Sobolev, Hardy, Gagliardo–Nirenberg, and Caffarelli–Kohn–Nirenberg-type inequalities for some fractional derivatives

Aidyn Kassymov¹²³ · Michael Ruzhansky¹⁴ · Niyaz Tokmagambetov¹⁵ · Berikbol T. Torebek¹⁶

Received: 2 March 2020 / Accepted: 9 July 2020 / Published online: 7 October 2020
© Tusi Mathematical Research Group (TMRG) 2020

Abstract
In this paper, we show different inequalities for fractional-order differential operators. In particular, the Sobolev, Hardy, Gagliardo–Nirenberg, and Caffarelli–Kohn–Nirenberg-type inequalities for the Caputo, Riemann–Liouville, and Hadamard derivatives are obtained. In addition, we show some applications of these inequalities.

Keywords Sobolev inequality · Hardy inequality · Gagliardo–Nirenberg inequality · Caffarelli–Kohn–Nirenberg inequality · fractional-order differential operator · Caputo derivative · Riemann–Liouville derivative · Hadamard derivative

Mathematics Subject Classification 26D10 · 45J05

Communicated by Juan Seoane Sepúlveda.

✉ Aidyn Kassymov
kassymov@math.kz; aidyn.kassymov@ugent.be

Michael Ruzhansky
michael.ruzhansky@ugent.be

Niyaz Tokmagambetov
niyaz.tokmagambetov@ugent.be

Berikbol T. Torebek
berikbol.torebek@ugent.be

¹ Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Ghent, Belgium
² Al-Farabi Kazakh National University, Almaty, Kazakhstan
³ Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
⁴ School of Mathematical Sciences, Queen Mary University of London, London, United Kingdom
⁵ Al-Farabi Kazakh National University, Almaty, Kazakhstan
⁶ Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
1 Introduction

There is no doubt that the inequalities not depending on a type of operators are very powerful for integral and differential equations. Without them, the progress of integro-differential equations would not be at its present level. Fractional-order differential operators are not an exception.

Let us recall some classical results. Let \(\Omega \subset \mathbb{R}^N \) be a measurable set and let \(1 < p < N \), and then, the classical Sobolev inequality is formulated as:

\[
\|u\|_{L^p(\Omega)} \leq C \|\nabla u\|_{L^p(\Omega)}, \quad u \in C_0^\infty(\Omega),
\]

(1.1)

where \(C = C(N, p) > 0 \) is a positive constant, \(p^* = \frac{Np}{N-p} \) and \(\nabla \) is the standard gradient in \(\mathbb{R}^N \). The inequality (1.1) is one of the most important tools in PDEs and variational problems.

Further generalizations of the Sobolev inequality were obtained by Gagliardo and Nirenberg, independently. In [10, 17], they independently from each other proved the interpolation inequality:

\[
\|u\|_{L^p(\mathbb{R}^N)}^p \leq C \|\nabla u\|_{L^p(\mathbb{R}^N)}^{N(p-2)/2} \|u\|_{L^{p^*}(\mathbb{R}^N)}^{(2p-N(p-2))/2}, \quad u \in H^1(\mathbb{R}^N),
\]

(1.2)

where

\[
\left\{ \begin{array}{l}
2 \leq p \leq \infty \text{ for } N = 2, \\
2 \leq p \leq \frac{2N}{N-2} \text{ for } N > 2.
\end{array} \right.
\]

Now, it is called the Gagliardo–Nirenberg inequality.

The next important generalization of the Sobolev inequality is the Caffarelli–Kohn–Nirenberg inequality. In 1984, Caffarelli, Kohn, and Nirenberg [7] established the following result:

Theorem 1.1 Let \(N \geq 1 \). Assume that \(l_1, l_2, l_3, a, b, d, \delta \in \mathbb{R} \) be such that \(l_1, l_2 \geq 1, l_3 > 0, 0 \leq \delta \leq 1 \), and:

\[
\frac{1}{l_1} + \frac{a}{N}, \quad \frac{1}{l_2} + \frac{b}{N}, \quad \frac{1}{l_3} + \frac{\delta d + (1-\delta)b}{N} > 0.
\]

Then:

\[
\|x^{\delta d + (1-\delta)b} u\|_{L^5(\mathbb{R}^N)} \leq C \|x^{a \nabla u}\|_{L^5(\mathbb{R}^N)}^{\delta} \|x^{b \nabla u}\|_{L^5(\mathbb{R}^N)}^{1-\delta}, \quad u \in C_c^\infty(\mathbb{R}^N),
\]

(1.3)

if and only if

\[
\frac{1}{l_3} + \frac{\delta d + (1-\delta)b}{N} = \delta \left(\frac{1}{l_1} + \frac{a-1}{N} \right) + (1-\delta) \left(\frac{1}{l_2} + \frac{b}{N} \right),
\]

\[
a - d \geq 0, \quad \text{if } \delta > 0,
\]

\[
a - d \leq 1, \quad \text{if } \delta > 0 \text{ and } \frac{1}{l_3} + \frac{\delta d + (1-\delta)b}{N} = \frac{1}{l_1} + \frac{a-1}{N},
\]
where C is a positive constant independent of u.

Recently, mathematicians started to develop the classical inequalities (1.1), (1.2), and (1.3) for the p-Laplacian operator. In [9], Nezza, Palatucci, and Valdinoci obtained the p-Laplacian version of the Sobolev inequality:

$$
\|u\|_{L^p(\mathbb{R}^N)} \leq C[u]_{s,p},
$$

(1.4)

for the parameters $N > sp$, $1 < p < \infty$, and $s \in (0, 1)$, for any measurable and compactly supported function u. Here, $C = C(N, p, s) > 0$ is a suitable constant, and $[u]_{s,p}$ defined by:

$$
[u]^p_{s,p} = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x-y|^{N+sp}} \, dx \, dy,
$$

is the Gagliardo seminorm and $p^* = \frac{Np}{N-sp}$.

Using different techniques, the authors of the papers [8, 18, 19] proved the Gagliardo–Nirenberg inequality for the p–Laplacian operator:

$$
\|u\|_{L^{p^*}(\mathbb{R}^N)} \leq C[u]^a_{s,p} \|u\|_{L^p(\mathbb{R}^N)}^{1-a} \quad \forall \, u \in C^1_c(\mathbb{R}^N),
$$

(1.5)

for $N \geq 1$, $s \in (0, 1)$, $p > 1$, $a \geq 1$, $\tau > 0$, and $a \in (0, 1]$, such that:

$$
\frac{1}{\tau} = a \left(\frac{1}{p} - \frac{s}{N} \right) + \frac{1-a}{\alpha}.
$$

In [13, 14], Hughes derived a Hardy–Landau–Littlewood inequality [12] for the Riemann–Liouville fractional integral, then for the Riemann–Liouville fractional derivatives in weighted L^p spaces. For more information about inequalities related to the fractional-order operators, the reader is referred to [5] and references therein.

In this paper, we deal with new inequalities related to some fractional-order differential operators. Especially, the Caputo derivative analogues of the above inequalities are in the field of our interest. Here, we derive the generalizations of the classical Sobolev, Hardy, Gagliardo–Nirenberg, and Caffarelli–Kohn–Nirenberg inequalities. Note that, in this direction, systematic studies of different functional inequalities on general homogeneous (Lie) groups were initiated by the book [20].

Recently, more attention has been paid to the study of fractional analogues of known functional inequalities (see, e.g., [2–5, 15]). Also, we note that, in [2], the author considered Sobolev-type inequality for the Caputo and Riemann–Liouville derivatives of order $\alpha \geq 1$.

We start by compiling basic definitions of fractional differential operators.
2 Preliminaries

Let us recall the Riemann–Liouville fractional integrals and derivatives. Also, we give definitions of the Caputo fractional derivatives. In [16, p.394], the sequential differentiation was formulated in a way that we will use in the further investigations. We refer to [16, 21] and references therein for further properties.

