ABSTRACT

Macrophages are known to play an important role in the initiation and progression of atherosclerosis; however, the molecular signaling pathways in macrophages that are responsible for plaque rupture have not been fully identified. This study aims to identify biomarkers and therapy targets in macrophages in atherosclerotic conditions by systematic review. Research procedure of systematic reviews using the PRISMA protocol. The search engine used in this study is PubMed, with the keywords (macrophage AND atherosclerosis) AND (signaling pathway OR signaling pathway), the reference application used is Zotero to screen clinical articles. There were 689 articles identified and 11 clinical articles in inclusion criteria were obtained. The identification resulted in 30 biomarkers associated with macrophages in atherosclerotic conditions. The proposed biomarkers of atherosclerosis are interleukin (IL)-1β and IL-18. The proposed potential therapy targets for atherosclerosis are LOX-1 and schematic images of biomarkers in atherosclerotic plaques.

Keywords: Atherosclerosis, Macrophage, Biomarker, Therapy targets, Systematic review

INTRODUCTION

The high incidence of cardiovascular disease is of course directly proportional to the risk factors that influence it. Atherosclerosis is known as a risk factor for cardiovascular disease [1-3]. Atherosclerosis conditions can lead to heart attacks [4] and strokes [5-7] where according to the WHO in 2019, four out of five deaths in the world are related to cardiovascular disease. Cardiovascular disease is the number 1 cause of death globally; an estimated 17.9 million individuals died in 2016, or 31% of the total causes of death globally [8,103].

Atherosclerosis is a chronic and progressive inflammatory disease characterized by the buildup of lipids and fibrous plaques in the intima lining of the arterial walls [9,10]. Macrophages are known to play an important role in the initiation and progression of atherosclerosis [11-15]. The formation of atherosclerosis is closely related to the function of macrophages in the body. The lesions in atherosclerosis contain a large number of immune cells, especially macrophages [16] and T cells [17-19]. The same thing was stated by Zhang [20] that monocytes and macrophages play an important role in the progression of atherosclerosis, but the mechanism is not fully known.

Macrophages are included in the main cells of the immune system [21-23]. In carrying out its function, macrophages can act as Antigen Presenting Cells (APC) cells and as effector cells [24,25]. As APCs, macrophages play a role in capturing antigens to present to lymphocytes while as effector cells macrophages play a role in phagocytosis and the killing of microbes or foreign bodies. Macrophages are blood monocytes that come out into the tissue and differentiate when there is an inflammatory process. Macrophages are found in all connective tissue and organs [104]. According to Dahl [26], macrophages are the center of local inflammatory processes and apoptosis that lead to instability and plaque rupture; however, the molecular signaling pathways in macrophages that are responsible for plaque rupture have not been fully identified.

The early stages of atherosclerosis can occur in adolescence and develop slowly [27,28]. Clinical manifestations occur in the elderly and generally have a poor prognosis. Therefore, early detection of atherosclerosis is necessary as an effort to prevent and treat the cardiovascular disease early [29,30]. This study aims to identify biomarkers and therapeutic targets in macrophages in atherosclerotic conditions by conducting a systematic review, with the focus of the articles being studied in the form of clinical trial articles.

The role of macrophages in the natural immune system, especially in conditions of atherosclerosis, is of course mediated by a series of molecular signaling pathways that are responsible for these conditions [31-33]. Thus, the importance of identifying biomarkers and therapeutic targets in macrophages in atherosclerotic conditions underlies the reasons for this study. By knowing the role of macrophages, it can be used as a reference in drug development with a targeted system or can be used as blood biomarkers to support the diagnosis of atherosclerosis conditions.
box, enter the keyword "signaling pathway" in the all fields, and tags menu with the aim that the signaling pathway in question can be filtered from the entire article content. Initial identification was carried out by abstract screening of each study to differentiate between preclinical and clinical articles. Furthermore, data extraction of clinical articles that meet the criteria is carried out; biomarkers related to macrophages are grouped in atherosclerotic conditions, and further descriptive analysis.

The studies included in this systematic review study were clinical trial articles (original research) contained in PubMed with predetermined keywords and article search times, met inclusion criteria, and were free of exclusion criteria. Eligibility criteria include:

Inclusion criteria
Articles are original research, published in the PubMed search engine, using English, and clinical research.

Exclusion criteria
Articles other than original research (review, meta-analysis, and proceedings), preclinical research, and using languages other than English were not used as the subject of articles in this study.

Data on clinical articles that match the inclusion criteria were extracted manually and summarized into a table with data collected: research objectives, objects measured, methods used, patient demographics, and the results or conclusions obtained in each study.

The schematic of the article search process is shown in Fig. 1.

The data were analyzed descriptive and a schematic image of biomarkers was made on plaques containing macrophages in atherosclerotic conditions based on the results of the included clinical studies.

DATA SEARCH RESULTS
In accordance with the keywords written in the search engine box, the results obtained were 15,390 relevant articles. The 15,390 articles consist of journal articles: 15,113; reviews: 3258; systematic review: 3; clinical trial: 188; clinical study: 202; and 4 meta-analyses.

