Pair Correlation of the zeros of the Riemann zeta function in longer ranges

Tsz Ho Chan

November 20, 2018

Abstract

In this paper, we study a more general pair correlation function, \(F_h(x, T) \), of the zeros of the Riemann zeta function. It provides information on the distribution of larger differences between the zeros.

1 Introduction

First of all, we assume the Riemann Hypothesis on the Riemann zeta function \(\zeta(s) \) throughout this paper; \(\rho = \frac{1}{2} + i\gamma \) denotes a non-trivial zero of the Riemann zeta function.

In the early 1970s, Hugh Montgomery considered the pair correlation function

\[
F(x, T) = \sum_{0<\gamma, \gamma' \leq T} x^{i(\gamma - \gamma')} w(\gamma - \gamma') \text{ with } w(u) = \frac{4}{4 + u^2}.
\]

Here the sum is a double sum over the imaginary parts of the non-trivial zeros of \(\zeta(s) \). He proved in [9] that, as \(T \to \infty \),

\[
F(x, T) \sim \frac{T}{2\pi} \log x + \frac{T}{2\pi x^2} \log^2 T
\]

for \(1 \leq x \leq T \) (actually he only proved for \(1 \leq x \leq o(T) \) and the full range was done by Goldston [5]). He conjectured that

\[
F(x, T) \sim \frac{T}{2\pi} \log T
\]

for \(T \leq x \) which is known as the Strong Pair Correlation Conjecture. From this, one has the (Weak) Pair Correlation Conjecture:

\[
\sum_{0<\gamma, \gamma' \leq T, 0<\gamma - \gamma' \leq 2\pi \alpha/\log T} \frac{1}{2\pi} \log T \int_0^\alpha 1 - \left(\frac{\sin \pi u}{\pi u} \right)^2 du.
\]

which draws connections with random matrix theory.
The author studied these further in his thesis [1] (see also [2] and [3]) and derived more precise asymptotic formulas for $F(x, T)$ when x is in various ranges under the Twin Prime Conjecture TPC (see section 4). In the present paper, we generalize $F(x, T)$ further to

$$F_h(x, T) = \sum_{0 < \gamma, \gamma' \leq T} \cos ((\gamma - \gamma' - h) \log x) w(\gamma - \gamma' - h).$$

Note that $F_h(x, T) = F_{-h}(x, T)$ and $F_0(x, T) = F(x, T)$. This leads to a better understanding of the distribution of larger differences between the zeros. Our main results are the following theorems: Here and throughout the paper, $\tilde{h} = |h| + 1$.

Theorem 1.1. For $1 \leq x \leq \frac{T}{\log T}$,

$$F_h(x, T) = \frac{T}{2\pi} \left[\frac{4 \cos (h \log x)}{4 + h^2} \log x - \frac{8h \sin (h \log x)}{(4 + h^2)^2} \right]$$

$$+ \frac{T}{2\pi x^2} \left[\left(\log \frac{T}{2\pi} \right)^2 - 2 \log \frac{T}{2\pi} \right] + O(x \log x) + O\left(\frac{\tilde{h}T}{x^{1/2-\epsilon}} \right).$$

Theorem 1.2. Assume TPC. For $M \geq 3$ and $\frac{T}{\log M} \leq x$,

$$F_h(x, T) = \frac{T}{\pi} \left[\frac{2 \cos (h \log x)}{4 + h^2} \log x - \frac{4h \sin (h \log x)}{(4 + h^2)^2} \right]$$

$$+ \frac{T}{\pi} \int_1^\infty \left[- \frac{2 \cos (h \log x)}{4 + h^2} \frac{1}{y} - \frac{4f(y)}{y^2} \cos (h \log x) + G_1(y) + G_2(y) \right] \frac{\sin \frac{Ty}{x}}{\frac{Ty}{x}} dy$$

$$- \frac{x}{\pi} \int_0^{T/x} \frac{\sin u}{u} du \left[\frac{3 \cos (h \log x)}{9 + h^2} + \frac{h \sin (h \log x)}{9 + h^2} \right]$$

$$- \frac{x}{\pi} \int_0^{T/x} \frac{\sin u}{u} du \left[\frac{\cos (h \log x)}{1 + h^2} - \frac{h \sin (h \log x)}{1 + h^2} \right]$$

$$+ \frac{T}{\pi} \sum_{k=1}^{\infty} \frac{g(k)}{k^2} \int_0^1 y \cos (h \log \frac{kx}{y}) \frac{\sin \frac{Ty}{x}}{\frac{Ty}{x}} dy$$

$$+ O\left(\frac{\tilde{h}x^{1+6\epsilon}}{T} \right) + O(\tilde{h}x^{1/2+7\epsilon}) + O\left(\frac{\tilde{h}x^{2}}{T^{2-2\epsilon}} \right) + O\left(\frac{\tilde{h}T}{\log M-2} \right).$$

where $G_1(y)$ and $G_2(y)$ are defined in Lemma 4.2.

Theorem 1.3. Assume TPC. For $M \geq 3$ and $\frac{T}{\log M} \leq x \leq T$,

$$F_h(x, T) = \frac{T}{\pi} \left[\frac{2 \cos (h \log x)}{4 + h^2} \log x - \frac{4h \sin (h \log x)}{(4 + h^2)^2} \right] + O(\tilde{h}x) + O\left(\frac{\tilde{h}T}{\log M-2} \right).$$
Theorem 1.4. Assume TPC. For $M \geq 3$ and $T \leq x \leq T^{2-2\epsilon}$,

$$F_h(x, T) = \frac{T}{2\pi} \log \frac{T}{2\pi e} \left[\frac{4 \cos (h \log x)}{4 + h^2} \right] + O \left(\frac{\hat{T}T}{\pi \log M-2T} \right).$$

For real α, let $F_h(\alpha) := \left(\frac{T}{2\pi \log T} \right)^{-1} F_h(T, T)$. Then $F_h(\alpha) = F_h(-\alpha)$.

Based on the above theorems, one may make the following Conjecture 1.1.

For any arbitrary large A, as $T \to \infty$,

$$F_h(\alpha) = \begin{cases} (1 + o(1))T^{-2\alpha \log T} + o(1), & \text{if } 0 \leq \alpha \leq 1, \\ \frac{4 \cos (h \log T \alpha)}{4 + h^2} + o(1), & \text{if } 1 \leq \alpha \leq A. \end{cases}$$

By convolving $F_h(\alpha)$ with an appropriate kernel $\hat{r}(\alpha)$,

$$\left(\frac{T}{2\pi \log T} \right)^{-1} \sum_{0 < \gamma, \gamma' \leq T} r(\gamma - \gamma' - h) \log T \frac{T}{2\pi} w(\gamma - \gamma' - h) = \int_{-\infty}^{+\infty} F_h(\alpha) \hat{r}(\alpha) d\alpha$$

leads to

Conjecture 1.2. For fixed $\alpha > 0$,

$$\left(\frac{T}{2\pi \log T} \right)^{-1} \sum_{0 < \gamma, \gamma' \leq T} 1 \sim \int_{-\alpha + h \log T / (2\pi)}^{\alpha + h \log T / (2\pi)} 1 - \frac{4}{4 + h^2} \left(\frac{\sin \pi u}{\pi u} \right)^2 du.$$

Conjecture 1.3. For $0 < \alpha < \beta < \log T$,

$$\left(\frac{T}{2\pi \log T} \right)^{-1} \sum_{0 < \gamma, \gamma' \leq T} 1 \sim \int_{\alpha}^{\beta} \frac{1}{1 + (\pi u / \log T)^2} \left(\frac{\sin \pi u}{\pi u} \right)^2 du.$$

2 Some Lemmas

Lemma 2.1.

$$2 \sum_{\gamma} \frac{x^{i(\gamma-t)}}{1 + (t-\gamma)^2} = - \frac{1}{x} \sum_{n \leq x} \frac{\Lambda(n)}{n^{-1/2+it}} - \frac{x}{\pi} \sum_{n > x} \frac{\Lambda(n)}{n^{3/2+it}} + \frac{x^{1/2-it}}{2} + \frac{x^{1/2-it}}{2 - it}$$

$$+ \frac{\log \tau}{x} + \frac{1}{x} \left(\frac{\zeta'}{\zeta} \left(\frac{3}{2} - it \right) - \log 2\pi \right) + O \left(\frac{1}{x \tau} \right)$$

(2)

where the sum is over all the imaginary parts of the zeros of the Riemann zeta function, and $\tau = |t| + 2$. $\Lambda(n)$ is von Mangoldt’s lambda function.
Proof: This is Lemma 2.2 in [2].

