Abstract:

Phylogenetic analyses of the Didymellaceae have been published mainly based on a single or just a few morphological characters. However, this subdivision is ambiguous as several of the section-specific characters can occur within a single boundary. These problems are aptly illustrated in the genus Phoma, which is considered to be the sole teleomorph of Phoma s. str., we also retrieved taxa belonging to the teleomorph genera Leptosphaerulina and Macroventuria in this clade. Based on the sequence data obtained, the Didymellaceae segregate into at least 18 distinct clusters, of which many can be associated with several specific taxonomic characters. Four of these clusters were defined well enough by means of phylogeny and morphology, so that the associated taxa could be transferred to separate genera. Additionally, this study addresses the taxonomic description of eight species and two varieties that are novel to science, and the recombination of 61 additional taxa.

Key words: Boeremia, coelomycetes, Didymella, Didymellaceae, DNA phylogeny, Epiconium, Leptosphaerulina, Macroventuria, Peyronellaea, Phoma, Pleosporales, taxonomy, Stagonosporopsis.

Taxonomic novelties:

New genus: Boeremia Aveskamp, Gruyter & Verkley.
New species: Phoma brasiliensis Aveskamp, Gruyter & Verkley, Ph. bulgarica Aveskamp, Gruyter & Verkley, Ph. dactylidis Aveskamp, Gruyter & Verkley, Ph. dimorpha Aveskamp, Gruyter & Verkley, Ph. longicolla Aveskamp, Gruyter & Verkley, Ph. minor Aveskamp, Gruyter & Verkley, Ph. pedeiae Aveskamp, Gruyter & Verkley, Ph. saxea Aveskamp, Gruyter & Verkley. New varieties: Boeremia exigua var. gilvescens Aveskamp, Gruyter & Verkley, B. exigua var. pseudolilacis Aveskamp, Gruyter & Verkley New combinations: Boeremia cinerula (Simsakso) Aveskamp, Gruyter & Verkley, B. diversispora (Bubák) Aveskamp, Gruyter & Verkley, B. exigua var. exigua (Desm.) Aveskamp, Gruyter & Verkley, B. exigua var. heteromorpha (Schulzer & Sacc.) Aveskamp, Gruyter & Verkley, B. exigua var. lilacis (Sacc.) Aveskamp, Gruyter & Verkley, B. exigua var. ilicino (Naumov & Vassiljevsky) Aveskamp, Gruyter & Verkley, B. exigua var. populil (Gruyter & Scheer) Aveskamp, Gruyter & Verkley, B. exigua var. coffeae (Hemm.) Aveskamp, Gruyter & Verkley, B. exigua var. viburni (Roum. ex. Sacc.) Aveskamp, Gruyter & Verkley, B. foveata (Foster) Aveskamp, Gruyter & Verkley, B. icypersici (Cooke) Aveskamp, Gruyter & Verkley, B. noaccaiana (Allesch.) Aveskamp, Gruyter & Verkley, B. sambuci-nigrae (Sacc.) Aveskamp, Gruyter & Verkley, B. strasserii (Moessz) Aveskamp, Gruyter & Verkley, B. telephi (Vestergaard) Aveskamp, Gruyter & Verkley, Epicoccum pimpinii (P.N. Mathur, S.K. Menon & Thurm.) Aveskamp, Gruyter & Verkley, E. sorghi (Sacc.) Aveskamp, Gruyter & Verkley, Peyronellaea americana (Morgan-Jones & J.F. White) Aveskamp, Gruyter & Verkley, Pey. alectoriophi (Rehm.) Aveskamp, Gruyter & Verkley, Pey. anserina (Marchall) Aveskamp, Gruyter & Verkley, Pey. arachidicola (Khokhr.) Aveskamp, Gruyter & Verkley, Pey. aurea (Gruyter, Noordel. & Boerema) Aveskamp, Gruyter & Verkley, Pey. calicopraeferens (Boerema, Gruyter & Noordel.) Aveskamp, Gruyter & Verkley, Pey. coffaeae-arcabace Aveskamp, Gruyter & Verkley, Gruyter & Verkley, Pey. curtisi (Ber.) Aveskamp, Gruyter & Verkley, Pey. eucalyptica (Sacc.) Aveskamp, Gruyter & Verkley, Pey. gardeniae (S. Chandra & Tandon) Aveskamp, Gruyter & Verkley, Pey. lethalis (Ellis & Bartholomew) Aveskamp, Gruyter & Verkley, Pey. pomorum var. pomorum (Thüm.) Aveskamp, Gruyter & Verkley, Pey. pomorum var. cinirata (Kusnezowa) Aveskamp, Gruyter & Verkley, Pey. pomorum var. cyanosa (Joose & Papendorf) Aveskamp, Gruyter & Verkley, Pey. obtusa (Fuckel) Aveskamp, Gruyter & Verkley, Pey. pinodella (L.K. Jones) Aveskamp, Gruyter & Verkley, Pey. pinodes (Berk. & A. Bloxam) Aveskamp, Gruyter & Verkley, Pey. probeterae (Lév.) Aveskamp, Gruyter & Verkley, Pey. sanctora (Aveskamp, Gruyter & Verkley) Aveskamp, Gruyter & Verkley, Pey. sublimicola (Boerema, Gruyter & Noordel.) Aveskamp, Gruyter & Verkley, Pey. zeara-maydii (Amy & R.R. Nelson) Aveskamp, Gruyter & Verkley, Phoma clavicipitaceae (Peit) Aveskamp, Woudenberg & Gruyter, Ph. noackiana (Allesch.) Aveskamp, Gruyter & Verkley, Stagonosporopsis ajacis (Thüm.) Aveskamp, Gruyter & Verkley, S. andigena (Turkenst.) Aveskamp, Gruyter & Verkley, S. artemisicola (Hollos) Aveskamp, Gruyter & Verkley, S. asporal (Cooke & Harkn.) Aveskamp, Gruyter & Verkley, S. caerulea (Sydow & P. Sydow) Aveskamp, Gruyter & Verkley, S. crystalliniformis (Loer. R. Carvaro, M. Löbo & Turkenst.) Aveskamp, Gruyter & Verkley, S. cuniculacearum (Fr.) Aveskamp, Gruyter & Verkley, S. dorenboschii (Noordel. & Gruyter) Aveskamp, Gruyter & Verkley, S. helioprisis (H.C. Greene) Aveskamp, Gruyter & Verkley, S. ligulicola var. ligulicola (F.K. Barker, Dimock & L.H. Davis) Aveskamp, Gruyter & Verkley, S. ligulicola var. inoxydabilis (Boerema) Aveskamp, Gruyter & Verkley, S. lotocola (Died.) Aveskamp, Gruyter & Verkley, S. oculo-hominis (Punit.) Aveskamp, Gruyter & Verkley, S. rubeculaceae (Fimar.) Aveskamp, Gruyter & Verkley, S. trachellii (Allesch.) Aveskamp, Gruyter & Verkley, S. valerianellae (Gindrat, Semecnik & Bolay) Aveskamp, Gruyter & Verkley. New names: Peyronellaea austrais Aveskamp, Gruyter & Verkley, Phoma fungicola Aveskamp, Gruyter & Verkley, Ph. novae-zealandica Aveskamp, Gruyter & Verkley.
INTRODUCTION

Coelomycetous fungi (Grove 1935) are geographically widespread and are found in numerous ecological niches. Sutton (1980) mentions exponents of this anamorph group inhabiting soil, organic debris, and water, as well as species that parasitise other fungi, lichens, insects and vertebrates. A substantial percentage of the coelomycetes is associated with plant material, either as opportunists or as primary pathogens (Sutton 1980).

Difficulties in morphological identification have resulted in a poor understanding of the generic and species boundaries in the coelomycetes (Sutton 1977, 1980, Nag Raj 1981, Van der Aa et al. 1990, Torres et al. 2005a, b, De Gruyter et al. 2009). In an attempt to improve the classification of the coelomycetes, Sutton (1980) proposed to divide the order into six suborders, which unfortunately proved to be highly artificial from an evolutionary perspective (De Gruyter et al. 2009).

The current common procedure for isolate identification, which chiefly relies on similarity of DNA sequences to those found in public DNA libraries (Hyde & Soytong 2007), combined with the high level of incorrectly identified sequences in these databases (Bridge et al. 2003, 2004, Nilsson et al. 2006) placed the likelihood of achieving correct identifications of coelomycetous fungi under intense scrutiny. As pointed out by De Gruyter et al. (2009), for appropriate morphological identifications within the coelomycete genera in vitro studies are essential, for example in the cases in which quarantine pathogens are involved (Aveskamp et al. 2008). For the current generic delimitation of this class, the use of conidiogenesis characters as taxonomic criteria is of major importance (Hughes 1953; Boerema 1965, Boerema & Bollen 1975, Sutton 1964, 1977, 1980, Singh et al. 1997).

Phoma

The genus Phoma Sacc. emend. Boerema & G.J. Bollen (Pleosporales) is a good example of a coelomycetous genus made fascinating by its great ecological diversity, but taxing investigators with profound difficulties in making identifications. The majority of the taxa within this mitosporic genus have been found in association with land plants, causing mainly leaf and stem spots (Aveskamp et al. 2008, Zhang et al. 2009). Approximately 50 % of the Phoma taxa that were redescribed by Boerema et al. (2004) are recognised as relevant phytopathogenic fungi, including a series of pathogens with quarantine status (Boerema et al. 2004, Aveskamp et al. 2008). Although most taxa are continuously present in the environment as saprobes in soil organisms, many species switch to a pathogenic lifestyle when a suitable host is encountered (Aveskamp et al. 2008). The genus further comprises several species and varieties that are recognised as endophytic, fungicolous and lichenicolous fungi (e.g. Hawksworth 1981, Xianshu et al. 1994, Sullivan & White 2000, Hawksworth & Cole 2004, Diederich et al. 2007, Schoch et al. 2009a). In addition, approximately 10 species are known as pathogens of humans (e.g. De Hoog et al. 2000, Balis et al. 2006) and other vertebrates, such as cattle (Costa et al. 1993) and fish (Ross et al. 1975, Hatai et al. 1986, Voronin 1989, Faisal et al. 2007). Next to such an active role in vertebrate pathology, Phoma spp. may indirectly affect animal health by the production of toxic secondary metabolites (Bennett 1983, Pedras & Biesenthal 2000, Rai et al. 2009), as is known for Ph. sorghina in straw roots in South Africa (Rabie et al. 1975) and may be the case in Ph. pomorum in cattle feed (Sørensen et al. 2009). An almost completely unexplored habitat of Phoma spp. is the marine environment (Kohlmeier & Volkmann-Kohlmeier 1991), in which Phoma species are regularly found that are completely new to science (e.g. Østerhage et al. 2000, Yarden et al. 2007).

The genus Phoma has always been considered to be one of the largest fungal genera, with more than 3 000 infrageneric taxa described (Monte et al. 1991). The number of species described in Phoma rose to this level due to the common practice of host associated nomenclature, in combination with the paucity in micromorphological characters and a high variability in cultural characteristics. These factors have resulted in the fact that the systematics of the genus never has been fully understood (Aveskamp et al. 2008). Based on various morphological features depicted by earlier workers, probably less than one-tenth of the 3 200 species listed in MycoBank (www.mycobank.org, Crous et al. 2004, Robert et al. 2005) can currently still be recognised as a separate Phoma taxon. Many of those names were thus already reduced to synonyms after an extensive study of the genus (Boerema et al. 2004), and after a thoroughly revised generic concept of the morphologically similar genera Ascochyta (Boerema & Bollen 1975) and Phylllosticta (Van der Aa 1973, Van der Aa & Vanef 2002). Many other species could be recombined into other coelomycete genera, such as Asteromella, Microsphaeropsis, Phomopsis, Pleurophoma, Pyrenochaeta and Sclerophomera (Sutton 1964, 1980, Boerema & Bollen 1975). In addition, Coniothyrium and Paraconiothyrium have regularly been mistaken for Phoma (Verkley et al. 2004, Damm et al. 2008, Woudenberg et al. 2009). In their studies, Boerema et al. (2004) recognised a total of 215 Phoma taxa and eight teleomorph species with an unnamed Phoma anamorph, although this is probably just the tip of the iceberg as, thus far, only 40 % of the herbarium species mentioned in literature could be recovered and studied properly. Additionally, novel species are described regularly in this genus (e.g. Hawksworth & Cole 2004, Torres et al. 2005a, Li et al. 2006, Diederich et al. 2007, Aveskamp et al. 2009a, Davidson et al. 2009).

Adsubdivision of the asexual genus Phoma that is currently widely applied divides the genus into nine sections, including the sections Phoma, Heterospora, Macrospora, Paraphoma, Peyronellaea, Phyllostictoides, Pilosa, Plenodorus and Sclerophomera (Boerema 1997). These sections are primarily based on just a few morphological or physiological characters and have not been confirmed as biologically realistic by molecular biological studies. The number of taxa per section may vary, ranging from almost 70 species in section Phoma to only two in section Pilosa. In Table 1, a list is provided with the main characters of every section (Boerema 1997). This subdivision into sections has led to an identification system that is considered to be extremely helpful in morphological identification (Boerema et al. 2004). However, as was hypothesised by Boerema et al. (2004), the classification has proved to be artificial. Molecular evidence has shown that the sections are linked to phylogenetically distinct teleomorph genera (Reddy et al. 1998, Torres et al. 2005b, De Gruyter et al. 2009). Even these teleomorph genera are not always monophyletic (Moraes et al. 1995, Câmara et al. 2002, Kodswueb et al. 2006, Inderbitzin et al. 2009). In addition, characters that are thought to be specific for a certain section appeared to be polyphyletic, as is illustrated for dictyochlamydospores and setose pycnidia, the main characters for the sections Peyronellaeae (Aveskamp et al. 2009a) and Paraphoma (Grondon et al. 1997, De Gruyter et al. 2010) respectively. Furthermore, Phoma section Phoma, a group of species which is characterised by the absence of chlamydospores, septic conidia, and pycnidal ornamentation or wall thickening, is
Table 1. Overview of the characters of the various Phoma sections in the Boeremaean classification system. Adapted from Boerema et al. (2004).

Section	Teleomorph	Synanamorph	Sectional character
Heterospora		Stagonosporopsis	Production of distinctly large conidia in addition to the regular conidia
Macrospora	Mycosphaerella	–	Conidia large, measuring 8–19 × 3–7 μm
Paraphoma		–	Setose pycnidia
Peyronellegae		Epicoccum*	Multicellular chlamydospores
Phoma	Didymella	Phialophora*	–
Phyllostictoides	Didymella	–	Small septic conidia in addition to the regular conidia
Pilosa	Pleospora	–	Pycnidia covered by pilose outgrows
Plenodomus	Leptosphaeria	Sclerotium*	Pycnidia scleroplastechymatous
		Phialophora*	–

*Synanamorph only recorded in a single species.

considered to be a repository for degenerated and insufficiently understood species that could not be placed elsewhere.

The genus Phoma is typified by Phoma herbarum (Boerema 1984). This species has thus far not been linked to any teleomorph, but several other species that are currently accommodated in Phoma do have a sexual state. The species in the section Pilosa are linked to the teleomorph genus Pleospora, while many species in the section Plenodomus have a sexual state in Leptosphaeria. As mentioned above, Leptosphaeria is para- or possibly polyphyletic (Morales et al. 1995, Câmara et al. 2002). A teleomorph in the poorly studied genus Didymella is associated with approximately 40 Phoma species placed in sections Phoma, Phyllostictoides and Sclerotomella (Boerema et al. 2004). Moreover, Phoma has been linked in literature to several other teleomorph genera, such as Mycosphaerella (Corlett 1991, De Gruyter 2002, Crous et al. 2009a, b), Beliziana (Kohlmeier & Volkmann-Kohlmeier 1987), Atradidymella (Davey & Currah 2009) and Fenestrella, Cucurbitaria, Preussia, and Westendyrella (Van Arx 1981, Zhang et al. 2009). None of these hypothesised teleomorph-anamorph linkages is supported by molecular evidence. All must be investigated by study of type material. However, these associations are unlikely as the mentioned teleomorph genera are not linked to the Pleosporales. The species and teleomorph relations are also not recognised by Boerema et al. (2004), except for two Phoma species of the section Macrospora, Ph. rabiei and Ph. zeae-maydis which were linked to “Mycosphaerella” teleomorphs as M. rabiei (Kaiser 1997, De Gruyter 2002) and M. zeae-maydis (Mukunya & Boothroyd 1973) respectively. Both species also have names in Didymella. The use of those names is recommended, since Mycosphaerella has been shown to be phylogenetically widely separated from all known Phoma species (De Gruyter et al. 2009, Crous et al. 2009a, b).

Characteristic strains of the genus concerned have been used in a Multilocus Sequence Typing (MLST) study of the Dothideomycetes, which indicated that Phoma is phylogenetically embedded in the Pleosporales (Schoch et al. 2006, 2009b, Zhang et al. 2009). A similar, but smaller scale study aiming to delineate the species in the unofficial suborder Phialoptycnidinae (Sutton 1980), revealed that Phoma is highly polyphyletic, as reference species of the various sections were recovered in distinct clades of the reconstructed phylogeny (De Gruyter et al. 2009). Type species of the sections Heterospora, Plenodomus, Paraphoma and Pilosa appeared to be ancestral to a cluster comprising types of the other sections, as well as to members of the anamorph genera Ascochyta, Microsphaeropsis, Chaetosbolis, Coniothyrium and Paracondiothyrium. This group has been elevated to family level and is now recognised as the Didymellaceae (De Gruyter et al. 2009). A BLAST-search in public sequence libraries revealed a high genetic similarity between species ascribed to the Didymellaceae and two other teleomorph genera, Macroventuria and Leptosphaerulina, although these genera are morphologically clearly distinct from Didymella (Van der Aa 1971, Von Arx 1981, Zhang et al. 2009). The genetic similarity between those two genera has been observed before by Kosue et al. (2006), but the phylogenetic relationship with the genus Didymella was not noted in their study. Members of these two genera have therefore also been included in this study.

To solve the problems in quarantine species identification of isolates taken from samples obtained during phytosanitary border controls, a comprehensive taxonomic system is required (Aveskamp et al. 2008). As DNA-based techniques do become more and more important in identification and detection of plant pathogens (Bridge 2002), such a taxonomic system should be in line with sequence data. One of the major initiatives in this field is the development of DNA Barcodes (Hebert et al. 2003, Summerbell et al. 2005), which has been promising in the rapid detection of potentially serious plant pathogens (Armstrong & Ball 2005).

Three genes have in recent years been proposed as standard loci for use in DNA barcoding in fungi. These comprise the internal transcribed spacers (ITS) of the rDNA operon ITS region (Druzhinina et al. 2005), actin (ACT, Aveskamp et al. 2009b), and cytochrome c oxidase subunit I (COI, Seifert et al. 2007). The last locus was successfully applied in DNA Barcoding of Penicillum (Seifert et al. 2007, Chen et al. 2009). However, COI analysis applied to a subset of Ph. exigua related strains, did not reveal taxon-specific conserved SNPs (Aveskamp et al. 2009b), whilst in an attempt to barcode Aspergillus, COI was found to have limited value (Geiser et al. 2007). Although ACT has proven helpful in resolving the phylogeny of Phoma exigua below species level (Aveskamp et al. 2009b), it could not be applied in the present study, as interspecific variation proved to be too high to align the obtained sequences properly. The use of ITS as fungal barcode locus is most popular (Seifert 2009) and has been applied in several taxonomic groups, such as Trichoderma and Hypocrea (Druzhinina et al. 2005), and Trichophyton (Summerbell et al. 2007) and in ecological groups such as wood-inhabiting fungi (Naumann et al. 2007). The power of this locus for barcoding lies in the multiple copies that are present within each cell; this phenomenon results in lower detection.
thresholds than can be obtained with single-copy loci. Despite the general practicality of using ITS in barcoding, the locus is relatively conservative and may oversimplify species delimitations or blur generic boundaries in some groups (Nilsson et al. 2008). In the present study, a combination of four loci is therefore applied. These include two loci that are renowned for their capacity to resolve phylogenies above family level, namely parts of the LSU (Large Subunit – 28S) and SSU (Small Subunit – 18S) nrDNA. Additionally two loci were applied that mainly provide resolution at species level – or even below. In addition to the abovementioned ITS regions, also part of the β-tubulin gene was utilised, which was successfully applied in a preliminary study on Phoma species of the section Peyronellaeae (Aveskamp et al. 2009a).

For the present study, four objectives were defined. The main objective of this study was to reach consensus on the circumscription of the genus Phoma. A modified definition of the genus is not only helpful in taxonomy, but will also be of interest to plant quarantine officers (Aveskamp et al. 2008). Teleomorphic associations of Phoma are still uncertain, and here we attempt to shed light on the sexual state of Phoma s. str. Species representing all Phoma sections were included and DNA sequences were compared with those of other species in the Pleosporales.

Secondly, we aimed to integrate morphological and cultural features with DNA sequence data to resolve the generic limits of taxa currently placed in the Didymellaceae. The number of genera in this family is still unclear. Although De Gruyter et al. (2009) found a series of genera that, according to their reconstructed phylogeny, clustered in this family, many were not clearly defined or were morphologically distant from each other, although all anamorph taxa found are accommodated in the coelomycetes (Sutton 1980). Examples of these taxa were included in this study, although the number of Ascochyta, Coniothyrium and Microsphaeropsis species is too high to take all infrageneric taxa of these adjacent genera into account.

Further, we aimed to validate the Phoma sections, which are widely applied in Phoma species recognition. Are the sections representing evolutionary units, and what is the taxonomical value of the characters used to define the sections? To judge the value of the Boeremaean taxonomic system, representative species of all sections were studied, including the sectional type species. The main focus was, however, to resolve the sections associated with Didymellaceae. A single generic name, based on priority but regardless of whether it is an “anamorph” or “teleomorph” genus, is used for all unambiguous monophyletic phylogenetic lineages (Crous et al. 2006, 2009a, b). Finally, we aimed to assess the molecular variation within species that have historically been placed in Phoma. Genes were tested for their potential reliability as standard barcoding genes for Phoma species.

For this study, a sequence data set was generated and morphological data assembled for the more than 300 well-voucherd strains available in the culture collections of CBS (CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands) and PD (Plantenziektenkundige Dienst, Dutch Plant Protection Service, Wageningen, the Netherlands). In addition, five species recognised in a recent study in the section Peyronellaeae (Aveskamp et al. 2009a) have also been included, as well as several strains that could not be associated with any of the species that were accepted in Phoma by Boerema et al. (2004), and that were maintained as unnamed Phoma species in the culture collections mentioned above. These strains were recognised as taxonomic novelties and are described at species or variety level in the present paper. Furthermore, several species were relocated to more appropriate genera based on the results obtained.

MATERIALS AND METHODS

Strain selection

A total of 324 strains, belonging to 206 species were selected for the present study. The majority of these species (159) belonged to the genus Phoma or its associated teleomorphs, the remainder to genera that are regularly confused with this genus and that belong to the Pleosporales according to the studies published by De Gruyter et al. (2009). Besides the anamorphous species that were included, representatives of the teleomorph genera Didymella, Leptosphaeria, Leptosphaerulina, Macroventuria and Pleospora were also included. The recently described genus Atracidymella (Davey & Currah 2009) was not available for study and therefore excluded.

Strains were obtained from CBS and PD culture collections in lyophilised form or from the liquid nitrogen collection. Freeze-dried strains were revived overnight in 2 mL malt/peptone (50 % / 50 %) liquid medium. Subsequently, the cultures were transferred and maintained on oatmeal agar (OA, Crous et al. 2009c). The strains that were stored at -196 °C were directly plated on the same agar medium.

DNA extraction, amplification and sequence analysis

Genomic DNA extraction was performed using the Ultraclean Microbial DNA isolation kit (Mo Bio Laboratories, Carlsbad, U.S.A.), according to the instructions of the manufacturer. All DNA extracts were diluted 10 × in milliQ water and stored at 4 °C before their use as PCR templates.

For nucleotide sequence comparisons fragments of four loci were analysed: LSU, SSU, ITS, and TUB. Amplification of LSU and SSU was conducted utilising the primer combination LR0R (Rehner & Samuels 1994) and LR7 (Vilgalys & Hester 1990) for LSU sequencing and the primer pair NS1 and NS4 (White et al. 1990) for SSU. The PCRs were performed in a 2720 Thermal Cycler (Applied Biosystems, Foster City, California) in a total volume of 12.5 μL. The PCR mixture contained 0.5 μL 10 × diluted genomic DNA, 0.2 μM of each primer, 0.5 Unit Taq polymerase E (Genaxxon Bioscience, Germany), 0.04 mM (SSU) or 0.06 mM (LSU) of each of the dNTP, 2 mM MgCl₂, and 1 μL × PCR buffer E incomplete (Genaxxon Bioscience). Conditions for amplification for both regions were an initial denaturation step of 5 min at 94 °C, followed by 35 cycles of denaturation, annealing and elongation and a final elongation step of 7 min at 72 °C. For the SSU amplification, the 35 cycles consisted of 30 s at 94 °C, 50 s at 48 °C and 90 s at 72 °C; for the LSU 45 s at 94 °C, 45 s at 48 °C and 2 min at 72 °C. The loci ITS and TUB were amplified as described by Aveskamp et al. (2009a), using the primer pairs V9G (De Hoog & Gerrits van den Ende 1998) and ITS4 (White et al. 1990) for ITS sequencing and the BT2Fw and BT4Rd primer pair (Aveskamp et al. 2009a) for sequencing of the TUB locus. PCR products were analysed by electrophoresis in a 1.0 % (w/v) agarose gel containing 0.1 μg/mL ethidium bromide in 1 × TAE buffer (0.4 M Tris, 0.05 M glacial acetic acid 0.01 M ethylenediamine tetraacetic acid [EDTA], pH 7.85). The amplicons were visualised using UV light. Hypertadler I (Bioline, Luckenwalde, Germany) was applied as size standard.

The obtained amplicons were sequenced in both directions using the same primer combinations, except for LSU, where an additional primer, LR5 (White et al. 1990) was further required.
to assure complete coverage of the locus. Sequencing reactions were prepared with the BigDye terminator chemistry v. 3.1 (Applied Biosystems) according to the manufacturer’s recommendations. Sequence products were purified with Sephadex G-50 Fine (Amersham Biosciences, Roosendaal, the Netherlands) and subsequently separated and analysed on an ABI Prism 3730 DNA Sequencer (Applied Biosystems). Consensus sequences were computed from the forward and reverse sequences using the BioNumerics v. 4.61 software package (Applied Maths, St-Martens-Latem, Belgium). The consensus sequences are deposited in GenBank (For GenBank accession numbers see Tables 2, 3).

Obtained consensus sequences were assembled and aligned using the same BioNumerics software and adjusted manually where necessary. As SSU was highly conserved in deeper node phylogenies, revealing almost no phylogenetic informative nuclear polymorphisms, and as ITS and TUB proved to be unalignable due to a high level of polymorphism if all taxa studied would be taken into account, it was decided to conduct two separate analyses. The first analysis comprised SSU and LSU loci, and was applied to 76 taxa of which most species included belonged to genera that were often confused with *Phoma* (Sutton 1980, De Gruyter et al. 2009). A second set of analyses was conducted on 274 taxa, and focussed on the species that had proven to be related to the Didymellaceae from preliminary studies.

Each of the phylogenetic analyses consisted of two methods: Bayesian Interference (BI) and Maximum Likelihood (ML). For BI analysis, the nucleotide substitution models were determined for each locus separately with MrModeltest v. 2.2 (Nylander 2004). According to this software, the General Time Reversible substitution was determined to be the best model for SSU, TUB and LSU in both data sets, with inverse gamma rates and dirichlet base frequencies (GTR + I + G). For the ITS dataset, the software suggested the Symmetrical Model as the best model for substitution of nucleotides. Also in this locus, the inverse gamma rates and dirichlet base frequencies were used (SYM + I + G).

The actual Bayesian calculations were performed in MrBayes v. 3.1.2 (Huelsenbeck & Ronquist 2001). One tree was saved per 100 generations, and the run was automatically ended when the standard deviation of split frequencies was below 0.01. The temperature value of the Bayesian run was set at 0.2. To avoid suboptimal trees being taking into account for the consensus tree, a burn-in of 25 % of the saved trees was used. The resulting "50 % majority rule consensus" trees were visualised with TreeView v. 1.6.6 (Page 1996).

A second measure of branch support was obtained by conducting a ML analysis using RAxML software (Stamatakis et al. 2005) through the CIPRES Website (www.phylo.org). The same partitions were used as in the BI analyses, but because RAxML implements only the GTR substitution model, the symmetrical model for the ITS partition was waived. The robustness of trees in the ML analyses was evaluated by bootstrapping the datasets. The number of bootstrap replicates was automatically determined by the RAxML software (Stamatakis et al. 2008). The obtained trees in both analyses are lodged with TreeBASE (www.treebase.org).

Morphology

Morphological studies of the strains were performed on OA, malt extract agar (MEA) and cherry decoction agar (CHA) (Crous et al. 2009c). The cultures were incubated according to the methodologies described by Boerema et al. (2004). Eight days after inoculation, the colony growth was measured. At the 15th day after incubation, the colony colours were rated using the colour charts of Rayner (1970). Micromorphological features were studied after maturation of the pycnidia. Therefore, fungal structures were mounted in tap water using a scalp knife and examined under a stereo light microscope. Perennial structures that were formed in the agar medium, such as chlamydospores, were cut out from the medium, and mounted in lactic acid. Remaining agar was removed from these samples by gently heating the glass slides.

The sizes of the various structures were determined by averaging the measurements of 30 samples of each structure, except for conidiogenous cells and pycnidial wall characters, of which the size ranges were estimated based on 5–10 samples. Fifth and 95th percentiles were determined for all measurements and are provided in parentheses. By application of a droplet of 1N NaOH, the production of metabolite E+ was determined (Dorenbosch 1970, Noordeloos et al. 1993). The structure of the pycnidial wall and shape of conidiogenous cells were studied using microtome sections of 6 µm thickness, prepared with a Leica CM3050 freezing microtome and mounted in lactic acid. Taxonomic recombinations and novel species and descriptions were deposited in MycoBank.

RESULTS

Systematics of the genus Phoma

DNA phylogenetical analysis

Due to alignment difficulties multiple datasets, consisting of different sets of loci, were utilised. For a generic overview, LSU and SSU were included in the first alignment, which consisted of 76 taxa. A list of species names and numbers, original substrates, geographical origins and GenBank accession numbers of the strains used in this study is provided in Table 2. The aligned sequence matrix had a total length of 2 210 characters including alignment gaps (LSU: 1 258 and SSU: 952 bp). Of those characters, 1 809 (LSU: 994 and SSU: 815) were constant and 401 were variable (LSU: 264 and SSU: 137). The Bayesian analysis run was aborted after 10 000 000 generations as a point of stationarity was reached in the average standard deviation of split frequencies, at a value of 0.0288. The applied "burn-in" percentage of 25 % was well after stationarity in the probability of the trees was reached. The tree topologies and support values of the ML analysis, differed only slightly from the trees obtained from the Bayesian analyses, supporting the probability of the tree. The tree is rooted to *Pseudoborbitella phragmitis* (CBS 398.61).

Based on the LSU-SSU phylogenetic study performed here for the various anamorph and teleomorph species in the *Phoma* complex, eight clades were revealed (Fig. 1), including one which only comprises the outgroup specimen. The various clades will be treated below, but for additional synonymy on the *Phoma* species we refer to Boerema et al. (2004). The findings in these clades are largely in congruence with the observations of De Gruyter et al. (2009).

Species that were ascribed to the *Phoma* section *Phoma* by Boerema et al. (2004) appear to be genetically highly heterogeneous, as these species are recovered in almost every clade. Species that were ascribed to *Phoma* section *Heterospora* appear to be linked to at least three distinct clades. Also polymorphism is observed for sections *Paraphoma*, *Peyronellaeae* and *Sclerophomella*, as well as for *Conidiothyrum* and *Ascochyta*. The type species of this latter genus, *A. pisi*, is not included in the present tree, but is genetically similar to the Didymellaceae.
Table 2. Isolates of *Phoma* and related genera used for DNA analyses. The GenBank accession numbers in bold have been obtained from other studies.

