UNIPOTENT BLOCKS AND WEIGHTED AFFINE WEA YL GROUPS

G. LUSZTIG

INTRODUCTION

0.1. Let G be a connected reductive algebraic group over \mathbb{C}. Let $un(G)$ be the set of unipotent conjugacy classes in G. Let $ls(G)$ be the set of all pairs (c, \mathfrak{L}) where $c \in un(G)$ and \mathfrak{L} is an irreducible \mathbb{C}-local system on c, equivariant for the conjugation action of G. In [S76], Springer discovered a remarkable bijection between a certain subset $'ls(G)$ of $ls(G)$ and the set of irreducible representations of the Weyl group of G (up to isomorphism). In [L84] I extended Springer result by defining the “generalized Springer correspondence” that is, a partition of $ls(G)$ into subsets (which could be called unipotent blocks) and a bijection, for each unipotent block β, between the set of objects in β and the set $\text{Irr}(\mathcal{W}_\beta)$ of irreducible representations (up to isomorphism) of a certain Weyl group \mathcal{W}_β associated to β. (The subset $'ls(G)$ is one of the unipotent blocks, namely the one containing $(\{1\}, \mathbb{C})$.) The arguments of [L84] were based on the use of perverse sheaves on G.

0.2. In the remainder of this introduction we assume that G is almost simple, simply connected. Let W be the affine Weyl group of type dual to that of G. In this paper we try to show that various information on unipotent elements of G can be recovered from things which are more primitive than unipotent elements, namely from Weyl groups, their associated Hecke algebras and their representations. We want to recover such information from W and its subgroups, without use of the geometry of G. Results of this type have been obtained in [L20] for the unipotent block $'ls(G)$ and this paper can be viewed as an attempt to extend [L20] to arbitrary unipotent blocks.

We now describe some earlier results in the same direction.

In [L79] it has been observed that there is a set defined purely in terms of W which is an indexing set for $un(G)$, via the ordinary Springer correspondence. More precisely, this set describes $un(G)$ in terms of truncated induction from special representations of the various finite standard parabolic subgroups of W, see 6.3. The same process allows one to recover the order of the group of components of

Supported by NSF grant DMS-1855773.
the centralizer of a unipotent element in the adjoint group of G in terms of data attached to the various special representations in the previous sentence, see [L09]. In [L80] it was conjectured (and in [L89] proved) that the set of two-sided cells of W is an indexing set for $\text{un}(G)$. These results suggest that it may be possible to recover other properties of unipotent elements of G in terms of W.

0.3. Let Ω_W be the group of automorphisms of W as a Coxeter group which induce an inner automorphism of W modulo the subgroup of translations. In this paper, for any $\omega \in \Omega_W$, we define (without reference to G) a certain set $\mathcal{C}_\omega(W)$ of standard finite parabolic subgroups W_J of W, stable under ω, see §3. Moreover, we define a bijection between the set of unipotent blocks of G and the set $\cup_{\omega \in \Omega_W} \mathcal{C}_\omega(W)$, see 6.5. (This bijection is closely related to the arithmetic/geometric correspondence [L95] in the study of unipotent representations of a simple p-adic group.)

One of the properties that we impose on $W_J \in \mathcal{C}_\omega(W)$ implies that a finite reductive group over \mathbf{F}_q with Weyl group W_J and with Frobenius acting on this Weyl group as ω should have a unipotent cuspidal representation (but we formulate this property without reference to finite reductive groups, see §2). This has the consequence that the subgroups W_J which appear are rather few. In §5 we attach to each $W_J \in \mathcal{C}_\omega(W)$ an affine Weyl group \mathcal{W}_J with a weight function $L_J : \mathcal{W}_J \to \mathbf{N}$. (This follows a procedure from [L90], [L95].) In this way to any unipotent block we have attached a weighted affine Weyl group. (We regard the group $\{1\}$ as a weighted affine Weyl group.) The weighted affine Weyl group (\mathcal{W}_J, L_J) is different in general from the one defined in [L17]. In the remainder of this introduction we fix a unipotent block β and we denote by $\omega, W_J, W_J, L_J, L_J$ the objects associated to β as above.

In Theorem 6.10 we show that the quotient \bar{W}_J of \mathcal{W}_J by its group of translations (which is defined purely in terms of W) can be identified with the group \mathcal{W}_β of 0.1. In §4 we define a function $c : \text{Irr}(\bar{W}_J) \to \mathbf{N}$ purely in terms of W. The values of c are conjecturally related to dimensions of certain Springer fibres (see 6.11); this relation is unconditional for exceptional types. The function c is used in 6.12(a) to express conjecturally the generalized Green functions [L86, 24.8] purely in terms of W; again this is unconditional for exceptional types. In 7.3 we state a conjecture which provides an indexing set for the set of two-sided cells in \mathcal{W}_J relative to L_J; this is unconditional for exceptional types.

0.4. Notation. For a group L we denote by L_{der} the derived subgroup of L. For a finite group Γ let $\text{Irr}(\Gamma)$ be the set of irreducible representations of Γ over \mathbf{C} (up to isomorphism).

Contents

1. Weighted Weyl groups.
2. Sharp Weyl groups.
3. Affine Weyl groups and the sets $\mathcal{C}_\omega(W)$.
4. The function $c : \text{Irr}(\bar{W}) \to \mathbf{N}$.
5. A weighted affine Weyl group.
6. The set $G_\omega(G)$ and the bijection $G_\omega(G) \xrightarrow{\sim} C_\omega(W)$.
7. Cells in the weighted affine Weyl group W_J.

1. Weighted Weyl groups

1.1. Let \mathcal{W} be a Coxeter group and let \mathcal{S} be its set of simple reflections. Let $w \mapsto |w|$ be the length function on \mathcal{W}. We say that \mathcal{W} is weighted if we are given a weight function $L : \mathcal{W} \to \mathbb{N}$ that is a function such that $L(ww') = L(w) + L(w')$ for any w, w' in \mathcal{W} such that $|ww'| = |w| + |w'|$. Let $Cell(\mathcal{W}, L)$ be the set of two sided cells of (\mathcal{W}, L) in the sense of [L03].

Let $v \in \mathbb{C} - \{0\}$ be a non-root of 1 and let \mathcal{H}_v be the Hecke algebra (over \mathbb{C}) associated to \mathcal{W}, L, v; thus \mathcal{H}_v is the \mathbb{C}-vector space with basis $\{T_w \mid w \in \mathcal{W}\}$ with associative multiplication defined by the rules $T_w T_{w'} = T_{ww'}$ for any w, w' in \mathcal{W} such that $|ww'| = |w| + |w'|$ and $(T_\sigma + v^{-L(\sigma)})(T_\sigma - v^{L(\sigma)}) = 0$ for any $\sigma \in \mathcal{S}$.

1.2. In the remainder of this section we assume that \mathcal{W} is a Weyl group with a given weight function $L : \mathcal{W} \to \mathbb{N}$. Let $\text{Irr}(\mathcal{H}_v)$ be the set of simple \mathcal{H}_v-modules (up to isomorphism). It is known that $\text{Irr}(\mathcal{W}), \text{Irr}(\mathcal{H}_v)$ are in canonical bijection. (We can assume that \mathcal{W} is irreducible. If properties P1-P15 in [L03, §14] are assumed, then according to [L03], the algebras $\mathcal{H}_v, \mathbb{C}[\mathcal{W}]$ are canonically isomorphic and the result would follow. Now P1-P15 do hold when \mathcal{W} is of type E_7, E_8 or G_2. Thus we can assume that \mathcal{W} is of type other than E_7, E_8 or G_2. In this case, the result follows from the observation in [BC] according to which the various $E \in \text{Irr}(\mathcal{W})$ are characterized by their multiplicities in representations of \mathcal{W} induced from the unit representation of various parabolic subgroups. Alternatively we can use [G11].)

We denote this bijection by $E \leftrightarrow E_v$. For $E \in \text{Irr}(\mathcal{W})$ we set

$$f_{E,L,v} = (\dim E)^{-1} \sum_{w \in \mathcal{W}} \text{tr}(T_w,E_v)\text{tr}(T_{w^{-1}},E_v) \in \mathbb{C}^*$$

and

$$D_{E,L,v} = f_{E,L,v}^{-1} \sum_{w \in \mathcal{W}} v^{2L(w)} \in \mathbb{C}.$$

From the known explicit formulas for $D_{E,L,v}$ we see that $D_{E,L,v}$ is a nonzero rational function in v. We define $a_{E,L}(E) \in \mathbb{N}$ by the requirement that $D_{E,L,v} v^{-2a_{E,L}(E)}$ is a rational function in v whose value at $v = 0$ is $\neq 0$ and $\neq \infty$. In the case where $L = ||$ we write $a(E)$ instead of $a_{E,L}(E)$.

1.3. If \mathcal{W} is of type A_1 and the value of $L_\mathcal{S}$ is $a \in \mathbb{Z}_{>0}$ then setting $q = v^{2a}$ we have $D_{E,L,v} = 1$ if $E = 1$ and $D_{E,L} = q$ if $E = \text{sgn}$; the corresponding values of $a_{E,L}$ are $0; a$. We now assume that \mathcal{W} is of type A_2 and the values of $L|_\mathcal{S}$ are a, a in $\mathbb{Z}_{>0}$. Setting $q = v^{2a}$ we write below the values of $D_{E,L,v}$ for various E of dimension 1; 2; 1:

$$1; q^2 + q, q^3.$$

The corresponding values of $a_{E,L}$ are $0; a; 3a$.

