SHORT INTERVAL RESULTS FOR CERTAIN PRIME-INDEPENDENT
MULTIPlicative FUNCTIONS

OLIVIER BORDELLÉS

Abstract. Using recent results from the theory of integer points close to smooth curves, we
give an asymptotic formula for the distribution of values of a class of integer-valued prime-
independent multiplicative functions.

1. Introduction and result

A prime-independent multiplicative function is a multiplicative arithmetic function \(f \) satisfying
\(f(1) = 1 \) and such that there exists a map \(g : \mathbb{Z}_{\geq 0} \to \mathbb{R} \) such that \(g(0) = 1 \) and, for any prime
powers \(p^\alpha \)
\[
f (p^\alpha) = g(\alpha).
\]
In this article, we only consider integer-valued prime-independent multiplicative functions \(f \)
verifying \(f(p) = 1 \) for any prime \(p \). This is equivalent to the fact that \(g(1) = 1 \) and we also
assume that there exists \(r \in \mathbb{Z}_{\geq 2} \) such that
\[
g(1) = \cdots = g(r - 1) = 1 \quad \text{and} \quad \alpha \geq r \Rightarrow g(\alpha) > 1.
\]
One of the long-standing problems in number theory concerning these prime-independent mul-
tiplicative functions is the study of the distribution of their values. To this end, we fix \(k \in \mathbb{Z}_{\geq 1} \)
and set
\[
S_{f,k}(x) := \sum_{n \leq x \atop f(n) = k} 1
\]
and define the local density of \(f \) to be the real number
\[
d_{f,k} := \lim_{x \to \infty} \frac{S_{f,k}(x)}{x}
\]
whenever the limit exists.

The arithmetic function \(n \mapsto a(n) \), counting the number of finite, non-isomorphic abelian
groups of order \(n \), is one of the well-known examples of prime-independent multiplicative func-
tions, since \(a(p^\alpha) = P(\alpha) \), where \(P \) is the unrestricted partition function. The existence of the
local density \(d_{a,k} \) was first established in [7] and later Ivić [4] showed that
\[
S_{a,k}(x) = d_{a,k}x + O\left(x^{1/2}\log x\right).
\]
Further authors improved on this estimate, such as [6], [3] and [9] in which the best error term
to date was established. The general case was introduced by Ivić in [6] and improved in [9] for
a certain class of arithmetic functions.

The next step was the study of the distribution of values of \(f \) in short intervals. By 'short
intervals' we mean the study of sums of the shape
\[
S_{f,k}(x + y) - S_{f,k}(x) = \sum_{x < n \leq x + y \atop f(n) = k} 1
\]
where \(y = o(x) \) as \(x \to \infty \). In the case of \(f = a \), Ivić [5] first showed that
\[
\sum_{x<n \leq x+y \atop a(n)=k} 1 = d_{a,k}y + o(y)
\]
holds for \(y \geq x^{581/1744} \log x \). This value was successfully improved by many authors. For instance, by connecting the problem to the error term in certain divisor problems, Krätzel [2] showed that
\[
\sum_{x<n \leq x+y \atop a(n)=k} 1 = d_{a,k}y + o(y) + O \left(x^{369/1667+\varepsilon} \right).
\]

On the other hand, using results on gaps between squarefree numbers, Li [8] proved that the asymptotic formula
\[
\sum_{x<n \leq x+y \atop a(n)=k} 1 = d_{a,k}y + o(y)
\]
holds for \(y \geq x^{1/5+\varepsilon} \) uniformly for \(k \in \mathbb{Z}_{\geq 1} \). In the general case, Zhai [11, Theorem 2.5] showed that
\[
\sum_{x<n \leq x+y \atop f(n)=k} 1 = d_{f,k}y + o(y)
\]
holds for \(y \geq x^{31/113+\varepsilon} \), where \(r \) is given in (1). The purpose of this work is to establish an effective version of Zhai’s result by giving a fully effective error term. More precisely, we will show the following estimate.

