ON EXPONENTIAL DECAY RATE OF SEMIGROUP ASSOCIATED WITH SECOND ORDER LINEAR DIFFERENTIAL EQUATION IN HILBERT SPACE WITH STRONG DAMPING OPERATOR

NIKITA V. ARTAMONOV

Abstract. We obtain estimate of the exponential decay rate of semigroup associated with second order linear differential equation
\[u'' + Du' + Au = 0 \]
in Hilbert space. We assume that \(A \) is a selfadjoint positive definite operator, \(D \) is an accretive sectorial operator and \(\text{Re} D \geq \delta A, \delta > 0 \). We obtain a location of the spectrum of a pencil associated with linear differential equation.

1. In Hilbert space \(H, (\cdot, \cdot) \) we consider a second order linear differential equation
\[u''(t) + Du'(t) + Au(t) = 0, \tag{1} \]
here \(u(t) \) is a vector-value function on semi-axis \(\mathbb{R}_+ = [0, +\infty) \). Many evolution equations arising in mechanics can be reduced to the equation (1) in an appropriate space (see, for example, \([4, 6, 7]\)). In this case \(A \) represents potential energy and \(D \) represents dissipation (\(D \) is a damping operator). We will assume that

Condition 1. \(A \) is a selfadjoint positive definite operator with dense domain \(\mathcal{D}(A) \). Let
\[a_0 = \inf_{x \in \mathcal{D}(A), \|x\|=1} (Ax, x) = \inf_{x \in \mathcal{D}(A^{1/2}), \|x\|=1} (A^{1/2}x, A^{1/2}x) > 0. \]

By \(H_s \) we denote a collection of Hilbert spaces generated by \(A^{1/2} \), i.e. for \(s \geq 0 \) the space \(H_s \) is the domain \(\mathcal{D}(A^{s/2}) \) endowed with the norm \(\|x\|_s = \|A^{s/2}x\| \), for \(s < 0 \) the space \(H_s \) is the completion of \(H \) with respect to the norm \(\| \cdot \|_s \). By definition \(H_0 = H, H_1 = \mathcal{D}(A^{1/2}), H_2 = \mathcal{D}(A) \) and \(H_s \leftrightarrow H_r \) for \(s > r \). Since \(|(x, y)| = |(A^{-s/2}x, A^{s/2}y)| \leq \|x\|_{-s} \cdot \|y\|_s \) for \(s > 0 \) and for all \(x \in H, y \in H_s \), then the sesquilinear form \((x, y) \) can be extended by continuity to a sesquilinear form \((x, y)_s \) on \(H_{-s} \times H_s \). Therefore we can regard the space \(H_{-s} \) as a

Key words and phrases. \(C_0 \)-semigroup of operators, generator of \(C_0 \)-semigroup, accretive operator, sectorial operator, spectrum.

This paper is supported by the Russian Foundation of Basic Research (project No 11-01-00790).
dual of \(H_s \) \((H_{-s} = H_s^*) \), the duality is determined by the sesquilinear form \((x, y)_{-s,s}\) (duality with respect to the pivot space \(H \)). By \(\mathcal{L}(X, Y) \) we will denote a space of bounded operators acting from a space \(X \) into a space \(Y \). Operator \(A \) can be regarded as a bounded operator acting in the collection of Hilbert spaces: \(A \in \mathcal{L}(H_s, H_{s-2}) \forall s \in \mathbb{R} \).

Following [7] we will assume that

Condition 2. \(D \in \mathcal{L}(H_1, H_{-1}) \) is an accretive sectorial operator, i.e. \(\text{Re}(Dx, x)_{-1,1} \geq 0 \) and \(|\text{Im}(Dx, x)_{-1,1}| \leq \nu \text{Re}(Dx, x)_{-1,1} \) for all \(x \in H_1 \) and some \(\nu > 0 \).

Denote (infimum with respect to \(x \in H_1, x \neq 0 \))

\[
\alpha = \inf \frac{\text{Re}(Dx, x)_{-1,1}}{||x||^2}, \quad \beta = \inf \frac{\text{Re}(Dx, x)_{-1,1}}{||x||^2}, \quad \delta = \inf \frac{\text{Re}(Dx, x)_{-1,1}}{||x||^2}.
\]

Inequality \(||x||^2 \geq a_0 ||x||^2 \geq a_0^2 ||x||^2_1 \) \((\forall x \in H_1) \) implies, that

\[
\alpha \geq a_0 \beta \geq a_0^2 \delta \geq 0.
\]

By \(||D|| = \sup_{x \in H_1, ||x|| = 1} ||Dx||_1 \) we denote a norm of the operator \(D \). Note, that the operator \(D \in \mathcal{L}(H_1, H_{-1}) \) is accretive (sectorial) in the sense of the condition 2 iff the operator \(A^{-1/2}DA^{-1/2} \in \mathcal{L}(H) \) is accretive (sectorial).

