Does IGF-1 Shape Life-History Trade-Offs? Opposite Associations of IGF-1 With Telomere Length and Body Size in a Free-Living Bird

Bibiana Montoya¹*, Zsófia Tóth²,³, Ádám Z. Lendvai², Antoine Stier⁴,⁵, François Criscuolo⁶, Sandrine Zahn⁶ and Pierre Bize⁷*

¹Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico, ²Department of Evolutionary Zoology and Human Biology, University of Debrecen, Debrecen, Hungary, ³Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary, ⁴Department of Biology, University of Turku, Turku, Finland, ⁵Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France, ⁶Institut Pluridisciplinaire Hubert Curien, UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France, ⁷School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom

Hormonal pathways have been proposed to be key at modulating how fast individuals grow and reproduce and how long they live (i.e., life history trajectory). Research in model species living under controlled environment is suggesting that insulin-like growth factor 1 (IGF-1), which is an evolutionarily conserved polypeptide hormone, has an important role in modulating animal life histories. Much remains, however, to be done to test the role played by IGF-1 in shaping the phenotype and life history of animals in the wild. Using a wild long-lived bird, the Alpine swift (Tachymarptis melba), we show that adults with higher levels of IGF-1 had longer wings and shorter telomeres. Hence, telomeres being a proxy of lifespan in this species, our results support a potential role of IGF-1 at shaping the life-history of wild birds and suggest that IGF-1 may influence the growth-lifespan trade-off.

Keywords: aging, IGF-1, life-history, lifespan, pace-of-life syndrome, telomeres, trade-off

INTRODUCTION

How fast an individual grows and reproduces and how long it lives are referred to as its life history trajectory (Flatt and Heyland, 2011). Although life history traits exhibit a wide range of variation among species, consistent patterns of covariation between traits are widespread (Gaillard et al., 1989). Such patterns of covariation are thought to be regulated by competitive allocation of limited resources (Stearns, 1992), although other proximate mechanisms have also been suggested (Harshman and Zera, 2007). Accordingly, hormonal pathways have been proposed to play a key role in regulating life-history trade-offs (Ricklef and Wikelski, 2002). One candidate hormone is insulin-like growth factor 1 (IGF-1), which is an evolutionarily conserved polypeptide known to have effects on three key life-history traits: growth, reproduction, and survival (Swanson and Dantzer, 2014; Lodjak and Verhulst, 2020). Moreover, IGF-1 is suspected to be involved in the
regulation of the trade-offs among these three life-history traits, but this hypothesis has only been scarcely tested in free-living animals (Swanson and Dantzer, 2014; Lodjak and Verhulst, 2020).

In laboratory models (i.e., worms, flies, and mice), IGF-1 signaling and circulating levels are linked to the growth of somatic (Musarò et al., 2001; Yakar et al., 2002) and reproductive structures (Kaaks et al., 2000), gonadal function regulation (Bartke et al., 2013), and reproductive performance (Li et al., 2011). Moreover, the inhibition of IGF-1 signaling is associated with increased lifespan (Holzenberger et al., 2003), but the proximate mechanisms underlying this association are less well understood. Although IGF-1 levels are highly repeatable within individuals, 0.41–0.85 (Roberts et al., 1990; Yuan et al., 2009), they respond to environmental fluctuations on nutritional resource availability and temperature (Gabillard et al., 2003; Sparkman et al., 2009; Regan et al., 2020). Therefore, studies on the role played by IGF-1 on growth, reproduction, and survival, in natural settings may be particularly relevant. In free-living animals, ecological conditions have been shown to influence the direction of the links between IGF-1 and life-history traits. For example, in free-ranging garter snakes (Thamnophis elegans) the presence of a positive association between IGF-1 levels and adult body size is dependent on the habitat type (Sparkman et al., 2009). So far, general conclusions reached in laboratory models, on the positive association between IGF-1 with growth have been (at least partially) confirmed in several non-model species (inter-specific comparison, Lodjak et al., 2018). Moreover, although the number of studies evaluating the link between IGF-1 and lifespan in non-model species has been very limited, they mostly confirmed the negative association between IGF-1 and lifespan reported in model organisms, both at the interspecific (Swanson and Dantzer, 2014; Lodjak et al., 2018) and at the intraspecific level (Lewin et al., 2017, but see Chaulet et al., 2012; Lendvai et al., 2020). Still, the nature of the proximate mechanisms implicated remains elusive, and one of the putative candidates is oxidative stress (Holzenberger et al., 2003), which is known to accelerate the shortening of telomeres (Reichert and Stier, 2017), one of the hallmarks of aging (López-Otín et al., 2013).

