REPRESENTATIONS OF INTEGERS BY CERTAIN POSITIVE DEFINITE BINARY QUADRATIC FORMS

RAM MURTY AND ROBERT OSBURN

Abstract. We prove part of a conjecture of Borwein and Choi concerning an estimate on the square of the number of solutions to \(n = x^2 + N y^2 \) for a squarefree integer \(N \).

1. Introduction

We consider the positive definite quadratic form \(Q(x, y) = x^2 + N y^2 \) for a squarefree integer \(N \). Let \(r_{2,N}(n) \) denote the number of solutions to \(n = Q(x, y) \) (counting signs and order). In this note, we estimate

\[
\sum_{n \leq x} r_{2,N}(n)^2.
\]

A positive squarefree integer \(N \) is called solvable if \(x^2 + N y^2 \) has one form per genus. Note that this means the class number of the form class group of discriminant \(-4N \) equals the number of genera, \(2^t \), where \(t \) is the number of distinct prime factors of \(N \).

Concerning \(r_{2,N}(n) \), Borwein and Choi [2] proved the following:

Theorem 1.1. Let \(N \) be a solvable squarefree integer. Let \(x > 1 \) and \(\epsilon > 0 \). We have

\[
\sum_{n \leq x} r_{2,N}(n)^2 = 3 \frac{N}{2N} \prod_{p \mid 2N} \left(\frac{2p}{p+1} \right) (x \log x + \alpha(N)x) + O(N^{\frac{3}{4}} + x^{\frac{3}{4}} + \epsilon)
\]

where the product is over all primes dividing \(2N \) and

\[
\alpha(N) = -1 + 2\gamma + \sum_{p \mid 2N} \frac{\log p}{p+1} + \frac{2L'(1, \chi_{-4N})}{L(1, \chi_{-4N})} - \frac{12}{\pi^2} \zeta'(2)
\]

where \(\gamma \) is the Euler-Mascheroni constant and \(L(1, \chi_{-4N}) \) is the L-function corresponding to the quadratic character mod \(-4N\).

Based on this result, Borwein and Choi posed the following:

Conjecture 1.2. For any squarefree \(N \),

\[
\sum_{n \leq x} r_{2,N}(n)^2 \sim 3 \frac{N}{2N} \left(\prod_{p \mid 2N} \frac{2p}{p+1} \right) x \log x
\]

Our main result is the following.

Theorem 1.3. Let \(Q(x, y) = x^2 + N y^2 \) for a squarefree integer \(N \) with \(-N \not\equiv 1 \mod 4\). Let \(r_{2,N}(n) \) denote the number of solutions to \(n = Q(x, y) \) (counting signs and order). Then

\[
\sum_{n \leq x} r_{2,N}(n)^2 \sim 3 \frac{N}{2N} \left(\prod_{p \mid 2N} \frac{2p}{p+1} \right) x \log x.
\]

2000 Mathematics Subject Classification. Primary 11E25, 11E45.
2. Preliminaries

We first discuss two key estimates and a result of Kronecker on genus characters. Then using Kronecker’s result, we prove a proposition relating genus characters to poles of the Rankin-Selberg convolution of L-functions. The first estimate is a recent result of Kühleitner and Nowak [13], namely

Theorem 2.1. Let \(a(n)\) be an arithmetic function satisfying \(a(n) \ll n^\epsilon\) for every \(\epsilon > 0\), with a Dirichlet series

\[
F(s) = \sum_{n=1}^{\infty} \frac{a(n)}{n^s} = \frac{(\zeta_K(s))^2}{(\zeta(2s))^{m_1} (\zeta_K(2s))^{m_2}} G(s)
\]

where \(\Re(s) > 1\) and \(\zeta_K(s)\) is the Dedekind zeta function of some quadratic number field \(K\), \(G(s)\) is holomorphic and bounded in some half plane \(\Re(s) \geq \theta, \theta < \frac{1}{2}\), and \(m_1, m_2\) are nonnegative integers. Then for \(x\) large,

\[
\sum_{n \leq x} a(n) = \text{Res}_{s=1} \left(F(s) \frac{x^s}{s} \right) + O(x^{\frac{1}{2}} (\log x)^3 (\log \log x)^{m_1+m_2})
\]

\[
= Ax \log x + Bx + O(a^{\frac{3}{2}} (\log x)^3 (\log \log x)^{m_1+m_2})
\]

where \(A\) and \(B\) are computable constants.

