Wiener Indices of Maximal k-Degenerate Graphs

Allan Bickle1 · Zhongyuan Che2

Received: 14 January 2020 / Revised: 28 October 2020 / Accepted: 7 December 2020 / Published online: 9 January 2021
© The Author(s), under exclusive licence to Springer Japan KK part of Springer Nature 2021

Abstract
A graph is maximal k-degenerate if each induced subgraph has a vertex of degree at most k and adding any new edge to the graph violates this condition. In this paper, we provide sharp lower and upper bounds on Wiener indices of maximal k-degenerate graphs of order $n \geq k \geq 1$. A graph is chordal if every induced cycle in the graph is a triangle and chordal maximal k-degenerate graphs of order $n \geq k$ are k-trees. For k-trees of order $n \geq 2k + 2$, we characterize all extremal graphs for the upper bound.

Keywords k-Tree · Maximal k-degenerate graph · Wiener index

1 Introduction

The Wiener index of a graph G, denoted by $W(G)$, is the summation of distances between all unordered vertex pairs of the graph. The concept was first introduced by Wiener in 1947 for applications in chemistry [17], and has been studied in terms of various names and equivalent concepts such as the total status [13], the total distance [10], the transmission [16], and the average distance (or, mean distance) [9].

A graph with a property \mathcal{P} is called maximal if it is complete or if adding an edge between any two non-adjacent vertices results in a new graph that does not have the property \mathcal{P}. Finding bounds on Wiener indices of maximal planar graphs of a given order has attracted attention recently, see [7, 8, 12]. For a maximal planar graph of order $n \geq 3$, its Wiener index has a sharp lower bound $n^2 - 4n + 6$. An Apollonian...
network is a chordal maximal planar graph. Wiener indices of Apollonian networks of order \(n \geq 3 \) have a sharp upper bound \(\frac{1}{38} (n^3 + 3n^2) \), which also holds for maximal planar graphs of order \(3 \leq n \leq 10 \), and was conjectured to be valid for all \(n \geq 3 \) in [7]. Recently, the conjecture was confirmed in [12]. With an extra condition on vertex connectivity, it was shown [8] that if \(G \) is a \(k \)-connected maximal planar graph of order \(n \), then the mean distance \(\mu(G) = \frac{W(G)}{\binom{n}{2}} \leq \frac{n}{3k} + O(\sqrt{n}) \) for \(k \in \{3, 4, 5\} \) and the coefficient of \(n \) is the best possible.

Let \(k \) be a positive integer. A graph is \(k \)-degenerate if its vertices can be successively deleted so that when deleted, they have degree at most \(k \). Note that Apollonian networks are maximal 3-degenerate graphs. In this paper, we provide sharp lower and upper bounds for Wiener indices of maximal \(k \)-degenerate graphs of order \(n \) and some extremal graphs for all \(n \geq k \geq 1 \). When the lower and upper bounds on Wiener indices are equal for maximal \(k \)-degenerate graphs of order \(n \), their diameters are at most 2, which implies that \(k \leq n \leq 2k + 1 \). The extremal graphs for the lower bound have a nice description for 2-trees of diameter at most 2. Maximal \(k \)-degenerate graphs with diameter at least 3 have order at least \(2k + 2 \). For \(k \)-trees of order \(n \geq 2k + 2 \), we characterize all extremal graphs whose Wiener indices attain the upper bound. Our results generalize well-known sharp bounds on Wiener indices of some important classes of graphs such as trees and Apollonian networks.

2 Preliminaries

All graphs considered in the paper are simple graphs without loops or multiple edges. Let \(G \) be a graph with vertex set \(V(G) \) and edge set \(E(G) \). Then the order of \(G \) is \(n = |V(G)| \) and the size of \(G \) is \(|E(G)| \). Let \(K_n \) and \(P_n \) denote the clique and the path of order \(n \) respectively. Let \(\overline{K}_n \) be the compliment of \(K_n \), that is, the graph on \(n \) isolated vertices. Let \(G + H \) be the graph obtained from \(G \) and \(H \) by adding all possible edges between vertices of \(G \) and vertices of \(H \). A complete bipartite graph \(K_{rs} \) is \(\overline{K}_r + \overline{K}_s \).