Write (2) as \(\text{Left}(x, t) = \text{Right}(x, t) \). Let
\[
\begin{align*}
P(x, T) &= \frac{1}{x} \sum_{n \leq x} \frac{\Lambda(n)}{n^{1/2 + it}} + x \sum_{n > x} \frac{\Lambda(n)}{n^{3/2 + it}} - \frac{x^{1/2 - it}}{2 + it} - \frac{x^{1/2 - it}}{2 - it}, \\
Q(x, T) &= \frac{\log \tau}{x}, \\
R(x, T) &= \frac{1}{x} \left[\frac{\zeta'}{\zeta} \left(\frac{3}{2} - it \right) - \log 2 \pi \right], \\
S(x, T) &= O\left(\frac{1}{x \tau} \right).
\end{align*}
\]

Lemma 2.2.
\[
\int_0^T |\text{Left}(x, t) + \text{Left}(x, t - h)|^2 dt = 2\pi F(x, T) + 2\pi F(x, T - h) + 4\pi F_h(x, T) + O(\log^3 T) + O(h \log^2 h).
\]

Proof: This follows from page 188 of Montgomery [9] and the fact that \(F(x, T) \ll T \log 2 \).

Lemma 2.3. For \(x \geq 1 \),
\[
\int_0^T |\text{Right}(x, t) + \text{Right}(x, t - h)|^2 dt = \int_0^T |P(x, t) + P(x, t - h)|^2 dt + \frac{4T}{x^2} \left[\left(\log \frac{T}{2\pi} \right)^2 - 2 \log \frac{T}{2\pi} \right]
+ \left(\frac{1}{2} \sum_{n=1}^\infty \frac{\Lambda^2(n)(1 + \cos (h \log n))}{n^3} + 2 \right)
+ O(h \log^2 T).
\]

Proof: This is similar to the proof of Theorem 3.1 in [2].

Lemma 2.4. For \(x \geq 1 \),
\[
4\pi F_h(x, T) = \int_0^T |P(x, t) + P(x, t - h)|^2 dt - \int_0^T |P(x, t)|^2 dt - \int_0^T |P(x, t - h)|^2 dt
+ \frac{2T}{x^2} \left[\left(\log \frac{T}{2\pi} \right)^2 - 2 \log \frac{T}{2\pi} + \left(\sum_{n=1}^\infty \frac{\Lambda^2(n) \cos (h \log n)}{n^3} + 2 \right) \right]
+ O(h \log^3 T).
\]

Proof: It follows from Lemma 2.2 and Lemma 2.3 as well as their special cases when \(h = 0 \).

Lemma 2.5. For any sequence of complex numbers \(\{a_n\}_{n=1}^\infty \) with \(\sum_{n=1}^\infty n|a_n|^2 < \infty \),
\[
\int_0^T \left| \sum_{n=1}^\infty a_n e^{-itn} \right|^2 dt = \sum_{n=1}^\infty |a_n|^2 \left(T + O(n) \right).
\]
Proof: This is Parseval’s identity for Dirichlet series. See \[10\].

Lemma 2.6.

\[
\sum_{n \leq x} \Lambda^2(n) n = \frac{1}{2} x^2 \log x - \frac{1}{4} x^2 + O(x^{1/2 + \varepsilon}).
\]

\[
\sum_{n > x} \frac{\Lambda^2(n)}{n^3} = \frac{1}{2} \frac{\log x}{x^2} + \frac{1}{4 x^2} + O\left(\frac{1}{x^{5/2 - \varepsilon}}\right).
\]

Proof: Use partial summation and the prime number theorem.

Lemma 2.7. For any real \(a\) and \(b\) not both zero,

\[
\int e^{ax} \sin bx \, dx = \frac{a}{a^2 + b^2} e^{ax} \sin bx - \frac{b}{a^2 + b^2} e^{ax} \cos bx.
\]

\[
\int e^{ax} \cos bx \, dx = \frac{a}{a^2 + b^2} e^{ax} \cos bx + \frac{b}{a^2 + b^2} e^{ax} \sin bx.
\]

\[
\int xe^{ax} \sin bx \, dx = \left[\frac{ax}{a^2 + b^2} - \frac{a^2 - b^2}{(a^2 + b^2)^2} \right] e^{ax} \sin bx - \left[\frac{bx}{a^2 + b^2} - \frac{2ab}{(a^2 + b^2)^2} \right] e^{ax} \cos bx.
\]

\[
\int xe^{ax} \cos bx \, dx = \left[\frac{ax}{a^2 + b^2} - \frac{a^2 - b^2}{(a^2 + b^2)^2} \right] e^{ax} \cos bx + \left[\frac{bx}{a^2 + b^2} - \frac{2ab}{(a^2 + b^2)^2} \right] e^{ax} \sin bx.
\]

Proof: One can use \(\int e^{(a+ib)x} \, dx\), \(\int e^{(a-ib)x} \, dx\), \(\int xe^{(a+ib)x} \, dx\) and \(\int xe^{(a-ib)x} \, dx\) which are simple to compute.

Lemma 2.8.

\[
\frac{1}{x^2} \sum_{n \leq x} \Lambda^2(n) \cos (h \log n) = \frac{2 \cos (h \log x)}{4 + h^2} \log x + \frac{h^2 - 4}{(4 + h^2)^2} \cos (h \log x)
\]

\[
+ \frac{h \sin (h \log x)}{4 + h^2} \log x - \frac{4h}{(4 + h^2)^2} \sin (h \log x)
\]

\[
+ O\left(\frac{h}{x^{1/2 - \varepsilon}}\right).
\]

\[
x^2 \sum_{n > x} \frac{\Lambda^2(n)}{n} \cos (h \log n) = \frac{2 \cos (h \log x)}{4 + h^2} \log x - \frac{h^2 - 4}{(4 + h^2)^2} \cos (h \log x)
\]

\[
- \frac{h \sin (h \log x)}{4 + h^2} \log x - \frac{4h}{(4 + h^2)^2} \sin (h \log x)
\]

\[
+ O\left(\frac{h}{x^{1/2 - \varepsilon}}\right).
\]
Proof: We shall prove the first one. The other one is very similar. Let
\[A(x) = \frac{1}{x^2} \sum_{n \leq x} \Lambda^2(n)n. \]
By integration by parts and Lemma 2.6,
\[
\frac{1}{x^2} \sum_{n \leq x} \Lambda^2(n)n \cos (h \log n) = A(x) \cos (h \log x) + \frac{1}{x^2} \int_1^x A(u) \frac{\sin (h \log u)}{u} \, du
\]
which gives the desired result after applying Lemma 2.7 with \(a = 2 \) and \(b = h \), and some algebra.

3 Proof of Theorem 1.1

First, note that
\[
P(x, t) = \frac{1}{x^{1/2}} \left[\sum_{n \leq x} \Lambda(n) \left(\frac{x}{n} \right)^{-1/2 + it} + \sum_{n > x} \Lambda(n) \left(\frac{x}{n} \right)^{3/2 + it} \right] + O \left(\frac{x^{1/2}}{\tau} \right).
\]
Thus,
\[
P(x, t) + P(x, t - h) = \frac{1}{x^{1/2}} \left[\sum_{n \leq x} \Lambda(n) (1 + n^{ih}) \left(\frac{x}{n} \right)^{-1/2 + it}
+ \sum_{n > x} \Lambda(n) (1 + n^{ih}) \left(\frac{x}{n} \right)^{3/2 + it} \right] + O \left(\frac{x^{1/2}}{\tau} \right)
\]
So, the first integral in Lemma 2.4

\[
= \frac{1}{x} \int_0^T \left[\sum_{n \leq x} \Lambda(n)(1 + n^h) \left(-\frac{x}{n} \right)^{-1/2 + it} + \sum_{n > x} \Lambda(n)(1 + n^h) \left(-\frac{x}{n} \right)^{3/2 + it} \right]^2 \, dt
\]

\[
+ O\left(\int_0^T 1 \, dt \right) + O\left(\int_0^T \frac{x}{t^4} \, dt \right)
\]

\[
= \frac{1}{x} \sum_{n \leq x} \Lambda^2(n) |1 + n^h|^2 \left(-\frac{x}{n} \right)^{-1} (T + O(n))
\]

\[
+ \frac{1}{x} \sum_{n > x} \Lambda^2(n) |1 + n^h|^2 \left(-\frac{x}{n} \right)^3 (T + O(n)) + O(x)
\]

\[
= \frac{2T}{x^2} \sum_{n \leq x} \Lambda^2(n)n(1 + \cos (h \log n)) + 2T x^2 \sum_{n > x} \frac{\Lambda^2(n)}{n^3} (1 + \cos (h \log n))
\]

\[
+ O(x \log x)
\]

