THE BJÖRLING PROBLEM FOR MINIMAL SURFACES IN A LORENTZIAN THREE-DIMENSIONAL LIE GROUP

ADRIANA A. CINTRA, FRANCESCO MERCURI, AND IRENE I. ONNIS

Abstract. In this paper we will show the existence and uniqueness of the solution of the Björling problem for minimal surfaces in a 3-dimensional Lorentzian Lie group.

1. Introduction

The Weierstrass representation formula for minimal surfaces in \mathbb{R}^3 has been a fundamental tool for producing examples and proving general properties of such surfaces, since the surfaces can be parametrized by holomorphic data. In [10] the authors describe a general Weierstrass representation formula for simply connected minimal surfaces in an arbitrary Riemannian manifold. The partial differential equations involved are, in general, too complicated to be solved explicitly. However, for particular ambient 3-manifolds, such as the Heisenberg group, the hyperbolic space and the product of the hyperbolic plane with \mathbb{R}, the equations are more manageable and the formula can be used to produce examples (see [7], [10]).

In the Lorentz-Minkowski space L^3, i.e. the affine three space \mathbb{R}^3 endowed with the Lorentzian metric

$$ds^2 = dx_1^2 + dx_2^2 - dx_3^2,$$

a Weierstrass representation type theorem was proved by Kobayashi [6] for spacelike minimal immersions and by Konderak [8] for the case of timelike minimal surfaces. Recently, these theorems were extended for minimal surfaces in Riemannian and Lorentzian 3-dimensional manifolds by Lira, Melo and Mercuri (see [9]).

The aim of this paper is show how the Weierstrass representation formula can be used, if the ambient manifold is a 3-dimensional Lorentzian Lie group, in order to prove existence and uniqueness of the solution of the Björling problem. We remember that the classical Björling problem, proposed by Björling (see [3]) in 1844, asks for the construction of a minimal surface in \mathbb{R}^3 containing a given analytic curve β with a given analytic unit normal V along it. The problem was solved by H.A. Schwarz (see [13]) in 1890 by means of an integral formula in terms of β and V. Some extensions of this problem in others ambient spaces have been proposed and solved in [1, 2, 4, 11].

The paper is organized as follows. In Section 2 we recall some basics facts of Lorentzian calculus, which play the role of complex calculus in the classical case, for timelike minimal surfaces. Section 3 is devoted to present a Weierstrass type representation for minimal surfaces in Lorentzian 3-dimensional manifolds, following [9]. In Section 4 we state and
solve the Björling problem for timelike and spacelike minimal surfaces in a Lorentzian 3-dimensional Lie group. For timelike minimal surfaces this is done by consideration two different cases: when β is a timelike curve we will call the corresponding problem the \textit{timelike Björling problem}, and when β is a spacelike curve we will have the \textit{spacelike Björling problem}.

In Sections 5, 6 and 7 we present some examples of minimal surfaces constructed via Björling problem for the case in which the ambient manifold is the Heisenberg group H_3, the de Sitter space S^3_1 and the space $H^2 \times \mathbb{R}$, equipped with left-invariant Lorentzian metrics.

2. The algebra \mathbb{L} of paracomplex numbers

In [8], the author use paracomplex analysis to deduce a Weierstrass representation formula for timelike minimal surfaces in \mathbb{L}^3.

We recall that the algebra of paracomplex (or Lorentz) numbers is the algebra

$$\mathbb{L} = \{a + \tau b \mid a, b \in \mathbb{R}\},$$

where τ is an imaginary unit with $\tau^2 = 1$. The two internal operations are the obvious ones. We define the conjugation in \mathbb{L} as $a + \tau b \mapsto a - \tau b$ and the \mathbb{L}-norm of $z = a + \tau b \in \mathbb{L}$ is defined by

$$||z|| = |z \bar{z}|^{\frac{1}{2}} = |a^2 - b^2|^{\frac{1}{2}}.$$

The algebra \mathbb{L} admits the set consisting of zero divisors $K = \{a \pm \tau a \in \mathbb{L} : a \neq 0\}$. If $z \notin K \cup \{0\}$, then z is invertible with inverse $z^{-1} = \bar{z}/(z \bar{z})$.

We have that \mathbb{L} is isomorphic to the algebra $\mathbb{R} \oplus \mathbb{R}$ via the map:

$$\rho(a + \tau b) = (a + b, a - b).$$

The set \mathbb{L} has a natural topology as a 2-dimensional real vector space.

Definition 2.1. Let $\Omega \subseteq \mathbb{L}$ be an open set and $z_0 \in \Omega$. The \mathbb{L}-derivative of a function $f : \Omega \to \mathbb{L}$ at z_0 is defined by

$$(2.1) \quad f'(z_0) := \lim_{z \to z_0, z \notin K \cup \{0\}} \frac{f(z) - f(z_0)}{z - z_0},$$

if the limit exists. If $f'(z_0)$ exists, we will say that f is \mathbb{L}-differentiable at z_0.

Remark 2.2. The condition of \mathbb{L}-differentiability is much less restrictive that the usual complex differentiability. For example, \mathbb{L}-differentiability at z_0 does not imply continuity at z_0. However, \mathbb{L}-differentiability in an open set $\Omega \subset \mathbb{L}$ implies usual differentiability in Ω.

