Understanding the Challenges When 3D Semantic Segmentation Faces Class Imbalanced and OOD Data

Yancheng Pan, Member, IEEE, Fan Xie, Member, IEEE, Huijing Zhao, Member, IEEE

Abstract—3D semantic segmentation (3DSS) is an essential process in the creation of a safe autonomous driving system. However, deep learning models for 3D semantic segmentation often suffer from the class imbalance problem and out-of-distribution (OOD) data. In this study, we explore how the class imbalance problem affects 3DSS performance and whether the model can detect the category prediction correctness, or whether data is ID (in-distribution) or OOD. For these purposes, we conduct two experiments using three representative 3DSS models and five trust scoring methods, and conduct both a confusion and feature analysis of each class. Furthermore, a data augmentation method for the 3D LiDAR dataset is proposed to create a new dataset based on SemanticKITTI and SemanticPOSS, called AugKITTI. We propose the wPre metric and TSD for a more in-depth analysis of the results, and follow are proposals with an insightful discussion. Based on the experimental results, we find that: (1) the classes are not only imbalanced in their data size but also in the basic properties of each semantic category. (2) The intraclass diversity and interclass ambiguity make class learning difficult and greatly limit the models’ performance, creating the challenges of semantic and data gaps. (3) The trust scores are unreliable for classes whose features are confused with other classes. For 3DSS models, those misclassified ID classes and OODs may also be given high trust scores, making the 3DSS predictions unreliable, and leading to the challenges in judging 3DSS result trustworthiness. All of these outcomes point to several research directions for improving the performance and reliability of the 3DSS models used for real-world applications.

Index Terms—3D LiDAR, semantic segmentation, OOD detection, class imbalance

I. INTRODUCTION

Semantic segmentation [1] [2] is a fundamental perception task that finds semantically interpretable categories of each unit of scene data. The unit can be an image pixel [1] or 3D point [3]. A fine-grained semantic understanding is essential for an autonomous agent to navigate safely and smoothly in complex driving scenes. 3D LiDAR sensors are currently popular devices for mobile robots [4] and autonomous driving systems [5] [6] and can capture realistic images of the surroundings with rich 3D geometric shapes. Semantic segmentation using 3D LiDAR data as input (3D semantic segmentation, 3DSS), has been widely studied, and deep learning techniques have made promising progress in this task in recent years [3] [7].

Deep models require a large amount of training data. The performance limitation caused by insufficient training data is called “the data hungry effect” [8]. As described in [9], 3DSS studies that use deep learning techniques suffer severe data hunger problems, where 3D LiDAR datasets of real-world scenes are very limited and the class imbalance (also called the long-tail) problem is one of the key issues. Class imbalance is a common problem in machine learning and has been extensively studied [10], which means that the model could not be sufficiently learned for classes with a few samples. The class imbalance problem is even more severe for 3D LiDAR datasets due to the data acquisition method and the proportion of scene objects acquired in the real world. Although some studies have addressed alleviating the influence of a class imbalance during model training [11], there has been no rigorous study pertaining to the following question: How does the class imbalance problem affect 3DSS models’ performance?

Out-of-distribution (OOD) data are another key issue when deploying an AI system in the real world [8] [12]. The problem is very severe for safety-critical applications such as autonomous driving, where some of the categories are unseen or rare in the datasets but need to be handled in the system [13]. OOD detection has also been studied as a general problem in machine learning [14]. However, the task is more difficult when 3DSS is faced with the dual challenges from class imbalances and OOD data, where the model could show a high confidence for wrong predictions [15] on either the object’s semantic class or the judgment of its in-distribution (ID) or OOD. Compared with the bulk of efforts for improving 3DSS and OOD detection accuracies, far less attention is paid to understanding when the agent is uncertain. With an intent towards real-world deployment, it is important to ask: Can...
the model be aware of its unsureness? Can the model detect whether the category prediction is correct or not? Can the model detect whether the input sample is ID or OOD?

Fig. 1 illustrates the key issues addressed in this research. With a focus on a deeper understanding of the challenges 3DSS models face with class imbalance and OOD data, two experiments are conducted to seek answers to the above questions. Experiment 1 studies 3DSS models’ performance on a class-imbalanced dataset, where three 3DSS models, PointNet++ [16], Cylinder3D [17] and RandLA-Net [18], represent the popular and state-of-the-art models in the literature, and are trained and tested on a class imbalanced dataset, SemanticKITTI [19]. Experiment 2 studies whether the model is aware of its unsureness when facing class imbalances and OOD data. Considering people and rider as OOD, the data from SemanticPOSS [20] are augmented to SemanticKITTI [19], and a new dataset AugKITTI is developed. 3DSS models are trained on SubKITTI (SemanticKITTI without people and rider) while tested on AugKITTI. Softmax confidence [12], data uncertainty and model uncertainty [21][22], ODIN [23] and Mahalanobis distance [24] are used as the trust scores to predict whether the classification result is correct or wrong, or whether the data are ID or OOD. To the best of our knowledge, this is the first work to provide an in-depth analysis of how class imbalance and OOD data affect 3DSS model performances with insightful analyses and discussions.

Experimental results show that although the scale of the training data is a key factor, model performance could be greatly affected by intraclass diversity and interclass ambiguity. Hard classes are found, that even with large training samples, have difficulty achieving a high classification accuracy or are easily confused with others. Through feature space analyses, it is understood that semantic and data gaps are among the underlying reasons. Facing the dual challenges of class imbalance and OOD, the model has difficulty predicting whether the classification result is correct or wrong or whether the data is ID or OOD. With the current trust scoring methods, a low trust score could be yielded by either OOD or ID for a wrong classification result, whereas a high trust score could also be given by an insufficiently trained model on wrong predictions.

The main research contributions of this work are as follows:

1) Experimental studies with both a quantitative analysis with cross-correlating metrics and a visualization analysis of the feature space are conducted to gain a deeper understanding of the performance of the state-of-the-art 3DSS models processing class imbalanced and OOD data, which is crucial for real-world deployments.
2) A 3D LiDAR dataset augmentation method is developed. SemanticPOSS has rich data on dynamic objects, while SemanticKITTI describes mostly static scenes. A new dataset is generated by augmenting the data for the dynamic objects of SemanticPOSS to SemanticKITTI, which reduces dataset bias. Additionally, more realistic datasets for OOD studies are generated by exploiting the bias of the existing datasets.
3) New metrics are proposed to address the class imbalance issue in evaluating model performance, and we demonstrate that the traditional metrics are not sufficient and that the new metrics are required for appropriately evaluating 3DSS and OOD detection performance in cases where the class models are not sufficiently learnt.
4) We engage in an insightful discussion of the key issues to better understand the challenges of class imbalance and OOD data for the 3DSS task. We highlight potential topics for future works to improve the agent’s awareness of the correctness or wrongness of the results and whether the data is ID or OOD.

