Supplementary Online Content

Labban M, Dasgupta P, Song C, et al. Cost-effectiveness of robotic-assisted radical prostatectomy for localized prostate cancer in the UK. *JAMA Netw Open*. 2022;5(4):e225740. doi:10.1001/jamanetworkopen.2022.5740

eTable 1. Clinical and Resource Utilization Parameters
eTable 2. Utility Parameters
eTable 3. Cost Parameters in the Model
eTable 4. Surgical Equipment Cost
eTable 5. Micro-costing for the Treatment Cost Associated With Dysfunctional Outcome
eTable 6. Micro-costing for the Treatment Cost Associated With Radiation Therapy Adverse Event
eTable 7. Micro-costing for the Cost Associated With Distant Metastasis Treatment
eFigure 1. Deterministic Sensitivity Analysis
eFigure 2. Cost-effectiveness Acceptability Curve at Willingness-to-Pay
eFigure 3. The ICER Plane of RARP vs ORP and RARP vs LRP From Monte Carlo Simulation
eMethods. Statistical Analysis Plan

This supplementary material has been provided by the authors to give readers additional information about their work.
eTable 1. Clinical and Resource Utilization Parameters

	Base Case Value	Range	Distribution	Source		
	Lower-bound	Upper-bound				
Perioperative						
Operating room (mins)						
ORP	179.03	129.91	170.91	Gamma	DeCarlo 2013	
LRP	236.54	182.91	240.91	Gamma	DeCarlo 2013	
RARP	187.91	150.33	225.49	Gamma	DeCarlo 2013	
Length of Stay						
ORP	4.7	3.76	5.64	Gamma	Laird 2015	
LRP	2.9	2.32	3.48	Gamma	Laird 2015	
RARP	2.5	2.00	3.00	Gamma	Laird 2015	
Conversion to Open						
LRP	1.60%	1.28%	1.92%	Beta	Laird 2015	
RARP	0.00%	0.00%	1.92%	Beta	Laird 2015	
Complication						
ORP						
Clavien 1	4.00%	3.20%	4.80%	Beta	Yaxley 2016	
Clavien 2	2.00%	1.60%	2.40%	Beta	Yaxley 2016	
Clavien 3a	1.30%	1.04%	1.56%	Beta	Yaxley 2016	
Clavien 3b	2.00%	1.60%	2.40%	Beta	Yaxley 2016	
Clavien 4	1.30%	1.04%	1.56%	Beta	Yaxley 2016	
LRP						
Clavien 1	4.10%	3.28%	4.92%	Beta	Robertson 2013	
Clavien 2	7.20%	5.76%	8.64%	Beta	Robertson 2013	
Clavien 3a	1.30%	1.04%	1.56%	Beta	Robertson 2013	
	Clavien 3b	Clavien 4	Clavien 2	Clavien 3a	Clavien 3b	Clavien 4
------------------	-----------	----------	-----------	-----------	-----------	----------
	3.60%	2.88%	4.32%	0.60%	0.00%	0.00%
	2.88%	0.64%	0.96%	0.48%	0.00%	0.00%
	4.32%	2.00%	3.00%	0.72%	0.00%	0.00%
	0.00%	1.04%	1.56%	0.00%	0.00%	0.00%
	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Mortality						
ORP	0.1%	0.7%	13.0%			
LRP	0.04%	0.03%	0.05%			
RARP	0.04%	0.01%	0.08%			
functional Outcome						
Sexual dysfunction						
ORP	49%	39.2%	58.8%			
LRP	40%	32%	48%			
RARP	28%	22.4%	33.6%			
Urinary incontinence						
ORP	11%	8.8%	13.2%			
LRP	10%	8%	12%			
RARP	9%	7.2%	10.8%			
Bladder neck contracture						
ORP	4.5%	3.6%	5.4%			
LRP	2.1%	2%	3%			
RARP	0.8%	0.064%	0.096%			
Receiving Salvage Therapy after BCR						
Radiation therapy	20.0%	16%	24%			

