Validation methods for global and local positioning-based athlete monitoring systems in team sports: a scoping review

Live Steinnes Luteberget, Matthias Gilgien

ABSTRACT
Background/Objective Global navigation satellite systems (GNSS) and local positioning systems (LPS) are to date common tools to measure external training load in athletes. The aim of this scoping review was to map out and critically appraise the methods used to validate different GNSS and LPS used in team sports.

Method A total of 48 studies met the eligibility criteria and were included in the review. The reference systems applied in the validations, and the parameters investigated were extracted from the studies.

Results The results show a substantial range of reference systems used to validate GNSS and LPS and a substantial number of investigated parameters. The majority of the validation studies have employed relatively simple field-based research designs, with use of measure tape/known distance as reference measure for distance. Timing gates and radar guns were frequently used as reference system for average and peak speed. Fewer studies have used reference system that allow for validation of instantaneous dynamic position, such as infrared camera-based motion capture systems.

Conclusions Because most validation studies use simple and cost-effective reference systems which do not allow to quantify the exact path athletes travel and hence misjudge the true path length and speed, caution should be taken when interpreting the results of validation studies, especially when comparing results between studies. Studies validating instantaneous dynamic position-based measures is warranted, since they may have a wider application and enable comparisons both between studies and over time.

INTRODUCTION
Objective analyses of physical training load in team sports can provide better understanding of the specific physical demands of a sport, the physical development of players over time, health and performance, and can help to improve training practices. Different methods for time-motion analysis, such as hand notation and video analysis, have been used to objectively assess training load for many decades. However, the time-consuming nature of such analysis has restricted its use. The development of wearable athlete monitoring systems has made objective athlete monitoring more available in team sports. Most wearable athlete monitoring systems consist of a global navigation satellite system (GNSS) for outdoor use or a local positioning system (LPS) for indoor use. GNSS and LPS systems provide meaningful position-based measures such as speed or path length for team sports. The use of GNSS-based and LPS-based athlete monitoring systems is now commonplace in team sports, and the number of research publications related to the application of these technologies in team sports is high and increasing exponentially (figure 1). Wearable athlete monitoring systems often also include inertial sensors, such as accelerometers and gyroscopes. These are typically used to measure acceleration and parameters based on acceleration. This article does not address inertial sensors but focuses on GNSS/LPS technology.

The large number of GNSS and LPS system applications in sport teams and research emphasise the importance of the question of whether these systems are sufficiently validated and can accurately measure what they are intended to measure. Good internal and external validity of data collection systems...
able tracking devices applied in sports should be small, to measure. If the internal validity of a system is reflects the ability to accurately measure what the system The internal validity of a system is equally important. It validity compared to investigations in laboratory settings. competition and hence substantially improve external monitoring systems are applied in team sport is that they allow collection of data during real-life training and thus substantially improve external performance and/or increased health risks. One main reason why wearable athlete monitoring systems are applied in team sport is that they allow collection of data during real-life training and competition and hence substantially improve external validity compared to investigations in laboratory settings. The internal validity of a system is equally important. It reflects the ability to accurately measure what the system intends to measure. If the internal validity of a system is not adequate, training load can be overestimated or underestimated, and the application of such measurement systems may cause harm to athletes by the prescription of inadequate training, leading to decreased performance and/or increased health risks.

Both GNSS and LPS are prone to measurement error, and there are many factors that can influence position validity. Calculation of the GNSS or LPS position of a wearable athlete monitoring system (receiver) is based on position and time information from satellites circulating around the earth (for GNSS) or local nodes mounted around the field of play (for LPS). Satellites and nodes emit an electromagnetic signal that is received by the receiver on the athlete. From these signals, there are several techniques that can be used to calculate instantaneous position, such as time-of-flight, time-difference-of-arrival, angle-of-arrival and received signal strength. GNSS use time-of-flight, while LPS vary between different systems in which technique they use. The main device-related factors that influence the validity of this kind of position measurement include antenna and board type, number of satellites/nodes used for position calculation, signal type used, processing method, measurement frequency and parameter calculation process. Since wearable tracking devices applied in sports should be small, light and user-friendly, the manufacturers of such devices optimise the trade-off between system performance, form factor, handling simplicity and cost. Due to these manufacturing compromises and the continuous system improvements in hardware and firmware, data processing and parameters, the validity of such systems needs to be investigated prior to use. To date, several validity studies have been published for GNSS, and to a lesser extent for newer LPS in team sports. The GNSS studies show a large range of standards (hereafter called reference systems) applied to validate wearable athlete monitoring systems and the parameters investigated.

