Morphological and molecular description of *Allocreadium apokryfi* sp. n. (Digenea: Allocreadiidae) from native *Labeobarbus aeneus* (Cyprinidae) in South Africa, including notes on its biology, evolutionary history and an updated key of African *Allocreadium*

Quinton M. Dos Santos¹, Beric M. Gilbert²,³, Annemariè Avenant-Oldewage¹ and José C. Dumbo²,³

¹Department of Zoology, University of Johannesburg, Johannesburg, South Africa
²Spectrum Analytical Facility, University of Johannesburg, Johannesburg, South Africa
³Department of Biological Sciences, Eduardo Mondlane University, Maputo, Mozambique

Abstract: Adult trematodes of *Allocreadium Looss, 1900*(Digenea) infect the intestine of mostly freshwater fishes in Asia, Europe, Africa and the Americas. During routine parasitological surveys in the Vaal River system, adult trematodes were collected from the intestine of smallmouth yellowfish, *Labeobarbus aeneus* (Burchell). The trematodes were confirmed to represent a member of *Allocreadium* and did not match any existing taxon. Therefore, they are described as a new species, *Allocreadium apokryfi* sp. n. The morphology of the new species most closely resembles that of *Allocreadium aswanense* El-Naffar, Saoud et Hassan, 1984, but it differs from it by having a bipartite internal seminal vesicle, wider eggs, a shorter intertesticular distance, an intestinal bifurcation at the ventral sucker level, a ventral sucker that is larger than the oral sucker, and a genital pore near the intestinal bifurcation or the ventral sucker. The surface topology of the new species is notably different from that of other allocreadiids. Papillae were observed in the ventral sucker and surrounding both ventral and oral suckers, but the number and arrangement of the latter were not consistent among specimens. The protruding cirrus of *A. apokryfi* sp. n. was described using SEM and is the first such observation for the genus. Genetic characterisation showed that the new species was clearly distinct from other *Allocreadium* spp. using both 18S (nucleotide difference 1.3–9.1%) and 28S (4.7–6.5%) rDNA, forming a well-supported clade in *Allocreadium*. The presence of *A. apokryfi* sp. n. in a well-studied river is unexpected, and considering the diet of its host and the scarcity of *Allocreadium* in Africa, the possible biology of this species is discussed herein.

Key words: Smallmouth yellowfish, endoparasitic helminths, Trematoda, Africa, 28S rDNA, 18S rDNA, SEM, taxonomic key.

The trematode genus *Allocreadium Looss, 1900* includes small to medium-sized parasites inhabiting the digestive tract of a remarkable range of mostly freshwater fish families (Caired and Bogéa 2005). Adults have an elongated, dorsoventrally flattened body, well-developed pharinx and suckers, testes in tandem, vitellarium extending from the forebody at various levels to the posterior end of the body, with vitelline follicles in two lateral fields anteriorly but confluent posteriorly (Caired and Bogéa 2005).

The genus *Allocreadium* has been speculated to have originated in southern Asia, spread into Eurasia, then North America, and to some extent into Africa, with African species having affinities to Indian taxa (Thomas 1957, Mantier 1963). Recently, species have also been described from South America (Shimazu et al. 2000, Flores et al. 2004). All species of the genus are strictly from freshwater environments (Manter 1963, El-Naffar 1986), and no species have been recorded from more than one continent. This indicates that the evolution and spread of species of this genus may be useful in indicating intercontinental connections (Manter 1963). Delineation among species of the genus is based on adult morphology (i.e., sucker size, ovary position, vitellarium distribution, oesophagus length, pharynx size, genital pore position, extent of intertesticular space, and host range) (Thomas 1957, Saoud et al. 1974).

Systematics of the genus has been problematic due to taxonomy being based predominantly on morphometry and a lack of genetic studies (Vainutis 2020). It would appear that a high level of intraspecific variability exists among species of this genus, which has resulted in many species being relegated to synonymy (see Peters 1957, Kajaki 1969). Thomas (1957) accepted 30 species, whereas...
Peters (1957) in a review based on morphological features of cercariae retained 16 of the 31 species described at the time. In contrast, Saoud et al. (1974) accepted 45 species. Currently, the literature on species of the genus *Allocreadium* reveals large species diversity (e.g. WoRMS 2020), mostly described from Asia, Europe, Africa and the Americas (Vainutis 2020).

Eight species were described from Africa: *Allocreadium voltanum* Thomas, 1957; *Allocreadium indistinctum* Baer, 1959; *Allocreadium mazoense* Beverley-Burton, 1962; *Allocreadium ghanense* Fischthal et Thomas, 1972; *Allocreadium engraulicypridis* Khalil et Thurston, 1973; *Allocreadium sudanense* Saoud, Abdel-Hand et Ibrahim, 1974; *Allocreadium aswanense* El-Naffar, Saoud et Hassan, 1984; and *Allocreadium bynni* El-Naffar, 1986. These species have been described from hosts in the families Cyprinidae, Alestidae, Clariidae and Mochokidae (Thomas 1957, Baer 1959, Beverley-Burton 1962, Fischthal and Thomas 1972, Khalil and Thurston 1973, Saoud et al. 1974, El-Naffar et al. 1984, El-Naffar 1986). However, while Asian species of the genus are frequently encountered in many regions (Gao et al. 2008), they seem to be quite scarce in Africa (Mbahinzireki 1987). This is supported by the large gaps between some of the most recent records of *Allocreadium* in Africa in 1987 and 2010 (Mbahinzireki 1987, Mwitia and Nkwengulila 2010), with the current record more than a decade later.

In the current study, digeneans belonging to *Allocreadium* were collected from the intestine of *Labeobarbus aeneus* (Burchell) in the Vaal River, South Africa. Trematodes of this group have not been recorded from this host nor locality previously, and were studied using an integrative taxonomic approach involving morphological data (light and scanning electron microscopy) in combination with DNA characterisation. The parasites showed morphometric and molecular traits that set them apart from congeneric taxa described in Africa, as well as in the rest of the world, and as such were designated as a new species. A key for African species of *Allocreadium* is provided, based on the revised and updated key by El-Naffar (1986).

MATERIALS AND METHODS

Sample collection

Smallmouth yellowfish, *Labeobarbus aeneus*, were collected in November 2019 using gill nets and electrofishing approximately 1.5 km downstream of the wall of the Vaal Dam (Fig. 1) in the Vaal River (26.87111°S, 28.11861°E). Fish were euthanised by severing the spinal cord posterior to the skull, the intestinal tract was removed and examined for the presence of parasites. Intestines were opened carefully in saline with fine forceps using a dissection microscope and trematodes removed using a 000 Camel’s hair paintbrush. For morphological study, trematodes were fixed in warm 10% neutral buffered formalin or warm 70% etha-
nol using a temporary mount (coverslip suspended on dollops of petroleum jelly) to prevent specimens from folding. Additionally, some specimens were fixed in 70% ethanol for scanning electron microscopy (SEM) study or 96% ethanol for molecular study at room temperature. Infection parameters were calculated according to Bush et al. (1997). Fish were collected and sacrificed in accordance with permit CPE2-0118 from the Nature Conservation of Gauteng Province Government, South Africa and ethics reference 2016-5-03 from the University of Johannesburg. All institutional and national guidelines for the collection and study of fish were followed.