© 2022 Labban M et al. JAMA Network Open.
Description	ADT	ADT+Radiation therapy	Hazard Ratio: BCR RARP vs. ORP (ref) (1-5 years)	Hazard Ratio: BCR RARP vs. ORP (ref) (5+ years)	Risk Ratio BCR RARP vs. LRP (ref) (1-5 years)	Annual transition probability from recurrence to metastasis state	Annual survival rate for metastatic disease	Reference
Transitional Probability								
Transitional probability from surveillance to recurrence	0.8	0.64	0.81	0.62	0.89	0.72	0.59	Wang 2017
5-yr RARP Biochemical free survival rate (%)	0.64	0.96	1.06	1.10	0.73	8.4%		Wang 2017
Hazard Ratio: BCR RARP vs. ORP (ref) (5+ years)	0.89	1.06	1.06	1.10	0.73	8.4%		Wang 2017
Risk Ratio BCR RARP vs. LRP (ref) (1-5 years)	0.59	0.73						Lee 2017
Annual transition probability from recurrence to metastasis state	7%	5.6%	8.4%					Crook 2012, Prackel 2020
Annual survival rate for metastatic disease	33%	27%	40%					Close 2013, Bria 2009

Abbreviation: BCR, biochemical recurrence; LRP, laparoscopic radical prostatectomy; mins, minutes; ORP, open radical prostatectomy, RARP, robotic-assisted radical prostatectomy; ADT, androgen deprivation therapy; yr, year.
eTable 2. Utility Parameters

Utilities	Base case	Lower-bound	Upper-bound	Distribution	Source
Progression-free utility	0.9	0.72	0.95	Beta	Korfage 2005
Biochemical recurrence utility	0.73	0.584	0.876	Beta	Cowen 1998
Localized recurrence utility	0.82	0.656	0.95	Beta	Korfage 2005
Distant metastasis utility	0.42	0.336	0.504	Beta	Cowen 1998
Erectile disfunction utility	0.84	0.672	0.95	Beta	Volk 2004
Urinary incontinence utility	0.83	0.664	0.95	Beta	Volk 2004
Bladder neck contracture utility	0.72	0.576	0.864	Beta	Volk 2004
eTable 3. Cost Parameters in the Model

Parameter	Base case	Lower-bound	Upper-bound	Distribution	Source
Hospitalization costs					
OR cost per hour	£1,220	£976	£1,464	Gamma	ISD 2019
Hospital stay cost per day	£444	£368	£551	Gamma	NHS reference cost 2017-2018 inflation adjusted to 2019 £
Cost per type of complication					
Clavien 1	£444	£355	£533	Gamma	Assumption (1 additional LOS)
Clavien 2	£888	£710	£1,066	Gamma	Assumption (2 additional LOS)
Clavien 3a	£1,332	£1,066	£1,598	Gamma	Assumption (3 additional LOS)
Clavien 3b	£1,332	£1,066	£1,598	Gamma	Assumption (3 additional LOS)
Clavien 4	£1,776	£1,421	£2,131	Gamma	Assumption (4 additional LOS)
Dysfunction costs					
Annual sexual dysfunction costs	£419	£335	£502	Gamma	Micro-costing/eTable 5
Annual urinary incontinence costs	£891	£713	£1,069	Gamma	Micro-costing/eTable 5
On-time BNC costs(LB26A LB26B)	£1,969	£1,575	£2,363	Gamma	NHS reference cost 2018-2019
Surveillance costs					
1 urology follow-up visit	£105	£84	£126	Gamma	NHS reference cost 2018-2019
Salvage therapy costs					
Annual management costa	£1,579	£1,263	£1,895	Gamma	NHS reference cost 2018-2019
Radiation treatment costs (SC24Z)	£11,974	£9,579	£14,369	Gamma	NHS reference cost 2018-2019
ADT (Lupron for 6 months)	£451	£361	£542	Gamma	BNF 2020
Radiation therapy adverse event treatment costs (One time)	£1,188	£951	£1,426	Gamma	Micro-costing
Distant metastasis treatment costs					
One-time treatment	£12,018	£9,614	£14,421	Gamma	NHS reference cost 2018-2019
Annual metastatic management	£1,799	£1,439	£2,158	Gamma	Micro-costing
Palliative care treatment costs	£10,659	£8,527	£12,791	Gamma	PSSRU 2019

