Emission-related Heavy Metal Associated with Oxidative Stress in Children: Effect of Antioxidant Intake

CURRENT STATUS: POSTED

Brittany Killian
National Taiwan University

TZU-HSUEN YUAN jamesfisher955@gmail.com
National Taiwan University
Corresponding Author
ORCiD: 0000-0002-6424-8510

Cheng-Hsien Tsai
National Taiwan University Hospital

Tina H. T. Chiu
Fu Jen Catholic University

Yi-Hsuan Chen
National Taiwan University

Chang-Chuan Chan
National Taiwan University

DOI:
10.21203/rs.2.20035/v1

SUBJECT AREAS
Toxicology Epidemiology

KEYWORDS
heavy metals, young children, oxidative stress, antioxidants, industrial pollution
Abstract

Background: Heavy metals, the common pollutants emitted from industrial activities, are believed to cause harmful effects partially through the mechanism of elevated oxidative stress, and the antioxidant intake have been hypothesized to provide a potential protective effect against oxidative stress in human. Therefore, the objective of our study is to investigate the environmental exposure of heavy metals and the associated oxidative damage of young children living near a petrochemical complex and to assess the potential protective effect of dietary antioxidant intake.

Methods: There were 168 children recruited from the kindergartens near a huge petrochemical complex, with 87 as the high exposure group and 81 as the low exposure group. Urinary concentrations of eleven metals were detected by inductively coupled plasma mass spectrometry, and four biomarkers of oxidative stress were measured in urine samples by liquid chromatography-tandem mass spectrometry. The food frequency questionnaire was collected to assess participants’ intake of antioxidants. Multiple linear regression was performed to determine the significant predictors of metals for oxidative stress and to measure the potential beneficial effect of antioxidants. Weighted quantile sum regression was performed to determine the highest contributors among metals to the oxidative stress biomarkers.

Results: Study subjects in high exposure group had significantly higher concentrations of chromium, manganese, nickel, arsenic, strontium, cadmium, and lead when compared to those in low exposure group. There was no obviously difference on the total antioxidant intake and dietary profile between the two groups. The elevated levels of two oxidative stress markers were significantly associated with most of the urinary metal concentrations in all study subjects after adjusting confounding factors, while no significant association was found between oxidative stress and antioxidant intake. Among the metals, mercury
and strontium showed the dominated contributions for elevated levels of oxidative stress. Conclusion: Higher metal exposure were associated with elevated oxidative stress but with no protective affect by the antioxidant intake among the young children residents near a petrochemical industry.

1. Introduction

Environmental pollution, mainly from various industries and motor vehicles, was understood to be a health hazard for humans, with its negative effects spanning a wide range of diseases. Heavy metals are one source of environmental pollution that are of interest to researchers due to their potential for long-term negative health effects. One mechanism through which heavy metals cause damage to human health is oxidative stress. Many heavy metals have oxidation-reduction (redox) properties, which can contribute to the generation and overproduction of reactive oxygen species (ROS) when the antioxidant defenses are not sufficient to prevent this from occurring [1]. Consequently, the overproduction of ROS leads to oxidative damage. In recent years, many studies have found exposure to heavy metals to be associated with higher oxidative stress [2]. Industrial exposure to heavy metals has consistently been found to be associated with increased oxidative stress of the populations living in areas of high exposure [3, 4, 5]. And, epidemiological studies have linked proximity to industries to oxidative stress and related diseases [6, 7, 8].

High levels of oxidative stress during childhood may be a risk factor for various adult diseases. Studies have found that asthma, obesity, hypertension, severe disability, ADHD, and acute brain damage are associated with higher oxidative stress, and these diseases often begin developing during childhood [9, 10, 11, 12, 13, 14]. Some studies have focused on even earlier stages of development, examining the effect of neonatal oxidative stress on later-life diseases [15, 16]. Since many later life diseases have been linked to
oxidative stress that occurred during early childhood, it is important to determine the causes of oxidative stress on young children and limit potential exposures. Young children are particularly susceptible to the effects of oxidative stress and environmental exposures due to their developing nervous, immune, digestive, respiratory, antioxidant, and reproductive systems [17]. During these developmental stages, harmful environmental exposures have potential to cause irreversible, life-long damage to cells [18]. Various observational studies have examined the ways heavy metal exposure affects young children. These studies have concluded that heavy metal exposure is a consistent predictor of urinary oxidative stress among children [19, 20, 21]. Other studies have reached similar conclusions after examining the effects of heavy metal exposure on infants and their mothers and adolescents [22, 23].

In recent years, several experimental and observational studies have aimed to address the issue about the relationship between dietary antioxidant intake and oxidative stress. As children reach preschool age, their diets begin to more similarly resemble adult diets, allowing researchers to observe differences in dietary patterns among children. Studies have shown that for all ages of people, diets low in antioxidants have been linked to increased disease, especially when coupled with exposure to heavy metals [24].

Antioxidant status is of great importance because low antioxidant intake is often found to be associated with certain diseases. Previous study examined young children’s dietary antioxidant intake and exposure to environmental chemicals, concluding that the relationship between antioxidant intake, environmental exposure to chemicals, and other physiological factors interact in a complex way [25]. Other studies have linked oxidative stress and dietary antioxidant intake to diseases, with many of them concluding that dietary supplementation of antioxidants may provide a beneficial effect on childhood developmental diseases such as asthma and neurological disorders [10, 11, 13, 26, 27].
Given the complex relationship between heavy metal exposure through industrial complexes, oxidative stress, and dietary antioxidant intake, the primary objective of this study was to investigate the heavy metal exposure and oxidative stress levels among young children living in the vicinity of a big petrochemical complex, and to determine if heavy metal exposure is associated with oxidative stress among this population of young children. And, another objective was to explore if dietary antioxidant intake provided a protective effect against oxidative stress related to environmental metal exposure.

2. Materials And Methods

2.1. Study Area

The study area selected for this study was in Central Taiwan near a large petrochemical complex, which was built in 1998. There are 53 plants in the complex including one thermal power plant with the capacity of 1.8 million kW of electricity, three oil refineries, two naphtha cracking plants, three cogeneration plants with the generation of 2.82 million kW of electricity, and other related plants. And, the production capacity of this complex has expanded to 540,000 barrels of oil per day and 2.9 million tons of ethylene per year [28].

