Prevalence of cryptosporidiosis in animals in Iran: A systematic review and meta-analysis

Mohammad Jokar1, Mohammad Hasan Rabiee2, Saied Bokaie2, Vahid Rahmanian3, Paria Dehesh4, Hamideh Hasannejad2, Kiavash Hushmandi2, Hadi Keshipour2

1Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
2Divisions of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Iran
3Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
4Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, Iran

ABSTRACT

Objective: To review the prevalence of cryptosporidiosis among animal population of Iran.

Methods: Data were systematically gathered from 1 January 2000 to 1 January 2020 in the Islamic Republic of Iran from the following electronic databases: PubMed, Springer, Google Scholar, Science Direct, Scopus, Web of Science, Magiran, and Scientific Information Database (SID). According to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and inclusion criteria, 88 eligible studies were obtained.

Results: The pooled prevalence of cryptosporidiosis using random and fixed effects model according to heterogeneity among animals was as follows: rodents 18.8% (95% CI 12.6%-25.0%), camels 17.1% (95% CI 8.6%-25.7%), cattle 16.8% (95% CI 13.4%-20.1%), goats 14.1% (95% CI 5.2%-23.0%), horses 12.2% (95% CI 8.3%-16.2%), birds 10.5% (95% CI 7.6%-13.4%), sheep 9.9% (95% CI 2.4%-4.9%), cats 8.8% (95% CI 4.8%-12.8%) and dogs 3.7% (95% CI 7.0%-12.8%).

Conclusions: Cryptosporidiosis has been reported and present in a wide range of animals in Iran over the years and has a high prevalence in most of these species.

KEYWORDS: Cryptosporidiosis; Animals; Prevalence; Iran

1. Introduction

Cryptosporidium is one of the zoonotic parasites. It is a genus in the family Cryptosporidiidae, suborder Eimeriorina, order Eucoccidioida, subclass Coccidiasina, class Sporozoasida and phylum Apicomplexa[1]. The protozoan, for first time identified by Tyzzer (1907) in mice and so far nearly 40 valid species and more than 50 genotypes of it has been recognized. This parasite infects a wide range of vertebrates including mammals, birds, amphibians, reptiles and aquatic animals and affects the epithelial cells of their gastrointestinal tract to causes a disease with a wide range of form, from asymptomatic to mild and severe gastrointestinal symptoms[2,3].

Cryptosporidiosis is one of the major causes of diarrheal death in children less than five years old and young animals, especially neonatal of ruminants[4,5]. Furthermore, this infection is life-threatening for immunosuppressed patient, notably HIV-infected people that recent systematic review has shown a high prevalence of cryptosporidiosis in them[6,7]. Various clinical signs of cryptosporidiosis are reported in mammals and birds such as diarrhea, anorexia, lethargy, lower pigmentation, apathy and depression, growth retardation and finally death[8,9].

Cryptosporidiosis in companion animals is asymptomatic but infrequently with concurrent infections, different signs have been reported in horses, cats and dogs[9,10]. The important economic...
losses in ruminants farms are caused by acute diarrhea[9,11]. This infection frequently occurs in reptiles but may be life-threatening for them[12].

Several concerns exist in the global control of cryptosporidiosis: firstly, different transmission routes such as person-to-person, human-animal, foodborne and waterborne transmission; secondly, inefficiency of water disinfectants against Cryptosporidium oocyte; thirdly, the absence of a vaccine and effective treatment[13,14].

The epidemiological aspects of cryptosporidiosis among animals’ populations can be useful for setting control plans. To the best of our knowledge, till now, there is no available knowledge about the pooled prevalence of Cryptosporidium infection in animals’ populations of Iran. Accordingly, we conducted a systematic review and meta-analysis to establish the overall prevalence of cryptosporidiosis in animals in Iran.

2. Materials and methods

This study was designed as suggested via the preferred reporting items for systematic reviews and meta-analyses (PRISMA)[15].