1.4. In this subsection we assume that \(\mathfrak{W} \) is of type \(B_2 \) and the values of \(\mathcal{L}|\triangledown \) are \(a, b \) in \(\mathbb{Z}_{>0} \). Setting \(q = v^{2a}, y = v^{2b} \) we write below the values of \(D_{E,\mathcal{L},v} \) for various \(E \) of dimension 1; 2; 1; 1:

\[
1; qy(q + 1)(y + 1)/(q + y); q^2(yq + 1)/(q + y); y^2(yq + 1)/(q + y); q^2y^2.
\]

The corresponding values of \(a_{E,\mathcal{L}} \) are:

\[
0; a + b - m; 2a - m; 2b - m; 2a + 2b
\]

where \(m = \min(a, b) \).

1.5. In this subsection we assume that \(\mathfrak{W} \) is of type \(G_2 \) and the values of \(\mathcal{L}|\triangledown \) are \(a, b \) in \(\mathbb{Z}_{>0} \). Setting \(q = v^{2a}, y = v^{2b}, \sqrt{qy} = v^{a+b} \) we write below the values of \(D_{E,\mathcal{L},v} \) for various \(E \) of dimension 1; 2; 1; 1:

\[
1; qy(q + 1)(y + 1)/(q + y); qy(q + 1)(y + 1)/(2q + \sqrt{qy} + y);
q^2(q^2y^2 + qy + 1)/(q^2 + qy + y^2); y^2(q^2y^2 + qy + 1)/(q^2 + qy + y^2);
q^3y^3.
\]

The corresponding values of \(a_{E,\mathcal{L}} \) are:

\[
0; a + b - m; a + b - m; 2a - 2m; 2b - 2m, 3a + 3b
\]

where \(m = \min(a, b) \).

1.6. In this subsection we assume that \(\mathfrak{W} \) is of type \(B_3 \) and the values of \(\mathcal{L}|\triangledown \) are \(a, b \) in \(\mathbb{Z}_{>0} \). Setting \(q = v^{2a}, y = v^{2b} \) we write below the values of \(D_{E,\mathcal{L},v} \) for various \(E \) of dimension 1; 3; 2; 1; 3; 3; 2; 3; 1; 1:

\[
1; qy(q^2 + q + 1)/(q + y); q^2(q + 1)(q^2y + 1)/(q + y);
q^2y^3(q + 1)(q^2y + 1)/(q + y); q^2y^3y^2(q + 1)(q^2y + 1)/(q + y);
q^6(qy + 1)(q^2y + 1)/(q^2 + y)(q + y)); q^6y^3.
\]

The corresponding values of \(a_{E,\mathcal{L}} \) are:

\[
0; a + b - m; 3a - m; 3b - m; a + 2b - m'; 3a + b - m'; 2a + 3b - m;
3a + 2b - m; 6a - m - m'; 6a + 3b
\]

where \(m = \min(a, b) \), \(m' = \min(2a, b) \).

1.7. In [L82] a definition of a partition of \(\operatorname{Irr}(\mathfrak{W}) \) into subsets called families was given. Repeating that definition but using \(a_{\mathcal{L}}(E) \) instead of \(a(E) \) for \(E \in \operatorname{Irr}(\mathfrak{W}) \) we obtain a partition of \(\operatorname{Irr}(\mathfrak{W}) \) into subsets called \(\mathcal{L} \)-families. (This definition appears in [L83, no.7].) Thus the families of [L82] are the same as the \(|-\)-families.
2. Sharp Weyl groups

2.1. Let \(\mathcal{W}, \mathcal{S}, || \) be as in 1.1. We assume that \(\mathcal{W} \) is a Weyl group. Let \(A_{\mathcal{W}} \) be the group of all automorphisms \(\gamma \) of \(\mathcal{W} \) preserving \(\mathcal{S} \) and such that whenever \(\sigma \neq \sigma' \) are in the same \(\gamma \)-orbit in \(\mathcal{S} \), the product \(\sigma \sigma' \) has order \(\geq 3 \). For \(\gamma \in A_{\mathcal{W}} \) let \(r(\gamma) \) be the number of \(\gamma \)-orbits on \(S \); let \(\text{ord}(\gamma) \) be the order of \(\gamma \). We shall also write \(\gamma \mathcal{W} \) instead of \((\mathcal{W}, \gamma) \). (We sometimes write \(d\mathcal{W} \) instead of \(\gamma\mathcal{W} \) where \(d = \text{ord}(\gamma) \); when \(d = 1 \) we write \(\mathcal{W} \) instead of \(1\mathcal{W} \).)

Let \(op \in A_{\mathcal{W}} \) be given by conjugation by the longest element of \(\mathcal{W} \).

For any \(E \in \text{Irr}(\mathcal{W}) \) and \(v \in C^* \) a non-root of 1, \(D_{E,||,v} \in C \) is defined as in 1.2 with \(\mathcal{L} = || \). It is known that \(D_{E,||,v} \) is a polynomial in \(v^2 \) with rational coefficients. Let \(z(E) \) be the largest integer \(\geq 0 \) such that \(D_{E,||,v}/(v^2 + 1)^{z(E)} \) is a polynomial in \(v^2 \). From the known formulas for \(D_{E,||,v} \) one can see that \(z(E) \leq r(op) \).

Assuming that \(\mathcal{W} \) is \(\{1\} \) or irreducible, we say that \(\mathcal{W} \) is sharp if

(a) there exists \(E_0 \in \text{Irr}(\mathcal{W}) \) such that \(z(E_0) = r(op) \)
and \(r(op)\text{ord}(op) \) is even. (The last condition is imposed to rule out a \(\mathcal{W} \) of type \(E_7 \).) Note that the family of \(\mathcal{W} \) containing \(E_0 \) in (a) is necessarily unique (when such \(E_0 \) exists); moreover \(E_0 \) itself is unique (when it exists) if it is assumed to be special.

Let \(\gamma \in A_{\mathcal{W}} \). Assuming that \(\mathcal{W} \) is \(\{1\} \) or irreducible, we say that \(\gamma \mathcal{W} \) is sharp if \(\mathcal{W} \) is sharp and \(\text{ord}(op\gamma) \) is odd. The last condition means that we have either \(\gamma = op \) or \(\text{ord}(\gamma) = 3 \) (hence \(\mathcal{W} \) is of type \(D_4 \)). For \(\gamma \mathcal{W} \) sharp we set \(a[\gamma \mathcal{W}] = a(E_0) \) where \(E_0 \) is as in (a).

2.2. Here is a complete list of the various sharp \(\gamma \mathcal{W} \) and the corresponding \(a[\gamma \mathcal{W}] \):

(i) \(\{1\} \), \(a[\gamma \mathcal{W}] = 0 \):
(ii) \(2A_{(t^2 - 1)/2 - 1} \), \(t \in \{5, 7, 9, \ldots \} \), \(a[\gamma \mathcal{W}] = (t - 3)(t - 1)(t + 1)/48; \)
(iii) \(B_{(t^2 - 1)/4} \), \(t \in \{3, 5, 7, \ldots \} \), \(a[\gamma \mathcal{W}] = (t - 1)(t + 1)(2t - 3)/24; \)
(iv) \(D_{t^2/4} \), \(t \in \{4, 8, 12, \ldots \} \), \(a[\gamma \mathcal{W}] = (t - 2)t(2t + 1)/24; \)
(v) \(2D_{t^2/4} \), \(t \in \{6, 10, 14, \ldots \} \), \(a[\gamma \mathcal{W}] = (t - 2)t(2t + 1)/24; \)
(vi) \(G_2, 3D_4, F_4, 2E_6, E_8, a[\gamma \mathcal{W}] = 1, 3, 4, 7, 16 \) respectively.

For a general \(\mathcal{W}, \gamma \) we say that \(\mathcal{W} \) is \(\gamma \)-irreducible if \(\mathcal{W} \) is a product of \(k \geq 1 \) irreducible Weyl groups \(\mathcal{W}_1, \ldots, \mathcal{W}_k \) and \(\gamma \) permutes \(\mathcal{W}_1, \ldots, \mathcal{W}_k \) cyclically. In this case we say that \(\gamma \mathcal{W} \) is sharp if \(\gamma^k \mathcal{W}_1 \) is sharp and we set \(a[\gamma \mathcal{W}] = k a[\gamma^{k-1} \mathcal{W}_1] \).

For a general \(\mathcal{W}, \gamma \), we have that \(\mathcal{W} \) is a product \(\mathcal{W}_1' \times \ldots \times \mathcal{W}_j' \) of Weyl groups such that each \(\mathcal{W}_j' \) is \(\gamma \)-stable and \(\gamma \)-irreducible. We say that \(\gamma \mathcal{W} \) is sharp if each \(\gamma \mathcal{W}_j' \) is sharp; we set \(a[\gamma \mathcal{W}] = \sum_j a[\gamma \mathcal{W}_j] \).

The objects in (i),(iii)-(v) can be viewed as vertices of a graph:

\[
\begin{align*}
1 \quad & - - - - B_{(3^2 - 1)/4} - - - - D_{4^2}/4 - - - - B_{(5^2 - 1)/4} - - - - \\
& - - - - 2D_{6^2/4} - - - - B_{(7^2 - 1)/4} - - - - D_{8^2}/4 - - - - B_{(9^2 - 1)/4} - - - - \\
(a) \quad & - - - - 2D_{10^2/4} - - - - B_{(11^2 - 1)/4} - - - -
\end{align*}
\]
We will attach to each vertex of this graph an index: the index of each of $B_{(t^2-1)/4}$, $D_{t^2/4}$, $^2D_{t^2/4}$ is t; the index of $\{1\}$ is 2.