Definition 2.1 The left Riemann–Liouville fractional integral \(I_{a+}^\alpha \) of order \(\alpha > 0 \), and derivative \(D_{a+}^\alpha \) of order \(0 < \alpha \leq 1 \) are given by:

\[
I_{a+}^\alpha [f](t) = \frac{1}{\Gamma(\alpha)} \int_a^t (t-s)^{\alpha-1} f(s) ds, \quad t \in (a, b],
\]

and

\[
D_{a+}^\alpha [f](t) = \frac{d}{dt} I_{a+}^{1-\alpha} [f](t), \quad t \in (a, b],
\]

respectively, and \(f \in AC[a, b] \). Here, \(\Gamma \) denotes the Euler gamma function.

Since \(I_{a+}^{\alpha} f(t) \to f(t) \) almost everywhere as \(\alpha \to 0 \), then, by definition, we suppose that \(I_{a+}^{0} f(t) = f(t) \). Hence, \(D_{a+}^{1} f(t) = f'(t) \).

Definition 2.2 The left Caputo fractional derivative of order \(0 < \alpha \leq 1 \) is given by:

\[
\partial_{a+}^\alpha [f](t) = D_{a+}^\alpha [f(t) - f(a)] = I_{a+}^{1-\alpha} f'(t), \quad t \in (a, b].
\]

Proposition 2.1 In Definition 2.2, if \(f(a) = 0 \), then \(\partial_{a+}^\alpha = D_{a+}^\alpha \).

Proposition 2.2 If \(f \in L^1([a, b]) \) and \(\alpha > 0, \beta > 0 \), then the following equality holds

\[
I_{a+}^\alpha p_{a+}^\beta f(t) = p_{a+}^{\alpha+\beta} f(t).
\]

Proposition 2.3 ([16]) If \(f \in L^1([a, b]) \) and \(f' \in L^1([a, b]) \), then the equality

\[
I_{a}^{\alpha} \partial_{a+}^\alpha f(t) = f(t) - f(a), \quad 0 < \alpha \leq 1,
\]

holds almost everywhere on \([a, b] \).

3 The main results

In this section, we derive the main results of this paper.

Remark 3.1 We note that, in all statements of this section, we will work with the Caputo fractional derivative \(\partial_{a+}^\alpha \). However, analogous results can be easily obtained...
for the Riemann–Liouville derivative D_{a+}^α with the same order $\alpha \leq 1$ by adopting the techniques in the proofs and taking into account Property 2.1.

3.1 Poincaré–Sobolev-type inequality

In this subsection, we show the Poincaré–Sobolev-type inequality for fractional-order operators.

Theorem 3.1 Let $u \in L^p(a, b)$, $u(a) = 0$, $\partial_{a+}^\alpha u \in L^p(a, b)$ and $p > 1$. Then, for the Caputo fractional derivative ∂_{a+}^α of order $\alpha \in \left(\frac{1}{p}, 1\right]$, we have the inequality:

$$
\|u\|_{L^\infty(a, b)} \leq \frac{(b-a)^{\frac{1}{p}-\frac{1}{p}}}{(ap - \frac{1}{p-1})} \left\|\partial_{a+}^\alpha u\right\|_{L^p(a, b)}.
$$

Proof Let $u \in L^p(a, b)$, $u(a) = 0$, $\partial_{a+}^\alpha u \in L^p(a, b)$, and consider the function:

$$
u(t) = I_{a+}^\alpha \partial_{a+}^\alpha u(t).$$

Using the Hölder inequality with $\frac{1}{p} + \frac{1}{q} = 1$, we obtain:

$$
\left|I_{a+}^\alpha \partial_{a+}^\alpha u(t)\right| \leq \frac{1}{\Gamma(\alpha)} \int_a^t \left|(t-s)^{\alpha-1} \partial_{a+}^\alpha u(s)\right| ds
$$

$$
\leq \frac{1}{\Gamma(\alpha)} \left\{ \int_a^t (t-s)^{\alpha q - q} ds \right\} \left(\int_a^t \left| \partial_{a+}^\alpha u(s)\right|^p ds \right)^{\frac{1}{p}}
$$

$$
= \frac{(b-a)^{-\frac{1}{p}}}{(\alpha q - q + 1)^{\frac{1}{q}} \Gamma(\alpha)} \left(\int_a^t \left| \partial_{a+}^\alpha u(s)\right|^p ds \right)^{\frac{1}{p}}
$$

$$
\leq \frac{(b-a)^{\alpha - \frac{1}{p}}}{(\alpha q - q + 1)^{\frac{1}{q}} \Gamma(\alpha)} \left\| \partial_{a+}^\alpha u\right\|_{L^p(a, b)}
$$

$$
= \frac{\left(\frac{ap}{p-1} - \frac{1}{p-1}\right)^{\frac{p-1}{p}} \Gamma(\alpha)}{(\alpha q - q + 1)^{\frac{1}{q}} \Gamma(\alpha)} \left\| \partial_{a+}^\alpha u\right\|_{L^p(a, b)}.
$$

where $q = \frac{p}{p-1} > 1$.

Then:
\[
\|u\|_{L^\infty(a,b)} = \| I_{a+}^\alpha\, \partial_{a+}^\alpha u\|_{L^\infty(a,b)} \leq \frac{(b-a)^{\frac{1}{p}-1}}{\left(\frac{ap}{p-1} - \frac{1}{p}\right)^{\frac{p-1}{p}}} \| \partial_{a+}^\alpha u\|_{L^p(a,b)},
\]
(3.3)

showing (3.1).

\[\square\]

Remark 3.2 In Theorem 3.1, by taking \(1 < q < \infty\), we obtain:

\[
\|u\|_{L^q(a,b)} \leq \frac{(b-a)^{a-\frac{1}{p}+\frac{1}{q}}}{(\alpha q - \beta q - q + 1)^{\frac{1}{q}}} \| \partial_{a+}^\alpha u\|_{L^p(a,b)},
\]
(3.4)

Let us also present the following result.

Theorem 3.2 Let \(\partial_{a+}^\alpha u \in L^p(a,b)\) with \(p > 1\) and let \(\beta \in [0,1)\) be such that \(\alpha \in \left(\beta + \frac{1}{p}, 1\right]\). Then, for the Caputo fractional derivative \(\partial_{a+}^\beta\), we have:

\[
\|\partial_{a+}^\beta u\|_{L^\infty(a,b)} \leq \frac{(b-a)^{\alpha-\beta-\frac{1}{p}+\frac{1}{q}}}{\left(\alpha q - \beta q - q + 1\right)^\frac{1}{q} \Gamma(\alpha - \beta)} \| \partial_{a+}^\alpha u\|_{L^p(a,b)},
\]
(3.5)

for all \(1 < p \leq q < \infty\), where \(\frac{1}{p} + \frac{1}{q} = 1\).

Proof Using Definition 2.2 and Properties 2.2 and 2.3, we introduce the function:

\[
\partial_{a+}^\beta u(t) = I_{a+}^{1-\beta} u'(t) = I_{a+}^{\alpha-\beta} I_{a+}^{1-a} u'(t) = I_{a+}^{\alpha-\beta} \partial_{a+}^\alpha u(t).
\]
(3.6)

