On the CAD-compatible conversion of S-patches

Péter Salvi

Budapest University of Technology and Economics

WAIT 2019

Budapest, January 24th
Outline

1 Introduction
 - Motivation
 - Previous work

2 Simplexes & S-patches
 - Simplexes
 - S-patches

3 Conversion
 - Conversion to quadrilateral S-patch
 - Conversion to tensor product form

4 Conclusion
 - Example
 - Discussion

On the CAD-compatible conversion of S-patches
Multi-sided surfaces in CAD software

- Standard surface representations:
 - Tensor-product Bézier surface
 - Tensor-product B-spline surface
 - Tensor-product NURBS surface
- No standard multi-sided representation
- Conversion to tensor-product patches
 - Trimming
 - Parameterization issues
 - Asymmetric
 - Not watertight
 - Central split
 - Loosely defined dividing curves
 - Only C^0 or G^1 continuity
Solution

- **Exact** tensor product conversion
- Trimmed rational Bézier surface
 - Only polynomial (Bézier) boundaries
 - Trimming curves ⇒ lines in the domain
- Native n-sided representation
 - S-patch
 - Generalization of Bézier curves & triangles
 - Suitable for G^1 hole filling [1]

[1] P. Salvi, *G^1 hole filling with S-patches made easy.*
In: Proceedings of the 12th Conference of the Hungarian Association for Image Processing and Pattern Recognition, 2019 (accepted).
S-patches & simplexes

- [1989, Loop & DeRose] A multi-sided generalization of Bézier surfaces
 - The original S-patch publication
 - Contains *theoretical results* on the tensor product conversion
 - Missing from the description of the algorithm:
 - Composition of rational Bézier simplexes
 - Blossom of Wachspress coordinates

- [1987, Ramshaw] Blossoming: A connect-the-dots approach to splines

- [1988, DeRose] Composing Bézier simplexes

- [1993, DeRose et al.] Functional composition algorithms via blossoming
Simplexes in nD

- $(n + 1)$ points in nD
- Let V_i denote these points
- Any nD point is uniquely expressed by the affine combination of V_i:

$$ p = \sum_{i=1}^{n} \lambda_i V_i \quad \text{with} \quad \sum_{i=1}^{n} \lambda_i = 1 $$

- λ_i are the barycentric coordinates of p relative to the simplex

(images from Wikipedia)
Bézier curve

Let's look at the equation of a Bézier curve:

\[
C(u) = \sum_{i=0}^{d} P_i B_i^d(u)
\]
Let's look at the equation of a Bézier curve:

\[
C(u) = \sum_{i=0}^{d} P_i B_i^d(u) = \sum_{i=0}^{d} P_i \frac{d!}{i!(d-i)!} u^i (1 - u)^{d-i}
\]
Bézier curve

Let's look at the equation of a Bézier curve:

\[C(u) = \sum_{i=0}^{d} P_i B_i^d(u) = \sum_{i=0}^{d} P_i \frac{d!}{i!(d-i)!} u^i (1 - u)^{d-i} \]

Let \(s = (i, d - i) \) and \(\lambda = (u, 1 - u) \).
Bézier curve

Let's look at the equation of a Bézier curve:

\[C(u) = \sum_{i=0}^{d} P_i B_i^d(u) = \sum_{i=0}^{d} P_i \frac{d!}{i!(d-i)!} u^i (1 - u)^{d-i} \]

Let \(s = (i, d - i) \) and \(\lambda = (u, 1 - u) \).

Then

\[C(\lambda) = \sum_{s} P_s \frac{d!}{s_1! s_2!} \lambda_1^{s_1} \lambda_2^{s_2} \]
Bézier triangle

Now let’s look at the equation of a Bézier triangle:

$$T(\lambda) = \sum_s P_s \frac{d!}{s_1!s_2!s_3!} \lambda_1^{s_1} \lambda_2^{s_2} \lambda_3^{s_3} = \sum_s P_s B^d_s(\lambda)$$

- $s = (s_1, s_2, s_3)$ with $s_i \geq 0$ and $s_1 + s_2 + s_3 = d$
- $\lambda = (\lambda_1, \lambda_2, \lambda_3)$ barycentric coordinates of a 2D point relative to the domain triangle (simplex)

Did you know?