© 2022 Labban M et al. *JAMA Network Open.*
Non-NHS costs

Perioperative 3-month work loss			
Work hours lost	£53	£43	£64
Wage/year	£17,234	£12,354	£18,531
Annual Informal care costs	£20.4	£6.6	£45.7
Annual patient out-of-pocket costs	£9	£2.7	£14.3
Work productivity lost per PC related death	£21,697	£15,554	£23,330
In home productivity lost per PC related death	£190,883	£136,833	£205,250

Abbreviation: NHS, National Health Services; OR, operating room; PC, prostate cancer; BNC, bladder neck contracture; ADT, androgen deprivation therapy

a. Annual cost include the cost for one PET Scan (RN03A) + One Cancer Multi-Disciplinary Visit + One Follow-up consultant with Urology and Nuclear Medicine (WF02A)

© 2022 Labban M et al. *JAMA Network Open.*
eTable 4. Surgical Equipment Cost

Parameter	Base case	Lower-bound	Upper-bound	Distribution	Source
da Vinci capital cost per procedure (dV X Single Console)	£663				Calculation
da Vinci System Price	£1,100,000	£88,000	£1,320,000	Gamma	ISI Listing price
Add-on	£60,000	£40,000	£80,000	Gamma	ISI Listing price
Depreciation year	7	5	10	Triangular	Close 2013
Annual Volume	250	100	400	Triangular	ISI internal estimate
da Vinci service cost per procedure^a	£411				Calculation
Annual Service Price	£120,000	95000	135000	Gamma	ISI Listing price
da Vinci instrument and consumesables	£1,697	£1,188	£1,503	Gamma	SMB 2018, ISI Listing price based
Laparoscopic instrument and surgical consumables^b	£1,350	£945	£1,755	Gamma	SMB 2018
Open surgical consumables^b	£638	£300	£829	Gamma	SMB 2018

^a The 1st year service included in the capital installment contract

^b Original data is reported in Swiss France, converted to pound sterling.
eTable 5. Micro-costing for the Treatment Cost Associated With Dysfunctional Outcome

Clinical Parameters	Base case	Lower-bound	Upper-bound	Reference
Use of Urinary sphincter implantation for urinary incontinence	0.05	0.04	0.07	Cooperberg 2013

Unit Cost of Treatment for Urinary incontinence:

Clinical Parameters	Base case	Lower-bound	Upper-bound	Reference
Self-management of urinary incontinence (Yearly)	£329	£263.00	£395.00	Close 2013*
Implantation artificial urinary sphincter (LB50Z)	£4,702	£3,762.00	£5,643.00	NHS Reference Cost 2018-2019
Device Cost	£6,863	£5,491.00	£8,236.00	Close 2013*
Cost for urinary Incontinence per year per patient	£891	£610	£1,292	Calculation

Erectile dysfunction (Duration 2 years)

Clinical Parameters	Base case	Lower-bound	Upper-bound	Reference
Use of treatment and outcome for erectile dysfunction				
Trial of sildenafil	0.82	0.62	1	Schover 2002
Trial of alprostadil	0.15	0.12	0.19	Blander 2000
Penile prosthesis implantation	0.002	0.002	0.003	Schover 2002
Treatment for erectile dysfunction:				
Implantation penile prosthesis (LB47Z)	£5,536	£4,429	£6,643	NHS Reference Cost 2018-2019
Device Cost	£7,220	£5,023	£8,023	Close 2013*
Tablet Viagra (Sildenafil), One each weekly	£5.87	£5	£8	BNF 2020
Injection Caverject (Alprostadil), One each weekly	£14.70	£12	£18	BNF 2020
Cost for dysfunction per year per patient	£419	£273	£675	Calculation

Abbreviation: NHS, National Health Services
eTable 6. Micro-costing for the Cost Associated With Radiation Therapy Adverse Event

