Beach landscape Dataset of Fernando de Noronha Island (Brazil)

Luana Carla Portz, Samanta da Costa Cristiano, Gabriela Camboim Rockett

Civil and Environmental Department, Universidad de la Costa, Barranquilla, Atlántico, Colombia
Programa de Pós-Graduação em Gerenciamento Costeiro, Universidade Federal do Rio Grande, RS, Brazil
Universidade Federal do Rio Grande do Sul/Campus Litoral Norte, Centro de Estudos Costeiros, Limnológicos e Marinhas (CECLIMAR), Brazil

Abstract

Beach landscape Dataset of Fernando de Noronha Island (Brazil), using a checklist with 26 physical and human parameters. Fernando de Noronha beaches were divided into sectors according to the landscape diversity. In total, 19 sectors were evaluated based on observations done during walks in the area, observations from viewpoints, with remote data. The evaluations were performed during fieldwork from 2014 (summer) and 2016 (spring). The landscape quality evaluation of Fernando de Noronha was performed using the Coastal Scenery Evaluation System. This method converts qualitative-quantitative data in quantitative data by estimating weights for 26 parameters (18 physical parameters – P - and 8 human-related parameters – H). The main parameters that define the landscape quality are classified from 1 (absence/bad quality) to 5 (presence/excellent quality). A mathematical model based on fuzzy logic was utilized to integrate the parameters weights in a special system for the scenarios classifications resulting in a value named D. The D-value is the indicator of the attractiveness of the evaluated place. The

* Corresponding author.
E-mail address: lportz1@cuc.edu.co (L.C. Portz).

https://doi.org/10.1016/j.dib.2020.105672
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license.
(http://creativecommons.org/licenses/by/4.0/)
beaches are divided into classes ranging from 1 (extremely attractive natural site) to 5 (unattractive urban areas).

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)
The D value (attractiveness indicator) is presented for summer and spring periods (Table 1). Histograms provide a visual summary of the physical and human parameters obtained through the application of the checklist and are useful for immediate evaluation of high and low ranking attributes. The values defined for each parameter (physical and human) are shown in Fig. 2 (beaches without seasonal variations). Seasonal changes in the parameters can be seen in the histogram (Figs. 3, 4 and 5). As an example, Cacimba do Padre Beach changes from
Fig. 2. Histogram with variations in the attributes' values of categories 1 to 5 (to see these categories look at Table 1).
class 1 in the spring season (D-value = 0.89) to class 2 in the summer season (D-value = 0.79) (Table 1) (Fig. 3).

Attribute values 4 or 5 produces a high scenic value (high rating). The predominance of values 4 and 5 in physical and anthropogenic parameters in the histogram can be observed for Leão Beach and Sancho Bay (Fig. 3). On the other hand, attribute values 1 or 2 produces a high scenic
value (high rating), indicating the unfavorable impact on physical and/or human parameters. In this assessment, it is generally the human parameters that reduce the assessment, such as Porto/Pier Beach (Fig. 2).
2. Experimental Design, Materials, and Methods

The methodology used to perform the beach landscape quality evaluation of Fernando de Noronha island beaches (Brazil) was the Coastal Scenery Evaluation System [1–3]. This method consists of estimating weights for 26 parameters (18 physical parameters – P – and 8 human-related parameters – H) and converting qualitative-quantitative data in quantitative data. Ac-
Fig. 3. Histogram with variations in the attribute's values of categories 1 to 5 (to see these categories look at Table 1) for Cacimba do Padre Beach (Spring and Summer).
Fig. 4. Histogram with variations in the attribute's values of categories 1 to 5 (to see these categories look at Table 1) for Conceição Beach (Spring and Summer).
Fig. 5. Histogram with variations in the attribute's values of categories 1 to 5 (to see these categories look at Table 1) for Cachorro Beach (Spring and Summer).
According to the Evaluation System, the 26 parameters were considered essential for an attractive coastal landscape and are shown in Table 1. The parameters are weighted from 1 to 5, where: 1 refers to the item’s “absence or bad quality” and 5 refers to the item’s “presence or excellent quality”.