This was Paul de Casteljau’s generalization of Bézier curves.
- “Bézier” curves were also his invention
- Tensor product surfaces were invented by Pierre Bézier
- de Casteljau worked at Citroën, while Bézier at Renault
Bézier simplex

- The logical generalization to \((n - 1)\) dimensions:

\[
S(\lambda) = \sum_{s} P_{s} \frac{d!}{\prod_{i=1}^{n} s_i!} \prod_{i=1}^{n} \lambda_{i}^{s_{i}} = \sum_{s} P_{s} B_{s}^{d}(\lambda)
\]

- \(s = (s_1, s_2, \ldots, s_n)\) with \(s_i \geq 0\) and \(\sum_{i=1}^{n} s_i = d\)

- \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_n)\) barycentric coordinates of an \((n - 1)D\) point relative to the domain simplex

Note

Bézier simplexes are mappings, not geometric entities!
S-patches as Bézier simplexes

- S-patch equation (n sides, depth d):

$$S(\lambda) = \sum_{s} P_s \frac{d!}{\prod_{i=1}^{n} s_i!} \prod_{i=1}^{n} \lambda_i^{s_i} = \sum_{s} P_s B_s^d(\lambda)$$

- Domain for an n-sided S-patch:
 - Regular n-sided polygon (in 2D)
- Domain for an $(n-1)$-dimensional Bézier simplex:
 - An $(n-1)$-dimensional simplex (n barycentric coordinates)
- Needed:
 - Mapping from an n-sided polygon to n barycentric coordinates
 - Generalized barycentric coordinates
 - E.g. Wachspress, mean value, etc.
 - Defines an embedding in the $(n-1)$-dimensional simplex
Control structure

- Very complex – many control points, hard to use manually
- Boundary control points define degree d Bézier curves
- Adjacent control points have shifted labels, e.g. $21000 \rightarrow 30000, 11001, 20100, 12000$
Overview

Claim 6.4 in [1989, Loop & DeRose]

For every m-sided regular S-patch of depth d, there exists an equivalent n-sided regular S-patch of depth $d(m - 2)$.

Lemma 6.2 in [1989, Loop & DeRose]

For every 4-sided regular S-patch of depth d, there exists an equivalent tensor product Bézier patch of degree d.

1. Convert the n-sided S-patch of depth d
to a quadrilateral S-patch of depth $d(n - 2)$.

2. Convert the quadrilateral S-patch to a tensor product Bézier patch of degree $d(n - 2)$.

P. Salvi

On the CAD-compatible conversion of S-patches

BME
Conversion to quadrilateral S-patch

Conversion as simplex composition

- Wachspress coordinates on an n-sided polygon
 - ... have a Bézier simplex form (denoted by W_n)
 - ... are *pseudoaffine* (have an affine left inverse W_n^{-1})
- Mapping from the domain polygon to a 3D point:

 \[S \circ W_n \]
Conversion as simplex composition

- Wachspress coordinates on an \(n \)-sided polygon
 - \(\ldots \) have a Bézier simplex form (denoted by \(W_n \))
 - \(\ldots \) are pseudoaffine (have an affine left inverse \(W_n^{-1} \))
- Mapping from the domain polygon to a 3D point:

\[
S \circ W_n = S \circ W_n \circ (W_4^{-1} \circ W_4)
\]
Conversion as simplex composition

- Wachspress coordinates on an n-sided polygon
 - ... have a Bézier simplex form (denoted by W_n)
 - ... are pseudoaffine (have an affine left inverse W_n^{-1})

- Mapping from the domain polygon to a 3D point:

$$S \circ W_n = S \circ W_n \circ (W_4^{-1} \circ W_4) = (S \circ W_n \circ W_4^{-1}) \circ W_4$$
Conversion as simplex composition

