Digital herders and phase transition in a voting model

M Hisakado\(^1\) and S Mori\(^2\)

\(^1\) Standard and Poor’s, Marunouchi 1-6-5, Chiyoda ku, Tokyo 100-0005, Japan
\(^2\) Department of Physics, School of Science, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555, Japan

E-mail: masato_hisakado@standardandpoors.com and mori@sci.kitasato-u.ac.jp

Received 17 January 2011, in final form 13 April 2011
Published 7 June 2011
Online at stacks.iop.org/JPhysA/44/275204

Abstract
In this paper, we discuss a voting model with two candidates, \(C_1\) and \(C_2\). We set two types of voters—herders and independents. The voting of independent voters is based on their fundamental values; on the other hand, the voting of herders is based on the number of votes. Herders always select the majority of the previous \(r\) votes, which are visible to them. We call them digital herders. We can accurately calculate the distribution of votes for special cases. When \(r \geq 3\), we find that a phase transition occurs at the upper limit of \(t\), where \(t\) is the discrete time (or number of votes). As the fraction of herders increases, the model features a phase transition beyond which a state where most voters make the correct choice coexists with one where most of them are wrong. On the other hand, when \(r < 3\), there is no phase transition. In this case, the herders’ performance is the same as that of the independent voters. Finally, we recognize the behavior of human beings by conducting simple experiments.

PACS numbers: 89.65.–s, 02.50.–r

1. Introduction

In general, collective herding poses interesting problems in several fields. To cite a few examples in statistical physics, anomalous fluctuations in financial markets \([1, 2]\) and opinion dynamics \([3]\) have been related to percolation and the random field Ising model. To estimate public perception, people observe the actions of other individuals; then they make a choice similar to that of others. Recently, these behaviors have been referred to as Kuki-wo-yomu (follow an atmosphere) in Japanese. Because it is usually sensible to do what other people are doing, the phenomenon is assumed to be the result of a rational choice. Nevertheless, this approach can sometimes lead to arbitrary or even erroneous decisions. This phenomenon is known as an information cascade \([4]\).
A recent agent-based model proposed by Curty and Marsili [5] focused on the limitations imposed by herding on the efficiency of information aggregation. Specifically, it was shown that when the fraction of herders in a population of agents increases, the probability that herding yields the correct forecast (i.e. individual information bits are correctly aggregated) undergoes a transition to a state in which either all herders forecast rightly or no herder does.

In the previous paper, we introduced a voting model that is similar to a Keynesian beauty contest [6–8]. There are two types of voters—herders and independents—and two candidates. Herders are known as copycat voters; they vote for each candidate with the probabilities that are proportional to the candidates’ votes. In the previous paper, they were known as analog herders. We investigated a case wherein all the voters are herders [9]. In such a case, the process is a Pólya process, and the voting rate converges to a beta distribution in a large time limit [10]. Next, we doped independent voters in herders. The proposed voting model is a binomial distribution doped in a beta binomial distribution mathematically. In the upper limit of \(t \), the independent voters make the distribution of votes converge to Dirac measure against herders. This model consists of three phases. If herders constitute the majority or even half of the total voters, the voting rate converges more slowly than it would in a binomial distribution. If independents constitute the majority of the voters, the voting rate converges at the same rate as it would in a binomial distribution. The phases differ in terms of the velocity of the convergence. If the independent voters vote for the correct candidate rather than for the wrong candidate, the model consists of no case wherein the majority of the voters select the wrong answer. The herders affect only the speed of the convergence; they do not affect the voting rates for the correct candidate.

The model introduced by Curty and Marsili has a limitation similar to that of our previous model in the case wherein voters are unable to see the votes of all the voters; they can only see the votes of previous voters. However, there is a significant difference between our model and their model with respect to the behavior of the herders. In their model, the herders always select the majority of the votes, which are visible to them. Thus, their behavior becomes digital (discontinuous). Digital herders have a stronger herding power than analog herders.

Here, we discuss a voting model with two candidates, \(C_0 \) and \(C_1 \). We set two types of voters—independents and herders. In this paper, the herders are digital herders, as in the case of the model introduced by Curty and Marsili. The voting of independent voters is based on their fundamental values. On the other hand, the voting of herders is based on the number of votes. Herders always select the majority of the previous \(r \) votes, which are visible to them.

The remainder of this paper is organized as follows. In section 2, we introduce our voting model, and mathematically define the two types of voters—independents and herders. The voters can see the previous \(r \) votes of the voters. In section 3, we calculate the exact distribution functions of the votes for the case wherein the voters can see the votes of all voters. We discuss the phase transition using the exact solutions. In section 4, we discuss the special case, \(r = 1 \). In this case, we calculate the exact distribution function; however, there is no phase transition. In section 5, we analyze the model using mean field approximation. We can show that the phase transition in this system occurs when \(r \geq 3 \). In section 6, we describe numerical simulations performed to confirm the analytical results pertaining to the asymptotic behavior. In section 7, we conduct simple social experiments to recognize the behavior of human beings. Finally, the conclusions are presented.

2. Model

We model the voting of two candidates, \(C_0 \) and \(C_1 \); at time \(t \), they have \(c_0(t) \) and \(c_1(t) \) votes, respectively. At each time step, one voter votes for one candidate; the voting is sequential.
Voters are allowed to see \(r \) previous votes for each candidate when they vote so that they are aware of public perception. If \(r > t \), voters can see \(t \) previous votes for each candidate. At time \(t \), the number of votes for \(C_0 \) and \(C_1 \) are \(c'_0(t) \) and \(c'_1(t) \), respectively. In the limit \(r \to \infty \), voters can see all previous votes. Therefore, \(c^\infty_0(t) = c_0(t) \) and \(c^\infty_1(t) = c_1(t) \).

