Supplemental Material for

On the Performance of DFT/MRCI-R and MR-MP2 in Spin–Orbit Coupling Calculations in Diatomics and Polyatomic Organic Molecules

Vladimir Jovanović, Igor Lyskov, Martin Kleinschmidt, and Christel M. Marian

Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany

(May 29, 2016)
S1. On the calculation of SOMEs

In the SPOCK program all SOMEs between singlet and triplet states are initially computed with the \hat{S}_{+1} operator. In this paper, the Cartesian x- and y-components of SOMEs between the $M_s = 1$ sublevel of a triplet state and a singlet state ($\langle T, M_s = 1 | \hat{H}_{SO \ x/y} | S \rangle$) are presented. The x-components could be obtained from the initially calculated mixed-representation matrix element ($\langle T, M_s = 1 | \hat{L}_x \hat{S}_{+1} | S \rangle$) by multiplication with $-1/\sqrt{2}$ which arises from the relationship between the Cartesian and tensor forms of the spin operator, $\hat{S}_x = (\hat{S}_- - \hat{S}_+ + 1)/\sqrt{2}$. The corresponding relationship for the \hat{S}_y operator, $\hat{S}_y = i(\hat{S}_- + \hat{S}_+)/\sqrt{2}$ leads to the same factor of $-1/\sqrt{2}$ for the y-component of SOMEs. One should note that this choice of the imaginary phase in the \hat{S}_y operator is the reason for the real values of the $\hat{H}_{SO y}$ matrix elements. The x and z-components are imaginary since the angular momentum operator is a purely imaginary operator. [1] The chosen z-component of the Hamiltonian couples a singlet state with the $M_s = 0$ sublevel of a triplet ($\langle T, M_s = 0 | \hat{H}_{SO \ z} | S \rangle$). To arrive at $\langle T, M_s = 0 | \hat{L}_z \hat{S}_{+1} | S \rangle$, one first needs to obtain the reduced matrix element (RME) by dividing the initially calculated matrix element by a 3-j symbol (only for the spin part, $\langle T, M_s = 1 | \hat{S}_{+1} | S \rangle$), and then multiplying the RME with the new, appropriate 3-j symbol (corresponding to the $\langle T, M_s = 0 | \hat{S}_0 | S \rangle$). The values of these 3-j symbols happen to be the same, $1/\sqrt{3}$, and since $\hat{S}_z = \hat{S}_0$, the conversion factor between the calculated “wrong” SOMEs and the appropriate ones is 1. The presented matrix elements between two triplet states are always of the form: $\langle T, M_s = 1 | \hat{H}_{SO \ x/y} | T, M_s = 0 \rangle$ and $\langle T, M_s = 1 | \hat{H}_{SO \ z} | T, M_s = 1 \rangle$ and could be obtained from the computed matrix elements by multiplying them with $1/\sqrt{2}$ in the case of x and y-components while the z-component does not need to be modified. In the tables, the imaginary unit (i) is omitted from the complex-valued matrix elements of the $\hat{H}_{SO \ x}$ and $\hat{H}_{SO \ z}$ operators and absolute values are presented instead.
S2. Statistical data and correlation plots

Table S1 shows the statistical data with regard the excitation energies employing the valence basis obtained at the DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BHLYP) levels of theory with respect to DFT/MRCI. Table S2 contains the corresponding statistical data for the SOMEs of each molecule individually and for the complete set of selected SOMEs, 278 in total. As the sign of an individual SOME depends on the (arbitrary) phases of the molecular orbitals (MOs) and of the wave functions, absolute values have been employed when computing the maximum positive and negative deviations of the SOMEs. Normalized RMSD (NRMSD), expressed as percentage, are given as the RMSD normalized by the range, i.e. the maximum value minus the minimum absolute value of the evaluated data.
Table S1. Deviations in energies of polyatomic molecules calculated with DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) with respect to DFT/MRCI. The values are given in eV and the normalized RMSD (NRMSD) is expressed as percentage.

Molecule	DFT/MRCI-R	MR-MP2(HF)	MR-MP2(BH-LYP)									
	RMSD	NRMSD	Max. (+)	Max. (-)	RMSD	NRMSD	Max. (+)	Max. (-)	RMSD	NRMSD	Max. (+)	Max. (-)
o-benzyne	0.73	15	2.26	0.16	0.73	15	2.19	0.53	0.75	15	2.20	0.64
Formaldehyde	0.12	2	0.16	0.17	0.17	3	0.36	0.02	0.23	4	0.44	
Thioformaldehyde	0.59	10	0.53	1.82	0.33	6	0.37	0.71	0.34	6	0.36	0.73
Furan	0.04	1	0.06	0.09	0.25	6	0.40	0.31	0.30	7	0.42	0.44
Thiophene	0.04	1	0.07	0.06	0.16	5	0.17	0.32	0.20	6	0.10	0.46
Quinoxaline	0.10	5	0.18	0.12	0.30	16	0.32	0.58	0.39	21	0.21	0.77
Quinazoline	0.09	4	0.14	0.06	0.31	18	0.14	0.46	0.50	30	0.76	
Pyranthione	0.08	2	0.06	0.19	0.12	4	0.19	0.16	0.15	5	0.11	0.22
Dithiin	0.07	2	0.11	0.11	0.34	14	0.53	0.46	0.46	19	0.76	
Bithiophene	0.05	2	0.09	0.06	0.19	7	0.26	0.37	0.52	21	0.77	
Nitromethane	0.39	7	0.16	1.26	0.42	8	1.15	0.37	0.47	9	1.34	0.41
Nitrobenzene	0.09	5	0.17	0.01	0.85	20	2.56	0.11	0.78	20	2.37	0.15
Dithiosuccinimide	0.58	23	0.13	1.32	0.65	15	1.99	0.56	0.69	17	1.87	0.81
Methionine	0.26	19	0.33	0.04	0.37	27	0.68	0.19	0.34	22	0.69	0.39
Isoalloxazine	0.09	5	0.15	0.04	0.37	27	0.68	0.19	0.34	22	0.69	0.39
All (161 exc states)	0.33	5	2.26	1.82	0.47	6	2.56	0.71	0.49	6	2.37	0.81
Table S2. Deviations in SOMEs of polyatomic molecules calculated with DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) with respect to DFT/MRCI. The values are given in cm$^{-1}$ and the normalized RMSD (NRMSD) is expressed as percentage.

Molecule	DFT/MRCI-R	MR-MP2(HF)	MR-MP2(BH-LYP)									
	RMSD	NRMSD	Max. (+)	Max. (-)	RMSD	NRMSD	Max. (+)	Max. (-)	RMSD	NRMSD	Max. (+)	Max. (-)
o-benzyne	0.1	2	0.1	0.2	0.4	6	1.1	0.4	0.3	4	0.8	0.3
Formaldehyde	5.2	9	0.6	20.5	2.7	4	2.9	8.7	3.1	5	3.4	9.9
Thioformaldehyde	30.2	18	79.8	100.9	10.4	7	5.5	25.0	7.5	5	4.7	16.6
Furan	0.2	2	0.3	0.8	8	0.4	0.4	1.6	0.6	7	0.6	1.1
Thiophene	1.1	1	2.0	9.6	9	5.1	18.6	7.4	7	7.2	14.6	
Quinoxaline	0.7	2	0.9	0.9	2	0.4	0.4	2.3	0.5	1	0.4	1.0
Quinazoline	0.4	2	0.2	0.9	5	1.7	2.0	0.8	5	1.8	1.8	
Pyrantonione	2.2	1	4.3	8.8	6	5.1	17.3	4.8	3	6.0	10.0	
Dithiin	1.7	1	2.7	14.1	10	42.7	57.4	15.2	10	46.6	51.2	
Bithiophene	1.4	4	0.8	8.3	27	15.8	22.9	6.5	23	12.7	15.7	
Nitromethane	0.8	2	0.5	2.6	6	6.3	5.5	1.6	4	3.0	1.6	
Nitrobenzene	2.4	4	6.2	2.4	4	5.7	5.0	2.5	4	5.3	5.1	
Dithiosuccinimide	1.5	1	4.2	6.1	5	0.1	14.7	3.8	3	4.0	6.8	
Methionine	0.7	0	0.3	5.5	7	1.4	16.5	4.2	5	1.0	12.7	
Isoalloxazine	1.0	5	1.2	3.7	14	5.4	8.7	3.7	14	5.7	10.3	
All (278 SOMEs)	8.3	5	79.8	100.9	8.1	5	42.7	57.4	7.7	5	46.6	51.2
Figure S1. Correlation plots of SOMEs for individual polyatomic molecules calculated with DFT-MRCI-R method vs SOMEs calculated with DFT/MRCI.
Figure S2. Correlation plots of SOMEs for individual polyatomic molecules calculated with MR-MP2(HF) method vs SOMEs calculated with DFT/MRCI.
Figure S3. Correlation plots of SOMEs for individual polyatomic molecules calculated with MR-MP2(BH-LYP) method vs SOMEs calculated with DFT/MRCI.
S3. Molecular orbitals

Figure S4. Molecular orbitals of thiophene, calculated employing the valence basis. a) HF orbitals, b) BH-LYP orbitals.

Figure S5. BH-LYP molecular orbitals of dithiin involved in the discussed states.

Figure S6. BH-LYP molecular orbitals of nitrobenzene involved in the discussed states.
S4. Individual molecules

S4.1. o-benzyne

Table S3. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) vertical excitation energies of o-benzyne. The oscillator strengths are given in the parentheses.

State	Dominant character	DFT/MRCI	DFT/MRCI-R	MRMP2 (HF)	MRMP2 (BH-LYP)	Experiment
1^1A_2	$\pi \rightarrow \pi^*$	3.89 (0)	3.83 (0)	4.22 (0)	4.20 (0)	
1^1B_2	$\pi \rightarrow \pi^*$	3.97 (0.002)	3.92 (0.002)	4.27 (0.002)	4.21 (0.002)	
2^1A_1	$\pi \rightarrow \pi^*, \pi \rightarrow \pi^*$	4.24 (0)	6.50 (0.003)	6.43 (0)	6.44 (0)	
1^1B_1	$\pi \rightarrow \pi^*$	5.09 (0.037)	4.94 (0.046)	5.12 (0.024)	5.01 (0.030)	5.08a
3^1A_1	$\pi \rightarrow \pi^*$	5.28 (0.013)	5.19 (0.018)	4.75 (0.006)	4.64 (0.002)	4.64 (0.002)
2^1B_2	$\pi \rightarrow \pi^*$	5.38 (0.005)	5.38 (0.005)	5.54 (0.004)	5.47 (0.005)	
2^1B_1	$\pi \rightarrow \pi^*, \pi \rightarrow \pi^*$	5.74 (0)	7.25 (0.019)	7.22 (0.001)	7.22 (0.001)	
...
3^1B_1	$\pi \rightarrow \pi^*$	6.38 (0.183)	6.23 (0.178)	6.34 (0.106)	6.08 (0.089)	6.25a
1^3B_1	$\pi \rightarrow \pi^*$	2.43	2.30	2.25	2.25	
1^3A_2	$\pi \rightarrow \pi^*$	3.49	3.44	3.68	3.64	
1^3B_2	$\pi \rightarrow \pi^*$	3.88	3.80	4.12	4.10	
2^3B_1	$\pi \rightarrow \pi^*$	4.18	4.03	3.93	3.82	
2^3A_1	$\pi \rightarrow \pi^*$	4.83	4.67	4.58	4.46	
2^3B_2	$\pi \rightarrow \pi^*$	5.30	5.26	5.38	5.43	
...
2^3A_1	$\pi \rightarrow \pi^*, \pi \rightarrow \pi^*$	5.69	6.375	6.275	6.265	

DFT/MRCI-R: $^13^1A_1, ^22^1A_1, ^33^1B_1, ^42^1B_1, ^53^3A_1$
MR-MP2(HF): $^13^1A_1, ^22^1A_1, ^33^1B_1, ^42^1B_1, ^53^3A_1$
MR-MP2(BH-LYP): $^13^1A_1, ^22^1A_1, ^33^1B_1, ^42^1B_1, ^53^3A_1$

a (Absorption maximum (Ar matrix)) [2]
Table S4: Calculated percentage of electron configurations in the excited states wave functions of \textit{o-benzene} obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory. Only electron configurations with more than 2 percentage are presented.

State	\text{DFT/MRCI}	\text{MRMP2} (BH-LYP)	\text{MRMP2} (HF)	\text{MRMP2} (BH-LYP)		
	% from	to				
1^1A_2	89 π_{H-1}	π^*	65 π_{H-1}	π^*	65 π_{H-1}	π^*
	3 π_{H-3}	π^*	4 π_{H-3}	π^*	3 π_{H-3}	π^*
	2 $\pi_{H-1,\pi L-1}$	π^*	2 $\pi_{H-1,\pi L-1}$	π^*	2 $\pi_{H-1,\pi L-1}$	π^*
1^1B_2	88 π^*	65 π^*	64 π^*			
	4 $\pi_{H-1,\pi L-1}$	π^*	3 $\pi_{H-1,\pi L-1}$	π^*	4 $\pi_{H-1,\pi L-1}$	π^*
	2 $\pi_{H-3,\pi L-1}$	π^*	2 $\pi_{H-3,\pi L-1}$	π^*	2 $\pi_{H-3,\pi L-1}$	π^*
2^1A_1	88 π_{H-1}	π_{L-2}	59 π_{H-1}	π_{L-2}	61 π_{H-1}	π_{L-2}
	11 π_{H-3}	π_{L-2}	14 π_{H-3}	π_{L-2}	12 π_{H-3}	π_{L-2}
	2 $\pi_{H-1,\pi L-2}$	π_{L-2}	2 $\pi_{H-1,\pi L-2}$	π_{L-2}	2 $\pi_{H-1,\pi L-2}$	π_{L-2}
1^1B_1	79 π_{π}	53 π_{π}	54 π_{π}			
	11 π_{H-1}	π_{L-2}	14 π_{H-1}	π_{L-2}	12 π_{H-1}	π_{L-2}
	2 π_{H-3}	π_{L-2}	2 π_{H-3}	π_{L-2}	2 π_{H-3}	π_{L-2}
1^3B_1	62 π_{H-1}	π_{L-1}	42 π_{H-1}	π_{L-1}	42 π_{H-1}	π_{L-1}
	27 π_{H-3}	π_{L-1}	21 π_{H-3}	π_{L-1}	21 π_{H-3}	π_{L-1}
1^3B_2	91 π_{π}	69 π_{π}	69 π_{π}			
	6 π_{H-3}	π_{π}	6 π_{H-3}	π_{π}		
1^3B_2	91 π_{π}	65 π_{π}	64 π_{π}			
	3 $\pi_{H-1,\pi L-1}$	π_{π}	4 $\pi_{H-1,\pi L-1}$	π_{π}	4 $\pi_{H-1,\pi L-1}$	π_{π}
	2 $\pi_{H-3,\pi L-1}$	π_{π}	2 $\pi_{H-3,\pi L-1}$	π_{π}	2 $\pi_{H-3,\pi L-1}$	π_{π}
1^3B_1	87 π_{π}	62 π_{π}	62 π_{π}			
	5 π_{H-1}	π_{π}	6 π_{H-1}	π_{π}		
	12 π_{H-3}	π_{π}	18 π_{H-3}	π_{π}		
	2 $\pi_{H-1,\pi L-1}$	π_{π}	2 $\pi_{H-1,\pi L-1}$	π_{π}	2 $\pi_{H-1,\pi L-1}$	π_{π}
2^1B_1	79 π_{π}	50 π_{π}	47 π_{π}			
	12 π_{H-3}	π_{π}	16 π_{H-3}	π_{π}	18 π_{H-3}	π_{π}
	2 $\pi_{H-1,\pi L-1}$	π_{π}	2 $\pi_{H-1,\pi L-1}$	π_{π}	2 $\pi_{H-1,\pi L-1}$	π_{π}
2^1B_2	92 π_{π}	68 π_{π}	67 π_{π}			
	2 $\pi_{H-1,\pi L-1}$	π_{π}	2 $\pi_{H-1,\pi L-1}$	π_{π}	2 $\pi_{H-1,\pi L-1}$	π_{π}
2^1A_2	87 π_{π}	61 π_{π}	61 π_{π}			
	3 $\pi_{H-1,\pi L-1}$	π_{π}	3 $\pi_{H-1,\pi L-1}$	π_{π}	3 $\pi_{H-1,\pi L-1}$	π_{π}
Table S5.: Calculated percentage of electron configurations in the excited states wave functions of o-benzyne obtained at the DFT/MRCI and DFT/MRCI-R levels of theory. Only electron configurations with more than 2 percentage are presented.

State	% from	to	State	% from	to
1A_2	89	π_{H-1}	90	π_{H-1}^*	π_{L+2}
	3	π_{H-3}	3	π_{H-3}	π_{L+2}^*
	2	$\pi_{H-1}\pi_{H}$	1	$\pi_{H-1}\pi_{H}$	$\pi_{L+1}^*\pi_{L+3}$
1B_2	88	π_{H}	89	π_{H}	π_{L+2}^*
	4	$\pi_{H-1}\pi_{H}$	2	$\pi_{H-1}\pi_{H}$	$\pi_{L+1}^*\pi_{L+2}$
	2	$\pi_{H-3}\pi_{H}$	2	$\pi_{H-3}\pi_{H}$	$\pi_{L+2}^*\pi_{L+2}$
2A_1	90	π_{L+2}	85	π_{L+2}^*	$\pi_{L+1}^*\pi_{L+2}$
	2	π_{L+1}^*	3	$\pi_{L+1}^*\pi_{H}$	$\pi_{L+1}^*\pi_{L+2}$
1B_1	79	π_{L+1}	81	π_{L+1}	π_{L+2}^*
	11	π_{H-1}	11	π_{H-1}	π_{L+2}^*
	2	π_{H-3}	1	π_{H-3}	π_{L+2}^*
2B_2	90	π_{L+2}^*	92	π_{L+2}^*	$\pi_{L+1}^*\pi_{L+2}$
2B_1	62	π_{L+2}^*	71	π_{L+2}^*	$\pi_{L+1}^*\pi_{L+2}$
	27	$\pi_{H-1}\pi_{H}$	15	$\pi_{H-1}\pi_{H}$	$\pi_{L+2}^*\pi_{L+1}$
3B_1	94	π_{L+2}^*	95	π_{L+2}^*	π_{L+2}^*
3A_2	88	π_{L+2}^*	88	π_{L+2}^*	π_{L+2}^*
	6	π_{H-3}	5	π_{H-3}	π_{L+2}^*
3B_2	91	π_{L+2}^*	90	π_{L+2}^*	π_{L+2}^*
	3	$\pi_{H-1}\pi_{H}$	2	$\pi_{H-1}\pi_{H}$	$\pi_{L+1}^*\pi_{L+2}$
2B_1	87	π_{L+2}^*	89	π_{L+2}^*	π_{L+2}^*
	5	π_{L+2}^*	4	π_{L+2}^*	π_{L+2}^*
3A_1	79	π_{L+2}^*	80	π_{L+2}^*	π_{L+2}^*
	12	π_{L+2}^*	12	π_{L+2}^*	π_{L+2}^*
2B_2	92	π_{L+2}^*	92	π_{L+2}^*	π_{L+2}^*
	2	$\pi_{H-5}\pi_{H}$	3	$\pi_{H-5}\pi_{H}$	π_{L+2}^*
3A_1	87	π_{L+2}^*	86	π_{L+2}^*	π_{L+2}^*
S4.2. Formaldehyde

Table S6. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) vertical excitation energies of formaldehyde using the valence basis. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies(eV)	Experiment			
		DFT/MRCI	DFT/MRCI-R	MR-MP2(HF)	MR-MP2(BH-LYP)	
1^1A_2	$n \rightarrow \pi^*$	3.86 (0)	3.94 (0)	3.97 (0)	4.07 (0)	3.79a, 3.94b
1^1B_2	$n \rightarrow \text{Ryd}$	8.31 (0.121)	8.14 (0.119)	8.29 (0.099)	8.35 (0.117)	
1^1B_1	$\sigma \rightarrow \pi^*$	9.00 (0.004)	9.03 (0.005)	9.17 (0.002)	9.26 (0.002)	9.0c
2^1A_1	$\pi \rightarrow \pi^*$	9.42 (0.079)	9.26 (0.077)	9.43 (0.063)	9.50 (0.031)	
1^3A_2	$n \rightarrow \pi^*$	3.43	3.59	3.57	3.66	3.50a, 3.50b
1^3A_1	$\pi \rightarrow \pi^*$	5.77	5.76	6.13	6.21	5.82a, 5.86b
1^3B_2	$n \rightarrow \text{Ryd}$	7.77	7.69	7.75	7.80	
1^3B_1	$\sigma \rightarrow \pi^*$	8.23	8.36	8.40	8.45	

a Energy-loss maximum (vapor) [3]
b Energy-loss maximum (vapor) [4]
c Energy-loss band origin (vapor) [5]
Table S7.: Calculated percentage of electron configurations in the excited states wave functions of formaldehyde obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory using the valence basis. Only electron configurations with more than 2 percentage are presented.

State	% from	to	% from	to	% from	to	
1^1A_2	93	n_H	π^*_L	78	n_H	π^*_L	
3	$\pi_{H-1}n_H$	π^*_L,π^*_L	4	n_H	π^*_L,π^*_L		
2	n_H	3	π_{H-3}	π^*_L,π^*_L	2	π_{H-3}	
1^1B_2	94	n_H	$\pi_{H-1}n_H$	78	n_H	$\pi_{H-1}n_H$	
3	$\pi_{H-1}n_H$	π^*_L,π^*_L,π^*_L	3	n_H	π^*_L,π^*_L,π^*_L		
1^1B_1	93	σ_{H-2}	π^*_L	78	σ_{H-2}	π^*_L	
3	$\sigma_{H-2}^2\pi_{H-1}$	π^*_L,π^*_L	4	$\sigma_{H-2}^2\pi_{H-1}$	π^*_L,π^*_L		
2	$\sigma_{H-2}^2\pi_{H-1}$	3	$\sigma_{H-2}^2\pi_{H-1}$	π^*_L,π^*_L	5	$\sigma_{H-2}^2\pi_{H-1}$	
2^1A_1	67	π_{H-1}	π^*_L	59	π_{H-1}	π^*_L	
2	π_{H-1}	13	σ^*	π^*_L	17	π_{H-1}	
4	π_{H-1},π_{H-1}	4	π_{H-1},π_{H-1}	π^*_L,π^*_L,π^*_L	5	π_{H-1},π_{H-1}	
1^3A_2	95	n_H	π^*_L	79	n_H	π^*_L	
2	n_H	3	π_{H-3}	π^*_L	2	π_{H-3}	
1^3A_1	97	π_{H-1}	π^*_L	84	π_{H-1}	π^*_L	
2	π_{H-1}	6	π_{H-1}	π^*_L	2	π_{H-1}	
4	π_{H-1},π_{H-1}	2	π_{H-1},π_{H-1}	π^*_L,π^*_L,π^*_L	2	π_{H-1},π_{H-1}	
1^3B_2	95	n_H	$\pi_{H-1}^2\pi_{H-1}$	80	n_H	$\pi_{H-1}^2\pi_{H-1}$	
2	n_H	3	n_H	$\pi_{H-1}^2\pi_{H-1}$	π^*_L,π^*_L	2	$\pi_{H-1}^2\pi_{H-1}$
1^3B_1	95	σ_{H-2}	π^*_L	78	σ_{H-2}	π^*_L	
2	σ_{H-2}	6	σ_{H-2}	π^*_L	3	σ_{H-2}	

Table S8.: Calculated percentage of electron configurations in the 2^1A_1 state wave function of formaldehyde obtained at the DFT/MRCI, and DFT/MRCI-R levels of theory using the valence basis. Only electron configurations with more than 2 percentage are presented.