A graph is connected if there is a path between any two vertices of the graph. The distance between two vertices \(u, v \) of a graph \(G \) is the length of a shortest path joining \(u \) and \(v \) in \(G \), and denoted by \(d_G(u, v) \). The distance between two vertices from different components is infinite if \(G \) is disconnected. The eccentricity \(e_G(u) \) of a vertex \(u \) in \(G \) is the maximum distance between \(u \) and other vertices of \(G \). The set of all vertices with distance \(i \) from the vertex \(u \) in \(G \) is denoted by \(N_G(u, i) \) for \(1 \leq i \leq e_G(u) \). In particular, the set of all vertices adjacent to vertex \(u \) in \(G \) is denoted by \(N_G(u) \), and its cardinality \(|N_G(u)| \) is called the degree of vertex \(u \). The diameter of \(G \), denoted by \(\text{diam}(G) \), is the maximum distance between any two vertices of \(G \). A subgraph \(H \) of \(G \) is said to be isometric in \(G \) if \(d_H(x, y) = d_G(x, y) \) for any two vertices \(x, y \) of \(H \). The status (or, transmission) of a vertex \(u \) in \(G \), denoted by \(\sigma_G(u) \), is the summation of the distances between \(u \) and all other vertices in \(G \).

Lemma 1 [4, 10] Let \(G \) be a connected graph. Then
(i) \(W(G) \geq 2\binom{n}{2} - |E(G)| \), and the equality holds if and only if \(\text{diam}(G) \leq 2 \).
(ii) \(W(G) \leq W(G - v) + \sigma_G(v) \) for any vertex \(v \) of \(G \), and the equality holds if and only if \(G - v \) is isometric in \(G \).
(iii) \(W(G) = \sum_{i=1}^{\text{diam}(G)} i \cdot d_i \), where \(d_i \) is the number of unordered vertex pairs with distance \(i \) in \(G \).

We are interested in \(k \)-degenerate graphs and maximal \(k \)-degenerate graphs, introduced in [14]. A subclass of maximal \(k \)-degenerate graphs called \(k \)-trees [1] is particularly important. A \(k \)-tree is a generalization for the concept of a tree and can be defined recursively: a clique \(K_k \) of order \(k \geq 1 \) is a \(k \)-tree, and any \(k \)-tree of order \(n + 1 \) can be obtained from a \(k \)-tree of order \(n \geq k \) by adding a new vertex adjacent to all vertices of a clique of order \(k \), which is called the root of the newly added vertex, and we say that the newly added vertex is rooted at the specific clique. By definitions, the order of a maximal \(k \)-degenerate graph can be any positive integer, while the order of a \(k \)-tree is at least \(k \). A graph is a \(k \)-tree if and only if it is a chordal maximal \(k \)-degenerate graph of order \(n \geq k \) [2]. A graph is maximal 1-degenerate if and only if it is a tree [14]. It is known [15] that 2-trees form a special subclass of planar graphs extending the concept of maximal outerplanar graphs, and maximal outerplanar graphs are the only 2-trees that are outerplanar. Planar 3-trees are just Apollonian networks.

The \(k \)-th power of a path \(P_n \), denoted by \(P_n^k \), has the same vertex set as \(P_n \) and two distinct vertices \(u \) and \(v \) are adjacent in \(P_n^k \) if and only if their distance in \(P_n \) is at most \(k \). Note that the order \(n \) of \(P_n^k \) can be any positive integer. When \(n \geq k \), \(P_n^k \) is a special type of \(k \)-tree. For \(n \geq 2 \), \(P_n^k \) is an extremal graph for the upper bound on Wiener indices of maximal \(k \)-degenerate graphs of order \(n \).

