A case study of the Hirsch index for 26 non-prominent physicists

Michael Schreiber
Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany

Received 26 July 2007, accepted 31 July 2007 by U. Eckern
Published online

Key words Hirsch index, h index, citation analysis, self-citations.
PACS 01.30.-y, 01.85.+f, 01.90.+g

The h index was introduced by Hirsch to quantify an individual’s scientific research output. It has been widely used in different fields to show the relevance of the research work of prominent scientists. I have worked out 26 practical cases of physicists which are not so prominent. Therefore this case study should be more relevant to discuss various features of the Hirsch index which are interesting or disturbing or both for the more average situation. In particular, I investigate quantitatively some pitfalls in the evaluation and the influence of self-citations.

1 Introduction

Since its introduction by Hirsch [1] in November 2005 the h index has received a lot of attention, which can be quantified by the number of already 46 citations of the original article [1], as shown in July 2007 by the Science Citation Index provided by Thomson ISI in the Web of Science (WoS) data base. The h index is defined as the highest number of papers of a scientist that received h or more citations each, while the other papers have not more than h citations each. It appears to be an easily computable number which allows one to estimate the impact of a scientist’s cumulative research contribution because it incorporates both publication quantity and citation quality. However, as I will discuss below, the determination of this number from the Science Citation Index is not as straightforward as it may seem, although the WoS search allows us to sort papers by number of citations received.

The h index received instantaneous public attention [2] and has been controversially discussed ever since [3–7]. It has immediately become a subject of research in informetrics [6–11]. The statistical reliability of the h index as compared to other measures of citation records for discriminating between scientists has been investigated [12], casting some doubts as to whether the h index can be used with confidence to distinguish the scientific achievements in particular, when the number of publications is relatively small. This point, however, was usually not a problem in the published evaluations [1, 4, 13, 14] which tried to identify the most highly cited scientists in various fields, for example, physics and biological/biomedical sciences [1], information science [4, 15], physics, chemistry, life sciences and mathematics [13], ecology and evolution [3] and scientometrics [14]. Very few investigations seem to have been performed for more average scientists like, for example, the faculty members of psychological science at Washington University in St. Louis [16]. I have followed the same road and worked out 26 practical cases of not so prominent physicists, thus enabling observations which should be more common for the data sets of more average scientists.

One shortcoming of the straightforward evaluation of the citation counts in the WoS data base is the influence of self-citations which tend to enhance the h index. Hirsch has argued [1] that the effect is relatively
small and that only very few, if any, papers with number of citations just above \(h \) would be involved in an appropriate correction procedure. I have recently shown [17] that such self-citations in many cases significantly reduce the \(h \) index, in contrast to Hirsch’s expectations, and that the number of papers for which the self-citation corrections have to be evaluated is definitely not small, often of the order of 50% of the \(h \)-defining set of papers and in an extreme case comprising all highly cited publications of a particular author.

Obviously the self-citations do not reflect the impact of the publication and therefore ideally the self-citations should not be included in any measure which attempts to estimate the visibility or impact of a scientist’s research. I therefore proposed [17] sharpening the \(h \) index by excluding the self-citations. For the 26 data sets discussed in the present analysis, I have evaluated the self-citations not only of the scientist for whom the data set is analyzed, but also of all co-authors, and I discuss the respective self-citation corrections for the \(h \) index below. On average, the resulting decrease is significantly larger than previously reported, for example, for a group of scientists in ecology and evolution [3], where it was 12.3%, or in information science with 6.6%. I attribute this difference to the assumption that the self-citation corrections are less significant for highly cited prominent scientists, in agreement with the observation that Hirsch’s \(h \) index is reduced by only 10%, if self-citation corrections are taken into account [17]. This is not so surprising because older studies [18, 19] have found that about 25% of all citations in physics are self-citations.

In the next chapter I will describe the ascertainment of the data base and its evaluation. First results of the analysis and the \(h \) index are discussed in chapter 3. The identification of the self-citation corrections is particularized in chapter 4. The influence of the self-citation corrections and the sharpened index \(h_s \) are analyzed in chapter 5. Finally the summary and conclusions are given.

2 Data base

The subsequent analysis is based on data compiled in January and February 2007 from the Science Citation Index, which allows arranging the publication list according to the number of citations \(c(r) \), where \(r \) is the rank that the sorting has attributed to the article. Hirsch’s index \(h \) is defined by

\[
h \leq c(h) < h + 1, \tag{1}
\]

or equivalently

\[
h = \max_r \{r \leq c(r)\}, \tag{2}
\]

which reflects the verbal definition above, namely that \(h \) is given by the highest number of papers which received \(h \) or more citations. In principle, this value can be directly read off the sorted WoS list comparing the rank and the number of citations.

