Carbapenem stewardship with ertapenem and antimicrobial resistance—a scoping review

Tiago Zequinão[1], João Paulo Telles[1],[2], Juliano Gasparetto[1] and Felipe Francisco Tuon[1]

[1]. Pontifícia Universidade Católica do Paraná, Faculdade de Medicina, Laboratório de Doenças Infecciosas Emergentes, Curitiba, PR, Brasil.
[2]. A.C.Camargo Cancer Center, São Paulo, SP, Brasil.

Abstract
Consumption of carbapenem has increased due to extended-spectrum beta-lactamase-producing bacteria spreading. Ertapenem has been suggested as a not carbapenem-resistance inducer. We performed a scoping review of carbapenem-sparing stewardship with ertapenem and its impact on the antibiotic resistance of Gram-negative bacilli. We searched PubMed for studies that used ertapenem as a strategy to reduce resistance to carbapenems and included epidemiologic studies with this strategy to evaluate susceptibility patterns to cephalosporins, quinolones, and carbapenems in Gram-negative-bacilli. The search period included only studies in English, up to February 2018. From 1294 articles, 12 studies were included, mostly from the Americas. Enterobacteriaceae resistance to quinolones and cephalosporins was evaluated in 6 studies and carbapenem resistance in 4 studies. Group 2 carbapenem (imipenem/meropenem/doripenem) resistance on A. baumannii was evaluated in 6 studies. All studies evaluated P. aeruginosa resistance to Group 2 carbapenems. Resistance profiles of Enterobacteriaceae and P. aeruginosa to Group 2 carbapenems were not associated with ertapenem consumption. The resistance rate of A. baumannii to Group 2 carbapenems after ertapenem introduction was not clear due to a lack of studies without bias. In summary, ertapenem as a strategy to spare use of Group 2 carbapenems may be an option to stewardship programs without increasing resistance of Enterobacteriaceae and P. aeruginosa. More studies are needed to evaluate the influence of ertapenem on A. baumannii.

Keywords: Antimicrobial stewardship. Ertapenem. Carbapenem-sparing.

INTRODUCTION
Ertapenem is a carbapenem with weak activity against Pseudomonas spp. and Acinetobacter spp. In randomized controlled trials, ertapenem has been used for severe community-acquired infections and is licensed for intra-abdominal infections, community-acquired pneumonia, skin and soft tissue infections, and complicated urinary infections. The importance of ertapenem increased after dissemination of extended-spectrum β-lactamases (ESBLs), which are now disseminating outside hospitals.

Carbapenems from Group 1 (i.e., ertapenem) and Group 2 (i.e., meropenem) may select for resistant P. aeruginosa in vitro. Nevertheless, the selection of carbapenem-resistant P. aeruginosa has been shown to be unlikely under physiological ertapenem concentrations. Considering the antimicrobial selective pressure, carbapenem-sparing stewardship strategies have increased in recent years. However, some authors advocate ertapenem as a strategy to reduce resistance to meropenem and imipenem.

Considering the increasing importance of strategies to reduce antibiotic resistance, in this scoping review, we evaluated the effectiveness of an ertapenem-based stewardship strategy in reducing antibiotic resistance in Gram-negative bacilli (GNB).

METHODS
Search strategy
Using PubMed, we searched for studies published in English that used ertapenem as a strategy to reduce resistance to any antibiotic. The search included studies from inception to February 2018. The keyword used was “ertapenem” in title and abstract in the advanced search option.

Data extraction and quality evaluation
Two reviewers (JT and FT) independently screened all studies based on either title or abstract for eligibility. Discrepancies were resolved through discussion. Reviewers then independently...
extracted the relevant data from all the publications included in the review. A third reviewer evaluated the discrepancies. The methodological quality of each publication was not analyzed using classical scores for randomized clinical trials, but basic elements for an objective evaluation were included in a table for critical analysis.

Inclusion and exclusion criteria

The inclusion criteria were as follows: i) epidemiological studies that compared different periods of ertapenem consumption (i.e., pre vs. post introduction) and ii) Evaluation of Group 2 carbapenem susceptibility pattern on Gram-negative bacilli. The exclusion criteria were: i) articles classified as case reports or individual data and/or ii) undescribed data of ertapenem consumption or susceptibility patterns.

