Gut microbiome diversity detected by high-coverage 16S and shotgun sequencing of paired stool and colon sample

Joan Mas-Lloret¹,²,³, Mireia Obón-Santacana¹,²,³, Gemma Ibáñez-Sanz¹,²,³,⁴, Elisabet Guiné¹,²,³, Miguel L. Pato⁵, Francisco Rodriguez-Moranta⁶, Alfredo Mata⁶, Ana García-Rodríguez⁷, Victor Moreno¹,²,³,⁸ & Ville Nikolai Pimenoff¹,²,³,⁹

The gut microbiome has a fundamental role in human health and disease. However, studying the complex structure and function of the gut microbiome using next generation sequencing is challenging and prone to reproducibility problems. Here, we obtained cross-sectional colon biopsies and faecal samples from nine participants in our COLSCREEN study and sequenced them in high coverage using Illumina pair-end shotgun (for faecal samples) and Ion Torrent 16S (for paired feces and colon biopsies) technologies. The metagenomes consisted of between 47 and 92 million reads per sample and the targeted sequencing covered more than 300 k reads per sample across seven hypervariable regions of the 16S gene. Our data is freely available and coupled with code for the presented metagenomic analysis using up-to-date bioinformatics algorithms. These results will add up to the informed insights into designing comprehensive microbiome analysis and also provide data for further testing for unambiguous gut microbiome analysis.

Background & Summary

The gut microbiome is highly dynamic and variable between individuals, and is continuously influenced by factors such as individual's diet and lifestyle¹⁻², as well as host genetics³. Next generation sequencing (NGS) has greatly enhanced our understanding of the human microbiome, as these techniques allow researchers to investigate variation in diversity and abundance of bacteria in a culture-independent manner. Recent developments in bioinformatics have permitted the identification of thousands of novel bacterial and archaeal species and strains identified in human and non-human environments through metagenome assembly⁴⁻⁶. For colorectal cancer (CRC), recent large-scale studies have revealed specific faecal microbial signatures associated with malignant gut transformations, although the causal role of gut bacterial ecosystem in CRC development is still unclear⁷,⁸.

The 16S small subunit ribosomal gene is highly conserved between bacteria and archaea, and thus has been extensively used as a marker gene to estimate microbial phylogenies⁹. The 16S rRNA gene contains nine hypervariable regions (V1-V9) with bacterial species-specific variations that are flanked by conserved regions. Hence, the amplification of 16S rRNA hypervariable regions can be used to detect microbial communities in a sample typically down to the genus level¹⁰, and species-level assignments are also possible if full-length 16S sequences are retrieved¹¹.

¹Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), Barcelona, Spain. ²Colorectal Cancer Group, ONCOBELL Program, Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain. ³Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Barcelona, Spain. ⁴Gastroenterology Department, Bellvitge University Hospital-IDIBELL, Hospital de Llobregat, Barcelona, Spain. ⁵Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain. ⁶Digestive System Service, Moisés Broggi Hospital, Sant Joan Despi, Spain. ⁷Endoscopy Unit, Digestive System Service, Viladecans Hospital-IDIBELL, Viladecans, Spain. ⁸Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain. ⁹National Cancer Center Finland (FICAN-MID) and Karolinska Institute, Stockholm, Sweden. ¹⁰e-mail: v.moreno@iconcologia.net; ville.pimenoff@ki.se

1Scientific Data | (2020) 7:92 | https://doi.org/10.1038/s41597-020-0427-5
However, conserved regions are not entirely identical across groups of bacteria and archaea, which can have an effect on the PCR amplification step. Notably, among the conserved regions of the 16S gene, central regions are more conserved, suggesting that they are less susceptible to producing bias in PCR amplification12. Furthermore, an in silico study has shown that the V4-V6 regions perform better at reproducing the full taxonomic distribution of the 16S gene13. In another study, a constructed mock sample was sequenced by IonTorrent technology, demonstrating that the V4 region (followed by V2 and V6-V7) was the most consistent for estimating the full bacterial taxonomic distribution of the sample41. In addition, other methodological factors such as the actual primer sequence, sequencing technology and the number of PCR cycles used may impact on microbiome detection when using 16S sequencing. However, the relative ratios in taxonomic abundance have been shown to be consistent regardless of the experimental strategy used15.

Beyond 16S sequencing, shotgun metagenomics allows not only taxonomic profiling at species level16,17, but may also enable strain-level detection of particular species18, as well as functional characterization and de novo assembly of metagenomes19. Moreover, a plethora of new computational methods and query databases are currently available for comprehensive shotgun metagenomics analysis20. However, shotgun metagenomics is more expensive than 16S sequencing and may not be feasible when the amount of host DNA in a sample is high21. Nevertheless, provided sufficient sequencing coverage, taxonomic profiling of shotgun metagenomes is rather robust and mostly depends on the input DNA quality and bioinformatics analysis tools22. Taken together, 16S and shotgun microbiome profiles from the same samples are not entirely the same, but rather represent the relative microbiome composition captured by each methodological approach23–26. In agreement, comparative studies have already revealed that faecal, rectal swab and colon biopsy samples collected from the same individuals usually produce differential microbiome structures although consistent relative taxon ratios and particular core profiles are also detected27.

In this study, we characterized the gut microbiome signature of nine participants with paired faecal and colon tissue samples. Our data shows a high concordance between different sequencing methods and classification algorithms for the full microbiome on both sample types. However, clear deviations depending on the sample, method, genomic target and depth of sequencing data were also observed, which warrant consideration when conducting large-scale microbiome studies.

