OPTICAL SPECTROSCOPY OF CANDIDATES IN THE LIGO/VIRGO BINARY MERGER ERROR BOXES

A. F. Valeev1, A. J. Castro-Tirado2,3, Y. -D. Hu4, V. V. Sokolov1, I. Agudo5, M. D. Caballero-García4, J. Cepa5, J. A. Font6,15, S. Jeong7, A. Martín-Carrillo8, S. B. Pandey9, E. Pian10, S. R. Oates11, R. Sánchez-Ramírez12, A. M. Sintes13, B.-B. Zhang14, and E. Fernandez-García7

ABSTRACT

When compact binary star systems merge, they release large amounts of energy in the form of gravitational waves (Abbott \& LIGO \& Virgo Scientific Collaboration 2017, 2016). If the system is either a neutron star and stellar mass black hole (NSBH) or a binary neutron star (BNS), the merger is expected to be accompanied by various electromagnetic phenomena.

The discovery of GW170817 by LIGO and Virgo and its electromagnetic counterparts (short-duration GRB 170817A, detected by Fermi/GBM and INTEGRAL/SPI-ACS, optical AT2017gfo, investigated in optical and infrared wavelengths, etc.) opened a new era in the Multi-Messenger Astronomy (Abbott 2017).

The firstly discovered electromagnetic counterpart of the gravitational waves from a BNS merger required the developing of an optimal search strategy. The discovery of GW170817 counterpart using a galaxy-targeted strategy (Gehrels et al. 2016) means that this method can be very effective. However, it requires a large catalog of galaxies with photometric redshifts and a way to measure its completeness to distances relevant for advanced LIGO and Virgo.

Whatever method is chosen to search for electromagnetic counterparts, the definitive classification of transients requires the spectral observations. The most straightforward way of ruling out association of a GW event with an electromagnetic transient is to prove that the latter occurred before the GW signal or the redshift of its host galaxy is inconsistent with the GW distance inferred from the gravitational signal under standard sirene assumption. The spectral classification of a transient may identify a source as...
a different kind of transient event with well known progenitors (like SN).

In the next section we present the spectral classification of the discovered transients in six errorboxes of the GW event candidates announced during the O3 run of advanced LIGO and Virgo (S190408an, S190425z, S190426c, S190510g, S190728q, S190814bv). We limit our target list to the candidates observed prior 2019 Sep. 1. Our spectral classification is summarized at Tab. 1

2. OBSERVATIONS AND CLASSIFICATION

We observed potential candidates in GW localisation errorboxes with the 10.4-m Gran Telescopio de Canarias (GTC) (PI: A. Castro-Tirado), located at the observatory of Roque de los Muchachos in La Palma (Canary Islands, Spain), equipped with the Optical System for Imaging and low-intermediate-Resolution Integrated Spectroscopy (OSIRIS) (Cepa et al. 2000).

Optical images were usually taken for the candidates in the r-band filter. The deep photometry (griz filters) was performed in case of faint sources. We performed PSF photometry of the target. Photometric zero points were computed using the Pan-STARRS catalogue stars as secondary standards.

GTC/OSIRIS spectra for the targets were obtained either with the R1000B or with the R1000R/R2500I grisms and a 1 arcsec slit covering the 3,700 – 7,500 ˚A or 5,100 – 10,000 ˚A range. The slit was placed in order to cover the candidate location and the host galaxy center. Data were reduced and calibrated using standard routines.

Quadrants, which were made from GAIA DR2 stars, were used to calculate the astrometric solution applying solve-field routine from astrometry.net package. Using iraf/apall and iraf/phot packages we extracted the 1-D spectrum of transient and performed aperture photometry. We have classified the transient using the supernova template matching code SNID (Blondin & Tonry 2007).

3. S190408AN

The S190408an (Ligo Scientific Collaboration & VIRGO Collaboration 2019a) event was detected by three detectors (LIGO Hanford Observatory (H1), LIGO Livingston Observatory (L1), and Virgo Observatory (V1)) at 2019-04-08 18:18:02 UTC. The four pipelines showed the binary black holes with high probability (>99%). The distance estimation is d=1473 ± 358 Mpc and the error box 82/387 deg² for 50/90% confidence.

4. S190425Z

The S190425z (Ligo Scientific Collaboration & VIRGO Collaboration 2019a) event was detected by two detectors (L1, V1) starting at 2019-04-25 08:18:25 UTC and was classified as binary neutron star merger with high probability (>99%). The distance estimation is d=156 ± 41 Mpc and the error box 1378/7461 deg² for 50/90% confidence.