There are two types of voters—Independents and Herders; we assume an infinite number of voters. Independent voters vote for \(C_0 \) and \(C_1 \) with probabilities \(1 - q \) and \(q \), respectively. Their votes are independent of others’ votes, i.e. their votes are based on their fundamental values. Here, we set \(C_0 \) as the wrong candidate and \(C_1 \) as the correct candidate to validate the performance of the Herders. We can set \(q \geq 0.5 \) because we believe that independent voters vote for the correct candidate \(C_1 \) rather than for the wrong candidate \(C_0 \). In other words, we assume that the intelligence of the independent voters is virtually correct.

On the other hand, Herders vote for a majority candidate; if \(c'_0(t) > c'_1(t) \), Herders vote for candidate \(C_0 \). If \(c'_0(t) < c'_1(t) \), Herders vote for candidate \(C_1 \). If \(c'_0(t) = c'_1(t) \), Herders vote for \(C_0 \) and \(C_1 \) with the same probability, i.e. \(1/2 \). In the previous paper, the Herders voted for each candidate with probabilities that were proportional to the candidates’ votes [7]; they were known as analog Herders. On the other hand, the Herders in this paper are known as digital Herders (figure 1).

The independent voters and Herders appear randomly and vote. We set the ratio of independent voters to Herders as \((1 - p)/p \). In this paper, we mainly pay attention in large \(t \) limit. It means the voting of infinite voters.

3. Exact solution of \(r = \infty \)

In this section, we study the exact solution of the case \(r = \infty \) by using combinatorics.

Here, we map the model to correlated Brownian motion along the edges of a grid with square cells, and count the number of paths. Let \(m \) and \(n \) be the horizontal axis and vertical axis, respectively. The coordinates of the lower-left corner are \((0, 0) \); this is the starting point. \(m \) is the number of voters who vote for \(C_1 \), and \(n \) is the number of voters who vote for \(C_0 \). A
path shows the history of the votes. If a voter votes for C_1, the path moves rightward. If a voter votes for C_0, the path moves upward.

We define $P_i(m, n)$ as the probability that the $(n + m + 1)$st voter votes for candidate C_i, where $i = 0, 1$. The probability of moving upward is as follows:

$$P_0(m, n) = \begin{cases} p(m < n) & \equiv A \\ \frac{1}{2} p + (1 - p)(1 - q) & \equiv B \\ (1 - p)(1 - q) & \equiv C \end{cases}$$

(1)

The probability of moving rightward is $P_1(m, n) = 1 - P_0(m, n)$ for each case. Here, we introduce $X(m, n)$ as the probability that the path passes through the point (m, n). The master equation is

$$X(m, n) = P_1(m - 1, n)X(m - 1, n) + P_0(m, n - 1)X(m, n - 1), \quad (2)$$

for $m \geq 0$ and $n \geq 0$, with the initial condition $X(0, 0) = 1$. This defines $X(m, n)$ uniquely. Hereafter, we refer to the regions $m < n$ as I, $m > n$ as II, and $m = n$ as III (figure 2).

First, we consider the case $q = 1$. At this limit, independent voters always vote for only one candidate, C_1 (if we set $q = 0$, independent voters vote only for C_0). The probability is reduced from (1) to

$$P_0(m, n) = \begin{cases} p & m < n \\ \frac{1}{2} p & m = n \\ 0 & m > n \end{cases}$$

(3)

In this case, if the path enters $II (m > n)$, it can only move rightward. Hence, $n = m - 1$ becomes the absorption wall, where $m, n \geq 0$. There is a difference between the probability (3) in $I (m < n)$ and that in $III (m = n)$. Then, we have to count the number of times the path touches the diagonal.

Using (A.4), we can calculate the distribution for $m \leq n$ (see appendix A):

$$X(m, n) = \begin{cases} \sum_{k=0}^{m} A_{m,n,k} \frac{p^k (1 - p)^{m-k}}{2^{m-k}} & m < n \\ \sum_{k=0}^{m} A_{m,m,k} \frac{p^k (1 - p)^{m-k}}{2^{m-k}} & m = n \end{cases}, \quad (4)$$

where $A_{m,n,k}$ is given by (A.4) and k is the number of times the path touches the diagonal.
The distribution for \(m > n \) can be easily calculated for the absorption wall \(n = m - 1 \), where \(m, n \geq 0 \). The distribution for \(m > n \) is given by
\[
X(m, n) = \sum_{k=0}^{n} A_{n,k,m} \frac{p^k (1 - p)^n (1 - \frac{k}{2} p)}{2^{k+1}}, \quad m > n. \tag{5}
\]

We investigate the limit \(t \to \infty \). Here, we consider \(m \) as a variable; it is the distribution function of the vote for \(C_1 \). For large \(t \), we can assume that only the first terms of the summation of (4) and (5) are non-negligible. The first term becomes the difference of the binomial distributions using (A.4). For \(m/t < 1/2 \), the peak of the binomial distribution is \(1 - p \) and for \(m/t > 1/2 \), it is 1. Then, we can obtain the distribution in the scaling limit \(t = m + n \to \infty \),
\[
\frac{m}{t} \implies Z. \tag{6}
\]

