6G VISION: AN ULTRA-FLEXIBLE RADIO ACCESS TECHNOLOGY PERSPECTIVE

Ahmet Yazar¹, Seda Doğan-Tusha¹, Huseyin Arslan¹,²
¹Department of Electrical and Electronics Engineering, Istanbul Medipol University, Istanbul, 34810, Turkey,
²Department of Electrical Engineering, University of South Florida, Tampa, FL, 33620, USA

Abstract – Radio access technologies (RATs) are the primary enablers of mobile communications systems. The upcoming sixth generation (6G) communications systems are expected to support an unprecedented variety of applications, pervading through every aspect of human life. It is clearly not possible, without realizing a plethora of flexible options pertaining to the RATs themselves. At that point, this work presents an overview of the potential 6G RATs from the flexibility perspective, categorizes them, and provides a general framework to incorporate them in the future networks. Furthermore, the role of artificial intelligence and integrated sensing and communications as enablers of the said framework is also discussed.

Keywords – 6G, artificial intelligence, cognitive radio, flexibility, radio access technology, sensing.

1. INTRODUCTION

Following successful deployments of the fifth generation (5G) networks worldwide, the academia and industry have turned their attention to the next generation of wireless communication networks [1]. At present, there are more than 100 research papers regarding the sixth generation (6G) of wireless communications. Majority of these works attempt to identify the future applications, possible service types and candidate technologies for 6G [1–21]. Furthermore, specific technologies are being pushed for 6G as well [22–41, 45]. There is no doubt that new visions and perspectives will continue to be developed in the coming years. However, despite all these efforts, the current literature lacks the provision of a distinguishing feature for 6G that differentiates it from the previous generations.

The introduction of various services with diverse requirements under 5G highlighted the need of a flexible network, where flexibility¹ is defined as the capability of choosing the best one out of available options depending on the internal and external changes. The evolution of cellular communications through the different generations from the radio access technology (RAT) perspective is shown in Table 1. In this context, 5G has gave a start for highly flexible wireless communications but it remains limited.

Fig. 2 provides a concise flexibility analysis for different generations of cellular communications. As shown, the first generation (1G) provided a very rigid standard. However, the evolution of network entities and user requirements has led to the development of highly flexible transceiver structures, especially for 5G. Similarly, a lot of effort has been made to control and mitigate the interference to ensure better Quality of Service (QoS) for the users. 6G extends the mitigation concept one step further by exploring ways of controlling the channel itself. Furthermore, awareness of the various aspects of the network and environment will be introduced in the communication paradigm via different sensing mechanisms. This awareness allows better utilization of the flexibility envisioned for 6G in this article. This motivates the consideration of flexibility as the primary design criterion for 6G networks. The candidate technologies should, therefore, be studied from the same (flexibility) perspective.

6G will redesign cellular communications to provide extreme flexibility in all of its building blocks. Correspondingly, this paper provides a unique categorization

¹The other terms used interchangeably are shown in Fig. 1.

Fig. 1 – Flexibility terms.
of potential 6G RATs and elaborates the flexible aspects of these technologies. Moreover, a novel framework is proposed to make flexibility optimization of the said technologies.

The rest of the paper is organized as follows: Section 2 summarizes the previous works on 6G communications. Flexibility discussions on the potential RATs are provided with an inclusive categorization in Section 3. The proposed flexible framework is explained in Section 4. Finally, conclusions are drawn with several open issues in Section 5.

2. THE INITIAL FORECASTS FOR 6G

Identification of the future applications, requirements and possible service types is one of the primary objectives of the initial 6G research studies. Figure 3 illustrates the cyclic nature of the relationship between these components. Mapping the potential future applications to the several requirements with different priorities is accepted as a first step in general. Next, these requirements are grouped under the service types in a reasonable manner. Service types should have unique requirement sets to take into consideration them while designing the service-aware subsystems. Additionally, application groups should be representable with one of the available requirement sets. The 5G service types namely, enhanced mobile broadband (eMBB), ultra-reliable and low-latency communications (URLLC), and massive machine-type communications (mMTC) [42] illustrate this point clearly. eMBB applications, as a group, prioritize high throughput, capacity and spectral efficiency; mMTC prioritizes energy efficiency and massive connectivity while URLLC requires high reliability and low latency. To this end, some of the initial 6G studies inherently analyze the relations between the 1) future applications, 2) prioritized requirements, and 3) possible service types in [3–6].

Features/ Generations	1G	2G	3G	4G	5G	
Modulation Options	FM	GSM	GSM	EDGE	BPSK, QPSK	
				CDMA-2000, QPSK, QDPSK	RLPK, 16-QAM, 64-QAM	
Coding Options				CDMA	BPSK, QPSK	
				8PSK	RLPK, 16-QAM, 64-QAM	
Modulation and Coding					SC-FDE	
Scheme (MCS) Options					OFDM, SC-FDE	
Waveform Options					OFDM, SC-FDE	
					OFDM, SC-FDE	
					OFDM, SC-FDE	
Multiple Accessing Options					OFDM, SC-FDE	
Carrier Frequency Options					OFDM, SC-FDE	
Architecture Options	SISO	SISO	SISO	MIMO	mMIMO	
Cell Planning	Frequency Reuse – 7	Frequency Reuse – 3, 4, 7, 12	Frequency Reuse – 1	Frequency Reuse – 1	Frequency Reuse – 1	
User-Cell Association Options	Mobile-assisted Hand-off	Soft Hand-off	IDC	Attempt to COMP	CRAN	
Diversity Options	Freq.	Frequency Hopping	Freq.	FHSS	Freq.	Multi-User Diversity
	Time	Path Diversity	Time	DSSS	Space	Multi-User Diversity
Receiver Types	Multi-Tap TDE	Rake Receiver	A Single Tap FDE	A Single Tap FDE		
Bandwidth Options	AMPS	30 kHz	GSM	200kHz (8 slots)	CDMA	1.25 MHz
			DAMPS	30kHz (3 slots)	WCDMA	5MHz
			PDC	25MHz (3 slots)	TD-SCDMA	1.6MHz

Table 1 – Increasing number of the features for cellular generations.
The following list exemplifies potential 6G applications: drone and unmanned aerial vehicle (UAV) networks, drone taxi, fully automated vehicle-to-everything (V2X), remote surgery, health monitoring, e-health, fully sensory virtual reality (VR) and augmented reality (AR), holographic conferencing, virtual education, virtual tourism, smart city, smart home, smart clothes, disaster and emergency management, and remote working. This list can be longer with more applications in the next years. Most of the aforementioned applications were originally envisioned for 5G, however, they could not be practically realized. Therefore, it makes sense to address them first while developing the 6G networks.