Using the Hölder inequality with \(\frac{1}{p} + \frac{1}{q} = 1\), we get:

\[
\left| I_{a+}^{\alpha-\beta} \partial_{a+}^\alpha u(t) \right| \leq \frac{1}{\Gamma(\alpha - \beta)} \int_a^t (t-s)^{\alpha-\beta-1} \partial_{a+}^\alpha u(s) \, ds
\]

\[
\leq \frac{1}{\Gamma(\alpha - \beta)} \left(\int_a^t (t-s)^{\alpha q - \beta q - q} \, ds \right)^{\frac{1}{q}} \left(\int_a^t \left| \partial_{a+}^\alpha u(s) \right|^p \, ds \right)^{\frac{1}{p}}
\]

\[
= \frac{(t-a)^{\alpha-\beta-\frac{1}{q}+\frac{1}{q}}}{(\alpha q - \beta q - q + 1)^\frac{1}{q} \Gamma(\alpha - \beta)} \left(\int_a^t \left| \partial_{a+}^\alpha u(s) \right|^p \, ds \right)^{\frac{1}{p}}
\]

\[
= \frac{(t-a)^{\alpha-\beta-\frac{1}{p}}}{(\alpha q - \beta q - q + 1)^\frac{1}{q} \Gamma(\alpha - \beta)} \left(\int_a^t \left| \partial_{a+}^\alpha u(s) \right|^p \, ds \right)^{\frac{1}{p}}
\]

\[
\leq \frac{(b-a)^{\alpha-\beta-\frac{1}{p}}}{(\alpha q - \beta q - q + 1)^\frac{1}{q} \Gamma(\alpha - \beta)} \left(\int_a^t \left| \partial_{a+}^\alpha u(s) \right|^p \, ds \right)^{\frac{1}{p}}
\]

\[
\| \partial_{a+}^\alpha u\|_{L^p(a,b)},
\]
where by assumption $\alpha > \beta + \frac{1}{p}$, we have $\alpha q - \beta q - q + 1 > 0$. From this, we obtain:
\[
\|\partial_{a+}^{\beta} u\|_{L^q(a,b)} \leq \frac{(b-a)^{\alpha-\beta-q-1}}{(\alpha q - \beta q - q + 1)^{\frac{1}{q}}} \|\partial_{a+}^\alpha u\|_{L^p(a,b)},
\]
showing (3.5).

Remark 3.3 In (3.5), if $\beta = 0$, we obtain the Sobolev-type inequality.

Remark 3.4 In Theorem 3.2, by taking $1 < q < \infty$, we get:
\[
\|\partial_{a+}^{\beta} u\|_{L^q(a,b)} \leq \frac{(b-a)^{\alpha-\beta-q-1}}{(\alpha q - \beta q - q + 1)^{\frac{1}{q}}} \|\partial_{a+}^\alpha u\|_{L^p(a,b)},
\]

3.2 Hardy-type inequality

Let us show the Hardy inequality.

Theorem 3.3 Let $\alpha > 0$, $u(a) = 0$ and $\partial_{a+}^\alpha u \in L^p(a,b)$ with $p > 1$ and $\alpha \in \left(\frac{1}{p}, 1\right]$. Then, for the Caputo fractional derivative ∂_{a+}^α, we have the inequality:
\[
\left\|\frac{u}{x}\right\|_{L^p(a,b)} \leq \frac{a^{-1}(b-a)^\alpha}{\left(\frac{ap}{p-1} - \frac{1}{p-1}\right)^{\frac{p-1}{p}}} \|\partial_{a+}^\alpha u\|_{L^p(a,b)},
\]

Proof From $a < x < b$, we have $\frac{1}{b} < \frac{1}{x} < \frac{1}{a}$. By using Theorem 3.1, we calculate:
\[
\left(\int_a^b \frac{|u(x)|^p}{x^p} dx\right)^{\frac{1}{p}} \leq a^{-1}\|u\|_{L^p(a,b)} \leq \frac{a^{-1}(b-a)^\alpha}{\left(\frac{ap}{p-1} - \frac{1}{p-1}\right)^{\frac{p-1}{p}}} \|\partial_{a+}^\alpha u\|_{L^p(a,b)},
\]
showing (3.9).

Let us give the weighted one-dimensional Hardy-type inequality.

Theorem 3.4 Let $a > 0$, $u \in L^p(a,b)$, $u(a) = 0$ and $\partial_{a+}^\alpha u \in L^p(a,b)$ with $p > 1$ and $\alpha \in \left(\frac{1}{p}, 1\right]$. Then, for the Caputo fractional derivative ∂_{a+}^α of order α and $\gamma \in \mathbb{R}$, we have:
\[\left\| \frac{u}{x^{q+1}} \right\|_{L^p(a,b)} \leq \frac{a^{-|r| - 1} b^{|r|}(b - a)^{\frac{a}{p}}}{(aq - q + 1)^{\frac{1}{p}}} \left\| \frac{\partial_a^a u}{x^q} \right\|_{L^p(a,b)}, \tag{3.11} \]

where \(q = \frac{p}{p-1} \).

Proof We prove our statement in two stages, namely, when \(\gamma \geq 0 \) and \(\gamma < 0 \). First, let us study the case \(\gamma \geq 0 \). For \(a > 0 \), we have \(b^{-\gamma - 1} < x^{-\gamma - 1} < a^{-\gamma - 1} \), so that:

\[
\left(\int_a^b \frac{|u(x)|^p}{x^{(\gamma + 1)p}} dx \right)^{\frac{1}{p}} \leq a^{-\gamma - 1} \left(\int_a^b |u(x)|^p dx \right)^{\frac{1}{p}} \leq \left(\int_a^b \left| \frac{\partial_a^a u}{x^{\gamma + 1}} \right|^p dx \right)^{\frac{1}{p}}, \tag{3.12}
\]

\[
= \frac{a^{-\gamma - 1} (b - a)^{\frac{a}{p}}}{\frac{a p}{p-1} - 1} \left(\int_a^b \left| \frac{\partial_a^a u}{x^{\gamma + 1}} \right|^p dx \right)^{\frac{1}{p}}
\]

\[
= \frac{a^{-\gamma - 1} b^r (b - a)^{\frac{a}{p}}}{\frac{a p}{p-1} - 1} \left(\int_a^b \frac{x^{\gamma + 1}}{x^{\gamma + 1}} \left| \frac{\partial_a^a u}{x^{\gamma + 1}} \right|^p dx \right)^{\frac{1}{p}}
\]

To show the case \(\gamma < 0 \), one obtains:
\[
\left(\int_a^b \frac{|u(x)|^p}{x^{(r+1)p}} \, dx \right)^\frac{1}{p} = \left(\int_a^b \frac{|u(x)|^p}{x^{(r+p)p}} \, dx \right)^\frac{1}{p} \leq b^{-r} \left(\int_a^b \frac{|u(x)|^p}{x^p} \, dx \right)^\frac{1}{p} \\
\leq \frac{1}{\alpha} b^{-r} (b-a)^\alpha \left(\int_a^b \frac{\partial^\alpha u}{x^p} \, dx \right)^\frac{1}{p} = \frac{1}{\alpha} b^{-r} (b-a)^\alpha \left(\int_a^b \frac{\partial^\alpha u}{x^p} \, dx \right)^\frac{1}{p} (3.9)
\]

\[
= \frac{1}{\alpha} b^{-r} (b-a)^\alpha \left(\int_a^b \frac{\partial^\alpha u}{x^p} \, dx \right)^\frac{1}{p} (3.13)
\]

implying (3.11).

\[\square\]

3.3 Gagliardo–Nirenberg-type inequality

Now, we are on a way to establish the Gagliardo–Nirenberg inequality for differential operators of fractional orders. We show that the Sobolev-type inequality formulated in Theorem 3.2 implies a family of Gagliardo–Nirenberg inequalities.

Theorem 3.5 Assume that \(1 \leq p, q < \infty, \alpha \in \left(\frac{1}{q}, 1 \right] \) and \(u(a) = 0\). Then, we have the following Gagliardo–Nirenberg-type inequality:

\[
\|u\|_{L^q(a,b)} \leq C \|\partial^\alpha_a u\|_{L^r(a,b)} \|u\|_{L^p(a,b)}^{1-s}, \quad (3.14)
\]

with

\[
\frac{\gamma s}{q} + \frac{\gamma (1-s)}{p} = 1, \quad (3.15)
\]

where \(s \in [0, 1]\).
Proof Using the Hölder inequality with $\frac{qs}{q} + \frac{(1-s)}{p} = 1$, we have:

$$
\int_a^b |u(x)|^q \, dx = \int_a^b |u(x)|^{qs} |u(x)|^{q(1-s)} \, dx \\
\leq \left(\int_a^b |u(x)|^{qs} \, dx \right)^{\frac{q}{qs}} \left(\int_a^b |u(x)|^p \, dx \right)^{\frac{q(1-s)}{p}}
$$

(3.16)

$$
(3.1) \quad \leq C\|\partial_a^s u\|_{L^s(a,b)} \|u\|_{L^p(a,b)}^{q(1-s)},
$$

showing (3.14).

