Promising technology of wastewater treatment with natural ameliorants

V S Bocharnikov, M A Denisova, A S Ovchinnikov, O V Bocharnikova, O V Kozinskaya and M P Meshcheryakov

Volgograd State Agrarian University, 26 University Avenue, Volgograd, 400002, Russia

E-mail: masha2008-1988@mail.ru

Abstract. The article presents the results of testing filter media with various natural sorbents. When studying the absorbing properties of zeolite, charcoal and gravel sand, their properties of removing heavy metals such as Zn, Ca, Cu, Fe, as well as ammonium nitrogen were studied. During experimental studies, all studied ion exchangers showed absorption properties to varying degrees. After calculating the static capacities of each of the studied sorbents, he showed that the best absorption properties are aluminosilicate (zeolite). After completing experimental studies within 48 hours, the best moisture-absorbing effect was observed with zeolite, after 12 hours of contact with poultry wastewater, it removed 64.7 percent of the total iron, and activated carbon and gravel sand only 15.4 percent. The result of research in the study of the absorption properties of heavy metals, ammonium nitrogen ions, showed that zeolite has the highest quality wastewater treatment. The removal of ions of chemical elements was more than 60 percent within 12 hours of being in the liquid phase, in contrast to charcoal and gravel sand.

1. Introduction

At present, the state of surface and underground waters is of concern, since their quality does not meet the standards of sanitary supervision. The reason for this is not conscientious purification of wastewater [1, 2, 3] and their discharge into rivers, lakes, etc. When studying the qualitative indicators of water analysis, it shows an increased content of toxic substances in the form of metals, sulfates, nitrates, ammonium, oil products [4, 5, 6, 7].

Wastewater is purified by various methods, such as reagent, without reagent, filtration, cascade filtration, multistage, sorption [8, 9, 10, 11].

The best from the point of technical and economic predominance are the processes of sedimentation and filtration, since in these methods of loading exhibit better properties of sorption in relation to toxic chemical elements.

Water absorption occurs when the sorbent absorbs a liquid or solid substance in this, and this is the process of sorption itself. This method makes it possible to produce a high degree of wastewater treatment [12, 13, 14, 15] from toxic impurities, which is the main advantage of this process. The absorption process largely depends on the correctly selected sorption material, on its granule size, crystal lattice, porosity, and resistance to a chemical environment.
The water absorption capacity of the selected sorption ion exchangers is influenced by factors such as residence time in an aqueous medium, pH, volumetric capacity, etc. There are several types of volumetric containers - static, absolute and dynamic.

When selecting a filtration material and its quality of poultry wastewater treatment in relation to toxic heavy metals and ammonium ion, all of the above parameters are necessary. Zeolite, also called aluminosilicate, has good static ion exchange capacity. Aluminosilicate has a porous structure and a well-developed crystal lattice, which allows it to conduct high selectivity to large ions. For the complete absorption of harmful substances from wastewater, an optimal contact time of aluminosilicate with soluble substances is required. There are many sorbents in the modern world, both natural and synthetic. The most high-quality and durable are natural sorbents, while studying the absorbing properties of zeolite, charcoal and gravel sand, their properties of removing heavy metals such as Zn, Ca, Cu, Fe, as well as ammonium nitrogen were studied [16, 17, 18, 19, 20].

To study the most effective sorbent for the absorption of chemical impurities were determined under static conditions [21, 22, 23].

2. Materials and methods
When studying the moisture-absorbing properties of zeolite, charcoal, gravel sand, the method for determining static conditions was used, developed at the Scientific Research Institute of Mineral Raw Materials – Russian Geological Society Standard «STO RosGeo 08-002-98».

Before performing the experiment, it is necessary to prepare containers for injecting the studied sorbent, add poultry wastewater, stir for several seconds to develop the reaction of the sorbent with a liquid medium, then separate the liquid phase from the solid by settling, filter the solution and perform photocolorimetric analysis of the test filtrate.

The volume of wastewater was taken in an amount of 250 ml, for this, volumetric flasks were used to which each sorbent was added in equal weights of 60 grams, the experiment was carried out under laboratory conditions.

