Screening of Concentration and Antimicrobial Effectiveness of Antimicrobial Preservative in Betastatin Besylate Nasal Spray

CURRENT STATUS: UNDER REVIEW

BMC Pharmacology and Toxicology ▶ BMC Series

sun yanhong
children's hospital of zhejiang university school of medicine

✉ syhsarah1123@163.com
Corresponding Author
ORCiD: https://orcid.org/0000-0002-9825-5698

Yin-huan Wang
China National Institute for Food and Drug Control

Jian-ming Zhou
children's hospital of zhejiang university school of medicine

Qing-xue Zhou
Hangzhou maternity Hospital

Shi-lei Dong
zhejiang hospital

DOI:
10.21203/rs.3.rs-16341/v1

SUBJECT AREAS
Toxicology Clinical Pharmacology

KEYWORDS
betastatin besylate nasal spray, antimicrobial effectiveness, antimicrobial preservative, benzalkonium chloride
Abstract

OBJECTIVE To explore the optimal concentration and antimicrobial effectiveness of antimicrobial preservative in betastatin besylate nasal spray.

METHODS By using Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, and Aspergillus niger as test strains, the antimicrobial effectiveness of betastatin besylate nasal spray containing different concentrations of antimicrobial preservative (0.02%, 0.0125%, and 0.005% benzalkonium chloride, respectively) was determined by using bacteriostatic effect test (Chinese Pharmacopoeia, 2015 edition).

RESULTS The antimicrobial effectiveness of betastatin besylate nasal spray containing 0.02% and 0.0125% benzalkonium chloride, respectively, complied with the regulations of Chinese Pharmacopoeia (2015 Edition) against five test strains. However, the antimicrobial effectiveness of betastatin besylate nasal spray containing 0.005% benzalkonium chloride against P. aeruginosa did not meet the requirements of Chinese Pharmacopoeia.

CONCLUSION Benzalkonium chloride at a concentration of 0.125% can be used as an added antimicrobial preservative in betastatin besylate nasal spray.

1. Introduction

Betastatin besylate is a highly selective histamine H1 receptor antagonist, which has a stabilizing effect on mast cells and can effectively inhibit the infiltration of eosinophils into the inflammation site during allergic inflammation. It can also inhibit the activation of eosinophils, interleukin (IL)-5, leukotriene B4 (LTB4), and platelet activating factor, thereby alleviating allergic inflammation. Betastatin besylate is already widely used to improve the symptoms of allergic rhinitis, urticaria, and chronic itching. Use of betastatin besylate as a nasal spray, which can be locally administered to the nasal cavity, can enhance the therapeutic effect and rapidly relieve clinical symptoms such as nasal congestion, runny nose, and itchy nose [1-3]. With increasing smog in the atmosphere, allergens causing allergic diseases in children are becoming increasing diverse, especially in winter season, resulting in an increase in the incidence of allergic rhinitis among children [4]. Betastatin besylate can quickly alleviate allergic symptoms, and thus, the purpose of the present study was to determine the
type and concentration of bacteriostatic agents that can be used in betastatin besylate nasal spray for clinical use. As betastatin besylate nasal spray is not packaged as a single dose and does not possess sufficient antimicrobial efficacy, the risk of microbial contamination is extremely high during normal storage and multiple use, which can easily lead to deterioration of the drug and affect the user. Hence, it is necessary to add appropriate quantity of a bacteriostatic agent to ensure quality and safety of betastatin besylate nasal spray [5].

Benzalkonium chloride is a quaternary ammonium salt compound, which affects the permeability of bacterial membrane by destroying the interaction between bacterial cell wall lipopolysaccharide and lipid membrane bilayer, leading to leakage and lysis of cytoplasmic components [6]. It is commonly used as an antiseptic and bacteriostatic agent in ophthalmic and nasal drugs [7]. In addition, benzalkonium chloride neither disturbs the nasal blood flow and nasal mucosal temperature in the nasal cavity nor affects the user's therapeutic effect as a preservative [8]. Therefore, to prevent microbial contamination, most of the nasal spray formulations use benzalkonium chloride as an antiseptic [9].