Similarly (or by setting \(h = 0 \)), each of the second and third integral in Lemma 2.4

\[
= \frac{T}{x^2} \sum_{n \leq x} \Lambda^2(n)n + T x^2 \sum_{n > x} \frac{\Lambda^2(n)}{n^3} + O(x \log x)
\]

Therefore,

\[
4\pi F_h(x, T) = 2T \left[\frac{1}{x^2} \sum_{n \leq x} \Lambda^2(n)n \cos (h \log n) + x^2 \sum_{n > x} \frac{\Lambda^2(n)}{n^3} \cos (h \log n) \right]
\]

\[
+ \frac{2T}{x^2} \left[\left(\log \frac{T}{2\pi} \right)^2 - 2 \log \frac{T}{2\pi} \right]
\]

\[
+ O\left(\frac{T}{x^2} \right) + O(h \log^3 T) + O(x \log x)
\]

\[
= 2T \left[\frac{4 \cos (h \log x)}{4 + h^2} \log x - \frac{8h \sin (h \log x)}{(4 + h^2)^2} \right]
\]

\[
+ \frac{2T}{x^2} \left[\left(\log \frac{T}{2\pi} \right)^2 - 2 \log \frac{T}{2\pi} \right] + O(x \log x) + O\left(\frac{T}{x^{1/2 - \epsilon}} \right)
\]

by Lemma 2.8. The theorem follows after dividing through by \(4\pi \).

4 Twin Prime Conjecture and smooth weight

We shall use a quantitative form of the Twin Prime Conjecture TPC as follow:

For any \(\epsilon > 0 \),

\[
\sum_{n=1}^N \Lambda(n) \Lambda(n + d) = \Theta(d) N + O(N^{1/2 + \epsilon}) \text{ uniformly in } |d| \leq N.
\]
\[S(d) = 2 \prod_{p > 2} (1 - \frac{1}{p^{1/2}}) \prod_{p|d, p > 2} \frac{p-1}{2} \text{ if } d \text{ is even, and } S(d) = 0 \text{ if } d \text{ is odd.} \]

Let \(K \) and \(M \) be some large positive integers (\(K \) may depend on \(\epsilon \)). Set \(U = \log M \) and \(\Delta = 1/(2^K U) \). We recall the smooth weight \(\Psi_U(t) \) in [3] with:

1. support in \([-1/U, 1+1/U]\),
2. \(0 \leq \Psi_U(t) \leq 1 \),
3. \(\Psi_U(t) = 1 \) for \(1/U \leq t \leq 1 - 1/U \),
4. \(\Psi^{(j)}_U(t) \ll U^j \) for \(j = 1, 2, \ldots, K \).

This weight function satisfies the requirements in Goldston and Gonek [4]. One more thing to note is that

\[\text{Re} \hat{\Psi}_U(y) = \frac{\sin 2\pi y}{2\pi y} \left(\frac{\sin 2\pi \Delta y}{2\pi \Delta y} \right)^{K+1} \]

where \(\hat{f}(y) = \int_{-\infty}^{\infty} f(t) e^{yt} dt \).

We also need to study

\[S^h_\alpha(y) := \sum_{k \leq y} \mathcal{S}(k) k^\alpha \cos (h \log \frac{kx}{y}) - \int_0^y u^\alpha \cos (h \log \frac{ux}{y}) du \text{ for } \alpha \geq 0, \]

and

\[T^h_\alpha(y) := \sum_{k > y} \frac{\mathcal{S}(k)}{k^\alpha} \cos (h \log \frac{kx}{y}) - \int_y^\infty \frac{1}{u^\alpha} \cos (h \log \frac{ux}{y}) du \text{ for } \alpha > 1. \]

Then from [4],

\[S_0(y) := S^0_0(y) = -\frac{1}{2} \log y + O((\log y)^{2/3}) = -\frac{1}{2} \log y + \epsilon(y). \quad (3) \]

By partial summation and Lemma 2.7,

\[S^h_\alpha(y) = \epsilon(y)y^\alpha \cos (h \log x) - \frac{\alpha \cos (h \log x)}{2(\alpha^2 + h^2)} y^\alpha - \frac{h \sin (h \log x)}{2(\alpha^2 + h^2)} y^\alpha \]

\[- \int_0^y \epsilon(u) u^{\alpha-1} \left[\alpha \cos \left(h \log \frac{ux}{y} \right) - h \sin \left(h \log \frac{ux}{y} \right) \right] du, \quad (4) \]

and

\[T^h_\alpha(y) = -\frac{\epsilon(y)}{y^\alpha} \cos (h \log x) - \frac{\alpha \cos (h \log x)}{2(\alpha^2 + h^2)} \frac{1}{y^\alpha} + \frac{h \sin (h \log x)}{2(\alpha^2 + h^2)} \frac{1}{y^\alpha} \]

\[+ \int_y^\infty \frac{\epsilon(u)}{u^{\alpha+1}} \left[\alpha \cos \left(h \log \frac{ux}{y} \right) + h \sin \left(h \log \frac{ux}{y} \right) \right] du. \quad (5) \]
Let
\[f(y) := \int_0^y \epsilon(u) - \frac{B}{2} \, du \]
where \(B = -C_0 - \log 2\pi \) and \(C_0 \) is Euler’s constant. Note that
\[f(y) \ll y^{1/2+\epsilon} \]
(see Lemma 2.2 of [3]). From (4) and (5),
\begin{align*}
 S_h^b(y) \frac{1}{y^3} + T_h^b(y) y \\
 & = - \frac{2 \cos (h \log x)}{4 + h^2} \frac{1}{y^3} \int_0^y u \epsilon(u) \left[2 \cos \left(h \log \frac{ux}{y} \right) - h \sin \left(h \log \frac{ux}{y} \right) \right] du \\
 & \quad + y \int_y^{\infty} \frac{\epsilon(u)}{u^3} \left[2 \cos \left(h \log \frac{ux}{y} \right) + h \sin \left(h \log \frac{ux}{y} \right) \right] du.
\end{align*}

Lemma 4.1.

\[I + J = - \frac{1}{y^3} \int_0^y u \epsilon(u) \left[2 \cos \left(h \log \frac{ux}{y} \right) - h \sin \left(h \log \frac{ux}{y} \right) \right] du \\
\quad + y \int_y^{\infty} \frac{\epsilon(u)}{u^3} \left[2 \cos \left(h \log \frac{ux}{y} \right) + h \sin \left(h \log \frac{ux}{y} \right) \right] du \\
\quad = - \frac{4f(y)}{y} \cos (h \log x) \\
\quad \quad + \frac{1}{y^3} \int_0^y f(u) \left[(2 - h^2) \cos \left(h \log \frac{ux}{y} \right) - 3h \sin \left(h \log \frac{ux}{y} \right) \right] du \\
\quad \quad + y \int_y^{\infty} f(u) \left[(6 - h^2) \cos \left(h \log \frac{ux}{y} \right) + 5h \sin \left(h \log \frac{ux}{y} \right) \right] du.
\]

Proof: \(I \) can be rewritten as
\begin{align*}
 - \frac{1}{y^3} \int_0^y u \left(\epsilon(u) - \frac{B}{2} \right) \left[2 \cos \left(h \log \frac{ux}{y} \right) - h \sin \left(h \log \frac{ux}{y} \right) \right] du \\
 - \frac{B}{2} \frac{1}{y^3} \int_0^y u \left[2 \cos \left(h \log \frac{ux}{y} \right) - h \sin \left(h \log \frac{ux}{y} \right) \right] du = -I_1 - I_2.
\end{align*}

By a substitution \(v = \log \frac{ux}{y} \) and Lemma 2.7
\[I_2 = \frac{B}{2} \frac{1}{y} \cos (h \log x). \]
(8)