From the objects in (i)-(v) we can form a second graph:

$$
\{1\} \times \{1\} \rightarrow -2A_{(5^2-1)/8-1} \rightarrow -\gamma(B_{(6/2)^2-1}/4 \times B_{((6/2)^2-1)/4}) \rightarrow
-2A_{(7^2-1)/8-1} \rightarrow -\gamma(D_{(8/2)^2/4} \times D_{(8/2)^2/4}) \rightarrow
-2A_{(9^2-1)/8-1} \rightarrow -\gamma(B_{((10/2)^2-1)/4} \times B_{((10/2)^2-1)/4}) \rightarrow
-2A_{(11^2-1)/8-1} \rightarrow -\gamma(D_{(12/2)^2/4} \times D_{(12/2)^2/4}) \rightarrow
\gamma(D_{(t/2)^2/4} \times D_{(t/2)^2/4}), ^2A_{(t^2-1)/8-1}, \gamma(B_{(t/2)^2-1}/4 \times B_{((t/2)^2-1)/4})
$$

Here γ acts on $B_{((t/2)^2-1)/4} \times B_{((t/2)^2-1)/4}$ as an involution exchanging the two factors; it acts on $D_{(t/2)^2/4} \times D_{(t/2)^2/4}$ by permuting the two factors in such a way that $\gamma^2 = 1$ if $t \in \{8, 16, 24, \ldots\}$ and $\gamma^2 \neq 1$ if $t \in \{12, 20, 28, \ldots\}$. We will attach to each vertex of this graph an index: the index of each of

$$
\gamma(D_{(t/2)^2/4} \times D_{(t/2)^2/4}), ^2A_{(t^2-1)/8-1}, \gamma(B_{(t/2)^2-1}/4 \times B_{((t/2)^2-1)/4})
$$

is t; the index of $\{1\} \times \{1\}$ is 4.

3. Affine Weyl groups and the sets $C_\omega(W)$

3.1. In this section W denotes an (irreducible) affine Weyl group. Let \mathcal{T} be the set of all $w \in W$ such that the conjugacy class of w is finite. (Such w are said to be the translations of W.) Now \mathcal{T} is a free abelian group of finite rank and of finite index in W. Let $w \mapsto |w|$ be the usual length function of W. Let S be the set of simple reflections of W. Let S^1 be the set of all $\sigma \in S$ such that the sum of labels of edges of the Coxeter graph of W which touch σ is ≥ 3. We have $\sharp(S^1) \leq 2$.

Let Ω_W be the (finite abelian) group of automorphisms of W preserving S whose restriction to \mathcal{T} is given by conjugation by an element of W. If $S^1 \neq \emptyset$ let Ω_W' be the set of all $\omega \in \Omega_W$ such that ω restricted to S^1 is the identity map (this is a subgroup of Ω_W); if $S^1 = \emptyset$ we set $\Omega_W' = \Omega_W$. We set $\Omega_W'' = \Omega_W - \Omega_W'$.

Let $\hat{W} = W/\mathcal{T}$ (a finite group). We show:

(a) If $\omega \in \Omega_W$ then $\omega : W \rightarrow W$ induces an inner automorphism of \hat{W}.

We can find $w \in W$ such that $\omega(\tau) = \text{Ad}(w)(\tau)$ for all $\tau \in \mathcal{T}$. Let $\zeta = \text{Ad}(w^{-1})w : W \rightarrow W$. We have $\zeta(\tau) = \tau$ for any $\tau \in \mathcal{T}$. Let $y \in W, \tau \in \mathcal{T}$. We have $y\tau y^{-1} \in \mathcal{T}$ hence $\zeta(y\tau y^{-1}) = y\tau y^{-1}$ that is $\zeta(y)\tau\zeta(y^{-1}) = y\tau y^{-1}$. Setting $y' = y^{-1}\zeta(y) \in W$ we have $y'\tau y'^{-1} = \tau$ for any $\tau \in W$. Now the action of W/\mathcal{T} on \mathcal{T} by conjugation is faithful hence $y' \in \mathcal{T}$. Thus $\zeta(y) \in y\mathcal{T}$ so that $w^{-1}\omega(y)w \in y\mathcal{T}$ and $\omega(y) \in wyw^{-1}\mathcal{T}$. This proves (a).

3.2. For any $J \subsetneq S$ let W_J be the subgroup of W generated by J (a finite Weyl group).
Let S_\ast be the set of all $\sigma \in S$ such that $W_{S - \{\sigma\}} \to \hat{W}$ (restriction of the obvious map $W \to \hat{W}$) is an isomorphism. We have $S_\ast \neq \emptyset$ and the obvious action of Ω_W on S_\ast is simply transitive. If $J \subsetneq S$ let $W_J \to \hat{W}$ be the restriction of the obvious homomorphism $W \to \hat{W}$; this is an imbedding, so that W_J can be viewed as a subgroup of \hat{W}. For any special representation $E \in \text{Irr}(W_J)$ there is a unique $E' \in \text{Irr}(\hat{W})$ such that E' appears in $\text{Ind}_W^{\hat{W}}(E)$ and in the $a(E)$-th symmetric power of the conjugation representation of \hat{W} on $C \otimes T$ (with $a(E)$ defined in terms of W_J); we set $E' = j_{W_J}^{\hat{W}}(E)$, see [L09, 1.3]. Let $\hat{S}(W)$ be the subset of $\text{Irr}(\hat{W})$ consisting of representations of the form $j_{W_J}^{\hat{W}}(E)$ for some $J \subsetneq S$ and some special $E \in \text{Irr}(W_J)$.

3.3. Let $\omega \in \Omega_W$. We define a set $\mathcal{C}_\omega(W)$ of Weyl subgroups W_J of W with $J \subsetneq S$. This set contains $\{1\}$. Now $\mathcal{C}_\omega(W) - \{1\}$ consists of the subgroups W_J with $J \subsetneq S$, $J \neq \emptyset$ which satisfy the following requirements.

(i) W_J is ω'-stable for any $\omega' \in \Omega_W$.
(ii) W_J is ω-sharp.
(iii) $W_{S - J}$ is ω-irreducible.
(iv) If $\sharp(S') = 2$ and $\Omega_W' = \emptyset$ then W_J is the product of two vertices of the graph 2.2(a) which are joined by an edge.
(v) If $\omega \in \Omega_W'$, then W_J is the product of two vertices of the graph 2.2(b) which are joined by an edge.

3.4. We now describe the set $\mathcal{C}_\omega(W)$ in each case. If W is of affine type A_{n-1}, $n \geq 2$, then Ω_W is cyclic of order n; for any $\omega \in \Omega_W$, $\mathcal{C}_\omega(W)$ consists of a single element: $\{1\}$ (with $a[\{1\}] = 0$).

3.5. If W is of affine type E_6 then Ω_W is cyclic of order 3. Let $\omega \in \Omega_W$. If $\omega = 1$ then $\mathcal{C}_\omega(W)$ consists of a single element: $\{1\}$ (with $a[\{1\}] = 0$). If $\omega \neq 1$ then $\mathcal{C}_\omega(W)$ consists of $\{1\}$ (with $a[\{1\}] = 0$) and of the subgroup W_J of type D_4 (so that $^\omega W_J = 3D_4$ and $a[^\omega W_J] = 3$).

3.6. If W is of affine type E_7 then Ω_W is cyclic of order 2. Let $\omega \in \Omega_W$. If $\omega = 1$ then $\mathcal{C}_\omega(W)$ consists of a single element: $\{1\}$ (with $a[\{1\}] = 0$). If $\omega \neq 1$ then $\mathcal{C}_\omega(W)$ consists of $\{1\}$ (with $a[\{1\}] = 0$) and of the subgroup W_J of type E_6 (so that $^\omega W_J = 2E_6$ and $a[^\omega W_J] = 7$).

3.7. If W is of affine type E_8, F_4 or G_2 and $\omega \in \Omega_W$ then $\omega = 1$ and $\mathcal{C}_\omega(W)$ consists of $\{1\}$ (with $a[\{1\}] = 0$) and of the subgroup W_J of non-affine type E_8, F_4 or G_2 (respectively), with $a[W_J]$ equal to 16, 4, 1 respectively.

3.8. In the remainder of this section we assume that W is of affine type $B_n (n \geq 3), C_n (n \geq 2)$ or $D_n (n \geq 4)$. Let $\omega \in \Omega_W$. Assume first that $\omega \in \Omega_W'$. Let $\mathcal{C}_\omega(W)$ be the set of all pairs $(t, s) \in \mathbb{N}^2$ such that

$t - s = \pm 1$ (type B), $t = s$ (type C, D),
$t = 0 \mod 4$ (type B, D with $\omega = 1$), $t = 2 \mod 4$ (type B, D with $\omega \neq 1$)
$t = 1 \mod 2$ (type C),
and for some \(r \in \mathbb{N} \) we have
\[
\begin{align*}
& t^2/4 + (s^2 - 1)/4 + r = n, \text{ (type } B), \\
& (t^2 - 1)/4 + (s^2 - 1)/4 + r = n, \text{ (type } C), \\
& t^2/4 + s^2/4 + r = n, \text{ (type } D). \\
\end{align*}
\]
that is, \(ts + 2r = 2n \) (type \(B, D \)), \(ts + 2r = 2n + 1 \) (type \(C \)).

