How Do Microbial Pathogens Make CENs?

Kaustuv Sanyal*

Molecular Mycology Laboratory, Molecular Biology & Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India

What Is the Link between Drug Resistance and Aneuploidy in Microbial Pathogens?

In a variety of pathogens, drug resistance and aneuploidy are intimately associated. Aneuploidy is believed to alter the dosage of certain genes that can impart drug resistance. Generation of a new chromosome by duplication of chromosome segments followed by telomere addition in a pathogenic yeast *Candida glabrata* [1] and isochromosome formation by breakage of chromosome 5 at the centromere followed by joining two identical arms of chromosome 5 in an opportunistic yeast *Candida albicans* [2] have been shown to occur frequently in drug-resistant isolates. Phaconazole-resistant strains of another pathogenic fungus, *Cryptococcus neoformans*, have been shown to be disomic for certain chromosomes [3]. Experimental evidence suggests that acquisition of chromosomes by the plant pathogenic fungus *Fusarium* can convert a non-pathogenic strain to a pathogenic one [4]. Aneuploidy has been shown to be the cause of drug resistance in the protozoan parasite *Leishmania* as well [5].

Improper chromosome segregation is one route to aneuploidy. The centromere–kinetochore complex facilitates interaction between a chromosome and the spindle microtubules to ensure equal segregation of chromosomes from a mother to daughter cells. In addition to serving as sites of protein assembly to form kinetochores, centromeres also hold two sister chromatids together until the onset of anaphase by balancing opposing forces acting on them—a pole-ward (outward) force generated by spindle microtubules depolymerizing toward opposite poles, and a cohesive (inward) force between two sister chromatids. Paradoxically, in spite of performing the conserved function of chromosome segregation, centromere (CEN) DNA sequence and organization of CEN DNA elements vary widely among eukaryotes. In contrast, several kinetochore proteins are evolutionarily conserved, although sometimes this conservation is restricted to a group of organisms. For example, the Dam1 complex, an outer kinetochore protein complex, is fungus specific and is essential for viability in fungi [6,7]. Thus, this complex may be a suitable target for development of anti-fungal drugs. However, a CEN-specific histone H3 variant of the CENP-A/Cse4 family is found to be universally associated with the formation of specialized and unique chromatin at all functional CENs despite seemingly diverse CEN DNA sequences.

What Are the Different Types of CENs in Eukaryotic Pathogens?

Some organisms have holocentric chromosomes where the CEN is diffused and CEN elements are distributed throughout a chromosome. However, most organisms have monocentric chromosomes where a CEN is localized to a single region on a chromosome. Monocentric CENs are of three types: a) “point” CENs in which centromere function is retained in a short (<400 bp) stretch of DNA with highly conserved protein binding motifs and often a single CENP-A-containing nucleosome, b) “small regional” CENs with CENP-A-containing chromatin formed on a stretch of DNA (<40 kb) that is longer than the point centromere but often lacks any protein binding sequence motifs or conserved pericentric repeats, and c) “large regional” CENs that span a long region (>40 kb–a few Mbs) usually rich in repeats and often CENP-A-containing nucleosomes are interspersed with H3-containing nucleosomes. Formation of a kinetochore on most point CENs initiates with binding of a DNA sequence-specific kinetochore protein [8]. In contrast, several lines of evidence suggest that epigenetic factors, not the DNA sequence alone, also contribute to centromere identity in organisms carrying small or large regional centromeres [8–10].

How Are Centromeres Organized in Fungal Pathogens?

The pathogenic fungi show wide diversity in CEN structure (Figure 1; reviewed in [11]). *C. glabrata*, a human pathogenic ascomycetous yeast, has short point CENs. CENs in *C. glabrata*, like the well-studied CENs of baker’s yeast *Saccharomyces cerevisiae*, have three CEN DNA elements (CDEs). CDEI (8 bp) and CDEIII (18 bp) are well conserved in all the chromosomes, while CDEII (77–79 bp) is not conserved in sequence but is highly AT-rich (83%–93%) [12]. A circular mini-chromosome containing a short CEN sequence (<160 bp total, inclusive of CDEs) and a replication origin/autonomously replicating sequence (ARS) can stably propagate through many generations. Both CDEI and CDEIII are required for proper function of a centromere. CDEIII has the crucial CCG sequence and certain mutations in CDEIII result in a complete loss of centromere function. *Candida maltosa*, a hemiascomycetous yeast that is phylogenetically closely related to other human pathogenic *Candida* species of the CTG clade such as *C. albicans*, is believed to be non-pathogenic to humans but has been reported to be virulent occasionally when tested in the mouse model [13]. Although a 325-bp *C. maltosa* CEN region with a conserved CDEI and an AT-rich CDEII sequence can provide mitotic stability to an otherwise unstable ARS plasmid, the conserved CDEIII sequence, frequently found in point centromeres, is absent [14,15].