Bacteriostatic efficacy, as an important indicator of microbial evaluation, is a key factor to ensure safety and effectiveness of an antimicrobial agent. In principle, appropriate amount of bacteriostatic agent should meet the requirements of effectiveness, safety, and stability. However, all bacteriostatic agents must ensure safety for use as a medication. The Chinese Pharmacopoeia (2015 edition) General Regulations 1121 bacteriostatic efficacy test clearly stipulates that the amount of bacteriostatic agent used in a medical preparation should be the minimum effective amount, and that the effective concentration of the bacteriostatic agent in the final product should be lower than the concentration that is harmful to humans [5]. However, the Chinese Pharmacopoeia does not specify the type and concentration of bacteriostatic agents.

Benzalkonium chloride is a bacteriostatic agent added to betastatin besylate nasal spray. Excessive use of benzalkonium chloride can cause symptoms such as palpitations, arrhythmia, and skeletal muscle spasm [10]. In the present study, the Chinese Pharmacopoeia 2015 General Rules 1121
antibacterial efficacy test was employed to explore the acceptable and effective concentration of benzalkonium chloride in betastatin besylate nasal spray. The study provides experimental guidance for the manufacturer to determine the type and concentration of bacteriostatic agent that can be used in betastatin besylate nasal spray during the research and development phase.

2. Materials And Methods

2.1 Strains and drugs

Staphylococcus aureus [CMCC (B) 26003], Pseudomonas aeruginosa [CMCC (B) 10104], Escherichia coli [CMCC (B) 44102], Candida albicans [CMCC (F) 98001], and Aspergillus niger [CMCC(F) 98003] were provided by the China Medical Bacterial Collection Management Center (CMCC). The strains for the preparation of bacterial suspensions were all third generation.

Betastatin besylate nasal spray (Shanghai Modern Pharmaceutical Preparation Engineering Research Center Co., Ltd. China; specification, 100 μL per spray) containing 2.5 mg of betastatin besylate (7.5 mL per bottle) was used in this study. The nasal spray batch numbers 2015071401, 2015071402, and 2015071403 contained 0.02%, 0.0125%, and 0.005% benzalkonium chloride, respectively.

2.2 Media

Trypticase soy agar (TSA) medium (batch No. 3303005), Sabouraud dextrose agar (SDA) medium (batch No. 20160901), trypticase soy meal broth (TSB) (batch No. 3302035), and Sabouraud dextrose broth (SDB) (batch No. 3302126) were purchased from Guangdong Huan Kai Microbiology Technology Co., Ltd., China. The applicability of the media was in compliance with the Chinese Pharmacopoeia 2015 edition. The media were prepared according to the manufacturer’s instructions.

2.3 Microbial Suspension Preparation

The microbial suspensions were prepared to appropriate concentrations according to the method described in the Chinese Pharmacopoeia 2015 edition Four General Rules 1121 "Antibacterial efficacy test method."

2.4 Method Suitability Study

In order to meet the requirements of Chinese Pharmacopoeia 2015 edition of the four general rules 1105 "microbial limit test for non-sterile products: microbiological counting method"[5], the recovery
rate of betastatin besylate nasal spray with high antibacterial content (batch No. 2015071401, containing benzalkonium chloride 0.02%) should not be less than 70%.

2.5 Antimicrobial Efficacy Assay

2.5.1 Microbial Inoculation
Sterile bottles (5 bottles for each batch) containing betastatin besylate nasal spray with 0.02%, 0.0125%, and 0.005% benzalkonium chloride, respectively, were inoculated with 50 µL of S. aureus, P. aeruginosa, E. coli, C. albicans, and A. niger at a concentration of about 10^5–10^6 colony forming units per mL (CFU/mL). Then, the suspension was mixed well and stored at 23°C in dark.