3. Results and discussion
During experimental studies, all studied ion exchangers showed absorption properties to varying degrees. After calculating the static capacities of each of the studied sorbents, he showed that the best absorption properties are aluminosilicate (zeolite). After completing experimental studies for 48 hours, the zeolite showed the best moisture-absorbing effect after 12 hours of contact with poultry wastewater, it removed 64.7 percent of the total iron, and activated carbon and gravel sand only 15.4 percent. The combined composition of sorbents absorbed only 19.7 percent of heavy metals. Contact within 48 hours showed that the aluminosilicate (zeolite) reduced its sorption capacity to 54.6 percent, as the crystal lattice saturation occurred, and in the complex of activated carbon, gravel sand and zeolite up to 3.1%, respectively, in the activated coal and gravel sand sorption was not observed. Therefore, the best contact time of the sorbent with the liquid phase is observed within 12 hours (Figure 1).
Figure 1. The ability of various sorbents to absorb heavy metals and ammonium ions.

All studied ion exchangers showed their sorption properties in various percentages, the results of which are summarized in Table 1.

Table 1. Determination of sorption of various sorbents in waste water in relation to heavy metals and ammonium ions.

Name of substance	Zeolite Fraction 0.75, 1.0, 4.0 mm	Activated carbon and gravel sand	Activated carbon, gravel sand and zeolite								
	Comparison, mg/l	Siskh-Comparison, mg/l	SOE, mg/g	Comparison, mg/l	Siskh-Comparison, mg/l	SOE, mg/g	Comparison, mg/l	Siskh-Comparison, mg/l	SOE, mg/g		
Iron total	35.5	25.5	10	0.04	35.0	0.5	0.44	32.2	3.3	0.01	
Iron II	15.6	10.6	5	0.021	15.3	0.3	0.001	14.6	1.0	0.004	
Iron III	25.3	16.3	9	0.037	24.3	1.2	0.004	22.3	3.0	0.008	
Chromium	1.1	0.55	0.55	0.002	1.0	0.1	0.0004	1.0	0.1	0.0004	
Zinc	1.3	0.63	0.67	0.003	1.3	0	No sorption	1.0	0.3	0.001	
Copper	3.5	1.62	1.88	0.007	3.5	0	No sorption	2.5	1.0	0.004	
Cadmium	1.6	1.3	0.3	0.001	1.6	0	No sorption	1.3	0.3	0.001	
Name of substance	$S_{ub}, \text{mg/l}$	Zeolite	Activated carbon and gravel sand	Activated carbon, gravel sand and zeolite							
-------------------	----------------------	---------	---------------------------------	--							
		Fraction 0.75, 1.0, 4.0 mm	Comparison, mg/l	Siskh-Comparison	SOE, mg/l	Comparison, mg/l	Siskh-Comparison	SOE, mg/l	Comparison, mg/l	Siskh-Comparison	SOE, mg/l
Ammonium	10.5	6.4	4.1	0.017	9.5	1.0	0.004	8.5	2.0	0.008	
Iron total	35.5	15.5	20.0	0.08	32.0	3.5	0.45	30.1	5.4	0.02	
Iron II	15.6	5.25	10.35	0.043	14.2	1.4	0.005	13.5	2.1	0.008	
Iron III	25.3	8.35	16.95	0.07	24.0	1.3	0.005	21.4	3.9	0.016	
Chromium	1.1	0.35	0.75	0.003	1.0	0.1	0.0004	0.95	0.15	0.0006	
Zinc	1.3	0.26	1.04	0.004	1.3	0.1	0.0008	0.93	0.37	0.0007	
Copper	3.5	1.1	2.4	0.01	3.5	0.0	0.002	2.0	1.5	0.006	
Cadmium	1.6	0.8	0.8	0.003	1.3	0.3	0.001	1.0	0.6	0.0025	
Ammonium	10.5	3.4	7.1	0.029	8.5	2.0	0.008	7.3	3.2	0.012	
Iron total	35.5	12.5	23.0	0.09	30.0	5.5	0.46	28.5	7.0	0.03	
Iron II	15.6	4.8	10.8	0.045	13.7	1.9	0.007	11.6	4.0	0.01	
Iron III	25.3	6.3	19.0	0.08	23.6	1.7	0.007	19.3	6.0	0.025	
Chromium	1.1	0.14	0.96	0.004	0.9	0.2	0.0008	0.75	0.35	0.001	
Zinc	1.3	0.16	1.14	0.004	1.0	0.3	0.001	0.83	0.47	0.002	
Copper	3.5	1.0	2.5	0.01	2.8	0.7	0.003	1.82	1.68	0.007	
Cadmium	1.6	0.7	0.9	0.003	1.1	0.5	0.002	0.9	0.7	0.003	
Ammonium	10.5	1.9	8.6	0.035	6.5	4.0	0.016	5.5	5.0	0.02	
Iron total	35.5	14.3	21.2	0.09	30.0	5.5	0.46	29.7	5.8	0.02	
Iron II	15.6	5.1	10.5	0.043	14.0	1.6	0.006	11.9	3.7	0.015	
Iron III	25.3	6.9	18.4	0.07	23.9	1.1	0.006	19.9	5.4	0.022	
Chromium	1.1	0.17	0.93	0.003	1.0	0.1	0.0004	0.78	0.32	0.0013	
Zinc	1.3	0.17	1.13	0.005	1.2	0.1	0.0004	0.85	0.45	0.0018	
Copper	3.5	1.3	2.2	0.009	3.1	0.4	0.001	1.85	1.65	0.006	
Cadmium	1.6	0.75	0.85	0.0035	1.2	0.4	0.001	0.93	0.67	0.0027	
Ammonium	10.5	2.0	8.5	0.035	6.9	3.6	0.015	5.9	4.6	0.019	
Iron total	35.5	16.1	19.4	0.08	30.0	5.5	0.46	31.4	4.1	0.017	
Iron II	15.6	5.6	10.0	0.041	14.9	0.7	0.003	12.2	3.4	0.014	
Iron III	25.3	7.5	17.8	0.074	24.2	1.1	0.004	20.5	4.8	0.02	
Chromium	1.1	0.23	0.87	0.003	1.0	0.1	0.0004	0.82	0.28	0.0011	
Zinc	1.3	0.29	1.01	0.004	1.3	0.1	No	0.91	0.39	0.0016	