By integration by parts and (6),
\begin{align*}
 I_1 &= \frac{f(y)}{y^2} \left[2 \cos (h \log x) - h \sin (h \log x) \right] \\
 \quad \quad - \frac{1}{y^3} \int_0^y f(u) \left[(2 - h^2) \cos \left(h \log \frac{ux}{y} \right) - 3h \sin \left(h \log \frac{ux}{y} \right) \right] du.
\end{align*}
(9)
Similarly, J can be rewritten as
\[
y \int_1^\infty \frac{e(u)}{u^3} \left[\frac{B}{2} \right] 2 \cos \left(h \log \frac{ux}{y} \right) + h \sin \left(h \log \frac{ux}{y} \right) du
\]
\[
+ \frac{B}{2} y \int_1^\infty \frac{1}{u^3} \left[2 \cos \left(h \log \frac{ux}{y} \right) + h \sin \left(h \log \frac{ux}{y} \right) \right] du = J_1 + J_2
\]

By a substitution $v = \log \frac{ux}{y}$ and Lemma 2.7,
\[
J_2 = \frac{B}{2} \left(\frac{1}{y} \cos \left(h \log x \right) \right).
\]

By integration by parts and (6),
\[
J_1 = -\frac{f(y)}{y^2} \left[2 \cos \left(h \log x \right) + \frac{1}{4 + h^2} \right] \left[2 \cos \left(h \log \frac{ux}{y} \right) - 3h \sin \left(h \log \frac{ux}{y} \right) \right]
\]
\[
+ \frac{4f(y)}{y^2} \cos \left(h \log x \right) + G_1(y) + G_2(y)
\]

where
\[
G_1(y) = \frac{1}{y^n} \int_0^y f(u) \left[(2 - h^2) \cos \left(h \log \frac{ux}{y} \right) - 3h \sin \left(h \log \frac{ux}{y} \right) \right] du,
\]

and
\[
G_2(y) = y \int_0^\infty \frac{f(u)}{u^4} \left[(6 - h^2) \cos \left(h \log \frac{ux}{y} \right) + 5h \sin \left(h \log \frac{ux}{y} \right) \right] du.
\]

Proof: Combine (7) and Lemma 4.1.

Lemma 4.2. $S_2(y) + T_2(y) = -\frac{2 \cos \left(h \log x \right)}{4 + h^2} \left[2 \cos \left(h \log \frac{ux}{y} \right) - 3h \sin \left(h \log \frac{ux}{y} \right) \right] \left(6 - h^2 \right) \cos \left(h \log \frac{ux}{y} \right) + 5h \sin \left(h \log \frac{ux}{y} \right) + G_1(y) + G_2(y)$

Proof: Combine (9), (10), and (11) together gives the lemma.

Lemma 4.3. For any integer $n \geq 1$,
\[
\int_1^\infty \frac{1}{y^n} \Re \hat{\Psi}_U \left(\frac{Ty}{2\pi x} \right) dy = \int_1^\infty \frac{1}{y^n} \sin \frac{Ty}{2y} \frac{dy}{x} + O \left(\Delta \log \frac{1}{\Delta} \right).
\]

When $n \neq 2$, the error term can be replaced by $O(\Delta)$.

Proof: This is Lemma 3.3 in [3].

Lemma 4.4. If $F(y) \ll y^{-3/2+c}$ for $y \geq 1$, then
\[
\int_1^\infty F(y) \Re \hat{\Psi}_U \left(\frac{Ty}{2\pi x} \right) dy = \int_1^\infty F(y) \sin \frac{Ty}{2y} \frac{dy}{x} + O(\Delta).
\]

Proof: This is Lemma 3.4 in [3].
5 Proof of Theorem 1.2

Throughout this section, we assume $\tau = T^{1-\epsilon} \leq T/\log^M T \leq x \leq T^{2-2\epsilon}$, $U = \log^M T$ for $M > 2$, $H^* = \tau^{-2}x^{2/(1-\epsilon)}$, and $\Psi_U(t)$ is defined as in the previous section. The implicit constants in the error terms may depend on ϵ, K, and M.

Our method is that of Goldston and Gonek $[6]$ and it is very similar to $[3]$. Let $s = \sigma + it$,

$$A_h(s) := \sum_{n \leq x} \frac{\Lambda(n)(1 + n^h)}{n^s}$$

and $A^*_h(s) := \sum_{n > x} \frac{\Lambda(n)(1 + n^h)}{n^s}$.

By Lemma 2.4 with slight modifications, one has

$$4\pi F_h(x, T) = \int_0^T \left| \frac{1}{x} (A_h(-\frac{1}{2} + it) - \int_1^x (1 + u^h)u^{1/2-it}du) \right|^2 dt$$

$$+ x \left| A^*_h(-\frac{3}{2} + it) - \int_1^\infty (1 + u^h)u^{-3/2-it}du \right|^2$$

$$-2 \int_0^T \left| \frac{1}{x} (A(-\frac{1}{2} + it) - \int_1^x u^{1/2-it}du) \right|^2 dt$$

$$+ x \left| A^*(\frac{3}{2} + it) - \int_1^\infty u^{-3/2-it}du \right|^2 dt + O(\tilde{h} \log^3 T).$$

Inserting $\Psi_U(t/T)$ into the integral and extending the range of integration to the whole real line, we have

$$4\pi F(x, T) = \frac{1}{x^2} I_1(x, T) + x^2 I_2(x, T) - \frac{2}{x^2} I_3(x, T) - 2x^2 I_4(x, T)$$

$$+ O\left(\frac{T(\log T)^2}{U}\right) + O\left(\frac{x^{1+6\epsilon}}{T}\right),$$

(12)

where

$$I_1(x, T) = \int_{-\infty}^\infty |A_h(-\frac{1}{2} + it) - \int_1^x (1 + u^h)u^{1/2-it}du|^2 \Psi_U(t/T)dt,$$

$$I_2(x, T) = \int_{-\infty}^\infty |A^*_h(\frac{3}{2} + it) - \int_1^\infty (1 + u^h)u^{-3/2-it}du|^2 \Psi_U(t/T)dt,$$

$$I_3(x, T) = \int_{-\infty}^\infty |A(-\frac{1}{2} + it) - \int_1^x u^{1/2-it}du|^2 \Psi_U(t/T)dt,$$

$$I_4(x, T) = \int_{-\infty}^\infty |A^*(\frac{3}{2} + it) - \int_1^\infty u^{-3/2-it}du|^2 \Psi_U(t/T)dt$$

by Lemma 1 of $[3]$ with modification $V = -T/U$ and $T - T/U$, and $W = 2T/U$. The contribution from the cross terms are estimated via Theorem 3 of $[3]$. Note
that by partial summation with the Riemann Hypothesis and TPC,
\[
\sum_{n \leq x} \Lambda(n)(1 + n^h) = \int_1^x (1 + u^h) \, du + O(\tilde{h}x^{3/2+\epsilon}),
\]
\[
\sum_{n \leq x} \Lambda(n)\Lambda(n + k)(1 + n^h)(1 + (n + k)^{-ih})
\]
\[= \mathcal{G}(k) \int_1^x (1 + u^h)(1 + (u + k)^{-ih}) \, du + O(\tilde{h}x^{3/2+\epsilon}).
\]

By Corollary 1 of [8] (see also the calculations at the end of [7] and [9]),
\[
I_1(x, T) = \hat{\Psi}_U(0)T \sum_{n \leq x} \Lambda^2(n)n[1 + n^h]^2
\]
\[+ 4\pi \left(\frac{T}{2\pi} \right)^3 \int_{T/2\pi}^{\infty} \int_{T/2\pi}^{\infty} \left(\sum_{k \leq 2\pi xv/T} \mathcal{G}(k)k^2\left(1 + \left(\frac{kT}{2\pi v} \right)^{ih}\right) \right.
\]
\[\times \left(1 + \left(\frac{kT}{2\pi v} + k\right)^{-ih}\right) Re\hat{\Psi}_U(v) \frac{dv}{v^3}
\]
\[\left. - 4\pi \left(\frac{T}{2\pi} \right)^3 \int_{T/2\pi}^{\infty} \int_{0}^{2\pi xv/T} u^2\left[1 + \left(\frac{uT}{2\pi v} \right)^{ih}\right]^2 du\right]\frac{dv}{v^3}
\]
\[+ O\left(\frac{\tilde{h}x^{3+6\epsilon}}{T} \right) + O(\tilde{h}x^{5/2+\epsilon}).
\]