2.1. Bibliographic search strategy

The relevant studies have been identified from 1 January 2000 to 1 January 2020 from six English sources i.e. PubMed, Springer, Google Scholar, Science Direct, Scopus, and Web of Science and two Persian databases namely Magiran, and Scientific Information Database (SID). The search was implemented using the MeSH terms as follows: “Cryptosporidium” or “cryptosporidiosis” or “intestinal parasite” and “Iran” in combination and in both Persian (Farsi) and English. In addition, the datasets option of “related articles” and the reference of the studies was checked to prevent missing data. The selection process of studies is in view in the PRISMA flowchart as shown in Figure 1.

2.2. Inclusion and exclusion criteria

The title and abstract of studies related to animal cryptosporidiosis in Iran were screened. After eliminating duplicates, the full text of papers was reviewed by two reviewers independently for assessing the quality of the articles. Differences of opinion between the specialists were resolved by a third person independently and consensus.

Inclusion criteria for our study were: (1) studies conducted on animal’s population of Iran; (2) studies that reported prevalence of cryptosporidiosis; (3) studies which diagnosed cryptosporidiosis based on microscopic method.

Exclusion criteria included the following: (1) any studies whose type was non-cross-sectional (experimentally, case report and etc.); (2) studies not performed on Iran; (3) studies not performed on animal populations; (4) studies not reported prevalence of cryptosporidiosis; (5) studies not detected Cryptosporidium based on microscopic methods; (6) studies in which the method of detecting Cryptosporidium was ambiguous.
2.3. Data collection

An Excel data extraction form was used to collect the following data from eligible studies: first author, time of publication, time of study, place of study, animal species, diagnostic tests, sample size, total Cryptosporidium-positive number, prevalence, age group, gender, type of habitat or farming system, absence or presence of diarrheal sign and season (Table 1).

2.4. Statistical analysis

The pooled prevalence and 95% confidence intervals (CI) were estimated using random and fixed-effects models. The heterogeneity was expected in advance, and statistical methods, Cochran’s Q test and I² index were used to assess the heterogeneity among the studies[16]. If I² index > 50% and Cochran’s Q test P-value < 0.1, we would choose the random effect model for estimation[17]. Proportions of individual studies, overall prevalence and the heterogeneity among studies were presented by forest plots.

The publication bias of studies was assessed by Egger’s test[18]. To visualize the cattle and dogs cryptosporidiosis in Iran, we used the Arc GIS 10.3 software (https://www.arcgis.com) to map the distribution of prevalence in different provinces. The meta-analysis was performed with the trial version of StatDirect statistical software available from public domain i.e. http://statdirects.com.

3. Results

3.1. Search results and eligibility studies

In this study, totally 1 586 articles were found by searching the entire databases; by systematic review and meta-analysis by considering the inclusion criteria. Among them, 548 articles were removed due to duplication and 854 articles were removed due to non-compliance with inclusion and exclusion criteria in caption and abstract. Also, 96 articles were removed due to non-compliance with inclusion and exclusion criteria in full text. Eventually 88 studies have met the evaluation criteria of this study (Figure 1).

3.2. Characteristics of the eligible studies

Among the 88 eligible studies, 22 were published before 2010 and others published after 2010. Among the studies, 78 studies determined prevalence only in one species of animal, while 10 studies determined the prevalence in more than one species. In the other words, studies determined prevalence are as follows: 30 among cattle, 19 among dogs, 16 among birds 10 among rodent, 7 among sheep, 6 among camels, 5 among horses, 3 among cat, 3 among goats, 2 among buffalos, 1 among fish and 1 among mules. Also, 86 studies reported prevalence only in one province while 2 studies reported prevalence in more than one province (Table 1).

3.3. Prevalence of cryptosporidiosis

3.3.1. Prevalence of cryptosporidiosis in cattle

A total number of 8 684 cattle were examined for cryptosporidiosis in different geographical locations in Iran and 1 316 cases were detected positive using microscopic method presented (Table 2). Overall, the pooled prevalence of cryptosporidiosis using random-effects meta-analysis among cattle was estimated at 16.8% (95% CI 13.4%-20.1%) (Table 2 and Figure 2). There was a high degree of heterogeneity in the prevalence estimates between different studies. It was observed Q statistic=958.45 (df=29), P<0.01, and I²=97.0% (Table 2). The pooled prevalence of cryptosporidiosis in cattle was higher in summer, diarrheal patients, bulls and cattle less than 1 year old but none of them had a significant difference (Table 3). In addition, a schematic map of cryptosporidiosis distribution in cattle was made based on studies conducted in the provinces of Iran (Figure 3).

