Recent Belle results from $\Upsilon(5S)$ sample

Remi Louvot*
(On behalf of the Belle collaboration)
Laboratoire de Physique des Hautes Énergies,
École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
E-mail: remi.louvot@epfl.ch

The large data sample recorded with the Belle detector at the $\Upsilon(5S)$ energy provides a unique opportunity to study the poorly-known B_s^0 meson. Two analyses, performed with a data sample representing an integrated luminosity of 121 fb$^{-1}$, are presented: the measurement of the $B_s^0 \rightarrow J/\psi f_0(980)$ and $B_s^0 \rightarrow J/\psi f_0(1370)$ branching fractions, and the 5σ observation of the decay $B_s^0 \rightarrow \Lambda_c^+ \pi^- \bar{\Lambda}$ which is the first observation of a baryonic B_s^0 decay. In addition, we present new results of a measurement of the CKM angle $\phi_1(\beta)$ with $B\pi$ tagged events.

29 October 2011
LPHE Note 2011-04

XXIst International Europhysics Conference on High Energy Physics
21–27 July 2011
Grenoble, Rhône-Alpes, France

*Speaker.
Introduction

The Belle experiment [1], located at the interaction point of the KEKB asymmetric-energy e^+e^- collider, was designed for the study of B mesons \(^1\) produced in e^+e^- annihilation at a center-of-mass (CM) energy corresponding to the mass of the $\Upsilon(4S)$ resonance ($\sqrt{s} \approx 10.58$ GeV). However, a data sample of integrated luminosity $L_{\text{int}} = 121$ fb\(^{-1}\) has been recorded and analyzed at the energy of the $\Upsilon(5S)$ resonance ($\sqrt{s} \approx 10.87$ GeV), above the $\bar{B}^0\bar{B}^0$ threshold.

Apart from the $e^+e^- \rightarrow u\bar{u}, d\bar{d}, s\bar{s}, c\bar{c}$ continuum events, the $e^+e^- \rightarrow b\bar{b}$ process can produce different kinds of final states involving a pair of non-strange B mesons [2] ($B^+\bar{B}^-, B^+\bar{B}$, $B\bar{B}, B^*\bar{B}^*, B\bar{B}^*, B\bar{B}^\prime\pi, B\bar{B}\pi, B\bar{B}\pi\pi$ and $B\bar{B}\gamma$), a pair of B^0_s mesons ($B^+_s\bar{B}^-_s$, $B^+_s\bar{B}^0_s$ and $B^0_s\bar{B}^0_s$), or final states involving a light bottomonium resonance below the open-beauty threshold [3]. The B^+ and B^0_s mesons always decay by emission of a photon. The total $e^+e^- \rightarrow b\bar{b}$ cross section at the $\Upsilon(5S)$ energy was measured to be $\sigma_{b\bar{b}} = 302 \pm 14$ pb [4] and the fraction of B^0_s events to be $f_s = \sigma(e^+e^- \rightarrow B^{(*)}_s\bar{B}^{(*)}_s) / \sigma_{b\bar{b}} = (19.3 \pm 2.9)$% [5]. The dominant B^0_s production mode, $b\bar{b} \rightarrow B^+_s\bar{B}^-_s$, represents $f_{B^+_s\bar{B}^-_s} = (90.1^{+3.8}_{-4.0} \pm 0.2)$% of the $b\bar{b} \rightarrow B^{(*)}_s\bar{B}^{(*)}_s$ events, as measured with $B^0_s \rightarrow D^- \pi^+$ events [6].

B^0_s candidates are fully reconstructed from the final-state particles. From the reconstructed four-momentum in the e^+e^- center-of-mass, $(E^*_{B^0_s}, \mathbf{p}^*_{B^0_s})$, two observables are used to extract the signal yield: the energy difference $\Delta E = E^*_{B^0_s} - \sqrt{s}/2$ and the beam-constrained mass $M_{bc} = \sqrt{s}/4 - \mathbf{p}^2_{B^0_s}$. The corresponding branching fraction is then computed using the total efficiency (including sub-decay branching fractions) determined with Monte-Carlo (MC) simulations, $\sum \varepsilon B^0_s$, and the number of B^0_s mesons produced via the $e^+e^- \rightarrow B^+_s\bar{B}^-_s$ process, $N_{B^0_s} = 2 \times L_{\text{int}} \times \sigma_{b\bar{b}} \times f_s \times f_{B^+_s\bar{B}^-_s}$.

