Lysosomal and Mitochondrial Liaisons in Niemann-Pick Disease

Sandra Torres 1,2, Elisa Balboa 3, Silvana Zanlungo 3, Carlos Enrich 4, Carmen García-Ruiz 1,2,5 and Jose C. Fernandez-Checa 1,2,5*

1 Department of Cell Death and Proliferation, Instituto de Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain, 2 Liver Unit and Hospital Clinic I Provincial, Centro de Investigación Biomédica en Red (CIBERHD), Instituto de Investigaciones Biomédicas August Pi i Sunyer, Barcelona, Spain, 3 Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile, 4 Departamento de Biomedicina, Universidad de Salamanca, Centro de Investigación Biomédica CELLEX, Facultad de Medicina y Ciencias de la Salud, Instituto de Investigaciones Biomédicas August Pi i Sunyer, Universidad de Barcelona, Barcelona, Spain, 5 Southern California Research Center for ALDP and Cirrhosis, Los Angeles, CA, United States

Lysosomal storage disorders (LSD) are characterized by the accumulation of diverse lipid species in lysosomes. Niemann-Pick type A/B (NPA/B) and type C diseases Niemann-Pick type C (NPC) are progressive LSD caused by loss of function of distinct lysosomal-residing proteins, acid sphingomyelinase and NPC1, respectively. While the primary cause of these diseases differs, both share common biochemical features, including the accumulation of sphingolipids and cholesterol, predominantly in endolysosomes. Besides these alterations in lysosomal homeostasis and function due to accumulation of specific lipid species, the lysosomal functional defects can have far-reaching consequences, disrupting intracellular trafficking of sterols, lipids and calcium through membrane contact sites (MCS) of apposed compartments. Although MCS between endoplasmic reticulum and mitochondria have been well studied and characterized in different contexts, emerging evidence indicates that lysosomes also exhibit close proximity with mitochondria, which translates in their mutual functional regulation. Indeed, as best illustrated in NPC disease, alterations in the lysosomal-mitochondrial liaisons underlie the secondary accumulation of specific lipids, such as cholesterol in mitochondria, resulting in mitochondrial dysfunction and defective antioxidant defense, which contribute to disease progression. Thus, a better understanding of the lysosomal and mitochondrial interactions and trafficking may identify novel targets for the treatment of Niemann-Pick disease.

Keywords: mitochondria, lysosomes, cholesterol, sphingolipids, intracellular trafficking, lysosomal disorders, acid sphingomyelinase

INTRODUCTION

Niemann-Pick (NP) diseases encompass a group of autosomal recessive lysosomal storage disorders (LSD), characterized by the accumulation of diverse lipid species in lysosomes. While these diseases were initially considered a single entity with overlapping biochemical, pathological and clinical features, developing evidence demonstrated differential etiological causes (Patterson and Walkley, 2017; Schuchman and Desnick, 2017). Niemann-Pick type A and B (NPA and NPB) diseases are caused by deficits in the activity of acid sphingomyelinase (ASMase), an enzyme that regulates lysosomal sphingomyelin (SM) homeostasis, while Niemann-Pick type C (NPC) disease is caused by mutations in NPC1 and NPC2 genes, resulting in functional defects in the
lysosomal proteins NPC1 and NPC2, involved in cholesterol efflux from lysosomes.

Although the primary consequence of ASMase inactivation results in the accumulation of lysosomal SM, cholesterol and other lipids types, such as bis(monoacylglycerophosphate), glucocerebroside, GM2 and GM3 gangliosides and sphingosine also accumulate in lysosomes (Rodriguez-Lafraisse et al., 1994; Vanier, 2013; Schuchman and Desnick, 2014). Similarly, although in NPC disease cholesterol accumulation is the direct consequence of NPC1/NPC2 loss of function, SM and other sphingolipids, such as lactosylceramide, glucosylceramide, GM2 and GM3 gangliosides and sphingosine, accumulate as well (Pentchev et al., 1984; Lloyd-Evans et al., 2008; Patterson et al., 2012). Hence, these findings imply that the trafficking and metabolism of different lipid species through the endocytic pathway are severely affected in these lysosomal diseases, likely contributing to their pathogenesis. However, the molecular mechanisms and signaling pathways responsible for cell death and tissue damage in these diseases are not entirely clear.

Although both Niemann-Pick type A/B (NPA/B) and NPC diseases are caused by defects in lysosomal homeostasis and function, there are significant differences between these diseases in relation to the degree of cholesterol trafficking to mitochondria, with the consequent impact in mitochondrial dysfunction and impairment in antioxidant defense strategies. In this review, we summarize the biochemical and genetic features of both diseases, highlighting their commonalities and differences regarding lysosomal-mitochondrial cholesterol trafficking and communication as the molecular basis to understand the differential involvement of mitochondrial dysfunction in NPC disease. Further understanding the lysosomal and mitochondrial liaisons in NP diseases may thus provide the opportunity to improve and expand the current armamentarium for the treatment of these lysosomal disorders.

NP DISEASES

NPA/B Disease

ASMase deficiency results primarily in the accumulation of SM in affected tissues of NPA and NPB mice and patients (Schuchman and Desnick, 2017). Patients with NPA present developmental delay, hepatosplenomegaly and progressive neurodegeneration, leading to premature death typically between 2 and 3 years of age (Schuchman and Desnick, 2014, 2017). In contrast, NPB disease presents a highly variable phenotype that is usually diagnosed in childhood by the presence of hepatosplenomegaly (Schuchman and Desnick, 2014, 2017). Most NPB patients do not exhibit neurological defects and consequently NPB patients usually live into adulthood. In the more severely affected patients, a major complication of the disease is progressive pulmonary deterioration (Schuchman and Desnick, 2014, 2017). In addition, liver damage with fibrosis and cirrhosis has been recently recognized as a relevant complication of this disease (Moles et al., 2012; Thurberg et al., 2012; McGovern et al., 2013; Lidove et al., 2015; Cassiman et al., 2016). NPA patients have a dramatic reduction in ASMase activity and typically present <5% of its physiological activity (Smith and Schuchman, 2008; Vanier, 2013; Schuchman and Desnick, 2014). In contrast, NPB patients exhibit higher ASMase residual activity, which correlates with their milder phenotype (Smith and Schuchman, 2008; Vanier, 2013; Schuchman and Desnick, 2014).

The clinical diagnosis of NPA and NPB diseases is mainly based on the presence or absence of neurological symptoms (Vanier, 2013; McGovern et al., 2017; Schuchman and Desnick, 2017). Although NPA and NPB are pan-ethnic, NPA is more frequent in individuals with Ashkenazi Jewish ancestry than in the general population, with an estimated carrier frequency close to 1:80 and a disease incidence of 1/40,000 (Schuchman and Desnick, 2014). In other populations, such as in Chile, the carrier frequency for the type B mutation A359D occurs in 90% of patients close to a 1:106 rate, predicting a disease incidence of 1/45,000 (Acuña et al., 2016a,b).

