Using a New Projection Approach to Find the Optimal Solution for Nonlinear Systems of Monotone Equation

N. k. Dreeb, L. H. Hashim, K. H. Hashim and Mushtak A. K. Shiker

1,3,4 Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Hilla, Iraq.
2Department of Planning and Studies, University of Babylon, Hilla, Iraq.

E-mail: 1 nabiha250222@gmail.com, 2 luainfo@gmail.com, 3 teacher89karrar@gmail.com.
* Corresponding author: 4 mmttmmhh@yahoo.com.

Abstract. There are many algorithms are used to solve systems of nonlinear monotone equations with various advantages and disadvantages, including the line search algorithm, trust region algorithm, projection algorithm and others. In this paper we used a new projection algorithm to solve these systems. The projection methods are considered one of the effective free derivative methods to solve systems of nonlinear monotone equations. The framework of this method is that the current iterate is separated strictly from the solution set of the problem in each iteration by a suitable hyperplane which constructs by the new algorithm. Then, in order to determine the new approximation, the current iteration is projected on this hyperplane. The global convergence of the proposed algorithm is proven under standard assumptions. The numerical results showed that the suggested algorithm is very efficiency and promising.

Keywords: Nonlinear system of equations. Projection method. Monotone strategy. Global convergence.

1. Introduction

In sciences with different fields and aspects, nonlinear systems and their solutions are of great importance in them, as they are an important part of mathematics and physics (because most physical systems are nonlinear), as well as their importance in engineering, especially mechanical engineering, electricity, management, economics, population growth, weather and other natural phenomena. While it is possible to convert nonlinear problems into linear problems with multiple variables, it can be said that the study of nonlinear problems was side by side with the linear system.

Consider the following nonlinear system of equations

\[F(x) = 0, \] (1)
Where F is a continuous and monotone function from R^n to R^n, condition of monotony mean:

$$(F(x) - F(y))^T (x - y) \geq 0, \forall x, y \in R^n. \quad (2)$$

Because of the difficulty of finding a solution to nonlinear system equations in many mathematical and engineering applications, we can only rely on iterative methods that use the iterative procedure to obtain approximate solutions. Newton's method may be one of the best numerical methods that use the iterative method to solve these systems, and it is considered a simple way to find approximate values of equations.

In recent years, many modifications have been made to the Newton method, these suggested methods may be equivalent to (or better than) the Newton method to solve the nonlinear system of equations. The line search method and the trust region method are the most important two methods to solve these systems.

The basic idea of the line search technique is how to find the step length within a specific direction, while the trust region technique is how to find an neighborhood to the current step x_k, provided that the new frequency falls within the area that is the trust region determined by its radius, also, this technique is used to solve unconstrained Optimization [1].

Some methods proved ineffective for solving large-scale nonlinear system of equations as Newton method and quasi-Newton methods [2-5] because they need to solve the Jacobian matrix or an approximation of it in each iterative.

In our work, we used a new projection technique to solve large-scale systems of nonlinear equations. It can be said that the simplest idea of the projection method is interested in separating the present approximation from the result set of the problem (1) by appropriate hyperplane that is built in each iterate and then projecting this approximation on the same hyperplane to obtain the new approximation. Several authors use conjugate gradient approaches combining with projection techniques for solving (1) as well as optimization issues [6, 7].

Solodov and Svaiter suggested the first projection approach in 1998 and it showed the totally convergent of solving nonlinear problems [8].

The authors worked in vary fields such as optimization, operation research and nonlinear systems, but in this work, see [9-19], we used a new algorithm to solve the nonlinear systems, we proved its global convergence. Then we compare with two famous methods, SBM method in [20] and DFPB1 in [1], the new algorithm will be more efficient.