The article related to the keyword "macrophage and atherosclerosis" is still quite extensive, so to narrow the scope and adjust to the research objectives, the keyword is added with "signaling pathway." Entering the PubMed search box is: "[macrophage] AND atherosclerosis" AND (signaling pathway OR signaling pathway). The results obtained were 1830 articles consisting of 1425 journal articles and 405 reviews.

1425 article journals are downloaded and stored on the Zotero reference app. Then, to filter the scope of the signaling pathway again, in the Zotero search box, enter the keyword "signaling pathway" in the all fields, and tags menu with the aim that the signaling pathway in question can be filtered from the entire article content. The results obtained were 689 articles with these keywords.

A total of 689 articles were identified based on the type of testing performed, namely, preclinical or clinical. Initial identification was carried out by the abstract screening of each study. The results obtained were 672 preclinical articles and 14 clinical articles. A total of three of the 14 clinical articles obtained were excluded from the study, with the reason that one article used cadaveric/corpse as the subject, and the other two articles did not use a model or sample of patients with atherosclerotic conditions so that a total of 11 clinical articles were subjected to further analysis. The schematic of the article search process and the results are shown in Fig. 2 and the summary table of the research objectives and key conclusions is shown in Table 1.

Based on the flow of the clinical article search process related to biomarkers in macrophages in atherosclerotic conditions, 11 clinical articles that met the criteria were obtained. Furthermore, biomarker identification was carried out for each article. Biomarkers obtained based on the identification were 30 biomarkers associated with macrophages in atherosclerotic conditions.

Biomarkers related to inflammatory pathways expressed in plaque were reported by six studies [20,34-38]. Plaque rupture was reported in two studies [39] and [40]. Biomarkers related to metabolic pathways were reported in five studies [20,34,39,41,42]. Types of biomarkers are grouped based on functional gene groups in the body, namely: Lipoproteins and metabolic pathways; adhesion, inflammation, and cell surface antigens; coagulation; gene-linked receptors (extracellular signaling); transport protein; and cell survival. Classification of marker types based on functional class related to the formation process of atherosclerosis along with the reference to the clinical articles included in detail are shown in Table 2 (all markers are upregulated in atherosclerosis except that marked *). Summary of biomarker values and measurements is shown in Table 3.
Table 1: Summary of the research objectives and key conclusions

Author, Reference	Background/Research purpose	Object	Key conclusion
Shi, 2015 [35]	Evaluation of the expression of NLRP3 inflammasome in atherosclerosis carotid plaque and plaque susceptibility	NLRP3 inflammasome	• There is an association between the NLRP3 inflammasome and carotid atherosclerosis.
• NLRP3, ASC, Caspase-1, IL-1β, IL-18: Association with plaque vulnerability and atherogenesis.			
• IL-1β, IL-18 as predictors of atherosclerosis			
Watanabe, 2017 [37]	CAD patients have increased reactivation of varicella-zoster virus infection and herpes zoster		
The increase in age causes: memory loss of CD4 T cells with the virus, expression of PD-1 immunoinhibitory receptors.			
Macrophages in CAD patients increase ROS levels, causing a modification of the glycolytic enzyme pyruvate kinase M2 to result in increased IL1β and IL6 production (leading to cell disturbance)			
Objective: To see pyruvate control against PD-L1 inhibitor and T cell suppression	Ligan immunoinhibitory (PD-L1)	• The expression of NAMPT in PBMC and plasma of patients is higher than in normal patients	
• NAMPT/NAD+/Sirt1: up-regulation in ACS patients (due to increased e-NAMPT expression)			
Zhang, 2016 [20]	Monocytes and macrophages play an important role in the progression of atherosclerosis, but their activities are not fully known		
NAMPT is known to be present as a plaque component, but it is not known whether NAMPT is involved in the regulation of leukocytes in peripheral blood.			
Purpose: To see the effect of NAMPT on the polarization of macrophages related to the NAMPT pathway in atherosclerosis.	Level NAMPT in ACS patients, IL-1ra, IL-10	• The expression of NAMPT in PBMC and plasma of patients is higher than in normal patients	
• NAMPT/NAD+/Sirt1: up-regulation in ACS patients (due to increased e-NAMPT expression)			
Lee, 2013 [39]	Resident macrophages have an important role in the rupture of atherosclerotic plaques, it is confirmed that there are genes expressed by macrophages.		
Objectives: To see the differences in the characteristics of gene expression in ruptured and stable plaques	FABP-4 (Fatty acid-binding protein), Leptin	• There are significant differences in gene expression produced in stable and ruptured plaques	
• There is increased expression of FABP4 and leptin in plaque			
• Down-regulation of PPAR/adipocytokine in plaque receiving potent therapy			
Kang, 2010 [42]	FOS gene expression, important in the function of monocytes and macrophages. Can be inhibited by statins through disruption of the cholesterol signaling pathway		
Purpose: to prove the hypothesis that blood FOS mRNA levels will be sensitive to statins in the treatment of low-density lipoprotein cholesterol levels.	FOS Expression in Blood as a low-density lipoprotein-Independent Marker of Statin Treatment	• Treatment with statins decreases FOS gene expression	
• FOS gene expression is sensitive to treatment with statins			
Li, 2015 [43]	Statin therapy has an important role in stabilizing plaque in patients with unstable angina, but the mechanism has not been much explored.		
Objective: Identification of microRNAs (miRNAs) to mediate the protective effect of statins in patients with unstable angina | Statins induce multiple miRNA expression in circulating patients with unstable angina, which indicates an important role in the regulation of the signaling pathway for pathogenesis of unstable angina (one of which is NGF signaling). |
• Statins induce multiple miRNA expression in circulating patients with unstable angina, which indicates an important role in the regulation of the signaling pathway for pathogenesis of unstable angina (one of which is NGF signaling). |
Biomarkers expressed by atherosclerotic plaques included in a systematic review of clinical trials are presented in the form of a schematic image. The induction of chemotaxis is due to an inflammatory response that causes the transfer of monocytes in the blood to the tissues and turns into macrophages. Macrophages which are components of atherosclerotic plaques express several biomarkers, both in ruptured and non-ruptured plaques, as shown in Fig. 3.

