Assessment of the effects of municipal landfills on the metal pollution in the surrounding soils: A case study in Iraq

Jawad K. A. Al-Rifaie1, Suad M. Heil1, Saheb K. Khamees1, Saad Alajmi2*, David Yeboah3, Mawada Abdellatif3, Ahmed AlKayyat4
1Al Furat Al Awsat Technical University, Iraq.
2B.Sc. Student, Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK.
3Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK.
4Department of Building and Construction Technical Engineering, College of Technical Engineering, the Islamic University, 54001 Najaf, Iraq.

E-mail: S.M.Alajmi@2017.ljmu.ac.uk

Abstract. The present investigation has been devoted to assessing the environmental impacts of a local landfill, in the north of Hilla city, Iraq, on the surrounding soils in terms of heavy metal pollution. The concentrations of heavy metals, namely chromium (Cr), copper (Cu), nickel (Ni), and lead (Pb) were measured during, November 2019, at three investigation sites that located at distances of 10 (site 1), 20 (site 2) and 30 m (site 3) from the edge of the mentioned landfill. Soil samples were collected from these sites at a constant depth of 20 cm. The collected samples were air-dried, manually crushed, and sieved through a 2 mm mesh before subjecting them to a chemical digesting process. The concentrations of the targeted metals were measured using an inductively coupled plasma optical emission spectrometry and compared to the standards of the State Environmental Protection Administration (SEPA). The obtained results showed that the highest concentrations of the targeted metals were in site 1, while the lowest concentrations were detected at site 3. Generally, it was found that the concentrations of the studied metals followed the order: Cr>Pb>Ni>Cu. Additionally, it was noticed that all the measured concentrations were within the limitations of the SEPA.

1. Introduction

Heavy metals are a basic component of the eco-system of the planet of Earth that makes them naturally present in the freshwater, groundwater, and soil [1-3]. For instance, the literature indicated that iron could naturally occur in surface water and groundwater at high concentrations that could reach 50 mg/L [4-6]. The natural occurrence of heavy metals does not represent a serious threat to the environment or public health as the eco-system can naturally balance the concentrations of heavy metals [7-9]. However, the combined effects of human activities, especially in the urban areas, have significantly altered the natural cycles of heavy metals, and other elements, which disabled or limited the ability of the eco-systems to balance the concentrations of the heavy metals in water and soils [10-12]. Generally, heavy metals could result from a wide range of anthropogenic activities, such as vehicular exhausts, agricultural wastewater, industrial wastewater, mining industries, planting and finishing plants, fertilizers and pesticides, and solid waste disposal (landfills) [13-18]. This type of
pollutant causes serious health problems, such as cancers and Alzahimer [19-21], and also harms the eco-system [11, 22]. The heavy metal pollution has recently intensified due to the effects of global warming on the availability of freshwater [23-26]. To remove heavy metals and other harmful pollutants from water, different methods have been used, including biological treatments [27-31], the addition of chemical coagulants [32, 33], electro-chemical technologies [34-37], bio-degradation [27, 38] and physical separation and recycling technologies [39]. With the uncontrolled increase in the global population and urbanization activities, the number and size of landfills have substantially increased to accommodate the disposed of municipal solid wastes (MSW) [16, 40]. For example, the average yearly generation of MSW in the urban areas in India is currently about 48 million tons, however, it is expected to reach as high as 250 million tons by 2047. In Iraq, the published literature indicates that the generation of the MSW has also rapidly increased during the last 15 years and, unfortunately, it still follows an increasing trend [41-43]. In addition, a significant amount of concrete wastes, and demolishing wastes are generated in the cities [44-49], which are disposed of in the local landfills. For example, the disposed of MSW in the Hilla city has increased from about 40,000 tons in 2009 to about 50,000 in 2013, and it will increase to the vicinity of 900,000 tons by 2030. Furthermore, Hilla city is one of the Iraqi cities that subjected to a regular sudden upsurge, during the yearly 15-days Arba’e’en religious festival, in the generation of MSW. Where, in this event, more than 20 million people walk towards Kerbala city passing through either Hilla, Najaf, or Baghdad city that results in to what similar to a sharp pulse in the generation of MSW [16, 50]. Regrettably, the majority of the global MSW is disposed of without enough or without management, for example, 90% of the MSW in India does not receive enough management. Hence, the MSW became a major concern for the environmental authorities as they not only pollute groundwaters and surface water bodies with a wide range of organic and inorganic pollutants but also substantially pollutes the surrounding soils with the same spectrum of pollutants [13, 15]. Additionally, the landfills generate greenhouses gases that are responsible for global warming, which in turn causes environmental disasters and elevated water consumption [51-54].