The structure of this paper is as follows. Section II reviews the existing research for 3DSS models, class imbalance and the trust scores used for failure detection and OOD detection. Section III introduces the flow of 3DSS and the datasets and models used for our experiments. Section IV provides an analysis of Experiment 1, which evaluates the performances of the 3D semantic segmentation models trained on a class-imbalanced dataset. Section V provides an analysis of Experiment 2 to explore the performances of the trust scores applied to class-imbalanced datasets, which is followed by a discussion on future topics and potential solutions in Section VI.

II. RELATED WORK

A. 3D semantic segmentation models

3DSS has been extensively studied in the literature to gain a precise understanding of complex scenarios, such as autonomous driving and robotics applications. In recent years, great progress has been made in methods using deep learning techniques [7][9], of which much of the pioneering work can be traced back to PointNet [25] and PointNet++ [16], which provides the base network architectures for 3DSS. 3D data can be represented in different formats. Based on these formats, 3DSS models scaled up to DNN models are generally divided into point-based, image-based and voxel-based methods [9]. Point-based methods take raw point clouds as input and output pointwise labels. These types of methods, such as [26][27][28][29][30][31][32], [18] introduce special computation modules for local feature aggregation of 3D point clouds. Voxel-based methods [33][34][35][36][37][17] partition 3D space into a number of voxels to convert the point clouds into a structured data format and then apply an encoder-decoder architecture for feature extraction. In addition, image-based methods [38][39][40][41][42][43][44] project point clouds into 2D images and apply 2D semantic segmentation models to predict semantic labels. In the following experiments, we choose PointNet++ [16] to represent the earlier pioneering models and RandLA-Net [18] and Cylinder3D [17] to represent the state-of-the-art point-based and voxel-based models, respectively.

B. Class imbalance problem

Class imbalance reflects that some specific classes have far fewer samples in the training data than others, limiting models’ performance for these small classes. It is a common problem in training deep learning models for real-world applications and has been studied extensively in the literature [45][46]. Many researchers have focused on analysing the imbalanced
model performance caused by an imbalanced training data size [47] [10] [48], and methods such as data resampling [49] [50] or loss reweighting [51] [52] have been developed to alleviate the problem. These methods have also been used to address the class imbalance problem for 3DSS models [53].

As discussed in [9], the number and physical size of each object class vary in real-world scenarios. Therefore, in 3D LiDAR datasets, road, building and plants make up a large proportion of the data, whereas people and rider are rare and thus difficult to model. Furthermore, in 3D LiDAR sensing, the point density of the objects closer to the sensor is much higher than that of the objects farther away, which aggravates the class imbalance problem in 3D LiDAR datasets. Annotating the 3D LiDAR dataset is the result of a trade-off between labour cost and data size. Semantic categories cannot be defined in too much detail, thereby reducing the difficulty of manual annotation and ensuring that the amount of data in each category can meet the needs of model training. For this reason, some objects have the same semantic labels but different morphological shapes, while some objects are similar in data but have different semantics definitions. Therefore, in the current 3D LiDAR dataset, classes are imbalanced not only in terms of their data size but also in terms of their heterogeneous properties, a scenario that has not been studied in the literature.

C. OOD and the open-world learning problem

Learning models for autonomous driving and robotics applications need to address the open-world problem [54], which requires the models to deal with both the seen (ID) and unseen (OOD) objects in the training datasets. OOD detectors [14] have been developed as an auxiliary module combined with the main task model for this purpose. Several mainstream methods for OOD detection have been developed. The methods are broadly divided into two groups based on whether they need an additional dataset that contains OOD examples. Outlier Exposure methods [55] [56] use an auxiliary dataset to represent OOD data when training models to teach the model better representations for OOD detection. However, for many applications, it is not possible to predefine OOD data, making these approaches unsuitable. Reconstruction methods [57] [58] learn to map the training data to the hypersphere of the feature space and maps the OOD data outside the hypersphere. However, the unseen OODs could be very diverse, and guaranteeing them outside the hypersphere remains an open issue. Trust scoring methods are the most popular methods and are studied in this research. They utilize a trust score metric to assess the reliability of the main task model’s results and classifies the ID/OOD by thresholding the scores. Many trust score metrics have been developed in the literature [12] [23] [24] [22] [59], which will be detailed in the next subsection. However, in this type of approach, OOD detection is not an independent task, and the performance is strongly related to the capabilities of the main task model. Can OOD be detected by trust scoring the results of a 3DSS model that is trained on class imbalanced data? Research is needed.

D. Trust scores

Knowing when a deep model’s result is trustworthy and when the model is uncertain is of great importance in many safety-critical applications. To this end, many trust score metrics have been developed, such as Softmax confidence [12], ODIN [23], Mahalanobis distance (MD) [24], uncertainty [22] based on Monte Carlo dropout [60] and deep ensemble [59]. By thresholding these trust scores, OOD data [12] [23] [24] or model failures [61] [62] are detected.

In the literature, there are no universally recognized names for trust scores or for the thresholding methods on the trust scores. We borrow the word trust score from [61], and we name trust scoring for the group of threshold methods on trust scores. In the second experiment of the paper, we sequentially concatenate trust scoring with 3DSS to analyse the performance of the above trust scores on three tasks, namely, detecting ID/OOD, correct/wrong without OOD and correct/wrong with OOD. The focus is to understand the challenges when facing class imbalanced and OOD data, and we present our findings in the following sections.

III. Methodology

In this section, we introduce the flow of 3D semantic segmentation, datasets and the methods used for our experiments.

A typical 3DSS model takes 3D point clouds x as input, passes them to an end-to-end 3DSS model f, and outputs pointwise semantic labels y, as shown in Fig. 2. The 3DSS model requires a trust score g to judge whether the category prediction is correct or to judge whether the input sample is ID or OOD. The trust score function g takes the output probability vector or the feature vector given by model f as input and outputs the judgment z. In our experiments, we focus on exploring the different performances using different 3DSS models f and trust scores g.

A. 3D semantic segmentation models

We use three baseline models in our experiment, PointNet++ [16], RandLA-Net [18] and Cylinder3D [17].

PointNet++ is a pioneering model in the field of deep neural networks used for 3D point cloud processing. It takes raw point clouds as input, uses PointNet [25] as a local feature extractor, and introduces multiscale grouping approaches to learn features from multiple scales. We take PointNet++ as a representative traditional 3DSS model in our experiment.
RandLA-Net and Cylinder3D are recently proposed state-of-the-art methods for 3DSS tasks using different formats of input data. RandLA-Net is a point-based 3DSS model and uses random point sampling instead of a more complex point selection approach to reduce the computation and memory cost. In addition, a novel local feature aggregation module is proposed to increase the receptive field for each 3D point, which preserves the geometric details of the point cloud.

Cylinder3D is a voxel-based 3DSS model that uses a cylindrical partition instead of a common rectangular partition when performing voxelization and extracts voxel features by a simplified PointNet. A 3D U-Net architecture is used to process the 3D representation. In addition, the asymmetrical residual block is designed to meet the requirements of cuboid objects and to reduce the computational cost of 3D convolutions. According to the 3DSS performances in the SemanticKITTI [19] benchmark, both RandLA-Net and Cylinder3D achieve high mIoU scores. We take RandLA-Net and Cylinder3D as representative state-of-the-art 3DSS models in our experiment.