Introducing the paracomplex operators:

$$\frac{\partial}{\partial z} = \frac{1}{2}(\frac{\partial}{\partial u} + \tau \frac{\partial}{\partial v}), \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2}(\frac{\partial}{\partial u} - \tau \frac{\partial}{\partial v}),$$

where $z = u + \tau v$, we have that a differentiable function $f : \Omega \to \mathbb{L}$ is \mathbb{L}-differentiable if and only if

$$(2.2) \quad \frac{\partial f}{\partial \bar{z}} = 0.$$
We observe that, writing \(f(u, v) = a(u, v) + \tau b(u, v) \), \(u + \tau v \in \Omega \), the condition (2.2) is equivalent to the para-Cauchy-Riemann equations:

\[
\begin{align*}
\frac{\partial a}{\partial u} &= \frac{\partial b}{\partial v}, \\
\frac{\partial a}{\partial v} &= \frac{\partial b}{\partial u},
\end{align*}
\]

whose integrability conditions are given by the wave equations

\[a_{uu} - a_{uv} = 0 = b_{uu} - b_{uv}. \]

3. The Weierstrass representation formula in a Lorentzian 3-manifold

We will denote by \(\mathbb{K} \) either the complex numbers \(\mathbb{C} \) or the paracomplex numbers \(\mathbb{L} \), and by \(\Omega \subset \mathbb{K} \) an open set. Let \((M, g) \) be a Lorentzian 3-manifold and \(f : \Omega \subset \mathbb{K} \to M \) a smooth conformal immersion. We endow \(\Omega \) with the induced metric that makes \(f \) an isometric immersion. We will say that \(f \) is spacelike if the induced metric on \(\Omega \), via \(f \), is a Riemannian metric, and that \(f \) is timelike if the induced metric is a Lorentzian metric.

We observe that in the Lorentzian case, we can endow \(\Omega \) with paracomplex isothermic coordinates and, as in the Riemannian case, they are locally described by complex isothermic charts with conformal changes of coordinates. We will denote by \(z = u + i v \) (resp. \(z = u + \tau v \)) a complex (resp. paracomplex) isothermal coordinate in \(\Omega \).

The metric \(g \) may be extended for the \(E = f^*TM \otimes \mathbb{K} \) as:

- a (para)complex bilinear form \((.,.) : E \times E \to \mathbb{K} \);
- a (para)Hermitian metric \(\langle\langle ., . \rangle\rangle : E \times E \to \mathbb{K} \);

and the two extensions are related by:

\[\langle\langle V, W \rangle\rangle = (V, \overline{W}). \]

Theorem 3.1 (Weierstrass Representation ([9])). Let \(f : \Omega \subset \mathbb{K} \to M^3 \) be a conformal minimal spacelike (or timelike) immersion and \(g = (g_{ij}) \) be the induced metric. Define the (para)complex tangent vector \(\phi \in \Gamma(f^*TM \otimes \mathbb{K}) \) by

\[\phi(z) = \frac{\partial f}{\partial z} \bigg|_{f(z)} = \sum \phi_i \frac{\partial}{\partial x_i}. \]

Then \(\phi_j, j = 1, 2, 3, \) satisfy the following conditions:

i) \(\langle\langle \phi, \phi \rangle\rangle \neq 0, \)

ii) \(\langle \phi, \phi \rangle = 0, \)

iii) \[\frac{\partial \phi_k}{\partial z} + \sum_{i,j=1}^3 \Gamma^k_{ij} \phi_i \phi_j = 0, \]

where \(\{\Gamma^k_{ij}\} \) are the Christoffel symbols of \(M \). Conversely, if \(\Omega \subset \mathbb{K} \) is a simply connected domain and \(\phi_j : \Omega \to \mathbb{K}, j = 1, 2, 3, \) are (para)complex functions satisfying the conditions above, then the map

\[f : \Omega \to M, \quad f_j(z) = 2 \Re \int_{z_0}^z \phi_j \, dz, \]

is a well-defined conformal spacelike (or timelike) minimal immersion (here \(z_0 \) is an arbitrary fixed point of \(\Omega \) and the integral is along any curve joining \(z_0 \) to \(z \)).
The equation $iii)$ in the Theorem 3.1 is a system of partial differential equations and, in general, it is quite hard to find explicit solutions. However, in certain spaces, like the Lie groups, these equations become a system of partial differential equations with constant coefficients.

3.1. The case of Lorentzian Lie Groups. Let M be a 3-dimensional Lie group endowed with a left-invariant Lorentzian metric g and $\{E_1, E_2, E_3\}$ be left-invariant orthonormal frame field, with E_1, E_2 spacelike and E_3 timelike. For tangent vectors $W = \sum_{i=1}^{3} w_i E_i$ and $Y = \sum_{i=1}^{3} y_i E_i$, the Lorentzian cross product $Y \times W$ is given by:

$$Y \times W = (y_2 w_3 - w_2 y_3) E_1 + (y_3 w_1 - w_3 y_1) E_2 + (y_2 w_1 - w_2 y_1) E_3.$$

It is easy to check that $Y \times W = -W \times Y$ and, also,

$$g(U \times Y, W \times V) = g(U, V) g(Y, W) - g(U, W) g(Y, V),$$

$$(U \times Y) \times W = g(Y, W) U - g(U, W) Y.$$

Let $f : \Omega \subset \mathbb{K} \to M$ be a conformal minimal spacelike (or timelike) immersion, where $\Omega \subset \mathbb{K}$ is an open set. Fixed a isothermal parameter $z \in \Omega$, we can write the (para)complex tangent field $\phi = \frac{\partial f}{\partial z}$ along f both in terms of local coordinates x_1, x_2, x_3 in M and also using the left-invariant frame field. Hence, one has

$$\phi = \sum_{a=1}^{3} \phi_a \frac{\partial}{\partial x_a} = \sum_{a=1}^{3} \psi_a E_a,$$

where the functions ϕ_a and ψ_b, with $a, b = 1, 2, 3$, are related by

$$(3.3) \quad \phi_a = \sum_{b=1}^{3} A_{ab} \psi_b, \quad a = 1, 2, 3,$$

where $A : \Omega \to GL(3, \mathbb{R})$. In terms of the components $\psi_a, a = 1, 2, 3$, the equation $iii)$ in Theorem 3.1 may be written as

$$\frac{\partial \psi_c}{\partial \bar{z}} + \frac{1}{2} \sum_{a,b=1}^{3} L_{ab}^{c} \bar{\psi}_a \psi_b = 0, \quad c = 1, 2, 3,$$

where the symbols L_{ab}^{c} are defined by

$$\nabla_{E_a} E_b = \sum_{c=1}^{3} \frac{L_{ab}^{c}}{2} E_c \quad a, b = 1, 2, 3.$$

Let C_{ab}^{c} be the structure constants of the Lie algebra of M, i.e., $[E_a, E_b] = \sum_{c=1}^{3} C_{ab}^{c} E_c$. Therefore, by the Levi-Civita Theorem, we have

$$(3.4) \quad L_{ab}^{c} = (C_{ab}^{c} - C_{bc}^{a} \varepsilon_a \varepsilon_c - C_{ac}^{b} \varepsilon_b \varepsilon_c),$$

where $\varepsilon_a = \langle E_a, E_a \rangle$, with $a = 1, 2, 3$.

