Trial watch: Peptide-based vaccines in anticancer therapy

Lucillia Bezua,b,c,d,e,f, Oliver Keppa,b,c,d,e,f, Giulia Cerratob,c,d,e,f, Jonathan Polb,c,d,e,f, Jitka Fucikovab,a,h, Radek Spisekb,a,h, Laurence Zitvogela,i,j, Guido Kroemera,b,c,d,e,f,k,l,m,n and Lorenzo Galluzzia,b,c,d,e,f,h,j,k,l,m,n

aFaculty of Medicine, University of Paris Sud/Paris XI, Le Kremlin-Bicêtre, France; bMetabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; cEquipe 11 labellisée Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; dU1138, INSERM, Paris, France; eUniversité Paris Descartes/Paris V, Paris, France; fUniversité Pierre et Marie Curie/Paris VI, Paris, France; gSotio, Prague, Czech Republic; hDept. of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic; iCenter of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France; jINSERM, U1015, Gustave Roussy Cancer Campus, Villejuif, France; kPôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; lDepartment of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden; mDepartment of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; nSandra and Edward Meyer Cancer Center, New York, NY, USA

\textbf{ABSTRACT}

Peptide-based anticancer vaccination aims at stimulating an immune response against one or multiple tumor-associated antigens (TAAs) following immunization with purified, recombinant or synthetically engineered epitopes. Despite high expectations, the peptide-based vaccines that have been explored in the clinic so far had limited therapeutic activity, largely due to cancer cell-intrinsic alterations that minimize antigenicity and/or changes in the tumor microenvironment that foster immunosuppression. Several strategies have been developed to overcome such limitations, including the use of immunostimulatory adjuvants, the co-treatment with cytotoxic anticancer therapies that enable the coordinated release of damage-associated molecular patterns, and the concomitant blockade of immune checkpoints. Personalized peptide-based vaccines are also being explored for therapeutic activity in the clinic. Here, we review recent preclinical and clinical progress in the use of peptide-based vaccines as anticancer therapeutics.

Abbreviations: CMP: carbohydrate-mimetic peptide; CMV: cytomegalovirus; DC: dendritic cell; FDA: Food and Drug Administration; HPV: human papillomavirus; MDS: myelodysplastic syndrome; MHP: melanoma helper vaccine; NSCLC: non-small cell lung carcinoma; ODD: orphan drug designation; PPV: personalized peptide vaccination; SLP: synthetic long peptide; TAA: tumor-associated antigen; TNA: tumor neoantigen

\textbf{Introduction}

Immunotherapy constitutes an efficient way to treat cancer based on the (re)activation of the natural capacity of the host immune system to recognize malignant cells as "non-self" and hence eliminate them.1-7 Over the past years, a panoply of different approaches has been developed or repurposed to (re)initiate anticancer immunity,8-12 including immune checkpoint blockers targeting cytotoxic T lymphocyte-associated protein 4 (CTLA4), programmed cell death 1 (PD1), and its main ligand CD274 (best known as PD-L1),13-19 chemotherapy with immunogenic cell death (ICD) inducers,20-25 recombinant cytokines26,27 monoclonal antibodies (mAbs) that activate co-activatory receptors,28,29 adoptively transferred T cells engineered to express a tumor-specific chimeric antigen receptor (CAR),30-36 as well as multiple small molecules targeting distinct immunosuppressive pathways operating within the tumor microenvironment.37-40 Although some of these strategies have demonstrated unprecedented activity in patients with advanced tumors refractory to several lines of conventional treatment,41 the fraction of individuals responding to single-agent immunotherapy is generally low,42-45 arguably with the sole exception of CAR-expressing T cells, which have been associated with \textgreater70% overall response rate in pediatric patients with B-cell acute lymphocytic leukemia (ALL).46-48 Thus, immunotherapy is most often implemented as part of combinatorial regimens involving other treatment modalities such as surgery, chemotherapy and/or radiation therapy (RT).49-54

Importantly, all tumors express proteins that differ in quality or quantity from their germline-encoded counterparts, owing to genetic and/or epigenetic alterations that accumulate as the disease progress.55-57 Once processed by the proteasome, these proteins can give rise to antigens that are not covered by central or peripheral tolerance and hence can be productively presented by dendritic cells (DCs) to T lymphocytes to drive an adaptive immune response.55,58-64 Such antigens are commonly known as “tumor-associated antigens” (TAAs).55,65 A large list of TAAs with sequences that bind human MHC Class I or II molecules and the TCR can be found at http://cvc.dfci.harvard.edu/tadb (the Tantigen...
One specific class of TAAs is constituted by so-called “tumor neoantigens” (TNAs). At odds with other variants of TAAs including oncofetal antigens and cancer-testis antigens, which can be expressed by healthy tissues (at least at some stage of development),137-139 TNAs are produced as a consequence of genetic alterations that are highly specific for the tumor, or even portions thereof.76-78 Similarly, TNAs that are fully tumor-specific occur upon the rearrangement of immunoglobulin-coding genes in clonal B-cell malignancies.79 Finally, tumor-specific TAAs can be generated as a consequence of viral transformation,80 as in the case of human papillomavirus type 16 (HPV-16)-driven oral and cervical tumors.81,82

TAAs in all their forms have been harnessed for the development of tumor-specific vaccines for therapeutic applications,83-86 including formulations based on recombinant or purified polypeptides generally administered together with an immunological adjuvant in suitable vehicles.87-103 However, TAAs often display limited antigenicity (reflecting the fact that they generally resemble self-antigens that are covered by tolerance).104-106 Moreover, tumors emerge and evolve as they become able to escape natural immunosurveillance,107-110 either because the lose expression of potentially antigenic proteins, and/or because they establish an immunosuppressive milieu that enforces local tolerance.111-116 Thus, besides a few exceptions and despite promising preclinical findings,117 multiple studies demonstrate that peptide-based vaccines employed as stand-alone adjuvanted interventions have limited clinical activity (although they generally cause some signs of tumor-targeting immunity).118-121 In line with this notion, no peptide-based vaccines are currently approved by the US Food and Drug Administration (FDA) or equivalent agencies worldwide for use in cancer patients are therapeutic measures (source http://www.fda.gov). However, on 2017, July 10th, the FDA has granted Orphan Drug Designation (ODD), which is designed to encourage the preparation of new molecules for indications affecting fewer than 200,000 people in the US, to DSP-7888, a new peptide-based vaccine targeting Wilms tumor 1 (WT1).122 Of note, Gardasil®, Gardasil 9® and Cervarix® are licensed for use in healthy women as prophylactic vaccines against multiple variants of HPV which are associated with the development of cervical carcinomas and anal cancers.123-128 That said, these agents technically represent antiviral vaccines and have limited activity against established HPV-driven tumors.99,129-131

Recent attempts to improve the efficacy of peptide-based vaccines converged on the development of combinatorial immunotherapeutic regimens that simultaneously drive TAA-specific immunity as they inhibit local immunosuppression.132 Considerable attention in this sense has been attracted by immune checkpoint blockers.86,133-136 despite initial setbacks linked to the lack of added therapeutic value when ipilimumab (an FDA-approved mAb targeting CTLA) was combined with a peptide vaccine targeting pre-melanosome protein (PMEL, also known as gp100) in melanoma patients.137 Along the lines of previous Trial Watches from our series,138,139 here we summarize recent clinical advances in the development of peptide-based therapeutic vaccines for cancer therapy.

Literature update

Clinical literature

Since the publication of the last Trial Watch dealing with this topic (April 2015),118 the results of no less than 20 clinical trials testing peptide-based vaccination as a therapeutic approach in cancer patients have reported in the peer-reviewed literature (source https://www.ncbi.nlm.nih.gov/pubmed and http://meetinglibrary.asco.org/abstracts).

Most of these trials were Phase I or II studies designed for testing the safety and immunogenicity (as opposed to the therapeutic efficacy) of TAA-derived peptides. Peptide-based vaccination was employed as a standalone adjuvanted intervention,140-146 or combined with chemotherapy,147-149 radiation therapy,147,150 or other forms of treatment including other immunotherapies.146,148,151-158 These studies enrolled patients with hematological malignancies,151,159 brain tumors,152,153 non-small cell lung carcinoma (NSCLC),140,147,160 breast cancer,141,148,161 prostate carcinoma,142,154 melanoma,144,146,155,158,162 ovarian cancer,149 cervical cancer,163 hepatocellular carcinoma164 and biliary tract cancer.165 The TAAs harnessed for the construction of peptide-based vaccines in these studies included the cancer/testis antigen 1B (CTAG1B; best known as NY-ESO-1),144 MAGE family member A3 (MAGEA3),140,146,147 TTK protein kinase (TTK),158 WT1,151,166 baculoviral IAP repeat containing 5 (BIRC5; best known as survivin),149 mutant epidermal growth factor receptor (EGFRvIII),153 erb-b2 receptor tyrosine kinase 2 (ERBB2; best known as HER2),148 indoleamine 2,3 dioxygenase 1 (IDO1),157 TCR gamma alternative reading frame protein (TARP),154 and multiple glioma-associated antigens.152 Most often, peptide-based vaccines were well tolerated and no severe side effects were reported. Mild side effects were sporadic and included flu-like symptoms, fatigue and minor reactions at the injection site. Immune responses driven by vaccination were documented in a variety of studies based on (1) interferon gamma production by T cells with enzyme-linked immunospot (ELISPOT) assays,142,151,152,154,155 (2) tumor infiltration by CD4+ and CD8+ lymphocyte infiltration,144,145,147,157,158 or (3) presence of peptide-specific antibodies in the serum.158 Sporadic clinical responses were also documented (see below).

