Temporal Trends in in-Hospital Bleeding and Transfusion in a Contemporary Canadian ST-Elevation Myocardial Infarction Patient Population

Debraj Das, MD, MSc,a Anamaria Savu, PhD,b Kevin R. Bainey, MD, MSc,a,b Robert C. Welsh, MD,a,b and Padma Kaul, PhD,a,b

a Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada
b Canadian VIGOUR Centre, University of Alberta, Edmonton, Alberta, Canada

ABSTRACT

Background: Although ST-elevation myocardial infarction (STEMI) management has evolved substantially over the past decade, its effect on bleeding and transfusion rates are largely unknown in a contemporary population.

Methods: Our study cohort included patients 20 years of age or older who were hospitalized for STEMI between 2007 and 2016 across all Canadian provinces, except Quebec. Unadjusted rates of bleeding and of transfusion during STEMI episodes were calculated overall and for each province according to fiscal year. Patients were stratified into 4 groups according to their bleeding/transfusion. Characteristics, treatment, and outcomes were compared between groups. Multivariate logistic regression modelling was used to assess the association between bleeding and transfusion on in-hospital mortality.

Several millions of patients worldwide suffer from an ST-elevation myocardial infarction (STEMI) annually.1 The current standard of care is that each patient should receive dual antiplatelet therapy, including aspirin and a P2Y12 inhibitor for a minimum of 12 months followed by aspirin indefinitely.2-4 This therapy is particularly relevant in STEMI patients who are at the highest risk of recurrent acute coronary syndrome (ACS) and often receive drug-eluting stents as part of their revascularization strategy.5 Patients, particularly those older than the age of 75 years, are the most likely to develop complications of STEMI including congestive heart failure (CHF), left ventricular dysfunction, cardiogenic shock, or ventricular arrhythmias.6

Advancements in antithrombotic therapies for STEMI have improved patient outcomes over the past 2 decades.7-9 Although rates of ischemic events have declined with the use of more potent pharmacotherapeutics, this has come at the cost of higher bleeding risk.8,10,11 Analysis of data from the Global Registry of Acute Coronary Events (GRACE) registry has shown a bleeding rate of 4.8% in STEMI patients and 4.0% in all patients with ACS.12 With regard to transfusion rates, the Global Use of Strategies To Open Occluded Coronary Arteries in Acute Coronary Syndromes (GUSTO IIb) trial revealed that 8.6% of STEMI patients received a blood transfusion.13 A meta-analysis of 3 large international trials showed that 10% of all ACS patients received at least 1 in-hospital transfusion.14 In these studies, patients who had a bleed or required a transfusion had higher mortality, compared with those who did not experience either event.12-14 However, these studies do not acknowledge contemporary practice patterns in the treatment of STEMI.
Results: Using 108,832 STEMI episodes, rates of in-hospital bleeding and transfusion declined between 2007 and 2016 from 3.9% to 2.8% (P < 0.0001) and 4.7% to 3.8% (P < 0.0001), respectively. However, variation in bleeding and transfusion rates were observed across Canadian provinces. Patients with bleeding or transfusion, were older, female, and had more comorbidities. Compared with patients who did not bleed or receive a transfusion, individuals who bled, were transfused, or bled and were transfused, had higher in-hospital mortality (18.6%, 30.3%, and 30.4%, respectively [P < 0.0001]). The association remained after adjustment: bleeding (odds ratio [OR], 2.0; 95% confidence interval [CI], 1.8-2.4), transfusion (OR, 4.4; 95% CI, 3.9-4.9), and bleeding and transfusion (OR, 3.8; 95% CI, 3.2-4.6).

Conclusions: The proportion of Canadian STEMI patients who experienced in-hospital bleeding and transfusion has decreased over the past 9 years. However, patients with bleed or transfusion remain at higher risk of adverse outcomes.

Study population

The following International Classification of Diseases version 10 (ICD-10) codes were used to identify hospitalizations with a primary diagnosis of STEMI (I21.0, I21.1, I21.2, I21.3). Acknowledging the common practice of interhospital transfer, concurrent hospitalizations occurring within 24 hours were considered as the same episode of care. A STEMI episode of care was required to start with hospitalization for STEMI, not to include hospitalization for non-STEMI, and to have an ICD-10 electrocardiogram code confirming the STEMI diagnosis (R94.30) in a secondary diagnosis field in any of the episode hospitalizations. The validity of these diagnostic codes for identifying myocardial infarction is variable and has been reported by Patel et al. to have sensitivity of 66.0%-95.1% and specificity of 80.2%-100.0%. Patients with missing identification numbers, who were younger than 20 years of age at discharge, and who underwent coronary artery bypass grafting after index hospitalization were excluded.

