Two New Deep-water Species of Ampharetidae (Annelida: Polychaeta) from the Eastern Australian Continental Margin

LAETITIA M. GUNTON1, ELENA KUPIRIYANOVA1,2 and TOM AlVESTAD3

1 Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney NSW 2010, Australia
2 Department of Biological Sciences, Macquarie University, North Ryde NSW 2109, Australia
3 Department of Natural History, University Museum of Bergen, P.O. Box 7800, N-5020 Bergen, Norway

ABSTRACT. Two new species, Melinnopsis gardelli sp. nov. and Melinnopsis chadwicki sp. nov. (Annelida, Ampharetidae, Melinninae), are described from deep waters off the east coast of Australia. One hundred and 11 specimens were collected during RV Investigator voyage IN2017_V03 in May–June 2017 using a beam trawl at lower bathyal depths (1000–2500 m). This is the first record of Melinnopsis from the eastern Australian coast. The two new species are morphologically similar, but differ by methyl blue staining pattern, shape of thoracic uncini and pigmented glandular bands above the nuchal slits. Melinnopsis gardelli sp. nov. has a conspicuous stained band on the dorsum ending between chaetigers 9 and 10, uncini with three teeth above the rostral tooth and lacks glandular bands, while M. chadwicki sp. nov. has a faint stained band on the dorsum ending at chaetiger 5, uncini with two teeth above the rostral tooth and possesses glandular bands. They also show differences in bathymetric distribution as M. gardelli sp. nov. was collected around 2500 m and M. chadwicki sp. nov. around 1000 m depth. Phylogenetic relationships among the new species and other members of the family Ampharetidae were assessed using the nuclear 18S and the mitochondrial 16S and cytochrome oxidase subunit I (COI) gene fragments. The results revealed that M. gardelli sp. nov. and M. chadwicki sp. nov. form a monophyletic clade and are genetically distinct from each other and all other analysed species. This is the first time molecular data have been used to describe a species in the genus Melinnopsis.

Introduction

Ampharetidae Malmgren, 1866 is a family of tubicolous annelids. They inhabit soft sediments from intertidal to abyssal depths in all oceans (Aguirrezabalaga & Parapar, 2014; Böggemann, 2009; Rouse & Pleijel, 2001) and can be well-represented and speciose in deep-sea benthic samples (Böggemann, 2009; Holthe, 2000; Saeedi & Brandt, 2020). The majority of recent species descriptions and molecular data published on deep-sea ampharetids has focused on specimens from chemosynthetic hydrothermal vents and methane seeps (Kongsrud et al., 2017; Reuscher et al., 2009; Stiller et al., 2013; Zhou et al., 2019) as well as organic matter falls (Bennett et al., 1994; Queirós et al., 2017), habitats which represent a small fraction of the deep seafloor.

The family Ampharetidae comprises 312 species (Read & Fauchald, 2020) with high numbers (32 out of 62) of accepted monotypic genera. Currently, Ampharetinae and

Keywords: Melinnopsis; Ampharetidae; eastern Australia; lower bathyal; new species

Zoobank registration: urn:lsid:zoobank.org:pub:78FA352E-E590-4AA2-9C07-D963C36A7F5D

Corresponding author: Laetitia M. Gunton Laetitia.Gunton@austmus.gov.au

Received: 20 March 2020 Accepted: 12 June 2020 Published: 12 August 2020 (in print and online simultaneously)

Publisher: The Australian Museum, Sydney, Australia (a statutory authority of, and principally funded by, the NSW State Government)

Citation: Gunton, Laetitia M., Elena Kupriyanova, and Tom Alvestad. 2020. Two new deep-water species of Ampharetidae (Annelida: Polychaeta) from the eastern Australian continental margin. Records of the Australian Museum 72(4): 101–121. https://doi.org/10.3853/j.2201-4349.72.2020.1763

Copyright: © 2020 Gunton, Kupriyanova, Alvestad. This is an open access article licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.
A lack of clear generic definition has led to much confusion about the characters typical of the genus. The diagnosis of Melinnopsis has changed multiple times as authors synonymized genera and described new species (Day, 1964; Fauchald, 1977a; Jirkov, 1989, 2011; Reuscher et al., 2009). Chamberlin (1919) even noted that due to the brevity of the original description, the position of M. atlantica within the subfamily Melinninae was “somewhat doubtful”. Melinnopsis capensis Day, 1955 from South Africa was the second species described within the genus. It is characterized by three pairs of branchiae as opposed to four pairs in the type species. In his review of Ampharetidae Day (1964) transferred Melinnopsis capensis into a new monotypic genus Melinnopside that he erected for species with three pairs of branchiae. Day (1964) also synonymized Melinnexis Annenkova, 1931 and Melinnides Wesenberg-Lund, 1950 with Melinnopsis without an explanation. His review includes the first formal generic diagnosis of Melinnopsis that is characterized by smooth buccal tentacles, four pairs of branchiae, acicular chaeta in segments III–V, 10–14 thoracic uncini, 25–30 abdominal segments, presence or absence of transverse membrane, and absence of dorsal hooks (Day, 1964). However, it is unclear which specimens he based this diagnosis on.

Fauchald (1977a) did not accept Day (1964)’s synonymization of Melinnexis and Melinmides with Melinnopsis, but instead moved Melinmides into Melinnexis, he also amended the generic definition of Melinnopsis given by Day (1964) to include four pairs of branchiae, ten thoracic uncini, similar buccal tentacles, notochaetae starting from segment V, and the absence of dorsal hooks and transverse membrane. In his revision of North Atlantic polychaetes (Holthe, 1986a) and in his catalogue of Terebellomorpha (Holthe, 1986b), Holthe followed Day (1964) and treated the genera Melinnexis and Melinmides (misspelt Melinmides) as synonyms of Melinnopsis. The generic diagnosis was changed again to include both “large and small” buccal tentacles, three to four pairs of branchiae, and 10–14 thoracic segments (Holthe, 1986a).

Jirkov (1989) synonymized Amelinna Hartman, 1969 with Melinnexis (now a synonym of Melinnopsis), arguing that Amelinna was established for species without dorsal hooks and transverse dorsal membrane, which is typical for Melinnexis arctica, the type species of Melinnexis. Jirkov (1989) also suggests synonymizing Melinmides with Melinnopsis stating that although the former has three pairs of branchiae compared with four in the latter, the number of branchiae varies between species, but this synonymy has not been widely accepted (Hilbig, 2005). Jirkov (1989) revised the generic diagnosis of Melinnopsis to “three to four pairs of smooth branchiae, no dorsal membrane and hooks”. Jirkov (2011) again revised the diagnosis for Melinnopsis stating “there are neither hooks nor crest (=transverse membrane) behind the branchiae”. The most recent generic diagnosis was given by Reuscher et al. (2015) to include “large buccal tentacles occurring along with smaller ones. Four pairs of branchiae. Post branchial hooks absent. Brittle acicular neurochaetae in segments II–IV or II–V. Twelve to 14 thoracic uncini. Uncini with subrostral process.”

Molecular phylogenetic studies

The molecular phylogenetic studies on the family Ampharetidae (Bernardino et al., 2017; Eilertsen et al., 2017; Kongsrud et al., 2017; Parapar et al., 2018; Stiller et al., 2013; Zhong et al., 2011; Zhou et al., 2019) have focused on species within Ampharetinae, only one (Bernardino et al., 2017; Kongsrud et al., 2017; Stiller et al., 2017) or two species (Eilertsen et al., 2017) of Melinninae were included in each dataset. Recently, Stiller et al. (2020) included six species of Melinninae in their phylogeny of all Terebelliformia. There are little molecular data available for the subfamily Melinninae. Data for the COI, 16S and 18S gene fragments commonly used in ampharetid phylogenetic studies (Kongsrud et al., 2017) exist from only ten taxa, including eight named species (Melinm is cristata (M. Sars, 1851), M. maculata Webster, 1879, M. albicincta Mackie & Pleijel, 1995, M. palmata Grube, 1870, M. heterodonta (Moore, 1923), M. oculata Hartman, 1969, Isolda pulchella Müller in Grube, 1858, and Isolda bipinnata Fauchald, 1977b).

In the present study we describe two new species belonging to the genus Melinnopsis from deep waters along the Australian eastern continental margin. The phylogenetic position of the new species within Ampharetidae is assessed using molecular data.
Methods

Study area

All samples were collected during research vessel (RV) Investigator voyage “Sampling the Abyss” (IN2017_V03), the first dedicated expedition to sample the biological fauna from the eastern Australian lower bathyal and abyssal environments. From 15 May–16 June 2017 samples were taken along a south to north latitudinal transect of 18 degrees along the east coast of Australia, from 42 to 24°S (Fig. 1). Samples were collected from 1000–4800 m depth using the CSIRO 4 m wide ×0.5 m high Beam Trawl (Lewis, 2010). Onboard, collected specimens were live sorted into higher taxa on ice in chilled (5°C) seawater, annelids were sorted into family, then fixed in either 95% ethanol or in 10% buffered formalin. In the laboratory, formalin-fixed specimens were rinsed in water and then fixed in 80% ethanol.

Morphological investigations

The specimens were examined in ethanol using a dissecting microscope (OLYMPUS SZX7) and compound microscope (OLYMPUS BX53). Specimens were extracted from their tubes, measured (length from prostomium to pygidium), stained with methyl blue and photographed using an OLYMPUS DP74 camera attached to the dissecting and compound microscopes with the imaging software OLYMPUS cellSens Standard 1.17. Some paratypes of Melinnopsis gardelli sp. nov. and Melinnopsis chadwicki sp. nov. were dehydrated in ethanol, critical point dried, coated with 20 nm of gold, and examined under the Scanning Electron Microscope JEOL JSM-6480 at Macquarie University. The type material is lodged at the Australian Museum, Sydney (AM); all Australian Museum registered specimens are prefixed “W.”

