Risk Stratification and Clinical Eligibility of Invasive vs. Noninvasive Strategy in the Management of Non-ST Elevation Acute Coronary Syndrome Patients Admitted to Hawler Teaching Hospital

Zrar Hussein Rasul¹, Rafid Fayadh Al-Aqeedi²

1- Hawler teaching hospital, ministry of health, Erbil, Kurdistan Region, Iraq.
2- Hawler teaching hospital and hawler cardiac center, ministry of health, Erbil, Kurdistan Region, Iraq.

ARTICLE INFO

Article History:
Received: 17/06/2018
Accepted: 14/08/2018
Published: 28/10/2018

Keywords:
Acute coronary syndrome, Invasive, noninvasive.

*Corresponding Author:
Zrar Hussein Rasul
zrarmed@gmail.com

ABSTRACT

Background and objectives: The term acute coronary syndrome (ACS) is a range of acute myocardial ischemic states including unstable angina (UA), non-ST segment (NSTE), and ST-segment elevation myocardial infarction (STEMI). It is required to identify the cardiovascular events risk in those patients in order to select the beneficial therapeutic strategy during the first hours of presentation. The aim of the present study is to stratify the cardiac event risk and to determine the clinical eligibility of invasive vs. noninvasive therapeutic strategy in patients presented with UA and NSTEMI as defined as NSTE-ACS.

Methods: In the current observational cross-sectional study, 100 consecutive patients who visited the emergency department and admitted to coronary care unit diagnosed as NSTE-ACS were recruited. Their medical and clinical information were obtained from the patient and medical records. The cardiac event risk was estimated according to the GRACE risk score (Global Registry of Acute Coronary Events) and the TIMI risk score (Thrombolysis in Myocardial Infarction). The clinical eligibility of invasive vs. noninvasive (Ischemia-guided) therapeutic strategy was determined according to the latest AHA/ACC guideline for the management of patients with NSTE-ACS in 2014.

Results: Of patients presented with NSTE-ACS who underwent both therapeutic strategies most of them were males (71.0%). The mean ± S.D. was 60-62 years for age. The mean ± S.D. of body mass index (BMI), chest pain duration, systolic blood pressure and heart rate were comparable in two groups. In terms of clinical characteristics hypertension (72.0%), current smoking (56.0%), dyslipidemia (48.0%), and past history of coronary artery disease (CAD) (44.0%) were the most prevalent. Patients who underwent invasive strategy had significantly more ST-depression (75.6%) as compared to those who underwent non-invasive strategy (55.9%), P=0.044. However, non-invasive group had significantly more T-wave inversion, (59.3% vs. 34.1%; P=0.013). The studied groups showed no statistically significant difference in risk of mortality according to GRACE risk score (P=0.505), TIMI risk score (P=0.057), and Killip class (P=0.252). However, the majority of non-invasive group had low risk (67.8%) while, the invasive group more common to be at intermediate risk (29.3%) for 6-month mortality. There was no statistically significant predictor of two therapeutic strategies according to the patients characteristics and risk stratification (p>0.05).
1. INTRODUCTION

The term acute coronary syndrome (ACS) is a range of acute myocardial ischemic states. It includes unstable angina (UA), non-ST segment myocardial infarction (Non-STEMI), and ST-segment elevation infarction (STEMI). Unstable angina defined as a clinical syndrome between stable angina and acute myocardial infarction (Grech et al., 2003, Chang et al., 2012).

Disruption in the atheromatous plaque is an initial stage of an acute coronary syndrome. Continuous fissuring or rupture in these plaques and subsequent exposure to materials such as lipid, foam cells, and smooth muscle result in the local generation of thrombin and fibrin deposition. Consequently, it facilitates platelet aggregation, adhesion, and intracoronary thrombus formation (Chang et al., 2012).

Non-STE-ACS cover a clinical spectrum ranging from UA to non-STEMI (Fitchett et al., 2006). Unstable angina and Non-STEMI are responsible for 2.5 million of hospital admissions across the world. It has been considered to be the main risk factor for morbidity and mortality in Western countries. In-hospital mortality and re-infarction account for 5-10% one month following an acute episode with a higher long-term mortality risk compared to the patients with STEMI (Bertrand et al., 2000).

