Crystal structure of N-butyl-2,3-bis(dicyclohexylamino)cyclopropeniminium chloride benzene monosolvate

Gaby M. Muñoz Sánchez and Michael J. Zdilla*

Department of Chemistry, Temple University, 1901 N. 13th Street, Philadelphia, PA 19122, USA. *Correspondence e-mail: mzdilla@temple.edu

1. Chemical context

Pentasubstituted dianinopropenimines are a relatively new class of superbases that operate via the establishment of a stable aromatic electronic delocalization upon protonation. Originally reported as four-electron Lewis donors (Bruns et al., 2010), a more recently exploited application for the use of pentasubstitution is that of a superbase, with one of the six nitrogen coordination sites available for protonation, making these molecules facile initiators of stereoselective Michael (Bandar & Lambert, 2012) and Mannich reactions (Bandar & Lambert, 2013), hydronaminations (Mirabdolbaghi & Dudding, 2015), and ring-opening polymerization (Stukenbroeker et al., 2015; Xu et al., 2018). A number of examples of acid salts of these species have been structurally characterized, permitting direct observation of the aromatized cyclopropeniminium structures (Stukenbroeker et al., 2015; Bruns et al., 2010; Bandar et al., 2015; Belding & Dudding, 2014; Guest et al., 2020; Kozma et al., 2015; Belding et al., 2016; Bandar & Lambert, 2012, 2013; Mirabdolbaghi & Dudding, 2015). Examples of free-base pentasubstituted dianinopropenimines are uncommon, and these are typically only obtained with aromatic substituents at the imine position, which decreases the basicity of the imine by the delocalization of the nitrogen lone pair p-orbital into the aromatic group, facilitating isolation (Guest et al., 2020; Kozma et al., 2015; Bruns et al., 2010). Some of these (Guest et al., 2020; Kozma et al., 2015; Belding & Dudding, 2014) are bis(cyclopropeniminium) variants of the famous ‘proton sponge’, 1,8-bis(dimethylamino)naphthalene and related classes of bifunctional Lewis superbases (Alder et al., 1968). The only other example, to our knowledge, is an N-aminosubstituted example, which also decreases the basicity of the nitrogen lone pair by induction, a minor resonance structure delocalizing the double bond into the N—N contact,
and, in the crystal structure, a nearby hydrogen bond with a water proton (Bruns et al., 2010).

\[
\text{N-Butyl-2,3-bis(dicyclohexylamino)cyclopropenimine (} \text{I} \text{)} \text{ is a newer version of superbase with improved basicity, which has been explored as a catalyst for ring-opening polymerization. Cyclopropenimines have a conjugate acid } pK_a \text{ of about 27, an improvement over that of the superbase 2-tert-butyl-1,1,3,3-tetramethylguanidine (BTMG), which has a } pK_a \text{ of 23.56 (Bandar & Lambert, 2012). This allows } \text{I} \text{ to deprotonate a lactide and initiate polymerization in the synthesis of poly-lactic acid, as shown in Fig. 1 (Stukenbroeker et al., 2015).}
\]

![Catalytic ring-opening polymerization mediated by I.](image1)

Figure 1
Catalytic ring-opening polymerization mediated by I.

Compound I can mediate the polymerization of lactic acid to 99% completion in 10 minutes or less. However, no X-ray crystal structure of the free base, nor an acid salt of this superbase has been reported. In this report we provide the first X-ray crystallographic structure of a benzene solvate of the hydrochloride salt [I]Cl·C₆H₆.

2. Structural commentary

[1]Cl crystallizes in the P2₁/n space group on a general position as a closely associated ion pair, with the protonation site at the n-butyl imine as expected, and one formula unit in the asymmetric unit, as well as one benzene molecule, also on a general position (Fig. 2). The organic salt and the benzene molecule are generally well ordered, except for the δ methyl carbon of the n-butyl group, which shows a mild wagging disorder. This disorder was treated with a two-site disorder model.

Free-base I would be expected to have localized double bonds at the n-butylimine C=N position, and at the opposing cyclopropene position (see scheme). In the isolated free base of 1-mesityl-2,3-bis(diisopropylamino)cyclopropenimine (Bruns et al., 2010), the unprotonated C=N imine bond is 1.2951 (14) Å in length, while the C—N bonds to the tertiary amines are longer, at an average of 1.3494 (10) Å. The localized cyclopropene double bond is shorter, at 1.3712 (14) Å, than the single bonded C—C cyclopropene contacts at an average of 1.4155 (10) Å. Protonation of the n-butylimine position during crystal growth results in all nitrogen atoms being three-coordinate, leading to delocalization of the imine.
Table 1
Comparative bond lengths (Å) for 1-mesityl-2,3-bis(diisopropylamino)cyclopropenimine, 1-mesityl-2,3-bis(diisopropylamino)cyclopropeniminium (Bruns et al., 2010), and N-n-butyl-2,3-bis(dicyclohexyl)cyclopropeniminium.

	Mes(C3N3)Pr4	[Mes(C3N3H)Pr4]BF4	[Bu(C3N3H)Cy4]Cl([H][Cl])
C—N(amine)	1.2951 (14)	1.3342 (16)	1.319 (2)
C—N(amine)	1.3450 (14)/1.3539 (14)	1.3205 (15)/1.3286 (16)	1.3248 (17)/1.331 (2)
C—C(para)	1.3712 (14)	1.3984 (17)	1.388 (2)
C—C(meta)	1.4202 (14)/1.4108 (14)	1.3792 (16)/1.3827 (16)	1.377 (2)/1.3831 (19)

Double-bond character across all three C—N contacts. Correspondingly, the cyclopropene double bond is delocalized around the ring, giving a three-membered aromatic system. In [H][Cl], the central C3N3 triangle is thus highly planar, with the six atoms exhibiting an r.m.s. deviation of only 0.0052 Å from the best-fit plane of the six atoms. The three C—N bonds are approximately equal in length, with the two tertiary cyclohexylamine positions having C—N lengths of 1.3279 (13) Å on average. The C—N bond to the protonated butyl nitrogen is only slightly shorter at 1.319 (2) Å. The three cyclopropene C—C bonds exhibit lengths consistent with aromaticity; the unique C—C bond opposite the n-butyl group is 1.388 (2) Å, while the other two C—C bonds are similar or slightly shorter at 1.377 (2) and 1.383 (2) Å. Though these latter two bonds are equivalent under molecular point symmetry, their differences are attributed to the asymmetric crystal packing environment of the P21/n space group. The comparable nature of the bond metrics of the three C—N bonds and the three cyclopropenyl C—C bonds is consistent with aromatization, and an analogous aromatization of the C3N3 core of 1-mesityl-2,3-bis(diisopropylamino)cyclopropeniminium tetrafluoroborate was observed in the crystal structure of this salt (Bruns et al., 2010). See Table 1 for C3N3 bond metrics.