Consequently, the Theorem 3.1 may be written in the case of 3-dimensional Lie groups as follows.
Theorem 3.2 ([9]). Let M be 3-dimensional Lie group endowed with a left-invariant Lorentzian metric and $\{E_1, E_2, E_3\}$ a left-invariant orthonormal frame field. Let $f: \Omega \to M$ be a conformal minimal immersion, where $\Omega \subset \mathbb{K}$ is an open set. We denote by $\phi \in \Gamma(f^*TM \otimes \mathbb{K})$ the (para)complex tangent vector

$$\phi(z) = \frac{\partial f}{\partial z}.$$

Then, the components ψ_a, $a = 1, 2, 3$, of ϕ defined by

$$\phi(z) = \sum_{a=1}^{3} \psi_a E_a|_{f(z)},$$

satisfy the followings conditions:

i) $|\psi_1|^2 + |\psi_2|^2 - |\psi_3|^2 \neq 0,$

ii) $\psi_1^2 + \psi_2^2 - \psi_3^2 = 0,$

iii) $\frac{\partial \psi_c}{\partial \bar{z}} + \sum_{a,b=1}^{3} \frac{L_{ab}}{2} \bar{\psi}_a \psi_b = 0.$

Conversely, if $\Omega \subset \mathbb{K}$ is a simply connected domain and $\psi_a : \Omega \to \mathbb{K}$, $a = 1, 2, 3$, are (para)complex functions satisfying the conditions above, then the map $f : \Omega \to M$ which coordinate components are given by:

$$(3.5) \quad f_a = 2 \Re \int \sum_{b=1}^{3} A_{ab} \psi_b \, dz, \quad a = 1, 2, 3,$$

is a well-defined conformal minimal immersion.

Remark 3.3. We observe explicitly that the equations above does not give the coordinates components of the immersion f just by a direct integration since the functions A_{ab} must be computed along the solutions f_a. The formula (3.5) is in fact an integral equation. However, as we will see, for special ambient manifolds this problem can be avoided by ad hoc arguments.

4. The Björling problem for three-dimensional Lie groups

We denote by M a 3-dimensional Lie group endowed with a left-invariant Lorentzian metric g. Let $\beta : I \to M$ be a analytic curve in M and $V : I \to TM$ a unitary analytic spacelike (respectively, timelike) vector field along β, such that $g(\dot{\beta}, V) \equiv 0$. The Björling problem can be formulate as follows:

Determine a timelike (respectively, spacelike) minimal surface

$$f : I \times (-\epsilon, \epsilon) = \Omega \subseteq \mathbb{K} \to M$$

such that

i. $f(u, 0) = \beta(u),$

ii. $N(u, 0) = V(u),$

for all $u \in I$, where $N : \Omega \to TM$ is the Gauss map of the surface.

Before showing that the above problem have a unique solution, we prove the following:
Lemma 4.1. Let $ψ_i : Ω ⊆ ℝ → ℝ, i = 1, 2$, be two differentiable functions and $ψ_3^2 = ψ_1^2 + ψ_2^2$. We suppose that $ψ_i, i = 1, 2$, satisfy the two first equations of the third item in Theorem 3.2. Then $ψ_3$ satisfy the third equation.

Proof. Differentiating $ψ_3^2 = ψ_1^2 + ψ_2^2$ with respect to z and using that $ψ_i, i = 1, 2$, satisfy the two first equations of item iii) in Theorem 3.2, we have that

$$ψ_3 \frac{∂ψ_3}{∂z} = ψ_1 \frac{∂ψ_1}{∂z} + ψ_2 \frac{∂ψ_2}{∂z} = -\frac{1}{2} \sum_{j,k=1}^{3} [L_{jk}^1 ψ_1 + L_{jk}^2 ψ_2] \bar{ψ}_j ψ_k.$$

Therefore, to prove the lemma, it suffices to show that

$$\sum_{j,k=1}^{3} [L_{jk}^1 ψ_1 + L_{jk}^2 ψ_2 - L_{jk}^3 ψ_3] \bar{ψ}_j ψ_k = 0.$$

We may write the above sum as follows:

$$\sum_{i=1}^{3} \{L_{i1}^1 ψ_1^2 + L_{i2}^2 ψ_2^2 - L_{i3}^3 ψ_3^2 + (L_{i1}^1 + L_{i2}^1) ψ_1 ψ_2 + (L_{i3}^1 - L_{i1}^3) ψ_1 ψ_3 + (L_{i3}^2 - L_{i2}^3) ψ_3 ψ_2\} \bar{ψ}_i.$$

Now, using (3.4), we have that

$$L_{ik}^k = L_{i1}^2 + L_{i2}^1 = L_{i3}^1 - L_{i1}^3 = L_{i3}^2 - L_{i2}^3 = 0, \quad i = 1, 2, 3.$$

Then

$$\frac{∂ψ_3}{∂z} + \frac{1}{2} \sum_{j,k=1}^{3} L_{jk}^3 \bar{ψ}_j ψ_k = 0.$$

\(\square\)

4.1. The Björling Problem for timelike surfaces. We observe that if f is a timelike conformal minimal immersion we have that $ψ_i = \frac{∂f}{∂z}, i = 1, 2, 3$, satisfy the condition iii) in Theorem 3.2, which is equivalent to the hyperbolic system of partial differential equations (see [5]):

\[(4.1) \quad \frac{∂^2 f_i}{∂u^2} - \frac{∂^2 f_i}{∂v^2} + B_i \left(\frac{∂f_i}{∂u}, \frac{∂f_i}{∂v}\right) = 0,\]

where $B_i, i = 1, 2, 3$, contain at most first-order derivatives of the functions f_i.