DNA extraction, amplification and sequencing

Tissue samples were obtained from six Melinnopsis specimens (Table 1). DNA extraction was performed using a Bioline Isolate II genomic DNA kit following the manufacturer’s protocols. PCR amplification of the COI, 16S and 18S genes was conducted using six sets of primers (Table 2). Polymerase chain reaction (PCR) mixtures consisted of 0.4 µl of each primer (forward and reverse), 1 µl of template
Table 1. Ampharetidae, Terebellidae, Alvinellidae and Scalibregmatidae taxa used in molecular phylogenetic analysis with museum voucher number, sampling location, depth, GenBank accession numbers. Institutional abbreviations used RUB, Ruhr-Universitat Bochum; SIO-BIC, Scripps Institution of Oceanography Benthic Invertebrate Collection; ZMBN, Department of Natural History, University Museum of Bergen; AM, Australian Museum. Dashes indicate no data available. Single asterisk (*) indicates sequences omitted from analysis. Double asterisk (**) in the voucher column indicates the entire specimen was used for sequencing.

species	voucher	location	depth (m)	GenBank or BOLD accession number	reference	
Melinninae						
Isolda pulchella Müller in Grube, 1858	ZMBN 105698	Morocco	35	MG270119 MG253081 MG253135	Eilersten et al., 2017	
Isolda pulchella Müller in Grube, 1858	ZMBN 105697	Morocco	35	MG270120 MG253082 MG253136	Eilersten et al., 2017	
Melina albicincta Mackie & Pleijel, 1995	SIO-BIC A1113	Trondheimsfjord, Norway	230–280	JX423767 JX423679 JX423649	Stiller et al., 2013	
Melina cristata (M. Sars, 1851)	ZMBN 95306	Skagerrak, Norway	212	MG270118 MG253102 MG253147	Eilersten et al., 2017	
Melina maculata Webster, 1879	—	Off North Carolina, USA	< 200	KY972411 KY972391	Bernardino et al., 2017	
Melina palmata	—	France	—	—	unpublished	
Melinopsis sp.	RUB Msp_01	Antarctica	2057	RUMS096-09	—	unpublished
Melinopsis sp.	RUB Msp_09	Antarctica	2057	RUMS104-09	—	unpublished
Melinopsis sp.	RUB Msp_27	Antarctica	2057	RUMS22-09	—	unpublished
Melinopsis sp.	RUB Msp_28	Antarctica	2057	RUMS23-09	—	unpublished
Melinopsis sp.	RUB Msp_29	Antarctica	2057	RUMS24-09	—	unpublished
Melinopsis sp. nov.	AM W50414	off Moreton Bay, Australia	1071–1138	MT556172 MT556641 MT561568	this study	
Melinopsis sp. nov.	AM W52949	Coral Sea Marine Park, Australia	1013–1093	MT556174 MT556643 MT561570	this study	
Melinopsis sp. nov.	AM W52948	Coral Sea Marine Park, Australia	1013–1093	MT556173 MT556642 MT561569	this study	
Melinopsis gardelli sp. nov.	AM W50735	Jervis Marine Park, Australia	2650–2636	MT556175 MT556644 MT561571	this study	
Melinopsis gardelli sp. nov.	AM W51476	Freycinet Marine Park, Australia	2820–2751	MT556176 MT556645 MT561572	this study	
Ampharetinae						
Ampharete finmarchica (Sars, 1865)	SIO-BIC A1100	Hornsundjupet, Svalbard	291	JX423738 JX423670 JX423642	Stiller et al., 2013	
Ampharete octocirrata (Sars, 1835)	SIO-BIC A1109	Hornsundjupet, Svalbard	271	JX423770 JX423682 JX423652	Stiller et al., 2013	
Amphicteis ninonae Jirkov, 1985	ZMBN 95441	Svalbard	340	KX497038 KX513561 —	Kongsrud et al., 2017	
Amphisamytha bioculata (Moore, 1906)	SIO-BIC A2524	San Nicholas Island, CA, USA	400	JX423685 JX423654 JX423634	Stiller et al., 2013	
Amphisamytha carldarei	SIO-BIC A2576-7	South Cleft, Juan de Fuca	—	—	Stiller et al., 2013	
Amphisamytha fauchaldi Solís-Weiss & Hernández-Alcántara, 1994	SIO-BIC A2563	German Flats, East Pacific Rise.	2216	JX423699 JX423658 JX423636	Stiller et al., 2013	
Amphisamytha jacksoni Stiller et al., 2013	SIO-BIC A2576-7	South Cleft, Juan de Fuca	—	—	Stiller et al., 2013	
Amphisamytha julianeae Stiller et al., 2013	SIO-BIC A2563	German Flats, East Pacific Rise.	2216	JX423711 JX423675 JX423646	Stiller et al., 2013	
Amphisamytha lutzi (Desbruyères & Laubier, 1996)	SIO-BIC A2530	Rainbow, Mid-Atlantic Ridge	2330	JX423736 JX423673 JX423645	Stiller et al., 2013	
Amphisamytha vanuatuensis Reuscher et al., 2009	SIO-BIC A1106	Trondheimsfjord, Norway	271	JX423739 JX423671 JX423643	Stiller et al., 2013	
Anobothrus gracilis (Malmgren, 1866)	SIO-BIC A1108	Trondheimsfjord, Norway	88	JX423766 JX423678 JX423648	Stiller et al., 2013	
Grasslea cf. *hydrothermalis* Solís-Weiss, 1993	SIO-BIC A6137	Pinksie’s Vent, Gulf of California	1572	KX497032 KX513552 KX513568	Kongsrud et al., 2017	

Table 1 continued on next page...
Table 1 [continued from previous page]. Ampharetidae, Terebellidae, Alvinellidae and Scalibregmatidae taxa used in molecular phylogenetic analysis with museum voucher number, sampling location, depth, GenBank accession numbers. Institutional abbreviations used RUB, Ruhr-Universitat Bochum; SIO-BIC, Scripps Institution of Oceanography Benthic Invertebrate Collection; ZMBN, Department of Natural History, University Museum of Bergen; AM, Australian Museum. Dashes indicate no data available. Single asterisk (*) indicates sequences omitted from analysis. Double asterisk (**) in the voucher column indicates the entire specimen was used for sequencing.

species	voucher	location	depth (m)	GenBank or BOLD accession number	reference	
Paramytha schanderi Kongsrud et al., 2017	ZMBN 87801	Loki’s Castle Hydrothermal Vents	2350	—	KX513556 KX513572	Kongsrud et al., 2017
Paramytha schanderi Kongsrud et al., 2017	ZMBN 87820	Loki’s Castle Hydrothermal Vents	2350	KX497035	KX513555 KX513571	Kongsrud et al., 2017
Paramytha schanderi Kongsrud et al., 2017	ZMBN 87821	Loki’s Castle Hydrothermal Vents	2350	—	KX513559 KX513575	Kongsrud et al., 2017
Paramytha ossicola Queirós et al., 2017	ZMBN 107232	Setúbal Canyon, Portugal	1000	—	KX513547 KX513563	Kongsrud et al., 2017
Paramytha ossicola Queirós et al., 2017	ZMBN 107234	Setúbal Canyon, Portugal	1000	—	KX513549 KX513565	Kongsrud et al., 2017
Pavelius smileyi Kongsrud et al., 2017	ZMBN 87807	Loki’s Castle Hydrothermal Vents	2350	KX497034	KX513554 KX513570	Kongsrud et al., 2017
Pavelius smileyi Kongsrud et al., 2017	ZMBN 87810	Loki’s Castle Hydrothermal Vents	2350	KX497036	KX513558 KX513574	Kongsrud et al., 2017
Pavelius smileyi Kongsrud et al., 2017	ZMBN 87809	Loki’s Castle Hydrothermal Vents	2350	—	KX513557 —	Kongsrud et al., 2017
Pavelius smileyi Kongsrud et al., 2017	ZMBN 87825	Loki’s Castle Hydrothermal Vents	2350	KX497037	KX513560 KX513576	Kongsrud et al., 2017
Pavelius uschakovi Kuznetsov & Levenstein, 1988	ZMBN 108241	Okhotsk Sea, Russia	800	KX497033	KX513553 KX513569	Kongsrud et al., 2017
Samythella neglecta Wollbæk, 1912	ZMBN 99276	Norwegian Sea	823–809	MG270113	KX513561 KX513573	Eilertsen et al., 2018
Sosane wahrbergi (Eliason, 1955)	SIO-BIC A1118	Gullmarsfjorden, Sweden	66	JX423768	JX423680 JX423650	Stiller et al., 2013
Sosane wireni (Hessle, 1917)	ZMBN 95447	Bergen, Norway	98	KX497039	KX513562 KX513577	Kongsrud et al., 2017
Terebellidae						
Polycirrus carolinensis Day, 1973	SIO-BIC A1101	Curlew Bank, Belize	15–17	JX423769	JX423681 JX423651	Stiller et al., 2013
Terebella lapidaria Linnaeus, 1767	SIO-BIC A1102	Plymouth, UK	low tide	JX423771	JX423683 JX423653	Stiller et al., 2013
Alvinellidae						
Alvinella caudata Desbruyères & Laubier, 1986	SIO-BIC A1092	German Flats, E.P.R.	2216	JX423737	JX423669 JX423641	Stiller et al., 2013
Scalibregmatidae (outgroup)						
Scalibregma inflatum Rathke, 1843	—	Helgoland, Germany	—	—	—	—

Species voucher location depth GenBank or BOLD accession number reference
Table 2. Primers used for PCR and sequencing.

gene	primer	sequence 5′−3′	direction	reference
16S	Ann16SF	GCGGTATCCCTCGACCCTGRCWAAGGTA	forward	Sjölin et al., 2005
16SbrH		CCGGTCTGAACTCGATGATCA	reverse	Palumbi, 1991
18S	18e	CTGGTGTGTCCTGGCCAGT	forward	Hillis & Dixon, 1991
	18L	GAATACCGCGGTCTGCGACC	reverse	Halanych et al., 1995
	18F509	CCCGTTAATGGTGAAGTATGA	forward	Struck et al., 2002
	18R	TCCGAAAGCGCTGATCAGATACCG	reverse	Passamaneck et al., 2004
	18F997	TCGCACTTCTGGCAATTTCTTAA	forward	Struck et al., 2002
	18R1843	GATGCCAATCGTATCTCTGCGAGTCACCTAC	reverse	Struck et al., 2005
	TimA	AMCTGGTTGATCCTGGCA	forward	Norén & Jondelius, 1999
	11000R2modified	CGGTATCTGACATCGTCTTCGA	reverse	Kupriyanova et al., 2006
COI	polyLCO	GAYTATWTTCAACACAACTCATCAAGATATTGG	forward	Carr et al., 2011
polyHCO		TAMACTTCWGGGTGACCAAARAATCA	reverse	Carr et al., 2011

DNA, 2 µl Coral Load Qiagen PCR buffer, 1.5 µl MgCl₂, 1.5 µl dNTPs, 0.1 µl MyTaq DNA Polymerase Biofil and 13.1 µl water, making a total mixture of 20 µl. PCRs were conducted in a Thermal Cycler with the following conditions; COI: 94°C/1 min, 5 cycles 94°/40 s, 45°/40 s, 72°/60 s, followed by 35 cycles 94°/40 s, 50°/30 s, 72°/60 s, and finally 72°/5 min 16S: 94°/3 min, 35 cycles 94°/30 s, 50°/30 s, 72°/90 s, and finally 72°/7 min 18S: 94°/3 min, 40 cycles of 94°/30 s, 52°/30 s, 72°/30 s and finally 72°/5 min. The quantity of PCR products was detected using gel electrophoresis and visualized using a Bio-Rad XR+ Gel Documentation System. Successful PCR products were sent to Macrogen in South Korea where they were purified and standard Sanger sequencing was performed.