1. Study of $\bar{B}^0_s \rightarrow \Lambda^+_c \pi^- \bar{\Lambda}$

The $\bar{B}^0_s \rightarrow \Lambda^+_c \pi^- \bar{\Lambda}$ decay is the counterpart if the already-observed $B^- \rightarrow \Lambda^+_c \pi^- \bar{\Lambda}$ decay. The study of $B^{(*)}$ baryonic decays is important as the latest observations [7] exhibit a baryon-antibaryon mass peak near the kinematic threshold and tend to have larger branching fractions than two-body decays.

We fully reconstruct the decay via $\Lambda^+_c \rightarrow pK^- \pi^+$ and $\bar{\Lambda} \rightarrow \bar{p} \pi^+$. After a fit of the two $\Lambda^{(*)}_c$ vertices, only \bar{B}^0_s candidates for which the Λ^+_c ($\bar{\Lambda}$) invariant mass lies within 100 MeV/c\(^2\) (4 MeV/c\(^2\)) of the PDG value [5] are retained. The continuum is rejected with requirements on second-to-zeroth Fox-Wolfram moment ratio [8], $R_2 < 0.5$, and the cosine of thrust angle, $\cos \theta_{th} < 0.85$.

A two-dimensional binned fit on M_{bc} and ΔE leads to a first 5.0σ-significant (including systematic effects) observation of 24 \pm 7 events (Fig. 1). This is the first observation of a B^0_s baryonic decay. The measured branching fraction,

$$\mathcal{B}(\bar{B}^0_s \rightarrow \Lambda^+_c \pi^- \bar{\Lambda}) = (4.8 \pm 1.4(\text{stat.}) \pm 0.9(\text{syst.}) \pm 1.3(\Lambda^+_c)) \times 10^{-4},$$

where the uncertainty due to the Λ^+_c branching fraction is quoted separately, is compatible with that of $B^- \rightarrow \Lambda^+_c \pi^- \bar{\Lambda}$ [5].

\(^1\)The notation “B” refers either to a B^0 or a B^+. Moreover, charge-conjugated states are implied everywhere.
2. Study of $B_s^0 \to J/\psi f_0$

B_s^0 decays to CP eigenstates are important for CP-violation measurements [9]. The $B_s^0 \to J/\psi f_0$ mode is especially interesting for the hadron-collider experiments because it can be reconstructed from charged tracks only.

The J/ψ candidates are formed with oppositely-charged electron or muon pairs, while f_0 candidates are formed with $\pi^+ \pi^-$ pairs. A mass and vertex constrained fit is then applied to the J/ψ candidates. If more than one candidate per event satisfies all the selection criteria, the one with the M_{bc} value the closest to the expected signal mean is selected. The main background is the continuum, which is reduced by requiring $R_2 < 0.4$. The $B_s^0 \to J/\psi f_0$ signal is fitted using the energy difference, ΔE, and the f_0 mass, $M_{\pi^+ \pi^-}$, distributions. Two f_0 resonances, $f_0(980)$ and $f_0(1370)$, are included in the fit.

We obtain a 8.4σ observation of $63^{+16}_{-10} B_s^0 \to J/\psi f_0(980)$ events and the first evidence for $B_s^0 \to J/\psi f_0(1370)$ with 19^{+8}_{-5} events [10]. We extract the branching fractions $\mathcal{B}(B_s^0 \to J/\psi f_0(980)) = 1.16^{+0.33}_{-0.19}$ (stat.) ± 0.15 (syst.) ± 0.06 $(N(B_s^0)) \times 10^{-4}$ and $\mathcal{B}(B_s^0 \to J/\psi f_0(1370)) = 0.08^{+0.03}_{-0.02}$ $(N(B_s^0)) \times 10^{-4}$, which are in agreement with other hadron-collider experiments [11].