Accompanying this dataset, we also provide the full source code for the bioinformatics analysis, available and thoroughly documented on a GitLab repository. We expect that this annotated, high-quality gut microbiome dataset will provide useful insights for designing comprehensive microbiome analyses in the future, as well as be of use for researchers wishing to test their analysis bioinformatics pipelines.

Methods

Subjects and sampling. The COLSCREEN study is a cross-sectional study that was designed to recruit participants from the Colorectal Cancer Screening Program conducted by the Catalan Institute of Oncology. This program invites men and women aged 50–69 to perform a biennial faecal immunochemical test (FIT, OC-Sensor, Eiken Chemical Co., Japan). Patients with a positive test result (≥ 20 g Hb/g faeces) are referred for colonoscopy examination. A detailed description of the screening program is provided elsewhere28,29. Exclusion criteria are as follows: gastrointestinal symptoms; family history of hereditary or familial colorectal cancer (2 first-degree relatives with CRC or 1 in whom the disease was diagnosed before the age of 60 years); personal history of CRC, adenomas or inflammatory bowel disease; colonoscopy in the previous five years or a FIT within the last two years; terminal disease; and severe disabling conditions.

Participants provided written informed consent and underwent a colonoscopy. A week prior to colonoscopy preparation, participants were asked to provide a faecal sample and store it at home at − 20 °C. The day of the colonoscopy, participants delivered the faecal sample. Participants also delivered a self-administered risk-factor questionnaire where they had to report antibiotics, probiotics and anti-inflammatory drugs intake in the previous months (Table 1). Patients reporting any antibiotics or probiotics intake one month prior to sampling were not included in this study.

Table 1. Clinical descriptives. Colorectal cancer risk-factor information. Former smoker indicates non-smoker for the last 12 months prior sampling. User consumed non-steroidal anti-inflammatory drugs (NSAIDs) in the 12 months prior sampling.

ID	Sex	Age (y)	Weight (kg)	Height (cm)	Smoking	Red meat (g/day)	Processed meat (g/day)	Vegetables (g/day)	Alcohol (g/day)	NSAIDs use	Family history CRC
AE1235	M	62	64	164	Current	NA	NA	NA	NA	No	No
AE1236	F	67	62	148	Never	19.1	3.7	280.4	0	Yes	No
AE1237	F	63	63	155	Former	NA	NA	NA	NA	Yes	No
AE1238	M	61	73	172	Current	5.8	14.7	284.3	720.1	Yes	Yes
AE1239	F	54	69	166	Current	8.6	8.5	182.5	196.7	Yes	No
AE1240	M	63	83	168	Never	49	0.8	197.9	142.7	No	No
AE1241	F	67	74	160	Never	19.9	6.6	109.7	265	No	No
AE1242	F	67	65	152	Never	NA	NA	NA	NA	No	No
AE1243	F	55	85	160	Never	13	0.8	113.3	557.8	No	No
HiSeq 4000 run in 2 on Agilent High Sensitivity DNA chip (Agilent Technologies, CA, USA) results combined with SybrGreen quant-sample Prep Kit (Illumina, San Diego, USA) with an equimolar pool of libraries achieved independently based
cols are shown in Table 2.

dent quantity and quality of input DNA for shotgun and 16S sequencing. DNA yields from the extraction proto-
col was designed for microbiome analysis using Ion torrent 510/520/530 Kit-chef template preparation system
error rate of 1 in 1000).

each of nine individuals and used in this study.

Colonics lesions were classified according to "European guidelines for quality assurance in CRC™. For the
present study, we selected patients with no lesions in the colonoscopy, patients with intermediate-risk lesions (3–4
tubular adenomas measuring <10 mm with low-grade dysplasia or as ≥1 adenoma measuring 10–19 mm) and
with high-risk lesions (≥5 adenomas or ≥1 adenoma measuring ≥20 mm). We analysed 18 biological samples
(9 faecal samples and 9 colon tissue samples) from 9 participants: n = 3 negative colonoscopy, n = 3 high-risk
lesions, n = 3 intermediate-lesions) (Table 2). Our CRC screening programme follows the Public Health laws and
the Organic Law on Data Protection. All procedures performed in the study involving data from human partic-
ipants were in accordance with the ethical standards of the institutional research committee, and with the 1964
Helsinki Declaration and its later amendments or comparable ethical standards. The protocol of the study was
approved by the Bellvitge University Hospital Ethics Committee, registry number PR084/16.

DNA extraction and sequencing. Total faecal DNA was extracted using the NucleoSpin Soil kit
(Macherey-Nagel, Duren, Germany) with a protocol involving a repeated bead beating step in the sample lysis for
complete bacterial DNA extraction. Total DNA from the snap-frozen gut epithelial biopsy samples was extracted
using an in-house developed proteinase K (final concentration 0.1 μg/μL) extraction protocol with a repeated
bead beating step in the sample lysis. All extracted DNA samples were quantified using Qubit dsDNA kit (Thermo
Fisher Scientific, Massachusetts, USA) and Nanodrop (Thermo Fisher Scientific, Massachusetts, USA) for suffi-
cient quantity and quality of input DNA for shotgun and 16S sequencing. DNA yields from the extraction protoco-
lars are shown in Table 2.

Metagenomics sequencing libraries were prepared with at least 2 μg of total DNA using the Nextera XT DNA
sample Prep Kit (Illumina, San Diego, USA) with an equimolar pool of libraries achieved independently based
on Agilent High Sensitivity DNA chip (Agilent Technologies, CA, USA) results combined with SybrGreen quant-
tification (Thermo Fisher Scientific, Massachusetts, USA). The indexed libraries were sequenced in one lane of a
HiSeq 4000 run in 2 × 150 bp paired-end reads, producing a minimum of 50 million reads/sample at high quality
scores. In total 92.15% of the base calls of the whole sequencing run had a quality score Q30 or higher (i.e. an
error rate of 1 in 1000).