Copper	3.5	1.5	2.0	0.008	3.4	0.1	0.0004	1.93	1.57	0.0065
Cadmium	1.6	0.85	0.75	0.0031	1.35	0.25	0.001	0.98	0.62	0.0025
Ammonium	10.5	2.7	7.8	0.032	7.2	3.3	0.013	6.3	4.2	0.017
Having completed the experimental study on the sorption properties under static conditions of ion exchangers and having performed the calculation of the volumetric capacity, it can be seen that aluminosilicate (zeolite) showed the best result than charcoal and gravel sand.

4. Conclusion
The result of research in the study of the absorption properties of heavy metals, ammonium nitrogen ions, showed that zeolite has the highest quality wastewater treatment. The removal of ions of chemical elements was more than 60 percent within 12 hours of being in the liquid phase, in contrast to charcoal and gravel sand.

Experimental data are focused on reducing the environmental load of water bodies, as well as use them as irrigation water for irrigation of industrial crops.

5. Acknowledgments
The research was carried out within the State Assignment of Ministry of Agriculture of the Russian Federation (theme No. 13/2673).

References
[1] Ovchinnikov A S, Loboyko V F, Bocharnikov V S, Ovcharova A Yu and Fomin S D 2019 State of the small rivers of the Volga basin within the Lower Volga IOP Conf. Series: Earth and Environmental Science 341 012107
[2] Kruzhilin I P, Ovchinnikov A S, Kuznetsova N V, Kozinskaya O V, Fomin S D, Bocharnikov V S and Vorontsova E S 2018 Water pressure monitoring in irrigation piping as quality management tools of sprinkler irrigation ARPN J. of Engineering and Applied Sciences 13 4181-4184
[3] Ovchinnikov A S and Pustovalov E V 2017 The results of studies of the use of zeolite-containing rocks as a filter material in the treatment of livestock effluents Proc. of the Nizhnevolszhsky Agrouniversity Complex: Science and Higher Professional Education 4(48) 71-77
[4] Kolesnikov V A, Nistratov A V, Kolesnikova O Y and Kandelaki G I 2019 Integrated approach to neutralization of wastewater containing copper ions and EDTA ligand News of Higher Education Institutions. Chemistry and Chemical Engineering Series 62 108-114
[5] Kolesnikov V A, Il'in V I, Kapustin Y I, Varaksin S O, Kisilenko P N and Kokarev G A 2007 Flotation Wastewater Treatment of Industrial Enterprises (Moscow: Khimiya)
[6] Kolesnikov V A, Menshutina N V and Desyatov A V 2016 Equipment, Technology and Design of Sewage Treatment Systems (Moscow: new Delhi and NCR plus)
[7] Ksenofontov B S 2013 Intensification of wastewater treatment of engineering industries using ion flotation Sanitary Engineering 5 30-33
[8] Rybalova O, Artemiev S, Sarapina M, Tsymbal B, Bakhareva A, Shestopalov O and Filenko O 2018 Development of methods for estimating the environmental risk of degradation of the surface water state Eastern-European J. of Enterprise Technologies 2 4-17
[9] Brasoveanu F, Petru A and Brezeanu L 2012 European policy concerning the protection of the quality of the environmental factor-water Challenges of the Knowledge Society 2 1058-1063