Clinical Events	Probability	Lower-bound	Upper-bound	Reference
Bladder neck contracture	0.178	0.14	0.21	Thompson et al. [11]
Bleed	0.03	0.026	0.039	Feng et al. [30]
Fracture				
Receive ADT	0.1	0.08	0.13	Thompson et al. [11]
Fracture with ADT	0.187	0.069	1	Krupski et al. [31]
Fracture without ADT	0.146	0.033	0.49	Krupski et al. [31]

Unit Cost	Lower-bound	Upper-bound	Reference	
Rectal bleeding treatment (2 colonoscopies + 1 YAG laser coagulation)	£3,561	£3,001	£4,769	Calculated
Therapeutic colonoscopy (FE30Z)	£812	£650	£974	NHS Reference Cost 2018-2019
Percutaneous transluminal, laser or radiofrequency ablation (YR30Z, YR31Z)	£1,936.98	£1,1702	£2,820	NHS Reference Cost 2018-2019
Bladder neck contracture treatment (2 cystoscopies + cytoscopy with dilation) LB72A	£3,954	£3,163	£4,745	NHS Reference Cost 2018-2019
Fracture				
Fracture				
Total Cost per patients with radiation therapy	**£1,188**	**£840**	**£8,157**	

Abbreviation: NHS, National Health Services; ADT, androgen deprivation therapy
eTable 7. Micro-costing for the Cost Associated With Distant Metastasis

Treatment

	Estimate	Resource
Annual management	£1,799	Calculated
LHRH agonist gosereline acetate (£70 per 28 days)	£912.50	BNF 2020
One PET scan (RN03A)	£776.00	NHS Reference 2018-2019
One cancer multi-disciplinary visit	£110.00	NHS Reference 2018-2019
One-time treatment	**£12,018**	Calculated
14-day course of cyproterone acetate	£43.50	BNF 2020
Radiation (SC24Z), 33 session	£11,974.16	NHS Reference 2018-2019

Abbreviation: NHS, National Health Services; LHRH, luteinizing hormone-releasing hormone
eFigure 1. Deterministic Sensitivity Analysis

A) RARP vs. ORP

Biochemical hazard Ratio RARP vs. ORP (Years 1 to 5) (0.62,1.06)
Average volume of RAS per system (100,400)
OR time of RARP (2.51,3.76)
Length of stay of ORP (3.76,5.64)
OR time of ORP (2.17,2.85)
Cost of RARP I&A (1358,2036)

Biochemical hazard Ratio RARP vs. ORP (After 5 Years) (0.72,1.10)
One time cost for metastasis treatment (2635,49547)
Annual cost of BCR without Salvage therapy (996,3981)
Length of stay of RARP (2,3)
Cost of system cost for RAS per case (859,1289)
Cost of Hospital Stay per Day (355,533)
Utility of surveillance (0.72,0.95)
coefficient of BCR after RARP (exponential) (-0.05,-0.04)
Cost of ORP I&A (510,766)
B) RARP vs. LRP

Abbreviation: BCR, biochemical recurrence; I&A, instruments and Accessory; ICER, incremental cost-effectiveness ratio; LRP, laparoscopic radical prostatectomy; OR, operating room; ORP, open radical prostatectomy; RARP, robotic-assisted radical prostatectomy.
eFigure 2. Cost-effectiveness Acceptability Curve at Willingness-to-Pay

Abbreviation: CE, cost-effectiveness; LRP, laparoscopic radical prostatectomy; ORP, open radical prostatectomy; RARP, robotic-assisted radical prostatectomy.
eFigure 3. The ICER Plane of RARP vs ORP and RARP vs LRP From Monte Carlo Simulation

A) Incremental Cost-Effectiveness, RARP v. ORP

B) Incremental Cost-Effectiveness, RARP v. LRP

Abbreviation: ICER, incremental cost-effectiveness ratio; LRP, laparoscopic radical prostatectomy; ORP, open radical prostatectomy; QALY, quality-adjusted life year; RARP, robotic-assisted radical prostatectomy; WTP, willingness-to-pay.
COST EFFECTIVENESS OF ROBOTIC-ASSISTED RADICAL PROSTATECTOMY FOR LOCALIZED PROSTATE CANCER IN THE UNITED KINGDOM

Authors: Chao Song; Yanli Li
1. Rational and Background

Prostate cancer is one of the most common cancers for males. Surgery is the standard treatment for localized prostate cancer. The main type of surgery for prostate cancer is radical prostatectomy, during which the surgeon removes the entire prostate gland plus some of the surrounding tissue, including the seminal vesicles.