AT 2019dzw/ZTF19aarzaod The candidate was identified with ZTF (Zwicky Transient Facil-
SPECTROSCOPY OF CANDIDATES IN GW ERROR BOXES

On Apr. 26 at 15:22:17 UTC three GW detectors (H1, L1, V1) discovered the S190426c (Ligo Scientific Collaboration & VIRGO Collaboration 2019b) event, firstly classified as binary neutron stars merging with 49\% likehood. The distance was estimated as 423 ± 128 Mpc and sky localisation 472/1932 deg² for 50/90\% confidence, refined to 214/1131 deg² errorbox. 3 month later it was reclassified as having probability 58\% of being non-astrophysical in origin. Dozen of the candidates were announced in the Andreoni (2019b); Perley (2019)

DG19kplb This candidate was discovered in DE-Cam data (Andreoni 2019b). Using GTC spectra DG19kplb was classified as broad-line past maximum SN Ic at the host galaxy redshift z = 0.0912 ± 0.0005 (Valeev 2019b).

DG19ytre blue transient with r = 20.69 and z = 21.29 was announced by Andreoni (2019b). On GTC/OSIRIS blue part spectrum it resembles the SN Ia (similar to SN 2011fe Tsvetkov (2013)) at the host galaxy redshift z = 0.1386 ± 0.0005 (Valeev 2019b).

AT 2019snb/ZTF19aaslzfj was discovered as the g = 21.09 and r = 20.54 transient close to the host galaxy with unknown redshift (Perley 2019). Both reshifts z = 0.086 ± 0.005 (Fig 2) from the SN Ia like spectrum and from the emission lines of the galaxy coincide (Hu 2019a).

ZTF19aasmdst transient with g = 20.00 was announced by ZTF group (Perley 2019). The photometrical redshift of its host galaxy was known with the high uncertainty 0.08 ± 0.04. Our spectroscopy (Hu 2019a) refined the reshift to z = 0.028 ± 0.005 and transient classified as SNII before maximum (Fig 3).

AT 2019sne/ZTF19aasmfzm was found by ZTF group ~ 18ʰ after GW event Perley (2019). Few days before maximum SN Ia spectrum at host galaxy with z = 0.156 ± 0.005 supports the rising magnitude reported in Perley (2019).

Fig. 2. Spectra of SN Ia: S190728q / AT 2019myj at z = 0.471, S190426c / ZTF19aaslzfj at z = 0.086, S190728q / AT 2019lzc at z = 0.2067 and S190728q / AT 2019lvw at z = 0.2704 are presented. Dashed lines show the template spectra. Small shifts for better representation are applied.

ZTF19aassfws coincide with the center of the host galaxy and the simultaneous observations by PanStarrs did not confirm this faint source (Perley 2019). The spectrum is fitted by absorption galaxy template and there was not any variation in spectrum in 15-day interval.
Fig. 3. Spectra of SN II. Dashed lines show the template spectra. Small shifts for better representation are applied.

ZTF19aaslszp was discovered on Apr 27 with g = 20.84 (Perley 2019). However, on May 1 it was not visible on the image up to the 23m4.

2019egk/Gaia19boq was announced by Gaia Alerts team (Kostrzewa-Rutkowska 2019). The historical observations show the transient clearly detectable before the GW event. Hα shows the P Cyg profile and other Balmer series were in absorption. We concluded that this was cataclysmic variable in Galaxy (Sanchez-Ramirez 2019).

6. S190510G

Binary neutron stars merging system was registered by three Ligo/Virgo detectors (H1, L1, V1) on 2019-05-10 03:00:00 UT (Ligo Scientific Collaboration & VIRGO Collaboration 2019c). The probability of non terrestrial signal was only 2%. Despite the small localization area, the GW analysis places S190510g at the fairly large distance of 269±108 Mpc. The 50/90% confidence errorboxes were only 31/1166 deg² at 874 ± 171 Mpc distance. After the data were reanalysed the signal is mostly associated with the binary system in mass gap or binary black holes one.

The optical transients were announced in GCN telegrams (Goldstein 2019a; Huber 2019; Soares-Santos 2019a).

AT 2019lzb/PS19dxc was discovered by Pan-STARRS team (Huber 2019). The optical spectroscopy uncover the AGN nature of the galaxy center (Fig 4). The redshift z = 0.019 ± 0.001 was estimated using the narrow galactic emissions (Valeev 2019c).