Out of interest I first checked my own publication list and was surprised to find an \(h \) index of 47. A closer look into the data, however, showed that the WoS search had found 772 publications out of which only 270 were my own publications. The reason was obvious: several other scientists with the same name had contributed to the list. Such homographs easily distort the straightforward listing in the WoS data base. Until this analysis I had not known how common my name is and how many different subjects appear in the respective WoS search. At first sight, the subject categories allow for a simple distinction between homographs. Of course, many of the ‘wrong’ publications in the list can be excluded easily by using the exclude function in the WoS thus deselecting, for example, papers in political sciences and medicine. However, it turned out that there were also a significant number of publications in physics and physical chemistry in ‘my’ list that had not been published by myself. Excluding these by deselecting topics was impossible. Looking at the titles I could of course identify them, but in many cases it would have been difficult for another person to decide whether a paper with such a title could have been written by myself or not. Most of the WoS data also comprise the authors’ affiliations. Excluding further papers from the list...
by deselecting certain institutions can be misleading because affiliations of co-authors might be taken into account in this way and this could lead to a wrong exclusion of publications. On the other hand, one can try positively to select one’s own affiliations. I found that in my own case this procedure does not work well, not only because I have been working at a number of different institutions during my career, but also because several of these institutions appear under a variety of abbreviations in the WoS data. So finally it appeared to be necessary to compare my own publication list paper by paper with the ISI list.

I then analyzed the publication lists of some colleagues who’s names were not as common as my own so that the investigation was relatively easy because nearly all papers which were found in the ISI data base under their names were really published by themselves. Moreover, I had selected colleagues whom I know rather well so that it was not too difficult to guess whether the ISI list was more or less correct, even before comparing it paper by paper with the publication lists. However, the described selection means a bias in the chosen data sets for my previous investigation [17]. Therefore for the present analysis I decided to extend the number of data sets. It now includes all scientists who have been working during their research for their habilitation degree or afterwards as assistants or senior assistants in my group. Further included are all full and associate professors from the Institute of Physics at my university as well as recently retired colleagues. I label the data sets with superscripts A, B, C, ..., Z (this restricted the number of retired colleagues to four).

To include retired scientists makes sense, because the citation counts and the Hirsch index can of course increase, even if a person does not publish anymore. Therefore (also in this aspect) there is scientific life after retirement.

In table 1 I compare the number of papers that are found in the WoS search in these 26 cases with the number of papers I could attribute to the authors. In most cases the numbers do not agree, for nine scientists with a rather common name the WoS search yields a list which is significantly too large. It is not surprising that this usually means that the corresponding h index is also unreasonably high. My own case (data set B) is a good example, because the above mentioned wrong value $h = 47$ should really be $h^B = 27$. Even stronger is the discrepancy in case I, with $h^I = 15$ instead of $h = 41$. On the other hand there are also some cases for which the straightforward WoS search misses a significant number of publications, compare table 1. The reasons were obvious namely the different ways of spelling names with an umlaut or a suffix such as “von” in the name. In one case the original search missed 10% of the publications because the scientist appeared sometimes with one initial and sometimes with two. In case J not even half the publications were originally found, because this scientist appears in the WoS with 3 different names due to marriage. Therefore it is very important to carefully study the data base before evaluation. The problem with different ways of spelling names is obviously most severe for the translation or transliteration of names from other alphabets, for example, for Russian, Chinese and Japanese authors. It is therefore rather tedious work to establish the data base and it is usually really necessary to compare with the author’s own publication list in detail. This can also lead to surprising results. In my present investigation I found two publications in the WoS in data set M, which were certainly co-authored by the colleague M, but did not appear in his own publication list. One of these is even a frequently cited Physical Review Letter, which enhances the Hirsch index of this colleague. A possible explanation is that he was the group leader of one of the research groups involved in the research, but he left the institution before the publication and has never been made aware of his honorary co-authorship.

