Anatomy of Mississippi Delta growth and its implications for coastal restoration

Elizabeth L. Chamberlain,† Torbjörn E. Törnqvist, Zhixiong Shen, Barbara Mauz, Jakob Wallinga

The decline of several of the world’s largest deltas has spurred interest in expensive coastal restoration projects to make these economically and ecologically vital regions more sustainable. The success of these projects depends, in part, on our understanding of how delta plains evolve over time scales longer than the instrumental record. Building on a new set of optically stimulated luminescence ages, we demonstrate that a large portion (~10,000 km²) of the late Holocene river–dominated Mississippi Delta grew in a radially symmetric fashion for almost a millennium before abandonment. Sediment was dispersed by deltaic distributaries that formed by means of bifurcations at the coeval shoreline and remained active throughout the life span of this landform. Progradation rates (100 to 150 m/year) were surprisingly constant, producing 6 to 8 km² of new land per year. This shows that robust rates of land building were sustained under preindustrial conditions. However, these rates are several times lower than rates of land loss over the past century, indicating that only a small portion of the Mississippi Delta may be sustainable in a future world with accelerated sea-level rise.

INTRODUCTION

Many of the world’s largest deltas undergo rapid transformations due to reductions in sediment supply (1), accelerating rates of sea-level rise (2), plus some of the world’s highest subsidence rates (3). The Holocene stratigraphic record contains abundant information on the ability of delta plains to grow within the constraints of these controls. However, this archive has only partially been explored, in part due to a historic lack of geochronological tools that are necessary to quantify rates of change. Previous studies have assessed the timing of delta lobe (subdelta) activity through radiocarbon dating of bounding peat (4) and shoreline progradation through optically stimulated luminescence (OSL) dating of beachridge deposits (5). However, delta growth is fundamentally driven by distributary channel activity. Currently available records of delta growth rely largely on instrumental data obtained over the recent decades. For example, the mean land growth rate of the Wax Lake Delta, a recent bayhead delta within the Mississippi Delta, United States (Fig. 1, A and B), has been reported at 0.8 to 3.1 km²/year (6, 7). However, the assessment of delta growth over small temporal and spatial scales may reveal little about how river-dominated deltas operate over longer time scales.

Understanding the rates and patterns of delta growth through distributary channel activity is essential for predicting future deltaic land change (8), managing sediment resources (9), and understanding the effects of human perturbations on deltas (4). This information will be of paramount importance in the 21st century as major population and economic centers in large deltas struggle with rapid environmental change. These issues are exemplified well by the Mississippi Delta, where the deposition of clastic sediment by the trunk channel of the Mississippi River (the primary population and infrastructure corridor) is severely hampered by flood protection levees. Despite the growth of new land in the Wax Lake and Atchafalaya deltas and, to a lesser extent, in the birdfoot delta (Fig. 1B), net land loss rates for the delta plain are about 45 km²/year, averaged over the past century (10). The postindustrial sea-level acceleration is likely a relatively small factor herein. Direct human activities—including reduced sediment delivery, dredging of canals, subsequent saltwater intrusion and wave erosion, and fluid extraction—have played a primary role in the recent degradation of the delta plain (11).

Land loss in deltas can be offset by the controlled delivery of new sediment to the delta plain (9, 12, 13). For example, a $50 billion management plan for coastal Louisiana includes proposals to create new land by the year 2065 through engineered river diversions (13) that would reintroduce clastic deposition by means of sediment-laden river water. Developing realistic expectations for the efficacy of these strategies requires an understanding of the natural deltaic processes (for example, distributary channel growth rates and drivers of avulsion) that govern land growth over time scales well beyond decadal-scale instrumental records and the slightly longer historical records (~165 years) (14). In addition to information on fluvial sediment loads (15) and deltaic sediment retention efficiency (16), centennial- to millennial-scale records of rates of land growth in the Mississippi Delta are needed to evaluate whether it is possible to significantly offset the high rates of present-day land loss by means of river diversions. There is currently a lack of field data to answer these questions.

Here, we use OSL dating of mouth bar deposits from the Lafourche subdelta (Fig. 1B) to determine the rates and patterns of growth in the Mississippi Delta. Luminescence techniques enable the direct dating of both subaqueous and subaerial fluviodeltaic deposits (17) and have proven successful for dating the deposition of Mississippi Delta sediment (18). Mouth bars form as distributaries deliver their sediment load to a receiving basin and reflect deposition of the coarsest sediment fractions as flow decelerates when it meets a standing water body. This results in a sand-dominated deposit that progrades and aggrades to fill the basin (19). Vertical accretion of mouth bars occurs more rapidly than can be resolved by OSL. OSL samples taken from any depth within Lafourche subdelta mouth bars therefore reveal the timing of both mouth bar formation and land emergence. Other chronometers, such as radiocarbon dating of peats (20), may provide chronologies for the
initiation and termination of subdelta activity, but they are less powerful for the direct dating of fluviodeltaic clastic strata. OSL dating of mouth bar sand is therefore the preferred tool to directly capture the time of emergence of new land and thus the progradation of the Lafourche subdelta shoreline.

