Study of the Mechanism of *Oxalis corniculata* (L.) in the Treatment of Hepatitis based on Network Pharmacology

Qin Ding, Xulong Huang, Xiaosong Yang, Mei Zhang, Ping Qin, Hongmei Wu*, Xiangpei Wang

Department of Pharmacognosy, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, Guizhou Province, PR China

*Corresponding author e-mail: hongmeiwu@gzy.edu.cn

Abstract. Objective: The molecular mechanism of Oxalis corniculata (L.) in the treatment of hepatitis was studied by network pharmacology. Methods: The active ingredients of that were screened using network pharmacology. The "drug-active ingredient-target-disease" network was constructed. The signal pathway and biological process of the target was analysed by DAVID database. Results: Screen out 8 active compounds and 30 potential targets, the target proteins are TP53, AKT1, ALB, and IL6, respectively. 42 biological processes and 39 signaling pathways were screened. It exerts anti-hepatic effects by regulating signaling pathways (such as cancer pathways, hepatitis B and PI3K-Akt signaling pathways). Conclusion: Network pharmacology provides new ideas and methods for revealing the anti-hepatic mechanism of Oxalis corniculata (L), and provides scientific basis for further research and development of Oxalis corniculata (L).

Key words: Oxalis corniculata (L.), Hepatitis, Active ingredient, Network pharmacology, Mechanism.

1. Introduction

At present, hepatitis is one of the public health problems that are widely concerned around the world, and is an infectious inflammation caused by the hepatotropic virus inroad the human body. The hepatitis B is a highly epidemic disease in China, and patients need a huge amount of money in the treatment of hepatitis[1]. In addition, The pathogenic factors of hepatitis are harm to liver cells and liver function, causing a series of uncomfortable symptoms of the body. Finally, it lead to liver damage even cirrhosis and liver cancer[2-3]. The pathogenesis of hepatitis in Chinese medicine is caused by the interaction of wet and heat, which is lead to the damage of liver, gallbladder, spleen, stomach and effluence of the bile. So it should be based on Clearing heat and draining dampness to treat the hepatitis, and often use methods of clearing heat and draining dampness with relieving exterior syndrome, removing Jaundice and clearing heat to treat hepatitis [4].

Suaib mib mib is a fresh or dried whole grass of Oxalis corniculata (L.)(Cu jiăng-cao). Originally published in the Compendium of Materia Medica, it is included in the 2003 edition of Quality Standards for Traditional Chinese Medicine and National Medicinal Materials of Guizhou Province [5]. It has the functions of calming the liver and distressing, dampening and swelling, anti-
inflammatory and analgesic, cooling blood and dissipating blood stasis, etc. It is mostly used to treat diseases such as jaundice, acute hepatitis, mumps [6]. It is documented that the compatibility of Oxalis corniculata (L.) and pork has the effect of treating infectious hepatitis[7]. There are various chemical components such as protocatechuic aldehyde, isovitexin, quercetin, β-tocopherol, and carotene in Oxalis corniculata (L.)[8-11]. Pharmacological studies showed that it has antibacterial, antioxidant, anti-inflammatory and analgesic effects [12-14]. Studies have been carried out to extract sorrel with distilled water, hydrochloric acid ethanol, and ethanol to obtain polysaccharides, anthocyanins, and flavonoids, respectively. The results show that it has anti-oxidation and protective effects on liver injury induced by a-naphthalene isothiocyanate (ANIT) in rats. It has been reported that 70% of the extracts of Oxalis corniculata (L.) are mainly acylquinic acid and flavonoids, and humulin, isohumulin and isovitexin are clearly identified. At present, its research mainly focuses on the material basis of pharmacodynamic effects, but the research on its mechanism of action is not clear. This article uses network pharmacology to study the active compounds and target targets of Oxalis corniculata (L.) for treating hepatitis, and provides a reference for the further development and clinical application of Oxalis corniculata (L.).