In recognition of the importance validity has in match and training analysis in team sports, and the apparent range of validation methods applied in GNSS/LPS studies, this scoping review aims to present and critically appraise the methods used to validate the various GPS and LPS used in team sports.

METHOD
Review protocol
The protocol for this review is available at the Open Science Framework (URL: https://osf.io/3wn82/), where both the protocol and the full search strategy can be found (URL: https://osf.io/rmcgf/). This review was conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews.

Eligibility criteria
Articles were eligible for inclusion in this review if they (1) included investigation of validity/accuracy for GNSS or LPS and (2) were aiming to investigate this in relation to team sports. Articles were excluded if they were (1) published in a non-English language or (2) only available in conference abstract or conference proceedings format. Reviews or other studies with no primary data were not included in this scoping review.

Search strategy
A systematic electronic database search was conducted in SPORTDiscus and PubMed for all published manuscripts prior to the search date (15.09.19). The search strategy included the following terms (and variations of these terms): ‘Global Positioning System’ OR ‘Global Navigation Satellite System’ OR ‘Local Positioning System’ AND ‘Validity’ OR ‘Accuracy’ AND ‘Team Sports’. The full search strategy can be found at the Open Science Framework (URL: https://osf.io/rmcgf/). No filters or limitations were imposed during the search.

Study selection
Search results were exported to a reference manager library (Endnote, X9.2), where duplicates were removed. The citations were then uploaded to the systematic review software DistillerSR (Evidence Partners, Ottawa, Canada). Titles and abstracts of the citations were screened for eligibility independently by two reviewers.
Full texts of potentially eligible articles were retrieved before a final assessment was completed independently by the same two reviewers. Any discrepancies between reviewer eligibility assessments were resolved through discussion with a third reviewer. All three reviewers were familiar with the topic of the review.

Data extraction
GNSS/LPS specifications (brand, model and sampling frequency), sporting tasks assessed, reference system used for the validation, and parameters investigated were extracted from the included studies. Tasks were classified into four different categories: linear (straight line) tasks, non-linear tasks, team sport circuits and game-like situations (eg, small-side games). The type of reference system used to assess validity was extracted as stated in the studies. The parameters for time, averaged static position, instantaneous dynamic position, distance travelled, average speed, peak speed, instantaneous speed, average acceleration, peak acceleration and instantaneous acceleration were extracted. Other parameters, such as metabolic power or time to cover distance, were categorised as ‘other’. Data extraction was performed by two independent reviewers.

RESULTS
The database search identified 454 relevant records. Duplicates (n=76) were removed, so 378 titles and abstracts were reviewed. A total of 48 studies met the eligibility criteria and were included in the review. An overview of the search and selection process is presented in figure 2.

The studies investigated from one to five parameters each. Distance was the most frequently investigated parameter (34 articles), followed by average and peak speed. Fewer studies investigated dynamic position, or instantaneous speed and acceleration (figure 3).

Five different reference systems were used to investigate the validity of distance, where tape measure/known distance constituted the most frequently used reference systems. For validation of speed the reference systems applied were timing gates, radar gun and infrared camera-based motion capture systems. For the validation of acceleration only infrared camera systems were used. A summary of the results is given in table 1, while a full documentation of the different reference systems used and parameters assessed is shown in table 2 (LPS) and table 3 (GNSS).

A variety of different tasks are used to investigate the validity and accuracy of GNSS/LPS. Linear tasks were the most frequently used (tables 2–3) and were included in most studies. Different circuits and courses imitating team sports movements were also frequently used. Game-like situations were only used in three of the 48 included studies (tables 2–3).