The probability measure of \(Z \) is
\[
\mu = \alpha \delta_{1-p} + \beta \delta_1, \tag{7}
\]
where \(\delta_x \) is Dirac measure. \(Z \) is the ratio of voters who vote for \(C_1 \) from (6). The distribution has two peaks, one at \(Z = 1 \) and the other at \(Z = 1 - p \). Now we calculate \(\alpha \) and \(\beta \), where \(\alpha + \beta = 1 \). The probability that the path touches the absorption wall \(n = m - 1 \) is given by
\[
\beta = \sum_{m=0}^{\infty} X(m, m) \left(1 - \frac{p}{2}\right) = \sum_{m=0}^{\infty} \sum_{k=0}^{m} A_{m,k,m} \frac{p^m (1 - p)^m}{2^k} \left(1 - \frac{p}{2}\right)
\]
\[
= \left(1 - \frac{p}{2}\right) \left[1 + \frac{x}{2} C_0(x) + \left(\frac{x}{2}\right)^2 C_1(x) + \left(\frac{x}{2}\right)^3 C_2(x) + \cdots\right]
\]
\[
= \left(1 - \frac{p}{2}\right) \left[1 + \frac{x}{2} C_0(x) + \left(\frac{x}{2}\right)^2 \left[C_0(x)\right]^2 + \left(\frac{x}{2}\right)^3 \left[C_0(x)\right]^3 + \cdots\right]
\]
\[
= \left(1 - \frac{p}{2}\right) \left[\sum_{k=0}^{\infty} \left[x C_0(x)\right]^k\right]
\]
\[
= \left(1 - \frac{p}{2}\right) \frac{1}{1 - \frac{x C_0(x)}{2}}
\]
\[
= \frac{4 - 2p}{3 + \sqrt{1 - 4p(1 - p)}}. \tag{8}
\]

\(C_3(x) \) is the generating function of the generalized Catalan number (A.9), and \(x = p(1 - p) \).

Here, we use relations (A.8) and (A.11).

In figure 3, we plot \(\beta \) for the case \(q = 1 \). We are interested in the average votes for \(C_1 \) by the herders to validate the performance of the herders. We define \(s \) as the average votes for the correct candidate \(C_1 \) by the herders,
\[
s = \frac{Z - (1 - p)}{p}. \tag{9}
\]

Here, we take expected values of (9) about several sequences of voting,
\[
\tilde{Z} = p \tilde{s} + (1 - p) = (1 - p) \alpha + \beta, \tag{10}
\]
where \(\tilde{x} \) means the expected value of \(x \). The second equality can be obtained from (7). Using the relation \(\alpha + \beta = 1 \), we can obtain \(\tilde{s} = \beta \).

When \(p \) is less than 0.5, herding is a highly efficient strategy. The distribution of votes peaks when \(Z = 1 \). A majority of votes are necessary to select the correct candidate \(C_1 \). At \(p = p_c = 0.5 \), there is a phase transition. When \(p \) exceeds \(p_c = 0.5 \), the distribution of votes has two peaks. In this case, a majority may select the wrong candidate \(C_0 \).
Figure 3. β or \bar{s}, i.e. average votes for candidate C_1 by herders.

Figure 4. Var(Z), the variance of Z, is the order parameter. Var(Z) is not differentiable at p_c. Z is the ratio of voters who vote for C_1.

of game theory, this is a bad equilibrium. The probability of falling into bad equilibrium is $1 - \beta$. Var(Z), the variance of Z in the large t limit, is the order parameter. It is observed that Var(Z) is not differentiable at $p = 1/2$ (figure 4). Hence, the phase transition is of the second order.

When $p \leq p_c$, the distribution has one peak, and it does not depend on $P_0(m, m)$, which is the probability of the vote when the number of votes for C_0 is the same as that for C_1. We can confirm that Var(Z) is 0 in figure 4. On the other hand, when $p > p_c$, the limit distribution depends on $P_0(m, m)$; $P_0(m, m)$ is given by (3). We can confirm that Var(Z) is not 0 in figure 4. If herders are analog, Var(Z) is 0 in all region of p.

Next, we consider the general q case. In this case, the path goes across the diagonal several times. $n = m - 1$ is no longer the absorption wall, where $m, n \geq 0$. Hence, it is difficult to calculate the exact solution for general q. However, as in the discussion of (7), we can obtain the limit shape of the distribution of the votes for C_1,

$$\frac{m}{t} \Rightarrow Z.$$ (11)
The probability measure of Z is
\[\mu = \alpha \delta_{1-p\eta} + \beta \delta_{p(1-p)\eta}, \]
where $\alpha + \beta = 1$. When $q = 1$, (12) becomes (7). We can calculate β as
\[\beta = \tilde{R}_1(1 - R_2)(1 + R_1R_2 + R_1^2R_2^2 + \cdots) = \frac{\tilde{R}_1(1 - R_2)}{1 - R_1R_2}. \]

\tilde{R}_1 is the probability that the path starts from $(0, 0)$, goes across the diagonal only once and reaches the wall $n = m - 1$ in $\{ I \}$ ($m < n$). R_1 is the probability that the path starts from the wall $n = m + 1$ in I ($m < n$), goes across the diagonal only once and reaches the wall $n = m - 1$ in $\{ I \}$ ($m > n$). R_2 is the probability that the path starts from the wall $n = m - 1$ in $\{ I \}$ ($m > n$), goes across the diagonal only once and reaches the wall $n = m + 1$ in I ($m < n$).