Traditional Chinese medicine has the characteristics of multiple components, multiple targets, and multiple pathways. It regulates the therapeutic targets in human tissues and restores the physiological regulation network of human imbalance, thereby achieving the purpose of treating diseases. However, it hinders the development of new traditional Chinese medicines, due to the complexity of traditional Chinese medicines' multiple components, multiple targets, and multiple pathways and the limitations of traditional experimental research methods. In recent years, the holistic and systematic characteristics of network pharmacology coincide with the "multi-component, multi-target, and multi-path" characteristics of traditional Chinese medicine. The research on the intervention and impact of drugs on diseases is based on a multi-level and multi-angle interaction network. It provides new ideas and methods for the substance basis and mechanism of action of traditional Chinese medicine [17-18]. From the perspective of network pharmacology, this study explores its mechanism of treatment for hepatitis.

2. Methods

2.1. Screening active ingredients and targets
Search all the chemical components of Oxalis corniculata (L.) by consulting literature in CNKI, PubMed and TCMSP database. The TCMSP database was used to screen active chemical components of Oxalis corniculata (L.) with Absorption Distribution Metabolism Excretion (ADME) parameters (Oral Bioavailability, OB ≥ 30% and Drug-Likeness, DL ≥ 0.18)[19], and get the structural formula and targets of Oxalis corniculata (L.). Finally, the screened targets were transformed into UniProtID format through UniProt database (https://www.uniprot.org/).

2.2. Screening disease targets
GeneCard (https://www.genecards.org/) database was used to screen protein targets of Oxalis corniculata (L.) for hepatitis, and to establish a hepatitis target data set.

2.3. Network construction and analysis
The Venny 2.1.0 (https://bioinfogp.cnb.csic.es/tools/venny/index.html) website was used to establish the intersection target of diseases and drugs. The Protein Interaction Network (PINetwork) Analysis was Based on STRING Database. Then, import the results into Cytoscape 3.7.1 software to optimize the protein interaction map, and obtained the Degree, Betweenness centrality, and Closeness centrality values of the nodes, and visualized Degree values by size. Selecting the target that the above 3 topological parameter values that meet the median values of all the points as the significance target of Oxalis corniculata (L.) to treat hepatitis. The active ingredients, diseases and targets of Oxalis
corniculata (L.) were import into the Cytoscape 3.7.1 software to establish a network analysis diagram of "drug-active ingredients-targets-disease".

2.4. Biological process and signaling pathways analysis
The selected target targets were analyzed by the DAVID (https://david.ncifcrf.gov/) database for the Kyoto Gene and Genomic Encyclopedia (KEGG) pathway enrichment analysis and Gene Ontology (GO) biological process analysis, to find biological processes and signaling pathways related to Oxalis corniculata (L.) for hepatitis.

3. Results

3.1. Screening active ingredients
On the TCMSP database and the literature of CNKI, PubMed, and TCMSP database, 8 active compounds and related targets were screened by ADME parameters (OB≥30% and DL≥0.18). The number of targets was shown in Table 1.

MolID	Chemical	Number of targets	OB(%)	DL
MOL001452	Protocatechu aldehyde	10	38.35	0.03
MOL002268	Rhein	7	47.07	0.28
MOL002773	Beta-carotene	21	37.18	0.58
MOL001525	Daucoosterol	2	36.91	0.75
MOL002322	Isovitexin	6	31.29	0.72
MOL001689	Acacetin	24	34.97	0.24
MOL000006	Luteolin	3	36.16	0.25
MOL000098	Quercetin	152	46.43	0.28

3.2. Screening the target of drug and disease
A total of 225 targets corresponding to the active chemical components of Oxalis corniculata (L.) were screened by the TCMSP database. The results were shown in Table 1. 10720 hepatitis-related targets were found in GeneCard database. Established 159 targets that Oxalis corniculata (L.) components intersect with hepatitis on the Venny website. The intersection targets were import into the Cytoscape 3.7.1 software to obtain the Degree value, and visualized it as different color according to the value shown in Figure 1.
3.3. Topological parameters of the target