Unstable angina and Non-STEMI are closely associated medical conditions with similar clinical presentations making them indistinguishable. The distinction between them depends on severity sufficiency of ischemia to cause myocardial damage and release of detectable biomarkers quantities of myocyte necrosis. Cardiac troponin I and T are more specific and reliable biomarkers than creatinine kinase and its isoenzyme. The electrocardiogram (ECG) may show a normal or minor non-specific changes, ST segment depression, bundle branch block, T wave inversion, or transient ST-segment elevation and are resolved spontaneously or following giving nitrate (Braunwald et al., 2002).

Preventing recurrent ACS and improving long-term outcomes are the management aims through selecting an appropriate treatment based on the risk estimation of an adverse outcome. Patients with NSTE-ACS do not adhere to the recommended treatments, and the risk stratification is not used by physicians to determine the appropriate treatment and access speed to coronary angiography (Fitchett et al., 2006).

The risk stratification has its own importance as NSTE-ACS has a greater prevalence of early culprit coronary artery patency and a higher risk of recurrent ischemic events, and a wide range of therapeutic choices compared to STEMI.

Conclusions: The current study showed that invasive and non-invasive (Ischemia-guided) strategies could be applicable to NSTE-ACS patients with low, intermediate, or high risk of mortality with risk stratification. It is recommended to underscore on significant and prevalent electrocardiographic findings, demographic and clinical characteristics to consider eligibility for invasive and non-invasive therapeutic strategies to patients with NSTE-ACS.
Given to this wide range of therapeutic choices and the adverse events in NSTE-ACS, it is so important to choose management strategies with the greatest advantage to the patients. It is required to recognize those patients with the highest risk of cardiovascular events guiding the clinicians to select the patients who take benefit from invasive or noninvasive therapeutic interventions during the first hours of presentation.

Aim of the study

The aim of the present study is to stratify the cardiac event risk and to determine the clinical eligibility of invasive vs. noninvasive (Ischemia-guided) therapeutic strategy in patients presented with UA and NSEMI as defined as NSTE-ACS.

2. METHODS

2.1. Study design and sampling

In the current observational cross-sectional study, the patients were visited the emergency department of Hawler Teaching Hospital for the cardiac-based issues and consecutively screened for the eligibility criteria between 20th June and 25th December 2017.

The patients met eligibility criteria including both gender, aged 18 years and older, diagnosed with NSTE-ACS through the medical history, clinical examination, ECG and cardiac biomarker indicators, and risk factors were identified and the whole evaluation was supervised by a specialist or consultant. Pregnant women and patients with STEMI were not included in the study. Of the total 336 patients screened for the eligibility criteria, 143 were diagnosed with STEMI, 56 had no suitable health status (octogenarians and nonagenarians, frail patients, chronic kidney disease patients on replacement therapy and severely incapacitated patient with stroke), and 21 did not show their willingness to participate, 16 were pregnant, of those, 100 eligible patients were recruited in the present study.

All patients who diagnosed with NSTE-ACS at the corresponded department were managed with optimum medical therapy, including acetylsalicylic acid, P2Y12 inhibitors (mostly clopidogrel), statins, low molecular weight heparin and as appropriate with B-blockers, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, insulin, nitrate and other anti-hypertensive or anti-ischemic medication and diuretics. Some of them were already on medications e.g. oral hypoglycemic agents (30.0%) and diuretics (22.0%).

2.2. Diagnostic and measurement criteria

The demographic data and clinical characteristics of the patients was obtained from the patients and their medical records. The diagnosis of NSTE-ACS was established based on the historical descriptors of symptoms such as chest pain and recurrent angina or dyspnea. The ECG was checked carefully for ST-segment depression, T-wave inversion, dynamic ST-T wave changes, and transient ST-segment elevation. Repeated sampling of cardiac biomarkers including troponins and CK-MB were performed in all patients.

2.3. Risk stratification

The cardiac event risk was estimated according to the GRACE risk score (Global Registry of Acute Coronary Events) and the TIMI risk score (Thrombolysis in Myocardial Infarction). The GRACE risk score is based on the age, Killip class, systolic blood pressure, ST-segment deviation, serum creatinine level, cardiac arrest, heart rate, and cardiac
biomarkers. A series of points are given to each of the above mentioned clinical variables. In this score system, patients scoring <109 points are considered for noninvasive (Ischemia-guided) therapeutic strategy and ≥109 are considered for invasive therapeutic strategy (including immediate, early or delayed), (Appendix 1) according to the latest AHA/ACC guideline for the management of patients with NSTE-ACS in 2014.