Ott and colleagues (from the Dana-Farber Cancer Institute, Boston, MA, USA) tested a personalized peptide vaccination (PPV)167 consisting of 20 patient-specific TNAs predicted from whole-exon DNA sequencing of malignant versus healthy cells, in 6 melanoma patients. This vaccine, which was named NeoVax, induced polyfunctional CD4+ and CD8+ T cells targeting 58 (60%) and 15 (16%) of the 97 unique TNAs used across patients, respectively. Four of 6 vaccinated patients had no recurrence at reporting (25 months follow-up). Two patients with recurrent disease received immune checkpoint inhibitors targeting PD-1 and experienced complete tumor regression.168

Pujol and collaborators (from the Arnaud de Villeneuve Hospital, Montpellier, France) investigated the safety and immunogenicity of a MAGEA3-targeting peptide-based
vaccine in 67 patients with stage IB-III MAGEA3\(^+\) NSCLC who were or were not undergoing standard cisplatin/vinor-elbine chemotherapy. In this setting, 16 out of 19 (84%) patients who underwent vaccination concurrent with adjuvant chemotherapy experienced chemotherapy-related Grade 3/4 adverse effects, which was not the case of patients who underwent vaccination after adjuvant chemotherapy.\(^{147}\)

Vansteenkiste and co-authors (from the University Hospital KU Leuven, Leuven, Belgium) tested a MAGEA3-targeting vaccine in 2312 patients with completely resected stage IB, II, and IIIA MAGEA3\(^+\) NSCLC who did or did not receive adjuvant chemotherapy. In the context of this large, randomized, double-blind, placebo-controlled, vaccination failed to increase the disease-free survival of surgically resected NSCLC patients (as compared to placebo).\(^{140}\) On the contrary, in the prospective Phase II study reported by Saig et al. (from the Ambroise-Paré Hospital, Boulogne, France), vaccination with a MAGEA3-specific vaccine resulted in a 1-year overall survival (OS) rate of 83.5% amongst unresectable stage IIIB-C melanoma.\(^{146}\) Thus, vaccine strategies targeting MAGEA3 appear to be best suited for the treatment of advanced unresectable (rather than resectable) or chemotherapy-ineligible NSCLCs.

Weller et al. (from University Hospital of Zurich, Zurich, Switzerland) designed a randomized double-blind Phase III clinical trial to investigate the efficacy of rindopepimut, a peptide-based vaccine targeting EGFrVIII, in patients with newly diagnosed glioblastoma receiving or not conventional temozolomide-based chemotherapy. No difference in OS was documented between group, calling for a re-evaluation of the therapeutic approach.\(^{153}\)

Taken together, these clinical findings corroborate the notion that TAA-targeting peptide-based vaccines are well tolerated by cancer patients and initiate tumor-targeting immune responses (at least to some degree), but mediate limited therapeutic effects when employed as standalone adjuvantated interventions. The promising results obtained in melanoma patients by Ott and collaborators with a TNA-targeting approach\(^{168}\) will have to be validated in larger controlled, randomized Phase II studies. Moreover, the efficacy of TNA-based PPV (employed alone or combined with immune checkpoint blockers) against tumors with a relatively low mutational burden\(^{57,169,170}\) remains to be established.

Preclinical literature

Among recent preclinical studies dealing with peptide-based anticancer vaccines, we found of particular interest the works of: (1) Zhu and colleagues (from the National Institutes of Health, Bethesda, MD, USA), who developed self-assembling albumin-vaccine nanocomplexes that reportedly enable superior delivery and mediated robust therapeutic effect against transplantable tumors growing in immunocompetent mice, especially when combined with immune checkpoint blockers and chemotherapy;\(^{94}\) (2) Gall et al. (from the MD Anderson Cancer Center, Houston, TX, USA), who unveiled a Fc receptor-mediated mechanism whereby the FDA-approved HER2-targeting mAB trastuzumab favors the uptake of a HER2-targeting vaccine by DCs, resulting in efficient cross-presentation of its immunodominant epitope in vivo and robust therapeutic effects against breast carcinoma;\(^{171}\) (3) Tsuruta et al. (from Kumamoto University, Kumamoto, Japan), who developed DEP domain containing 1 (DEPDC1)- and M-phase phosphoprotein 1 (MPHOSPH1)-derived synthetic long peptides (SLPs) that efficiently induce both helper T (T\(_H\)) cells and CTls in vitro and in vivo;\(^{172}\) (4) Petrizzi and collaborators (from the Istituto Nazionale per lo Studio e la Cura dei Tumori, Naples, Italy), who showed that metronomic chemotherapy plus a PD-1-targeting immune checkpoint blocker are highly efficient in potentiating the antitumor effects of a multi-peptide vaccine in a mouse model of melanoma;\(^{173}\) and (5) Tanaka and co-workers (from the Yamaguchi University, Ube, Japan), who demonstrated that miR-125b-1 and miR-378a expression levels may be harnessed to predict the efficacy of peptide-based vaccination against colorectal carcinoma.\(^{174}\)

Alongside these promising findings, Haimlich and colleagues\(^{99}\) highlighted pitfalls related to formulation of TAA-targeted vaccines and immune checkpoint blockers or chemotherapy\(^{175}\) are combined. These data suggest that additional work is required to fully decode the pharmacological and immunological interactions between peptide-based anticancer vaccines and other treatment modalities.

Ongoing clinical trials

Since the last Trial Watch dealing with peptide-based vaccines for oncolgical indications has been published (April 2015),\(^{118}\) no less than 66 clinical trials have been initiated to test this immunotherapeutic modality in cancer patients (source www.clinicaltrials.gov) (Table 1). A large majority of these studies involve either short TAA-derived peptides that can directly bind to MHC Class I or II molecules expressed by antigen-presenting cells\(^{176}\) (42 studies), or SLPs that are processed intracellularly and then loaded on MHC Class I or II molecules\(^{172,177,178}\) (22 studies), most often in combination with immunological adjuvants\(^{179-182}\) like montanide ISA-51 (water-in-oil emulsion),\(^{181,183}\) Hiltonol\(^{\mathrm{a}}\) (poly-L-lysine in carboxymethylcellulose, a TLR3 ligand),\(^{184}\) and GM-CSF.\(^{183,185-187}\)

In several instances, vaccination is further combined with standard treatment regimens including conventional chemotherapy,\(^{177,178}\) radiation therapy,\(^{52,192-195}\) and targeted anticancer agents.\(^{196-199}\) or with various immunotherapeutic interventions.\(^{200-205}\) The latter include (1) immune checkpoint blockers such as the anti-PD-1 mAbs pembrolizumab and nivolumab,\(^{206-208}\) the anti-PD-L1 mAbs durvalumab and atezolizumab,\(^{209-211}\) and the anti-CTLA4 mAb ipilimumab;\(^{137,186,212-215}\) (2) immunostimulatory antibodies such as utomilumab, which stimulates TNF receptor superfamily member 9 (TNFRSF9; best known as 4-1BB or CD137) signaling,\(^{28,216-218}\) the CD27 agonist varlilumab;\(^{28,216,219,220}\) and immunomodulatory agents such as lenalidomide.\(^{221-224}\) In line with preclinical and clinical data demonstrating that multi-epitope
Table 1. Ongoing clinical trials testing TAAs or peptides as therapeutic interventions in patients affected by cancer.