The intersection targets were imported into the STRING database to obtain protein interaction data, and the data was imported into the Cytoscape 3.7.1 software to build an optimized protein interaction relationship graph, then, got the nodes' Degree, Betweenness centrality, and Closeness centrality values, and visualized it as a picture according to the Degree values shown in picture 1. Selecting the target that satisfies 3 topological parameter values greater than the median of all points as the important target of Oxalis corniculata (L.), the median value were 0.0018, 0.5304, 58. The results were shown in Table 2. The active ingredients, diseases and targets of Oxalis corniculata (L.) were import into Cytoscape 3.7.1 software to establish a network analysis diagram of "drug-active ingredient-target-disease" (Figure 2).

Figure 1 The intersection targets of Oxalis corniculate (L.) and hepatitis

Figure 2 The "drug-active ingredient-target-disease" network
Table 2. Topological parameter results of *Oxalis corniculata* (L.) targets

Uniprot ID	Gene name	Degree	Betweenness centrality	Closeness centrality
P31749	AKT1	109	0.0549	0.7548
P04637	TP53	104	0.0516	0.7371
P02768	ALB	101	0.0617	0.7269
P05231	IL6	100	0.0393	0.7169
P15692	VEGFA	96	0.0323	0.7072
P42574	CASP3	93	0.0322	0.7009
P01375	TNF	92	0.0297	0.6916
P05412	JUN	92	0.0312	0.7009
P28482	MAPK1	89	0.0258	0.6856
P01106	MYC	87	0.0206	0.6797
P01133	EGF	85	0.0500	0.6826
P35354	PTGS2	82	0.0178	0.6709
P14780	MMP9	79	0.0116	0.6515
P24385	CCND1	76	0.0149	0.6461
P10145	CXCL8	75	0.0133	0.6461
P01100	FOS	70	0.0134	0.6305
P60484	PTEN	70	0.0112	0.6331
P04626	ERBB2	68	0.0306	0.6331
P13500	CCL2	68	0.0067	0.6181
P07900	HSP90AA1	67	0.0141	0.6255
Q04206	RELA	67	0.0133	0.6230
P22301	IL10	66	0.0057	0.6157
P08253	MMP2	66	0.0102	0.6206
P10275	AR	62	0.0128	0.6157
P37231	PPARG	61	0.0078	0.6038
P35222	CTNNB1	61	0.0075	0.6085
P05362	ICAM1	61	0.0040	0.6038
O15519	CASP8	59	0.0048	0.6038
Q07817	BCL2L1	59	0.0048	0.6015
P09601	HMOX1	59	0.0080	0.6015