A graph is called \(k \)-connected if the removal of any \(k - 1 \) vertices of the graph does not result a disconnected or trivial graph. It is well-known that for a \(k \)-connected graph \(G \) of order \(n \), \(\text{diam}(G) \leq \frac{n-2}{k} + 1 \). Since maximal \(k \)-degenerate graphs of order \(n \geq k + 1 \) are \(k \)-connected [14], this bound holds for them, and a characterization of the extremal graphs (among maximal \(k \)-degenerate graphs) appears in [2].

The following upper bound on vertex status of a \(k \)-connected graph of order \(n \) can be obtained by the fact that \(\sigma_G(x) = \sum_{i=1}^{\sigma_G(x)} i \cdot |N_G(x, i)| \) [4, 10]. An equivalent upper bound formula was first appeared in [11, Remark 2.6.1]. without reference papers available.

Lemma 2 [6, 11] Let \(G \) be a \(k \)-connected graph of order \(n \geq k + 1 \) and \(k \geq 1 \). Then \(\sigma_G(x) \leq \left(\left\lfloor \frac{n-2}{k} \right\rfloor + 1 \right) (n - 1 - \frac{k}{2} \left\lfloor \frac{n-2}{k} \right\rfloor) \) for any vertex \(x \) of \(G \). Moreover, \(\sigma_G(x) \) attains the upper bound if and only if \(x \) satisfies both properties: (i) \(e_G(x) = \text{diam} (G) = \left\lfloor \frac{n-2}{k} \right\rfloor + 1 \), and (ii) \(|N_G(x, i)| = k \) for all \(1 \leq i \leq \left\lfloor \frac{n-2}{k} \right\rfloor \).

If the graphs in consideration are maximal \(k \)-degenerate graphs, then the upper bound on vertex status in Lemma 2 can be achieved by any degree-\(k \) vertex of \(P_n^k \).
for all \(n \geq k + 1 \) and \(k \geq 1 \). Furthermore, the extremal graphs are exactly paths \(P_n \) when \(k = 1 \). If \(k \geq 2 \), then the extremal graphs can be different from \(P_n^k \) [2].

3 Sharp Bounds

Theorem 1 Let \(G \) be a \(k \)-degenerate graph of order \(n \geq k \geq 1 \). Then

\[
W(G) \geq n^2 - (k + 1)n + \binom{k + 1}{2}.
\]

The equality holds if and only if \(G \) is maximal \(k \)-degenerate with \(\text{diam}(G) \leq 2 \).

Proof By Lemma 1 (i), \(W(G) \geq 2 \binom{n}{2} - |E(G)| \) and the equality holds if and only if \(G \) has diameter at most 2. By Proposition 3 in [14], a \(k \)-degenerate graph \(G \) of order \(n \geq k \) has \(|E(G)| \leq kn - \binom{k + 1}{2} \). Moreover, a \(k \)-degenerate graph \(G \) of order \(n \geq k \) is maximal if and only if \(|E(G)| = kn - \binom{k + 1}{2} \), [2]. Therefore, \(W(G) \geq n(n - 1) - kn + \binom{k + 1}{2} = n^2 - (k + 1)n + \binom{k + 1}{2} \), and the equality holds exactly when \(G \) is maximal \(k \)-degenerate with \(\text{diam}(G) \leq 2 \).

This bound is sharp since for \(k \leq n \leq k + 1 \), the only maximal \(k \)-degenerate graph is \(K_n \). For \(n \geq k + 2 \), \(K_k + K_{n-k} \) achieves the bound.

Theorem 2 Let \(G \) be a maximal \(k \)-degenerate graph of order \(n \geq 2 \) and \(D = \lceil \frac{n-2}{k} \rceil \). Then

\[
W(G) \leq W(P_n^k) = \sum_{i=0}^{D} \text{C}_{n-ik} + \text{C}_{n-k} + \cdots + \text{C}_{n-Dk}.
\]

Proof We show that \(W(G) \leq W(P_n^k) \) using induction on order \(n \). When \(2 \leq n \leq k + 2 \), \(P_n^k \) is the only such graph, so it is extremal. Let \(G \) be a maximal \(k \)-degenerate graph of order \(n \geq k + 3 \), and assume that the result holds for all maximal \(k \)-degenerate graphs of smaller orders. By [14], \(G \) has a vertex \(v \) of degree \(k \) and \(G - v \) is a maximal \(k \)-degenerate graph. Thus \(W(G - v) \leq W(P_n^{k-1}) \).