- Wachspress coordinates on an n-sided polygon
 - ... have a Bézier simplex form (denoted by W_n)
 - ... are pseudoaffine (have an affine left inverse W_n^{-1})
- Mapping from the domain polygon to a 3D point:

$$S \circ W_n = S \circ W_n \circ (W_4^{-1} \circ W_4) = (S \circ W_n \circ W_4^{-1}) \circ W_4$$

- The 4-sided formulation is the composition of 3 simplexes:
 - W_4^{-1}: defined by the vertices of the rectangular domain
 - S: the S-patch (with homogenized control points)
 - W_n: ??? [a rational Bézier simplex of degree $n - 2$]
- Composition:
 - Two algorithms (simple vs. efficient) [see the paper]
Determining the control points of W_n – homogenization

$$\lambda_i(p) = \prod_{j \neq i-1,i} D_j(p) / \sum_{k=1}^{n} \prod_{j \neq k-1,k} D_j(p)$$

- $D_j(p)$ is the signed distance of p from the j-th side
- Rational expression \Rightarrow homogenized coordinates
 - Use the barycentric coordinates as “normal” coordinates
 - $(x, y, z) \equiv (wx, wy, wz, w(1 - x - y - z))$
- Homogenized form of W_n:

$$\left\{ \prod_{j \neq i-1,i} D_j(p) \right\}$$
Determining the control points of W_n – polarization

For any homogeneous polynomial $Q(u)$ of degree d, $\exists q$ s.t.

\[
q(u_1, \ldots, u_d) = q(u_{\pi_1}, \ldots, u_{\pi_d}),
\]
\[
q(u_1, \ldots, \alpha u_{k_1} + \beta u_{k_2}, \ldots, u_d) = \alpha q(u_1, \ldots, u_{k_1}, \ldots, u_d) + \beta q(u_1, \ldots, u_{k_2}, \ldots, u_d),
\]
\[
q(u, \ldots, u) = Q(u).
\]

Then q is called the blossom of Q.
The control points of its Bézier simplex form are

\[
P_s^Q = q(V_1, \ldots, V_1, V_2, \ldots, V_2, \ldots, V_n, \ldots, V_n),
\]

where V_i are the vertices of the simplex.
Conversion to quadrilateral S-patch

Determining the control points of W_n – blossom

- The blossom of W_n is

 $$q(p_1, \ldots, p_{n-2})_i = \frac{1}{(n-2)!} \cdot \sum_{\pi \in \Pi(n-2)} \prod_{k=1}^{n-2} D_j(p_{\pi_k})$$

- $\Pi(n-2)$ is the set of permutations of $\{1, \ldots, n-2\}$
- k runs from 1 to $n-2$ while j from 1 to n skipping $i-1$ and i

- With this, the control points can be computed
- Simplex composition gives the quadrilateral S-patch
- Convert to “normal” homogeneous coordinates (wx, wy, wz, w)
An 4-sided S-patch of depth d can be represented as

$$\hat{S}(u, v) = \sum_{i=0}^{d} \sum_{j=0}^{d} C_{ij} B_i^d(u) B_j^d(v),$$

where

$$C_{ij} = \sum_{s} \frac{\binom{d}{s}}{\binom{d}{i} \binom{d}{j}} P_s.$$
Converting a 5-sided patch – control net
Converting a 5-sided patch – contours
Converting a 5-sided patch – trimmed tensor product
Converting a 5-sided patch – untrimmed tensor product
Limitations

- **Efficiency**
 - $n = 5, d = 8$ took > 5 minutes on a modern machine
 (How long would it have taken in 1989?)
 - Much faster algorithm is developed (see our upcoming paper)
- **3-sided patches**
 - For Bézier triangles, the resulting patch is not rational
 - But there are simple alternative methods, e.g. [1992, Warren]
- **Control net quality**
 - Singularities on a circle around the domain
 - Denominator of Wachspress coordinates vanishes
 - Unstable control points near the corners
- **Conclusion**
 - The algorithm works, but it is not practical
Any questions?

Thank you for your attention.