The results of clinical trial studies indicate a role for macrophages in atherosclerotic conditions. Supported by the expressed biomarkers atherosclerotic plaques containing macrophages were found in this study. The grouping of biomarkers in the study was adjusted to functional gene groups in the body, from the six functional gene groups the most biomarkers were obtained in the adhesion, inflammation, and cell surface antigen groups, namely, 14 biomarkers. This is closely related to atherosclerosis which is basically an inflammatory condition due to the accumulation of low-density lipoprotein cholesterol (particles on the artery walls [44,45].

All studies show mixed results regarding the biomarkers expressed by macrophages, it can be said that none of the studies in this systematic review have the same research results, but still support one another.

Studies [34] have shown that the presence of metabolic pathways (Acyl coenzyme A: cholesterol acyltransferase, Lysosomal acid lipase (LAL), caveolin-2, CD40, vascular endothelial growth factor-165 receptors, and tissue factor pathway inhibitors) are compatible with atherosclerotic conditions, which are a combination of metabolic processes and inflammation [46-48].

Macrophages are associated with effector function, including secretion of pro-inflammatory cytokines interleukin (IL)-1β and IL-180) [35], lipid uptake, cholesterol transport, and phagocytosis [49]. During the lipid uptake process, macrophages transform into foam cells and eventually undergo apoptosis [50,51] which is in line with the study results [40] showing the presence of caspase-3 expression in ruptured plaques. Macrophage apoptosis is the end result of the formation of

Table 1: (Continued)

Author, Reference	Background/Research purpose	Object	Key conclusion
(Ng, 2003) [34]	Men are more at risk of coronary disease than women.	Evaluation of the influence of androgens on men and women atherosclerosis	Androgens increase expression of gene-related atherosclerosis, in male macrophages
	Purpose: To identify the effect of androgens related to the expression of macrophage donor genes in men and women		There are 6 genes associated with up-regulated atherosclerosis, namely: Acyl coenzyme A: cholesterol acyltransferase, Lysosomal acid lipase (LAL), caveolin-2, CD40, vascular endothelial growth factor-165 receptors, and tissue factor pathway inhibitors
(Dorweiler, 2014) [40]	Purpose: to analyze the expression of the marker signaling pathway for apoptosis and proapoptosis UPR (Unfolded Protein Response) in plaque rupture in the human carotid artery.	Caspase-3	UPR proapoptotic signaling pathway activation identified in plaque rupture that occurs in the human carotid artery.
(Dunaeva, 2009) [36]	Objectives: evaluation of the expression of signaling Hedgehog (Hh) molecules and chemotactic activity of Sonic hedgehog (Shh) in monocytes of CAD patients with or without DM.	Shh, Ptc	Shh: induced monocyte chemotaxis, does not induce monocytes in CAD+DM patients
(Li, 2004) [38]	Glucose in DM patients increases cardiovascular risk	LOX1	Shh inhibition is thought to be pro-atherogenic
	Objective: to assess the regulation of LOX1 expression on MDM (human monocyte-derived macrophage) by high glucose and the role of LOX1 on glucose which induces foam cell formation.		Strong Ptc receptors are expressed by macrophages on atherosclerotic plaques, Shh as induced chemotaxis with activating the signaling pathway
(Peltonen, 2009) [41]	Aortic valve stenosis (US): regulates the pathobiological process that shows some hallmarks (signs) of atherosclerosis	Apelin	Glucose induces macrophages by forming atherosclerotic foam cells, by increasing LOX1 receptor expression
	- Apelin and its receptor, APJ, are widely expressed in the heart.		Aortic valve stenosis, characterized by inflammation, calcification, and angiogenesis, is highly significant in association with the up-regulation of the apelin-APJ receptor pathway being the basis for a potential drug target.
	- Objective: To determine the role of the apelin-APJ signaling pathway in aortic stenosis		The endothelium, especially in the blood vessels, is the site for the expression of apelin in the aortic valves
	- Aortic stenosis is the narrowing of the aortic valve opening. Aortic stenosis restricts blood flow from the left ventricle to the aorta and can also affect the pressure in the left atrium.		
foam cells as an inflammatory response that is thought to accelerate the process of necrotic nucleation at a later stage [52,53].