Covariate definition

We used previously defined ICD-10 codes to identify bleeding events, including gastrointestinal, intracranial, and respiratory sources (see Supplemental Table S1 for the full list of codes), if they occurred during any hospitalization of the STEMI episode. Bleeding was considered as having occurred during a STEMI episode if ICD-10 bleeding codes were identified among the diagnosis codes of the episode hospitalizations. Oger et al. estimated that the ICD-10 codes for bleeding had an overall sensitivity of 65% (95% confidence interval [CI], 62-69) and specificity of 99%; however, these measures differed across bleeding types, with the highest values for intracranial hemorrhage. Transfusion was considered as having occurred during the episode
on the basis of all episode hospitalizations and all their indicator fields for patients receiving a blood transfusion or blood products.

Similarly, previously validated ICD-10 codes were used to identify the presence of comorbidities, such as diabetes, hypertension, CHF, cerebrovascular disease, renal disease, atrial fibrillation, and anemias or hemorrhagic conditions during the STEMI episode. The Charlson Comorbidity Index was calculated to assess the overall comorbidity burden for each patient. Data on whether the patient has received a transfusion or any other blood products, such as red blood cells, platelets, plasma, or albumin, are routinely collected as part of the CIHI Discharge Abstract Database. We did not have the sensitivity for the transfusion events from the CIHI data. Canadian Classification of Health Interventions codes recorded in any of the 20 procedure fields of the episode hospitalizations were

![Flow chart of selection of ST-elevation myocardial infarction (STEMI) episodes and patients from the Canadian Institute of Health Information Database. CABG, coronary artery bypass grafting; ECG, electrocardiogram; MI, myocardial infarction; NSTEMI, non-ST-elevation myocardial infarction.](Das-et-al_Bleeding-and-Transfusion-in-STEMI-Patients-Figure1.png)

Figure 1. Flow chart of selection of ST-elevation myocardial infarction (STEMI) episodes and patients from the Canadian Institute of Health Information Database. CABG, coronary artery bypass grafting; ECG, electrocardiogram; MI, myocardial infarction; NSTEMI, non-ST-elevation myocardial infarction.

![Trends of total bleed and total transfusions in ST-elevation myocardial infarction episodes from 2007 to 2016. Total bleed includes patients who bled and who bled and received a transfusion. Total transfusion includes patients who were transfused and who bled and received a transfusion.](Das-et-al_Bleeding-and-Transfusion-in-STEMI-Patients-Figure2.png)

