UNIQUENESS OF SOLUTION THE PROBLEM OF INTEGRAL GEOMETRY OF VOLTERRA TYPE WITH A WEIGHT FUNCTION OF A SPECIAL TYPE

Zarifjon Ochilov
Samarkand State University, zarifjonochilov@mail.ru

Follow this and additional works at: https://uzjournals.edu.uz/samdu

Part of the Life Sciences Commons, and the Physical Sciences and Mathematics Commons

Recommended Citation
Ochilov, Zarifjon (2020) "UNIQUENESS OF SOLUTION THE PROBLEM OF INTEGRAL GEOMETRY OF VOLTERRA TYPE WITH A WEIGHT FUNCTION OF A SPECIAL TYPE," Scientific Journal of Samarkand University: Vol. 2020 , Article 7.
Available at: https://uzjournals.edu.uz/samdu/vol2020/iss2/7

This Article is brought to you for free and open access by 2030 Uzbekistan Research Online. It has been accepted for inclusion in Scientific Journal of Samarkand University by an authorized editor of 2030 Uzbekistan Research Online. For more information, please contact sh.erknov@edu.uz.
УДК: 513 O 955

ЕДИНОСТВЕННОСТЬ РЕШЕНИЯ ЗАДАЧА ИНТЕГРАЛЬНОЙ ГЕОМЕТРИИ
ВОЛЬТЕРРОВСКОГО ТИПА С ВЕСОВОЙ ФУНКЦИЕЙ СПЕЦИАЛЬНОГО ВИДА

З.Х.Очилов
Самаркандский государственный университет
E-mail: zarifjonochilov@mail.ru

Аннотация. В работе рассматривается новый класс задач интегральной геометрии вольтерровского типа с весовой функцией специального вида. Доказана теорема единственности решения, получены оценки устойчивости и формула обращения в пространствах Соболева, тем самым показана слабая некорректность решения задачи интегральной геометрии.

Ключевые слова. Задача интегральной геометрии, слабая и сильная некорректность, единственность и устойчивость.

Uniqueness of solution the problem of integral geometry of volterra type with a weight function of a special type

Annotation. A new class of Volterra type integral geometry problems with a special-weight function is considered. Theorem of uniqueness of a solution are proved, stability estimates and the inversion formula in Sobolev spaces are obtained, thereby showing the weak incorrectness of the solution of the integral geometry problem.

Keywords. The problem of integral geometry, weak and strong incorrectness, uniqueness and stability.

Махсус кўринишдаги вазн функцияли волтерра типидаги интеграл геометрия масаласи
ечимининг ягоналиги

Аннотация. Бу ищда махсус кўринишдаги вазн функцияли волтерра типидаги интеграл геометрия масалаларининг яғни сифири каралган. Интеграл геометрия масаласи ечимининг мавжудлиги теоремаси исботланган, Соболев фазоларида тургунлик баҳоси ва тескариланиш формулалари олинган бўлиб, интеграл геометрия масаласи кучсиз нокоррект масала эканлиги кўрсатилган.

Калит сузлар: интеграл геометрия масалалари, куччи ва кучсиз нокорректлик, ягоналик ва тургунлик.

ВВЕДЕНИЕ

Интегральная геометрия – это интенсивно развивающая область современной математики. Она является одним из крупных направлений в теории некорректных задач математической физики и анализа.

Задачами интегральной геометрии вольтерровского типа называются задачи, которые могут быть сведены к исследованию операторных уравнений вольтерра в смысле определения, данного М.М. Лаврентьевым [1].

Достаточно обширные результаты по единственности и устойчивости решения задач интегральной геометрии в случае, когда многообразия, по которым ведется интегрирование, имеют вид параболоидов, весовые функции и многообразия инвариантны относительно группы всех движений вдоль фиксированной гиперплоскости, получены В.Г. Романовым [3].

Слабо некорректные задачи интегральной геометрии вольтерровского типа с весовыми функциями, имеющими особенность исследовались в работах [9-14]. Теоремы единственности, оценки устойчивости и формулы обращения слабо некорректных задач интегральной геометрии по специальным кривым и поверхностям с особенностями вершинами получены в [15-18].