AT 2019lzt/PS19dxn transient with fast rising brightness was announced by Huber (2019). Follow-up spectroscopy allowed us (Castro-Tirado 2019c) to estimate the redshift z = 0.193 ± 0.001 and define the type of supernova - SN Ia.

AT 2019lzc/PS19dxb transient with fast rising brightness was announced by Huber (2019). Follow-up spectroscopy allowed us (Castro-Tirado 2019c) to estimate the redshift z = 0.193 ± 0.001 and define the type of supernova - SN Ia.

AT 2019ecz/PS19dxr transient with fast rising brightness was announced by Huber (2019). Follow-up spectroscopy allowed us (Castro-Tirado 2019c) to estimate the redshift z = 0.193 ± 0.001 and define the type of supernova - SN Ia.

AT 2019ecz/PS19dxr transient with fast rising brightness was announced by Huber (2019). Follow-up spectroscopy allowed us (Castro-Tirado 2019c) to estimate the redshift z = 0.193 ± 0.001 and define the type of supernova - SN Ia.

AT 2019ecz/PS19dxr transient with fast rising brightness was announced by Huber (2019). Follow-up spectroscopy allowed us (Castro-Tirado 2019c) to estimate the redshift z = 0.193 ± 0.001 and define the type of supernova - SN Ia.

AT 2019ecz/PS19dxr transient with fast rising brightness was announced by Huber (2019). Follow-up spectroscopy allowed us (Castro-Tirado 2019c) to estimate the redshift z = 0.193 ± 0.001 and define the type of supernova - SN Ia.
SPECTROSCOPY OF CANDIDATES IN GW ERROR BOXES

Fig. 4. Spectra of AGNs S190728q / AT2019lyf, S190728q / AT2019lzf, S190728q / AT2019lyz are presented below.

Fig. 5. Spectrum of flaring M-dwarf AT 2019lzg. Template of M6V (shifted) is shown by dashed line. Result of 1h2 exposure for r = 25.7 ± 0.3 star.

AT 2019lyf/PS19dxg was an activity of galactic nucleus. The spectrum was very similar to that of AT 2019lzg (see the Fig. 4). However, only the presence of the third broad feature in the R1000R spectrum hinted this similarity. The matching of both spectra revealed the redshift 0.190 ± 0.001.

AT 2019lyz/PS19dwz was detected on 2019-07-28 12:43:12 UT close to the center of nearby galaxy (Huber 2019). Our spectrum (Fig. 4) showed the broad emission and hinted the nucleus activity at redshift z = 0.0168 ± 0.0005.

AT 2019myi/desgw-190728e located in 2 arcsec from the center of the host galaxy (Soares-Santos 2019a). It was discovered ~ 21 hours after the GW event with r = 21.92. The analysis of the blue spectrum shows the galactic emissions at redshift z = 0.1827 ± 0.0005. Template fitting procedure indicates that the spectrum most resembles SN Ia after maximum.

AT 2019myh/desgw-190728d position in the sky is close to the center of the diffuse galaxy on PanStarrs images. It was announced in Soares-Santos (2019a) with r = 22.29. The redshift z = 0.2909 ± 0.0005 measured from the galactic emissions is confirmed by template fitting output. The transient was classified as SN Ia after maximum.

AT 2019myg/desgw-190728c brightness raised slowly when the object was detected by DESGW team (Soares-Santos 2019a). Although we do not see the galaxy in direct images, its emissions are clearly uncovered in our spectrum. Our photometrical measurement gives r = 22.55 ± 0.05 at 2019-08-11 03:46 UT. Spectrum with broad features correspond to SN Ia at z = 0.0122 ± 0.0005.

AT 2019lyj/desgw-190728a was discovered by DESGW team on 2019-07-29 03:05:45 UT (Soares-Santos 2019a). The fading 0.25/3 days was noted. The galaxy was found at 4 arcsec in north direction, but the spectroscopy reveals the redshift of this galaxy z = 0.5940 ± 0.0005, which is not consistent with solution for transient z = 0.471 ± 0.004. The spectrum was good fitted with SN Ia template.

AT 2019lvw/DG19arsob (Goldstein 2019a) located in 4.5 arcsec from two galaxies. The disk of one galaxy is barely visible up to the position of the
transient. Our analysis (Hu 2019b) indicated that the optical spectrum of target matched to the SN Ia template at $z = 0.2704 \pm 0.0005$.

