Retrospective study of suspected canine poisoning cases at the Veterinary Teaching Hospital, Federal University of Agriculture, Abeokuta, Nigeria (2009-2019)

Abstract: Cases of canine poisoning pose a great challenge to pet owners and veterinarians due to incomplete patient history, late/delayed presentation of pets and the large array of poisonous agents. A ten-year retrospective study on canine poisoning cases presented to the Veterinary Teaching Hospital, Abeokuta, Nigeria was conducted. Descriptive statistics were used to characterize animal signalment, mode, month and year of exposure, severity, treatment and outcome. Associations between explanatory demographic characteristics of patients (age, sex and breed) with poison type and route of exposure were determined using a binary logistic regression model. Fifty-two case records with poisoning history and complete data were reviewed. The study population consisted of twenty males and thirty-two females between two months and five years of age. Poisonous agents that were identified included insecticides/acaricides (83%), cleaning products (2%), rodenticides (4%) and snake venom (6%). Poisoning occurred more in Alsatians, especially during the rainy season. No association between the dog demographics with type of poisoning and route of exposure was observed (p>0.05). There were 4 fatalities and 48 recoveries. This study highlights the heterogeneity of poisonous agents, associated clinical signs, treatment and outcome, and the challenges involved in poison control. Standardized approaches for the collection, assessment, integration of poisoning data and risk management is needed.

Keywords: Acaricides, Dogs, Insecticides, Retrospective, Toxicology

1 Introduction

Cases of poisoning in pet dogs are frequent and constitute a serious veterinary problem [1]. In our experience, owners find their dogs in an advanced stage of poisoning and are incapable of identifying the poisonous source or agent. Hence the dogs are presented as an emergency to small animal clinics and hospitals. Poisonous agents include toxic plants, medications, household cleaning products, insecticides, acaricides, herbicides, fungicides, rodenticides and molluscicides [2]. In addition, several foods such as chocolates, onions, garlic, macadamia nuts, grapes, raisins and alcohol, while safe for humans, pose serious health hazards to dogs [3].
In many developing countries, such as Nigeria, there are inadequate or no national and/or regional poisoning control centres for notification of accidental or malicious poisoning events as seen in the developed world. Data are usually not properly kept and where available, are fragmented, limited or unorganized. The unavailability of poisoning control centres causes a gross underestimation of the prevalence, sources and routes of exposure, as well as potential risk factors associated with poisoning in various animal species. A broader knowledge of the causes and types of poisoning in pet dogs may help in the diagnosis, treatment, prevention and control of poisoning events globally [4].

Pet dogs are recognized as the most common sentinel animal for outdoor exposure to environmental toxicants and respond to most poisoning agents similarly to humans [5]. Veterinary clinics/hospitals may, therefore, serve as valuable sources of information for epidemiological studies to improve public health awareness of emerging toxicological risks [6].

The aim of this study is to describe the major causative agents involved in canine poisoning; the sources and routes of exposure, the severity of clinical signs, treatment and outcomes of patients treated at the Veterinary Teaching Hospital, Alabata, Federal University of Agriculture, Abeokuta (FUNAAB), Ogun State, Southwest Nigeria, in the last ten years. We also evaluated the relationship between poisoning and the phenotypic characteristics of patients, social status of owners and season of the year. To the best of our knowledge, this is the first study designed to identify the prevalence of canine poisoning in this region of Nigeria.

2 Materials and methods

2.1 Study site

The Veterinary Teaching Hospital (VTH), FUNAAB, Ogun State, Southwest Nigeria, lies within Latitude 7° 11’ 07” N and Longitude 3° 26’ 15” E (Figure 1). The hospital serves as a referral centre from private veterinary clinics throughout the State and neighboring States of Lagos, Oyo, Osun, Ondo, Ekiti and Kwara.

Ethical approval: The research related to animals use has been complied with all the relevant national regulations and institutional policies for the care and use of animals.