Sequence analysis

Overlapping fragments were assembled into consensus sequences and edited in Geneious Prime 2019.0.4 (https://www.geneious.com). A BLAST analysis (Altschul et al., 1990) was performed to confirm the correct region had been amplified, to compare with other sequences on GenBank, and to check for contamination. New sequences were submitted to GenBank (Table 1). Additional sequences from the family Ampharetidae (Melininae: 6 species and 21 sequences, Ampharetinae: 21 species and 74 sequences) Alvinellidae (1 species 3 sequences) and Terebellidae (2 species, 6 sequences) were downloaded from GenBank (Table 1). Sequences were selected from GenBank using the following criteria suggested by Hutchings & Kupriyanova (2018): voucher specimens were available, collection location information was available, specimens were collected near the type locality, sequences were from published literature and at least two gene fragments were available (except for Melinopsis sp. from Antarctica the only Melinopsis sequences available). One species of Scalibregmatidae (Scalibregma inflatum) was used as an outgroup.

Sequences were aligned using the Geneious plugins with the default settings: MAFFT (Katoh et al., 2002) for 16S and 18S and MUSCLE (Edgar, 2004) for COI. Pairwise genetic distances for 16S and COI were calculated in Geneious. Concatenated sequences for all three genes were made in Geneious. JModelTest (Darriba et al., 2012) was used to find the best model using the Akaike information criteria. The model GTR + I + G was selected as the best model for each gene. Phylogenetic trees were constructed in MrBayes v3.2.6 (Ronquist et al., 2012). The analysis was run for 2,000,000 generations, until the standard deviation of split frequencies was below 0.01 and potential scale reduction factor (PSRF) was 1.0 for all parameters, the first 25% of the generations were discarded as burn-in. Trees were visualized in FigTree v1.4.4 (Rambaut, 2018) and edited in Adobe Illustrator.

Taxonomy

Melinopsis McIntosh, 1885

Melinopsis McIntosh, 1885 (including Amelinna Hartman, 1969; Melinnexis Annenkova, 1931; and Melinnides Wesenberg-Lund, 1950) sensu Reuscher et al., 2015.

Type species. Melinopsis atlantica McIntosh, 1885 (type lodged at the Natural History Museum in London U.K., catalogue number 1885.12.1.330).

Generic diagnosis. Large buccal tentacles occurring along with smaller ones. Four pairs of branchiae. Post branchial hooks absent. Brittle acicular neurochaetae in segments II–IV or II–V. Twelve to 14 thoracic uncini. Uncini with subrostral process.

Remarks. Our species fit the generic diagnosis of Reuscher et al. (2015) well, one long buccal tentacle, four pairs of branchiae, acicular chaetae on segments II–V, 12 thoracic uncini, uncini with subrostral process and absence of post branchial hooks (dorsal hooks).

Melinopsis gardelli sp. nov.

urn:lsid:zoobank.org:act:D98E867B-B70F-42C3-AAEA-BD178B01D424

Figs 2–5

Holotype incomplete missing part of long buccal tentacle: AM W.50735, IN2017_V03 operation (OPS) 056, Australia, New South Wales, Jervis Commonwealth Marine Reserve, Beam Trawl (start 35°19'58.8"S 151°15'28.8"E, 2650 m; end 35°19'55.2"S 151°12'50.4"E, 2636 m) 29/5/2017.

Paratypes: AM W.53131 and AM W.52539 (mounted for SEM), OPS 056 Australia, New South Wales, Jervis Commonwealth Marine Reserve, Beam Trawl (start 35°19'58.8"S 151°15'28.8"E, 2650 m; end 35°19'55.2"S 151°12'50.4"E, 2636 m) 29/5/2017.
Figure 2. *Melinnopsis gardelli* sp. nov. light microscope images. (*A*) holotype (AM W.50735) lateral view of complete specimen; (*B*) holotype (W.50735) dorsal view of anterior region, arrow indicates postbranchial dorsal membrane; (*C*) holotype (W.50735) prostomium, arrow indicates slightly raised lip; (*D*) W.53107 lateral view of anterior region, arrows indicate acicular neurochaetae and (*E*) holotype (AM W.50735) ventral view of anterior region showing ventral shields. Scale bars: 1 mm.
Other material examined. Total 47 specimens. (2 specimens) AM W.51476, W.51480 OPS 004 Australia, Tasmania, Freycinet Commonwealth Marine Reserve, Beam Trawl (start 41°43′51.6″S 149°7′12″E, 2820 m; end 41°47′27.6″S 149°9′21.6″E, 2751 m) 18/05/2017. (2 specimens) AM W.50424 OPS 044 Australia, New South Wales, off Bermagui, Beam Trawl (start 36°21′18″S 150°38′38.4″E, 2821 m; end 36°18′54″S 150°39′3.6″E, 2687 m) 27/05/2017. (38 specimens) AM W.50395, W.50735, W.52987, W.52988, W.50370, W.50394, W.50396, W.53107, W.50398, OPS 056 Australia, New South Wales, Jervis Commonwealth Marine Reserve, Beam Trawl (start 35°19′58.8″S 151°15′28.8″E, 2650 m; end 35°19′55.2″S 151°12′50.4″E, 2636 m) 29/5/2017. (2 specimens) AM W.50736, W.50411 OPS 090 Australia, New South Wales, off Byron Bay, Beam Trawl (start 28°40′37.2″S 154°12′10.8″E, 2587 m; end 28°42′32.4″S 154°11′24″E, 2562 m) 07/06/2017. (1 specimen) AM W.50412, OPS 101 Australia, Queensland, off Moreton Bay, Beam Trawl (start 26°56′45.6″S 153°56′42″E, 2520 m; end 26°58′15.6″S 153°57′3.6″E, 2576 m) 09/06/2017. (2 specimen) AM W.50418, W.50419, OPS 122 Australia, Queensland, Coral Sea Commonwealth Marine Reserve Beam Trawl, (start 23°45′3.6″S 154°38′20.4″E, 2369 m; end 23°46′22.8″S 154°36′57.6″E, 2329 m) 13/06/2017.

Description (based on holotype). Holotype 40 mm length for more than 60 chaetigers (Fig. 2A), widest at post-branchial region 4 mm (Fig. 2B), thereafter gradually tapering to abdomen (1 mm width) and pygidium. Thorax with 16 chaetigers; neurochaetae as small acicular spines on segments II–V and uncini on remaining > 56 chaetigers.

Prostomium with well-defined anterior and posterior sections separated by a pair of deep transverse nuchal slits meeting mid-dorsally (Fig. 2C). Anterior part of prostomium whole, without any distinct lobes, and with a slightly raised lip (Fig. 2C). No eyespots or pigmented glandular bands present. Segments I and II obscured by dorsal branchial ridge. Segment I continued ventrally forming lower margin of mouth with low crenulations on the ventral side, variation in other specimens no crenulations.

Buccal tentacles in holotype one large ridged stump, six damaged smaller tentacles arranged in three pairs arising from large membranous lip (Fig. 2C). Small tentacles smooth and grooved. Variation other specimens, one long buccal tentacle, ridged at base becoming smooth along length, measuring up to 34 mm and 6 smaller tentacles (3 pairs) length around 2 mm length.

Lateral wings of anterior body between prostomium and segment V highly arched (Fig. 2D).

Segment I collar-like, laterally and ventrally encompassing head region. Branchiae emerging together on dorsal branchial ridge at level of segment II–III, arranged in two basally fused groups of four, three branchiae in front and one situated slightly behind (towards the anterior) (Fig. 2B). Inner- and anteriormost branchia of each group joined by low membrane (less than 10% branchial length). Branchiae in cross-section slightly flattened smooth with central groove, gently tapering to filiform tips. Branchiae roughly one fifth the length of longest buccal tentacle. Outer pair of branchiae longest. Variation in other specimens, branchiae circular in cross section.

Postbranchial dorsal membrane low inconspicuous, located on chaetiger 4 (Fig. 2B). Postbranchial hooks absent. Segmentation visible dorsally in postbranchial area. No visible nephridial papillae.
Figure 4. *Melinnopsis gardelli* sp. nov. light microscope images of holotype (W.50735). (A) lateral view of thoracic uncini; (B) lateral view of abdominal uncini; (C) row of thoracic uncini; (D) thoracic uncini; (E) row of abdominal uncini; (F) abdominal uncini. Scale bars: A, B 1 mm; C, E 50 µm; D, F 10 µm.
Pygidium missing in holotype. Other specimens, terminal crenulated anus, bounded dorsolaterally by 8 small indistinct lobes. No anal cirri.

Methyl blue staining pattern. Use of methyl blue reveals in holotype strong staining of prostomium except nuchal slits, strong staining segments I to IV, branchiae lightly speckled along edges, postbranchial membrane (Fig. 2B). Conspicuous stained band immediately behind dorsal fold ending between chaetigers 9 and 10 (Fig. 2A, B). Stained band region shorter in other specimens. Speckled staining laterally between chaetiger 5 to end of thorax. Stained bands (anterior/ posterior direction) on prostomium ventral lobe (Fig. 2E). Strong staining around thirteen ventral shields, staining strong anterior section of ventral shield light staining posterior section of shield, shields cover entire ventral surface of the segment (Fig. 2E). Abdomen staining weak, mainly as light speckles on dorsal side of neuropodial lappets and on small rounded projections in notopodial position.

Tube. Missing in holotype. Some specimens have fine-grained sediment tube with some thin green veins running throughout others not, others with Foraminifera. The tube is lined with a thin, stiff clear membrane. Length of tube at least twice as long as specimens.

Distribution. Coral Sea Marine Park to Freycinet Commonwealth Marine Reserve, Tasmania. Eastern Australia.

Etymology. The new species is named *gardelli* after Rickard Gardell for his generous donation to the Australian Museum Research Institute.

