Deoxyribonucleases (DNases) are the enzymes able to catalyze DNA hydrolysis and they play important roles in cell function, while DNase inhibitors are the compounds able to control or modify their activities. Using admetSAR, Toxtree and OSIRIS Property Explorer, we calculated and compared pharmacokinetic and toxicological properties of some natural and synthetic DNase inhibitors. Finally, we selected among the DNase inhibitors the ones with the most favorable toxicological and pharmacokinetic profiles.

Key words: DNase inhibitors, in silico study, pharmacokinetic properties, toxicological properties

Introduction

Deoxyribonucleases (DNases) are the enzymes able to catalyze the hydrolysis of deoxyribonucleic acid (DNA), and they therefore play an important role in programmed cell death (apoptosis) and pathogenesis of various diseases (1). On the other hand, DNase inhibitors are the compounds able to control or modify those activities (2). There are two main types of DNase: DNase I and DNase II. DNase I enzymes are Ca²⁺/Mg²⁺-dependent endonucleases which produce 3'-oligonucleotides. DNase I family consists of DNase I, DNase X and DNase γ, as neutral endonuclease, and DNAS1L2, as an acidic endonuclease (3). All DNases I are glycoproteins (4) with variable tissue distribution (pancreas, parotid glands, kidney, liver, stomach, small intestine, large intestine, spleen, heart, lung, cerebrum and cerebellum) (5). DNase II enzymes are endonucleases which produce 5'-oligonucleotides and have optimal function at acidic pH values without divalent cations. They are involved in engulfment-mediated DNA degradation which is necessary for proper development and homeostasis (6). DNases and their inhibitors can be of use in diagnosis, monitoring and treatment of various pathological conditions (7-10). Recently, we have reviewed the literature on natural and synthetic DNase inhibitors and calculated their physico-chemical properties (11).

Aim

The aim of this article was to provide an in silico study of pharmacokinetic and toxicological properties of some natural and synthetic DNase inhibitors.

DNase inhibitors

Natural DNase inhibitors

Some natural DNase I inhibitors have been isolated from microorganisms, such as actinomycin D (1), daunomycin (2), nogalamycin (3), neomycin B (4) and paromomycin (5) (12, 13). Natural pigment curcumin (6) is able to inhibit DFF40/CAD (DNA fragmentation factor 40/caspase-activated DNase) and thus prevents DNA fragmentation during apoptosis (14). Two forms of vitamin B6, pyridoxal (7) and pyridoxal 5'-phosphate (8), also have the ability to inhibit DNase activity (Figure 1) (15).
Figure 1. Natural DNase I inhibitors

Figure 2. Synthetic DNase I inhibitors
Synthetic DNase inhibitors

It has been found that some synthetic compounds, such as 2-nitro-5-thiocyanobenzoic acid (9) (16), 2-nitro-5-thiosulfobenzoic acid (10) (17), chemotherapeutic drug nitrogen mustard (11) (18) and triphenylmethane dye crystal violet (12) (19), are able to inhibit DNase I activity (Figure 2).

s-Triazine (13) and its derivatives, DR396 (4-(4,6-dichloro-[1,3,5]-triazin-2-ylamino)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoic acid) (14), DF365 (5-(4,6-dichloro-[1,3,5]-triazine-2-ylamino)-2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)-benzoic acid) (15), R282049 ((4,6-dichloro-[1,3,5]-triazine-2-yl)-phenyl amine) (16) and 2-amino-4,6-dichloro-s-triazine (17) show the inhibitory effect towards DNase γ. Pontacyl violet 6R (18), Fmoc-D-Cha-OH (19), eosin yellowish (20) and fluorescein (21) are the synthetic compounds capable of inhibiting DNase γ activity (Figure 3) (20, 21).