State	% from	to	% from	to		
2^1A_1	67	π_{H-1}	π^*_L	56	π_{H-1}	π^*_L
22	n_H	π^*_L	19	n_H	π^*_L	
4	π_{H-1},π_{H-1}	π^*_L,π^*_L	17	n_H, n_H	π^*_L,π^*_L	
2	n_H, n_H	2	π_{H-1},π_{H-1}	π^*_L,π^*_L	2	π_{H-1},π_{H-1}
Table S9. Selected matrix elements (cm\(^{-1}\)) for formaldehyde calculated with DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) methods using the valence basis.

| \(\langle 1^3A_2 | \hat{H}_{SO} z | 1^1A_1 \rangle\) | DFT/MRCI | DFT/MRCI-R | MRMP2 (HF) | MRMP2 (BH-LYP) |
|---|---|---|---|---|
| \(\langle 1^3A_2 | \hat{H}_{SO} x | 1^1A_1 \rangle\) | 62.0 | 59.8 | 64.1 | 64.6 |
| \(\langle 1^3A_2 | \hat{H}_{SO} y | 1^1A_1 \rangle\) | 41.5 | 21.0 | 32.8 | 31.6 |
| \(\langle 1^3B_1 | \hat{H}_{SO} y | 1^1A_1 \rangle\) | 43.1 | 41.9 | 44.7 | 45.1 |
| \(\langle 1^3B_1 | \hat{H}_{SO} x | 1^1A_1 \rangle\) | 19.6 | 17.4 | 18.6 | 18.0 |
| \(\langle 1^3A_1 | \hat{H}_{SO} x | 1^1A_2 \rangle\) | 53.6 | 52.5 | 55.8 | 56.1 |
| \(\langle 1^3B_1 | \hat{H}_{SO} y | 1^1B_1 \rangle\) | 36.3 | 36.3 | 38.2 | 38.3 |
| \(\langle 1^3A_2 | \hat{H}_{SO} y | 1^1B_1 \rangle\) | 30.7 | 30.6 | 31.9 | 32.3 |
| \(\langle 1^3B_2 | \hat{H}_{SO} x | 1^1A_1 \rangle\) | 7.5 | 7.4 | 7.5 | 7.5 |
| \(\langle 1^3B_2 | \hat{H}_{SO} x | 1^1A_2 \rangle\) | 1.9 | 1.4 | 1.1 | 1.6 |
| \(\langle 1^3B_2 | \hat{H}_{SO} y | 1^1A_2 \rangle\) | 6.5 | 6.3 | 6.3 | 6.4 |
| \(\langle 1^3B_2 | \hat{H}_{SO} x | 1^1B_1 \rangle\) | 2.3 | 2.0 | 3.2 | 3.9 |
| \(\langle 1^3A_1 | \hat{H}_{SO} x | 1^1B_2 \rangle\) | 0.3 | 0.3 | 0.5 | 0.4 |
| \(\langle 1^3A_2 | \hat{H}_{SO} z | 1^3A_1 \rangle\) | 50.8 | 51.2 | 53.7 | 54.2 |
| \(\langle 1^3B_1 | \hat{H}_{SO} y | 1^3A_1 \rangle\) | 29.0 | 29.6 | 31.3 | 31.3 |
| \(\langle 1^3B_1 | \hat{H}_{SO} x | 1^3A_2 \rangle\) | 36.0 | 36.0 | 37.9 | 38.1 |
Table S10. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF), MR-MP2(BH-LYP) and CASPT2 vertical excitation energies of formaldehyde using the augmented basis. The CASPT2 (8,11) active space consists of following occupied/unoccupied orbitals: 1/3 a_1, 1/2 b_1 and 2/2 b_2. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies(eV)	Experiment					
		DFT/MRCI	DFT/MRCI-R	MR-MP2(HF)	MR-MP2(BH-LYP)	CASPT2 (8,9)	CASPT2 (8,11)	
1^3A_2	$n \rightarrow \pi^*$	3.67 (0)	3.81 (0)	3.88 (0)	3.93 (0)	3.90	3.99 (0)	3.79c, 3.94b
1^3B_2	$n \rightarrow 3s$	7.02 (0.032)	6.93 (0.034)	6.99 (0.010)	6.99 (0.023)	6.77	6.87 (0.035)	7.09c
2^1B_2	$n \rightarrow 3p_x$	7.86 (0.039)	7.84 (0.032)	7.92 (0.026)	8.17 (0.034)	7.68	7.76 (0.027)	8.13c
2^1A_1	$n \rightarrow 3p_y$	7.96 (0.054)	7.88 (0.052)	7.99 (0.035)	8.04 (0.042)	7.78	7.84 (0.058)	7.98c
2^1A_2	$n \rightarrow 3p_x$	8.40 (0)	8.26 (0)	8.14 (0)	8.24 (0)	7.95	8.00 (0)	8.37d
1^1B_1	$\sigma \rightarrow \pi^*$	8.81 (0.004)	8.90 (0.005)	9.12 (0.006)	9.20 (0.002)	9.21	9.43 (0.014)	9.0e
3^1A_1	$\pi \rightarrow \pi^*$	9.51 (0.193)	9.50 (0.197)†	9.64 (0.129)	9.64 (0.126)	9.33	10.41 (0.129)n	
5^1A_1	$n^2 \rightarrow \pi^2$	11.06 (0.008)	9.20 (0.022)‡	10.67 (0.007)	10.75 (0.016)	10.29m	10.87 (0.030)p	
1^3A_2	$n \rightarrow \pi^*$	3.23	3.46	3.42	3.46	3.45	3.56	3.56c, 3.50b
1^3A_1	$\pi \rightarrow \pi^*$	5.58	5.71	6.13	6.18	6.04	6.04	5.82d, 5.86b
1^3B_2	$n \rightarrow 3s$	6.78	6.75	6.79	6.79	6.65	6.75	6.75
2^3B_2	$n \rightarrow 3p_x$	7.67	7.71	7.82	7.86	7.57	7.65	7.65
2^3A_1	$n \rightarrow 3p_y$	7.76	7.72	7.90	8.11	7.67	7.73	7.73
1^3B_1	$\sigma \rightarrow \pi^*$	8.01	8.23	8.33	8.42	8.36	8.56	8.56
2^3A_2	$n \rightarrow 3p_x$	8.32	8.20	8.20	8.23	7.97	8.03	8.03

† Mixed with $\pi - 3p_x$, positive linear combination at 11.07

‡ Mixed of $\pi - \pi^* (51\%), \pi - 3p_x (32\%),$ and $n^2 - \pi^2 (6\%)$

m Mixture of $n^2 - \pi^2 (43\%), \pi - 3p_x (39\%),$ and $\pi - \pi^* (4\%).$ There is another, almost degenerate state at 10.81 eV with oscillator strengths of 0.104, comprised of $n^2 - \pi^2 (31\%), \pi - \pi^* (25\%)$ and $\pi - 3p_x (21\%)$ excitations

a Energy-loss maximum (vapor) [3]

b Energy-loss maximum (vapor) [4]

c Absorption band origin (vapor) [6]

d Energy-loss band origin (vapor) [4]

e Energy-loss band origin (vapor) [5]
Table S11.: Calculated percentage of electron configurations in the excited states wave functions of formaldehyde obtained at the DFT/MRCI, MRMP2(HF) and MR-MP2(BH-LYP) levels of theory using the augmented basis. Only electron configurations with more than 5 percentage are presented.

State	DFT/MRCI	MRMP2 (HF)	MRMP2 (BH-LYP)	
	Excitation	Excitation	Excitation	
	% from to	% from to	% from to	
1^1A_2	81 n_H π^*_L	67 n_H π^*_L	74 n_H π^*_L	
	10 n_H 3$s(c)$	11 n_H 3$p_x(c)$	5 n_H 3$p_x(c)$	
1^1B_2	85 n_H 3$s(c)$	58 n_H 3$s(c)$	75 n_H 3$s(c)$	
	7 n_H 3$p_x(c)$	12 n_H 3$s(o)$	5 n_H 3$p_x(c)$	
1^1B_1	82 σ_{H-2} π^*_L	71 σ_{H-2} π^*_L	74 σ_{H-2} π^*_L	
	11 σ_{H-2} 3$p_x(c)$	9 σ_{H-2} 3$p_x(c)$	7 σ_{H-2} 3$p_x(c)$	
4^1A_1	53 π_{H-1} π^*_L	43 π_{H-1} π^*_L	61 π_{H-1} π^*_L	
	25 n_H 3$p_y(o)$	19 n_H 3$p_y(c)$	6 n_H 3$p_y(o)$	
	5 π_{H-1} 3$p_x(c)$	7 n_H 3$p_y(o)$	6 $\pi_{H,L}, \pi_{H}^*$	
			5 n_H 3$p_y(o)$	π_{L}^*, π_{L}^*
5^1A_1	72 n_H^2 π_{H}^*	54 n_H^2 π_{H}^*	64 n_H^2 π_{H}^*	
	13 n_H^2 3p_x	17 n_H^2 3p_x	6 n_H^2 3p_x	
1^3A_2	83 n_H 3$p_x(c)$	70 n_H 3$p_x(c)$	75 n_H 3$p_x(c)$	
	10 n_H 3$p_x(c)$	11 n_H 3$p_x(c)$	6 n_H 3$p_x(c)$	
1^3A_1	84 π_{H-1} π_{H-1}	75 π_{H-1} π_{H-1}	78 π_{H-1} π_{H-1}	
	11 π_{H-1} 3$p_x(c)$	10 π_{H-1} 3$p_x(c)$	9 π_{H-1} 3$p_x(c)$	
1^3B_2	84 n_H 3$s(c)$	58 n_H 3$s(c)$	75 n_H 3$s(c)$	
	7 n_H σ_{L}^*+10	10 n_H 3$p_y(c)$	75 n_H 3$s(c)$	
			3$s(o)$	3$s(o)$
1^3B_1	82 σ_{H-2} π_{H}^*	72 σ_{H-2} π_{H}^*	75 σ_{H-2} π_{H}^*	
	11 σ_{H-2} 3$p_x(c)$	9 σ_{H-2} 3$p_x(c)$	7 σ_{H-2} 3$p_x(c)$	

The orbitals presented in the table are labeled according to the order obtained within the DFT theory. In the following cases the ordering of the Hartree-Fock orbitals is different: The $\pi_{H,2}^*$ BH-LYP orbital corresponds to the $\pi_{L,z}^*$ HF orbital.
Table S12.: Calculated percentage of electron configurations in the excited states wave functions of formaldehyde obtained at the DFT/MRCI-R and CASPT2 (8,11) levels of theory using the augmented basis. Only electron configurations with more than 5 percentage are presented.

State	DFT/MRCI-R	CASPT2 (8,11)	
	Excitation	Excitation	
	% from to	% from to	
1^1A_2	83 n_H	95 n_H	
1^1B_2	87 n_H 3s(c)	94 n_H 3s(c)	
1^1B_1	82 σ_H-2 π_*	96 σ_H-2 π_*	
4^1A_1	53 π_H-1	51 π_H-1	
	13 n_H^2	32 n_H^2	
	12 n_H	6 n_H^2	
5^1A_1	52 n_H^2	43 n_H^2	
	17 n_H	39 n_H	
	12 n_H^2	39 n_H^2	
	5 π_H-1	6 n_H	
	10 π_H-1	10 π_H-1	
1^3A_2	84 n_H 3π (c)	94 n_H π_*	
1^3A_1	86 π_H-1 3π (c)	97 π_H-1 π_*	
1^3B_2	85 n_H 3s(c)	94 n_H 3s(c)	
1^3B_1	83 σ_H-2 π_*	96 σ_H-2 π_*	
S4.3. Thioformaldehyde

Table S13. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) vertical excitation energies of thioformaldehyde using the valence basis. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies(eV)	DFT/MRCI	DFT/MRCI-R	MRMP2 (HF)	MRMP2 (BH-LYP)	Experiment
1^1A_2	$n \rightarrow \pi^*$	2.18 (0) 2.22 (0) 2.11 (0) 2.10 (0)					
2^1A_1	$\pi \rightarrow \pi^*$	6.49 (0.213) 6.50 (0.177)† 6.40 (0.162) 6.32 (0.151) 6.2a					
1^1B_1	$n \rightarrow \sigma^*$	6.88 (0.001) 6.87 (0.001) 7.17 (0) 7.06 (0.001)					
1^1B_2	$\sigma \rightarrow \pi^*$	6.91 (0.019) 6.90 (0.021) 6.75 (0.010) 6.71 (0.008)					
2^1A_2	$\pi, n \rightarrow \pi^*$	7.18 (0) 7.71 (0) 7.55 (0) 7.54 (0)					
3^1A_1	$n^2 \rightarrow \pi^*$	7.89 (0.011) 6.07 (0.074)‡ 7.29 (0.015) 7.25 (0.015)					
1^3A_2	$n \rightarrow \pi^*$	1.86 1.93 1.81 1.81					
1^3A_1	$\pi \rightarrow \pi^*$	3.31 3.24 3.34 3.32					
1^3B_2	$\sigma \rightarrow \pi^*$	6.06 6.13 5.84 5.80					
1^3B_1	$n \rightarrow \sigma^*$	6.36 6.41 6.53 6.43					
2^2A_2	$\pi, n \rightarrow \pi^*$	7.79 7.31 7.08 7.06					

‡ Peak maximum [7]

† 3^1A_1

‡ 2^1A_1
Table S14: Calculated percentage of electron configurations in the excited states wave functions of thioformaldehyde obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory using the valence basis. Only electron configurations with more than 2 percentage are presented.

State	% from to	State	% from to	State	% from to	
			DFT/MRCI	MRMP2	MRMP2	
			(BH-LYP)	(HF)	(BH-LYP)	
			Excitation	Excitation	Excitation	
1^1A_2	92 n$_H$	π^*_L	79 n$_H$	π^*_L	80 n$_H$	π^*_L
	7 π_{H-1}	n$_H$	6 π_{H-1}	n$_H$	7 n$_H$	n$_H$
	$\pi_{L,\sigma}^*$	π_L^*	π_L^*	π_L^*	π_L^*	π_L^*
2^1A_1	89 π_{H-1}	72 π_{L}^*	72 π_{H-1}	π_L^*	4 n$_H$	π_L^*
	2 n$_H$	n$_H$	5 n$_H$	n$_H$	3 n$_H$	n$_H$
	$\pi_{L,\sigma}^*$	π_L^*	π_L^*	π_L^*		
1^1B_1	88 n$_H$	73 n$_H$	76 n$_H$	σ_{L+1}	3 n$_H$	σ_{L+1}
	4 n$_H$	6 n$_H$	3 n$_H$	σ_{L+4}	3 n$_H$	σ_{L+4}
	3 π_{H-1}	n$_H$	3 π_{H-1}	n$_H$	3 n$_H$	n$_H$
1^1B_2	94 σ_{H-2}	78 σ_{H-2}	79 σ_{H-2}	π_L^*	3 π_2, 3	π_L^*
	2 σ_{H-2}	π_{H-1}	π_L^*	π_L^*	3 σ_{H-1}	π_L^*
	σ_{L+1}	σ_{L+1}	σ_{L+1}			
2^1A_2	72 π_{H-1}	41 π_{H-1}	43 π_{H-1}	π_L^*	5 π_{H-1}	π_L^*
	18 π_{H-3}	33 σ_{H-3}	32 σ_{H-3}	π_L^*	5 π_{H-3}	π_L^*
	3 π_{H-1}	4 n$_H$	4 n$_H$	π_L^*	4 n$_H$	π_L^*
3^1A_1	86 n$_H$	70 n$_H$	70 n$_H$	n$_H$	4 n$_H$	n$_H$
	8 n$_H$	7 n$_H$	9 n$_H$	n$_H$	4 n$_H$	n$_H$
	σ_{H-3}	σ_{H-3}	σ_{H-3}	π_L^*	π_L^*	
1^3A_2	96 n$_H$	82 n$_H$	83 n$_H$	π_L^*	83 n$_H$	π_L^*
1^3A_1	99 π_{H-1}	86 π_{H-1}	88 π_{H-1}	π_L^*	88 π_{H-1}	π_L^*
1^3B_2	97 σ_{H-2}	82 σ_{H-2}	82 σ_{H-2}	π_L^*	82 σ_{H-2}	π_L^*
1^3B_1	78 n$_H$	56 n$_H$	64 n$_H$	σ_{H-1}	10 n$_H$	σ_{H-1}
	9 n$_H$	16 n$_H$	10 n$_H$	σ_{H-4}	5 n$_H$	σ_{H-4}
	7 n$_H$	6 n$_H$	5 n$_H$	σ_{H-3}		
2^3A_2	51 π_{H-1}	63 π_{H-1}	64 π_{H-1}	π_L^*	14 σ_{H-3}	π_L^*
	44 π_{H-1}	14 σ_{H-3}	14 σ_{H-3}	π_L^*	14 σ_{H-3}	π_L^*

20
Table S15.: Calculated percentage of electron configurations in the discussed wave functions of thioformaldehyde obtained at the DFT/MRCI, and DFT/MRCI-R levels of theory using the valence basis. Only electron configurations with more than 2 percentage are presented.

State	% from	to	% from	to
21A\textsubscript{1}	89	\(\pi_{H-1}\)	2	\(n_{H}\, n_{H}\)
	65	\(\pi^*_{L}\)	28	\(n_{H}, n_{H}\)
21A\textsubscript{2}	72	\(\pi_{H-1}, n_{H}\)	18	\(\sigma_{H-3}\)
	63	\(\pi_{L}^*\)	29	\(\sigma_{H-3}\)
	5	\(n_{H}\)	3	\(n_{H}\)
31A\textsubscript{1}	86	\(n_{H}, n_{H}\)	8	\(n_{H}, \sigma_{H-3}\)
	66	\(\pi_{L}^*\)	28	\(\pi_{H-1}\)
	2	\(\pi_{H-3}\)	2	\(n_{H}, \sigma_{H-3}\)
23A\textsubscript{2}	51	\(\sigma_{H-3}\)	44	\(\pi_{H-1}, n_{H}\)
	79	\(\pi_{L}^*\)	14	\(\sigma_{H-3}\)
Table S16. Selected matrix elements (cm\(^{-1}\)) for thioformaldehyde calculated with DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) methods using the valence basis.

SOMEs(cm\(^{-1}\))	DFT/MRCI	DFT/MRCI-R	MR-MP2(HF)	MR-MP2(BH-LYP)
\(1^3A_2 \mid \hat{H}_{SO} \times \mid 1^1A_1 \)	180.3	178.2	163.6	168.8
\(1^3A_2 \mid \hat{H}_{SO} \times \mid 2^1A_1 \)	99.4	179.2	74.4	83.0
\(1^3A_2 \mid \hat{H}_{SO} \times \mid 3^1A_1 \)	156.8	55.8	148.5	147.8
\(1^3B_1 \mid \hat{H}_{SO} \gamma \mid 1^1A_1 \)	66.3	63.8	57.7	58.9
\(1^3B_1 \mid \hat{H}_{SO} \gamma \mid 2^1A_1 \)	16.5	15.9	18.3	17.4
\(1^3B_1 \mid \hat{H}_{SO} \gamma \mid 3^1A_1 \)	6.9	6.7	8.3	5.6
\(1^3B_2 \mid \hat{H}_{SO} \times \mid 1^1A_1 \)	105.6	105.2	98.2	101.6
\(1^3B_2 \mid \hat{H}_{SO} \times \mid 2^1A_1 \)	76.0	60.9	67.2	70.1
\(1^3B_2 \mid \hat{H}_{SO} \times \mid 3^1A_1 \)	6.3	44.3	11.8	11.0
\(1^3A_1 \mid \hat{H}_{SO} \times \mid 1^1A_2 \)	168.2	163.2	155.5	160.9
\(1^3A_1 \mid \hat{H}_{SO} \times \mid 2^1A_2 \)	89.6	95.8	70.1	73.0
\(1^3B_1 \mid \hat{H}_{SO} \times \mid 1^1A_2 \)	32.4	31.3	27.6	28.3
\(1^3B_2 \mid \hat{H}_{SO} \gamma \mid 1^1A_2 \)	105.8	106.3	99.7	103.2
\(1^3A_2 \mid \hat{H}_{SO} \times \mid 1^1B_1 \)	23.4	22.6	16.2	17.1
\(1^3A_1 \mid \hat{H}_{SO} \times \mid 1^1B_2 \)	88.0	85.8	81.0	81.6
\(1^3A_2 \mid \hat{H}_{SO} \gamma \mid 1^1B_2 \)	104.7	104.9	96.5	99.6
\(1^3A_2 \mid \hat{H}_{SO} \times \mid 1^3A_1 \)	157.2	158.4	148.4	154.4
\(1^3B_1 \mid \hat{H}_{SO} \times \mid 1^3A_2 \)	28.9	27.5	23.1	22.9
\(1^3B_2 \mid \hat{H}_{SO} \times \mid 1^3A_1 \)	82.0	82.5	78.6	81.8
\(1^3B_2 \mid \hat{H}_{SO} \gamma \mid 1^3A_2 \)	106.9	106.6	100.4	103.6
Table S17. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF), MR-MP2(BH-LYP) and CASPT2 vertical excitation energies of thioformaldehyde using the augmented basis. The CASPT2 (8,11) active space consists of following occupied/unoccupied orbitals: 1/3 \(a_1\), 1/2 \(b_2\) and 2/2 \(b_1\). The oscillator strengths are given in the parentheses.

