SHARP DOUBLE INEQUALITY FOR COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND

QI BAO

Abstract. For \(r \in (0, 1) \), the function \(\mathcal{K}(r) = \int_0^{\pi/2} (1 - r^2 \sin^2 t)^{-1/2} \, dt \) is known as the complete elliptic integral of the first kind. In this paper, we prove the absolute monotonicity of two functions involving \(\mathcal{K}(r) \). As a consequence, we improve Alzer and Richards’ result.

1. Introduction

In the past few centuries, the complete elliptic integral of the first kind (cf. [1, 3, 6]) \(\mathcal{K}(r) \) defined on \((0, 1)\) by

\[
\mathcal{K} = \mathcal{K}(r) = \int_0^{\pi/2} \frac{1}{\sqrt{1 - r^2 \sin^2 t}} \, dt = \frac{\pi}{2} F \left(\frac{1}{2}, \frac{1}{2}; 1; r^2 \right),
\]

where \(F \) denotes the classical Gaussian hypergeometric function (cf. [5, 7])

\[
F(a, b; c; x) = {}_2F_1(a, b; c; x) = \sum_{n=0}^{\infty} \frac{(a, n)(b, n)}{(c, n)n!} x^n, \quad |x| < 1,
\]

where \((a, n)\) is the Pochhammer symbol or shifted factorial defined as \((a, 0) = 1\) for \(a \neq 0\), and

\[
(a, n) = a(a + 1)(a + 2) \cdots (a + n - 1) = \frac{\Gamma(n + a)}{\Gamma(a)}
\]

for \(n \in \mathbb{N} = \{1, 2, 3, \ldots\}\), where

\[
\Gamma(x) = \int_0^{\infty} t^{x-1} e^{-t} \, dt \quad (x > 0)
\]

is the classical Euler Gamma function (cf. [1]).

It is well known that the complete elliptic integrals have many important applications in physics, engineering, geometric function theory, quasiconformal analysis, theory of mean values, number theory and other related fields (cf [2, 4, 8–12, 15–18, 21–23]).

Recently, the complete elliptic integrals have attracted the attention of numerous mathematicians. It is well known that complete elliptic integrals cannot be represented by the elementary transcendental functions. Therefore, there is a need for sharp computable bounds for the family of integrals. In particular, many remarkable properties and inequalities for the complete elliptic integrals can be found in the literature [12, 14, 18, 19, 24, 26].

2010 Mathematics Subject Classification. 33E05, 33C75.

Key words and phrases. Complete elliptic integral of the first kind, inequality, absolute monotonicity.

*Corresponding author.
For example, in order to refine the following well-known asymptotic formula
\[
\lim_{r \to 1^-} \left[\mathcal{K}(r) - \log \left(\frac{4}{\sqrt{1 - r^2}} \right) \right] = 0,
\] (1.5)
Anderson, Vamanamurthy and Vuorinen in [14] conjectured that the inequality
\[
\mathcal{K}(r) < \log \left(\frac{4}{\sqrt{1 - r^2}} \right) - \left(\log 5 - \frac{\pi}{2} \right) (1 - r)
\] (1.6)
holds for each \(r \in (0, 1) \). Later, the conjecture was proved by Qiu et al. in [12].
In 2020, Wang, Chu, Li and Chu in [13] improved (1.6), and showed that the inequality
\[
\log \left(1 + \frac{4}{\sqrt{1 - r^2}} \right) - \left(\log 5 - \frac{\pi}{2} \right) + \frac{\pi}{8} - \frac{2}{5} r^2 + \alpha^* r^4 < K(r)
\] (1.7)
is valid for \(r \in (0, 1) \) with the best possible constants \(\alpha^* = 9\pi/128 - 11/50 = 0.000893 \cdots \) and \(\beta^* = 2/5 + \log 5 - 5\pi/8 = 0.0459 \cdots \).
Very recently, Alzer and Richards in [19] obtained the following upper bound for \(K(r) \), that is,
\[
K(r) < \frac{\pi}{2} \frac{16 - 5 \log(1 - r^2)}{16 + (5\pi - 16)r^2} \quad (0 < r < 1).
\] (1.8)
Observe that the upper bound of \(K(r) \) in (1.8) is concise and meaningful. Based on the known results such as those above mentioned, the following question is natural:

Question 1.1. Whether we can find an improved upper bound and a similar form of lower bound for (1.8)?

