Refining predictions of metacommunity dynamics by modeling species non-independence

Oystein H. Opedal, Mikael von Numers, Gleb Tikhonov, and Otso Ovaskainen

Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland

Department of Biosciences, Environmental and Marine Biology, Åbo Akademi University, Åbo FI-20520 Finland

Citation: Opedal, Ø. H., M. von Numers, G. Tikhonov, and O. Ovaskainen. 2020. Refining predictions of metacommunity dynamics by modeling species non-independence. Ecology 101(8):e03067. 10.1002/ecy.3067

Abstract. Predicting the dynamics of biotic communities is difficult because species’ environmental responses are not independent, but covary due to shared or contrasting ecological strategies and the influence of species interactions. We used latent-variable joint species distribution models to analyze paired historical and contemporary inventories of 585 vascular plant species on 471 islands in the southwest Finnish archipelago. Larger, more heterogeneous islands were characterized by higher colonization rates and lower extinction rates. Ecological and taxonomical species groups explained small but detectable proportions of variance in species’ environmental responses. To assess the potential influence of species interactions on community dynamics, we estimated species associations as species-to-species residual correlations for historical occurrences, for colorizations, and for extinctions. Historical species associations could to some extent predict joint colonization patterns, but the overall estimated influence of species associations on community dynamics was weak. These results illustrate the benefits of considering metacommunity dynamics within a joint framework, but also suggest that any influence of species interactions on community dynamics may be hard to detect from observational data.

Key words: island biogeography; joint species distribution models; metacommunity dynamics; species interactions; topographic complexity; vegetation dynamics.

INTRODUCTION

Predicting the dynamics of biotic communities over time is a fundamental challenge of ecology, and of undeniable importance in a time of rapid environmental change. Demographic studies of single species allow projection of population dynamics through time (e.g., Caswell 2001, Merow et al. 2014), but are not directly informative about community dynamics. An important reason for this is that species are not independent units responding to external environmental drivers, but are dependent on the dynamics of the community to which they belong. Consequently, explicit consideration of community-level patterns and processes may improve our ability to predict how communities change.

As a simple example, ecologically similar species may respond similarly to environmental drivers, leading to synchronized (meta-)population dynamics. This view is central to the research program centered on species’ functional traits (McGill et al. 2006), where “response traits” are those attributes of species that are predictive of environmental responses (Lavorel and Garnier 2002, Suding et al. 2008). Ecologically similar species may also tend to be closely related, so that functional traits exhibit a strong phylogenetic signal (e.g., Webb et al. 2002, Cavender-Bares et al. 2009; but see Losos 2008). An advantage of leveraging phylogenetic information as a complement to trait data is that species relatedness may convey information about the net phenotypic similarities among species (aspects of ecological similarity not captured by individual traits), or traits that are ecologically relevant but difficult to measure.

Changes in species distributions and abundances may depend on or modify species interactions, with unknown consequences for community dynamics (Holt 1997, Blois et al. 2013, Wisz et al. 2013, Alexander et al. 2015, Magurran 2016, Schleuning et al. 2016, Urban et al. 2016). Interactions can occur both among trophic levels (e.g., pollination, herbivory), and within trophic levels (e.g., plant–plant interactions; Table 1). As an example of the latter, the colonization of a site by one species may lead to the extinction of other species through competition, as when woody shrub expansion suppresses populations of understory plants (Pajunen et al. 2011, Mod and Luoto 2016). Similarly, colonization by foundation species may facilitate colonization by other species, as observed for cushion plants in harsh alpine...
environments (Körner 2003). Therefore, joint analysis of the spatial distribution and temporal dynamics of entire communities may lead to a more predictive understanding of biotic community responses to environmental change.

We can think about the processes discussed above as aspects of species non-independence, either in the statistical sense of species falling into groups that respond similarly to environmental variation, or in the ecological sense of species directly interacting with each other. Our overall hypothesis is that explicit consideration of such patterns and processes in community-wide analyses can refine predictions of community dynamics. Recent developments in the field of joint species distribution modeling now allows estimating shared responses to environmental drivers among predefined ecological, phenotypic, and phylogenetic species groups (Ovaskainen et al. 2017). Furthermore, these models yield estimates of residual correlations among species after accounting for shared environmental responses (Pollock et al. 2014, Warton et al. 2015, Ovaskainen et al. 2017). Species associations quantified by residual correlations may represent shared responses to unmeasured aspects of the environment, but also the potential influence of species interactions. By considering entire communities within a single model, we can therefore start to assess quantitatively the potential influence of species interactions on community structure and dynamics.

Here, we analyze changes in the composition of the vascular plant communities of 471 islands in the southwest Finnish archipelago over 80 yr. Because islands represent distinct sampling units, insular metacommunities provide unique systems for testing biological hypotheses related to community assembly, diversity, and turnover (e.g., MacArthur and Wilson 1967, Simberloff 1974, Diamond 1975, Brown and Kodric-Brown 1977, Kohn and Walsh 1994, Cody 2006, Hanski 2016). In the study area, previous analyses of individual species have identified a set of environmental drivers of species occurrence, extinction, and colonization (e.g., von Numers and Korvenpää 2007, Hannus and von Numers 2010, von Numers 2011, 2015). Here, we extend the scope of analysis by jointly modeling extinction and colonization rates of all 585 vascular plant species that occur in the study area, allowing us to assess patterns of shared dynamics among species. To assess whether quantifiable axes of species similarity are informative about changes in communities over time, we asked whether and to what extent changes in the metacommunity are structured by (1) species ecological groups (shoreline specialists vs. ordinary species) and (2) taxonomic relatedness. To further assess the potential role of species interactions in structuring community dynamics, we also asked (3) whether statistical species associations inferred from historical snapshot data are informative about species’ shared dynamics over time, and (4) whether these associations are taxonomically structured.