ASMase is encoded by the SMPD1 gene (phosphodiesterase 1, gene ID 6609), which is located on chromosome 11 locus 11p15.4-p15.1. More than 180 pathogenic mutations in the SMPD1 gene in patients with NPA and NPB have been identified, which are concentrated in exon two (Schuchman and Desnick, 2017). Recently, the ASMase crystal structure has been determined in humans (Xiong et al., 2016) and mouse (Gorelik et al., 2016), which may facilitate genotype-phenotype mutation analysis (Acuña et al., 2016b; Zampieri et al., 2016).

Although tissues from mice or patients with NPA and NPB disease accumulate SM primarily in endolysosomes, cholesterol also increases as a secondary consequence (Huang and Feigenson, 1999; Radhakrishnan et al., 2000; Ridgway, 2000). While the underlying mechanism of cholesterol loading is not well understood, it is known that SM and cholesterol exhibit a high affinity for each other. Indeed, SM binds cholesterol with high affinity (Slotte, 1999; Ridgway, 2000), resulting in the sequestration and subsequent decrease in the efflux of cholesterol out of lysosomes, impairing the esterification of cholesterol by acyl-CoA:cholesterol acyl transferase in the ER. These events are in line with findings in macrophages from ASMase−/− mice or in macrophages from wild type mice enriched with exogenous SM, which results in increased lysosomal cholesterol content because of decreased cholesterol efflux (Leventhal et al., 2001). Interestingly, it has been described that ASMase is not only active in lysosomes, but it exhibits a secretory form that acts on the plasma membrane to generate ceramide from SM hydrolysis in response to stress (Falcone et al., 2004; Charruyer et al.,...
Mitochondrial and Lysosomal Interactions

In the context of mitochondrial function, the lysosome plays a pivotal role in maintaining cellular homeostasis through its role in nutrient and waste metabolism. The lysosome, a membrane-bound organelle, is responsible for the degradation of intracellular components, including organelles such as mitochondria. Dysregulation of these pathways can lead to the accumulation of damaged mitochondria and novel lysosomal cargos, which can ultimately result in disease.

The mitochondrial lysosome axis is a key regulatory mechanism in cellular homeostasis, with each organelle influencing the other. Mitochondria are dynamic organelles that change their distribution, structure, and function in response to metabolic conditions and stress, while the lysosome is a highly specialized compartment equipped with molecular devices involved in the degradation and/or recycling of a wide range of cargo. Furthermore, mitochondria and lysosomes communicate through specific endocytic proteins and GTPases, such as dynamin-2 and Drp1, to regulate mitochondrial turnover and lysosomal function.

Reciprocal Functional Regulation between Mitochondria and Lysosomes

The lysosome compartment (LE/Lys) constitutes a highly dynamic membrane structure that plays a key role in the maintenance of cellular homeostasis, as well as in the digestion and recycling of cellular components and in lipid metabolism and trafficking. Alterations in LE/Lys trafficking and lysosomal function are typical features of LSDs, such as NPA/C diseases characterized by the accumulation of specific lipid species in lysosomes. This disease presents a broad range of symptoms, ranging from a progressive fatal neonatal disorder to milder forms in the adulthood that can evolve to chronic neurodegeneration. Although, in most cases the severity of the disease is determined by neurological deterioration, systemic signs, such as cholestatic jaundice in the neonatal period and/or hepatosplenomegaly in infancy and childhood, usually precede neurological symptoms.

NPC Disease

NPC is a neurodegenerative visceral disorder with the cardinal characteristic of unesterified cholesterol accumulation in the liver, spleen, and central nervous system. This disease presents a broad range of symptoms, ranging from a progressive fatal neonatal disorder to milder forms in the adulthood that can evolve to chronic neurodegeneration. Although, in most cases the severity of the disease is determined by neurological deterioration, systemic signs, such as cholestatic jaundice in the neonatal period and/or hepatosplenomegaly in infancy and childhood, usually precede neurological symptoms.

Deterioration of liver function is a common feature of NPC disease and represents one of the most common metabolic causes of neonatal cholestasis. Currently, this disease has an estimated incidence of 1 case per 120,000 live births and is a deadly progressive disease that has so far no cure. The main cause of NPC disease is the functional inactivation of NPC1 and NPC2 proteins due to mutations in the NPC1 and NPC2 genes, particularly in NPC1 gene located in chromosome 18q11, which accounts for up to 95% of cases of the disease. The remaining 5% are due to mutations in the NPC2 gene located on chromosome 14q24. NPC1 is a multi transmembrane protein located in late endosomes and lysosomes, while NPC2 is a relatively small protein located in the lysosomal lumen.

While these findings suggest that LE/Lys can regulate mitochondrial function, there is also evidence that mitochondrial respiration regulates the biogenesis and function of the LE/Lys compartment. Ablation of mitochondrial oxidative phosphorylation by genetic deletion of mitochondrial transcription factor A in T cells has been shown to regulate lysosomal homeostasis and function. This event modulates T cell responses through enhanced lysosomal proliferation that results in defective lysosomal homeostasis, translating in decreased cathepsin B activation and ASMase.
inhibition, which in turn causes lysosomal SM accumulation (Baixauli et al., 2015). In line with these findings, SM accumulation has been shown to inhibit the lysosomal TRP calcium channel, impairing endosomal trafficking, protein degradation, and macroautophagy (Shen et al., 2012). Thus, these findings suggest that the reciprocal functional regulation of mitochondria and lysosomes may engage in a self-forward loop of potential relevance in the pathogenesis of NPA/NPC diseases, consistent with the impairment in the clearance of dysfunctional mitochondria in LSDs (Lieberman et al., 2012). Whether strategies that improve mitochondrial function (see below) have a significant impact in LSD pathology remains to be established. Therefore, dissecting the intricate communication between mitochondria and lysosomes may be critical not only for understanding essential physiological processes but also for uncovering the impact of mitochondrial dysfunction in the development of human pathologies, including LSD (Taylor and Turnbull, 2005).

