Identifying novel factors associated with COVID-19 transmission and fatality using the machine learning approach

Mengyuan Li 1,2, Zhilan Zhang 1,2, Wenxiu Cao 1,2, Yijing Liu 3, Beibei Du 3, Canping Chen 1,2, Qian Liu 1,2, Md. Nazim Uddin 1,2, Shanmei Jiang 1,2, Cai Chen 4, Yue Zhang 5,6,7, Xiaosheng Wang 1,2*

1 Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
2 Big Data Research Institute, China Pharmaceutical University, Nanjing 211198, China
3 School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
4 Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA.
5 Futian Hospital for Rheumatic Diseases, Shenzhen 518000, China
6 Pinghu hospital of Shenzhen university, Shenzhen 440307, China
7 Department of Rheumatology and Immunology, The First Clinical college of Harbin Medical University, Harbin 150001, China

* Correspondence to: Xiaosheng Wang, E-mail: xiaosheng.wang@cpu.edu.cn

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

The COVID-19 virus has infected millions of people and resulted in hundreds of thousands of deaths worldwide. By using the logistic regression model, we identified novel critical factors associated with COVID-19 cases, death, and case fatality rates in 154 countries and in the 50 U.S. states. Among numerous factors associated with COVID-19 risk, we found that the unitary state system was counter-intuitively positively associated with increased COVID-19 cases and deaths. Blood type B was a protective factor for COVID-19 risk, while blood type A was a risk factor. The prevalence of HIV, influenza and pneumonia, and chronic lower respiratory diseases was associated with reduced COVID-19 risk. Obesity and the condition of unimproved water sources were associated with increased COVID-19 risk. Other factors included temperature, humidity, social distancing, smoking, and vitamin D intake. Our comprehensive identification of the factors affecting COVID-19 transmission and fatality may provide new insights into the COVID-19 pandemic and advise effective strategies for preventing and migrating COVID-19 spread.

Keywords

COVID-19 transmission; COVID-19 fatality; risk factor; protective factor; machine learning.
Introduction

Since its first report in December 2019, COVID-19 caused by the 2019 novel coronavirus (SARS-CoV-2) has spread across 215 countries and territories \(^1\). As of May 15, 2020, more than 4,500,000 COVID-19 cases and 300,000 deaths were reported \(^1\). Compared to other coronaviruses, such as SARS-CoV and MERS-CoV, SARS-CoV-2 has a significantly higher infectivity potential that makes it spread across the world rapidly and has caused a global pandemic \(^2\). Meanwhile, the fatality rate for COVID-19 is not low, making SARS-CoV-2 more destructive than the previously emerging coronaviruses \(^3\). The COVID-19 pandemic has established the most critical global health and economic crisis in recent years \(^4\). But even worse, its development is difficult to forecast \(^5\). Previous studies have identified individual factors associated with the spread of COVID-19. For example, temperature and humidity may impact the transmission of COVID-19 \(^6\) \(^7\). Social distancing can significantly reduce COVID-19 transmission \(^8\) \(^9\). Besides, some factors associated with the COVID-19 death risk have been identified, such as age, sex, and comorbidities \(^10\) \(^11\). Some factors, such as diet and nutrition \(^12\) \(^13\), have been associated with both COVID-19 infection and mortality. Nevertheless, one standard limitation of these studies is that they ignored the interdependence between different factors. As a result, they might not accurately describe the relationships between some factors and COVID-19.

To simultaneously identify different factors affecting COVID-19 transmission and fatality, we used logistic models to predict population-adjusted confirmed cases (per
one million) and deaths (per one million) and case fatality rates (CFRs) of COVID-19 in different countries and in the 50 U.S. states. We collected data related to politics, economy, culture, demographic, geography, education, medical resource, scientific development, environment, diseases, diet, and nutrition. Based on these data, we defined tens of factors (variables) that could affect COVID-19 transmission and fatality. We used least absolute shrinkage and selection operator (LASSO) \(^{14}\) to select the factors associated with COVID-19 risk. We identified novel factors associated with COVID-19 risk. We also confirmed some controversial factors and most of the well-recognized factors associated with COVID-19 risk.

Results

Identifying factors affecting COVID-19 transmission and fatality in different countries

We first used the LASSO to evaluate the contribution of the 77 variables to COVID-19 cases, deaths, or CFRs. The Lasso selected 57 variables with a nonzero \(\beta\)-coefficient in at least one of the three predictive models for COVID-19 cases, deaths, and CFRs (Fig. 1). As expected, the three social distancing-associated factors (large-scale sports, religious, and cultural events) represented positive predictors of COVID-19 deaths and/or CFRs. The Lasso selected two temperature types (medium and low) in at least one predictive model. The medium temperature was a positive predictor of COVID-19 deaths, while the low temperature was a negative predictor of COVID-19 deaths and CFRs. These data, together with the findings from previous studies \(^{6,7}\), suggest that
the risk of COVID-19 transmission is high in a preferential temperature range, but it will decline with the temperature rising or falling outside the range. The humidity was a negative predictor of COVID-19 cases, consistent with the finding from a previous study \(^7\). The negative association between humidity and COVID-19 risk was following two other findings: i) the island country was a negative predictor of COVID-19 deaths (the weather is humid in island countries), and ii) the arid climate was a positive predictor of COVID-19 deaths. Besides, we found that the temperate climate was a positive predictor of COVID-19 CFRs, while the cold climate was a negative predictor of COVID-19 CFRs. Again, these results suggest that temperature has a prominent association with COVID-19 risk. Surprisingly, the cold climate was a positive predictor of COVID-19 cases, in contrast with its negative association with CFRs. The latitude was a negative predictor of COVID-19 deaths and CFRs, mainly because it is one of the main factors that affect temperature, which has an essential association with COVID-19 risk. In contrast, the longitude was a positive predictor of COVID-19 cases and deaths. The sex ratio (male/female) was a positive predictor of COVID-19 cases, while the percentage of the population aged < 10 years was a negative predictor of COVID-19 cases and deaths. It is in agreement with previous findings that sex and age were significantly associated with COVID-19 risk \(^10\,^11\). Islam was a positive predictor of COVID-19 cases, and Christianism was a positive predictor of CFRs. In contrast, Buddhism and other religions were negative predictors of COVID-19 cases, deaths, and/or CFRs. These results could be associated with the fact that Islam and Christianism have relatively large and regular gathering activities that facilitate the transmission of
COVID-19. Among the four races, the White was a positive predictor of COVID-19 deaths, and the Asian and Arab were negative predictors of COVID-19 cases. These results conform to the fact that the countries reporting a large number of COVID-19 deaths were mainly majority-white countries. In fact, among the 24 countries with COVID-19 deaths > 1,000 as of May 15, 2020, 18 countries were majority white, including 14 European and 4 American countries (USA, Canada, Brazil, and Mexico). Interestingly, we found that particular food or nutrition intake was associated with COVID-19 risk. For example, increased intake of vegetables, grain, sugar, protein, fat, vitamin D, and vitamin K was associated with reduced COVID-19 cases, deaths, and/or CFRs. In contrast, increased intake of fruits, dairy products, vitamin B, and vitamin C was associated with increased COVID-19 cases, deaths, and/or CFRs. The negative association between vitamin D intake and COVID-19 risk is consistent with previous reports.12,13 The condition of unimproved water sources was a positive predictor of CFRs, suggesting the potential of COVID-19 spreading through water. The air passenger traffic and vehicle usage were a positive and a negative predictor of COVID-19 deaths, respectively, and the railway length was not selected by the Lasso for predicting COVID-19 cases, deaths, or CFRs. This indicates that air transport is the most dangerous approach for COVID-19 transmission compared to other modes of transport. It is reasonable since small closed spaces on airplanes are prone to virus transmission. The percentage of urban population was a positive and a negative predictor of COVID-19 cases and CFRs, respectively. A possible explanation is that dense urban population is conducive to COVID-19 transmission, while excellent urban
medical conditions are conducive to the treatment of COVID-19 patients. The average age of childbirth was a positive predictor of COVID-19 cases, deaths, and CFRs, and the life expectancy was a positive predictor of COVID-19 deaths. These results suggest a positive association between age and COVID-19 risk.

