Late Reheating, Hadronic Jets and Baryogenesis

Takehiko Asaka,1 Dmitri Grigoriev,2,3 Vadim Kuzmin,2 and Mikhail Shaposhnikov1

1Institute of Theoretical Physics, Swiss Federal Institute of Technology, CH-1015 Lausanne, Switzerland
2Institute for Nuclear Research of RAS, Moscow 117312, Russia
3Mathematical Physics, Natl. Univ. of Ireland Maynooth, Maynooth, Co. Kildare, Ireland

(Dated: October 8, 2003)

PACS numbers: 98.80.Cq, 11.10.Kk, 11.10.Wx, 11.30.Fs

If inflaton couples very weakly to ordinary matter the reheating temperature of the universe can be lower than the electroweak scale. In this letter we show that the late reheating occurs in a highly non-uniform way, within narrow areas along the jets produced by ordinary particles originated from inflaton decays. Depending on inflaton mass and decay constant, the initial temperature inside the lumps of the overheated plasma may be large enough to trigger the unsuppressed sphaleron processes with baryon number non-conservation, allowing for efficient local electroweak baryogenesis.

Introduction.— The inflationary paradigm (for a review see, e.g. books [1]) happened to be very successful for understanding of the basic properties of the universe. It is assumed that the energy density of the early universe was dominated by a potential energy of a scalar field - inflaton. The accelerating expansion of the universe then leads to a solution of the horizon and flatness problems, whereas quantum fluctuations of the inflaton field result in density perturbations necessary for structure formation and seen as the temperature fluctuations of the cosmic microwave background radiation.

The exponential expansion of the universe during inflation must be eventually replaced by a radiation dominated epoch, that started at least somewhat before nucleosynthesis and lasted till about recombination. The process of transfer of the energy density of the inflaton to ordinary matter is usually called reheating, and several scenarios for how it may proceed have been proposed. Quantitatively, they can be distinguished by the value of the reheating temperature \(T_R \), below which the universe expansion is dominated by radiation. If the coupling of inflaton to the ordinary matter is sufficiently strong, the energy transfer occurs very rapidly due to the phenomenon of broad parametric resonance right after inflationary stage [2]: this leads to high reheating temperatures \(T_R \sim 10^{10} \text{ GeV} \) or so. If, on the contrary, the coupling is very weak, the exponential expansion of the universe is first replaced by a matter dominated period during which inflaton oscillates without dissipation. Then, the perturbative decays of inflaton heat the universe up to some temperature \(T_R \). In the latter case the reheating temperature can be very low, with the only reliable bound \(T_R > 1 \text{ MeV} \) coming from the successful predictions of the big bang nucleosynthesis. The small values of the reheating temperatures can naturally occur in certain supergravity models (see, e.g. [8]) where the decay rate of the inflaton is suppressed by the Planck scale.

A successful cosmological model should also explain the absence of antimatter in the universe and the baryon to entropy ratio \(n_B/s \approx 9 \cdot 10^{-11} \) [4]. The baryogenesis must occur after inflation since otherwise all created baryonic excess will be exponentially diluted.

Quite a number of different baryogenesis mechanisms exist in theories with high reheating temperatures. The explosive particle production during baryogenesis decays in the wide resonance case [5] may lead to production of GUT leptoquarks, the subsequent CP-violating and baryon number non-conserving decay of which gives rise to baryon asymmetry of the universe. The gravitational production of superheavy particles has the similar effect [6]. The thermal [7] or non-thermal [8] production of heavy Majorana neutrinos may prepare suitable initial conditions for generating the lepton asymmetry [9], which is transformed then to baryon asymmetry due to anomalous electroweak number non-conservation [10]. If the reheating temperature is greater than the electroweak scale an electroweak baryogenesis (for reviews see [11]) can take place.

The theories with high \(T_R \) may, however, be in conflict with observations because of overproduction of dangerous relics like gravitinos [12]. From this point of view the theories with small reheating temperature are more advantageous, as the production of unwanted particles is automatically suppressed. At the same time, the problem of baryon asymmetry of the universe in much more difficult if \(T_R \) is relatively small, simply because in this case the low energy baryon number nonconservation is required. Thus, none of the mechanisms related to the production of heavy leptoquarks or Majorana neutrinos is operative, and one has to rely on some variant of electroweak [13, 14] or Affleck-Dine [15] baryogenesis.