General wireless communications requirements for the given application examples can be defined as: high data rate, high throughput, high capacity, high reliability, high latency, high mobility, high security, low complexity, high connectivity, long battery life, low cost, wide coverage, and more. The importance and priority of the requirements may change under different cases. Moreover, higher levels of performances need to be obtained in next generation systems while meeting the related requirements.

Since the diversity of requirements is continuously increasing, more sophisticated service types are expected for 6G. Candidate service types are constituted by grouping together the applications with similar requirements. Some examples can be given as big communications (BigCom), secure uRLLC (SuRLLC), three-dimensional integrated communications (3D-InteCom), unconventional data communications (UCDC) in [6]; ultrahigh-speed-with-low-latency communications (uHSLLC) in [3]; long-distance and high-mobility communications (LDHMC), extremely low-power communications (ELPC) in [4]; reliable eMBB; mobile broadband reliable low latency communication (MBRLLC), massive URLLC (mURLLC), human-centric services (HCS), multi-purpose services (MPS) in [5].

The aforementioned applications/services envisioned for 6G illustrates the expected richness of its requirements. These diverse requirements necessitate the incorporation of flexible RATs, described below, in future networks.

3. A VISION FOR ULTRA-FLEXIBLE RATs

In this section, an inclusive categorization of promising RATs is presented for 6G communications and their flexibility aspects are discussed in detail. The seven main RAT categories and the related subcategories are shown in Fig. 4. Many of these technologies are
either superficially treated or not studied during 5G standardizations, such as integrated sensing and communications (ISAC) and intelligent communications. Although technologies placed in different categories can have an intersection region, the given categorization differentiates these technologies regarding their flexibility aspects.

Table 2 provides a summary of the potential flexible options achieved by the different technologies. It is worthy to emphasize that the different RATs have their own impact on the overall flexibility of the system. Ultimately all of them combine together to provide the complete infrastructure capable of realizing the flexible 6G vision that we aspire to achieve.

3.1 Flexible Multi-Band Utilization

The inclination of communications technologies towards high-frequency bands becomes more appealing due to the increased system capacity and throughput demands of cellular users. Flexible usage of available frequency bands, depending on the user and service requirements, is envisioned to be an inherent characteristic of the future wireless networks.

Millimeter wave (mmWave) spectrum is starting to be exploited in 5G. It provides new benefits, such as multi-giga bit data rates and reduced interference, however, the use of mmWave bands in 5G is limited by the current International Mobile Telecommunications (IMT) standards. In World Radiocommunication Conference 2019 (WRC-19), additional 17.25 GHz of spectrum is identified for IMT, where only 1.9 GHz of bandwidth was available before [43]. Therefore, it is expected that spectrum availability in these bands and consequently its flexible utilization will increase during the upcoming years. Moreover, beyond 52.6 GHz communications is one of the agenda items for 3GPP Release 17 [44].

Frequency bands from 100 GHz to 3 THz are envisioned as a candidate spectrum for 6G communications [23]. If THz communications is employed in 6G, it promises a way of dealing with the spectrum scarcity issue by providing an additional degree of flexibility in assigning the most suitable frequency resources for given scenarios.

Apart from mmWave and THz communications, visible light communications (VLC) also provides spectrum flexibility as a candidate RAT for 6G networks [39]. Besides, a new degree of freedom that is information source flexibility is exploited using visible light sources.

Spectrum coexistence is another important issue in need of flexible spectrum utilization [45,46]. Indeed, the coexistence of cellular communications, Wi-Fi, satellite networks, and radar systems is inevitable in the future due to both scarce resources and increasing growth in user demands. To exemplify, the coexistence of radar and cellular communication in mmWave frequency bands becomes more popular nowadays [47]. Moreover, the idea of dynamic spectrum access (DSA) relies on the spectrum coexistence.

3.2 Ultra-Flexible PHY and MAC

One of the unique features of 5G, specifically in the context of PHY design, is the introduction of numerology concept where different configurations of the time-frequency lattice are used to address the varying requirements [51]. While the numerology concept paves the way for flexibility in beyond 5G networks, it is rather limited considering the competing nature of requirements expected for future 6G networks [40]. In addition to the standardized activities, the use of flexible cyclic prefix (CP) configurations (e.g., individual CP, common CP, etc.) is explored to enhance the multi-numerology systems for 6G [52].

Taking one step beyond the use of different realizations of the same parent waveform as in 5G, multiple waveforms can be accommodated in a single frame for achieving 6G goals [53]. In line with this, multi-numerology structures can be designed for promising alternative waveforms, that are more suitable for providing additional parameterization options. Having these options enhances flexibility in the PHY layer via increased adaptation capability for meeting a large number of requirements. Moreover, waveform coexistence in the same frame gives the opportunity to serve multiple networks such as radar sensing [54] and Wi-Fi communications together with 6G communications in a flexible manner. There are also several waveform-domain NOMA studies that exploit different resource utilization aspects in the literature [55–58]. Besides, partial and full overlapping through available resources can also be employed while designing new generation NOMA techniques [24, 59].

The waveform-domain NOMA concept provides an important flexibility by increasing the resource allocation possibilities in 6G networks. Another flexibility aspect that can arise with 6G is the use of alternate waveform domain rather than the conventional time-frequency lattice employed by 5G and older generations.

In addition to the waveform itself, there is a large number of new generation modulation options in the literature [48] and only a small set of them have appeared in the 5G standards. 6G can be enriched with the flexibility provided by these options, particularly index modulation (IM) based solutions [6]. This concept can even be extended to multiple domains to provide additional degree of freedom [49]. Moreover, modulation techniques are adaptively designed consid-
ering the other RATs such as non-orthogonal multiple access (NOMA) [50] and reconfigurable intelligent surface (RIS) [30] for 6G systems.

Since the configuration of the PHY parameters is, to a large extent, controlled by the medium access control (MAC) layer, it is imperative to develop the flexibility and adaptation capabilities of both layers simultaneously. Two important issues that require flexibility in PHY and MAC would be the “waveform parameter assignment” or “numerology scheduling” paradigm under the context of 5G multi-numerology systems [40, 60], where the MAC layer is responsible for assignment of parameters of the PHY signal. Similarly, adaptive guard utilization methods have been developed for MAC layer [61–63] to control the new type of interferences in 5G systems. On this basis, it is expected that highly intelligent UE capabilities, and configurable network parameters, and flexible and efficient MAC designs will play a key role in 6G networks due to the expected increased diversity in service types and consequently requirements.