2.5.2 Quantification of Viable Microbial Cells
The viable microbial cells were quantified according to the product type and Chinese Pharmacopoeia 2015 edition General Rules 1121 "Antibacterial Effectiveness Check Method" Table 2-2. In brief, 1 mL of the test sample was collected on day 2, 7, 14, and 28, respectively, inoculated onto a TSA plate (for bacteria) and SDA plate (for fungi), and the number of viable cells was determined by counting and verified by the method suitability test. Finally, the survival numbers of each test bacterium at each interval were calculated and converted into lg value.

2.5.3 Results Assessment
The criteria for assessing the antimicrobial effectiveness of the nasal preparation are shown in Table 1. The "reduced lg value" in the table refers to the difference between the lg value of the number of microbial cells measured at each interval and the lg value of the number of microbial cells inoculated in 1 mL of the test sample. Standard “A” indicates the antimicrobial efficacy standard that should be achieved. In special cases, if the antimicrobial agent increased the risk of adverse reactions, standard “B” antimicrobial efficacy was used in the test.

3. Results And Discussion

3.1 Method Suitability Test
In the preliminary test, betastatin besylate nasal spray solution with high concentration of bacteriostatic agent (batch No. 20150714-1, 0.02% benzalkonium chloride) was selected, and S. aureus, P. aeruginosa, E. coli, C. albicans, and A. niger were added, respectively, to perform the
applicability tests by plating and counting methods. The results showed that the recovery rates of C. albicans and A. niger were both >70%, while that of the other three strains were 0%, which did not meet the requirements of the Chinese Pharmacopoeia, suggesting that the test solution should be further processed by an appropriate method. Subsequently, the applicability test of the abovementioned three bacterial strains was conducted by a membrane filtration method, and the recovery rate of each test strain was noted to be <70%. According to the Chinese Pharmacopoeia 2015 General Regulation 1105, if the inhibitory effect of the test sample on microbial growth could not be eliminated by other methods, then the test solution was neutralized, diluted, or membrane-filtered before adding the test microbial suspension for method suitability test. According to previous research, the bacteria selected the way for the method suitability test which is membrane filtration and then added to the test bacterial suspension, while the fungus selected a counting plate method for method suitability test.

As shown in Table 2, the recovery rate of the method suitability test results could be calculated as follows: (number of colonies in the test group - number of colonies in the control group)/number of colonies in the control group x 100%, which should not be <70% of that indicated in the Chinese Pharmacopoeia. The bacteriostatic efficacy of the product was determined by a membrane filtration method (Chinese Pharmacopoeia 2015 General Rules 1105 membrane filtration method), whereas the antifungal efficacy was ascertained by plating and counting methods (Chinese Pharmacopoeia 2015 General Rules 1105 plate law).

3.2 Antimicrobial Effectiveness

The results obtained revealed that 0.02% and 0.0125% benzalkonium chloride achieved antimicrobial effectiveness standard A against bacteria and fungi (Table 3). However, when 0.005% benzalkonium chloride was employed, the lg value of C. albicans decreased to 1.7 on day 14, which did not meet the antimicrobial efficacy standard A of the Chinese Pharmacopoeia, but corresponded to standard B. Furthermore, 0.005% benzalkonium chloride did not accomplish standard A or B with respect to the growth of P. aeruginosa on day 28, suggesting that the antibacterial efficacy of 0.005% benzalkonium chloride did not meet the Chinese Pharmacopoeia regulations.
The antibacterial effect of bacteriostatic agents is often affected by a number of factors, such as the chemical structure and concentration of the bacteriostatic agent, physical and chemical properties of the active components of the drug, form of the preparation, or storage conditions. In addition, the characteristics of the container used in the experiment, such as the material, shape, volume, and sealing method of the container, may also have a significant influence on the bacteriostatic effect, especially when the material of the container is adsorbed or directly affects the pH of the drug\[11-12\]. Therefore, the "Chinese Pharmacopoeia" clearly stipulates that if the amount of each packaging container for the drug preparation is sufficient for experimental use and the container is convenient for inoculating the test microbial strains, mixing, and sampling under aseptic condition, then the test microorganisms should generally be directly inoculated into the original packaging container for analysis. In the present study, as the packaging container of betastatin besylate nasal spray was not convenient for accessing the test microbial strains, mixing, and sampling under aseptic condition, the drug was transferred to a sterile container for analysis.