In silico studies of DNase inhibitors

Pharmacokinetic properties of DNase inhibitors

The absorption properties of DNase inhibitors were predicted by admetSAR (22) (Table 1). The results suggested that natural DNase inhibitors, 6-8, as well as synthetic DNase inhibitors, 10-17 and 19-21, might be able to cross the blood-brain barrier (BBB) and penetrate into the CNS, while antibiotics (1-5) and synthetic compounds 9 and 18 might not have this ability. The majority of the investigated compounds (15 out of 21) were predicted to be capable of being absorbed by the intestine. The exceptions were antibiotics (2-5) and compounds 9 and 10. Among the natural DNase inhibitors, only compound 6 was supposed to have positive Caco-2 permeability, while synthetic compounds with this property were numerous, including 11-13, 16, 17 and 20. In most instances, DNase inhibitors were predicted as non-substrates for P-glycoprotein, except compounds 1-3 and 6, among natural, and compounds 19 and 21, among synthetic compounds. All synthetic DNase inhibitors were predicted as non-inhibitors of P-glycoprotein, while compound 6 was the only natural DNase inhibitor predicted as P-glycoprotein inhibitor. All of the investigated compounds, except compound 11, were predicted as non-inhibitors against renal organic cation transporter (ROCT) (Table 1).

The metabolic properties of DNase inhibitors were predicted by admetSAR (22) (Table 2). None of the DNase inhibitors was predicted as CYP450 2C9 and 2D6 substrate. Compounds 1-3 among natural, and only compound 12 among synthetic...
Table 1. Absorption properties of DNase inhibitors predicted by admetSAR (22)

Compound	BBB	HIA	Caco-2 Permeability	P-gp Substrate	P-gp Inhibitor	ROCT Inhibitor
1	no	yes	no	yes	no	no
2	no	no	no	yes	no	no
3	no	no	no	yes	no	no
4	no	no	no	yes	no	no
5	no	no	no	yes	no	no
6	yes	yes	yes	yes	yes	no
7	yes	yes	no	no	no	no
8	yes	yes	no	no	no	no
9	no	no	no	no	no	no
10	yes	no	no	no	no	no
11	yes	yes	yes	no	no	yes
12	yes	yes	yes	no	no	no
13	yes	yes	yes	no	no	no
14	yes	yes	yes	no	no	no
15	yes	yes	yes	no	no	no
16	yes	yes	yes	yes	yes	yes
17	yes	yes	yes	no	no	no
18	no	no	no	no	no	no
19	yes	yes	yes	no	yes	no
20	yes	yes	yes	no	no	no
21	yes	yes	no	yes	no	no

*BBB – blood brain barrier; HIA – human intestinal absorption; P-gp – P-glycoprotein; ROCT – renal organic cation transporter

Table 2. Metabolic properties of DNase inhibitors predicted by admetSAR (22)

Compound	CYP450 Substrate	CYP450 Inhibitor	CYP450 Inhibitory Promiscuity						
	2C9	2D6	3A4	1A2	2C9	2D6	2C19	3A4	
1	no	no	yes	no	no	no	no	no	low
2	no	no	yes	yes	no	no	no	no	low
3	no	no	yes	yes	no	yes	no	no	low
4	no	no	no	no	no	no	no	no	low
5	no	no	no	no	no	no	no	no	low
6	no	no	no	yes	yes	yes	yes	no	high
7	no	no	no	no	no	no	no	no	low
8	no	no	no	no	no	no	no	no	low
9	no	no	no	no	no	no	no	no	low
10	no	no	no	no	no	no	no	no	low
11	no	no	no	no	no	no	no	no	low
12	no	no	yes	yes	no	no	no	no	low
13	no	no	no	no	no	no	no	no	low
14	no	no	yes	no	no	no	no	no	low
15	no	no	yes	no	no	no	no	no	low
16	no	no	yes	no	no	no	no	no	low
17	no	no	yes	no	no	no	no	no	low
18	no	no	yes	no	no	no	no	no	low
19	no	no	yes	yes	no	no	no	no	low
20	no	no	no	yes	no	no	no	no	low
21	no	no	no	yes	no	no	yes	no	low
Table 3. Ability of DNase inhibitors to bind to DNA and proteins predicted by Toxtree (25)

Compound	S_n1^a	Michael Acceptor b	Acyl Transfer c	S_n2^e	Schiff Base d	S_nAr^f	Michael Acceptor	Acyl Transfer	S_n2^g
1	yes	no	yes	no	no	no	yes	no	no
2	no	no	yes	no	no	no	yes	no	yes
3	yes	no	yes	no	no	no	yes	no	yes
4	no	no	no	no	no	no	no	no	no
5	no	no	no	no	no	no	no	no	no
6	no	no	yes	no	yes	no	yes	no	yes
7	no	no	no	no	yes	no	yes	no	yes
8	no	no	no	no	yes	no	yes	no	yes
9	no	no	yes	no	no	no	no	yes	yes
10	yes	no	no	yes	no	no	yes	no	no
11	yes	no	no	yes	no	no	yes	no	yes
12	yes	no	yes	no	no	no	yes	no	no
13	no	no	yes	no	no	no	yes	no	no
14	yes	no	no	no	no	no	yes	no	no
15	yes	no	yes	no	no	no	yes	no	no
16	yes	no	yes	no	no	no	yes	no	no
17	yes	no	yes	no	no	no	yes	no	no
18	yes	no	yes	no	no	no	yes	no	no
19	no	no	yes	no	no	no	yes	no	yes
20	no	no	yes	no	no	no	yes	no	no
21	no	no	yes	no	no	no	yes	no	no