Note that
\[
\left(1 + \left(\frac{kT}{2\pi v} \right)^{ih}\right)\left(1 + \left(\frac{kT}{2\pi v} + k\right)^{-ih}\right)
\]
\[= \left|1 + \left(\frac{kT}{2\pi v} \right)^{ih}\right|^2 + \left(1 + \left(\frac{kT}{2\pi v} \right)^{ih}\right)\left(\frac{kT}{2\pi v} + k\right)^{-ih} - \left(\frac{kT}{2\pi v} \right)^{-ih}
\]
\[= \left|1 + \left(\frac{kT}{2\pi v} \right)^{ih}\right|^2 + \left(1 + \left(\frac{kT}{2\pi v} \right)^{ih}\right)\left(\frac{kT}{2\pi v} \right)^{-ih} \left(1 + \frac{2\pi v}{T}\right)^{-ih} - 1
\]
\[= \left|1 + \left(\frac{kT}{2\pi v} \right)^{ih}\right|^2 + O\left(\min\left(\frac{hv}{T}, 1 \right) \right).
\]

Thus,
\[
\int_{T/2\pi}^{\infty} \left[\sum_{k \leq 2\pi xv/T} \mathcal{G}(k)k^2\left(1 + \left(\frac{kT}{2\pi v} \right)^{ih}\right)\left(1 + \frac{kT}{2\pi v} + k\right)^{-ih}\right] Re\hat{\Psi}_U(v) \frac{dv}{v^3}
\]
\[= \int_{T/2\pi}^{\infty} \left[\sum_{k \leq 2\pi xv/T} \mathcal{G}(k)k^2\left|1 + \left(\frac{kT}{2\pi v} \right)^{ih}\right|^2 \right] Re\hat{\Psi}_U(v) \frac{dv}{v^3}
\]
\[+ O\left(\int_{T/2\pi}^{T+\epsilon/x} \frac{xv}{T} \frac{dv}{T} \frac{1}{v^3} \right) + \int_{T/2\pi}^{\infty} \left(\frac{xv}{T} \right)^3 \frac{1}{\Delta v^2} \frac{dv}{v^8}
\]
\[= \int_{T/2\pi}^{\infty} \left[\sum_{k \leq 2\pi xv/T} \mathcal{G}(k)k^2\left|1 + \left(\frac{kT}{2\pi v} \right)^{ih}\right|^2 \right] Re\hat{\Psi}_U(v) \frac{dv}{v^3} + O\left(\frac{\tilde{h}x^2}{T^{2+\epsilon}} + \frac{x^4}{\Delta T^{5-\epsilon}} \right).
\]
as \(\sum_{k \leq x} \mathcal{S}(k) \sim x \) and \(\text{Re} \hat{\Psi}_U(v) \ll \min \left(\frac{1}{v}, \frac{1}{\Delta v^2} \right) \). Therefore,

\[
I_1(x, T) = T \sum_{n \leq x} \Lambda^2(n) n (2 + 2 \cos (h \log n)) \\
+ 4\pi \left(\frac{T}{2\pi} \right)^3 \int_{T/2\pi}^\infty \left[\sum_{k \leq 2\pi xv/T} \mathcal{S}(k) k^2 \left(2 + 2 \cos \left(h \log \frac{kT}{2\pi v} \right) \right) \\
- \int_0^{2\pi xv/T} u^2 \left(2 + 2 \cos \left(h \log \frac{uT}{2\pi v} \right) \right) du \text{Re} \hat{\Psi}_U(v) \frac{dv}{v^3} \right] \\
- 4\pi \left(\frac{T}{2\pi} \right)^3 \int_{T/2\pi}^{T} \int_{2\pi xv/T}^{2\pi xv/T} u^2 \left(2 + 2 \cos \left(h \log \frac{uT}{2\pi v} \right) \right) du \text{Re} \hat{\Psi}_U(v) \frac{dv}{v^3} \\
\quad + O \left(\frac{\hat{h}x^{3+6\epsilon}}{T} \right) + O(\hat{h}x^{5/2+7\epsilon}) + O(\hat{h}x^2 T^{-1-\epsilon}) + O \left(\frac{x^4}{\Delta T^{2-\epsilon}} \right) .
\]

Similarly, by Corollary 2 of [6],

\[
I_2(x, T) = T \sum_{n \leq x} \frac{\Lambda^2(n)}{n^3} (2 + 2 \cos (h \log n)) \\
+ 8\pi^2 T \int_0^{T H^*/2\pi} \left[\sum_{2\pi xv/T \leq k \leq H^*} \frac{\mathcal{S}(k)}{k^2} \left(2 + 2 \cos \left(h \log \frac{kT}{2\pi v} \right) \right) \\
- \int_{2\pi xv/T}^{H^*} \frac{1}{u^2} \left(2 + 2 \cos \left(h \log \frac{uT}{2\pi v} \right) \right) du \text{Re} \hat{\Psi}_U(v) \frac{dv}{v^3} \right] \\
+ O \left(\frac{\hat{h}T^{-1} x^{-1+6\epsilon}}{\Delta} \right) + O(\hat{h}x^{-3/2+7\epsilon}) + O(\hat{h}T^{-1/2} x^{-2}) + O \left(\frac{\hat{H}^*}{\Delta x^2} \right)
\]

where the last error term comes from the error term in (13). \(I_3(x, T) \) and \(I_4(x, T) \) are computed in [3] or one can simply set \(h = 0 \) in \(I_1(x, T) \) and \(I_2(x, T) \), and divide by 4. Putting these into (12) with a substitution \(\gamma = \frac{2\pi xv}{T} \) and using

13
Lemma 2.8

\[4\pi F_h(x, T)\]

\[= 2T \left[\frac{4 \cos (h \log x)}{4 + h^2} \log x - \frac{8h \sin (h \log x)}{(4 + h^2)^2} \right] + 4T \int_1^\infty \left[\sum_{k \leq y} \mathcal{S}(k) k^2 \cos \left(k \frac{h}{y} \right) - \int_0^y u^2 \cos \left(\frac{ux}{y} \right) du \right] \text{Re} \hat{\Psi}_U \left(\frac{T y}{2\pi x} \right) \frac{dy}{y^3} - 4T \int_0^1 \int_0^y u^2 \cos \left(\frac{ux}{y} \right) du \text{Re} \hat{\Psi}_U \left(\frac{T y}{2\pi x} \right) \frac{dy}{y^3} + 4T \int_1^H \left[\sum_{y \leq k \leq H} \mathcal{S}(k) \cos \left(\frac{h k}{y} \right) \frac{k}{y^2} - \int_y^H \cos \left(\frac{h}{y} \right) dy \right] \text{Re} \hat{\Psi}_U \left(\frac{T y}{2\pi x} \right) \frac{dy}{y^3} + 4T \int_1^H \left[\sum_{y \leq k \leq H} \mathcal{S}(k) \cos \left(\frac{h k}{y} \right) \frac{k}{y^2} - \int_y^H \cos \left(\frac{h}{y} \right) dy \right] \text{Re} \hat{\Psi}_U \left(\frac{T y}{2\pi x} \right) \frac{dy}{y^3} + O \left(\frac{h x^{1+6\epsilon}}{T} \right) + O \left(h x^{1/2+7\epsilon} \right) + O \left(\frac{h^2}{\log M - 2T} \right) \right] + O \left(\frac{\tilde{h} x^2 T^2}{x^3} \right) + O \left(\frac{\tilde{h} T \log M}{x} \right).

From Lemma 2.7

\[\int e^{ax} \cos bx = \frac{a}{a^2 + b^2} e^{ax} \cos bx + \frac{b}{a^2 + b^2} e^{ax} \sin bx. \quad (14)\]

Also,

\[\int_0^1 \text{Re} \hat{\Psi}_U \left(\frac{T y}{2\pi x} \right) dy = \frac{x}{T} \int_0^{T/x} \sin u \frac{dy}{u} (1 + O(\Delta^2 u^2)) du = \frac{x}{T} \int_0^{T/x} \sin u \frac{dy}{u} du + O \left(\frac{\Delta^2 T}{x} \right). \quad (15)\]

