Comparative genomic and methylome analysis of non-virulent D74 and virulent Nagasaki *Haemophilus parasuis* isolates

Tracy L. Nicholson*, Brian W. Brunelle, Darrell O. Bayles, David P. Alt, Sarah M. Shore

National Animal Disease Center, Agricultural Research Service, USDA, Ames, Iowa, United States of America

*tracy.nicholson@ars.usda.gov

Abstract

Haemophilus parasuis is a respiratory pathogen of swine and the etiological agent of Glässer’s disease. *H. parasuis* isolates can exhibit different virulence capabilities ranging from lethal systemic disease to subclinical carriage. To identify genomic differences between phenotypically distinct strains, we obtained the closed whole-genome sequence annotation and genome-wide methylation patterns for the highly virulent Nagasaki strain and for the non-virulent D74 strain. Evaluation of the virulence-associated genes contained within the genomes of D74 and Nagasaki led to the discovery of a large number of toxin-antitoxin (TA) systems within both genomes. Five predicted hemolysins were identified as unique to Nagasaki and seven putative contact-dependent growth inhibition toxin proteins were identified only in strain D74. Assessment of all potential vtaA genes revealed thirteen present in the Nagasaki genome and three in the D74 genome. Subsequent evaluation of the predicted protein structure revealed that none of the D74 VtaA proteins contain a collagen triple helix repeat domain. Additionally, the predicted protein sequence for two D74 VtaA proteins is substantially longer than any predicted Nagasaki VtaA proteins. Fifteen methylation sequence motifs were identified in D74 and fourteen methylation sequence motifs were identified in Nagasaki using SMRT sequencing analysis. Only one of the methylation sequence motifs was observed in both strains indicative of the diversity between D74 and Nagasaki. Subsequent analysis also revealed diversity in the restriction-modification systems harbored by D74 and Nagasaki. The collective information reported in this study will aid in the development of vaccines and intervention strategies to decrease the prevalence and disease burden caused by *H. parasuis*.

Introduction

Haemophilus parasuis is a small, Gram negative, non-motile, pleomorphic rod-shaped, and nicotinamide adenine dinucleotide (NAD)-dependent bacterium of the *Pasteurellaceae* family [1, 2]. *H. parasuis* is a respiratory pathogen affecting swine and is the etiological agent of Glässer’s disease, a systemic infection resulting in arthritis, polyserositis (inflammation of serous
membranes), and meningitis [2–4]. Additionally, *H. parasuis* infections can lead to pneumonia without signs of systemic disease in swine [5–7]. The morbidity and mortality caused by *H. parasuis* is a significant source of economic loss to the swine industry worldwide.

Serotyping based on the production of heat-stable antigens, in which capsular polysaccharide is presumed to be the dominant component of the serotyping antigen, is routinely used for isolate classification and epidemiological purposes as well as for guidance in regards to vaccination strategies. Fifteen serovars of *H. parasuis* have been defined, however, a substantial percentage of clinical isolates are identified as nontypeable (NT) using conventional indirect hemagglutination (IHA) methods [8, 9]. Progress to alleviate this problem has been made with the determination of the nucleotide sequence of the capsule locus from fifteen serovar reference isolates, which has been used to develop molecular serotyping methods [10–12].

H. parasuis isolates can exhibit different virulence capabilities ranging from lethal systemic disease to subclinical carriage. Numerous studies have focused on the identification of virulence factors that enable some isolates to cause systemic disease, distinguishing them from isolates that remain colonizers of the upper respiratory tract. Examples of potential virulence factors that have been evaluated to date include capsule production, outer membrane proteins (OMPs), trimeric autotransporters, and regulatory proteins QseC and OxyR [13–22]. Despite the advancement in our understanding of the pathogenic mechanisms used by *H. parasuis*, a direct link between specific virulence factors and the ability to cause systemic disease has not been demonstrated. Accordingly, virulence is thought to be multifactorial [2–4]. Data directly linking specific genes to disease outcomes has been hindered by several substantial complications, the most notable being difficulties in genetic modification of the chromosome due to low transformation efficiencies attributed to strain specific restriction modification barriers, as well as difficulties in consistently reproducing Glässer’s disease in conventionally raised pigs due to confounding factors such as age, health status, differences in maternal antibody titers towards *H. parasuis*, and coinfection with other respiratory pathogens [23–26].

There are no effective approaches to eradicate *H. parasuis* from pig herds and controlling outbreaks has proven difficult [2, 27]. Although vaccines have been developed, most are comprised of bacterins, resulting in poor heterologous protection. Consequently no broadly protective vaccines or intervention strategies exist [28–30]. The current treatment for *H. parasuis* is broad spectrum antibiotics, which are expensive and are believed to increase the risk of resistant strain development [29, 31–33]. Additionally, with increased pressure to limit antibiotic use in agriculture, alternative approaches are desperately needed to reduce disease burden and economic losses caused by *H. parasuis*.

In a previous effort to link genomic differences to disease outcome, draft genome sequence data was obtained for ten genetically distinct isolates along with the evaluation of virulence in Caesarean-derived, colostrum deprived (CDCD) pigs [34]. These results demonstrated that strain D74 is a non-virulent colonizer of the upper respiratory tract, while in contrast, strain Nagasaki was highly virulent and capable of causing systemic disease [34]. Many genomic differences, including gene content and/or nucleotide variation, were identified that could account for the phenotypic difference between the strains [34]. Unfortunately many genes or regions of interest within each strain were incomplete, preventing a reliable one-to-one assignment and subsequent comparison of any predicted protein structure. In order to definitively identify and characterize the genomic differences between the highly virulent Nagasaki strain and the non-virulent D74 strain, the goal of our report was to obtain the closed whole-genome sequence and genome-wide methylation patterns between these phenotypically distinct strains.
Materials and methods

Genome sequencing and annotation

H. parasuis strain Nagasaki is a Serotype Type 5 reference strain and a Multilocus sequence typing (MLST) Type 24 strain. *H. parasuis* strain D74 is a Serotype Type 9 reference strain and a MLST Type 25 strain. Strains were cultured in Brain Heart Infusion (BHI) Broth (BD Biosciences, Sparks, MD) supplemented with 5% filtered heat-inactivated horse serum (GIBCO, Life Technologies, Grand Island, NY) and 0.01% (w/v) nicotinamide adenine dinucleotide (NAD) (Sigma-Aldrich, St. Louis, MO) at 37°C in 5% CO$_2$ for 24 hours and total genomic DNA was extracted using the High Pure PCR Template Preparation Kit (Roche Applied Science, Indianapolis, IN). Whole genome sequencing was performed using both the Pacific Biosciences (PacBio) and Illumina MiSeq platforms. Library preparation for PacBio sequencing was performed following the PacBio 10-kb insert library preparation protocol available online at (http://www.pacb.com/wp-content/uploads/2015/09/Procedure-Checklist-10-kb-Template-Preparation-and-Sequencing.pdf). The 10 kb library for each strain was sequenced using the PacBio RSII platform with two SMRT cells for each isolate. Indexed libraries for the MiSeq protocol were generated with the Nextera XT DNA sample preparation and index kits (Illumina, San Diego, CA), pooled, and sequenced using MiSeq v2 500-Cycle reagent kit yielding 2 x 250-bp paired-end reads (Illumina, San Diego, CA).

Whole genome assemblies were generated using the PacBio smrtanalysis v. 2.3.0 (https://www.pacb.com/products-and-services/analytical-software/smrt-analysis/) and CANU v. 1.3 [35] software. The average PacBio coverage for the assembled genomes was 805x for Nagasaki and 1,284x for D74. Assembling the PacBio data for each strain resulted in a fully sequenced closed circular chromosome, which was subsequently oriented to start at the dnaA gene and trimmed by removing any overlapping sequence. The genomes were then polished and error corrected using the Broad Institute’s Pilon v 1.18 [36] and Illumina data 103x and 120x average coverage for Nagasaki and D74, respectively. The closed genome for each strain was then annotated using NCBI’s Prokaryotic Genome Annotation Pipeline (PGAP) and additional curation was performed using the Prokka annotation software (version 1.12) [37] along with a *Haemophilus*-specific custom database. To compare putative protein sequences between Nagasaki and D74, the RAST prokaryotic genome annotation server [38] (http://rast.nmpdr.org/) was used to map annotated protein coding sequences (CDS) to functional subsystems and performed a one-to-one BLASTP comparison between the strains. Genome organization was evaluated using the Artemis Comparison Tool [39] and Mauve [40].

Plasmid sequencing and annotation

Assembled PacBio data for pD74 did not initially result in a circularized plasmid sequence. The complete nucleotide sequence was subsequently determined using a primer walking strategy employing five separate plasmid preparations isolated from strain D74 using a Wizard Plus SV Minipreps DNA Purification System (Promega, Madison, WI) according to the manufacturer’s protocol. The resulting circularized plasmid sequence was then polished and error corrected using the Broad Institute’s Pilon v 1.18 [36] and Illumina data 104x average coverage for strain D74. The assembled pD74 sequence was then annotated using NCBI’s Prokaryotic Genome Annotation Pipeline (PGAP). Further sequence analysis was carried out using BLASTN, BLASTX, and Tandem Repeats Finder [41].

IS and CRISPR analysis

Genomes were submitted to ISfinder (https://www-is.biotoul.fr/) [42] for the identification of bacterial IS elements using default parameters. Genomes were submitted to CRISPRFinder
for the identification CRISPR elements using default parameters.

Phenotypic analysis

Phenotypic antibiotic resistance was determined using the broth microdilution method by Iowa State University Veterinary Diagnostic Laboratory following standard operating procedures. Each isolate was tested using the Trek BOPO6F plate (Thermo Fisher Scientific Inc., Oakwood Village, OH) and minimum inhibitory concentrations (MICs) were determined. MICs were evaluated in accordance with Clinical Laboratory Standards Institute (CLSI) recommendations for resistance interpretations.

Genomic antimicrobial resistance (AMR) analysis

ResFinder 2.1 from the Center for Genomic Epidemiology (http://www.genomicepidemiology.org/) and the Comprehensive Antibiotic Resistance Database (CARD) (https://card.mcmaster.ca/home) were employed for AMR determinant identification. Genomes submitted to ResFinder 2.1 were evaluated for AMR determinants using starting parameters of a threshold ID of 90% and a minimum length of 60% and final parameters of a threshold ID of 30% and a minimum length of 20%. Genomes submitted to CARD were evaluated for AMR determinants using the criteria “default–perfect and strict hits only”.

Capsular loci analysis

The nucleotide sequences of genes within the capsule loci of Nagasaki and D74 reported by Howell et al. [10] were obtained from NCBI. Alignments of individual gene and protein sequences, as well as calculation of percent identities, were performed using the Geneious Alignment tool in Geneious 10.1.3 (Biomatters Ltd., Auckland, New Zealand). Global alignment with free end gaps parameters were used for both nucleotide and protein sequence alignments followed by determining the percent identity relative to Howell et al. [10]. Nucleotide and amino acid insertions are reported using HGVS nomenclature [44].

cdiA gene analysis

The nucleotide sequences of genes within the cdiA region of D74 were evaluated using BLASTX. Translated coding sequences were extracted and evaluated for the occurrence of any domain using the Pfam 31.0 database (https://pfam.xfam.org/) [45].

vtaA gene analysis

To ensure that all potential vtaA genes were identified in both Nagasaki and D74 genome annotations, the translated coding sequences were extracted and batch queried using the Pfam 31.0 database (https://pfam.xfam.org/) [45] for all occurrences of a YadA_anchor domain (PF03895) [15]. Geneious 10.1.3 (Biomatters Ltd., Auckland, New Zealand) was employed to evaluate and compare the genome location of vtaA genes in both Nagasaki and D74, including flanking upstream and downstream genes. The domain architecture and content of each vtaA gene from both Nagasaki and D74 was further evaluated for the occurrence of any domains using the Pfam 31.0 database (https://pfam.xfam.org/) [45]. BLASTN was employed to search sequences upstream of vtaA genes in both Nagasaki and D74 for the occurrence of the Nagasaki vtaA4 promoter sequence identified by Pina et al. [15].
Methylation analysis

Detection of modified bases (m6A, m4C, m5C) and clustering of modified sites to identify methylation associated motifs was performed using the RSModification_and_Motif_analysis.1 tool from the SMRT analysis package version 2.3.0. Briefly, raw reads were aligned to the complete genomes of D74 and Nagasaki and interpulse duration (IPD) ratios were measured for all pulses aligned to each position in the reference sequence (http://www.pacb.com/pdf/TN_Detecting_DNA_Base_Modifications.pdf). [46]

SSR analysis

The nucleotide sequences of all putative RM genes identified in D74 and Nagasaki were evaluated for the occurrence of SSRs, tandem repeats or homopolymeric tracts of consisting of five or more bases, within the coding region and in the region encompassing 150 bp upstream of the putative start codon using Geneious 10.1.3 (Biomatters Ltd., Auckland, New Zealand).

