Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Market clustering and performance of U.S. OD markets

Alex Cosmas, Robert Love, Swapnil Rajiwade, Marco Linz

Decision Analytics Center of Excellence, Transportation Practice, Booz Allen Hamilton, 22 Batterymarch Street, Boston, MA 02109, USA
Aviation Management Institute and Center for Futures Studies and Knowledge Management, EBS Business School, Soehnleinstrasse 8F, 65201 Wiesbaden, Germany

Keywords:
U.S. airline markets
Cluster analysis
OD performance
Network planning
Financial portfolio theory

Abstract
We segment the U.S. OD markets into peer groups, using a statistical cluster analysis on OD city-pair data on the basis of market concentration, passenger volume and yield. The results show: 1) that high yield markets have, on average, consistently underperformed the industry in both passenger and revenue growth, whereas low yield markets have led the industry in both areas; and 2) mid-sized ODs have experienced higher average growth and lower volatility than the largest U.S. domestic ODs, which have accounted for the least revenue per passenger as compared to all other market types. Financial portfolio analysis indicates the prospect of long-term decision making based on OD market risk and return rather than the aggregated market share analysis used by airlines today.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Air transportation represents the most highly networked travel system in the world. This network is comprised of markets with varying levels of growth, performance, and volatility. Over the last decade, international air travel markets have experienced overall volatility resulting from increased competition and external shocks like the September 11th, 2001 terrorist attacks, the severe acute respiratory syndrome (SARS) in 2002 and 2003 and the financial market crisis in 2008 and 2009 (Franke and John, 2011). Volatility is expected to increase tremendously beyond 2025 (Linz and Rothkopf, 2010), necessitating the ability to delineate between “winners” and “losers” in airline planning. A considerable amount has been written on the U.S. industry’s reaction to volatility resulting from competitive entry, singular shocks (Franke and John, 2011; Bhadra and Kee, 2008; Lai and Lu, 2005; Ito and Lee, 2004; Belobaba and Van Acker, 1994) and the transmission of these shocks throughout the airline industry (Gillen and Lall, 2003). Nevertheless, our understanding of the nature and dynamics of U.S. domestic air travel demand and the functioning of individual passenger markets remains limited, as suggested by Bhadra and Kee (2008). Furthermore, our ability to make long-term network planning decisions is similarly restricted by this lack of understanding.

Currently, airline planning groups rely primarily on macroscopic trends for fleet, labor, and strategic planning. Conversely, network planners and regional managers make incremental network, schedule, and fare modifications based on individual OD performance. In an attempt to model the markets, Belobaba and Van Acker (1994) classified OD markets according to their level of competition defined by market concentration. Bhadra and Kee (2008) focused their research on the implications of market size on fares and passenger demand elasticities, leading to broad market clusters. Airlines have yet to leverage market classification to create OD market “portfolios” from their networks, or vice versa. This paper introduces a financial portfolio approach to airline network planning to facilitate investments with a risk management approach rather than market share focus.

Currently, airline planning groups mainly rely on macro trends for fleet, labor, and strategic planning. Conversely, network planners and regional managers make incremental network, schedule, and fare modifications based on individual OD performance.

1.1. Motivation

In the face of increased competition and profit cyclical, a deeper understanding on U.S. OD markets and their structures is needed to enable airline executives to align strategic investments and asset trade-offs to long-term network performance, with consideration of market volatility. Improved understanding of U.S. OD markets can bridge the gap between macro-level strategic planning and micro-level network planning to support long-term optimization and stability. Aggregation at the macro-level leads to decision making that is calibrated by all of the U.S. OD markets. Our strategy is to analyze OD market peer groups, clustered by three intrinsic characteristics, to compare a market’s risk and return relative to its peers. Today, airline planning is akin to
a financial investor choosing to obligate additional assets to a given investment on the basis of that investment’s prior performance (e.g., invest $100 in GOOG because it grew at 5% over the previous period) without consideration of the opportunity cost of investing that $100 (e.g., how is GOOG performing relative to other technology stocks, or the NASDAQ index).

The error with this type of thinking is that there is a loss of information fidelity across the investor’s portfolio. If the investor were to compare his holdings in similar companies, the investor makes better-informed decisions about the risk and return of his holdings relative to its peers. Similarly, airline network planners can apply portfolio thinking to analyze the risk and return of its investments (resource allocation) in its various OD markets (e.g., short-haul, high volume, business markets or long-haul vacation/leisure markets) to determine an acceptable level of risk and expected return over the long-term. Our research leverages financial portfolio thinking and statistical cluster analysis to enable comparisons across and within network clusters, allowing for a richer context in assessments of market performance.