Let us consider the space $H^s_+(a, b)$ with $\alpha \in \left(\frac{1}{2}, 1\right]$ of the following form:

$$
H^s_+(a, b) := \{ u \in L^2(a, b), \ \partial_a^s u \in L^2(a, b), \ u(a) = 0 \}.
$$

In particular case of Theorem 3.5, which is important for our further analysis, when $q = 2$ and $\alpha = 1$, one obtains the classical Gagliardo–Nirenberg inequality:

Corollary 3.1 We have the following Gagliardo–Nirenberg-type inequality:

$$
\|u\|_{L^s(a,b)} \leq C\|u\|_{s}^{s} \|u\|_{L^p(a,b)}^{1-s},
$$

(3.17)

for $s \in [0, 1]$.

We also recall another more general special case of Theorem 3.5 with $q = 2$:

Corollary 3.2 Let $\alpha \in \left(\frac{1}{2}, 1\right]$. Assume also that $1 \leq p < \infty$ and $s \in [0, 1]$. Then, we have the following Gagliardo–Nirenberg-type inequality:

$$
\|u\|_{L^s(a,b)} \leq \|u\|_{H^s_+(a,b)}^{s} \|u\|_{L^p(a,b)}^{1-s},
$$

(3.18)

for $\frac{1}{s} = \frac{s}{2} + \frac{1-s}{p}$.

3.4 Caffarelli–Kohn–Nirenberg-type inequality

Now, let us show the fractional Caffarelli–Kohn–Nirenberg-type inequality.

Theorem 3.6 Assume that $a > 0$, $\alpha \in \left(1 - \frac{1}{q}, 1\right)$, $1 < p, q < \infty$, $0 < r < \infty$, and $p + q \geq r$. Let $\delta \in [0, 1] \cap \left[\frac{c-r}{r}, \frac{c}{r}\right]$ and $c, d, e \in \mathbb{R}$ with $\frac{\delta}{p} + \frac{1-\delta}{q} = \frac{1}{r}$, $c = \delta(d - 1) + e(1 - \delta)$ and $u(a) = 0$. If $1 + (d-1)p > 0$, then we have:

$$
\|x^\delta u\|_{L^r(a,b)} \leq C\|x^d \partial_a^s u\|_{L^p(a,b)} \|x^\delta u\|_{L^q(a,b)}^{1-\delta},
$$

(3.19)
Proof Case $\delta = 0$.

If $\delta = 0$, then $c = e$ and $q = r$. Then, (3.19) is the inequality:

$$\|x^\delta u\|_{L^r(a,b)} \leq \|x^\delta u\|_{L^r(a,b)}.$$

Case $\delta = 1$.

If $\delta = 1$, then we have $c = d - 1$ and $p = r$. Also, we have $1 + cp = 1 + (d - 1)p > 0$. Then, using weighted fractional Hardy inequality (Theorem 3.4), we obtain:

$$\|x^\delta u\|_{L^p(a,b)} \leq C \left(\|x^{\delta+1} \partial_a^\alpha u\|_{L^p(a,b)} \right) = C \left(\|x^{\delta} \partial_a^\alpha u\|_{L^p(a,b)} \right).$$

(3.20)

Case $\delta \in [0, 1] \cap \left[\frac{q - r}{r}, \frac{p}{r} \right]$.

By assumption $c = \delta(d - 1) + e(1 - \delta)$ and using Hölder’s inequality with $\frac{\delta}{p} + \frac{1 - \delta}{q} = \frac{1}{r}$, we calculate:

$$\|x^\delta u\|_{L^r(a,b)} = \left(\int_a^b x^\delta |u(x)|^r \, dx \right)^{\frac{1}{r}} = \left(\int_a^b \left| \frac{u(x)}{x^\delta} \right|^r \left| \frac{u(x)}{x^\delta} \right|^{(1-\delta)r} \, dx \right)^{\frac{1}{r}} \leq \left\| \frac{u}{x^{1-d}} \right\|_{L^p(a,b)}^{\delta} \left\| \frac{u}{x^{e}} \right\|_{L^q(a,b)}^{1-\delta}. \quad (3.21)$$

Using weighted fractional Hardy inequality (Theorem 3.4) with $1 + (d - 1)p > 0$, we obtain:

$$\|x^\delta u\|_{L^p(a,b)} \leq \left\| \frac{u}{x^{1-d}} \right\|_{L^p(a,b)}^{\delta} \left\| \frac{u}{x^{e}} \right\|_{L^q(a,b)}^{1-\delta} \leq C \left\| x^d \partial_a^\alpha u \right\|_{L^p(a,b)}^{\delta} \|x^\delta u\|_{L^q(a,b)}^{1-\delta}, \quad (3.22)$$

completing the proof.

\[\square\]

4 Sequential derivation case

In this subsection, we collect results for the sequential derivatives. Indeed, these results are important due to the non–commutativity and the absence of the semigroup property of fractional differential operators.
4.1 Fractional Poincare–Sobolev-type inequality

Theorem 4.1 Let $\partial_a^\beta u(a) = 0$, $\partial_a^\alpha \partial_a^\beta u \in L^p(a, b)$ with $\alpha \in \left(\frac{1}{q}, 1\right)$ and $\beta \in (0, 1)$. Then, the following inequality is true:

$$\|\partial_a^\beta u\|_{L^\infty(a, b)} \leq \frac{(b - a)^{\frac{1}{p} - \frac{1}{q}}}{(\alpha q - q + 1)^\frac{1}{q} \Gamma(\alpha)} \|\partial_a^\alpha \partial_a^\beta u\|_{L^p(a, b)},$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof Consider the function:

$$\partial_a^\beta u(t) = \Gamma_a^{\alpha} \partial_a^\alpha \partial_a^\beta u(t).$$

Using the Hölder inequality, one has:

$$\left|\Gamma_a^{\alpha} \partial_a^\alpha \partial_a^\beta u(t)\right| \leq \frac{1}{\Gamma(\alpha)} \int_a^t (t - s)^{\alpha - 1} \partial_a^\alpha \partial_a^\beta u(s) ds$$

$$\leq \frac{1}{\Gamma(\alpha)} \left(\int_a^t (t - s)^{\alpha q - q} ds\right)^\frac{1}{q} \left(\int_a^t \|\partial_a^\alpha \partial_a^\beta u(s)\|^p ds\right)^\frac{1}{p}$$

$$= \frac{(t - a)^{\alpha - 1 + \frac{1}{q}}}{(\alpha q - q + 1)^\frac{1}{q} \Gamma(\alpha)} \left(\int_a^t \|\partial_a^\alpha \partial_a^\beta u(s)\|^p ds\right)^\frac{1}{p}$$

$$\leq \frac{(b - a)^{\alpha - 1 + \frac{1}{q}}}{(\alpha q - q + 1)^\frac{1}{q} \Gamma(\alpha)} \left\|\partial_a^\alpha \partial_a^\beta u\right\|_{L^p(a, b)}.$$}

Then, we obtain:

$$\|\partial_a^\beta u\|_{L^\infty(a, b)} \leq \frac{(b - a)^{\frac{1}{p} - \frac{1}{q}}}{(\alpha q - q + 1)^\frac{1}{q} \Gamma(\alpha)} \left\|\partial_a^\alpha \partial_a^\beta u\right\|_{L^p(a, b)},$$

completing proof. \(\square\)

Remark 4.1 If $1 < \theta < \infty$ in Theorem 4.1, then we have:

$$\|\partial_a^\beta u\|_{L^\theta(a, b)} \leq \frac{(b - a)^{\frac{1}{p} - \frac{1}{q} - \frac{1}{\theta}}}{(\alpha q - q + 1)^\frac{1}{q} \Gamma(\alpha)} \left\|\partial_a^\alpha \partial_a^\beta u\right\|_{L^p(a, b)}.$$
4.2 Fractional Hardy-type inequality

Now, we show the following sequential fractional Hardy inequality.

