Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Coronavirus disease 2019 (Covid-19) presenting as purulent fulminant myopericarditis and cardiac tamponade: A case report and literature review

Akshay Khatri, MD*, Frances Wallach, MD
Division of Infectious Diseases, Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra / Northwell Health, 400 Community Drive, Manhasset, NY 11030, USA

ARTICLE INFO

Article History:
Received 25 April 2020
Revised 3 June 2020
Accepted 5 June 2020
Available online 9 June 2020

Abstract

The vast majority of patients in the ongoing coronavirus Disease 2019 (Covid-19) pandemic primarily present with severe respiratory illness. We report a Covid-19 patient who presented with findings of acute coronary syndrome and was found to have purulent fulminant myopericarditis and cardiac tamponade. We compare our case to the previously reported instances of Covid-19-associated myocarditis. Through review of the available literature, we also highlight the potential mechanisms of cardiac injury in Covid-19. We hope to increase awareness amongst clinicians about this unusual presentation of Covid-19.

© 2020 Elsevier Inc. All rights reserved.

Keywords:
Coronavirus
Covid-19
SARS-Cov-2
Myopericarditis
Myocarditis
Tamponade

Introduction

In December 2019, the World Health Organization (WHO) was notified about multiple cases of pneumonia of unknown etiology originating in Wuhan city, Hubei province, China. The novel virus, named severe-acute-respiratory-syndrome-coronavirus-2 (SARS-CoV-2) was isolated on January 7th, 2020.1 The acute respiratory disease, renamed Coronavirus Disease 2019 (Covid-19), was declared a pandemic on March 11th, 2020.2

SARS-CoV-2 has been seen to produce primarily respiratory symptoms, with evidence of ground-glass opacities on chest imaging.3 However, the cardiovascular effects of SARS-CoV-2 have not been fully characterized.4

We report a patient with Covid-19 who presented with findings of acute coronary syndrome and was found to have purulent fulminant myopericarditis and cardiac tamponade, with subsequent circulatory shock.

Case report

A 50-year-old gentleman presented to an outside hospital with fevers, chills, generalized malaise, non-productive cough, dyspnea for 3–4 days and an episode of near-syncope on the day of presentation. In the emergency department, he was intubated for acute hypoxemic respiratory failure and SARS-CoV-2 testing was positive. ST-segment changes were noted on the electrocardiogram (ECG), so he was transferred to our hospital for acute coronary syndrome (ACS) management. Past history was significant for hypertension and ischemic stroke. He was born in Honduras and immigrated to the United States at age twelve. There was no documented history of recent travel or sick contacts.

Admission labs were significant for leukocytosis with lymphopenia [white blood cell count 19,290/μL, absolute lymphocyte count 850/μL]; sodium 115 mEq/L; chloride 75 mEq/L; bicarbonate 13 mEq/L; anion gap 27; acute kidney injury (AKI) [blood urea nitrogen 44 mg/dL, creatinine 3.56 mg/dL]; elevated transaminases [aspartate transaminase (AST) 70 U/L, alanine transaminase (ALT) 48 U/L]; lactate dehydrogenase (LDH) 3332 U/L; arterial lactate 4 mmol/L. Arterial blood gas analysis revealed pH 7.21, pCO2 67 mm Hg, pO2 213 mm Hg on mechanical ventilator support (FiO2 80%, PEEP 10 cm H2O). Reverse-transcriptase-polymerase-chain-reaction test of a nasopharyngeal specimen reconfirmed SARS-CoV-2 infection.

Chest radiography revealed diffuse bilateral patchy opacities (Fig. 1). ECG showed sinus tachycardia, ST-elevation in leads II, III, aVF and ST-depression in I, aVL. Cardiac markers were elevated: high sensitivity troponin 544 ng/L, creatine kinase 2135 U/L, creatine kinase myocardial band 54.3 ng/mL. Other inflammatory markers

