A Comparative Study on the Effectiveness and Onset of Action of Ondansetron and Meperidine in Post-Anesthesia Shivering Treatment

Mohammadreza Ghodraty1, Faranak Rokhtabnak1, Alireza Kholdebarin1, *Alireza Pournajafian1

1. Department of Anesthesia, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.

ABSTRACT

Background and Aims: Postoperative shivering is a common complication after recovering from anesthesia, and due to its subsequent side effects, its prevention and treatment is of special importance for anesthetists. In this study, the efficacy and onset of action of meperidine (which is a potential cause of hemodynamic and respiratory complications) in treatment of post-anesthesia shivering are compared with those of ondansetron.

Methods & Materials: In this clinical trial study, patients with post-anesthetic shivering during recovery were randomly divided into two groups of meperidine (n=27) and ondansetron (n=29). Their shivering scores were recorded every minute for up to 10 minutes. After this time, if patients did not improve, meperidine was used in both groups to treat shivering.

Ethical Considerations: The study obtained its ethical approval from the Research Ethics Committee of Iran University of Medical Sciences and has been registered in Iranian Registry of Clinical Trials (IRCT201109224969N3).

Results: The number of patients completely treated at 10 minutes was higher in the meperidine group (P=0.05), and the decrease in mean shivering score occurred faster in meperidine group (P=0.047).

Conclusion: Although ondansetron has been shown to be effective in treatment of postoperative shivering, the effectiveness and onset of action of meperidine was clearly better.

Key words: Ondansetron, Meperidine, Shivering, General anesthesia, Recovery

Extended Abstract

Introduction

Hypothermia and shivering are relatively common complications after surgery that can lead to other complications such as increased oxygen need and consumption, increased intraocular and intracranial pressure, and increased pain at the site of surgery due to skin stretching. Some of these complications, especially in patients with ischemic heart disease, can lead to worsening of the patient’s condition. Therefore, prevention of their occurrence and their timely treatment is one of the important goals in anesthesia. Currently, the most commonly used drug in the treatment of postoperative shivering is pethidine, and various other drugs have been studied for its prevention or treatment. Given the side effects of narcotics such as impaired breathing, pruritus, nausea and vomiting, and the unique complication of meperidine use (tachycardia...
Materials and Methods

Patients with shivering after general anesthesia for laparotomy were selected as study samples based on the inclusion criteria: meeting ASA I, II criteria, age 20-60 years, duration of surgery between 2-3 hours, no history of liver disease, heart disease, drug allergies, lung disease, seizures, drug allergies, consumption of MAOIs and TCAs, increased ICP, severe kidney disease, hypothyroidism, and no addiction. Shivering was graded as following: 0= no shivering; 1= Peripheral cyanosis or peripheral vasoconstriction; 2= Visible muscular activity only in one muscle group; 3= Visible muscular activity in more than one muscle group; 4= Gross muscular activity in the entire body.

During the recovery, the patients were covered with a blanket for 3 minutes and the body temperature was raised by warming the skin surface using Warm Touch device. If they did not succeed in controlling their shivering and had score >2 after warming, they were injected with 25 mg of pethidine or 8 mg of ondansetron, and their shivering scores were recorded every 1 to 10 minutes by an anesthesia assistant who was unaware of the type of injected drug. Finally, the time when shivering score become zero and the mean score of shivering in each group in different minutes were compared. At the end, out of 96 selected patients, 27 were assigned into the meperidine group and 29 to the ondansetron group (Figure 1).

Results

Mean age, gender, anesthesia class (ASA) and fluid intake during anesthesia did not show a statistically significant difference between the two groups (Table 1). The mean of shivering in the two groups before and after warming and in different minutes after drug injection was not significantly different between the two groups up to 9 minutes; in the last minute, it became significant (P<0.05) (Tables 2 & 3). The mean time that the shivering score reached zero in all patients who were completely treated before the 10th minute was 7 in the meperidine group and happened earlier than in the ondansetron group, and the difference between them was significantly different (Table 4). 16 cases in the ondansetron group, and the difference between them was 7 in the meperidine group and happened earlier than in the ondansetron group, and the difference between them was significantly different (Table 4). 16 cases in the ondansetron group, and the difference between them was significantly different (Table 4). 16 cases in the ondansetron group, and the difference between them was significantly different (Table 4). 16 cases in the ondansetron group, and the difference between them was significantly different (Table 4). 16 cases in the ondansetron group, and the difference between them was significantly different (Table 4). 16 cases in the ondansetron group, and the difference between them was significantly different (Table 4). 16 cases in the ondansetron group, and the difference between them was significantly different (Table 4). 16 cases in the ondansetron group, and the difference between them was significantly different (Table 4).

