Brief Communication

Normal Dosage of the Insulin and Insulin-Like Growth Factor II Genes in Patients with the Beckwith-Wiedemann Syndrome

RICHARD A. SPRITZ,1,2 DIXIE MAGER,1 RICHARD M. PAULI,1,2 AND RENATA LAXOVA1,2

SUMMARY

Several patients in whom the Beckwith-Wiedemann syndrome (BWS) is associated with duplication of chromosomal region 11p15 have recently been observed. The genes encoding insulin and insulin-like growth factor II (IGF-II), proteins that affect cellular growth and pancreatic function, have been mapped to 11p15, and their increased expression might, thus, account for the physical features of BWS. To determine whether BWS is frequently associated with small duplications of 11p15, we performed dosage analyses of the insulin and IGF-II genes in somatic DNAs of seven patients with BWS. In each case, we observed apparent diploid representation of these genes. These data suggest that BWS is not frequently associated with small duplications of 11p15 material that embed the insulin and IGF-II genes.

INTRODUCTION

The Beckwith-Wiedemann syndrome (BWS) [1, 2] is a generalized somatic overgrowth disorder with variable features that include large birth size, exomphalos, macroglossia, visceromegaly, adenocortical cytomegaly, renal medullary dysplasia, and, frequently, neonatal hypoglycemia associated with islet cell hyperplasia and transient hyperinsulinemia. Patients with BWS also have an increased incidence of embryonal tumors, including Wilms tumor, gonadoblastoma, hepatoblastoma, rhabdomyosarcoma, and adrenal carcinoma [3, 4]. A number of these features have been previously noted to be similar to those

Received December 4, 1985; revised February 24, 1986.
This paper is no. 2861 from the Laboratory of Genetics, University of Wisconsin.
1 Department of Medical Genetics, University of Wisconsin, Madison, WI 53706.
2 Department of Pediatrics, University of Wisconsin.
© 1986 by the American Society of Human Genetics. All rights reserved. 0002-9297/86/3902-0013$02.00
Patient no.	Karyotype*	Birth wt (gm) [gestation age (wks); percentile]	Omphalocele	Macroglossia	Lobular ear creases	Hypoglycemia	Other facial features	Other features
1 46,XY (M)	3,300 [40, 40%]	+	-	+	-	Submucous cleft palate, severe underbite	Aniridia, bilat. inguinal hernias	
2 46,XY (P)	4,353 [38, >97%]	+	+	+	-	Bilateral zygomatic hypoplasia, micrognathia	Bilateral inguinal hernias, pectus carinatum, bilateral 5th finger clinodactyly [7, 9, 11]	
3 46,XY (P)	2,322 [33½, 50%]	+	+	+	+	...	Bilateral cryptorchidism, bilateral inguinal hernias, VSD, “borderline intelligence,” brother of patient 3 [7, 9, 11]	
4 46,XX (M)	3,020 [34, 90%]	+	+	-	-	Wide nasal base, nuchal skin redundancy	Enlarged right kidney, dislocated knees, wide space between 1st and 2nd toes bilateral	
Case	Karyotype	Chromosome	Features	Clinical Features				
------	-----------	-------------	--	--				
5	46,XY (P)	3,775 [40, 75%]	+ + + -	Wide nasal base	First-degree hypospadias, double left ureter, paroxysmal atrial tachycardia			
6	N.D.	3,620 [40, 50%]	+ + + -	Hypoplastic malar eminences, prognathism, wide nasal base, synophris, prominent lips	Bilateral cryptorchidism, intestinal malrotation, seizure disorder, I.Q. 72, 2nd cousin of patients 2 and 3, brother also affected with BWS [7, 9, 11]			
7	46,XY (P)	2,803 [37, 25%]	+ + + -	Dolichocephaly, “barrel-shaped” nose, mandibular prognathism, high arched palate	Hydramnios, pre-eclampsia, birth length 53 cm (> 90%), bilateral cryptorchidism, right inguinal hernia, renal medullary dysplasia, agenesis of left testis, absent xiphisternum, hypoplastic lumbar vertebrae, brainstem astrocytoma [11]			