a ability to undergo nucleophilic aliphatic substitution (S_n1 reactions); b ability to form Schiff base; c ability to undergo Michael addition; d ability to participate in acyl transfer; e ability to undergo S_n2 reactions; f ability to undergo nucleophilic aromatic substitution (S_nAr reactions)

Table 4. Toxicological properties of DNase inhibitors predicted by admetSAR (22)

Compound	HERG Inhibitor	AMES Toxic	Carcinogens	Fish Toxicity	T. Pyriformis Toxicity	Honey Bee Toxicity	Biodegradation	Acute Oral Toxicity	Carcinogenicity
1	weak	no	no	high	high	low	not ready	I	non-required
2	weak	yes	no	high	high	low	not ready	II	non-required
3	weak	yes	no	high	high	low	not ready	III	non-required
4	weak	no	no	low	low	low	not ready	IV	non-required
5	weak	no	low	low	low	low	not ready	IV	non-required
6	weak	no	no	high	high	high	not ready	III	non-required
7	weak	no	no	low	low	low	ready	III	non-required
8	weak	no	no	high	high	high	ready	IV	non-required
9	weak	yes	no	high	low	low	not ready	III	non-required
10	weak	no	yes	high	high	low	not ready	III	non-required
11	strong	yes	yes	high	high	low	not ready	I	danger
12	weak	no	yes	high	high	low	not ready	III	warning
13	weak	no	no	low	low	low	ready	III	non-required
14	weak	no	no	low	low	low	not ready	III	non-required
15	weak	no	high	low	low	low	not ready	III	non-required
16	weak	no	no	high	low	low	not ready	III	non-required
17	weak	no	no	high	low	low	not ready	II	non-required
18	weak	no	yes	high	high	low	not ready	III	non-required
19	weak	no	no	high	high	low	not ready	III	non-required
20	weak	no	no	high	high	low	not ready	II	non-required
21	weak	no	no	high	high	high	not ready	II	non-required
DNase inhibitors, were predicted as CYP450 3A4 substrates. None of the natural DNase inhibitors was supposed to inhibit CYP450 3A4. Enzymes CYP450 2C9 and 2C19 might be inhibited by compound 6, CYP450 2D6 by compounds 3 and 6, and CYP450 1A2 by compounds 2, 3 and 6. Among synthetic DNase inhibitors, compounds 12, 14-16, 18 and 19 were predicted as CYP450 1A2 inhibitors, compound 20 as CYP450 2C9 inhibitor, compound 21 as CYP450 2C9 and CYP450 3A4 inhibitor, while none of the synthetic DNase inhibitors was predicted as CYP450 2C19 and 2D6 inhibitor. In most cases, DNase inhibitors were predicted to have a low CYP inhibitory promiscuity, except for compounds 6, 12 and 16.

Toxicological properties of DNase inhibitors

The ability of exogenous chemicals to act as mutagens or genotoxic carcinogens (collectively termed genotoxicity) is connected to their ability to bind covalently to proteins and DNA. The formation of a covalent adduct with DNA or proteins has been defined as the molecular initiating event, the first step in a series that can ultimately lead to toxicity (23, 24). In this context, it is important to assess the structural alerts indicating that a certain chemical is likely to form a covalent bond with a biological macromolecule. For the purpose of this study it was done by the Toxtree prediction tool based on decision tree approach (25). The structural alerts for DNA and protein binding for compounds 1-21 are presented in Table 3. The identified alerts refer to the chemical mechanism by which the studied DNase inhibitors can covalently interact with the biological macromolecule, but does not mean that they would be necessarily toxic, because other factors, such as the toxicokinetic or toxicodynamic profile of the chemical or biological repair mechanisms could prevent the completion of the adverse outcome pathway (23, 24). Natural DNase I inhibitors 4 and 5, along with the synthetic DNase γ inhibitor 13, did not show any structural alerts either for DNA binding, or for protein binding. Moreover, 7 and 8 were also predicted not to bind to DNA, while 17 would not bind to proteins.