Definitions and Gram-negative bacilli

The ertapenem consumption model was defined as DDD per patient-day (i.e., DDD/100PD, DDD/1000PD). Susceptibility and resistance evaluation were described in a published original article. Susceptibility patterns were considered according to the Clinical and Laboratory Standards Institute (CLSI) or European Committee on Antimicrobial Susceptibility Testing (EUCAST). The analyzed resistances according to each GNB were: i) quinolone in *E. coli* and *K. pneumoniae*, ii) third-generation cephalosporin in *E. coli* and *K. pneumoniae*, and iii) carbapenems in *E. coli*, *K. pneumoniae*, *A. baumannii*, and *P. aeruginosa*.

RESULTS

Selected articles

The search criteria initially identified 1294 articles. After title and abstract reviews, only 12 articles fulfilled the inclusion criteria (Figure 1). The first study was published in 2008 and the last in 2015. The period of analysis varied between 2000 and 2011.

Of the articles, 7 were from America, 6 from Asia, and 1 from Europe. A timeline of the ertapenem-based stewardship program of each study is presented in Figure 2.

Enterobacteriaceae susceptibility patterns to quinolones were evaluated in 5 studies, 6 studies evaluated it susceptibility to cephalosporins, and 4 studies to Group 2 carbapenems. Non-fermenting Gram-negative bacilli susceptibility patterns to Group 2 carbapenems were evaluated in 6 studies of *A. baumannii* and all studies evaluated Group 2 carbapenems susceptibility in *P. aeruginosa*.

Carbapenem consumption

Carbapenem consumption (Groups 1 and 2) was evaluated using different methods. Three studies used the slope curve and nine used comparative periods (before and after consumption). Thus, there was heterogeneity in the metrics used among authors, which complicates the establishment of a median or average value. Only 2 studies demonstrated the substitution tendency of Group 2 carbapenems to ertapenem after its introduction.

E. coli susceptibility

Three studies analyzed ertapenem consumption and *E. coli* carbapenem resistance rate, and one did not specify resistance among *Enterobacteriaceae isolates* (Tables 1 and Supplementary Data - Table 2). Increased ertapenem consumption did not increase *E. coli* resistance to carbapenems. Quinolones were analyzed by 4 studies and third-generation cephalosporins by 6, and presented bias on results (Supplementary Data - Table 2). Only 1 publication found a significant increase in quinolone resistance, although higher ciprofloxacin consumption was observed as well. An increased resistance rate to third-generation cephalosporin was observed in 4 studies, but ceftriaxone, ceftazidime, and beta-lactamase inhibitor consumption rates were also higher in 3 studies.

K. pneumoniae susceptibility

Three studies analyzed ertapenem consumption and *K. pneumoniae* carbapenem resistance rate, and one did not specify resistance among *Enterobacteriaceae isolates* (Table 1). Increased consumption of ertapenem changed the susceptibility
patterns of carbapenems in some studies. One study showed a slight improvement in carbapenem susceptibility\(^1\). Another study found a higher incidence of resistance to Group 2 carbapenems on univariate analysis; however, higher consumption of meropenem/imipenem was observed\(^6\). Quinolones and third-generation cephalosporin susceptibility were analyzed in 4 and 6 studies respectively\(^6,12-16\) (Supplementary Data - Table 2). Increased third-generation cephalosporin resistance was observed in 4 studies\(^5,12,13,16\).

A. baumannii Susceptibility

Six studies analyzed ertapenem consumption and \textit{A. baumannii} carbapenem resistance rates\(^4,9,13,15,17\) (Tables 1 and Supplementary Data - Table 2). Increased consumption was associated with a decrease in susceptibility patterns in 2 studies\(^13,15\). Nevertheless, both of them increased meropenem and/or imipenem consumption and 1 increased resistance only on univariate analysis\(^13,15\).

Table 1: Characteristics of studies included in the review and antibiotics consumption.