Единственность решения значительно более широких классов задач интегральной геометрии в полосе, рассматриваемых как сильно некорректные, была установлена В.Г. Романовым (см.[4]). В работах А.Л. Бухгейма [5,6] получены формулы обращения для задачи восстановления функции через интегралы от неё по параболоидам в полупространстве \(y > 0 \), причем формула обращения, приведённая в [5], содержит только конечное число производных от данных. В [6] с помощью техники шкал банаховых пространств доказана теорема единственности решения задачи интегральной геометрии в полосе на параболах с весовой функцией, аналитической по части переменных.
В своей работе [2] М.М. Лаврентьев показал единственность решения сильно некорректной задачи интегральной геометрии в полосе на параболах с возмущением достаточно общего вида.

В работах [7-8] рассматриваются некоторые классы возмущенных полусингулярных интегральных уравнений в трехмерном пространстве, возникающие при исследовании ряда задач интегральной геометрии. Здесь доказаны теоремы единства и в слабо некорректном случае теорема существования решения таких уравнений.

В статье рассматривается задача интегральной геометрии с весовой функцией специального вида по полуплоскости. Доказаны теоремы единственности решения в классе гладких финитных функций, получены оценки устойчивости решения задачи в пространствах Соболева, что показывает её слабую некорректность, а также формулы обращения.

Основная часть

Пусть G - множество ограниченных функций $g(\cdot)$, определенных на R^1 и удовлетворяющих следующим условиям:

I. Функция $I(\cdot, \cdot)$ определена на $R \times C$ по формуле

$$I(\lambda, p) = \int_0^\infty \left[e^{ikh} g(h) - e^{-ikh} g(-h) \right] e^{-ph} dh,$$ \hspace{1cm} (1)

непрерывна на $R \times C$ такое, что $I(\lambda, p)$ отлична от нуля для всех $\lambda \in R$ с $Re \ p > 0$;

II. Существуют числа $n, m \in \{0, 1, 2, \ldots\}$ такие, что

$$\left| \frac{1}{I(\lambda, p)} \right| \leq C(|p|^n + |\lambda|^m)$$ \hspace{1cm} (2)

для всех $\lambda \in R$ и $Re \ p > 0$.

Замечание. Отметим, что множество G не пусто. Например, если функция $g(\cdot)$ имеет вид

$$g(h) = \begin{cases} a_1 e^{-kh}, & \text{нpu } h \geq 0, \\ -a_1 e^{kh}, & \text{нpu } h < 0, \end{cases}$$

$a_1k > 0$, то

$$I(\lambda, p) = 2a_1 \int_0^\infty e^{-(p+k)h} \cos(\lambda h) dh = 2 \frac{a_1(k + p)}{(k + p)^2 + \lambda^2} \neq 0$$ \hspace{1cm} (3)

для всех $\lambda \in R$ и $Re \ p \geq 0$.

Отсюда имеем:

$$\left| I(\lambda, p) \right| \geq \frac{1}{|p| + \lambda^2}.$$

Поэтому

$$\frac{1}{|I(\lambda, p)|} \leq (|p| + \lambda^2)N$$ \hspace{1cm} (4)

t.e. в формуле (1) $C = N, \ n = 1, \ m = 2, \ p = 0, \ g \in G$.

Таким образом мы показали справедливость формулы (1).

Введем обозначения

$$\Omega = \{(x_1, x_2) : x_1 \in R^1, \ x_2 \in (0, l), \ l < \infty\},$$

$$\overline{\Omega} = \{(x_1, x_2) : x_1 \in R^1, \ x_2 \in [0, l]\}.$$

В полосе $\overline{\Omega}$ рассматривается семейство ломанных $P(x_1, x_2)$, которое однозначно

параметризуются с помощью координат своих вершин $(x, y) \in \overline{\Omega}$:

$$P(x_1, x_2) = \{ (\xi_1, \xi_2) : (x_1 - x_2) + (\xi_2 - \xi_1) = 0, \ 0 \leq \xi_2 \leq x_2, \ x_1 - x_2 \leq \xi_1 \leq x_1 \} \cup$$
Задача А. Определить функцию двух переменных \(u(x_1, x_2) \) если для всех \((x_1, x_2) \in \Omega \) известны интегралы от функции \(u(x_1, x_2) \) по ломаным \(P(x_1, x_2) \):

\[
\int_{x_1}^{x_2} g(x_1 - \xi_1) u(\xi_1, x_1 + x_2 - x_1) d\xi_1 + \int_{x_1}^{x_2} g(x_1 - \xi_1) u(\xi_1, x_1 + x_2 - x_1) d\xi_1 = f(x_1, x_2),
\]

где \(g(x_1 - \xi_1) \) - весовая функция из множества \(G \).