Indications	Phase	Status	TAAs	Ref.	
Short TAA-derived peptides					
Anal cancer	IV	Recruiting	Multiple	Single adjuvanted agent	NCT03051516
Bladder carcinoma	I	Not yet recruiting	PPV	Hiltonol®-adjuvanted intervention combined with atezolizumab	NCT03359239
Brain tumors	I	Recruiting	Multiple	Hiltonol®-adjuvanted intervention combined with varilumab	NCT02924038
Breast carcinoma	I	Recruiting	FOLR1	GM-CSF-adjuvanted intervention plus cyclophosphamide	NCT02593227
	II	Recruiting	FOLR1	GM-CSF-adjuvanted intervention plus cyclophosphamide	NCT03012100
	I	Recruiting	HER2	Adjuvanted with GM-CSF	NCT02636582
	II	Recruiting	Multiple	Hiltonol®-adjuvanted intervention combined with durvalumab	NCT02826434
	I	Recruiting	Multiple	Combined with pembrolizum	NCT03362060
Breast carcinoma	I	Unknown	HER2	GM-CSF- and imiquimod-adjuvanted intervention combined with cyclophosphamide	NCT02276300
CRC	I	Recruiting	Multiple	Montanide ISA-51-adjuvanted intervention plus chemotherapy	NCT03391232
Glioblastoma	I	Active	WT1	Single adjuvanted agent	NCT02750891
	II	Recruiting	WT1	Combined with bevacizum	NCT03149003
Glioma	I	Active	IDH1	Adjuvanted with Montanide ISA-51	NCT02454634
	I	Recruiting	H3	Adjuvanted with Hiltonol® and Montanide ISA-51	NCT02960230
	II	Recruiting	n.a.	Adjuvanted with Hiltonol®	NCT02358187
HCC	I	Recruiting	Multiple	CV8102-adjuvanted intervention plus cyclophosphamide	NCT03020305
HPV+ tumors	I	Completed	p16	Adjuvanted with Montanide ISA-51	NCT02526316
Kidney cancer	I	Recruiting	PPV	Hiltonol®-adjuvanted intervention combined with ipilimumab	NCT02950766
	I/II	Active	Multiple	Adjuvanted with GM-CSF and Montanide ISA-51	NCT02429440
Leukemia	I	Not yet recruiting	PPV	Hiltonol®-adjuvanted intervention plus cyclophosphamide	NCT03219450
	I	Unknown	Multiple	Adjuvanted with GM-CSF and Montanide ISA-51	NCT02240537
	II	Recruiting	PPV	Adjuvanted with lenalidomide and imiquimod	NCT02802943
Lung cancer	I	Recruiting	PPV	Hiltonol®-adjuvanted intervention combined with pembrolizum,	NCT03380871
				carboxatin and pemetrexed	
MDS	I/II	Active	WT1	Single adjuvanted agent	NCT02436252
Melanoma	n.a.	Active	MART-1	Adjuvanted with GLA-SE	NCT02320305
	I	Active	Multiple	Adjuvanted with GM-CSF	NCT02696356
	I/II	Recruiting	Multiple	Combined with dabrafenib and trametinib	NCT02825494
	I/II	Recruiting	Multiple	Montanide ISA-51-adjuvanted intervention plus ipilimumab	NCT02385669
	I/II	Recruiting	Multiple	Montanide ISA-51- and Hiltonol®-adjuvanted intervention	NCT02425306
	I/II	Recruiting	Multiple	Combined with pembrolizum	NCT02515227
	I/II	Recruiting	IDO1	Montanide ISA-51-adjuvanted intervention plus nivolumab	NCT03047928
				Adjuvanted with DC vaccination	
Myeloma	I	Recruiting	PD-L1	Montanide ISA-51- and Hiltonol®-adjuvanted intervention combined with DC vaccination	NCT02334735
				Adjuvanted with Montanide ISA-51	
NSCLC	I/II	Recruiting	UCP2	Adjuvanted with Montanide ISA-51	NCT02886065
				Adjuvanted with Montanide ISA-51	NCT02818426
				Adjuvanted with Montanide CAF09b	NCT03412786
	I/II	Active	UCP4	Montanide ISA-51- or GM-CSF-adjuvanted intervention combined with hyperthermia,	NCT02452307
				imiquimod or	
				RNA-based vaccine	
Ovarian cancer	II	Active	FOLR1	Combined with durvalumab	NCT02764333
	I	Recruiting	FOLR1	Adjuvanted with GM-CSF	NCT02978222
Prostate cancer	II	Not yet recruiting	BCL-XL	Adjuvanted with Montanide CAF09b	NCT03412786
	I	Active	PSA	Montanide ISA-51- or GM-CSF-adjuvanted intervention combined with hyperthermia,	NCT02452307
				imiquimod or	
				RNA-based vaccine	
Solid tumors	I	Recruiting	PPV	Hiltonol®-adjuvanted intervention combined with nivolumab	NCT03042793
Synthentic long peptides				Adjuvanted with Montanide ISA-51	NCT03042793
Brain tumors	I	Not yet open	Multiple	GM-CSF- and Montanide ISA-51-adjuvanted intervention combined with temozolomide	NCT03299309
	I	Not yet recruiting	PPV	Adjuvanted with Hiltonol®	NCT03068832
Gastroesophageal cancer	II/II	Recruiting	HER2	Combined with cisplatin and 5-fluorouracil or capecitabine	NCT02795988

(Continued)
vaccines are generally more powerful than their single-epitope counterparts,17,225 the most common vaccination strategy employed by these studies consists in targeting simultaneously multiple TAAs (20 studies). Alongside, 15 studies are investigating the safety and efficacy of PPV, often consisting of MHC-matched peptides chosen from the immune repertoire of the patient before treatment.226 Finally, several studies aim at testing the safety and therapeutic potential of peptide-based vaccines targeting one single TAA including not only viral antigens like HPV p16, E6 and E7,227–229 but also shared TAAs like HER2, NY-ESO-1, survivin and telomerase reverse transcriptase (TERT),161,230–252 as well as TAAs involved in the establishment of immunosuppression, such as PD-L1 and indoleamine 2,3-dioxygenase 1 (IDO1).253–256

Taken together, these clinical trials enroll patients with a wide panel of neoplasms, including (but not limited to) glioblastoma, glioma and other brain tumors (NCT02722512; NCT02924038; NCT03068832; NCT03299309; NCT02750891; NCT03149003; NCT02287428; NCT02455557; NCT02754362; NCT02864368; NCT03223103; NCT03422094; NCT02358187; NCT02454634; NCT02960230), breast carcinoma (NCT02276300; NCT02960230), hematological malignancies (NCT02240537; NCT02802943; NCT03219450; NCT02396134; NCT02750995; NCT03121677; NCT03361852; NCT03381768; NCT02436252), melanoma (NCT02302305; NCT02334735; NCT02382549; NCT02385669; NCT02425306; NCT02515227; NCT02696356; NCT03047928), prostate cancer (NCT03412786; NCT02293707; NCT02452307; NCT03362060), ovarian carcinoma (NCT02764333; NCT02979822; NCT02737787; NCT02933073) and leukemia (NCT03121677; NCT03361852; NCT03381768; NCT02436252, NCT03047928; NCT03381768; NCT02436252; NCT03047928).

Although final statistical assessments are still awaited, preliminary results from 8 clinical trials that have been completed or terminated since the publication of our last Trial Watch dealing with peptide-based anticancer vaccines (April 2015)118 have become available (source www.clinicaltrials.gov). NCT01423760, an open-label, common safety follow-up trial testing a MUC1-targeting vaccine (tecemotide) in patients with myeloma and NSCLC has been terminated prematurely as per decision of the sponsor. Out of 27 patients enrolled in the study, 20 were evaluable for toxicity, which was more severe in the NSCLC arm. NCT00409188, a Phase III study testing tecemotide in combination with single low-dose cyclophosphamide in subjects with NSCLC has been completed. Primary endpoint was not met, but notable survival benefits were achieved in patients treated with concurrent chemoradiotherapy,257 NCT01507103, a Phase II study testing the therapeutic profile of tecemotide combined with cyclophosphamide or cyclophosphamide plus chemoradiation in subjects with rectal cancer, has been completed. No difference in incidence and severity of adverse events were noted. NCT01380145, an open-label, single-arm, pilot study of recombinant MAGEA3 adjuvanted with AS15258 as consolidation for multiple myeloma patients undergoing autologous stem cell transplantation, has been completed. Treatment was immunologically active, but grade 3–4 adverse events were experienced by 12 of the 13 participants in the study. One year after treatment there were 4 patients in stringent complete response (CR), 1 in CR, 4 in very good partial response (PR) and 4
with progressive disease. NCT00849875, a Phase II study testing MUC1-targeting vaccination plus dacarbazine in melanoma patients, has been terminated due to lack of scientific justification to continue collect data. Of 48 participants analyzed, 10 had serious adverse events. Serocconversion occurred in all patients, but clinical activity was limited to 1 CRs and 3 PRs. NCT00706992, a Phase 2 trial testing a peptide-based vaccine specific for melan-A (MLANA; also known as MART-1) together with MART-1-targeting lymphocytes in high-risk melanoma patients, has been terminated owing to low accrual. No robust immunological responses were documented among 40 evaluable patients. Adverse events were common, but never serious. NCT01322815, a Phase II study assessing the therapeutic profile of a peptide-based vaccine targeting mutant KRAS combined with standard chemotherapy or a mAb specific for vascular endothelial growth factor A (VEGFA) in patients with colorectal carcinoma, has been terminated owing to poor accrual rate. Four months after the initiation of treatment, 50% of patients were alive and free of progression, but 2 patients receiving GI-4000 plus chemotherapy suffered from serious adverse effects. NCT00643097, a Phase I-II trial investigating the safety and preliminary therapeutic profile of an EGFRVIII-directed vaccine adjuvanted with GM-CSF in patients with glioblastoma, has been completed. Of 30 participants evaluable for the immunogenicity of the vaccine, 10 presented robust immune responses, median progression-free survival was between 11.6 and 14.2 months. NCT01307618, a Phase II study testing a multi-epitope peptide-based vaccine in combination with a CD25-specific antibody (dacilumab) ± recombinant metastatic interleukin 12 (IL12) in patients with metastatic melanoma, was terminated due to lack of efficacy.

Concluding remarks

In the past few years, tremendous progress has been made towards understanding the molecular and cellular pathways whereby the immune system can recognize and eradicate pre-malignant and malignant cells naturally as well as in response to some treatment regimens. Such knowledge has been instrumental for the development of a wide panel of therapeutic interventions that specifically aim at (re)establishing antitumor immunosurveillance (rather than merely causing the death of malignant cells), including peptide-based vaccination. Unfortunately, it has soon become clear that the majority of immunotherapies developed so far is poorly active when employed as standalone therapeutic intervention, largely reflecting (1) natural and treatment-driven immunoeediting, resulting in the selection of poorly immunogenic cancer cell populations; and (2) the robust immunosuppression established by malignant cells, both locally and systemically. In line with this notion, the vast majority of peptide-based vaccines tested in the clinic so far mediated limited, if any, therapeutic activity, despite being able to elicit tumor-targeting immune responses, at least to some degree. The field is therefore moving along three non-mutually exclusive directions: (1) combining peptide-based vaccination with additional forms of (immuno)therapy, with the specific aim of reverting immunosuppression and enabling therapeutically relevant immune responses, (2) targeting private antigenic epitopes that originate from mutations affecting only malignant cells (or sub-populations thereof), with PPV, and (3) identifying specific patient populations that may obtain clinical benefit from the use of peptide-based vaccination. Although the feasibility of PPV on a large scale remains unclear, we surmise combining some variants of peptide-based vaccination with potent immunostimulatory agents including immune checkpoint blockers and oncolytic viruses may be the key to unlock the true potential of this hitherto unrealized therapeutic modality.