3.4. Bioprocess enrichment analysis of *Oxalis corniculata* (L.) for hepatitis target

The 30 target targets were imported into the DAVID database to get the biological process of *Oxalis corniculata* (L.) treatment of hepatitis, 265 biological processes were obtained, 26 were obtained with P-value (P <0.0001), the result was shown in table 3. The target for treating hepatitis by *Oxalis corniculata* (L.) was marked in response to drug, positive regulation of transcription, DNA-templated, positive regulation of transcription from RNA polymerase II promoter, etc.
Term	Count	Count (%)	P-Value
Response to drug	14	0.3	8.9E-16
Positive regulation of transcription, DNA-templated	13	0.3	2E-11
Positive regulation of transcription from RNA polymerase II	13	0.3	3E-08
promoter			
Negative regulation of apoptotic process	12	0.2	1.1E-10
Angiogenesis	9	0.2	2.9E-09
Inflammatory response	9	0.2	1.8E-07
Negative regulation of cell proliferation	9	0.2	2.5E-07
Positive regulation of cell proliferation	9	0.2	8.5E-07
Aging	8	0.2	1E-08
Positive regulation of apoptotic process	8	0.2	6E-07
Positive regulation of smooth muscle cell proliferation	7	0.1	7.2E-10
Response to estradiol	7	0.1	9.2E-09
Cellular response to hypoxia	7	0.1	1.3E-08
Positive regulation of sequence-specific DNA binding	7	0.1	2.2E-08
Transcription factor activity			
Cellular response to lipopolysaccharide	7	0.1	3.4E-08
Positive regulation of ERK1 and ERK2 cascade	7	0.1	4.6E-07
Positive regulation of gene expression	7	0.1	4.8E-06
Cell proliferation	7	0.1	0.000032
Response to antibiotic	6	0.1	2.1E-09
Positive regulation of nitric oxide biosynthetic process	6	0.1	9.8E-09
Cellular response to interleukin-1	6	0.1	1.3E-07
Response to ethanol	6	0.1	9.2E-07
Positive regulation of protein phosphorylation	6	0.1	2.3E-06
MAPK cascade	6	0.1	0.000078
Response to amino acid	5	0.1	2.2E-07
Response to cold	5	0.1	4.1E-07
Cellular response to organic cyclic compound	5	0.1	3.1E-06
Response to glucocorticoid	5	0.1	4.5E-06
Response to estrogen	5	0.1	4.5E-06
Canonical Wnt signaling pathway	5	0.1	0.000012
Cellular response to tumor necrosis factor	5	0.1	0.000036
Positive regulation of NF-kappaB transcription factor Activity	5	0.1	0.000077
Mammary gland alveolus development	4	0.1	3.1E-06
Regulation of sequence-specific DNA binding transcription Factor activity	4	0.1	0.00001
Liver regeneration	4	0.1	0.000016
Regulation of angiogenesis	4	0.1	0.00002
Lipopolysaccharide-mediated signaling pathway	4	0.1	0.000022
Protein kinase B signaling	4	0.1	0.000024
ERBB2 signaling pathway	4	0.1	0.000038
Ovarian follicle development	4	0.1	0.000051
Positive regulation of neuron apoptotic process	4	0.1	0.000055
Response to heat	4	0.1	0.000076
3.5. Enrichment analysis of KEGG signaling pathway for Oxalis corniculata (L.) treatment of hepatitis

The predicted 30 target targets were annotated in the KEGG database of the DAVID platform. According to the KEGG channel distribution, 91 channels were observed, and 39 channels were selected with the P-value (P < 0.00001). Including PI3K-Akt signaling pathway, TNF signaling pathway, Hepatitis B, Pathways in cancer, etc. The result was shown in table 4.

Table 4. Enrichment analysis of KEGG signaling pathway for Oxalis corniculata (L.) treatment of hepatitis

Term	Count	Count (%)	P-Value
Pathways in cancer	24	0.5	1E-24
Hepatitis B	15	0.3	5.5E-17
TNF signaling pathway	13	0.3	2.6E-15
Proteoglycans in cancer	12	0.2	1.3E-10
HTLV-I infection	12	0.2	1.7E-09
PI3K-Akt signaling pathway	12	0.2	4.3E-08
Prostate cancer	11	0.2	7.6E-13
Chagas disease (American trypanosomiasis)	11	0.2	4.2E-12
Bladder cancer	10	0.2	2.4E-14
MAPK signaling pathway	10	0.2	4E-07
MicroRNAs in cancer	10	0.2	1.1E-06
Endometrial cancer	9	0.2	1.7E-11
Colorectal cancer	9	0.2	7.4E-11
Pancreatic cancer	9	0.2	1.1E-10
Pertussis	9	0.2	3.6E-10
Toll-like receptor signaling pathway	9	0.2	5.9E-09
Influenza A	9	0.2	2.9E-07
Herpes simplex infection	9	0.2	4.2E-07
Focal adhesion	9	0.2	0.000001
NOD-like receptor signaling pathway	8	0.2	1.7E-09
Small cell lung cancer	8	0.2	3.3E-08
Rheumatoid arthritis	8	0.2	4.2E-08
HIF-1 signaling pathway	8	0.2	7.7E-08
Toxoplasmosis	8	0.2	2E-07
Non-alcoholic fatty liver disease (NAFLD)	8	0.2	1.7E-06
Transcriptional misregulation in cancer	8	0.2	3.4E-06
Tuberculosis	8	0.2	0.000005
Apoptosis	7	0.1	1.4E-07
Leishmaniasis	7	0.1	3.1E-07
Chronic myeloid leukemia	7	0.1	3.3E-07
Estrogen signaling pathway	7	0.1	2.2E-06
T cell receptor signaling pathway	7	0.1	2.4E-06
Thyroid cancer	6	0.1	8.5E-08
Malaria	6	0.1	1.3E-06
Legionellosis	6	0.1	2.1E-06
Non-small cell lung cancer	6	0.1	2.5E-06
Central carbon metabolism in cancer	6	0.1	0.000005
Glioma	6	0.1	5.4E-06
Melanoma	6	0.1	8.3E-06
4. Discussion

