CLUSTER ALGEBRAS AND SYMMETRIZABLE MATRICES

AHMET I. SEVEN

ABSTRACT. In the structure theory of cluster algebras, principle coefficients are parametrized by a family of integer vectors, called c-vectors. Each c-vector with respect to an acyclic initial seed is a real root of the corresponding root system and the c-vectors associated with any seed defines a symmetrizable quasi-cartan companion for the corresponding exchange matrix. We establish basic combinatorial properties of these companions. In particular, we show that c-vectors define an admissible cut of edges in the associated diagrams.

1. Introduction

In the structure theory of cluster algebras, principle coefficients are parametrized by a family of integer vectors, called c-vectors. Each c-vector with respect to an acyclic initial seed is a real root of the corresponding root system; furthermore, the c-vectors associated with any seed defines a symmetrizable quasi-cartan companion for the corresponding exchange matrix [8, Corollary 3.29]. In this paper, we study basic combinatorial properties of these companions. In particular, we show that c-vectors define an admissible cut of edges in the associated diagrams.

To state our results, we need some terminology. Let us recall that an \(n \times n \) integer matrix \(B \) is skew-symmetrizable if there is a diagonal matrix \(D \) with positive diagonal entries such that \(DB \) is skew-symmetric. We denote by \(T_n \) an \(n \)-regular tree whose edges are labeled by the numbers \(1, \ldots, n \) such that the \(n \) edges incident to each vertex have different labels. The notation \(t \xleftarrow{k} t' \) indicates that vertices \(t, t' \in T_n \) are connected by an edge labeled by \(k \). We fix a vertex \(t_0 \) in \(T_n \) and assign the pair \((c_0, B_0)\), where \(c_0 \) is the tuple of standard basis and \(B_0 \) is a skew-symmetrizable matrix. Then, to every vertex \(t \in T_n \) we assign a pair, called a Y-seed, \((c_t, B_t)\), where \(c_t = (c_1, \ldots, c_n) \) with each \(c_i = c_{it} = (c_1, \ldots, c_n) \in \mathbb{Z}^n \) being non-zero and having either all entries nonnegative or all entries nonpositive; we write \(\text{sgn}(c_i) = +1 \) or \(\text{sgn}(c_i) = -1 \) respectively and call it a c-vector. Furthermore, for any edge \(t \xleftarrow{k} t' \), the Y-seed \((c', B') = (c_{t'}, B_{t'})\) is obtained from \((c, B) = (c_t, B_t)\) by the Y-seed mutation \(\mu_k \) defined as follows, where we denote \([b]_+ = \max(b, 0) \):

- The entries of the matrix \(B' = (B'_{ij}) \) are given by

\[
B'_{ij} = \begin{cases}
-B_{ij} & \text{if } i = k \text{ or } j = k; \\
B_{ij} + [B_{ik}]_+ [B_{kj}]_+ - [-B_{ik}]_+ [-B_{kj}]_+ & \text{otherwise.}
\end{cases}
\]
• The tuple \(c' = (c'_1, \ldots, c'_n) \) is given by

\[
(1.2) \quad c'_i = \begin{cases}
-c_i & \text{if } i = k; \\
-c_i + [\text{sgn}(c_k)B_{k,i}] + c_k & \text{if } i \neq k.
\end{cases}
\]

By [4] Corollary 5.5], each \(c'_i = (c'_1, \ldots, c'_n) \) also has either all entries nonnegative or all entries nonpositive. The matrix \(B' \) is skew-symmetrizable with the same choice of \(D \); we write \(B' = \mu_k(B) \) and call the transformation \(B \rightarrow B' \) the matrix mutation. For the \(Y \)-seeds, we denote \(\mu_k(c, B) = (c', B') \); we call \((c_0, B_0)\) the initial \(Y \)-seed. It is well known that mutation is an involutive operation.