At an advanced stage (advanced plaque), macrophages accumulate in the ruptured area. This results in macrophages thought to contribute to the thinning of the fibrous layer and destabilization of atherosclerotic plaque, a mechanism that is thought to be mediated by the secretion of matrix destabilizing matrix metalloproteinases (MMPs) [49,54,55]. However, in this study no information was obtained related to MMPs.

IL-1β AND IL-18 AS PREDICTORS OF ATHEROSCLEROSIS

Atherogenesis is a biological process that occurs on a molecular scale [56,57] so that molecularly targeted atherosclerosis treatment is still being developed [17,58-64]. Based on this systematic review biomarkers for the identification of atherosclerosis are proposed, namely IL-1β and IL-18 [35]. Based on statistical tests, it was reported that the plasma levels of IL-1β and IL-18 differed significantly in the conditions of atherosclerotic patients compared with controls. The

Table 2: Classification of marker types based on functional class

Fungsional Gene	Gene Name/Biomarkers	Reference
Lipoprotein and metabolic pathway	Acyl coenzyme A: cholesterol acyltransferase	[34]
	Lysosomal acid lipase	[34]
	Caveolin-2	[34]
	NAMPT (Nicotinamide phosphoribosyltransferase)	[20]
	Leptin	[39]
	Heme-oxygenase (decyling) 1	[39]
	Dehydrogenase/reductase (SDR family) member 9	[39]
	APELIN	[41]
	FOS	[42]
Adhesi, inflammation and cell surface antigen	CD-40	[34]
	NLPR3	[35]
	ASC (apoptosis-associated speck-like protein with a C-terminal caspase-recruitment domain)	[35]
	CASPASE-1	[35]
	IL-1β	[35]
	IL-18	[35]
	IL-1ra	[20]
	IL-10	[20]
	PD-L1 (Program death ligan -1)	[37]
	Preapoptotic caspase adaptor protein	[39]
	Fc fragment of IgG, low affinity IIIa/b receptor (FGGR3AB)	[39]
	CD38 antigen (p45)	[39]
	Immunoglobulin lambda joining 3	[39]
	Shh*	[36]
Coagulation	Tissue factor pathway inhibitor	[34]
Gene-linked receptors (extracellular signaling)	Vascular endothelial cell growth factor 165 receptor	[34]
	PTC receptor	[36]
	L0X 1	[38]
Protein transport	Fatty acid binding protein 4 (FABP4)	[39]
Cell survival	NGF*	[43]
	CASPASE 3	[40]

IL: Interleukin
Table 3: Summary of biomarker values and measurements

Functional Genes	Gene name/Biomarkers	Normal Level	Atherosclerosis Level	Measurement	Number of Samples	Reference
Lipoprotein and metabolic pathway	Acyl coenzyme A: cholesterol acyltransferase	1-fold	5-fold	RT-PCR	2 males	[34]
	Lysoosomal acid lipase	1-fold	3.8-fold	RT-PCR	2 females	[34]
	Caveolin-2	1-fold	3.4-fold	RT-PCR	2 males; 2 females	[34]
	NAMPT (Nicotinamide phosphoribosyltransferase)	10-fold	60-80-fold	RT-PCR	61 ACS Patients (19 UAP; 22 NSTEMI; 20 STEMI)	[20]
	Leptin	-	6.61 (fold change)	RT-PCR, Immunohistochemistry	20 Controls	[39]
	Heme oxygenase (decycling) 1	-	6.02 (fold change)	RT-PCR	25 patients (12 unstable; 13 stable)	[39]
	Dehydrogenase/reductase (SDR family) member 9	-	5.91 (fold change)	RT-PCR	25 patients (12 unstable; 13 stable)	[39]
	APETIN	1-fold	3.6-fold (AS)	RT-PCR, Histology	49 patients (9 AR/Aortic Regurgitation; 14 AR+fibrinolysis; 26 AS/Aortic Stenosis)	[41]
Adhesion, inflammation and cell surface antigen	FOS	-	1-fold	RT-PCR	46 patients	[42]
	CD-40	1-fold	5.5-fold	RT-PCR	2 males	[34]
	NLRP3	-	3.5 (relative)	RT-PCR, Immunohistochemistry,	30 carotid atherosclerotic plaques patients (15 stable, 15 unstable)	[35]
	ASC (apoptosis-associated speck-like protein with a C-terminal caspase-recruitment domain)	-	2000 (relative)	RT-PCR, Immunohistochemistry,	20 Controls	[35]
	CASPASE - 1	-	5000 (relative)	RT-PCR, Immunohistochemistry,	20 Controls	[35]
	IL- 1α	12.000 pg/ml	32.000 pg/ml	ELISA	30 carotid atherosclerotic plaques patients (15 stable, 15 unstable)	[35]
	IL- 18	20.0 ng/l	340 ng/l	ELISA	20 Controls	[35]
	IL-1ra	100 pg/ml	300 pg/ml	Bio-Plex pro human cytokine assay	61 ACS Patients (19 UAP; 22 NSTEMI; 20 STEMI)	[20]
	IL-10	50 pg/ml	150 pg/ml	Bio-Plex pro human cytokine assay	20 Controls	[20]
	PD-L1 (Program death ligand -1)	12.000 MFI	19.000 MFI	Flow Cytometry	34 CAD Patients	[37]
	Preapoptotic caspase adaptor protein	-	12.79 (fold change)	RT-PCR	25 patients (12 unstable; 13 stable)	[39]
	Fc fragment of Ig, low affinity	-	7.55 (fold change)	RT-PCR	25 patients (12 unstable; 13 stable)	[39]
	Illa/b, receptor (FGFR3AB)	-	6.88 (fold change)	RT-PCR	25 patients (12 unstable; 13 stable)	[39]
	CD38 antigen (p45)	-	5.42 (fold change)	RT-PCR	25 patients (12 unstable; 13 stable)	[39]
	Immunoglobulin lambda joining 3	-	134±44 (CAD-DM)	Chemotaxis analysis	15 CAD+DM	[36]
	Shh	172.5±90%	94.3±27 (CAD+DM)	Chemotaxis analysis	15 CAD+DM	[36]