2. The Framework

The projection technique is one of the ways that proved to be active in solving nonlinear problems and it is a suitable and applicable way to solve large-scale difficulties, these methods use a series of repetitions to arrive to the next iterate

$$x_{k+1} = x_k + \alpha_k d_k, \quad (3)$$

where α_k is a step length and d_k is the step direction, these processes are called an iterative procedures, so the projection techniques are called iterative methods. The projection approaches are family of derivative free. To define these effective methods we use the projection operator $\Theta_\Omega[.]$.

Let $\Theta_\Omega[.]$ be a mapping from R^n to Ω, where Ω is non-empty closed convex set [21]:

$$\Theta_\Omega[x] = \text{argmin} \{\|x - z\|, z \in \Omega\}, \forall x \in R^n. \quad (4)$$
The projection operator has interesting features [22] is non-expansive property:
\[\| \Phi_\Omega (x) - \Phi_\Omega (y) \| \leq \| x - y \|, \quad \forall \ x, y \in \mathbb{R}^n. \] (5)
As a result produces,
\[\| \Phi_\Omega (x) - y \| \leq \| x - y \|, \quad \forall \ x, y \in \Omega . \] (6)
After a series of iterations, in every iteration, the present approximation \(x_k \) is isolated from the result set of the problem by the hyperplane \(H_k \) that is construction by using a line search technique.
\[H_k = \{ x \in \mathbb{R}^n / F (z_k)^T (x - z_k) = 0 \} , \] (7)
where
\[z_k = x_k + \alpha_k d_k . \] (8)
By Solodov and Svaiter’s suggestion [8], the following iterate \(x_{k+1} \) can be resolute by projection \(z_K \) onto \(H_k \), where
\[C_K = \{ x \in \mathbb{R}^n / F (z_k)^T (x - z_k) \leq 0 \} . \] (9)
The approximation that is best among all result of system (1) can be determined by projection \(x_k \) onto \(C_k \), but \(x_k \notin C_k \). Then the following approximation, \(x_{k+1} \), can be determined by
\[x_{k+1} = P_C (x_k) = \arg \min \{ \| x - x_k \| \mid x \in C_k \} \]
So,
\[x_{k+1} = x_k - \frac{F(z_k)^T (x_k - z_k)}{\| F(z_k) \|^2} F(z_k). \] (10)
The suggested method, built on the projection free-derivatives method for the system of nonlinear equations, determine a direction \(d_k \),
a new direction has foreword as
\[d_k = \begin{cases} -F(x_k) & \text{if } k = 0, \\ -\mu_k F(x_k) + \tau_k & \text{otherwise}, \end{cases} \] (11)
Where \(\mu_k = \frac{s_k^T s_k}{y_k^2} \), \(s_k = x_{k+1} - x_k \), \(y_k = F(x_{k+1}) - F(x_k) \)
With \(\tau_k = \frac{F(x_{k+1}) y_k}{\| F(x_k) \|^2} \)
Generally used the direction \(d_k \) which satisfies.
\[F_k^T d_k \leq -C \| F_k \|^2 , \] (12)
\[F (z_K)^T (x_k - z_k) > 0 , \] (13)
where \(C \) is appositive constant.
In 2018, Mushtak and Amini [2] introduced a new line search strategy for separating hyperplane in projection technique, encourage us to take advantages of this line search, which needs \(\alpha_k = \{ \beta \theta^i : i = 0,1,2,... \} \) satisfies the condition
\[-F (x_k + \alpha_k d_k)^T d_k \geq \theta \lambda_k \alpha_k \|F(z_k)\|, \tag{14}\]

Where \(\lambda_k = \frac{\lambda}{1 + \|d_k\|^2}\), and \(\theta, \lambda\) are parameters.

Our new algorithm will be stated as below.

Algorithm 1 (NBM)

Input: An initial point \(x_0 \in \mathbb{R}^n\), and the parameters \(\theta, \lambda, \varepsilon \in (0.2)\) and \(\beta \in (0.1)\).

Start

Set \(k = 0\);
\[F_0 = F(x_0)\]
\[d_0 = -F_0\]

While \(\|F_K\| > \varepsilon\).

