Analysis of the possibility of upscaling based on apodization for partially coherent optical systems in the presence of aberrations

Y R Skidanov

Samara National Research University, Moskovskoe Shosse 34, Samara, Russia, 443086

e-mail: skidanovyaroslav@mail.ru

Abstract. The degree of coherence of radiation is an important characteristic on which the interference properties of light fields and, as a consequence, the resolution of optical systems depend. When propagating over long distances even in free space, initially completely coherent or incoherent radiation becomes partially coherent. This fact should be taken into account in the formation of optical images along with the influence of wave front aberrations. In this paper, we investigate the change in the resolution of the system for two near-point light sources depending on the degree of spatial coherence in the presence of different aberrations. The possibility of improving the resolution in the considered situations on the basis of the amplitude apodization of the optical system is also investigated.

1. Introduction

Light with very high spatial and temporal coherence is often required to solve many problems of interferometry, holography and some types of optical sensors (for example, fiber optic) [1-7]. For other tasks, the coherence of the light used should be as low as possible. For example, very low temporal coherence (but combined with high spatial coherence) is required for coherent tomography [8-10]. However, even fully coherent or incoherent radiation becomes partially coherent when dispersion [11] and even when spreading in free space over long distances [12]. The state of coherence significantly affects the quality of optical image formation [13], what to consider along with the effect of wave front aberrations [14-18], the main causes of which are: the turbulence of the atmosphere, the faultiness of the forms of optical elements of the system, errors in the alignment of the system, etc. [19-26].

One of the ways to improve the resolution is amplitude and/or phase apodization of the optical system [27-37]. However, apodization, as a rule, allows not only to reduce the size of the light spot, but also leads to the appearance of side lobes [38-41], which impair the imaging properties. To compensate for this negative factor, composite apodization functions are used, in particular, asymmetric ones [42-47].

In this paper we research the possibility of increasing the resolution of the optical system for two closely spaced point light sources on the basis of amplitude apodization depending on the degree of spatial coherence in the presence of different aberrations.

2. Theory

Usually the wave front is given by means of Zernike polynomials, which are also used to detect deviations from the ideal front and the types of aberrations present in the distortion [48-53]. To visually assess the image quality, the point spread function is used (PSF). Previously, in the paper [54] described a technique for modeling the composition of a FRT for two light sources in the coherent case in the
presence of aberrations, as well as an apodizing function. In this paper we additionally consider the influence of the degree of coherence of the two sources, which is given by the following formula:

\[I(r, \omega) = A_1^2(r, \omega) + A_2^2(r, \omega) + 2\mu|A_1(r, \omega)||A_2(r, \omega)|\cos(\varphi_1(r, \omega) - \varphi_2(r, \omega)), \]

whereabout \(\mu \) – coefficient of coherence of light sources, \(A_1, A_2 \) – conformable amplitudes, \(\varphi_1, \varphi_2 \) – conformable phases.

To construct an image of the original object \(\alpha(x) \) in the coherent case (\(\mu=1 \)), we can use the following expression [55, 56]:

\[b(x) = \int_{-\infty}^{\infty} S_\alpha(u) P(u) \exp \left(\frac{ikxu}{f} \right) du \]

whereabout \(S_\alpha(u) \) – spatial spectrum of the object, \(P(u) \) – pupil function of imaging system, \(k = \frac{2\pi}{\lambda} \) – wave number, \(\lambda \) – radiation wavelength, \(f \) – imaging system focus.

For imaging optical systems using incoherent (\(\mu=0 \)) radiation, the intensity of the image is considered, which is determined by the convolution function of the object intensity and the intensity of the pulse response. The optical transfer function (OTF), which is the spatial spectrum of the impulse response of the system, can also be calculated through the pupil function [57]:

\[W_p(u) = \frac{\int P(s-u/2)P^*(s+u/2)ds}{\int|P(s)|^2ds} \]

Then the intensity of the image is determined from the expressions:

\[I_a(x) = \int W_a(u)W_p(u) \exp \left(\frac{ikxu}{f} \right) du \]

\[W_a(u) = \frac{k/f \int |\alpha(x)|^2 \exp(-ikux/f)dx}{\int |\alpha(x)|^2 dx} \]

3. Simulation result
This section researches the effect of the various aberrations described by the Zernike polynomials \(\Psi^m_n(u) \) on the PSF of one light source and two closely spaced light sources. Near-located sources are imply as two sources separated by distance according to Rayleigh criterion (maximum of one source falls on the first minimum of the second). In this case, for ideal PSF images of point sources are visually difficult to distinguish (the gap between them is about 20% of the maximum intensity). In this section, the problem of amplitude apodization of the pupil of the optical system in the presence of aberrations is solved numerically in order to increase the downward excursion in the images of two nearby sources.

