Development of a 0.15 µm GaAs pHEMT Process Design Kit for Low-Noise Applications

Igor M. Dobush 1, Ivan S. Vasil’evskii 2, Dmitry D. Zykov 3,*, Dmitry S. Bragin 3, Andrei S. Salnikov 1, Artem A. Popov 1, Andrey A. Gorelov 2 and Nikolay I. Kargin 2

1 50ohm Technologies LLC, 147 Krasnoarmeyskaya Ulitsa, 634045 Tomsk, Russia; igor.dobush@50ohm.tech (I.M.D.); andrei.salnikov@50ohm.tech (A.S.S.); artem.popov@50ohm.tech (A.A.P.)
2 National Research Nuclear University MEPhI, 31 Kashirskoe Shosse, 115409 Moscow, Russia; ivasilevskii@mail.ru (I.S.V.); andrew.a.gorelov@gmail.com (A.A.G.); krgn@yandex.ru (N.I.K.)
3 Faculty of Security, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Prospect, 634050 Tomsk, Russia; bds@esp.tusur.ru
* Correspondence: Dmitry.Zykov@tusur.ru; Tel.: +7-923-457-99-59

Abstract: This work presents a process design kit (PDK) for a 0.15 µm GaAs pHEMT process for low-noise MMIC applications developed for AWR Microwave Office (MWO). A complete set of basic elements is proposed, such as TaN thin film resistors and mesa-resistors, capacitors, inductors, and transistors. The developed PDK can be used in technology transfer or education.

Keywords: process design kit; GaAs pHEMT; MMIC; model; simulation

1. Introduction

At present, monolithic microwave integrated circuits (MMICs) are designed and produced using electronic design automation (EDA) tools (Figure 1) [1–3]. Large factories offering MMIC production services (called foundries) must provide their customers with a process design kit, so that the customers can design MMICs for their own applications.

Figure 1. MMIC development process.
The Institute of Nanoengineering in Electronics, Spintronics and Photonics of MEPhI University has developed a semiconductor process for the production of different types of circuits and semiconductor devices, including RF transistors and MMICs. There is a need to develop a PDK for the available processes for its own and collaborating design centers (by analogy with foundries).

As the researchers and engineers of MEPhI developed a 0.15 µm GaAs pHEMT process for low-noise MMICs, we decided to make a PDK for this process first. This research was partially funded by JSC ICC Milandr (Russia).

The fundamentals of modeling semiconductor devices and integrated circuits are described in books [4–8]. Some of the applied techniques can be found in [9–22]. This article discusses the methodology, techniques, and procedure used for PDK development. Comparison of experimental measurement values and simulation results obtained with the developed models showed good agreement. Several low-noise amplifiers with different topologies were designed using the developed PDK, and the parameters were calculated using EDA AWR Microwave Office.

2. Materials and Methods

MMIC consists of different elements: active (transistor, diode) and passive ones (resistor, capacitor, inductor, transmission line, contact pad, via hole, and others); see Figure 2.

![Figure 2. MMIC topology example.](image)

Typically, a PDK consists of electrical models of active and passive elements, topological element cells, material parameters (for electromagnetic analysis), topological tolerances, topology check rules, special objects and symbols, and support information for the user.

In this paper, the PDK was developed through the following steps:

1. Detailed study of the process and topological design rules;
2. Design of topology templates for elements;
3. Development of test structures for characterization of elements;
4. Development of circuit fragments for initial verification of element models;
5. Fabrication of test structures and circuit fragments;
6. Measurement of test structures and circuit fragments, mathematical processing of measurement results;
7. Development of electrical and topological models of elements;
8. Initial verification of element models;
9. Development of library structure of elements, setting up electromagnetic analysis and topology verification tools;
10. Preparation of reference information;
11. Release of the first version of PDK;
12. Design of test microwave devices for validation of the first version of PDK.
After the first release of the PDK, this cycle is repeated several times to increase the accuracy of the models, add new elements, actualize the process changes, etc.

3. Results

The first PDK development stage included a detailed investigation of the technology. The MEPhI technology has the following features: AlGaAs/InGaAs pHEMT structure, 3-inch substrate diameter, metalized via holes to the backside of the substrate, backside metallization, substrate thinning up to 100 microns, a depletion-mode transistor with a gate length of 0.15 \(\mu \text{m} \), three levels of metallization, MIM capacitors (250 pF/mm\(^2\)), semiconductor resistors (170 ohm/square), and thin-film resistors (50 ohm/square). The main parameters of the transistor are listed in Table 1.

Table 1. The main transistor parameters.