Toxicological properties of DNase inhibitors predicted by admetSAR (22) are shown in Table 4. All DNase inhibitors, except compound 11, were predicted as weak HERG (human Ether-à-go-go-Related Gene) inhibitors. Natural compounds, 2 and 3, and synthetic compounds, 9 and 11, might be AMES toxic. Natural DNase inhibitors were predicted as non-carcinogens, while some synthetic DNase inhibitors (10-12 and 18) might be carcinogenic. The majority of the investigated compounds were predicted to have high fish toxicity. The exceptions were compounds 4, 5 and 7, among the natural, and compounds 13 and 17, among the synthetic DNase inhibitors. Low Tetrahymena pyriformis toxicity was exhibited by compounds 4, 5 and 7, among the natural, and compounds 9, 10 and 13, among the synthetic DNase inhibitors. Most of DNase inhibitors were predicted as compounds with low honey bee toxicity, except compounds 6, 8, 20 and 21. Compounds 7, 8 and 13 were supposed to be readily biodegradable. Depending on the risk for acute oral toxicity, compounds 1 and 11 were predicted as Category I, which included the compounds with LD50 values below 50 mg/kg. Compounds 2, 17, 20 and 21 were predicted as Category II, or the compounds with LD50 values greater than 50 mg/kg, but less than 500 mg/kg. Compounds 3, 6, 7, 9, 10, 12-16, 18 and 19 were predicted as Category III, including the compounds with LD50 values greater than 500 mg/kg, but less than 5000 mg/kg. Compounds 4, 5 and 8 were predicted as Category IV, or the compounds with LD50 values greater than 5000 mg/kg. According to TD50 values, DNase inhibitors were predicted as "non-required" or non-carcinogenic chemicals. The exceptions were compound 12 assigned as "warning", or compound with TD50 > 10 mg/kg body wt/day, and compound 11 assigned as "danger", or carcinogenic compound with TD50 ≤ 10 mg/kg body wt/day (Table 4).

Table 5. Toxicological properties of DNase inhibitors predicted by OSIRIS Property Explorer (26)

Compound	Mutagenic risk	Tumorigenic risk	Irritant Effects	Reproductive Effects
1	low	low	low	low
2	low	low	low	low
3	low	low	low	low
4	low	low	low	low
5	low	low	low	low
6	low	low	low	low
7	low	low	medium	low
8	low	low	medium	low
9	low	low	medium	low
10	low	low	low	low
11	high	high	high	high
12	high	high	low	low
13	low	low	low	low
14	medium	medium	high	medium
15	medium	medium	high	medium
16	medium	medium	high	medium
17	medium	medium	high	medium
18	high	high	medium	low
19	low	low	low	low
20	medium	low	low	low
21	low	low	low	low

Toxicological properties of DNase inhibitors predicted by the OSIRIS Property Explorer (26) are presented in Table 5. Natural DNase inhibitors were supposed to have a low risk for mutagenic, tumorigenic and reproductive effects. The majority of natural compounds were supposed to have a low risk for irritant effects, but compounds 7 and 8 were predicted as the ones with a medium risk for irritant effects. Among the synthetic DNase inhibitors, compounds 14-17 and 20 were supposed to
have medium mutagenic risk, while compounds 11, 12 and 18 were supposed to have a high mutagenic risk. Compounds 14-17 were predicted as compounds with a medium tumorigenic risk, while compounds 11, 12, 18 and 19 were predicted as compounds with a high tumorigenic risk. Compounds 9 and 18 might have medium risk, while compounds 11 and 14-17 might have a high risk for irritant effects. Further, compounds 14-17 were predicted to have a medium risk, while compound 11 was predicted to have a high risk for reproductive effects.