Accession number(s)

The whole-genome sequences for these isolates were deposited in DDBJ/ENA/GenBank with the accession numbers CP018034 for Nagasaki and CP018032 for D74 genome and CP18033 for the plasmid sequence. The sequence data, target sequences and associated details for methylation enzymes, used for analyses in this report have been deposited in the REBASE database (www.rebase.neb.com) [47]. RM-system and methylation motifs for both strains can be accessed via the index of the REBASE database (http://tools.neb.com/genomes/) or directly via this link: http://rebase.neb.com/cgi-bin/pacbioget?20940 for D74 or http://rebase.neb.com/cgi-bin/pacbioget?20939 for Nagasaki.

Results and discussion

Genome features of H. parasuis strains D74 and Nagasaki

The complete genome assembly and annotation of H. parasuis strain Nagasaki contains a single circular chromosome 2,348,962 base pairs (bp) in length, encodes a total of 2,268 predicted protein coding sequences (CDSs), and a G+C content of 40.0% (Table 1). Of the 2,268 CDSs, 95 were predicted to be pseudogenes. The complete genome assembly and annotation of H. parasuis strain D74 encompasses a single circular chromosome 2,467,568 base pairs (bp) in

Table 1. General features of the genomes of H. parasuis strains D74 and Nagasaki.

	D74	Nagasaki
Sequence Type (ST)	9	5
Chromosome Size (bp)	2,467,568	2,348,962
G + C Content (%)	39.7%	40.0%
Total CDSs	2,252	2,268
Pseudogenes	95	95
Functional CDSs	2,157	2,173
rRNA (16S-23S-5S)	6-6-7	6-6-8
tRNA	57	60
Phage Regions	6	9
Plasmid	1	0

*Encoding either an incomplete predicted protein sequence, a frameshift, or an internal stop codon.

https://doi.org/10.1371/journal.pone.0205700.t001
length, a total of 2,252 total predicted protein coding sequences (CDSs), and a G+C content of 39.7% (Table 1). Similar to Nagasaki, 95 out of the 2,252 CDSs were predicted to be pseudo-genes. Despite the equivalent number, none of the predicted pseudogenes were similar between the stains (S1 Table and S2 Table). The difference in rRNA numbers between D74 and Nagasaki is consistent with other closed \textit{H. parasuis} genomes available in GenBank (Table 1). The genomes of \textit{H. parasuis} Nagasaki and D74 were assessed using PHASTER (http://phaster.ca/) [48] for the occurrence of phage regions. Nine phage regions, seven intact and two incomplete, were identified along the Nagasaki chromosome (Table 2). Six phage regions, one intact and five incomplete, were also identified along the D74 chromosome (Table 1). The phage regions identified are unique to each genome. The chromosomal location, including start and end nucleotide positions, length of phage region, and classification of phage regions for both strains are summarized in Table 2.

An 11,595-bp circular plasmid was additionally identified in the complete genome assembly and annotation of \textit{H. parasuis} strain D74. With the addition of the plasmid, the total nucleotides, including both the circular chromosome and plasmid, is 2,479,163 bp for strain D74. The plasmid harbored by strain D74, designated as pD74, contains seven CDSs with predicted functions based on sequence homology, including \textit{parA}, \textit{rec}, and \textit{repB}, which have predicted functions in plasmid replication. Additionally, pD74 harbors six CDSs of unknown function and one predicted pseudogene (Fig 1). These CDSs lacked a reciprocal match in Nagasaki. A region containing four copies of a 22-bp tandem repeat sequence was identified upstream of the \textit{repB} CDS, which could potentially comprise the origin of replication (Fig 1). The sequence spanning from 3,328 to 1,243 bp comprises the entire 9,462 bp sequence of \textit{H. parasuis} plasmid pHS-Rec (accession no. AY862436) with 99.2% sequence identity (Fig 1) [49]. The sequence spanning from 5,847 to 1,025 bp shares 99.4% sequence identity with \textit{Pasteurella trehalosi} plasmid pCCK13698 (accession no. AM183225) (Fig 1) [50]. pD74 sequencing from 1,246 to 5,350 bp shares 73.9% sequence identity with a chromosomal region of \textit{Gallibacterium anantis} strain UMN179 (accession no. CP002667) (Fig 1) [51].

Strain	Region #	Start\(^a\)	End\(^a\)	Length\(^b\)	Classification\(^c\)
Nagasaki	1	75,146	95,579	20,434	Incomplete
	2	578,665	613,918	35,254	Intact
	3	930,933	982,262	51,330	Intact
	4	978,209	1,022,173	43,965	Intact
	5	1,146,622	1,187,091	40,470	Intact
	6	1,837,359	1,870,441	33,083	Intact
	7	1,890,250	1,901,023	10,774	Incomplete
	8	2,053,720	2,085,576	31,857	Intact
	9	2,113,966	2,153,632	39,667	Intact
D74	1	1,021,542	1,030,153	8,612	Incomplete
	2	1,179,090	1,197,266	18,177	Incomplete
	3	1,186,455	1,216,786	30,332	Incomplete
	4	1,303,971	1,339,245	35,275	Intact
	5	1,390,803	1,407,651	16,840	Incomplete
	6	1,868,288	1,889,812	21,525	Incomplete

\(^a\) Basepair chromosomal location.

\(^b\) Length of region depicted in base pairs.

\(^c\) Classification determined by PHASTER analysis (http://phaster.ca/) [48].

https://doi.org/10.1371/journal.pone.0205700.t002
Comparison of the genome sequences of *H. parasuis* strains D74 and Nagasaki

A reciprocal or one-to-one BLASTP comparison of the protein coding sequences in Nagasaki and D74 identified 1,705 shared CDSs between the strains (Fig 2). Of the 2,173 functional CDSs in strain Nagasaki, 366 CDSs lacked a reciprocal match in D74 and were designated unique or Nagasaki-specific (Fig 2A). Conversely, 324 CDSs, out of the 2,157 functional CDSs in strain D74, lacked a reciprocal match in Nagasaki and were designated unique or D74-specific (Fig 2A). Comparison of the linear organization of the genomes of Nagasaki and D74 revealed many genome re-arrangements and inversions (Fig 2B). The alignment additionally resulted in 73 locally collinear blocks (LCBs), the largest of which is 520,607 bp (Fig 2B).

The genomes of *H. parasuis* Nagasaki and D74 were assessed for the presence of insertion sequence (IS) elements using ISfinder (https://www-is.biotoul.fr/) [42]. IS elements found previously in other *H. parasuis* and *Pasteurellaceae* genomes were identified in both D74 and Nagasaki genomes and these IS elements contained the greatest similarity to sequences from the IS1595 family. Specifically, four ISHps3 and three ISHps4 IS elements were identified in D74, while one ISHps3 and four ISHps4 IS elements were identified in Nagasaki. *In silico* analysis revealed the occurrence of additional transposases annotated as belonging to other families, such as IS256 and IS110, in both D74 and Nagasaki genomes that were not identified by
ISfinder analysis, given that it typically does not identify frameshifted or truncated IS units. These transposases were annotated as pseudogenes and therefore are likely nonfunctional. Of the five complete IS units identified in Nagasaki, two are within regions of conserved sequence order and have homologs in D74. Three of the intact IS units identified in Nagasaki are located at the border of sequence rearrangement, with one located at the border of one of the phage regions. Six complete IS units were identified in D74 with two located at the border of rearranged regions. Of the four IS units that are present within regions of conserved sequence order, two are within regions of conserved sequence order and have homologs in Nagasaki and two are small sequence insertions located within a conserved region in which only the IS unit is the only sequence not conserved within the region. Clusters of regularly interspaced short palindromic repeats (CRISPR) and spacer sequences in the genomes of both D74 and
Nagasaki were screened using CRISPRFinder (http://crispr.i2bc.paris-saclay.fr) [43]. No evidence for CRISPR sequences were found in either genome.

Phenotypic antibiotic resistance was determined for \(H. parasuis\) D74 and Nagasaki and results are summarized in S3 Table. Nagasaki exhibited phenotypic resistance to clindamycin while D74 exhibited “intermediate” limited phenotypic resistance to clindamycin; no other resistance was identified. The genomes of \(H. parasuis\) Nagasaki and D74 were screened for the presence of acquired resistance genes and known chromosomal mutations conferring clindamycin resistance. No \(erm, lnu\), or other known resistance determinants were identified in either genome.

Capsule loci in \(H. parasuis\) strains D74 and Nagasaki

Due to the importance of capsular polysaccharide in serotyping or strain classification, virulence, and vaccine related research areas, the CDSs located within the capsule loci of Nagasaki and D74 were compared to nucleotide sequences reported by Howell et al. [10]. Several nucleotide and amino acid differences were identified and are summarized in S4 Table and S5 Table. Eleven out of sixteen predicted proteins within the D74 capsule locus were found to contain amino acid differences compared to the sequences reported by Howell et al. [10]. The genes harboring the most or more noteworthy changes for D74 include \(wzx2, astA, gltL\), and \(wzs\) (S4 Table). The predicted amino acid changes in AstA relative to the Howell et al. [10] sequence included a two amino acid insertion and are: N98_H99insHId, Q134R, S157A, V177I, V183I, I189V, S195N, and V2056M. In contrast, the predicted amino acid sequence for GltL is shorter than that reported in Howell et al. [10] due to a different predicted start codon. The predicted amino acid changes in GltL are M1_K8del and V9M. The predicted amino acid changes in Wzx2 relative to the Howell et al. [10] sequence are: V176A, I180V, A187V, S192N, R278H, P291S, and R373S (S4 Table). The predicted amino acid changes in Wzs relative to the Howell et al. [10] sequence are: E3K, L27I, V230A, V613A, and V622A (S4 Table).

In \(H. parasuis\) Nagasaki, twelve out of fourteen predicted proteins within the capsule locus were found to contain amino acid differences compared to the sequences reported by Howell et al. [10]. The genes harboring the more notable changes for Nagasaki include \(funA, wcfQ\), and \(wbgX\) (S5 Table). FunA is predicted to result in a longer protein sequence compared to Howell et al. [10] due to a different predicted start codon and five amino acid changes within the shared region, along with 37 additional amino acids on the N-terminus. The predicted amino acid changes in FunA are M1ext-37, A2V, A6V, D27V, S28N, and V138 (S5 Table). The predicted amino acid changes in WcfQ relative to the Howell et al. [10] sequence are: E43K, I58V, S61T, I64T, F106S, D131G, F132S, N194K, Y262C, R269N, F270N, and L271F (S5 Table). WbgX is predicted to encode a shorter protein sequence compared to Howell et al. [10] due to a different predicted start codon. The predicted amino acid changes in WbgX are: M1del, K2M, E3N, F4Y, T177A, S343N, P344A, and A349I (S5 Table).

Virulence-associated genes identified in \(H. parasuis\) strains D74 and Nagasaki

To identify factors that could support host colonization and/ or virulence, the D74 and Nagasaki annotations were searched for CDSs encoding predicted functions in adhesion, hemolysis, secretion, toxin production, or other virulence-associated roles. Twenty-one CDSs encoding predicted adhesins were identified in D74 including five outer membrane genes (\(ompA, ompP1, ompP2, ompP5\), and \(ompD15\)), two \(fimD\) fimbrial usher genes located adjacent to each other along the chromosome, pertactin family virulence factor \(aidA\), filamentous hemagglutinin transporter \(fhaC\), adhesin autotransporter \(bmaC\), and two type IV pili genes (Table 3).
Table 3. Predicted virulence-associated genes identified in *H. parasuis* D74.