3.3 Ultra-Flexible Heterogeneous Networks

Flying access points (FAPs) provide enhanced flexibility for network deployment by allowing dynamic (3-D) positioning of the nodes or even optimized trajectory planning for different objective functions. The push in this direction occurred around the turn of the century [64], and was further empowered by projects, such as: 1) Google Loon project, 2) Facebook Aquila project, 3) ABSOLUTE project, 4) Matternet project, and 5) Thales Stratobus project. The integration of FAPs with the terrestrial network can be leveraged to provide coverage in disaster/emergency scenarios, connectivity for rural/isolated areas and capacity enhancement for temporarily crowded places (such as stadiums/concert venues). FAP-based networks are expected to be an important part of 6G not only for achieving deployment flexibility but also for having better wireless propagation provided by a high probability of line of sight (LOS) communications.

In addition to the aerial and terrestrial networks, the integration of space (satellite) networks is another aspect of the flexible heterogeneous networks. Space networks are also promising solution for rural area communications [31]. They are employed for wireless backhaul communications in the previous cellular networks. However, space networks can also serve aerial user equipment such as drones and UAVs to increase coverage flexibility in 6G systems. Moreover, undersea network integration with the other networks will be useful while serving naval platforms.

Although, the integration of different networks is ensured, the cell structures of these networks are changing. Cell-less or cell-free networks are one of the potential 6G concepts considering the network architec-
Table 2 – Flexibility perspectives under the RAT categories.
meeting different requirement sets with virtually privatized networks. Network slicing brings an important flexibility in 5G since it enables different network options under the same umbrella. The number of network slices can increase for 6G and there may be network slices for each user equipment. This user-centric network slicing architecture can provide full flexibility in the network layer.

3.4 Integrated Sensing and Communications

With the emphasis on use cases such as V2X communications in recent years, sensing has attained increased importance leading to the integration of these two applications. However, the use of sensing is not limited to V2X or autonomous driving. Rather, if there is any observable data that can be utilized for the optimization or enhancement of the communications systems, it should be leveraged in 6G [73]. The information pertaining to the radio environment can be utilized in improving the network deployment, optimizing user association, providing secure communication and so on.

While it might sound like a novel idea to some, integrated sensing and communications (ISAC) has been studied in different domains in the past. Cognitive radio (CR) applications triggered the integrated sensing and communications (ISAC) research at the beginning of the 21st century. Spectrum sensing and awareness is one of the first application areas in the ISAC research [74]. Location awareness is exploited to improve the wireless communication system design in [75]. Satellite and drone images can be used to predict channel parameters [76]. Context-awareness is used to optimize network architectures in wireless communications [77]. ISAC systems are studied for radar sensing [54, 78] and Wi-Fi network coexistence [79] in the literature. However, the complete list of sensing information that can be useful for the next generation cellular communications systems from the ISAC perspective has not yet been comprehensively studied.

Radio environment map (REM) is a realization of the ISAC concept [80]. It is mainly used to obtain environmental information in the literature, however, for the next generation systems REM concept will be generalized from environmental-awareness to complete-awareness. REM may include all sensing information in a multi-dimensional manner for wireless communications networks. To exemplify, REM can be a specialized database for the ISAC. Therefore, the flexibility level of the ISAC systems can be determined by the dimensions in REMs. Each dimension in a REM increase the awareness, allowing better resource utilization. Moreover, control of the configurable options and parameters in different communications layers of 6G can be enhanced by more granular REM information.

The complete information and awareness of the environment comes at the cost of high volume of data, variety of sources and significant processing. This necessitates the use of big-data processing techniques [81]. A significant challenge, however, in this regard is the overhead of data exchange between the sensing and processing nodes. A centralized solution might not be suitable in such scenarios, rendering the use of edge-computing imperative, particularly for low-latency use cases.

3.5 Intelligent Communications

The usage of artificial intelligence (AI) in the communications society has increased in recent years. Several survey and tutorial papers are published on the usage of machine learning (ML) for wireless communications [82–89]. AI-aided design and optimization has even been leveraged for the flexible implementation options provided in 5G [40]. In many of the studies, AI is put at the center of 6G visions [8, 9, 14, 18, 28, 90] to complement the classical methods. Indeed, the use of AI is inevitable to incorporate intelligence in the future networks. AI-aided methods can propose fast and efficient solutions in case enough data is available.

AI and ML also find a range of applications in ISAC and REM paradigms to extract information regarding the environment from sensed data. A flexible system needs to benefit from the advantages of popular ML approaches such as reinforcement learning, deep learning, and edge computing. Especially distributed intelligence (edge AI) with edge computing is a promising paradigm for 6G communications. The management of multi-band utilization, MAC layer control, heterogeneous and cell-less networks, and the ISAC systems cannot be done in an all centralized manner. Edge computing will play an important role at that point with the help of distributed intelligence so 6G big data can be processed at the edge nodes without collected at a centralized network.

Intelligent networks are not limited to AI-aided concepts. For example, RIS technology is one of the most popular research topics nowadays [94, 95]. Intelligent surfaces bring a new flexibility on the control of channel parameters. In the past, wireless channel was just an observable medium. However, it can be controlled at some level with new generation wireless systems. Interference management flexibility is increased by controlling capabilities of the wireless channel. These flexibility aspects also affect the RAT designs in different communications layers. To exemplify, having control capability in multipath propagation, such as controlling delay spread, Doppler spread and the number of multipath alleviates the constraints related to waveform design. RIS technology can also be considered as passive holographic MIMO surfaces if it is located closer to the
transmitter and receiver antennas [41]. Additionally, it is possible to employ holographic MIMO surfaces as active elements. The active holographic MIMO surfaces work similar to massive MIMO but their softwarization flexibility is higher than the conventional MIMO systems [41].

3.6 Green Communications

While candidate 6G RATs are increasing the flexibility in different domains, new architectural changes of 6G should support energy efficiency and green communications [27]. Zero-energy Internet of Things (IoT) is one of the most important concepts since ultra low-power wireless communications is necessary for 6G connectivity. In this context, radio frequency (RF) energy harvesting is studied with ambient backscatter technology for 6G communications [96, 97]. Thus, low-power wireless systems can obtain their energy from the available high-power radio waves. Backscatter communications enables energy harvesting, simplifying the implementation of zero-energy IoT designs. Provision of different options for energy-efficiency promises fulfillment of different variations of energy requirements belonging to different applications.

It is also possible to benefit from wireless power transfer (WPT) while designing zero-energy IoT systems [98]. Under the WPT concept, simultaneous wireless information and power transfer (SWIPT) is the most popular technology that may be a candidate for 6G networks [100]. SWIPT designs are also used for interference exploitation purposes [99] since interference can be useful for energy harvesting. Transformation of interference into energy source introduces another flexibility perspective.

3.7 Secure Communications

With applications such as eHealth, online banking, and autonomous driving etc., wireless communication promises to be an enabler of innumerable sensitive applications utilizing private data. PHY security (PLS) is an emerging solution that has the capability to complement the conventional cryptography-based security techniques. In fact, PLS is more suited for the increased heterogeneity and power/processing restrictions of future wireless networks since it exploits the characteristics of the wireless channel and PHY properties associated with the link rather than utilize key sharing [103]. It is also possible to increase this flexibility by designing cross-layer security algorithms with PHY and MAC layer [104]. In several 6G vision papers, secure communications is discussed as one of the main topics [14, 28]. PHY and cross-layer security concepts are expected to play a critical role in 6G communications.