State	Character	DFT/MRCI	DFT/MRCI-R	MRMP2 (HF)	MRMP2 (BH-LYP)	CASPT2 (8,11)	Experiment
\(1^1A_2\)	\(n \rightarrow \pi^*\)	2.16 (0)	2.20 (0)	2.10 (0)	2.16 (0)	2.11 (0)	\(2.03^a\)
\(1^1B_1\)	\(n \rightarrow 4s\)	5.67 (0.009)	5.67 (0.009)	6.07 (0.015)	5.99 (0.016)	5.84 (0.027)	\(5.84^b\)
\(2^2B_1\)	\(n \rightarrow 4p_z\)	6.35 (0.039)	6.35 (0.039)	6.83 (0.030)	6.73 (0.033)	6.57 (0.024)	\(6.59^b\)
\(2^1A_1\)	\(\pi \rightarrow \pi^*\)	6.46 (0.243)	6.48 (0.216) \(^1\)	6.30 (0.178)	6.50 (0.146) \(^1\)	6.29 (0.126) \(^m\)	\(6.2^c\)
\(3^3A_1\)	\(n \rightarrow 4p_z\)	6.53 (0.014)	6.53 (0) \(^2\)	7.04 (0.003)	6.45 (0.046) \(^2\)	6.78 (0.019)	\(6.84^b\)
\(2^1A_2\)	\(n \rightarrow 4p_y\)	6.67 (0)	6.65 (0)	7.19 (0)	7.08 (0)	6.94 (0)	\(6.94\)
\(1^1B_2\)	\(\sigma \rightarrow \pi^*\)	6.89 (0.016)	6.89 (0.018)	6.72 (0.008)	6.78 (0.002)	7.15 (0.058)	\(6.84^b\)
\(3^3A_2\)	\(\pi, n \rightarrow \pi^*\)	7.19 (0)	7.70 (0) \(^3\)	7.61 (0)	7.58 (0)	7.66 (0)	\(7.66\)
	\(\ldots\)						
\(5^3A_1\)	\(n^2 \rightarrow \pi^*\)	7.84 (0.006)	6.06 (0.076) \(^4\)	7.27 (0.010) \(^1\)	7.26 (0.019) \(^3\)	7.11 (0.086) \(^n\)	\(1.80^a\)
\(1^3A_2\)	\(n \rightarrow \pi^*\)	1.84	1.92	1.81	1.89	1.84	\(1.84\)
\(1^3A_1\)	\(\pi \rightarrow \pi^*\)	3.29	3.23	3.33	3.37	3.34	\(3.34\)
\(1^3B_1\)	\(n \rightarrow 4s\)	5.54	5.54	5.93	5.85	5.75	\(5.75\)
\(1^3B_2\)	\(\sigma \rightarrow \pi^*\)	6.04	6.12	5.81	5.85	6.24	\(6.24\)
	\(\ldots\)						
\(4^3A_2\)	\(\pi, n \rightarrow \pi^*\)	7.77	7.28 \(^5\)	7.11 \(^2\)	7.24	7.19	\(7.19\)

DFT/MRCI-R: \(^1\) 3\(^1A_1\), \(^2\) 4\(^1A_1\), \(^3\) 4\(^1A_2\), \(^4\) 2\(^1A_1\), \(^5\) 3\(^1A_2\)
MR-MP2(HF): \(^1\) 4\(^1A_1\), \(^2\) 2\(^3A_2\)
MR-MP2(BH-LYP): \(^1\) 3\(^1A_1\), \(^2\) 2\(^1A_1\), \(^3\) 4\(^1A_1\)
\(^m\) Mixture of \(\pi - \pi^*\) (50%) and \(n^2 - \pi^*\) (37%)
\(^n\) Mixture of \(n^2 - \pi^*\) (51%) and \(\pi - \pi^*\) (36%)
\(^a\) Vertical transition (absorption) \([8]\)
\(^b\) Absorption band origin \([9]\)
\(^c\) Absorption peak maximum (vapor) \([7]\)
State	% from	to	% from	to	% from	to																					
\(1^1A_2\)	91	\(n_H\)	\(\pi^*_L\)	6	\(\pi^*_L\)	\(\sigma_{L+10}\)	51	\(n_H\)	\(\pi^*_L\)	28	\(\pi^*_L\)	\(\sigma_{L+4}\)	78	\(n_H\)	\(\pi^*_L\)	\(\sigma_{L+4}\)											
\(2^1A_1\)	87	\(\pi_{H-1}\)	\(\pi^*_L\)	50	\(\pi_{H-1}\)	\(\pi^*_L\)	36	\(\pi_{H-1}\)	\(\sigma_{L-10}\)	36	\(\pi_{H-1}\)	\(4p_{xz}\)															
\(1^1B_1\)	86	\(n_H\)	\(4s(c)\)	52	\(n_H\)	\(4s(c)\)	73	\(n_H\)	\(4s(c)\)																		
\(1^1B_2\)	92	\(\sigma_{H-2}\)	\(\pi^*_L\)	49	\(\sigma_{H-2}\)	\(\pi^*_L\)	73	\(\sigma_{H-2}\)	\(\pi^*_L\)	\(3d_{xy}\)																	
\(3^1A_2\)	66	\(\pi_{H-1,n_H}\)	\(\pi^*_L,\pi^*_L\)	27	\(\sigma_{H-3}\)	\(\pi^*_L\)	38	\(\pi_{H-1,n_H}\)	\(\pi^*_L,\pi^*_L\)	34	\(\sigma_{H-3}\)	\(\pi^*_L,\pi^*_L\)	5	\(\sigma_{H-3}\)	\(\pi^*_L,\pi^*_L\)												
\(5^1A_1\)	85	\(n_H^2\)	\(\pi^*_L,\pi^*_L\)	28	\(n_H^2\)	\(\pi^*_L,\pi^*_L\)	68	\(n_H^2\)	\(\pi^*_L,\pi^*_L\)	9	\(n_H^2\)	\(\pi^*_L,\pi^*_L\)	6	\(n_H^2\)	\(\pi^*_L,\pi^*_L\)												
\(1^3A_2\)	95	\(n_H\)	\(\pi^*_L\)	52	\(n_H\)	\(\pi^*_L\)	82	\(n_H\)	\(\pi^*_L\)																		
\(1^3A_1\)	98	\(\pi_{H-1}\)	\(\pi^*_L\)	52	\(\pi_{H-1}\)	\(\pi^*_L\)	88	\(\pi_{H-1}\)	\(\pi^*_L\)																		
\(1^3B_1\)	81	\(n_H\)	\(4s(c)\)	48	\(n_H\)	\(4s(c)\)	71	\(n_H\)	\(4s(c)\)	5	\(n_H\)	\(p_x\)															
\(1^3B_2\)	96	\(\sigma_{H-2}\)	\(\pi^*_L\)	50	\(\sigma_{H-2}\)	\(\pi^*_L\)	82	\(\sigma_{H-2}\)	\(\pi^*_L\)																		
\(4^1A_2\)	50	\(\pi_{H-3}\)	\(\pi^*_L\)	19	\(\pi_{H-1,n_H}\)	\(\pi^*_L,\pi^*_L\)	42	\(n_H\)	\(3d_{yz}\)	17	\(\pi_{H-1,n_H}\)	\(\pi^*_L,\pi^*_L\)	28	\(\pi_{H-1,n_H}\)	\(\pi^*_L,\pi^*_L\)	5	\(\sigma_{H-3}\)	\(\pi^*_L,\pi^*_L\)	13	\(\pi_{H-3}\)	\(\pi^*_L,\pi^*_L\)	5	\(n_H\)	\(\pi^*_L,\pi^*_L\)	5	\(n_H\)	\(\pi^*_L,\pi^*_L\)

† HF orbital which valence part is the same as \(\pi^*_L\) (BH-LYP), but with the opposite phase.

The \(\sigma^*\) and \(d_{yz}\) orbitals are mixed at the HF level.

The orbitals presented in the table are labeled according to the order obtained within the DFT theory.

In the following cases the ordering of the Hartree-Fock orbitals is different:

The \(\pi^*_L\) bh-lyp orbital corresponds to the \(\pi^*_L+1\) hf orbital.
Table S19.: Calculated percentage of electron configurations in the discussed wave functions of thioformaldehyde obtained at the DFT/MRCI-R, and CASPT2 (8,11) levels of theory using the augmented basis. Only electron configurations with more than 5 percentage are presented.

State	% from	to	% from	to		
1^1A_2	93	\(n_H\)	\(\sigma_{L+10}\)	92	\(n_H\)	\(\pi^*_L\)
2^1A_1	54	\(n^{2+}_H\)	\(\pi^*_L\)	50	\(n^{2+}_H\)	\(\pi^*_L\)
	22	\(n^{2+}_H\)	\(\pi^*_L\)	37	\(n^{2+}_H\)	\(\pi^*_L\)
	16	\(n_H\)		4p_x		
1^1B_1	87	\(n_H\)	4s(c)	92	\(n_H\)	4s(c)
	5	\(n_H\)		\(\sigma_{L+10}\)		
1^1B_2	94	\(\sigma_{H-2}\)	\(\pi^*_L\)	94	\(\sigma_{H-2}\)	\(\pi^*_L\)
3^1A_2	59	\(n^{2+}_H\)	\(\pi^*_L,\pi^*_L,\pi^*_L\)	60	\(n^{2+}_H\)	\(\pi^*_L,\pi^*_L,\pi^*_L\)
	28	\(\sigma_{H-3}\)	\(\pi^*_L,\pi^*_L,\pi^*_L\)	25	\(\sigma_{H-3}\)	\(\pi^*_L,\pi^*_L,\pi^*_L\)
	\(n_H\)	\(\pi^*_L\)				
5^1A_1	65	\(n^{2+}_H\)	\(\pi^*_L,\pi^*_L,\pi^*_L\)	51	\(n^{2+}_H\)	\(\pi^*_L,\pi^*_L,\pi^*_L\)
	28	\(\sigma_{H-3}\)	\(\pi^*_L,\pi^*_L,\pi^*_L\)	36	\(\sigma_{H-3}\)	\(\pi^*_L,\pi^*_L,\pi^*_L\)
	2	\(n_H\)	\(\pi^*_L,\pi^*_L,\pi^*_L\)			
1^3A_2	95	\(n_H\)	\(\pi^*_L\)	95	\(n_H\)	\(\pi^*_L\)
1^3A_1	98	\(\sigma_{H-2}\)	\(\pi^*_L\)	97	\(\sigma_{H-2}\)	\(\pi^*_L\)
1^3B_1	83	\(n_H\)	4s(c)	93	\(n_H\)	4s(c)
	9	\(n_H\)		\(\sigma_{L+10}\)		
1^3B_2	96	\(\sigma_{H-2}\)	\(\pi^*_L\)	94	\(\sigma_{H-2}\)	\(\pi^*_L\)
4^1A_2	65	\(n^{2+}_H\)	\(\pi^*_L,\pi^*_L,\pi^*_L\)	75	\(n^{2+}_H\)	\(\pi^*_L,\pi^*_L,\pi^*_L\)
	12	\(\sigma_{H-3}\)	\(\pi^*_L,\pi^*_L,\pi^*_L\)	12	\(\sigma_{H-3}\)	\(\pi^*_L,\pi^*_L,\pi^*_L\)
	11	\(n_H\)	3d_{x^2}			
S4.4. Furan

Table S20. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) vertical excitation energies of furan using the valence basis. The oscillator strengths are given in the parentheses.

State	Dominant character	DFT/MRCI	DFT/MRCI-R	MRMP2 (HF)	MRMP2 (BH-LYP)	Experiment
2^1A_1	$\pi \rightarrow \pi^*$	6.40 (0)	6.43 (0)	6.20 (0.001)	6.12 (0.002)	
1^1B_1	$\pi \rightarrow \pi^*$	6.43 (0.235)	6.34 (0.253)	6.42 (0.165)	6.30 (0.163)	**6.04a,b, 6.06c**
1^1A_2	$\pi \rightarrow Ryd$	7.46 (0)	7.48 (0)	7.75 (0)	7.81 (0)	
2^1A_2	$\pi \rightarrow Ryd$	8.03 (0)	8.06 (0)	8.24 (0)	8.44 (0)	
1^1B_2	$\pi \rightarrow Ryd$	8.13 (0.014)	8.14 (0.014)	8.50 (0.020)	8.50 (0.022)	
3^1A_1	$\pi \rightarrow \pi^*$	8.28 (0.698)	8.23 (0.772)	7.97 (0.415)	7.84 (0.390)	**7.82d, 7.80e**
1^3B_1	$\pi \rightarrow \pi^*$	4.00	4.01	4.08	4.08	
1^3A_1	$\pi \rightarrow \pi^*$	5.19	5.20	5.23	5.20	**4.00d, 3.99e**
2^3A_1	$\pi \rightarrow \pi^*$	6.67	6.63	6.45	6.37	
2^3B_1	$\pi \rightarrow \pi^*$	7.25	7.20	7.09	7.05	
1^3A_2	$\pi \rightarrow Ryd$	7.33	7.37	7.66	7.66	
2^3A_2	$\pi \rightarrow Ryd$	7.69	7.75	7.91	7.84	
1^3B_2	$\pi \rightarrow Ryd$	7.97	8.02	8.37d	8.39d	

MRMP2 (HF)$^12^3B_2$
MRMP2 (BH-LYP)$^12^3B_2$

a VUV maximum (gas) [10]

b Electron energy-loss maximum (gas) [11]

c Electron energy-loss maximum (gas) [12]

d Electron impact maximum (gas) [13]
Table S21: Calculated percentage of electron configurations in the excited states wave functions of furan obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory using the valence basis. Only electron configurations with more than 2 percentage are presented.

State	Excitation	Excitation	Excitation						
	DFT/MRCI	MRMP2	MRMP2						
	(BH-LYP)	(HF)	(BH-LYP)						
	% from	% from	% from						
	to	to	to						
	% from	% from	% from						
	to	to	to						
2^1A_1	45	π_{H-1}	π_{L}^*	31	π_{H-1}	π_{L}^*	31	π_{H-1}	π_{L}^*
	37	π_{H}	π_{L+2}^*	26	π_{H}	π_{L+2}^*	27	π_{H}	π_{L+2}^*
	5	$\pi_{H-1}\pi_{H}$	π_{L}^*	6	$\pi_{H-1}\pi_{H}$	π_{L}^*	6	$\pi_{H-1}\pi_{H}$	π_{L}^*
	4	$\pi_{H}\pi_{H}$	π_{L+2}^*	6	$\pi_{H-1}\pi_{H}$	π_{L+2}^*	5	$\pi_{H-1}\pi_{H}$	π_{L+2}^*
	2	$\pi_{H}\pi_{H}$	π_{L+2}^*	2	$\pi_{H}\pi_{H}$	π_{L+2}^*	2	$\pi_{H}\pi_{H}$	π_{L+2}^*
1^1B_1	95	π_{H}	π_{L}^*	74	π_{H}	π_{L}^*	72	π_{H}	π_{L}^*
1^1A_2	89	π_{H}	Ry$_{L+1}$	68	π_{H}	Ry$_{L+1}$	71	π_{H}	Ry$_{L+1}$
	4	π_{H}	Ry$_{L+1}$	4	π_{H}	Ry$_{L+1}$	10	π_{H}	Ry$_{L+1}$
1^1B_2	9	π_{H}	Ry$_{L+1}$	56	π_{H}	Ry$_{L+1}$	61	π_{H}	Ry$_{L+1}$
	10	π_{H}	Ry$_{L+1}$	10	π_{H}	Ry$_{L+1}$	4	π_{H}	Ry$_{L+1}$
1^3B_1	92	π_{H}	π_{L}^*	69	π_{H}	π_{L}^*	70	π_{H}	π_{L}^*
	4	π_{H-1}	π_{L}^*	4	π_{H-1}	π_{L}^*	5	π_{H-1}	π_{L}^*
1^3A_1	51	π_{H}	π_{L+2}^*	36	π_{H}	π_{L+2}^*	37	π_{H}	π_{L+2}^*
	44	π_{H}	π_{L+2}^*	35	π_{H}	π_{L+2}^*	35	π_{H}	π_{L+2}^*
	2	$\pi_{H-1}\pi_{H}$	π_{L}^*	2	$\pi_{H-1}\pi_{H}$	π_{L}^*	3	$\pi_{H-1}\pi_{H}$	π_{L}^*
1^3A_2	89	π_{H}	Ry$_{L+1}$	68	π_{H}	Ry$_{L+1}$	69	π_{H}	Ry$_{L+1}$
	4	π_{H}	Ry$_{L+1}$	3	π_{H}	Ry$_{L+1}$	3	π_{H}	Ry$_{L+1}$
	2	π_{H-1}	Ry$_{L+1}$	2	π_{H-1}	Ry$_{L+1}$	2	π_{H-1}	Ry$_{L+1}$
1^3B_2	84	π_{H}	Ry$_{L+1}$	55	π_{H}	Ry$_{L+1}$	62	π_{H}	Ry$_{L+1}$
	11	π_{H}	Ry$_{L+1}$	11	π_{H}	Ry$_{L+1}$	12	π_{H}	Ry$_{L+1}$
	8	π_{H}	Ry$_{L+1}$	8	π_{H}	Ry$_{L+1}$	8	π_{H}	Ry$_{L+1}$

The orbitals presented in the table are labeled according to the order obtained within the DFT theory.

In the following cases the ordering of the Hartree-Fock orbitals is different:
The π_{L+2}^* bh-lyp orbital corresponds to the π_{L+2}^* hf orbital;
The Ry$_{L+2}^*$ bh-lyp orbital corresponds to the Ry$_{L+2}^*$ hf orbital;
The Ry$_{L+2}^*$ bh-lyp orbital corresponds to the Ry$_{L+2}^*$ hf orbital.
Table S22. Selected matrix elements (cm$^{-1}$) for furan calculated with DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) methods using the valence basis.

	DFT/MRCI	DFT/MRCI-R	MRMP2 (HF)	MRMP2 (BH-LYP)		
$\langle 1^3A_2	H_{SO} \hat{z}	1^1A_1 \rangle$	9.6	9.3	9.1	9.1
$\langle 1^3A_2	H_{SO} \hat{z}	2^1A_1 \rangle$	1.1	1.0	1.0	1.2
$\langle 1^3B_1	H_{SO} \hat{x}	1^1A_2 \rangle$	5.2	5.0	4.4	4.7
$\langle 1^3A_2	H_{SO} \hat{x}	1^1B_1 \rangle$	4.6	4.4	3.4	3.5
$\langle 1^3A_1	H_{SO} \hat{x}	1^1B_2 \rangle$	3.8	3.7	4.1	4.3
$\langle 1^3A_2	H_{SO} \hat{y}	1^1B_2 \rangle$	0.3	0.2	0.1	0.1
$\langle 1^3B_1	H_{SO} \hat{x}	1^1B_2 \rangle$	9.4	9.3	7.8	8.2
$\langle 1^3A_2	H_{SO} \hat{x}	1^3A_1 \rangle$	1.1	0.9	1.4	1.1
$\langle 1^3B_1	H_{SO} \hat{x}	1^3A_2 \rangle$	5.1	5.0	4.4	4.7
$\langle 1^3B_2	H_{SO} \hat{x}	1^3A_1 \rangle$	3.9	3.7	4.2	4.2
Table S23. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF), MR-MP2(BH-LYP) and CASPT2 (6,9) vertical excitation energies of furan using the augmented basis. The CASPT2 active space consists of following occupied/unoccupied orbitals: 0/1 a_1, 0/1 b_1, 2/2 b_2 and 1/1 a_2. The oscillator strengths are given in the parentheses.

State	Dominant character	DFT/MRCI	DFT/MRCI-R	MRMP2 (HF)	MRMP2 (BH-LYP)	CASPT2 (6,9)	Experiment
1A_2	$\pi \rightarrow 3s$	5.91 (0)	5.90 (0)	6.10 (0)	6.00 (0)	5.98 (0)	5.91c
1B_1	$\pi \rightarrow \pi^*$	6.05 (0.238)	6.04 (0.253)	6.47 (0.106)	6.48 (0.092)	6.11 (0.144)	6.04a,b, 6.06c
2A_1	$\pi \rightarrow \pi^*$	6.29 (0.006)	6.30 (0.004)	6.11 (0.001)	5.93 (0.001)	6.22 (0.003)	6.03
1B_2	$\pi \rightarrow 3p_x$	6.38 (0.047)	6.36 (0.047)	6.59 (0.050)	6.48 (0.056)	6.51 (0.047)	6.47c
2A_2	$\pi \rightarrow 3p_z$	6.55 (0)	6.54 (0)	6.89 (0)	6.74 (0)	6.70 (0)	6.61c
2B_1	$\pi \rightarrow 3p_y$	6.80 (0)	6.77 (0)	6.92 (0.015)	6.92 (0.011)	6.63 (0.029)	6.75c
	\ldots						
4A_1	$\pi \rightarrow \pi^*$	8.13 (0.506)	8.09 (0.549)	8.31 (0.307)l	8.12 (0.366)l	7.87 (0.446)	7.82c, 7.80a
1B_1	$\pi \rightarrow \pi^*$	3.74	3.90	4.03	3.97	4.13	4.00d, 3.99e
1A_1	$\pi \rightarrow \pi^*$	5.03	5.15	5.15	5.10	5.25	5.20d, 5.22e
1A_2	$\pi \rightarrow 3s$	5.80	5.83	6.00	5.90	5.93	5.8l
1B_2	$\pi \rightarrow 3p_x$	6.27	6.30	6.51	6.44	6.46	6.28
2A_2	$\pi \rightarrow 3p_y$	6.48	6.50	6.84	6.72	6.69	6.66

MRMP2 (HF)a,$^6^1A_1$
MRMP2 (BH-LYP)b,$^6^1A_1$

a VUV maximum (gas) [10]
b Electron energy-loss maximum (gas) [11]
c Electron energy-loss maximum (gas) [12]
d Electron impact maximum (gas) [13]
e Resonantly enhanced multiphoton ionization [14]
f Electron energy-loss maximum (gas) [10]
Table S24: Calculated percentage of electron configurations in the excited states wave functions of furan obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory using the augmented basis. Only electron configurations with more than 5 percentage are presented.

State	Excitation	DFT/MRCI (BH-LYP)	MRMP2 (HF)	MRMP2 (BH-LYP)
	% from to	% from to	% from to	% from to
2^1A_1	32 π_H	30 π_H	26 π_H	26 π_H
	28 π_H-1	26 π_H	19 π_H	14 π_H
	23 π_H	6 π_H	14 π_H	14 π_H
1^1B_1	71 π_H	59 π_H	50 π_H	50 π_H
	24 π_H	14 π_H	26 π_H	26 π_H
1^1A_2	90 π_H	57 π_H	68 π_H	68 π_H
	13 π_H	3p_z	3p_z	3p_z
1^1B_2	91 π_H	66 π_H	71 π_H	71 π_H
	3p_x	7 π_H	3p_x	3p_x
1^3A_1	46 π_H	67 π_H	36 π_H	36 π_H
	39 π_H	5 π_H	36 π_H	36 π_H
1^3A_2	36 π_H	39 π_H	38 π_H	38 π_H
	32 π_H	5 π_H	18 π_H	18 π_H
1^3B_2	89 π_H	54 π_H	67 π_H	67 π_H
	17 π_H	3p_z	3p_z	3p_z
1^3B_1	89 π_H	65 π_H	69 π_H	69 π_H
	3p_x	6 π_H	5 π_H	5 π_H

π^-L+9/π_y and π^+L+9/π_y BH-LYP orbitals arise from combination of π^-L+9 and π_y orbitals. In HF and CASSCF calculations this orbitals do not mix.
Table S25.: Calculated percentage of electron configurations in the discussed wave functions of furan obtained at the DFT/MRCI-R, and CASPT2 (6,9) levels of theory using the augmented basis. Only electron configurations with more than 5 percentage are presented.