3.3.2. Prevalence of cryptosporidiosis in dogs

A total number of 4 107 dogs were examined for cryptosporidiosis in different geographical locations in Iran and 183 cases were detected positive using microscopic method as presented (Table 2). Overall, the pooled prevalence of cryptosporidiosis using random-effects meta-analysis among dogs was estimated at 3.7% (95% CI 2.4%-4.9%) (Table 2 and Figure 2). There was a high degree of heterogeneity in the prevalence estimates between different studies was observed Q statistic=141.01 (df=19), P<0.01, and I²=86.5% (Table 2). The pooled prevalence of cryptosporidiosis in dogs was higher in fall, stray dogs, female and dog’s upper than 1 year old but none of them had a significant difference (Table 3). In addition, a schematic map of cryptosporidiosis distribution in dogs was made based on studies conducted in the provinces of Iran (Figure 3).

3.3.3. Prevalence of cryptosporidiosis in cats

A total number of 187 cats were examined for cryptosporidiosis in different geographical locations in Iran and 19 cases were detected positive using microscopic method as presented (Table 2). The results show that there are 3 studies estimate the prevalence of Cryptosporidium in 187 stray cats and the pooled prevalence was 8.8% (95% CI 4.8%-12.8%) using the fixed-effect model (Table 2 and Figure 2). There was an intermediate degree of heterogeneity in the prevalence estimates between different studies. It was observed Q statistic=3.39 (df=2), P=0.184, and I²=41.0% (Table 2).
Table 1. Studies included in this systematic review and meta-analysis.