The main purpose of this paper is to give a positive answer to Question 1.1. Our results are following Theorems 1.2-1.3 and Corollary 1.4. For convenience, we let \(\mathbb{N} \) denotes the set of positive integers as usual, put
\[
\theta = \frac{\pi (17 - 5\pi)}{32} = 0.126845 \cdots, \tag{1.9}
\]
\[
\lambda = \frac{8}{5} - \log 4 = 0.213705 \cdots, \tag{1.10}
\]
\[
\alpha = \frac{85}{8} \pi - \frac{185}{32} \pi^2 + \frac{25}{32} \pi^3 = 0.544425 \cdots, \tag{1.11}
\]
\[
\beta = (8 - 10 \log 2) \pi - \frac{85}{32} \pi^2 + \frac{25}{32} \pi^3 = 1.364397 \cdots, \tag{1.12}
\]
\[
\delta = \frac{128}{5} - 32 \log 2 - \frac{17}{2} \pi + \frac{5}{2} \pi^2 = 1.389763 \cdots, \tag{1.13}
\]
\[
\zeta = \frac{128}{5} + 32 \log 2 + \left(\frac{47}{8} - 10 \log 2 \right) \pi + \frac{5}{8} \pi^2 = -0.569791 \cdots. \tag{1.14}
\]
Theorem 1.2. Let \(\theta, \alpha \) and \(\beta \) are given in (1.9), (1.11) and (1.12), respectively. Define the function \(f \) on \((0, 1)\) by
\[
f(r) = \frac{\pi}{2} \left[16 - 5 \log(1 - r^2) \right] - \left[\theta r^2 + \mathcal{K}(r) \right] \left[16 + (5\pi - 16)r^2 \right].
\]
Then all coefficients are positive in the Maclaurin series for \(f_1 \equiv f/r^4 \) in powers of \(r^2 \) with range \((\alpha, \beta)\). In other words, \(f_1 \) is absolutely monotonic on \((0, 1)\).

Theorem 1.3. Let \(\lambda \) and \(\delta \) are given in (1.10) and (1.13), respectively. Define the function \(g \) on \((0, 1)\) by
\[
g(r) = \left[\lambda r^2 + \mathcal{K}(r) \right] \left[16 + (5\pi - 16)r^2 \right] - \frac{\pi}{2} \left[16 - 5 \log(1 - r^2) \right].
\]
Then all coefficients are negative in the Maclaurin series for \(g_1 \equiv g/r^2 \) in powers of \(r^2 \) with range \((0, \delta)\). In other words, \(-g_1\) is absolutely monotonic on \((0, 1)\).

Corollary 1.4. According to Theorem 1.2-1.3, we can find better bounds for \(\mathcal{K}(r) \) than (1.8). For example, Theorem 1.2 (Theorem 1.3) implies that the function \(f_1 \) (\(g_1 \)) is strictly increasing and convex (decreasing and concave) from \((0, 1)\) onto \((\alpha, \beta)\) ((0, \(\delta\)), respectively). Consequently, the double inequality
\[
\max \left\{ \frac{\pi[16 - 5 \log(1 - r^2)] - 2[\alpha + (\beta - \alpha)r^4]}{32 + 2(5\pi - 16)r^2} - \theta r^2, \frac{\pi[16 - 5 \log(1 - r^2)] + 2\delta(1 - r^2)r^2}{32 + 2(5\pi - 16)r^2} - \lambda r^2 \right\} \leq \mathcal{K}(r) \leq \min \left\{ \frac{\pi[16 - 5 \log(1 - r^2)] - 2\alpha r^4}{32 + 2(5\pi - 16)r^2} - \theta r^2, \frac{\pi[16 - 5 \log(1 - r^2)] + 2\delta r^2}{32 + 2(5\pi - 16)r^2} - \lambda r^2 \right\},
\]
holds for all \(r \in (0, 1) \). The first (second) equality holds if and only if \(r \to 0 \) or \(r \to 1 \) \((r \to 0, \) respectively).