Previous studies have concluded that various pollutants from the complex are a possible health risk for the local residents [29, 30]. Among the petrochemical emission-related pollutants, the effect of toxic metal exposure was observed on residents and environment in the vicinity areas. For ambient air, the contents of many metals in PM$_{10}$ samples were higher during the downwind season in the two townships nearby the complex [31], and the obviously increasing ambient concentrations of vanadium (V) was found in the closer areas of the complex [32]. For internal exposure biomarkers, urinary V and As levels displayed a concentration gradient in accordance with the distance-to-source gradient of V
and As exposure [32], and the significant association between proximity to the petrochemical complex and heavy metals and oxidative stress biomarkers was found in teenagers and elders [6, 33].

2.2. Study Subject

In this study, the study subjects selected were kindergarten children, ages 4–8, from four townships located in vicinity of the petrochemical complex. Initially, there were 104 children recruited from the two kindergartens in two townships closest to the petrochemical complex as the high exposure group, and there were 96 children recruited from the two kindergartens in two townships located farther from the petrochemical complex as the low exposure group. Geological information system (GIS) software (ArcGIS) was used to determine the distances from the petrochemical complex to the study subject’s home address. A weighted average of the geographical exposure for each study subject was calculated using the number of hours the children spent at home and at school.

The informed consent of these 200 children were provided by their participants’ guardians and the food frequency questionnaire (FFQ) investigation and urine sample collection were conducted at the four kindergartens. There were 32 participants excluded because of incomplete procedures, including returning both a morning urine sample and a completed food frequency questionnaire (FFQ), and therefore the total study subjects were 168 in further analysis. On the other hand, there were 24 samples with the urinary creatinine concentration below 30 mg/dL excluded from the study for urinary analysis in accordance with the World Health Organization (WHO) standards. The flowchart of this cross-sectional study was shown in Fig. 1, and the Institutional Review Board (IRB) approval (201312017RIND) was obtained prior to initiation of the study.
2.3. Analysis of Exposure Biomarkers

A morning spot urine sample was collected by the guardians of the participants and then stored in a -20 C freezer until analysis was performed. From the urine samples, levels of eleven heavy metals including vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), arsenic (As), strontium (Sr), cadmium (Cd), mercury (Hg), thallium (Tl), and lead (Pb) were determined by inductively coupled plasma mass spectrometry (ICP-MS). To ensure the accurate measurements, the urinary metal levels of standard reference materials (SERO, Billingstad, Norway) analyzed by our method were all within acceptable ranges provided by the standard reference materials. And, the relative error of the ten spiked samples for each batch of the experiment was below 10% for these urinary chemicals. In addition, the measurement data was statistically analyzed when the recovery rate of each batch of the experiment higher than 85%. One half of the method detection limit was used to represent the urinary metals level for samples below the method detection limits. Urinary metal levels were adjusted using urinary creatinine concentrations, and these levels were log-transformed to fit a normal distribution for further statistical analysis.

2.4. Analysis of Oxidative Stress Biomarkers

There were four biomarkers available to measure oxidative stress detected in our study, including four oxidative stress biomarkers ((8-hydroxy-2’-deoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal-mercapturic acid (4-HNE-MA), 8-isoprostaglandin F\(_2\)\(_\alpha\) (8-isoPF\(_2\)\(_\alpha\)), and 8-nitroguanine (8-NO\(_2\)Gua)). These four oxidative stress biomarkers were analyzed in urine samples with liquid chromatography-tandem mass spectrometry (LC-MS) using a previously-validated method that analyzed all four biomarkers at once [34]. Urinary oxidative stress biomarkers levels were adjusted using urinary creatinine concentrations,
and these levels were log-transformed to fit a normal distribution for further statistical analysis.

2.5. Analysis of Antioxidant Intake

Total antioxidant intake of the participants was determined using a FFQ. FFQs are a tool used by nutritionists to determine food patterns and habits among study subjects. Food items predictive of antioxidant nutrients, such as vitamin C in children age 4 to 6, were identified by step-wise regression using dietary data collected in the 2005 Nutrition and Health Survey in Taiwan (NAHSIT). Additional foods containing non-vitamin antioxidants that are commonly consumed by children were added to the FFQ, with the consultation with a dietitian. The FFQ in this study included a list of foods and asked the participant how frequently they have consumed each food in the past month. Because young children cannot reliably provide their own dietary data, their parents or guardians served as representatives and completed the FFQs for them.

To calculate total antioxidant intake per week per participant, each food in the questionnaire was matched to its corresponding antioxidant intake measured by the FRAP value in mmol/100 g using data from previous studies [35, 36]. Most of the foods’ antioxidant content could be found through the previous two sources. Average portion sizes for children ages 4–8 were calculated using Taiwan’s National Health Survey data. Portion sizes were then multiplied by the antioxidant intake to get an approximate antioxidant intake per one-time consumption of each food. These numbers were then multiplied by the frequency with which the participant consumed a given food in a one-week period to find the total antioxidant intake per week. This FFQ included 67 specific food groups.

2.6. Statistics
Basic characteristics and antioxidant intake between high and low exposures were compared using Student’s t-tests for continuous variables. For discrete categorical variables, the Chi-squared tests were performed. After adjusting for age, gender, household smoking, and parental work history at the petrochemical plant, differences on the levels of urinary metal and oxidative stress biomarkers between the high and low exposure participants were compared using analysis of covariance (ANCOVA). Multiple linear regression analysis was performed to determine the relationship between environmental exposure biomarkers, dietary intake, and oxidative stress. All linear regression models were with antioxidant intake and metal exposure biomarkers individually as independent variables and oxidative stress biomarkers individually as dependent variables adjusting for confounding factors. Weighted quantile sum (WQS) regression was performed to determine highest contributors among metal exposure biomarkers to each oxidative stress biomarker. A p-value of < 0.05 was considered significant. All tests were performed using R Studio 3.2. WQS regression was performed using the gWQS package for R 3.5.1.