Targeted 16S sequencing libraries were prepared using Ion 16S Metagenomics Kit (Life Technologies,
Carlsbad, USA) in combination with Ion Plus Fragment Library kit (Life Technologies, Carlsbad, USA) and
loaded on a 530 chip and sequenced using the Ion Torrent S5 system (Life Technologies, Carlsbad, USA). The pro-
tocol was designed for microbiome analysis using Ion torrent 510/520/530 Kit-chef template preparation system
(Life Technologies, Carlsbad, USA) and included two primer sets that selectively amplified seven hypervariable
regions (V2, V3, V4, V6, V7, V8, V9) of the 16S gene. At least 10 ng of total DNA was used for 16S library prepa-
ration and re-amplified using Ion Plus Fragment Library kit for reaching the minimum template concentration.
Equimolar pool of libraries were estimated using Agilent High Sensitivity DNA chip (Agilent Technologies, CA,
USA). Library preparation and 16S sequencing was performed with the technological infrastructure of the Centre
for Omic Sciences (COS).

Bioinformatics analysis. Bioinformatics analysis was performed by running in-house pipelines. Shotgun
reads were first introduced into a pipeline including removal of human reads and quality control of samples. High
quality reads resulting from this pipeline were further analysed under three different approaches: taxonomic clas-
sification, functional classification and de novo assembly. Additionally, we subsampled high quality shotgun reads
to analyse the loss of observed alpha diversity when a lower sequencing depth is reached.
PhyloPhlAn2 MAGs were assembled from the nine high-coverage metagenomes and assigned a species-level taxonomy using **silico** vegan package R.

Metacyc pathways level using the **index**

Alpha diversity profiles were computed at the species, genus and phylum level, as well as UniRef90, KO and

1 M, 500 K, 100 K and 50 K read pairs coverage.

metaBAT was used to check the quality of MAGs and filter them to comply with strict quality requirements (completeness, contamination, number of contigs) and **Kaiju** (a read mapping algorithm). These three softwares were chosen to cover the

three main algorithms used in taxonomic classification

HUMAnN2 pipeline with default parameters, obtaining gene family (UniRef90), functional groups (KEGG orthogroups) and metabolic pathway (MetaCyc) profiles. ChocoPhlAn and UniRef90 databases were retrieved in May 2019) with a 0.1 confidence threshold. Following classification by Kraken, corresponding taxonomic profiles at family level are shown in Fig. 1a.

Functional profiling of the concatenated metagenomic paired-end sequences was performed using the HUMAnN2 pipeline with default parameters, obtaining gene family (UniRef90), functional groups (KEGG orthogroups) and metabolic pathway (MetaCyc) profiles. ChocoPhlAn and UniRef90 databases were retrieved in October 2018.

De novo assembly. High quality metagenomic reads were assembled using **metaSPADES** with default parameters and binned into putative metagenome assembled genomes (MAGs) using **metaBAT**. checkM was used to check the quality of MAGs and filter them to comply with strict quality requirements (complete-ness > 90%, contamination < 5%, number of contigs < 300, N50 > 20,000). A total of 112 high quality MAGs were assembled from the nine high-coverage metagenomes and assigned a species-level taxonomy using **PhylоПhлAn2**. Assembled species shared by at least two of the nine samples are listed in Table 4.

Generation of lower coverage pseudo-samples. Pseudo-samples of lower coverage were generated in **silico** using the **reformat** tool from the BBTools suite. Five samples were created at 15 M, 10 M, 5 M, 2.5 M, 1 M, 500 K, 100 K and 50 K read pairs coverage.

Splitting 16S samples by region. As the Ion 16S Metagenomics Kit contains several primers in the PCR mix, the resulting FASTQ files contained sequencing reads belonging to different variable regions. Hence, an in-house Python program was written in order to identify the variable region(s) present in each read. Then, FASTQ files were stratified into new subfiles where all sequences contained belonged to the same region.

First, we positioned the 16S conserved regions in the E. coli str. K-12 substr. MG1655 16S reference gene (SILVA v.132 Nr99 identifier U00096.4035531.4037072) as well as the corresponding variable region positions.

Sample	Microbial	High quality	Deduplicated (%)	Trimmed (%)
AE1235	27,510,304	19,991,742	7.42	19.91
AE1236	45,050,043	29,097,088	12.47	22.94
AE1237	25,720,634	18,745,351	7.78	19.34
AE1238	34,831,431	25,727,431	7.78	18.36
AE1239	36,353,427	25,946,121	8.15	20.47
AE1240	31,699,249	23,225,137	8.08	18.65
AE1241	34,083,370	24,830,987	8.04	19.11
AE1242	31,592,814	23,239,834	7.77	18.67
AE1243	23,476,326	17,887,436	7.80	16.01

Table 3. Quality control. Numbers indicate the amount of original microbial paired-end reads and the amount of paired-end reads passing quality control, as well as percentages of read pairs excluded due to duplication or quality and adapter trimming.

Targeted 16S sequencing reads, on the other hand, were first subjected to a pipeline which identifies variable regions and separates them accordingly. Further denoising and classification analyses were performed separately for each 16S variable region as explained in the following sections.

Removal of human reads. Prior to submission of the raw sequence data to the European Nucleotide Archive (ENA), human reads were removed from the metagenome samples in order to follow legal privacy policies. Raw reads were aligned to the human genome (GRCh38) using Bowtie2 with options – very-sensitive-local and – k 1. A FASTQ file was then generated from reads which did not align (carrying SAM flag 12) using Samtools. These FASTQ files were deposited to the ENA.