Light microscopy

For whole mount preparations, ovigerous adult specimens (n = 19) were stained with acetocarmine, differentiated in 0.5% acetic alcohol, dehydrated in a graded ethanol series, cleared in beechnwood creosote, and mounted in Canada balsam (Thatcher 2006). Photomicrographs and measurements were obtained with an Olympus BX53 compound microscope and Olympus Soft Imaging Solutions (Olympus, Münster, Germany), then used for illustrations with CorelDRAW® Graphics Suite X6 software (Corel Corporation, Ottawa, Canada). All measurements pertain to specimens fixed using a temporary mount and are given in micrometres unless otherwise stated, given as the range followed by the mean in parentheses. All measurements (including standard deviation) are given alongside those of all other African Allocreadium spp. as per their original descriptions in Table 1.

Scanning electron microscopy

Seven whole specimens fixed in 70% ethanol were prepared for SEM study by dehydration through a graded ethanol series, followed by a graded series of hexamethyldisilazane (Merck, Darmstadt, Germany) (Nation 1983, Dos Santos et al. 2015). Specimens were dried in a Sanpla dry keeper desiccator cabinet (Kita-Ku, Osaka, Japan) and coated with gold using an Emscope SC500 sputter coater (Quorum Technologies, Newhaven, UK). A Vega 3 LMH scanning electron microscope (Tescan, Brno, Czech Republic) was used to study the specimens at 5–6 kV. Microdissection of dried specimens was also used to study eggs in utero.

Genomic DNA was extracted from five whole trematodes using a NucleoSpin® Tissue Kit (Macherey-Nagel, Düren, Germany) following the manufacturer’s instructions. The D1–D3 region of 28S rDNA was amplified with primers dig12 (5’ – AAG CAT ATC ACT AAG CGG – 3’) (Tkach et al. 2003) and 1500R (5’ – CCG AAT TCG CTA GAG GTG AAA TTC TTG G – 3’) (Olson et al. 2003, Tkach et al. 2003), while 18S rDNA was amplified with primers JLR24 (5’ – CCG AAT TCG CTA GAG GTG AAA TTC TTG G – 3’) and JLR25 (5’ – CCG AAT TCG CTA GAG GTG AAA TTC TTG G – 3’) (Campos et al. 1998). PCR conditions were adjusted from Tkach et al. (2003) for 28S rDNA (initial denaturation 5 minutes, final elongation 10 minute and annealing temperature 52 °C), and Mwita and Nkwengulila (2010) for 18S rDNA (annealing temperature 50 °C). Successful amplification was verified using a 1% agarose gel, impregnated with GelRed® (Biotium Inc., Fremont City, California), and visualised with a UV transilluminator. Sequencing was done according to Avenant-Oldewage et al. (2014) using PCR primers in both directions.

Generated sequence data were aligned, inspected, edited if necessary, and reads merged using Geneious Prime 2020.2.2 (Kearse et al. 2012). To determine the distinctness of the trematodes, obtained sequences were analysed using BLAST (Altschul et al. 1990) and aligned to all previously published Allocreadium 18S and 28S rDNA sequences (and Palaeorchis [Cercariaeum crassus [Wesenburg-Lund, 1934]] downloaded from GenBank (details in Table 2) using MEGA7 (Kumar et al. 2016) and MAFFT (Katoh et al. 2002, Katoh and Standley 2013). Pairwise distances were estimated by uncorrected p-distance with 1,000 bootstrap replicate variance estimation using MEGA7.

Evolutionary history was studied using 28S rDNA, employing both maximum likelihood (ML) and Bayesian inference (BI) methods. For ML analyses, the General Time Reversible model (GTR) (Nei and Kumar 2000) with discrete Gamma distribution (5 categories (+G, parameter = 0.4408)) was selected as the best nucleotide substitution model using MEGA7. This was supported by 1,000 bootstrap replicates. Bayesian inference analyses were performed with BEAST v2.5.0 (Bouckaert et al. 2014) using 10 million Markov chain Monte Carlo (MCMC) generations and the GTR model. Due to the similarity between BI and ML analyses, a single topology based on BI analyses is given with both ML and BI support indicated at respective nodes and rooted with both Acrolichanus auriculatus (Wedl, 1858) (MN750364) and Crepidostomum oschmarini Zhokhov et Pugacheva, 1998 (MH159994) as outgroup.

RESULTS

Allocreadium apokryfi sp. n.

ZooBank number for species: urn:lsid:zoobank.org:act:97514610-93E3-473E-900F-BBB35068F5A8

Description (based on 19 whole mounts of gravid trematodes and 7 whole trematodes examined with SEM), Body elongate 1.75–3.33 mm (2.74 mm) long, 622–1.030 (846) wide, rounded anteriorly, tapering towards posterior, widest at level of ventral sucker (Figs. 2A, 3A). Both suckers well-developed. Oral sucker anterior, ventrally subterminal, subspherical, 212–338 (256) long, 146–355 (254) wide (Figs. 2A, 3B). Ventral sucker subospherical, wider than long, 247–349 (299) long, 254–350 (310) wide (Figs. 2A, 3C). Tegumental papillae present in both oral and ventral suckers. Papillae at oral sucker present inside oral opening, around rim of sucker (in two rows), and more distant from opening (Fig. 3B). The number and placement of papillae inconsistent among specimens. Sensory openings present on anterior rim of oral sucker (Fig. 3B and insert). Ventral sucker with 4 to 6 tongue-like papillae on inner lip, with additional papillae present around ventral sucker of some specimens (Fig. 3C). Tegumental aspiniolae (Figs. 3, 4), transverse striations observed on some specimens, generally more striking in ventral part of forebody (Figs. 3A, 4A), dissipating posteriorly (Figs. 3A, 4B), absent on dorsal body surface (Fig. 4D). Cobblestone-like protrusions intermittently present at high magnification (Fig. 4C). Eye spot pigment not observed. Oral sucker unarmed; mouth opens directly to pharynx (Fig. 3B). Prepharynx absent.