Step 1: compute \(\|F_K\|\). If \(\|F_K\| \leq \varepsilon\) stop.

Set \(\alpha_k = \beta\):

Find the minimum index \(i_k \in \{1, 2, 3, \ldots\}\) such that
\[-F (x_k + \alpha_k d_k)^T d_k \geq \theta \lambda_k \alpha_k \|F(z_k)\|,\]

where \(\lambda_k = \frac{\lambda}{1 + \|d_k\|^2}\).

While \(\alpha_k = \theta^{i_k} \alpha_k\):

Set \(z_k \leftarrow x_k + \alpha_k d_k\).

End while

Step 2: If \(\|F(z_k)\| \leq \varepsilon\), stop. Otherwise compute \(x_{k+1}\) by (10):

Step 3: Compute \(d_k\) by (11).
\[F_{K+1} \leftarrow F(x_{k+1})\; ;\]

If \(F_k^T d_k > -\varepsilon \|F_k\|^2\)
\[d_k = -F_k\]

End If

\(k \leftarrow k + 1\).

End while

End

Remark (R1) [8]: from stage 3 of Algorithm 1, it is easy to note that the introduced direction satisfy the sufficient descent condition, and for any \(k\), \(F_k^T d_k \leq -\varepsilon \|F_k\|^2\).
3. Convergence possessions:

In this part, We need some interesting lemmas and assumptions in showing the global convergence of algorithm 1.

Assumption (B1): The result set of (1) is nonempty.

Assumption (B2): The mapping $F(x)$ is Lipschitz continuous on R^n such that there exists a positive constant M, i.e.
\[
\|F(x) - F(y)\| \leq M \|x - y\|, \forall x, y \in R^n.
\]

Assumption (B3): The mapping $F(x)$ is monotone on R^n such that
\[
(F(x) - F(y))^T (x - y) \geq 0, \forall x, y \in R^n.
\]

Lemma (L1) [22]

Let the set $\Omega \subseteq R^n$ be nonempty closed convex set and The projection operator $\rho_\Omega(x)$ be the projection of x onto closed convex set Ω. For any $x, y \in R^n$, The next statements hold:

i) \hspace{1cm} $\forall \ i \in \Omega, \langle \rho_\Omega(x) - x, z - \rho_\Omega(x) \rangle \geq 0$

ii) \hspace{1cm} $\langle \rho_\Omega(x) - \rho_\Omega(y), x - y \rangle \geq 0$, and the inequality is strict when $\rho_\Omega(x) \neq \rho_\Omega(y)$

iii) \hspace{1cm} $\|\rho_\Omega(x) - \rho_\Omega(y)\| \leq \|x - y\|

Lemma (L2) [8] Assume the assumption B_1, B_2 and B_3 hold and the sequence $\{x_k\}$ is generated via algorithm 1. For any x^* such that $F(x^*) = 0$, then
\[
\|x_{k+1} - x^*\|^2 \leq \|x_k - x^*\|^2 - \|x_{k+1} - x_k\|^2. \tag{15}
\]

And the sequence $\{x_k\}$ is bounded. Moreover, either the sequence $\{x_k\}$ is finite although the last iterate is a solution of (1) or the sequence $\{x_k\}$ is infinite and
\[
\lim_{k \to \infty} \|x_{k+1} - x_k\| = 0. \tag{16}
\]

Proof Let $x^* \in R^n$ be any point such that $F(x^*) = 0$ by monotonicity of F
\[
\langle F(y), x^* - y \rangle \leq 0.
\]
The hyperplane $H = \{s \in R^n / \langle F(y), s - y \rangle = 0\}$, separates x_k from x^*, it is easy to satisfy that x_{k+1} is the projection of x_k onto the hyperplane H. Sine x^* belongs to this hyperplane, from properties of the projection operator [22] we get
\[
\|x_k - x^*\|^2 = \|x_k - x_{k+1}\|^2 + \|x_{k+1} - x^*\|^2 + 2\langle x_k - x_{k+1}, x_{k+1} - x^* \rangle \geq \left(\frac{\langle F(y), x_k - y \rangle}{\|F(y)\|}\right)^2 + \|x_{k+1} - x^*\|^2. \quad \Box
\]