The comparison between free-base forms of cyclopropeniminium (Bruns et al., 2010) and the protonated forms demonstrate aromatization upon protonation, and explain the behavior of 1 as a superbase. While alkylimines are typically weak bases (pKa of conjugate acid ranges from about 2–5 (Fraser et al., 1983), the pKa of IH+ is a staggering 27 (Bandar & Lambert, 2012), more on the scale of a C—H bond. The drastic difference in basicity between typical alkylimines and 1 can be explained by the observed aromatization upon protonation. As a result, the 1H resonance of the N—H hydrogen in [H][Cl] is a sharp singlet at 7.4 ppm in deuterated chloroform, suggesting little to no exchange like that typically observed for broad N—H resonances. The stabilization of a molecule by aromatization is quantified by the Dewar Resonance Energy (DRE), which ranges from about 6–25 kJ mol⁻¹ per π electron (Slayden & Liebman, 2001). Thus in the case of 1, aromatic stabilization between 12 and 50 kJ mol⁻¹ upon protonation explains the large reported basicity.

3. Supramolecular features
Interionic/molecular interactions were examined using packing diagrams, and by the determination of partial atomic charge from Hirshfeld analysis. In the following discussion Hirshfeld charges are presented in parenthesis. The proton of the butyliminium group (+0.121) interacts strongly with the chloride ion (−0.666) at a short H···Cl distance of 2.26 (2) Å. The chloride is positioned in a pocket surrounded by hydrogen atoms. In addition to the strong interaction with the acidic N—H proton, the chloride resides 2.8152 (7) Å from a benzene proton, H6AA (+0.046), and 2.7169 (6) Å from an intramolecular axial cyclohexyl proton, H29A (+0.050). The crystal packing demonstrates that the C3N3 planes of all molecules pack parallel to each other (as required by the space-group symmetry), with a normal slightly oblique to the (101) plane (see Fig. 3). The molecular planes stack in a staggered fashion via intervening inversion centers at the origin (Fig. 3, red) and at the center of the a edge (Fig. 3, teal). One face of the benzene solvent molecule interacts distally with the cyclohexyl group of one IH+ ion [closest atomic C···C distance: 3.829 (3) Å, Fig. 3, green line], while the other face interacts distally with the disordered methyl group of the n-butyl chain [closest atomic C···C distance: 4.29 (3) Å, Fig. 3, orange line]. The benzene interacts weakly with two chloride ions approximately along its equatorial plane (Fig. 3, blue lines), one via H6S (+0.069) with H···Cl = 2.8152 (7) Å, also shown in Fig. 2, and the other via H35 (+0.062) with H···Cl = 2.8365 (7) Å. These benzene–chlorine interactions form a channel along the (101) plane, each channel situated 1/4 of the

![Figure 3](image-url) Partially packed thermal ellipsoid plot of [H][Cl]-C6H6 showing neighboring intermolecular/interionic nearest neighbor interactions.
Figure 4
Top: Packed unit cell viewed along the 101 plane. Bottom: Packed unit cell viewed along the [101] direction.

way along the \(b \) axis (Fig. 4, top). Viewed from 90° along the [101] direction, the benzene solvent molecules sit along a second channel, with the chloride ions sitting at the intersections of both channels, providing ionic bonds to the surrounding 1H\(^+\) cations (Fig. 4, bottom). In this latter view, it is apparent that along the [101] direction, the chloride ions are positioned between the axial protons H26 (+0.058) and H29B (+0.059) of the flanking cyclohexyl groups. In summary, the 1H\(^+\) cations interact with each other and through the benzene solvent molecule via their alkyl groups, and the chloride counter-ion is situated in a pocket of cyclohexyl and benzene C—H contacts, with the proximal N—H interaction on one side.

4. Database survey
In addition to the pentasubstituted examples discussed above, a survey of the Cambridge Structural Database (CSD, Version 5.34, November 2021; Groom et al., 2016) for cyclopropenamines reveals a number of other relevant structures. The parent (unsubstituted) diaminopropeninium cation has been structurally characterized with chloride and iodide counter-cations (UJA VEI and UJA VMM; Mishiro et al., 1995). Aprotic hexasubstituted examples are reported, and represent planar polyatomic cations (AHUVEH, Holthoff et al., 2020; DOSRUB, Abdelbassit et al., 2019; FURCII, Clark et al., 1995; GAXYEJ, Radhakrishnan et al., 1987b; GERXUX02, Butchart et al., 2012; GUNDUR, Curnow & Senthooran, 2020; IFAGUU, Curnow et al., 2018; LAYYOC01, Jin et al., 2018; NUYBOB, Guest et al., 2020; SERVIW, Kniep et al., 2013; TUSDOD, Radhakrishnan et al., 1987a; UGITIQ, Barthes et al., 2020, XIKYAT01, ZABFUG, Wallace et al., 2015, XOSTIL, XOSTOR, XOSTUX, XOSVAF, XOSVEJ, Abdelbassit & Curnow, 2019, YUVRAK, YUWJOR, Jungbauer et al., 2015). Another class of variants includes cyclopropenamines tethered to ferrocene nuclei (TURNUQ, Bruns et al., 2010; BEBPIK, BEBRAE, BEBREI, BEBRIM, BEBROS, Jess et al., 2017). There are a few structural studies of Lewis complexes with metal ions (BEBRIM, Jess et al., 2017; UGITOW, UGITUC, Barthes et al., 2020; YOQPOM, Chen et al., 2019; TURNOK, Bruns et al., 2010) or other boron-based Lewis acids (NUYBOB, Guest et al., 2020; TURPOM, Bruns et al., 2010). One structural report of a trisubstituted cyclopropenimine is noted (XEXGEP, Xu et al., 2018), as well as several types of oligomeric versions (OGOLUT, OGORAL, OGOWUE, OGOWOY, OGOWUF, OGOXAL, OGOXUF, OGOYAM, Kozma et al., 2015; SUSWAG, SUSWOU, Nacsa & Lambert, 2015).