Bacteriostatic potency test is a long-term, dynamic monitoring process analyzing the survival of microorganisms in the test sample. It is necessary to examine the inhibition or killing of a large number of invading microorganisms by the bacteriostatic agent in a short period of time after inoculation of the test sample. It is also crucial to determine whether the total amount of microorganisms in the sample can still be controlled within a reasonable range after the microorganisms develop tolerance to the surrounding environment or the stability of the bacteriostatic agent changes over time.\[13\]. The 2005 edition of the Chinese Pharmacopoeia stipulated the preservatives used in some dosage forms, the 2010 edition first included the guiding principles of bacteriostatic efficacy test method, and the 2015 edition switched to the mandatory standard bacteriostatic efficacy test method, implying that the requirements for pharmaceutical bacteriostatic agents are becoming increasingly stringent.

4. Conclusion
Benzalkonium chloride is an internationally recognized broad spectrum, high efficiency, low toxic disinfectant preservative. Previous studies have reported that a benzalkonium chloride preservative
has a strong inhibitory effect on Gram-negative bacteria \cite{14}, and has wide applications in the fields of medicine, food, cosmetics, etc. \cite{15-16}. However, although this type of preservative has low toxicity, it can cause allergies owing to excessive use, and can even endanger human health in severe cases \cite{17-18}. Therefore, it is imperative to explore the minimum effective dose of bacteriostatic agents used in drugs.

In the present study, 0.02% and 0.0125% benzalkonium chloride met the antimicrobial efficacy standard A. In contrast, 0.005% benzalkonium chloride decreased the lg value of C. albicans to 1.7 on day 14, and thus could not meet the antimicrobial efficacy standard A of the Chinese Pharmacopoeia, but could comply with standard B; however, the observation of P. aeruginosa growth on day 28 indicated that this dosage failed to meet standard A or B. However, The judgment standard of Pharmacopoeia bacteriostatic efficacy is one significant number. When the test result is 1.7, if only one significant digit is kept, it will become 2, and the A criterion is reached, in this way, the inspector changes from satisfying the B standard to A standard when judging Candida albicans. This contradiction is expected to be resolved in the future revision of the Chinese Pharmacopoeia.

It must be noted that the criteria for determining the antimicrobial efficacy of nasal preparations differ among the Chinese, European, and US Pharmacopoeia. Nevertheless, the criteria of the Chinese Pharmacopoeia nasal preparations and European Pharmacopoeia non-sterile nasal preparations are consistent, which are stricter than the US Pharmacopoeia. The European Pharmacopoeia and US Pharmacopoeia divide nasal preparations into two categories: sterile and nonsterile nasal preparations. While the diagnostic criteria for antimicrobial efficacy of sterile nasal preparations are more stringent, the Chinese Pharmacopoeia only considers the type and quantity of microorganisms for nasal preparations, and the criteria for determining the antimicrobial efficacy are not differentiated as sterile and non-sterile. Although it is more reasonable to divide the nasal preparation into sterile and nonsterile, the criteria for determining the antimicrobial efficacy of sterile nasal preparation are complex, necessitating higher concentration of the antimicrobial agent to meet the requirements; however, very high inhibitor concentration may cause significant toxicity, thus
requiring further research on this standpoint.