Material and Methods

Study area and plant community data

The southwest Finnish archipelago comprises at least 22,000 islands ranging from small skerries to large,
forested islands (Granö et al. 1999). The climate is mar-
itime, but the early part of the growing season often has
continental characteristics, with low precipitation and
higher insolation compared to the mainland. Further
description of the study area is provided in von Numers
and van der Maarel (1998) and von Numers (2015).

The species occurrence data consist of paired histori-
cal and recent inventories of all vascular plants on 471
islands (for details, see von Numers 2011, 2017). The his-
torical inventories were conducted between 1925 and
1946 (mainly in the 1930s) by Eklund (1958), and in the
1940s by Skult (1960), and the recent inventories were
conducted between 1996 and 2017 by M. von Numers.
In both inventories, species lists were compiled for each
island, but no data on abundance were collected. In the
recent inventory, the islands were surveyed during the
same part of the growing season as in the historical
inventories, usually between 10 June and 30 July. The
islands were surveyed systematically using a species
checklist. Some islands were surveyed twice, and some
of the largest islands demanded several days of work.
Both Eklund and Skult similarly compiled the species
lists in a systematic way using checklists. Eklund was
known to work systematically and scrupulously in the
field (H. Skult, personal communication), devoting his
life to surveying the flora of the archipelago of south-
west Finland. Skult worked in a similar systematic way.
While both the historical and recent inventories were
conducted by highly experienced field botanists, it is
possible that a few species remained undetected (see von
Numers and Korvenpaa 2007 for examples and discus-
sion). Importantly, we except the detectability of individ-
ual species to have been similar between the two
inventories.

A total of 585 species were recorded on the study
islands, with a median species richness of 113 species per
island (range = 22–279 species). Species’ life histories
range from short-lived annuals (e.g., Atriplex prostrata,
Moehringia trinervia, Saxifraga tridactylites, Linum
catharticum) and biennials (e.g., Isatis tinctoria, Pseuda-
num palustre, Cirsium palustre) to long-lived perennials
(e.g., Vincetoxicum hirundinaria, Juniperus communis,
Pinus sylvestris). Thus, while most species will have gone
through several to many generations between the invent-
ories, a few individuals of the more long-lived species
may have persisted on a given island for the entire dura-
tion of the study. We defined shoreline species, i.e., spe-
cies of the geolittoral zone (shore between the mean
water level and the high water level), the hydrolittoral
zone (between mean water level and low water level),
and the emergent species of the sublittoral zone (always
under water), as in von Numers (2011). We expected
these species to exhibit shared patterns of change because
they inhabit a shared and distinct habitat.

We assigned colonization events when a species was
absent on an island in the historical inventory but pre-
sent in the recent inventory, and extinction events when
a species was present in the historical inventory but
absent in the recent inventory. Thus, “colonizations” and
“extinctions” can include cases of repeated change in
presence/absence status, if a species, say, colonised, went
extinct, and then recolonised during the approximately
80 yr between the two inventories. Using these defini-
tions, 15,008 colonization events and 9,384 extinction
events were recorded across all islands between the two
inventories.

Environmental covariates

Island diversity patterns are known to depend on
island area, isolation, and environmental heterogeneity
(MacArthur and Wilson 1967, Brown and Kodric-
Brown 1977, Kohn and Walsh 1994). To account for
these underlying gradients in diversity, we used ArcGIS
10.1 to measure a set of geographical covariates describ-
ing the position and structure of each island, namely is-
land area (natural logarithm of island area in m²),
topographic complexity (standard deviation of elevation
points of 10 x 10 m grid cells of a digital elevation
model covering each island), and neighborhood size (nat-
ural logarithm of total area of land within 5 km of the
shoreline of each island in m²). We assumed that the
topography variable would capture variation in microcli-
mate due, for example, to differences in solar radiation
and drainage of moisture (Opedal et al. 2015). The
neighborhood variable captures variation in the proba-
bility of colonization due to distance to source popula-
tions, as well as variation in exposure to wind, waves,
and sea currents.

Joint species distribution models

To assess community-wide patterns of vegetation
change between the two inventories, and to answer our
specific research questions derived from the overall
hypothesis of species non-independence in community
dynamics, we fitted latent-variable joint species distribu-
tion models using the Hierarchical Modeling of Species
Communities (HMSC) framework of Ovaskainen et al. (2017) implemented in the Bayesian framework in the
Hmsc 3.0 R package (Tikhonov et al. 2020).

We fitted a series of models aiming to answer distinct
research questions. In the first analysis (repeated-meas-
ures model), we treated the historical and recent inven-
tories as repeated observations, and used probit
regression to model the presence/absence of species (Y
matrix in HMSC) as a function of time (historical vs.
recent) and the geographic covariates island area, topo-
graphic complexity, and neighborhood size (X matrix).
This approach allowed us to estimate the net change in
occurrence of each species between the two inventories,
and to estimate and compare temporal and spatial
sources of variation in species occurrences and distribu-
tions. To assess whether ecologically similar species ex-
hibit similar patterns of change in occurrence over time
(research question i), we included in the model trait

...
matrix \((T) \) an indicator of species that are shoreline specialists, as a simple proxy of ecological similarity.