Intracellular Cholesterol Trafficking to Mitochondria in NP Disease

Despite its low content in mitochondrial membranes, the mitochondrial pool of cholesterol plays key physiological roles, including the synthesis of steroids in steroidogenic cells, bile acids in hepatocytes and the maintenance of structural and functional properties of membrane bilayers. However, as described below, NPC but not NPA disease is characterized by the accumulation of cholesterol in mitochondria in both neurons and hepatocytes by mechanisms not fully elucidated. StARD1 has emerged as one of the potential key players involved in cholesterol transport to mitochondria, as best characterized in steroidogenic cells. Indeed, StARD1 regulates the rate-limiting step of steroidogenesis, which is determined by the transfer of cholesterol from the outer mitochondrial membrane (OMM) to the inner mitochondrial membrane (IMM), where it is converted to pregnenolone by P450scc (Stocco, 2001). Mutations in the gene coding for StARD1 protein cause human congenital lipid adrenal hyperplasia (CLAH) (Miller, 1997), highlighting the relevance of this protein in the synthesis of steroids. CLAH is characterized by defective steroidogenesis in most tissues except the placenta, which does not express StARD1 (Lin et al., 1995). StARD1, a 37 kDa protein, contains a C-terminal cholesterol binding domain and an N-terminal mitochondrial targeting sequence common to matrix proteins. The hydrophobic C-terminal binding pocket domain reversibly binds cholesterol in a 1:1 ratio (Stocco, 2001).

The trafficking of free cholesterol to OMM is mediated by several steps that involve various intracellular organelles, including lysosomes and lipid droplets (LD) and specific proteins, such as the translocator protein (TSPO) and voltage-dependent anion channel (VDAC) (Elustondo et al., 2017). Moreover, cholesterol is transferred from the OMM to the IMM by the action of StARD1 and TSPO, which associate with the mitochondrial membrane contact sites (MCS) to drive the intramitochondrial cholesterol transfer to the P450scc for metabolism and subsequent steroid formation (Rone et al., 2009). When the mitochondrial cholesterol decreases at the OMM additional free cholesterol must be moved from intracellular stores to the mitochondria. In spite of data suggesting the potential participation of TSPO in mitochondrial cholesterol trafficking, recent evidence has questioned this role. For instance, genetic models of global TSPO deletion or its specific ablation in Leydig cells showed a minimal impact in steroidogenesis and hence in mitochondrial cholesterol trafficking (Morohaku et al., 2014; Tu et al., 2014).

Interestingly, 15 genes identified by sequence homology with the STAR hydrophobic lipid-binding pocket domain of approximately 210 amino acids have been described in human and mouse (Ponting and Aravind, 1999; Iyer et al., 2001). These proteins are classified as STAR-related lipid transfer (START) domain proteins (Ponting and Aravind, 1999; Iyer et al., 2001), leading to the denomination of the original described STAR as StARD1 to denote it as the founder member of this expanding family (Alpy et al., 2001, 2009; Elustondo et al., 2017). Although, few members of the START family bind steroids (Lavigne et al., 2010; Calderon-Dominguez et al., 2014; Létourneau et al., 2015; Elustondo et al., 2017), StARD1 and StARD3 (also known as MLN64) have been implicated in cholesterol trafficking into mitochondria.

The extramitochondrial source of the cholesterol pool that reaches mitochondria is not fully understood and could originate from LD, ER, the endosomal pathway or the plasma membrane (Rone et al., 2009). In support for the plasma membrane origin of cholesterol trafficking to mitochondria mainly from LDL receptor, hormone-sensitive lipase (HSL) and the StARD1 proteins in steroidogenic tissues are thought to work together in the transport of cholesterol from plasma membrane to mitochondria (Gocze and Freeman, 1993; Freeman et al., 1998; Shen et al., 2003; Lange et al., 2009). HSL is activated upon phosphorylation mediated by cAMP-dependent protein kinase (PKA) and inhibition of HSL results in decreased steroidogenesis (Rone et al., 2009). Moreover, SNARE proteins have been shown to play a crucial role in intracellular trafficking by a cholesterol-mediated mechanism (Enrich et al., 2015; Kraemer et al., 2017). However, whether mitochondrial cholesterol targeting is regulated by SNARE-mediated trafficking remains to be established.

Another source of mitochondrial cholesterol is the ER. To reach mitochondria, cholesterol from the ER is transported by cytosolic proteins, such as the PAP7 protein, which interacts with TSPO and StARD proteins (Liu et al., 2006; Alpy et al., 2013) or through the connection of ER and mitochondria via MAMs. Recently, protein complexes that are involved in membrane contact between ER and mitochondria have been identified, but their role in lipid transport is still unclear (Elustondo et al., 2017).

Due to the relevance of lysosomal-mitochondrial liaisons in NPC, understanding the trafficking of lysosomal cholesterol to mitochondria may be essential for the pathophysiology of the disease. Interestingly, although astrocytes from NPC1 deficient mice exhibit decreased expression of StARD1 protein and mRNA levels (Chen et al., 2007), we have observed increased expression of StARD1 in liver and brain from NPC1 null mice by a poorly understood mechanism independent of ER stress (Torres et al., 2017). Besides the putative involvement of StARD1, as mentioned above, another candidate to mediate mitochondrial cholesterol
trafficking in NPC is StARD3, also known as MLN64. Its N-terminus named MENTAL (MLN64 N-terminal) domain binds cholesterol (Zhang et al., 2002; Alpy and Tomasetto, 2006) and is responsible for the specific localization of the protein in the membrane of late endosomes (Alpy et al., 2001). Overexpression of StARD3 enhances sterioigenesis (Watari et al., 1997) by stimulating the mobilization of lysosomal cholesterol to the mitochondrial P450scC, whereas mutant StARD3 lacking the START domain was reported to induce cholesterol accumulation into lysosomes (Zhang et al., 2002). Interestingly, StARD3 expression increases in NPC1 cells and its overexpression in hepatocytes increases mitochondrial cholesterol and impairs mitochondrial function, reflected by decreased mitochondrial membrane potential (Balboa et al., 2017). Along with StARD3, NPC2 has been shown to contribute to the transport of endosomal cholesterol to mitochondria (Kennedy et al., 2012). In this regard, it is conceivable that the increase of mitochondrial cholesterol observed in NPC1 deficient cells could be derived from the action of StARD3 and NPC2, as their expression are induced in NPC1 cells (Blom et al., 2003; Balboa et al., 2017). However, the causal role of the overexpression of these proteins in the stimulation of mitochondrial cholesterol trafficking remains to be elucidated at the molecular level. According to this potential model, the endosomal cholesterol egress mediated by StARD3 involved cholesterol binding by its MENTAL domain in the late-endosomal membranes followed by the cholesterol transfer through the cytoplasmic START domain to a cytosolic acceptor protein or membrane (Alpy and Tomasetto, 2006).