Declarations

Acknowledgments

We thank International Science Editing (http://www.internationalscienceediting.com) for editing this manuscript. This work was supported by grants from the National Natural Science Foundation of China (81801978) and Medical Scientific Research Foundation of Zhejiang Province (2018KY201, 2018KY618).

Conflict of Interest

there is no potential conflicts of interest.

References

1. Carrillo Martin I, Gonzalez-Estrada A, Dimov V (2018) Bepotastine besilate for the treatment of perennial allergic rhinitis. Expert Opin Pharmacother 19(15): 1727-1730

2. Kida T, Fujii A, Sakai O, Iemura M, Atsumi I, Wada T, Sakaki H (2010) Bepotastine besilate, a highly selective histamine H(1) receptor antagonist, suppresses vascular hyperpermeability and eosinophil recruitment in in vitro and in vivo experimental allergic conjunctivitis models. Exp Eye Res 91(1):85-91

3. Lyseng-Williamson KA (2010) Oral bepotastine: in allergic disorders. Drugs 20;70(12):1579–1591

4. He S, Mou Z, Peng L, Chen J (2017) Impacts of meteorological and environmental factors on allergic rhinitis in children. Int J Biometeorol 61(5):797-806

5. The pharmacopoeia of the People’s Republic of China. 2015 Edition[S]. 2015:151 ChP 2015.Vol IV[S].2015:151

6. Maillard JY (2018) Resistance of bacteria to biocides. Microbiol Spectr. doi: 10.1128/microbiolspec. ARBA-0006-2017

7. De Saint Jean M, Brignole F, Bringuier AF, Bauchet A, Feldmann G, Baudouin C (1999) Effects of benzalkonium chloride on growth and survival of Chang conjunctival cells.
8. Lindemann J, Leiacker R, Wiesmüller K, Rettinger G, Keck T (2004) Immediate effect of benzalkonium chloride in decongestant nasal spray on the human nasal mucosal temperature. Clin Otolaryngol Allied Sci 29(4):357-361

9. Graf P (1999) Adverse effects of benzalkonium chloride on the nasal mucosa: allergic rhinitis and rhinitis medicamentosa. Clinical Therapeutics 21(10):1749-1755.

10. Rasmussen CA, Kaufman PL, Kiland JA (2014) Benzalkonium chloride and glaucoma. J Ocul Pharmacol Ther 30(2-3):163-169

11. QIAN MS, YE XF, NI CH (2009) Experience in the selection of preservatives in liquid preparation[J]. Strait Pharm J 21 (3):32

12. Meyer BK, Ni A, Hu B, Shi L (2007) Antimicrobial preservative use in parenteral products: past and present. J Pharm Sci 96(12):3155-3167

13. DING BX, XU XJ, XIE YC (2011) Studies on antimicrobial effectiveness of hydrobromate galanthamine oral solution. Chin J Pharm Anal 31(12):2312

14. Sütterlin H, Alexy R, Kümmerer K (2008) The toxicity of the quaternary ammonium compound benzalkonium chloride alone and in mixtures with other anionic compounds to bacteria in test systems with Vibrio fischeri and Pseudomonas putida. Ecotoxicol Environ Saf 71:498-505

15. Tezel U, Pavlostathis SG (2009) Transformation of benzalkonium chloride under nitrate reducing conditions. Environ Sci Technol 43(5):1342-1348

16. Barroso, J.M (2013) Commission Directive 2013/7/EU of 21 February 2013 amending Directive 98/8/EC of the European Parliament and of the Council to include alkyl (C12-16) dimethylbenzyl ammonium chloride as an active substance in Annex I thereto. Off J Eur Union56: 66-69

17. Isaac J, Scheinman PL (2017) Benzalkonium Chloride: An Irritant and Sensitizer.
Dermatitis 28(6):346-352

18. Lee BH, Kim SH (2007) Benzalkonium chloride induced bronchoconstriction in patients with stable bronchial asthma. Korean J Intern Med 22:244-248

Tables

Table 1. Assessment criteria for antimicrobial effectiveness of nasal preparation

	Reduced Ig value			
	2 d	7 d	14 d	28 d
Bacterial				
A	2	3	-	NI
B	-	-	3	NI
Fungus				
A	-	-	2	NI
B	-	-	1	NI

Note: NI: No increase, indicating that the amount of test strain increased by no more than 0.5 lg from the previous measurement time.