The TIMI risk score (Thrombolysis in Myocardial Infarction) is determined by the sum of the presence of 7 variables at admission; 1 point is given for each of the following variables: ≥65 y of age; ≥3 risk factors for CAD; prior coronary stenosis ≥50%; ST deviation on ECG; ≥2 angina events in prior 24 h; use of aspirin in prior 7 days and elevated cardiac biomarkers. In this score system, patients scoring 0-1 point are considered for noninvasive (Ischemia-guided) therapeutic strategy and ≥2 points are considered for invasive therapeutic strategy, (Appendix 2, 3) according to the latest AHA/ACC guideline for the management of patients with NSTE-ACS in 2014.

2.4. Statistical Methods

The descriptive purposes of the study were examined through the frequency distribution. A p-value of < 0.05 was considered as the statistically significant difference. The SPSS version 24 was used for statistical calculations. The Univariate analysis of variance was performed to determine the predictors of invasive and non-invasive strategies and chi-squared test for statistical difference between risk stratification according to GRACE and TIMI score systems.

2.5. Ethical considerations

The ethical clearance of the present study was obtained from the local corresponded department in Erbil Teaching Hospital in 2017. The patients have not undergone any medical intervention or invasive procedures unless consented and the written consent form was taken from all patients prior study implementation.

3. RESULTS

Of the total patients recruited in this study, more than two third of them were males (71.0%). The mean age ± S.D. of the patients who underwent invasive strategy was 60.88 and non-invasive strategy was 62.36 years with no statistically significant difference (P=0.490). In addition, the patients mean ± S.D. in two groups were comparable in regard to body mass index (BMI) (P=0.053), chest pain duration (P=0.186), systolic blood pressure (P=0.302), and heart rate (P=0.621). In terms of clinical-based information of NSTE-ACS patients, the study revealed that hypertension (72.0%), current smoking (56.0%), dyslipidemia (48.0%), and past history of coronary artery disease (CAD) (44.0%) were the most prevalent characteristics followed by diabetes mellitus (31.0%), and renal failure (12.0%). The prevalence of family history of CAD was 22.0%. On the other hand this study showed no statistical significant difference between the patients in two groups in regard to demographic and parameters of clinical presentations (P>0.05) as shown in Table 1.
Table 1: Demographic and clinical characteristics according to eligibility of invasive vs. non-invasive therapeutic strategy in NSTE-ACS patients