(Contd...)
Support data from preclinical research [65] that generated mice lacking both apoE and IL-1β. The sizes of atherosclerotic lesions at the aortic sinus in apoE−/−/IL-1β−/− mice at 12 and 24 weeks of age showed a significant decrease of approximately 30% compared with apoE−/−/IL-1β−/− mice, and the percentage of the atherosclerotic area to total area of apoE−/−/IL-1β−/− at 24 weeks of age also showed a significant decrease of about 30% compared with apoE−/−/IL-1β−/−. The mRNA levels of vascular cell adhesion molecule (VCAM)-1 and monocyte chemotactic protein-1 in the apoE−/−/IL-1β−/− aorta were significantly reduced compared with the apoE−/−/IL-1β−/−. Furthermore, VCAM-1 was also reduced at the protein level in apoE−/−/IL-1β−/− aorta compared with apoE−/−/IL-1β−/−. The lack of IL-1β decreases the severity of atherosclerosis in apoE deficient mice, possibly through increased expressions of VCAM-1 and monocyte chemotactic protein-1 in the aorta.

The other study in vivo [66], XMA052 MG1K, a chimeric murine version of XOMA 052, inhibited the formation of atherosclerotic lesions in the ApoE−/−/− model at all three doses tested. This effect was comparable to that reported for complete genetic ablation of IL-1β or IL-1R1 on an ApoE−/−/− background and was associated with decreases in plasma non-HDL/HDL cholesterol ratio and plaque lipid content and macrophage infiltration, demonstrate for the 1st time that an antibody targeting IL-1β can inhibit the progression of atherosclerosis in vivo, highlighting the importance of this key cytokine in cardiovascular disease [67-70].

Study of IL-18 in prineclial [79] demonstrated that lack of endogenous IFN-γ ablated the effects of IL-18 on atherosclerosis, IL-18 in the atherogenic process [80-93] increases lesion development through enhancement of an inflammatory response involving an IFN-γ-dependent mechanism [94,95].

LOX-1 AS A TARGET FOR Atherosclerosis THERAPY

The proposed potential target therapy for the treatment of atherosclerotic conditions is LOX-1 which is a study conducted by Li et al. [38], supported by Xu et al. [96] who stated that LOX-1 is involved in endothelial dysfunction, monocyte adhesion, proliferation, migration, and apoptosis of smooth muscle cells, foam cell formation, platelet activation, and plaque instability; these are all very important in the pathogenesis of atherosclerosis [97-102]. This LOX-1-dependent biological process contributes to plaque instability and the final clinical sequela of life-threatening plaque rupture and tissue ischemia. LOX-1 antagonists are thought to inhibit atherosclerosis by reducing these cellular events.

Over the past decade, many drugs including natural antioxidants, statins, anti-inflammatory agents, antihypertensive, and antihyperglycemic drugs have been shown to inhibit LOX-1 vascular expression and activity. Therefore, LOX-1 is an attractive therapeutic target to be developed in the atherosclerotic treatment in humans [96].

Thus, the complexity of atherosclerotic conditions is supported by 30 biomarkers resulting from 11 clinical trials with macrophages as the main component of atherosclerotic plaque. All test results did not show the same results but were closely related to another.

CONCLUSIONS

The clinical studies included in this systematic review fit the criteria related to the identification of biomarkers in macrophages in...
atherosclerotic conditions, resulting in a total of 11 clinical trials. The identification resulted in 30 biomarkers which were presented in the form of a schematic image. The proposed biomarkers of atherosclerosis are IL-1β and IL-18, while the proposed potential targets for atherosclerosis therapy are LOX-1.

AUTHORS CONTRIBUTION
All the authors have contributed to the preparation and editing of this systematic review article.

CONFLICTS OF INTEREST
The authors declare that they have no conflicts of interest.