Let us also recall that the diagram of a skew-symmetrizable \(n \times n \) matrix \(B \) is the directed graph \(\Gamma(B) \) whose vertices are the indices \(1, 2, \ldots, n \) such that there is a directed edge from \(i \) to \(j \) if and only if \(B_{ij} > 0 \), and this edge is assigned the weight \(|B_{ij}| \). The diagram \(\Gamma(B) \) is called acyclic if it has no oriented cycles. Then there is a corresponding generalized Cartan matrix \(A \) such that \(A_{i,i} = 2 \) and \(A_{i,j} = -|B_{i,j}| \) for \(i \neq j \). There is also the associated root system in the root lattice spanned by the simple roots \(\alpha_i \) [6]. For each simple root \(\alpha_i \), the corresponding reflection \(s_{\alpha_i} = s_i \) is the linear isomorphism defined on the basis of simple roots as \(s_i(\alpha_j) = \alpha_j - A_{i,j}\alpha_i \). Then the real roots are defined as the vectors obtained from the simple roots by a sequence of reflections. It is well known that the coordinates of a real root with respect to the basis of simple roots are either all nonnegative or all nonpositive, see [6] for details.

On the other hand, an \(n \times n \) matrix \(A \) is called symmetrizable if there exists a symmetrizing diagonal matrix \(D \) with positive diagonal entries such that \(DA \) is symmetric. A quasi-Cartan companion (or "companion" for short) of a skew-symmetrizable matrix \(B \) is a symmetrizable matrix \(A \) such that \(A_{i,i} = 2 \), \(|A_{i,j}| = |B_{i,j}| \) for all \(i \neq j \). A fundamental relation between \(Y \)-seeds and symmetrizable matrices has been given in [8] Corollary 3.29] as follows:

Theorem 1.1. [8] Corollary 3.29] Suppose that the initial seed \((c_0, B_0)\) is acyclic. Then, for any \(Y \)-seed \((c_t, B_t)\), \(t \in \mathbb{T}_n \), each \(c \)-vector \(c_i = c_{i,t} \) is the coordinate vector of a real root with respect to the basis of simple roots in the corresponding root system. Furthermore, \(A = A_t = (\langle c_j, c'_j \rangle) \), the matrix of the pairings between the roots and the coroots, is a quasi-Cartan companion of the skew-symmetrizable matrix \(B = B_t \).

(The matrices \(A_t \) are symmetrizable with the same choice of a symmetrizing matrix \(D \), which is also skew-symmetrizing for all \(B_t \).)

An important combinatorial property related to quasi-Cartan companions is admissibility [9, 10], which is a generalization of the notion of a generalized Cartan matrix. More precisely, a quasi-Cartan companion \(A \) of a skew-symmetrizable matrix \(B \) admissible if, for any oriented (resp. non-oriented) cycle \(Z \) in \(\Gamma(B) \), there is exactly an odd (resp. even) number of edges \{\(i, j \)\} such that \(A_{i,j} > 0 \). If \(\Gamma(B) \) is acyclic, then the associated generalized Cartan matrix is admissible. Our first result generalizes this property by showing that the quasi-Cartan companions defined by \(c \)-vectors are also admissible:

Theorem 1.2. In the set-up of Theorem [11], the quasi-Cartan companion \(A \) has the following properties:
Every directed path of the diagram $\Gamma(B)$ has at most one edge $\{i, j\}$ such that $A_{i,j} > 0$.

Every oriented cycle of the diagram $\Gamma(B)$ has exactly one edge $\{i, j\}$ such that $A_{i,j} > 0$.

Every non-oriented cycle of the diagram $\Gamma(B)$ has an even number of edges $\{i, j\}$ such that $A_{i,j} > 0$.

In particular, the quasi-Cartan companion A is admissible. Furthermore, any admissible quasi-Cartan companion of B can be obtained from A by a sequence of simultaneous sign changes in rows and columns.