So the Björling problem may be interpreted as a Cauchy problem involving quasilinear partial differentiable equations (4.1) with initial data:

$$f_i(u, 0) = β_i(u), \quad (V(u) × β(u))_i = \left(\frac{∂f}{∂v}(u, 0)\right)_i, \quad i = 1, 2, 3.$$

Remark 4.2. Let $γ(s) = (u(s), v(s))$ be a characteristic curve in $Ω$ (see [5]), then

$$u'(s)^2 - v'(s)^2 = 0$$

that is, $γ$ ia a straight line $u = ±v$ in $Ω$.

It is known that the Cauchy problem may not have a unique solution or it does not have solutions at all if the initial data is along characteristic curves. Moreover, this lines
correspond to the lightlike curves of the Björling problem. Consequently, we consider two cases: when β is a timelike curve we will call the corresponding problem the timelike Björling problem, and when β is a spacelike curve we will have the spacelike Björling problem.

Theorem 4.3 (Timelike Björling Problem). Let $\beta : I \to M$ be a analytic timelike curve in M and $V : I \to TM$ a unitary analytic spacelike vector field along β, such that $g(\beta, V) \equiv 0$. Then, there exists a unique conformal timelike minimal surface $f : I \times (-\epsilon, \epsilon) = \Omega \subseteq \mathbb{L} \to M$ such that

i. $f(u, 0) = \beta(u),$

ii. $N(u, 0) = V(u),$

for all $u \in I$, where $N : \Omega \to TM$ is the Gauss map of the surface.

Proof. Consider the system

$$
\begin{align*}
\frac{\partial \psi_1}{\partial \bar{z}} + \sum_{j,k=1}^{3} L_{jk}^1 \bar{\psi}_j \psi_k &= 0, \\
\frac{\partial \psi_2}{\partial \bar{z}} + \sum_{j,k=1}^{3} L_{jk}^2 \bar{\psi}_j \psi_k &= 0,
\end{align*}
$$

where $\psi_i : \Omega \to \mathbb{L}$ and $\psi_3 = \psi_1^2 + \psi_2^2$.

As β is a timelike curve, then it’s not a characteristic curve and, so, this system is of Cauchy-Kovalevskaya type ([12]). Therefore, fixing the initial data, it admits a unique solution (locally). Hence, we must find the initial data so that the minimal surface has the required properties. We observe that, if f is a solution of the Björling problem, we have that

$$
\frac{\partial f}{\partial u}(u, 0) = \dot{\beta}(u) \quad \text{and} \quad \frac{\partial f}{\partial v}(u, 0) = V(u) \times \dot{\beta}(u).
$$

Then

$$
\phi(u, 0) = \frac{1}{2} \left(\frac{\partial f}{\partial u} + \tau \frac{\partial f}{\partial v} \right)(u, 0) = \frac{1}{2} \left(\dot{\beta}(u) + \tau V(u) \times \dot{\beta}(u) \right).
$$

So the initial condition for the system is given by

$$
\psi(u, 0) = A^{-1}(\beta(u)) \phi(u, 0),
$$

where A is given by (3.3).

We note that Lemma 4.1 implies that the functions ψ_i satisfy the equations ii) and iii) in the Weierstrass representation Theorem 3.2. Furthermore, from (4.4), it follows that

$$
\langle \langle \phi(u, 0), \phi(u, 0) \rangle \rangle = \frac{1}{4} [g(\dot{\beta}, \dot{\beta}) - g(V \times \dot{\beta}, V \times \dot{\beta})] < 0,
$$

because, from (3.2), it results that $g(V \times \dot{\beta}, V \times \dot{\beta}) = -g(\dot{\beta}, \dot{\beta})$ and β is a timelike curve. Shrinking Ω if necessary, we can assume that

$$
\langle \langle \phi(u, v), \phi(u, v) \rangle \rangle < 0, \quad (u, v) \in \Omega.
$$

Since A is the Jacobian matrix of a left-invariant translation in M, it results that

$$
|\psi_1(u, v)|^2 + |\psi_2(u, v)|^2 - |\psi_3(u, v)|^2 = \langle \langle \phi(u, v), \phi(u, v) \rangle \rangle < 0, \quad (u, v) \in \Omega.
$$
Therefore the functions $\psi_i, i = 1, 2, 3,$ satisfy the conditions of Theorem 3.2. So, from the Cauchy-Kovalevskaya Theorem, there exists a unique conformal timelike minimal immersion, which is a local solution of the timelike Björling problem. Observe that the initial condition forces the choice of one of the determinations of $\psi_3^2 = \psi_1^2 + \psi_2^2$.

So we have the local solution. We may consider that I is compact. Since the solution is locally unique if $\beta(I)$ is contained in a coordinate neighborhood for $\epsilon > 0$ sufficiently small, we have that solution is unique because I is compact. If it is not, as I is compact, we can cover it with a finite number of inverse images of neighborhoods coordinates through β and using again the local uniqueness of the problem we obtain the global solution. \[\square\]

We can prove that the spacelike Björling problem has a unique solution analogously to the timelike case. In this case the initial data is $\psi(u,0) = A^{-1}(\beta(u)) \phi(u,0)$, where $\phi(u,0) = \frac{1}{2} (\dot{\beta}(u) - \tau V(u) \times \dot{\beta}(u))$.

