Capacitive coupled RF discharge: modelling at the local and not local statement of the problem

R M Askhatov¹, V Yu Chebakova¹ and V S Zheltukhin²
¹Kazan Federal University, 18 Kremlevskaya Street, Kazan, 420008, Russia
²Kazan State Technological University, 68 Karl Marx Street, Kazan, 420015, Russia

E-mail: vchebakova@mail.ru

Abstract. The models provided in the research paper describe a capacitive coupled radio-frequency discharge in argon between two parallel plate electrodes, one of which is grounded, and the other is connected to the high-frequency capacitive generator. Herein we review various approaches to simulate a high-frequency capacitive discharge depending on modelled pressure rates. The model of a high-frequency capacitive discharge under low pressure is simulated in non-local approximation, and under high pressure is simulated in local approximation and is sensitive to dimers and molecular ions. We provide calculation data with respect to different pressures and make comparative analysis of data provided by other authors in particular, analysis of data obtained with real experiment.

1. Introduction
The among the discharges applied to treat materials, significant part is assigned to capacitive coupled radio-frequency (CCRF) discharges [1-6]. CCRF-discharges differ under different pressures as by various values of discharge characteristics and by the mechanisms of internal processes. Nowadays the models of HFC-discharges of middle and low pressures are studied in details [5]. Recently the interest to CCRF-discharges of low pressure has increased due to emerged possibility to treat natural materials because of low atom temperature in such discharges, as well as interest to CCRF-discharges atmosphere pressure. Experimental calculation methods, which complement each other, are used to tie internal and external parameters of the discharge [7-11].

The models provided in this research paper describe a capacitive coupled radio-frequency discharge in argon between two parallel plate electrodes, one of which is grounded, and the other is connected to the high-frequency capacitive generator providing that distance between the electrodes is less than dimensions of the electrodes themselves. Under such conditions the electrical field is close to the potential one and the discharge is uniform along the electrodes, what allows using one-dimensional model [5]. Due to use of one dimensional model, we can review kinetics of the discharge with respect to diffusive drift approximation [12-13]. Comparison of time and distance needed for electron to lose the energy obtained from the field and dimensions of computational space revealed that the local and non-local approximations shall be used for modelling of CCRF-discharges under high and low pressures [3, 14].
2. Setting a problem in non-local approximation

The this section devoted to the pressure range from 13.3 Pa to 133 Pa describes the self-consistent mathematical model of CCRF-discharge in non-local approximation under low pressure in argon. This model includes process factors occurred under electron impacts, which are taken with account of electron-electron collision depending on electron temperature and ionization rate [15].

Provided herein model of CCRF-discharge under low pressure includes time-dependent equation of balances for electron gas, metastable atoms, atomic ions, Poisson’s equation for potential of electrical field, time-dependent equation of electronic energy balance, as well steady state equation of thermal conductivity of atomic-ion gas at average parameters. At that here is used the simplified diagram of argon atom, where 4 lowest approximate electronically excited states are replaced with uniform rate resulted with efficient mixing due to their electronic impact [16]. The model includes plasma chemical reactions

\[\text{Ar}^+ + e \rightarrow \text{Ar} + e; \quad \text{Ar}^* + \text{Ar}^* \rightarrow \text{Ar} + \text{Ar} + 2e; \quad \text{Ar}^* + e \rightarrow \text{Ar} + 2e; \quad \text{Ar} + e \rightarrow \text{Ar}^* + e; \quad \text{Ar}^* \rightarrow \text{Ar} + h_v; \quad \text{Ar}^* + \text{Ar} \rightarrow 2\text{Ar}; \quad \text{Ar}^* + e \rightarrow \text{Ar} + e. \]

Velocity factors of the corresponding reactions are described in the work papers [17-23].

In order to solve the nonlinear system of boundary value problems and initial boundary value problems described herein, we used the approximation method, which is based on preliminary finite dimensional approximation of the problem using difference scheme including further use of iteration process applied for its implementation [24]. Moreover, the research papers [25-29] are devoted to the methods to solve nonlinear problems of continuum mechanics as well describe-layer iteration methods including methods lowering nonlinearity to a lower layer [25-29].

3. Calculation data

The calculation data of CCRF-discharge in plasmatron, which has electron spacing 22 mm, pressure \(P=13.3 \text{ Pa} \), applied voltage rate \(V_a=65 \text{ V} \) qualitatively coincide with the data of the research paper [30], however, ion concentration has specific bell-bottom shape with maximum located in the center of the discharge \(\approx 10^{15} \text{ m}^{-3} \), while the experiments show value [30] \(\approx 7 \cdot 10^{14} \text{ m}^{-3} \).

Electron temperature reaches its maximum level, per the period 3 eV, at near-electrode layers, and maximum value at the center of the discharge was 2.5 eV. However, gas temperature stayed almost permanent: 305 K.

