Phytochemical constituents of *Camellia osmantha* fruit cores with antithrombotic activity

Li Yang | Gui-Liang Xie | Jin-Lin Ma | Xiao-Qiong Huang | Yao Gu | Lei Huang | Hai-Yan Chen | Xi-Lin Ouyang

Abstract

Camellia osmantha is a new species of the genus *Camellia* and is an economically important ornamental plant. Its activity and ingredients are less studied than other *Camellia* plants. This study investigated the antithrombotic effect and chemical components of *C. osmantha* fruit cores using platelet aggregation assays and coagulation function tests. The cores of *C. osmantha* fruits were extracted with ethanol to obtain a crude extract. The extract was dissolved in water and further eluted with different concentrations of methanol on an MCI resin column to obtain three fractions. These samples were used for antithrombotic activity tests and phytochemical analysis. The results showed that the extract and its fractions of *C. osmantha* have strong antithrombotic activity, significantly reducing the platelet aggregation rate and prolonging the thrombin time (TT). The total saponins, flavonoids, and polyphenols in the active fractions may be responsible for the antithrombotic activity. The chemical constituents were analyzed by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). Twenty-three compounds were identified rapidly and accurately. Among them, ellagic acid, naringenin, and quercetin 3-O-glucuronide may be important antithrombotic constituents. Furthermore, interactions between these compounds and the P2Y1 receptor were investigated via molecular modeling, because the P2Y1 receptor is a key drug target of antiplatelet aggregative activity. The molecular docking results suggested that these compounds could combine tightly with the P2Y1R protein. Our results showed that *C. osmantha* fruit cores are rich in polyphenols, flavonoids, and saponins, which can be developed into a promising antithrombotic functional beverage for the prevention and treatment of cardiovascular and cerebrovascular diseases.

KEYWORDS

anticoagulant, *Camellia osmantha*, flavonoids, polyphenols, saponins, UPLC-QTOF/MS
1 | INTRODUCTION

Coagulation factors and platelets play important roles in maintaining the dynamic equilibrium in the human body (Dahlback, 2005). Platelet dysfunction, such as increased aggregation, and coagulation can lead to embolic heart and brain diseases including coronary heart disease, angina pectoris, and myocardial infarction (Wendelboe & Raskob, 2016). Some *Camellia* plant extracts have the potential to prevent a variety of cardiovascular and cerebrovascular diseases caused by hardening of blood vessels (Bansal et al., 2012; Chou et al., 2018), due to their rich content of bioactive compounds including triterpenoids and their glycosides, flavonoids, fatty acids, steroids, and lignins, which are obtained from the core, shell, flowers, roots, or leaves (Li et al., 2014; Lu et al., 2000; Zong et al., 2015). These components are implicated in the antitumor, antioxidation, hypolipidemic, glucosidase-inhibiting, antimicrobial, and anti-inflammatory activities of these plants (Imran et al., 2019; Jin, 2012; Ye et al., 2014; Zhou et al., 2014).

Camellia osmantha is an economically important ornamental plant of the genus *Camellia* with a high oil yield, a new species native to Guangxi, China (Ma et al., 2012). Its fruit cores are used as an important non-*Camellia* tea in the minority region of Guangxi folklore and are consumed as a beverage because of their specific efficacy in preventing cardiovascular disease. It has been reported that polyphenols, saponins, and catechins in *Camellia* plants have the potential to prevent cardiovascular and cerebrovascular diseases (Bansal et al., 2012). To date, no definitive evidence has been found to confirm that extracts of *C. osmantha* can inhibit the activation of coagulation factors and platelets, and prevent the conversion of fibrinogen into fibrin. Thus, the antithrombotic activity and the possible chemical compositions of *C. osmantha* fruit cores were determined by an activity-directed approach in the present study. Prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), and platelet aggregation rate were determined to explore the anticoagulant effect of *C. osmantha* fruit cores. Possible antithrombotic chemical constituents were inferred by UPLC-QTOF/MS, and docking results were further verified by developing a pharmacophore model that clarified the key features required for an optimal P2Y1R affinity.

