IMAGES OF ℓ-ADIC REPRESENTATIONS AND AUTOMORPHISMS OF ABELIAN VARIETIES

A. SILVERBERG AND YU. G. ZARHIN

1. INTRODUCTION

Suppose that F is either a global field or a finitely generated extension of \mathbb{Q}, A is an abelian variety over F, ℓ is a prime number, and $\ell \neq \text{char}(F)$. Let $\mathfrak{G}_\ell(F,A)$ denote the algebraic envelope of the image of the absolute Galois group of F under the ℓ-adic representation associated to A, and let $\mathfrak{G}_\ell(F,A)^0$ denote its identity connected component. In §3 we prove that the intersection of $\mathfrak{G}_\ell(F,A)^0$ with the torsion subgroup of the center of $\text{End}(A) \otimes \mathbb{Q}$ is independent of ℓ. In the case where F is a finitely generated extension of \mathbb{Q}, this would follow from the Mumford-Tate Conjecture. Our results do not assume the Mumford-Tate Conjecture, and apply even in the positive characteristic case, where there is no analogue of the Mumford-Tate Conjecture. The result in the characteristic zero case can therefore be viewed as providing evidence in the direction of the Mumford-Tate conjecture.

Let $F(\text{End}(A))$ denote the smallest extension of F over which all the endomorphisms of A are defined. Then (see Proposition 2.10 of [17]),

$$F(\text{End}(A)) \subseteq F_{\Phi,\ell}(A).$$

By enlarging the ground field, we may assume that $F = F(\text{End}(A)) = F_{\Phi,\ell}(A)$. We then consider twists of the ℓ-adic representations associated to A. The results of this paper follow from the ℓ-independence of the connectedness extensions associated to these twists.

See [18] for a study of the connectedness extensions attached to twists of abelian varieties. See [17] for conditions for the connectedness of $\mathfrak{G}_\ell(F,A)$.

2. DEFINITIONS, NOTATION, AND LEMMAS

Let \mathbb{Z}, \mathbb{Q}, and \mathbb{C} denote respectively the integers, rational numbers, and complex numbers. If G is an algebraic group, let G^0 denote the identity connected component. If F is a field, let F^{sep} denote a separable closure of F and let \bar{F} denote an algebraic closure of F. If A is an abelian variety over a field F, write $\text{End}_F(A)$ for the endomorphisms of A which are defined over F, write $\text{Aut}_F(A)$ for the automorphisms of A defined over F, let $\text{End}(A) = \text{End}_{F^{\text{sep}}}(A)$, let $\text{End}^0(A) = \text{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q},$
Proof. Since w and does not depend on the choice of using Lemma 2.1. The result follows.

Lemma 2.2. Suppose A and B are abelian varieties over a field F, L is a finite extension of F in F^s, and ℓ is a prime number, then

$$\mathcal{G}_\ell(L, A) \subseteq \mathcal{G}_\ell(F, A)$$

In particular, if $\mathcal{G}_\ell(F, A)$ is connected, then $\mathcal{G}_\ell(F, A) = \mathcal{G}_\ell(L, A)$.

Lemma 2.3. Suppose A is an abelian variety over a field F and

$$c : \text{Gal}(F^s/F) \to \text{End}_F^0(A)$$

is a continuous homomorphism of finite order. For each prime $\ell \neq \text{char}(F)$ let

$$\rho_{\ell,c} : \text{Gal}(F^s/F) \to \text{Aut}(V_\ell(A)), \quad \sigma \mapsto c(\sigma)\rho_{A,\ell}(\sigma)$$

be the twist of $\rho_{A,\ell}$. Then $\{\rho_{\ell,c}\}$ constitutes a strictly compatible system of integral ℓ-adic representations of $\text{Gal}(F^s/F)$. More precisely, suppose M is a finite Galois extension of F such that c factors through $\text{Gal}(M/F)$. Let S_ℓ be the set of finite places v of F such that either A has bad reduction at v, v is ramified in M/F, or the residue characteristic of v is ℓ. Let v be a finite place of F, w a place of F^s lying over v, and κ_v and κ_w the residue fields at v and w, respectively. Let $\tau \in \text{Gal}(F^s/F)$ be an element that acts as the Frobenius automorphism of κ_w/κ_v. Suppose that $v \notin S_\ell$, and let