Remarks. The new species has 12 thoracic uncinigers, like nine other species of *Melinnopsis* (*M. abyssalis, M. annenkovae, M. arctica, M. chadwicki* sp. nov., *M. collaris, M. dubita, M. monocera, M. rostrata* and *M. somovi*) (Table 3). Buccal tentacles of *M. abyssalis* are all free at base, those of *M. gardelli* sp. nov. are fused. The original description of *M. annenkovae* is brief (Uschakov, 1952) and it is difficult to...
draw morphological comparisons between *M. annenkovae* and *M. gardelli* sp. nov. *Melinnopsis annenkovae* possesses a “well-developed glandular band” on the fourth dorsal segment, but no images or further details are provided, in *M. gardelli* sp. nov. a glandular band was absent, but a post-branchial dorsal membrane was present on chaetiger 4. *Melinnopsis annenkovae* has a triangular shaped buccal tentacle while that of *M. gardelli* sp. nov. is rounded, although tentacle shape may vary within species. *Melinnopsis gardelli* sp. nov. differs from *M. arctica* by the absence of papillae on the large buccal tentacle. *Melinnopsis collaris* is described as having “a large, thin, foliaceous collar about the sides and ventrum to conceal the peristomium” (Hartman, 1967), this foliaceous collar is not present in *M. gardelli* sp. nov. *Melinnopsis dubia* has multiple long buccal tentacles instead of one long one. *Melinnopsis monocera* aligns well with *M. gardelli* sp. nov., but differs by the shape of thoracic uncini, *M. monocera* has two teeth above the rostral tooth whereas *M. gardelli* sp. nov. has three. *Melinnopsis rostrata* possesses a denticulated transverse membrane which is absent in *M. gardelli*. *Melinnopsis somovi* has three pairs of branchiae, whereas *M. gardelli* sp. nov. has four pairs. The new species has a conspicuous stained band on the dorsal area when stained with methyl blue, which has not been noted in any other species.

Melinnopsis chadwicki sp. nov.

urn:lsid:zoobank.org:act:FD5DA304-28BB-4CB3-85F3-11D285CA149E

Figs 6–7

Holotype incomplete missing part of long buccal tentacle: AM W.52950, IN2017_V03 operation (OPS) 104 Australia, Queensland, off Moreton Bay, Beam Trawl (start 26°57’39.6”S 153°50’52.8”E, 1071 m; end 26°59’27.6”S 153°50’49.2”E, 1138 m) 10/06/2017. **Paratypes** mounted for SEM AM W.52537 and AM W.52538, OPS 104 Australia, Queensland, off Moreton Bay, Beam Trawl (start 26°57’39.6”S 153°50’52.8”E, 1071 m; end 26°59’27.6”S 153°50’49.2”E, 1138 m) 10/06/2017.

Other material examined. Total 58 specimens. (17 specimens) AM W.50417, W.50416, W.52980, W.52949, W.52979, W.50737, W.52948, W.52999, W.53000 OPS 121 Australia, Queensland, Coral Sea Commonwealth Marine Reserve, Beam Trawl (start 23°35’13.2”S 154°11’38.4”E, 1013 m; end 23°37’1.2”S 154°11’42”E, 1093 m) 13/06/2017. (4 specimens) AM W.50404, W.52997, W.50406, W.50405 OPS 080 Australia, New South Wales, Central Eastern Commonwealth Marine Reserve, Beam Trawl (start 30°55’56.4”S 153°35’45.6”E, 1257 m; end 30°74’0.8”S 153°34’15.6”E, 1194 m) 05/06/2017. (36 specimens) AM W.50415, W.50414, W.52981, W.52950, W.52951, W.52965, W.52975, W.52955, W.52961, W.52958, W.52973, W.52954, W.52956, W.52952, W.52953, W.52969, W.52976, W.52959 OPS 104 Australia, Queensland, off Moreton Bay, Beam Trawl (start 26°57’39.6”S 153°50’52.8”E, 1071 m; end 26°59’27.6”S 153°50’49.2”E, 1138 m) 10/06/2017. (1 specimen) W.50403 OPS 069 Australia, New South Wales, Hunter Commonwealth Marine Reserve, Beam Trawl (start 32°28’44.4”S 152°59’38.4”E, 1006 m; end 32°30’25.2”S 152°59’27.6”E, 1036 m) 03/06/2017.

Description (based on holotype). Holotype 22 mm length for more than 55 chaetigers, widest at post-branchial region 1 mm (Fig. 6A), thereafter gradually tapering to abdomen (0.5 mm width) and pygidium. Thorax with 16 chaetigers, neurochaetae as small acicular spines on segments II to V and uncini on remaining 46 chaetigers.

Prostomium with well-defined anterior and posterior sections separated by a pair of deep transverse nuchal slits that meet mid-dorsally (Fig. 6C). Pigmented glandular bands above nuchal slits (Fig. 6C). Anterior part of prostomium whole, without any distinct lobes, and with a slightly raised lip. No eyespots present. Segments I and II obscured by branchial ridge. Segment I continued ventrally to form lower margin of the mouth no crenulations.

Buccal tentacles in holotype one short stump, three small tentacles, arising from a large membranous lip (Fig. 6B). Small tentacles smooth and grooved. In other specimens, one long buccal tentacle, smooth along length, twisted and ventrally groove (Fig. 7A), generally around 5 mm in length. In many specimens long buccal tentacle broken off, four smaller tentacles (three and one on each side) although probably six in total (two pairs of three).

Lateral wings of anterior body between prostomium and segment V highly arched (Fig. 6B).

Segment I collar-like, laterally and ventrally encompassing head region. Branchiae emerging together on dorsal branchial ridge at level of segment II–III (Fig. 7A), arranged in two basally fused groups of four, three branchiae in front and one pair slightly behind (towards anterior). Inner- and anteriormost branchia of each group not joined by membrane. Branchiae circular in cross section, slightly ridged (Fig. 7A), dorsal groove, gently tapering to filiform tips. Branchiae roughly one third the length of longest buccal tentacle. Outer pair of branchiae longest (Fig. 6B).

Postbranchial dorsal membrane not visible. Postbranchial hooks absent. Segmentation not visible dorsally in postbranchial area. No visible nephridial papillae.

Capillary notochaetae present in 14 thoracic chaetigers, starting from segment IV. In holotype, anterior end notopodial chaetigers damaged. In paratypes, chaetiger 3 (segment IV) with few fine notochaetal capillaries and chaetiger 4 (segment V) with more abundant fine notochaetae arising from body wall. Short, cylindrical notopodia with thicker capillaries starting from chaetiger 6. Notochaetae arranged in double rows, roughly the same length. Microfibre ends on notochaetae visible (Fig. 7C).

Abdominal notochaetae lacking. No small, papilliform projections evident in notopodial positions.

Neurochaetae as small acicular spines with lanceolate tips, on segments II to V (Fig. 7B). Neuropodial uncini from chaetiger 5 (segment VI) present in 12 thoracic uncini. Holotype complete with more than 40 abdominal uncini.

Holotype damaged at end of thorax beginning of abdomen. In other specimens, thoracic uncini emerge subdistally on short flaps until chaetiger 16, distally on narrow lappets on chaetigers 17 and 18. In holotype, abdomen uncini arranged on narrow lappets decreasing in size until pygidium, similar to last two thoracic chaetigers.

Thoracic uncini in single line of around 43 (Fig. 7D). Abdominal uncini in a single line of 14 (Fig. 7E). Uncini of thoracic uncini with two teeth in one vertical row over rostral tooth, subrostral process and basal prow (Fig. 7D). Uncini of abdominal uncini with numerous teeth over

Gunton et al.: New deep-water Ampharetidae species
Figure 6. *Melinnopsis chadwicki* sp. nov. light microscope images. (A) holotype (AM W.52950) lateral view of entire specimen, (a) pygidium; (B) holotype lateral view of anterior part; (C) AM W.52981 prostomium, arrows indicate transverse nuchal organs; (D) holotype sediment tube. Scale bars: A, B 1 mm; C 0.5 mm; D 2 mm.
Figure 7. *Melinnopsis chadwicki* sp. nov. SEM micrographs of paratypes (W.52537 and W.52538). (A) AM W.52538 dorsal view of anterior section; (B) W.52538 acicular chaetae segment 3 and 4; (C) W.52537 close up of notochaetae microfiber endings; (D) W.52537 thoracic uncini; (E) W.52537 abdominal uncini. Scale bars: A 1 mm, B 20 µm, C 2 µm, D 5 µm, E 10 µm.
rostral tooth, subrostral process and basal prow (Fig. 7E). Pygidium with terminal crenulated anus, bounded by 4 small indistinct lobes. No anal cirri. (Fig. 6a).

Methyl blue staining pattern. Use of methyl blue in holotype revealed light staining of prostomium except nuchal slits. Stained bands (anterior/ posterior direction) on prostomium ventral lobe absent, however stained band along anterior edge of prostomium ventral lobe present. Strong staining in segments I to IV. Light staining branchiae. Variation, specimens occasionally have stained dorsal banded region as in M. gardelli sp. nov., but less distinct and until chaetiger 5. Light speckling between thoracic chaetigers. Stained ventral shields, shields cover entire ventral surface of the segment. Indistinct number of shields on holotype due to damage. Light speckles staining on abdomen. No staining on neuropodial lappets.

Tube. In holotype, sediment tube with small green veins running throughout and Foraminifera attached (Fig. 6D). Tube similar length to the specimen. Tube varies among specimens, may not have green veins and Foraminifera attached.

Distribution. Coral Sea Marine Park to Hunter Commonwealth Marine Reserve. Eastern Australia

Etymology. This species is named after Clarence (Clarry) Chadwick for his endowment that supports the Chadwick Biodiversity Fellowship at the Australian Museum Research Institute.

Remarks. Melinnopsis chadwicki sp. nov. appears to be closely related to M. gardelli sp. nov. by acicular neurochaetae on segments II–V, one large buccal tentacle and multiple smaller ones, four branchiae and branchial arrangement and 12 thoracic uncini, however, it can be differentiated from the latter by the shape of the thoracic uncini which have 2 rather than 3 teeth above the rostral.
tooth, the distinct presence of pigmented glandular bands above nuchal slits and the lack of a conspicuous stained band ending between chaetigers 9 and 10. The two species are found at different depths: *M. chadwicki* sp. nov. around 1000 m and *M. gardelli* sp. nov. around 2500 m. The difference between new species of *Melinnopsis* and others with 12 thoracic uncini are discussed in the remarks of *M. gardelli* sp. nov. above and in Table 3.

Molecular results

Bayesian analysis of combined dataset of COI, 16S and 18S sequence data (Fig. 8) inferred two major poorly supported (posterior probability, pp 0.68) clades within Ampharetidae. The first strongly supported (pp 1.0) clade included taxa typical for Ampharetinae as a sister taxon to the alvinellid *Alvinella caudata*. Within the Ampharetinae clade, *Amphicteis ninonae* is a sister taxon to a clade comprising two major ampharetin clades (pp 0.97). The monophyletic *Amphisamithya* (pp 1.0) clade is a sister group to the clade comprising other typical ampharetins (*Sosane-Paramytha-Ampharetinae-Enobothrus-Eclyssipe-Pavelius-Grassleia*). Within the latter large ampharetin clade, *Paramytha* constitutes a well-supported monophyletic group (pp 1.0) which is sister to well-supported (pp 1.0), but poorly resolved *Sosane-Ampharetinae-Enobothrus-Eclyssipe-Pavelius-Grassleia* clade. Within the latter clade there is a four-way polytomy comprising clades *Sosane-Ampharetinae, (Enobothrus-Ampharetinae), Eclyssipe, and non-monophyletic Pavelius* that has *Grassleia* nested within.