2 | MATERIALS AND METHODS

2.1 | Chemicals

The absorbance for determining the content of total flavonoids, total polyphenols, total polysaccharides, and total saponins was measured on a Shimadzu UV-Vis spectrophotometer (UV-1780, Shimadzu, Japan). Chemical composition analysis was performed on an Agilent 6545B Q-TOF LC/MS using a Supelcosil ABZ+PLUS column (150 mm × 4.6 mm, 3 μm). Platelet aggregation induced by adenosine diphosphate (ADP) was measured using a semiautomatic platelet aggregometer (LBY-NJ4, Beijing Precil Group, China). The absorbance for determining the content of total flavonoids, total polyphenols, total polysaccharides, and total saponins was measured on a Shimadzu UV-Vis spectrophotometer (UV-1780, Shimadzu, Japan). Chemical composition analysis was performed on an Agilent 6545B Q-TOF LC/MS using a Supelcosil ABZ+PLUS column (150 mm × 4.6 mm, 3 μm). Platelet aggregation induced by adenosine diphosphate (ADP) was measured using a semiautomatic platelet aggregometer (LBY-NJ4, Beijing Precil Group, China). Platelet aggregation assays were performed according to the methods reported in the literature (Gao et al., 2014). Wistar rats were anesthetized with 1% pentobarbital. Blood samples collected from the abdominal aorta were placed in a centrifuge tube (3.8%, w/v) with sodium citrate at a ratio of blood:anticoagulant = 9:1. The supernatant (platelet-enriched plasma, PRP) was obtained by centrifugation at 160 g for 10 min at 25°C. The remaining blood sample was continuously centrifuged at 2000 g for 10 min to obtain platelet-poor plasma (PPP). The platelet aggregation assay was performed by...
adding different extracts (1 mg/ml) to clean test cups and by induc-
ing ADP at a final concentration of 5 μM. The maximum aggregation rate (MAR) within 6 min was observed by using physiological saline (9 mg/ml) as the negative group and aspirin (66 μg/ml) as the posi-
tive control. The aggregation inhibition rate (AIR) was calculated as follows:

\[
\text{AIR(\%)} = \left(\frac{\text{NCAR} - \text{EAR}}{\text{NCAR}} \right) \times 100\%
\]

EAR, Experimental group aggregation rate; NCAR, No-treatment control group aggregation rate.

2.5 | Coagulation function test

To determine the coagulation function of C. osmantha fruit cores in rats, PT, APTT, and TT assays were used to evaluate the coagulation
effect. Fresh blood mixed with an anticoagulant in a 9:1 ratio collec-
tion from the rat aorta was centrifuged at 633

\[
3 \text{ min}, \quad \text{and then a prewarmed PT reagent (0.6 μl) was}
\]

added to record the PT. Plasma (0.6 μl) was added to 0.6 μl of plasma to
to obtain mixed plasma. The assay was performed according to the kit
requirements. Briefly, 0.6 μl of plasma was incubated at 37°C for
3 min, and then a prewarmed PT reagent (0.6 μl) at 37°C was added
to record the PT. Plasma (0.6 μl) was added to 0.6 μl of prewarmed
APTT reagent at 37°C and incubated for 5 min at 37°C, and then
prewarmed 0.6 μl of CaCl₂ (0.025 mol/L) was added. The clotting
time was recorded for TT after the prewarmed plasma was mixed with the TT reagent at 37°C. Three fractions were measured according to the above method. Each sample was measured three times.

2.6 | Determination of total flavonoid, polyphenol,
polysaccharide, and saponin contents

2.6.1 | Total flavonoids

The total flavonoid content (TFC) was determined using a method
described in the literature (Li et al., 2012). Four samples (10 mg/ml), including CE or Frs-A to C, were placed in a 10-ml tube and then 0.15 ml of 5% NaN₃ was added. After 6 min, 0.15 ml of 10% Al(NO₃)₃ was added. Then, 2 ml of 4% NaOH was added another 6 min later, and the total volume adjusted to 5 ml with distilled water. The absorbance of the mixture was measured through a UV-1780 spectrophotometer at 510 nm. Each test was repeated three times and the results were averaged.

2.6.2 | Total polyphenols

The total polyphenol content (TPPC) of the C. osmantha fruit core extracts was measured by a colorimetric assay primarily based on procedures described by Ordóñez-Santos with a few modifications (Ordóñez-Santos et al., 2017). Briefly, 0.5 ml of CE or Frs-A to C (10 mg/ml) was mixed with 1 ml of Folin–Ciocalteu’s phenol reagent. After 3 min, 1 ml of saturated sodium carbonate solution was added to the mixture and adjusted to 10 ml with distilled water. The reaction was kept in the dark for 60 min before the absorbance was read with a UV-1780 spectrophotometer at 760 nm. Gallic acid was used to construct the standard curve (0.01–0.4 mmol/l).

2.6.3 | Total polysaccharides

Total polysaccharide content (TPSC) was measured by a sulfurous
acid–phenol spectrophotometric assay. A total of 2.0 ml of CE or
Frs-A to C (10 mg/ml) was placed into a stoppered tube, followed by
a 5% phenol solution (1.0 ml). Then, 5.0 ml of concentrated sulfurous acid was added immediately, incubated for 30 min in a 40°C water bath, removed from the tube, and placed in a cold-water bath for 5 min. The absorbance of each solution was measured at a wave-
length of 490 nm. The reference solution was prepared with 2.0 ml of double-distilled water. A standard curve was drawn with the concentra-
tion of the glucose diluent (4–20 μg/ml) plotted on the ab-
scissa and the absorbance was plotted on the ordinate.