DISCUSSION
This study provides an overview of the published, peer reviewed studies investigating the validity of GNSS and LPS in team sports. Since the first validation study on GNSS in team sports was published in 2006, the number of validation studies has steadily increased in this field. It seems that the increasing number of validation studies is required, since the number of manufacturers and types of GNSS/LPS-devices, and with these the variety of hardware and firmware, sampling rates and data-processing methods, have increased. In total, the validity of at least 23 GNSS and six LPS models—from 17 different manufacturers—for team sports applications have been investigated in the literature.

The results show a substantial range of reference systems employed to validate GNSS and LPS, and a substantial number of parameters that were investigated. Most of the validation studies have employed relatively simple field-based research designs, using a tape measure/known distance as the reference system for distance. Timing gates and radar guns were frequently used as reference systems for average and peak speed. Fewer studies have used reference systems that allow for validation of instantaneous dynamic position, such as infrared camera-based motion capture systems.
Distance travelled and peak and average speed were the
most frequently investigated parameters. The high num-
ber of studies investigating these parameters is justified by
their frequent use in time-motion analyses in team
sports.

Only a few studies have investigated the
validity of instantaneous dynamic position, which may
be due to the unavailability of appropriate reference sys-
tems, such as infrared camera-based motion capture sys-
tems. However, some studies did not provide
instantaneous dynamic position, even though the refer-
ence system applied could have provided this
information. We believe that insight into the valid-
ity of instantaneous dynamic position could be beneficial
for several reasons. First, other parameters (such as dis-
tance) are integrations or derivatives of instantaneous
dynamic position and hence, deviations in position mea-
surement are propagated to these parameters and poten-
tially amplified by data processing, such as filtering and
parameter calculation methodology. Such data proces-
sing steps will likely deviate between devices and manu-
facturers. Thus, appropriate validations of a system’s
instantaneous dynamic position would allow comparison
of the system’s ability to measure the basic parameter
(position) and allow pinpointing of a) the error caused
by the basic parameter (position) measurement and b)
the manufacturer’s data processing. Second, parameters
such as distance or speed can be affected by firmware
update-related changes in the manufacturer’s data pro-
cessing (typically parameter calculation and filtering).
Hence, altered firmware may cause differences in the
propagation parameters such as distance and speed com-
pared with earlier firmware versions, even though the
measurement of the basic parameter (position) may
remain unchanged. It is likely that system improvements
more often affect data processing (parameter calculation
and filtering) than the basic measurement (instantaneous
dynamic position). Therefore, third, GINS/LS data are also used for tactical analyses, such as mean position over time
and dynamic distances between players, which are
based on position. Therefore, it is important that studies
also investigate the validity of instantaneous
position. However, some studies did not provide
instantaneous dynamic position, which may be due to the unavailability of appropriate reference sys-
tems such as infrared camera-based motion capture sys-
tems. Therefore, we suggest that the validity of instantaneous
dynamic position should be included in validation stu-
dies, as it may have a wider application and could in the
long run be both time and cost saving due to its more
long-term stability across firmware versions.

Some studies lacking an appropriate reference system
for instantaneous dynamic position have investigated
time-averaged static positions. Two studies have
measured positions as reference points, while one
study applied the average position of the receiver as a reference. These two validation methods of the
receiver are inherently different and may elicit vastly
different results. The average position should be used
for studies with a varying number of participants.

Table 1: Overview of different reference systems used to validate the most common performance and training load parameters

Parameter	Time averaged static position	Instantaneous dynamic position	Distance travelled	Average speed	Peak speed	Instantaneous speed	Average acceleration	Peak acceleration	Instantaneous acceleration
Theodolite	2	2							
Tape measure/known distance	1	19							
Trundle wheel	7								
Radar gun/laser gun	1	1		6	1				
Timing gates	8	4	1	3	2	1			
Infrared camera-based motion capture system	3	5	7	6	2	3	2	1	
Other	1	1	1	1					