No.	Authors	Year of publication	Province	Population	Diagnostic test	Sample size	Positive number	Ref.
1	Khanzadeh-Karvigh, A	2017	East Azerbaijan and West Azerbaijan	Dog	Microscopic	300	3	[19]
2	Larki, S	2018	Khuzestan	Bird	Microscopic	41	11	[20]
3	Lotfollahzadeh, S	2004	Mazandaran	Cattle	Microscopic	93	21	[21]
4	Radfar, MH	2011	South Khorasan	Bird	Microscopic	102	3	[22]
5	Azizi, HR	2008	Chaharmahal Bakhtiarri	Cattle	Microscopic	400	72	[23]
6	Tavassoli, M	2007	West Azerbaijan	Horse	Microscopic	221	35	[24]
7	Keyvanloo Shahrestanakey, R	2017	Razavi Khorasan	Sheep	Microscopic	300	9	[25]
8	Ghadrdan Mashhadi, A	2013	Razavi Khorasan	Horse	Microscopic	100	18	[26]
9	Borji, H	2014	Razavi Khorasan	Rodent	Microscopic	100	0	[27]
10	Radfar, MH	2011	South Khorasan	Bird	Microscopic	102	3	[28]
11	Azizi, HR	2008	Mazandaran	Cattle	Microscopic	93	2	[29]
12	Tavassoli, M	2007	West Azerbaijan	Horse	Microscopic	221	35	[30]
13	Mosallanejad, B	2010	Khuzestan	Dog	Microscopic	93	2	[31]
14	Radfar, MH	2013	Kerman	Camel	Microscopic	85	2	[32]
15	Mirzaei, M	2013	Kerman	Dog	Microscopic	100	3	[33]
16	Ranjbar-Bahadori, Sh	2011	Mazandaran	Cattle	Microscopic	150	11	[34]
17	Farsi Harandi, M	2008	Kerman	Goat and Sheep	Microscopic	774	120	[35]
18	Mirirzi, Y	2014	West Azerbaijan	Cattle	Microscopic	246	55	[36]
19	Heidarnegadi, SM	2012	Khuzestan	Cattle, Sheep and Bird	Microscopic	125	64	[37]
20	Mirzaghami, M	2016	Tehran	Cat, Bird and Rodent	Microscopic	320	45	[38]
21	Mirzaei, M	2009	Kerman	Dog	Microscopic	350	4	[39]
22	Pestechian, N	2012	Zanjan	Dog	Microscopic	450	2	[40]
23	Nourmohammadzadeh, F	2010	East Azerbaijan	Cattle	Microscopic	500	207	[41]
24	Mirzaei, M	2012	Kerman	Dog	Microscopic	548	11	[42]
25	Bahrami, A	2011	Ilam	Cat and Dog	Microscopic	149	11	[43]
26	Fotouhi Ardekani, R	2008	Kerman	Cattle	Microscopic	412	78	[44]
27	Behzadi, MA	2009	Fars	Bird	Microscopic	75	21	[45]
28	Rasuli, S	2012	West Azerbaijan	Horse and Mule	Microscopic	142	15	[46]
29	Badparva, E	2015	Khoram-Abad	Bird	Microscopic	451	33	[47]
30	Haghbin Nazarpak H	2011	Mazandaran	Bird	Microscopic	300	39	[48]
31	Tavassoli, M	2010	West Azerbaijan	Dog	Microscopic	206	6	[49]
32	Mohaghegh, MA	2018	Isfahan	Rodent	Microscopic	60	9	[50]
33	Nematiolahi, A	2016	-	Fish	Microscopic	100	17	[51]
34	Arzamanik, K	2016	North Khorasan	Dog	Microscopic	32	1	[52]
35	Ranjbar-Bahadori, Sh	2013	South Khorasan	Cattle	Microscopic	170	19	[53]
36	Hamedi, Y	2003	Hormozgan	Rodent	Microscopic	63	11	[54]
37	Ghargozloou, MJ	2006	Mazandaran	Bird	Microscopic	60	17	[55]
38	Dalimi, AH	2002	Tehran	Dog	Microscopic	305	5	[56]
39	Oskouei, MH	2014	Isfahan	Cattle	Microscopic	217	8	[57]
40	Fallahi, E	2008	East Azerbaijan	Cattle	Microscopic	104	11	[58]
41	Saki, J	2018	Khuzestan	Cattle	Microscopic	240	5	[59]
42	Saki, J	2016	Khuzestan	Rodent	Microscopic	100	3	[60]
43	Hamidnejat, H	2014	Lorestan	Bird	Microscopic	100	8	[61]
44	Jalas, M	2018	Khuzestan	Bird	Microscopic	369	25	[62]
45	Dalimi, A	2015	Tehran	Cattle	Microscopic	940	23	[63]
46	Mohammadighalehbin, B	2008	Ardabili	Cattle	Microscopic	107	19	[64]
47	Ranjbar, R	2018	Isfahan	Dog	Microscopic	140	3	[65]
48	Tavalla, M	2017	Khuzestan	Dog	Microscopic	350	28	[66]
49	Mohebali, M	2017	Ardabili	Rodent	Microscopic	240	1	[67]
50	Keshavarz, A	2009	Quzvin	Cattle	Microscopic	272	51	[68]
51	Asadpour, M	2013	Razavi Khorasan	Cattle	Microscopic	300	85	[69]
52	Hassanpour, A	2011	East Azerbaijan	Horse	Microscopic	87	6	[70]
53	Davoudi, J	2010	East Azerbaijan	Cattle and Rodent	Microscopic	100	47	[71]
54	Borji, H	2009	Razavi Khorasan	Camel	Microscopic	306	57	[72]
55	Razavi, SM	2009	Isfahan	Camel	Microscopic	103	39	[73]
56	Gharekhani, J	2014	Hamadan, Isfahan, Yazd, Fars, Bushehr and Mazandaran	Sheep	Microscopic	1749	198	[74]
57	Nazifi, S	2010	Hormozgan	Camel	Microscopic	65	11	[75]
58	Ranjbar, R	2017	Isfahan	Cattle	Microscopic	400	64	[76]
3.3.4. Prevalence of cryptosporidiosis in sheep

A total number of 3,901 sheep were examined for cryptosporidiosis in different geographical locations in Iran and 395 cases were detected positive using microscopic method as presented (Table 2). Overall, the pooled prevalence of cryptosporidiosis using random-effects meta-analysis among sheep was estimated at 9.9% (95% CI 7.0%-12.8%) (Table 2 and Figure 4). There was a high degree of heterogeneity in the prevalence estimates between different studies. It was observed that Q statistic=114.90 (df=11), P<0.01, and I²=90.4% (Table 2). The pooled prevalence of cryptosporidiosis in sheep was higher in male and sheep under 1 year old but none of them had a significant difference (Table 3).