Although understanding variation in lifespan is a major focus of evolutionary ecology, accurately measuring lifespan in the wild can be logistically challenging (Nussey et al., 2008). Remarkably, telomere length has been shown to be linked to life expectancy in non-model species (Wilbourn et al., 2018). Telomeres are non-coding sequences of repetitive DNA located at the end of linear chromosomes that shorten with each cellular replication (Backburn and Epel, 2012), in response to cellular stressors including oxidative stress (Reichert and Stier, 2017), and under increased metabolic demand (Casagrande and Hau, 2019). Both, IGF-1 and telomere length, have been shown to diminish with age (Moverare-Skrtic et al., 2009) and are linked to longevity (Deelen et al., 2013). The association between IGF-1 and telomeres has mainly been explored in laboratory animals and human patients exhibiting pathological disorder of their somatotropic axis as well as cancer cell lines (Aulinas et al., 2013; Matsumoto et al., 2015). While cross-sectional and correlative studies in humans and laboratory animals showed that IGF-1 and telomere length are positively related (Barbieri et al., 2009; Moverare-Skrtic et al., 2009; Yeap et al., 2019), studies conducted in cell lines found a negative association between these variables (Matsumoto et al., 2015; Matsumoto and Takahashi, 2016). Hence, the direction and strength of association between IGF-1 and telomeres is still equivocal, and much remains to be done to understand whether telomere dynamics is part of the mechanisms underlying the covariation observed between IGF-1 and lifespan.

The Alpine swift (Tachymarptis melba) is an insectivorous migratory bird that live up to 26 years of age and has a slow pace of life (i.e., late age at sexual maturity, only one reproductive attempt per year, and small clutch size per breeding attempt) (Bize et al., 2009). The fact that adult Alpine swifts with longer telomeres have higher survival rate (Bize et al., 2009) makes them a good model for exploring the links between IGF-1 and telomere length. We propose that, if IGF-1 is a proximate mechanism underlying trade-offs between growth and lifespan, then IGF-1 should show a positive association with body size and a negative relationship with telomere length. As effects of IGF-1 on size can be tissue specific (Sharma et al., 2012), and thus may affect the growth of different body parts in dissimilar ways, we measured wing length, sternum length and body mass as proxies of body size.

METHODS

Fieldwork was carried out in 2018 in two Alpine swift colonies located in Bienne and Solothurn, Switzerland, where nestlings have been ringed each year since at least 1968 and adults have been subjected to an individual based study since 2000 (Bize et al., 2009). Forty-three adult Alpine swifts were captured on their nests or roosting during the breeding season. After capture, each adult was weighed with a digital scale to the nearest 0.1 g, the same person (PB) measured their wing with a ruler to the nearest 2 mm and their sternum with a caliper to the nearest 0.1 mm. Wing length was measured as the distance on the closed wing from the foremost extremity of the carpus to the tip of the longest primary feathers; the wing being flattened and straightened to give maximal wing length. Sternum was measured from one end to the other of the keel. We collected a 200 µL blood sample from the foot vein using heparinized microvette tubes (Sarstedt, Germany) to quantify telomere length and IGF-1 levels. Blood samples were kept on ice in the field before being centrifuged at 10 000 g × 10 min to separate plasma from red blood cells, and then stored at −80°C until laboratory analyses. The Alpine swift is a monomorphic bird species, and thus adults were genetically sexed (Bize et al., 2005). The exact chronological age was known for 38 birds that had been ringed as nestlings (range: 2–17 years).

Telomere Length

Multiplex quantitative PCR was used to quantify relative telomere length (RTL). Full protocols for genomic DNA extraction using nucleated red blood cells and of multiplex qPCR description adapted for swifts are available in Criscuolo et al. (2017). The concentration and purity (presence of residual proteins or
solvents) of the extracted DNA were checked with a Nano-Drop ND-1000 spectrophotometer (Thermo Fisher Scientific, MA, United States). The quality and the integrity of DNA were confirmed by gel electrophoresis on 1% agarose gels stained with ethidium bromide (checking for the absence of DNA smears corresponding to degraded DNA). Our 43 adults’ RTL were measured within a batch of chick and adult samples (total 109 samples) measured in duplicates over one 384 wells plate. Amplification efficiencies of control and telomere sequences were of 99.6% (identical for both sequences) and r^2 of dilution curves of 0.97 and 0.98, respectively. Based on duplicates within plates, intra-class correlation coefficient for final RTL values was 0.689.