Theorem 4.4 (Spacelike Björling problem). Let $\beta : I \to M$ be a analytic spacelike curve in M and $V : I \to TM$ a unitary analytic spacelike vector field along β, such that $g(\beta, V) \equiv 0$. Then there exists a unique conformal timelike minimal surface $f : I \times (-\epsilon, \epsilon) = \Omega \subseteq L \to M$ such that:

1. $f(u,0) = \beta(u)$,
2. $N(u,0) = V(u)$,

for all $u \in I$, where $N : \Omega \to TM$ is the Gauss map of the surface.

4.2. The Björling Problem for spacelike surfaces.

The Björling problem for spacelike surfaces has a unique solution and the proof is analogously to the case of the timelike surfaces. In this case the system of condition $iii)$ in Theorem 3.2 is equivalent to the elliptic system of partial differential equations (see [5]):

\begin{equation}
\frac{\partial^2 f_i}{\partial u^2} + \frac{\partial^2 f_i}{\partial v^2} + B_i \left(\frac{\partial f_i}{\partial u}, \frac{\partial f_i}{\partial v} \right) = 0,
\end{equation}

where $B_i, i = 1, 2, 3$, contain at most first-order derivatives of the functions f_i.

So the Björling problem may be interpreted as a Cauchy problem involving quasilinear partial differentiable equations (4.5) with initial data:

$f_i(u,0) = \beta_i(u), \quad (V(u) \times \dot{\beta}(u))_i = -\left(\frac{\partial f_i}{\partial v}(u,0) \right)_i, \quad i = 1, 2, 3.$

Therefore we can use again the Cauchy-Kovalevskaya Theorem (see [5]) to show that the problem has a unique solution with a initial data given by $\psi(u,0) = A^{-1}(\beta(u)) \phi(u,0)$, where $\phi(u,0) = \frac{1}{2} (\dot{\beta}(u) + i V(u) \times \dot{\beta}(u))$. 8
Theorem 4.5 (Björling problem). Let $\beta : I \to M$ be a analytic spacelike curve in M and $V : I \to TM$ a unitary analytic timelike vector field along β, such that $g(\beta, V) \equiv 0$. Then there exists a unique conformal spacelike minimal surface $f : I \times (-\epsilon, \epsilon) = \Omega \subseteq \mathbb{C} \to M$

such that:

i. $f(u, 0) = \beta(u)$,

ii. $N(u, 0) = V(u)$,

for all $u \in I$, where $N : \Omega \to TM$ is the Gauss map of the surface.

Now we will construct some examples of minimal surfaces in the Heisenberg group H_3, in the de Sitter Space S_3^1 and in the space $H_2^2 \times \mathbb{R}$.

5. THE LORENTZIAN HEISENBERG GROUP H_3

We consider the Heisenberg group

$$H_3 = \left\{ \begin{bmatrix} 1 & x & z + \frac{1}{2}xy \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix} : x, y, z \in \mathbb{R} \right\},$$

equipped with the left-invariant Lorentzian metric given by

$$g = dx^2 + dy^2 - \left(\frac{1}{2}y\,dx - \frac{1}{2}x\,dy + dz \right)^2.$$

With respect to g, the left-invariant frame field given by

$$E_1 = \frac{\partial}{\partial x} - \frac{y}{2}\frac{\partial}{\partial z}, \quad E_2 = \frac{\partial}{\partial y} + \frac{x}{2}\frac{\partial}{\partial z}, \quad E_3 = \frac{\partial}{\partial z},$$

is orthonormal, $\{E_1, E_2\}$ are spacelike and E_3 is timelike. Also, the matrix A is

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{y}{2} & \frac{x}{2} & 1 \end{bmatrix},$$

and the nonzero L^k_{ij} are $L^3_{12} = L^3_{13} = L^3_{31} = \frac{1}{2}$ and $L^3_{21} = L^3_{32} = L^3_{23} = -\frac{1}{2}$. Consequently the system (4.2) becomes

$$\begin{cases} \frac{\partial \psi_1}{\partial \bar{z}} - \Re(e^{3}\psi_2) = 0, \\ \frac{\partial \psi_2}{\partial \bar{z}} + \Re(e^{3}\psi_1) = 0. \end{cases}$$

Then the coordinates components of the minimal immersion f are given by

$$\begin{cases} f_1 = 2\Re \int \psi_1 \, dz, \\ f_2 = 2\Re \int \psi_2 \, dz, \\ f_3 = 2\Re \int \left(\frac{f_1}{2} \psi_2 - \frac{f_2}{2} \psi_1 + \psi_3 \right) \, dz. \end{cases}$$
So, knowing the ψ_i, $i = 1, 2, 3$, that are solutions of a constant coefficients PDE, we can compute f_1, f_2 by integration and, substituting in the third equation of (5.2), we can compute f_3 by direct integration (see Remark 3.3).

Example 5.1 (The timelike vertical plane $y = c$, timelike case). First of all, we consider the curve
\[
\beta(u) = (\cosh u, c, \frac{c}{2} \cosh u + \sinh u), \quad u \in \mathbb{R}, \quad c \in \mathbb{R},
\]
and the unit vector field $V(u) = E_2(\beta(u))$. Since
\[
\dot{\beta}(u) = \sinh u E_1 + \cosh u E_3,
\]
then $g(\dot{\beta}, \dot{\beta}) = -1$. Moreover, $g(V, V) = 1$ and $g(\dot{\beta}, V) = 0$. Thus we have a timelike Björling problem. As
\[
E_2 \times E_1 = E_3 \quad \text{and} \quad E_2 \times E_3 = E_1,
\]
we have that $V(u) \times \dot{\beta}(u) = \cosh u E_1 + \sinh u E_3$. So
\[
\phi(u, 0) = \frac{1}{2}(\sinh u + \tau \cosh u) E_1 + (\cosh u + \tau \sinh u) E_3.
\]
Consequently,
\[
(5.3) \quad \psi(u, 0) = A^{-1}(\beta(u))\phi(u, 0) = \frac{1}{2}(\sinh u + \tau \cosh u, 0, \cosh u + \tau \sinh u).
\]
Therefore the solution of system (5.1), which satisfy the initial condition (5.3), is
\[
(5.4) \quad \left\{
\begin{array}{l}
\psi_1(u, v) = \frac{e^v}{2}(\sinh u + \tau \cosh u), \\
\psi_2(u, v) = 0, \\
\psi_3(u, v) = \frac{e^v}{2}(\cosh u + \tau \sinh u).
\end{array}
\right.
\]
Furthermore, (5.4) satisfy the conditions of Theorem 4.3. Then, we obtain the conformal minimal timelike immersion
\[
f(u, v) = (e^v \cosh u, c, e^v (-\frac{c}{2} \cosh u + \sinh u))
\]
that is a timelike vertical plane $y = c$, and it represents the solution of the Björling problem for the given pair (β, V).