Acknowledgments

LB is supported by Bristol-Myers Squibb Foundation for Research in Immuno-Oncology (BMS). GK is supported by the Ligue contre le Cancer (équipe labellisée); Agence National de la Recherche (ANR) – Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases; Association pour la recherche sur le cancer (ARC); Fondation pour la Recherche Médicale (FRM); Cancéropôle Île-de-France; Institut National du Cancer (INCa); Institut Universitaire de France; the European Commission (ArtForce); the European Research Council (ERC), the LeDucq Foundation; the LabEx Immuno-Oncology; the RHU Torino Lumière, the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI). LG is supported by a startup grant from the Department of Radiation Oncology at Weill Cornell Medicine (New York, US) and by donations from Phosphatrin Therapeutics (New York, US), Sotio a.s. (Prague, Czech Republic) and the Luke Heller TECPR2 Foundation (Boston, US).

Disclosure statement

LG provides remunerated consulting to OmniSEQ (Buffalo, NY, USA).

ORCID

Lucillia Bezu http://orcid.org/0000-0002-3569-6066
Oliver Kepp http://orcid.org/0000-0002-6081-9558
Guido Kroemer http://orcid.org/0000-0002-9334-4405

References

1. Hoos A. Development of immuno-oncology drugs - from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov. 2016;15:235–247. doi:10.1038/nrd.2015.35.
2. June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–1365. doi:10.1126/science.aar6711.
3. Palucka AK, Coussens LM. The basis of oncoimmunology. Cell. 2016;164:1233–1247. doi:10.1016/j.cell.2016.01.049.
4. Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoeediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol. 2006;90:1–50. doi:10.1016/S0065-2776(06)90001-7.
5. Berraondo P, Labiano S, Minute L, Etcheberría I, Vasquez M, Sanchez-Arraez A, Teijeira A, Melero I. Cellular immunotherapies for cancer. Oncoimmunology. 2017;6:e1306619. doi:10.1080/2162402X.2017.1306619.
6. Ngwa W, Irabor OC, Schoenfeld JD, Hesser J, Demaria S, Formenti SC. Using immunotherapy to boost the absopal effect. Nat Rev Cancer. 2018;18:313–322. doi:10.1038/nrc2018.6.
Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy. Nat Rev Clin Oncol. 2018;15:47–62. doi:10.1038/nmcr.2017.148.

Brudno JN, Kochenderfer JN. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol. 2018;15:31–46. doi:10.1038/nrclinonc.2017.128.

Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62–68. doi:10.1126/science.aaa4967.

Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16:566–581. doi:10.1038/nrc.2016.97.

Zhang Q, Zhang Z, Peng M, Fu S, Xue Z, Zhang R. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: from bench to bedside. Oncology. 2016;5:e1251539. doi:10.2162402X.2016.1251539.

Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination therapy. Nat Rev Clin Oncol. 2016;13:273–290. doi:10.1038/nrclinonc.2016.25.

Atanackovic D, Steinbach M, Radhakrishnan SV, Luetskens T. Immunotherapies targeting CD38 in multiple myeloma. Oncology. 2016;5:e1217374. doi:10.2162402X.2016.1217374.

Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov. 2015;14:603–622. doi:10.1038/nrd4596.

Buque A, Bloy N, Aranda F, Cremer I, Eggermont AM, Skipper WH, Fridkina E, Stojanov P, et al. Immunotherapeutic screening of current cancer drugs using murine xenografts. Oncotarget. 2015;6:e1373237. doi:10.2162402X.2017.1373237.

Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61. doi:10.1126/science.aaa8172.

Derosa L, Routy B, Kroemer G, Zitvogel L. The intestinal microbiota determines the clinical efficacy of immune checkpoint blockers targeting PD-1/PD-L1. Oncology. 2018;7:6134468. doi:10.2162402X.2018.1344468.

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12:252–264. doi:10.1038/nrc3339.

Vanella V, Festino L, Strudel M, Simone E, Grimaldi AM, Ascierto PA. PD-L1 inhibitors in the pipeline: promise and progress. Oncology. 2017;7:61365209. doi:10.2162402X.2017.1365209.

Simon S, Labarriere N. PD-1 expression on tumor-specific T cells: friend or foe for immunotherapy? Oncology. 2017;7:61364828. doi:10.2162402X.2017.1364828.

Riaz N, Havel JI, Makarov V, Desrichard A, Urba WJ, Sims JS, Hodis FS, Martin-Algarra S, Mandal R, Sharman WH, et al. Tumor and microenvironment evolution during immunotherapy with Nivolumab. Cell. 2017;171:934–949 e915. doi:10.1016/j.cell.2017.09.028.

Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:97–111. doi:10.1038/nri.2016.107.

Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72. doi:10.1146/annurev-immunol-022712-100008.

Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. Oncology. 2017;7:61368629. doi:10.2162402X.2017.1368629.

Yang M, Li C, Zhu S, Cao I, Kroemer G, Zeh H, Tang D, Kang R. TFAM is a novel mediator of immunogenic cancer cell death. Oncology. 2018;7:6141086. doi:10.2162402X.2018.141086.

Montico B, Nigro A, Casolaro V, Dal Col J. Immunogenic apoptosis as a novel tool for anticancer vaccine development. Int J Mol Sci. 2018;19. doi:10.3390/ijms19020594.

Bezu L, Sauvat A, Humeau J, Leduc M, Kepp O, Kroemer G. eIF2alpha phosphorylation: A hallmark of immunogenic cell death. Oncology. 2018;7:6141089. doi:10.2162402X.2018.141089.

Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15:405–414. doi:10.1038/nri3845.
Loriot Y, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–1920. doi: 10.1016/S0140-6736(16)3141-4.

45. Fuca G, De Braud F, Di Nicola M. Immunotherapy-based combinations: an update. Curr Opin Oncol. 2018. doi: 10.1097/CCO.0000000000000466.

46. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneers MR, Stefaniski HE, Myers GD, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–448. doi: 10.1056/NEJMo1709866.

47. Batlevi CL, Matsuki E, Brentjens RJ, Younes A. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol. 2016;13:25–40. doi: 10.1038/nrclinonc.2015.187.

48. Suryadevara CM, Desai R, Riccione KA, Abel ML, Riccione KA, Batich KA, Fuca G, De Braud F, Di Nicola M. Immunotherapy-based combinations: an update. Curr Opin Oncol. 2016;34:109–115. doi: 10.1097/CCO.0000000000000466.

49. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161:205–214. doi: 10.1016/j.cell.2015.03.030.

50. Migden MR, Rischin D, Schmults CD, Guminaski A, Hauschild A, Lewis KD, Chung CH, Hernandez-Aya L, Lim AM, Chang ALS, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 2018. doi: 10.1056/NEJMo1805131.

51. Vecchelli E, Bloy N, Aranda F, Busque A, Cremer I, Demaria S, Eggermont A, Formenti SC, Fridman WH, Fucikova J, et al. Trial watch: immunotherapy plus radiation therapy for oncological indications. Oncoimmunology. 2016. doi: 10.1956/jon.2016.004.1214790. doi: 10.1080/2162402X.2018.1343446.

52. Batlevi CL, Matsuki E, Brentjens RJ, Younes A. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol. 2016;13:25–40. doi: 10.1038/nrclinonc.2015.187.

53. Batlevi CL, Matsuki E, Brentjens RJ, Younes A. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol. 2016;13:25–40. doi: 10.1038/nrclinonc.2015.187.

54. Rizvi NA, Hellman MD, Snyder A, Kvistborg P, Makarov V, Havel L, Krzakowski M, Nawrocki S, Ciuleanu TE, Bosquee L, Trigo JM, et al. Atezolizumab in patients with locally advanced and metastatic urothelial cancer: results from the phase IIb/III trial evaluating the safety, tolerability and immunological activity for stage III non-small-cell lung cancer (START): a randomized, double-blind, phase 3 trial. Lancet Oncol. 2014;15:59–68. doi: 10.1016/S1470-2045(13)70510-2.

55. Buckert M, Deloch L, Fietkau R, Frey B, Hecht M, Gaip US. Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies. Strahlenther Onkol. 2018;194:509–519. doi: 10.1007/s00066-018-1287-1.

56. Fument JD, Isambert N, Hervieux A, Zanetta S, Guion JF, Hennequin A, Redorffier E, Bertaut A, Ghiringhelli F. Phase Ib/II trial evaluating the safety, tolerability and immunological activity of durvalumab (MED14736) (anti-PD-L1) plus tremelimumab (anti-CTLA-4) combined with FOLFFOX in patients with metastatic colorectal cancer. J Immunol. 2018;e000375. doi: 10.1136/jm.2018-000375.

57. Coulie PG, Van Den Eynde BJ, Van Der Bruggen P, Boon T. Tumor antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14:135–146. doi: 10.1038/nrc3670.