3.3.5. Prevalence of cryptosporidiosis in goats

A total number of 1,030 goats were examined for cryptosporidiosis in different geographical locations in Iran and 147 cases were detected positive using microscopic method as...
presented (Table 2). The results show that there are 3 studies estimate the prevalence of Cryptosporidium in goats and the pooled prevalence using the random effects model of 14.1% (95% CI 5.2%-23.0%) (Table 2 and Figure 4). There was a high degree of heterogeneity in the prevalence estimates between different studies. It was observed Q statistic=37.87 ($df=2$), $P<0.01$, and $I^2=94.7\%$ (Table 2).

3.3.6. Prevalence of cryptosporidiosis in birds

A total number of 3 352 birds were examined for cryptosporidiosis in different geographical locations in Iran and 307 cases were detected positive using microscopic method as presented (Table 2). Overall, the pooled prevalence of cryptosporidiosis, using random-effects meta-analysis among birds was estimated at 10.5% (95% CI 7.6%-13.4%) (Table 2 and Figure 4). There was a high degree of heterogeneity in the prevalence estimates between different studies. It was observed Q statistic=165.28 ($df=15$), $P<0.01$, and $I^2=90.9\%$ (Table 2). The pooled prevalence of cryptosporidiosis in birds was higher in commercial farming system but there was no significant difference (Table 3).

3.3.7. Prevalence of cryptosporidiosis in horses

A total number of 636 horses were examined for cryptosporidiosis in different geographical locations in Iran and 85 cases were detected positive using Microscopic method as presented (Table 2). Overall, the pooled prevalence of cryptosporidiosis using random-effects meta-analysis among horses was estimated at 12.2% (95% CI 8.3%-16.2%) (Table 2 and Figure 5). There was an intermediate degree of heterogeneity in the prevalence estimates between different studies. It was observed Q statistic=9.49 ($df=4$), $P=0.05$, and $I^2=57.9\%$ (Table 2). The pooled prevalence of cryptosporidiosis in horses was higher in female horses but there was no significant difference (Table 3).
3.3.8. Prevalence of cryptosporidiosis in rodents

A total number of 976 rodents were examined for cryptosporidiosis in different geographical locations in Iran and 133 cases were detected positive using microscopic method as presented (Table 2). Overall, the pooled prevalence of cryptosporidiosis using random-effects meta-analysis among rodents was estimated at 18.8% (95% CI 12.6%-25.0%) (Table 2 and Figure 5). There was a high degree of heterogeneity in the prevalence estimates between different studies. It was observed $Q_{statistic}=384.85$ ($df=9$), $P<0.01$, and $I^2=97.7$% (Table 2).

Table 3. Demographic factors associated with positivity of Cryptosporidium in the Iranian animal population.

Species	Factors Classification	Sample size	Total number positive	Pooled prevalence (%)	95% Confidence interval	Heterogeneity (Q)	Univariate meta-regression (P-value)
Cattle	Gender Male	794	140	18.7	9.3-28.1	75.80	0.47
	Female	1 134	171	14.5	5.2-23.7	147.12	
	Age Above 1 year old	269	40	14.9	10.6-19.1	0.01	
	Under 1 year old	3 407	673	20.2	12.7-27.6	449.58	
	Season Spring	991	125	12.6	6.3-18.9	92.79	
	Summer	549	166	26.9	6.0-47.7	134.24	
	Fall	325	77	21.7	0-46.4	94.30	
	Winter	325	56	15.8	0-32.9	50.74	
	Diarrheal condition	Diarrheal	2 019	586	26.5	18.9-34.1	295.24
	Non-Diarrheal	3 011	392	13.8	9.5-18.2	215.76	
Sheep	Gender Male	679	81	11.3	6.1-16.5	30.72	0.60
	Female	1 370	126	9.2	5.2-13.2	55.40	
	Age Above 1 year old	1 194	107	9.1	3.7-14.5	81.47	
	Under 1 year old	1 705	187	13.0	8.1-17.9	66.27	
Horse	Gender Male	161	26	15.6	10.0-21.2	1.13	0.82
	Female	160	27	16.3	10.6-22.1	1.27	
Camel	Gender Male	290	63	27.3	11.0-43.5	6.36	0.84
	Female	113	32	29.9	12.3-47.6	3.92	
	Age Above 5 years old	263	62	28.2	12.9-43.4	5.58	0.61
	Under 5 years old	310	55	21.0	9.3-32.6	12.44	
Cat	Type of habitat Stray	187	19	8.8	4.8-12.8	3.39	
	Home	0	0	0	-	-	
Dog	Gender Male	1 086	36	2.6	1.0-4.1	16.22	0.86
	Female	780	24	2.9	0.9-4.8	9.89	
	Age Above 1 year old	1 109	35	2.6	0.5-4.6	22.49	0.92
	Under 1 year old	551	19	2.4	1.1-3.7	6.58	
	Season Spring	349	5	1.3	0.1-2.6	0.81	
	Summer	284	2	1.6	0-3.7	0	0.91
	Fall	361	13	3.8	1.7-5.9	0.67	
	Winter	281	2	1.0	0-2.4	0.30	
	Type of habitat Home	2 627	98	3.4	2.0-4.9	51.53	0.60
	Stray	1 480	85	5.2	2.5-7.9	82.97	
Birds	Farming system Commercial	1 715	130	13.5	4.1-22.8	135.48	0.71
	Native	2 394	163	7.7	4.8-10.6	70.44	