2.6.4 | Total saponin

The total saponin content (TSC) was measured by a vanillin–perchloric acid spectrophotometric assay (Xiao et al., 2014). The solution of CE or Frs-A to C (10 mg/ml) was prepared in methanol
(0.2 ml of aliquot) and was added to the colorimetric tube. After methanol solvent removal at 80°C, 0.5 ml of vanillin-acetic acid solution (5 mg/ml) and 1.5 ml of perchloric acid were added. The reaction mixture was incubated at 70°C for 15 min and then cooled and diluted with acetic acid to 10 ml. After 10 min, the absorbance of the diluted solution was measured at 540 nm with a UV-
1780 spectrophotometer, which was normalized against a solution of the reagents without the sample. The standard curve based on saponin (11.43–68.58 μg/ml) was quantified. All samples were tested three times.

2.7 | UPLC-ESI-QTOF-MS analysis

Chemical compositions of the C. osmantha fruit cores were deter-
mined on an Agilent 6545B Q-TOF LC/MS according to our previous experimental procedures (Ouyang et al., 2020).

2.8 | Molecular docking

The structure buildings of ellagic acid, naringenin, and querce-
tin 3-O-glucuronide were obtained from the PubChem Database
These molecular ligands were generated by AutodockTools1.5.6 to add hydrogen and charge and detect the root of the ligand. The optimized structures were used for all subsequent calculations. The X-ray crystal structure of the P2Y1R protein in complex with the receptor antagonist MRS2500 (PDB ID: 4XNW) was obtained from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (www.rcsb.org). Autodock vina was used for semiflexible docking, and the best affinity conformation was selected as the final docking conformation. The active site was defined as including all atoms within a 6.5 Å radius of the cocrystallized ligand, and the default parameters were used.

3 | RESULTS AND DISCUSSION

3.1 | In vitro aggregation inhibition assay of CE and each fraction

Platelet aggregation function is the cardinal biological parameter used to evaluate antithrombotic activity. AIRs of CE and three fractions are shown in Figure 1a. The AIR of CE was 32.07%, higher than that of aspirin (p = .064), a well-known platelet aggregation inhibitor with an AIR at 29.80%. Among the fractions, Fr-C exhibited the best aggregation inhibition effect with an AIR of 37.61%, followed by Fr-B with an AIR of 36.04%. Moreover, Fr-B and Fr-C had significantly higher AIRs than CE and fraction A. Thus, Fr-B and Fr-C have significant inhibitory effects on platelets and may be active fractions for antithrombotic applications.

3.2 | Coagulation effects of CE and each fraction

Routine coagulation assays are important ways to evaluate the antithrombotic activities of compounds. APTT and PT reflect the status of the endogenous coagulation and exogenous coagulation systems, respectively (Jia et al., 2018). TT reflects the ability to convert fibrinogen to fibrin. As shown in Figure 1b, no significant differences were found between the extracts and the control group for PT and APTT, indicating that the anticoagulation effect may not be related to either the endogenous or exogenous coagulation pathways. Compared with the control group, CE, Fr-B, and Fr-C significantly prolong TT (p < .05), indicating that Fr-B and Fr-C may contain abundant active ingredients that could inhibit the conversion of fibrinogen to fibrin in preventing blood clotting. Moreover, the contents of anticoagulants in Fr-B and Fr-C were significantly enriched after extraction compared with CE. Thus, Fr-B and Fr-C of C. osmantha could prevent blood coagulation by affecting the fibrinolytic system.

| Table 1 Pearson’s correlation coefficients for total saponin contents (TSC), total flavonoids content (TFC), total polyphenols content (TPPC), and total polysaccharides content (TPSC) of Camellia osmantha fruit cores and aggregation inhibition rate (AIR) |
|---------------------------------|---|---|---|---|
| AIR | TSC | TFC | TPPC | TPSC |
| AIR | 1 | .912* | .794 | .797 | -.983** |
| TSC | 1 | .475 | .475 | -.887 |
| TPPC | 1 | .576 | -.826 |
| TPSC | 1 | -.871 |

