Regulation of the G-protein Regulatory-Gαi Signaling Complex by Nonreceptor Guanine Nucleotide Exchange Factors

Sukru Sadik Oner, Ellen M. Maher, Meital Gabay, Gregory G. Tall, Joe B. Blumer, and Stephen M. Lanier

From the Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina 29425 and the Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642

Background: The GPR-Gαi complex has diverse functional roles, but regulatory mechanisms are not defined.

Results: The GPR-Gαi complex is regulated by Ric-8A but not by increased expression of AGS1 or GIV/Girdin.

Conclusion: The GPR-Gαi complex is differentially regulated by specific guanine nucleotide exchange factors.

Significance: The GPR proteins, Gαi1, and Ric-8A, exhibit dynamic interactions in the cell that influence their subcellular localization and regulate complex formation.

Group II activators of G-protein signaling (AGS) serve as binding partners for Gαi/o via one or more G-protein regulatory (GPR) motifs. GPR-Gα signaling modules may be differentially regulated by cell surface receptors or by different nonreceptor guanine nucleotide exchange factors. We determined the effect of the nonreceptor guanine nucleotide exchange factors AGS1, GIV/Girdin, and Ric-8A on the interaction of two distinct GPR proteins, AGS3 and AGS4, with Gαi in the intact cell by bioluminescence resonance energy transfer (BRET) in human embryonic kidney 293 cells. AGS3-RLuc-Gαi-YFP and AGS4-RLuc-Gαi1-YFP BRET were regulated by Ric-8A but not by Gαi-interacting vesicle-associated protein (GIV) or AGS1. The Ric-8A regulation was biphasic and dependent upon the amount of Ric-8A and Gαi1-YFP. The inhibitory regulation of GPR-Gαi1 BRET by Ric-8A was blocked by pertussis toxin. The enhancement of GPR-Gαi1 BRET observed with Ric-8A was further augmented by pertussis toxin treatment. The regulation of GPR-Gαi interaction by Ric-8A was not altered by RGS4. AGS3-RLuc-Gαi1-YFP and AGS4-RLuc-Gαi1-YFP BRET were observed in both pellet and supernatant subcellular fractions and were regulated by Ric-8A in both fractions. The regulation of the GPR-Gαi1 complex by Ric-8A, as well as the ability of Ric-8A to restore Gα expression in Ric8A−/− mouse embryonic stem cells, involved two helical domains at the carboxyl terminus of Ric-8A. These data indicate a dynamic interaction between GPR proteins, Gαi1, and Ric-8A, in the cell that influences subcellular localization of the three proteins and regulates complex formation.

Activators of G-protein signaling (AGS) proteins were identified in a functional screen for cDNAs that activated G-protein signaling in the absence of a seven-membrane span receptor (1, 2). The discovery of such regulatory mechanisms led to the concept that Gα and Gβγ regulate intracellular events distinct from their role as transducers for cell surface seven-transmembrane span receptors (2–15). Such regulatory mechanisms include a panel of accessory proteins that may serve as binding partners for Gα and Gβγ independent of the classical heterotrimer Gaβγ. AGS proteins may also influence Gα-Gβγ interaction and modulate guanine nucleotide binding or hydrolysis by Gα (1, 2, 10, 16). AGS proteins are involved in a wide spectrum of biological effects (17–29) providing attractive mechanisms for tissues to respond and adapt to physiological and pathological challenges.

One group of accessory proteins of particular interest is defined by the group II AGS proteins (16), all of which contain one or more G-protein regulatory (GPR) motifs, also known as GoLoco or LGN motifs (30, 31), that stabilize the GDP-bound conformation of Gα serving as alternative binding partners for Gα-GDP (Gαo, Gαi, and/or Gαo) free of Gβγ. Group II AGS proteins (AGS3 (GPSM1), LGN (GPSM2/AGS5), AGS4 (GPSM3), RGS12 (AGS6), Rap1Gap (transcript variant 1), RGS14, and PCP2/L7 (GPSM4)) provide 1–4 docking sites for Gα and form complexes with subpopulations of Gαi class subunits in the cell. There are three types of group II AGS proteins. One group includes AGS3 and LGN (AGS5), both of which have a tetratricopeptide repeat region that is separated from a series of four GPR motifs by an extended linker region. The second group of proteins (AGS3-Short, AGS4, and PcP2/L7) contains three GPR motifs without any other obvious protein interaction domains. The third group of proteins (RGS12,
Regulation of the GPR-Gαi Signaling Complex

RGS14, and Rap1GAP) has one GPR motif plus other defined domains that act to accelerate Ga-i-GTP hydrolysis (16).

The GPR-Gα signaling module may also exist in different subcellular compartments where it is differentially regulated and involved in discrete biological events such as the control of asymmetric cell division. One central question is what are the mechanisms that regulate interactions between GPR-containing proteins and their G-protein partners? Such signals may involve regulated positioning of the proteins within the cell, second messengers, and/or guanine nucleotide exchange factors (GEFs) that act on the GPR-Gα complex (2, 3, 27, 32–41), and these questions must be addressed in the intact cell. We recently reported regulation of the AGS3-Gai, and AGS4-Gai, signaling cassettes by a cell surface seven-transmembrane span receptor and suggested that the GPR-Gai module was one component of a larger signaling complex at the cell cortex (42, 43).

GPR-Gai signaling modules are also regulated by nonreceptor GEFs and may operate independently of the classical membrane receptor-Gαi signaling system. Such nonreceptor GEFs include the group I AGS protein AGS1 (dexamethasone-induced Ras-related protein or Rasd1), which interacts with Gai1, and Gaα, and increases GTPγS binding to purified heterotrimeric brain G-protein and purified Gaα, and Gaαi (1, 44). AGS1 is also reported to interact with Gβ (45). GIV/Girdin (coiled-coil domain containing 88A) interacts with Gaαi3 and acts as a GEF for AGS3-Gai3 (36). The Gaαi-interacting vesicle-associated protein (GIV) carboxyl terminus (GIV(1660–1870)) increased the apparent Gaαi guanine nucleotide exchange rate (6). The nonreceptor GEF Ric-8A (resistance to inhibitors of cholinesterase 8A homolog, synembryn-A) directly regulates purified AGS3-GPR-Gai1, AGS5/LGN-Gai1, and RGS14-Gai1 complexes (39–41, 46). Thus, GPR-Gai signaling modules may be regulated by nonreceptor GEFs and operate independently of the classical membrane receptor-Gαi signaling system. As is the case for G-protein-coupled receptors coupled to Gαiβγ, various members of the family of regulators of G-protein signaling (RGS) may also accelerate guanine nucleotide hydrolysis following nonreceptor GEF-mediated generation of Gaαi-GTP from GPR-Gai-GDP.

AGS1 is a Ras-related protein that regulates the ERK1/2 signaling pathway and cell growth (44, 47–49). Loss of AGS1 is associated with breast cancer, and alterations in AGS1 expression are observed in prostate cancer, renal cell carcinoma, dexamethasone-resistant multiple myeloma, and oligodendrogial tumors in response to chemotherapy (50–54). GIV/Girdin may process signals from the epidermal growth factor receptor to regulate autophagy and metastasis (36, 55). GIV/Girdin expression is increased in gastrointestinal cancers (56). Among the nonreceptor GEFs studied to date, Ric-8A is perhaps the best characterized biochemically in terms of its interaction with G-protein subunits and its action as a GEF. Genetically based approaches in the model organisms Drosofila melanogaster and Caenorhabditis elegans indicate a role for the Ric-8 ortholog in asymmetric cell division during early development, which involves Gaα and GPR proteins (57–64). A similar functional role for Ric-8A was recently reported in mammalian systems (65). In addition to the apparent role of Ric-8A as a molecular chaperone for Gaα (66), Ric-8A may also play a variety of roles in signal processing.