In type \(B \) we define a bijection \(C_\omega(W) \xrightarrow{\sim} \mathcal{C}_\omega(W) \) by associating to \(W_j \in C_\omega(W) \) (assumed to be \(\neq \{1\} \)) the pair \((t, s)\) formed by the indexes \(t, s \) of the two vertices attached to \(W_j \) in 3.3(iv) and by associating to \(W_j = \{1\} \) the pair \((0, 1)\) (if \(\omega = 1 \)) or \((2, 1)\) (if \(\omega \neq 1 \)).

In type \(C, D \), we define a bijection \(C_\omega(W) \xrightarrow{\sim} \mathcal{C}_\omega(W) \) by associating to \(W_j \in C_\omega(W) \) (assumed to be \(\neq \{1\} \)) the pair \((t, s)\) (with \(t = s \)) where \(W_j \) is the product of a vertex of index \(t \) in 2.2(a) with itself and by associating to \(W_j = \{1\} \) the pair \((1, 1)\) (type \(C \)), \((0, 0)\) (type \(D \) with \(\omega = 1 \)), \((2, 2)\) (type \(D \) with \(\omega \neq 1 \)).

Assuming that \(W_j \) corresponds as above to \((t, s)\) we can compute \(a^{[\omega W_j]} \) in each case.
If \(s = t \in \{1, 3, 5, \ldots\} \) then
\[
a^{[\omega W_j]} = (t - 1)(t + 1)(2t - 3)/24 + (t - 1)(t + 1)(2t - 3)/24 \\
= (t - 1)(t + 1)(2t - 3)/12.
\]
If \(s = t \in \{0, 2, 4, \ldots\} \) then
\[
a^{[\omega W_j]} = (t - 2)t(2t + 1)/24 + (t - 2)t(2t + 1)/24 = (t - 2)t(2t + 1)/12.
\]
If \(t \in \{0, 2, 4, \ldots\}, s \in \{1, 3, 5, \ldots\} \), \(t - s = \pm 1 \) then
\[
a^{[\omega W_j]} = (t - 2)t(2t + 1)/24 + (s - 1)s(2s + 1)/24
\]
and this equals \((t - 1)t(t + 1)/6\) if \(s = t + 1 \) and \((t - 2)(t - 1)t/6\) if \(t = s + 1 \).

3.9. Assume next that \(\omega \in \Omega'_W \). Let \(\mathcal{C}_\omega(W) \) be the set of all pairs \((t, s)\) in \(\mathbb{N}^2 \) such that
\[
t - s = \pm 1, \\
t = 2 \mod 4 \text{ (type } C), \\
t = 0 \mod 8 \text{ (type } D \text{ with } \omega^2 = 1), \ t = 4 \mod 8 \text{ (type } D \text{ with } \omega^2 \neq 1),
\]
and for some \(r \in \mathbb{N} \) we have
\[
\begin{align*}
& ((t/2)^2 - 1)/2 + (s^2 - 1)/8 + 2r = n \text{ (type } C), \\
& (t/2)^2 + (s^2 - 1)/8 + 2r = n \text{ (type } D), \\
\end{align*}
\]
or equivalently \(ts/2 + 4r = 2n + 1 \) (type \(C \)), \(ts/2 + 4r = 2n \) (type \(D \)).

Note that \((2, 1)\) \(\in \mathcal{C}_\omega(W) \) in type \(C \) with \(n \) even and \((2, 3)\) \(\in \mathcal{C}_\omega(W) \) in type \(C \) with \(n \) odd. We define a bijection \(C_\omega(W) \xrightarrow{\sim} \mathcal{C}_\omega(W) \) by associating to \(W_j \in C_\omega(W) \) (assumed to be \(\neq \{1\} \)) the pair \((t, s)\) formed by the indexes of the two vertices attached to \(W_j \) in 3.3(v) and by associating to \(W_j = \{1\} \) the pair
(2, 1) (type C with n even), the pair (2, 3) (type C with n odd), the pair (0, 1) (type D with \(\omega^2 = 1 \)), the pair (4, 3) (type D with \(\omega^2 \neq 1 \)).

Assuming that \(W_J \) corresponds as above to \((t, s)\) we can compute \(a^{\omega W_J} \) in each case.

If \(t \in \{2, 6, 10, \ldots\} \) then

\[
a^{\omega W_J} = (s - 3)(s - 1)(s + 1)/48 + (t/2 - 1)(t/2 + 1)(t - 3)/24 +
(t/2 - 1)(t/2 + 1)(t - 3)/24
\]

which equals \((t - 2)(2t^2 - 5t - 6)/48\) if \(s = t - 1 \) and equals \((t - 2)(t + 2)(2t - 3)/48\) if \(s = t + 1 \).

If \(t \in \{0, 4, 8, 10, \ldots\} \) then

\[
a^{\omega W_J} = (s - 3)(s - 1)(s + 1)/48 + (t/2 - 2)(t/2 + 1)/24 + (t/2 - 2)(t/2)(t + 1)/24
\]

which equals \((t - 4)t(2t - 1)/48\) if \(s = t - 1 \) and equals \(t(2t^2 - 3t - 8)/48\) if \(s = t + 1 \).

3.10. Let \(\omega \in \Omega^W \). Let \('C_\omega(W) \) be the set of all pairs \((\delta, r)\) in \(\mathbb{N}^2 \) such that

- (type B) \(\delta + 2r = 2\sigma, \delta = 2 + 4 + 6 + \cdots + (2\sigma) \), where \(\sigma \in \mathbb{N} \) and \(\sigma = 0 \mod 4 \) or \(\sigma = 3 \mod 4 \) if \(\omega = 1 \); \(\sigma = 1 \mod 4 \) or \(\sigma = 2 \mod 4 \) if \(\omega \neq 1 \);
- (type C) \(\delta + 2r = 2n + 1, \delta = 1 + 3 + 5 + \cdots + (2\sigma - 1) \) where \(\sigma \in \mathbb{N} \) and \(\sigma = 1 \mod 2 \);
- (type D) \(\delta + 2r = 2n, \delta = 1 + 3 + 5 + \cdots + (2\sigma - 1) \) where \(\sigma \in \mathbb{N} \) and \(\sigma = 0 \mod 4 \) if \(\omega = 1, \sigma = 2 \mod 4 \) if \(\omega \neq 1 \).

We define a bijection

\[
'\mathcal{C}_\omega(W) \xrightarrow{\sim} '\mathcal{C}_\omega(W)
\]

by \((t, s) \mapsto (ts, r)\) where \(r \in \mathbb{N} \) is as in 3.8.

3.11. Let \(\Delta = \{t(t + 1)/2 \mid t \in \mathbb{N} \} \). Let \(\omega \in \Omega'_W \). Let \('C_\omega(W) \) be the set of all pairs \((\delta, r)\) in \(\Delta \times \mathbb{N} \) such that

- \(\delta + 4r = 2n + 1 \) (type C),
- \(\delta + 4r = 2n, \delta = 0 \mod 4 \) (type D, \(\omega^2 = 1 \)),
- \(\delta + 4r = 2n, \delta = 2 \mod 4 \) (type D, \(\omega^2 \neq 1 \)).

We define a bijection

\[
'\mathcal{C}_\omega(W) \xrightarrow{\sim} '\mathcal{C}_\omega(W)
\]

by \((t, s) \mapsto (ts/2, r)\) where \(r \in \mathbb{N} \) is as in 3.9.

4. The function \(c : \text{Irr}(\tilde{W}) \to \mathbb{N} \)

4.1. In this section \(\mathcal{W} \) denotes an irreducible affine Weyl group with a set \(\mathcal{S} \) of
simple reflections and with a given weight function \(\mathcal{L} : \mathcal{W} \to \mathbb{N} \). Let \(|| \) be the
length function of \(\mathcal{W} \). Let \(\mathcal{T}_W \) be the group of translations of \(\mathcal{W} \) (see 3.1) and let
\(\tilde{\mathcal{W}} = \mathcal{W}/\mathcal{T}_W \) (a finite group). For any \(\mathcal{J} \subseteq \mathcal{S} \) we denote by \(\mathcal{W}_{\mathcal{J}} \) the subgroup of
\(\mathcal{W} \) generated by \(\mathcal{J} \) (a finite Weyl group). Let \(\tilde{\mathcal{W}}_{\mathcal{J}} \) be the image of \(\mathcal{W}_{\mathcal{J}} \) under the
obvious map \(W \to \hat{W} \). Note that the obvious map \(W_J \to \hat{W}_J \) is an isomorphism; we use this to identify \(W_J = \hat{W}_J \).

For any \(E \in \operatorname{Irr}(W) \) we define \(\Sigma(E) \) to be the set of all pairs \((J, E')\) where \(J \subset S, \#(J) = \#(S) - 1 \) and \(E' \in \operatorname{Irr}(W_J) \) is such that \(E' \) appears in the restriction of \(E \) to \(W_J = \hat{W}_J \). We set

\[
(c) \quad c_E = \max_{(J, E') \in \Sigma(E)} a_L(E') \in \mathbb{N},
\]

\[
\Sigma^*(E) = \{(J, E') \in \Sigma(E); a_L(E') = c_E\},
\]

where \(a_L(E') \) is defined as in 1.2 in terms of the Weyl group \(W_J \) with the weight function obtained by restricting \(L : W \to N \) to \(W_J \). We have \(\Sigma^*(E) \neq \emptyset \).

