The Influence of Immunosuppressive Agents on the Risk of De Novo Donor-Specific HLA Antibody Production in Solid Organ Transplant Recipients

Jacqueline G. O’Leary, MD, MPH, Millie Samaniego, MD, Marta Crespo Barrio, MD, Luciano Potena, MD, PhD, Adriana Zeevi, PhD, Arjang Djamali, MD, and Emanuele Cozzi, MD, PhD

Production of de novo donor-specific antibodies (dnDSA) is a major risk factor for acute and chronic antibody-mediated rejection and graft loss after all solid organ transplantation. In this article, we review the data available on the risk of individual immunosuppressive agents and their ability to prevent dnDSA production. Induction therapy with rabbit antithymocyte globulin may achieve a short-term decrease in dnDSA production in moderately sensitized patients. Rituximab induction may be beneficial in sensitized patients, and in abrogating rebound antibody response in patients undergoing desensitization or treatment for antibody-mediated rejection. Use of bortezomib for induction therapy in at-risk patients is of interest, but the benefits are unproven. In maintenance regimens, nonadherent and previously sensitized patients are not suitable for aggressive weaning protocols, particularly early calcineurin inhibitor withdrawal without lymphocyte-depleting induction. Early conversion to mammalian target of rapamycin inhibitor monotherapy has been reported to increase the risk of dnDSA formation, but a combination of mammalian target of rapamycin inhibitor and reduced-exposure calcineurin inhibitor does not appear to alter the risk. Early steroid therapy withdrawal in standard-risk patients after induction has no known dnDSA penalty. The available data do not demonstrate a consistent effect of mycophenolic acid on dnDSA production. Risk minimization for dnDSA requires monitoring of adherence, appropriate risk stratification, risk-based immunosuppression intensity, and prospective DSA surveillance.

DOI: 10.1097/TP.0000000000000869

ISSN: 0041-1337/15/0000

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved. This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives 3.0 License, where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially.
characterized by histopathologic changes, with or without C4d staining, and the presence of DSA in serum. In kidney transplantation, it is estimated that graft loss may occur in 15% to 20% of cases within 1 year of AMR being diagnosed. Chronic AMR is associated with acute hemodynamic compromise, accelerated transplant coronary artery disease and mortality after heart transplantation, and graft injury and fibrosis in liver transplants. The dnDSA development in lung transplant recipients is a major risk for progression to bronchiolitis obliterans syndrome and greater severity of and death related to bronchiolitis obliterans syndrome.

Research into the presence and clinical impact of dnDSA received a major impetus after the development of solid-phase assays, which improved the sensitivity of detection and characterization of HLA antibodies compared to previous complement-dependent cytotoxicity assays. The near-universal adoption of single-antigen beads for specificity testing, moreover, has made it possible to differentiate between dnDSA and non-DSA more accurately. Current techniques also permit investigation of the biological activity and mechanisms of antibody injury. For instance, complement-binding (C1q) dnDSA appears to show a stronger relationship with graft loss than non-C1q–binding antibodies. Considerable challenges persist, however, including intermanufacturer and lot-to-lot variation, a lack of standardization in cutoff points to define a positive test, and a degree of intralaboratory and interlaboratory variabilities. Variability between laboratories using the solid-phase antigen bead assay with Luminex technology can be reduced by standardizing the test protocol and using identical reagents. The DNDSA measurement using this technique can assess strength, effector function (via analysis of complement fixing properties, although false positive or negative results are possible), and immunoglobulin G subclasses. Furthermore, xenoantibodies, such as rabbit antithymocyte globulin (rATG) and monoclonal antibodies, such as rituximab, may interfere with some antibody detection methods, such as complement-dependent cytotoxicity and flow cytometric crossmatch but not with solid phase antigen bead assays. Thus, comparison of dnDSA results between studies can be confounded by potential differences in the immunosuppression administered or in the timing and type of monitoring techniques used during follow-up.

Because dnDSA development has been convincingly associated with inferior outcomes, it is imperative to avoid this undesirable alloimmune response, but simple immunosuppression carries significant risks, and may still be insufficient to control a robust antibody response. Therefore, it is essential to understand the risk factors for dnDSA formation and the relative effects that each immunosuppressive agent may have on prevention of dnDSA formation. Toward the goal of risk-based personalized immunosuppression, this review evaluates the influence of induction and maintenance immunosuppression on the likelihood of dnDSA formation.

IMMUNOSUPPRESSION-DEPENDENT RISK FACTORS FOR dnDSA PRODUCTION

Donor and recipient characteristics alter the risk of dnDSA formation. In particular, the degree of HLA matching is a major independent predictor of dnDSA formation. Although only matching at HLA A, B, or DR loci has traditionally been evaluated, currently DQ mismatching appears consistently associated with the highest frequency of dnDSA. Across all organs, including pediatric recipients, dnDSA are mostly directed against DQ antigens, in particular DQ β chains. Other HLA loci, however, cannot be neglected. Wiebe and colleagues observed HLA-DRβ1, but not HLA-DQ, to be an independent predictor for dnDSA in a series of 315 kidney transplant patients without preformed DSA, and a significant effect of HLA-DR matching has been described by other authors. Future, more sophisticated, epitope mismatching analyses may prove useful in risk assessments of dnDSA development.

Younger age (typically, <50 years) is consistently associated with increased risk of dnDSA development. This may result from a more robust immune system or may simply be a consequence of greater nonadherence. African American race, male sex, the pre-existence of non-DSA HLA at the time of transplantation, and persistent BK virus infection also appear to influence risk. Other important factors include sensitization events, such as retransplantation, pregnancy, and blood transfusions or indicators of high immunological risk, such as previous acute rejection.

In the absence of randomized controlled trials evaluating dnDSA development between different immunosuppressive therapies, this array of risk factors complicates comparisons between studies, particularly where multivariate analyses are not performed. They should, however, be taken into account when customizing immunosuppressive strategy. It is critical to also remember that dnDSA develops over time; numerically more patients become dnDSA positive as time posttransplant increases, which must be considered when comparing studies.

EFFECT OF INTENSITY OF IMMUNOSUPPRESSION

Nonadherence or Inadequate Immunosuppression

Underimmunosuppression is known to lower kidney allograft survival and, intuitively, would be expected to increase the likelihood of dnDSA production. Two distinct scenarios heighten concern for dnDSA development: (1) nonadherence to the prescribed regimen and (2) underimmunosuppression as a result of weaning strategies. Recent studies of nonadherence to the immunosuppressive regimen have shown nonadherence to affect at least a quarter of patients across all organs, and it increases over time after transplantation. Nonadherence is a well-established risk factor for dnDSA and late acute AMR. Data from small single-center series in adults and pediatric kidney transplants have described a high rate of nonadherence or prescribed reduction in immunosuppression in the majority of patients with dnDSA or AMR. In 1 report of 23 cases of AMR, 4 patients had documented nonadherence, whereas 16 patients had previously received a physician-directed reduction in immunosuppression. Sellares et al prospectively followed up kidney transplant patients for a median of 31.4 months after indication allograft biopsy. Nonadherent patients at the time of biopsy were more likely to be DSA positive (77% versus 29% in adherent patients, P < 0.001), and more likely to progress to graft failure (32% versus 5%, P = 0.0001) than adherent patients. Similarly, Wiebe et al studied 315 consecutive DSA-negative kidney transplant recipients, 15% of whom developed dnDSA within a median of 4.6 years. Nonadherence was significantly more frequent in those with dnDSA
(49% versus 8% in adherent individuals, \(P < 0.001 \)), a finding confirmed in logistic regression analysis (odds ratio [OR] = 8.75, \(P < 0.001 \)). In liver transplantation, compliance with the calcineurin inhibitor (CNI) regimen was the most influential factor associated with dnDSA formation.27

Also, some medications can be associated with dnDSA production, such as interferon in renal allograft recipients.62 Although the risk of dnDSA has never been tested in liver allograft recipients of interferon therapy, plasma cell hepatitis is a known complication and one can speculate this to be associated with dnDSA formation.63 Therefore, this may educate us about the role of interferon, either endogenous or exogenous in dnDSA formation.