3. Results

3.1. Basic Characteristics

Table 1 showed the basic characteristics of participants between the high and low exposure groups. Gender was significantly different between the two groups, with the high exposure and low exposure groups comprised of 57.41% males and 40.74% males, respectively. Age, household smoking, and percent of single parent households were not significantly different, but parental work history at the petrochemical plant was different between the two groups. Of the parents of high exposure participants, 33.33% were permanent workers at the plant, compared with 17.28% from the low exposure group.
Although between-group differences in socioeconomic markers, such as income, education, and occupation, were not statistically significant, there was a slight trend of higher exposure parents having higher socioeconomic status, with higher average salaries and higher attained education than the low exposure group parents (data not shown).

Table 1
Comparison of basic characteristics, urinary heavy metal exposure levels, and urinary oxidative stress biomarker levels between high and low exposure groups

	High (n = 87)	Low (n = 81)	p a
Basic characteristics a			
Age, mean ± SD (years)	5.40 ± 0.84	5.44 ± 0.76	0.73
Male, n(%)	50(57.41)	33(40.74)	0.04
Household smoking, n(%)	22(25.29)	26(32.10)	0.47
Single parent, n(%)	5(5.75)	10(12.35)	0.21
Work history at complex b, n(%)	34(39.08)	41(50.62)	0.06
None			
Current permanent worker	29(33.33)	14(17.28)	
Current temporary worker	7(8.05)	12(14.81)	
Past permanent or temporary worker	17(19.54)	14(17.28)	
External exposures, mean ± SD			
Distance to complex c (km)	6.33 ± 2.82	13.16 ± 1.87	0.00
Internal exposures d, e, mean ± SD			
Vanadium	0.47 ± 0.22	0.47 ± 0.23	0.45
Chromium	2.02 ± 1.28	0.98 ± 0.74	0.00
Manganese	1.06 ± 1.00	0.97 ± 2.30	0.00
Nickel	4.77 ± 3.25	3.61 ± 3.62	0.00
Copper	15.86 ± 6.44	20.29 ± 7.39	0.00
Arsenic	100.06 ± 59.79	89.04 ± 140.63	0.00
Strontium	219.71 ± 137.73	179.78 ± 135.97	0.04
Cadmium	0.09 ± 0.04	0.07 ± 0.05	0.00
Mercury	1.81 ± 0.79	1.89 ± 0.94	0.77
Thallium	0.20 ± 0.13	0.23 ± 0.16	0.40
Lead	1.66 ± 1.28	1.24 ± 0.86	0.01
Oxidative stress d, e, mean ± SD			
8-OHdG	8.53 ± 4.69	7.18 ± 3.20	0.14
HNE-MA	47.21 ± 47.24	47.24 ± 42.24	0.92
3.2. Exposure Status

For the overall external exposure, the high exposure group were with significantly closer distance of an average of 6.33 kilometers from the plant than the low exposure group with an average of 13.16 kilometers from the plant (Table 1). For internal exposure levels, it showed that significant statistical differences were found between urinary levels of Chromium, Manganese, Nickel, Copper, Arsenic, Strontium, Cadmium, and Lead, with all but Copper higher in the high exposure group after adjusting for household smoking, parental work history at the petrochemical plant, age, and gender. And, the urinary Vanadium, Mercury, and Thallium levels were not statistically significant between high and low exposure groups (Table 1).

3.3 Oxidative Stress Status

Table 1 shows the adjusted means of urinary oxidative stress biomarkers, with the covariates of total dietary antioxidant intake per week, gender, household smoking, age, and parental work history at the petrochemical plant. After adjusting for covariates, none of the differences in means of the high and low exposure groups remained statistically significant. Among these four oxidative stress markers, only 8-OHdG showed slight differences between the high and low exposure groups before adjusting for confounders, with means of 8.53 µg/g-creatinine and 7.18 µg/g-creatinine, respectively, but this different became insignificant after adjusting for confounders.
3.4. Antioxidant Intake and Nutritional Patterns

In Table 2, it showed the comparison of total antioxidant intake and the top five antioxidant ingestion food between high and low exposure groups. Total antioxidant intake per week varied between the exposure groups, with means of 43.18 and 34.20 mmol/week for the high and low exposure groups, respectively. However, this difference was not statistically significant. And, the dietary amount of the highest antioxidant intake foods were similar between the two groups with no statistically significant differences, with the exception of intake of berries per week.

Table 2
The comparison of total antioxidant intake and dietary pattern between high and low exposure groups.

	High (n = 87)	Low (n = 81)	p\(^a\)
Total antioxidant intake, mean ± SD	43.18 ± 40.32	34.20 ± 21.14	0.07
Foods with highest average antioxidant intake			
Berries	8.08	3.98	0.04
Sugar tea	4.81	3.70	0.24
Dark chocolate	3.64	2.50	0.10
Guava	3.02	3.06	0.95
Sugarless tea	2.79	1.95	0.41

\(^a\) Comparison of antioxidant intake in foods between the high and low exposure groups was performed using Student’s t-test. Unit: mmol/week.

For all study subjects, among all 45 food groups, not including vitamins or oils, berries were the highest contributor to total antioxidant intake per week (6.10 mmol/week). Sugar tea, dark chocolate, guava, and sugarless tea were the next four most significant contributors to overall antioxidant intake, with contributions of 4.28 mmol/week, 3.09 mmol/week, 3.04 mmol/week, and 2.38 mmol/week, respectively (data not shown).

3.5. Effect of Antioxidant Intake on the Association between Metal Exposure and Oxidative Stress

Table 3 presented the associations between each heavy metal and each oxidative stress biomarker for all participants pooled together coupled with the coefficient of antioxidant
intake. It showed the obviously associations between metal exposure and oxidative stress. As 8-OHdG was the primary oxidative stress biomarker in this study, it noted that 8-OHdG had significant associations with 7 metals, compared to 10, 3, and 1 for 4-HNE-MA, 8-isoPF$_{2\alpha}$, and 8-NO$_2$Gua, respectively. Urinary concentrations of Vanadium, Chromium, Copper, Arsenic, Strontium, Cadmium, and Mercury were all significantly associated with an increase in urinary 8-OHdG ($p < 0.05$). A one percent increase in Vanadium, Chromium, Copper, Arsenic, Strontium, Cadmium, and Mercury resulted in a marginal increase in 8-OHdG of 0.33%, 0.19%, 0.40%, 0.19%, 0.32%, 0.24%, and 0.37%, respectively. On the other hand, we found that there were no significant associations existed between antioxidant intake and any of the oxidative stress biomarker levels in the study subjects.
Table 3