In the second analysis (colonization–extinction model), we explicitly modeled the colonization and extinction probabilities of each species. By modeling historical occurrences, colonizations and extinctions of all species jointly (in a single model), this approach allowed us to assess correlated probabilities of colonization and extinction across species. Each species occurred three times in the response matrix \((Y) \): first as presence/absence in the historical data, and then as presence/absence for colonization and extinction, conditional on absence (for colonization) or presence (for extinction) in the historical data. Covariates were the same as in the repeated-measures model, except there was no time variable. We included response variable type (historical occurrence vs. colonization vs. extinction), species ecological type (shoreline specialist vs. ordinary species), and their interaction in the trait matrix \((T) \). To assess whether species that were positively or negatively associated in the historical data also tended to colonize or go extinct together (research question iii), we correlated the estimated residual correlations for historical occurrences, colonization probabilities, and extinction probabilities for each species pair. We repeated this analysis for all species and for the shoreline species only.

In the third analysis (taxonomic-signal models), we asked whether related species responded similarly to covariates (research question ii), and whether positive and negative species associations were taxonomically structured (research question iv). We fitted separate models for the historical inventory, for colonization conditional on historical absence, and for extinction conditional on historical presence, excluding those species missing in each of these subsets of the data. Covariates and traits were the same as in the repeated-measures model, except there was no time variable. We modeled the matrix \(\beta \) describing species’ responses to the environmental covariates as \(\beta \sim N(\mu, \Omega \otimes [\rho C + (1 - \rho)I]) \), where \(\otimes \) is the Kronecker product, \(C \) is a phylogenetic correlation matrix, and \(I \) is an identity matrix, and the mean \(\mu \) is modeled as a linear regression on species’ traits (Ovaskainen et al. 2017). The strength of the phylogenetic signal is measured by the parameter \(\rho \), with \(\rho = 0 \) indicating phylogenetic independence. In the absence of a dated phylogeny for the diverse plant communities in the study area, we assembled an undated phylogeny from Phylomatic (Webb and Donoghue 2005), based on the default Phylomatic R20120829 megatree for plants (program available online).\(^2\)

We sampled the posterior distributions with two independent Monte Carlo Markov chains (MCMCs) for an increasing number of iterations until results stabilized across chains, and posterior trace plots revealed adequate chain mixing and convergence (the final number of MCMC iterations per chain ranged from 60,000 to 300,000; Appendix S1: Table S1). To evaluate chain mixing and convergence quantitatively, we computed effective sample sizes and potential scale-reduction factors for those model parameters used to make inferences (Gelman et al. 2014). We assessed explanatory power as the squared correlation coefficient \((r^2) \) between the observed and predicted numbers of species, colonization events and extinction events per island. We also computed area-under-curve (AUC) statistics and coefficients of discrimination (Tjur \(r^2 \)) for each species. The latter is defined as the difference in average model-predicted probability of occurrence, colonization, or extinction for islands where a species is present vs. absent (Tjur 2009).

To assess predictive power, we cross-validated the repeated-measures and colonization–extinction models by refitting sequentially to one half of the data and obtaining predictions for those islands not used in model training (i.e., two-fold cross-validation).

Variance partitioning

We partitioned the variance explained by each model into contributions of each fixed and random effect based on the relative proportion of variances for each of the Gaussian components of the model’s latent predictor (Ovaskainen et al. 2017). We further computed the trait \(r^2 \), i.e., the percentage of the variance explained by fixed effects attributable to traits included in the model (see Abrego et al. [2017] for details).

Quantifying the influence of environment and species associations on predicted current occurrences

A species is present on an island in the recent inventory if it was historically present and did not go extinct, or if it colonized between the inventories. Hence, the probability of current occurrence of species \(i \) can be written as \(p_i = q_i (1 - c_i) + (1 - q_i) c_i \), where \(p_i \) is the probability of current occurrence, \(q_i \) is the probability of historical occurrence, \(c_i \) is the extinction probability, and \(c_i \) is the colonization probability for species \(i \). To assess how current occurrence probabilities \((p_i) \) depend on environmental covariates vs. the occurrence and colonization–extinction dynamics of the complete metacommunity (Table 1), we performed a series of predictions using the colonization–extinction model where we sequentially excluded subsets of information, and computed current occurrence probabilities using the equation above. As a benchmark, we performed full-model conditional predictions including all available

\(^2\)http://phylodiversity.net/phylomatic
Table 2. Variance partitioning for fixed and random effects in the repeated-measures, colonization–extinction, and taxonomic-signal models, averaged over species.

Parameter	Tjur r^2 (CV)	AUC (CV)	Trait r^2	ρ (95% CI)	Time	Area	Topographic complexity	Neighborhood size	Island (random)	SU (random)
Repeated-measures model										
Occurrence	0.30 (0.66)	0.94 (0.76)	9.5%	-	4.7%	20.9%	2.1%	6.3%	31.8%	31.8%
Colonization–extinction model										
Historical occurrence	0.31 (0.03)	0.94 (0.74)	-	17.1%	2.6%	4.4%		75.9%		
Colonization probability	0.20 (0.03)	0.92 (0.72)	-	19.3%	3.0%	8.8%		68.9%		
Extinction probability	0.24 (0.03)	0.92 (0.66)	-	14.5%	3.2%	5.1%		77.3%		
Taxonomic-signal models										
Historical occurrence	0.29 (0.29)	0.92 (0.34)	8.9%	0.28 (0.14, 0.44)	20.3%	3.1%		9.2%	67.4%	
Colonization probability	0.17 (0.03)	0.89 (0.47)	11.6%	0.31 (0.17, 0.47)	28.3%	5.2%		20.4%	46.1%	
Extinction probability	0.16 (0.25)	0.85 (0.38)	7.8%	0.21 (0.08, 0.38)	23.2%	9.1%		15.7%	52.0%	

Notes: Trait r^2 is the percentage of the variance explained by fixed effects explained by traits, i.e., the plant ecological type for the repeated-measures and taxonomic-signal models, and the plant ecological type × response variable type interaction for the colonization-extinction model. Parameters are r^2_{CV}, cross-validated r^2; AUC, area under the curve; CV, cross-validation; ρ, taxonomic signal (95% credible interval); SU, sampling unit.

