Broad-band Spectroscopy of the Ongoing Large Eruption of the Luminous Blue Variable R71*,**

A. Mehner1, D. Baade2, T. Rivinius1, D. J. Lennon3, C. Martayan1, O. Stahl4, and S. Štefl5

1 ESO – European Organisation for Astronomical Research in the Southern Hemisphere, Alonso de Cordova 3107, Vitacura, Santiago de Chile, Chile
2 ESO – European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Straße 2, 85748 Garching, Germany
3 ESAC – European Space Astronomy Centre, Camino bajo del Castillo, Urbanizacion Villafranca del Castillo, Villanueva de la Cañada, 28692 Madrid, Spain
4 Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, 69117 Heidelberg, Germany
5 ESO/ALMA – The European Organisation for Astronomical Research in the Southern Hemisphere/The Atacama Large Millimeter/Submillimeter Array, Alonso de Cordova 3107, Vitacura, Santiago de Chile, Chile

Preprint online version: February 6, 2014

ABSTRACT

Aims. The Luminous Blue Variable (LBV) R71 is currently undergoing an eruption, which differs photometrically and spectroscopically from its last outburst in the 1970s. Valuable information on the physics of LBV eruptions can be gained by analyzing the spectral evolution during this eruption and by comparing R71’s present appearance to its previous outburst and its quiescent state.

Methods. An ongoing monitoring program with VLT/X-shooter will secure key spectral data ranging from visual to near-infrared wavelengths. Here we present the first spectra obtained in 2012 and compare them to archival VLT/UVES and MPG/ESO-2.2m/FEROS spectra from 2002 to 2011. The discussed data include pre-eruption spectra in 2002 and 2005, a spectrum of the transitionary phase between quiescent and eruptive state in 2007, and spectra of the eruption in 2011–2012. Information on R71’s 1970s outburst is taken from the literature.

Results. The 2011–2012 spectra are dominated by strong neutral and singly ionized metal absorption lines likely formed in a large “pseudo-photosphere.” We find an unusually low apparent temperature of R71 of only 6 650 K; the star resembles a late F supergiant. R71’s visual lightcurve had a maximum in 2012 with \(m_V \) \(\sim 8.7 \) mag. Given the uncertainty in the extinction towards R71, this corresponds to a bolometric luminosity of \(M_{\text{bol,2012}} \sim -9.8 \) mag to \(-10.3 \) mag. R71’s 2011–2012 spectra do not show H\(\alpha \) and Fe II P Cyg profiles, which were present during its last outburst in the 1970s and which are normally observed during LBV outbursts. Low-excitation forbidden emission lines and Fe I P Cyg-like profiles from a slowly expanding nebula became apparent in late 2012. These lines originate likely in the rarefied region above the pseudo-photosphere up to 13 AU from the star.

Conclusions. The rise in R71’s visual magnitude and the low apparent temperature of its pseudo-photosphere during the current eruption are unprecedented for this star. R71 most likely increased its bolometric luminosity by \(\Delta M_{\text{bol}} \sim 0.4–1.3 \) mag compared to its quiescent state. The very low temperature of its pseudo-photosphere implies a very high-mass loss rate on the order of \(\dot{M}_{\text{bol,2012}} \sim 5 \times 10^{-7} \ M_{\odot} \ \text{yr}^{-1} \) compared to \(M_{\text{quiescence}} \sim 3 \times 10^{-6} \ M_{\odot} \ \text{yr}^{-1} \). The apparent radius increased by a factor of 5 to about 500 R\(\odot \). No fast-moving material indicative of an explosion is observed. The changes in R71’s photometry and spectrum are thus likely consequences of a tremendously increased wind density, which led to the formation of a pseudo-photosphere.

Key words. Stars: variables: S Doradus – Stars: winds, outflows – Stars: mass-loss – Stars: individual: R71

1. Introduction

The LBV R71 (= HDE 269006) in the Large Magellanic Cloud (LMC) is currently undergoing an eruption that started in 2005 (Gamen et al. 2009). In 2012 the star had reached unprecedented visual brightness, accompanied by remarkable variations in its optical spectrum (Gamen et al. 2012). R71’s current eruption is characterized by more extreme parameters than its outburst in the 1970s and may provide us with important insights into the LBV phenomenon.

** The work was co-funded under the Marie Curie Actions of the European Commission (FP7-COFUND).

* Based on observations collected at ESO’s Very Large Telescope under Program-ID: 69.D-0390(D) and 289.D-5040(A) and at the MPG/ESO 2.2-m Telescope under Program-ID: 076.D-0609(A), 078.D-0790(B), 086.D-0917(A), and 087.D-0946(A).

** This work is co-funded under the Marie Curie Actions of the European Commission (FP7-COFUND).
vents stars above 40–50 M☉, no supergiants are found (Humphreys & Davidson 1979; 1984). The commonly accepted idea is that very high-mass loss prevents stars above 40–50 M☉, from becoming red supergiants (RSGs) but instead drives them towards higher temperatures. LBVs are located in the region of concern in the HR-diagram and their instability leads to high-mass loss episodes. The realization that winds of O and Wolf-Rayet (WR) stars are clumpy (Fullerton et al. 2006, Puls et al. 2008) has reduced their inferred mass loss rates by a factor of ~10. This further increased the interest in the LBV phase, since high-mass loss episodes may be required for massive stars to evolve directly to the WR stage (Smith & Owocki 2006).