Demographic and clinical characteristics	NSTE-ACS patients (no. 100)	P-Value					
	Invasive Strategy (Mean ± S.D.)	non-invasive Strategy (Mean ± S.D.)					
Age (year)	60.88 ± 10.51	62.36 ± 10.46	0.490*				
Body Mass Index (BMI)	26.93 ± 4.29	25.44 ± 2.68	0.053*				
Chest Pain Duration (hour)	10.98 ± 12.67	14.91 ± 16.91	0.186*				
Systolic Blood Pressure	151.13 ± 32.90	144.83 ± 23.82	0.302*				
Heart Rate	80.15 ± 19.60	78.36 ± 14.62	0.621*				
Gender	Invasive Strategy no. 41 (%)	non-invasive Strategy no. 59 (%)	NSTE-ACS no. (%)	P-Value			
Male	32 (78.0)	39 (66.1)	71 (71)	0.195**			
Female	9 (22.0)	20 (33.9)	29 (29)				
Smoking				0.984**			
Current smoker	24 (56.1)	32 (56.1)	56 (56)				
Ex-smoker	7 (14.6)	9 (15.8)	16 (16)				
Never smoker	12 (29.3)	16 (28.1)	28 (28)				
Refractory Angina				0.351**			
Yes	6 (14.6)	5 (8.5)	11 (11)				
No	35 (85.4)	54 (91.5)	89 (89)				
Shortness of Breath				0.456**			
Yes	13 (31.7)	23 (39.0)	36 (36)				
No	28 (68.3)	36 (61.0)	64 (64)				
Diabetes Mellitus				0.899**			
Yes	13 (31.7)	18 (30.5)	31 (31)				
No	28 (68.3)	41 (69.5)	69 (69)				
	Yes	No					
------------------	--------	--------	----------	----------	----------	----------	----------
Hypertension	32 (78.0)	40 (67.8)	72 (72)			0.261**	
Yes	32 (78.0)	40 (67.8)	72 (72)			0.261**	
No	9 (22.0)	19 (32.2)	28 (28)			0.261**	
Family History of CAD	13 (31.7)	9 (15.3)	22 (22)			0.051**	
Yes	13 (31.7)	9 (15.3)	22 (22)			0.051**	
No	28 (68.3)	50 (84.7)	78 (78)			0.051**	
Dyslipidemia	20 (48.8)	28 (47.5)	48 (48)			0.896**	
Yes	20 (48.8)	28 (47.5)	48 (48)			0.896**	
No	21 (51.2)	31 (52.5)	52 (52)			0.896**	
Renal failure	7 (17.1)	5 (8.5)	12 (12)			0.222**	
Yes	7 (17.1)	5 (8.5)	12 (12)			0.222**	
No	34 (82.9)	54 (91.5)	88 (91)			0.222**	
Past History of CAD	20 (48.8)	24 (40.7)	44 (44)			0.422**	
Yes	20 (48.8)	24 (40.7)	44 (44)			0.422**	
No	21 (51.2)	35 (59.3)	56 (56)			0.422**	
(PCI)	3 (7.3)	1 (1.7)	4 (4)			0.302**	
Yes	3 (7.3)	1 (1.7)	4 (4)			0.302**	
No	38 (92.7)	58 (98.3)	96 (96)			0.302**	
Previous (CABG)	0 (0.0)	0 (0.0)	0 (0.0)			-	
Yes	0 (0.0)	0 (0.0)	0 (0.0)			-	
No	41 (100)	59 (100)	100 (100)			-	

*Independent t-test, ** Chi-squared, and Fishers’ exact tests were performed for statistical analyses.

The bold numbers show the higher prevalence. NSTE-ACS = Non ST Elevation-Acute Coronary Syndrome; CAD =

Coronary Artery Disease; CABG = Coronary Artery Bypass Graft Surgery; PCI = Percutaneous Coronary Intervention.
The patients who underwent invasive strategy had significantly more ST-depression (75.6%) as compared to those who underwent non-invasive strategy (55.9%), \(P=0.044 \). On the other hand, the non-invasive group of the study had significantly more T-wave inversion, (59.3% vs. 34.1%; \(P=0.013 \)). The other Electrocardiographic and Echocardiographic features were not statistically significant between both groups of the study, as shown in Table 2.

Table 2: Electrocardiographic and Echocardiographic findings according to eligibility of invasive vs. non-invasive therapeutic strategy in NSTE-ACS patients

Electrocardiographic and Echocardiographic findings	NSTE-ACS patients (no. 100)	P-Value	
	Invasive Strategy	non-invasive Strategy	
	no. 41 (%)	no. 59 (%)	
ST depression			
Yes	31 (75.6)	33 (55.9)	0.044*
No	10 (24.4)	26 (44.1)	
T-wave inversion			0.013*
Yes	14 (34.1)	35 (59.3)	
No	27 (65.9)	24 (40.7)	
Dynamic ST-T changes			1.000**
Yes	2 (4.9)	2 (3.4)	
No	39 (95.1)	57 (96.6)	
Ventricular fibrillation (VF)			0.066**
Yes	3 (7.3)	0 (0.0)	
No	38 (92.7)	59 (100.0)	
Ventricular tachycardia (VT)			0.166**
Yes	2 (4.9)	0 (0.0)	
No	39 (95.1)	59 (100)	
Cardiac Arrest			0.142**
Yes	0 (0.0)	4 (6.8)	
No	41 (100)	55 (93.2)	
LVEF (%) – Mean ± S.D.	50.73 ± 11.350	52.44 ± 10.927	0.456***

The numbers are in frequency (percentage) except where mentioned.