Table 2. Results of method applicability test
Strains	Batch number	Bacterial liquid group result (CFU)	Average value of bacterial control group (CFU)	Test sample control result (CFU)	Test group result (CFU)	Recovery rate (%)	Recovery rate (%)
S. aureu	2015071401	98,92	95	0	75	78.9	83.9
	2015071402				79	83.2	
	2015071403				85	89.5	
P. aeruginosa	2015071401	83,79	81	70	70	86.4	90.5
	2015071402				73	90.1	
	2015071403				77	95.1	
E. coli	2015071401	94,86	90	73	73	81.1	84.1
	2015071402				75	83.3	
	2015071403				79	87.8	
C. albicans	2015071401	99,87	93	0	70,66	73.1	82.1
	2015071402				80,76	83.9	
	2015071403				80,86	89.2	
A. niger	2015071401	51,41	46	39,35	39,35	80.4	85.5
	2015071402				39,41	87.0	
	2015071403				42,40	89.1	

Table 3. Results of antimicrobial effectiveness
Batch number and bacteriostatic concentration	Test strain	Count of bacteria in the test sample (CFU/mL)	Reduced lg value									
		Initial value	2d	7d	14d	28d	28d compared with 7d	28d compared with 14d				
2015071401 (Benzalkonium chloride 0.02%)	S. aureus	5.4×10^5	<1	<1	<1	6.3	6.3	6.3	6.3	NI	NI	
	P. aeruginosa	1.1×10^6	<1	<1	<1	6.8	6.8	6.8	6.8	NI	NI	
	E. coli	8.9×10^5	<1	<1	<1	6.6	6.6	6.6	6.6	NI	NI	
	C. albicans	2.2×10^5	<1	<1	<1	5.6	-	5.6	5.6	-	NI	
	A. niger	1.1×10^5	<1	<1	<1	5.0	-	5.0	5.0	-	NI	
2015071402 (Benzalkonium chloride 0.0125%)	S. aureus	5.4×10^5	<1	<1	<1	6.3	6.3	6.3	6.3	NI	NI	
	P. aeruginosa	1.1×10^6	<1	<1	<1	6.8	6.8	6.8	6.8	NI	NI	
	E. coli	8.9×10^5	<1	<1	<1	6.6	6.6	6.6	6.6	NI	NI	
	C. albicans	2.2×10^5	<1	<1	<1	5.6	-	5.0	5.0	-	NI	
	A. niger	1.1×10^5	<1	<1	<1	5.0	-	4.7	4.7	-	NI	
2015071403 (Benzalkonium chloride 0.005%)	S. aureus	5.4×10^5	<1	<1	<1	6.3	6.3	6.3	6.3	NI	NI	
	P. aeruginosa	1.1×10^6	<1	<1	<1	6.8	6.8	6.8	6.5	6.5	-2.1^①	-1.8^②
	E. coli	8.9×10^5	<1	<1	<1	6.6	6.6	6.6	6.6	NI	NI	
	C. albicans	2.2×10^5	<1	<1	<1	5.6	-	1.7	1.7	-	NI	
	A. niger	1.1×10^5	<1	<1	<1	5.0	-	5.0	5.0	-	NI	

Note: NI: No increase means that the increase in test strain did not exceed 0.5 lg from the previous measurement time; ① indicates that the increase in test strain was 2.1 lg, when compared with that...
on days 7 and 28; ② denotes that result of day 28 is comparable with that of day 14, and the increase in the number of test strain was 1.8 lg.