LBVs are generally considered to be stars in transition to the WR stage (Maeder 1983, Humphreys & Davidson 1994, Langer et al. 1994), but observations of LBV-like eruptions immediately prior to supernova (SN) explosions and also recent stellar evolution modeling may lead to a revision of this interpretation. For several exceedingly luminous SNe it has been suggested that shock interaction with dense and opaque circumstellar material could account for the excess luminosity (Smith et al. 2007, 2008). The progenitor stars likely expelled extensive circumstellar ejecta during LBV outbursts or giant eruptions. Quataert & Shu (2012) proposed an alternative explanation for large stellar mass-loss rates just prior to core collapse. During core Ne and O fusion in massive stars the fusion luminosity exceeds the star’s Eddington luminosity, which drives convection and in turn can excite internal gravity waves. The gravity waves convert into sound waves as they propagate towards the stellar surface and the subsequent dissipation of the sound waves can unbind several solar masses of the stellar envelope.

In a few cases LBV-like eruptions have been observed prior to a SN explosion: SN2006jc (Foley et al. 2007, Pastorello et al. 2007), SN2005gl (Gal-Yam et al. 2007, Gal-Yam & Leonard 2009), and SN2009ip (Mauerhan et al. 2012) but compare Dwarkadas (2011) who argued that only in the case of SN2005gl there is substantial evidence for an LBV progenitor. In the recent case of SN2009ip, Smith et al. (2010) identified the progenitor as a likely LBV based on its photometry but its multiple pre-SN outbursts were most likely due to pulsational star instability, outbursts associated with late stages of nuclear burning, or close periastron passages of a companion star rather than wind-driven LBV outbursts because their time scales were much shorter than for most other LBV outbursts (Mauerhan et al. 2012). Soker & Kashai (2013) proposed that SN2009ip’s pre-SN outbursts were due to binary interaction and that its final explosion was a mergerburst and not a true SN. Ofek et al. (2013) claimed that a mass loss event of the progenitor of SN2010mc is consistent with a wave-driven pulsation model and is causally connected to its SN explosion only 40 days after.

The link between SNe and LBVs had not been supported by stellar evolutionary models until Groh et al. (2013) reported on their theoretical finding that single rotating stars with initial mass in the range of 20–25 M☉ have spectra similar to LBVs before exploding as SNe. This result sets the theoretical ground for low-luminosity LBVs, such as possibly R71 (but see Section 3), to be the endpoints of stellar evolution and may also strengthen the identification of the progenitor of SN1987A as an LBV (Smith 2007).

Important clues towards an understanding of the LBV phenomenon can be gained from their variabilities that occur on different magnitude and time scales (Humphreys & Davidson 1994 and references therein). R71 is excellent for a case study. It has been well-observed over the last decades and its location in the LMC is fortunate because its distance and reddening are well constrained. During its quiescent phase R71 has a hot supergiant spectrum with strong H I, He I, Fe II, and [Fe II] lines and P Cyg profiles. It was classified as a B2.5 Ieg star with M V ~ 10.9 mag (Feast et al. 1960). It has a typical supergiant mass loss rate of ~3 × 10⁻⁵ M⊙ yr⁻¹ (Wolf et al. 1981). The star shows microvariations of ∆m V ~ 0.1 mag on time scales of 14–100 days (van Genderen et al. 1985, 1988, 1997; Lamers et al. 1998). R71 had a classical LBV outburst in 1970–1977 when it reached M V ~ 9.9 mag (Thackeray 1974, Wolf 1975, van Genderen 1979, Wolf et al. 1981, van Genderen 1982). During the outburst its mass loss rate increased by a factor of about 100 to ~5 × 10⁻⁵ M⊙ yr⁻¹ (Wolf et al. 1981) cf. Vink & de Koter (2002) who found that R71’s mass loss rate increased only by a factor of 3–5).

R71’s current eruption started in 2005. In 2012 the star had reached an unprecedented visual magnitude of M V ~ 8.7 mag and is currently the visually brightest star in the LMC (http://www.aavso.org). At the end of 2012 a decline in R71’s visual light curve commenced while the R-band light curve stayed bright (http://www.aavso.org). Gamet et al. (2009, 2012) found that the spectrum in 2008 February resembled an early-A supergiant, in 2009 August an extreme early-F hypergiant, and in 2012 that of an early-G supergiant.

In this paper we discuss R71’s current eruption in relation to its previous outburst in the 1970s and to its quiescent state. Because of the rarity of LBV outbursts and their potential importance in massive star evolution this large-amplitude event calls for special attention. In Section 2 we describe the observations. In Section 3 we analyze the changes of selected spectral features in detail. In Section 4 we discuss the results and consider R71’s classification as an underluminous or classical LBV. In Section 5 we summarize our conclusions.

2. Observations and Data Analysis

In 2012 August, September, and November we obtained the first X-shooter spectra of R71 of a long-term monitoring program at the Very Large Telescope (VLT). X-shooter is a medium-resolution echelle spectrograph that simultaneously observes with 3 arms covering the wavelength region from 3000–24000 Å (Vernet et al. 2011). Spectra were obtained with the narrowest available slits of 0.5” in the UVB arm, 0.4” in the VIS arm, and 0.4” in the NIR arm yielding spectral resolving powers of R ~ 10 000–18 000. In addition, spectra were obtained with
Table 1. Journal of observations.