For an arbitrary quadratic number field \(K\) with discriminant \(d_K\), let \(\mathcal{O}_K\) denote the ring of integers in \(K\), and \(r_K(n)\) the number of integral ideals \(I\) in \(\mathcal{O}_K\) of norm \(N(I) = n\). From (4.1) in [13], we have

\[
\sum_{n=1}^{\infty} \frac{(r_K(n))^2}{n^s} = \frac{(\zeta_K(s))^2}{\zeta(2s)} \prod_{p|d_K} (1 + p^{-s})^{-1}.
\]

Applying Theorem 2.1 with \(m_1 = 1\) and \(m_2 = 0\), we obtain

Corollary 2.2. For any quadratic field \(K\) of discriminant \(d_K\) and \(x\) large,

\[
\sum_{n \leq x} (r_K(n))^2 = A_1 x \log x + B_1 x + O(x^{\frac{3}{2}} (\log x)^3 \log \log x),
\]

with \(A_1 = \frac{6}{\pi^2} L(1, \chi_{d_K})^2 \prod_{p|d_K} \frac{p}{p+1}\) and \(B_1 = A_1 \alpha(N)\) with \(\alpha(N)\) as in Theorem 1.1.

The second estimate is a classical result of Rankin [16] and Selberg [17] which estimates the size of Fourier coefficients of a modular form. Specifically, if \(f(z) = \sum_{n=1}^{\infty} a(n) e^{2\pi i nz}\) is a nonzero cusp form of weight \(k\) on \(\Gamma_0(N)\), then

\[
\sum_{n \leq x} |a(n)|^2 = \alpha(f,f)x^k + O(x^{k-\frac{1}{2}})
\]

where \(\alpha > 0\) is an absolute constant and \(\langle f, f \rangle\) is the Petersson scalar product. In particular, if \(f\) is a cusp form of weight 1, then \(\sum_{n \leq x} |a(n)|^2 = O(x)\). One can adapt their result to say the following. Given two cusp forms of weight \(k\) on a suitable congruence subgroup of \(\Gamma = SL_2(\mathbb{Z})\), say \(f(z) = \sum_{n=1}^{\infty} a(n) e^{2\pi i nz}\) and \(g(z) = \sum_{n=1}^{\infty} b(n) e^{2\pi i nz}\), then

\[
\sum_{n \leq x} a(n)\overline{b(n)} n^{1-k} = Ax + O(x^{\frac{1}{2}})
\]
where A is a constant. In particular, if f and g are cusp forms of weight 1, then
\[\sum_{n \leq x} a(n)b(n) = O(x). \]

We will also use a result of Kronecker on genus characters. Let us first explain some terminology. Let $K = \mathbb{Q}(\sqrt{d})$ be a quadratic field of discriminant d_K. d_K is said to be a prime discriminant if it only has one prime factor. Thus it must be of the form: -4, ± 8, $\pm p \equiv 1 \pmod{4}$ for an odd prime p. Every discriminant can be written uniquely as a product of prime discriminants, say $d_K = P_1 \ldots P_k$. Here k denotes the number of distinct prime factors of d_K. Thus d_K can be written as a product of two discriminants, say $d_K = D_1D_2$ in 2^{k-1} distinct ways (excluding order). Now, for any such decomposition we define a character χ_{D_1,D_2} on ideals by
\[
\chi_{D_1,D_2}(\mathfrak{p}) = \begin{cases}
\chi_{D_1}(N\mathfrak{p}) & \text{if } \mathfrak{p} \nmid D_1 \\
\chi_{D_2}(N\mathfrak{p}) & \text{if } \mathfrak{p} \nmid D_2
\end{cases}
\]
where $\chi_d(n)$ is the Kronecker symbol. This is well defined on prime ideals because $\chi_D(N\mathfrak{a}) = 1$ if $(\mathfrak{a}, D) = 1$. χ_{D_1,D_2} extends to all fractional ideals by multiplicativity. Hence we have
\[
\chi_{D_1,D_2} : I \to \{ \pm 1 \}
\]
where I is the group of nonzero fractional ideals of \mathcal{O}_K. Thus χ_{D_1,D_2} has order two, except for the trivial character corresponding to $d_K = d_K \cdot 1 = 1 \cdot d_K$. Every such character χ_{D_1,D_2} is called the genus character of discriminant d_K. As these are different for distinct factorizations of d_K (into a product of two discriminants), we have 2^{k-1} genus characters. Kronecker’s theorem (see Theorem 12.7 in [11]) is as follows.