Despite this evidence for a putative role of StARD3 in mitochondrial cholesterol trafficking, targeted mutation of the StARD3 START domain has been shown to cause only modest alterations in cellular sterol metabolism and mice homozygous for the Mln64 mutant allele exhibited minor perturbations in the metabolism and in the intracellular distribution of cholesterol, questioning its contribution in the intramitochondrial trafficking of cholesterol (Kishida et al., 2004). Moreover, global StARD1 deletion in mice induces lipid adrenal hyperplasia and mice die 10 days after birth (Caron et al., 1997). These findings illustrate that other members of the StAR family cannot functionally replace StARD1, highlighting a critical role of this protein in sterioigenesis and hence in the trafficking of cholesterol to IMM for processing. Thus, although the understanding of the pathways of mitochondrial cholesterol trafficking and accumulation in NPC disease still remains elusive, this process is important for the progression of the disease and its further characterization may be key for the design of future therapies. Whether StARD1 in partnership with StARD3 are critical in this process remains to be fully established.

MITOCHONDRIA-LYSOSOMES RELATIONSHIP AND MITOCHONDRIAL QUALITY CONTROL IN NP DISEASES

General Overview

Mitochondria are double-membrane organelles that are essential for energy supply, metabolism, production of reactive oxygen species and apoptosis signaling (Hatefi, 1985). Mitochondrial function is particularly important in tissues with high energy demand, such as the brain (Chan, 2006), which reflects the dependence of neurons on oxidative phosphorylation for energy supply (Almeida et al., 2001). Given the central role of mitochondria in cellular homeostasis, mitochondrial dysfunction has been linked to neurodegenerative diseases, including NPC (Johri and Beal, 2012; Plotegher and Duchen, 2017). Moreover, limited degradation of dysfunctional mitochondria through different mechanisms may contribute to LSD pathogenesis. The degradation of damaged mitochondria can occur either by a selective process called mitophagy or non-specifically via macroautophagy (Youle and Narendra, 2011). The degradation of mitochondria is not only dependent on lysosomal function, but also on the formation of autophagosomes and the subsequent fusion of autophagosomes with lysosomes to generate autolysosomes (Figure 1A), a step that can be influenced by the lipid composition of lysosomes.

Besides Parkin and PINK1, which play a key role in mitophagy (McLelland et al., 2016), recent findings have shown that the targeting of mitochondrial components to lysosomes involves the formation of novel structures called mitochondrial-derived vesicles (MDVs) that incorporate selective mitochondrial-derived cargo for degradation in lysosomes (Soubannier et al., 2012; Schrader et al., 2015). However, unlike classical mitophagy, the delivery of MDV-containing oxidized mitochondrial components to lysosomes does not require mitochondrial depolarization and is independent of ATG5 and LC3. Thus, this alternative pathway is distinct from mitophagy and can be regarded as a novel vesicle transport route between the mitochondria and lysosomes, emerging as a complimentary mechanism for the quality control of mitochondria of potential relevance in NP disease (Soubannier et al., 2012).

Mitochondrial Quality Control in NP Disease

A considerable body of evidence suggests that impaired autophagy contributes to lysosomal lipid storage in LSDs through the accumulation of ubiquitinated proteins and dysfunctional organelles, including mitochondria (Platt et al., 2012; Osselime and Duchen, 2014). Although the formation of autophagosomes is enhanced in NPC neurons, the fusion of autophagosome with lysosomes is incomplete, translating in the inefficient degradation of autophagosome-containing mitochondria, which leads to the accumulation of defective mitochondria (Figure 1B; Elrick et al., 2012; Ordonez, 2012). As neurons are more sensitive to mitochondrial failure than other cells, defects in the mitochondria quality control in neurons may explain the selective neuronal loss observed in NPC disease. In line with this concept, it has been shown that defective mitophagy and increased mitochondrial fragmentation due to abnormal autophagy activation are more severe in neurons from NPC1^-/- mice than in NPC fibroblasts (Ordonez, 2012). Moreover, decreased NPC1 function in neurons generated from human embryonic stem cells results in impaired mitochondrial clearance but enhanced mitochondrial fragmentation, phenotypes that can
FIGURE 1 | ER and lysosomes in mitochondrial degradation. (A), Mitochondria and ER interaction through MAMs contributes to the uptake of calcium to mitochondria, which in physiological conditions do not cause mitochondrial dysfunction. However, in conditions of ER stress, enhanced flux of calcium from ER to mitochondria can cause oxidative stress, increased generation of reactive oxygen species (ROS) and mitochondrial depolarization. As a mechanism to ensure the elimination dysfunctional mitochondria, altered mitochondria is engulfed in sequential structures originating with the isolation membrane, which evolve to form
(Continued)
be rescued by inhibition of autophagy with 3-methyladenine or cholesterol extraction with cyclodextrin. These findings suggest that mitochondrial dysfunction in NPC disease may be the consequence not only of defective autophagy induction but also of increased mitochondrial fragmentation mediated by impaired autophagosome formation (Ordóñez et al., 2012).

Another factor that can contribute to impaired autophagy and defective clearance of dysfunctional mitochondria is the accumulation of sphingosine in lysosomes, which has been shown to disrupt calcium homeostasis (Lloyd-Evans et al., 2008). While the mechanism of lysosomal sphingosine accumulation in NPC is not completely understood, it has been shown that alteration in the VGEF signaling pathway impairs sphingosine kinase activity, which results in enhanced sphingosine levels and loss of Purkinje neurons via inhibition of autophagosome-lysosome fusion, thus suggesting a link between sphingosine and impaired autophagy in NPC (Lee et al., 2014). Furthermore, NPC2 deficiency impairs autophagy-lysosomal activity, which negatively impacts mitochondrial function in adipocytes (Guo et al., 2016). Interestingly, stimulation of adenosine A2A receptors has been shown to rescue intracellular cholesterol accumulation and mitochondrial abnormalities in cell models of NPC (Ferrante et al., 2016), linking A2A agonism with the improvement of mitochondrial function and pathological phenotype of fibroblasts from NPC patients (Visentin et al., 2013). Therefore, the accumulation of dysfunctional mitochondria can account for the onset of oxidative stress in NPC disease described both in NPC1 knockout mice and NPC patients (Vázquez et al., 2012). Moreover, in addition to impaired mitophagy, defects in mitochondrial motility in neurons and distribution into axons to meet metabolic demands can contribute to the pathogenesis of neurological disorders, including NPC disease (Sheng and Cai, 2012; Woś et al., 2016). However, whether these alterations are relevant for the functional maintenance of Purkinje neurons, whose loss accounts for the characteristic ataxia in NPC disease remains to be established.