As discussed in the previous subsections, ISAC and REM concepts will be important enablers in 6G communications. However, a new security problem arises since there may be a large amount of confidential data for ISAC and REM concepts. In the literature, this problem is treated in [101] for ISAC security, and in [102] for REM security. Thus, there is a need for more secure communications options in 6G networks to meet new types of security requirements, especially for ISAC and REM concepts.

4. ULTRA-FLEXIBLE 6G FRAMEWORK

This section brings the abovementioned flexible RATs under the umbrella of a single ultra-flexible framework for 6G. Here it is important to realize that the presence of flexible options in itself is not enough to render a network intelligent. Rather, it needs the capability to make best use of the available options. Therefore, some sort of intelligence or cognition is imperative in future wireless networks. Keeping this in mind, the proposed framework has the following primary components: a) Flexible RAT platform (like an advanced Mitola radio), b) flexible cognitive engine, and c) flexibility performance indicators. Fig. 5 illustrates how these different components are interconnected within the framework. The key points of this framework can be summarized as follows:

1. New technologies should be integrated into communications standards via flexible RAT platform without waiting for ten years.

2. RATs should work together in an optimal flexibility to meet different requirements. Therefore, a flexible cognitive engine can make an optimization between different flexibility perspectives.

3. The amount of flexibility needs to be measured while making an optimization. Hence, developing new flexibility performance indicators is important and necessary.

The previous cellular communications generations were standardized approximately ten years apart. From a different point of view, it took about a decade for the available technologies to be included in the cellular standards. Waiting up to ten years to benefit from an available technology does not make sense if it is possible to develop a platform that hosts different technologies flexibly. For now, we need to tolerate the limited flexibility of 5G technologies for the next decade. However, an advanced Mitola radio can work like a smart phone that has installable and updateable software. We call this radio as a flexible RAT platform. In this concept, the platform has ability to have new RATs by a softwarization. Thus, flexibility level of the wireless communications system can be enhanced with new technologies and the related updates.
As it is shown in Fig. 5, each technology can bring different perspectives to the overall flexibility. There is a need for an multi-objective optimization unit to control all configurable and flexible aspects of the defined technologies in the flexible RAT platform. This engine can be designed in an AI-aided manner to optimize the RAT flexibilities jointly. An optimum work distribution should be done for the flexible configurations of RATs to meet all the system requirements in a most efficient way. At the end, all system requirements should be met optimally. The flexible cognitive engine will guarantee this optimization by the help of key performance indicators (KPIs) that show the success while meeting requirements.

ISAC technologies will be an important part of 6G technologies as discussed in the previous section. Any sensing information can be exploited to make the wireless communications more effective. The flexible cognitive engine can give decisions with more available information while meeting different requirements and handling with several impairments and constraints. Sensing information increases the awareness and controlling capabilities of the system. To provide these capabilities, AI tools in the flexible cognitive engine provide useful and unnoticeable relationships without heuristic designs and theoretical analysis. Hence, the flexible cognitive engine needs three important elements while optimizing the flexibility level with RATs: 1) Sensing information to increase awareness and controlling capabilities, 2) AI tools to increase the functionality of sensing information, and 3) key performance indicators to monitor the overall system.

KPIs are needed to measure several performances of the communications system. One of these KPIs can be the flexibility performance indicator so that the achieved flexibility can be quantified. It is difficult to decide on a specific flexibility performance indicator because there are many different flexibility perspectives as shown in Table 2. This indicator can be technology-specific and require separate metrics for different technology categories. 6G networks will need flexibility indicators similar to the other KPIs such as spectral efficiency and reliability. Generally, the current RATs are not designed to be called as a flexible technology. Flexibility aspects of these RATs are described mostly based on the inferences. In ideal conditions, 6G technologies need to be designed considering the flexibility perspective as one of the key criteria. At that point, flexibility performance indicators should be employed to quantify the advantages and disadvantages of new designs in both PHY and MAC layer.

5. CONCLUSION

5G systems were characterized by diverse applications and requirements. 6G is expected to continue in the same vein by enriching the application fabric even further. Fulfilling such a wide variety of use cases is not possible unless similar diversity and flexibility is incorporated in the enabling RATs for the future networks. Driven by this, we have presented the various potential RATs from a flexibility perspective.

We believe that 6G should be approached with flexibility at its primary design criterion. To this end we have presented a general framework comprising of
The realization of a flexible RAT platform like the one mentioned above is, however, not straightforward. It requires the methods capable of performing efficient multi-objective optimization to address the various competing applications requirements. Furthermore, quantifying the flexibility by proposing novel performance indicators also remains a significant challenge on the way to ensuring a fully-functional flexible, cognitive wireless communication network.

ACKNOWLEDGEMENT

The authors would like to thank Muhammad Sohaib J. Solaija for his valuable comments and suggestions to improve the quality of the paper.

REFERENCES

[1] I. F. Akyildiz, A. Kak and S. Nie, “6G and Beyond: The Future of Wireless Communications Systems,” in IEEE Access, vol. 8, pp. 133995-134030, 2020, doi: 10.1109/ACCESS.2020.3010896.

[2] K. David and H. Berndt, “6G Vision and Requirements: Is There Any Need for Beyond 5G?,” in IEEE Vehicular Technology Magazine, vol. 13, no. 3, pp. 72-80, Sept. 2018, doi: 10.1109/MVT.2018.2848498.

[3] B. Zong, C. Fan, X. Wang, X. Duan, B. Wang and J. Wang, “6G Technologies: Key Drivers, Core Requirements, System Architectures, and Enabling Technologies,” in IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 18-27, Sept. 2019, doi: 10.1109/MVT.2019.2921398.

[4] Z. Zhang et al., “6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies,” in IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 28-41, Sept. 2019, doi: 10.1109/MVT.2019.2921208.

[5] W. Saad, M. Bennis and M. Chen, “A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems,” in IEEE Network, vol. 34, no. 3, pp. 134-142, May/Jun 2020, doi: 10.1109/MNET.001.1900287.

[6] S. Dang, O. Amin, B. Shihada and M. Alouini, “What should 6G be?,” in Nature Electronics, vol. 3, pp. 2029, 2020.

[7] P. Yang, Y. Xiao, M. Xiao and S. Li, “6G Wireless Communications: Vision and Potential Techniques,” in IEEE Network, vol. 33, no. 4, pp. 70-75, July/August 2019, doi: 10.1109/MNET.2019.1800418.