ZooBank number for species: urn:lsid:zoobank.org:act:97514610-93E3-473E-900F-BBB35068F5A8

Description (based on 19 whole mounts of gravid trematodes and 7 whole trematodes examined with SEM), Body elongate 1.75–3.33 mm (2.74 mm) long, 622–1.030 (846) wide, rounded anteriorly, tapering towards posterior, widest at level of ventral sucker (Figs. 2A, 3A). Both suckers well-developed. Oral sucker anterior, ventrally subterminal, subspherical, 212–338 (256) long, 146–355 (254) wide (Figs. 2A, 3B). Ventral sucker subspherical, wider than long, 247–349 (299) long, 254–350 (310) wide (Figs. 2A, 3C). Tegumental papillae present in both oral and ventral suckers. Papillae at oral sucker present inside oral opening, around rim of sucker (in two rows), and more distant from opening (Fig. 3B). The number and placement of papillae inconsistent among specimens. Sensory openings present on anterior rim of oral sucker (Fig. 3B and insert). Ventral sucker with 4 to 6 tongue-like papillae on inner lip, with additional papillae present around ventral sucker of some specimens (Fig. 3C). Tegumental aspiniolae (Figs. 3, 4), transverse striations observed on some specimens, generally more striking in ventral part of forebody (Figs. 3A, 4A), dissipating posteriorly (Figs. 3A, 4B), absent on dorsal body surface (Fig. 4D). Cobblestone-like protrusions intermittently present at high magnification (Fig. 4C). Eye spot pigment not observed. Oral sucker unarmed; mouth opens directly to pharynx (Fig. 3B). Prepharynx absent.
Pharynx muscular, subcylindrical, shorter than oral sucker, 100–166 (130) long, 114–174 (143) wide, leading to long slightly curved oesophagus, 114–724 (488) long. Intestinal bifurcation at level of ventral sucker; intestinal caeca almost uniform in diameter throughout entire length, running into hindbody, terminate close to posterior end of body.

Testes two, oval in dorsoventral view, smooth, tandem, intercaecal, post-equatorial, separated by intertesticular distance 0–82 (26); anterior testes 228–438 (296) long, 201–379 (364) wide; posterior testes larger, 241–592 (364) long, 201–382 (302) wide; post-testicular distance 481–922 (708) (Figs. 2A, B). Cirrus-sac 480–754 (602) long, 137–250 (199) wide, retort-shaped, in body, situated near intestinal bifurcation, distal part of cirrus-sac reaching anterior to mid-level of ventral sucker, mostly medial, occasionally slightly overlapping ventral sucker, intercaecal, enclosing bipartite internal seminal vesicle, anterior part of cylindrical shape, posterior part large, looped, connecting to vas deferens (Fig. 2B, A). Protruding cirrus unarmed, tip blunt and flattened, lacy-like texture on surface of protruded cirrus (Fig. 5A). Pars prostatica elliptical; prostatic gland cells spherical, thin-walled vesicular cells with nuclei. Ejaculatory duct forms widened part prior to opening into genital atrium. Vas deferens bifurcates at level of ovary into two vasa efferentia that connect to respective testes (Fig. 2C).

Ovary approximately oval, smooth in outline, generally smaller than testes, 152–250 (199) long, 161–252 (201) wide. Oviduct runs from anterior edge of ovary, connecting to anterior edge of ovary. Pharynx length (mm) 150–220, 105–120, 150–220, 130–180 (199) long, 161–252 (201) wide.

Vitelline follicles approximately oval, smooth in outline, 0.82–1.22 (1.19±0.25) mm long, 0.91–1.88 (1.56±0.23) mm wide. Oviduct runs from anterior edge of ovary, connecting to anterior edge of ovary. Pharynx length (mm) 150–220, 105–120, 150–220, 130–180 (199) long, 161–252 (201) wide.

Table 1. Measurements (in μm unless otherwise stated) of adult Allocreadium apokryfi sp. n. (values in bold) and all other species of Allocreadium Looss, 1900 described from Africa.

Species	Locality	Reference
A. voltanum	West Africa	Thomas (1957)
A. indistinctum	Congo	Baer (1959)
A. mazoense	Zimbabwe	Beverley-Burton (1962)
A. ghanense	Ghana	Fischthal and Thomas (1972)
A. ovognathus	Uganda	Khalil and Thurston (1973)
A. sudanense	Sudan	Snouf et al. (1974)
A. aswanense	Egypt	El-Naffar et al. (1984)
A. hynni	Egypt	El-Naffar (1986)

Present study	South Africa

Body length (mm)	4.51–7.12	0.875–1.04
Body width	1.44–1.71	390–455
Forebody length	650–980	1.10–1.155
Hindbody length (mm)	1.35–1.68	1.15–1.76
Prepharynx length	26–50	—

Oesophagus length	—	270
Pharynx length	95–135	95–135
Oral sucker length	400–420	400–420
Oral sucker width	300–330	300–330
Ventral sucker length	150–170	150–170
Ventral sucker width	450	450
Anterior testis length	360–470	360–470
Anterior testis width	410–420	410–420
Posterior testis length	320–390	320–390
Posterior testis width	330–390	330–390
Egg length	540–600	540–600
Egg width	50–56	50–56
Seminal receptacle length	30–40	30–40
Seminal receptacle width	55–64	55–64
Cirrus-sac length	150–160	150–160
Cirrus-sac width	201–379	201–379
Ovary length	470–630	470–630
Ovary width	300–330	300–330
Oviduct length	340–380	340–380
Oviduct width	470–592	470–592
Pharynx length	2.04	2.04
Pharynx width	1.35–1.68	1.35–1.68

Oral sucker length	—	—
Oral sucker width	1.27–1.72	1.27–1.72
Oral sucker length	—	—
Oral sucker width	—	—
Ventral sucker length	—	—
Ventral sucker width	—	—
Egg length	—	—
Egg width	—	—
Oviduct length	—	—
Oviduct width	—	—
Ovary length	—	—
Ovary width	—	—
Pharynx length	—	—
Pharynx width	—	—

*— percentage relative to total body length of specimen; †— measurements in parentheses for live specimens.
Table 2. List of allocreacidid trematodes included in the molecular analyses with \textit{Allocreadium apokryfi} sp. n. from South Africa