2.2 Data collection

All case records of dogs presented to the VTH in the last ten years (1 January 2009 - 31 December 2019) were investigated, and cases with a history of poisoning were reviewed. Inclusion criteria were 1) history of exposure to poisonous agent and/or 2) clinical signs and features of poisoning. The information retrieved from the records were animal signalment (breed, sex, age), location, clinical history, type and route of exposure, season of the year, clinical signs, differential diagnosis, tentative diagnosis, suspected causative poisoning agent, confirmatory diagnosis (if identified), treatment and the outcome at the time of discharge from the hospital. Case severity was assessed using the Poisoning Severity Score (PSS) [7] which grades severity of poisoning into five levels: (0) no symptoms, (1) minor, (2) moderate, (3) severe, and (4) fatal.

2.3 Data analysis

Data obtained from the records were collated and entered into Microsoft Excel® spreadsheets, 2013 (Microsoft Corporation, Redmond, WA, USA). Descriptive statistics were calculated for all variables in the forms of frequencies and proportions using Microsoft Excel® (2013). A normality
test was conducted on continuous variables present in the data set using Kolmogorov-Smirnov (p > 0.05). All variables - age, sex, breed, type of poison and the routes of exposures were recoded into binary outcomes for further analysis. The type of poison and routes of exposure were recategorized as chemical/nonchemical and topical/non-topical respectively. The relationships between dog demographics with the type of poison and route of exposure were determined using binary logistic regression analysis (SPSS® 21 analysis software package IBM, Inc.). A p<0.05 was considered statistically significant and crude odds ratios were computed to determine strength of associations at 95% confidence intervals (CI).

3 Results

A total of 52 (20 intact males and 32 intact females) canine poisoning cases presented to the VTH, FUNAAB, Abeokuta, Ogun State, Nigeria had complete data to be evaluated. About 56% were Alsatians, 15% were Rottweilers, Doberman Pinchers and Boerboels were 10% each, Mongrels were 6% while Lhasa Apsos were 4%. Dogs within the ages of 7 months to 5 years were mostly affected (68%) (Figure 2). The median patient age was 10.5 months (1 month - 5 years).

The causes of poisoning are presented in Table 1. Insecticide/acaricide toxicity was the most reported (83%), snake envenomation was 6%, rodenticide poisoning was 4%, while phenol-based disinfectant poisoning accounted for 2%. Approximately 5% of cases reported showing signs of poisoning were from unidentified sources. Dichlorvos (2,2-dichlorovinyl dimethyl phosphate, DDVP), an organophosphate, cypermethrin (synthetic pyrethroid) and amitraz (formamidine) were the insecticides/acaricides used and anticoagulant rodenticides also accounted for toxicity.

The routes of exposure were topical (48%), oral (38%) and intraocular (2%). The routes of exposure were not stated for 12% of the cases (Figure 3). Most cases of insecticidal/acaricidal poisoning were presented between the months of April to October (spikes in August), while fewer cases were presented in November. Cases of snake bites were presented in August, November and January. Rodenticide poisoning cases were presented in October while the phenol-based disinfectant compounds poisoning was between February and April (Figure 4).

Most of the cases of insecticide/acaricidal toxicity were caused by owner’s misuse of commercial formulations on pet dogs. These formulations are available in forms of powders, neck tags, liquids for chemical bath, spot-ons or sprays. Many owners either used over the counter (OTC) formulations meant for agricultural use or did not adhere to manufacturers’ instructions on dilution ratio. Snake bites (snakes were unidentified) occurred in pets kept in bushy environments while rodenticide and phenol-based disinfectant poisoning cases were due to accidental acute ingestion by non-target species as there apparently were no cases of intentional/malicious poisoning. The owners of these dogs were average to high income earners and educated.

No statistical relationship was found between the dog demographics i.e. sex, age and breed and the type of poisoning and route of exposure. However, the odds of chemical poisoning (COR: 3.00, p = 0.40) and topical exposure (COR: 1.30, p = 0.70) were found to increase in the male dogs more than the female. On the other hand, the odds of topical exposure was more reduced in young dogs (≤ 10 and half months) than older ones (COR:0.58, p = 0.45) while chemical poisoning reduced with local breeds (Mongrel) rather than exotic ones (COR: 0.08, p = 0.12) (Table 2).