B. Trust scores

The trust scoring approach uses a specific score \(g(x) \) to judge whether input \(x \) is an OOD sample or the category prediction is wrong. If given a threshold value \(\delta \), the output of the trust scoring process \(z \) is given by:

\[
z = \begin{cases}
0, & \text{if } g(x) \leq \delta \\
1, & \text{if } g(x) > \delta
\end{cases}
\]

We use several widely used scores for failure detection and OOD detection in our experiment, Softmax confidence [12], uncertainty [22], ODIN [23] and MD [24].

The Softmax confidence \(conf(x) \) is the output of the Softmax layer and is the most common score used to detect failure and OOD, and is given by:

\[
conf(x) = \max_c p_c(x) = \max_c \frac{\exp(f_c(x))}{\sum_{c=1}^{C} \exp(f_c(x))}
\]

where \(p_c(x) \) is the prediction probability of class \(c \), \(f_c(x) \) is the last layer output of the network of class \(c \) and \(C \) is the number of classes.

Uncertainty is a score to evaluate how certain the model predictions are, which can also be used for failure and OOD detection. In addition, uncertainty can be divided into data uncertainty \(du(x) \) and model uncertainty \(mu(x) \) to distinguish between the uncertainty caused by data ambiguity and model disagreement. Data uncertainty can be quantized by prediction entropy, and model uncertainty can be quantized by mutual information [22], which are given by:

\[
\begin{align*}
du(x) &= \mathbb{E}_M[H(p(x))] = -\mathbb{E}_M[\sum_{c=1}^{C} p_t(x) \log p_c(x)] \\
mu(x) &= H(\mathbb{E}_M[p(x)]) - \mathbb{E}_M[H(p(x))]
\end{align*}
\]

where \(H \) is the prediction entropy and \(\mathbb{E}_M \) is the expectation for all the models distributed in the model space, which can be estimated by Monte Carlo dropout [60] or deep ensemble [59].

ODIN [23] applies temperature scaling to the Softmax confidence using a temperature scaling parameter \(T \):

\[
\text{temp}(x) = \max_c \frac{\exp(f_c(x)/T)}{\sum_{c=1}^{C} \exp(f_c(x)/T)}
\]
Mahalanobis distance [24] is a distance measure in feature space:

$$md(x) = \min(f(x) - \mu_c)^T \Sigma^{-1} (f(x) - \mu_c) \tag{5}$$

where μ_c is the mean vector of class c and Σ is the covariance matrix of the training samples in feature space.

In our experiment, we try to explore the failure and OOD detection performance of these scores for the 3DSS models trained on the class-imbalanced datasets.

C. Dataset Augmentation

Due to the difficulty in manual point-level labelling of 3D LiDAR point clouds, there is a lack of large-scale 3D LiDAR datasets used for 3DSS tasks [9]. Driving scene point clouds collected by vehicle-mounted LiDAR such as nuScenes [63], SemanticKITTI [19], and SemanticPOSS [20] are commonly used for understanding driving scenes. However, the above widely used public 3D datasets have a large difference in the data size of the different classes. Fig. 7 shows the data size of the popular and largest dataset, SemanticKITTI, which reflects the class imbalance problem.

We use SemanticKITTI in Experiment 1 to study how the class imbalance dataset affects the 3DSS performance. However, there is no publicly available dataset for a study of OOD in a 3DSS task. To find a dataset for Experiment 2 on whether the model is aware of its unsureness when facing class imbalanced and OOD data, a dataset augmentation method is developed. SemanticKITTI contains few samples of people and rider, whereas SemanticPOSS describes scenes populated with these dynamic objects. Considering people and rider as OOD, the frames of SemanticKITTI that have no people and rider are extracted to compose a dataset SubKITTI for training, while the remaining frames of SemanticKITTI are augmented by the instances of people and rider of SemanticPOSS to generate a new dataset AugKITTI for testing.

Fig. 3 illustrates the flow of the dataset augmentation. SemanticPOSS is used as an auxiliary dataset that provides instances, while SemanticKITTI is a source dataset that provides LiDAR frames. An instance dataset is first generated by assembling all the instances of SemanticPOSS. Here, an instance is a 3D point cloud at the LiDAR sensor’s coordinate space. Given a LiDAR frame k of SemanticKITTI, an instance s is sampled, and the 3D point cloud is projected to the LiDAR frame on their own coordinates. Augmentation can only be conducted if the projected space is on the road and not occupied by other objects. Fig. 3 illustrates the procedure of augmenting instance s with LiDAR frame k. For each instance, a billboard mask is generated describing a region of the projected 3D point cloud on a 2D plane, which is orthogonal to the LiDAR beam of the 3D point cloud’s center point. The billboard mask of an instance can be generated once. Given LiDAR frame k and instance s, for any point p_i of the LiDAR frame, if it is occluded by the billboard mask of s, a new point p'_i is interpolated on the 3D point cloud of the instance and replaces the original p_i.

Although the data augmentation method is motivated by the OOD study in this research, it is a general method for generating augmented 3D point clouds, which can also be used to reduce the dataset bias between different 3D datasets. In addition, the proposed method can be applied to datasets with different sensor characteristics, e.g., transferring instances collected by a 32-line LiDAR to a 64-line LiDAR dataset. In this way, we create an augmented dataset with a certain number of people; rider samples and other classes have the same distribution as the training set. The data size of each class of AugKITTI is shown in Table II.

IV. PERFORMANCE OF 3DSS FACING CLASS IMBALANCED DATA

A. Experimental setup

In this section, we evaluate the performances of 3D semantic segmentation models trained on a class-imbalanced dataset, as shown in Fig. 5. We train and test models on the SemanticKITTI dataset, and some morphologically similar classes are merged in the experiment, as shown in Fig. 6. There are a total of 11 classes for model training, and we simply use the first two letters of class names to denote these classes. The data size of each class is shown in Table I. For a qualitative analysis, we divided the 11 classes into large, middle, and small classes according to the order of magnitude of each class data size on the training set.

Three 3D semantic segmentation models PointNet++, RandLA-Net and Cylinder3D are used in the experiment, and all the models are trained for 32 epochs using a weighted cross-entropy loss given by:

$$L = -\frac{1}{N} \sum_{c=0}^{K} \sum_{y_i=0}^{C} w_c h_i^T \log p_i \tag{6}$$

where N is the total number of samples used for the loss calculation, K is the number of classes, w_c is the weight of
The IoU, Pre and Rec of class c, y_i, is the ground truth of sample i, h_i is the ground truth one-hot vector of sample i, and p_i is the output probability of sample i. We use class weights calculated by [52], which are given by:

$$w_c = \frac{1 - \beta}{1 - \beta N_c}$$

where N_c is the data size of class c and $\beta = 0.9$ when training models. The weights of classes are shown in the last line of Table I. The Adam optimizer with a learning rate of 0.001 is used for network optimization.

