Device Quantization Policy and Power-Performance-Area Co-Optimization Strategy in Variation-Aware In-memory Computing Design

Chih-Cheng Chang
National Yang Ming Chiao Tung University

Shao-Tzu Li
National Yang Ming Chiao Tung University

Tong-Lin Pan
National Yang Ming Chiao Tung University

Chia-Ming Tsai
National Yang Ming Chiao Tung University

I-Ting Wang
National Yang Ming Chiao Tung University

Tian-Sheuan Chang
National Yang Ming Chiao Tung University

Tuo-Hung Hou (✉ thhou@mail.nctu.edu.tw)
National Yang Ming Chiao Tung University

Research Article

Keywords: In-memory computing, Variation, Quantization Co-optimization

DOI: https://doi.org/10.21203/rs.3.rs-709318/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Device quantization of in-memory computing (IMC) that considers the non-negligible variation and finite dynamic range of practical memory technology is investigated, aiming for quantitatively co-optimizing system performance on accuracy, power, and area. Architecture- and algorithm-level solutions are taken into consideration. Weight-separate mapping, VGG-like algorithm, multiple cells per weight, and fine-tuning of the classifier layer are effective for suppressing inference accuracy loss due to variation and allow for the lowest possible weight precision to improve area and energy efficiency. Higher priority should be given to developing low-conductance and low-variability memory devices that are essential for energy and area-efficiency IMC whereas low bit precision (<3b) and memory window (<10) are less concerned.

Keywords: In-memory computing, Variation, Quantization Co-optimization

Introduction

Deep neural networks (DNNs) have achieved numerous remarkable breakthroughs in applications such as pattern recognition, speech recognition, object detection, etc. However, traditional processor-centric von-Neumann architectures are limited in energy efficiency for computing contemporary DNNs with rapidly increased data, model size, and computational load. Data-centric in-memory computing (IMC) is regarded as a strong contender among various post von-Neumann architectures for reducing data movement between the computing unit and memories for accelerating DNNs. Furthermore, quantized neural networks (QNNs) that truncate weights and activations of DNNs have been proposed to further improve the hardware efficiency. Compared with the generic DNNs using floating-point weights and activations, QNNs demonstrate not only substantial speedup but also a tremendous reduction in chip area and power. These are accomplished with nearly no or minor accuracy degradation in the inference tasks of complex CIFAR-10 or ImageNet data. While the emergence of QNNs opens up the opportunity of implementing IMC using emerging non-volatile memory (NVM), the practical implementation is largely impeded by the imperfect memory characteristics, in particular, only a limited number of quantized memory (weight) states is available at the presence of intrinsic device variation. The intrinsic device variation of emerging NVM such as PCM, RRAM, MRAM, leads to a significant degradation in inference accuracy.

Although a number of studies have investigated this critical issue focusing on the impact of the DNN inference accuracy, a comprehensive and quantitative study that links the critical device-level specs, namely quantization policy, memory dynamic range, and variability with those system-level specs, namely power, performance (accuracy), and area (PPA), is still lacking. This paper intends to provide a useful guide on NVM technology choice for quantized weights considering the variation-aware IMC PPA co-optimization. Our evaluation takes into account practical IMC design options in the architecture level, such as DNN-to-
IMC mapping schemes, types of DNN algorithms, and using multiple cells for representing a higher-precision weight, as well as the circuit-level constraints, such as limited current summing capability and peripheral circuit overhead.

Results

Background

In the IMC architecture, the weight matrix $W_{N \times M}$ is represented using cell conductance in an orthogonal memory array ($G_{N \times M}$). The vector-matrix multiplication (VMM) is performed by applying the voltage input vector $V_{N \times 1}$ to the array and measuring the current output vector $I_{1 \times M}$ by summing currents flowing through all cells in every column. Each memory cell could be regarded as a multiply-accumulate (MAC) unit. Thus, the high-density array allows extremely high parallelism in computing. The IMC-based VMM accelerates general matrix multiply (GEMM), which counts for over 70% of DNN computational load\(^{10}\), by using stationary weights in the memory array.

DNN-to-IMC mapping

The weights in DNNs algorithms are signed values. It is important to allow negative weights for capturing the inhibitory effects of features\(^{11}\). To implement signed weights using only positive conductance of memory devices, an appropriate mapping scheme is required. Depending on the choice of the activation function, the activation values and also the input values in neural networks are either with negative values (e.g., hard tanh) or without negative values (e.g., ReLU). This also affects the choice of DNN-to-IMC mapping schemes.