2. **Proof of Theorem 1.2-1.3**

In order to prove our main results in this section, we need next lemma.

Lemma 2.1. For \(n \in \mathbb{N} \), the sequence
\[
Q_n = \frac{5\pi n}{5\pi n^2 - 16n + 4} - \left[\frac{\Gamma(n - 1/2)}{\Gamma(n)} \right]^2
\]
is positive.

Proof. In [20, equation (1.3)], Kershaw proved that
\[
\left(x + \frac{s}{2} \right)^{-s} < \frac{\Gamma(x + 1)}{\Gamma(x + s)} < \left[x - \frac{1}{2} + \left(\frac{1}{4} + s \right)^{1/2} \right]^{-s} \tag{2.1}
\]
holds for $x > 0$ and $0 < s < 1$. Hence by first inequality sign of (2.1) and by using the substitution $x = n - 1$, take $s = 1/2$, we have
\[
\left[\frac{\Gamma(n - 1/2)}{\Gamma(n)} \right]^2 < \frac{4}{4n - 3}
\] (2.2)
is valid for $n \in \mathbb{N}$. It follows from (2.2) that
\[
Q_n > \frac{5\pi n}{5\pi n^2 - 16n + 4} - \frac{4}{4n - 3} = P_n.
\] (2.3)
It is enough to prove $P_n > 0$ for $n \in \mathbb{N}$, as a matter of fact,
\[
P_n > 0 \iff 5\pi n(4n - 3) - 4(5\pi n^2 - 16n + 4) > 0
\]
holds for $n \in \mathbb{N}$. Therefore, together with (2.3), yields the sequence \{Q_n\} is positive for $n \in \mathbb{N}$. \square

Proof of Theorem 1.2

By (1.2), expanding in power series yields
\[
f(r) = \frac{\pi}{2} \left(16 + 5 \sum_{n=1}^{\infty} \frac{1}{n} r^{2n} \right) - [16 + (5\pi - 16)r^2] \left(\theta r^2 + \frac{\pi}{2} \sum_{n=0}^{\infty} \frac{(1/2, n)^2}{(n!)^2} r^{2n} \right)
\]
\[
= 8\pi - 16\theta r^2 - \theta(5\pi - 16)r^4
\]
\[
+ \frac{5\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n} r^{2n} - \frac{(5\pi - 16)\pi}{2} \sum_{n=1}^{\infty} \frac{(1/2, n - 1)^2}{[(n - 1)!]^2} r^{2n} - 8\pi \sum_{n=0}^{\infty} \frac{(1/2, n)^2}{(n!)^2} r^{2n}
\]
\[
= \left(\frac{85}{8\pi} - \frac{185}{32\pi^2} + \frac{25}{32}\pi^3 \right) r^4
\]
\[
+ \sum_{n=3}^{\infty} \left(\frac{5\pi}{2n} - \frac{(5\pi n^2 - 16n + 4)\Gamma(n - 1/2)^2}{2\Gamma(n + 1)^2} \right) r^{2n}
\]
\[
= \alpha r^4 + \sum_{n=3}^{\infty} \frac{(5\pi n^2 - 16n + 4)Q_n r^{2n}}{2n^2},
\]

where Q_n is given in lemma 2.1. Hence, $f_1 = f/r^4$ has following series expansion
\[
f_1(r) = \alpha + \sum_{n=3}^{\infty} \frac{(5\pi n^2 - 16n + 4)Q_n r^{2n}}{2n^2}. \quad (2.4)
\]
It is easy to verify that $5\pi n^2 - 16n + 4 > 0$ for $n \in \mathbb{N}$, hence it follows from Lemma 2.1 that all coefficients are positive in the Taylor series for f_1 in powers of r^2. By (2.4), we clearly see that
\[
f_1(0^+) = \lim_{r \to 0} f_1(r) = \alpha. \quad (2.5)
\]
From (1.5) it is easy to obtain the following asymptotic formula
\[
\mathcal{K}(r) \sim \log 4 - \frac{\log(1 - r^2)}{2}, \quad \text{as } r \to 1. \quad (2.6)
\]
Hence we obtain
\[
f(1^-) = \lim_{r \to 1} f_1(r)
\]
\[
= \lim_{r \to 1} \left\{ \frac{5\pi}{2} \log(1 - r^2) - \left(\frac{\log(4 - \log(1 - r^2))}{2} \right) \left[16 + (5\pi - 16)r^2 \right] \right\}
\]
\[
= (8 - 10\log 2)\pi - \frac{85\pi}{32} + \frac{25\pi}{32} = \beta. \quad (2.7)
\]