[8] K. B. Letaief, W. Chen, Y. Shi, J. Zhang and Y. A. Zhang, “The Roadmap to 6G: AI Empowered Wireless Networks,” in IEEE Communications Magazine, vol. 57, no. 8, pp. 84-90, August 2019, doi: 10.1109/MCOM.2019.900271.

[9] L. Zhang, Y. Liang and D. Niyato, “6G Visions: Mobile ultra-broadband, super internet-of-things, and artificial intelligence,” in China Communications, vol. 16, no. 8, pp. 1-14, Aug. 2019, doi: 10.23919/JCC.2019.08.001.

[10] D. Kalbande, Z. Khan, S. Haji and R. Haji, “6G-Next Gen Mobile Wireless Communication Approach,” 2019 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2019, pp. 1-6, doi: 10.1109/ICECA.2019.8821934.

[11] M. Katz, P. Pirinen and H. Posti, “Towards 6G: Getting Ready for the Next Decade,” 2019 16th International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, 2019, pp. 714-718, doi: 10.1109/ISWCS.2019.8877155.

[12] S. Elmeadawy and R. M. Shubair, “6G Wireless Communications: Future Technologies and Research Challenges,” 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA), Ras Al Khaimah, United Arab Emirates, 2019, pp. 1-5, doi: 10.1109/ICECTA48151.2019.8959607.

[13] I. Tomkos, D. Klonidis, E. Pikasis and S. Theodoridis, “Toward the 6G Network Era: Opportunities and Challenges,” in IT Professional, vol. 22, no. 1, pp. 34-38, 1 Jan.-Feb. 2020, doi: 10.1109/MITP.2019.2963491.

[14] G. Gui, M. Liu, F. Tang, N. Kato and F. Adachi, “6G: Opening New Horizons for Integration of Comfort, Security and Intelligence,” in IEEE Wireless Communications, doi: 10.1109/MWC.001.1900516.

[15] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan and M. Zorzi, “Toward 6G Networks: Use Cases and Technologies,” in IEEE Communications Magazine, vol. 58, no. 3, pp. 55-61, March 2020, doi: 10.1109/MCOM.001.1900411.

[16] A. Mourad, R. Yang, P. H. Lehne and A. de la Oliva, “Towards 6G: Evolution of Key Performance Indicators and Technology Trends,” 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 2020, pp. 1-5, doi: 10.1109/6GSUMMIT49458.2020.9083759.
[17] G. Wikström et al., “Challenges and Technologies for 6G,” 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 2020, pp. 1-5, doi: 10.1109/6GSUMMIT49458.2020.9083880.

[18] J. Zhu, M. Zhao, S. Zhang and W. Zhou, “Exploring the road to 6G: ABC foundation for intelligent mobile networks,” in China Communications, vol. 17, no. 6, pp. 51-67, June 2020, doi: 10.23919/JCC.2020.06.005.

[19] J. F. Monserrat, D. Martin-Sacristan, F. Bouchmal, O. Carrasco, J. Flores de Valgas and N. Cardona, “Key Technologies for the Advent of the 6G,” 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Seoul, Korea (South), 2020, pp. 1-6, doi: 10.1109/WCNCW48565.2020.9124725.

[20] Y. Yuan, Y. Zhao, B. Zong and S. Parolari, “Potential key technologies for 6G mobile communications,” in Science China Information Sciences, vol. 63, no. 183301, pp. 1-19, 2020.

[21] M. H. Alsharif et al., “Sixth Generation (6G) Wireless Networks: Vision, Research Activities, Challenges and Potential Solutions,” in Symmetry, vol. 12, no. 4, pp. 1-21, 2020.

[22] S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary and M. Asaduzzaman, “Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future,” in IEEE Access, vol. 7, pp. 46317-46350, 2019, doi: 10.1109/ACCESS.2019.2909490.

[23] T. S. Rappaport et al., “Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond,” in IEEE Access, vol. 7, pp. 78729-78757, 2019, doi: 10.1109/ACCESS.2019.2921522.

[24] Y. Al-Eryani and E. Hossain, “The D-OMA Method for Massive Multiple Access in 6G: Performance, Security, and Challenges,” in IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 92-99, Sept. 2019, doi: 10.1109/MVT.2019.2919279.

[25] X. Huang, J. A. Zhang, R. P. Liu, Y. J. Guo and L. Hanzo, “Airplane-Aided Integrated Networking for 6G Wireless: Will It Work?,” in IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 84-91, Sept. 2019, doi: 10.1109/MVT.2019.2921244.

[26] L. Zhu, Z. Xiao, X. Xia and D. Oliver Wu, “Millimeter-Wave Communications With Non-Orthogonal Multiple Access for B5G/6G,” in IEEE Access, vol. 7, pp. 116123-116132, 2019, doi: 10.1109/ACCESS.2019.2935169.

[27] T. Huang, W. Yang, J. Wu, J. Ma, X. Zhang and D. Zhang, “A Survey on Green 6G Network: Architecture and Technologies,” in IEEE Access, vol. 7, pp. 175758-175768, 2019, doi: 10.1109/ACCESS.2019.2957648.

[28] F. Tang, Y. Kawamoto, N. Kato and J. Liu, “Future Intelligent and Secure Vehicular Network Toward 6G: Machine-Learning Approaches,” in Proceedings of the IEEE, vol. 108, no. 2, pp. 292-307, Feb. 2020, doi: 10.1109/JPROC.2019.2954595.

[29] M. J. Piran and D. Y. Suh, “Learning-Driven Wireless Communications, towards 6G,” 2019 International Conference on Computing, Electronics & Communications Engineering (iCCECE), London, United Kingdom, 2019, pp. 219-224, doi: 10.1109/iCCECE46942.2019.8941882.

[30] E. Basar, “Reconfigurable Intelligent Surface-Based Index Modulation: A New Beyond MIMO Paradigm for 6G,” in IEEE Transactions on Communications, vol. 68, no. 5, pp. 3187-3196, May 2020, doi: 10.1109/TCOMM.2020.2971486.

[31] E. Yaacoub and M. Alouini, “A Key 6G Challenge and Opportunity: Connecting the Base of the Pyramid: A Survey on Rural Connectivity,” in Proceedings of the IEEE, vol. 108, no. 4, pp. 533-582, April 2020, doi: 10.1109/JPROC.2020.2976703.

[32] M. Yu, A. Tang, X. Wang and C. Han, “Joint Scheduling and Power Allocation for 6G Terahertz Mesh Networks,” 2020 International Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA, 2020, pp. 631-635, doi: 10.1109/ICNC-17757.2020.9049790.

[33] S. Zhang, H. Zhang and L. Song, “Beyond D2D: Full Dimension UAV-to-Everything Communications in 6G,” in IEEE Transactions on Vehicular Technology, vol. 69, no. 6, pp. 6592-6602, June 2020, doi: 10.1109/TVT.2020.2984624.