Group	D74 locus_tag	D74 Name	Product/ Function	Hit*	Nagasaki locus_tag	% Identityb
Adhesin	A2U20_02695	pilW	Type IV pilus biogenesis/stability protein PilW	bi	A2U21_08925	100
	A2U20_03215	pilG	Type II secretory pathway, pseudopilin PilG	bi	A2U21_08415	97
	A2U20_03220	pilI	Type II secretory pathway, component PilI	bi	A2U21_08410	96
	A2U20_03425	pilM	Type IV pilus biogenesis protein PilM	bi	A2U21_08215	98
	A2U20_03430	pilN	Type IV pilus biogenesis protein PilN	bi	A2U21_08210	98
	A2U20_03445	pilQ	Type IV pilus biogenesis PilQ	bi	A2U21_08195	94
	A2U20_03490	ompP5	Outer membrane protein P5	bi	A2U21_08150	92
	A2U20_03710	ompP1	Outer membrane protein precursor P1	bi	A2U21_07950	90
	A2U20_03770	pilT	pilT domain-containing protein	uni	A2U21_06460	56
	A2U20_04380	ompP2	Outer membrane protein P2 precursor	bi	A2U21_07315	85
	A2U20_04655	ompD15	Surface antigen (D15), outer membrane protein	bi	A2U21_07040	99
Hemolysin	A2U20_04855	ompA	Outer membrane protein A	bi	A2U21_06820	98
	A2U20_06825	fhuC	Filamentous hemagglutinin transporter protein FhuC	uni	A2U21_11135	52
	A2U20_07210	pilA	Type IV pilin PilA	bi	A2U21_10860	87
	A2U20_07215	pilB	Type IV fimbrial assembly ATPase PilB	bi	A2U21_10855	98
	A2U20_07220	pilC	Type IV fimbrial assembly protein PilC	bi	A2U21_10850	99
	A2U20_07225	pilD	Tlp pilus assembly pathway, fimbrial leader peptidase	bi	A2U21_10845	94
	A2U20_08340	aidA	Type V secretory pathway, adhesin AidA	bi	A2U21_04065	72
	A2U20_08910	bmaC	Adhesin BmaC autotransporter	uni	A2U21_04065	51
	A2U20_08920	fimD	Putative F17-like fimbral usher	uni	A2U21_03995	98
	A2U20_08925	fimD2	Putative F17-like fimbral usher	bi	A2U21_03995	99
Secretion	A2U20_02515	prtC	Serralysin C	uni	A2U21_00470	58
	A2U20_06885	hlyD	Hemagglutinin/hemolysin-related protein	-	A2U21_06885	-
	A2U20_07380	hlyD	Hemolysin secretion protein D	-	A2U21_11135	53
	A2U20_08300	shIB	Hemolysin transporter protein ShIB	bi	A2U21_11135	53
	A2U20_08375	osmY	Osmotically-inducible protein OsmY; putative hemolysin	bi	A2U21_04100	100
	A2U20_09890	aphA	Hemolysin regulation protein AphA	bi	A2U21_02620	99
	A2U20_10965	prtB	Serralysin B, hemolysin-type calcium-binding region	uni	A2U21_00470	56
	A2U20_10970	prtB2	Serralysin B, hemolysin-type calcium-binding region	bi	A2U21_00470	69
Toxin	A2U20_02255	ebgC	EbCG protein, Toxin-antitoxin biofilm protein TabA	bi	A2U21_00620	98
	A2U20_04195	higA	Antitoxin HigA,mRNA interferase antitoxin	uni	A2U21_00995	63
	A2U20_05100	hicA	Addiction module toxin HicA	uni	A2U21_01000	59
	A2U20_08150	vcaC	VapC toxin family PIN domain ribonuclease	bi	A2U21_10000	78
	A2U20_02115	hinA	Serine/threonine-protein kinase toxin HipA	bi	A2U21_09500	95
	A2U20_02705	higA2	Antitoxin HigA,mRNA interferase antitoxin	bi	A2U21_08915	93
	A2U20_02710	higB	mRNA interferase toxin HigB	bi	A2U21_08910	96
	A2U20_02805	tdeA	Putative toxin and drug export protein A	bi	A2U21_08785	97
	A2U20_02840	relE	Addiction module toxin RelE	bi	A2U21_03035	59
	A2U20_03250	mazF	Programmed cell death toxin MazF	uni	A2U21_06190	52
	A2U20_03635	hicA2	Addition module toxin HicA	bi	A2U21_02950	94
	A2U20_04570	higA3	Antitoxin HigA,mRNA interferase antitoxin	uni	A2U21_00995	63
	A2U20_04795	pecT	Antitoxin/toxin system zeta toxin	uni	A2U21_03130	53
	A2U20_04825	cdtC	Cytolethal distending toxin subunit CdtC	bi	A2U21_06570	99
	A2U20_04830	cdtB	Cytolethal distending toxin subunit CdtB	bi	A2U21_06565	95
	A2U20_04835	cdtA	Cytolethal distending toxin subunit CdtA	bi	A2U21_06560	99

(Continued)
Corresponding orthologs for pilT and bmaC were not found in Nagasaki. Gene leuC (A2U21_06460) in Nagasaki was the uni-directional best match to pilT (A2U20_03770) in D74 with 56% global nucleotide sequence identity and gene aidA2 (A2U21_04065) in

Table 3. (Continued)

Group	D74 locus_tag	D74 Name	Product/ Function	Hit*	Nagasaki locus_tag	% Identityb
A2U20_0480	higB2	mRNA interferase toxin HigB	uni	A2U21_05325	55	
A2U20_04885	higA4	Antitoxin HigA_mRNA interferase antitoxin	uni	A2U21_08915	56	
A2U20_05030	higA5	Antitoxin HigA_mRNA interferase antitoxin	bi	A2U21_06130	98	
A2U20_05035	higB3	mRNA interferase toxin HigB	bi	A2U21_06135	99	
A2U20_05120	cdhC2	Cytolethal distending toxin subunit CdtC	uni	A2U21_06570	98	
A2U20_05125	cdhB2	Cytolethal distending toxin subunit CdtB	bi	A2U21_06565	96	
A2U20_05130	cdhA2	Cytolethal distending toxin subunit CdtA	uni	A2U21_06560	99	
A2U20_05385	higA6	Antitoxin HigA_mRNA interferase antitoxin	bi	A2U21_06310	99	
A2U20_05390	higB4	mRNA interferase toxin HigB	bi	A2U21_06305	100	
A2U20_05455	higB5	mRNA interferase toxin HigB	bi	A2U21_06250	99	
A2U20_05460	higA7	Antitoxin HigA_mRNA interferase antitoxin	bi	A2U21_06245	100	
A2U20_05480	cdIA	Contact-dependent growth inhibition (CDI) toxin	-			
A2U20_05555	chpS	Antitoxin ChpS	bi	A2U21_06185	99	
A2U20_05585	tabA	Toxin-antitoxin biofilm protein TabA	bi	A2U21_06150	100	
A2U20_05690	hicA3	Addiction module toxin HicA	bi	A2U21_04705	62	
A2U20_06620	higA8	Antitoxin HigA_mRNA interferase antitoxin	bi	A2U21_05330	93	
A2U20_06625	higB6	mRNA interferase toxin HigB	bi	A2U21_05325	99	
A2U20_06830	cdIA2	Contact-dependent growth inhibition (CDI) toxin	-			
A2U20_06850	cdIA3	Contact-dependent growth inhibition (CDI) toxin	-			
A2U20_06865	cdIA4	Contact-dependent growth inhibition (CDI) toxin	-			
A2U20_06875	cdIA5	Contact-dependent growth inhibition (CDI) toxin	-			
A2U20_07065	pezT2	Antitoxin/toxin system zeta toxin	bi	A2U21_03130	75	
A2U20_07375	litB	Leukotoxin export ATP-binding protein LtxB	uni	A2U21_07020	52	
A2U20_08285	cdIA6	Contact-dependent growth inhibition (CDI) toxin	-			
A2U20_08295	cdIA7	Contact-dependent growth inhibition (CDI) toxin	-			
A2U20_08515	pasI	Persistence and stress-resistance antitoxin PasI	bi	A2U21_04275	98	
A2U20_10085	hicB	Antitoxin HicB	bi	A2U21_00970	100	
A2U20_10110	higA9	Antitoxin HigA_mRNA interferase antitoxin	bi	A2U21_00995	98	
A2U20_10115	higB7	mRNA interferase toxin HigB	bi	A2U21_01000	99	
A2U20_10565	hipA2	Serine/threonine-protein kinase toxin HipA	bi	A2U21_00565	99	
A2U20_00515	nanH	Sialidase	bi	A2U21_11540	99	
A2U20_01700	espP	Putative extracellular serine protease	bi	A2U21_09655	75	
A2U20_01715	espP2	Putative extracellular serine protease	bi	A2U21_09640	78	
A2U20_03355	vacJ	Putative VacJ lipoprotein	bi	A2U21_08285	97	
A2U20_05150	sirA	Regulator of disulfide bond formation	bi	A2U21_06540	99	
A2U20_05155	sirB	Invasion protein expression up-regulator SirB	bi	A2U21_06535	100	
A2U20_07890	sodA	Superoxide dismutase	bi	A2U21_03770	100	
A2U20_08325	sodC	Superoxide dismutase	bi	A2U21_04050	92	

*The Hit column contains a '-' (no hit), 'uni' or 'bi' RAST server results from a one-to-one BLASTP comparison of the protein coding sequences in the Nagasaki genome using the D74 genome as the reference. "bi" represents a bidirectional best hit in which the reverse hit from the Nagasaki comparison genome to the D74 reference genome was also the best hit. "uni" indicates a uni-directional hit in which the reverse hit from the comparison genome to the reference genome was not also the best hit. "-" indicates no hit or match was found.

bGlobal pairwise nucleotide percent sequence identity.
Nagasaki was the uni-directional best match to bmaC (A2U20_08910) in D74 with 51% global nucleotide sequence identity (Table 3). Eighteen CDSs encoding predicted adhesins were identified in Nagasaki including five outer membrane genes (ompA, ompP1, ompP2, ompP5, and ompD15), one fimD fimbrial usher gene (chromosomally adjacent to a predicted pseudogene fimB), two pertainctin family virulence factor genes aidA and aidA2, and two type IV pili (Table 4). In silico analysis of the region in D74 containing the two fimD genes compared to the fimD gene in Nagasaki indicated that the D74 fimD2 (A2U20_08925) aligns with the 5’ end of the Nagasaki fimD (A2U21_03995) and the D74 fimD (A2U20_08920) aligns with the 3’ end of the Nagasaki fimD gene. This suggests that the two fimD genes in D74 could have potentially arisen from a frameshift within a single gene. A 51% sequence identity was observed between corresponding orthologs esiB (A2U20_01865) in D74 and esiB2 (A2U21_08055) in Nagasaki (Table 3 and Table 4).

Eight CDSs encoding predicted hemolysins were identified in D74 including two (locus tags A2U20_06885 and A2U20_07380) unique to strain D74 (Table 3). D74 harbors two putative Serralysin B genes, prtB and prtB2, and a putative Serralysin C gene prtC. In contrast, only putative Serralysin B geneprtB was identified in strain Nagasaki (Table 4). A notable size difference appears to exist between the proteins encoded by both prtB, prtB2, and prtC in D74, 1,954, 1,703, and 1,911 amino acids respectively, compared to the putative Serralysin B 910 amino acid protein encoded by prtB in Nagasaki. Nine CDSs encoding predicted hemolysins were identified in Nagasaki, five of which were identified as unique to Nagasaki. These include hpmA (A2U21_11150) and locus-tags A2U21_00465, A2U21_11140, and A2U210_11145. Nagasaki harbors two putative hemolysin transporter genes shlB1 and shlB2 (chromosomally located next to each other), while D74 contains only shlB1 gene (Tables 3 and 4). A notable size difference was also observed for the shlB gene in D74 encoding a putative 582 amino acid protein compared to the putative 329 amino acid protein encoded by the shlB in Nagasaki.

Two CDSs encoding genes predicted to function in secretion were identified in D74, A2U20_09675 and esiB, a putative secretory immunoglobulin A-binding encoding gene, while three were identified in Nagasaki. These include A2U21_02375 and two putative secretory immunoglobulin A-binding encoding genes esiB and esiB2, chromosomally located next to each other.

Thirty-nine CDSs encoding predicted toxins were identified in D74 and forty-six CDSs encoding predicted toxins were identified in Nagasaki. A noticeable difference between the CDSs encoding predicted toxins identified in D74 and Nagasaki was the seven cdiA genes encoding putative contact-dependent growth inhibition toxin A harbored only in strain D74 (Table 3). These cdiA genes harbored by D74 are discussed in more detail below.