AUTHORS FUNDING
Ministry of Research, Technology and Higher Education of the Republic of Indonesia, 2019

REFERENCES
1. LaRosa JC. Atherosclerotic risk factors in cardiovascular disease. J Reprod Med 1986;31:906-12.
2. Frostedgaard J. Immunity, atherosclerosis and cardiovascular disease. BMC Med 2013;11:117.
3. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasiri H. Atherosclerosis: Process, indicators, risk factors and new hopes. Int J Prev Med 2014;5:927-46.
4. Lahoz C, Mostaza JM. Atherosclerosis as a systemic disease. Rev Esp Cardiol 2007;60:184-95.
5. Fisher M, Iadecola C, Sacco R. Stroke caused by atherosclerosis of the major intracranial arteries. Circ Res 2017;120:502-13.
6. Gorelick PB, Wong KS, Bae HJ, Pandey DK. Large artery intracranial occlusive disease: A large worldwide burden but a relatively neglected frontier. Stroke 2008;39:2369-76.
7. Hong YM. Atherosclerotic cardiovascular disease beginning in childhood. Korean Circ J 2010;40:1.
8. Khosro AA, Al-Roumi F, Al-Zakwani I, Attur S, Rashed W, Zubaid M. Atherosclerotic cardiovascular disease beginning in infancy and adolescence. Arq Bras Cardiol 2002;78:137-42.
9. Davis NE. Atherosclerosis as an inflammatory process. J Insur Med 2005;37:72-5.
10. Spirig R, Tsui J, Shaw S. The emerging role of TLR and innate immunity in cardiovascular disease. Cardiol Res Pract 2012;2012:181394.
11. Conti P, Shaik-Dastagirisaei Y. Atherosclerosis: A chronic inflammatory disease mediated by mast cells. Cent Eur J Immunol 2015;2015:40-380-6.
12. Yamasuuchi R, Yamamoto T, Sakamoto A, Ishimaru Y, Narahara S, Sugisaki H et al. Roles of myeloperoxidase and GAPDH in interferon- gamma production of GM-CSF-dependent macrophages. Heityon 2016;2:e00080.
13. O’neal RM, Still WJ. Pathogenesis of atherosclerosis. Fed Proc 1962;21:12-4.
14. Zhong Y, Wang X, Ji Q, Mao X, Tang H, Yi G, et al. CD+LAP+ and CD+CD+FOXp+ regulatory T cells induced by oxidized low-density lipoprotein suppress effector T cells response and attenuate atherosclerosis in ApoE-/- mice. J Clin Immunol 2012;32:1104-17.
15. Gerrity RG, Naito HK. Ultrastructural identification of monocyte-derived foam cells in fatty streak lesions. Artery 1980;8:208-14.
16. Abdolmaleki F, Hayat SM, Bianconi V, Johnston TP, Sahebkar A. Androgens up-regulate atherosclerosis. Androgens up-regulate atherosclerosis. Juvonen T, et al. Nicotinamide phosphate transferase (NAMPT) increases in plasma in patients with acute coronary syndromes, and promotes macrophages to M2 polarization. Int Heart J 2018;59:1116-22.
17. Zhou X, Hansson G. Detection of B cells and proinflammatory cytokines in atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice. Scand J Immunol 1999;50:25-30.
18. Zhang C, Zhu R, Wang H, Tao Q, Lin X, Ge S, et al. Nicotinamide phosphate transferase (NAMPT) increases in plasma in patients with acute coronary syndromes, and promotes macrophages to M2 polarization. Int Heart J 2018;59:1116-22.
19. Pirig R, Tsui J, Shaw S. The emerging role of TLR and innate immunity in cardiovascular disease. Cardiol Res Pract 2012;2012:181394.
20. Conti P, Shaik-Dastagirisaei Y. Atherosclerosis: A chronic inflammatory disease mediated by mast cells. Cent Eur J Immunol 2015;2015:40-380-6.
21. Yamasuuchi R, Yamamoto T, Sakamoto A, Ishimaru Y, Narahara S, Sugisaki H et al. Roles of myeloperoxidase and GAPDH in interferon- gamma production of GM-CSF-dependent macrophages. Heityon 2016;2:e00080.
22. O’neal RM, Still WJ. Pathogenesis of atherosclerosis. Fed Proc 1962;21:12-4.
23. Zhong Y, Wang X, Ji Q, Mao X, Tang H, Yi G, et al. CD+LAP+ and CD+CD+FOXp+ regulatory T cells induced by oxidized low-density lipoprotein suppress effector T cells response and attenuate atherosclerosis in ApoE-/- mice. J Clin Immunol 2012;32:1104-17.
24. Gerrity RG, Naito HK. Ultrastructural identification of monocyte-derived foam cells in fatty streak lesions. Artery 1980;8:208-14.
25. Abdolmaleki F, Hayat SM, Bianconi V, Johnston TP, Sahebkar A. Androgens up-regulate atherosclerosis. Androgens up-regulate atherosclerosis. Juvonen T, et al. Nicotinamide phosphate transferase (NAMPT) increases in plasma in patients with acute coronary syndromes, and promotes macrophages to M2 polarization. Int Heart J 2018;59:1116-22.
26. Zhou X, Hansson G. Detection of B cells and proinflammatory cytokines in atherosclerotic plaques of hypercholesterolaemic apolipoprotein E knockout mice. Scand J Immunol 1999;50:25-30.
27. Zhang C, Zhu R, Wang H, Tao Q, Lin X, Ge S, et al. Nicotinamide phosphate transferase (NAMPT) increases in plasma in patients with acute coronary syndromes, and promotes macrophages to M2 polarization. Int Heart J 2018;59:1116-22.
47. Galkina E, Ley K. Immune and inflammatory mechanisms of atherosclerosis. Annu Rev Immunol 2009;27:165-97.