C. albicans, the most common fungal pathogen isolated from patients, and *Candida dubliniensis*, a less frequently observed but closely related species, have small regional CENs. *C. albicans* CENs

Citation: Sanyal K (2012) How Do Microbial Pathogens Make CENs? PLoS Pathog 8(2): e1002463. doi:10.1371/journal.ppat.1002463

Editor: Joseph Heitman, Duke University Medical Center, United States of America

Published: February 9, 2012

Copyright: © 2012 Kaustuv Sanyal. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by various funding agencies (CSIR, DST and DBT) of the Government of India. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: sanyal@jnacsar.ac.in
were identified as binding sites of Cse4, a CENP-A homolog [16]. Each of the eight CEs has a 3–5-kb CENP-A-rich sequence present in a 4–18-kb ORF-free region [17]. Only chromosome 5 has long inverted pericentric repeats. The AT-richness at the CEN region is similar to the overall AT-content of the genome. CEN formation in this organism requires a pre-existing epigenetic memory, and thus an exogenously introduced CEN/ARS plasmid is mitotically unstable in C. albicans [18]. Strikingly, when a native centromere is replaced by a transcribed, selectable gene, the acenric chromosome often is stabilized by forming a new centromere very efficiently elsewhere on the chromosome on a region with no sequence homology to the native centromere [19]. Although all the features of CdCEs are very similar to those of CaCEs, CEN DNA sequences in these two organisms were found to be rapidly evolving. The CEN sequence of another pathogenic yeast, Candida lusitaniae, has been identified by bioinformatic analysis but not experimentally verified [21]. A GC-poor trough approximately 4 kb in length found in every chromosome is the putative centromere in this organism.

A basidiomycetous fungus, C. neoformans, which causes fungal meningitis in humans, has been predicted to have long regional centromeres. Transposon (Tcn5, Tcn6)-rich sequences, located within 40–110 ORF-free regions that are present once per chromosome, are the presumptive CEs [22]. Moreover, measurement of meiotic recombination rates by random spore analysis also indicates that URA5 and ADE2 are CEN-linked in agreement with the physical map [23]. These CEs are similar to those of the opportunistic pathogen Aspergillus nidulans, an ascomycete [24].

How Are Centromeres Organized in Ancient Eukaryotic Pathogens, the Protozoan Parasites?