5. Synthesis and crystallization
Initially, crystals of \([\text{HH}]\text{C}_{13}\text{H}_{6}\) were obtained from the commercial sample of 1 via a double-vial apparatus by dissolution of \(N\)-butyl-2,3-bis(dicyclohexylamino)cyclopropenimine (I) in benzene in an inner vial, and charging the outer vial with hexanes. After diffusion for a few days at room temperature, powdery solid and a few colorless crystals of \([\text{HH}]\text{C}_{13}\text{H}_{6}\) were observed inside. The yield of crystalline \([\text{HH}]\text{C}_{13}\text{H}_{6}\) was significantly improved by the addition of HCl. To a glass shell vial containing 7.2 mg of \(N\)-butyl-2,3-bis(dicyclohexylamino)cyclopropenimine, 2 mL of benzene were added. A drop of dilute HCl (0.730 M) was added. This was diffused with 3 mL of hexanes in the outer vial for 2–3 days. Crystallization works best when the drop is not in contact with the walls of the vial where the crystals grow. Crystals were isolated by decanting the liquid from the inner vial using a disposable pipette, and taking care to remove the visible aqueous HCl droplet with the first pipette draw. After removing the mother liquor, the crystals were rinsed with hexanes. Yield 6.3 mg (70%). Yields in this small-scale preparation ranged from 22% to 70% across multiple attempts. \(^1\text{H} NMR (ppm) 400 MHz, CDCl\(_3\): \(\delta (ppm): 0.97\) \((t, 3 \text{H}, \text{Me})\), 1.62–1.82 \((m, 14 \text{H}, \text{Cy and Bu})\), 1.62–1.76 \((m, 14 \text{H}, \text{Cy and Bu})\), 1.80 \((d, 8 \text{H}, \text{Cy-\(\beta\)-H})\), 1.96 \((d, 8 \text{H}, \text{Cy-\(\beta\)-H})\), 3.34
Table 2
Experimental details.

Crystal data	Chemical formula	C₁₁H₂₄N₄Cl[−]·C₂H₆	M_r	582.33
Crystal system, space group	Monoclinic, P2₁/n	Temperature (K)	100	
a, b, c (Å)	12.253 (3), 22.699 (7), 12.884 (3)	β (°)	104.164 (7)	
V (Å³)	3474.6 (16)	Z	4	

| Radiation type | Mo Ka | μ (mm⁻¹) | 0.14 |
| Crystal size (mm) | 0.55 × 0.53 × 0.16 |

Table 3
Hirshfeld charges of atoms in [1H]Cl-C₂H₆.

C₁₁	−0.666	N1	−0.048	N2	−0.027
N3	−0.018	C1	0.026	C2	0.014
C3	0.024	C4	−0.036	C5	−0.102
C6	−0.095	C7	−0.133	C8	−0.011
C9	−0.103	C10	−0.093	C11	−0.097
C12	−0.088	C13	−0.093	C14	−0.008
C15	−0.097	C16	−0.094	C17	−0.098
C18	−0.098	C19	−0.101	C20	−0.005
C21	−0.094	C22	−0.093	C23	−0.003
C24	−0.091	C25	−0.093	C26	−0.002
C27	−0.096	C28	−0.094	C29	−0.099
C30	−0.093	C31	−0.097	C15	−0.058
C32	−0.071	C33	−0.078	C45	−0.084
C35	−0.082	C36	−0.064	H15	0.071
H65	0.069	H55	0.065	H45	0.062
H35	0.062	H25	0.056	H4A	0.051
H4B	0.075	H5A	0.061	H5b	0.042
H6A	0.046	H6AB	0.055	H7A	0.050
H7B	0.039	H7C	0.051	H8	0.072
H9A	0.050	H9B	0.060	H10A	0.061
H10B	0.061	H11A	0.061	H11B	0.049
H12A	0.057	H12B	0.053	H13A	0.059
H13B	0.049	H14	0.066	H15A	0.057
H15B	0.062	H16A	0.051	H16B	0.052
H17A	0.055	H17B	0.051	H18A	0.056
H18B	0.062	H19A	0.055	H19B	0.065
H20	0.060	H21A	0.055	H21B	0.055
H21A	0.050	H22B	0.056	H23A	0.056
H22B	0.052	H24A	0.051	H24B	0.056
H24A	0.057	H25B	0.057	H26	0.058
H27A	0.049	H27B	0.062	H28A	0.044
H28B	0.057	H29A	0.080	H29B	0.059
H30A	0.061	H30B	0.039	H31A	0.047
H31B	0.064	H1	0.121		

Computer programs: COSMO, XPREP, and SAINT (Bruker, 2008), SHELXTL (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), and OLEX2 (Dolomanov et al., 2009).

(π, 4H, Cy-α-H), 3.56 (t, 2H, Bu-α-H), 7.4 (s, 1H, NH). 13C NMR (ppm) (400 MHz, CDCl₃): δ(ppm): 13.97, 19.94, 24.58, 25.84, 32.34, 33.79, 46.15, 59.55, 114.01, 128.35. FTIR (cm^{−1}): 2926 (m), 2851 (m), 1503 (s), 1445 (m), 1383 (w), 1374 (w), 1345 (w), 1324 (w), 1253 (w), 1188 (w), 1180 (w), 1102 (w), 1092 (w), 1004 (w), 895 (w), 696 (m). Analysis calculated for C₁₁H₂₄N₄Cl·0.5 C₂H₆ (%): C. 76.31; H. 10.38; N. 7.22. Found: C. 75.873; H. 10.83; N. 7.24. M.p. 353–356 K (decomposes).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. A disordered methyl group was treated with a two-site disorder model, with atom positions freely refined, and relative occupancies refined using Free Variable 2 with a final ratio of 0.71 (3): 0.29 (3). RIGU/SIMU restraints were applied to the wagging methyl group. C–H hydrogen atoms were treated using a standard riding model. The imine proton was located as a peak in the Fourier difference map and was freely refined.

Hirshfeld charge was determined at the 3-21G/B3LYP level of theory by iterative computation of electronic structure of [1H]Cl-C₂H₆ using ORCA (Neese, 2018) followed by refinement of the structure using non-spherical form factors computed using NospherA2 (Kleemiss et al., 2021), and repeating the process until the structure converged. Hirshfeld charges resulting from this approach are given in Table 3.