2. Methodology and analysis

In our research, we classified the largest 10,000 unique domestic U.S. OD markets according to three dimensions, passenger volume, yield, and market concentration, intending to increase the level of detail in understanding OD market structure as compared to Belobaba and Van Acker (1994) who employ only market concentration (HHI) and the number of competitors to classify markets. Passenger volume and yield describe the demographics of the OD market. A change in these characteristics occurs over a long time-frame and is not highly variable given an airline’s decision to enter or exit the market. To perform this segmentation, we used statistical cluster analysis to classify OD markets into natural “peer groups” with the greatest intrinsic similarities. Subsequently, we model the year over year growth and volatility of OD markets within each peer group to estimate the risk and return properties of the OD markets. Lastly, we present two financial portfolio concepts and their application to airline network planning to illustrate that analysis of all the U.S. OD markets does not provide a one-size-fits-all solution for airline network planning.

2.1. Cluster identification

Our statistical cluster analysis of U.S. OD city-pair data was performed using Bureau of Transportation Statistics (2011) DB1B Coupon data (accessed 2011) for data from 2000 to 2010 by quarter. The cluster analysis was performed using three metrics: OD passenger volume, average annual yield (revenue per passenger mile), and market concentration (Herfindahl-Hirschman Index) at the origin and destination airports. These metrics were selected as intrinsic OD attributes which define comparable “peer groups” with similar expectations of performance — for example, the fundamental drivers of revenue performance for large, high-yield ODs versus small, low-yield ODs are likely distinct (Belobaba, 2009). As such, this research includes passenger volume and average annual yield to quantify the demographics of the OD market in addition to a market concentration measure used by Belobaba and Van Acker (1994).

As the three metrics are continuous and virtually unbounded, we discretize the metrics to resolve skew in distribution and to allow for meaningful comparisons, i.e., low, medium, or high values. The values in these categories (Table 1) also approximate industry standard metrics. The U.S. Department of Justice considers a market with an HHI $2500 as exhibiting low competition/monopolistic. Yield is distinguished along the 10th and 90th percentile, as these are amongst the most common measures of performance dispersion and reflect the significant annual variation that occurs in the middle-tier yield markets (Evans and Kessides, 1993). Passenger volume is distinguished along the 50th percentile and 95th percentile, reflecting previous research of demand elasticities (Gillen et al., 2003).

The OD market clusters are defined using a two-step clustering process, which first assigns cases to pre-clusters, and subsequently groups pre-clusters using a hierarchical clustering algorithm. The two-step process ensures that the OD markets are statistically similar and that each cluster has a unique interpretation. The pre-clustering algorithm assigns cases so as to minimize the average log-likelihood distance between cluster sets. The Schwarz Bayesian Information Criterion (SBIC), which measures the changes to log-likelihood distance as pre-clusters are grouped together, is then used to inform the optimal number of hierarchical cluster sets. The results of the clustering are shown in Table 2, with chi-square tests confirming that the clustering values fall within a 95% confidence interval for significance.

The cluster analysis resulted in the solution of 7 distinct clusters that each has at least one intrinsic characteristic that defines the peer group (e.g., Cluster 1 represents OD markets with high market concentration and low passenger volume, Cluster 7 represents OD markets with large passenger volume, etc.). In terms of portfolio analysis, clustering defines the peer group against which the performance of an OD market within that cluster is measured.

2.2. OD portfolio analysis: across clusters

Since market peer groups are defined based on intrinsic characteristics that are stable over long periods of time, we assess performance relative to passenger and revenue growth on a quarterly basis. Using quarterly data of the passengers and revenue for OD markets by peer group gives an indication of the peer group’s volatility. Evaluating year-over-year growth rate (rather than actual values) allows for better comparisons of differentiated market types, and subsequently the identification of peer groups of OD markets that consistently outperform or underperform the industry, relative to the industry average.

Inspection of the top 10,000 U.S. domestic OD markets separated by cluster reveals that, over the last ten years, only the largest ODs (cluster 7) accounted for less revenue share than their respective passenger share. In other words, the largest U.S. domestic markets have generated less revenue per passenger as compared to other market peer groups. Classification of ODs into natural peer groups enables the learning of these insights, beyond what can otherwise be done through univariate querying.