We also obtained some unexpected findings. For example, the economic development (per capita income) and health investment (universal health coverage index, health expenditure, and hospital beds per 1,000 people) were positive predictors of COVID-19 cases, deaths, and/or CFRs. The smoking rate was a negative predictor of COVID-19 cases and deaths, consistent with the recent finding that smoking was a protective factor for COVID-19 infection15. Nevertheless, an association between smoking and COVID-19 CFRs was not observed in our model, suggesting that smoking is not likely to reduce the mortality risk of COVID-19 patients. The prevalence of some diseases, such as HIV and diabetes, were inversely associated with COVID-19 risk. The prevalence of malnutrition was inversely associated with COVID-19 cases but was positively associated with COVID-19 CFRs. The percentages of the population with BMI < 18 and BMI > 30 were negatively and positively associated with COVID-19 cases, respectively, suggesting that obesity could be a risk factor for COVID-19. The unitary state system was a positive predictor of COVID-19 cases and deaths, suggesting that it is less effective in controlling COVID-19 outbreaks than the federation system. This conflicts with common sense that the centralization system is capable of concentrating resources more efficiently than the decentralization system in fighting...
against COVID-19.

Identifying factors affecting COVID-19 transmission and fatality in the 50 U.S. states

To uncover the critical factors for COVID-19 risk within a single country, we used logistic models to predict COVID-19 cases, deaths, and CFRs in the 50 U.S. states. We used 55 variables in the predictive models, most of which were in the list of variables mentioned earlier. Likewise, we first used the LASSO to determine the contribution of the 55 variables to COVID-19 cases, deaths, or CFRs. We defined the states as having low or high COVID-19 cases, deaths, or CFRs based on their median values. The next steps followed the previous method. The Lasso selected 31 variables with a nonzero β-coefficient in at least one of the three predictive models for COVID-19 cases, deaths, and CFRs (Fig. 2). Consistent with the previous results, medium temperature, arid climate, social distancing (major sports events), per capita income, longitude, and the average age of childbirth were positive predictors of COVID-19 cases, deaths, and/or CFRs, and humidity, smoking rate, and international tourism revenue were negative predictors. The urbanization level was a positive predictor of COVID-19 cases, while it was a negative predictor of COVID-19 deaths and CFRs. We have also obtained some findings that were special in the U.S. setting. For example, the death rate of influenza and pneumonia, and chronic lower respiratory diseases were negative predictors of COVID-19 cases, deaths, and/or CFRs. A potential explanation of the negative association between the prevalence of influenza and pneumonia and COVID-19 risk is
that there is cross-reactive immunity between other types of viruses and SARS-CoV-2.

The prevalence of diabetes was a positive predictor of COVID-19 CFRs, indicating that it is a risk factor for COVID-19 fatality. However, in both world and U.S. settings, it was a negative predictor of COVID-19 cases, indicating that it is a protective factor for COVID-19 infection. Health insurance coverage was positively associated with COVID-19 cases, deaths, and CFRs. The level of CO2 emissions per capita was negatively associated with COVID-19 cases and deaths. The Black was a positive predictor of COVID-19 cases and deaths, consistent with previous reports.

The geographic location correlated with COVID-19 risk where landlocked country and coastal region had lower risk and the great lakes region had a higher risk. Besides, the usage of private transport in urban might reduce COVID-19 risk.

Ranking variables based on their importance in distinguishing between low and high COVID-19 cases, deaths, and CFRs

In predicting COVID-19 cases, deaths, and CFRs, we achieved the AUC values of 0.90, 0.90, and 0.85, respectively, on the training set, and 0.95, 0.98, and 0.85, respectively, on the test set in countries, and all AUC values > 0.8 in the 50 U.S. states (Figs. 1 and 2). These results demonstrate that the variables selected by the LASSO represent important factors affecting COVID-19 risk. We ranked the importance of variables in distinguishing between low and high COVID-19 cases, deaths, and CFRs based on the chi-square statistic. In the world setting, per capita income, malnutrition, aged < 10 years, urbanization level, dairy product intake, BMI < 18, hospital beds, BMI >
30, longitude, and protein intake were the ten most essential variables in distinguishing between low and high COVID-19 cases (Fig. 3A). The ten most important variables in distinguishing between low and high COVID-19 deaths were life expectancy, aged < 10 years, universal health coverage, per capita income, longitude, vitamin C intake, fat intake, hospital beds, domestic tourism, and health expenditure (Fig. 3A). Latitude, measles immunization, major sports events, internet usage, urbanization level, malnutrition, unimproved water sources, vehicle usage, cold climate, and domestic tourism were the ten most important variables in distinguishing between low and high COVID-19 CFRs (Fig. 3A). These results collectively demonstrate that age, climate, social distancing, economic development, health investment, weight, and nutrient intake are mostly associated with COVID-19 risk. We obtained similar results in the U.S. setting except influenza and race being two prominent factors for COVID-19 risk (Fig. 3B).