Acknowledgements

The National Science Foundation under award 1800105, is gratefully acknowledged for support of this work. GMS acknowledges the Temple University Minority Access to Research Careers (MARC) program and its support from the National Institutes of Health under NIH/NIGMS award 5 T34 GM136494 for an undergraduate research fellowship.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. 1800105 to Michael J. Zdilla); National Institutes of Health, National Institute of General Medical Sciences (grant No. 5T34 GM136494 to Gaby Muñoz Sanchez).

References

Abdelbassit, M. S. & Curnow, O. J. (2019). Chem. Eur. J. 25, 13294–13298.
Abdelbassit, M. S., Curnow, O. J., Dixon, M. K. & Waterland, M. R. (2019). Chem. Eur. J. 25, 11650–11658.
Alder, R. W., Bowman, P. S., Steele, W. R. S. & Winterman, D. R. (1968). Chem. Commun. pp. 723–724.
Bandar, J. S., Barthelme, A., Mazori, A. Y. & Lambert, T. H. (2015). Chem. Sci. 6, 1537–1547.
Crystal structure of N-butyl-2,3-bis(dicyclohexylamino)cyclopropeniminium chloride benzene monosolvate

Gaby M. Muñoz Sánchez and Michael J. Zdilla

Computing details
Data collection: COSMO and XPREP (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N-Butyl-2,3-bis(dicyclohexylamino)cyclopropeniminium chloride benzene monosolvate

Crystal data

C₃₁H₅₄N₃·Cl·C₆H₆
Mr = 582.33
Monoclinic, P₂1/n
am = 12.253 (3) Å
b = 22.699 (7) Å
c = 12.884 (3) Å
β = 104.164 (7)°
V = 3474.6 (16) Å³
Z = 4
F(000) = 1280
D_c = 1.113 Mg m⁻³
Melting point: 356 K
Mo Kα radiation, λ = 0.71076 Å
Cell parameters from 9959 reflections
θ = 2.6–29.6°
µ = 0.14 mm⁻¹
T = 100 K
Chunk, colourless
0.55 × 0.53 × 0.16 mm

Data collection

Bruker D8 Quest Photon 100 diffractometer
Radiation source: sealed tube
Detector resolution: 10.417 pixels mm⁻¹
θ and ω scans
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
T_{min} = 0.662, T_{max} = 0.746
48756 measured reflections
8072 independent reflections
6516 reflections with I > 2σ(I)
R_{int} = 0.044
θ_{max} = 27.9°, θ_{min} = 2.6°
h = −16→14
k = −29→29
l = −16→16

Refinement

Refinement on F²
Least-squares matrix: full
R[F² > 2σ(F²)] = 0.055
wR(F²) = 0.136
S = 1.02
8072 reflections
385 parameters
6 restraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
w = 1/[σ²(F²) + (0.0605P)² + 2.3777P]
where P = (F² + 2F_c²)/3
(Δ/σ)max = 0.001
Δρ_{max} = 0.55 e Å⁻³
Δρ_{min} = -0.40 \text{ e Å}^{-3}

Extinction correction: SHELXL2018/3
(Sheldrick 2015b),

\text{Fe}^c = k \text{Fe}^{c^*} \left[1 + 0.001 \text{Fe}^{c^*} \lambda^2 / \sin(2\theta) \right]^{-1/4}

Extinction coefficient: 0.0081 (7)

Special details

Experimental. Single-crystal X-ray crystallographic data were obtained on a Bruker D8 Quest PHOTON 100 diffractometer with an Oxford Cryostream 700 low-temperature device. The radiation was from a sealed-tube molybdenum Ka source with a TRIUMPH monochromator. Crystals were typically multiple, and a single piece was cut away with a razor blade, mounted on a MiTeGen loop with paratone-N oil, and collected at 100K in ω/φ scansets. Integration was performed using SAINT, and data were reduced and absorption-corrected using SADABS (Bruker, 2008). Space group determination was performed using XPREP (Sheldrick, 2008), and the structure was solved using intrinsic phasing using SHELXT (Sheldrick, 2015a) with Olex2 as a GUI (Dolomanov et al., 2009). 2015b).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