The associations between heavy metal exposure and oxidative stress with the antioxidant intake for study subjects (n = 144)

Stress marker Metal	8-OHdG	4HNE-MA	8-isoPF2α	8-NO2Gua					
Metal Est. (Cl)^a	p	Al Est. (Cl)^b	p	Metal Est. (Cl)^a	p	Al Est. (Cl)^b	p	Metal Est. (Cl)^a	p
Vanadium	0.33 (0.13, 0.53)	< 0.01	-0.05 (-0.20, 0.10)	0.5	0.52 (0.26, 0.78) < 0.01	-0.08 (-0.47, 0.12)	0.4	0.17 (-0.03, 0.37)	0.1
Chromium	0.19 (0.01, 0.05)	< 0.01	-0.05 (-0.20, 0.10)	0.5	0.42 (0.25, 0.59) < 0.01	-0.08 (-0.27, 0.12)	0.4	0.04 (-0.10, 0.18)	0.5
Manganese	-0.00 (-0.10, 0.10)	1.0	-0.05 (-0.20, 0.11)	0.5	0.03 (-0.12, 0.16) 0.7	-0.07 (-0.28, 0.14)	0.5	-0.09 (-0.19, 0.00)	0.0
Nickel	0.12 (-0.01, 0.25)	0.0	-0.03 (-0.19, 0.12)	0.6	0.19 (0.02, 0.37) 0.0	-0.05 (-0.26, 0.13)	0.6	0.02 (-0.11, 0.20)	0.7
Copper	0.40 (0.14, 0.66)	< 0.01	-0.05 (-0.20, 0.37)	0.5	0.47 (0.12, 0.82) < 0.01	-0.07 (-0.28, 0.13)	0.4	0.51 (0.26, 0.76)	≤ 0.0
Arsenic	0.19 (0.03, 0.34)	0.0	-0.07 (-0.23, 0.08)	0.3	0.41 (0.21, 0.61) < 0.01	-0.13 (-0.33, 0.07)	0.2	0.15 (-0.00, 0.31)	0.0
Strontium	0.32 (0.17, 0.48)	< 0.01	-0.05 (-0.20, 0.10)	0.5	0.59 (0.40, 0.78) < 0.01	-0.08 (-0.26, 0.10)	0.3	0.18 (-0.02, 0.34)	0.2
Cadmium	0.24 (0.07, 0.40)	< 0.01	-0.04 (-0.19, 0.11)	0.5	0.36 (0.14, 0.58) < 0.01	-0.07 (-0.27, 0.13)	0.5	0.19 (0.03, 0.36)	0.0
Mercury	0.37 (0.13, 0.60)	< 0.01	-0.04 (-0.19, 0.11)	0.5	0.46 (0.15, 0.77) < 0.01	-0.07 (-0.27, 0.14)	0.5	0.17 (-0.07, 0.41)	0.1
Thallium	0.14 (-0.03, 0.31)	0.1	-0.05 (-0.20, 0.11)	0.5	0.25 (0.02, 0.48) 0.0	-0.08 (-0.28, 0.13)	0.4	0.04 (-0.13, 0.21)	0.6
Lead	0.12 (-0.01, 0.26)	0.8	-0.06 (-0.21, 0.10)	0.4	0.23 (0.05, 0.41) 0.0	-0.10 (-0.30, 0.11)	0.3	0.08 (-0.06, 0.22)	0.2

Note: Multiple linear regression model adjusted for age, gender, household smoking, parental work history at complex, and total antioxidant intake. Each metal was tested individually with each individual oxidative stress biomarker. All estimates of metals and antioxidant intake were logged.

3.6. The contributions of multiple metal exposure on oxidative stress

In Fig. 2, it showed the contributions of multiple urinary metal levels on each urinary oxidative stress biomarker levels individually by WQS regression model. As shown in Fig. 2A, the highest contributors to the oxidative stress biomarker of 8-OHdG were Hg, Sr, As, Cu, and Cd, making up 22.0, 19.9, 15.9, 14.7, and 13.5 percent of the total.
contribution, respectively. Figure 2B shows that Sr was the highest contributor to 4-HNE-MA at 44.7%. The highest contributor to 8-isoPF$_{2\alpha}$ was Cu for 49.1% in Fig. 2C. And, V, Hg, and Sr were the highest contributors to 8-NO$_2$Gua at 29.1, 25.0, and 22.7 percent, respectively (Fig. 2D). All four WQS regression models were statistically significant and showed positive associations between the heavy metals and the oxidative stress biomarker outcomes.

4. Discussion

For the petrochemical-related metal exposure, the present study indicated that the study subjects lived in the areas nearby were with significantly higher urinary metal levels except only for Cu with the reverse result (Table 1), and there were limited research revealed the internal metal exposure dose in young children like the present study. In addition, our previous studies investigated the obviously elevated urinary metal levels in all of the residents with different age groups including elders, adults, and teenagers [6, 32]. And, we further conducted the distance-to-source analysis and it revealed that the increased concentrations of most urinary heavy metals in study subjects were associated with the decreased distance from the plant, with the only exception of Cu (data not shown). Among these metals, the Cr, Mn, Ni, and As showed the big different exposure levels to response the possible emission pollution by this petrochemical complex because these metals all were suggested be the key pollutants by petrochemical industry previously [37, 38]. On the other hand, there was only the Cu with non-significant finding in this study, and it also indicated the accuracy of the metal exposure representative for the study subjects in this areas because of the main source of Cu exposure are from natural sources (decaying vegetation, forest fires, and sea spray) and anthropogenic emission sources (nonferrous metal production, wood production, iron and steel
production) not from petrochemical industry [39, 40]. In the past, the collected air samples in high exposure areas have found that the contents of many metals in PM$_{10}$ were higher during the downwind season to provide the external metal exposure from the petrochemical complex [31]. Nevertheless, the findings in the present study implied the emission-related metal exposure existed even in the children with the kindergarten age, and it should pay more attention on the potential adverse health effects of children in this polluted area in the future.