The Mississippi Delta is composed of a series of subdeltas that formed when quasi-periodic avulsions of major distributaries relocated the depocenter (21). The 10,000-km² Lafourche subdelta was active from about 1.6 to 0.6 thousand years (ka) ago (18, 20) under conditions of fairly constant relative sea-level rise. Water and sediment discharge was shared with the Modern (Balize) subdelta after 1.4 to 1.0 ka ago (22). The abandonment of the Lafourche subdelta likely preceded the initiation of the Atchafalaya subdelta (22, 23), so river discharge was never shared between these two subdeltas.

We selected the Lafourche subdelta for this study because it is the most recently abandoned subdelta in the Mississippi Delta. The Lafourche subdelta has experienced a complete delta cycle (24) and therefore provides an archive for river-dominated delta growth from initiation to termination, yet it has experienced limited reworking compared with older subdeltas. In addition, this system has a well-constrained sea-level history with a long-term sea-level rise trend of 0.6 mm/year (25). In the uppermost reach (about 55 river km long),
the Lafourche system essentially features one trunk distributary channel that fed sediment to the surrounding delta plain through episodic overbank deposition, including abundant crevassing on top of a widespread wood peat bed (18). This demonstrates that the region between the avulsion site (L-M) and the furcation of the trunk channel (Fig. 1B) was subaerial before the initiation of the Lafourche subdelta (20). Here, we focus on the lower reach of the subdelta (seaward of the trunk channel) based on 10 cross sections roughly perpendicular to both the main distributary (Bayou Lafourche) and the lesser distributaries (Fig. 1C). Ages are presented in ka relative to 2010.

RESULTS

Stratigraphy

The Lafourche trunk channel splits into multiple smaller distributaries at 55 river km downstream of its divergence from the modern Mississippi River. This polyfurcation (that is, a furcation of the distributary network resulting in more than two channels) marks the pre-Lafourche shoreline and produced a distributary network that geomorphologically resembles a bayhead delta. Similar polyfurcations mark the antecedent shorelines of modern bayhead deltas, such as the Wax Lake and Atchafalaya deltas, and give rise to the birdfoot shape of the Modern (Balize) subdelta (Fig. 1B). Downstream of the Lafourche polyfurcation point, the Lafourche distributary system built new land by prograding into a shallow bay (Fig. 2). We refer to the area of new land created during Lafourche activity as the "bayhead delta" (~6000 to 8000 km²) and the broader area in which Lafourche sedimentation occurred as the "subdelta" (~10,000 km²).

The bayhead delta exhibits a common succession of shell-rich bayfloor muds overlain by 1.3 ± 0.5–m–thick laminated delta front silts and then 2.1 ± 0.8–m–thick mouth bar sands, capped by overbank sediments of varying textures that thin both seaward and away from the channel (Figs. 3 and 4 and fig. S1). Overbank deposits are relatively fine-grained and somewhat organic near the base. In the more mature regions of the subdelta, the overbank unit grades vertically into a patchwork of relatively coarse deposits that pinch out coastward and away from the channel (Fig. 4). This shows that initial, channel-proximal elevation gain in the newly formed bayhead delta was dominated by the deposition of clays, likely through annual flooding. Later, elevation gain was characterized by deposition of predominantly silts associated with crevasse channels. The thickness of bayhead delta strata is similar between the main and lesser distributaries (fig. S2). The combined thickness of mouth bar and delta front deposits (referred to as “foundation deposits”) that aggraded to sea level and subsequently supported the growth of the subaerial delta through overbank deposition is consistent throughout the bayhead delta (Fig. 4).

Growth patterns

Modern bayhead deltas have been shown to prograde in a radially symmetric pattern at their onset (26). This finding is consistent with observational and modeling studies demonstrating that the most seaward
portion of a delta is characterized by bifurcations that produce coeval distributaries (27, 28). However, other studies suggest that radial growth of deltas may be restricted to these early stages, whereas more mature systems may prograde in succession by means of repeated avulsions within the subdelta distributary network. Such a mechanism has found support from a widely used Holocene Mississippi Delta radiocarbon chronology (29), as well as historical records of the human-modified Po (30) and Huanghe (31) deltas that feature distributary avulsions within 20 and 100 km of the present-day shoreline, respectively.