In this work, we consider a one-transistor one-resistor (1T1R) memory array for illustrating various DNN-to-IMC mapping schemes. Each memory unit cell in the 1T1R array consists of a selection transistor and a two-terminal memory device with changeable resistance. One of the terminals of the memory device is connected to the drain of the transistor through a back-end-of-line via. The word line (WL), bit line (BL), and source line (SL) are connected to the transistor gate, the other terminal of the memory device, and the transistor source, respectively. The WLs and SLs are arranged orthogonally to the BLs.

Three commonly used mapping schemes are considered in this work. The naïve IMC (N-IMC) scheme (Figure 1a) uses a single memory unit cell and a single WL to represent a positive/negative weight (+/– w) and positive input (+ IN), respectively\(^{2,12-14}\). A constant voltage bias is clamped between BLs and SLs. When the input is zero, WL is inactivated and no current generates from the cells on the selected WL. When the input is high, WL is activated and the summing current flowing from the cells on the same BL is sensed. To represent both the sign and value of weights using a single cell, an additional reference current is required to compare with the BL current via a sensing amplifier (SA) or an analog-to-digital converter (ADC) to obtain the final MAC result. The complementary IMC (C-IMC) (Figure 1b) uses two adjacent memory cells on the same BL with complementary conductance to represent both +/– w and two WLs with a set of complementary inputs to represent +/– IN\(^{15,16}\). The weight-separate IMC (WS-IMC) (Figure 1c) uses the conductance difference of two adjacent memory cells on the same WL with complementary conductance to represent the sign and value of weight. Two BL currents are directly compared with no need for additional reference\(^{17-19}\). Similar to N-IMC, WS-IMC uses a single WL to present only + IN. These three different schemes have both pros and cons. N-IMC is the most compact. C-IMC with +/– IN is compatible with most software algorithms. WS-IMC requires no external reference. In QNNs based on all three schemes, the quantized inputs could be encoded using multi-cycle binary pulses applied to the WL (transistor gate) without using high-precision digital-to-analog converters (DACs). An analog current adder is
used to combine MAC results in multiple cycles to obtain the final activation values through ADCs20. Note that the 1-bit input/activation by using the simple SA is first assumed in our later discussion to avoid the high energy and area overheads in ADCs. In Variation-aware PPA co-optimization section, we will further discuss the impact of high-precision input/activation on the IMC design.

Quantized weight

To implement quantized weight in QNNs, the multi-level-cell (MLC) memory technology that provides sufficient precision is the most straightforward choice, which we refer to straightforward MLC (S-MLC)12,15,17,19. Besides, multiple memory cells where each has a lower precision could be used to implement a weight with higher precision. This allows using even binary (1-bit) memory technology to realize versatile QNNs at the expense of area. Two schemes, which we refer to digital MLC (D-MLC)13,18 and analog MLC (A-MLC)14, are possible (Figure 2a-b). The former sums the BL currents of the most-significant-bit (MSB) cell to the less-significant-bit (LSB) cell using the power of two weighting while the latter uses the unit weighting. For example, the numbers of cells per weight are N and $2^N - 1$, respectively, for an N-bit weight in the N-IMC mapping by using a 1-bit memory cell.

Table 1 summarizes the DNN-to-IMC mapping schemes and quantized weight implementation methods recently proposed in the literature. Both volatile SRAM and non-volatile RRAM and PCM are popular choices for IMC. All three DNN-to-IMC mapping schemes, N-IMC, C-IMC, and WS-IMC, have been investigated in different studies. S-MLC and its most primitive form by using only binary memory cells are prevalent while D-MLC and A-MLC are used for implementing high-precision weights using low-precision cells. However, how the inherent variation of memory states influences the optimal choice among various IMC architectures has yet to be investigated comprehensively.

Finite quantized memory state

Although rich literature has discussed various process innovation21 or closed/open-loop programming schemes22 to increase the number of quantized memory states, the ultimate number of quantization levels in a memory device is determined by the dynamic range, e.g. conductance ratio (G_{H}/G_{L}) in a resistance-based memory, and the device-to-device (DtD) variation. The DtD variation limits how accurate weight placement is. We found the standard deviations (σ) in the log-normal conductance distribution does not change significantly with the conductance value in the same device. Figure 3 shows the statistical histograms for binary MRAM, ferroelectric tunnel junction (FTJ)23, MLC PCM5, and RRAM6, respectively. The G-independent σ is used as the device variation model in the following discussion.