B. Experimental results

Here, the traditional evaluation metrics of intersection over union (IoU), precision (Pre) and recall (Rec) are used to analyse and evaluate the model performance of each semantic category. Hereinafter, we denote $|y_{GT} = c|$ as the number of points whose ground truth (GT) labels are equal to class c and $|y_{PD} = c|$ as the number of points predicted (PD) to class c. The IoU, Pre and Rec of class c are estimated as follows:

$$\text{IoU}(c) = \frac{|y_{GT} = c \land y_{PD} = c|}{|y_{GT} = c| + |y_{PD} = c| - |y_{GT} = c \land y_{PD} = c|}$$

(8)

$$\text{Pre}(c) = \frac{|y_{GT} = c \land y_{PD} = c|}{|y_{PD} = c|}$$

(9)

$$\text{Rec}(c) = \frac{|y_{GT} = c \land y_{PD} = c|}{|y_{GT} = c|}$$

(10)

The model performance of each class and the number of data points in training are shown in Fig. 7(a). State-of-the-art methods such as Cylinder3d and RandLA-Net significantly improve the overall performance of the model compared to the earlier method PointNet++. From Fig. 7(b), it can be found that the classes can be divided into three groups. The classes in the first group demonstrate excellent performance in all the models, which are marked as simple classes, and interestingly, they are all the large-scale classes. The classes in the second group achieve great performance improvements in the state-of-the-art models, which are marked as simple-with-effort classes. In this group, people and rider are small-scale classes, while car is a large-scale class. Interestingly, these classes are objects that have regular sizes and shapes. This may be the reason why they outperform other classes with more data samples. The classes in the third group are hard ones, which demonstrate unsatisfactory performances in all models, and are marked as hard classes. This group contains the large-scale class fence, the middle-scale classes pole and trunk, and the small-scale classes bike and sign. The models of these classes are hard to be learnt no matter on a small or large set of training data, and fewer performance improvements are found in the models.

We also find the influence of class imbalance reflected by the loss curve. We visualize the cross-entropy loss curve of class c given by:

$$L(c) = -\frac{1}{N_c} \sum_{y_i = c} h_i^T \log p_i$$

(11)

where N_c is the data size of class c, y_i is the ground truth of sample i, h_i is the ground truth one-hot vector of sample i and p_i is the output probability of sample i. As shown in Fig. 8, we discriminate between semantic classes by the colour and different data scales of the classes by line type. We find that the training loss curve of the simple classes converges faster and lower than the hard classes. In the test loss curves, we observe that simple classes retain a low and smooth loss value, whereas the curves of simple-with-effort and hard classes are relatively high and zigzag. Compared with the test loss of PointNet++, the loss of simple-with-effort classes people, rider, car are evidently reduced when using RandLA-Net or Cylinder3D.

TABLE I	DATA SIZE OF EACH CLASS ON SEMANTICKITTI FOR TRAINING AND TESTING IN OUR EXPERIMENTS, AND TRAINING WEIGHTS OF EACH CLASS.
scale	Large
	road(ro) plants(pl) building(bu) fence(fe) cart(car) trunk(tr) pole(po) sign(si) bike(bi) people(pe) rider(ri)
SemanticKITTI (train)	730.27M 522.39M 268.33M 143.17M 98.19M 12.43M 5.78M 1.19M 1.12M 0.569M 0.368M
SemanticKITTI (test)	154.65M 145.94M 56.88M 12.64M 33.59M 5.51M 1.67M 0.381M 0.594M 0.477M 0.329M
Training weights	1.00 1.00 1.00 1.00 1.00 1.36 2.19 8.48 8.98 17.19 25.09
whereas the loss of hard classes are not significantly reduced, indicating the learning difficulty of these classes.

Based on the above results and observations, we can conclude that apart from the size of the training data, the nature of each semantic class could be another key factor that greatly affects the model performance; that is, the classes are not only imbalanced on their data size but also on the basic properties of each semantic class.

C. Confusion analysis

Fig. 9 shows the confusion matrices of the three models. Each value \(p(r, c) \) on row \(r \) and column \(c \) of the confusion matrix is estimated by:

\[
p(r, c) = \frac{y_{c,G} = r \land y_{PD} = c}{y_{c,G} = r}
\]

(12)

which indicates the ratio of points whose ground truth labels are \(r \) but classified to \(c \). Therefore, the diagonal values \(p(c, c) \) equal the recall for class \(c \), i.e., \(\text{Rec}(c) = p(c, c) \). In addition to the diagonal values, the values in each row \(r \) compose a vector of wrong prediction ratios (WPR) that describes how data points of the ground truth class \(r \) are misclassified to other classes \(c \neq r \). Similarly, the values in each column \(c \) compose a vector of be confused ratio (BCR) that describes how data points of other ground truth class \(r \neq c \) are misclassified to the predictive class \(c \).

With the confusion matrix of Cylinder3D in Fig. 9(c), the WPR and BCR vectors are generated and shown in Fig. 10(a-b). The class plants demonstrates excellent performance on IoU, Pre and Rec in all models in Fig. 7, and its data points have a very small part misclassified to other classes, as shown in Fig. 10(a). However, interestingly, the data points of the other classes have a large ratio predicted to plants by mistake, meaning that plants is a class that is easily confused. This tendency for imprecision has been omitted in the literature. To this end, this research proposes a new metric called weighted precision (wPre) by reshaping the precision metric as follows.

Let \(\sim \text{Pre}(c) = 1 - \text{Pre} \) be the negation of precision; we have

\[
\sim \text{Pre}(c) = \frac{\sum_{r \neq c} [y_{c,G} = r \land y_{PD} = c]}{\sum_{r} [y_{c,G} = r \land y_{PD} = c]}
\]

(13)
Fig. 10. (a) Wrong prediction to others classes using Cylinder3D. (b) Wrong prediction from other classes using Cylinder3D. (c) wPre vs. IoU scatter plot using Cylinder3D training and testing on SemanticKITTI. (d) Pre vs. IoU scatter plot using Cylinder3D training and testing on SemanticKITTI. (GT: ground truth, PD: predictions.)

For a small-scale class \(r \), even the wrong predictions occupy large proportions in its ground truth set, and the absolute point number is small compared to larger classes; hence, it has little impact in the evaluation. To balance the impacts from the classes of different scales, a new metric is developed by a reweighting of the precision metric by class data size, which reflects such a property.

\[
\sim \text{wPre}(c) = \frac{\sum_{r \neq c} |y_{GT} = r \land y_{PD} = c|}{\sum_{r} |y_{GT} = r \land y_{PD} = r|}
\]

\[
= \frac{\sum_{r \neq c} p(r, c)}{\sum_{r} p(r, c)} = \sum_{r \neq c} \frac{1}{\eta_c} p(r, c)
\]

where \(\eta_c = \sum_r p(r, c) \) is a factor to normalize each column vector of the confusion matrix to 1, and \(\sim \text{wPre}(c) \) is the sum of the normalized non-diagonal values in column \(c \), which describes how easily class \(c \) can be confused. Similarly, we have

\[
\text{wPre}(c) = 1 - [\sim \text{wPre}(c)] = \frac{1}{\eta_c} p(c, c)
\]

By cross correlating IoU with the weighted precision metrics wPre of each class in Fig. 10(c), three groups are shown in these classes, high-accuracy and hard to be confused, high-accuracy but easy to be confused, and low-accuracy but hard to be confused. For comparison, Fig. 10(d) cross correlates IoU with the traditional precision metrics Pre, which failed to reflect such a property.

