Phosphorylation of Myosin-binding Subunit (MBS) of Myosin Phosphatase by Rho-Kinase In Vivo

Yoji Kawano,* Yuko Fukata,* Noriko Oshiro,* Mutsuki Amano,* Toshikazu Nakamura,† Masaaki Itō,§ Fumio Matsumura,i Masaki Inagaki,¶ and Kozo Kaibuchi*

*Division of Signal Transduction, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0101, Japan; †Division of Biochemistry, Osaka University Medical School, Suita, Osaka 565-0871, Japan; ‡First Department of Internal Medicine, Mie University School of Medicine, Tsukuba, Mie 514-8507, Japan; §Department of Molecular Biology and Biochemistry, Rutgers University, New Brunswick, New Jersey 08855; and ¶Laboratory of Biochemistry, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya 464-0021, Japan

Abstract. Rho-associated kinase (Rho-kinase), which is activated by the small GTPase Rho, phosphorylates myosin-binding subunit (MBS) of myosin phosphatase and thereby inactivates the phosphatase activity in vitro. Rho-kinase is thought to regulate the phosphorylation state of the substrates including myosin light chain (MLC), ERM (ezrin/radixin/moesin) family proteins and adducin by their direct phosphorylation and by the inactivation of myosin phosphatase. Here we identified the sites of phosphorylation of MBS by Rho-kinase as Thr-697, Ser-854 and several residues, and prepared antibody that specifically recognized MBS phosphorylated at Ser-854. We found by use of this antibody that the stimulation of MDCK epithelial cells with tetradecanoylphorbol-13-acetate (TPA) or hepatocyte growth factor (HGF) induced the phosphorylation of MBS at Ser-854 under the conditions in which membrane ruffling and cell migration were induced. Pretreatment of the cells with Botulinum C3 ADP-ribosyltransferase (C3), which is thought to interfere with Rho functions, or Rho-kinase inhibitors inhibited the TPA- or HGF-induced MBS phosphorylation. The TPA stimulation enhanced the immunoreactivity of phosphorylated MBS in the cytoplasm and membrane ruffling area of MDCK cells. In migrating MDCK cells, phosphorylated MBS as well as phosphorylated MLC at Ser-19 were localized in the leading edge and posterior region. Phosphorylated MBS was localized on actin stress fibers in REF52 fibroblasts. The microinjection of C3 or dominant negative Rho-kinase disrupted stress fibers and weakened the accumulation of phosphorylated MBS in REF52 cells. During cytokinesis, phosphorylated MBS, MLC and ERM family proteins accumulated at the cleavage furrow, and the phosphorylation level of MBS at Ser-854 was increased. Taken together, these results indicate that MBS is phosphorylated by Rho-kinase downstream of Rho in vivo, and suggest that myosin phosphatase and Rho-kinase spatiotemporally regulate the phosphorylation state of Rho-kinase substrates including MLC and ERM family proteins in vivo in a cooperative manner.

Key words: myosin-binding subunit of myosin phosphatase • Rho-associating kinase • Rho • phosphorylation • cytokinesis

Evidence is accumulating that the small GTPase Rho plays crucial roles in the regulation of various cellular functions including stress fiber and focal adhesion formation (Ridley and Hall, 1992, 1994), smooth muscle contraction (Hirata et al., 1992; Gong et al., 1996), neurite retraction (Nishiki et al., 1990; Jalink et al., 1994), microvilli formation (Shaw et al., 1998), cytokinesis (Kishi et al., 1993; Mabuchi et al., 1993), cell migration (Takaishi et al., 1993, 1994), and gene expression (Hill et al., 1995). Rho cycles between GDP-bound inactive and GTP-bound active forms, and the GTP-bound form binds to specific targets and then exerts its biological functions (van Aelst and D’Souza-Schorey, 1997; Hall, 1998; Kaibuchi et al., 1999). Numerous putative Rho targets have been identified, including protein kinase N (Amano et al., 1996b; Watanabe et al., 1996), Rho kinase/ROKα/ROCK II (Leung et al., 1995; Ishizaki et al., 1996; Matsui et al., 1996), myo-
sin-binding subunit (MBS) of myosin phosphatase (K-mera et al., 1996), p140Mia (Watanabe et al., 1997), citron (Madaule et al., 1995), citron kinase (Madaule et al., 1998), phospholipase D (Singer et al., 1997). ROKβ/ROCK I is an isofrom of Rho-kinase (Ishizaki et al., 1996; Leung et al., 1996).

Myosin phosphatase is composed of MBS, a 37-kD type 1 phosphatase catalytic subunit and a 20-kD regulatory subunit (Alessi et al., 1992; Hartshorne et al., 1998). Myosin phosphatase binds to phosphorylated myosin light chain (MLC) via MBS and dephosphorylates MLC. Rho-kinase phosphorylates MBS, which leads to the inactivation of myosin phosphatase in vitro (Kimura et al., 1996). Rho-kinase by itself phosphorylates MLC at the same site that is phosphorylated by MLC-kinase, and activates myosin ATPase (Amano et al., 1996a). Thus, Rho-kinase and myosin phosphatase appear to regulate the phosphorylation level of MLC, cooperatively. Consistently, the addition of the dominant active Rho-kinase to permeabilized vascular smooth muscle induces a contraction through MLC phosphatation (Kureishi et al., 1997). In non-muscle cells, the expression of dominant active Rho-kinase increases the phosphorylation of MBS as described for MBS phosphorylation by Rho-kinase, and prepared antibody that specifically recognized MBS phosphorylated at Ser-854, to understand how MBS phosphorylation is regulated in vivo. We found by use of this antibody that MBS was phosphorylated by Rho-kinase downstream of Rho in vivo, and that phosphorylated MBS was localized in the nucleus, cytoplasm and membrane ruffling area in TPA-stimulated MDCK cells, on stress fibers in interphase REF52 cells, and at the cleavage furrow in mitotic MDCK cells.

Materials and Methods

Materials and Chemicals

The expression plasmid of Botulinum C3A DP-ribosyltransferase (pGEX-C3) was kindly provided by Dr. A. Hall (University College London, London, UK). The MDCK cells and the cDNA encoding mouse moesin (1-577 amino acids [aa]) were gifts from Dr. S. Tsukita (Kyo, yah, Japan). Monoclonal mouse anti-MBS A b (anti-MBS A b; anti-gen: 371-511 aa of M130) was kindly provided by Dr. D. J. Hartshorne (U niversity of A rizona, Tuscon, A rizona; Trinkle-Mulcahy et al., 1995; Murata et al., 1997). HA 1077 was kindly provided by A sahi Chemical Industry (Shizuoka, Japan). Y-32885 was synthesized as described (Uehata et al., 1997). Human recombinant hepatocyte growth factor (HGF) was produced and purified as described (Nakamura et al., 1989; Seki et al., 1990). TM71 (Goto et al., 1998), anti-ppt2p A b (Matsura et al., 1998), anti-pT558 A b (O shiro et al., 1998), anti-pT445 A b (Fukata et al., 1999), and polyclonal rabbit anti-MBS antibodies (anti-pnMBS A b; antigen: 758-1032 aa of R3 MBS) were generated. A rabbit polyclonal antibody against ERM (ezrin/radixin/moesin) family proteins (anti-ERM A b) was generated as follows. Glutathione-S-transferase-mouse moesin (GST- mouse moesin; 357-577 aa) was produced and purified from Escherichia coli as an antigen. The obtained antisemur was then affinity-purified against mouse moesin (357-577 aa). Anti-ERM A b specifically recognized ERM family proteins (data not shown). Protein kinase C (PKC) was prepared from rat brain as described (Kitanoe et al., 1986). Phosphatidyliner serine, bisbenzimide Hoechst, anti-MLC A b, nocodazole, and N,N,2,2-6-diubutyladenosine 3′,5′-cyclic monophosphate (dibutyryl cAMP) were purchased from Sigma Chemical Co. γ[32P]ATP was purchased from A mersham Corp.