Species	Host	Accession no.	Reference	Locality
\textit{Allocreadium neotenicum} Peters, 1957	Hydroorus rufifrons (beetle)	JX983204	Bray et al. (2012)	Lake District (South), Cumbria, United Kingdom
\textit{Allocreadium mazoense} Beverly-Burton, 1962	Clarias gariepinus (fish)	DQ813450	Mwita and Nkwengalila (2010)	Lake Victoria (South), Tanzania
\textit{Allocreadium gooti} (Hasegawa et Ozaki, 1926)	Mogurumus anguliculatadatum (fish)	LC215274	Shimazu (2017)	Midori, iiyama City, Nagano Prefecture, Japan
\textit{Allocreadium hemibarbi} Roinman, 1965	Mystus tengara (fish)	KX344072*	Chaudhary et al. (2016)	Fish market, Hastinapur and Meerut, India
\textit{Allocreadium isoporum} (Loos, 1894)	Hemibarbus labeo (fish)	MK21120–3	Vainutis (2020)	Russia, Khankaisky district, Komissarovka River
\textit{Allocreadium khancaiensis} Vainutis, 2020	Barbataula barbatula (fish)	MH143102	Petkevičiūtė et al. (2012)	River Il’d, upper Volga River basin, Khankaisky district, Russia
\textit{Allocreadium lobatum} Wallin, Semoitilus atromaculatus (fish)	Pisidium casertanum (bivalve)	MH143103	Petkevičiūtė et al. (2018)	Lake Oster, Karelia, Russia
\textit{Allocreadium sp.}	Pisidium sp. (bivalve)	GU462125–6	Petkevičiūtė et al. (2010)	Lake Vainutis, Russian Federation, Russia
\textit{Allocreadium sp.}	Phoxinus phoxinus (fish)	MK211209–10	Vainutis (2020)	Russia, lake, Republic of South Africa (IPCAS D-831)
\textit{Allocreadium sp.}	Carassius carassius (fish)	MK258685–7	Unpublished	Lake Vainutis, Russian Federation, Russia
\textit{Allocreadium sp.}	Sphaerium corneum (bivalve)	GU462121**	Petkevičiūtė et al. (2010)	River Belka, Dnieper River basin, Ukraine
\textit{Palaeorchis crassus} (Weissenburg-Lund, 1934)	Pisidium annicum (bivalve)	GU462117–20	Petkevičiūtė et al. (2012)	River Zemena, Lithuania
\textit{Palaeorchis sp.}	Pisidium sp. (bivalve)	JF261144–3	Petkevičiūtė et al. (2012)	Silaisenpuro River, Finland

* Sequences do not fall into the Allocreadium ingroup. More closely related to \textit{Haplorchoides Chen}, 1949; ** Noted as \textit{Crepidostomum sp. ‘larva’} in Petkevičiūtė et al. (2010).

Species	Host	Accession no.	Reference	Locality
\textit{Allocreadium apokryfi} sp. n. from South Africa	Host	Accession no.	Reference	Locality
28S rDNA				
\textit{Haplorchoides} sp.				
18S rDNA				

* Type host: \textit{Labeobarbus aeneus} (Burchell), smallmouth yellowfish (Cypriniformes: Cyprinidae).

* Site of infection: Anterior to middle intestine.

* Infection parameters: prevalence 33% (7 of 21 fish infected); intensity 1–15 (mean 8.3); abundance 2.8.

* Specimens deposited: Holotype – ovarial produced deposited to GenBank, five sequences for 28S rDNA (MW907591–MW907595) and five sequences for 18S rDNA (MW907958–MW907962).

Folia Parasitologica 2021, 68: 013

Page 5 of 16
Fig. 2. *Allocreadium apokryfi* sp. n. from *Labeobarbus aeneus* (Burchell) in South Africa. **A** – ventral view of whole specimen; **B** – termination of genitalia at genital pore; **C** – reproductive organs. **Abbreviations**: at – anterior testis; ed – ejaculatory duct; eg – egg; ev – excretory vesicle; ga – genital atrium; gp – genital pore; mg – Mehlis gland; mt – metraterm; od – oviduct; ov – ovary; pg – prostatic gland cell; pp – pars prostatica; pt – posterior testis; sr – seminal receptacle; ut – uterus; vd – vasa deferens; vd – vitelline duct; ve – vas efferentia; vf – vitelline follicle.
Etymology: The species name is based on the Greek word ἀπόκρυφος (apókryfos; ἀπό [apó, “from”] + κρύπτω [krúptō, “I hide”]), referring to the cryptic nature of the species and that it has remained hidden in a well-studied river for so long.

Remarks
In having an oral sucker without muscular papillae, ceca extending to near the posterior extremity of the body, uterus not extending posteriorly beyond testes, long oesophagus, vitellarium mostly restricted to hindbody, and the ovary not restricted to the anterior third of the body (Caira and Bogéa 2005), specimens of the present study are assigned to the genus Allocreadium. Allocreadium spp. previously described from Africa (n = 8) are all described based on adult specimens and are similar to Allocreadium apokryfi sp. n. in that the ventral sucker is larger than the oral sucker (see Table 1), with the exception of Allocreadium indistinctum and A. aswanense for which the suckers are nearly equal.

Among African species of Allocreadium, A. apokryfi sp. n. most closely resembles A. aswanense, with both species possessing a vitellarium that extends from the ovary level and the presence of an intertesticular space (El-Naffar et al. 1984). Nevertheless, A. apokryfi sp. n. differs from A. aswanense by having a bipartite internal seminal vesicle (vs. unipartite), a genital pore near the ventral sucker (vs. pharynx), an intestinal bifurcation at the ventral sucker level (vs. anterior to the ventral sucker), a larger ventral than the oral sucker (vs. suckers equal in size) and wider eggs.
The new species and *A. aswanense* further differ in the type host and locality with *A. apokryfi* sp. n. from *L. aeneus* in South Africa, whereas *A. aswanense* is from the Niger barb, *Labeobarbus bynni* (Forsskål), in Egypt. However, the congeneric nature of the hosts of *A. apokryfi* sp. n. and *A. aswanense* may explain their similarity.

Allocreadium apokryfi sp. n. can be distinguished from the remainder of African species of *Allocreadium* by a dorsally bifurcating oesophagus at the level of the ventral sucker instead of anterior to the ventral sucker (Thomas 1957, Fischthal and Thomas 1972, Khalil and Thurston 1973, Saoud et al. 1974, El-Naffar et al. 1984, El-Naffar 1986). Additionally, both *A. sudanense* and *A. indistinctum* possess overlapped testes (Baer 1959, Saoud et al. 1974), whereas *Allocreadium bynni* has oblique testes (El-Naffar 1986), rather than the presence of an intertesticular space in the new species. *Allocreadium voltanum* is the only African species having lobed testes (Thomas 1957), whereas they are rounded and smooth in the new species. In both *Allocreadium ghanense* and *Allocreadium engraulicypri-ridis*, the vitellarium extends deeply into the forebody to the pharynx level, whereas it extends to the ovary level in *A. apokryfi* sp. n. Furthermore, *A. ghanense* possesses a prepharynx and eye spot pigment granules at the pharynx level (Fischthal and Thomas 1972) whereas they are absent in the new species. The genital pore of *A. engraulicypris* opens posterior to the caecal bifurcation rather than more anteriorly as seen in the new species. The genital pore position of *Allocreadium mazoense* is similar to that of *A. apokryfi* sp. n. (Beverley-Burton 1962).