In this context, this study investigates the concentrations of four heavy metals (chromium (Cr), copper (Cu), nickel (Ni) and lead (Pb)) in the surrounding soils to a municipal landfill located in the Babylon province, Iraq, and compare it with the standards of the State Environmental Protection Administration (SEPA).

2. Studied area

The study landfill is located in Babylon province, north of Hilla city, near to the borders between Hilla city and Qadhaa Al-Mahaweel (32.645420, 44.373309), see Figure 1. This landfill receives different types of municipal solid wastes (MSW), ranging from simple kitchen wastes to the waste of the construction industry. Generally, the depth of wastes in this location was estimated to be in the range of 1.5-4.5 m. This landfill has been selected as a case study as it is, like many other landfills in Iraq, is not well managed, and the disposal process could be classified as a non-engineered process as the MWS are dumped without a proper sorting process. However, several rag pickers were noticed sorting out the recently dumped wastes to collect glass, cans, metals, and plastic to sell later for the relevant industries, which in turn recycles these materials.
3. Materials and methods
Soil samples were collected, during November 2019, three investigation sites (I1, I2, and I3) located at distances of 10, 20, and 30 m. These samples were collected at a depth of 20 cm. The collected soil samples were placed in plastic bags, labeled, and transferred into the laboratory as soon as possible to avoid any bacterial effects. Treatment and preparation of the collected samples were carried out following the relevant literature [55]. Initially, the collected samples were dried at a temperature of 60 °C for 24 hours using an electrical oven (SNOL, model: 300LFN). The dry samples were sieved through a 2 mm mesh to separate debris and stones/gravels. The sieved samples were digested before testing them for the concentrations of Cr, Cu, Ni, and Pb using an inductively coupled plasma optical emission spectrometry (model: OPTIMA-2000).

4. Results and discussion
As it has been mentioned above that soil samples have been collected from three sites that are distributed at 10 to 30 m away from the edge of the studied landfill. The obtained results are tabulated in Table 1, which indicates that generally, the concentrations of the studied four heavy metals decrease with the increase of the distance from the landfill. This relationship between the concentrations of the heavy metals and the distance could be attributed to more than one reason; firstly, is the seepage phenomenon, where the leached water from the accumulated MSW was not enough to travel to long distances, which concentrated the pollutants in a short distance around the landfill. Secondly, the last few years witnessed a decrease in the rainfall and high droughtiness, which significantly limited the seepage of surface runoff into the landfill and wash out pollutants into the surrounding soils and water sources. Thirdly, it can be noticed that the concentrations of the studied four heavy metals were below the stated limits by the SEPA [55], which is a healthy sign. Thirdly, it has been found that Cr had the highest average concentration, followed by Pb and Ni, while Cu had the lowest average concentration. This variation in the concentration of the studied heavy metals could be attributed to the chemical composition of the disposed of MSW and the composition of the studied soil.
Table 1. The measured concentrations of the studied heavy metals in the collected soil samples.