Strain no.¹	Holomorph²	GenBank no.	Original substrate	Locality	
CBS 129.79	Ampelomyces quisqualis	EU754029	EU754128	Mildew on *Cucumis sativus*	Canada
CBS 543.70	*Aposphaeria populinæ*	EU754031	EU754130	*Populus canadensis*	Netherlands
CBS 246.79; PD 77/655	Ascochyta caulina T	EU754032	EU754131	*Atriplex hastata*	Germany
CBS 544.74	Ascochyta hordei var. hordei	EU754035	EU754134	*Triticum aestivum*	South Africa
CBS 117477	Ascochyta sp.	GU238202	GU237926	*Salicornia australis*	New Zealand
CBS 265.94	*Asteromella tiliae*	EU754040	EU754139	*Tilia platyphloia*	Austria
CBS 431.74; PD 74/2447	Boeremia exigua var. exigua B	EU754084	EU754183	*Solanum tuberosum*	Netherlands
CBS 341.67; CECT 20055; IMI 331912	Boeremia foveata B	GU238203	GU237947	*Solanum tuberosum*	U.K.
CBS 149.94	Chaetasbolisia erysiphoides	EU754041	EU754140	Unknown	Unknown
CBS 216.75; PD 71/1030	*Chaetosphaeroma hysiphrorum*	EU754045	EU754144	*Anthyliis vulneraria*	Germany
CBS 589.79	Conidiothyrium concentricum	EU754053	EU754152	*Yuca sp.*	Netherlands
CBS 797.95	Conidiothyrium fuckelii	GU238204	GU237960	*Rubus sp.*	Denmark
CBS 400.71	Conidiothyrium palmarum	EU754054	EU754153	*Chamaerops humilis*	Italy
CBS 122787; PD 034869	Conidiothyrium sp.	EU754052	EU754151	Unknown	Germany
CBS 183.55	Didymella exigua T	EU754056	EU754155	*Rumex anilloides*	France
CBS 524.77	Didymella fabae	EU754034	EU754133	*Phaseolus vulgaris*	Belgium
CBS 581.83A	Didymella rabiei	GU238205	GU237970	*Cicer arietinum*	Syria
CBS 173.73; ATCC 24428; IMI 164070	Epicoccum nigrum T	GU238206	GU237975	*Dactylis glomerata*	U.S.A.
CBS 298.36	Leptosphaeria biglobosa	GU238207	GU237980	*Brassica napus var. napobrassica*	Unknown
CBS 127.23; MUCL 9930	*Leptosphaeria maculans*	EU754090	EU754189	*Brassica sp.*	Netherlands
CBS 939.69	Leptosphaeria uniflora	EU754068	EU754167	Soil	Netherlands
CBS 525.71	Macroventuria anomochaeta T	GU238208	GU237984	Decayed canvas	South Africa
CBS 442.83	Microsphaeropsis olivacea	EU754072	EU754171	*Taxus baccata*	Netherlands
CBS 331.37	Neotossospora paspali	EU754073	EU754172	*Paspatium notatum*	U.S.A.
CBS 122788; PD 99/1064-1	Paraconidiothyrium minutans	EU754075	EU754174	Unknown	Unknown
CBS 626.68; IMI 108771	Peyronellaea gardeniae T	GQ387534	GQ387595	*Gardenia jasminoides*	India
CBS 528.66; PD 63/590	*Peyronellaea glucorata B*	EU754085	EU754184	*Chrysanthemum sp.*	Netherlands
CBS 531.66	Peyronellaea pinodea B	GU238209	GU238017	*Triofitum pratense*	U.S.A.
CBS 235.55	Peyronellaea pinodes	GU238210	GU238021	Unknown	Netherlands
CBS 588.69	Peyronellaea zeae-maydis T	EU754093	EU754192	*Zeae maydis*	U.S.A.
CBS 110110	Phaeosphaeria oryzae	GQ387530	GQ387591	*Oryza sativa*	South Korea
CBS 297.74	Phialophorophoma litoralis	EU754078	EU754177	*Sea water*	Montenegro
CBS 285.72	Phoma apiicola B	GU238211	GU238040	*Apium graveolens var. rapaecum*	Germany
CBS 337.65; ATCC 16195; IMI 116933	Phoma capitulum B	GU238212	GU238054	Soil	India
CBS 522.66	Phoma chrysanthemica T	GQ387521	GQ387582	*Chrysanthemum montifolium*	U.K.
CBS 100311	Phoma complanata	EU754082	EU754181	*Heracleum sphondyllum*	Netherlands
CBS 345.78; PD 76/1015	Phoma dimorphosphora	GU238213	GU238069	*Chenopodium quinoa*	Peru
CBS 527.66	Phoma euphyrea B	GU238214	GU238072	Soil	Germany
CBS 161.78	Phoma fallens B	GU238215	GU238074	*Olea europaea*	New Zealand
CBS 170.70; ATCC 22707; CECT 20011; IMI 163514; PD 70/AIk	Phoma fimeti T	GQ387523	GQ387584	*Apium graveolens*	Netherlands
Strain no.¹	Holomorph²	GenBank no.	Original substrate	Locality	
-------------	------------	-------------	--------------------	----------	
CBS 178.93; PD 82/1062	Phoma flavescens T	GU238216 GU238075	Soil	Netherlands	
CBS 314.80	Phoma flavigena T	GU238217 GU238076	Water	Romania	
CBS 633.92; ATCC 36786; VKM MF-325	Phoma fungicola	EU754028 EU754127	Microsphaera alphtoides on Quercus sp.	Ukraine	
CBS 284.70	Phoma glaucispora B	GU238218 GU238078	Olea europea	Italy	
CBS 175.93; PD 92/370	Phoma haematocycla T	GU238219 GU238080	Phormium tenax	New Zealand	
CBS 615.75; PD 73/665, IMI 190779	Phoma herbarum B	EU754087 EU754186	Rosa multiflora	Netherlands	
CBS 448.68	Phoma heteromorphospora B	EU754088 EU754187	Chenopodium album	Netherlands	
CBS 467.76	Phoma incompta B	GU238220 GU238087	Olea europea	Greece	
CBS 253.92; PD 70/998	Phoma lini	GU238221 GU238093	Water	U.S.A.	
CBS 529.66; PD 60/521	Phoma macrostoma var. macrostoma B	GU238222 GU238098	Malus sylvestris	Netherlands	
CBS 316.90	Phoma medicaginis var. medicaginis	GU238223 GU238103	Medicago sativa	Czech Republic	
CBS 509.91; PD 77/920	Phoma minutispora	GU238224 GU238108	Saline soil	India	
CBS 501.91; PD 83/888	Phoma multipora B	GU238225 GU238109	Unknown	Egypt	
CBS 376.91; PD 328.78, PD 77/1177	Phoma apunctiae B	GU238226 GU238123	Opuntia ficus-indica.	Peru	
CBS 560.81; PD 92/1569; PDDCC 6614	Phoma paspall T	GU238227 GU238124	Paspalum dilatatum	New Zealand	
CBS 445.81; PDDCC 7049	Phoma pratorum T	GU238228 GU238136	Lolium perenne	New Zealand	
CBS 111.79; PD 76/437; IMI 386094	Phoma radicina B	EU754092 EU754191	Malus sylvestris	Netherlands	
CBS 138.96; PD 82/653	Phoma samarum B	GQ387517 GQ387578	Phlox paniculata	Netherlands	
CBS 343.85; IMI 386097	Phoma tericola T	GQ387563 GQ387624	Globodera pallida	Netherlands	
CBS 630.68; PD 68/141	Phoma valerianae B	GU238229 GU238150	Valeriana phu	Netherlands	
CBS 539.63	Phoma variocarpa T	GU238230 GU238151	Chrysanthemum sp.	Greece	
CBS 306.68	Phoma violicola B	GU238231 GU238156	Viola tricolor	Unknown	
CBS 523.66; PD 60/270	Pleospora betae B	EU754080 EU754179	Beta vulgaris	Netherlands	
CBS 191.86; IMI 276975	Pleospora herbarum T	GU238232 GU238160	Medicago sativa	India	
CBS 257.68; IMI 331911	Pleurophoma cava	EU754100 EU754199	Soil	Germany	
CBS 398.61; IMI 070678	Pseudobulbilla phragmitis T	EU754104 EU754203	Phragmites australis	U.K.	
CBS 122789; PD 03468600	Pyrenochaeta acicola	EU754105 EU754204	Hordeum vulgare	Unknown	
CBS 306.65	Pyrenochaeta lycopersici T	EU754106 EU754205	Lycopersicon esculentum	Germany	
CBS 407.76	Pyrenochaeta nobilis T	EU754107 EU754206	Laurus nobilis	Italy	
CBS 252.60; ATCC 13735	Pyrenochaeta romeri T	EU754108 EU754209	Man	Venezuela	
CBS 524.50	Sporormiella minima	DQ678003 DQ678056	Goat dung	Panama	
CBS 343.86	Stagonospora neglecta var. colorata	EU754119 EU754218	Phragmites australis	France	
CBS 101.80; PD 75/909; IMI 386090	Stagonosporopsis andigena B	GU238233 GU238169	Solanum sp.	Peru	
CBS 133.96; PD 79/127	Stagonosporopsis cucurbitacearum	GU238234 GU238181	Cucurbita sp.	New Zealand	
CBS 631.68; PD 68/147	Stagonosporopsis denissi B	GU238235 GU238182	Solidago floribunda	Netherlands	
CBS 164.31	Stenocarpella macrospora	EU754121 EU754220	Zea mays	Unknown	

¹ATCC: American Type Culture Collection, Virginia, U.S.A.; CBS: Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; CECT: Colección Española de Cultivos Tipo, Valencia University, Spain; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K.; MUCL: Mycotheque de l’Universite catholique de Louvain, Louvain-la-Neuve, Belgium; PD: Plant Protection Service, Wageningen, the Netherlands; PDDCC: Plant Diseases Division Culture Collection, Auckland, New Zealand; VKM: All-Russian Collection of Microorganisms, Pushchino, Russia.

²T: Ex-type strain; B: Reference strain according to Boerema et al. (2004).
Table 3. Strains from the Didymellaceae used for DNA analyses. The GenBank accession numbers in bold have been obtained from other studies.

Strain no.	Holomorph*	GenBank no.	Original substrate	Locality
CBS 544.74	Ascochyta hordei var. hordei	EU754134 GU237887 GU237488	Tritium aestivum	South Africa
CBS 109.79; PD 77/747	Boeremia crinica B	GU237927 GU237737 GU237489	Crinum powelli	Netherlands
CBS 118.93; PD 70/196	Boeremia crinica	GU237928 GU237759 GU237490	Crinum sp.	Netherlands
CBS 101194; PD 79/687; IMI 373349	Boeremia diversispora	GU237929 GU237716 GU237491	Phaseolus vulgaris	Netherlands
CBS 102.80; PD 79/61; CECT 20049; IMI 331907	Boeremia diversispora B	GU237930 GU237725 GU237492	Phaseolus vulgaris	Kenya
CBS 119370	Boeremia exigua var. coffeae	GU237942 GU237759 GU237504	Coffea arabica	Brazil
CBS 109183; IMI 300060; PD 2000/10506	Boeremia exigua var. coffeae B	GU237943 GU237748 GU237505	Coffea arabica	Cameroon
CBS 431.74; PD 74/2447	Boeremia exigua var. exigua B	EU754183 FJ427001 FJ427112	Solanum tuberosum	Netherlands
CBS 101150; PD 79/118	Boeremia exigua var. exigua	GU237933 GU237715 GU237495	Cichorium intybus	Netherlands
CBS 101197; PD 95/721	Boeremia exigua var. forsythiae	GU237931 GU237718 GU237493	Forsythia sp.	Netherlands
CBS 101213; PD 92/959	Boeremia exigua var. forsythiae B	GU237932 GU237723 GU237494	Forsythia sp.	Netherlands
CBS 101196; PD 79/176	Boeremia exigua var. heteromorpha	GU237934 GU237717 GU237496	Nerium oleander	France
CBS 443.94	Boeremia exigua var. heteromorpha B	GU237935 GU237866 GU237497	Nerium oleander	Italy
CBS 569.79; PD 72/741	Boeremia exigua var. iliacis B	GU237936 GU237892 GU237498	Syringa vulgaris	Netherlands
CBS 114.28	Boeremia exigua var. loricola	GU237937 GU237752 GU237499	Linum usitatissimum	Netherlands
CBS 115.76; ATCC 32332; CECT 20022; CECT 20023; IMI 197074	Boeremia exigua var. loricola B	GU237938 GU237754 GU237500	Linum usitatissimum	Netherlands
CBS 100017; PD 93/217	Boeremia exigua var. populi T	GU237939 GU237707 GU237501	Populus (x) euramerica	Netherlands
CBS 101202; PD 82/942	Boeremia exigua var. populi	GU237940 GU237719 GU237502	Salix sp.	Netherlands
CBS 101207; PD 94/614	Boeremia exigua var. pseudolilacis T	GU237941 GU237721 GU237503	Syringa vulgaris	Netherlands
CBS 100354; PD 84/448	Boeremia exigua var. viburni B	GU237944 GU237711 GU237506	Viburnum opulus	Netherlands
CBS 101211; PD 93/838	Boeremia exigua var. viburni	GU237945 GU237722 GU237507	Viburnum sp.	Netherlands
CBS 109176; CECT 2828; PD 94/1394	Boeremia foveata B	GU237946 GU237742 GU237508	Solanum tuberosum	Bulgaria
CBS 341.67; CECT 20055; IMI 331912	Boeremia foveata	GU237947 GU237834 GU237509	Solanum tuberosum	U.K.
CBS 365.91; PD 70/811	Boeremia hedericola	GU237948 GU237841 GU237510	Hedera helix	Netherlands
CBS 367.91; PD 87/229	Boeremia hedericola B	GU237949 GU237842 GU237511	Hedera helix	Netherlands
CBS 378.67; PD 76/276	Boeremia lycopersici	GU237950 GU237848 GU237512	Lycopersicon esculentum	Netherlands
CBS 109172; PD 84/143	Boeremia lycopersici	GU237951 GU237739 GU237513	Lycopersicon esculentum	Netherlands
CBS 100353; PD 67/718	Boeremia noackiana B	GU237952 GU237710 GU237514	Phaseolus vulgaris	Guatemala
CBS 101203; PD 79/1114	Boeremia noackiana	GU237953 GU237720 GU237515	Phaseolus vulgaris	Colombia
CBS 109170; PD 75/796	Boeremia sambuci-nigræ	GU237954 GU237738 GU237516	Sambucus nigra	Netherlands
CBS 629.68; CECT 20048; IMI 331913; PD 67/753	Boeremia sambuci-nigræ T	GU237955 GU237897 GU237517	Sambucus nigra	Netherlands
CBS 126.93; PD 73/642	Boeremia strasserii	GU237956 GU237773 GU237518	Mentha sp.	Netherlands
CBS 261.92; ATCC 244146; PD 92/318	Boeremia strasserii	GU237957 GU237812 GU237519	Mentha piperita	U.S.A.
CBS 109175; PD 79/524	Boeremia telephi B	GU237958 GU237741 GU237520	Sedum spectabile	Netherlands
CBS 760.73; PD 71/1616	Boeremia telephi B	GU237959 GU237905 GU237521	Sedum spectabile	Netherlands
CBS 149.94	Chaetosbolis austrophiloides	EU754140 GU237785 GU237522	Unknown	Unknown
CBS 187.83; PD 82/128	Didymella adianticola B	GU238035 GU237796 GU237576	Polystichum adiantiforme	U.S.A.
CBS 259.92; PD 89/1887	Didymella adianticola	GU238036 GU237811 GU237577	Polystichum adiantiforme	Costa Rica
CBS 102634; PD 75/248	Didymella applanata	GU237997 GU237726 GU237555	Rubus idaeus	Netherlands
CBS 205.63	Didymella applanata T	GU237998 GU237799 GU237556	Rubus idaeus	Netherlands
CBS 234.37	Didymella cannabis	GU237961 GU237804 GU237523	Cannabis sativa	Unknown
CBS 102635; PD 77/1131	Didymella catariae	GU237962 GU237727 GU237524	Nepeta cataria	Netherlands
CBS 183.55	Didymella exigua T	EU754155 GU237794 GU237525	Rumex anofius	France
CBS 524.77	Didymella fabae	GU237963 GU237880 GU237526	Phaseolus vulgaris	Belgium
CBS 649.71	Didymella fabae	GU237964 GU237902 GU237527	Vicia faba	Netherlands
Strain no.¹	Holomorph²	GenBank no.	Original substrate	Locality
------------	------------	-------------	--------------------	----------
PD 63/492	Didymella fabae	GU237965 GU237917 GU237528	Phaseolus vulgaris	Netherlands
PD 84/512	Didymella macropodi	GU237966 GU237919 GU237529	Crucifer	Unknown
CBS 100190; PD 82/736	Didymella macropodi	GU237967 GU237708 GU237530	Brassica napus	Germany
CBS 126.54	Didymella pisi	GU237968 GU237772 GU237531	Pisum sativum	Netherlands
CBS 122758; PD 78/517	Didymella pisi	GU237969 GU237763 GU237532	Pisum sativum	Netherlands
CBS 534.65	Didymella rabelii	GU237970 GU237886 GU237533	Cicer arietinum	India
CBS 581.83a	Didymella rabelii	GU237971 GU237894 GU237534	Cicer arietinum	Syria
CBS 121.75; ATCC 32164; IHEM 3403; IMI 194767; PD 73/584	Didymella urticicola T	GU237972 GU237761 GU237535	Urtica dioica	Netherlands
PD 73/570	Didymella urticicola	GU237973 GU237914 GU237536	Urtica dioica	Netherlands
CBS 454.64	Didymella vitatrixa	FJ515646 FJ515605 FJ515623	Clemsatia vitalba	France
CBS 138.25	Diploclada coloradensis	EU754158 GU237784 GU237537	Senecio sp.	Unknown
CBS 173.34	“Dothiorella ulmi”	EU754160 GU237789 GU237538	Urtica dioica	Unknown
CBS 125.82; IMI 1331914; CECT 20044	Epicoccum nigrum	GU237974 FJ426995 FJ427100	Human	Netherlands
CBS 173.73; ATCC 24428; IMI 164070	Epicoccum nigrum T	GU237975 FJ426996 FJ427107	Dactylis glomerata	U.S.A.
CBS 246.60; ATCC 22237; ATCC 16652; IMI 081601	Epicoccum pimprinum	GU237976 FJ427049 FJ427150	Soil	India
PD 77/1028	Epicoccum pimprinum	GU237977 FJ427050 FJ427160	Unknown	Unknown
CBS 179.80; PD 76/1018	Epicoccum sorghi	GU237978 FJ427067 FJ427173	Sorghum vulgare	Puerto Rico
CBS 627.68; PD 66/926	Epicoccum sorghi	GU237979 FJ427072 FJ427178	Citrus sp.	France
CBS 213.55	Leptosphaerulina americana	GU237981 GU237799 GU237539	Trifolium pretense	U.S.A.
CBS 275.59; ATCC 13446	Leptosphaerulina arachidicola	GU237983 GU237820 GU237543	Arachis hypoca	Taiwan
CBS 317.83	Leptosphaerulina australis	EU754166 GU237829 GU237540	Eugenia aromatica	Indonesia
CBS 939.69	Leptosphaerulina australis	EU754167 GU237911 GU237541	Soil	Unknown
CBS 235.58	Leptosphaerulina fruticola	GU237982 GU237806 GU237542	Trifolium sp.	Netherlands
CBS 525.71	Macroventuria anomochaeota T	GU237984 GU237881 GU237544	decayed canvas	South Africa
CBS 502.72	Macroventuria anomochaeota	GU237985 GU237873 GU237545	Medicago sativa	South Africa
CBS 526.71	Macroventuria ventii	GU237986 GU237881 GU237546	Unidentified plant material	U.S.A.
CBS 432.71	Microsphaeropsis olivacea	GU237987 GU237863 GU237548	Sorothamus sp.	Netherlands
CBS 233.77	Microsphaeropsis olivacea	GU237988 GU237803 GU237549	Pinus lario	France
CBS 442.83	Microsphaeropsis olivacea	EU754171 GU237865 GU237547	Taxus baccata	Netherlands
CBS 132.96; PD 93/453	Peyronellaea acelorolophi T	GU237989 GU237778 GU237550	Rhinanthus major	Netherlands
CBS 165.85; PD 80/1191	Peyronellaea americana B	GU237990 FJ426972 FJ427088	Zea mays	U.S.A.
CBS 168.97; PD 94/1544; ATCC 44494	Peyronellaea americana	GU237991 FJ426974 FJ427090	Glycine max	U.S.A.
PD 82/1059	Peyronellaea americana	GU237992 FJ426980 FJ427096	Nematode cyst	Unknown
CBS 360.84	Peyronellaea anserina B	GU237993 GU237839 GU237551	Potatoflour	Netherlands
CBS 363.91; PD 79/712	Peyronellaea anserina	GU237994 GU237840 GU237552	Pisum sativum	Netherlands
CBS 315.90; PD 80/1190	Peyronellaea arachidicola	GU237995 GU237827 GU237553	Arachis hypogaea	Zimbabwe
CBS 333.75; ATCC 23333; IMI 386092; PREM 44889	Peyronellaea arachidicola T	GU237996 GU237833 GU237554	Arachis hypogaea	South Africa
CBS 269.93; PD 78/1087	Peyronellaea aurea B	GU237999 GU237818 GU237557	Medicago polymorpha	New Zealand
CBS 444.81; PDDCC 6546	Peyronellaea australis T	GU238000 GU237867 GU237558	Actinidia chinensis	New Zealand
PD 77/919	Peyronellaea australis	GU238001 GU237915 GU237559	Actinidia chinensis	Unknown
CBS 101.92; PD 73/1405	Peyronellaea calopreferens T	GU238002 FJ426983 FJ427098	Undefined food material	Netherlands
CBS 630.97; ATCC 96683; IMI 361196; PD 96/2022	Peyronellaea calopreferens	GU238004 GU237925 GU237560	Heterodera glycines	U.S.A.
CBS 875.97; PD 93/1503	Peyronellaea calopreferens	GU238003 GU237908 GU237561	Indoor environment	U.S.A.
CBS 123380; PD 84/1013	Peyronellaea coffea-arabicae T	GU238005 FJ426993 FJ427104	Coffea arabica	Ethiopia

¹ Strain no.
² Holomorph
³ GenBank no.
⁴ Original substrate
⁵ Locality
Strain no.¹	Holomorph²	GenBank no.	Original substrate	Locality	
CBS 123398; PD 84/1014	Peyronellaea coffeae-arabicae	GU238006 FJ426994 FJ427105	Coffea arabica	Ethiopia	
PD 92/1460	Peyronellaea curtisi	GU238012 FJ427041 FJ427151	Sprekelia	Netherlands	
CBS 251.92; PD 86/1145	Peyronellaea curtisi B	GU238013 FJ427038 FJ427148	Nerine sp.	Netherlands	
CBS 377.91; PD 79/210	Peyronellaea eucalyptica B	GU238007 GU237846 GU237562	Eucalyptus sp.	Australia	
CBS 508.91; PD 73/1413	Peyronellaea eucalyptica	GU238008 GU237878 GU237563	Water	Croatia	
CBS 302.79; PD 79/1156	Peyronellaea gardeniae	GU387596 FJ427002 FJ427113	Air	Netherlands	
CBS 626.69; IMI 108771	Peyronellaea gardeniae T	GU387595 FJ427003 FJ427114	Gardenia jasminoides	India	
CBS 464.97; MUCL 9882	Peyronellaea glomerata	GU238009 FJ427012 FJ427123	Indoor environment	Netherlands	
CBS 528.66; PD 63/590	Peyronellaea glomerata B	EU754184 FJ427013 FJ427124	Chrysanthemum sp.	Unknown	
CBS 103.25	Peyronellaea lepithals	GU238010 GU237729 GU237564	Unknown	Unknown	
CBS 463.69	Peyronellaea musae B	GU238011 FJ427026 FJ427136	Mangifera indica	India	
CBS 377.93; PD 80/976	Peyronellaea obtusa B	GU238014 GU237847 GU237565	Daucus carota	Netherlands	
CBS 391.93; PD 80/87	Peyronellaea obtusa B	GU238015 GU237858 GU237566	Spinacia oleracea	Netherlands	
CBS 318.90; PD 81/729	Peyronellaea pinodella	GU238016 FJ427051 FJ427161	Pisum sativum	Netherlands	
CBS 531.66	Peyronellaea pinodella B	GU238017 FJ427052 FJ427162	Trifolium pratense	U.S.A.	
CBS 100580; PD 98/1135	Peyronellaea pinodella	GU238018 GU237713 GU237567	Glycine max	Hungary	
CBS 567.97; PD 97/2160	Peyronellaea pinodella	GU238019 GU237891 GU237568	Glycine max	Hungary	
CBS 159.78b	Peyronellaea pinodes	GU238020 GU237786 GU237569	Pisum sativum	Iraq	
CBS 285.49	Peyronellaea pinodes	GU238022 GU237823 GU237571	Primula auricula	Switzerland	
CBS 235.55	Peyronellaea pinodes	GU238021 GU237805 GU237570	Unknown	Netherlands	
CBS 525.77	Peyronellaea pinodes	GU238023 GU237883 GU237572	Pisum sativum	Belgium	
CBS 525.77a	Peyronellaea pinodes	GU238024 GU237882 GU237573	Pisum sativum	Belgium	
CBS 539.66; ATCC 16791; IMI 122266; PD 64/914	Peyronellaea pomorum var. pomorum	GU238028 FJ427056 FJ427166	Polygonum tataricum	Netherlands	
CBS 265.76; ATCC 26241; IMI 176742; VKM F-1843	Peyronellaea pomorum var. circinata	GU238025 FJ427053 FJ427163	Heracleum dissection	Russia	
CBS 286.76; ATCC 26242; IMI 176743; VKM F-1844	Peyronellaea pomorum var. circinata	GU238026 FJ427054 FJ427164	Allium nutans	Russia	
CBS 388.80; PREM 45736	Peyronellaea pomorum var. cyanea T	GU238027 FJ427055 FJ427165	Triticum sp.	South Africa	
CBS 381.96; PD 71/706	Peyronellaea protuberans B	GU238029 GU237853 GU237574	Lycium halfolium	Netherlands	
CBS 281.83	Peyronellaea sancta T	GU238030 FJ427063 FJ427170	Allanthus altissima	South Africa	
LEV 15292	Peyronellaea sancta	GU238031 FJ427065 FJ427172	Gleditsia triacanth	Unknown	
CBS 110.92; PD 76/1010	Peyronellaea subglomerata B	GU238032 FJ427080 FJ427186	Triticum sp.	U.S.A.	
PD 78/1090	Peyronellaea subglomerata	GU238033 FJ427081 FJ427187	Zea mays	Unknown	
CBS 588.69	Peyronellaea zeae-maydis T	EU754186 FJ427086 FJ427190	Zea mays	U.S.A.	
CBS 179.97	Phoma acetosellae	GU238034 GU237793 GU237575	Rumex hydrolapathum	Netherlands	
CBS 379.93; PD 82/945	Phoma alieana	GU238037 GU237851 GU237578	Berberis sp.	Netherlands	
CBS 877.97; PD 94/1401	Phoma alieana	GU238038 GU237910 GU237579	Buxus sempervirens	Netherlands	
CBS 381.91; PD 79/1110	Phoma anigozanthi B	GU238039 GU237852 GU237580	Anigozanthus mauglieii	Netherlands	
CBS 107.96; PD 73/598	Phoma aquilegicola B	GU238041 GU237735 GU237582	Aconitum pyramidal	Netherlands	
CBS 108.90; PD 79/611	Phoma aquilegicola B	GU238042 GU237736 GU237583	Aquilegia sp.	Netherlands	
CBS 125.93; PD 77/1029	Phoma arachidis-hypogaeae B	GU238043 GU237711 GU237584	Arachis hypogaea	India	
CBS 383.67, PD 65/223	Phoma aubrietae B	GU238044 GU237854 GU237585	Aubrieta hybridra cv. Superbissima	Unknown	
CBS 627.97; PD 70/714	Phoma aubrietae B	GU238045 GU237895 GU237586	Aubrieta sp.	Netherlands	
CBS 714.85; PD 74/265	Phoma bellidis B	GU238046 GU237904 GU237587	Bellis perennis	Netherlands	
PD 94/886	Phoma bellidis	GU238047 GU237923 GU237581	Bellis sp.	Netherlands	
Strain no.	Holomorph	GenBank no.	Original substrate	Locality	
-----------	-----------	-------------	--------------------	----------	
CBS 109942; PD 84/402	Phoma boeremae A	GU238047	FJ426982	Medicago littoralis cv. Harbinger	Australia
CBS 120105	Phoma brasiliensis A	GU238049	GU237760	Amaranthus sp.	Brazil
CBS 357.84	Phoma bulgarica A	GU238050	GU237387	Trachystemon orientale	Bulgaria
CBS 124515; PD 82/1058	Phoma bulgarica	GU238051	GU237768	Trachystemon orientale	Bulgaria
CBS 448.83	Phoma calidophila A	GU238052	FJ427059	Soil	Egypt
PD 84/109	Phoma calidophila	GU238053	FJ427060	Cucumis sativus	Europe
CBS 128.93; PD 79/140	Phoma chenopodica B	GU238055	GU237775	Chenopodium quinoa cv. Sajana	Peru
CBS 129.93; PD 89/803	Phoma chenopodica	GU238056	GU237776	Chenopodium quinoa cv. Sajana	Peru
CBS 102.66	Phoma clematidina	FJ515630	FJ426988	Clematis sp.	U.K.
CBS 108.79; PD 78/522	Phoma clematidina A	FJ515632	FJ426989	Clematis sp.	Netherlands
CBS 507.63; MUCL 9574; PD 07/03486747	Phoma clematidis-rectae A	FJ515647	FJ515606	Clematis sp.	Netherlands
PD 95/1958	Phoma clematidis-rectae	FJ515648	FJ515607	Clematis sp.	Netherlands
CBS 100409	Phoma commelinicola B	GU238057	GU237712	Tradescantia sp.	New Zealand
CBS 100311	Phoma complanata	EU754181	GU237709	Heracleum siphonphyllum	Netherlands
CBS 268.92; PD 75/3	Phoma complanata	EU754180	GU237815	Angelica sylvestris	Netherlands
CBS 506.91; IMI 215222; PD 91/876	Phoma costaricensis B	GU238058	GU237876	Coffea sp.	Nicaragua
CBS 497.91; PD 79/209	Phoma costaricensis	GU238059	GU237870	Coffea arabica	Unknown
CBS 193.82	Phoma crystallifera B	GU238060	GU237797	Chamaeaspertium sagittale	Austria
CBS 124513; PD 73/1414	Phoma dactylidis B	GU238061	GU237766	Dactylis glomerata	U.S.A.
CBS 133.93; PD 88/961; IMI 173142	Phoma destructiva var. destructiva	GU238064	GU237779	Solarium lycopersicum	Guadeloupe
CBS 378.73; CECT 2877	Phoma destructiva var. destructiva B	GU238063	GU237849	Lycopersicon esculentum	Tonga
CBS 162.78; PD 77/725	Phoma destructiva var. diversispora	GU238062	GU237872	Lycopersicon esculentum	Netherlands
CBS 507.91; PD 74/148	Phoma dictamnicola B	GU238065	GU237877	Dictamnus albus	Netherlands
CBS 101979; PD 90/835-1	Phoma digitalis	GU238066	GU237744	Digitalis sp.	Netherlands
CBS 229.79; LEV 7660	Phoma digitalis B	GU238067	GU237802	Digitalis purpurea	Germany
CBS 346.82	Phoma dimorpha B	GU238068	GU237835	Opuntia sp.	Spain
CBS 166.83; PD 82/47	Phoma dracconis B	GU238070	GU237795	Draconae sp.	Rwanda
CBS 123.93; PD 77/1148	Phoma eupatori B	GU238071	GU237764	Eupatorium cannabinum	Netherlands
CBS 374.91; PD 78/391	Phoma eupryna B	GU238072	FJ426999	Solarium tuberosum	Netherlands
CBS 527.66; ATCC 22238	Phoma eupryna B	GU238073	FJ427000	Soil	Germany
CBS 633.92; ATCC 36786; VKM MF-325	Phoma fungicola	EU754127	GU237900	Microsphaera alpiflodea on Quercus sp.	Ukraine
CBS 112.96	Phoma glauci	GU238077	GU237750	Dicentra sp.	Netherlands
CBS 114.96; PD 94/888	Phoma glauci B	FJ515649	FJ515609	Chelidonium majus	Netherlands
CBS 377.67	Phoma gossypiiola B	GU238079	GU237845	Gossypium hirsutum	U.S.A.
CBS 104.80; PD 74/1017	Phoma henningsii B	GU238081	GU237731	Acacia meameeia	Kenya
CBS 502.91; PD 86/276	Phoma herbarum	GU238082	GU237874	Neriun sp.	Netherlands
CBS 615.75; PD 73/665; IMI 199779	Phoma herbarum A	EU880896	FJ427022	Rosa multiflora	Netherlands
CBS 629.97; PD 76/1017	Phoma herbicola B	GU238083	GU237898	Water	U.S.A.
CBS 105.80; PD 75/908	Phoma huancayensis T	GU238084	GU237732	Solarium sp.	Peru
CBS 390.93; PD 77/1173	Phoma huancayensis	GU238085	GU237857	Chenopodium quinoa	Peru
CBS 220.85	Phoma humicola B	GU238086	GU237800	Franseria sp.	U.S.A.
CBS 123394	Phoma infossa	GU238088	FJ427024	Fraxinus pennsylvania	Argentina
CBS 123395	Phoma infossa T	GU238089	FJ427025	Fraxinus pennsylvania	Argentina
CBS 252.92; PD 80/1144	Phoma insulana B	GU238090	GU237810	Olea europaea	Greece
Table 3. (Continued).

Strain no.	Holomorph\(^a\)	GenBank no.	Original substrate	Locality
CBS 124.93; PD 87/269	Phoma labile B	GU238091; GU237665; GU237619	Solarium lycoopersicum	Netherlands
CBS 479.93; PD 70/93	Phoma labilis	GU238092; GU237686; GU237620	Rosa sp.	Israel
CBS 347.82	Phoma longicolla	GU238094; GU237836; GU237621	Opuntiae sp.	Spain
CBS 124514; PD 80/1189; VPRI 1239	Phoma longicolla T	GU238095; GU237767; GU237622	Opuntiae sp.	Spain
CBS 223.69	Phoma macrostoma var. incolorata B	GU238096; GU237801; GU237623	Acer pseudoplatanus	Switzerland
CBS 109173; PD 83/908	Phoma macrostoma var. incolorata B	GU238097; GU237740; GU237624	Malus sylvestris	Netherlands
CBS 529.66; PD 66/521	Phoma macrostoma var. macrostoma B	GU238098; GU237885; GU237625	Malus sylvestris	Netherlands
CBS 482.95	Phoma macrostoma var. macrostoma	GU238099; GU237869; GU237626	Laxir decidua	Germany
CBS 259.92; IMI 286996; PD 91/272	Phoma matteucia B	GU238100; GU237812; GU237627	Matteuccia struthiopteris	Canada
CBS 112.53	Phoma medicaginis	GU238101; GU237749; GU237628	Medicago sativa	U.S.A.
CBS 404.65; IMI 116999	Phoma medicaginis	GU238102; GU237859; GU237629	Medicago sativa	Canada
CBS 316.90	Phoma medicaginis	GU238103; GU237828; GU237630	Medicago sativa	Czech Republic
CBS 105.95	Phoma microchlamydospora T	GU238104; FJ427028; FJ427138	Eucalyptus sp.	U.K.
CBS 491.90	Phoma microchlamydospora	GU238105; FJ427029; FJ427139	Unidentified vegetable	U.K.
CBS 315.83	Phoma minor	GU238106; GU237826; GU237631	Syzygium aromaticum	Indonesia
CBS 325.82	Phoma minor T	GU238107; GU237831; GU237632	Syzygium aromaticum	Indonesia
CBS 110.79; PD 65/8875; MUCL 8247	Phoma multirrostrata	GU238110; FJ427030; FJ427140	Cucumis sativus	Netherlands
CBS 274.60; IMI 081598	Phoma multirrostrata T	GU238111; FJ427031; FJ427141	Soil	India
CBS 368.65; PD 92/1757; HACC 154	Phoma multirrostrata	GU238112; FJ427033; FJ427143	Soil	India
PD 83/48	Phoma multirrostrata	GU238113; FJ427037; FJ427147	Cucumis sativus	Unknown
CBS 117.93; PD 83/90	Phoma nebulosa	GU238114; GU237757; GU237633	Mercurialis perennis	Netherlands
CBS 503.75; ATCC 32163; DSM 63391; IMI 194766; PD 75/4	Phoma nebulosa B	GU238115; GU237875; GU237634	Urtica dioica	Austria
CBS 358.71	Phoma nigriana B	GU238116; GU237838; GU237635	Vitis vinifera	Germany
PD 79/74	Phoma nigriana	GU238117; GU237916; GU237636	Vitis vinifera	Netherlands
CBS 116.96; PD 95/7930	Phoma nigriocystidía B	GU238118; GU237756; GU237637	Vicia cracca	Russia
CBS 114.93; PD 74/228	Phoma novae-verbaciccola	GU238119; GU237753; GU237638	Verbascum sp.	Netherlands
CBS 127.93; PD 92/347	Phoma novae-verbaciccola B	GU238120; GU237774; GU237639	Verbascum densiflorum	Netherlands
CBS 654.77	Phoma omnivirens	GU238122; FJ427043; FJ427153	Unknown	India
CBS 991.95	Phoma omnivirens	GU238121; FJ427044; FJ427154	Soil	Papua New Guinea
CBS 560.81; PD 92/1569; PDCC 6614	Phoma paspaí T	GU238124; FJ427048; FJ427158	Paspalum dilatatum	New Zealand
CBS 561.81; PDCC 6615	Phoma paspaí	GU238125; GU237889; GU237640	Lolium perenne	New Zealand
CBS 124516; PD 84/453	Phoma pediea	GU238126; GU237769; GU237641	Orchidaceae	Netherlands
CBS 124517; PD 92/612A	Phoma pediea T	GU238127; GU237770; GU237642	Schiiffieria elegantissima	Netherlands
CBS 267.92; PD 76/1014	Phoma perepyrena T	GU238128; GU237814; GU237643	Coffea arabica	India
CBS 268.93; CBS 108.93; PD 88/720	Phoma piperis B	GU238129; GU237816; GU237644	Peperomia perekiöfia	Netherlands
PD 90/2011	Phoma piperis	GU238130; GU237921; GU237645	Peperomia sp.	Netherlands
CBS 284.93; PD 75/907	Phoma plurivora	GU238131; GU237822; GU237646	Medicago sativa	Australia
CBS 558.81; PDCC 6873	Phoma plurivora T	GU238132; GU237888; GU237647	Setaria sp.	New Zealand
CBS 109181; PD 83/757	Phoma polémoni B	GU238133; GU237746; GU237648	Poremumon caeruleum	Netherlands
CBS 116.93; PD 71/884	Phoma polensís B	GU238134; GU237755; GU237649	Antínhimum majus	Netherlands
CBS 113.20; PD 92/774	Phoma polensís	GU238135; GU237751; GU237650	Unknown	Unknown
CBS 372.91; PD 75/690	Phoma putaminum B	GU238137; GU237843; GU237651	Ulmus sp.	Netherlands
CBS 130.69; CECT 20054; IMI 331916	Phoma putaminum B	GU238138; GU237777; GU237652	Malus sylvestris	Denmark
CBS 109177; LEV 15165; PD 2000/9941	Phoma rhei B	GU238139; GU237743; GU237653	Rheum rhapsoticum	New Zealand
CBS 298.89	Phoma saxea	GU238140; GU237824; GU237654	Limestone	Germany
Strain no.	Holomorph^a	GenBank no.	Original substrate	Locality
-----------	-------------	-------------	--------------------	----------
CBS 419.92	Phoma saxea T	GU238141	Corroded mediterranean marble	Germany
CBS 122.93; PD 77/1049	Phoma selagineicola B	GU238142	Selagineicola sp.	Netherlands
CBS 160.78; LEV 11451	Phoma senecionis B	GU238143	Senecio jacobaea	New Zealand
CBS 249.92; PD 78/1088	Phoma subberbarum	GU238144	Solarum sp.	Peru
CBS 250.92; DAOM 171914; PD 92/371	Phoma subberbarum B	GU238145	Solarum sp.	Peru
CBS 305.79A; DAOM 170848	Phoma subberbarum	GU238146	Zea mays	Peru
CBS 135.93; PD 83/87	Phoma sylvatica B	GU238147	Melampyrum pratense	Netherlands
CBS 874.97; PD 93/764	Phoma sylvatica B	GU238148	Melampyrum pratense	Netherlands
CBS 436.75	Phoma tropica B	GU238149	Saintpaulia ionantha	Germany
CBS 876.97; PD 82/1008	Phoma versabilis B	GU238152	Silene sp.	Netherlands
PD 2000/1379	Phoma versabilis	GU238153		
CBS 500.91; PD 83/322	Phoma viburnicola B	GU238154	Ilex aquilifolium	Netherlands
CBS 523.73; PD 69/800	Phoma viburnicola B	GU238155	Viburnum cassinoides	Peru
CBS 383.68	Phoma xanthina B	GU238157	Delphinium sp.	Netherlands
PD 84/407	Phoma xanthina	GU238158	Delphinium sp.	Netherlands
CBS 131.93; PD 69/140	Phoma zantedeschiae	GU238159	Calla sp.	Netherlands
CBS 105.96; PD 74/230	Stagonosporopsis actaeae B	GU238165	Cimicifuga simplex	Netherlands
CBS 106.96; PD 94/1318	Stagonosporopsis actaeae T	GU238166	Actaea spicata	Netherlands
CBS 176.93; PD 86/547	Stagonosporopsis ajacis	GU238167	Delphinium sp.	Netherlands
CBS 177.93; PD 90/115	Stagonosporopsis ajacis T	GU238168	Delphinium sp.	Kenya
CBS 101.80; PD 75/909; IMI 386090	Stagonosporopsis andigera B	GU238169	Solarum sp.	Peru
CBS 269.80; PD 75/914	Stagonosporopsis andigera	GU238170	Solarum sp.	Peru
CBS 102636; PD 73/1409	Stagonosporopsis armesicocca B	GU238171	Artemisia dracunculus	France
CBS 178.25; MUCL 9915	Stagonosporopsis astragal B	GU238172	Astragalus sp.	Unknown
CBS 248.90	Stagonosporopsis caricae	GU238175	Carica papaya	Chile
PD 06/03082531	Stagonosporopsis caricae	GU238176	Carica papaya	Brazil
CBS 282.76	Stagonosporopsis caricae	GU238177	Brassica sp.	Indonesia
CBS 713.85; ATCC 76027; PD 83/826	Stagonosporopsis crystalliniformis T	GU238178	Lycopercon esculentum	Colombia
CBS 771.85; IMI 38091; PD 85/772	Stagonosporopsis crystalliniformis	GU238179	Solarum tuberosum	Colombia
CBS 109171; PD 91/310; PDCC 272	Stagonosporopsis cucurbitacearum	GU238180	Cucurbita sp.	Netherlands
CBS 133.96; PD 79/127	Stagonosporopsis dennisii B	GU238181	Cucurbita sp.	New Zealand
CBS 631.68; PD 68/147	Stagonosporopsis dennisii	GU238182	Solidago floribunda	Netherland
CBS 135.96; IMI 19337; PD 954756	Stagonosporopsis dennisii	GU238183	Solidago canadensis	Canada
CBS 320.90; PD 86/932	Stagonosporopsis doremboschii B	GU238184	Physostegia virginiana	Netherland
CBS 426.90; IMI 386093; PD 86/551	Stagonosporopsis doremboschii T	GU238185	Physostegia virginiana	Netherland
CBS 109182; PD 74/231	Stagonosporopsis heliopsis B	GU238186	Helopsis patula	Netherland
PD 95/6189; DAOM 221138	Stagonosporopsis heliopsisis	GU238187	Ambrosia artemisiifolia	Canada
CBS 104.42	Stagonosporopsis hortensis B	GU238198	Unknown	Netherland
CBS 572.85; PD 79/269	Stagonosporopsis hortensis B	GU238199	Phaseolus vulgaris	Netherland
CBS 425.90; PD 81/520	Stagonosporopsis ligulicola var. inoxydabilis T	GU238188	Chrysanthemum parthenii	Netherland
PD 85/259	Stagonosporopsis ligulicola var. inoxydabilis	GU238189	Matricaria sp.	Netherland
CBS 500.63; MUCL 8090	Stagonosporopsis ligulicola var. ligulicola B	GU238190	Chrysanthemum indicum	Germany
CBS 137.96; PD 84/75	Stagonosporopsis ligulicola var. ligulicola B	GU238191	Chrysanthemum indicum	Netherland
CBS 562.81; PDCC 6884	Stagonosporopsis loticola T	GU238192	Lotus pedunculatus	New Zealand
CBS 628.87; PD 79/72; PDCC 3870	Stagonosporopsis loticola	GU238193	Lotus tenuis	New Zealand
Table 3. (Continued.)