Our results show that distributary mouth bars of the Lafourche subdelta at similar distances from the polyfurcation point have matching OSL ages (see Materials and Methods), indicating that growth was characterized by coeval distributary channels throughout its period of activity (Fig. 5). Contrary to what has been proposed by the previous work of Frazier (29), there is no evidence for avulsions within the distributary network of the Lafourche bayhead delta. We therefore conclude that the Lafourche distributaries formed by means of bifurcation. This demonstrates that radial growth through distributary channel progradation can persist in river-dominated deltas for nearly a millennium. These data also underscore a principle of distributary evolution evident in both modern and past landscapes of the Mississippi Delta: River-dominated delta systems branch at polyfurcation points associated with the paleoshoreline (Fig. 1B).

Growth rates
It has been previously hypothesized that progradation slows and ultimately reverses with delta maturity because the area of the delta plain becomes too large to be supported by a constant sediment supply under conditions of constant accommodation creation (32). This process of “autoretreat” has been replicated in laboratory and model experiments (33) and has been offered as a possible explanation for transgressive successions found in the ancient stratigraphic record (34). Autoretreat has been proposed as a fundamental element of any deltaic system where the evolution of the system may be described by the ratio of accommodation creation to sediment supply rates (35). Progradation rates of deltas during the late Holocene have been assessed elsewhere (4, 36); however, the autoretreat concept has never been tested in a real-world setting with a well-constrained sea-level history and geochronology.

The Lafourche bayhead delta grew at an average rate of 6 to 8 km²/year, associated with distributary mouth bar progradation at a relatively constant rate of 100 to 150 m/year (r² = 0.89; see Materials and Methods) throughout most of the Lafourche activity (Fig. 5). This is a surprising result, considering that discharge was shared between the Lafourche distributaries and the modern Mississippi River after 1.4 to 1.0 ka ago (22). Furthermore, at least one major crevasse splay in the upstream reach of the Lafourache subdelta extracted a considerable amount of sediment from 0.8 to 0.6 ka ago (18). The constant progradation rate of the Lafourche shoreline indicates that autoretreat did not occur in this system during the time period of interest.

Avulsions
Avulsions constitute the principal mechanism that shift the depocenter within deltas, thereby driving delta evolution over centennial to millennial time scales. Our new results show that avulsions did not occur within the Lafourche subdelta, suggesting that subdeltas function fundamentally differently and should not be seen as miniature versions of the broader delta. Here, we zoom out to the entire Mississippi Delta and Lower Mississippi Valley to identify avulsion sites and to test the degree to which avulsions are preferentially located near a single node (37, 38) versus a broader zone (39, 40), corresponding to the backwater transition where channel-bed deposition is relatively rapid (39, 41).

The link between backwater dynamics, bed aggradation, and avulsion has been described by the backwater number. The backwater number is defined as the backwater length divided by the avulsion length (the channel length between the avulsion site and the shoreline at the time of avulsion) (42) and is reported to range from 0.5 to greater than 4 (39, 40). The two most recent avulsion sites within the Mississippi Delta include the partial shift of the modern Mississippi River to the Atchafalaya River (M-A avulsion) and the partial shift of Bayou Lafourche to the modern river (L-M avulsion) (Fig. 1, A and B). The M-A avulsion was initiated at 0.5 to 0.3 ka ago (22). The M-A avulsion length is 490 river km (see Materials and Methods), comparable to the backwater length of the modern Mississippi River, yielding a backwater number of roughly 1 (41). The L-M avulsion occurred between 1.4 and 1.0 ka ago (22). Our data show that the Lafourche bayhead delta had prograded between 20 and 70 km beyond the polyfurcation point at this time, yielding an avulsion length of 75 to 125 km (see Materials and Methods), significantly shorter than the M-A avulsion length. Assuming similar backwater dynamics as in the modern system, the L-M backwater number is roughly 5. The backwater numbers of the two well-constrained avulsions within the Holocene Mississippi Delta are therefore generally compatible with backwater theory, but not with the concept of repeated avulsion around a single, backwater-mediated node.

Evidence of other Holocene Mississippi River avulsions, in the form of relict channel belts, can be found more than 700 linear km inland, within the uppermost reaches of the Lower Mississippi Valley (Fig. 1A).
Assuming a sinuosity of 1.9 (44), this corresponds to avulsion lengths greater than 1300 km. This region has seen considerable (10 m or more) (43) Holocene aggradation, making avulsions almost inevitable. The locations of the two most recent avulsion sites in this region are relatively well defined, yet three or more older avulsions likely occurred within an ~250-km linear zone centered around Memphis, TN (see Materials and Methods).

From this evidence, we conclude that avulsions of the Mississippi River are at least partially dictated by fluvial processes that occur far landward of the delta and extend well beyond the backwater transition. Our findings are consistent with observations of avulsion nodes occurring over an ~80-km linear distance and extending beyond the backwater transition in the Rhine-Meuse Delta (45), Netherlands, an area with significantly more data to address this problem (46). Within the Mississippi Delta, as well as in other muddy, river-dominated deltas, avulsions may be partly steered by factors such as sediment cohesion (39), which may drive the river to reoccupy easily erodible (sandy) channel belts (47) rather than forging new tracks through cohesive, muddy overbank strata.