* M, metaphase karyotype; P, prometaphase karyotype; N.D., not determined.
resulting from prenatal hyperinsulinemia seen in some infants born to diabetic mothers [5]. Most cases of BWS are sporadic; however, many instances of familial recurrence have been reported [2, 6–17]. Although cytogenetic abnormalities have not been detected in the great majority of cases, four unrelated cases of BWS were recently reported with the common feature of trisomy 11p15 [18, 19], and another has been reported with a balanced 11p:22q translocation [20]. Two genes encoding proteins that affect cellular growth and pancreatic function have been mapped to the region 11p15: insulin [21, 22] and insulin-like growth factor II (IGF-II) [23, 24]. We have performed dosage analyses of these genes to determine whether BWS could be associated with small duplications of genetic material within chromosomal region 11p15 and thus account for the physical characteristics of the disorder. We present evidence here for diploid representation of these genes in somatic tissues from seven patients with BWS, including three sporadic cases, three familial cases, and one sporadic case with both BWS and aniridia.

MATERIALS AND METHODS

All patients were examined by the University of Wisconsin Clinical Genetics Center staff and found to have BWS based on typical clinical criteria. Patient data are presented in table 1 and [7, 9, 11].

Human DNAs from the seven BWS patients and four normal individuals were prepared from peripheral blood leukocytes or cultured skin fibroblasts by a modification of the method of Blin and Stafford [25], digested to completion with EcoRI, electrophoresed through a 0.8% agarose slab gel, and transferred [26] to a nylon membrane (Gene Screen Plus; New England Nuclear). Probes used were a 310 basepair (bp) PstI fragment from the human genomic insulin plasmid pHIGx310 [27], a 1.5-kilobase (kb) EcoRI fragment from the human IGF-II cDNA plasmid p8–1 [28], and an approximately 440-bp HindIII or EcoRI-PstI fragment from plasmid p9D11 that contains a human genomic DNA fragment from chromosome region 13q22 [29] as a referent. 32P nick-translated 11p15 (insulin or IGF-II) plus 13q22 (9D11) probes were hybridized simultaneously to the membrane as described [30] and autoradiographed, and the gene dosages determined by scanning densitometry analysis [31]. The same membrane was used for both the insulin and IGF-II gene-dosage analyses after removing the previous probes by denaturation as recommended by the manufacturer.

RESULTS

Insulin

Figure 1 shows hybridization of the human insulin and 9D11 chromosome 13 probes to EcoRI-cleaved DNAs from the four normal individuals and seven patients with BWS studied. As previously noted, the human insulin probe hybridizes to a single EcoRI fragment of approximately 13.6 kb [32]. The precise size of this fragment varies in the human population because of size variation within a tandem repeat array 5' to the insulin structural gene [32–34]. Three principal types of alleles occur: I (13.6 kb), II (14.3 kb), and III (15.0 kb), in order of ascending number of repeat units. The approximate allele frequencies in American whites are, respectively, .67, .01, and .32 [35]. Control numbers 1 and 2 are homozygous for type III and I alleles, respectively, and control numbers 3 and 4 are I/III heterozygotes. Patients 4 and 7 are homozygous for
type I alleles, and patients 1–3, 5, and 6 are I/III heterozygotes. No type II alleles were detected.

The 9D11 chromosome 13 probe hybridizes to a single 8.2-kb EcoRI fragment. No polymorphism of this fragment was observed.

As shown in table 2, none of the BWS patients had insulin/9D11 hybridization ratios that were significantly different from the control mean. Furthermore, in all individuals who were heterozygotes for type I and type III insulin alleles, the amount of hybridization of each allele was similar. Although the hybridization of the type III alleles tended to be somewhat less than that of the type I alleles, none of these differences was statistically significant, and in no case was the difference greater than 1.4-fold. These data demonstrate that the insulin gene is not duplicated on either copy of chromosome 11 in the BWS patients that we studied.

