Genome-wide analyses of retrogene s derived from the human box H/ACA snoRNAs

Yuping Luo and Siguang Li*

College of Life Sciences, Nanchang University, Nanchang 330047, People’s Republic of China

Received August 21, 2006; Revised November 20, 2006; Accepted November 21, 2006

ABSTRACT

The family of box H/ACA snoRNA is an abundant class of non-protein-coding RNAs, which play important roles in the post-transcriptional modification of rRNAs and snRNAs. Here we report the characterization in the human genome of 202 sequences derived from box H/ACA snoRNAs. Most of them were retrogenes formed using the L1 integration machinery. About 96% of the box H/ACA RNA-related sequences are found in corresponding locations on the chimpanzee and human chromosomes, while the mouse shares ~50% of these human sequences, suggesting that some of the H/ACA RNA-related sequences in primate occurred after the rodent/primate divergence. Of the H/ACA RNA-related sequences, 49% are found in intronic regions of protein-coding genes and 64 H/ACA-related sequences can be folded to the typical secondary structure of the box H/ACA snoRNA family, while 30 of them were recognized as functional homologs of their corresponding box H/ACA snoRNAs previously reported. Of the 64 sequences with the typical secondary structure of the box H/ACA RNA family, 11 were found in EST databases and 5 among which were shown to be expressed in more than one human tissue. Notably, U107f is nested in an intron of a protein gene coding for nudix-type motif 13, but expressed from the opposite strand, and the searching of EST databases revealed it can be expressed in liver and spleen, even in melanotic melanoma.

INTRODUCTION

The family of box H/ACA RNA is an abundant class of non-protein-coding RNAs, which includes small nucleolar RNAs (snoRNAs), small Cajal body-specific RNAs (scaRNAs) (1), as well as, a homologous class of RNAs in archael organisms (2). Typical box H/ACA RNA exhibits a common hairpin–hinge–hairpin-tail secondary structure with the H (ANANNA) motif in the single-stranded hinge region and an ACA triplet located 3 nt upstream of the 3' termini (3). The majority of known box H/ACA RNAs play important roles in the post-transcriptional modification of rRNAs and snRNAs (4,5); the box H/ACA snoRNAs direct the conversion of uridine to pseudouridine at specific residues of euarkyotic ribosomal RNAs as well as Pol III-transcribed snRNA U6, whereas box H/ACA scaRNAs guide the formation of Pol II-transcribed spliceosomal nuclear RNA (snRNAs) Ψs (1). However, a few H/ACA RNAs are involved in rRNA processing, for example, U17, an evolutionarily conserved H/ACA snoRNA present in vertebrate, yeasts and the unicellular protozoan Tetrahymena thermophila (6), is involved in rRNA processing at the 5' end of 18S rRNA (7). Most likely, U17 functions as an RNA chaperone that safeguards the correct folding of 18S rRNA during pre-rRNA processing.

Recently, systematic experimental approaches and computational screening programs for H/ACA RNAs have been developed and numerous H/ACA RNAs have been detected in euarkyotes from yeast to human (8–15). In humans, ~100 H/ACA RNAs have been identified, and most of which are located within the introns of protein-encoding genes (16). Some H/ACA RNAs have several copies in different introns of the same genes (17,18), or within introns of different genes (19), suggesting redundant H/ACA RNAs appear to have arisen via duplication or transposition from existing H/ACA RNAs, but the ultimate origin of these RNAs is an open question.

In humans, retrotransposons of the long interspersed element-1 (L1) family and their remnants account for ~17% of the human genome (20,21). The enzymatic machinery of a retrotransposition-competent L1 predominantly transposes its own copies (22). However, L1s are capable of transposing other sequences, mostly Alu retroposons, but also cDNAs of different types of cellular RNAs (23–25), thus forming retrogenes or retropseudogenes. The existence of an H/ACA retrogene, i.e. a non-autonomously transcribed H/ACA RNA-related sequence, was reported previously in the mouse genome (15), but no H/ACA retrogene was characterized in humans. Here we have identified 202 novel box H/ACA RNA-related sequences in the human genome, most of which are retrogenes. Sequence analyses suggest the involvement of the L1 retroposition machinery in the formation of

*To whom correspondence should be addressed. Tel: +86 791 8304099; Fax: +86 791 8302703; Email: siguangli@163.com

© 2006 The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
human H/ACA RNA retrogenes. In addition, we found that the previously reported genes encoding ACA14a, ACA37, ACA41, ACA58, ACA59a, ACA59b, ACA63, ACA66, ACA67, ACA71a, ACA98b and U109 all appear to have resulted from retrotransposition events of H/ACA RNAs, suggesting retrotransposition mechanisms have played a pivotal role in the mobility and diversification of H/ACA RNA genes.

MATERIALS AND METHODS

Computational search for H/ACA RNA-related genes in Homo sapiens

The sequences of human H/ACA sno/scaRNAs were taken from the snoRNA database (http://www-snoRNA.biotoul.fr). We used the megaBLAST tool on the NCBI website (http://www.ncbi.nlm.nih.gov/BLAST) to find box H/ACA RNA-related genes or pseudogenes on the human genome (NCBI build 36.1). The BLAST hits kept for further analysis contained at least 60% of the corresponding mature H/ACA RNA. H/ACA RNA-related sequences found in *H. sapiens* were retrieved with a 600 nt extension at each extremity and then searched for orthologs in chimpanzee genome (Pan troglodytes; NCBI build 1.1), mouse genome (mouse NCBI build 36.1) and other animal databases.