Strain no.¹	Holomorph²	GenBank no.	Original substrate	Locality
CBS 101494; PD 98/5247	Stagonosporopsis lupini B	GU238194 GU237724 GU237699	Lupinus albus	U.K.
CBS 375.84; PD 80/1250	Stagonosporopsis lupini	GU238195 GU237844 GU237700	Lupinus mutabilis	Peru
CBS 634.92; IMI 193307	Stagonosporopsis oculo-hominis T	GU238196 GU237901 GU237701	Human	U.S.A.
CBS 109180; PD 79/175	Stagonosporopsis rudbeckiae B	GU238197 GU237745 GU237702	Rudbeckia bicolor	Netherlands
CBS 379.91; PD 77/675	Stagonosporopsis trachelii B	GU238173 GU237850 GU237678	Campanula isophylla	Netherlands
CBS 384.68	Stagonosporopsis trachelii	GU238174 GU237856 GU237679	Campanula isophylla	Sweden
CBS 273.92; PD 76/1019	Stagonosporopsis valerianellae	GU238200 GU237819 GU237705	Valeriana locusta	Netherlands
CBS 329.67; PD 66/302	Stagonosporopsis valerianellae B	GU238201 GU237832 GU237706	Valeriana locusta var. oleracea	Netherlands

¹ATCC: American Type Culture Collection, Virginia, U.S.A.; CBS: Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; CECT: Colección Española de Cultivos Tipo, Valencia University, Spain; DAOM: Canadian Collection of Fungal Cultures, Ottawa, Canada; DSM: Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany; HACC: Research Laboratory, Hindustan Antibiotics Ltd., Pimpri Poona, India; IMI: International Mycological Institute, CABI-Bioscience, Egham, Bakeham Lane, U.K.; LEV: Plant Health and Diagnostic Station, Auckland, New Zealand; MUCL: Mycotheque de l’Universite catholique de Louvain, Louvain-la-Neuve, Belgium; PD: Plant Protection Service, Wageningen, the Netherlands; PDCC: Plant Diseases Division Culture Collection, Auckland, New Zealand; PREM: National Collection of Fungi: Culture Collection, Pretoria, South Africa; VKM: All-Russian Collection of Microorganisms, Pushchino, Russia; VPRI: Victorian Plant Disease Herbarium, Victoria, Australia.

²T: Ex-type strain; B: Reference strain according to Boerema et al. (2004).

Fig. 1. (p. 15) Fifty percent majority rule consensus tree from a BI analysis of Large and Small subunit sequences of Phoma and related genera (n = 76). At the nodes the BI Posterior Probabilities are presented above the branch, and bootstrap percentages of the ML analysis are given below the branch. Branches that were less than 50% supported in the ML analyses are indicated with a hyphen. The bar indicates the number of substitutions per site. The tree is rooted with Pseudorobillarda phragmitis (CBS 398.61).
Treatment of the clades

Clade 1, Outgroup:
Pseudoborbitella phragmitis was selected as outgroup on the basis of the studies conducted by De Gruyter et al. (2009). This species, although being recognised as a coelomycete, is not only phylogenetically, but also morphologically distinct from *Phoma*, although Sutton (1980) classified it in the Phialoperculaceae.

Clade 2, Sporormiaceae:
In the basal lineages, *Sporormiella minima* (CBS 524.50) was represented, representing the *Sporormiaceae*, which was recently recircumscribed (Barr 2000). In the same clade, two species were recovered that are described in *Phoma* section *Phoma*: *Ph. capitulum* and *Ph. minutispora*. Both species are distinguishable from other species in this Boeremaean section by the production of phoma-like anamorphs, such as *Westerdykella dispersa* (Von Arx 1981). Two *Sporormiaceae*-associated genera, *Spororia* and *Preussia* have been mentioned as possible teleomorph for *Ph. desertica* (Von Arx & Storm 1967), a species that was regarded as miscellaneous by Boerema et al. (2004). Also these anamorphs produce minute (sub-) globose conidia (Von Arx 1981, Boerema et al. 2004). Although the *Sporormiaceae* belongs to the *Pleosporales* (Barr 2000, 2002, Shearer et al. 2009, Suetrong et al. 2009), it forms a rather basal clade to most of the other *Phoma* species, and a taxonomic revision of *Ph. capitulum* and *Ph. minutispora* should therefore be considered.

Clade 3, Melanommataceae:
One species that belongs to the *Melanommataceae* was included in the phylogenetical reconstruction of the phomoid *Pleosporales*. This species, *Aposphaeria populina* (CBS 543.70), is recovered in the basal lineages of the reconstructed tree (Mugambi & Huhndorf 2009, Suetrong et al. 2009, Tanaka et al. 2009). The close association of this family with the *Sporormiaceae* and their phylogenetic placement in the basal lineages of the *Pleosporales* is in congruence with results obtained in earlier studies (Kruys et al. 2006, De Gruyter et al. 2009). Although some earlier workers regularly mistook several *Phoma* species for members of the genus *Aposphaeria* (e.g. Saccardo 1884), none of the *Phoma* species included in this study were clustering with the *Melanommataceae*.

Clade 4:
This clade comprises a range of species that almost all belong to different genera. *Phoma lini* and *Ph. flavescens* are the two *Phoma* representatives found in this clade, although they are not sister species. Based on morphological data, both species were accommodated in *Phoma* section *Phoma* (De Gruyter et al. 1993). Both species produce a yellow diffusible pigment in vitro, although a positive reaction to NaOH is only observed in *Ph. lini*. Both *Ph. flavescens* and *Ph. lini* are closely related to *Paraconiothyrium mimitans* (= *Coniothyrium mimitans*; Verkley et al. 2004). With this formal recombination into *Paraconiothyrium*, it was aimed to differentiate *Par. mitinans*, which produces complex, thick-walled pycnidia from other *Coniothyrium* species that normally produce more phomoid pycnidia (Verkley et al. 2004). The close relationship between *Par. mimitans* with *C. fucellii* that is found here is in congruence with the observations of Damm et al. (2008), although the teleomorph name, *Leptosphaeria coniothyrium*, would suggest a association with the *Leptosphaeriaceae* (clade 8).

The likeliness of the findings of *Pyrenochaeta romeroi* (CBS 252.60), *Asteromella tiliae* (CBS 265.94) and *Neottiospora paspali* (CBS 331.37) in this clade was already discussed by De Gruyter et al. (2009).

Clade 5, Cucurbitariaceae:
Clade 5 comprises mainly taxa with setose pycnidia, including several representative species of the genus *Pyrenochaeta*. In addition, a *Coniothyrium* sp., *Phialorphora litoralis* and *Pleurophoma cava* grouped in this clade, as well as two *Phoma* species, *Ph. pratorum* (section *Phoma*) and *Ph. tericola*, (section *Paraphoma*). Another representative of the section *Paraphoma* that is included in this study is *Ph. radicina*, which is however found in clade 6. The taxonomy of setose species that are currently classified in *Phoma* section *Paraphoma*, *Pyrenochaeta* and *Pleurophoma* is revised (De Gruyter et al. 2010). Also in several non-*Paraphoma* species in the genus *Phoma* setose or semi-pilose pycnidia do occur incidentally (Boerema et al. 2004). However, thus far, no setae-forming *Ph. pratorum* strains have been recorded. The finding of this species in the present clade is thus highly remarkable.

The *Coniothyrium* strain in this clade (CBS 122787) was previously identified as *C. cerealis*, and is found to be closely related to *Pyrenochaeta acicola* (BPP = 0.99, RBS = 100 %). As was illustrated in a previous study of Muthumeenakshi et al. (2001) *C. cerealis* is quite distinct to other *Coniothyrium* species. However, based on comparison with sequence data available in GenBank, it is unlikely that its previous identification was correct. This finding further illustrates the polyphyly of the genus *Coniothyrium*, which further has been retrieved in clades 4, 6 (Phaeosphaeriaceae), 7 (Leptosphaeriaceae and Pleosporaceae) and 8 (Didymellaceae). As mentioned before, some species of this genus have been associated with the teleomorph genus *Leptosphaeria*, and are thus expected to cluster with the *Leptosphaeriaceae* (clade 7). None of the species recovered in clade 5 has been associated with a teleomorph.

Clade 6, Phaeosphaeriaceae:
The species that are found in the well-supported clade 6 (BPP = 1.00; RBS = 83 %), belong to the morphologically heterogeneous group of the *Phaeosphaeriaceae* (Boehm et al. 2009, Zhang et al. 2009). Most findings in this clade have already been discussed in the previous paper of De Gruyter et al. (2009). In addition to that study, six *Phoma* species are retrieved in this clade. *Phoma radicina*, type of *Phoma* section *Paraphoma*, is found in close association with *Ph. chrysanthemicola* (BPP = 1.00; RBS = 90 %). The association between *Ph. radicina* and the *Phaeosphaeriaceae* is further discussed by De Gruyter et al. (2010). Its close association with *Ph. chrysanthemicola* has been observed before by Aveskamp et al. (2008a), but the link with the *Phaeosphaeriaceae* has not been established. Strains of *Ph. chrysanthemicola* exhibit some semi-setose pycnidia that are, however, often fully covered by mycelial hairs (Boerema 1993). This is a feature that is in common with *Ph. radicina*, which has, as type species of the section *Paraphoma*, clearly visible setae. In contrast, the main characteristic of *Ph. chrysanthemicola*, the presence of pseudosclerotoid masses, has never been observed in the latter species. However, also not all strains of *Ph. chrysanthemicola* exhibit this character (Dorenbosch 1970).

Phoma fimeti forms a subclade with *Ph. samarorum* and a strain that was previously identified as *Stenocarpella macrospera* (BPP = 0.98; RBS = 67 %), but that is probably misidentified (De
Gruyter et al. 2009). Especially the finding of Ph. samarorum is noteworthy, as it is found rather distinct from two clusters of other species belonging to the section Heterospora, which are retrieved among the Leptosphaeriaceae and Didymellaceae (clades 7 and 8). In contrast to these other Heterospora species, the large conidia of Ph. samarorum that can be observed in planta are clearly distinct by the subulate top cells, and measures up to 17 × 3.5 μm (Boerema et al. 1997). The strain identified as Stenocarpella macrospora is now sterile and therefore not studied morphologically. This species is known to produce similar-shaped, septate conidia, which are however pigmented and considerably larger, 44–82 × 7.5–11.5 μm (Sutton 1980). The close association with Ph. fimeti is therefore remarkable as this species is known to produce only minute, although also incidentally a aseptate conidia, measuring (2–)2.5–4(–5) × (1.5–)2–2.5(–3) μm (De Gruyter & Noordeloos 1992).

The remaining two Phoma species in this clade, Ph. haematocycly and Ph. opuntiae, also produce such minute conidia. Phoma haematocycly, a flax-associated species from New Zealand, is retrieved in a subclade that also accommodates Chaetalesphaeronema hispidulum (BPP = 1.00; RBS = 100 %).

All Phoma species found here are morphologically rather distinct, hence their placement in four different Phoma sections (Boerema et al. 2004). None of the Phoma species accommodated in this clade is associated with a teleomorph. The main teleomorph of Ph. palmarum (Reddy et al. 2009), or with the sections Clade 7 is a large clade comprising many Phoma species from various Boeremaean sections. Three reference species encountered here have been associated with the Leptosphaeriaceae before, these include Leptosphaeria maculans, L. biglobosa and Coniothyrium palmarum (Reddy et al. 1998, Verkley et al. 2004, De Gruyter et al. 2009), or with the Pleosporaceae, such as Pleospora herbarum, Ascochyta caulina and Ph. betae (Dong et al. 1998, Kdosueb et al. 2006, Iderbitzin et al. 2009, De Gruyter et al. 2009).

The two Leptosphaeria species in this study that were associated with a Phoma anamorph cluster together in the present clade: L. maculans (anam Ph. lingam) and L. biglobosa, which produces an unnamed, phomoid anamorph that is highly similar to Ph. lingam (Shoemaker & Brun 2001). Both species are serious pathogens of Brassicaceae (Fitt et al. 2006). Leptosphaeria biglobosa was found to be closely related to Ph. lingam in previous studies (Mendes-Perreira et al. 2003) and was for a long time recognised as a weakly pathogenic variety of the latter species (Johnson & Lewis 1990, Schäfer & Wöstemeyer 1992, Morales et al. 1993, Pongam et al. 1999, Williams & Fitt 1999, Purwantara et al. 2000, Shoemaker & Brun 2001, Voigt et al. 2001).

The phylogenetic relation of Phoma species currently classified in sections Pleonodonum and Pilosa is currently investigated (De Gruyter et al. in prep.). However, the present results reveal that a number of species from other Phoma sections fits in the Leptosphaeriaceae and Pleosporaceae. These include Ph. apicola, Ph. fallens, Ph. flavigena, Ph. glaucispora, Ph. multipora, Ph. valerianeae and Ph. vasinfecta. In contrast to the species that are accommodated in sections Pilosa and Plenodomus, pilose or sclerotia to pigmented conidia have never been recorded in these seven species; hence the placements in section Phoma.

Phoma multipora was ascribed to section Phoma. However, the original morphological description mentions the presence of elongated conidiophores (Pawar et al. 1967), which indicates that this species does not belong to the genus Phoma according to the present-day concept.

In addition, some representatives of other species are found in clade 7, such as Ph. incompta (section Sclerophomella) and Ph. violicola, which is associated with the section Peyronellae. Based on previous studies in the section Peyronellae however, also Ph. chrysanthemica and Ph. schachtii may be expected to cluster with the species in this clade (Aveskamp et al. 2009a). Remarkably, also two representatives of the section Heterospora are found in this clade. Phoma heteromorphospora is the assigned type species of this section (Boerema et al. 1997), whereas Ph. dimorphospora is morphologically closely allied, in congruence with the molecular results obtained here. Both species have a slow growth-rate and occur on Chenopodium spp., but can be distinguished by the absence of the conidial dimorphism in Ph. dimorphospora in planta. Moreover, the latter species is commonly found in North and South America, whilst Ph. heteromorphospora occurs mainly in Europe (Boerema et al. 2004).

With the exception of Ph. samarorum (clade 6 – Phaeosphaeriaceae), the other species of the section Heterospora are found in clade 8, which represents the Didymellaceae. The major difference between the Heterospora species in the present clade in contrast to those in the Didymellaceae is the size of the septate conidia, which are up to 9 × larger in vivo than the regular conidia in Ph. heteromorphospora and Ph. dimorphospora, whereas, in the Didymellaceae clade, the septate conidia are only 1.5–4.5 × larger.

Also, Coniothyrium palmarum, which represents the type of its genus, clusters in this clade. Just as in Phoma, the species in Coniothyrium have only a limited number of morphological features that can aid in taxonomy. This has led to an unwanted situation in which species morphologically placed in this genus have been shown in phylogenetic examination to be dispersed among multiple families (Verkley et al. 2004). Although, based on type species, an anamorph-teleomorph link has been established between Coniothyrium and Leptosphaeria (Crous 1998), many heterogeneous species are Coniothyrium-like, and belong phylogenetically to different families or even classes (Cortinas et al. 2006). In this study we found “Coniothyrium” species accommodated in at least three different clades (Fig. 1). Coniothyrium clematidis-rectae is phylogenetically linked to the Didymellaceae (Fig. 2 – see below). Phoma and Coniothyrium are considered to be highly similar and are only distinguished on basis of the pigmentation of the conidia and the structure of the pycnial wall (Boerema et al. 2004).

This clade also accommodates Pleospora betae, a notorious leaf and seed pathogenic of beet (Beta vulgaris, Bugbee & Cole 1981), and Pl. herbarum, which is the type species of the genus Pleospora. The genetic distance between the two species was already observed in a study utilising SSU nrDNA sequences (Dong et al. 1998). Also three Phoma species that are found in close association with these “true” Pleosporaceae and that are found basal to this clade, Ph. fallens, Ph. flavigena and Ph. glaucispora.
Fig. 2. Fifty percent majority rule consensus tree from a BI analysis of LSU, ITS and TUB sequences of Didymellaceae (n = 274). At the nodes the BI Posterior Probabilities are presented above the branch, and bootstrap percentages of the analysis are given below the branch. Branches that were less than 50% supported in the ML analyses are indicated with a hyphen. The bar indicates the number of substitutions per site. The tree is rooted with Ascochyta hordei var. hordei (CBS 544.74) and Phoma paspali (CBS 560.81 & CBS 561.81).
Fig. 2. (Continued).
have glabrous pycnidia and, like *Ph. betae*, aseptate conidia, hence their link to *Phoma*. Absence of an ostiole is only recorded in *Ph. glaucispora* (De Gruyter et al. 1998). The anamorph genus *Stemphylium* (Simmons 1969), *Alternaria* and *Dendryphion* (Von Arx 1981). The pluriform nature of the *Pleospora* anamorphs strongly contrasts with the relatively uniform morphology of the teleomorphic structures (Holm 1962, Kodsueb et al. 2006, Inderbitzin et al. 2009). The polyphyletic nature of *Pleospora* has been hypothesised by Holm (1962) and Berbee (1996), but only recently have molecular studies confirmed its taxonomic complexity (Dong et al. 1998, Kodsueb et al. 2006, Inderbitzin et al. 2009).

Clade 8, Didymellaceae:

The major cluster observed in the generic phylogeny is the top clade in Fig. 1, which represents the *Didymellaceae* clade. This clade is well supported (BPP = 0.99, RBS = 94 %), but with the loci used, a high level of basal polytomy is recorded within the clade. The ancestral species in this clade are the *Graminaceae*-pathogens, *Ascochyta hordei* and *Ph. paspali*. The latter species has been considered to be an indigenous pathogen of grasses in Australia and New Zealand (Johnston 1981, Boerema et al. 2004), but based on sequence comparisons this species is probably also present in Europe (Wirsel et al. 2001, C. Gueidan pers. comm.).

Clade 8 comprises most *Phoma* species, including CBS 615.75, the representative strain of *Ph. herbarum* (Boerema et al. 1988), *Ph. betae*, and *Ph. streptoidea*. It is supported by high bootstrap support (RBS > 94 %), BPP = 1.00.}

Fig. 2. (Continued).
Stagonosporopsis ligulicola
Stagonosporopsis trachelii
Stagonosporopsis oculo-hominis

1.00

Stagonosporopsis cucurbitacearum

0.98

CBS 628.97

Stagonosporopsis dorenboschii

0.86

CBS 506.91

Stagonosporopsis caricae

0.93

CBS 562.81

Stagonosporopsis ivalensis

0.70

CBS 355.86

Stagonosporopsis ajacis

0.59

CBS 100.91

Stagonosporopsis piperis

0.54

CBS 874.97

Stagonosporopsis labilis

0.54

CBS 320.90

Stagonosporopsis insulana

0.54

CBS 101494

Stagonosporopsis costarricensis

0.54

CBS 100409

Stagonosporopsis pyri

0.54

CBS 100190

Stagonosporopsis clavata

0.54

CBS 135.93

Stagonosporopsis pereupyrena

0.54

CBS 110.79

Phoma eupatorii

0.54

CBS 124.93

Phoma communis

0.54

CBS 114.93

Phoma eccentrica

0.54

CBS 112.93

Phoma destructiva

0.54

CBS 113.93

Phoma destructiva var. destructive

0.54

CBS 113.93

Phoma destructiva var. diversispora

0.54

CBS 113.93

Phoma section Heterospora

0.54

CBS 113.93

Phoma section Paraphoma

0.54

CBS 113.93

Phoma section Peyronellaea

0.54

CBS 113.93

Phoma section Sclerophomella

0.54

CBS 113.93

Phoma section Phyllostictoides

0.54

CBS 113.93

Phoma section Schizaphomella

0.54

CBS 113.93

Phoma section Plenodomus

0.54

CBS 113.93

Phoma section Pilosa

0.54

CBS 113.93

Unknown/ non-Phoma -species

0.54

CBS 113.93

Fig. 2. (Continued).
2004), which is type species of the genus (Boerema 1964). This clade also includes the type species of the Phoma sections Phoma, Peyronellaea, Phylllostictoides, Solerostomella and Macrospora. Some phytopathologically and medically relevant species of the section Heterospora are also associated with this clade, although some species of this section are found in other clades, such as Ph. samarorum (clade 6) and Ph. dimorphospora, and the sectional type Ph. heteromorphospora (clade 7). Finally, a single species of the setose section Paraphoma, Ph. gardeniae, is found in the Didymellaceae. Based on the sequence data obtained in this study, it is estimated that approximately 70 % of the species recognised by Boerema et al. (2004) can be associated with the Didymellaceae.

Besides the many Phoma species, several other anamorphic fungi are found within this clade, including Ampelomyces quercinus, Ascochyta fabae (teleom. Didymella fabae), Asc. hordei var. hordei, Asc. pinodes (teleom. Didymella pinodes), Chaetosporium erysipheoides, Didymella exigua, Epicoccum nigrum (synanamorph Ph. epicipocccina) and Microsphaeropsis olivacea. Of these species, Asc. pisi, C. erysipheoides and M. olivacea are recognised as type species for their respective genera. De Gruyter et al. (2009) already discussed the probability of finding most of these non-Phoma taxa in the Didymellaceae clade.

It should be noted that not all Ascochyta species are found within this clade, indicating that this genus is also polyphyletic. Whereas A. hordei var. hordei is found to be one of the basal taxa of clade 8, the legume associated pathogens A. fabae, A. pinodes and the type species A. pisi are found in close association with several species of Phoma. This result is in congruence with the observations in the study of Peever et al. (2007). Also the recently described Didymella cleniadis has an anamorphic state in Ascochyta and is closely related to Phoma taxa in this major clade (Woudenberg et al. 2009). A representative strain Asc. caulina and a new Ascochyta species that is still due to be published (G.J.M. Verkley, pers. comm.), however, have been found to be only distantly related and are found in clades 7 and 6, respectively.

Where a sexual state is known for the Phoma and Ascochyta species in clade 8, it is Didymella. The type species of this teleomorph genus, D. exigua, is also found within this clade, although it is not associated with a Phoma anamorph state. The family Didymellaceae was introduced for this group by De Gruyter et al. (2009). However, type species of two other teleomorph genera have also been found within this clade. DNA sequences of Leptosphaeria aurataensis resemble a high level of similarity with those of the various Phoma and Didymella strains, although none are identical. Also sequences of LSU and ITS sequence data obtained from GenBank of L. americana, L. argentensitis, L. chartarum, L. crassiasca and L. trifolioli [GenBank accession no. AY278318, AY849949, EU272493, U79485, AY8315585 respectively] were highly similar or even identical to the Didymellaceae sequences obtained in the present study (data not shown). These observations are in congruence with the results obtained by Silva-Hanlin & Hanlin (1999), who found that D. bryonieae (anam. Ph. cucurbitacearum) was closely related with L. chartarum and L. crassiasca. Also Macroventuria anamochaeta, which represents the genus Macroventuria (Van der Aa 1971) groups in Didymellaceae. The close genetical resemblance of Macroventuria and Leptosphaeria found in the present study is in congruence with the results of Kodosue et al. (2006).

The loci employed here for phylogenetic analysis are sufficient to identify clades at the family level, but for proper resolution at generic level or lower, additional gene regions need to be sequenced. As the majority of Phoma species is embedded in the Didymellaceae clade, we will define further generic and species boundaries within this recently established family in the subsequent part of this paper.

Systematics of the Didymellaceae

DNA phylogenetic analysis

The alignment that was used to delineate the Didymellaceae consisted of 274 sequences belonging to 196 species. A list of the species names and numbers, original substrates, geographical origins and GenBank Accession numbers of the strains used in this study is provided in Table 3. The sequence matrix had a total length of 2 188 characters including the alignment gaps (LSU: 1 327; ITS: 508 and TUB: 353). Of those characters, 1 788 (LSU: 1 233; ITS: 374 and TUB: 181) were constant, whereas 400 characters (LSU: 94; ITS: 144 and TUB: 192) were variable.

The analysis run of the LSU-ITS-TUB sequence matrix in MrBayes was aborted after obtaining 20 000 trees, which was well after stationarity in the probability of the trees was reached, whereas the standard deviation of split frequencies was below 0.02. From the obtained tree population, the 25 % burn-in was discarded and the consensus tree and posterior probabilities were calculated. The topology and support values of the BI tree were in congruence with the optimal tree obtained in the ML analysis.

Systematics: treatment of clades

As most other anamorph genera, Phoma has largely been used as a convenient form genus, rather than a phylogenetic entity. With the number of Phoma species that are being analysed on DNA sequence level rapidly increasing, the question is raised whether form genera should be maintained or that more natural groupings, merging both phylogeny and morphological data, should be erected. Of course, as greater numbers of taxa are collected and analysed, the taxonomic boundaries of more clades will be resolved. However, for the present, only those genera that could be resolved based on available cultures are treated. The groups mentioned below refer to those indicated A–R in Fig. 2. The unresolved clades are left untreated, and are thus not discussed.

The taxa in this part of the study were selected based on genetic and/or morphological similarities with the species that were associated with the Didymellaceae in Fig. 1. Although numerous taxa from various genera have been associated with “Phoma”, the number of genera that could be included in the selection for the Didymellaceae was limited. Next to Phoma, the only species found were those accommodated on basis of previous morphological studies in either Ampelomyces, Ascochyta, Chaetosporium, Coniothyrium, Didymella, Diplodia, Dothiorella, Epicoccum, Leptosphaeria, Macroventuria, or Microsphaeropsis. Of three of these generic representatives, viz. Chaetosporium, Diplodia and Dothiorella, we suspect that some cultures have been preserved under an incorrect name. The species representing Ampelomyces, A. quercinus, was correctly identified, but as suggested earlier, the taxonomic placement in this genus appears to be incorrect (Szentiványi et al. 2005).

Strains belonging to a single species proved to be genetically identical or at least highly similar, indicating that the initial identification of these strains had been carried out correctly. Several well-supported clusters are recognised within this family that are treated here as novel groups of the Didymellaceae. In this section these separate groups are treated. However, although multiple genes were employed in this study to generate a phylogenetic reconstruction of the family, high levels of basal polytomy were observed as well (Fig. 2). Application of general nrDNA loci alone did not reduce this high level of polytomy, whilst interspecies variation in several well-supported clades was reduced drastically.

AVESKAMP ET AL.
Group A – outgroup and basal lineages:
The tree presented in Fig. 2 is rooted to Ascochyta hordei and Ph. paspali, which proved to be ancestral to the Didymellaceae in Fig. 1. The latter species was described by Johnston (1981) as a species from grasses in New Zealand and Australia, but in recent years, isolates with similar genotypes were isolated from iron-rich volcanic soil from France (C. Gueidan, pers. comm.), and from common reed (Phragmites australis) in Germany (Wirsel et al. 2001). These isolates were, however, never studied morphologically.

Another species used as outgroup is Ascochyta hordei var. hordei (CBS 544.74), which was obtained from a South African Triticum aestivum, indicating that also within the Didymellaceae, species that are ascribed to Ascochyta do not form a monophyletic group. Also CBS 259.92, the isotype of Ph. matteucicola, proved to be basal to most other Phoma species. Phoma matteucicola is commonly known as a pathogen of many fern species (De Gruyter et al. 2002). Within the basal lineages, also a group comprising Ph. humicola and the novel species Ph. saxea is found, although this group is only supported by BI analysis (BPP = 0.92, RBS < 50 %).

Although Phoma humicola is known as a saprobic soil fungus, it is sometimes mistaken for the notorious potato pathogen Ph. foveata (Group N), due to a similar biochemical reaction to NaOH and the formation of citrine green crystals on MEA (De Gruyter 1998). Although Ph. foveata is found rather distinct from Ph. humicola, the latter species was described by Johnston (1981) as a species known as a pathogen of many fern species (De Gruyter et al. 2002). Within the basal lineages, also a group comprising Ph. humicola and the novel species Ph. saxea is found, although this group is only supported by BI analysis (BPP = 0.92, RBS < 50 %).

Phoma humicola J.C. Gilman & E.V. Abbott, Iowa St. Coll. J. Sci. 1(3): 266. 1927.
Specimen examined: U.S.A., Nevada, Death Valley, from a dead leaf of Franseria sp., 1971, G.H. Boerema, CBS H-16390, culture CBS 220.85.

Phoma matteucicola Aderkas, Gruyter, Noordel. & Strongman, Canad. J. Pl. Pathol. 14(3): 227. 1992.
Specimen examined: Canada, Nova Scotia, Five Mile River, from leaf base of Matteuccia struthiopteris, May 1981, P. von Aderkas, holotype DAOM 183092, culture ex-holotype CBS 259.92 = IMI 286996 = PD 91/272.

Notes: Gangrene in ostrich fern was originally attributed to Ph. exigua var. foveata (von Aderkas & Brewer 1983), which is here recombined as Boeremia foveata, but Von Aderkas et al. (1992) recognised a new species as causal agent of this disease. The phylogeny presented here supports these observations, as Ph. matteucicola is found rather distinct from B. foveata.

Phoma paspali P.R. Johnst., New Zealand J. Bot. 19(2): 181. 1981.
Specimens examined: New Zealand, Auckland, Kaitaia, from a dead leaf of Paspalum dilatatum, Jan. 1979, P.K. Buchanan, isotype CBS H-7623, culture ex-isotype CBS 561.81 = PD 91/272.

Notes: Phoma paspali is a naturally occurring species which forms a monophyletic group, supported by BI and ML analysis (Fig. 2), but not by the consensus tree (Fig. 1). The latter species was described by Johnston (1981) as a species known as a pathogen of many fern species (De Gruyter et al. 2002). Within the basal lineages, also a group comprising Ph. humicola and the novel species Ph. saxea is found, although this group is only supported by BI analysis (BPP = 0.92, RBS < 50 %).

Phoma saxea Aveskamp, Gruyter & Verkley, sp. nov. MycoBank MB515591. Fig. 3.
Conidia dimorpha, intra idem pycnidia formata. Conidia typus 1 (sub)globosa, glabra, hyalina, continua, (3–)3.5–5.5 μm diam., (0–)3–(5–)15 guttulæ praedita. Conidia typus 2 cylindrica vel ellipsoidea, glabra, hyalina, continua, (3.5–)4.5–7(–7.5) × (2.5–)3.5–(4–) μm, plerumque eguttulata, vel 1–3 guttulis praedita. Matrix conidiorum salmonæ. Chlamydosporae continuæ, globosæ, vinidulæ, in catenis usque 35 positæ, (8.5–)10–15.5(–17.5) × (6–)8–12.5(–14) μm.

Eymology: Refers to the substratum on which both isolates of this species were found, stone material.

Pycnidia solitary, (sub)globosa, glabrae or covered by hyphal outgrowths, (90–)1135–280(–310) × (90–)105–260(–275) μm. Ostioles single, papillate, with wide openings, ca. 40–80 μm diam. Pycnial wall pseudoparenchymatous, composed of oblong to isodiametric cells, 2–3 layers, 10–17 μm thick, outer cell layer brown pigmented. Conidiogenous cells phialidic, hyaline, simple, smooth, variable in appearance, flask-shaped, oblong or isodiametric ca. 5.5–7.5 × 3–4 μm. Conidia of two types, both originating from the same pycnidia. Conidia of type 1: (sub)globosa, thin-walled, smooth, hyaline, aseptate (3–)3.5–5.5 μm diam, with (0–)3–10(–15) guttules. Conidia of type 2: cylindrical to ellipsoid, thin-walled, smooth, hyaline, aseptate, (3.5–)4.5–7(–7.5) × 2.5–3.5(–4) μm, mainly eguttulate or with up to 3 minute guttules. Conidial matrix salmon. Chlamydospores ubiquitously present in the agar, unicellular, globose, in long chains of up to 35 elements, greenish pigmented, measuring (8.5–)110–16.5(–17.5) × (6–)8–12.5(–14) μm.

Culture characteristics: Colonies on OA, 45–50 mm diam after 7 d, margin regular. Immersed mycelium flat, olivaceous to greenish olivaceous, citrine-green or coral near the colony margin. Aerial mycelium absent, but sometimes some grey erect tufts are encountered near the colony centre; reverse concolourous. Colonies on MEA 20–25 mm diam after 7 d, margin regular. Immersed mycelium violet-slate, but saffron near the colony margin. Abundant pycnidia are present on the agar surface; reverse iron-grey, saffron near the colony margin. Colonies on CHA similar as on MEA, but somewhat slower growing, 10–15 mm diam. after 7 d, and some sparse white aerial mycelia hyphae are present in the colony. Application of NaOH results in a greenish yellow discolouration of the agar, best to be observed on OA medium.

Specimens examined: Germany, Oldenburg, from corroded Mediterranean marble, June 1992, J. Kuroczkin, holotype designated here CBS H-20240, culture ex-holotype CBS 419.92; Oldenburg, from limestone, 1987, J. Kuroczkin, CBS 298.89.