Tetradecanoylphorbol-13-acetate (TPA) and calyculin A were purchased from W ake P roductive Chemical Industries, Ltd. A ll materials used in the nucleic acid study were purchased from Takara Shuzo Co. O ther materials and chemicals were obtained from commercial sources.

Preparation of Recombinant Proteins

GST-catalytic domain of Rho-kinase (GST-CAT; 6-553 aa) and full-length R3 MBS (1-1032 aa) were produced in Spodoptera frugiperda cells in a baculovirus system and purified as described (Matsura et al., 1987; Amano et al., 1996a; Fukata et al., 1999). Maltose-binding protein-R/-B/-P/-H (TM71 (Goto et al., 1998); 941-1388 aa), GST-MBS-NH2-terminus domain (GST-MBS-NT; 1-763 aa), GST-MBS-CODH-terminus domain (GST-MBS-CT; 758-1032 aa), GST-MBS-CT834A, 855A (GST-MBS-CT A A), GST-RhoA145, and GST-C3 were produced and purified from E. coli. For microinjection, GST-C3 and RhoA145 were cleaved with thrombin, and purified to remove the GST. M B-P-R/-P/-H (TM71, C3 and RhoA145) were concentrated, and during the concentration the buffer was replaced by microinjection buffer (20 mM Tris-HCl at pH 7.4, 20 mM NaCl, 1 mM MgCl2, 0.1 mM EDTA, and 5 mM 2-mercaptoethanol). For incubation, the buffer of C3 was replaced by PBS. The guanosine 5′- (3′-thio)triphosphate (GTP-S) bound form of RhoA145 was prepared as described (Takaiishi et al., 1993).

Phosphorylation Assay and Determination of the Sites of Phosphorylation of MBS by Rho-Kinase

The kinase reaction for Rho-kinase was carried out in 50 μl of kinase buffer A (50 mM Tris-HCl at pH 7.5, 1 mM MgCl2, 1 mM EDTA, 1 mM EGTA, and 1 mM DTT) containing 100 μM γ32P]ATP (1-20 GBq/ mmol), 5 pmol of GST-CAT and 20 pmol of GST-MBS-NT, GST-MBS-CT, GST-MBS-CT AAA, or full-length MBS. The kinase reaction for PKC was carried out in 50 μl of kinase buffer B (25 mM Tris-HCl at pH 7.5, 5 mM MgCl2, 400 mM CaCl2, 150 mM NaF, 10 μM phosphatidylserine, 1 μM phosphatidylcholine, 1 μM phosphatidylethanolamine, and 1 μM phosphatidylserine + 1 μM phosphatidylcholine). The reactions were terminated by the addition of 25 μl of sample buffer (50 mM Tris-HCl at pH 6.8, 2% SDS, 5% 2-mercaptoethanol, 0.1% bromophenol blue, and 10% glycerol). The samples were then boiled for 10 minutes and subjected to SDS-PAGE. The gels were fixed in 25% ethanol and 10% acetic acid, dried, and exposed to X-ray film.
and 1 mM DTT) containing 100 nM γ-[32P]ATP (1-20 GBq/mmol), 5 pmol of PKC, and 20 pmol of full-length MBS. After an incubation for 15 min at 30°C, the reaction products were boiled in SDS sample buffer and aliquots of the reaction products were subjected to SDS-PAGE. The radiolabeled bands were visualized and estimated by an image analyzer (BA S-2000; Fuji).

To determine the sites of phosphorylation of MBS, the recombinant full-length MBS (1 nmol of protein) was phosphorylated with GST-CAT (200 pmol of GST-CAT in 1 ml of kinase buffer A containing 100 μM γ-[32P]ATP) for 1 h at 30°C, and the reaction product was digested with Achromobacter protease I at 37°C for 20 h. The obtained peptides were applied onto a C18 reverse phase column (SG 120; 4.6 × 250 mm; Shimadzu) and eluted with a linear gradient of 0-48% acetonitrile for 100 min at a flow rate of 1.0 ml/min by high-performance liquid chromatography (System Gold; Beckman). The radioactive peptides were separated and phosphoamino acid sequencing was carried out with a peptide sequencer (PPSQ-10; Shimazu). The fractions obtained from each E domain degradation cycle were measured for 32P in a Beckman liquid scintillation counter.

Production of Site- and Phosphorylation State-specific Antibody for MBS
A rabbit polyclonal antibody against MBS phosphorylated at Ser-854 (anti-pS854 Ab) was prepared as described (Inagaki, M., et al., 1997). The phosphopeptide Cys-Arg-Glu-Lys-Arg-phosphoSer (Thr-Gly-Val-Ser-Phε) was chemically synthesized as an antigen and bound to the carrier protein, keyhole limpet hemocyanin at the NH2-terminal cysteine residue, by Peptide Institute Inc. The obtained antiserum was then affinity-purified against the phosphopeptide.

Cell Culture
MDCK cells were grown in DMEM containing 10% calf serum, penicillin, and streptomycin in an air-5% CO2 atmosphere at constant humidity. MDCK cells were fixed with 3.0% formaldehyde in PBS for 20 min, washed and homogenized in buffer H, and centrifuged at 1,600 g for 20 min at room temperature. The resulting precipitates were used as membrane fraction. The precipitates containing the GST-catalytic domain of Rho-kinase (GST-CAT; 6–553 aa) was chemically synthesized as an antigen and bound to the carrier protein, keyhole limpet hemocyanin at the NH2-terminal cysteine residue, by Peptide Institute Inc. The obtained antiserum was then affinity-purified against the phosphopeptide.