Date (days)	MJD	Instrument	Wavelength Range (Å)	Total Exposure Time (s)
2002-07-23	52478.4	UVES	3260–4450	360
2002-07-23	52478.4	UVES	4580–6680	3×110
2002-08-03	52489.4	UVES	3260–4450	360
2002-08-12	52498.4	UVES	4580–6680	3×110
2002-08-12	52498.4	UVES	3260–4450	360
2002-09-04	52521.4	UVES	4580–6680	3×110
2002-09-10	52527.4	UVES	3260–4450	360
2002-09-10	52527.4	UVES	4580–6680	3×110
2002-09-18	52535.3	UVES	3260–4450	360
2002-09-18	52535.3	UVES	4580–6680	3×110
2002-09-22	52539.3	UVES	3260–4450	360
2002-09-30	52547.4	UVES	3260–4450	3×110
2002-10-06	52553.4	UVES	4580–6680	3×110
2002-10-06	52553.4	UVES	3260–4450	360
2005-12-12	53716.2	FEROS	3500–9200	2×450
2007-02-22	54153.2	FEROS	3500–9200	3×500
2011-03-20	55641.0	FEROS	3500–9200	1800
2011-05-15	55697.0	FEROS	3500–9200	1800
2012-08-26	56165.3	X-shooter	10240–24800	3×60", 2×10^b
2012-08-26	56165.3	X-shooter	3000–5595	3×120", 2×20^b
2012-08-26	56165.3	X-shooter	5595–10240	3×120", 2×20^b
2012-09-04	56174.3	X-shooter	10240–24800	3×60", 2×10^b
2012-09-04	56174.3	X-shooter	3000–5595	3×120", 2×20^b
2012-09-04	56174.3	X-shooter	5595–10240	3×120", 2×20^b
2012-11-01	56232.2	X-shooter	10240–24800	3×60", 2×10^b
2012-11-01	56232.2	X-shooter	3000–5595	3×120", 2×20^b
2012-11-01	56232.2	X-shooter	5595–10240	3×120", 2×20^b

Notes. (a) Slit width: 0′′5/0′′4/0′′4 for the UVB/VIS/NIR arms. (b) Slit width: 5″/5″/5″ for the UVB/VIS/NIR arms.

Fig. 1. Spectral variations between R71’s quiescent state in 2002 July and its eruptive state in 2012 November. The 2002 UVES spectrum shows strong [Fe II] emission and Fe II P Cyg profiles (e.g., at 4924 Å). Hβ has a P Cyg profile, while higher Balmer lines appear only in absorption. The 2012 X-shooter spectrum is dominated by strong metal absorption lines. (The continuum is normalized to unity. The wavelength region 4500–4750 Å is not displayed because of a gap in wavelength between the UVES blue and red settings.)
the 5" slits in all 3 arms to achieve an absolute flux calibration but also to investigate the spectral energy distribution.

We retrieved archival spectra of R71 obtained with VLT/UVES in 2002 and with MPG/ESO-2.2m/FEROS in 2005, 2007, and 2011. The UVES spectra in 2002 were obtained during R71’s quiescent state. They cover the wavelength region from 3000–6800 Å with spectral resolving power of \(R \sim 40,000 \). The FEROS spectra cover the wavelength region from 3500–9200 Å with spectral resolving power of \(R \sim 40,000 \) and were obtained throughout the current outburst starting at its onset in 2005.

A journal of observations is listed in Table 1. Each data set was reduced with the corresponding ESO pipeline (X-shooter pipeline version 1.5.0, UVES pipeline version 5.0.17, FEROS pipeline version 1.60). The spectra were corrected for the instrument response and atmospheric extinction but not for interstellar extinction and telluric lines.

We used the 2002 UVES spectra to determine R71’s systemic velocity. During the quiescent state the permitted lines show P Cyg profiles and we therefore used the [Fe II] emission lines at \(\lambda \lambda 4227, 4414, 4416, 4452, 4458, 4489, 4728, 4890 \) Å, which originate in the outer stellar wind. We found \(v_{\text{sys}} = 192 \pm 3 \) km s\(^{-1}\), in good agreement with the literature values of \(v_{\text{sys}} = 195 \) km s\(^{-1}\) [Thackeray 1974] and \(v_{\text{sys}} = 193 \) km s\(^{-1}\) [Wolf et al. 1981], which were also determined from [Fe II] lines. All radial velocities stated below are relative to the systemic velocity.

3. Results
The 2012 X-shooter spectra confirm the dramatic spectral changes reported in Gamen et al. (2012). However, the peak visual magnitude appears to have been lower (see http://www.aavso.org) as stated by Gamen et al. and we do not confirm that R71 currently resembles an early G-supergiant. Figure 1 compares a UVES spectrum obtained in 2002 July with an X-shooter spectrum obtained in 2012 November. Most emission lines have disappeared and the spectrum is dominated by strong neutral and singly ionized metal absorption lines (e.g., Fe I, Fe II, Si I, Si II, S I, N I, and O I) indicative of a cold dense pseudo-photosphere, which develops during an LBV outburst (Leitherer et al. 1985, Appenzeller 1986, Davidson 1987).

We analyzed several spectral features between 2002–2012. The UVES spectra in 2002 were obtained during the maximum of a microvariation (\(m_v \sim 10.7 \) mag compared to \(m_v \sim 10.9 \) mag in quiescence, see Figure 1 in Szczygiel et al. 2010). Small variations in the line profiles occur during 2002 but the spectra nevertheless closely resemble R71’s appearance in quiescent phase. At the time of the 2005 FEROS spectrum was obtained, the current eruption had already commenced (\(m_v \sim 10.7 \) mag). The 2002 July and 2005 December spectra show no major differences. The 2007 FEROS spectrum appears to be a snapshot of the transitional phase between the quiescent and the eruptive state with \(m_v \sim 10.3 \) mag. The 2011 FEROS and 2012 X-shooter spectra show R71 in eruption when the visual magnitude reached up to \(m_v \sim 8.7 \) mag [http://www.aavso.org cf. Gamen et al. 2012 who observed a maximum brightness of \(m_v \sim 8.3 \) mag].