Author (year)	Study design	Hospital settings	Antibiotic consumption measure and metric	Ertapenem consumption	Group 2 carbapenem consumption	Extended-spectrum cephalosporins consumption	Fluoroquinolones consumption
Cook et al. (2011)\(^6\)	Retrospective time-series	861 beds medical/surgical	graphic plots DDD/1000 PD ertapenem introduction quarter vs last quarter introduction year vs last year (ertapenem) first year vs last year (others) annually DDD/1000 PD	0.0 vs 18.0 (p value NP)	10.0 vs 15.00 (p value NP)	20.0 vs 38.0 (p value NP)	90.0 vs 10.0 (p value NP)
Eagye and Nicollau (2011)\(^1\)	Retrospective time-series	25 hospitals		7.27 vs 15.93 (p value NP)	10.39 vs 15.27 (p value NP)	NP	303.84 vs 423.82 (p value NP)
Goff and Mangino (2008)\(^12\)	Retrospective time-series	770 beds medical/surgical	first year vs last year annual DDD/1000 PD introduction period median vs last period median (ertapenem) post intervention slope (others) monthly DDD/1000 PD	3.4 vs 8.9 (RR = 2.61, p < 0.001)	IPM 21.5 vs 31.1 (RR = 1.45, p < 0.001)	CPM 18.8 vs 63.0	NP
Goldstein et al. (2009)\(^11\)	Retrospective interrupted time-series	344 beds		8.0 vs 44.0 (p value NP)	IPM decreased 1.28 (p=0.002)	CPM stable (coefficients NP)	LVX stable (coefficients NP)
Hsu et al. (2010)\(^14\)	Retrospective time-series	4 hospitals totalizing 4000 beds	slope 3 months DDD/1000 PD throughout the entire period	increased 0.079 (p<0.05)	MEM increased 0.057 (p=0.03), IPM decreased 0.057 (p<0.05)	*stable	** increased 1.677 (p<0.05)
Lee et al. (2013)\(^15\)	Retrospective time-series	1130 beds	slope annually DDD/1000 PD throughout the entire period	increased 4.818 (p<0.001)	MEM increased 1.557 (p<0.001), IPM increased 0.774 (p<0.001)	CRO (p=0.2079), CAZ increased 0.862 (p=0.001), CPM (p=0.544), Cefpirome increased 0.916 (p=0.0426)	CIP increased 0.50 (p<0.001), LVX increased 3.84 (p=0.001), MXF increased 2.674 (p<0.001)
Lim et al. (2013)\(^14\)	Retrospective time-series	NP	first month vs last month DDD/100 PD	0.45 vs 1.2 (p value NP)	MEM 2.0 vs 3.2 (p value NP), IPM 1.8 vs 0.7 (p value NP)	CRO 5.61 vs 12.5 (p value NP), CPM 5.4 vs 4.7 (p value NP)	CIP 1.17 vs 1.3 (p value NP)
Lima et al. (2009)\(^16\)	Retrospective time-series	200 beds trauma/orthopedic	pre period vs post period DDD/100 PD	0.0 vs 42.6	IPM 46.3 vs 16.1 (p<0.001)	NP	NP
Pires dos Santos et al. (2011)\(^1\)	Retrospective interrupted time-series	749 beds medical/surgical	pre period vs ertapenem period monthly DDD/100 PD	0.05 median throughout ertapenem period 2.6 vs 2.2 (p=0.08)	1.1 vs 0.8 (p<0.05)	10.1 vs 3.6 (p<0.05)	
Rodriguez-Osorio et al. (2015)\(^17\)	Retrospective time-series	280 beds medical/surgical	slope 4 months DDD/1000 PD throughout the entire period	increased 15.5 (p<0.001)	† Increased 26.6 (p<0.001)	* Decreased 32.2 (p=0.007)	†† Decreased 38.6 (p<0.001)
Sousa et al. (2013)\(^17\)	Retrospective interrupted time-series	1445 beds medical/surgical	introduction year vs last year (ertapenem) slope change (others) monthly DDD/100 PD	0.09 vs 2.02 (p<0.001)	stable (p=0.56)	CRO stable (0.082)	stable (p=0.533)
Yoon et al. (2014)\(^14\)	Before-and-after	950 beds medical/surgical	first period vs last period monthly DDD/1000 PD	2.7 vs 7.2 (p<0.001)	20.7 vs 15.5 (p=0.028)	102.2 vs 96.7 (p=0.311)	57.7 vs 67.1 (p=0.102)