Figure 4 shows an example of the weight distribution of 3-bit linear quantization (Lin-Q) in the N-IMC and WS-IMC mapping scheme by using the S-MLC weight. Because of the constant σ in the log-normal scale, the distribution of the G_{H} states for representing $+w$ appears broader compared with the G_{L} states for representing $-w$ in the linear scale for the N-IMC scheme (Figure 4a)6. While the weight distribution is asymmetric in N-IMC, it is symmetric for $+/w$ in WS-IMC (Figure 4b). This is because the same conductance difference of two adjacent cells is used to represent the value of the signed weights. Although C-IMC utilizes two cells in the same column to represent one weight, only one cell between the two is accessed at a time because of the complementary inputs applied to the transistor gate terminal of the 1T1R cell. Therefore, both the weights of C-IMC and N-IMC schemes are based on the difference between the device conductance of one cell and the reference. So the weight distribution of C-IMC is identical to that of N-IMC.

Quantization policy for accurate inference
All three schemes discussed in DNN-to-IMC mapping section could achieve comparable accuracy after appropriately training the models when the device variation is negligible. However, their immunity against device variation differs substantially. Figure 5 shows the inference accuracy of VGG-9 DNNs for CIFAR-10 classification with different levels of variability. The weight placement considering the log-normal conductance distribution and G-independent \(\sigma \) was evaluated using the Monte Carlo simulation of at least 200 times. The distribution of these 200 data points was plotted in Figure 5. As \(\sigma \) increases, the inference accuracy degrades. N-IMC is the worst mainly due to the error accumulation from + \(w \) with broader distributions of \(G_L \) states as compared with – \(w \), as apparent in Figure 4a. C-IMC shows improvement on inference accuracy compared with N-IMC because of the error cancellation effect originated from the complementary input. Note that the generation of complementary inputs requires additional hardware cost. WS-IMC is the most superior against variation among three because of the error cancellation from the symmetric and tighter +/- \(w \) distribution (Figure 4b) that is constituted by two cells but not one, and it requires no complementary input. More detailed comparison between these three schemes with different \(G_H/G_L \) could be found in Figure S1 (Supporting Information). For the rest of this paper, only the median values of inference accuracy in the Monte Carlo simulation and the WS-IMC mapping scheme are discussed for simplicity.

Network Choice

Variation immunity is known to be sensitive to the choice of DNN algorithms\(^8\). Both VGG-16 and ResNet-18 are compared by using a more complex Tiny ImageNet dataset, as shown in Figure S2 (Supporting Information). The compact ResNet-18 with 11.4M parameters deteriorates the variation immunity compared with the VGG-16 with 134.7M parameters\(^8\). For example, for a device with 1-bit weight, \(G_H/G_L = 100 \), and \(\sigma = 0.1 \), the accuracy for ResNet-18 and VGG-16 are 39.82 % and 47.57 %, respectively. Therefore, only the VGG-DNNs with better immunity against variation are further evaluated below.

Lin-Q vs. Log-Q

Logarithmic quantization (Log-Q) is favored for multi-bit memory storage because a larger memory sensing margin is possible by avoiding overlapping of tailed bits between levels. Previous studies also attempted to use Log-Q for the weights of DNNs\(^24\). Our simulation shows that after appropriate training both Log-Q and Lin-Q achieve comparable accuracy in the ideal quantization case without variation. However, Lin-Q shows more robust immunity against variation than Log-Q, as shown in Figure 6. This is explained by their different weight distributions. In Log-Q, more weights are located at +/- 11 states which have a wider weight distribution. Therefore, the larger sensing margin between levels in Log-Q does not necessarily guarantee better immunity against variation. Only Lin-Q is further discussed in this study.

Weight quantization precision and dynamic range

The immunity to variation is further investigated in the models with different weight precision from one to three bits in Figure 7. The focus on the lower weight precision considers only inference but not training applications and also the reality of using the existing memory technology for realizing MLC. Here we also take into account the influence of conductance dynamic range \(G_H/G_L \). The major conclusions are: (1) Although the high weight precision improves the baseline accuracy in the ideal case, it is more susceptible to variation. The accuracy could be even worse than using low weight precision if the variation is substantial. For the first order, this effect could be explained as follows: For a higher weight precision, a larger number of weight states are placed within a given dynamic range. The margin between each state becomes less compared with the case with a lower weight precision. The same degree of variation (same \(\sigma \)) would distort the pre-trained model more significantly and result in more severe
accuracy degradation. (2) Enlarging the dynamic range is beneficial to the variation immunity for a given σ. However, at the same normalized σ, i.e. $\sigma/\ln(G_H/G_L)$, a smaller dynamic range with smaller device variation is favorable than a larger dynamic range with larger device variation, as shown in Figure 8. The result suggests that a low absolute value of σ is still critical for the model accuracy. Higher priority should be given to suppressing variation rather than enlarging the dynamic range. (3) A more complicated dataset (Tiny ImageNet vs. CIFAR-10) is more susceptible to variation since the model itself also becomes more complicated, but it does not change the general trends aforementioned.