Theorem 2.3. The L-function of K associated with the genus character χ_{D_1,D_2} factors into the Dirichlet L-functions,
\[
L(s, \chi_{D_1,D_2}) = L(s, \chi_{D_1})L(s, \chi_{D_2}).
\]

Let $K = \mathbb{Q}(\sqrt{-N})$, N squarefree, I as above, and P the subgroup of I of principal ideals. For a non-zero integral ideal \mathfrak{m} of \mathcal{O}_K, define
\[
I(\mathfrak{m}) = \{ a \in I : (a, \mathfrak{m}) = 1 \}
\]
\[
P(\mathfrak{m}) = \{ (a) \in P : a \equiv 1 \pmod{\mathfrak{m}} \}.
\]

A group homomorphism $\chi : I_\mathfrak{m} \to \mathbb{S}^1$ is an ideal class character if it is trivial on $P(\mathfrak{m})$, i.e.
\[
\chi((a)) = 1
\]
for $a \equiv 1 \pmod{\mathfrak{m}}$. Thus an ideal class character is a character on the ray class group $I(\mathfrak{m})/P(\mathfrak{m})$. Taking the trivial modulus $\mathfrak{m} = 1$, we obtain a character on the ideal class group of K. Note that for $K = \mathbb{Q}(\sqrt{-N})$ a genus character is an ideal class character of order at most two.

Let us also recall the notion of the Rankin-Selberg convolution of two L-functions. For squarefree N, consider two ideal class characters χ_1, χ_2 for $\mathbb{Q}(\sqrt{-N})$ and their associated Hecke L-series
\[
L(s, \chi_1) = \sum_{n=1}^{\infty} \frac{\chi_1(n)}{n^s}
\]
\[
L(s, \chi_2) = \sum_{n=1}^{\infty} \frac{\chi_2(n)}{n^s}
\]
which converge absolutely in some right half-plane. We form the convolution L-series by multiplying the coefficients,
\[
L(s, \chi_1 \otimes \chi_2) = \sum_{n=1}^{\infty} \frac{\chi_1(n)\chi_2(n)}{n^s}.
\]

The following result describes a relationship between genus characters \(\chi\) and the orders of poles of \(L(s, \chi \otimes \chi)\). Precisely,

Proposition 2.4. Let \(\chi\) be an ideal class character of \(\mathbb{Q}(\sqrt{-N})\), \(-N \not\equiv 1 \mod 4\), and \(L(s, \chi)\) the associated Hecke L-series. Then \(\chi\) is a genus character if and only if \(L(s, \chi \otimes \chi)\) has a double pole at \(s = 1\).

Proof. Suppose \(\chi_{D_1,D_2}\) is a genus character of discriminant \(-4N\), and \(L(s, \chi_{D_1,D_2}) = \sum_{n=1}^{\infty} \frac{b_i(n)}{n^s}\). By Theorem 2.3 and Exercise 1.2.8 in [14] (see the solution), we have

\[
\sum_{n=1}^{\infty} \frac{b_i(n)^2}{n^s} = \frac{L(s, \chi_{D_1}^2)L(s, \chi_{D_2}^2)L(s, \chi_{D_1}\chi_{D_2})^2}{L(2s, \chi_{D_1}\chi_{D_2}^2)}.
\]