[10] Feng X, Wang X, Chen Z and Chen J 2019 Nitrogen removal from iron oxide red wastewater via partial nitrification-Anammox based on two-stage zeolite biological aerated filter Bioresource Technology 279(8-9) 17-24
[11] Matsak A and Tsytlishvili K 2018 Using different filter media of stormwater treatment performance Norwegian J. of development of the International Science 1(20) 19–22
[12] Kazeminejadfard F and Hojjati M R 2019 Preparation of superabsorbent composite based on acrylic acid-hydroxypropylidistarch phosphate and clinoptilolite for agricultural applications J. of Applied Polymer Science 136(16) 4736
[13] Bochkarev G R and Pushkareva G I 1988 On a new natural sorbent for the extraction of metals from aqueous media Physical and Technical Problems of Mining 4 46-51
[14] Kochetov G, Prikhna T, Kovalchuk O and Samchenko D 2018 Research of the treatment of depleted nickel-plating electrolytes by the ferritization method Eastern-European J. of Enterprise Technologies 3 52-60
[15] Ovchinnikov A S, Bocharnikov V S and Denisova M A 2019 Technology of wastewater treatment of poultry enterprises using natural sorbents with the addition of ferrite suspension Proc. of the Nizhnevolzhsky Agrouniversity Complex: Science and Higher Professional Education 1(1) 15-22
[16] Bocharnikov V S, Kozinskaya O V, Denisova M A and Bocharnikova O V 2020 Study of the modes of sedimentation of the loading using a hydraulic installation Proc. of the Nizhnevolzhsky Agrouniversity Complex: Science and Higher Professional Education 1(57) 260-267
[17] Yurchenko I F 2020 Development of innovative management systems for agricultural production on reclaimed lands Business. Education. Right 1(50) 42-49
[18] Loiko А V, Shibanov I V, Kagramanov G G and Blanco-Pedrejon A M 2018 Experience in the implementation of membrane technology for purification of artesian waters with a high content of iron and manganese Water Purification. Water Treatment. Water Supply 4(124) 58-62
[19] Novikova I V, Luneva E N and Gritsay A V 2019 Means and technologies of water treatment for drip irrigation of agricultural land Scientific J. of the Russian Research Institute of Melioration Problems 3(35) 1-17
[20] Domracheva V A and Shiyrav G 2013 Adsorption extraction of heavy metal ions by carbon sorbents under static conditions Non-Ferrous Metals 1 43-48
[21] Pustovalov Е V 2018 Influence of irrigation by livestock runs on the technological qualities of mustard oil seeds Proc. of the Nizhnevolzhsky Agrouniversity Complex: Science and Higher Professional Education 2(50) 181-186
[22] Kruzhilin I P, Ganiev M A, Kuznetsova N V and Rodin K A 2018 Dynamics of total water consumption and yield of periodically moistened rice during sprinkling and drip irrigation in the Volgograd region Proc. of the Nizhnevolzhsky Agrouniversity Complex: Science and Higher Professional Education 3(51) 34-42
[23] Kuznetsova N V, Kuznetsov Yu V, Kozinskaya O V and Denisova M A 2020 Influence of hydraulic parameters on irrigation quality Proc. of the Nizhnevolzhsky Agrouniversity Complex: Science and Higher Professional Education 2(58) 73-83