Notes: The pycnial wall of Phoma saxea is extremely thin and almost hyaline when the conidia have exuded. Older pycnidia collapse and remain as a double-layered, disc-like structure on the agar.

Both strains of this species have been isolated from stone material, such as limestone (CBS 298.89) and corroded Mediterranean marble (CBS 419.92). Although the genus is known from all kinds of substrates, the number of rock-inhabiting Phoma isolates is relatively low. Selbmann et al. (2002) report on Ph. herbarum from Antarctic rock, and Boerema et al. (2004) list several species from rock-like materials, such as cement (Ph. herbarum), wall-plaster (Ph. heteroderae – here recombined into Ph. calorpreferens) and crockery (Ph. pomorum). In addition, multiple species are recorded from rock-inhabiting lichens (Nelson et al. 2009, Ruibal et al. 2009). These species, listed by Hawksworth & Cole (2004) are, however, unculturable and could therefore not be compared with Ph. saxea in vitro. However, the morphological descriptions suggest that the mentioned species and Ph. saxea are different taxonomic entities.
Group B:
Four of the six species clustering in Group B produce a Didymella teleomorph. Only Ph. polemonii and Ph. xanthina presently have no known sexual state. The species in this clade are collected from a wide variety of dicots, although all individual taxa appear to be host-specific (Boerema et al. 2004). Also the micromorphological features of these species are highly variable.

A single strain that was kept in the CBS collection as Diplodina coloradensis was found in this clade as well. However, this genus name has been accommodated in the Gnomoniaceae (Diaporthales), indicating that this strain has been preserved under an incorrect name and should be renamed. However, as this strain proved to be sterile, no proper redescription of the material could be provided.

Didymella applanata (Niessl) Sacc., Syll. Fung. 1: 546. 1882.
Basionym: Didymosphaeria applanata Niessl, Oesterr. Bot. Z. 25(4): 129. 1875.
Anamorph: Phoma argillacea (Bres.) Aa & Boerema, in De Gruyter, Boerema & Van der Aa, Persoonia 18(1): 17. 2002.
Basionym: Phyllosticta argillacea (Bres.), Hedwigia 1894: 206. 1894.

Specimens examined: The Netherlands, Baarn, from Rubus idaeus, Sep. 1963, A. van Dijkman, CBS H-11943, culture CBS 205.63; from Rubus idaeus, 1975, G.H. Boerema, CBS 102634 = PD 77/248.

Didymella cannabis (G. Winter) Arx, in Müller & Arx, Beitr. Kryptogamenfl. Schweiz 11(2): 365. 1962.
Basionym: Sphaerella cannabis G. Winter, Hedwigia 11(10): 145. 1872.

Anamorph. Phoma cannabis (L.A. Kirchn.) McPartl., Mycologia 86(6): 871. 1995.
Basionym: Depazea cannabis L.A. Kirchn., Lotos 6: 183. 1856.
Specimen examined: Unknown origin, from Cannabis sativa, Oct. 1937, K. Röder, CBS 234.37.

Notes: The studied culture (Röder 1937) is now sterile, and could therefore not be described here morphologically.

Didymella catariae (Cooke & Ellis) Sacc., Syll. Fung. 1: 557. 1882.
Basionym: Sphaeria catariae Cooke & Ellis, Grevillea 5: 96. 1876.
Anamorph: Phoma nepeticola (Melnik) Dorenb. & Gruyter, Persoonia 18(1): 18. 2002.
Basionym: Ascochyta nepeticola Melnik, Novoste Sist. Nizsh. Rast. 1968: 178. 1968.
Specimen examined: The Netherlands, from the stem of Nepeta catenaria, 1977, M.M.J Dorenbosch, CBS 102635 = PD 77/1131.

Didymella urticicola Aa & Boerema, in Boerema, Trans. Brit. Mycol. Soc. 67(2): 303. 1976.
Anamorph: Phoma urticicola Aa & Boerema, in Boerema, Trans. Brit. Mycol. Soc. 67(2): 303. 1976.
Specimens examined: The Netherlands, Wageningen, from a dead stem tip of Urtica dioica, Mar. 1973, G.H. Boerema, holotype CBS H-11971, culture ex-holotype CBS 121.75 = ATCC 32164 = IHEM 3403 = IMI 194767 = PD 73/584; from Urtica dioica, 1973, G.H. Boerema, PD 73/570.

Fig. 3. Phoma saxea (CBS 419.92). A–C. Fourteen-day-old colonies on OA (A), MEA (B) and CHA (C). D. Pycnidia. E–F. Conidiogenous cells. G. Conidia. H. Chain of unicellular chlamydospores. Scale bars: D = 100 μm; E–G = 5 μm; H = 20 μm.
Phoma xanthina Sacc., Michelia 1(4): 359. 1884.

Specimens examined: The Netherlands, from leaves of Delphinium sp., May 1968, H.A. van der Aa, CBS H-8938; culture CBS 383.69; from Delphinium sp., 1984, G.H. Boerema, PD 84/407.

Phoma polemonii Cooke, Grevillea 13(68): 94. 1885.

Specimen examined: The Netherlands, from Polemonium caeruleum, 1983, J. de Gruyter, CBS 109181 = PD 83/757.

Phoma aquilegiicola (Boerema) Aveskamp, CBS 195.64; Boskoop, from Wageningen, from Clematis-rectae epitype CBS 108.79 = PD 78/522; from below. Phoma pigmentation. Therefore that of Woudenberg clematidina et al. 2004, Aveskamp distinguished in a study of the several species that were associated with the Clematis pathogens *Ph. clematidina* and *Coniothyrium clematis-rectae*, the other subgroup comprising *Ph. aquilegiicola* and *Ph. glaucii*, two pathogens of Ranunculaceae and Papaveraceae, respectively. All three *Phoma* species in this group were morphologically linked to the section Heterospora (Boerema et al. 1997), but are distinct from the species in clade S by the absence of conidia that represent the Stagonosporopsis synanamorph in culture, although smaller septate conidia do occur. In these species the Stagonosporopsis synanamorph is only known from *in vivo* material (Boerema 1993, Boerema et al. 1997).

The several species that were associated with the *Ph. clematidina* morphotype have recently been distinguished in a study of Woudenberg et al. (2009). In the same study, the authors showed that *C. clematidis-rectae* is closely related and, based on sequence analysis, a member of the family Didymellaceae. The major character on which this species is regarded as distinct from *Ph. clematidina* is by the production of pale brown pigmented conidia. In addition, the conidiogenesis of *Coniothyrium* is annellidic with percurrent proliferation, in contrast to the conidiogenesis in *Phoma*, which is considered to be solely phialidic with periclinal thickening (Boerema & Bollen 1975, Sutton 1980). Evidence for the presence of annellides has, however, not been observed in *C. clematidis-rectae*, while conidial pigmentation is relatively pale in comparison to other *Coniothyrium* species. Pigmented conidia have also been observed in various *Phoma* species before (Dorenbosch 1970, Boerema et al. 2004, Aveskamp et al. 2009a). These features may indicate that this species is actually a *Phoma* with early conidial pigmentation. Therefore *C. clematidis-rectae* is recombined into *Phoma* below.

Phoma glaucii Brunaud, "Ph. glauci", Ann. Soc. Sci. Nat. La Rochelle 1892: 97. 1892.

Specimens examined: The Netherlands, near Lisse, from Dicentra sp., 1979, G.H. Boerema, CBS 112.96; Wageningen, from a leaf of Chelidonium majus, 1994, G.H. Boerema, CBS 114.96 = PD 94/888.

Phoma aquilegiicola M. Petrov, Acta Inst. Bot. Acad. Sci. USSR Pl. Crypt. [Trudy Bot. Inst. Akad. Nauk SSSR] Fasc. 1: 281. 1933.

Specimens examined: The Netherlands, from a stem of Aconitum pyramidale, 1973, G.H. Boerema, CBS 107.96 = PD 73/958; from a stem of Aquilegia sp., 1979, G.H. Boerema, CBS 108.96 = PD 79/611.

Phoma clematidina (Thüm.) Boerema, Verslagen Meded. PZiektenk. Dienst Wageningen (Jaarboek 1978) 153: 17. 1979. emend. Woudenberg et al., Persoonia 22: 59. 2009. Basionym: Ascochyta clematidina Thüm., Bull. Soc. Imp. Naturalistes Moscou 55: 98. 1880.

Specimens examined: Russia, Minusinsk, from leaves of Clematis glaucae, N. Maritanoff, isotype LE 40082. The Netherlands, Spaubeek, from the stem of Clematis sp., July 1978, G.H. Boerema, epitype CBS H-16193, culture ex-epitype CBS 108.79 = PD 78/522; from Clematis sp., I. de Boer, Nov. 1949, CBS 201.49. Boskoop, from Clematis jackmani, C. Dorsman, Oct. 1962, CBS 195.64; Wageningen, from Selaginella sp. M.M.J. Dorenbosch, 1966, CBS 520.66; U.K., England, from Clematis sp., Jan. 1966, F.T. Last, CBS 102.66.

Phoma clematidis-rectae (Petr.) Aveskamp, Woudenberg & Gruyter, comb. nov. MycoBank MB515592. Basionym: Coniothyrium clematidis-rectae Petr., Fungi Polon. 576. 1921.

Phoma xanthina Sacc., Michelia 1(4): 359. 1884.

Phoma polemonii Cooke, Grevillea 13(68): 94. 1885.

Specimen examined: The Netherlands, from Polemonium caeruleum, 1983, J. de Gruyter, CBS 109181 = PD 83/757.

Phoma aquilegiicola (Boerema) Aveskamp, CBS 195.64; Boskoop, from Wageningen, from Clematis-rectae epitype CBS 108.79 = PD 78/522; from below. Phoma pigmentation. Therefore that of Woudenberg clematidina et al. 2004, Aveskamp distinguished in a study of the several species that were associated with the Clematis pathogens *Ph. clematidina* and *Coniothyrium clematis-rectae*, the other subgroup comprising *Ph. aquilegiicola* and *Ph. glaucii*, two pathogens of Ranunculaceae and Papaveraceae, respectively. All three *Phoma* species in this group were morphologically linked to the section Heterospora (Boerema et al. 1997), but are distinct from the species in clade S by the absence of conidia that represent the Stagonosporopsis synanamorph in culture, although smaller septate conidia do occur. In these species the Stagonosporopsis synanamorph is only known from *in vivo* material (Boerema 1993, Boerema et al. 1997).

The several species that were associated with the *Ph. clematidina* morphotype have recently been distinguished in a study of Woudenberg et al. (2009). In the same study, the authors showed that *C. clematidis-rectae* is closely related and, based on sequence analysis, a member of the family Didymellaceae. The major character on which this species is regarded as distinct from *Ph. clematidina* is by the production of pale brown pigmented conidia. In addition, the conidiogenesis of *Coniothyrium* is annellidic with percurrent proliferation, in contrast to the conidiogenesis in *Phoma*, which is considered to be solely phialidic with periclinal thickening (Boerema & Bollen 1975, Sutton 1980). Evidence for the presence of annellides has, however, not been observed in *C. clematidis-rectae*, while conidial pigmentation is relatively pale in comparison to other *Coniothyrium* species. Pigmented conidia have also been observed in various *Phoma* species before (Dorenbosch 1970, Boerema et al. 2004, Aveskamp et al. 2009a). These features may indicate that this species is actually a *Phoma* with early conidial pigmentation. Therefore *C. clematidis-rectae* is recombined into *Phoma* below.

Phoma glaucii Brunaud, “Ph. glauci”, Ann. Soc. Sci. Nat. La Rochelle 1892: 97. 1892.

Specimens examined: The Netherlands, near Lisse, from Dicentra sp., 1979, G.H. Boerema, CBS 112.96; Wageningen, from a leaf of Chelidonium majus, 1994, G.H. Boerema, CBS 114.96 = PD 94/888.

Groups D & E – Leptosphaerulina and Macroventuria:

The most remarkable findings in the *Didymellaceae* are the *Leptosphaerulina* and *Macroventuria* (clade E) teleomorph genera. The species belonging to these teleomorphs are found amidst the *Leptosphaerulina* and *Macroventuria* (clade E) teleomorph genera. The species in both genera are closely related to each other, as was already pointed out by Kodsueb et al. (2009), in congruence with the studies of Woudenberg et al. (2009), this species was found to be closely related to *Ph. clematidina* and other *Didymellaceae* species. In contrast, it is only distantly related to the type species of *Coniothyrium*, *C. palmarum*. Therefore, a recombination into *Phoma* is proposed here. The present species is clearly distinct from *Ph. clematidina* by the production of pigmented conidia, although the level of pigmentation is low, which distinguishes *Ph. clematidis-rectae* from the species remaining in *Coniothyrium* that produce darker, olivaceous conidia.
produces large, longitudinally and transversally septated ascospores, resembling those of Pleospora and Cucurbitaria, although the ascospores of these genera are pigmented. The major difference between Didymella and Macroventuria is the presence of setae on the pseudeothecia of the latter genus, whereas Didymella ascomata are commonly glabrous. According to the original description (Van der Aa 1971), Macroventuria strains resemble Venturia by their setose pycnidia, but differ in their restricted number of the asci.

Leptosphaerulina americana (Ellis & Everh.) J.H. Graham & Lutr., Phytopathology 51: 686. 1961.

Basionym: *Pleospora americana* Ellis & Everh., in North American Pyrenomycetes: 336. 1892, nom. nov. pro *Pleospora hyalospora* Ellis & Everh., Proc. Acad. Nat. Sci. Philadelphia: 238. 1890, non *Pleospora hyalospora* Speg.

Specimen examined: **U.S.A.**, Georgia, from *Trifolium pratense*, Apr. 1954, E.S. Luttrell, CBS 213.55.

Leptosphaerulina arachidicola W.Y. Yen, M.J. Chen & K.T. Huang, J. Agric. Forest. 10: 167. 1956.

Specimen examined: **Taiwan**, from a leaf of *Arachis hypogaea*, 1956, K.T. Huang, CBS 275.59 = ATCC 13446.

Note: CBS 275.59 is degenerated and forms only very tiny sclerotia in vitro.

Leptosphaerulina australis McAlpine, Fungus Diseases of stone-fruit trees in Australia: 103. 1902.

Specimens examined: **Indonesia**, Lampung, from *Eugenia aromatica*, Dec. 1982, H. Vermeulen, CBS 317.83.

Leptosphaerulina trifolii (Rostr.) Petr., Persoonia 6(3): 361. 1971.

Basionym: *Sphaerulina trifolii* Rostr., Bot. Tidsskr. 22: 265. 1899.

Specimen examined: **The Netherlands**, from *Trifolium*, 1958, CBS 235.58.

Macroventuria anamochaeta Aa, Persoonia 6(3): 362. 1971.

Specimens examined: **South Africa**, Karroo Desert, from decayed canvas, Aug. 1971, M.C. Papendorf, holotype CBS H-14192, ex-holotype culture CBS 525.71; Cape Province, from a trunk of *Medicago sativa*, June 1972, W.F.O. Marasas, CBS 502.72.

Macroventuria wentii Aa, Persoonia 6(3): 361. 1971.

Specimen examined: **U.S.A.**, Nevada, Death Valley, from plant litter, Aug. 1971, F.W. Went, holotype CBS H-14195, ex-holotype culture CBS 526.71.

Group F:

As a sister group to *Leptosphaerulina*, several host-specific *Phoma* species are found that induce leaf spots on a variety of plant species, including *Ph. infossa*, *Ph. anigozanthi*, *Ph. arachidis-hypogaeae* and *Ph. gossypicola*. The latter species causes leaf spots and stem canker on cotton plants (*Gossypium* spp.). However, other plant species may also become symptomatic when deliberately infected (Holliday & Punithalingam 1970). *Phoma infossa* has originally been reported from stems of ash trees (*Fraxinus sp.*) in New York State (Ellis & Everhart 1888), but has recently been associated with a severe foliar disease of green ash (*F. pennsylvanica*) in Argentina (Aveskamp et al. 2009a). All species produce asseptate conidia in culture, although *Ph. gossypicola* is known to also produce 2- to multi-celled conidia in vivo, hence the Ascochyta gossypii synonym (De Gruyter 2002).

In contrast to these plant pathogens, a fungicolous species also occurs in the present clade. Species from the genera *Phoma* and *Amelopolyces* have been “frequently confused with each other” (Sullivan & White 2000), which explains why *Ph. fungicola* is found here. This species was previously known as *Amp. quercinus* and is recombined in the subsequent taxonomical section. The finding of this species in the *Didymellaceae* is in congruence with sequence results obtained by Sullivan & White (2000) and Szentiványi et al. (2005). Also *Amp. humuli*, another fast-growing species, proved to be phylogenetically similar to species that currently represent the *Didymellaceae* (Kiss & Nakasone 1998). Additionally, it has been suggested that the fast growing species *Amp. artemisciae* and *Amp. uncinulae* (Rudakov 1979, Kiss 1997) actually do, in fact, not represent *Amelopolyces*, but belong to the genus *Phoma*; these species were incorrectly identified based on their host-association (Kiss et al. 2004). The species in *Amelopolyces* are all recognised as parasites of fungi that cause powdery mildew (Kiss 1997). However, it is suggested that also the ubiquitous species *Ph. glomerata* has fungicolous capacities, and may be suited as mycoparasitic control agent of powdery mildew (Sullivan & White 2000).

Only one of the *Phoma* species embedded in this clade has been associated with a teleomorph. In the description of *Ph. anigozanthi*, the sexual state is recorded as *Sphaerella millepunctata* (apud Gruyter & Noordekoop 1992). *Sphaerella* is practically synonymised with *Mycosphaerella* (e.g. Aptroot 2006), but as described above, several of the *Mycosphaerella* species have subsequently been recombined into *Didymella*. In the present study no evidence of teleomorph formation in vitro has been observed, which is in congruence with the results of Gruyter & Noordekoop (1992). As also type material of *Ph. anigozanthi* and *S. multipunctata* could not be obtained, this taxonomic link is still to be confirmed.

Phoma anigozanthi Tassi, Boll. Reale Orto Bot. Siena 3 (2 – 1899): 148. 1900.

Specimen examined: **The Netherlands**, from a leaf of *Anigozanthus maugleisii*, 1979, H. Cevat CBS H-5199, culture CBS 381.91 = PD 79/1110.

Phoma arachidis-hypogaeae (V.G. Rao) Aa & Boerema, Persoonia 15(3): 388. 1993.

Basionym: *Phyllosticta arachidis-hypogaeae* V.G. Rao, Sydowia 16 (1962): 275. 1963.

Specimen examined: **India**, Madras, from a leaf of *Arachis hypogaea*, 1977, CBS 125.93 = PD 77/1029.

Phoma fungicola Aveskamp, Gruyter & Verkley, nom. nov. pro *Cicinobolus quercinus* Syd. Ann. Mycol. 13: 42. 1915. MycoBank MB515593.

Basionym: *Cicinobolus quercinus* Syd., Ann. Mycol. 13: 42. 1915, ≡ *Amelopolyces quercinus* (Syd.) Rudakov, Mikr. Fitolpatol. 13(2): 109. 1979. not *Phoma quercina* Sacc. & Roum. Syll. fung. 3: 96. 1881, ≡ *Phomopsis quercina* (Sacc.) Höhn., not *Phoma quercina* (Peck) Sacc. Syll. fung. 3: 96. 1884.

Etymology: Epithet refers to the fungicolous lifestyle of this species.

Pycnidia always solitary, produced on the agar surface, globose, peroblate to suboblate, glabrous, measuring (50–)65–130(–150) ×
(65–)95–200(–220) μm with a single, conspicuous, non-papillate ostiole. *Pycnidial* wall pale brown, pseudoparenchymatous, composed of isodiametric cells, 3–5 layers, (6–)8.5–14.5(–16) μm thick, outer 1–2 layers slightly pigmented. *Conidiogenous cells* phialidic, hyaline, simple, smooth, doliform to ampulliform, variable in size, ca. (3–)3.5–5 × 3–4(–5) μm. *Conidia* variable in shape and size, subglobose to oval or oblate, thin-walled, smooth, aseptate, measuring (5–)5.5–7.5(–8.5) × 3–4.5(–5) μm with 0–2(–3) minute guttules, initially hyaline, but brown at maturity. Conidial exudates not recorded.

Culture characteristics: Colonies on OA 55–68 mm diam after 7 d, margin regular. Aerial mycelium white, floccose to woolly. Immersed mycelium greenish olivaceous to olivaceous near the colony centre. Abundant black pycnidia are scattered over the medium; reverse concolourous. Colonies on MEA 65–75 mm diam after 7 d, margin regular. Aerial mycelium covering the whole colony, compact, white to pale grey, with olivaceous tinges near the colony centre; reverse olivaceous-black.

Specimens examined: **Ukraine**, Crimea, in the vicinity of Feodosiya, on *Micronysphaera alpitoideae* from *Quercus* sp., 1979, O.L. Rudakov, CBS H-20276, culture CBS 633.92 = ATCC 36786, VKM MF-325.

Notes: The epithet used for the description of this species in the genera *Cicinobolus* and *Ameloplycyes* could not be transferred to the genus *Phoma* as *Ph. quercina* is already occupied. This name, however, refers to a *Phyllosticta* species (Van der Aa & Vaney 2002). Therefore, a new name is proposed here for the present species.

Kiss & Nakasone (1998) already found that several fast-growing *Ameloplycyes* species were phylogenetically distinct from the type species, which is characterised by a rather slow growth rate, and suggested that *A. quercinus* belonged to *Phoma*. This finding was supported by results obtained in later studies (Sullivan & White 2000, Szentiványi et al. 2005).

Phoma gossypiicola Gruyter, Persoonia 18(1): 96. 2002.

Specimen examined: **U.S.A.**, Texas, from a leaf of *Gossypium* sp., 1963, L.S. Bird CBS H-9006, culture CBS 377.67.

Phoma infossa Ellis & Everh., J. Mycol. 4(10): 102. 1888, emend. Aveskamp et al., Mycologia 101. 373. 2009.

Specimens examined: **Argentina**, Buenos Aires Province, La Plata, from leaves of *Fraxinus pennsylvanica*, 2008, M. Murace, neotype CBS H-20145, culture ex-neotype CBS 123395; Buenos Aires Province, La Plata, from leaves of *Fraxinus pennsylvanica*, 2008, M. Murace, CBS 123394.

Group G:

This group (BPP = 1.00, RBS = 99 %) consists of *Ph. subherbarum* and *Ph. pedeiae* sp. nov. Although the first species name suggests a close resemblance with the type species *Ph. herbarum*, it is phylogenetically distinct. Both *Ph. herbarum* and *Ph. subherbarum* are accommodated in section *Phoma*, but are distinct in colony characters: in contrast to *Ph. herbarum*, *Ph. subherbarum* does not react to the application of a droplet of NAOH (De Gruyter et al. 1993). The growth rate of *Ph. subherbarum* is also considerably faster, as a colony can cover the plate surface within 1 wk.

Boerema et al. (2004) hypothesised that *Ph. subherbarum* is from American origin. In both species in this clade appear to have a plurivorous nature. The novel species *Ph. pedeiae* is described below.

Phoma pedeiae Aveskamp, Gruyter & Verkley, sp. nov. MycoBank MB515594. Fig. 4.

Conidia ellipsoides vel cylindrica, glabra, hyalina, continua, 3–4.5 × 1.5–2.5 μm, 0–2(–3) guttulis praedita. Matrix conidiorum cremeo-alba.

Etyymology: Named after the institute that has facilitated most of the research on the taxonomy of the genus *Phoma* and affiliated genera in the past decade, the PD (Plantenziektenkundige Dienst – Dutch Plant Protection Service). Both isolates of this species were collected and preserved by employees of this institute.

Pycnidia solitary or confluent, produced on the agar surface, globose to ellipsoid, glabrous, (90–)100–230(–255) × (75–)90–155(–165) μm with 1–2 conspicuous, non-papillate ostioles. *Pycnidial* wall pseudoparenchymatous, composed of oblong to isodiametric cells, 3–5 layers, 11–17 μm thick. *Conidiogenous cells* phialidic, hyaline, simple, smooth, flask-shaped, relatively small, ca. 3.5–4(–4.5) × 3–4 μm. *Conidia* ellipsoid to cylindrical, thin-walled, smooth, hyaline, aseptate 3–4.5 × 1.5–2.5 μm, with 0–2(–3) guttules. *Conidial matrix* creme-white.

Culture characteristics: Colonies on OA 65–75 mm diam after 7 d, margin regular. Immersed mycelium olivaceous. Aerial mycelium floccose, white or smoke-grey to greenish olivaceous. Abundant black pycnidia are scattered over the medium; reverse concolourous with some reddish tinges. Colonies on MEA 55–65 mm diam after 7 d, margin regular. Aerial mycelium covering the whole colony, floccose, smoke-grey to greenish olivaceous, white near the centre of the colony; reverse olivaceous-black or bay. Agar colour changes to bay due to diffusible pigments produced by the fungus. Colonies on CHA similar as on MEA, but somewhat faster growing, 70–80 mm diam after 7 d. Application of NaOH did not have any effect.

Specimens examined: **The Netherlands**, Aalsmeer region, on *Schefflera elegansissima*, 1992, J. de Gruyter, holotype designated here CBS H-2239, culture ex-holotype CBS 124517 = PD 92/612A; on *Orchidaceae* sp., 1984, J. de Gruyter, CBS 124516 = PD 84/453.

Notes: *Phoma pedeiae* has been found in association with several tropical ornamental pot plants in Dutch greenhouses. Only mild disease symptoms were recorded from this species, and therefore the fungus was not further studied. Phylogenetically, this species is found in close relation to *Ph. subherbarum* (BPP = 1.00; RBS = 99 %), which is probably a weak pathogen and saprobe of different plant substrates occurring on the American continent (De Gruyter et al. 1993).

Phoma subherbarum Gruyter, Noordel. & Boerema, Persoonia 15(3): 387. 1993.

Specimens examined: **Canada**, from *Zea mays*, holotype L 992.177.439, culture ex-holotype CBS 250.092 = DAOM 171914 = PD 92/371; from *Zea mays*, May 1978, G.A. Neish, CBS 305.79A = DAOM 170848; **Peru**, from *Solanum* sp., CBS 249.92 = PD 78/1088.

Group H:

Phoma bellidis and *Ph. senecionis* are found in association with two plant genera from the *Compositae* family: *Bellis* spp. and *Senecio* spp. respectively (De Gruyter et al. 1993). The distantly related *Ph. digitalis* is a pathogen of *Digitalis* spp. (*Scrophulariaceae*), but shares the feature with *Ph. bellidis* that it also is recorded as a seed-pathogen (Boerema & Dorenbosch 1979). In contrast, *Ph. senecionis* is only known as a necrophyte.
Phoma bellidis Neerg., Friesia 4: 74. 1950.

Specimens examined: The Netherlands, from seed of Bellis perennis, 1985, G.H. Boerema, CBS H-5200, culture CBS 714.85 = PD 74/265; from Bellis sp., 1994, J. de Gruyter, PD 94/886.

Phoma digitalis Boerema apud Boerema & Dorenbosch, Verslagen Meded. Plziektenk. Dienst Wageningen 153: 19. 1979.

Specimen examined: The Netherlands, Ommen, from Digitalis sp., 1990, J. de Gruyter, CBS 109179 = PD 90/835-1.

Phoma senecionis P. Syd., Hedwigia, Beibl. 38: 136. 1899.

Specimen examined: New Zealand, Raetihi, from a stem of Senecio jacobaea, Feb. 1977, S. Ward, CBS 160.78 = LEV 11451.

Group I:

Group I comprises three Phoma taxa (Ph. acetosellae, Ph. macrostoma var. macrostoma and var. incolorata) that were placed in the section Phyllostictoides on the basis of the presence of septate conidia (Gruyter et al. 2002), but also accommodates Ph. viburnicola. The placement of this species in section Phoma can be debated, as a single septate conidium has been observed in strain CBS 500.91, one of the strains that was designated as reference strain (De Gruyter & Noordeloos 1992). Also D. exigua (CBS 183.55 - Neotype) is found in this clade, the type species of the genus Didymella (De Gruyter et al. 2009), which does however not produce an anamorph state. The four species do not exhibit a shared pathological feature or geographic origin. The variety incolorata differs from var. macrostoma in lacking a red to violet pigment in the hyphae and any reaction to NaOH.

Phoma acetosellae (A.L. Sm. & Ramsb.) Aa & Boerema, in De Gruyter, Boerema & Van der Aa, Persoonia 18(1): 16. 2002.

Basionym: Phyllosticta acetosellae A.L. Sm. & Ramsb., Trans. Brit. Mycol. Soc. 4: 173. 1912.

Specimens examined: France, Corrèze, Monteil sur Bois, from a leaf of Rumex acetosella, 1976, H.A. van der Aa, CBS H-16138, culture 631.76. The Netherlands, Baarn, from a stem of Rumex hydrolapathum, March 1996, H.A. van der Aa, CBS 179.97.

Phoma macrostoma var. incolorata (A.S. Horne) Boerema & Dorenb., Persoonia 6(1): 55. 1970.

Basionym: Polyopeus purpureus var. incolorata A.S. Horne, J. Bot. 58: 240. 1920.

Specimens examined: Switzerland, Vierwaldstättersee, near Brunnen, from a leaf of Acer pseudoplatanus, Oct. 1968, J. Gemmen, CBS H-20240, culture CBS 223.69. The Netherlands, from Malus sylvestris, 1983, J. de Gruyter, CBS 109173 = PD 83/908.

Phoma macrostoma var. macrostoma Mont., Annls Sci. Nat., Bot. Ill 11: 52. 1849.

Specimens examined: Germany, near München, from the bark of Larix decidua, 1995, G.J. Verkley, CBS 482.95. The Netherlands, Wageningen, from wood of Malus sylvestris, Sep. 1969, G.H. Boerema, CBS H-16431, culture CBS 529.66 = PD 66/521.
Phoma and related Pleosporalean genera

Phoma viburnicola Oudem., Contr. Flora Mycol. d. Pays-Bas 17: 247. 1901.

Specimens examined: The Netherlands, Wageningen, Aboretum, from *Viburnum cassinoides*, 1969, G.H. Boerema, CBS H-16605, culture CBS 523.73 = PD 69/800; from *Chamaecyparis lawsoniana*, 1981, G.H. Boerema, CBS 371.91 = PD 81/413; Baarn, from a leaf of *Ilex aquifolium*, 1993, J. de Gruyter, CBS 500.91 = PD 83/222.

Group J:
This small group (BPP = 1.00, RBS = 96 %) comprises only two species. Because of the production of dictyochlamydospores, *Phoma boeremae* was suggested to belong to the section *Peyronellaea* (Group K, Aveskamp et al. 2009a), to which the present group is closely related. No such structures were, however, observed in its sister species, *Ph. dimorpha* sp. nov. This species is known from a single strain, which sporulates poorly and may be degenerated.

Phoma boeremae Gruyter, Persoonia 18 (1): 91. 2002.

Specimen examined: Australia, Victoria, Burnley Gardens, from seed of *Medicago littoralis* cv. Harbinger, Feb. 1982, M. Mebalds, neotype culture CBS 109942 = PD 84/402.

Phoma dimorpha Aveskamp, Gruyter & Verkley, sp. nov. MycoBank MB515595. Fig. 5.

Conidia dimorpha, in vitro cylindrica, glabra, hyalina, continua, 8–9.5(–10.5) × (2–)2.5–3(–3.5) μm, (5–)6–8(–10) guttulis minutis apolaribus praedita, in vivo eguttulata, (8–)9–12(–12.5) × (4.5–)5–6.5(–6.5) μm.

Etymology: The epithet refers to the two different conidial types that are observed.

Phoma produced only scarcely in vitro, in clusters of ca. 4–10 elements, globose, glabrous, non-papillate, produced on the agar surface, relatively small, measuring (65–)85–170(–190) μm diam. Ostioles single, non-papillate. **Pycnidial wall** pseudoparenchymatous, composed of isodiametric cells, 4–7 layers, 14–20 μm thick. Conidiogenous cells phialidic, hyaline, simple, smooth, flask-shaped, ca. 5.5–7 × 4.5–6.5 μm. Conidia cylindrical, thin-walled, smooth, hyaline, aseptate 8–9.5(–10.5) × (2–3)–5–3(–3.5) μm, with (5–)6–8(–10) minute apolar guttules. In vivo eguttulate and somewhat broader, measuring (8–)9–12(–12.5) × (4.5–)5–5.5(–6.5) μm. Conidial exudates not observed.

Culture characteristics: Colonies on OA 45–50 mm diam after 7 d, margin regular. Immersed mycelium olivaceous-black, in some sectors covered by a low mat of floccose white to grey aerial mycelium, towards colony margin the aerial mycelium is gradually becoming more felted and white; reverse olivaceous buff to dark mouse-grey. Colonies on MEA 50–55 mm diam after 7 d, margin regular. Immersed mycelium hyaline, amber or iron-grey. Only sparsely small white tufts of whitish aerial mycelium are produced in older cultures; reverse concolourous. Colonies on CHA 55–60 mm diam after 7 d, margin regular. Immersed mycelium hyaline, yellow to isabelline or dark mouse-grey. Aerial mycelium more proliferent near colony margin initially white, later developing to iron-grey with olivaceous-grey tinges; reverse black, but hyaline near colony centre. Application of NaOH did not have any effect. In older cultures white dendritic crystals are formed both in the aerial mycelium and in immersed in the agar.

Fig. 5. Phoma dimorpha (CBS 346.82). A–C. Fourteen-day-old colonies on OA (A), MEA (B) and CHA (C). D. Pycnidia on stem of *Urtica dioica*. E. Pycnidia. F. Pycnidial wall. G–H. Conidia in vitro (G) and in vivo (H). Scale bars: D–E = 100 μm; F = 20 μm; G–H = 10 μm.
Specimen examined: Spain, Canary Isles, Gran Canaria, from phytophthora of Opuntia sp., June 1982, H.A. Van der Aa, holotype designated here CBS H-20234, culture ex-holotype CBS 346.82.

Notes: Although sufficient pycnidial primordia are formed on OA, maturation of pycnidia is only incidentally observed in vitro. Therefore the characters of the pycnidia and the pycnidial wall described here are based on only three samples. Formation of mature pycnidia can be induced by addition of a sterilised stem piece of stinging nettle (Urtica dioica). The conidia that were described from in vivo material were obtained using this technique.

Several other Phoma species are known from Opuntiae, including Ph. opuntiae (Phoma sensu lato) and Ph. longicolla sp. nov. (see below). The conidia of Ph. opuntiae are, however, considerably smaller, measuring 2.5–3.5 × 1–1.5 μm (De Gruyter & Noordeloos 1992), whereas the main difference with Ph. longicolla are the pycnidia, which are unistiolate and significantly larger in the latter species.

Group K – Peyronellaea:
This group (BPP = 1.00, RBS = 58 %) comprises many of the chlamydospore forming species, including the majority of the species that were accommodated in Phoma section Peyronellaea (Boerema et al. 1965a, 1968, 1971, 1973, 1977). Also Ph. glomerata, type species of this section is accommodated here (Boerema 1997). However, as section, Peyronellaea has a polyphyletic nature (Aveskamp et al. 2009a). Phoma chrysanthemica, Ph. violicola and the recently established species Ph. schachtii (Aveskamp et al. 2009a) have been found to be basal to the Didymellaceae (Fig. 1), whilst several species producing botryoid chlamydospores, representing the genus Epicoccum as emended below, are clustered in group M. Also Ph. infossa and Ph. omnivirens, which have proven to produce dicytchalmydospores in culture (Aveskamp et al. 2009a), are not situated in this part of the phylogenetic tree. Peyronellaea caiidophila and Ph. microchlamydospora reside in the basal lineages of this clade.

Also several Phoma that were not included in Peyronellaea in the Boeremaean taxonomical system, but that do produce either uni- or multicellular chlamydospores, are included in this clade. In Ph. gardeniae, Ph. narcissi, and Ph. zeae-maydis multicellular chlamydospores have been observed, whereas Ph. pinodella, Ph. arachidicola, and Ph. heteroderae are species that form unicellular chlamydospores. Several species in this clade, however, have never been recorded to produce any unicellular or multicellular chlamydospores. These species are Ph. alectorolophi, Ph. obtusa and Ph. protuberans, which will be treated in a subsequent section of this paragraph, and Ph. anserina, Ph. aurea, Ph. nigricana and Ph. eucalyptica. However, two of these species, Ph. anserina and Ph. eucalyptica are well-known for the formation of swollen cells and anastomosis in culture (De Gruyter & Noordeloos 1992), which may be regarded as a precursor to chlamydospore formation. The ancestral location of Ph. anserina in this clade may also be an indication that chlamydospore production has not completely been developed yet in this group. The high posterior probability for this group justifies the recognition of a separate genus in the Didymellaceae. Therefore the genus name Peyronellaea Goid. is re-established, and the associated species are recombined into this genus below.