The effect of Oxalis corniculata (L.) on treating hepatitis is that the components of it, including Protocatechual, Quercetin, Beta-carotene and Isostatin, etc. These components play a multi-target and multi-pathway role in treating hepatitis. Studies have shown that Protocatechual can inhibit the inflammatory response of vascular endothelium, and its mechanism of inhibiting inflammatory response is closely related to mitogen-activated protein kinase (MAPK) signal transduction pathway [20]. Quercetin can up-regulate the expression of ADPN and Adipo R2 in rats with alcoholic liver injury, to improve liver function, blood lipids, and liver tissue fatty lesions. Finally, to reduce liver inflammation [21]. Beta-carotene can reduce the degree of rat liver fibrosis induced by carbon tetrachloride, and its effect may be to inhibit the expression of FGFβ1 in liver tissues[22]. Isovitexin has the effects on anti-inflammatory, antioxidant and anti-alzheimer [23]. The above studies suggest that Oxalis corniculata (L.) is effective in inhibiting inflammation and treating liver diseases, and has great research value.

In this paper, 37 chemical components of Oxalis corniculata (L.) were obtained, and 8 active chemical components and 225 corresponding targets were screened. A total of 159 targets of Oxalis corniculata (L.)’s components related to disease were identified, and filter 30 target targets, The Cytoscape 3.7.1 software built a "drug-active ingredient-target-disease" interaction network and obtained related topological parameters. The target proteins with the highest degree value include 30 target proteins such as AKT1, TP53, IL6, and ALB, the higher Degree value means that the protein target has an important role in the treatment of hepatitis by Oxalis corniculata (L.). AKT1 is one of the three closely related serine / threonine protein kinases (AKT1, AKT2 and AKT3) of AKT kinase, which is participate in regulating cell metabolism and proliferation. AKT1 as an important downstream target of the PI3K signaling pathway, the activated AKT regulates cell functions by phosphorylating avariety of enzymes, kinases, transcription factors and other downstream factors, to make the PI3K / AKT signaling pathway participate in regulate the release of inflammatory factors and promote the generation of osteoclasts [24]. TP53 plays an inhibitory role in many types of tumors, studies have shown that TP53 can induce TP53-induced hepatocellular carcinoma glycolysis and apoptosis regulator (TIGAR), and TIGAR can control the metabolism of hepatocellular carcinoma and prevent apoptosis [25]. IL6 is a cytokine with a variety of biological functions, it act on B cells, T cells, liver cells, hematopoietic stem cells and cells of the central nervous system, and play a major role in B cell differentiation and T cell proliferation [26]. IL6 can up-regulate the expression of NHE1, NCX1 and Calmodulin in hepatocyte cancer cells, to promote the proliferation, migration and invasion of hepatocyte cancer cells [27]. A study [28] have found that liver epithelial cells undergo apoptosis or fibrosis in patients with liver cirrhosis, and affect physiological processes such as autoimmunity, nutrient circulation, and body cell metabolism.