Metal	Site	Concentration (mg/kg)	Average (mg/kg)	SEPA limitations
Cr	I1	22.8		
	I2	19.4	19.2	250
	I3	15.4		
	I4	17.9		
Cu	I2	9.89	11.5	100
	I3	6.7		
	I4	18.3		
Ni	I2	12.2	12.8	60
	I3	7.8		
Pb	I2	17.1	16.8	350
	I3	13.3		

The obtained results highlighted the serious need for more research studies to have a better understanding of the variation of heavy metals in the studied soil and about the transportation mechanisms of heavy metals from the landfills to the surrounding soils. For example, a number of researches should be conducted during the wet season (December-February) to check the change in the concentration of the studied heavy metals (due to the increase of the surface runoff). More researches could be allocated to check the feasibility to use sensors [56-59] to monitor the movement of heavy metals around the landfill area. Additionally, another set of researches are required to examine the chemical composition of the surrounding soils to ensure whether the measured concentrations were from the disposed of MSW or the natural soil.

5. Conclusions

The current study focused on the impacts of the municipal landfills on the surrounding soils in terms of heavy metals concentration; mainly focused on the concentrations of chromium, copper, nickel, and lead. The obtained results indicated that concentrations of the studied pollutants are inversely proportional to the distance from the landfill, where it was noticed that the concentration of all studied pollutants decreased with the increase of the distance from the landfill. Additionally, it was noticed that all measured concentrations of the studied heavy metals were within the recommended limits by the State Environmental Protection Administration (SEPA). The highest average concentration, in the studied locations, was of chromium, while copper had the lowest average concentration.

For future studies, a number of researches are needed to investigate the effects of the wet weather on the leaching of pollutants and to examine the chemical composition of both the disposed of MSW and the natural soil of the landfill to understand the geological and meteorological effects of the heavy metal distribution in the area of the landfill.

References

[1] Al-Saati N H, Hussein T K, Abbas M H, Hashim K, Al-Saati Z N, Kot P, Sadique M, Aljeferi M H and Carnacina I 2019 Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study Desalination and Water Treatment 150 406-12.
[2] Omran I I, Al-Saati N H, Hashim K S, Al-Saati Z N, Patryk K, Khaddar R A, Al-Jumeily D, Shaw A, Ruddock F and Aljefery M 2019 Assessment of heavy metal pollution in the Great Al-Mussaib irrigation channel Desalination and Water Treatment 168 165-74.

[3] Zubaidi S L, Kot P, Hashim K, Alkhaddar R, Abdellatif M and Muhsin Y R 2019 Using LARS–WG model for prediction of temperature in Columbia City, USA IOP Conference Series: Materials Science and Engineering 584.

[4] Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M and Al-Khaddar R 2021 Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study Science of The Total Environment 756 1-16.

[5] Hashim K S, Shaw A, AlKhaddar R, Kot P and Al-Shamma’a A 2021 Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment Journal of Cleaner Production 280.

[6] Abdulrahem F S, Al-Khafaji Z S, Hashim K S, Muradov M, Kot P and Shubbar A A 2020 Natural filtration unit for removal of heavy metals from water IOP Conference Series: Materials Science and Engineering 888.

[7] Abdulla G, Kareem M M, Hashim K S, Muradov M, Kot P, Mubarak H A, Abdellatif M and Abdulhadi B 2020 Removal of iron from wastewater using a hybrid filter IOP Conference Series: Materials Science and Engineering 888.

[8] Alhendal M, Nasir M J, Hashim K S, Shaw A, Muradov M, Kot P and Abdulhadi B 2020 Cost-effective hybrid filter for remediation of water from fluoride IOP Conference Series: Materials Science and Engineering 888.

[9] Al-Marri S, AlQuzweeni S S, Hashim K S, AlKhaddar R, Kot P, AlKizwini R S, Zubaidi S L and Al-Khafaji Z S 2020 Ultrasonic-Electrocoagulation method for nitrate removal from water IOP Conference Series: Materials Science and Engineering 888.

[10] Alyafei A, AlKizwini R S, Hashim K S, Yeboah D, Gkantou M, Al Khaddar R, Al-Falufi D and Zubaidi S L 2020 Treatment of effluents of construction industry using a combined filtration-electrocoagulation method IOP Conference Series: Materials Science and Engineering 888.