Atom	x	y	z	U_{iso}*/U_{eq}	Occ. (<1)
Cl1	0.44296 (4)	0.74552 (2)	0.69373 (3)	0.03152 (13)	
N1	0.36809 (13)	0.61997 (7)	0.64021 (11)	0.0287 (3)	
N2	0.28059 (11)	0.47671 (6)	0.52228 (11)	0.0214 (3)	
N3	0.16710 (10)	0.61804 (5)	0.38294 (10)	0.0153 (3)	
C1	0.30625 (12)	0.58844 (7)	0.56140 (12)	0.0187 (3)	
C2	0.27226 (12)	0.53505 (7)	0.51360 (11)	0.0161 (3)	
C3	0.23000 (12)	0.58703 (6)	0.46257 (11)	0.0152 (3)	
C4	0.42658 (14)	0.59655 (8)	0.74386 (13)	0.0258 (4)	
H4A	0.482194	0.625847	0.781488	0.031*	
H4B	0.468020	0.560497	0.733256	0.031*	
C5	0.34533 (15)	0.58187 (9)	0.81298 (14)	0.0297 (4)	
H5A	0.299691	0.617193	0.818508	0.036*	
H5B	0.293374	0.550454	0.777551	0.036*	
C6	0.40470 (18)	0.56176 (11)	0.92421 (15)	0.0417 (5)	
H6AA	0.453690	0.528001	0.917569	0.050*	0.71 (3)
H6AB	0.454139	0.594103	0.959793	0.050*	0.71 (3)
H6BC	0.463745	0.589993	0.959547	0.050*	0.29 (3)
H6BD	0.438414	0.522186	0.923334	0.050*	0.29 (3)
C7	0.3303 (10)	0.5437 (7)	0.9956 (7)	0.053 (2)	0.71 (3)
H7A	0.376946	0.531504	1.065397	0.079*	0.71 (3)
H7B	0.282871	0.577033	1.005181	0.079*	0.71 (3)
H7C	0.282420	0.510733	0.962831	0.079*	0.71 (3)
C7A	0.302 (2)	0.5607 (13)	0.980 (2)	0.052 (3)	0.29 (3)
H7AA	0.329164	0.548113	1.055049	0.079*	0.29 (3)
H7AB	0.269538	0.600292	0.978288	0.079*	0.29 (3)
H7AC	0.244456	0.533150	0.942430	0.079*	0.29 (3)
C8	0.36221 (13)	0.45256 (7)	0.61774 (12)	0.0217 (3)	
H8	0.381382	0.485489	0.670631	0.026*	
---	----	----	----	----	
C9	0.47084 (15)	0.43290 (10)	0.59447 (16)	0.0353 (4)	
H9A	0.502862	0.465328	0.559880	0.042*	
H9B	0.456679	0.398984	0.544653	0.042*	
C10	0.55473 (15)	0.41505 (11)	0.69901 (17)	0.0402 (5)	
H10A	0.624144	0.399694	0.682382	0.048*	
H10B	0.575268	0.450269	0.744965	0.048*	
C11	0.50711 (16)	0.36903 (8)	0.75884 (15)	0.0304 (4)	
H11A	0.560159	0.362242	0.829220	0.036*	
H11B	0.499093	0.331562	0.718347	0.036*	
C12	0.39465 (16)	0.38660 (12)	0.77577 (17)	0.0443 (6)	
H12A	0.404691	0.420050	0.826542	0.053*	
H12B	0.362632	0.353219	0.807993	0.053*	
C13	0.31273 (15)	0.40433 (13)	0.67130 (17)	0.0502 (7)	
H13A	0.295939	0.369777	0.623135	0.060*	
H13B	0.241307	0.418020	0.686061	0.060*	
C14	0.22900 (14)	0.43733 (7)	0.43423 (12)	0.0228 (3)	
H14	0.251060	0.396403	0.459615	0.027*	
C15	0.10137 (15)	0.43961 (8)	0.40904 (14)	0.0294 (4)	
H15A	0.075663	0.480402	0.389687	0.035*	
H15B	0.075736	0.428155	0.473345	0.035*	
C16	0.04928 (19)	0.39800 (10)	0.31628 (16)	0.0421 (5)	
H16A	0.065028	0.356690	0.339859	0.051*	
H16B	−0.033395	0.403439	0.296143	0.051*	
C17	0.09633 (19)	0.40960 (8)	0.21891 (15)	0.0388 (5)	
H17A	0.064423	0.380550	0.162311	0.047*	
H17B	0.073038	0.449374	0.190386	0.047*	
C18	0.2230 (2)	0.40551 (9)	0.24633 (15)	0.0404 (5)	
H18A	0.250416	0.415061	0.182158	0.048*	
H18B	0.246121	0.364657	0.268072	0.048*	
C19	0.27602 (15)	0.44745 (8)	0.33640 (13)	0.0281 (4)	
H19A	0.261060	0.488590	0.311459	0.034*	
H19B	0.358567	0.441498	0.356404	0.034*	
C20	0.10054 (12)	0.59000 (6)	0.28437 (11)	0.0154 (3)	
H20	0.121932	0.547404	0.287367	0.018*	
C21	−0.02557 (12)	0.59316 (7)	0.27777 (12)	0.0208 (3)	
H21A	−0.048940	0.634910	0.277906	0.025*	
H21B	−0.041475	0.573704	0.341256	0.025*	
C22	−0.09312 (14)	0.56299 (8)	0.17598 (14)	0.0270 (4)	
H22A	−0.076043	0.520300	0.179794	0.032*	
H22B	−0.174555	0.567825	0.170890	0.032*	
C23	−0.06516 (14)	0.58893 (8)	0.07659 (13)	0.0273 (4)	
H23A	−0.106868	0.567204	0.012491	0.033*	
H23B	−0.089479	0.630630	0.068675	0.033*	
C24	0.06045 (14)	0.58532 (8)	0.08384 (12)	0.0232 (3)	
H24A	0.076785	0.604027	0.019878	0.028*	
H24B	0.083535	0.543480	0.085098	0.028*	
C25	0.12775 (12)	0.61616 (7)	0.18448 (12)	0.0188 (3)	
H25A	0.109634	0.658734	0.180255	0.023*	
Atomic displacement parameters (Å²)