Figures 1-6 show the effect of different aberrations described by the Zernike polynomials \(\Psi^m_n(u) \), on the PSF of a single light source. The figures show the right light source, which causes a slight offset of the picture.
As can be seen from table 1, as the radiation coherence increases, the points become less differentiate, i.e. the resolution of the systems decreases. It should also be noted that the effect of aberrations described by Zernike polynomials with even indices is more negative than for odd polynomials.
Table 1. PSF of two located in close proximity spaced point light sources for different degrees of coherence in the presence of different aberrations.

Aberration	$\mu=0$	$\mu=0.5$	$\mu=1$
Horizontal coma Ψ_1^3	![Image](image1.png)	![Image](image2.png)	![Image](image3.png)
Horizontal trefoil Ψ_3^3	![Image](image4.png)	![Image](image5.png)	![Image](image6.png)
Ψ_5^3	![Image](image7.png)	![Image](image8.png)	![Image](image9.png)
Astigmatism Ψ_2^2	![Image](image10.png)	![Image](image11.png)	![Image](image12.png)
Secondary astigmatism Ψ_2^4	![Image](image13.png)	![Image](image14.png)	![Image](image15.png)
Tetrafoil Ψ_4^4	![Image](image16.png)	![Image](image17.png)	![Image](image18.png)

Table 2 shows the effect of system Apodization on its tractability under the condition of partial coherence of radiation ($\mu=0.5$). Note that amplitude Apodization slightly improves the situation, but there is no explicit resolution of two nearby points. More complex Apodization functions are planned to be used in further research.
Table 2. Effect of aberration on the resolution of a partially coherent system (μ=0.5).

Aberration Type	Without Apodization	With Apodization
Horizontal coma	![Image](image1.png)	![Image](image2.png)
Horizontal trefoil	![Image](image3.png)	![Image](image4.png)
Ψ^3_5	![Image](image5.png)	![Image](image6.png)

4. Conclusion
The research of the possibility of increasing the resolution of the optical system based on apodization for partially coherent systems showed that with increasing coherence resolution of two nearby light sources deteriorates. The use of amplitude apodization (parabolic apodization $f(r) = r^2$ was used in this paper) did not lead to a significant improvement in the resolution in the partially coherent case. In further studies, it is planned to use more complex apodization functions, such as $f(x, y) = x^\gamma + y^\gamma$. Phase apodization will also be used.