State	Excitation	DFT/MRCI-R		CASPT2 (6,9)	
	% from to	% from to		% from to	
\(2^1A_1\)	\(\pi_H\)	\(\pi_{L+10}^*\)	33	\(\pi_{H-1}\)	\(\pi_{L+9}^*\)
	\(\pi_{H-1}\)	\(\pi_{L+3}/p_y\)	28	\(\pi_H\)	\(\pi_{L+10}^*\)
	\(\pi_{H-1}\)	\(\pi_{L+9}/p_y\)	22	\(\pi_2\)	\(\pi_{L+9}^*\)
	\(\pi_H, \pi_{H-1}\)	\(\pi_{L+9}, \pi_{L+10}^*\)	7		
\(1^1B_1\)	\(\pi_H\)	\(\pi_{L+3}/p_y\)	73	\(\pi_H\)	\(\pi_{L+9}\)
	\(\pi_H\)	\(\pi_{L+9}/p_y\)	23	\(\pi_H\)	\(p_y\)
\(1^1A_2\)	\(\pi_H\)	3s	91	\(\pi_H\)	3s
\(1^1B_2\)	\(\pi_H\)	3\(p_x\)	92	\(\pi_H\)	3\(p_x\)
\(1^3B_1\)	\(\pi_H\)	\(\pi_{L+3}/p_y\)	47	\(\pi_H\)	\(\pi_{L+9}^*\)
	\(\pi_H\)	\(\pi_{L+9}/p_y\)	46	\(\pi_{H-1}\)	\(\pi_{L+10}^*\)
\(1^3A_1\)	\(\pi_H\)	\(\pi_{L+10}\)	39	\(\pi_H\)	\(\pi_{L+10}^*\)
	\(\pi_{H-1}\)	\(\pi_{L+3}/p_y\)	29	\(\pi_{H-1}\)	\(\pi_{L+9}^*\)
	\(\pi_{H-1}\)	\(\pi_{L+9}/p_y\)	26		
\(1^3A_2\)	\(\pi_H\)	3s	90	\(\pi_H\)	3s
\(1^3B_2\)	\(\pi_H\)	3\(p_x\)	90	\(\pi_H\)	3\(p_x\)
	\(\pi_{H-1}\)	3s	5		

\(\pi_{L+3}/p_y\) and \(\pi_{L+9}/p_y\) BH-LYP orbitals arise from combination of \(\pi_{L+9}^*\) and \(p_y\) orbitals. In HF and CASSCF calculations these orbitals do not mix.
S4.5. Thiophene

Table S26. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) vertical excitation energies of thiophene using the valence basis. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies (eV)	Energies (eV)	Energies (eV)	Energies (eV)	Experiment
		DFT/MRCI	DFT/MRCI-R	MR-MP2(HF)	MR-MP2(BH-LYP)	
2^1A_1	$\pi \rightarrow \pi^*$	5.55 (0.095)	5.54 (0.109)	5.27 (0.030)	5.23 (0.057)	5.43^a
1^3B_1	$\pi \rightarrow \pi^*$	5.81 (0.109)	5.75 (0.120)	5.75 (0.074)	5.74 (0.078)	5.61^a
1^3B_2	$\pi \rightarrow \sigma^*$	6.06 (0)	6.13 (0)	6.23 (0.001)	6.16 (0.001)	
1^1A_2	$\pi \rightarrow \sigma^*$	6.28 (0)	6.31 (0)	6.27 (0)	6.17 (0)	
3^1A_1	$\pi \rightarrow \pi^*$	7.29 (0.321)	7.35 (0.400)	6.97 (0.173)	6.83 (0.223)	7.05^b
1^3B_1	$\pi \rightarrow \pi^*$	3.78	3.78	3.71	3.74	3.75^c, 3.80^d
1^3A_1	$\pi \rightarrow \pi^*$	4.58	4.56	4.48	4.46	4.62^c, 4.70^d
1^3B_2	$\pi \rightarrow \sigma^*$	5.86	5.91	6.00	5.92	
2^3A_1	$\pi \rightarrow \pi^*$	5.92	5.94	5.77	5.72	
1^3A_2	$\pi \rightarrow \sigma^*$	5.95	6.01	5.95	5.90	

^a Electron energy-loss maximum (gas) [11]
^b VUV absorption maximum (gas) [15]
^c Electron impact maximum (gas) [12]
^d Electron energy-loss maximum (gas) [15]
Table S27. Calculated percentage of electron configurations in the excited states wave functions of thiophene obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory using the valence basis. Only electron configurations with more than 2 percentage are presented.

State	% from	to	% from	to	% from	to		
2A1	74	\(\pi_{H-1}\)	47	\(\pi_{L}^*\)	16	\(\pi_{H-1}\)	3	\(\pi_{L}^*\)
	15	\(\pi_{H}\)	3	\(\pi_{L}^*\)	3	\(\pi_{H-1}\)	3	\(\pi_{L}^*\)
	3	\(\pi_{H-1,\pi_H}\)	2	\(\pi_{L}^*\)	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)
	2	\(\pi_{H-\pi_H}^{-}\)	2	\(\pi_{L}^*\)	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)
1B1	89	\(\pi_{H}\)	66	\(\pi_{L}^*\)	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)
	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)	2	\(\pi_{H-1}\)	\(\pi_{L}^*\)	
	2	\(\pi_{H-1,\pi_H}\)	2	\(\pi_{L}^*\)	\(\pi_{L}^*\)			
	2	\(\pi_{H-\pi_H}^{-}\)	2	\(\pi_{L}^*\)	\(\pi_{L}^*\)			
1B2	85	\(\pi_{H}\)	54	\(\pi_{L}^*\)	8	\(\pi_{H-1}\)	6	\(\pi_{L}^*\)
	5	\(\pi_{H-1,\pi_H}\)	6	\(\pi_{L}^*\)	5	\(\pi_{H-1}\)	5	\(\pi_{L}^*\)
	2	\(\pi_{H}\)	14	\(\pi_{L}^*\)	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)
	2	\(\pi_{H-\pi_H}^{-}\)	2	\(\pi_{L}^*\)	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)
1B2	87	\(\pi_{H-1}\)	57	\(\pi_{L}^*\)	9	\(\pi_{H-1}\)	5	\(\pi_{L}^*\)
	3	\(\pi_{H-1}\)	9	\(\pi_{L}^*\)	5	\(\pi_{H-1}\)	5	\(\pi_{L}^*\)
	2	\(\pi_{H-1}\)	5	\(\pi_{L}^*\)	5	\(\pi_{H-1}\)	5	\(\pi_{L}^*\)
3A1	46	\(\pi_{H}\)	18	\(\pi_{L}^*\)	16	\(\pi_{H-1}\)	17	\(\pi_{L}^*\)
	15	\(\pi_{H-3}\)	15	\(\pi_{L}^*\)	15	\(\pi_{H-1}\)	15	\(\pi_{L}^*\)
	13	\(\pi_{H-1}\)	14	\(\pi_{L}^*\)	14	\(\pi_{H-1}\)	14	\(\pi_{L}^*\)
	12	\(\pi_{H-\pi_H}^{-}\)	3	\(\pi_{L}^*\)	3	\(\pi_{H-1}\)	3	\(\pi_{L}^*\)
	2	\(\pi_{H-\pi_H}^{-}\)	2	\(\pi_{L}^*\)	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)
	2	\(\pi_{H-\pi_H}^{-}\)	2	\(\pi_{L}^*\)	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)
1B1	93	\(\pi_{H}\)	70	\(\pi_{L}^*\)	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)
	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)
	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)
1A2	87	\(\pi_{H-1}\)	54	\(\pi_{L}^*\)	17	\(\pi_{H-1}\)	54	\(\pi_{L}^*\)
	9	\(\pi_{H}\)	17	\(\pi_{L}^*\)	2	\(\pi_{H-1}\)	16	\(\pi_{L}^*\)
	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)
3B2	88	\(\pi_{H}\)	53	\(\pi_{L}^*\)	9	\(\pi_{H-1}\)	5	\(\pi_{L}^*\)
	4	\(\pi_{H-1,\pi_H}\)	9	\(\pi_{L}^*\)	5	\(\pi_{H-1}\)	5	\(\pi_{L}^*\)
	2	\(\pi_{H}\)	5	\(\pi_{L}^*\)	5	\(\pi_{H-1}\)	5	\(\pi_{L}^*\)
	2	\(\pi_{H}\)	5	\(\pi_{L}^*\)	5	\(\pi_{H-1}\)	5	\(\pi_{L}^*\)
2A1	74	\(\pi_{H}\)	42	\(\pi_{L}^*\)	11	\(\pi_{H-1}\)	45	\(\pi_{L}^*\)
	11	\(\pi_{H-3}\)	21	\(\pi_{L}^*\)	20	\(\pi_{H-1}\)	11	\(\pi_{L}^*\)
	10	\(\pi_{H-1}\)	9	\(\pi_{L}^*\)	9	\(\pi_{H-1}\)	9	\(\pi_{L}^*\)
3A2	86	\(\pi_{H-1}\)	53	\(\pi_{L}^*\)	3	\(\pi_{H-1}\)	3	\(\pi_{L}^*\)
	3	\(\pi_{H-1}\)	11	\(\pi_{L}^*\)	3	\(\pi_{H-1}\)	3	\(\pi_{L}^*\)
	3	\(\pi_{H-1}\)	6	\(\pi_{L}^*\)	6	\(\pi_{H-1}\)	6	\(\pi_{L}^*\)
	3	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)	2	\(\pi_{H-1}\)	2	\(\pi_{L}^*\)

The orbitals presented in the table are labeled according to the order obtained within the DFT theory.

In the following cases the ordering of the Hartree-Fock orbitals is different:
The \(\sigma_{L+1}^\dagger\) bh-lyp orbital corresponds to the \(\sigma_{L+2}^\dagger\) hf orbital;
Table S28. Selected matrix elements (cm$^{-1}$) for thiophene calculated with DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) methods using the valence basis.

SOMEs (cm$^{-1}$)	DFT/MRCI	DFT/MRCI-R	MRMP2 (HF)	MRMP2 (BH-LYP)		
\langle 1^3A_2	\hat{H}_{SO \, z}	1^1A_1 \rangle	127.7	125.7	109.1	113.5
\langle 1^3A_2	\hat{H}_{SO \, z}	2^1A_1 \rangle	55.6	56.0	39.9	41.0
\langle 1^3A_2	\hat{H}_{SO \, z}	3^1A_1 \rangle	29.6	28.0	29.3	36.7
\langle 1^3B_1	\hat{H}_{SO \, y}	1^1A_1 \rangle	0.1	0.3	0.6	0.4
\langle 1^3B_2	\hat{H}_{SO \, x}	1^1A_1 \rangle	6.9	6.4	6.1	6.5
\langle 1^3B_2	\hat{H}_{SO \, x}	2^1A_1 \rangle	1.8	2.2	3.3	3.9
\langle 1^3A_2	\hat{H}_{SO \, z}	1^1A_2 \rangle	47.1	45.9	32.5	36.1
\langle 1^3A_1	\hat{H}_{SO \, y}	1^1B_1 \rangle	0.5	0.4	0.4	0.4
\langle 1^3A_2	\hat{H}_{SO \, x}	1^1B_1 \rangle	17.6	17.2	15.5	15.7
\langle 1^3B_1	\hat{H}_{SO \, z}	1^1B_2 \rangle	65.0	64.0	49.5	57.5
\langle 1^3A_2	\hat{H}_{SO \, z}	2^1A_1 \rangle	41.2	41.0	27.9	29.4
\langle 1^3A_2	\hat{H}_{SO \, z}	2^1A_1 \rangle	13.2	11.5	18.3	17.3
\langle 1^3B_1	\hat{H}_{SO \, y}	1^3A_1 \rangle	0.2	0.2	0.1	0.0
\langle 1^3B_1	\hat{H}_{SO \, x}	1^3A_2 \rangle	3.0	2.5	3.2	3.7
\langle 1^3B_2	\hat{H}_{SO \, z}	1^3B_1 \rangle	64.7	66.6	53.9	60.1
Table S29. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF), MR-MP2(BH-LYP) and CASPT2 (6,10) vertical excitation energies of thiophene using the augmented basis. The CASPT2 active space consists of following occupied/unoccupied orbitals: 0/2 ɑ_1, 0/2 ɑ_2, 2/2 ɑ_2 and 1/1 ɑ_2. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies (eV)					
		DFT/MRCI	DFT/MRCI-R	MRMP2 (HF)	MRMP2 (BH-LYP)	CASPT2 (6,10)	Experiment
2^1A_1	ɑ_1 → ɑ^*	5.43 (0.114)	5.43 (0.124)	5.23 (0.270)	5.18 (0.063)	5.47 (0.080)	5.43^a
1^1B_1	ɑ_1 → ɑ^*	5.65 (0.102)	5.62 (0.115)	6.10 (0.096)	5.62 (0.042)	5.47 (0.124)	5.61^a
1^1B_2	ɑ_2 → σ^*/4p_π	5.83 (0.004)	5.88 (0.005)	6.19 (0.016)	6.21 (0.014)	6.28 (0.015)	
1^1A_2	ɑ_1 → 4s	5.85 (0)	5.84 (0)	5.91 (0)	6.16 (0)	6.03 (0)	5.93^c
2^1A_2	ɑ_2 → σ^*/4p_π	6.06 (0)	6.10 (0)	6.28 (0)	6.21 (0)	6.33 (0)	
3^1A_1	ɑ_1 → ɑ^*	7.08 (0.167)	7.02 (0.114)	7.04 (0.150)	6.89 (0.158)	6.99 (0.332)	7.05^b
1^3B_1	ɑ_1 → ɑ^*	3.62	3.67	3.78	3.75	3.75	3.75,c 3.80^d
1^3A_1	ɑ_1 → ɑ^*	4.45	4.50	4.53	4.47	4.59	4.62,c 4.70^d
1^3B_2	ɑ_2 → σ^*/4p_π	5.64	5.71	6.06	6.04	6.11	
1^3A_2	ɑ_1 → 4s	5.77	5.77	6.09^1	6.09^1	6.00	
2^3A_2	ɑ_2 → σ^*/4p_π	5.79	5.86	5.95^2	5.88^2	5.99	
2^3A_1	ɑ_1 → ɑ^*	5.88	5.92	5.78	5.70	5.68	

MR-MP2(HF): 1^3A_2, 2^3A_2
MR-MP2(BH-LYP): 1^3A_2, 2^3A_2

^a Electron energy-loss maximum (gas) [11]
^b VUV absorption maximum (gas) [15]
^c Electron impact maximum (gas) [12]
^d Electron energy-loss maximum (gas) [15]
Table S30. Calculated percentage of electron configurations in the excited states wave functions of thiophene obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory using the augmented basis. Only electron configurations with more than 5 percentage are presented.

State	% from to	% from to	% from to
2A_1	$\pi_{H^{-1}}$ π_L^{+4}	$\pi_{H^{-1}}$ π_L^{+4}	$\pi_{H^{-1}}$ π_L^{+4}
	$3\pi_y$	$4\pi_y$	$3\pi_y$
	$\pi_{L^{-1}+11}$	$\pi_{L^{-1}+11}$	$\pi_{L^{-1}+11}$
2B_1	$\pi_{L^{-1}}$ π_L^{+4}	$\pi_{L^{-1}}$ π_L^{+4}	$\pi_{L^{-1}}$ π_L^{+4}
	$2\pi_y$	$4\pi_y$	$2\pi_y$
	$3\pi_{L^{-1}+10}$	$4\pi_x$	$3\pi_{L^{-1}+10}$
	$3\pi_{L^{-1}+10}$	$4\pi_x$	$3\pi_{L^{-1}+10}$
	$4\pi_{L^{-1}+10}$	$4\pi_x$	$4\pi_{L^{-1}+10}$
	$4\pi_{L^{-1}+10}$	$4\pi_x$	$4\pi_{L^{-1}+10}$
	$3\pi_{L^{-1}+10}$	$4\pi_x$	$3\pi_{L^{-1}+10}$
2A_2	$\pi_{L^{-1}}$ π_L^{+4}	$\pi_{L^{-1}}$ π_L^{+4}	$\pi_{L^{-1}}$ π_L^{+4}
	$2\pi_y$	$4\pi_x$	$2\pi_y$
	$4\pi_{L^{-1}+10}$	$4\pi_x$	$4\pi_{L^{-1}+10}$
	$3\pi_{L^{-1}+10}$	$4\pi_x$	$3\pi_{L^{-1}+10}$
	$4\pi_{L^{-1}+10}$	$4\pi_x$	$4\pi_{L^{-1}+10}$
	$4\pi_{L^{-1}+10}$	$4\pi_x$	$4\pi_{L^{-1}+10}$
	$3\pi_{L^{-1}+10}$	$4\pi_x$	$3\pi_{L^{-1}+10}$
2B_2	$\pi_{L^{-1}}$ π_L^{+4}	$\pi_{L^{-1}}$ π_L^{+4}	$\pi_{L^{-1}}$ π_L^{+4}
	$2\pi_y$	$4\pi_x$	$2\pi_y$
	$3\pi_{L^{-1}+10}$	$4\pi_x$	$3\pi_{L^{-1}+10}$
	$4\pi_{L^{-1}+10}$	$4\pi_x$	$4\pi_{L^{-1}+10}$
	$3\pi_{L^{-1}+10}$	$4\pi_x$	$3\pi_{L^{-1}+10}$
	$4\pi_{L^{-1}+10}$	$4\pi_x$	$4\pi_{L^{-1}+10}$

The orbitals presented in the table are labeled according to the order obtained within the DFT theory. In the following cases the ordering of the Hartree-Fock orbitals is different:

The $\pi_{L^{-1}+4}$ bh-lyp orbital corresponds to the $\pi_{L^{-1}+9}$ hf orbital;
Table S31.: Calculated percentage of electron configurations in the discussed wave functions of thiophene obtained at the DFT/MRCI-R, and CASPT2 (6,10) levels of theory using the augmented basis. Only electron configurations with more than 5 percentage are presented.

State	Excitation	% from	to	% from	to	
2^1A_1	π_{H-1}	56	π_{L+4}^*	46	π_{H-1}	π_{L+4}^*
	π_{H-1}	20	$4p_y$	19	π_{H}	π_{L+11}^*
	π_{H}	13	π_{L+11}^*	10	π_{H-1}	$4p_y$
1^3B_1	π_H	69	π_{L+4}^*	82	π_H	π_{L+4}^*
	π_H	22	$4p_y$	7	π_{H-1}	π_{L+11}^*
1^3B_2	π_H	44	σ_{L+10}^*	78	π_H	π_{L+11}^*
	π_H	40	$4p_x$	5	π_H	$4p_x$
	π_H	7	$3d_{ex}$	7	π_{H-1}	σ^*/p_x
2^1A_2	π_{H-1}	53	σ_{L+10}^*	85	π_{H-1}	σ^*/p_x
	π_{H-1}	30	$4p_x$	5	π_{H-1}	$3d_{ex}$
	π_{H-1}	11	$3d_{ex}$	7	π_{H-1}	σ^*/p_x
3^1A_1	π_{H-1}	66	$4p_y$	25	π_{H-1}	π_{L+4}^*
	π_H	11	π_{L+11}^*	25	π_H	π_{L+11}^*
	π_{H-1}	9	π_{L+4}^*	21	π_{H-1}	π_{L+4}^*
	π_{H-1}	9	π_{H-1}	7	π_{H-1}	π_{L+11}^*
1^3B_1	π_H	74	π_{L+4}^*	87	π_H	π_{L+4}^*
	π_H	20	$4p_y$	7	π_{H-1}	π_{L+11}^*
1^3A_1	π_{H-1}	71	π_{L+4}^*	60	π_{H-1}	π_{L+4}^*
	π_{H-1}	17	$4p_y$	25	π_{H-1}	π_{L+11}^*
	π_H	7	π_{L+11}^*	7	π_{H-1}	σ^*/p_x
1^3B_2	π_H	51	σ_{L+10}^*	79	π_H	σ^*/p_x
	π_H	32	$4p_x$	7	π_{H-1}	$4s$
	π_H	9	$3d_{ex}$	7	π_{H-1}	σ^*/p_x
2^1A_2	π_{H-1}	59	σ_{L+10}^*	77	π_{H-1}	σ^*/p_x
	π_{H-1}	23	$4p_x$	7	π_{H-1}	σ^*/p_x
	π_{H-1}	10	$3d_{ex}$	7	π_{H-1}	σ^*/p_x
2^1A_1	π_H	75	π_{L+11}^*	43	π_H	π_{L+11}^*
	π_{H-1}	8	π_{L+4}^*	35	π_{H-1}	π_{L+11}^*
	π_{H-1}	6	π_{L+11}^*	18	π_{H-1}	π_{L+11}^*

The σ^*/p_x and σ^*/p_x CASSCF orbitals are, respectively, positive and negative linear combinations of σ^* and p_x orbitals. In HF and DFT calculations these orbitals do not mix.
S4.6. Quinoxaline

Table S32. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) vertical excitation energies of quinoxaline. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies (eV)	Experiment			
		DFT/MRCI	DFT/MRCI-R	MRMP2 (HF)	MRMP2 (BH-LYP)	
1^1B_1	$n \rightarrow \pi^*$	3.54 (0.007)	3.63 (0.008)	3.24 (0.004)	3.24 (0.005)	**3.96**a
2^1A_1	$\pi \rightarrow \pi^*$	4.14 (0.080)	4.13 (0.094)	3.75 (0.060)	3.61 (0.064)	
1^1B_2	$\pi \rightarrow \pi^*$	4.36 (0.052)	4.33 (0.059)	4.68 (0.033)	4.57 (0.025)	
1^1A_2	$n \rightarrow \pi^*$	4.75 (0)	4.93 (0)	4.68 (0)1	4.56 (0)1	
2^1A_2	$n \rightarrow \pi^*$	5.05 (0)	5.14 (0)	4.47 (0)2	4.28 (0)2	
1^3B_2	$\pi \rightarrow \pi^*$	3.06	3.02	3.00	2.88	
1^3B_1	$n \rightarrow \pi^*$	3.16	3.25	2.83	2.74	
1^3A_1	$\pi \rightarrow \pi^*$	3.70	3.63	3.72	3.59	
1^3A_2	$n \rightarrow \pi^*$	4.42	4.57	4.32	4.173	
2^3B_2	$\pi \rightarrow \pi^*$	4.53	4.41	4.22	4.10	

MRMP2(HF): $^12^1A_2$, $^21^1A_2$

MRMP2(BH-LYP): $^12^1A_2$, $^21^1A_2$, $^32^3A_2$
a Vapor absorption maximum [16]
Table S33.: Calculated percentage of electron configurations in the excited states wave functions of quinoxaline obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory. Only electron configurations with more than 2 percentage are presented.