Weaning of Immunosuppression

Calcineurin inhibitor and steroid-sparing strategies have been widely investigated in all types of solid organ transplantation. Graft injury from antibody-mediated damage may increase if CNI therapy is withdrawn or becomes subtherapeutic.64 A complete understanding of this effect, however, has to date been hampered by the lack of DSA data collection in the majority of earlier randomized CNI-sparing trials, and the paucity of long-term data on dnDSA monitoring after CNI reduction or withdrawal in more recent studies. Steroid withdrawal or avoidance may not increase the risk of dnDSA if adequate immunosuppression is otherwise maintained.65,66 In a 3-year longitudinal study of 37 kidney transplants randomized to steroid withdrawal at day 7 or to standard steroid therapy, all of whom received rATG induction, tacrolimus and mycophenolate mofetil (MMF), Delgado et al.65 found that only one patient in the standard-steroids group developed dnDSA, and none in the steroid-withdrawal arm.

IMMUNOLOGICAL EFFECTS OF IMMUNOSUPPRESSIVE AGENTS

Although B-cells and plasma cells produce antibodies, T-cell help is essential for the development of dnDSA. Effective T-cell suppression is therefore crucial to prevent dnDSA formation. Figure 1 shows a schematic overview of the key immunosuppressant agents and classes and their targets, including helper T-cells, each of which is discussed in more detail below.

Biological Therapies

Rabbit antithymocyte globulin targets peripheral T-lymphocytes, B-lymphocytes, natural killer cells, and plasma cells, and to a lesser extent monocytes and macrophages.67 Administration of rATG at a cumulative dose of 6 mg/kg depletes T-cells for up to 12 months68 and may also reduce B-cells.69 The monoclonal antibody alemtuzumab depletes both T- and B-cells for up to a year,9,70 and primate models suggest that depletion is more complete than that with rATG.71 The IL-2 receptor antagonist (IL-2RA) agents block activated T-cells without affecting T-cell or B-cell numbers.

Rituximab, a chimeric anti-CD20 monoclonal antibody, inhibits development of memory T-cells and modulates the B-cell response by depleting memory B-cells.72 Recent publications show that rituximab could be of benefit in the induction of sensitized patients, and in abrogating rebound antibody response in patients undergoing desensitization or treatment for AMR.6,74 The proteasome inhibitor bortezomib profoundly inhibits activated B-cells and induces plasma cell apoptosis.75 Both agents have been used to treat refractory AMR27 and for desensitization in the scenario of preformed antibodies.6,77

Maintenance Therapies

The CNI agents cyclosporine (CsA) and tacrolimus suppress the humoral immune response by interfering with T-helper cell signaling78 and are potent suppressors of antibody-mediated natural killer cell activation in vitro.64 CNI agents also attenuate T-cell–dependent B-cell immune responses by reducing levels of stimulatory cytokine mRNA in activated T-cells.79 Mycophenolic acid (MPA) inhibits both T- and B-cell proliferation (by blocking guanosine nucleotide production and preventing DNA synthesis79) and T-cell trafficking through the transcription of GMP-dependent cell adhesion molecules.79,80 The mechanistic target of rapamycin (mTOR) inhibitors everolimus and sirolimus block growth factor–mediated proliferation of T-cells and interfere with T-helper cell signaling.81,82 They also suppress B-cell proliferation, B-cell immunoglobulin production in the early phase of the B-cell immune reaction,83,84 and B-cell activation83 and differentiation86,87 and inhibit intracellular signaling implicated in AMR-induced allograft damage.82 In a study comparing the immunologic effects of sirolimus, CsA and tacrolimus in a porcine model of arterial transplantation, dnDSA formation by day 30 was suppressed only in the sirolimus group.90 Clinically, memory and regulatory T-cell recovery91,92 during immune reconstitution after rATG or alemtuzumab induction is greater in kidney transplant patients treated with an mTOR inhibitor compared to CNI therapy.91-95 Experimental models suggest that mTOR inhibition reduced noncomplement-mediated vascular injury by DSA96. Corticosteroids exert a multifaceted immunomodulatory effect, altering T-cell function and redistributing cell subsets.27 The B-cell antibody production is suppressed indirectly by steroids, through various mechanisms arising from a modified effect of T-cell function on allogeneic B-cell activation.27

IMMUNOLOGICAL EFFECTS OF IMMUNOSUPPRESSIVE DRUGS: CLINICAL EVIDENCE

The following sections assess the available data for individual immunosuppressive agents on dnDSA formation. Interpretation of these data is hampered by differences in intensity of overall immunosuppression, a paucity of prospective clinical trials and an abundance of multidrug cocktails. Despite these shortcomings, several hypothesis-generating possibilities can be considered. We will discuss drug classes and therapies separately.

Biological Therapies

Antithymocyte Preparations and IL-2RA Monoclonal Antibodies

In kidney transplantation, randomized controlled trials of antithymocyte globulins and IL-2RA agents have not reported data on dnDSA rates, although they have demonstrated a significant reduction in acute rejection with T-cell depletion therapy.98-100 Rabbit antithymocyte globulin is an established induction agent in transplantation, and a possible treatment for AMR.27 The effect of rATG induction therapy on propensity to produce dnDSA has been assessed in some nonrandomized trials (Table 1). In a recent single-center analysis of 114 consecutive DSA-positive kidney transplant...
patients with a negative crossmatch who received rATG or basiliximab induction therapy, rATG was associated with a lower risk of dnDSA (hazard ratio [HR], 0.16; 95% confidence interval [95% CI], 0.04-0.50; \(P = 0.003\)) and AMR (HR, 0.16; 95% CI, 0.05-0.60; \(P = 0.006\)) in multivariate analysis. Other retrospective studies observed no significant difference in the risk of dnDSA using IL-2RA versus rATG induction after kidney transplantation. However, these studies were not designed to determine the role of induction immunosuppression on the incidence of dnDSA and rATG was used in higher immunological risk patients. Overall, rATG appears to achieve a short-term decrease in dnDSA production in moderately sensitized patients. Prospective randomized controlled trials are needed to assess the role of IL2-RA and antithymocyte globulins on the incidence of dnDSA.

Alemtuzumab

Randomized controlled trials of IL-2RA versus alemtuzumab have demonstrated a significant reduction in acute rejection with alemtuzumab,98,105 but did not provide information on the rate of dnDSA. When alemtuzumab induction was compared to basiliximab with low-dose rATG in a matched-cohort single-center study of kidney transplant patients, the incidence of dnDSA at 1 year after transplantation was higher in patients receiving alemtuzumab (50% [8/16]) than in the basiliximab/rATG control group (12.5% [4/32]; \(P = 0.011\)).102 Other authors have observed a high rate of AMR with alemtuzumab after kidney-pancreas transplantation in patients receiving CNI maintenance therapy,106 and an increased risk of AMR and dnDSA formation in alemtuzumab-treated kidney transplant patients receiving CNI-free immunosuppression.69,107 Together, these data suggest that alemtuzumab as an induction agent may not be effective in preventing the early appearance of dnDSA, although new interventional randomized studies are needed to specifically address this question.