Detection of Phosphorylated MBS in MDCK Cells by Immunoblot Analysis
We employed the conditions for C3 treatment as described (Nishiki et al., 1990; Morii and Narumiya, 1995; Amano et al., 1996b) with slight modifications. In brief, cells were seeded at a density of 4.0 × 104 cells in 10-cm dishes and incubated for 24 h. For the C3 treatment, the seeded cells were incubated first for 8 h, then incubated with fluorescein isothiocyanate (FITC)-conjugated anti-rabbit or -mouse IgA, or Texas red-conjugated anti-rabbit, -mouse, or -rat IgA for 1 h at room temperature or tetramethylrhodamine B isothiocyanate (TRITC)-phalloidin for 30 min at room temperature. DNA was stained with 1 μg/ml of bisbenzimide H33342 for 3 min at room temperature. Fluorescently labeled cells were examined with a Zeiss LSM 510 (Carl Zeiss). In some experiments, fluorescent images (Figs. 4 and 5) were taken with PXL cooled CCD camera (Photometrics) with DeltaVision processing software (Aplied Precision Inc.). Exposure time was adjusted to obtain FITC and Texas red or rhodamine images with roughly equal intensities in nonstimulated MDCK cells (see Fig. 4 A, a and b, and B, a and b, respectively; checked by histogram analysis). Under the same condition, the images of TPA- or HGF-stimulated MDCK cells were taken. The images of Figs. 4 A and 5 A, or Figs. 4 B and 5 B were treated with same expression and brightness, respectively. Grayscale FITC and Texas red images were converted into green and red images, respectively, and then merged to synthesize RGB color images. A ratio image was created using an Image-Pro image processing system (Media Cybernetics). A grayscale image of anti-pS854 Ab was divided by a corresponding grayscale image of anti-MBS Ab, and the resultant image was multiplied by 50.

Microinjection
R E F S 2 cells were seeded at a density of 3 × 104 cells per 12-mm cover glass in 6-cm dishes and incubated for 48 h. M B P (5 mg/ml), C 3 (0.1 mg/ml), C 3 (0.1 mg/ml) plus G T P 7 S R h o 4 2 (0.4 mg/ml), or M B P R B / P H (T T) (5 mg/ml) was microinjected along with a marker protein (rabbit or mouse IgG at 1 mg/ml) into the cytoplasm of cells. After injection, the cells were incubated at 37°C for 30 min, and fixed as described above.

Results
Determination of the Sites of Phosphorylation of MBS by Rho-Kinase
We first determined the sites of phosphorylation of MBS by Rho kinase in vitro as follows. Full-length MBS was expressed in Spodoptera frugipera cells in a baculovirus system and purified. Purified MBS was then incubated with the GST-catalytic domain of Rho kinase (GST-CAT; 6–553 aa). C A T has been previously shown to be constitutively active in vitro and in vivo (Amano et al., 1996a, 1997). Phosphorylated MBS was digested with Achromobacter protease I and subjected to high-performance liquid chro-
matography. Two major (AP-3 and -4) and 6 minor (AP-1, -2 and -5–8) radioactive peptides were obtained (Fig. 1). As shown in Table I, we identified 14 phosphorylation sites of MBS by Rho-kinase. Thr-697 and Ser-854 turned out to be the major phosphorylation site in AP-3 and AP-4, respectively. When GST-MBS-NT (1–763 aa) or CT (758–1032 aa) was used as a substrate instead of full-length MBS, the essentially similar results were obtained (data not shown). Taking our previous studies and this result into consideration, the consensus sequence of Rho-kinase phosphorylation site is RXXS/T or RXS/T (Amano et al., 1996a; Goto et al., 1998; Matsui et al., 1998; Fukata et al., 1999). Rho-kinase seems to require the basic amino acid such as Arg close to its phosphorylation site. It has been previously reported that MBS is phosphorylated by protein kinase A (PKA), protein kinase C (PKC), and the endogenous kinase that is copurified with MBS from chicken gizzard (Ichikawa et al., 1996; Ito et al., 1997). MBS is phosphorylated at Thr-850 of Chicken M133, which corresponds to Thr-855 (one of the phosphorylation sites in AP-4) of Rat3 MBS, by PKA (Ito et al., 1997). The sites of phosphorylation of MBS by PKC are unknown. It should be noted that Thr-697 (a major phosphorylation site in AP-3) corresponds to Thr-695 of Chicken M133, has been shown to be phosphorylated by the endogenous kinase (Ichikawa et al., 1996). The phosphorylation of chicken MBS by the endogenous kinase results in inhibition of myosin phosphatase (Ichikawa et al., 1996). Thus, the phosphorylation of MBS at Thr-697 by Rho-kinase may result in inhibition of myosin phosphatase. The endogenous kinase has not been identified. However, the endogenous kinase appears to be distinct from Rho-kinase because some characters of the endogenous kinase are different from those of Rho-kinase (Amano, M., and K. Kaibuchi, unpublished data; Ichikawa et al., 1996).

Production and Characterization of the Site- and Phosphorylation State-specific Antibody for MBS

To investigate how the phosphorylation of MBS by Rho-kinase is regulated in vivo, we prepared the site- and phosphorylation state-specific antibody for MBS. As shown in Table I, Rho-kinase phosphorylated multiple sites of MBS in vitro. Thr-697 was one of the major sites of phosphorylation of MBS by Rho-kinase in vitro. However, we can not distinguish the phosphorylation of Thr-697 by Rho-kinase and the endogenous kinase in vivo as described above. Ser-854, which was also one of the major sites of phosphorylation of MBS by Rho-kinase in vitro, is the phosphorylation site specific to Rho-kinase among known MBS kinases in vitro (We confirmed that PKC did not phosphorylate MBS at Ser-854: see below). The phosphorylation at Ser-854 can serve as a pertinent indicator to study MBS phosphorylation by Rho-kinase in vivo. Thus, we prepared the rabbit polyclonal antibody (anti-

Table I. Amino Acid Sequences of Phosphopeptides Derived from Rho-Kinase Phosphorylated Rat3 MBS

Peptide no.	Amino acid sequence*	Phosphorylated residues‡	Relative amount of phosphate in peptide§
AP-1	NASRIESLEQEK	Ser-332	3.4% total
	(residue 330–341)		
AP-2	DTAGVIRASSPRLLSSLDNK	Ser 472	8.5% total
	(residue 463–483)		
AP-3	ARSRQARQSRSTQVLDDLQAEK	Ser-693, Ser-696, Thr-697	23.5% total
	(residue 685–710)		
AP-4	RRSTVGFSWTDSENEQRSQTDGSSK	Ser-854, Thr-855	22.0% total
	(residue 852–881)		
AP-5	TGSYGAELTASKEAQK	Thr-443, Ser-445	6.0% total
	(residue 443–460)		
AP-6	RDTQTDVSYDSSSTDDYSLGGASYSYLEEK	Thr-884, Ser-894, Ser-905	11.5% total
	(residue 882–920)		
AP-7	ND		
AP-8	YSRTYIDTARYRPVSTSSSTPSSSLSTLGSSEASSQLNRPSLTVGITSAYRGLTK	Thr-762, Ser-774	3.2% total
	(residue 759–818)		

*Residue numbers correspond to Rat3 MBS.
‡The residues that showed the highest radioactivity in each peptide are underlined.
§Determined from radioactivity in the HPLC analysis as shown in Fig. 1. Total is not 100% because the amount of minor peaks is excluded.
fivefold the basal level. The stoichiometries of phosphorylation level of MBS at Ser-854 was about 30% at the basal level and ~0.20 at the maximal level, respectively. Similar results were obtained when the cells were stimulated with HGF, although the level of MBS phosphorylation induced by HGF was slightly lower than that induced by TPA (Fig. 3 B). We also confirmed that the addition of dibutyryl cAMP did not induce the phosphorylation of MBS at Ser-854 (Fig. 3 A), whereas it induced the phosphorylation of cAMP-response element binding protein (CREB) at Ser-133 (data not shown). These results indicate that MBS is phosphorylated during the action of TPA and HGF in MDCK cells. We furthermore examined whether MBS was phosphorylated at Ser-854 via the Rho/Rho-kinase pathway during the action of TPA and HGF in MDCK cells (Fig. 3 C). Botulinum C3 ADP-ribosyltransferase (C3), which is thought to interfere with endogenous Rho functions, inhibited the focal adhesion formation in MDCK cells (~50% inhibition by incubation of 100 µg/ml of C3; data not shown). Under the conditions, the TPA-induced MBS phosphorylation was inhibited to a similar extent (Fig. 3 C). A similar inhibition was observed when the cells were pretreated with HA 1077 or Y-27632, both of which are inhibitors of Rho-kinase (Fig. 3 C; Uehata et al., 1997).