58. Ilia S, Yang JC. Landscape of tumor antigens in T cell immunotherapy. J Immunol. 2015;195:5117–5122. doi: 10.4049/jimmunol.1501657.

59. Boon T, Cerottini JC, Van Den Eynde B, Van Der Bruggen P, Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–365. doi: 10.1146/annurev.ij.12.040194.002005.

60. Boon T, van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med. 1996;183:725–729.
79. Cha SC, Qin H, Sakamaki I, Kwak L. Cloning variable region genes of clonal lymphoma immunoglobulin for generating patient-specific idiotype DNA vaccine. Methods Mol Biol. 2014;1139:289–303. doi:10.1007/978-1-4939-0435-0_24.

80. Kurth R, Fenyo EM, Klein E, Essex M. Cell-surface antigens induced by RNA tumor viruses. Nature. 1978;279:197–201.

81. Wang C, Dickie J, Sutavani RV, Pointer C, Thomas GI, Saveljeva N. Targeting head and neck cancer by vaccination. Front Immunol. 2018;9:830. doi:10.3389/fimmu.2018.00830.

82. Qin Y, Ekmekcioglu S, Forget MA, Szekvolgyi L, Hwu P, Grimm EA, Jazaeri AA, Roszik J. Cervical cancer neoantigen landscape and immune activity is associated with human papillomavirus master regulators. Front Immunol. 2017;8:689. doi:10.3389/fimmu.2017.00689.

83. Berzofsky JA, Ahlers JD, Belyakov IM. Strategies for designing and optimizing new generation vaccines. Nat Rev Immunol. 2001;1:209–219. doi:10.1038/35050075.

84. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10:909–915. doi:10.1038/nm1100.

85. Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, Menz O, Osswald M, Oezn I, Ott M, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512:324–327. doi:10.1038/nature13387.

86. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Zhu G, Lynn GM, Jacobson O, Chen K, Liu Y, Zhang H, Ma Y, et al. Whole tumor antigen vaccination that assemble in vivo for combination cancer immunotherapy. Ann Transl Med. 2016;4:509. doi:10.3390/antimicrobresistance2017040509.

87. Jager E, Jager D, Knuth A. Clinical cancer vaccine trials. Curr Opin Immunol. 2010;22:474–478. doi:10.1016/j.coi.2007.02.001.

88. Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. 2012;12:509–512. doi:10.1038/nri3387.

89. Melief CJ, Van Hall T, Arens R, Ossendorp F, van der Burg SH. Immunogenic stress and death of cancer cells: contribution of antigenicity vs adjuvanticity to immuno-surveillance. Immunology. 2017;155:486–495. doi:10.1111/imr.12582.

90. Galluzzi L, Zitvogel L, Kroemer G. Immunological mechanisms underneath the efficacy of cancer therapy. Cancer Immunol Res. 2016;4:895–902. doi:10.1158/2326-6066.CIR-16-0197.

91. Klein L, Hinterberger M, Wirnsberger G, Kyewski B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol. 2009;9:833–844. doi:10.1038/nri2669.

92. Kroemer G, Senovilla L, Galluzzi L, Andre F, Zitvogel L. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med. 2015;21:1128–1138. doi:10.1038/nm.3944.

93. Arrieta VA, Cacho-Diaz B, Zhao J, Rabadan R, Chen L, Sonabend S. Immune correlates of GM-CSF and melanoma peptide vaccination of high-risk melanoma (E4697). Clin Cancer Res. 2010;16:5034–5043. doi:10.1158/1078-0432.CCR-10-0853.

94. Bloy N, Garcia P, Laumont CM, Pitt JM, Sistigu A, Stoll G, Menn O, Oezen I, Ott M, et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature. 2014;512:324–327. doi:10.1038/nature13387.

95. Butterfield LH, Zhao F, Lee S, Tarhini AA, Marginol KA, White RL, Atkins MB, Cohen GI, Whiteside TL, Kirkwood JM, et al. Immune correlates of GM-CSF and melanoma peptide vaccination in a randomized trial for the adjuvant therapy of resected high-risk melanoma (E4697). Clin Cancer Res. 2017;23:5034–5043. doi:10.1158/1078-0432.CCR-16-3016.

96. Li F, Chen C, Ju T, Gao J, Yan J, Wang P, Xu Q, Hwu P, Du X, Lizee G. Rapid tumor regression in an Asian lung cancer patient following personalized neo-epitope peptide vaccination. Oncoimmunology. 2016;5:e1238539. doi:10.1080/2162402X.2016.1238539.

97. Bijker MS, Melief CJ, Offringa R, van der Burg SH. Design and development of synthetic peptide vaccines: past, present and future. Expert Rev Vaccines. 2007;6:591–603. doi:10.1586/14706584.6.4.591.

98. Schwartzentruber DJ, Lawson DH, Richards JM, Conry RM, Miller DM, Treisman J, Gailani F, Riley L, Conlon K, Pockaj B, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 2011;364:2119–2127. doi:10.1056/NEJMoa1102863.

99. Gouttefangeas C, Rammensee HG. Personalized cancer vaccines: adjuvants are important, too. Cancer Immunol Immunother. 2018. doi:10.1007/s00262-018-2158-4.

100. Silva AL, Rosalia RA, Sakaz A, Carstens MG, Ossendorp F, Oostendorp J, Jiskoot W. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: low-burst release is crucial for efficient CD8(+) T cell activation. Eur J Pharm Biopharm. 2013;83:338–345. doi:10.1016/j.ejpb.2012.11.006.

101. Silva JM, Videira M, Gaspar R, Preit V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Release. 2013;168:179–199. doi:10.1016/j.jconrel.2013.03.002.

102. Varypataki EM, Silva AL, Barnier-Quer C, Collin N, Ossendorp F, Jiskoot W. Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles. J Control Release. 2016;226:98–106. doi:10.1016/j.jconrel.2016.02.018.

103. Avigan D, Rosenblatt J. Vaccine therapy in hematologic malignancies. Blood. 2018;131:2640–2650. doi:10.1182/blood-2017-118547.

104. Blay N, Garcia P, Laumont CM, Pitt JM, Sistigu A, Stoll G, Yamazaki T, Bonneil E, Buque A, Humeau J, et al. Immunogenic stress and death of cancer cells: contribution of antigenicity vs adjuvanticity to immuno-surveillance. Immunol Rev. 2017;280:165–174. doi:10.1111/imr.12582.

105. Galluzzi L, Zitvogel L, Kroemer G. Immunological mechanisms underneath the efficacy of cancer therapy. Cancer Immunol Res. 2016;4:895–902. doi:10.1158/2326-6066.CIR-16-0197.

106. Klein L, Hinterberger M, Wirnsberger G, Kyewski B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol. 2009;9:833–844. doi:10.1038/nri2669.

107. Kroemer G, Senovilla L, Galluzzi L, Andre F, Zitvogel L. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med. 2015;21:1128–1138. doi:10.1038/nm.3944.

108. Arrieta VA, Cacho-Diaz B, Zhao J, Rabadan R, Chen L, Sonabend AM. The possibility of cancer immune editing in gliomas. A Critical Review. Oncoimmunology. 2018;7:e1445458. doi:10.1080/2162402X.2018.1445458.

109. Terry S, Buurt S, Tan TZ, Gros G, Noman MZ, Lorens JB, Mami-Chouaib F, Thiery JP, Chouaib S. Acquisition of tumor cell phenotypic diversity along the EMT spectrum under hypoxic pressure: consequences on susceptibility to cell-mediated cytotoxicity. Oncoimmunology. 2017;6:e1271858. doi:10.1080/2162402X.2016.1271858.

110. Blankenstein T, Coulie PG, Gilboa E, Jaffe EM. The determinants of tumour immunogenicity. Nat Rev Cancer. 2012;12:307–313. doi:10.1038/nrc3246.
monocytic myeloid-derived suppressor cells. Oncoimmunology. 2017;7:e1373231. doi: 10.21203/rs.2.1402413.

115. Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 2006;6:836–848. doi:10.1038/nri1961.

116. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–998. doi:10.1038/nri899.

117. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, et al. Multiplicate immune response to cancer vaccine IMAg01 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012;18:1254–1261. doi:10.1038/nm.2883.

118. Pol J, Blyö N, Buque A, Eggermont A, Cremer I, Sautes-Fridman C, Galon J, Tartour E, Zitvogel L, Kroemer G, et al. Trial watch: peptide-based anticancer vaccines. Oncoimmunology. 2015;4:e974411. doi:10.21203/rs.2.1402413.1974411.

119. Romero P, Banchereau J, Bhardwaj N, Cockett M, Disis ML, Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Rev Immunol. 2007;7:57–67. doi:10.1038/nri1968.

120. Hoshi A, Tondini E, Van Kasteren SI, Sossewor F. Approaches to improve chemically defined synthetic peptide vaccines. Front Immunol. 2018;9:884. doi:10.3389/fimmu.2018.00884.

121. Arens R, Van Hall T, Van Der Burg SH, Sossewor F, Melief CJ. Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Semin Immunol. 2013;25:182–190. doi:10.1016/j.smim.2013.04.008.

122. Drug and Device News. P T. 2017;42:554–593.

123. Agosti JM, Goldie SJ. Introducing HPV vaccine in developing countries–key challenges and issues. N Engl J Med. 2007;356:1908–1910. doi:10.1056/NEJMmp070853.