Theorem 4.2 Let \(a > 0, \gamma \in \mathbb{R} \) and \(\partial^\beta_{a+} u(a) = 0 \) and \(\partial^a_{a+} \partial^\beta_{a+} u \in L^p(a, b) \) with \(\alpha \in \left(\frac{1}{q}, 1 \right) \). Then, the following inequality is true:

\[
\left\| \partial^\beta_{a+} u \right\|_{L^p(a,b)} \leq C \left\| \partial^a_{a+} \partial^\beta_{a+} u \right\|_{L^p(a,b)},
\]

with \(\frac{1}{p} + \frac{1}{q} = 1 \).

Proof From \(a < x < b \), we have \(\frac{1}{b} < \frac{1}{x} < \frac{1}{a} \). Using Theorem 4.1, we calculate:

\[
\left(\int_a^b \frac{\left| \partial^\beta_{a+} u(x) \right|^p}{x^{\frac{1}{p}}} \right)^{\frac{1}{p}} = \left(\int_a^b x^{-p} \left| \partial^\beta_{a+} u(x) \right|^p dx \right)^{\frac{1}{p}} \\
\leq a^{-1} \left\| \partial^a_{a+} u \right\|_{L^p(a,b)}^{\frac{1}{p}} \tag{4.4}
\]

\[
\leq \frac{a^{-1}(b - a)^{\frac{1}{p}}}{(\alpha q - q + 1)^{\frac{1}{p}} \Gamma(\alpha)} \left\| \partial^a_{a+} \partial^\beta_{a+} u \right\|_{L^p(a,b)},
\]

showing (4.3). \(\square \)

4.3 Fractional Gagliardo–Nirenberg-type inequality

In the same way as Theorem 3.5 is proved, we can prove the following statement.

Theorem 4.3 Assume that \(1 \leq p, q < \infty \), and let \(\alpha \in (0, 1) \) be such that \(\beta \in \left(\frac{1}{q}, 1 \right) \).

Suppose that \(\partial^a_{a+} \partial^\beta_{a+} u \in L^q(a, b) \) and \(\partial^a_{a+} u \in L^p(a, b) \). Then, we have the following Gagliardo–Nirenberg-type inequality:

\[
\int_a^b \left| \partial^a_{a+} u(x) \right|^q dx \leq \left(\int_a^b \left| \partial^\beta_{a+} \partial^a_{a+} u(x) \right|^q dx \right)^{\frac{1}{q}} \left(\int_a^b \left| \partial^a_{a+} u(x) \right|^p dx \right)^{\left(\frac{1}{p} - s \right)}, \tag{4.5}
\]

with

\[
\frac{s q}{p} + \left(1 - s \right) \frac{q}{p} = 1, \tag{4.6}
\]

where \(s \in [0, 1] \).

Proof Let us calculate the following integral:
\[
\int_a^b |\partial_{a^+} u(x)|^\gamma \, dx = \int_a^b |\partial_{a^+} u(x)|^\gamma |\partial_{a+} u(x)|^{(1-\gamma)} \, dx \\
\leq \left(\int_a^b |\partial_{a+} u(x)|^q \, dx \right)^{\frac{\gamma}{q}} \left(\int_a^b |\partial_{a+} u(x)|^p \, dx \right)^{\frac{(1-\gamma)p}{p}},
\]
with
\[
\frac{sq}{q} + \frac{(1-s)p}{p} = 1.
\]

Then, using Theorem 4.1, we obtain:
\[
\int_a^b |\partial_{a^+} u(x)|^\gamma \, dx \leq \left(\int_a^b |\partial_{a^+} u(x)|^q \, dx \right)^{\frac{\gamma}{q}} \left(\int_a^b |\partial_{a+} u(x)|^p \, dx \right)^{\frac{(1-\gamma)p}{p}} \\
\leq C \left(\int_a^b |\partial_{a^+} \partial_{a+} u(x)|^q \, dx \right)^{\frac{\gamma}{q}} \left(\int_a^b |\partial_{a+} u(x)|^p \, dx \right)^{\frac{(1-\gamma)p}{p}}.
\]

The theorem is proved. \(\square\)

5 Hadamard fractional derivative

Let us give the definition of the Hadamard fractional derivative.

Definition 5.1 The left Hadamard fractional integral \(\mathfrak{I}_{a+}^\alpha\) of order \(\alpha > 0\) and derivative \(\mathfrak{D}_{a+}^\alpha\) of order \(0 < \alpha < 1\) are given by:

\[
\mathfrak{I}_{a+}^\alpha [f](t) = \frac{1}{\Gamma(\alpha)} \int_a^t \left(\frac{t}{s} \right)^{\alpha-1} f(s) \frac{ds}{s}, \quad t \in (a, b],
\]

and

\[
\mathfrak{D}_{a+}^\alpha [f](t) = \frac{1}{\Gamma(1-\alpha)} \int_a^t \left(\frac{t}{s} \right)^{-\alpha} f'(s) \frac{ds}{s}. \quad t \in (a, b].
\]

Here, \(\Gamma\) denotes the Euler gamma function.

Proposition 5.1 ([16]) If \(f \in L^1(a, b)\) and \(f' \in L^1_a(a, b)\), then the equality
\[
\mathfrak{I}_{a+}^\alpha \mathfrak{D}_{a+}^\alpha f(t) = f(t) - f(a), \quad 0 < \alpha < 1,
\]
holds almost everywhere on \([a, b]\).
Now, for $p \geq 1$, we define the weighted Lebesgue space $L^p_{\frac{1}{2}}(a, b)$ with the norm:

$$
\| u \|_{L^p_{\frac{1}{2}}(a, b)} := \left(\int_a^b |u(x)|^p \frac{dx}{x} \right)^{\frac{1}{p}}.
$$

(5.1)

For our further purpose, we will need the following property of the weighted space $L^p_{\frac{1}{2}}(a, b)$.

Proposition 5.2 ([16]) Suppose that $f \in L^1_{\frac{1}{2}}(a, b)$. Then, for the parameters $\alpha > 0$ and $\beta > 0$, we have the following equality:

$$
\mathcal{F}^\alpha_a \mathcal{F}^\beta_a f(t) = \mathcal{F}^{\alpha+\beta}_{a+} f(t),
$$

for almost all $t \in (a, b)$.

5.1 Poincaré–Sobolev-type inequality

In this subsection, we show the fractional-order Poincaré–Sobolev-type inequality.

Theorem 5.1 Let $a > 0$ and $p > 1$. Assume that $u \in L^p(a, b)$ and $\mathcal{D}^\alpha_{a+} u \in L^p_{\frac{1}{2}}(a, b)$ with $u(a) = 0$. Then, for the Hadamard fractional derivative \mathcal{D}^α_{a+} of order $\alpha \in \left(\frac{1}{p}, 1 \right]$, we have:

$$
\| u \|_{L^\infty(a, b)} \leq \frac{\log \left(\frac{b}{a} \right)^{\frac{a-1}{p}}}{\left(\frac{ap}{p-1} - \frac{1}{p-1} \right)^{\frac{p-1}{p}} \Gamma(\alpha)} \| \mathcal{D}^\alpha_{a+} u \|_{L^p_{\frac{1}{2}}(a, b)}.
$$

(5.2)

Proof Let $u \in L^p_{\frac{1}{2}}(a, b)$, $u(a) = 0$, $\mathcal{D}^\alpha_{a+} u \in L^p(a, b)$ and consider the function:

$$
u(t) = \mathcal{F}^\alpha_{a+} \mathcal{F}^\alpha_{a+} u(t).
$$

(5.3)