Variation-aware accurate DNN

Two approaches are further evaluated to improve the immunity against variation. First, the D-MLC and A-MLC weights, as introduced in Quantized weight section, are more robust against variation than the S-MLC weight. Figure 9 shows an example of the weight distribution of 3-bit linear quantization in the WS-IMC mapping scheme by using the D-MLC and A-MLC weight, respectively. The D-MLC and A-MLC weights consist of three and seven binary (1-b) memory cells, respectively, with the identical G_H/G_L and σ as those in Figure 4b for the S-MLC weight. Because more cells are used to represent a weight for D-MLC and A-MLC, the “effective” σ for a given quantized weight precision is reduced due to the averaging effect from the law of large numbers. Second, the inference accuracy degradation could be partially recovered by fine-tuning the last fully-connect classifier layer in the network\(^7\). The last classifier layer is a full-precision layer that could be easily implemented using the conventional digital circuits. After placing weights in all IMC layers, the weights in the digital classifier layer is retrained with all weights in the IMC layers fixed. The computing efforts for retraining only the classifier layer is relatively small. The retrain speed is fast because it requires only a subset of data instead of a complete training epoch\(^7\).

Table 2 & 3 summarize the maximum tolerable variation for CIFAR-10 and Tiny ImageNet, respectively, by using different quantization policies, including quantization precision, dynamic range, and weight implementation scheme. The pre-defined target accuracy for CIFAR-10 using VGG-9 and Tiny ImageNet using VGG-16 are 88% and 48 %, respectively. To achieve the proposed targets with relatively high accuracy, higher weight precision (2/3b vs. 1b) is beneficial because it increases the baseline accuracy, thus allowing more variation tolerance. Enlarging G_H/G_L is also beneficial. Among the three weight implementation schemes, A-MLC shows the best variation tolerance due to its smallest “effective” σ obtained from multiple devices. Furthermore, the fine-tuning technique is extremely useful for boosting variation tolerance. So it should be applied whenever possible if device-level solutions for reducing σ are not available.

Quantization policy for accurate inference

Some of the strategies for improving IMC variation immunity accompany penalties in power and area. A larger G_H/G_L implies that the G_H cell is forced to operate in a higher current regime. Here we assume the minimum of G_L is finite and limited by the leakage in given memory technology. Previous studies have shown that a high BL current creates substantial voltage drop on the parasitic line resistance and results in inaccurate MAC results. Partitioning a large array with high BL currents to smaller ones is necessary to guarantee the model accuracy\(^23\). The higher G_H thus restricts the attainable maximum sub-array size because of the excessively large accumulated current on BLs. The increased BL current with higher G_H deteriorates energy efficiency while the smaller sub-arrays with higher G_H deteriorates area efficiency due to higher peripheral circuit overhead. D-MLC and A-MLC by using more memory cells also increase the area and energy consumption of IMC. Therefore, the variation tolerance should be carefully traded off with efficient hardware design. To fairly evaluate the PPA of IMC with different device specifications, we completed a reference design based on the foundry 40-nm CMOS technology with a 256×256 1T1R RRAM array macro. The
major circuit blocks in the macro are similar to the illustration shown in Figure 1. We assume a hypothetical memory with a fixed low conductance state ($G_L = 0.5 \mu S$) and $G_H/G_L = 10$, 1-bit input/activation, and the WS-IMC/S-MLC mapping. The IMC sub-array size is limited by the maximum allowed BL current of 300 μA through current-mode sensing. Figure 10 shows a simulated power and area breakdown of the IMC macro, which includes bias clamping and current scaling circuits, current-mode SAs, analog adders to accumulate the partial sums from different sub-arrays, and driver circuits for WL/BL/SL. Other IMC designs using different G_H/G_L ratios (assuming G_L is fixed), D-MLC/A-MLC weights, multi-cycle inputs, and multibit ADCs are then extrapolated using the reference design.

The area and energy of feasible designs for VGG-9 that satisfy the pre-defined accuracy target (e.g. Table 2) are compared in Figure 11. The trends for VGG-16 are similar and not shown here. The lowest weight precision is used whenever possible to relax device requirements and system overhead. The energy is estimated by the total energy consumption of 10000 CIFAR-10 inferences. We summarize the strategies on the PPA co-optimization as follows: (1) For a low-variation device ($\sigma = 0.05$), a binary cell with low G_H/G_L allows the highest area and energy efficiency. (2) For a moderate-variation device ($\sigma = 0.15$), S-MLC with moderate $G_H/G_L (< 10)$ achieves better efficiency. (3) For a high-variation device ($\sigma = 0.25$), using S-MLC becomes challenging unless the fine-tuning is considered. Using D-MLC/A-MLC with moderate G_H/G_L is practical alternatives to maintain accuracy at a reasonable cost of energy and area. Other variation-aware strategies that could affect the PPA of IMC include using a higher (3-bit) input/activation precision and more channels (2 times more) in a wider VGG network. The complete area and energy estimations of these variation-aware strategies are shown in Figure S3 (Supporting Information). Only those most efficient schemes using the lowest possible bit precision for satisfying the target accuracy are plotted in Figure 12 for each dynamic range. Our evaluations show that the substantial penalties on area and energy restrict these strategies only competitive in specific conditions, especially when σ is large.