All H/ACA RNA-related genes or pseudogenes were mapped on human genome using BLAT search (http://genome.ucsc.edu/cgi-bin/hgBLAT).

Sequence identity analysis

All H/ACA RNA-related genes or pseudogenes were sequentially aligned with their corresponding H/ACA RNA gene sequence using Matcher (http://bioportal.cgb.indiana.edu/cgi-bin/emboss/matcher). The percentage of identities for each H/ACA RNA-related sequence compared with its corresponding H/ACA RNA gene was calculated.

Detection of chimeric retrogenes

To look for the eventuality of chimeric retrogenes, flanking regions of the H/ACA RNA-related sequences were sequentially aligned with the sequences of a number of other small non-protein-coding RNA species (e.g. tRNAs, snRNAs, miRNAs, rRNAs, etc.) and then investigated for repetitive elements with the RepeatMasker program (http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker).

Prediction of secondary structures of H/ACA RNA-related sequences

The secondary structures of all computationally identified H/ACA-related RNAs were derived using the mfold program (26); http://www.bioinfo.rpi.edu/applications/mfold/old/rna.

RESULTS

Identification of 202 box H/ACA RNA-related genes

Using a computational, genome-wide search strategy for extracting of human sequences with sequence similarities to various box H/ACA RNAs, we found 202 box H/ACA RNA-related sequences (Table 1) when requirements for >80% identity of sequence relative to at least 60% of the length of the corresponding RNA were set. The list of these sequences is appended as Supplementary data. We also searched chimpanzee and mouse genomes and found that ~96% of these human box H/ACA RNA-related genes exist in corresponding locations on the chimpanzee chromosomes, while mouse share ~50% of these human box H/ACA RNA-related sequences (data not shown). The distribution of numbers of different human box H/ACA RNA-related genes is strikingly skewed. U70 has the most copies at 21, ACA40 has the second-most at 13, while 13 H/ACA RNAs have only one copy of ACA-related gene each, and no H/ACA-related gene was found for 28 H/ACA genes.

These box H/ACA RNA-related sequences are not uniformly distributed on human chromosomes. There are 22 and 24 copies on chromosomes 1 and 2, respectively, however, no copy was found on chromosome Y and only two copies were found on chromosome 22, while chromosomes 5, 6, 7, 12, 17, 8 and X had some relative excess density of box H/ACA RNA-related genes. Of the 202 box H/ACA RNA-related genes found in the human genome, 99 (49%) are retrogenes, 182 (90%) probably correspond to H/ACA retrogenes (Table 1). All these retrogenes were flanked by direct repeats (target site duplications TSDs) of 7–17 nt, and most of them contained poly (A) tails at their 3' ends (Figure 1). Figure 1A shows a characteristic retrogene consisting of a 3' end poly(A) tail and of TSDs. In some cases, the H/ACA RNAs, each along with their original 5' or 3' flanking sequences, retrotransposed into a new location on the same or a different chromosome (Figure 1B and C), suggesting these H/ACA retrogenes resulted from somewhat stable H/ACA RNA processing intermediates in H/ACA biogenesis. However, some H/ACA RNA retrogenes originated when partially processed, exon-containing hnRNAs were reverse transcribed and inserted at new locations into the genome (Figure 1D and E), for example, the ACA40 gene hosted in the sixth intron of hypothetical protein gene MGC5306, a fragment of the MGC5306 gene including the host intron of ACA40 together with all 3'-exons, retrotransposed independently into chromosome 2 (ACA40b), chromosome 17 (ACA40c), chromosome 10 (ACA40d), chromosome 6 (ACA40e), chromosome 5 (ACA40i), chromosome 8 (ACA40j) and chromosome 5 (ACA40k).

Most of the box H/ACA RNA-related genes are retrogenes

Careful analysis of the upstream and downstream region of these H/ACA snoRNA-related sequences, we found that of the 202 box H/ACA RNA-related genes found in this work, 182 (90%) probably correspond to H/ACA retrogenes (Table 1). All these retrogenes were flanked by direct repeats (target site duplications TSDs) of 7–17 nt, and most of them contained poly (A) tails at their 3' ends (Figure 1). Figure 1A shows a characteristic retrogene consisting of a 3' end poly(A) tail and of TSDs. In some cases, the H/ACA RNAs, each along with their original 5' or 3' flanking sequences, retrotransposed into a new location on the same or a different chromosome (Figure 1B and C), suggesting these H/ACA retrogenes resulted from somewhat stable H/ACA RNA processing intermediates in H/ACA biogenesis. However, some H/ACA RNA retrogenes originated when partially processed, exon-containing hnRNAs were reverse transcribed and inserted at new locations into the genome (Figure 1D and E), for example, the ACA40 gene hosted in the sixth intron of hypothetical protein gene MGC5306, a fragment of the MGC5306 gene including the host intron of ACA40 together with all 3'-exons, retrotransposed independently into chromosome 2 (ACA40b), chromosome 17 (ACA40c), chromosome 10 (ACA40d), chromosome 6 (ACA40e), chromosome 5 (ACA40i), chromosome 8 (ACA40j) and chromosome 5 (ACA40k).