Prostatectomy can be performed using an open surgical or minimally invasive approach (laparoscopic or robot-assisted). During open radical prostatectomy (ORP), the surgeon operates through a single, long skin incision to remove the prostate and nearby tissues. Minimally invasive prostatectomy requires smaller incisions to perform the procedure. Despite being a less invasive approach, compared to open surgery, routine clinical application of laparoscopic radical prostatectomy (LRP) is low, possibly due to its technical difficulty (Carter 2014, Cazzaniga 2019). During robotic-assisted radical prostatectomy (RARP), da Vinci system translates every hand movement the surgeon makes in real time to bend and rotate the instruments with precision. A camera provides a high definition, 3D magnified view inside the body.

The clinical benefits of performing RARP has been reported in many peer-reviewed literatures. Compared with ORP, RARP has been shown to reduce postoperative complications (blood loss & transfusion rate), hospital length of stay (LOS), and enable faster recovery (Yaxley 2016). Compared with conversional LRP, RARP offers technical advantage to overcome the challenges from the complexity of radical prostatectomy and enables more patients to benefit from minimally invasive techniques [Yu 2012].

The major concern to adopt RARP is its cost effectiveness. The UK National Institute for Clinical Excellence (NICE) made a recommendation of using RARP for the resection of localized prostate cancer among high volume centers (more than 150 case per system per year) (Ramsay NHIR 2012). Adoption of RARP has been increased rapidly and accompanied by a decrease in use of ORP in the UK. Proportion of RARP procedures among all the radical prostatectomies has been increased from 15% in 2008, to 85% in 2018, and the use of LRP reduced from 32% to less than 4% and ORP use decreased from 53% to 11% (Hughes 2016, NHS HRG 2018-2019).

The previous cost-effectiveness assessment of prostatectomy in the UK only assessed RARP vs. LRP, but did not consider ORP (Ramsay NHIR 2012/Close 2013). Since the last assessment, more robust long-term clinical outcome data after prostatectomy have emerged (Lee 2017, Wang 2017). In addition, robotic-assisted surgery continues to evolve over time and increasing number of procedures were performed per system in the UK, which will lead
to reduction in capital cost per procedure. All these highlight the importance of performing an updated cost-effectiveness analysis to compare different surgical approaches of prostatectomy in the UK.

2. Objectives and Research Questions

The current study aims to examine the cost-effectiveness of robotic-assisted, conventional laparoscopic and open radical prostatectomy for localized prostate cancer from the UK National Health Service (NHS) perspective.

3. Study design

3-1. General description

Based on the current understanding of the clinical treatment pathway and previous economic evaluations, a Markov cohort model will be developed to simulate the cost-effectiveness of RARP compared with ORP and LRP.

| Perspective | Primary (base case): UK NHS
| Secondary (scenario analysis): Societal |
| Time Horizon | Primary (base case): 10 years
| Secondary (scenario analysis): Lifetime (start at age 65-yr and follow up for 40 yrs.) |
Population	65-year-old patients with localized prostate cancer receiving radical prostatectomy
Comparators	RARP vs. LRP; RARP vs. ORP
Choice of Model	Markov Cohort Model
Cycle Length	1 Year
Outcomes	Health Outcomes: QALY
Cost measurements:	
• Direct medical costs (Base case)	
• Direct medical + Indirect costs (Scenario analysis)	
Cost-effectiveness measurement: Incremental cost-effectiveness ratio (ICER)	
Discount	3.5% discount rates for both costs and outcomes
3-2. Model Structure

The Markov model will be constructed with five health states: perioperative surgery, surveillance, biochemical recurrence, metastasis, and death. Markov state transition diagram for the current model is shown below:

The probabilities for patients to remain within the same health state or to transition to a different state will be based on literature. Hence, patients cycle through the model either until death or until the end of the model’s timeframe (10 years postoperatively for base case).