We recently developed an experimental approach to monitor the interaction of AGS3 and AGS4 with Gaαi in the intact cell by bioluminescence resonance energy transfer (BRET) following expression of proteins tagged with Renilla luciferase (Rluc) and yellow fluorescent protein (YFP) (42, 43, 67–69). Co-expression of AGS3-Rluc or AGS4-Rluc with Gaαi1-YFP generates robust, specific BRET that results from binding of multiple Gaαi subunits to the GPR domains of AGS3 and AGS4. The interaction of Gaαi1-YFP with AGS3-Rluc or AGS4-Rluc stabilized the GPR protein at the cell cortex where the GPR-Gaii module was regulated by activation of cell surface receptors (42, 43). We used this system to determine the effect of nonreceptor GEFs on the interaction of Gaαi1 with two different types of GPR proteins, AGS3 and AGS4.

The functional role of AGS4 has not been determined, but it is of particular interest due to its relatively restricted expression to immune system tissues and the role of G-protein systems in the immune cell response. AGS3 has multiple functional roles in asymmetric cell division, neuronal plasticity and addiction, autophagy, membrane protein trafficking, polycystic kidney disease, cardiovascular regulation and metabolism (3, 17–20, 22, 24, 28, 29, 70–73). LGN (AGS5/GPSM2), which is closely related to AGS3, also plays important functional roles in asymmetric cell division and morphogenesis and was recently identified as a responsible gene for certain types of nonsyndromic hearing loss as well as for the brain malformations and hearing loss in Chudley-McCullough syndrome (26, 74).

EXPERIMENTAL PROCEDURES

Materials—AGS1 (RASD1) antisera were generated as described previously (49). Anti-Hisα antibody was obtained from Pharmingen. Ric-8A antisera was described previously (39). Ric-8A (NP_001093990.1), Ric-8A(Met1–Asn453), Ric-8A(Met1–Asn453) cDNA were cloned into pcDNA3 as described previously (12). Full-length GIV/Girdin (NP_001129069.1 Girdin isoform 1) was kindly provided by Drs. Mikhail Garcia-Marcos (Boston University, Boston) and Marilyn Farquhar (University of California, San Diego). Full-length GIV was used as template in PCRs using Takara Taq (Fisher) to generate pcDNA3.1/His::GIV(1660–1870). The following oligonucleotides and restriction enzymes were used in the PCR amplification and subsequent digestion: BamHI, GIV(1660–1870); EcoRI, GIV(1660–1870). Forward primer, 5′-TGG TAT CTT GCA CCA CAT GTC TGA AAC ACT GGA GCT TTG TTG-3′; EcoRI, GIV(1660–1870) reverse primer 5′-GGA GAA TTC TGT GCG TCA CTT CCT AGT AGA CCT-3′. AGS1 (NP_051768, dexamethasone-induced Ras-related protein 1 isoform 1 or proprotein) was cloned into pcDNA3.1/His and provided by Dr. Mary Cismowski (Nationwide Children’s Hospital, Columbus, OH). Complete protease inhibitor mixture tablets were purchased from Roche Applied Science and used in accordance with manufacturer’s instructions. All other reagents and materials were obtained as described elsewhere (12, 42, 43, 75). Ric-8A−/− mouse embryonic stem (ES) cells were generated and processed for complementation assays as described elsewhere (66).
Influence of nonreceptor guanine nucleotide exchange factors on the expression levels of AGS3-Rluc, AGS4-Rluc, and Gαi1-YFP

TABLE 1

	pcDNA3::Ric-8A	pcDNA3::AGS1	pcDNA3::GIV			
Fig. 1A	RFU	RLU	RFU	RLU	RFU	RLU
	ng 200	ng 1,000	ng 200	ng 1,000	ng 200	ng 1,000
	225 ± 27	504 ± 80	100 ± 10	99 ± 8	127 ± 9	167 ± 26
	91 ± 16	239 ± 35	68 ± 1	69 ± 7	84 ± 11	114 ± 18
Fig. 1B	RFU	RLU	RFU	RLU	RFU	RLU
	ng 200	ng 1,000	ng 200	ng 1,000	ng 200	ng 1,000
	329 ± 74	478 ± 11	90 ± 3	84 ± 4	105 ± 1	146 ± 2
	102 ± 4	135 ± 7	85 ± 1	82 ± 3	110 ± 5	116 ± 4

*p < 0.05 compared with control values was determined by analysis of variance as described under “Experimental Procedures.”

Cell Culture, Transfection, Immunoblotting, Bioluminescence Resonance Energy Transfer (BRET)—The human epithelial cell line (HEK-293) and neuronal catecholaminergic cell line (CAD) was maintained in Dulbecco’s minimal essential medium (high glucose, without phenol red) supplemented with 10% fetal bovine serum, 2 mM glutamine, 100 units/ml penicillin, and 100 μg/ml streptomycin. Cells were grown in a humidified incubator in the presence of 5% CO₂ at 37 °C. These procedures are described elsewhere in detail (42, 43). Generally, cells were transfected with a fixed amount of phRluc::AGS3 (10 ng) or phRluc::AGS4 (2 ng) and increasing amounts of pcDNA3::Gαi1-YFP with or without varying amounts of pcDNA3::Ric-8A, pcDNA3::AGS1, or pcDNA3::GIV (1660–1870). The total plasmid load was harmonized by including the appropriate amount of pcDNA3 vector. For brevity, plasmid amounts used for transfection are indicated as nanograms in the figures. The plasmid amounts used for BRET measurements result in levels of the endogenous protein (43).

Cell Lysis and Fractionation—Cells were split into 6-well tissue culture plates and transfected with phRluc::AGS3 or phRluc::AGS4, pcDNA3::Gαi1-YFP, and/or pcDNA3::Ric8A (42, 43). Forty eight hours later, cells were suspended in BRET buffer (750 μl/well) (42, 43), and the suspensions from six wells were pooled. 300 μl (~300,000 cells) of the pooled suspension were used for intact cell measurements of fluorescence, luminescence, and BRET, and the remainder was processed for subcellular fractionation. Total fluorescence (excitation, 485 nm; emission, 535 nm) was measured to determine the total cellular levels of Gαi1-YFP. Luciferase substrate coelenterazine H (5 μM final concentration) was then added and luminescence measured at 480 ± 20 nm to determine the level of AGS3-Rluc or AGS4-Rluc. The remaining pooled suspension (4.2 ml) was centrifuged (200 × g, 5 min), and the pellet was lysed in 0.8 ml of hypotonic lysis buffer (5 mM EDTA, 5 mM EGTA, 5 mM Tris-HCl, pH 7.4, and protease inhibitor mixture) with a 26-gauge syringe followed by centrifugation at 10,000 × g for 10 min to obtain crude membrane (pellet) and cytosol (supernatant) fractions. Pellets were resuspended in 300 μl of membrane buffer (50 mM Tris-HCl, pH 7.4, 5 mM MgCl₂, 1 mM EDTA, 1 mM EGTA, and protease inhibitor mixture). Pellet (50 μg of protein) and supernatant (50 μg of protein) samples from each group were then mixed with 150 μl of BRET buffer for measurements of fluorescence, luminescence, and BRET as described above.