Insulin-Like Growth Factor-1

IGF-1 concentrations were measured from 10 µl of plasma using an enzyme-linked immunosorbent assay (for further details see Mahr et al., 2020). We used chicken plasma in quadruplicates to determine intra- (5.3%) and inter-assay coefficient of variation (10.4%). We validated the assay for the Alpine swifts by showing that serially diluted plasma samples were parallel with the standard curve.

Statistical Analyses

Statistical analyses were performed in R version 4.0.0, using the R package lmerTest (Kuznetsova et al., 2017; R Core Team, 2021). A preliminary analysis exploring the effect of sampling date, hour, and breeding site on IGF-1 levels showed that only sampling date accounted for variation in IGF-1 levels; sampling date was therefore retained as a covariate when analyzing variation in IGF-1. Firstly, we tested for an association between IGF-1 and wing length, sternum length and/or body mass by fitting a general linear model with IGF-1 as response variable and all three biometric traits, plus sampling date, as explanatory variables (model 1). Variance inflation factors in this first model were below 1.24 indicating no collinearity issues between biometric traits. Secondly, we investigated how IGF-1 (response variable) was related to telomere length by including as explanatory variables telomere length while controlling for possible confounding effect of chronological age and traits identified as significant in our model 1. Sample sizes vary across analyses due to missing values in some of the traits.

RESULTS

Plasma levels of IGF-1 in adult Alpine swifts were positively associated with wing length (Figure 1A and Table 1A) but not related to body mass and sternum, those results being obtained after controlling for the date of sampling (Table 1A). Adults sampled later in the season had lower IGF-1 levels (Table 1). Hence, wing length and sampling date were included as covariates in the follow-up analysis. Adult birds with higher IGF-1 levels had shorter telomeres (Figure 1B and Table 1B), after controlling for the date of sampling, wing length, and chronological age (Table 1B).

DISCUSSION

Overall, as predicted, we found that circulating levels of IGF-1 were positively associated with wing length and negatively to telomere length, in adult Alpine swifts. Those opposite associations of IGF-1 with body size and telomere length support the idea that IGF-1 may regulate, at least partially, the life-history of this long-lived bird species.

Our results show that adult birds with higher levels of IGF-1 had longer wings, which matches recent findings in adult bearded reedlings (Panurus biarmicus) showing a positive association of between IGF-1 levels and tail feather length (Mahr et al., 2020) and in nestling pied flycatchers (Ficedula hypoleuca) showing a positive association between IGF-1 and growth and size at...
TABLE 1 | Linear models showing positive association between plasma levels of insulin-like growth factor 1 and wing length (model 1), and negative relation between plasma levels of insulin-like growth factor 1 and relative telomere length (model 2), in adult Alpine swifts.

(A) Model 1: Linking IGF-1 to body size

Variable	Estimate ± SE	F	P
Wing	1.46 ± 0.71	4.21	0.049
Sternum	2.34 ± 2.45	0.92	0.34
Body mass	−1.06 ± 0.59	3.20	0.08
Sampling date	−1.14 ± 0.51	4.91	0.03
Residual DF			

(B) Model 2: Linking IGF-1 to telomere length

Variable	Estimate ± SE	F	P
Telomere length	−16.62 ± 5.56	8.92	0.006
Wing	0.83 ± 0.63	1.75	0.20
Chronological age	−0.54 ± 0.70	0.59	0.45
Sampling date	−0.68 ± 0.49	1.93	0.18
Residual DF			

Table shows results from the initial model, no stepwise deletion was performed.

In conclusion, negative associations of IGF-1 with wing and telomere length found here suggest that IGF-1 may play a role in regulating life-histories, and welcome future studies exploring the association of IGF-1 with direct measurements of growth and lifespan in wild organisms.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.
ETHICS STATEMENT

The animal study was reviewed and approved by Swiss Federal Food Safety and Veterinary Office (FSVO).

AUTHOR CONTRIBUTIONS

BM, PB, and ÁL designed the study. BM, PB, and AS carried out the fieldwork. SZ and FC carried the laboratory analysis and interpretation of TL measures. ZT and ÁL carried the laboratory analysis and interpretation of IGF-1 measures. BM and PB carried out the data analyses. BM wrote the first draft. All authors critically revised the manuscript.