Lemma (L3) [8] Assume that the assumption B_1, B_2 and B_3 holds and the sequences $\{x_k\}$ and $\{z_k\}$ are generated by Algorithm 1, then
\[
\alpha_k \geq \min\{\beta, \frac{\theta^2\|F_k\|^2}{(M\|\alpha\|^2 + \|F(z_k)\|)}\}. \tag{17}
\]
Proof By the line search rule (14), if \(\alpha_k \neq \beta \) then \(\tilde{\alpha}_k = \theta^{-1} \alpha_k \) does not satisfy (14) this mean that
\[
-F(x_k + \theta^{-1} \alpha_k d_k)^T d_k < \theta \lambda \theta^{-1} \alpha_k \gamma_k \|F(x_k)\| \leq \lambda \alpha_k \|F(z_k)\|
\]
Where \(\gamma_k = \frac{1}{1+\|d_k\|^2} \).

By the Lipchitz continuity of \(F \) and (12) we get:
\[
C \|F_k\|^2 \leq - F_k^T d_k = (F(z_k) - F(x_k))^T d_k - F(z_k)^T d_k
\leq \|F(z_k) - F(x_k)\| \|d_k\| + \lambda \alpha_k \|F(z_k)\|
= \alpha_k (M \|d_k\|^2 + \lambda \|F(z_k)\|).
\]
So,
\[
\alpha_k \geq \frac{\theta c \|F_k\|^2}{(M \|d_k\|^2 + \lambda \|F(z_k)\|)}.
\]
the proof is complete and the equation (17) is correct. \(\square \)

The results of Lemma L3 found that the line search of algorithm 1 is well defined.

Theorem (T1) Assume that \((B_2)\) and \((B_3)\) hold and the sequence \(\{x_k\} \) is generated by Algorithm 1, then:
\[
\lim_{k \to \infty} \|F_k\| = 0 \tag{18}
\]

Proof From (10) and (14) we get
\[
\|x_{k+1} - x_k\|^2 \geq \frac{|F(z_k)^T (x_k - z_k)|}{\|F(z_k)\|} = \frac{-\alpha_k F(z_k)^T d_k}{\|F(z_k)\|} \geq \frac{2 \alpha_k^2 \|F(z_k)\|}{(1+\|d_k\|^2)\|F(z_k)\|} = \frac{2 \alpha_k^2}{1+\|d_k\|^2} \tag{19}
\]
By lemma 3 from [1], the sequence of direction \(\{d_k\} \) that generated by algorithm 1 are bounded.
there is a constant \(N > 0 \) such that
\[
\|F(x_k)\| \leq N. \tag{20}
\]
And result that for all \(k \), there exists a constant \(L > 0 \) such that
\[
\|d_k\| \leq L. \tag{21}
\]
By the Lipchitz continuity of \(F \), it can be concluded that:
\[
\|F(z_k)\| \leq \|F(z_k) - F(x_k)\| + \|F(x_k)\| \leq M(z_k - x_k) + N = M \alpha_k \|d_k\| + N \tag{22}
\]
From (19) together with (21) gives
\[
\|x_{k+1} - x_k\|^2 \geq \frac{2 \alpha_k^2}{1+L^2}.
\]
So,
\[
\lim_{k \to \infty} \|x_{k+1} - x_k\|^2 \geq \lim_{k \to \infty} \left(\frac{2 \alpha_k^2}{1+L^2} \right).
\]
\[
\lim_{k \to \infty} \alpha_k \|d_k\| = 0 \quad (23)
\]