The plurivorous species Ph. caloporferens and Ph. heteroderae share identical LSU, ITS and TUB genes. Also morphologically the representative strains of these species are highly similar. A synonymisation of these species is therefore proposed in this paper.

Another notable subgroup within this clade is a cluster formed by Didymella pinodes, D. lethalis, D. arachidicola and Ph. pinodella. Recently, Irinyi et al. (2009) synonymised Ph. sojicola with Ph. pinodella, based on morphological observations and sequence data of ITS, β-tubulin and translation elongation factor 1-α. This indicates that the notorious pathogen of green pea (Pisum sativum) is also capable of infecting soybean (Glycine max). These observations are supported by the results obtained in the present study. As reported in previous studies (Faris-Mokaiesh et al. 1996, Onfroy et al. 1999, Fatehi et al. 2003, Peever et al. 2007), Ph. pinodella appears to be very closely related to D. pinodes (anam. Ascochya pinodes) and because these species share the same host range they are often confused. Both species can however easily be differentiated on basis of the amount of septate conidia formed in vitro, abundantly in D. pinodes, and in very small numbers in Ph. pinodella.

Because Ph. pinodella is morphologically so similar to Ph. medicaginis, it was once regarded as a variety of this species by Boerema et al. (1965b). The variety was elevated to species rank after careful observation (White & Morgan-Jones 1987), but the varietal name is however currently still in common use (e.g. Onfroy et al. 1999, Fatehi et al. 2003, Taylor & Ford 2007). The results obtained in this study however, illustrate a substantial phylogenetical distance to Ph. medicaginis, and warrant recognition at species level, in the in the re-instated genus Peyronellaea.

The close association of Ph. arachidicola with Ph. pinodella and D. pinodes is reflected by the morphology of these species, which all produce, next to septate and aseptate conidia, also globose to ellipsoid unicellular chlamydospores, which may be formed in chains. These chlamydospores measure 5–20 μm diam, which is somewhat larger than the species in group N. The close relationship of these three species has been hypothesised before, and was based on chemical analysis of the crystals produced by these taxa (Noordeloos et al. 1993).

Didymella arachidicola is a specific pathogen of groundnut (Arachis hypogaea), another host plant of the family Fabaceae with which the other species in this subclade are also associated. In the Ph. pinodella / D. pinodes subcluster (BPP = 1.00, RBS = 94 %), four teleomorph species are found with a coelomycete anamorph state. Next to D. pinodes, these are D. alectorolophi, D. arachidicola, and D. lethalis. A fifth telemorph is the sexual state of Ph. pinodella (as Ph. medicaginis var. pinodella) that is reported and described by Bowen et al. (1997), but that has not been named thus far. From a phylogenetic point of view, this record is very plausible as all species in the subclade in which Ph. pinodella is embedded, do form a Didymella-like telemorph (Fig. 2). However, as we did not include mating type tests in our studies, and as the species is probably heterothallic (Bowen et al. 1997), pseudothecia were not observed in the present study. A formal name for the telemorph of Ph. pinodella could therefore not be proposed here either.

A fifth species in group K that has a known telemorph is Ph. zeae-maydis. This species is however only distantly related to the four species mentioned above. Nevertheless, it can be concluded that the sole telemorph genus that is associated with group K is Didymella-like. This would further support the suggestion (Peever et al. 2007) that the telemorph name for A. pinodes that is often referred to by plant pathologists, Mycosphaerella pinodes, should be omitted.

Remarkably, three species are found in this clade that are identical based on sequence analyses, but that are morphologically rather distinct. Also sequence comparisons of parts of the actin and
calmodulin genes did not reveal any differences between those four strains (Aveskamp & Woudenberg, unpubl. data). Phoma alectorolophi and Ph. protuberans are associated with Phoma section Sclerophomella (Boerema et al. 1997, De Gruyter & Verkley 2002), because of the thick-walled pycnidia formed in culture and in vivo. However, because of the production of relatively large secondary conidia, a link with sections Heterospora or Phyllostictoides can also be advocated. Colony characters, microscopic features and ecology indicate that the two species should actually be rather distinct. A third taxon found in this group is Ph. obtusa, a saprobic species that has a thin pycnidial wall and lacks septate conidia. Nevertheless, these three species are recovered in a clade in which solely chlamydospore-forming species reside, a character that never has been recorded in any of these taxa. The explanation of the contrast between the level of genetic and morphological similarity will be one of the main challenges in Phoma taxonomy.

Peyronellaea Goid. ex Togliani, Ann. Sperim. Agrar. II 6: 93. 1952, emend. Aveskamp, Gruyter & Verkley

Conidiomata pycnidial, globose to subglobose, thin-walled, smooth, hyaline, but in older 8-spored, biseriate. Asci 200 μm diam, but in one species also flattened pseudothecia occur. or olivaceous pigmented, measuring 5–22 μm diam. Multicellular chlamydospores are recovered in a clade in which solely chlamydospore-forming species reside, a character that never has been recorded in any of these taxa. The explanation of the contrast between the level of genetic and morphological similarity will be one of the main challenges in Phoma taxonomy.

Peyronellaea anserina (Marchal) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515598.

Basionym: Phoma anserina Marchal, Champignon Copr. 11: 1891.

Specimens examined: The Netherlands, from Psalum sativum, 1979, CBS 363.91 = PD 79/712; Ter Apel, from potato flour, 1983, CBS 360.84.

Peyronellaea arachidicola (Khokhr.) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515599.

Basionym: Mycosphaerella arachidicola Khokhr., Bolezni i vrediteli maslichnykh kul’tur(12): 29. 1934.

≡ Didymella arachidicola (Khokhr.) Tomlin, Opredelitel’ gribov roda Mycosphaerella Johans: 285. 1979.

Anamorph: Phoma arachidicola Marasas, Pauer & Boerema, Phytopyhactica 6(3): 200. 1974.

Specimens examined: South Africa, Cape Province, Jan Kempdorp, Vaalharts Research Station, from a leaf of Arachis hypogaea, Mar. 1972, G.D. Pauer, isotype of Ph. arachidicola CBS H-7601, ex-isotype culture CBS 333.75 = ATCC 28333 = IMI 386092 = PREM 44889; Zimbabwe, from Arachis hypogaea, 1980, CBS 315.90 = PD 80/1190.

Peyronellaea aurea (Goid.) Aveskamp, Gruyter & Verkley, nom. nov. pro Phoma nigricans P.R. Johnst. & Boerema, MycoBank MB515600.

Basionym: Phoma aurea Goid., Mycologia 101: 370. 2009.

≡ Phoma nigricans P.R. Johnst. & Boerema, New Zealand J. Bot. 19(4): 394. 1982.

Etymology: Epithet refers to the Southern Hemisphere, where this fungus is mainly found.

Specimens examined: New Zealand, from Actinidia chinensis, 1977, P.R. Johnston, PD 77/919; Auckland, Mt. Albert, from a leaf of Actinidia chinensis, Apr. 1979, P.R. Johnston, isotype CBS H-7619, ex-isotype culture CBS 444.81 = PDCC 6546.

Note: A new name was sought for this species, as the epithet “nigricans” already was occupied in Peyronellaea, referring to a species which is now synonymised with *Pey. pomorum* var. circinata (see below).

Peyronellaea calorpreferens (Boerema, Gruyter & Noordel.) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515602.

Basionym: Phoma calorpreferens (Boerema, Gruyter & Noordel.) Aveskamp, Gruyter & Verkley, Phytophylactica 6(3): 200. 1974.

≡ Phoma calmodulina Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.

≡ Phoma heteroderae Sen Y. Chen, D.W. Dicks. & Kimbr., Mycologia 88: 885.1996.
of 1(–4) slightly papillate ostioles, measuring (70–)100–200(–250) μm diam. **Pycnidial** wall pseudoparenchymatous, composed of isodiametric cells, 2–5 layers thick, with many hyphal outgrowths, some setae-like. **Conidiogenous** cells phialidic, hyaline, simple, smooth, flux-shaped, ca. 3–5.5 × 3–6.5 μm. **Conidia** broadly ellipsoidal to ovoid to cylindrical, thin-walled, smooth, hyaline, (3.5–)4–8.5–(12) × 2–3.5–(4.5) μm, aseptate, with (1–)2–5–(8) polar guttules. Conidial matrix pale pink.

Notes: *Peyronellaea calorpreferens* is a taxon that was recently elevated from variety level to species rank, as *Phoma calorpreferens* (Aveskamp et al. 2009a). Due to its morphological and genetical similarity with *Ph. heteroderae*, it is concluded that both taxa are identical. The type of *Peyronellaea calorpreferens* has been recovered from food materials, but Boerema (1993) hypothesises about the pluvivoros nature of this taxon, and mainly records it as a worldwide occurring soil- and seedborne opportunist, whereas Chen et al. (1996) record this species (as *Ph. heteroderae*) from eggs of a cyst nematode, *Heterodera glycines*.

Peyronellaea coffeae-arabicae (Aveskamp, Verkley & Gruyter) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515603.

Basionym: *Phoma coffeae-arabicae* Aveskamp, Verkley & Gruyter, Mycologia 101(3): 371. 2009.

Specimens examined: Ethiopia, from Coffea arabica, 1984, M.M.J. Dorenbosch, holotype CBS H-2143 = ATCC 123380 = PD 84/1013; from Coffea arabica, 1984, M.M.J. Dorenbosch, CBS 123398 = PD 84/1014.

Peyronellaea curtisii (Berk.) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515604.

Basionym: *Hendersonia curtisii* Berk., in Cooke, Nuovo Giorn. Bot. Ital. 10: 19, 1878.

Notes: Stagonosporopsis curtisii (Berk.) Boerema, in Boerema & Dorenbosch, Verslagen Meded. Pijlziekenk. Dienst Wageningen 157: 20. 1981.

Specimens examined: The Netherlands, from Neine sp., May 1992, J. de Gruyter, culture 251.92 = PD 60/1145; from *Sprekelia* sp., PD 92/1460. Unknown origin, from *Isome* sp., 1971, PD 71/65. Unknown origin, from *Hippeastrum* sp., 1976, PD 76/61.

Peyronellaea eucalyptica (Sacc.) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515605.

Basionym: *Phoma eucalyptica* Sacc., Syll. Fung. 3: 78. 1884.

Specimens examined: Australia, Western Australia, from a leaf of *Eucalyptus sp.*, 1979, CBS 377.91 = PD 79/210. Croatia, Adriatic Sea, from seawater, 1973, CBS 508.91 = PD 73/1413.

Indonesia, Sumatra, Sulavesi, from Eugenia aromaticra, 1982, CBS 378.91 = PD 82/107.

Peyronellaea gardeniae (S. Chandra & Tandon) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515606.

Basionym: *Pyrenochaeta gardeniae* S. Chandra & Tandon, Mycopathol. Mycol. Appl. 29: 274. 1966.

≡ *Phoma gardeniae* (S. Chandra & Tandon) Boerema, in Boerema & Dorenbosch, Verslagen Meded. Pijlziekenk. Dienst Wageningen 156: 27. 1980.

Specimens examined: India, Allahabad, from the leaf of Gardenia jasminoides, 1966, S. Chandra and R.N. Tandon, *isoforme* CBS H-7605, ex-*isoforme* culture CBS 626.68 = IMI 106771. *Netherlands Antilles,* Curacao, from air sample, 1978, A. Kikstra, CBS 302.79 = PD 79/1166.

Peyronellaea glomerata (Corda) Goid. ex Toglioni, Ann. Sperm. Agrar. III 6: 93. 1952.

Basionym: *Coniothyrium glomeratum* Corda, Icon. Fung. (Prague) 4: 39. 1840.

≡ *Phoma glomerata* (Corda) Wollenw. & Hochapfel, Z. Parasitenk. 3(5): 592. 1936.

Specimens examined: Germany, Berlin-Zehlendorf, Domäne Döppel, from a tuber of Solanum tuberosum, 1936, H.W. Wollenweber, CBS 293.96 = MUCL 9682; Monheim, from Hordeum sativum, 1984, M. Hossfeld, CBS 834.84; from indoor environment, 2003, C. Rudolph, CBS 112448. Romania, Bukarest, from a church wall-fresco, Nov. 1971, I. Ionita, CBS 133.96 = PD 79/127. Russia, Novosibirsk, Hortus Botanicus, from a leaf of Populus nigra, 1963, T.T. Kuznetsova, CBS 289.76 = ATCC 26238 = IMI 176748 = VKM F-1842; Novosibirsk, Hortus Botanicus, from a leaf of Rubus idaeus, 1963, T.T. Kuznetsova, CBS 287.76 = ATCC 26240 = IMI 176747 = VKM F-1845; Novosibirsk, Hortus Botanicus, from a leaf of Populus alba, 1963, T.T. Kuznetsova, CBS 286.76 = ATCC 26243 = VKM F-1845; Novosibirsk, Hortus Botanicus, from a leaf of Allium nutans, 1963, T.T. Kuznetsova, CBS 289.76 = ATCC 26239 = IMI 176745 = VKM F-1846; Novosibirsk, Hortus Botanicus, from a leaf of Ribes nigrum, 1963, T.T. Kuznetsova, CBS 290.76 = ATCC 26244 = IMI 176747 = VKM F-1848; from Heracleum sp., 1973, PD 73/1415. *The Netherlands,* from a root of Lycopersicon esculentum, 1949, D. Verleur, CBS 304.49 = MUCL 9884; from Chrysanthemum sp., 1963, CBS 528.66 = PD 63/590; from indoor bathroom environment, 1997, M. Komen, CBS 464.97; from Medigaco sativa, PD 77/47. U.K., from air, PD 74/1023. U.S.A., Virginia, from *Juniperus* sp., Jan. 2002, A.Y. Rossman, CBS 120109, Unknown origin, from *Cucumis sativus*, PD 81/767; from *Capsicum* sp., PD 83/762.

Peyronellaea lethalis (Ellis & Bartholomew) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515607.

Basionym: *Ascochyta lethalis* Ellis & Bartholomew, Fungi Columb. 1808. 1903.

≡ *Mycosphaerella lethalis* R. Stone, Ann. Mycol. 10: 587. 1912.

≡ *Didymella lethalis* (R. Stone) Sivan., Bitunicate Ascomycetes and their Anamorphs: 424. 1984.

Specimen examined: Unknown origin and substrate, 1925, A.W. Archer, CBS 103.25.

Peyronellaea musae P. Joly, Revue Mycol. 26: 97. 1961.

≡ *Phoma jolyana* Piroz. & Morgan-Jones, Trans. Brit. Mycol. Soc. 51: 200. 1968.

≡ *Phoma jolyana* Piroz. & Morgan-Jones, Trans. Brit. Mycol. Soc. 51: 200. 1968.

Specimens examined: India, from fruit of Mangifera indica, May 1969, CBS 463.69; from *Malus sylvestris*, PD 83/326.

Notes: *Phoma jolyana* was originally described in the genus *Peyronellaea,* as *Pey musae.* The epithet “jolyana” was later proposed for this species, as the epithet *musae* was already occupied in *Phoma* (Pirozynski & Morgan-Jones 1968). Here, we reinstate this fungus under its original name.
Peyronellaea obtusa (Fuckel) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515608.

Basionym: *Phoma obtusa* Fuckel, Jahrb. Nassauischen Vereins Nautirk. 23–24: 378. 1870.

Specimens examined: *The Netherlands*, from a root of Daucus carota, July 1993, J. de Gruyter, CBS 377.93 = PD 80/976; from *Spiracilium oleracea*, July 1993, J. de Gruyter, CBS 391.93 = PD 80/87.

Peyronellaea pinodella (L.K. Jones) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515609.

Basionym: *Ascochyta pinodella* L.K. Jones, Bull. New York State Agric. Exp. Sta. 57: 147. 1927.

≡ *Phoma medicaginis var. pinodella* (L.K. Jones) Boerema apud Boerema, Dorenbosch & Leffring, *Netherlands J. Pl. Pathol.* 71: 88. 1965.

≡ *Phoma pinodella* (L.K. Jones) Morgan-Jones & K.B. Burch, Mycotaxon 29: 485. 1987.

Specimens examined: *Hungary*, from Glycine max, 1996, G. Kóvics, CBS 567.97 = PD 97/2160; from seed of Glycine max, 1997, G. Kóvics, CBS 100580 = PD 98/1135. *The Netherlands*, from *Pisum sativum*, 1981, CBS 318.90 = PD 81/729.

Notes: *Phoma sojicola*, which was erected in 1999 (Kóvics et al. 1999), has recently been synonymised with the present species, based on morphological and genetical similarities (Irinyi et al. 2009). The present study supports these findings.

Peyronellaea pinodes (Berk. & A. Bloxam) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515610.

Basionym: *Sphaeria pinodes* Berk. & A. Bloxam, *Ann. Mag. Nat. Hist.*, Ser. III 7: 454. 1861.

≡ *Didymella pinodes* (Berk. & A. Bloxam) Petr., *Ann. Mycol.* 10(5): 581. 1912.

≡ *Mycosphaerella pinodes* (Berk. & A. Bloxam) Vestergr., *Ann. Mycol.*, 22(1/2): 16. 1924.

≡ *Ascochyta pinodes* L.K. Jones, Bull. New York State Agric. Exp. Sta. 57: 147. 1927.

Specimens examined: *Belgium*, Gembloox, from *Plasm sativum*, 1977, G. Sommeregyns, CBS 525.77. *Iraq*, Basrah province, from *Plasm sativum*, 1977, CBS 159.78. *Switzerland*, Glarus Kanton, Filzbach, from a leaf of *Primula auricula*, June 1949, E. Müller, CBS 285.49. *The Netherlands*, from an unknown substrate, 1955, M.H. van Raalte, CBS 235.55.

Peyronellaea pomorum var. *circinata* (Kusnezowa) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515612.

Basionym: *Peyronellaea circinata* Kusnezowa, Novost. Sist. Nizsh. Rast. 8: 189. 1971.

≡ *Phoma jolyana* var. *circinata* (Kusnezowa) Boerema, Dorenb. & Kesteren, *Kew Bull.* 31: 535. 1977 [1976].

≡ *Phoma pomorum var. circinata* (Kusnezowa) Aveskamp, Gruyter & Verkley, *Mycologia* 101(3): 377. 2009.

≡ *Peyronellaea ignicans* Kusnezowa, Novost. Sist. Nizsh. Rast. 8: 191. 1971.

Specimens examined: *Russia*, Siberia, Novosibirsk, from *Heracleum dissectum*, 1963, T.T. Kusnezowa, *isotype* CBS H-3747, ex-*isotype* culture CBS 285.76 = ATCC 26241 = IMI 176742 = VKM F-1843. Siberia, Novosibirsk, from a leaf of *Allium nutans*, 1963, T.T. Kusnezowa, CBS 286.76 = ATCC 26242 = IMI 176743 = VKM F-1844.

Peyronellaea pomorum var. *cyanea* (Jooste & Papendorf) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515614.

Basionym: *Phoma cyanea* Jooste & Papendorf, *Mycotaxon* 12: 444. 1981.

≡ *Phoma pomorum var. cyanea* (Jooste & Papendorf) Aveskamp, Gruyter & Verkley, *Mycologia* 101(3): 377. 2009.

Specimen examined: *South Africa*, Heilbron, from straw of *Triticum sp.*, 1972, W.J. Jooste, *holotype* PREM 45736, ex-*holotype* culture CBS 388.80.

Peyronellaea pomorum var. *pomorum* (Thüm.) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515611.

Basionym: *Phoma pomorum* var. *pomorum* Thüm., *Fungi Pomicoli*: 105. 1879.

Specimen examined: *The Netherlands*, Wageningen, from *Polygonum tataricum*, 1964, M.M.J. Dorenbosch, CBS H-16540, culture CBS 539.66 = ATCC 16791 = IMI 22266 = PD 64/914.

Peyronellaea protuberans (Lév.) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515613.

Basionym: *Phoma protuberans* Lév., *Ann. Sci. Nat. Bot. III* 5: 281. 1846.

Specimen examined: *The Netherlands*, from a leaf of *Lycium halifolium*, 1971, CBS 381.96 = PD 71/706.

Peyronellaea sancta (Aveskamp, Gruyter & Verkley) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515615.

Basionym: *Phoma sancta* Aveskamp, Gruyter & Verkley, *Mycologia* 101(3): 377. 2009.

Specimens examined: *Argentina*, from *Opuntia ficus-indica*, 1997, CBS 644.97.

Peyronellaea subglomerata (Boerema, Gruyter & Noordel.) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515616.

Basionym: *Phoma subglomerata* Boerema, Gruyter & Noordel., *Persoonia* 12: 204. 1993.

Specimens examined: *U.S.A.*, North Dakota, from *Triticum sp.*, 1976, CBS 110.92 = PD 76/1010. Unknown origin, from *Zea mays*, 1978, PD 76/1090.

Peyronellaea zeae-maydis (Mukunya & Boothr.) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515617.

Basionym: *Mycosphaerella zeae-maydis* Mukunya & Boothr., *Phytopathology* 63: 530. 1973.

≡ *Didymella zeae-maydis* (Mukunya & Boothr.) Arx, *Beih. Nova Hedwigia* 87: 288. 1987.

Anamorph: *Phyllosticta maydis* Arn. *et R.R. Nelson*, *Phytopathology* 61: 1171. 1971.

≡ *Phoma zeae-maydis* Punith., *Mycopathologia* 112(1): 50. 1990.

Specimen examined: *U.S.A.*, Wisconsin, Hancock, from *Zea mays*, June 1969, C. Jepsen, ex-*holotype* culture CBS 588.69.

Group L: *Phoma draconis, Ph. henningsii, Ph. plurivora* and the novel species *Ph. brasiliensis* cluster basally to the *Epicoccum* species in group M. The species clustered here, however, all lack chlamydospores. These species do, like the chlamydospore-forming species mentioned above, solely produce unicellular conidia, and have glabrous, thin-walled, pseudoparenchymatous pycnidial walls composed of isodiametric cells.

Phoma brasiliensis Aveskamp, Gruyter & Verkley, **sp. nov.** MycoBank MB515618. Fig. 6.

Conidia cylindrical, glabrous, hyalina, continua, 6–9(–10) × 2–3(–3.5) μm, 3(4)–6(–8) gutulis parvis praedita. Matrix conidiorn alba.
Etymology: Epithet refers to the country of origin, Brazil.

Conidiomata pycnidial, mainly solitary but also confluent, globose to irregularly shaped, glabrous, on the agar surface and immersed, (220–)250–370(–550) × (150–)190–290(–320) μm. Usually with a single inconspicuous non-papillate ostiole. *Pycnidial wall* pseudoparenchymatous, composed of 5–9 layers of oblong to isodiametric cells, 18–27 μm thick. *Conidiogenous cells* phialidic, hyaline, simple, smooth, globose to flask-shaped, ca. 4–5 × 3.5–4 μm. *Conidia* variable in size, cylindrical, thin-walled, smooth, hyaline, aseptate 6–9(–10) × 2–3(–3.5) μm, with (3–)4–6(–8) small polar guttules. Conidial matrix white.

Culture characteristics: Colonies on OA 50–53 mm diam after 7 d, margin regular. Aerial mycelium sparse, tufted near the centre of the colony, white. Immersed mycelium hyaline. Abundant pycnidia produced semi-immersed in concentric rings. Pycnidia in the outer rings pale luteous, darkening towards the centre of the colony via buff, honey, hazel to brown-vinaceous; reverse concolourous. Colonies on MEA 59–63 mm diam after 7 d, margin regular. Immersed mycelium completely covered by a mycelial mat, which is densely floccose, greenish olivaceous to greenish grey, with elements of citrine, olivaceous black and white; reverse concolourous. Hyphae locally containing red amorphous chrysaline material. Colonies on CHA 62–67 mm diam after 7 d, margin regular. Aerial mycelium floccose, white. Abundant dark pycnidia are formed on the agar surface. Application of NaOH results in a luteous discoloration of the agar, later changing to reddish, best to be observed on OA medium.

Fig. 6. *Phoma brasiliensis* (CBS 120105a). A–C. Fourteen-day-old colonies on OA (A), MEA (B) and CHA (C). D–E. Pycnidia. F. Section of the pycnidal wall. G. Conidia. Scale bars: D = 200 μm; E = 100 μm; F–G = 10 μm.
Phoma and related *pleosporalean* genera

Specimen examined: Brazil, from Amaranthus sp., Nov. 2007, E. Rosskopf, holotype designated here CBS H-20235, ex-holotype culture CBS 120105.

Notes: This species is thus far only known from a single isolate from a wild Amaranthus sp. in Brazil. According to Boerema et al. (2004), no other *Phoma* species have been recorded from the same host.

Phoma draconis (Berk. ex Cooke) Boerema, Verslagen Meded. Plziektenk. Dienst Wageningen 159 (Jaarboek 1982): 24. 1983.

Basionym: *Phyllosticta draconis* Berk. ex Cooke, Grevillea 19: 8. 1891.

Specimen examined: Rwanda, from a leaf of Dracaena sp., Jan. 1982, G.H. Boerema, CBS H-16207, culture CBS 186.83 = PD 62/47.

Phoma henningsii Sacc., Syll. Fung. 10: 139. 1892.

Specimen examined: Kenya, Maguga, from the bark of *Acacia mearnsii*, June 1992, T.W. Olembo, CBS H-16354, culture CBS 104.80 = PD 74/1017.

Phoma plurivora P.R. Johnst., New Zealand J. Bot. 19(2): 181. 1981.

Specimens examined: Australia, from Medicagio sativa, 1975, CBS 248.93 = PD 95/907. New Zealand, Auckland, Mt Albert, from a leaf of *Setaria* sp., Feb. 1979, P.R. Johnston, CBS H-7624, ex-isotype culture CBS 558.81 = PDDCC 6873.

Group M – Epicoccum:

This group (BPP = 1.00, RBS = 66 %) comprises three species that are accommodated in the section *Peyronellaea*. The *Peyronellaea* species in this group, *Ph. sorghina*, *Ph. pimprina* and *Epicoccum nigrum* (chlamydospore-based synanamorph of *Ph. epicoccina*; Arenal et al. 2000, 2004) are characterised by the production of botryoid or epicoccoid chlamydospores, in contrast to the species in group K, which produce alternarioid dictyochlamydospores. The distinct morphology and phylogenetic position justify the recombination into a separate genus. As the oldest generic name in this clade is *Epicoccum*, new combinations for *Ph. pimprina* and *Ph. sorghina* are proposed below.

Epicoccum Link, Mag. Gesell. Naturf. Freunde Berlin 7: 32. 1815, emend. Aveskamp, Gruyter & Verkley. Fig. 7.

Conidiomata pycnidial, globose to subglobose, measuring 50–250 μm diam, on agar surface or immersed, mostly solitary but incidentally confluent. *Ostioles* papillate or on pronounced necks. *Pycnidial wall* pseudoparenchymatous, counting 2–8 cell layers of which the outer 1–3 are brown-olivaceous pigmented. *Conidiogenous cells* phialidic, hyaline, simple, smooth, ampulliform, ca. 3–7 × 3–7 μm. *Conidia* variable in shape, initially hyaline but in later stages a slight brownish pigmentation may be found, thin-walled, smooth, always aseptate 3–8.5(–10) × 1.5–4(–4.5) μm. *Chlamydospores* unicellular or multicellular, intercalary or terminal, smooth, verrucose or incidentally tuberculate, subhyaline to dark brown, where unicellular globose, measuring 5–15 μm diam, where multicellular globose or irregular shaped, smooth, verrucose or incidentally tuberculate, measuring 6–35 μm.

Type species: *Epicoccum nigrum* Link.

Epicoccum nigrum Link, Mag. Gesell. Naturf. Freunde Berlin 7: 32. 1815.

≡ *Phoma epicoccina* Punith., M.C. Tulloch & C.M. Leach, Trans. Brit. Mycol. Soc. 59(2): 341 (1972).

Specimens examined: Germany, Berlin, from soil, 1985, H.J. Halfmann, CBS 505.85, The Netherlands. Geleen, from human toe nail, Dec. 1981, CBS 125.82 = IMI 331914 = CECT 20044; Randwijk, from *Malus* sp., J. Köhl, 2003, CBS 115825.

U.S.A., Oregon, from seeds of *Dactylis glomerata*, 1967, CBS 173.73 = ATCC 24428 = IMI 164070.

Epicoccum pimprinum (P.N. Mathur, S.K. Menon & Thirum.) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515619.

Basionym: *Phoma pimprina* P.N. Mathur, S.K. Menon & Thirum., Sydowia 13: 146. 1959.

Specimens examined: India, Poona, Pimpri, from soil, Mar. 1959, S.K. Menon, ex-isotype culture CBS 246.60 = ATCC 22237 = ATCC 16652 = IMI 81601; from soil, 1977, PD 77/1028.

Fig. 7. Globose chlamydospores of *Epicoccum* spp. A–B. *E. nigrum* (CBS 173.73). C–E. *E. sorghina* (CBS 246.60). F–H. *E. pimprinum* (CBS 179.80). Scale bars: A–B = 50 μm; C–H = 20 μm.
Epicoccum sorghi (Sacc.) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515620.
Basionym: Phyllosticta sorghina Sacc., Michelia 1 (2): 140. 1878. = Phoma sorghina (Sacc.) Boerema, Dorenb. & Kesteren, Persoonia 7(2): 130. 1972.
For a complete synonymy see Boerema et al. (1977).

Specimens examined: France, Antibes, from a twig of Citrus sp., 1966, CBS 627.68 = PD 66/926. Guinea-Bissau, Gachue Région, from Orzya sativa, Oct. 1978, CBS 181.81. India, from a fruit of Coffea sp., July 1969, C.V. Subramanian, CBS 846.68; Jabalpur, from Panicum miliare, Jan. 1972, D. Sharma, CBS 293.72. Martinique, from a leaf of Lycopersicon esculentum, June 1989, B. Hostachy, CBS 301.89. Papua New Guinea, from Stellaria sp., A. Aaprot, Oct. 1995, CBS 866.95; Central Province, Variarata National Park near Port Moresby, from soil, A. Aaprot, Oct. 1995, CBS 986.95. Puerto Rico, Mayaguez, from Sorghum vulgare, Apr. 1976, R. Alconera, CBS 179.80 = PD 76/1018. South Africa, Potchefstroom, from a leaf of Zea maya, Nov. 1978, W.J. Jooste, CBS 180.80 = PD 76/1100.

Notes: The strains that were previously accommodated in Ph. sorghina are morphologically and phylogenetically highly diverse (Aveskamp et al. 2009a, Pažoutová 2009), and probably represent multiple species. These species were, however, not treated in the present study.

Group N – Boeremia gen. nov.: This group represents species that are morphologically similar to what is currently known as Ph. exigua. Group N is a well-defined clade (BPP = 1.00, RBS = 100 %) and comprises all taxa that were previously recognised as separate Ph. exigua varieties by Aebel et al. (2002). Phoma foestata and Ph. sambuci-nigrae are embedded here as well, two species that previously were known as varieties of Ph. exigua, but were elevated to species rank due to their phytopathological relevance (Ph. foestata, Boerema et al. 1987) or distinct physiological characteristics (Ph. sambuci-nigrae, Monte et al. 1991). As already noted by Aveskamp et al. (2009b) also Ph. telephii, Ph. strasseri and Ph. lycopersici are closely related. This study also reveals the close relationship with Ph. tarda, a pathogen of coffee. Phoma hedericola, a frequently occurring causal agent of leaf spots on poison ivy (Hedera helix) and Ph. crinicola, a pathogen of Amaryllidaceae are embedded in this clade. In contrast to the other species in this clade, which are linked to Phoma section Phyllostictoides, Ph. hedericola and Ph. crinicola are associated with Phoma section Phomia, due to the absence of septate conidia (De Gruyter & Noordeloos 1992, De Gruyter et al. 1993). The sequence data of CBS 172.34, a strain recorded as Dothiorella unii, appeared to be genetically identical to Ph. exigua, as was already noted by De Gruyter et al. (2009). Based on morphological studies of other strains, Dothiorella unii was suggested to be recombined into Plectophomella (Redfern & Sutton 1981), a genus that is linked to the Pezizomycotina. Morphological features of the present strain appeared to be similar to Ph. exigua, suggesting that this strain was probably preserved under an incorrect name, and actually belongs to Ph. exigua var. populi.

Of the species within this clade, a teleomorph is only named in Ph. lycopersici (Didymella lycopersici), although Stewart (1957) has reported the existence of pseudothecia of Ph. tarda in nature, a finding that also has been reported by Salgado et al. (2007). This contradicts with the fact that none of the varieties embedded in the Ph. exigua clade has been found in association with a teleomorph thus far.

For further delineation of this clade, a comparison of actin gene sequences is proposed (Aveskamp et al. 2009b), although not all species and varieties in this complex can be recognised using this gene only. Thus far the varieties of Ph. exigua could only be delineated using two fingerprint techniques: Amplified Fragment Length Polymorphism (AFLP, Aebel et al. 2002) and DAF (DNA Amplification Fingerprinting) using mini-hairpin primers (Aveskamp et al. 2009b). Based on this latter technique Aveskamp et al. (2009b) recognised two varieties within Ph. exigua that had not been described before. These two infraspecific taxa, var. gilvescens and var. pseudolliacis are treated and described below.

Based on the phylogenetic reconstruction obtained here, the taxa previously known as Ph. exigua var. noaciana and Ph. exigua var. diversisspora cluster in a distinct clade from the other varieties in this complex, and are elevated to species level here. Also actin sequence data and DAF analysis (Aveskamp et al. 2009b), AFLP data (Aebel et al. 2002) reveal a basal topology of these species compared to Ph. exigua. Morphological data obtained by Van der Aa (2000) also suggest that these species are not completely fitting in the Ph. exigua concept.

The species and varieties in this clade differ from other Phoma taxa based on their ostiolar morphology. In contrast to other species, which have a smoothly lined ostiolar, the taxa present in this clade have distinct hyaline cells lining their ostiolar openings (Fig. 8A). In addition, these species, with the exception of Ph. hedericola, produce septate conidia in addition to the regular asceptate ones, although in general the septate conidia are produced in smaller numbers in culture than on the host. These conidia are mostly 1-septate, as only in Ph. exigua incidentally multisepate conidia occur, and are often only slightly larger than the regular asceptate ones (Fig. 8C). Due to the morphological and genetic distinctiveness, we propose a new generic name for the taxa in this clade.

Boeremia Aveskamp, Gruyter & Verkley, gen. nov. MycoBank MB515621. Fig. 8.
Conidiomata pyridialia, plurumque globosa vel subglobosa, glabra vel eminentsis sparsis hypharum vestita, superficialia vel in agaro immersa, solitaria vel confluenta, 75–370 μm diam. Ostiola papillata vel epapillata, tempore maturatis interne cellulus hyalinis papillatis. Paries pycnidii pseudoparenchymatus, e 2–8 stratis cellularum compositus, extima 1–3 strata brunnea. Cellulae conidiogenae phialidicae, hyalinis papillatis. Paries pycnidii pseudoparenchymatus, e 2–8 stratis cellularum compositus, extima 1–3 strata brunnea. Cellulae conidiogenae phialidicae, hyalinis papillatis. Paries pycnidii pseudoparenchymatus, e 2–8 stratis cellularum compositus, extima 1–3 strata brunnea. Cellulae conidiogenae phialidicae, hyalinis papillatis. Paries pycnidii pseudoparenchymatus, e 2–8 stratis cellularum compositus, extima 1–3 strata brunnea. Cellulae conidiogenae phialidicae, hyalinis papillatis. Paries pycnidii pseudoparenchymatus, e 2–8 stratis cellularum compositus, extima 1–3 strata brunnea. Cellulae conidiogenae phialidicae, hyalinis papillatis. Paries pycnidii pseudoparenchymatus, e 2–8 stratis cellularum compositus, extima 1–3 strata brunnea. Cellulae conidiogenae phialidicae, hyalinis papillatis. Paries pycnidii pseudoparenchymatus, e 2–8 stratis cellularum compositus, extima 1–3 strata brunnea. Cellulae conidiogenae phialidicae, hyalinis papillatis. Paries pycnidii pseudoparenchymatus, e 2–8 stratis cellularum compositus, extima 1–3 strata brunnea. Cellulae conidiogenae phialidicae, hyalinis papillatis. Paries pycnidii pseudoparenchymatus, e 2–8 stratis cellularum compositus, extima 1–3 strata brunnea. Cellulae conidiogenae phialidicae, hyalinis papillatis. Paries pycnidii pseudoparenchymatus, e 2–8 stratis cellularum compositus, extima 1–3 strata brunnea. Cellulae conidiogenae phialidicae, hyalinis papillatis. Paries pycnidii pseudoparenchymatus, e 2–8 stratis cellularum compositus, extima 1–3 strata brunnea.