D. Feature analysis

Model performances are relevant to the feature description of models. Some experimental results using Cylinder3D are notable; large class plants is easier to be confused compared with other large classes, while small classes people and rider have a relatively satisfactory performance. Therefore, we analyse the feature distribution of different classes, as shown in Fig. 11.

We find that the proposed wPre metric can appropriately evaluate the feature confusion in the presence of the class imbalance. As mentioned in the previous sections, the IoU, Pre and Rec of class plants are all high. However, the features of plants in Fig. 11 are severely confused with other class features, which is not reflected by traditional metrics. In contrast, the wPre of plants is very low because of the reweighting of the precision metric by class data size, which shows a better estimation of feature confusion.

In Fig. 11, confusion of the different classes can be easily observed; we find that the points of large classes road, car distribute far away from other classes, while fence, plants are...
confused. This result can explain the performance differences among classes in our experiment and the influence of class imbalance. The feature confusion of the different classes also reflects the classification confusion in Fig. 10(a-b).

Two noticeable phenomena, intraclass diversity and interclass ambiguity, are reflected in Fig. 11. Some classes have various features, causing high intraclass diversity and learning difficulty. A prominent example is the feature distribution of plants in Fig. 11, where we find that feature points of plants can be divided into two parts. The right-up part corresponds to the points of the crown, and the other part corresponds to the roadside shrub. The morphological features of plants can be extremely varied, which leads to a high intraclass diversity, and other classes that are not learned sufficiently are more likely to be misclassified to plants. By contrast, classes such as road, people, and rider have relatively consistent features, making them easier to learn.

On the other hand, some of the different classes have similar features, causing interclass ambiguity and feature confusion. As shown in the right part of Fig. 11, two feature points of trunk and pole are close in feature space due to their similar columnar features. Similarly, people and rider show very similar geometrical features and are close in the feature space. The reason for confusion is the interclass ambiguity, namely, the feature similarity of these classes.

From the feature space analysis, we can give a systematic summary. Some classes have various features, while some different classes have similar features, causing these samples to be misclassified or hard to distinguish from other classes. The intraclass diversity and interclass ambiguity determine the learning difficulty of the classes and greatly affects model performance.

V. PERFORMANCE OF TRUST SCORES FACING CLASS IMBALANCED AND OOD DATA

A. Experimental setup

In this section, we evaluate the failure and OOD detection performances of trust scores using 3DSS models trained on class-imbalanced datasets, as shown in Fig. 12. We train models on the SubKITTI dataset and test models on the AugKITTI dataset. The data size of each class is shown in Table II. Compared with Experiment 1, people and rider are considered to be OOD classes.

Three 3D semantic segmentation models PointNet++, RandLA-Net and Cylinder3D are used in the experiment, and all the models are trained for 32 epochs using the weighted cross-entropy loss given by Equation (6) and the Adam optimizer with a learning rate of 0.001. In addition, we use the class weights given by Equation (7) with $\beta = 0.9$ when training the models, which are shown in the last line of Table II.

Five trust scoring approaches, Softmax confidence, data uncertainty, model uncertainty, ODIN and MD, are used in the experiment. For data uncertainty and model uncertainty, we use the Monte Carlo dropout [60] with the number of forward passes $M = 5$ and the dropout probability $p = 0.25$ as a commonly used setup [64]. For ODIN, we use the temperature parameter $T = 1000$.

B. Experimental result

Given a 3DSS model f and a trust score g, a $g(x) \in [0, 1]$ can be estimated for each data point x based on the output of f. Ideally, a high $g(x)$ indicates that the model f is confident in its results, while a lower value indicates that the model is uncertain about its results. Discriminating whether the predicted semantic class is correct or wrong, or whether the data are ID or OOD is a binary decision, which has usually been made by thresholding $g(x)$ using formula (1).

Before examining the experimental results, let us first define three class sets: ID/correct ($A_{ID,co}$), ID/wrong ($A_{ID,wr}$) and OOD (A_{OOD}). $A_{ID,co}$ and $A_{ID,wr}$ contain both of the ID classes that appeared in the training data. For each predicted class c_{pd}, the former has a single class $A_{ID,co} = \{c_{GT} = c_{pd}\}$, while the latter are the rest $A_{ID,wr} = \{c_{GT} \neq c_{pd}\}$. A_{OOD} are OOD classes that are not known in training and thus are not included in the predicted label set. In this experiment, the OOD classes are rider and people.

This study addresses three tasks that differ only in the definition of their true and false class sets. Task 1 - I/O, discriminating whether the data are ID or OOD. For this task, we define the true class set as $A_{I/O} = A_{ID,co} \cup A_{ID,wr}$ and the false class set as $\bar{A}_{I/O} = A_{OOD}$. Task 2 - C/W and Task 3 - C/W with OOD, discriminating whether the predicted semantic class is correct or wrong, where the two tasks vary in whether OOD are addressed. Both tasks share the same true class set that is $A_{C/W} = A_{ID,co}$. They have different false class sets, which are $A_{C/W} = A_{ID,wr}$ and $A_{C/W} \cup A_{OOD} = A_{ID,wr} \cup A_{OOD}$ for Task 2 and Task 3, respectively.

Here, the traditional evaluation metric of the area under the receiver operating characteristic curve (AUROC) is used to analyse and evaluate the trust scoring performance. A receiver operating characteristic (ROC) curve is first plotted with the true positive ratio (TPR) and false positive ratio (FPR) for the vertical and horizontal axes, and the area under the ROC curve is estimated to evaluate the performance. For a predicted class c and a given threshold δ, TPR and FPR are estimated as follows:

TABLE II

scale	Large	Middle	Small	OOD							
class	road(ro)	plants(pl)	building(bu)	fence(fe)	car(ca)	trunk(tr)	pole(po)	sign(si)	bike(bi)	people(pe)	rider(ri)
SubKITTI (train)	491.66M	385.99M	159.58M	107.45M	55.32M	7.23M	3.59M	0.801M	0.644M	0	0
AugKITTI (test)	42.48M	36.07M	22.62M	15.98M	2.71M	0.479M	0.447M	0.082M	0.027M	2.49M	1.21M
Training weights	1.00	1.00	1.00	1.00	1.00	1.87	3.17	12.36	15.33	/	/
are hard because they are easily confused with OOD data or other classes.

C. Confusion analysis

In this section, we choose the results of Cylinder3d with the Softmax confidence for further in-depth analysis as shown in Fig. 15. We begin by examining the distribution of the $g(x)$ values of each predicted category.

1) Trust score distribution (TSD): Given a sequence of monotonically increasing values $\{\delta_0, ..., \delta_1, ..., \delta_n\}$ with $\delta_0 = 0$ and $\delta_n = 1$, a measure is defined below.

$$q(r, c, \delta_i) = \frac{|y_{GT} = r \land y_{PD} = c \land \delta_i < g(x) \leq \delta_{i+1}|}{|y_{GT} = r|}$$

(22)

The numerator of the right-hand term counts the number of points whose ground truth label is r while classified to c with a trust score $g(x) \in (\delta_i, \delta_{i+1}]$. In fact, $\sum_{i=0}^{n-1} q(r, c, \delta_i) = p(r, c)$.