Associations of blood type, social distancing, and temperature with COVID-19 transmission and fatality

To investigate the association between the ABO blood type and COVID-19 vulnerability, we also collected ABO blood type distribution (population proportion) by country. We obtained the complete ABO blood type distribution data in 94 countries. We found that blood type A had significant positive correlations with COVID-19 cases (Spearman's correlation test, $\rho = 0.47, P = 1.97 \times 10^{-6}$) and deaths ($\rho = 0.58, P = 6.23 \times 10^{-10}$) (Fig. 4A). The correlation between blood type A and COVID-19 CFRs was not
significant ($\rho = 0.18, P = 0.09$). Overall, these results indicate that blood type A is associated with an increased risk of COVID-19, consistent with a recent report. In contrast, blood type B displayed significant inverse correlations with COVID-19 cases ($\rho = -0.41, P = 3.91 \times 10^{-5}$), deaths ($\rho = -0.50, P = 2.63 \times 10^{-7}$), and CFRs ($\rho = -0.34, P = 8.91 \times 10^{-4}$) (Fig. 4A). These results indicate that blood type B is associated with a reduced risk of COVID-19. The association between the ABO blood type and COVID-19 vulnerability may partially explain why the COVID-19 outbreak is serious in Europe and relatively moderate in South Asia since blood type A has a high frequency in Europe, and blood type B has a high frequency in South Asia.

To investigate the association between social distancing and COVID-19 spread, we analyzed the correlations between major sports events from January 2020 to March 2020 and COVID-19 cases, deaths, and CFRs in 38 European countries. We focused on European countries because sports, particularly football, are highly popular in most countries in Europe. We classified 38 European countries into two groups. The first group contained 20 countries hosting major sports events, including Six Nations Championship, UEFA Europa League, and domestic football matches from January 2020 to March 2020, and the second group contained 18 countries hosting no major sports events during this period. We found that COVID-19 cases, deaths, and CFRs were significantly higher in the first group than in the second group (one-sided Mann–Whitney U test, $P < 0.01$) (Fig. 4B). The mean COVID-19 cases, deaths, and CFRs were 1.61, 6.29, and 2.59 times higher in the first group than that in the second group,
respectively. Moreover, within the 20 countries hosting major sports events, the total numbers of participants in the major sports events had significant positive correlations with COVID-19 cases ($\rho = 0.51, P = 0.02$), deaths ($\rho = 0.63, P = 0.004$), and CFRs ($\rho = 0.46, P = 0.04$) (Fig. 4B). Football is the most popular sport in almost all European countries, and the top five European leagues were subject to a large number of live audiences. As expected, the five countries with the top five European leagues, including UK, Spain, Italy, France, and Germany, had significantly higher COVID-19 cases, deaths, and CFRs than the other European countries (one-sided Mann–Whitney U test, $P < 0.01$, fold change > 2) (Fig. 4B). Altogether, these results suggest that major sports events can boost COVID-19 transmission and highlight the importance of social distancing in mitigating COVID-19 spread.

The association between temperature and COVID-19 transmission has been well recognized.6,7,21 To compare the relative contribution of high and low temperature in predicting COVID-19 risk, we built logistic models with both variables to predict COVID-19 cases, deaths, and CFRs in the 154 countries. As expected, both high and low temperatures were negative predictors of COVID-19 cases and deaths. However, the high temperature displayed a significantly stronger power than the low temperature in predicting COVID-19 cases and deaths (Fig. 4C). This indicates that high temperature is a more compelling factor mitigating COVID-19 transmission than low temperature.
Discussion

We comprehensively described the most associated factors affecting COVID-19 transmission and fatality. Among numerous factors associated with COVID-19 risk, the unitary state system was counter-intuitively positively associated with increased COVID-19 cases and deaths. Blood type B was a protective factor for COVID-19 risk, while blood type A was a risk factor. The prevalence of HIV, influenza and pneumonia, and chronic lower respiratory diseases was associated with reduced COVID-19 risk. Obesity and the condition of unimproved water sources were associated with increased COVID-19 risk. Other factors included temperature, humidity, social distancing, smoking, and vitamin D intake. The factors most associated with COVID-19 risk included age, climate, social distancing, economic development, health investment, weight, and nutrient intake.

This study is interesting for several reasons. Firstly, we used the LASSO to evaluate the contribution of different variables to COVID-19 cases, deaths, or case fatality rates (CFRs) and identified the most critical factors associated with COVID-19 based on data related to politics, economy, culture, demographic, geography, education, medical resource, scientific development, environment, diseases, diet, and nutrition. This method overcame the limitation of previous univariate analyses that ignored the interdependence between different factors. Second, we identified novel factors associated with COVID-19, including the unitary state governing system as a positive predictor of COVID-19 cases and deaths, blood type B as a protective factor for
COVID-19 risk, the negative associations between the prevalence of HIV, influenza and pneumonia, and chronic lower respiratory diseases and COVID-19 risk, and the positive associations between economic development, education expenditure, obesity, and condition of unimproved water sources and COVID-19 risk. Third, we confirmed some controversial factors associated with COVID-19, including smoking and vitamin D intake as protective factors and blood type A as a risk factor for COVID-19. Finally, this study demonstrates that age, climate, social distancing, economic development, health investment, weight, nutrient intake, influenza, and race are the most prominent factors for COVID-19.

This study has several limitations. First, because the capacity for testing for COVID-19 patients varies among different countries, the reported COVID-19 cases may not fully represent the actual situation of COVID-19 outbreaks in some countries that could affect the accuracy of our predictive models. Second, the sample size is not sufficiently large in terms of the number of predictors we used. As a result, the β-coefficients of some variables were small, so that their associations with COVID-19 risk were ambiguous.

Conclusions

Numerous factors may affect COVID-19 transmission and fatality, of which age, climate, social distancing, economic development, health investment, weight, and nutrient intake are most significant. Our comprehensive identification of the factors
affecting COVID-19 transmission and fatality may provide new insights into the COVID-19 pandemic and advise effective strategies for preventing and migrating COVID-19 spread.