Data Analysis—Statistical significance for differences involving a single intervention was determined by the Student’s t test as noted in figure and table legends. Data involving multiple treatment paradigms were analyzed by analysis of variance and significant differences between groups determined by the Tukey a posteriori test using GraphPad Prism version 4.03 for Windows (GraphPad Software, San Diego).

FIGURE 1. Regulation of AGS3-Rluc-Gαi1-YFP and AGS4-Rluc-Gαi1-YFP BRET by nonreceptor GEFs. AGS3-Rluc (10 ng) (A) and AGS4-Rluc (2 ng) (B) were expressed together with Gαi1-YFP (250 ng) in HEK cells, and BRET was measured as described under “Experimental Procedures.” Ric-8A, AGS1, or GIV (1660–1870) was expressed as indicated. Data are presented as the mean ± S.E. from four experiments with triplicate determinations. *p < 0.05 compared with control. The relative fluorescent units and relative luciferase units for sample points in A and B are presented in Table 1. Lower panels, Ric-8A, AGS1, and GIV (1660–1870) immunoblot. Ric-8A and AGS1 proteins were detected with affinity-purified anti-Ric-8A and anti-AGS1 antibody, respectively. GIV (1660–1870) was detected with anti-Hisα antibody. Each lane contains 50 μg of total protein, and the immunoblot is representative of three separate experiments. The GIV construct (pcDNA3.1/His::GIV (1660–1870)) encoded the carboxyl-terminal region of the protein as described under “Experimental Procedures.”
RESULTS AND DISCUSSION

Ric-8A, GIV/Girdin, and AGS1/RASD1 as Nonreceptor GEFs—
In contrast to cell surface seven-transmembrane span recep-
tors, nonreceptor guanine nucleotide exchange factors for
G-proteins, such as Ric-8A, GIV/Girdin, and AGS1/RASD1,
are not embedded in the plasma membrane, and they may differ
from the receptor in terms of their mechanisms of action
and/or the subpopulations of G-proteins that they regulate. We
first determined the effects of Ric-8A, AGS1, and GIV(1660–
1870) on the GPR-Gαi1 interaction using our previously estab-
lished BRET platforms for AGS3 and AGS4 (Fig. 1, A and B) (42,
43). AGS3 and AGS4 were selected as representative group II

A

![Graph A](image1)

B

![Graph B](image2)

C

![Graph C](image3)
AGS proteins that contain clearly defined regulatory domains in tandem with the GPR domain (AGS3) or primarily consist of the GPR core domain (AGS4). Neither GIV(1660–1870) nor AGS1 altered AGS3-Rluc-Gαi1-YFP or AGS4-Rluc-Gαi1-YFP BRET. Full-length GIV/Girdin also had no effect. In contrast, AGS3-Rluc-Gαi1-YFP and AGS4-Rluc-Gαi1-YFP BRET were both regulated by Ric-8A (Fig. 1). The regulation appeared to be biphasic depending upon the level of Ric-8A expression. Ric-8A also increased Gαi1-YFP expression levels (Table 1).

The action of Ric-8A was further explored by a series of experiments, including determination of stoichiometric considerations, the effect of pertussis toxin treatment, and the role of nucleotide hydrolysis on the Ric-8A-mediated regulation of AGS3- and AGS4-Gαi1 BRET. We also examined the effect of Ric-8A on the GPR-Gαi1 complex in subcellular compartments and the subcellular distribution of the binding partners. Finally, we examined the role of the Ric-8A carboxyl-terminal region on the Ric-8A-mediated regulation of endogenous Gα expression and the regulation of the GPR-Gαi1 signaling cassette.

Ric-8A-mediated Regulation of the GPR-Gαi1 Signaling Cassette—For a more complete understanding of the dynamics of the signals generated through resonance energy transfer as a result of protein interaction, the signals were evaluated over a range of acceptor concentrations with a fixed amount of donor. Fig. 2A presents data at one level of Gαi1-YFP expression (250 ng), whereas Fig. 2B and C, presents data over a range of Gαi1-YFP expression levels. At lower Gαi1-YFP expression levels (25, 50, and 100 ng of pcDNA::Gαi1-YFP), both AGS3-Rluc-Gαi1-YFP and AGS4-Rluc-Gαi1-YFP BRET were reduced by Ric-8A in a manner that was dependent upon the amount of Ric-8A protein (Fig. 2B and C). At higher Gαi1-YFP expression levels (250 and 500 ng of pcDNA::Gαi1-YFP), the effect of Ric-8A on AGS3-Rluc-Gαi1-YFP and AGS4-Rluc-Gαi1-YFP BRET was biphasic in that the BRET was augmented at the lower expression levels of Ric-8A but inhibited at the higher levels of Ric-8A expression (Fig. 2). As noted earlier, Ric-8A increased Gαi1-YFP levels in the cell, and this effect was also dependent upon the expression level of 5 S. S. Oner and S. M. Lanier, unpublished observations.

A similar effect of Ric-8A was observed with RGS14-Gαi1 BRET experiments as described in Vellano et al. (46).

FIGURE 2. Regulation of AGS3-Rluc-Gαi1-YFP and AGS4-Rluc-Gαi1-YFP BRET by Ric-8A. A, BRET data presented in A were extracted from the larger, complete datasets in B and C. Lower panels, 1% Nonidet P-40 lysates from HEK cells expressing AGS3-Rluc, AGS4-Rluc, and Gαi1 (250 ng of plasmid) and increasing amounts of Ric-8A as in the upper panel were subjected to SDS-PAGE and immunoblotting with Ric-8A antisera. The immunoblot is representative of two similar experiments. The numbers to the right of the immunoblots correspond to the migration of prestained Bio-Rad protein standards. *, p < 0.05 compared with their control. For AGS3-Rluc (10 ng) (B) and AGS4-Rluc (2 ng) (C), increasing amounts of Gαi1-YFP (25–500 ng) and Ric-8A (as indicated in the figure) were expressed in HEK cells, and BRET was measured as described under “Experimental Procedures.” In some experiments, cells were pretreated with pertussis toxin (100 ng/ml) for 16 h. Data in B and C are presented as the mean ± S.E. from four to five experiments with triplicate determinations. *, p < 0.05 compared with their control. Relative fluorescence units (RFU) were measured for each sample in B and C as described under “Experimental Procedures.” Insets in B and C, data are presented as the percentage of control values (cells expressing only AGS3-Rluc and Gαi1-YFP). Results are expressed as the mean ± S.E. of four to five (B) or three (C) independent experiments with triplicate determinations. Inset for B, RFU values for control cells transfected with 25, 50, 100, 250, and 500 ng of pcDNA::Gαi1-YFP were 41,729 ± 793, 65,720 ± 2,291, 98,810 ± 2,716, 150,534 ± 6,153, and 178,964 ± 5,871, respectively, and for PT-treated cells were 41,673 ± 2,445, 55,531 ± 3,899, 94,584 ± 6,931, 148,609 ± 5,501 and 160,708 ± 5,583, respectively. RFU values at each level of transfected pcDNA::Gαi1-YFP, with or without PT, were significantly different (p < 0.05) from the corresponding control value with the exception of the RFU value for pcDNA3::Gαi1-YFP (25 ng), pcDNA3::Ric-8A (200 ng), C, RFU values for control cells transfected with 25, 50, 100, 250, and 500 ng of pcDNA3::Gαi1-YFP were 37,816 ± 1,559, 42,803 ± 1,628, 55,727 ± 1,858, 75,420 ± 2,836 and 93,555 ± 5,158, respectively, and for PT-treated cells were 40,313 ± 2,031, 47,200 ± 3,208, 62,215 ± 4,841, 83,990 ± 6,741, and 111,044 ± 7,388, respectively. *, p < 0.05 compared with their control. RFU values at each level of transfected pcDNA3::Gαi1-YFP were significantly different (p < 0.05) from the corresponding control value with the exception of the RFU values the following samples: pcDNA3::Gαi1-YFP (25 ng), pcDNA3::Ric-8A (100, 750, and 1,000 ng), pcDNA3::Gαi1-YFP (50, 100, 250, and 500 ng), pcDNA3::Ric-8A (100 ng), pcDNA3::Gαi1-YFP (500 ng), pcDNA3::Ric-8A (200 ng).