Shotgun reads quality control. Shotgun samples were quality controlled using FASTQC. Accordingly, sequences were deduplicated using clumpify from the BBTools suite, followed by quality trimming (PHRED > 20) on both ends and adapter removal using BBduk. Read pairs where one read had a length lower than 75 bases were discarded. Results of this quality control pipeline are shown in Table 3.

Shotgun taxonomic and functional profiling. Pre-processed paired-end shotgun sequences were classified using three different classifiers: Kraken2 (a k-mer matching algorithm), MetaPhlan2 (a marker-gene mapping algorithm) and Kaiju (a read mapping algorithm). These three softwares were chosen to cover the three main algorithms used in taxonomic classification.

Kraken2 was run against a reference database containing all RefSeq bacterial and archaeal genomes (built in May 2019) with a 0.1 confidence threshold. Following classification by Kraken, Bracken was used to re-estimate bacterial abundances at taxonomic levels from species to phylum using a read length parameter of 150. MetaPhlan2 was run using default parameters on the mpa_v20_m200 marker database. Kaiju was run against the Progenomes database (built in February 2019) using default parameters. Corresponding taxonomic profiles at family level are shown in Fig. 1a.

Functional profiling of the concatenated metagenomic paired-end sequences was performed using the HUMAnN2 pipeline with default parameters, obtaining gene family (UniRef90), functional groups (KEGG orthogroups) and metabolic pathway (MetaCyc) profiles. ChocoPhlAn and UniRef90 databases were retrieved in October 2018.
Regions 5 and 7 were truncated to match the reference *E. coli* sequence. Each sequencing read was then assigned into its corresponding variable region by mapping.

Analysis of the regions covered in our samples revealed a prevalence of V3, followed by V4, V2, V6-V7 and V7-V8 (Table 5). For each sample, each set of sequences from the same variable region(s) was subsequently extracted from the original FASTQ files with an in-house Python script (code available).

Fig. 1 Taxonomic classification of samples at family level. (a) Classification of shotgun samples using three different classifiers. (b) Classification of 16S sequences, split by region and source material, using DADA2 and IdTaxa.
16S denoising and taxonomic binning. 16S sequences were denoised following the standard DADA2 pipeline with adaptations to fit our single-end read data. For this analysis, reads spanning different regions, obtained in the previous step, were introduced into the pipeline as different input files. Taxonomic classification of the high-quality sequences was performed using IdTaxa included in the DECIPHER package. A summary of quality estimates of the DADA2 pipeline is shown in Table 6. Taxonomic assignment at family level by region and source material is shown in Fig. 1b.

Table 4. Metagenome Assembled Genomes (MAGs). Summary of high quality MAGs present in at least two samples (see times observed).

Phylum	Family	Species name	Completeness (%)	Genome size (Mb)	N50 (Kb)	Times observed
Actinobacteria	Coriobacteriaceae	Collinsella aerofaciens	95–100	2.1–2.2	67–72	2
Bacteroidetes	Bacteroidaceae	Bacteroides uniformis	96–97	4.2–4.5	75–117	2
Bacteroidetes	Prevotellaceae	Paraprevotella clara	92–97	3.2–3.4	24–55	2
Bacteroidetes	Rikenellaceae	Aliisipes putredinis	92–98	2.0–2.3	61–110	5
Euryarchaeota	Methanobacteriaceae	Methanobrevibacter smithii	95–100	1.6–1.9	76–189	3
Firmicutes	Clostridiaceae	Clostridium sp CAG 127	91–97	2.4–2.6	53–240	3
Firmicutes	Clostridiaceae	Clostridium sp CAG 217	96–97	1.9–2.0	257–320	2
Firmicutes	Clostridiaceae	Clostridium sp L2 50	94–99	2.4–2.6	60–162	2
Firmicutes	Clostridiaceae	Clostridium sp CAG 50	97–98	2.5–2.7	33–75	3
Firmicutes	Eryspalotrichaceae	Holdemanella SGB6796	94–96	2.1–2.2	25–89	2
Firmicutes	Eubacteriaceae	Eubacterium sp CAG 202	99	2.1–2.3	53–76	2
Firmicutes	Eubacteriaceae	Eubacterium sp CAG 251	99	1.8–1.9	53–143	3
Firmicutes	Lachnospiraceae	Coprococcus eutactus	96	2.6–2.7	22–59	2
Firmicutes	Lachnospiraceae	Dorea longicatena	95–99	2.4–3.2	28–54	2
Firmicutes	Lachnospiraceae	Lachnospiraceae	97–99	2.2–2.8	22–91	5
Firmicutes	Lachnospiraceae	Fusifactoribacter saccharivorans	96–97	2.7–2.9	42–82	3
Firmicutes	Lachnospiraceae	Roseburia sp CAG 45	96–98	2.6–2.7	63–138	3
Firmicutes	Ruminococcaceae	Faecalibacterium prausnitzii	91–99	2.1–2.5	28–123	4
Firmicutes	Ruminococcaceae	Faecalibacterium sp CAG 74	98–99	2.8–3.0	40–133	3
Firmicutes	Ruminococcaceae	Gemmiger formicilis	94–97	2.3–2.7	25–89	2
Firmicutes	Ruminococcaceae	Ruminococcus bromii	98–99	1.9–2.0	28–40	2
Firmicutes	Ruminococcaceae	Ruminococcus sp	91–99	2.3–2.7	24–107	4
Firmicutes	Ruminococcaceae	Ruminococcus torques	92–95	2.2–2.3	24–61	2
Verrucomicrobida	Akkermansiaeae	Akkermansia muciniphila	98	2.8–2.9	105–325	2

Table 5. Targeted 16S data. Percentage of 16S reads covering each region in the corresponding sample.