Methods

Materials

We defined 77 variables that could affect COVID-19 transmission and fatality in different countries. These variables included population density, life expectancy, sex ratio (number of males per 100 females), percentage of population aged < 10 years, percentage of population aged ≥ 70 years, percentage of urban population, percentages of population with body mass index (BMI) > 30 and BMI < 18, PM2.5 value (particles less than 2.5 micrometers in diameter), percentage of population using unimproved water sources, prevalence of tuberculosis, prevalence of diabetes, prevalence of HIV, smoking rate among people aged > 15 years, two immunization (DPT and measles) coverages among children ages 12-23 months, average age of childbirth, three types of geographic location (inland, island, and other), three temperature types (high (> 23.5 °C), medium ([0.7, 23.5] °C), low (< 0.7 °C)), humidity, latitude, longitude, five climate types (tropical, arid, temperate, cold, and other), four religions (Islam, Christianity, Buddhism, and other), governing system (unitary state or federation), Gini index, per capita income, universal health coverage index, government expenditure on health (% of GDP), hospital beds per 1,000 people, government expenditure on education (% of GDP), number of live audiences in major sports events,
number of participants in large-scale religious activities, number of participants in large-scale cultural events, birthrate, natimortality, prevalence of malnutrition, number of scientific papers published, human development index, international tourism expenditure, international tourism revenue, domestic tourism expenditure, air passenger traffic, railway length, vehicle usage, percentage of population using the internet, 16 classes of food and nutrient intake (vegetables, fruits, grain, dairy products, edible oil, fat, sugar, alcohol, trace elements, protein, vitamin A, B, C, D, E, and K), and four races (White, Black, Asian, and Arab). We downloaded the latest version of these data from major repositories of authoritative statistics. The major sports events, religious activities, and cultural events were the records from January to March 2020. A description of these variables is shown in Supplementary Table S1. Besides, we defined 55 variables that could affect COVID-19 transmission and fatality in different states of the United States. A description of these variables is shown in Supplementary Table S2. We collected confirmed COVID-19 cases, deaths, and case fatality rates (CFRs) in different countries and in the 50 U.S. states as of May 15, 2020, from the COVID-19 Dashboard of Johns Hopkins University. As suggested in a recent publication, we calculated the CFRs on a given day by dividing the number of COVID-19 deaths on that day by the number of cases 14 days before.

Machine learning model

We defined the countries as having low or high COVID-19 cases, deaths, or CFRs using the 40th and 60th percentiles. We separated the data set into a training set and a test set,
which contained three quarters and the remaining one quarter of the samples, respectively. We used the LASSO on the training set with 5-fold cross validation (CV) and selected the variables with a nonzero β-coefficient in the LASSO. Using the selected variables, we built a ridge logistic model on the training set and applied it to the test set. We estimated the sensitivity and specificity of the predictive model using the area under the receiver operating characteristic curve (AUC).

Ranking variables by importance

For continuous variables, we discretized them using the top-down discretization method\(^\text{23}\). We ranked the importance of all variables based on the chi-squared statistics. We performed data discretization using the R function “disc.Topdown” in the R package “discretization” and feature ranking using the R function “chi.squared” in the R package “mlr.”

Statistical analysis

We performed comparisons of two groups using the one-sided Mann–Whitney U test. We evaluated the correlations of COVID-19 cases, deaths, and CFRs with other variables using the Spearman's correlation test. The correlation test P-value and correlation coefficient (ρ) were reported.

List of abbreviations
SARS-CoV-2: 2019 novel coronavirus; CFRs: case fatality rates; BMI: body mass index ρ: correlation coefficient; AUC: the area under the receiver operating characteristic curve; CV: cross validation.

Conflicts of Interest
The authors declare that they have no competing interests.

Funding Statement
This work was supported by the China Pharmaceutical University (grant numbers 3150120001 to XW).

Acknowledgments
Not applicable.

References
1. COVID-19 Dashboard: Johns Hopkins University; 2020 [updated 3 May 2020. Available from: https://coronavirus.jhu.edu/map.html.
2. Chen J. Pathogenicity and transmissibility of 2019-nCoV—A quick overview and comparison with other emerging viruses. *Microbes and Infection* 2020;22(2):69-71.
3. Mahase E. Coronavirus: covid-19 has killed more people than SARS and MERS combined, despite lower case fatality rate. *BMJ* 2020(368):m641. doi: https://doi.org/10.1136/bmj.m641
4. McKee M, Stuckler D. If the world fails to protect the economy, COVID-19 will damage health not just now but also in the future. *Nature Medicine* 2020 doi: https://doi.org/10.1038/s41591-020-0863-y
5. Roda WC, Varughese MB, Han D, et al. Why is it difficult to accurately predict the COVID-19 epidemic? *Infectious disease modelling* 2020;5:271-81.
6. Prata DN, Rodrigues W, Bermejo PH. Temperature significantly changes COVID-19 transmission in (sub)tropical cities of Brazil. *Science of The Total Environment* 2020;729:138862.
7. Qi H, Xiao S, Shi R, et al. COVID-19 transmission in Mainland China is associated with temperature and humidity: A time-series analysis. *Science of The Total Environment* 2020;729:138862.
Environment 2020;728:138778.

8. Koo JR, Cook AR, Park M, et al. Interventions to mitigate early spread of SARS-CoV-2 in Singapore: a modelling study. The Lancet Infectious Diseases 2020 doi: 10.1016/S1473-3099(20)30162-6

9. Lewnard JA, Lo. NC. Scientific and ethical basis for social-distancing interventions against COVID-19. The Lancet Infectious Diseases 2020 doi: 10.1016/S1473-3099(20)30190-0

10. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 2020;395(10229):1054-62.

11. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020 doi: 10.1001/jama.2020.4683

12. Lau FH, Majumder R, Torabi R, et al. Vitamin D Insufficiency is Prevalent in Severe COVID-19. medRxiv 2020 doi: https://doi.org/10.1101/2020.04.24.20075838

13. Grant WB, Lahore H, McDonnell SL, et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020;12(4):988.

14. Tibshirani R. Regression selection and shrinkage via the lasso. Journal of the Royal Statistical Society B 1996;58(1):267-88.