The electroweak baryogenesis, occurring in expanding and almost equilibrium plasma is highly constrained, as it requires the freezing of the sphaleron processes after the first order phase transition. This condition can be converted in the upper bound on the Higgs mass in the minimal standard model [16]. This bound cannot be satisfied with the experimental value of the top quark mass [17], so that new physics is required. In the minimal supersymmetric standard model there exist a (small) region of
the parameter-space leading to a sufficiently strong first order phase transition (see \cite{18} and references therein).

In \cite{14} it was pointed out that the maximum temperature during reheating can in fact be much larger than the temperature T_R and that the rate of the universe expansion in the region of the electroweak phase transition can be faster than it is usually assumed. This allowed the authors to relax somewhat the Higgs mass bound for the electroweak baryogenesis.

In this letter we will show that the late inflaton decays heat up the plasma in a very non-uniform way and that the local temperature along the trajectories of decay products is substantially higher than the average one. For a range of parameters the mean temperature of the plasma is small enough to shut off the sphaleron transitions whereas the temperature of the overheated regions is large enough to switch them on. Electroweak baryogenesis is then possible in these regions. The overheated regions cool down due to diffusion and expansion. This process has a highly non-equilibrium character, so no first order phase transition is required to satisfy the wash out condition and thus no bound on the Higgs mass is implied at all. Remarkably, the resulting baryon asymmetry does not depend much on many details of the process and may be consistent with the observed one for large enough CP-violation.

Local overheating.—Let $M_φ$ is the inflaton mass and $Γ_φ = f_φ M_φ$ is its width. Assuming the instantaneous decay of the inflaton at time $t_φ = 1/Γ_φ$ the reheating temperature is given by $T_R = \sqrt{f_φ M_φ M_0}$, where $M_0 = M_{Pl}/1.66g_∗^2$, M_{Pl} is the Planck mass, $g_∗ \sim 100$ is the effective number of massless degrees of freedom. The typical numbers we will be interested in are $T_R < T_W \sim 100$ GeV (here T_W is the freezing temperature of the sphaleron processes), and $M_0 > 10^{10}$ GeV, what requires rather weak decay constant $f_φ \sim 10^{-24}$, or smaller. We shall assume, for simplicity, that inflaton decays into quark-antiquark pair, though other decay channels lead essentially to the same result.

The number density of inflatons decreases with time as $n_{φ} a^3 = n_0 \exp(-Γ_φ t)$ with scale factor a. The first decays occur essentially in the vacuum, whereas at $t \sim t_φ$ inflatons are surrounded by the plasma with the temperature $T \sim T_R$. The decay products of inflaton, ultra-relativistic quarks with the energy $M_φ/2 \gg T_R$, are injected into the plasma and heat it locally. Our aim now is to understand the typical size and geometry of the overheated regions, as well as their temperature.

The dynamics of energy losses of high energy quarks and gluons in quark-gluon plasma is a complicated problem which must incorporate the Landau-Pomeranchuk-Migdal effect \cite{19} and non-abelian character of interaction of quarks and gluons. The main features of it have been understood only recently (see \cite{20} and references therein), the crucial one being that the energy loss per unit length is increasing in infinite plasma as a square root of parton energy, see eq. \cite{20} below.

The most significant part of energy losses is related to the soft gluon emission in the multiple scattering of the hard parton on the particles of the plasma. The energy spectrum I of the emitted gluons per unit length has the following approximate form for $ω_{bh} \ll ω ≤ E_0$:

$$ω d^2 I/dω dz = \frac{2}{π} α_s ω_{bh} \ln \left(\frac{ω}{ω_{bh}} \right),$$

(1)

where $ω$ and E_0 denote the gluon and parton energies, $α_s$ is QCD coupling constant, $ω_β$ is the mean free path of the gluon, and $ω_{bh}$ is the Bethe-Heitler frequency, $ω_{bh} = λ_β μ^2$. Here $μ$ is the typical screening mass which is assumed to be of the order of the Debye mass in the plasma. From \cite{11} one gets the stopping distance of the initial parton L_{tot}:

$$L_{tot} = \frac{π}{2} \frac{ω_β}{ω_0} \sqrt{E_0/ω_{bh}},$$

(2)

where $ω_{bh} \sim ω_{bh} \log (E_0/ω_{bh})$ for $E_0 \gg ω_{bh}$. The average energy of the emitted gluons is $\langle ω \rangle = ω_{bh} E_0/2$ and their number is given by $N_0 = 2 \sqrt{E_0/ω_{bh}}$.