4.2. The function \(E \mapsto c_E \) has been computed explicitly in [L20] in the case where \(W \) is of exceptional type and \(L = \| \). We will now describe explicitly the map \(\operatorname{Irr}(W) \to N, E \mapsto c_E \) of 4.1 in several examples with \(L \neq \| \). Assume that either

(a) \(W \) is of affine type \(C_r, r \geq 2 \) and \(L|_S \) takes the values \(t, 1, 1, \ldots, 1, 1, s \) where \(t > 0, s > 0 \), or

(b) \(W \) is of affine type \(C_r, r \geq 2 \) and \(L|_S \) takes the values \(t, 2, 2, \ldots, 2, 2, s \) where \(t > 0, s > 0 \), or

(c) \(W \) is of affine type \(G_2 \) and \(L|_S \) has values \(3, 3, 1 \).

In case (a),(b) we set \(u = \max(t, s) \). In each of the examples below we give a table with two rows whose columns are indexed by the various \(E \in \operatorname{Irr}(W) \). The first row represents the numbers \(c_E \). The second row represents the numbers \(a_L(E') \) for various \(E' \in \operatorname{Irr}(W_J) \) where \(J = S - \{s\} \) for some \(s \in S_\ast \) (see 3.2) which in case (a),(b) is chosen so that \(L(s) = u \). (We can identify \(W_J = \hat{W} \) hence \(E' \) can be identified with an \(E \in \hat{W}_J \).) Any entry \(e \) in the first row and column \(E \) is \(\geq \) than the entry \(e' \) in the second row and column \(E \). When \(e > e' \) we indicate some other \(J' \subsetneq S \) such that some \(E' \in \operatorname{Irr}(W_{J'}) \) appears in the restriction of \(E \) to \(W_{J'} \) and \(a_L(E') = e \). (We will specify such \(J' \) by specifying the type of \(W_{J'} \).)

Assume first (in case (a)) that \(r = 2 \) and \(t = s = u \geq 1 \). The table is

\[
0; 1; u; 2u; 2u + 2
0; 1; t; 2u - 1; 2u + 2
\]

with an additional \(J' \) with \(W_{J'} \) of type \(A_1 \times A_1 \), contributing \(2u \) to the fourth column.

Assume next (in case (a)) that \(r = 2 \) and \(t = s \pm 1, u \geq 2 \). The table is

\[
0; 1; u; 2u - 1; 2u + 2
0; 1; u; 2u - 1; 2u + 2
\]

In this case there is no need for an additional \(J' \).
Assume next (in case (b)) that $r = 2$ and $t = s \pm 1$, $u \geq 2$. The table is

\[
\begin{align*}
0; u; 2; 2u - 1; 2u + 2 \\
0; u; 2; 2u - 2; 2u + 2
\end{align*}
\]

with an additional J' with $W_{J'}$ of type $A_1 \times A_1$, contributing $2u - 1$ to the fourth column.

Assume next (in case (b)) that $r = 3$ and $t = s \pm 1$, $u \geq 2$. The table is

\[
\begin{align*}
0; u; 2; 3u - 3; 2u - 1; u + 2; 3u + 3; 2u + 4; 6; 3u + 12 \\
0; u; 2; 3u - 6; 2u - 2; u + 2; 3u + 2; 2u + 4; 6; 3u + 12
\end{align*}
\]

with additional J' with $W_{J'}$ of type $A_1 \times B_2$, contributing $3u - 3$ to the fourth column, $2u - 1$ to the fifth column and $3u + 3$ to the seventh column.

Finally assume that we are in case (c). The table is

\[
\begin{align*}
0; 1; 3; 4; 9; 12 \\
0; 1; 3; 3; 7; 12
\end{align*}
\]

with an additional J' with $W_{J'}$ of type A_2 contributing 9 to the fifth column and with an additional J' with $W_{J'}$ of type $A_1 \times A_1$ contributing 4 to the fourth column.

4.3. We set

$$\nu(W, L) = \max_{s \in S^*} L(w_{0,s})$$

where $w_{0,s}$ is the element of maximal length of $W_{S - \{s\}}$.

4.4. Let \sim be the equivalence relation on $\text{Irr}(\bar{W})$ generated by the relation $E_1 \sim E_2$ when $c_{E_1} = c_{E_2}$ and there exist $(J_1, E'_1) \in \mathcal{I}^*(E_1)$, $(J_2, E'_2) \in \mathcal{I}^*(E_2)$ such that $J_1 = J_2$ and E'_1, E'_2 are in the same L-family (see 1.7) of $\text{Irr}(W_{J_1}) = \text{Irr}(W_{J_2})$.

5. A weighted affine Weyl group

5.1. We preserve the setup of 3.1. For any $J \subseteq S$ let w_J^0 be the longest element of W_J. We now fix $\omega \in \Omega_W$, $J \subseteq S$ such that $W_J \in \mathcal{C}_\omega(W)$. Following [L90] (see also [L95]), to W, ω, J we associate a weighted affine Weyl group (W_J, L_J). (A similar procedure was used for finite Weyl groups in [L78].) The proofs of various statements in this section can be extracted from [L95]. Let

$$W_J' = \{w \in W; wW_J = W_Jw, w \text{ has minimal length in } wW_J = W_Jw\};$$

this is a subgroup of W stable under ω; let $W_J = \{w \in W_J'; \omega(w) = w\}$ (another subgroup of W). Let S_J be the set of all ω-orbits on $S - J$.

When \(\sharp(S_J) \geq 2 \) let \(T_J \) be the group of translations of the affine Weyl group \(W_J \) and let \(\tilde{W}_J = W_J/T_J \), a finite group. When \(\sharp(S_J) = 1 \) we have \(W_J = \{1\} \) and we set \(T_J = \{1\}, \tilde{W}_J = \{1\} \); in this case we regard \(W_J \) as a weighted affine Weyl group with weight function \(\mathcal{L}_J = 0 \).

We now assume that \(\sharp(S_J) \geq 2 \). If \(\theta \in S_J \) we set \(\tau_\theta = w_0^{J \cup \theta}w_0^J = w_0^J w_0^{J \cup \theta} \). (The last equality is a property of any \(W_J \in \mathcal{C}_\omega(W) \).) We have \(\tau_\theta \in W_J, \tau_\theta^2 = 1 \). Moreover \(W_J \) is a Coxeter group on the generators \(\{\tau_\theta; \theta \in S_J\} \) and with Coxeter relations \((t_\theta t_{\theta'})^{m_{\theta, \theta'}} = 1 \) for any distinct \(\theta, \theta' \in S_J \) such that \(J \cup \theta \cup \theta' \neq S \), where

\[
m_{\theta, \theta'} = \frac{2(|w_0^{J \cup \theta} | - | w_0^J |)}{|w_0^{J \cup \theta'} | + | w_0^{J \cup \theta''} | - 2 | w_0^J |}.
\]

(When \(J \cup \theta \cup \theta' = S \) then \(\tau_\theta \tau_{\theta'} \) has infinite order.) Note that \(W_J \) is an (irreducible) affine Weyl group.

5.2. We define a weight function \(\mathcal{L}_J : W_J \to \mathbb{N} \). Let \(\theta \in S_J \). Let \(E_0 \) be the unique irreducible special representation of \(W_J \) such that \(z(E_0) = r(op) \) (notation of 2.1 with \(\mathcal{W} \) replaced by \(W_J \)). Let

\[
\mathcal{E} = \{ \tilde{E} \in \text{Irr}(W_{J \cup \theta}; \tilde{E} \text{ appears in } \text{Ind}_{W_J}^{W_{J \cup \theta}}(E_0)) \},
\]

\[
\mathcal{L}(\theta) = \max\{a(\tilde{E}); \tilde{E} \in \mathcal{E}\} - \min\{a(\tilde{E}); \tilde{E} \in \mathcal{E}\}.
\]

(Here \(a(\tilde{E}) \) is as in 1.2 with \(\mathcal{W} \) replaced by \(W_{J \cup \theta} \).) This defines the function \(\mathcal{L}_J : S_J \to \mathbb{Z}_{>0} \). This extends uniquely to a weight function \(\mathcal{W} \to \mathbb{N} \) denoted again by \(\mathcal{L}_J \) so that \((W_J, \mathcal{L}_J) \) is a weighted affine Weyl group.

5.3. Let \(\omega \in \Omega_W, J \subseteq S \) be such that \(W_J \in \mathcal{C}_\omega(W) \). We now describe the pair \((\mathcal{W}, \mathcal{L}) = (\mathcal{W}_J, \mathcal{L}_J) \) in each case. We will write \(S \) instead of \(S_J \).

If \(W \) is of affine type \(A_{n-1}, n \geq 2 \), let \(k = \text{ord}(\omega) \) (a divisor of \(n \)). We have \(W_J = \{1\} \). If \(k < n, W \) is of affine type \(A_{(n/k)-1} \) with \(\mathcal{L}|S \) being constant equal to \(k \). If \(k = n, \) we have \(W = \{1\} \).

Assume that \(W \) is of affine type \(E_6 \). If \(\omega = 1 \) then \(W_J = \{1\} \) and \(\mathcal{W} = W \) with \(\mathcal{L}|S \) being constant equal to 1. If \(\omega \neq 1 \) and \(W_J = \{1\} \) then \(\mathcal{W} \) is of affine type \(G_2 \) with the values of \(\mathcal{L}|S \) being 3, 3, 1. If \(\omega \neq 1 \) and \(W_J \) is of type \(D_4 \) then \(\mathcal{W} = \{1\} \).