Conclusion

In this paper, we provided an end-to-end discussion for the impact of intrinsic device variation on the system PPA co-optimization. We considered critical device-level constrains, such as limited quantization precision and memory dynamic range, circuit-level constraints, such as limited current summing capability and peripheral circuit overhead, architecture-/algorithm-level options, such as DNN-to-IMC mapping schemes, types of DNN algorithms, and using multiple cells for representing a higher-precision weight.

The WS-IMC mapping scheme, DNN-like algorithm, and linear quantization shows more robust immunity against variation. Although higher weight precision of S-MLC improves the baseline accuracy, it is also more susceptible to variation when the variation is high and the dynamic range is low. Multiple cells per weight and fine-tuning are two effective approaches to suppress inference accuracy loss if device-level solutions for reducing variation are not available. As for the PPA co-optimization, we found that memory devices with a large number of analog states spanning in a wide dynamic range do not necessarily lead to better IMC design. Low-bit MLC or even binary memory technology with $G_H/G_L < 10$ and low variability, e.g. binary MRAM25 and FTJ23 with low conductance, deserves more attention.

Methods

Network structure

The VGG-9 network for CIFAR-10 classification consists of 6 convolutional layers and 3 fully connected classifier layers. Images are processed through a stack of convolutional layers using 3×3 filters with a stride of one. Max-pooling after every two
convolutional layers is performed using a 2×2 window. Batch normalization and hard tanh as the activation function are applied to the output of each convolutional layer. The channel width of the convolutional layers starts from 128 in the first layer and increases by a factor of two after each max-pooling layer. For input data in N-IMC and WS-IMC with only positive values, the output of the hard tanh activation function is scaled and normalized to between 0 and 1.

Similarly, the VGG-16 network for Tiny ImageNet classification consists of 13 convolutional layers and 3 fully connect layer. Max-pooling after every 2 or 3 convolutional layers is performed using a 2×2 window. The channel width of the convolutional layers starts from 64 in the first layer and increases by a factor of 2 after each max-pooling layer.

Quantized neural network training

We use quantized weights and activations to perform VMM calculation at runtime and compute parameter gradients at train-time. The real-valued gradients of the weight are accumulated in real-value variables. The quantized weights and activations are transformed from the real-value variables using deterministic quantization functions.

The real-valued variables are updated iteratively using the adaptive moment estimation (ADAM) optimization algorithm with a learning rate decayed by half continuously for every 20 or 40 epochs. Both CIFAR-10 and Tiny ImageNet datasets are trained over 200 epochs with a batch size of 256. All the results are computed using PyTorch, a popular machine learning framework, on an NVIDIA Tesla P100 GPU.