State	% from to	% from to	% from to
1^1B_1	83 π_{n-H-2} π^*_L	53 n_{H-2} π^*_L	53 n_{H-2} π^*_L
5	5 π^*_{L+2}	5 n_{H-2} π^*_L	4 n_{H-2} π^*_L
2	2 π^*_{L+3-H}	2 $n_{H-3} \pi^*_{H-4}$	2 $n_{H-3} \pi^*_{H-4}$
2^1A_1	63 π^*_{H-1}	41 π^*_{L+1}	40 n_{H-1} π^*_L
24	16 π^*_{L+1}	15 π^*_{L+1}	15 π^*_{L+1}
1^1B_2	83 π^*_{H}	53 π^*_{H}	51 π^*_{H}
2	2 $\pi^*_{H-1, \pi^*_{H}}$	3 $\pi^*_{H-1, \pi^*_{H}}$	3 $\pi^*_{H-1, \pi^*_{H}}$
2	2 π^*_{H}	4 π^*_{L+2}	4 π^*_{L+2}
1^1A_2	61 π^*_{H}	43 π^*_{L+3}	39 π^*_{L+3}
11	4 π^*_{L+2}	6 $n_{H-2} \pi^*_{H-2}$	5 $n_{H-2} \pi^*_{H-2}$
8	8 $n_{H-2} \pi^*_{H-2}$	4 π^*_{L+1}	3 π^*_{H-3}
6	6 π^*_{L+1}	2 $\pi^*_{H-4} \pi^*_{H-2}$	2 $\pi^*_{H-4} \pi^*_{H-2}$
3	3 π^*_{H-2}	2 $\pi^*_{H-4} \pi^*_{H-2}$	2 $\pi^*_{H-4} \pi^*_{H-2}$
2^1A_2	73 π^*_{L+1}	51 π^*_{L+1}	47 π^*_{L+5}
8	8 π^*_{L+3}	3 π^*_{L+3}	3 π^*_{L+3}
6	6 π^*_{L+3}	2 $\pi^*_{H-2} \pi^*_{H-2}$	2 $\pi^*_{H-2} \pi^*_{H-2}$
3	3 $\pi^*_{H-2} \pi^*_{H-2}$	2 $\pi^*_{H-2} \pi^*_{H-2}$	2 $\pi^*_{H-2} \pi^*_{H-2}$

The orbitals presented in the table are labeled according to the order obtained within the DFT theory.

In the following cases the ordering of the Hartree-Fock orbitals is different:

- The $n_{H-3} \pi_{L-H}$ orbital corresponds to the $n_{H-3} \pi_{HF}$ orbital;
- The $\pi_{H-4} \pi_{HF}$ orbital corresponds to the $\pi_{H-3} \pi_{HF}$ orbital;
- The π^*_{L+1} orbital corresponds to the $\pi^*_{L+1} \pi_{HF}$ orbital.

39
S4.7. Quinazoline

Table S34. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF), MR-MP2(BH-LYP) vertical excitation energies of quinazoline. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies (eV)	Experiment			
		DFT/MRCI	DFT/MRCI-R	MRMP2 (HF)	MRMP2 (BH-LYP)	
$1^1\text{A}''$	$n \rightarrow \pi^*$	3.80 (0.007)	3.92 (0.008)	3.49 (0.004)	3.39 (0.004)	4.07a
$2^1\text{A}'$	$\pi \rightarrow \pi^*$	4.27 (0.032)	4.26 (0.040)	3.90 (0.019)	3.55 (0.018)	4.66a
$3^1\text{A}'$	$\pi \rightarrow \pi^*$	4.72 (0.063)	4.68 (0.067)	4.86 (0.049)	4.62 (0.034)	
$2^1\text{A}''$	$n \rightarrow \pi^*$	4.76 (0)	4.89 (0)	4.35 (0)	4.13 (0)	
$3^1\text{A}''$	$n \rightarrow \pi^*$	5.18 (0.001)	5.29 (0.001)	4.72 (0)	4.42 (0)	
$1^3\text{A}'$	$\pi \rightarrow \pi^*$	3.16	3.13	3.13	2.96	
$1^3\text{A}''$	$n \rightarrow \pi^*$	3.54	3.66	3.16	3.10	
$2^3\text{A}'$	$\pi \rightarrow \pi^*$	4.06	4.00	3.91	3.72	
$3^3\text{A}'$	$\pi \rightarrow \pi^*$	4.38	4.33	4.50b	4.27b	
$2^3\text{A}''$	$n \rightarrow \pi^*$	4.44	4.58	4.03	3.75	

MRMP2(HF):$^14^3\text{A}'$
MRMP2(BH-LYP):$^14^3\text{A}'$

a Absorption maximum in cyclohexane and ethylether [17]
Table S35: Calculated percentage of electron configurations in the excited states wave functions of quinazoline obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory. Only electron configurations with more than 2 percentage are presented.

State	Excitation	DFT/MRCI (BH-LYP)		MRMP2 (HF)		MRMP2 (BH-LYP)
\(1^1\Delta''\)	\(n_{H-2}^1\pi_L^*\)	81	\(n_{H-2}^1\pi_L^*\)	53	\(n_{H-2}^1\pi_L^*\)	52
\(1^1\Delta''\)	\(n_{H-2}^1\pi_L^{+2}\)	6	\(n_{H-2}^1\pi_L^{+2}\)	5	\(n_{H-2}^1\pi_L^{+2}\)	4
\(3^1\Delta'\)	\(\pi_H^*\)	52	\(\pi_H^*\)	32	\(\pi_H^*\)	38
\(3^1\Delta'\)	\(\pi_H^{+1}\)	23	\(\pi_H^{+1}\)	17	\(\pi_H^{+1}\)	5
\(3^1\Delta'\)	\(\pi_H^{+1}\)	12	\(\pi_H^{+1}\)	9	\(\pi_H^{+1}\)	5
\(2^1\Delta''\)	\(n_{H-3}^1\pi_L^{+1}\)	68	\(n_{H-3}^1\pi_L^{+1}\)	45	\(n_{H-3}^1\pi_L^{+1}\)	42
\(2^1\Delta''\)	\(n_{H-3}^1\pi_L^{+5}\)	13	\(n_{H-3}^1\pi_L^{+5}\)	9	\(n_{H-3}^1\pi_L^{+5}\)	10
\(3^1\Delta''\)	\(n_{H-3}^1\pi_L^{+1}\)	64	\(n_{H-3}^1\pi_L^{+1}\)	42	\(n_{H-3}^1\pi_L^{+1}\)	39
\(3^1\Delta''\)	\(n_{H-3}^1\pi_L^{+5}\)	15	\(n_{H-3}^1\pi_L^{+5}\)	11	\(n_{H-3}^1\pi_L^{+5}\)	12
\(3^1\Delta''\)	\(n_{H-3}^1\pi_L^{+2}\)	4	\(n_{H-3}^1\pi_L^{+2}\)	3	\(n_{H-3}^1\pi_L^{+2}\)	3
\(3^1\Delta''\)	\(n_{H-3}^1\pi_L^{+2}\)	2	\(n_{H-3}^1\pi_L^{+2}\)	2	\(n_{H-3}^1\pi_L^{+2}\)	2
\(1^3\Delta'\)	\(\pi_H^*\)	81	\(\pi_H^*\)	52	\(\pi_H^*\)	53
\(1^3\Delta'\)	\(\pi_H^{+1}\)	3	\(\pi_H^{+1}\)	4	\(\pi_H^{+1}\)	2
\(1^3\Delta'\)	\(\pi_H^{+1}\)	3	\(\pi_H^{+1}\)	2	\(\pi_H^{+1}\)	2
\(1^3\Delta'\)	\(\pi_H^{+1}\)	2	\(\pi_H^{+1}\)	2	\(\pi_H^{+1}\)	2
\(1^3\Delta'\)	\(\pi_H^{+1}\)	2	\(\pi_H^{+1}\)	2	\(\pi_H^{+1}\)	2
\(2^3\Delta''\)	\(n_{H-2}^1\pi_L^{+1}\)	80	\(n_{H-2}^1\pi_L^{+1}\)	51	\(n_{H-2}^1\pi_L^{+1}\)	51
\(2^3\Delta''\)	\(n_{H-2}^1\pi_L^{+5}\)	8	\(n_{H-2}^1\pi_L^{+5}\)	6	\(n_{H-2}^1\pi_L^{+5}\)	5
\(2^3\Delta''\)	\(n_{H-2}^1\pi_L^{+5}\)	2	\(n_{H-2}^1\pi_L^{+5}\)	3	\(n_{H-2}^1\pi_L^{+5}\)	3

The orbitals presented in the table are labeled according to the order obtained within the DFT theory. In the following cases the ordering of the Hartree-Fock orbitals is different:
The \(n_{H-3}^1\) bh-lyp orbital corresponds to the \(n_{H-3}^1\) hf orbital;
The \(\pi_H^{+1}\) bh-lyp orbital corresponds to the \(\pi_H^{+1}\) hf orbital;
The \(\pi_L^{+2}\) bh-lyp orbital corresponds to the \(\pi_L^{+2}\) hf orbital;
Table S36. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) vertical excitation energies of pyranthione. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies(eV)				
		DFT/MRCI	DFT/MRCI-R	MRMP2(KHF)	MRMP2(BH-LYP)	Experiment
1^1A_2	n → π*	2.16 (0)	2.22 (0)	2.26 (0)	2.25 (0)	2.25a
1^1B_2	n → π*	3.76 (0)	3.66 (0)	3.95 (0.001)	3.85 (0)	
2^1A_1	π → π*	3.92 (0.497)	3.90 (0.544)	3.76 (0.495)	3.71 (0.482)	3.78a
1^1B_1	π → π*	4.32 (0.003)	4.35 (0.002)	4.39 (0.001)	4.30 (0.002)	
2^1B_1	π → π*	5.59 (0.107)	5.63 (0.121)	5.54 (0.082)	5.37 (0.067)	
1^3A_2	n → π*	2.05	2.08	2.15	2.16	
1^3A_1	π → π*	2.28	2.19	2.22	2.19	
1^3B_1	π → π*	3.70	3.71	3.57	3.49	
1^3B_2	n → π*	3.80	3.61	3.94	3.83	
2^3A_1	π → π*	4.85	4.82	4.74	4.66	

a Absorption maximum in 3-methylpentane [18]
Table S37.: Calculated percentage of electron configurations in the excited states wave functions of pyranthione obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory. Only electron configurations with more than 2 percentage are presented.

State	% from to	DFT/MRCI	% from to	MRMP2 (BH-LYP)	% from to	MRMP2 (HF)	% from to	MRMP2 (BH-LYP)	
1^1A_2	87	n_H	π^*	62	n_H	π^*	60	n_H	π^*
	6	π_H-1,n_H	π_L^*	6	π_H-1,n_H	π_L^*	7	π_H-1,n_H	π_L^*
	2	π_H-2,n_H	π_L^*	1	π_H-2,n_H	π_L^*	5	π_H-2,n_H	π_L^*
1^1B_2	76	n_H	π_L	50	n_H	π_L	48	n_H	π_L
	12	π_H-1,n_H	π_L^*	13	π_H-1,n_H	π_L^*	13	π_H-1,n_H	π_L^*
	5	π_H-2,n_H	π_L^*	4	π_H-2,n_H	π_L^*	5	π_H-2,n_H	π_L^*
2^1A_1	81	π_H-1	π_L	55	π_H-1	π_L	53	π_H-1	π_L
	6	π_H-1,n_H-1	π_L^*	6	π_H-1,n_H-1	π_L^*	6	π_H-1,n_H-1	π_L^*
	4	π_H-2,n_H-1	π_L^*	2	π_H-2,n_H-1	π_L^*	2	π_H-2,n_H-1	π_L^*
1^1B_1	77	π_H-1	π_L	51	π_H-1	π_L	48	π_H-1	π_L
	10	π_H-1,n_H-1	π_L^*	9	π_H-1,n_H-1	π_L^*	11	π_H-1,n_H-1	π_L^*
	3	π_H-2,n_H-1	π_L^*	3	π_H-2,n_H-1	π_L^*	3	π_H-2,n_H-1	π_L^*
	2	π_H-3,n_H-1	π_L^*	2	π_H-3,n_H-1	π_L^*	3	π_H-3,n_H-1	π_L^*
1^3A_2	91	n_H	π_L	63	n_H	π_L	61	n_H	π_L
	3	π_H-1,n_H	π_L^*	5	π_H-1,n_H	π_L^*	5	π_H-1,n_H	π_L^*
1^3A_1	94	π_H-1	π_L	66	π_H-1	π_L	65	π_H-1	π_L
	2	π_H-2	π_L^*	2	π_H-2	π_L^*	2	π_H-2	π_L^*
1^3B_1	71	π_H-1	π_L^*	40	π_H-1	π_L^*	42	π_H-1	π_L^*
	16	π_H-2	π_L	20	π_H-2	π_L	16	π_H-2	π_L
	2	π_H-3	π_L^*	4	π_H-3	π_L^*	3	π_H-3	π_L^*
	2	π_H-4	π_L^*	3	π_H-4	π_L^*	3	π_H-4	π_L^*
1^3B_2	81	n_H	π_L	51	n_H	π_L	49	n_H	π_L
	10	π_H-1,n_H	π_L^*	13	π_H-1,n_H	π_L^*	13	π_H-1,n_H	π_L^*
	3	π_H-2,n_H	π_L^*	4	π_H-2,n_H	π_L^*	5	π_H-2,n_H	π_L^*
2^3A_1	63	π_H-2	π_L^*	43	π_H-2	π_L^*	42	π_H-2	π_L^*
	18	π_H-3	π_L	15	π_H-3	π_L	15	π_H-3	π_L
	11	π_H-4	π_L^*	7	π_H-4	π_L^*	7	π_H-4	π_L^*
	2	π_H-5	π_L^*	2	π_H-5	π_L^*	2	π_H-5	π_L^*

The orbitals presented in the table are labeled according to the order obtained within the DFT theory. In the following cases the ordering of the Hartree-Fock orbitals is different:
The n_H reference orbital corresponds to the n_H-1 reference orbital;
The π_H-1 reference orbital corresponds to the π_H+1 reference orbital;
The π_H+1 reference orbital corresponds to the π_H-1 reference orbital.

The π_L reference orbital corresponds to the π_L+1 reference orbital.
S4.9. Dithiin

Table S38. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) vertical excitation energies of dithiin. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies(eV)	Experiment			
		DFT/MRCI	DFT/MRCI-R	MRMP2 (HF)	MRMP2 (BH-LYP)	
1^1B	$\pi \rightarrow \pi^*$	2.60 (0.001)	2.58 (0.001)	2.38 (0.001)	2.33 (0.001)	2.74^a
2^1A	$\pi \rightarrow \pi^*$	4.36 (0.035)	4.36 (0.038)	4.17 (0.015)	4.01 (0.010)	4.44^a
2^1B	$\pi \rightarrow \pi^*/\sigma^*$	4.54 (0.018)	4.52 (0.019)	4.26 (0.014)¹	4.14 (0.009)¹	5.00^a
3^1B	$\pi \rightarrow \pi^*/\sigma^*$	4.73 (0.005)	4.69 (0.006)	4.20 (0.006)²	3.97 (0.005)²	
3^1A	$\pi^2 \rightarrow \pi^*$	4.80 (0)	4.69 (0)	4.39 (0)	4.23 (0)	
1^3B	$\pi \rightarrow \pi^*$	2.00	2.06	1.86	1.84	
2^3B	$\pi \rightarrow \pi^*/\sigma^*$	3.31	3.40	2.88	2.85	
1^3A	$\pi \rightarrow \pi^*$	3.75	3.82	3.74	3.68	
3^3B	$\pi \rightarrow \pi^*/\sigma^*$	4.36	4.36	3.91	3.81	
2^3A	$\pi \rightarrow \pi^*$	4.77	4.88	4.37	4.24	

MR-MP2(HF): $1^3B, 2^3B$
MR-MP2(BH-LYP): $1^3B, 2^3B$
^a UV-vis absorption maximum in CH₂Cl₂ [19]
Table S39. Calculated percentage of electron configurations in the excited states wave functions of \textit{dithiin} obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory. Only electron configurations with more than 2 percentage are presented.

State	% from	to	% from	to	% from	to
1^B	89 π_H	π_L^*	62 π_H	π_L^*	64 π_H	π_L^*
	3 π_H	σ_L^+1	2 π_H	σ_L^+1	2 π_H	σ_L^+1
	2 π_H−2	π_L	2 π_H−2	π_L	2 π_H−2	π_L
2^A	83 π_H−1	π_L^*	54 π_H−1	π_L^*	55 π_H−1	π_L^*
	4 π_H−1	σ_L^+1	4 π_H−1	σ_L^+1	3 π_H−1	σ_L^+1
	5 π_H	π_L	5 π_H	π_L	2 π_H	π_L
2^B	44 π_H	σ_L^+1	28 π_H−2	σ_L^+1	30 π_H−2	σ_L^+1
	36 π_H−2	π_L	27 π_H−2	π_L	29 π_H−2	π_L
	7 π_H−2	σ_L^+1	6 π_H−2	σ_L^+1	4 π_H−2	σ_L^+1
	5 π_H	π_L	5 π_H	π_L	2 π_H	π_L
3^B	48 π_H−2	π_L^*	31 π_H−2	π_L^*	31 π_H−2	π_L^*
	40 π_H	σ_L^+1	31 π_H−2	σ_L^+1	29 π_H−2	σ_L^+1
3^A	81 π_H−1, π_H	π_L^*, σ_L^*	49 π_H−1, π_H	π_L^*, σ_L^*	49 π_H−1, π_H	π_L^*, σ_L^*
	3 π_H−2, π_H	π_L^*, σ_L^+1	3 π_H−2, π_H	π_L^*, σ_L^+1	3 π_H−2, π_H	π_L^*, σ_L^+1
	2 π_H−1, π_H−1	π_L^*, σ_L^L	2 π_H−1, π_H−1	π_L^*, σ_L^L	2 π_H−1, π_H−1	π_L^*, σ_L^L
	2 π_H−2, π_H−2	σ_L^L	2 π_H−2, π_H−2	σ_L^L	2 π_H−2, π_H−2	σ_L^L
1^B	92 π_H	π_L^*	64 π_H−2	π_L^*	61 π_H	π_L^*
	2 π_H−2	σ_L^+1	2 π_H−2	σ_L^+1	3 π_H−2	σ_L^+1
	3 π_H	σ_L^+1	3 π_H	σ_L^+1	3 π_H	σ_L^+1
2^B	52 π_H−2	π_L^*	33 π_H−2	π_L^*	32 π_H−2	π_L^*
	40 π_H	σ_L^+1	30 π_H−2	σ_L^+1	31 π_H−2	σ_L^+1
	3 π_H	σ_L^+1	3 π_H	σ_L^+1	3 π_H	σ_L^+1
1^A	84 π_H−1	π_L^*	43 π_H−1	π_L^*	42 π_H−1	π_L^*
	4 π_H	π_L^L+4	12 π_H−1	π_L^L+4	10 π_H−1	π_L^L+4
	3 π_H	π_L^L−3	3 π_H−3	π_L^L−3	5 π_H−3	π_L^L−3
	2 π_H−3	π_L^L+4	2 π_H−3	π_L^L+4	4 π_H−3	π_L^L+4
3^B	49 π_H	σ_L^+1	29 π_H−2	σ_L^+1	28 π_H−2	σ_L^+1
	39 π_H−2	π_L^*	28 π_H−2	σ_L^+1	28 π_H−2	σ_L^+1
	4 π_H−4	π_L^*	5 π_H−4	π_L^*	5 π_H−4	π_L^*
	2 π_H−4	σ_L^+1	2 π_H−4	σ_L^+1	2 π_H−4	σ_L^+1
2^A	23 π_H	π_L^L+4	16 π_H−1	σ_L^L+1	17 π_H−1	σ_L^L+1
	21 π_H	σ_L^L+2	12 π_H−1	σ_L^L+2	16 π_H−1	σ_L^L+2
	18 π_H−1	σ_L^L+1	10 π_H−1	σ_L^L+1	9 π_H−1	σ_L^L+1
	17 π_H−3	σ_L^L−3	8 π_H−3	σ_L^L−3	9 π_H−3	σ_L^L−3
	6 π_H−6	π_L^L+4	7 π_H−6	σ_L^L+4	6 π_H−6	σ_L^L+4
	3 π_H−2	π_L^L+4	6 π_H−6	σ_L^L+4	5 π_H−6	σ_L^L+4
	2 π_H−2	σ_L^L+2	2 π_H−2	σ_L^L+2	3 π_H−2	σ_L^L+2

The orbitals presented in the table are labeled according to the order obtained within the DFT theory. In the following cases the ordering of the Hartree-Fock orbitals is different:

- The π_H−2 bh-lyp orbital corresponds to the π_H−1 hf orbital;
- The π_H−1 bh-lyp orbital corresponds to the π_H−2 hf orbital;
- The σ_L^L+2 bh-lyp orbital corresponds to the σ_L^L+3 hf orbital.
- The R^L+1,3 bh-lyp orbital corresponds to the R^L+1,3 hf orbital.
- The π^L+1,4 bh-lyp orbital corresponds to the π^L+1,5 hf orbital.
S4.10. Bithiophene

Table S40. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) vertical excitation energies of s-trans bithiophene. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies (eV)	Experiment				
		DFT/MRCI	DFT/MRCI-R	MR-MP2	MR-MP2		
			(HF)	(BH-LYP)			
		1\(^1\)B \(\pi \rightarrow \pi^*\)	\(4.17\) (0.446)	\(4.15\) (0.472)	\(4.02\) (0.437)	\(3.93\) (0.401)	\(3.86^a\), \(4.09\) (4.11)\(^b\)
		2\(^1\)A \(\pi \rightarrow \pi^*\)	\(4.81\) (0.005)	\(4.87\) (0.006)	\(4.66\) (0.001)	\(4.39\) (0)\(^1\)	
		2\(^1\)B \(\pi \rightarrow \pi^*\)	\(4.95\) (0.112)	\(5.00\) (0.129)	\(4.58\) (0.092)	\(4.18\) (0.066)	\(5.02^b\)
		3\(^1\)A \(\pi \rightarrow \pi^*\)	\(5.02\) (0.003)	\(5.11\) (0.004)	\(4.69\) (0.003)	\(4.28\) (0.002)\(^2\)	
		4\(^1\)A \(\pi \rightarrow \sigma^*\)	\(5.34\) (0.001)	\(5.39\) (0.002)	\(5.27\) (0.001)\(^1\)	\(4.81\) (0)\(^3\)	
		3\(^1\)B \(\pi \rightarrow \sigma^*\)	\(5.42\) (0.023)	\(5.46\) (0.029)	\(5.44\) (0.030)	\(4.92\) (0.028)	
1\(^4\)B	\(\pi \rightarrow \pi^*\)	2.78	2.81	2.62	2.44	2.32\(^a\)	
1\(^2\)A	\(\pi \rightarrow \pi^*\)	3.72	3.79	3.50	3.25		
2\(^2\)A	\(\pi \rightarrow \pi^*\)	4.17	4.22	4.02	3.72		
2\(^2\)B	\(\pi \rightarrow \pi^*\)	4.21	4.26	3.98	3.71		
3\(^3\)B	\(\pi \rightarrow \sigma^*\)	5.09	5.14	5.03	4.55		
3\(^3\)A	\(\pi \rightarrow \sigma^*\)	5.09	5.14	5.35	4.76		
4\(^3\)B	\(\pi \rightarrow \pi^*\)	5.43	5.49	5.46	4.76		
4\(^3\)A	\(\pi \rightarrow \pi^*\)	5.45	5.39	5.38	4.92		

MRMP2(HF): 1\(^1\)A
MRMP2(BH-LYP): 1\(^3\)A, 2\(^1\)A, 3\(^5\)A
\(^a\) PD-PES in the gas phase [20]
\(^b\) Absorption maximum in dioxane. [21]
\(^b\) Value in parentheses is for the spectra in methylcyclohexane [21]
Table S41.: Calculated percentage of electron configurations in the excited states wave functions of s-trans bithiophene obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory. Only electron configurations with more than 2 percentage are presented.