Figure 2. Trends of total bleed and total transfusions in ST-elevation myocardial infarction episodes from 2007 to 2016. Total bleed includes patients who bled and who bled and received a transfusion. Total transfusion includes patients who were transfused and who bled and received a transfusion.
Variable	Without bleed or transfusion	Bleed without transfusion	Transfusion without bleed	Bleed and transfusion	Total
n	101,969	2295	3349	1219	108,832
Mean age (SD), years	63.1 (13.5)	69.7 (13.0)	70.3 (13.1)	70.4 (13.1)	63.5 (13.6)
Median age (IQR), years	62.0 (53.0-73.0)	70.0 (60.0-80.0)	71.0 (61.0-80.0)	72.0 (61.0-81.0)	62.0 (54.0-73.0)
Male sex	74,033 (72.6)	1645 (71.7)	1771 (52.9)	756 (62.0)	78,205 (71.9)
Anemia or hemorrhagic conditions	1933 (1.9)	259 (11.3)	1531 (45.7)	598 (49.1)	4327 (40.0)
Congestive heart failure	10,264 (10.1)	551 (24.0)	1199 (35.8)	463 (38.0)	12,477 (11.5)
Peripheral vascular disorders	1615 (1.6)	79 (3.4)	183 (5.5)	77 (6.3)	1954 (1.8)
Cerebrovascular disease	1272 (1.2)	352 (15.3)	179 (5.3)	159 (13.0)	1962 (1.8)
Ischemic stroke	545 (0.5)	42 (1.8)	99 (3.0)	49 (4.0)	735 (0.7)
TIA	169 (0.2)	2 (0.1)	15 (0.4)	9 (0.7)	195 (0.2)
Intracranial hemorrhage (all codes indicative of intracranial hemorrhage are bleed codes)	0 (0.0)	297 (12.9)	0 (0.0)	87 (7.1)	384 (0.4)
Dementia	1560 (1.5)	70 (3.1)	117 (3.5)	34 (2.8)	1781 (1.6)
Chronic obstructive pulmonary disease	3728 (3.7)	167 (7.3)	258 (7.7)	113 (9.3)	4266 (3.9)
Rheumatic disease	454 (0.4)	13 (0.6)	43 (1.3)	18 (1.5)	528 (0.5)
Peptic ulcer disease	98 (0.1)	143 (6.2)	43 (1.3)	219 (18.0)	503 (0.5)
Diabetes	22,645 (22.2)	592 (25.8)	1255 (37.5)	415 (34.0)	24,907 (22.9)
Paralysis	218 (0.2)	41 (1.8)	36 (1.1)	25 (2.1)	320 (0.3)
Renal disease	2286 (2.2)	138 (6.0)	378 (11.3)	127 (10.4)	2929 (2.7)
Liver disease	529 (0.3)	30 (1.3)	74 (2.2)	47 (3.9)	480 (0.4)
Cancer	1459 (1.4)	99 (4.3)	247 (7.4)	89 (7.3)	1894 (1.7)
Charlson Comorbidity Index score					
0	65,818 (64.5)	852 (37.1)	983 (29.4)	244 (20.0)	67,897 (62.4)
1, 2	27,604 (27.1)	916 (39.9)	1240 (37.0)	506 (41.5)	30,266 (27.8)
3, 4	7331 (7.2)	401 (17.5)	831 (24.8)	342 (28.1)	8965 (8.2)
5 or more	1216 (1.2)	126 (5.5)	295 (8.8)	127 (10.4)	1764 (1.6)
Hypertension	45,724 (44.8)	1176 (52.2)	1720 (51.4)	648 (53.2)	49,268 (45.3)
Atrial fibrillation or flutter	6771 (6.6)	385 (16.8)	651 (19.4)	277 (22.7)	8084 (7.4)
Systemic embolism	110 (0.1)	10 (0.4)	29 (0.9)	13 (1.1)	162 (0.1)
Pulmonary embolism	1660 (1.6)	79 (3.4)	218 (6.5)	76 (6.2)	2033 (1.9)
PCI	77,624 (76.1)	1483 (64.6)	2129 (63.6)	742 (60.9)	81,978 (75.3)
Fibrinolysis (after April 2009), n/N (%)	19,235/82,761 (23.2)	541/1755 (30.8)	439/2606 (16.8)	201/962 (20.9)	20,416/88,084 (23.2)
With PCI and with fibrinolysis (after April 2009), n/N (%)	14,960/82,761 (18.1)	401/1755 (23.4)	294/2606 (11.3)	132/962 (13.7)	15,705/88,084 (17.8)
With PCI and without fibrinolysis (after April 2009), n/N (%)	50,134/82,761 (60.6)	847/1755 (48.3)	1444/2606 (55.4)	486/962 (50.5)	52,911/88,084 (60.1)
Without PCI and with fibrinolysis (after April 2009), n/N (%)	4275/82,761 (5.2)	222/1755 (12.6)	145/2606 (5.6)	69/962 (7.2)	4711/88,084 (5.3)
Without PCI and without fibrinolysis (after April 2009), n/N (%)	13,392/82,761 (16.2)	367/1755 (20.9)	723/2606 (27.7)	275/962 (28.6)	14,757/88,084 (16.8)
Mean length of stay (SD), days	5.3 (8.3)	11.7 (18.0)	18.9 (26.8)	25.4 (37.9)	6.0 (10.9)
Mean length of stay (IQR), days	4.0 (3.0-6.0)	7.0 (4.0-13.0)	11.0 (5.0-21.0)	14.0 (7.0-29.0)	4.0 (3.0-6.0)
Discharged dead	6582 (6.5)	427 (18.6)	1016 (30.3)	371 (50.4)	8366 (7.7)
30-Day rehospitalization with bleeds or blood transfusion, post discharge (before March 2016), n/N (%)	1126/94,302 (1.2)	94/1853 (5.1)	162/2513 (7.0)	62/837 (7.4)	1444/99,305 (1.5)

Unless otherwise specified all values are n (%). All comparisons, with the exception of TIA and intracranial hemorrhage were statistically significant at the 0.0001 level. Comparisons of TIA and intracranial hemorrhage were not tested because of invalidity of the χ² test for cell counts < 5.