48. Paolietti R, Bolego C, Poli A, Cignarella A. Metabolic syndrome, inflammation and atherosclerosis. Vasc Health Risk Manag 2006;2:145-52.

49. Wolf D, Stachon P, Bode C, Zirlik A. Inflammatory mechanisms in atherosclerosis. Hum Genet 2014;34:63-71.

50. Moore K, Sheedy F, Fisher E. Macrophages in atherosclerosis: A dynamic balance. Nat Rev Immunol 2013;13:709-21.

51. Turner C, Dehlong A, Partridge K, MacFarlane G, Giuliano M, Cohen G, et al. Macrophage-mediated clearance of cells undergoing apoptosis-target cells in the heart. Cell Death Differ 2003;10:302-12.

52. Gonzalez L, Trigatti BL. Macrophage apoptosis and necrotic core development in atherosclerosis. A rapidly advancing field with clinical relevance to imaging and therapy. Can J Cardiol 2017;33:303-12.

53. Martinet W, Verheye S, De Meyer GR. Selective Depletion of macrophages in atherosclerotic plaques via macrophage-specific initiation of cell death. Trends Cardiovasc Med 2007;17:69-75.

54. Razavian M, Tavakoli S, Zhang J, Nie L, Dobrucki LW, Sinusas AJ, et al. Atherosclerosis plaque heterogeneity and response to therapy detected by in vivo molecular imaging of matrix metalloproteinase activation. J Nucl Med 2011;52:1795-802.

55. Wägätter DZ, Zhi C, Björkgren KJ, Skogsfors J, Eriksson P. MMP-2 and MMP-9 are prominent matrix metalloproteinases during atherosclerosis development and the Ldr(-/-) ApoE(-/-) mouse. Int J Mol Med 2011;28:47-53.

56. Mannarino E, Pirro M. Molecular biology of atherosclerosis. Clin Cases Miner Bone Metab 2008;5:57-62.

57. Hopkins PN. Molecular biology of atherosclerosis. Physiol Rev 2013;93:1317-542.

58. Alfarisi HA, Mohamed ZB, Ibrahim MB. Basic pathogenic mechanisms of atherosclerosis. Egypt J Basic Appl Sci 2020;7:11-26.

59. Zhang X, Li J, Cheng WL, Zun JX, Gong FH, et al. Oncostatin M receptor β deficiency attenuates atherogenesis by inhibiting JAK2/STAT3 signaling in macrophages. J Lipid Res 2017;58:895-906.

60. Zhang J, Zu Y, Dhanasekara CS, Li J, Wu D, Fan Z, et al. Detection and treatment of atherosclerosis using nanoparticles: Detection and treatment of atherosclerosis using nanoparticles. WIREs Nanomed Nanobiotechnol 2017;9:e1412.

61. Jamkhande PG, Chandak PG, Dhawale SC, Barde SR, Tidke PS, Sakhare RS. Therapeutic approaches to drugs target atherosclerosis. Saudi Pharm J 2014;22:179-90.

62. Rashid I, Maghaz GJ, Chen YC, Cheng D, Talib J, Newington D, et al. Myeloid dysregulation in atherosclerosis: A potential molecular imaging and therapeutic target for the identification and stabilization of high-risk atherosclerotic plaque. Eur Heart J 2018;39:3301-10.

63. Adamoeva A, Xu YJ, Duhamel TA, Tappia PS, Shan L, Dhalia NS. Anti-atherosclerotic molecules targeting oxidative stress and inflammation. Curr Pharm Des 2009;15:3094-107.

64. Wickline SA, Neubauer AM, Winter PM, Caruthers SD, Lanza GM. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J Magn Reson Imaging 2007;25:667-80.

65. Kiziri H, Nwakanma W, Yada H, Saito K, Iwakura Y, et al. Lack of interleukin-1β decreases the severity of atherosclerosis in apoE-deficient mice. Arterioscler Thromb Vasc Biol 2003;23:656-60.

66. Bhashar V, Yin J, Mizra AM, Phan D, Vanejas S, Issafras H, et al. Monoclonal antibodies targeting IL-1 beta reduce biomarkers of atherosclerosis in vivo and inhibit atherosclerotic plaque formation in apolipoprotein E-deficient mice. Atherosclerosis 2011;216:313-20.

67. Viana-Hueyte V, Fuster JJ. Potential therapeutic value of interleukin-1β-targeted strategies in atherosclerotic cardiovascular disease. Rev Esp Cardiol 2019;72:760-9.

68. Sterpetti AV. Inflammatory cytokines and atherosclerotic plaque progression. therapeutic implications. Curr Atheroscler Rep 2020;22:75.

69. Mai W, Liao Y. Targeting IL-1β in the treatment of atherosclerosis. Front Immunol 2020;11:589854.

70. Khan R, Rheaume E, Tardiff JC. Evaluating the role and treatment directed at IL-1β in atherosclerosis. Curr Atheroscler Rep 2018;20:53.

71. Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol 2019;73:22-7.