[11] Aqeel K, Mubarak H A, Amoako-Attah J, Abdul-Rahaim L A, Al Khaddar R, Abdellatif M, Al-Janabi A and Hashim K S 2020 Electrochemical removal of brilliant green dye from wastewater IOP Conference Series: Materials Science and Engineering 888.

[12] Emamjomeh M M, Mousazadeh M, Mokhtari N, Jamali H A, Makkiaabadi M, Naghdali Z, Hashim K S and Ghanbari R 2020 Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes Separation Science and Technology 55 3184-94.

[13] Idowu I A, Atherton W, Hashim K, Kot P, AlKhaddar R, Alo B I and Shaw A 2019 An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences Waste Management 87 761-71.

[14] Hashim K S, Shaw A, Al Khaddar R, Pedrola M O and Phipps D 2017 Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor Journal of Environmental Management 189 98-108.

[15] Abdulredha M, Rafid A, Jordan D and Hashim K 2017 The development of a waste management system in Kerbala during major pilgrimage events: determination of solid waste composition Procedia Engineering 196 779-84.

[16] Abdulredha M, Al Khaddar R, Jordan D, Kot P, Abdulridha A and Hashim K 2018 Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression Waste Management 77 388-400.

[17] Hashim K S, Al-Saati N H, Hussein A H and Al-Saati Z N 2018 An investigation into the level of heavy metals leaching from canal-dreged sediment: a case study metals leaching from dreged sediment First International Conference on Materials Engineering & Science
[18] Hashim K S, Idowu I A, Jasim N, Al Khaddar R, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W and Abdulredha M 2018 Removal of phosphate from River water using a new baffle plates electrochemical reactor MethodsX 5 1413-8.

[19] Hashim K S, Al-Saati N H, Alquzweeni S S, Zubaidi S L, Kot P, Kraidy L, Hussein A H, Alkhaddar R, Shaw A and Alwash R 2019 Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters First International Conference on Civil and Environmental Technologies (ICCEET) 584.

[20] Hashim K S, Hussein A H, Zubaidi S L, Kot P, Kraidy L, Alkhaddar R, Shaw A and Alwash R 2019 Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method 2nd International Scientific Conference

[21] Hashim K S, Khaddar R A, Jasim N, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W, Abdulredha M and Alawsh R 2019 Electrocoagulation as a green technology for phosphate removal from River water Separation and Purification Technology 210 135-44.

[22] Hashim K S, AlKhaddar R, Shaw A, Kot P, Al-Jumeily D, Alwash R and Aljefery M H 2020 Electrocoagulation as an eco-friendly River water treatment method. In Advances in Water Resources Engineering and Management (Berline: Springer).

[23] Zubaidi S L, Hashim K, Ethaib S, Al-Bdairi N S S, Al-Bugharbee H and Gharghan S K 2020 A novel methodology to predict monthly municipal water demand based on weather variables scenario Journal of King Saud University-Engineering Sciences 32 1-18.

[24] Zubaidi S L, Ortega-Martorell S, Al-Bugharbee H, Olier I, Hashim K S, Gharghan S K, Kot P and Al-Khaddar R 2020 Urban Water Demand Prediction for a City that Suffers from Climate Change and Population Growth: Gauteng Province case study Water 12 1-18.

[25] Zubaidi S L, Ortega-Martorell S, Kot P, Alkhaddar R M, Abdellatif M, Gharghan S K, Ahmed M S and Hashim K 2020 A Method for Predicting Long-Term Municipal Water Demands Under Climate Change Water Resources Management 34 1265-79.

[26] Grmasha R A, Al-sareji O J, Salman J M, Hashim K S and Jasim I A 2020 Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Street Dust WithinThree Land-Uses of Babylon Governorate, Iraq: Distribution, Sources, andHealth Risk Assessment Journal of King Saud University - Engineering Sciences 33, 1-15.