IQR, interquartile range; PCI, primary percutaneous coronary intervention; STEMI, ST-elevation myocardial infarction; TIA, transient ischemic attack.
used to identify patients who underwent primary percutaneous coronary intervention (PCI) and fibrinolytic therapy. Canadian Classification of Health Interventions codes for fibrinolytic therapy were available from fiscal year (FY) 2009/2010 and onward.

Hospital length of stay (LOS) was calculated as the difference between the admission date of the first hospitalization and the discharge date of the last hospitalization during that STEMI admission. If a patient was admitted and discharged on the same day, the hospital LOS was 1 day.

Outcomes

The outcomes of interest were time trends in bleeding and transfusion, overall, and according to province. Other outcomes included in-hospital death at index and 30-day rehospitalization with bleeds or blood transfusion, post index discharge.

Statistical analysis

Unadjusted rates of bleeding and of transfusion during STEMI episodes were calculated and plotted overall and for each province according to FY. Cochran-Armitage tests for trends were used to examine whether the proportion of STEMI patients with bleed and transfusion changed over each FY. Patients were categorized into 4 groups, according to their bleeding/transfusion status: no bleed or transfusion, bleed without transfusion, transfusion without bleed, or bleed and transfusion. To examine differences in baseline characteristics, hospital LOS, treatment, and outcomes across the 4 groups, analysis of variance and Kruskal-Wallis tests were used for continuous variables and χ^2 tests for categorical variables. Comparisons for categorical variables that showed stratified counts of < 5 were not statistically tested. Continuous variables are presented as mean and SD and median and interquartile range, and categorical variables are presented as counts and percentages, overall and stratified according to the 4 bleeding-transfusion groups. Multivariate logistic regression modelling was used to assess the association between bleeding alone, transfusion alone, or the combination, on in-hospital mortality. A generalized estimating equation was used to account for the correlation between the STEMI episodes of the same patient.

Results

Between April 1, 2007 and March 31, 2016, there were a total of 167,525 hospitalizations for STEMI. After exclusions, 108,832 STEMI episodes of 106,172 patients were analyzed (Fig. 1). The total number of STEMI episodes increased annually over the same period from 9938 in FY 2007/2008 to 13,195 in FY 2015/2016. During this period, the trend of in-hospital bleeding and transfusion showed a decline from 3.9% to 2.8% ($P < 0.0001$) and from 4.7% to 3.8% ($P < 0.0001$), respectively (Fig. 2). In most STEMI
After FY 2009/2010, when fibrinolytic data became available, the proportion of STEMI episodes treated with a pharmacoinvasive approach (use of fibrinolytics and PCI) was 17.8%, fibrinolysis in isolation accounted for 5.3%, and PCI alone was used in 60.1% of cases. In 16.8% of episodes, the patient received no reperfusion or revascularization therapy (Table 1).

The largest proportion of STEMI episodes occurred in Ontario (47.7%; n = 51,883), followed by British Columbia (15.7%; n = 17,106), and Alberta (14.2%; n = 15,417). Bleeding rates were highest in Prince Edward Island (4.3%; n = 23/530) and lowest in British Columbia (3.0%; n = 513/17,106; Fig. 3A). Transfusion rates were highest in Ontario (4.8%; n = 2462/51,883) and Manitoba (4.9%; n = 282/5799), and lowest in British Columbia (2.8%; n = 473/17,106; Fig. 3B). Patients who had an in-hospital bleed or who received a blood transfusion were older and had more comorbidities, such as diabetes, hypertension, CHF, atrial fibrillation or flutter, or renal disease compared with patients who had neither event (Table 1; P < 0.0001). Bleeding and transfusion rates were higher in women (women vs men; 3.6% vs 3.1% and 6.7% vs 3.2% [P < 0.001]). Patients who were transfused without a bleed (45.7%) or who had a bleed and were transfused (49.1%) had significantly higher rates of anemias or hemorrhagic conditions, compared with those who had a bleed and were not transfused (11.3%) or those who had no bleed or transfusion (1.9%; P < 0.01).