In parallel with these findings in NPC, there is also evidence of autophagy defects in NPA/B diseases (Fucho et al., 2014; Baulies et al., 2015; Canonico et al., 2016). For instance, hepatocytes from ASMAse−/− mice exhibit impaired autophagy flux determined by the combination of rapamycin with or without chloroquine, an effect that was accompanied by increased LC3BII and p62 levels. In addition, ASMAse−/− hepatocytes displayed impaired fusion of autophagosome-containing mitochondria with lysosomes in response to acetaminophen, which translated in increased susceptibility to acetaminophen-mediated liver injury by sustaining mitochondrial damage (Baulies et al., 2015). Although ASMAse deficiency results primarily in increased lysosomal SM content, it also causes lysosomal cholesterol accumulation, which accounts for the sensitization to acetaminophen-induced hepatocellular injury. In line with these findings, U18666A, an amphipathic amino-steroid that induces lysosomal cholesterol accumulation sensitized primary hepatocytes to acetaminophen-induced cell death. Treatment with oxysterol 25-hydroxycholesterol, a ligand for liver X receptors (LXR) that suppresses sterol synthesis, decreases cholesterol accumulation and protects ASMAse−/− mice from acetaminophen-mediated liver injury. Moreover, human B lymphocytes from patients with NBPD disease exhibit alterations in the rate of autophagic vacuole accumulation, mitochondrial fragmentation and mitophagy induction, indicating impaired clearance of damaged mitochondria (Canonico et al., 2016). Thus, taken together these findings indicate that defective clearance of dysfunctional mitochondria due to impaired lysosomal function or defective fusion of lysosomes with autophagosomes is a common feature of both NPA/B and NPC diseases.

Mitochondrial Cholesterol Accumulation: A Differential Feature Between NPA/B and NPC Diseases

In contrast to defective autophagy, which is common to NPA and NPC, intracellular cholesterol trafficking and accumulation in mitochondria is a differential feature between NPA/B and NPC diseases (Figure 2). Although the primary feature of NPA is the accumulation of SM due to the deficiency of ASMAse, cholesterol levels also increase through the regulation of SREBP2. However, the bulk of the intracellular cholesterol accumulation in NPA is sequestered in lysosomes as shown in hepatocytes from ASMAse null mice stained with filipin and lystracker (Fucho et al., 2014). In contrast to this event, there is growing evidence of increased mitochondrial cholesterol loading in both hepatocytes and neurons from Npc1−/− mice (Figure 2), and this process mediates, in part, the mitochondrial dysfunction reported in NPC disease (Yu et al., 2005; Mari et al., 2006; Charman et al., 2010; Balboa et al., 2017; Torres et al., 2017). Moreover, while alcohol induced the trafficking and accumulation of cholesterol in hepatic mitochondria, this event was defective in hepatocytes deficient in ASMAse, which paralleled the lack of induction of StARD1 in ASMAse null mice in response to alcohol feeding (Fernandez et al., 2013). The mechanism underlying the differential increase in mitochondrial cholesterol and expression of StARD1 between NPA and NPC...
Similarities and differences between NPA and NPC. NPA disease due to ASMase deficiency is characterized by the primary accumulation of sphingomyelin in lysosomes, which secondarily lead to the sequestration of cholesterol in these organelles. ASMase triggers ER stress, the ablation of ASMase impairs ER stress signaling, and consequently the expression of StARD1. Thus, in NPA the bulk of cholesterol accumulation is restricted to lysosomes but not mitochondria, which allows the transport of GSH into the mitochondrial matrix via the 2-oxoglutarate carrier (OGC). In NPC, however, although primarily accumulates in lysosomes, mitochondrial cholesterol transporting polypeptides, such as MLN64 contribute to mitochondrial cholesterol loading. Moreover, besides MLN64, StARD1 is also induced in NPC cells by a poorly understood mechanism independent of ER stress, with the potential involvement of the downregulation of acid ceramidase, which has been shown to repress StARD1 expression. The subsequent mitochondrial cholesterol accumulation then impairs the transport of GSH into mitochondria, resulting in mitochondrial GSH depletion and subsequent oxidative stress. These findings constitute the basis for the potential beneficial effects of mGSH replenishment by GSH ethyl ester in NPC.
and apoptotic signaling mediated by the c-Abl/p73 pathway (Marín et al., 2014). Part of this beneficial effect could be related to increased levels of α-tocopherol in mitochondria, which has been shown to quench ROS production, especially in hepatic mitochondria (Chow et al., 1999), thus preventing GSH depletion (Stojkovski et al., 2013).

In addition to these events, mitochondrial cholesterol loading may impair mitochondrial dynamics reflected in the balance between fusion and fission events. Disruption of appropriate mitochondrial fluidity following cholesterol accumulation can prevent the fusion of mitochondria with adjacent healthy mitochondria (Baker et al., 2014), leading to increased predominance of fragmented mitochondria. In line with these events, we have recently reported that mitochondria from NPC cells exhibited a more rounded and smaller morphology compared to wild type cells, paralleling the decrease in mitochondrial membrane potential and increased mitochondrial superoxide production (Balboa et al., 2017). Finally, disruption of lysosomal-mitochondrial interplay can also have an impact in the Ca$^{2+}$ buffering capacity of mitochondria (Kiselyov and Muallet, 2008) in LSDs, in line with the effect of suppressing lysosomal function and autophagy in mitochondrial Ca$^{2+}$ homeostasis (Jennings et al., 2006). As mentioned above, it has been recently shown that NPC disease is characterized by the disruption of lysosomal Ca$^{2+}$ homeostasis preceded by the accumulation of sphingosine that impairs the endocytic pathway (Lloyd-Evans et al., 2008). Whether this event is linked to altered mitochondrial Ca$^{2+}$ content and function remains to be established. In addition, further work is needed to demonstrate a causal role for the disruption of Ca$^{2+}$ homeostasis in the death of the Purkinje neurons in NPC disease, as shown in other related diseases (Girard et al., 2012; Kasumu and Bezprozvanny, 2012).