Discussion

Drugs of 5-hydroxytryptamine receptor antagonists are used to prevent and treat nausea and vomiting, but they have also been suggested to treat shivering [2]. Piper et al. found that clonidine was more effective than dolasetron in preventing shivering after abdominal and urologic surgery [2], while the 8 mg dose of ondansetron used in Powell and Buggy’s study, which was injected before anesthesia in similar patients, was more effective in reducing the prevalence of shivering after anesthesia than the 4 mg dose of this drug and placebo. In Kelsaka et al.’s study, ondansetron and meperidine reduced shivering after spinal anesthesia compared to saline, and maintained the central body temperature. In another studies, granisetron was not effective in preventing shivering after spinal anesthesia in urological patients compared to ketamine [6], and ondansetron did not reduce the severity and prevalence of shivering in women candidates for cesarean section after concomitant epidural and spinal anesthesia [7].

In Entezari Asl et al.’s study [8], ondansetron and meperidine were significantly more effective in preventing shivering after general anesthesia in gynecological surgery than normal saline. Findings of Lin et al.’s study on the prevalence of shivering after caudal anesthesia in children [9], Nallam et al.’s study on shivering after spinal anesthesia during cesarean section [10], and Shakya et al.’s study [11] in comparing ketamine and ondansetron, all reported the successful effect of ondansetron in preventing shivering. Granisetron, like meperidine, has also been reported to be effective in preventing shivering after general anesthesia in laparoscopic surgery [12]. In the field of ondansetron injection for the treatment of shivering after anesthesia, Mahoori et al. [13] found that ondansetron at a dose of 8 mg and not 4 mg was as effective as meperidine. Joshi et al. [14] reported that the effectiveness and onset of action of butorphanol and tramadol was much higher than ondansetron in the treatment of shivering after spinal anesthesia. It should be noted that monitoring the patient’s body temperature does not determine the likelihood of postoperative shivering [15].
Table 1. Demographic characteristics of patients

Variables	Pethidin (n=27)	Ondansetron (n=29)	P
Gender			
Women	10	11	0.945
Men	17	18	
Age (y)	39.62±12.68	40.34±12.36	0.831
ASA I	19	23	0.44
ASA II	8	6	
Fluids (ml)	1955.55±632.35	1989.65±516.05	0.827

Table 2. Comparing the Mean±SD shivering scores before and after warming

Stages	Pethidin (n=27)	Ondansetron (n=29)	P
First shivering score	2.81±0.62	2.82±0.65	0.941
Shivering score after warming	2.59±0.79	2.44±0.68	0.47

Table 3. Comparing the Mean±SD shivering scores in different minutes after drug injection

Minutes	Pethidin (n=27)	Ondansetron (n=29)	P
1st min.	2.59±0.79	2.44±0.68	0.47
2nd min.	2.59±0.79	2.44±0.68	0.47
3rd min.	2.44±0.89	2.41±0.62	0.88
4th min.	1.92±0.99	2.31±0.71	0.10
5th min.	1.70±0.91	2.03±0.77	0.15
6th min.	1.48±0.89	1.68±0.71	0.34
7th min.	1.22±0.89	1.37±0.67	0.46
8th min.	0.96±0.80	1.27±0.70	0.12
9th min.	0.62±0.68	1.00±0.80	0.07
10th min.	0.37±0.49	0.72±0.79	0.05

Table 4. The mean time when shivering score reached zero in patients who were completely treated before the 10th minute

Variable	Pethidin n=17 (from 27)	Ondansetron n=13 (from 29)	P
Time	7.82±1.97	9.00±1.08	0.047
Figure 1. Flowchart of patient inclusion in the study

Figure 2. Comparing the mean shivering scores between the two groups.
Ethical Considerations

Compliance with ethical guidelines

This research ethically approved in ethics committee of Iran University Of Medical Sciences and registered in Iranian Registry of Clinical Trials (Code: IRCT201109224969N3).