The most reported clinical signs for insecticide/acaricide poisoning are presented in Table 3. The patients with rodenticide poisoning were reported to show signs of weakness, lethargy and bloody urine after the use of rodenticides in the environment. Patients with phenol-based disinfectant poisoning showed clinical signs after a house cleaning, characterizing the poisoning origin. Diagnosis of snake envenomation was made based on history, presence of fang marks on the skin and/or ocular irritation in affected dogs.

Management mainly involved administration of atropine, an anticholinergic agent, which helps in reactivation of acetylcholinesterase, fluid therapy to maintain haemostasis, sedatives such as diazepam to help with the neurologic signs seen, anti-emetics such as metoclopramide to help increase gastric emptying and hence prevent vomiting and smooth muscle relaxants such
Ten-year retrospective canine poisoning cases

Table 1 The causes of poisoning in different dog breeds presented to the Veterinary Teaching Hospital, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria with suspected cases of poisoning

Breed	Acaricide/Insecticide	Snake venom	Rodenticide	Disinfectant	Unidentified	Total		
	Dichlorvos	Synthetic Pyrethroids	Amitraz					
Alsatian	14	6	4	3	2	0	0	29
Boerboel	2	0	2	0	0	0	0	5
Doberman	2	3	0	0	0	0	0	5
Lhasa Apso	1	1	0	0	0	0	0	2
Mongrel	1	0	0	0	1	1	0	3
Rottweiler	6	0	1	0	0	0	0	8

Figure 3 The common routes of exposure in suspected cases of canine poisoning presented to the Veterinary Teaching Hospital, Federal University of Agriculture, Abeokuta, Ogun State, Southwest Nigeria

Figure 4 The graphical pattern of poisoning throughout the years in different dog breeds presented to the Veterinary Teaching Hospital, Federal University of Agriculture, Abeokuta, Ogun State, Southwest with suspected cases of poisoning

4 Discussion

Cases of poisoning pose a great challenge to the small animal practitioner as there are many potentially toxic substances in and around the home. Diseases with similar gastrointestinal or neurological clinical signs may also be confused with poisoning [8, 9]. It has been widely reported that dogs are the most common species involved in animal poisonings [2]. High prevalence of poisoning in dogs has been reported in several European countries and Brazil [2, 10]. This study identifies the prevalence of canine poisoning in Nigeria. Within the last decade, a number of publications from countries such as Belgium, the Czech Republic, Europe, Italy, Switzerland, Germany and the United States of America have provided country-specific overviews of the occurrence of animal poisonings [11-20].

In this study, the Alsatians (German Shepherd Dogs) were the most presented breeds of dogs for suspected cases of poisoning. Means and Wismer [21] reported that the Labrador was the most affected in United States of America. Alsatians are the most commonly raised dog breed in Nigeria. An upsurge in acquisition and use of this breed for security and breeding might be responsible [22, 23]. These data do not suggest that Alsatians are at increased risk to poisoning due, for instance, to differences in how they metabolize poisons, but instead because they constitute a larger share of dogs in the society.

The median age of dogs presented with suspected cases of poisoning was 10.5 months. This agrees with previous studies in which young animals were more affected [24]. Although there were no associations between dog phenotypic characteristics and the route of exposure, the odds of topical exposure were found to increase 1.3 times in male dogs than females. This supports findings by Shima et al. [22] who reported...
Table 2 Binary logistic regression analysis outcome for potential factors associated with route of exposure and poison type in dogs presented to the Veterinary Teaching Hospital, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria with suspected cases of poisoning

Variable	Route of exposure	Poison type						
	Frequency (%)	COR (95% CI)	P value	Frequency (%)	COR (95% CI)	P value		
Age (Months)								
≤ 10 and half	20 (54.0)	0.586	0.157 - 2.183	0.426	19 (54.3)	1.036	0.107 - 9.993	0.976
>10 and half	17 (46.0)	1.305	0.344 - 4.954	0.696	20 (57.1)	3.024	0.220 - 41.618	0.408
Sex								
Female	22 (59.5)	1.056	0.058 - 19.389	0.970	33 (94.3)	0.082	0.003 - 2.008	0.125
Male	15 (40.5)	1.036	0.107 - 9.993	0.426	19 (54.3)	1.036	0.107 - 9.993	0.976
Breed								
Exotic	35 (94.6)	1.056	0.058 - 19.389	0.970	33 (94.3)	0.082	0.003 - 2.008	0.125
Local	2 (5.4)	0.036	0.003 - 2.008	0.125	2 (5.7)	0.036	0.003 - 2.008	0.125