In previous study conducted in this study area, it found that teenagers and elders who lived in the high exposure areas were with significantly higher levels of urinary oxidative stress markers [6]. However, the present study did not show any obvious differences in the oxidative stress marker levels of young children between high and low exposure groups (Table 1). One possible reason is due to the different exposure definitions of these two studies. The participants of previous study were selected from the extreme highest and lowest exposure status with about a two-fold difference in most of the urinary metal levels, but the participants in high and low exposure in the present study were only with relatively slight differences in urinary metal levels. Nevertheless, it showed the significant associations between urinary levels of metals and oxidative stress markers for all subjects in this study (Table 3). Among these four oxidative stress markers, we found 8-OHdG and 4-HNE-MA were more sensitive to the metal exposure, and the past studies indicated the consistent findings for the application of these two markers in the prediction of the oxidative stress caused by metal exposure [6, 41]. In addition, the levels of these two markers in young children in the present study, even with lower urinary metal levels, were obviously higher than those in the teenagers and elders in past study [6]. And, previous studies supported that the inverse age-oxidative stress relationship could due to the naturally low glutathione levels at children which means the ability to detoxify reactive
oxygen is limited making the younger children more susceptible to oxidative stress [42]. On the other hand, the Hg and Sr showed the dominated contributions for most of the oxidative stress markers in this study (Fig. 2). These two metals were main petrochemical-related emission pollutants [37, 38], and several studies have confirmed their effects on the increasing of oxidative stress [43, 44, 45]. According to the above-mentioned results, young children might be with relatively higher oxidative stress when exposure to metal emission from the petrochemical industry, especially for Hg and Sr, and the subsequent effects of oxidative stress in these young children require further research to clarify.

The differences in dietary antioxidant intake varied slightly between the two groups in the present study, although the high exposure group having a higher average total antioxidant intake (Table 1). Currently, only a few studies have suggested dietary recommendations for vitamin C (the best-known antioxidant), but it has not been clearly defined and it was limited for adults [46, 47]. In fact, there was no well-established dietary recommendation for intake of antioxidants per week, especially for children. Limited studies have measured the intake of antioxidants in children populations. One Swedish study analyzed the associations between antioxidant intake and allergic disease on 8-year-old children by applying a food-frequency questionnaire. The result found that the intake of antioxidant, like β-carotene and magnesium in food, had inverse association with allergic disease such as rhinitis, atopic sensitization, and asthma [48]. However, most of the previous studies just estimated the single antioxidant not for the total intake of antioxidants in food. On the other hand, there was recently no clear definition on the amount of antioxidant intake enough to achieve the obvious antioxidant effects because of the difficulty to define the level of significant antioxidant protective effect. Therefore, it might be one important reason that we did not observe any significant association between antioxidant intake and oxidative stress (Table 3), even with no contribution for the oxidative stress levels when
conducting the WQS model including the antioxidant intake levels (data not shown).

On the other hand, previous research has shown that foods with primarily higher antioxidant intake including fruits and vegetables (particularly strawberries, citrus, kiwi), soybeans, nuts, spices, herbs, yam, mackerel, and so on [35, 49]. Among them, soybeans, nuts, strawberries, and kiwi are the more common food in Taiwan. However, our study subjects ingested the antioxidant mainly from the berries, sugar tea, dark chocolate, guava, and sugarless tea, and this kind of dietary pattern might result in the lower antioxidant intake to against the oxidative stress in the body. In the present study, the average antioxidant intake were 43.18 and 34.20 mmol/per week for the high and low exposure groups, respectively. Previously, some studies provided the evidence for the Taiwanese with lower antioxidant when compared to other countries. One of the study found that the Vitamin E status in all age were relatively low in Taiwan when compared to Hungary, Eastern France, and Italy. Another study showed that the serum α-tocopherol (one of the Vitamin E) status in Taiwanese children (less than 6 years) was lower than that in France [50]. Meanwhile, the cooking methods might affected the antioxidant properties of food. Previous study showed that water-cooking treatments is a better way to preserved the antioxidant for vegetables when compared to the steaming and frying [51]. In addition, using the microwave to cook vegetables was reported the worse method to retain antioxidants compared to boiling and frying [52]. Unfortunately, these cooking methods described above are common in Taiwanese. For the reason that, how to change the dietary habits and cooking way to increase antioxidant intake is an important issue in the future, especially for children living in areas more susceptible to environmental pollution.

This study provided the first look at young children’s metal exposure associated with the oxidative stress near the petrochemical industry in Central Taiwan as well as their
antioxidant dietary patterns. Traditional studies of exposure assessment usually conducted in combination with a greater view of the paths of exposure and possible adverse effects. Nevertheless, the present study based on the framework of simultaneous assessment of both positive and negative aspects of health effect to provide further insight into the exposure risk factors in this population of children. However, there were several limitations existed in the current study. First, this cross-sectional study might be difficult to represent the long-term exposure situation to observe the health effects for these young children. Nevertheless, the petrochemical complex in our study has started to operate from 1999 for more than 20 years, and it could be considered that the emitted pollutants from the complex were continuous and significant. In addition, the rural socioeconomic status of this study area resulted in most of the kindergarten children who grew up locally. Therefore, it can be expected that these young children were affected by a long-term exposure, and it should not have the directional bias on the exposure results in the present study. Second, this study did not consider other sources of potential oxidative stress besides heavy metal exposure. The polycyclic aromatic hydrocarbons and volatile organic compounds emitted from the petrochemical industry were considered to cause the oxidative stress [53]. The heavy metal pollutants were representative of those pollutants from the petrochemical industry in the present study, but it is necessary to clarify the oxidative effects of other exposure source on the young children in advanced studies. Third, it might be considered that the dietary of young children is changing and unstable. However, the children in our study are mostly over 4 years old that their chewing and swallowing ability is relatively developed and can have a diet similar to that of adults. [54]. Meanwhile, these children were all in kindergartens where have provide regular meals to the students, so the dietary pattern of the children in this study is relatively stable for a long time. Fourth, this study did not consider the other source of
antioxidant except for food, and the nutritional supplements are one main source of antioxidant for human beings. Usually, the young children would not take those supplements unless they are with some health condition such as specific disease or malnutrition. Therefore, it would be reliable to estimate the mainly antioxidant intake from the dietary of young children in the present study.