After pathway enrichment analysis, 42 biological processes and 39 signaling pathways were obtained. The significant signaling pathways are PI3K-Akt signaling pathway, TNF signaling pathway, Hepatitis B, Pathways in cancer, etc. At the same time, the biological processes involved are positive regulation of transcription, DNA-templated, response to drug, and positive regulation of transcription from RNA polymerase II promoter and so on.

The enrichment of signal pathways and biological processes indicated that the core targets of Oxalis corniculata (L.)’s active components were mapped to different signal pathways and biological processes, so that Oxalis corniculata (L.) has an anti-hepatitis effect by regulates the expression of related genes such as cell proliferation, differentiation and apoptosis in coordination of different signal pathways and biological processes.

The preliminary analysis indicated that the main potential active ingredients, action targets and related pathways of Oxalis corniculata (L.) provide a reference for further exploration of the mechanism of it. However, in-depth basic research and clinical experiments are needed to support the predicted results.
Acknowledgments

This work acknowledges the funding from the Guizhou domestic first-class construction project [(Chinese Materia Medica) (GNYL [2017] 008)], and Guiyang university of Chinese medicine first-class professional da chang he zi (2017), No.158.

References

[1] LIANG Ji .A Brief Talk on the Current Situation of Hepatitis B in China and the Prevention and Treatment Measures[J]. World Latest Medicine Information, 2019,19 (18):207+210.
[2] Liu Zheng,Yao nai li.Systematic evaluation of TCM treatment of chronic hepatitis b cirrhosis based on the theory of epidemic virus pathogenesis [J]. Liaoning Journal of Traditional Chinese Medicine, 2010,37 (5): 806-810.
[3] Duan Jianxue,Zhang Jianbo.A case-control study on pathogenic factors of primary liver cancer in Dianjiang County, Chongqing City [J]. Journal of Military Surgeon in Southwest China, 2018,20 (5):545-549.
[4] Ling Qihua,Chen Jianjie,Xu Wenjie,et al.Preliminary Study on the Characteristics and of TCM Syndromes in Patients with Chronic Hepatitis B[J]. Journal of Traditional Chinese Medicine, 2011,52(S1):82-83.
[5] Guizhou Food and Drug Administration. Quality standard of traditional Chinese medic Distribution ine and ethnic medicine of guizhou province (2003 edition) [M]. Guizhou:Guizhou Science and Technology Press, 2003:366.
[6] Bao Jun,Ran Maoxiong, Guizhou Miao Medicine Research and Development[M]. Guiyang:Guizhou Science and Technology Press, 1999:188.
[7] Cu jiang cao cure prescription[J]. Hunan Journal of Traditional Chinese Medicine, 2016,32(11):87.
[8] Zhang Bao,Peng Xiao,He Yanling, et al. Chemical Constituents from Oxalis corniculata[J].Journal of Chinese Medicinal Materials, 2018, 41(8):1883-1886.
[9] Wei Qiang,Li Sicong,Chen Ming, et al. Chemical Constituents of the Aerial Part of Oxalis corymbosa DC[J]. Journal of Tropical and Subtropical Botany, 2016, 24(5):584-588.
[10] Wu Gaobing,Chen Huainao,Zhong Junyi. Study on chemical constituents of Oxalis corniculata[J]. Journal of Medicine & Pharmacy of Chinese Minorities, 2014, 20(1):25-26.
[11] Li Shenghua. Chemical Constituents of Whole Plant of Oxalis pescaprae L[J]. Chinese Pharmaceutical Journal, 2013, 48(21):1820-1822.
[12] Guo Meixian,Wang Yangshuang,Shi Guiqiu, et al. Anti-inflammatory and Analgesic Effects of Oxalis corniculata L. on Acute Peritonitis in Mice[J]. Journal of Dali University, 2014, 13(2):6-8.
[13] Ding Liang, Li Jing,Yang Hui. Study on the Antioxidant Activity of Extracts from Oxalis corniculata L.[J]. Liaoning Journal of Traditional Chinese Medicine, 2011, 38 (10):2055-2057.
[14] Wang Yuxian,Ding Liang,Shen Wenzheng, et al. Study on the anti-inflammatory effect of oxalis corniculata L and its mechanism[J]. Medical Research and Education, 2010, 27(5):11-13.
[15] Ding Liang,Wang Hanyu. A dissertation for the Degree of M. medicines Intervention effect of Oxalis in liver injury induced by a- naphthyl isothiocyanate in rats[J]. Electronic Journal of Clinical Medical Literature,2014,1(09):1495-1496.
[16] Cui Jun.Anti-inflammatory and analgesic fraction of the Miao’s Herb Oxalis corniculata[D]. Guizhou Medical University, 2015.
[17] Zhou Wenxiu,Chen Xiaorui,Zhang Yongxiang. Network pharmacology-a new philosophy for understanding of drug action and discovery of new drugs[J]. Chinese Journal of Pharmacology and Toxicology, 2012, 26 (1):4-9.
[18] Xu Feng,Huang Xulong,Wu Hongmei, et al.Mechanism of anti-diabetes of Shenqi Pills based on network pharmacology[J]. Chinese Traditional and Herbal Drugs, 2019, 50 (16):3880-
3890.