124. Paavonen J, Naud P, Salmeron I, Wheeler CM, Chow SW, Apter D, Kitcheiner H, Castellsague X, Teixeira JC, Skinner SR, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet. 2009;374:301–314. doi:10.1016/S0140-6736(09)61248-4.

125. Group FIS. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med. 2007;356:1915–1927. doi:10.1056/NEJMoa061741.

126. Zhai L, Tumban E, Gardasil-9: A global survey of projected efficacy. Antiviral Res. 2016;130:101–109. doi:10.1016/j.antiviral.2016.03.016.

127. Cuzick J. Gardasil 9 joins the fight against cervical cancer. Expert Rev Vaccines. 2015;14:1047–1049. doi:10.1586/14760584.2015.1053470.

128. Van Poelgeest MI, Welters MJ, Van Esch BM, Svenningsen LF, Kepert GG, Van Persijn Van Meerten EL, Van Den Hende M, Loewik MJ, Berends-VerDer Meer DM, Lowik MJ, Berends-VerDer Meer DM, Lowik MJ, Hamming IL, Van Esch BM, Hellebrekers BW, et al. Vaccination against oncoproteins of HPV16 for noninvasive vaginal/vaginal lesions: lesion clearance is related to the strength of the T-cell response. Clin Cancer Res. 2016;22:2342–2350. doi:10.1158/1078-0432.CCR-15-2594.

129. Obeid J, Hu Y, Slingluff CL Jr. Vaccines, adjuvants, and dendritic cell activators–current status and future challenges. Semin Oncol. 2016;43:549–561. doi:10.1053/j.seminoncol.2015.05.006.

130. Moynihan KD, Gold LCF, Szeto GL, Tseng A, Zhu EF, Engreitz JM, Williams RT, Rakhra K, Zhang MH, Rothschilds AM, et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat Med. 2016;22:1402–1410. doi:10.1038/nm.4200.

131. Popovic A, Jaffee EM, Zaidi N. Emerging strategies for combination checkpoint modulators in cancer immunotherapy. J Clin Invest. 2018;128:3029–3032. doi:10.1172/JCI107277.

132. Nagaoka K, Hosoi A, Ino T, Morishita Y, Matsuhashi S, Kakimi K. Dendritic cell vaccine induces antigen-specific CD8(+) T cells that are metabolically distinct from those of peptide vaccine and is well-combined with PD-1 checkpoint blockade. Oncoimmunology. 2018;7:e1395124. doi:10.1080/2162402X.2017.1395124.

133. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Hauben JAN, Gonzalez R, Schadendorf D, Hassel JC, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–723. doi:10.1056/NEJMoa1003466.

134. Fournier C, Martin F, Zitvogel L, Kroemer G, Galluzzi L, Apetoh L. Trial watch: adoptively transferred cells for anticancer immunotherapy. Oncoimmunology. 2016;5:e1363139. doi:10.1080/2162402X.2017.1363139.

135. Pierini S, Perales-Linares R, Uribe-Herranz M, Pol IG, Zitvogel L, Kroemer G, Facciabene A, Galluzzi L. Trial watch: DNA-based vaccines for oncological indications. Oncoimmunology. 2017;6:e1398878. doi:10.21203/rs.2.1402413.1398878.

136. Vansteenkiste JF, Cho BC, Vanakesa T, De Pas T, Zielinski M, Kim MS, Jassem J, Yoshimura M, Dahabreh J, Nakayama H, et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016;17:822–832. doi:10.1016/S1470-2045(16)00099-1.

137. Higgins M, Curigliano G, Dieras V, Kuemmel S, Kunz G, Fasching PA, Campone M, Bachelot T, KRvironoto Kochan, Chan S, et al. Safety and immunogenicity of neoadjuvant treatment using WT1-immunotherapeutic in combination with standard therapy in patients with WT1-positive Stage II/III breast cancer: a randomized Phase I study. Breast Cancer Res Treat. 2016;157:479–488. doi:10.1007/s10549-017-4310-y.

138. Obara W, Eto M, Mimata H, Kuboh K, Mitsuhashi N, Miura I, Shuin T, Miki T, Koie T, Fujimoto H, et al. A phase II/III study of cancer peptide vaccine S-288310 in patients with advanced uterine carcinoma of the bladder. Ann Oncol. 2017;28:798–803. doi:10.1093/annonc/mdw675.

139. Obara W, Sato F, Takeda K, Kato R, Kato Y, Kanemira H, Takata R, Mimata H, Sugai T, Nakamura Y, et al. Phase I clinical trial of cell division associated 1 (CDCA1) peptide vaccination for castration resistant prostate cancer. Cancer Sci. 2017;108:1452–1457. doi:10.1111/cas.13278.

140. Slingluff CL Jr., Petroni GR, Olson WC, Smolkin ME, Chianese-Bullock KA, Mauldin IS, Smith KT, Deacon DH, Varhegyi NE, Donnelly SB, et al. A randomized pilot trial testing the safety and immunologic effects of a MAGE-A3 protein plus AS15
immunostimulant administered into muscle or into dermal/subcutaneous sites. Cancer Immunol Immunother. 2016:65:25–36. doi:10.1007/s00262-015-1770-9.

145. Gutzmer R, Rivoltini L, Levchenko E, Testori A, Utikal J, Ascierto PA, Demidov L, Grob JJ, Rödder D, Schaden Dor et al. Safety and Immunogenicity of the PRAME cancer immunotherapeutic in metastatic melanoma: results of a phase I dose escalation study. ESMO Open. 2016;1:e000068. doi:10.1136/esmoopen-2016-000068.

146. Saig P, Gutzmer R, Ascierto PA, Maio M, Grob J, Murawa P, Dreno B, Ross M, Weber J, Hauschild A, et al. Prospective assessment of a gene signature potentially predictive of clinical benefit in metastatic melanoma patients following MAGE-A3 immunotherapeutic (PREDICT). Ann Oncol. 2016;27:1947–1953. doi:10.1093/annonc/mdw291.

147. Pujol JL, Vansteenkiste JF, De Pas TM, Atanackovic D, Reck M, Thomeer M, Douillard JY, Fasola G, Potter V, Taylor P, et al. Safety and Immunogenicity of MAGE-A3 cancer immunotherapeutic with or without adjuvant chemotherapy in patients with resected stage IB to III MAGE-A3-positive non-small-cell lung cancer. J Thorac Oncol. 2015;10:1458–1467. doi:10.1097/JTO.0000000000000553.

148. Stanton SE, Eary JF, Marbaniang EA, Mankoff D, Salazar LG, Higgins D, Childs J, Reichow J, Dang Y, Disis ML. Concurrent SPECT/PET-CT imaging as a method for tracking adoptively transferred T-cells in vivo. J Immunother Cancer. 2016;4. doi:10.1186/s40424-016-0131-3.

149. Berinstein NL, Karkada M, Oza AM, Odunsi K, Villella JA, Nemunaitis JI, Morse MA, Pejovic T, Bentley J, Buyse M, et al. Survivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patients. Oncoimmunology. 2015;4:e1026529. doi:10.1080/2162402X.2015.1026529.

150. Eckert F, Gaip US, Niedermann G, Hettich M, Schilbach K, Huber SM, Zips D. Beyond checkpoint inhibition - Immunotherapeutic strategies in combination with radiation. Clin Transl Radiat Oncol. 2017;2:29–35. doi:10.1016/j.ctra.2016.12.006.

151. Brayer J, Lancet JE, Powers J, List A, Balducci L, Komrokji R, Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Personalized peptide vaccines and their relation to other therapies in urological cancer. Nat Rev Urol. 2017;14:501–506. doi:10.1038/nrurol.2017.77.

152. Saadato R, Pavelik A, Gnajt Sc, Cruz CM, Vengco I, Hasan F, Spadaccia M, Davishian F, Chiriboga L, Holman RM, et al. Resiquimod as an immunologic adjuvant for NY-ESO-1 protein vaccination in patients with high-risk melanoma. Cancer Res Immunol. 2015;278:278–287. doi:10.1158/2326-0666.CIR-14-0202.

153. Kobayashi Y, Sakura T, Miyawaki S, Toga K, Sogo S, Heike Y. A new peptide vaccine OCV-501: in vitro pharmacology and phase 1 study in patients with acute myeloid leukemia. Cancer Immunol Immunother. 2017;66:851–863. doi:10.1007/s00262-017-1981-3.

154. Sakamoto S, Yamada T, Terazaki Y, Yoshiyama K, Sugawara S, Takamori S, Matsueda S, Shichijo S, Yamada A, Noguchi M, et al. Feasibility study of personalized peptide vaccination for advanced small cell lung cancer. Clin Lung Cancer. 2017;18:e385–e394. doi:10.1016/j.jlcc.2017.03.011.

155. Mattendorf EA, Araujo A, Lintron JK, Shumway NM, Hale DF, Murray JL, Perez SA, Ponniah S, Baxexevanis CN, Papamichail M, et al. Primary analysis of a prospective, randomized, single blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence. Oncotarget. 2016;7:66192–66201. doi:10.18632/oncotarget.11751.

156. Baumgaertner P, Costa Nunes C, Cachat A, Maby-El Hajami H, Cagnon L, Braun M, Derre L, Rivals JP, Rimoldi D, Gnajt S, et al. Vaccination of stage III/IV melanoma patients with long NY-ESO-1 peptide and CpG-B elicits robust CD8(+) and CD4(+) T-cell responses with multiple specificities including a novel DR7-restricted epitope. Oncoimmunology. 2016;5:e1216290. doi:10.1080/2162402X.2016.1216290.