[34] N. Kato, B. Mao, F. Tang, Y. Kawamoto and J. Liu, “Ten Challenges in Advancing Machine Learning Technologies toward 6G,” in IEEE Wireless Communications, vol. 27, no. 3, pp. 96-103, June 2020, doi: 10.1109/MWC.001.1900476.

[35] Y. Chen, P. Zhu, G. He, X. Yan, H. Baligh and J. Wu, “From Connected People, Connected Things, to Connected Intelligence,” 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 2020, pp. 1-7, doi: 10.1109/6GSUMMIT49458.2020.9083770.

[36] X. Liu, T. Xu and I. Darwazeh, “Coexistence of Orthogonal and Non-orthogonal Multicarrier Signals in Beyond 5G Scenarios,” 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 2020, pp. 1-5, doi: 10.1109/6GSUMMIT49458.2020.9083780.
[37] T. Hewa, G. Gr, A. Kalla, M. Ylianttila, A. Bracken and M. Liyanage, “The Role of Blockchain in 6G: Challenges, Opportunities and Research Directions,” 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 2020, pp. 1-5, doi: 10.1109/6GSUMMIT49458.2020.9083784.

[38] N. H. Mahmood, H. Alves, O. A. Lopez, M. Shehba, D. P. M. Osorio and M. Latva-Aho, “Six Key Features of Machine Type Communication in 6G,” 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 2020, pp. 1-5, doi: 10.1109/6GSUMMIT49458.2020.9083794.

[39] M. Katz and I. Ahmed, “Opportunities and Challenges for Visible Light Communications in 6G,” 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 2020, pp. 1-5, doi: 10.1109/6GSUMMIT49458.2020.9083805.

[40] A. Yazar and H. Arslan, “A Waveform Parameter Assignment Framework for 6G With the Role of Machine Learning,” in IEEE Open Journal of Vehicular Technology, vol. 1, pp. 156-172, 2020, doi: 10.1109/OJVT.2020.2992302.

[41] C. Huang et al., “Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends,” in IEEE Wireless Communications, doi: 10.1109/MWC.001.1900534.

[42] International Telecommunication Union (ITU), “IMT Vision Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond,” ITU Publications, M.2083-0, 2015.

[43] International Telecommunication Union (ITU), “Final Acts World Radiocommunication Conference 2019 (WRC-19),” ITU Publications, 2019.

[44] A. Ghosh, A. Maeder, M. Baker and D. Chandramouli, “5G Evolution: A View on 5G Cellular Technology Beyond 3GPP Release 15,” in IEEE Access, vol. 7, pp. 127639-127651, 2019, doi: 10.1109/ACCESS.2019.2939938.

[45] S. Lagen, N. Patriciello and L. Giupponi, “Cellular and Wi-Fi in Unlicensed Spectrum: Competition leading to Convergence,” 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 2020, pp. 1-5, doi: 10.1109/6GSUMMIT49458.2020.9083786.

[46] M. Matimmikko-Blue, S. Yrjil and P. Ahokangas, “Spectrum Management in the 6G Era: The Role of Regulation and Spectrum Sharing,” 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 2020, pp. 1-5, doi: 10.1109/6GSUMMIT49458.2020.9083851.

[47] P. Kumari, S. A. Vorobyov and R. W. Heath, “Adaptive Virtual Waveform Design for Millimeter-Wave Joint CommunicationRadar,” in IEEE Transactions on Signal Processing, vol. 68, pp. 715-730, 2020, doi: 10.1109/TSP.2019.2956689.

[48] A. M. Jaradat, J. M. Hamamreh and H. Arslan, “Modulation Options for OFDM-Based Waveforms: Classification, Comparison, and Future Directions,” in IEEE Access, vol. 7, pp. 17263-17278, 2019, doi: 10.1109/ACCESS.2019.2895958.

[49] P. Yang, Y. Xiao, Y. L. Guan, M. Di Renzo, S. Li and L. Hanzo, “Multidomain Index Modulation for Vehicular and Railway Communications: A Survey of Novel Techniques,” in IEEE Vehicular Technology Magazine, vol. 13, no. 3, pp. 124-134, Sept. 2018, doi: 10.1109/MVT.2018.2814023.

[50] S. Doan, A. Tusha and H. Arslan, “NOMA With Index Modulation for Uplink URLLC Through Grant-Free Access,” in IEEE Journal of Selected Topics in Signal Processing, vol. 13, no. 6, pp. 1249-1257, Oct. 2019, doi: 10.1109/JSTSP.2019.2913981.

[51] A. Yazar and H. Arslan, “Flexible Multi-Numerology Systems for 5G New Radio,” in River Publishers Journal of Mobile Multimedia, vol. 14 no.4, pp. 367-394, 2018.

[52] A. B. Kihero, M. S. J. Solaija and H. Arslan, “Inter-Numerology Interference for Beyond 5G,” in IEEE Access, vol. 7, pp. 146512-146523, 2019, doi: 10.1109/ACCESS.2019.2946084.

[53] Z. E. Ankarali, B. Pekz and H. Arslan, “Flexible Radio Access Beyond 5G: A Future Projection on Waveform, Numerology, and Frame Design Principles,” in IEEE Access, vol. 5, pp. 18295-18309, 2017, doi: 10.1109/ACCESS.2017.2684783.

[54] M. M. Sahin and H. Arslan, “Multi-functional Coexistence of Radar-Sensing and Communication Waveforms,” in IEEE Vehicular Technology Conference (VTC-Full), Victoria, Canada, 2020.

[55] A. A. Sabah and H. Arslan, “NOMA for Multi-Numerology OFDM Systems,” in Hindawi Wireless Communications and Mobile Computing, vol. 2018, pp. 1-9, 2018, doi:10.1155/2018/8514314.

[56] A. Tusha, S. Doan and H. Arslan, “A Hybrid Downlink NOMA With OFDM and OFDM-IM for Beyond 5G Wireless Networks,” in IEEE Signal Processing Letters, vol. 27, pp. 491-495, 2020, doi: 10.1109/LSP.2020.2979059.

[57] M. M. ahin and H. Arslan, “Waveform-Domain NOMA: The Future of Multiple Access,” 2020
IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 2020, pp. 1-6, doi: 10.1109/ICCWorkshops49005.2020.9145077.

[58] A. Maatouk, E. Alkan, M. Koca, M. Assaad, G. Gui and H. Sari, “Frequency-Domain NOMA With Two Sets of Orthogonal Signal Waveforms,” in IEEE Communications Letters, vol. 22, no. 5, pp. 906-909, May 2018, doi: 10.1109/LCOMM.2018.2810118.

