Regulation of grain yield in rice under well-watered and drought stress conditions by GUDK

Venkategowda Ramegowda, Supratim Basu, Chirag Gupta, and Andy Pereira*

Crop, Soil, and Environmental Sciences; University of Arkansas; Fayetteville, AR USA

Keywords: drought stress, grain yield, Oryza sativa, receptor-like cytoplasmic kinase, OsAP37

Increasing the grain yield of cereals, which is stable under unfavorable environmental stress, is a major objective to sustain production and feed the growing world population. Recently, we functionally characterized a receptor-like cytoplasmic kinase, named GROWTH UNDER DROUGHT KINASE (GUDK), revealing its role in regulating grain yield under well-watered and drought stress conditions by transphosphorylating the OsAP37 transcription factor. GUDK is induced under several stresses and its loss-of-function increased the sensitivity of rice seedlings to salinity, osmotic stress, and abscisic acid treatment. In addition to reduced tolerance of gudk mutant plants to drought stress at vegetative stage, a significant reduction in grain yield was observed under well-watered and drought stress conditions at reproductive stage. Gene co-expression analysis supports the role of GUDK in regulating important biological processes both under control and stress conditions. Thus, our results suggest that GUDK has the potential to regulate grain yield both under favorable and unfavorable conditions.

Rice, feeds more than half the world’s population, and consumes about 30% of all the fresh water used in agriculture.1 Water scarcity, caused by the needs of the rapidly increasing global population threatens sustainable production of rice. Therefore, improvement of yield and maintaining yield stability under optimal as well as water-limited conditions is essential for food security of the growing global population. In recent years, significant examples of achieving drought tolerance have been reported using transgenic-based methods by overexpression of transcription factors and other upstream regulatory factors such as kinases and phosphatases.2,3 However, most of these studies using Arabidopsis for increasing drought tolerance at the vegetative stage, have poor translation of results to increase yield of crops under drought stress.4-14 A limited number of studies have shown the relevance of regulatory genes upstream of transcription factors in regulating grain yield under drought.15-19 In addition, little importance has been given for simultaneous improvement of rice yield under well-watered and drought conditions. In this context, it has been recently proposed that yield potential should be selected under favorable environmental conditions,20 as there is a positive correlation between yield potential under normal conditions and drought stress conditions.20 In this study, we show that the rice receptor-like cytoplasmic kinase, GROWTH UNDER DROUGHT KINASE (GUDK), is induced under multiple stresses and support its role in determining grain yield under well-watered and drought stress conditions by regulating the OsAP37 transcription factor.

GUDK is Induced under Multiple Stresses

In our previous report we have shown that GUDK (LOC_Os03g08170) is a drought stress inducible receptor-like cytoplasmic kinase. GUDK encodes a protein of 425 amino acids containing only an intracellular kinase domain and no transmembrane or extracellular domains.21 Quantitative polymerase chain reaction (qPCR) analyses showed that GUDK was induced by dehydration, salinity (200 mM NaCl), heat (45°C), and cold (4°C) within 1 h of exposure (Fig. 1A). GUDK expression was induced or maintained throughout the stress treatments and also under recovery. Under treatments of abscisic acid (ABA, 100 μM), methyl jasmonate (MeJA, 100 μM), salicylic acid (SA, 100 μM), hydrogen peroxide (H2O2, 10 mM) and wounding, the expression of GUDK was induced within 1 h; except for SA and H2O2 treatments, wherein the expression was down-regulated at the early periods but induced later (Fig. 1B). The late induction of GUDK under SA treatment is probably a secondary response mediated by reactive oxygen species accumulation.22

© Venkategowda Ramegowda, Supratim Basu, Chirag Gupta, and Andy Pereira
*Correspondence to: Andy Pereira; Email: apereira@uark.edu
Submitted: 01/12/2015; Revised: 03/18/2015; Accepted: 03/19/2015
http://dx.doi.org/10.1080/15592324.2015.1034421
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.
Among all the stresses, high induction was observed under dehydration, salinity, heat and MeJA treatments. Together, results indicate the possible involvement of GUDK in regulating multiple stress responses.

GUDK Regulates Stress Response at both Seedling and Vegetative Stage

To test the role of GUDK in regulating abiotic stress response, 2 independent T-DNA insertion lines (gudk-1 and gadk-2, termed as mutant lines) were identified. Loss-of-function of GUDK was confirmed by qPCR analysis with no expression of GUDK in both mutant lines compared to wild-type plants.21 To investigate the role of GUDK in regulating salinity, osmotic stress and ABA response, pre-germinated seedlings were treated with NaCl, PEG and ABA. The mutant lines showed a significant reduction in root length, shoot length, and biomass under all stresses. Further, to investigate whether the loss-of-function of GUDK alters drought stress response of rice, mutant lines were exposed to severe drought by dry-down and controlled drought by gravimetric method. During dry-down, the gadk mutant lines showed drought-induced changes such as leaf rolling and wilting
at an early stage when compared to wild-type plants. The mutant plants also recovered later than the wild-type plants upon re-watering with concomitant 43%–55% reduction in survival rate compared to wild-type. Under controlled drought stress, wherein the plants were maintained at 40% field capacity for 10 days, measurement of physiological parameters revealed substantial reduction in drought tolerance of mutant plants. Mutant plants showed reduction in relative water content, photosynthesis rate, instantaneous water use efficiency, photochemical efficiency of PSI in a light-adapted state and biomass suggesting the role of GUDK in drought tolerance at vegetative stage.