Both strains harbored a large number of toxin-antitoxin (TA) systems. TA systems are small genetic elements comprised of two components, a stable protein toxin and its more labile antagonistic antitoxin, which can be a protein or non-coding RNA [52]. TA systems were originally identified as plasmid-borne loci, which functioned to promote plasmid maintenance by killing daughter cells that lacked the TA encoded plasmid [52]. TA loci were subsequently discovered in numerous bacterial and archaeal chromosomes and provide several functions, such as stabilization of genomic regions, anti-addiction against similar plasmid-borne toxins, defense against phage infection, biofilm formation, control of the stress response, and bacterial persistence [52–54]. Six types of TA systems (types I to VI) have been described to date based on the type (either RNA or protein) and mode of action of the antitoxin [53]. The Type II TA system is highly abundant among prokaryotes and has been extensively studied [52, 54–56]. In type II TA systems, both toxin and antitoxin are small proteins encoded by genes in a bicistronic operon [52, 54–56]. The antitoxin blocks the toxicity of the toxin by forming a complex with it [52, 54–56]. Both D74 and Nagasaki contain several Type II TA families including
Table 4. Predicted virulence-associated genes identified in *H. parasuis* Nagasaki.

Group	Nagasaki locus_tag	Nagasaki Name	Product/ Function	Hit	D74 locus_tag	% Identity
Adhesin	A2U21 _02720	aidA	Type V secretory pathway, adhesin AidA	-	A2U20 _08925	99
	A2U21 _03995	fimD	Putative F17-like fimbrial usher	bi	A2U20 _08340	72
	A2U21 _04065	aidA2	Type V secretory pathway, adhesin AidA	bi	A2U20 _04855	98
	A2U21 _06820	ompA	Outer membrane protein A precursor	bi	A2U20 _04655	99
	A2U21 _07040	ompD15	Surface antigen (D15), outer membrane protein	bi	A2U20 _04380	85
	A2U21 _07315	ompP2	Outer membrane protein P2 precursor	bi	A2U20 _03710	90
	A2U21 _07950	ompP1	Outer membrane protein precursor P1	bi	A2U20 _03490	92
	A2U21 _08150	pilF	putative outer membrane protein P5	bi	A2U20 _03445	94
	A2U21 _08210	pilN	Type IV pilus biogenesis protein PilN	bi	A2U20 _03430	98
	A2U21 _08215	pilM	Type IV pilus biogenesis protein PilM	bi	A2U20 _03425	98
	A2U21 _08370	pulJ	Type II secretory pathway, component PulJ	bi	A2U20 _03220	96
	A2U21 _08415	pulG	Type II secretory pathway, pseudopilin PulG	bi	A2U20 _03215	97
	A2U21 _08925	pilW	Type IV pilus biogenesis/stability protein PilW	bi	A2U20 _02695	100
	A2U21 _10845	pilD	Tip pilus assembly pathway, fimbrial leader peptidase	bi	A2U20 _07225	94
	A2U21 _10850	pilC	Type IV fimbrial assembly protein PilC	bi	A2U20 _07220	99
	A2U21 _10855	pilB	Type IV fimbrial assembly ATPase PilB	bi	A2U20 _07215	98
	A2U21 _10860	pilA	Type IV pilin PilA	bi	A2U20 _07210	87
Hemolysin	A2U21 _00465	Hemolytin	Putative hemagglutinin/hemolysin-related protein	-	A2U20 _09707	69
	A2U21 _00470	prtB	Serralysin B, hemolysin-type calcium-binding region	bi	A2U20 _08990	99
	A2U21 _02620	ahpA	Hemolysin regulation protein AhpA	bi	A2U20 _08375	100
	A2U21 _04100	osmY	Osmotically-inducible protein OsmY, putative hemolysin	bi	A2U20 _08300	53
	A2U21 _11130	shIB1	Hemolysin transporter protein ShIB	-	A2U20 _08300	53
	A2U21 _11135	shIB2	Hemolysin transporter protein ShIB	bi	A2U20 _08300	53
	A2U21 _11140	putative hemolysin	-	A2U20 _08300	53	
	A2U21 _11145	putative hemolysin	-	A2U20 _08300	53	
	A2U21 _11150	hpmA	Hemolysin	-	A2U20 _08300	53
Secretion	A2U21 _03775	hemolysin	Periplasmic/secreted protein	bi	A2U20 _09675	93
	A2U21 _08050	esiB	Putative secretory immunoglobulin A-binding protein	-	A2U20 _08185	51
	A2U21 _08055	esiB2	Putative secretory immunoglobulin A-binding protein	bi	A2U20 _08355	98
Toxin	A2U21 _00565	hipA	Serine/threonine-protein kinase toxin HipA	bi	A2U20 _01065	99
	A2U21 _00620	ebgC	EbgC protein_Toxin-antitoxin biofilm protein TabA	bi	A2U20 _00255	98
	A2U21 _00970	hicB	Antitoxin HicB	bi	A2U20 _00885	100
	A2U21 _00995	higA	Antitoxin HigA, mRNA interference antitoxin	bi	A2U20 _01110	98
	A2U21 _01000	higB	mRNA interference toxin HigB	bi	A2U20 _01115	99
	A2U21 _02950	hicA	Addiction module toxin HicA	bi	A2U20 _03635	94
	A2U21 _03035	relE	Addiction module toxin RelE	bi	A2U20 _02840	59
	A2U21 _03130	pecT	Antitoxin/toxin system zeta toxin	bi	A2U20 _07065	75
	A2U21 _03940	toxo-antitoxin system, antitoxin component	-	A2U20 _08515	98	
	A2U21 _04275	pasI	Persistence and stress-resistance antitoxin PasI	bi	A2U20 _01495	54
	A2U21 _04650	higA2	Antitoxin HigA, mRNA interference antitoxin	-	A2U20 _05690	62
	A2U21 _04705	hicA2	Addiction module toxin HicA	-	A2U20 _03635	94
	A2U21 _04735	hicA3	Addiction module toxin HicA	-	A2U20 _06625	99
	A2U21 _04850	relE	mRNA interference toxin RelE	-	A2U20 _06620	93

(Continued)
Table 4. (Continued)

Group	Nagasaki locus_tag	Nagasaki Name	Product/ Function	Hita	D74 locus_tag	Identityb
A2U21_05930	hicB2	Antitoxin HicB	bi	A2U20_05385	99	
A2U21_06130	higA4	Antitoxin HigA_mRNA interferase antitoxin	bi	A2U20_05210	96	
A2U21_06135	higB3	mRNA interferase toxin HigB	bi	A2U20_05035	99	
A2U21_06150	tabA	Putative Toxin-antitoxin biofilm protein TabA	bi	A2U20_05585	100	
A2U21_06185	chpS	Antitoxin	bi	A2U20_05555	99	
A2U21_06190	pemK	Programmed cell death toxin PemK	bi	A2U20_05550	97	
A2U21_06245	higA5	Antitoxin HigA_mRNA interferase antitoxin	bi	A2U20_05460	100	
A2U21_06250	higB4	mRNA interferase toxin HigB	bi	A2U20_05455	99	
A2U21_06305	higB5	mRNA interferase toxin HigB	bi	A2U20_05390	100	
A2U21_06310	higA6	Antitoxin HigA_mRNA interferase antitoxin	bi	A2U20_05385	99	
A2U21_06560	cdIA	Toxin	bi	A2U20_04835	99	
A2U21_06565	cdTB	Cytotoxic distending toxin subunit CdtB	bi	A2U20_05125	96	
A2U21_06570	cdTC	Toxin	bi	A2U20_04825	99	
A2U21_06840	cdTA2	Toxin	uni	A2U20_04835	99	
A2U21_06845	cdTB2	Cytotoxic distending toxin subunit CdtB	uni	A2U20_04830	94	
A2U21_06850	cdTC2	Toxin	uni	A2U20_04825	94	
A2U21_08015	relE3	Addiction module toxin RelE	bi	A2U20_05210	96	
A2U21_08020	stbD	RelB/StbD replicon stabilization protein; antitoxin to RelE/StbE	bi	A2U20_02805	97	
A2U21_08785	tdeA	Putative membrane toxin/ drug export protein A	bi	A2U20_02710	96	
A2U21_08910	higB6	mRNA interferase toxin HigB	bi	A2U20_02705	93	
A2U21_08915	higA7	Antitoxin HigA_mRNA interferase antitoxin	bi	A2U20_02705	93	
A2U21_09500	hipA2	Toxin HipA	bi	A2U20_02115	95	
A2U21_09900	vapD	Virulence-associated protein D; endoribonuclease	bi	A2U20_01850	78	
A2U21_10000	vapC	VapC toxin family PIN domain ribonuclease	bi	A2U20_07890	100	
A2U21_04050	sodC	Superoxide dismutase	bi	A2U20_08325	92	
A2U21_06535	sirB	Invasion protein expression up-regulator SirB	bi	A2U20_05155	100	
A2U21_06540	sirA	Regulator of disulfide bond formation	bi	A2U20_05150	99	
A2U21_08285	vacJ	Putative VacJ lipoprotein	bi	A2U20_03555	97	
A2U21_09640	espP	Putative serine protease	bi	A2U20_01715	78	
A2U21_09655	espP2	Putative serine protease	bi	A2U20_01700	75	
A2U21_11540	nanH	Sialidase	bi	A2U20_00515	99	

a The Hit column contains a ‘-’ (no hit), ‘uni’ or ‘bi’ RAST server results from a one-to-one BLASTP comparison of the protein coding sequences in the Nagasaki genome using the D74 genome as the reference. “bi” represents a bidirectional best hit in which the reverse hit from the Nagasaki comparison genome to the D74 reference genome was also the best hit. ”uni” indicates a uni-directional hit in which the reverse hit from the comparison genome to the reference genome was not also the best hit. “-“indicates no hit or match was found.
bGlobal pairwise nucleotide percent sequence identity.

https://doi.org/10.1371/journal.pone.0205700.0004

relBE, mazEF, vapBC, and higBA, which was the most abundant with 10 putative higBA loci identified in D74 and 6 putative higBA loci identified in Nagasaki, with a varying degree of similarity (Table 3 and Table 4).

Eight orthologs of other virulence-associated proteins were identified in both strains (Table 3 and Table 4). A 75% sequence identity was observed between corresponding orthologs espP (A2U20_01700) in D74 and espP2 (A2U21_09655) in Nagasaki and a 78% sequence identity was observed between corresponding orthologs espP2 (A2U20_01715) in D74 and espP (A2U21_09640) in Nagasaki (Table 3 and Table 4). Additionally a notable size difference
was also observed for the putative proteins encoded by espP (A2U20_01700), 1,071 amino acids, and espP2 (A2U20_01715), 985 amino acids, in D74, compared to the putative proteins encoded by espP (A2U21_09640), 781 amino acids, and espP2 (A2U21_09655), 772 amino acids, in Nagasaki.

cdiA genes encoding putative contact-dependent growth inhibition proteins identified in H. parasuis D74

Contact-dependent growth inhibition (CDI) is a process used by Gram-negative bacteria to deliver diverse growth inhibiting nuclease toxins into the cytoplasm of neighboring cells upon cell-cell contact [57–61]. CDI is mediated by the CdiB and CdiA proteins, which are members of the TpsB and TpsA two-partner secretion (TPS) group of proteins [61–63]. CdiB facilitates secretion of the CdiA “exoprotein” onto the cell surface [61, 64]. CdiA then binds to specific outer-membrane receptors on susceptible bacteria and transfers its C-terminal toxin domain (CdiA-CT) into the target cell [58–61]. CDI+ bacteria also produce small immunity proteins (Cdil) that protect them from toxin delivered by neighboring cells of closely related species or sibling cells by binding to the CdiA-CT and neutralizing its toxin activity [58–61].