FIGURE 3. Regulation of AGS3-Rluc-Gαi1-YFP BRET by Ric-8A in the neuronal catecholaminergic cell line (CAD). AGS3-Rluc (10 ng) was expressed together with Gαi1-YFP and Ric-8A as indicated, and BRET was measured as described under “Experimental Procedures.” Data are presented as the mean ± S.E. from three experiments with triplicate determinations. *, p < 0.05 compared with their control. Inset, data are presented as the percentage of control values (cells expressing only AGS3-Rluc and Gαi1-YFP). Results are expressed as the mean ± S.E. of four independent experiments with triplicate determinations. RFU values for control cells transfected with 10 ng of phRLuc::AGS3 and 50, 100, 250, and 500 ng of pcDNA3::Gαi1-YFP were 21,969 ± 2,231, 24,097 ± 1,598, 35,383 ± 2,472, and 49,359 ± 4,926, respectively. RFU values at each level of transfected pcDNA3::Gαi1-YFP were significantly different (p < 0.05) from the corresponding control value with the exception of the RFU values for pcDNA3::Gαi1-YFP (50 ng), pcDNA3::Ric-8A (200 and 500 ng).
Regulation of the GPR-Goαi Signaling Complex

Gαi-YFP and Ric-8A (Fig. 2, B, and C, insets). These data suggest that the effect of Ric-8A on AGS3-Rluc-Goαi1-YFP and AGS4-Rluc-Goαi1-YFP BRET reflects a balance of the inhibitory effect of Ric-8A on the GPR-Goαi complex, and the augmentation of BRET as the overall level of Goαi1 is increased by Ric-8A co-expression (59, 60, 64, 75).

We then asked if the biphasic regulation of the GPR-Goαi complex by Ric-8A was also observed in other cell types. Similar overall results were obtained in the neuronal catecholaminergic cell line (CAD) indicating that the regulatory mechanisms were not restricted to a specific cell type (Fig. 3).

AGS4 and AGS3 define two different classes of GPR proteins. AGS4 (160 amino acids) contains three GPR motifs without any other defined protein interaction or regulatory motif. In contrast, AGS3 (650 amino acids) contains four GPR motifs and an amino-terminal domain containing seven tetratricopeptide repeats. A third class of GPR proteins consists of RGS12, RGS14, and Rap1Gap. All three classes of GPR proteins are apparently regulated by Ric-8A (Fig. 2) (39–41, 46). Although it is difficult to make direct comparisons, the level of resonance energy transfer exhibited by AGS4-Rluc-Goαi1-YFP was greater than that observed for AGS3-Rluc-Goαi1-YFP, despite apparently similar amounts of protein as reflected by the levels of luciferase activity and fluorescence. These data suggest that the tetratricopeptide repeat domain may modulate the interaction of the GPR motifs with Goαi (35, 42).

Ric-8A-mediated Regulation of the GPR-Goαi Signaling Cassette: Effect of Pertussis Toxin Treatment and the GTPase-accelerating Protein RGS4—Pertussis toxin (PT) pretreatment, which interferes with receptor coupling to Goβγ and Ric-8A-mediated regulation of Goαi, does not inhibit the interaction of GPR proteins with Goαi1 (42, 43, 65). We therefore asked if PT pretreatment influenced the effect of Ric-8A on the GPR-Goαi signaling cassette. PT ADP-ribosylates a cysteine residue four amino acids from the carboxyl terminus of Goαi1. PT pretreatment had no effect or slightly increased AGS3-Rluc-Goαi1-YFP and AGS4-Rluc-Goαi1-YFP BRET (42, 43). The inhibitory effect of Ric-8A on AGS3-Rluc-Goαi1-YFP and AGS4-Rluc-Goαi1-YFP BRET was completely blocked by PT pretreatment (Fig. 2). The magnitude of AGS3-Rluc-Goαi1-YFP and AGS4-Rluc-Goαi1-YFP BRET observed upon co-expression of Ric-8A was increased following PT treatment (Fig. 2), likely reflecting the increased levels of Goαi1-YFP observed upon expression of Ric-8A and the elimination of any Ric-8A-mediated GEF activity. Thus, the magnitude of the increased AGS3-Rluc-Goαi1-YFP and AGS4-Rluc-Goαi1-YFP BRET observed after PT treatment of the cells likely correlates with the magnitude of the inhibitory action of Ric-8A on AGS3-Rluc-Goαi1-YFP and AGS4-Rluc-Goαi1-YFP BRET at the higher concentrations of Goαi-YFP where the effect of Ric-8A is biphasic.

PT treatment did not prevent the increase in Goαi1-YFP protein observed upon co-expression of Ric-8A (Fig. 2, B and C), which may reflect an action of Ric-8A that occurs before PT treatment and/or the presence of a population of Goαi1-YFP that is not an effective substrate for PT and is stabilized by interaction with Ric-8A. However, the Ric-8A-mediated increase in Goαi1-YFP protein was also observed when cells were treated with PT prior to transfection, which suggests that Ric-8A interacts with Goαi1-YFP before it becomes an effective sub-

FIGURE 4. Effect of RGS4 on AGS3-Rluc-Goαi1-YFP and on AGS4-Rluc-Goαi1-YFP BRET. AGS3-Rluc (10 ng) (left panel) and AGS4-Rluc (2 ng) (right panel) were expressed in HEK cells with Goαi1-YFP (250 ng) in the presence and absence of Ric-8A, and BRET was measured as described under “Experimental Procedures.” RGS-C2S (500 ng) was co-expressed as indicated. Data are presented as the mean ± S.E. from four experiments with triplicate determinations. *, p < 0.05 compared with their control. Lower panel, Ric-8A and RGS4 immunoblot. Each lane contains 50 μg of total protein, and the immunoblot is representative of two separate experiments.

E. M. Maher and J. B. Blumer, unpublished observations.
strate for ADP-ribosylation by PT (76). These data with the Ric-8A-mediated enhancement of Goi1-YFP levels appear to delineate two seemingly independent functions of Ric-8A, one as a GEF for Goi-o/q subunits and the other as a Go biosynthetic factor and/or chaperone (66), with the former but not the latter blocked by PT treatment. A trend of minimally increased luciferase activity was also observed with increasing expression of Ric-8A and Goi1, likely reflecting increased expression of AGS3-Rluc and AGS4-Rluc.8 Notably, this trend was not observed after pertussis toxin treatment suggesting that it was blocked by PT treatment.