By appropriate change of variables, (14) and (15),

\[\int_0^1 \int_0^y u^2 \cos \left(\frac{ux}{y} \right) du \text{Re} \hat{\Psi}_U \left(\frac{T y}{2\pi x} \right) \frac{dy}{y^3} = \frac{x}{T} \int_0^{T/x} \sin u \frac{dy}{u} \left[\frac{3}{9 + h^2} \cos \left(\frac{h x}{y} \right) + \frac{h}{9 + h^2} \sin \left(\frac{h x}{y} \right) \right] + O \left(\frac{\Delta^2 T}{x} \right). \]

\[\int_0^1 \left[\sum_{k \leq H} \mathcal{S}(k) \cos \left(\frac{h k}{y} \right) \frac{k}{y^2} - \int_y^H \cos \left(\frac{h}{y} \right) dy \right] \text{Re} \hat{\Psi}_U \left(\frac{T y}{2\pi x} \right) \frac{dy}{y^3} = \sum_{k=1}^\infty \mathcal{S}(k) \frac{k}{y^2} \int_0^y \cos \left(\frac{h k}{y} \right) \frac{dy}{y^2} + O \left(\frac{1}{H^2} \right) + O \left(\frac{\Delta^2 T}{x} \right) \right] - \frac{x}{T} \int_0^{T/x} \sin u \frac{dy}{u} \left[\frac{1}{1 + h^2} \cos \left(\frac{h x}{y} \right) - \frac{h}{1 + h^2} \sin \left(\frac{h x}{y} \right) \right] + O \left(\frac{\Delta^2 T}{x} \right) + \frac{\tilde{h} x^2 T^2}{x^3} + \frac{\tilde{h} T \log M}{x}. \]
Therefore, with the notation $S^h_\alpha(y)$ and $T^h_\alpha(y)$,

\[
4\pi F_h(x, T) = 2T \left[\frac{4\cos(h \log x)}{4 + h^2} \log x - \frac{8h \sin(h \log x)}{(4 + h^2)^2} \right] + 4T \int_1^\infty S^h_2(y) \Re \Psi_U \left(\frac{Ty}{2\pi x} \right) \frac{dy}{y^3} + 4T \int_1^{H^*} (T^h_2(y) - T^h_2(H^*)) \Re \Psi_U \left(\frac{Ty}{2\pi x} \right) dy - 4x \int_0^{T/x} \frac{\sin u}{u} du \left[\frac{3 \cos(h \log x)}{9 + h^2} + \frac{h \sin(h \log x)}{9 + h^2} \right] - 4x \int_0^{T/x} \frac{\sin u}{u} du \left[\frac{\cos(h \log x)}{1 + h^2} - \frac{h \sin(h \log x)}{1 + h^2} \right] - 4x \int_0^{T/x} \frac{\sin u}{u} du \left[\log(1 + ud) - \log(1 + ud) \right] + 4T \sum_{k=1}^{\infty} \frac{1}{k^2} \int_0^{1} y \cos(h \log kx/y) \frac{\sin \left(\frac{T_y}{T_x} \right)}{x} dy + O \left(\frac{h x^{1/2+\epsilon}}{T} \right) + \frac{\hbar x^2}{T^{2-2\epsilon}} + O \left(\frac{h T}{\log x} \right).
\]

By (3) and (5), $T^h_2(H^*) \ll \frac{h(\log H^*)^{2/3}}{(H^*)^2}$. It follows that the contribution from $T^h_2(H^*)$ in the second integral is $O(hT^{-\epsilon})$. Also, one can extend the upper limit of the second integral to ∞ with an error $O(hT^{-\epsilon})$ by (3) and (5) again. Finally, we obtain the theorem by applying Lemma 1.2, Lemma 1.3, Lemma 1.4, (6) and dividing by 4π.

6 Proof of Theorem 1.3 and 1.4

Proof of Theorem 1.3. It follows directly from Theorem 1.2 by observing that all the other main terms besides the first one are $O(x)$ because of (5).

Before proving Theorem 1.4, we need the following lemmas.

Lemma 6.1.

\[
\int_1^\infty \frac{\sin ax}{x^{2n}} dx = \frac{a^{2n-1}}{(2n-1)!} \sum_{k=1}^{2n-1} \frac{(2n-k-1)!}{a^{2n-k}} \left[\sin \left(a + (k-1) \frac{\pi}{2} \right) + (-1)^{k+1}ci(a) \right]
\]

where $ci(x) = -\int_x^\infty \frac{\cos t}{t} dt = C_0 + \log x + \int_0^x \frac{\cos t - 1}{t} dt$ and C_0 is Euler’s constant.

Proof: This is formula 3.761(3) on P.430 of [8] which can be proved by integration by parts repeatedly.
Lemma 6.2. If $F(y) \ll y^{-3/2+\epsilon}$ for $y \geq 1$, then for $T \leq x$,
\[
\int_{1}^{\infty} F(y) \sin \frac{T y}{T x} \, dy = \int_{1}^{\infty} F(y) \, dy + O \left(\left(\frac{T x}{x} \right)^{1/2-\epsilon} \right).
\]

Proof: This is Lemma 5.2 in [3].

Lemma 6.3.

\[
I = \int_{1}^{\infty} \int_{1}^{\infty} f(u) \left[(2 - h^2) \cos (h \log \frac{ux}{y}) - 3h \sin (h \log \frac{ux}{y}) \right] \, du \, dy
\]
\[
= \int_{1}^{1} f(u) \cos (h \log ux) - h \sin (h \log ux) \, du
\]
\[
+ \int_{1}^{\infty} \frac{f(u)}{u^2} \, du \left[\cos (h \log x) - h \sin (h \log x) \right].
\]

Proof: Because of [6], we can change the order of integration.

\[
I = \int_{1}^{1} f(u) \int_{1}^{\infty} \frac{1}{y^2} \left[(2 - h^2) \cos (h \log \frac{ux}{y}) - 3h \sin (h \log \frac{ux}{y}) \right] \, dy \, du
\]
\[
+ \int_{1}^{\infty} f(u) \int_{u}^{\infty} \frac{1}{y^2} \left[(2 - h^2) \cos (h \log \frac{ux}{y}) - 3h \sin (h \log \frac{ux}{y}) \right] \, dy \, du
\]
\[
= \int_{1}^{1} f(u) \left\{ \left(2 - h^2\right) \left[\frac{2}{4 + h^2} \cos (h \log ux) + \frac{h}{4 + h^2} \sin (h \log ux) \right]
\right.
\]
\[
- 3h \left[\frac{2}{4 + h^2} \sin (h \log ux) - \frac{h}{4 + h^2} \cos (h \log ux) \right] \right\} \, du
\]
\[
+ \int_{1}^{\infty} \frac{f(u)}{u^2} \left\{ \left(2 - h^2\right) \left[\frac{2}{4 + h^2} \cos (h \log x) + \frac{h}{4 + h^2} \sin (h \log x) \right]
\right.
\]
\[
- 3h \left[\frac{2}{4 + h^2} \sin (h \log x) - \frac{h}{4 + h^2} \cos (h \log x) \right] \right\} \, du.
\]

by substituting $v = \log \frac{ux}{y}$ and applying Lemma 2.4. The lemma follows after some simple algebra.

Lemma 6.4.

\[
J = \int_{1}^{\infty} \int_{1}^{\infty} f(u) \left[(6 - h^2) \cos (h \log \frac{ux}{y}) + 5h \sin (h \log \frac{ux}{y}) \right] \, du \, dy
\]
\[
= - \int_{1}^{\infty} \frac{f(u)}{u^4} \left[3 \cos (h \log ux) + h \sin (h \log ux) \right] \, du
\]
\[
+ \int_{1}^{\infty} \frac{f(u)}{u^2} \left[3 \cos (h \log x) + h \sin (h \log x) \right].
\]
Proof: Again, because of (6), we can change the order of integration.

\[J = \int_1^\infty \int_1^u \left[(6 - h^2) \cos \left(h \log \frac{ux}{y} \right) + 5h \sin \left(h \log \frac{ux}{y} \right) \right] dy \, du \]

\[= \int_1^\infty \frac{f(u)}{u^2} \left\{ (6 - h^2) \left[\frac{-2}{4 + h^2} \cos \left(h \log \frac{ux}{y} \right) + \frac{h}{4 + h^2} \sin \left(h \log \frac{ux}{y} \right) \right]
+ 5h \left[\frac{-2}{4 + h^2} \sin \left(h \log \frac{ux}{y} \right) - \frac{h}{4 + h^2} \cos \left(h \log \frac{ux}{y} \right) \right]
- (6 - h^2) \left[\frac{-2}{4 + h^2} \cos \left(h \log \frac{ux}{y} \right) + \frac{h}{4 + h^2} \sin \left(h \log \frac{ux}{y} \right) \right]
- 5h \left[\frac{-2}{4 + h^2} \sin \left(h \log \frac{ux}{y} \right) - \frac{h}{4 + h^2} \cos \left(h \log \frac{ux}{y} \right) \right] \right\} du. \]

By substituting \(v = \log \frac{ux}{y} \) and applying Lemma 2.7, the lemma follows after some simple algebra.