Topoisomerase II (Topo-II) has been implicated in chromosome segregation in a range of organisms from yeast to mammals [25,26,27]. After DNA replication in S phase, sister chromatids remain attached together partly by strand catenation at centromeres as cells enter mitosis. During sister chromatid separation, Topo-II decatenates by creating double-strand DNA breaks followed by passage of uncut DNA through breaks and ligation to repair the breaks. Topo-II has even been implicated to be an epigenetic marker for kinetochore assembly [28]. Etoposide, a Topo-II inhibitor, blocks the ligation step and results in DNA breaks at Topo-II binding sites [29]. In the malaria parasite Plasmodium falciparum, an apicomplexan, an etoposide-mediated Topo-II cleavage site was mapped to a single 10-kb region in each of the 14 chromosomes [30]. Further analysis shows that, with the exception of chromosome 10, this site corresponds to a 6–12-kb ORF-free region with a highly AT-rich region of 2.3–2.5 kb that contains a repetitive region and a core region. Both the core and the repeat region are important for centromere function. Various repetitive DNA elements present in these regions do not show any interchromosomal conservation, but nucleotide content (AT-richness) and the size of these putative CEs are strictly conserved. Another human malaria parasite, Plasmodium vivax, has AT-rich syntenic regions in three chromosomes [30]. Thus, both these Plasmodium species have centromere properties similar to the small regional centromeres found in C. albicans and C. dubliniensis (Figure 1). Based on the syntenic locations of PICEs, centromeres were identified in genetically tractable Plasmodium berghei, which causes malaria in rodents [31]. A 1.2-kb highly AT-rich (96%) sequence found in PbCEN5 also contains a non-repetitive core and a repetitive region. Centromere function was formally demonstrated by cloning this region in a plasmid. The PbCEN5 plasmid was evenly segregated and was stably maintained at low copy number in 90% of the parasites 21 days post-transfection in the absence of drug selection for the plasmid. A linear Plasmodium artificial chromosome (L-PAC), constructed by adding telomeres to the CEN plasmid, was also stably maintained like a natural chromosome. L-PAC exhibited a 10- to 100-fold increase in transfection efficiency as compared to the circular CEN plasmid. In another apicomplexan, Toxoplasma gondii, centromeres were identified as binding sites of the centromeric histone CENP-A [32]. One CENP-A binding region per chromosome was identified in 12 of the 14 chromosomes. CENP-A binding regions were restricted to 16±3.4 kb sequences that are present in 17±5.6 kb regions largely devoid of ORFs. Etoposide-mediated cleavage in these regions further confirmed centromere identity. Again, no obvious sequence bias or conserved sequence elements were detected, suggesting Toxoplasma centromeres belong to the class of short regional centromere (Figure 1). Centromeres have been identified in two kinetoplastid protozoans, Trypanosoma cruzi and...
Trypanosoma brucei, the causative agents of Chagas disease in Latin America and of sleeping sickness in humans and nagana in cattle in sub-Saharan Africa, respectively (Figure 1). By telomere-mediated chromosome truncation, a 16-kb GC-rich transcriptional “strand switch” domain was identified as the centromere in T. cruzi [33]. EZH2 enrichment analysis confirmed that a Topo-II binding site localizes to this single locus on T. cruzi chromosome I. This 16-kb region has degenerate retroelements (VIPER/SIRE) and non-LTR transposons but does not contain any satellite repeats. This region is also flanked by transcriptionally quiescent polycistronic satellite units. T. brucei also has a similar 11-kb GC-rich domain in a syntenic region between directionally oriented gene clusters that contain degenerate retroelements (DIRE) and a 5.5-kb AT-rich stretch with 58-bp degenerate repeats [34].

What Are the Factors That Determine CEN Identity?

Since centromeres in certain pathogenic budding yeasts form in a DNA sequence-dependent manner while in most other microbial pathogens centromeres form in a sequence-independent manner, a universal mechanism determining centromere identity seems to be improbable. The best example of DNA sequence-independent assembly is the formation of neocentromeres on non-native loci with no apparent sequence similarity when a native CEN is deleted or inactivated. Centromeres are found to be clustered and occupy a distinct locus at the nuclear periphery in most yeasts, including C. albicans [17] and C. dubliniensis [20], as well as in the protozoan parasite T. gondii [32]. A three-dimensional higher order chromatin structure (clustered centromeres) that occupies a favorable nuclear space (such as the one with high CENP-A concentration) may be the determining factor for CEN identity in these organisms. CENs have been shown to replicate earliest in S phase in C. albicans [35], which indicates that replication timing can be a determinant of CEN identity. Certain post-translational modifications of canonical histone H3 can also support CEN functional [38]. Disruption of RNAi causes defects in chromosome segregation in this organism [39]. Strikingly, the related species T. cruzi does not have RNAi machinery. Thus, a variety of factors, often species specific, may contribute to formation of functional CENs, but elucidation of a specific mechanism that determines CEN identity in most pathogenic eukaryotes is a puzzle to be solved. Understanding centromere-kinetochore structure-function of these pathogens can help us develop specific drugs with fewer side effects to combat microbial infection.

Acknowledgments

Bahubrahman Roy helped me to write this review. I thank Mary Baum for critical reading of the manuscript. I am also thankful to other members of my laboratory for insightful discussion.