If the emitted gluons have energies $ω \gg ω_{bh}$, they lose their energies as the parent parton does. This cascade process will terminate when the energy of the emitted gluons becomes comparable to or smaller than $ω_{bh}$. We find the energy for the n-th gluons as

$$\langle ω \rangle_n = \frac{1}{4^{n−1/2}ω_{bh}} \left(\frac{E_0}{ω_{bh}} \right)^{1/2},$$

(3)

so number N_{BH} of the cascade steps from $\langle ω \rangle_0 = E_0$ to $\langle ω \rangle_{N_{BH}} \leq ω_{bh}$ is typically $3−4$ for $E_0 \sim 10^{10}−10^{11}$ GeV.

To find the geometry and volume of the region where the emitted gluons deposit their energy we note that the radiation with the frequency $ω$ is mainly concentrated in the cone with a small angle $θ_ω$, which can be computed with the help of the results of \cite{21} and is given by

$$θ_ω \sim \frac{L_ω}{L_ω} \frac{ω_{bh}}{ω_0^2},$$

(4)

where $L_ω$ is length of the energy loss for the gluon with energy $ω$.

$$L_ω = \frac{2π}{9} \frac{ω_{bh}}{α_s} \sqrt{ω_{bh}},$$

(5)

$$ω_{bh} = ω_{bh} \ln \left(\frac{ω}{ω_{bh}} \right).$$

The transverse distance $r_ω = L_ω \theta_ω$ traveled by a gluon with the energy $ω$ is then

$$r_ω \sim \left(\frac{2π}{9α_s} \frac{ω_{bh}}{ω_0^2} \frac{ω_{bh}}{ω_0^{1/4}} \right)^{3/2} \left(\frac{ω_{bh}}{ω_0^{1/4}} \right)^{1/4} \times \left[\ln \left(\frac{ω}{ω_{bh}} \right) \right]^{−1/4},$$

(6)

(the log factor should be neglected at $ω \sim ω_{bh}$). It is seen that, although the cascade process produces gluons having various energies, the largest $r_ω$ is due to the gluons
with the lowest energy $\omega \simeq \omega_{\text{BH}}$. Thus, the overheated region has an approximate cylindrical form with the length given by eq. (24) and with the radius $r_* \simeq r_{\text{BH}}$. Its volume is $V = \pi r_*^2 L_{\text{out}}$.

Now we are at the point to estimate an effective temperature inside the cylinder in which the emitted gluons are living. By assuming the energy conservation and the rapid thermalization, we obtain that the effective temperature T_*, found from $\frac{e}{g} \frac{E_0}{T_*^4} = \frac{\lambda_g}{\omega_{\text{BH}}}$, is given by

$$T_* \simeq 5.3 \times 10^{-2} \left(\frac{100}{g_*} \right)^{1/4} \left(\frac{E_0}{\lambda_g} \right)^{1/8} \left(\frac{\omega_{\text{BH}}}{\omega_0} \right)^{1/8}. \quad (7)$$

For numerical estimates we take the non-perturbative value of the Debye screening mass found in [22]. As for the gluon mean free path, we take the value found in [23] and denoted as γ_g or simply take a gluon damping rate γ_g from [24]. They are different by roughly one order of magnitude, what allows one to get an estimate of the uncertainties in (7).

For example, when $T_R = M_Z$ and $E_0 = 10^{11}$ GeV, we find (cf. Fig. 1) that the effective temperature is $T_* \simeq 212$ GeV ($\lambda_g = 1/\gamma_g$) or $T_* \simeq 151$ GeV ($\lambda_g = \gamma_g$). Fig. 1 clearly demonstrates that the local temperature of the overheated regions can substantially exceed the freezing temperature of the sphaleron processes, provided the background cosmic temperature is relatively high, say $T_R \gtrsim 10$ GeV and the energy of the parent parton is extremely high, say $E_0 \gtrsim 10^{10}$ GeV.