Most of the retrogenes harbored at their 5' ends either a T<T>A hexanucleotide preferably recognized by L1 nicking endonuclease, or its derivatives with one or two nucleotide substitutions (Figure 1A–E). These features suggest the
N	Name	Genomic placement	Chromosome	Chromosome start position	Identity (%)	Type	GenBank accession no.
1	ACA1b	Intronic	8	56977836	94.6	Retrogene	AC046176
2	ACA1c	Intronic	2	203625253	87.7	Retrogene	AC022371
3	ACA1d	Intronic	16	24252145	83.9	Retrogene	AC004125
4	ACA2c	Intronic	2	10212650	88.2	Retrogene	AC022371
5	ACA2d	Intronic	16	56977836	94.6	Retrogene	AC046176
6	ACA3b	Intergenic	21	42175400	91.0	Retrogene	AL359273
7	ACA3-2b	Intergenic	12	83172025	80.0	Retrogene	AC004125
8	ACA4b	Intergenic	2	36977837	91.0	Retrogene	AC022371
9	ACA4c	Intronic	2	19797768	83.9	Retrogene	AC004125
10	ACA5c	Intronic	17	42175400	91.0	Retrogene	AC022371
11	ACA5d	Intergenic	21	42175400	91.0	Retrogene	AC022371
12	ACA6c	Intronic	11	3900374	87.1	Retrogene	AL359273
13	ACA6d	Intronic	11	73641025	87.1	Retrogene	AL359273
14	ACA7b	Intergenic	X	132014448	95.0	Retrogene	Z77249
15	ACA7c	Intronic	12	83172025	80.0	Retrogene	AC004125
16	ACA7d	Intronic	13	73641025	87.1	Retrogene	AL359273
17	ACA7e	Intronic	X	132014448	95.0	Retrogene	Z77249
18	ACA7f	Intronic	12	83172025	80.0	Retrogene	AC004125
19	ACA8b	Intergenic	X	132014448	95.0	Retrogene	Z77249
20	ACA8c	Intronic	17	62908764	91.0	Retrogene	AC004125
21	ACA8d	Intronic	17	62908764	91.0	Retrogene	AC004125
22	ACA8e	Intronic	17	62908764	91.0	Retrogene	AC004125
23	ACA9b	Intronic	8	52090134	80.0	Retrogene	AC004125
24	ACA9c	Intronic	8	52090134	80.0	Retrogene	AC004125
25	ACA9d	Intronic	9	20776934	89.3	Retrogene	AC004125
26	ACA9e	Intronic	9	20776934	89.3	Retrogene	AC004125
27	ACA10d	Intronic	5	118032764	80.0	Retrogene	AC004125
28	ACA10e	Intronic	5	118032764	80.0	Retrogene	AC004125
29	ACA11b	Intronic	1	28052145	80.0	Retrogene	AC004125
30	ACA11c	Intronic	1	28052145	80.0	Retrogene	AC004125
31	ACA11d	Intronic	1	28052145	80.0	Retrogene	AC004125
32	ACA11e	Intronic	1	28052145	80.0	Retrogene	AC004125
33	ACA11f	Intronic	1	28052145	80.0	Retrogene	AC004125
34	ACA11g	Intronic	1	28052145	80.0	Retrogene	AC004125
35	ACA11h	Intronic	1	28052145	80.0	Retrogene	AC004125
36	ACA11i	Intronic	1	28052145	80.0	Retrogene	AC004125
37	ACA11j	Intronic	1	28052145	80.0	Retrogene	AC004125
38	ACA11k	Intronic	1	28052145	80.0	Retrogene	AC004125
39	ACA11l	Intronic	1	28052145	80.0	Retrogene	AC004125
N	Name	Genomic placement	Chromosome	Chromosome start position	Identity (%)	Type	GenBank accession no.
----	------------	-------------------	------------	---------------------------	--------------	--------	----------------------
71	ACA40m	Intergenic	X	123159276	89.8d	Retrogene	AL391241
72	ACA40n	Intergenic	7	99387638	92.6	Retrogene	AC004522
73	ACA41b	Intronic	14	43616740	85.7	Retrogene	AC090527
74	ACA42b	Intronic	11	37259407	86.5d	Retrogene	AL136296
75	ACA43c	Intronic	2	180507372	80.5	Retrogene	AC096587
76	ACA44b	Intronic	6	43619859	92.9	Retrogene	AL355902
77	ACA45c	Intergenic	20	41366609	90.6	Retrogene	AL021395
78	ACA46b	Intronic	14	77002430	82.6d	Retrogene	AF111168
79	ACA47b	Intronic	1	101371297	92.5	Retrogene	AC093157
80	ACA47c	Intron	2	19759117	85.1	Retrogene	AC091546
81	ACA47d	Intergenic	11	65956813	84.2	Retrogene	AL592436
82	ACA47e	Intergenic	2	115966016	82.2	Retrogene	AL595213
83	ACA47f	Intergenic	1	115966016	82.2	Retrogene	AL595213
84	ACA48b	Intergenic	X	3460160	91.9	Retrogene	AC141001
85	ACA48c	Intergenic	18	7291021	85.9	Retrogene	BX326644
86	ACA48d	Intergenic	12	55541426	87.5	Retrogene	AC009270
87	ACA48e	Intergenic	16	66780691	85.9	Retrogene	AC013549
88	ACA48f	Intergenic	2	122541951	83.0	Retrogene	AC097149
89	ACA48g	Intergenic	15	101624078	82.3	Retrogene	AC044913
90	ACA48h	Intergenic	7	101624078	82.3	Retrogene	AC044913
91	ACA48i	Intergenic	1	101371297	82.5	Retrogene	AC044913
92	ACA48j	Intergenic	20	41366609	85.1	Retrogene	AC044913
93	ACA48k	Intergenic	11	65956813	84.2	Retrogene	AL592436
94	ACA48l	Intergenic	2	115966016	82.2	Retrogene	AL592436
95	ACA48m	Intergenic	1	115966016	82.2	Retrogene	AL592436
96	ACA48n	Intergenic	2	115966016	82.2	Retrogene	AL592436
97	ACA48o	Intergenic	11	65956813	84.2	Retrogene	AL592436
98	ACA48p	Intergenic	2	115966016	82.2	Retrogene	AL592436
99	ACA48q	Intergenic	1	115966016	82.2	Retrogene	AL592436
100	ACA49a	Intergenic	2	101371297	82.5	Retrogene	AC044913
101	ACA49b	Intergenic	1	101371297	82.5	Retrogene	AC044913
102	ACA49c	Intergenic	11	65956813	84.2	Retrogene	AL592436
103	ACA49d	Intergenic	2	115966016	82.5	Retrogene	AC044913
104	ACA49e	Intergenic	11	65956813	84.2	Retrogene	AL592436
105	ACA49f	Intergenic	2	115966016	82.5	Retrogene	AC044913
106	ACA49g	Intergenic	11	65956813	84.2	Retrogene	AL592436
107	ACA49h	Intergenic	2	115966016	82.5	Retrogene	AC044913
108	ACA49i	Intergenic	11	65956813	84.2	Retrogene	AL592436
109	ACA49j	Intergenic	2	115966016	82.5	Retrogene	AC044913
110	ACA49k	Intergenic	11	65956813	84.2	Retrogene	AL592436
111	ACA49l	Intergenic	2	115966016	82.5	Retrogene	AC044913
112	ACA49m	Intergenic	11	65956813	84.2	Retrogene	AL592436
113	ACA49n	Intergenic	2	115966016	82.5	Retrogene	AC044913
114	ACA49o	Intergenic	11	65956813	84.2	Retrogene	AL592436
115	ACA49p	Intergenic	2	115966016	82.5	Retrogene	AC044913
116	ACA49q	Intergenic	11	65956813	84.2	Retrogene	AL592436
117	ACA49r	Intergenic	2	115966016	82.5	Retrogene	AC044913
118	ACA49s	Intergenic	11	65956813	84.2	Retrogene	AL592436
119	ACA49t	Intergenic	2	115966016	82.5	Retrogene	AC044913
120	ACA49u	Intergenic	11	65956813	84.2	Retrogene	AL592436
121	ACA49v	Intergenic	2	115966016	82.5	Retrogene	AC044913
122	ACA49w	Intergenic	11	65956813	84.2	Retrogene	AL592436
123	ACA49x	Intergenic	2	115966016	82.5	Retrogene	AC044913
124	ACA49y	Intergenic	11	65956813	84.2	Retrogene	AL592436
125	ACA49z	Intergenic	2	115966016	82.5	Retrogene	AC044913
N	Name	Genomic placement	Chromosome	Chromosome start position	Identity (%)	Type	GenBank accession no.
----	--------	-------------------	------------	---------------------------	--------------	--------	----------------------
141	U68b	Intronic	19	37791083	91.1	Retrogene	AC008474
142	U68c	Intronic	5	158590783	82.2	Retrogene	AC134043
143	U68d	Intronic	X	24061225	84.5	Retrogene	AC079169
144	U69b	Intronic	17	8173626	84.2	Retrogene	AC008053
145	U70b	Intronic	1	200214211	93.5	Retrogene	AC099676
146	U70c	Intronic	2	215419918	95.7	Retrogene	AC016708
147	U70d	Intronic	2	61497882	95.7	Retrogene	AC016894
148	U70e	Intronic	5	17025729	92.8	Retrogene	AL832824
149	U70f	Intronic	5	87714345	86.3	Retrogene	AC091826
150	U70g	Intronic	8	8856495	89.9	Retrogene	AC087763
151	U70h	Intronic	8	3517105	93.7	Retrogene	AC013603
152	U70i	Intronic	5	118883203	91.4	Retrogene	AL835608
153	U70j	Intronic	11	20430163	87.7	Retrogene	AP000893
154	U70k	Intronic	11	67307282	84.2	Retrogene	AC016394
155	U70l	Intronic	12	79797254	82.5	Retrogene	AC002224
156	U70m	Intronic	12	203966973	89.6	Retrogene	AC119673
157	U70n	Intronic	12	74369190	92.7	Retrogene	AC015550
158	U70o	Intronic	12	120029229	85.5	Retrogene	AC078820
159	U70p	Intronic	16	70289971	89.1	Retrogene	AC010653
160	U70q	Intronic	16	48743054	92.0	Retrogene	AC127610
161	U70r	Intronic	17	23373483	86.3	Retrogene	AC090287
162	U70s	Intronic	17	25128801	91.7	Retrogene	AC023389
163	U70t	Intronic	17	3015432	94.8	Retrogene	AP005431
164	U70u	Intronic	17	9791682	99.0	Retrogene	AC008752
165	U70v	Intronic	17	3136041	90.6	Retrogene	AP000039
166	U71e	Intronic	10	79797254	82.5	Retrogene	AC012560
167	U71b	Intronic	10	161897415	91.1	Retrogene	AC000922
168	U72c	Intronic	1	203966973	89.6	Retrogene	AC119673
169	U72d	Intronic	1	222433982	93.4	Retrogene	AC092809
170	U72e	Intronic	2	139985468	85.8	Retrogene	AC016710
171	U72f	Intronic	3	173971758	83.6	Retrogene	AC108667
172	U72g	Intronic	2	104716137	83.1	Retrogene	AC068057
173	U72h	Intronic	8	132514215	87.3	Retrogene	AC104040
174	U78b	Intronic	8	21506474	90.1	Retrogene	AC005632
175	U107b	Intronic	X	54970463	98.5	Retrogene	AC049732
176	U107c	Intronic	X	51823183	85.5	Retrogene	BX537154
177	U107d	Intronic	X	51930457	85.5	Retrogene	AL928717
178	U107e	Intronic	15	43294396	92.0	Retrogene	AC051619
179	U107f	Intronic	16	74555844	95.3	Retrogene	AC016394
180	U107g	Intronic	14	90662522	94.2	Retrogene	AC007374
181	U107h	Intronic	X	47132992	90.7	Retrogene	AC091503
182	U107i	Intronic	14	69340688	83.8	Retrogene	AC157789
183	U107j	Intronic	21	34750278	81.4	Retrogene	AP000053
184	U107k	Intronic	4	120710302	86.1	Retrogene	AC080089
185	U108b	Intronic	8	131244032	82.5	Retrogene	AC103725
186	U108c	Intronic	2	55646343	85.8	Retrogene	AC015982
187	U108d	Intronic	1	191293034	89.0	Retrogene	AC136370
188	U109a	Intronic	16	2545357	84.6	Retrogene	AP005061
189	U109b	Intronic	16	6722295	84.6	Retrogene	AC126773
190	U109c	Intronic	16	75570241	80.0	Retrogene	AC007099
191	U109d	Intronic	18	52594922	87.1	Retrogene	AC104066
192	HBI-6a	Intronic	18	52594922	87.1	Retrogene	AC104066
193	HBI-6b	Intronic	18	17545945	87.2	Chimera	AC091038