Using the Hölder inequality with $\frac{1}{p} + \frac{1}{q} = 1$, we obtain:
\[
\left| \mathfrak{I}_{a+}^{\alpha} \mathfrak{D}_{a+}^{\alpha} u(t) \right| \leq \frac{1}{\Gamma(\alpha)} \int_{a}^{t} \left(\log \frac{t}{s} \right)^{\alpha-1} \left| \mathfrak{D}_{a+}^{\alpha} u(s) \right| \frac{ds}{s^{\frac{1}{p} + \frac{1}{q}}} \\
\leq \frac{1}{\Gamma(\alpha)} \left(\int_{a}^{t} \left| \log \frac{t}{s} \right|^{a_q - \frac{1}{q}} \frac{ds}{s} \right)^{\frac{1}{q}} \left(\int_{a}^{t} \left| \mathfrak{D}_{a+}^{\alpha} u(s) \right|^{p} \frac{ds}{s} \right)^{\frac{1}{p}} \\
= \frac{1}{\Gamma(\alpha)} \left(a_q - q + 1 \right)^{\frac{1}{q}} \int_{a}^{t} \left(a_q - q + 1 \right)^{\frac{1}{q}} \left(\int_{a}^{t} \left| \mathfrak{D}_{a+}^{\alpha} u(s) \right|^{p} \frac{ds}{s} \right)^{\frac{1}{p}} \\
= \frac{1}{\Gamma(\alpha)} \left(a_q - q + 1 \right)^{\frac{1}{q}} \left(\int_{a}^{t} \left| \mathfrak{D}_{a+}^{\alpha} u(s) \right|^{p} \frac{ds}{s} \right)^{\frac{1}{p}}.
\]

where \(q = \frac{p}{p-1} > 1 \), showing (5.2). \(\square \)

Remark 5.1 In Theorem 5.1, by taking \(1 < \theta < \infty \), we have:

\[
\| u \|_{L^p(a,b)} \leq \frac{b - a}{\left(\frac{ap}{p-1} - \frac{1}{p-1} \right)^{\frac{p-1}{p}}} \left(\int_{a}^{t} \left| \mathfrak{D}_{a+}^{\alpha} u(s) \right|^{p} \frac{ds}{s} \right)^{\frac{1}{p}} \left(\frac{b - a}{\left(\frac{ap}{p-1} - \frac{1}{p-1} \right)^{\frac{p-1}{p}}} \Gamma(\alpha) \right) \left(\int_{a}^{t} \left| \mathfrak{D}_{a+}^{\alpha} u(s) \right|^{p} \frac{ds}{s} \right)^{\frac{1}{p}}.
\] (5.4)

5.2 Hardy-type inequality

Here, we show the Hardy inequality for the Hadamard derivative.

Theorem 5.2 Let \(a > 0 \) and \(p > 1 \). Assume that \(\mathfrak{D}_{a+}^{\alpha} u \in L^p_{\frac{1}{p}}(a,b) \) and \(u(a) = 0 \). Then, for the Hadamard fractional derivative \(\mathfrak{D}_{a+}^{\alpha} \) of order \(\alpha \in \left(\frac{1}{p}, 1 \right) \), we have:
\[
\left\| \frac{u}{x} \right\|_{L^p(a,b)} \leq \frac{a^{-1}(b-a)^{\frac{1}{p}}}{\left(\frac{ap}{p-1} - \frac{1}{p-1} \right) \Gamma(\alpha)} \left\| \mathfrak{D}^a_{a+} u \right\|_{L^p_{\frac{1}{2}}(a,b)}^q. \quad (5.5)
\]

Proof From \(a < x < b \), we have \(\frac{1}{b} < \frac{1}{x} < \frac{1}{a} \). Using Theorem 5.1, we calculate:

\[
\left(\int_a^b \frac{|u(\xi)|^p}{x^p} d\xi \right)^{\frac{1}{p}} \leq \left(\int_a^b x^{-p}|u(\xi)|^p d\xi \right)^{\frac{1}{p}} \leq a^{-1}\|u\|_{L^p(a,b)}
\]

\[
(5.6)
\]

\[
\leq \frac{a^{-1}(b-a)^{\frac{1}{p}}}{\left(\frac{ap}{p-1} - \frac{1}{p-1} \right) \Gamma(\alpha)} \left\| \mathfrak{D}^a_{a+} u \right\|_{L^p_{\frac{1}{2}}(a,b)},
\]

showing (5.5). \(\square \)

Let us show the weighted Hardy inequality with the Hadamard derivative.

Theorem 5.3 Let \(a > 0 \), \(u(a) = 0 \) and \(\mathfrak{D}^a_{a+} u \in L^p_{\frac{1}{2}}(a, b) \) with \(p > 1 \). Then, for the Hadamard fractional derivative \(\mathfrak{D}^a_{a+} \) of order \(\alpha \in \left(\frac{1}{p}, 1 \right] \) and \(\gamma \in \mathbb{R} \), we have inequality:

\[
\left\| \frac{u}{x^{\gamma+1}} \right\|_{L^p(a,b)} \leq C \left\| \mathfrak{D}^a_{a+} u \right\|_{L^p_{\frac{1}{2}}(a,b)}. \quad (5.7)
\]

Proof We prove this result in two steps. Let us first show the case \(\gamma \geq 0 \). Since \(a > 0 \), we have \(b^{-\gamma-1} < x^{-\gamma-1} < a^{-\gamma-1} \), and by the direct calculations, one obtains:
\[
\left(\int_a^b \frac{|u(x)|^p}{x^{(\gamma+1)p}} \, dx \right)^{\frac{1}{p}} \leq a^{-\gamma-1} \left(\int_a^b |u(x)|^p \, dx \right)^{\frac{1}{p}}
\]

\[
\leq \frac{a^{-\gamma-1}(b-a)^{\frac{1}{p}} \log \frac{b}{a}^{\frac{\alpha-1}{p}}}{\left(\frac{ap}{p-1} - \frac{1}{p-1} \right)^{\frac{p-1}{p}} \Gamma(\alpha)} \left(\int_a^b |\mathcal{D}_a u|^p \, dx \right)^{\frac{1}{p}}
\]

\[
= \frac{a^{-\gamma-1}(b-a)^{\frac{1}{p}} \log \frac{b}{a}^{\frac{\alpha-1}{p}}}{\left(\frac{ap}{p-1} - \frac{1}{p-1} \right)^{\frac{p-1}{p}} \Gamma(\alpha)} \left(\int_a^b \frac{|\mathcal{D}_a u|^p}{x^{\gamma p}} \, dx \right)^{\frac{1}{p}}
\]

\[
\leq \frac{a^{-\gamma-1}(b-a)^{\frac{1}{p}} b^{\gamma} \log \frac{b}{a}^{\frac{\alpha-1}{p}}}{\left(\frac{ap}{p-1} - \frac{1}{p-1} \right)^{\frac{p-1}{p}} \Gamma(\alpha)} \left(\int_a^b \frac{|\mathcal{D}_a u|^p}{x^{\gamma p}} \, dx \right)^{\frac{1}{p}}
\]

\[
= \frac{a^{-\gamma-1}(b-a)^{\frac{1}{p}} b^{\gamma} \log \frac{b}{a}^{\frac{\alpha-1}{p}}}{\left(\frac{ap}{p-1} - \frac{1}{p-1} \right)^{\frac{p-1}{p}} \Gamma(\alpha)} \left\| \mathcal{D}_a u \right\|_{L^p(\frac{\gamma}{p},(a,b))}.
\]