*p < .05, **p < .01.
No.	Source (Fr.)	t_r/min	Negative ion mode	Positive ion mode	Molecular formula	Proposed compound	Classification	References			
1	B	0.823	[M-H]⁻	483.0757 (2.38)	[M+NH₄]⁺	502.1188 (0.31)	C₂₀H₂₀O₁₄	Digalloyl-glucose	Polyphenol	Liu et al. (2012); Ryu et al. (2017)	
2	B	1.073	[M-H]⁻	635.0857 (3.24)	[M+NH₄]⁺	654.1293 (0.68)	C₂₇H₂₄O₁₈	Trigalloyl-glucose	Polyphenol	Ryu et al. (2017); Wei et al. (2019)	
3	B	1.470	[M-H]⁻	289.0707 (1.01)	[M + H]⁺	291.0861 (0.21)	C₁₅H₁₄O₆	Catechin or epicatechin	Polyphenol	Wang et al. (2017)	
4	B	1.472	[M+Na]⁺	521.2006 (2.26)	[M+Na]⁺	545.1990 (0.37)	C₂₈H₃₄O₁₁	Icariside E5	Lignan	Zeng et al. (2020)	
5	B & C	2.221	[M-H]⁻	787.0958 (4.15)	[M+Na]⁺	806.1392 (1.83)	C₃₂H₂₂O₂₂	Myricetin	3-O-glucosylrutinoside	Flavonoid	Wu et al. (2016)
6	B & C	2.338	[M-H]⁻	197.0444 (1.13)	[M+H]⁺	199.0599 (0.21)	C₉H₁₀O₅	Syringic acid	Organic acid	Hong et al. (2019)	
7	B & C	3.203	[M+Na]⁺	297.0969 (1.04)	[M+Na]⁺	321.0935 (0.94)	C₁₅H₁₈O₇	Chakanoside I	Organic acid ester	Yoshikawa et al. (2008)	
8	B & C	3.404	[M-H]⁻	579.2389 (4.58)	/	/	C₂₇H₂₀O₁₄	Naringenin	Flavonoid	Hou et al. (2013); Xiong et al. (2018)	
9	B & C	3.553	[M-H]⁻	391.1385 (1.37)	[M+Na]⁺	415.1361 (0.21)	C₂₆H₂₆O₈	5-Dihydroxydihydrostilbene 4’-O-β-D-glucopyranoside	Terpene lactone	Cuc et al. (2020)	
10	B & C	3.969	[M-H]⁻	755.2006 (1.89)	[M + H]⁺	757.2199 (1.22)	C₃₃H₄₀O₂₀	Kaempferol-3-O-galactoserrutinose	Flavonoid	Ryu et al. (2017)	
11	B & C	4.636	[M-H]⁻	477.0641 (3.35)	[M+Na]⁺	501.0640 (0.04)	C₁₉H₁₈O₁₃	Quercetin 3-O-glucuronide	Flavonoid	Zhou and Yang (2000)	
12	B & C	4.901	[M-H]⁻	253.0683 (0.84)	/	/	C₁₃H₁₄O₄	Chrysophanol	Anthraquinone	Ye et al. (2020)	
13	B & C	5.001	[M-H]⁻	567.1687 (0.86)	[M+Na]⁺	591.1675 (0.92)	C₂₈H₃₀O₁₄	Phloretin-2-O-[(D-xylpyranosyl-(1→6)-D-glucopyranoside)]	Polyphenol, Dihydrochalcones	Ye et al. (2020)	
14	B & C	5.051	[M-H]⁻	463.0850 (3.21)	[M + H]⁺	465.1054 (2.54)	C₂₁H₂₀O₁₂	Myricitrin	Flavonoid	Ryu et al. (2017)	
15	B & C	5.273	[M-H]⁻	300.9981 (1.99)	[M + H]⁺	303.0137 (0.09)	C₁₉H₁₈O₆	Ellagic acid	Polyphenol	Ouyang et al. (2020)	
16	B & C	5.284	[M-H]⁻	435.1275 (2.20)	[M+Na]⁺	459.1269 (0.73)	C₂₁H₂₀O₁₀	Phloridzin	Polyphenol, Dihydrochalcones	Ye et al. (2020)	
17	B & C	5.334	[M-H]⁻	623.2070 (1.53)	/	/	C₂₈H₂₀O₁₆	Isorhamnetin-3-O-neohesperidoside	Flavonoid	Ye et al. (2020)	
18	B & C	5.517	[M-H]⁻	515.0404 (1.46)	/	/	C₂₉H₂₂O₁₂	Isochlorogenic acid	Phenylpropanoid	Ye et al. (2020)	
19	B & C	5.517	[M-H]⁻	593.1472 (3.72)	[M+Na]⁺	617.1480 (0.30)	C₂₇H₂₀O₁₅	Kaempferol-3-O-p-coumaroyl-glucose	Flavonoid	Ryu et al. (2017)	
20	B & C	5.634	[M-H]⁻	461.1061 (2.78)	[M+Na]⁺	485.1058 (0.36)	C₂₂H₂₂O₁₁	Kaempferide 3-glucoside	Flavonoid	Wang et al. (2019)	
21	B & C	6.072	[M-H]⁻	273.0749 (1.89)	/	/	C₁₁H₁₄O₅	Phloretin	Flavonoid	Ye et al. (2020)	
22	C	6.388	[M-H]⁻	315.0493 (1.67)	/	/	C₁₅H₁₄O₇	Pollenitin	Flavonoid	Yang et al. (2018)	
23	C	6.721	[M-H]⁻	285.0391 (1.35)	/	/	C₁₅H₁₀O₆	3’,4’,5,7-Tetrahydroxyflavone	Flavonoid	Wang et al. (2017)	
3.3 Determination of total saponins, flavonoids, polyphenols, and polysaccharides