Information, i.e., the covariates, the historical species occurrences, and the colonizations and extinctions of all non-focal species. Conditional predictions in HMSC use the model-inferred species associations to inform predictions, thus incorporating information about local community structure and dynamics. To assess the overall (potential) influence of historical occurrences, colonizations, and extinctions, we made predictions while holding q_i, c_i, and e_i constant at their mean.

To assess the (realized) influence of each factor (covariates, historical occurrences, colonizations, and extinctions), we compared the full-model predictions to predictions obtained after excluding each focal factor. For example, we assessed the influence of historical occurrences of all non-focal species on the colonization probability of a focal species by comparing predictions from the full model vs. predictions made with all historical occurrences set to NA. We quantified the influence of each factor as the mean absolute deviation of the reduced-model predictions from the full-model predictions as $\text{MAD} = \sum \frac{(p^F_{ij} - p^R_{ij})^2}{n}$, where p^F_{ij} is the full-model prediction for species i on island j, p^R_{ij} is the reduced-model prediction, and n is the number of islands.

Results

Repeated-measures model: Patterns of net change in the metacommunity

The model treating the historical and recent inventories as repeated measures explained very well the number of species per island ($r^2 = 1$, cross-validation $r^2_{CV} = 0.57$), but less well the occurrences of individual species (mean coefficient of discrimination [Tjur r^2] = 0.30, range = 0–0.71, mean AUC = 0.94). Thus, the average predicted occurrence probabilities of species on islands where they were present were on average 0.30 greater than for islands where they were not present. Of the total variance explained by the model, time (historical vs. recent) explained on average 4.7%, the geographical covariates explained 31.7%, and the spatial latent factors representing unmeasured environmental variation as well as species interactions explained 63.6% (Table 2). The limited species-specific explanatory power arising from the geographical covariates was also apparent as low species-specific predictive power as evaluated by unconditional cross-validation, which does not leverage the information captured by the latent variables (Table 2).

The average predicted species richness per island increased by 12 species between the two inventories, from 107.8 species in the historical data to 119.8 species in the recent data. Proportional species gains and losses occurred rather randomly across the study area (Fig. 1).

The species ecological type (shoreline specialist vs. ordinary species) explained 9.5% of the variance due to fixed effects. The shoreline species increased more over time than did other species (contrast on Gaussian predictor scale = 0.55 [95% CI = 0.41, 0.69] for shore plants vs. 0.28 [0.21, 0.35] for ordinary species). Furthermore, the probability of occurrence increased less strongly with island area for shore plants than for other species (slope = 0.37 [95% CI = 0.31, 0.43] for shore plants vs. 0.46 [0.41, 0.50] for ordinary species).

Colonization–extinction model: Model performance and effects of covariates

The explicit colonization-extinction model explained well the historical species richness ($r^2 = 0.99$, cross-
FIG. 1. Map of the study islands in the southwest Finnish archipelago, illustrating proportional changes in vascular plant species richness over 80 yr. Proportional change in species richness is computed as $100 \times \frac{\ln(\text{recent species richness})}{\ln(\text{historical species richness})}$). Redder colors indicate net species gain (increasing species richness), and bluer colors indicate net species loss (decreasing species richness). Symbol sizes are proportional to the natural logarithm of island size.
validated \(r^2_{CV} = 0.45 \), number of colonization events \((r^2 = 0.90, r^2_{CV} = 0.39) \), and number of extinction events per island \((r^2 = 0.92, r^2_{CV} = 0.65) \). The ability to discriminate between presences and absences of individual species was reasonably good for historical occurrences \((\text{mean Tjur } r^2 = 0.31, \text{range} = 0 - 0.73, \text{mean AUC} = 0.94) \), colonizations \((\text{mean Tjur } r^2 = 0.20, \text{range} = 0 - 0.63, \text{mean AUC} = 0.92) \), and extinctions \((\text{mean Tjur } r^2 = 0.24, \text{range} = 0 - 0.64, \text{mean AUC} = 0.92) \). The island-level latent factors explained more variance (68.9–77.3%) than did the geographical covariates, which led to low species-specific predictive power when cross-validating the model (Table 2).

Larger islands contained more species, were more likely to gain new species through colonization, and were less likely to suffer extinctions (Fig. 2). A similar yet weaker effect was observed for island topographic complexity, but only when allowing island area and neighborhood size to covary with topographic complexity (Fig. 2, upper panels). Neighborhood size had no detectable effects on species occurrences or extinction probabilities, but islands with larger neighborhood sizes had somewhat greater colonization probabilities (Fig. 2).