Figure 2 shows a time series of H\(\alpha \) and H\(\beta \) from 2002–2012. H\(\alpha \) changed from a P Cyg profile with broad emission wings extending up to \(v_{\text{em}} \sim \pm 850 \) km s\(^{-1}\) in 2002–2005 to a prominent double-peaked symmetric profile in 2011/2012. The maximum depth of the P Cyg absorption in 2002 July is at \(v_{\text{abs}} \sim 118 \pm 12 \) km s\(^{-1}\) and the blue edge is at \(v_{\text{edge}} \sim 186 \pm 5 \) km s\(^{-1}\). We use the blue edge of the H\(\alpha \) P Cyg absorption as a proxy for the terminal velocity but since the absorption is not well-defined and filled in with extra emission this measurement gives only a lower limit. The profile shows two additional absorption features at \(v_{\text{abs,1}} \sim 37 \pm 2 \) km s\(^{-1}\) and at \(v_{\text{abs,2}} \sim 2 \pm 0 \) km s\(^{-1}\). The former may be due to an expanding shell, while the latter originates most likely from the photosphere. In spectra obtained between 2002 August and October we find \(v_{\text{edge}} \sim 131 \pm 20 \) km s\(^{-1}\). In 2007 extra emission compared to the continuum is observed. The P Cyg absorption has disappeared as has the absorption component at \(v_{\text{abs,1}} \sim 37 \) km s\(^{-1}\). The weak absorption component at system velocity strengthened, most likely due to the formation of a cooler pseudo-photosphere. In 2011/2012 this absorption component dominates the H\(\alpha \) profile. It has a full width at half maximum (FWHM) of \(44 \pm 1 \) km s\(^{-1}\). There was no indication of this absorption component during the previous outburst but this absorption feature was first observed in the 1990s. Weak broad H\(\alpha \) emission is still present and a weak absorption component can be observed with a blue edge at \(v_{\text{edge}} \sim 199 \pm 9 \) km s\(^{-1}\).

We found comparable values for the blue edge of the H\(\alpha \) absorption during quiescence and eruption. However, because the H\(\alpha \) absorption depends on the density and ionization structure of the wind, and the star is currently hidden beneath a pseudo-photosphere, we cannot state for certain whether the wind velocity stayed unchanged during the current outburst. Our values of \(v_{\text{edge}} \sim 131 \) km s\(^{-1}\) to \(199 \) km s\(^{-1}\) are comparable to the value \(v_{\text{edge}} \sim 158 \pm 5 \) km s\(^{-1}\) in 1984 found by Stahl & Wolf (1986). Wolf et al. (1981) found a maximum outflow velocity of \(\sim 127 \) km s\(^{-1}\) in UV Fe II lines.

H\(\beta \) behaves similarly to H\(\alpha \) but does not show prominent line emission in 2011/2012. Higher Balmer lines are always in absorption. Paschen lines and Bry, which were likely in emission during quiescent state, are in absorption in 2012. The absence of hydrogen emission (apart from H\(\alpha \) emission) indicates that R71’s pseudo-photosphere is much cooler and denser during the current eruption than during its 1970s outburst when H\(\alpha \) to H\(\delta \) showed strong P Cyg profiles (Wolf et al. 1981).

Figure 3 compares Ca II lines in 2005 and in 2012. These lines provide information on the (changing) conditions of the pseudo-photosphere and the circumstellar material. Ca II has a low ionization potential and the broad and very deep Ca II H and K absorption lines observed in 2011 and 2012 are therefore an indicator of the low temperatures in R71’s pseudo-photosphere. The forbidden [Ca II] \(\lambda \lambda 7291, 7324 \) lines in emission and the near-infrared triplet Ca II \(\lambda \lambda 8498, 8542, 8662 \) is in absorption. The Ca II near-infrared triplet lines are usually observed in emission in warm hypergiants. They are formed by radiative de-excitation from the upper level of the Ca II H and K absorption, which leaves the Ca I ions in the upper level for the [Ca II] \(\lambda \lambda 7291, 7324 \) lines. We investigated the line variations in our

\(^{\dagger} \) No significant line variations hinting at a potential companion is observed during the 3 months of UVES coverage. Comparison of the UVES spectra to the FEROS and X-shooter spectra with respect to line variations due to binarity is inhibited because of the spectral changes inflicted by the eruption.

\(^{\dagger}\) No archival near-infrared spectra of R71 are available and since this paper focuses on the comparison between R71’s current eruption with its quiescent phase and its previous outburst we will only mention a few near-infrared features. R71’s near-infrared spectrum during the current eruption will be discussed in more detail in a forthcoming paper.

\(^{\dagger\dagger} \) Alternatively, Prieto et al. (2009) and Smith et al. (2009) have suggested that the [Ca II] \(\lambda \lambda 7291, 7324 \) emission lines may be due to dust
2012 spectra in order to explain the puzzling combination of Ca II near-infrared triplet absorption and [Ca II] \(\lambda \lambda 7291,7324 \) emission observed in R71. We find that the Ca II near-infrared triplet lines show the same residuals as the H\(\alpha \) emission, while pure photospheric lines vary little. The Ca II triplet is likely dominated by absorption but filled in by an emission component from the circumstellar material that may be sufficient to populate the upper level of the [Ca II] \(\lambda \lambda 7291,7324 \) lines.