Label vertices of \(P_n^k \) along the path \(P_n \) as \(v_1, v_2, \ldots, v_n \) where \(n \geq k + 3 \). It is clear that \(P_n^k \) is \(k \)-connected and \(\sigma_{P_n^k}(v_n) \) achieves the bound in Lemma 2. By Lemma 1 (ii), \(W(G) \leq W(G - v) + \sigma_{P_n^k}(v) \leq W(P_n^k - v_n) + \sigma_{P_n^k}(v_n) = W(P_n^k) \).

Note \(W(P_n^k) = \text{C}_{n-k} \) when \(2 \leq n \leq k + 1 \), so that the formula holds then. In \(P_n \), there are \(n - i \) pairs of vertices with distance \(i \). Now distances \(rk - k + 1 \) through \(rk \) in \(P_n \) become \(r \) in \(P_n^k \). Since \(\text{diam}(P_n^k) = D + 1 \), by Lemma 1 (iii),

 Springer
\[W(P^k_n) = 1(n - 1) + \cdots + 1(n - k) \\
+ 2(n - k - 1) + \cdots + 2(n - 2k) \\
+ 3(n - 2k - 1) + \cdots + 3(n - 3k) \\
+ \cdots \\
+ D(n - (D - 1)k - 1) + \cdots + D(n - Dk) \\
+ (D + 1)(n - Dk - 1) + \cdots + (D + 1)1 \\
= (n - 1 + \cdots + 1) + (n - k - 1 + \cdots + 1) + (n - 2k - 1 + \cdots + 1) \\
+ \cdots + (n - (D - 1)k - 1 + \cdots + 1) + (n - Dk - 1 + \cdots + 1) \\
= \binom{n}{2} + \binom{n - k}{2} + \binom{n - 2k}{2} + \cdots + \binom{n - (D - 1)k}{2} + \binom{n - Dk}{2} \]

We now provide a closed form expression for \(W(P^k_n) \) for all \(n \geq 2 \).

Corollary 1 Let \(n \geq 2 \) and \(n - 2 \equiv j \mod k \) for \(0 \leq j \leq k - 1 \). Then

\[
W(P^k_n) = \frac{n^3}{6k} + \frac{(k - 1)n^2}{4k} + \frac{(k - 3)n}{12} + \frac{-2j^3 + 3j^2(k - 3) - j(k^2 - 9k + 12) - 2k^2 + 6k - 4}{12k}.
\]

Proof We have

\[
W(P^k_n) = \sum_{i=0}^{D} \binom{n - ik}{2} = \sum_{i=0}^{D} \frac{1}{2}(n - ik)(n - ik - 1) \\
= \sum_{i=0}^{D} \left[\left(\frac{n^2}{2} - \frac{n}{2} \right) + \left(\frac{k}{2} - kn \right)i + \frac{k^2}{2}i^2 \right] \\
= \sum_{i=0}^{D} \left(\frac{n^2}{2} - \frac{n}{2} \right) + \sum_{i=0}^{D} \left(\frac{k}{2} - kn \right)i + \sum_{i=0}^{D} \frac{k^2}{2}i^2 \\
= (D + 1)\left(\frac{n^2}{2} - \frac{n}{2} \right) + D(D + 1)\left(\frac{k}{2} - kn \right) + \frac{D(D + 1)(2D + 1)k^2}{6} \\
= \frac{k^2}{6}D^3 + \left(\frac{k}{4} + \frac{k^2}{4} - \frac{kn}{2} \right)D^2 + \left(\frac{k}{4} + \frac{k^2}{12} - \frac{n}{2} - \frac{kn}{2} + \frac{n^2}{2} \right)D - \frac{n^2}{2} + \frac{n^2}{2}
\]

Since \(D = \lfloor \frac{n-2}{k} \rfloor \), \(n - 2 = Dk + j \) for \(0 \leq j \leq k - 1 \). Substituting \(D = \frac{n-2-j}{k} \) into the above and simplifying, we obtain the formula.