Conidiomata pyridialia variable in shape and size, mostly globose to subglobose, glabrous or with few mycelial outgrowths, on agar surface or immersed, solitary or confluent, measuring 75–370 μm diam. Ostioles 1–2(–3), non-papillate or papillate, lined internally with a papillate hyaline cells when mature. Pycnidial wall pseudoparenchymatous, counting 2–8 cell layers of which the outer 1–3 are brown pigmented. Conidigenous cells phialidic, hyaline, simple, smooth, ampulliform to doliform, ca. 3–7.5 × 3–6.5 μm. Conidia variable in shape, hyaline, thin-walled, smooth, mainly asceptate, 2.5–12 × 2–4 μm, et interdum uni- vel biseptata, usque 15 × 5 μm.

Type species: Boeremia exigua (Desm.) Aveskamp, Gruyter & Verkley

Etymology: Named after Gerhard H. Boerema, who made great contributions to our understanding of the taxonomy of phomoid fungi.
Boeremia crincola (Siemasko) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515622.

Basionym: Phyllosticta crincola (Siemasko) Aveskamp, Gruyter & Verkley, Acta Soc. Bot. Poloniae 1: 22. 1923.

≡ Phoma crincola (Siemasko) Boerema apud Boerema & Dorenbosch, Verslagen Meded. Pizkienk. Dienst Wageningen 153: 18.1979.

Specimens examined: The Netherlands, Haarlem, from a bulb of Crinum powellii, Mar. 1976, G.H. Boerema, CBS 161698, CBS 108.79 = PD 77/747; Alkmaar, from a bulb of Crinum sp., 1970, G.H. Boerema, CBS 118.93 = PD 70/195.

Boeremia diversispora (Bubák) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515623.

Basionym: Phoma diversispora (Bubák) Boerema apud Boerema & van Kesteren, Gewasbescherming 11: 122. 1980

For a complete description see Boerema et al. (1981a, 2004), and Van der Aa et al. (2000).

Specimens examined: Brazil, leaf of Phaseolus, F. Noack, holotype B. Kenya, from a pod of Phaseolus vulgaris, 1979, G.H. Boerema, epitype designated here CBS H-16308, ex-epitype culture CBS 108.79 = IMI 331907 = PD 70/195.

Notes: Phoma diversispora was originally described by Bubák as a pathogen of cowpea (Vigna unguiculata) causing Black Node Disease (Van der Aa et al. 2000), but was later classified as a variety of Phoma exigua by Boerema & Van Kesteren (1980) and Boerema et al. (1981a), on basis of its morphology. The present study, however, revealed the Ph. exigua varieties to be phylogenetically distinct from the present species, which justifies re-establishment of the taxon as separate species in the genus Boeremia. The present species is closely related to B. noackiana, formerly known as Ph. exigua var. noackiana (see below).

Boeremia exigua var. coffeae (Henn.) Aveskamp, Gruyter & Verkley, stat. et comb. nov. MycoBank MB515632.

Basionym: Ascochyta coffeae Henn., Hedwigia 41: 307. 1902; not Phoma coffeae Delacr., Bull. Soc. Mycol. France 13: 122. 1897.

≡ Ascochyta tarsa R.B. Steward, Mycologia 49: 430. 1957.

≡ Phoma tarsa (R.B. Steward) H. Verr., Coffee Berry Dis. Kenya: 14. 1979.

For a complete description see De Gruyter et al. (2002).

Specimens examined: Brazil, Patrocinio, from leaf of Coffea arabica, L.H. Pfenning, CBS 119730. Cameroon, Bemenda, from Coffea arabica, CBS 109183 = PD 2000/10506 = IMI 300060.

Notes: Boeremia exigua var. coffeae was originally described from leaves of coffee plants (Coffea arabica, Stewart 1957) as Ascochyta coffeae and A. tarsa. The observed late euseptation in this species proved to be a character common for Phoma species accommodated in section Phyllostictoides, leading to a recombination into Phoma, as Ph. tarsa. Phylogenetic results obtained in the present study reveal genetic similarity between the present species and the B. exigua species complex. The cultures of B. exigua varieties are somewhat slower growing than those of the present species, which completely covers the agar surface (90 mm diam) within 7 d. The pycnidia of B. exigua var. tarda may grow to up to 255 µm (De Gruyter et al. 2002), but other micromorphological characters fit within the scope of B. exigua as described for Ph. exigua by Van der Aa et al. (2000) and De Gruyter et al. (2002). It is concluded, therefore, that Ph. tarsa should be reduced to a variety of the B. exigua. Multiple Phoma species have been found in association with Coffea arabica, such as Ph. coffeae-arabicae, Ph. coffeicola, Ph. coffeiphila, Ph. costaricensis, Ph. excelsa, and Ph. pereupyrena (Saccas 1981, Aveskamp et al. 2009a). None of these species however matches the description that is applied to taxa in the B. exigua complex.

Boeremia exigua var. exigua (Desm.) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515624.

Basionym: Phoma exigua Desm., Ann. Sci. Nat. Bot. III 11: 282. 1849.

Specimens examined: Germany, Artez, from Foeniculum vulgare, Apr. 1984, S. Petzoldt, CBS 391.84. The Netherlands, from a tuber of Solanum tuberosum, 1928, CBS 236.26; Emmeloord, from a tuber of Solanum tuberosum, 1974, G.H. Boerema, CBS 431.74 = PD 74/2447; Emmeloord, from Cichorium intybus, 1979, G.H. Boerema, CBS 101150 = PD 79/118; Ommen, from Digitalis sp., 1990, J. de Gruyter, CBS 101152 = PD 90/853-3.

Boeremia exigua var. forsythiae (Sacc.) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515625.

Basionym: Phyllosticta forsythiae Sacc., Michelia 1(1): 93. 1997.

≡ Phoma exigua var. forsythiae (Sacc.) Aa, Boerema & Gruyter, Persoonia 17: 452. 2000.

Specimens examined: The Netherlands, from Forsythia sp., 1992, J. de Gruyter, CBS 101213 = PD 92/959; from Forsythia sp., 1995, J. de Gruyter, CBS 101197 = PD 95/721.

Boeremia exigua var. gilvescens Aveskamp, Gruyter & Verkley, nov. var. MycoBank MB515626. Fig. 9.

Varieties Phoma exiguae similis, sed macroconidium flavida vel luteola. In agaro et in mycelio aereo catenis cellularum inflatarum (11.5–)12.5–27.5(–31) × (5.5–)7.5–10 µm.

Etymology: Varietal name refers to the yellow conidial matrix, which distinguishes this variety.
Culture characteristics: Colonies on OA 75–80 mm diam after 7 d, margin regular or irregular. Immersed mycelium sparsely visible due to coverage by the aerial mycelium, hyaline or black to greenish olivaceous, with many pycnidia; reverse mouse-grey to olivaceous. Colonies on MEA 70–75 mm diam after 7 d, margin regular or irregular. Immersed mycelium completely covered by a compact aerial mat, which is smoke-grey with some mouse-grey zones; reverse black. Colonies on CHA at least (75–)80 mm diam after 7 d, but often the agar surface is completely covered, margin regular or somewhat crenate. Immersed mycelium completely covered by a compact smoke-grey mat of aerial mycelium, or, in some zones floccose, olivaceous with white tufts; reverse shows a dendritic leaden-black zone around the colony centre, with black zones near the colony border. Application of NaOH did not have any effect.

Pycnidial and conidial shapes and sizes fit within the *Ph. exigua* species concept. Conidial matrix yellowish or pale luteous. Brown pigmented swollen cells occur in chains in the agar and in the aerial mycelium, measuring (11.5–)12.5–27.5(–31) × (5.5–)7.5–14.5(–18) μm.

Specimens examined: **Philippines**, from *Solanum tuberosum*, 1990, L.J. Turkiensteen, CBS 101156 = PD 90/731; **The Netherlands**, from a graft of *Ulmus*, 1961, H.M. Heybroek, CBS 373.61; Baarn, from leaves of *Dactylis purpurea*, 1970, H.A. van der Aa, holotype designated here CBS H-16281, culture ex-holotype CBS 761.70; Lisse, from *Dahlia*, 1982, J. de Gruyter, CBS 101151 = PD 82/1022.

Notes: This novel variety of *B. exigua*, distinguished from other *B. exigua* varieties on basis of DAF analysis (Aveskamp et al. 2009b), is closely related to *B. exigua* var. *exigua*, but different in the colour of its conidial matrix (yellowish) and absence of a positive reaction to NaOH. This variety may be identical to *Ph. exigua* var. *inoxydabilis* Boerema & Vegh, but as the type culture has been lost (Van der Aa et al. 2000) a proper comparison of the varieties cannot be made. Additionally, *Ph. exigua* var. *inoxydabilis* was originally only known from periwinkle (*Vinca minor*, Vegh et al. 1974), whereas the strains associated to the present taxon are isolated from a wide range of host plants.

Boeremia exigua var. *heteromorpha* (Schulzer & Sacc.) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515627.

Basionym: Phoma heteromorpha Schulzer & Sacc., *Hedwigia* 23: 107. 1884.

≡ *Phoma exigua* var. *heteromorpha* (Schulzer & Sacc.) Noordel. & Boerema, Verslagen Meded. Piziektenk. Dienst Wageningen 166: 109.1989.

Specimens examined: **France**, Antibes, from *Nerium oleander*, 1979, CBS 101196 = PD 79/176. **Italy**, Perugia, from *Nerium oleander*, 1994, A. Zazzerini, CBS 443.94.

Boeremia exigua var. *lilacis* (Sacc.) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515628.

Basionym: Phoma herbarum f. *lilacis* Sacc., *Michelia* 2(1): 93. 1880.

Specimen examined: **The Netherlands**, Wageningen, from a twig of *Syringa vulgaris*, June 1976, G.H. Boerema, CBS H-163131, culture CBS 569.79 = PD 72/741.

Notes: Although in the present study this variety clusters outside the *B. exigua* cluster, it is phylogenetic affiliation is ambiguous. In previous studies in which fingerprint markers and actin sequences were applied to delineate this species complex (Abein et al.
2002, Aveskamp et al. 2009b) the present taxon clusters within Ph. exigua, and is therefore recombined as B. exigua var. lilacis. Further analysis of this complex is, however, advocated.

Boeremia exigua var. *linicola* (Naumov & Vassiljevsky) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515629.

Basionym: Ascochyta linicola Naumov & Vassiljevsky, Mater. Micol. Fitopatol. 5: 3. 1926.

Specimens examined: The Netherlands, Zierikzee, from *Linum usitatissimum*, 1928, H.A. Diddens, CBS 114.28; Flevoland, from a stem of *Linum usitatissimum*, 1976, G.H. Boerema, CBS 116.76 = ATCC 32332 = CECT 20022 = CECT 20023 = IMI 197074 = PD 75/544.

Boeremia exigua var. *populi* (Gruyter & P. Scheer) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515630.

Basionym: Phoma exigua var. *populi* Gruyter & P. Scheer, J. Phytopathol. 146(8–9): 413. 1998.

Specimens examined: The Netherlands, Deil, from a twig of *Populus X euramericanca* cv. Robusta, Feb. 1993, A.J.P. Oort, *holotype* CBS 100167 = ATCC 32332 = CECT 20022 = CECT 20023 = IMI 197074 = PD 75/544; Rotterdam, from *Salix* sp., 1982, J. de Gruyter, CBS 101202 = PD 82942.

Boeremia exigua var. *pseudolilacis* Aveskamp, Gruyter & Verkley, var. nov. MycoBank MB515631. Fig. 10.

Varietas haec in cultura habitu Phomae exiguae var. exiguae et var. gilvescentis similis, sed matrix conidiorum roseo-bubalina et citius crescens.

Etymology: Refers to the former placement in and close resemblance to Ph. exigua var. lilacis.

Colonies on OA 70–75 mm diam after 7 d, margin regular. Immersed mycelium black to greenish olivaceous, sparsely visible due to coverage by a mat of mouse-grey woolly to compact aerial mycelium; reverse mouse-grey to olivaceous. Colonies on MEA 70–75 mm diam. after 7 d, margin regular. Immersed mycelium completely covered by a compact aerial mat, which is smoke-grey with some mouse-grey to white zones; reverse black. Colonies on CHA slower growing, 70–80 mm diam after 7 d, margin regular, appearance similar as on MEA. Application of NaOH did not have any effect. Pycnidial and conidial shapes and sizes fit within the *B. exigua* species concept. Conidial matrix rosy-buff.

Specimens examined: The Netherlands, near Boskoop, from *Syringa vulgaris*, 1994, J. de Gruyter, *holotype* CBS H-20371, culture ex-holotype CBS 101207 = PD 94/614.

Notes: This novel variety of *B. exigua*, distinguished from other *B. exigua* varieties on basis of DAF analysis (Aveskamp et al. 2009b) and AFLP (Abeln et al. 2002), is closely related to *B. exigua* var. *exigua* and *B. exigua* var. *gilvescens*. Upon collection, the strain representing *B. exigua* var. *pseudolilacis* has probably erroneously been identified as var. *lilacis* due to its host association.

Boeremia exigua var. *viburni* (Roum. ex. Sacc.) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515633.

Basionym: Ascochyta viburni Roum. ex Sacc., Syll. Fung. 3: 387. 1884.

≡ Phoma exigua var. viburni (Roum. ex. Sacc.,) Boerema apud De Gruyter & P. Scheer, J. Phytopathol. 146: 414. 1998.
Boeremia foveata (Foister) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515653.

Basionym: Phoma foveata Foister, Trans. & Proc. Bot. Soc. Edinburgh 33: 66. 1940.

Specimens examined: Bulgaria, from a tuber of Solanum tuberosum, 1994, J. de Gruyter, CBS 109176 = CECT 2828 = PD 94/1394. U.K., from a tuber of Solanum tuberosum, Mar. 1937, C.E. Foister, ex-lectotype culture CBS 200.37; Northern Ireland, Belfast, from a tuber of Solanum tuberosum, 1966, C. Logan, CBS 341.67 = CECT 20055 = IMI 331912.

Boeremia hedercola (Durieu & Mont.) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515634.

Basionym: Phyllosticta hedercola Durieu & Mont., Flore d’Algérie Cryptog. 1: 611. 1894.

Specimens examined: The Netherlands, Meerestein, from a leaf of Hedera helix, 1970, CBS 366.91 = PD 70/811; from Hedera helix, 1987, J. de Gruyter, CBS 367.91 = PD 87/229.

Note: Strain CBS 367.91 is sterile.

Boeremia lycopersici (Cooke) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515635.

Basionym: Phoma lycopersici Cooke, Grevelia 13: 94. 1885.

Teleomorph: Didymella lycopersici Kieb., Z. Pflanzenkrankh. 31: 9. 1921.

Specimens examined: The Netherlands, Heerde, from fruit of Lycopersicon esculentum, Aug. 1967, G.H. Boerema, CBS 378.67 = PD 76/276; from Lycopersicon esculentum, 1984, J. de Gruyter, CBS 109172 = PD 84/143.

Boeremia noackiana (Allesch.) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515636.

Basionym: Phyllosticta noackiana Allesch., Bot. Inst. Agron. Campinas 9: 85. 1898.

Note: Boeremia noackiana is genetically a sister species to B. diversispora, and was also noted by Boerema et al. (2004) as “the American cousin”. Just like B. diversispora, the present species is known from beans, although the main host appears to be Phaseolus vulgaris.

Boeremia sambuci-nigrae (Sacc.) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515637.

Basionym: Phoma herbarum f. sambuci-nigrae Sacc., Syll. Fung. 3: 133. 1884.

Note: As the older name Ph. mentheae is illegitimate, the epithet "strasser" prevails.

Boeremia strasserii (Moesz) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515638.

Basionym: Phoma strasserii Moesz., Bot. Közlem. 22: 45. 1924. nom. nov. pro Phoma mentheae Strasser, Verh. zool. Bot. Ges. Wien 60: 317. 1910 [non Phoma mentheae Roum. (date of publication unknown)].

Specimens examined: The Netherlands, Arnhem, from a stem of Mentha sp., 1973, CBS 126.93 = PD 73/642. U.S.A., Oregon, from Mentha piperita, 1970, H.A. van der Aa, CBS 261.92 = ATCC 244146 = PD 92/318.

Note: The Netherlands, Utrecht, from a stem of Sedum telephium, 1971, G.H. Boerema, CBS 760.73 = PD 71/1616; from Sedum spectabile, 1975, G.H. Boerema, CBS 109175 = PD 79/524.

Group O:

Three species are clustered in group O, which all were accommodated in the Boeremaean section Phoma. These species, Ph. multirostrata, Ph. pereupyrena and Ph. insulana are characterised by the production of small (5–15 μm diam), unicellular chlamydospores, comparable to those formed by some species in group K. The absence of septate conidia and a thin pycnidial wall are further characters of the species accommodated in group O.

The strains accommodated in Ph. multirostrata reveal a high variation in spore size. Boerema et al. (1986) introduced three varieties within this species, but based on morphological observations and DNA sequence analyses, these varieties were not recognised by later researchers and thus the varieties were merged again (Morgan-Jones 1988, Aveskamp et al. 2009a).

Phoma insulana (Mont.) Boerema & Malathr., in Boerema, Verslagen Meded. Plziektenk. Dienst Wageningen 158 (Jaarboek 1981): 28. 1982.

Basionym: Phyllosticta insulana Mont., Ann. Sci. Nat. Bot. IV 5: 343. 1856.

Specimen examined: Greece, from the berries of Olea europaea, 1980, G.H. Boerema, CBS 252.92 = PD 80/1144.

Phoma multirostrata (P.N. Mathur, S.K. Menon & Thirum.) Dorenb. & Boerema, Mycopathol. Mycol. Appl. 50(3): 256. 1973, emend. Aveskamp et al. Mycologia 101: 375. 2009.
Basionym: Sphaeronaema multirostratum P.N. Mathur, S.K. Menon & Thirum., Sydowia 13: 146. 1959. (as “Sphaeronaema”).

Specimens examined: India, Maharashatra, Poona, Talegaon, from poultry farm soil, Mar. 1959, M.J. Thirumalachar, isotype CBS H-7616, culture CBS 274.80 = IMI 081598; Maharashatra, Poona, Talegaon, from soil, Mar. 1959, M.J. Thirumalachar, CBS H-15490, culture CBS 368.65 = PD 92/1757. The Netherlands, Hoorn, greenhouse, from the stem of Cucumis sativus, Aug. 1967, G.H. Boerema, CBS H-16502, culture CBS 110.79 = PD 65/8875. Unknown origin, from Cucumis sativus, 1983, PD 83/48.

Phoma pereupyrena Gruyter, Noordel. & Boerema, Persoonia 15(3): 390. 1993.

Specimen examined: India, from a leaf of Coffea arabica, 1976, CBS 267.92 = PD 76/1014.

Group P:

This well-supported clade (BPP = 1.00, RBS = 97%) comprises Ph. dictamnicola and Ph. sylvatica, which are both associated with the section Sclerophomella (Boerema et al. 1998). In addition, both varieties of Ph. poolensis are recovered here. As in the Sclerophomella species, an ostiole is commonly absent in Ph. poolensis var. poolensis, a character which supports the sequence data found in the present study. In contrast, the second variety of this species, Ph. poolensis var. verbasicaola, always produces ostiolate pycnidia (De Gruyter et al. 1993). Both Ph. poolensis varieties can further be differentiated on the basis of the β-tubulin sequence, and are morphologically distinguishable in the colour of the conidial matrix. The conidia of the type variety are on average somewhat smaller, measuring ca. 3.5–5 μm, than those of var. verbasicaola, which measure 3.5–5.5 μm × 1.5–2.5 μm. Both varieties are known from plant hosts belonging to the Sclerophulaccaeaceae, but whereas var. poolensis is recorded as causal agent of leaf spots and basal stem rot in snapdragon (Antirrhinum majus), var. verbasicaola is only known as saprobe of Verbascum spp., although inoculation trials indicated that it may also have a role as pathogen (Boerema et al. 2004). Given all these differences, it is considered to be justified to erect a separate species for Ph. poolensis var. verbasicaola as Ph. novae-verbasicaola.

Although none of the species in this group has been confirmed to have a teleomorph (Boerema et al. 1998), it has been suggested that Didymella winteriana is the teleomorph of Phoma sylvatica (Munk 1957). Given the topology of the tree, this association with a Didymella species is plausible, although a sexual structure was not observed in the present study, nor in the previous studies of Boerema & De Gruyter (1998).

Phoma dictamnicola Boerema, Gruyter & Noordel., Persoonia 15(1): 90. 1992.

Specimen examined: The Netherlands, Arnhem, from a stem of Dictamnus albus, 1974, J. de Gruyter, CBS 507.91 = PD 74/148.

Phoma novae-verbasicaola Aveskamp, Gruyter & Verkley, nom. nov. pro Phyllosticta verbasicaola Ellis & Kellerm. MycoBank MB515640.

Basionym: Phyllosticta verbasicaola Ellis & Kellerm., Bull. Torrey Bot. Club 11: 115. 1884.

Etymology: The epithet refers to the host plant, Verbascum spp.

For a full description see De Gruyter et al. (1993).

Specimens examined: The Netherlands, Zeist, Abbarg nursery, holotype L 9693.00.134; Haarlem, from dead stem material of Verbascum densiflorum, 1992, J. de Gruyter, CBS 127.93 = PD 92/347; from stem of Verbascum sp., 1974, G.H. Boerema, CBS 114.93 = PD 74/228.

Notes: This species is distinguishable from Ph. poolensis by the presence of 1–2(–5) ostioles, the colourless to whitish matrix and the smaller conidia. On MEA, the aerial mycelium is more compact or woolly than that of Ph. poolensis.

The variety epithet could not be elevated to species level, as Phoma verbascicola is already occupied. This basionym, however, probably refers to immature pseudothecia of a Pleospora species (Boerema et al. 1996). Therefore, a new name is proposed here for the present species.

Phoma poolensis Taubenb., Dis. Greenhouse Crops 203. 1919.

Specimens examined: Denmark, from a stem of Antirrhinum majus, July 1938, P. Neegaard, CBS 253.38; The Netherlands, Wageningen, from a stem of Scrophularia nodosa, 1974, G.H. Boerema, CBS 115.93 = PD 74/206; Bennekom, from a stem of Antirrhinum majus, 1973, G.H. Boerema, CBS 116.93 = PD 71/884. Unknown origin and substrate, 1920, E.M. Smiley, CBS 113.20 = PD 92/774.

Phoma sylvatica Sacc. Michelia 2(2): 337. 1881.

Specimens examined: The Netherlands, Wageningen, from Melampyrum pratense, 1983, J. de Gruyter, CBS 135.93 = PD 83/87; Wageningen, from a stem of Melampyrum pratense, 1993, J. de Gruyter, CBS 874.97 = PD 93/764.

Group Q:

The Phoma species embedded in this group, Ph. commelinicicola and Ph. eupatori, are morphologically distinct, hence their accommodation in the sections Phoma and Macrospora respectively. The accommodation of Chaetasbolisia erysipoides in this clade, the type of its genus, is unexpected. Attempted morphological studies revealed that this strain was sterile, and therefore recombination of the species could not be supported by morphological data. The descriptions provided in literature (Sutton 1980, Patel et al. 1997, Reynolds 1999) suggest, however, that this genus could very well represent a group of setose Phoma species, although this cannot be resolved due to a lack of isolates. The presence of setae is not recorded in other species in group Q, and moreover, is within the Didymellaceae only known from Peyronellaea gardeniae (Group K), and from pycnidia in some older cultures from Epicoccum sorghi (Group M), Peyronellaea glomerata (Group K) and Phoma herbarum (Boerema et al. 2004). The topology and the clustering of these species cannot be further explained by the morphology or ecology, nor by their geographical distribution.

Phoma commelinicola (E. Young) Gruyter, Persoonia 18(1): 93. 2002.

Basionym: Phyllosticta commelinicola E. Young, Mycologia 7: 144. 1915.

Specimen examined: New Zealand, South Auckland, Alfistion, from Tradescantia sp., 1997, K. Ramsay, CBS 100409.

Phoma eupatori, Die., Ann. Mycol. 10(5): 447. 1912.

Specimen examined: The Netherlands, Arnhem, from Eupatorium cannabinum, 1977, G.H. Boerema, CBS 123.93 = PD 77/1148.
Group R: This group comprises five species that previously were accommodated in the sections Phoma, Peyronellaeaea and Phyllostictoides. As the name of *Ph. tropica* already suggests, it concerns a thermotolerant species, which is mainly found in European greenhouses on a wide range of hosts, but which probably has a tropical origin (Schneider & Boerema 1975), as do most other species found in the present clade. The sole host of *Ph. costarricensis* is coffee bean (*Coffea arabica*), while *Ph. piperis* is associated with Indian Long Pepper (*Piper longum*), and the novel species *Ph. minor* has been isolated twice from clove (*Syzygium aromaticum*), and the novel species *Ph. major* has been isolated twice from clove (*Syzygium aromaticum*) in Indonesia. In addition, *Ph. labilis* is a warmth-prefering plurivorous species that has been isolated in European greenhouses and from nature in the Middle East, Turkey and Indonesia (Boerema et al. 2004). *Phoma zantedeschiæ* is widespread throughout the Western Hemisphere, but always in association with arum or calla (*Zantedeschia sp.*), a genus that is indigenous in southern Africa (Boerema & Hamers 1990). Thus far, however, no data of temperature-growth studies are available for these species except for *Ph. tropica*. Several other thermotolerant species, such as *Ph. calidophila*, *Ph. caloro Préferens* and *Ph. multirostrata*, are, however, not accommodated in this group. These three species are soil-borne, in contrast to *Ph. tropica* and *Ph. costarricensis*, which are associated with leaf-spots.

Phoma tropica and *Ph. costarricensis* are both closely related, and colony characters are highly similar. However, the strains available revealed a significant difference in conidial and pycnidial sizes, consistent with the data obtained in previous studies (Schneider & Boerema 1975, De Gruyter & Noordeloos 1992).

Phoma costarricensis Echandi, Rev. Biol. Trop. 5: 83. 1957.
Specimens examined: *Nicaragua*, from a twig of *Coffea sp.*, 1991, CBS 506.91 = PD 91/876 = IMI 215229. Unknown origin, from *Coffea arabica*, 1979, CBS 497.91 = PD 79/209.

Notes: Strain CBS 497.91 was initially identified as *Ph. tropica*. The close phyllogenetic association between this species and *Ph. costarricensis* concurs with their overlapping morphological characters (see Schneider & Boerema 1975, De Gruyter & Noordeloos 1992).

Phoma labilis Sacc., Michelia 2(7): 341. 1881.
Specimens examined: *Israel*, from a stem of *Rosaceae sp.*, 1970, G.H. Boerema, CBS 479.93 = PD 70/93. *The Netherlands*, Barendrecht, from a stem of *Lycoperdon esculentum*, 1987, J. de Gruyter, CBS 124.93 = PD 87/269.

Phoma minor Aveskamp, Gruyter & Verkley, sp. nov. MycoBank MB515641. Fig. 11.
Conidia ellipsoidæ, ovoidæ vel lenter allantoidæ, glabra, hyalina, continuæ, (3–)3.5–4.5(–5) × 1.8–2.5(–3) μm, (0–)1–3(–4) guttulis minutis praedita. Matrix conidiorum alba.

Etymology: Epithet derived from the small-sized conidia.

Conidiotama pycnidial, solitary, (sub-)globose to broadly ellipsoid, glabrous or with some hyphal outgrowths, on the agar surface and immersed, (125–)150–280(–330) × (125–)150–220(–245) μm. Ostioles (1–5), slightly papillate or non-papillate. Pycnidial wall pseudoparenchymalous, composed of oblong to isodiametric cells, outer cell layer pigmented, 2–4 layers, 8–15 μm thick. Conidiogenous cells phialidic, hyaline, simple, smooth, flask-shaped or somewhat isodiametric, ca. 4–5.5(–6.2) × 3–4.5(–4.7) μm. Conidia ellipsoidæ to ovoid or slightly allantoid, thin-walled, smooth, hyaline, aseptate (3–)3.5–4.5(–5) × 1.8–2.5(–3) μm, with (0–)1–3(–4) minute guttules. Conidial matrix white.

Culture characteristics: Colonies on OA (44–)45–50(–54) mm diam after 7 d, margin regular. Aerial mycelium flat, grey, but locally well-developed in densely floccose white tufts. Immersed mycelium olivaceous with rosy-buff tinges near the colony margin; reverse concolourous. Colonies on MEA 46–48 mm diam after 7 d, margin regular. Immersed mycelium hyaline, with abundant semi-immersed pycnidia, but almost completely covered by an aerial mycelial mat. Aerial mycelium pluriform, with a compact white mat and some feltly glaucous grey or dull green zones, near colony margin white; reverse black to grey-olivaceous. Colonies on CHA 50–54 mm diam. after 7 d, margin regular. Aerial mycelium similar as on MEA, although the feltly white and glaucous grey zones are less abundant; reverse slate blue to leaden-black. Application of NaOH results in a greenish yellow discolouration of the agar, best to be observed on OA medium.

Specimens examined: *Indonesia*, Sumatra, from *Syzygium aromaticum*, Apr. 1982, R. Kasim, holotype designated here CBS H-20206, ex-holotype culture CBS 325.82; Lampung, from *Syzygium aromaticum*, Dec. 1982, H. Vermeulen, CBS 315.83.

Notes: As for *Ph. eucalyptica*, this species has been recorded in association with clove trees (*Syzygium aromaticum*, Boerema et al. 2004). Both species, although genetically distinct, have many characters in common, notably the colony characters on OA, the high variation in ostiole number and a similar reaction to application of NaOH. Although *Phoma minor* produces relatively small conidia, the conidia of *Ph. eucalyptica* are even smaller, measuring only 2–4 × 1–2 μm (De Gruyter & Noordeloos 1992).

Phoma piperis (Tassi) Aa & Boerema, Persoonia 15(3): 398. 1993.
Basionym: *Phyllosticta piperis* Tassi, Boll. Reale Orto Bot. Siena 3(2): 28. 1900.
Specimens examined: *The Netherlands*, Tiel, from a leaf of *Peperomia persicafolia*, 1988, J. de Gruyter, CBS 268.93 = CBS 108.93 = PD 88/720; Tiel, from *Peperomia sp.*, 1990, J. de Gruyter, PD 90/2011

Phoma tropica R. Schneid. & Boerema, Phytopathol. Z. 83 (4): 361. 1975.
Specimens examined: *Germany*, Homburg, from *Saintpaulia ionantha*, 1973, R. Schneider, isotype CBS H-7629, ex-isotype culture CBS 436.75.

Phoma zantedeschiæ Dippen., S. African J. Sci. 28: 284. 1931.
Specimens examined: *The Netherlands*, from a bulb of *Zantedeschiæ sp.*, 1969, G.H. Boerema, CBS 131.93 = PD 69/140.

Group S – Stagonosporopsis: This large group (BPP = 1.00, RBS = 55 %) comprises mainly species with *Stagonosporopsis* synanamorphs. In the Boeremaean classification system, these species were embedded in *Phoma* section *Heterospora* (Boerema et al. 1997). As with the other sections, this group also appeared to be artificial. Based on LSU and SSU sequences, the type species of the section *Heterospora*, *Ph. heterospora*, clusters outside the *Didymellaceae* (De Gruyter et al. 2009), as do *Ph. samarorum* and *Ph. dimorphospora.*
Three species, *Ph. clematidina*, *Ph. glaucii* and *Ph. aquilegiicola* form a separate clade (Group C) within the Didymellaceae, and are treated above. Also *Ph. nigripycnidia* and *Ph. narcissi* are not accommodated here.

In contrast to the *Heterospora* species that are absent in this clade, several current *Phoma* taxa recovered here have been associated with the section *Phyllostictoides*, such as *Ph. artemisiicola*, *Ph. caricae-papayae*, *Ph. cucurbitacearum*, *Ph. heliopsidis*, *Ph. rudbeckiae*, and the quarantine-organisms *Ph. ligulicola* var. *ligulicola* and var. *inoxydabilis* (De Gruyter 2002). These are all included in subclade S1 (BPP = 0.93, RBS = 73 %).

These species do produce a percentage of multicellular conidia in culture that are often considerably larger than the regular aseptate ones. However, Boerema *et al.* (1997) decided to exclude the *Ph. ligulicola* varieties and *Ph. cucurbitacearum* from section *Heterospora*, as the sizes of the Stagonosporopsis-like conidia do not always exceed that of the aseptate conidia in these species. A sister clade to subclade S1 is S2, which hosts the potato pathogens *Ph. andigena* and *Ph. crystalliniformis* – formerly known as *Ph. andina* var. *crystalliniformis*. Both species originate from the Andes region, and are regarded as serious quarantine pathogens in large parts of the world (Smith *et al.* 1992).

In addition, three other subclades can be recognised in this clade. One (S3) comprises the species *Ph. schneiderae* and *Ph. subboltshauserii* (both of the section *Heterospora*) as well as *Ph. astragali*. This species is known as a pathogen of Astragalus spp., and is characterised by a high percentage of “distorted” conidia, but thus far, no records have been made of a Stagonosporopsis-like synanamorph. Whereas records of *Ph. astragali* and *Ph. schneiderae* are mainly limited to the American continent, *Ph.
subbotshauseri appears to occur worldwide on Fabaceae. However, Boerema et al. (2004) suggested that the original host of this species may have been Phaseolus, which is native to the Americas.

A fourth and fifth (S4, S5) subclade in this group comprises species that are accommodated in section Phoma, and therefore lack any further features than a plain, globose pycnidium and aseptate, hyaline conidia. The species found here are Ph. dorentboschiae, Ph. lotica (both S4), Ph. ajacis and Ph. valerianellae (both S5).

In group S several taxa have been found with a teleomorph in Didymella, such as Ph. ligulicola var. ligulicola (teleomorph D. ligulicola var. ligulicola), Ph. ligulicola var. inoxydabilis (D. ligulicola var. inoxydabilis), and Ph. cucurbitacearum (D. bryoniae). Also the teleomorph of Ph. caricae-papayae has been recovered in this study, and found to be a Didymella, which is in line with the other teleomorph observations in this clade. The current teleomorph state of this species is accommodated in Mycosphaerella M. caricae (Sivanesar 1990).

As the species in the present clade form a well-defined group within the Didymellaceae, the taxa are recombined into the genus Stagonosporopsis. This further implies that the names of the Stagonosporopsis synanamorphs of Ph. samarorum and Ph. narcissi (S. fraxini and S. curtisii respectively) should no longer be used.

Stagonosporopsis Died., Ann. Mycol. 10(2): 142. 1912. emend. Aveskamp, Gruyter & Verkley, Fig. 12.

Conidiomata pycnidial, globose to subglobose, measuring 70–300 μm diam, on agar surface or immersed, solitary or confluent, ostiolate or poroid. Pycnidial wall pseudoparenchymatous, counting 2–6 cell layers of which the outer 1–3 are brown/olivaceous pigmented. Conidiogenous cells phialidic, hyaline, simple, smooth, ampulliform or doliiform, ca. 4–7.5 × 3–6 μm. Conidia in two types: majority aseptate, hyaline, ellipsoidal to subglobose, thin-walled, smooth, measuring (3–)3.5–10 × 1.5–3–(3.5) μm. Conidia of the second type can be produced both in vivo and in vitro in the same pycnidia as the smaller spores, unicellular or with up to 3 septa, measuring up to 30 × 8 μm. Pseudothecia, if present, occurring only in vivo, globose to subglobose, sometimes with a somewhat conical neck, measuring 90–230 μm diam. Asci cylindrical or subclavate, measuring 50–90 × 9–13 μm, always 8-spored, biseriate. Ascospores ellipsoid, fusiform or obovoid, measuring 12–18 × 4–7 μm, uniseptate, guttulate.

Stagonosporopsis actaeae (Allesch.) Died., Ann. Mycol. 10: 141. 1912.

Basionym : *Actinonema actaeae* Allesch., Ber. bayer. bot. Ges. 5: 7. 1897.

= _Phoma actaeae_ Boerema, Gruyter & Noordeloos, Persoonia 16(3): 347. 1997.

Specimens examined: The Netherlands. Zeist, from a stem of Cimicifuga simplex, 1974, G.H. Boerema, CBS 105.96 = PD 74/230; Limburg, Schaensbergerbos, from a leaf of Actaea spicata, 1994, J. de Gruyter, L 992.167.501, culture CBS 106.96 = PD 94/1318.