The second major clade within Ampharetidae includes the terminals attributed to Melinninae (*Isolda, Melinna, and Melinnopsis*), but also includes an ampharetin *Samythella neglecta* Wollebaek, 1912 as clade that forms a sister group (pp 0.62) to a well-supported (pp 1.0) monophyletic, but poorly resolved clade comprising all other melinins. Monophyletic *Isolda pulchella* (pp 1.0) forms a poorly supported (pp 0.56) clade with an unresolved melinnin clade. The latter clade is a four-way polytomy that includes clades *Melinna cristata* (pp 1.0), *Melinna albicincta + Melinna palmata* (pp 0.62), *Melinna sp.* (pp 0.91) and a well-supported (pp 1.0) clade comprising sister *Melinnopsis chadwicki* sp. nov. (pp 1.0) and *M. gardelli* sp. nov. (pp 1.0). The terebellid clade (*Polyclavus caroliensis + Terebella lapidaria*) (pp 1.0) was recovered as a sister to all ampharetids (including an alvinellid) with high support (pp 1.0). Within the latter large ampharetin clade, *Ampharetidae*. The first strongly supported (pp 1.0) clade is a sister taxon to a clade comprising other typical ampharetins (*Sosane-Paramytha-Ampharetinae-Enobothrus-Eclyssipe-Pavelius-Grassleia*). Within the latter large ampharetin clade, *Paramytha* constitutes a well-supported monophyletic group (pp 1.0) which is sister to well-supported (pp 1.0), but poorly resolved *Sosane-Ampharetinae-Enobothrus-Eclyssipe-Pavelius-Grassleia* clade. Within the latter clade there is a four-way polytomy comprising clades *Sosane-Ampharetinae, (Enobothrus-Ampharetinae), Eclyssipe, and non-monophyletic Pavelius* that has *Grassleia* nested within.

The second major clade within Ampharetidae includes the terminals attributed to Melinninae (*Isolda, Melinna, and Melinnopsis*), but also includes an ampharetin *Samythella neglecta* Wollebaek, 1912 as clade that forms a sister group (pp 0.62) to a well-supported (pp 1.0) monophyletic, but poorly resolved clade comprising all other melinins. Monophyletic *Isolda pulchella* (pp 1.0) forms a poorly supported (pp 0.56) clade with an unresolved melinnin clade. The latter clade is a four-way polytomy that includes clades *Melinna cristata* (pp 1.0), *Melinna albicincta + Melinna palmata* (pp 0.62), *Melinna sp.* (pp 0.91) and a well-supported (pp 1.0) clade comprising sister *Melinnopsis chadwicki* sp. nov. (pp 1.0) and *M. gardelli* sp. nov. (pp 1.0). The terebellid clade (*Polyclavus caroliensis + Terebella lapidaria*) (pp 1.0) was recovered as a sister to all ampharetids (including an alvinellid) with high support (pp 1.0). *Melinna maculata* was recovered as a taxon closely related to the outgroup *Scalibregma inflatum*.

The COI intraspecific genetic distances within *M. chadwicki* sp. nov. ranged 0.3–0.5% and within *M. gardelli* sp. nov. ranged 1.2–3.7%. The mean intraspecific genetic distance between *M. chadwicki* sp. nov. and *M. gardelli* sp. nov. was 13.9%. The single closest COI sequence of both Melinnopsis chadwicki sp. nov. and *M. gardelli* sp. nov. was Melinnopsis sp. sequence RUMS122-09 (18.4% difference). The 16S intraspecific genetic distance between *M. chadwicki* sp. nov. was 0–0.3% and between *M. gardelli* sp. nov. 0–0.3%. The mean intraspecific genetic distance between *M. chadwicki* sp. nov. and *M. gardelli* sp. nov. was 6.6%. The closest 16S sequence to both *M. chadwicki* sp. nov. and *M. gardelli* sp. nov. was *M. cristata* sequence NTNU-VM 68699 (18.7% difference).

Discussion

Melinnopsis gardelli sp. nov. and *M. chadwicki* sp. nov. are the first two species of *Melinnopsis* described from Australian waters. Previously, two specimens of *Melinnopsis* sp. were reported from two localities sampled from 2000–3000 m during deep-water research voyages in 2013 (SS2013 C02) and 2017 (RE2017 CO1) to the Great Australian Bight (GAB), South Australia (MacIntosh et al., 2018, *Atlas of Living Australia*). Unfortunately, we could not confirm whether these GAB specimens matched our species as the material was in poor condition and formalin fixed, meaning no further morphological or molecular studies could be conducted.

Melinnopsis gardelli sp. nov. and *M. chadwicki* sp. nov. appear to have distinct, non-overlapping bathymetric ranges, as *M. gardelli* sp. nov. is recorded from 2520–2821 m depth and *M. chadwicki* sp. nov. from 1006–1257 m depth. Thirteen of the currently accepted 16 *Melinnopsis* species were described from below 1000 m and all the other species were described from below 100 m (Table 3). Solis-Weiss (1993) suggested that Melinninae are generally restricted to deeper waters, this holds true for *Melinnopsis* but not for all genera because species of *Melinna* and *Isolda* are known from shallower depths (for example, *Melinna palmata* occurs in high densities around 10–15 m in the English Channel (Kempf et al., 2002) and *Isolda albula* Mohammad, 1971 was described from intertidal areas in Kuwait.

The species reported here agree well morphologically with the most recent generic diagnosis of *Melinnopsis* by Reuscher et al. (2015), which includes the presence of one very long buccal tentacle. This important morphological feature was not reported, either broken off or never present in the original description of *M. atlantica*, and McIntosh (1885) only notes that a “proboscis protrudes”. It is in Holthe (1986a) that tentacle size is used for the first time to distinguish *Melinna* from *Melinnopsis*, the former having tentacles of uniform size and the latter having tentacles of two sizes. Holthe (1986a) goes on to mention “one very large and several small tentacles” in the key for *Melinnopsis arctica* (previously *Mellinexis arctica*) and *M. annenkovaevae* (previously *Mellinexis annenkovaevae*). This characteristic large buccal tentacle is likely a feature that has been incorporated into the generic diagnosis after the synonymization by Day (1964) of *Melinexis* and *Mellinides* with *Melinnopsis* because it is not a feature of the genus *Melinnopsis* according to McIntosh’s (1885) original description of *Melinnopsis atlantica*. Examination of the holotype of *M. atlantica* lodged at the Natural History Museum in London revealed that the specimen was badly damaged and lacked a large buccal tentacle (M. Georgieva pers. comm.). A revised morphological description of *M. atlantica* is needed along with molecular data, which is not possible using the holotype due to its poor condition and the fact that it was collected over 100 years ago. Consequently, specimens from the type locality should be collected, a neotype designated, examined and sequenced, as performed e.g., for *Hydroides brachycantha* Rioja, 1941 in Sun et al., (2016). This will allow a revision of the generic diagnosis and eventually of the entire genus *Melinnopsis*.

The two new species are morphologically similar but display differences in the shape of thoracic uncini and
species	no. of TU	dorsal membrane	buccal tentacles	branchiae	no. of teeth above rostral tooth in TU	body size, length: width (mm)	tube	type locality
M. abyssalis (Hartman, 1969)	12	Absent	2 types: 1 large, many small	4 pairs: anterior middle pair largest, 3 pairs in a crescent shape	3	52 mm : 3 mm	135–150 mm long, 3–4 mm wide, tapering slightly, smooth, dark silt	San Clemente basin, NE Pacific, 1920 m
M. angolensis Hilbig, 2005	13	Present: serrated (up to 21 teeth)	2 types: 4–6 large, 6 small	4 pairs: 1 anterior middle pair largest	2	21–50 mm : 3–4 mm	Up to 3 times length of worm, muddy with fine inner mucus lining	Angola Basin, SE Atlantic, 5385–5439 m
M. annenkoevae (Uschakov, 1952)	12	Absent	2 types: 1 large > 7 mm, 3–4 small	4 pairs: 1 median pair largest	3 (5 teeth in one row)	3 mm	Sturdy silted tube	Arctic Ocean, 51–1900 m
M. atlantica McIntosh, 1885	14?	Absent	2 types: 1 large, many small	4 pairs: unknown	3 (top tooth indistinct)	35 mm : 3 mm	Stiff cylinder, fine grey mud, Foraminifera attached	Off Chesapeake Bay, NW Atlantic, 3109 m
M. arctica (Anneckova, 1931)	12	Present/indistinct	2 types: 1 large, 2 small	4 pairs: anterior (inner) larger than others	2	25 mm : 3 mm	Solid tube covered in sand in the front part	Arctic Ocean 165–480 m
M. armipotens (Moore, 1923)	(13?)	Absent/indistinct	2 types: 1 large (12 mm long 8 mm wide), few small (1 mm long)	4 pairs: anterior (largest by one-third)	3	31 mm : 1.3 mm	—	Santa Catalina Islands, NE Pacific, 4070 m
M. augeneri Reuscher et al., 2015	13	Indistinct, no serration	2 types: 4 long thick and annulated, 3 small	4 pairs: arranged in continuous arch	2	14 mm : 0.8 mm	—	Goto-Kasaya Bank, west off Kyushu, 185 m
M. Chadwicki sp. nov.	12	Absent/indistinct	2 types: 1 long, 6 small	4 pairs: 1 pair slightly anterior	2	22 mm : 1 mm	Fine-grained sediment sometimes with green veins and Foraminifera	Eastern Australia, 1006–1257 m
M. collanis (Hartman, 1967)	12	Absent	2 types: 1 large, many small	4 pairs: crescent shape, 1 pair anterior	—	46–51 mm : 4.6 mm	Long, tough, covered with silt, internal membrane	Mid-Pacific Basin, 4041–4813 m
M. dubita (Hoagland, 1920)	12?	Indistinct ridge	2 types: 6 tentacles up to 15 mm, many smaller 3–7 mm	4 pairs: unclear	3	15 mm : 7 mm	Fine brown mud	Mindanao, Philippines, 920 m
M. gorgelli sp. nov.	12	Indistinct	2 types: 1 long 34 mm and shorter tentacles 2 mm	4 pairs: 1 pair anterior	3	40 mm : 4 mm	Fine-grained sediment sometimes with green veins and Foraminifera	Eastern Australia, 2520–2821 m
M. mcintoshi Reuscher, Fieg & Imajima, 2015	13	Present: smooth	2 types: 3 long thick, annulated, 4 thinner	4 pairs: 2 rows of 2	2	44 mm : 2 mm	—	Japan Pacific Ocean, 164–5600 m
M. monocera (Augener, 1906)	12	Indistinct	2 types: 1 long (length 26 anterior segments), 6 short	4 pairs: unclear	2	28–42 mm : 2 mm	—	Caribbean, 212–310 m
M. moorei (Hartman, 1960) using Moore, 1923	13(17 TC)	Present: slightly serrated	—	4 pairs: cluster on each side	2	80 mm : —	Heavy mud walls	Off Santa Catalina and San Miguelas Islands, NE Pacific, 495–3990 m
M. rastrata (Wesenberg-Lund, 1950)	12	Present: 15–17 teeth	2 types: 5 long curled, 3 shorter	4 pairs: 1 pair anterior	—	72 mm : —	—	West of Greenland, 3229 m
M. somovi (Uschakov, 1957)	12	Absent	2 types: 1 large, many small	3 pairs: Internal largest	2	15 mm : 1 mm	Silt with Foraminifera shells and small stones	Arctic, 1339–1694 m
M. tentaculata (Treadwell, 1906)	—	—	2 types: 1 large length of anterior region of body, 2 or 3 smaller	4 pairs: 2 rows, outer pair largest	3	9 mm : 1.5 mm	Thick mud tube with sponge spicules	Hawaii, 508–1358 m
M. tetradentata (Imajima, 2001)	13	Present: serrated 14 dentations	2 types: 1 long trihedral. Multiple shorter ones	4 pairs: 2 rows of 2	2	70 mm : 4 mm	Thick, dark, fine-grained mud particles, thin inner membrane	Tosa bay, Japan, 400–800 m
presence of glandular bands above nuchal slits, as well as in methyl blue staining patterns. *Melinnopsis gardelli* sp. nov. had a conspicuous stained band ending between chaetigers 9 and 10. Reuscher *et al.* (2015) used position of branchiae and lateral wings (collar-like extension of anterior segments from prostormium to segment V), number of teeth above rostral tooth (a new character suggested) and presence of abdominal type uncini in the last thoracic chaetiger to delineate species. We suggest that methyl blue or green staining pattern is a useful characteristic for species identification in *Melinnopsis*, a character that is already used for other ampharetid genera identification (Jirkov, 2011; Alvestad *et al.*, 2014; Kongsrud *et al.*, 2017; Mackie & Pleijel, 1995) and is reversible.