* Retrogene with common hairpin–hinge–hairpin–tail secondary structure.
* Retrogene distributed on the antisense orientation of protein-coding genes.
* Identity to the corresponding consensus sequence.
* 5'-truncated box H/ACA RNA-related sequences.
* 3'-truncated or 3' sequences are different from the corresponding consensus sequences.
* Retrogenes with poly (A) tails at their 3' ends.
Figure 1. Schematic representation of box H/ACA RNA retrogene examples. (A) The sequence below the scheme is retrogene U64b and 55 retrogenes belong to this type. (B) The sequence below the scheme is retrogene ACA10b and a number of retroposed nucleotides on the 5'-flanks and 5 retrogenes belong to this type. (C) The sequence below the scheme is retrogene ACA64c and a number of retroposed nucleotides on the 3'-flanks and 24 retrogenes belong to this type. (D) The sequence below the scheme is retrogene U70m and a number of retroposed nucleotides on the 3'-flanks and 25 retrogenes are similar to this case. (E) The sequence below the scheme is retrogene ACA40j and a number of retroposed nucleotides on the 3'-flanks and 12 retrogenes are similar to this case. The exon-derived sequences in (D) and (E) are shown in capital letters. (F) The sequence below the scheme is retrogene ACA7d and 6 retrogenes belong to this type. (G) The sequence below the scheme is retrogene ACA18e and a number of retroposed nucleotides on the 3'-flanks. (H) The sequence below the scheme is retrogene HBI-61c and 1 retrogene belongs to this type. In all the cases, the H/ACA RNA sequences are in italics, retroposed nucleotides on the 3'- or 5'-flanks are in lower cases, Alu sequences are shaded, poly(A) and TSD are in opened and closed boxes, respectively. The L1 consensus recognition site (TTAAAA) is indicated at the 5' end and overlaid by a black bar in the examples.
involvement of the L1 retroposition machinery in the formation of the H/ACA retrogene. Notably, 39 (19%) of H/ACA RNA-related retrogenes were shortened at their 5’ end (Table 1), presumably because of premature termination of the reverse transcription step. However, there are a few H/ACA RNA-related retrogenes without satisfactory L1 signature, which lack either a poly (A) tail (Figure 1F) or T2A4 target site overlapping a TSD (Figure 1G). The existence of tailless retrogenes were reported recently (27), suggesting a variant mechanism for the biogenesis of retrosequences. Closer inspection of the H/ACA snoRNA-related retrogenes and their flanking sequences revealed that, in some cases, the H/ACA snoRNA-related retrogene had been disrupted by independent integration of an Alu element (Figure 1H). In these cases, allowing for virtual removal of the Alu insertion revealed a ‘repaired’ retrogene. In other cases, Alu sequence was inserted in the place between H/ACA RNA and the 3’-TSD (Figure 1I). This suggests that at these sites the H/ACA RNAs were inserted before the integration of the Alu elements. Interestingly, one chimeric retrogene composed of H/ACA sequence fused at its 3’ termini with Alu element, was found (Figure 1J), which was probably formed during reverse transcription and then the fused transcript was integrated into the human genome. A number of retrogenes were reported to result from template switching, including those containing U6, 5S rRNA or 7SL rRNA fused at their 3’ termini with Alu elements (24).