*Chi-squared, ** Fishers’ exact, and *** independent t-tests were performed for statistical analyses. The bold numbers show the significant difference. NSTE-ACS = Non ST Elevation-Acute Coronary Syndrome;
The differences of lab investigations were examined in Table 3. The study showed that the patients in both invasive and non-invasive groups had comparable values of serum creatinine (P=0.827), troponin (P=0.085), and estimated glomerular filtration rate (eGFR) (P=0.168) and revealed no statistical significance.

Table 3: Laboratory findings according to eligibility of invasive vs. non-invasive therapeutic strategy in NSTE-ACS patients

Laboratory Findings	NSTE-ACS patients (no. 100)		
	Invasive Strategy no. 41 (%)	non-invasive Strategy no. 59 (%)	P-Value
Serum Creatinine (mg/dL)	1.06 ± 0.46	1.09 ± 0.54	0.827
Troponin (ng/mL)	1.60 ± 3.10	0.69 ± 1.27	0.085
eGFR (ml/min)	87.60 ± 48.44	75.35 ± 33.31	0.168

NSTE-ACS = Non ST Elevation-Acute Coronary Syndrome; eGFR = estimated Glomerular Filtration Rate.

Furthermore, the study did not show the patients who underwent invasive and non-invasive therapeutic strategies were more at risk of mortality according to GRACE risk score (P=0.505), TIMI risk score (P=0.057), and Killip class (P=0.252), as shown in Table 4.

Table 4: Risk stratification by GRACE, TIMI risk scores and Killip Class according to eligibility of invasive vs. non-invasive therapeutic strategy in NSTE-ACS patients

Risk stratification	NSTE-ACS patients (no. 100)		
	Invasive Strategy no. 41 (%)	non-invasive Strategy no. 59 (%)	P-Value
GRACE Risk Score	105.40 ± 31.71	100.97 ± 33.43	0.505*
TIMI Risk Score	4.43 ± 1.68	3.75 ± 1.76	0.057*
Killip Class			0.252**
1	27 (65.9)	43 (72.9)	
2	11 (26.8)	12 (20.3)	
3	1 (2.4)	4 (6.8)	
4	2 (4.9)	0 (0.0)	

*Independent t-test and ** Fishers’ Exact test were performed for statistical analyses.

NSTE-ACS = Non ST Elevation-Acute Coronary Syndrome; GRACE = Global Registry of Acute Coronary Events; TIMI = Thrombolysis in Myocardial Infarction.
Moreover, the mortality risk in patients who underwent invasive or non-invasive strategies was examined according to GRACE risk categories in Table 5. The study did not show the one group is more at risk of mortality compared to other one (P=0.358).

Table 5: Risk stratification by 3-class of severity (low to very high) according to eligibility of invasive vs. non-invasive therapeutic strategy in NSTE-ACS patients

GRACE Categories	NSTE-ACS patients (no. 100)	P-Value	
	Invasive Strategy	non-invasive Strategy	
	no. 41 (%)	no. 59 (%)	
Low Risk	22 (53.7)	40 (67.8)	0.358*
(GRACE <109)	12 (29.3)	12 (20.3)	
Moderate Risk	7 (17.1)	7 (11.9)	
(GRACE 109-140)	62 (62)	24 (24)	
High Risk	40 (67.8)	12 (20.3)	
(GRACE >140)	14 (14)		

*Independent t-test was performed for statistical analysis.

NSTE-ACS = Non ST Elevation-Acute Coronary Syndrome; GRACE = Global Registry of Acute Coronary Events.

Upon univariate logistic regression application on NSTE-ACS patients, the invasive or non-invasive strategy was considered as a dependent variable and its association with gender, diabetes, hypertension, dyslipidemia, age and left ventricular ejection fraction (LVEF) as predictors were examined in Table 6. The study did not show that the mentioned characteristics are the predictors of strategic types.