The analysis of the various lists confirmed my above-mentioned reservation concerning the use of the affiliation to attribute papers to a particular scientist. In the case of my present university this can be very misleading because of the changes from Hochschule to Technical University, and University of Technology, as well as from Karl-Marx-Stadt via Chemnitz-Zwickau to Chemnitz, and further between faculty, department and institute. In some cases the WoS data even give only “inst of phys” as affiliation, without adding a university or a city name, and in several cases no affiliation at all. The comparison of the WoS data with the authors’ own publication lists also confirms the often mentioned criticism that the Science Citation Index comprises only a restricted set of journals. However, at least in the field of natural sciences, it appears that all really relevant journals are included and that only some exotic journals are missing. As publications in these exotic journals are not likely to be frequently cited there is slight danger that this restriction influences the evaluation of the h index. Moreover, most citations to
Table 1 Characteristics for the 26 data sets analyzed in the present investigation. The data were compiled in January and February 2007 from the Science Citation Index in the WoS. The first column labels the data sets, the next column gives a status of the scientist where 1 indicates an assistant or assistant professor position, 2 an associate professor position or equivalent and 3 a full professorship. The following columns show the Hirsch index h_{ISI} as obtained directly from the ISI data base without confirming the authorship, the corresponding total number n_{ISI} of publications in the ISI data base, the Hirsch index h after substantiating the authorship, and the number n of publications for which the authorship could be attributed to the investigated scientist. Finally n_1 shows the number of publications which have been cited at least once, and $c(1)$ the highest citation count for each author.

data set	status	h_{ISI}	n_{ISI}	h	n	n_1	$c(1)$
A	3	39	290	39	290	250	457
B	3	47	772	27	270	214	182
C	3	23	126	23	126	103	129
D	2	20	322	20	322	259	73
E	3	32	167	19	63	57	279
F	2	30	450	18	131	107	53
G	2	17	49	17	49	47	57
H	3	16	71	16	70	47	70
I	1	41	544	15	65	53	149
J	1	3	25	15	51	32	112
K	2	14	79	14	79	56	55
L	2	28	309	14	88	67	64
M	3	15	83	14	70	60	100
N	2	14	72	14	72	61	55
O	2	13	76	13	77	66	47
P	3	13	49	13	47	37	108
Q	1	13	91	13	86	59	24
R	1	14	73	12	46	37	53
S	2	16	156	12	61	48	40
T	2	15	134	10	78	56	31
U	2	10	41	10	44	34	41
V	3	10	62	10	60	49	79
W	3	8	49	9	53	37	42
X	3	8	32	8	35	29	204
Y	2	7	28	7	25	19	19
Z	2	5	16	5	15	12	25

papers in such exotic journals are usually by the authors themselves because only they are aware of these publications. Therefore after the exclusion of self-citations the limited WoS coverage of journals should be no problem at all for the determination of the h_s index.

A more severe restriction is that books and book chapters are not included in the general search of the WoS data base nor are most conference proceedings. Thus a significant number of publications is missing from the subsequent analysis. But this effects all authors in the same way. Moreover, at least in physics, the conference proceedings are usually less important publications and it is therefore not a severe problem when these are not taken into account. In other fields, with different publication philosophy, it could be a more severe distortion. For example, an analysis of the h index and its generalizations applied to computer sciences showed that in that field conference publications make a substantial contribution [20].

To confirm the expectation that publications in books are not so relevant for the present analysis, I have checked for my own case the citations to book chapters by means of the “Cited Reference Search” in the Copyright line will be provided by the publisher
WoS and confirmed that there is no influence on the h index. There are other data bases which can be evaluated to circumvent the problem of citations to books, book chapters, and conference proceedings. For example SCOPUS includes books and conference proceedings, but suffers from the restriction that cited references are included only from 1995 onward. Moreover, a strange pattern has been observed [21] as the number of book records in different years fluctuates strongly. The same odd pattern was found [21] for conference material in SCOPUS. A new and already popular search engine is Google Scholar, but it yields ridiculous counts and/or implausible results in simple examples [22]. The unreasonable number of citations found by Google Scholar can be traced back to the fact that Google Scholar does not only try to match papers and citations exactly, but also looks for approximate matches. In principle this would be a big advantage, because authors are sometimes rather sloppy with citations [22]; therefore the WoS search deflates the citation counts. The number of erroneous citations can be of the order of 5 to 10 % [23] for celebrated papers. But it is more or less impossible to take such misprints into account, except in very special cases [23]. The approximate matching algorithm by Google Scholar has been shown [22] to yield nonsense, at least in some cases.

I conclude that in spite of its limited breadth of covering the Science Citation Index provides the best data base for the evaluation of the h index. The restrictions may be more or less unfair for certain scientific fields but within a field they should have a similar effect, so that different scientists have the same advantage or suffer from the same disadvantage. Therefore it is worth noting that for the present analysis I have selected a rather homogeneous group.