3-3. Model inputs

Clinical Outcomes: The main clinical outcomes of interest include perioperative complications (severity measured by Clavien level), conversion from minimally invasive surgery to open surgery, and dysfunctional outcomes (sexual, urinary incontinence, bladder neck contracture). Literature search will be performed to identify clinical outcomes data based on the highest available level of evidence (systematic literature review or meta-analyses > RCT > observational studies). In addition, recent data is preferred over old data and studies with all three comparison arms are preferred over those with only two comparison arms. Clinical experts will be consulted to verify validity of the clinical input variables.

Healthcare resource utilization: UK local data will be used for input related to healthcare resource utilization (e.g., hospital length of stay) to reflect country specific policy and clinical practice pattern.
Direct Medical Cost: This includes costs for surgical equipment, operational room, hospital stay, and treatments for complications, different dysfunctions, surveillance recurrence and metastasis.

- **Surgical Equipment Cost:** This includes capital system cost, yearly maintenance cost and I&A cost if applicable. ISI listing price will be used to calculate dV cost per procedure. The surgical volume per system per year will be defined based on ISI’s internal system log data and depreciation will be assumed to be 7 years. Equipment cost for laparoscopic and open surgery will be obtained from public data source.

- **Hospitalization cost:** This includes cost for hospital stay and treatment cost for complications. Unit cost per hospital stay is based on the NHS reference cost. Occurrence of complications is assumed to extend hospital length of stay therefore increase the hospital cost, with the assumption that each increase in Clavien level is associated with one more inpatient day (e.g., Clavien 1 increases one more hospital day, Clavien 2 increases two more hospital days).

- **Post-hospitalization cost:** This includes cost to treat different dysfunctions, surveillance, recurrence and metastasis. Health services unit costs will be derived from the NHS reference cost.

Non-NHS Cost: Indirect Costs such as work and productivity loss, informal care cost, and patient out-of-pocket cost will be included and UK local data will be used when available.

Utility (Health related Quality of Life): Literature search will be performed to identity utility values for different health states. UK local data are preferred.

Transitional probability: Literature search will be performed to identify transitional probabilities between different health states based on the highest available level of evidence. Patients are at risk of all-cause mortality based on age and gender specific mortality data reported in the UK.

4. **Analysis**

4-1. Base case analysis

Incremental cost-effectiveness ratio (ICER) will be calculated as ratio of the difference in costs divided by the difference in quality-adjusted life-years (QALYs) and then compared with the willingness-to-pay (WTP) threshold suggested by the UK NICE (£30,000/QALY).

\[
\text{ICER} = \frac{C1 - C0}{E1 - E0}
\]

© 2022 Labban M et al. *JAMA Network Open.*
The primary analysis will be from the UK NHS perspective which only include direct medical cost. Secondary analysis will be conducted from societal perspective which additionally includes costs such as work and productivity loss, informal care cost, and patient out-of-pocket cost.

4-2. Sensitivity analysis

Deterministic sensitivity analysis will be performed by varying one variable at a time and evaluate how the resulting ICER will be changed. The analyses will be repeated for all input variables to understand the uncertainties associated with the parameters of the model and identify the parameters which have the greatest influence on the results. A tornado diagram will be drawn by ranking the most influential variables at the top and visualize the impacts from different input variables.

Probabilistic sensitivity analysis (PSA) will be conducted using 10,000 iterations of Monte Carlo simulations by sampling each parameter simultaneously from their distributions. The PSA results will be presented in a cost-effectiveness plane that shows the proportions the results that are considered cost effective with £30,000/QALY as WTP threshold. In addition, cost-effectiveness acceptability curve will be generated to show that probabilities that different surgical approaches will be cost-effective at different WTP thresholds.

4-3. Scenario analysis

Scenario analysis will be performed to test how the cost effectiveness results will be changed under different assumptions. This may include to consider different surgical volume per system, pricings for different generation of robotic systems, and additional analysis based on the sensitivity analysis results or other clinically meaningful scenarios suggested by clinicians.