With the linear differential equation (1) we associate a quadratic operator pencil [2] [7]

\[
L(\lambda) = \lambda^2 \mathcal{J} + \lambda D + A,
\]

here \(\mathcal{J} : H_1 \hookrightarrow H_{-1} \) is an embedding operator, \(\lambda \in \mathbb{C} \) is a spectral parameter. We regard the pencil as an operator-function \(L(\lambda) \in \mathcal{L}(H_1, H_{-1}) \). As usual one can define a resolvent set

\[
\rho(L) = \{ \lambda \in \mathbb{C} : \exists L^{-1}(\lambda) \in \mathcal{L}(H_{-1}, H_1) \}
\]

and a spectrum \(\sigma(L) = \mathbb{C}\setminus \rho(L) \) of the pencil \(L(\lambda) \).

The second order differential equation (1) can be linearized as a first order differential equation [2] [6] [7]

\[
w'(t) = \mathcal{T}w(t), \quad w(t) = (u' \quad u)^T
\]

in "energy" space \(\mathfrak{H} = H \times H_1 \) with the matrix operator

\[
\mathcal{T} = \begin{pmatrix} -D & -A \\ I & 0 \end{pmatrix}, \quad \mathcal{D}(\mathcal{T}) = \left\{ \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \in H_1 \times H_1 : Dw_1 + Aw_2 \in H \right\}
\]

Since \(\text{Re}(\mathcal{T}w, w)_{\mathfrak{H}} = -\text{Re}(Dw_1, w_1)_{-1,1} \leq 0 \) and \(0 \in \rho(\mathcal{T}) \), then \(-\mathcal{T} \) is a maximal accretive operator and, therefore, \(\mathcal{T} \) is a generator of \(C_0 \)-semigroup \(\exp(t\mathcal{T}) \) of contractions [5]. In [2] it is shown that if the conditions 1 and 2 hold and \(\beta > 0 \), then the operator \(\mathcal{T} \) is a generator.
of exponentially decaying semigroup. In [1], in particular, it is proved that, under the conditions [1, 2] and $\delta > 0$, the operator T is a generator of analytic semigroup.

In papers [3, 6] for the case $\beta > 0$ was obtained results on the exponential decay rate of the semigroup $\exp(tT)$ and on location of the spectrum of the pencil $L(\lambda)$. In paper [7] was obtained results on analyticity of the semigroup $\exp(tT)$ and on the location of the spectrum of the pencil $L(\lambda)$. In present paper using another technique for the cases $\delta > 0$ we obtain an estimate for the exponential decay rate of the semigroup generated by T.

2. In the space H with respect to the given inner product the operator $(-T)$ is neither uniformly accretive nor sectorial. For $\theta \geq 0$ introduce a collection of sesquilinear forms

$$[w, v]_\theta = (w_1, v_1) + \theta(w_1, v_1)_- + (w_2, v_2)_+ + \theta(w_2, v_2)_- + \theta(Dw_2, Dw_2)_- +$$

$$\theta(Dw_2, v_1)_-, \ w = (w_1, w_2), \ v = (v_1, v_2) \in H,$$

here $(\cdot, \cdot)_s = (A^{s/2}, A^{s/2})$ is an inner product in the space H_s. Since

$$|w|^2_{\theta} = [w, w]_\theta = \|w_1\|^2 + \|w_2\|_1^2 + \theta\|w_2\|^2 + \|w_1 + Dw_2\|_{-1}^2,$$

then $[\cdot, \cdot]_\theta$ is an inner product in H topologically equivalent to the given one. Obviously $[\cdot, \cdot]_0 = (\cdot, \cdot)_s$.

Proposition 1. Let the conditions [7] and [2] are satisfied and $\delta > 0$. Then for arbitrary $\theta > 0$ and $0 \leq b \leq \sqrt{\theta}$ for all $w = (w_1, w_2)^\top \in D(T)$ the following inequalities

$$\text{Re}[T w, w]_\theta \leq -\omega_\theta |w|_{\theta}^2, \quad |\text{Im}[T w, w]_\theta| \leq M_{\theta, b} |\text{Re}[T w, w]_\theta| + b |w|_{\theta}^2,$$

hold, where

$$\frac{1}{\omega_\theta} = \frac{1}{\beta} + \frac{\|D\|^2}{2\delta} + \frac{1}{2} \left(\frac{1}{\alpha} + \frac{1}{\theta\delta} \right) + \frac{1}{2} \sqrt{\left(\frac{1}{\alpha} + \frac{1}{\theta\delta} + \frac{\|D\|^2}{\delta} \right)}^2 - \frac{4}{\alpha\delta} > 0,$$

$$M_{\theta, b} = \nu + \frac{2}{\delta(b + \sqrt{b^2 + 4\theta})} + \frac{\sqrt{\theta - b}}{\beta}.$$

The resolvent set of the operator T is non-empty, therefore

Corollary 1. Under the conditions of the proposition [7]

$$\sigma(T) \subset \{ \lambda \in \mathbb{C} : \text{Re} \lambda \leq -\omega_\theta, |\text{Im} \lambda| \leq M_{\theta, b} |\text{Re} \lambda| + b \}.$$

Putting $b = 0$ we obtain
Colorary 2. Under the conditions of the proposition \[7\] for all \(\theta > 0\)

\[\sigma(T) \subset \left\{ \lambda \in \mathbb{C} : \text{Re} \lambda \leq -\omega, |\text{Im} \lambda| \leq \left(\nu + \frac{1}{\delta \sqrt{\theta}} + \frac{\sqrt{\theta}}{\beta} \right) |\text{Re} \lambda| \right\}\]

It’s easy to prove \[7\], that \(\sigma(L) = \sigma(T)\).