The response variable type (historical occurrence vs. colonization probability vs. extinction probability) and species ecological type (shoreline specialist vs. ordinary species) jointly explained 39.6% of the variance due to fixed effects (Table 2), largely reflecting the contrasting effects of the covariates on historical occurrences, colonizations, and extinctions (Fig. 2).

Colonization-extinction model: Patterns of colonization and co-extinction

To assess whether species tended to colonize or go extinct together, we first asked whether species that were positively or negatively associated in the historical inventory also exhibited shared patterns of colonization and extinction (Fig. 3). Overall, colonization patterns were more predictable from historical associations (historical–historical associations vs. colonization–colonization associations, \(r^2 = 22.3\% \)) than were extinction patterns (historical–historical associations vs. extinction–extinction associations, \(r^2 = 5.6\% \)). If only those associations that were either positive with posterior probability \(> 0.75 \) or negative with posterior probability \(> 0.75 \) were included, these values rose to 46.1% and 19.0%, respectively, suggesting that stronger associations were more predictive than were weaker associations. The relationships were also somewhat stronger when restricting the analysis to the shoreline species only \((r^2 = 34.5\% \text{ and } 22.2\%, \text{respectively}; \text{Fig. 3}) \).

To further explore patterns of residual species associations and their influence on model predictions, we first tabulated the direction and mean strength of species

![Fig. 2. Effects of island area (log m²), topographic complexity (standard deviation of elevation points), and local neighborhood size (in log m² of land within 5km) on species occurrence probability (gray), conditional extinction rate (red), and conditional colonization rate (blue). Colonization and extinction rates are conditional on historical absence and presence, respectively. Upper panels show net effects of each covariate and lower panels show marginal effects with the non-focal covariates held constant at their mean value. Lines show the mean estimate, and shading shows the 95% credible intervals.](image-url)
associations within and across historical occurrence, coloni-
zation, and extinction probabilities across islands. Overall, positive and negative associations were about equally common and equally strong (Fig. 4a). Positive historical associations, colonization–colonization associations and historical–colonization associations were somewhat more common than were the corresponding negative association types, and these association types were slightly stronger than were associations involving extinction probabilities.

We next performed a series of predictions of the current occurrence of each species on each island, where we sequentially excluded different components of the complete model. Predicted current occurrence probabilities were less sensitive to variation in extinction probabilities (mean absolute deviation = 0.022) than to variation in historical occurrence probabilities (0.033) and colonization probabilities (0.045). In turn, holding environmental covariates constant at their mean value had detectable effects on model predictions, as indicated by non-zero deviations of the reduced-model predictions from the full-model predictions (Fig. 4b) and reduced ability of the model to discriminate between true presences and absences when environmental covariates were
held constant (Fig. 4c). In contrast, excluding information about historical species occurrences, colonizations and extinctions influenced model predictions only weakly (Fig. 4b, c).

Taxonomic-signal models

Species’ responses to the covariates exhibited a moderately strong yet well-supported taxonomic signal, which was broadly consistent for historical occurrences, colonization probabilities, and extinction probabilities ($p = 0.21–0.31$, Table 2). Hence, related species tended to respond in a similar manner to island area, topographic complexity and neighborhood size. To explore whether species associations were taxonomically structured, we correlated the taxonomic relatedness of each pair of species with their estimated residual co-occurrences. These correlations were very weak ($r < 0.04$), suggesting no detectable taxonomic structure to species associations.

DISCUSSION

The explanatory power of our community-wide models was higher for species richness, colonization rates, and extinction rates at the level of islands than for island-specific probabilities of occurrence, colonization, and extinction of individual species. At the species level, the models explained historical and current species distributions better than colonization and extinction probabilities. At face value, these observations suggest either dissimilar environmental drivers of species distributions vs. colonization/extinction dynamics, or that colonizations and extinctions are stochastic and “unpredictable” events, as would indeed be the implicit assumption of “neutral” models of island biogeography (MacArthur and Wilson 1967). Our species occurrence data were collected as presence/absence at the level of islands, ignoring variation in abundances and microhabitats of species, thus adding noise to the species-specific results. Furthermore, we focused on broad-scale geographical covariates, and assumed that additional environmental variation among islands would be captured by the island-level latent factors included in our models (Ovaskainen et al. 2016b). The “success” of the latent factors in capturing unmeasured environmental variation was apparent from the high explanatory power at the level of islands. The latent factors also represent potential species interactions (Table 1), yet we failed to detect a strong signal of species associations on metacommunity dynamics in this system. In the following, we discuss the implications of our results for the predictability of community-level responses to environmental change.

Spatial and temporal diversity patterns

Before turning to patterns of vegetation change in the study area over the last 80 yr, some notes on spatial diversity patterns are warranted. The species richness of islands increased with area following a simple power relationship, a well-known biogeographic pattern. However, species diversity is not only a function of area per se, but also of the increased environmental heterogeneity normally associated with increasing area (MacArthur and Wilson 1967, Kohn and Walsh 1994, Lundholm 2009, Stein et al. 2014). Larger islands typically contain a greater number of distinct habitat types, and consequently more species (Kohn and Walsh 1994, Hannus and von Numers 2008). Furthermore, recent work adopting a more fine-scale view of environmental heterogeneity has documented that topographic complexity creates mosaics of variation in microclimate at small scales (Scherrer and Körner 2010, Lenoir et al. 2013, Opedal et al. 2015).

The size and environmental heterogeneity of islands may also affect community dynamics over time. Larger islands are likely to sustain larger average population sizes and consequently to exhibit reduced extinction risk, and are bigger “targets” for colonization (MacArthur and Wilson 1967, Cody 2006). Our results are largely consistent with these expectations, as larger islands had both greater colonization rates and lower extinction rates (Fig. 2).