The new species differs from the majority of European, Asian and American species of *Allocreadium* in that the vitellarium extends to the ovary level and not deeply into the forebody towards the pharynx, near the caecal bifurcation or ventral sucker (Odhner 1901, Wallin 1909, Mueller and Van Cleave 1932, Rankin 1937, Peters 1957, Odening 1959, Akhmerov 1960, Rai 1962, Rees 1968, Kakaji 1969, Koval 1972, Fischthal and Nasir 1974, Shimazu et al. 2000, Flores et al. 2004, Shimazu 2016, Vainutis 2020).

The new species also differs from other Asian and Ameri-
can species of *Allocreadium* in that the oesophagus bifurcates at the level of the ventral sucker instead of anterior to the ventral sucker (Pande 1937, Gupta 1956, Rai 1962, Agrawal 1964), and that the testes are round and smooth, not lobed (Wallin 1909, Fischthal and Nasir 1974).

Molecular data analyses

Sequence data for both 18S and 28S rDNA fragments were successfully obtained from all specimens of *A. apokryfi* sp. n. analysed (n = 5). Only a single haplotype was observed for each marker from all individuals, indicating no intraspecific variation in these samples for the designated rDNA fragments. BLAST of the obtained 18S rDNA sequence (904 bp) confirmed the similarity of the specimens to species of *Allocreadium*. Generated 18S rDNA was aligned to two 18S sequences for species of *Allocreadium* from GenBank, producing an alignment of seven sequences consisting of 905 bp, with 849 conserved, 55 variable, and 1 parsimony informative sites. Based on *p*-distances of 18S rDNA, *A. apokryfi* sp. n. is 1.2% different from *Allocreadium neotenicum* Peters, 1957 (JX983204), while it was 9.1% from *A. mazoense* (DQ029327). Using only sequence data for specimens identified to species level, intraspecific distances of 0–0.3% were calculated with interspecific distances of 0.3–6.5%.

Based on the BI topology (Fig. 6) based on analysis of the 28S rDNA alignment, sequences for *A. apokryfi* sp. n. form a distinct clade. This clade is well supported by both BI and ML methods, with branching within the clade being negligible. *Allocreadium apokryfi* sp. n. groups sister to most other species of *Allocreadium*, except for unidentified specimens from Russia (MK258685–7; unpublished), which are basal to the other species of the genus. All taxa included form well supported (> 90%) clades supporting their distinctness, except for *A. lobatum* and *A. neotenicum*, in which only BI support is strong enough for the formation of a clade of the first species and ML support is low (> 65%). However, intraspecific nodes for the genus are well supported only by BI analyses, with most ML nodes having low support. Based on the large distances observed between both the 18S and 28S rDNA haplotypes generated in the current study and published sequence data, and the formation of a distinct clade in Fig. 6, *A. apokryfi* sp. n. represents a species not genetically characterised before.

Updated key to the species of *Allocreadium* from African freshwater fishes

The key is based on the rearrangement of those by El-Naffar et al. (1984) and El-Naffar (1986), using the following additional features: pharynx length, level of the
intestine bifurcation, extent of tegumental spines, and position of the genital pore and cirrus-sac.

1a Testes lobed ... A. voltanum
1b Testes spherical or oval with smooth outline 2
2a Vitellarium extending to the pharyngeal level 3
2b Vitellarium not extending anteriorly beyond the ventral sucker .. 4
3a Cirrus-sac elongate enclosing a bipartite internal seminal vesicle ... A. ghanense
3b Cirrus-sac roughly oval enclosing a unipartite internal seminal vesicle A. engraulicypridis
4a Tegumental spines present anteriorly A. mazoense
4b Tegumental spines absent 5
5a Vitellarium extending only to the anterior testis, the eggs longer than 95 μm A. indistinctum
5b Vitellarium extending to the ovary; eggs shorter than 95 μm .. 6
6a Oesophagus short; intesticular space absent 7
6b Oesophagus long; two testes separated by intesticular space 8
7a Testes symmetrical; ovary immediately posterior to the anterior testis A. sudanense
7b Testes oblique; ovary separated from the anterior testis by a space ... A. bynni
8a Intestinal bifurcation anterior to the ventral sucker; genital pore near the pharynx A. aswanense
8b Intestinal bifurcation at level of the ventral sucker; genital pore near the ventral sucker Allocreadium apokryfi sp. n.
Accession number	Species	p-distance	
MW907591-MW907595	Allocreadium apokryfi sp. n.	-	
2	MK211220-MK211223	Allocreadium hemibarbi	4.7
3	JX977132	Allocreadium neotenicum	4.9
4	MH143104	Allocreadium neotenicum	4.9
5	MH143105	Allocreadium neotenicum	4.9
6	MH143103	Allocreadium neotenicum	4.9
7	KY1513132-KY1513133	Allocreadium neotenicum	5.2
8	EF032693	Allocreadium lobatum	5.1
9	DQ029327	Allocreadium lobatum	6.5
10	LC215274	Allocreadium gotoi	5.0
11	GU462121	Allocreadium sp.	5.3
12	GU462117-GU462120	Palaeorchis crassus*	5.4
13	JF261143	Palaeorchis crassus*	5.4
14	JF261142	Palaeorchis crassus*	5.4
15	JF261141	Palaeorchis crassus*	5.5
16	JF261144	Palaeorchis crassus*	5.6
17	MK258685-MK258687	Allocreadium sp.	5.7
18	MK211209	Allocreadium sp.	5.8
19	MK211210	Allocreadium sp.	5.8
20	MK211211-MK211217, MK211219	Allocreadium khanaesiensis	5.8
21	MK211218	Allocreadium khanaesiensis	5.9
22	MH143102	Allocreadium isopororum	5.8
23	GU462125	Allocreadium isopororum	5.9
24	GU462126	Allocreadium isopororum	5.9
25	MN969626-MN969627	Allocreadium sp.	6.1

* Noted as *Cercariaeum crassum* Wesenberg-Lund, 1934

Table 3. Genetic distance of *Allocreadium apokryfi* sp. n. (values in bold) from other species of *Allocreadium* Loos, 1900 based on 28S rDNA. Sequence divergence (%) based on average uncorrected p-distance below the diagonal, with the number of base differences per sequence above. Intraspécific distances indicated by shaded cells.
DISCUSSION

Taxonomy

The present study increases the number of species of *Allocreadium* recorded from Africa to nine. Globally, more than 100 species of this genus are accepted as biologically distinct (WoRMS 2020). The first key to African species of *Allocreadium* was presented by Saoud et al. (1974) and included five species distinguished by the testis shape, egg size and the structure and extent of the vitellarium. El-Naffar et al. (1984) and El-Naffar (1986) updated the key to include eight nominal species based on the shape and position of the testes, extent of the vitellarium and the oosphagus length. By reworking these keys and adding the information on *Allocreadium apokryfi* sp. n., a new key was produced based on the length of the pharynx, arrangement of tegumental spines and the position of the genital atrium and cirrus-sac. However, a revision of all known African species, including updated morphology and molecular characterisation, may alter the key.