Note that

\[
L(s, \chi_{D_1}^2) = \zeta(s) \cdot \prod_{p \mid D_1} (1 - p^{-s}),
\]

\[
L(s, \chi_{D_2}^2) = \zeta(s) \cdot \prod_{p \mid D_2} (1 - p^{-s}),
\]

\[
L(s, \chi_{D_1}\chi_{D_2})^2 = L(s, \chi_{-4N})^2,
\]

and

\[
L(2s, \chi_{D_1}\chi_{D_2}) = \zeta(2s) \cdot \prod_{p \mid D_1D_2} (1 - p^{-2s}).
\]

We have

\[
\sum_{n=1}^{\infty} \frac{b_i(n)^2}{n^s} = \frac{\zeta(s)^2L(s, \chi_{-4N})^2}{\zeta(2s)} \prod_{p \mid 2N} (1 + p^{-s})^{-1}
\]

and thus a double pole at \(s = 1\).

Conversely, let \(\chi\) be an ideal class character of \(K = \mathbb{Q}(\sqrt{-N})\) and suppose \(L(s, \chi \otimes \chi)\) has a double pole at \(s = 1\). Now \(\chi\) is an automorphic form on \(GL_1(\mathbb{A}_K)\). By automorphic induction (see [1]), \(\chi\) is mapped to \(\pi\), a cuspidal automorphic representation of \(GL_2(\mathbb{A}_Q)\). Note that \(\pi\) is reducible as, otherwise, \(L(s, \pi \otimes \pi)\) has a simple pole at \(s = 1\) ([1], page 200). As \(K\) is a quadratic extension of \(\mathbb{Q}\), we must have \(\pi = \chi_1 + \chi_2\), where \(\chi_i\) are Dirichlet characters. As \(L(s, \chi_1) = L(s, \pi)\) (see [1]) and thus \(L(s, \chi_1 \otimes \chi_2) = L(s, \pi \otimes \pi)\),

\[
L(s, \pi \otimes \pi) = L(s, \chi_1 \otimes \chi_2) = \frac{L(s, \chi_1^2)L(s, \chi_2^2)L(s, \chi_1\chi_2)^2}{L(2s, \chi_1^2\chi_2^2)}.
\]

Now \(L(s, \chi_1 \otimes \chi_2)\) has a double pole at \(s = 1\) if and only if either \(\chi_1 = \overline{\chi_2}\), \(\chi_2^2 \not= 1\), and \(\chi_1 \not= 1\) or \(\chi_1^2 = 1\), \(\chi_2 = 1\), and \(\chi_1\chi_2 \not= 1\). The latter implies \(\chi\) is a genus character. We now need to show that the former also implies that \(\chi\) is a genus character. Note that

\[
L(s, \chi) = \prod_p \left(1 - \frac{\chi(p)}{N(p)^s}\right)^{-1}
\]
and
\[L(s, \chi_1 + \chi_2) = \prod_p \left(1 - \frac{\chi_1(p)}{p^s} \right)^{-1} \prod_p \left(1 - \frac{\chi_2(p)}{p^s} \right)^{-1}. \]

As \(L(s, \chi) = L(s, \pi) \) and \(L(s, \pi) = L(s, \chi_1 + \chi_2) \), we compare Euler factors to get
\[\chi_1(p) + \chi_2(p) = \begin{cases} 0 & \text{if } p \text{ is inert in } K \\ \chi(p) + \overline{\chi(p)} & \text{if } p \text{ splits in } K. \end{cases} \]

For \(p \) inert in \(K \), this yields \(\chi_1(p) = -\chi_2(p) \) and so \(\overline{\chi_2(p)} = \chi_1(p) = -\chi_2(p) \) which implies \(\chi_2(p) = -1 \) and so \(\chi_2(p) = \pm i \). Now consider the following equation whose sum sieves the inert primes
\[
\frac{1}{2} \sum_{p \leq x} \left(1 - \left(\frac{-4N}{p} \right) \right) \chi_2(p) = -\pi(x).
\]
Here \(\pi(x) \) is the number of primes between 1 and \(x \). Thus
\[
\frac{1}{2} \sum_{p \leq x} \chi_2^2(p) - \frac{1}{2} \sum_{p \leq x} \left(\frac{-4N}{p} \right) \chi_2(p) = -\pi(x).
\]
As \(\chi_2^2 \neq 1 \), we have by the prime ideal theorem, \(\sum_{p \leq x} \chi_2^2(p) = o(\pi(x)) \) and so
\[
\sum_{p \leq x} \left(\frac{-4N}{p} \right) \chi_2^2(p) \sim \pi(x).
\]