The special case of this theorem when B is skew-symmetric was obtained in [10, Theorem 1.4] by the author. Let us also recall from [10] that a set C of edges in $\Gamma(B)$ is called an "admissible cut" if every oriented cycle contains exactly one edge that belongs to C and every non-oriented cycle contains exactly an even number of edges in C. Thus, in the setup of the theorem, the c-vectors define an admissible cut of edges: the set of edges $\{i, j\}$ in $\Gamma(B)$ such that $A_{i,j} > 0$ is an admissible cut.

For skew-symmetric matrices, this notion has been applied to the representation theory of algebras in [5, ?].

Our next result is the following explicit description of the quasi-Cartan companions defined by the c-vectors:

Theorem 1.3. In the set-up of Theorem 1.1, the quasi-Cartan companion A has the following properties:

1. If $\text{sgn}(B_{j,i}) = \text{sgn}(c_j)$, then $A_{j,i} = -\text{sgn}(c_j)B_{j,i} = -|B_{j,i}|$.

2. If $\text{sgn}(B_{j,i}) = -\text{sgn}(c_j)$, then $A_{j,i} = \text{sgn}(c_i)B_{j,i} = -\text{sgn}(c_i)\text{sgn}(c_j)|B_{j,i}|$.

In particular, if $\text{sgn}(c_j) = -\text{sgn}(c_i)$, then $B_{j,i} = \text{sgn}(c_i)A_{j,i}$.

Let us note that the special case of this theorem when B is skew-symmetric was obtained in [10, Theorem 1.4] by the author. We will prove this more general theorem using [8, Corollary 3.29], which has been given above as Theorem 1.1 (Note that the statement [8, Corollary 3.29] was not present in the earlier versions of [8]).

Corollary 1.4. In the setup of Theorem 1.3, suppose that $t \xrightarrow{k} t'$ in T_n. Then, for $\mu_k(c, B) = (c', B')$, we have the following: if $c'_i \neq c_i$, then $c'_i = s_{c_k}(c_i)$, where s_{c_k} is the reflection with respect to the real root c_k and \mathbb{Z}^n is identified with the root lattice.

Let us also note that Theorem 1.3 could be useful for recognizing mutation classes of acyclic diagrams: a diagram that does not have an admissible quasi-Cartan companion can not be obtained from any acyclic diagram by a sequence of mutations. An example of such a diagram is given in Figure 1. (We refer to [9, Section 2] for properties of diagrams of skew-symmetrizable matrices). Another application of the admissibility property to the corresponding Weyl groups can be found in [11], where a fundamental class of relations have been shown to be satisfied by the reflections of the c-vectors.

2. Proofs of main results

Let us first recall the following well-known property of root systems: For a generalized Cartan matrix A with symmetrizing matrix $D = \text{diag}(d_1, ..., d_n)$, there...
is an invariant symmetric bilinear form (,) defined on the simple roots as \((\alpha_i, \alpha_j) = d_{ij} A_{ij} = d_{ij} A_{ji} = (\alpha_j, \alpha_i) \). Let us note that, for any real root \(\alpha \), the corresponding reflection \(s_\alpha \) is defined on the real roots as \(s_\alpha(\beta) = \beta - (\beta, \alpha^\vee) \alpha \), with \((\beta, \alpha^\vee) = 2(\alpha, \beta) / (\alpha, \alpha) \). In particular, \(s_\alpha(\alpha_j) = \alpha_j - (\alpha_j, \alpha_i^\vee) \alpha_i = \alpha_j - A_{ij} \alpha_i \).