The putative cdiA genes in strain D74 are located in three regions with a cdiBAI organization with “orphan” cdiA genes located downstream, which is similar to the organization found in E. coli strains and other gamma-proteobacteria [61, 65]. Region one includes cdiA (A2U20_05480) and five upstream potential cdil candidate genes (locus tags A2U20_05485-A2U20_05505) (Fig 3A). The second region encompasses fhaC (A2U20_06825) located upstream of cdiA2 (A2U20_06830), which, consistent with other TpsB proteins, shares substantial homology with CdiB (Fig 3A) [66]. Nine potential cdil candidate genes (locus tags A2U20_06835-A2U20_06845, A2U20_06855-A2U20_06860, A2U20_06870, and A2U20_06880-A2U20_06890) and cdiA3, cdiA4, and cdiA5 (locus tags A2U20_06850, A2U20_06865, A2U20_06875) are located downstream of cdiA2. Genes cdiA3, cdiA4, and cdiA5 were identified as “orphan” cdiA genes based on their shared characteristics such as smaller size compared to larger full-length cdiA genes and resemble the 3’-ends of larger cdiA genes. (Fig 3A) [65]. The third region contains the cdiA7 (A2U20_08295) gene with the shlB gene (A2U20_08300) gene located upstream (Fig 3). Similar to FhaC and other TpsB proteins, ShlB shares substantial homology with CdiB [66]. A potential cdil candidate (A2U20_08290), followed by two potential “orphan” cdiA genes, cdiA6 (A2U20_08285) and a predicted pseudogene fha (A2U20_08280), followed by two potential cdil candidate genes (locus tags A2U20_08270 and A2U20_08265) are located downstream of cdiA7 (Fig 3A).

CdiA proteins share a number of characteristics in common with the TpsA family protein FHA [61, 67]. CdiA proteins typically contain an N-terminal region homologous to FHA containing the TPS domain required for interaction with the TpsB partner, CdiB or FhaC respectively, and haemagglutinin repeats that are predicted to form a β-helical structure [61, 67]. In addition, most cdiA homologues encode the VENN peptide motif, which delineates the beginning of C-terminal toxin domain as well as the conserved and variable regions [61, 67]. The predicted proteins encoded by the cdiA genes in D74 were evaluated for the presence of these domains. Domains identified in CdiA include a ESPR signal peptide domain (PF13018) required for export and multiple haemagglutination activity domains, specifically one Haemagg_act domain (PF05860), seven Fil_haemagg domains (PF05594), two Fil_haemagg_2 domains (PF13332) (Fig 3B). CdiA2 is similar to CdiA and contains a ESPR signal peptide domain (PF13018) required for export and multiple haemagglutination activity domains, including one Haemagg_act domain (PF05860), ten Fil_haemagg domains (PF05594), two Fil_haemagg_2 domains (PF13332) (Fig 3B). CdiA3 and CdiA6 are similar to each other and
contain a pre-toxin domain with VENN motif that marks the beginning of the C-terminal toxin domain similar to other previously reported CdiA proteins (Fig 3B). CdiA4 and CdiA5 are also similar to each other and both contain a Fil_haemagg_2 domain (PF13332) (Fig 3B). CdiA7 is the largest CdiA protein in D74 and contains a ESPR signal peptide domain (PF13018) required for export and multiple haemagglutination activity domains, including one Haemagg_act domain (PF05860), thirteen Fil_haemagg domains (PF05594), two Fil_haemagg_2 domains (PF13332), a pre-toxin VENN domain (PF04829), and a EndoU_bacterial nuclease domain (PF14436) (Fig 3B). Overall, cdiA3, cdiA4, cdiA5, and cdiA6 are similar to previously reported "orphan" cdiA genes as they encode much smaller proteins that lack a conserved export signal and other functional domains. The region containing the orphan cdiA genes was further evaluated and no additional cdi-related protein domains were found beyond
those depicted in Fig 3B for CdiA3, CdiA4, CdiA5, and CdiA6. This indicates that the orphan cdiA genes are not the result of frameshift or indel mutations causing disruption of a larger intact cdiA gene(s). This genomic organization of a cdi locus containing one or more orphan cdiA genes downstream of full-length cdiA is common in many species of bacteria [65]. In contrast, CdiA, CdiA2, and CdiA7 are larger and contain most of the functional domains harbored by previously characterized CdiA-CT proteins; however, CdiA7 shares more similarity to other CdiA-CT proteins in that it additionally contains a PT-VENN motif and a recognizable nuclease domain at C-terminus.

vtaA family of trimeric autotransporter genes identified in H. parasuis strains D74 and Nagasaki

Pina et al. first identified thirteen proteins encoded by the vtaA family of trimeric autotransporter genes in strain Nagasaki based on the occurrence of a C-terminal YadA anchor domain, which defines this family of proteins [15]. That study also identified 17 homologues harbored by other *H. parasuis* strains with relatively conserved sequence within the passenger domain among vtaA homologues from pathogenic isolates and a high degree of divergence among non-virulent isolates [15]. The authors subsequently named these genes vtaA or virulence-associated trimeric autotransporter genes and classified the proteins encoded by vtaA genes into three groups based on sequence comparison of the C-terminal YadA anchor domain, with groups 1 and 2 being strongly associated with virulent *H. parasuis* isolates [15]. Previous studies have demonstrated that VtaA proteins are involved in virulence as well as being immunogenic, are produced during an infection, and are capable of conferring protection [68–70]. Recently, a comparison between the D74 and Nagasaki draft genomes identified only three vtaA genes harbored by D74 compared to thirteen harbored by Nagasaki [34]. Unfortunately, many vtaA genes identified within each strain were incomplete in the draft sequences, preventing a reliable one-to-one assignment of the vtaA-like ORFs to specific vtaA genes and subsequent evaluation of the predicted protein structure.

To ensure identification of all potential vtaA genes, all protein coding sequences in Nagasaki and D74 were searched for the occurrence of a YadA anchor domain and no additional YadA anchor domain containing proteins were identified. The 13 vtaA genes identified in Nagasaki have been named according to their location along the chromosome and are listed in Table 5 along with their respective name and group originally assigned by Pina et al. [15]. Similarly, the 3 vtaA genes identified in D74 have been named according to their location along the chromosome and are also listed in Table 5. The predicted protein structure of all VtaA proteins for both Nagasaki and D74 were evaluated for known domain content (Fig 4). All Nagasaki VtaA proteins contain an N-terminal extended signal peptide or ESPR domain (PF13018) for Type V secretion, followed by 1–4 YadA head domains (PF05658), and 3–5 YadA anchor domains (PF03895). This region containing the head and stalk domains is referred to as the passenger domain region [71]. Following the passenger domain region, all Nagasaki VtaA proteins contain 2–8 collagen triple helix repeat domains (PF01391) followed by the C-terminal YadA anchor domain (PF03895) (Fig 4A). In contrast, none of the D74 VtaA proteins contain a collagen triple helix repeat domain (PF01391) and the predicted size for both VtaA_D1 (4054 AA) and VtaA_D2 (6778 AA) proteins is substantially larger than any predicted Nagasaki VtaA protein (Fig 4B). Additionally, VtaA_D3 differs from VtaA_D1 and VtaA_D2 proteins. VtaA_D3 contains a tryptophan-ring motif domain or TAA-Trp-ring (PF15401) and does not contain an N-terminal ESPR domain (PF13018) (Fig 4B). The absence of the ESPR domain suggests that VtaA_D3 may not be exported across the inner membrane. When we compared our VtaA predicted protein sequences to those reported by Pina et al. [15] two
differences were identified and the other 11 out of 13 sequences were found to be 100% identical. The two differences identified were an amino acid change in VtaA_N9 (S1191G) relative to the previously reported sequence and an 18 amino acid insertion (AGPTGPQGPAGPTGD) after amino acid 737 of VtaA1 that is not present in our VtaA_N4 sequence. The absence or presence of the insertion is located within the third collagen repeat domain and does not affect the presence or absence of this domain nor the total number of collagen repeat domains predicted for the two proteins.

When the genome regions in Nagasaki and D74 were compared, the sequence and gene content up and downstream of the *vtaA* gene locations in Nagasaki were similar to the reciprocal locations in D74. No evidence of extensive genome rearrangement at these locations was observed. A different gene or genes were identified in D74 at the same location of a reciprocal *vtaA* gene in Nagasaki, which could have arisen from small insertion events. Further evaluation of the *vtaA* genes in both strains suggested that they are not in an operon configuration. Pina et al. identified an active promoter upstream of *vtaA* N3 [15]. *In silico* analysis indicated that the upstream region of all 13 Nagasaki *vtaA* genes contained highly similar promoter sequences to the *vtaA* N3 promoter. A highly similar promoter sequence to the *vtaA* N3 was additionally observed upstream of *vtaA* D2 in D74. This sequence conservation implies similar expression and/or regulation mechanisms among these genes.

Methylation motifs and RM-systems in *H. parasuis* strains D74 and Nagasaki

In bacteria, the most common post-replicative modification of DNA is methylation by methyltransferase (MTase) enzymes resulting in three types of epigenetic markers: N6-methyladenine (m6A), N4-methylcytosine (m4C) and 5-methylcytosine (m5C) [47, 72]. DNA methylation

Table 5. *vtaA* genes identified in *H. parasuis* Nagasaki.

Nagasaki locus_tag	Nagasaki Name	Name assigned by Pina et al. [15]	Group assigned by Pina et al. [15]	Hita	D74 locus_tag	D74 Name	% Identityb
A2U21_00055	vtaA_N1	vtaA1	1	-			0
A2U21_00360	vtaA_N2	vtaA10	2	uni	A2U20_04585	vtaA_D1	49.73
A2U21_00905	vtaA_N3	vtaA4	1	-			0
A2U21_03315	vtaA_N4	vtaA8c	1	bi	A2U20_05995	vtaA_D3	36.84
A2U21_04400	vtaA_N5	vtaA9	1	uni	A2U20_04585	vtaA_D1	30.74
A2U21_05305	vtaA_N6	vtaA6	1	-			0
A2U21_05400	vtaA_N7	vtaA2	1	-			0
A2U21_05640	vtaA_N8	vtaA11	2	uni	A2U20_04585	vtaA_D1	50.94
A2U21_06175	vtaA_N9	vtaA3d	1	-			0
A2U21_06350	vtaA_N10	vtaA12	1	bi	A2U20_04585	vtaA_D1	94.09
A2U21_07110	vtaA_N11	vtaA13	1	uni	A2U20_04585	vtaA_D1	59.87
A2U21_08125	vtaA_N12	vtaA5	3	-			0
A2U21_09355	vtaA_N13	vtaA7	3	-			0

aThe Hit column contains a ‘-’ (no hit), ‘uni’ or ‘bi’ RAST server results from a one-to-one BLASTP comparison of the protein coding sequences in the D74 genome using the Nagasaki genome as the reference. “bi” represents a bidirectional best hit in which the reverse hit from the D74 comparison genome to the Nagasaki reference genome was also the best hit. “uni” represents uni-directional indicates a hit in which the reverse hit from the comparison genome to the reference genome was not also the best hit. “-” indicates no hit or match was found.

bLocal percent sequence identity.

c18 amino acid insertion compared to the Pina et al. [15] sequence.

dSingle amino acid difference at position 1191.

https://doi.org/10.1371/journal.pone.0205700.005
serves several key roles in bacterial processes, including mismatch repair, the timing of DNA replication, conferring protection against bacteriophages, and regulating gene expression. [73–78]. Analysis of the SMRT DNA sequencing kinetics was used to identify total base modifications in the genomes of *H. parasuis* D74 and Nagasaki, and the modified sequence motifs for each strain are summarized in Tables 6 and 7.

A total of 15 sequence motifs were identified in strain D74, and N6-methyladenine (m6A) was the most prevalent type of modification detected (Table 6). Focusing on strain Nagasaki, a total of 14 recognition sites for methylation or sequence motifs were identified and, similar to D74, N6-methyladenine (m6A) was the most prevalent type of modification detected (Table 7). This analysis revealed a surprising degree of diversity in motifs observed between

Fig 4. Domain architecture of the predicted VtaA proteins in *H. parasuis* strains D74 and Nagasaki. (A) Domain architecture of the predicted VtaA proteins from Nagasaki. Assigned gene name designations are shown at left. Schematic depictions of the 13 Nagasaki VtaA proteins is shown. The domains were identified by a pfam database search. ESPR signal peptides (PF13018) are shown in purple, YadA head domains (PF05658) in red, YadA stalk domains (PF05662) in blue, YadA anchor domains (PF03895) in green, collagen domains (PF1391) in orange, TAA-Trp-rings domains (PF15401) in yellow. (B) Domain architecture of the predicted VtaA proteins from D74. Assigned gene name designations are shown at left. Schematic depictions of the pfam domains, colored as in Panel A, for the 3 VtaA proteins from D74.

https://doi.org/10.1371/journal.pone.0205700.g004
these closely related strains given that the methylation motif 5’-GAm6TC-3’ was the only motif shared or observed in both D74 and Nagasaki (Table 6 and Table 7).