For example, the first term of (13) is the path that starts from $(0, 0)$ and passes through I ($m < n$) or directly enters $\{ I \}$ ($m > n$). The path goes across the diagonal $\{ I \}$ ($m = n$) only once; the first step is rightward. The second term is the path that starts from $(0, 0)$, goes across the diagonal $\{ I \}$ ($m = n$) three times and enters $\{ I \}$ ($m > n$). We can calculate \tilde{R}_1, R_1 and R_2 similar to (8) (see appendix B).

\[\tilde{R}_1 = \frac{2(1 - B)}{2 - \gamma_1(1 - \sqrt{1 - 4A(1 - A)})}, \]
\[R_1 = \frac{(1 - B)\gamma_1(1 - \sqrt{1 - 4A(1 - A))}}{B[2 - \gamma_1(1 - \sqrt{1 - 4A(1 - A))}]}, \]
\[R_2 = \frac{B\gamma_2(1 - \sqrt{1 - 4C(1 - C))}}{1 - B)(2 - \gamma_2(1 - \sqrt{1 - 4C(1 - C)))}, \]
where A, B and C are given by (1), $\gamma_1 = B/A$ and $\gamma_2 = (1 - B)/(1 - C)$.

In general, we can calculate the exact value of p_c;
\[p_c = 1 - \frac{1}{2q}. \]

As q increases, p_c increases. At p_c, the model features a phase transition beyond which a state where most agents make the correct forecasts coexists with one where most of them are wrong. Thus, the effectiveness of herding decreases as q decreases. In the limit $q = 0.5$, the phase transition disappears. The distribution becomes symmetric in this case.

From the viewpoint of the herders being noise, if p is greater than p_c, the vote ratios deviate considerably from the fundamental value q. Thus, digital herders account for greater noise than analog herders. Analog herders affect only the speed of convergence to the fundamental value [7]. Independent voters cannot oppose digital herders.

4. Exact solutions for $r = 1$

Here, we discuss the case $r = 1$ besides $p \neq 1$.\(^3\) Herders can see only a vote of the previous voter. We define $P_0(t)$ as the probability that the $(t + 1)$st voter votes for C_0, where t denotes the time:
\[P_0(t) = \begin{cases} p + (1 - p)(1 - q) & \text{if } Y_0(t - 1) = 1; \\ (1 - p)(1 - q) & \text{if } Y_0(t - 1) = 0. \end{cases} \]

$Y_i(t) = 1$ indicates that at t, the voter votes for C_i. $Y_0(t - 1) = 1$ indicates that the previous voter votes for C_0. On the other hand, $Y_i(t) = 0$ indicates that at t, the voter does not vote

\(^3\) When $p = 1$, all voters are herders, and the distribution becomes the limit shape of beta distribution, as discussed in [9].
for C_i. $Y_0(t - 1) = 0$ indicates that the previous voter votes for C_1. Thus, $\sum_{l=1}^{t-1} Y_l(l)$ is the total number of votes for C_i until t. Here, the relation $P_1(t) = 1 - P_0(t)$ holds. The initial distribution is

$$P_0(0) = \frac{1}{2} p + (1 - p)(1 - q). \quad (17)$$

The model was studied as a one-dimensional correlated random walk [11, 12]. Here, we introduce $X(m, n)$ as the probability distribution. m is the number of the voters who vote for C_1 and n is the number of the voters who vote for C_0. The master equation is

$$X(m, n) = P_1(t - 1) X(m - 1, n) + P_0(t - 1) X(m, n - 1), \quad (18)$$

for $m \geq 0$ and $n \geq 0$, with the initial condition $X(0, 0) = 1$.

In the limit $t \to \infty$,

$$X(m, t - m) \to N\left(qt, \frac{F(1 - G)}{(1 - F)G} t\right), \quad (19)$$

where $N(\mu, \sigma^2)$ is the normal distribution with mean μ and variance σ^2. (See theorem 3.1. in [11].) F and G are given in (16). Hence, we can obtain the limit shape of the distribution as

$$\frac{m}{t} \to Z. \quad (20)$$

The probability measure of Z is

$$\mu = \delta q. \quad (21)$$

Then, $r = 1$ involves no phase transition, and the majority of the voters do not select the wrong candidate C_0.

The limit distribution is independent of the initial condition $P_0(0)$ because the distribution Z has only one peak.

5. Mean field approximation

We discussed the exact solutions of this model in the cases $r = 1$ and $r = \infty$. A phase transition occurs in the case $r = \infty$. On the other hand, there is no phase transition in the case $r = 1$. We must consider the case $1 < r < \infty$. In this section, we analyze phase transition using mean field approximation.

We define $P_i'(t)$ as the probability that the $(t + 1)$st voter votes for C_i, where $i = 0, 1$. The voter can see the previous r voters’ votes,

$$P_0'(t) = \begin{cases} p + (1 - p)(1 - q); & \sum_{l=t-r}^{t-1} Y_0(l) > r/2 \\ p/2 + (1 - p)(1 - q); & \sum_{l=t-r}^{t-1} Y_0(l) = r/2 \\ (1 - p)(1 - q); & \sum_{l=t-r}^{t-1} Y_0(l) < r/2 \end{cases}. \quad (22)$$

$\sum_{l=t-r}^{t-1} Y_0(l)$ gives the total votes for C_0 from $(t - r)$ to $(t - 1)$. In other words, it is the total number of votes of the previous r voters for C_0 at t. The case $\sum_{l=t-r}^{t-1} Y_0(l) = r/2$ appears only when r is even. Here, the relation $P_1'(t) = 1 - P_0'(t)$ holds. When $r = \infty$, (22) reduces to (1) and when $r = 1$, (22) reduces to (16).