72. Chamberlain J, Evans D, King A, Dewberry R, Dower S, Crossman D, et al. Interleukin-1β and signaling of interleukin-1 in vascular wall and circulating cells modulates the extent of neointima formation in vivo. Am J Pathol 2006;168:1396-403.

73. Kamar Y, Werman-Venkert R, Shais A, Werman A, Harari A, Gonen A, et al. Differential role and tissue specificity of interleukin-1 alpha gene expression in atherogenesis and lipid metabolism. Atherosclerosis 2007;195:31-8.

74. Englesbe MJ, Deou J, Bourns BD, Clowes AW, Daum G. Interleukin-1β inhibits PDGF-BB-induced migration by cooperating with PDGF-BB to induce cyclooxygenase-2 expression in baboon aortic smooth muscle cells. J Vasc Res 2004;41:591-6.

75. Wang X, Feuerstein GZ, Gu JL, Lysko PG, Yue TL. Interleukin-1 beta induces expression of adhesion molecules in human vascular smooth muscle cells and enhances adhesion of leukocytes to smooth muscle cells. Atherosclerosis 1995;115:89-98.

76. Galea J, Armstrong J, Heatley R, Holden H, Francis SE, Holt CM. Interleukin-1 beta in coronary arteries of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol 1996;16:1000-6.

77. Roell MK, Issafras H, Bauer RJ, Michelson KS, Mendoza N, Vanegas SI, et al. Kinetic approach to pathway attenuation using XOMA 052, a regulatory therapeutic antibody that modulates interleukin-lbeta activity. J Biol Chem 2010;285:20607-14.

78. Owyang AM, Issafras H, Corbin J, Ahluwalia K, Larsen P, Pongo E, et al. XOMA 052, a potent, high-affinity monoclonal antibody for the treatment of IL-1β-mediated diseases. MABS 2011;3:49-60.

79. Wilkins SC, Raviv, uptake of the IL-1β-targeted antibodies in human atherosclerotic plaques using nanoparticles: Detection and treatment of atherosclerosis using nanoparticles. WIREs Nanomed Nanobiotechnol 2017;9:e1412.

80. Englesbe MJ, Deou J, Bourns BD, Clowes AW, Daum G. Interleukin-1β and coronary heart disease: Prospective study and systematic review. Atherosclerosis 2011;217:227-33.

81. Elhage R, Javvien J, Rudling M, Ljunggren HG, Takeda A, Akira S, et al. Reduced atherosclerosis in interleukin-1β deficient apolipoprotein e knockout mice. Circ Res 2003;93:234-40.

82. Tang X. Analysis of interleukin-17 and interleukin-1β levels in animal models of atherosclerosis. Exp Ther Med 2019;18:517-22.

83. Munckhof IV, ter Horst R, Schraa K, Stienstra R, de Graaf J, Riksen N, et al. Blocking binding protein: A novel biomarker in obesity-related atherosclerosis that modulates lipoprotein metabolism. Atherosclerosis 2018;287:e1.

84. Formanowicz D, Gutowiska K, Formanowicz P. Theoretical studies on the engagement of interleukin 18 in the immune-inflammatory processes underlying atherosclerosis. Int J Mol Sci 2018;19:3476.

85. Scherr C, de Albuquerque DC, Pozzan R, Atlade K, Ludmilta N, Blanco F, et al. Role of interleukin-18 and the thrombus precursor protein in coronary artery disease. Arq Bras Cardiol 2020;114:692-8.

86. Autieri MV. Pro-and anti-inflammatory cytokine networks in atherosclerosis. ISRN Med Sci 2012;2012:368729.

87. Vanita S, Kukkar A, Raina P, Gupta S, Saha P, et al. Interleukin-18 gene polymorphism and markers of subclinical atherosclerosis. The cardiovascular risk in young finns study. Ann Med 2010;42:223-30.

88. Sadeghi M, Gheraati M, Soleimani A, Amirpour A, Taheri M, Yazdekhasti S, et al. Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with Type 2 diabetes. Diabetes Care 2005;28:2890-5.

89. Henning M. LOX-1 and atherosclerosis. Circ Res 2007;100:1534-6.

90. Mehta JL. LOX-1 in atherosclerosis and myocardial ischemia: Biology, genetics, and modulation. Am Coll Cardiol 2017;69:2759-68.

91. Henning M, LOX-1 and atherosclerosis. Circ Res 2007;100:1534-6.
100. Tian K, Ogura S, Little PJ, Xu SW, Sawamura T. Targeting LOX-1 in atherosclerosis and vasculopathy: Current knowledge and future perspectives. Ann N Y Acad Sci 2019;1443:34-53.
101. Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm 2013;2013:e152786.
102. Mehta JL, Chen J, Hermonat PL, Romeo F, Novelli G. Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): A critical player in the development of atherosclerosis and related disorders. Cardiovasc Res 2006;69:36-45.
103. World Health Organization. Data About Cardiovascular Diseases in the World. Geneva: World Health Organization; 2019. Available from: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). [Last accessed on 2019 Dec 16].
104. Abbas AK. Basic Immunology: Functions and Disorders of the Immune System. 5th ed. Singapore: Elsevier; 2016.