5. References
[1] Boivin A, Dow J and Wolf E 1967 Energy flow in the neighborhood of the focus of a coherent beam Journal of the Optical Society of America 57 1171-1175
[2] Collett E, Wolf E 1978 Is complete spatial coherence necessary for the generation of highly directional lightbeams Optics Letters 2 27-29
[3] Shan T J, Kailath T 1985 Adaptive beamforming for coherent signals and interference IEEE Trans. Acoust. 33
[4] Basano L, Ottonello P 2005 Complete destructive interference of partially coherent sources of acoustic waves Physical Review Letters 94 173-201
[5] Karpeev S V, Pavelev V S, Khonina S N, Kazanskiy N L, Gavrilov A V and Eropolov V A 2007 Fiber sensors based on transverse mode selection Journal of Modern Optics 54(6) 833-844 DOI: 10.1080/09500340601066125
[6] Gbur G, Visser T D 2006 Phase singularities and coherence vortices in linear optical systems Optics Communications 259 428-435
[7] Davis B J, Schoonover R W 2009 Computationally efficient coherent-mode representations Optics Letters 34 923-925
[8] Fercher A F, Hitzenberger C K 2002 Optical coherence tomography Progress in Optics 44 215-301
[9] Baleine E, Dogariu A 2004 Variable coherence tomography Optics Letters 29 1233-1235
[10] Brezinski M 2006 Optical coherence tomography: Principles and applications (Burlington, MA: Academic Press)
[11] Jansson J, Jansson T and Wolf E 1988 Spatial coherence discrimination in scattering Optics Letters 13 1060-1062
[12] Devaney A J, Friberg A T, Kumar A and Wolf E 1997 Decrease in spatial coherence of light propagating in free space Optics Letters 22 1672-1673
[13] Friberg A T, Turunen J 1988 Imaging of Gaussian Schell-model sources Journal of the Optical Society of America B 5 713-720
[14] Zernike F 1948 Diffraction and optical image formation Proceedings of the Physical Society 61 158-164
[15] Welford W T 1986 Aberrations of optical systems (Bristol and Philadelphia: Adam Hilger Press)
[16] Beckers J M 1993 Adaptive optics for astronomy: principles, performance, and applications Annual Review of Astronomy and Astrophysics 31(1) 13-62
[17] Atchison D A 2009 Wavefront aberrations and their clinical application Clin. Exp. Optom. 92 171-172
[18] Degtyarev S A, Karsakov A V, Branchevskaya E S, Khonina S N and Kotlyar V V 2015 Influence of eye refractive surface curvature modification on the retinal image quality in the Liou-Brennan eye model Computer Optics 39(5)702-708 DOI: 10.18287/0134-2452-2015-39-5-702-708
[19] Belenkii M, Kon I and Mironov V L 1977 Turbulent distortions of the spatial coherence of a laser beam Soviet Journal of Quantum Electronics 7 287-290
[20] Amarande S, Dogariu A 2003 Propagation of partially coherent beams: Turbulence induced degradation Optics Letters 28 10-12
[21] Watson A B 2015 Computing human optical Point spread functions Journal of Vision 15(26) 1-25
[22] Khorin P A, Khonina S N, Karsakov A V and Branchevskiy S L 2016 Analysis of corneal aberration of the human eye Computer Optics 40(6) 810-817 DOI: 10.18287/0134-2452-2016-40-6-810-817
[23] Soifer V A, Korotkova O, Khonina S N and Shchepakina E A 2016 Vortex beams in turbulent media: review Computer Optics 40(5) 605-624 DOI: 10.18287/2412-6179-2016-40-5-605-624
[24] Reddy A N K, Verma P, Khonina S N, Hashemi M and Martinez-Corral M 2017 Far-field light imaging in the presence of atmospheric turbulence with rotating anti-phase apertures: theoretical investigation IEEE Proceedings 1008-1012
[25] Porfirev A P, Kirilenko S, Khonina S N, Skidanov R V and Soifer V A 2017 Study of propagation of vortex beams in aeros oloptical medium Applied Optics 56(11) 8-15
[26] Khonina S N, Karpeev Paranin V D 2018 A technique for simultaneous detection of individual vortex states of Laguerre–Gaussian beams transmitted through an aqueous suspension of microparticles Optics and Lasers in Engineering 105 68-74
[27] Jacquinot P, Roizen-Dossier B 1964 Apodization Progress in Optics 3 29-32
[28] Barakat R 1962 Solution to the Lunenberg Apodization problems JOSA 52 264-272
[29] Dowski E R, Cathey W T 1995 Extended depth of field through wavefront coding Appl. Opt. 34 1859-1866
[30] Pan C, Chen J, Zhang R and Zhuang S 2008 The extension ratio of depth of field by wavefront coding method Opt Express 16(17) 13364-13371
[31] Khonina S N, Ustinov A V 2015 Generalized apodization of an incoherent imaging system aimed for extending the depth of focus Pattern Recognition and Image Analysis 25(4) 626-631
[32] Cheng L, Siu G G 1991 Asymmetric apodization Measurement and Technology 2(3) 198-202
[33] Siu G G, Cheng M and Cheng L 1997 Asymmetric apodization applied to linear arrays J. Phys. D.: Applied Physics 30(5) 787-792
[34] Khonina S N, Kazanskiy N L and Volotovsky S G 2011 Vortex phase transmission function as a factor to reduce the focal spot of high-aperture focusing system J. Mod. Opt. 58(9) 748-760
[35] Khonina S N, Kazanskiy N L and Volotovsky S G 2011 Influence of vortex transmission phase function on intensity distribution in the focal area of high-aperture focusing system Optical Memory and Neural Networks (Information Optics) **20**(1) 23-42