Example 5.2 (Helicoids). Consider $\beta(u) = (\rho(u), 0, b)$, $b \in \mathbb{R}$ and
\[
V(u) = \frac{\rho^2(u) - 2c}{2\rho'(u)} E_2 - \frac{\rho(u)}{\rho'(u)} E_3, \quad u \in (a, d) \subset \mathbb{R}, \quad c \in \mathbb{R},
\]
where ρ is a real function satisfying
\[
\sqrt{(\rho')^2 + \rho^2} = \frac{\rho^2}{2} - c.
\]
As $\dot{\beta}(u) = \rho'(u) E_1$, then $g(\dot{\beta}, \dot{\beta}) = \rho^2$. Moreover
\[
g(V, V) = 1, \quad g(\dot{\beta}, V) = 0.
\]
Thus we have a *spacelike Björling problem*. Since $E_2 \times E_1 = E_3$ and $E_3 \times E_1 = E_2$, we obtain

\[(5.5) \quad V(u) \times \dot{\beta}(u) = \frac{\rho'^2(u) - 2c}{2} E_3 - \rho(u) E_2.\]

Then

\[
\phi(u, 0) = \left(\frac{\rho'(u)}{2}, \frac{\tau \rho(u)}{2}, \frac{c \tau}{2} \right)
\]

and, so, it follows that

\[(5.6) \quad \psi(u, 0) = \left(\frac{\rho'(u)}{2}, \frac{\tau \rho(u)}{2}, -\frac{\tau (\rho^2(u) - 2c)}{4} \right).\]

Therefore the solution of (5.1), which satisfy the initial condition (5.6), is

\[(5.7) \begin{cases}
 \psi_1(u, v) = \frac{1}{2} (\rho'(u) \cos v - \tau \rho(u) \sin v), \\
 \psi_2(u, v) = \frac{1}{2} (\rho'(u) \sin v + \tau \rho(u) \cos v), \\
 \psi_3(u, v) = -\frac{\tau}{4} (\rho^2(u) - 2c).
\end{cases}\]

Furthermore, (5.7) satisfy the conditions of Theorem 4.4. Then, integrating we obtain the solution to the Björling problem:

\[
f(u, v) = (\rho(u) \cos v, \rho(u) \sin v, cv + b),
\]

which represents a timelike helicoid if $c \neq 0$, and the horizontal plane $z = b$, if $c = 0$.

Example 5.3 (The saddle-type surface). Consider $\beta(u) = (4cu, -4Q(0), -8cuQ(0))$ and

\[
V(u) = -\frac{4cQ(0)}{Q'(0)} E_1 + \frac{c}{Q'(0)} E_3, \quad u \in (a, b) \subset \mathbb{R}, \quad c \in \mathbb{R}
\]

where $Q(v)$ is a real differential function with $Q'(v) \neq 0$, for all $v \in \mathbb{R}$, which satisfy

\[
4cQ(v) = \sqrt{Q'(v)^2 + c^2}.
\]

As

\[
\dot{\beta}(u) = 4c E_1 - 16cQ(0) E_3,
\]

then $g(\dot{\beta}(u), \dot{\beta}(u)) = -16Q'(0)^2$. Moreover $g(V(u), V(u)) = 1$ and $g(\dot{\beta}(u), V(u)) = 0$. Thus we have a *timelike Björling problem*. Since

\[
V(u) \times \dot{\beta}(u) = -4Q'(0) E_2,
\]

then

\[
\phi(u, 0) = (2c, -2Q'(0)\tau, -4cQ(0) - 4auQ'(0)\tau)
\]

and, so, it follows that

\[(5.8) \quad \psi(u, 0) = (2c, -2Q'(0)\tau, -8cQ(0)).\]

Therefore the solution of (5.1), which satisfy the initial condition (5.8) is

\[
\begin{cases}
 \psi_1(u, v) = 2c, \\
 \psi_2(u, v) = -2\tau Q'(v), \\
 \psi_3(u, v) = -8cQ(v).
\end{cases}
\]
Furthermore, (5.9) satisfy the conditions of the Theorem 4.3. Then, integrating we obtain the
\[f(u,v) = (4c u, -4Q(v), -8c u Q(v)) , \]
which the image lies on the graph of the function \(z = \frac{1}{2^2}xy \).