Corresponding to the confusion matrix in Fig. 9, each column vector of a predicted class c can be extended to a trust score distribution (TSD) matrix, where each row r is for a ground truth class, each column is for δ_i, each matrix value is $q(r, c, \delta_i)$, and the sum of row r is $p(r, c)$. Taking PD = plants as an example, a matrix is shown in Fig. 14(a) and plotted in the mode of the stacked area chart in Fig. 14(b), where horizontal bands of a TSD are ordered. From top to bottom, they are sequentially the classes of $A_{ID.co}$, $A_{ID.wr}$ and A_{OOD}. The TSD of each predicted class c is plotted in Fig. 15. Each horizontal band of a TSD depicts an $g(x)$ distribution for a certain ground truth class r and predicted class c with the area equal to $p(r, c)$.

In Fig. 15, road and sign demonstrate perfect examples, where the data predicted for these classes almost fall in the top horizontal band, $A_{ID.co}$ data. The TSD of car looks similar. However, there are many OOD data predicted as car, which fall in the bottom horizontal bands, and some have very high trust scores. The performance of trunk and pole are not bad too, and they are almost $A_{ID.co}$ data, while their trust scores span wider ranges. Bike, plants, fence and building demonstrate examples of the worst performance, where many $A_{ID.co}$ data have lower trust scores than those of $A_{ID.wr}$ and A_{OOD}. With such distributions, it is difficult to discriminate between ID/OOD or correct/wrong by thresholding on the trust scores.

2) Per-class AUROC for three tasks: We extract the results of Cylinder3d with a Softmax confidence in Fig. 16 and cross-correlate the per-class AUROC of the three tasks in Fig. 16(a). The horizontal axis is for Task 1 - I/O, while the vertical axis compares Task 2 - C/W and Task 3 - C/W with OOD. Two dotted lines are manually drawn at AUROC=0.7 for analysis. It can be found that for the data predicted as bike, it is difficult to discriminate whether it is an ID or OOD. Comparing its performance on Task 2 and Task 3, it is found that bike is easily affected by OOD. In fact, the data of ID class bike and OOD class rider have similar properties, which makes them confusing. This phenomenon suggests that the performance of OOD detection and the influence of OOD data need to be addressed with the confusion properties of the classes.
On the other hand, for those predicted as sign, it is difficult to discriminate whether the predicted semantic class is correct or wrong, no matter whether OOD exists. However, this result contradicts what we discussed earlier, where sign demonstrates perfect TSD examples. We further analyse the results below.

3) Threshold on trust scores: An ideal trust score should provide a reliable prediction when it is high. Therefore, we are also interested in how model performance is influenced by an incorrect prediction and an OOD with high thresholding trust scores δ. We analyse TPR and FPR with $\delta = 0.9$ as the basis of a trust score evaluation. Fig. 16(b) shows the TPR results.

Since Task 2 and Task 3 share the same true class set, their per-class TPRs are the same, exhibiting a nearly linear trend. Similar to the results of TSD, bike, fence and building are the worst three performers, while road, car, pole and sign are among the top groups. However, the FPR results in Fig. 16(c) also contradict what we discussed earlier, where bike, fence and building have very low FPRs for all three tasks, whereas road and sign have high values. By examining the formula (20), we found that some classes have very small FP and TN, as exhibited in Fig. 15, and even a small FP could yield a high FPR. This is the main reason for the contradictory results in Fig. 16(a) and (c). If classes are highly imbalanced, the metrics TPR and FPR may not properly and sufficiently evaluate the model performance of each class, which shows the need to combine them with a metric on precision.

4) Per-class AUROC and wPre: By incorporating the trust score, the wPre metrics in the previous section are extended below to evaluate the reliability of a model prediction.

$$wPre(c, \delta) = \frac{wTP(c, \delta)}{wTP(c, \delta) + wFP(c, \delta)}.$$ \hspace{1cm} (23)

where

$$wTP(c, \delta) = \sum_{r \in A^*} \frac{1}{|yGT = r \land yPD = c \land t(x) > \delta|}{|yGT = r|}$$ \hspace{1cm} (24)

$$wFP(c, \delta) = \sum_{r \in A^*} \frac{1}{|yGT = r \land yPD = c \land t(x) > \delta|}{|yGT = r|}$$ \hspace{1cm} (25)

Cross correlating AUROC with wPre and $\delta=0.9$, we evaluate the performance for Task 1, Task 2 and Task 2 vs Task 3 in Fig. 16(d-f), respectively. We obtain the following findings. For Task 1, car, plants and bike have poor precisions, whereas bike has the worst performance in discriminating between ID and OOD data due to the interclass ambiguity. For Task 2, plants and fence have poor precisions, whereas sign has difficulty in discriminating between correct or wrong predictions of the semantic classes. In the case that OOD data exist in Task 3, car, plants and bike are the most affected.

D. Feature space analysis

The validity of trust scores, namely, the failure detection and OOD detection abilities, are also relevant to the feature description of the models. We have found that bike, plants, and fence are hard to distinguish from OOD classes in the experimental results. Therefore, we analyse the feature distribution of OOD classes and ID classes, as shown in Fig. 17.

The OOD detection performance is affected by the feature confusion between the predictive class and the OOD data. Similar to Experiment 1, the feature distribution of classes also determines the OOD detection performance. As we define people and rider as OOD classes, ID classes such as plants and bike have feature confusion with OOD classes to a degree, making it difficult to distinguish the OOD data. This result can explain the ID/OOD AUROC differences in our experiment.

We also find that the proposed TSD analysis can appropriately evaluate the feature confusion, failure and OOD detection.
performances. As illustrated in Fig. 15, bike, plants, fence and building demonstrate examples of the worst performance, which corresponds to Fig. 17(c), where features of these classes are easily confused with OOD classes. In contrast, features of road, sign, pole are far away from the OOD classes, whereas car is slightly confused with the OOD classes, which also corresponds to the TSD analysis.

In addition, trust scores are not reliable for classes whose features are confused with other classes. Using wPre with δ=0.9, as shown in Fig. 16(d-f), we find that plants have poor precisions in all three tasks, which means that the reliability of plants prediction is limited even though it gives a high confidence value. The features of plants are severely confused with other classes in Fig. 17(a)(c), which explains the results. In addition, if features are confused with OOD classes, they will be influenced by OOD data more easily. As our analysis shows in Fig. 16(f), car, plants and bike are most affected by OOD, while their features are also confused with OOD classes to different degrees.

From the feature space analysis, we can give a systematic summary. The validity of trust scores is also greatly affected by feature confusion among classes, which makes failure detection and OOD detection more challenging.

