A Conceptual Approach to Location Management in Wireless Networks

Ki-Sik Kong*

Department of Multimedia, Namseoul University, Cheonan, South Korea; kskong@nsu.ac.kr

Abstract

In this paper, in terms of conceptual aspects, we highlight the various common key features and issues involved in the design of the location management scheme for wireless networks. Besides, regardless of supported network types, we briefly review and analyze the main features such as the conceptual basic ideas, key design principles and performance considerations on the existing location management schemes for wireless networks. We expect that the results can provide a comprehensive insight for designing more efficient location management scheme in future wireless networks as well as for fundamentally understanding the various existing location management schemes regardless of supported network types.

Keywords: Location Management, MIPv6, PMIPv6, Wireless Networks

1 Introduction

One of the most important and challenging issues in mobile computing environments is location management. Location management enables the networks to track the location of a mobile user and discover its current point-of-attachment for call delivery or packet delivery1–3. A variety of location management schemes for wireless networks (e.g., wireless cellular networks, mobile IPv6 (MIPv6)-based networks and proxy mobile IPv6 (PMIPv6)-based networks, etc.) have been reported over the past decade. Even if these schemes are different in their details, we argue that the underlying fundamental principles and common conceptual techniques of location management schemes are essentially almost the same.

The research for more enhanced and optimized location management is inevitable in order to more efficiently manage a huge population of mobile subscribers and provide them with a range of services in future wireless networks. Therefore, in this paper, we provide a comprehensive overview and classification on various existing location management schemes which have been proposed for wireless cellular networks and MIPv6/PMIPv6-based networks and derive common key conceptual techniques on them. Also, these common conceptual techniques are expected to be easily applied for more efficient mobility and Quality-of-Service (QoS) support in future wireless networks.

2. Conceptual Classification on Location Management Schemes

Generally, the current location management standards1,2 may not be efficient for supporting a huge user population because they do not consider each mobile user’s mobility/traffic characteristics. Besides, unnecessary control traffic and database access load due to such a static and globally applicable location management may cause significant performance degradation throughout the networks.

*Author for correspondence
Thus, the previous literatures on location management schemes have been focused on designing more efficient and more optimized per-user location management schemes. However, although the techniques required for each network are somewhat different in their details, we argue that the underlying fundamental principles and common conceptual techniques of their location management schemes are essentially almost the same regardless of supported network types. In this section, from the viewpoint of common key conceptual techniques used for efficient location management, we analyze the previous literatures, providing a brief overview and classification on them. Table 1 and 2 will help the readers to analyze and compare the previous literatures in terms of common conceptual aspects.

### Table 1. Functional similarities of wireless mobile networks

| Category                  | Wireless cellular networks | MIPv6-based networks | PMIPv6-based networks |
|---------------------------|----------------------------|----------------------|-----------------------|
| Mobility management type  | Network-based mobility management | Host-based mobility management | Network-based mobility management |
| Location management standards | IS-41/GSM                  | MIPv6                 | PMIPv6                |
| Location management operations | Location registration, Call delivery | Binding update, Packet delivery | Proxy Binding update, Packet delivery |
| Home location database    | HLR (home location register)              | HA (home agent)       | LMA (local mobility anchor) |
| Local location database   | VLR (visitor location register)           | AR (access router)    | MAG mobile access gateway |
| Mobile entity identifier  | IMSI (International Mobile Station Identity) | HoA (home address)    | MN identifier          |
| Mobile entity locator     | MSRN (Mobile Station Roaming Number)      | CoA (care-of-address) | HoA                   |

### Table 2. Basic ideas of location management scheme

| Schemes              | Basic ideas                                                                 |
|----------------------|-----------------------------------------------------------------------------|
| Caching-based schemes | Reuse a user's location information that has been acquired during the previous call to that user. |
| Pointer forwarding-based schemes | Instead of updating the location database such as HLR or HA, which is located far away from the user, just report the location change by simply setting up a forwarding pointer from the old point-of-attachment to the new one. |
| Anchor-based schemes | Manage a user's location change in a localized manner. In other words, the location information of the user is registered to the local anchor instead of registering it to the location database such as HLR or HA, which is located far away from the user. |
| Profile-based schemes | Maintain an individual user profile, and take appropriate action for location management according to its profile. |
| Replication-based schemes | Replicate a user's location information at the selected zones from which it receives the most calls. |

### 2.1 Caching-Based Schemes

The basic idea of caching-based scheme is that, in many cases, it may be possible to reuse a user's location information that has been acquired during the previous call to that user. Caching-based scheme can be very effective for the users that receive incoming calls frequently relative to the rate at which they move. Similar to the concept of exploiting locality of file accesses, the caching-based scheme exploits the spatial/temporal locality of calls received by users. In order to locate a user, the cache at the caller's side is queried first. Then, if a user's location is found at the cache, a query process is conducted to the indicated location without contacting the user's home location database. Otherwise, home location database is queried. Note that MIPv6-based schemes as well as MIPv4 with route optimization extensions can be basically considered as adopting caching-based scheme because all CNs should maintain its binding cache for MNs.