[59] M. B. Elebi and H. Arslan, “Theoretical Analysis of the Co-Existence of LTE-A Signals and Design of an ML-SIC Receiver,” in IEEE Transactions on Wireless Communications, vol. 14, no. 8, pp. 4626-4639, Aug. 2015, doi: 10.1109/TWC.2015.2424244.

[60] A. Yazar and H. Arslan, “A Flexibility Metric and Optimization Methods for Mixed Numerologies in 5G and Beyond,” in IEEE Access, vol. 6, pp. 3755-3764, 2018, doi: 10.1109/ACCESS.2018.2795752.

[61] A. F. Demir and H. Arslan, “Inter-Numerology Interference Management With Adaptive Guards: A Cross-Layer Approach,” in IEEE Access, vol. 8, pp. 30378-30386, 2020, doi: 10.1109/ACCESS.2020.2972287.

[62] E. Memisoglu, A. B. Kihero, E. Basar and H. Arslan, “Guard Band Reduction for 5G and Beyond Multiple Numerologies,” in IEEE Communications Letters, vol. 24, no. 3, pp. 644-647, March 2020, doi: 10.1109/LCOMM.2019.2963311.

[63] A. Yazar and H. Arslan, “Reliability Enhancement in Multi-Numerology Based 5G New Radio Using INI-Aware Scheduling,” in EURASIP Journal on Wireless Communications and Networking, vol. 2019 no. 110, pp. 1-14, 2019.

[64] M. J. Colella, J. N. Martin and F. Akyildiz, “The HALO network™,” in IEEE Communications Magazine, vol. 38, no. 6, pp. 142-148, June 2000, doi: 10.1109/35.846086.

[66] T. Han, X. Ge, L. Wang, K. S. Kwak, Y. Han and X. Liu, “5G Converged Cell-Less Communications in Smart Cities,” in IEEE Communications Magazine, vol. 55, no. 3, pp. 44-50, March 2017, doi: 10.1109/MCOM.2017.600256CM.

[68] M. S. Ali, E. Hassain, A. Al-Dweik and D. I. Kim, “Downlink Power Allocation for CoMP-NOMA in Multi-Cell Networks,” in IEEE Transactions on Communications, vol. 66, no. 9, pp. 3982-3998, Sept. 2018, doi: 10.1109/TCOMM.2018.2831206.

[69] J. Ding and J. Cai, “Two-Side Coalitional Matching Approach for Joint MIMO-NOMA Clustering and BS Selection in Multi-Cell MIMO-NOMA Systems,” in IEEE Transactions on Wireless Communications, vol. 19, no. 3, pp. 2006-2021, March 2020, doi: 10.1109/TWC.2019.2961654.

[70] B. Han, J. Lianghai and H. D. Schotten, “Slice as an Evolutionary Service: Genetic Optimization for Inter-Slice Resource Management in 5G Networks,” in IEEE Access, vol. 6, pp. 33137-33147, 2018, doi: 10.1109/ACCESS.2018.2846543.

[71] D. Sattar and A. Matrawy, “Optimal Slice Allocation in 5G Core Networks,” in IEEE Networking Letters, vol. 1, no. 2, pp. 48-51, June 2019, doi: 10.1109/LNET.2019.2908351.

[72] D. A. Chekired, M. A. Togou, L. Khoukhi and A. Ksentini, “5G-Slicing-Enabled Scalable SDN Core Network: Toward an Ultra-Low Latency of Autonomous Driving Service,” in IEEE Journal on Selected Areas in Communications, vol. 37, no. 8, pp. 1769-1782, Aug. 2019, doi: 10.1109/JSAC.2019.2927065.

[73] H. Turkmen, M. S. J. Solaija, H. M. Furqan, H. Arslan, “Generalized Radio Environment Monitoring for Next Generation Wireless Networks,” arXiv:2008.06203 [eess.SP], Aug. 2020.

[74] W. Lee and I. F. Akyildiz, “Optimal spectrum sensing framework for cognitive radio networks,” in IEEE Transactions on Wireless Communications, vol. 7, no. 10, pp. 3845-3857, October 2008, doi: 10.1109/T-WC.2008.070391.

[75] S. Yarkan and H. Arslan, “Exploiting location awareness toward improved wireless system design in cognitive radio,” in IEEE Communications Magazine, vol. 46, no. 1, pp. 128-136, January 2008, doi: 10.1109/MCOM.2008.4427241.

[76] H. F. Ates, S. M. Hashir, T. Baykas and B. K. Guntrak, “Path Loss Exponent and Shadowing Factor Prediction From Satellite Images Using Deep Learning,” in IEEE Access, vol. 7, pp. 101366-101375, 2019, doi: 10.1109/ACCESS.2019.2931072.

[77] D. Sabella et al., “A flexible and reconfigurable 5G networking architecture based on context and content information,” 2017 European Conference on Networks and Communications (EuCNC), Oulu, 2017, pp. 1-6, doi: 10.1109/EuCNC.2017.7980669.
[78] Z. Feng, Z. Fang, Z. Wei, X. Chen, Z. Quan and D. Ji, “Joint radar and communication: A survey,” in China Communications, vol. 17, no. 1, pp. 1-27, Jan. 2020, doi: 10.23919/JCC.2020.01.001.

[79] G. Naik, J. Park, J. Ashdown, W. Lehr, “Next Generation Wi-Fi and 5G NR-U in the 6 GHz Bands: Opportunities & Challenges,” arXiv:2006.16534, 2020.

[80] H. B. Yilmaz, T. Tugcu, F. Alagz and S. Bayhan, “Radio environment map as enabler for practical cognitive radio networks,” in IEEE Communications Magazine, vol. 51, no. 12, pp. 162-169, December 2013, doi: 10.1109/MCOM.2013.6685772.

[81] A. Imran, A. Zoha and A. Abu-Dayya, “Challenges in 5G: how to empower SON with big data for enabling 5G,” in IEEE Network, vol. 28, no. 6, pp. 27-33, Nov.-Dec. 2014, doi: 10.1109/MNET.2014.6963801.

[82] Q. Mao, F. Hu and Q. Hao, “Deep Learning for Intelligent Wireless Networks: A Comprehensive Survey,” in IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 2595-2621, Fourthquarter 2018, doi: 10.1109/COMST.2018.2846401.

[83] C. Zhang, P. Patras and H. Haddadi, “Deep Learning in Mobile and Wireless Networking: A Survey,” in IEEE Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2224-2287, thirdquarter 2019, doi: 10.1109/COMST.2019.2904897.

[84] N. C. Luong et al., “Applications of Deep Reinforcement Learning in Communications and Networking: A Survey,” in IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3133-3174, Fourthquarter 2019, doi: 10.1109/COMST.2019.2916583.

[85] Y. Sun, M. Peng, Y. Zhou, Y. Huang and S. Mao, “Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues,” in IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3072-3108, Fourthquarter 2019, doi: 10.1109/COMST.2019.2924243.