Note: Only a few studies have investigated the validity of instantaneous dynamic position, which may be due to the unavailability of appropriate reference systems. We believe that insight into the validity of instantaneous dynamic position could be beneficial for several reasons.
System(s) model (Manufacturer)	System information frequency, technology	Tasks	Reference system	Parameter
Bastida-Castilla et al 2018‡	WIMUPRO (Realtrack systems) 20 Hz, LPS	Linear tasks	Timing gates	Distance travelled
		Non-linear tasks	Trundle wheel	Average speed
Bastida-Castilla et al 2019‡	WIMUPRO (Realtrack systems) 20 Hz, LPS	Linear tasks	Calibration procedures of	Instantaneous dynamic position
		Non-linear tasks	LPS	
Figueira et al 2018‡	NBN23 (Quuppa) 10 Hz, LPS	Non-linear tasks	Known distance	Distance travelled (relative)
Frencken et al 2010§	Inmotio (Inmotio Object tracking) 45 Hz, LPS	Linear tasks	Average position	Time averaged static position
		Non-linear tasks	Tape measure	Distance
			Timing gates	Average speed
Hoppe et al (2018)§‡	Kinexon One (Kinexon Precision Technologies) 20 Hz, LPS	Team sport circuit	Tape measure	Distance travelled
			Trundle wheel	Other
Leser et al. 2014§	Ubisense (Ubisense) 4.17 Hz, LPS	Game-like situations	Trundle wheel	Distance travelled
Link et al. 2019§	Inmotio (Inmotio Object tracking) 100 Hz, LPS	Linear tasks	Tachymeter	Other
	Kinexon (Kinexon Precision Technologies) 15 Hz, LPS	Non-linear tasks	Timing gates	
Linke et al 2018§	Inmotio (Inmotio Object tracking) 45 Hz, LPS	Linear tasks	Infrared camera-based motion capture system	Instantaneous dynamic position
		Non-linear tasks	Speed	Instantaneous speed
Luteberget et al 2018§	ClearSky T6 (Catapult Sports) 20 Hz, LPS	Linear tasks	Infrared camera-based motion capture system	Instantaneous dynamic position
		Non-linear tasks	Distance travelled	Average speed
		Game-like situations		Instantaneous speed
Ogris et al 2012§	LPM04.59 (Abatec) 45 Hz, LPS	Linear tasks	Infrared camera-based motion capture system	Instantaneous dynamic position
		Non-linear tasks	Average speed	Speed
Rhodes et al 2014§	Ubisense (Ubisense) 4 Hz, LPS† 8 Hz, LPS† 16 Hz, LPS†	Linear tasks	Theodolite	Time averaged static position
		Non-linear tasks	Timing gates	Distance
		Game-like situations		Average speed
Sathyyan et al 2012§	WASP system (Undisclosed) 10 Hz, LPS	Linear tasks	Theodolite	Time averaged static position
		Non-linear tasks	Tape measure	Dynamic position (relative)

Continued
measurement obtained using the same device as the one to be validated provides only random error and cannot measure the systematic deviance from the true location. Thus, if the true static position is unknown, the relative position difference should be stated as a precision measure, not an accuracy or validity measure.

Several validation studies have used premeasured distances as reference systems for distance and average speed. This is a simple and cost-effective way to investigate the validity of tracking systems. However, the method is not an ideal reference system, as it is not possible to quantify the exact path travelled by the athlete as long as the athlete’s true path is not tracked instantaneously. During human locomotor tasks the individual and thus the device will seldom follow a straight line between two points. This could affect the outcome of validation studies, as is pointed out by some authors. Thus, smaller or larger deviations in the athlete’s position may go undetected and can lead to an underestimation or overestimation of the accuracy of the investigated system. To avoid this problem, the use of reference systems that measure the true instantaneous trajectory of the athlete’s device, such as infrared camera-based motion capture systems, video-based tracking, or, previously validated high-end GNSS devices, is warranted. Such reference systems also make it possible to investigate more complex tasks, such as game-like situations, which are inherently the most specific conditions to test the systems in.