The genomes of \textit{H. parasuis} Nagasaki and D74 were assessed using the Restriction Enzyme Database REBASE (www.rebase.neb.com) \cite{47} for determination of putative MTases involved with each motif and for comparisons with known modification systems. A total of 26 genes associated with restriction-modification systems were identified in \textit{H. parasuis} D74, including AAGCTT (\textit{H. parasuis} D74), which was detected 8 times, accounting for 95.1% of the genome, with a mean modification QV of 424.25.

Table 6. Methylation motifs detected in \textit{H. parasuis} D74.

Motifa	Modification Type	# Detected	# in Genome	% Detected	Mean Modification QV	Mean Motif Coverage	Partner Motif
AGCNNNNNGCT	m6A	767	772	99.4%	535.6	376.2	AGCNNNNNGCT
GTA\textsuperscript{}NNNNNTGG	m6A	817	825	99.0%	436.6	380.3	CACNNNNNNTAC
CCA\textsuperscript{}NNNNNTAC	m6A	813	825	98.5%	421.3	381.9	GTANNNNNNTGG
AAGCTT	m6A	623	630	98.9%	442.4	384.0	AAGCTT
GATC	m6A	15,334	15,718	98.8%	410.7	381.5	GATC
GTA\textsuperscript{}NNNNNCTTG	m6A	217	220	98.6%	420.1	378.9	
CA\textsuperscript{}GNNNNNNTAC	m6A	55	57	96.5%	397.1	348.8	
A\textsuperscript{}GNNNNNGATC	m6A	47	55	85.5%	346.8	365.8	
GCA\textsuperscript{}GVNNDG	m6A	316	659	48.0%	99.1	382.2	
V\textsuperscript{}AGCTCKD	m6A	207	447	46.3%	131.9	391.1	
A\textsuperscript{}HYAGYAD	m6A	662	2,632	25.2%	108.6	376.7	
D\textsuperscript{}TGTNDNDG	modified_baseb	1,575	8,346	18.9%	52.3	356.8	
T\textsuperscript{}NNNNNH	modified_baseb	179,073	1,197,696	15.0%	52.7	367.5	
D\textsuperscript{}TNVVNDG	modified_baseb	9,920	78,834	12.6%	48.6	366.4	
A\textsuperscript{}GNNNNNH	m6A	15,854	200,853	7.9%	112.6	371.8	

aBold underlined bases indicate methylated base in motif sequence.

bBase modification not identified or recognized by software.

Table 7. Methylation motifs detected in \textit{H. parasuis} Nagasaki.

Motifa	Modification Type	# Detected	# in Genome	% Detected	Mean Modification QV	Mean Motif Coverage	Partner Motif
AGC\textsuperscript{}NNNNCCT	m6A	1,322	1,324	99.8%	719.7	571.6	AGCNNNNNCTT
AGC\textsuperscript{}NNNNNTGG	m6A	1,089	1,092	99.7%	676.2	592.7	CACNNNNNNTG
CCA\textsuperscript{}NNNNNTT	m6A	1,088	1,092	99.6%	700.0	622.7	AACNNNNNTGG
GTA\textsuperscript{}NNNNNCTTG	m6A	217	218	99.5%	641.8	610.1	CACNNNNNNTAC
CA\textsuperscript{}GNNNNNNNTAC	m6A	215	218	98.6%	671.3	582.9	GTANNNNNNCTTG
GATC	m6A	14,603	14,778	98.8%	602.6	617.8	GATC
AGC\textsuperscript{}NNNNNCCT	m6A	454	460	98.7%	688.5	590.4	AGCNNNNNCTT
A\textsuperscript{}AGVNNNNCTT	m6A	303	1,013	29.9%	130.6	608.1	
PA\textsuperscript{}HDBGYA	m6A	721	2,881	25.0%	107.0	582.3	
T\textsuperscript{}NNNNNH	modified_baseb	181,179	1,123,132	16.1%	58.7	579.9	
D\textsuperscript{}TNVNNDG	modified_baseb	9,439	61,834	15.3%	54.8	582.8	
T\textsuperscript{}SNKNG	modified_baseb	7,871	64,478	12.2%	52.9	587.1	
A\textsuperscript{}DNNNNNH	m6A	11,510	134,477	8.6%	178.5	591.9	
B\textsuperscript{}GCNVNHH	m6A	1,133	24,217	4.7%	140.2	629.3	

aBold underlined bases indicate methylated base in motif sequence.

bBase modification not identified or recognized by software.

https://doi.org/10.1371/journal.pone.0205700.0006

https://doi.org/10.1371/journal.pone.0205700.0007
11 genes associated with Type 1 restriction-modification (RM) systems and 15 genes associated with Type II RM systems (Table 8). Genes associated with Type III RM systems were not identified in D74 (Table 8). REBASE predicted three recognition sequences corresponding to a specific motif detected by the SMRT sequencing analysis. REBASE analysis indicated that the putative Type I RM enzymes S.Hpa74III, Hpa74III, and M.Hpa74III were predicted to be responsible for the 5'-GTA\textsubscript{m6}NNNNNNCTTG-3' modification (Table 8). The putative Type II RM enzymes M.Hpa74IP were indicated by REBASE to be responsible for the 5'-GA\textsubscript{m6}TC-3' modification for D74 (Table 8). The remaining two motifs detected by the SMRT sequencing analysis did not correspond with a REBASE predicted recognition sequence. Two putative Type II RM enzymes Hpa74ORFHP and M.Hpa74ORFHP were predicted by REBASE to recognize the sequence motif 5'-GGC-3', which was not a motif detected by the SMRT sequencing analysis. Three putative RM enzyme genes identified in D74 by REBASE analysis are predicted pseudogenes.

Table 8. Putative H. parasuis D74 restriction modification systems.

Type\(^a\)	Gene\(^b\)	D74 locus\(_{tag}\)	D74 Name	Predicted Recognition Sequence	REBASE Name
I	M	A2U20_05240	hsdM		M.Hpa74ORFFP
I	S	A2U20_05245	hsdS		S.Hpa74ORFFP
I	R	A2U20_05260	hsdR2		Hpa74ORFFP
I	R	A2U20_10200	hsdR3		Hpa74ORFIP
I	S	A2U20_10215	hsdS2		S1.Hpa74ORFIP
I	S	A2U20_10220	hypothetical protein CDS		S2.Hpa74ORFIP
I	M	A2U20_10230	hsdM2		M.Hpa74ORFIP
I	R	A2U20_10460\(^c\)	hsdR4\(^c\)		Hpa74ORFIP
I	S	A2U20_11315	hsdS3	GTANNNNNNNCTTG	S.Hpa74III
I	R	A2U20_11320	hsdR5	GTANNNNNNNCTTG	Hpa74III
I	M	A2U20_11330	hsdM3		M.Hpa74III
II	M	A2U20_00375	hindIIIM	AAGCTT	M.Hpa74I
II	R	A2U20_00380\(^c\)	hindIIIR\(^c\)	AAGCTT	Hpa74IP
II	RM	A2U20_00575	bcglA		Hpa74ORFBP
II	S	A2U20_00580	bcglB		S.Hpa74ORFBP
II	S	A2U20_00800	bcglB		S1.Hpa74ORFDP
II	S	A2U20_00805\(^c\)	bcglB2\(^c\)		S2.Hpa74ORFDP
II	M	A2U20_03405	dam	GATC	Hpa74II
II	RM	A2U20_07465	hypothetical protein CDS		Hpa74ORGIP
II	R	A2U20_07700	restriction endonuclease CDS	G GCC	Hpa74ORFHP
II	M	A2U20_07705	haeIIIM	G GCC	M.Hpa74ORFHP
II	M	A2U20_10010	yhdJ		M.Hpa74ORFOP
II	M	A2U20_10475	modification methylase CDS		M.Hpa74ORFLP
II	R	A2U20_10480	HNH endonuclease CDS		Hpa74ORFLP
II	S	A2U20_10485	bcglB3		S.Hpa74ORFMP
II	RM	A2U20_10490	bcglA2		Hpa74ORFMP

\(^a\)Systems were designated Type I, II, or III based on REBASE analyses.

\(^b\)Gene designations of methylase (M), restriction (R), fused restriction-modification (RM), or specificity (S), along with predicted recognition sequence and REBASE name, were determined using REBASE analysis.

\(^c\)Predicted pseudogene.
indicated by REBSE to be responsible for the motif 5′-A\textsubscript{m6}A-GCTT-3′ modification (Table 8). In contrast, none of the putative RM enzymes genes identified in Nagasaki by REBASE analysis are predicted pseudogenes.

Focusing on \textit{H. parasuis} Nagasaki, 34 genes associated with restriction-modification systems were identified, including 14 genes associated with Type I, 15 genes associated with Type II, and 5 genes associated with Type III RM systems (Table 9). Only two of the REBASE predicted recognition sequences corresponded to a specific motif detected by the SMRT sequencing analysis. REBASE analysis indicated that the putative Type I RM enzymes M.HpaNNII,
HpaNNIIP, and S.HapNNII were predicted to be responsible for the 5′−GTA\(^{\text{m6}}\)NNNNNNNCTTG−3′ modification (Table 9). The putative Type II RM enzyme \textit{dam} or M.HpaNNII was predicted to be responsible for the 5′−GA\(^{\text{m6}}\)TC−3′ modification (Table 9). The remaining five motifs identified by the SMRT sequencing analysis represent yet unknown recognition sequences.

Expression of MTases can undergo phase variation by slipped-strand mispairing due to the presence of simple sequence repeats (SSRs), such as homopolymeric tracts [79–83]. All of the putative RM genes identified in D74 (Table 8) and Nagasaki (Table 9) were searched for the presence of SSRs within the coding region and in the region encompassing 150 bp upstream of the putative start codon. No SSRs were observed in the upstream region for five RM genes identified in D74 (A2U20_00805c, A2U20_10480, A2U20_10215, A2U20_11315, and A2U20_10200), while six homopolymeric tracts of consisting of five or more bases were observed in the upstream region of \textit{hsdR2} (A2U20_05260) (S6 Table). SSRs were observed within the coding region of all of the D74 RM genes and the numbers of SSRs ranged from two (A2U20_00580 and A2U20_11330) to 38 (A2U20_07465) (S6 Table). No SSRs were observed in the upstream region for six RM genes identified in Nagasaki (A2U21_00115, A2U21_01085, A2U21_04210, A2U21_03345, A2U21_03850, A2U21_06885), while six homopolymeric tracts of consisting of five or more bases were observed in the upstream region of A2U21_09985 (S7 Table). SSRs were observed within the coding region of all of the Nagasaki RM genes and the numbers of SSRs ranged from two (A2U21_10520) to 31 (A2U21_04210 and A2U21_00110) (S7 Table). While further studies are warranted, the occurrence of these homopolymeric tracts within these regions indicates the potential of these genes to undergo phase variation by slip strand mispairing.

Conclusions

This report provides the closed whole-genome sequence annotation and genome-wide methylation patterns for the \textit{H. parasuis} non-virulent D74 strain and for the highly virulent Nagasaki strain. This collective information will enable reliable one-to-one assignment of specific genes of interest and subsequent evaluation of predicted protein structures. Highlights of the information gained from this study include the sequence and annotation of a plasmid harbored by strain D74 that shares a high degree of similarity to other plasmids harbored by members of the \textit{Pasteurellaceae} family, which could prove useful in future allelic replacement and/or functional genomic studies. Evaluation of the virulence-associated genes contained within the genomes of D74 and Nagasaki led to the discovery of a large number of TA systems, primarily Type II TA families, within both genomes. Five predicted hemolysins were identified as unique to Nagasaki and seven putative contact-dependent growth inhibition toxin proteins were identified only in strain D74. Assessment of all potential \textit{vtaA} genes revealed thirteen present in the Nagasaki genome and three in the D74 genome. Subsequent evaluation of the predicted protein structure revealed that none of the D74 VtaA proteins contain a collagen triple helix repeat domain and a much larger predicted amino acid size for two D74 VtaA proteins compared to any predicted Nagasaki VtaA protein. Fifteen methylation sequence motifs were identified in D74 and fourteen methylation sequence motifs were identified in Nagasaki using SMRT sequencing analysis. Only one of the methylation sequence motif was observed in both strains highlighting the diversity between D74 and Nagasaki. Subsequent analysis also revealed diversity in the restriction-modification systems harbored by D74 and Nagasaki. Our hope is that the assembly and annotation of these genomes, coupled with the comparative genomic analyses reported in this study, will aid in the identification of genetic elements that underlie and influence phenotypic differences between these isolates. Together, this
information can support future research and the development of vaccines with improved efficacy towards \textit{H. parasuis} in swine to decrease the prevalence and disease burden caused by this pathogen.