Now, to prove the case \(\gamma < 0 \), we arrive at:
\[
\left(\int_a^b \frac{|u(x)|^p}{x^{(r+1)p}} \, dx\right)^{\frac{1}{p}} = \left(\int_a^b \frac{|u(x)|^p}{x^{(r+p)p}} \, dx\right)^{\frac{1}{p}} \\
\leq b^{-\gamma} \left(\int_a^b \frac{|u(x)|^p}{x^{p}} \, dx\right)^{\frac{1}{p}} \\
\leq b^{-\gamma} a^{-1} (b-a)^{\frac{1}{p}} \log \left(\frac{b}{a}\right)^{\frac{a-1}{p}} \left(\int_a^b \frac{|\mathcal{D}_a^s u|^p}{x} \, dx\right)^{\frac{1}{p}} \\
\leq \frac{b^{-\gamma} a^{-1} (b-a)^{\frac{1}{p}} \log \left(\frac{b}{a}\right)^{\frac{a-1}{p}}}{\left(\frac{ap}{p-1} - \frac{1}{p-1}\right)^{\frac{p-1}{p}}} \Gamma(\alpha) \\
\leq \frac{b^{-\gamma} a^{-1} (b-a)^{\frac{1}{p}} \log \left(\frac{b}{a}\right)^{\frac{a-1}{p}}}{\left(\frac{ap}{p-1} - \frac{1}{p-1}\right)^{\frac{p-1}{p}}} \left(\int_a^b \frac{|\mathcal{D}_a^s u|^p}{x} \, dx\right)^{\frac{1}{p}} \\
\leq \frac{b^{-\gamma} a^{-1} (b-a)^{\frac{1}{p}} \log \left(\frac{b}{a}\right)^{\frac{a-1}{p}}}{\left(\frac{ap}{p-1} - \frac{1}{p-1}\right)^{\frac{p-1}{p}}} \left(\int_a^b \frac{|\mathcal{D}_a^s u|^p}{x^{\gamma p}} \, dx\right)^{\frac{1}{p}} \\
\leq \frac{b^{-\gamma} a^{-1} (b-a)^{\frac{1}{p}} \log \left(\frac{b}{a}\right)^{\frac{a-1}{p}}}{\left(\frac{ap}{p-1} - \frac{1}{p-1}\right)^{\frac{p-1}{p}}} \Gamma(\alpha) \\
\leq b^{-\gamma} a^{-1} (b-a)^{\frac{1}{p}} \log \left(\frac{b}{a}\right)^{\frac{a-1}{p}} \left(\int_a^b \frac{|\mathcal{D}_a^s u|^p}{x^{\gamma p}} \, dx\right)^{\frac{1}{p}} \\
\leq \frac{b^{-\gamma} a^{-1} (b-a)^{\frac{1}{p}} \log \left(\frac{b}{a}\right)^{\frac{a-1}{p}}}{\left(\frac{ap}{p-1} - \frac{1}{p-1}\right)^{\frac{p-1}{p}}} \Gamma(\alpha) \\
= \frac{b^{-\gamma} a^{-1} (b-a)^{\frac{1}{p}} \log \left(\frac{b}{a}\right)^{\frac{a-1}{p}}}{\left(\frac{ap}{p-1} - \frac{1}{p-1}\right)^{\frac{p-1}{p}}} \left\| \mathcal{D}_a^s u \right\|_{L^p(a,b)} \left\| u \right\|_{L^p(a,b)}^{\frac{1}{p}}
\]
Proof Using the Hölder inequality with \(\frac{rs}{q} + \frac{(1-s)}{p} = 1 \), we get:

\[
\int_a^b |u(x)|^r \, dx = \int_a^b |u(x)|^{rs} |u|^{r(1-s)} \, dx
\leq \left(\int_a^b |u(x)|^q \, dx \right)^{\frac{r}{q}} \left(\int_a^b |u(x)|^p \, dx \right)^{\frac{r(1-s)}{p}}
\]

(5.12)

\[
\leq C \|x^d \mathcal{D}^\alpha_{a+}u\|_{L^q_{\frac{a}{2},(a,b)}}^{rs} \|u\|_{L^p(a,b)}^{r(1-s)},
\]

completing the proof. \(\square\)

5.4 Fractional Caffarelli–Kohn–Nirenberg-type inequality with Hadamard derivative

Now, we are in a position to show the fractional Caffarelli–Kohn–Nirenberg-type inequality.

Theorem 5.5 Let \(a > 0 \), \(1 < p, q < \infty \), \(\alpha \in \left(1 - \frac{1}{q}, 1 \right) \), and \(0 < r < \infty \), such that \(p + q \geq r \). Suppose that \(\delta \in [0, 1] \cap \left[\frac{r-q}{r}, \frac{p}{r} \right] \) and \(c, d, e \in \mathbb{R} \) with \(\frac{\delta}{p} + \frac{1-\delta}{q} = \frac{1}{r} \) and \(c = \delta(d-1) + e(1-\delta) \). Assume that \(x^d \mathcal{D}^\alpha_{a+}u \in L^q_{\frac{a}{2},(a,b)} \), \(x^e u \in L^q(a,b) \) and \(u(a) = 0 \).

Moreover, let \(1 + (d-1)p > 0 \), and then, we have \(x^e u \in L^r(a,b) \) and:

\[
\|x^e u\|_{L^r(a,b)} \leq C \|x^d \mathcal{D}^\alpha_{a+}u\|_{L^q_{\frac{a}{2},(a,b)}}^{\delta} \|x^e u\|_{L^q(a,b)}^{1-\delta}. \tag{5.13}
\]

Proof Case \(\delta = 0 \).

If \(\delta = 0 \), then \(c = e \) and \(q = r \). Then, (3.19) is the inequality:

\[
\|x^e u\|_{L^r(a,b)} \leq \|x^e u\|_{L^r(a,b)}.
\]

Case \(\delta = 1 \).

If \(\delta = 1 \), then we have \(c = d-1 \) and \(p = r \). Also, we have \(1 + cp = 1 + (d-1)p > 0 \). Then, using weighted fractional Hardy inequality (Theorem 5.3), we obtain:
\[\|x^\delta u\|_{L^p(a,b)} \leq C\|x^{\delta+1}D_a^\alpha u\|_{L^{p_1}(a,b)} \]
\[= C\|x^\delta D_a^\alpha u\|_{L^{p_1}(a,b)}. \]

(5.14)

Case \(\delta \in [0, 1] \cap \left[\frac{r-q}{r}, \frac{p}{r} \right] \).

By assuming \(c = \delta(d-1) + e(1-\delta) \) and using the Hölder’s inequality with
\[\frac{\delta}{p} + \frac{1-\delta}{q} = \frac{1}{r}, \]
we calculate:

\[\|x^\delta u\|_{L^p(a,b)} = \left(\int_a^b x^\delta |u(x)|^r \, dx \right)^{\frac{1}{r}} \]
\[= \left(\int_a^b \frac{|u(x)|^\delta |u(x)|^{(1-\delta)r}}{x^{\delta r(1-d)} - \epsilon^{(1-\delta)d}} \, dx \right)^{\frac{1}{r}} \]

(5.15)

Using the weighted fractional Hardy inequality (Theorem 5.3) with \(1 + (d-1)p > 0 \), we obtain:

\[\|x^\delta u\|_{L^p(a,b)} \leq \left\| \frac{u}{x^{1-d}} \right\|_{L^p(a,b)}^{\delta} \left\| \frac{u}{x^{-e}} \right\|_{L^q(a,b)}^{1-\delta} \]

(5.16)

showing (5.13).

\[\square \]

6 Applications

In this section, we show some applications of the obtained inequalities for the real-valued functions \(u \).

6.1 Uncertainty principle

The inequality (3.9) implies the following uncertainty principle:

Corollary 6.1 Let \(a > 0 \), \(u(a) = 0 \) and \(D_a^\alpha u \in L^p(a,b) \) with \(p > 1 \). Then, for the Caputo fractional derivative \(D_a^\alpha \) of order \(\alpha \in \left(\frac{1}{p}, 1 \right] \), we have the following inequality:
where \(q = \frac{p}{p-1} \).

Proof Using (3.9), we obtain:

\[
\frac{a^{-1}(b-a)^a}{\left(\frac{ap}{p-1} - \frac{1}{p-1}\right)^\frac{p-1}{p}} \left\| \partial_{a+}^\alpha u \right\|_{L^p(a,b)} \left\| xu \right\|_{L^q(a,b)},
\]

completing the proof. \(\square\)

Remark 6.1 Also, the uncertainly principle holds for the Riemann–Liouville derivative.