Rituximab

The chimeric monoclonal anti-CD20 antibody rituximab is an established option for treatment of refractory AMR,27 although its effect on dnDSA prevention is less certain. In a nonrandomized trial of 320 unsensitized kidney transplant recipients, pretransplant rituximab did not influence dnDSA production.108 In a prospective, double-blind trial of patients randomized to a single dose of rituximab or placebo induction, the incidences of AMR, biopsy-proven acute rejection, and dnDSA formation (rituximab, 3% [1/33]; placebo, 16% [6/38]) were similar at 3 years.103 Several other centers have described their use of induction therapy with low-dose or single-dose rituximab in kidney,109 liver,110,111 and intestinal or multivisceral112 transplantation, usually in combination with rATG, and have reported low rates of AMR (<4%) in patients with a positive crossmatch,109,110 but data on dnDSA formation have not been reported. However, a randomized trial of rituximab versus IL-2RA induction in nonsensitized kidney transplant patients was terminated because of an excess of acute cellular rejection in the rituximab group (83% vs 14%, \(P = 0.01\)).113 In contrast, in a recent retrospective analysis of 281 kidney transplant patients divided into four groups according to whether they had preexisting
DSA and whether rituximab was administered, the rate of appearance of de novo HLA antibodies—and the incidence of chronic AMR—was lower in the groups that received rituximab treatment versus their untreated counterparts. A Japanese report found that ABO-incompatible recipients either splenectomized or induced with low-dose rituximab developed dnDSA less frequently at 2 years than ABO-compatible recipients without either treatment (2.2%, 1.7%, and 18.1%, respectively). Finally, preemptive treatment with rituximab and plasmapheresis was shown to increase the chance of clearing early dnDSA in a retrospective study of lung transplant recipients, although this did not appear to be associated with a clinical benefit. Although there is adequate clinical evidence to support rituximab therapy for the treatment of AMR and possibly prevention of dnDSA, more randomized studies are needed to determine how and in whom it should be used.

Bortezomib

Off-label use of bortezomib, a first-in-class proteasome inhibitor, has yielded AMR treatment results. This has prompted its use as part of induction regimens or after desensitization to target B-cells and plasma cells in combination with rATG. A Japanese report found that ABO-incompatible recipients either splenectomized or induced with low-dose rituximab developed dnDSA less frequently at 2 years than ABO-compatible recipients without either treatment (2.2%, 1.7%, and 18.1%, respectively). Finally, preemptive treatment with rituximab and plasmapheresis was shown to increase the chance of clearing early dnDSA in a retrospective study of lung transplant recipients, although this did not appear to be associated with a clinical benefit. Although there is adequate clinical evidence to support rituximab therapy for the treatment of AMR and possibly prevention of dnDSA, more randomized studies are needed to determine how and in whom it should be used.

Belatacept

The costimulation blocker belatacept prevents T-cell activation. In the phase 3 registration trial (BENEFIT), AMR was avoided in all treatment arms, but acute cellular rejection was more frequent and more severe in the intensive belatacept treatment group compared to the CsA treatment group. Similarly, no AMR occurred in the BENEFIT-EXT study of belatacept therapy in recipients of expanded criteria donors. Numerically lower DSA rates at 1 year, 2 years, and 3 years were seen in the BENEFIT patients treated with belatacept compared to those treated with CsA. However, no statistical comparison was performed, and preformed DSA were not distinguished from dnDSA. Therefore, belatacept may exert a protective effect on dnDSA formation, but prospective granular data are still needed.

Calcineurin Inhibitors

Calcineurin inhibitor administration, especially early after transplant, is likely protective against dnDSA formation (Table 2). In 244 consecutive kidney and kidney-pancreas
Reference	Study design	Organ type	N	Follow-up	maintenance regimen	Univariate or multivariate analysis	Use of Therapy according to presence/absence of dnDSA
Del Bello et al, 2014⁴⁷	Retrospective Cohort study	Liver	232	Median 36.5 mo	Various	n/a	CNI therapy was used in 81% and 80% of patients with or without dnDSA, respectively
Kaneku et al, 2013⁶	Retrospective Cohort study	Liver	749	1 y	CsA or TAC ± MMF/AZA ± Sirolimus ± Steroids	OR = 2.5 CsA vs TAC* 0.004*	
Cooper et al, 2011⁵²	Retrospective Cohort study	Kidney or kidney-pancreas	244	2 y	Various	n/a	TAC was used in 77% of patients with dnDSA and 90% of patients with no dnDSA (P = 0.009)
Huang et al, 2012⁵⁵	Retrospective Cohort study	Kidney	145	1 y	CsA or TAC MPA Steroids	22% CsA 4% TAC 0.02	
Lachmann et al, 2006¹⁰⁰	Prospective Cohort study	Kidney	1043	>6 mo to 4 y	CsA or TAC ± MMF/AZA ± Steroids	35% CsA 20% TAC 0.05	
Hourmant et al, 2005⁴	Prospective Cohort study	Kidney	1229	5 y	Various	—	CNI was used in 93% and 95% of patients with or without dnDSA, respectively (n.s.)

Asterisk indicates analyses were performed with multivariate analysis.

¹At the time the antibody results were obtained.
²Included both preformed and de novo DSA.
AZA, azathioprine; n.s., nonsignificant.
transplant recipients, patients with dnDSA versus no dnDSA were significantly less likely to be receiving tacrolimus (77% [50/65] vs 90% [162/174]; \(P = 0.009 \), respectively).42 However, dnDSA is a frequent finding even in patients treated with standard-dose CNI. Everly et al131 reported dnDSA in 20% of kidney transplant patients after 4 years despite standard-dose CNI with triple immunosuppression. In contrast, a prospective study of 90 liver transplant patients revealed no dnDSA at 4 months after transplantation in patients receiving a regimen of tacrolimus, MMF, and steroids,51 a difference that may be due to the lower immunogenicity of liver grafts versus kidneys, but may also reflect the short 4-month follow-up period. The level of CNI exposure is likely to be important. Kaneku et al90 retrospectively analyzed factors associated with dnDSA formation in 749 liver transplant patients at a single center, of whom 8.1% developed dnDSA within 1 year of transplantation. In multivariate analysis, patients with a low CNI trough concentration (tacrolimus \(< 3 \text{ ng/mL} \) or CsA \(< 75 \text{ ng/mL} \)) were at the highest risk of dnDSA formation (OR, 2.66; 95% CI, 1.2–5.84; \(P = 0.015 \)). This is a potential cause for concern because these levels have been reported during the maintenance phase of some relatively aggressive CNI reduction studies in kidney transplantation.132,133

Discontinuation of CNI therapy early after kidney transplantation in the absence of suitable induction therapy may result in inadequate immunosuppression to prevent dnDSA formation. Several studies in kidney and liver transplantation have reported that tacrolimus-based immunosuppression is associated with a lower risk of dnDSA formation than CsA-based regimens.4,6,47,55,130 In 1 large single-center liver transplant experience, use of CsA versus tacrolimus was significantly associated with an increased risk of dnDSA (OR, 2.5; \(P = 0.004 \)).56

Generally, the available data demonstrate a clear signal that compliance with CNI, and adequate CNI trough levels, play a more important role in dnDSA formation than the choice of CNI; however, in compliant patients tacrolimus may provide more protection from dnDSA formation than CsA.

Purine Synthesis Inhibitors and Antimetabolites

Maintenance immunosuppressive therapy with MPA profoundly depresses the primary and secondary humoral response in kidney transplant patients.134,135 but data on the effect of purine synthesis inhibitors modulation of dnDSA formation are still inconclusive. Studies in kidney transplantation have shown inconsistent results regarding an effect of MMF versus azathioprine in terms of dnDSA onset.130,136 (Table 3). No conclusive results could be reached in a large prospective study by Hourmant and colleagues,4 although azathioprine was more frequently used than MMF among patients with dnDSA whereas the converse was true in DSA-negative patients. Retrospective analyses in liver transplant populations have also shown mixed findings (Table 3). Until more robust data are available, one cannot definitively conclude an independent beneficial effect of MPA on dnDSA formation. Although the bulk of data may suggest a modest benefit, this may simply result from increased intensity of immunosuppressive regimens that include MPA therapy, rather than a specific mechanism to reduce the risk of dnDSA.

mTOR Inhibitors

Well-designed prospective studies to assess the relationship between mTOR inhibitors and risk of dnDSA are lacking (Table 4). A recent post hoc analysis was performed on 127 kidney transplant patients at a single center randomized to convert from CsA to a CNI-free everolimus-based regimen at 3 to 4.5 months after transplantation or to remain on CsA (ZEUS).54 All patients received basiliximab induction, MPA and were started on oral steroids; by the end of the observation period, 59% of everolimus-treated patients and 62% of CsA-treated patients were steroid-free. During a median follow-up of 1273 days, dnDSA was detected in 23.0% of patients (14/61) who stopped CsA and switched to everolimus, compared to 10.8% of patients (7/65) who continued CsA (HR = 2.43; \(P = 0.048 \)). The time to first detection of dnDSA was shorter in the everolimus cohort (median, 551 days vs 1173 days in the CsA group), and AMR occurred in 8 everolimus-treated patients compared to 2 CsA-treated patients (\(P = 0.036 \)).54 Five of the 8 AMR patients in the everolimus group received reduced-dose MPA and 2 were steroid-free; the 2 patients in the CsA group with AMR had no MPA or steroids. Although underpowered, everolimus monotherapy was associated with dnDSA and AMR (HR = 5.35; \(P = 0.036 \)) but since immunosuppression appears to have been inadequate in many cases, interpretation is difficult.