Distribution of Phosphorylated MBS in MDCK Cells

We investigated the subcellular distribution of MBS phosphorylated at Ser-854 in MDCK cells. In the nonstimulated MDCK cells, the immunoreactivity of phosphorylated MBS was strong in the nucleus and diffuse in the cytoplasm, but not detected in cell–cell contact sites and free end of plasma membrane (Fig. 4 A, a). The TPA-induced membrane ruffling was detectable within 5 min and reached maximum at 15 min of exposure to TPA in the outer cell edge colonies (Nishiyama et al., 1994). Under the conditions, the addition of TPA enhanced the immunoreactivity of phosphorylated MBS in the cytoplasm, and the immunoreactivity of phosphorylated MBS was weakly detected in the membrane ruffling area (Fig. 4 A, c, arrowhead), where F-actin (Fig. 4 A, d, arrowhead),
MBS (Fukata et al., 1998) and phosphorylated α-adducin accumulated (Fukata et al., 1999). Similar results were obtained when the cells were stimulated with HGF instead of TPA (Fig. 4 A, e and f; arrowheads). The immunoreactivity of phosphorylated MBS in the nucleus, cytoplasm and membrane ruffling area was abolished by preincubation of the antibody with the antigen phosphopeptide (Fig. 4 A, g and h).

Next, we compared the distribution of phosphorylated and total MBS. In nonstimulated MDCK cells, the immunoreactivity of total MBS was strong in the cytoplasm (Fig. 4 B, b; Inagaki et al., 1997). In TPA-stimulated MDCK cells, the immunoreactivity of total MBS was detected in the cytoplasm and the TPA-induced membrane ruffling area (Fig. 4 B, f; Fukata et al., 1998). The merged image of anti-pS854 A b (green) and anti-MBS A b (red) immunofluorescence enabled us to roughly estimate the phosphorylation state of MBS. Green, yellow, and red images

![Figure 3. Rho- and Rho-kinase-dependent phosphorylation of MBS at Ser-854 in MDCK cells. (A) TPA- and HGF-induced phosphorylation of MBS at Ser-854. Serum-deprived MDCK cells were stimulated with 200 nM TPA, 50 pM HGF for 15 min or 5 mM dibutyryl cAMP (cAMP) for 30 min, and the whole-cell lysates were resolved by SDS-PAGE followed by immunoblotting with anti-pS854 A b (upper panel) and anti-pnMBS A b (lower panel). Arrowhead indicates the position of MBS phosphorylated at Ser-854. A minor band with apparent relative molecular mass of 90 kD may be a degradation product of MBS. (B) Time course of the phosphorylation of MBS at Ser-854 in the TPA- and HGF-stimulated MDCK cells. Serum-deprived MDCK cells were stimulated with 200 nM TPA (a) or 50 pM HGF (b) for 3, 5, 15, 30, 60, or 120 min, and the whole-cell lysates were resolved by SDS-PAGE followed by immunoblotting with anti-pS854 A b (upper panels) and anti-pnMBS A b (lower panels). The amount of MBS phosphorylated at Ser-854 was quantitatively determined by scanning densitometry. The densities of the immunoreactive bands with anti-pS854 A b were normalized by that of total MBS. The mean density of the immunoreactive bands with anti-pS854 A b at 0 min was set at 100 arbitrary units. The values shown are means ± SE of triplicates. (C) Inhibition of the TPA- and HGF-induced MBS phosphorylation by C3 or Rho-kinase inhibitors. Nonpretreated (2), 50 or 100 μg/ml C3-pretreated (3 and 4), 1 or 10 μM of HA1077-pretreated (5 and 6), or 1 or 10 μM of Y-27632-pretreated (7 and 8) serum-deprived MDCK cells were stimulated with (2–8) or without (1) 200 nM TPA (a) or 50 pM HGF (b) for 15 min and the lysates were resolved by SDS-PAGE followed by immunoblotting with anti-pS854 A b (upper panels) and anti-pnMBS A b (lower panels). The densities of the immunoreactive bands with anti-pS854 A b were normalized by that of total MBS. The mean density of the immunoreactive bands with anti-pS854 A b in the nonstimulated cells was set at 100 arbitrary units. The values shown are means ± SE of triplicates.
indicate high, intermediate, and low levels of phosphorylation of MBS at Ser-854, respectively. The merged image of phosphorylated and total MBS of the cytoplasm and free end of plasma membrane in the TPA-stimulated cells was more greenish than that of the cytoplasm in the nonstimulated cells (Fig. 4 B, c and g). Consistently, the ratio (phosphorylated MBS/MBS) was high in cytoplasm and membrane ruffling area of TPA-stimulated MDCK cells as compared with that of nonstimulated MDCK cells (Fig. 4 B, d and h). The ratio in nucleus was also increased by TPA stimulation. We found that phosphorylated MBS was more enriched in the membrane ruffling area as compared with Rho GDI, which is one of the cytoplasmic proteins (data not shown; Ueda et al., 1990). Similar results were obtained when the cells were stimulated with HGF instead of TPA (Fig. 4 B, k and l).

To further determine the subcellular distribution of phosphorylated MBS, we carried out the subcellular fractionation analysis (Fig. 4 C). Total MBS was detected mainly in cytoplasmic fractions in non- and TPA-stimulated MDCK cells. The amount of total MBS in each fraction of subcellular fractionation was consistent with the result of immunofluorescence study (Fig. 4, B and C). In nonstimulated MDCK cells, phosphorylated MBS was weakly detected in nuclear and cytoplasmic fractions. The addition of TPA increased phosphorylated MBS mainly in the cytoplasmic fraction and modestly in the nuclear fraction. In addition, phosphorylated MBS was weakly detected in membrane fraction. It should be also noted that although the immunoreactivity of phosphorylated MBS in immunofluorescence study was strong in the nucleus in the presence or absence of TPA (Fig. 4 A, a and B), the phosphorylation level of MBS in the nuclear fraction in the cells stimulated with TPA was lower than that in the cytoplasmic fraction in subcellular fractionation analysis (Fig. 4 C). This might be due to the rapid dephosphorylation of MBS during nuclear isolation. Severe dephosphorylation of MBS was not prevented during the subcellular fractionation under the present conditions. Therefore, the amount of phosphorylated MBS after subcellular fractionation may be less than that of phosphorylated MBS in intact cells. We found the additional band above phosphorylated MBS in nuclear fraction. We do not know exactly whether the additional band is an isoform of MBS or a nonspecific band. In fact, Shimizu et al. identified two isoforms of MBS (M130 and M133) from chicken gizzard (Shimizu et al., 1997). The similar isoforms may exist in MDCK cells. However, we could not rule out the possibility that pS854 A b cross-reacted with other insoluble nuclear component in immunofluorescence study.