	Total V2	V3	V4	V6-V7	V7-V8	Other		
Faeces	AE1235	739819	3.2	40.2	14.3	21.6	18.8	1.9
	AE1236	450511	2.9	43.6	15.0	20.6	16.0	2.0
	AE1237	767495	4.1	36.0	14.4	17.6	24.8	3.2
	AE1238	740788	3.6	38.5	14.5	20.6	21.0	1.8
	AE1239	997171	5.9	36.1	14.2	24.0	21.2	1.7
	AE1240	458735	2.4	39.0	13.5	17.3	24.8	2.9
	AE1241	590541	3.5	40.0	14.0	19.6	21.0	1.9
	AE1242	467170	3.4	37.8	14.7	19.7	22.6	1.9
	AE1243	386045	3.3	41.0	14.6	21.0	18.1	2.0
Tissue	AE1235	321453	4.3	61.1	14.2	15.1	4.5	0.9
	AE1236	621908	8.3	46.8	16.7	18.7	8.7	0.8
	AE1237	726770	8.2	43.8	17.5	18.4	11.0	1.1
	AE1238	735109	7.4	42.3	18.7	17.8	11.5	2.3
	AE1239	577808	6.8	49.1	16.5	20.7	8.2	0.8
	AE1240	601785	9.5	42.3	19.1	21.4	6.6	1.0
	AE1241	649667	7.9	45.7	17.3	24.9	3.4	0.8
	AE1242	589330	5.4	50.4	16.6	23.2	3.6	0.9
	AE1243	447223	7.0	48.0	19.4	16.7	8.1	0.8

16S denoising and taxonomic binning. 16S sequences were denoised following the standard DADA2 pipeline with adaptations to fit our single-end read data. For this analysis, reads spanning different regions, obtained in the previous step, were introduced into the pipeline as different input files. Taxonomic classification of the high-quality sequences was performed using IdTaxa included in the DECIPHER package. A summary of quality estimates of the DADA2 pipeline is shown in Table 6. Taxonomic assignment at family level by region and source material is shown in Fig. 1b.
Source	Sample ID	Region	Input	Output	Filtered (%)	Denoised (%)	Chimeras (%)
Stool	AE1235 v2	123675	240	16.27	2.99	1.97	3.47
	AE1235 v3	257069	204763	14.80	0.26	16.01	10.04
	AE1235 v4	105530	72361	26.79	1.17	1.87	11.22
	AE1235 v6v7	160139	118416	14.27	1.74	2.98	
	AE1235 v7v8	139431	102517	23.41	1.19	1.87	
	AE1236 v2	13177	10091	20.25	3.00	0.17	0.17
	AE1236 v3	196436	148363	12.94	0.30	16.01	11.22
	AE1236 v4	67353	46528	28.87	1.27	0.78	0.78
	AE1236 v6v7	92647	71073	13.38	1.78	10.04	8.13
	AE1236 v7v8	72100	55878	18.57	1.26	1.87	1.87
	AE1237 v2	31697	22779	21.13	1.19	2.98	2.98
	AE1237 v3	196436	148363	12.94	0.30	11.22	11.22
	AE1237 v4	67353	46528	28.87	1.27	0.78	0.78
	AE1237 v6v7	92647	71073	13.38	1.78	10.04	8.13
	AE1237 v7v8	72100	55878	18.57	1.26	1.87	1.87
Tissue	AE1238 v2	13177	10091	20.25	3.00	0.17	0.17
	AE1238 v3	196436	148363	12.94	0.30	11.22	11.22
	AE1238 v4	67353	46528	28.87	1.27	0.78	0.78
	AE1238 v6v7	92647	71073	13.38	1.78	10.04	8.13
	AE1238 v7v8	72100	55878	18.57	1.26	1.87	1.87
	AE1239 v2	58730	46507	14.39	1.74	14.98	14.98
	AE1239 v3	359574	251532	15.33	14.98	14.98	
	AE1239 v4	14197	103323	19.20	1.19	1.87	1.87
	AE1239 v6v7	241379	173393	11.71	1.53	11.22	11.22
	AE1239 v7v8	175774	130720	18.40	1.03	14.93	14.93
	AE1240 v2	13177	10091	20.25	3.00	0.17	0.17
	AE1240 v3	196436	148363	12.94	0.30	11.22	11.22
	AE1240 v4	67353	46528	28.87	1.27	0.78	0.78
	AE1240 v6v7	92647	71073	13.38	1.78	10.04	8.13
	AE1240 v7v8	72100	55878	18.57	1.26	1.87	1.87

Continued
Statistical analysis. For the statistical analysis of the bacterial abundance data, we used compositional data analysis methods\(^3\). Count matrices of the classified taxa were subjected to central log ratio (CLR) transformation after removing low-abundance features and including a pseudo-count. Here, we used the codaSeq.filter, cmultRepl and codaSeq.clr functions from the CodaSeq and zCompositions packages. Principal components analysis (PCA) biplots were generated from the central log ratios using the prcomp function in R.

Data Records
The raw sequence data generated in this work were deposited into the European Nucleotide Archive (ENA). Faecal metagenomic sequences are available under accession PRJEB33098\(^3\). Faecal 16S sequences are available under accession PRJEB33416\(^3\) and tissue 16S sequences are available under accession PRJEB33417\(^3\). Human sequences were removed from whole shotgun samples as previously described prior to the ENA submission.