COR = Crude Odds Ratio

Table 3 Clinical signs seen in dogs presented to the Veterinary Teaching Hospital, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria with suspected cases of poisoning

Clinical signs	Number of dogs (Frequency)	Percentage (%)
Anorexia	6 (7)	7
Ataxia	4 (5)	5
Behavioural change	8 (10)	10
Brachycardia	1 (1)	1
Diarrhoea	10 (12)	12
Darkened tongue	2 (2)	2
Lethargy	11 (13)	13
Ocular irritation	5 (6)	6
Punctured wound/fang marks	1 (1)	1
Salivation	17 (20)	20
Seizures	3 (4)	4
Shaking	2 (2)	2
Swollen limbs	1 (1)	1
Tachycardia	1 (1)	1
Tachypnea	2 (2)	2
Tremor	4 (5)	5
Vomiting	5 (6)	6
Total	83 (100)	100

Table 4 Some drugs administered to dogs presented to the Veterinary Teaching Hospital, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria with suspected cases of poisoning

Drugs	Number of dogs (Frequency)	Percentage (%)
Dextrose saline infusion	20 (13)	13
Normal saline infusion	4 (3)	3
Lactated ringer infusion	16 (10)	10
Atropine	36 (23)	23
Mineral oil	4 (3)	3
Vitamin B complex	13 (8)	8
Metoclopramide	2 (1)	1
Acetaminophen	12 (8)	8
Dexamethasone	3 (2)	2
Folic acid	2 (1)	1
Chlorpromazine	1 (1)	1
Getaminic eye drop	2 (1)	1
Oxytetracycline injection (5%)	5 (3)	3
Hyoscine	6 (4)	4
Cimetidine	1 (1)	1
Phenobarbital	1 (1)	1
Kaolin	3 (2)	2
Metronidazole	2 (1)	1
Diazepam	4 (3)	3
Calcium gluconate	2 (1)	1
Neurovitamins	1 (1)	1
Furosemide	2 (1)	1
Prednisolone	1 (1)	1
Etamsylate	5 (3)	3
Vitamin K	2 (1)	1
Enrofloxicin	1 (1)	1
Hydrocortisone	2 (1)	1
Chloramphenicol eye drop	1 (1)	1
Chlorphenamine	2 (1)	1
Vitamin C	1 (1)	1
Total	157 (100)	100

a higher incidence of poisoning in male dogs than females. However, limited cases of sex differences being associated with poisons in animals were reported by Tiwari and Sinha [25].
The most reported toxicants responsible for poisoning revealed in this study were insecticides/acaricides, used in the management of ectoparasitism (tick, flea, lice and mange infestation). The organophosphates, organochlorines, carbamates and pyrethroids are of concern due to their low biodegradability and potential toxicity to humans, animals and the environment [26]. The organophosphate dichlorvos was the most reported, which could be due to its uncontrolled availability and sale as an OTC drug to both medical personnel and untrained individuals. Sniper® (active ingredient-dichlorvos), though banned in Nigeria due to its use for suicidal attempts in humans, is still used to control ectoparasitism in dogs and most cases lead to poisoning [27]. Arnot et al. [28] and Razwiedani and Rautenbach [29], earlier associated the increase in organophosphate poisoning among humans and animals alike to sales to non-professionals, poor handling and abuse, which corroborates results from this study. In this retrospective study, there were apparently no instances in which concomitant human poisoning was identified.