Timing gates are also easy to apply and are often used as the reference system for mean speed, and in some cases peak speed and instantaneous speed. However, timing gates only determine mean speed in the sections between gates. Mean speed provides only limited insight in team sport applications, since it does not contribute much to the understanding of team sports, where speed constantly fluctuates as a function of the acceleration and deceleration of the athlete. Team sport analysis systems often sort speed data into ranges (speed zones) and express these as a function of time or distance as a comprehensive metric for the ‘distribution of intensity’ of the athletes’ physical load. Even though instantaneous speed measurements are commonly used to categorise speed as a function of time or distance, most validation studies only investigate the validity of mean speed over time. This is a serious shortcoming, since mean speed over time may not allow conclusions to be reached on the described distribution of intensity, which is based on instantaneous speed.

Some studies include the validity of peak speed; however, only a few studies have looked at the instantaneous speed over the range of a whole task. Radar guns were used in several studies to assess peak and instantaneous speed. The validity of radar guns during non-straight-line running is currently unknown, and they are thus used only in straight-line sprints in the current literature. Hence, a radar gun is not a suitable reference system for team sports motion, since most team

Parameter	Distance travelled	Average speed	Peak speed	Average acceleration	Peak acceleration
Infrared camera-based motion capture system	Instantaneous position				
Laser gun					
Linear tasks					
Non-linear tasks					
Linear tasks					
Non-linear tasks					

Reference system	Infrared camera-based motion capture system				
Distance travelled	Average speed	Peak speed	Average acceleration	Peak acceleration	
Linear tasks	Non-linear tasks	Linear tasks	Non-linear tasks	Linear tasks	Non-linear tasks

Table 2

System(s) model (Manufacturer)
- Serpiello et al 2018
- Siegle et al 2013
- Stevens et al 2014

System information frequency, technology
- 10 Hz, LPS
- 45 Hz, LPS
- Undisclosed

Tasks
- Linear tasks
- Non-linear tasks

Parameter
- Distance travelled
- Average speed
- Peak speed
- Average acceleration
- Peak acceleration

† Some unit used with different sampling frequency.
‡ Studies investigating both GNSS/GPS and LPS.
References	System(s) model (Manufacturer)	System information frequency, technology	Tasks	Reference system	Parameter
Akenhead et al 2014	MinimaxX S4 (Catapult Sports)	10 Hz, GPS	Linear tasks	Laser gun	Instantaneous speed
Barbero-Álvarez et al 2010	SPI Elite (GPSports Systems)	1 Hz, GPS	Linear tasks	Timing gates	Peak speed
Barr et al 2019	SPI HPU (GPSports Systems)	5 Hz*, GPS	Linear tasks	Timing gates	Instantaneous speed
Bastida-Castilla et al 2018	WIMUPRO (Realtrack systems)	10 Hz, GPS	Linear tasks	Timing gates	Distance travelled
Bastida-Castilla et al 2018	WIMUPRO (Realtrack systems)	10 Hz, GPS	Linear tasks	Calibration procedures of LPS	Instantaneous dynamic position
Bataller-Cervera et al 2019	Viper (STATSports)	10 Hz, GPS	Linear tasks	Timing gates	Average speed
Beato et al 2018	Apex 10 Hz (STATSports)	10 Hz, GNSS	Linear tasks	Tape measure	Distance travelled
Beato et al 2018	Apex 18 Hz (STATSports)	18 Hz, GPS	Team sport circuit	Radar gun	Peak speed
Beato et al 2016	Undisclosed (STATSports)	10 Hz, GPS	Linear tasks	Tape measure	Distance travelled
Castellano et al 2011	MinimaxX v4.0 (Catapult Sports)	10 Hz, GPS	Linear tasks	Tape measure	Distance travelled
Coutts‡ Duffield 2010	SPI-10 (GPSports Systems)	1 Hz, GPS	Team sport circuit	Tape measure	Distance travelled
Delaney et al 2019	EVO (GPSports Systems)	10 Hz, GNSS	Linear tasks	Infrared camera-based motion capture system	Average speed
Duffield et al 2010	MinimaxX (Catapult Sports)	5 Hz, GPS	Linear tasks	Infrared camera-based motion capture system	Distance travelled
Edgecomb‡ Norton 2006	SPI-10 (GPSports Systems)	Undisclosed, GPS	Team sport circuit	Trundle wheel	Distance travelled
Gray et al 2010	WI SPI elite (GPSports Systems)	1 Hz, GPS	Linear tasks	Theodolite	Distance travelled
Hoppe et al 2018	GPEXEPRO (Exelio srl)	18 Hz, GPS	Team sport circuit	Tape measure	Distance travelled