Other spectral lines confirm the very low temperature of R71’s pseudo-photosphere. In the previous outburst almost all lines (in particular the Balmer lines, Fe II, and Ti II) showed classical P Cyg profiles with a deep absorption component (Wolf et al. [1981]), which is not the case for the current eruption. Fe II emission lines have disappeared. Mg II \(\lambda \lambda 4481 \) absorption, indicative of low temperatures, is strong. He I \(\lambda \lambda 4388,4471,5876,6678 \) absorption at system velocity in pre-eruption spectra have disappeared in 2011/2012. We have no comparison spectra for the near-infrared He I \(\lambda 10830 \) line during the quiescent state and thus cannot conclusively identify the absorption feature and the small emission observed in 2012 in the concerning wavelength region as He I. More likely no He I absorption and emission lines are present at the current time. During the 1970s outburst the spectrum showed He I absorption (Thackeray [1974]), again indicating lower temperatures during the current eruption. The Na I \(\lambda \lambda 5890,5896 \) lines show three absorption components: 1.) the Galactic interstellar absorption with \(v = -177 \pm 1 \) km s\(^{-1} \) relative to R71, 2.) an absorption component with \(v = 13 \pm 1 \) km s\(^{-1} \), which likely is the interstellar LMC feature, and 3.) a component with \(v = -29 \pm 1 \) km s\(^{-1} \), which is conceivably formed in the cool pseudo-photosphere and the circumstellar material based on its line strength variations. The velocity of this component stayed constant compared to pre-outburst, but the line became stronger.

Between 2012 August and November Fe I emission lines appeared redwards of their absorption components (producing a P Cyg-like profile). In Figure 2 e.g., the Fe I \(\lambda 6546 \) line can be seen in the latest spectrum (at about \(-750\) km s\(^{-1} \) from H\(\alpha \)). According to Kovtyukh et al. [2011] the observed Fe I \(\lambda 6430 \) to Fe I \(\lambda 6421 \) ratio of \(~2\), i.e., different from about unity, would indicate a non-thermal excitation mechanism. Other emission lines characteristic of a very low-excitation “nebula” (excitation energy on the order of 4 eV and less) appeared and became stronger. We tentatively identify narrow emission from, e.g., [O I] \(\lambda \lambda 6300,6364,6392 \), [Ni II] \(\lambda 7394 \), and [S II] \(\lambda \lambda 7725,1082 \). These lines indicate the presence of a neutral nebula, likely ejected during the current eruption and possibly the rarefied region above the pseudo-photosphere. The Fe II emission lines, which appeared in late 2012, may originate from the same region. Classical nebular lines from an ionized nebula such as [N II] \(\lambda \lambda 6548,6583 \), which were observed in R71’s spectrum in 1984 (Stahl & Wolf [1986]), are not present. The expansion velocity of the nebula is on the order of a few km s\(^{-1} \) and thus small compared to the stellar wind velocity. The eruption started about 6 years ago and, if we assume an expansion velocity of \(V_{\text{eruption}} \sim 10 \) km s\(^{-1} \), the ejected material is now reaching a dis-
istance of about 13 AU or 3,000 R_⊙ from the star. At a distance of the LMC, this corresponds to about 0.3 mas.

Photometrically and spectroscopically, R71’s current eruption is very different compared to its previous outburst. Its visual lightcurve reached a peak magnitude in 2012 that was about 1 mag brighter than during the 1970s outburst and R71’s current spectrum implies a much cooler pseudo-photosphere.

4. Discussion

R71 was well-observed over the last decades covering its quiescent phases and its 1970–1977 classical LBV outburst. This gives us a unique opportunity to compare the current eruption to its previous behavior. Table 2 gives an overview of R71’s parameters found for its quiescent state and its 1970s outburst by different authors, and parameters estimated in this paper for its current eruption.

There is ambiguity in the literature regarding the classification of R71 as a classical LBV (Lennon et al. 1993) or as a less luminous LBV (Wolf et al. 1981). Reasons are the uncertainty in the extinction towards R71 and the bolometric correction, see Table 2. To interpret R71’s behavior it is important to know to which of the two groups it belongs because they differ in mass and evolutionary path (Humphreys & Davidson 1994). Classical LBVs have Mbol < −9.6 mag and have very likely not been RSGs. Less luminous LBVs have Mbol = −8 mag to −9 mag, lower temperatures, smaller amplitudes of their outbursts, and lower mass loss rates. They have probably been RSGs.

Support for the classification of R71 as a less luminous LBV comes from the fact that its visual light and temperature variation during the 1970s outburst showed much smaller variations than is observed for the more luminous LBVs (Thackeray 1974, Wolf et al. 1981). Further evidence in favor of a RSG phase comes from infrared studies. A dust shell around R71 may have been produced in a short RSG phase (Voors et al. 1993, van Loon et al. 2010, Boyer et al. 2010). If the period-luminosity relation for LBVs found by Stothers & Chini (1995) holds for R71, then the timescale of about 40 years between the current eruption and its 1970s outburst implies Mbol ~ −9 mag (only 20 years between outbursts would have been expected in case of Mbol ~ −10 mag). Lennon et al. (1993), however, argued that the extinction towards R71 is anomalous and greater than previously thought and thus found a much higher luminosity and temperature, more consistent with a spectral type of B2.5 Ie. R71 enters the region of classical LBVs in the HR-diagram, if we adopt the extinction value found by Lennon et al. (1993). Its 1970s outburst may have been unusually weak compared to other classical LBV outbursts.