CAZ: ceftazidime; CIP: ciprofloxacin; CPM: cefepime; CRO: ceftaxime; GEN: gentamicin; IPM: imipenem; LVX: levofloxacin; MEM: meropenem; MXF: moxifloxacin; TZP: piperacillin/tazobactam; CR-PA: carbapenem-resistant \textit{P. aeruginosa}; NP: not provided; OBD: occupied beds-day; PD: patient-day. *CPM, CAZ, and CRO consumption. **CIP, LVX, and MXF consumption. † MEM and IPM consumption. †† CIP and ofloxacin consumption.
P. aeruginosa susceptibility

Twelve studies analyzed ertapenem consumption and P. aeruginosa carbapenem resistance rates (Tables 1 and Supplementary Data - Table 2) [8-17]. Results were variable. Three studies demonstrated significant susceptibility pattern improvement [9,11,17]. Six did not observe significant changes in resistance patterns [7,8,10,12,15,16]. Three studies demonstrated a higher carbapenem resistance rate after ertapenem introduction [6,13,14]. However, 2 studies increased Group 2 carbapenem consumption as well [8,14], and one of them did not present significant statistical results on multivariate analysis [6].

DISCUSSION

We conducted a scoping review to better understand Gram-negative bacilli antibiotic resistance and ertapenem consumption. Twelve studies evaluated ertapenem consumption as an intervention to change Group 2 carbapenem resistance. After this strategy, the Group 2 carbapenem was reduced in 3 studies. Carbapenem resistance in Enterobacteriaceae did not increase after ertapenem consumption. However, non-fermenting Gram-negative bacilli demonstrated changes in susceptibility patterns. Carbapenem-resistant in A. baumannii increased in 2 of 6 studies, while 4 observed no difference. P. aeruginosa improved carbapenem susceptibility in 3 of the 12 studies, while 7 observed no differences and 2 increased carbapenem resistance.

The hypothesis that ertapenem has the potential to select P. aeruginosa and A. baumannii resistant to Group 2 carbapenems is due to its limited action on non-fermenting Gram-negative bacilli (NF-GNB). Previous reviews did not observe higher rates of carbapenem resistance in NF-GNB despite an increase in ertapenem consumption [10,19].

The carbapenem resistance rate in E. coli did not increase after ertapenem consumption. Studies have observed changes in E. coli susceptibility only to cephalosporins and quinolones. Hsu et al. (2010) observed that increased resistance to ceftriaxone and ciprofloxacin correlated with increasing consumption [13]. Lee et al. (2010) found increased susceptibility to ceftazidime and levofloxacin in addition to increasing its consumption [13].

K. pneumoniae carbapenem resistance rate did not increase overall and it was positively affected by routine utilization of ertapenem in one study. Lee et al. (2010) observed an improvement in susceptibility to carbapenems, ceftazidime, and levofloxacin after ertapenem introduction [13]. Changes in the resistance rate of K. pneumoniae to cephalosporin and quinolones were observed. Hsu et al. (2010) demonstrated lower resistance to ceftriaxone and ciprofloxacin but this was not correlated with antibiotic consumption [13]. Goff and Mangino (2008) observed higher resistance to cefepime in the latter period and inferred it was due to multiple hospitalizations [17]. Overall, Enterobacteriaceae carbapenem resistance was not affected by ertapenem consumption. These results are in accordance with stable CRE colonization rates after patients using ertapenem as surgical prophylaxis [20].

A. baumannii demonstrated predominantly no difference in the results and worst susceptibility patterns in 2 studies [13,15]. However, there was a significant increase in consumption in Group 2 carbapenems and other broad-spectrum antibiotics.