Continued
Table 3 Continued

References	System(s) model (Manufacturer)	System information frequency, technology	Tasks	Reference system	Parameter
Jennings et al 2010	MinimaxX Team 2.5 (Catapult Sports)	1 Hz, GPS† 5 Hz, GPS†	Linear tasks Non-linear tasks Team sport circuit	Tape measure	Distance travelled
Johnston et al 2014	MinimaxX S4 (Catapult Sports) SPI-ProX (GPSports Systems)	10 Hz, GPS 10 Hz*, GPS	Team sport circuit	Tape measure Timing gates	Distance travelled Peak speed
Johnston et al 2013	MinimaxX S3 (Catapult Sports) MinimaxX S4 (Catapult Sports)	5 Hz, GPS 10 Hz, GPS	Team sport circuit	Tape measure Timing gates	Distance travelled Peak speed
Johnston et al 2012	MinimaxX Team 2.5 (Catapult Sports)	5 Hz, GPS	Linear tasks Team sport circuit	Tape measure Timing gates Radar gun	Distance travelled Peak speed
Köklü et al 2015	SPI ProX (GPSports Systems)	5 Hz*, GPS	Linear tasks Non-linear tasks	Tape measure Timing gates	Distance travelled Average speed
Lacome et al 2019	Sensoreverywhere V2 GPS (Digital simulation)	16 Hz, GPS	Linear tasks	Radar gun	Peak speed
Linke et al 2018	SPI Pro X (GPSport Systems)	5 Hz*, GPS	Linear tasks Non-linear tasks Game-like situations	Infrared camera-based motion capture system	Instantaneous dynamic position Instantaneous speed Instantaneous acceleration
MacLeod et al 2009	SPI Elite (GPSports Systems)	1 Hz, GPS	Team sport circuit	Trundle wheel Timing gates	Distance travelled Average speed
Muñoz-Lopez et al 2017	WIMU (Realtrack Systems)	5 Hz, GPS	Linear tasks Team sport circuit	Tape measure	Distance travelled
Nagahara et al 2017	GPEXE (Exelio srl) SPI-Pro X (GPSport Systems)	20 Hz, GPS 5 Hz*, GPS	Linear tasks	Radar gun Laser gun	Peak speed
Nikolaidis et al 2018	Johan GPS (JOHAN sports)	10 Hz, GPS	Linear tasks Non-linear tasks	Known distance	Distance travelled
Padulo et al 2019	Spin GNSS (Spintialia)	50 Hz, GNSS	Linear tasks Non-linear tasks	Tape measure	Distance travelled Average speed
Petersen et al 2009	SPI-10 (GPSports Systems) SPI-Pro (GPSports Systems) MinimaxX (Catapult sports)	1 Hz, GPS 5 Hz, GPS 5 Hz, GPS	Linear tasks Non-linear tasks	Known distance	Distance travelled
Portas et al 2010	MinimaxX v2.5 (Catapult sports)	1 Hz, GPS† 5 Hz, GPS†	Linear tasks Non-linear tasks Team sport circuit	Trundle wheel	Distance travelled
Rampinini et al 2015	SPI-Pro (GPSports Systems) MinimaxX S4 (Catapult sports)	5 Hz, GPS 10 Hz, GPS	Linear tasks	Radar gun	Distance travelled Other
sports involve mostly non-straight line motion. Reference systems such as infrared camera-based motion capture systems, video-based tracking, or previously validated high-end GNSS devices are warranted.