[27] Alattabi A W, Harris C B, Alkhaddar R M, Hashim K S, Ortoneda-Pedrola M and Phipps D 2017 Improving sludge settleability by introducing an innovative, two-stage settling sequencing batch reactor Journal of Water Process Engineering 20 207-16.

[28] Mohammed A-H, Hussein A H, Yeboah D, Al Khaddar R, Abdulhadi B, Shubbar A A and Hashim K S 2020 Electrochemical removal of nitrate from wastewater IOP Conference Series: Materials Science and Engineering 888.

[29] Zanki A K, Mohammad F H, Hashim K S, Muradov M, Kot P, Kareem M M and Abdulhadi B 2020 Removal of organic matter from water using ultrasonic-assisted electrocoagulation method IOP Conference Series: Materials Science and Engineering 888.

[30] Zubaidi S L, Abdulkareem I H, Hashim K S, Al-Bugharbee H, Ridha H M, Gharghan S K, Al-Qaim F F, Muradov M, Kot P and Alkhaddar R 2020 Hybridised Artificial Neural Network model with Slime Mould Algorithm: A novel methodology for prediction urban stochastic water demand Water 12 1-18.

[31] Hassan Alnaimi I J I, Abuduljaleel Al-Janabi, Khalid Hashim, Michaela Gkantou, Salah L. Zubaidi, Patryk Kot, Magomed Muradov 2020 Ultrasonic-electrochemical treatment for effluents of concrete plants Ultrasonic-electrochemical treatment for effluents of concrete plants IOP Conference Series Materials Science and Engineering 888.

[32] Alenazi M, Hashim K S, Hassan A A, Muradov M, Kot P and Abdulhadi B 2020 Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach IOP Conference Series: Materials Science and Engineering 888.
[33] Alenezi A K, Hasan H A, Hashim K S, Amoako-Attah J, Gkantou M, Muradov M, Kot P and Abdulhadi B 2020 Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution *IOP Conference Series: Materials Science and Engineering* 888.

[34] Hashim K, Kot P, Zubaid S, Alwash R, Al Khaddar R, Shaw A, Al-Jumeily D and Aljefery M 2020 Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia Coli removal from Wastewater *Journal of Water Process Engineering* 33 101079-86.

[35] Hashim K S, Ali S S M, AlRifaie J K, Kot P, Shaw A, Al Khaddar R, Idowu I and Gkantou M 2020 Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor *Chemosphere* 247 125868-75.

[36] Hashim K S, Shaw A, Al Khaddar R, Ortoneda Pedrola M and Phipps D 2017 Defluoridation of drinking water using a new flow column-electrocoagulation reactor (FCER) - Experimental, statistical, and economic approach *Journal of Environmental Management* 197 80-8.

[37] Hashim K S, Shaw A, Al Khaddar R, Pedrola M O and Phipps D 2017 Energy efficient electrocoagulation using a new flow column reactor to remove nitrate from drinking water - Experimental, statistical, and economic approach *Journal of Environmental Management* 196 224-33.

[38] Alattabi A W, Harris C, Alkhaddar R, Alzeyadi A and Hashim K 2017 Treatment of Residential Complexes’ Wastewater using Environmentally Friendly Technology *Procedia Engineering* 196 792-9.

[39] Hashim K S, Ewadh H M, Muhsin A A, Zubaidi S L, Kot P, Muradov M, Alje Fey M and Al-Khaddar R 2020 Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies *Water Science and Technology* 83 1-17.

[40] Abdulredha M, Abdulridha A, Shubbar A, Alkhaddar R, Kot P and Jordan D 2020 Estimating municipal solid waste generation from service processions during the Ashura religious event *IOP Conference Series: Materials Science and Engineering* 671.

[41] Abdulredera M, al-Khaddar R, Kot P, Jordan D and Abdulridha A 2018 Benchmarking of the Current Solid Waste Management System in Karbala, Iraq, Using Wasteware Benchmark Indicators *World Environmental and Water Resources Congress 2018: Groundwater, Sustainability, and Hydro-Climate/Climate Change*

[42] Abdulredha M, Kot P, Al Khaddar R, Jordan D and Abdulridha A 2020 Investigating municipal solid waste management system performance during the Arba’een event in the city of Kerbala, Iraq *Environment, Development and Sustainability* 22 1431-54.