THERAPEUTIC APPROACHES AND CONCLUDING REMARKS

Although the genetic causes of NPA and NPC disease are well understood, the consequences at the level of disruption of intracellular trafficking and interorganelle communication is still incomplete, thus limiting the availability of effective therapy. Enzyme replacement therapy for ASMase and NPC1 deficiency is expected to successfully treat peripheral non-neuronal symptoms of both diseases (Schuchman and Desnick, 2017). However, as this approach may be inefficient to replenish the defective enzymes in the brain due to the blood brain barrier, the expectations for the correction of the neurological symptoms may be disappointing. Therefore, there is the urgent need for alternative possibilities to target both diseases exploiting the fact that several intracellular compartments are involved in the pathogenesis of NPA and NPC diseases (Saffari et al., 2017). In the case of NPC, in which mitochondrial dysfunction and cholesterol accumulation have been well established, strategies targeting mitochondrial cholesterol accumulation and/or downstream consequences may be of potential relevance. In this scenario, recent data indicated that the replenishment of mGSH levels by permeable GSH prodrugs have shown promising results in fibroblasts from NPC patients, correcting the mitochondrial dysfunction and ameliorating oxidative stress, while extending the survival of NPC1 null mice (Torres et al., 2017). Quite intriguingly, the efficacy of mGSH replenishment by GSH-EE was not potentiated by parallel treatment with cholesterol extraction with cyclodextrin, suggesting that both processes are related to each other. This outcome raises the possibility that the efficacy of mGSH restoration by GSH-EE could be explored in combination with other therapies targeting differential pathways. For instance, since curcumin has been shown promising results by restoring intracellular sphingosine balance and cytosolic calcium homeostasis (Lloyd-Evans et al., 2008), it may be worth investigating the combination of curcumin with GSH-EE in NPC disease. Moreover, recent evidence has shown a beneficial role for histone deacetylase (HDAC) inhibitors (i.e., vorinostat or valproic acid) as a novel line of therapy for NPC disease, resulting in the reduction of cholesterol accumulation, improvement of neurodegenerative symptoms and visceral alterations, which culminate in the extension of mouse life span (Kim et al., 2007; Pipalia et al., 2011; Alam et al., 2016; Contreras et al., 2016; Munkaci et al., 2017). As HDAC can regulate mitochondrial function, it may be worth to test whether combined treatment with HDAC inhibitors and GSHEE would exhibit greater therapeutic benefit in NPC1 mutant mice with respect to either agent alone, supporting this approach as a promising combination therapy for NPC.

AUTHOR CONTRIBUTIONS

ST, EB, SZ, CE, CG-R, and JF-C discussed findings, analyzed literature and wrote the manuscript. ST, CG-R, and JF-C designed the schematic Figures.

ACKNOWLEDGMENTS

The work was supported by grants SAF-2014-57674-R, SAF-2015-69944-R from Plan Nacional de I+D, Spain, Fundació Marató de TV3, La Mutua Madrileña, PI11/0325 (META) grant from the Instituto Salud Carlos III, and by the support of CIBEREHD; the center grant P50-AA-11999 Research Center for Liver and Pancretic Diseases funded by NIAAA/NIH; and support from AGAUR of the Generalitat de Catalunya 2014-SGR785.

REFERENCES

Acín-Pérez, R., Carrascoso, I., Baixauli, F., Roche-Molina, M., Latorre-Pellicer, A., Fernández-Silva, P., et al. (2014). ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab. 19, 1020–1033. doi: 10.1016/j.cmet.2014.04.015

Acuña, M., Castro-Fernández, V., Latorre, M., Castro, J., Schuchman, E. H., Guixé, V., et al. (2016a). Structural and functional analysis of the ASM p.Ala359Asp

frontiersin.org | Frontiers in Physiology | www.frontiersin.org 9 November 2017 | Volume 8 | Article 982

II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab. 19, 1020–1033. doi: 10.1016/j.cmet.2014.04.015

Acuña, M., Castro-Fernández, V., Latorre, M., Castro, J., Schuchman, E. H., Guixé, V., et al. (2016a). Structural and functional analysis of the ASM p.Ala359Asp
mutant that causes sphingomyelinase deficiency. Biochem. Biophys. Res. Commun. 479, 496–501. doi: 10.1016/j.brc.2016.09.096

Cuña, M., Martínez, P., Moraga, C., He, X., Moraga, M., Hunter, B., et al. (2016b). Epidemiological, clinical and biochemical characterization of the p.(Ala359Asp) SMPD1 variant causing Niemann-Pick disease type B. Eur. J. Hum. Genet. 24, 208–213. doi: 10.1038/ejhg.2015.89

Alam, M. S., Getz, M., and Haldar, K. (2016). Chronic administration of an HDAC inhibitor treats both neurological and systemic Niemann-Pick type C disease in a mouse model. Sci. Transl. Med. 8:326ra23. doi: 10.1126/scitranslmed.aad4097

Almeida, A., Almeida, J., Bolaños, J. P., and Moncada, S. (2001). Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc. Natl. Acad. Sci. U.S.A. 98, 15294–15299. doi: 10.1073/pnas.261560998

Alpy, F., and Tomasetto, C. (2006). MLN64 and MENTHO, two mediators of endosomal cholesterol transport. Biochem. Soc. Trans. 34, 343–345. doi: 10.1042/BST0340343

Alpy, F., Legueux, F., Bianchetti, L., and Tomasetto, C. (2009). START domaincontaining proteins: a review of their role in lipid transport exchange. Biochem. Soc. Trans. 37, 4452–4463. doi: 10.1042/BST20160130

Alpy, F., Al-Sayed, M., Schiffl, M., Carstea, E. D., Polymeropoulos, M. H., Parker, K. C., Detera-Wadleigh, S. D., O’Neill, R. R., Patterson, M. C., et al. (1993). Linkage of Niemann-Pick disease type C to human chromosome 18. Proc. Natl. Acad. Sci. U.S.A. 90, 2002–2004.

Cassiman, D., Packman, S., Bembi, B., Turkia, H. B., Al-Sayed, M., Schiff, M., et al. (2016). Cause of death in patients with chronic visceral and chronic neurovisceral acid sphingomyelinase deficiency (Niemann-Pick disease type B and B variant): literature review and report of new cases. Mol. Genet. Metab. 118, 206–213. doi: 10.1016/j.ymgme.2016.05.001

Chan, D. C. (2006). Mitochondria: dynamic organelles in disease, aging, and development. Cell 125, 1241–1252. doi: 10.1016/j.cell.2006.06.018

Charman, M., Kennedy, B. E., Osborne, N., and Karten, B. (2010). MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick Type C1 protein. J. Lipid Res. 51, 1023–1034. doi: 10.1194/jlr.M002345

Charruyer, A., Grazide, S., Bezombes, C., Müller, S., Laurent, G., and Jaffrézou, J.-P. (2005). UV-C light induces raft-associated acid sphingomyelinase and INK activation and translocation independently on a nuclear signal. J. Biol. Chem. 280, 19196–19204. doi: 10.1074/jbc.M412867200

Chen, G., Li, H.-M., Chen, Y.-R., Gu, X.-S., and Duan, S. (2007). Decreased estradiol release from astrocytes contributes to the neurodegeneration in a mouse model of Niemann-Pick disease type C. Glia 55, 1509–1518. doi: 10.1002/glia.20563

Chow, C. K., Ibrahim, W., Wei, Z., and Chan, A. C. (1999). Vitamin E regulates mitochondrial hydrogen peroxide generation. Free Radic. Biol. Med. 27, 580–587. doi: 10.1016/S0891-5849(99)00121-5

Coelle, A., García-Ruiz, C., Lluis, J. M., Coll, O., Mari, M., and Fernández-Checa, J. C. (2003). Cholesterol impedes the adenine nucleotide translocator-mediated mitochondrial permeability transition through altered membrane fluidity. J. Biol. Chem. 278, 33928–33933. doi: 10.1074/jbc.M210943200