Parameter	Value	Units	Note
Drain current	270	mA/mm	At 0 gate-source voltage
Transconductance	500	mS/mm	
Drain breakdown voltage	7	V	
Gate threshold voltage	−0.8	V	
Maximum generation frequency	120	GHz	For 4 \times 50 \mu m
Minimum noise figure	1.3	dB	For 4 \times 50 \mu m at 12 GHz

In the next step, we developed topology templates of basic MMIC elements. These were used to design test structures to characterize active and passive elements, as well as fragments of matching and correcting networks to verify passive element models at the first iteration of PDK development.

Then, GaAs pHEMT wafers were produced and processed. Each wafer consists of repeated frames (Figure 3) that include:

- Active elements;
- Passive elements;
- Transmission line segments;
- Structures for de-embedding;
- Fragments of circuits for verification of electromagnetic analysis;
- Process control monitor (PCM) tests.

After production, on-wafer probe measurements of the test structures and circuit fragments were carried out. S-parameters were measured for passive test structures. For active test structures, we measured the following parameters:

- IV-curves;
- S-parameters;
- Noise-figure.

The measurement results for each element were processed by:

- De-embedding;
- Smoothing.

The next step was to construct electrical models of active elements for amplifier applications:

- Small-signal noise models of transistors (Figure 4);
- Non-linear models of transistors (Figure 5).
Figure 3. One of the 3-inch wafers (left-upper corner), wafer fragment (right side), transistor topology on the wafer (left-down corner).

Figure 4. Small-signal equivalent circuit for the simulation of GaAs pHEMT.
Figure 5. Equivalent circuit for a nonlinear model of GaAs pHEMT.

The measured and simulated small-signal S-parameters and 50-ohm noise figures for a 4 × 50 μm transistor are shown in Figure 6.

Figure 6. A comparison between measured and simulated S-parameters, and 50-ohm noise figure for a 4 × 50 μm pHEMT at the bias point Vds = 3 V, Ids = 20 mA: (a) S11—input reflection coefficient, S22—output reflection coefficient; (b) 50-ohm noise figure; (c) S21—small-signal gain; (d) S12—reverse transmission coefficient.
Equivalent circuit models were constructed for the passive elements, e.g., a spiral inductor equivalent circuit shown in Figure 7.

![Figure 7. Equivalent circuit of a circular spiral inductor.](image)

The calculated parameters of models of several inductors are given in Table 2.

Name	L_{pr}, nH	L_{sr}, nH	R_{sr}, ohm	C_{fb}, pF	C_{sub1}, pF	R_{sub1}, ohm	C_{sub2}, pF	R_{sub2}, ohm
L10101P5	0.2	0.269	0.8	0.0018	0.02016	5	0.02016	5
L10102P5	0.316	0.8194	1.8	0.00228	0.03531	7.5	0.02931	7.5
L10103P5	0.41	1.773	2.8	0.002	0.05	9	0.0388	7
L10104P5	0.71	3.065	4	0.002	0.0632	9	0.047	9
L10105P5	0.75	5	6	0.0015	0.07456	14	0.05536	10
L10106P5	0.75	7.5	6.4	0.002	0.0917	12	0.068	11
L10107P5	0.79	10.4	8.14	0.0022	0.1176	12	0.08558	12

The methods used to extract the parameters of active and passive element models are described in detail in [23–25].

To stimulate the microstrip transmission lines, we set the following substrate parameters and inhomogeneities: relative dielectric constant 12.9, substrate thickness 100 µm, conductor thickness 3 µm, and loss tangent of dielectric 0.001.

After constructing the electrical models of active and passive elements, we developed the topology models with fixed and scalable geometry. Some examples of element topological models (shown in AWR Microwave Office) are presented in Figure 8.

![Figure 8. Topological models, as shown in AWR Microwave Office, from left to right: pHEMT, circular spiral inductor, capacitor, resistors, transmission line.](image)
The developed electrical and topological models of passive elements were verified using the following datasets:

- S-parameter measurement results of test structures of individual elements;
- S-parameter measurement results of network fragments for matching and correction (consist of several passive elements);
- Electromagnetic analysis results;
- Topological design rules.

At this stage, the final settings of electromagnetic analysis tools were adjusted. The final stages were the compilation of support information for the user and the release of the first version of PDK.

Figure 9 illustrates an example of an AWR Microwave Office project with the developed PDK.

![Figure 9](image_url)

Figure 9. Several windows in AWR Microwave Office showing different aspects of the developed PDK in EDA.

For validation of the first version of PDK, three low-noise amplifiers (LNA) were designed:

- Single-stage LNA;
- Two-stage LNA;
- Three-stage LNA.

As an example, the electrical scheme, designed topology, and simulated S-parameters of the three-stage LNA are shown in Figures 10–12, respectively. The main parameters of MMIC, obtained through simulation, are presented in Table 3.
Figure 10. Electrical scheme of the three-stage LNA developed using the first release of PDK.