Baryogenesis.—Let us assume now that the parameters of the inflaton are such that the temperature T_* is high enough: $T_* > T_{\text{sh}} \sim 100$ GeV $> T_W$. Here T_{sh} is the temperature above which the rate of the sphaleron transitions is unsuppressed and is given by (per unite time and unite volume) $\Gamma_{\text{sh}} \simeq \kappa \omega_{\text{BH}} T_*^4$, where $\kappa \approx 10 [25]$. At the same time, the reheating temperature T_R can be small enough, so that baryon number is conserved away from the overheated regions (i.e. $T_R < T_W$). This highly non-equilibrium situation is possible at any choice of parameters of the underlying electroweak theory, and, therefore, the wash out bound of [10] is not applicable.

The baryon asymmetry of the universe can be estimated as the number of sphaleron transitions which takes place inside the overheated regions and go asymmetrically due to CP-violation:

$$\frac{n_B}{s} \simeq \frac{n_{\text{parton}}}{s} \times \frac{\kappa \omega_{\text{BH}} T_*^4}{s} V \Delta t \times \delta_{\text{CP}}, \quad (8)$$

where n_{parton} is the number density of the highly energetic partons coming from the inflaton decay, Δt denotes the lasting time of the rapid shaleron processes and we have introduced δ_{CP} to represent the effective magnitude of CP-violation.

With the two-particle decays of the inflaton the number of partons is simply $n_{\text{parton}} = 2 n_\phi$, and $\frac{n_\phi}{s} \simeq \frac{3 T_r}{4 M_\phi}$ from the condition defining the reheating temperature.

Putting all factors together, we get

$$\frac{n_B}{s} \simeq 10^{-8} \frac{T_R}{T_*} \Delta t \delta_{\text{CP}}. \quad (9)$$

Quite amazingly, besides the expected CP-violating factor, the result depends just on the reheating temperature and on the sphaleron transition time. In particular, the temperature of the overheated regions has canceled out from eq. (9). What is important is that the overheated regions must be in the symmetric phase of the electroweak theory, where baryon number non-conservation is not suppressed.

The overheated regions cool down by the growth of the volume due to diffusion, and the rapid sphaleron processes terminate eventually when the temperature inside becomes T_{sh}. From the energy conservation the radius of the overheated region at T_{sh} is given by $r_* \simeq T_* / T_{\text{sh}}$ and is reached after the diffusion time $\Delta t \simeq \ell^2 / 4 D$ (we find from [26] that the diffusion coefficient $D \sim 1/\gamma_g$ ~
0.1 \lambda_g^4\), which gives \(\Delta t \simeq \frac{r^2}{4D} \left(\frac{\tau_s}{\tau_{ph}}\right)^4\). For a region of parameters \(\Delta t\) is long enough to thermalize \(W\)-bosons which are essential to the sphaleron processes.

Finally, one gets

\[
\frac{n_B}{s} \sim (1 - 10) \cdot 10^{-7} \delta_{\text{CP}},
\]

(10)

depending on the estimate of the gluon mean-free path discussed above. So, the extension of the standard model with suitable CP-violation may work.

Conclusions.—We have shown that a successful electroweak baryogenesis can take place in inflation models with low reheating temperature. Though our estimates are rather rude (even parton losses in plasma have rather large uncertainties due to the lack of exact knowledge of the kinetic coefficients), it is clear that the increase of the inflaton mass makes the temperature of the overheated regions higher, what triggers the mechanism at some critical inflaton mass.

Generally speaking, the plasma overheating by the processes discussed above will take place along the trajectories of decay products of any sufficiently heavy particles provided their decay products interact with the background plasma.

We thank D. Kharzeev and U. Wiedemann for very useful discussions on the parton energy losses in quark-gluon plasma and P. Tinyakov for helpful remarks. This work was supported by the Swiss Science Foundation grant. The work of T. Asaka was supported by the Tomalla foundation. D.G. and V.K. thank Institute of Theoretical Physics of Lausanne University, where part of this work was done, for hospitality.

