Intrinsic antitachycardia pacing for patients with multiple ventricular tachycardias

Kenji Okubo, MD, Emiko Nakashima, MD, Katsumasa Takagi, MD, Naohiko Kawaguchi, MD, Yasuaki Tanaka, MD, Atsushi Takahashi, MD

From the Cardiovascular Center, Yokosuka Kyosai Hospital, Yokosuka, Japan.

Introduction

Antitachycardia pacing (ATP) offers a safe and painless termination of ventricular tachycardia (VT) in patients with implantable cardioverter-defibrillators (ICDs).1 However, it is accompanied with some limitations: ATP success rates are as low as 50% for fast VT, with a cycle length (CL) of <300 ms, and VT acceleration may occur in up to 10% of ATP therapies.2,3 Intrinsic antitachycardia pacing (iATP) provides an automatic and tailored ATP for each VT in real time.4 An iATP algorithm delivers the equivalent of a train of burst pulses (S1) followed by 1 (S2) or 2 (S2-S3) ramp-plus pulses. The uniqueness of the iATP algorithm derives from the fact that it adjusts the number of S1 pulses and the coupling interval (CI) of S2 according to individual VTs. When the initial ATP sequence fails to terminate VT, iATP makes 2 modifications. First, iATP calculates the number of S1 pulses required to entrain the VT circuit using postpacing interval (PPI). Second, the device decrements the S2 pulse interval until it terminates the VT.

Herein, we describe 2 cases in which iATP successfully terminated multiple VTs with different CLs and morphologies.

Case report
A written informed consent for the publication of their details was obtained from the patients.

Case 1
A 72-year-old male patient with dilated cardiomyopathy experienced recurrent VTs, even with amiodarone and beta-blocker therapy, and underwent catheter ablation for VTs (class IIa indication).5 Even after ablation, the VT was not eliminated. Subsequently, he received an ICD (Cobalt XT DR MRI; Medtronic, Minneapolis, MN) for VT.

Two days after ICD implantation, VT with a CL of 460 ms (VT1) was initiated (Figures 1 and 2). The first sequence of iATP consisted of 6 S1 pulses with a CL of 410 ms (88% of the VT CL), followed by an S2 pulse with a CI of 320 ms, which failed to terminate the VT. After a PPI of 680 ms, the same VT was detected. A second ATP sequence was delivered with 6 S1 pulses having a CL of 410 ms, followed by an S2 pulse with a CI of 290 ms, leading to VT termination.

VT (VT2) occurred 1 year later, with a longer CL of 540 ms. The ventricular electrogram was different from that previously observed in VT1. The first sequence of iATP consisted of 6 S1 pulses with a CL of 440 ms (84% of the VT CL), followed by an S2 pulse with a CI of 300 ms, which failed to terminate the VT. After an S3 pulse with a CI of 290 ms, the same VT was detected. A second ATP sequence was delivered with 6 S1 pulses having a CL of 400 ms, followed by an S2 pulse with a CI of 290 ms, leading to VT termination.

KEY TEACHING POINTS

- While antitachycardia pacing (ATP) is employed to terminate ventricular tachycardias (VTs), it is less effective against fast VTs and has the potential risk of VT acceleration.
- Intrinsic antitachycardia pacing (iATP) is an automated ATP algorithm that allows individualized therapy. The algorithm employs 2 unique features: burst pulses (S1) that analyze the postpacing interval following a failed ATP sequence, and ventricular extrastimulation (S2, S3).
- Although there are reports of iATP terminating VT in clinical settings, there are still no reports of its effectiveness in multiple VTs with different VT circuits.
- We present 2 cases where iATP successfully terminated multiple VTs with different cycle lengths and morphologies. This novel ATP algorithm has the potential to terminate multiple VTs with a remarkably high likelihood of success.

Even after ablation, the VT was not eliminated. Subsequently, he received an ICD (Cobalt XT DR MRI; Medtronic, Minneapolis, MN) for VT.

Two days after ICD implantation, VT with a CL of 460 ms (VT1) was initiated (Figures 1 and 2). The first sequence of iATP included 6 S1 pulses with a CL of 410 ms (88% of the VT CL), followed by an S2 pulse with a CI of 320 ms, which failed to terminate the VT. After a PPI of 680 ms, the same VT was detected. A second ATP sequence was delivered with 6 S1 pulses having a CL of 410 ms, followed by an S2 pulse with a CI of 290 ms, leading to VT termination.