Figure 11. Designed topology of the three-stage LNA developed using the first release of PDK.

Figure 12. Simulated S-parameters of the three-stage LNA developed using the first release of PDK.
Table 3. The main parameters of the three-stage LNA developed using the first release of PDK.

Parameter	Simulated Value	Units
Frequency range	8–12	GHz
Small-signal gain, min	26	dB
Input and output reflection coefficient, max	–20	dB
Noise figure, max	1.7	dB
Output power at 1 dB compression point, min	13	dBm
Supply voltage	5	VDC
DC current for supply bus	85	mA
Die size	1.2×2.2	mm2

The three developed LNAs were included in the production frame along with the line fragments, test structures, and process supplement symbols (Figure 13).

![Figure 13](image_url)

Figure 13. The composed frame (7.7 mm × 10.2 mm) that contains three LNAs, different line fragments, and test structures.

Then, this frame was multiplied on the wafer. Several wafers are now in production.
4. Discussion

As was shown in the previous section, the parameters and curves that were simulated for the PDK elements showed good agreement with the experimental data. The developed PDK contains models and information that are enough for the development and production of low-noise amplifiers using the MEPhI GaAs 0.15 pHEMT process.

Further research proposals are suggested to extend the PDK to other MMICs:

- Buffer amplifiers;
- Switches;
- Attenuators;
- Phase shifters;
- Frequency converters;
- Power limiters.

The developed PDK can be used in well-known and widespread EDA tools from AWR. The PDK will simplify the technology transfer to other production sites, if this is needed in the future. It can also be used to make a complete design–production–testing cycle to educate MMIC design engineers. The obtained results showed that the methods used in this paper are suitable for PDK development and can be applied in other, similar technologies at other production or research sites.

Author Contributions: Conceptualization, D.D.Z., I.M.D. and I.S.V.; methodology, I.M.D. and I.S.V.; measurement result processing, A.S.S., A.A.P. and I.M.D.; modeling of electronic components, A.S.S., A.A.P. and I.M.D.; design of MMICs and test structures, I.M.D., A.S.S.; data curation, A.A.G.; writing—original draft preparation, D.D.Z.; writing—review and editing, I.M.D. and D.S.B.; supervision, N.I.K.; project administration, D.D.Z. and D.S.B.; funding acquisition, D.D.Z. and D.S.B. All authors have read and agreed to the published version of the manuscript.

Funding: The article was prepared as part of implantation of the «Leading research center (LRC) «Trusted Sensor Systems», financial support provided by Ministry of Digital Development, Communications and Mass Media of the Russian Federation and Russian Venture Company (RVC JSC) (Agreement №009/20 dated 04/10/2020).

Acknowledgments: The authors express their gratitude to the AVK Design Team and its leading engineer Alexey V. Kondratenko for technical support during the development and testing of PDK.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Abbreviation	Description
pHEMT	Pseudomorphic high-electron mobility transistor
PDK	Process design kit
MMIC	Monolithic microwave integrated circuit
EDA	Electronic design automation
RF	Radio frequency
MIM	Metal insulator metal
PCM	Process control monitor
LNA	Low-noise amplifiers