Notes: In contrast to the earlier description of the Phoma anamorph of this species (Boerema et al. 1997), the larger conidia regularly produces up to 3-septate conidia (see Fig. 12A). In the study mentioned above and in the present one the same strains were examined morphologically.

Stagonosporopsis ajacis (Thüm.) Aveskamp, Gruyter & Verkley, _comb. nov_. MycoBank MB515653.

Basionym : *Phylllosticta ajacis* Thüm., apud Bolle & von Thümen, Boll. Soc. Adriat. Sci. Nat. Trieste 6: 329. 1880. = _Phoma ajacis_ Aa & Boerema, apud De Gruyter, Noordeloos & Boerema, Persoonia 15(3): 383. 1993.

Specimens examined: Kenya, from Delphinium sp., 1990, Hopman, L 993.034.225, culture CBS 177.93 = PD 99/115; The Netherlands, Ter Aar, from Delphinium sp., 1986, CBS 176.93 = PD 99/547.

Stagonosporopsis andigena (Turkenst.) Aveskamp, Gruyter & Verkley, _comb. nov_. MycoBank MB515655.

Basionym : *Phyllosticta andigena* Turkenst., apud Bolle & von Thümen, Boll. Soc. Adriat. Sci. Nat. Trieste 6: 329. 1880. = _Phoma andigena_ Boerema, Gruyter & Noordeloos, Persoonia 16(1): 131. 1995.

Specimens examined: Peru. Dep. Junin, Huancayo, near Vallis Mantaro, from a leaf of Solanum sp., 1975, L.J. Turkensteen, CBS 101.80 = PD 75/909; Dep. Junin, Huancayo, near Vallis Mantaro, from a leaf of Solanum sp., 1975, L.J. Turkensteen, CBS 269.80 = PD 75/914.

Stagonosporopsis artemisiicola (Hollós) Aveskamp, Gruyter & Verkley, _comb. nov_. MycoBank MB515656.

Basionym : *Phoma artemisiicola* Hollós, Mat. Természettud. Közl. 35: 40. 1926. (as "artemisaecola")

Specimen examined: France, from a stem base of Artemisia dracunculus, 1973, CBS 102636 = PD 73/1409.
Stagonosporopsis astragali (Cooke & Harkn.,) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515657.

Basionym: Phoma astragali Cooke & Harkn., Grevillea 13: 111. 1885.

Specimens examined: Unknown origin, from Astragalus sp., 1925, A.W. Archer, CBS 178.25 = MUCL 9915.

Stagonosporopsis caricae (Sydow & P. Sydow) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515658.

Basionym: Mycosphaerella caricae Sydow & P. Sydow, Ann. Mycol. 11: 403. 1913.

- Phoma caricae-papayae (Tarr.) Punith., Trans Brit. Mycol. Soc. 75: 340. 1980.
- Ascochyta caricae-papayae Tarr., The fungi and plant diseases of Sudan: 53. 1955.
- Ascochyta caricae Pat., Bull. Soc. Mycol. France 7: 178. 1891.
- Phoma caricae Punith., CMI Descriptions of Pathogenic Fungi and Bacteria 634: 1. 1979.

For description of the teleomorph see Sivanesan (1990). Punithalingam (1979b) provides an extensive description, for description of the teleomorph see Sivanesan (1990).

Specimens examined: Brazil, from Carica papaya, 2006, J. de Gruyter, PD 06/03082531. Chile, from fruit of Carica papaya, Feb. 1990, H.A. van der Aa, CBS 248.90. Indonesia, Java, Segunung, from Brassica sp., Feb. 1976, H. Vermeulen, CBS 262.76.

Notes: Phoma caricae-papayae has been associated with an undescribed teleomorph state in Mycosphaerella or Didymella (Boerema et al. 2004). Sivanesan (1990) synonymised Ph. caricae with M. caricae, apparently not noting that Ph. caricae already was synonymised with Ph. caricae-papayae by Punithalingam (1980). As Mycosphaerella is phylogenetically unrelated to Phoma (De Gruyter et al. 2009), this taxonomic association is unlikely, and the observed sexual state observed was probably Didymella-like.

This species has solely been associated with papaw (*Carica papaya*, *Caricaceae*), but a single strain, deposited at CBS as *D. exigua* and that was isolated from Brassica leaves from Java, Indonesia (CBS 282.76), was genetically identical to the reference strain of *Ph. caricae-papayae*. Herbarium material of this strain consisted of an inoculated lupine stem on cornmeal agar (CBS H-11960) and represented a conidial state similar to this of *Ph. caricae-papayae*. This indicated that probably the Didymella teleomorph had been observed, but that it was preserved under an incorrect name as it was only distantly related to the ex-type strain of *Didymella exigua* (CBS 183.55). This finding provides evidence that *S. caricae* is not restricted to papaw.

Stagonosporopsis crystalliniformis (Loer., R. Navarro, M. Lôbo & Turkenst.) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515659.

Basionym: Phoma andina var. crystalliniformis Loer., R. Navarro, M. Lôbo & Turkenst., Fitopatologia 21(2): 102. 1986.

- Phoma crystalliniformis (Loer., R. Navarro, M. Lôbo & Turkenst.) Noordel. & Gruyter, apud Noordeloos, de Gruyter, van Eijk & Roeijmans, Mycol. Res. 97: 1344. 1993.

Specimens examined: Colombia, Antiqboa, Rionegro, from a stem base of Lycopersicon esculentum, 1985, R. Navarro, holotype CBS H-3926, ex-holotype culture CBS 713.85 = ATCC 76027 = PD 63/926; Guachacal, from a leaf of Solidago tuberosum, Nov. 1985, W.M. Loerakker, CBS 771.85 = IMI 386091 = PD 85/772.

Stagonosporopsis cucurbitacearum (Fr.) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515660.

Basionym: Sphaeria cucurbitacearum Fr., Syst. Mycol. 2(2): 502. 1823.

- Phoma cucurbitacearum (Fr.) Sacc., Syll. Fung. 3: 148. 1884.
- Sphaeria bryoniae Fuck., Jahrb. Nassauschen Vereins Naturk. 23–24: 112. 1870.
- Didymella bryoniae (Fuckel) Rehm, Ber. Naturhist. Vereins Augsburg 26: 27. 1881.

Specimens examined: New Zealand, from Cucumis sp., 1979, CBS 133.96 = PD 79/127. The Netherlands, Horst, from Cucumis sp., 1991, J. de Gruyter, CBS 109171 = PD 91/310.

Note: Strain CBS 133.96 could not be identified morphologically, as it proved to be sterile.

Stagonosporopsis dennisi Boerema, Gruyter & Noordel., Persoonia 16(3): 350. 1997.

- Phoma dennisii Boerema, Trans. Brit. Mycol. Soc. 67(2): 307. 1976.

Specimens examined: Canada, Ontario, from a stem of Solidago canadensis, 1995, G.P. White, CBS 135.96 = IMI 19337 = PD 94/4756. The Netherlands, Arnhem, from a stem of Solidago florbunda, 1968, CBS 631.68 = PD 68/147.

Stagonosporopsis dorenboschii (Noordel. & Gruyter) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515661.

Basionym: Phoma dorenboschii Boerema, Trans. Wisconsin Acad. Sci. 50: 158. 1961.

- Phoma heliopsidis (H.C. Greene), Aa & Boerema apud Gruyter Boerema & van der Aa, Persoonia 19(1): 40. 2002.

Specimens examined: The Netherlands, Rijsenburg, from Physostegia virginiana, 1986, D. Kruger, holotype L, CBS 79/121, isotype CBS H-7604, ex-holotype culture CBS 426.90 = IMI 38893 = PD 86/551, from Physostegia virginiana, 1986, CBS 320.90 = PD 86/932.

Stagonosporopsis heliopsidis (H.C. Greene) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515662.

Basionym: Phyllosticta heliopsidis H.C. Greene, Trans. Wisconsin Acad. Sci. 50: 158. 1961.

- Phoma heliopsidis (H.C. Greene), Aa & Boerema apud G. Boerema Boerema & van der Aa, Persoonia 19(1): 40. 2002.

Specimens examined: Canada, Island of Montréal, from Ambrosia artemisiifolia, PD 95/6189 = DACM 221138. The Netherlands, from Heliopsis patula, 1974, CBS 109182 = PD 74/231.

Stagonosporopsis hortensis (Sacc. & Malbr,) Petr., Ann. Mycol. 19(1/2): 21. 1921.

Basionym: Hendersonia hortensis Sacc. & Malbr., in Saccardo, Michelia 2(8): 629. 1882.

- Phoma subbotchauseri Boerema, Gruyter & Noordel., Persoonia 16(3): 360. 1997.

Specimens examined: The Netherlands, from an unknown substrate, Mar. 1942, N. Hubbellinger, CBS 104.42; from Phaseolus vulgaris, 1979, G.H. Boerema, CBS 572.85 = PD 79/269.

Stagonosporopsis ligulicola var. inoxydabilis (Boerema) Aveskamp, Gruyter & Verkley, **comb. nov.** MycoBank MB515664.

Basionym: Didymella ligulicola var. inoxydabilis Boerema, Stud. Mycol. 32: 10. 1990.

Anamorph: Phoma ligulicola var. inoxydabilis Boerema, Stud. Mycol. 32: 10. 1990.

Specimens examined: The Netherlands, from Chrysanthemum parthenii, 1981, G.H. Boerema, holotype CBS H-7611, culture ex-holotype CBS 425.90 = PD 81/520, from Matricaria sp. 1985, J. de Gruyter, PD 85/259.
Stagonosporopsis ligulicola var. ligulicola (K.F. Baker, Dimock & L.H. Davis) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515663.
Basionym: Mycosphaerella ligulicola K.F. Baker, Dimock & L.H. Davis, Phytopathology 39: 799. 1949.
Anamorph: Phoma ligulicola var. ligulicola Boerema, Stud. Mycol. 32: 9. 1990.

Specimens examined: Germany, Berlin, from Chrysanthemum indicum, 1963, R. Schneider, CBS H-11952, culture CBS 500.63 = MUCJ 8090, The Netherlands, near Lisse, from a leaf of Chrysanthemum indicum, 1984, CBS 137.96 = PD 84/75.

Stagonosporopsis loticola (Died.) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515665.
Basionym: Phoma loticola Died., Kryptog.-Fl. Mark Brandenburg. 9, Plze 7(1): 152. 1912.

Specimens examined: New Zealand, Auckland, Mt. Albert, from Lotus pedunculatus, 1981, P.R. Johnston, isotype CBS H-7612, ex-isotype culture CBS 562.81 = PDCC 6844; Auckland, from the stem of Lotus tenuis, 1979, P.R. Johnston, CBS 628.97 = PD 79/12.

Stagonosporopsis lupini (Boerema & R. Schneid.) Boerema, Gruyter & P. Graaf, Persoonia 17(2): 283. 1999.
Basyslagen: Ascoscyta lupini Boerema & R. Schneid., apud Boerema Verslagen Meded. Plziektenk. Dienst Wageningen 162: 28. 1984.
≡ Phoma schneiderae (Boerema & R. Schneid.) Boerema, Gruyter & P. Graaf, Persoonia 17(2): 282. 1999.

Specimens examined: Peru, Puno, from Lupinus mutabilis, 1980, CBS H-9061, culture CBS 375.84 = PD 66/302; from Valerianella locusta var. oleracea, 1966, G.H. Boerema, holotype L 965.300.24, isotype CBS H-7631, ex-isolate culture CBS 329.67 = PD 66/302; from Valerianella locusta, 1982, CBS 273.92 = PD 76/1019.

Stagonosporopsis oculo-hominis (Punith.) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515666.
Basionym: Phoma oculi-hominis Punith., Trans Brit. Mycol. Soc. 67: 142. 1976.
≡ Phoma dennisii var. oculo-hominis (Punith.) Boerema, Gruyter & Noordel., Persoonia 16: 351. 1997.

Specimens examined: U.S.A., Tennessee, Nashville, from a man’s corneal ulcer, 23 Apr. 1975, Y.M. Clayton, ex-holotype culture CBS 634.92 = IMI 193307.

For a complete description see Punithalingam (1976) and Boerema et al. (1997).

Notes: Stagonosporopsis oculo-hominis is a species that thus far has been reported only once in a clinical case in Tennessee, U.S.A., when it was isolated from a man’s corneal ulcer (Punithalingam 1976). Due to morphological similarities it has been recombined into a variety of Ph. dennisii by Boerema et al. (1997), but the genetical data presented here suggest that this entity should be recognised at species level in Stagonosporopsis. It is distinguishable from S. dennisii by the absence of a diffusible pigment in the agar, and by the absence of a discolouration after application of NaOH to the culture. Further, the septate conidia are significantly smaller than those of S. dennisii: 9–16 × 4.5 μm versus 14.5–24 × 6–7 μm, respectively.

Stagonosporopsis rudbeckiae (Fairm.) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515667.
Basionym: Phoma rudbeckiae Fairm., Proc. Rochester Acad. Sci. 1: 51. 1890.

Specimen examined: The Netherlands, from Rudbeckia bicolor, 1979, CBS 109180 = PD 79/175.

Stagonosporopsis trachelii (Allesch.) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515668.
Basionym: Phoma trachelii Allesch., Fungi Novae exs. 4: 360. 1987.
≡ Ascochyta bohemicana Kabát & Bubák apud Bubák & Kabát, Hedwigia 44: 361. 1905.
≡ Stagonosporopsis bohemicana (Kabát & Bubák) Boerema, Gruyter & Noordel., Persoonia 16(3): 361. 1997.

Specimens examined: Sweden, Svalöv, from Campanula isophylla, 1968, W. Södergren, CBS H-8972, ex-holotype culture 384.68, The Netherlands, from a leaf of Campanula isophylla, 1977, CBS 379.91 = PD 77/675.

Notes: Although this species has been described in Stagonosporopsis before (as S. bohemicana, Boerema et al. 1997), this was based on a later homonym, and thus a recombination based on the oldest epithet is proposed here.

Stagonosporopsis valerianellae (Gindrat, Semecnik & Bolay) Aveskamp, Gruyter & Verkley, comb. nov. MycoBank MB515669.
Basionym: Phoma valerianellae Gindrat, Semecnik & Bolay, Revue Hort. Suisse Romande 40: 350. 1967.

Specimens examined: The Netherlands, Wageningen, from Valerianella locusta var. oleracea, 1966, G.H. Boerema, holotype L 965.300.24, isotype CBS H-7631, ex-isolate culture CBS 329.67 = PD 66/302; from Valerianella locusta, 1982, CBS 273.92 = PD 76/1019.

Residual species in the Didymellaceae:
The following Phoma species are embedded in the Didymellaceae, but could not be confidently assigned to one of the groups or new genera in this study due to lack of support for their respective clades. Several of the species listed here belong to this family based on LSU and/or ITS sequence data, but due to missing sequencing data on one of the loci used, these species could not be assigned. These species are provisionally retained under their current holomorph name until further analyses are conducted to place them in the new phylogenetic system.

Didymella macropodii Petr., Hedwigia 68: 219. 1928.
Anamorph: Phoma nigricans (P. Karst.) Boerema, Loer. & Wittern, J. Phytopathol. 115(3): 270. 1986.
Basionym: Sphaerenaema nigricans P. Karst., Medd. danmark. Soc. Fauna Fl. Fenn. 16: 17. 1888. (as "Sphaerenaema").

Specimens examined: Germany, from Brassica napus, 1982, G.H. Boerema, CBS 100190 = PD 82/736, Poland, from Gryce, from Thlaspi arvense, 1990, J. Marcinkowska, CBS 100191, The Netherlands, from an unidentified crucifer, 1984, G.H. Boerema, PD 84/512.

Didymella rabiei (Kovatsch.) Arx, in Müller & Arx, Beitr. Kryptogamenfl. Schweiz 11(2): 364. (1962).
Basionym: Mycosphaerella rabiei Kovatsch., The blight of chick pea: 70. 1936.
Anamorph: Phoma rabiei (Pass.) Khune ex Gruyter, Persoonia 18(1): 89. 2002.
Basionym: Zythia rabiei Pass., Comment. Soc. Crittog. Itali. 2(3): 437. 1867.

Specimens examined: India, from the seeds of Cicer arietinum, 1965, S. Sinha, CBS 534.65, Syria, from Cicer arietinum, 1961, W. Barz, CBS 518.83A.
Notes: The placement of this teleomorph in either the Didymella or Mycosphaerella has been debated regularly in the past (Müller and Arx 1962, Von Arx 1987, Trapero-Casas & Kaiser 1992, Wilson & Kaiser 1995, De Gruyter 2002, Barve et al. 2003). The most recent emendment was by De Gruyter (2002) who judged in favour of Mycosphaerella rabiei Kovatsch. ex Gruyter. However, as the genus Mycosphaerella is phylogenetically not linked with the Pleosporales (Schoch et al. 2006, 2009b, Crous et al. 2009c), the placement in Didymella appears to be more correct.

Didymella adianticola Aa & Boerema, Verslagen Meded. Plziektenk. Dienst Wageningen 159 (Jaarboek 1982): 25. 1983.

Anamorph: Phoma adianticola (E. Young) Boerema, Verslagen Meded. Plziektenk. Dienst Wageningen 159 (Jaarboek 1982): 25. 1983

Basionym: Phyllosticta adianticola E. Young, Mycologia 7: 144. 1915.

Specimens examined: Costa Rica, from a leaf of Polystichum adiantiforme, 1989, J. de Gruyter, CBS 258.92 = PD 89/1887 U.S.A., from a leaf of Polystichum adiantiforme, 1982, G.H. Boerema, CBS H-16142, culture CBS 187.83 = PD 82/128.

Phoma aliena (Fr.) Aa & Boerema, apud Gruyter, Noordeloos & Boerema, Persoonia 16(4): 486. 1998.

Basionym: Sphaeria aliena Fr., Syst. Mycol. 2(2): 502. 1823.

Specimens examined: The Netherlands, from a twig of Berberis sp., 1982, J. de Gruyter, CBS 379.93 = PD 82/945; near Boskoop, from a twig of Buxus sempervirens, 1994, J. de Gruyter, CBS 877.97 = PD 94/1401.

Phoma bulgarica Aveskamp, Gruyter & Verkley, sp. nov. MycoBank MB515671. Fig. 13. Pycnidia solitaria, subglobosa, elongata vel obpyriformia, glabra, epapillata, brunnea, superficialia vel in agar immersa, (140–)170–250(–295) μm. Pycnidia proved to be sterile. In older cultures pycnidial primordia are formed, which are surrounded by clusters of needle-shaped crystals.

Culture characteristics: Colonies on OA, 45–65 mm diam after 7 d, margin regular. Immersed mycelium hyaline, largely covered by mat of felty to compact whitish grey to lavender grey aerial mycelium; reverse iron-grey, but vinaceous-black where the aerial mycelium is present. Colonies on MEA 40–50 mm diam after 7 d,
margin regular. Immersed mycelium mainly hyaline, incidentally black when clustering into thicker hyphal strands. Aerial mycelium sparse, flat, olivaceous green to white near the colonies margin; reverse greenish olivaceous to olivaceous black. Colonies on CHA 70–85 mm diam after 7 d, or even covering the total agar surface, margin regular. Immersed mycelium as on MEA. Aerial mycelium occurring around the colony centre, white, compact to floccose; reverse leaden black. Application of NaOH did not have any effect.

Specimens examined: Bulgaria, Siliskoia, Stranda Mountain, from leaves of Trachystemon orientale, 20 June 1980, S. Vaney, holotype designated here CBS H-20242, ex-holotype culture CBS 357.84; from Trachystemon orientale, 1982, CBS 124515 = PD 82/1058.

Notes: Strain PD 82/1058 differed from CBS 357.84 (which is described above) by a significantly different colony pattern on MEA. This strain was characterised by a growth of ca. 20 mm diam. after 7 d, with a strongly lobate margin. White to buff aerial mycelium was present in a few irregular zones, and had a compact to floccose structure. Pycnidial primordia are only produced in culture on MEA after addition of an autoclaved piece of Urtica dioica (stinging nettle).

Phoma calidophila Aveskamp, Gruyter & Verkley, Mycologia 101: 368. 2009.

Specimens examined: Egypt, from desert soil, Feb. 1980, M.I.A. Abdel-Kader, neotype CBS H-20168, ex-neotype culture CBS 448.83. Unknown European origin, from Cucumis sativus, 1984, G.H. Boerema, CBS 84/109.

Phoma chenopodiicola Gruyter, Noordel. & Boerema, Persoonia 15(3): 395. 1993.

Specimens examined: Peru, from a stem of Chenopodium quinoa cv. Saiana, 1979, CBS 128.93 = PD 79/140; from a stem of Chenopodium quinoa cv: Saiana, 1979, CBS 129.93 = PD 89/803.

Phoma complanata (Tode) Desm., Michelia 2 (7): 337. 1881. Basionym: Sphaeria complanata Tode, Fungi Mecklenburg. Sel. (Lüneburg) 2: 22. 1791.

Specimens examined: The Netherlands, Tilburg, from a stem of Heracleum sphondyllum, Nov. 1997, H.A. van der Aa, CBS H-16194, culture CBS 100311; from a stem of Angelica sylvestris, 1974, G.H. Boerema, CBS 266.92 = PD 75/3.

Phoma crystallifera Gruyter, Noordel. & Boerema, Persoonia 15(3): 393. 1993.

Specimen examined: Austria, Kärnten, Wallenberg near Völkermarkt, from Chamaespartium sagittale, Apr. 1982, H.A. van der Aa, holotype L 992.177-456, ex-holotype culture CBS 193.82.

Phoma dactylidis Aveskamp, Gruyter & Verkley, sp. nov. MycoBank MB515671. Fig. 14.

Conidia dimorpha, intra idem pycnidium formata. Conidia typus 1 ellipsoidea vel ovoidae, interdum leniter allantoidae, glabra, hyalina, continua, 4.5–9(–9) μm, (2–)2.5–3.5 μm, (2–)2–3–6(–8) guttules. Conidia typus 2 cylindrica vel ellipsoidea, glabra, hyalina, saepe uniseptata, (9–)9.5–13.5(–14.5) × (2.5–)3.5–4.5 μm, interdum septata et guttulosa (2–)2–8(–15) in quoque cellula. Matrix conidiorum salmonae.

Etymology: Named after the associated plant host genus, Dactylis sp.

Conidiotoma pycnidial, solitary or confluous, produced on the agar surface, (sub-)globose, with some hyphal outgrows, (115–)135–230(–250) × (75–)95–195(–105) μm. Ostioles 1–4(–5), papillate. Pycnidal wall pseudoparenchymatous, composed of isodiametric cells, 4–8 cell layers, outer 2–4 cell layers pigmented, 10–27 μm thick. Conidigenous cells phialidic, hyaline, simple, smooth, flask-shaped, ca. 4.5–6.5 × 3–5 μm. Conidia dimorphic, both originating from the same pycnidium. Conidia of type 1: ellipsoid to ovoid, sometimes somewhat allantoid, thin-walled, smooth, hyaline, asperate 4.5–9(–9) × (2–)2.5–3.5 μm, with (2–)3–6(–8) guttules. Regularly also large conidia occur: cylindrical to ellipsoidal, thin-walled, smooth, hyaline, often uniseptate (9–)9.5–13.5(–14.5) × (2.5–)3.5–4.5 μm, but sometimes septate and septate somewhat constricted at the septum, with (2–)4–8(–15) guttules per cell. Conidial matrix salmon.

Culture characteristics: Colonies on OA, 40–45 mm diam after 7 d, margin regular. Immersed mycelium hyaline, but some greenish black zones may occur, with tufts of with aerial mycelium. Abundant greenish black pycnidia are scattered over the medium, which are salmon coloured near the colony margin; reverse concolourous. Colonies on MEA 45–50 mm diam after 7 d, margin regular. Immersed mycelium completely covered by a felty greyish white aerial mycelium; reverse grey-olivaceous, becoming brown-olivaceous near the colony margin. Colonies on CHA similar as on MEA, but somewhat faster growing, 55–60 mm diam. after 7 d; reverse completely black. Application of NaOH results in a slight greenish discoloration of the agar, best to be observed on OA medium.

Specimen examined: U.S.A., on Dactylis glomerata, 1973, holotype designated here CBS H-20237, ex-holotype culture CBS 124513 = PD 73/1414.

Notes: *Phoma dactylidis* has thus far only been isolated once from the leaves of *Dactylis glomerata* in Oregon, U.S.A. Other *Phoma* pathogens of *Dactylis* include *Ph. paspali* and *Ph. pratorum*, which both occur in New Zealand, but are relatively distantly related to *Ph. dactylidis*. Additionally, two related taxa have been found on this host, viz. the novel variety *Boeremia exigua var. gilvescens* and *Epicoccum nigrum* (Punithalingam et al. 1972). The clustering of this species suggests ecological or morphological similarities with *Ph. rhei* (BPP = 1.00; RBS = 100 %).

Phoma destructiva var. *destructiva* Plowr., Gard. Chron. II 16: 621. 1881.

Specimens examined: Guadeloupe, from fruit of Lycopersicon esculentum, 1987, CBS 133.93 = PD 88/961 = IMI 173142. Tonga, Friendly Islands, from decaying fruit of Lycopersicon esculentum, 1967, G.F. Laundon, CBS H-16200, culture CBS 378.73 = CECT 2877.

Phoma destructiva var. *diversispora* Gruyter & Boerema, apud De Gruyter, Boerema & Van der Aa, Persoonia 18(1): 28. 2002.

Specimen examined: The Netherlands, Berkel en Rodenrijs, from a leaf of Lycopersicon esculentum, Oct. 1977, G.H. Boerema, holotype CBS H-16199, ex-holotype culture CBS 162.78 = PD 77/725.

Phoma eupyreana Sacc., Michelia 1(5): 525. 1879.

Specimens examined: Germany, Kiel-Klitzeberg, from wheat field soil, 1966, W. Gams, CBS 527.66 = ATCC 22238; The Netherlands, from the tuber of Solanum tuberosum, 1991, J. de Gruyter, CBS 374.91 = PD 78/391.
Phoma herbarum Westend., Bull. Acad. Roy. Sci. Belgique, Cl. Sci. 19(3): 118. 1852.

Specimens examined: Belgium, Herb. Crypt. Belge. Fasc. 20, No. 965, lectotype, on stems of Onobrychis viciifolia, 1854, Sweden, Sofieheim, from wood pulp, Apr. 1937, E. Rennerfelt, CBS 276.37 = MUCL 9920. The Netherlands, Emmeloord, from the stem of Rosa multiflora cv. Cathayensis, Apr. 1965, G.H. Boerema, CBS 615.75 = PD 70/65 = IMI 199779; Naaldwijk, from a stem base of Nerium sp., 1986, J. de Gruyter, CBS 502.91 = PD 82/276; Oirschot, from a twig of Thuja sp., 1987, J. de Gruyter, CBS 503.91 = PD 87/499. U.K., from paint, Aug. 1936, K.S.G. Cartwright, CBS 109.36. U.S.A., Maryland, Washington area, from the fruit of Malus sylvestris, July 1963, M.A. Smith, CBS 567.63 = ATCC 15053 = MUCL 9889.

Phoma herbicola Wehm., Mycologia 38: 319. 1946.

Specimen examined: U.S.A., Montana, Missoula, head of Seeley Lake, from water, CBS H-16581, culture CBS 629.97 = PD 78/1017.

Phoma huancayensis Turkenst., Fitopatologia 13: 68. 1978.

Specimens examined: Peru, Dep. Junin, Huancayo, near Vallis Mantaro, from a stem of Solanum sp., Feb. 1974, L.J. Turkensteen, isotype CBS H-7609, ex-isotype culture CBS 105.60 = PD 75/908; from Chenopodium quinoa, 1977, CBS 390.93 = PD 77/1173.

Phoma longicolla Aveskamp, Gruyter & Verkley, sp. nov. MycoBank MB515672. Fig. 15.

Conidia late ellipsoidea vel ovoidea, glabra, hyalina, continua, 6–8.5(–10) × (3.5–)4–5(–5.5) μm, (2–)3–9(–12) guttulis polaris praedita. Matrix conidiorum cremeo-alba.

Etymology: Refers to the elongated necks of the ostioles.

Conidiomata pycnidial, initially solitary, globose, glabrous, slightly papillate and olivaceous buff, produced on the agar surface, measuring (45–)50–115(–130) μm diam. Later developing to black
broadly globose to irregular conidiomata with many white hyphal outgrows and with a clear elongated neck around the ostioles, giving it a irregular shape, measuring (170–)200–270(–285) × (115–)125–205(–220) μm. Ostioles 1–3(–4), on a long elongated neck (up to 200 μm long). Often these pycnidia merge to an irregular mass of confluent conidiomata. Pycnidial wall pseudoparenchymatous, composed of isodiametric cells, 5–7 layers, 17–22 μm thick. Conidiogenous cells phialidic, hyaline, simple, smooth, flask-shaped, ca. 4–5 × 3–5 μm. Conidia broadly ellipsoidal to ovoid, thin-walled, smooth, hyaline, aseptate 6–8.5(–10) × (3.5–)4–5(–5.5) μm, with (2–)3–9(–12) polar guttules. Conidial matrix crème-white.

Culture characteristics: Colonies on OA 50–55 mm diam. after 7 d, margin regular. Immersed mycelium hyaline with abundant pycnidia, in some sectors covered by a low mat of felty to floccose mouse grey aerial mycelium, with tufts of white mycelium near the colonies margin. In the sectors with aerial mycelium, pycnidia are only sparsely present; reverse hyaline, but leaden black and olivaceous grey where the aerial mycelium is present. Colony on MEA 50–55 mm diam. after 7 d, margin regular. Immersed mycelium completely covered by a floccose crème mat of white aerial mycelium; reverse greenish olivaceous to olivaceous-black. Colony on CHA 55–60 mm diam. after 7 d, margin regular. Immersed mycelium brown vinaceous to black. Aerial mycelium is occurring in sectors, felty, pale grey to white; reverse black with incidentally a pale purplish grey zone. Application of NaOH did not have any effect.

Specimens examined: Spain, Canary Isles, from Opuntia sp., 1980, J. de Gruyter, holotype designated here CBS H-20238, ex-holotype culture CBS 124514 = PD 801189; Canary Isles, Gran Canaria, from Opuntia sp., June 1982, H.A. van der Aa, CBS 347.82.

Fig. 15. Phoma longicolla (CBS 124514). A–C. Fourteen-day-old colonies on OA (A), MEA (B) and CHA (C). D–F. Pycnidia. G. Section of the pycnidial wall. H. Conidia. Scale bars: E–G = 100 μm; H = 50 μm; I–J = 10 μm.
Notes: This species was isolated twice from Opuntia on the Canary Isles. Around the time of the second isolation (CBS 347.82), also Ph. dimorpha sp. nov. was isolated from the same location and host substrate. This species is described above. A third species that is found in association with Opuntia is Ph. opuntiae, which is, however, rather distinct in morphology and phylogeny.

Phoma medicaginis var. **macrospora** Boerema, R. Pieters & Hamers, Neth. J. Pl. Path. 99(Suppl. 1): 19. 1993.

Specimens examined: Canada, Saskatchewan, Saskatoon, from seed of Medicago sativa, 1965, H.W. Mead, CBS 404.65 = IMI 116999. U.S.A., Minnesota, from Medicago sativa, Sep. 1953, M.F. Kemkamp, holotype CBS H-18467, ex-holotype culture CBS 112.53.

Phoma medicaginis var. **medicaginis** Malbr. & Roum. apud Roumeguère, Fungi Selecti Galliae Exc. 37: 3675. 1886.

Specimens examined: Czech Republic, from Medicago sativa, CBS 316.90 = CCM F-187. Italy, Perugia, from a leaf of Medicago sativa, 1963, M. Ribaldi, CBS H-16483, culture CBS 479.63. The Netherlands, from a leaf of Medicago sativa, 1966, M.M.J. Dorenbosch, CBS 533.66 = ATCC 16929 = PD 66/370. Turkey, Ankara, from Medicago sativa, 1942, S. Kuntay, Medicago 107.42. U.S.A., Minnesota, from Medicago sativa, Sep. 1953, M.F. Kemkamp, CBS 110.53; Minnesota, from Medicago sativa, Sep. 1953, M.F. Kemkamp, CBS 111.53.

Phoma microchlamydospora Aveskamp & Verkley, Mycologia 101: 374. 2009.

Specimens examined: U.K., from an unknown vegetable plant, 1990, D. Hyall, CBS 491.90; from leaves of Eucalyptus sp., 1994, A.M. Ainsworth, holotype CBS H-20147, ex-holotype culture CBS 105.95.

Phoma nebulosa (Pers.) Berk., Outl. Brit. Fung. (London): 314. 1860.

Basionym: *Sphaeria nebulosa* Pers., Observ. Mycol. 2: 69. 1799.

Specimens examined: Austria, Kaprun, from a stem of Urtica dioica, Jan. 1975, G.H. Boerema, CBS H-16510, culture CBS 503.75 = ATCC 32163 = DSM 63391 = IMI 194766 = PD 75/4. The Netherlands, from a stem of Mercurialis perennis, 1983, CBS 111.93 = PD 63/90.

Phoma negriana Thümm., Die Pilze des Weinstocks, Vienna: 185. 1878. Originally described as "Ph. negriana".

Specimens examined: Germany, Oberdollendorf am Rhein, from Vitis vinifera, July 1969, L. Kiewnik, CBS H-16511, culture CBS 358.71. The Netherlands, from Vitis vinifera, 1979, PD 79/74; from Vitis vinifera, 1979, PD 79/75; from Vitis vinifera, 1979, PD 79/76.

Phoma nigripycnidia Boerema, Gruyter & Noordel., Persoonia 16(3): 356. 1997.

Specimen examined: Russia, from a leaf of Vicia cracca, 1969, M. Ondnej, holotype L 992.163.150, ex-holotype culture CBS 116.96 = CCMF 243 = PD 95/7930.

Phoma omnivires Aveskamp, Verkley & Gruyter, Mycologia 101: 375. 2009.

Specimens examined: Belgium, Gembloch, from Phaseolus vulgaris, 1968, L. Obando, holotype CBS H-20151, ex-holotype culture CBS 341.86. India, Japalburi, from an unknown substrate, 1977, D.P. Tiwari, CBS 654.77. Papua New Guinea, Variarita National Park, from soil, Aug. 1995, A. Aiptoot, CBS 991.95. Variarita National Park. From soil, Aug. 1995, A. Aiptoot, CBS 992.95. Tanzania, from Statice sp., 1990, J. de Gruyter, CBS 123397 = PD 90/1555. The Netherlands, from Chrysanthemum indicum, 1981, J. de Gruyter, CBS 123396 = PD 81/122.

Phoma putaminum Speg., Atti Soc. Crittog. Ital. 3: 66. 1881.

Specimens examined: The Netherlands, from a branch of Ulmus sp., 1975, G.H. Boerema, CBS 372.91 = PD 75/960. Denmark, from the rhizosphere of Malus sylvestris, Mar. 1968, E. Sønderhousen, CBS 130.69 = CECT 20054 = IMI 331916.

Phoma rhei (Ellis & Everh.) Aa & Boerema apud De Gruyter, Boerema & Van der Aa, Persoonia 18 (1): 42. 2002.

Basionym: *Ascochyta rhei* Ellis & Everh., Proc. Acad. Nat. Sci. Philadelphia 1893: 160. 1893.

Specimen examined: New Zealand, from a leaf of *Rheum rhaetonicum*, CBS 109177 = LEV 15165 = PD 2000/941.

Phoma selaginellica Gruyter, Noordel., Aa & Boerema, Persoonia 15(3): 399. 1993.

Specimen examined: The Netherlands, from a leaf of Selaginella sp., 1977, G.H. Boerema, CBS 122.93 = PD 77/1049.

Phoma versabilis Boerema, Loer. & Hamers, Persoonia 16(2): 154. 1996.

Specimens examined: Germany, Westfalen, Oberdresselfendorf, from stems of Cardamine impatiens, Oct. 1925, A. Ludwig, holotype L 995.229.369. The Netherlands, Wageningen, from a stem of Silene sp., 1982, G.H. Boerema, CBS 876.97 = PD 82/1008; from Stellaria media, 2000, J. de Gruyter, PD 2000/1379.

DISCUSSION

What is *Phoma*?

According to the generic concept which is applied today, species of *Phoma* are relatively simple coelomycetes that are characterised by the *in vitro* production of mainly unicellular, hyaline conidia from monophialidial, doliform to flask-shaped conidiogenic cells in pycnidal conidiomata (Boerema & Bollen 1975).