Reference

1. Ielmini, D. & Wong, H-S P. In-memory computing with resitive switching devices. Nat. Electron. 1, 333–343 (2018).
2. Chang, C-C., Liu J-C., Shen Y-L., Chou T., Chen P-C., Wang I-T., Su C-C., Wu M-H., Hudec B., Chang C-C., Tsai C-M., Chang T-S., Wong H-S P. & Hou T-H. Challenges and opportunities toward online training acceleration using RRAM-based hardware neural network. IEEE Int. Electron Devices Meeting (IEDM), 278–281 (2017).
3. Hubara, I., Courbarizux, M., Soudry, D., El-Yaniv, R. & Bengio Y. Quantized neural networks: Training neural networks with low precision weights and activations. Journal of Machine Learning Research (JMLR) 18, 6869–6898 (2018).
4. Hashemi, S., Anthony, N., Tann, H., Bahar, R. I. & Reda, S. Understanding the impact of precision quantization on the accuracy and energy of neural networks. Design Automation Test Europe (DATE), p 1474–1483 (2017).
5. Nirschl, T., Philipp, J. B., Happ, T. D., Burr, G. W., Rajendran, B., Lee, M-H., Schrott, A., Yang, M., Breitwisch, M., Chen, C-F., Joseph, E., Lamorey, M., Cheek, R., Chen, S-H., Zaidi, S., Raoux, S., Chen, Y-C., Zhu, Y., Bergmann, R., Lung, H-L. & Lam, C. Write strategies for 2 and 4-bit multi-level phase-change memory. IEEE Int. Electron Devices Meeting (IEDM), 461–464 (2007).
6. Chang, M-F., Sheu, S-S., Lin, K-F., Wu, C-W., Kuo, C-C., Chiu, P-F., Yang, Y-S., Chen, Y-S., Lee, H-Y., Lien, C-H., Chen, F-T., Su, K-L., Ku, T-K., Kao, M-J. & Tsai, M-J. A high-speed 7.2-ns read-write random access 4-Mb embedded resistive RAM (ReRAM) macro using process-variation-tolerant current-mode read schemes. IEEE Journal of Solid-State Circuits (JSSC) 48, 878–891 (2013).
7. Chang, C-C., Wu, M-H., Lin, J-W., Li, C-H., Parmar, V., Lee, H-Y., Wei, J-H., Sheu, S-S., Suri, M., Chang, T-S. & Hou, T-H. NV-BNN: An accurate deep convolutional neural network based on binary STT-MRAM for adaptive AI edge. ACM/IEEE Design Automation Conference (DAC) (2019)
8. Yang, T-J. & Sze, V. Design considerations for efficient deep neural networks on processing-in-memory accelerators. IEEE Int. Electron Devices Meeting (IEDM), 514–517 (2019)
9. Yan, B., Liu, M., Chen, Y., Chakrabarty, K. & Li, H. On designing efficient and reliable nonvolatile memory-based computing-in-memory accelerators. IEEE Int. Electron Devices Meeting (IEDM), 322–325 (2019)
10. Welser, J., Pitera, J. W. & Goldberg, C. Future computing hardware for AI. IEEE Int. Electron Devices Meeting (IEDM), 21–24 (2018)
11. Szeliski, R. Computer Vision: Algorithms and Applications. Springer (2010)
12. Hu, M., Strachan, J. P., Li, Z., Grafals, E. M., Davila, N., Graves, C., Lam, S., Ge, N., Yang, J. J. & Williams, R. S. Dot-product engine for neuromorphic computing: Programming 1T1M crossbar to accelerate matrix-vector multiplication. *ACM/IEEE Design Automation Conference (DAC)* (2016)

13. Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J. P., Hu, M., Williams, R. S. & Srikumar, V. ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic in crossbars. *ACM/IEEE 43rd Int. Symp. on Computer Architecture (ISCA)*, 14–26 (2016)

14. Chen, P-Y., Lin, B., Wang, I-T., Hou, T-H., Ye, J., Vrudhula, S., Seo, J-S., Cao, Y. & Yu, S. Mitigating effects of non-ideal synaptic device characteristics for on-chip learning. *ACM/IEEE Int. Conference on Computer-Aided Design (ICCAD)*, 194–199 (2015)

15. Sun, X., Yin, S., Peng, X., Liu, R., Seo, J-S. & Yu, S. XNOR-RRAM: A scalable and parallel resistive synaptic architecture for binary neural networks. *Design Automation Test Europe (DATE)*, 1423–1428 (2018)

16. Yin, S., Jiang, Z., Seo, J-S. & Seok, M. XNOR-SRAM: In-memory computing SRAM macro for binary/ternary deep neural networks. *IEEE Journal of Solid-State Circuits (JSSC)* 55, 1–11 (2020)

17. Burr, G. W., Narayanan, P., Shelby, R. M., Sidler, S., Boybat, I., di Nolfo, C. & Leblebici, Y. Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: comparative performance analysis (accuracy, speed, and power). *IEEE Int. Electron Devices Meeting (IEDM)*, 76–79 (2015)

18. Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y. & Xie, Y. PRIME: A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory. *ACM/IEEE 43rd Int. Symp. on Computer Architecture (ISCA)*, 27–39 (2016)

19. Chen, W-H., Li, K-X., Lin, W-Y., Hsu, K-H., Li, P-Y., Yang, C-H., Xue, C-X., Yang, E-Y., Chen, Y-K., Chang, Y-S., Hsu, T-H., King, Y-C., Lin, C-J., Liu, R-S., Hsieh, C-C., Tang, K-T. & Chang, M-F. A 65nm 1Mb nonvolatile computing-in-memory ReRAM macro with sub-16ns multiply-and-accumulate for binary DNN AI edge processors. *IEEE Int. Solid-State Conference (ISSCC)*, 494–496 (2018)