[19] MUNSHIA, R AMESH R. Mitogen-activated protein kinases and Their role in radiation response [J]. Genes Cancer, 2013, 4 (9-10):401-408.

[20] Xing Yaling,Ye Zhihua,Zhong Zhiying, et al. Protection and related mechanisms of protocatechuic aldehyde against vascular endothelial cell injury induced by lipopolysaccharide[J]. Military Medical Sciences, 2008,32 (4):344.

[21] Liu Minghao, Zhang Lihui, Ma Qingliang, et al. Effect of the quercetin on the non-alcoholic steatohepatitis in rats and its mechanism [J]. The Chinese Journal of Clinical Pharmacology, 2019,35 (20):2597-2601.

[22] Xu Qing, Li Shi, Liu Yanjun, et al. Experimental study on β-herosporin against liver fibrosis in rats[J]. Journal of Practical Hepatology, 2000, (4):201-203.

[23] Herrero A, Barja G. Localization of the site of oxygen radical generation inside the complex I of heart and nonsynaptic brain mammalian mitochondria.[J]. Journal of bioenergetics and biomembranes, 2000, 32:609-615.

[24] Zhang Xing, Bao Guofeng, Cui Zhiming. Research progress of PI3K / AKT signaling pathway in the pathogenesis of rheumatoid arthritis [J]. Journal of Southeast University(Medical Science Edition), 2019, 38 (2):358-363.

[25] Dang Yini, Jiang Longfeng, Zhang Jianfu, et al. Disseminated histoplasmosis in an immunocompetent individual diagnosed with gastrointestinal endoscopy: a case report.[J]. BMC infectious diseases, 2019, 19 (1).

[26] Han Bin, Luo Ying, Zeng Min, Jiang Hong. Spectrum-Efficient Resource Allocation in Multi-Radio Multi-Hop Cognitive Radio Networks.[J]. Sensors (Basel, Switzerland), 2019, 19 (20).

[27] Ji Bei, NHE1, NCX1 and Calmodulin interact to regulate the effects of inflammatory factors TNF-α and IL6 on the cell behavior of hepatocellular carcinoma[]

[28] Xue Yongju, Yang Li, Zhu Yu, et al. Value of the serum albumin, cholinesterase and prothrombin activity in the diagnosis of viral hepatitis cirrhosis[J]. Journal of Bengbu Medical College, 2019, 44 (3):306-308+313.