Technical Validation
Prior to analysis, shotgun sequencing reads were subject to quality and adapter trimming as previously described. Moreover, reads were deduplicated to avoid compositional biases caused by PCR duplicates. Quality control and denoising of 16S reads was performed within the DADA2 denoising pipeline and not as an independent data processing step.

In order to validate the 16S variable region assignment, we selected reads that were assigned to a species by the assignSpecies function in DADA2, which searches for unambiguous full-sequence matches in the SILVA database. These pre-processed 16S reads were aligned to a full length 16S gene from those species in the SILVA database (version 132, gene codes shown in Table 7). The reads mapped consistently in regions within the 16S gene in agreement with the variable region assigned by our pipeline. That is, each read was assigned between the

Source	Sample ID	Region	Input	Output	Filtered (%)	Denoised (%)	Chimeras (%)
AE1237	v3		318023	228121	12.38	0.16	15.73
AE1237	v4		126872	94309	24.77	0.14	0.76
AE1237	v6x7		133901	111136	13.67	0.33	3.00
AE1237	v7v8		79930	58141	23.29	0.52	3.46
AE1238	v2		54373	43554	16.29	0.82	2.79
AE1238	v3		311029	227554	13.57	0.24	13.03
AE1238	v4		137377	106679	20.87	0.32	1.16
AE1238	v6x7		130753	112947	11.57	0.26	1.79
AE1238	v7v8		84391	62281	23.08	0.60	2.52
AE1239	v2		39380	27259	14.47	0.86	1.49
AE1239	v3		283485	206573	11.36	0.16	15.61
AE1239	v4		95146	74237	20.74	0.24	1.00
AE1239	v6x7		119410	102233	11.41	0.35	2.63
AE1239	v7v8		35846	27409	19.80	1.07	2.66
AE1240	v2		57468	45978	16.02	0.77	3.20
AE1240	v3		254594	182648	13.86	0.23	14.17
AE1240	v4		115056	89991	20.65	0.13	1.01
AE1240	v6x7		129027	106387	15.19	0.33	2.03
AE1240	v7v8		39782	30472	20.14	0.62	2.63
AE1241	v2		51322	42185	16.15	0.85	0.80
AE1241	v3		297068	231915	12.17	0.10	9.66
AE1241	v4		112313	85034	22.84	0.29	1.16
AE1241	v6x7		161575	140379	12.25	0.20	0.67
AE1241	v7v8		22036	16680	20.72	1.37	2.22
AE1242	v2		31761	26112	16.67	1.04	0.07
AE1242	v3		297138	233551	12.07	0.12	9.21
AE1242	v4		97818	76855	20.07	0.17	1.18
AE1242	v6x7		136577	116654	12.59	0.26	1.74
AE1242	v7v8		21025	16087	21.35	0.86	1.28
AE1243	v2		31236	25427	16.92	1.12	0.56
AE1243	v3		214598	161786	12.69	0.26	3.16
AE1243	v4		86913	69844	18.09	0.45	1.10
AE1243	v6x7		74483	65530	10.91	0.53	0.58
AE1243	v7v8		36358	28409	18.68	1.01	2.18

Table 6. DADA2 results. Total amount of reads entering the pipeline and passing all the quality controls are indicated, as well as percentages of reads filtered in each step.
To define the taxonomic structure of the microbiome, we compared three different classifier algorithms which are based on full genome k-mer matching (Kraken2), protein-level read alignment (Kaiju) or gene specific markers (MetaPhlAn2) (Fig. 1a). A common core microbiome structure was observed regardless of the taxonomic classifier method. However, particular deviations in relative abundance were observed between these methods. To estimate the microbiome community structure differences, we performed a PCA of CLR-transformed data, which revealed a clear clustering by the taxonomic classification method (Fig. 2b). Importantly, however, Kraken2 and Kaiju family-level classifications clustered samples in the same order along the second component, which likely reflects consistency in classification despite of the method used.

Both variable regions analysed and the source material (faeces or tissue) revealed differential distributions of the bacterial taxa (Fig. 1b). Indeed, when analysing CLR-transformed taxonomic profiles, samples clustered mostly by source material (Fig. 2a). Notably, the V7-V8 data showed the largest deviation in principal components from all other variable regions (Fig. 2a).

Table 7. 16S alignment validation. Region(s) covered by 16S reads with exact matches to the SILVA database. The first column represents the region(s) called by our pipeline, while the third and fourth show the exact matching positions in the SILVA database. This shows consistency between the variable region called by our pipeline and the expected position it occupies along the 16S gene. SILVA IDs: B. fragilis: FQ312004.3243020.3244552; B. vulgatus: CP000139.2183533.2185042; F. nucleatum: AE009951.530422.531923; R. gnavus: AZJF01000012.178214.179732.

Region	Species	Start	End
v2	F. nucleatum	134	389
v2	R. gnavus	108	362
v2	B. vulgatus	110	364
v2	B. fragilis	108	361
v3	B. vulgatus	330	540
v3	B. fragilis	327	537
v4	F. nucleatum	531	818
v4	R. gnavus	500	788
v4	B. vulgatus	522	810
v6v7	F. nucleatum	944	1207
v6v7	R. gnavus	917	1177
v6v7	B. vulgatus	936	1194
v6v7	B. fragilis	933	1193

Table 8. Bioinformatic tools. Software versions and related resources.