GUDK Regulates Grain Yield under Well-watered and Drought Stress Conditions

Rice is very sensitive to drought stress at reproductive stage, with moderate drought stress severely affecting grain yield. The *gudk* mutant plants were exposed to drought stress at pre-anthesis stage, and showed significant (29%–35%) reduction in grain yield compared to wild-type plants. Interestingly, mutant plants also showed a 25%–28% reduced grain yield under well-watered condition compared to wild-type plants. Reduced yield under well-watered and drought stress conditions is mainly contributed by increased spikelet sterility.

To determine which biological processes are regulated by GUDK, we evaluated the association of all kinases in the rice genome with biological process terms in the gene ontology (GO) database. Two separate genome wide kinase regulatory networks, representing state of kinase interactions under normal tissue/developmental (control) conditions and environmental perturbation (stress) conditions were derived from a collection of publicly available microarray expression profiles using ‘specific’ correlation scores as a measure of co-expression between every kinase-gene pair. From these global networks, we explored the association of GUDK targets with gene-sets in the biological processes category of GO database using a parametric analysis model. The results showed that GUDK is associated in expression with several biological processes such as photosynthesis and primary metabolic processes that are common to both control and stress (Fig. 2), therefore supporting the role of GUDK gene both under well-watered and drought stress conditions. Furthermore, phosphoproteome analysis and *in vitro* assays identified OsAP37 as a phosphorylation target of GUDK. This rice transcription factor OsAP37 has been previously shown to increase grain yield in rice under drought through regulation of several stress responsive genes. In planta transactivation assays showed the requirement of GUDK function for the regulation of stress genes by OsAP37, suggesting that GUDK regulates yield by phosphorylating the OsAP37 transcription factor.

Regulation of yield under drought and normal conditions has also been shown for 3 NAC family transcription factors. Field evaluations of rice plants overexpressing OsNAC5, OsNAC9 and OsNAC10 transcription factors revealed grain yield increase of 9%–26%, 13%–32% and 5%–14% under well-watered conditions, respectively. However, most of these results have been overlooked with more emphasis on yield under drought stress. Our results show the potential role of GUDK in regulating grain yield under both well-watered and drought stress conditions acting upstream of transcription factors. GUDK is therefore a primary regulator of grain yield in rice and offers the opportunity to improve and stabilize rice grain yield under normal and drought stress conditions.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Funding

This work was supported by the National Science Foundation (award no. DBI-0922747).

References

1. Peng S, Bouman B, Vesperas RM, Castaïeda A, Nie L, Park H-K. Comparison between aerobic and flooded rice in the tropics: Agonomic performance in an eight-season experiment. *Field Crops Res* 2006; 96:252-9; http://dx.doi.org/10.1016/j.fcr.2005.07.007
2. Todaoka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K. Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. *Rice* 2012; 5:1-9; PMID:24764501; http://dx.doi.org/10.1186/1939-8433-5-6
3. Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold and heat. *Front Plant Sci* 2014; 5:178; PMID:24904597; http://dx.doi.org/10.3389/fpls.2014.00170
4. Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K. Overexpression of an R1R2R3 MYB Gene, OsMYB8-2, Increases Tolerance to Freezing, Drought, and Salt Stress in Transgenic Arabidopsis. *Plant Physiol* 2007; 143:1739-51; PMID:17293435; http://dx.doi.org/10.1104/pp.106.094532
5. Dubouzet JG, Sakuma Y, Ito Y, Kanoga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. OsDREB genes in rice, *Oryza sativa* L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. *Plant J* 2003; 33:731-63; PMID:12609947; http://dx.doi.org/10.1046/j.1365-313X.2003.01661.x
6. Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L. Characterization of transcription factor gene SNAC2 confering cold and salt tolerance in rice. *Plant Mol Biol* 2008; 67:169-81; PMID:18273684; http://dx.doi.org/10.1007/s11103-008-9309-5
7. Huang XY, Chao DY, Gao JP, Zha MZ, Shi M, Lin HX. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. *Genes Dev* 2009; 23:1805-17; PMID:19651988; http://dx.doi.org/10.1101/gad.1812409
8. Sue J-S, Joo J, Kim MJ, Kim Y-K, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. *Plant J* 2011; 65:907-21; PMID:21332845; http://dx.doi.org/10.1111/j.1365-313X.2010.04477.x
9. Lu G, Gao C, Zheng X, Han B. Identification of OsZIP72 as a positive regulator of ABA response and drought tolerance in rice. *Planta* 2009; 229:605-15; PMID:19048288; http://dx.doi.org/10.1007/s00425-008-0857-3
10. Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. *Plant J* 2007; 51:617-30; PMID:17587305; http://dx.doi.org/10.1111/j.1365-313X.2007.03168.x
11. Takazuki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K, Nakashima K. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. *Mol Genom Genomics* 2010; 284:173-83; PMID:20632034; http://dx.doi.org/10.1007/s00438-010-0557-6
12. Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. *Plant Mol Biol* 2008; 67:589-602; PMID:18470484; http://dx.doi.org/10.1007/s11103-008-9340-6
13. Tao Z, Kou Y, Liu H, Li X, Xiao J, Wang S. OsWRK1-V5 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice. *J Exp Bot* 2011; 62:4863-74; PMID:21725029; http://dx.doi.org/10.1093/jxb/err144
Xu D-Q, Huang J, Guo S-Q, Yang X, Bao Y-M, Tang H-J, Zhang HS. Overexpression of a TFIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 2008; 582:1037-43; PMID:18325341; http://dx.doi.org/10.1016/j.febslet.2008.02.052