Conclusion

As could be seen from the results obtained by our in silico study, DNase inhibitors differ significantly in their pharmacokinetic and toxicological properties. Taken together, natural DNase I inhibitors 4 and 5 and synthetic DNase γ inhibitor 13 had the most favorable toxicological profiles. They were predicted as non-mutagenic, non-tumorigenic, non-irritating, non-AMES toxic and non-carcinogenic compounds, as well as the compounds with low fish, T. pyriformis and honey bee toxicity, with no reproductive effects and no structural alerts for DNA or protein binding. However, among those three compounds only compound 13 was likely to have a favorable pharmacokinetic profile. It was predicted as a compound with BBB, Caco-2 and HIA permeability, as well as a P-gp non-substrate, P-gp non-inhibitor, ROCT non-inhibitor, CYP450 non-substrate and CYP450 non-inhibitor.

Acknowledgments

The financial support to this work by the Ministry of Education and Science of the Republic of Serbia (Projects OI 172044 and TR 31060) is gratefully acknowledged.

References

1. Baranovskii AG, Buneva VN, Nevinsky GA. Human deoxyribonucleases. Biochem Mosc 2004; 69(6):587-601. [CrossRef] [PubMed]
2. Lazarides E, Lindberg U. Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci USA 1974; 71(12):4742-6. [CrossRef] [PubMed]
3. Shiokawa D, Tanuma S. Characterization of human DNase I family endonucleases and activation of DNase gamma during apoptosis. Biochemistry 2001; 40(1):143-52. [CrossRef] [PubMed]
4. Kreuder V, Dieckhoff J, Sittig M, Mannherz HG. Isolation, characterization and crystallization of deoxyribonuclease I from bovine and rat parotid gland and its interaction with rabbit skeletal muscle actin. Eur J Biochem 1984; 139(2):389-400. [CrossRef] [PubMed]
5. Takeshita H, Mogi K, Yasuda T, Nakajima T, Nakashima Y, Mori S, et al. Mammalian deoxyribonucleases I are classified into three types: pancreas, parotid, and pancreas-parotid (mixed), based on differences in their tissue concentrations. Biochem Biophys Res Co 2000; 269(2):481-4. [CrossRef] [PubMed]
6. Evans CJ, Aguilara RJ. DNase II: genes, enzymes and function. Gene 2003; 322:1-15. [CrossRef] [PubMed]
7. Yasuda T, Kawai Y, Ueki M, Kishi K. Clinical applications of DNase I, a genetic marker already used for forensic identification. Leg Med 2005; 7(4):274-7. [CrossRef] [PubMed]
8. Radisavljevic MM, Nagorni AV, Kocic G, Bjelakovic GB, Petrovic AS, Veljkovic AR, et al. The activities of acid DNase and 5'nucleotidase in erosive reflux esophagitis and Barrett's epithelium. Hepatogastroenterology 2013; 60(125):1073-6. [PubMed]
9. Funakoshi A, Nakamura M, Takagi Y, Ibayashi H. Biochemical and clinical studies on human pancreatic deoxyribonuclease I inhibitor. Gastroenterol Jpn 1980; 15(6):592-9. [PubMed]
10. Yamada Y, Fujii T, Ishijima R, Tachibana H, Yokoue N, Takasawa R, et al. DR396, an apoptotic DNase γ inhibitor, attenuates high mobility group box 1 release from apoptotic cells. Bioorgan Med Chem 2011; 19(1):168-71. [CrossRef] [PubMed]
11. Kolarevic A, Yancheva D, Kocic G, Smelcerovic A. Deoxyribonuclease inhibitors. Eur J Med Chem 2014; 88:101-11. [CrossRef] [PubMed]
12. Zeleznick LD, Sweeney CM. Inhibition of deoxyribonuclease action by nogalamycin and U-12241 by their interaction with DNA. Arch Biochem Biophys 1967; 120(2):292-5. [CrossRef] [PubMed]
13. Woegerbauer M, Burgmann H, Davies J, Graninger W. DNase I induced DNA degradation is inhibited by neomycin. J Antibiot 2000; 53(3):276-85. [CrossRef] [PubMed]
14. Sikora E, Bielak-Zmijewska A, Magańska A, Piock A, Kos M, Mosieniak G, Kalinowska M, et al. Curcumin induces caspase-3-dependent apoptotic pathway but inhibits DNA fragmentation factor 40/caspase-activated DNase endonuclease in human Jurkat cells.
In silico pharmacokinetic and toxicological study of dnase inhibitors... Ana Kolarević

Mol Cancer Ther 2006; 5(4):927-34. [CrossRef] [PubMed]