Yoon et al converged with these results when they concluded that carbapenem resistance rate is correlated with Group 2 carbapenem consumption [16].

Carbapenem-resistant P. aeruginosa was not increased by ertapenem use in the majority of studies. Increased resistance rates were demonstrated in a study with higher Group 2 carbapenem consumption [13]. Nevertheless, Lim et al. (2013) observed a negative impact on carbapenem susceptibility even with no difference in Group 2 carbapenem consumption in both periods [14]. Similar to A. baumannii, other studies found that P. aeruginosa resistance was affected by Group 2 carbapenem consumption but not by ertapenem [21,22]. These studies converged with two positive results in the present review [11,17], in which lower resistance was correlated with less usage of imipenem. Only one study directly associated ertapenem consumption with better carbapenem susceptibility [9].

The present study has several limitations. Methods heterogeneity may make certain conclusions difficult when studies were not comparable between each other. Other factors may have influenced the carbapenem resistance rate of Group 2, such as higher meropenem/imipenem consumption, without multivariate analysis evaluation. However, this article presents a relevant issue in infectious disease practice and may help stewardship programs to adequately choose carbapenem therapeutic regimens without affecting the bacterial resistance rate.

CONCLUSION

The majority of studies did not demonstrate a rising Group 2 carbapenem resistance rate in Enterobacteriaceae and P. aeruginosa after ertapenem introduction. The rate of resistance to Group 2 carbapenems on A. baumannii is not clear. However, studies did demonstrate that worsening carbapenem resistance was associated with Group 2. If a carbapenem group is needed in an antimicrobial stewardship program, ertapenem may be an option to spare Group 2 carbapenem usage without increasing resistance in Enterobacteriaceae and P. aeruginosa.

AUTHORS' CONTRIBUTION

TZ: Wrote manuscripts, articles review and selection, analysis and interpretation of data. JPT: Conception and design of the study, articles reviewer and selection, manuscript review. FG: Final manuscript review. FFT: Conception and design of the study, articles reviewer and selection, final approval of the version to be submitted.

CONFLICTS OF INTEREST

Felipe Tuon conducts research for CNPQ.

FINANCIAL SUPPORT

The authors have no funding to report.

REFERENCES

1. Livermore DM, Sefton AM, Scott GM. Properties and potential of ertapenem. J Antimicrob Chemother. 2003;52(3):331-44.
2. Congeni BL. Ertapenem. Expert Opin Pharmacother. 2010;11(4):669-72.
3. Rocha JL, Tuon FF, Johnson JR. Sex, drugs, bugs, and age: rational selection of empirical therapy for outpatient urinary tract infection in an era of extensive antimicrobial resistance. Braz J Infect Dis. 2012;16(2):115-21.
4. Livermore DM, Mushtaq S, Warner M. Selectivity of ertapenem for Pseudomonas aeruginosa mutants cross-resistant to other carbapenems. J Antimicrob Chemother. 2005; 55(3):306-11.

5. Abdallah M, Badawi M, Amirah MF, Rasheed A, Mady AF, Alodat M, Alharthy A. Impact of carbapenem restriction on the antimicrobial susceptibility pattern of Pseudomonas aeruginosa isolates in the ICU. J Antimicrob Chemother. 2017;72(11):3187-90.

6. Rodriguez-Osorio CA, Sanchez-Martinez CO, Araujo-Melendez J, Criollo E, Macias-Hernandez AE, Ponce-de-Leon A, Ponce-de-Leon S, Sifuentes-Osorio J. Impact of ertapenem on antimicrobial resistance in a sentinel group of Gram-negative bacilli: a 6 year antimicrobial resistance surveillance study. J Antimicrob Chemother. 2015; 70(3):914-21.

7. Pires dos Santos R, Jacoby T, Pires Machado D, Lisboa T, Gastal SL, Nagel FM, Kuplich NM, Konkewicz L, Gorniak Lovatto C, Pires MR, Goldani LZ. Hand hygiene, and not ertapenem use, contributed to reduction of carbapenem-resistant Pseudomonas aeruginosa rates. Infect Control Hosp Epidemiol. 2011;32(6):584-90.