Let us also recall the mutation of quasi Cartan companions [10 Definition 1.6]. Suppose that \(B \) is a skew-symmetrizable matrix and let \(A \) be a quasi-Cartan companion of \(B \). Let \(k \) be an index. For each sign \(\epsilon = \pm 1 \), "the \(\epsilon \)-mutation of \(A \) at \(k \)" is the quasi-Cartan matrix \(\mu_k^\epsilon(A) = A' \) such that for any \(i, j \neq k \): \(A'_{i,k} = \epsilon \text{sgn}(B_{k,i}) A_{i,k}, \ A'_{j,k} = \epsilon \text{sgn}(B_{k,j}) A_{j,k}, \ A'_{i,j} = A_{i,j} - \text{sgn}(A_{i,k} A_{j,k}) |B_{i,k} B_{k,j}| \). In the setup of Theorem 1.1, suppose that \(t \xrightarrow{k} t' \) in \(\mathbb{T}_n \) and let \(A \) and \(A' \) be the associated quasi-Cartan companions. Then \(A' = \mu_k^\epsilon(A) \) for \(\epsilon = \text{sgn}(c_k) \).

We first prove Theorem 1.3 for convenience:

Proof of Theorem 1.3. To prove the first part, let us suppose that \(\text{sgn}(B_{j,i}) = \text{sgn}(c_j) \). Let \(\mu_j(c, B) = (c', B') \) with \(B' = \mu_j(B) \). Then \(c'_j = c_j + \text{sgn}(c_k) B_{k,j} = c_j + \text{sgn}(B_{k,j}) B_{j,k} \). We denote by (,) the invariant symmetric bilinear form defined by \(A_0 \) on the root lattice and let \(D = diag(d_1, \ldots, d_n) \) be the symmetrizing matrix for \(A_0 \). Note that, by Theorem 1.1, we have the following:

\[
2d_i = (c'_j, c'_j) = (c_j, c_j), \quad 2d_j = (c_j, c_j), \quad (c_i, c_j) = (c_i, c_j) = d_i A_{ij} = d_j A_{ji}.
\]

Then \(2d_i = (c'_j, c'_j) = (c_i + |B_{j,i}| c_j + |B_{j,i}| c_j, c_j) = (c_i, c_j) + (c_i, |B_{j,i}| c_j) + (|B_{j,i}| c_j, c_j) = 2d_i + 2|B_{j,i}|^2 c_j c_j = 2d_i + 2|B_{j,i}|^2 c_j c_j = 2d_i + 2|B_{j,i}|^2 d_j = 2d_i + 2d_j \).

To prove the second part of the theorem, let us suppose that \(\text{sgn}(B_{j,i}) = -\text{sgn}(c_j) \). Let \(\mu_j(c, B) = (c', B') \) with \(B' = \mu_j(B) \). Note that \(\text{sgn}(B'_{j,i}) = -\text{sgn}(B_{j,i}) \) and \(|B'_{j,i}| = |B_{j,i}| \) (by the definition of mutation). Let \(A' \) be the quasi-Cartan companion associated to the Y-seed \((c', B')\) (Theorem 1.1). (Note then that \(A' = \mu_k^\epsilon(A) \) where \(\epsilon = \text{sgn}(c_i) \)).

For the proof, we first assume that \(\text{sgn}(c_j) = -\text{sgn}(c_i) \). Then we have \(\text{sgn}(c_j) = \text{sgn}(B_{j,i}) \), so \(c'_j = c_j \) and \(c'_j = -c_i \), implying \(\text{sgn}(c'_j) = \text{sgn}(c_j) = -\text{sgn}(B_{j,i}) \), i.e. for the Y-seed \((c', B')\), we have \(\text{sgn}(B'_{j,i}) = \text{sgn}(c'_j) \). Thus, by the first part of the theorem, we have \(-|B'_{j,i}| = A'_{j,i} = -A_{j,i} \). Thus \(A_{j,i} = |B_{j,i}| = |B'_{j,i}| = -\text{sgn}(c_i) \text{sgn}(c_j) |B_{j,i}| \).

Let us now assume that \(\text{sgn}(c_j) = \text{sgn}(c_i) \). Then, since we have assumed \(\text{sgn}(B_{j,i}) = -\text{sgn}(c_j) \), we have \(\text{sgn}(c_i) = -\text{sgn}(B_{j,i}) = \text{sgn}(B_{j,i}) \). Then, by
the first part of the theorem, we have $A_{i,j} = -|B_{i,j}|$. Thus, since A is symmetrizable and a quasi-Cartan companion, we also have $A_{j,i} = -|B_{j,i}|$, which is equal to $-\text{sgn}(c_i)\text{sgn}(c_j)|B_{j,i}|$.