This is the first study to include molecular data in the description of a *Melinnopsis* species. The molecular data agree with the morphological finding that *M. gardelli* sp. nov. and *M. chadwicki* sp. nov. are two separate species and differ from all other species. The COI pairwise genetic distances between our two species (13.9%) are similar to those found in other studies between ampharetids. In Kongsrud *et al.* (2017), *Pavelius smileyi* Kongsrud, Eilertsen, Alvestad, Kongshavn & Rapp, 2016 and the closest related species, *Ampharete octocirrata* (Sars, 1835), had a COI pairwise genetic distance of 14.6%, Zhou *et al.* (2019) found COI GTR corrected distances between *Amphipsamithya* species ranged 11.9–40.3%. In a study by Carr *et al.* (2011) on 1876 polychaetes across 333 provisional species from 36 families, including Ampharetidae, interspecific COI sequence divergence was slightly higher (average 16.5%) than our results. For 16S, genetic distances between our two new species (6.6%) were lower compared with the results of Kongsrud *et al.* (2017) (*Pavelius smileyi* and *Pavelius uschkovii* Kuznetsov & Levenstein, 1988—genetic distance 15%, *Paramytha schanderi* Kongsrud, Eilertsen, Alvestad, Kongshavn & Rapp, 2017 and *Paramytha* sp.—genetic distance 17.6–19.4%).

The results of our study support the inclusion of *Melinnopsis gardelli* sp. nov. and *M. chadwicki* sp. nov. within the group of annelids morphologically defined as Melinninae. Unfortunately, the data do not provide enough resolution to support or reject the monophyly of the genera *Melinna* and *Melinnopsis*. Even if all available sequences of *Melinnopsis* did form a well-supported clade, without data from the type species it would remain uncertain whether these taxa belong to *Melinnopsis*.

The subfamily Melinninae here was recovered as monophyletic. Our results are supported by a recent phylogeny of Terebelliformia which used five genetic markers, 90 morphological characters and a transcriptome phylogeny backbone to construct a maximum likelihood tree of 121 species (Stiller *et al.*, 2020). The study recovered all melinnins (6 species) as a monophyletic group and further suggested Melinninae become Melinnidae (Stiller *et al.*, 2020), however, the new family status has not yet been widely accepted (Ebbe & Purschke, 2019; Read & Fauchald, 2020). In our study, all sequences fell into a well-supported clade, except for the sequences for *Melinna maculata* (Melinninae) that was recovered as being closely related to the outgroup *Scalibregma inflatum* Rathke, 1843. While the sequences of *M. maculata* were sourced from GenBank (Table 1), the identity of the voucher specimen as belonging to *Melinna* sp. has been confirmed (K. Halanych, pers. comm.). However, BLAST searches on the COI and 16S gene fragments reveal the closest matching sequence on GenBank as *Scalibregma inflatum*, a species which is distantly related to ampharetids. It is likely this is a result of a contamination and we suggest additional *M. maculata* material needs to be sourced and re-sequenced.

The results of our phylogenetic analysis suggest Ampharetinae is paraphyletic as *Samythella neglecta* is positioned outside the Ampharetinae clade. The position of *Samythella* has been disputed in previous phylogenetic studies. Our results contradict Kongsrud *et al.* (2017) which recovered Ampharetidae as monophyletic with *Samythella neglecta* nested within Ampharetinae (posterior probability 0.78 for the Ampharetinae clade from combined COI, 16S and 18S tree). Ampharetinae was also recovered as monophyletic with high support, in Bernardino *et al.* (2017) using protein-coding and mitochondrial genes and in Stiller *et al.* (2013) using the COI, 16S, 18S gene fragments, however, both studies did not include *Samythella* sequences in their datasets. In Eilertsen *et al.* (2017), the position of *Samythella neglecta* varied between gene trees: in the concatenated gene tree (COI, 16S, 18S, 28S) *Samythella* was
recovered as the sister group to the rest of Ampharetidae and Avinellidae with high support (posterior probabilities (PP) = 1, bootstrap values (BS) = 83) also in the COI and 18S gene trees. _Samythella_ was recovered outside Ampharetidae and sister to Melininae (COI: PP < 0.75/ BS < 50, 18S: PP 0.98/ BS 53), whilst in the 16S and 28S gene trees it was recovered within Ampharetinae (16S: PP 0.94/ BS 48, 28S: 0.57/ BS 76). In accordance with our results, a recent phylogenetic study on all Terebelliformia suggests that _Samythella_ is the sister taxon to _Melinella_ plus _Isolda_ clade (Stiller et al., 2020). A BLAST analysis on the _Samythella neglecta_ sequence (MG270113) reveals the top result as _S. neglecta_ (MG270114), however, the next closest sequences on GenBank were non-ampharetids, which again suggest a possibility of contamination. As with _M. maculata_, additional sequences are required to resolve this issue.

As a result of this study, nine ampharetid species, including three melinins (_Isolda warnbroensis_ Augener, 1914, _M. gardelli_ sp. nov. and _M. chadwicki_ sp. nov.), have been described from Australian waters (Alvestad & Budaeva, 2015; Hartmann-Schröder, 1981; Hutchings & Rainer, 1979; Hutchings, 1977; Quatrefages, 1866). _Isolda warnbroensis_ from Western Australia was synonymized by Day (1963) with _Isolda pulchella_ Müller in Grube, 1858 from Santa Catarina, Brazil, but this synonymy is unlikely valid on biogeographical grounds. Despite this seemingly low diversity, the Atlas of Living Australia lists over 1700 records of Ampharetidae from Australia, yet over half (1000) are not identified past family level, a clear indication the fauna of Ampharetidae from Australia, yet over half (1000) are not identified past family level, a clear indication the fauna of Australia contains many undescribed species.

Acknowledgements. The authors wish to thank the CSIRO Marine National Facility (MNF) for its support in the form of sea time on RV Investigator, support personnel, scientific equipment and data management. All data and samples acquired on the voyage are made publicly available in accordance with MNF Policy. We also thank all the scientific staff and crew who participated in voyage IN2017 V03. Project funding was provided by the Marine Biodiversity Hub, supported through the Australian Government’s National Environmental Science Program (NESP). We are grateful to Richard Gardell and Clarence (“Clarry”) Chadwick for their generous donations to the Australian Museum. We thank the collection staff at the Australian Museum Sydney for help with loan material, and Sue Lindsay at Macquarie University bioimaging laboratory who helped with SEM imaging. We also thank Nicolas Lavesque for his comments on a draft of a manuscript and an anonymous reviewer for their helpful comments. The study was funded by the Linnean Society of New South Wales Joyce W. Vickery Scientific Research Fund grant to PI. The PI was funded by the Chadwick Biodiversity fellowship at the Australian Museum, Sydney. Further financial support was provided by the Australian Biological Research Study (ABRS) grant RG18-21 to EK.

References

Aguirrezabalaga, F., and J. Parapar. 2014. Deep-sea Ampharetidae (Polychaeta) from CapBreton Canyon (north-east Atlantic) with the description of a new species. _Journal of the Marine Biological Association of the United Kingdom_ 94(5): 947–967.

https://doi.org/10.1017/S0025315413001422

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. _Journal of Molecular Biology_ 215(3): 403–410.

https://doi.org/10.1016/0022-2836(90)90360-2

Alvstad, T., and N. Budaeva. 2015. _Neosabellides lizae_, a new species of Ampharetidae (Annelida) from Lizard Island, Great Barrier Reef, Australia. _Zootaxa_ 4019(1): 9.

https://doi.org/10.11646/zootaxa.4019.1.6

Alvstad, T., J. A. Kongsrud, and K. Kongshavn. 2014. _Ampharete undecima_, a new deep-sea ampharetid (Annelida, Polychaeta) from the Norwegian Sea. _Memoirs of Museum Victoria_ 71: 11–19.

https://doi.org/10.24195/mmv.2014.71.02

Amenkov, N. P. 1931. Zur Polychaetafauna von Franz-Joseph-Land (Melininex gen. nov. arctica sp. nov.). _Zoologischer Anzeiger_ 95(9/10): 269–272.