15. Fujiyoshi T, Nakayama J, Anai M. Inhibitory effect of pyridoxal 5’-phosphate on the DNA binding site of ATP-dependent deoxyribonuclease from Bacillus laterosporus. J Biochem 1981; 89(4):1137-42. [PubMed]

16. Liao TH, McKenzie LJ. Inactivation of bovine pancreatic DNase by 2-nitro-5-thiocyanobenzoic acid. I. A novel inhibitor for DNase I. J Biol Chem 1979; 254(19):9598-601. [PubMed]

17. Chen WJ, Liao TH. 2-Nitro-5-thiosulfobenzoic acid as a novel inhibitor specific for deoxyribonuclease I. Protein J 2008; 27(4):240-6. [CrossRef] [PubMed]

18. Doctor VM. Inhibition of deoxyribonuclease I of human serum in vitro by nitrogen mustard or leucocyte extracts. Arch Biochem Biophys 1962; 96(3):475-8. [CrossRef]

19. Zhou Z, Zhu C, Ren J, Dong S. A graphene-based real-time fluorescent assay of deoxyribonuclease I activity and inhibition. Anal Chim Acta 2012; 740:88-92. [CrossRef] [PubMed]

20. Sunaga S, Kobayashi T, Yoshimori A, Shiokawa D, Tanuma S. A novel inhibitor that protects apoptotic DNA fragmentation catalyzed by DNase gamma.

Biochem Bioph Res Co 2004; 325(4): 1292-7. [CrossRef] [PubMed]

21. Sunaga S, Yoshimori A, Shiokawa D, Tanuma S. Structure basis for the inhibitory mechanism of a novel DNase gamma-specific inhibitor, DR396. Bioorgan Med Chem 2006; 14(12):4217-26. [CrossRef] [PubMed]

22. admetSAR. http://lmmr.ecust.edu.cn:8000/predict/

23. Enoch SJ, Cronin MT. A review of the electrophilic reaction chemistry involved in covalent DNA binding. Crit Rev Toxicol 2010; 40(8):728-48. [CrossRef] [PubMed]

24. Enoch SJ, Ellison CM, Schultz TW, Cronin MT. A review of the electrophilic reaction chemistry involved in covalent protein binding relevant to toxicity. Crit Rev Toxicol 2011; 41(9): 783-802. [CrossRef] [PubMed]

25. Patlewicz G, Jeliazkova N, Safford RJ, Worth AP, Aleksiev B. An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ Res 2008; 19(5-6):495-524. [CrossRef] [PubMed]

26. OSIRIS Property Explorer. http://www.Organic-chemistry.org/prog/peo/
IN SILICO FARMAKOKINETIČKA I TOKISKOLOŠKA ISPITIVANJA INHIBITORA DNAZA

Ana Kolarević1, Gordana Kocić2, Denitsa Yancheva3, Andrija Šmelcerović1,4

Univerzitet u Nišu, Medicinski fakultet, Odsek za farmaciju, Niš, Srbija1
Univerzitet u Nišu, Medicinski fakultet, Institut za biohemiju, Niš, Srbija2
Bugarska akademija nauka, Institut za organsku hemiju sa centrom za fitohemiju, Laboratorija za strukturnu organsku analizu, Sofija, Bugarska3
Univerzitet u Nišu, Medicinski fakultet, Odsek za hemiju, Niš, Srbija4

Kontakt: Andrija Šmelcerović
Univerzitet u Nišu, Medicinski fakultet
Bul. dr Zorana Đinđića 81, 18000, Niš, Srbija
E-mail: a.smelcerovic@yahoo.com

Dezoksiribonukleaze (DNaze) su enzimi koji katalizuju hidrolizu DNK i imaju značajnu ulogu u normalnom ćelijskom funkcionisanju, dok su inhibitori DNaza supstance koje kontrolišu ili modifikuju ove funkcije. Korišćenjem kompjuterskih programa admetSAR, Toxtree i OSIRIS Property Explorer ispitivane su i upoređivane farmakokinetičke i toksikološke osobine nekih prirodnih i sintetskih inhibitora DNaza. Na kraju su selektovani oni inhibitori DNaza koji imaju najpovoljniji toksikološki i farmakokinetički profil. Acta Medica Medianae 2016;55(4):5-13.

Ključne reči: inhibitori DNaza, in silico studija, farmakokinetičke osobine, toksikološke osobine