We focus on the probability of the selection of the correct candidate C_1. The distribution of Z is the limit shape of the distribution of votes for C_1. In general q, we can rewrite the first equality of (9) as

$$Z = (1 - p)q + ps. \quad (23)$$
Here, from the viewpoint of the mean field approximation, \(s \) can be considered as the sum of the probabilities of every combination of majorities in the reference of previous \(r \) votes.

The mean field analysis is an approximation. We cannot obtain quantitative conclusions from this analysis owing to two major reasons. First, the analysis does not use \(P_0(0) \) in (22). Second, this approximation assumes the independence of voters, which is not true. These errors are presented in the next section.

When \(r \) is odd,

\[
 s = \sum_{g=0}^{r} \binom{r}{g} Z^g (1 - Z)^{r-g} \equiv \Omega_r(Z). \tag{24}
\]

When \(r \) is even, from the definition of the behavior of the herder,

\[
 s = \sum_{g=1}^{r} \binom{r}{g} Z^g (1 - Z)^{r-g} + \frac{1}{2} \binom{r}{r/2} Z^{r/2} (1 - Z)^{r/2} \\
 = \sum_{g=1}^{r-1} \binom{r-1}{g} Z^g (1 - Z)^{r-1-g} = \Omega_{r-1}(Z). \tag{25}
\]

The even case \(r \) becomes the odd case \(r - 1 \) from the viewpoint of the mean field analysis.

Figure 5 shows the exact solutions of \(\bar{Z} \), and figure 3 shows the exact solutions of \(\bar{s} \). Here \(\bar{x} \) is the expected value of \(x \). Both are obtained from the conclusions of section 3 for the case \(r = \infty \). \(p \) is the percentage of herders and \(q \) is the percentage of the correct answers of independent voters. \(\bar{Z} \) increases with \(p \) up to the critical point (15). At the critical point, \(\bar{Z} \) is maximum. Above the critical point, the distribution becomes the sum of two delta functions, and \(\bar{Z} \) decreases as \(p \) increases.

Equations (23) and (24) are two self-consistent equations for \(s \) or \(Z \). By substituting (24) into (23), we obtain

\[
 s = \Omega_r(Z)p + (1 - p)q. \tag{26}
\]
Solutions of self-consistent equation (26) in the case $3 \leq r < \infty$: (a) $p \leq p_c$. Below the critical point p_c, we can obtain one solution (a). On the other hand, above the critical point, we obtain three solutions. Two of them are stable and one is unstable (b).

(1) $r = 1$ and $r = 2$

In this case, $\Omega_r(Z) = q$. We can obtain $s = q$ from (24). Then, we can obtain $s = Z = q$. The ratio of the herders’ votes for C_1 is constant, which is the same as that of the independent voters’ votes. There is no transition in these cases. This is consistent with the conclusion of section 4.

(2) $r = \infty$

(i) $Z > 1/2$.

In this case, $\Omega_r(Z) = 1$. We can obtain $s = 1$ and $Z = p + (1 - p)q$.

(ii) $Z \leq 1/2$.

In this case, $\Omega_r(Z) = 0$. We can obtain $s = 0$, $Z = (1 - p)q$, and the condition $p \geq 1 - \frac{1}{2q}$. Then, when $r = \infty$, there is a phase transition at $p_c = 1 - \frac{1}{2q}$. When $p \leq p_c$, the herders always vote for the correct candidate C_1. On the other hand, when $p > p_c$, there are two cases. One is the same as that when $p \leq p_c$. In the other case, the herders always vote for the wrong candidate C_0. This phenomenon is known as an information cascade. The conclusion is consistent with that of section 3; however, by the mean field approximation, we cannot obtain the exact distributions that are obtained in section 3.

(3) $3 \leq r < \infty$

Equation (26) admits one solution for $p \leq p_c(r)$ (see figure 6(a)) and three solutions for $p > p_c(r)$ (see figure 6(b)). When $p > p_c(r)$, the upper and lower solutions are stable solutions; on the other hand, the intermediate solution is an unstable solution. Then, the two stable solutions attain good and bad equilibrium, respectively, and the distribution becomes the sum of the two delta functions, as in the case $r = \infty$ (see section 3).

6. Numerical simulations

In order to confirm the analytical results, we perform numerical simulations. We adopt two approaches, the numerical integration of the master equation and Monte Carlo simulation for this model. The master equation is given by (18) and $P_i(t)$ is given by (22).

Figure 7 shows the average votes’ ratio for the correct candidate C_1. Figure 7(a) shows numerical integration at $t = 10000$. We can see that the even case r almost coincides with the odd case $r - 1$. The conclusion based on the previous section is reasonable (see (24) and (25)).
Figure 7. Average votes’ ratio for the correct candidate C_1 when $q = 0.6$. (a) Numerical integration and (b) numerical integration and Monte Carlo simulation. The vertical axis is $E(Z) = \bar{Z}$.

Figure 7(b) shows the numerical integration and Monte Carlo simulation. The number of simulations is 100,000. We can check whether the Monte Carlo simulation is consistent with the numerical integration. In figure 7(b), we can also confirm the exact solution for $r = \infty$. The case $q = 0.6$ in figure 5 corresponds to the case $r = \infty$ in figure 7(b). We can observe clearly the indifferentiable point at p_c in figure 5. On the other hand, the point in figure 7(b) is smoother than the point in figure 5. If we increase the number of Monte Carlo simulations, the points will appear similar in figures 7(b) and 5.