IGF-II

Figure 2 shows hybridization of the human IGF-II and 9D11 chromosome 13 probes to the same filter illustrated in figure 1. The IGF-II probe hybridized to a single EcoRI fragment of approximately 16 kb.

As shown in table 2, none of the BWS patients had IGF-II/9D11 hybridization ratios that were significantly different from the control mean. These data demonstrate that the IGF-II gene is not duplicated on either copy of chromosome 11 in the BWS patients that we studied.

DISCUSSION

Considerable circumstantial evidence suggests an association between BWS and abnormalities of the short arm of chromosome 11. Anomalous prenatal somatic growth and pancreatic function are characteristic of BWS, and some genes involved in the control of cellular growth and pancreatic function, includ-
SPRITZ ET AL.

TABLE 2
RATIO OF 11p15 TO 13q22 PROBE HYBRIDIZATION

Controls	INS [SD = .09]	IGF-II [SD = .11]
1	1.1 (0, 1.0)	.9
2	1.0 (.6, .4)	.9
3	1.1 (.5, .5)	1.2
4	1.0 (.5, .5)	1.0

Beckwith-Wiedemann patients	INS	IGF-II
1	1.1 (.5/5)	.9
2	1.0 (.6/4)	.9
3	1.0 (.6/4)	1.0
4	1.0 (1.0/0)	.9
5	1.1 (.6/4)	1.0
6	.9 (.5/5)	1.1
7	1.0 (1.0/0)	1.1

NOTE: Ratios of 11p15 to 13q22 probe hybridization were determined, and the mean of the control values was defined as 1.0; nos. in brackets are the standard deviations of the control means. All individual ratios are presented as multiples of the control means. Nos. in parentheses are the fraction of the total insulin hybridization attributable to type I and type III alleles, respectively (see text).

...ing insulin and IGF-II, have been mapped to 11p15. Chromosomal duplication of 11p15 has been observed in at least four cases of BWS, and BWS shares many clinical features with the effects of fetal hyperinsulinism seen in infants born to diabetic mothers. Deletion of the distal half of chromosome region 11p13 is associated with the syndrome of aniridia, Wilms tumor, and gonado-

![Fig. 2.—Southern blot of EcoRI-cleaved DNAs hybridized to human IGF-II and 9D11 probes. IGF-II fragment size is 16 kb and 9D11 fragment size is 8.2 kb. Lanes as in figure 1.](image-url)
blastoma [36, 37]. The frequencies of Wilms tumor and gonadoblastoma are elevated among patients with BWS, and one of the patients studied here (patient 1) had both BWS and aniridia. Expression of the IGF-II gene is elevated in Wilms tumor tissues [38, 39], and apparent homo- or hemizygosity for some 11p markers has recently been observed in Wilms tumor [40–43], hepatoblastoma, and rhabdomyosarcoma [44] tissues.

We have shown here that the insulin and IGF-II genes are not duplicated in seven patients with BWS. Three of these patients had sporadic BWS, one had BWS plus aniridia, and three were from a family with multiple individuals affected with BWS [7, 9, 11]. All six patients whose chromosomes were analyzed had normal prometaphase or metaphase-banded karyotypes. These data, together with the recent observation of normal prometaphase-banded karyotypes in 19 other BWS patients [45], suggest that BWS is not commonly associated with duplication of the insulin or IGF-II genes. Instead, it is likely that some patients with 11p15 duplications share some clinical features with BWS [45].

ACKNOWLEDGMENTS

We thank L. Meisner for providing cultured skin fibroblasts from patient 7, G. Sekhon and L. Meisner for performing karyotype analyses, A. Ullrich (Genentech Inc., S. San Francisco, Calif.) for providing pHIGa310 and p8-1, R. White for providing p9D11, and M. B. McCormick for expert technical assistance.