Conflicting results have been reported (so far in abstract form only) by Sommerer et al139 in patients who received basiliximab induction with CsA to month 3, and were randomized to continue standard CsA, switch to low-dose CsA with everolimus or convert to a CNI-free everolimus regimen, all with MPA and steroids (HERAKLES). At 4 years after kidney transplantation, the incidence of dnDSA was similar in the standard CsA group (16.7%), the CNI-free group receiving everolimus (17.9%), and the CsA-everolimus cohort (29.6%; \(P = \text{n.s.} \)).

Kamar et al49 found no effect on dnDSA formation after converting patients from CNI to everolimus when the switch took place at a later time after transplantation (median, 22 months). In their single center case–control retrospective study, the incidence of dnDSA was compared over a mean of 35 months in a cohort of 61 patients.49 Controls were matched for age, sex, induction therapy, and date of transplantation. All patients were CsA-free at the initial comparison, and at last follow-up, the proportion of patients with dnDSA was not significantly different between the everolimus group (9.8% [6/61]) and the CNI-treated controls (5% [3/61]; \(P = \text{n.s.} \)), with a similar median time to dnDSA detection (9.5 months and 13 months, respectively) and everolimus trough concentrations.49 Another retrospective study18 found a significantly higher rate of dnDSA in multivariable analysis of 56 kidney transplant patients converted from tacrolimus to mTOR monotherapy (sirolimus in 84%) at a mean of 1.3 years after transplantation compared to 214 who continued tacrolimus therapy. However, patients converted to sirolimus more than a year after transplantation had a similar rate of dnDSA emergence to the tacrolimus-treated cohort, once again suggesting that early mTOR inhibitor monotherapy conversion (<1 year) provides inadequate immunosuppression.18 Prevalence data from a series of 267 maintenance kidney transplant patients observed no significant difference in mTOR inhibitor therapy between recipients with or without class I or class II dnDSA.25 Perbos and colleagues138 reported no increase in dnDSA onset in a series of kidney, liver, heart, and lung transplant recipients receiving everolimus with low-dose CNI about 6 years after transplantation, consistent with
Reference	Study design	Organ type	N	Follow-up	Maintenance regimen	Univariate or multivariate* analysis	Use of therapy according to presence/absence of dnDSA
Del Bello et al, 2014	Retrospective Cohort	Liver	232	Median 36.5 mo	Various	n/a	MMF was used\(^a\) in 90% of patients with dnDSA vs 71% of patients with no dnDSA (\(P = 0.04\))
Kaneku et al, 2013\(^6\)	Retrospective Cohort	Liver	749	1 y	MMF or none/AZA\(^b\) ± CsA/TAC ± Sirolimus ± Steroids	OR = 1.00 MMF vs no MMF* 0.99	
Lachmann et al, 2006\(^10\)	Prospective Cohort	Kidney	1043	>6 mo to 4 y	MMF or AZA or no antimetabolite CsA or TAC ± Steroids	39% AZA\(^c\) 0.37	
Piazza et al, 2006\(^16\)	Retrospective Cohort	Kidney	449	Not stated	MMF or AZA CsA ± Steroids	8% MMF 23% AZA <=0.0001	
Hourmant et al, 2005\(^4\)	Prospective Cohort	Kidney	1229	5 y	Various	n/a	MMF was used\(^a\) in 43%, 31% and 53% of patients with no antibodies, dnDSA or non-DSA (\(P < 0.02\)) AZA was used\(^a\) in 31%, 43% and 23% of patients with no antibodies, dnDSA or non-DSA (\(P < 0.02\))

\(^{a}\)At the time the antibody results were obtained.
\(^{b}\)363 patients received no induction, 9 patients received AZA.
\(^{c}\)Included both preformed and de novo DSA.

\(^{a}\) Asterisk indicates analyses were performed with multivariate analysis.
TABLE 4.

mTOR inhibitor maintenance therapy: A comparison of the risk of dnDSA

Reference	Study design	Organ type	N	Time from transplant to Switch	Follow-up	Maintenance regimen	Univariate or multivariate* analysis
Kaneku et al, 2013	Retrospective	Liver	749	—	1 y	SRL (n = 119) or no SRL (n = 630) at 1 y ± MMF/AZA ± CsA/ATAC ± Steroids	OR = 0.66* 0.36*
	Cohort study						
	Single center						
Liefeldt et al, 2012	Prospective	Kidney	127	3-4 mo	Median, 3.5 y	CsA or CsA converted to EVR (months 3–4.5) MPA Steroids	HR = 2.67* EVR vs CsA 0.04*
	Cohort study						
	Single center						
	Randomized						
Croze et al, 2014	Retrospective	Kidney	270	Mean, 1.3 y	Mean, 3.8 y	TAC\(^d\) switched to SRL\(^c\) ± Steroids to month 3	HR = 2.4* SRL vs TAC 0.04*
	Cohort study						
	Single center						
Ruiz San Millán et al, 2014	Retrospective	Kidney	35	Median, 69 mo (range, 3-375)	2 y	CNI switched to mTOR inhibitor ± MMF/AZA ± Steroids	8.6% mTOR inhibitor 0% controls (n = 10) n.s.
	Cohort study						
	Single center						
Perbos et al, 2014	Retrospective	Various	131	Mean, 73 mo	1 y	CNI switched to EVR ± CNI\(^f\) or CNI ± MMF (controls)	6.7% EVR 11.1% controls 0.39
	Case control study						
	Single center						

Asterisk indicates analyses were performed with multivariate analysis.
\(^a\) Post hoc analysis of patients randomized at a single center within a multicenter study.
\(^b\) 17 patients received CsA instead of TAC.
\(^c\) 9 patients received EVR instead of SRL.
\(^d\) 59% of EVR-treated patients also received low-dose CNI.
\(^e\) EVR, everolimus; mTORi, mammalian target of rapamycin inhibitor; SRL, sirolimus.

References:
Kaneku et al, 2013
Liefeldt et al, 2012
Croze et al, 2014
Ruiz San Millán et al, 2014
Perbos et al, 2014

© 2015 Wolters Kluwer
limited data in kidney transplant patients treated with mTOR inhibitors and low-dose extended-release tacrolimus. In liver transplantation, Del Bello and colleagues found no significant association between mTOR inhibitor and reduced-exposure CNI therapy are invariably associated with increased risk of dnDSA formation. However, an early switch from CNI therapy to mTOR inhibitor monotherapy may increase the risk of dnDSA production, whereas late (>1 year) posttransplant conversion to mTOR inhibitor monotherapy may not increase the risk of dnDSA formation.

Corticosteroids

In an attempt to prevent or minimize steroid-associated side effects, some immunosuppressive strategies avoid the use of steroids or enable their early discontinuation (Table 5). In a prospective, single-center analysis by Lachmann and colleagues, no significant difference in the development of dnDSA could be seen in kidney transplant patients with or without steroid therapy at the time of antibody testing. In a retrospective analysis of 749 liver transplant patients by Kaneku et al, the risk of dnDSA was reduced in the presence of steroid therapy in univariate but not multivariate analysis. Similarly, in a retrospective analysis of 232 liver transplant patients tested annually for dnDSA, multivariate analysis did not show steroid therapy to be independently associated with dnDSA. Despite consistent data, these findings are potentially confounded; steroids may have been preferentially discontinued in patients with well-functioning, rejection-free grafts.