Surface ultrastructure of the new species studied using SEM differed from what has previously been observed for species of *Allocreadium*. Currently, only one other species of the genus, *Allocreadium danjiangense* Gao, Wang, Xi, Yao et Nie, 2008 has been studied using SEM (Gao et al. 2008). Although the tegument of both *A. apokryfi* sp. n. and *A. danjiangense* is smooth, with tegumental striations present, the tegumental striations dissipate posteriorly in *A. apokryfi* sp. n., whereas they become denser and shallower in the posterior part of the body of *A. danjiangense*. Additionally, the protuberant rugae on the dorsal surface, dorsal tubercles and muscular grids around the oral and ventral sucker edges were not observed in *A. apokryfi* sp. n. Tongue-like tubercles were seen in the ventral sucker of the new species but did not occur in a groove. The tortoise shell-like tegumental structure between the oral sucker of *A. danjiangense* was similar to the cooblestone-like tegumental nature of *A. apokryfi* sp. n. Unfortunately, Gao et al. (2008) did not produce any molecular data and thus the differences in surface topology cannot be related to phylogenetic relationships of both taxa. However, the surface ultrastructure of these two allocreaids is far more similar to one another than to other allocreacidid species studied using SEM, such as *Crepidostomum furionis* (Müller, 1780), *Crepidostomum metoeus* (Braun, 1900) and *Crepidostomum oschmarini* in that no tegumental bosses, ciliated papillae or lobes are present (Moravec 2002, Petkevičiūtė et al. 2018).

It would be an interesting future endeavour to determine if the papillae of species of *Allocreadium* can also be separated into different types as observed by Zďářská and Nebesářová (2004) in *C. metoeus* using transmission electron microscopy, although ciliated receptors were absent in *A. apokryfi* sp. n. Interestingly, structures similar to the minute sensory receptors (Moravec 2002) or non-papillate sensory endings (Petkevičiūtė et al. 2018) observed on the dorsal part of the oral sucker in *Crepidostomum* spp. appear to be present in *A. apokryfi* sp. n. and have been noted as possible sensory openings. However, their composition and function need further investigation, including TEM observation. The number and arrangement of the tegumental papillae on the ventral tegument around the oral and ventral suckers of *A. apokryfi* sp. n. will also need further investigation as this was not consistent among the specimens studied here.

The observation of the protruded cirrus of *A. apokryfi* sp. n. is the first of its kind for this genus. The cirrus appears to be far shorter and stouter than that of other allocreaids like *C. oschmarini*. The elevation of the genital pore around the cirrus is similar to that seen by Petkevičiūtė et al. (2018) for *C. oschmarini*, but the cirrus surface in *A. apokryfi* sp. n. is not smooth; it is covered with lace- or sponge-like structures. Whether this feature is characteristic of all species of *Allocreadium* or only the new species will have to be confirmed. The observation of possible sperm at the genital pore opening is also noteworthy and may be the result of interrupted copulation. The further study of these structures may be interesting.

Both 18S and 28S rDNA fragments assessed for the new species support that this species is clearly distinct from all other taxa for which sequence data are available. The distance between the new species for both regions amplified (1.2–9.1% for 18S and 4.7–6.5% for 28S) is large and in the case of 28S rDNA, far higher than the observed intraspecific range of 0–0.3%. It is also possible that the overlap resulting from the high intraspecific distances observed between the two sequences for *A. lobatum* (0.3%) and the low interspecific distances between *A. lobatum* and *Allocreadium neotenicum* (0.2–0.3%) may indicate that these species are synonyms, as has been suggested in earlier work (Bray et al. 2012). This would mean that the intra- and interspecific ranges for 28S rDNA of *Allocreadium* are actually 0–0.3% and 0.8–6.5%, respectively. Additionally, *A. apokryfi* sp. n. forms a well-supported, distinct clade. However, sequence data are currently only available for seven identified species of *Allocreadium*, excluding another four possibly distinct taxa which are not identified, and *Palaeorchis crassus* which falls within the ingroup. Even if all the unidentified species are considered distinct and *P. crassus* is considered a congener, only 12 taxa have representative molecular data, which is strikingly less than the 107 suggested *Allocreadium* spp. on WoRMS (2020).

The low number of taxa for which genetic information is available, the high number of unidentified species for which data are available, the inclusion of *P. crassus* in the *Allocreadium* ingroup, and the low bootstrap support observed at deeper nodes of the produced topology, all indicate that there is still much to be elucidated regarding the phylogeny of this genus. However, the basal placement of the unpublished sequences for an unidentified *Allocreadium* sp. collected in Russia (MK258685–MK258687), with those of *A. apokryfi* sp. n. in the ingroup, may support the speculated origin of the group in the south of the Far East (Manter 1963, Vainutis 2020). Nevertheless, the need for additional molecular study of this group is exemplified by the exclusion of sequence KX344072 (Chaudhary et al. 2016) in the current work. It was designated as *Allocreadium handiai* Pande, 1937 but does not relate to oth-
er 28S rDNA for *Allocreadium* spp. and instead appears to be more closely related to *Haplorchoides* Chen, 1949 (Heterophyidae) when using BLAST. Similarly, sequences GU462111 and GU462116 are designated as *Allocreadium isomorpus* (Looss, 1894) in their respective publication (Petkevičiūtė et al. 2010), but are identified as *Bunodera lucioperca* (Müller, 1776) in GenBank, which is supported by BLAST analyses. This accentuates the need for a more in-depth investigation into the molecular identity of this genus. Other markers (COI mtDNA and ITS rDNA) have also been used for the study of alolecridiids, but all taxa for which data are available have been included in either the 18S or 28S rDNA analyses.

Definitive hosts and specificity

The definitive hosts of these trematodes appear to be mostly species of Actinopterygii (ray-finned fishes), with various groups and families serving as hosts to adults of species of the genus. In Africa, definitive hosts for species of *Allocreadium* have been recorded from four orders: Characiformes (n = 1), Perciformes (n = 1), Siluriformes (n = 3), and Cypriniformes (n = 7) (Thomas 1957, Baer 1959, Beverley-Burton 1962, Fischthal and Thomas 1972, Khalil and Thurston 1973, Saoud et al. 1974, Moravec 1977, Jones 1982, Mashego 1982, El-Naffar et al. 1984, El-Naffar 1986, Mbahinzireki 1987, Mwita and Nkwengulila 2015, Mwita 2014). However, adult *A. neotenicum* has also been collected from beetles in Europe, *Hydroopus rufifrons* (Müller) by Bray et al. (2012) and *Oreodytes sanmarkii* (Sahlberg) by Soldánová et al. (2017), indicating other groups as possible hosts of progenetic stages.