Assume that \(W \) is of affine type \(E_7 \). If \(\omega = 1 \) then \(W_J = \{1\} \) and \(\mathcal{W} = W \) with \(\mathcal{L}|S \) being constant equal to 1. If \(\omega \neq 1 \) and \(W_J = \{1\} \) then \(\mathcal{W} \) is of affine type \(F_4 \) with the values of \(\mathcal{L}|S \) being 2, 2, 2, 1, 1. If \(\omega \neq 1 \) and \(W_J \) is of type \(E_6 \) then \(\mathcal{W} = \{1\} \).

Assume that \(W \) is of affine type \(E_8, F_4 \) or \(G_2 \). We have \(\omega = 1 \). If \(W_J = \{1\} \) then \(\mathcal{W} = W \) with \(\mathcal{L}|S \) being constant equal to 1. If \(W_J \) is of the non- affine type \(E_8, F_4 \) or \(G_2 \) (respectively) then \(\mathcal{W} = \{1\} \).

5.4. We now assume that \(W \) is of affine type \(B_{n} (n \geq 3), C_{n} (n \geq 2) \) or \(D_{n} (n \geq 4) \). Let \((\delta, r) \in \mathcal{C}_\omega(W) \) be the image of \(W_J \) under the composition \(\mathcal{C}_\omega(W) \to \to \mathcal{C}_\omega(W) \to \mathcal{C}_\omega(W) \) (the first map as in 3.8, 3.9, the second map as in 3.10, 3.11).
If $r = 0$ then $\mathcal{W} = \{1\}$. If $r > 0$, $\delta > 0$, then \mathcal{W} is of affine type C_r, with Coxeter graph

(a) $\boxed{t} = \boxed{1} - - \boxed{1} - - \cdots - - \boxed{1} - - \boxed{1} = \boxed{s}$

(b) $\boxed{t} = \boxed{2} - - \boxed{2} - - \cdots - - \boxed{2} - - \boxed{2} = \boxed{s}$

where the boxed entries are the values of $\mathcal{L}|_S$ and t, s in \mathbb{N} are defined by

$ts = \delta$, $t - s \in \{0, 1, -1\}$ (in (a) with $\omega \in \Omega'_W$),

$ts/2 = \delta$, $t - s \in \{1, -1\}$ (in (b) with $\omega \in \Omega''_W$).

(Here affine of type C_1 is taken to be the same as affine of type A_1.)

If $\delta = 0$ (hence $r > 0$), then either:

- \mathcal{W} is of type B_n or D_n, $\omega = 1$ and $\mathcal{W} = W$ with $\mathcal{L}|_S$ constant equal to 1, or
- \mathcal{W} is of type D_n, $n = 2r \geq 6$, $\omega \in \Omega''_W$, $\omega^2 = 1$ and \mathcal{W} is of affine type B_r, with the values of $\mathcal{L}|_S$ being 1, 2, 2, ..., 2.

5.5. We now list the various $(\mathcal{W}, \mathcal{L})$ which are associated to various $W, \omega, W_J \in \mathcal{C}_\omega(W)$.

$\mathcal{W} = \{1\}$ or \mathcal{W} is an irreducible affine Weyl groups of type E_6, E_7, E_8 or $D_m, m \geq 4$ with $\mathcal{L}|_S$ constant equal to 1;

- \mathcal{W} of affine type $A_{n-1}, n \geq 3$ with $\mathcal{L}|_S$ constant in $\mathbb{Z}_{>0}$;
- \mathcal{W} of affine type $B_m, m \geq 3$ with the values of $\mathcal{L}|_S$ being 1, 1, ..., 1, 1 or 1, 2, 2, ..., 2;
- \mathcal{W} of affine type $C_m, m \geq 1$ with the values of $\mathcal{L}|_S$ being $t, 1, 1, \ldots, 1, 1, s$ with $(t, s) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$ such that $t - s \in \{0, 1, -1\}$;
- \mathcal{W} of affine type $C_m, m \geq 2$ with the values of $\mathcal{L}|_S$ being $t, 2, 2, \ldots, 2, 2$ with $(t, s) \in \mathbb{Z}_{>0} \times \mathbb{Z}_{>0}$ such that $t - s \in \{1, -1\}$;
- \mathcal{W} of affine type G_2 with the values of $\mathcal{L}|_S$ being 1, 1, 1 or 3, 3, 1;
- \mathcal{W} of affine type F_4 with the values of $\mathcal{L}|_S$ being 1, 1, 1, 1, 1 or 2, 2, 2, 1, 1.

(Here affine of type C_1 is taken to be the same as affine of type A_1.)

5.6. Let $\omega \in \Omega_W$, $J \nsubseteq S$ be such that $W_J \in \mathcal{C}_\omega(W)$. Let $E \mapsto c_E$ be as in 4.1 with $\mathcal{W} = \mathcal{W}_J$. For E, \tilde{E} in $\text{Irr}(\tilde{\mathcal{W}}_J)$ we write $E \leq \tilde{E}$ if $E = \tilde{E}$ or $c_E > c_{\tilde{E}}$. This is a partial order on $\text{Irr}(\tilde{\mathcal{W}}_J)$. For E, \tilde{E} in $\text{Irr}(\tilde{\mathcal{W}}_J)$ we write $E \approx \tilde{E}$ if $c_E = c_{\tilde{E}}$. This is an equivalence relation on $\text{Irr}(\tilde{\mathcal{W}}_J)$.

Let q be an indeterminate. Let $\mathcal{T}_J = Q(q) \otimes \mathcal{T}_J$. Now the obvious \mathcal{W}_J action on \mathcal{T}_J induces a linear action of \mathcal{W}_J on \mathcal{T}_J.

For E, \tilde{E} in $\text{Irr}(\tilde{\mathcal{W}}_J)$ we define

$$\Omega'_{E, \tilde{E}} = z(\tilde{\mathcal{W}})^{-1} \sum_{w \in \mathcal{W}_J} \text{tr}(w^{-1}, E)\text{tr}(w, \tilde{E}) \det(q - w, \mathcal{T}_J)^{-1} q^{-c_E - c_{\tilde{E}}} \in Q(q).$$

The following result can be deduced from Lemma 2.1 in [GM] (where it is attributed to the author).
Proposition 5.7. The system of equations

\[\sum_{E', E \in \mathcal{W}_L; E' \leq E} P_{E', E} \Lambda'_{E', E} P_{E', E} = \Omega'_{E, E}, \]

\[P_{E, E} = 1 \text{ for all } E, \]

\[P_{E', E} = 0 \text{ if } E' \approx E, E \neq E', \]

\[P_{E', E} = 0 \text{ if } E' \not\approx E, \]

\[\Lambda'_{E', E} = 0 \text{ unless } E' \approx E \]

with unknowns

\[P_{E', E} \in \mathbb{Q}(q), \Lambda'_{E', E} \in \mathbb{Q}(q), (E', E \in \text{Irr}(\mathcal{W}_L)) \]

has a unique solution.

6. The set \(G_\omega(G) \) and the bijection \(G_\omega(G) \overset{\sim}{\rightarrow} C_\omega(W) \)

6.1. Let \(le(G) \) be the set of subgroups of \(G \) (see 0.1) which are Levi subgroups of some parabolic subgroup of \(G \). Let \(ls^0(G) \) be the subset of \(ls(G) \) (see 0.1) consisting of the pairs \((e, \mathfrak{L}) \) each of which is a unipotent block by itself. Let \(l\mathfrak{s}(G) \) be the set of unipotent blocks of \(G \). Note that \(ls^0(G) \) can be identified with a subset \(l\mathfrak{s}^0(G) \) of \(l\mathfrak{s}(G) \). Let \(Z_G \) be the group of components of the centre of \(G \) and let \(Z^*_G = \text{Hom}(Z_G, \mathbb{C}^*) \). We have a partition \(ls(G) = \bigsqcup_{\chi \in Z^*_G} ls_\chi(G) \) where \(ls_\chi(G) \) consists of all \((e, \mathfrak{L}) \in ls(G) \) such that the natural action of \(\tilde{Z}_G \) on \(\mathfrak{L} \) is through \(\chi \). For any \(\chi \in Z^*_G \), \(ls_\chi(G) \) is a union of unipotent blocks. Hence we have a partition

\[l\mathfrak{s}(G) = \bigsqcup_{\chi \in Z^*_G} l\mathfrak{s}_\chi(G) \]

where \(l\mathfrak{s}_\chi(G) \) is the set of unipotent blocks contained in \(ls_\chi(G) \). In [L84] it is shown that for any \(\chi \in Z^*_G \)

(a) the intersection \(ls^0(G) \cap ls_\chi(G) \) consists of at most one element.