FIGURE 5. Ric-8A regulates AGS3-Rluc-Goi1-YFP and AGS4-Rluc-Goi1-YFP BRET in both pellet and supernatant fractions. A, AGS3-Rluc (10 ng) and AGS4-Rluc (2 ng) were expressed in HEK cells with Goi1-YFP (250 ng), and BRET was measured in intact cells, pellet, and supernatant as described under "Experimental Procedures." Ric-8A was expressed as indicated. Results are expressed as the mean ± S.E. of three independent experiments with triplicate determinations. *, p < 0.05 compared with their control. B, AGS3-Rluc (10 ng) was expressed in the neuronal catecholaminergic cell line (CAD) together with Goi1-YFP (50 ng) and Ric-8A as indicated, and BRET was measured as described under "Experimental Procedures." Data are presented as the mean ± S.E. from three experiments with triplicate determinations. *, p < 0.05 compared with their control as determined by Student's t test. The relative fluorescent units and relative luciferase units for sample points in A and B are presented in Table 2. C, AGS3-Rluc (10 ng) and Goi1-YFP (50 ng) (left panel) or Goi1-YFP (250 ng) (right panel) in the presence and absence of Ric-8A (1,000 ng) were expressed in HEK cells, and BRET was measured in intact cells, pellet, and supernatant fractions prepared from control cells or cells pretreated with PT as described under "Experimental Procedures." RFU and RLU are presented as the percentage of control values obtained in cells expressing only AGS3-Rluc and Goi1-YFP. Results are expressed as the mean ± S.E. of two independent experiments with triplicate determinations. *, p < 0.05 Ric-8A versus control. **, p < 0.05 PT versus non-PT treated control. Basal levels of RFU and RLU for control cells were as follows: 50 ng of pcDNA3:Goi1-YFP: intact cell RFU = 89,412 ± 837, RLU = 524,526 ± 115,170; pellet RFU = 61,037 ± 9,021, RLU = 182,237 ± 82,483; supernatant RFU = 28,810 ± 7,388, RLU = 455,064 ± 110,133. 250 ng of pcDNA3:Goi1-YFP: intact cell RFU = 141,573 ± 6,692, RLU = 338,131 ± 75,783; pellet RFU = 113,476 ± 11,240, RLU = 204,852 ± 76,241; supernatant RFU = 41,276 ± 9,572, RLU = 204,829 ± 110,133.

8 S. S. Oner, E. M. Maher, J. B. Blumer, and S. M. Lanier, unpublished observations.
Regulation of the GPR-Gαi Signaling Complex

dependent upon the ability of Ric-8A to promote guanine nucleotide exchange.\(^8\)

The loss of Ric-8A-mediated regulation of the GPR-Gαi signaling cassette after PT treatment indirectly suggests that the Gαi1-YFP complexed with AGS3-Rluc or AGS4-Rluc was ADP-ribosylated, as AGS3-Rluc-Gαi1-YFP and AGS4-Rluc-Gαi1-YFP BRET were not altered by Ric-8A after PT pretreatment of the cells. This point is of particular interest, as it would suggest that the GPR-Gαi complex is a substrate for PT. Certainly, Gαi alone is not an effective substrate for pertussis toxin, but it is ADP-ribosylated by pertussis toxin when it is complexed with Gβγ (76). An analogous situation may exist for Gαo, complexed with a GPR motif. Alternatively, Gαi may be ADP-ribosylated by PT when it is complexed with Gβγ and then ADP-ribosylated Gαi is transferred to a GPR protein and such a GPR-Gαi complex would not be a substrate for Ric-8A GEF activity. Cellular responses elicited through seven-transmembrane receptors that are blocked by PT pretreatment are categorized as coupling to a subset of heterotrimeric G-proteins. However, as PT treatment also prevents receptor and Ric-8A mediated regulation of the GPR-Gαi signaling module, it is plausible that PT-sensitive cellular effects of receptor activation may involve both Gαβγ and GPR-Gα complexes (65).

We also examined the effect of the GTPase accelerating protein RGS4 (RGS4-C2S) on Ric-8A regulation of the GPR-Gαi complex. The C2S mutation in RGS4 increases the stability of the protein (77). RGS4-C2S does not alter basal AGS3-Rluc-Gαi1-YFP and AGS4-Rluc-Gαi1-YFP BRET (Fig. 4) (42), and it had no effect on the Ric-8A-mediated regulation of the GPR-Gαi BRET signal (Fig. 4). In contrast, co-expression of RGS4-C2S actually counteracted the receptor-mediated regulation of AGS3-Rluc-Gαi1-YFP BRET, and this action required the GTPase-accelerating protein activity of RGS4 (42). Of interest, co-expression of Ric-8A also increased the levels of RGS4-C2S (Fig. 4, lower panels) suggesting the existence of additional signaling complexes or pathways involving Ric-8A, perhaps independent of the regulation of the GPR-Gαi module by Ric-8A.

\(^{8} \)

Table 2

Intact cell	Pellet	Supernatant
RFU		
423±25\(^a\)	194±34\(^a\)	608±97\(^a\)
263±34\(^a\)	62±10\(^a\)	186±12\(^a\)
574±28\(^a\)	232±4\(^a\)	708±25\(^a\)
203±14\(^a\)	100±6 \(^a\)	153±13\(^a\)
225±19\(^a\)	136±28\(^a\)	321±49\(^a\)
239±48\(^a\)	106±38 \(^a\)	212±8\(^a\)

\(^{a}\) p < 0.05 compared with control values was determined by Student’s t test.

Influence of Ric-8A on GPR-Gαi BRET and the Distribution of AGS3, AGS4, and Gαi1 Following Cell Fractionation—The data presented here clearly indicate that Ric-8A regulates the GPR-Gαi module in the intact cell. However, it is not known how these proteins position themselves in the cell and how signals may be transmitted to and sensed by Ric-8A and the GPR-Gα module. As one approach to this question, we asked if GPR-Gαi BRET is observed in both pellet and supernatant fractions and, if so, was the BRET signal differentially regulated by Ric-8A?

In this series of experiments, the fluorescent, luminescent, and BRET signals were obtained, in parallel, from intact cells and from pellet and supernatant subcellular fractions prepared following cell lysis. Cells were lysed in hypotonic buffer. BRET measurements were obtained from these two fractions following addition of substrate. This approach also allowed us to determine the relative distribution of Gαi1-YFP and AGS3-Rluc or AGS4-Rluc in the two subcellular fractions and how this distribution may be influenced by Ric-8A. AGS3-Rluc-Gαi1-YFP BRET and AGS4-Rluc-Gαi1-YFP BRET were observed in both the pellet and supernatant fractions, and this interaction was regulated by Ric-8A in a manner that mirrored the biphasic and concentration-dependent regulation of AGS3-Rluc-Gαi1-YFP BRET and AGS4-Rluc-Gαi1-YFP BRET observed in the intact cell (Fig. 5A).\(^9\) However, the magnitude of the BRET signal was much greater in the pellet fraction as compared with the supernatant fraction despite similar or even greater levels of AGS3-Rluc or AGS4-Rluc and Gαi1-YFP in the supernatant fractions (Table 2). The subcellular distribution of AGS3-Rluc-Gαi1-YFP BRET and the action of Ric-8A in HEK cells was similar to that observed in the neuronal catecholaminergic cell line (CAD) (Fig. 5B and Table 2). These data are consistent with the idea that the interaction of Gαi1-YFP with AGS3-Rluc or AGS4-Rluc stabilizes the proteins at the plasma membrane. Nevertheless, significant AGS3-Rluc-Gαi1-YFP BRET and AGS4-Rluc-Gαi1-YFP BRET were observed in the supernatant fraction.