State	Excitation	DFT/MRCl (BH-LYP)	MRMP2 (HF)	MRMP2 (BH-LYP)
1B		58		
	π_H	π_L+	π_H	π_L+
2^1	π_H−1		21	π_H−1
		21	π_H	π_L+
	π_H	π_L+	π_H	π_L+
	π_H−2	8	π_H−2	π_L+
	π_H−3	3	π_H−3	π_L+
	π_H−4	2	π_H−3	π_L+
2	π_H−5	5	π_H−5	π_L+
	π_H−6	1	π_H−6	π_L+
	π_H−7	3	π_H−7	π_L+
	π_H−8	2	π_H−8	π_L+
3	π_H−9	1	π_H−9	π_L+
	π_H−10	2	π_H−10	π_L+

Continued on next page
The orbitals presented in the table are labeled according to the order obtained within the DFT theory. In the following cases the ordering of the Hartree-Fock orbitals is different:

The π^*_{L+8} bh-lyp orbital corresponds to the π^*_{L+7} hf orbital;

The π_{L+10} bh-lyp orbital corresponds to the π_{L+11} hf orbital;

The π_{L+11} bh-lyp orbital corresponds to the π_{L+10} hf orbital.
S4.11. Nitromethane

Table S42. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) vertical excitation energies of nitromethane using the valence basis. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies(eV)	Experiment			
		DFT/MRCI	DFT/MRCI-R	MR-MP2(HF)	MR-MP2(BH-LYP)	
$1^1A''$	$n \rightarrow \pi^*$	3.92 (0)	4.00 (0)	3.83 (0)	3.77 (0)	4.25^a
$2^1A''$	$n \rightarrow \pi^*$	4.34 (0)	4.36 (0)	4.04 (0)	4.07 (0)	4.50^b, 4.45^c, 4.51^d, 4.59^e
$2^1A'$	$\pi \rightarrow \pi^*$	6.39 (0.260)	6.44 (0.305)	6.46 (0.209)	6.47 (0.198)	6.25^b, 6.23^a, 6.29^d, 6.26^e
$3^1A'$	$\pi \rightarrow \pi^*$	8.86 (0.093)	9.02 (0.045)†	8.60 (0.196)¹	8.59 (0.260)¹	6.29^d, 6.26^e
$4^1A'$	$\pi \rightarrow \text{Ryd}$	8.92 (0.007)	8.88 (0.002)	8.58 (0.019)²	8.54 (0.003)²	
$1^3A'$	$\pi \rightarrow \pi^*$	3.43	3.31	3.54	3.55	
$1^3A''$	$n \rightarrow \pi^*$	3.71	3.80	3.55	3.60	
$2^3A''$	$n \rightarrow \pi^*$	4.10	4.13	3.85	3.92	
$2^3A'$	$n, n \rightarrow \pi^*$²	7.51	6.25	8.66³	8.85³	
$3^3A'$	$\pi \rightarrow \pi^*$	7.98	8.13	8.27⁴	8.26⁴	
$4^3A'$	$\pi \rightarrow \text{Ryd}$	8.81	8.75	8.44⁵	8.40⁵	

^a MRMP2(HF): $1^4A', 2^3A', 3^4A', 4^2A', 5^3A'$
^b MRMP2(BHLYP): $1^4A', 2^3A', 3^4A', 4^2A', 5^3A'$
^c Electron energy-loss maximum in gas [22]
^d Absorption maximum in gas [22]
^e Absorption maximum in gas [23]
^f Absorption maximum in gas [24]
^g Absorption maximum in gas [25]
Table S43.: Calculated percentage of electron configurations in the excited states wave functions of nitromethane obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory using the valence basis. Only electron configurations with more than 2 percentage are presented.

State	% from	to	Excitation	Excitation	Excitation
	n_{H-1}	π^_L	90	62	70
1^A''	n_{H-1,\pi H}	π^_L,π^_L	7	n_{H-1}	π^_L,π^_L
	n_{H-1,\pi H}	π^_L,π^_L	5	n_{H-2}	π^_L,π^_L
	n_{H-1,\pi H}	π^_L,π^_L	2	R_{gy1+4}	π^_L,π^_L
2^A''	n_{H-2}	π^_L	89	62	71
	n_{H-1,\pi H}	π^_L,π^_L	8	n_{H-2}	π^_L,π^_L
	n_{H-1,\pi H}	π^_L,π^_L	6	n_{H-1}	π^_L,π^_L
	n_{H-1,\pi H}	π^_L,π^_L	2	R_{gy1+4}	π^_L,π^_L
2^A'	π_H	π^_L	83	65	63
	π_{H-7,\pi H}	π^_L,π^_L	6	π_{H-7,\pi H}	π^_L,π^_L
	π_{H-3,\pi H}	π^_L,π^_L	3	π_{H-3,\pi H}	π^_L,π^_L
1^A'	π_H	π^_L	98	78	80
	π_H	π^_L	2	R_{gy1+4}	π^_L
1^A''	n_{H-1}	π^_L	93	64	71
	n_{H-1,\pi H}	π^_L,π^_L	6	n_{H-1}	π^_L,π^_L
	n_{H-1,\pi H}	π^_L,π^_L	4	n_{H-2}	π^_L,π^_L
	n_{H-1,\pi H}	π^_L,π^_L	2	R_{gy1+4}	π^_L,π^_L
2^A''	n_{H-2}	π^_L	94	65	72
	n_{H-1,\pi H}	π^_L,π^_L	7	n_{H-2}	π^_L,π^_L
	n_{H-1,\pi H}	π^_L,π^_L	5	R_{gy1+4}	π^_L,π^_L

The orbitals presented in the table are labeled according to the order obtained within the DFT theory.

In the following cases the ordering of the Hartree-Fock orbitals is different:
The π_{H-7} bh-lyp orbital corresponds to the π_{H-6} hf orbital;
The n_{H-1} bh-lyp orbital corresponds to the n_{H-2} hf orbital;
The n_{H-2} bh-lyp orbital corresponds to the n_{H-3} hf orbital.
Table S44. Selected matrix elements (cm\(^{-1}\)) for nitromethane calculated with DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) methods using the valence basis.

	DFT/MRCI	DFT/MRCI-R	MRMP2 (HF)	MRMP2 (BH-LYP)		
\(\langle 1^3A'	\hat{\mathbf{H}}_{\text{SO}}	1^1A'\rangle\)	0.3	0.3	0.2	0.0
\(\langle 1^3A'	\hat{\mathbf{H}}_{\text{SO}}	1^1A''\rangle\)	33.9	32.8	31.8	36.6
\(\langle 1^3A''	\hat{\mathbf{H}}_{\text{SO}}	2^1A'\rangle\)	17.0	16.0	17.2	17.4
\(\langle 1^3A''	\hat{\mathbf{H}}_{\text{SO}}	2^1A''\rangle\)	16.5	16.7	22.8	18.0
\(\langle 1^3A''	\hat{\mathbf{H}}_{\text{SO}}	1^1A''\rangle\)	23.8	23.3	22.3	23.7
\(\langle 1^3A'	\hat{\mathbf{H}}_{\text{SO}}	1^1A''\rangle\)	9.5	9.4	10.6	7.9
\(\langle 1^3A'	\hat{\mathbf{H}}_{\text{SO}}	2^1A''\rangle\)	41.1	40.5	42.1	41.5
\(\langle 1^3A''	\hat{\mathbf{H}}_{\text{SO}}	2^1A''\rangle\)	6.7	6.3	1.2	5.3
\(\langle 1^3A''	\hat{\mathbf{H}}_{\text{SO}}	2^1A''\rangle\)	32.8	32.3	35.1	35.7
\(\langle 1^3A''	\hat{\mathbf{H}}_{\text{SO}}	1^3A'\rangle\)	22.6	23.1	22.3	23.5
\(\langle 1^3A''	\hat{\mathbf{H}}_{\text{SO}}	1^3A''\rangle\)	39.0	40.0	41.2	40.7
\(\langle 2^3A''	\hat{\mathbf{H}}_{\text{SO}}	1^3A''\rangle\)	33.9	32.5	35.5	35.9
Table S45. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF), MR-MP2(BH-LYP), CASPT2 (8,7) and CASPT2 (8,6) vertical excitation energies of nitromethane using the augmented basis. The CASPT2 (8,7) active space consists of following occupied/unoccupied orbitals: 2/2 a' and 2/1 a''. The (8,6) active space has one a' orbital less. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies (eV)	Experiment						
		DFT/MRCI	DFT/MRCI-R	MRMP2(HF)	MRMP2(BH-LYP)	CASPT2 (8,7)	CASPT2 (8,6)		
$1^1A''$	$n \rightarrow \pi^*$	3.83 (0)	3.92 (0)	3.64 (0)	3.71 (0)	3.92 (0)	3.88 (0)	4.25e	
$2^1A''$	$n \rightarrow \pi^*$	4.26 (0)	4.28 (0)	3.97 (0)	4.03 (0)	4.32 (0)	4.33 (0)	4.50b, 4.45c, 4.51d, 4.59e	
$2^1A'$	$\pi \rightarrow \pi^*$	6.30 (0.257)	6.34 (0.297)	6.18 (0.204)	6.31 (0.200)	6.38 (0.260)	5.63 (0.384)	6.25b, 6.23a,e, 6.29d, 6.26e	
$3^1A'$	$n \rightarrow 3s$	7.74 (0.008)	7.66 (0.007)	7.55 (0.004)	7.49 (0.010)	7.07 (0.033)	7.42 (0.003)		
$4^1A'$	$n \rightarrow 3s$	8.00 (0.041)	7.87 (0.042)	7.62 (0.022)	7.72 (0.033)	7.55 (0.078)	7.80 (0)		
$1^3A''$	$\pi \rightarrow \pi^*$	3.36	3.30	3.54	3.57	3.65	3.70		
$1^3A''$	$n \rightarrow \pi^*$	3.61	3.72	3.42	3.52	3.66	3.66		
$2^3A''$	$n \rightarrow \pi^*$	4.01	4.06	3.80	3.93	4.15	4.16		
$2^3A'$	$n, n \rightarrow \pi^*$	7.31	6.12	8.701	8.792	8.97	9.01		
$3^3A'$	$n \rightarrow 3s$	7.65	7.56	7.502	7.462	7.43	7.48		
$4^3A'$	$n \rightarrow 3s$	7.91	7.79	7.513	7.573	7.73	7.73		

MRMP2(HF): 1 $1^3A'^1$, 2 $1^2A'^2$, 3 $1^3A'^3$
MRMP2(BH-LYP): 1 $8^3A'^1$, 2 $2^3A'^2$, 3 $3^3A'^3$

a Electron energy-loss maximum in gas [22]
b Absorption maximum in gas [22]
c Electron energy-loss maximum in gas [23]
d Absorption maximum in gas [24]
e Absorption maximum in gas [25]
Table S46.: Calculated percentage of electron configurations in the excited states wave functions of nitromethane obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory using the augmented basis. Only electron configurations with more than 5 percentage are presented.

State	Excitation	DFT/MRCI	MRMP2	MRMP2		
		BH-LYP	HF	BH-LYP		
%	from	to	from	to	from	to
1^A''						
86	n_{H-1}	π_{L}^*	n_{H-1}	π_{L}^*	n_{H-1}	π_{L}^*
6	n_{H-2,π}	π_{L,π}^*	n_{H-1}	π^*/pz	n_{H-2,π}	π_{L,π}^*
52	n_{H-1}	π_{L}^*	n_{H-1}	π^*/pz	n_{H-1}	π_{L}^*
10	n_{H-1}	π^*/pz	n_{H-1}	π^*/pz	n_{H-1}	π^*/pz
5	n_{H-2,π}	π_{L,π}^*	n_{H-1}	π^*/pz	n_{H-1}	π_{L,π}^*
6	n_{H-2,π}	π_{L,π}^*	n_{H-1}	π^*/pz	n_{H-1}	π_{L,π}^*
52	n_{H-1}	π_{L}^*	n_{H-1}	π^*/pz	n_{H-1}	π_{L}^*
10	n_{H-1}	π^*/pz	n_{H-1}	π^*/pz	n_{H-1}	π^*/pz
5	n_{H-2,π}	π_{L,π}^*	n_{H-1}	π^*/pz	n_{H-1}	π_{L,π}^*
6	n_{H-2,π}	π_{L,π}^*	n_{H-1}	π^*/pz	n_{H-1}	π_{L,π}^*
2^A''						
86	n_{H-2}	π_{L}^*	n_{H-1}	π^*/pz	n_{H-1}	π^*/pz
7	n_{H-1,π}	π_{L,π}^*	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz
52	n_{H-2}	π_{L}^*	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz
10	n_{H-2}	π^*/pz	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz
6	n_{H-2}	π^*/pz	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz
52	n_{H-2}	π_{L}^*	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz
10	n_{H-2}	π^*/pz	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz
6	n_{H-2}	π^*/pz	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz
2^A'						
82	π_{L}	π_{L}^*	π_{H}	π^*/pz	π_{H}	π^*/pz
6	π_{H,π}	π_{L,π}^*	π_{L}	π^*/pz	π_{H,π}	π_{L,π}^*
39	π_{H}	π_{L}^*	π_{H}	π^*/pz	π_{H}	π^*/pz
16	π_{H}	π_{L}^*	π_{H}	π^*/pz	π_{H}	π^*/pz
11	π_{H}	π_{L}^*	π_{H}	π^*/pz	π_{H}	π^*/pz
8	π_{H,π}	π_{L,π}^*	π_{H,π}	π_{L,π}^*	π_{H}	π_{L}^*
63	π_{H}	π_{L}^*	π_{H}	π^*/pz	π_{H}	π^*/pz
5	π_{H,π}	π_{L,π}^*	π_{H,π}	π_{L,π}^*	π_{H}	π_{L}^*
77	π_{H}	π_{L}^*	π_{H}	π^*/pz	π_{H}	π_{L}^*
13A'						
94	π_{H}	π_{L}^*	π_{H}	π_{L}	π_{H}	π_{L}
6	π_{H}	π_{L}^*	π_{H}	π_{L}	π_{H}	π_{L}
11	π_{H}	π_{L}^*	π_{H}	π_{L}	π_{H}	π_{L}
7	π_{H}	π_{L}^*	π_{H}	π_{L}	π_{H}	π_{L}
6	π_{H}	π_{L}^*	π_{H}	π_{L}	π_{H}	π_{L}
5	π_{H}	π_{L}^*	π_{H}	π_{L}	π_{H}	π_{L}
6	π_{H}	π_{L}^*	π_{H}	π_{L}	π_{H}	π_{L}
58	n_{H-1}	π_{L}^*	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz
9	n_{H-1}	π_{L}^*	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz
54	n_{H-1}	π_{L}^*	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz
10	n_{H-2}	π_{L}^*	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz
6	n_{H-2}	π_{L}^*	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz
53	n_{H-1}	π_{L}^*	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz
10	n_{H-2}	π_{L}^*	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz
6	n_{H-2}	π_{L}^*	n_{H-2}	π^*/pz	n_{H-1}	π^*/pz

The orbitals presented in the table are labeled according to the order obtained within the DFT theory.
In the following cases the ordering of the Hartree-Fock orbitals is different:
The π_{L}^* bh-lyp orbital corresponds to the π_{L+3} hf orbital;
The n_{H-1} bh-lyp orbital corresponds to the n_{H-2} hf orbital;
The n_{H-2} bh-lyp orbital corresponds to the n_{H-1} hf orbital.
Table S47.: Calculated percentage of electron configurations in the discussed wave functions of nitromethane obtained at the DFT/MRCI-R, CASPT2 (8,7) and CASPT2 (8,6) levels of theory using the augmented basis. Only electron configurations with more than 5 percentage are presented.

State	Excitation	DFT/MRCI-R	CASPT2 (8,7)	CASPT2 (8,6)					
	% from to	% from to	% from to	% from to					
\(1^1A''\)	88	\(n_{H-1}\)	\(\pi_L^*\)	86	\(n_{H-1}\)	\(\pi_L^*\)	84	\(n_{H-1}\)	\(\pi_L^*\)
\(\pi_{H-3}^\pi H\)	5	\(\pi_H\)	\(\pi_L^*\)	11	\(n_{H-2}\)	\(\pi_H\)	16	\(n_{H-2}\)	\(\pi_H\)
\(1^2A''\)	87	\(n_{H-2}\)	\(\pi_L^*\)	82	\(n_{H-2}\)	\(\pi_L^*\)	81	\(n_{H-2}\)	\(\pi_L^*\)
\(\pi_{H-1}^\pi H\)	6	\(\pi_{H-1}^\pi H\)	\(\pi_L^*\)	16	\(n_{H-1}^\pi H\)	\(\pi_L^*\)	19	\(n_{H-1}^\pi H\)	\(\pi_L^*\)
\(2^1A'\)	85	\(\pi_H\)	\(\pi_L^*\)	57	\(\pi_H\)	\(\pi_L^*\)	81	\(\pi_H\)	\(\pi_L^*\)
\(\pi_{H-7}^\pi H\)	5	\(\pi_{H-7}^\pi H\)	\(\pi_L^*\)	12	\(n_{H-1}\)	\(\pi_H\)	15	\(n_{H-1}^\pi H\)	\(\pi_L^*\)
	10	\(n_{H-2}\)	\(\pi_H\)	8	\(n_{H-2}\)	\(\pi_H\)			
\(1^3A'\)	95	\(\pi_H\)	\(\pi_L^*\)	97	\(\pi_H\)	\(\pi_L^*\)	98	\(\pi_H\)	\(\pi_L^*\)
\(2^2A''\)	89	\(n_{H-1}\)	\(\pi_L^*\)	88	\(n_{H-1}\)	\(\pi_L^*\)	86	\(n_{H-1}\)	\(\pi_L^*\)
\(\pi_{H-2}^\pi H\)	5	\(\pi_{H-2}^\pi H\)	\(\pi_L^*\)	9	\(n_{H-2}^\pi H\)	\(\pi_L^*\)	14	\(n_{H-2}^\pi H\)	\(\pi_L^*\)
\(2^3A''\)	89	\(n_{H-2}\)	\(\pi_L^*\)	84	\(n_{H-2}\)	\(\pi_L^*\)	83	\(n_{H-2}\)	\(\pi_L^*\)
\(\pi_{H-1}^\pi H\)	5	\(\pi_{H-1}^\pi H\)	\(\pi_L^*\)	13	\(n_{H-1}^\pi H\)	\(\pi_L^*\)	17	\(n_{H-1}^\pi H\)	\(\pi_L^*\)
S4.12. Nitrobenzene

Table S48. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) vertical excitation energies of nitrobenzene. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies (eV)	Experiment			
		DFT/MRCI	DFT/MRCI-R	MRMP2 (HF)	MRMP2 (BH-LYP)	
1^1A_2	$n \rightarrow \pi^*$	3.29 (0)	3.46 (0)	3.25 (0)	3.47 (0)	3.65a
1^1B_2	$n \rightarrow \pi^*$	3.88 (0)	3.91 (0)	3.82 (0)	3.76 (0)	
1^1B_1	$\pi \rightarrow \pi^*$	4.29 (0.004)	4.40 (0.021)	4.28 (0.006)	4.18 (0.004)	
2^1B_1	$\pi, \pi \rightarrow \pi^*, \pi^*$	4.63 (0.024)	7.19 (0.170)1	7.00 (0.198)1		
2^1A_1	$\pi \rightarrow \pi^*$	4.77 (0.249)	4.81 (0.311)	5.33 (0.246)	5.08 (0.243)	5.17b
1^3B_1	$\pi \rightarrow \pi^*$	2.84	2.93	3.35	3.35	
1^3A_2	$n \rightarrow \pi^*$	3.11	3.26	3.00	3.09	
1^3A_1	$\pi \rightarrow \pi^*$	3.66	3.65	3.62	3.51	
1^3B_2	$n \rightarrow \pi^*$	3.67	3.72	3.63	3.62	
2^3B_1	$\pi \rightarrow \pi^*$	4.01	4.01	4.34	4.18	

MR-MP2(HF): 1 5^1B_1
MR-MP2(HF): 1 5^1B_1

a Absorption maximum in n-hexane [26]
b Absorption maximum in gas phase [26]
Table S49. Calculated percentage of electron configurations in the excited states wave functions of nitrobenzene obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory. Only electron configurations with more than 2 percentage are presented.