Let \(\mathcal{G}'(G) \) be the set consisting of \(G \)-conjugacy classes of triples \((L, e_1, \mathfrak{L}_1) \) with \(L \in le(G), (e_1, \mathfrak{L}_1) \in ls^0(L) \). In [L84] a bijection

(b) \(ls(G) \leftrightarrow \mathcal{G}'(G) \)

is established. To \((L, e_1, \mathfrak{L}_1) \in \mathcal{G}'(G) \) we have associated in [L84, 4.4] a perverse sheaf \(\phi_K \) (up to shift) on \(G \) whose cohomology sheaves restricted to unipotent classes are direct sums of local systems in a fixed unipotent block. (This defines the unipotent blocks and the bijection (b).) If \(\chi \in Z^*_G \) and \(\beta \in l\mathfrak{s}_\chi(G) \), then the corresponding \((L, e_1, \mathfrak{L}_1) \in \mathcal{G}'(G) \) is such that \((e_1, \mathfrak{L}_1) \in ls_\chi_1(L) \) for some \(\chi_1 \in \mathbb{Z}_L^* \) which is uniquely determined by \(\chi \). (Note that \(\chi \) is the image of \(\chi_1 \) under the injective homomorphism \(\mathbb{Z}_L^* \rightarrow \mathbb{Z}_G^* \) induced by the obvious (surjective)
homomorphism $Z_G \to Z_L$.) Using (a) for L we see that (c_1, \mathcal{C}_1) is unique if it exists. Thus (b) gives rise to a bijection

(c) $\mathcal{L}_x(G) \leftrightarrow \mathcal{G}_x(G)$

where $\mathcal{G}_x(G)$ is the set of all $L \in le(G)$ (up to G-conjugacy) such that there exists $(c_1, \mathcal{C}_1) \in \mathcal{L}^{0}(L) \cap \mathcal{L}^{c}(L)$ where $\chi_1 \in Z_L^*$ maps to χ under $Z_L^* \to Z_G^*$. We set $\mathcal{G}(G) = \cup_{\chi \in Z_G^*} \mathcal{G}_x(G)$. Then (c) gives rise to a bijection

(d) $\mathcal{L}_x(G) \leftrightarrow \mathcal{G}(G)$.

In [L84] it is shown that the set of objects in a fixed unipotent block β is in bijection with the set of irreducible representations of the normalizer \mathcal{M}_β of L modulo L (with L corresponding to β) and that \mathcal{M}_β is naturally a Weyl group.

6.2. In the remainder of this section we assume that G in 0.1 is almost simple, simply connected and that W, S in 3.1 is the affine Weyl group associated with a simple algebraic group H over C of type dual to that of G. In particular, T (see 3.1) can be identified with the group of one parameter subgroups of a maximal torus T of H. For $h \in T$, the connected centralizer of h in H has Weyl group equal to a W-conjugate of W_J for some $J \subsetneq S$. This gives a correspondence $h \leftrightarrow J$ between T and $\{ J; J \subsetneq S \}$.

We can find an isomorphism $\iota : Z^*_G \sim \Omega_W$ such that the following holds: if $G = Spin_N(C)$, with $N \geq 5$ odd or $N \geq 10$ even, the subset Ω'_W of Ω_W (see 3.1) corresponds to the set of characters of Z^*_G which do not factor through $SO_N(C)$. We shall identify $Z^*_G = \Omega_W$ via ι.

The following result appears in [L79], [L89].

Theorem 6.3. Define $un(G) \to \text{Irr}(\tilde{W})$ by $c \mapsto E$ where E is attached to (c, C) under the Springer correspondence. This map defines a bijection $un(G) \sim \tilde{S}(\tilde{W})$ (notation of 3.2).

6.4. Let $\omega \in \Omega_W$. Let $L \in \mathcal{G}_\omega(G)$, let (L, c_1, \mathcal{C}_1) be the corresponding object of \mathcal{G}'_G (see 6.1) and let ϕ_IK be the associated complex of sheaves on G (see 6.1); note that $\phi_IK[m]$ is a semisimple perverse sheaf for some m. Let K_1 be a simple perverse sheaf on G such that K_1 is a direct summand of $\phi_IK[m]$. Then K_1 is a character sheaf on G. Let C be the semisimple conjugacy class of H attached to K_1 by the known classification of character sheaves. Note that C is independent of the choice of K_1. There is a unique subset $J \subsetneq S$ such that for any $h \in T \cap C$ we have $h \leftrightarrow J$ (see 6.2).

Theorem 6.5. For $L \in \mathcal{G}_\omega(G)$ we define $J \subsetneq S$ as in 6.4. We have $W_J \in \mathcal{C}_\omega(W)$ and $L \mapsto W_J$ is a bijection

(a) $\mathcal{G}_\omega(G) \sim \mathcal{C}_\omega(W)$.

Note that the Theorem gives a parametrization of the set of unipotent blocks of G which is purely in terms of W and is thus independent of the geometry of G. The proof is given in the remainder of this section.
6.6. Let \(\omega \in \Omega_W \). We now describe explicitly (and independently of 6.4) a bijection

\[
(a) \quad \mathcal{G}_\omega(G) \rightarrow \mathcal{C}_\omega(W).
\]

The set \(\mathcal{G}_\omega(G) \) is computed in [L84]. Assume first that \(G = SL_n(C) \), \(n \geq 2 \). Note that \(Z^*_G = \Omega_W \) is a cyclic group of order \(n \). Let \(k = \text{ord}(\omega) \) (a divisor of \(n \)). Now \(\mathcal{G}_\omega(G) \) consists of a single \(L \in \text{le}(G) \) (up to conjugacy) such that \(L_{\text{der}} \cong SL_k(C) \times \ldots \times SL_k(C) \) (\(n/k \) copies). The bijection \((a)\) is the obvious bijection between sets with one element.

Assume that \(G \) is of type \(E_6 \). Then \(\Omega_W \) is cyclic of order 3. If \(\omega = 1 \) then \(\mathcal{G}_\omega(G) \) consists of a single object, a maximal torus \(L \). The bijection \((a)\) is the obvious bijection between sets with one element. If \(\omega \neq 1 \) then \(\mathcal{G}_\omega(G) \) consists of \(L = G \) and of \(L \in \text{le}(G) \) such that \(L_{\text{der}} = SL_3(C) \times SL_3(C) \) (up to conjugacy). Recall that \(\mathcal{C}_\omega(W) = \{\{1\}, W_J\} \) where \(W_J \) is of type \(D_4 \). We define \((a)\) by \(G \mapsto W_J, L \mapsto \{1\} \) where \(L \neq G \).

Assume that \(G \) is of type \(E_7 \). Then \(\Omega_W \) is cyclic of order 2. If \(\omega = 1 \) then \(\mathcal{G}_\omega(G) \) consists of a single object, a maximal torus \(L \). The bijection \((a)\) is the obvious bijection between sets with one element. If \(\omega \neq 1 \) then \(\mathcal{G}_\omega(G) \) consists of \(L = G \) and of \(L \in \text{le}(G) \) (up to conjugacy) such that \(L_{\text{der}} = SL_2(C) \times SL_2(C) \times SL_2(C) \) and \(L \) is contained in an \(L' \in \text{le}(G) \) with \(L'_{\text{der}} = SL_6(C) \) but \(L \) is not contained in an \(L'' \in \text{le}(G) \) with \(L''_{\text{der}} = SL_7(C) \). Recall that \(\mathcal{C}_\omega(W) = \{\{1\}, W_J\} \) where \(W_J \) is of type \(E_6 \). We define \((a)\) by \(G \mapsto W_J, L \mapsto \{1\} \) where \(L \neq G \).

Assume that \(G \) is of type \(E_8, F_4 \) or \(G_2 \). We have \(\omega = 1 \) and \(\mathcal{G}_\omega(G) \) consists of two objects, an \(L \) which is a maximal torus and \(G \). Recall that \(\mathcal{C}_\omega(W) = \{\{1\}, W_J\} \) where \(W_J \) is of the non-affine type \(E_8, F_4 \) or \(G_2 \) (respectively). We define \((a)\) by \(G \mapsto W_J, L \mapsto \{1\} \) where \(L \neq G \).

6.7. In this subsection we assume that \(G \) is \(Sp_{2n}(C), (n \geq 3) \), \(Spin_{2n+1}(C), (n \geq 2) \) or \(Spin_{2n}(C), (n \geq 4) \) so that \(W \) is of affine type \(B_n(n \geq 3), C_n(n \geq 2) \) or \(D_n(n \geq 4) \) (respectively).

From [L84] we see that \(\mathcal{G}_\omega(G) \) consists of all \(L \in \text{le}(G) \) (up to conjugacy) such that

\[
\begin{align*}
L_{\text{der}} & \cong Sp_4, \text{ for various } (\delta, r) \in '\mathcal{C}_\omega(W) \text{ (for } W \text{ of type } B) \\
L_{\text{der}} & \cong Spin_4, \text{ for various } (\delta, r) \in '\mathcal{C}_\omega(W) \text{ (for } W \text{ of type } C \text{ or } D, \omega \in \Omega_W) \\
L_{\text{der}} & \cong Spin_4 \times SL_2(C)^r, \text{ for various } (\delta, r) \in '\mathcal{C}_\omega(W) \text{ (for } W \text{ of type } C \text{ or } D, \\
& \omega \in \Omega_W).
\end{align*}
\]

Then \(L \mapsto (\delta, r) \) defines a bijection \(\mathcal{G}_\omega(G) \overset{\sim}{\rightarrow} '\mathcal{C}_\omega(W) \). Composing this with the inverses of the bijections \('\mathcal{C}_\omega(W) \overset{\sim}{\rightarrow} '\mathcal{C}_\omega(W) \) (3.10, 3.11) and \(\mathcal{C}_\omega(W) \overset{\sim}{\rightarrow} '\mathcal{C}_\omega(W) \) (3.8, 3.9) we obtain the bijection 6.6(a) in our case.