8. Eagye KJ, Nicolau DP. Change in antipseudomonal carbapenem susceptibility in 25 hospitals across 9 years is not associated with the use of ertapenem. J Antimicrob Chemother. 2011;66(6):1392-95.

9. Cook PP, Gooch M, Rizzo S. Reduction in fluoroquinolone use following introduction of ertapenem into a hospital formulary is associated with improvement in susceptibility of Pseudomonas aeruginosa to group 2 carbapenems: a 10-year study. Antimicrob Agents Chemother. 2011;55(12):5597-601.

10. Lima AL, Oliveira PR, Paula AP, Dal-Paz K, Rossi F, Zumotti AV. The impact of ertapenem use on the susceptibility of Pseudomonas aeruginosa to imipenem: a hospital case study. Infect Control Hosp Epidemiol. 2009;30(5):487-90.

11. Goldstein EJ, Citron DM, Peraino V, Elgourt T, Meibohm AR, Lu S. Introduction of ertapenem into a hospital formulary: effect on antimicrobial usage and improved in vitro susceptibility of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53(12):5222-6.

12. Goff DA, Mangino JE. Ertapenem: no effect on aerobic gram-negative susceptibilities to imipenem. J Infect. 2008;57(2):123-7.

13. Lee CM, Lai CC, Wang YY, Lee MC, Hsieh PR. Impact of susceptibility profiles of Gram-negative bacteria before and after the introduction of ertapenem at a medical center in northern Taiwan from 2004 to 2010. Diagn Microbiol Infect Dis. 2013;75(1):94-100.

14. Lim CL, Lee W, Lee AL, Liew LT, Nah SC, Wan CN, Chlebicki MP, Kwa AL. Evaluation of Ertapenem use with impact assessment on extended-spectrum beta-lactamases (ESBL) production and carbapenem-resistant Pseudomonas aeruginosa isolates in Singapore General Hospital (SGH). BMC Infect Dis. 2013;13:523.

15. Hsu LY, Tan TY, Tam VH, Kwa A, Fisher DA, Koh TH, S. Network for Antimicrobial Resistance, Surveillance and correlation of antibiotic prescription and resistance of Gram-negative bacteria in Singaporean hospitals. Antimicrob Agents Chemother. 2010;54(3):1173-8.

16. Yoon YK, Yang KS, Lee SE, Kim HJ, Sohn JW, Kim MJ. Effects of Group 1 versus Group 2 carbapenems on the susceptibility of Acinetobacter baumannii to carbapenems: a before and after intervention study of carbapenem-use stewardship. PLoS One. 2014;9(6):e99101.

17. Sousa D, Castelo-Coral L, Gutierrez-Urbon JM, Molina F, Lopez-Calvino B, Bou G, Linares P. Impact of ertapenem use on Pseudomonas aeruginosa and Acinetobacter baumannii imipenem susceptibility rates: collateral damage or positive effect on hospital ecology? J Antimicrob Chemother. 2013;68(8):1917-25.

18. Nicolau DP, Carmeli Y, Crank CW, Goff DA, Graber CJ, Lima AL, Goldstein EJ. Carbapenem stewardship: does ertapenem affect Pseudomonas susceptibility to other carbapenems? A review of the evidence. Int J Antimicrob Agents. 2012;39(1):11-15.

19. Falagas ME, Tansari GS, Kapaskelis A, Vardakas KZ. Ertapenem use and antimicrobial resistance to group 2 carbapenems in Gram-negative infections: a systematic review. Expert Rev Anti Infect Ther. 2013;11(1):69-78.

20. Bloomfield MG, Page MJ, McLachlan AG, Studd RC, Blackmore TK. Routine Ertapenem Prophylaxis for Transrectal Ultrasound Guided Prostate Biopsy does Not Select for Carbapenem Resistant Organisms: A Prospective Cohort Study. J Urol. 2017;198(2):362-68.