Theorem 1. Let \(k \in \mathbb{Z}_{\geq 1} \) fixed and \(f \) be an integer-valued prime-independent multiplicative function such that \(f(p) = 1 \) for any prime \(p \) and let \(r \in \mathbb{Z}_{\geq 2} \) as in (1). Let \(x^{31/113+\varepsilon} \leq y \leq 4^{-2r^2}x \) be real numbers. Then
\[
\sum_{x<n \leq x+y \atop f(n)=k} 1 = d_{f,k}y + O_{r,\varepsilon} \left\{ \left(x^{r-1}y^{r+1} \right)^{1/2}x^\varepsilon + yx^{-\left(\frac{1}{r} - 1 \right) - \varepsilon} + y^{1-\frac{2(r-1)}{r(r+1)}-\varepsilon} \right\}.
\]

2. **Notation and preparation for the proof**

In what follows, \(k \in \mathbb{Z}_{\geq 1} \) is fixed and \(f \) is an integer-valued prime-independent multiplicative function satisfying the hypothesis of Theorem 1 with \(r \in \mathbb{Z}_{\geq 2} \) given in (1).

For any arithmetic function \(F \), \(L(s, F) \) is its formal Dirichlet series and \(F^{-1} \) is the Dirichlet convolution inverse of \(F \).

Let \(s_r \) be the characteristic function of the set of \(r \)-full numbers, \(\mu_r \) be that of the set of \(r \)-free numbers, so that \(\mu_r^{-1} \) is the multiplicative function such that \(\mu_r^{-1}(1) = 1 \) and given on prime powers \(p^\alpha \) by
\[
\mu_r^{-1}(p^\alpha) = \begin{cases} 1, & \text{if } r \mid \alpha; \\ -1, & \text{if } r \mid \alpha - 1; \\ 0, & \text{otherwise.} \end{cases}
\]

Finally, put
\[
1_{f,k}(n) = \begin{cases} 1, & \text{if } f(n) = k; \\ 0, & \text{otherwise.} \end{cases}
\]

Note that \(f(n) = 1 \) whenever \(n \) is \(r \)-free so that the Dirichlet series of \(1_{f,k} \) may be formally written as
\[
L(s, 1_{f,k}) = \frac{\zeta(s)}{\zeta(rs)} H_{f,k,r}(s) := \frac{\zeta(s)}{\zeta(rs)} \sum_{n=1}^\infty \frac{h_{f,k,r}(n)}{n^s}
\]
and where the multiplicative function \(h_{f,k,r} \) is supported on \(r \)-full numbers. Indeed

\[
h_{f,k,r}(n) = \sum_{d|n \atop f(n/d)=k} \mu_r^{-1}(d)
\]

which implies that, for any prime powers \(p^\alpha \) with \(1 \leq \alpha < r \)

\[
h_{f,k,r}(p^\alpha) = \sum_{j=0}^{\lfloor \alpha/r \rfloor} 1_{f,k}(p^{\alpha-j}) - \sum_{j=0}^{\lfloor (\alpha-1)/r \rfloor} 1_{f,k}(p^{\alpha-rj-1})
\]

\[
= 1_{f,k}(p^\alpha) - 1_{f,k}(p^{\alpha-1}) = 0
\]

since \(g(\alpha) = g(\alpha - 1) = 1 \). This in turn implies that the Dirichlet series \(H_{f,k,r} \) is absolutely convergent in the half-plane \(\sigma > \frac{1}{r} \) and also that

\[
|h_{f,k,r}(n)| \leq s_r(n)\tau(n)
\]

for any \(k, n \in \mathbb{Z}_{\geq 1} \) and \(r \in \mathbb{Z}_{\geq 2} \). The following bound will then be useful.