According to the research paper [30] the following temperature range was fixed under voltage \(V_a=65 \text{ V} \) and pressure \(P=13.3 \text{ Pa} \): maximum - 3.4 eV, minimum 1.7 eV providing that inaccuracy is 20%. As well the researchers made calculations under the pressure 133 Pa. Comparison of calculation data revealed that the distance, when an electron lose its energy under pressure 133 Pa decreased significantly (see Fig. 1 and Fig. 2).

![Figure 1](image1.png) **Figure 1.** Change of electron temperature in time under pressure 13.3 Pa

![Figure 2](image2.png) **Figure 2.** Change of electron temperature under pressure 13.3 Pa (Maximum value per the period is given at each point of interelectrode distance)
4. Setting a problem in local approximation
The research paper [31] shows dependency of concentration ratio of atomic and molecular ions depending on gas temperature in CCRF-discharges. Owing to nonuniform distribution of gas temperature in interelectrode spacing, the provided self-consistent model of CCRF-discharge under high pressure includes time-dependent equation of balance for electron gas, metastable atoms, molecular and atomic ions, Poisson’s equation for potential of electrical field, steady state equation of thermal conductivity of atomic-ion gas under boundary conditions of heat exchange, which is calculated according to average parameters, and kinetic reactions include added: \(\text{Ar}^*+\text{Ar}^* \rightarrow \text{Ar}^2 + e; \)
\(2\text{Ar}^*+\text{Ar}^* \rightarrow \text{Ar}^2 + \text{Ar}^+ + e; \)
\(\text{Ar}_2^+ + e \rightarrow \text{Ar} + \text{Ar} + \text{Ar}^+; \)
\(\text{Ar}_2^+ + e \rightarrow \text{Ar}^* + \text{Ar}^* + e; \)
\(\text{Ar}_2^* + e \rightarrow \text{Ar} + \text{Ar} + \text{Ar}^+; \)
\(\text{Ar}_2^* \rightarrow 2\text{Ar} + h\nu; \)
\(\text{Ar}^* + 2\text{Ar} \rightarrow \text{Ar}_2^* + \text{Ar}; \)
\(\text{Ar}_2^* + \text{Ar}^* \rightarrow e + \text{Ar} + \text{Ar}_2^+; \)
\(e + \text{Ar}_2^* \rightarrow 2\text{Ar}^* + e; \)
\(\text{Ar}^* + 2\text{Ar} \rightarrow 3\text{Ar} + h\nu; \)
\(\text{Ar}_2^* + \text{Ar}^* \rightarrow 2\text{Ar} + \text{Ar}^+ + \text{Ar}^*. \)
Velocity factors of the processes being the subject for electron impact depend on local value of provided electrical field and ionization rate with account of electron-electron collision [15].

5. Calculation data
The work paper [20] states that electron density available from experiments is \(5 \times 10^{11} \) sm\(^{-3} \) under atmosphere pressure and interelectrode distance – 2mm, according to the calculation data provided at the same work paper, density of electrons and ions approximately is \(\approx 7 \times 10^{11} \) sm\(^{-3} \). Calculations made for our model under the similar conditions revealed that concentration maximum is \(\approx 3.9 \times 10^{11} \) sm\(^{-3} \) (Fig. 3).

![Figure 3](image)

Figure 3. Distribution of average value per the period of charged-particle concentration

6. Conclusion
This research paper describes the self-consistent mathematical model of CCRF-discharge in local approximation under low pressure and non-local approximation under high pressure. Velocity factors of the processes being the subject for electron impact are taken with account of electron-electron collision as well as with account of space variations of gas temperature. The researches have developed the software package, which allows counting parameters of a CCRF-discharge under low pressure in non-local approximation. They performed qualitative and quantitative comparison of numerical calculation data with the data provided by other authors, particularly, with the results of real experiments.