DISCUSSION

The consistent thickness of foundation deposits indicates that the pre-Lafourche bay floor depth was fairly uniform (3.4 ± 0.8 m) and remarkably similar to basin water depths of modern incipient bayhead deltas of the Atchafalaya subdelta (48). The Lafourche subdelta is therefore a
good analog for present-day processes of bayhead delta growth, such as the proposed river diversions that are planned to convert open water into land. This similarity to the modern system enables a direct evaluation of the ability of present-day depositional systems (that is, incipient bayhead deltas and engineered diversions) to offset contemporary rates of Mississippi Delta land loss. Our finding that distributary networks polyfurcate at the coeval shoreline provides a framework by which the antecedent shoreline and stratigraphy of other river-dominated deltas may be inferred. On the basis of this, we hypothesize that the paleo-shoreline of the Modern (Balize) subdelta may have been positioned near the polyfurcation point of the birdfoot delta (Fig. 1B) at the time of Modern subdelta initiation.

Although our work tests many fundamental principles of delta growth, our results are limited to describing deposits immediately proximal (at most a few kilometers) to distributary channels. The timing of land emergence in the distal, interdistributary flood basins of the Lafourche subdelta was not tested with our approach. It is possible that progradation and land creation rates varied over decadal or even centennial time scales. However, the precision of the OSL ages does not allow for confidently inferring this higher frequency variability. Furthermore, the nature of the discharge split between the Lafourche subdelta and the Modern (Balize) subdelta from 1.4 to 1.0 ka onward is not known.

Despite these limitations, our work makes considerable contributions to the understanding of delta growth, which are relevant to the management of deltas. Avulsions of the Mississippi River are shown to most likely occur over a broad spatial zone that is only partly mediated by backwater dynamics, with a considerable density of avulsion sites 450 to 700 km inland that are unrelated to backwater hydraulics. In contrast, because no evidence was found for avulsions in prograding distributary channels, it seems unlikely that new bayhead deltas associated with river diversions will exhibit avulsions. Rather, they can be expected to grow radially by means of bifurcation.

There are a number of potential reasons why autoretreat is not observed in the Lafourche subdelta, including a relatively slow rate of sea-level rise and a relatively high sediment supply, which may reduce the efficacy of autoretreat (35). It is also possible that other mechanisms, for example, higher sediment retention efficiency with increasing delta maturity, exert a primary control over delta growth. Alternatively, deltas situated on relatively open coasts and unconstrained by topography may avulse before they enter a state of autogenic decline. Regardless of the mechanism(s) that may enable sustained progradation, our findings raise questions about the applicability of the autoretreat concept to large deltas and their stratigraphic records.

We document high average progradation rates of 100 to 150 m/year and land area creation rates of 6 to 8 km²/year within the Lafourche subdelta, sustained for nearly a millennium, that is, rates that are at least two times higher than present-day growth rates in the Wax Lake Delta (6). These rates are especially noteworthy considering that the sediment input was shared between the Lafourche subdelta and the Modern (Balize) subdelta (at least during the latter part of its existence). This finding is relevant to coastal planning because it shows that channels with diminished sediment flux, including the proposed river sediment diversions that siphon only a fraction of modern Mississippi River discharge during relatively short time periods, can be very effective in building new land. However, the average prehistoric rates of land growth are several times (by a factor of about 5 to 7) lower than the recent human-enhanced rates of Mississippi Delta land loss (10). Although areas beyond the Lafourche subdelta such as the Modern (Balize) subdelta may have also experienced growth during the time period of concern, there was undoubtedly significant decline in other portions of the Mississippi Delta (that is, pre-Lafourche subdeltas); thus, it is unlikely that net growth of the delta plain exceeded 6 to 8 km²/year. Furthermore, land building by the Lafourche subdelta occurred under the lowest rates of relative sea-level rise experienced by the Mississippi Delta throughout the Holocene (25). Considering recent land loss rates (~45 km²/year) (10) in combination with the global sea-level rise acceleration (49), net land loss in the modern delta will likely continue regardless of coastal restoration strategies, ultimately producing a deltaic landscape that will be very different from the present one.

MATERIALS AND METHODS
This study used stratigraphic data obtained through hand coring and OSL dating through a combination of well-established and novel methods. Boreholes were drilled using an Edelman hand auger and gouge. Cores were discretized to 10-cm intervals and described in the field with attention to grain size following the U.S. Department of Agriculture texture classification scheme, sedimentary structures, and fossil content, which informed the interpretation of lithogenetic units (see table S1). The surface elevation at borehole sites was obtained from publicly available LiDAR (light detection and ranging) data. OSL samples were captured using a stainless steel Eijkelkamp sampler that prevents light exposure. Below, we describe the OSL dating approach, as well as the calculation of progradation and land change rates, and avulsion lengths.