Lemma 6.5.

\[S = \sum_{k=1}^{\infty} \frac{\mathcal{S}(k)}{k^2} \int_0^1 y \cos \left(h \log \frac{kx}{y} \right) dy \]

\[= \left[\frac{1}{1 + h^2} \cos \left(h \log \frac{kx}{y} \right) - \frac{h}{1 + h^2} \sin \left(h \log \frac{kx}{y} \right) \right] \]

\[\quad - \left[\frac{4 - h^2}{2(4 + h^2)^2} \cos \left(h \log \frac{kx}{y} \right) - \frac{2h}{(4 + h^2)^2} \sin \left(h \log \frac{kx}{y} \right) \right] \]

\[+ \frac{B}{2} \left[\frac{2}{4 + h^2} \cos \left(h \log \frac{kx}{y} \right) - \frac{h}{4 + h^2} \sin \left(h \log \frac{kx}{y} \right) \right] + \left(1 + \frac{B}{2} \right) \cos \left(h \log \frac{kx}{y} \right)
+ \int_1^\infty \frac{f(u)}{u^4} \left[3 \cos \left(h \log \frac{ux}{y} \right) + h \sin \left(h \log \frac{ux}{y} \right) \right] du. \]

Proof: By substituting \(v = \log \frac{kx}{y} \) and Lemma 2.7,

\[S = \frac{2}{4 + h^2} \sum_{k=1}^{\infty} \frac{\mathcal{S}(k)}{k^2} \cos \left(h \log kx \right) - \frac{h}{4 + h^2} \sum_{k=1}^{\infty} \frac{\mathcal{S}(k)}{k^2} \sin \left(h \log kx \right). \]
Recall the definition of $S_0(u)$ from (3) and use partial summation,

\[S = \frac{2}{4 + h^2} \int_1^\infty S_0(u) + u \left[2 \cos (h \log ux) + h \sin (h \log ux) \right] du \]

\[- \frac{h}{4 + h^2} \int_1^\infty S_0(u) + u \left[-h \cos (h \log ux) + 2 \sin (h \log ux) \right] du \]

\[= \int_1^\infty \frac{S_0(u) + u}{u^3} \cos (h \log ux) du \]

\[- \frac{h}{u^3} \int_1^\infty \log u + \epsilon(u) \cos (h \log ux) du \]

\[= \int_1^\infty \frac{1}{u^3} \cos (h \log ux) du - \frac{h}{2} \int_1^\infty \frac{\log u}{u^3} \cos (h \log ux) du \]

\[+ \frac{B}{2} \int_1^\infty \frac{1}{u^3} \cos (h \log ux) du + \int_1^\infty \frac{\epsilon(u) - B}{u^3} \cos (h \log ux) du \]

\[= I_1 - \frac{1}{2} I_2 + \frac{B}{2} I_3 + I_4. \]

By appropriate substitution and Lemma 2.4,

\[I_1 = \frac{1}{1 + h^2} \cos (h \log x) - \frac{h}{1 + h^2} \sin (h \log x), \]

\[I_2 = \frac{4 - h^2}{(4 + h^2)^2} \cos (h \log x) - \frac{2h}{(4 + h^2)^2} \sin (h \log x), \]

\[I_3 = \frac{2}{4 + h^2} \cos (h \log x) - \frac{h}{4 + h^2} \sin (h \log x). \]

Finally, by integration by parts,

\[I_4 = \int_1^\infty \frac{\cos (h \log ux)}{u^3} df(u) \]

\[= \left(1 + \frac{B}{2}\right) \cos (h \log x) + \int_1^\infty \frac{f(u)}{u^4} [3 \cos (h \log ux) + h \sin (h \log ux)] du \]

because $f(1) = -1 - \frac{B}{2}$. Combining the results for I_1, I_2, I_3 and I_4, we have the lemma.

Lemma 6.6.

\[\int_0^1 f(u) [\cos (h \log ux) - h \sin (h \log ux)] du \]

\[= - \frac{1}{2} \left[\frac{4 + 3h^2}{(4 + h^2)^2} \cos (h \log x) + \frac{h^3}{(4 + h^2)^2} \sin (h \log x) \right] \]

\[- \left(\frac{1}{2} + \frac{B}{2} \right) \left[\frac{2 + h^2}{4 + h^2} \cos (h \log x) - \frac{h}{4 + h^2} \sin (h \log x) \right] \]

\[- \frac{1}{2} \left[\frac{3 + h^2}{9 + h^2} \cos (h \log x) - \frac{2h}{9 + h^2} \sin (h \log x) \right]. \]
Proof: The key is $\epsilon(u) = \frac{1}{2} \log u - u$ when $0 \leq u \leq 1$ (see (3)). So,

$$f(u) = \int_0^u \epsilon(v) - \frac{B}{2} \, dv = \frac{1}{2} u \log u - \left(\frac{1}{2} + \frac{B}{2} \right) u - \frac{1}{2} u^2.$$

Putting this into the integral and evaluating the integral piece by piece with suitable substitution and Lemma 2.7, one gets the lemma.

Proof of Theorem 1.4: First observe that when $T \leq x \leq T^2 - 29e$, the error terms in Theorem 1.2 is $O\left(\frac{hT}{\log M - 2} \right)$. Rewrite Theorem 1.2 as

$$F_h(x, T) = T_1 + T_2 + T_3 + T_4 + T_5 + O\left(\frac{\tilde{h}T}{\log M - 2} \right).$$

Since $\frac{\sin u}{u} = 1 + O(u^2),$

$$T_3 = -\frac{T}{\pi} \left[\frac{3 \cos (h \log x)}{9 + h^2} + \frac{h \sin (h \log x)}{9 + h^2} \right] + O\left(T \left(\frac{T}{x} \right)^2 \right),$$

$$T_4 = -\frac{T}{\pi} \left[\frac{\cos (h \log x)}{1 + h^2} - \frac{h \sin (h \log x)}{1 + h^2} \right] + O\left(T \left(\frac{T}{x} \right)^2 \right).$$

By Lemma 3.5

$$T_5 = \frac{T}{\pi} \sum_{k=1}^{\infty} \frac{\mathcal{S}(k)}{k^2} \int_0^1 y \cos \left(\frac{h \log kx}{y} \right) \, dy + O\left(T \left(\frac{T}{x} \right)^2 \right)$$

$$= \frac{T}{\pi} \left[\frac{\cos (h \log x)}{1 + h^2} - \frac{h \sin (h \log x)}{1 + h^2} \right]$$

$$- \frac{T}{\pi} \left[\frac{4 - h^2}{2(4 + h^2)^2} \cos (h \log x) - \frac{2h}{(4 + h^2)^2} \sin (h \log x) \right]$$

$$+ \frac{T}{\pi} \left[\frac{2 \cos (h \log x)}{4 + h^2} - \frac{h \sin (h \log x)}{4 + h^2} \right] + \frac{T}{\pi} \left(1 + \frac{B}{2} \right) \cos (h \log x)$$

$$+ \frac{T}{\pi} \int_1^{\infty} \frac{f(u)}{u^2} \left[3 \cos (h \log ux) + h \sin (h \log ux) \right] du + O\left(T \left(\frac{T}{x} \right)^2 \right).$$

19
By Lemma 6.1 and Lemma 6.2, Lemma 6.3, Lemma 6.4, and Lemma 6.6

\[T_2 = - \frac{2x \cos (h \log x)}{\pi (4 + h^2)} \int_1^\infty \frac{Ty}{y^2} dy - \frac{4T}{\pi} \cos (h \log x) \int_1^\infty \frac{f(y)}{y^2} dy + \frac{T}{\pi} \int_1^\infty (G_1(y) + G_2(y)) dy + O\left(\frac{T}{x} \right)^{1/2-\epsilon} + O\left(\frac{hT}{\log^M T} \right) \]

\[= - \frac{2x \cos (h \log x)}{\pi (4 + h^2)} \int_1^\infty \frac{Ty}{y^2} dy + O\left(\frac{hT}{\log^M T} \right) \]

\[+ \frac{T}{\pi} \int_0^1 \frac{f(u)}{u^4} \left[3 \cos (h \log ux) + h \sin (h \log ux) \right] du + O\left(\frac{T}{x} \right)^{1/2-\epsilon} \]

\[= - \frac{2x \cos (h \log x)}{\pi (4 + h^2)} \int_1^\infty \frac{Ty}{y^2} dy + O\left(\frac{hT}{\log^M T} \right) \]

\[- \frac{T}{\pi} \left(\frac{1}{2} + \frac{B}{2} \right) \left[\frac{2 + h^2}{4 + h^2} \cos (h \log x) - \frac{h}{4 + h^2} \sin (h \log x) \right] \]

\[- \frac{T}{\pi} \left(\frac{1}{2} + \frac{B}{2} \right) \left[\frac{3 + h^2}{9 + h^2} \cos (h \log x) - \frac{2h}{9 + h^2} \sin (h \log x) \right] \]

\[- \frac{T}{\pi} \int_1^\infty \frac{f(u)}{u^4} \left[3 \cos (h \log ux) + h \sin (h \log ux) \right] du + O\left(\frac{T}{x} \right)^{1/2-\epsilon}. \]