15. Gaibazzi N, Tuttolomondo D, Guidorossi A, et al. Smoking Prevalence is Low in Symptomatic Patients Admitted for COVID-19. medRxiv 2020 doi: https://doi.org/10.1101/2020.05.05.20092015

16. Grifoni A, Weiskopf D, Ramirez SL, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 2020 doi: https://doi.org/10.1016/j.cell.2020.05.015

17. Millett GA, Jones AT, Benkeser D, et al. Assessing Differential Impacts of COVID-19 on Black Communities. Annals of Epidemiology 2020

18. Zhao J, Yang Y, Huang H, et al. Relationship between the ABO Blood Group and the COVID-19 Susceptibility. medRxiv 2020 doi: https://doi.org/10.1101/2020.03.11.20031096

19. Encyclopaedia Britannica i. The New Encyclopædia Britannica: Macropædia : Knowledge in depth: Encyclopaedia Britannica 2002.

20. Mourant A, Watkin IM. Blood groups, anthropology and language in Wales and the western countries. Heredity 1952;6(1):13-36.

21. Baker RE, Yang W, Vecchi GA, et al. Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic. Science 2020 doi: 10.1126/science.abc2535

22. Baud D, Qi X, Nielsen-Saines K, et al. Real estimates of mortality following COVID-19 infection. The Lancet infectious diseases 2020

23. A top-down and greedy method for discretization of continuous attributes. Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007); 2007. IEEE.
Figure 1

Variable	β	AUC on training set	AUC on test set
COVID−19 cases	0.95	0.90	0.85
COVID−19 deaths	0.98	0.90	0.85
Case fatality rates	0.95	0.90	0.85

Fig. 1. 57 variables selected by the LASSO in predicting COVID-19 cases, deaths, and/or case fatality rates in 154 countries. The β-coefficients and AUCs in the ridge

Consumption and nutrient intake:
- Protein, vegetables, grain, sugar, dairy products, fats, vitamin B, vitamin C, vitamin D, vitamin K, Arab, Asian, and other climates.

Race:
- White, Black, Hispanic, other.

Religion:
- Buddhism, Christianity, Islam, other religions.

Temperature and climate:
- Low temperature, medium temperature, temperate climate, cold climate, other climates.

Geography:
- Island, other locations.

Demographic characteristics:
- Average age of childbirth, birthrate, life expectancy, sex ratio, smoking, malnutrition, tuberculosis, diabetes, HIV, measles, DPT.

Diseases:
- Vitamin C, vitamin D, vitamin K, vitamin B.

Immunization:
- Cultural events, religious activities, sports events, authority.

Social activities:
- Per capita income, unimproved water sources, urbanization level, internet usage, health expenditure, hospital beds, universal health coverage, domestic tourism, international tourism revenue, air passenger traffic, vehicle usage.

Politics and economy:
- Domestic tourism, international tourism revenue, air passenger traffic, vehicle usage.

Transport:
- AUC on test set, AUC on training set.
logistic models are shown. AUC: the area under the receiver operating characteristic curve; aged < 10 years: percentage of population aged < 10 years; Arab: percentage of the Arab population; Asian: percentage of the Asian population; authority: governing system (unitary state or federation); BMI < 18: percentage of population with body mass index (BMI) < 18; BMI > 30: percentage of population with body mass index (BMI) > 30; Buddhism: Buddhism as the primary religion; Christianism: Christianism as the primary religion; cold climate: cold (continental) climate; cultural events: number of participants in large-scale cultural events; dairy products: dairy product intake (kcal/capita/day); diabetes: prevalence of diabetes; domestic tourism: domestic tourism expenditure (billion dollars); DPT: DPT (diphtheria, pertussis, tetanus) immunization coverages among children ages 12-23 months; fat: fat intake (kcal/capita/day); fruits: fruit intake (kcal/capita/day); grain: grain intake (kcal/capita/day); health expenditure: government expenditure on health per capita; HIV: prevalence of HIV; hospital beds: hospital beds per 1,000 people; humidity: relative humidity; internet usage: percentage of population using the internet; Islam: Islam as the primary religion; island: geographic location-island country; malnutrition: percentage of population of malnutrition; measles: measles immunization coverages among children ages 12-23 months; other locations: geographic location-other country; other religions: other religions as the primary religion or without religion; protein: protein intake (kcal/capita/day); religious activities: number of participants in large-scale religious activities; sex ratio: sex ratio (number of males per 100 females); smoking: smoking rate among people aged more than 15 years old; sports events: number of participants in major sports events; sugar: sugar intake (kcal/capita/day); tuberculosis: prevalence of tuberculosis; unimproved water sources: percentage of population using unimproved water sources; urbanization level: percentage of urban population; vegetables: vegetable intake (kcal/capita/day); vehicle usage: number of vehicles; vitamin B: vitamin B (B6, B9, and B12) intake (kcal/capita/day); vitamin C: vitamin C intake (kcal/capita/day); vitamin D: vitamin D intake (kcal/capita/day); vitamin K: vitamin K intake (kcal/capita/day); White: percentage of the White population.
Fig. 2. 31 variables selected by the LASSO in predicting COVID-19 cases, deaths, and/or case fatality rates in the U.S. 50 states. The \(\beta \)-coefficients and AUCs in the ridge logistic models are shown. adolescent: percentage of adolescents 11 - 17 years with 2+ Adolescent Immunizations; American Indians and Alaska Natives: percentage of the population who self-identified as American Indians and Alaska Natives; Black: percentage of the population who self-identified as Black; COVID-19 cases: COVID-19 cases per 100,000 population; COVID-19 deaths: COVID-19 deaths per 100,000 population; case fatality rates: case fatality rates; temperature and climate: average temperature, humidity, and longitude; geography: population density, geographic region, and temperature; demographic characteristics: average age of childbirth, population density, and smoking rate; diseases: chronic lower respiratory diseases, diabetes, and influenza; immunization: adolescent immunization rate; social activities: average age of childbirth; politics and economy: GDP per capita, health insurance coverage, and CO\(_2\) emissions per capita; transport: domestic tourism, international tourism revenue, and private transport in urban vehicles usage; tourism: domestic tourism, international tourism revenue, and private transport in urban vehicles usage; AUC on test set: area under the curve on the test set; AUC on training set: area under the curve on the training set.
of the American Indians and Alaska Natives population; Black: percentage of the Black population; children: percentage of children < 6 years with 2+ Immunizations; chronic lower respiratory diseases (death rate): deaths from chronic lower respiratory diseases per 100,000 population; coastal region: geographic location-coastal region; diabetes: prevalence of diabetes; diabetes (death rate): deaths from diabetes per 100,000 population; domestic tourism: mean census estimate of vehicle trips in urban; great lakes region: geographic location-great lakes region; health insurance coverage: percentage of health insurance coverage; humidity: relative humidity; influenza and pneumonia (death rate): deaths from influenza and pneumonia per 100,000 population; influenza B: number of positive influenza B (Victoria and Yamagata Lineage); influenza-like illness: number of patients with influenza-like illness; inland: geographic location-landlocked country; international tourism revenue: travel spending by international visitors in the U.S. (billion); Native Hawaiian and other Pacific Islander: percentage of the White population; per capita income: per capita real income; private transport in urban: mean census estimate of vehicle miles traveled in urban; smoking: percentage of smoking population; sports events: number of live audiences in major sports events; urbanization level: percentage of urban population; vehicle usage: proportion of households with cars.
Fig. 3. Ranking the importance of variables in distinguishing between low and high COVID-19 cases, deaths, and CFRs based on the chi-square statistic. The importance of variables in the world (A) and the U.S. (B) settings. These variables were selected by the LASSO. The chi-square values are shown.
Figure 4