21. Carmeli Y, Lidji SK, Shabtai E, Navon-Venezia S, Schwaber MJ. The effects of group 1 versus group 2 carbapenems on imipenem-resistant Pseudomonas aeruginosa: an ecological study. Diagn Microbiol Infect Dis. 2011;70(3):367-72.

22. McDougall DA, Morton AP, Playford EG. Association of ertapenem and antipseudomonal carbapenem usage and carbapenem resistance in Pseudomonas aeruginosa among 12 hospitals in Queensland, Australia. J Antimicrob Chemother. 2013;68(2):457-60.
SUPPLEMENTARY DATA - TABLE 2: Microorganism resistance to antibiotics and conclusions.

Microorganisms	Impact on NF-GBN resistance to Group 2 carbapenems	Impact on Enterobacteriaceae resistance to Group 2 carbapenems	Impact on Enterobacteriaceae resistance to cephalosporins/quinolones	Correlation between carbapenem consumption and GNB resistance to carbapenems	Comments	Conclusion
Cook et al. (2011)	- P. aeruginosa 24% vs 16% (p value NP)	- A. baumannii no difference (p value NP)				
	graphic plots % of resists					
Lee et al. (2013)						
	- E. coli to MEM: decreased 0.796 (p=0.0184) and stable (p=0.1786)					
	- A. baumannii to MEM and IPM: decreased 4.136 (p=0.007)					
Hsu et al. (2010)	- P. aeruginosa resistant to Group 2 carbapenems					
	- E. coli to IPM: increased 0.032 (p<0.05), increased 0.031 (p<0.02) respectively.					
	- K. pneumoniae to CRO, CIP: decreased 0.074 (p<0.05), decreased 0.091 (p<0.05) respectively.					
Eagye et al. (2011)	- P. aeruginosa 85.4% vs 81.0% (p=0.99)	- A. baumannii NP				
	first year vs last year % of susceptible					
Goldstein et al. (2009)	- P. aeruginosa increased 1.74 (p<0.001)	- A. baumannii NP				
	slope monthly % of susceptibles					
Goff and Mangino (2008)	- P. aeruginosa to IPM 71% vs 72% (p=0.92)	- A. baumannii NP				
	first year vs last year annual % of susceptible					
Nicolau et al. (2011)	- E. coli to IPM: 100% vs 100% (p value NP)	- K. pneumoniae to IPM: 99% vs 99% (p value NP)				

Conclusion

- P. aeruginosa: decreased resistance to carbapenems
- A. baumannii: no difference
- E. coli: no difference
- K. pneumoniae: no difference
- A. baumannii resistance to carbapenems was also correlated with LEV and TZP consumption. E. coli resistance was also correlated with carbapenems on blood isolates. K. pneumoniae resistance was not correlated with antibiotic consumption.
- P. aeruginosa: increased susceptibility to Group 2 carbapenems
- A. baumannii: NP
- E. coli: NP
- K. pneumoniae: NP
- There was a significant negative correlation of carbapenem use and carbapenem resistance on GNB, but the same with MEM use and MEM susceptibility. There was a significant increase in E. coli susceptibility to CAZ, but in other hand, total E. coli grew more.

Comments

- There was a correlation of ciprofloxacin use with percentage and rate of carbapenems resistant P. aeruginosa
- There was no difference in carbapenem resistant correlation with respect to antibiotics classes across the study.
- The author associated improved susceptibilies to IPM decreasing carbapenem resistance.
- There was a significant increase in carbapenem use and carbapenem resistance.
- P. aeruginosa: decreased susceptibility to Group 2 carbapenems
- A. baumannii: decreased susceptibility to Group 2 carbapenems
- E. coli: no difference
- K. pneumoniae: increased susceptibility to Group 2 carbapenems
CAZ: ceftazidime, CIP: ciprofloxacin, CPM: cefepime, CRO: ceftiraxone, GEN: gentamicin, IPM: imipenem, LVX: levofloxacin, MEM: meropenem, MXY: moxifloxacin, TZP: piperacillin/tazobactam, CR-PA: carbapenem-resistant *P. aeruginosa*, NP: Not provided, OBD: occupied beds-day, PD: patient-day.