Theorem 1. Let the conditions \[4\] and \[5\] are satisfied and \(\delta > 0\). Then

the operator \(T\) is a generator of the (analytic) semigroup \(\exp(tT)\) in

the space \(\mathcal{H}\) with exponential decay rate

\[\omega = \left(\frac{1}{\beta} + \frac{2}{\sqrt{\alpha \delta}} + \frac{\|D\|^2}{2\delta} + \sqrt{\frac{4\|D\|^2}{\delta \sqrt{\alpha \delta}} + \frac{\|D\|^4}{\delta^4}} \right)^{-1} > 0,\]

i.e. for all \(t \geq 0\) the inequality \(\|\exp(tT)\|_{\mathcal{H}} \leq \text{const} \cdot \exp(-\omega t)\) holds.

For all \(b \geq 0\)

\[\sigma(L) = \sigma(T) \subset \{ \lambda \in \mathbb{C} | \text{Re} \lambda \leq -\omega, |\text{Im} \lambda| \leq M_b |\text{Re} \lambda| + b \}\]

where \(M_b = \min_{\theta \geq b^2} M_{\theta, b}\).

Colorary 3. Under the conditions of the theorem \[7\] for all \((u_1, u_0)^T \in D(T)\) there exists a unique solution \(u(t)\) of the Cauchy problem for the
differential equation \[11\] with initial conditions \(u(0) = u_0, u'(0) = u_1\)

and

\[\|u(t)\|_1^2 + \|u'(t)\|_1^2 \leq \text{const} \cdot \exp(-2\omega t)(\|u_0\|_1^2 + \|u_1\|_1^2).\]

Putting \(b = 0\) we have

Colorary 4. Under the conditions of the theorem \[7\]

\[\sigma(L) = \sigma(T) \subset \{ \lambda \in \mathbb{C} | \text{Re} \lambda \leq -\omega, |\text{Im} \lambda| \leq \left(\nu + \frac{2}{\sqrt{\delta \beta}} \right) |\text{Re} \lambda| \}.\]

Remark 1. In \[7\] under the condition of the theorem \[4\] was obtained
the following location of the pencil’s spectrum

\[\sigma(L) = \sigma(T) \subset \{ \lambda \in \mathbb{C} | \text{Re} \lambda \leq 0, |\text{Im} \lambda| \leq \nu |\text{Re} \lambda| + \delta^{-1} \}\]

\[\sigma(L) = \sigma(T) \subset \left\{ \lambda \in \mathbb{C} | \delta \leq \frac{|\text{Re} \lambda|}{a_0^{-2} + |\lambda|^{-2}} \right\}\]

3. With the operator \(T\) in the space \(\mathcal{H}\) endowed with the inner
product \[\langle \cdot, \cdot \rangle_\theta\] we can associate a linearization of the pencil \(L(\lambda)\) under
the form \(L(\lambda) = \lambda Q - T\), where

\[Q = \begin{pmatrix} I + \theta A^{-1} & \theta A^{-1} D \\ \theta D^* A^{-1} & A + \theta I + \theta D^* A^{-1} D \end{pmatrix} \quad T = \begin{pmatrix} -D & -A - \theta I \\ A + \theta I & -\theta D^* \end{pmatrix} .\]
The linearization $L(\lambda)$ can be regarded as an operator-function $L(\lambda) \in L(H_1 \times H_1, H_{-1} \times H_{-1})$.

Acknowledgement The author thanks prof. A.A. Shkalikov and prof. C. Trunk for fruitful discussions.

References

[1] R. O. Hryniv, A. A. Skalikov, Operator models in elasticity theory and hydrodynamics and associated analytic semigroups., Mosc. Univ. Math. Bull., 54(5), 1999, 1–10.
[2] R. O. Hryniv, A. A. Shkalikov, Exponential decay of solution energy for equations associated with some operator models of mechanics., Funkt. Anal. Appl. 37(1), 2004, 163–172.
[3] A. Bátkai, K. Engel, Exponential decay of 2×2 operator matrix semigroups., J. Comput. Anal. Appl., 6(2), 2004, 153–163.
[4] D. Cramer, Yu. Latushkin, Gearhart–Prüss theorem in stability for wave equations: a survey., Lect. Notes Pure Appl. Math., 234, 2003, 105–119.
[5] K. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations. Graduate Texts in Mathematics., Springer–Verlag, Berlin–Heidelberg–New York, 2000
[6] S.–Z. Huang, On energy decay rate of linear damped elastic systems., Tuebinger Ber. Funktionalanal., 6, 1997, 65-97
[7] B. Jacob, C. Trunk, Spectrum and analyticity of semigroups arising in elasticity theory and hydromechanics., Semigroup Forum., 79(1), 2009, 79–100

E-mail address: nikita.artamonov@gmail.com