State	DFT/MRCI	MRMP2 (HF)	MRMP2 (BH-LYP)
	Excitation		
	% from to	% from to	% from to

- **1^1A_2**
 - 77 n_{H-3} \pi_{L}^* \pi_{L,1}^*

 - 12 n_{H-3} \pi_{L,1}^* \pi_{L,1}^*+2
 - 3 n_{H-4} \pi_{L,1}^* \pi_{L,1}^*

 - 45 n_{H-3} \pi_{L}^* \pi_{L,1}^*+2
 - 3 n_{H-4} \pi_{L,1}^* \pi_{L,1}^*

 - 2 n_{H-4} \pi_{L,1}^* \pi_{L,1}^*+2
 - 75 π_{L,1}^* π_{L,1}^*+2

- **1^1B_2**
 - 76 n_{H-4} \pi_{L}^* \pi_{L,1}^*

 - 11 n_{H-4} \pi_{L,1}^* \pi_{L,1}^*+2
 - 4 n_{H-3} \pi_{L,1}^* \pi_{L,1}^*

 - 45 n_{H-4} \pi_{L}^* \pi_{L,1}^*+2
 - 3 n_{H-3} \pi_{L,1}^* \pi_{L,1}^*

 - 2 n_{H-3} \pi_{L,1}^* \pi_{L,1}^*+2
 - 4 n_{H-3} \pi_{L,1}^* \pi_{L,1}^*+2
 - 2 n_{H-3} \pi_{L,1}^* \pi_{L,1}^*+2

- **1^1B_1**
 - 46 π_{L}^* \pi_{L,1}^*

 - 26 π_{L}^* π_{L,1}^*+2
 - 5 π_{L}^* π_{L,1}^*+1
 - 9 π_{L}^* π_{L,1}^*+1

 - 4 π_{L}^* π_{L,1}^*+2
 - 3 π_{L}^* π_{L,1}^*+2
 - 24 π_{L}^* π_{L,1}^*+1
 - 10 π_{L}^* π_{L,1}^*+2
 - 8 π_{L}^* π_{L,1}^*+1
 - 7 π_{L}^* π_{L,1}^*+1

 - 3 π_{L}^* π_{L,1}^*+1

 - 26 π_{L}^* π_{L,1}^*+1
 - 23 π_{L}^* π_{L,1}^*+1
 - 8 π_{L}^* π_{L,1}^*+1

- **2^1B_1**
 - 33 π_{L}^* π_{L,1}^*+1

 - 25 π_{L}^* π_{L,1}^*+1
 - 12 π_{L}^* π_{L,1}^*+1
 - 5 π_{L}^* π_{L,1}^*+2

 - 5 π_{L}^* π_{L,1}^*+2
 - 5 π_{L}^* π_{L,1}^*+2
 - 24 π_{L}^* π_{L,1}^*+1

 - 10 π_{L}^* π_{L,1}^*+2

 - 8 π_{L}^* π_{L,1}^*+1

 - 7 π_{L}^* π_{L,1}^*+1

 - 3 π_{L}^* π_{L,1}^*+1

 - 24 π_{L}^* π_{L,1}^*+1

 - 10 π_{L}^* π_{L,1}^*+2

- **2^1A_1**
 - 75 π_{L}^* π_{L,1}^*

 - 5 π_{L}^* π_{L,1}^*+1

 - 3 π_{L}^* π_{L,1}^*

 - 2 π_{L}^* π_{L,1}^*

 - 2 π_{L}^* π_{L,1}^*

 - 54 π_{L}^* π_{L,1}^*

 - 7 π_{L}^* π_{L,1}^*

 - 50 π_{L}^* π_{L,1}^*

 - 6 π_{L}^* π_{L,1}^*

 - 50 π_{L}^* π_{L,1}^*

 - 6 π_{L}^* π_{L,1}^*

- **3^1B_1**
 - 77 π_{L}^* π_{L,1}^*

 - 15 π_{L}^* π_{L,1}^*+2

 - 4 π_{L}^* π_{L,1}^*

 - 49 π_{L}^* π_{L,1}^*

 - 16 π_{L}^* π_{L,1}^*

 - 10 π_{L}^* π_{L,1}^*

 - 53 π_{L}^* π_{L,1}^*+2

 - 10 π_{L}^* π_{L,1}^*+2

- **3^1A_2**
 - 78 n_{H-3} \pi_{L}^* \pi_{L,1}^*

 - 13 n_{H-3} \pi_{L,1}^* \pi_{L,1}^*+2

 - 2 n_{H-4} \pi_{L,1}^* \pi_{L,1}^*

 - 46 n_{H-3} \pi_{L}^* \pi_{L,1}^*+2

 - 13 n_{H-3} \pi_{L,1}^* \pi_{L,1}^*+2

 - 2 n_{H-4} \pi_{L,1}^* \pi_{L,1}^*+2

 - 5 π_{L}^* π_{L,1}^*+2

 - 7 π_{L}^* π_{L,1}^*+2

 - 3 π_{L}^* π_{L,1}^*+2

- **3^1A_1**
 - 77 π_{L}^* \pi_{L,1}^*

 - 9 π_{L}^* \pi_{L,1}^*+2

 - 8 π_{L}^* \pi_{L,1}^*

 - 38 π_{L}^* π_{L,1}^*

 - 15 π_{L}^* π_{L,1}^*+2

 - 17 π_{L}^* π_{L,1}^*+2

 - 13 π_{L}^* π_{L,1}^*+2

- **3^1B_2**
 - 78 n_{H-4} \pi_{L}^* \pi_{L,1}^*

 - 12 n_{H-4} \pi_{L,1}^* \pi_{L,1}^*+2

 - 2 n_{H-3} \pi_{L,1}^* \pi_{L,1}^*

 - 46 n_{H-4} \pi_{L}^* \pi_{L,1}^*+2

 - 13 n_{H-4} \pi_{L,1}^* \pi_{L,1}^*+2

 - 2 n_{H-3} \pi_{L,1}^* \pi_{L,1}^*+2

 - 51 π_{L}^* π_{L,1}^*+2

 - 7 π_{L}^* π_{L,1}^*+2

 - 4 π_{L}^* π_{L,1}^*+2

- **4^1B_1**
 - 55 π_{L}^* \pi_{L,1}^*+1

 - 9 π_{L}^* \pi_{L,1}^*+1

 - 7 π_{L}^* \pi_{L,1}^*+1

 - 6 π_{L}^* \pi_{L,1}^*+1

*The orbitals presented in the table are labeled according to the order obtained within the DFT theory. In the following cases the ordering of the Hartree-Fock orbitals is different:

The π_{L,1}^*+2 bh-lyp corresponds to the π_{L,3}^* hf orbital;
Table S50.: Calculated percentage of electron configurations in the excited states wave functions of nitrobenzene obtained at the DFT/MRCI, and DFT/MRCI-R levels of theory. Only electron configurations with more than 2 percentage are presented.

State	Excitation	DFT/MRCI	% from	to	% from	to	DFT/MRCI-R	% from	to
1^A_2	n_H-3 77	\pi_L^2	12	n_H-3 78	\pi_L^2	12	n_H-4 4	n_H-4 3	\pi_L^2
1^A_2	n_H-3 12	\pi_L^2	78	n_H-3 12	\pi_L^2+2	4	n_H-4 3	n_H-4 4	\pi_L^2+2
1^A_2	n_H-3 3	\pi_L^2,\pi_L^2	78	n_H-3 12	\pi_L^2,\pi_L^2+2	4	n_H-4 3	n_H-4 4	\pi_L^2,\pi_L^2+2
1^B_2	n_H-4 76	\pi_H^3	75	n_H-4 75	\pi_H^3	14	n_H-4 3	n_H-4 4	\pi_H^3,\pi_H^3
1^B_2	n_H-4 11	\pi_H^3	10	n_H-4 10	\pi_H^3	5	n_H-4 3	n_H-4 4	\pi_H^3,\pi_H^3
1^B_2	n_H-3 46	\pi_H^2	73	\pi_H^2	57	\pi_H^2	73	\pi_H^2	57
2^B_1	\pi_H^2 26	\pi_L^2,\pi_L^2	73	\pi_H^2	57	\pi_H^2	73	\pi_H^2	57
2^B_1	\pi_H 12	\pi_L^2,\pi_L^2	73	\pi_H^2	57	\pi_H^2	73	\pi_H^2	57
2^B_1	\pi_H 5	\pi_L^2,\pi_L^2	73	\pi_H^2	57	\pi_H^2	73	\pi_H^2	57
2^B_1	\pi_H 4	\pi_L^2,\pi_L^2	73	\pi_H^2	57	\pi_H^2	73	\pi_H^2	57
2^B_1	\pi_H 3	\pi_L^2,\pi_L^2	73	\pi_H^2	57	\pi_H^2	73	\pi_H^2	57
2^B_1	\pi_H 2	\pi_L^2,\pi_L^2	73	\pi_H^2	57	\pi_H^2	73	\pi_H^2	57

57
S4.13. *Dithiosuccinimide*

Table S51. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) vertical excitation energies of *dithiosuccinimide*. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies (eV)	Experimental			
		DFT/MRCI	DFT/MRCI-R	MRMP2 (HF)	MRMP2 (BH-LYP)	
1^1B_1	$n \rightarrow \pi^*$	2.66 (0)	2.73 (0)	2.58 (0)	2.45 (0)	**2.77**a, **2.82**b
1^1A_2	$n \rightarrow \pi^*$	2.85 (0)	2.93 (0)	2.80 (0)	2.66 (0)	**3.04**a, **3.08**b
1^1B_2	$\pi \rightarrow \pi^*$	4.13 (0.722)	4.09 (0.7222)	3.85 (0.585)	3.75 (0.544)	**3.96**a, **3.87**b
2^1A_2	$n \rightarrow \pi^*$	4.64 (0)	4.64 (0)	4.37 (0)	4.00 (0)	
2^1A_1	$n, n \rightarrow \pi^*, \pi^*$	4.71 (0)	3.40 (0)			
2^1B_1	$n \rightarrow \pi^*$	4.83 (0)	4.80 (0)	4.55 (0)	4.20 (0)	
5^1A_1	$n^2 \rightarrow \pi^*^2$	6.07 (0)	5.08 (0)1	5.51 (0)1	5.26(0)1	**2.63**a
1^3B_1	$n \rightarrow \pi^*$	2.44	2.57	2.42	2.42	
1^3A_2	$n \rightarrow \pi^*$	2.64	2.77	2.67	2.59	
1^3B_2	$\pi \rightarrow \pi^*$	2.77	2.84	2.67	2.55	
1^3A_1	$\pi \rightarrow \pi^*$	3.43	3.51	3.42	3.28	
2^3B_2	$n, n \rightarrow \pi^*^2$	4.60	3.87	5.702	5.292	
2^3A_1	$n, n \rightarrow \pi^*, \pi^*$	4.68	3.362	6.673	6.553	
2^3A_2	$n \rightarrow \pi^*$	4.70	4.60	4.38	4.03	
2^3B_1	$n \rightarrow \pi^*$	4.87	4.73	4.50	4.14	

DFT/MRCI-R: 1 3^1A_1, 2 1^3A_1
MRMP2(HF): 1 4^1A_1, 2 3^3B_2, 3 4^3A_1
MRMP2(BH-LYP): 1 4^1A_1, 2 3^3B_2, 3 5^3A_1

a Absorption maximum in cyclohexane [27]
b Absorption maximum in methanol [27]
Table S52.: Calculated percentage of electron configurations in the excited states wave functions of dithiosuccinimide obtained at the DFT/MRCI, MR-MP2(HF) and MR-MP2(BH-LYP) levels of theory. Only electron configurations with more than 2 percentage are presented.

State	% from	to	% from	to	% from	to		
\(1^1B_1\)								
11	\(n_H\)	\(\pi_L^*\)	53	\(n_H\)	\(\pi_L^*\)	50	\(n_H\)	\(\pi_L^*\)
11	\(n_{H-1}\)	\(\pi_L^{\pi L+1}\)	2	\(n_{H-1}\)	\(\pi_L^{\pi L+1}\)	2	\(n_{H-1}\)	\(\pi_L^{\pi L+1}\)
\(1^1A_2\)								
16	\(n_H\)	\(\pi_L^*\)	49	\(n_H\)	\(\pi_L^*\)	45	\(n_H\)	\(\pi_L^*\)
3	\(\pi_{H-2 n_H}\)	\(\pi_L^{\pi L+1}\)	14	\(\pi_{H-2 n_H}\)	\(\pi_L^{\pi L+1}\)	17	\(\pi_{H-2 n_H}\)	\(\pi_L^{\pi L+1}\)
\(1^1B_2\)								
4	\(\pi_{H-3 n_H^2}\)	\(\pi_L^{\pi L+1}\)	58	\(\pi_{H-3 n_H^2}\)	\(\pi_L^{\pi L+1}\)	56	\(\pi_{H-2 n_H}\)	\(\pi_L^{\pi L+1}\)
2	\(\pi_{H-3 n_H^2}\)	\(\pi_L^{\pi L+1}\)	2	\(\pi_{H-3 n_H^2}\)	\(\pi_L^{\pi L+1}\)	2	\(\pi_{H-3 n_H^2}\)	\(\pi_L^{\pi L+1}\)
\(2^1A_2\)								
11	\(n_{H-1}\)	\(\pi_L^{\pi L+1}\)	35	\(n_{H-1}\)	\(\pi_L^{\pi L+1}\)	29	\(n_{H-1}\)	\(\pi_L^{\pi L+1}\)
9	\(\pi_{H-2 n_H-1}\)	\(\pi_L^{\pi L+1}\)	7	\(\pi_{H-2 n_H-1}\)	\(\pi_L^{\pi L+1}\)	9	\(\pi_{H-2 n_H-1}\)	\(\pi_L^{\pi L+1}\)
8	\(\pi_{H-2 n_H-1}\)	\(\pi_L^{\pi L+1}\)	7	\(\pi_{H-2 n_H-1}\)	\(\pi_L^{\pi L+1}\)	8	\(\pi_{H-2 n_H-1}\)	\(\pi_L^{\pi L+1}\)
\(2^1A_1\)								
11	\(n_H\)	\(\pi_L^{\pi L+1}\)	53	\(n_H\)	\(\pi_L^{\pi L+1}\)	51	\(n_H\)	\(\pi_L^{\pi L+1}\)
12	\(n_{H-1}\)	\(\pi_L^{\pi L+1}\)	12	\(n_{H-1}\)	\(\pi_L^{\pi L+1}\)	13	\(n_{H-1}\)	\(\pi_L^{\pi L+1}\)
\(5^1A_1\)								
18	\(n_H\)	\(\pi_L^{\pi L+1}\)	49	\(n_H\)	\(\pi_L^{\pi L+1}\)	46	\(n_H\)	\(\pi_L^{\pi L+1}\)
36	\(\pi_{H-2}\)	\(\pi_L^{\pi L+1}\)	59	\(\pi_{H-2}\)	\(\pi_L^{\pi L+1}\)	57	\(\pi_{H-2}\)	\(\pi_L^{\pi L+1}\)
\(2^3B_2\)								
6	\(n_{H-1 n_H}\)	\(\pi_L^{\pi L+1}\)	58	\(n_{H-1 n_H}\)	\(\pi_L^{\pi L+1}\)	56	\(n_{H-1 n_H}\)	\(\pi_L^{\pi L+1}\)
8	\(\pi_{H-2}\)	\(\pi_L^{\pi L+1}\)	5	\(\pi_{H-2}\)	\(\pi_L^{\pi L+1}\)	7	\(\pi_{H-2}\)	\(\pi_L^{\pi L+1}\)
\(2^3A_1\)								
15	\(n_H\)	\(\pi_L^{\pi L+1}\)	33	\(n_H\)	\(\pi_L^{\pi L+1}\)	30	\(n_H\)	\(\pi_L^{\pi L+1}\)
\(2^3B_1\)								
11	\(n_{H-1}\)	\(\pi_L^{\pi L+1}\)	35	\(n_{H-1}\)	\(\pi_L^{\pi L+1}\)	32	\(n_{H-1}\)	\(\pi_L^{\pi L+1}\)

Continued on next page
State	% from	to	% from	to	% from	to
9	n_H	π^*_L	9	$\pi_{H-2:n_H}$	10	$\pi_{H-2:n_H}$
8	$\pi_{H-2:n_H}$	π_L^*, π_{L+1}^*	7	n_H^*	8	n_H^*

The orbitals presented in the table are labeled according to the order obtained within the DFT theory. In the following cases the ordering of the Hartree-Fock orbitals is different:

- The n_H bh-lyp orbital corresponds to the n_{H-1} hf orbital;
- The n_{H-1} bh-lyp orbital corresponds to the n_{H-2} hf orbital;
- The π_{H-2} bh-lyp orbital corresponds to the π_H hf orbital.
Table S53.: Calculated percentage of electron configurations in the excited states wave functions of dithiosuccinimide obtained at the DFT/MRCI, and DFT/MRCI-R levels of theory. Only electron configurations with more than 2 percentage are presented.

State	% from	% to	Excitation
			DFT/MRCI
1^1B₁	81	n₁₇	π₁₇^*
	11	n₁₇₋₁	π₇₈^*
1^3A₂	75	n₁₇₋₁	π₇₈
	16	n₁₇	π₇₈^*
	3	π₁₇₋₂₋₃n₁₇	π₇₈^*
1^1B₂	88	π₁₇₋₁	π₇₈^*
	4	π₁₇₋₃π₇₋₂	π₇₈^*
2^1A₁	86	n₁₇₋₁n₁₇	π₇₈^*
			π₇₈π₇₈^*
2^3B₁	63	n₁₇₋₁	π₇₈^*
	11	π₁₇₋₂₋₃n₁₇	π₇₈^*
	7	π₁₇₋₂₋₃n₁₇	π₇₈π₇₈^*
	6	n₁₇	π₇₈π₇₈^*
5^3A₁	49	n₁₇₋₁n₁₇	π₇₈π₇₈^*
	37	n₁₇₋₁n₁₇	π₇₈π₇₈^*
1^3B₁	82	n₁₇	π₇₈π₇₈^*
	12	n₁₇₋₁	π₇₈π₇₈^*
1^3A₂	76	n₁₇₋₁	π₇₈π₇₈^*
	18	n₁₇	π₇₈π₇₈^*
1^3B₂	88	π₁₇₋₂	π₇₈π₇₈^*
	8	π₁₇₋₃	π₇₈π₇₈^*
1^3A₁	58	π₁₇₋₃	π₇₈π₇₈^*
	36	π₁₇₋₂	π₇₈π₇₈^*
2^3B₂	87	n₁₇₋₁n₁₇	π₇₈π₇₈^*
	6	n₁₇₋₁n₁₇	π₇₈π₇₈π₇₈^*
2^3A₁	89	n₁₇₋₁n₁₇	π₇₈π₇₈π₇₈^*
2^3A₂	65	n₁₇	π₇₈π₇₈^*
	15	n₁₇₋₁	π₇₈π₇₈^*
2^3B₁	69	n₁₇₋₁	π₇₈π₇₈^*
	9	n₁₇	π₇₈π₇₈^*
	8	π₁₇₋₂₋₃n₁₇	π₇₈π₇₈π₇₈^*

State	% from	% to	Excitation
1^1A₂	12	π₈₊₁	π₇₈^*
2^1A₂	59	n₁₇	π₇₈π₇₈^*
	12	π₈₊₁	π₇₈π₇₈^*
2^1A₂	10	n₁₇₋₁	π₇₈π₇₈^*
2^1A₂	6	π₈₊₁	π₇₈π₇₈^*
1^3B₁	34	n₁₇₋₁n₁₇	π₇₈π₇₈^*
2^3B₁	36	π₁₇₋₂	π₇₈π₇₈π₇₈^*
2^3B₁	36	π₁₇₋₂	π₇₈π₇₈π₇₈^*
2^3B₁	85	n₁₇₋₁n₁₇	π₇₈π₇₈π₇₈^*
2^3B₁	6	n₁₇₋₁n₁₇	π₇₈π₇₈π₇₈π₇₈^*
2^3B₁	87	n₁₇₋₁n₁₇	π₇₈π₇₈π₇₈π₇₈^*
2^3A₁	60	n₁₇	π₇₈π₇₈π₇₈^*
2^3A₂	59	n₁₇	π₇₈π₇₈π₇₈^*
2^3B₁	60	n₁₇	π₇₈π₇₈π₇₈^*
S4.14. Methionine

Table S54. Computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) vertical excitation energies of methionine. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies(eV)	DFT/MRCI	DFT/MRCI-R	MR-MP2 (HF)	MR-MP2 (BH-LYP)
\(2^1\text{A}\)	\(\pi \rightarrow \sigma^*/\text{Ry}\)	5.12 (0)	5.32 (0)	5.99 (0)	5.24 (0)	
\(3^1\text{A}\)	\(n_O \rightarrow \pi^+\)	5.48 (0.002)	5.71 (0.003)	5.97 (0.002)	5.54 (0.002)	
\(1^2\text{A}\)	\(\pi \rightarrow \sigma^*/\text{Ry}\)	4.65	4.94	5.62	4.77	
\(2^2\text{A}\)	\(n_O \rightarrow \pi^+\)	5.13	5.46	5.77	5.26	
\(3^3\text{A}\)	\(\pi \rightarrow \sigma^*/\text{Ry}\)	5.74	6.00	6.74	5.74	
\(4^3\text{A}\)	\(\pi_{H-4} \rightarrow \pi^+\)	6.06	6.31	7.01	6.24	

MRMP2(HF): \(1^3\text{A}, 2^1\text{A}, 3^7\text{A}\)
MRMP2(BH-LYP): \(1^6\text{A}\)
Regarding the occupied orbitals, the BH-LYP orbitals are very different compared to the HF orbitals for Methionine, in the table are presented HF orbitals in original ordering, without correlation with BH-LYP orbitals. The BH-LYP virtual orbitals are very different compared to the HF orbitals for Methionine, in the table are presented HF orbitals in original ordering, without correlation with BH-LYP orbitals. The BH-LYP virtual orbitals correspond to the n(O)H−2 hf orbital.

State	Excitation	DFT/MRCI (BH-LYP)	MRMP2 (HF)	MRMP2 (BH-LYP)		
	% from	to	% from	to	% from	to
2^1A	44	π_H	25	π_H (σ*/Ry)_L+9	29	π_H (σ*/Ry)_L+5
	20	π_H (σ*/Ry)_L+2	13	π_H (σ*/Ry)_L+5	16	π_H (σ*/Ry)_L+5
	13	π_H (σ*/Ry)_L+3	7	π_H (σ*/Ry)_L+6	8	π_H (σ*/Ry)_L+3
	5	π_H (σ*/Ry)_L+4	7	π_H (σ*/Ry)_L+6	10	π_H (σ*/Ry)_L+5
	3^1A	n(O)_H−2	28	n(O)_H−3 (σ*/Ry)_L+1	48	n(O)_H−2 π_L+
	7	n(O)_H−2 (σ*/Ry)_L+1	18	n(O)_H−3 (σ*/Ry)_L+1	29	n(O)_H−2 (σ*/Ry)_L+1
	7	n(S)_H−3 π_L	6	n(S)_H−3 π_L	8	n(S)_H−3 π_L
	5	n(N)_H−3 π_L	6	n(N)_H−3 π_L	10	n(N)_H−3 π_L
2^1A	63	n(O)_H−2	29	n(O)_H−3 (σ*/Ry)_L+1	50	n(O)_H−2 π_L+
	7	n(O)_H−2 (σ*/Ry)_L+1	18	n(O)_H−3 (σ*/Ry)_L+1	29	n(O)_H−2 (σ*/Ry)_L+1
	7	n(S)_H−3 π_L	6	n(S)_H−3 π_L	8	n(S)_H−3 π_L
	5	n(N)_H−3 π_L	6	n(N)_H−3 π_L	10	n(N)_H−3 π_L
3^3A	33	π_L (σ*/Ry)_L+7	15	π_L (σ*/Ry)_L+8	29	π_L (σ*/Ry)_L+7
	26	π_L (σ*/Ry)_L−7	13	π_L (σ*/Ry)_L+8	11	π_L (σ*/Ry)_L+5
	12	π_L (σ*/Ry)_L+5	10	π_L (σ*/Ry)_L+9	8	π_L (σ*/Ry)_L+5
	10	π_L (σ*/Ry)_L+2	8	π_L (σ*/Ry)_L+7	7	π_L (σ*/Ry)_L+2
4^3A	70	π_H−4	26	π_H−4 (σ*/Ry)_L+1	49	π_H−4 π_L+
	8	π_H−4 (σ*/Ry)_L+1	18	π_H−4 (σ*/Ry)_L+1	29	π_H−4 (σ*/Ry)_L+1
			6	π_H−4 (σ*/Ry)_L+1	8	π_H−4 (σ*/Ry)_L+1
			5	σ_H−5 π_L+	10	σ_H−5 π_L+

† Since the BH-LYP virtual orbitals are very different compared to the HF orbitals for Methionine, in the table are presented HF orbitals in original ordering, without correlation with BH-LYP orbitals. Regarding the occupied orbitals, the n(O)_H−2 bh-lyp orbital corresponds to the n(O)_H−3 hf orbital.
S4.15. Isoalloxazine

Table S56. Experimental and computed DFT/MRCI, DFT/MRCI-R, MR-MP2(HF) and MR-MP2(BH-LYP) vertical excitation energies of *isoalloxazine*. The oscillator strengths are given in the parentheses.