Planned early steroid discontinuation may not influence the risk of dnDSA, depending on the immunosuppressive regimen used. Delgado and colleagues treated 37 kidney transplant patients with rATG induction, tacrolimus and MMF who were randomized to steroid withdrawal at week 1 posttransplant versus standard steroid therapy in a double-blind trial with annual follow-up of up to 5 years with no difference in dnDSA formation. Consistent with these results, Li et al reported no dnDSA with excellent graft function in 13 pediatric transplant patients at high immunological risk who received entirely steroid-free immunosuppression with a similar regimen (rATG induction with tacrolimus/MMF maintenance therapy).

Intriguing data regarding the influence of steroids comes from a series of 72 living-donor kidney transplant patients given a tolerance protocol comprising clonal depletion by total lymphoid irradiation or bortezomib followed by low-dose extended-release tacrolimus. Donor-specific antibodies were assessed every 1 to 2 months. At 3 months, patients tapered to less than 10 mg/day had a high rate of dnDSA (53%), compared to patients maintained on 10 to less than 20 mg/day (22%), and the lowest risk (0%) was seen in patients continued on 20 mg/day or greater or steroids plus another immunosuppressant agent. In multivariate analysis, steroid dose was inversely associated with dnDSA production, with an adjusted risk ratio of 0.92 (95% CI 0.85-0.99; P = 0.03) for every 2.5 mg/day increase.

Thus, existing data present a complex picture regarding an association between steroid therapy and risk of dnDSA production. Current findings do not suggest an adverse effect of early steroid withdrawal or steroid-free immunosuppression in selected patients, but firm conclusions cannot be drawn.

FUTURE DIRECTIONS

Understanding how to appropriately regulate the B-cell compartment is critical to prevent dnDSA and achieve decades-long survival for solid organ transplants. Careful evaluation of the known impact of immunosuppressive agents on dnDSA has highlighted the major shortcomings of existing reports. As a consequence, we are currently unable to “personalize” immunosuppressive treatment to prevent dnDSA.

New studies should consider the addition of novel anti-B-cell agents that have recently emerged in other relevant fields, such as hematopoietic stem cell transplantation, autoimmune, and multiple myeloma. However, careful target selection may be critical to success because simple B-cell annihilation is likely not the answer given the difficulty of reaching niche resident plasma cells and the critical importance of regulatory B-cells.

Recently, several new interesting B-cell–directed strategies have attracted attention, which can be divided into direct and indirect B-cell agents. Novel direct B-cell agents include variants of anti-CD20 monoclonal antibodies (mAbs), such as ocrelizumab, which more thoroughly deplete B-cells, and anti-CD19 mAbs that also deplete memory B-cells and short-lived plasma cells while CD19+ plasma cells remain unaffected. Furthermore, the anti-CD22 mAb eprutuzumab is able to modulate B-cell function by altering adhesion molecule expression, interfering with migration, and inhibiting BCR-dependent B-cell activation.

Indirect B-cell targeting can be accomplished through modulation of the BAFF/APRIL pathway, primarily produced by macrophages, neutrophils, and dendritic cells and also B-cells and activated T-cells, comprising 3 cellular receptors (BAFF-R, BCMA, and TACI) differentially expressed by different subpopulations of B-cells. In particular, BAFF-R is critical for immature B-cell survival/maturatation, BCMA is required for plasma cell survival, and TACI is necessary for T-cell–dependent B-cell responses, regulation of B-cells and Ig class-switching.

Therefore, the BAFF/APRIL pathway appears to lie at a critical immune intersection that may regulate the B-cell compartment. Accordingly, targeting such a complex system with novel and specific interventions has gained considerable interest. Kwun and colleagues recently documented simultaneous neutralization of BAFF and APRIL using a fusion protein composed of the TACI receptor and IgFc (TACI-Ig, atacicept), which prevented early DSA formation and AMR in a depletion-induced preclinical AMR model.

Plasma cell targeting represents another area of active research. Interference with BAFF/APRIL using the anti-BAFF mAb tabulumab is being explored. In addition, second-generation proteasome inhibitors are being evaluated and other plasma cell depleting agents that target cell surface molecules (CD38 and CD138) are currently under investigation. Additionally, research in the complex ubiquitin proteasome system is generating novel molecules that target protein degradation upstream of the proteasome and drug combinations with enhanced therapeutic capacity. Finally, orally available proteasome inhibitors may soon become available.

An effective B-cell response is also considerably influenced by the critical contribution of helper T-cells. As a consequence, novel costimulatory blockers, such as CTLA4-Ig
Reference	Study design	Organ type	N	Follow-up	Maintenance regimen	Univariate or multivariate* analysis	Use of Therapy according to presence/absence of dnDSA
Del Bello et al, 2014	Retrospective	Liver	232	Median 36.5 mo	Various	n/a	n/a
Kaneko et al, 2013	Cohort study	Liver	749	1 y	Steroids or no steroids ± CsA/TAC ± MMF/AZA ± Sirolimus	OR = 0.67* steroids vs no steroids	0.23*
Hoshino et al, 2012	Prospective	Kidney	72	1 y	Cbnal depletion Steroids ± CNI, MMF or sirolimus	ARR = 0.92 per 2.5 mg/day increase in steroid dose	0.03
Delgado et al, 2009	Prospective	Kidney	37	≤5 y	TAC MMF Steroid withdrawal at day 7 (n = 21) or standard steroids (n = 16)	0% steroid withdrawal 6.3% standard steroids	0.43
Lachmann et al, 2006	Prospective	Kidney	1043	>6 mo to 4 y	Steroids or no steroids CsA or TAC ± MMF/AZA	27% steroids* 33% no steroids*	0.44
Hourmant et al, 2005	Prospective	Kidney	1229	5 y	Various	n/a	n/a

Note:							

At the time the antibody results were obtained.							
Included both preformed and de novo DSA.							
ARR, adjusted risk ratio.							
(belatacept), that prevent T-cell help to B-cells may represent an important adjunct to prevent dnDSA. It should be noted, however, that an inhibitory role of belatacept on regulatory T-cells has been reported,1,156 and in 1 study resulted in an increased risk of cell-mediated rejection.1,157 Because regulatory T-cell generation is independent of the CD40-CD154 pathway, an anti-CD40 mAb may represent an alternative.158

Although cellular destruction has remained the dominant mechanism to treat dnDSA formation, prevention remains a superior approach. Interference with cellular trafficking to essential locations for costimulation has the potential to prevent dnDSA while allowing the regulatory cell populations to remain intact. Despite a lack of data and the withdrawal of efalizumab from the market, this type of approach remains attractive.159

Taken together, these data point to a large number of novel immunosuppressive agents that, in theory, hold the potential to prevent dnDSA. If combined with a better understanding of how to appropriately risk-stratify patients to receive these potent immunosuppressive agents, this critical combination of knowledge may be able to substantially decrease the risk of dnDSA, resulting in improved allograft survival in the not-too-distant future. However, to achieve this, we need well-designed prospective, multicenter, randomized clinical trials across organ transplant types that collect detailed donor and recipient genetic information, immunosuppression serum levels, and compliance data in addition to frequent HLA and non-HLA DSA testing156,160,161 with different risk-based immunosuppressive strategies.

CONCLUSIONS

De novo DSA risk reduction is essential to prevent chronic AMR and improve long-term graft survival in all solid organ transplant patients. Utilization of solid-phase single-antigen assays as part of risk-based monitoring for circulating DSA has increased. However, personalizing immunosuppression precisely based on an individual’s risk for dnDSA production remains in development.

