Isolation of an Anti-Cancer Asperuloside from *Hedyotis corymbosa* L.

Nina Artanti¹, Muhammad Hanafi²*, Rina Andriyani¹, Vienna Saraswati¹, Zalinar Udin¹, Puspa D. Lotulung¹, Ken Ichĳ Fujita², Yoshinosuke Usuki²

¹Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK, Serpong Tangerang-Indonesia 13514/ Jl. Cisitu-Sangkuriang, Gedung 50, Bandung, Indonesia 40135
²Material Sciences, Faculty of Science, Osaka City University, Japan

ABSTRACT

Hedyotis corymbosa L., with local name rumput mutiara, is an anti-inflammatory, anti-cancer and hepatoprotective traditional medicine. The ethanol extract of *H. corymbosa* L. shows inhibitory activity to human YMB-1 breast cancer cell line with an IC₅₀ of 6.51 µg/mL. The methylene chloride fraction shows a potential cytotoxic activity with an IC₅₀ of 2.75 µg/mL. To obtain a lead compound, the extract was further purified by column chromatography. A pure compound is obtained which shows inhibitory activities against YMB-1, HL60 and KB human cell lines with IC₅₀ values of 0.7; 11.0 and 104.2 µg/mL, respectively. Based on the 1D and 2D FT-NMR data, the isolated compound is an asperuloside.

Keywords: asperuloside, *Hedyotis corymbosa*, HL60, KB, leaf, Rubiaceae, YMB-1

INTRODUCTION

Hedyotis corymbosa L., with local name rumput mutiara, is one of the herbal medicines used by Indonesian people to treat diseases or to maintain their health [1]. It is also being used to treat inflammation, hepatitis, cancer. There are a wide variety of products from *H. corymbosa* that have been sold for a long period of history [2].

H. corymbosa is one of the species of *Hedyotis* (genus), Rubiaceae (family), Rubiales (ordo), Dicotyledoneae (class), Angiospermae (sub-division), and Spermatophyta (Division). It grows well in dry and sandy soil, along rivers and coasts and in the forests [3-5]. They widely grow in Indonesia, are also found in Malaysia and India. Previous studies on some *Hedyotis* species have yielded indole alkaloids, anthraquinones, lignans, triterpenes, flavonoids as well as iridoids, the three new iridoid glycosides are identified as hedyrcorysid A-C [6].

Many *Hedyotis* species (Rubiaceae) are also used in traditional Chinese medicine (TCM) for the treatment of appendicitis, tonsillitis, hepatitis, dysentery, snake bites, and bruising [7]. The chemical constituents of this genus include iridoid glycosides, triterpenoids, flavonoids, anthraquinones, coumarins, lignans, and alkaloids, some compounds exerting anti-inflammatory, neuroprotective, and cytotoxic effects [8]. *H. corymbosa* (Linn.) Lam. is an annual herb widely distributed in the southeast and southwest of China [5]. The whole plant is applied in the clinic against malaria, intestinal abscess, boils, scald, and some kinds of tumors, such as gastric, esophageal, and colorectal carcinomas [9-11].

Investigations on the methanol extract of *H. corymbosa* reveal various bioactivities, namely antibacterial, anti-inflammatory, free radical-scavenging, cytotoxic, and hepatoprotective [3,12]. In this investigation, we investigate the cytotoxicity of ethanol extract from the whole plant, its fractions and a lead compound of *H. corymbosa*. We use Sulforhodamine B method against YMB-1, HL60, and KB cell lines to determine the half maximal inhibitory concentration (IC₅₀). Based on the active fraction, we have isolated a cytotoxic

Compound	IC₅₀ (µg/mL)		
	YMB-1	HL60	KB
Asperuloside	0.7	11.0	504.2
Antimycin A3	0.3	1.7	2.9

*Corresponding author: Muhammad Hanafi Research Center for Chemistry, Indonesian Institute of Sciences, Indonesia E-mail: hanafi124@yahoo.com
Isolation of an Anti-Cancer Asperuloside from *Hedyotis corymbosa* L.