Different plants parts of genus *Camellia* have confirmed the beneficial effects for cardiovascular health for their corresponding chemical constituents, for example, *Camellia* oil is beneficial to cardiovascular health because of the presence of unsaturated fatty acids. Green tea can reduce atherosclerosis and lipid peroxidation mainly due to catechins, epigallocatechin gallate (EGCG), and other polyphenols (Basu & Lucas, 2007). To explore the composition of Fr-B and Fr-C, total saponins, flavonoids, polyphenols, and polysaccharides were determined by UV-Vis spectrophotometric methods. As shown in Figure 2, Fr-A showed a higher polysaccharide content than CE and other fractions, while Fr-A had the weakest antiplatelet aggregation ability found in Figure 1a, suggesting that the antithrombotic activity of *C. osmantha* fruit cores may not be caused by polysaccharides. The contents of flavonoids and polyphenols in Fr-B were much higher than those in the other fractions, while its content of total polysaccharides was lower than that in Fr-A. Especially, the content of total polyphenols in Fr-B was 36.23 ± 2.18% gallic acid equivalents (GAE), significantly higher than that reported by Anesini et al. (Anesini et al., 2008). Similarly, the contents of polyphenols and flavonoids in Fr-C were higher than those in CE and Fr-A. Fr-B and Fr-C showed considerable antiplatelet aggregation ability, but their chemical compositions were not consistent. These results suggested that polyphenols and flavonoids in Fr-B, as well as saponins and flavonoids in Fr-C, may be the main contributors to the anticoagulant activity of the *C. osmantha* fruit cores.

Moreover, Spearman correlation analysis performed for the content of each fraction and AIR indicated a statistically significant correlation between total saponins and AIR (Table 1). A moderate correlation between the contents of flavonoids or polyphenols and AIR was found, whereas no such correlation was found for flavonoids and polyphenols. It has also been observed that the polysaccharide content and AIR are negatively correlated. Regarding saponins in Fr-C and polyphenols in Fr-B, a marked increase in their concentration and a positive correlation with AIR suggest that saponins and polyphenols might represent different active ingredients in *C. osmantha* fruit cores. Hence, it is easy to draw a preliminary conclusion, which is that *C. osmantha* fruit cores have antithrombotic effects, which may be mediated by affecting the aggregation of platelets; among the various fractions, Fr-B and Fr-C have good active effects. The determination of total flavonoids, total phenols, total saponins, and total sugars revealed that Fr-B is mainly comprised of polyphenols and flavonoids, while Fr-C is a mixture of polyphenols and flavonoids.
3.4 | HPLC-ESI-QTOF-MS analysis

The specific chemical compounds of Fr-B and Fr-C were further analyzed by UPLC-QTOF-MS. According to the retention time, the precursor m/z of the positive and negative ions, the isotope ratio, and the reference compounds confirmed from the *Camellia* genus, 23 compounds were initially identified that contained polyphenols, flavonoids, triterpenes, organic acids, etc. (Table 2). Although MCI-gel was used as the separation material for isolation, 18 compounds were still found in both Fr-B and Fr-C. UV-Vis analysis of most peaks confirmed that these compounds had maximum absorption only at 278 nm with a distinct shoulder at 283 nm, but had no absorption in the visible region, suggesting they might be polyphenols (Uchida et al., 2016). A small part of the peaks also has a maximum absorption at 330–340 nm, which suggests that they may be flavonoids. These findings are consistent with a previous analysis on the content of total polyphenols in Fr-B and Fr-C.

Figure 3 shows the base peak chromatograms (BPCs) of Fr-B and Fr-C in the negative ionization modes of analysis. The mass spectrum peaks of Fr-B and Fr-C have five major ion peaks in common (t_R = 1.694, 3.404, 4.636, 5.273, and 6.155 min), which correspond to naringenin (t_R = 3.404 min, a flavonoid), quercetin 3-O-glucuronide (t_R = 4.636 min, a flavonoid), and ellagic acid (t_R = 5.273 min, a polyphenol), respectively. Ellagic acid is a polyphenol component that can activate the inducers of coagulation factors XII and XI and it has anticoagulant effects. Ellagic acid can treat pathological arrhythmias, ventricular hypertrophy, and lipid peroxidation in rats with myocardial infarction caused by isoproterenol (Kannan & Quine, 2013). The peak at 5.273 min from Fr-B showed a mass-to-charge ratio information with m/z at 300.9974 (calcd for C_{14}H_{6}O_{8} [M–H]^−, 300.9984). In addition, peaks 1 and 5 showed two ultraviolet absorptions at 210 nm and 280 nm. They are preliminarily judged to be two phenolic compounds. However, their impossible structures could not be deduced because of the lack of more information. Moreover, although the extract of *C. osmantha* fruit cores had been proven to be rich in triterpenoids, few triterpenes have been identified due to the cleavage method of triterpenes previously described in the literature.