CONCLUSION

The most frequently investigated parameter in GNSS and LPS validity studies was distance travelled, followed by average and peak speed. Tape measure/known distance was the most frequent reference system applied. Few studies have investigated instantaneous parameters, such as instantaneous dynamic position or instantaneous speed. We discovered a large range of reference systems and methods employed to validate wearable athlete monitoring systems; thus, the appropriateness of the employed reference systems may vary, and caution should be applied when interpreting the results of validation studies, especially when comparing results between studies. More studies investigating instantaneous dynamic position may have a wider application and enable comparisons both between studies and over time.

Twitter Live Steinnes Luteberget @livesl

Acknowledgements We would like to thank Petter Jølstad for being involved in the article selection process.

Contributors LSL and MG contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript. LSL drafted the first version of the manuscript. Both authors contributed to the intellectual content of the study, manuscript writing and approved the final version of this article.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

ORCID iDs

Live Steinnes Luteberget http://orcid.org/0000-0001-7082-4281

Matthias Gilgien http://orcid.org/0000-0003-2181-5922

REFERENCES

1 Dellaserra CL, Gao Y, Ransdell L. Use of integrated technology in team sports: a review of opportunities, challenges, and future directions for athletes. *J Strength Cond Res* 2014;28:556–73.

2 Cummins C, Orr R, O’Connor H, et al. Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review. *Sports Med* 2013;43:1025–42.

3 Carling C, Bloomfield J, Nelsen L, et al. The role of motion analysis in elite soccer. *Sports Med* 2008;38:839–62.

4 Atkinson G, Nevill AM. Selected issues in the design and analysis of sport performance research. *J Sports Sci* 2001;19:811–27.

5 Malone JJ, Barrett S, Barnes C, et al. To infinity and beyond: the use of GPS devices within the football codes. *Sci Med Football* 2020;4:82–4.

6 Thomas JR, Nelson J, Silverman SJ. Research methods in physical activity. 6th edn. Champaign, USA: Human Kinetics, 2011.

7 Foster C. Monitoring training in athletes with reference to overtraining syndrome. *Med Sci Sports Exercise* 1998;30:1164–8.
The validity and reliability of 5-Hz global positioning system units to measure team sport movement demands. *J Sci Med Sport* 2015;18:712–7.

Kököü Y, Ayslan Y, Alemadoglu U, et al. Accuracy and reliability of SPProX global positioning system devices for measuring movement demands of team sports. *J Sports Med Phys Fitness* 2015;55:471–7.

PMID: 25303567

Lacombe M, Peeters A, Mathieu B, et al. Can we use GPS for assessing sprinting performance in rugby sevens? A concurrent validity and between-device reliability study. *Biomed* 2019;36:25–9.

Leser R, Schleindhuber A, Lyons K, et al. Accuracy of an UWB-based position-tracking system used for time-motion analyses in game sports. *Eur J Sport Sci* 2014;14:635–42.

Link D, Weber M, Linke D, et al. Can positioning systems replace timing gates for measuring sprint time in ice hockey? *Front Physiol* 2018;9:1882.

Linke D, Link D, Lames M. Validation of electronic performance and tracking systems EPTS under field conditions. *PLoS One* 2018;13:e0199519.

MacLeod H, Morris J, Neville A, et al. The validation of a non-differential global positioning system for assessing player movement patterns in field hockey. *J Sci Med Sport* 2019;22:149–57.

Muñoz-Lopez A, Granero-Gil P, Pino-Ortega J, et al. The validity and reliability of a 5-hz GPS device for quantifying athletes’ sprints and movement demands specific to team sports. *J Hum Sport Exercise* 2017;12:156–66.

Nagahara R, Botter A, Reijc E, et al. Concurrent validity of GPS for deriving mechanical properties of sprint acceleration. *Int J Sports Perform Physiol* 2017;12:129–32.

Nikolaidis PT, Clemente FM, van der Linden CMI, et al. Validity and reliability of 10-Hz global positioning system to assess in-line movement and change of direction. *Front Physiol* 2019;8:228.

Ogris G, Leser R, Horsak B, et al. Accuracy of the LPM tracking system considering dynamic position changes. *J Sports Sci* 2012;30:1503–11.