### 2.2 Pointer Forwarding-based Schemes

If a user is relatively highly mobile, it might be very unnecessary to update all the location database information whenever it moves. The key concept of pointer
for faster location lookup of mobile users. Therefore, by replicating user profile in the network, these problems mentioned above can be solved to some extent by a single lookup process on the local database rather than a high latency remote lookup process. However, associated additional cost of replication is the update cost that can be incurred in maintaining consistent replicas every time a user moves. Therefore, a policy to select appropriate replications is also essentially required and its use must be carefully considered.

3. Analytical Summary

In this paper, regardless of supported network types, we have briefly reviewed and analyzed the common features of a variety of existing location management schemes for wireless networks. The basic philosophy behind the various literatures is to devise more efficient and optimized per-user location management schemes using a mobile user’s mobility/traffic characteristics. For this purpose, various location management schemes have been reported recently. From the viewpoint of the fundamental design philosophy on them regardless of supported network types, we summarize common design principles and performance issues of location management schemes as shown in Tables 3 and 4, which are expected to provide

Table 3. Common key design principles of location management schemes

| Schemes                  | Common key design principles                                      |
|--------------------------|------------------------------------------------------------------|
| Caching-based schemes    | - Reducing location lookup (i.e., routing) cost                   |
|                          | - Reducing the load at remote database such as HLR and HA/LMA.   |
| Pointer forwarding-based schemes | - Reducing location update (i.e., location registration) cost  |
|                          | - Reducing the load at remote database such as HLR and HA/LMA.   |
| Anchor-based schemes     | - Reducing location update cost.                                  |
|                          | - Reducing the load at remote database such as HLR and HA/LMA.   |
| Profile-based schemes    | - May be exploited for efficient location lookup, paging, and handover, etc |
|                          | - Preferable for the mobile users that follow their expected behaviors |
| Replication-based schemes| - Reducing location lookup cost                                 |
|                          | - May provide the load balancing or fault-tolerance              |

2.3 Anchor-based Schemes

The key observation of anchor-based scheme is that the network traffic due to location update can be reduced by managing local movements in a localized manner. Anchor-based scheme has been also applied to Mobile IP networks for efficient location management. HMIPv6 is a good example of using a local anchor concept for location management. By using anchor-based scheme, in5, when an MN changes the subnets within a same localized domain (i.e., mobility anchor point (MAP)), it only sends the binding update message to the MAP. Therefore, HMIPv6 makes the MN's mobility within MAP domain transparent to the HA and the CNs and only when the MN crosses a MAP domain, it sends the binding update message to the MAP, the HA and potentially, the CNs.

2.4 Profile-based Schemes

Generally, most users tend to follow regular routines during some specific periods or on some days of the week. Thus, once these mobility patterns can be recognized in an MN’s profile, location management becomes not only easier but also more efficient. Inspired by such an idea, in19,20, the profile-based strategies were proposed to enhance the performance of location management by improving the intelligence in the user's location lookup procedure. Also, enhanced version of HMIPv6 which exploits an MN’s mobility history information was proposed for more efficient and more optimized location management in HMIPv6 networks22.

2.5 Replication-based Schemes

Location databases may become the bottleneck when there are a large number of mobile users in the network. On the other hand, maintaining the location information of specific users at selected sites may also be helpful
A Conceptual Approach to Location Management in Wireless Networks

a useful guidance for designing more efficient and optimized location management scheme in future wireless networks.

Several hybrid location management schemes that combine the two or more schemes mentioned above have been also proposed in the literatures\textsuperscript{5,9,12,25}. In such cases, they may have all advantages of the combined schemes or may improve some advantage of one scheme while lessening some disadvantage of the other scheme. The common key features on location management schemes that have been derived in this paper can be easily tailored for designing more optimized location/mobility management scheme in future wireless networks.

Table 4. Common major performance issues of location management schemes

| Schemes                     | Common major performance issues                                                                 |
|-----------------------------|--------------------------------------------------------------------------------------------------|
| Caching-based schemes       | - How to determine an optimal time threshold for maintaining location cache?                     |
|                             | - At what entity should the location cache be placed?                                             |
| Pointer forwarding-based schemes | - How to determine an optimal pointer chain length?                                           |
|                             | - Where should the forwarding pointer information be stored?                                    |
| Anchor-based schemes        | - How to select the local anchor for optimal performance gain?                                   |
|                             | - Which type of local anchor (e.g., static or dynamic) should be adopted?                        |
| Profile-based schemes       | - How to create an individual user's profile?                                                    |
|                             | - Pattern learning process for creating and maintaining user profile may be needed.             |
| Replication-based schemes   | - Where should the replicas be maintained?                                                       |
|                             | - Additional update cost incurred in maintaining consistent replicas may occur.                |

5. Acknowledgment

Funding for this paper was provided by Namseoul University.