REFERENCES

Aulinas, A., Ramirez, M. J., Barahona, M. J., Mato, E., Bell, O., Sarrallés, J., et al. (2013). Telomeres and endocrine dysfunction of the adrenal and GH/IGF-1 axes. Clin. Endocrinol. 79, 751–759. doi: 10.1111/cen.12310

Backburn, E. H., and Epel, E. S. (2012). Telomeres and adversity: too toxic to ignore. Nature 490, 169–171. doi: 10.1038/490169a

Barbieri, M., Paolissio, G., Kimura, M., Gardner, J. P., Boccardi, V., Papa, M., et al. (2009). Higher circulating levels of IGF-1 are associated with longer leucocyte telomere length in healthy subjects. Mech. Ageing Dev. 130, 771–776. doi: 10.1016/j.mad.2009.10.002

Bartke, A., Sun, L. Y., and Longo, V. (2013). Somatotropic signaling: trade-offs and implications. Mammal. Biol. 88, 1–9. doi: 10.1016/j.mambio.2013.03.003

Bize, P., Roulin, A., Tella, J. L., and Richner, H. (2005). Female-biased mortality in passerine birds. Funct. Ecol. 19, 405–413. doi: 10.1111/j.1365-2435.2005.00995.x

Casagrande, S., and Hau, M. (2019). Telomere attrition: metabolic regulation and signalling function? Biol. Lett. 15:2018088. doi: 10.1098/rsbl.2018.0888

Chaulet, A., Medesani, D. A., Freitas, J., Cervino, A., Cervino, N., and Rodríguez, E. M. (2012). Induction of somatic growth in juvenile crayfish Cherax quadricarinatus (Decapoda, Parastacidae), by ecdysone and insulin growth factor. Aquaculture 370, 1–6. doi: 10.1016/j.aquaculture.2012.09.026

Criscuolo, F., Metcalfe, N. B., Nasir, L., and Monaghan, P. (2009). Telomere dynamics rather than age predict life expectancy in the wild. Proc. R. Soc. B 276, 1679–1683. doi: 10.1098/rspb.2008.1817

Lodjak, J., Tilgar, V., and Mägi, M. (2016). Does the interaction between ecdysone and insulin-like growth factor 1 predict life-history trade-offs in a wild mammal. Funct. Ecol. 31, 894–902. doi: 10.1111/1365-2435.12808

Li, L., Fu, Y. C., Xu, J. J., Chen, X. C., Lin, X. H., and Luo, L. L. (2011). Caloric restriction promotes the reproductive capacity of female rats via modulating the level of insulin-like growth factor-1 (IGF-1). Gen. Comp. Endocrinol. 174, 232–237. doi: 10.1016/j.ygcen.2011.09.005

Liechti, F., Witvliet, W., Weber, R., and Bächler, E. (2013). First evidence of a 200-day non-stop flight in a bird. Nat. Commun. 4, 1–7. doi: 10.1038/ncomms3554

Lodjak, J., and Mágí, M. (2017). Crossover study of growth and somatic maintenance in young animals. J. Avian Biol. 48, 1360–1363. doi: 10.1111/jav.01519

Lodjak, J., Mánd, R., and Mágí, M. (2018). Insulin-like growth factor 1 and life-history evolution of passerine birds. Funct. Ecol. 32, 313–323. doi: 10.1111/1365-2435.12993

Lodjak, J., Mágí, M., Sild, E., and Mánd, R. (2017). Causal link between insulin-like growth factor 1 and growth in nestlings of a wild passerine bird. Funct. Ecol. 31, 184–191. doi: 10.1111/1365-2435.12679

Lodjak, J., Tilgar, V., and Mágí, M. (2016). Does the interaction between glucocticooids and insulin-like growth factor 1 predict nesting fitness in a wild passerine? Gen. Comp. Endocrinol. 225, 149–154. doi: 10.1016/j.ygcen.2015.09.003

Lodjak, J., and Verhulst, S. (2020). Insulin-like growth factor 1 of wild vertebrates in a life-history context. Mol. Cell. Endocrinol. 518:110978. doi: 10.1016/j.mce.2020.110978

López-Ortín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1149–1217. doi: 10.1016/j.cell.2013.05.039