OSL sample preparation and measurement
OSL samples were prepared under amber light at Tulane University following standard procedures (50, 51). Luminescence measurements were performed at the University of Liverpool using 1- to 2-mm aliquots of 75 to 125 μm (~110 grains) or 125 to 180 μm (~50 grains) purified quartz sand, adhered to 10-mm stainless steel discs. The coarsest grain-size fraction for which sufficient sediment was available was used. Descriptions of measurement facilities are given in the previously published work (52). A standard single-aliquot regenerative-dose (SAR) protocol (53, 54) with a 200° or 220°C preheat, 180°C cut heat, three to four regenerative points, one recuperation point, and recycling checks including infrared (IR) depletion of the OSL signal (table S3) (55) was used to extract the equivalent dose (Dₑ). Note that Dₑ herein refers solely to the absorbed radiation dose estimated from luminescence measurement for a single aliquot. Luminescence measurements were made for 40 s over 250 channels. The OSL signal was integrated over the first 0.48 s, and an early background interval, integrated over 0.48 to 1.76 s, was subtracted (56). Aliquot acceptance criteria included recycling and OSL IR depletion ratios of 10% (55), a maximum test dose error of 20%, and recuperation of 5% relative to the natural signal.

OSL age calculation
Dₑ data sets were cleaned to remove potential outliers before age modeling (see the Supplementary Materials) and then treated with a bootstrap minimum age model (bootMAM) (57, 58) to obtain the paleodose for each sample. The paleodose is defined as the best estimate of the true burial dose (the average dose absorbed by the dated quartz sand grains within the sample since burial). The bootstrap approach provides the benefit of incorporating uncertainty on the width of the Dₑ distribution.
samples (some samples contain only well-bleached quartz grains. This as-
for quantifying overdispersion based on the assumption that at least
fine the sigma_b input to bootMAM, this study used a new method
dated per cross section, and paired ages that agreed within 2
tainty added.

sediment for each sample in a low-temperature oven, with 5% uncer-
calibration) and unshared (that is, the spread of the
mean following the separation of shared (that is, instrument source
estimation was corrected for grain size (section).
layer of the quartz grains was removed by etching. Beta dose atten-
and thorium series, measured using a gamma spectrometer at Tulane
University (table S5). The dose rate was calculated using standard dose
and their unshared uncertainties were treated with a weighted
mean following the separation of shared (that is, instrument source
calibration, dose rate conversion factors, and gamma spectrometer
calibration) and unshared (that is, the spread of the Dc distribution
assigned by the age models, dose rate measurement error due to count-
ing statistics, and water content) errors (63) to obtain a single age for land
emergence at each cross section. Shared errors were returned in quadra-
ture to the uncertainty of the weighted mean ages after application of
the weighted mean.

Progradation and land change rates
The range of the Lafourche bayhead delta progradation rates (100 to
150 m/year) was obtained by dividing the distance between the most
landward (St. Charles) and most seaward (Fourchon) cross sections
(101 river km) by the minimum and maximum time span between emer-
gence at these localities (0.65 to 0.97 ka, based on the 1σ uncertainty of
the weighted mean OSL ages). The land area produced by the Lafourche
bayhead delta was obtained by estimating different shoreline positions
at the time of Lafourche subdelta abandonment; other boundaries
are better constrained (section). The minimum area (6000 km²) was cal-
culated using the current position of the transgressive barrier island
chain. The maximum area (8000 km²) was estimated by projecting the
Lafourche subdelta beyond the most seaward cross section (Fourchon,
0.74 ± 0.06 ka), assuming a progradation rate of 150 m/year sus-
tained by all distributaries for the final ~150 years of subdelta activity.
The contemporary rate of land loss for the deltaic plain was cal-
culated as the sum of areas lost from the Atchafalaya Delta, Barataria,
Breton Sound, Mississippi River Delta, Pontchartrain, Teche-Vermilion,
and Terrebonne basins over the time period of 1932 to 2016 (10).

Avulsion lengths
Avulsion lengths in the Mississippi Delta are presented in river kilo-
ters, obtained along the center of river channels using Google Earth. The
avulsion length range associated with the establishment of the present-
day Mississippi River in the Mississippi Delta was obtained from the
distance between the L-M avulsion site and the most seaward and land-
ward positions possible for the Lafourche paleo-shoreline at the time of
the avulsion (1.4 to 1.0 ka ago) and by placing the timing of Lafourche
subdelta initiation at 1.6 ka ago. The most landward position was deter-
mined by multiplying the minimum time that the Lafourche subdelta
had been active when the L-M avulsion occurred (0.2 ka ago) by the
minimum rate of progradation (100 m/year). Multiplying the maximum
time (0.6 ka ago) by the maximum rate of progradation (150 m/year)
projected the most seaward position of the paleo-shoreline beyond the
realistic region constrained by the OSL ages, and so we established this
boundary by using the 1-ka isochron (section).