Padulo J, Iuliano E, Brisola G, et al. Validity and reliability of a standalone low-end 50-Hz GNSS receiver during running. *Biomed* 2019;36:75–80.

Petersen C, Pyne D, Portus M, et al. Validity and reliability of GPS units to monitor cricket-specific movement patterns. *Int J Sports Perform Physiol* 2009;4:381–93.

Portas MD, Harley JA, Barnes CA, et al. The validity and reliability of 1-Hz and 5-Hz global positioning systems for linear, multidirectional, and soccer-specific activities. *Int J Sports Perform Physiol* 2010;5:448–58.

Rampinini E, Alberti G, Fiorenza M, et al. Accuracy of GPS devices for measuring high-intensity running in field-based team sports. *J Sports Sci* 2015;33:1364–73.

Rawstorn JC, Maddison R, Ali A, et al. Rapid directional change degrades GPS distance measurement validity during intermittent intensity running. *PLoS One* 2014;9:e93893.

Reinhardt L, Schwies R, Laurenroth A, et al. Enhanced sprint performance analyses—new insights from a GPS-based tracking system. *Front Physiol* 2019;14:e0217782.

Rhodes J, Mason B, Perrat B, et al. The validity and reliability of a novel indoor player tracking system for use within wheelchair court sports. *J Sci Med Sport* 2014;17:1639–47.

Roe G, Darrall-Jones B, Black C, et al. Validity of 10-HZ GPS and timing gates for assessing maximum velocity in professional rugby union players. *Int J Sports Perform Physiol* 2017;12:836–9.

Sathyan T, Shuttleroth R, Hedley M, et al. Validity and reliability of a radio positioning system for tracking athletes in indoor and outdoor team sports. *Behav Res Methods* 2012;44:1108–14.

Seripiello FR, Hopkins WG, Barnes S, et al. Validity of an ultra-wideband local positioning system to measure locomotion in indoor sports. *J Sports Sci* 2018;36:1727–33.

Siegle M, Stevens T, Lames M. Design of an accuracy study for position detection in football. *J Sports Sci* 2013;31:166–72.

Stevens TGA, De Ruiter CJ, Van Niel C, et al. The effect of different global positioning satellite systems and their application. *University of Twente, 2009.*

The validity and reliability of a radio positioning system for tracking athletes in indoor and outdoor team sports. *Behav Res Methods* 2012;44:1108–14.
60 Waldron M, Worsfold P, Twist C, et al. Concurrent validity and test-retest reliability of a global positioning system (GPS) and timing gates to assess sprint performance variables. *J Sports Sci* 2011;29:1613–19.

61 Gonçalves BV, Figueira BE, Maçãs V, et al. Effect of player position on movement behaviour, physical and physiological performances during an 11-a-side football game. *J Sports Sci* 2014;32:191–9.

62 Aguiar M, Gonçalves B, Botelho G, et al. Footballers’ movement behaviour during 2-, 3-, 4- and 5-a-side small-sided games. *J Sports Sci* 2015;33:1259–66.

63 Gilgien M, Spörr J, Chardonens J, et al. Determination of external forces in alpine skiing using a differential global navigation satellite system. *Sensors* 2013;13:9821–35.

64 Gilgien M, Spörr J, Chardonens J, et al. Determination of the centre of mass kinematics in alpine skiing using differential global navigation satellite systems. *J Sports Sci* 2015;33:960–9.

65 Fasel B, Spörr J, Gilgien M, et al. Three-dimensional body and centre of mass kinematics in alpine ski racing using differential GNSS and inertial sensors. *Remote Sens* 2016;8:671.

66 Gloersen O, Kocbach J, Gilgien M. Tracking performance in endurance racing sports: evaluation of the accuracy offered by three commercial GNSS receivers aimed at the sports market. *Front Physiol* 2018;9.

67 Malone JJ, Lovell R, Varley MC, et al. Unpacking the black box: applications and considerations for using GPS devices in sport. *Int J Sports Physiol Perform* 2016;1–30.