Через \(U \) определим класс функции \(u() \), которые имеют все непрерывные частные производные до \((n + m + 4)\) - го порядка включительно и финитны с носителем в \(R^2 \):

\[
supp u \subset D = \{(x_1, x_2) : -a < x_1 < a, \ 0 < x_2 < l\}
\]

где \(0 < a < \infty, l < \infty \).

Введем следующие функции

\[
I_1(\lambda, x_2 - \xi_2) = \frac{1}{2m} \int_{a-i\infty}^{a+i\infty} e^{p(x_2 - \xi_2)} \frac{dp}{p^{n+2} I(\lambda, p)},
\]

\[
I_2(x_1 - \xi_1, x_2 - \xi_2) = \int_{-\infty}^{+\infty} e^{-i\lambda(x_1 - \xi_1)} \frac{I_1(\lambda, h)}{1 + \lambda^m+2} d\lambda.
\]

Справедлива следующая теорема:

Теорема 1. Пусть функция \(f(x_1, x_2) \) известна для всех \((x_1, x_2) \in \Omega \). Тогда решение задачи А в классе \(U \) единствено и имеет место представление если \(m = 4j, \ j = 0,1,2,... \)

\[
u(x_1, x_2) = \int_{0}^{+\infty} \int_{0}^{-\infty} I_2(x_1 - \xi_1, x_2 - \xi_2) \left[\frac{\partial^{n+2}}{\partial \xi_2^{n+2}} + \frac{\partial^{n+2}}{\partial \xi_1^{n+2} \partial \xi_2^{n+2}} \right] f(\xi_1, \xi_2) d\xi_1 d\xi_2,
\]

если \(m = 4j + 2, \ j = 0,1,2,... \).

\[
u(x_1, x_2) = \int_{0}^{+\infty} \int_{0}^{-\infty} I_2(x_1 - \xi_1, x_2 - \xi_2) \left[\frac{\partial^{n+2}}{\partial \xi_2^{n+2}} - \frac{\partial^{n+2}}{\partial \xi_1^{n+2} \partial \xi_2^{n+2}} \right] f(\xi_1, \xi_2) d\xi_1 d\xi_2
\]

кроме того выполняется неравенство

\[
\|u\|_{L_2(\Omega)} \leq C_0 \|f\|_{W^{m+2, n+2}(\Omega)}
\]

где \(C_0 \) — некоторая постоянная.

Доказательство теоремы 1.

В результате, перейдя в (5) к интегрированию по \(d\xi_2 \), получим:

\[
\int_{0}^{x_1} g(x_2 - \xi_2) u(x_1 - x_2 + \xi_2, \xi_2) d\xi_2 - \int_{0}^{x_1} g(\xi_2 - x_2) u(x_1 + x_2 - \xi_2, \xi_2) d\xi_2 = f(x_1, x_2)
\]

или

\[
\int_{0}^{x_1} g(h) u(x_1 - h, \xi_2) dh - \int_{0}^{x_2} g(-h) u(x_1 + h, \xi_2) dh = f(x_1, x_2)
\]

где \(h = x_2 - \xi_2 \).

Применяя преобразование Фурье по переменной \(x \) к обеим частям уравнения (10) получим:

\[
\hat{f}(\lambda, x_2) = \int_{0}^{x_1} \left[e^{ih\lambda} g(h) - e^{-ih\lambda} g(-h) \right] \hat{u}(\lambda, y - h) dh.
\]
Таким образом, \(f(\lambda, x_2) \) является функцией оригиналом. Поэтому согласно к обеим частям уравнения (5), а также уравнения (11), можно применять преобразование Лапласа по \(y \).