Some previously identified snoRNAs resulted from retrotransposition
Closer analysis of the upstream and downstream region of previously identified snoRNAs showed that ACA14a, ACA37, ACA41, ACA58, ACA59, ACA59b, ACA63, ACA66, ACA67, U71a, ACA98b and U109, are encoded by retrogenes (Figure 2). These box H/ACA RNAs were cloned from a HeLa cell extract immunoprecipitated with an anti-GAR1 antibody (18) or their expression were verified by Northern blot and primer extension (8,13,15). Clearly, these snoRNAs were formed by retrotransposition in the course of primate evolution, for example, the data obtained in this study suggest that the ACA63 gene originated as the result of retroposition of the ACA63b copy. First, ACA63b is found in corresponding locations on the human, chimpanzee and mouse genomes. Then, human and chimpanzee
ATP2B4 and RERE genes encode ACA63 and another retrogene ACA63c in their introns, respectively, while the homologous genes of mouse are devoid of any ACA63-like sequence (Figure 3). Furthermore, comparison and alignment of the two loci ACA63/ACA63b from all available primate sequences revealed that the Otolemur garnettii ACA63 locus shows clean absence of the ACA63 along with its 3'-and 5'-flanking nucleotides (Supplementary Figure 1a). This convincing evidence indicates that human ACA63b that we found in this work is an evolutionary conserved snoRNA widely presented in vertebrates and retrotransposition of ACA63b occurred in primate after the rodent/primate divergence during the course of evolution. Interestingly, there are 4 ACA63c copies with obvious target site duplications (TSDs) in the chimp RERE gene, which probably resulted from a single retroposition event into this gene, followed by local segmental duplications.