Lemma 2. Let \(r \in \mathbb{Z}_{\geq 2} \). Then

\[
\sum_{n \leq x} s_r(n)\tau(n) \ll x^{1/r}(\log x)^r.
\]

Proof. Every \(r \)-full integer \(n \) may be uniquely written as \(n = a_r a_r^1 \cdots a_r^2 a_r-1 \) with \(a_2 \cdots a_r \) squarefree and \((a_i, a_j) = 1 \) for \(2 \leq i < j \leq r \). Since the divisor function \(\tau \) is sub-multiplicative, we infer that the sum of the lemma does not exceed

\[
\ll \sum_{a_r \leq x^{1/r}} \tau(a_r^2 r-1) \sum_{a_{r-1} \leq \left(\frac{x}{a_r^{2 r-1}}\right)^{1/r}} \tau(a_r^2 r-2) \cdots \sum_{a_1 \leq \left(\frac{x}{a_2^{2 r-1} a_{r-1}^{r-1}}\right)^{1/r}} \tau(a_1^r).
\]

Now the well-known bound

\[
\sum_{a \leq z} \tau(a^r) \ll z (\log z)^r
\]

applied to the last inner sum, allows us to complete the proof. \(\square \)

The next result is an immediate consequence of Lemma 2.

Lemma 3. Let \(f \) be as in Theorem 1, \(r \) given in (1) and \(k \in \mathbb{Z}_{\geq 1} \) fixed.
1. Let \(\kappa \in \mathbb{R}_{\geq 0} \). Then

\[
\sum_{n \leq x} \frac{|h_{f,k,r}(n)|}{n^\kappa} \ll \begin{cases} x^{-\kappa+1/r}(\log x)^r, & \text{if } 0 \leq \kappa < \frac{1}{r}; \\ (\log x)^{r+1}, & \text{if } \kappa = \frac{1}{r}; \\ 1, & \text{if } \kappa > \frac{1}{r}. \end{cases}
\]

2. We also have

\[
\sum_{n > x} \frac{|h_{f,k,r}(n)|}{n} \ll x^{-1+1/r}(\log x)^r.
\]

Proof. Follows from Lemma 2, the inequality (3) and partial summation. \(\square \)
3. r-FREE NUMBERS IN SHORT INTERVALS

The following lemma plays a crucial part in Theorem 1. For a proof, see Lemma 3.2 and Corollary 5.1.

Lemma 4. Let $r \in \mathbb{Z}_{\geq 2}$. For any $X \in \mathbb{R}_{\geq 1}$ and $0 < Y < X$, define

$$R_r(X,Y) := X^{1/r+1} + YX^{-\frac{1}{e^{(r-1)(2r-1)}}} + Y^{1-\frac{2(r-1)}{r(3r-1)}}. \quad (4)$$

1. For any $X \in \mathbb{R}_{\geq 1}$, $0 < Y < X$ and any $\varepsilon > 0$

$$\sum_{2Y < n \leq 2X} s_r(n) \left(\left\lfloor \frac{X+Y}{n} \right\rfloor - \left\lfloor \frac{X}{n} \right\rfloor \right) \ll_{r,\varepsilon} R_r(X,Y)X^\varepsilon.$$

2. For any $X \in \mathbb{R}_{\geq 1}$, $4r \leq Y < X$ and any $\varepsilon > 0$

$$\sum_{X < n \leq X+Y} \mu_r(n) = \frac{Y}{\zeta(r)} + O_{r,\varepsilon}(R_r(X,Y)X^\varepsilon).$$

4. **Proof of Theorem 1**

From (2), we get

$$\sum_{x<n \leq x+y \atop f(n)=k} 1 = \sum_{d \leq x+y} h_{f,k,r}(d) \sum_{\frac{y}{d} < \ell \leq \frac{x+y}{d}} \mu_r(\ell)
= \left(\sum_{d \leq y(y/x)^{1/(2r)}} + \sum_{y(y/x)^{1/(2r)} < d \leq 2y} + \sum_{2y < d \leq x+y} \right) h_{f,k,r}(d) \sum_{\frac{y}{d} < \ell \leq \frac{x+y}{d}} \mu_r(\ell)
= S_1 + S_2 + S_3.$$