Thus, the active constituents of *C. osmantha* fruit cores may be polyphenols, flavonoids, and saponins rather than polysaccharides, which is consistent with the previous literature about the *Camellia* genus (Okinda Owuor et al., 2006).

3.5 | Docking analysis

The P2Y1 receptor (P2Y1R) facilitates platelet aggregation and is thus an important potential antithrombotic drug target. The P2Y1R protein structure contains a binding site for the receptor antagonist MRS2500 in its seven-transmembrane bundle, which also provides suitable pockets for numerous other ligands and nucleotide agonists of P2Y1R. Figure 4 Amino acids of 4XNW interacting with ellagic acid (a), naringenin (b), and quercetin 3-O-glucuronide (c). Hydrogen bonds are shown as yellow dots and π–π bond is shown as pink dots.
To further investigate the binding conformations of the active compounds with the 4XNW protein, molecular docking modeling was carried out using the LibDock method to dock ellagic acid, naringenin, and quercetin 3-O-glucuronide into the active sites of the 4XNW protein. The docked conformations of the best-fit ligands were visualized: these fits extended deep into the active site pocket, forming several hydrogen bonds and hydrophobic interactions with the key residues of the active site (Figure 4). The docking results showed that hydrogen bond interactions played important roles in ligand–protein interactions. Ellagic acid could form five hydrogen bonds with five residues (Lys46, Arg195, Cys202, Asp204, and Thr205) and form a π–π bond with Thr203. Naringenin could form four hydrogen bonds with four residues (Lys46, Asp208, Arg287, and Arg310). Quercetin 3-O-glucuronide could form five hydrogen bonds with five residues (Lys46, Gin50, Arg128, Tyr306, and Gin307). Moreover, the binding energies of ellagic acid, naringenin, and quercetin 3-O-glucuronide to the 4XNW protein are −9.9, −8.6, and −9.9 kcal/mol, respectively, implying the formation of stable bond states. The above molecular docking results suggested that these compounds could tightly combine with the P2Y1R protein, consistent with the results of the P2Y1R protein inhibition assay. The specific molecular mechanism needs to be clarified in future studies.

4 | CONCLUSIONS

Among the Guangxi folk, the cores of C. osmantha fruits have been widely considered to confer cardiovascular protection. However, the active components in the extracts of C. osmantha responsible for their antithrombotic effects are uncertain. According to the results obtained, both Fr-B and Fr-C could prolong TT and inhibit platelet aggregation compared with CE, which indicated that the contents of the active chemical components increased after the separation of MCI column. The ethanol extract of C. osmantha fruit cores displayed good antithrombotic activity mainly due to flavonoids, polyphenols, and saponins, which prevented blood clotting by affecting the fibrinolytic system. In addition, 23 compounds, including 6 polyphenols and 11 flavonoids, were identified by the HPLC-QTOF-MS equipped with high-resolution mass detectors. The antithrombotic properties of C. osmantha fruit cores were associated with the presence of numerous flavonoids, polyphenols, and saponins. Ellagic acid, naringenin, and quercetin 3-O-glucuronide are the main compounds from the most activity fractions, which may have contributed to the most significant antithrombotic activity. Furthermore, molecular docking analysis revealed that, ellagic acid, naringenin, and quercetin 3-O-glucuronide showed stronger ability to interact with P2Y1 receptors. Thus, C. osmantha fruit cores possess the material basis for antithrombotic activity and can be developed into a promising antithrombotic functional beverage for the prevention and treatment of cardiovascular and cerebrovascular diseases and other thromboembolic diseases.

ACKNOWLEDGMENTS

The work was financially supported by the Guangxi Key Laboratory of Special Non-wood Forest Cultivation and Utilization (No. JB-20-04-01) and Science and Technology Major Project of Guangxi (No. AA20302021-7).

CONFLICT OF INTEREST

The authors have declared no conflicts of interest for this article.

AUTHOR CONTRIBUTIONS

Li Yang: Investigation (equal); Methodology (equal); Resources (equal); Writing – review & editing (equal). Gui-Liang Xie: Formal analysis (equal); Methodology (equal); Writing – review & editing (equal). Jin-Lin Ma: Resources (equal); Writing – review & editing (equal). Xiao-Qiong Huang: Data curation (equal); Investigation (equal); Methodology (equal); Yao Gu: Data curation (equal); Investigation (equal); Lei Huang: Data curation (equal); Investigation (equal). Hai-Yan Chen: Software (equal); Visualization (equal); Xi-Lin Ouyang: Data curation (equal); Funding acquisition (equal); Project administration (equal); Writing – original draft (equal).