Atlas of Living Australia. [Accessed 19 March 2020].

http://www.ala.org.au

Augener, H. 1906. Reports on the results of dredging, under the supervision of Alexander Agassiz, in the Gulf of Mexico and the Caribbean Sea, and on the east coast of the United States, 1877 to 1880, by the U.S. Coast Survey Steamer Blake, Lieut. Commander C. D. Sigbee, U.S.N., and Commander J. R. Bartlett, U.S.N. commanding. 42. Westindische Polychaeten. _Bulletin of the Museum of Comparative Zoology_ 43(4): 91–196.

Augener, H. 1914. Polychaeta II; Sedentaria. In _Die Fauna Südwest-Australiens. Ergebnisse der Hamburger südwest-australischen Forschungsreise 1905_, ed. W. Michaelsen and R. Hartmeyer, pp. 1–72, volume 5: Jena; Gustav Fischer.

Bennett, B. A., C. Smith, B. Glaser, and H. L. Maybaum. 1994. Faunal community structure of a chemooautotrophic assemblage on whale bones in the deep northeast Pacific Ocean. _Marine Ecology Progress Series_ 108: 205–223.

https://doi.org/10.3354/meps108205

Bernardino, A. F., Y. Li, C. R. Smith, and K. M. Halanych. 2017. Multiple introns in a deep-sea Annelid (Decemunciger: Ampharetidae) mitochondrial genome. _Scientific Reports_ 7(1): 4295–4295.

Bleidorn, C. 2005. Phylogenetic relationships and evolution of Orbinidae (Annelida, Polychaeta) based on molecular data. _Zoological Journal of the Linnean Society_ 144(1): 59–73.

https://doi.org/10.1111/j.1096-3642.2005.00160.x

Bleidorn, C., L. Vogt, and T. Bartolomaeus. 2003. A contribution to sedentary polychaete phylogeny using 18S RNA sequence data. _Journal of Zoological Systematics and Evolutionary Research_ 41(3): 186–195.

https://doi.org/10.1046/j.1439-0469.2003.00212.x

Böggemann, M. 2009. Polychaetae (Annelida) of the abyssal SE Atlantic. _Organisms Diversity & Evolution_ 9(4–5): 251–428.

Carr, C. M., S. M. Hardy, T. M. Brown, T. A. Macdonald, and P. D. N. Hébert. 2011. A tri-oceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes. _PLoS ONE_ 6(7): e22232.

https://doi.org/10.1371/journal.pone.0022232

Chamberlin, R. V. 1919. The Annelida Polychaeta [Albatross Expeditions]. _Memoirs of the Museum of Comparative Zoology_ at Harvard College 48: 1–514.

Cowart, D. A., M. Pinheiro, O. Mouchel, M. Maguer, and J. Grall. 2015. Metabarcoding is powerful yet still blind: A comparative analysis of morphological and molecular surveys of seagrass communities. _PLoS ONE_ 10(2): e0117562.

Darriba, D., G. L. Taboada, R. Doallo, and D. Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. _Nature Methods_ 9(8): 772.

https://doi.org/10.1038/nmeth.2109

Day, J. H. 1955. The Polychaeta of South Africa. Part 3. Sedentary species from Cape shores and estuaries. _Journal of the Linnean Society of London. Zoology_ 42(287): 407–452.

https://doi.org/10.1111/j.1096-3642.1955.tb02216.x
Day, J. H. 1963. The polychaeta fauna of South Africa: Part 8. New species and records from grab samples and dredgings. *Bulletin of the British Museum (Natural History) Zoology* 10: 381–445. https://doi.org/10.5962/bhl.part.20530

Day, J. H. 1964. A review of the family Ampharetidae (Polychaeta). *Annals of the South African Museum* 48(4): 97–120.

Day, J. H. 1973. New Polychaeta from Beaufort, with a key to all species recorded from North Carolina. *NAOA Technical Reports, Ser. National Marine Fisheries Service, Circulars* 375: 1–140. https://doi.org/10.5962/bhl.title.62852

Desbruyères, D., and L. Laubier. 1986. Les Alvinellidae, une famille nouvelle d’annelides polychètes inféodées aux sources hydrothermales sous-marines: systématique, biologie et écologie. *Canadian Journal of Zoology* 64(10): 2227–2245. https://doi.org/10.1139/z86-337

Desbruyères, D., and L. Laubier. 1996. A new genus and species of ampharetid polychaete from deep-sea hydrothermal vent community in the Azores triple-junction area. *Proceedings of the Biological Society of Washington* 109(2): 248–255.

Ebbe, B., and G. Purschke. 2019-Online. Ampharetidae Malmgren, 1886. In *Handbook of Zoology: A Natural History of the Phyla of the Animal Kingdom*, ed. W. Westheide, G. Purschke, and M. Bögghman, pp. 1–22. Walter de Gruyter & Co: Berlin, Germany.

Edgar R. C. 2004 MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* 32: 1792–1797. https://doi.org/10.1093/nar/gnh340

Eilertsen, M. H., J. A. Kongstad, T. Alvestad, J. Stiller, G. W. Rouse, and H. T. Rapp. 2017. Do ampharetids take sedimented steps between vents and seeps? Phylogeny and habitat-use of Ampharetidae (Annelida, Terebelliformia) in chemosynthesis-based ecosystems. *BMC Evolutionary Biology* 17(1): 222. https://doi.org/10.5479/si.00810282.221

Eljasson, A. 1955. Neue oder wenig bekannte Schwedische Ampharetiden (Polychaeta). Göteborgs Kungliga vetenskaps-sällskapets årsberäkningar. *Sjätte Följden* 6(16): 1–17.

Fauvel, P. 1936. Contribution à la faune des Annélides Polychètes de la Manche. *Mémoires de la Société des Sciences Naturelles du Maroc* 43: 1–143.

Grube, A. E. 1870. Über seinen Aufenthalt in St. Malo, besonders über zwei noch nicht beschriebene Anneliden. [Also as: Über zwei neue Anneliden von St. Malo (Melinna palmata, Erautho serrisets)]. *Jahres-Bericht der Schlesischen Gesellschaft für Vaterländische Cultur, Breslau.* 47: 68–69.

Halanych, K. M., J. D. Bacheller, A. M. Aguinaldo, S. M. Liva, D. M. Hillis, and J. A. Lake. 1995. Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. *Science* 267: 1641–1643. https://doi.org/10.1126/science.7886451

Hartman, O. 1967. Polychaetous annelids collected by the USNS Eltanin and Staten Island cruises, chiefly from Antarctic Seas. *Allan Hancock Monographs in Marine Biology* 2: 1–387.

Hartman, O. 1969. *Atlas of the Sedentarie Polychaetous Annelid of California*. Los Angeles, California: Allan Hancock Foundation.

Hartmann-Schröder, G. 1981. Polychaetaen der tropisch-subtropischen Westküste Australiens (zwischen Exmouth im Norden und Cervantes im Süden). Teil 6. In *Zur Kenntnis des Eulitorals der ausstralischen Küsten unter besonderer Berücksichtigung der Polychaeten und Ostracoden (Teil 6 und Teil 7)*, by G. Hartmann-Schröder and G. Hartmann. Mitteilungen aus dem Hamburger Zoologischen Museum und Institut 78(19): 9–36.

Hesse, C. 1917. Zur Kenntnis der terebellomorphen Polychaetaen. *Zoologisk bidrag från Uppsala* 5: 39–258, plates I–V.

Hilbig, B. 2005. *Meliolus angolensis* (Annelida: Polychaeta: Ampharetidae), a new species from the Angola Basin. *Organisms, Diversity and Evolution* 5: 215–220. https://doi.org/10.1007/s10040-004-11005

Hillis, D. M., and M. T. Dixon. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. *The Quarterly Review of Biology* 66: 411–453. https://doi.org/10.1086/417338

Hoagland, R. A. 1920. Polychaetous annelids collected by the United States fisheries steamer Albatross during the Philippine expedition of 1907–1909. *Bulletin of the United States National Museum* 100(1): 603–635.

Holtze, T. 1986a. Polychaeta terebellomorpha. *Marine Invertebrates of Scandinavia* 7: 1–192.

Holtze, T. 1986b. Evolution, systematics, and distribution of the Polychaeta Terebellomorpha, with a catalogue of the taxa and a bibliography. *Gunneria* 55: 1–236.

Holtze, T. 2000. Bathyal and abyssal Ampharetidae (Annelida: Polychaeta) (sedentary species II). *Galathea Report* 18: 57–68.

Hutchings, P. 1977. Terebelliform Polychaeta of the families Ampharetidae, Terebellidae and Trichobranchidae from Australia, chiefly from Moreton Bay, Queensland. *Records of the Australian Museum* 31(1): 1–38. https://doi.org/10.5853/j.0067-1975.31.1977.222

Hutchings, P., and E. Kupriyanova. 2018. Cosmopolitan polychaetes – fact or fiction? Personal and historical perspectives. *Invertebrate Systematics* 32(1): 1–9. https://doi.org/10.1071/IS17035
Kupriyanova, E. K., T. A. Macdonald, and G. W. Rouse. 2006. Phylogenetic relationships within Serpulidae (Sabelida, Annelida) inferred from molecular and morphological data. *Zoologica Scripta* 35(5): 421–439.

Kuznetsov, A. P. and R. Y. Levenstein. 1988. *Pavellius uschakovoi* gen. et sp. n. (Polychaeta, Ampharetidae) from Paramushir Gas Hydrate Spring in the Okhotsk Sea. *Zoologicheskii Zhurnal* 67(6): 819–825. [In Russian].

Lewis, M. 2010. The CSIRO 4 m Beam Trawl (CSIRO Marine and Research Atmospheric Research paper 033). Hobart, 2010.

Linnaeus, C. 1767. Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Ed. 12. 1., Regnum Animale. 1 & 2. Holmiae, Laurentii Salvii. Holmiae [Stockholm], Laurentii Salvii. pp. 1–532 [1766] pp. 533–1327 [1767].

Mackie, A. Y. S., and F. Pleijel. 1995. A review of the Melinina *cristata*-species group (Polychaeta: Ampharetidae) in the northeastern Atlantic. *Mitteilungen aus dem Hamburgischen zoologischen Museum und Institut* 92: 103–124.

Maclintosh, H., F. Althaus, A. Williams, J. E. Tanner, P. Alderslade, S. T. Abrahams, F. Althaus, F. Aneiros, A. L. Crowther, A. Williams, J. E. Tanner, P. Alderslade, N. Bax, J. K. Finn, L. Goudie, K. Gowlett-Holmes, A. Miskelly, M. L. Mitchell, T. Molodtsova, A. Murray, T. D. O’Hara, P. M. O’Loughlin, H. Paxton, A. L. Reid, S. J. Sorokin, D. Staples, G. Walker-Smith, E. Whitfield and R.S. Wilson. 2018. Invertebrate diversity in the deep Great Australian Bight (200–5000 m). *Marine Biodiversity Records* 11(1): 23.