This implies \(\left(\frac{-4N}{p} \right) \chi_2^2(p) = 1 \). If \(p \) splits in \(K \), then \(\chi_2^2(p) = 1 \) and so \(\chi_2(p) = \pm 1 \). A similar argument works for \(\chi_1(p) = \pm 1 \) if \(p \) splits in \(K \).

Again comparing the Euler factors in \(L(s, \chi) \) and \(L(s, \pi) \), the values of \(\chi(p) \) must coincide with the values of \(\chi_1(p) \) and \(\chi_2(p) \), that is, \(\chi(p) = \pm 1 \). Now \(\chi(p) = \chi([p]) \) where \([p]\) is the class of \(p \) in the ideal class group of \(K \). By the analog of Dirichlet’s theorem for ideal class characters, we know that in each ideal class \(\mathcal{C} \) there are infinitely many prime ideals which split. Thus \(\chi(\mathcal{C}) = \pm 1 \) and hence is of order 2. This implies \(\chi \) is a genus character.

\[\square \]

Remark 2.5. By Proposition 2.4, if \(\chi \) is a non-genus character, then \(L(s, \chi \otimes \chi) \) has at most a simple pole at \(s = 1 \).

3. **Proof of Theorem 1.3**

Proof. As \(-N \equiv 1 \mod 4\), the discriminant of \(K = \mathbb{Q}(\sqrt{-N}) \) is \(-4N\). We also assume that \(t \) is the number of distinct prime factors of \(N \) and so the discriminant \(-4N\) has \(t + 1 \) distinct prime factors.

Given the quadratic form \(Q(x, y) = x^2 + Ny^2 \), we consider the associated Epstein zeta function (see \(\text{[7, 12, 18, 19]} \))
\[
\zeta_Q(s) = \sum_{x,y \neq 0} \frac{1}{(x^2 + Ny^2)^s} = \sum_{n=1}^{\infty} \frac{r_{2,N}(n)}{n^s}.
\]
for \(\Re(s) > 1 \). Now for \(K = \mathbb{Q}(\sqrt{-N}) \), we have Dedekind’s zeta function

\[
\zeta_K(s) = \sum_{\mathfrak{a}} \frac{1}{N(\mathfrak{a})^s} = \sum_{n=1}^{\infty} \frac{a_n}{n^s}
\]

where the sum is over all nonzero ideals \(\mathfrak{a} \) of \(\mathcal{O}_K \). We now split up \(\zeta_K(s) \), according to the classes \(c_i \) of the ideal class group \(C(K) \), into the partial zeta functions (see page 458 of [15])

\[
\zeta_{c_i}(s) = \sum_{\mathfrak{a} \in c_i} \frac{1}{N(\mathfrak{a})^s}
\]

so that \(\zeta_K(s) = \sum_{i=0}^{h-1} \zeta_{c_i}(s) \) where \(h \) is the class number of \(K \). In our case \(K = \mathbb{Q}(\sqrt{-N}) \) is an imaginary quadratic field and so by [8] (Theorem 7.7, page 137), we may write

\[
\zeta_K(s) = \sum_{i=0}^{h-1} \zeta_{Q_i}(s)
\]

where \(Q_i \) is a class in the form class group. Note that in this context, \(Q(x, y) \) corresponds to the trivial class \(c_0 \) in \(C(K) \) and so \(\zeta_{c_0}(s) = \zeta_{Q(x, y)}(s) \). Now let \(\chi \) be an ideal class character and consider the Hecke L-function for \(\chi \), namely

\[
L(s, \chi) = \sum_{\mathfrak{a}} \frac{\chi(\mathfrak{a})}{N(\mathfrak{a})^s}
\]

where \(\mathfrak{a} \) again runs over all nonzero ideals of \(\mathcal{O}_K \). We may now rewrite the Hecke L-function as

\[
L(s, \chi) = \sum_{i=0}^{h-1} \chi(c_i) \zeta_{c_i}(s).
\]