State	Dominant character	Energies(eV)	Experiment			
		DFT/MRCI	DFT/MRCI-R	MR-MP2	MR-MP2 (HF)	MR-MP2 (BH-LYP)
$^2\text{I}^A'$	$\pi \rightarrow \pi^*$	3.03 (0.287)	3.00 (0.311)	2.84 (0.230)	2.64 (0.253)	2.85a
$^1\text{I}^A''$	$n \rightarrow \pi^*$	3.16 (0.002)	3.28 (0.002)	3.52 (0)1	3.85 (0)1	
$^2\text{I}^A''$	$n \rightarrow \pi^*$	3.34 (0.001)	3.46 (0.001)	3.45 (0.002)2	3.11 (0.002)2	
$^3\text{I}^A''$	$n \rightarrow \pi^*$	3.90 (0)	4.00 (0)	3.87 (0)	3.76 (0)3	
$^3\text{I}^A'$	$\pi \rightarrow \pi^*$	3.94 (0.194)	3.94 (0.188)	3.98 (0.097)	3.71 (0.143)4	3.76a
$^1\text{I}^A''$	$\pi \rightarrow \pi^*$	2.31	2.27	2.60	2.29	
$^1\text{I}^A''$	$n \rightarrow \pi^*$	2.86	3.01	3.53	2.98	
$^2\text{I}^A'$	$\pi \rightarrow \pi^*$	3.12	3.13	3.31	2.84	
$^2\text{I}^A''$	$n \rightarrow \pi^*$	3.19	3.28	3.87	3.615	

MRMP2(HF): $^1\text{I}^A''$, $^2\text{I}^A''$
MRMP2(BHLYP): $^1\text{I}^A''$, $^2\text{I}^A''$, $^3\text{I}^A''$, $^4\text{I}^A'$, $^5\text{I}^A''$

a 8-methylisoalloxazine in ethanol [28]
The orbitals presented in the table are labeled according to the order obtained within the DFT theory. In the following cases the ordering of the Hartree-Fock orbitals is different:
The $n(O)_{H-2}$ bh-lyp orbital corresponds to the $n(O)_{H-2}$ hf orbital;
The $n(N)_{H-4}$ bh-lyp orbital corresponds to the $n(N)_{H-5}$ hf orbital;
The $n(O)_{H-3}$ bh-lyp orbital corresponds to the $n(O)_{H-6}$ hf orbital.
The π^2_{L+4} bh-lyp orbital corresponds to the π^2_{L+6} hf orbital.

State	% from to	% from to	% from to		
$2^1A'$	π_H^*, π_L^*	π_H^*, π_L^*	π_H^*, π_L^*		
$1^1A''$	$n(O)_{H-2}$, π_L^*	$n(O)_{H-2}$, π_L^*	$n(O)_{H-2}$, π_L^*		
$2^1A''$	$n(N)_{H-4}$, π_L^*	$n(N)_{H-4}$, π_L^*	$n(N)_{H-4}$, π_L^*		
$3^1A'$	π_H, π_L^*	π_H, π_L^*	π_H, π_L^*		
$1^3A''$	$n(N)_{H-4}$, π_L^*	$n(N)_{H-4}$, π_L^*	$n(N)_{H-4}$, π_L^*		
$2^3A''$	$n(O)_{H-2}$, π_L^*	$n(O)_{H-2}$, π_L^*	$n(O)_{H-2}$, π_L^*		
	DFT/MRCI	MRMP2 (HF)	MRMP2 (BH-LYP)		
--------------------------	----------	------------	----------------		
$(1^3 A''	HSO x	1^1 A')	8.5	11.4	12.1
$(1^3 A''	HSO y	2^1 A')	6.0	3.1	3.0
$(1^3 A''	HSO z	3^1 A')	4.2	3.6	3.6
$(2^3 A''	HSO x	1^1 A')	10.3	6.8	7.2
$(1^3 A''	HSO y	1^1 A')	10.7	3.6	4.7
$(1^3 A''	HSO z	2^1 A')	2.0	0.4	0.3
$(1^3 A''	HSO z	3^1 A')	2.5	1.7	1.8
$(2^3 A''	HSO y	1^1 A')	23.0	24.7	25.7
$(1^3 A'	HSO x	1^1 A')	11.1	2.4	0.9
$(1^3 A'	HSO y	2^1 A'')	2.4	7.4	7.8
$(1^3 A'	HSO z	1^1 A')	9.7	8.3	9.0
$(1^3 A'	HSO z	2^1 A')	7.3	2.3	3.1
$(1^3 A''	HSO x	1^1 A'')	1.9	4.8	5.6
$(1^3 A''	HSO y	2^1 A'')	3.2	0.5	0.8
$(1^3 A''	HSO z	1^3 A')	9.7	6.9	7.1
$(1^3 A''	HSO y	1^3 A')	4.4	1.8	2.1
$(2^3 A''	HSO x	1^3 A')	2.3	1.6	1.7
$(2^3 A''	HSO y	1^3 A')	10.3	8.1	8.3
$(2^3 A''	HSO z	1^3 A')	4.2	5.9	5.9
S5. Optimized geometries of all polyatomic molecules in Turbomole format

o-benzyne

```plaintext
$coord
  1.17436585005558  0.00000000000000  -2.91783955856904  c
-1.17436585005558  0.00000000000000  -2.91783955856904  c
-2.75209598591275  0.00000000000000   0.84138302133177  c
-1.32564422167504  0.00000000000000  1.40629603021343  c
 1.32564422167504  0.00000000000000  1.40629603021343  c
 2.75209598591275  0.00000000000000   0.84138302133177  c
-4.79588042002593  0.00000000000000  -0.84670344838957  h
-2.31805929976997  0.00000000000000  3.1996299807835  h
 2.31805929976997  0.00000000000000  3.1996299807835  h
 4.79588042002593  0.00000000000000  -0.84670344838957  h
$user-defined bonds
$end
```

Formaldehyde

```plaintext
$coord
  0.00000000000000  0.00000000000000   1.3492173758470  c
  0.00000000000000  0.00000000000000   0.3487499210216  o
  0.00000000000000   1.7744219446536   1.3492173758470  c
  0.00000000000000  -1.7744219446536  -1.3492173758470  c
$user-defined bonds
$end
```

Thioformaldehyde

```plaintext
$coord
  0.00000000000000  0.00000000000000  -0.2127208063682  c
  0.00000000000000  0.00000000000000  2.83208049504587  s
-1.74201265716538  0.00000000000000  -1.30967984720453  h
 1.74201265716538  0.00000000000000  -1.30967984720453  h
$user-defined bonds
$end
```

67
Furan

$coord
 0.00000000000000 0.00000000000000 -2.60951767812713 o
-2.06944695013647 0.00000000000000 -1.07409817620120 c
-1.35446631345745 0.00000000000000 1.38655862649115 c
 2.06944695013647 0.00000000000000 -1.07409817620120 c
 1.35446631345745 0.00000000000000 1.38655862649115 c
-3.87275264412434 0.00000000000000 -2.01429504621195 h
-2.58841049419110 0.00000000000000 3.00661787535332 h
 2.58841049419110 0.00000000000000 3.00661787535332 h
 3.87275264412434 0.00000000000000 -2.01429504621195 h
$user-defined bonds
$end

##
Thiophene

$coord
 1.34566119550646 0.00000000000000 -2.48135783630059 c
-1.34566119550646 0.00000000000000 -2.48135783630059 c
-2.34140829359619 0.00000000000000 -0.10207603421092 c
 2.34140829359619 0.00000000000000 -0.10207603421092 c
 0.00000000000000 0.00000000000000 2.16998967240478 s
-4.30322604139690 0.00000000000000 0.44859441791091 h
-2.48480316694106 0.00000000000000 -4.17813269206495 h
 2.48480316694106 0.00000000000000 -4.17813269206495 h
 4.30322604139690 0.00000000000000 0.44859441791091 h
$user-defined bonds
$end

##
Quinoxaline

coord
0.00000000000000 1.34851448928290 -0.04308396822032 c
0.00000000000000 -1.34851448928290 -0.04308396822032 c
0.00000000000000 2.65971823554233 2.286734315383 c
0.00000000000000 1.33705869093915 4.51645111448426 c
0.00000000000000 -1.33705869093915 4.51645111448426 c
0.00000000000000 -2.65971823554233 2.286734315383 c
0.00000000000000 -2.67165472069636 -2.25056228491017 n
0.00000000000000 2.67165472069636 -2.25056228491017 n
0.00000000000000 1.33982622873228 -4.33893321844487 c
0.00000000000000 -1.33982622873228 -4.33893321844487 c
0.00000000000000 2.36641046716173 -6.11641565124786 h
0.00000000000000 -2.36641046716173 -6.11641565124786 h
0.00000000000000 4.70524646880327 2.2380739016897 h
0.00000000000000 2.34078894813222 6.30069856802307 h
0.00000000000000 -2.34078894813222 6.30069856802307 h
0.00000000000000 -4.70524646880327 2.2380739016897 h
$user-defined bonds
$end

Quinazoline

$coord
-1.36377830593764 0.02164891624333 0.00000000000000 c
1.32358004466339 -0.00642782560434 0.00000000000000 c
-2.67344557760090 2.35111102112969 0.00000000000000 c
-1.34210560585668 4.57650051698381 0.00000000000000 c
1.33118157888386 4.55054284673907 0.00000000000000 c
2.64773551616107 2.31460626473841 0.00000000000000 c
2.62027853734640 -2.23232554321978 0.00000000000000 n
-2.55361790292543 -2.37354727839355 0.00000000000000 c
-1.29008728275860 -4.50630971626298 0.00000000000000 n
1.27443449300352 -4.3085968746912 0.00000000000000 c
-4.6066030571199 -2.49662580101590 0.00000000000000 h
2.2958361341275 -6.08655825695464 0.00000000000000 h
-4.72287386788293 2.35172083639553 0.00000000000000 h
-2.33128955432688 6.36844044222261 0.00000000000000 h
2.3466893885953 6.32863938189363 0.00000000000000 h
4.69249305982863 2.26136784419168 0.00000000000000 h
$user-defined bonds
$end

Pyranthione

$coord
0.00000000000000 0.00000000000000 -5.41280084911143 s
0.00000000000000 0.00000000000000 -2.27610234375952 c
2.28239911071821 0.00000000000000 0.00000000000000 c
-2.28239911071821 0.00000000000000 0.00000000000000 c
1.7921770453302 0.00000000000000 0.00000000000000 c
-1.7921770453302 0.00000000000000 0.00000000000000 c
2.19281770453302 0.00000000000000 0.00000000000000 c
-2.19281770453302 0.00000000000000 0.00000000000000 c
0.00000000000000 0.00000000000000 3.10029625536432 o
4.09779134136361 0.00000000000000 0.00000000000000 c
-4.09779134136361 0.00000000000000 0.00000000000000 c
3.81569058976344 0.00000000000000 0.00000000000000 c
-3.81569058976344 0.00000000000000 0.00000000000000 c

$user-defined bonds
$end

%%%

Dithiin

$coord
-2.86580686520235 0.06685457466165 -0.58761113643798 c
-1.74686625152159 -0.9349975340578 -3.58743264371355 s
1.74686625152159 0.9349975340578 -3.58743264371355 s
2.86580686520235 -0.06685457466165 -0.58761113643798 c
1.3494386294333 -0.2646520176855 1.43325076748021 c
-1.3494386294333 0.2646520176855 1.43325076748021 c
4.88043546579430 -0.4204691325140 0.4773225730807 h
2.19170307049153 -0.81587368262624 3.21985735926151 h
-2.19170307049153 0.81587368262624 3.21985735926151 h
-4.88043546579430 0.4204691325140 0.4773225730807 h

$user-defined bonds
$end

%%%
Bithiophene

coord
-3.96988778421768 1.08891220762545 0.86140126635055 s
-0.74152793302954 1.15246315166230 0.1713671343972 c
0.02013601870388 3.59049859122632 -0.30037764090575 c
-1.96658915178120 5.38569505078307 -0.13126800701727 c
-4.23600721856751 4.31664305664117 0.46548485545081 c
0.74152793302954 -1.15246315166230 0.1713671343972 c
-0.02013601870388 -3.59049859122632 -0.30037764090575 c
1.96658915178120 -5.38569505078307 -0.13126800701727 c
4.23600721856751 -4.31664305664117 0.46548485545081 c
3.96988778421768 -1.08891220762545 0.86140126635055 s
6.04440759167992 -5.22731659581586 0.69687312532149 h
-6.04440759167992 5.22731659581586 0.69687312532149 h
-1.71756381233833 7.3826074025362 -0.45753873320741 h
1.94373787470285 4.07268383409784 -0.79726048539097 h
-1.94373787470285 -4.07268383409784 -0.79726048539097 h
1.71756381233833 -7.3826074025362 -0.45753873320741 h

$user-defined bonds$
end

Nitromethane

$coord$
1.39335214705160 -0.76295979932813 0.00000000000000 n
1.28450387612169 -3.06285847571066 0.00000000000000 o
3.3286182243600 0.49273279279710 0.00000000000000 o
-1.08606004843182 0.62725172762346 0.00000000000000 c
-0.69904605232834 2.63955977340387 0.00000000000000 h
-2.11071587242454 0.03583699060714 -1.68078913533078 h
-2.11071587242454 0.03583699060714 1.68078913533078 h

$user-defined bonds$
end

71
Nitrobenzene

$coord
0.00000000000000 0.00000000000000 1.60347294530390 c
0.00000000000000 0.00000000000000 3.59896025534619 c
2.29878831137124 0.00000000000000 0.33655081995768 c
-2.29878831137124 0.00000000000000 0.33655081995768 c
-2.28322846111443 0.00000000000000 2.28896805815391 c
 2.28322846111443 0.00000000000000 2.28896805815391 c
 4.04004564954374 0.00000000000000 1.40275883089641 h
-4.04004564954374 0.00000000000000 1.40275883089641 h
-4.05541523981593 0.00000000000000 -3.31160564246933 h
 4.05541523981593 0.00000000000000 -3.31160564246933 h
 0.00000000000000 0.00000000000000 -5.64617215317262 h
 0.00000000000000 0.00000000000000 4.40465230335952 n
2.04887036382285 0.00000000000000 5.47976762969691 o
-2.04887036382285 0.00000000000000 5.47976762969691 o

$user-defined bonds
$end

Dithiosuccinimide

$coord
0.00000000000000 -1.45666900594610 -1.66620418588077 c
0.00000000000000 -2.21034538961508 1.10066498364750 c
0.00000000000000 0.00000000000000 2.46084368279514 n
0.00000000000000 2.21034538961508 1.10066498364750 c
0.00000000000000 1.45666900594610 -1.66620418588077 c
0.00000000000000 5.04724275757076 2.32512196784998 s
0.00000000000000 -5.04724275757076 2.32512196784998 s
0.00000000000000 0.00000000000000 4.37458631463165 h
1.65477054116251 -2.26812361781069 -2.5886488216505 h
-1.65477054116251 -2.26812361781069 -2.5886488216505 h
-1.65477054116251 2.26812361781069 -2.5886488216505 h
 1.65477054116251 2.26812361781069 -2.5886488216505 h

$user-defined bonds
$end

|
--- | --- | --- |
| 72 | 72 | 72 |
Methionine

$coord
4.76099430895915 -1.7133782672988 1.79001120037847 c
4.44195060765592 -2.57337548311441 4.17681740779049 o
6.73547550894334 -0.87343024066359 1.03129552889427 o
6.03384721355275 -2.33959388425558 5.05836468986696 h
2.3223111761168 -1.83336199077757 0.26252246897826 c
3.01191601137541 -2.24565242658838 -2.37088018598580 n
1.25452267943939 -3.46488828582037 0.93136353597730 h
0.78326112962969 0.59026860172462 0.85795464483749 c
1.50001951379748 -2.08106869788800 -3.52885842715726 h
4.36762180027747 -1.00791439640966 -2.92238815854439 h
-1.82234113037246 0.55764684457247 -0.37825550229080 c
0.55704472603566 0.75684654251706 2.90554979877657 h
1.85046680753457 2.23982186123099 0.21438436052467 h
-3.58938225022865 3.40382269096334 0.48331018053293 s
-1.66355429116183 0.50012898279821 -2.43637847953666 h
-2.88650199322567 -1.10159950300212 0.23926972954955 h
-6.46776499311525 2.85263434307328 -1.31680416127601 c
-7.71857857571236 4.44536166753883 0.94532193712846 h
-6.07612816129063 2.77019011069814 -3.33892928668144 h
-7.40310002970565 1.11750109013264 -0.71302740750607 h

$user-defined bonds
$end

73
Isoalloxazine

$coord

2.51988147835166 -1.36384049945196 0.00000000000000 c
4.57172112766037 -2.70142876166231 0.00000000000000 n
6.87887313585653 -1.46785020644587 0.00000000000000 c
6.85196359523531 1.21173040580103 0.00000000000000 n
4.7918998631520 2.8126154742180 0.00000000000000 c
2.33542437604255 1.39534955869551 0.00000000000000 c
0.24197822755524 -2.5871214357286 0.00000000000000 n
-2.05105524911613 -1.36512882582954 0.00000000000000 c
-2.00997620849890 1.31100618503416 0.00000000000000 c
0.22684912824209 2.62521091683690 0.00000000000000 n
-4.35206876488726 -2.66514536632553 0.00000000000000 c
-6.58317892927744 -1.30417219401142 0.00000000000000 c
-6.57340285963868 1.34837992430289 0.00000000000000 c
-4.30974932946563 2.63989017414723 0.00000000000000 c
 8.88925948139859 -2.55529606892658 0.00000000000000 o
 4.97576345077364 5.09131875662744 0.00000000000000 o
-8.34351156204724 2.37249377528319 0.00000000000000 h
 0.32588952491405 -4.50054276596776 0.00000000000000 h
-8.36597090104112 -2.3098604609086 0.00000000000000 h
-4.37233213191804 -4.71294314907122 0.00000000000000 h
-4.22485476781693 4.68341199676864 0.00000000000000 h
 8.57651329975121 2.04188095074323 0.00000000000000 h

$user-defined bonds

$end

References

[1] C. Marian, Spin–orbit coupling in molecules, in Reviews In Computational Chemistry, edited by K. Lipkowitz and D. Boyd, Vol. 17, pp. 99–204, Wiley-VCH, Weinheim (2001).
[2] J.G.G. Simon, N. Mnzel and A. Schweig, Chem. Phys. Lett. 170 (23), 187 (1990).
[3] K.N. Walzl, C.F. Koerting and A. Kuppermann, J. Chem. Phys. 87, 3796 (1987).
[4] S. Taylor, D.G. Wilden and J. Comer, Chem. Phys. 70, 291 (1982).
[5] J.E. Mentall, E.P. Gentieu, M. Krauss and D. Neumann, J. Chem. Phys. 55, 5471 (1971).
[6] P. Brint, J.P. Connerade, C. Mayhew and K. Sommer, J. Chem. Soc., Faraday Trans. 2 81, 1643 (1985).
[7] C. Drury and D. Moule, J. Mol. Spectrosc. 92, 469 (1982).
[8] R. Judge, C. Drury-Lessard and D. Moule, Chem. Phys. Lett. 53, 82 (1978).
[9] S.Y. Chiang and I.F. Lin, J. Chem. Phys. 122, 094301 (2005).
[10] M.H. Palmer, I.C. Walker, C.C. Ballard and M.F. Guest, Chem. Phys. 192, 111 (1995).
[11] K.R. Asmis, Ph.D. thesis, University of Freiburg, Switzerland 1996.
[12] W.M. Flicker, O.A. Mosher and A. Kuppermann, J. Chem. Phys. 64, 1315 (1976).
[13] E.V. Veen, Chem. Phys. Lett. 41 (3), 535 (1976).
[14] J. Roebber, D. Gerrity, R. Hemley and V. Vaida, Chem. Phys. Lett. 75 (1980).
[15] M.H. Palmer, I.C. Walker and M.F. Guest, Chem. Phys. 241, 275 (1999).
[16] R.W. Glass, L.C. Robertson and J.A. Merritt, J. Chem. Phys. 53, 3857 (1970).
[17] J. Aaron, A. Tine, M. Gaye, C. Parkanyi, C. Boniface and T. Bieze, Spectrochim. Acta A: Mol. Spectrosc. 47, 419 (1991).
[18] M. Szymanski, R. Steer and A. Maciejewski, Chem. Phys. Lett. 135, 243 (1987).
[19] E. Block, M. Birringer, R. DeOrazio, J. Fabian, R.S. Glass, C. Guo, C. He, E. Lorance, Q. Qian, T.B. Schroeder, Z. Shan, M. Thiruvazhi, G.S. Wilson and X. Zhang, J. Am. Chem. Soc. 122, 5052 (2000).
[20] S. Siegert, F. Vogeler, C.M. Marian and R. Weinkauf, Phys. Chem. Chem. Phys. 13, 10350 (2011).
[21] R.S. Becker, J. Seixas de Melo, A.L. Maçanita and F. Elisei, J. Phys. Chem. 100, 18683 (1996).
[22] I.C. Walker and M.A. Fluendy, Intern. J. Mass Spectrom. 205, 171 (2001).
[23] W.M. Flicker, O.A. Mosher and A. Kuppermann, J. Chem. Phys. 72, 2788 (1980).
[24] W.D. Taylor, T.D. Allston, M.J. Moscato, G.B. Fazekas, R. Kozlowski and G.A. Takacs, Int. J. Chem. Kinet. 12, 231 (1980).
[25] S. Nagakura, Mol. Phys. 3, 152 (1960).
[26] S. Nagakura, M. Kojima and Y. Maruyama, J. Mol. Spectrosc. 13, 174 (1964).
[27] S.C. Meskers, T. Polonski and H.P. Dekkers, J. Phys. Chem. 99, 1134 (1995).
[28] M. Sun, T.A. Moore and P.S. Song, J. Am. Chem. Soc. 94, 1730 (1972).