On the other hand, our assumption $\text{sgn}(B_{j,i}) = -\text{sgn}(c_j)$ implies the following:

$$-\text{sgn}(c_i)\text{sgn}(c_j)|B_{j,i}| = -\text{sgn}(c_i)\text{sgn}(c_j)\text{sgn}(B_{j,i})B_{j,i} = -\text{sgn}(c_i)\text{sgn}(c_j)(-\text{sgn}(c_j))B_{j,i} = \text{sgn}(c_i)B_{j,i}. $$

This completes the proof.

Proof of Corollary 1.4 Let us note that for $\mu = \text{sgn}$ we have the following:

$$\text{sgn}(c_i)\text{sgn}(c_j)|B_{j,i}| = \text{sgn}(c_i)\text{sgn}(c_j)\text{sgn}(B_{j,i})B_{j,i} = -\text{sgn}(c_i)\text{sgn}(c_j)(-\text{sgn}(c_j))B_{j,i} = \text{sgn}(c_i)B_{j,i}. $$

This completes the proof.

Proof of Theorem 1.2 As we discussed in Section 1, the special case of this theorem when B is skew-symmetric was obtained in [10, Theorem 1.4] by the author. The proof in [10] uses only the general properties of the mutations of skew-symmetrizable matrices with quasi-Cartan companions and the properties given in Theorem 1.3 (which was obtained for skew-symmetric matrices in [10, Theorem 1.3]); note that in this case the companion A is symmetric and $A_{i,j} = c_i^T A_0 c_j$). Since we have proved Theorem 1.3 above for skew-symmetrizable matrices, the proof of [10, Theorem 1.4] also holds for the skew-symmetrizable matrices. Thus, for the proof of Theorem 1.2 we refer the reader to the proof of [10, Theorem 1.4].

References

[1] M. Barot, C. Geiss and A. Zelevinsky, Cluster algebras of finite type and positive symmetrizable matrices. J. London Math. Soc. (2) 73 (2006), no. 3, 545–564.

[2] H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potentials and their representations II: Applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), no. 3, 749–790.

[3] S. Fomin and A. Zelevinsky, Cluster algebras IV, Compos. Math. 143 (2007), no. 11, 112-164.

[4] M. Gross, P. Hacking, S. Keel, and M. Kontsevich, Canonical bases for cluster algebras, arXiv:1411.1394v2, 2016.

[5] M. Herschend, O. Iyama, Selfinjective quivers with potential and 2-representation-finite algebras, Compositio Mathematica 147 (2011), no.6, 1885-2010.

[6] V. Kac, Infinite dimensional Lie algebras, Cambridge University Press (1991).

[7] T. Nakanishi and A. Zelevinsky, On tropical dualities in acyclic cluster algebras, Algebraic groups and quantum groups, 217 – 226, Contemp. Math., 565, Amer. Math. Soc., Providence, RI, 2012.

[8] N. Reading and D. Speyer, Combinatorial frameworks for cluster algebras, Int. Math. Res. Not. IMRN 2016, no. 1, 109–173.

[9] A. Seven, Cluster algebras and semipositive symmetrizable matrices, Trans. Amer. Math. Soc. 363(5), 2011, 2733-2762.

[10] A. Seven, Cluster algebras and symmetric matrices, Proc. Amer. Math. Soc. 143 (2015), no. 2, 469–478.

[11] A. Seven, Reflection group relations arising from cluster algebras, Proc. Amer. Math. Soc. 144 (2016), no. 11, 4641–4650.

[12] D. Speyer and H. Thomas, Acyclic cluster algebras revisited, Algebras, quivers and representations, 275–298, Abel Symp., 8, Springer, Heidelberg, 2013.