VI. DISCUSSION

A. The class imbalance problem

Real-world scenes are occupied with various objects in different proportions. Although people, rider, bike, sign, etc. occupy small proportions in the scenes, and subsequently
B. Intraclass diversity and interclass ambiguity

Experimental results show that even for some classes having a large number of training samples, their model performance is unpleasant, e.g., hard to achieve high classification accuracy or are easy to confuse with others, such as fence and plants. On the other hand, even though some classes are trained on fewer samples, their model performance surpasses other classes, such as people and rider. Through feature space analysis, it is found that intraclass diversity and interclass ambiguity are among the main reasons, which reveals that there are large semantic and data gaps in the data.

As illustrated in Fig. 18, although some objects belong to the same semantic class, they may have various shapes, e.g., trunk with straight and forked branches, plants with nature and trimmed crowns. In these cases, the semantic category y is the same, whereas the sensor data x are very different, which yields a large semantic gap. Conversely, some objects are of different semantic categories, whereas due to partial observation, occlusion and/or low-resolution point sampling, their data could present similar features, such as people and rider, pole and straight trunk with its crown occluded. In these cases, the semantic category y are different, whereas sensor data x are very similar, which is called the data or sensory gap. Properly defining semantic classes is essential to reduce both the semantic and data gaps and leads to a fundamental solution to the intraclass diversity and interclass ambiguity problem. Unsupervised category discovery could be one of our future research topics.

C. Can 3DSS results be trusted

For safety-critical applications such as autonomous driving, when compared to improving the overall statistical accuracy of 3DSS and/or OOD detection, it is more important to understand whether the current prediction results are trustworthy. Many metrics have been developed for such a purpose, where Softmax confidence, uncertainty, ODIN and Mahalanobis distance are among the most popular metrics, as discussed in earlier sections. These metrics use a 3DSS model’s output at the intermediate or final layers and estimates a trust score on whether the prediction of semantic class is correct or whether it is an ID/OOD data. Many methods have been developed to find or calibrate metrics, such that a high score reflects that the model is confident of the result, whereas a low score shows that the model is unsure and thus could be either a wrong prediction on the semantic class or an unseen object in the training data (OOD).

However, the performance of such trust scoring methods depends on both the metrics and the 3DSS model. Faced with the dual challenges of class imbalance and OOD data, the performance of a 3DSS model on each class could be much different, including both well-learnt and poorly-learnt classes. For the poorly-learnt classes, high trust scores could also be given on those wrong classified ID categories and
OOD, making it hard to capture a correct understanding of the trustworthiness of the 3DSS results. A meticulous design of the metrics that addresses the 3DSS model’s various performances on each semantic class is required, which may lead to a more pinpointed understanding of whether 3DSS results can be trusted. More studies are needed in the future.

VII. CONCLUSION AND FUTURE WORK

This work aims to explore the relationship among class imbalance, 3DSS model performance, failure and the OOD detection ability for 3D semantic segmentation tasks and to analyse the underlying reasons for these performances. For these purposes, we conduct two experiments and conduct both a confusion and feature analysis of each class. For experiments and analysis, we introduce a data augmentation method for the 3D LiDAR dataset, create the AugKITTI dataset based on SemanticKITTI and SemanticPOSS, and propose the wPre metric and a TSD for confusion analysis. The major findings from the above experimental studies are as follows:

1) The classes are imbalanced not only in terms of their data size but also in terms of the basic properties of each semantic category. In other words, in addition to the training data size, the nature of each semantic class could be another key factor that greatly affects the model performance.

2) The intraclass diversity and interclass ambiguity make class learning difficult and greatly limits model performance, causing the semantic and data gap challenge.

3) Trust scores are unreliable for classes whose features are confused with other classes. For these classes, high trust scores could also be given on those wrongly classified ID classes and OOD, making the 3DSS predictions unreliable and creating a challenge of judging the 3DSS results to be trustful.

For real-world 3D semantic segmentation with complex scenes, deep models are required to address the class imbalance problem, have an awareness when the model is uncertain and detect unseen objects. This work examines the performance of representative 3DSS models, and the results show that there are still challenges for real-world applications using deep learning models. From the experimental results, three directions can be explored for improving OOD detection, improving 3DSS model performance, designing thresholding scores, and alleviating the intraclass diversity and interclass ambiguity in training data. However, this study only considers a small portion of the 3DSS methods and trust scoring methods with manually chosen OOD classes. In the future, we would like to consider more types of failure and OOD detection methods and try to develop a practical failure and OOD detector for real-world 3D semantic segmentation task.

REFERENCES

[1] H. Yu, Z. Yang, L. Tan, Y. Wang, W. Sun, M. Sun, and Y. Tang, “Methods and datasets on semantic segmentation: A review,” Neurocomputing, vol. 304, pp. 82–103, 2018.

[2] F. Lateef and Y. Ruichet, “Survey on semantic segmentation using deep learning techniques,” Neurocomputing, vol. 338, pp. 321–348, 2019.

[3] Y. Xie, J. Tian, and X. X. Zhu, “A review of point cloud semantic segmentation,” arXiv preprint arXiv:1908.08854, 2019.

[4] B. J. Patz, P. Papelis, R. Pillat, G. Stein, and D. Harper, “A practical approach to robotic design for the DARPA urban challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 528–566, 2008.

[5] B. Li, T. Zhang, and T. Xia, “Vehicle detection from 3D LiDAR using fully convolutional network,” arXiv preprint arXiv:1608.07916, 2016.

[6] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3D object detection network for autonomous driving,” in IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1907–1915.

[7] Y. Guo, H. Wang, Q. Hu, H. Liu, L. Liu, and M. Bennamoun, “Deep learning for 3D point clouds: A survey,” arXiv preprint arXiv:1912.12033, 2019.

[8] G. Marcus, “Deep learning: A critical appraisal,” arXiv preprint arXiv:1801.00631, 2018.

[9] B. Gao, Y. Pan, C. Li, S. Geng, and H. Zhao, “Are we hungry for 3d lidar data for semantic segmentation? a survey of datasets and methods,” IEEE Transactions on Intelligent Transportation Systems, 2021.

[10] M. Buda, A. Maki, and M. A. Maziarowski, “A systematic study of the class imbalance problem in convolutional neural networks,” Neural Networks, vol. 106, pp. 249–259, 2018.

[11] G. Haixiang, L. Yingj, J. Shang, G. Mingyun, H. Yuan Yue, and G. Bing, “Learning from class-imbalanced data: Review of methods and applications,” Expert Systems with Applications, vol. 73, pp. 220–239, 2017.

[12] D. Hendrycks and K. Gimpel, “A baseline for detecting misclassified and out-of-distribution examples in neural networks,” arXiv preprint arXiv:1610.02136, 2016.

[13] P. Koopman and M. Wagner, “Autonomous vehicle safety: An interdisciplinary challenge,” IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 1, pp. 90–96, 2017.

[14] M. Salehi, H. Mirzaei, D. Hendrycks, Y. Li, M. H. Rohban, and M. Sabokrou, “A unified survey on anomaly, novelty, open-set, and out-of-distribution detection: Solutions and future challenges,” arXiv preprint arXiv:2110.14051, 2021.