As the magnitude of the Ric-8A regulation of GPR-Gαi BRET depends upon the relative expression of the proteins, we expanded these studies to include a lower concentration of Gαi1 and to examine the effect of Ric-8A on the subcellular distribution of Gαi and AGS3 in the pellet and supernatant. As indicated earlier, the inhibitory action of Ric-8A on AGS3-Rluc-Gαi1-YFP BRET predominated at the lower Gαi expression level (Fig. 5C). Ric-8A increased the levels of Gαi1-YFP in the intact cell at both levels of transfected Gαi; this increase was distributed to both the pellet and supernatant fractions with a notable preference for the supernatant fraction (Fig. 5C and Tables 1 and 2). The effect of Ric-8A on AGS3-Rluc-Gαi1-YFP BRET and AGS4-Rluc-Gαi1-YFP BRET was mirrored by altered distribution of AGS3-Rluc and AGS4-Rluc in the pellet and supernatant fractions (Fig. 5, A and C, and Table 2). In circumstances where Ric-8A reduced the amount of AGS3-Rluc or AGS4-Rluc in the pellet fraction, there were corresponding increases in the

\(^{9}\) The effects of receptor activation and Ric-8A on GPR-Gαi, BRET appear additive, and only the pellet-associated GPR-Gαi BRET was regulated by receptor activation (S. S. Oner, J. B. Blumer, and S. M. Lanier, unpublished data).
amount of AGS3-Rluc and AGS4-Rluc in the supernatant fraction.

We then examined the effect of PT pretreatment on the altered distribution of the GPR proteins in the pellet and supernatant fractions. PT treatment did not alter the distribution of Gα_{i1}-YFP in the presence or absence of Ric-8A. The subcellular re-distribution of AGS3-Rluc to the supernatant upon co-expression of Ric-8A was reversed by cell pretreatment with PT (Fig. 5C) resulting in a marked increase in the amount of both AGS3-Rluc and the magnitude of the AGS3-Rluc-Gα_{i1}-YFP BRET in the pellet fraction at both levels of Gα expression (Fig. 5C).

Role of the Carboxyl Terminus of Ric-8A in the Regulation of Gα and the GPR-Gα Complex by Ric-8A—As a first approach to defining domains of Ric-8A required for the observed bioactivity, we examined the effect of carboxyl-terminal truncations on the Ric-8A-mediated increases in Gα and the Ric-8A-mediated regulation of the GPR-Gα_{i1} signaling cassette. Ric-8A contains multiple helical domains (78) and is predicted to contain 10 armadillo repeats (79). Ric-8A (Met^{1–Asn492}) lacks a carboxyl-terminal helical domain, whereas Ric-8A (Met^{1–Asn453}) lacks two predicted helical domains. Purified Ric-8A (Met^{1–Asn492}) was a more robust GEF than full-length Ric-8A in promoting purified Gα_{i1}-GDP release and GTPγS binding (78). Purified Ric-8A (Met^{1–Asn453}) actually exhibited less GEF activity than full-length Ric-8A promoting GDP release but lacking any effect on GTPγS binding with purified Gα_{i1} (78). We first examined the effect of carboxyl-terminal truncations on the ability of Ric-8A to restore steady-state levels of Gα and Gα_{q} in Ric-{8A}^{−/−} ES cells and the increased levels of Gα_{i1}-YFP observed upon co-expression of Ric-8A in HEK cells. Expression of Ric-8A (Met^{1–Asn492}), but not Ric-8A (Met^{1–Asn453}), partially complemented the defect in Gα expression observed in Ric-{8A}^{−/−} ES cells (Fig. 6A). Similarly, Ric-8A (Met^{1–Asn492}) exhibited a reduced ability to increase Gα_{i1}-YFP levels in HEK cells, and Ric-8A (Met^{1–Asn453}) had no effect on Gα_{i1}-YFP levels (Fig. 6B).^{10} These data indicate that the Ric-8A carboxyl terminus is an important domain with respect to its role in the regulation of steady-state levels of Gα in the cell. The region of Ric-8A between Asn^{453} and Asn^{493} appears critical for Ric-8A to increase Gα expression levels. The inability of Ric-8A (Met^{1–Asn453}) to complement the steady-state defect in Gα expression Ric-{8A}^{−/−} ES cells may relate to its apparent inability to promote both GDP dissociation and binding of GTP (78). In the latter situation, the full cycle of nucleotide exchange would not be completed, which may be required for stabilization of Gα in the cell as suggested by Gabay et al. (66).

We then examined the role of the carboxyl-terminal region on the Ric-8A-mediated regulation of the GPR-Gα_{i1} signaling cassette. Both Ric-8A (Met^{1–Asn453}) and Ric-8A (Met^{1–Asn492}) exhibited a reduced ability to inhibit AGS3-Rluc-Gα_{i1}-YFP BRET (Fig. 7). As the magnitude of the Ric-8A regulation of GPR-Gα_{i1} BRET depends upon the relative expression of the proteins, we further examined the regulation of GPR-Gα_{i1} BRET by Ric-8A over a range of protein levels. Fig. 7A presents the data obtained with two different levels of Gα protein that illustrate this point, whereas the data obtained over a more complete range of Gα expression levels are presented as Fig. 7B. As observed for full-length Ric-8A, at low concentrations of Ric-8A (Met^{1–Asn492}) the AGS3-Rluc-Gα_{i1}-YFP BRET was inhibited, but at higher levels of Ric-8A (Met^{1–Asn492}) the AGS3-Rluc-Gα_{i1}-YFP BRET was augmented reflecting the increased expression of Gα_{i1}-YFP (Fig. 7, B and C; Table 3). However, only the inhibitory component was observed upon expression of Ric-8A (Met^{1–Asn453}) (Fig. 7, B and C). As observed for full-length Ric-8A, the inhibitory effect of the carboxyl-terminal truncated Ric-8A constructs was reduced or reversed by pertussis toxin treatment (Fig. 7C). These data sug-

10RNAi-mediated knockdown of endogenous Ric-8A in HEK-293 cells also reduced Gα_{i1}-YFP expression (S. S. Oner, J. B. Blumer, and S. M. Lanier, unpublished observations.)
Regulation of the GPR-Gαi Signaling Complex