Allocreadium mazoense is one of the few *Allocreadium* spp., and the only species from Africa, which has been recorded from more than one host species (six fish species from three families). Although *A. mazoense* was described from *Clarisas gariepinus* (Burchell), it has been speculated that the Cyprinidae are the true hosts for this species as most recorded hosts are of this family (Mashego 1982). This is supported by the fact that sampling efforts in which the parasites were recorded from cyprinds did not reveal infections in *C. gariepinus* even when the fish was present (Mashego 1982). The spread and identity of *A. mazoense* in Africa may also need to be revised as some of the records may have been misidentified. For example, Jones (1982) examined *A. mazoense* from *Enteromius camptacanthus* (Bleeker) but did not observe anterior tegumental spines. These spines appear to be a key feature of the species, and thus the trematode studied by Jones (1982) may have represented a distinct species. Additionally, Jones (1982) analysed the type material of *A. mazoense* and could not detect the spines noted in the original description. This could indicate a need to use SEM and molecular approaches to solve this riddle.

In contrast to the loose specificity of *A. mazoense*, three species of *Allocreadium* from Africa, *A. bynni*, *A. sudanense* and *A. aswanense*, were described from the same host species (*Labeobarbus bynni*) within the same river system. The identity and host allocation of these three species also require revision. In the description of *A. sudanense* by Saoud et al. (1974), and in later papers (El-Naffar et al. 1984, El-Naffar 1986), the host is noted as *L. bynni*, but in El-Naffar (1986) it is also given as *Bagrus bajad* (Forskål), a catfish referred to as a cyprinid. Additionally, the description of *A. bynni* is accredited to El-Naffar (1970) in El-Naffar et al. (1984) but is then described in El-Naffar (1986) as a new taxon. This may be why *A. bynni* is not mentioned again in other papers, with later publications and online databases not listing the taxon (Khalil and Polling 1997, Kudla et al. 2018, WoRMS 2020). Again, this would be a good opportunity to use modern techniques to determine the distinctness or synonymy of these taxa.

Intermediate hosts in Africa

The intermediate hosts of species of *Allocreadium* in Africa are nearly unknown, with only Mbahinzireki (1987) broaching the topic. The author collected *A. mazoense* from the cichlid *Haplochromis tegeelaari* Greenwood et Barel in Lake Victoria, noting that the host is molluscivorous. Using the feeding and ecology of the host, he inferred the possible life cycle of the trematode. He hinted at a level of host specificity in the system as a second congeneric molluscivore, *Haplochromis ptistes* Greenwood et Barel was not infected. He attributes this to either the level of adaptation of the parasite to the host, or the depth at which the two cichlid species occur, the latter of which may relate to the depth at which infective stages would be encountered. The first of these hypotheses seems unlikely due to the loose host specificity of *A. mazoense* as discussed, meaning that the second scenario is more likely. Mbahinzireki (1987) noted that *Sphaerium* sp. has been recorded as intermediate host of *Allocreadium* spp. previously, and thus the Mwanza Gulf clam (*Sphaerium* sp.) may be the local vector for *A. mazoense*. Unfortunately, the bivalve mollusc diversity and distribution in the Vaal River system are not well known. According to Appleton and Miranda (2015), species of three genera of the Sphaeriidae occur in southern Africa, of which only species of *Pisidium* Pfeiffer appear to occur in the central region of South Africa where the Vaal River system is situated. However, the identification and distribution of the eight species of *Pisidium* and their possible presence in the Vaal River system have not been well studied. Only *Pisidium langleyanum* Melvill et Ponsonby is noted in the reaches of the Vaal River system (De Kock and Wolmarans 2008) and thus may be the prime suspect as an intermediate host for *A. apokyryfi* sp. n. The definitive host, *Labeobarbus aeneus*, is not exclusively molluscivorous, but rather broadly omnivorous (Skelton 2001). However, Skelton (2001) does make specific mention of bivalve molluscs forming a large part of the diet of *L. aeneus*, further supporting that they may be the source of the infection.
Ecology
The parasite fauna of fish in the Vaal River system has been well studied for several decades. Especially the intestinal helminths of *L. aeneus* have been observed for several years from many sites in the system, with no record of trematodes having ever been detected (Bertasso and Avenant-Oldewage 2005). Therefore, the unexpected observation of a new trematode species in *L. aeneus* in the Vaal River is surprising. Three possibilities have been considered in this regard. The first is that the trematodes were introduced into the system with an invasive intermediate or definitive host, but based on our morphometric and molecular data, it would appear that the species does not match an existing taxon from Africa or the rest of the world. Additionally, no known allocreadiid has been recorded as invasive in southern Africa (Smit et al. 2017), nor from the fish or mollusc species which have been introduced to the area. The second scenario is that the range of a native, in-nominate species recently changed due to environmental or anthropogenic activities, but without accurate temporal and spatial data, along with the lack of knowledge on the distribution of molluscs in southern Africa, this is difficult to discuss at this time. The last scenario is that this species is native to the host and locality, but has not been detected before for some reason. Possible reasons may be a very short-lived period in the fish host and that the detection of species of *Allocreadium* is rare, which is supported by the findings of Mbahinzireki (1987), or that the range of the species has been limited to this single locality due to intermediate host populations, ecological factors, or even extinction in other regions. At present, we are unable to decide which of these scenarios are the most likely, but it could be a topic for future investigations to unravel the life cycle of the new species in order to elucidate its origin and transmission.

Acknowledgements. The authors appreciate funding from the University of Johannesburg Faculty and Central Research Committee (AA-O) and the University of Johannesburg Global Excellence and Stature Postdoctoral Fellowship program (QMDS). The National Research Foundation of South Africa is also thanked for its financial support to AA-O grant 115343 and a Postdoctoral Fellowship to BMG grant 120683. The Spectrum Analytical Facility at the University of Johannesburg is thanked for providing infrastructure for acquiring scanning electron micrographs. The authors would also like to express their sincere appreciation to the owners of the property at which collections for the current study took place, Bryan and Julia Webster, for their hospitality.

REFERENCES

Agrawal V. 1964: On some new trematodes from freshwater fishes of Lucknow. Ind. J. Helminthol. 16: 82–99.

Akhermero A.H. 1960: [New trematode species from the River Amur.] Helminthologia 2: 286–294. (In Russian.)

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990: Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

Appleton C., Miranda N. 2015: Molluscs. In: C. Griffiths, J. Day and M. Picker (Eds.), Freshwater Life. A Field Guide to the Plants and Animals of Southern Africa. Penguin Random House South Africa, Cape Town, pp. 124–137.