Применим к уравнению (11) преобразование Лапласа по переменной \(x_2 \). Используя, теорему Фубини имеем:

\[
\hat{f}(\lambda, p) = u(\lambda, p) \int_{-\infty}^{\infty} \left[e^{i\lambda \xi} g(h) - e^{-i\lambda \xi} g(-h) \right] e^{-ph} d\xi
\]

Далее учитывая (1) получаем следующее уравнение:

\[
\hat{u}(\lambda, p) I(\lambda, p) = \hat{f}(\lambda, p)
\]

Поскольку \(g \in G \) то

\[
I(\lambda, p) \neq 0, \quad \lambda \in R, \quad \text{Re} \ p \geq 0.
\]

Поэтому можно до множить обе части уравнения на \(\frac{1}{I(\lambda, p)} \), т.е.

\[
\hat{u}(\lambda, p) = \frac{1}{I(\lambda, p)} \hat{f}(\lambda, p)
\]
(12)

Вычислим интеграл

\[
\int_{0}^{\infty} e^{-p\xi_2^2} f(\lambda, p) d\xi_2,
\]

переменяя метод интегрирования по частям \(n + 2 \) раз, учитывая, что \(f(\cdot) \) финитна в \(\overline{\Omega} \),

\[
\int_{0}^{\infty} e^{-p\xi_2^2} f(\lambda, p) d\xi_2 = \frac{1}{p^{n+2}} \frac{\partial^{n+2} f(\xi_1, \xi_2)}{\partial \xi_2^{n+2}} d\xi_2.
\]

Уравнение (12) примет вид

\[
\hat{u}(\lambda, p) = \frac{1}{p^{n+2} I(\lambda, p)} \int_{0}^{\infty} e^{-p\xi_2^2} \frac{\partial^{n+2} f(\xi_1, \xi_2)}{\partial \xi_2^{n+2}} d\xi_2.
\]
(13)

Как следует из (4) функция \(\frac{1}{p^{n+2} I(\lambda, p)} \) аналитично, в полуплоскости \(\text{Re} \ p > 0 \), стремится к нулю, при \(|p| \rightarrow \infty \) в любой полуплоскости \(\text{Re} \ p \geq a > 0 \) равномерно относительно \(\text{arg} \ p \) и интеграл

\[
\int_{a^{-i\infty}}^{a^{+i\infty}} \frac{e^{nx_2}}{p^{n+2} I(\lambda, p)} dp
\]

абсолютно сходится. Следовательно (см.[2]), функция \(\left(p^{n+2} I(\lambda, p) \right)^{-1} \) является преобразованием Лапласа функции \(I_1(\lambda, \cdot) \), точнее

\[
I_1(\lambda, x_2 - \xi_2) = \frac{1}{2\pi i} \int_{a^{-i\infty}}^{a^{+i\infty}} \frac{e^{p(x_2 - \xi_2)}}{p^{n+2} I(\lambda, p)} dp.
\]

Применим к обеим частям уравнения (12) обратное преобразования Лапласа по переменной \(p \). Используя теорему обращения и теорему о свертке, а также учитывая свойства преобразования Лапласа, имеем

\[
\hat{u}(\lambda, x_2) = \int_{0}^{\infty} \int_{-\infty}^{\infty} I_1(\lambda, x_2 - \xi_2) \frac{\partial^{n+2} f(\xi_1, \xi_2)}{\partial \xi_2^{n+2}} e^{i\lambda \xi_2} d\xi_1 d\xi_2.
\]
(14)

Разделим и умножим правую часть равенства (14) на \((1 + \lambda^{m+2}) \):
\[\hat{u}(\lambda, x_2) = \int_0^{+\infty} \int_{-\infty}^{+\infty} \left(1 + \lambda^{m+2}\right) I_1(\lambda, x_2 - \xi_2) \frac{\partial^{n+2} f(\xi_1, \xi_2)}{(1 + \lambda^{m+2}) \partial^{n+2}_{\xi_2}} e^{i\lambda \xi_1} d\xi_1 d\xi_2. \]

В интеграле

\[\int_0^{+\infty} \frac{\partial^{n+2} f(\xi_1, \xi_2)}{\partial^{n+2}_{\xi_2}} e^{i\lambda \xi_1} d\xi_1, \]