Figure 3. Prevalence of cryptosporidiosis among cattle (A) and dogs (B) in different provinces of Iran.
Prevalence of cryptosporidiosis in camel

A total number of 1,029 camels were examined for cryptosporidiosis in different geographical locations in Iran and 187 cases were detected positive using microscopic method as presented (Table 2). Overall, the pooled prevalence of cryptosporidiosis using random-effects meta-analysis among camels was estimated at 17.1% (95% CI 8.6%-25.7%) (Table 2 and Figure 5). There was a high degree of heterogeneity in the prevalence estimates between different studies. It was observed Q statistic=87.27 ($df=5$), $P<0.01$, and $I^2=94.3\%$ (Table 2). The pooled prevalence of cryptosporidiosis in camels was higher in female and camels upper than 5 years old but none of them had a significant difference (Table 3).

Prevalence of cryptosporidiosis in other animals

Two studies reported the prevalence in buffalo was 45% and 2% respectively. One study reported the prevalence in mules was 12.5% and one study reported prevalence in fish was 17% (Table 2).

Publication bias

Egger tests were applied to check the presence of publication bias. The Egger’s test in cattle, sheep, goats, dogs, birds, and rodents, indicated a significant publication bias of studies (Table 2).

Discussion

In this systematic review and meta-analysis, we reviewed the prevalence of cryptosporidiosis among all animals’ species in Iran. To detect cryptosporidiosis, there are microscopic, serological, and molecular methods, each with its own characteristics. However, acid-fast staining of fecal smear for displaying the Cryptosporidium
Cryptosporidium spp. has been reported in different parts of the world, as well as the transmission of this pathogen by rodents to humans has been proven[111]. The infection of different rodent species by Cryptosporidium spp. has been reported in different parts of the world, as well as the transmission of this pathogen by rodents to humans has been proven[111,112]. Besides, in recent decades, the rapid development of industry and agriculture, climate change has increased the probability of humans-rodents contact[113]. Therefore, considering that the estimated pooled prevalence of rodent’s cryptosporidiosis was high in Iran and given presence of various species of rodent in different parts of the country, it is essential to pay more attention to it among animals because of its economic and public health importance.