REFERENCES

1. Beckwith JB: Extreme cytomegaly of the adrenal fetal cortex, omphalocoele, hyperplasia of kidneys and pancreas, and Leydig-cell hyperplasia: another syndrome? Presented at the Western Society for Pediatric Research, Los Angeles, Calif., Nov. 11, 1963
2. Wiedemann NR: Complexe malformatif familial avec hernie ombilicale et macroglossie: un «syndrome nouveau»? J Genet Hum 13:223–232, 1964
3. SoteLo-Avila C, Gooch WM: Neoplasms associated with the Beckwith-Wiedemann syndrome. Perspect Pediatr Pathol 3:255–272, 1976
4. SoteLo-Avila C, González-Crussi F, Fowler JW: Complete and incomplete forms of Beckwith-Wiedemann syndrome: their oncogenic potential. J Pediatr 96:47–50, 1980
5. Gardner LI: Pseudo-Beckwith-Wiedemann syndrome: interaction with maternal diabetes. Lancet II:911–912, 1973
6. Irving IM: Exomphalos with macroglossia: a study of eleven cases. J Pediatr Surg 2:499–507, 1967
7. Kosseff AL, Herrmann J, Opitz JM: The Wiedemann-Beckwith syndrome: genetic consideration and a diagnostic sign. Lancet 1:844, 1972
8. Forrester RM: Wiedemann-Beckwith syndrome. Lancet II:47, 1973
9. Lubinsky M, Herrmann J, Kosseff AL, Opitz JM: Autosomal dominant sex-dependent transmission of the Wiedemann-Beckwith syndrome. Lancet I:932, 1974
10. Matsuura N, Endo M, Okayasu T, Okuno A: Wiedemann-Beckwith syndrome. Lancet II:508, 1975
11. Kosseff AL, Herrmann J, Gilbert EF, Viseskul C, Lubinsky M, Opitz JM: The Wiedemann-Beckwith syndrome. Eur J Pediatr 123:139–166, 1976
12. Chemke J: Familial macroglossia-omphalocoele syndrome. J Genet Hum 24:271–279, 1976
13. Ben-Galin C, Gross-Kieselstein E, Abramov A: Beckwith-Wiedemann syndrome in a mother and her son. Am J Dis Child 131:801-803, 1977
14. Sommer A, Cutler EA, Cohen BL, Harper D, Backes C: Familial occurrence of the Wiedemann-Beckwith syndrome and persistent fontanel. Am J Med Genet 1:59-63, 1977
15. Piusan C, Risbourg B, Lenaerts C, Delvallez N, Gontier MF, Vitse M: Syndrome de Wiedemann et Beckwith: une nouvelle observation familiale. J Genet Hum 28:281-291, 1980
16. Best LG, Hoekstra RE: Wiedemann-Beckwith syndrome: autosomal-dominant inheritance in a family. Am J Med Genet 9:291-299, 1981
17. Hadro T, Aleck KA, Khanna N, Parodo J: Wiedemann-Beckwith syndrome: evidence for ovum mediated autosomal dominant inheritance. Am J Hum Genet 37:A56, 1985
18. Waziri M, Patil SR, Hanson JW, Bartley JA: Abnormality of chromosome 11 in patients with features of Beckwith-Wiedemann syndrome. J Pediatr 102:873-876, 1983
19. Turleau C, de Grouchy J, Chavin-Colin F, Martelli H, Voyer M, Charlas R: Trisomy 11p15 and Beckwith-Wiedemann syndrome. A report of two cases. Hum Genet 67:219-221, 1984
20. Pueschel SM, Padre-Mentoza T: Chromosome 11 and Beckwith-Wiedemann syndrome. J Pediatr 104:484-485, 1984
21. Harper ME, Ullrich A, Saunders GF: Localization of the human insulin gene to the distal end of the short arm of chromosome 11. Proc Natl Acad Sci USA 78:4458-4460, 1981
22. De Martinville B, Francke U: The c-Ha-ras1, insulin and β-globin loci map outside the deletion associated with aniridia-Wilms' tumour. Nature 305:641-643, 1983
23. Kittur SD, Hoppener JWM, Antonarakis SE, et al.: Linkage map of the short arm of human chromosome 11: localization of the genes for catalase, calcitonin, and insulin-like growth factor II. Proc Natl Acad Sci USA 82:5064-5067, 1985