Acknowledgments
The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University and this work was supported by Russian Science Foundation, project no. 16-11-10299.
References
[1] Fridman A 2008 Plasma chemistry (Cambridge: Cambridge Univ. Press)
[2] Raiser Yu P 2009 Physics of gas discharge (Dolgoprudny: Publishing house “Intellect”)
[3] Abdullin I Sh, Zheltukhin V S and Kashapov N Ph 2000 Radio-frequency plasma jet treatment under low pressure. Theory and practice in the application (Kazan: Publishing house affiliated with Kazan University)
[4] Savinov V P 2013 Physics of a high-frequency capacitive discharge (Moscow: PHYSMATLIT)
[5] Riser Yu P, Shneider M N and Yatsenko N A 1995 High-frequency capacitive discharge. Physics. Experimental procedures. Attachments(Moscow: Publishing house affiliated with MPhTI)
[6] Chebert P and Braithwaite N 2011 Physics of radio-frequency plasmas (Cambridge: Cambridge Univ. Press)
[7] Balcon N, Hagelaar G J M and Boeuf J P 2008 Numerical Model of an Argon Atmospheric Pressure RF Discharge IEEE transactions on plasma science 36 (5) 2782-7
[8] Karoulina E and Lebedev Yu 1992 Computer simulation of microwave and dc plasmas: comparative characterization of plasmas J.Phys.D: Appl.Phys. 25 401–12
[9] Boeuf J P and Pitchford L C 1995 Two-dimensional model of a capacitively coupled rf discharge and comparisons with experiments in the Gaseous Electronics Conference reference reactor, Physical Review E. 51 (2) 1376–90
[10] Lebedev Y A, Tatarinov A V, Epstein I L and Averin K A 2015 Mathematical modeling of the gas bubbles in the microwave discharge of boiling n-heptane Contemporary Engineering Sciences 8 (21) 1057-65
[11] Zheltuhin V S, Solovyev P S and Chebakova V Y 2015 Boundary conditions for electron balance equation in the stationary High-Frequency Induction discharges Research Journal of Applied Sciences 10 (10) 658-62
[12] Chebakova V Ju, Zheltukhin V S and Dubrovin V T 2016 Problem of radio-frequency discharge at atmospheric pressure in local statement Applied Mathematical Sciences 10 (21) 1013-22
[13] Zheltukhin V S, Chebakova V J, Abaidullin R N and Kadyrov R F 2015 On solving of some nonlinear problems of plasma physics Applied Mathematical Sciences 9 (88) 4351-9.
[14] Kudryavtsev A A, Smirnov A S and Tsendin L D 2010 Physics of glow-discharge (Saint Petersburg: Publishing house “Lan”)
[15] Hagelaar G J M and Pitchford L C 2005 Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models Plasma Sources Sci. Techn. 14 722–33
[16] Ferreira C M, Loureiro J and Ricard A 1985 Populations in the metastable and the resonance levels of argon and stepwise ionization effects in a low-pressure argon positive column, Journal of Applied Physics 57 (82) 82–90
[17] Lymberopoulos D P and Economou D J 1993 Fluid simulations of glow discharge & Effect of metastable atoms in argon, J. Appl. Phys. 73 (8) 3668–79
[18] Moravej M, Yang X, Hicks R F, Penelon J and Babayan S E 2006 A radio-frequency nonequilibrium atmospheric pressure plasma operating with argon and oxygen J. Appl. Phys. 99 Art. 093305
[19] Bora B, Bhuyan H, Favre M, Wyndham E and Chuaqui H 2011 Diagnostic of Capacitively Coupled Low Pressure Radio Frequency Plasma: An Approach through Electrical Discharge Characteristic International Journal of Applied Physics and Mathematics 1 (2) 124–8
[20] Balcon N P, Aanesland A, Hagelaar G J M., Boswell R and Boeuf J P 2007 Atmospheric pressure RF discharge in argon: optical diagnostic, fluid model and applications, 28th ICPIG, July 15-20, 2007, Prague, Czech Republic 957–60
[21] Diatko N A, Ionokh Yu Z, Meshanov A B and Napartovich A P 2005 Study of dark study of development of positive column of glow discharge in argon Plasma Physics Reports 31 (10) 939-53
[22] Epstein I L, Gavrilović M, Jovicević S, Konjević N, Lebedev Yu A and Tatarinov A V 2014 The study of a homogeneous column of argon plasma at a pressure of 0.5 torr, generated by means of the Beenakker’s cavity Eur. Phys. J. D 68 (334)

[23] Dubrovin V T, Gabbasov F G and Chebakova V J 2016 Multidimensional central limit theorem for sums of functions of the trajectories of endomorphisms Lobachevskii Journal of Mathematics 37 (4) 409-17

[24] Dubrovin V T, Chebakova V Ju and Zheltukhin V S 2016 Radio-Frequency Discharge at Low Pressure: a Non-Local Problem Statement Approach Procedia Engineering 150 1041–5

[25] Badriev I B, Zadvornov O A 2003 A decomposition method for variational inequalities of the second kind with strongly inverse-monotone operators Differential equations. 39 (7) 936-44

[26] Badriev I B; Zadvornov O A and Lyashko A D 2004 A study of variable step iterative methods for variational inequalities of the second kind Differential equations. 40 (7) 971-83

[27] Badriev I B, Banderov V V 2014 Numerical method for solving variation problems in mathematical physics Mechanical components and control engineering III. 668-669 1094-7

[28] Badriev I B, Zadvornov O A 2002 Construction and convergence analysis of iterative methods for variational problems with a nondifferentiable functional Differential equations 38 (7) 985-91

[29] Badriev I B 1983 Difference-schemes for linear-problems of the filtration theory with discontinuous law Izvestiya Vysshikh Uchebnih Zavedenii Matematika. 5 3-12

[30] Lisovsky V A 1998 Features of α-γ – transition in RF discharge in argon at low pressure Technical Physics Magazine 68 (5) 52-60 (in Russian)

[31] Martinez E Castonos, Kabouzi Y, Makasheva K and Moisan M 2004 Modeling of microwave-sustained plasmas at atmospheric pressure with application to discharge contraction Physical review E70 066405