The frequency of the poisoning route (48% topical and 38% oral) agrees with that reported by Berny et al. [30]. The monthly distribution of the poisoning cases revealed that the number of cases increased gradually and spiked in February, April, August and December. There were no case reports in January. Seasons in Nigeria are divided into a) Late dry: January to March, b) Early rain: April to June, c) Late rain: July to September, and d) Early dry: October to December. Most reports of poisoning were reported during the rainy season (April-October). This period is characterized by high rainfall and increased relative humidity, creating a conducive environment for the survival and reproduction of ectoparasites, hence the increase in the rate of use of ectoparasiticides. Our study agrees with Asoke and Charles [31], who reported that acaricides are used more during the rainy seasons in Trinidad and Tobago.

For this study, the determination of causative agents of canine poisoning was based on history and patients’ clinical signs. This agrees with reports from several authors where the diagnosis of canine poisoning was based on clinical signs and history [32, 33, 10]. Most cases of poisoning documented in this study were caused by the owner after bathing pet dogs with commercially available insecticide/acaricide formulations. Pet owners’ involvement in poisoning cases in this study was higher than previously reported by Zang et al. [10]. The propensity for self-medication (being educated), poor knowledge of their use, handling and disposal by pet owners may have been key reasons for dogs exposure to poisoning rather than malicious and mischievous exposures as previously reported by some studies [13, 22]. Campaigns at regional and national levels should be done to improve public health awareness of these emerging toxicological risks. The goal should be the phasing out of the WHO Class I and II pesticides (such as dichlorvos) and replacing them with safer alternatives [34]. In addition, the purchase of such products should be through reliable sources.

A presumptive diagnosis was made for many of the cases of poisoning in this study, a common practice in many veterinary clinics and hospitals in the developing world. This is because specific laboratory investigations are expensive, elaborate, time consuming, require expensive instrumentation and high technical skill [33]. It is very likely, that cases of poisoning at the VTH are underreported and many cases presented with gastrointestinal or nervous symptoms may have been misdiagnosed. In addition, many cases of food and plant poisonings may have been treated as haemorrhagic enteritis and not reported as poisoning. In general, poisoning episodes through foods result from a lack of public knowledge on the hazards that some foods may constitute to pet dog health. As dogs are indiscriminate in their eating habits, they will readily ingest potentially harmful foodstuffs available at home [3].

The management of poisonings, depending on the cause, can be specific (antidotal) or symptomatic. The most common clinical signs recorded in this study were neurological (70%), followed by gastrointestinal (30%). This does not agree with another study where many canine patients poisoned showed severe gastrointestinal signs [10]. In this study, management was mainly symptomatic. Treatment protocol was influenced by factors such as the severity of clinical signs, the owner’s financial status, and the clinical and ethical perspective of both the owner and attending veterinarian.

Though a major advantage of data collection on case poisonings from veterinary clinics is the potential to provide detailed case information (including outcome), allowing for a more thorough assessment of cases, this study had its limitations. As data typically exist as separate records, it was difficult to collate and time-consuming. The limitations in comparison due to differences in documentation practices, investigative and treatment protocols, as well as the coding of cases among clinicians has been reported [35]. Results from the VTH in this study may not be assumed to represent the situation for all veterinary clinics throughout the different states of Nigeria. However, it could serve as a pointer to poisoning patterns in Nigeria, as in many regions of the developing world. Since cases were retrospectively collected, all poisoning
cases may not have been captured. Also, cases of poisoning in stray dogs that have a significant population in rural areas are also not reported. The use of harmonized and standardized documentation and assessment methods, improved interdisciplinary collaborations (one health strategic approach), and the promotion or development of practical and sustainable options for data exchange within and between the animal and human health sectors is necessary [36].

5 Conclusion

This study shows the heterogeneity of the causative agents of poisoning and their associated symptomatology, which highlights the need for further studies in this area. The need for standardized approaches for the collection, assessment, and integration of poisoning data as well as risk management was identified. This could contribute to the prediction, prevention, and control of poisonings in animals and humans.

Acknowledgment: The management and members of staff of the Veterinary Teaching Hospital, FUNAAB are appreciated for granting access and permission to use the information from the case records.