Han H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 2006; 103:12987-92; PMID:16924117; http://dx.doi.org/10.1073/pnas.0604882103

Jeong JS, Kim YS, Baek KH, Jung H, Ha S-H, Do Choi Y, Kim M, Reuzeau C, Kim JK. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 2010; 153:185-97; PMID:20335401; http://dx.doi.org/10.1104/pp.109.154773

Xiang Y, Tang N, Du H, Ye H, Xiong L. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 2008; 146:1445-56; PMID:20660496; http://dx.doi.org/10.1104/pp.108.128199

Peleg Z, Reguera M, Tumimbang E, Walia H, Blumwald E. Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress. Plant Biotech J 2011; 9:747-58; PMID:21284800; http://dx.doi.org/10.1111/j.1467-7652.2010.00584.x

Yang DH, Kwak KJ, Kim MK, Park SJ, Yang K-Y, Kang H. Expression of Arabidopsis glycine-rich RNA-binding protein AtGRP2 or AtGRP7 improves grain yield of rice (Oryza sativa) under drought stress conditions. Plant Sci 2014; 214:106-12; PMID:24268168; http://dx.doi.org/10.1016/j.plantsci.2013.10.006

Guan YS, Serraj R, Liu SH, Xu JL, Xu NJ, Wang WS, Venus E, Zhu LH, Li ZK. Simultaneously improving yield under drought stress and non-stress conditions: a case study of rice (Oryza sativa L.). J Exp Bot 2010; 61:4145-56; PMID:20660496; http://dx.doi.org/10.1093/jxb/erq212

Ramegowda V, Basu S, Krishna A, Pereira A. Rice GROWTH UNDER Drought KINASE Is Required for Drought Tolerance and Grain Yield under Normal and Drought Stress Conditions. Plant Physiol 2014; 166:1634-45; PMID:25209982; http://dx.doi.org/10.1104/pp.110.148203

Ganesan V, Thomas G. Salicylic acid response in rice: influence of salicylic acid on H2O2 accumulation and oxidative stress. Plant Sci 2001; 160:109-106; PMID:11337066; http://dx.doi.org/10.1016/s0168-9452(01)00327-2

Centritto M, Lauteri M, Monteverdi MC, Serraj R. Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage. J Exp Bot 2009; 60:2325-39; PMID:19443613; http://dx.doi.org/10.1093/jxb/erp123

Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 2007; 5:e8; PMID:17214507; http://dx.doi.org/10.1371/journal.pbio.0050008

Ambavaram MMR, Basu S, Krishna A, Ramegowda V, Barlang U, Rahman L, Pereira A. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nat Commun 2014; 5:5302; PMID:25358745; http://dx.doi.org/10.1038/ncomms6302

Kim SY, Volsky D. PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics 2005; 6:144; PMID:15941488; http://dx.doi.org/10.1186/1471-2105-6-144

Oh SJ, Kim YS, Kwon CW, Park HK, Jeong JS, Kim JK. Overexpression of the transcription factor AP37 in rice improves grain yield under drought conditions. Plant Physiol 2009; 150:1368-79; PMID:19429605; http://dx.doi.org/10.1104/pp.109.157554

Jeong JS, Kim YS, Redillas MCFR, Jang G, Jung H, Bang SW, Choi YD, Ha SH, Reszeau C, Kim JK. OsNAC5 overexpression enlarges root diameter in rice plants leading to enhanced drought tolerance and increased grain yield in the field. Plant Biotech J 2013; 11:101-14; PMID:23094910; http://dx.doi.org/10.1111/pbi.12011

Redillas MCFR, Jeong JS, Kim YS, Jung H, Bang SW, Choi YD, Ha SH, Reszeau C, Kim JK. The overexpression of OsNAC9 alters the root architecture of rice plants and enhances drought resistance and grain yield under drought conditions. Plant Biotech J 2012; 10:792-805; PMID:22551450; http://dx.doi.org/10.1111/j.1467-7652.2012.00697.x

Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liow WHA, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, et al. gplots: Various R programming tools for plotting data. 2013 (http://CRAN.R-project.org/package=gplots. R package version 2.12.1)