Table 6: Univariate logistic regression analysis between invasive therapeutic strategy eligibility

Predictors	Mean Square	F	Significance	Partial Eta Squared*
Gender	0.887	3.786	0.056	0.059
Diabetes Mellitus	0.004	0.017	0.898	0.000
Hypertension	0.031	0.130	0.719	0.002
Dyslipidemia & 0.037 & 0.159 & 0.691 & 0.003 \\
Age & 0.274 & 1.169 & 0.295 & 0.391 \\
Left ventricular ejection fraction (LVEF) & 0.012 & 0.051 & 0.822 & 0.001 \\

* Partial eta-squared: is a measure of effect size that express the amount of variance accounted for by one or more independent variables

4. Discussion

The present study conducted on NSTE-ACS patients showed that those who underwent invasive and non-invasive treatments were comparable in demographic, clinical characteristics and lab investigations. In addition, they were comparable in echocardiographic findings. The electrocardiographic changes revealed more prevalence of ST depression in invasive group and more T-wave inversion in non-invasive arm of the study. Despite these parameters, patients in both groups did not disclose a significant more risk of mortality according to the GRACE, TIMI risk scores, and Killip’s class systems of stratification. The study did not show that gender, diabetes, hypertension, dyslipidemia, age and LVEF are the predictors of strategic types.

The majority of NSTE-ACS patients in this study were managed by both the internists and cardiologists that may reflect the importance of the establishment and implementation of the treatment guidelines in the form of clinical plans or algorithms to guide the clinicians for optimal therapeutic interventions. Risk assessment has been shown to be a dynamic and continuous process aiming to identify new higher risk features within the early presentation hours assisting the clinicians to implement different management strategies for NSTE-ACS patients.

According to the earlier Europe and North American registries, the treatment of patients with NSTE-ACS is not based on the current guidelines (Eagle et al., 2002, Fox et al., 2002, Steg et al., 2002). For instance, patients with lower risk are undergoing cardiac catheterization more often at an earlier time than higher-risk patients (Bhatt et al., 2004).

Clinical conditions of the patients with NSTE-ACS are quite complicated and have a high mortality risk and recurrent myocardial infarction. Therefore, it is important to manage the patients according to evidence-based strategies.

The current study identified the majority of the patients with a low risk according to the GRACE risk stratification system underwent
noninvasive management. The stratification risk is highly important to determine the patients with a severe ischemic episode, left ventricular dysfunction, and severe and/or extensive proximal coronary stenosis. In addition, simultaneous and multiple plaque rupture within several coronary arteries has been shown to be common in ACS patients (Goldstein et al., 2000, Roffi et al., 2016).

The study showed that 53.7% and 67.8% of the patients in invasive and non-invasive treatments, respectively had a low risk of mortality according to the GRACE system. These patients require careful and ongoing observation and further medical testing to determine that they are not at higher risk features. These patients must be considered to be low risks until confirmation by serial ECG and troponin level over a time scheduled period. Importantly, the patients with negative serial biomarkers and no ECG ST-segment change may still be located as higher risk (Sanchez et al., 2004) because the sensitivity of both troponin I and T is 60% at this time and it is increased over 14 to 18 hours of presentation (Zimmerman et al., 1999).

The patients with a high mortality risk were 17.1% and 11.9% in invasive and non-invasive treatment groups, respectively in the present study. These patients must be under continuous medical care to avoid the worse conditions with features of higher risk. Ongoing medical care must be continued until stabilization of higher risk features with conservative therapy as the mean age of the patients in the study is relatively high. These patients take a great benefit from a more aggressive antiplatelet and antithrombotic regimen and an early invasive strategy than the patients with a lower risk (Hoedemaker et al., 2017, Tubaro et al., 2017). Although we could not find any predictor in this regard, this finding could back to the patient clinical heterogeneity rather than other characteristics. Hypotension, tachycardia, elevated troponin, dynamic ST-segment changes, frequent episode of ischemia, and refractory have been documented to be high-risk predictors by clinical trials (Eagle et al., 2004, Boersma et al., 2000). Therefore, the decision must be taken according to the signs and symptoms of the ACS likelihood if these medical tests are not available at this period of time.

The patients with “background risk” such as known CAD, diabetes mellitus, or renal failure or having very typical ischemic cardiac symptoms, even with no high-risk changes in ECG abnormalities and lower levels of troponin must be considered for admission for further observations (Fitchett et al., 2006).