ETHICAL APPROVAL

All animal-related experiments were performed with the prior approval of the Experimental Animal Ethics Committee of Youjiang Medical University for Nationalities, Guangxi, P. R. China (Approval No. 02/2017).

DATA AVAILABILITY STATEMENT

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

ORCID

Xi-Lin Ouyang https://orcid.org/0000-0002-7462-1462

REFERENCES

Anesini, C., Ferraro, G. E., & Filip, R. (2008). Total polyphenol content and antioxidant capacity of commercially available tea (Camellia sinensis) in Argentina. Journal of Agricultural & Food Chemistry, 56(19), 9225–9229. https://doi.org/10.1021/jf8022782

Bansal, S., Syan, N., Mathur, P., & Choudhary, S. (2012). Pharmacological profile of green tea and its polyphenols: A review. Medicinal Chemistry Research, 21(11), 3347–3360. https://doi.org/10.1007/s00044-011-9800-4

Basu, A., & Lucas, E. A. (2007). Mechanisms and effects of green tea on cardiovascular health. Nutrition Reviews, 65(8), 361–375. https://doi.org/10.1301/nr.2007.aug.361-375

Chou, T. Y., Lu, Y. F., Inbaraj, B. S., & Chen, B. H. (2018). Camellia oil and soybean-camellia oil blend enhance antioxidant activity and cardiovascular protection in hamsters. Nutrition, 51–52, 86–94. https://doi.org/10.1016/j.nut.2017.12.011

Cuc, N. T., Nhiem, N. X., Tai, B. H., Van Kiem, P., & Thu, V. K. (2020). Dihydrostilbene glycosides and lignan from Camellia sasanqua. Vietnam Journal of Chemistry, 58(5), 661–665. https://doi.org/10.1002/vjch.202000062

Dahlback, B. (2005). Blood coagulation and its regulation by anticoagulant pathways: Genetic pathogenesis of bleeding and thrombotic
diseases. *Journal of Internal Medicine*, 257(3), 209–223. https://doi.org/10.1111/j.1365-2796.2004.01444.x

Gao, B., Huang, L., Liu, H., Wu, H., Zhang, E., Yang, L., & Wang, Z. (2014). Platelet P2Y12 receptors are involved in the haemostatic effect of notoginsenoside F1, a saponin isolated from *Panax notoginseng*. *British Journal of Pharmacology*, 171(1), 214–223. https://doi.org/10.1111/bjp.12435

Hong, C. C., Chang, C., Zhang, H., Jin, Q. Z., Wu, G. C., & Wang, X. (2012). Concordance between antioxidant activities in vitro and chemical components of *Camellia sinensis* leaves depending on the growth stage. *Food Control*, 73, 916–921. https://doi.org/10.1016/j.foodcont.2016.10.017

Uchida, K., Ogawa, K., & Yanase, E. (2016). Structure determination of novel oxidation products from Epicatechin: Thearubigin-like molecules. *Molecules*, 21(3), 273. https://doi.org/10.3390/molecules2131030273

Wang, X., Zeng, Q., Del Mar Contreras, M., & Wang, L. (2017). Profiling and quantification of phenolic compounds in *Camellia* seed oils: Natural tea polyphenols in vegetable oil. *Food Research International*, 102, 184–194. https://doi.org/10.1016/j.foodres.2017.09.089

Wang, Y. J., Kan, Z. P., Thompson, H. J., Ling, T. J., Ho, C. T., Li, D. X., & Wan, X. C. (2019). Impact of six typical processing methods on the chemical composition of tea leaves using a single *Camellia sinensis* cultivar, Longjing 43. *Journal of Agricultural & Food Chemistry*, 67(19), 5423–5436. https://doi.org/10.1021/acs.jafc.8b05140

Wei, K., He, H. F., Li, H. L., Wang, L. Y., Ruan, L., Pang, D. D., & Cheng, H. (2019). Gallotannin 1,2,6-tri-O-galloyl-β-D-glucopyranose: Its availability and changing patterns in tea (*Camellia sinensis*). *Food Chemistry*, 296(30), 40–46. https://doi.org/10.1016/j.foodchem.2019.05.144

Wendelboe, A. M., & Raskob, G. E. (2016). Global burden of thrombosis: Epidemiologic aspects. *Circulation Research*, 118(9), 1340–1347. https://doi.org/10.1161/CIRCRESAHA.115.306841

Wu, Y., Jiang, X., Zhang, S., Dai, X., Liu, Y., Tan, H., Gao, L., & Xia, T. (2016). Quantification of flavonol glycosides in *Camellia sinensis* by MRM mode of UPLC-QQQ-MS/MS. *Journal of Chromatography B*, 1017–1018, 10–17. https://doi.org/10.1016/j.jchromb.2016.01.064

