48.7–726.5)	0.36
Wean day 2, median (IQR)	71 (26.5–371)	309 (52.5–891)	0.15
1 d after dexmedetomidine off, median (IQR)	37.5 (15–132)	30 (0–561.5)	0.29
2 d after dexmedetomidine off, median (IQR)	45 (11.25–96.5)	22.5 (0–276)	0.4

IQR = interquartile range.

*Patients who weaned off dexmedetomidine on day 1 were not included in wean day 2.

Figure 2. Individual dexmedetomidine withdrawal symptoms. CAM-ICU = Confusion Assessment Method for the ICU, Group C = patients administered clonidine taper, Group D = patients weaned off dexmedetomidine alone, HR = heart rate, RASS = Richmond Agitation-Sedation Scale, SBP = systolic blood pressure, WAT-1 = Withdrawal Assessment Tool 1.
clonidine based on their own risk assessment for withdrawal or based on previous difficulty with weaning dexmedetomidine. Patients in Group C had higher median RASS scores at baseline and had a higher average daily dose of dexmedetomidine over the study period. For these reasons, the patients in Group C may have had a higher predisposition for withdrawal symptoms. It is unclear if earlier initiation of clonidine would result in fewer withdrawal symptoms with the use of a clonidine taper. A larger, randomized controlled trial may be beneficial to evaluate the true incidence of dexmedetomidine withdrawal symptoms with and without the use of clonidine.

Strengths of this study include its prospective design focused on an adult patient population, as most of the literature looking at dexmedetomidine withdrawal is retrospective and includes pediatric patients. Our study also evaluated concomitant medications to control for confounders and assessed a variety of potential withdrawal symptoms. Despite our negative findings, we believe the lack of difference in withdrawal symptoms clinically valuable given the potential cost savings associated with the transition to clonidine. In an era of high healthcare costs, the cost savings analysis was conservatively performed using medication costs alone to provide an estimate of minimum potential savings.

CONCLUSIONS
This study found no difference in the incidence of two or more dexmedetomidine withdrawal symptoms in patients being weaned off of prolonged dexmedetomidine infusions either alone or with a clonidine taper. Patients receiving clonidine were able to wean off dexmedetomidine more rapidly than those who did not receive clonidine, which led to a considerable cost savings with no difference in adverse effects. Clonidine may be a safe and effective medication for more rapid weaning of dexmedetomidine in patients on prolonged infusions. A larger randomized controlled trial may be beneficial to confirm these results.

ACKNOWLEDGMENTS
We would like to thank the following pharmacy students who assisted with manual data collection: Kandys Kim, Monica Eng, Cindy Nguyen, Alisha Soares, Julie Nguyen, and Shirley Ng.

This work was performed at University of California, San Francisco Medical Center.

The authors have disclosed that they do not have any potential conflicts of interest.

For information regarding this article, E-mail: Rima.Bouajram@ucsf.edu; phone: 415-353-3495