$$\varphi_w = \rho_{\ell,c}(\tau) \in \text{Aut}(V_\ell(A)).$$

Then $\rho_{\ell,c}$ is unramified at v, the characteristic polynomial $P_v(t)$ of φ_w lies in $\mathbb{Z}[t]$ and does not depend on the choice of w and ℓ, and the roots of $P_v(t)$ all have complex absolute value $\sqrt{|\kappa_v|}$.

and let $\text{End}_F^0(A) = \text{End}_F(A) \otimes \mathbb{Z}_p$. If ℓ is a prime number and $\ell \neq \text{char}(F)$, let $T_\ell(A) = \lim A_\ell$ (the Tate module), let $V_\ell(A) = T_\ell(A) \otimes \mathbb{Z}_p$, and let $\rho_{A,\ell}$ denote the ℓ-adic representation

$$\rho_{A,\ell} : \text{Gal}(F^s/F) \to \text{Aut}(T_\ell(A)) \subseteq \text{Aut}(V_\ell(A)).$$
Proof. We use that \(\{ \rho_{A, \ell} \} \) is a strictly compatible system of integral \(\ell \)-adic representations of \(\text{Gal}(\overline{F}^s/F) \) (see §3 and I.2 of [13]). Let \(A_v \) be the abelian variety over \(\kappa_v \) which is the reduction of \(A \) at \(v \). The choice of \(w \) allows us to identify the Tate modules \(V_f(A) \) and \(V_f(A_v) \), and this identification is compatible with the natural embedding \(\text{End}^0(A) \hookrightarrow \text{End}^0(A_v) \). Let

\[
Fr_w = \rho_{A, \ell}(\tau) \in \text{Aut}(V_f(A)).
\]

Then

\[
\varphi_w = c(\tau)Fr_w \in \text{Aut}(V_f(A)) \subseteq \text{Aut}(V_f(A_v)),
\]

and the identification of \(\text{Aut}(V_f(A)) \) with \(\text{Aut}(V_f(A_v)) \) identifies \(Fr_w \) with the Frobenius endomorphism of \(A_v \) inside \(\text{Aut}(V_f(A_v)) \). It follows from Weil’s results on endomorphisms of abelian varieties that \(P_\ell(v) \) has rational coefficients which do not depend on the choice of \(w \) and \(\ell \). If \(m = [M:F] \) then \((c(\tau)Fr_w)^m = (Fr_w)^m \in \text{End}(A_v) \) and therefore all roots of \(P_\ell(v) \) are algebraic integers. Therefore, \(P_\ell(v) \in \mathbb{Z}[\ell] \). Further, Weil’s results imply that the eigenvalues of \(\varphi_w \) have absolute value \(\sqrt{\#\kappa_v} \). \(\square \)

Theorem 2.4. If \(F \) is either a finitely generated extension of \(\mathbb{Q} \) or a function field in one variable over a finite field, then every finite abelian group occurs as a Galois group over \(F \).

Proof. See Theorem 3.12c of [1], and IV.2.1 and IV.1.2 of [1]. \(\square \)

Next we define the Mumford-Tate group of a complex abelian variety \(A \) (see §2 of [10] or §6 of [22]). If \(A \) is a complex abelian variety, let \(V = H_1(A(\mathbb{C}), \mathbb{Q}) \) and consider the Hodge decomposition \(V \otimes \mathbb{C} = H_1(A(\mathbb{C}), \mathbb{C}) = H^{1,0} \oplus H^{0,-1} \). Define a homomorphism \(\mu : G_m \rightarrow GL(V) \) as follows. For \(z \in \mathbb{C} \), let \(\mu(z) \) be the automorphism of \(V \otimes \mathbb{C} \) which is multiplication by \(z \) on \(H^{1,0} \) and is the identity on \(H^{0,-1} \).