3 Results of the first analysis: number of papers, citations and the h index

Comparing the number of papers n of the 26 authors with their h index in table 1, it is obvious that there is no clear correlation. The longest publication list belongs to author D, while scientist E, who is next in the h-sorted table 1, would be shifted to position 15 and G to position 20 regarding the number of papers. On the other hand, author T would advance to ninth position, and scientist Q to seventh position. These shifts would be somewhat less drastic, if the numbers n_1 of those publications only were taken into account which have been cited at least once, cp. table 1: scientist E would be shifted to position 11, and G to 17, while author T would advance to 12th and Q to 10th position. But a clear correlation of n_1 with the h index cannot be established, while not surprisingly n_1 yields an arrangement which is similar to that by n, with positions differing by at most four places, on average 1.6 places only.

It is interesting to see some associated professors (D,F,G) high in the h-sorted table and also (D,F) regarding the productivity as measured by the total number of papers. At the other end of the table the lowest productivity as well as the lowest h indices are also attributed to associate professors (Y,Z). It is even more surprising that the next 3 positions from the bottom of the table are occupied by full professors, with relatively low numbers of publications as well. On the other hand, two scientists on the assistant professor level, one of them not even tenured, appear relatively high in the table at positions I and J.

The maximum number $c(1)$ of citations that each of the 26 scientists’ publications received, does not yield a clear correlation with the h index either. As table 1 shows, scientist X has the third highest citation count and colleague V would also advance significantly to the ninth position in this respect, thus overtaking even the above specified most productive author D who would only appear on the tenth place of the maximum citation-count list. Likewise, scientists F and G would drop to position 14 and 17, respectively.

One might argue, that these observations show that a single number like the h index or the number of publications is not sufficient as a measure of the impact of a particular scientist. Certainly it is better to take into account more than one such indicator. On the other hand, as already pointed out by Hirsch [1] and mentioned in the introduction, the h index combines both publication quantity and citation quality. This is confirmed by the above observations because extreme values of the total number of publications are smoothed out by the maximum citation counts and vice versa.
4 Identification of the self-citation corrections

To determine the self-citations one can obtain automatically in the WoS search the names of up to 100 citing authors for a given paper and how often these authors cited the respective publication. In this way one can easily find out how often somebody has cited his/her own paper. I call these the self-citation corrections (SCCs) of the first kind and label the respective quantities with the index o for own SCCs. The respective data, namely \(c(r) - c_o(r) \), are compared with the citation counts \(c(r) \) for data sets D, E, F, and G in figure 1. One can see that in most cases a significant number of the citations are self-citations, sometimes more than 50%. However, for most papers a substantial number of citations remains when these SCCs are taken into account. The strongest overall effect can be seen for data set G, the weakest for data set F. This coincides with the observation that for these four examples the data set F has the largest number, namely 9 papers, with zero SCCs (and 8 with only one SCC and further 8 with only two SCCs) of the first kind among the 38 papers shown in the plots while there is only one paper with zero self-citations (and none with one or two self-citations) among the 38 most cited papers of author G.

From these plots one can expect that the SCCs of the first kind can only have a small influence on \(h^F \), but a more important effect for \(h^G \), while the changes of \(h^D \) and \(h^E \) should be intermediate because in these cases even relatively large SCCs of the first kind still leave a significant number of citations.

In any measure of scientific achievement, the self-citations of the other co-authors should also not be included. Therefore as a next step I have identified the co-author with the highest number of citations for a particular publication, again using the ISI list of citing authors. For long author lists, this procedure requires a detour via the “format for print page” which displays all co-authors, while the WoS summaries...
show not more than 3 authors. Considering the co-author with the highest citation count, which might be
the author him/herself, I have thus obtained the respective SCCs which I call the SCCs of the second kind
and I label the respective quantity with the index c for the co-author SCCs.
The respective results, namely $c(r) - c_s(r)$ for the four examples D,E,F,G are also included in figure 1.
One can see that in most cases the number of self-citations of the second kind is the same as that of the
first kind. For data set G this is always the case, but this is less surprising when one notes that nearly all of
these papers (41 of 49) are single-author publications.
On the other hand some papers are much more enthusiastically cited by a co-author than by the here investi-
gated author, most notably paper 1 in data set D, 12 in E, and 11 in F. Nevertheless, the overall effect is
small and thus only little influence on the h index can be expected.
In order to identify the self-citations of all co-authors, one has to check for all co-author names in the ISI
lists of citing authors. For manuscripts with long author lists this can be cumbersome especially when some
co-authors do not appear in these lists, which is not so atypical, for example, for PhD students. As the
ISI displays are limited to the set of the 100 most citing authors, in extreme cases a co-author with a single
self-citation might not have been included so that it is possible, though not likely, that I have committed a
slight error in my analysis in such extreme cases. A simple summation of the thus obtained self-citation
counts of all co-authors of course overestimates the SCCs, because the self-citations are not simply addi-
tive as two authors of a publication may have written another article together, citing the first one, which
would be counted as a self-citation for both authors. In order to take these multiple co-author self-citations
properly into account, one has to check (examine) every citing paper for co-authorship. The WoS search
allows this by checking (ticking off) all co-author names in the ISI citing author list and then viewing the
data, which yields the number of cumulative self-citations of all co-authors. These I call the SCCs of the
third kind and label the respective quantities with the index s to denote the sum of all self-citations. This
will yield the sharpened Hirsch index h_s.