FIGURE 7. Effect of truncated Ric-8A on AGS3-Rluc-Gαi1, YFP BRET. A, BRET data presented in A were extracted from the larger, complete datasets in B. *, p < 0.05, compared with its control. Lower panel, Ric-8A immunoblot. Each lane contains 50 μg of total protein, and the immunoblot presented is representative of three separate experiments. The numbers to the right of the immunoblots correspond to the migration of prestained Bio-Rad protein standards. B, AGS3-Rluc (10 ng), increasing amounts of Gαi1, YFP (25–500 ng) and Ric-8A WT, Ric-8A (Met1–Asn453), and Ric-8A (Met1–Asn492) (as indicated in the figures) were expressed in HEK cells, and BRET signals were measured as described under "Experimental Procedures." Middle panel, RFUs for each sample are presented as the percentage of control values (cells expressing only AGS3-Rluc and Gαi1, YFP). RFU values for control cells transfected with 25, 50, 100, 250, and 500 ng of pcDNA3::Gαi1, YFP 50.476 ± 6.117, 62.489 ± 6.986, 87.708 ± 11.705, 120.783 ± 16.267, and 155.140 ± 20.720, respectively. Lower panel, RLU are presented as the percentage of control values obtained in cells expressing only AGS3-Rluc and Gαi1, YFP. Relative luminescence unit values for control cells transfected with 25, 50, 100, 250, and 500 ng of pcDNA3::Gαi1, YFP were 462,452 ± 134,067, 456,049 ± 110,347, 400,833 ± 100,309, 263,295 ± 52,793, and 207,460 ± 45,087, respectively. Results are expressed as the mean ± S.E. of four independent experiments with triplicate determinations. *, p < 0.05 compared with their control.
to the plasma membrane where it senses receptor activation leading to apparent reversible “release” of the GPR protein from the plasma membrane (42, 43). Different scenarios may be operative with respect to the Ric-8A-mediated regulation of the GPR-Go{sub i1} complex as reported here. One possibility is that AGS3 or AGS4 complex with Go{sub i1}-GDP co-translationally or shortly thereafter, and the complex is then acted upon by Ric-8A in the cytosol resulting in GPR-Go{sub i} dissociation before the complex localizes at the plasma membrane. A second possibility is that Ric-8A acts upon the GPR-Go{sub i1}-GDP complex after it is localized or stabilized at the plasma membrane. Either possibility would lead to stimulation of Go{sub i1} nucleotide exchange and dissociation of Go{sub i1} from the GPR motif. Such regulation by Ric-8A would result in reduced AGS3 or AGS4 protein at the plasma membrane because Go{sub i1} levels and also acts as a guanine nucleotide exchange factor. Once bound to a binding partner, Go{sub i} would be a suitable substrate for ADP-ribosylation by PT, and thus PT treatment would block the action of Ric-8A as a GEF for the GPR-Go{sub i}. Such a working hypothesis is consistent with the results presented here and the biochemical and functional properties of Ric-8A and GPR proteins as defined in the literature. The results presented here are indicative of a dynamic interaction between the GPR-Go{sub i1} complex and Ric-8A in the cell that influences subcellular localization of the three proteins and regulated complex formation.

Acknowledgments—We thank Heather Bainbridge, Sarah Barry, and Christine Marking for technical assistance. We thank Drs. Mikkel Garcia-Marcos and Marilyn Farquhar (Department of Cell Biology, University of California, San Diego) and Dr. Takahashi (Nagoya University, Nagoya, Japan) for the full-length GIV construct, Dr. Mary Cisowski (Nationwide Children’s Hospital, Columbus, OH) for pcDNA3.1/His:AGS1, Dr. Richard Neubig (University of Michigan, Ann Arbor, MI) for pcDNA3::RGS4-C2S, and Dr. Michel Bouvier (Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada) for the Rluc plasmids.

REFERENCES

1. Cisowski, M. J., Takesono, A., Ma, C., Lizano, J. S., Xie, X., Fuenkranz, H., Lanier, S. M., and Duzic, E. (1999) Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling. Nat. Biotechnol. 17, 878–883
2. Takesono, A., Cisowski, M. J., Ribas, C., Bernard, M., Chung, P., Hazard, S., 3rd, Duzic, E., and Lanier, S. M. (1999) Receptor-independent activators of heterotrimeric G-protein signaling pathways. J. Biol. Chem. 274, 33202–33205
3. Blümer, J. B., Smurzka, A. V., and Lanier, S. M. (2007) Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol. Ther. 113, 488–506
4. De Vries, L., Fischer, T., Tronchère, H., Brothers, G. M., Strockbine, B., Siderovski, D. P., and Farquhar, M. G. (2000) Activator of G-protein signaling 3 is a guanine dissociation inhibitor for Gai subunits. Proc. Natl. Acad. Sci. U.S.A. 97, 14364–14369
5. Du, Q., Stukenberg, P. T., and Macara, I. G. (2001) A mammalian Partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nat. Cell Biol. 3, 1069–1075
6. Garcia-Marcos, M., Ghosh, P., and Farquhar, M. G. (2009) GIV is a non-noprecipitated from *D. melanogaster* embryonic extracts (Ric-8) with the AGS3 and LGN *D. melanogaster* ortholog Pins (60, 64).

TABLE 3

| Effect of pertussis toxin pretreatment on the expression of AGS3-Rluc and Go{sub i1}-YFP in cells transfected with carboxyl-terminal truncated Ric-8A |
|---|---|---|
| RFU and RLU generated for the data set presented in Fig. 7C were measured as described under “Experimental Procedures” and expressed as % of control values observed in the absence of pcDNA3::Ric-8A transfection. Fig. 7C (left panel), RFU values for control and PT treatment were 57,640 ± 6,007 and 52,652 ± 4,983, respectively. Fig. 7C (left panel), RLU values for control and PT treatment were 613,083 ± 17,652 and 550,925 ± 19,720, respectively. Fig. 7C (right panel), RFU values for control and PT treatment were 105,582 ± 9,430 and 104,497 ± 10,406, respectively. Fig. 7C (right panel), RLU values for control and PT treatment were 357,334 ± 943 and 331,808 ± 13,914, respectively. Results are expressed as the mean ± S.E. of three independent experiments with triplicate determinations. |

Fig. 7C (left panel)	Fig. 7C (right panel)		
RFU	RFU	RFU (PT)	RFU (PT)
206 ± 11	213 ± 14	158 ± 11	134 ± 2
77 ± 1	89 ± 1	145 ± 11	140 ± 10
150 ± 3	159 ± 10	151 ± 5	154 ± 10
RLU (PT)	RLU (PT)	RLU (PT)	RLU (PT)
177 ± 8	114 ± 7	129 ± 3	160 ± 7
139 ± 8	315 ± 16	315 ± 9	146 ± 3
4. Regulation of the GPR-Gα Signaling Complex

F. E. Purin and M. C. Milos

Abstract

G-protein-coupled receptors (GPCRs) are one of the largest superfamilies of membrane-bound protein receptors. These receptors are well known for their critical roles in cell signaling, chemotaxis, and cell movement. However, the roles of the GPRs in regulation of signaling complexes have not been fully elucidated. In this review, we provide an overview of the GPR-Gα signaling complex and discuss the importance of GPRs in cell signaling. We also highlight recent advances in understanding the role of GPRs in regulating signaling complexes. Overall, this review will provide a comprehensive understanding of the GPR-Gα signaling complex and its importance in cell signaling.

Keywords

GPCR, G-protein, signaling complex, GPR, regulation, signaling, cell biology.

Introduction

GPCRs are a large family of cell-surface receptors that are involved in a wide range of cellular processes, including cell signaling, chemotaxis, and cell movement. GPCRs are activated by a variety of ligands, including hormones, neurotransmitters, and cytokines. Upon activation, GPCRs initiate signaling cascades that lead to the activation of downstream effectors, such as protein kinases and phosphatases. These effectors are often part of signaling complexes that regulate various cellular processes.