Let us show uncertainly principle for the Hadamard derivative.

Corollary 6.2 Let \(a > 0 \) and \(p > 1 \). Assume that \(\mathfrak{D}_{a+}^\alpha u \in L^p \left(\frac{a}{2}, b \right) \) and \(u(a) = 0 \). Then, for the Hadamard fractional derivative \(\mathfrak{D}_{a+}^\alpha \) of order \(\alpha \in \left(\frac{1}{p}, 1 \right) \), we have:

\[
\left\| u \right\|_{L^2(a,b)}^2 \leq \frac{a^{-1}(b-a)^a}{\left(\frac{ap}{p-1} - \frac{1}{p-1}\right)^\frac{p-1}{p}} \log \frac{b}{a} \left\| \mathfrak{D}_{a+}^\alpha u \right\|_{L^p \left(\frac{a}{2}, b \right)} \left\| xu \right\|_{L^q(a,b)},
\]

where \(q = \frac{p}{p-1} \).

Proof Proof is similar to Corollary 6.1 using Theorem 5.2. \(\square\)

6.2 Embedding of spaces

Let us consider the space \(H^\alpha_+(a,b) \) with \(\alpha \in \left(\frac{1}{2}, 1 \right] \) introduced in [6, 11] in the following form:

\[
H^\alpha_+(a,b) := \left\{ u \in L^2(a,b), \ \partial_{a+}^\alpha u \in L^2(a,b), \ u(a) = 0 \right\}.
\]

If \(\alpha < \beta \), then by the Poincaré–Sobolev-type inequality (3.1), we have \(H^\beta_+(a,b) \hookrightarrow H^\alpha_+(a,b) \).

Let us introduce the space \(W^\alpha_+ \) in the following form:

\[
W^\alpha_+(a,b) := \left\{ u \in L^2(a,b), \ \mathfrak{D}_{a+}^\alpha u \in L^2(a,b), \ u(a) = 0 \right\}.
\]
where \mathcal{D}^a_{a+} is the left Hadamard derivative. If $\alpha < \beta$, then by the Poincaré–Sobolev-type inequality (5.2), we have: $\mathcal{W}^\beta_+ (a, b) \hookrightarrow \mathcal{W}^\alpha_+ (a, b)$.

6.3 A-priori estimate

Here, we seek a real-valued solution to the following space-fractional diffusion problem:

$$
\begin{align*}
\begin{cases}
 u_t(x, t) + D^a_{b-} \partial^a_{a+} u(x, t) &= 0, \quad (x, t) \in (a, b) \times (0, T), \\
 u(x, 0) &= u_0(x), \quad \forall x \in (a, b),
\end{cases}
\end{align*}
$$

where $\alpha \in \left(\frac{1}{2}, 1 \right)$, $u \in L^\infty(0, T; H^a_+(a, b))$, $u_t \in L^2(0, T; \dot{H}^a_+(a, b))$, and $u_0 \in L^2(a, b)$.

Now, we show an a-priori estimate for this problem. Let us define:

$$I(t) = \| u(x, \cdot) \|_{L^2(a, b)}^2 = \int_a^b |u(x, t)|^2 \, dx.$$

Then, by multiplying (6.4) by u, integrating over (a, b), and using integration by parts, we compute:

$$
\int_a^b u_t(x, t) u(x, t) \, dx + \int_a^b u(x, t) D^a_{b-} \partial^a_{a+} u(x, t) \, dx \\
= \frac{1}{2} \frac{d}{dt} \int_a^b |u(x, t)|^2 \, dx + \int_a^b |\partial^a_{a+} u(x, t)|^2 \, dx
\tag{6.5}
$$

Using (3.1) with $p = 2$ in (6.5), we get:

$$0 = \frac{1}{2} \frac{dI(t)}{dt} + \int_a^b |\partial^a_{a+} u(x, t)|^2 \, dx \geq \frac{1}{2} \frac{dI(t)}{dt} + \frac{(2\alpha - 1) \Gamma^2(\alpha)}{(b - \alpha)^{2\alpha}} \int_a^b |u(x, t)|^2 \, dx.$$

Consequently, we arrive at $\frac{dI(t)}{dt} \leq 0$. This means that $I(t)$ is a non-decreasing function. Then, for all $t > 0$, we have $I(t) \leq I(0)$. Thus:

$$\| u(x, \cdot) \|_{L^2(a, b)} \leq \| u_0 \|_{L^2(a, b)}.$$

Acknowledgements The authors were supported in part by the FWO Odysseus 1 grant G.0H94.18N: Analysis and Partial Differential Equations. Michael Ruzhansky was supported in part by the EPSRC Grant EP/R003025/1 and by the Leverhulme Research Grant RPG-2017-151. Aidyn Kassymov was supported in part by the MESRK Grant AP08053051 of the Ministry of Education and Science of the Republic of Kazakhstan.
References

1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1999)
2. Anastassiou, G.A.: Fractional Differentiation Inequalities, vol. 68. Springer, New York (2009)
3. Anastassiou, G.A.: Fractional Sobolev-type inequalities. Appl. Anal. 87(5), 607–624 (2008)
4. Anastassiou, G.A.: Fractional representation formulae and right fractional inequalities. Math. Comput. Model. 54, 3098–3115 (2011)
5. Alsaeedi, A., Ahmad, B., Kirane, M.: A survey of useful inequalities in fractional calculus. Fract. Calc. Appl. Anal. 20(3), 574–594 (2017)
6. Bajlekova, E.G.: Fractional Evolution Equations in Banach Spaces. PhD thesis, Eindhoven University of Technology, (2001)
7. Caffarelli, L.A., Kohn, R., Nirenberg, L.: First order interpolation inequalities with weights. Compos. Math. 53, 259–275 (1984)
8. Dolbeault, J., Esteban, M.J., Laptev, A., Loss, M.: One-dimensional Gagliardo-Nirenberg-Sobolev inequalities: remarks on duality and flows. J. Lond. Math. Soc. (2) 90(2), 525–550 (2014)
9. Di Nezza, E., Palatucci, G., Valdinoci, E.E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)
10. Gagliardo, E.: Ulteriori proprietà di alcune classi di funzioni in più variabili. Ricerche Mat. 8, 24–51 (1959)
11. Gorenflo, R., Luchko, Yu., Yamamoto, M.: Time-fractional diffusion equation in the fractional Sobolev spaces. Fract. Calc. Appl. Anal. 18(3), 799–820 (2015)
12. Hardy, G.H., Landau, E., Littlewood, J.E.: Some inequalities satisfied by the integrals or derivatives of real or analytic functions. Math. Z. 39, 677–695 (1935)
13. Hughes, R.J.: Hardy-Landau-Littlewood inequalities for fractional derivatives in weighted L^p spaces. J. Lond. Math. Soc. 32–35, 489–498 (1987)
14. Hughes, R.J.: On fractional integrals and derivatives in L^p. Indiana Univ. Math. J. 26, 325–328 (1977)
15. Iqbal, S., Himmelreich, K.K., Pecaric, J.: On refined Hardy-type inequalities with fractional integrals and fractional derivatives. Math. Slovaca 64(4), 879–892 (2014)
16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, North-Holland (2006). (Mathematics studies)
17. Nirenberg, L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 3(13), 115–162 (1959)
18. Nguyen, H.-M., Squassina, M.: Fractional Caffarelli-Kohn-Nirenberg inequalities. J. Funct. Anal. 274, 2661–2672 (2018)
19. Park, Y.J.: Fractional Gagliardo-Nirenberg inequality. J. Chungcheong Math. Soc. 24, 583–586 (2011)
20. Ruzhansky, M., Suragan, D.: Hardy inequalities on homogeneous groups. In: Progress in Math. Vol. 327, Birkhäuser (2019)
21. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Order Integrals and Derivatives and Some Applications. Nauka i tekhnika, Minsk (1987). (In Russian)