R71 does not appear to lie in a region with anomalous extinction, see, e.g. Figure 11 in (Mara & Blitz 2007) and Figure 5 in Dobashi et al. (2008). The empirical relation between sodium absorption and dust extinction found by Poznanski et al. (2012) and RV = 3.1 implies an interstellar extinction of A_V = 0.09±0.03 mag towards R71. This value is likely too small. Boyer et al. (2010), e.g., assumed A_V = 0.4 mag based on the extinction map by Schlegel et al. (1998). A potential larger extinction towards R71 would likely be of circumstellar nature and may be caused by dust formed in carbon deficient ejecta (Lennon et al. 1993). An upper limit to the extinction towards R71 of A_V,2012 < 0.7±0.4 mag can be inferred from the absence of the J10780 absorption line for which a relation between the line equivalent width and E(B−V) was found by Groh et al. (2007). While this upper limit does not discriminate against any of the extinction values found in the literature, it implies that the current extinction value is certainly not much higher than the pre-eruption value. The use of other diffuse interstellar medium lines and their correlation with extinction is inhibited because line identification is made impossible by many small emission and absorption lines even in R71’s quiescent state. R71 has likely an extinction value of 0.1 < A_V < 1.1 mag and thus lies close to the boundary between the less luminous and the classical LBVs during its quiescent state and a previous short RSG phase cannot entirely be ruled out.

The observed spectral changes during R71’s current eruption are expected in an outburst that produces an optically thick wind (Humphreys & Davidson 1994) but it is not well-established if LBVs do form pseudo-photospheres. Leitherer et al. (1989) and de Koter et al. (1996) found based on NLTE modeling that the observed variability of the photospheric radius and effective temperature cannot be due to the formation of a pseudo-photosphere but must be induced by a sub-photospheric instability. Smith et al. (2004), on the other hand, argued that objects close to the bi-stability jump and close to the Eddington limit could form pseudo-photospheres. In our discussion we adopt the pseudo-photosphere hypothesis, i.e., that the apparent changes in R71’s spectrum and photometry are caused in the outermost layers. However, we are aware that the discussion is still open on this issue.

Estimations of R71’s current effective temperature based on intrinsic colors are likely to fail because LBVs and R71 in particular show generally a UV excess (Wolf et al. 1980, Lennon et al. 1993) and the reddening towards R71 is disputed. For example, the relation between T_eff and (B−V) found by Neugent et al. (2010) results in T_eff = 5 600–6 000 K if we adopt (B−V) = 0.6 mag (http://www.aavso.org) and allow for different extinction values. However, spectral features imply a higher effective temperature. To determine R71’s apparent temperature we used the line-depth ratios described in Kovtyukh & Gorlova (2003). We determined a current effective temperature of T_eff = 6 700±400 K. This corresponds to an apparent spectral type of F5 to F8 and a bolometric correction of BC = 0.08–0.13 mag (Humphreys & McElroy 1984).

We also compared the 2012 X-shooter spectra to Kurucz model atmospheres (Castelli et al. 1997). We varied the metallicity from [Fe/H] = 0 to [Fe/H] = −0.5 (close to the literature value [Fe/H]_LMC = −0.34, see Luck et al. 1998), the effective surface gravity log g_eff = 0.0 to log g_eff = 2.0, and the extinction A_V = 0.15 to A_V = 0.63 mag. Two immediate problems arise when comparing the X-shooter spectra to model atmospheres. First, LBVs have weaker Balmer jumps than normal stars. Guo et al. (2005) suggested that this may be due to a decrease of neutral hydrogen because of collisions in the dense wind, due to extra emission from the recombinaton of hydrogen, or due to the more extended atmospheres in which the velocity field changes with the radius and the lines of the Lyman series could be spread out. Guo & Li (2007) showed that the continuum energy distribution around the Balmer jump is sensitive to the wind velocity law. Second, the observed spectral energy distribution of LBVs in outburst may be a combination of two sources (the central star and the envelope). Guo et al. (2005) proposed that LBVs form a non-homogeneous envelope during outburst, which is not optically thick in all directions. The observed spectral energy distribution comes from the central star (mostly in the UV) as well as the optically thick part of the envelope (mostly in the optical wavelength regions). When comparing model atmospheres to the X-shooter spectra we thus focus on the continuum emission redwards of the Balmer jump.
Models with higher surface gravity \(\log g \) have weaker Balmer and Paschen jumps. Because of the above described issues, we make an apriori assumption about \(\log g \). \cite{Lennon1993} found \(\log g = 1.8 \) for R71 in quiescent state. The effective surface gravity in 2012 is likely \(\log g_{\text{eff,2012}} \leq 0.5 \) based on the fact that R71’s effective radius has increased by up to a factor of 5, see below, and that low effective gravities of \(\log g_{\text{eff}} = 0.5–1.0 \) were found for several LBVs in outburst. For example, \cite{Sterken1991} estimated \(\log g_{\text{eff}} = 0.55 \) for HD 160529 and \cite{Szeifert1993} found \(\log g_{\text{eff}} = 0.75 \) for R40. Both objects are similar to R71. \cite{Guo2005} determined \(\log g_{\text{eff}} = 1 \) for R127 and \(\log g_{\text{eff}} = 0.5 \) for R110. We thus adopt \(\log g_{\text{eff,2012}} = 0.5 \) for R71, also on the grounds that for lower surface gravities the models become unstable against radiation pressure.