Patients with a history of nonadherence, greater HLA mismatching (particularly for class II DQ or DR) or an increased propensity to sensitization due to previous transplant, transfusion, pregnancy, or previous acute rejection, are more likely to develop dnDSA. These individuals may need more intensive immunosuppression than those without risk factors. Especially in the first year after transplantation, rATG induction appears to attenuate dnDSA production in moderately sensitized patients. Administration of newer agents, such as rituximab or bortezomib, as induction therapy in at-risk patients may be of interest, but the benefits are unproven in adequately powered studies. Early CNI withdrawal, especially in the absence of depleting induction, is not advisable in patients with risk factors for dnDSA. Although late CNI withdrawal in lower-risk patients can be undertaken, close DSA surveillance is recommended. Mammalian target of rapamycin inhibitor monotherapy early after transplant is not recommended, but the combination of an mTOR inhibitor with reduced-exposure CNI has not been associated with increased risk of dnDSA. The available data do not indicate a consistent effect of MPA on dnDSA production. Early withdrawal of steroid therapy appears feasible with no increased risk of dnDSA when combined with induction and nonsteroid-based maintenance immunosuppression. Overall, the priority in at-risk individuals is to maintain adequate immunosuppression, establish an appropriate DSA monitoring protocol, and enforce adherence. The future demands DSA monitoring to become a routine component of randomized immunosuppression trials in all organs to improve our understanding of the relative risk of dnDSA production between regimens.

REFERENCES

1. Loupy A, Lefaucheur C, Vernerey D, et al. Complement-binding anti-HLA antibodies and kidney-allograft survival. N Engl J Med. 2013;369:1215–1226.
2. Mao Q, Terasaki PI, Cai J, et al. Extremely high association between appearance of HLA antibodies and failure of kidney grafts in a five-year longitudinal study. Am J Transplant. 2007;7:864–871.
3. Lee PC, Zhu L, Terasaki PI, et al. HLA-specific antibodies developed in the first year posttransplant are predictive of chronic rejection and renal graft loss. Transplantation. 2009;88:568–574.
4. Hourmant M, Cesbron-Gautier A, Terasaki PI, et al. Frequency and clinical implications of development of donor-specific and non-donor-specific HLA antibodies after kidney transplantation. J Am Soc Nephrol. 2005;16:2804–2812.
5. Pasicu J, Samaniego MD, Torosbal JA, et al. Antibody-mediated rejection of the kidney after simultaneous pancreas-kidney transplantation. J Am Soc Nephrol. 2008;19:812–824.
6. Kaneko H, O’Leary JG, Baranueso N, et al. De novo donor-specific HLA antibodies decrease patient and graft survival in liver transplant recipients. Am J Transplant. 2015;15:1541–1548.
7. O’Leary JG, Gebel HM, Ruz R, et al. Class II alloantibody and mortality in simultaneous liver-kidney transplantation. Am J Transplant. 2013;13:564–560.
8. Abu-Ennagi KM, Wu G, Costa G, et al. Preformed and de novo specific antibodies in visceral transplantation: long-term outcome with special reference to the liver. Am J Transplant. 2012;12:3047–3060.
9. Smith JD, Banner NR, Hamour IM, et al. De novo donor HLA-specific antibodies after heart transplantation are an independent predictor of poor patient survival. Am J Transplant. 2011;11:312–319.
10. Ho EK, Vlad G, Vasilescu ER, et al. Pre- and posttransplantation allosensitization in heart allograft recipients: major impact of de novo alloantibody production on allograft survival. Hum Immunol. 2017;72:5–10.
11. Snyder LD, Wang Z, Chen DF, et al. Implications for human leukocyte antigen antibodies to human leukocyte antigen precedes development of antibodies to major histocompatibility class I-related chain A and are significantly associated with development of chronic rejection after human lung transplantation. J Heart Lung Transplant. 2010;39:560–566.
12. Anggaswamy N, Saini D, Ramachandran S, et al. Development of antibodies to human leukocyte antigen precedes development of antibodies to major histocompatibility class I-related chain A and are significantly associated with development of chronic rejection after human lung transplantation. Hum Immunol. 2010;71:560–566.
13. Piemonti L, Everly MJ, Maffi P, et al. Alloantibody and autoantibody monitoring predicts islet transplantation outcome in human type 1 diabetes. Diabetes. 2013;62:1656–1664.
14. Safavi S, Robinson DR, Sorens S, et al. De novo donor HLA-specific antibodies predict development of bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant. 2014;33:1273–1281.
15. Topiletsky Y, Gandhi MJ, Hasin T, et al. Donor-specific antibodies to class II antigens are associated with accelerated cardiac allograft vasculopathy: a three-dimensional volumetric intravascular ultrasound study. Transplantation. 2013;96:389–396.
16. Fidler SJ, Irish AB, Lim W, et al. Pre-transplant donor specific anti-HLA antibody is associated with antibody-mediated rejection, progressive graft dysfunction and patient death. Transpl Immunol. 2013;28:148–153.
17. Willcombe M, Brookes P, Sergeant R, et al. De novo donor-specific antibodies are associated with a significant risk of antibody-mediate rejection and transplant glomerulopathy. Transplantation. 2012;94:172–177.
18. Croze LE, Tetzl R, Routt M, et al. Conversion to mammalian target of rapamycin inhibitors increases risk of de novo donor-specific antibodies. Transpl Int. 2014;27:775–783.
19. Taglialacoma A, Ooni M, Cornel P, et al. DQ molecules are the principal stimulators of de novo donor specific antibodies in non sensitized pediatric recipients receiving a first kidney transplant. Transpl Int. 2014;27:667–673.
20. Reimsnong NL, Lai CH, Mirocha J, et al. Increased negative impact of donor HLA-specific together with non-HLA-specific antibodies on graft outcome. Transplantation. 2014;97:595–601.
21. Youssum SA, Zett A. The histopathology of lung allograft dysfunction associated with the development of donor-specific HLA alloantibodies. Am J Surg Pathol. 2012;36:987–992.
22. Dörje C, Midveldt K, Holdaas H, et al. Early versus late acute antibody-mediated rejection in renal transplant recipients. Transplantation. 2013; 96:73–84.

23. Sellarius J, de Freitas DG, Mengel M, et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant. 2012;12:388–399.

24. Fotheringham J, Angel C, Goodwin J, et al. Natural history of proteinuria in renal transplant recipients developing de novo human leukocyte antigen antibodies. Transplantation. 2011;91:961–966.

25. Sánchez-Fructuoso AI, Santiago JL, Pérez-Flores I, et al. De novo anti-HLA antibodies in renal allograft recipients: a cross-section study. Transplant Proc. 2010;42:2874–2876.

26. Solorzano C, Calvan BS, Racusen LC, et al. Banff ‘05 Meeting Report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy (‘CAN’). Am J Transplant. 2007;7:518–526.

27. Sadaka B, Alloway RR, Woodle ES. Management of antibody-mediated rejection in transplantation. Surg Clin North Am. 2013;93:1451–1466.

28. Ticehurst EH, Molina MR, Frank R, et al. Antibody-mediated rejection in heart transplant patients: long-term follow up of patients with high levels of de novo anti-HLA-DQ antibodies. Clin Transpl. 2011;4:404–414.

29. O’Leary LA, Demetris AJ, Friedman LS, et al. The role of donor-specific HLA antibodies in liver transplantation. Am J Transplant. 2014;14:779–787.

30. O’Leary LA, Kaneku H, Jennings L, et al. Donor-specific antibodies are associated with fibrosis progression after liver transplantation in HCV-infected patients. Liver Transpl. 2014;20:655–660.

31. Morell MR, Páwiski JM, Griss GJ, et al. De novo donor-specific HLA antibodies are associated with early and high-grade bronchiolitis syndrome and death after lung transplantation. J Heart Lung Transplant. 2014;33:1288–1294.

32. Lobio LJ, Aris RM, Schmitz J, et al. Donor-specific antibodies are associated with antibody-mediated rejection, acute cellular rejection, bronchiolitis obliterans syndrome, and cystic fibrosis after lung transplantation. J Heart Lung Transplant. 2013;32:70–77.

33. Tait BD, Süss C, Gebel HM, et al. Consensus guidelines on the testing and clinical management issues associated with HLA and non-HLA antibodies in transplantation. Transplantation. 2013;95:19–47.