Xiao, Y., Xing, G. L., Rui, X., Li, W., Chen, X. H., Jiang, M., & Dong, M. S. (2014). Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with *Cordyceps militaris* SN-18. *Journal of Functional Foods*, 10, 210–222. https://doi.org/10.1016/j.jff.2014.06.008

Xiong, W., Fu, J. P., Hu, J. W., Wang, H. B., Han, X. D., & Wu, L. (2018). Secondary metabolites from the fruit shells of *Camellia oleifera*. *Chemistry of Natural Compounds*, 54(6), 1189–1191. https://doi.org/10.1007/s10600-018-2592-8

Yang, R., Guan, Y., Wang, W. X., Chen, H. J., He, Z. C., & Jia, A. Q. (2018). Antioxidant capacity of phenolics in *Camellia nitidissima* Chi flowers and their identification by HPLC Triple TOF MS/MS. *PLoS One*, 13(4), e0195508. https://doi.org/10.1371/journal.pone.0195508

Ye, P., Lu, J., Li, M., Zhang, H., Chen, Y., & Wei, F. (2020). Comprehensive analysis of the compound profiles of *Folium Camelliae Nitidissimae* extract by ultrafast liquid chromatography with quadrupole-time-of-flight mass spectrometry and hepatoprotective effect against CCI4-induced liver injury in mice. *Biomedical Chromatography*, 34(6), e4817. https://doi.org/10.1002/bmc.4817

Ye, Y., Fang, F., & Li, Y. (2014). Isolation of the sapogenin from defatted seeds of *Camellia oleifera* and its neuroprotective effects on dopaminergic neurons. *Journal of Agricultural & Food Chemistry*, 62(26), 6175–6182. https://doi.org/10.1021/jf501166w

Yoshikawa, M., Sugimoto, S., Nakamura, S., & Matsuda, H. (2008). Medicinal flowers. xxii. Structures of chakasaponins V and VI, Chakanoside I, and Chakaflavonoside A from flower buds of *Camellia sinensis* var. assamica. *Phytochemistry*, 53(8), 941–946. https://doi.org/10.1016/j.phytochem.2003.06.009

Okinda Owuor, P., Obanda, M., Nyirenda, H. E., Mphangwe, N. I. K., Wright, L. P., & Apostolidès, Z. (2006). The relationship between some chemical parameters and sensory evaluations for plain black tea (*Camellia sinensis*) produced in Kenya and comparison with similar teas from Malawi and South Africa. *Food Chemistry*, 97(4), 644–653. https://doi.org/10.1016/j.foodchem.2005.04.027

Ordonez-Santos, L. E., Martinez-Giron, J., & Arias-Jaramillo, M. E. (2017). Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in *Cape gooseberry* juice. *Food Chemistry*, 233, 96–100. https://doi.org/10.1016/j.foodchem.2017.04.114

Ouyang, X. L., Yang, L., Huang, L., & Pan, Y. M. (2020). Antitumor activity on human bladder cancer T24 cells and composition analysis of the core of *Camellia osmantha* fruit. *Natural Product Research*, 34(18), 2689–2693. https://doi.org/10.1080/14786419.2018.1550763

Ryu, H. W., Yuh, H. J., An, J. H., Kim, D. Y., Song, H. H., & Oh, S. R. (2017). Comparison of secondary metabolite changes in *Camellia sinensis* leaves depending on the growth stage. *Food Control*, 73, 916–921. https://doi.org/10.1016/j.foodcont.2016.10.017

Zeng, C. Z., Lin, H. Y., Liu, Z. X., & Liu, Z. H. (2020). Metabolomics analysis of the compound profiles of *Folium Camelliae Nitidissimae* extract by ultrafast liquid chromatography with quadrupole-time-of-flight mass spectrometry and hepatoprotective effect against CCI4-induced liver injury in mice. *Biomedical Chromatography*, 34(6), e4817. https://doi.org/10.1002/bmc.4817
Zhou, Z. H., & Yang, C. R. (2000). Chemical constituents of crude green tea, the material of Pu-er tea in Yunnan. *Acta Botanica Yunnanica, 22*(3), 343–350.

Zong, J. F., Wang, R. L., Bao, G. H., Ling, T. J., Zhang, L., Zhang, X. F., & Hou, R. Y. (2015). Novel triterpenoid saponins from residual seed cake of *Camellia oleifera* Abel. show anti-proliferative activity against tumor cells. *Fitoterapia, 104*, 7–13. https://doi.org/10.1016/j.fitote.2015.05.001

How to cite this article: Yang, L., Xie, G.-L., Ma, J.-L., Huang, X.-Q., Gu, Y., Huang, L., Chen, H.-Y., & Ouyang, X.-L. (2022). Phytochemical constituents of *Camellia osmantha* fruit cores with antithrombotic activity. *Food Science & Nutrition, 10*, 1510–1519. https://doi.org/10.1002/fsn3.2769