Contreras, P. S., González-Zuñiga, M., González-Hódar, I., Vázquez, M., Dulecy, A., Marugan, J., et al. (2016). Neuronal gene repression in Niemann-Pick type C models is mediated by the c-AbI/HDAC2 signaling pathway. Biochim. Biophys. Acta 1859, 269–279. doi: 10.1016/j.bbamg.2015.11.006

Daniele, T., and Schiaffino, M. V. (2016). Lipid transfer and metabolism across the endosomal-mitochondrial boundary. Biochim. Biophys. Acta 1861, 880–894. doi: 10.1016/j.bbalip.2016.02.001

Davies, J. P., and Ioannou, Y. A. (2000). Topological analysis of Niemann-Pick C1 protein reveals that the membrane orientation of the putative sterol-sensing domain is identical to those of 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element binding protein cleavage-activating protein. J. Biol. Chem. 275, 24367–24374. doi: 10.1074/jbc.M102184200

Detmer, S. A., and Chan, D. C. (2007). Functions and dysfunctions of mitochondrial dynamos. Nat. Rev. Mol. Cell Biol. 8, 870–879. doi: 10.1038/nrm2275

Diogo, C. V., Yambire, K. F., Fernández Mosquera, L., Branco, F., T., and Raimundo, N. (2017). Mitochondrial adventures at the organelle society. Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2017.04.124. [Epub ahead of print].

Echegoyen, S., Oliva, E. B., Sepulveda, J., Díaz-Zagoya, J. C., Espinosa-García, M. T., Pardo, J. P., et al. (1993). Cholesterol increase in mitochondria: its effect on 3-hydroxy-3-methylglutaryl-CoA reductase and sterol regulatory element binding protein cleavage-activating protein. J. Biol. Chem. 268, 7197–7201. doi: 10.1074/jbc.268.13.7197

Elbaz-Alon, Y. (2017). Mitochondria-organelle contact sites: the plot thickens. Biochem. Soc. Trans. 45, 477–488. doi: 10.1042/BST20161030

Elrick, M. J., Yu, T., Chung, C., and Lieberman, A. P. (2012). Impaired proteolysis underlies autophagic dysfunction in Niemann-Pick type C disease. J. Lipid Res. 53, 703–708. doi: 10.1194/jlr.M002345

Elustondo, P., Martin, L. A., and Karten, B. (2017). Mitochondrial cholesterol import. Biochim. Biophys. Acta 1862, 90–101. doi: 10.1016/j.bbalip.2016.08.012

Enrich, C., Rentero, C., Hierro, A., and Grewal, T. (2015). Role of cholesterol in SNARE-mediated trafficking on intracellular membranes. J. Cell Sci. 128, 1071–1081. doi: 10.1242/jcs.164459

Falcone, S., Perrotta, C., De Palma, C., Pisconti, A., Sciorati, C., Capobianco, A., et al. (2004). Activation of acid sphingomyelinase and its inhibition by the nitric oxide/cyclic guanosine 3’,5’-monophosphate pathway: key events in Escherichia coli-elicted apoptosis of dendritic cells. J. Immunol. 173, 4452–4463. doi: 10.4049/jimmunol.173.7.4452

Farmer, T., Reinecke, P. B., Xie, S., Bahl, K., Nalavsky, N., and Caplan, S. (2017). Control of mitochondrial homeostasis by endocytotic regulatory proteins. J. Cell Sci. 130, 2359–2370. doi: 10.1242/jcs.204537

Fernandez, A., Matias, N., Fucho, R., Ribas, V., Von Montfort, C., Nuño, N., et al. (2013). ASMase is required for chronic alcohol induced hepatic endoplasmic
progressive mitophagy promotes survival in a mouse model of Niemann-Pick disease C2. J. Biol. Chem. 288, 15052–15062. doi: 10.1074/jbc.M111.300360

Xu, B., Zhang, J., Pan, Y., Wu, F., Zou, B., and Hu, M. (2012). Autophagy promotes Niemann-Pick disease type C2 clearance by inducing lysosomal cholesterol efflux. Sci. Rep. 2, 437. doi: 10.1038/srep00437

Yamagishi, Y., Nakajima, Y., Suzuki, K., and Fujii, M. (2008). The endoplasmic reticulum stress-dependent autophagic cell death in Niemann-Pick type C2 cells involves Beclin 1 but not Atg5. Autophagy 4, 461–474. doi: 10.4161/auto.4.4.5802

Zhang, Y., Huang, S., Zheng, L., Wang, Y., Zhou, Y., Wang, S., et al. (2013). Knockdown of Tcft1, a cholesterol-binding protein, rescues cholesterol accumulation and mitochondrial dysfunction in human neutrophils. Mol. Biol. Cell. 24, 2143–2155. doi: 10.1091/mbc.E12-10-0855

Choi, W. Y., Cho, Y. S., Kim, H. S., and Lee, H. J. (2009). Mitochondria interact with cholesterol-rich liposomes in Niemann-Pick type C2 cells. J. Cell Sci. 122, 66–75. doi: 10.1242/jcs.054582

Furuta, F., Tachibana, Y., Hasegawa, M., Ito, N., and Okada, Y. (2005). Autophagy is activated by cholesterol depletion in Niemann-Pick type C2 cells. J. Biol. Chem. 280, 36333–36339. doi: 10.1074/jbc.M509719200

Garcia-Alvaro, S., and Giraldez, A. J. (2009). Autophagy as a cholesterol recycling pathway in health and disease. J. Cell. Physiol. 220, 160–167. doi: 10.1002/jcp.21705

Gonzalez, A. M., and Salido, J. (2010). Role of autophagy in Niemann-Pick disease type C2. J. Hepatol. 53, 883–891. doi: 10.1016/j.jhep.2010.03.021

Huang, J., and Feigenson, G. W. (1998). Cholesterol-dependent actin rearrangement is required for macropinocytosis in endothelial cells. J. Cell Sci. 111, 2949–2956. doi: 10.1242/jcs.111.16.2949

Ikonen, E. (1999). Membrane cholesterol. J. Lipid Res. 40, 1599–1622. doi: 10.1194/jlr.R990004-JLR200

Ikonen, E., and Varsted, K. (2014). The role of cholesterol in cell growth and survival. J. Lipid Res. 55, 1283–1294. doi: 10.1194/jlr.R0506447

Jho, A., and Beal, M. F. (2005). Mitochondrial dysfunction in neurodegenerative diseases. J. Pharmacol. Exp. Ther. 314, 619–630. doi: 10.1124/jpet.104.079696