Now, by using Cauchy Schwartz inequality along with (12), we get

\[
C \|F_k\|^2 \leq -F_k^T d_k \leq \|F_k\| \|d_k\|
\]

So,
\[
\|d_k\| \geq C \|F_k\|. \quad (24)
\]

For all \(k\). Giving to this condition and (23), it follows that
\[
\lim_{k \to \infty} \alpha_k = 0 \quad (25)
\]

On the other hand, Multiplying (17) by \(\|d_k\|^2\) result that
\[
\alpha_k \|d_k\|^2 \geq \min\left\{ \beta \|d_k\|^2, \frac{\theta C L^2 \|F_k\|^2}{(M L^2 + \lambda (M \alpha_k \|d_k\| + N))} \right\} \quad (26)
\]

From (24) and (26) we have
\[
\lambda_0 \|F_k\|^2 \leq \alpha_k \|d_k\|^2, \quad (27)
\]

Where
\[
\lambda_0 = \min\left\{ \beta c^2, \frac{\theta C L^2}{(M L^2 + \lambda (M \alpha_k \|d_k\| + N))} \right\}.
\]

The relation (23) and (27) conclude that
\[
\lim_{k \to \infty} \|F_k\| = 0.
\]

4. **Numerical Experiment**

In this section, we compare the performance of the new algorithm (NBM) with two famous algorithms:

SBM: This technique is taken from Yan, Q.R., et al [20] and it uses two modified HS approaches with the projection technique in Solodov and Svaiter (1998) [8].

DFPB1: This technique is taken from Mushtak A.K. and Zahra Sahib [1].

We compared the numerical results of the three approaches with reference to \(N_i\) (number of iterations), \(N_f\) (number of function evaluations) and CPU time (time which required for each algorithm to reach the solution). For this purpose we used the test problems in [20] with 5000-50000 as dimensions for the taken primary points.

The PC that used to run these algorithm was with 4 GB RAM and CPU 2.70 GHz. MATLAB R2014a programming environment is used to write all the codes. The terminate value is \(\|F_k\| \leq 10^{-8}\) or \(\|F(z_k)\| \leq 10^{-4}\), or the whole number of iterates surpasses 500000 for all algorithms to be terminated. The parameters are stated as: \(\theta = 0.4\), \(\beta = 0.9\), \(\lambda = 0.1\), \(\epsilon = 10^{-8}\). The numerical results are registered in tables 1 and 2. Where table 1 contains \(N_i\) and \(N_f\), while table 2 contains the CPU time results.
Table 4.1: Numerical results (N_i, N_f)