[43] Al-Jumeily D, Hashim K, Alkaddar R, Al-Tufaily M and Lunn J 2019 Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future) *11th International Conference on Advancements in eSystems Engineering (DeSE)*

[44] Shubbar A A, Al-Shaer A, ALKizwini R S, Hashim K, Hawesah H A and Sadique M 2019 Investigating the influence of cement replacement by high volume of GGBS and PFA on the mechanical performance of cement mortar *First International Conference on Civil and Environmental Engineering Technologies (ICCEET)* 584.

[45] Kadhim A, Sadique M, Al-Mufri R and Hashim K 2020 Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust *Journal of Building Engineering* 32 1-17.

[46] Kadhim A, Sadique M, Al-Mufri R and Hashim K 2020 Developing One-Part Alkali-Activated metakaolin/natural pozzolan Binders using Lime Waste as activation Agent *Advances in Cement Research* 32 1-38.

[47] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredera M, Masoodi Z A, Sadique M and Hashim K 2020 Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations *Data in Brief* 31 105961-72.
[48] Shubbar A A, Sadique M, Nasr M S, Al-Khafaji Z S and Hashim K S 2020 The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash Karbala International Journal of Modern Science 6 1-23.

[49] Shubbar A A, Sadique M, Shambara H K and Hashim K 2020 The Development of a New Low Carbon Binder for Construction as an Alternative to Cement. In Advances in Sustainable Construction Materials and Geotechnical Engineering (Berlin: Springer).

[50] Abdulredha M, Al Khaddar R and Jordan D 2017 Hoteliers’ attitude towards solid waste source separation through mega festivals: A pilot study in Karbala International Conference for Doctoral Research

[51] Zubaidi S L, Al-Bugharbee H, Muhsen Y R, Hashim K, Alkhaddar R M, Al-Jumeily D and Aljaaf A J 2019 The Prediction of Municipal Water Demand in Iraq: A Case Study of Baghdad Governorate 12th International Conference on Developments in eSystems Engineering (DeSE)

[52] Zubaidi S, Al-Bugharbee H, Ortega Martorell S, Gharghan S, Olier I, Hashim K, Al-Bdairi N and Kot P 2020 A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach Water 12 1-17.

[53] Zubaidi S L, Al-Bugharbee H, Muhsin Y R, Hashim K and Alkhaddar R 2020 Forecasting of monthly stochastic signal of urban water demand: Baghdad as a case study IOP Conference Series: Materials Science and Engineering 888.

[54] Zubaidi S L, Kot P, Alkhaddar R M, Abdellatif M and Al-Bugharbee H 2018 Short-Term Water Demand Prediction in Residential Complexes: Case Study in Columbia City, USA. In: 11th International Conference on Developments in eSystems Engineering (DeSE), (University of Cambridge, UK: IEEE)

[55] Khan S, Cao Q, Zheng Y, Huang Y and Zhu Y 2008 Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China Environmental pollution 152 686-92.

[56] Gkantou M, Muradov M, Kamaris G S, Hashim K, Atherton W and Kot P 2019 Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection Sensors 19 5175-89.

[57] Ryecroft S, Shaw A, Fergus P, Kot P, Hashim K, Moody A and Conway L 2019 A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna Sensors 19 1813-23.

[58] Ryecroft S P, shaw A, Fergus P, Kot P, Hashim K and Conway L 2019 A Novel Gesomin Detection Method Based on Microwave Spectroscopy 12th International Conference on Developments in eSystems Engineering (DeSE)

[59] Teng K H, Kot P, Muradov M, Shaw A, Hashim K, Gkantou M and Al-Shamma’a A 2019 Embedded Smart Antenna for Non-Destructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete Sensors 19 547-59.