And so summing over all ideal class characters of \(C(K) \), we have

\[
\sum_{\chi} \overline{\chi}(c_0) L(s, \chi) = \sum_{i=0}^{h-1} \zeta_{c_i}(s) \left(\sum_{\chi} \overline{\chi}(c_0) \chi(c_i) \right).
\]

The inner sum is nonzero precisely when \(i = 0 \). As \(\overline{\chi}(c_0) = 1 \) we have \(\zeta_{c_0}(s) = \frac{1}{h} \sum_{\chi} L(s, \chi) \). Thus

\[
\zeta_{c_0}(s) = \frac{1}{h} \left(L(s, \chi_0) + L(s, \chi_1) + \cdots + L(s, \chi_{h-1}) \right).
\]

As \(\chi_0 \) is the trivial character, \(L(s, \chi_0) = \zeta_K(s) \). We now compare \(n^{th} \) coefficients, yielding

\[
r_{2,N}(n) = \frac{1}{h} \left(a_n + b_1(n) + \cdots + b_{h-1}(n) \right)
\]

where \(a_n \) is the number of integral ideals of \(\mathcal{O}_K \) of norm \(n \) and the \(b_i \)'s are coefficients of weight 1 cusp forms (see the classical work of Hecke [9], [10] or [3]). From the modern perspective, this is straightforward. Each \(L(s, \chi_i), 1 \leq i \leq h-1 \), can be viewed as an automorphic L-function of \(GL_1(\mathbb{A}_K) \) and by automorphic induction (see [4]) they are essentially Mellin transforms of (holomorphic) cusp forms, in the classical sense. We now have
\[
\sum_{n \leq x} r_{2,N}(n)^2 = \frac{1}{H^2} \left(\sum_{n \leq x} a_n^2 + \sum_{n \leq x} b_i(n)^2 + 2 \sum_{n \leq x} a_n b_i(n) + \sum_{i \neq j, n \leq x} b_i(n) b_j(n) \right).
\]

By the Rankin-Selberg estimate, \(2 \sum_{i} a_n b_i(n), \sum_{i \neq j} b_i(n) b_j(n)\) are equal to \(O(x)\). By Corollary 2.2,
\[
\frac{1}{H^2} \sum_{n \leq x} a_n^2 = \frac{1}{H^2} \left(A_1 x \log x + B_1 x + O(x^{\frac{4}{3}} (\log x)^3 \log \log x) \right).
\]

We now must estimate \(\sum_{i} b_i(n)^2\). Let us now assume that the first \(2^t - 1\) terms arise from \(L\)-functions associated to genus characters. By Proposition 2.4 and Nowak’s proof of Theorem 2.1 (which uses Perron’s formula and the residue theorem), we obtain
\[
\sum_{n \leq x} b_i(n)^2 = A_1 x \log x + B_1 x + O(x)
\]
with \(A_1\) and \(B_1\) as in Corollary 2.2. As this estimate holds for each \(i\) such that \(1 \leq i \leq 2^t - 1\), the term \(A_1 x \log x\) appears \(2^t\) times in the estimate of \(\sum_{n \leq x} r_{2,N}(n)^2\). By Remark 2.5, the remaining terms \(\sum_{n \leq x} b_i(n)^2\) for \(2^t - 1 < i \leq h - 1\) are all \(O(x)\). Thus
\[
\sum_{n \leq x} r_{2,N}(n)^2 = \frac{1}{H^2} \left[\left(\frac{2^t}{\pi^2} L(1, \chi_{-4N})^2 \prod_{p \mid 2N} \frac{p}{p + 1} \right) x \log x + O(x) \right] + O(x).
\]

By (4.11) in [8] (or equation (8), page 171 in [15]), we have \(L(1, \chi_{-4N}) = \frac{h \pi}{N}\) and so
\[
\sum_{n \leq x} r_{2,N}(n)^2 = \frac{3}{N} \left(\prod_{p \mid 2N} \frac{2p}{p + 1} \right) x \log x + O(x).
\]

The result then follows.