P	Dim.	S.P	New N_i	MHS N_i	DFPB N_i	New N_f	MHS N_f	DFPB N_f
P_1	50000	x_0	11	91	1421	13288	1421	13288
50000	x_1	19	200	1421	13288	1421	13288	
50000	x_2	13	110	142	880	142	880	
50000	x_3	16	162	142	880	142	880	
50000	x_4	18	281	5404	53012	9	21	
50000	x_5	9	96	17	65	17	65	
50000	x_6	25	188	4439	40363	88	504	
50000	x_7	25	198	2252	19238	88	504	
P_2	50000	x_0	11	91	1421	13288	1421	13288
50000	x_1	18	228	1371	12933	1421	13288	
50000	x_2	13	110	142	880	142	880	
50000	x_3	19	256	155	1086	142	880	
50000	x_4	80	1120	3859	36651	9	21	
50000	x_5	9	96	17	65	17	65	
50000	x_6	56	666	7274	72430	88	504	
50000	x_7	49	498	581	3673	88	504	
P_3	10000	x_0	16975	213353	418081	3099340	178397	721899
10000	x_1	67640	981540	415836	3005275	187559	759768	
10000	x_2	14647	189321	390297	2977500	162500	656715	
10000	x_3	55909	839601	402816	2960816	178197	720729	
10000	x_4	47471	729546	371496	2767595	165523	668916	
10000	x_5	54499	855259	368053	2766114	162292	655726	
10000	x_6	22901	321922	163175	1263922	68435	276645	
10000	x_7	22313	312113	153214	1138115	68436	276649	
P_4	10000	x_0	24	255	20751	230201	469	4001
10000	x_1	370	5289	7709	73104	1494	14896	
10000	x_2	18	183	2231	20120	155	1029	
10000	x_3	365	5294	12747	135225	244	1713	
10000	x_4	198	2896	27023	302729	85	395	
10000	x_5	144	2092	11484	121948	76	314	
10000	x_6	45	568	17308	191471	113	620	
10000	x_7	27	291	2215	18879	113	620	
P_5	5000	x_0	494	5834	154735	2156312	75926	1027957
5000	x_1	379	4285	147988	2085617	75401	1019862	
5000	x_2	278	3260	153015	2148172	75883	1027291	
5000	x_3	341	3944	149814	2109510	341	3944	
5000	x_4	346	3797	158114	2198306	75839	1026614	
5000	x_5	333	3718	156045	2174637	75843	1026679	
5000	x_6	384	4216	146366	2075659	75872	1027109	
5000	x_7	301	3459	152515	2142193	75850	1026796	
Table 4.1: Numerical results (N_i, N_f) – continued

P	Dim.	S.P	New	MHS	DFPB							
			N_i	N_f	N_i	N_f	N_i	N_f	N_i	N_f	N_i	N_f
P_6	50000	x_0	11	82	3353	28949	1009	8383				
	50000	x_1	18	210	8993	88244	1914	17404				
	50000	x_2	19	245	3932	35528	262	1813				
	50000	x_3	23	300	142	880	554	4288				
	50000	x_4	17	210	4450	40138	386	2805				
	50000	x_5	15	179	17	65	376	2725				
	50000	x_6	19	250	1615	12611	333	2381				
	50000	x_7	21	284	2057	16704	333	2381				
P_7	50000	x_0	5	12	18560	45738	1421	13288				
	50000	x_1	22	280	1675	15191	1421	13288				
	50000	x_2	13	110	17325	34836	142	880				
	50000	x_3	19	256	158	1099	142	880				
	50000	x_4	12	138	993	1988	9	21				
	50000	x_5	4	16	16926	33854	17	65				
	50000	x_6	151	1728	17089	34332	88	504				
	50000	x_7	45	430	17089	34332	88	504				

Table 4.2: Numerical results (CPU time)

P	Dim.	S.P	New	MHS	DFPB
			N_i	N_f	N_i
P_1	50000	x_0	0.15625	21.21875	20.62500
	50000	x_1	0.26562	22.26562	20.90625
	50000	x_2	0.14062	1.15625	1.06250
	50000	x_3	0.15625	1.14062	1.00000
	50000	x_4	0.32812	55.01562	0.01562
	50000	x_5	0.14062	0.18750	0.10937
	50000	x_6	0.26562	43.78125	0.06937
	50000	x_7	0.25000	20.68750	0.51562
P_2	50000	x_0	0.12500	21.50000	20.79687
	50000	x_1	0.28125	21.09375	20.93750
	50000	x_2	0.10937	1.12500	1.00000
	50000	x_3	0.31250	1.32812	1.04687
	50000	x_4	1.10937	39.98437	0.10937
	50000	x_5	0.14062	0.10937	0.12500
	50000	x_6	0.62500	80.98437	0.53125
	50000	x_7	0.54687	4.65625	0.68750
From table 1, we can see that the new approach (NBM) is better than the other two methods (SBM) and (DFPB1), that it has a number of iterations and number of evaluation functions less than in the other methods in most of the problems with most of initial points. As well as the results in table 2, we