Figure 4 shows de-reddened (\(A_V = 0.15, 0.37, 0.63 \) mag) 2012 November X-shooter spectra and model atmospheres of different effective temperatures. The analytic formula for the mean extinction law by \cite{Cardelli1989} and \(R_V = 3.1 \) \cite{Howarth1983} were adopted to de-redden the X-shooter spectra. In each case the best fit leads to a very high Balmer discontinuity, but see above. Unfortunately, we cannot discriminate between the different values of \(A_V \) used in the literature. For higher extinction values the X-shooter spectra are well fitted by model atmospheres with higher effective temperatures. We find that model atmospheres with \(T_{\text{eff}} = 6600 \pm 300 \) K fit best the spectral energy distribution of our X-shooter spectra, if we take into account the range of extinction values \(A_V = 0.15–0.63 \) mag. The derived effective temperature from model atmospheres is very similar to the value from the line ratio measurements discussed above. R71’s pseudo-photosphere has certainly reached much lower temperatures than during its 1970s outburst when the apparent temperature was not cooler than \(T_{\text{eff}} \sim 8150 \) K. However, we do not confirm the result by \cite{Gamen2012} that R71 has currently an early G-supergiant spectrum.

While there is uncertainty of R71’s parameters during its quiescent state because of uncertainties in the extinction \(A_V \) and the bolometric correction \(BC \) (see Table 2), its current temperature implies a small value for \(BC \). We adopt a distance modulus of \(DM_{\text{LMC}} = 18.5 \) mag (e.g., \cite{Freedman2001}), a visual extinction of \(A_V = 0.15–0.63 \) mag, and a bolometric correction of \(BC = 0.11 \) mag, and find that R71’s current visual brightness of \(m_{V,2012} = 8.7 \) mag results in \(M_{\text{bol,2012}} = -9.8 \) mag to \(-10.3 \) mag. R71’s luminosity of \(L_{R71,2012}/L_\odot = 5.8–6.0 \) is about its classical Eddington luminosity (log \(L_{\text{R71,Edd}}/L_\odot = 5.8–6.1 \)). The pre-eruption bolometric luminosity was \(M_{\text{bol,quiescence}} = -8.5 \) mag to \(-9.9 \) mag if we adopt \(DM_{\text{LMC}} = 18.5 \) mag instead of the varying distance moduli used in the literature. The bolometric luminosity thus increased by 0.4–1.3 mag.

The very low effective temperature of R71’s pseudo-photosphere during the current eruption below 7500 K implies a very high wind density \cite{Davidsson1987}. LBVs in quiescence have mass loss rates comparable to normal supergiants of the

\[\begin{align*}
\text{Table 2. Parameters of R71.} \\
\hline
\text{State} & \text{Source} & m_V \text{ (mag)} & DM_{\text{LMC}} \text{ (mag)} & A_V \text{ (mag)} & T_{\text{eff}} \text{ (K)} & BC \text{ (mag)} & \log (L/L_\odot) & M_{\text{bol}} \text{ (mag)} \\
\hline
\text{Quiescence} & \text{Wolf et al. (1981)} & 10.88 & 18.50 & 0.15 & 13600 & -0.76 & 5.30 & -8.53 \\
& \text{van Genderen (1982)} & 10.89 & 18.60 & 0.15 & 14000 & -0.95 & 5.37 & -8.71 \\
& \text{van Genderen (1988)} & 10.87 & 18.60 & 0.37 & 14700 & -1.10 & 5.53 & -9.10 \\
& \text{Lennon et al. (1993)} & 10.87 & 18.45 & 0.63 & 17250 & -1.69 & 5.86 & -9.94 \\
\text{Outburst 1970–1977} & \text{van Genderen (1982)} & 9.79 & 18.60 & 0.15 & 11000 & -0.38 & 5.58 & -9.24 \\
& \text{van Genderen (1988)} & 9.77 & 18.60 & 0.37 & 8510 & -0.10 & 5.57 & -9.20 \\
\text{Outburst 2012} & \text{this paper} & 8.7^a & 18.50^f & 0.15^f & 6650 & 0.11 & 5.82 & -9.84 \\
& & 8.7^b & 18.50^f & 0.37^f & 6650 & 0.11 & 5.91 & -10.06 \\
& & 8.7^c & 18.50^f & 0.63^f & 6650 & 0.11 & 6.02 & -10.32 \\
\hline
\end{align*} \]

References. (a) In the cases were only \(E(B-V) \) was given in the literature, we adopted the standard extinction law with \(R_V = A_V/E(B-V) = 3.1 \) \cite{Howarth1983}; (b) values were calculated using \(DM_{\text{LMC}} = 18.5 \) mag; (c) [http://www.aavso.org]; (d) e.g., \cite{Freedman2001}; (e) \cite{Wolf1981}; (f) \cite{vanGenderen1988}; (g) \cite{Lennon1993}.

Fig. 4. Comparison of de-reddened X-shooter spectra from 2012 November and Kurucz model atmospheres (with fixed parameters [Fe/H] = \(-0.5 \), \(\log g = 0.5 \)). The continuum energy distribution is well fitted for the extinction values \(A_V \) found in the literature. Higher extinction values require models with slightly higher effective temperatures.