Here, we investigate the maximum \bar{Z}, i.e., the maximum probability of selecting the correct candidate C_1 or the maximum percentage of correct answers. If the voters can see the previous vote or two, there is no phase transition. The percentage of correct answers is constant, as is the percentage of the correct answers of independent voters q. In this case, the lowest maximum percentage of correct answers is shown (figure 7(b)). If the voters can see more than the previous two votes, a phase transition occurs. Above the critical point p_c, the distribution has two peaks. As r increases, the critical point p_c decreases.

When the voters can see all the previous votes, we believe that the maximum percentage of correct answers is the highest. For example, when we select the herding strategy, we collect as much information as we can. However, this is not true. When the voters can see the previous 21 votes, the maximum percentage of correct answers is the highest when $q = 0.6$. Too much information induces mistakes among the herders. It can be observed in the collective behaviors of animal groups such as fish schools and bird flocks [13]. There may be limits to the information available to grouping individuals. The average distance maintained between neighbors within pelagic fish schools is usually between three-tenths of body length and one body length. Individuals can change their position relative to others only on the basis of local information. They do not need information of the entire group.

The maximum probability of selecting the correct answer is at the critical point p_c when $r = \infty$. This can be seen in figure 5, which is the exact solution for the case $r = \infty$. On the other hand, for $3 \leq r < \infty$, the maximum probability of selecting the correct answer is above the critical point p_c. In this phase, the distribution of votes has two peaks. Thus, the possibility of the majority of voters selecting the wrong answer increases; however, the average probability of selecting the correct answer increases. We discussed the unstable solution in the two-peak phase in the previous section.
Figure 8. Distribution of correct answers. (a) $r = 0$ and (b) $r = \infty$. We can observe one peak at $Z = m/t = 0.6$ in (a). We can observe two peaks, one at $Z = m/t = 0.2$ and the other at $Z = m/t = 1$ in (b). The peak at $Z = 0.2$ is attributed to the wrong answers caused by the information cascade.

As discussed in the previous section, we find that the conclusions of numerical integration and Monte Carlo simulation are inconsistent with the conclusion of the mean field approximation analysis in some respects. For example, when $r = 3$ and $q = 0.6$, the critical point is at $p_c = 0.78$ from the mean field analysis. At this point, we obtain $Z = 0.89$ by using this method. On the other hand, from the conclusion of the numerical simulations, we obtain $p_c = 0.74$ and $Z = 0.65$ (figure 7(b)). The rough estimate of the critical point p_c can be calculated by mean field approximation; however, it is difficult to estimate Z. Mean field approximation is excessively optimistic because it does not use the information at $t = 1$ and $\sum_{l=1}^{t-1} Y_0(l) = r/2$. When $r = 1$ and $r = 2$, the distribution Z has one peak; hence, it is independent of these conditions. Thus, the conclusions from the mean field approximation are consistent with those from numerical simulations. On the other hand, when $3 \leq r < \infty$, the distribution Z depends on these conditions.

7. Social experiments

We conducted simple social experiments for our model. We framed 200 questions, each with two choices—knowledge and no knowledge. Thirty-one participants answered these questions sequentially. First, they answered the questions without any information about the others’ answers, i.e. their answers were based on their own knowledge. Those who knew the answers selected the correct answers. Those who did not know the answers selected the correct answers with a probability of 0.5. Next, the participants were allowed to see the previous participants’ answers. Those who did not know the answers referred to this information. We are interested in whether they referred to the information as digital herders or analog herders.

Figure 8 shows the results of the social experiments, i.e. the distribution of the correct answers: (a) $r = 0$ and (b) $r = \infty$. The average correct answer ratio is 0.6 in the case of (a). Hence, the independent voters who knew the answers account for 0.2 of all voters, and the herders who did know the answers account for 0.8 of all the voters. If the herders are digital, we can apply the model described in section 3, with $p = 0.8$, $q = 1$ and $r = \infty$. From (7), the distribution of the percentage of correct answers has peaks at $Z = m/t = 0.2$ and $Z = m/t = 1$. Although the number of votes is small and does not converge, the prediction
Figure 9. Phase diagram in the space p_c and r. r is an integer. When $r = 1$ and $r = 2$, there is no phase transition. When $r \geq 3$, there is a phase transition. There are two phases. One is a one-peak phase, and the other is a two-peak phase. The two-peak phase represents the information cascade. As r increases, the critical point decreases.

8. Concluding remarks

We investigated a voting model that is similar to a Keynesian beauty contest. We calculated the exact solutions for the special cases $r = 1$ and $r = \infty$, and we analyzed the general case using mean field approximation and numerical simulations. When $r = 1$ and $r = 2$, there is no phase transition. The percentage of correct answers is the same as that of independent voters. In this case, herders cannot increase the percentage of correct answers. When $r \geq 3$, there is a phase transition. As the fraction of herders increases, the model features a phase transition beyond which a state where most voters make the correct votes coexists with one where most of them are wrong. As r increases, the critical point decreases. The phase diagram is shown in figure 9. When $r = \infty$, we can obtain the exact solutions. When $r \leq 3 < \infty$, we cannot obtain the critical point p_c and the distribution precisely. In this case, the mean field approximation analysis is inadequate. It is a problem that must be addressed in the future.