Funding

The Research Vice Chancellor of Iran University Of Medical Sciences financially supported this study.

Authors' contributions

Conceptualization, resources, project administration, funding acquisition: Alireza Pournajafian; Methodology, formal analysis, writing – original draft: Alireza Pournajafian, Mohammadreza Ghodraty; Visualization: Mohammadreza Ghodraty; Supervision: Alireza Kholdebarin; Writing – review & editing: Alireza Kholdebarin; Validation: Faranak Rokhtabnak; Investigation: Faranak Rokhtabnak, Mohammadreza Ghodraty; Data collection: Alireza Pournajafian, Alireza Kholdebarin, Faranak Rokhtabnak.

Conflicts of interest

The authors declared no conflict of interest.

Acknowledgements

The authors are grateful for the cooperation of anesthesia residents and technicians in charge of patient care in recovery room to provide the required medications and patient monitoring.
مقایسه الکریززی و سرعت اندانترون با مپریدین در دیمانه از بیهوشی عمومی

مقدمه

هیپوترمی و لرز از عوارض نسبتاً شایع پس از عمل های جراحی است که خود می تواند به عوارض دیگری مثل افزایش نیاز و مصرف اکسیژن، افزایش فشار داخل چشمی و داخل مغزی و افزایش درد در محل عمل جراحی منجر شود. برخی از این عوارض به خصوص در بیماران ایسکمیک قلبی ممکن است به خاطر افزایش اثر واکنش خودکار پریودین و درمان بیهوشی نیاز پیدا کنند. احتمال آن است که لرز در بیماران تحت بیهوشی باعث کاهش در جریان بالینی و همچنین در جریان وین (اندانترون) باشد.

متيابنین به نظر می‌رسد در بیمارانی که به‌طور مداوم خود را هیپوتکسی کرده‌اند، می‌تواند در کنترل لرز نیز مؤثر باشد.

مهم‌ترین اثر اندانترون در بیهوشیست گیاه‌های استرانولن. این درمان اثر استراحت گیاه در بیماران تحت بیهوشی است. این اثربخشی در بیماران تحت بیهوشی نتایج به‌طور مداوم در بیماران تحت بیهوشی و پوتوسکاتدین به‌طور مشابه حاصل می‌شود. این اثر اندانترون نتایج به‌طور مداوم در بیماران تحت بیهوشی و پوتوسکاتدین به‌طور مشابه حاصل می‌شود. این اثر اندانترون نتایج به‌طور مداوم در بیماران تحت بیهوشی و پوتوسکاتدین به‌طور مشابه حاصل می‌شود. این اثر اندانترون نتایج به‌طور مداوم در بیماران تحت بیهوشی و پوتوسکاتدین به‌طور مشابه حاصل می‌شود. این اثر اندانترون نتایج به‌طور مداوم در بیماران تحت بیهوشی و پوتوسکاتدین به‌طور مشابه حاصل می‌شود. این اثر اندانترون نتایج به‌طور مداوم در بیماران تحت بیهوشی و پوتوسکاتدین به‌طور مشابه حاصل می‌شود.

مکمل‌های

هیپوتکسی و لرز از عوارض نسبتاً شایع پس از عمل جراحی است که خود می‌تواند به عوارض دیگری مثل افزایش نیاز و مصرف اکسیژن، افزایش فشار داخل چشمی و داخل مغزی و افزایش درد در محل عمل جراحی منجر شود. برخی از این عوارض به‌طور مداوم در بیماران تحت بیهوشی نیاز پیدا کنند.

می‌تواند در کنترل لرز نیز مؤثر باشد.

می‌تواند در کنترل لرز نیز مؤثر باشد.
دانشگاه علوم پزشکی ایران

مجله دانشگاه علوم پزشکی ایران

خرداد و تیر 1399، دوره 33، شماره 3

محمدرضا قدرتی و همکاران. مقایسه اثربخشی و سرعت اندانسترون با مپریدین در درمان لرز بعد از بیهوشی عمومی

روش

این تحقیق در ریکاوری اتاق عمل بیمارستان فیروزگر انجام گرفته است.