3. Measurement of $\sin 2\phi_1$ with $B\pi$ tagging

Because the $\Upsilon(5S)$ mass is above the $B^+ \bar{B}^0 \pi^+$ threshold, a significant number of $\Upsilon(5S) \to B^+ \bar{B}^0 \pi^+ \pi^-$ events are present in the data sample [2]. The sign of the pion indicates whether the event contains a $B^{(*)0}$ $(e^+ e^- \to B^{(*)0} \bar{B}^{(*)-} \pi^+)$ or a $\bar{B}^{(*)0}$ $(e^+ e^- \to \bar{B}^{(*)0} B^{(*)+} \pi^-)$. With B^0 decaying to a CP eigenstate, the asymmetry, $A_{B\pi} = (N(B\pi^-) - N(B\bar{\pi}^+))/(N(B\pi^-) + N(B\bar{\pi}^+))$, the CKM angle ϕ_1 can be determined via the relation [12]: $\sin 2\phi_1 = -\eta_{CP} A_{B\pi}(1 + x^2)/x$, where $x = \Delta m/\Gamma$.

From a clean sample of $75.9^{+9.5}_{-9.0}$ fully reconstructed $B^0 \to J/\psi(\to l^+ l^-) K_S^0(l^+ \pi^-)$ events, we simultaneously fit the missing masses of the $B^0 \pi^-$ and $B^0 \pi^+$ candidates by adding a charged
Figure 2: \(B^0 \pi^+ \) (left) and \(B^0 \pi^- \) (right) missing mass distributions for selected \(B^0 \to J/\psi K^0_S \) candidates (data points) together with the fit result (solid curve) and its background component (dashed curve).

The fit involves three signal components for the \(B^* \bar{B}^* \pi \), \(B^* \bar{B} \pi (+c.c.) \) and \(B B \pi \) classes of events. A total signal of \(21.5 \pm 6.8 \) \(B^0 \pi^\pm \) events is obtained together with the asymmetry \(A_{BBS} = 0.28 \pm 0.28(\text{stat.}) \). While this analysis clearly suffers from lack of statistics, it nevertheless demonstrates that \(\phi_1 \) can be measured by this alternative method.

Conclusion

We presented new results on \(B^0_s \) decays obtained from 121 fb\(^{-1} \) of \(\Upsilon(5S) \) data recorded by the Belle detector. While modes with large statistics can provide precise measurements of branching fractions and \(B_s^{(\mp)} \) properties, first observations of several \(CP \)-eigenstate \(B^0_s \) decays are a confirmation of the large potential of our 120fb\(^{-1} \) \(e^+e^- \to \Upsilon(5S) \) data sample and advocate an ambitious \(B^0_s \) program at super-\(B \) factories.

References

[1] A. Abashian et al. (Belle Collaboration) Nucl. Instrum. Methods Phys. Res., Sect. A 479 (2002) 117.
S. Kurokawa and E. Kikutani Nucl. Instrum. Methods Phys. Res., Sect. A 499 (2003) 1.
[2] A. Drutskoy et al. (Belle Collaboration) Phys. Rev. D 81 (2010) 112003.
[3] K.F. Chen et al. (Belle Collaboration) Phys. Rev. Lett. 100 (2008) 112001.
[4] A. Drutskoy et al. (Belle Collaboration) Phys. Rev. Lett. 98 (2007) 052001.
G.S. Huang et al. (CLEO Collaboration) Phys. Rev. D 75 (2007) 012002.
[5] K. Nakamura et al. (Particle Data Group) J. Phys. G 37 (2010) 075021.
[6] R. Louvot et al. (Belle Collaboration) Phys. Rev. Lett. 102 (2009) 021801.
[7] B. Aubert et al. (BaBar Collaboration) Phys. Rev. D 79 (2009) 112009.
M.Z. Wang et al. (Belle Collaboration) Phys. Rev. D 80 (2009) 092004.
[8] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41 (1978) 1581.
[9] I. Dunietz, R. Fleischer and U. Nierste Phys. Rev. D 63 (2001) 114015.
[10] J. Li et al. (Belle Collaboration) Phys. Rev. Lett. 106 (2011) 121802.
[11] R. Aaij et al. (LHCb Collaboration) Phys. Lett. B 698 (2011) 115. T. Aaltonen et al. CDF Collaboration) arXiv:1106.3682v2 [hep-ex] (2011), D0 Collaboration D0 Note 6152 (2011).
[12] L. Lellouch, L. Randall and R. Sather Nucl. Phys. B 405 (1993) 55.