Holocene channel belts and their relative chronology have been
mapped by Saucier (43). Avulsion sites associated with the creation of
new channel belts were identified on the basis of the following criteria:
(i) likely redirection of all flows to form a new channel belt, rather than
partial redirection of flow via bifurcation; and (ii) the most inland de-
parture between two sequential channel belts, rather than a point where
channel belts may cross-cut downstream. Distinction was made be-
tween avulsion sites that unequivocally met these criteria versus those
that were classified as plausible avulsion sites (section). Other avulsions
within this region have been suggested by previous work (47). However,
these phenomena cannot be ruled out as instances of cross-cutting, given
the lack of chronologic data. Holocene channel belt avulsion sites were
estimated in linear kilometers relative to the modern shoreline using
Google Earth and rounded to the nearest 50 km. The sinuosity of the
entire Lower Mississippi River is 1.9 (44); this value was used to approx-
imate the avulsion lengths as measured along channels.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/4/eaar4740/DC1
Stratigraphic data for all cross sections
Lithogenetic unit thickness calculation
OSL dating approach
Sample exclusions and additions to analyses
Cleaning of outlying aliquots
Sample rejection
Comparison with previous OSL approach
fig. S1. Cross sections illustrating the stratigraphy and OSL ages for all study sites.
fig. S2. Thickness of lithogenetic units at main and lesser distributary cross sections.
fig. S3. Comparison of mouth bar sand ages estimated using two approaches.
table S1. Characterization of lithogenetic units.
table S2. Lithogenetic unit thickness.
table S3. Details of the SAR protocol.
table S4. Overdispersion details, laboratory code, and OSL sample collection year, location,
and depth.
table S5. Dose rate details and paleodose.
table S6. Experimental details of the OSL approach used in the present study versus the
approach used by previous studies.
table S7. Comparison of OSL ages estimated with two approaches.
References (64, 65)
REFERENCES AND NOTES

1. J. P. M. Svitvitski, C. J. Vorosmarty, A. J. Kettner, P. Green, Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005).

2. J. P. Ericson, C. J. Vorosmarty, S. L. Dingman, L. G. Ward, M. Meybeck, Effective sea-level rise and deltas: Causes of change and human dimension implications. Global Planet. Change 50, 63–82 (2006).

3. J. Milliman, B. U. Haq, Sea-Level Rise and Coastal Subsidence: Causes, Consequences, and Strategies (Kluwer, 1996).

4. V. Maselli, F. Trincardi, Man made deltas. Sci. Rep. 3, 1926 (2013).

5. T. Tamura, Y. Saito, M. D. Bateman, V. Lap Nguyen, T. K. Oanh Ta, D. Matsumoto, Luminescence dating of beach ridges for characterizing multi-decadal to centennial deltaic shoreline changes during Late Holocene, Mekong River delta. Mar. Geol. 326–328, 140–153 (2012).

6. M. R. Shields, T. S. Bianchi, D. Mohrig, J. A. Hutchings, W. F. Kenney, A. S. Kolker, J. H. Curtis, Carbon storage in the Mississippi River delta enhanced by environmental engineering. Nat. Geosci. 8, 846–851 (2017).

7. J. D. B. Shaw, F. Ayoub, C. E. Jones, M. P. Lamb, B. Holt, R. W. Wagner, T. S. Coffey, J. A. Chadwick, D. Mohrig. Airborne radar imaging of subaqueous channel evolution in Wax Lake Delta, Louisiana, USA. Geophys. Res. Lett. 43, 5035–5042 (2016).

8. M. D. Blum, H. H. Roberts, Downwelling of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat. Geosci. 2, 488–491 (2009).

9. C. Paola, R. R. Twilley, D. A. Edmonds, W. Kim, D. Mohrig, G. Parker, E. Viparelli, V. R. Voller, Natural processes in delta restoration: Application to the Mississippi Delta. Ann. Rev. Mar. Sci. 3, 67–91 (2011).

10. B. R. Couvillion, H. Beck, D. Schoolmaster, M. Fischer, “Land Area Change in Coastal Louisiana (1932 to 2016)” (U.S. Geological Survey, 2017).

11. J. W. Day Jr., D. F. Boesch, E. J. Clairain, G. P. Kemp, S. B. Laska, W. J. Mitsch, K. Orth, H. Mashriqui, D. J. Reed, L. Shabman, C. A. Simenstad, B. J. Streever, R. R. Twilley, C. C. Watson, J. T. Wells, D. F. Whigham, Restoration of the Mississippi Delta: Lessons from hurricanes Katrina and Rita. Science 315, 1679–1684 (2007).