VT (VT2) occurred 1 year later, with a longer CL of 540 ms. The ventricular electrogram was different from that previously observed in VT1. The first sequence of iATP consisted of 6 S1 pulses with a CL of 440 ms (84% of the VT CL), followed by an S2 pulse with a CI of 300 ms, which failed to terminate the VT. After an S3 pulse with a CI of 290 ms, the same VT was detected. A second ATP sequence was delivered with 6 S1 pulses having a CL of 400 ms, followed by an S2 pulse with a CI of 290 ms, leading to VT termination.

KEYWORDS

Intrinsic antitachycardia pacing; Antitachycardia pacing; Ventricular tachycardia; Implantable cardioverter-defibrillator; Ventricular extrastimulation; Postpacing interval

(Heart Rhythm Case Reports 2022;8:711–714)
of 5 S1 pulses with a CL of 470 ms, followed by an S2 pulse with a CI of 340 ms, which failed to terminate the VT. Based on the analysis of the PPI of 830 ms, the second sequence of ATP was delivered with 6 S1 pulses, with a CL of 470 ms, followed by an S2 pulse with a CI of 310 ms, and VT was terminated. The patient did not undergo conventional ATP/shock therapy because all VTs were terminated by iATP during the follow-ups that lasted for 18 months.

Case 2
A 64-year-old male patient with dilated cardiomyopathy underwent cardiac resynchronization therapy defibrillation (CRT-D) (Cobalt XT HF; Medtronic) implantation following an episode of syncope due to VT. A month after discharge, despite amiodarone and beta-blocker therapy, VT with a CL of 380 ms (VT1) recurred, and the first sequence of iATP was initiated (Figure 3). The sequence included 6 S1 pulses with a CL of 330 ms (88% of the VT CL), followed by an S2 pulse with a CI of 310 ms with successful VT termination. However, another VT (VT2, CL 390 ms) occurred with a different ventricular electrogram the next day. iATP was delivered with 6 S1 pulses with a CL of 340 ms, followed by an S2 pulse with a CI of 320 ms, leading to VT2 termination. VT (VT3, CL 420 ms) recurred a month later with a different ventricular electrogram from VT1 and VT2. Again iATP was delivered, with 6 S1 pulses having a CL of 370 ms, followed by an S2 pulse with a CI of 340 ms, resulting in VT termination. Since then, VT has reoccurred thrice (VT1 twice and VT3 once), and was terminated using iATP every time. In summary, 3 types of VTs were recorded a total of 6 times during the first 6 months following device implantation. All 6 incidences of VT were successfully terminated by iATP, without undergoing subsequent device therapy (conventional ATP/shock).

Discussion
Although there have been case reports of iATP showing its efficacy in clinical settings,6,7 there are still no reports demonstrating the effectiveness of iATP against multiple incidences of VT in the same patient. iATP is a novel algorithm that can deliver arrhythmia-specific therapy. To terminate VT, the device calculates the number of S1 pulses from the mean VT CL and the propagation time it takes for a paced pulse to reach the VT circuit. In the first sequence, the device estimates the S2 pulse interval from the V-V rate history leading up to episode detection. If an S1 pulse penetrates the VT circuit, a successful S2 pulse then renders the VT circuit refractory and terminates the VT. If the first sequence does not terminate the VT, the device decrements the S2 pulse interval for efficacy with each subsequent S1-S2 sequence until it terminates the VT.

Figure 1 Case 1: Intracardiac electrogram (EGM) of ventricular tachycardia (VT). A: VT1. B: VT2. VT1 and VT2 had different cycle lengths (CL) (VT1, 460 ms; VT2, 540 ms) and ventricular EGM (V-EGM). Propagation time, calculated as postpacing interval (PPI) minus VT CL divided by 2, differed between VT1 and VT2 (110 ms and 145 ms, respectively). Intrinsic antiarrhythmic pacing (iATP) failed to terminate VTs in the first sequence. However, based on PPI, the second sequence varied the series of pulses of the ATP and terminated both VTs. It should be noted that in VT2, iATP automatically increased the number of S1 pulses (from 5 to 6) using PPI analysis. A-EGM = atrial EGM; PT = propagation time.
In case 1, the initial iATP sequence failed to terminate the VT.