Therefore, Theorem (1.2) directly follows from (2.5) and (2.7) together with (2.4). This completes the proof.

Proof of Theorem (1.3)

Similarly, it follows from (1.2) that
\[
g(r) = \left[16 + (5\pi - 16)r^2 \right] \left(\lambda r^2 + \frac{\pi}{2} \sum_{n=0}^{\infty} \frac{(1/2, n)^2}{(n!)^2} r^{2n} \right) - \frac{\pi}{2} \left(16 + 5 \sum_{n=1}^{\infty} \frac{1}{n^2} r^{2n} \right)
\]
\[
= -8\pi + 16\lambda r^2 + \lambda(5\pi - 16)r^4
\]
\[
- \frac{5\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n} r^{2n} + \frac{(5\pi - 16)\pi}{2} \sum_{n=1}^{\infty} \frac{(1/2, n - 1)^2}{[(n - 1)!]^2} r^{2n} + 8\pi \sum_{n=0}^{\infty} \frac{(1/2, n)^2}{(n!)^2} r^{2n}
\]
\[
= \left(\frac{128}{5} - 32\log 2 - \frac{17}{2} \pi + \frac{5}{2} \pi^2 \right) r^2
\]
\[
+ \left[-\frac{128}{5} + 32\log 2 + \left(\frac{47}{8} - 10\log 2 \right) \pi + \frac{5}{8} \pi^2 \right] r^4
\]
\[
- \sum_{n=3}^{\infty} \frac{5\pi}{2n} - \frac{(5\pi n^2 - 16n + 4)\Gamma(n - 1/2)^2}{2\Gamma(n + 1)^2} \right] r^{2n}
\]
\[
= \delta r^2 + \zeta r^4 - \sum_{n=3}^{\infty} \frac{(5\pi n^2 - 16n + 4)Q_n}{2n^2} r^{2n-2},
\]

where \(Q_n\) is given in Lemma (2.1). Hence, \(g_1 = g/r^2\) has following series expansion
\[
g_1(r) = \delta + \zeta r^2 - \sum_{n=3}^{\infty} \frac{(5\pi n^2 - 16n + 4)Q_n}{2n^2} r^{2n-2}. \quad (2.8)
\]

Therefore, it follows from Lemma (2.1) that all coefficients are negative in the Taylor series for \(g_1\) in powers of \(r^2\). By (2.8), we clearly see that
\[
g_1(0^+) = \lim_{r \to 0} g_1(r) = \delta. \quad (2.9)
\]

Again using asymptotic formula (2.6), we clearly see that
\[
g_1(1^-) = \lim_{r \to 1} g_1(r)
\]
\[
\lim_{r \to 1} \left\{ -8\pi + \lambda \left[16 + (5\pi - 16)r^2 \right] r^2 \\
+ \frac{5\pi}{2} \log(1 - r^2) + \left[16 + (5\pi - 16)r^2 \right] \left(\log 4 - \frac{\log(1 - r^2)}{2} \right) \right\} = 0. \tag{2.10}
\]

Therefore, Theorem 1.3 directly follows from (2.8)-(2.10). This completes the proof. \qed

Remark 2.2. Clearly, the upper bound of inequality (1.15) is better than (1.8). Moreover, computer simulation and experiments of Maple 2016 show that (1.7) and (1.15) have their own merits.

References

[1] M. Abramowitz, I.A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington, 1964.

[2] P.F. Byrd, M.D. Friedman. Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York, 1971.

[3] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen. Conformal Invariant, Inequalities, and Quasiconformal Maps. John Wiley and Sons, New York, 1997.