As we showed, rodents have the highest pooled prevalence of cryptosporidiosis compared to other animals of Iran. Indeed, the pooled prevalence of cryptosporidiosis in rodents using the microscopic detection method was estimated at 18.8% in the present study. A global meta-analysis estimated the pooled prevalence of cryptosporidiosis using the microscopic method was 14% in rodents[111]. The infection of different rodent species by Cryptosporidium spp. has been reported in different parts of the world, as well as the transmission of this pathogen by rodents to humans has been proven[111,112]. Besides, in recent decades, the rapid development of industry and agriculture, climate change has increased the probability of humans-rodents contact[113]. Therefore, considering that the estimated pooled prevalence of rodent’s cryptosporidiosis was high in Iran and given presence of various species of rodent in different parts of the country, it is essential to...
control rodent’s population and accessibility of them to water and food supply for reaching one health condition. In addition to rodents, this study indicated that prevalence of cryptosporidiosis among other mentioned animals was remarkable. For instance, the prevalence among camels, cattle, goats, horses, birds and sheep was as follows: 17.1%, 16.8%, 14.1%, 12.2%, 10.5% and 9.9%. Although cryptosporidiosis is important in all of these animals, it is more important in cattle, and most studies published on animal cryptosporidiosis in different countries have been conducted on bovine cryptosporidiosis. So far, different meta-analyses have determined pooled prevalence of cryptosporidiosis among cattle in different regions. For instance, a meta-analysis study in China estimated the pooled prevalence of cryptosporidiosis in cattle till 2019, regardless of the type of detection method, was 17%, and with the microscopic method being 16.5%[114]. Also, other meta-analyses conducted in Nigeria and Colombia estimated the pooled prevalence of this infection in cattle, regardless of the diagnostic method, was 26.1% and 21%, respectively[115,116]. Although the disease rarely causes death in cattle and calves, it can cause great economic losses to the industry due to diarrhea, dehydration and weight loss[117]. Furthermore, the bovine population is one of the most important animal reservoirs in disease transmission to humans by shedding oocytes and consequently contaminating of water and food supply[118]. Therefore, given high pooled prevalence among cattle in Iran, it is important to control the disease in cattle population to prevent Cryptosporidium transmission to other hosts and especially human and also to reduce the economic losses due to its occurrence.

The lowest pooled prevalence of cryptosporidiosis among animals of Iran was in cats and dogs population with 8.8% and 3.7% respectively. A global meta-analysis in the dog’s population estimated the pooled prevalence of cryptosporidiosis (using the microscopic method) was 8% and the range of pooled prevalence was from 0% to 13% in different parts of the world[119]. Furthermore, the meta-analysis study in Colombia estimated the pooled prevalence of Cryptosporidium infection in dogs and cats was 17.4% and 13%, respectively[116]. The much lower prevalence of this disease in dogs in this study, as well as to some extent in similar studies, could be due to the fact that the majority of dogs studied are domestic dogs and because of the greater attention of their owners, the possibility of infection in them is less. However, various studies have proven the role of dogs and cats in transmitting the disease to humans. Besides, dogs and cats are known as the most important human friends and keeping dogs and cats at home has increased in the last decade in Iran[120]. Accordingly, observing hygienic practices for veterinarians and providing instruction for animal lovers before preparing dogs and cats can help control this infectious zoonotic aspect.

The strengths of this study include the large total sample size, the comprehensive literature search in eight international and Iranian databases, and vast population study (all animal species). However, this study has some limitations and the results presented here should be interpreted with regard to these limitations. Limitations include some reports with low sample size, high heterogeneity, and the possibility that our search strategy missed some studies.

In conclusion, the results of this systematic review and meta-analysis showed that cryptosporidiosis has been reported and present in a wide range of animals in Iran over the years and has a high prevalence in most of these species. Given that this disease causes economic and health damage, there is a need for health officials, veterinarians and livestock owners to try to improve the breeding environment and life of animals to prevent disease in them, not only to protect animal health and prevent economic losses in the case of farmed animals, but also to protect human health.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Authors’ contributions

M.H.R, S.B and V.R participated in study design. M.J, P.D, H.H, K.H and H.K did literature mining and data acquisition. MJ and M.H.R drafted the manuscript. Review and editing of the manuscript were done by M.H.R, M.J, S.B and V.R. All authors approved the final draft for publication.

References

[1] Nader JL, Mathers TC, Ward BJ, Pachelbat JA, Swain MT, Robinson G, et al. Evolutionary genomics of anthroponosis in Cryptosporidium. Nat Microbiol 2019; 4(5): 826-836.
[2] Tzipori S, Widmer G. A hundred-year retrospective on cryptosporidiosis. Trends Parasitol 2008; 24(4): 184-189.
[3] Ryan U, Fayer R, Xiao L. Cryptosporidium species in humans and animals: Current understanding and research needs. Parasitology 2014; 141(13): 1667-1685.
[4] Khalil IA, Troeger C, Rao PC, Blacker BF, Brown A, Brewer TG, et al. Morbidity, mortality, and long-term consequences associated with diarrhoea from Cryptosporidium infection in children younger than 5 years: A meta-analyses study. Lancet Glob Heal 2018; 6(7): e758-e768.
[5] Thomson S, Hamilton CA, Hope JC, Katzer F, Mabbott NA, Morrison...
LI, et al. Bovine cryptosporidiosis: Impact, host-parasite interaction and control strategies. *Vet Res* 2017; **48**(1): 42.