پیشینه

در جوانان و بزرگسالان، بیماران دچار لرز از بیهوشی عمومی برای لرزش و حمل و نقل و ذوب قلبی و خونریزی می‌توانند مشکل‌زدایی توانایی پیشگیری از لرز بعد از بیهوشی باشد. لازم به ذکر است که بررسی‌های قبلی نشان داده است که سطح اسکور لرز در گروه درمان گرم کردن می‌باشد ولی سرعت و قدرت لرز بین دو گروه موثر بوده و به طور معنی‌داری تفاوت داشت.

مواد و روش‌ها

این تحقیق در ریکاوری اتاق عمل بیمارستان فیروزگر وابسته به دانشکده علوم پزشکی ایران در شهر تهران صورت گرفته است. بطور علائمی، بیماران دچار لرز از بیهوشی عمومی برای لرزش و حمل و نقل و ذوب قلبی و خونریزی می‌توانند مشکل‌زدایی توانایی پیشگیری از لرز بعد از بیهوشی باشد. لازم به ذکر است که بررسی‌های قبلی نشان داده است که سطح اسکور لرز در گروه درمان گرم کردن می‌باشد ولی سرعت و قدرت لرز بین دو گروه موثر بوده و به طور معنی‌داری تفاوت داشت.

بهای محصول

نتایج حاصل از این مطالعه مخصوص کرد که گره‌های انداشترون در درمان لرز از بیهوشی مؤثر بوده و در دو گروه می‌باشد اما با دوز تکمیلی مپریدین در گروه درمان، لرز بین دو گروه موثر بوده و به طور معنی‌داری تفاوت داشت.

در انتهای تحقیق و پس از خروج موارد مشخص، 27 بیمار در گروه مپریدین و 26 بیمار در گروه انداشترون باقی ماندند.

(اصوز شماره 2)
جدول 1. مقایسه دمودی اندانسترون و پتیدین از دو جنس

متغیرها	پتیدین (تعداد=27)	اندانسترون (تعداد=29)
جنس	ماده = 16	زن = 11
سن (سال)	20/11-40/11	13/14-23/14
ASA	II	I

جدول 2. مقایسه اسکور لرز قبل و بعد از درمان اولیه (گرم کردن)

مرحله	پتیدین (تعداد=27)	اندانسترون (تعداد=29)
اسکور لرز	4/38 ± 1/27	4/29 ± 1/21
بعد از گرم کردن		

جدول 3. مقایسه اسکور لرز در مراحل مختلف پس از تزریق دارو

مراحل	پتیدین (تعداد=27)	اندانسترون (تعداد=29)
اول	4/38 ± 1/27	4/29 ± 1/21
دوم	4/22 ± 1/27	4/19 ± 1/21
سوم	4/19 ± 1/21	4/17 ± 1/21
چهارم	4/17 ± 1/21	4/15 ± 1/21
پنجم	4/15 ± 1/21	4/13 ± 1/21
ششم	4/13 ± 1/21	4/11 ± 1/21
هفتم	4/11 ± 1/21	4/8 ± 1/21
هشتم	4/8 ± 1/21	4/5 ± 1/21
نهم	4/5 ± 1/21	4/3 ± 1/21

جدول 4. مقایسه زمان صفر شدن اسکور لرز در بیماران که قبل از دو میله دارو دریافت نکرده‌اند.

متغیرها	پتیدین (تعداد=27)	اندانسترون (تعداد=29)
مطالعه	16/8 ± 1/27	13/7 ± 1/27

همان‌گونه که در جدول 1 نشان داده شد، در جنس این دو گروه نیاز به درمان از دیدگاه دمودی متفاوت است. در جنس زن، اندانسترون بیشتر از پتیدین توانسته است اسکور لرز را کاهش دهد. در سن و ASA نیز مشابه نتایج دیده شد. در مرحله اولیه، اسکور لرز در دو گروه متفاوت بود ولی بعد از گرم کردن، اسکور لرز در دو گروه به یکدیگر رویا می‌گرفته است. در مراحل بعدی از تزریق دارو، اسکور لرز در دو گروه نیز به مقدار مشابه رسیده است. در زمان صفر شدن اسکور لرز، نیز نتایج مشابهی مشاهده شد.
گزارش اثرات برای تنظیم مصرف اکستروز درمان لرز بعد از بی‌هوشی عمومی

کنتول نوزادی زیست‌پذیری بیماران اورولوژی ندارند و اندانسترون قبل از بی‌هوشی توامان اسپاینال اپیدورال در زنان کاهش دهنده، شدت و شیوع لرز پس از آن را کاهش می‌دهد.