Materials and Methods

Materials

Hedyotis corymbosa samples were collected from Indonesian Medicinal and Aromatic Crops Research Institute. Species identification of the species was performed by the Research Center for Biology, Indonesian Institute of Sciences (Cibinong, Indonesia). Whole plant samples were washed and powder dried. The crude extract was obtained using technical grade ethanol as a solvent. Extracts were also obtained with *n*-hexane, methylene chloride, and ethyl acetate as solvents.

Isolation and Identification of Methylene chloride Fraction

The entire *H. corymbosa* was used in this study. Ethanol extract was dissolved in methanol-water and fractionated in *n*-hexane, methylene chloride, and ethyl acetate. The active methylene chloride (MTC) fraction was purified by column chromatography and crystallized in dichloromethane-*n*-hexane. A pure compound was identified by one dimensional (1D) and 2D (HSQC and HMBC) FT-NMR (Bruker 300 MHz).

Cell Culturing

YMB-1 (breast cancer), HL60 and KB cell lines were obtained from Department of Material Science, Faculty of Science–Osaka City University, Osaka–Japan. The cell lines were cultivated at 37°C with 5% CO₂ under 5% CO₂. After 24h, medium was replaced and extracts were added at final concentrations ranging from 100 to 3.125 µg/mL. After 24 hours, cold 50% trichloroacetic acid was added and the plates were incubated at 4°C for 30 minutes, washed with tap water 5 times, and air-dried. The wells were incubated with 100 µg of SRB dye dissolved in 1% acetic acid. After rinsing-off unbound dye with 1% acetic acid five times,

![Structure of compound 1 (asperuloside)](image)

Table 2.

No	$\delta_{H} (\text{ppm})$	δ_{C}	Asperuloside (CDCl₃, 300 MHz)	δ_{H}
1	5.92 (2)	100.1	5.82 (2)	99.9
2				
3	7.21 (2)	150.3	7.21 (2)	150.3
4		106.3		106.3
5	3.57 (m)	37.5	3.57 (m)	37.5
6	5.47 (d, 1.6; 6.8)	96.4	5.47 (d, 6.8)	96.3
7	5.90 (d, 1.5)	129.0		129.0
8	144.1			144.3
9	5.31 (m)	45.3	3.35 (m)	45.2
10	4.50 (d, 12.3; 7.8)	64.4	4.50 (d, 7.5)	64.4
1'	4.6 (d, 7.5)	93.4	4.6 (d, 7.5)	93.3
2'	3.6 (m)	77.9		77.9
3'	3.32 (m)	70.4		70.4
4'	3.31 (1.7)	71.5		71.6
5'	3.41 (d, 7.0, 4.8)	74.7	3.41 (d, 7.0, 4.8)	74.6
6'	2.83 (d, 12.3, 7.1)	61.9	2.83 (d, 123.3, 7.1)	61.8
CH₃CO₂⁻		172.3		173.3
CH₂CO₂⁻		172.6		173.6

Assay for Cytotoxic Activity

The cytotoxic assay was determined using Sulforhodamine B (SRB) method (reference- is this provided by a kit). Cell suspensions (10⁴ cells/mL) were seeding to each well and the cells were incubated for at 37°C under 5% CO₂. After 24h, medium was replaced and extracts were added at final concentrations ranging from 100 to 3.125 µg/mL. After 24 hours, cold 50% trichloroacetic acid was added and the plates were incubated at 4°C for 30 minutes, washed with tap water 5 times, and air-dried. The wells were incubated with 100 µg of SRB dye dissolved in 1% acetic acid. After rinsing-off unbound dye with 1% acetic acid five times,
the plates were air-dried. The solubilized bound dye with 200 µg/well 10 mM Tris base (pH 10) for 5 minutes on a gyratory shaker. The measurement of Optical Density (OD) at 515 nm used ELISA plate reader (Tecan Mannedorf, Switzerland). Assay was performed in triplicates per extract. Antimycin A3 was used as positive control. Concentration of samples and control in triplicates was started from the methine proton of H-1 which were found at δ_H 4.58 (dd, 12; 7.8 Hz) and 3.82 (dd, 12; 2.1 Hz), 3.42 (dd, 12; 3.8 Hz) were suggested to be connected with an oxygenated group and has geminal coupling. Meanwhile the methine groups at δ_H 3.2 – 3.6 suggested to be connected with –OH groups, and indicated the presence of glucosyl group. It was supported by the presence of anomeric proton (H-1’) at δ_H 4.60 (d, 7.8 Hz). The olefinic group that more deshielded than others that were found at δ_H 7.21 (d, 2 Hz) suggested as proton on sp2 carbon that also linked with an oxygen atom.