5. Conclusion

The World Health Organization estimated that every year there are 4.2 million premature deaths were attributable to outdoor air pollution (World Health Organization 2019). The results of the current study added evidence to environmental health risks presented in previous studies in the study areas, especially for young children. In this study, distance to the industrial exposure site was significantly associated with urinary heavy metal concentrations, and heavy metal concentrations were significantly associated with oxidative stress as measured with 8-OHdG and 4-HNE-MA. Oxidative stress is a harmful mechanism that can cause mortality and morbidity in the form of a myriad of diseases. The results of this study found clear associations between heavy metal exposure and oxidative stress in this area in Central Taiwan.

Previous studies have indicated that dietary antioxidant intake may provide a protective effect against harmful pollutants. However, the results in the present study cannot provide strong evidence to support this theory. It is possible that the amount of dietary antioxidants was not large enough to offset the harmful effects of industrial pollutants in this population. Additionally, low dietary variance in antioxidant intake of the young children in this population may also account for the null association. Further studies are needed to determine other factors that may be affecting children's oxidative stress in this area, and should investigate ways to limit exposure outcomes for children, either through stronger dietary precautionary measures, stricter regulation of industry, or both. Given
the different roles protective factors play in different oxidative stress outcome measurements, investigating the interplay of industrial pollution, antioxidant intake, and other potential beneficial effects should be explored in advanced.

Declarations

Ethics approval and consent to participate: This study had been approved to conduct human experiments, and the subjects all informed consent. The certified document was attached below.

Consent for publication: Not applicable.

Availability of data and materials: The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests: The authors declare they have no actual or potential competing financial interests.

Funding: This study was funded with a grant obtained from the Public Health Bureau, Yunlin County, Taiwan (YLPHB-10512). And, it also funded by the Ministry of Science and Technology (grant number MOST 107-3017-F-002-003, MOST 108-3017-F-002-001) and Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan (grant number NTU-107L9003 and NTU-108L9003).

Authors' contributions: BK collected the questionnaire, detected the urinary metal levels, analyzed the study results, and wrote the main part of whole manuscript. TH was the key person to assist and revise the whole process for this study. CH contacted the kindergartens and recruited the study subjects. Tina HT designed the dietary questionnaire and estimated the antioxidant intake levels. YH assisted the writing and revision of the manuscript. CC was the PI for this study project, and managed the whole process of this study.
Acknowledgments: We thank the Office for Nutrition and Health Survey (NAHSIT) in Taiwan, the Institute of Biomedical Sciences, Academia Sinica, for providing the dietary and nutritional data of the NAHSIT, which we used to identify antioxidant-containing foods commonly consumed by Taiwanese children.

References

1. Valavanidis, A., Fiotakis, K., Vlachogianni, T., 2008. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 26(4), 339-62. http://dx.doi.org/10.1080/10590500802494538.

2. Lodovici, M., Bigagli, E., 2011. Oxidative Stress and Air Pollution Exposure. Toxicol. 2011. http://dx.doi.org/10.1155/2011/487074

3. Avila Júnior, S., Possamai, F.P., Budni, P., Backes, P., Parisotto, E.B., Rizelio, V.M., Filho, D.W., 2009. Occupational airborne contamination in south Brazil: 1. Oxidative stress detected in the blood of coal miners. 18(8), 1150-1157. https://doi.org/10.1007/s10646-009-0364-8

4. Kim, J.Y., Mukherjee, S., Ngo, L., Christiani, D.C., 2004. Urinary 8-Hydroxy-2´-Deoxyguanosine as a Biomarker of Oxidative DNA Damage in Workers Exposed to Fine Particulates. Health Perspect. 112(6), 666-671. https://doi.org/10.1289/ehp.6827

5. Yoon, H., Lee, K., Lee, K., Kim, S., Choi, K., Kang, D., 2012. Polycyclic aromatic hydrocarbon (1-OHPG and 2-naphthol) and oxidative stress (malondialdehyde) biomarkers in urine among Korean adults and children. J. Hyg. Environ. Health. 215(4), 458-464. https://doi.org/10.1016/j.ijjheh.2012.02.007

6. Chen, C.S., Yuan, T.H., Shie, R.H., Wu, K.Y., Chan, C.C., 2017. Linking sources to early effects by profiling urine metabolome of residents living near oil refineries and
coal-fired power plants. Int. 102, 87-96. https://doi.org/10.1016/j.envint.2017.02.003

7. Chiang, T.Y., Yuan, T.H., Shie, R.H., Chen, C.F., Chan, C.C., 2016. Increased incidence of allergic rhinitis, bronchitis and asthma, in children living near a petrochemical complex with SO$_2$ Environ. Int. 96, 1-7. https://doi.org/10.1016/j.envint.2016.08.009

8. Yuan, T.H., Chung, M.K., Lin, C.Y, Chen, S.T., Wu, K.Y., Chan, C.C., 2016a. Metabolic profiling of residents in the vicinity of a petrochemical complex. Total Environ. 548, 260-269. https://doi.org/10.1016/j.scitotenv.2016.01.033

9. Fukuda, M., Yamauchi, H., Yamamoto, H., Aminaka, M., Murakami, H., Kamiyama, N., Koitabashi, Y., 2008. The evaluation of oxidative DNA damage in children with brain damage using 8-hydroxydeoxyguanosine levels. Brain Dev. 30(2), 131-136. https://doi.org/10.1016/j.braindev.2007.07.005

10. Kawaguchi, C., Morinaga, M., Kubota, M., Saito, H., Tomiwa, K., Uchiike, N., 2016. Increased oxidative stress in patients with severe disability: Association with nutrition. Int. 58(11), 1183-1187. https://doi.org/10.1111/ped.12977.

11. Moreno-Macias, H., Romieu, I., 2014. Effects of antioxidant supplements and nutrients on patients with asthma and allergies. Allergy Clin. Immunol. 133(5), 1237-1244. https://doi.org/10.1016/j.jaci.2014.03.020

12. Noutsios, G., Floros, J., 2014. Childhood asthma: Causes, risks, and protective factors; a role of innate immunity. Swiss Med. Wkly. 144, w
https://doi.org/10.4414/smw.2014.14036.