The high critical point induces a low risk of phase transition. Ants use chemical signals called pheromones, and they behave as herders. The pheromones evaporate quickly. As an analogy, in our model, r is small. Thus, pheromones may amplify the limited intelligence of individual ants into something more powerful to avoid phase transition.

We are also interested in the behavior of human beings. We conducted simple experiments for our model when $r = 0$ and $r = \infty$. Although the total number of votes is small and does not converge, in these experiments an information cascade is observed. This phenomenon was
caused by digital herders and not by analog herders. If the herders are analog, the difference of the phase is only the velocity of the convergence. Analog herders do not lead to erroneous decisions in \(t = \infty \). On the other hand, if the herders are digital, the distribution of the votes has two peaks. One represents good equilibrium and the other represents bad equilibrium. In the case of bad equilibrium, herders make erroneous decisions at \(t = \infty \). We can conclude that the information cascade is caused by the phase transition of digital herders. A detailed analysis of the experiments is a problem that must be addressed in the future.

Finally, we comment on the relations between our model and the model introduced by Curty and Marsili [5]. The mean field equations of their model are the same as (23), (24) and (25). The difference is as follows. (1) The number of the agents, \(N \), of their model is finite. (2) The interactive process is repeated until it converges. We are interested in (2), i.e. the interaction among the voters. In the future, we plan to investigate the effects of the interaction on the distribution of votes.

Acknowledgments

This work was supported by Grant-in-Aid for Challenging Exploratory Research 21654054 (SM).

Appendix A. Catalan number

Here, we consider the number of monotonic paths along the edges of a grid with square cells, which do not pass lower the diagonal. Let \(m \) and \(n \) be the horizontal axis and the vertical axis, respectively. The coordinates of the lower-left corner are \((0, 0)\). A monotonic path is one which starts in the lower-left corner, finishes in the upper triangle \((m, n)\), where \(0 \leqslant m \leqslant n\), and consists entirely of edges pointing rightward or upward.

The number of paths from \((0, 0)\) to \((m, n)\) can be calculated as

\[
C_{m,n} = \frac{(n - m + 1)(n + m)!}{m!(n + 1)!} = \binom{n + m}{n} - \binom{n + m}{n + 1}.
\]

(A.1)

These numbers are known as the generalized Catalan number.

If the finish point is \((m, m)\), the number of paths becomes the Catalan number

\[
C_{m,m} = c_m = \frac{2m!}{m!(m + 1)!} = \binom{2m}{m} - \binom{2m}{m + 1}.
\]

(A.2)

Next, we compute the distribution of the number of the paths that start in the lower-left corner, finish in the upper triangle \((m, n)\) and touch the diagonal \(k\) times [15]. Let \(A_{m,n,k} \) denote the number of paths that touch the diagonal \(k\) times. We obtain a simple recursion relation about \(A_{m,n,k} \),

\[
A_{m,n,k} = \sum_{j=0}^{m-1} c_j A_{m-j-1,n-j-1,k-1},
\]

(A.3)

for \(k \geqslant 0, m, n \geqslant 0 \) and \(m \geqslant k \), with the initial condition \(A_{0,0,0} = 1 \). This defines the numbers \(A_{m,n,k} \) uniquely, and it is easy to prove that

\[
A_{m,n,k} = \frac{(n + m + k)(n + m - k - 1)!}{n!(m - k)!} = \binom{n + m - k - 1}{n - 1} - \binom{n + m - k - 1}{n}.
\]

(A.4)
From (A.1) and (A.4), we can obtain the relation
\[A_{m,m,k} = C_{m-k,m-1}. \]
(A.5)

The well-known generating function \(C_0(x) \) of Catalan numbers is given by
\[
C_0(x) = \sum_{n=0}^{\infty} C_{m,m} x^n = 1 + x + 2x^2 + 5x^3 + 14x^4 + 42x^5 + 132x^6 + \cdots,
\]
(A.6)

subject to the algebraic relation
\[xC_0(x)^2 = C_0(x) - 1, \]
(A.7)

and we can obtain
\[
C_0(x) = \frac{1 - \sqrt{1 - 4x}}{2x}. \]
(A.8)

Here, we obtain the generating function \(A_{m,k}(x) \) of \(A_{m,m,k} \):
\[
A_{m,k}(x) = \sum_{m-k=0}^{\infty} A_{m,m,k} x^{m-k} = \sum_{m-k=0}^{\infty} C_{m-k,m-1} x^{m-k}
= \sum_{l=0}^{\infty} C_{l,l+k-1} x^l = C_{k-1}(x). \]
(A.9)

We use (A.5) for the second equality. \(C_j(x) = \sum_{l=1}^{\infty} C_{l,l+j} x^l \) is the generating function of the generalized Catalan number (A.1). The generating function of the generalized Catalan number is given by
\[
C_1(x) = \sum_{n=0}^{\infty} C_{m,m+1} x^n = 1 + 2x + 5x^2 + 14x^3 + 42x^4 + 132x^5 + 429x^6 + \cdots,
\]
\[
C_2(x) = \sum_{n=0}^{\infty} C_{m,m+2} x^n = 1 + 3x + 9x^2 + 28x^3 + 90x^4 + 297x^5 + 1001x^6 + \cdots,
\]
\[
C_3(x) = \sum_{n=0}^{\infty} C_{m,m+3} x^n = 1 + 4x + 14x^2 + 48x^3 + 165x^4 + 572x^5 \cdots.
\]

From (A.3), we can obtain
\[C_j(x) = C_{j-1}(x)C_0(x). \]
(A.10)

Thus, the simple relation between the generating functions is given by
\[C_j(x) = [C_0(x)]^{j+1}. \]
(A.11)
Figure B1. R_1, R_1 and R_2. R_1 is the probability that the path starts from $(0,0)$, goes across the diagonal only once and reaches the wall $n = m - 1$ in II ($m > n$). R_1 is the probability that the path starts from the wall $n = m + 1$ in I ($m < n$), goes across the diagonal only once and reaches the wall $n = m - 1$ in II ($m > n$). R_2 is the probability that the path starts from the wall $n = m - 1$ in II ($m > n$), goes across the diagonal only once and reaches the wall $n = m + 1$ in I ($m < n$).