	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃
Cl1	0.0369 (2)	0.0277 (2)	0.0232 (2)	-0.01656 (17)	-0.00559 (16)	-0.00049 (16)
N1	0.0371 (8)	0.0193 (7)	0.0193 (7)	-0.0048 (6)	-0.0128 (6)	0.0002 (6)
N2	0.0270 (7)	0.0164 (6)	0.0174 (6)	0.0060 (5)	-0.0013 (5)	-0.0020 (5)
N3	0.0169 (6)	0.0138 (6)	0.0123 (6)	0.0014 (5)	-0.0021 (5)	-0.0010 (5)
C1	0.0179 (7)	0.0185 (7)	0.0166 (7)	0.0012 (6)	-0.0017 (6)	0.0013 (6)
C2	0.0153 (6)	0.0185 (7)	0.0129 (6)	0.0028 (5)	0.0003 (5)	-0.0009 (5)
C3	0.0142 (6)	0.0168 (7)	0.0138 (7)	-0.0005 (5)	0.0017 (5)	-0.0023 (5)
C4	0.0286 (8)	0.0260 (8)	0.0159 (7)	-0.0020 (7)	-0.0081 (6)	0.0003 (6)
C5	0.0251 (8)	0.0343 (10)	0.0262 (9)	0.0035 (7)	-0.0007 (7)	-0.0116 (7)
C6	0.0414 (11)	0.0616 (14)	0.0217 (9)	-0.0093 (10)	0.0068 (8)	-0.0050 (9)
C7	0.044 (4)	0.091 (6)	0.026 (3)	-0.019 (3)	0.012 (2)	-0.012 (3)
C7A	0.047 (7)	0.085 (8)	0.029 (5)	-0.024 (5)	0.016 (5)	-0.017 (5)
C8	0.0245 (8)	0.0200 (7)	0.0167 (7)	0.0071 (6)	-0.0023 (6)	-0.0010 (6)
Atoms	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
-------	----------	----------	----------	----------	----------	----------
C9	0.0238 (8)	0.0507 (12)	0.0337 (10)	0.0075 (8)	0.0112 (7)	0.0191 (9)
C10	0.0218 (8)	0.0586 (13)	0.0395 (11)	0.0113 (8)	0.0063 (8)	0.0230 (10)
C11	0.0353 (9)	0.0249 (9)	0.0254 (9)	0.0039 (7)	−0.0033 (7)	0.0046 (7)
C12	0.0296 (9)	0.0728 (16)	0.0298 (10)	0.0027 (10)	0.0060 (8)	0.0271 (10)
C13	0.0198 (8)	0.102 (2)	0.0284 (10)	−0.0030 (10)	0.0027 (7)	0.0339 (12)
C14	0.0334 (8)	0.0158 (7)	0.0166 (7)	−0.0001 (6)	0.0063 (7)	−0.0021 (6)
C15	0.0323 (9)	0.0330 (9)	0.0198 (8)	−0.0072 (7)	0.0003 (7)	0.0049 (7)
C16	0.0522 (12)	0.0348 (10)	0.0292 (10)	−0.0185 (9)	−0.0096 (9)	0.0069 (8)
C17	0.0635 (13)	0.0220 (9)	0.0205 (8)	−0.0053 (9)	−0.0096 (8)	−0.0035 (7)
C18	0.0667 (14)	0.0304 (10)	0.0201 (8)	0.0127 (9)	0.0030 (9)	−0.0075 (7)
C19	0.0349 (9)	0.0287 (9)	0.0205 (8)	0.0107 (7)	0.0063 (7)	−0.0022 (7)
C20	0.0157 (6)	0.0151 (7)	0.0127 (6)	0.0023 (5)	−0.0013 (5)	−0.0021 (5)
C21	0.0162 (7)	0.0268 (8)	0.0178 (7)	−0.0023 (6)	0.0007 (6)	−0.0062 (6)
C22	0.0175 (7)	0.0349 (9)	0.0251 (8)	−0.0024 (7)	−0.0015 (6)	−0.0099 (7)
C23	0.0243 (8)	0.0332 (9)	0.0182 (8)	0.0062 (7)	−0.0069 (6)	−0.0058 (7)
C24	0.0270 (8)	0.0277 (8)	0.0129 (7)	0.0058 (7)	0.0010 (6)	−0.0021 (6)
C25	0.0172 (7)	0.0231 (8)	0.0151 (7)	0.0043 (6)	0.0019 (6)	0.0003 (6)
C26	0.0170 (6)	0.0125 (7)	0.0152 (7)	0.0013 (5)	0.0005 (5)	−0.0006 (5)
C27	0.0213 (7)	0.0195 (7)	0.0185 (7)	−0.0010 (6)	0.0046 (6)	−0.0036 (6)
C28	0.0232 (8)	0.0216 (8)	0.0248 (8)	0.0012 (6)	0.0042 (6)	−0.0067 (6)
C29	0.0271 (8)	0.0170 (7)	0.0295 (9)	−0.0017 (6)	−0.0001 (7)	−0.0053 (6)
C30	0.0243 (8)	0.0164 (7)	0.0281 (8)	−0.0035 (6)	0.0024 (6)	0.0031 (6)
C31	0.0188 (7)	0.0183 (7)	0.0191 (7)	−0.0014 (6)	0.0032 (6)	0.0014 (6)
C1S	0.0548 (12)	0.0281 (10)	0.0371 (11)	−0.0012 (9)	0.0135 (9)	0.0017 (8)
C2S	0.0348 (10)	0.0405 (12)	0.0554 (14)	0.0020 (9)	0.0056 (10)	0.0035 (10)
C3S	0.0394 (11)	0.0378 (11)	0.0574 (14)	−0.0094 (9)	0.0229 (10)	−0.0042 (10)
C4S	0.0584 (13)	0.0277 (10)	0.0389 (11)	−0.0127 (9)	0.0137 (10)	−0.0011 (8)
C5S	0.0381 (10)	0.0241 (9)	0.0500 (12)	−0.0007 (8)	0.0010 (9)	−0.0026 (9)
C6S	0.0341 (10)	0.0261 (9)	0.0532 (13)	−0.0018 (7)	0.0171 (9)	−0.0077 (8)

Geometric parameters (Å, °)