применяя метод интегрирования по частям \(m + 2 \) раз, получим

\[\int_0^{+\infty} \frac{\partial^{n+2} f(\xi_1, \xi_2)}{\partial^{n+2}_{\xi_2}} e^{i\lambda \xi_1} d\xi_1 = \frac{1}{(i\lambda)^{m+2}} \int_0^{+\infty} \frac{\partial^{n+4} f(\xi_1, \xi_2)}{\partial^{n+4}_{\xi_2}} e^{i\lambda \xi_1} d\xi_1. \]

Отсюда (15) примет вид

\[\hat{u}(\lambda, x_2) = \int_0^{+\infty} \frac{e^{-i\lambda x_1} I_1(\lambda, x_2 - \xi_2)}{1 + \lambda^{m+2}} \left[\int_0^{+\infty} \frac{\partial^{n+2} f(\xi_1, \xi_2)}{\partial^{n+2}_{\xi_2}} e^{i\lambda \xi_1} d\xi_1 + \frac{1}{i^{m+2}} \int_0^{+\infty} \frac{\partial^{n+4} f(\xi_1, \xi_2)}{\partial^{n+4}_{\xi_2}} e^{i\lambda \xi_1} d\xi_1 \right] d\xi_2. \]

Из (6) вытекает, что функция \(I_1(\lambda, x_2 - \xi_2) (1 + \lambda^{m+2})^{-1} \) является преобразованием Фурье по первой переменной функции

\[I_2(x_1 - \xi_1, x_2 - \xi_2) = \int_0^{+\infty} \frac{e^{-i\lambda (x_1 - \xi_1)}}{1 + \lambda^{m+2}} \]

Применяя к уравнению (17) обратное преобразование Фурье по переменной \(\lambda \) и используя теорему о свертке, а также свойство дифференцирования преобразования Фурье, получим:

\[u(x_1, x_2) = \int_0^{+\infty} \int_{-\infty}^{+\infty} e^{-i\lambda x_1} I_1(\lambda, x_2 - \xi_2) \left[\int_0^{+\infty} \frac{\partial^{n+2} f(\xi_1, \xi_2)}{\partial^{n+2}_{\xi_2}} e^{i\lambda \xi_1} d\xi_1 + \frac{1}{i^{m+2}} \int_0^{+\infty} \frac{\partial^{n+4} f(\xi_1, \xi_2)}{\partial^{n+4}_{\xi_2}} e^{i\lambda \xi_1} d\xi_1 \right] d\xi_2 d\lambda. \]

Учитывая (7) и (16), уравнения (17) примет вид

\[u(x_1, x_2) = \int_0^{+\infty} \int_{-\infty}^{+\infty} I_2(x_1 - \xi_1, x_2 - \xi_2) \left[\frac{\partial^{n+2}}{\partial^{n+2}_{\xi_2}} + \frac{1}{i^{m+2}} \frac{\partial^{n+4}}{\partial^{n+4}_{\xi_2}} \right] f(\xi_1, \xi_2) \]

Если \(m = 4j, j = 0,1,2,... \)

\[u(x_1, x_2) = \int_0^{+\infty} \int_{-\infty}^{+\infty} I_2(x_1 - \xi_1, x_2 - \xi_2) \left[\frac{\partial^{n+2}}{\partial^{n+2}_{\xi_2}} + \frac{\partial^{n+4}}{\partial^{n+4}_{\xi_2}} \right] f(\xi_1, \xi_2), \]

если \(m = 4j + 2, j = 0,1,2,... \)

\[u(x_1, x_2) = \int_0^{+\infty} \int_{-\infty}^{+\infty} I_2(x_1 - \xi_1, x_2 - \xi_2) \left[\frac{\partial^{n+2}}{\partial^{n+2}_{\xi_2}} - \frac{\partial^{n+4}}{\partial^{n+4}_{\xi_2}} \right] f(\xi_1, \xi_2). \]

Формула (19) имеет локальный характер по переменной \(x_2 \). С учетом условия \(\text{supp} u \subset \Omega \) ясно, что представление (19) для решения уравнения (4) имеет место и при \(I < \infty \). Тогда из (3), (12) и (19) вытекает единственность решения исходной задачи \(\Lambda \) в классе функций \(C_0^2(\Omega) \).