References:
1. WHO. (2020). Coronavirus Disease 2019 (COVID-19) Situation Report - 134. Retrieved from https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200613-covid-19-sitrep-134.pdf
2. WHO. (2020). Coronavirus Disease 2019 (COVID-19) Situation Report - 13. Retrieved from https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200313-covid-19-sitrep-13-508.pdf
3. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., et al. (2020). The epidemiology of COVID-19 from evidence of early transmission in Wuhan, China: A modelling study. The Lancet, 395(10223), 470–478.
4. Wu Z., McGoogan JM. (2020). Characteristics of and important lessons from the COVID-19 outbreak in China: Summary of a report of 72 314 cases from the Chinese Centre for Disease Control and Prevention. The Lancet, 395(10223), 699–707.
were also significantly elevated: erythrocyte sedimentation rate was 46 mm/hr, d-dimer 1068 ng/mL d-dimer units, procalcitonin 8.16 ng/mL, C-reactive protein 11.85 mg/dL, ferritin 66,165 ng/mL. T-cell subset analysis showed absolute CD4+ count 285/μL (26%) and CD8+ count 114/μL (10%).

On arrival, he was immediately taken to the cardiac catheterization laboratory (CCL). Coronary angiography revealed right dominant circulation with normal coronary vessels. Transthoracic echocardiogram (TTE) showed severe global left ventricular systolic dysfunction, right ventricular (RV) enlargement, RV systolic dysfunction. A moderate-to-large pericardial effusion was noted anterior to the RV with organizing material (suggesting an inflammatory process). There was evidence of intermittent RV impaired filling and collapse, suggestive of tamponade physiology (Fig. 2).

Fig. 1. Portable chest radiograph (Antero-posterior view) showing presence of diffuse bilateral patchy opacities within lung parenchyma. The cardiac silhouette appears normal in size. An endotracheal tube is visualized (blue arrow), with the tip above the carina. An enteric tube is noted (yellow arrow), with its distal end coursing below the diaphragm. A femoral approach Swan-Ganz catheter is noted (green arrow), with its tip overlaying the right pulmonary artery. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

Fig. 2. Echocardiographic image (subcostal view) showing large pericardial effusion (red arrow) producing cardiac tamponade and collapse of right ventricle (blue arrow). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
Table 1

Age/Sex	Comorbidities	Travel History	Symptoms	Radiographic findings	Initial cell counts ([/μL])	Initial Laboratory abnormalities	Initial Inflammatory markers	Initial Cardiac markers	Electrocardiogram	Echocardiography	Cardiac catheterization findings	Diagnosis
Case 1	50/M	HTN CVA	Unknown	Ground-glass patchy opacities	WBC: 19,290	Increased ALT	Elevated lactate	Not documented	1 Sinus tachycardia	2 ST elevation in II, III, aVF	NP-PCR	
Case 2	63/M	Prior smoker Allergic cough	Hubei Province, China	No acute abnormalities	Not documented	1. tropl 11.37 g/L	2. Myoglobin 390.97 ng/ml	3. Ferritin 967mcg/l	1. hsT 544 ng/L	2. CK-MB 54.3 ng/ml	Not performed	
Case 3	64/F	HTN Hyperlipidemia	Not reported	No acute abnormalities	WBC: 8,900	1. hsT 0.24 ng/mL	2. CRP 112.9 ng/ml	3. Ferritin 22,600pg/ml	1. Troponin T	2. CK-MB 54.3 ng/ml	NP-PCR	
Case 4	53/F	None	Persistent chest pressure	Elevated lactate	ALC: 950	1. Increased ALT	2. Low creatinine	Ferritin 967mcg/l	1. Troponin T	2. CK-MB 54.3 ng/ml	Not performed	
Case 5	37/M	None	1. Fever	1. hsT	Not documented	1. Increased ALT	2. Hyperkalemia	Not documented	1 Sinus tachycardia	2. ST elevation in II, III, aVF	NP-PCR	
Case 6	47/F	Previous myocardiitis	Unknown	1. Increased ALT	Not documented	1. hsT	2. Troponin T	Not documented	Not documented	NP-PCR		

(continued)
Pericardiocentesis was performed and 600cc of serosanguinous fluid was drained, with the drain left in place. Pericardial fluid studies revealed 69 nucleated cells (6% granulocytes, 31% lymphocytes, 48% monocytes, 11% mesothelial cells, 4% reactive mesothelial cells). TTE performed post-pericardiocentesis revealed moderate improvement in hemodynamic parameters.