Inspection of 13C NMR spectra revealed about 18 signals. Methyl signal that were present at δ_C 2.0 (s), was easily determined as carbon as δ_C 20.7. Two carbonyls, and two quaternary sp2 carbon also present at δ_C 172.3, 172.6, 144.1 and 106.1 respectively. Four oxygenated methine carbons were signaled of δ_C 71.6 to 78.4 (non-anomeric carbon), and δ_C 93.4 (anomeric carbon). Methine carbons at δ_C 93.4 and 100.1 expected to have deshielding effect and suggested to be linked with two oxygen atom. By exposure of 13C NMR, we suggested that it has monoterpane and glucopyranosyl basic skeleton. The basic skeleton of monoterpane was from ten carbon of one methylene sp3, two quaternary sp2 carbon, two methine sp3, two methine sp2 two oxygenated methine sp3, and one carbonyl (C=O). Meanwhile, CH3C=O groups suggested as substituent in monoterpane skeleton. The glucopyranosyl ring was presented by three non-anomeric carbons that also came from methine group, two anomeric carbon, and methylene groups which attached with hydroxyl group respectively. The methylene group from glucopyranosyl ring was presented by proton of δ_H 3.8 (dd); 3.41 (dd). It confirmed well in HMBC spectra by correlation of the proton with anomeric carbon at δ_C 4.60 (d, 7.8 Hz). The olefinic group that more deshielded than others that were found at δ_H 7.21 (d, 2 Hz) suggested as proton on sp2 carbon that also linked with an oxygen atom.

RESULTS AND DISCUSSION

H. corymbosa has shown cytotoxic activity to YMB-1 cell line with IC50 of 6.51 µg/mL. After fractionation, the methylene fraction exhibits an IC50 of 2.75 µg/mL. Our ethanol extract and its fraction in n-hexane, methylene chloride, and ethyl acetate have been previously reported to be inhibitory to breast cancer cell line [13], with IC50 of 9.63, 33.45, 54.59 and 52.58 µg/mL, respectively.

We were able to purify the active compound that showed strong activity to inhibit both YMB-1 and HL60 with IC50 0.7 and 11.0 µg/mL, respectively, and its similar to standard. The compound has no activity against KB carcinoma cell line. For control standard, we used antimycin A3, with strong cytotoxic to growth inhibition human breast cancer cell line YMB-1, human leukemia cell line HL60 and KB with IC50 value of 0.3, 1.7 and 2.9 µg/mL, respectively. Furthermore, it was identified by 1D and 2D NMR experiments data.

From 1H NMR spectra of compound 1 (see Table 1), there were 16 signals present. Methyl proton was found at δ_H 2.0 (s, CH3CO-) and indicated as acetyl group substituent. There were also two methylene and ten methine groups on the spectra. The methylene group which were found at δ_H 4.58 (dd, 12; 7.8 Hz) and 3.82 (dd, 12; 2.1 Hz), 3.42 (dd, 12; 3.8 Hz) were
methyl of δH 2.0 (s) is also adjacent to the carbonyl of δC 172.6 due there is no other empty carbon space to be attached. The glucocyl group was located in C-1 based on the presence of long-range coupling between H-1 at δH 4.6 (d) to at δC 100.1. The detailed HMBC experiment is summarized in Figure 1. The structure above is similar and in the agreement with asperuloside as showed in Figure 2 [6,14,15].

CONCLUSIONS

The ethanol extract and methylene chloride fraction of H. corymbosa L. are prospective as a potential for anticancer, to growth inhibition to YMB-1 cell line with each IC50 value is 6.51 and 2.75 µg/mL. A lead compound asperuloside also shown high biological activity to growth inhibition against YMB-1 and HL60 cell line with IC50 is 0.7 and 11.0 µg/mL.