[86] M. Chen, U. Challita, W. Saad, C. Yin and M. Debbah, “Artificial Neural Networks-Based Machine Learning for Wireless Networks: A Tutorial,” in IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3039-3071, Fourthquarter 2019, doi: 10.1109/COMST.2019.2926625.

[87] J. Wang, C. Jiang, H. Zhang, Y. Ren, K. Chen and L. Hanzo, “Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks,” in IEEE Communications Surveys & Tutorials, doi: 10.1109/COMST.2020.2965856.

[88] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan and X. Chen, “Convergence of Edge Computing and Deep Learning: A Comprehensive Survey,” in IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 869-904, Secondquarter 2020, doi: 10.1109/COMST.2020.2970550.

[89] X. Wang, Y. Han, V. Chandrasekhar, H. Chen, J. Reed and J. C. Zhang, “Artificial Intelligence-Enabled Cellular Networks: A Critical Path to Beyond-5G and 6G,” in IEEE Wireless Communications, vol. 27, no. 2, pp. 212-217, April 2020, doi: 10.1109/MWC.2020.3011561.

[90] R. Shaﬁn, L. Liu, V. Chandrasekhar, H. Chen, J. Reed and J. C. Zhang, “Artificial Intelligence-Enabled Cellular Networks: A Critical Path to Beyond-5G and 6G,” in IEEE Wireless Communications, vol. 27, no. 2, pp. 98-105, April 2017, doi: 10.1109/MWC.2016.1500356WC.

[91] C. Jiang, H. Zhang, Y. Ren, Z. Han, K. Chen and L. Hanzo, “Machine Learning Paradigms for Next-Generation Wireless Networks,” in IEEE Wireless Communications, vol. 25, no. 3, pp. 28-35, JUNE 2018, doi: 10.1109/MWC.2018.1700317.

[92] E. Basar, M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini and R. Zhang, “Wireless Communications Through Reconfigurable Intelligent Surfaces,” in IEEE Access, vol. 7, pp. 116753-116773, 2019, doi: 10.1109/ACCESS.2019.2935192.

[93] C. Xu, L. Yang and P. Zhang, “Practical Backscatter Communication Systems for Battery-Free Internet of Things: A Tutorial and Survey of Recent Research,” in IEEE Journal on Selected Areas in Communications, doi: 10.1109/JSTAC.2020.3007211.

[94] C. Xu, L. Yang and P. Zhang, “Practical Backscatter Communication Systems for Battery-Free Internet of Things: A Tutorial and Survey of Recent Research,” in IEEE Journal on Selected Areas in Communications, doi: 10.1109/JSTAC.2020.3007211.
S. Buzzi, C. I, T. E. Klein, H. V. Poor, C. Yang and A. Zappone, “A Survey of Energy-Efficient Techniques for 5G Networks and Challenges Ahead,” in IEEE Journal on Selected Areas in Communications, vol. 34, no. 4, pp. 697-709, April 2016, doi: 10.1109/JSAC.2016.2550338.

T. D. Ponnimbaduge Perera, D. N. K. Jayakody, S. K. Sharma, S. Chatzinotas and J. Li, “Simultaneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges,” in IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 264-302, Firstquarter 2018, doi: 10.1109/COMST.2017.2783901.

J. Huang, C. Xing and C. Wang, “Simultaneous Wireless Information and Power Transfer: Technologies, Applications, and Research Challenges,” in IEEE Communications Magazine, vol. 55, no. 11, pp. 26-32, Nov. 2017, doi: 10.1109/MCOM.2017.1600806.

S. Dwivedi, M. Zoli, A. N. Barreto, P. Sen and G. Fettweis, “Secure Joint Communications and Sensing using Chirp Modulation,” 2020 2nd 6G Wireless Summit (6G SUMMIT), Levi, Finland, 2020, pp. 1-5, doi: 10.1109/6GSUMMIT49458.2020.9083884.

Y. Hu and R. Zhang, “A Spatiotemporal Approach for Secure Crowdsourced Radio Environment Map Construction,” in IEEE/ACM Transactions on Networking, doi: 10.1109/TNET.2020.2992939.

J. M. Hamamreh, H. M. Furqan and H. Arslan, “Classifications and Applications of Physical Layer Security Techniques for Confidentiality: A Comprehensive Survey,” in IEEE Communications Surveys & Tutorials, vol. 21, no. 2, pp. 1773-1828, Secondquarter 2019, doi: 10.1109/COMST.2018.2878035.

J. M. Hamamreh, M. Yusuf, T. Baykas and H. Arslan, “Cross MAC/PHY layer security design using ARQ with MRC and adaptive modulation,” 2016 IEEE Wireless Communications and Networking Conference, Doha, 2016, pp. 1-7, doi: 10.1109/WCNC.2016.7564987.

A. Yazar received his B.Sc. degree in electrical engineering from Es- kisehir Osmangazi University, Eskisehir, Turkey in 2011, M.Sc. degree in electrical engineering from Bilkent University, Ankara, Turkey in 2013, and Ph.D. degree in electrical engineering from Istanbul Medipol University, Istanbul, Turkey in 2020. He is currently general coordinator of the Communications, Signal Processing, and Networking Center (CoSiNC) at Istanbul Medipol University. His current research interests are flexible waveform design, radio resource management techniques, and the role of machine learning in wireless communications.

S. Doğan-Tusha received the B.Sc. degree in electronics and telecommunication engineering from Kocaeli University, Kocaeli, Turkey, in 2015, and the Ph.D. degree in electrical and electronics engineering from Istanbul Medipol University, Istanbul, Turkey, in 2020. She is currently a post-doctoral researcher in the Communications, Signal Processing, and Networking Center (CoSiNC) at Istanbul Medipol University, Istanbul, Turkey. Her research interests include index modulation, millimeter-wave frequency bands, nonorthogonal multiple accessing (NOMA), and random access techniques for next-generation wireless networks.

H. Arslan received the B.S. degree from Middle East Technical University, Ankara, Turkey, in 1992, and the M.S. and Ph.D. degrees from Southern Methodist University, Dallas, TX, USA, in 1994 and 1998, respectively. From 1998 to 2002, he was with the Research Group, Ericsson Inc., NC, USA, where he was involved with several projects related to 2G and 3G wireless communications. Since 2002, he has been with the Electrical Engineering Department, University of South Florida, Tampa, FL, USA. He has also been the Dean of the College of Engineering and Natural Sciences, Istanbul Medipol University, since 2014. He was a part-time Consultant for various companies and institutions, including Anritsu Company, Morgan Hill, CA, USA, and TÜBİTAK, Turkey. His research interests are in PHY security, mmWave systems, multicarrier communications, co-existence issues on heterogeneous networks, and aeronautical communications.