In vertebrates, sequences encoding H/ACA are generally located in introns of their host gene, in the same orientation. So far, in vertebrates, an intron can carry only one snoRNA gene, but a host gene can carry several different snoRNA genes in different introns (16). The evolutionary analysis of H/ACA RNA genes within the introns of orthologous genes in six vertebrate species showed that a number of snoRNA genes in different introns of a host gene probably resulted from retrotransposition, for example, the H.sapiens, Pan troglodytes, Mus musculus, Rattus norvegicus and Canis familiaris EIF4A2 gene orthologs host three snoRNA genes, HBI-61, E3 and ACA4 in different introns; however, G. gallus is devoid of snoRNAs in the orthologous gene (Figure 4A). Notably, human and chimpanzee ACA4, E2 and E3 are flanked by TSD of >10 nt (data not shown). Although those TSD with a few nucleotide changes, one of these TSDs’ ancestral states was present in the tenrec, Echinops telfairi ACA4 (Figure 4B), suggesting ACA4 and E3 in EIF4A2 and E2 in RPSA in mammal were resulted from retroposition after the mammal/aves divergence. In addition, there are some host genes which carry several paralogous snoRNA genes in different introns, such as in the TBRG4 gene (Figure 4A). The amplification of ACA5 in the host gene most likely did not occur via retroposition because insertions of retroposed sequences are virtually random and should not lead to accumulations in neighboring introns (11).

Structures and expression of box H/ACA-related RNAs

Up to date, more than 100 H/ACA RNAs have been found in H.sapiens (16). In this study, we found at least two-thirds of these human H/ACA RNA genes have one or more related copies (Table 1). Remarkably, U70 has 21 related copies including six truncated sequences, and another snoRNA gene, U40, exhibits 13 related copies with six truncated sequences. Alignments of these novel H/ACA RNA-related sequences with their orthologs previously reported revealed numerous sequence changes, including small insertions or deletions, which occurred frequently in less important regions, and occasionally in the conserved elements such as box H and ACA. Despite showing sequence variation to some extent, out of 202 box H/ACA RNA-related sequences, 64 can be folded to the typical secondary structure of the box H/ACA RNA family, i.e. the hairpin–hinge–hairpin–tail structure (Supplementary Figure 2), among which 30 were recognized as functional homologs of their corresponding box H/ACA RNAs previously reported revealed according to the relationship between the structure and function of snoRNA, while the remainder did not show any complementarity to either rRNAs or snRNAs due to the sequence diversification and therefore were recognized as orphan H/ACA RNAs.