Authors’ contributions: OAA was involved in data collection and drafted the first manuscript; OOA and JAO were also involved in data collection; OOA did the statistical analysis; OTA did the conception and design of the project, revised the manuscript critically for important intellectual content; JOO was also involved in the revision of the manuscript. All authors read and approved the final version of the manuscript.

Conflict of interest: Authors state no conflict of interest.

References

[1] Guitart R, Croubels S, Caloni F, Sachana M, Davanzo F, Vandenbroucke V, et al. Animal poisoning in Europe. Part 1: farm livestock and poultry. Vet J. 2010 Mar;183(3):249–54.
[2] Caloni F, Cortinovis C, Rivolta M, Davanzo F. Suspected poisoning of domestic animals by pesticides. Sci Total Environ. 2016 Jan;539:331–6.
[3] Cortinovis C, Caloni F. Household food items toxic to dogs and cats. Front Vet Sci. 2016 Mar;3:26.
[4] Institute of Medicine Committee on Poison Prevention and Control. Forging a poison prevention and control system. Washington (DC). National Academies Press (US). Volume 3, 2004. https://www.ncbi.nlm.nih.gov/books/NBK215800
[5] Calderón-Garcidueñas L, Gambling TM, Acuña H, García R, Osnaya N, Monroy S, et al. Canines as sentinel species for assessing chronic exposures to air pollutants: part 2. Cardiac pathology. Toxicol Sci. 2001 Jun;61(2):356–67.
[6] Barlow SM, Greig JB, Bridges JW, Carere A, Carpy AJ, Galli CL, et al. Hazard identification by methods of animal-based toxicology. Food Chem Toxicol. 2002 Feb-Mar;40(2-3):145–91.
[7] McFarland SE, Bronstein AC, Banerji S, LeBlond J, Mischke RH, Begemann K, et al. Comparison of the Poisoning Severity Score and National Poison Data System schemes for the severity assessment of animal poisonings: a pilot study. Clin Toxicol (Phila). 2017 Aug;55(7):629–35.
[8] Camplesi AC, Bellodi C, Socha JJ, Hatayde MR, Sobreira MF, Araujo GH, et al. Dogs poisoned with Nerium oleander fresh leaves: clinical and electrocardiographic findings. Cienc Rural. 2017;47(6). https://doi.org/10.1590/0103-8478cr20160970.
[9] Bates N. Poisons affecting the neurological system. Companion Anim. 2020;25(2):83–91.
[10] Zang L, Bing R, de Araujo AC. Ferreira MP. A retrospective study of small animal poisoning at the Veterinary Medical Teaching Hospital from South Region of Brazil. Acta Sci Vet. 2018;46:1584–91.
[11] Modrá H, Svobodová Z. Incidence of animal poisoning cases in the Czech Republic: current situation. Interdiscip Toxicol. 2009 Jun;2(2):48–51.
[12] Vandenbroucke V, Van Pelt H, De Backer P, Croubels S. Animal poisonings in Belgium: a review of the past decade. Vlaams Diergen Tijds. 2010;79:259–68.
[13] Caloni F, Berny P, Croubels S, Sachana M, Guitart R. Epidemiology of animal poisonings in Europe. In: Gupta RC, editor. Veterinary Toxicology: Basic and Clinical Principles. 2nd ed. Elsevier; 2012. pp. 88–97.
[14] Caloni F, Cortinovis C, Rivolta M, Davanzo F. Animal poisoning in Italy: 10 years of epidemiological data from the Poison Control Centre of Milan. Vet Rec. 2012 Apr;170(16):415–7.
[15] 15. Schediwy M, Mewisson M, Demuth D, Kupper J, Naegeli H. [New causes of animal poisoning in Switzerland]. Schweiz Arch Tierheilkd. 2015 Mar;157(3):147–52.
[16] McFarland SE, Mischke RH, Hopster-Iversen C, von Krueger AM, H, Potschka H, et al. Systematic account of animal poisonings in Germany, 2012-2015. Vet Rec. 2017 Apr;180(13):327–37.
[17] Gwaltney-Brant SM. Epidemiology of animal poisonings in the United States. In Veterinary Toxicology Academic Press; 2018. pp. 37–44.
[18] Calzetta L, Roncada P, Piras C, Soggia A, Liccardi G, Mattei M, et al. Geographical characteristics influencing the risk of poisoning in pet dogs: results of a large population-based epidemiological study in Italy. Vet J. 2018 May;235:63–9.
[19] Caloni F, Berny P, Croubels S, Sachana M, Guitart R. Epidemiology of animal poisonings in Europe. Veterinary Toxicology. Academic Press; 2018. pp. 45–56.
[20] Swirski AL, Pearl DL, Berke O, O’Sullivan TL. Companion animal exposures to potentially poisonous substances reported to a national poison control center in the United States in 2005 through 2014. J Am Vet Med Assoc. 2020 Sep;257(5):517–30.
[21] Means C, Wismer T. An overview of trends in animal poisoning cases in the United States: 2011 to 2017. Vet Clin North Am Small Anim Pract. 2018 Nov;48(6):899–907.