12. L. W. Auerbach, S. L. Goodbred Jr., D. R. Mondal, C. A. Wilson, K. R. Ahmed, K. Roy, M. S. Stecker, C. Small, J. M. Gilligan, B. A. Ackerly, Flood flow of natural and embanked landscapes on the Ganges–Brahmaputra tidal delta plain. Nat. Clim. Change 5, 153–157 (2015).

13. Coastal Protection and Restoration Authority of Louisiana, Louisiana’s Comprehensive Master Plan for a Sustainable Coast (CPRA, 2017), 190 pp.

14. C. Ellet, The Mississippi and Ohio Rivers: Containing Plans for the Protection of the Delta from Inundation; and Investigations of the Practicality and Cost of Improving the Navigation of the Ohio and Other Rivers by Means of Reservoirs, with an Appendix, on the Bars at the Mouths of the Mississippi (Lippincott, Grambo, & Co., 1853).

15. M. A. Allison, C. R. Demas, B. A. Ebersole, B. A. Kleis, C. D. Little, E. A. Meselhe, N. J. Powell, T. C. Pratt, B. M. Vosburg, A water and sediment budget for the lower Mississippi–Atchafalaya River in flood years 2008–2010: Implications for sediment discharge to the ocean and coastal restoration in Louisiana. J. Hydrol. 432–433, 84–97 (2012).

16. C. R. Espósito, Z. Shen, T. E. Törnqvist, J. Marshak, C. White, Efficient retention of mud drives land building on the Mississippi Delta plain. Earth Surf. Dyn. 5, 387–397 (2017).

17. Wallinga,Optically stimulated luminescence dating of fluvial deposits: A review. Boreas 31, 303–322 (2002).

18. Z. Shen, T. E. Törnqvist, B. Mauz, E. L. Chamberlain, A. G. Nighuis, L. Sandoval, Episodic overbank deposition as a dominant mechanism of floodplain and delta-plain aggradation. Geology 43, 875–878 (2015).

19. D. A. Edmonds, D. C. J. D. Hoyal, B. A. Sheets, R. L. Slingerland, Mechanics of river mouth bar formation: Implications for late Holocene, Mississippi delta progradation and chenier formation in the Huanghe (Yellow River) delta, China. J. Asian Earth Sci. 18, 489–497 (2000).

20. G. Parker, C. Paola, K. X. Whipple, D. Mohrig. Alluvial fans formed by channelized fluvial and sheet flow. I. Theory. J. Hydraul. Eng. 124, 985–995 (1998).

21. G. Vanti, Z. Chu, M. P. Lamb, J. A. Nitt trouger, G. Parker, Testing morphodynamic controls on the location and frequency of river avulsions on fans versus deltas: Huanghe (Yellow River), China. Geophys. Res. Lett. 41, 7882–7890 (2014).

22. V. Ganti, A. J. Chadwick, H. J. Hassennruck-Gudipati, B. M. Fuller, M. P. Lamb, Experimental river delta size set by multiple floods and backwater hydrodynamics. Sci. Adv. 2, e1501768 (2016).

23. J. B. Shaw, B. McElroy, Backwater number scaling of alluvial bed forms. J. Geophys. Res. Earth Surf. 121, 1436–1455 (2016).

24. P. Chatanantavet, M. P. Lamb, J. A. Nittrouer, Backwater controls of avulsion location on deltas. Geophys. Res. Lett. 39, L01402 (2012).

25. C. Paola, D. Mohrig, Palaeohydraulics revisited: Palaeoestimation in coarse-grained braided rivers. Basin Res. 8, 243–254 (1996).

26. R. T. Saucier, Geomorphology and Quaternary Geologic History of the Lower Mississippi Valley (Mississippi River Commission, 1994), 364 pp.

27. F. F. Hudson, R. H. Kesel, Channel migration and meander-bend curvature in the lower Mississippi River prior to major human modification. Geology 28, 531–534 (2000).

28. A. M. Fernandes, T. E. Törnqvist, K. M. Straub, D. Mohrig. Connecting the backwater hydraulics of coastal rivers to fluvio-deltaic sedimentology and stratigraphy. Geology 44, 979–982 (2016).

29. E. Stouthamer, H. J. A. Berendsen, Factors controlling the Holocene avulsion history of the Rhine-Meuse delta (The Netherlands). J. Sediment. Res. 70, 1051–1064 (2000).

30. A. Aslan, W. J. Autin, M. D. Blum, Causes of river avulsion: Insights from the late Holocene avulsion history of the Mississippi River, U.S.A. J. Sediment. Res. 75, 650–664 (2005).

31. C. F. Neill, M. A. Allison, Subaqueous deltaic formation on the Atchafalaya Shelf, Louisiana. Mar. Geol. 214, 411–430 (2005).