Software	Use	Version	
Bowtie2	Human reads mapping	2.3.4	
Samtools	Extraction of non-human reads	1.9	
FASTQC	Reads quality assessment	0.11.7	
Clumpify	Removal of duplicate reads	38.26	
BBBDuk	Quality and adapter trimming	38.26	
Kraken	Taxonomic classification of shotgun reads	2.0.8-beta	
Bracken	Re-estimation of taxonomic profiles	2.2	
MetaPhlAn2	Taxonomic classification of shotgun reads	2.7.8	
Kaiju	Taxonomic classification of shotgun reads	1.6.3	
HUMAnN2	Functional profiling of shotgun reads	0.11.1	
metaSPADES	Metagenomic assembly	3.13.1	
metaBAT	Binning of scaffolds	2.12.1	
checkM	Bins quality assessment	1.0.12	
PhyloPhlAn2	Taxonomic classification of bins	0.35	
Reformat	Generation of lower coverage samples	38.26	
DADA2 (R)	Denoising of 16S reads	1.10.1	
IdTaxa (R)	Taxonomic classification of 16S sequences	2.10.1	
vegan (R)	Computation of alpha diversity	2.5.3	
xCompositions (R)	Compositional data analysis	0.99.3	
CoDaSeq (R)	Compositional data analysis	https://github.com/ggloor/CoDaSeq	1.2.0
Altogether, a clear difference in community structure was observed between 16S and shotgun sequences from the same faecal sample (Fig. 2c). Regardless, samples were displayed in the same order on the second component, which indicated consistency of the detected microbial signature.

Finally, we subsampled original high quality reads for lower coverage and computed alpha diversity at different taxonomic and functional levels in order to estimate the sequencing depth necessary to capture the observed microbial diversity in a given sample (Fig. 3).
These alpha diversity profiles demonstrated a gradual drop in diversity as sequencing coverage decreased. This drop in coverage was more noticeable in features with higher diversity, particularly at species level or when using gene families (UniRef90). Altogether, in the case of species, sequencing coverages as low as 1 million read pairs appeared to capture the taxonomic diversity present in a sample, in line with previous findings35. In this study, we demonstrate that our high-coverage dataset from nine participants sustained sufficient sequencing depth to capture the majority of the known bacterial taxa and functional groups present in the samples.

Usage Notes
For reproducibility purposes, sequencing data was deposited as raw reads. However, human sequencing reads were removed from the dataset prior to uploading in order to prevent participants' identification. Thus, reads need to be trimmed and, if necessary, deduplicated, before being reutilized.

For 16S data, reads have been uploaded without any manipulation. Hence, reads from different variable regions are present in the same FASTQ file. We suggest researchers to run the reads classification scripts in order to choose variable regions for the analysis. Following that, reads will still need to be quality controlled, either directly or by denoising algorithms such as DADA2.

Code availability
Software versions used are listed in Table 8.

Code for sequence quality control and trimming, shotgun and 16S metagenomics profiling and generation of figures in this paper is freely available and thoroughly documented at https://gitlab.com/JoanML/colonbiome-pilot. This repository includes instructions for the analysis and reproduction of the figures on this paper from the publicly available samples, as well as pipelines used for the analysis. This repository is arranged in folders, each containing a README:

- qc: Scripts for quality control and preprocessing of samples
- analysis_shotgun: Scripts to run softwares for metagenomics analysis
- regions_16s: In-house scripts for splitting IonTorrent reads into new FASTQ files
- analysis_16s: DADA2 pipeline adapted to this dataset
- assembly: Scripts to run the assembly, binning and quality control software
- figures: Scripts used to generate the figures in this manuscript
- shannon_index_subsamples: Scripts used to compute alpha diversity in subsampled FASTQs

Fig. 3 Alpha diversity. Shannon index was calculated at different taxonomic levels (species, genus, phylum, top row) as classified by Kraken2 and functional (gene families: UniRef90, functional groups: KEGG orthogroups and metabolic pathways: MetaCyc, bottom row) levels as classified by HUMAnN2 by number of read pairs. Five random samples were created at each level.
References