P_3	Dim.	S.P	New	MHS	DFPB
10000	x_0	0.42221	6.36439	1.47290	
10000	x_1	1.95898	6.28664	1.57473	
10000	x_2	0.37418	6.14095	1.33835	
10000	x_3	1.66826	6.05081	1.48701	
10000	x_4	1.47228	5.68717	1.36782	
10000	x_5	1.68854	5.71673	1.35753	
10000	x_6	0.63462	2.60884	0.57164	
10000	x_7	0.61637	2.35051	0.57096	

P_4	Dim.	S.P	New	MHS	DFPB
10000	x_0	0.09375	70.75000	1.20312	
10000	x_1	1.34375	22.57812	4.18750	
10000	x_2	0.03125	6.34375	0.31250	
10000	x_3	1.37500	41.62500	0.50000	
10000	x_4	0.81250	92.67187	0.12500	
10000	x_5	0.53125	37.10937	0.09375	
10000	x_6	0.12500	58.79687	0.15625	
10000	x_7	0.06250	5.85937	0.18750	

P_5	Dim.	S.P	New	MHS	DFPB
5000	x_0	0.98437	3.34671	1.55750	
5000	x_1	0.68750	3.17734	1.54468	
5000	x_2	0.51562	3.32609	1.56765	
5000	x_3	0.53125	3.32687	0.00593	
5000	x_4	0.59375	3.40265	1.56156	
5000	x_5	0.60937	3.35593	1.56953	
5000	x_6	0.71875	3.16562	1.56218	
5000	x_7	0.57812	3.28640	1.57656	

P_6	Dim.	S.P	New	MHS	DFPB
50000	x_0	0.21875	0.58468	16.76562	
50000	x_1	0.43750	1.73859	32.28125	
50000	x_2	0.53125	0.71421	3.25000	
50000	x_3	0.60937	0.01062	8.23437	
50000	x_4	0.48437	0.79390	5.18750	
50000	x_5	0.35937	0.00109	5.43750	
50000	x_6	0.56250	0.25359	4.46875	
50000	x_7	0.67187	0.34156	4.34375	

P_7	Dim.	S.P	New	MHS	DFPB
50000	x_0	0.01562	92.42187	20.92187	
50000	x_1	0.34375	22.23437	21.37500	
50000	x_2	0.09375	74.35937	0.92187	
50000	x_3	0.20312	1.15625	1.09375	
50000	x_4	0.09375	4.14062	0.03125	
50000	x_5	0.03125	73.79687	0.12500	
50000	x_6	1.65625	74.93750	0.59375	
50000	x_7	0.40625	73.34375	0.60937	
can see that the CPU time spent by the new technique (NBM) is lower than in the other two methods in most of problem, that indicated the efficiency and quality of our new method.

5. Conclusions

The current work suggests a new projection technique for solving a system of large-scale nonlinear monotone equations. The projection-based algorithms does not use any feature function or derivatives. It considered as a part of the class of derivative-free function-value based approaches. Likewise. For the new method we established the global convergence which is proved under classic assumptions. The numerical results showed that the suggested method is so efficient.