REFERENCES
1. Precedex (Dexmedetomidine) [Prescribing Information]. Lake Forest, IL: Hospira, Inc. 2016
2. Riker RR, Shehabi Y, Bokesch PM, et al; SEDCOM (Safety and Efficacy of Dexmedetomidine Compared With Midazolam) Study Group: Dexmedetomidine vs midazolam for sedation of critically ill patients: A randomized trial. JAMA 2009; 301:489–499
3. Pandharipande PP, Pun BT, Herr DL, et al: Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA 2007; 298:2644–2653
4. Barr J, Fraser GL, Puntillo K, et al; American College of Critical Care Medicine: Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med 2013; 41:263–306
5. Devlin JW, Skrobik Y, Gélinas C, et al: Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med 2018; 46:e825–e873
6. Song J, Ji Q, Sun Q, et al: The opioid-sparing effect of intraoperative dexmedetomidine infirusion after craniotomy. J Neurosurg Anesthesiol 2016; 28:14–20
7. Zhang B, Wang G, Liu X, et al: The opioid-sparing effect of perioperative dexmedetomidine combined with oxycodone infusion during open hepatectomy: A randomized controlled trial. Front Pharmacol 2017; 8:940
8. Kim SY, Chang CH, Lee JS, et al: Comparison of the efficacy of dexmedetomidine plus fentanyl patient-controlled analgesia with fentanyl patient-controlled analgesia for pain control in uterine artery embolization for symptomatic fibroid tumors or adenomyosis: A prospective, randomized study. J Vasc Interv Radiol 2013; 24:779–786
9. Fiore M, Alfieri A, Passavanti MB, et al: Perioperative dexmedetomidine infusion, as opioid-sparing strategy, in patients undergoing general anesthesia: a systematic review protocol. Open Anesth J 2019; 13:139–43
10. Weber MD, Thammashiboon S, Rosen DA: Acute discontinuance syndrome from dexmedetomidine after protracted use in a pediatric patient. Paediatr Anaesth 2008; 18:87–88
11. Darnell C, Steiner J, Szmun P, et al: Withdrawal from multiple sedative agent therapy in an infant: Is dexmedetomidine the cause or the cure? Pediatr Crit Care Med 2010; 11:e1–e3
12. Miller JL, Allen C, Johnson PN: Neurologic withdrawal symptoms following abrupt discontinuation of a prolonged dexmedetomidine infusion in a child. J Pediatr Pharmacol Ther 2010; 15:38–42
13. Burbano NH, Otero AV, Berry DE, et al: Discontinuation of prolonged infusions of dexmedetomidine in critically ill children with heart disease. Intensive Care Med 2012; 38:300–307
14. Shutes BL, Gee SW, Sargel CL, et al: Dexmedetomidine as single continuous sedative during noninvasive ventilation: Typical usage, hemodynamic effects, and withdrawal. Pediatr Crit Care Med 2018; 19:287–297
15. Tobias JD: Dexmedetomidine: Are there going to be issues with prolonged administration? J Pediatr Pharmacol Ther 2010; 15:4–9
16. Whalen LD, Di Gennaro JL, Irby GA, et al: Long-term dexmedetomidine use and safety profile among critically ill children and neonates. Pediatr Crit Care Med 2014; 15:706–714
17. Haenecour A, Goodwin A, Seto W, et al: Prolonged dexmedetomidine infusion and drug withdrawal in critically ill children. Crit Care Med 2015; 19(Suppl 1):P484
18. Kukoyi A, Coker S, Lewis L, et al: Two cases of acute dexmedetomidine withdrawal syndrome following prolonged infusion in the intensive care unit: Report of cases and review of the literature. Hum Exp Toxicol 2013; 32:107–110
19. Ozaki M, Takeda J, Tanaka K, et al: Safety and efficacy of dexmedetomidine for long-term sedation in critically ill patients. J Anesth 2014; 28:38–50
20. Takahashi Y, Ueno K, Ninomiya Y, et al: Potential risk factors for dexmedetomidine withdrawal seizures in infants after surgery for congenital heart disease. Brain Dev 2016; 38:648–653
21. Carney L, Kendrick J, Carr R: Safety and effectiveness of dexmedetomidine in the pediatric intensive care unit (SAD-PICU). Can J Hosp Pharm 2013; 66:21–27
22. Bouajram RH, Bhatt K, Croci R, et al: Incidence of dexmedetomidine withdrawal in adult critically ill patients: A pilot study. Crit Care Explore 2019; 1:e0003
23. Dexmedetomidine: Lexicomp Online. Lexi-Drugs Online. Hudson, OH; Wolters Kluwer Clinical Drug Information, Inc. 2013
24. Gagnon DJ, Riker RR, Glisic EK, et al: Transition from dexmedetomidine to enteral clonidine for ICU sedation: An observational pilot study. Pharmacotherapy 2015; 35:251–259
25. Terry K, Blum R, Szumita P: Evaluating the transition from dexmedetomidine to clonidine for agitation management in the intensive care unit. SAGE Open Med 2015; 3:2050312115621767

26. Lardieri AB, Fusco NM, Simone S, et al: Effects of clonidine on withdrawal from long-term dexmedetomidine in the pediatric patient. J Pediatr Pharmacol Ther 2015; 20:45–53

27. Glisic E, Riker R, Kelner A, et al: Transitioning patients treated with dexmedetomidine to enteral clonidine: A retrospective study. Crit Care Med 2012; 40:1–328

28. Thompson RZ, Gardner BM, Autry EB, et al: Survey of the current use of dexmedetomidine and management of withdrawal symptoms in critically ill children. J Pediatr Pharmacol Ther 2019; 24:16–21

29. Catapres (Clonidine) [Prescribing Information]. Ridgefield, CT, Boehringer Ingelheim Pharmaceuticals, Inc., 2009

30. Clonidine. Lexicomp Online, Lexi-Drugs Online. Hudson, OH: Wolters Kluwer Clinical Drug Information, Inc, 2013

31. Cunningham FE, Baughman VL, Peters J, et al: Comparative pharmacokinetics of oral versus sublingual clonidine. J Clin Anesth 1994; 6:430–433

32. Franck LS, Harris SK, Soetenga DJ, et al: The Withdrawal Assessment Tool-1 (WAT-1): An assessment instrument for monitoring opioid and benzodiazepine withdrawal symptoms in pediatric patients. Pediatr Crit Care Med 2008; 9:573–580

33. Franck LS, Scoppettuolo LA, Wypij D, et al: Validity and generalizability of the Withdrawal Assessment Tool-1 (WAT-1) for monitoring iatrogenic withdrawal syndrome in pediatric patients. Pain 2012; 153:142–148

34. Capilnean A, Martone A, Rosu VA, et al: Validation of the withdrawal assessment tool-1 in adult intensive care patients. Am J Crit Care 2019; 28:361–369

35. Dimou P, Paraskeva A, Papilas K, et al: Transdermal clonidine: Does it affect pain after abdominal hysterectomy? Acta Anaesthesiol Belg 2003; 54:227–232

36. Farmery AD, Wilson-MacDonald J: The analgesic effect of epidural clonidine after spinal surgery: A randomized placebo-controlled trial. Anesth Analg 2009; 108:631–634

37. Roelants F, Lavand’homme P: Clonidine versus sufentanil as an adjuvant to ropivacaine in patient-controlled epidural labour analgesia: A randomised double-blind trial. Eur J Anaesthesiol 2015; 32:805–811

38. Mariappan R, Ashokkumar H, Kuppuswamy B: Comparing the effects of oral clonidine premedication with intraoperative dexmedetomidine infusion on anesthetic requirement and recovery from anesthesia in patients undergoing major spine surgery. J Neurosurg Anesthesiol 2014; 26:192–197