20. Xue, C-X., Chen, W-H., Liu, J-S., Li, J-F., Lin, W-Y., Lin, W-E., Wang, J-H., Wei, W-C., Chang, T-W., Chang, T-C., Huang, T-Y., Kao, H-Y., Wei, S-Y., Chiu, Y-C., Lee, C-Y., Lo, C-C., King, Y-C., Lin, C-J., Liu, R-S., Hsieh, C-C., Tang, K-T. & Chang, M-F. A 1Mb multibit ReRAM computing-in-memory macro with 14.6ns parallel MAC computing time for CNN ased AI edge processors. *IEEE Int. Solid-State Conference (ISSCC)*, 388–390 (2019)

21. Wu, W., Wu, H., Gao, B., Deng, N., Yu, S. & Qian, H. Improving analog switching in HfOx-based resistive memory with a thermal enhanced layer. *IEEE Electron Device Lett.* 38, 1019–1022 (2017)

22. Ambrogio, S., Gallot, M., Spoon, K., Tsai, H., Mackin, C., Wesson, M., Kariyappa, S., Narayanan, P., Liu, C-C., Kumar, A., Chen, A. & Burr, G. W. Reducing the impact of phase change memory conductance drift on the inference of large-scale hardware neural networks. *IEEE Int. Electron Devices Meeting (IEDM)*, 110–113 (2019)

23. Wu, T-Y., Huang, H-H., Chu, Y-H., Chang, C-C., Wu, M-H., Hsu, C-H., Wu, C-T., Wu, M-C., Wu, W-W., Chang, T-S., Lee, H-Y., Sheu, S-S., Lo, W-C. & Hou, T-H. Sub-nA low-current HZO ferroelectric tunnel junction for high-performance and accurate deep learning acceleration. *IEEE Int. Electron Devices Meeting (IEDM)*, 118–121 (2019)

24. Miyashita, D., Lee, E. H. & Murmann, B. Convolutional neural networks using logarithmic data representation. *arXiv:1603.01025* (2016)

25. Doevenspeck, J., Garello, K., Verhoeef, B., Degraeve, R., Van Beek, S., Crotti, D., Yasin, F., Couet, S., Jayakumar, G., Papistas, I. A., Debacker, P., Lauwereins, R., Dehaene, W., Kar, G. S., Cosemans, S., Mallik, A. & Verkest, D. SOT-MRAM based analog in-memory computing for DNN inference. *IEEE Symp. on VLSI Technology (VLSIT)*, JFS4.1 (2020)
Acknowledgements (not compulsory)

Acknowledgements should be brief, and should not include thanks to anonymous referees and editors, or effusive comments. Grant or contribution numbers may be acknowledged.

Author contributions statement

C.C. and T.H. carried out the experiments and analyzed the data. C.C. and T.H. wrote the manuscript. All authors discussed the results and contributed to the final manuscript.