5. Limitations of the study

The findings reported in the present study must be analyzed with caution owing to its design and sample size. The patients recruited in the present study have been selected from one geographic location precluding the study to generalize to other regions or across the country.
6. Conclusions

The present study showed that hypertension, current smoking, dyslipidemia, and past history of CAD were the most prevalent features among patients with NSTE-ACS. Those who underwent invasive strategy had significantly more ST-depression. However, those eligible for non-invasive strategy had significantly more T-wave inversion. There was no statistically significant difference between invasive and non-invasive strategies applied according to risk stratification with GRACE, TIMI risk scores and Killip class. The studied groups show no statistically significant difference in the risk of mortality. However, the majority of non-invasive group was at low risk as compared to invasive group who was common to be at intermediate risk for 6-month mortality. There was no statistically significant predictor of the two therapeutic strategies according to patient characteristics and risk stratification as well.

REFERENCES

Bertrand, M., Simoons, M., Fox, K., Wallentin, L., Hamm, C., McFadden, E., et al. 2000. Management of acute coronary syndromes: acute coronary syndromes without persistent ST segment elevation. Recommendations of the Task Force of the European Society of CardiologyRecommendations of the Task Force of the European Society of Cardiology. European heart journal, 21, 1406-1432.

Bhatt, D.L., Roe, M.T., Peterson, E.D., Li, Y., Chen, A.Y., Harrington, R.A., et al. 2004. Utilization of early invasive management strategies for high-risk patients with non–ST-segment elevation acute coronary syndromes: results from the CRUSADE Quality Improvement Initiative. Jama, 292, 2096-2104.

Boersma, E., Pieper, K.S., Steyerberg, E.W., Wilcox, R.G., Chang, W.-C., Lee, K.L., et al. 2000. Predictors of outcome in patients with acute coronary syndromes without persistent ST-segment elevation: results from an international trial of 9461 patients. Circulation, 101, 2557-2567.

Braunwald, E., Antman, E.M., Beasley, J.W., Califf, R.M., Cheitlin, M.D., Hochman, J.S., et al. 2002. ACC/AHA 2002 guideline update for the management of patients with unstable angina and non–ST-segment elevation myocardial infarction—summary article: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee on the Management of Patients With Unstable Angina). Journal of the American College of Cardiology, 40, 1366-1374.

Chang, H., Min, J.K., Rao, S.V., Patel, M.R., Simonetti, O.P., Ambrosio, G., et al. 2012. Non–ST-Segment Elevation Acute Coronary Syndromes: Targeted Imaging to Refine Upstream Risk Stratification. Circulation: Cardiovascular Imaging, 5, 536-546.

Eagle, K.A., Goodman, S.G., Avezum, A., Budaj, A., Sullivan, C.M., López-Sendón, J., et al. 2002. Practice variation and missed opportunities for reperfusion in ST-segment-elevation myocardial infarction: findings from the Global Registry of Acute Coronary Events (GRACE). The Lancet, 359, 373-377.

Eagle, K.A., Lim, M.J., Dabbous, O.H., Pieper, K.S., Goldberg, R.J., Van de Werf, F., et al. 2004. A validated prediction model for all forms of acute coronary syndrome: estimating the risk of 6-month postdischarge death in an international registry. Jama, 291, 2727-2733.

Fitchett, D.H., Borgundvaag, B., Cantor, W., Cohen, E., Dhingra, S., Femes, S., et al. 2006. Non-ST segment elevation acute coronary syndromes: A simplified risk-oriented algorithm. Canadian Journal of Cardiology, 22, 663-677.

Fox, K.A., Goodman, S.G., Klein, W., Brieger, D., Steg, P.G., Dabbous, O., et al. 2002. Management of acute coronary syndromes. Variations in practice and outcome. Findings from the Global Registry of Acute Coronary Events (GRACE). European Heart Journal, 23, 1177-1189.

Goldstein, J.A., Demetriou, D., Grines, C.L., Pica, M., Shoukfeh, M. & O’neill, W.W. 2000. Multiple complex coronary plaques in patients with acute myocardial infarction. New England Journal of Medicine, 343, 915-922.

Grech, E.D. & Ramsdale, D.R. 2003. ABC of interventional cardiology: Acute coronary syndrome: unstable angina and non-ST segment elevation myocardial infarction. BMJ: British Medical Journal, 326, 1259.

Hoedemaker, N.P., Damman, P., Woudsstra, P., Hirsch, A., Windhausen, F., Tijssen, J.G., et al. 2017. Early invasive versus selective strategy for non–ST-
segment elevation acute coronary syndrome: the ICTUS trial. *Journal of the American College of Cardiology*, 69, 1883-1893.