13. Verlaet, A.A.J., Maasakkers, C.M., Hermans, N., Savelkoul, H.F.J., Rationale for Dietary Antioxidant Treatment of ADHD. Nutrients. 10(4), 405.
https://doi.org/10.3390/nu10040405

14. Wirix, A.J., Kaspers, P.J., Nauta, J., Chinapaw, M.J., Holthe, J.E., 2015. Pathophysiology of hypertension in obese children: A systematic review. Rev. 16(10), 831-842.
15. Lee, J.W., Davis, J.M., 2011. Future applications of antioxidants in premature infants. Opin. Pediatr. 23(2), 161-166. https://doi.org/10.1097/MOP.0b013e3283423e51

16. Wright, R.O., Environment, susceptibility windows, development, and child health. Curr. Opin. Pediatr. 29(2), 211-217. https://doi.org/10.1097/MOP.0000000000000465

17. Tamburlini, G, Ehrenstein, O.V., Bertollini, R., 2002. Children’s special vulnerability to environmental health hazards: an overview. In: Children’s health and environment: A review of evidence. WHO Regional Office for Europe and European Environment Agency.

18. Leith Sly, J., Carpenter, D.O., 2012. Special vulnerability of children to environmental exposures. Environ. Health. 27(4), 151-157. https://doi.org/10.1515/reveh-2012-0024

19. Sughis, M., Nawrot, T.S., Haufroid, V., Nemery, B., 2012. Adverse Health Effects of Child Labor: High Exposure to Chromium and Oxidative DNA Damage in Children Manufacturing Surgical Instruments. Health Perspect. 120(10), 1469-1474. https://doi.org/10.1289/ehp.1104678

20. Wong, R.H., Kuo, C.Y., Hsu, M.L., Wang, T.Y., Chang, P.I., Wu, T.H., Huang, S., 2005. Increased Levels of 8-Hydroxy-2′-Deoxyguanosine Attributable to Carcinogenic Metal Exposure among Schoolchildren. Health Perspect. 113(10), 1386-1390. https://doi.org/10.1289/ehp.7401

21. Xu, X., Liao, W., Lin, Y., Dai, Y., Shi, Z., Huo, X., 2017. Blood concentrations of lead, cadmium, mercury and their association with biomarkers of DNA oxidative damage in preschool children living in an e-waste recycling area. Geochem. Health. 40(4), 1481-1494. https://doi.org/10.1007/s10653-017-9997-3

22. Al-Saleh, I., Al-Rouqi, R., Elkhatib, R., Abduljabbar, M., Al-Rajudi, T., Risk assessment of environmental exposure to heavy metals in mothers and their respective infants.
Int. J. Hyg. Environ. Health. 220(8), 1252-1278.
https://doi.org/10.1016/j.ijheh.2017.07.010

23. Pizzino, G., Bitto, A., Interdonato, M., Galfo, F., Irrera, N., Mecchio, A., Altavilla, D., 2014. Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy). Redox Biol. 2, 686-693. https://doi.org/10.1016/j.redox.2014.05.003

24. Chung, H., Park, J.Y., Cho, Y., Shin, M., 2013. Contribution of dietary patterns to blood heavy metal concentrations in Korean adults: Findings from the Fifth Korea National Health and Nutrition Examination Survey 2010. Food Chem. Toxicol. 62, 645-652. https://doi.org/10.1016/j.fct.2013.09.034

25. Mori, T., Yoshinaga, J., Suzuki, K., Mizoi, M., Adachi, S., Tao, H., Kasai, H., 2011. Exposure to polycyclic aromatic hydrocarbons, arsenic and environmental tobacco smoke, nutrient intake, and oxidative stress in Japanese preschool children. Total Environ. 409(15), 2881-2887. https://doi.org/10.1016/j.scitotenv.2011.04.028

26. Ding, G., Ji, R., Bao, Y., 2015. Risk and protective factors for the development of childhood asthma. Respir. Rev. 16(2), 133-139. http://dx.doi.org/10.1016/j.prrv.2014.07.004

27. Gref, A., Rautiainen, S., Gruzieva, O., Håkansson, N., Kull, I., Pershagen, G., Wickman, M., Wolk, A., Melén, E., Bergström, A., 2017. Dietary total antioxidant capacity in early school age and subsequent allergic disease. Exp. Allergy. 47(6), 751-759. https://doi.org/10.1111/cea.12911

28. FPC, 2019. Formosa Petrochemical Corporation. No. 6 Naphtha Cracking Project—Magnitude and facilities. http://www.fpcc.com.tw/en/magnitude.html (accessed May 5, 2019).

29. Shie, R.H., Yuan, T.H., Chan, C.C., 2013. Using pollution roses to assess sulfur dioxide
impacts in a township downwind of a petrochemical complex. Air. Waste Manag. Assoc. 63(6), 702-711. https://doi.org/10.1080/10962247.2013.780001

30. Yuan, T.H., Shie, R.H., Chin, Y.Y., Chan, C.C., 2015. Assessment of the levels of urinary 1-hydroxypyrene and air polycyclic aromatic hydrocarbon in PM 2.5 for adult exposure to the petrochemical complex emissions. Res. 136, 219-226. https://doi.org/10.1016/j.envres.2014.10.007

31. Chan, C.C., Lee, Y.L., Hung, S.H., 2012. Air pollution and health among residents near a petrochemical complex in Yunlin County: a cohort study (2011-2012). Environmental Protection Bureau of Yunlin County, Taiwan. (In Chinese version)

32. Yuan, T.H., Chio, C.P., Shie, R.H., Pien, W.H., Chan C.C., 2016b. The distance-to-source trend in vanadium and arsenic exposures for residents living near a petrochemical complex. J. Expo. Sci. Environ. Epidemiol. 26(3), 270-276. https://doi.org/10.1038/jes.2015.2.