Definition 2.5. The Mumford-Tate group \(MT_A \) of \(A \) is the smallest algebraic subgroup of \(GL(V) \), defined over \(\mathbb{Q} \), which after extension of scalars to \(\mathbb{C} \) contains the image of \(\mu \).

If \(A \) is an abelian variety over a subfield \(F \) of \(\mathbb{C} \), we fix an embedding of \(\mathbb{F} \) in \(\mathbb{C} \). This gives an identification of \(V_f(A) \) with \(H_1(A, \mathbb{Q}) \otimes \mathbb{Q}_\ell \), and allows us to view \(MT_A \times \mathbb{Q}_\ell \) as a linear \(\mathbb{Q}_\ell \)-algebraic subgroup of \(GL(V_f(A)) \). Let

\[
MT_{A, \ell} = MT_A \times \mathbb{Q}_\ell.
\]

Then \(MT_A(\mathbb{Q}_\ell) = MT_{A, \ell}(\mathbb{Q}_\ell) \). The Mumford-Tate conjecture for abelian varieties (see [12]) may be reformulated as the equality of \(\mathbb{Q}_\ell \)-algebraic groups, \(\mathcal{G}_\ell(F, A)^0 = MT_{A, \ell} \).

Conjecture 2.6 (Mumford-Tate Conjecture). If \(A \) is an abelian variety over a finitely generated extension \(F \) of \(\mathbb{Q} \), then \(\mathcal{G}_\ell(F, A)^0 = MT_{A, \ell} \).

The inclusion \(\mathcal{G}_\ell(F, A)^0 \subseteq MT_{A, \ell} \) was proved by Piatetski-Shapiro [1], Deligne [2], and Borovoi [6].

It is well-known that \(MT_A \) contains the homotheties \(G_m \) and that the centralizer of \(MT_A \) in \(\text{End}(V) \) is \(\text{End}^0(A) \). Therefore, the center of \(MT_A(\mathbb{Q}) \) contains \(-1\) and is contained in the center of \(\text{End}^0(A) \).
3. ℓ-INDEPENDENCE

Suppose that F is either a finitely generated extension of \mathbb{Q} or a global field. Suppose $F = F_0(A)$, so that $\mathfrak{G}_\ell(F, A) = \mathfrak{G}_\ell(F, A)^0 = \mathfrak{G}_\ell(L, A)$ for all finite extensions L of F. It follows from [13], [14], [20], and [21], and VI.5 and XII.2 of [2], that $\mathfrak{G}_\ell(F, A)$ is a reductive \mathbb{Q}_ℓ-algebraic group, whose centralizer in $\text{End}(V_\ell(A))$ is $\text{End}(A) \otimes \mathbb{Q}_\ell$. This implies that the center of $\mathfrak{G}_\ell(F, A)(\mathbb{Q}_\ell)$ is isomorphic to $\mu_{\mathfrak{G}_\ell}(\mathbb{Q}_\ell)$, and therefore is independent of ℓ. In the following two results we prove that $\mu_A \cap \mathfrak{G}_\ell(F, A)(\mathbb{Q}_\ell)$ is independent of ℓ (without assuming the Mumford-Tate Conjecture).

It follows from Weil’s results on abelian varieties [19] (as was pointed out by Deligne; see 2.3 of [12]) that $\mathfrak{G}_\ell(F, A)$ contains the homotheties G_m. In particular, $-1 \in \mathfrak{G}_\ell(F, A)(\mathbb{Q}_\ell)$.

Theorem 3.1. Suppose A is an abelian variety over a finitely generated extension F of \mathbb{Q}, and $F = F_\ell(A)$. Let μ_A denote the group of elements of finite order in the center of $\text{End}^0(A)$. Then $\mu_A \cap \mathfrak{G}_\ell(F, A)(\mathbb{Q}_\ell)$ is independent of the prime ℓ.