8. S190814BV

The LIGO/Virgo Collaborations detected the GW event S190814bv on 2019-08-14 21:10:39 UT (Ligo Scientific Collaboration & VIRGO Collaboration 2019e). Pipeline analysis of the records from all three GW detectors (H1, L1, V1) were used. The false alarm rate of the event was approximately one in 10^{25} years. After revision based on new parameter estimation the event was classified as “black hole – neutron star merger” with 99% probability. Off-line analysis improved the localisation errorbox to $5/23$ deg2 ($50/90\%$ confidence) at 267 \pm 52 Mpc distance. Andreoni (2019a) investigated the limit of the optical/near-infrared counterpart for this event.

AT 2019nqq/desgw-190814c was announced by DESGW team (Herner 2019b). SN IIP post maximum template (Lopez-Cruz 2019b) best matched to the spectrum of transient obtained on Aug, 20. Template matching algorithm and galactic narrow emission lines revealed redshift $z = 0.071 \pm 0.001$.

AT 2019nqz/DG19ayfjc was detected close to center of the host galaxy (Goldstein 2019b). The upper limit magnitude for the transient was $i = 23.84$ on stacked 3x10 seconds image. However, we measured the redshift $z = 0.1076 \pm 0.0005$ of host galaxy (Lopez-Cruz 2019a) and concluded that it is outside the expected LVC redshift range.

AT 2019nqc/DG19aqqbkc with $i = 20.6$ found on 2019-08-16 UT 08:24 by DECam-GROWTH team (Andreoni 2019c). Our spectroscopy (Lopez-Cruz 2019a) reveals narrow galaxy lines at redshift 0.078 \pm 0.001. Cross-correlating the transient spectrum (broad lines) with supernova template spectra in SNID, we found a good match to the spectra of SNIIP at about week after maximum at same redshift in agreement with the result reported by Buckley (2019).

AT 2019obc/desgw-190814q was found in DES J005815.91-240823.4 galaxy with photometric redshift 0.28 \pm 0.18 (Soares-Santos 2019d). We observed the transient 6 days after detection (Castro-Tirado 2019a). The redshift, as derived from SNID, is $z = 0.216$, linking the transient to the host galaxy ($z = 0.2161 \pm 0.0005$ derived from the galactic emission line [O III]).

AT 2019nxr/desgw-190814m coincided with the center of the host galaxy (Soares-Santos 2019c). The photometry for transient $i = 23.78$ (discovery magnitude) and for host galaxy $i = 18.45$. Its red spectrum was obtained on 2019-08-23 03:00 UT. The measured redshift of the host galaxy $z = 0.2589 \pm 0.0005$ coincides with the other galaxy ~ 7 arcsec away in NE direction. We could not classify the spectrum, but it did not fit with AGN template.

AT 2019nte/desgw-190814f was detected (Herner 2019a) near the galaxy GALEXASC J013413.83-314318.3 with photometric redshift 0.07. We did not found the transient 0.5 arcsec (or 2 pixels) away from the center of galaxy. Our spectroscopy revealed the redshift 0.0698 \pm 0.0005, this result is consistent with that reported in Soares-Santos (2019e).

AT 2019odc/desgw-190814r was discovered ~ 0.7 arcsec away from center of host SBb galaxy on 2019-08-17 12:42:19 UT with $i = 21.57$ (Soares-Santos 2019b). Unfortunately, due to the weather we observed transient position only 13 days later. We could not detect the transient itself. Using galactic emissions we measured the redshift of galaxy $z = 0.0540 \pm 0.0005$ (Hu 2019c).

AT 2019omt/desgw-190814v was announced by DESGW team Soares-Santos (2019b). Spectroscopy was performed two weeks later. The galaxy redshift $z = 0.1564 \pm 0.0005$ is outside of the expected LVC redshift range. Our transient spectrum resembled a post-maximum SN IIIL one.

Acknowledgments: The work is based on observations made with the 10.4-m Gran Telescopio de Canarias. VAF was supported by RFBR 18-29-21030 grant. JAF acknowledges financial support provided by the Spanish Agencia Estatal de Investigación (grant PGC2018-095984-B-I00), by the Generalitat Valenciana (PROMETEO/2019/071) and by the European Union’s Horizon 2020 research and innovation (RISE) programme H2020-MSCA-RISE-2017 (Grant No. FunFiCO-777740).
Table 1