Many species that currently are accommodated in sections *Paraphoma*, *Pilosa* and *Plenodomus* are phylogenetically basal to the *Didymellaceae*, in which most other *Phoma* taxa, including the type species are accommodated. These results support the work of Reddy *et al.* (1998), who advocated that the genus *Plenodomus* should be reinstalled as a separate genus. Torres *et al.* (2006b) subsequently made a novel description in this genus, *Pl. morganjonesii*. A paper by De Gruyter *et al.* is in preparation, in which all species of *Phoma* section *Plenodomus* recognised by Boerema *et al.* (1994, 1996) and Boerema & De Gruyter (1999), will be taxonomically revised.

However, in the present study, it has become clear that the phylogenetic boundaries between *Phoma* and several closely related genera that are defined on their conidial characters are ambiguous. Species that produce consistently two-celled hyaline conidia and morphological differences are phylogenetically basal to the *Didymellaceae*, in which most other *Phoma* taxa, including the type species are accommodated. These results support the work of Reddy *et al.* (1998), who advocated that the genus *Plenodomus* should be reinstalled as a separate genus. Torres *et al.* (2006b) subsequently made a novel description in this genus, *Pl. morganjonesii*. A paper by De Gruyter *et al.* is in preparation, in which all species of *Phoma* section *Plenodomus* recognised by Boerema *et al.* (1994, 1996) and Boerema & De Gruyter (1999), will be taxonomically revised.

The close relation of *Phoma* to *Ascochyta* appears to have evolved independently multiple times during evolution together with typical *Phoma* taxa, in several lineages of the pleosporalean tree (Fig. 1). Also other conidial characters, such as the pigmenta of spores, as formed by *Phoma clematidis-rectae* (formerly in *Coniothyrium*) and *Microsphaeropsis olivacea*, appear not to be reliable for the delimitation of the genus *Phoma*. Thus, based on the trees presented in this study, it can be concluded that *Phoma*, as defined by Saccardo (1880, 1884) and emended by Boerema & Bollen (1975) is highly polypheletic.

The close relation of *Phoma* to *Ascochyta* has often been observed before, as strains of both genera are often highly similar
in morphology (Wollenweber & Hochpfel 1937, Brewer & Boerema 1965, Boerema & Bollen 1975, Boerema 1997), physiology (Noordeloos et al. 1993, Faris-Mokiaesh et al. 1995), pathogenicity (Mendes-Perreira et al. 1999, Davidson et al. 2009) and nucleotide sequences (Faris-Mokiaesh et al. 1995, Fathei et al. 2003, Schoch et al. 2006, Peever et al. 2007, Chivers et al. 2009, De Gruyter et al. 2009). In the Saccardoan system, both genera were only distinguished by the presence or absence of conidial septa, and by the type of substrate: Ascochyta species were considered to be specific leaf-pathogens, whereas Phoma was solely associated with stem lesions (Boerema & Bollen 1975).

Brewer & Boerema (1965) contrasted the septation process of the conidia in Ascochyta pisi to this process in Phoma exigua. These authors suggested that in Phoma species eusepation occurs only after secession, whereas in Ascochyta the septation of the spores was considered to be an elemental part of conidiogenesis. Later, this was determined to be a genus-specific character (Boerema 1970). Additionally, Boerema and Bollen (1975) stated that both genera are distinct in conidiogenesis. According to these authors, the Ascochyta species produce conidia from either an accumulation of annelations, which give the conidigenous cell an annelidic appearance, or from a gradually thickening collar of periclinal annelations. In contrast, Phoma species produce true phialides with a collarette. This micromorphological difference of the conidiogenesis can only be observed using electron microscopy, as the appearance of a Phoma collarette is highly similar to the periclinal thickening of Ascochyta species. This observation is however not consistent with the conidial ontogeny of Ph. fumosa, which was observed to be annelidic by Sutton & Sandhu (1969).

The application of these characters for the purpose of generic delimitation was heavily questioned (Punithalingam 1979a), and nowadays these characters are hardly applied in the taxonomy of both genera, simply because the use of electron microscopy is expensive and sectioning of pycnidia is too time consuming. Due to this unclear classification system, and to the fact that not all species produce exclusively septate or asceptate conidia, species have synonyms in both genera (Boerema 1972, Boerema & Dorenbosch 1973, Van der Aa et al. 2000, Mel’nik 2000). Even nowadays the status of many species is unclear as Phoma and Ascochyta synonyms are often used simultaneously. Examples are Ph. rabiei and its synonym A. rabiei (Singh & Reddy 1993, Singh et al. 1997, Barve et al. 2003, Chongo et al. 2004, Pandé et al. 2005, Hernandez-Bello et al. 2006, Peever et al. 2007), and Ph. gossypicola and its synonym, A. gossypii (e.g. Shen et al. 2005). The concept of Ph. clavatidina has appeared to comprise several taxa belonging in multiple genera, amongst which a Didymella with an unnamed Ascochyta anamorph (Woudenberg et al. 2009).

The results presented in this study further suggest a close relation between Microsphaeropsis and Phoma. Morphological studies of members of both genera (Jones 1976) reveal that conidiogenesis is similar, although the conidia of Microsphaeropsis differ from those of Phoma by the dark pigmentation and the presence of a double-layered cell wall. The pigmentation occurs only after conidial secession. Therefore, young pycnidia with colourless pycnidia may be easily confused with a Phoma species (Boerema et al. 2004).

In general, it can be concluded that Phoma should only be regarded as a general concept, as members sharing this morphology are found throughout the Pleosporales, although most members are found in the Didymellaceae. The type species of Phoma is only distantly related to the other members of this genus, but relatively close to Ascochyta pisi, the type species of the older name Ascochyta. However, based on the results observed in the present study, this genus is poorly elucidated. Therefore, we opt to retain the taxonomy of Phoma as is, with the exception of the groups that can be resolved further, such as Boeremia, Epicoccum, Peyronellaea and Stagonosporopsis.

Taxonomic revisions

The observations presented in the present paper suggest that LSU and SSU data, which contain approximately 270 informative sites in the alignment, are sufficient to distinguish various major groups in the Pleosporales. However, other, more variable loci should also be analysed to determine the phylogenetical basis for the species that are congeneric with the ex-type strain of Phoma. These species were found throughout the pleosporalean phylogeny that was reconstructed in the present paper. Molecular studies on the species that are currently accommodated in the section Plenodomus and Pilosa are in progress (De Gruyter et al. in prep.).

The type species of the genus Phoma, Ph. herbarum, resides in the Didymellaceae clade, a result that is in congruence with the observations of De Gruyter et al. (2009). However, based on the data generated in the present study, also the type species of Ascochyta (A. pisi), Chaetosbolisia (C. erysiphoides), and Microsphaeropsis (M. olivaceae) are located in the same group (Fig. 2). Of those species, Phoma carries the oldest name, which was deposited by Fries in 1821, but as Phoma sensu Saccardo (1880) was conserved against Phoma Fries (McNeill et al. 2006), the genus Ascochyta, which was erected in 1830, would be the preferred name for the species in this genus. Nevertheless, because of the impact that recombination of Phoma in Ascochyta would have in phytopathology, we suggest to keep both generic names in use for the unresolved species in the Didymellaceae, disregarding the fact that both names are polyphyletic. Both genera can be regarded as polyphyletic concepts, until a proper study of the teleomorph genera related to the Didymellaceae has been conducted. Also the younger genera Chaetosbolisia and Microsphaeropsis should be retained as separate taxonomic entities, until at least all taxa are restudied both morphologically and phylogenetically. However, the clades that are resolved, and that are characterised by shared morphological or physiological characters, or have a shared ecological role, are elevated to generic level here. Consequences of this approach are the reinstatement of the genus Peyronellaea Goid., expansion of the formerly monotypic genus Epicoccum Link, emendment of the concept of Stagonosporopsis Died. and the erection of the novel genus Boeremia.

Teleomorph relations

In Phoma several teleomorphs have been recognised, but for the majority of Phoma species the sexual structures have yet to be discovered, as the induction of these structures requires special conditions; or simply because the species has lost its ability to propagate sexually. Boerema et al. (2004) only recognised ca. 40 species that produce teleomorphs.

The finding of multiple teleomorphs with phenotypically indistinguishable associated anamorphs is not uncommon in mycology, yet unwanted, and should be resolved in due course as more data become available. For example, such a situation also applies to major genera such as Aspergillus (Pitt & Samson 2007), Botryosphaeria (Crous et al. 2006), Geotrichum (De Hoog & Smith 2004), Mucosphaerella (Crous et al. 2009a, b) and Penicillium (Pitt 1979).
Boerema et al. (2004) linked *Phoma* to four teleomorph genera: *Didymella*, *Leptosphaeria*, *Mycosphaerella* and *Pleospora*. In recent studies it was shown that the association of *Phoma* with *Mycosphaerella* was untenable, because the involved teleomorphs were apparently morphologically similar but in fact *Didymella*. The genus *Mycosphaerella* is phylogenetically distinct and not even associated with the *Pleosporales* (Schoch et al. 2006, 2009a, b, Crous et al. 2009a, b), whereas their associated *Phoma* anamorphs proved to be genetically similar to *Didymella* (De Gruyter et al. 2009). As a consequence, the pawpaw (*Carica papaya*) pathogen *M. caricae* has been recombined into *D. caricae* in the present study.

Also the *Didymellaceae* clade is not yet completely resolved. Next to *Didymella*, also *Leptosphaerulina* and *Macroventuria* are accommodated in the *Didymellaceae*. *Macroventuria* resembles *Venturia* (Van der Aa et al. 1971); the ascospore morphology being highly comparable to that of *Didymella*. In contrast, *Leptosphaerulina* is distinct in morphology, producing ascospores with longitudinal and transverse septa, more resembling the ascospores of *Pleospora* and *Cucurbitaria* (Von Arx 1981). *Didymella* is a poorly studied genus that is in need of a comprehensive revision, as it plays such a crucial role in the delimitation of phytopathologically important genera. When studied more intensively, this genus may very well be split up into multiple genera that have a proper morphological basis. Sexual states have thus far only been reported for a limited number of *Phoma* species. It seems unlikely that the ability to produce sexual reproductive structures is lost in so many species, whilst other, closely related species, or even species that emerge from these "asexual" species, do have a teleomorph state. It may be assumed that the sexual state of these species is cryptic, and can only be induced under the right conditions. These teleomorph structures, that probably much resemble the sexual structures formed by the genus *Didymella*, are probably the missing links that are required for further taxonomical delineation of the species in the *Didymellaceae*.

Can the sections be maintained?

The present study was initiated chiefly to clarify the status of *Phoma* and to judge the validity of the sections introduced by Boerema (1997). Aveskamp et al. (2008) already illustrated the ambiguity of some sections, as multiple characters that are regarded to be section-specific may be present in a single species. For example, *Ph. zeae-maydis* was regarded as the type species of the section *Macrospora*, due to the presence of its relatively large asceptate spores (De Gruyter 2002). However, this species also produces multicellular chlamydospores, resembling the chlamydospores formed in species that are accommodated in the section *Peyronellaeae*. The recombination of this species into *Pey. zeae-maydis* in the present study, which is based on DNA phylogeny, indicates that the spore size is not an informative character at above-species level. Another example of the ambiguity of the Boeremaean section is *Ph. destructiva*. Intraspecific taxa of this species are accommodated in two sections: *Ph. destructiva* var. *diversispora* was accommodated in section *Phyllostictoides*, whereas the type variety was linked to section *Phoma* due to the absence of septate conidia. Boerema et al. (2004) acknowledged this ambiguity problem and were forced to key out several species in multiple sectional dichotomous keys. In the previous study of De Gruyter et al. (2009) this ambiguity could not be illustrated as only sectional representatives were included. Here it is illustrated that, although some sections can be partially maintained, most of the sections are not supported from an evolutionary perspective.

Section Heterospora

The majority of the species that were ascribed to *Phoma* section *Heterospora* is recovered in Group R, from which the species are all recombined into the genus *Stagonosporopsis* in the present paper. The type species of section *Heterospora* however, *Ph. heteromorphospora*, is recovered basal to the *Didymellaceae* together with *Ph. dimorphospora*. Also *Ph. samarorum* is not retrieved in the main *Phoma* clade, but is associated with the *Phaeosphaeriaceae*.

Also within the *Didymellaceae*, the *Heterospora* section appears to be polyphyletic as *Ph. aequiciliica*, *Ph. glaucii* and *Ph. clematidina* are distantly related to most other *Heterospora* species and form a distinct clade together with another *Clematidina* pathogen, *Ph. clematidis-rectae*, a species that has been regularly confused with the *Phoma clematidina* complex (Woudenberg et al. 2009). The species in this clade can be distinguished from the main body of the *Heterospora* species as they lack the production of large *Stagonosporopsis*-type conidia in culture, although smaller, septate conidia may occur.

Section Macrospora

The five large-spored species of the section *Macrospora* included in this study are found scattered throughout the *Didymellaceae*, indicating that spore size is not a good taxonomic criterion for delimiting taxa above species level. *Phoma zeae-maydis* is genetically similar to most *Peyronellaeae* species. This association is supported by the finding of dicytochlamydospores in most species in this clade (Aveskamp et al. 2009a).

Section Paraphoma

Also *Phoma* section *Paraphoma* (Van der Aa et al. 1990) appears to be polyphyletic. The section comprises 12 taxa that produce pycnidial conidiomata with setae (De Gruyter & Boerema 2002). Members of this section are found in clades 5, 6, and 8 of Fig. 1. *Phoma gardeniae* is the only setae-producing species known in the *Didymellaceae*. Because of its ability to produce dicytochlamydospores, and based on the DNA phylogeny presented in Fig. 2, it is recombined into the genus *Peyronellaeae* here.

The type species for the former section *Paraphoma* is *Ph. radicina*, which is accommodated in the *Phaeosphaeriaceae* group (clade 6). Remarkably, no other species that were ascribed to the section *Paraphoma* are found in the same family. Instead, *Ph. chrysanthemica* (formerly ascribed to the section *Peyronellaeae*) is found in close association with *Ph. radicina*. Both species are recognised as soil fungi and have a wide distribution with records from Europe, North-America and Asia (Boerema et al. 2004). The close association between *Ph. samarorum*, *Ph. chrysanthemica* and *Ph. radicina* has been recorded before in a phylogenetical reconstruction of the section *Peyronellaeae* in a study of Aveskamp et al. 2009a. The resolution of the clade in that study was, however, higher as the complete ITS regions 1 and 2 were applied and based on the phylogenetical reconstruction of the section *Peyronellaeae* in a study of Aveskamp et al. 2009a. Further linkage of the morphological and ecological characters to the phylogeny will be one of the main challenges for taxonomists working on the species in this group.

A third *Paraphoma* species, *Ph. tericola*, is recovered in clade 5 of Fig. 1, which resembles the *Cucurbitaceae*. This family
also hosts the setae-lacking species *Ph. pratorum*, which was
classified in section *Phoma*. Several other coelomycete fungi are
accommodated here as well, including *Phialophorophoma litoralis*,
Pleurophoma cava, a sterile strain that once has been identified as
Coniothyrium sp. and various *Pyrenochaeta* species. The close
morphological relation between the genera *Pyrenochaeta*,
Pleurophoma and *Phoma* section *Paraphoma* was already
noted by Boerema *et al.* (1996) and Grondona *et al.* (1997). Like
Phialophorophoma litoralis and *Pleurophoma cava*, *Pyrenochaeta*
is characterised by the formation of elongated, filiform, multiseptate
conidiophores, a character that is however not found in the various
Phoma species embedded in this clade (De Gruyter *et al.* 2009). A further
delineation of the species associated with the genera *Pyrenochaeta* and *Pleurophoma*
and the *Phoma* section *Paraphoma* will be provided in a follow-up paper by De Gruyter
et al. (2010).

Section Peyronellae
The chlamydospore-producing species have been treated before
by Aveskamp *et al.* (2009a), who revealed that also *Phoma* section
Peyronellae is artificial from an evolutionary point of view. Most
species, including the type *Ph. glomerata*, cluster in group K of Fig.
2, along with many other (uni- and multicellular) chlamydospore
producing species. To be in accordance with the phylogenetic
results, this cluster is elevated to generic level, which is named after
the section *Peyronellae*. A second group of species belonging to
this section is recovered in clade L, which groups species that
produce botryoid or epicoccoid dictyochlamydospores, including
Epicoccum nigrum. Two species, *Ph. pimprina* and *Ph. sorghina*
are recombined into *Epicoccum* here. Species that produce
pseudoscleroid chlamydospores, such as *Ph. violicicola* and *Ph.
chrysanthemicola* were found to cluster outside the *Didymellaceae*.

Section Phoma
Species ascribed to *Phoma* section *Phoma* are retrieved in
practically all clades of the trees produced in the present study.
This supports the general idea that this section has been used as a
“waste-bin” for phomoid taxa that could not be placed in other
sections or genera due to the lack or presence of typical sectional
characters.

The type species of this section, and also of the genus as a
whole, is *Ph. herbarum* (Boerema 1964). The reference strains of
this species are accommodated amongst the basal polytomous
species of the *Didymellaceae*. This suggests that it has branched
off from most other members of this family in an early phase of the
development of the *Didymellaceae* and probably evolved further
without recombining with other taxa.

Although the description of *Ph. crinicola* is highly similar to
that of other species in the *B. exigua* clade presented in Fig. 2, it has
never been recognised as such due to the absence of septate
conidia. Nevertheless, the remaining characters do not contradict
with the description given for *Ph. exigua* (Van der Aa *et al.* 2000).
The pycnidia of *Ph. crinicola* usually carry a single ostiole, but
pycnidia are regularly observed lacking an apparent ostiole. This
may correspond with the ostiolar openings of many species found
within the exigua clade, which are often lined or filled with papillate,
hyaline cells.

Similar findings are *Ph. aurea* and *Ph. nigricans* in clade K,
which is mainly filled with chlamydospore-forming species that were
previously associated with the section *Peyronellae*. Both species
were originally described from New Zealand (Johnston & Boerema
1981, De Gruyter *et al.* 1993), but may be commonly present on
the whole Australasian continent (De Gruyter *et al.* 1993, 1998).
Two other species, belonging to section *Phoma*, but found in this
clapd are *Ph. anserina* and *Ph. eucalyptica*. Both species produce
swollen cells in older cultures (De Gruyter & Noordeloos 1992),
which may be an initial phase of chlamydospore formation.

Fifteen species are phylogenetically only distantly related to the
Didymellaceae, and should therefore be excluded from the genus.
These species include the current *Ph. apicola*, *Ph. capitulum*, *Ph.
falens*, *Ph. fimeiti*, *Ph. flavescens*, *Ph. flavigena*, *Ph. glaucispora*,
Ph. haematocycla, *Ph. lini*, *Ph. minitispora*, *Ph. multiparta*, *Ph.
opuntiae*, *Ph. pratorum*, *Ph. valerianiae*, and *Ph. vasinfecta*.
The problem in recombining these species is, however, the absence
of characters that could link these taxa to a specific genus. No
teleomorphs are known in this group.

Section Phyllostictoides
All taxa belonging to *Phoma* section *Phyllostictoides* are retrieved in
the *Didymellaceae* clade of Fig. 1 (Clade 8). This is remarkable
as this large section has been regarded, just like section *Phoma*,
to be a repository for all species that could not be accommodated
elsewhere. Nevertheless, within the *Didymellaceae* this section
falls apart as species occur in many distinct clades.

The major body of the *Phyllostictoides* species is retrieved in
group N, in which all *Ph. exigua*-related species and varieties are
found (Aveskamp *et al.* 2009b), as well as *Ph. crinicola* and *Ph.
hedericola*, which were associated with *Phoma section Phoma*.
A second group in which many *Phyllostictoides* taxa cluster is
clade R. This clade comprises many species of the former section
Heterospora, and several species that were excluded from this
section and transferred to *Phyllostictoides* by Boerema *et al.*
(1997), such as *Ph. cucurbitacearum* and *Ph. ligulicola*.

Section Pilosa
Only one of both members of the section *Pilosa* was included in
the present study. The type of this section, *Ph. betae*, produces a
teleomorph in *Pleospora*, a genus that is typified by *Pl. herbarum*.
Both species are related and are found in the *Pleosporaceae* and
Leptosphaeriaceae clade, although the genetic distance between
these species is significant. This finding illustrates the difficulties
that are experienced when delineating the *Pleosporaceae* (Dong
et al. 1998).

Section Plenodomus
Thus far the only section created by Boerema that still may be
monophyletic is the section *Plenodomus*, of which all the
members are found in the *Leptosphaeriaceae*. However, some
species associated with other sections, such as *Ph. apicola*,
Ph. valerianiae, *Ph. vasinfecta* (section *Phoma*) and *Ph. violicola*
(section *Peyronellae*) are also linked to this clade and are found
to be closely related to the *Plenodomus* species. The section
Plenodomus is associated with a *Leptosphaeria* teleomorph, but
for the aberrant *Phoma* states found in this clade, no teleomorphs
are known. Boerema *et al.* (2004) mentioned five *Leptosphaeria*
species that produce *Phoma* anamorphs, but that do not fit within
the *Plenodomus* concept. These species, including *L. sacchari*, *
Haemattis*, *L. libanotis*, *L. purpurea* and *L. weimeri* were however
not to our disposal, and were therefore not studied. Apparently the
genus *Leptosphaeria* produces multiple anamorphs.

Most taxonomic studies on the *Leptosphaeriaceae* reveal
a monophyletic group, although in these studies, only a limited
number of species, belonging to either Leptosphaeria or Phoma section Plenodorus, have been included (Morales et al. 1995, Reddy et al. 1998, Torres et al. 2005b). Other studies indicate that this genus is paraphyletic (Dong et al. 1998, Câmara et al. 2002). Due to the inclusion of only two Leptosphaeria species in the present study, it cannot be unambiguously stated whether this section is mono- or paraphyletic.

Both species included, L. maculans and L. biglobosa, are assumed to represent a heterogeneous assemblage of cryptic taxa (Howlett et al. 2001, Mendes-Pereira et al. 2003, Barrins et al. 2004, Voigt et al. 2005). Although many recombinations have been made in the past, this has obscured a proper understanding of Phoma section Plenodorus and Leptosphaeria (Boerema et al. 1996). Due to the complexity of this group, we will attempt to resolve its phylogeny in a separate paper (De Gruyter et al. prep.).

Section Sclerophomella

The thickened, sclerotised pycnidial wall, and the formation of poroid pycnidial openings instead of an ostiole, are the main characters of Phoma section Sclerophomella. These characters appear not to reflect the evolutionary history of the genus. Only in group O, a cluster of species is retrieved that is known for their ostiolar absence, although not in all species the thickened pycnidial wall is observed. Most other species belonging to section Sclerophomella appear to be unrelated as they have emerged from non-Sclerophomella multiple times during evolution. Therefore these species are found scattered throughout the phylogeny of the Pleosporales. The type species of this section is Ph. complanata, which is found in the basal polytomy of the Didymellaceae.

Many of the morphological characters that were used by Boerema et al. (1997) to create an infrageneric subdivision of Phoma, appear not to be evolutionary informative when compared to sequence data. The main characters that were applied to distinguish sections, like the thickness of the pycnidial walls, chlamydospore structure and presence of Stagonosporopsis synanamorphs are only of limited value. Several characters, such as percentage of septated spores may be genetically driven, but are certainly also highly influenced by the growth media and culturing conditions (Rai 2000). This has led to much confusion surrounding the taxonomic placement of many species in either Ascoscyta or Phoma, such as A. rabiei (e.g., Barve et al. 2003, Pande et al. 2005, Peever et al. 2007) vs. Ph. rabiei (e.g., Singh & Reddy 1993, Singh et al. 1997, De Gruyter 2002).

In short, the Boeremaean sectional subdivision is hardly of any evolutionary relevance, suggesting that future classification of taxonomic novelties into these sections should be avoided. Nevertheless, the morphological identification system that was developed based on this subdivision (Boerema et al. 2004) is still applicable, as this system can be still aid in morphological species recognition.

DNA Barcoding

A further aim of this study was the development of species-specific DNA barcodes for species of Phoma. The preferred DNA barcode region for Fungi is ITS (Druzhininia et al. 2005, Summerbell et al. 2005, Seiffert 2008, 2009). Cytochrome Oxidase I (COI) was for a long time considered to be a good candidate gene for barcoding fungi (Seiffert et al. 2007, Nguyen & Seiffert 2008), although some recent studies indicate the variation between copies within a single strain (Geiser et al. 2007, Gilmore et al. 2009). Also Aveskamp et al. (2009b) found that the COI locus was not robust, and thus far, COI barcodes have only been applied in an oligonucleotide array identification system for Penicillium spp. (Chen et al. 2009). The value of ITS as primary barcode region is, however, not sufficient to delineate all taxa. Especially amongst the species clustered in clade N, which represents the species that are associated to the Ph. exigua species complex, ITS is not sufficient to distinguish the various species. This finding is in congruence with results obtained in previous studies, in which the ITS region has been applied in an attempt to distinguish the species within the Ph. exigua complex but without success (MacDonald et al. 2000, Ablein et al. 2002, Cullen et al. 2006). Nevertheless, the other taxa included in this study have been found on long-branched clades, which are mainly due to the variation in TUB and ITS sequences. Another locus that is considered to be helpful for developing DNA barcodes, and which can distinguish many more taxa in the Ph. exigua complex is the Actin gene (Aveskamp et al. 2009b), which is sequenced with a primer combination developed by Carbine & Kohn (1999). This locus has, however, not been included in the present study, as infraspecific genetic variation, even within the Didymellaceae, was too high to align the obtained sequences. Also Calmodulin and Translation Elongation Factor 1-α loci have been tested, but none of the primers combinations used (Carbone & Kohn 1999) could guarantee successful amplification of all strains.

Observations and results presented here represent only a preliminary step towards resolving questions related to the taxonomy of the genus Phoma. With the numerous species awaiting to be discovered, the taxonomic system of this complex will probably be changed again as more clades are added. Nevertheless, it is hoped that the present study on Phoma systematics, together with the “Phoma Identification Manual”, will provide a solid foundation on which the Didymellaceae in general, and the Phoma species in particular, can be further delineated.

ACKNOWLEDGEMENTS

We thank Mrs Karin Rosendahl-Peters (Plantenziektenkundige Dienst), Dr Amy Rossman (Systematic Botany and Mycology Laboratory), Prof dr dr hc mult. Wolfgang E. Krümbien and Dr Gotobushia (University of Odenburg) for providing cultures. Jeroen Konings (Huberecht Laboratory, Utrecht) is thanked for his help in preparing the microscope slides. Dr Cecile Guéidan is kindly thanked for her comments on Phoma paspali. Many thanks also to Mrs Trix Merckx and Mrs Arien van Iperen who helped us with the deposit of strains and herbarium material. Mrs Marjan Vermaas is kindly thanked for her assistance in preparing the photoplates. This research is supported by the Dutch Ministry of Agriculture, Nature and Food Quality through an endowment of the FES programme “Versterking infrastructuur Plantenziektenkunde”.

REFERENCES

Aa HA van der (1971). Macroventuria, a new genus in the Venturinaceae. Persoonia 6: 359–363.
Aa HA van der (1973). Studies in Phyllosticta I. Studies in Mycology 5: 1–110.
Aa HA van der, Kesteren HA van (1979). Some pycnidial fungi occurring on Atriplex and Chenopodium. Persoonia 10: 267–276.
Aa HA van der, Kesteren HA van (1980). Phoma heteromorphospora nom. nov. Persoonia 10: 267–276.
Aa HA van der, Vanes S (2002). A revision of the species described in Phyllosticta. Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands.
Aa HA van der, Noordeloos ME, Gruyter J de (1990). Species concepts in some larger genera of the Coelomycetes. Studies in Mycology 32: 3–19.
Aa HA van der, Boerema GH, Gruyter J de (2000). Contributions towards a monograph of Phoma (Coelomycetes) – VI-1. Section Phyllostictoides:
Rai MK (2000). The genus Phoma (Identity and Taxonomy). International Book Distributors, Dehra Dun, India.

Rai M, Deshmukh P, Gade A, Ingle A, Kovic GJ, Iriyji L (2009). Phoma Saccardo: Distribution, secondary metabolite production and biotechnological applications. Critical Reviews in Microbiology 35: 182–196.

Rayner RW (1970). A mycological colour chart. Commonwealth Mycological Institute and British Mycological Society, Kew, Surrey, U.K.

Reddy PV, Patel R, White Jr JF (1998). Phylogenetic and developmental evidence supporting reclassification of cruciferous pathogens Phoma lingam and Phoma wasabiae in Plenodomus. Canadian Journal of Botany 76: 1916–1922.

Redfern DB, Sutton BC (1981). Canker and dieback of Ulmus glabra caused by Plectosphaerella concinna, and its relationship to Ph. ulmi. Transactions of the British Mycological Society 77: 381–390.

Rehner SA, Samuel CJ (1994). Taxonomy and phylogeny of Glociadium analysed from nuclear large subunit ribosomal DNA sequences. Mycological Research 98: 625–634.

Reynolds RK (1999). Capnodiurn citri: The sooty mold fungus comprising the taxon concept. Mycopathologia 148: 141–147.

Robert V, Stegehuis G, Stalpers JA (2005). The MycoBank engine and related databases. http://www.mycobank.org. Accessed October 16th, 2009.

Röder K (1937).

Saccardo PA (1880). Conspectus generum fungorum Italiae inferiorum nempe ad genus Saccas AM (1981).

Saccardo PA (1884). Sylloge Sphaeropsidearum et Melanconiearum omnium sporologico dispositorum.

Salgado M, Lima CS, Almeida AR, Santos LL, Pfenning LH (2007). Primeiro relato de Plenodomus as a fish pathogen.

Schoch CL, Sung G-H, López-Giráldez F, Townsend JP, Miadlikowska J, Suetrong S, Schoch CL, Spatafora JW, Kohlmeyer J, Volkmann-Kohlmeyer B, et al. (2009). Molecular systematics of the marine Dothideomycetes. Studies in Mycology 65: 155–173.

Sørensen JL, Aveskamp MM, Thrane U, Andersen B (2009). Chemical characterization of Phoma pomorum isolated from Danish maize. International Journal of Food Microbiology, epub. ahead of print, doi 10.1016/j.

Stamatakis A, Ludwig T, Meier H (2005). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21: 456–463.

Stamatakis A, Hoover P, Rougoutet J (2008). A rapid bootstrap algorithm for the RAxML Web-Servers. Systematic Biology 57: 758–771.

Suetrong S, Schoch CL, Spatafora JW, Kohlmyer J, Volkmann-Kohlmeyer B, et al. (2009). Molecular systematics of the marine Dothideomycetes. Studies in Mycology 65: 155–173.

Sullivan RF, White Jr JF (2000). Phoma glomerata as a mycoparasite of powdery mildew. Applied and Environmental Microbiology 66: 425–427.

Summerbell RC, Lévesque CA, Seifert KA, Bovens M, Fell JW, et al. (2005). Microcoding: the second step in DNA barcoding. Philosophical Transactions of the Royal Society B 360 (1462): 1987–1993.

Sørensen JL, Aveskamp MM, Thrane U, Andersen B (2009). Chemical characterization of Phoma pomorum isolated from Danish maize. International Journal of Food Microbiology, epub. ahead of print, doi 10.1016/j.

Taylor PWJ, Ford R (2007). Diagnostics, genetic diversity and pathogenic variation of ascocytta blight of cool season food and seed legumes. European Journal of Plant Pathology 119: 127–133.

Taylor PWJ, Ford R (2007). Diagnostics, genetic diversity and pathogenic variation of ascocytta blight of cool season food and seed legumes. European Journal of Plant Pathology 119: 127–133.

Trapero-Casas A, Kaiser WJ (1992). Development of Didymella rabiei, the teleomorph of Ascochyta rabiei, on chickpea straw. Phytopathology 82: 1261–1266.

Torres MS, Bergen M, Singh S, Bischoff JF, Sullivan RF, White Jr JF (2005a). A molecular phylogeny of the Dothideomycetes using four nuclear loci.

Torres MS, White Jr JF, Cazares G, Bergen M, Bischoff JF, Sullivan RF (2005b). A molecular phylogeny of the Dothideomycetes using four nuclear loci.

Taylor PWJ, Ford R (2007). Diagnostics, genetic diversity and pathogenic variation of ascocytta blight of cool season food and seed legumes. European Journal of Plant Pathology 119: 127–133.

Taylor PWJ, Ford R (2007). Diagnostics, genetic diversity and pathogenic variation of ascocytta blight of cool season food and seed legumes. European Journal of Plant Pathology 119: 127–133.

Taylor PWJ, Ford R (2007). Diagnostics, genetic diversity and pathogenic variation of ascocytta blight of cool season food and seed legumes. European Journal of Plant Pathology 119: 127–133.

Taylor PWJ, Ford R (2007). Diagnostics, genetic diversity and pathogenic variation of ascocytta blight of cool season food and seed legumes. European Journal of Plant Pathology 119: 127–133.

Taylor PWJ, Ford R (2007). Diagnostics, genetic diversity and pathogenic variation of ascocytta blight of cool season food and seed legumes. European Journal of Plant Pathology 119: 127–133.

Taylor PWJ, Ford R (2007). Diagnostics, genetic diversity and pathogenic variation of ascocytta blight of cool season food and seed legumes. European Journal of Plant Pathology 119: 127–133.

Taylor PWJ, Ford R (2007). Diagnostics, genetic diversity and pathogenic variation of ascocytta blight of cool season food and seed legumes. European Journal of Plant Pathology 119: 127–133.

Taylor PWJ, Ford R (2007). Diagnostics, genetic diversity and pathogenic variation of ascocytta blight of cool season food and seed legumes. European Journal of Plant Pathology 119: 127–133.

Taylor PWJ, Ford R (2007). Diagnostics, genetic diversity and pathogenic variation of ascocytta blight of cool season food and seed legumes. European Journal of Plant Pathology 119: 127–133.

Taylor PWJ, Ford R (2007). Diagnostics, genetic diversity and pathogenic variation of ascocytta blight of cool season food and seed legumes. European Journal of Plant Pathology 119: 127–133.

Taylor PWJ, Ford R (2007). Diagnostics, genetic diversity and pathogenic variation of ascocytta blight of cool season food and seed legumes. European Journal of Plant Pathology 119: 127–133.

Taylor PWJ, Ford R (2007). Diagnostics, genetic diversity and pathogenic variation of ascocytta blight of cool season food and seed legumes. European Journal of Plant Pathology 119: 127–133.
Voigt K, Malgorzata J, Wöstemeyer J (2001). Strain typing of Polish Leptosphaeria maculans isolates supports at the genomic level the multispecies concept of aggressive and non-aggressive strains. *Microbiological Research* **156**: 169–177.

Voigt K, Cozijnsen AJ, Krommann J, Pöggeler S, Howlett BJ (2005). Phylogenetic relationships between members of the crucifer pathogenic *Leptosphaeria maculans* species complex as shown by their mating type (MAT1–2), actin, and β-tubulin sequences. *Molecular Phylogenetics and Evolution* **37**: 541–557.

Voronin LV (1989). *Phoma* Sacc. species from the water and fish of freshwater reservoirs. *Mikologia i Fitopatologia* **23**: 19–27.

White JF, Morgan-Jones G (1987). Studies in the genus *Phoma*. VI. Concerning *Phoma medicaginis* var. *pinodeila*. *Mycotaxon* **28**: 241–248.

Wollenweber HW, Hochapfel H (1936). Beiträge zur Kenntnis parasitärer und saprophytotischer Pilze. I. *Phomopsis, Dendrophoma, Phoma* und *Ascochyta* und ihre Beziehung zur Fruchtfäule. *Zeitschrift für Parasitenkunde* **8**: 561–605.

Woudenberg JHC, Aveskamp MM, Gruyter J de, Spiers AG, Crous PW (2009). Multiple *Didymella* teleomorphs are linked to the *Phoma clematidina* morphotype. *Persoonia* **22**: 56–62.

Xianshu Y, Strobel G, Stierle A, Hess WM, Lee J, Clardy J (1994). A fungal endophyte-tree relationship: *Phoma* sp. in *Taxus wallachiana*. *Plant Science* **102**: 1–9.

Yarden O, Ainsworth TD, Roff G, Leggat W, Fine M, Hoegh-Guldberg O (2007). Increased prevalence of ubiquitous ascomycetes in an acropoid coral (*Acropora formosa*) exhibiting symptoms of brown band syndrome and skeletal eroding band disease. *Applied and Environmental Microbiology* **73**: 2755–2757.

Zhang Y, Schoch CL, Fournier J, Crous PW, Gruyter J de, et al. (2009). Multi-locus phylogeny of the Pleosporales: a taxonomic, ecological and evolutionary re-evaluation. *Studies in Mycology* **64**: 85–102.

Wilson AD, Kaiser WJ (1995). Cytology and genetics of sexual incompatibility in *Didymella rabeii*. *Mycologia* **87**: 795–804.