6. References

1. Tabbane S. Location management methods for third-generation mobile systems. IEEE Commun Mag. 1997 Aug; 35(8):72–84.

2. Akyildiz IF, et al. A survey of mobility management in next-generation all-IP-based wireless systems. IEEE Wireless Commun. 2004 Aug; 11(4):16–28.

3. Kong K-S, et al. Mobility management for all-IP mobile networks: Mobile IPv6 vs proxy mobile IPv6. IEEE Wireless Commun. 2008 Apr; 15(2):36–45.

4. Johnson D, et al. Mobility support in IPv6. IETF RFC 6275; 2011 Jul.

5. Soliman H, Castelluccia C, Malki K, Bellier L. Hierarchical Mobile IPv6 (HMIPv6) mobility management. IETF RFC 5380; 2008 Oct.

6. Jain R, Lin Y, Lo C, Mohan S. A caching strategy to reduce network impacts of PCS. IEEE J Sel Areas Commun. 1994 Oct; 12(8):1434–44.

7. Jain R, Anjum F. Caching in hierarchical user location databases for PCS. Proceedings PWC’99; Jaipur. 1999 Feb. p. 496–500.

8. Kwon S, Nam S, Hwang H, Sung D. Analysis of a mobility management scheme considering battery power conservation in IP-based mobile networks. IEEE Trans Veh Technol. 2004 Nov; 53(6):1882–90.

9. Kong K-S. Performance analysis of profile-based location caching with fixed local anchor for next-generation wireless networks. IEICE Trans Commun. 2008 Nov; 91B(11):3595–607.

10. Jain R, Lin YB. An auxiliary user location strategy employing forwarding pointers to reduce network impact of PCS. ACM-Baltzer J WINET. 1995 Jun; 1(2):197–210.

11. Ma W, Fang Y. Two-level pointer forwarding strategy for location management in PCS networks. IEEE Trans Mobil.Com. 2002 Jan-Mar; 1(1):32–45.

12. Ma W, Fang Y. A pointer forwarding based local anchoring (POFLA) scheme for wireless networks. IEEE Trans Veh Technol. 2005 May; 54(3):1135–46.
13. Ma W, Fang Y. Dynamic hierarchical mobility management strategy for Mobile IP networks. IEEE J Sel Areas Commun. 2006 Sep; 22(4):664–76.

14. Kong K-S. An enhanced signal-driven PMIPv6 for distributed mobility control. Proceedings of CUTE2014; 2014. p. 1153–8.

15. Ho J, Akyildiz I. Local anchor scheme for reducing signaling costs in personal communications networks. IEEE/ACM Trans Networking. 1996 Oct; 4(5):709–26.

16. Bae E, Chung M, Sung D. Performance analysis of a fixed local anchor scheme for supporting UPT services. Computer Commun. 2000 Dec; 23(18):1763–76.

17. Xie J, Akyildiz I. A novel distributed dynamic location management scheme for minimizing signaling costs in Mobile IP. IEEE Trans MobilCom. 2002 Jul-Sep; 1(3):163–74.

18. Pyo C, Jie L, Kameda H. A dynamic and distributed domain-based mobility management method for Mobile IPv6. Proceedings VTC’03; 2003 Oct. p. 1964–8.

19. Quintero A, Garcia O. A profile-based strategy for managing user mobility in third-generation mobile systems. IEEE Commun Mag. 2004 Sep; 42(9):134–9.

20. Mao Z. An intra-LA location update strategy for reducing paging cost. IEEE Commun Lett. 2002 Aug; 6(8):334–5.

21. Quintero A, et al. A mobility management model based on users’ mobility profiles for IPv6 networks. Computer Commun. 2006 Dec; 30(1):66–80.

22. Kong K-S, Roh S, Hwang C. History-based auxiliary mobility management strategy for hierarchical Mobile IPv6 networks. IEICE Trans Fundamentals. 2005 Jul; E88-A(7):1845–58.

23. Shivakumar N, Jannink J, Widom J. Per-user profile replication in mobile environments: algorithms, analysis, and simulation results. ACM/Kluwer MONET. 1997 Oct; 2(2):129–40.

24. Chen G, Lee S. Evaluation of distributed and replicated HLR for location management in PCS Network. J Info Sci and Eng. 2003 Jan; 19:85–101.

25. Chen I, et al. Quantitative analysis of a hybrid replication with forwarding strategy for efficient and uniform location management in mobile wireless networks. IEEE Trans MobilCom. 2003 Jan-Mar; 2(1):3–15.

26. Jue J. Design and analysis of a replicated server architecture for supporting IP-host mobility. Cluster Computing. 1998 Jun; 1(2):249–60.