For S_1, which will provide the main term, we use the second estimate of Lemma 4 giving

$$S_1 = \sum_{d \leq y(y/x)^{1/(2r)}} h_{f,k,r}(d) \left\{ \frac{y}{d\zeta(r)} + O \left(R_r \left(\frac{x}{d}, \frac{y}{d} \right) x^\varepsilon \right) \right\}
= \frac{y}{\zeta(r)} \sum_{d=1}^{\infty} h_{f,k,r}(d) \frac{y}{d} + O \left(y \sum_{d>y(y/x)^{1/(2r)}} \frac{|h_{f,k,r}(d)|}{d} \right)
+ O \left(x^\varepsilon \sum_{d \leq y(y/x)^{1/(2r)}} |h_{f,k,r}(d)|R_r \left(\frac{x}{d}, \frac{y}{d} \right) \right)
= \frac{y}{\zeta(r)} H_{f,k,r}(1) + O \left((x^{r-1}y^{r+1}) \frac{1}{d^{2r}} (\log x)^r \right)
+ O \left(x^\varepsilon \sum_{d \leq y(y/x)^{1/(2r)}} |h_{f,k,r}(d)|R_r \left(\frac{x}{d}, \frac{y}{d} \right) \right)$$
where we used Lemma 2 and where the error term R_r is defined in (4). Using Lemma 3 again

$$
\sum_{d \leq y(x/y)^{1/(2r)}} |h_{f,k,r}(d)| R_r \left(\frac{x}{y} \frac{y}{d} \right) \ll \frac{x}{2^{r+1}} \sum_{d \leq y(x/y)^{1/(2r)}} \frac{|h_{f,k,r}(d)|}{d^{2r+1}} + y x^{-\frac{1}{6(4r-1)(2r-1)}} \sum_{d \leq y(x/y)^{1/(2r)}} \frac{|h_{f,k,r}(d)|}{d^{8r-36r+1/(2r-1)}} + y^{1-\frac{2(r-1)}{7(3r-1)}} \sum_{d \leq y(x/y)^{1/(2r)}} \frac{|h_{f,k,r}(d)|}{d^{1-\frac{2(r-1)}{7(3r-1)}}}.
$$

Hence

$$
S_1 = \frac{y}{\zeta(r)} H_{f,k,r}(1) + O \left\{ \frac{x^\epsilon}{y(x/y)^{1/(2r)}} \left(x^{r-1}y^{r+1}\right)^{\frac{1}{2r^2}} + y x^{-\frac{1}{6(4r-1)(2r-1)}} + y^{1-\frac{2(r-1)}{7(3r-1)}} \right\}.
$$

For S_2, we use the second point of Lemma 3 so that

$$
|S_2| \ll y \sum_{d > y(x/y)^{1/(2r)}} \frac{|h_{f,k,r}(d)|}{d} \ll \left(x^{r-1}y^{r+1}\right)^{\frac{1}{2r^2}} \left(\log x\right)^r.
$$

Now

$$
S_3 = \sum_{2y < d < x+y} h_{f,k,r}(d) \left(\left\lfloor \frac{x+y}{d} \right\rfloor - \left\lfloor \frac{x}{d} \right\rfloor \right)
$$

and using (3) and the first estimate of Lemma 4 we obtain

$$
|S_3| \ll x^\epsilon \sum_{2y < d < 2x} s_r(d) \tau(d) \left(\left\lfloor \frac{x+y}{d} \right\rfloor - \left\lfloor \frac{x}{d} \right\rfloor \right)
$$

$$
\ll x^\epsilon \sum_{2y < d < 2x} s_r(d) \left(\left\lfloor \frac{x+y}{d} \right\rfloor - \left\lfloor \frac{x}{d} \right\rfloor \right)
$$

$$
\ll x^{2\epsilon} \left(x^{\frac{1}{2r+1}} + y x^{-\frac{1}{6(4r-1)(2r-1)}} + y^{1-\frac{2(r-1)}{7(3r-1)}}\right).
$$