ACKNOWLEDGMENT

Authors express their sincere thanks to Research Centre for Chemistry-Indonesian Institute of Science (LIPI) and the Japan Society for the Promotion of Science (JSPS) Japan, for support by Grants for Scientific Research. and permitting to carry out the research work. We wish to thank, Prof. Hideo Iio and Dr. Akira Ogita from Osaka City University, Osaka Japan for measurement NMR spectrum and biological assay.

REFERENCES

1. Sirait N (2015) Potensi rumput mutiara (Hedyotis corymbosa) sebagai antikanker. Warta Penelitian dan Pengembangan Tanaman Industri. 20(3): 11-13.
2. Sivapraaksam SSK, Karunakaran K, Subburaya U, Kuppusamy S, Subhashini TS (2014) A review on phytochemical and pharmacological profile of Hedyotis corymbosa Linn. Int. J. Pharm. Sci. Rev. Res. 28(1): 320-324.
3. Ahmad R, Ali AM, Israf DA, Ismail NH, Saari K, Lajis NH (2004) Antioxidant, radical-scavenging, anti-inflammatory and antibacterial activities of methanolic extracts of some Hedyotis species. Life Sciences. 76: 1953-1964.
4. Liou WC, Lin YC, Lin YM, Chen FC (1979) N-Benzoyl-L-phenylalanl-L-phenylalanin acetate from Hedyotis corymbosa (L.) Lam. Chemisty. (3): 72-73.
5. Ho TI, Chen GP, Lin, YC, Chen FA (1986) An anthraquinone from Hedyotis diffusa. Phytochemistry. 25(8): 1988-1989.
6. Jiang W, Kuang LS, Hou AJ, Qian ML, JZ (2007) Iridoid glycosides from Hedyotis corymbosa. Helvetica Chimica Acta. 90(7): 1296-1301.
7. Chinese Patent Application (2014) Traditional Chinese medicine composition for treating stomach cancer, application and preparation. CN 103585514 A.
8. Chen YH, Chang FR, Wu CC, Yen MH, Liaw CC, Huang HC, Kuo YH, Wu YC (2006) New cytotoxic 6-oxygenated 8,9-dihydrofurocoumarins, hedyotiscone A-C, from Hedyotis biilora. Planta Med. 72:75.
9. Zhao JF, Yuan QM, Yang XD, Zhang HB, Li L (2005) Two new iridoid glycosides from Hedyotis tenelliliora Blume. Helv. Chim. Acta. 88: 2532-2536.
10. Ahmad R, Shaari K, Lajis NH., Hamzah AS, Ismail NH, Kitajima M (2005) Anthraquinones from Hedyotis capitellata. Phytochemistry. 66: 1141.
11. Jiangsu College of New Medicine (1997), in HA Dictionary of the Traditional Chinese Medicines I. Shanghai Scientific and Technical Publishers, Shanghai. p. 355.
12. Badashivan S, Latha PG, Sasikumar JM, Rajeshkaran S, Shyamal S, Shine VJ (2006) Hepatoprotective studies on Hedyotis corymbosa (L.) Lam. J. Ethnopharmacology. 106: 245–249.
13. Andriyani R, Risdian C, Udin Z (2011) Cytotoxicity Assay from Fractions of Hedyotis corymbosa Extract Against Breast Cancer Cell Line T47D. Indonesian J. Cancer Chemoprevention. 2(1): 182-186.
14. Lee JH, Ku CH, Baek NI, Kim SH, Park HW, Kim DK (2004) Phytochemical constituents from Diodia teres. Arch. Pharm. Res. 27(1): 40-43.
15. Peng JN, Peng XZ, Peng XTL (1998) Iridoids from Hedyotis hedyotidea. Phytochemistry. 47(8): 1657-1659.
16. Jae HL, Chung HK, Nam IB, Sung HK, Hye WP, Dae JK (2004) Phytochemical Constituents from Diodia teres. Arch Pharm Res. 27(1): 40-43.