If \(1 \leq k \leq 5 \), this formula can be reduced to

\[
W(P^k_n) = \left\lfloor \frac{2n^3 + 3(k - 1)n^2 + k(k - 3)n}{12k} \right\rfloor.
\]

Formulas for small values of \(k \) and the beginnings of the resulting sequences are given in the following table. These sequences occur (shifted) in the On-Line Encyclopedia of Integer Sequences (OEIS). For \(1 \leq k \leq 3 \), they have many different combinatorial interpretations, which are listed in OEIS.
\[W(P_n^k) = \frac{n^3 - n}{6} \]

\(k \)	Sequence	OEIS
1	0, 1, 4, 10, 20, 35, 56, 84, 120, 165, ...	A000292
2	0, 1, 3, 7, 13, 22, 34, 50, 70, 95, ...	A002623
3	0, 1, 3, 6, 11, 18, 27, 39, 54, 72, ...	A014125
4	0, 1, 3, 6, 10, 16, 24, 34, 46, 61, ...	A122046
5	0, 1, 3, 6, 10, 15, 22, 31, 42, 55, ...	A122047

4 Extremal Graphs

Any graph of order \(n \) and diameter 1 is a clique and has Wiener index \(\frac{n^2}{2} \). Any maximal \(k \)-degenerate graph of diameter 1 is \(K_n \), \(2 \leq n \leq k + 1 \), which is also \(P_n^k \).

Recall that a graph \(G \) of order \(n \) and diameter 2 has \(W(G) = n(n - 1) - |E(G)| \), and a maximal \(k \)-degenerate graph \(G \) of order \(n \geq k \) has \(|E(G)| = kn - \binom{k+1}{2} \). Then any maximal \(k \)-degenerate graph of order \(n \geq k \) and diameter 2 has

\[
W(G) = n(n - 1) - kn + \binom{k+1}{2} = \binom{n}{2} + \binom{n-k}{2}.
\]

Therefore, when \(k \leq n \leq 2k + 1 \), the lower bound given in Theorem 1 and the upper bound given in Theorem 2 are the same, and any maximal \(k \)-degenerate graph of order \(n \) has this value for its Wiener index.

Maximal 1-degenerate graphs are just trees and so all maximal 1-degenerate graphs of diameter 2 are just stars. For \(k \geq 2 \), the graphs \(K_k + K_{n-k} \) are maximal \(k \)-degenerate graphs of diameter 2, but there are others.

We are able to characterize 2-trees of diameter 2. But the situation becomes complicated as \(k \) gets larger.

Proposition 1 The following statements are equivalent for a 2-tree \(G \):

1. \(G \) has diameter at most 2.
2. \(G \) does not contain \(P_6^2 \).
3. \(G \) is \(T + K_1 \) for any tree \(T \), or any graph formed by adding any number of vertices adjacent to pairs of vertices of \(K_3 \). See Fig. 1.

Proof (3 \(\Rightarrow \) 1) The graphs described all have diameter at most 2.

(1 \(\Rightarrow \) 2) (contrapositive) We see \(P_6^2 \) is a 2-tree with diameter 3. Adding a new degree 2 vertex \(v \) to a 2-tree cannot decrease its diameter, since \(v \)'s neighbors are adjacent. Thus a 2-tree containing \(P_6^2 \) has diameter at least 3.

(2 \(\Rightarrow \) 3) Assume \(G \) does not contain \(P_6^2 \). The 2-trees with orders 4 and 5 (\(K_4 - e, \ P_4 + K_1, \) and \(K_2 + \overline{K}_3 \)) don’t contain \(P_6^2 \) and can be described as \(T + K_1 \). Any 2-tree not containing \(P_4 + K_1 \) is \(K_1 + K_{1,r} \), because any additional vertices must be rooted.
at the edge xy of $K_2 + \overline{K}_3$, see Fig. 1. Assume G has order at least 6. Since it does not contain P_6, there are three possibilities.