Additional information

Supplementary information accompanies this paper at https://doi.org/
Figure 1. DNN-IMC mapping schemes. (a) Naïve IMC with +/- weight and + input. (b) Complementary IMC with +/- weight and +/- input. (c) Weight-separate IMC with +/- weight and + input.
Figure 2. Multiple cells per weight schemes to represent a higher precision weight. (a) Digital MLC using N 1-bit cells on the same WL to represent an N-bit weight. (b) Analog MLC using $2^N - 1$ 1-bit cells on the same WL to represent an N-bit weight.
Figure 3. DtD conductance (G) variation of memory states fit the log-normal distribution in (a) STT-MRAM, (b) FTJ, (c) MLC PCM, (d) MLC RRAM. The standard deviations (σ) do not change significantly in the same device except for the lowest G (00) state in MLC PCM and RRAM. The higher variation of the (00) state has less impact on IMC accuracy. Thus, we adopted a constant σ in the log-normal distribution as the variation model.
Figure 4. Weight distribution of 3-bit linear quantization (S-MLC, $G_{H}/G_{L}=10$, $\sigma=0.05$). (a) N-IMC mapping. Variation is higher at $\pm w$ with high conductance in the linear scale. (b) WS-IMC mapping. Variation is symmetric at $\pm w$ and $-w$.
Figure 5. Influence of IMC mapping schemes. CIFAR-10 inference accuracy using VGG-9, 1-bit weight, 1-bit activation, \(\frac{G_H}{G_L} = 100 \) are compared. The statistical effect of conductance variation was evaluated using the Monte Carlo simulation of at least 200 times.
Figure 6. (a) CIFAR-10 inference accuracy comparison using linear and logarithmic quantization with variations. 3-bit weight, $G_w/G_l=100$, and WS-IMC mapping are used. The distribution of different quantized weight levels using (b) linear and (c) logarithmic quantization.
Figure 7. Impact of linear quantization policy considering weight precision and G_{H}/G_{L}. (a) CIFAR-10 inference (VGG-9) accuracy using $G_{H}/G_{L} = 2$ and $G_{H}/G_{L} = 100$. (b) Tiny ImageNet inference (VGG-16) using $G_{H}/G_{L} = 2$ and $G_{H}/G_{L} = 100$. 1-bit activation is assumed. Higher weight precision improves the baseline accuracy but is more susceptible to variation. Enlarging G_{H}/G_{L} improves immunity against variation.
Figure 8. Normalized σ vs. accuracy and the impact of dynamic range and weight precision. σ is normalized to $\ln(G_H/G_L)$ considering the log-normal distribution of variation in memory states.
Figure 9. Weight distribution of 3-bit linear quantization ($G_H/G_L = 10$, $\sigma = 0.05$ for 1-bit cell) using (a) the WS-IMC + D-MLC mapping scheme and (b) the WS-IMC + A-MLC mapping scheme, showing tighter distributions than S-MLC in Figure 4b.
Figure 10. (a) Area and (b) power breakdown of a 40nm 256×256 1T1R IMC macro.
Figure 11. Area and energy estimation of feasible IMC designs that guarantees CIFAR-10 inference (VGG-9) with at least 88 % accuracy (see Table 2). Designs considering different standard deviation of conductance distribution, G_u/G_L ratio, and S-MLC/D-MLC/A-MLC scheme are compared, and the lowest possible weight precision is used to simplify the hardware implementation. 1-bit activation is assumed. Dark and light colors indicate the estimation w/o and w/ considering fine-tuning. The fine-tuning results are shown only when fine-tuning helps to reduce the weight precision required. The lowest weight precision required is also indicated.
Figure 12. Area and energy estimation of IMC designs using the same criteria as Fig. 11 but with either wider channel or 3-bit activation. The improvements only exist in specific conditions with high σ.
	HP lab [12]	ISAAC [13]	ASU [14]	XNOR-SRAM [15]	XNOR-RRAM [16]	IBM [17]	PRIME [18]	NTHU [19]
Mapping	N-IMC	N-IMC	N-IMC	C-IMC	C-IMC	WS-IMC	WS-IMC	WS-IMC
Weight	S-MLC	D-MLC	A-MLC	S-MLC	S-MLC	S-MLC	D-MLC	S-MLC
Device	RRAM	N/A	RRAM	SRAM	RRAM	PCM	RRAM	RRAM
Cell Precision	5-bit	2-bit	6-bit	1-bit	1-bit	5-bit	4-bit	1-bit
Weight Precision	5-bit	16-bit	6-bit	1-bit	1-bit	6-bit	8-bit	1-bit
Activation Precision	4-bit	8-bit	N/A	1-bit	1-bit	8-bit	6-bit	1-bit

Table 1. Summary of various DNN-to-IMC mapping schemes and quantized weight implementation methods proposed in the literature.
Dynamic Range	Weight Precision	Weight Implemented Scheme	Tolerable STD w/o FT	Tolerable STD w/ FT
$G_{d}/G_{i}=2$	1-bit	S-MLC	0.05	0.07
	2-bit	S-MLC	0.08	0.11
		D-MLC	0.11	0.15
		A-MLC	0.14	0.19
	3-bit	S-MLC	0.08	0.11
		D-MLC	0.12	0.27
		A-MLC	0.2	0.28
$G_{d}/G_{i}=100$	1-bit	S-MLC	0.1	0.17
	2-bit	S-MLC	0.2	0.29
		D-MLC	0.24	0.37
		A-MLC	0.26	0.46
	3-bit	S-MLC	0.22	0.3
		D-MLC	0.27	0.66
		A-MLC	0.33	0.66

Table 2. Tolerable variation for CIFAR-10 (VGG-9 @ 88% acc.) with and without fine-tuning (FT)
Dynamic Range	Weight Precision	Weight Implemented Scheme	Tolerable STD w/o FT	Tolerable STD w/ FT
$G_0/G_1 = 2$	1-bit	S-MLC	0.03	0.08
	2-bit	S-MLC	0.05	0.1
		D-MLC	0.06	0.12
		A-MLC	0.08	0.16
	3-bit	S-MLC	0.05	0.1
		D-MLC	0.08	0.16
		A-MLC	0.13	0.27
$G_0/G_1 = 100$	1-bit	S-MLC	0.08	0.27
	2-bit	S-MLC	0.13	0.24
		D-MLC	0.14	0.27
		A-MLC	0.18	0.39
	3-bit	S-MLC	0.13	0.25
		D-MLC	0.17	0.37
		A-MLC	0.22	0.61

Table 3. Tolerable variation for Tiny ImageNet (VGG-16 @ 48% acc.) with and without fine-tuning (FT)
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupportingInformationscientificreports.pdf