For the evaluation of Fernando de Noronha island beaches, the beaches were divided in 19 homogeneous landscape sectors, (shown in Fig. 1). Some beaches, due to its landscape variation (heterogeneity), were divided into more than one sector (e.g. Atalaia/rocky beach and Atalaia/sandy beach; Porto/Pier Beach and Porto/Natural Beach). From the total beach sectors, 10 of them are inside the APA area and 9 of them are inside the PARNAMAR area (Fig. 1).

The evaluation of each beach sector and checklist filling was performed (i) in fieldwork - using landscape observations during walks in the beaches and/or from viewpoints, and (ii) in data remote-check using Google Earth imagery. Due to seasonal variability, landscape evaluations were performed during spring and during summer - summer fieldwork performed in 2014 and spring fieldwork performed in 2016. The professionals involved in the field evaluations were from the areas of biosciences and geosciences/geography.

After each parameter’s evaluation (checklist), data processing was performed, in order to integrate the parameters weights in a special system for the scenarios classifications. A graphical summary of the investigated sceneries were obtained/generated from the weighted averages and association degrees and histograms [4]. Beach scenery is better when most of the parameters scores “5” (which result in a right-leaning association degree curve), and in the same way the potential status of the scenic assessment are indicated from the weighted average – the more parameters scoring “5”, the better the coastal scenery. For this integration, a mathematical model based on fuzzy logic is used and the result obtained from this model is a value named D (D-value), which is the indicator of the attractiveness of the evaluated beach. According to the Method [1], there are five possible beach classes, according to the D-value obtained (Table 2).

Class 1 beaches are extremely attractive natural sites, with a D-value >0.85. Class 2 beaches are natural, attractive areas with high landscaping value site and a D-value between 0.65 and 085. Class 3 beaches are mostly natural areas with some landscaping value highlighted, and D-value between 0.65 and 0.40. Class 4 beaches are urban areas, mainly unattractive, with few landscaping values highlighted, and D-value between zero and 0.40. Class 5 beaches are unattractive urban areas, with intense development and low landscaping value, and D-value below zero.

The data obtained in this study are available as georreferenced files (.kmz)

CRediT authorship contribution statement

Luana Carla Portz: Conceptualization, Formal analysis, Investigation, Methodology, Visualization, Writing - original draft, Writing - review & editing. Samanta da Costa Cristiano: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Visualization,
Writing - original draft, Writing - review & editing. Gabriela Camboim Rockett: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Resources, Visualization, Writing - original draft, Writing - review & editing.

Acknowledgments

This research was authorized by the Instituto Chico Mendes da Biodiversidade (number 42493-6), which provided accommodation and free access to the beaches for field surveys. We thank the Administração do Distrito Estadual de Fernando de Noronha for the logistical support.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] A. Ergin, E. Karaesmen, B. Uçar, A Quantitative Study for Evaluation of Coastal Scenery, Journal of Coastal Research 277 (2011) 1065–1075 https://doi.org/10.2112/jcoastres-d-09-00093.1.
[2] A. Ergin, A.T. Williams, A. Micallef, Coastal Scenery: Appreciation and Evaluation, Journal of Coastal Research 224 (2006) 958–964 https://doi.org/10.2112/04-0351.1.
[3] A. Ergin, E. Karaesmen, A. Micallef, A.T. Williams, A new methodology for evaluating coastal scenery: Fuzzy logic systems, Area 36 (2004) 367–386 https://doi.org/10.1111/j.0004-0894.2004.00238.x.
[4] A.T. Williams, A. Khattabi, Beach scenery at Nador Province, Morocco, Journal of Coastal Conservation 19 (2015) 743–755 https://doi.org/10.1007/s11852-015-0393-9.