[1] A. D. Linde, *Particle physics and inflationary cosmology* (Chur, Switzerland: Harwood, 1990); E. W. Kolb and M. S. Turner, *The Early universe* (Redwood City, USA: Addison-Wesley, 1990).
[2] L. Kofman, A. D. Linde and A. A. Starobinsky, Phys. Rev. Lett. 73, 3195 (1994).
[3] K. I. Izawa and T. Yanagida, Phys. Lett. B 393, 331 (1997).
[4] D. N. Spergel *et al.*, Astrophys. J. Suppl. 148, 175 (2003).
[5] E. W. Kolb, A. D. Linde and A. Riotto, Phys. Rev. Lett. 77, 4290 (1996).
[6] E. W. Kolb, A. Riotto and I. I. Tkachev, Phys. Lett. B 423, 348 (1998); V. Kuzmin and I. Tkachev, JETP Lett. 68, 271 (1998).
[7] W. Buchmuller, P. Di Bari and M. Plumacher, Nucl. Phys. B 665, 445 (2003).
[8] G. Lazarides and Q. Shafi, Phys. Lett. B 258, 305 (1991); G. F. Giudice, M. Peloso, A. Riotto and I. Tkachev, JHEP 9908, 014 (1999).
[9] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).
[10] V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 155, 36 (1985).
[11] V. A. Rubakov and M. E. Shaposhnikov, Usp. Fiz. Nauk 166, 493 (1996); M. Trodden, Rev. Mod. Phys. 71, 1463 (1999); A. Riotto and M. Trodden, Ann. Rev. Nucl. Part. Sci. 49, 35 (1999).
[12] M. Yu. Khlopov and A. D. Linde, Phys. Lett. B 138, 265 (1984); J. R. Ellis, J. E. Kim and D. V. Nanopoulos, Phys. Lett. B 145, 181 (1984); T. Moroi, H. Murayama and M. Yamaguchi, Phys. Lett. B 303, 289 (1993); A. L. Maroto and A. Mazumdar, Phys. Rev. Lett. 84, 1655 (2000); R. Kallosh, L. Kofman, A. D. Linde and A. Van Proeyen, Phys. Rev. D 61, 105030 (2000); G. F. Giudice, I. Tkachev and A. Riotto, JHEP 9908, 009 (1999).
[13] J. Garcia-Bellido, D. Yu. Grigoriev, A. Kusenko and M. E. Shaposhnikov, Phys. Rev. D 50, 123504 (1999); L. M. Krauss and M. Trodden, Phys. Rev. Lett. 85, 1502 (1999); Y. Nagatani, Phys. Rev. D 59, 041301 (1999); R. Rangarajan, S. Sengupta and A. M. Srivastava, Astropart. Phys. 17, 167 (2002).
[14] S. Davidson, M. Losada and A. Riotto, Phys. Rev. Lett. 84, 4284 (2000).
[15] I. Affleck and M. Dine, Nucl. Phys. B 249, 361 (1985).
[16] M. E. Shaposhnikov, JETP Lett. 44, 465 (1986); Nucl. Phys. B 287, 757 (1987).
[17] K. Kajantie, M. Laine, K. Rummukainen and M. E. Shaposhnikov, Phys. Rev. Lett. 77, 2887 (1996).
[18] M. Laine and K. Rummukainen, Nucl. Phys. B 535, 423 (1998).
[19] L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk Ser. Fiz. 92, 535 (1953), *ibid.* 92, 735 (1953); A. B. Migdal, Phys. Rev. 103, 1811 (1956).
[20] R. Baier, Yu. L. Dokshitzer, S. Peigne and D. Schiff, Phys. Lett. B 345, 277 (1995); R. Baier, D. Schiff and B. G. Zakharov, Ann. Rev. Nucl. Part. Sci. 50, 37 (2000); A. Kovner and U. A. Wiedemann, hep-ph/0304151.
[21] R. Baier, Yu. L. Dokshitzer, A. H. Mueller and D. Schiff, Phys. Rev. C 64, 057902 (2001); Yu. L. Dokshitzer and D. E. Kharzeev, Phys. Lett. B 519, 199 (2001).
[22] K. Kajantie *et al.*, Phys. Rev. Lett. 79, 3130 (1997).
[23] X. N. Wang, M. Gyulassy and M. Plumer, Phys. Rev. D 51, 3436 (1995).
[24] E. Braaten and R. D. Pisarski, Phys. Rev. D 42, 2156 (1990).
[25] G. D. Moore, Phys. Rev. D 62, 085011 (2000).
[26] P. Arnold, G. D. Moore and L. G. Yaffe, JHEP 0011, 001 (2000).