Topographic complexity may affect community dynamics by altering the probabilities of extinction and colonization (Graae et al. 2018). First, in the event of climate change, fine-scale environmental variation may allow species to track changing environmental conditions by migrating into local microrefugia within complex landscapes, thus reducing extinction risk. Second, the greater environmental heterogeneity of topographically more complex landscapes may increase the probability of incoming propagules arriving in a suitable site for establishment. These expectations were met in our results, but only when island area was allowed to covary with topographic complexity (Fig. 2, upper row). Thus, although we cannot conclusively separate the area effect from effects of unmeasured environmental heterogeneity (Kohn and Walsh 1994), we failed to detect a strong effect of microclimatic variation independently of island area.

Colonization rates may also depend on the local neighborhood size (i.e., the distance to and size of nearby islands), and hence the intensity of propagule influx. As expected, we detected a weak positive effect of neighborhood size on colonisation rates (Fig. 2). Neighborhood size has also been hypothesized to affect observed extinction rates through the rescue effect (Brown and Kodric-Brown 1977), but we detected no such effects in the archipelago plant metacommunity.

Ecological similarity, taxonomic relatedness, and species’ environmental responses

If similarities in species’ environmental responses are to some extent structured by their ecological strategies,
phylogenetic histories, or both, this would improve our ability to predict how communities change. Instead of focusing on individual functional traits, we chose to focus on a group of species that are ecologically similar by using the same general habitat. A main finding was that the occurrence probabilities of shoreline species had increased more over the last 80 yr than had those of other species, and including the separation of these broad species groups into the analysis therefore proved meaningful. von Numers (2011) discusses possible causes of increased abundance of shoreline species in the study area, emphasizing the roles of changes in grazing pressure and increased nutrient availability caused by the eutrophicated sea.

The explanatory power arising from ecological similarity may rise further by adopting a more mechanistic approach focused on functional traits explicitly hypothesized to mediate species’ responses to specific environmental variables (e.g., Blonder et al. 2018). For example, working in the Barkley sound archipelago in Canada (see Cody 2006), Burns and Neufeld (2009) reported reduced extinction probabilities of species with thicker leaves, consistent with an important role of physical stress tolerance in the rough environment characterizing small islands. Similarly, we may expect population dynamics to depend on generation times, an effect that could be easily assessed by including generation time or at least the separation of annual, biennial, and perennial species as a trait in joint models.

The shoreline species are an ecological group representing numerous families and genera, many of which also comprise species confined to different habitat types. Our taxonomic analysis therefore assessed a largely independent axis of species similarity, and revealed moderately strong similarities in the responses of related species to island size, topographic complexity, and neighborhood size. This finding is encouraging, especially because the strength of the signal was almost certainly reduced by the coarse resolution of our analysis, which was restricted to separating higher taxa, and more detailed phylogenetic data could reveal patterns hidden at the current level of analysis. Nevertheless, these results illustrate the utility of phylogenetic information in understanding the dynamics of communities.

The role of species associations in community structure and dynamics

There is growing consensus that species interactions will affect the dynamics of communities over time, yet there is substantial uncertainty in exactly how this will occur (e.g., Holt 1997, Blois et al. 2013, Magurran 2016). For example, an important yet largely unexplored question concerning the temporal dynamics of biotic communities is whether associated species tend also to exhibit shared dynamics over time. Our results suggest that the answer to this question depends on the specific component of community dynamics considered, because the direction and strength of species associations in the historical data explained patterns of joint colonizations better than joint extinctions (Fig. 3). The difficulty in identifying drivers of colonizations and particularly extinctions was further confirmed by our assessment of species associations within and among historical occurrences, colonizations, and extinctions (Fig. 4). Despite our focus on estimating the overall influence of species associations on model predictions, rather than inferring specific associations, we failed to detectably improve predictions of community dynamics by considering species associations. The difficulty of detecting net effects of extinctions on community dynamics is compounded by their relative infrequency, which reduces the potential influence of extinctions on current community structure.

We cannot at this time ascertain whether the weak influence of species associations on model predictions in our study resulted from limited importance of species interactions for community dynamics in the study area, or from the coarse resolution of our data precluding the detection of such effects. As part of his long-term study of the plant communities of Barkley sound islands, Cody (2006:Chapter 5) collected fine-scale data on the distributions and dynamics of species hypothesized to compete for a certain resource. While some closely related or ecologically similar species did indeed appear to exhibit disjunct distributions, these cases appeared to be exceptions, suggesting that overall effects of species interactions on community dynamics may be hard to detect even if they exist.

A related issue is whether joint species distribution models are indeed able to detect species interactions (Barner et al. 2018, Zurell et al. 2018). There are several ways to interpret residual species associations inferred from joint species distribution models, including joint responses to unmeasured environmental variables and direct interactions between species (Table 1, and see Òvaskainen et al. 2016a). Because the covariates included in our colonisation–extinction model described island geography (island size, topographic complexity, and neighborhood size) rather than island-specific aspects of the abiotic environments, the conservative interpretation is that species exhibiting positive associations respond to some extent to the same environmental variables, while those species exhibiting negative associations have contrasting responses. Furthermore, because the analysis of residual species associations in joint species distribution models is essentially a correlation analysis, we cannot with current methods distinguish the effect of species A going extinct on the probability of species B colonizing from the effect of species B colonizing on the probability of species A going extinct. While these scenarios may differ in their ecological interpretation (Table 1), they are indistinguishable from the symmetric association matrices produced by current joint species distribution models.