Supporting information

- **S1 Table.** D74 CDS list.
 (XLSX)
- **S2 Table.** Nagasaki CDS list.
 (XLSX)
- **S3 Table.** AMR MIC data.
 (XLSX)
- **S4 Table.** D74 capsule genes.
 (DOCX)
- **S5 Table.** Nagasaki capsule genes.
 (DOCX)
- **S6 Table.** D74 RM gene SSRs.
 (XLSX)
- **S7 Table.** Nagasaki RM gene SSRs.
 (XLSX)
- **S1 File.** D74 annotations.
 (GB)
- **S2 File** Nagasaki annotations.
 (GB)
- **S3 File** pD74 annotations.
 (GB)

Acknowledgments

We thank Iowa State University Veterinary Diagnostic Laboratory for assistance in producing the phenotypic antibiotic resistance data and Yale Center for Genomic Analysis for its assistance in producing the PacBio sequence data. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. USDA is an equal opportunity provider and employer.

Author Contributions

- **Conceptualization:** Tracy L. Nicholson, Brian W. Brunelle.
- **Data curation:** Tracy L. Nicholson, Brian W. Brunelle, Darrell O. Bayles, David P. Alt, Sarah M. Shore.
- **Formal analysis:** Tracy L. Nicholson, Brian W. Brunelle, Darrell O. Bayles, David P. Alt, Sarah M. Shore.
- **Funding acquisition:** Tracy L. Nicholson.
References

1. Biberstein EL, White DC. A proposal for the establishment of two new *Haemophilus* species. J Med Microbiol. 1969; 2(1):75–8. Epub 1969/02/01. https://doi.org/10.1099/00222615-2-1-75 PMID: 5821848.

2. Aragon V, Segales J, Oliveira S. Glasser's Disease. In: Zimmerman JJ, Karriker LA, Ramirez A, S K J., Stevenson GW, editors. Diseases of Swine. 10 ed. West Sussex, UK: Wiley-Blackwell; 2012. p. 760–9.

3. Costa-Hurtado M, Aragon V. Advances in the quest for virulence factors of *Haemophilus parasuis*. Vet J. 2013; 198(3):571–6. Epub 2013/10/03. https://doi.org/10.1016/j.tvjl.2013.08.027 PMID: 24084037.

4. Zhang B, Tang C, Liao M, Yue H. Update on the pathogenesis of *Haemophilus parasuis* infection and virulence factors. Vet Microbiol. 2014; 168(1):1–7. Epub 2013/08/27. https://doi.org/10.1016/j.tvjl.2013.07.027 PMID: 23972951.

5. Little TW. *Haemophilus* infection in pigs. Vet Rec. 1970; 87(14):399–402. Epub 1970/10/01. PMID: 5531588.

6. Riley MG, Russell EG, Callinan RB. *Haemophilus parasuis* infection in swine. J Am Vet Med Assoc. 1977; 171(7):649–51. Epub 1977/10/01. PMID: 914694.

7. Brockmeier SL. Prior infection with *Bordetella bronchiseptica* increases nasal colonization by *Haemophilus parasuis* in swine. Vet Microbiol. 2004; 99(1):75–8. Epub 2004/03/17. https://doi.org/10.1016/j.vetmic.2003.08.013 PMID: 15019114.

8. Kielstein P, Rapp-Gabrielson VJ. Designation of 15 serovars of *Haemophilus parasuis* on the basis of immunodiffusion using heat-stable antigen extracts. J Clin Microbiol. 1992; 30(4):862–5. Epub 1992/04/01. PMID: 1572971; PubMed Central PMCID: PMCPMC265175.

9. Tadjine M, Mittal KR, Bourdon S, Gottschalk M. Development of a new serological test for serotyping *Haemophilus parasuis* isolates and determination of their prevalence in North America. J Clin Microbiol. 2004; 42(2):839–40. Epub 2004/02/10. https://doi.org/10.1128/JCM.42.2.839-840.2004 PMID: 14768667; PubMed Central PMCID: PMCPMC344452.

10. Howell KJ, Weinert LA, Luan SL, Peters SE, Chaudhuri RR, Harris D, et al. Gene content and diversity of the loci encoding biosynthesis of capsular polysaccharides of the 15 serovar reference strains of *Haemophilus parasuis*. J Bacteriol. 2013; 195(18):4264–73. Epub 2013/07/23. https://doi.org/10.1128/JB.00471-13 PMID: 23873912; PubMed Central PMCID: PMCPMC3754760.

11. Howell KJ, Peters SE, Wang J, Hernandez-Garcia J, Weinert LA, Luan SL, et al. Development of a Multiplex PCR Assay for Rapid Molecular Serotyping of *Haemophilus parasuis*. J Clin Microbiol. 2015; 53 (12):3812–21. Epub 2015/10/02. https://doi.org/10.1128/JCM.01991-15 PMID: 26424843; PubMed Central PMCID: PMCPMC4652097.

12. Jia A, Zhou R, Fan H, Yang K, Zhang J, Xu Y, et al. Development of Serotype-Specific PCR Assays for Typing of *Haemophilus parasuis* Isolates Circulating in Southern China. J Clin Microbiol. 2017; 55 (11):3249–57. Epub 2017/09/09. https://doi.org/10.1128/JCM.00688-17 PMID: 28878007; PubMed Central PMCID: PMCPMC5654909.
13. Costa-Hurtado M, Ballester M, Galofre-Mila N, Darji A, Aragon V. VtaA8 and VtaA9 from *Haemophilus parasuis* delay phagocytosis by alveolar macrophages. Vet Res. 2012; 43:57. Epub 2012/07/31. https://doi.org/10.1186/1297-9164-43-57 PMID: 22839779; PubMed Central PMCID: PMCPMC3462726.

14. Martinez-Moliner V, Soler-Llorens P, Moleres J, Garmendia J, Aragon V. Distribution of genes involved in sialic acid utilization in strains of *Haemophilus parasuis*. Microbiology. 2012; 158(Pt 8):2117–24. Epub 2012/05/23. https://doi.org/10.1099/mic.0.056994-0 PMID: 22609756.

15. Pina S, Olvera A, Barcelo A, Bensaid A. Trimeric autotransporters of *Haemophilus parasuis*: generation of an extensive passenger domain repertoire specific for pathogenic strains. J Bacteriol. 2009; 191(2):576–87. Epub 2008/11/18. https://doi.org/10.1128/JB.00703-08 PMID: 19011035; PubMed Central PMCID: PMCPMC2620822.

16. Ruiz A, Oliveira S, Torremorell M, Pijoan C. Outer membrane proteins and DNA profiles in strains of *Haemophilus parasuis* recovered from systemic and respiratory sites. J Clin Microbiol. 2001; 39(5):1757–62. Epub 2001/04/28. https://doi.org/10.1128/JCM.39.5.1757-1762.2001 PMID: 11325986; PubMed Central PMCID: PMCPMC88021.

17. Wang X, Xu X, Wu Y, Li L, Cao R, Cai X, et al. Polysaccharide biosynthesis protein CapD is a novel pathogenicity-associated determinant of *Haemophilus parasuis* involved in serum-resistance ability. Vet Microbiol. 2013; 164(1–2):184–9. Epub 2013/02/26. https://doi.org/10.1016/j.vetmic.2013.01.037 PMID: 23434184.

18. Zhang B, Xu C, Liao M. Outer membrane protein P2 of the *Haemophilus parasuis* SC96 strain contributes to adherence to porcine alveolar macrophages. Vet Microbiol. 2012; 158(1–2):226–7. Epub 2012/02/22. https://doi.org/10.1016/j.vetmic.2012.01.023 PMID: 22342495.

19. Zhang B, Xu C, Zhou S, Feng S, Zhang L, He Y, et al. Comparative proteomic analysis of a *Haemophilus parasuis* SC96 mutant deficient in the outer membrane protein P5. Microb Pathog. 2012; 52(2):117–24. Epub 2011/12/17. https://doi.org/10.1016/j.micpath.2011.11.002 PMID: 22172379.

20. Frandoloso R, Martinez-Martinez S, Gutierrez-Martin CB, Rodriguez-Ferri EF. *Haemophilus parasuis* serovar 5 Nagasaki strain adheres and invades PK-15 cells. Vet Microbiol. 2012; 154(3–4):347–52. Epub 2011/08/16. https://doi.org/10.1016/j.vetmic.2011.07.022 PMID: 21839589.

21. He L, Dai K, Wen X, Ding L, Cao S, Huang X, et al. QseC Mediates Osmotic Stress Resistance and Biofilm Formation in *Haemophilus parasuis*. Front Microbiol. 2018; 9:212. Epub 2018/03/01. https://doi.org/10.3389/fmicb.2018.00212 PMID: 29487590; PubMed Central PMCID: PMCPMC5816903.

22. Wen Y, Wen Y, Wen X, Cao S, Huang X, Wu R, et al. OxyR of *Haemophilus parasuis* is a global transcriptional regulator important in oxidative stress resistance and growth. Gene. 2018; 643:107–16. Epub 2017/12/13. https://doi.org/10.1016/j.gene.2017.12.010 PMID: 29229515.

23. Chen L, Wu D, Cai X, Guo F, Blackall PJ, Xu X, et al. Electrottransformation of *Haemophilus parasuis* with in vitro modified DNA based on a novel shuttle vector. Vet Microbiol. 2012; 155(2–4):310–6. Epub 2011/08/20. https://doi.org/10.1016/j.vetmic.2011.08.020 PMID: 21925811.

24. Blanco I, Galina-Pantoja L, Oliveira S, Pijoan C, Sanchez C, Canals A. Comparison between *Haemophilus parasuis* infection in colostrums-deprived and sow-reared piglets. Vet Microbiol. 2004; 103(1–2):21–7. Epub 2004/09/24. https://doi.org/10.1016/j.vetmic.2004.06.011 PMID: 15381262.

25. Oliveira S, Galina L, Blanco I, Canals A, Pijoan C. Naturally-farrowed, artificially-reared pigs as an alternative model for experimental infection by *Haemophilus parasuis*. Can J Vet Res. 2003; 67(2):146–50. Epub 2003/05/23. PMID: 12760482; PubMed Central PMCID: PMCPMC227044.

26. Luan SL, Chaudhuri RR, Peters SE, Mayho M, Weinert LA, Crowther SA, et al. Generation of a Tn5 transposon library in *Haemophilus parasuis* and analysis by transposon-directed insertion-site sequencing (TraDIS). Vet Microbiol. 2013; 166(3–4):558–66. Epub 2013/08/10. https://doi.org/10.1016/j.vetmic.2013.07.008 PMID: 23928120.

27. Liu H, Xue Q, Zeng Q, Zhao Z. *Haemophilus parasuis* vaccines. Vet Immunol Immunopathol. 2016; 180:53–8. Epub 2016/10/04. https://doi.org/10.1016/j.vetimm.2016.09.002 PMID: 27692096.

28. United States DoA. Swine 2012 Part I: Baseline Reference of Swine Health and Management in the United States. Fort Collins, CO: 2015.

29. United States DoA. Swine 2012 Part II: Reference of Swine Health and Management in the United States. Fort Collins, CO: 2015.

30. White M. Pig health—Glässers disease. http://www.nadis.org.uk/bulletins/glaessers-disease.aspx.; 2010.

31. El Garch F, Kroemer S, Galland D, Morrissey I, Woehrle F. Survey of susceptibility to marbofloxacin in bacteria isolated from diseased pigs in Europe. Vet Rec. 2017; 180(24):591. Epub 2017/03/30. https://doi.org/10.1136/vr.103954 PMID: 28348142.