Distribution of Phosphorylated MBS in Migrating MDCK Cells

We compared the subcellular distribution of phosphorylated MBS with that of F-actin and phosphorylated MLC at Ser-19 in migrating MDCK cells. Between 2 and 16 h after the addition of TPA, the cells dissociated from each other and migrated, with polarized morphology and membrane ruffling in the leading edge. In the TPA-induced migrating cells, phosphorylated MBS was localized in the leading edge, where F-actin accumulated, and the posterior region containing the nucleus (Fig. 5 A, a and b). Similar results were obtained as to the distribution of phosphorylated MLC in migrating MDCK cells (Fig. 5 A, c and d) as described (M atsumura et al., 1998). The merged image of phosphorylated and total MBS in the leading edge and the posterior region containing the nucleus in migrating MDCK cells was more greenish than that in the cytoplasm in the nonstimulated MDCK cells (Fig. 5 B, c and Fig. 4 B, c). Consistently, the ratio (phosphorylated MBS/MBS) was high in the leading edge and the posterior region containing the nucleus in migrating MDCK cells as compared with that in nonstimulated MDCK cells (Fig. 4 B, d and Fig. 5 B, d).

Colocalization of Phosphorylated MBS, F-Actin, and Phosphorylated MLC in REF52 Fibroblasts

We further investigated the subcellular distribution of phosphorylated MBS, F-actin, and phosphorylated MLC in REF52 fibroblasts. REF52 cells grown in 10% fetal bovine serum have thick actin stress fibers and vinculin-containing focal adhesions, and show a filamentous periodical pattern of myosin on stress fibers. We have previously shown that total MBS is localized on stress fibers (Inagaki, N.; et al., 1997). Phosphorylated MBS was localized on stress fibers, cortical actin filaments, and in the nucleus in REF52 cells (Fig. 6 A, a). The double-immunostaining by TRITC-phalloidin and anti-pS854 A b (Fig. 6 A, a and b) or anti-pp2b A b (Fig. 6 A, c and d) demonstrated coexistence of phosphorylated MBS, F-actin and phosphorylated MLC on stress fibers and cortical actin filaments. The intracellular localization of phosphorylated MBS is consistent with in vitro binding of MBS and myosin (Alessi et al., 1992; Shimizu et al., 1994). There was the difference in localization of phosphorylated MBS between REF52 and MDCK cells. REF52 cells highly developed thick stress fibers (Fig. 6 A, b), whereas serum-starved MDCK cells had a few thin stress fibers (Fig. 4 A, b). Thus, phosphorylated MBS might not be detected in stress fibers in MDCK cells. Next, we compared the distribution of phosphorylated and total MBS. The distribution of phosphorylated MBS was similar to that of total MBS (Fig. 6 B, c). The ratio (phosphorylated MBS/MBS) image showed that the phosphorylation level of MBS was high on stress fiber and in nucleus (Fig. 6 B, d).

We examined the effects of C3 and dominant negative Rho-kinase (RB/PH(TT)) on the localization of phosphorylated MBS in REF52 cells (Fig. 6 C). C3 A DP-ribosylates Rho at A sn-41 and inactivates it, whereas RhoA is not A DP-ribosylated by C3 and is insensitive to C3. RB/PH(TT) (941–1388 aa) is composed of Rho-binding (RB) and pleckstrin-homology (PH) domains of Rho-kinase (Matsu et al., 1996). RB/PH(TT), which has point mutations in the RB domain and does not bind to Rho, interacts with the kinase domain of Rho-kinase and thereby inhibits the Rho-kinase activity without titrating out Rho in vitro (Amano et al., 1999). RB/PH(TT) functions as the dominant negative form of Rho-kinase in vivo (Amano et al., 1998). The microinjection of C3 into REF52 cells disrupted the stress fibers and decreased the phosphorylated MLC staining (Fig. 6 C, e and h) as described (Chihara et al., 1997). The filamentous pattern of phosphorylated MBS was more enriched in the membrane ruffling area of TPA-stimulated MDCK cells as compared with that of nonstimulated MDCK cells (Fig. 4 B, d and Fig. 5 B, d).
Figure 4. Distribution of Ser-854–phosphorylated MBS in the TPA- or HGF-stimulated MDCK cells. (A) Distribution of Ser-854–phosphorylated MBS. Serum-deprived MDCK cells were stimulated with 200 nM TPA (c, d, and h) or 50 pM HGF (e and f) for 15 min. MDCK cells were stained with anti-pS854 Ab (a, c, and e) or TRITC-phalloidin (b, d, and f). MDCK cells were also stained with anti-pS854 Ab absorbed with a 100-fold amount of antigen phosphopeptide (g and h). Arrowheads indicate the induced membrane ruffling. (B) Distribution of phosphorylated and total MBS. Serum-deprived MDCK cells were stimulated with 200 nM TPA (e–h) or 50 pM HGF (i–l) for 15 min. MDCK cells were doubly stained with anti-pS854 Ab (a, e, and i) and anti-mMBS Ab (b, f, and j). The merged (c, g, and k) and ratio (phosphorylated MBS/MBS; d, h, and l) images are shown. Arrowheads indicate the induced membrane ruffling. (C) Subcellular distribution of phosphorylated MBS. Non- (−) and TPA- (+) stimulated MDCK cells were separated into nuclear (nucleus), cytoplasmic (cytoplasm), and membrane (membrane) fractions, and the fractions were immunoblotted with anti-pS854 Ab (upper panel) and anti-pnMBS Ab (lower panel). These results are representative of three independent experiments. Bars, 10 μm.
MBS was also perturbed by the microinjection of C3 (Fig. 6 C, f). Under these conditions, total MBS and MLC were scattered in the cytoplasm (Fig. 6 C, g; Chihara et al., 1997). The coinjection of GTPγS-RhoA I41 with C3 reversed the effects of C3 (Fig. 6 B, i–l). The microinjection of RB/PH (TT) also disrupted the stress fibers (Fig. 6 C, m) and decreased the staining of phosphorylated MBS and MLC in REF52 cells (Fig. 6 C, n and p). Similar results were obtained when cells were treated with Rho-kinase inhibitors (HA1077 and Y-32885) (data not shown). It should be noted that the microinjection of C3 into REF52 decreased the staining of phalloidin in most cells, whereas that of RB/PH (TT) induced the disorganization of actin filaments (Fig. 6 C, m). C3 may induce depolymerization of F-actin through the inhibition of other Rho-targets such as p140mDia.