157. Hasegawa K, Ikeda Y, Kunugi Y, Kuroasaki A, Imai Y, Kohyama S, Nagao S, Kozawa E, Yoshida K, Tsunoda T, et al. Phase I study of multiple epitope peptide vaccination in patients with recurrent or persistent cervical cancer. J Immunother. 2018;41:201–207. doi:10.1097/CJI.0000000000000214.

158. Yutani S, Shirahama T, Muroya D, Matsueda S, Yamaguchi R, Morita M, Shichijo S, Yamada A, Sasada T, Itoh K. Feasibility study of personalized peptide vaccination for hepatocellular carcinoma patients refractory to locoregional therapies. Cancer Sci. 2017;108:1732–1738. doi:10.1111/cas.13301.

159. Shirahama T, Muroya D, Matsueda S, Yamaguchi R, Morita M, Shichijo S, Naito M, Yamashita T, Sakamoto S, Okuda K, Itoh K, et al. A randomized phase II trial of personalized peptide vaccine with low dose cyclophosphamide in biliary tract cancer. Cancer Sci. 2017;108:838–845. doi:10.1111/cas.13193.

160. Kohrt HE, Muller A, Baker J, Goldstein MJ, Newell E, Dutt S, Czerwinski D, Lowsky R, Strober S. Donor immunization with WT1 peptide augments antileukemic activity after MHC-matched bone marrow transplantation. Blood. 2011;118:5319–5329. doi:10.1182/blood-2011-05-356238.

161. Kimura T, Egawa S, Uemura H. Personalized peptide vaccines and their relation to other therapies in urological cancer. Nat Rev Urol. 2017;14:501–510. doi:10.1038/nrruro.2017.77.

162. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbe-Hurder A, Peter L, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547:217–221. doi:10.1038/nature22991.

163. Maitland NA. Cancer: precision T-cell therapy targets tumours. Nature. 2017;547:165–167. doi:10.1038/nature23093.

164. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, et al. The cancer gene census. Nature. 2013;507:415–421. doi:10.1038/nature13130.
McElrath MJ. Adjuvants: tailoring humoral immune responses.

Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat Med.

Van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med.

Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM. Combination therapy treatments in clinical trials. Curr Opin HIV AIDS.

Jooss K, Lowy I, et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and GM-CSF for patients with advanced pancreatic cancer: PEGASUS-PC study. Cancer Sci. 2015;106:883–890. doi:10.1111/cas.12674.

Melssen M, Slingluff C Jr. Vaccines targeting helper T cells for cancer immunotherapy. Curr Opin Immunol. 2017;47:85–92. doi:10.1016/j.coi.2017.07.004.

Keefe DM, Bateman EH. Tumor control versus adverse events with targeted anticancer therapies. Nat Rev Clin Oncol. 2011;9:98–109. doi:10.1038/nrc3008-8021.

Lopez JS, Banerji U. Combine and conquer: challenges for targeted therapy combinations in early phase trials. Nat Rev Clin Oncol. 2017;14:57–66. doi:10.1038/nrc3008-8021.

Schmidt C. The benefits of immunotherapy combinations. Nature. 2017;552:567–569. doi:10.1038/d41586-017-08702-7.

Versteven M, Mijn VDB, Marècq E, Smits ELJ, Van Tendeloo VFI, Hobo W, Lion E. Dendritic cells and programmed death-1 blockade: a joint venture to combat cancer. Front Immunol. 2018;9:394. doi:10.3389/fimmu.2018.00394.

Trastuzumab increases HER2 uptake and cross-presentation by dendritic cells. Cancer Res. 2017;77:5374–5383. doi:10.1158/0008-5472.CAN-16-2774.

Tsuruta M, Ueda S, Yew PY, Fukuda I, Yoshimura S, Kishi H, Hamana H, Hirayama M, Yatsuda J, Ito A, et al. Bladder cancer-associated antigen antigen-derived long peptides encompassing both CTL and promiscuous HLA class II-restricted Th cell epitopes induced CD4(+)-T cells expressing converged T-cell receptors in vitro. Oncoimmunology. 2018;7:e1415687. doi:10.21202/onc.2017.1415687.

Pettrizzo A, Mauriello A, Luciano A, Rea D, Barbieri A, Arra C, Maiolino P, Tornesello M, Gigantino V, Botti G, et al. Inhibition of tumor growth by cancer vaccine combined with metronomic chemotherapy and anti-PD-1 in a pre-clinical setting. Oncotarget. 2018;9:3576–3589. doi:10.18632/oncotarget.23181.

Tanaka H, Hazama S, Iida M, Tsunedomi R, Takenouchi H, Nakajima M, Tokumitsu Y, Kenakio Y, Shindo Y, Tomochika S, et al. miR-125b-1 and miR-378a are predictive biomarkers for the efficacy of vaccine treatment against colorectal cancer. Cancer Sci. 2017;108:2229–2238. doi:10.1111/cas.13390.

Huang L, Wang Z, Liu C, Xu C, Mbofung RM, McKenzie JA, Khong H, Hwu P, Peng W. CpG-based immunotherapy impairs antitumor activity of BRAF inhibitors in a B-cell-dependent manner. Oncogene. 2017;36:4081–4086. doi:10.1038/onc.2017.35.

Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 2018;17:209–222. doi:10.1038/nrc.2016.154.

Purcell AW, McCluskey J, Rossjohn J. More than one reason to rethink the use of peptides in vaccine design. Nat Rev Immunol. 2008;8:59–73. doi:10.1038/nri2216.

Dranoff G. Tailor-made renal cell carcinoma vaccines. Cancer Cell. 2012;22:287–289. doi:10.1016/j.ccr.2012.08.021.

Tagliamonte M, Pettrizzo A, Napolitano M, Luciano A, Arra C, Maiolino P, Izzo F, Tornesello ML, Aurisicchio L, Ciliberto G, et al. Novel metronomic chemotherapy and cancer vaccine combinatioral strategy for hepatocellular carcinoma in a mouse model. Cancer Immunol Immunother. 2015;64:1303–1314. doi:10.1007/s00262-015-1698-0.

Demaria S, Ng B, Devitt ML, Sabb JS, Kawashima N, Liebes L, Formenti SC. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–870. doi:10.1016/j.ijrobp.2003.09.012.

Vanpouille-Box C, Diamond JM, Pilones KA, Zavadi Z, JB B, Formenti SC, Barcellos-Hoff MH, Demaria S. TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 2015;75:2232–2242. doi:10.1158/0008-5472.CAN-14-3511.

Wennerberg E, Lhuillier C, Vanpouille-Box C, Pilones KA, Garcia-Martinez E, Rudqvist NP, Formenti SC, Demaria S. Barriers to radiation-induced in situ tumor vaccination. Front Immunol. 2018;7:229. doi:10.3389/fimmu.2017.00229.

Cadena A, Cushman TR, Anderson C, Barsoumian HB, Welsh JW, Cortez MA. Radiation and anti-cancer vaccines: a winning combination. Vaccines (Basel). 2018;6. doi:10.3390/vaccines6010009.

Yamashita H, Tsuchida T, Tani M, Miyazawa M, Yamao K, Mizuno N, Okusaka T, Ueno H, Boku N, Fukutomi A, et al. Randomized phase II/III clinical trial of epalmotide for patients with advanced pancreatic cancer: PEGASUS-PC study. Cancer Sci. 2015;106:883–890. doi:10.1111/cas.12674.

Mrels K, Slingluff CL Jr. Vaccines targeting helper T cells for cancer immunotherapy. Curr Opin Immunol. 2017;47:85–92. doi:10.1016/j.coi.2017.07.004.
202. Jacquelot N, Roberti MP, Enot DP, Rusakiewicz S, Ternes N, Jegou S, Woods DM, Sodre AL, Hansen M, Meirow Y, et al. Predictors of responses to immune checkpoint blockade in advanced melanoma. Nat Commun. 2017;8:592. doi:10.1038/s41467-017-00688-2.

203. Smyth MJ, Ngiow SF, Ribas A, Teng MW. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13:143–158. doi:10.1038/nrclinonc.2015.209.

204. Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe’re D, et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell. 2017;170:1110–1133. e1117. doi:10.1016/j.cell.2017.07.024.

205. Liu P, Zhao L, Loos F, Iribarren K, Kepp O, Kroemer G. Epigenetic antigenic agents cause HMGB1 release in vivo. Oncoimmunology. 2018;7:e1431090. doi:10.1080/2162402X.2018.1431090.

206. Pfirschke C, Engblom C, Rickelt S, Cortez-Rematamo V, Garris C, Pucci F, Yamazaki T, Poirier-Colame V, Newton A, Redouane Y, et al. Immunogenic chemotherapeutic sensitizes tumors to checkpoint blockade therapy. Immunity. 2016;44:343–354. doi:10.1016/j.immuni.2015.11.024.

207. Tumeh PC, Harvieu CL, Yearly JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–571. doi:10.1038/nature13954.

208. Zitvogel L, Kroemer G. Targeting PD-1/PD-L1 interactions for cancer immunotherapy. Oncoimmunology. 2012;1:1223–1225. doi:10.4161/onci.21335.

209. Kang J, Galluzzi L. PD-L1 blockade for urothelial carcinoma. Oncoimmunology. 2017;6:e134028. doi:10.1080/2162402X.2017.1334028.