The peer group data indicate some emerging trends across the clusters (Figs. 1 and 2). Since 2000, high yield markets (i.e., Cluster 6) have consistently underperformed the industry in both passenger and revenue growth and stability. Cluster 6 comprises the markets most often lagging in both passenger and revenue growth and stability. Conversely, low yield markets (i.e., Cluster 5) have led passenger and revenue growth for most quarters since 2000 and frequently outperformed the industry averages for passenger volume and revenue volatility. By inspection, mid-sized markets (i.e., Clusters 3 and 4) also show higher than average growth and lower volatility than the largest U.S. domestic ODs (i.e., Cluster 7) which,

Table 1	OD variable categorization for cluster analysis.		
	Low	Medium	High
OD passenger volume	≤2,500	2,501–1,000,000	>1,000,000
Average annual yield	≤$1.10	$1.11–$4.00	>$4.00
Market concentration – HHI	≤2,500	–	>2,500
as discussed previously, have accounted for the least revenue per passenger as compared to all other market types.

Volatility reflects an OD’s performance consistency and risk level, while growth rate illustrates relative industry performance. Such information on under- and over-performing peer groups is lost when data is aggregated across all OD markets. Note that passenger and revenue data for all quarters between 2000 and 2010 was consolidated using linear weighted averages to give more weight to revenue and passenger change in recent quarters. A simple average assumes that all quarters have equal weight in determining the performance in the next time step. Given the evolutional nature of the airline industry, the linear weighted average is used to emphasize recent history as a better indicator of short-term performance, while still considering long-term performance in light of industry volatility.

Fig. 3 plots the revenue growth and passenger volume stability for all peer groups. The data show that high yield markets (i.e., Cluster 6) have experienced on average higher volatility and lower growth than all other peer groups. A simple average assumes that all quarters have equal weight in determining the performance in the next time step. Given the evolutional nature of the airline industry, the linear weighted average is used to emphasize recent history as a better indicator of short-term performance, while still considering long-term performance in light of industry volatility.

Fig. 3 plots the revenue growth and passenger volume stability for all peer groups. The data show that high yield markets (i.e., Cluster 6) have experienced on average higher volatility and lower growth than all other peer groups. As noted previously, these high yield markets have consistently underperformed the industry over time in both passenger and revenue growth and stability.

2.3. OD portfolio analysis: within clusters

Network planners must be able to strategically align resources to outperforming markets within each peer group through an evaluation of network characteristics. A common method to facilitate portfolio analysis is a growth-share matrix where the performance of products or companies is plotted with respect to their relative market share and market growth rate into four quadrants: split into high-low market share and high-low growth rate. Here we adapt the growth-share matrix concept to airline network planning. In order to assess performance within peer groups, we plot the OD markets within a peer group into four different quadrants based on the linear weighted averages of revenue growth and passenger volume stability to derive strategic implications for airline market portfolio development (Fig. 4). We adapt the growth-share matrix from market share and market growth to revenue growth and passenger volume stability in order to measure the volatility of the OD markets. The bubble size represents an OD’s total annual revenue to consider its scale. Similar to the growth-share matrix, the quadrants are defined using the industry-median passenger growth rate and volatility. Qualitatively, the quadrants can be summarized as follows, clock-wise from upper-left:

- **Niche**: low volatility and low growth, low volatility markets which have limited profit expansion opportunities
- **Invest**: high growth, low volatility markets which consistently outperform the industry
- **Question Marks**: high growth, high volatility markets requiring careful consideration of profit potential
- **Divest**: low growth, high volatility markets which consistently underperform the industry

The growth-share matrix concept promotes the idea of balancing one’s portfolio with respect to an acceptable level of risk.

Table 2

Summary results of OD cluster analysis.

Cluster	OD passenger volume	Average annual yield	Market concentration – HHI	Number of ODs (%)					
	Low	Medium	High	Low	Medium	High	Low	High	
1	34.7%	-	-	-	22.3%	-	-	36.4%	1719 (17.2%)
2	45.8%	-	-	-	29.4%	-	-	43.0%	2269 (22.7%)
3	-	35.2%	-	-	21.0%	-	-	34.4%	1625 (16.3%)
4	-	38.5%	-	-	23.0%	-	-	33.6%	1776 (17.8%)
5	6.9%	15.3%	-	-	91.8%	-	-	10.3%	1047 (10.5%)
6	12.5%	10.0%	-	-	98.7%	-	-	8.7%	1124 (11.2%)
7	-	-	100%	8.2%	4.3%	1.3%	4.3%	4.5%	440 (4.4%)