Compared with patients who did not bleed or receive a transfusion, individuals who bled, or those who were transfused, or those who bled and were transfused, had increased median LOS (7 days, 11 days, and 14 days, respectively [P < 0.0001]). These groups also had higher in-hospital mortality (18.6%, 30.3%, and 30.4%, respectively [P < 0.0001]). Bleeding (odds ratio [OR], 2.0; 95% CI, 1.8-2.4; P < 0.0001), transfusion (OR, 4.4; 95% CI, 3.9-4.9; P < 0.0001), and bleeding and transfusion (OR, 3.8; 95% CI, 3.2-4.6; P < 0.0001) were significantly associated with in-hospital mortality after adjustment for patient age, sex, Charlson Comorbidity Index score, and treatment (PCI and/or fibrinolysis; Fig. 4). For those patients who bled, were transfused, or experienced both, 30-day rehospitalization with bleeding or transfusion were 5.1%, 7.0%, and 7.4%, respectively (Table 1).

Discussion

Despite the use of more potent pharmacotherapy for the treatment of STEMI, in-hospital bleeding and transfusion rates have declined for Canadian patients with STEMI. Although these data are reassuring, patients who bled and/or were transfused had a higher likelihood of in-hospital death. The factors contributing to the decline in bleeding over time are likely multifactorial.

Bleeding complications related to PCI have been minimized with advances in procedural techniques, increased operator experience, and use of the radial approach. The radial approach is known to have a lower incidence of major

Table 1. Distribution of episodes and patient characteristics by reperfusion or revascularization therapy. PCI, primary percutaneous coronary intervention. aOR, adjusted odds ratio; CI, confidence interval.

n Death	N Episode	
Without bleed or transfusion (reference)	5191	82761
Bleed without transfusion	325	1755
Transfusion without bleed	828	2606
Bleed and transfusion	300	962
Age per 10 year	1.7 (1.67, 1.74) <0.0001	
1 or 2	2484	24332
3 or 4	1301	7281
5+	379	1318

Figure 4. Multivariate modeling of in-hospital mortality at index from ST-elevation myocardial infarction (STEMI) episodes from 2009 to 2016. PCI, primary percutaneous coronary intervention. aOR, adjusted odds ratio; CI, confidence interval.
bleeding and access site bleeding.23-25 The most robust evidence supporting the radial approach was published by Ferrante et al. in 2016, which included a meta-analysis of 24 trials including 22,843 patients.35 All end points including major bleeding, all-cause mortality, and major adverse cardiovascular events were lower in patients who underwent a radial approach. This benefit was consistent among all-comers with coronary artery disease including stable and unstable patients. Experienced operators working at high-volume centers are more likely to adopt a radial approach even in STEMI management.27-29 For patients who do undergo a transfemoral approach for PCI, closure devices might help mitigate access site bleeding although this is still controversial.30,31

Although primary PCI has become the standard of care in most centers because of its short- and long-term mortality benefit, fibrinolysis still plays an important role in contemporary STEMI management.32 Interestingly, the association between fibrinolitics and increased major bleeding compared with primary PCI is still unclear with many studies showing no significant difference. Fibrinolitics are associated with higher rates of intracranial hemorrhage particularly in older patients and individuals with multiple risk factors.33 However, this is not consistently evident for all-comers and especially in individuals who receive half-dose fibrinolysis and do not receive adjunct glycoprotein IIB/IIIA inhibitors.34 Therefore, the contribution of fibrinolitics on overall bleeding and subsequent transfusion rates might be more limited than originally anticipated. This is particularly true with the use of more fibrin-specific agents such as tenecteplase and is supported in the ischemic stroke literature as well.35-37

In our study, we observed an increased LOS, and higher in-hospital mortality rates were seen in patients who bled and/or received a transfusion. This finding agrees with the recent literature on the outcomes of STEMI patients who experience bleeding. A systematic review and meta-analysis by Kwok et al. indicated that major bleeding after PCI is independently associated with a 3 times higher risk for mortality and major adverse cardiac events.38 Rao et al. reported that even minor bleeds often deemed “nuisance bleeds,” are substantial clinical events with real consequences.39