Remark 3.1. It should be possible to obtain the second term in the asymptotic formula. By a careful application of the Rankin-Selberg method, one should obtain an error term of the form \(O(x^\theta)\) with \(\theta < 1\). The remaining case \(-N \equiv 1 \mod 4\) requires more subtle analysis due to the fact that for \(K = \mathbb{Q}(\sqrt{-N}), \mathbb{Z}[\sqrt{-N}]\) is not the maximal order of \(K\). It involves the study of \(L\)-series attached to orders. Using the techniques in [11] and [12], we will take this and sharper error terms up in some detail in a forthcoming paper.

References

[1] J. Arthur and L. Clozel, *Simple algebras, base change, and the advanced theory of the trace formula*, Annals of Math. Studies, Vol. 120, (1990), Princeton University Press.

[2] J. Borwein, K.K. Choi, *On Dirichlet Series for sums of squares*, The Ramanujan Journal, special issues for Robert Rankin, Vol. 7, 1-3, 97–130.

[3] D. Bump, *Automorphic forms and representations*, Cambridge Studies in Advanced Mathematics, 55, Cambridge University Press, 1997.

[4] R. Chapman, A. van der Poorten, *Binary Quadratic Forms and the Eta Function*, Number theory for the millennium, I (Urbana, IL, 2000), 215–227, A K Peters, Natick, MA, 2002.
[5] H. Cohn, *Advanced Number Theory*, Dover Publications, Inc., New York, 1980.
[6] D. Cox, *Primes of the Form \(x^2 + ny^2 \)*, John Wiley & Sons, Inc, New York, 1989.
[7] P. Epstein, *Zur Theorie allgemeiner Zetafunction*, Math. Ann. **56**, (1903), 615–644.
[8] E. Grosswald, *Representations of Integers as Sums of Squares*, Springer-Verlag, 1985.
[9] E. Hecke, *Zur theorie der elliptischen modulfunktionen*, Math. Ann. **97** (1926), 210–242.
[10] E. Hecke, Über das verhalten von \(\sum_{m,n} e^{2\pi i \tau |m^2 - 2n^2|} \) und ähnlichen funktionen bei modulsubstitutionen, J. Reine Angew. Math. **157** (1927), 159–170.
[11] H. Iwaniec, *Topics in Classical Automorphic Forms*, Graduate Studies in Mathematics, Vol. 17, Amer. Math. Soc., Providence, RI, 1997.
[12] E. Kani, *Epstein Zeta-functions and Hecke L-functions*, preprint.
[13] M. Kühleitner, W.G. Nowak, The average number of solutions to the Diophantine equation \(U^2 + V^2 = W^3 \) and related arithmetic functions, Acta Math. Hungar. **104** (2004), 225–240.
[14] R. Murty, *Problems in Analytic Number Theory*, Graduate Texts in Mathematics, Vol. 206, Springer-Verlag, Berlin, 2001.
[15] J. Neukirch, *Algebraic Number Theory*, Grundlehren vol. 322, Springer Verlag, New York, 1999.
[16] R.A. Rankin, *Contributions to the theory of Ramanujan’s function \(\tau(n) \) and similar functions. II. The order of the Fourier coefficients of integral modular forms*, Proc. Cambridge Philos. Soc. **35** (1939), 357–373.
[17] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Archiv. Math. Natur. B **43** (1940), 47–50.
[18] A. Selberg, S. Chowla, On Epstein’s zeta function, J. Reine Angew. **227** (1967), 86–110.
[19] C.L. Siegel, *Advanced Analytic Number Theory*, Tata Institute of Fundamental Research, Bombay, 1980.

Department of Mathematics & Statistics, Queen’s University, Kingston, Ontario, Canada K7L 3N6

E-mail address: murty@math.queensu.ca

E-mail address: osburnr@math.queensu.ca