Fig. 1. YoY change in passenger demand relative to industry average, by cluster (2000–2010).
and return. We introduce a measure to “normalize” the expected returns of the OD markets with respect to the risk associated with such an investment. In finance, this is most often based on the Sharpe Ratio (Sharpe, 1966), defined as:

$$S = \frac{E[R - R_f]}{\sqrt{VAR(R - R_f)}}$$

where S, the Sharpe Ratio, is the ratio of the expected difference in return from the asset, R, and the benchmark or industry average asset, R_f, to the standard deviation of the difference in return from the asset and the benchmark. As a rule of thumb, a Sharpe Ratio of 1.0 is a favorable investment, 2.0 is a very favorable investment, and 3.0 is an excellent investment. The Sharpe Ratio maintains an R^2 between .66 and .989 for each of the seven peer groups, verifying the efficacy of the Sharpe Ratio for airline network planning (Fig. 5). The slope of the line between a plotted OD market and the origin is the Sharpe Ratio for that particular market. Hence all markets lying on the same line passing through the origin are considered equivalent to an investor or, in this case, a network planner.
3. Conclusions and future applications

Cluster analysis reveals that, since 2000, high yield markets have, on average, consistently underperformed the industry in both passenger and revenue growth, whereas low yield markets have led the industry in both areas. In addition, mid-sized ODs have experienced higher average growth and lower volatility than the largest U.S. domestic ODs, which have accounted for the least revenue per passenger as compared to all other market types. For more granularity, a specific market’s Sharpe Ratio may be used to compare market alternatives within a peer group in an attempt to balance an airline’s network portfolio.

Leveraging performance models specific to market peer groups provides network planners with tools that balance the need for generalizable models of statistical validity with an appreciation for natural differences between market types. Currently, forecasting/demand models or market share models (e.g., Quality of Service Index) are developed using the entirety of networks and subsequently assume the applicability of the model to virtually any markets, regardless of its distinctive attributes. Understandably, retaining scores of models that capture the intricacies of all market types is infeasible and reduces the applicability of the models. OD market clustering identifies statistical peer groups that balance the need for generalizable models developed from a reliable number of observations with an appreciation for natural differences between market types. OD market clustering offers a method of presenting network planners with robust, yet intuitive insights to inform the strategic allocation of resources.

Fig. 4. Growth-risk matrix for small, low-yield US domestic ODs (cluster 5), 2000–2010.

Fig. 5. Sharpe ratio plot of small, low-yield US domestic ODs (cluster 5), 2000–2010.
A natural extension of this work is the development of market share models for each peer group. Given the variations in peer groups, it is apparent that the causal factors considered in traditional performance models (e.g., number of departures, number of international destinations, metropolitan statistical area income, etc.) will have varying impact and statistical significance across peer group-specific models. This approach allows network planners to, much like financial analysts, assess the potential performance of investment options based on readily available data.

References

Belobaba, P., 2009. Overview of airline economics, markets and demand. In: Belobaba, P., Odoni, A., Barnhart, C. (Eds.), The Global Airline Industry. John Wiley & Sons, Chichester, UK, pp. 47–72.
Belobaba, P., Van Acker, J., 1994. Airline market concentration: an analysis of US origin-destination markets. Journal of Air Transport Management 1, 5–14.
Bhadra, D., Kee, J., 2008. Structure and dynamics of the core US air travel markets: a basic empirical analysis of domestic passenger demand. Journal of Air Transport Management 14, 27–39.
Bureau of Transportation Statistics, 2011. Airline Activity: National Summary of US Flights. Washington, DC.
Evans, W.N., Kessides, I.N., 1993. Structure, conduct, and performance in the deregulated airline industry. Southern Economic Journal 59 (3), 450–467.
Franke, M., John, F., 2011. What comes after the next recession? – airline industry scenarios and potential end games. Journal of Air Transport Management 17, 19–26.
Gillen, D., Lall, A., 2003. International transmission of shocks in the airline industry. Journal of Air Transport Management 9, 37–49.
Gillen, D.W., Morrison, W.C., Stewart, C., 2003. Air Travel Demand Elasticities: Concepts, Issues and Management. Department of Finance, Government of Canada.
Ito, H., Lee, D., 2004. Assessing the impact of the September 11 terroristic attacks on US airline demand. Journal of Economics and Business 57, 79–95.
Lai, S.L., Lu, W.-L., 2005. Impact analysis of September 11 on air travel demand in the USA. Journal of Air Transport Management 11, 455–458.
Linz, M., Rothkopf, A., 2010. The Future of Aviation 2025: Global Scenarios for Passenger Aviation, Business Aviation and Air Cargo. BrainNet, St. Gallen.
Sharpe, W.F., 1966. Mutual fund performance. Journal of Business 39 (51), 119–138.