Distribution of Phosphorylated MBS and ERM Family Proteins during Cytokinesis

It has been shown that ERM family proteins and MLC phosphorylated at Ser-19 highly accumulate at the cleavage furrow during cytokinesis (Sato et al., 1991; Matsumura et al., 1998). In a recent study, we have found that Rho-kinase also highly and circumferentially accumulates at the cleavage furrow in various cell lines (Kosako et al., 1999), and that dominant negative Rho-kinase inhibits the progress of cytokinesis (Yasui et al., 1998). Here we examined the distribution of phosphorylated MBS during the different mitotic stages of MDCK cells. Phosphorylated MBS was enriched at the mid zone between the daughter chromosomes in late anaphase and at the cleavage furrow in telophase (Fig. 7 A, a and b). Phosphorylated MBS persisted at the mid body until the end of cytokinesis (Fig. 7 A, c). Next, we compared the distribution of phosphorylated MLC and ERM family proteins to that of phosphorylated MBS during different mitotic stages of MDCK cells. The staining patterns of phosphorylated MLC were spatially and temporally similar to that of phosphorylated MBS in dividing cells (Fig. 7 A, g–i). Phosphorylated ERM family proteins accumulated in the microvilli-like structures in the cell body at all stages as described (Oshiro et al., 1998), and highly and circumferentially accumulated around the mid zone in late anaphase, and the cleavage furrow in telophase. The staining patterns of phosphorylated ERM family proteins were also similar to that of phosphorylated MBS, but phosphorylated ERM family proteins did not persist at the mid body until the end of cytokinesis (Fig. 7 A, m–o). Vimentin is the most widely expressed intermediate filament protein, which is phosphorylated by Rho-kinase at Ser-71 (Goto et al., 1998). Using TM71, which recognizes the phosphorylation of vimentin at Ser-71, vimentin is shown to be specifically phosphorylated at the cleavage furrow whereas total vimentin is diffusely localized throughout the cytoplasm (Yasui et al., 1998). Although phosphorylated vimentin, MBS and ERM family proteins accumulated around the cleavage furrow, they were not completely colocalized (Fig. 7 B, f and l). Phosphorylated adducin, which is one of the Rho-kinase substrates, was diffusely localized throughout the cytoplasm (Fig. 7 B, m). It should be noted that total MBS was diffusely localized throughout the cytoplasm, but not accumulated at the cleavage furrow (Fig. 7 B, a). In contrast, phosphorylated MBS strongly accumulated at the cleavage furrow (Fig. 7 B, d), indicating that MBS was phosphorylated specifically at the cleavage furrow. Total ERM family proteins was diffusely localized throughout the cytoplasm, and at the microvilli and cleavage furrow.
Figure 6. Colocalization of phosphorylated MBS, F-actin and phosphorylated MLC in REF52 fibroblasts. (A) Localization of phosphorylated MBS. REF52 cells were doubly stained with TRITC-phalloidin (b and d) and anti-pS854 Ab (a) or anti-pp2b Ab (c). (B) Distribution of phosphorylated and total MBS in REF52 cells. REF52 cells were doubly stained with anti-pS854 Ab (a) and anti-mMBS Ab (b). The merged (c) and ratio (phosphorylated MBS/MBS; d) images are shown. (C) Inhibition of phosphorylation of MBS by C3 or dominant negative Rho-kinase. REF52 cells were microinjected with MBP (5.0 mg/ml) (a–d), C3 (0.1 mg/ml) (e–h), C3 plus GTPγS-RhoA I41 (0.4 mg/ml) (i–l), or MBP–RB/PH(TT) (5.0 mg/ml) (m–p). REF52 cells were stained with TRITC-phalloidin (a, e, i, and m), anti-pS854 Ab (b, f, j, and n), anti-pMBS Ab (c, g, k, and o), and anti-pp2b Ab (d, h, l, and p). The arrowheads indicate the injected cells. Bars, 10 μm.
Figure 7. Distribution of phosphorylated MBS and ERM family proteins during cytokinesis in MDCK cells. (A) Accumulation of phosphorylated MBS and ERM family proteins at the cleavage furrow. MDCK cells in late anaphase (a, d, g, j, m, and p), telophase (b, e, h, k, n, and q) or cytokinesis (c, f, i, l, o, and r; indicated by arrowheads) stained with anti-pS854 Ab (a–c), anti-pp2b Ab (g–i), or anti-pT558 Ab (m–o) are shown. DNAs were stained with bisbenzimide Hoechst (d–f, j–l, and p–r). (B) Specific localization of phosphorylated Rho-kinase substrates during cytokinesis. MDCK cells in cytokinesis doubly stained with TM71 (b, e, h, k, and n) and anti-pnMBS Ab (a), anti-pS854 Ab (d), anti-ERM Ab (g), anti-pT558 Ab (j), and anti-pT445 Ab (m). Merged images are shown (c, f, i, l, and o). (C) Elevation of phosphorylation of MBS at Ser-854 during cytokinesis. Total cell lysates were prepared from interphase cells (I), early mitotic cells (metaphase, M) and cells at different stages of cell division (time in minutes after the release of mitotic arrest), and immunoblotted with anti-pS854 Ab (upper panel) or anti-pnMBS Ab (lower panel). These results are representative of three independent experiments. Bars, 10 μm.
of MBS kinases, the phosphorylation of MBS at Thr-697 appeared to be distinct from Rho-kinase because the endogenous kinase is not inhibited by H7, which is one of the PKC inhibitors, whereas Rho-kinase is inhibited by H7 (unpublished data), and because the endogenous kinase but not Rho-kinase phosphorylates MLC at PKC sites (Amano et al., 1996a; Ichikawa et al., 1996). Since several sites of MBS including Thr-697 and Ser-854 were phosphorylated by Rho-kinase in vitro, further studies are necessary to determine which sites are the major sites of phosphorylation of MBS by Rho-kinase in vivo, and which phosphorylation sites are responsible for the inhibition of the phosphatase activity by Rho-kinase in vitro and vivo.

Phosphorylation of MBS by Rho-Kinase In Vivo

We have previously shown that expression of dominant active Rho in NIH 3T3 cells results in an increment of MBS phosphorylation (Kimura et al., 1996). MBS is phosphorylated and the myosin phosphatase activity is inactivated during the action of thromboxane A2 in platelets, and both reactions are inhibited by a prior treatment of platelets with C3 (Nakai et al., 1997). Similar observations are obtained in endothelial cells during the action of thrombin (Essler et al., 1998). Here we found by use of anti-pS854 Ab that the stimulation of MDCK cells with TPA or HGF induced the phosphorylation of MBS at Ser-854, and that pretreatment of the cells with C3 or Rho-kinase inhibitors inhibited the TPA- or HGF-induced MBS phosphorylation. It is possible that TPA induced the phosphorylation of MBS at Ser-854 through direct phosphorylation by PKC. However, this possibility is unlikely because anti-pS854 Ab did not recognize MBS phosphorylated by PKC in vitro. Phosphorylated MBS accumulated on stress fibers in REF52 cells. The microinjection of C3 or dominant negative Rho-kinase into REF52 cells weakened the accumulation of phosphorylated MBS. These results indicate that MBS is phosphorylated by Rho-kinase downstream of Rho in non-muscle cells. Myosin phosphatase binds to phosphorylated Rho-kinase substrates such as MLC via MBS and dephosphorylates them. Rho-kinase phosphorylates MBS, which leads to the inactivation of myosin phosphatase in vitro (Kimura et al., 1996, 1998; Fukata et al., 1998). Taken together, these observations suggest that the phosphorylation of MBS by Rho-kinase is involved in regulating the phosphorylation level of Rho-kinase substrates in non-muscle cells.