Malmgren, A. J. 1866. Nordiska Hafs-Annulater [part 3 of 3]. *Öfversigt af Königlich Vetenskapsakademiens förhandlingar* 120: 1–275.

McIntosh, W. C. 1885. Report on the Annelida Polychaeta collected during the years 1873–1876. *Proceedings of the Academy of Natural Sciences of Philadelphia* 58: 217–260, plates XV–XII.

McIntosh, W. C. 1885. Report on the Annelida Polychaeta collected during the years 1873–1876. *Proceedings of the Academy of Natural Sciences of Philadelphia* 58: 217–260, plates XV–XII.

Moch, J. P. 1906. Additional new species of Polychaeta from the North Pacific. *Proceedings of the Academy of Natural Sciences of Philadelphia* 58: 217–260, plates XV–XII.

Moch, J. P. 1923. The polychaetous annelids dredged by the U.S.S. “Albatross” off the coast of southern California in 1904. IV. *Serpulidae* to *Sabellariidae*. *Proceedings of the Academy of Natural Sciences of Philadelphia* 75: 179–259, plates XVII–XVIII.

Müller, F. 1858. Einiges über die Annelidenfauna der Insel Santa Catharina an der brasilianischen Küste. *Archiv für Naturgeschichte, Berlin* 24(1): 211–220, plates VI–VII. (Aus einer brieflichen Mittheilung an Prof. Grube).

Norren, M., and U. Jordelius. 1999. Phylogeny of Polychelithophora (Plathelminthes) inferred from 18S rDNA sequences. *Cladistics* 15: 103–112.

Parapar, J., J. A. Kongsrud, K. Kongsrv, T. Alvestad, F. Aneiros, and J. Moreira. 2018. A new species of Ampharetidae (Annelida: Polychaeta) from Pacific hot vents and cold seeps, with a key and synoptic table of characters for all genera. *Zootaxa* 4219: 1–40.

Palumbi, S., A. Martin, S. Roman, W. O. McMillan, L. Stice, and G. Grabowski.1991. The Simple Fool’s Guide to PCR. Department of Zoology, University of Hawaii, Honolulu, Special Publication.

Quatrefages, A. de. 1866. Histoire naturelle des Annélides marins et d’eau douce. Annélides et Géphyriens, volume 1, pp. 1–588. Paris: Librarie Encyclopédique de Roret.

Queiros, J. P., A. Ravara, M. H. Eilertsen, J. A. Kongsrud, and A. Hilário. 2017. *Paramytha oxicollis* sp. nov. (Polychaeta, Ampharetidae) from mammal bones: Reproductive biology and population structure. *Deep Sea Research Part II: Topical Studies in Oceanography* 137: 349–358.

Riaño, E. 1941. Estudios Anelidologicos. II. Observaciones acerca de varias especies del genero *Hydroidea* Gunnerus (sensu Faunel) de las costas Mexicanas del Pacifico. *Anales del Instituto de Biologia, Mexico* 12(1): 161–175.

Rambaut, A. 2018. FigTree v1.4.4 Program distributed by the author (University of Edinburgh, Edinburgh, Scotland). Available from: http://tree.bio.ed.ac.uk/software/figtree/.

Rathke, H. 1843. Beiträge zur Fauna Norwegens. Nova Acta Academica Caesareae Leopoldinae-Carolinae Naturae Curiosorum, Breslau & Bonn 20: 1–264c, pp. 184–186, plate IX, figs. 15–21.

Read, G., and K. Fauchald, (eds). 2020. World Polychaeta database. Ampharetidae Malmgren, 1866. [Accessed 19 Mar 2020 through World Register of Marine Species]

Reuscher, M., D. Fiege, and M. Imajima. 2015. Ampharetidae (Annelida: Polychaeta) from Japanese waters. Part IV. Miscellaneous genera. *Journal of the Marine Biological Association of the United Kingdom* 95(6): 1105–1125.

Reuscher, M., D. Fiege, and T. Wehe. 2009. Four new species of Ampharetidae (Annelida: Polychaeta) from Pacific hot vents and cold seeps, with a key and synoptic table of characters for all genera. *Zootaxa* 2191: 1–40.

Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Laerger, L. Liu, M. A. Suchard, and J. P. Huelsenbeck. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology* 61(3): 539–542.

Rouse, G., and F. Pleijel. 2001. *Polychaetes*. Oxford: Oxford University Press.

Saeedi, H., and A. Brandt. 2020. *Biogeographic Atlas of the Deep NW Pacific Fauna*. Advanced Books.

Salazar-Vallejo, S., and P. Hutchings. 2012. A review of characters of *Ampharetidae* (Annelida: Polychaeta) from Paramushir Gas and small-subunit nuclear rRNA sequences. *Molecular Phylogenetics and Evolution* 52: 25–38.

Sars, M. 1835. Beschrevelser og liggtagelser over nogle merkelige eller nye i Havet ved den Bergenske Kyst levende Dyr eller nye i Havet ved den Bergenske Kyst levende Dyr af Polypernes, Acalephernes, Radiaternes, Annelernes og Molluskernes classer, med en kort Oversigt over de hidtil af Forfatteren sammesteds fundede Arter og deres Forekommen. Bergen, Thorstein Hallagers Forlag hos Chr. Dahl, R.S., xii + 67 pp., 15 plates.

Sars, M. 1851. Beretning om en i Sommeren 1849 foretagen zoologisk Reise i Lofoten og Finmarken [1850 date used in Hydrozoa, 1851 in Polychaeta & others]. *Nyt Magazin for Naturvidenskaberne*. 6: 121–211.
Sars, M. 1865. Fortsatte Bidrag til Kundskaben om Norges Annelider. *Forhandlinger i Videnskabs-Selskabet i Christiania*. 1864: 5–20.

Sjölin, E., C. Er:séus, and M. Källersjö. 2005. Phylogeny of Tubificidae (Annelida, Clitellata) based on mitochondrial and nuclear sequence data. *Molecular Phylogenetics and Evolution* 35(2): 431–441. https://doi.org/10.1016/j.ympev.2004.12.018

Solis-Weiss, V. 1993. *Grassleia hydrothermalis*, a new genus and species of Ampharetidae (Annelida: Polychaeta) from the hydrothermal vents off the Oregon coast (U.S.A.), at Gorda Ridge. *Proceedings of the Biological Society of Washington* 106: 661–665.

Solis-Weiss, V., and P. Hernández-Alcántara. 1994. *Amphisamytha fauchaldi*: a new species of ampharetid (Annelida: Polychaeta) from the hydrothermal vents at Guaymas Basin, Mexico. *Bulletin of the Southern California Academy of Sciences* 93(3): 127–134.

Strick, T., R. Hessling, and G. Purschke. 2002. The phylogenetic position of the Aeolosomatidae and Parergodrilidae, two enigmatic ophiolochete-like taxa of the Polychaeta, based on molecular data from 18S rDNA sequences. *Journal of Zoological and Systematics Evolutionary Research* 40: 155–163. https://doi.org/10.1080/14772000.2002.1199646

Strick, T. H., G. Purschke, and K. M. Halanych. 2005. A scaleless scale worm: Molecular evidence for the phylogenetic placement of *Pisione remota* (Pisionidae, Annelida). *Marine Biology Research* 1(4): 243–253. https://doi.org/10.1080/17451000500261951

Sun, Y., E. Wong, M. A. Tovar-Hernández, J. E. Williamson, and E. K. Kupriyanova. 2016. Is *Hydroides brachyacantha* (Serpulidae: Annelida) a widespread species? *Invertebrate Systematics* 30(1): 41–59. https://doi.org/10.1071/IS15015

Treadwell, A. L. 1906. Polychaetous annelids of the Hawaiian Islands collected by the steamer Albatross in 1902. *Bulletin of the United States Fish Commission* 23(3): 1145–1181.

Uschakov, P. V. 1952. Bathypelagic and deep-water forms of Polychaeta from waters near Kamchatka peninsula in the Pacific Ocean. *Issledovaniya dal’nevostochnykh Moryi SSSR* 3: 103–112. [In Russian]

Uschakov, P. V. 1957. On the polychaete worms (Polychaeta) of the Arctic and Antarctic. *Zoologicheskii Zhurnal* 36(11): 1659–1672. [In Russian]

Webster, H. E. 1879. The Annelida Chaetopoda of the Virginian coast. *Transactions of the Albany Institute* 9: 202–269, plates I–XI. https://doi.org/10.5962/bhl.title.11296

Wesenberg-Lund, E. 1950. Polychaeta. *Danish Ingolf-Expedition* 4(14): 1–92, plates I–X.

Wollebaek, A. 1912. Nordeuropaeiske annulata Polychaeta I. Amnocharidiae, Amphicienidiae, Ampharetidae, Terebellidiae og Serpulidiae. *Skrifter utgit av Videnskapsselskapet i Kristiania, I, Matematisk-naturvidenskabelig klasse*, part 2, no. 18, pp. 1–144. https://doi.org/10.5962/bhl.title.11634

Zhong, M., B. Hansen, M. Nesnidal, A. Golombek, K. M. Halanych, and T. H. Struck. 2011. Detecting the symplesiomorphy trap: a multigene phylogenetic analysis of terebelliform annelids. *BMC Evolutionary Biology* 11(1): 369. https://doi.org/10.1186/1471-2148-11-369

Zhou, Y., C. Chen, Y. Sun, H. K. Watanabe, R. Zhang, and C. Wang. 2019. *Amphisamytha* (Annelida: Ampharetidae) from Indian Ocean hydrothermal vents: Biogeographic implications. *Deep Sea Research Part I: Oceanographic Research Papers* 154: 103148. https://doi.org/10.1016/j.dsr.2019.103148

Zottoli, R. A. 1983. *Amphisamytha galapagensis*, a new species of ampharetid polychaete from the vicinity of abyssal hydrothermal vents in the Galapagos Rift, and the role of this species in rift ecosystems. *Proceedings of the Biological Society of Washington* 96(3): 379–391.

Note added in proof

After this manuscript had been reviewed, Stiller *et al*. (2020) published a revised status of subfamily Melinninae to family Melinnidae. The new status did not appear in the World Polychaeta database (Read & Fauchald, 2020) until the final stages of proofing of the current manuscript, unfortunately not in time to be included.

Gunton, Kupriyanova and Alvestad, 20 July 2020.