Retroposition generated for most box H/ACA RNA genes additional copies, quite a number might be functional. Due to
cross-hybridization in Northern blot analysis, it could not be assessed if all the 64 box H/ACA RNA-related sequences with typical features of the box H/ACA RNA family are indeed expressed in human tissues. Therefore, we performed BLAST searches of all the 64 box H/ACA RNA-related sequences against EST databases and found that of 11, the corresponding ESTs were detected in EST databases and 5 were shown to be expressed in more than one human tissue (Table 2). Of course, identification of ESTs is not necessarily an indication for the presence of processed and functional snoRNAs. Notably, U107f is located in an intron of a protein gene coding for nudix (nucleoside diphosphate linked moiety X)-type motif 13, but expressed from the opposite strand (Figure 5) and EST database searches revealed that it can be expressed in liver and spleen, even in melanotic melanoma (Table 2). It is not clear whether U107f has a functional role as an antisense regulator for the expression of the protein-coding gene.

DISCUSSION

We have identified in the human genome databases 202 novel box H/ACA RNA-related sequences 0–20% diverged from their corresponding genes reported previously and belonging to 61 box H/ACA RNA types (Table 1), which shows that most human box H/ACA RNA have multiple copies. In contrast to Arabidopsis and rice, where many snoRNAs are found in multiple copies mainly resulting from two different mechanisms: large chromosomal duplications and small tandem duplications producing polycistronic genes (29),
human multiple box H/ACA copies mainly result from retroposition. Out of 202 box H/ACA RNA-related sequences identified in this work, 182 have the typical structures of retrogene, and the figure of H/ACA retrogene seems to be underestimated, inasmuch as retrogenes >20% diverged from their corresponding genes are not included in our analysis.

The genomes of the chimpanzee and man share 96% of box H/ACA RNA-related sequences at identical locations, and only 4% are thus hominin-specific, having arisen in our genome since the divergence from chimpanzee. On the contrary, the genomes of the mouse contains only ~50% box H/ACA RNA-related sequences relative to man and some sequences were found in different genomic regions, suggesting that most of the H/ACA RNA-related sequences in primate occurred after the rodent/primate divergence. To elucidate the mechanism of H/ACA snoRNA propagation in primates, we analyzed all ape-specific events (those duplicated in human and chimp but not in rhesus monkey) using presence/absence patterns, and found that among nine ape-specific events (ACA1b, ACA10b, ACA40g, ACA40n, ACA43b, ACA51b, ACA57b, ACA64c and U67c), all but one originated from retroposition (Supplementary Figure 1C), suggesting that duplications of most H/ACA snoRNAs in primates are indeed bona fide events mediated by retroposition. In addition, retroposition of different H/ACA RNAs occurred at different stage of primate evolution (Supplementary Figure 1). Notably, the sequence of human-specific retrogene ACA59b is completely identical to ACA59, pointing to a very recent origin of the snoRNA retrogene ACA59b and suggesting, that retrotroposition of snoRNAs still continues to the present day in the human lineage.

Multiple studies have suggested a high rate of retroposition on the primate and rodent lineages (30–32), probably driven by the activity of L1 retrotransposable elements (33). Our results also show the involvement of the L1 retroposition machinery in the formation of human H/ACA retrogenes. Retroposition was commonly thought to generate nonfunctional gene copies (retropseudogenes) that accumulate disablers such as premature stop codons and frameshift mutations for protein-coding genes (34), because the copied mRNA is generally lacking regulatory elements. However, Brosius (35,36) predicted that retrogenes can insert next to resident promoter/enhancer elements and thus escape transcriptional silencing. Indeed, researchers have recently shown that retroposition has generated a significant number of new functional genes (retrogenes) in mammalian genomes (37,38). Similarly, some of the retrogenes derived from H/ACA RNAs appear to be functional genes. First, nearly 50% H/ACA retrogenes found in this work are intronic, encoded within protein-coding genes. Like previously identified intronic snoRNAs (39–41), intronic retrogenes can be co-transcribed with their host genes and then released from excised, debranched introns by exonucleolytic trimming. Furthermore, unlike protein-coding genes, snoRNA retrogenes do not accumulate disablements such as premature stop codons and frameshift mutations. Importantly, some snoRNA retrogenes, even when located in the antisense orientation to their host gene (ACA107f) or in intergenic region (ACA64c), have typical H/ACA RNA structure and can be expressed in human tissues. In addition, for some H/ACA genes retroposition generated more copies and the process may also have provided abundant raw material for the formation of new genes. Therefore it appears that retroposition is one of the

Name	GenBank accession no.	EST	Tissue
ACA12b	AL645729	BQ708140	Spleen
ACA15b	AC073107	DB218848	Trachea
ACA15c	AC073107	DB218848	Trachea
ACA58c	AL590431	DW429803	Liver
ACA63b	AC006549	CN275435	Embryonic stem cell, retinoic acid and mitogen-treated hes cell line H7
		AK097659	Testis
ACA64c	AC097376	DA572426	Cerebellum
U68b	AC008474	BQ423961	Retinoblastoma
U107b	AL049732	BE672593	Lung carcinoid
U107c	AL928717	CN267974	Embryonic stem cells, cell lines H1, H7 and H9
U107d	AL928717	H08107	Infant brain
		H08107	Infant brain
		AK094541	Amygdala
		CN389247	Embryonic stem cells
		CB162932	Liver
		BQ224195	Melanotic melanoma
		BX096147	Liver and spleen