Evidence is accumulating that Rho regulates the phosphorylation level of MLC through Rho-kinase and myosin phosphatase in smooth muscle cells (Hirata et al., 1992; Noda et al., 1995; Gong et al., 1996; Kureishi et al., 1997). Because contraction of smooth muscle cells determines the size of lumen in blood vessels, airways, the gastrointestinal tract, uterus, and bladder, abnormal contraction can cause diseases such as hypertension and asthma (Somlyo, 1997). It has recently been shown that Y-27632 (one of the specific inhibitors for Rho-kinase) selectively inhibits smooth muscle contraction and corrects blood pressure in several hypertensive rat models (Uehata et al., 1997). Thus, the Rho-kinase-mediated pathway appears to be involved in the pathogenesis of hypertension. Phosphorylation of MBS by Rho-kinase may play an important role in generating a certain types of abnormal contraction of smooth muscle. In this regard, we have recently found that Rho-kinase phosphorylates MBS at Ser-854 during porcine coronary artery spasm (Kandaboshi et al., 1999).

Phosphorylation of MBS in Motile Cells

Membrane ruffling is observed in the leading edges of motile cells and is thought to be essential for cell motility (Cooper, 1991). A force arising from actin polymerization appears to drive lamellipodial protrusion (Mitchison and Cramer, 1996), which is thought to be regulated by the small GTPase Rac (Ridley et al., 1992; Hall, 1998). A ctin in the membrane ruffling area is thought to be continuously depolymerized and then repolymerized during cell movement (Mitchison and Cramer, 1996). A force derived from myosin II driven by MLC phosphorylation, which is thought to be regulated by Rho (Amano et al., 1996a, 1998) in the membrane ruffling area and posterior region

Discussion

Phosphorylation of MBS by Rho-Kinase In Vivo

Here we identified Ser-854 as one of the major sites of phosphorylation of MBS by Rho-kinase in vitro, and prepared a rabbit polyclonal antibody (anti-pS854 Ab), raised against the synthetic phosphopeptide. An anti-pS854 Ab specifically recognized MBS phosphorylated by Rho-kinase, but not by PKC in vitro. Since Ser-854 in MBS is the phosphorylation site specific to Rho-kinase among known MBS kinases, the phosphorylation of MBS at Ser-854 appears to be a useful indicator of the Rho/Rho-kinase activation in vivo. We found that Thr-697 was also one of the major sites of phosphorylation of MBS by Rho-kinase in vitro. We have previously reported that the phosphatase activity toward MLC is inhibited when MBS is phosphorylated by Rho-kinase (Kimura et al., 1996). The endogenous kinase that is copurified with MBS from chicken gizzard (Ichikawa et al., 1996), phosphorylates MBS at Thr-695 (M133), which corresponds to Thr-697 of Rat3 MBS, and thereby inactivates the phosphate activity (Ichikawa et al., 1996). The phosphorylation of MBS at Thr-697 by Rho-kinase may result in inhibition of myosin phosphatase. The endogenous kinase appears to be distinct from Rho-kinase because the endogenous kinase is not inhibited by H7, which is one of the PKC inhibitors, whereas Rho-kinase is inhibited by H7 (unpublished data), and because the endogenous kinase but not Rho-kinase phosphorylates MLC at PKC sites (Amano et al., 1996a; Ichikawa et al., 1996). Since several sites of MBS including Thr-697 and Ser-854 were phosphorylated by Rho-kinase in vitro, further studies are necessary to determine which sites are the major sites of phosphorylation of MBS by Rho-kinase in vivo, and which phosphorylation sites are responsible for the inhibition of the phosphatase activity by Rho-kinase in vitro and vivo.
of motile cells may also contribute to cell movement (Lauffenburger et al., 1996; Mitchison and Cramer, 1996). Indeed, injection of anti-MLC-kinase Ab diminishes the cell motility of macrophages (Wilson et al., 1991). Moreover, Matsumura et al. (1998) have recently shown that the phosphorylation level of MLC is high in the leading edge and posterior region containing the nucleus during the cell migration. It has been previously reported that the addition of TPA decreases force that the whole cell applies to the substrate in certain migrating fibroblasts (Danowski and Harris, 1988). The cycling between phosphorylated and nonphosphorylated states of MLC may be necessary for cell migration. In this regard, we have recently reported that microinjection of either dominant negative or constitutively active Rho-kinase inhibits cell migration of NRK cells (Fukata et al., 1999).

We have recently found that the microinjection of dominant negative Rho-kinase inhibits the TPA- or HGF-induced membrane ruffling in MDCK cells, indicating that Rho-kinase is necessary for the cell motility (Fukata et al., 1999). Here we found that MBS phosphorylated at Ser-854 as well as MLC phosphorylated at Ser-19 were localized in the leading edge and posterior region in migrating MDCK cells. We have recently found that phosphorylated α-actin accumulates in the leading edge in migrating MDCK cells (Fukata et al., 1999). Myosin phosphatase interacts with both MLC and adducin through MBS, and dephosphorylates the phosphorylated MLC and α-actinin (Kimura et al., 1996, 1998). Taken together, the above observations suggest that myosin phosphatase and Rho-kinase cooperatively regulate the MLC phosphorylation in the leading edge and posterior region in migrating MDCK cells, and the α-actinin phosphorylation in the leading edge.

Phosphorylation of MBS in Fibroblasts

Rho-kinase is thought to regulate the formation of actin stress fibers (Leung et al., 1996; Amano et al., 1997; Ishizaki et al., 1997). We have recently found that the expression of mutant MLC\(^{180D, 519D}\) (substitution of residues by A sp), which is known to lead to the activation of myosin ATPase and a conformational change of myosin II when reconstituted with myosin heavy chain in vitro (Kamisoyma et al., 1994; Sweeney et al., 1994; Bresnick et al., 1995), also enhances the formation of stress fiber (Amano et al., 1998). Thus, it is likely that the Rho/Rho-kinase pathway plays a critical role in the formation of stress fiber through myosin II activation. Here we found that phosphorylated MBS was localized on stress fibers in REF52 cells. The microinjection of C3 or dominant negative Rho-kinase into REF52 cells disrupted stress fibers and weakened the accumulation of phosphorylated MBS. These observations suggest that myosin phosphatase and Rho-kinase cooperatively regulate the MLC phosphorylation in fibroblasts, which in turn induce the formation of stress fiber.