Appendix B. Derivation of \tilde{R}_1, R_1 and R_2

\tilde{R}_1 is the probability that the path starts from $(0,0)$, goes across the diagonal only once and reaches the wall $n = m - 1$ in II ($m > n$) (figure B1):

$$\tilde{R}_1 = (1 - B)[1 + y\gamma_1 C_0(y) + (y\gamma_1)^2 C_1(y) + (y\gamma_1)^3 C_2(y) + \cdots]$$

$$= (1 - B)[1 + y\gamma_1 C_0(y) + (y\gamma_1)^2 [C_0(y)]^2 + (y\gamma_1)^3 [C_0(y)]^3 + \cdots]$$

$$= (1 - B) \sum_{k=0}^{\infty} (y\gamma_1 y C_0(y))^k = \frac{1 - B}{1 - y\gamma_1 AC_0(A)}$$

$$= \frac{2(1 - B)}{2 - y\gamma_1(1 - y)AC_0(A)}.$$ \hspace{1cm} (B.1)

where A and B are given by (1), $\gamma_1 = B/A$ and $y = A(1 - A)$. $C_k(y)$ is the generation function of the generalized Catalan number $(A.9)$. Here, we use relations $(A.11)$ and $(A.8)$. When $q = 1$, (B.1) reduces to (8).

R_1 is the probability that the path starts from the wall $n = m + 1$ in I ($m < n$), goes across the diagonal only once and reaches the wall $n = m - 1$ in II ($m > n$):

$$R_1 = \left(1 - \frac{B}{B}\right) \frac{[y\gamma_1 C_0(y) + (y\gamma_1)^2 C_1(y) + (y\gamma_1)^3 C_2(y) + \cdots]}{[y\gamma_1 C_0(y) + (y\gamma_1)^2 [C_0(y)]^2 + (y\gamma_1)^3 [C_0(y)]^3 + \cdots]}$$

$$= \frac{1 - B}{B} \left[\tilde{R}_1 - 1\right] = \frac{(1 - B)\gamma_1(1 - \sqrt{1 - 4A(1 - A)})}{B[2 - y\gamma_1(1 - \sqrt{1 - 4A(1 - A)})]}.$$ \hspace{1cm} (B.2)
R_2 is the probability that the path starts from the wall $n = m - 1$ in II ($m > n$), goes across the diagonal only once and reaches the wall $n = m + 1$ in I ($m < n$):

\[
R_2 = \frac{B}{1-B} \left[z\gamma_2 C_0(z) + (z\gamma_2)^2 C_1(z) + (z\gamma_2)^3 C_2(z) + \cdots \right]
\]

\[
= \frac{B}{1-B} \left[z\gamma_2 C_0(z) + (z\gamma_2)^2 (C_0(z))^2 + (z\gamma_2)^3 (C_0(z))^3 + \cdots \right]
\]

\[
= \frac{B\gamma_2 (1 - \sqrt{1 - 4C(1 - C)})}{(1 - B)(2 - \gamma_2 (1 - \sqrt{1 - 4C(1 - C)}))},\tag{B.3}
\]

where C is given by (1), $\gamma_2 = (1 - B)/(1 - C)$ and $z = C(1 - C)$.

References

[1] Cont R and Bouchaud J 2000 Macroecon. Dyn. 4 170
[2] Eguiluz V and Zimmermann M 2000 Phys. Rev. Lett. 85 5659
[3] Stauffer D 2001 Adv. Complex Syst. 4 19
[4] Bikhchandani S, Hirshleifer D and Welch I 1992 J. Political Economy 100 992
[5] Curty P and Marsili M 2006 J. Stat. Mech. P03013
[6] Keynes J M 1936 General Theory of Employment Interest and Money (London: Macmillan)
[7] Hisakado M and Mori S 2010 J. Phys. A: Math. Theor. 43 315207
[8] Mori S and Hisakado M 2010 Power law convergence of win bet fraction and component ratio of herding better in a racetrack betting market arXiv:1006.4884
[9] Mori S and Hisakado M 2010 J. Phys. Soc. Japan 79 034001
[10] Hisakado M, Kitsukawa K and Mori S 2006 J. Phys. A: Math. Gen. 39 15365
[11] Böhm W 2000 J. Appl. Probab. 37 470
[12] Konno N 2003 Limit theorems and absorption problems for one-dimensional correlated random walks arXiv:quant-ph/0310191
[13] Couzin I D, Krause J, James R, Ruxton G R and Franks N R 2002 J. Theor. Biol. 218 1
[14] Partridge B L 1982 Sci. Am. 245 114
[15] Di Francesco P, Golinelli O and Guitter E 1997 Math. Comput. Modelling 26 97