From a transfusion perspective, data from Shishehbor et al. showed an associated short- and long-term mortality among STEMI patients who were transfused.35 Similar findings were shown in the Controlled Abciximab and Device Investigation to Lower Late Angioplasty Complications (CADILLAC) trial with transfusion after PCI for an acute myocardial infarction.40 Furthermore, a recent meta-analysis of 5 cohort studies including 21,770 patients confirmed that red blood cell transfusion was associated with in-hospital and long-term mortality, repeat emergency PCI, reinfarction, and heart failure.41 In our study, transfused patients had worse outcomes after multivariable modelling and almost half of the patients who were transfused without a bleeding event had anemia. The equipoise of transfusion in patients with STEMI is still unclear and the lack of consensus and guidelines result in each centre establishing different thresholds for transfusion in asymptomatic patients.42 As such, the ongoing multicentre Myocardial Ischemia and Transfusion (MiNT) randomized trial (ClinicalTrials.gov identifier: NCT02981407) will help address the utility of transfusion in this setting.

Our study also confirms that provincial variation in inhospital bleeding and blood transfusion does exist (Fig. 3). Regional variability in STEMI management is well documented in the Canadian landscape and might be contributory.43 Even with most tertiary Canadian hospitals providing 24-hour primary PCI, this strategy is not universally available, and regional transfer systems undoubtedly result in delays in door-to-balloon time and variability in antithrombotic management.44 Variation in the uptake of radial coronary angiography might also be a contributing factor because centres with different expertise might rely heavily on femoral access. Although Canadian data on the rates of radial vs femoral approach are limited, this inconsistency is well documented in the United States as well as worldwide.45,46

Strengths and limitations exist for this study. We showed, using a large contemporary Canadian STEMI population, that bleeding and transfusion rates have declined over the past 9 years. Unfortunately, because of unavailability of data, the province of Quebec was not included in our analysis. A central limitation of our study is the use of the CIHI administrative data. Although it provides valuable data it has important limitations including the accuracy and completeness of coding of medical records. Although the codes for non-STEMI vs STEMI have been previously validated, this was done in an Alberta population and might not be representative of coding practices in all of Canada.47 We also do not have detailed clinical information, such as the site of bleeding, or hemoglobin levels, which would have contributed to the decision to transfuse a patient. Additional limitations include data for fibrinolitics being limited to fiscal 2009/2010 and onward, lack of medication data including specific P2Y12 inhibitors, and our inability to assess treatment differences at the provincial level. Last, our study was observational in nature and aimed at hypothesis generation, with confounding variables still present.

Despite increases in the number of STEMI episodes over time, the rates of in-hospital bleeding and transfusion have declined in Canada. However, incidence of bleeding and/or transfusion identifies a patient population that is at a significantly higher risk of mortality. Further research is needed to examine the role of cardiac interventions and concomitant medications with bleeding and transfusion in a STEMI population.

Acknowledgements
The authors are incredibly grateful for the editorial support and guidance of Ms Lisa Soulard. Dr Kaul is a CIHR Chair in Sex and Gender Science and is supported by the Heart & Stroke Chair in Cardiovascular Research.

Funding Sources
The authors have no funding sources to declare.

Disclosures
The authors have no conflicts of interest to disclose.
References

1. Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation 2013;127:e6-245.

2. Evidence Review Committee Members, Bitil JA, Baber U, Bradley SM, Wijeysundera DN. Duration of dual antiplatelet therapy: a systematic review for the 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2016;134:e156-78.

3. Antman EM, Anbe DT, Armstrong PW, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction—executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients With Acute Myocardial Infarction). Can J Cardiol 2004;20:977-1025.

4. Mehta SR, Bainey KR, Cantor WJ, et al. 2018 Canadian Cardiovascular Society/Canadian Association of Interventional Cardiology focused update of the guidelines for the use of antiplatelet therapy. Can J Cardiol 2018;34:214-33.

5. Mehran R, Baber U, Steg PG, et al. Cessation of dual antiplatelet therapy in patients with coronary artery disease: a report of the American Heart Association/American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;61:78-140.