For the four examples D,E,F,G the obtained results are also comprised in figure 1, displaying $c(r) - c_s(r)$.
The additional effect in comparison to the previous correction is very small, in most cases the SCCs of the
third kind are not larger than those of the second kind. There are some exceptions, but overall the influence
on the h index should be small when one compares h_s with h_c.

Although the observation is trivial, it is important to note that the ranking of the papers by number of cita-
tions is severely mixed up by the SCCs due to the strongly fluctuating number of self-citations. To obtain
the correct values for the h index with SCCs one has to sort the papers according to the citation counts
after evaluating the SCCs. The resulting Hirsch indices h_o, h_c, and h_s are compiled in table 2. In figure 2
the rearranged data are displayed for the 4 examples D,E,F,G.

Of course, this reranking should not be restricted to the papers in the h-defining set. Therefore it is neces-
sary to analyze the citation records somewhat beyond the rank which determines the Hirsch index. A priori
it is difficult to guess how far this “somewhat beyond” leads. To be on the safe side, one should continue
to check all papers as long as $c(r) > h_s$, i.e., the full citation count is larger than the sharpened index. The
respective rank \tilde{r} is included in table 2.

Only in retrospect one can ascertain that it is not necessary in most cases to extend the analysis so far. In
table 2, the largest rank \tilde{r} for which $c_s(r) \geq h_s$ is also shown. This indicates the last paper in the original
list, which contributes to the sharpened index h_s. In most cases this rank is larger than the original h index,
which means that this paper did not belong to the h-defining set, but contributes to h_s. In 15 out of the 26
cases investigated here it turned out that $\tilde{r} > h$, so one has indeed to extend the analysis somewhat beyond
h. Most extreme in this respect are data sets D,Q, and T, in which cases nearly twice as many papers have
to be analyzed for an accurate determination of h_s as compared to the calculation of h.
Likewise it is not clear a priori where in the originally sorted list it is necessary to start the analysis of the
self-citations. One would expect that it is unnecessary to analyze the papers with very high citation
counts because one expects that for these the exclusion of even a relatively large number of self-citations
is not enough to reduce the remaining citation counts below the h index. A posteriori one can of course
determine the rank \tilde{r} of the first paper in the original list, for which $c_s(r) < h_s$, which identifies the first
paper in the original list which drops out of the h-defining set when the SCCs are taken into account. Its
Table 2 Influence of self-citations on the Hirsch index quantified by the indices h_o, h_c, and h_s considering the SCCs of the first, second, and third kind, respectively, as described in the text: o denotes own self-citations, c the maximum of self-citations by any of the co-authors, and s the sum of all self-citations. Also given are the values \bar{r}, \tilde{r}, and \bar{r}, i.e. the largest, largest and smallest ranks in the original lists for which $c(r) > h_s$, $c_s(r) \geq h_s$ and $c_s(r) < h_s$, respectively, which are utilized in the discussion of the range of papers for which the SCCs have to be analyzed in order to determine the sharpened Hirsch index h_s. The ratios between the indices after taking into account the SCCs and the original index have been calculated from the interpolated values as defined in Eq.(4). The last column shows the rank which the data set holds after the list was sorted according to the sharpened index \tilde{h}_s.