Finally, we detected essentially no taxonomic structure to residual species associations beyond those
explained by shared environmental responses. Hence, there was no strong overall tendency for related species to be positively or negatively associated on the study islands, or to affect each other’s probabilities of colonisation and extinction. Despite the long-standing notion that related species should be ecologically similar and thus tend to enter competition with each other (e.g., Darwin 1859), our results are consistent with several studies reporting weak effects of phylogenetic relatedness on competitive interactions (Cahill et al. 2008, Kunstler et al. 2012). We cannot, however, ascertain whether this pattern would hold also with more detailed phylogenetic data.

CONCLUSIONS: SPECIES NON-INDEPENDENCE AND THE PREDICTABILITY OF BIOTIC COMMUNITY DYNAMICS

We set out to assess the utility of several quantifiable components of species non-independence in refining predictions of community dynamics. Despite the coarse resolution of our data, both species’ ecological groups and taxonomic relatedness explained detectable proportions of the variance in community structure and dynamics. Our results also suggest that species associations inferred from snapshot data can be informative about community dynamics, because historically associated species tended also to colonize the same islands. However, explicit modeling of joint colonisation and extinction dynamics had only minor influences on model predictions, suggesting limited influence of species interactions on community dynamics in this system. These results illustrate both the complexity of biotic community dynamics, and the usefulness of considering community dynamics within a joint framework, rather than treating species as independent entities.

ACKNOWLEDGMENTS

We thank Cheryl Briggs and anonymous referees for comments on the manuscript. This work was funded by the Academy of Finland (grant 309581 to O. Ovaskainen).

LITERATURE CITED

Abrego, N., A. Norberg, and O. Ovaskainen. 2017. Measuring and predicting the influence of traits on the assembly processes of wood-inhabiting fungi. Journal of Ecology 105:1070–1081.

Alexander, J. M., J. M. Diez, and J. M. Levine. 2015. Novel competitors shape species’ responses to climate change. Nature 525:515–518.

Barner, A. K., K. E. Coblenz, S. D. Hacker, and B. A. Menge. 2018. Fundamental contradictions among observational and experimental estimates of non-trophic species interactions. Ecology 99:557–566.

Blois, J. L., P. L. Zarnetske, M. C. Fitzpatrick, and S. Finnegan. 2013. Climate change and the past, present, and future of biotic interactions. Science 341:499–504.

Blonder, B., R. E. Kapas, R. M. Dalton, B. J. Graee, J. M. Heiling, and O. H. Opedal. 2018. Microenvironment and functional-trait context dependence predict alpine plant community dynamics. Journal of Ecology 106:1323–1337.

Brown, J. H., and A. Kodric-Brown. 1977. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology 58:445–449.

Burns, K. C., and C. J. Neufeld. 2009. Plant extinction dynamics in an insular metacommunity. Oikos 118:191–198.

Cahill, J. F., S. W. Kembel, E. G. Lamb, and P. A. Keddy. 2008. Does phylogenetic relatedness influence the strength of competition among vascular plants? Perspectives in Plant Ecology, Evolution and Systematics 10:41–50.

Caswell, H. 2001. Matrix population models: construction, analysis, and interpretation. Sinauer Associates, Sunderland, Massachusetts, USA.

Cavender-Bares, J., K. H. Kozak, P. V. Fine, and S. W. Kembel. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12:693–715.

Cody, M. L. 2006. Plants on islands. Diversity and dynamics on a continental archipelago. University of California Press, Berkeley, California, USA.

Darwin, C. R. 1859. On the origin of species. John Murray, London, UK.

Diamond, J. M. 1975. The island dilemma: lessons of modern biogeographic studies for the design of natural reserves. Biological Conservation 7:129–146.

Eklund, O. 1958. Die gefaßpflanzenflora beiderseits skiftet im schärenarchipel südwestfinlandes. Bidrag till Kändedom af Finlands Natur och Folk 101:1–342.

Gelman, A., J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. 2014. Bayesian data analysis. Third edition. CRC Press, Boca Raton, Florida, USA.

Graee, B. J. et al. 2018. Stay or go—the topography of complexity influences alpine plant population and community responses to climate change. Perspectives in Plant Ecology Evolution and Systematics 30:41–50.

Grano, O., M. Roto, and L. Laurila. 1999. Environment and land use in the shore zone of the coast of Finland. Publicationes Instituti Geographici Universitatis Turkuensis 160:1–76.

Hannus, J. J., and M. von Numers. 2008. Vascular plant species richness in relation to habitat diversity and island area in the Finnish Archipelago. Journal of Biogeography 35:1077–1086.

Hannus, J. J., and M. von Numers. 2010. Temporal changes in the island flora at different scales in the archipelago of SW Finland. Applied Vegetation Science 13:531–545.

Hanski, I. 2016. Messages from islands: a global biodiversity tour. Chicago University Press, Chicago, Illinois, USA.

Holt, R. D. 1997. From metapopulation dynamics to community structure. Pages 149–165 in I. Hanski and Gilpin, M. E., editors. Metapopulation Biology. Academic Press, San Diego, California, USA.

Kohn, D. D., and D. M. Walsh. 1994. Plant species richness—the effect of island size and habitat diversity. Journal of Ecology 82:367–377.

Körner, C. 2003. Alpine plant life: functional plant ecology of high mountain ecosystems. Second edition. Springer, Berlin, Germany.