Katayama, K., and Terao, S. (2010). Cholesterol regulates the mitochondrial dynamics and cristae structure of astrocytes. J. Biol. Chem. 285, 45700–45710. doi: 10.1074/jbc.M110.182351

Kasas, G., and Sengers, P. (2002). Cholesterol transport and signaling in mammalian cells. J. Lipid Res. 43, 1152–1158. doi: 10.1194/jlr.R1003070200

Kurose, M., Sato, K., Kato, S., and Ogawa, Y. (2000). Autophagy is involved in cholesterol accumulation in Niemann-Pick type C2 cells. J. Biol. Chem. 275, 37694–37702. doi: 10.1074/jbc.M009576200

Lee, J. H., Yoon, T. H., and Lee, S. K. (2009). Autophagy is activated by cholesterol depletion in Niemann-Pick type C2 cells. J. Cell Sci. 122, 660–679. doi: 10.1242/jcs.054293

Liou, H.-L., Lobel, P., and Stock, A. M. (2003). Structure of mammalian acid sphingomyelinase. Nat. Commun. 4, 1346–1353. doi: 10.1038/ncomms1219

Lin, J., Choy, M., and Lee, J. G. (2010). Autophagy enhances cholesterol uptake and trafficking in Niemann-Pick type C2 cells. J. Biol. Chem. 285, 9228–9238. doi: 10.1074/jbc.M110.132708

Lukens, J. E., and Ploegh, H. L. (2015). The role of autophagy in Niemann-Pick disease. Autophagy 11, 631–639. doi: 10.1080/15548627.2015.1045623

Luo, Q., Liu, T., Lin, X., Zhang, L., and Wang, Y. (2013). Cholesterol depletion stimulates autophagy by a Daf2 (Atg3)-dependent mechanism in mouse embryonic fibroblasts. Biochim. Biophys. Acta 1833, 2329–2338. doi: 10.1016/j.bbamcr.2013.07.017

Lyu, R., and Zhu, L. (2011). Cholesterol is required for autophagy in normal murine hepatocytes but not in Niemann-Pick type C2 cells. J. Biol. Chem. 286, 31836–31843. doi: 10.1074/jbc.M110.171454

Maeda, H., and Kadowaki, T. (2010). Galectin-3 induces autophagy and promotes cholesterol efflux. Autophagy 6, 571–573. doi: 10.4161/auto.6.4.13761

Mazumder, T., Treviño, J. S., Arany, Z., and Kolesnick, R. (2007). The involvement of autophagy in Niemann-Pick type C2 disease. Autophagy 3, 179–192. doi: 10.4161/auto.3.3.2565

Miller, E. J., and Feigenson, G. W. (1992). The role of cholesterol in macropinocytosis. J. Cell Biol. 116, 391–404. doi: 10.1083/jcb.116.2.391

Mitra, E. K., and Hwang, H. Y. (2011). Autophagy activates cholesterol efflux in Niemann-Pick type C2 cells. J. Biol. Chem. 286, 35208–35222. doi: 10.1074/jbc.M110.211573

Nakamura, S., and Koyama, T. (2011). Mitochondrial cholesterol accumulation is associated with autophagy deficiency in Niemann-Pick type C2 cells. J. Biol. Chem. 286, 13439–13448. doi: 10.1074/jbc.M110.189609

Nakamura, S., and Koyama, T. (2012). Autophagy deficiency in Neimann-Pick type C2 cells is required for cholesterol efflux. Autophagy 8, 713–723. doi: 10.4161/auto.19469

Poupart, L., and Vanier, M. T. (2001). Mitochondria and autophagy in Niemann-Pick type C disease: activation of autophagy by cholesterol depletion reveals the underlying autophagy deficiency. J. Biol. Chem. 276, 48976–48986. doi: 10.1074/jbc.M009576200

Siegfried, M., and Hargreaves, J. (2009). Autophagy is required for cholesterol efflux in Niemann-Pick type C2 cells. J. Biol. Chem. 284, 25868–25880. doi: 10.1074/jbc.M108029200

Takatori, H., Nakayama, K., and Kiyono, T. (2015). Autophagy-mediated cholesterol efflux in Niemann-Pick type C2 cells. J. Biol. Chem. 290, 15677–15687. doi: 10.1074/jbc.M114.593991

Torres et al. Mitochondrial and Lysosomal Interactions
Vázquez, M. C., Balboa, E., Alvarez, A. R., and Zanlungo, S. (2012). Oxidative stress: a pathogenic mechanism for Niemann-Pick type C disease. *J. Neurosci.* 33, 15388–15393. doi: 10.1523/JNEUROSCI.0558-13.2013

Watari, H., Arakane, F., Moog-Lutz, C., Kallen, C. B., Tomasetto, C., Gerton, G. L., et al. (1997). MLN64 contains a domain with homology to the saposidogenic acute regulatory protein (STAR) that stimulates saposidogenesis. *Proc. Natl. Acad. Sci. U.S.A.* 94, 8462–8467. doi: 10.1073/pnas.94.16.8462

Woi, M., Szczepanowska, J., Pikula, S., Tylki-Szymanska, A., Zablocki, K., and Bandorowicz-Pikula, J. (2016). Mitochondrial dysfunction in fibroblasts derived from patients with Niemann-Pick type C disease. *Arch. Biochem. Biophys.* 593, 50–59. doi: 10.1016/j.abb.2016.02.012

Xiong, Z.-J., Huang, J., Poda, G., Pomès, R., and Privé, G. G. (2016). Structure of human acid sphingomyelinase reveals the role of the saposin domain in activating substrate hydrolysis. *J. Mol. Biol.* 428, 3026–3042. doi: 10.1016/j.jmb.2016.06.012

Youle, R. J., and Narendra, D. P. (2011). Mechanisms of mitophagy. *Nat. Rev. Mol. Cell Biol.* 12, 9–14. doi: 10.1038/nrm3028

Yu, W., Gong, J.-S., Ko, M., Garver, W. S., Yanagisawa, K., and Michikawa, M. (2005). Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function. *J. Biol. Chem.* 280, 11731–11739. doi: 10.1074/jbc.M412898200

Zampieri, S., Filocamo, M., Pianta, A., Lualdi, S., Gort, L., Coll, M. J., et al. (2016). SMPD1 mutation update: database and comprehensive analysis of published and novel variants. *Hum. Mutat.* 37, 139–147. doi: 10.1002/humu.22923

Zhang, M., Liu, P., Dwyer, N. K., Christenson, L. K., Fujimoto, T., et al. (2002). MLN64 mediates mobilization of lysosomal cholesterol to steroidogenic mitochondria. *J. Biol. Chem.* 277, 33300–33310. doi: 10.1074/jbc.M20003200

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Torres, Balboa, Zanlungo, Enrich, García-Ruiz and Fernández-Checa. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.