34. Reed EF, Rao P, Zhang Z, et al. Comprehensive assessment and standardization of solid phase multiplex-bead arrays for the detection of antibodies to HLA-drilling down on key sources of variation. Am J Transplant. 2013;13:3060–3061.

35. Freitas MC, Rebelfato LM, Ozawa M, et al. The role of immunoglobulin-G subclasses and C1q in de novo HLA-DQ donor-specific antibody kidney allograft nephropathy: a case report. Transplant Proc. 2011;43:1113–1119.

36. Yabu JM, Higgins JP, Chen G, et al. C1q-fixing human leukocyte antigen antibodies: what does the antibody see? Transplantation. 2014;98:157–166.

37. Del Bello A, Congy-Jolivet N, Muscanti F, et al. Prevalence and risk factors for donor-specific anti-HLA antibodies in maintenance liver transplant patients. Am J Transplant. 2014;14:667–675.

38. Kanter Berga J, Pallardo Mateu LM, Beltran Catalan S, et al. Donor-specific HLA antibodies: risk factors and outcomes after kidney transplantation. Transplant Proc. 2011;43:2154–2156.

39. Kamar N, Del Bello A, Congy-Jolivet N, et al. Incidence of donor-specific antibodies in kidney transplant recipients following conversion to an everolimus-based calcineurin inhibitor-free regimen. Clin Transplant. 2013;27:455–462.

40. Sawinski D, Forde KA, Trofe-Clark J, et al. Persistent BK viremia does not increase intermediate-term graft loss but is associated with de novo donor-specific antibodies. J Am Soc Nephrol. 2015;26:966–975.

41. Taner T, Gandhi MJ, Sanderson SC, et al. Prevalence, course and impact of HLA-DQ-specific antibodies in liver transplantation in the first year. Am J Transplant. 2012;12:1504–1510.

42. Pollack MS, Trimarchi HM, Riley DJ, et al. Shared cadaver donor-husband HLA class I mismatches as a risk factor for renal graft rejection in previously pregnant women. Hum Immunol. 1999;60:1150–1155.

43. Bray PA, Harris SB, Josephson CD, et al. Unappreciated risk factors for transplant patients: HLA antibodies in blood components. Hum Immunol. 2004;65:240–244.

44. Lieffelt L, Brakemeier S, Glander P, et al. Donor-specific HLA antibodies in a cohort comparing everolimus with cyclosporine after kidney transplantation. Am J Transplant. 2012;12:1192–1198.

45. Huang Y, Ramon D, Liu FL, et al. Incidences of preformed and de novo donor-specific HLA antibodies and their clinicohistological correlates in the early course of kidney transplantation. Clin Transpl. 2012;247–256.

46. Opelz G, Döhler B. Effect on kidney graft survival of reducing or discontinuing maintenance immunosuppression after the first year posttransplant. Transplantation. 2008;86:371–376.

47. Schmid-Mohler G, Thut MP, Wüthrich RP, et al. Non-adherence to immunosuppressive medication in renal transplant recipients within the scope of the Integrative Model of Behavioral Prediction: a cross-sectional study. Clin Transplant. 2010;24:213–222.

48. De Geest S, Burkhalter H, Bognet L, et al. Psychosocial Interest Group; Swiss Transplant Cohort Study. Describing the evolution of medication nonadherence from pretransplant until 3 years post-transplant and determining pretransplant medication nonadherence as risk factor for post-transplant nonadherence to immunosuppressives: the Swiss Transplant Cohort Study. Transpl Int. 2014;27:657–666.

49. Almeshari K, Pall A, Chaiballou A, et al. Targeted monitoring of donor-specific HLA antibodies following renal transplantation. Clin Transpl. 2011;35:400–409.

50. Gupta A, Abu Jawdeh BG, Racusen LC, et al. Late antibody-mediated rejection in renal allografts: outcome after conventional and novel therapies. Transplantation. 2014;97:1240–1246.

51. Athavale D, Worthington J, Webb NJ, et al. Pediadtic kidney recipients may benefit from monitoring for donor-specific antibodies. Pediatr Transplant. 2014;18:289–295.

52. Baid S, Tokooff-Rubin N, Saidman S, et al. Acute humoral rejection in hepatitis C-infected renal transplant recipients receiving antiviral therapy. Am J Transplant. 2003;3:74–78.

53. Castillio-Rama M, Sebagh M, Sassatomi E, et al. ‘Plasma cell hepatitis’ in liver allografts: identification and characterization of an IgG4-rich cohort. Am J Transplant. 2013;13:2966–2977.

54. Shin BH, Ge S, Mirocha J, et al. Regulation of anti-HLA antibody-dependent natural killer cell activation by immunosuppressive agents. Transplantation. 2014;97:294–300.

55. Delgado JC, Fuller A, Ozawa M, et al. No occurrence of de novo HLA antibodies in patients with early corticosteroid withdrawal in a 5-year prospective randomized study. Transplantation. 2009;87:546–548.

56. Li L, Chaudhuri A, Chen A, et al. Efficacy and safety of thymoglobulin induction as an alternative approach for steroid-free maintenance immunosuppression in pediatric renal transplantation. Transplantation. 2010; 90:1516–1520.

57. Harding KL, Rabbit antithymocyte globulin induction therapy in adult transplantation. Pharmacotherapy. 2006;26:1771–1783.

58. Kho MM, Bouvy AP, Cadogan M, et al. The effect of low and ultra-low dosages thymoglobulin on peripheral T, B and NK cells in kidney transplant recipients. Transplant Immunol. 2012;26:186–190.

59. Knecht SJ, Pirsch JD, Fiechner JR, et al. CamPATH-1H induction plus rapamycin monotherapy for renal transplantation: results of a pilot study. Am J Transplant. 2003;3:722–730.

60. Bloom DD, Hu H, Fiechner JR, et al. T-lymphocyte allogeneic responses of CamPATH-1H-treated kidney transplant patients. Transplantation. 2006;81:81–87.
71. van der Windt DJ, Smettanka C, Macedo C, et al. Investigation of lymphocyte depletion and repopulation using alemtuzumab (Campath-1H) in cynomolgus monkeys. Am J Transplant. 2010;10:773–783.

72. Barnett AN, Hadjianastassiou VG, Marnode N. Rituximab in renal transplantation. Transplant Int. 2013;26:563–575.

73. Jackson AM, Kraus ES, Orandi BJ, et al. A closer look at rituximab induction on HLA antibody rebound following HLA-incompatible kidney transplantation. Kidney Int. 2015;87:409–416.

74. van den Hoogen MW, Kamburova EG, Baas MC, et al. Rituximab as induction therapy after renal transplantation: a randomized, double-blind, placebo-controlled study of efficacy and safety. Am J Transplant. 2015;15:407–416.

75. Heidt S, Roelen DL, Vergunst M, et al. Bortezomib affects the function of human B cells: possible implications for desensitization protocols. Clin Transplant. 2009;3:397–392.

76. Vo AA, Lukovsky M, Toyoda M, et al. Rituximab and intravenous immune globulin for desensitization during renal transplantation. N Engl J Med. 2008;359:242–251.

77. Vo AA, Choi J, Clevers H, et al. Benefits of rituximab combined with induction by rapamycin in desensitization in kidney transplant recipients. Transplantation. 2014;98:312–319.

78. Heidt S, Roelen DL, Eijtjink C, et al. Calcineurin inhibitors affect B cell antibodies indirectly by interfering with T cell help. Clin Exp Immunol. 2010;159:199–207.

79. Mele TS, Halloran PF. The use of mycophenolate mofetil in transplant recipients. Immunopharmacology. 2000;47:215–245.

80. Eggerhofer E, Steinmann JF, Renner P, et al. Mesenchymal stem cells together with mycophenolate mofetil inhibit antigen-presenting cell and T cell infiltration by rapamycin in fibrosis in mild renal transplant recipients. Clin Transplant. 2015;29:1–12.

81. Touzot M, Soulillou JP, Dantal J. Mechanistic target of rapamycin inhibits B and T cell responses indirectly by interfering with T cell help. Clin Exp Immunol. 2010;159:199–207.