Kunstler, G., S. Lavergne, B. Courbaud, W. Thuiller, G. Vieilledent, N. E. Zimmermann, J. Kattge, and D. A. Coomes. 2012. Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecology Letters 15:831–840.

Lavorel, S., and E. Garnier. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16:545–556.
Lenoir, J. et al. 2013. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Global Change Biology 19:1470–1481.

Losos, J. B. 2008. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11:995–1003.

Lundholm, J. T. 2009. Plant species diversity and environmental heterogeneity: spatial scale and competing hypotheses. Journal of Vegetation Science 20:377–391.

MacArthur, R., and E. O. Wilson. 1967. The theory of island biogeography. Princeton University Press, Princeton, New Jersey, USA.

Magurran, A. E. 2016. How ecosystems change. Science 351:448–449.

McGill, B. J., B. J. Enquist, E. Weiher, and M. Westoby. 2006. Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21:178–185.

Merow, C. et al. 2014. Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution 5:99–110.

Mod, H. K., and M. Luoto. 2016. Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation. Environmental Research Letters 11:124028.

Opedal, Ø. H., W. S. Armbruster, and B. J. Graae. 2015. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecology & Diversity 8:305–315.

Ovaskainen, O., N. Abrego, P. Halme, and D. Dunson. 2016a. Using latent variable models to identify large networks of species-to-species associations at different spatial scales. Methods in Ecology and Evolution 7:549–555.

Ovaskainen, O., D. B. Roy, R. Fox, and B. J. Anderson. 2016b. Uncovering hidden spatial structure in species communities with spatially explicit joint species distribution models. Methods in Ecology and Evolution 7:428–436.

Ovaskainen, O., G. Tikhonov, A. Norberg, F. G. Blanchet, L. Duan, D. Dunson, T. Roslin, and N. Abrego. 2017. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters 20:561–576.

Pajunen, A. M., J. Oksanen, and R. Virtanen. 2011. Impact of shrub canopies on understorey vegetation in western Eurasian tundra. Journal of Vegetation Science 22:837–846.

Pollock, L. J., R. Tingley, W. K. Morris, N. Golding, R. B. O’Hara, K. M. Parris, P. A. Vesik, M. A. McCarthy, and J. McPherson. 2014. Understanding co-occurrence by modelling species simultaneously with a joint species distribution model (JSDM). Methods in Ecology and Evolution 5:397–406.

Scherrer, D., and C. Körner. 2010. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology 16:2602–2613.

Schleuning, M. et al. 2016. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature Communications 7:13954.

Simberloff, D. S. 1974. Equilibrium theory of island biogeography and ecology. Annual Review of Ecology and Systematics 1974:161–182.

Skult, H. 1960. Om kärlevväxtfloran i Korpio, Brunskär, en utskärsarkipelag. Acta Societis pro Fauna et Flora Fennica 76:1–101.

Stein, A. K. Gerstner, and H. Kreft. 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17:866–880.

Suding, K. N., S. Lavorel, F. S. III Chapin, J. H. C. Cornelissen, S. Diaz, E. Garnier, D. Goldberg, D. U. Hooper, S. T. Jackson, and M.-L. Navas. 2008. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology 14:1125–1140.

Tikhonov, G., Ø. H. Opedal, N. Abrego, A. Lehikoinen, M. M. Jonge, J. Oksanen, and O. Ovaskainen. 2020. Joint species distribution modelling with the R-package Hmsc. Methods in Ecology and Evolution 11:442–447.

Tjur, T. 2009. Coefficients of determination in logistic regression models - a new proposal: the coefficient of discrimination. American Statistician 63:366–372.

Urban, M. C. et al. 2016. Improving the forecast for biodiversity under climate change. Science 353:aa8466.

von Numers, M. 2011. Sea shore plants of the SW archipelago of Finland—distribution patterns and long-term changes during the 20th century. Annales Botanici Fennici 48:1–46.

von Numers, M. 2015. Changes in distributions of selected vascular plants in a Baltic archipelago. Annales Botanici Fennici 52:101–119.

von Numers, M. 2017. Distribution patterns and long-term changes in vascular plants of non-littoral areas in the SW archipelago of Finland. Part I. Study concept and Pteridothyra. Annales Botanici Fennici 54:245–262.

von Numers, M., and T. Korvenpaa. 2007. 20th century vegetation changes in an island archipelago, SW Finland. Ecography 30:789–800.

von Numers, M., and E. van der Maarel. 1998. Plant distribution patterns and ecological gradients in the Southwest Finnish archipelago. Global Ecology and Biogeography 7:421–440.

Warton, D. I., F. G. Blanchet, R. B. O’Hara, O. Ovaskainen, S. Taskinen, S. C. Walker, and F. K. Hui. 2015. So many variables: joint modeling in community ecology. Trends in Ecology & Evolution 30:766–779.

Webb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33:475–505.

Webb, C. O., and M. J. Donoghue. 2005. Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes 5:181–183.

Wisz, M. S. et al. 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews of the Cambridge Philosophical Society 88:15–30.

Zurell, D., L. J. Pollock, and W. Thuiller. 2018. Do joint species distribution models reliably detect inter-specific interactions from co-occurrence data in homogenous environments? Ecography 41:1812–1819.
SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at http://onlinelibrary.wiley.com/doi/10.1002/ecy.3067/suppinfo

DATA AVAILABILITY STATEMENT

Data files and associated R code are available on Zenodo: https://doi.org/10.5281/zenodo.3712825