33. Chen, C.H., Kuo, T.C., Kuo, H.C., Tseng, Y.J., Kuo, C.H., Yuan, T.H., Chan C.C., 2019. Metabolomics of Children and Adolescents Exposed to Industrial Carcinogenic Pollutants. Environ. Sci. Technol. 53(9), 5454-5465. https://doi.org/10.1021/acs.est.9b00392

34. Wu, C., Chen, S.T., Peng, K.H., Cheng, T.J., Wu, K.Y., 2016. Concurrent quantification of multiple biomarkers indicative of oxidative stress status using liquid chromatography-tandem mass spectrometry. Biochem. 512, 26-35. https://doi.org/10.1016/j.ab.2016.07.030

35. Carlsen, M.H., Halvorsen, B.L., Holte, K., Bøhn, S.K., Dragland, S., Sampson, L., Blomhoff, R., 2010. The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. J. 9(3). https://doi.org/10.1186/1475-2891-9-3
36. Kobayashi, S., Murakami, K., Sasaki, S., Uenishi, K., Yamasaki, M., Hayabuchi, H., Sugiyamama, Y., 2012. Dietary total antioxidant capacity from different assays in relation to serum C-reactive protein among young Japanese women. J. 11(91). https://doi.org/10.1186/1475-2891-11-91

37. Bosco, M., Varrica, D., Dongarra, G., 2005. Case study: inorganic pollutants associated with particulate matter from an area near a petrochemical plant. Environ. Res. 99(1), 18-30. https://doi.org/10.1016/j.envres.2004.09.011

38. Nadal, M., Schuhmacher, M., Domingo, J.L., 2007. Levels of metals, PCBs, PCNs and PAHs in soils of a highly industrialized chemical/petrochemical area: temporal trend. Chemosphere. 66(2), 267-276. https://doi.org/10.1016/j.chemosphere.2006.05.020

39. Gaetke, L.M., Chow-Johnson, H.S., Chow, C.K., 2014. Copper: toxicological relevance and mechanisms. Arch. of Toxicol. 88(11), 1929-1938. https://doi.org/10.1007/s00204-014-1355-y

40. Georgopoulos, P.G., Roy, A., Yonone-Lioy, M.J., Opiekun,R.E., Lioy, P.J., 2001. Environmental copper: its dynamics and human exposure issues. J. Toxicol. Environ. Health B. Crit. Rev. 4(4), 341-394. https://doi.org/10.1080/109374001753146207

41. Valavanidis, A., Vlachogianni, T., Fiotakis, C., 2009. 8-hydroxy-2′-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health C Environ Carcinog. Ecotoxicol. Rev. 27(2), 120-139. https://doi.org/10.1080/10590500902885684.

42. Chauhan, A., Chauhan, V., Brown, T., 2009. Autism: oxidative stress, inflammation, and immune abnormalities, first ed. CRC Press, S.

43. Bae, S., Pan, C., Kim, S.Y., Park, K., Kim, Y.H., Kim, H., Hong, Y.C., 2009. Exposures to particulate matter and polycyclic aromatic hydrocarbons and oxidative stress in school-children. Environ. Health Perspect. 118(4), 579-583.
44. Farina, M., Avila, S., da Rocha, J.B.T., Aschner, M., 2013. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem. Int. 62(5), 575-594. https://doi.org/10.1016/j.neuint.2012.12.006

45. Zheng, G., Pemberton, R., Li, P., 2016. Bioindicating potential of strontium contamination with Spanish moss Tillandsia usneoides. J. Environ. Radioact. 152, 23-27. https://doi.org/10.1016/j.jenvrad.2015.11.010

46. Ausman, L.M., 1999. Criteria and recommendations for vitamin C intake. Nutr. Rev. 57(7), 222-229. https://doi.org/10.1111/j.1753-4887.1999.tb06946.x

47. Carr, A.C., Frei, B., 199 Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am. J. Clin. Nutr. 69(6), 1086-1107. https://doi.org/10.1093/ajcn/69.6.1086

48. Rosenlund, H., Magnusson, J., Kull, I., Håkansson, N., Wolk, A., Pershagen, G., Wickman, M., Bergström, A., 2012. Antioxidant intake and allergic disease in children. Clin. Exp. Allergy. 42(10), 1491-1500. https://doi.org/10.1111/j.1365-2222.2012.04053.x

49. Sarmadi, B.H., Ismail, A., 2010. Antioxidative peptides from food proteins: a review. Peptides. 31(10), 1949-1956. https://doi.org/10.1016/j.peptides.2010.06.020

50. Kang, M.J., Lin, Y.C., Yeh, W.H., Pan, W.H., 2004. Vitamin E status and its dietary determinants in Taiwanese--results of the Nutrition and Health Survey in Taiwan 1993-1996. Eur. J. Nutr. 43(2), 86-92. https://doi.org/10.1007/s00394-004-0444-8

51. Miglio, C., Chiavaro, E., Visconti, A., Fogliano, V., Pellegrini, N., 2007. Effects of different cooking methods on nutritional and physicochemical characteristics of selected vegetables. J. Agric. Food Chem. 56(1), 139-47. https://doi.org/10.1021/jf072304b
52. Sultana, B., Anwar, F., Iqbal, S., 2008. Effect of different cooking methods on the antioxidant activity of some vegetables from Pakistan. Int. J. Food Sci. Tech. 43, 560-567. https://doi.org/10.1111/j.1365-2621.2006.01504.x

53. Møller, P., Folkmann, J.K., Forchhammer, L., Bräuner, E.V., Danielsen, P.H., Risom, L., Loft, S., 2008. Air pollution, oxidative damage to DNA, and carcinogenesis. Cancer Lett. 266(1), 84-97. https://doi.org/10.1016/j.canlet.2008.02.030

54. Morris, S.E., 1989. Development of oral-motor skills in the neurologically impaired child receiving non-oral feedings. Dysphagia. 3(3), 135-54. https://doi.org/10.1007/BF02407132

Figures

Figure 1

The study design and flow chart.
Figure 1

The study design and flow chart.
The associations between urinary metal levels and (A) 8-OHdG (p<0.01), (B) 4-HNE-MA (p<0.01), (C) 8-isoPF2α (p<0.01), and (D) 8-NO2Gua (p<0.01) levels based on weighted quantile sum (WQS) regression analysis.
The associations between urinary metal levels and (A) 8-OHdG (p<0.01), (B) 4-HNE-MA (p<0.01), (C) 8-isoPF2α (p<0.01), and (D) 8-NO2Gua (p<0.01) levels based on weighted quantile sum (WQS) regression analysis.