References

1. Polakova S, Blame C, Zarate JÁ, Mentel M, Jorck-Ramberg D, et al. (2009) Formation of new centromeres as a virulence mechanism in yeast Candida glabrata. Proc Natl Acad Sci U S A 106: 2608–2609.
2. Selmecki A, Forche A, Berman J (2006) Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science 313: 367–370.
3. Sionov E, Lee H, Chang YG, Kwon-Chung KJ (2010) Cryptococcus neoformans overcomes stress of azole drugs by formation of dimorphic yeast. Cryptococcus neoformans var. grubii C-9-18. Eukaryot Cell 9: 1137–1147.
4. Ma Li-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, et al. (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fuso rium. Nature 464: 367–373.
5. Bhatnagar JS, Legare D, Raymond F, Ouisseau A, Boivert S, et al. (2000) Modulation of gene expression in drug resistant Leishmania is associated with gene amplification, gene deletion and chromosome aneuploidy. Genome Biol 9: R15.
6. Thakur J, Sanyal K (2011) The essentiality of the fungus-specific Dam1 complex is correlated with a one-kinetochore-one-microtubule interaction present throughout the cell cycle, independent of the nature of a centromere. Eukaryot Cell 10: 1295–1305.
7. Burrack L S, Applen S E, Berman J (2011) The requirement for the Dam1 complex is dependent upon the number of kinetochore proteins and microtubules. Curr Biol 21: 889–896.
8. Cleveland DW, Mao Y, Sullivan KF (2003) Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112: 407–421.
9. Elswell K (2007) Epigenetic control of centromere behavior. Annu Rev Genet 41: 65–81.
10. Black BE, Cleveland DW (2011) Epigenetic centromere propagation and the nature of CENP-A nucleosomes. Cell 144: 471–479.
11. Roy B, Sanyal K (2011) Diversity in requirement of genetic and epigenetic factors for centromere function in fungi. Eukaryot Cell 10: 1384–1395.
12. Kitada K, Yamaguchi E, Hamada K, Arisawa M (1997) Structural analysis of a centromere-like region in a syntenic region between directionally oriented gene clusters that contain degenerate retroelements (DIRE) and a 5.5-kb AT-rich stretch with 58-bp degenerate repeats [34].
cycle- and species-specific manner and is required for proper centromere/kinetochore structure. J Cell Biol 134: 1097–1107.

28. Fukagawa T (2004) Centromere DNA, proteins and kinetochore assembly in vertebrate cells. Chromosome Res 12: 357–367.

29. Chen GL, Yang L, Rowe TC, Halligan BD, Tewey KM, et al. (1984) Nonintercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 259: 13560–13566.

30. Kelly JM, McRobert L, Baker DA (2006) Evidence on the chromosomal location of centromeric DNA in Plasmodium falciparum from etoposide-mediated topoisomerase-II cleavage. Proc Natl Acad Sci U S A 103: 6706–6711.

31. Iwanaga S, Khan SM, Kaneko I, Christodoulou Z, Newbold C, et al. (2010) Functional identification of the Plasmodium centromere and generation of a Plasmodium artificial chromosome. Cell Host Microbe 7: 245–255.

32. Brooks CF, Francia ME, Gissot M, Croken MM, Kim K, et al. (2011) Toxoplasma gondii sequesters centromeres to a specific nuclear region throughout the cell cycle. Proc Natl Acad Sci U S A 108: 243–253.

33. Obado S, Bot C, Nilsson D, Anderson B, Kelly J (2007) Repetitive DNA is associated with centromeric domains in Trypanosoma brucei but not Trypanosoma cruzi. Genome Biol 8: R37.

34. Obado SO, Bot C, Echeverry MC, Bayona JC, Alvarez VE, et al. (2010) Centromere-associated topoisomerase activity in bloodstream form Trypanosoma brucei. Nucleic Acids Res 39: 1023–1033.

35. Koren A, Tsai H-J, Tirosil I, Burack LS, Barkai N, et al. (2010) Epigenetically-inherited centromere and neocentromere DNA replicates earliest in S-phase. PLoS Genet 6: e1001068. doi:10.1371/journal.pgen.1001068.

36. Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet 9: 923–937.

37. Li F, Sonbachner L, Kyes SA, Epp C, Deitsch KW (2008) Nuclear non-coding RNAs are transcribed from the centromeres of Plasmodium falciparum and are associated with centromeric chromatin. J Biol Chem 283: 5692–5696.

38. Ngo H, Tschudi C, Gull K, Ullu E (1998) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci U S A 95: 14687–14692.

39. Shi H, Djikeng A, Tschudi C, Ullu E (2004) Argonaute protein in the early divergent eukaryote Trypanosoma brucei: control of small interfering RNA accumulation and retroposon transcript abundance. Mol Cell Biol 24: 420–427.