6. References

[1] Shiker M A K and Sahib Z 2018 A modified technique for solving unconstrained optimization, J. Eng. Applied Sci., 13, 9667-9671.
[2] Shiker M A K and Amini K 2018 A new projection-based algorithm for solving a large scale nonlinear system of monotone equations, Croatian operational research review, crorr, 9, 63-73.
[3] Mahdi M M and Shiker M A K 2020 Solving systems of nonlinear monotone equations by using a new projection approach, “in press”, accepted paper for publication in Journal of Physics: Conference Series, International Conference of Modern Applications on Information and Communication Technology (ICMAICT) - Iraq.
[4] Mahdi M M and Shiker M A K 2020 Three-term of new conjugate gradient projection approach under Wolfe condition to solve unconstrained optimization problems, Journal of Advanced Research in Dynamical and Control Systems, 12, 788-795.
[5] Mahdi M M and Shiker M A K 2020 A new projection technique for developing a Liu-Storey method to solve nonlinear systems of monotone equations, J. Phys.: Conf. Ser. 1591 012030.
[6] Mahdi M M and Shiker M A K 2020 Three terms of derivative free projection technique for solving nonlinear monotone equations, J. Phys.: Conf. Ser. 1591 012031.
[7] Mahdi M M and Shiker M A K, 2020 A New Class of Three-Term Dou- ble Projection Approach for Solving Nonlinear Monotone Equations, J. Phys.: Conf. Ser. 1664 012147
[8] Solodov M V and Svaiter B F 1998 A globally convergent inexact Newton method for systems of monotone equations, in: M. Fukushima L Qi (Eds.), Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Publishers, 355-369.
[9] Hashim K H and Shiker M A K 2020 Using a new line search method with gradient direction to solve nonlinear systems of equations, “in press”, accepted paper for publication in Journal of Physics: Conference Series, International Conference of Modern Applications on Information and Communication Technology (ICMAICT) - Iraq.
[10] Dwail H H Mahdi M M Wasi H A Hashim K H Dreeb N K Hussein A H and Shiker M A K 2020 A new modified TR algorithm with adaptive radius to solve a nonlinear systems of equations, “in press”, accepted paper for publication in Journal of Physics: Conference Series, International Conference of Modern Applications on Information and Communication Technology (ICMAICT) - Iraq.
[11] Hussein H A and Shiker M A K 2020 A modification to Vogel's approximation method to Solve transportation problems, J. Phys.: Conf. Ser. 1591 012029.
[12] Hussein H A and Shiker M A K 2020 Two New Effective Methods to Find the Optimal Solution for the Assignment Problems, Journal of Advanced Research in Dynamical and Control Systems, 12, 49-54.
[13] Wasi H A and Shiker M A K 2020 A modified of FR method to solve unconstrained optimization, “in press”, accepted paper for publication in *Journal of Physics: Conference Series*, International Conference of Modern Applications on Information and Communication Technology (ICMAICT) - Iraq.

[14] Hussein H A and Shiker M A K and Zabiba M S M 2020 A new revised efficient of VAM to find the initial solution for the transportation problem, *J. Phys.: Conf. Ser.* 1591 012032.

[15] Wasi, H A and Shiker, M A K, 2020 Proposed CG method to solve unconstrained optimization problems”, “in press, accepted paper for publication in *Journal of Physics: Conference Series*, International Conference of Modern Applications on Information and Communication Technology (ICMAICT) - Iraq.

[16] Dwail H H and Shiker M A K, 2020 Using a trust region method with nonmonotone technique to solve unrestricted optimization problem, *J. Phys.: Conf. Ser.* 1664 012128.

[17] Dwail H H and Shiker M A K, 2020 Reducing the time that TRM requires to solve systems of nonlinear equations *IOP Conf. Ser.: Mater. Sci. Eng.* 928 042043.

[18] Wasi H A and Shiker M A K 2020 A new hybrid CGM for unconstrained optimization problems, *J. Phys.: Conf. Ser.* 1664 012077.

[19] Hassan Z A H H and Shiker M A K 2018 Using of generalized baye’s theorem to evaluate the reliability of aircraft systems, *Journal of Engineering and Applied Sciences*, (Special Issue13), 10797-10801.

[20] Yan Q R and Peng X Z and Li D H 2010 A Globally convergent derivative-free method for solving large-scale nonlinear monotone equations, *Journal of Computational and Applied Mathematics*, 234, 649-657.

[21] Wang Y J and Xiu N H and Zhang J Z 2003 Modified extra gradient method for variational inequalities and verification of solution existence, *Journal of optimization theory and applications*, 119, 167 – 183.

[22] Zarantonello E H 1971 Projections on convex sets in Hilbert space and spectral theory, In Zarantonello E. H. (Ed), Contributions to nonlinear Functional analysis, *Academic press, New York*.

12