[36] Klebanov I M, Karsakov A V, Khonina S N, Davydov A N and Polyanov K A 2017 Wavefront aberration compensation of space telescopes with telescope temperature field adjustment Computer Optics **41**(1) 30-36 DOI: 10.18287/0134-2452-2017-41-1-30-36

[37] Reddy A N K, Sagar D K and Khonina S N 2017 Complex pupil masks for aberrated imaging of closely spaced objects Optics and Spectroscopy **123**(6) 940-949

[38] Khonina S N, Volotovsky S G 2011 Minimization of light or dark focal spot size with controllable growth of side lobes in focusing systems with the high numerical aperture Computer Optics **35**(4) 438-451

[39] Khonina S N, Volotovsky S G 2013 Minimizing the bright/shadow focal spot size with controlled side-lobe increase in high-numerical-aperture focusing systems Advances in Optical Technologies p 13

[40] Khonina S N, Pelevina E A 2011 Reduction of the focal spot size in high-aperture focusing systems at inserting of aberrations Optical Memory and Neural Networks **20**(3) 155-167

[41] Khonina S N, Ustinov A V and Pelevina E A 2011 Analysis of wave aberration influence on reducing the focal spot size in a high-aperture focusing system J. Opt. **35** 13

[42] Barakat R 1962 Application of apodization to increase two-point resolution by Sparrow criterion under incoherent illumination JOSA **52** 276-283

[43] Siu G G, Cheng L and Chiu D S 1994 Improved side-lobe suppression in asymmetric apodization J. Phys. D.: Applied Physics **27**(3) 459-463

[44] Kowalczyk M, Zapata-Rodriguez C J and Martinez-Corral M 1998 Asymmetric apodization in confocal scanning systems Appl. Opt. **37**(35) 8206-8214

[45] Yang W, Kotinski A B 2004 One-sided achromatic phase apodization for imaging of extra solar planets The Astrophysical Journal **605**(2) 892-901

[46] Reddy A N K, Sagar D K 2012 Point spread function of optical systems apodised by a semicircular array of 2D aperture functions with asymmetric apodization Journal of Information and Communication Convergence Engineering **12**(2) 83-88

[47] Reddy A N K, Sagar D K and Khonina S N 2017 Asymmetric apodization for the comma aberrated point spread function Computer Optics **41**(4) 484-488 DOI: 10.18287/2412-6179-2017-41-4-484-488

[48] Noll R J 1976 Zernike polynomials and atmospheric turbulence J. Opt. Soc. Am. **66** 207-211

[49] Wang J Y, Silva D E 1980 Wave-front interpretation with Zernike polynomials Appl. Opt. **19** 1510-1518

[50] Khonina S N, Kotlyar V V, Soifer V A, Wang Y and Zhao D 1998 Decomposition of a coherent light field using a phase Zernike filter Proc. SPIE **3557** 550-553

[51] Ha Y 1998 Diffractive optical element for Zernike decomposition Proc. SPIE **3557** 191-197

[52] Sheppard C J R 2015 Zernike expansion of pupil filters: optimization of the signal concentration factor Journal of the Optical Society of America A **32**(5) 928-933

[53] Porfiri P A, Khonina S N 2016 Experimental investigation of multi-order diffractive optical elements matched with two types of Zernike functions Proc. SPIE **9807**

[54] Skidanov Y R 2018 Research the possibility of increasing resolution of optical systems in the presence of aberration based on amplitude apodization Proc. Information technology and Nanotechnology **475** 482

[55] Khonina S N 2012 Phase apodization of imaging system to increase the focal depth in coherent and incoherent cases Computer Optics **36**(3) 357-364

[56] Khonina S N, Demidov A S 2014 Extended depth of focus through imaging system’s phase apodization in coherent and incoherent cases Optical Memory and Neural Networks **23**(3) 130-139

[57] Goodman J W 1970 *Introduction to Fourier optics* (Moscow: “Mir” Publishing)