Proof. Over \mathbb{C}, we can view A as C^d/L with L a lattice in C^d. Then $L' = \sum_{\gamma \in \mu_A} \gamma(L)$ is a μ_A-invariant lattice in C^d that contains L as a subgroup of finite index. The complex abelian variety C^d/L' has a model A' defined over a finite extension F' of F such that A and A' are F'-isogenous and μ_A coincides with the set of elements of finite order in the center of $\text{End}(A')$. Since $\mathfrak{G}_\ell(F', A') = \mathfrak{G}_\ell(F', A) = \mathfrak{G}_\ell(F, A)$, we may assume without loss of generality that μ_A coincides with the set of elements of finite order in the center of $\text{End}(A)$. By Theorem 2.4, we can choose an abelian extension M of F such that $\text{Gal}(M/F)$ is isomorphic to μ_A. Let

$$\chi: \text{Gal}(M/F) \rightarrow \mu_A$$

be an isomorphism, let $c: \text{Gal}(F^s/F) \rightarrow \mu_A$ be the composition of χ with the projection $\text{Gal}(F^s/F) \rightarrow \text{Gal}(M/F)$, and let B denote the twist of A by the cocycle induced by c. By Lemma 2.3, $\mathfrak{G}_\ell(F, B)^0 = \mathfrak{G}_\ell(F, A)$. The character c induces an isomorphism

$$\text{Gal}(M/F_\ell(B)) \cong \mu_A \cap \mathfrak{G}_\ell(F, B)^0(\mathbb{Q}_\ell) = \mu_A \cap \mathfrak{G}_\ell(F, A)(\mathbb{Q}_\ell).$$

Since $\text{Gal}(M/F_\ell(B))$ is independent of ℓ, we are done. \quad \square

Theorem 3.2. Suppose F is a function field in one variable over a finite field, A is an abelian variety over F, and ℓ is a prime number not equal to $\text{char}(F)$. Suppose $F = F_\ell(A)$, and let μ_A denote the group of elements of finite order in the center of $\text{End}^0(A)$. Then $\mu_A \cap \mathfrak{G}_\ell(F, A)(\mathbb{Q}_\ell)$ is independent of ℓ.

Proof. By Theorem 2.4 we can choose an abelian extension M of F such that $\text{Gal}(M/F)$ is isomorphic to μ_A. Let

$$\chi: \text{Gal}(M/F) \rightarrow \mu_A$$

be an isomorphism, let $c: \text{Gal}(F^s/F) \rightarrow \mu_A$ be the composition of χ with the projection $\text{Gal}(F^s/F) \rightarrow \text{Gal}(M/F)$, and define $\rho_{\ell,c}: \text{Gal}(F^s/F) \rightarrow \text{Aut}(V_\ell(A))$
by \(\rho_{\ell,c}(\sigma) = c(\sigma)\rho_{A,\ell}(\sigma) \). For \(F \subseteq F' \subseteq F^* \), let \(\Phi_{\ell,c}(F') \) denote the Zariski closure of \(\rho_{\ell,c}(\text{Gal}(F^*/F')) \). Let \(F_{\Phi,c} \) denote the smallest extension \(F' \) of \(F \) in \(F^* \) such that \(\Phi_{\ell,c}(F') \) is connected. By Lemma 2.3, \(\{ \rho_{\ell,c} \} \) is a strictly compatible system of integral \(\ell \)-adic representations. Therefore by Proposition 6.14 of [5], \(F_{\Phi,c} \) is independent of \(\ell \). By definition,

\[
\text{Gal}(M/F_{\Phi,c}) \cong \mu_A \cap \Phi_{\ell,c}(F)^0(\mathbb{Q}_\ell) \quad \text{and} \
\Phi_{\ell,c}(M) = \Phi_{\ell}(M, A).
\]

Lemma 2.1 is valid with \(\Phi_{\ell,c}(F') \) in place of \(\Phi(F', A) \); the proof remains unchanged. Therefore,

\[
\Phi_{\ell,c}(F)^0 = \Phi_{\ell,c}(M)^0 = \Phi_{\ell}(M, A)^0 = \Phi_{\ell}(F, A).
\]

Since \(\text{Gal}(M/F_{\Phi,c}) \) is independent of \(\ell \), we are done. \(\square \)

References

[1] M. Borovoi, The action of the Galois group on the rational cohomology classes of type \((p, p)\) of abelian varieties (Russian), Mat. Sbornik (N. S.) 94 (136) (1974) 649–652 = Math. USSR Sbornik 23 (1974) 613–616.