Avenant-Oldewage A., Le Roux L.E., Mashego S.N., Jansen van Vuuren B. 2014: Paradiplozoon ichthyoxanthon n. sp. (Monogenea: Diplozoidae) from *Labeobarbus aeneus* (Cyprinidae) in the Vaal River, South Africa. J. Helminthol. 88: 166–172.

Baer J.G. 1959: Helminthes parasites. In: J.G. Baer and W. Gerber (Eds.), Exploration des Parcs Nationaux du Congo Bélgique. Imprimerie Hayez, Brussels, 163 pp.

Bertasso A., Avenant-Oldewage A. 2005: Aspects of the ecology of the Asian tapeworm, *Bothriocephalus acheilognathi* Yamaguti, 1934 in yellowfish in the Vaal Dam, South Africa. Onderstepoort J. Vet. Res. 72: 207–217.

Beverley-Burton M. 1962: Some trematodes from *Clarias* spp. in the Rhodesias, including *Allocreadium mazonii* n. sp. and *Eumascenoides bangweulensis* n. sp., and comments on the species of genus *Oriensoreiodrum* Tubingui, 1931. Proc. Helminthol. Soc. Wash. 29: 103–115.

Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C.-H., Avenant-Oldewage A., le Roux L.E., Mashego S.N., Jansen van Vuuren B., Avenant-Oldewage A., Curran S.S., Tkach V.V., Overstreet R.M. 2014: BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10: e1003537.

Bray R.A., Foster G.N., Waeschenbach A., Littlewood D.T.J. 2012: The discovery of progenetic *Allocreadium neoteniscum* Peters, 1957 (Digenea: Allocreadiidae) in water beetles (*Coleoptera: Dytiscidae*) in Great Britain. Zootaxa 3577: 58–70.

Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997: Parasitology meets ecology on its own terms: Margolis et al. re-visited. J. Parasitol. 83: 575–583.

Caia J.N., Bogéa T. 2005: Family Allocreadiidae Looss, 1902. In: A. Jones, R.A. Bray and D.I. Gibson (Eds.), Keys to the Trematoda, Volume 2. CABI, Wallingford and the Natural History Museum, London, pp. 416–436.

Campos A., Cummings M.P., Reeves J.L., Laclette J.P. 1998: Phylogenetic relationships of Platyhelminthes based on 18S rDNA gene sequences. Mol. Phylogenet. Evol. 10: 1–10.

Chaudhary A., Mukut S., Singh H.S. 2016: Molecular characterization of three species belongs to the Allocreadioidea, *Hemiuroidea* and Plagiorchioida (Platyhelminthes: Trematoda) infecting freshwater fishes in India. Helminthologia 53: 378–384.

Curran S.S., Tkach V.V., Overstreet R.M. 2006: A review of *Polylekithum* Arnold, 1934 and its familial affinities using morphological and molecular data, with description of *Polylekithum catalhoulensis* sp. nov. Acta Parasitol. 51: 238–248.

Dos Santos Q.M., Jansen van Vuuren B., Avenant-Oldewage A. 2015: Paradiplozoon vaalense n. sp. (Monogenea: Diplozoidae) from the gills of *moggel*, *Labeo unbratus* (Smith, 1841), in the Vaal River System, South Africa. J. Helminthol. 89: 58–67.

El-Naffar M.K. 1984: Digenetic trematodes of fish in Egypt. Egypt. J. Zool. 21: 71–80.

El-Naffar M.K. 1986: *Allocreadium sp.* n., a trematode parasite from a freshwater fish at Assiut province, A.R. Egypt. Assiut Vet. Med. J. 15: 39–45.

El-Naffar M.K., Saoud M.F., Hassan I.M. 1984: *Allocreadium aswanensis* sp. n., a trematode parasite from a freshwater fish (*Barbus bynni*) from Lake Nasser at Aswan, A.R. Egypt. Assiut Vet. Med. J. 12: 61–65.

Fischthal J.H., Nasir P. 1974: Some digenetic trematodes from freshwater and marine fishes of Venezuela. Norw. J. Zool. 22: 71–80.

Fischthal J.H., Nasir J.D. 1972: Digenetic trematodes of fish from the Volta River drainage system in Ghana prior to the con-
Smit N.J., Malherbe W., Hadfield K.A. 2017: Alien freshwater fish parasites from South Africa: diversity, distribution, status and the way forward. Int. J. Parasitol. Parasites Wildl. 6: 386–401.

Soldánová M., Georgieva S., Roháčová J., Knudsen R., Kuhn J.A., Henriksen E.H., Shaw J.C., Kuriš A.M., Amundsen P.-A., Scholz T., Lafferty K.D., Kostadinova A. 2017: Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int. J. Parasitol. 47: 327–345.

Thatcher V.E. 2006: Amazon Fish Parasites. In: J. Adis, J.R. Arias, G. Rueda-Delgado and K.M. Wantzen (Eds.), Aquatic Biodiversity in Latin America, Second Edition. Pensoft Publishers, Sofia-Moscow, 508 pp.

Thomas J.D. 1957: A new species of the genus Allocreadium (Trematoda: Allocreadiidae) from a freshwater fish, Alestes macrolepidotus, in West Africa. J. W. Afr. Sci. Ass. 3: 1–9.

Tkach V.V., Littlewood D.T.J., Olson P.D., Kinsella J.M., Swiderski Z. 2003: Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Syst. Parasitol. 56: 1–15.

Vainutis K.S. 2020: Allocreadium khankaiensis sp. nov. and Allocreadium hemibarbi Rotman, 1963 (Trematoda: Allocreadiidae) from the Russian Far East: morphological, molecular, and phylogenetic studies. Parasitol. Int. 76: 102102.

Wallin I.E. 1909: A new species of the trematode genus Allocreadium with a revision of the genus and a key to the subfamily Allocreadiidae. Trans. Am. Microsc. Soc. 29: 50–64.

WoRMS Editorial Board 2020: World Register of Marine Species, www.marinespecies.org, 08/2020.

Žďárská Z., Nebesářová, J. 2004: Transmission electron microscopy of presumed sensory receptors in the forebody papillae of Crepidostomum metoecus (Digenea: Allocreadiidae). Folia Parasitol. 51: 27–32.

Cite this article as: Dos Santos Q.M., Gilbert B. M., Avenant-Oldewage A., Dumbo J. C. 2021: Morphological and molecular description of Allocreadium apokryfi sp. n. (Digenea: Allocreadiidae) from native Labeobarbus aeneus (Cyprinidae) in South Africa, including notes on its biology, evolutionary history and an updated key of African Allocreadium. Folia Parasitol. 68: 013.