Phosphorylation of MBS during Cytokinesis

Rho, Rho-kinase, and ERM family proteins accumulate at the cleavage furrow (Sato et al., 1991; Takaiishi et al., 1995; Osako et al., 1999), where MLC phosphorylation occurs (Matsumura et al., 1998). The expression of C3 or dominant negative Rho-kinase inhibits cytokinesis, resulting in multiple nuclei (Kishi et al., 1993; Mabuchi et al., 1993; Y asui et al., 1998). Thus, MLC phosphorylation by the Rho/Rho-kinase pathway appears to provide contractility to the contractile ring and to play a critical role in cytokinesis. Rho-kinase also phosphorylates intermediate filament proteins such as glial fibrillary acidic protein (GFAP) and vimentin, exclusively at the cleavage furrow during cytokinesis (Osako et al., 1997; Goto et al., 1998). The expression of GFAP mutated at Rho-kinase phosphorylation sites induces impaired segregation of glial filament into postmitotic daughter cells (Y asui et al., 1998). Thus, Rho-kinase appears to be essential not only for cytokinesis but also for the segregation of GFAP filaments into daughter cells which in turn ensures efficient cellular separation. Here we found that phosphorylated MBS as well as phosphorylated ERM family proteins accumulated at the cleavage furrow, where phosphorylated MLC and vimentin accumulated. Indeed, the phosphorylation level of MBS elevated during cytokinesis. Taken together, these results suggest that myosin phosphatase spatiotemporally regulates the phosphorylation state of certain substrates including MLC and ERM family proteins during cytokinesis in cooperation with Rho-kinase under the control of Rho. Recently, it has been shown that citron kinase, another Rho-binding kinase with structural similarity in the kinase domain to Rho-kinase, accumulates at the cleavage furrow and may play an important role in the contractile process during cytokinesis (Madaule et al., 1998). Further analysis of different and redundant functions of both Rho-binding kinases will help us to elucidate the molecular mechanism underlying cytokinesis downstream of Rho.

We thank Dr. Alan Hall (University College London, London, UK) for providing pGEX-C3. D. J. Hartshorne (University of Arizona, Tucson, Arizona) for providing monoclonal mouse anti-mMBS Ab, Dr. Shoichiro Tsukita (Kyoto University, Kyoto, Japan) for providing MDCK cells and cDNA of mouse mosin, and A sahi Chemical Industry for providing HA 1077. We are also grateful to A kemi Takemura for secretarial assistance and Nagatoki Kinoishi and Tetsuyuki Izawa for technical assistance.

This study was supported by a grant-in-aid for Scientific Research from the Ministry of Education, Science, and Culture of Japan, by the Japan Society of the Promotion of Science Research for the Future, and by the Human Frontier Science Program.

Submitted: 3 February 1999 Revised: 4 October 1999 Accepted: 20 October 1999

References

Alessi, D., L.K. MacDougall, M.M. Sola, I. Ikebe, and P. Cohen. 1992. The mechanism underlying cytokinesis downstream of Rho. Eur. J. Biochem. 120:1023–1035.

Amano, M., M. Ito, K. Kimura, Y. Fukata, K. Chihara, T. Nakano, Y. Matsur, and K. Kaibuchi. 1996a. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271:20246–20249.

Amano, M., M. Mukai, Y. Ono, K. Chihara, T. Matsui, Y. Hamajima, K. Okawa, A. Iwamatsu, and K. Kaibuchi. 1996b. Identification of a putative target for Rho as a serine-threonine kinase, PKN. Science. 271:648–650.

Amano, M., K. Chihara, K. Kimura, Y. Fukata, N. Nakamura, Y. Matsuru, and K. Kaibuchi. 1997. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science. 275:1308–1311.

Amano, M., K. Chihara, N. Nakamura, Y. Fukata, T. Yano, M. Shibata, M. Ikebe, and K. Kaibuchi. 1998. Myosin II activation promotes neutrie retraction during the action of Rho and Rho-kinase. Genes Cells. 3:177–188.
Amano, M., K. Chihara, N. Nakamura, T. Kaneko, Y. Matsuura, and S. Narumiya. 1995. A novel serine/threonine kinase, ERM-kinase, stimulates the cytoskeleton. J. Biol. Chem. 270:8133–8136.

Ishizaki, T., M. Maekawa, K. Fujisawa, M. Maekawa, N. Watanabe, Y. Saito, and S. Narumiya. 1996. Preparation of native and recombinant p50ROCK, a Rho-associated coiled-coil forming protein kinase. Methods Enzymol. 256:196–206.

Murai, K., K. Hirano, E. Villa-Moruzzi, D. J. Hartshorne, and D. L. Brautigan. 1997. Differential localization of myosin and myosin phosphatase subunits in smooth muscle cells and migrating fibroblasts. Mol. Biol. Cell. 8:663–673.

Alivisatos, A. P., and M. L. Bilezikjian. 1987. Binding of a nuclear protein to the cyclic AMP response element of the somatostatin gene. Nature 328:175–178.

Morii, N., and S. Narumiya. 1995. Preparation of native and recombinant Clostridium botulinum C3 exoenzyme (BoNT/C). Methods Enzymol. 256:196–206.

Ishizaki, T., H. Shimokawa, K. Miyata, I. Kunihiro, Y. Kawanou, Y. Fukata, T. Higo, K. Egashira, S. Takahashi, K. Kaibuchi, and A. Takeishi. 1999. Inhibitory effects on myosin phosphatase by up-regulated Rho-kinase plays a role for coronary artery spasm in a porcine model with inter leukin-1β. Circulation. In press.

Szczepanski, P., A. Aoki, I. chikahana, and M. Negishi. 1998. p160ROCK-binding kinase ROKα is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell. Biol. 18:5313–5327.

Matsuura, Y., R.D. Possee, H.A. Overton, and D.H. Bishop. 1987. Baculovirus expressing the putative RGS domain encoded by human RGS-2. EMBO (Eur. Mol. Biol. Organ.) J. 6:1077–1082.

Matsui, T., M. Amano, T. Yamamoto, K. Chihara, M. Nakafuku, M. Ito, T. Nakano, S. Tsujino, K. Matsumura, K. Kimura, K. Kaibuchi, and M. Inagaki. 1997. Myosin binding subunit composition, interactions and regulation. J. Biol. Chem. 272:10333–10336.

Muroi, N., and S. Narumiya. 1995. Preparation of native and recombinant Clostridium botulinum C3 exoenzyme (BoNT/C). Methods Enzymol. 256:196–206.
Nagafuchi, A., Y. Shirayoshi, K. Okaizaki, K. Yasuda, and M. Takeichi. 1987. Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature. 329:341–343.

Nakai, K., Y. Suzuki, H. Kihira, H. Wada, M. Fujitaka, M. Itou, T. Nakano, K. Kiuchi, H. Shiku, and M. Nishikawa. 1997. Regulation of myosin phosphatase through phosphorylation of the myosin-binding subunit in platelet activation. Blood. 90:3936–3942.

Nakamura, T., N. Hagiya, T. Seki, M. Shimonishii, A. Sugimura, K. Tashiro, and S. Shimizu. 1989. Molecular cloning and expression of human hematocyte growth factor. Nature. 342:440–443.

Nishi, T., S. Narumiya, M. Morii, M. Yamamoto, M. Fujiwara, Y. Kamata, G. Nakamura, T., T. Nishizawa, M. Hagiya, T. Seki, M. Shimonishi, A. Sugimura, K. Tashiro, and S. Shimizu. 1990. Isolation and expression of human hepatocyte growth factor cDNA for different forms of hepatocyte growth factor from human leukocyte. Mol. Biol. Cell. 9:403–419.

Wilson, A.K., G. Gorgas, W.D., Claypool, and P. de Lanerolle. 1991. A new increase of or a decrease in myosin II phosphorylation inhibits macrophage motility. J. Cell Biol. 113:277–283.