1. Maier, L. & Typas, A. Systematically investigating the impact of medication on the gut microbiome. Curr. Opin. Microbiol. 39, 128–135 (2017).
2. Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).
3. Goodrich, J. K., Davenport, E. R., Clark, A. G. & Ley, R. E. The Relationship Between the Human Genome and Microbiome Comes into View. Annu. Rev. Genet. 51, 413–433 (2017).
4. Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).
5. Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).
6. Pasolli, E. et al. Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle. Cell 176, 649–662.e20 (2019).
7. Wirbel, J. et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat. Med 25, 679–689 (2019).
8. Thomas, A. M. et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat. Med 25, 667–678 (2019).
9. Weinberg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991).
10. Yarza, P. et al. Unitifying the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645 (2014).
11. Edgar, R. C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34, 2371–2375 (2018).
12. Martinez-Porchas, M., Villalpando-Canchola, E., Ortiz-Suarez, L. E. & Vargas-Albores, F. How conserved are the conserved 16S-rRNA regions? PeerJ 5, e3036 (2017).
13. Yang, R., Wang, Y. & Qin, P. Y. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics 17, 1–8 (2016).
14. Barb, J. J. et al. Development of an Analysis Pipeline Characterizing Multiple Hypervariable Regions of 16S rRNA Using Mock Samples. PLoS ONE 11, 1–18 (2016).
15. D’Amore, R. et al. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genomics 17, 53 (2016).
16. Lindgreen, S., Adair, K. L. & Gardner, P. P. An evaluation of the accuracy and speed of metagenome analysis tools. Sci. Rep. 6, 1–14 (2016).
17. McIntyre, A. B. et al. Comprehensive benchmarking and ensemble approaches for metagenomic classifiers. Genome Biol. 18, 1–19 (2017).
18. Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C. & Segata, N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. 27, 626–638 (2017).
19. van der Walt, A. J. et al. Assembling metagenomes, one community at a time. BMC Genomics 18, 1–13 (2017).
20. Breitwieser, F. P., Lu, J. & Salzberg, S. L. A review of methods and databases for metagenomic classification and assembly. Brief. Bioinform. 20(4), 1125–1136 (2019).
21. Vincent, A. T., Derome, N., Boyle, B. I. & Charette, S. J. Next-generation sequencing (NGS) in the microbiological world: How to make the most of your money. J. Microbiol. Methods 138, 60–71 (2017).
22. Walsh, A. M. et al. Species classifier choice is a key consideration when analysing low-complexity food microbiome data. Microbiome 6, 50 (2018).
23. Clooney, A. G. et al. Comparing apples and oranges?: Next generation sequencing and its impact on microbiome analysis. PLoS ONE 11, 1–16 (2016).
24. Jovel, J. et al. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front. Microbiol. 7, 1–17 (2016).
25. Tessler, M. et al. Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing. Sci. Rep. 7, 1–14 (2017).
26. Laudadio, I. et al. Quantitative Assessment of Shotgun Metagenomes and 16S rDNA Amplicon Sequencing in the Study of Human Gut Microbiome. OMICS 22, 248–254 (2018).
27. Jones, R. B. et al. Inter-niche and inter-individual variation in gut microbial community assessment using stool, rectal swab, and mucosal samples. Sci. Rep. 8, 1–12 (2018).
28. Peris, M. et al. Lessons learnt from a population-based pilot programme for colorectal cancer screening in Catalonia (Spain). J. Med. Screen. 14, 81–86 (2007).
29. Binefa, G. et al. Colorectal Cancer Screening Programme in Spain: Results of Key Performance Indicators after Five Rounds (2000-2012). Sci. Rep. 6, 1–10 (2016).
30. Atkin, W. S. et al. European guidelines for quality assurance in colorectal cancer screening and diagnosisFirst Edition Colonoscopic Surveillance following adenoma removal. Endoscopy 44, 151–163 (2012).
31. Gloos, G. R., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome Datasets Are Compositional: And This Is Not Optional. Front. Microbiol. 8, 2224 (2017).
32. European Nucleotide Archive, https://identifiers.org/ena.embl:PRJEB33098 (2019).
33. European Nucleotide Archive, https://identifiers.org/ena.embl:PRJEB33416 (2019).
34. European Nucleotide Archive, https://identifiers.org/ena.embl:PRJEB33417 (2019).
35. Hillmann, B. et al. Evaluating the Information Content of Shallow Shotgun Metagenomes. mSystems 3, 1–12 (2018).
36. Langmead, B. & Salzberg, S. L. Fast gapped -read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
37. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–9 (2009).
38. FASTQC (Babraham Institute, 2018).
39. BBTools v.38.26 (Joint Genome Institute, 2018).
40. Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Res. 20, 257 (2019).
41. Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating species abundance in metagenomes data. PeerJ 3, e104 (2017).
42. Truong, D. T. et al. MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat. Methods 12, 902–903 (2015).
43. Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 1–9 (2016).
44. Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).
45. Nuk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).
46. Kang, D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ e7359 (2019).
47. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome Res.* **25**, 1043–55 (2015).
48. Segata, N., Börnigen, D., Morgan, X. C. & Huttenhower, C. PhyloPhAn is a new method for improved phylogenetic and taxonomic placement of microbes. *Nat. Commun.* **4**, 2304 (2013).
49. Callahan, B. J. *et al.* DADA2: High-resolution sample inference from Illumina amplicon data. *Nat. Methods* **13**, 581–583 (2016).
50. Murali, A., Bhargava, A. & Wright, E. S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. *Microb. Genom.* **6**, 1–14 (2018).
51. Oksanen, J. *et al.* vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan. R package version 2.5-5 (2019).
52. Palarea-Albaladejo, J. & Martín-Fernández, J. A. zCompositions — R package for multivariate imputation of left-censored data under a compositional approach. *Chemometr. Intell. Lab. Systems* **143**, 85–96 (2015).

Acknowledgements
We appreciate the collaboration of all participants who provided epidemiological data and biological samples. We thank all the personnel that were involved in the recruitment process, specially our documentalist Carmen Atencia and our laboratory technician Susana López. This research was financially supported by the Ministry of Science, Innovation and Universities, Government of Spain (grant FPU17/05474). Ministry of Health, Government of Catalonia (grants SLT002/16/00496 and SLT002/16/00398), Spanish Ministry for Economy and Competitivity, Instituto de Salud Carlos III, co-funded by FEDER funds -a way to build Europe- (FIS P17/00092), Agency for Management of University and Research Grants (AGAUR) of the Catalan Government (grant 2017SGR723). Mireia Obón-Santacana received a post-doctoral fellow from "Fundación Científica de la Asociación Española Contra el Cáncer (AECC)". We thank CERCA Program, Generalitat de Catalunya for institutional support. None of these agencies had any role in the interpretation of the results or the preparation of this manuscript. Open access funding provided by Karolinska Institute.

Author contributions
V.P. and V.M. designed and supervised the study. G.I.S., E.G. and M.O.S. designed the recruitment protocols. G.I.S., F.R.M., A.M. and A.G.R. conducted the recruitment and sample collection. M.L.P. contributed to the sample preparation and sequencing protocols. J.M.L. conducted the bioinformatics analysis. J.M.L. and V.P. interpreted the analysis and wrote the first draft of the manuscript. All co-authors assisted in the writing of the manuscript and approved the submitted version.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to V.M. or V.N.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ applies to the metadata files associated with this article.

© The Author(s) 2020