Bond	Distance (Å)	Angle (°)	
N1—C1	1.319 (2)	C16—C17	1.526 (3)
N1—C4	1.453 (2)	C17—H17A	0.9900
N1—H1	0.84 (2)	C17—H17B	0.9900
N2—C2	1.331 (2)	C17—C18	1.507 (3)
N2—C8	1.4872 (19)	C18—H18A	0.9900
N2—C14	1.461 (2)	C18—H18B	0.9900
N3—C3	1.3247 (19)	C18—C19	1.519 (3)
N3—C20	1.4752 (18)	C19—H19A	0.9900
N3—C26	1.4789 (19)	C19—H19B	0.9900
C1—C2	1.377 (2)	C20—H20	1.0000
C1—C3	1.383 (2)	C20—C21	1.528 (2)
C2—C3	1.388 (2)	C20—C25	1.527 (2)
C4—H4A	0.9900	C21—H21A	0.9900
C4—H4B	0.9900	C21—H21B	0.9900
C4—C5	1.526 (3)	C21—C22	1.531 (2)
C5—H5A	0.9900	C22—H22A	0.9900
Bond	Distance (Å)	Bond	Distance (Å)
--------------	--------------	--------------	--------------
C5—H5B	0.9900	C22—H22B	0.9900
C5—C6	1.510 (3)	C22—C23	1.523 (3)
C6—H6AA	0.9900	C23—H23A	0.9900
C6—H6AB	0.9900	C23—H23B	0.9900
C6—H6BC	0.9900	C23—C24	1.521 (2)
C6—H6BD	0.9900	C24—H24A	0.9900
C6—C7	1.502 (9)	C24—H24B	0.9900
C6—C7A	1.60 (2)	C24—C25	1.526 (2)
C7—H7A	0.9800	C25—H25A	0.9900
C7—H7B	0.9800	C25—H25B	0.9900
C7—H7C	0.9800	C26—H26	1.0000
C7A—H7AA	0.9800	C26—C27	1.528 (2)
C7A—H7AB	0.9800	C26—C31	1.522 (2)
C7A—H7AC	0.9800	C27—H27A	0.9900
C8—H8	1.0000	C27—H27B	0.9900
C8—C9	1.502 (2)	C27—C28	1.525 (2)
C8—C13	1.499 (3)	C28—H28A	0.9900
C9—H9A	0.9900	C28—H28B	0.9900
C9—H9B	0.9900	C29—C29	1.524 (2)
C9—C10	1.535 (3)	C29—H29A	0.9900
C10—H10A	0.9900	C29—H29B	0.9900
C10—H10B	0.9900	C29—C30	1.525 (2)
C10—C11	1.499 (3)	C30—H30A	0.9900
C11—H11A	0.9900	C30—H30B	0.9900
C11—H11B	0.9900	C30—C31	1.526 (2)
C11—C12	1.501 (3)	C31—H31A	0.9900
C12—H12A	0.9900	C31—H31B	0.9900
C12—H12B	0.9900	C31—H1S	0.9500
C12—C13	1.523 (3)	C31—C2S	1.389 (3)
C13—H13A	0.9900	C31—C6S	1.379 (3)
C13—H13B	0.9900	C2S—H2S	0.9500
C14—H14	1.0000	C2S—C3S	1.378 (4)
C14—C15	1.518 (2)	C3S—H3S	0.9500
C14—C19	1.526 (2)	C3S—C4S	1.381 (3)
C15—H15A	0.9900	C4S—H4S	0.9500
C15—H15B	0.9900	C4S—C5S	1.379 (3)
C15—C16	1.535 (3)	C5S—H5S	0.9500
C16—H16A	0.9900	C5S—C6S	1.366 (3)
C16—H16B	0.9900	C6S—H6S	0.9500
C1—N1—C4	124.75 (15)	C16—C17—H17A	109.3
C1—N1—H1	119.5 (16)	C16—C17—H17B	109.3
C4—N1—H1	115.5 (16)	H17A—C17—H17B	107.9
C2—N2—C8	117.30 (13)	C18—C17—C16	111.77 (16)
C2—N2—C14	122.26 (13)	C18—C17—H17A	109.3
C14—N2—C8	119.49 (13)	C18—C17—H17B	109.3
C3—N3—C20	122.13 (12)	C17—C18—H18A	109.4
C3—N3—C26	119.14 (12)	C17—C18—H18B	109.4
C20—N3—C26	118.54 (11)	C17—C18—C19	111.36 (16)
-------------	------------	---------------	-------------
N1—C1—C2	151.11 (15)	H18A—C18—H18B	108.0
N1—C1—C3	148.47 (15)	C19—C18—H18A	109.4
C2—C1—C3	60.37 (11)	C19—C18—H18B	109.4
N2—C2—C1	146.06 (14)	C14—C19—H19A	109.4
N2—C2—C3	153.88 (14)	C14—C19—H19B	109.4
C1—C2—C3	60.04 (11)	C18—C19—C14	111.05 (16)
N3—C3—C2	153.84 (14)	C18—C19—H19A	109.4
C1—C3—C2	59.59 (11)	H18A—C18—H18B	109.4
N1—C4—H4A	109.3	N3—C20—H20	107.4
N1—C4—H4B	109.3	N3—C20—C21	111.47 (12)
N1—C4—C5	111.76 (15)	N3—C20—C25	111.67 (12)
H4A—C4—H4B	107.9	C21—C20—H20	107.4
C5—C4—H4A	109.3	C25—C20—H20	107.4
C5—C4—H4B	109.3	C25—C20—C21	111.18 (12)
C4—C5—H5A	109.0	C20—C21—H21A	109.5
C4—C5—H5B	109.0	C20—C21—H21B	109.5
H5A—C5—H5B	107.8	C20—C21—C22	110.73 (13)
C6—C5—C4	112.84 (15)	H21A—C21—H21B	108.1
C6—C5—H5A	109.0	C22—C21—H21A	109.5
C6—C5—H5B	109.0	C22—C21—H21B	109.5
C5—C6—H6AA	108.3	C21—C22—H22A	109.4
C5—C6—H6AB	108.3	C21—C22—H22B	109.4
C5—C6—H6BC	111.6	H22A—C22—H22B	108.0
C5—C6—H6BD	111.6	C23—C22—C21	111.21 (14)
C5—C6—C7A	100.6 (11)	C23—C22—H22A	109.4
H6AA—C6—H6AB	107.4	C23—C22—H22B	109.4
H6BC—C6—H6BD	109.4	C22—C23—H23A	109.4
C7—C6—C5	116.1 (5)	C22—C23—H23B	109.4
C7—C6—H6AA	108.3	H23A—C23—H23B	108.0
C7—C6—H6AB	108.3	C24—C23—C22	111.10 (13)
C7A—C6—H6BC	111.6	C24—C23—H23A	109.4
C7A—C6—H6BD	111.6	C24—C23—H23B	109.4
C6—C7—H7A	109.5	C23—C24—H24A	109.5
C6—C7—H7B	109.5	C23—C24—H24B	109.5
C6—C7—H7C	109.5	C23—C24—C25	110.84 (13)
H7A—C7—H7B	109.5	H24A—C24—H24B	108.1
H7A—C7—H7C	109.5	C25—C24—H24A	109.5
H7B—C7—H7C	109.5	C25—C24—H24B	109.5
C6—C7A—H7AA	109.5	C20—C25—H25A	109.5
C6—C7A—H7AB	109.5	C20—C25—H25B	109.5
C6—C7A—H7AC	109.5	C24—C25—C20	110.73 (13)
H7AA—C7A—H7AB	109.5	C24—C25—H25A	109.5
H7AA—C7A—H7AC	109.5	C24—C25—H25B	109.5
H7AB—C7A—H7AC	109.5	H25A—C25—H25B	108.1
N2—C8—H8	106.6	N3—C26—H26	106.8
N2—C8—C9	113.20 (14)	N3—C26—C27	112.48 (12)
Bond	Angle (deg)	Bond	Angle (deg)
---------------------	-------------------	---------------------	-------------------
N2—C8—C13	112.58 (14)	N3—C26—C31	112.18 (12)
C9—C8—H8	106.6	C27—C26—H26	106.8
C13—C8—H8	106.6	C31—C26—H26	106.8
C13—C8—C9	110.67 (16)	C31—C26—C27	111.30 (12)
C8—C9—H9A	109.7	C26—C27—H27A	109.7
C8—C9—H9B	109.7	C26—C27—H27B	109.7
C8—C9—C10	109.82 (15)	H27A—C27—H27B	109.7
H9A—C9—C9H9B	108.2	C28—C27—C26	108.6 (13)
C10—C9—H9A	109.7	C28—C27—H27A	109.7
C10—C9—H9B	109.7	C28—C27—H27B	109.7
C9—C10—H10A	109.2	C27—C28—H28A	109.4
C9—C10—H10B	109.2	C27—C28—H28B	109.4
H10A—C10—H10B	107.9	H28A—C28—H28B	109.0
C11—C10—C9	111.95 (16)	C29—C28—C27	111.15 (13)
C11—C10—H10A	109.2	C29—C28—H28A	109.4
C11—C10—H10B	109.2	C29—C28—H28B	109.4
C11—C11—H11A	109.2	C28—C29—C29	109.4
C11—C11—H11B	109.3	C28—C29—C29	109.4
C10—C11—C12	112.11 (16)	C28—C29—C30	111.18 (13)
H11A—C11—H11B	107.9	H29A—C29—C29	110.1
C12—C11—H11A	109.2	C30—C29—H29A	109.4
C12—C11—H11B	109.2	C30—C29—H29B	109.4
C11—C12—H12A	109.3	C29—C30—C30	109.3
C11—C12—H12B	109.3	C29—C30—H30A	109.3
C12—C12—H12B	109.3	C30—C30—H30A	109.3
C8—C12—H12B	109.3	C30—C30—C30	109.3
C8—C13—C12	110.27 (17)	C26—C31—C30	109.30 (12)
C8—C13—H13A	109.6	C26—C31—H13A	109.8
C8—C13—H13B	109.6	C26—C31—H31B	109.8
C12—C13—H13A	109.6	C30—C31—C31	109.8
C12—C13—H13B	109.6	C30—C31—H31B	109.8
H13A—C13—H13B	108.1	H31A—C31—C31	108.3
N2—C14—H14	106.5	C2S—C1S—H1S	120.0
N2—C14—C15	111.86 (14)	C6S—C1S—H1S	120.0
N2—C14—C19	111.73 (14)	C6S—C1S—C2S	120.1 (2)
C15—C14—H14	106.5	C1S—C2S—H2S	120.1
C15—C14—C19	113.31 (14)	C3S—C2S—C1S	119.8 (2)
C19—C14—H14	106.5	C3S—C2S—H2S	120.1
C14—C15—H15A	109.5	C2S—C3S—H3S	120.3
C14—C15—H15B	109.5	C2S—C3S—C4S	119.5 (2)
C14—C15—C16	110.85 (17)	C4S—C3S—H3S	120.3
H15A—C15—H15B	108.1	C3S—C4S—H4S	119.8
C16—C15—H15A	109.5	C5S—C4S—C3S	120.4 (2)
C16—C15—H15B	109.5	C5S—C4S—H4S	119.8
C15—C16—H16A	109.3	C4S—C5S—H5S	119.9
C15—C16—H16B	109.3	C6S—C5S—C4S	120.1 (2)
H16A—C16—H16B 108.0 C6S—C5S—H5S 119.9
C17—C16—C15 111.41 (16) C1S—C6S—H6S 120.0
C17—C16—H16A 109.3 C5S—C6S—C1S 120.05 (19)
C17—C16—H16B 109.3 C5S—C6S—H6S 120.0