32. Dayao D, Gibson JS, Blackall PJ, Tumi C. Antimicrobial resistance genes in *Actinobacillus pleuropneumoniae, Haemophilus parasuis* and *Pasteurella multocida* isolated from Australian pigs. Aust Vet J. 2016; 94(7):227–31. Epub 2016/06/29. https://doi.org/10.1111/avj.12458 PMID: 27349882.
33. Moleres J, Santos-Lopez A, Lazaro I, Labairu J, Prat C, Ardanuy C, et al. Novel blaROB-1-bearing plasmid conferring resistance to beta-lactams in Haemophilus parasuis isolates from healthy weaning pigs. Appl Environ Microbiol. 2015; 81(9):3255–67. Epub 2015/03/10. https://doi.org/10.1128/AEM.03865-14 PMID: 25747001; PubMed Central PMCID: PMCPMC4393459.

34. Brockmeier SL, Register KB, Kuehn JS, Nicholson TL, Loving CL, Bayles DO, et al. Virulence and draft genome sequence overview of multiple strains of the swine pathogen Haemophilus parasuis. PLoS One. 2014; 9(8):e103787. Epub 2014/08/20. https://doi.org/10.1371/journal.pone.0103787 PMID: 25137096; PubMed Central PMCID: PMCPMC4138102.

35. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017; 27(5):722–36. Epub 2017/03/17. https://doi.org/10.1101/gr.215087.116 PMID: 28298431; PubMed Central PMCID: PMCPMC5411767.

36. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014; 9(11):e112963. Epub 2014/11/20. https://doi.org/10.1371/journal.pone.0112963 PMID: 25409509; PubMed Central PMCID: PMCPMC4237348.

37. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics, 2014; 30(14):2068–9. Epub 2014/03/20. https://doi.org/10.1093/bioinformatics/btu153 PMID: 24642063.

38. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotation and interactive comparison of genomes. Nucleic Acids Res. 2008; 36(Database issue):D288–92. Epub 2007/12/04. https://doi.org/10.1093/nar/gkm360 PMID: 17537822; PubMed Central PMCID: PMCPMC1347377.

39. Grissa I, Vergnaud J, Poreč P. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2006; 34(Database issue):W52–7. Epub 2007/06/01. https://doi.org/10.1093/nar/gkj014 PMID: 16391877; PubMed Central PMCID: PMCPMC1933234.

40. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010; 5(6):e11147. Epub 2010/07/02. https://doi.org/10.1371/journal.pone.0011147 PMID: 20939022; PubMed Central PMCID: PMCPMC2892488.

41. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999; 27(2):573–80. Epub 1998/12/24. PMID: 9862982; PubMed Central PMCID: PMCPMC148217.

42. Siugur P, Peron P, Lestrade L, Mahillion J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006; 34(Database issue):D32–6. Epub 2005/12/01. https://doi.org/10.1093/nar/gk014 PMID: 16591877; PubMed Central PMCID: PMCPMC1347377.

43. Cilvissa I, Vergnaud J, Poreč P. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007; 35(Web Server issue):W52–7. Epub 2007/06/01. https://doi.org/10.1093/nar/gkm360 PMID: 17537822; PubMed Central PMCID: PMCPMC1933234.

44. den Dunnen JT, Antonarakis SE. Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat. 2000; 15(1):7–12. Epub 1999/12/29. https://doi.org/10.1002/(SICI)1098-1004(20000115)15:1<7::AID-HUMU4>3.0.CO;2-N PMID: 10612815.

45. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016; 44(D1):D279–85. Epub 2015/12/18. https://doi.org/10.1093/nar/gkv1344 PMID: 26637316; PubMed Central PMCID: PMCPMC4702930.

46. Futursberg BA, Webster DR, Lee JH, Travers KJ, Ollives RE, Clark TA, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010; 7(6):461–5. Epub 2010/05/11. https://doi.org/10.1038/nmeth.1459 PMID: 20453866; PubMed Central PMCID: PMCPMC2879396.

47. Roberts RJ, Vincze T, Posfai J, Macelis D. REBASE: restriction enzymes and methyltransferases. Nucleic Acids Res. 2003; 31(1):418–20. Epub 2003/01/10. PMID: 12520038; PubMed Central PMCID: PMCPMC2165516.

48. Arndt D, Grant JR, Marcu A, Sajed T, Pen A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016; 44(W1):W16–21. Epub 2016/05/05. https://doi. org/10.1093/nar/gkw387 PMID: 27141966; PubMed Central PMCID: PMCPMC4987931.

49. Lancashire JF, Terry TD, Blackall PJ, Jennings MP. Plasmid-encoded Tet B tetracycline resistance in Haemophilus parasuis. Antimicrob Agents Chemother. 2005; 49(6):1927–31. Epub 2005/04/28. https://doi.org/10.1128/AAC.49.5.1927-1931.2005 PMID: 15855515; PubMed Central PMCID: PMCPMC1087615.

50. Kehreinberg C, Meunier D, Targant H, Cloeckaert A, Schwarz S, Madec JY. Plasmid-mediated florfenicol resistance in Pasteurella multocida. J Antimicrob Chemother. 2006; 58(1):13–7. Epub 2006/05/04. https://doi.org/10.1099/jac/dk1174 PMID: 16670108.

51. Johnson TJ, Fernandez-Alarcon C, Bojesen AM, Nolan LK, Trampel DW, Seemann T. Complete genome sequence of Gallibacterium anatis strain UMN179, isolated from a laying hen with peritonitis. J
52. Yamaguchi Y, Park JH, Inouye M. Toxin-antitoxin systems in bacteria and archaea. Annu Rev Genet. 2011; 45:61–79. Epub 2011/11/09. https://doi.org/10.1146/annurev-genet-111040-132412 PMID: 22060041.

53. Kedzierska B, Hayes F. Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis. Molecules. 2016; 21(6). Epub 2016/06/21. https://doi.org/10.3390/molecules21060790 PMID: 27322231.

54. Hayes F, Van Melderen L. Toxins-antitoxins: diversity, evolution and function. Crit Rev Biochem Mol Biol. 2011; 46(5):386–408. Epub 2011/08/09. https://doi.org/10.3109/10409238.2011.600437 PMID: 21819231.

55. Wang X, Wood TK. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol. 2011; 77(16):5577–83. Epub 2011/06/21. https://doi.org/10.1128/AEM.05068-11 PMID: 21685157; PubMed Central PMCID: PMCPMC3165247.

56. Hayes F, Van Melderen L. Regulation of growth and death in Escherichia coli by toxin-antitoxin systems. Annu Rev Genet. 2011; 45:239–67. Epub 2011/06/23. https://doi.org/10.1146/annurev-genet-010410-132412 PMID: 21819231.

57. Poole SJ, Diner EJ, Aoki SK, Braaten BA, t’Kint de Roodenbeke C, Low DA, et al. Identification of functional toxin/immunity genes linked to contact-dependent growth inhibition (CDI) and rearrangement hotspot (Rhs) systems. PLoS Genet. 2011; 7(8):e1002217. Epub 2011/08/11. https://doi.org/10.1371/journal.pgen.1002217 PMID: 21823994; PubMed Central PMCID: PMCPMC3150448.

58. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.

59. Willett JL, Ruhe ZC, Goulding CW, Low DA, Hayes CS. Contact-Dependent Growth Inhibition (CDI) and CdiB/CdiA Two-Partner Secretion Proteins. J Mol Biol. 2015; 427(23):3754–65. Epub 2015/09/22. https://doi.org/10.1016/j.jmb.2015.09.010 PMID: 26388411; PubMed Central PMCID: PMCPMC4658273.

60. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.

61. Clantin B, Delatte AS, Rucktooa P, Saint N, Melli AC, Locht C, et al. Structure of the membrane protein FhaC: a member of the Omp85-TpsB transporter superfamily. Science. 2007; 317(5840):903–4. Epub 2007/08/19. https://doi.org/10.1126/science.1146518 PubMed PMID: 17702930.

62. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.

63. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.

64. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.

65. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.

66. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.

67. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.

68. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.

69. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.

70. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.

71. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.

72. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.

73. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.

74. Garcia EC. Contact-dependent interbacterial toxins deliver a message. Curr Opin Microbiol. 2017; 42:40–6. Epub 2017/10/28. https://doi.org/10.1016/j.mib.2017.09.011 PMID: 29078204.
70. Olvera A, Martínez-Moliner V, Pina-Pedrero S, Perez-Simó M, Galofre-Mila N, Costa-Hurtado M, et al. Serum cross-reaction among virulence-associated trimeric autotransporters (VtaA) of Haemophilus parasuis. Vet Microbiol. 2013; 164(3–4):387–91. Epub 2013/03/21. https://doi.org/10.1016/j.vetmic.2013.02.022 PMID: 23510658.

71. Linke D, Riess T, Autenrieth IB, Lupas A, Kempf VA. Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol. 2006; 14(6):264–70. Epub 2006/05/09. https://doi.org/10.1016/j.tim.2006.04.005 PMID: 16678419.

72. Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickel TA, Bitinaite J, et al. A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res. 2003; 31(7):1805–12. Epub 2003/03/26. PMID: 12654995; PubMed Central PMCID: PMCPMC152790.

73. Casadesus J, Low D. Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev. 2006; 70(3):830–56. Epub 2006/09/09. https://doi.org/10.1128/MMBR.00016-06 PMID: 16959970; PubMed Central PMCID: PMCPMC1594586.

74. Collier J, McAdams HH, Shapiro L. A DNA methylation ratchet governs progression through a bacterial cell cycle. Proc Natl Acad Sci U S A. 2007; 104(3):17111–6. Epub 2007/10/19. https://doi.org/10.1073/pnas.0708112104 PMID: 17942674; PubMed Central PMCID: PMCPMC2040471.

75. Heitthoff DM, Sinsheimer RL, Low DA, Mahan MJ. An essential role for DNA adenine methylation in bacterial virulence. Science. 1999; 284(5416):967–70. Epub 1999/05/13. PMID: 10320378.

76. Marinus MG, Casadesus J. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev. 2009; 33(3):488–503. Epub 2009/01/30. https://doi.org/10.1111/j.1574-6976.2008.00159.x PMID: 19175412; PubMed Central PMCID: PMCPMC2841194.

77. Stephens C, Reisenauer A, Wright R, Shapiro L. A cell cycle-regulated bacterial DNA methyltransferase is essential for viability. Proc Natl Acad Sci U S A. 1996; 93(3):1210–4. Epub 1996/02/06. PMID: 8577742; PubMed Central PMCID: PMCPMC40058.

78. van der Woude M, Braaten B, Low D. Epigenetic phase variation of the pap operon in Escherichia coli. Trends Microbiol. 1996; 4(1):5–9. Epub 1996/01/01. PMID: 8824788.

79. Atack JM, Srikhanta YN, Fox KL, Jurcisek JA, Brockman KL, Clark TA, et al. A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae. Nat Commun. 2015; 6:7828. Epub 2015/07/29. https://doi.org/10.1038/ncomms8828 PMID: 26215614; PubMed Central PMCID: PMCPMC4525171.

80. Atack JM, Tan A, Bakaletz LO, Jennings MP, Seib KL. Phasevarions of Bacterial Pathogens: Metabolomics Sheds New Light on Old Enemies. Trends Microbiol. 2018; 26(8):715–26. Epub 2018/02/18. https://doi.org/10.1016/j.tim.2018.01.008 PMID: 29452952; PubMed Central PMCID: PMCPMC6054543.

81. Fox KL, Dowideit SJ, Erwin AL, Srikhanta YN, Smith AL, Jennings MP. Haemophilus influenzae phasevarions have evolved from type III DNA restriction systems into epigenetic regulators of gene expression. Nucleic Acids Res. 2007; 35(15):5242–52. Epub 2007/08/07. https://doi.org/10.1093/nar/gkm571 PMID: 17675391; PubMed Central PMCID: PMCPMC1976455.

82. Srikhanta YN, Fox KL, Jennings MP. The phasevarion: phase variation of type III DNA methyltransferase controls coordinated switching in multiple genes. Nat Rev Microbiol. 2010; 8(3):196–206. Epub 2010/02/09. https://doi.org/10.1038/nrmicro2283 PMID: 20140025.

83. Srikhanta YN, Maguire TL, Stacey KJ, Grimmond SM, Jennings MP. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. Proc Natl Acad Sci U S A. 2005; 102(15):5547–51. Epub 2005/04/02. https://doi.org/10.1073/pnas.0501169102 PMID: 15802471; PubMed Central PMCID: PMCPMC556257.