The patient was transferred to the intensive care unit (ICU) from the CCL. The working diagnosis was SARS-Cov-2 infection causing purulent myopericarditis, leading to cardiogenic and distributive shock, with multi-organ failure (transaminitis, lactic acidosis, metabolic acidosis and acute kidney injury) and possibility of bacterial co-infection. He was started on intravenous (IV) inotrope (dobutamine), IV vasopressors (vasopressin, norepinephrine), enteral hydroxychloroquine (400 mg every 12 h on day one, followed by 200 mg every 12 h for 8 doses), IV azithromycin, IV cefepime and IV vancomycin.

He was evaluated by the Infectious Diseases service. Due to multi-organ failure (vasopressor support, elevated transaminases) and suspicion of acute kidney injury, he was not initiated due to evidence of gastro-intestinal bleeding and multi-organ failure.

Intravenous immunoglobulin (IVIG) was started (20 mg/kg/dose) on hospital day two, with increasing pressor requirements. He was noted to have melena on hospital day three, with further increasing laboratory parameters (peak AST 2567 U/L; peak ALT 997 U/L; peak creatinine 4.37 mg/dL and peak lactate 13.3 mmol/L) and lymphocyte counts [CD4+ 148/μL (18%); CD8+ 48/μL (6%)]. He succumbed to multi-organ failure on hospital day four, despite maximal vasopressor support and supportive care.

Discussion

SARS-Cov-2 exists in a different clade from other β-Coronaviruses – severe-acute-respiratory-syndrome-coronavirus (SARS-Cov) and Middle-East-respiratory-syndrome-coronavirus (MERS-Cov). Both SARS-Cov and MERS-Cov have been associated with myocardial injury, myocarditis, and heart failure. Additionally, comorbidities like diabetes mellitus (DM) and hypertension in these patients were associated with increased mortality.

A recent meta-analysis found that the prevalence of hypertension, cardiac/cerebrovascular disease and DM in Covid-19 patients was 17.1%, 16.4%, and 9.7%, respectively. Patients needing ICU admission were also more likely to have these comorbidities. Covid-19 patients with these comorbidities also had higher mortality rates. A Spectrum of cardiac complications [myocarditis, heart failure, cardiac arrhythmias, myocardial infarction (MI)] are being increasingly reported in Covid-19 patients. A higher incidence of complications [acute respiratory distress syndrome (ARDS), malignant arrhythmias, AKI] and higher mortality rates were seen in Covid-19 patients with myocardial injury.

There have been few well-described case reports of SARS-Cov-2 causing focal myocardial and/or pericardial involvement. (Table 1). Like our patient, they had elevated cardiac markers, with ECG changes and signs of ventricular dysfunction. Two patients had predominant symptoms of ACS without viral symptoms – this correlates with reports of Covid-19 presenting with predominantly cardiovascular symptoms in some patients. Despite their presentation, no significant findings were noted in those who underwent cardiac catheterization. Different treatment regimens were instituted – however, apart from our case, one other patient expired. Our patient, like other cases, met several criteria for fulminant myocarditis. These include acuity of onset; premonitory symptoms of viral infection; rapidly developing severe hemodynamic dysfunction; evidence of severe myocardial injury & diffuse decreased ventricular wall movement; and symptoms of injury to other organs. The reported mortality rate of this rare syndrome is between 40–70%. The current management of viral myocarditis involves use of immunomodulatory therapy (steroids, IVIG); supportive therapy (including mechanical ventilation); and circulatory assist devices (Impella heart pump, intra-aortic balloon pump) to reduced wall stress and inflammation. The role of ECMO and continuous renal replacement therapy (CRRT) in Covid-19 is unclear. It may help remove circulating cytokines and increase blood oxygen saturation, reducing the immune response and further reducing myocardial damage. ECMO therapy has been useful in some Covid-19 patients with cardiogenic shock, but more data is needed. It is unclear at this time what factors contribute to increased mortality in Covid-19 patients with myocarditis. Worse outcomes have been noted in those with co-infections. In one case, worsening of certain hemodynamic parameters (such as pulmonary artery systolic pressure) indicate functional decline and may help as markers of mortality.
The exact mechanism of SARS-CoV-2–induced cardiac injury is not yet known. There are different theories:

(a) Direct injury by viral replication. SARS-CoV has been detected in the heart on autopsy.23 One study documented the concurrent presence of a high SARS-CoV-2 viral load in patients with fulminant myocarditis.24 However, autopsies of Covid-19 patients reveal mononuclear cardiac infiltrates without viral inclusions.25

(b) Exaggerated and dysregulated immune response (“cytokine storm”).26 SARS-CoV-2 infection in the differential of patients presenting with acute coronary syndromes and need to differentiate from Covid-19. There were no other identified causes of myopericarditis (previously unreported in the literature).27

(c) Hypoxia (due to SARS-CoV-2-induced ARDS) can lead to inflammation, cell injury and subsequent cardiac damage.28 It can also lead to increased intracellular calcium deposition and apoptosis.29

(d) Systemic inflammation potentiating localized inflammation in advanced atherosclerotic coronary vessels has been seen in other viral illnesses.30 Lymphopenia31 has been noted in Covid-19 patients and has previously been linked to the development of atherosclerosis.32

(e) Direct myocardial involvement mediated via Angiotensin-converting-enzyme-2 (ACE2). ACE2 is an endothelium-bound enzyme that converts angiotensin I to II to inactive metabolites.33 Its expression was necessary for pulmonary infection by SARS-CoV.34 In murine models, SARS-CoV precipitated an ACE2-dependent MI after pulmonary infection.35

Our patient was diagnosed with a purulent myopericarditis and tamponade, causing circulatory shock with fatal multi-organ failure. His clinical picture, radiographic and laboratory findings fit the diagnosis of Covid-19. There were no other identified causes of myopericarditis. The rapidity of disease progression, combined with findings of purulent myopericarditis (previously unreported in the literature) contributes to the unique presentation of our case.

Conclusion

In the current pandemic scenario, clinicians must keep SARS-CoV-2 infection in the differential of patients presenting with acute coronary syndromes and findings of purulent myopericarditis, cardiac tamponade and circulatory shock. Further research is needed to define the optimal management of such complex clinical scenarios.

Declarations of Competing Interest

None

Both authors declare that they have no pertinent conflicts of interest.

Acknowledgements

The authors gratefully acknowledge Sonia Henry, MD, FACC for her assistance in interpretation of the echocardiographic images. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

1. World Health Organization. Emergency preparedness, response: disease outbreak news: update – 12 th January2020. Available Online:https://www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/ (Accessed April 14, 2020).

2. World Health Organization. Coronavirus disease (COVID-19) press briefings - 11 March2020. Available Online:https://www.who.int/emergencies/diseases/novel-coronavirus-2019/media-resources/press-briefings (Accessed April 13, 2020).

3. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020. https://doi.org/10.1001/jama.2020.1583.

4. Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases in COVID-19. Clin Res Cardiol. 2020. https://doi.org/10.1007/s00392-020-01626-9.

5. Xu Z, Shi L, Wang Y C, et al. Pathological findings of Covid-19 patients revealed mononuclear cell inflammation and myocardial injury to human adult cardiac myocytes. Anesth Analg. 2020. https://doi.org/10.1213/ANE.0000000000004388.
29. Corrales-Medina VF, Madjid M, Musher DM. Role of acute infection in triggering acute coronary syndromes. *Lancet Infect Dis*. 2010;10(2):83–92. https://doi.org/10.1016/S1473-3099(09)70331-7.

30. Nunez J, Sanchis J, Bodi V, et al. Relationship between low lymphocyte count and major cardiac events in patients with acute chest pain, a non-diagnostic electrocardiogram and normal troponin levels. *Atherosclerosis*. 2009;206:251–257. https://doi.org/10.1016/j.atherosclerosis.2009.01.029.

31. Oudit GY, Crackower MA, Backx PH, Penninger JM. The role of ACE2 in cardiovascular physiology. *Trends Cardiovasc Med*. 2003;13:93–101. https://doi.org/10.1016/s1050-1738(02)00233-5.

32. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. *Nat Med*. 2005;11:875–879. https://doi.org/10.1038/nm1267.