N1—C1—C2—N2 4.0 (5) C11—C12—C13—C8 −55.7 (3)
N1—C1—C2—C3 −177.3 (3) C13—C8—C9—C10 −58.7 (2)
N1—C1—C3—N3 −2.2 (5) C14—N2—C2—C1 −173.4 (2)
N1—C1—C3—C2 177.5 (3) C14—N2—C2—C3 9.2 (4)
N1—C4—C5—C6 −175.67 (16) C14—N2—C8—C9 68.4 (2)
N2—C2—C3—N3 −2.0 (6) C14—N2—C8—C13 −58.1 (2)
N2—C2—C3—C1 178.3 (4) C15—C14—C15—C17 −52.9 (2)
N2—C8—C9—C10 173.80 (16) C15—C14—C19—C18 −53.5 (2)
N2—C8—C13—C12 −172.96 (18) C15—C16—C17—C18 55.6 (2)
N2—C14—C15—C16 179.90 (14) C16—C17—C18—C19 −56.5 (2)
N2—C14—C19—C18 179.06 (14) C17—C18—C19—C14 54.6 (2)
N3—C20—C21—C22 −179.07 (13) C19—C14—C15—C16 52.51 (19)
N3—C26—C27—C28 −174.43 (12) C20—N3—C3—C1 175.9 (2)
N3—C26—C31—C30 174.66 (12) C20—N3—C3—C2 −3.7 (4)
C1—N1—C4—C5 −73.7 (2) C20—N3—C26—C27 −116.15 (14)
C1—C2—C3—N3 179.7 (3) C20—N3—C26—C21 −55.36 (18)
C2—N2—C8—C9 −100.70 (18) C20—N3—C26—C25 −56.42 (16)
C2—N2—C8—C13 132.84 (18) C21—C22—C23—C24 56.07 (19)
C2—N2—C14—C15 −67.2 (2) C22—C23—C24—C25 −56.65 (19)
C2—N2—C14—C19 61.1 (2) C23—C24—C25—C20 56.72 (17)
C2—C1—C3—N3 −179.8 (3) C25—C20—C21—C22 55.63 (18)
C3—N3—C20—C21 109.43 (15) C26—N3—C3—C1 −8.3 (3)
C3—N3—C20—C25 −125.54 (14) C26—N3—C3—C2 171.2 (3)
C3—N3—C26—C27 −57.58 (17) C26—N3—C20—C21 −65.46 (17)
C3—N3—C26—C31 68.81 (17) C26—N3—C20—C25 59.57 (16)
C3—C1—C2—N2 −178.7 (3) C26—N3—C20—C29 −58.31 (16)
C4—N1—C1—C2 −15.3 (4) C27—C26—C31—C30 54.94 (18)
C4—N1—C1—C3 169.1 (2) C27—C28—C29—C30 −55.23 (18)
C4—C5—C6—C7 −177.2 (6) C28—C29—C30—C31 56.37 (17)
C4—C5—C6—C7A 170.9 (10) C31—C26—C27—C28 58.71 (16)
C8—N2—C2—C3 −4.6 (3) C1S—C2S—C3S—C4S 0.5 (3)
C8—N2—C14—C15 124.29 (15) C2S—C1S—C6S—C5S −0.6 (3)
C8—N2—C14—C19 −107.48 (16) C2S—C3S—C4S—C5S −0.2 (3)
C8—C9—C10—C11 55.2 (2) C3S—C4S—C5S—C6S −0.6 (3)
C9—C8—C13—C12 59.2 (3) C4S—C5S—C6S—C1S 1.0 (3)
C9—C10—C11—C12 −52.4 (3) C6S—C1S—C2S—C3S −0.2 (3)
C10—C11—C12—C13 52.5 (3)