References

1. Bahl, I.J. Fundamentals of RF and Microwave Transistor Amplifiers; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 419–452. [CrossRef]
2. Colantonio, P.; Giannini, F.; Limiti, E. High Efficiency RF and Microwave Solid State Power Amplifiers; John Wiley & Sons, Ltd.: Chichester, UK, 2009; pp. 49–83. [CrossRef]
3. Robertson, I.D.; Lucyszyn, S. RFIC and MMIC Design and Technology; The Institution of Electrical Engineers: London, UK, 2001; pp. 125–181.
4. Saha, S.K. Compact Models for Integrated Circuit Design, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016; 545p. [CrossRef]
5. Kompa, G. Parameter Extraction and Complex Nonlinear Transistor Models; Artech House: Norwood, MA, USA, 2019; 610p.
6. Aaen, P.; Plà, J.A.; Wood, J. Modeling and Characterization of RF and Microwave Power FETs; Cambridge University Press: New York, NY, USA, 2007; 362p. [CrossRef]
7. Bahl, I.J. *Lumped Elements for RF and Microwave Circuits*; Artech House: Norwood, MA, USA, 2003; 488p.
8. Wolff, I. *Coplanar Microwave Integrated Circuits*; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; 545p. [CrossRef]
9. Yoshitomi, S. Combination of Transistors’ compact model and Big Data For successful Smart Factory. In Proceedings of the 2020 International Symposium on Devices, Circuits and Systems (ISDCS), Howrah, India, 4–6 March 2020; pp. 1–6. [CrossRef]
10. Koolen, M.; Geelen, J.A.M.; Versleijen, M. An improved de-embedding technique for on-wafer high-frequency characterization. In Proceedings of the 1991 Bipolar Circuits and Technology Meeting, Minneapolis, MN, USA, 9–10 September 1991; pp. 188–191. [CrossRef]
11. Kim, J.Y.; Choi, M.K.; Lee, S. A “Thru-Short-Open” de-embedding method for accurate on-wafer RF measurements of nano-scale MOSFETs. *J. Semicond. Technol. Sci.* 2012, 12, 53–58. [CrossRef]
12. Wu, Y.; Liu, J.; Zhao, C.; Xu, Y.; Yin, W.; Kang, K. An improved ultrawideband open-short de-embedding method applied up to 220 GHz. *IEEE Trans. Compon. Packag. Manuf. Technol.* 2017, 8, 53–58. [CrossRef]
13. Ding, W.; Ding, P.; Su, Y.; Zhou, J.; Yang, F.; Hu, J.; Jin, Z. A de-embedding method with matrix rectification and influences of residual errors on model parameters extraction of InP HEMTs. *Int. J. RF Microw. Comput. Aided Eng.* 2020, 30, e22218. [CrossRef]
14. Dambrine, G.; Cappy, A.; Heliodore, F.; Playez, E. A new method for determining the FET small-signal equivalent circuit. *IEEE Trans. Microw. Theory Tech.* 1988, 36, 1151–1159. [CrossRef]
15. Berroth, M.; Bosch, R. Broad-band determination of the FET small-signal equivalent circuit. *IEEE Trans. Microw. Theory Tech.* 1990, 38, 891–895. [CrossRef]
16. Crupi, G.; Schreurs, D.M.M.-P.; Caddemi, A. On the small signal modeling of advanced microwave FETs: A comparative study. *Int. J. RF Microw. Comput. Aided Eng.* 2008, 18, 417–425. [CrossRef]
17. Tayrani, R.; Gerber, J.E.; Daniel, T.; Pengelly, R.S.; Rohde, U.L. A new and reliable direct parasitic extraction method for MESFETs and HEMTs. In Proceedings of the 23rd European Microwave Conference 1993, Madrid, Spain, 6–10 September 1993; pp. 451–453. [CrossRef]
18. Costa, D.; Liu, W.U.; Harris, J.S. Direct extraction of the AlGaAs/GaAs heterojunction bipolar transistor small-signal equivalent circuit. *IEEE Trans. Electron. Devices* 1991, 38, 2018–2024. [CrossRef]
19. Nalli, A.; Raffo, A.; Crupi, G.; D’Angelo, S.; Resca, D.; Scappaviva, F.; Salvo, G.; Caddemi, A.; Vannini, G. GaN HEMT Noise Model Based on Electromagnetic Simulations. *IEEE Trans. Microw. Theory Tech.* 2015, 63, 2498–2508. [CrossRef]
20. Caddemi, A.; Crupi, G. On the noise measurements and modeling for on wafer HEMTs up to 26.5 GHz. *Microw. Opt. Technol. Lett.* 2010, 52, 1799–1803. [CrossRef]
21. Pospieszalski, M.W. Modeling of noise parameters of MESFETs and MODFETs and their frequency and temperature dependence. *IEEE Trans. Microw. Theory Tech.* 1989, 37, 1340–1350. [CrossRef]
22. Gao, J.; Law, C.L.; Wang, H.; Aditya, S.; Boeck, G. A new method for pHEMT noise-parameter determination based on 50-Ω noise measurement system. *IEEE Trans. Microw. Theory Tech.* 2003, 51, 2079–2089. [CrossRef]
23. Popov, A.A.; Bilevich, D.V.; Salnikov, A.S.; Dobush, I.M.; Goryainov, A.E.; Kalentyev, A.A. Automatic large-signal GaAs HEMT modeling for power amplifier design. *AEU Int. J. Electron. Commun.* 2019, 100, 138–143. [CrossRef]
24. Popov, A.A.; Bilevich, D.V.; Salnikov, A.S.; Dobush, I.M.; Goryainov, A.E.; Kalentyev, A.A.; Metel, A.A. A Combined technique for amplifier oriented small-signal model extraction. *Int. J. RF Microw. Comput. Aided Eng.* 2020, 30, e22273. [CrossRef]
25. Salnikov, A.S.; Goryainov, A.E.; Dobush, I.M.; Kalentyev, A.A. Approach to scalable modeling for planar inductor using em simulation and a few samples measurement. In Proceedings of the 2017 IEEE MTT-S International Conference NEMO 2017, Seville, Spain, 17–19 May 2017; pp. 55–57. [CrossRef]