Case 1. G contains $P_5 + K_1$. Then any additional vertices must be rooted on edges incident with K_1 (the vertex z), or else it will contain P_6.

Case 2. G contains the triangular grid Tr_2. Then the only edges that can be used as roots are those of the central clique K_3 (the triangle abc), or else it will contain P_6.

Case 3. G roots all additional vertices on the edges between vertices of degree 3 and 4 in $P_4 + K_1$.

Graphs in Case 1 and Case 3 can be described as $T + K_1$, where T is a tree.

Graphs in Case 2 are formed by adding vertices rooted at edges from a fixed clique K_3.

Maximal outerplanar graphs are exactly the 2-trees that are outerplanar [15]. A graph is outerplanar if and only if it does not contain a subdivision of K_4 or $K_{2,3}$ [5]. Thus we have the following corollary.

Corollary 2 The maximal outerplanar graphs with diameter at most 2 are fans $P_{n-1} + K_1$ and the triangular grid Tr_2.

A characterization of all maximal 2-degenerate graphs with diameter 2, generalizing Proposition 1, has been proved in [3].
Since any maximal k-degenerate graph of order $n \geq k + 1$ is k-connected and $\text{diam}(G) \leq \left\lceil \frac{n-k-1}{k} \right\rceil + 1$ for a k-connected graph G of order n, any maximal k-degenerate graph of diameter at least 3 has order $n \geq 2k + 2$.

Theorem 3 Let G be a k-tree of order $n \geq 2k + 2$ and $k \geq 1$. Then $W(G) = \sum_{i=0}^{\left\lceil \frac{n-2}{k} \right\rceil} \binom{n-i-1}{2}$ exactly when $G = P_n^k$.

Proof We use induction on order n. By definition, a k-tree can be constructed from a clique K_k, and the i-th vertex added is adjacent to at least $k - i + 1$ vertices of the starting clique. Thus the smallest order of a k-tree with diameter 3 is $n = 2k + 2$. To achieve this, there is a unique choice (up to isomorphism) for the neighborhood of each newly added vertex. Since P_{2k+2}^k has diameter 3, this is the k-tree that is constructed. Thus the result holds for the base case of $n = 2k + 2$.

Let G be a k-tree of order $n \geq 2k + 3$ that maximizes $W(G)$, and assume that the result holds for all k-trees of order $n - 1$. By the definition of a k-tree, G has a vertex v of degree k such that $G - v$ is a k-tree. By Lemma 1(ii), $W(G) \leq W(G - v) + \sigma_G(v)$. We will show that G simultaneously achieves the maximum possible values of $W(G - v)$ and $\sigma_G(v)$, which means that no extremal graph exists that does not do so.

Maximizing $W(G - v)$ requires that $G - v$ is the extremal graph P_{n-1}^k. Number the vertices of $G - v$ along the path from 1 to $n - 1$. Since k-trees of order at least $k + 1$ are k-connected, $\sigma_G(v)$ is maximized when $N_G(v) = \{1, 2, \ldots, k\}$ (or $N_G(v) = \{n-k, \ldots, n-1\}$) since it achieves the bound in Lemma 2. When $n \geq 2k + 3$, any other choice for $N_G(v)$ has $|N_G(v, 2)| > k$, so $\sigma_G(v)$ is not maximized. Thus $G = P_n^k$, and Theorem 2 provides the formula.

Note that for $k > 1$, there is a unique extremal graph for k-trees to achieve the upper bound in Theorem 2 when $k \leq n \leq k + 2$ or $n \geq 2k + 2$, but not when $k + 3 \leq n \leq 2k + 1$.

By Theorems 1, 2 and Corollary 1, we have the following sharp bounds on Wiener indices of maximal k-degenerate graphs for $1 \leq k \leq 3$.