6. Topaz G, Finkelstein A, Flint N, et al. Comparison of 30-day and long-term outcomes and hospital complications among patients aged <75 versus ≥75 years with ST-elevation myocardial infarction undergoing percutaneous coronary intervention. Am J Cardiol 2017;119:1897-901.

7. Yusuf S, Zhao F, Mehta SR, et al. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N Engl J Med 2001;345:494-502.

8. Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2009;361:1045-57.

9. Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N Engl J Med 2007;357:2001-15.

10. Manoukian SV. Predictors and impact of bleeding complications in percutaneous coronary intervention, acute coronary syndromes, and ST-elevation myocardial infarction. Am J Cardiol 2009;104:9C-15C.

11. Yuan Z, Levitin B, Burton P, et al. Relative importance of benefits and risks associated with antithrombotic therapies for acute coronary syndrome: patient and physician perspectives. Curr Med Res Opin 2014;30:1733-41.

12. Moscucci M, Fox KAA, Cannon CP, et al. Predictors of major bleeding in acute coronary syndromes: the Global Registry of Acute Coronary Events (GRACE). Eur Heart J 2003;24:1815-23.

13. Shishibohor MH, Madhwal S, Rajagopal V, et al. Impact of blood transfusion on short- and long-term mortality in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 2009;2:465-53.

14. Rao SV, Jollis JG, Harrington RA, et al. Relationship of blood transfusion and clinical outcomes in patients with acute coronary syndromes. JAMA 2004;292:1555-62.

15. Salpeter SR, Buckley JS, Chatterjee S. Impact of more restrictive blood transfusion strategies on clinical outcomes: a meta-analysis and systematic review. Am J Med 2014;127:124-131.e3.

16. Mazier CD, Whitlock RP, Fergusson DA, et al. Restrictive or liberal red-cell transfusion for cardiac surgery. N Engl J Med 2017;377:2133-44.

17. O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;61:78-140.

18. Patel AB, Quan H, Welsh RC, et al. Validity and utility of ICD-10 administrative health data for identifying ST- and non-ST-elevation myocardial infarction based on physician chart review. CMAJ Open 2015;3:E415-8.

19. Sørensen R, Hansen ML, Abildstrom SZ, et al. Risk of bleeding in patients with acute myocardial infarction treated with different combinations of aspirin, clopidogrel, and vitamin K antagonists in Denmark: a retrospective analysis of nationwide registry data. Lancet 2009;374:1967-74.

20. Oger E, Botrel MA, Juchault C, Bouger J. Sensitivity and specificity of an algorithm based on medico-administrative data to identify hospitalized patients with major bleeding presenting to an emergency department. BMC Med Res Methodol 2019;19:194-7.

21. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 2005;43:1130-9.

22. De Coster C, Li B, Quan H. Comparison and validity of procedures coded with ICD-9-CM and ICD-10-CM/CCI. Med Care 2008;46:627-34.

23. Shavadiya J, Welsh R, Gershlick A, et al. Relationship between arterial access and outcomes in ST-elevation myocardial infarction with a pharmacoinvasive versus primary percutaneous coronary intervention strategy: insights from the STRategic Reperfusion Early After Myocardial Infarction (STREAM) study. J Am Heart Assoc 2016;5:14.

24. Bernat I, Horak D, Stasek J, et al. ST-segment elevation myocardial infarction treated by radial or femoral approach in a multicenter randomized clinical trial: the STEMI-RADIAL trial. J Am Coll Cardiol 2014;63:964-72.

25. Karronow W, Vyas A, Giacomino B, et al. Radial versus femoral access for primary percutaneous interventions in ST-segment elevation myocardial infarction patients: a meta-analysis of randomized controlled trials. JACC Cardiovasc Interv 2013;6:814-23.

26. Ferrante G, Rao SV, Jüni P, et al. Radial versus femoral access for coronary interventions across the entire spectrum of patients with coronary artery disease: a meta-analysis of randomized trials. JACC Cardiovasc Interv 2016;9:1419-34.

27. Jolly SS, Cairns J, Yusuf S, et al. Procedural volume and outcomes with radial or femoral access for coronary angiography and intervention. J Am Coll Cardiol 2014;63:954-63.

28. Barringhaus KG, Akhter M, Rade JJ, Smith C, Fisher DZ. Operator and institutional experience reduces room-to-balloon times for transradial primary percutaneous coronary intervention. J Invasive Cardiol 2014;26:89-96.