A

Blood type and COVID-19 outcomes:

- **Blood type A**:
 - Cases: $\rho = -0.47, P = 1.97 \times 10^{-6}$
 - Deaths: $\rho = -0.58, P = 6.23 \times 10^{-10}$

- **Blood type B**:
 - Cases: $\rho = -0.41, P = 3.91 \times 10^{-5}$
 - Deaths: $\rho = -0.50, P = 2.63 \times 10^{-7}$
 - Fatality rates: $\rho = -0.34, P = 8.91 \times 10^{-4}$

B

Major sports events in European countries:

- **Cases**:
 - Fold change (FC): $P = 5.86 \times 10^{-4}$
 - Fatality rates: $P = 5.86 \times 10^{-4}$

- **Deaths**:
 - Fold change (FC): $P = 6.29 \times 10^{-4}$
 - Fatality rates: $P = 6.29 \times 10^{-4}$

- **Audiences (log2-transformed)**:
 - Fold change (FC): $P = 2.05 \times 10^{-4}$
 - Fatality rates: $P = 2.05 \times 10^{-4}$

- **Countries**:
 - 20 countries with major sports events
 - 18 countries without major sports events

C

Temperature and COVID-19 outcomes:

- **Low temperature**:
 - Cases: $-0.23 (P = 0.53)$
 - Deaths: $-0.47 (P = 0.2)$
 - Fatality rates: $-0.17 (P = 0.66)$

- **High temperature**:
 - Cases: $-1.79 (P < 0.001)$
 - Deaths: $-2.42 (P < 0.001)$
 - Fatality rates: $0.44 (P = 0.26)$
Fig. 4. Associations of the ABO blood type, major sports events, and temperature with COVID-19. (A) Blood type A is a risk factor for COVID-19, and blood type B is a protective factor. (B) The positive association between major sports events and COVID-19 risk in European countries. (C) High temperature has a significantly stronger power than low temperature in predicting COVID-19 cases and deaths. The β-coefficients and P values in logistic regression models are shown.
Table S1. 78 factors (variables) that could affect COVID-19 transmission and fatality in 154 countries