Therefore, with miraculous cancellations,

\[T_2 + T_3 + T_4 + T_5 = - \frac{2x \cos (h \log x)}{\pi (4 + h^2)} \int_1^\infty \frac{Ty}{y^2} dy + \frac{T}{\pi} \frac{2B \cos (h \log x)}{4 + h^2} \]

\[+ \frac{T}{\pi} \frac{4h \sin (h \log x)}{(4 + h^2)^2} + O\left(\frac{T}{x} \right)^{1/2-\epsilon} + O\left(\frac{hT}{\log^M T} \right). \]

By Lemma 6.1 and \(B = -C_0 - \log 2\pi, \)

\[F_h(x, T) = \frac{T}{\pi} \left[\frac{2 \cos (h \log x)}{4 + h^2} \log x \right] - \frac{2T \cos (h \log x)}{\pi (4 + h^2)} \left[\sin \left(\frac{T}{x} \right) \frac{T}{x} \right] - \frac{4T \cos (h \log x)}{\pi (4 + h^2)} \left[\cos \left(\frac{T}{x} \right) \frac{T}{x} \right] \]

\[+ \frac{T}{\pi} \frac{2B \cos (h \log x)}{4 + h^2} + O\left(\frac{T}{x} \right)^{1/2-\epsilon} + O\left(\frac{hT}{\log^M T} \right) \]

\[= \frac{T}{\pi} \left[\frac{2 \cos (h \log x)}{4 + h^2} \log x \right] - \frac{2T \cos (h \log x)}{\pi (4 + h^2)} \left[1 - C_0 - \log \frac{T}{x} \right] \]

\[+ C_0 + \log 2\pi \right] + O\left(\frac{T}{x} \right)^{1/2-\epsilon} + O\left(\frac{hT}{\log^M T} \right) \]

\[= \frac{T}{2\pi} \log \frac{T}{2\pi e} \left[\frac{4 \cos (h \log x)}{4 + h^2} \right] + O\left(\frac{T}{x} \right)^{1/2-\epsilon} + O\left(\frac{hT}{\log^M T} \right). \]
7 Sketch for Conjecture 1.2

Fix $\alpha > 0$. Let $r(u)$ be an even function which is almost the characteristic function of the interval $[-\alpha, \alpha]$ with $\hat{r}(\alpha) \ll 1$ (see page 87 of [1] for detail construction). We use Conjecture 1.1 to compute the right hand side of (1).

$$I = \int_{-\infty}^{\infty} F_h(\alpha) \hat{r}(\alpha) d\alpha = 2 \int_{0}^{1} F_h(\alpha) \hat{r}(\alpha) d\alpha$$

$$= 2(1 + o(1)) \log T \int_{0}^{1} T^{-2} \hat{r}(\alpha) d\alpha + \frac{4}{4 + h^2} \int_{0}^{1} \alpha \cos (h \log T \alpha) \hat{r}(\alpha) d\alpha$$

$$+ 2 \frac{4}{4 + h^2} \int_{1}^{\infty} \cos (h \log T \alpha) \hat{r}(\alpha) d\alpha + O \left(\frac{1}{A} \right) + o(1)$$

$$= \frac{4}{4 + h^2} \int_{-\infty}^{\infty} \hat{r}(\alpha) d\alpha - \frac{4}{4 + h^2} \int_{-1}^{1} (1 - |\alpha|) \hat{r}(\alpha) d\alpha$$

$$+ (1 + o(1)) \log T \int_{-\infty}^{\infty} T^{-2} |\hat{r}(\alpha)| d\alpha + O \left(\frac{1}{A} \right) + o(1)$$

$$= \frac{4}{4 + h^2} \int_{-\infty}^{\infty} \hat{r}(\alpha) d\alpha - \frac{4}{4 + h^2} I_2 + (1 + o(1)) I_3 + O \left(\frac{1}{A} \right) + o(1)$$

where $r_1(u) = r(u + \frac{h \log T}{2\pi})$. As $\int_{-\infty}^{\infty} \hat{r}(\alpha) d\alpha = r_1(0)$,

$$I_1 = r_1(0) = r \left(\frac{h \log T}{2\pi} \right).$$

By $f \hat{g} = \int f \hat{g}$, the transform pair and the definition of $r(u),$

$$f(t) = \max (1 - |t|, 0), \quad \hat{f}(u) = \left(\frac{\sin \pi u}{\pi u} \right)^2,$$

$$I_2 = \int_{-\infty}^{\infty} r_1(u) \left(\frac{\sin \pi u}{\pi u} \right)^2 du = \int_{-\alpha + h \log T/(2\pi)}^{\alpha + h \log T/(2\pi)} \left(\frac{\sin \pi u}{\pi u} \right)^2 du + o(1).$$

Similarly, by the transform pair

$$f(t) = e^{-2|t|}, \quad \hat{f}(u) = \frac{4a}{4a^2 + (2\pi u)^2},$$

$$I_3 = \int_{-\alpha}^{\alpha} \frac{4 \log^2 T}{4 \log^2 T + (2\pi u)^2} du + o(1) = \int_{-\alpha + h \log T/(2\pi)}^{\alpha + h \log T/(2\pi)} 1 du + o(1).$$

Therefore,

$$I = \frac{4}{4 + h^2} r \left(\frac{h \log T}{2\pi} \right) + \int_{-\alpha + h \log T/(2\pi)}^{\alpha + h \log T/(2\pi)} 1 - \frac{4}{4 + h^2} \left(\frac{\sin \pi u}{\pi u} \right)^2 du + O \left(\frac{1}{A} \right) + o(1).$$

(16)
Now, the left hand side of (1) is
\[
\frac{4}{4 + h^2 r} \left(\frac{h \log T}{2\pi} \right) + \left(\frac{T}{2\pi \log T} \right)^{-1} \sum_{0 < \gamma \neq \gamma' \leq T \atop |\gamma - \gamma' - h| \leq 2\pi \alpha / \log T} (1 + o(1)). \tag{17}
\]
Combining (16) and (17), we have Conjecture 1.2 by making \(A \) arbitrarily large. The only shaky point in the above argument is the error analysis. All of these become rigorous following page 87 – 90 of [1].

References

[1] T.H. Chan, *Pair Correlation and Distribution of Prime Numbers*, Thesis, U. of Mich., Ann Arbor, 2002.

[2] T.H. Chan, *On a conjecture of Liu and Ye*, to appear.

[3] T.H. Chan, *More precise Pair Correlation Conjecture on the zeros of the Riemann zeta function*, submitted.

[4] J.B. Friedlander and D.A. Goldston, *Some singular series averages and the distribution of Goldbach numbers in short intervals*, Illinois J. Math. 39 (1995), 158-180.

[5] D.A. Goldston, *Large Differences between Consecutive Prime Numbers*, Thesis, U. of Calif., Berkeley, 1981.

[6] D.A. Goldston and S.M. Gonek, *Mean value theorems for long Dirichlet polynomials and tails of Dirichlet series*, Acta Arith. (2) 84 (1998), 155-192.

[7] D.A. Goldston, S.M. Gonek, A.E. Oziuk and C. Synder, *On the pair correlation of zeros of the Riemann zeta-function*, Proc. London Math. Soc. (3) 80 (2000), 31-49.

[8] I.S. Gradshteyn and I.M. Ryzhik, *Table of Integrals, Series and Products*, Academic Press, sixth edition, 2000.

[9] H.L. Montgomery, *The pair correlation of zeros of the zeta function*, Analytic Number Theory (St. Louis Univ., 1972), Proc. Sympos. Pure Math. 24, Amer. Math. Soc., Providence, 1973, pp. 181-193.

[10] H.L. Montgomery and R.C. Vaughan, *Hilbert’s inequality*, J. London Math. Soc. (2) 8 (1974), 73-82.

Tsz Ho Chan
Case Western Reserve University
Mathematics Department, Yost Hall 220
10900 Euclid Avenue
Cleveland, OH 44106-7058
USA
txc50@po.cwru.edu