29. Jolly SS, Yusuf S, Cairns J, et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet 2011;377:1409-20.
30. Bangalore S, Arora N, Resnic FS. Vascular closure device failure: frequency and implications: a propensity-matched analysis. Circ Cardiovasc Interv 2009;2:549-56.

31. Sanborn TA, Tomey MI, Mehran R, et al. Femoral vascular closure device use, bivalirudin anticoagulation, and bleeding after primary angioplasty for STEMI: results from the HORIZONS-AMI trial. Catheter Cardiovasc Interv 2015;85:371-9.

32. Huynh T, Perron S, O’Loughlin J, et al. Comparison of primary percutaneous coronary intervention and fibrinolytic therapy in ST-segment-elevation myocardial infarction: Bayesian hierarchical meta-analyses of randomized controlled trials and observational studies. Circulation 2009;119:3101-9.

33. Brass LM, Lichtman JH, Wang Y, et al. Intracranial hemorrhage associated with thrombolytic therapy for elderly patients with acute myocardial infarction: results from the Cooperative Cardiovascular Project. Stroke 2000;31:1802-11.

34. Bundhun PK, Janoo G, Chen MH. Bleeding events associated with fibrinolytic therapy and primary percutaneous coronary intervention in patients with STEMI: a systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2016;95:e3877.

35. Assessment of the Safety and Efficacy of a New Thrombolytic (ASSENT-2) Investigators, Van De Werf F, Adgey J, et al. Single-bolus tenecteplase compared with front-loaded alteplase in acute myocardial infarction: the ASSENT-2 double-blind randomised trial. Lancet 1999;354:716-22.

36. Guerra DR, Karha J, Gibson CM. Safety and efficacy of tenecteplase in acute myocardial infarction. Expert Opin Pharmacother 2003;4:791-8.

37. Huang X, Moreton FC, Kalladka D, et al. Coagulation and fibrinolytic activity of tenecteplase and alteplase in acute ischemic stroke. Stroke 2015;46:3543-6.

38. Kwok CS, Rao SV, Myint PK, et al. Major bleeding after percutaneous coronary intervention and risk of subsequent mortality: a systematic review and meta-analysis. Open Heart 2014;1:e000021.

39. Rao SV, O’Grady K, Pieper KS, et al. Impact of bleeding severity on clinical outcomes among patients with acute coronary syndromes. Am J Cardiol 2005;96:1200-6.

40. Nikolsky E, Mehran R, Sadeghi HM, et al. Prognostic impact of blood transfusion after primary angioplasty for acute myocardial infarction: analysis from the CADILLAC (Controlled Abciximab and Device Investigation to Lower Late Angioplasty Complications) trial. JACC Cardiovasc Interv 2009;2:624-32.

41. Minicu RI, Rassaf T, Totzeck M. Red blood cell transfusion in patients with ST-elevation myocardial infarction—a meta-analysis of more than 21,000 patients. Neth Heart J 2018;26:454-60.

42. Rao SV, Vora AN. Transfusion in ischemic heart disease: correlation, confounding, and confusion. J Am Coll Cardiol 2015;66:2519-21.

43. Fitchett DH, Theroux P, Brophy JM, et al. Assessment and management of acute coronary syndromes (ACS): a Canadian perspective on current guideline-recommended treatment—part 1: non-ST-segment elevation. ACS. Can J Cardiol 2011;27(suppl A):S387-401.

44. Ko DT, Donovan LR, Huynh T, et al. A survey of primary percutaneous coronary intervention for patients with ST segment elevation myocardial infarction in Canadian hospitals. Can J Cardiol 2008;24:839-43.

45. Mason PJ, Shah B, Tamis-Holland JE, et al. An update on radial artery access and best practices for transradial coronary angiography and intervention in acute coronary syndrome: a scientific statement from the American Heart Association. Circ Cardiovasc Interv 2018;11:e000035.

46. Caputo RP, Tremmel JA, Rao S, et al. Transradial arterial access for coronary and peripheral procedures: executive summary by the Transradial Committee of the SCAI. Catheter Cardiovasc Interv 2011;78:823-39.

Supplementary Material
To access the supplementary material accompanying this article, visit CJC Open at https://www.cjcopen.ca/ and at https://doi.org/10.1016/j.cjco.2020.12.007.