210. Sieffer-Radlke A, Curti B. Immunotherapy in metastatic urothelial carcinoma: focus on immune checkpoint inhibition. Nat Rev Urol. 2018;15:112–124. doi:10.1038/nrurol.2017.190.

211. Jelinek T, Hajek R. PD-1/PD-L1 inhibitors in multiple myeloma: the present and the future. Oncoimmunology. 2016;5:e1254856. doi:10.1080/2162402X.2016.1254856.

212. Sharma P, Logothetis C. Prostate cancer: combination of vaccine plus ipilimumab—safety and toxicity. Nat Rev Urol. 2012;9:302–303. doi:10.1038/nruro.2012.103.

213. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–1084. doi:10.1126/science.aad1329.

214. Sidaway P. Immunotherapy: local chemotherapy synergizes with CTLA-4 inhibition. Nat Rev Clin Oncol. 2018;15:202. doi:10.1038/nrclinonc.2018.22.

215. Hopkins AC, Yarchoan M, Durham JN, Yusko EC, Rytlewski JA, Robins HS, Laheru DA, Le DT, Lutz ER, Jaffe EM. T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight. 2018;3. doi:10.1172/jci.insight.120092.

216. Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Pucci F, Yamazaki T, Poirier-Colame V, Newton A, Redouane Y, et al. Virus-like particle display of HER2 induces potent anti-cancer responses. Oncoimmunology. 2018;7:e1408749. doi:10.1080/2162402X.2017.1408749.

217. Dillon PM, Petroni GR, Smolkin ME, Brenin DR, Chiaiese-Bullock KA, Smith KT, Olson WC, Fanous IS, Nail CJ, Brenin DR, et al. A pilot study of the immunogenicity of a 9-epitope breast cancer vaccine plus poly-ICLC in early stage breast cancer. J Immunother Cancer. 2017;5:92. doi:10.1186/s40425-017-0295-5.

218. Arab A, Nicaseto J, Slavcev R, Razzaq A, Barati N, Nikpoor AR, Brojenni AAM, Mosaffa F, Badiea A, Jaafari MR, et al. Lambda phage nanoparticles displaying HER2-derived E75 peptide induce effective E75-CD8+ T cell responses. Immunol Res. 2018;66:200–206. doi:10.1007/s12026-017-8969-0.

219. Arab A, Behravan J, Razzaq A, Gholizadeh Z, Nikpoor AR, Barati N, Mosaffa F, Badiea A, Jaafari MR. A nano-epitope recruitment. Cancer Cell. 2017;32:777–791 e776. doi:10.1016/j.ccell.2017.11.001.
vaccine carrying E75, a HER-2/neu-derived peptide, exhibits signif-icant antitumour activity in mice. J Drug Target. 2018;26:365–372. doi: 10.1016/j.tre.2017.1387788.

325. Behravan J, Razazan A, Behravan G. Towards Breast Cancer Vaccines, Progress and Challenges. Curr Drug Discov Technol. 2018. doi: 10.1080/21645515.2015.1020565.

326. Takeoka T, Nagase H, Kurose K, Ohue Y, Yamasaki M, Takiguchi S, Sato E, Isobe M, Kanazawa T, Matsumoto M, et al. NY-ESO-1 protein vaccine with poly-ICLC and OK-432: rapid and Strong Induction of NY-ESO-1-specific immune responses by poly-ICLC. J Immunother. 2017. doi: 10.1097/CJI.0000000000001062.

327. Schneible EJ, Berry JS, Trappey FA, Clifton GT, Ponniah S, Mittendorf E, Peoples GE. The HER2 peptide nelipepimut-S (E75) vaccine (NeuVax) in breast cancer patients at risk for recurrence: correlation of immunologic data with clinical response. Immunotherapy. 2014;6:519–531. doi: 10.2217/imt.14.22.

328. Andersen MH, thor SP. Survivin–a universal tumor antigen. Histol Histopathol. 2002;17:669–675. doi: 10.14617/HH-17.669.

329. Shima H, Kutomi G, Satomi F, Immamura M, Kimura Y, Mizzuguchi T, Watanabe K, Takahashi A, Mura K, Tsukahara T, et al. Case report: long-term survival of a pancreatic cancer patient immunized with an SVN-2B peptide vaccine. Cancer Immunol Immunother. 2018. doi: 10.1007/s00262-018-2217-x.

330. Chiang CY, Chen YJ, Wu CC, Liu SJ, Leng CH, Chen HW. Efficient uptake of recombinant lipoparticle survivin by antigen-presenting cells initiates antigen cross-presentation and antitumor immunity. Front Immunol. 2018;9:822. doi: 10.3389/fimmu.2018.00822.

331. Berzofsky JA, Terabe M, Trepel JB, Pastan I, Stroncek DF, Morris JC, Wood LV. Cancer vaccine strategies: translation from mice to human clinical trials. Cancer Immunol Immunother. 2017. doi: 10.1007/s00262-017-2084-x.

332. Lowenfeld L, Zaheer S, Oechsle C, Fracol M, Datta J, Xu S, Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer: current Perspectives. Front Immunol. 2018;9:947.

333. Cui N, Shi J, Yang C. HER2-Based Immunotherapy for Breast Cancer. Cancer Biother Radiopharm. 2018;33:169–175. doi: 10.1080/2162402X.2017.132327.

334. Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, Decock JNY-ESO-1. Based Immunotherapy of naive prostate cancer. Cancer Immunol Immunother. 2015;64:519–529. doi: 10.1007/s00262-015-1805-2.

335. Prendergast GC, Malachowski WP, DuHadaway JB, Muller AJ. Discovery of IDO1 inhibitors: from bench to bedside. Cancer Res. 2015;75:4277–4283. doi: 10.1158/0008-5472.CAN-14-3039.

336. Kruit WH, Szczena S, Martin C, Ragulin Y, Zukin M, Helwig C, et al. Tevémedite in unreactable stage III non-small-cell lung cancer in the phase III START study: updated overall survival and biomarker analyses. Ann Oncol. 2015;26:1134–1142. doi: 10.1093/annonc/mdv104.

337. Kruij VH, Sicui S, Dreno B, Mortier R, Robert C, Chiarion-Sileni V, Maio M, Testori A, Dorval T, Grob JJ, et al. Selection of immunostimulants AS15 for active immumization with MAGE-A3 protein: results of a randomized phase II study of the European organisation for research and treatment of cancer melanoma group in metastatic melanoma. J Clin Oncol. 2013;31:2413–2420. doi: 10.1200/JCO.2012.43.7111.

338. Galluzzi L, Vacchelli E, Fridman WH, Galon J, Sauves-Fridman C, Tartour E, Zucman-Rossi J, Zitvogel L, Kroemer G. Trial watch: monomorphic antibodies in cancer therapy. Oncoimmunology. 2012;1:28–37. doi: 10.4161/onci.1.1.17938.

339. Seton-Rogers S. Immunotherapy: switching off immune suppression. Nat Rev Cancer. 2017;17:171. doi: 10.1038/nrc.2016.144.

340. Martins I, Galluzzi L, Kroemer G. Hormesis, cell death and aging. Aging (Albany NY). 2011;3:821–828. doi: 10.18632/aging.100380.

341. Parmiani G, Russo V, Maccalli C, Polonini D, Rizzo N, Maio M. Peptide-based vaccines for cancer therapy. Hum Vaccin Immunother. 2014;10:3175–3178. doi: 10.4161/hv.29418.

342. Garg AD, Agustinis P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev. 2017;280:126–148. doi: 10.1111/imr.12574.

343. Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chauoir R, Cirone M, et al. Molecular and translational classifications of DAPMs in immunogenic cell death. Front Immunol. 2015;6:588. doi: 10.3389/fimmu.2015.00588.

344. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: inte-grating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–1570. doi: 10.1126/science.1203486.

345. Gross ET, Han S, Vemu P, Peinado CD, Marsala M, Ellis BG, Bui JD. Immunosurveillance and immunodominance in MMTV-PyMT-induced mammary oncogenesis. Oncoimmunology. 2017;6:e126830. doi: 10.21268/e1268310.
267. Lu L, Barbi J, Pan F. The regulation of immune tolerance by FOXP3. Nat Rev Immunol. 2017;17:703–717. doi:10.1038/nri.2017.75.

268. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–499. doi:10.1038/nri3862.

269. Carter CA, Oronsky BT, Roswarski J, Oronsky AL, Oronsky N, Scicinski J, Lybeck H, Kim MM, Lybeck M, Reid TR. No patient left behind: the promise of immune priming with epigenetic agents. Oncoimmunology. 2017;6:e1315486. doi:10.1080/2162402X.2017.1315486.

270. Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018. doi:10.1038/s41577-018-0014-6.

271. Van Der Burg SH, Arens R, Osendorp F, Van Hall T, Melief CJ. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer. 2016;16:219–233. doi:10.1038/nrc.2016.16.

272. Hirayama M, Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. Int Immunol. 2016;28:319–328. doi:10.1093/intimm/dxw027.

273. Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol. 2018;18:168–182. doi:10.1038/nri.2017.131.

274. Finn OJ. The dawn of vaccines for cancer prevention. Nat Rev Immunol. 2018;18:183–194. doi:10.1038/nri.2017.140.

275. Guo Y, Lei K, Tang L. Neoantigen vaccine delivery for personalized anticancer immunotherapy. Front Immunol. 2018;9:1499. doi:10.3389/fimmu.2018.01499.