Collecting (5), (6) and (7) and noticing that

$$
\left(x^{r-1}y^{r+1}\right)^{\frac{1}{2r^2}} \geq x^{\frac{1}{2r+1}}
$$

whenever $y \geq x^{\frac{1}{2r+1}}$, we get

$$
\sum_{x < n \leq x+y \atop f(n)=k} 1 = \frac{y}{\zeta(r)} H_{f,k,r}(1) + O_{\epsilon,r} \left\{ x^\epsilon \left(x^{r-1}y^{r+1}\right)^{\frac{1}{2r^2}} + y x^{-\frac{1}{6(4r-1)(2r-1)}} + y^{1-\frac{2(r-1)}{7(3r-1)}} \right\}
$$

if $x^{\frac{1}{2r+1}} \leq y \leq 4^{-2r^2} x$. In order to prove the existence of the local density, we generalize [6] Theorem 1. Every positive integer n may be uniquely written as $n = ab$, with $(a,b) = 1$, a r-free and b r-full. Since f is multiplicative, $f(n) = f(a)f(b) = f(b)$ and hence

$$
\sum_{n \leq x \atop f(n)=k} 1 = \sum_{b \leq x \atop f(b)=k} s_r(b) \sum_{a \leq x/b \atop (a,b)=1} \mu_r(a)
$$

$$
= \sum_{b \leq x \atop f(b)=k} s_r(b) \left\{ \frac{x}{\zeta(r)\Psi_r(b)} + O \left(\left(\frac{x}{b} \right)^{1/r} 2\omega(b) \right) \right\}
$$
where

$$\Psi_r(b) := \prod_{p \mid b} \left(1 + \frac{1}{p} + \cdots + \frac{1}{p^{r-1}} \right).$$

Using the bound

$$\sum_{b \leq x} \frac{s_r(b) 2^n(b)}{b^{1/r}} \ll x^\varepsilon \sum_{b \leq x} \frac{s_r(b)}{b^{1/r}} \ll x^\varepsilon$$

we get

$$\sum_{n \leq x} 1 = \frac{x}{\zeta(r)} \sum_{b \leq x} \frac{s_r(b)}{\Psi_r(b)} + O_{r,\varepsilon} \left(x^{1/r+\varepsilon} \right).$$

Notice that

$$\sum_{b \leq x} \frac{b s_r(b)}{\Psi_r(b)} \ll \sum_{b \leq x} s_r(b) \ll x^{1/r}$$

so that the Dirichlet series of the multiplicative function $b \mapsto \frac{b s_r(b)\mathbf{1}_{f,k}(b)}{\Psi_r(b)}$ is absolutely convergent in the half-plane $\sigma > \frac{1}{r}$. Hence the series

$$\sum_{b \geq 1} \frac{s_r(b)}{\Psi_r(b)}$$

converges absolutely, which implies that the limit of

$$\frac{1}{x} \sum_{n \leq x} 1$$

exists as $x \to \infty$ and is equal to

$$d_{f,k} = \frac{1}{\zeta(r)} \sum_{b \leq x} \frac{s_r(b)}{\Psi_r(b)} = \text{Res}_{s=1} (L(s, \mathbf{1}_{f,k})) = \frac{H_{f,k,r}(1)}{\zeta(r)}$$

achieving the proof of Theorem 1. □

5. Applications

5.1. Abelian groups. As stated in Section 1, the most famous example of prime-independent multiplicative function f satisfying $f(p) = 1$ is the arithmetic function a counting the number of finite, non-isomorphic abelian groups of a given order. We have $a(p^\alpha) = P(\alpha)$ where P is the unrestricted partition function and, from the generating function of P,

$$L(s, a) = \prod_{j=1}^\infty \zeta(js) \quad (\sigma > 1).$$

Hence Theorem 1 may be applied with $r = 2$ giving the following result.