82. Kay JE, Kromwe L, Doe SE, et al. Inhibition of T and B lymphocyte proliferation by SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and in vivo. Transplantation. 1997;64:361–367.

83. Schuler W, Sedrani R, Cottens S, et al. SDZ RAD, a new rapamycin derivative: pharmacological properties in vitro and invivo. Transplantation. 2001;72:544–549.

84. Haneda M, Okiwa M, Kuzuya T, et al. Comparative analysis of drug action on B-cell proliferation and differentiation for mycophenolic acid, everolimus, and prednisolone. Transplantation. 2014;97:405–412.

85. Aggaard-Tilly KM, Jeelink DF. Inhibition of human B lymphocyte cell cycle progression and differentiation by rapamycin. Cell Immunol. 1994;149:480–507.

86. Matz M, Lehnet R, Lorkowski C, et al. Effects of sotrastaurin, mycophenolic acid and everolimus on human B-lymphocyte function and activation. Transpl Int. 2012;25:1106–1116.

87. Amet N, Gacac M, Petrosyan A, et al. In vitro effects of everolimus and intravenous immunoglobulin on cell proliferation and apoptosis induction in the mixed lymphocyte reaction. Transplantation. 2010;89:170–173.

88. Rigol M, Solanes N, Sionis A, et al. Effects of cyclosporine, tacrolimus and sirolimus on vascular changes related to immune response. J Heart Lung Transplant. 2008;27:346–422.

89. San Segundo D, Fernández-Fresnedo G, Gago M, et al. Number of peripheral blood regulatory T cells and lymphocyte activation 3 months after conversion to mTOR inhibitor therapy. Transplant Proc. 2010;42:2871–2873.

90. Korczak-Kowalska G, Wierzbicki P, Bocian K, et al. The influence of immunosuppressive therapy on the development of CD4+CD25+ T cells after renal transplantation. Transplant Proc. 2007;39:2721–2723.

91. Morelon E, Lefrancois N, Besson C, et al. Preferential increase in memory and regulatory T cells during T lymphocyte immune reconstitution after thymoglobulin induction therapy with maintenance sirolimus vs cyclosporine. Transpl Immunol. 2010;23:53–58.

92. Ruggeriotti P, Perico N, Gottl E, et al. Sirolimus versus cyclosporine therapy increases circulating regulatory T cells, but does not protect renal transplant patients given alemtuzumab induction from chronic allograft injury. Transplantation. 2007;84:956–964.

93. Noris M, Casiraghi F, Todeschini M, et al. Regulatory T cells and T cell depletion: role of immunosuppressive drugs. J Am Soc Nephrol. 2007;18:1007–1018.
119. Mulder A, Heidt S, Vergunst M, et al. Protessome inhibition profoundly affects activated human B cells. Transplantation. 2013;95:1331–1337.

120. Negoie JG, Acosta-Nathan P, et al. Treatment of antibody-mediated rejection in kidney transplant recipients: a single-center experience with a bortezomib-based regimen. Exp Clin Transplant. 2012;10:609–613.

121. Ejaz NS, Alloway RF, Halleck F, et al. Review of bortezomib treatment of antibody-mediated rejection in renal transplantation. Antioxid Redox Signal. 2014;21:2401–2418.

122. Dunn TB, Borja-Cacho D, Chinnakotla S, et al. High immunologic risk living donor kidney transplant using bortezomib in a novel induction regimen without acute antibody mediated rejection. Clin Transpl. 2011:381–387.

123. Trivedi HL, Terasaki PI, Feroz A, et al. Clonal deletion with bortezomib in renal transplant recipients. Transplant. 2012;90:219–222.

124. Morrow WR, Frazier EA, Mahle WT, et al. Rapid reduction in donor exposure cyclosporine A in de novo kidney transplantation: a multicenter, prospective trial with a four-year follow-up. Transpl Immunol. 2012;26:319–324.

125. Larsen CP, Pearson TC, Adams AB, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant. 2010;10:536–546.

126. Vincenti F, Charpentier B, Vanrenterghem Y, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant. 2010;10:547–557.

127. Durrbach A, Pesantes JM, Pearson T, et al. A Phase III study of belatacept versus cyclosporine in kidney transplants from extended criteria donors (BENEFIT-EXT study). Am J Transplant. 2010;10:547–557.

128. Larsen CP, Grinyo J, Medina-Pesantes J, et al. Belatacept-based regimens versus a cyclosporine A-based regimen in kidney transplant recipients: 2-year results from the BENEFIT and BENEFIT-EXT studies. Transplantation. 2010;90:1528–1535.

129. Vincenti F, Larsen CP, Alberu J, et al. Three-year outcomes from BENEFIT, a randomized, active-controlled, parallel-group study in adult kidney transplant recipients. Am J Transplant. 2012;12:210–217.

130. Lachmann N, Terasaki PI, Schönemann C. Donor-specific HLA antibodies in chronic renal allograft rejection: a prospective trial with a four-year follow-up. Clin Transpl. 2006:171–199.

131. Ewerly MJ, Refalo LM, Haisch CE, et al. Incidence and impact of de novo donor-specific antibodies in renal primary renal allograft recipients. Transplantation. 2012;93:319–324.

132. Vincenti F, Perrini P, Bordonaro S, et al. High-risk recipients after switch to everolimus alone or associated with low dose of calcineurin inhibitors. Clin Transpl. 2014;28:1054–1060.

133. Sommerer C, Morath C, Shaier M, et al. Is there an increased risk of de novo donor specific HLA antibodies in calcineurin-inhibitor sparing immunosuppression? J Am Soc Nephrol. 2013;24(Suppl):S59A.

134. Fava E, Silvestrini N, Pedroso J, et al. Extended-release tacrolimus plus everolimus vs extended-release tacrolimus plus micophenolate mofetil in primary deceased donor kidney transplant recipients: 1-year results of an open label, randomized phase 2 clinical trial. Am J Transplant. 2013;13(Suppl 5):Abstract B850.

135. Hoshihno J, Kaneko H, Everly MJ, et al. Using donor-specific antibodies to monitor the need for immunosuppression. Transplantation. 2012;93:1173–1178.

136. McDonald-Hyman C, Turkla LA, Blazar BR. Advances and challenges in immunotherapy for solid organ and hematopoietic stem cell transplantation. Sci Transl Med. 2015;7:280nb2.

137. Dörner T, Lipsky PE. B cells: deletion or functional modulation in rheumatic diseases. Curr Opin Rheumatol. 2014;26:228–236.

138. Romano A, Conticello C, Cavalli M, et al. Salvage therapy of multiple myeloma: the new generation drugs. Biom Res Int. 2014;21:456037.

139. Mitzgochi A, Bhan AK. A case for regulatory B cells. J Immunol. 2006;175:705–710.

140. Reddy V, Jayne D, Close D, et al. B-cell depletion in SLE: clinical and trial experience with rituximab and ocrelizumab and implications for study design. Arthritis Res Ther. 2013;15(Suppl 1):S2.

141. Mei HE, Schmidt S, Dörner T. Rational of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmune. Arthritis Res Ther. 2012;14(Suppl 5):S1.

142. Davido C, Blassfeld D, Reiter K, et al. Epratuzumab targeting of CD22 affects adhesion molecule expression and migration of B-cells in systemic lupus erythematosus. Arthritis Res Ther. 2010;12:R204.

143. Siegner N, Fleischer SJ, Mei HE, et al. CD22 ligation inhibits downstream B cell receptor signaling and Ca(2+)-flux upon activation. Arthritis Rheum. 2013;65:770–779.

144. Vincent FB, Morand EF, Schneider P, et al. The BAFF/APRIL system in SLE pathogenesis. Nat Rev Rheumatol. 2014;10:385–373.

145. Kwun J, Page E, Hong JJ, et al. Neutralizing BAFF/APRIL with atacicept in refractory multiple myeloma who have been previously treated with efalizumab-based immunosuppressive regimen to facilitate single donor kidney transplantation outcomes. J Clin Invest. 2014;124:1817–1827.