Factor	Full name	Period	Source	URL	Variable type	Note
humidity	relative humidity	from January to April 2020	National Oceanic and Atmospheric Administration	https://catalog.data.gov/dataset	continuous	
medium temperature	medium temperature	from January to April 2020	National Oceanic and Atmospheric Administration	https://catalog.data.gov/dataset	continuous	0.7-23.5°C
low temperature	low temperature	from January to April 2020	National Oceanic and Atmospheric Administration	https://catalog.data.gov/dataset	continuous	≤0.7°C
high temperature	high temperature	from January to April 2020	National Oceanic and Atmospheric Administration	https://catalog.data.gov/dataset	continuous	≥23.5°C
longitude	longitude	2020	National Oceanic and Atmospheric Administration	https://catalog.data.gov/dataset	continuous	
latitude	latitude	2020	National Oceanic and Atmospheric Administration	https://catalog.data.gov/dataset	continuous	
tropical climate	tropical climate	2020	World Maps of Köppen-Geiger climate classification	http://koeppen-geiger.vu-wien.ac.at/	discrete	A (tropical rainforest climate), Am (tropical monsoon climate), Aw (tropical savanna, wet)
arid climate	arid climate	2020	World Maps of Köppen-Geiger climate classification	http://koeppen-geiger.vu-wien.ac.at/	discrete	BS (hot semi-arid (steppe) climate), BSk (cold semi-arid (steppe) climate), BW (hot deserts climate), BWk (cold desert climate)
temperate climate	temperate climate	2020	World Maps of Köppen-Geiger climate classification	http://koeppen-geiger.vu-wien.ac.at/	discrete	Cf (humid subtropical climate), Cfb (temperate oceanic climate), Cfc (subpolar oceanic climate), Csa (hot-summer Mediterranean climate), Csb (warm-summer Mediterranean climate), Csc (cool-summer Mediterranean climate), Cwa (monsoon-influenced humid subtropical climate), Cwb (subtropical highland climate or temperate oceanic climate with dry winters), Cwc (cold subtropical highland climate or subpolar oceanic climate with dry winters)
cold climate	cold (continental) climate	2020	World Maps of Köppen-Geiger climate classification	http://koeppen-geiger.vu-wien.ac.at/	discrete	Dfa (hot-summer humid continental climate), Dfb (warm-summer humid continental climate), Dfc (subarctic climate), Dfd (extremely cold subarctic climate), Dsa (hot, dry-summer continental climate), Dsb (warm, dry-summer continental climate), Dsc (dry-summer subarctic climate), Dwa (monsoon-influenced hot-summer humid continental climate), Dwb (monsoon-influenced warm-summer humid continental climate), Dwc (monsoon-influenced subarctic climate), Dw (monsoon-influenced extremely cold subarctic climate)
other climate	other climate	2020	World Maps of Köppen-Geiger climate classification	http://koeppen-geiger.vu-wien.ac.at/	discrete	
other locations	geographic location - other country	2020	Central Intelligence Agency	https://www.cia.gov/index.html	discrete	
inland	geographic location - landlocked country	2020	Central Intelligence Agency	https://en.wikipedia.org/wiki/Landlocked_country	discrete	
island	geographic location - island country	2020	Central Intelligence Agency	https://www.cia.gov/index.html	discrete	
length of railway	length of railway (per 1000 square kilometers)	2017	WIKI	https://en.wikipedia.org/wiki/List_of_countries_by_rail_transport_network_size	continuous	
sports events	number of live audiences in major sports events	from January to March 2020	ESPN; CIES Football Observation; Hupu	https://www.espn.com/; https://football-observatory.com/; https://www.hupu.com/	continuous	log2-transformed
cultural events	number of participants in large-scale cultural events	from January to March 2020	BBC	https://www.bbc.com/; https://economictimes.indiatimes.com/; https://www.nytimes.com/2020	continuous	log2-transformed
religious activities	number of participants in large-scale religious activities from January to March 2020	BBC	https://www.bbc.com/	continuous	log2-transformed	
----------------------	---	-----	---------------------	------------	------------------	
sex ratio	sex ratio (number of males per 100 females)	2018	United Nations Data	http://data.un.org/	continuous	
population density	population density	2018	United Nations Data	http://data.un.org	continuous	
authority	governing system (unitary state or federation)	2020	WIKI	https://en.wikipedia.org/wiki/Unitary_state	continuous	
per capita income	GDP per capita ($)	2019	World Economic Outlook Database	https://www.imf.org/external/	continuous	
education	government expenditure on education (% of GDP)	2018	United Nations Data	http://data.un.org/default.aspx	continuous	
			World Bank	https://data.worldbank.org.cn	continuous	
Buddhism	Buddhism as the primary religion	2020	WIKI	continuous		
Christianity	Christianity as the primary religion	2020	WIKI	continuous		
Islam	Islam as the primary religion	2020	WIKI	continuous		
other religions	other religions as the primary religion or without religion	2020	WIKI	discrete		
health expenditure	government expenditure on health per capita	2018	World Bank	https://data.worldbank.org.cn	continuous	
hospital beds	hospital beds per 1,000 people	2015	World Bank	https://data.worldbank.org.cn	continuous	
aged ≥ 70 years	percentage of population aged ≥ 70 years	2018	World Bank	https://data.worldbank.org.cn	continuous	
aged < 10 years	percentage of population aged < 10 years	2018	World Bank	https://data.worldbank.org.cn	continuous	
Gini index	Gini index	2018	World Bank	https://data.worldbank.org.cn	continuous	
HIV	prevalence of HIV	2018	World Bank	https://data.worldbank.org.cn	continuous	
diabetes	prevalence of diabetes	2019	World Bank	https://data.worldbank.org.cn	continuous	
tuberculosis	prevalence of tuberculosis	2018	World Bank	https://data.worldbank.org.cn	continuous	
measles immunization	measles immunization coverages among children ages 12-23 months	2018	World Bank	https://data.worldbank.org.cn	continuous	
DPT immunization	DPT (diphtheria, pertussis, tetanus) immunization coverages among children ages 12-23 months	2018	World Bank	https://data.worldbank.org.cn	continuous	
universal health coverage	universal health coverage index	2017	World Bank	https://data.worldbank.org.cn	continuous	
urbanization level	percentage of urban population	2018	World Bank	https://data.worldbank.org.cn	continuous	
Category	Description	Year	Source	Continuity		
----------------------------------	---	------	---	------------		
Average age of childbirth	Average age of childbirth	2015	World Bank	Continuous		
Life expectancy	Life expectancy	2017	World Bank	Continuous		
Birthrate	Birthrate	2017	World Bank	Continuous		
Natimortality	Natimortality	2017	World Bank	Continuous		
International tourism expenditure	International tourism expenditure	2018	World Bank	Continuous		
International tourism revenue	International tourism revenue	2018	World Bank	Continuous		
Air passenger traffic	Air passenger traffic	2018	World Bank	Continuous		
Internet usage	Percentage of population using the internet	2018	World Bank	Continuous		
Smoking rate among people aged > 15	Smoking rate among people aged > 15	2016	World Bank	Continuous		
PM2.5	Mean annual exposure (micrograms per cubic meter)	2020	World Bank	Continuous		
Human development index	Human development index	2019	WIKI	Continuous		
Unimproved water sources	Percentage of population using unimproved water sources	2017	World Health Organization (WHO)	Continuous		
BMI < 18	Percentage of population with body mass index (BMI) < 18	2016	World Health Organization (WHO)	Continuous		
BMI > 30	Percentage of population with body mass index (BMI) > 30	2016	World Health Organization (WHO)	Continuous		
Scientific papers	Number of scientific papers published	2018	Knoema	Continuous		
Malnutrition	Percentage of population of malnutrition	2017	Knoema	Continuous		
Vegetables	Vegetables intake (kcal/capita/day)	2020		Continuous		
Fruits	Fruits intake (kcal/capita/day)	2020		Continuous		
Grain	Grain intake (kcal/capita/day)	2020		Continuous		
Dairy products	Dairy products intake (kcal/capita/day)	2020		Continuous		
Edible oil	Edible oil intake (kcal/capita/day)	2020		Continuous		
Sugar	Sugar intake (kcal/capita/day)	2020		Continuous		
Alcohol	Alcohol intake (kcal/capita/day)	2020		Continuous		
Trace elements	Trace elements (Zinc, Calcium, Chromium, Iron, Magnesium, Potassium, Selenium) intake	2020	Food and Agriculture Organisation of the United Nations;	Continuous		

Note: Some data sources include direct links, while others provide general patterns of data availability.
Factor	Full name	Period	Source	URL	Variable type	Note
vitamin A	vitamin A intake	2020	2015 - 2018 Dietary Guidelines for Americans	continuous		
vitamin B	vitamin B (B6, B9, and B12) intake	2020	continuous	continuous		
vitamin C	vitamin C intake	2020	continuous	continuous		
vitamin D	vitamin D intake	2020	continuous	continuous		
vitamin E	vitamin E intake	2020	continuous	continuous		
vitamin K	vitamin K intake	2020	continuous	continuous		
protein	protein intake	2020	continuous	continuous		
fat intake	fat intake	2020	continuous	continuous		
White population	percentage of the White population	2020	Central Intelligence Agency	https://www.cia.gov/index.html	continuous	
Black population	percentage of the Black population	2020	Central Intelligence Agency	https://www.cia.gov/index.html	continuous	
Asian population	percentage of the Asian population	2020	Central Intelligence Agency	https://www.cia.gov/index.html	continuous	
Arab population	percentage of the Arab population	2020	Central Intelligence Agency	https://www.cia.gov/index.html	continuous	
vehicle usage	number of vehicles	2019	International Organization of Motor Vehicle Manufacturers	http://www.oica.net/	continuous	
Domestic tourism	expenditure (billion dollars)	2018	World Health Organization	https://www.who.int/data/gho	continuous	
domestic tourism	expenditure (billion dollars)	2018	Knoema	https://knoema.com/	continuous	