A detailed analysis of VT1 can provide a better understanding of the advantages of the iATP unique algorithm (Figure 2). The PPI observed was 680 ms, and ATP was able to reset the VT without termination. The propagation time from the pacing site to the VT circuit, calculated based on the PPI, was 110 ms, and the number of S1 pulses required to entrain the VT circuit was 5. iATP is capable of automatically adding 1 or 2 S1 stimuli, in addition to the required number of S1 pulses, to ensure the entraining of the VT circuit. Therefore, the ATP delivered an S1 burst of 6 pulses. Subsequently, S2 was shortened from 320 ms to 290 ms in the second sequence, which successfully terminated VT. It should be noted that the number of pulses required for S1 was calculated to be “5,” but iATP delivered 6 pulses. This is because iATP always increases the number of pulses by 1 or 2 to ensure that S1 resets the VT.

In case 2, 3 different VTs were recorded. Although the CLs were similar, the ventricular electrograms were significantly different between the 3 VTs. Furthermore, the electrogram morphologies recorded in the wavelet were also significantly different between the 3 VTs, amounting to the evidence that there were 3 different types of VTs (Figure 3). iATP automatically delivered a different S1 burst and extrastimulation during S2, according to each VT, and terminated all VTs in the first sequence. Given that the S1 pulse interval was 88% of the VT CL, which is equal to the conventional setting of ATP recommended in the focus-updated guidelines, it is plausible that the unique S2 stimulation by iATP results in a high VT termination rate. iATP possesses a unique mechanism that allows the S2 pulse to render the VT circuit refractory, and thus terminate the VT.

Although setting iATP as an initial therapy option may result in hemodynamic collapse owing to the increased time to initiate ICD shock, previous studies have shown that it does not increase the incidence of syncope. In addition, in the present case, it should be noted that the patient was
asymptomatic during VTs because all VTs were promptly terminated by iATP and hemodynamic collapse was spared. The efficacy of iATP for fast VT (CL, 300 ms) cannot be addressed from these 2 cases. Further investigation on VT termination rate by iATP according to VT CL is needed. Finally, large clinical trials with a crossover design between ATP and iATP are expected to prove the advantages of iATP.

Conclusion

This is the first case report highlighting how iATP can terminate multiple VTs in a clinical setting. The iATP algorithm has the potential to provide individualized therapy and terminate multiple VTs with a high likelihood of success.

Acknowledgments

We are grateful to Hajime Kurata, in the medical engineering department in Yokosuka Kyosai Hospital, for his technical support in interpreting iATP sequences for VTs.

References

1. Sweeney MO, Sherfesee L, DeGroot PJ, Wathen MS, Wilkoff BL. Differences in effects of electrical therapy type for ventricular arrhythmias on mortality in implantable cardioverter-defibrillator patients. Heart Rhythm 2010;7:353–360.

2. Arenal A, Proclemer A, Kloppe A, et al. Different impact of long-detection interval and anti-tachycardia pacing in reducing unnecessary shocks: data from the ADVANCE III trial. Europace 2016;18:1719–1725.

3. Wathen MS, Sweeney MO, DeGroot PJ, et al. Shock reduction using anti-tachycardia pacing for spontaneous rapid ventricular tachycardia in patients with coronary artery disease. Circulation 2001;104:796–801.

4. Swenson DI, Taepeke RT, Blauer JJE, et al. Direct comparison of a novel anti-tachycardia pacing algorithm against present methods using virtual patient modeling. Heart Rhythm 2020;17:1602–1608.

5. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm 2018;15:e73–e189.

6. Morishima I, Kanzaki Y, Morita Y, Tsuji Y. Successful termination of ventricular tachycardia with intrinsic anti-tachycardia pacing. Indian Pacing Electrophysiol J 2021;21:394–396.

7. Tripathi R, Gubran C, Jeavons C. Automatic adjustment of ventricular anti-tachycardia pacing and individualized device therapy. HeartRhythm Case Rep 2022;8:171–175.

8. Toquero J, Alzueta J, Mont L, et al. Morphology discrimination criterion wavelet improves rhythm discrimination in single-chamber implantable cardioverter-defibrillators. Spanish Register of morphology discrimination criterion wavelet. Europace 2009;11:727–733.

9. Stiles MK, Fauchier L, Morillo CA, Wilkoff BL. 2019 HRS/EHRA/APHRS/LAHRS focused update to 2015 expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. Heart Rhythm 2020;17:e220–e228.

10. Moss AI, Schuger C, Beck CA, et al. Reduction in inappropriate therapy and mortality through ICD programming. N Engl J Med 2012;367:2275–2283.