This completes the definition of the bijection 6.6(a) in all cases. It can be verified that this associates to \(L \in \mathcal{G}_\omega(G) \) the same \(W_J \) as that defined in 6.5. Hence the map 6.5(a) is well defined and it is a bijection (the same as 6.6(a)).
6.8. Let \(\omega \in \Omega W, \beta \in \mathfrak{s}_{\omega}(G) \) with corresponding \(L \in \mathcal{G}_{\omega}(G) \). Under 6.5(a), \(L \) corresponds to \(W_J \in \mathcal{C}_{\omega}(W) \). Let \((W, \mathcal{L}, S, \mathcal{W}) = (W_J, \mathcal{L}_J, S_J, \mathcal{W}_J) \) be as in §5.

Let \((L, c_1, \mathcal{L}_1) \in \mathcal{G}'(G)\) be a triple corresponding to \(L \) as in 6.1. Let \(c_{\text{max}} \) be the unipotent class of \(G \) induced by \(c_1 \); let \(c_{\text{min}} \) be the unipotent class of \(G \) that contains \(c_1 \).

For any \(\mathfrak{c} \in \mathfrak{u}(G) \) we denote by \(b_{\mathfrak{c}} \) the dimension of the variety of Borel subgroups of \(G \) that contain a fixed element of \(\mathfrak{c} \). A case by case verification gives the following two results.

Theorem 6.9. We have

(a) \(b_{c_{\text{max}}} = a^{[\omega W_J]} \) (notation of 2.1).

(b) \(b_{c_{\text{min}}} - b_{c_{\text{max}}} = \nu(W, \mathcal{L}) \) (notation of 4.3).

Theorem 6.10. There exists a group isomorphism \(\mathfrak{W}_\beta \cong \mathcal{W} \) well defined up to composition with an inner automorphism of \(\mathcal{W} \) given by the action of an element in \(\Omega W \) (see 3.1). It carries the set of simple reflections of \(\mathfrak{W}_\beta \) into the image of \(S \) under \(\mathfrak{W} \rightarrow \mathcal{W} \).

Conjecture 6.11. Assume that \(W \neq \{1\} \). Let \((\mathfrak{c}, \mathcal{L}), (\mathfrak{c}', \mathcal{L}') \) be in \(\beta \) and let \(E, E' \) be in \(\text{Irr}(\mathfrak{W}_\beta) = \text{Irr}(\mathcal{W}) \) (this equality follows from 6.10). Assume that the generalized Springer correspondence [L84] associates \(E \) to \((\mathfrak{c}, \mathcal{L})\) and \(E' \) to \((\mathfrak{c}', \mathcal{L}')\). Then

(a) \(b_{\mathfrak{c}} - b_{c_{\text{max}}} = c_{E} \) where \(c_{E} \) is defined as in 4.1 in terms of \((W, \mathcal{L})\);

(b) we have \(E \sim E' \) if and only if \(\mathfrak{c} = \mathfrak{c}' \).

This holds in the case where \(G \) is of exceptional type. (In the case where \(G \) is of type \(E_8, F_4 \) or \(G_2 \) this follows from [L20].) This can be also verified in the cases where \((W, \mathcal{L})\) is as in the examples in 4.2.

6.12. For any \(i = (\mathfrak{c}, \mathcal{L}), i' = (\mathfrak{c}', \mathcal{L}') \) in \(\mathfrak{b} \) let \(\Omega_{i,i'} \in \mathbb{Q}(q) \) be as in [L86, 24.7] and let \(\Pi_{i',i} \in \mathbb{Q}(q) \) be as in [L86, 24.8]. Here \(q \) is an indeterminate. Let \(E, E' \) in \(\text{Irr}(\mathcal{W}) \) be corresponding to \(i, i' \) (respectively) under the generalized Springer correspondence. From the definitions we have \(\Omega_{i,i'} = f(q)\Omega_{E',E} \) where \(f(q) \in \mathbb{Q}(q) - \{0\} \) is independent of \(i, i' \). Assuming that 6.11(a) holds we see from 5.7 and [L86, 24.8] that

(a) \(\Pi_{i',i} = P_{E',E} \)

for any \(i, i' \) as above. In particular this holds in the case where \(G \) is of exceptional type. Note that \(\Pi_{i',i} \) measures the stalks of the intersection cohomology sheaf on the closure of \(\mathfrak{c} \) with coefficients in \(\mathcal{L} \) while \(P_{E',E} \) is determined purely in terms of \(W \).

7. Cells in the weighted affine Weyl group \(W_J \)

7.1. Let

(a) \(\zeta : \text{Cell}(W, ||) \cong \text{un}(G) \)

be the bijection defined in [L89].
7.2. We now fix \(\omega \in \Omega_W \) and \(\beta \in \mathfrak{l}_{\omega}(G) \) with corresponding \(L \in G_{\omega}(G) \). Under 6.5(a), \(L \) corresponds to \(J \subseteq S \) such that \(W_J \in C_{\omega}(W) \). Let \(W_J, S_J, L_J \) be as in \(\S 5 \). We assume that \(\sharp(S_J) \geq 2 \). Let \(\mathfrak{u}_\beta(G) \) be the set of all \(c \in \mathfrak{u}(G) \) such that \((c, L) \in \beta \) for some \(L \). We define a map

(a) \(\mathfrak{A} : \text{Cell}(W_J, L_J) \to \mathfrak{u}_\beta(G) \)

assuming a conjecture in [L02, \S 25]. Let \(c \in \text{Cell}(W_J, L_J) \). Let \(E_0 \) be the unique irreducible special representation of \(W_J \) such that \(z(E_0) = r(op) \) (notation of 2.1 with \(\mathfrak{W} \) replaced by \(W_J \)) and let \(c_0 \in \text{Cell}(W_J, ||) \) be such that \(E_0 \) belongs to \(c_0 \). According to [L03, Conj.25.3] there is a well defined \(\tilde{c} \in \text{Cell}(W, ||) \) which contains \(yx \) for any \(y \in c_0, x \in c' \) (the product \(yx \) is taken in \(W \)). (We use the fact that, by results of [L84a], \(W_J \) satisfies the assumptions of [L03, 25.2].) We set \(\mathfrak{A}(c) = \zeta(\tilde{c}) \), with \(\zeta \) as in 7.1(a).

Conjecture 7.3. \(\mathfrak{A} \) is injective with image equal to \(\mathfrak{u}_\beta(G) \). Hence \(\mathfrak{A} \) defines a bijection \(\text{Cell}(W_J, L_J) \sim \to \mathfrak{u}_\beta(G) \).

This is a generalization of 7.1(a). Note that [L03, 25.2] holds if \(J = \emptyset \) in which case it states that any \(c \in \text{Cell}(W_J, L_J) \) is contained in a two-sided cell of \((W, ||) \); this can be deduced from [L03, 10.14]. Using this one can define \(\mathfrak{A} \) unconditionally when \(W \) is of exceptional type and verify the conjecture in that case.

7.4. Let \(a : W_J \to \mathbb{N} \) be the \(a \)-function (see [L03]) of the weighted affine Weyl group \((W_J, L_J) \). Let \(c \in \text{Cell}(W_J, L_J) \) and let \(c = \mathfrak{A}(c) \in \mathfrak{u}_\beta(G) \). We expect that

(a) for any \(w \in c \) we have \(a(w) = b_c - b_{\kappa_{\text{max}}} \).

References

[G11] M.Geck, On Iwahori-Hecke algebras with unequal parameters and Lusztig’s isomorphism theorem, Pure Appl.Math.Q. 7 (2011), 587-620.

[GM] M.Geck and G.Malle, On the special pieces in the unipotent variety, Experiment. Math. 8 (1999), 281-290.

[L78] G.Lusztig, Representations of finite Chevalley groups, Regional Conf. Series in Math. 39, Amer. Math. Soc., 1978.

[L79] G.Lusztig, A class of irreducible representations of a Weyl group, Proc. Kon. Nederl. Akad.(A) 82 (1979), 323-335.

[L80] G.Lusztig, Some problems in the representation theory of finite Chevalley groups, Proc. Symp. Pure Math.37, Amer. Math. Soc., 1980, pp. 313-317.

[L82] G.Lusztig, A class of irreducible representations of a Weyl group II, Proc. Kon. Nederl. Akad.(A) 85 (1982), 219-226.

[L83] G.Lusztig, Left cells in Weyl groups, Lie groups representations, LNM 1024, Springer Verlag, 1983, pp. 99-111.

[L84] G.Lusztig, Intersection cohomology complexes on a reductive group, Inv. Math. 75 (1984), 205-272.

[L84a] G.Lusztig, Characters of reductive groups over a finite field, Ann.Math.Studies 107, Princeton U.Press, 1984.

[L86] G.Lusztig, Character sheaves V, Adv. Math. 61 (1986), 103-155.

[L89] G.Lusztig, Cells in affine Weyl groups IV, J. Fac. Sci. Tokyo U.(IA) 36 (1989), 297-328.
[L95] G.Lusztig, Classification of unipotent representations of simple \(p \)-adic groups, Int. Math. Res. Notices (1995), 517-589.

[L03] G.Lusztig, Hecke algebras with unequal parameters, CRM Monograph Ser.18, Amer. Math. Soc., 2003, additional material in version 2 (2014), arxiv:math/0208154.

[L09] G.Lusztig, Unipotent classes and special Weyl group representations, J. Alg. 321 (2009), 3418-3449.

[L17] G.Lusztig, Generalized Springer theory and weight functions, Ann. Univ. Ferrara Sez.VII Sci. Mat. 63 (2017), 159-167.

[L20] G.Lusztig, From families in Weyl groups to Springer representations, arxiv:2006.16159.

[S76] T.A.Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent.Math. 36 (1976), 173-207.

Department of Mathematics, M.I.T., Cambridge, MA 02139