[2] P. Deligne (notes by J. Milne), Hodge cycles on abelian varieties, in Hodge cycles, motives, and Shimura varieties (P. Deligne, J. Milne, A. Ogus, K.-y. Shih), Lecture Notes in Mathematics 900, Springer-Verlag, Berlin-Heidelberg-New York, 1982, pp. 9–100.

[3] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983) 349–366.

[4] G. Faltings, Complements to Mordell, Chapter VI of Rational Points (G. Faltings, G. Wüstholz, et al.), Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1984.

[5] M. Larsen, R. Pink, On \(\ell \)-independence of algebraic monodromy groups in compatible systems of representations, Invent. math. 107 (1992) 603–636.

[6] M. Larsen, R. Pink, Abelian varieties, \(\ell \)-adic representations, and \(\ell \)-independence, Math. Ann. 302 (1995) 561–579.

[7] B. H. Matzat, Konstruktive Galoistheorie, Lecture Notes in Math. 1284, Springer-Verlag, Berlin-Heidelberg, 1987.

[8] L. Moret-Bailly, Pinceaux de Variétés Abéliennes, Astérisque 129 (1985).

[9] I. I. Piatetski-Shapiro, Interrelations between the Tate and Hodge conjectures for abelian varieties (Russian), Mat. Sbornik 85 (1971) 610–620 = Math. USSR Sbornik 14 (1971) 615–625.

[10] K. Ribet, Hodge classes on certain types of abelian varieties, Amer. J. Math. 105 (1983) 523–538.

[11] D. J. Saltman, Generic Galois Extensions and Problems in Field Theory, Adv. in Math. 43 (1982) 250–283.

[12] J.-P. Serre, Représentations \(\ell \)-adiques, in Algebraic Number Theory (Proceedings of the International Taniguchi Symposium, Kyoto, 1976) (S. Iyanaga, ed.), Japan Society for the Promotion of Science, Tokyo, 1977, pp. 177–193 = # 112 of Œuvres, Vol. III, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1986, pp. 384–400.

[13] J.-P. Serre, Lettres to K. Ribet, Jan. 1, 1981 and Jan. 29, 1981.

[14] J.-P. Serre, Résumé des cours de 1984–1985, Résumé des cours de 1985–1986, Collège de France.

[15] J.-P. Serre, Abelian \(\ell \)-adic representations and elliptic curves, Second edition, Addison-Wesley, Redwood City, CA, 1989.

[16] J.-P. Serre, Propriétés conjecturales des groupes de Galois motiviques et des représentations \(\ell \)-adiques, in Motives (U. Jannsen, S. Kleiman, J.-P. Serre, eds.), Proc. Symp. Pure Math. 55 (1994), Part 1, pp. 377–400.

[17] A. Silverberg, Yu. G. Zarhin, Connectedness results for \(\ell \)-adic representations associated to abelian varieties, Comp. math. 97 (1995) 273–284.

[18] A. Silverberg, Yu. G. Zarhin, Connectedness extensions for abelian varieties, preprint.

[19] A. Weil, Variétés abéliennes et courbes algébriques, Hermann, Paris, 1948.
[20] Yu. G. Zarhin, *Endomorphisms of abelian varieties over fields of finite characteristic* (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975) 272–277 = Math. USSR - Izv. 9 (1975) 255–260.

[21] Yu. G. Zarhin, *Abelian varieties in characteristic p* (Russian), Mat. Zametki 19 (1976) 393–400 = Math. Notes 19 (1976) 240–244.

[22] Yu. G. Zarhin, *Weights of simple Lie algebras in the cohomology of algebraic varieties* (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984) 264–304 = Math. USSR - Izv. 24 (1985) 245–282.

Department of Mathematics, Ohio State University, 231 W. 18 Avenue, Columbus, Ohio 43210–1174, USA

E-mail address: silver@math.ohio-state.edu

Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA.

Institute for Mathematical Problems in Biology, Russian Academy of Sciences, Pushchino, Moscow Region, 142292, Russia

E-mail address: zarhin@math.psu.edu