data set	h	h_o	h_c	h_s	\tilde{r}	\bar{r}	\tilde{h}_s/\tilde{h}	\bar{h}_c/\bar{h}	\tilde{h}_s/\tilde{h}	order(\tilde{h}_s)	
A	39	36	34	34	46	40	22	0.92	0.88	0.87	1
B	27	24	23	22	34	28	15	0.88	0.85	0.80	2
C	23	22	21	20	29	29	13	0.93	0.91	0.87	3
D	20	17	16	16	34	34	7	0.85	0.83	0.80	4
E	19	16	15	15	22	17	12	0.83	0.79	0.79	5
F	18	17	14	14	21	18	11	0.94	0.78	0.78	6
G	17	11	11	11	21	15	10	0.65	0.65	0.65	13
H	16	14	13	13	18	15	13	0.91	0.85	0.83	7
I	15	14	13	12	18	15	9	0.91	0.87	0.82	9
J	15	14	13	12	15	13	10	0.95	0.87	0.80	10
K	14	13	13	13	15	15	13	0.93	0.90	0.90	8
L	14	13	11	10	17	16	6	0.90	0.76	0.69	15
M	14	11	11	11	17	17	11	0.83	0.80	0.80	12
N	14	11	11	10	23	15	9	0.81	0.81	0.75	14
O	13	10	10	9	19	10	7	0.79	0.75	0.71	17
P	13	13	11	11	13	13	9	1.00	0.88	0.88	11
Q	13	7	7	7	23	23	1	0.54	0.54	0.54	22
R	12	11	10	10	13	11	9	0.89	0.81	0.81	15
S	12	10	9	9	16	13	8	0.83	0.79	0.79	17
T	10	9	9	9	18	18	8	0.89	0.84	0.84	19
U	10	9	8	8	13	13	9	0.89	0.76	0.76	20
V	10	7	7	7	14	14	7	0.76	0.68	0.68	22
W	9	8	7	7	13	13	6	0.89	0.83	0.83	21
X	8	8	7	7	9	10	4	1.00	0.88	0.88	22
Y	7	6	6	6	7	7	5	0.93	0.86	0.86	25
Z	5	4	4	3	6	3	4	0.84	0.84	0.72	26

rank is also given in table 2. The values \bar{r} are in most cases (16 of 26) smaller than two thirds of the h value, in the extreme cases D,L,Q,X even less or equal to half of the h value. This means that most of the papers in the h-defining set have to be analyzed with respect to the self-citations. For the most extreme case Q this includes even the most cited publication.

These observations are clearly in contradiction to Hirsch’s expectations [1] that eliminating the self-citations “would involve only very few if any papers”. The analysis also contradicts Hirsch’s statement that “all self-citations to papers with less than h_c citations are irrelevant”: When the SCCs were taken into account, in 15 of 26 cases at least one publication which did not belong to the h-defining set entered the h_s-defining set, because its citation count is in the range between h_s and h, but it has relatively few self-citations. I again point out that this assessment of how many and which papers are involved or not involved in the SCCs and thus in sharpening the h index, has been performed a posteriori yielding the range from

Copyright line will be provided by the publisher
The analysis shows that it is almost impossible to estimate \textit{a priori} the range of citation counts for which the SCCs have to be determined. I have discussed above the largest rank r of a paper in the original list which entered the h_s-defining set. But in most cases there are further papers in the original list, for which $c(r) > h_s$, as can be seen in table 2 where often $\hat{r} > r$. These further papers have to be analyzed with respect to the SCCs because they might enhance h_s. The determination of the SCCs then shows that for these papers $c_s(r) \leq h_s$, so that they do not enhance the h_s value. As a consequence I cannot give any rule to reduce the effort which is necessary for the accurate establishment of the SCCs. One just has to identify the self-citations for all publications until $c(r) \leq h_s$, i.e., up to \hat{r}.

5 Results of the second analysis: the sharpened index h_s

The influence of the SCCs on the overall body of citations is exemplified in figure 2, where the data are put into order by number of citations after the SCCs of the first kind have been taken into account, and again resorted after the SCCs of the second kind were considered, and finally after conclusion of the SCCs of the third kind. This rearrangement of course usually leads to the effect that zero SCCs for a particular paper can no longer be identified (one notable exception can be found for rank 4 in data set E, because the first 4 papers in this data set need not be rearranged). The observations made above from the illustrations of the citation counts of the individual publications in figure 1 can be made more clearly by this way of presentation. In particular one sees an overall small influence of the SCCs of the first kind in data set F, but a relatively large reduction by the SCCs of the second kind especially around the value $h^F_s = 18$. In
contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at contrast, for data set G the SCCs of the first kind dominate, there is no reduction at all by the SCCs of the second kind and only one small influence at
Q and this is not reduced any further by the other SCCs, not even using the interpolated values. Analyzing the (relative) overall reduction from \(\tilde{h} \) to \(\tilde{h}_s \), one finds on average a decrease by 21.3%, which is significantly larger than the previously reported values. It is therefore clear that Hirsch’s proposition that the effect of self-citations is small or negligible is not correct. Even if one restricts the analysis to the SCCs of the first kind, one finds from the here investigated data sets an average decrease of 13.5%, and an average decrease of 19.1%, taking the SCCs of the second kind into consideration. But more important is the fact that in several cases the SCCs can help to discriminate between different data sets, as the relative decrease fluctuates between 46% and 10%. The last column in table 2 shows the rank which the data sets would hold after arranging them according to the sharpened index \(\tilde{h}_s \). Certainly the smaller changes are not significant but there are also surprisingly large rearranging effects, which I find quite interesting. In view of the above discussions, it is less surprising that data sets G and Q fall back 6 and 5 places, respectively. At the same time the scientist L is found three positions and O two positions lower on the rearranged list, whereas several colleagues more forward, especially colleague P by 5 and K and R by 3 positions. This shows that the SCCs lead to substantial rearrangement, in contrast to an investigation of 31 influential information science faculty members [4] for which “the elimination of self-citations does not much influence the rank ordering”.