\[\|u\|_{L_2(\Omega)} \leq 2 \|I_2\|_{L_2(\Omega)} \|f\|_{H_2^{m+1,2}(\Omega)} \cdot M(D) \]

(20)
Используя свойства дифференцирования преобразований Лапласа и Фурье, неравенство треугольника для норм, а также учитывая (19) и (20) и условия, наложенные на функцию u, получим оценку

$$
\|u\|_{L_2(\Omega)} \leq C_0 \|f\|_{W^{m+2,p+2}(\Omega)}
$$

где C_0 — некоторая постоянная.

Из которой вытекает единственность решения задачи А.

Теорема 1 доказана.

Литература

1. Лаврентьев М.М., Савельев Л.Я. Теория операторов и некорректные задачи. — Новосибирск: Изд-во Ин-та математики. 1999. — 702 с.
2. Лаврентьев А.М., Шабат Б.В.Методы теории функций комплексного переменного.— М.: Наука, 1986.
3. Романов В.Г. О восстановлении функции через интегралы по эллипсоидам вращения, у которых фокус неподвижен // Докл. АН СССР.— Москва, 1967. Т. 173.— № 4.— С. 766-769.
4. Романов В.Г. О восстановлении функции через интегралы по семейству кривых // Сиб. мат. журн., 1967. Т. 8.— № 5.— С. 1206-1208.
5. Бухгейм А.Л. О некоторых задачах интегральной геометрии // Сиб. мат. журн., 1972. Т. 13.— № 1.— С. 34-42.
6. Бухгейм А.Л. Об одной задаче интегральной геометрии // Мат. проблемы геофизики. —Новосибирск: ВЦ СО АН СССР, 1973. Вып. 4.— С. 69-73.
7. Бегматов Акбар Х.О некоторых классах полисингулярных интегральных уравнений // Сиб.мат.журн., 1994. Т. 35.— № 3.— С. 515-519.
8. Бегматов Акбар Х. О единственности решения задачи интегральной геометрии вольтерровского типа на плоскости // Докл. РАН.— Москва, 2009. Т. 427.— № 4.— С. 439-441.
9. Бегматов Акрам Х. Слабо некорректные задачи интегральной геометрии вольтерровского типа // Доклады РАН.— Москва, 1996. Т. 349.— № 3.— С. 297-298.
10. Бегматов Акрам Х. Задачи интегральной геометрии для семейств конусов в п-мерном пространстве // Сиб. мат. журн., 1996. Т. 37.— № 3.— С. 500-505.
11. Бегматов Акрам Х. Задачи интегральной геометрии для семейства конусов в n-мерном пространстве // Сиб. мат. журн., 1997. Т. 38.— № 4.— С. 723-737.
12. Бегматов Акрам Х. Именно некорректные задачи интегральной геометрии // Доклады РАН.— Москва, 1998. Т. 358.— № 2.— С. 151-153.
13. Бегматов Акрам Х. Задачи интегральной геометрии с разрывной весовой функцией // Доклады РАН.— Москва, 2002. Т. 386.— № 1.— С. 1-3.
14. Бегматов Акрам Х., Очилов З.Х. Задачи интегральной геометрии с разрывной весовой функцией // Доклады РАН.— Москва, 2009. Т. 429.— № 3.— С. 295-297.
15. Бегматов Акрам Х. Задачи интегральной геометрии с разрывной весовой функцией // Доклады РАН.— Москва, 2003. Т. 388.— № 2.— С. 191-197.
16. Бегматов Акрам Х., Очилов З.Х. Задачи интегральной геометрии с разрывной весовой функцией // Доклады РАН.— Москва, 2003. Т. 388.— № 2.— С. 191-197.
17. Бегматов Акрам Х., Очилов З.Х. Задачи интегральной геометрии с разрывной весовой функцией // Доклады РАН.— Москва, 2003. Т. 388.— № 2.— С. 191-197.
18. Бегматов Акрам Х., Очилов З.Х. Задачи интегральной геометрии с разрывной весовой функцией // Доклады РАН.— Москва, 2003. Т. 388.— № 2.— С. 191-197.