[15] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled: High confidence predictions for unrecognizable images,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 427–436.

[16] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical feature learning on point sets in a metric space,” in Advances in Neural Information Processing Systems, 2017, pp. 5099–5108.

[17] H. Zhou, X. Zhu, X. Song, Y. Ma, Z. Wang, H. Li, and D. Lin, “Cylinder3d: An effective 3d framework for driving-scene lidar semantic segmentation,” arXiv preprint arXiv:2008.01550, 2020.

[18] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham, “RandLa-Net: Efficient semantic segmentation of large-scale point clouds,” arXiv preprint arXiv:1911.11236, 2019.

[19] J. Belhaj, M. Garbade, A. Mileto, J. Quenzel, S. Behnke, C. Stachniss, and J. Gall, “SemanticKITTI: A dataset for semantic scene understanding of LiDAR sequences,” in IEEE International Conference on Computer Vision, 2019, pp. 9297–9307.

[20] Y. Pan, B. Gao, J. Mei, S. Geng, C. Li, and H. Zhao, “SemanticPOSS: A point cloud dataset with large quantity of dynamic instances,” arXiv preprint arXiv:2002.09147, 2020.

[21] A. Kendall and Y. Gal, “What uncertainties do we need in bayesian deep learning for computer vision?” arXiv preprint arXiv:1703.04977, 2017.

[22] A. Malinin, “Uncertainty estimation in deep learning with application to spoken language assessment,” Ph.D. dissertation, University of Cambridge, 2019.

[23] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-distribution image detection in neural networks,” arXiv preprint arXiv:1706.02690, 2017.

[24] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for detecting out-of-distribution samples and adversarial attacks,” Advances in neural information processing systems, vol. 31, 2018.

[25] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep learning on point sets in a metric space,” in Advances in Neural Information Processing Systems, 2017, pp. 5099–5108.

[26] F. Engelmann, T. Kontogianni, A. Hermans, and B. Leibe, “Exploring spatial context for 3D semantic segmentation of point clouds,” in IEEE International Conference on Computer Vision Workshops, 2017, pp. 716–724.

[27] M. Jiang, Y. Wu, T. Zhao, Z. Zhao, and C. Lu, “PointSIFT: A SIFT-like network module for 3D point cloud semantic segmentation,” arXiv preprint arXiv:1907.09081, 2019.

[28] F. Engelmann, T. Kontogianni, J. Schult, and B. Leibe, “Know what your neighbors do: 3D semantic segmentation of point clouds,” in European Conference on Computer Vision, 2018.
[29] L.-Z. Chen, X.-Y. Li, D.-P. Fan, M.-M. Cheng, K. Wang, and S.-P. Lu, “LSANet: Feature learning on point sets by local spatial attention,” arXiv preprint arXiv:1905.05442, 2019.

[30] K. Zhiheng and L. Ning, “PyramidNet: Point cloud pyramid attention network and graph embedding module for classification and segmentation,” arXiv preprint arXiv:1906.03299, 2019.

[31] H. Thomas, C. Li, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas, “KPConv: Flexible and deformable convolution for point clouds,” in IEEE International Conference on Computer Vision, 2019, pp. 6411–6420.

[32] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks on 3d point clouds,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 9621–9630.

[33] J. Huang and S. You, “Point cloud labeling using 3D convolutional neural network,” in International Conference on Pattern Recognition. IEEE, 2016, pp. 2670–2675.

[34] L. Tchapmi, C. Choy, I. Armeni, J. Gwak, and S. Savarese, “Segcloud: Semantic segmentation of 3D point clouds,” in 2017 international conference on 3D vision. IEEE, 2017, pp. 537–547.

[35] D. Rethage, J. Wald, J. Sturm, N. Navab, and F. Tombari, “Fully-convolutional point networks for large-scale point clouds,” in European Conference on Computer Vision, 2018, pp. 596–611.

[36] B. Graham, M. Engelcke, and L. van der Maaten, “3D semantic segmentation with submanifold sparse convolutional networks,” in IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 9224–9232.

[37] C. Zhang, W. Luo, and R. Urtasun, “Efficient convolutions for real-time semantic segmentation of 3D point clouds,” in International Conference on 3D Vision. IEEE, 2018, pp. 399–408.

[38] B. Wu, A. Wan, X. Yue, and K. Keutzer, “SqueezeSeg: Convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud,” in IEEE International Conference on Robotics and Automation. IEEE, 2018, pp. 1887–1893.

[39] W. Zhang, C. Zhou, J. Yang, and K. Huang, “LiSeg: Lightweight road-object semantic segmentation in 3D LiDAR scans for autonomous driving,” in IEEE Intelligent Vehicles Symposium. IEEE, 2018, pp. 1021–1026.

[40] X. Zhu, J. Shi, P. Yun, L. Tai, and M. Liu, “PointSeg: Real-time semantic segmentation based on 3D LiDAR point cloud,” arXiv preprint arXiv:1807.06268, 2018.

[41] A. Dewan and W. Burgard, “DeepTemporalSeg: Temporally consistent semantic segmentation of 3D LiDAR scans,” arXiv preprint arXiv:1906.06962, 2019.

[42] B. Wu, X. Zhou, S. Zhao, X. Yue, and K. Keutzer, “SqueezeSegV2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a LiDAR point cloud,” in International Conference on Robotics and Automation. IEEE, 2019, pp. 4376–4382.

[43] A. Milioti, I. Vizzo, J. Behley, and C. Stachniss, “RangeNets+: Fast and accurate LiDAR semantic segmentation,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, 2019.

[44] C. Xu, B. Wu, Z. Wang, W. Zhan, P. Vajda, K. Keutzer, and M. Tomizuka, “SqueezeSegV3: Spatially-adaptive convolution for efﬁcient point-cloud segmentation,” arXiv preprint arXiv:2004.01803, 2020.

[45] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class imbalance,” Journal of Big Data, vol. 6, no. 1, pp. 1–54, 2019.

[46] Y. Zhang, B. Kang, B. Hooi, S. Yan, and J. Feng, “Deep long-tailed learning: A survey,” arXiv preprint arXiv:2110.04596, 2021.

[47] P. Hensman and D. Masko, “The impact of imbalanced training data for convolutional neural networks,” Degree Project in Computer Science, KTH Royal Institute of Technology, 2015.

[48] K. Ghosh, C. Bellinger, R. Corizzo, B. Krawczyk, and N. Japkowicz, “On the combined effect of class imbalance and concept complexity in deep learning,” arXiv preprint arXiv:2107.14194, 2021.

[49] G. Menardi and N. Torelli, “Training and assessing classiﬁcation rules with imbalanced data,” Data mining and knowledge discovery, vol. 28, no. 1, pp. 92–122, 2014.

[50] S. Pouyanfar, Y. Tao, A. Mohan, H. Tian, A. S. Kaseh, K. Gaun, R. Dailey, S. Aghajanzadeh, Y.-H. Lu, S.-C. Chen et al., “Dynamic uncertainty in connection with intelligent vehicle and mobile robot, such as machine perception, behavior learning and motion planning, and she has special interests in the studies through real world data collection.