6 Summary and outlook

This case study of the Hirsch index has been performed for a relatively homogeneous group of 26 physicists. As the investigated persons are not so prominent, the results should be more typical for an average situation than previously reported studies, which have usually analyzed the publication records of very prominent persons.

It has been demonstrated that it is not straightforward to determine the data base accurately, a simple WoS search often leads to a wrong number of publications and consequently usually to a wrong \(h \) index. The main reason is homographs, i.e., authors who share the same name and initial(s). In figure 3 the bare index \(h_{ISI} \) is also plotted and the exaggeration in comparison with the Hirsch index \(h \) is eye-catching even on the logarithmic scale. Other difficulties in establishing the data base have also been discussed and it has become clear that the acquisition effort in establishing the correct data base can be quite large. It can

![Fig. 3 Hirsch indices for the 26 investigated data sets, with and without SCCs. From top to bottom: brute force index \(h_{ISI} \) read from the ISI data base without confirming the authorship (white), original Hirsch index \(h \) after substantiating the authorship (dark grey/red), index \(\tilde{h}_o \) after exclusion of the author’s own self-citations (light grey), index \(\tilde{h}_c \) after exclusion of the maximal number of self-citations by one of the co-authors including the investigating author (black), and sharpened index \(\tilde{h}_s \) after exclusion of all self-citations (medium grey/green). The data sets are put into order according to the sharpened index \(\tilde{h}_s \), as indicated at the horizontal axis, where the letters are not in alphabetical order in contrast to the sequence in tables 1 and 2 determined by the original index \(h \). The latter histograms conceal the previous ones, so that in particular the columns of first and fourth kind often do not show up, because they are not different from the second and/or fifth kind. Note the logarithmic scale for the \(h \) values.](image)
therefore be rather misleading and possibly unfair, when strangers try to determine the Hirsch index by an undiscriminating WoS search. One way to circumvent this problem would be to ask people to determine their Hirsch index themselves. The necessary effort and the possibility of errors are even significantly larger when one attempts to take the self-citations into account. Again this is much easier for the person who is under scrutiny. The significance of these self-citations has been demonstrated in the present investigation. It was shown that not only the author’s own self-citations have a substantial effect in reducing the Hirsch index appreciably, but also the self-citations of the co-authors are usually quite significant and reduce the Hirsch index further. Unfortunately it turned out that it is not sufficient to analyze only very few papers with respect to self-citations and that not even self-citations to papers with less than \(h \) citations are always irrelevant. If the data sets are put into order according to the sharpened index \(h_s \) obtained after all self-citations have been taken into account, a sometimes drastic shuffling of the positions has been observed. This corroborates my expectation that self-citations should be taken into account. It has been argued \([2]\) in favor of the Hirsch index that “it is hard to inflate one’s own \(h \) index, for example by self-citation”. The present investigation shows that this is not so hard, because it is relatively easy to target one’s own publications for which the citation count is just below the \(h \) index and then to cite these publication on purpose. But when self-citations are excluded it is much more difficult to inflate the sharpened index \(h_s \), although even this is not impossible, for example, by cronism, i.e., reciprocal citing. During the preparation of this manuscript I experienced myself another fascinating way of inflating the sharpened index, when a referee of one of my manuscripts accepted in principle the paper for publication but requested the inclusion of four more references, all of which were (co-)authored by the same person, even though this scientist had already been cited five times. It is not unlikely that that (co-)author and the referee are one and the same person who tried to enhance his/her \(h \) index. I admit that I included the references, as they did have some connection with my presented research.