6. THE DE SITTER SPACE \(\mathbb{S}^3 \)

The de Sitter space \(\mathbb{S}^3 \) might be modeled as the halfspace
\[\mathbb{R}^3_+ = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 > 0 \} \]
endowed with the left-invariant Lorentzian metric given by
\[g = \frac{1}{x_3^2}(dx_1^2 + dx_2^2 - dx_3^2). \]
An orthonormal basis of left-invariant vector fields is given by
\[E_1 = x_3 \frac{\partial}{\partial x_1}, \quad E_2 = x_3 \frac{\partial}{\partial x_2}, \quad E_3 = x_3 \frac{\partial}{\partial x_3}, \]
where \(\{E_1, E_2\} \) are spacelike and \(E_3 \) timelike. Then
\[A = \begin{bmatrix} x_3 & 0 & 0 \\ 0 & x_3 & 0 \\ 0 & 0 & x_3 \end{bmatrix} . \]
The only \(L_{ij}^k \) nonzero are \(L_{13}^1 = L_{23}^2 = L_{11}^3 = L_{22}^3 = -1 \). So (4.2) becomes
\[\begin{cases} \frac{\partial \psi_1}{\partial \bar{z}} - \bar{\psi}_1 \psi_3 = 0, \\ \frac{\partial \psi_2}{\partial \bar{z}} - \bar{\psi}_2 \psi_3 = 0. \end{cases} \]
(6.1)
Therefore the conformal minimal immersion \(f \) is given by
\[\begin{cases} f_1 = 2 \Re \int f_3 \psi_1 \, dz, \\ f_2 = 2 \Re \int f_3 \psi_2 \, dz, \\ f_3 = \exp \left(2 \Re \int \psi_3 \, dz \right). \end{cases} \]
(6.2)
Again, knowing the \(\psi_i, i = 1, 2, 3 \), we can compute \(f_3 \) by direct integration and, substituting in the first two equations, we can also compute \(f_1, f_2 \) by direct integration (see, again, Remark 3.3).

Example 6.1 (Timelike vertical plane \(y = c \), the spacelike case). Consider
\[\beta(u) = (\sinh u, c, \cosh u), \quad u \in \mathbb{R} \]
ad \(V(u) = E_2 \). We have that
\[\dot{\beta}(u) = E_1 + \frac{\sinh u}{\cosh u} E_3, \quad g(\dot{\beta}(u), \dot{\beta}(u)) = \frac{1}{\cosh^2(u)} > 0. \]
Furthermore, $g(V, V) = 1$ and $g(\dot{\beta}, V) = 0$. Thus the pair (β, V) produces a spacelike Björling problem. Since

$$V(u) \times \dot{\beta}(u) = E_3 + \frac{\sinh u}{\cosh u} E_1 = (\sinh u, 0, \cosh u),$$

we obtain that

$$\phi(u, 0) = \frac{1}{2}(\dot{\beta}(u) - \tau V(u) \times \dot{\beta}(u)) = \frac{1}{2}(\cosh u - \tau \sinh u, 0, \sinh u - \tau \cosh u).$$

Therefore

$$\psi(u, 0) = A^{-1}(\beta(u))\phi(u, 0) = \frac{1}{2}\left(\frac{\cosh u - \tau \sinh u}{\cosh u}, 0, \frac{\sinh u - \tau \cosh u}{\cosh u}\right).$$

As $\psi(u, 0)$ is a solution of (6.1), the uniqueness implies that $\psi(u, v) = \psi(u, 0)$. Therefore the conformal minimal timelike immersion, which contains $\beta(u)$, is given by

$$f(u, v) = (e^{-v} \sinh u, c, e^{-v} \cosh u).$$

Example 6.2. Consider

$$\beta(u) = \left(\frac{1}{\sqrt{2}} \sinh u, \frac{1}{\sqrt{2}} \sinh u, \cosh u\right), \quad V(u) = -\frac{E_1}{\sqrt{2}} + \frac{E_2}{\sqrt{2}}.$$

As

$$\dot{\beta}(u) = \frac{E_1}{\sqrt{2}} + \frac{E_2}{\sqrt{2}} + \frac{\sinh u}{\cosh u} E_3$$

and

$$g(\dot{\beta}(u), \dot{\beta}(u)) = \frac{1}{\cosh^2(u)},$$

then we have a spacelike Björling problem. Also,

$$g(V(u), V(u)) = 1, \quad g(\dot{\beta}(u), V(u)) = 0$$

and

$$V(u) \times \dot{\beta}(u) = \left(\frac{1}{\sqrt{2}} \sinh u, \frac{1}{\sqrt{2}} \sinh u, \cosh u\right).$$

Therefore

$$\phi(u, 0) = \frac{1}{2}\left(\frac{1}{\sqrt{2}} (\cosh u - \tau \sinh u), \frac{1}{\sqrt{2}} (\cosh u - \tau \sinh u), \sinh u - \tau \cosh u\right)$$

and

$$\psi(u, 0) = A^{-1}(\beta(u))\phi(u, 0) = \frac{1}{2}\left(\frac{\cosh u - \tau \sinh u}{\sqrt{2} \cosh u}, \frac{\cosh u - \tau \sinh u}{\sqrt{2} \cosh u}, \frac{\sinh u - \tau \cosh u}{\cosh u}\right).$$

Since $\psi(u, 0)$ is solution of (6.1), the uniqueness implies that $\psi(u, v) = \psi(u, 0)$. Integrating (6.2), it results that

$$f(u, v) = e^{-v}\left(\sinh u, \sinh u, \cosh u\right).$$
7. The space $\mathbb{H}^2 \times \mathbb{R}$

Let hyperbolic space \mathbb{H}^2 be modeled as halfspace

$$\mathbb{H}^2_+ = \{(x_1, x_2) \in \mathbb{R}^2 : x_2 > 0\}$$

dowed with the left-invariant metric given by

$$g_H = \frac{1}{x_2^2} (dx_1^2 + dx_2^2).$$

The space $\mathbb{H}^2 \times \mathbb{R}$ is a Lie group and with the product structure and endowed with the

left-invariant metric given by

$$g = \frac{1}{x_2^2} (dx_1^2 + dx_2^2) - dx_3^2.$$

An orthonormal basis of left-invariant vector fields is given by

$$E_1 = x_2 \frac{\partial}{\partial x_1}, \quad E_2 = x_2 \frac{\partial}{\partial x_2}, \quad E_3 = \frac{\partial}{\partial x_3},$$

where $\{E_1, E_2\}$ are spacelike and E_3 timelike. Then

$$A = \begin{bmatrix} x_2 & 0 & 0 \\ 0 & x_2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