از مطالعات دیگری که از اندانسترون برای کنترل لرز استفاده کردند و به اثرات مثبتی هم دست یافته‌اند، می‌توان به مطالعه لان و همکارانش در شیوع لرز بعد از بی‌هوشی کودال و تحقیق شاکیا و همکارانش نارنجی سترون در مقایسه با کتامین اشاره کرد که همگی منجر به ثبت اثر موفقیت در پیشگیری از لرز بوده است. دیگر داروی این دسته هیدروکسی تریپتامین، گرانی سترون در مقایسه با مپریدین تفاوتی در تأثیر بر پیشگیری از بروز لرز بعد از بی‌هوشی عومی در جراحی‌های لاپاروسکوپی نشان نداده و به همان اندازه مؤثر بوده است [2].

در جستجوی ما از مدل‌ها، تحقیق در زمینه استفاده از اندانسترون در درمان لرز پس از بی‌هوشی تانکس همکاری کرد. کنترل اندانسترون با دوز 8 میلی‌گرم و 4 میلی‌گرم به‌طور مشابه در جراحی‌های لاپاروسکوپی در مورد همان اثر در کنترل لرز پس از بی‌هوشی عمومی بنیادی موفقیت روبرورم‌الدین.

از مطالعات دیگری که از اندانسترون برای پیشگیری از لرز استفاده کرده و به اثرات مثبتی هم دست یافته‌اند، می‌توان به مطالعه امیری و همکارانش در شیوع لرز بعد از بی‌هوشی عمومی نزد زنان مبتلا به سرطان و اندانسترون قبل از آن را کاهش می‌دهند.

کنترل نوزادی زیست‌پذیری بیماران اورولوژی ندارند و اندانسترون قبل از بی‌هوشی توامان اسپاینال اپیدورال در زنان کاهش دهنده، شدت و شیوع لرز پس از آن را کاهش می‌دهد.
بیماران از نظر وجود فاکتورهای مؤثر بر مقدار شانه، میزان مصرفی و نوع مصرفی، تحقیق کننده این مطالعه نیز از دو گروه مرکزی استفاده کرده است. در این گروه برای حرارت و حرارت مصرفی، از دو گروه ترکیبی برای حرارت و حرارت مصرفی از دو گروه مصرفی برای حرارت و حرارت مصرفی از دو گروگاه علوم پزشکی ایران—صحنه 2—محرم قدرتی و همکاران. مقایسه اثربخشی و سرعت اندانسترون با مپریدین در درمان لرز بعد از بی‌هوشی عمومی
نتیجه‌گیری: گرچه اندانسترون در درمان لرز بعد از بیهوشی عمومی مؤثر است، ولی قدرت و سرعت اثر آن در مقایسه با مپریدین ضعیفتر است.

ملاحظات اخلاقی

این پژوهش در کمیته اخلاق دانشگاه علوم پزشکی ایران تأیید و در سامانه کارآزمایی بالینی ایران با شماره ثبت شده است.

IRCT201109224969N3

حامی مالی

حامی مالی این تحقیق، معاونت پژوهشی دانشگاه علوم پزشکی ایران بوده است.

مشارکت‌کنندگان

دکتر محمدرضا قدرتی: تحلیل و تفسیر داده‌های تحقیق، کنترل نهایی مقاله.

دکتر فرانک رختاب‌نک: نگارش پروپوزال، جمع‌آوری نمونه.

دکتر علیرضا خلدبرین: تهیه پیش‌نویس مقاله و اصلاح کرده آن.

دارک علیرضا پورنجفیان: طراحی مطالعه و تحلیل داده‌ها، تکمیل پروپوزال، جمع‌آوری نمونه، تصحیح نهایی نسخه‌های آماده شده برای چاپ.

تماها متلاع

عضو منافع مورد هر یک از همکاران صافی نبست.

تشکر و قدردانی

مملکت موردنظر در مورد هر یک از همکاران صافی نبست.

محمدرضا قدرتی و همکاران: مقایسه اثربخشی و سرعت اندانسترون با مپریدین در درمان لرز بعد از بیهوشی عمومی
References

[1] Daniel I. Sessler: Temperature regulation and monitoring. In: Ronald D Miller, Anesthesia, 7th ed. 2010, 1543-4. Churchill Livingstone. USA.