24. Bell GI, Gerhard DS, Fong NM, Sanchez-Pescador R, Rall LB: Isolation of the human insulin-like growth factor genes: insulin-like growth factor II and insulin genes are contiguous. Proc Natl Acad Sci USA 82:6450-6454, 1985
25. Blin N, Stafford DW: A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 3:2303-2308, 1976
26. Southern EM: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503-517, 1975
27. Ullrich A, Dull TJ, Gray A, Brosius J, Sures I: Genetic variation in the human insulin gene. Science 209:612-615, 1980
28. Dull TJ, Gray A, Hayflick JS, Ullrich A: Insulin-like growth factor II precursor gene organization in relation to insulin gene family. Nature 310:777-781, 1984
29. Cavanee W, Leach R, Mohandas T, Pearson P, White R: Isolation and regional localization of DNA segments revealing polymorphic loci from human chromosome 13. Am J Hum Genet 36:10-24, 1984
30. Vanin E, Henthorn PS, Kiousis D, Grosveld R, Smithies O: Unexpected relationships between four large deletions in the human β-globin gene cluster. Cell 35:701-709, 1983
31. Junien C, Huere C, Rethore M-O: Direct gene dosage determination in patients with unbalanced chromosomal aberrations using cloned DNA sequences. Application to the regional assignment of the gene for α2(I) procollagen (COLIA2). Am J Hum Genet 35:584-591, 1983
32. Bell GI, Karam JH, Rutter WJ: Polymorphic DNA region adjacent to the 5′ end of the human insulin gene. Proc Natl Acad Sci USA 78:5759-5763, 1981
33. Bell GI, Selby MJ, Rutter WJ: The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295:31-35, 1982
34. Ullrich A, Dull TJ, Gray A, Phillips JA III, Peter S: Variation in the sequence and modification state of the human insulin gene flanking regions. *Nucleic Acids Res* 10:2225–2240, 1982
35. Bell GI, Horita S, Karam JH: A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. *Diabetes* 33:176–183, 1984
36. Riccardi VM, Sujansky E, Smith AC, Francke U: Chromosomal imbalance in the aniridia-Wilm's tumor association: 11p interstitial deletion. *Pediatrics* 61:604–610, 1978
37. Francke U, Holms LB, Atkins L, Riccardi VM: Aniridia-Wilms' tumor association: evidence for specific deletion of 11p13. *Cytogenet Cell Genet* 24:185–192, 1979
38. Reeve AE, Eccles MR, Wilkins RJ, Bell GI, Millow LJ: Expression of insulin-like growth factor-II transcripts in Wilms' tumour. *Nature* 317:258–260, 1985
39. Scott J, Cowell J, Robertson ME, et al.: Insulin-like growth factor-II gene expression in Wilms' tumour and embryonic tissues. *Nature* 317:260–262, 1985
40. Koufos A, Hansen MF, Lampkin BC, et al.: Loss of alleles at loci on human chromosome 11 during genesis of Wilms' tumour. *Nature* 309:170–172, 1984
41. Orkin SH, Goldman DX, Sallan SE: Development of homozygosity for chromosome 11p markers in Wilms' tumour. *Nature* 309:172–174, 1984
42. Reeve AE, Housiaux PJ, Gardner RJM, Chewings WE, Grindley RM, Millow LJ: Loss of a Harvey ras allele in sporadic Wilms' tumour. *Nature* 309:174–176, 1984
43. Fearon ER, Vogelstein B, Feinberg AP: Somatic deletion and duplication of genes on chromosome 11 in Wilms' tumours. *Nature* 309:176–178, 1984
44. Koufos A, Hansen MR, Copeland NG, Jenkins NA, Lampkin BC, Cavenee WK: Loss of heterozygosity in three embryonal tumours suggests a common pathogenetic mechanism. *Nature* 316:330–334, 1985
45. Pettenati MJ, Higgins RR, Weaver DD: Cytogenetic investigation of Beckwith-Wiedemann syndrome (BWS) and its implications. *Am J Hum Genet* 37:A111, 1985