The only L^k_{ij} nonzero are $L^1_{12} = -2$ and $L^2_{11} = 2$. So (4.2) becomes

$$(7.1) \quad \begin{cases} \frac{\partial \psi_1}{\partial z} - \psi_1 \bar{\psi}_2 = 0, \\ \frac{\partial \psi_2}{\partial z} + \bar{\psi}_1 \psi_1 = 0. \end{cases}$$

Therefore the conformal minimal immersion f is given by

$$\begin{cases} f_1(u, v) = 2 \Re e \int f_2 \psi_1 \, dz, \\ f_2(u, v) = \exp \left(2 \Re e \int \psi_2 \, dz\right), \\ f_3(u, v) = 2 \Re e \int \psi_3 \, dz. \end{cases}$$

Again, knowing the ψ_i, $i = 1, 2, 3$, we can compute f_2 and f_3 by direct integration and,

substituting in the first equation, we can also compute f_1 by direct integration (see, again,

Remark 3.3)

We observe that if ψ_2 is a \mathbb{L}-differentiable (or holomorphic) function the it follows from

$$(7.1)$$ that $\psi_1 \bar{\psi}_1 = 0$ and $\psi_1 \frac{\partial \psi_1}{\partial z} = 0$. We may for example $\psi_1 = 0$, which corresponds to

planes $x_1 = \text{cte}$.

Example 7.1 (Spacelike horizontal plane $z = c$). Consider

$$\beta(u) = (\cos u, \sin u, c), \quad u \in (0, \pi)$$
and $V(u) = E_3$. We have that
\[
\dot{\beta}(u) = -E_1 + \frac{\cos u}{\sin u} E_2, \quad g(\dot{\beta}(u), \dot{\beta}(u)) = \frac{1}{\sin^2(u)} > 0.
\]
Furthermore, $g(V, V) = -1$ and $g(\dot{\beta}, V) = 0$. Thus the pair (β, V) produces a Björling problem for spacelike surfaces. As
\[
V(u) \times \dot{\beta}(u) = -E_2 - \frac{\cos u}{\sin u} E_1 = (-\cos u, -\sin u, 0),
\]
we obtain that
\[
\phi(u, 0) = \frac{1}{2}(\dot{\beta}(u) + i V(u) \times \dot{\beta}(u)) = \frac{1}{2}(-\sin u - i \cos u, \cos u - i \sin u, 0).
\]
Therefore
\[
\psi(u, 0) = A^{-1}(\beta(u))\phi(u, 0) = \frac{1}{2}\left(\frac{-\sin u + i \cos u}{\sin u}, \frac{\cos u - i \sin u}{\sin u}, 0\right).
\]
Since $\psi(u, 0)$ is a solution of (7.1), the uniqueness implies that $\psi(u, v) = \psi(u, 0)$. Therefore the conformal minimal spacelike immersion, which contains $\beta(u)$, is given by
\[
f(u, v) = (e^v \cos u, e^v \sin u, c).
\]

References

[1] L.J. Alías, R.M.B. Chaves, P. Mira, *Björling problem for maximal surfaces in Lorentz-Minkowski space*, Math. Proc. Cam. Phil. Soc. **134** (2) (2003), 289-316.

[2] A. Asperti, J.M. Vilhena, *Björling problem for spacelike, zero mean curvature surfaces in \mathbb{L}^4*, J. Geom. Phys. **56** (2) (2006), 196−213.

[3] E. G. Björling, *In integraionem aequationis derivatarum partialum superfici cu jus inpuncto uniquoque principales ambos radii curvedinis aequales sunt sngoque contraario*, Arch. Math. Phys. **4** (1) (1844), 290–315.

[4] R.M.B. Chaves, M.P. Dussan, M. Magid, *Björling problem for timelike surfaces in the Lorentz-Minkowski space*, J. Math. Anal. Appl. **337** (2011), 481–494.

[5] L.C. Evans, Partial Differential Equations, AMS (1998).

[6] O. Kobayashi, *Maximal surfaces in 3-dimensional Lorentz space \mathbb{L}^3*, Tokyo J. Math. **6** (1983), 297-309.

[7] M. Kokubu, *Weierstrass representation for minimal surfaces in hyperbolic space*, Tôhoku Math. J. **49** (1997), 367-377.

[8] J. Konderak, *A Weierstrass representation theorem for Lorentz surfaces*, Complex Var. Theory Appl. **50** (5), (2005), 319-332.

[9] J.H. Lira, M. Melo, F. Mercuri, *A Weierstrass representation for Minimal Surfaces in 3-Dimensional Manifolds*, Results. Math. **60** (2011), 311-323.

[10] F. Mercuri, S. Montaldo, P. Piu, *Weierstrass representation formula of minimal surfaces in \mathbb{H}_3 and $\mathbb{H}^2 \times \mathbb{R}$*, Acta Math. Sinica **22** (2006), 1603-1612.

[11] F. Mercuri, Irene I. Onnis, *On the Björling problem in a 3-dimensional Lie group*, Illinois J. Math, **53** (2), (2009), 431-440.

[12] I.G. Petrovsky, Lectures on Partial Differential Equations, Interscience Publishers, New York (1954).

[13] H.A. Schwarz, Gesammelte Mathematische Abhandlungen, Band **I**, Springer Berlin (1890).
Departamento de Matemática, C.P. 6065,IMECC, UNICAMP, 13081-970, Campinas, SP, Brasil
E-mail address: ra099847@ime.unicamp.br

Departamento de Matemática, C.P. 6065,IMECC, UNICAMP, 13081-970, Campinas, SP, Brasil
E-mail address: mercuri@ime.unicamp.br

Departamento de Matemática, C.P. 668,ICMC, USP, 13560-970, São Carlos, SP, Brasil
E-mail address: onnis@icmc.usp.br