Table 2. Box H/ACA RNA-related genes expressed in human tissues detected in EST databases

Figure 5. Genomic location of U107f in H.sapiens. SnoRNA genes are shown by black arrows, protein-coding genes by non-filled and gray arrows (not drawn to scale). The length of intergenic spacers is also indicated.
ways of novel snRNA gene formation. In line with the notion, some previously reported box H/ACA RNA genes apparently resulted from retrotransposition of different box H/ACA RNAs (Figures 2–4).

SUPPLEMENTARY DATA
Supplementary data are available at NAR online.

ACKNOWLEDGEMENTS
The authors thank Donggen Zhou for help with the analysis of secondary structures of RNA. This work was supported by China National Science Foundation 30660042. Funding to pay the Open Access publication charges for this article was provided by the Key Laboratory of Biochemistry and Molecular Biology of Jiangxi Province, China.

Conflicts of interest statement. None declared.

REFERENCES
1. Darzaqz,X., Jady,B.E., Verheggen,C., Kiss,A.M., Bertrand,E. and Kiss,T. (2002) Caja body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylidy linkage RNAs. EMBO J., 21, 2746–2756.
2. Tang,T.H., Bachellerie,J.P., Rozhdestvensky,T., Bortolin,M.L., Huber,H., Drungowski,M., Elg,T., Brosius,J. and Hüttenhofer,A. (2002) Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc. Natl Acad. Sci. USA, 99, 7536–7541.
3. Ganot,P., Bortolin,M.L. and Kiss,T. (1997) Site-specific pseudouridine formation in eukaryotic pre-rRNAs is guided by small nuclear RNAs. Cell, 89, 799–809.
4. Bachellerie,J.P., Cavaillé,J. and Hüttenhofer,A. (2002) The expanding snoRNA world. Biochimie, 84, 775–790.
5. Kiss,T. (2002) Small nuclear RNAs: an abundant group of noncoding RNAs with diverse cellular functions. Cell, 109, 145–148.
6. Atzorn,V., Fragapane,P. and Kiss,T. (2004) U17/snR30 is a ubiquitous component of the H/ACA pseudouridylation guide RNA machinery. Mol. Cell. Biol., 24, 1429–1439.
7. Schattner,P., Decatur,W.A., Davis,C.A., Ares,M.,Jr, Fournier,M.J. and Huttenhofer,A. (2006) A computational screen for mammalian pseudouridylation guide H/ACA RNAs in mouse. Genetica, 133, 2032–2041.
8. Zaker,M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 31, 3406–3415.
9. Schmitz,J., Churakov,G., Zischler,H. and Brosius,J. (2004) A novel class of mammalian-specific tailless retropseudogenes. Genome Res., 14, 1911–1915.
10. Brosius,J. (1999) Genomes were forged by massive bombardments with retroelements and retropseudogenes. Genetica, 107, 209–238.
11. Barneche,F., Gaspin,C., Guyot,R. and Echeverria,M. (2001) Identification of 66 box C/D snoRNAs in Arabidopsis thaliana: Extensive gene duplications generated multiple isoforms predicting new ribosomal RNA 2′-O-methylation sites. J. Mol. Biol., 311, 57–73.
12. Ohshima,K., Hattori,M., Yada,T., Gojobori,T., Sakaki,Y. and Okada,N. (2003) Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates. Genome Biol., 4, R74.
13. Zhang,Z., Harrison,P.M., Liu,Y. and Gerstein,M. (2003) Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res., 13, 2541–2558.
14. Ozolina,K., Hattori,M., Yada,T., Gojobori,T., Sakaki,Y. and Okada,N. (2005) A novel approach for systematic identification of box H/ACA snoRNAs from eukaryotes. Nucleic Acids Res., 33, e194.
15. Li,S.G., Zhou,H., Luo,Y.P., Zhang,P. and Qu,L.H. (2005) Identification and functional analysis of 20 Box H/ACA small nuclear RNAs (snORANs) from Schizosaccharomyces pombe. J. Biol. Chem., 280, 16446–16455.

570 Nucleic Acids Research, 2007, Vol. 35, No. 2
38. Vinckenbosch, N., Dupanloup, I. and Kaessmann, H. (2006) Evolutionary fate of retroposed gene copies in the human genome.
 Proc. Natl Acad. Sci. USA, **103**, 3220–3225.

39. Tycowski, K.T., Shu, M.D. and Steitz, J.A. (1993) A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3. *Genes Dev.*, **7**, 1176–1190.

40. Kiss, T. and Filipowicz, W. (1993) Small nucleolar RNAs encoded by introns of the human cell cycle regulatory gene *RCC1*. *EMBO J.*, **12**, 2913–2920.

41. Kiss, T. and Filipowicz, W. (1995) Exonucleolytic processing of small nucleolar RNAs from pre-mRNA introns. *Genes Dev.*, **9**, 1411–1424.