Roffi, M., Patrono, C., Collet, J.-P., Mueller, C., Valgimigli, M., Andreotti, F., et al. 2016. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). *European heart journal*, 37, 267-315.

Sanchez, P., Morinigo, J., Pabon, P., Martin, F., Piedra, I., Palacios, I., et al. 2004. Prognostic relations between inflammatory markers and mortality in diabetic patients with non-ST elevation acute coronary syndrome. *Heart*, 90, 264-269.

Steg, P.G., Goldberg, R.J., Gore, J.M., Fox, K.A., Eagle, K.A., Flather, M.D., et al. 2002. Baseline characteristics, management practices, and in-hospital outcomes of patients hospitalized with acute coronary syndromes in the Global Registry of Acute Coronary Events (GRACE). *American Journal of Cardiology*, 90, 358-363.

Tubaro, M., Sciahbasi, A., Ricci, R., Ciavolella, M., Di Clemente, D., Bisconti, C., et al. 2017. Early invasive versus early conservative strategy in non-ST-elevation acute coronary syndrome: an outcome research study. *European Heart Journal: Acute Cardiovascular Care*, 6, 477-489.

Zimmerman, J., Fromm, R., Meyer, D., Boudreaux, A., Wun, C.-C.C., Smalling, R., et al. 1999. Diagnostic marker cooperative study for the diagnosis of myocardial infarction. *Circulation*, 99, 1671-1677.
Appendix 1: GRACE risk score.
(AHA/ACC guideline for the management of patients with NSTE-ACS 2014).

Killip Class	Points	SBP mm Hg	Points	Heart Rate, Beats/min	Points	Age, y	Points	Creatinine Level, mg/dL	Points
I	0	≥120	58	≥120	0	≥20	0	0.05-0.79	4
II	20	80-99	53	60-89	3	30-39	8	0.45-1.9	7
III	39	100-119	40	70-89	9	40-49	25	1.35-1.99	10
IV	59	120-139	34	90-109	15	50-69	41	2.35-1.99	13
	140-169	24	110-149	24	60-89	58	20.0-3.99	21	
	160-199	10	160-199	38	70-79	76	>4.0	28	
	≥200	0	≥200	46	≥50	100	>4.0	28	

Other Risk Factors | Points
Cardiac Arrest at Admission | 39
ST-Segment Deviation | 28
Elevated Cardiac Enzyme Levels | 14

Appendix 2: TIMI Risk Score* for NSTE-ACS

TIMI Risk Score	All-Cause Mortality, New or Recurrent MI, or Severe Recurrent Ischemia Requiring Urgent Revascularization Through 14 d After Randomization, %
0–1	4.7
2	8.3
3	13.2
4	19.9
5	26.2
6–7	40.9

*The TIMI risk score is determined by the sum of the presence of 7 variables at admission; 1 point is given for each of the following variables: ≥65 y of age; ≥3 risk factors for CAD; prior coronary stenosis ≥50%; ST deviation on ECG; ≥2 angina events in prior 24 h; use of aspirin in prior 7 d; and elevated cardiac biomarkers.
Appendix 3: Factors Associated With Appropriate Selection of Early Invasive Strategy or Ischemia-Guided Strategy in Patients with NSTE-ACS.
(2014 AHA/ACC Guideline for the management of patients with NSTE-ACS)

Ischemia-guided strategy	Immediate invasive (within 2 h)	Early invasive (within 24 h)	Delayed invasive (within 25–72 h)
	Low-risk score (e.g., TIMI [0 or 1], GRACE [<109])	Refractory angina	None of the above but diabetes mellitus
	Low-risk Tn-negative female patients	Signs or symptoms of HF or new or worsening mitral regurgitation	Renal insufficiency (GFR <60 mL/min/1.73 m²)
	Patient or clinician preference in the absence of high-risk features	Hemodynamic instability	Reduced LV systolic function (EF <0.40)
		Recurrent angina or ischemia at rest or with low-level activities despite intensive medical therapy	Early post-infarction angina
		Sustained VT or VF	PCI within 6 month
			Prior CABG
			GRACE risk score 109–140; TIMI score ≥2