[2] Piper SN, Röhm KD, Maleck WH, Wolfgang H, Fent MT, Suttner SW, et al. Dolasetron for preventing post anesthetic shivering. Anesth & Analg. 2002; 94(1):106-11. [DOI:10.1213/00000539-200201000-00020]

[3] Powell RM, Buggy DJ. Ondansetron given before induction of anesthesia reduces shivering after general anesthesia. Anesth & Analg. 2000; 90(6):1423-7. [DOI:10.1097/00000539-200006000-00032] [PMID]

[4] Kelsaka E , Baris S, Karakaya D, Sarıhasan B. Comparison of ondansetron and meperidine for prevention of shivering in patients undergoing spinal anesthesia. Reg Anesth Pain Med. 2006; 31(1):40-5. [DOI:10.1097/00115550-200601000-00008] [PMID] [PMCID]

[5] Komatsu R, Orhan-Sungur M, In J, Podranski T, Bouillon T, Lauber R, et al. Ondansetron does not reduce the shivering threshold in the healthy volunteers. Br J Anesth. 2006; 96(6):732-7. [DOI:10.1093/bja/ael101] [PMID] [PMCID]

[6] Sagir O, Gülhas N, Toprak H, Yucel A, Begec Z, Ersoy O. Control of shivering during regional anesthesia: Prophylactic Ketamine and granisetron. Acta Anaesthesiol Scand. 2007; 51(1):44-9. [DOI:10.1111/j.1399-6576.2006.01196.x] [PMID]

[7] Browning RM, Fellingham WH, O’Loughlin EJ, Brown NA, Paech MJ. Prophylactic ondansetron does not prevent shivering or decrease shivering severity during cesarean delivery under combined spinal epidural anesthesia: A randomized trial. Reg Anesth Pain Med. 2013; 38(1):39-43. [DOI:10.1097/AAP.0b013e31827049c6] [PMID]

[8] Entezariasl M, Izadzadehfar K, Mohammadian A, Khoshbaten M. Ondansetron and meperidine prevent postoperative shivering after general anesthesia. Middle East J Anaesthesiol. 2011; 21(1):67-70.

[9] Lin H, Wang J, Jin Z, Hu Y, Huang W. Preventative effect of ondansetron on postanesthesia shivering in children undergoing caudal anesthesia: A randomized double-blinded clinical trial. Pediatr Res. 2016; 79(1-1):96-9. [DOI:10.1038/pr.2015.185] [PMID]

[10] Nallam SR , Cherukuru K , Sateesh G. Efficacy of intravenous ondansetron for prevention of postspinal shivering during lower segment cesarean section: A double-blinded randomized trial. Anesth Essays Res. 2017; 11(2):508-13. [DOI:10.4103/aer.AER_26_17] [PMID] [PMCID]

[11] Shakya S, Chaturvedi A, Sah BP. Prophylactic low dose ketamine and ondansetron for prevention of shivering during spinal anaesthesia. J Anaesthesiol Clin Pharmacol. 2010; 26:465-9.

[12] Iqbal A, Ahmed A, Rudra A, Wankhede RG, Sengupta S, Das T, et al. Prophylactic granisetron vs pethidine for the prevention of postoperative shivering: A randomized control trial. Indian J Anaesth. 2009; 53(3):330-4. [PMID] [PMCID]

[13] Mahoori A, Noroozinia H, Hasani E, Soltanahmadi M. Comparison of ondansetron and meperidine for treatment of postoperative shivering: A randomized controlled clinical trial. Iran Red Crescent Med J. 2014; 16(8):e13079. [DOI:10.5812/ircmj.13079] [PMID] [PMCID]

[14] Joshi SS, Adit A, Arun G, et al. Comparison of intravenous butorphanol, ondansetron and tramadol for control of shivering during regional anesthesia: A prospective, randomized double-blind study. Anesth Pain Intensive Care. 2013; 17(1):33-9. http://www.apicareonline.com/wp-content/uploads/2013/05/9-Comparison-of-intravenous-butorphanol.pdf

[15] Crossley AW, Mahajan RP. The intensity of postoperative shivering is unrelated to axillary temperature. Anaesthesia. 1994; 49(3):205-7. [DOI:10.1111/j.1365-2044.1994.tb03422.x] [PMID] [PMCID]