Corollary 5. Let $k \in \mathbb{Z}_{>1}$ and $x^{1/8+\varepsilon} \leq y \leq 2^{-16}x$ be real numbers. Then

$$\sum_{x < n \leq x+y \atop a(n) = k} 1 = d_{a,k}y + O_{\varepsilon} \left(x^{1/8+\varepsilon}y^{3/8} + yx^{-1/42+\varepsilon} + y^{4/5}x^{4/5} \right).$$
5.2. **Plane partitions.** Let $P_2(n)$ be the number of plane partitions of n (see [10] for instance) whose generating function is given by
\[
\sum_{n=0}^{\infty} P_2(n)x^n = \prod_{j=1}^{\infty} \left(1 - x^j\right)^{-j} \quad (|x| < 1).
\]

Let f be the multiplicative function such that $f(1) = 1$ and $f(p^\alpha) = P_2(\alpha)$. We deduce from the generating function above that
\[
(f(p^\alpha))_{\alpha \in \mathbb{Z}_{\geq 0}} = (1, 1, 3, 6, 13, 24, 48, 86, 160, 282, 500, 859, 1479, \ldots)
\]
and also
\[
L(s, f) = \prod_{j=1}^{\infty} \zeta(js)^j \quad (\sigma > 1).
\]

Theorem [1] may be applied with $r = 2$ again.

Corollary 6. Let $k \in \mathbb{Z}_{\geq 1}$, the function f defined as above and $x^{\frac{1}{4}+\varepsilon} \leq y \leq 2^{-16} x$ be real numbers. Then
\[
\sum_{x<n<x+y \atop f(n)=k} 1 = d_{f,k} y + O_x \left\{ x^{1/8+\varepsilon} y^{3/8} + y x^{-1/42+\varepsilon} + y^{4/5} x^{\varepsilon} \right\}.
\]

5.3. **Semisimple rings.** Another example, closely related to the function α, is the multiplicative function S counting the number of finite, non-isomorphic semisimple rings with a given number of elements. For any prime-powers p^α, $S(p^\alpha) = P^*(\alpha)$ where P^* is the number of partitions of α into parts which are square. Since the generating function of P^* is
\[
\sum_{n=0}^{\infty} P^*(n)x^n = \prod_{q=1}^{\infty} \prod_{m=1}^{\infty} \left(1 - x^{qm^2}\right)^{-1} \quad (|x| < 1)
\]
we infer that
\[
(S(p^\alpha))_{\alpha \in \mathbb{Z}_{\geq 0}} = (1, 1, 2, 3, 6, 8, 13, 18, 29, 40, 58, 79, 115, 154, 213, \ldots)
\]
and
\[
L(s, S) = \prod_{q=1}^{\infty} \prod_{m=1}^{\infty} \zeta(qm^2 s) \quad (\sigma > 1).
\]

Corollary 7. Let $k \in \mathbb{Z}_{\geq 1}$ and $x^{\frac{1}{4}+\varepsilon} \leq y \leq 2^{-16} x$ be real numbers. Then
\[
\sum_{x<n<x+y \atop S(n)=k} 1 = d_{S,k} y + O_x \left\{ x^{1/8+\varepsilon} y^{3/8} + y x^{-1/42+\varepsilon} + y^{4/5} x^{\varepsilon} \right\}.
\]

5.4. **Exponential divisors.** A positive integer $d = p_1^{a_1} \cdots p_s^{a_s}$ is said to be an exponential divisor of a positive integer $n = p_1^{b_1} \cdots p_s^{b_s}$ if and only if, for all $i \in \{1, \ldots, s\}$, $a_i \mid \alpha_i$. It is customary to denote by $\tau(e)(n)$ the number of exponential divisors of n. The function $\tau(e)$ is multiplicative and satisfies $\tau(e)(p^\alpha) = \tau(\alpha)$. The same is true for the unitary exponential divisor function $\tau(e)^*$ for which $\tau(e)^*(p^\alpha) = 2^{\omega(\alpha)}$.