Corollary 3 Let G be a maximal k-degenerate graph of order $n \geq k \geq 1$.

1. If $k = 1$, then G is a tree and $n^2 - 2n + 1 \leq W(G) \leq \frac{n^3}{6} - \frac{n}{2}$. The extremal graphs for the bounds are exactly $K_1 + \overline{K}_{n-1}$ and P_n respectively, see [10].

2. If $k = 2$, then $n^2 - 3n + 3 \leq W(G) \leq \frac{n^3}{12} + \frac{n^2}{8} - \frac{n}{12} - \frac{1}{6} + \frac{(-1)^n}{16}$.

For 2-trees, the extremal graphs for the lower bound are characterized in Proposition 1; the extremal graphs for the upper bound are P_n^2 and $K_2 + \overline{K}_3$ (of order 5), see Theorem 3.

For maximal outerplanar graph of order $n \geq 3$ (that is, outerplanar 2-trees), the extremal graphs for the lower bound are fans $P_{n-1} + K_1$ and the triangular grid graph T_n if $n = 6$; and the extremal graphs for the upper bound are P_n^2.

3. If $k = 3$, then $n^2 - 4n + 6 \leq W(G) \leq \left\lfloor \frac{n^3}{18} + \frac{n^2}{6} \right\rfloor$.

For 3-trees, it is easily checked that the extremal graphs for the upper bound...
are P_3^n, $K_3 + \overline{K}_3$ of order 6 and four others of order 7 which are $K_3 + K_4$, $K_2 + T_5$, where T_5 is the tree of order 5 that is neither a path nor a star, $P_5 + K_2$, and the graph formed from K_4 by adding degree 3 vertices inside 3 regions. See Fig. 2.

For Apollonian networks (planar 3-trees), the upper bound was given in [7]. The extremal graphs for the upper bound are P_3^n and the last two graphs of order 7 in Fig. 2.

Acknowledgements The authors would like to thank the referees for their helpful comments.

References

1. Beineke, L.W., Pippert, R.E.: The number of labeled k-dimensional trees. J. Combin. Theory 6, 200–205 (1969)
2. Bickle, A.: Structural results on maximal k-degenerate graphs. Discuss. Math. Graph Theory 32, 659–676 (2012)
3. Bickle, A.: Maximal k-degenerate graphs with diameter 2 (to appear)
4. Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley, Redwood (1990)
5. Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. H. Poincaré Sect. B (N.S.) 3, 433–438 (1967)
6. Che, Z., Collins, K.L.: An upper bound on the Wiener index of a k-connected graph. arXiv:1811.02664 [math.CO]
7. Che, Z., Collins, K.L.: An upper bound on Wiener indices of maximal planar graphs. Discrete Appl. Math. 258, 76–86 (2019)
8. Czabarka, E., Dankelmann, P., Olsen, T., Székely, L.A.: Wiener index and remoteness in triangulations and quadrangulations. arXiv:1905.06753v1
9. Doyle, J.K., Graver, J.E.: Mean distance in a graph. Discrete Math. 7, 147–154 (1977)
10. Entringer, R.C., Jackson, D.E., Snyder, D.A.: Distance in graphs. Czech. Math. J. 26, 283–296 (1976)
11. Favaron, O., Kouider, M., Mahéo, M.: Edge-vulnerability and mean distance. Networks 19, 493–504 (1989)
12. Ghosh, D., Győri, E., Paulos, A., Salia, N., Zamora, O.: The maximum Wiener index of maximal planar graphs. arXiv:1912.02846
13. Harary, F.: Status and contrastatus. Sociometry 22, 23–43 (1959)
14. Lick, D.R., White, A.T.: k-degenerate graphs. Can. J. Math. 22, 1082–1096 (1970)
15. Patil, H.P.: On the structure of k-trees. J. Combin. Inf. Syst. Sci. 11, 57–64 (1986)
16. Plesník, J.: On the sum of all distances in a graph or digraph. J. Graph Theory 8, 1–21 (1984)
17. Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.