CLASSIFICATION OF TRANSIENTS. WE LIMIT OUR TARGET LIST TO THE CANDIDATES OBSERVED PRIOR 2019 SEP, 1

GW event	Name	RA	DEC	classification
S190408an	AT 2019ddt /MASTER OT	23:10:43.63	47:09:56.4	CV at z=0.
S190425z	ZTF19aaraaod	17:31:09.957	-08:27:02.60	SNIa z = 0.0279 ± 0.0005
S190426c	DGI9ytre	11:11:02.48	00:31:37.8	SNIa z = 0.1386 ± 0.0005
S190426c	DGI9piklb	11:14:38.06	-06:58:31.0	SNIa z = 0.0912 ± 0.0005
S190426c	ZTF19aasnuddt	19:57:00.13	09:42:06.1	SN II z = 0.028 ± 0.005
S190426c	ZTF19aassfws	19:54:40.28	61:14:00.0	galaxy spectrum
S190426c	ZTF19aaslszp	20:05:22.24	53:20:36.6	not visible
S190426c	ZTF19aaslf	21:22:30.31	65:48:48.6	SN Ia z = 0.086 ± 0.005
S190426c	ZTF19aasmftm	21:43:36.11	77:49:53.4	SN Ia z = 0.156 ± 0.005
S190426c	AT 2019egk/Gaia19boq	21:16:23.41	58:53:27.2	CV at z=0.
S190510g	AT 2019far	14:17:22.53	05:01:08.7	SN IIp z = 0.0583 ± 0.0005
S190510g	AT 2019ezb	13:43:59.78	01:50:32.7	SN Ic z = 0.0712 ± 0.0005
S190510g	ATLAS19kvc	17:19:41.85	01:04:45.1	CV at z=0.
S190728q	AT 2019lz	20:45:55.34	02:05:53.5	AGN z = 0.19 ± 0.002
S190728q	AT 2019lz	20:52:54.7	02:31:43.6	SN Ia z = 0.207 ± 0.005
S190728q	AT 2019lz	21:01:13.26	13:29:39.0	SN Ia z = 0.193 ± 0.001
S190728q	AT 2019lz	21:03:16.16	14:22:50.9	M-dwarf z = 0.
S190728q	AT 2019lz	21:11:56.20	17:14:27.2	AGN z = 0.190 ± 0.001
S190728q	AT 2019lz	21:14:09.78	13:37:04.8	AGN z = 0.0168 ± 0.0005
S190728q	AT 2019lw	20:54:35.1	07:34:00.3	SN Ia z = 0.2704 ± 0.0005
S190728q	AT 2019ly	20:15:19.60	17:36:20.1	SN IIp z = 0.1537 ± 0.0005
S190728q	AT 2019myf	20:59:12.90	08:33:35.6	SN Ia z = 0.0122 ± 0.0005
S190728q	AT 2019myg	21:09:36.80	12:07:30.6	SN Ia z = 0.2909 ± 0.0005
S190728q	AT 2019myi	21:05:31.70	12:23:49.7	SN Ia z = 0.1827 ± 0.0005
S190728q	AT 2019myj	21:07:29.10	13:15:01.7	SN Ia z = 0.471 ± 0.004
S190814bv	AT 2019nqq	01:23:49.22	-33:02:05.0	SN IIP z = 0.071 ± 0.001
S190814bv	AT 2019nqz	00:46:46.42	-24:20:12.1	no object, z = 0.1076 ± 0.0005
S190814bv	AT 2019nr	00:46:18.16	-24:22:21.2	SN Ia z = 0.0777 ± 0.0005
S190814bv	AT 2019nt	01:34:13.77	-31:43:18.1	unknown, z = 0.2589 ± 0.0005
S190814bv	AT 2019od	00:46:01.68	-25:27:33.1	no object, z_{galaxy} = 0.0698 ± 0.0005
S190814bv	AT 2019omt	00:59:26.73	-25:59:41.3	SN IIL z = 0.1564 ± 0.0005

REFERENCES

Abbott, B. P. 2017, ApJ, 848, L12
Abbott, B. P. & LIGO & Virgo Scientific Collaboration. 2016, PhRvL, 116, 061102
———. 2017, PhRvL, 118, 221101
Andreoni, I. et al., 2019a, arXiv e-prints, arXiv:1910.13409

———. 2019b, GCN, 24268, 1
———. 2019c, GCN, 25362, 1
Blondin, S. & Tonry, J. L. 2007, ApJ, 666, 1024
Buckley, D. 2019, GCN, 25481, 1
Castro-Tirado, A. J. et al., 2019a, GCN, 24214, 1
———. 2019b, GCN, 24535, 1
———. 2019c, GCN, 25253, 1