5. Limitations

Multiple assumptions are made for the present model:

- All the surgeries are assumed to be performed by surgeon who have passed their learning curve.
- RAS capital cost is assumed to be equally distributed to all the operations performed in each system.
• Converted-to-open cases have the same clinical outcomes as ORP, and conversion is assumed to be happened in the middle of surgery.

• Durations of impact of dysfunction outcomes are assumed as bladder neck contracture for 6 months, urinary incontinence for 1 year, and of sexual dysfunction 2 for years, based on clinical expert’s input. After that, occurrence of those dysfunction outcomes is assumed to have no impact on QALY, which is similar to assumptions made in other studies.

The study will focus on surgical treatment options for local prostatectomy, while other non-surgical treatments will not be considered as comparison arm in the current study.

The current study is designed from the UK NHS perspective. Given the high heterogeneity of healthcare systems and clinical practice, the results might not be directly generalizable to other countries, however the current model is possible to be adapted to other healthcare systems.

6. Reference

Carter, S. C., S. Lipsitz, Y. C. Shih, P. L. Nguyen, Q. D. Trinh and J. C. Hu (2014). “Population-Based Determinants of Radical Prostatectomy Operative Time.” BJU International 113(5b): E112-118.

Cazzaniga, W., R. A. Godman, S. Carlsson, G. Ahlgren, E. Johansson, D. Robinson, J. Hugosson and P. Stattin (2019). “Population-based, nationwide registration of prostatectomies in Sweden.” Journal of Surgical Oncology 120(4): 803-812.

Yaxley JW, Coughlin GD, Chambers SK, et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: early outcomes from a randomised controlled phase 3 study. Lancet. 2016;388:1057–1066.

Yu HY, Hevelone ND, Lipsitz SR, Kowalczyk KJ, Hu JC. Use, costs and comparative effectiveness of robotic assisted, laparoscopic and open urological surgery. J Urol. 2012;187(4):1392-1398.

Ramsay CP, Robertson C, Close A, et al. Systematic review and economic modelling of the relative clinical benefit and cost-effectiveness of laparoscopic surgery and robotic surgery for removal of the prostate in men with localised prostate cancer. Health Technol Assess. 2012;16(41):1-313.

Hughes D, Camp C, O’Hara J, Adshead J. Health resource use after robot-assisted surgery vs open and conventional laparoscopic techniques in oncology: analysis of English secondary care data for radical prostatectomy and partial nephrectomy. BJU Int. 2016;117(6):940-947.
Close A, Robertson C, Rushton S, et al. Comparative cost-effectiveness of robot-assisted and standard laparoscopic prostatectomy as alternatives to open radical prostatectomy for treatment of men with localised prostate cancer: A Health Technology Assessment from the perspective of the UK National Health Service. Eur Urol. 2013;64(3):361-369.

Lee SH, Seo HJ, Lee NR, Son SK, Kim DK, Rha KH. Robot-assisted radical prostatectomy has lower biochemical recurrence than laparoscopic radical prostatectomy: Systematic review and meta-analysis. Investig Clin Urol. 2017;58(3):152-163.

Wang Y, Zhao X, Song Y, Cai A, Xi H, Chen L. A systematic review and meta-analysis of robot-assisted versus laparoscopically assisted gastrectomy for gastric cancer. Medicine. 2017;96(48).
Appendix

TABLE SHELLS

Table 1. Clinical and resource utilization parameters.

Variables	(a) Robotic			(b) Open			(c) Laparoscopy		
	Value	Range	distribution	Value	Range	distribution	Value	Range	distribution
Operating room									
Conversion rate									
Length of Stay									

Table 2 Utility

Utilities	Base case	Lower-bound	Upper-bound	Distribution	Source
Progression-free utility					
Biochemical recurrence utility					
Localized recurrence utility					
Distant metastasis utility					
Disfunction utility					

Table 3 Cost Parameter

Parameter	Base case	Lower-bound	Upper-bound	Distribution	Source
Surgical cost					
Hospitalization cost					
Surveillance cost					
Recurrence cost					
...					

Table 4 Cost-effectiveness
Parameter	Cost	Incremental cost	Effectiveness	Incremental Effectiveness	ICER
RARP					Ref
LARP					
ORP					