The popularity of the Hirsch index is increasing. I believe that it would be fairer and safer to utilize the sharpened index \(h_s \). Both comprise the information about publication quantity and citation quality into a single number. The main disadvantages are the same: firstly the number of co-authors has no influence on the calculation of the index, and secondly it is not sensitive to one or several outstandingly high citation counts because, once a paper has reached the \(h \)-defining set, it is no longer relevant whether or not it is further cited. Nevertheless, it is a reasonable assumption that the Hirsch index will be more frequently used in the future when assessing the scientific achievement of scientists for evaluation and promotion purposes. Let me therefore conclude with a personal note to the esteemed reader concerning the usage of \(h \) “to reduce a lifetime’s work to a number” \([3]\): I don’t like it, you (probably) don’t like it, but let’s face it: the \(h \) index is here to stay. I therefore found it worthwhile to point out in the present presentation the problems one should be aware of when one determines the \(h \) index and/or when one applies it.

References

[1] J.E. Hirsch, *An index to quantify an individual’s scientific research output*, Proc. Natl. Acad. Sci. U.S.A. 102 (2005), 16569 – 16572.
[2] P. Ball, *Index aims for fair ranking of scientists*, Nature 436 (2005), 900.
[3] C.D. Kelly and M.D. Jennions, *The h index and career assessment by numbers*, Trends in Ecology and Evolution 21 (2006), 167 – 170.
[4] B. Cronin and L. Meho, *Using the h-index to rank influential information scientists*, J. Am. Soc. Inf. Sci. Techn. 57 (2006), 1275 – 1278.
[5] A.F.J. van Raan, *Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgement for 147 chemistry research groups*, Scientometrics 67 (2006), 491 – 502.
[6] W. Glänzel, *On the h-index – A mathematical approach to a new measure of publication activity and citation impact*, Scientometrics 67 (2006), 315 – 321.
[7] L. Bornmann and H.-D. Daniel, *What do we know about the h index?*, J. Am. Soc. Inf. Sci. Techn. 58 (2007), 1381 – 1385.
[8] L. Egghe, *An improvement of the h-index: the g-index*, ISSI Newsletter 2 (2006), 8 – 9.
[9] L. Egghe, *Dynamic h-index: the Hirsch index in function of time*, J. Am. Soc. Inf. Sci. Techn. 58 (2007), 452–454.
[10] L. Egghe and R. Rousseau, *An informetric model for the Hirsch-index*, Scientometrics 69 (2006), 121 – 129.
[11] R. Rousseau, *Simple models and the corresponding h- and g-index*, http://eprints.rclis.org/archive/00006153.
[12] S. Lehmann, A.D. Jackson, and B. Lautrup, *Measures and mismeasures of scientific quality*, arXiv:physics/0512238 and *Measures for measures*, Nature 444 (2006), 1003 – 1004.
[13] P.D. Batista, M.G. Campiteli, O. Kinouchi, and A.S. Martinez, *Is it possible to compare researchers with different scientific interests?*, Scientometrics 68 (2006), 179 – 189.
[14] W. Glänzel and O. Persson, *H-index for price medalists*, ISSI Newsletter 1 (2005), 15 – 18.
[15] C. Oppenheim, *Using the h-index to rank influential British researchers in information science and librarianship*, J. Am. Soc. Inf. Sci. Techn. 58 (2007), 297 – 301.
[16] H.L. Roediger, *The h index in science: A new measure of scholarly contribution*, APS Observer 19 no. 4 (2006).
[17] M. Schreiber, *Self-citation corrections for the Hirsch index*, EPL 78 (2007), 30002: 1 – 6.
[18] D.W. Aksnes, *A macro-study of self-citation*, Scientometrics 56 (2003), 235 – 246.
[19] W. Glänzel, B. Thijs, B. Schlemmer, *A bibliometric approach to the role of author self-citations in scientific communication*, Scientometrics 59 (2004), 63 – 77.
[20] A. Sidiropoulos, D. Katsaros, Y. Manolopoulos, *Generalized h-index for disclosing latent facts in citation networks*, arXiv:cs.DL/0607066 (2006).
[21] P. Jacso, *As we may search - Comparison of major features of the Web of Science, Scopus, and Google Scholar citation-based and citation-enhanced databases*, Current Science 89 (2005), 1537 – 1547.
[22] P. Jacso, *Deflated, inflated and phantom citation counts*, Online Inform. Rev. 30 (2006), 297 – 309.
[23] M.V. Simkin, V.P. Roychowdhury, *Read before you cite!*, Complex Systems 14 (2003), 269–272.