32. J. A. Church, P. U. Clark, A. Cazenave, J. M. Gregory, S. Jevrejeva, A. Levermann, M. A. Merrifield, G. A. Milne, R. S. Nerem, P. D. Nunn, A. J. Payne, W. T. Pfeffer, D. Stammer, A. J. Payne, W. A. Emery, W. T. Pfeffer, D. Stammer, 2013: Sea level change, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley, Eds. (Cambridge Univ. Press, 2013), pp. 1137–1216.

33. B. Mauz, T. Bode, E. Mainz, H. Blanchard, W. Hilger, R. Dikau, L. Zöller, The luminescence dating laboratory at the University of Bonn: Equipment and procedures. Ancient TL 20, 53–61 (2002).

34. B. Mauz, A. Lang, Removal of the feldspar-derived luminescence component from polynemal fine silt samples for optical dating applications: Evaluation of chemical treatment protocols and quality control procedures. Ancient TL 22, 1–8 (2004).

35. Z. Shen, B. Mauz, Optical dating of young deltaic deposits on a decadal time scale. Quat. Geochronol. 10, 110–116 (2012).

36. A. S. Murray, A. G. Winde, Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat. Meas. 32, 57–73 (2000).

37. A. S. Murray, A. G. Winde, The single aliquot regenerative dose protocol: Potential for improvements in reliability. Radiat. Meas. 37, 377–381 (2003).

38. G. A. T. Duller, Distinguishing quartz and feldspar in single grain luminescence measurements. Radiat. Meas. 37, 161–165 (2003).
56. A. C. Cunningham, J. Wallinga, Selection of integration time intervals for quartz OSL decay curves. Quat. Geochronol. 5, 657–666 (2010).
57. A. C. Cunningham, J. Wallinga, Realizing the potential of fluvial archives using robust OSL chronologies. Quat. Geochronol. 12, 98–106 (2012).
58. R. F. Galbraith, R. G. Roberts, G. M. Laslett, H. Yoshida, J. M. Olley, Optical dating of single and multiple grains of quartz from Jimmium rock shelter, northern Australia: Part I, experimental design and statistical models. Archaeometry 41, 339–364 (1999).
59. G. Guérin, N. Mercier, G. Adamiec, Dose-rate conversion factors: Update. Ancient TL 29, 5–8 (2011).
60. J. R. Prescott, J. T. Hutton, Cosmic ray contributions to dose-rates for luminescence and ESR dating: Large depths and long-term time variations. Radiat. Meas. 23, 497–500 (1994).
61. V. Mejdahl, Thermoluminescence dating: Beta-dose attenuation in quartz grains. Archaeometry 21, 61–72 (1979).
62. M. J. Aitken, Thermoluminescence Dating (Academic Press, 1985).
63. E. J. Rhodes, C. Bronk Ramsey, Z. Outram, C. Batt, L. Willis, S. Dockrill, J. Bond, Bayesian methods applied to the interpretation of multiple OSL dates: High precision sediment ages from Old Scatness Broch excavations, Shetland Isles. Quat. Sci. Rev. 22, 1231–1244 (2003).
64. G. Adamiec, M. Aitken, Dose-rate conversion factors: Update. Ancient TL 16, 37–50 (1998).
65. G. A. T. Duller, Analyst v4.31.9 user manual (Aberystwyth University, 2016), 83 pp.

Acknowledgments: We thank J. Bridgeman, C. Esposito, and J. Mehta for field assistance and acknowledge all land owners for allowing us to work on their property. S. Packman and M. Birchall of the University of Liverpool assisted with OSL measurements. T. Reimann of the Netherlands Centre for Luminescence dating shared insights into the OSL data analysis. M. Allison and S. Goodbred provided comments on an earlier draft. The manuscript was improved by reviews from J. Shaw and T. Tamura. Funding: We acknowledge funding from the NSF (EAR-1148005 and EAR-1349311), the Gulf Coast Association of Geological Societies Student Grant Program, and the Coastal Protection and Restoration Authority of Louisiana Applied Research Program (CPRA-2013-T11-SBO2-DR). Author contributions: E.L.C., T.E.T., and Z.S. designed the study. E.L.C. and Z.S. performed most of the field data collection. E.L.C., Z.S., B.M., and J.W. performed OSL measurements and/or analysis of OSL data. E.L.C. wrote the paper, and all co-authors made major contributions to the interpretation of results and manuscript synthesis. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are presented in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from E.L.C. (elizabeth.chamberlain@vanderbilt.edu).

Submitted 12 November 2017
Accepted 21 February 2018
Published 11 April 2018
10.1126/sciadv.aar4740

Citation: E. L. Chamberlain, T. E. Törnqvist, Z. Shen, B. Mauz, J. Wallinga, Anatomy of Mississippi Delta growth and its implications for coastal restoration. Sci. Adv. 4, eaar4740 (2018).