Matsumoto, R., Fukuoka, H., Iguchi, G., Odake, Y., Yoshida, K., Bando, H., et al. (2015). Accelerated telomere shortening in acromegaly; IGF-I induces oxidative damage, but does not affect survival in a songbird. Biol. Res. (preprint). doi: 10.1101/2020.03.27.012120

Kaaks, R., Lukanova, A., and Sommersberg, B. (2000). Plasma androgens, IGF-1, body size, and prostate cancer risk: a synthetic review. Prostate Cancer Prostatic Dis. 3, 157–172. doi: 10.1038/sj.pcan.4500421

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. (2017). Inter-Term package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26. doi: 10.18637/jss.v082.i13

Lendvai, ÁZ., Tóth, Z., Mahr, K., Vincze, O., Tóth, Z., and Gáspári, C. I. (2020). Insulin-like growth factor 1 induces oxidative damage, but does not affect survival in a songbird. Biol. Res. (preprint). doi: 10.1101/2020.03.27.012120

Lewin, N., Swanson, E. M., Williams, B. L., and Holekamp, K. E. (2017). Juvenile concentrations of IGF-1 predict life-history trade-offs in a wild mammal. Funct. Ecol. 31, 894–902. doi: 10.1111/1365-2435.12808

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1149–1217. doi: 10.1016/j.cell.2013.05.039

Mahr, K., Vincze, O., Tóth, Z., and Lendvai, ÁZ. (2020). Insulin-like growth factor 1 affects survival in a songbird. Biol. Res. (preprint). doi: 10.1101/2020.03.27.012120

Montoya, B., Brig, M., Jimeno, B., Moonen, S., and Verhulst, S. (2018). Baseline glucose level is an individual trait that is negatively associated with lifespan and
increases due to adverse environmental conditions during development and adulthood. J. Comp. Physiol. B 188, 517–526. doi: 10.1007/s00360-017-1143-0
Montoya, B., Briga, M., Jimeno, B., and Verhulst, S. (2020). Glucose regulation is a repeatable trait affected by successive handling in zebra finches. J. Comp. Physiol. B 190, 455–464. doi: 10.1007/s00360-020-01283-4
Moverare-Skritic, S., Svensson, I., Karlsson, M., Orwoll, E., Ljunggren, Ö, Mellström, D., et al. (2009). Serum Insulin-Like Growth Factor-1 concentration is associated with leukocyte telomere length in a population-based cohort of elderly men. J. Clin. Endocrinol. Metab. 94, 5078–5084. doi: 10.1210/jc.2009-1450
Musarò, A., McCullagh, K., Paul, A., Houghton, L., Dobrowoly, G., Molinaro, M., et al. (2001). Localized IGF-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat. Genet. 27, 195–200. doi: 10.1038/s8483
Nussey, D. H., Coulson, T., Festa Bianchet, M., and Gaillard, J. M. (2008). Measuring senescence in wild animal populations: towards a longitudinal approach. Funct. Ecol. 22, 393–406. doi: 10.1111/j.1365-2435.2008.01408.x
Pérez-Rodríguez, L., Redondo, T., Ruiz-Mata, R., Camacho, C., Moreno-Rueda, G., and Potti, J. (2019). Vitamin E supplementation—but not induced oxidative stress— Influences telomere dynamics during early development in wild passerines. Front. Ecol. Evol. 7:173. doi: 10.3389/fevo.2019.00173
Reichert, S., and Stier, A. (2017). Does oxidative stress shorten telomeres in vivo? A review. Biol. Lett. 13:20170463. doi: 10.1098/rsbl.2017.0463
Rickles, R. E., and Wikelski, M. (2002). The physiology/life-history nexus. Trends Ecol. Evol. 17, 462–468. doi: 10.1016/S0169-5347(02)02578-8
Roberts, C. A., McCutcheon, S. N., Blair, H. T., Gluckman, P. D., and Breier, B. H. (1990). Developmental patterns of plasma insulin-like growth factor-1 concentrations in sheep. Domest. Anim. Endocrinol. 7, 457–463. doi: 10.1016/0739-7240(90)90003-I
Sharma, N., Castorena, C. M., and Cartee, G. D. (2012). Tissue-specific responses of IGF-1/insulin and mTOR signaling in calorie restricted rats. PLoS One 7:e38835. doi: 10.1371/journal.pone.0038835
Sirman, A. (2019). Biological Mechanisms Underpinning Growth and Ageing in Wild Birds. North Dakota, USA: North Dakota State University. [PhD thesis.]