[4] B.C. Berndt. Ramanujan’s Notebooks, Part II. Springer-Verlag, New York, 1989.

[5] B.C. Carlson. Special Functions of Applied Mathematics. Academic Press, New York, 1977.

[6] S.L. Qiu, M. Vuorinen. Chapter 14 Special functions in geometric function theory. In: Handbook of Complex Analysis: Geometric Function Theory, Vol.2, Elsevier Sci. B. V., Amsterdam, 2005, 621–659.

[7] G.D. Anderson, S.L. Qiu, M.K. Vamanamurthy, M. Vuorinen. Generalized elliptic integrals and modular equations. Pacific J. Math., 192(2000), no.1, 1–37.

[8] L.A. Baloch, Y.M. Chu. Petrovi-Type inequalities for harmonic h-convex functions. Journal of Function Spaces, 2020(2020), no.1, 1–7.

[9] B.C. Berndt, S. Bhargave, F.G. Garvan. Ramanujan’s theories of elliptic functions to alternative bases. Trans. Amer. Math. Soc., 347(1995), no.11, 4163–4244.

[10] G.D. Anderson, S.L. Qiu, M.K. Vamanamurthy. Elliptic integral in equalities, with applications, Constr. Approx., 14(1998), no.2, 195–207.

[11] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen. Distortion func tions for plane quasiconformal mappings. Israel J. Math., 62(1988), no.1, 1–16.

[12] S.L. Qiu, M.K. Vamanamurthy and M. Vuorinen. Some inequalities for the growth of elliptic integrals. SIAM J. Math. Anal., 29(1998), no.5, 1224–1237.

[13] M.K. Wang, H.H. Chu, Y.M. Li, Y.M. Chu. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind. Appl. Anal. Discrete Math., 14(2020), no.1, 255–271.

[14] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen. Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal., 23(1992), no.2, 512–524.

[15] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen. Functional inequalities for complete elliptic integrals and their ratios. SIAM J. Math. Anal., 21(1990), no.2, 536–549.

[16] P.F. Byrd, M.D. Friedman: Handbook of Elliptic Integrals for Engineers and Scientists. Springer-Verlag, New York, 1971.

[17] F. Wang, B.N. Guo, F. Qi. Monotonicity and inequalities related to complete elliptic integrals of the second kind. AIMS Math., 5(2020), no.3, 2732–2742.

[18] H. Alzer, S.L. Qiu. Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math., 172(2004), no.2, 289–312.

[19] H. Alzer, C. Richards. A concavity property of the complete elliptic integral of the first kind. Integral Transforms Spec. Funct., 31(2020), no.9, 758–768.
[20] D. Kershaw. Some extensions of W. Gautschi’s inequalities for the Gamma function. Math. Comp., 41(1983), no.164, 607–611.

[21] R.W. Barnard, K. Pearce, K.C. Richards. An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J. Math. Anal., 31(2000), no.3, 693–699.

[22] X.M. Hu, J.F. Tian, Y.M. Chu, Y.X. Lu. On Cauchy–Schwarz inequality for N-tuple diamond-alpha integral. J. Inequal. Appl., 2020, Paper no.8, 15 pp.

[23] S. Rafeeq, H. Kalsoom, S. Hussain, Y.M. Chu. Delay dynamic double integral inequalities on time scales with applications. Adv. Difference Equ., 2020, Paper no.40, 32 pp.

[24] B.N. Guo, F. Qi. Some bounds for the complete elliptic integrals of the first and second kinds. Math. Inequal. Appl., 14(2011), no.2, 323–334.

[25] X.F. Huang, M.K. Wang, H. Shao, Y.F. Zhao, Y.M. Chu. Monotonicity properties and bounds for the complete p-elliptic integrals. AIMS Math., 5(2020), no.6, 7071–7086.

[26] Z.H. Yang, J.F. Tian, Y.R. Zhu. A rational approximation for the complete elliptic integral of the first kind. Mathematics, 2020, 8, 635. https://doi.org/10.3390/math8040635

Qi Bao, School of Mathematical Sciences, East China Normal University, Shanghai, 200241, China
Email address: 52205500010@stu.ecnu.edu.cn