\[\begin{align*}
\text{Relative Flux} & \times \text{Const.} \\
\hline
\text{Wavelength (Å)} & 5000 & 10000 & 15000 & 20000 \\
\hline
A_V = 0.15 \text{ mag} & & & \text{Relative Flux} & \times \text{Const.} \text{ Relative Flux} & \times \text{Const.} \\
A_V = 0.37 \text{ mag} & & & \text{Relative Flux} & \times \text{Const.} & \text{Relative Flux} & \times \text{Const.} \\
A_V = 0.63 \text{ mag} & & & \text{Relative Flux} & \times \text{Const.} & \text{Relative Flux} & \times \text{Const.} \\
\hline
\end{align*} \]
same temperature and luminosity ($10^{-7} M_\odot \text{ yr}^{-1}$ to $10^{-5} M_\odot \text{ yr}^{-1}$), which increase 10–100 times during an outburst. R71’s mass loss rate during its quiescent state was $3 \times 10^{-7} M_\odot \text{ yr}^{-1}$ and during its 1970s outburst $5 \times 10^{-5} M_\odot \text{ yr}^{-1}$ (Wolf et al. 1981). We use Figure 1 and Equation 4 in Davidson (1987) for a rough estimate of R71’s current mass loss rate and find $M_{R71,2012} \approx 7 \times 10^{-5} M_\odot \text{ yr}^{-1}$ to $7 \times 10^{-3} M_\odot \text{ yr}^{-1}$. Equation 1 in Wolf et al. (1981) results in a current mass loss rate of $M_{R71,2012} \approx 2 \times 10^{-4} M_\odot \text{ yr}^{-1}$. R71 thus increased its mass loss rate by a factor of about 1 000. The total mass of ejected material during the last 6 years may therefore be on the order of $10^{-3} M_\odot$. We find no evidence of an explosion. The spectra show no signatures of fast moving material and the terminal velocity is comparable to R71’s quiescent state. Also, during its 1970s outburst the terminal velocity was comparable (Wolf et al. 1981). This indicates that the change in mass loss rate is caused by a tremendously increased wind density only.

The effective radius increased by a factor of about 5 from 81–95 R_\odot (Wolf et al. 1981, Lennon et al. 1993) during the quiescent phase and is now on the order of 500 R_\odot. This radius estimation is based on the apparent temperature and luminosity during the eruption and may not be very meaningful because the opacity in the pseudo-photosphere is mainly due to scattering (Davidson 1987).

Figure 5 shows the location of R71 in quiescence and during its current eruptive state in the HR-diagram. The solid blue lines indicate the range of bolometric luminosities obtained for each state, if we adopt $DM_{LMC} = 18.5 \text{ mag}$ and the different values for A_V and BC found in the literature, see Table 2. The dashed blue lines indicate the transitions for the two extreme cases. The transition labelled ‘(a)’ is the transition for the lowest extinction value, $A_V = 0.15 \text{ mag}$, and the transition labelled ‘(b)’ is the transition for the highest extinction value $A_V = 0.63 \text{ mag}$. R71 could have potentially increased its bolometric luminosity by up to 1.3 mag.

R71’s visual magnitude variation on the order of $\Delta m_V \sim 2 \text{ mag}$ implies that the star is experiencing a classical LBV outburst (Humphreys & Davidson 1994). However, the effective temperature appears to be unusually low and the mass loss rate unusually high. Also, the common notion is that during classical LBV outbursts the bolometric luminosity stays constant, which is most likely not the case for R71’s current eruption. With a growing number of observed LBV outbursts and with the realization that outbursts of the same object can differ considerably this commonly adopted classification scheme may have to be reconsidered.

5. Conclusion

R71’s current eruption differs from its 1970s classical LBV outburst in several aspects and is challenging our view on LBVs. Both the visual lightcurve and the spectra show many differences compared to its previous outburst. The visual light increased by $\Delta m_V \gtrsim 2 \text{ mag}$ over the last seven years and the spectrum indicates an unusually low temperature of R71’s pseudo-photosphere, mimicking the photosphere of a late-F supergiant. Balmer and Fe II P Cyg profiles, normally observed during LBV outbursts and present during R71’s previous 1970s outburst, are absent. Low-excitation forbidden emission lines and Fe I P Cyg-like profiles appear in late 2012.

We found an apparent temperature of R71 in 2012 of $T_{eff,2012} = 6 650 \text{ K}$. This is a decrease by more than 7 000 K compared to its quiescent state and more than 1 500 K cooler than during its 1970s outburst. The bolometric luminosity increased by 0.4–1.3 mag to $M_{bol,2012} \sim -9.8 \text{ mag}$ to -10.3 mag and R71 may have moved beyond the Humphreys-Davidson limit. R71’s apparent radius increased by a factor of 5 to about 500 R_\odot.

We estimated that R71 has a current mass loss rate on the order of $M_{R71,2012} \sim 5 \times 10^{-4} M_\odot \text{ yr}^{-1}$, a factor of about 1 000 higher than during its quiescent state and at least a factor of 10 larger than during its 1970s outburst. The wind velocity of R71 is on the order of 100–200 km s$^{-1}$, similar to that of other LBVs while the pseudo-photosphere has a velocity on the order of a few km s$^{-1}$. We find no spectral signatures of fast moving material, which may indicate an explosion. The large increase in mass loss rate during the eruption is therefore likely due to an increased wind density only, thus constraining instability mechanisms.

LBVs have been considered as extragalactic distance indicators because they belong to the most luminous stars (e.g., Tammann & Sandage 1968, Sandage 1983, 1984, Wolf 1989) found a relation between the luminosity of LBVs and their outburst amplitudes. However, with an increasing number of observed LBV outbursts it becomes clear that they can differ considerably – even outbursts of the same object. S Dor, e.g., displayed an early F-type supergiant spectrum in 1999, which had never been reported before, while its visual luminosity only increased by 0.3 mag (Massey 2000). The current eruption of R71 has a much larger amplitude than its previous outburst in the 1970s. Thus LBVs appear to be unreliable as distance indicators.

R71 is experiencing a much more powerful LBV eruption than during its 1970s outburst. We are in the unique position to witness such a rare event as it unfolds. Our X-shooter monitoring program on R71 will secure key data for our understanding of LBV outbursts and the properties of stars near the upper luminosity limit. Observations in the infrared after the eruption has subsided are highly desirable because they will provide valuable information about the total amount of material expelled.