Table S2. 55 factors (variables) that could affect COVID-19 transmission and fatality in the 50 U.S. states

Factor	Full name	Period	Source	URL	Variable type	Note
medium temperature	medium temperature	from January to April 2020	National Oceanic and Atmospheric Administration	https://catalog.data.gov/	discrete	0.7-23.5°C
humidity	relative humidity	from January to April 2020	National Oceanic and Atmospheric Administration	https://catalog.data.gov/	continuous	
latitude	latitude	from January to April 2020	National Oceanic and Atmospheric Administration	https://catalog.data.gov/	continuous	
longitude	longitude	from January to April 2020	National Oceanic and Atmospheric Administration	https://catalog.data.gov/	continuous	
sports events	number of live audiences in major sports events	from January to March 2020	ESPN; CIES Football Observation; Hupu	https://www.espn.com/; https://football-observatory.com/; https://www.hupu.com/	continuous	log2-transformed
influenza-like illness	number of patients with influenza-like illness	from October to December 2019	CDC	https://gis.cdc.gov/	continuous	Known as flu-like syndrome/symptoms, is a medical diagnosis of possible influenza or other illness causing a set of common symptoms.
influenza A	number of positive influenza A (H1, H3, and H1N1)	from October to December 2019	WHO NREVSS Clinical Labs	https://gis.cdc.gov/	continuous	
influenza B	number of positive influenza B	from October to December 2019	WHO NREVSS Clinical	https://gis.cdc.gov/	continuous	
(Victoria and Yamagata Lineage)	December 2019	Labs				
---------------------------------	--------------	------				
sex ratio (males per 100 females)	2014 to 2018	United States Census Bureau	https://www.census.gov/			
internet usage	2014 to 2018	United States Census Bureau	https://www.census.gov/			
per capita income	2014 to 2018	United States Census Bureau	https://www.census.gov/			
health insurance coverage	2014 to 2018	United States Census Bureau	https://www.census.gov/			
vehicle usage	2014 to 2018	United States Census Bureau	https://www.census.gov/			
aged ≥ 65 years	2014 to 2018	ACS	https://census.missouri.edu/			
aged < 10 years	2014 to 2018	ACS	https://census.missouri.edu/			
arid climate	2020	National Oceanic and Atmospheric Administration	https://catalog.data.gov/			
temperate climate	2020	National Oceanic and Atmospheric Administration	https://catalog.data.gov/			
cold climate	2020	National Oceanic and Atmospheric Administration	https://catalog.data.gov/			
coastal region	2020	WIKI	discrete			
inland	2020	WIKI	discrete			
great lakes region	2020	WIKI	discrete			
tuberculosis	2019	CDC, Morbidity and Mortality Weekly Report (MMWR)	https://www.cdc.gov/			
CO2 emissions per capita	2019	U.S. Energy Information Administration - monthly Energy Review - July 2019	https://www.eia.gov/			
BMI > 30	2018	America Health Rankings	https://www.americahealthrankings.org/			
birthrate	2018	CDC, United States Life Tables	https://www.cdc.gov/			
smoking	2018	CDC BRFSS	https://chronicdata.cdc.gov/			
unimproved water sources	2015	USGS Water Data for USA	http://water.usgs.gov			
urbanization level	2010	WIKI	discrete			
private transport in urban	2009	United States Department of Transportation	https://www.bts.gov/			
domestic tourism	2009	United States Department of Transportation	https://www.bts.gov/			
average age of childbirth	2006	CDC	https://www.cdc.gov/			
resident population	2020	CDC	https://wonder.cdc.gov/			
diabetes	2016	CDC US Diabetes Surveillance System; Division of Diabetes Translation - Centers for Disease Control and Prevention	https://gis.cdc.gov/			
HIV	2018	CDC	https://wonder.cdc.gov/			
death rate	2017	CDC	https://www.cdc.gov/			
Category	Description	Year	Source	URL	Update Frequency	
---------------------------------------	---	------	---	----------------------------	------------------	
HIV (death rate)	deaths from HIV per 100,000 population	2017	CDC	https://www.cdc.gov/	continuous	
diabetes (death rate)	deaths from diabetes per 100,000 population	2017	CDC	https://www.cdc.gov/	continuous	
influenza and pneumonia (death rate)	deaths from influenza and pneumonia per 100,000 population	2017	CDC	https://www.cdc.gov/	continuous	
chronic lower respiratory diseases	deaths from chronic lower respiratory diseases per 100,000 population	2017	CDC	https://www.cdc.gov/	continuous	
life expectancy	life expectancy at birth	2015	CDC	https://data.cdc.gov/	continuous	
R&D expenditures	R&D expenditures	2018	National Science Foundation	https://www.nsf.gov/	continuous	
PM2.5	average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)	2018	National Science Foundation	https://www.americashealthrankings.org/	continuous	
adolescent immunizations	percentage of adolescents 11 - 17 years with 2+ Adolescent Immunizations	2018	CDC	https://www.cdc.gov/	continuous	
adults immunizations	percentage of U.S. Adults 19+ years with 1+ Adult Immunizations	2018	CDC	https://www.cdc.gov/	continuous	
community hospitals	number of community hospitals	2019	AHA	https://www.aha.org/	continuous	
White	percentage of the White population	2018	United States Department of Transportation	https://www.census.gov/	continuous	
Black	percentage of the Black population	2018	United States Department of Transportation	https://www.census.gov/	continuous	
American Indians and Alaska Natives	percentage of the American Indians and Alaska Natives population	2018	United States Department of Transportation	https://www.census.gov/	continuous	
Asian	percentage of the White population	2018	United States Department of Transportation	https://www.census.gov/	continuous	
Native Hawaiian and other Pacific Islander	percentage of the White population	2018	United States Department of Transportation	https://www.census.gov/	continuous	
some other race	percentage of the White population	2018	United States Department of Transportation	https://www.census.gov/	continuous	
population density	population density	2020	World Population Review	https://worldpopulationreview.com/	continuous	
education	literacy average score indirect estimates	from 2013 to 2017	PIAAC	https://nces.ed.gov/	continuous	
hospital beds	hospital beds per capita	2019	AHA	https://metricvu.aha.org/	continuous	
international tourism revenue	travel spending by international visitors in the U.S. (billion)	2019	U.S.travel	https://www.ustravel.org/	continuous	