[22] Shima KF, Tion TM, Mosugu IJ, Apaa TT. Retrospective study of disease incidence and other clinical conditions diagnosed in owned dogs in Delta State, Nigeria. J Adv Vet Anim Res. 2015;2(4):435–49.

[23] Eyarefe OD, Adetunji AG. Dog breeds acquisition and owners’ awareness of associated surgical conditions in Nigeria. J Vet Med Anim Health. 2018;10(7):173–9.

[24] Cowan VE, Blakley BR. A retrospective study of canine strychnine poisonings from 1998 to 2013 in Western Canada. Can Vet J. 2015 Jun;56(6):587–90.

[25] Tiwari RM, Sinha M. Veterinary Toxicology. Oxford, Jaipur, India; 2010. pp. 1–280.

[26] Saravi S, Shokrzadeh M. Role of pesticides in human life in the modern age: A review. Pesticides in the Modern World - Risks and Benefits; 2011. pp. 3–12.

[27] Okoroiwu HU, Iwara IA. Dichlorvos toxicity: A public health perspective. Interdiscip Toxicol. 2018 Aug;11(2):129–37.

[28] Arnot LF, Veale DJ, Steyl JC, Myburgh JG. Treatment rationale for dogs poisoned with aldicarb (carbamate pesticide). J S Afr Vet Assoc. 2011 Dec;82(4):232–8.

[29] Razwiedani LL, Rautenbach P. Epidemiology of organophosphate poisoning in the Tshwane district of South Africa. Environ Health Insights. 2017 Feb;11:1178630217694169.

[30] Berny P, Calon F, Croubels S, Sachana M, Vandenbroucke V, Davanzo F, et al. Animal poisoning in Europe. Part 2: companion animals. Vet J. 2010 Mar;183(3):255–9.

[31] Asoke B, Charles R. Ticks of Trinidad and Tobago - an Overview. Academic Press; 2017.

[32] Medeiros RJ, Monteiro FO, Silva GC, Nascimento Júnior A. Casos de intoxicações exógenas em cães e gatos atendidos na Faculdade de Veterinária da Universidade Federal Fluminense durante o período de 2002 a 2008. Cienc Rural. 2009;39(7):2105–10.

[33] Abreu BA, Silva DA. Drogas relacionadas a casos de intoxicações em cães. Acta Biomed Bras. 2014;5(2):71–8.

[34] Larson A, Paz-Soldan V, Arevalo C, Brown J, Condori-Pino C, Levy M, et al. Misuse, perceived risk, and safety issues of household insecticides: qualitative findings from focus groups in Arequipa, Peru. 2020. https://doi.org/10.21203/rs.3.rs-25073/v1.

[35] Bartlett MD, Briones MJ, Neilson R, Schmidt O, Spurgeon D, Creamer RE. A critical review of current methods in earthworm ecology: from individuals to populations. Eur J Soil Biol. 2010;46(2):67–73.

[36] Brower A, Struthers J, Schmidt J. Sodium fluoroacetate toxicity: a case report of malicious poisoning in dogs across a Phoenix, Arizona neighborhood. Forensic Sci Med Pathol. 2017 Dec;13(4):450–3.