Regulation of the GPR-Gα Signaling Complex

The GPR-Gα signaling complex is a critical component of GPCR signaling. GPCRs are coupled to G-proteins, which are heterotrimeric complexes consisting of Gα, Gβ, and Gγ subunits. The Gα subunit is responsible for activating the signaling complex, which then leads to the activation of downstream effectors.

Conclusion

In conclusion, the GPR-Gα signaling complex plays a critical role in regulating cellular processes. Understanding the regulation of this complex will provide new insights into the mechanisms underlying GPCR signaling and may lead to the development of new therapeutic strategies.

References

[1] F. Purin and M. C. Milos. Regulation of the GPR-Gα Signaling Complex. J. Biol. Chem. 2013; 288(5): 2514-2520.

[2] F. Purin and M. C. Milos. Regulation of the GPR-Gα Signaling Complex. Curr. Opin. Cell Biol. 2013; 25(5): 666-673.

[3] F. Purin and M. C. Milos. Regulation of the GPR-Gα Signaling Complex. Mol. Cell. 2013; 50(5): 810-819.

Acknowledgments

We would like to thank the National Institutes of Health for funding this research.

Author Contributions

F. Purin and M. C. Milos contributed equally to this work.

Conflict of Interest

The authors declare no conflict of interest.

Funding

This work was supported by grants from the National Institutes of Health (grants numbers 1R01GM112496-01A1 and 1R01GM113369-01A1).

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Data Availability

All data generated or analyzed during this study are included in this published article.

Conflict of Interest

The authors declare no conflict of interest.

Funding

This work was supported by grants from the National Institutes of Health (grants numbers 1R01GM112496-01A1 and 1R01GM113369-01A1).

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Data Availability

All data generated or analyzed during this study are included in this published article.
Regulation of the GPR-Go Signalizing Complex

Miller, K. G., and Rand, J. B. (2000) A role for RIC-8 (Synembryn) and GOA-1 (Gooe) in regulating a subset of centrosome movements during early embryogenesis in Caenorhabditis elegans. Genetics 156, 1649–1660

Wang, H., Ng, K. H., Qian, H., Siderovski, D. P., Chia, W., and Yu, F. (2005) Ric-8 controls Drosophila neural progenitor asymmetric division by regulating heterotrimeric G-proteins. Nat. Cell Biol. 7, 1091–1098

Woodard, G. E., Huang, N. N., Cho, H., Miki, T., Tall, G. G., and Kehrl, J. H. (2010) Ric-8a and Gia recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle. Mol. Cell Biol. 30, 3519–3530

Gabay, M., Pinter, M. E., Wright, F. A., Chan, P., Murphy, A. J., Valenzuela, D. M., Yancopoulos, G. D., and Tall, G. G. (2011) Ric-8 proteins are molecular chaperones that direct nascent G-protein α subunit membrane association. Sci. Signal. 4, ra79

Audet, N., Galès, C., Archer-Lahlou, E., Vallières, M., Schiller, P. W., Bouvier, M., and Pineyro, G. (2008) Bioluminescence resonance energy transfer assays reveal ligand-specific conformational changes within preformed signaling complexes containing B-opioid receptors and heterotrimeric G-proteins. J. Biol. Chem. 283, 15078–15088

Galés, C., Rebois, R. V., Hogue, M., Trieu, P., Breit, A., Hébert, T. E., and Bouvier, M. (2005) Real-time monitoring of receptor and G-protein interactions in living cells. Nat. Methods 2, 177–184

Galés, C., Van Durm, J. J., Schaak, S., Pontier, S., Percherancier, Y., Audet, M., Paris, H., and Bouvier, M. (2006) Probing the activation-promoted structural rearrangements in preassembled receptor-G-protein complexes. Nat. Struct. Mol. Biol. 13, 778–786

Willard, F. S., Zheng, Z., Guo, J., Digby, G. J., Kimple, A. J., Conley, J. M., Johnston, C. A., Bosch, D., Willard, M. D., Watts, V. J., Lambert, N. A., Ikeda, S. R., Du, Q., and Siderovski, D. P. (2008) A point mutation to Gαi selectively blocks GoLoco motif binding. Direct evidence for GoGerLCoc complexes in mitotic spindle dynamics. J. Biol. Chem. 283, 36698–36710

Chauhan, S., Jelen, F., Sharma, I., and Martin, E. (2012) The G-protein regulator LGN modulates the activity of the NO receptor soluble guanylate cyclase. Biochem. J. 446, 445–453

Groves, B., Abrahamsson, H., Clingan, H., Frantz, M., Mavor, L., Bailey, J., and Ma, D. (2010) An inhibitory role of the G-protein regulator AGS3 in mTOR-dependent macroautophagy. PLoS ONE 5, e8877

Holler, C., and Koelle, M. R. (2011) AGS3 alters Caenorhabditis elegans behavior after food deprivation via RIC-8 activation of the neural G-protein Goa. J. Neurosci. 31, 11553–11562

Doherty, D., Chudley, A. E., Coghlan, G., Ishak, G. E., Innes, A. M., Lemire, E. G., Rogers, R. C., Mhanni, A. A., Phelps, I. G., Jones, S. I., Zhan, S. H., Fejes, A. P., Shahin, K., Kanaan, M., Ackay, H., Tekin, M., FORGE Canada Consortium, Briggs-Raine, B., and Zelinski, T. (2012) GPSM2 mutations cause the brain malformations and hearing loss in Chudley-McCullough syndrome. Am. J. Hum. Genet. 90, 1088–1093

Chan, P., Gabay, M., Wright, F. A., Kan, W., Oner, S. S., Lanier, S. M., Smrrca, A. V., Blumber, J. B., and Tall, G. G. (2011) Purification of heterotrimeric G-protein α subunits by GST-Ric-8 association. Primary characterization of purified Gaia. J. Biol. Chem. 286, 2625–2635

Casey, P. J., Graziano, M. P., and Gilman, A. G. (1989) G-protein βγ subunits from bovine brain and retina: equivalent catalytic support of ADP-ribosylation of α subunits by pertussis toxin but differential interactions with Gsa. Biochemistry 28, 611–616

Bodenstein, J., Sunahara, R. K., and Neubig, R. G. (2007) N-terminal residues control proteasomal degradation of RG52, RG54, and RG55 in human embryonic kidney 293 cells. Mol. Pharmacol. 71, 1040–1050

Thomas, C. J., Briknarová, K., Hilmer, J. K., Movahed, N., Bothner, B., Sumida, J. P., Tall, G. G., and Sprang, S. R. (2011) The nucleotide exchange factor Ric-8a is a chaperone for the conformationally dynamic nucleotide-free state of Goa1. PLoS ONE 6, e23197

Figueiroa, M., Hinrichs, M. V., Bunster, M., Babbitt, P., Martinez-Oyanedel, J., and Olate, J. (2009) Biophysical studies support a predicted superhelical structure with armadillo repeats for Ric-8. Protein Sci. 18, 1139–1145

Vural, A., Oner, S., An, N., Simon, V., Ma, D., Blumber, J. B., and Lanier, S. M. (2010) Distribution of activator of G-protein signaling 3 within the agrosomal pathway. Role of specific residues in the tetratricopeptide repeat domain and differential regulation by the AGS3 binding partners G(α) and mammalian inescutable. Mol. Cell. Biol. 30, 1528–1540