Corollary 8. Let $k \in \mathbb{Z}_{\geq 1}$ and $x^{\frac{1}{4}+\varepsilon} \leq y \leq 2^{-16} x$ be real numbers. If $f = \tau(e)$ or $f = \tau(e)^*$
\[
\sum_{x<n<x+y \atop f(n)=k} 1 = d_{f,k} y + O_x \left\{ x^{1/8+\varepsilon} y^{3/8} + y x^{-1/42+\varepsilon} + y^{4/5} x^{\varepsilon} \right\}.
\]
5.5. **The \(r \)-th power divisor function.** Let \(r \in \mathbb{Z}_{\geq 2} \) fixed and define the divisor function \(\tau^{(r)} \) by \(\tau^{(r)}(1) = 1 \) and, for any \(n \in \mathbb{Z}_{\geq 2} \)

\[
\tau^{(r)}(n) = \sum_{d|r} 1.
\]

Then \(\tau^{(r)} \) is multiplicative and

\[
\tau^{(r)}(p^\alpha) = 1 + \left\lfloor \frac{\alpha}{r} \right\rfloor \quad \text{and} \quad L(s, \tau^{(r)}) = \zeta(s)\zeta(rs).
\]

Corollary 9. Let \(k \in \mathbb{Z}_{\geq 1} \) and \(r \in \mathbb{Z}_{\geq 2} \) fixed, and let \(x^{\frac{1}{2}+\varepsilon} \leq y \leq 4^{-2r^2}x \) be real numbers. Then

\[
\sum_{x<n<x+y \atop \tau^{(r)}(n)=k} 1 = d_{\tau^{(r)}},_k y + O_{r,\varepsilon} \left\{ \left(x^{r-1}y^{r+1} \right)^\frac{1}{2r^2} x^\varepsilon + yx^{-\frac{1}{r(r-1)(2r-1)}+\varepsilon} + y^2 \frac{2(r-1)}{r(r-1)} x^\varepsilon \right\}.
\]

References

[1] O. Bordellès, Multiplicative functions over short segments, *Acta Arith.* 157 (2013), 1–10.

[2] E. Kräzel, The distribution of values of the enumerating function of finite, non-isomorphic Abelian groups in short intervals, *Arch. Math.* 91 (2008), 518–525.

[3] E. Kräzel and D. Wolke, Über die Anzahl der abelschen Gruppen gegebener Ordnung, *Analysis* 14 (1994), 257–266.

[4] A. Ivić, The distribution of values of the enumerating function of non-isomorphic Abelian groups of finite order, *Arch. Math. (Basel)* 30 (1978), 374–379.

[5] A. Ivić, On the number of finite non-isomorphic abelian groups in short intervals, *Math. Nachr.* 101 (1981), 257–271.

[6] A. Ivić, On the number of Abelian groups of a given order and on certain related multiplicative functions, *J. Number Theory* 16 (1983), 119–137.

[7] D. G. Kendall and R. A. Rankin, On the number of Abelian groups of a given order, *Quart. J. Math.* 18 (1947), 197–208.

[8] Li Hongze, On the number of finite non-isomorphic Abelian groups in short intervals, *Math. Proc. Cambridge Philos. Soc.* 117 (1995), 1–5.

[9] G. Nowak, On the value distribution of a class of arithmetic functions, *Comment. Math. Univ. Carolin.* 37 (1996), 117–134.

[10] R. P. Stanley, Theory and applications of plane partitions I, II, *Studies Appl. Math.* 50 (1971), 167-188, 259-279.

[11] W. Zhai, On prime-independent multiplicative functions, in: *Diophantine Problems and Analytic Number Theory*, Proceeding of a symposium held at the Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan, oct 21-25, 2002.

2 allée de la combe, 43000 Aiguihle, France

E-mail address: borde43@wanadoo.fr