[6] Marcos LA, Gotuzzo E. Intestinal protozoan infections in the immunocompromised host. *Curr Opin Infect Dis* 2013; **26**(4): 295-301.

[7] Wang ZD, Liu Q, Liu HH, Li S, Zhang L, Zhao YK, et al. Prevalence of Cryptosporidium, microsporidia and Isospora infection in HIV-infected people: A global systematic review and meta-analysis. *Parasit Vectors* 2018; **11**(1): 28.

[8] Alvarez-Pellitero P, Sitjà-Bobadilla A. *Cryptosporidium molnari* n. sp. (Apicomplexa: Cryptosporidiidae) infecting two marine fish species, *Sparus aurata* L. and *Dicentrarchus labrax* L. *Int J Parasitol* 2002; **32**(8): 1007-1021.

[9] Santín M. Clinical and subclinical infections with *Cryptosporidium* in animals. *NZ Vet J* 2013; **61**(1): 1-10.

[10] Thompson RCA, Olson ME, Zha G, Enomoto S, Abrahamsen MS, Hijawi NS. *Cryptosporidium* and cryptosporidiosis. *Adv Parasitol* 2005; **59**: 77-158. doi: 10.1016/S0065-308X(05)59002-X.

[11] De Graaf DC, Vanopdenbosch E, Ortega-Mora LM, Abbassi H, Peeters JE. A review of the importance of cryptosporidiosis in farm animals. *Int J Parasitol* 1999; **29**(8): 1269-1287.

[12] Deming C, Greiner E, Uhl EW. Prevalence of *Cryptosporidium* infection and characteristics of oocyst shedding in a breeding colony of leopard geckos (*Eublepharis macularius*). *J Zoo Wildl Med* 2008; **39**(4): 600-607.

[13] Meinhardt PL, Casemore DP, Miller KB. Epidemiologic aspects of human cryptosporidiosis and the role of waterborne transmission. *Epidemiol Rev* 1996; **18**(2): 118-136.

[14] Ryan U, Zahedi A, Paparini A. *Cryptosporidium* in humans and animals-a one health approach to prophylaxis. *Parasite Immunol* 2016; **38**(9): 535-547.

[15] Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. *PLoS Med* 2009; **6**(7): e1000100. doi: 10.1371/journal.pmed.1000100.

[16] Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *Br Med J* 2003; **327**(7414): 557-560.

[17] DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. *Contemp Clin Trials* 2015; **45**: 139-145.

[18] Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *Br Med J* 1997; **315**(709): 629-634.

[19] Khandadeh-Karvigh A, Yakhchali M, Hadian M. A comparative study on Cryptosporidium infection in household and stray dogs in Urmia and Tabriz municipalities, Iran. *Vet Res Biol Prod* 2017; **30**(4): 100-106.

[20] Larki S, Alborzi A, Chegini R, Amiri R. A preliminary survey on gastrointestinal parasites of domestic ducks in Ahvaz, Southwest Iran. *Iran J Parasitol* 2018; **13**(1): 137-144.

[21] Lotfollahzadeh S, Ziae Daroonkolai N, Zahraei Salehi T, Poorbaksh SA, Mohkber Dezfooli MR, Afshari GR. A study on the presence of *Escherichia coli*, coccidia spp. and *Cryptosporidium* spp. in faecal samples of neonatal diarrhoeic calves in Ghaemshahr and Babol and antibiotic sensitivity of isolates. *J Fac Vet Med Univ Tehran* 2004; **59**(2): Ar131-Ar136.

[22] Radfar MH, Fathi S, Asl EN, Dehaghi MM, Seghinsara HR. A survey of parasites of domestic pigeons (*Columba livia domestica*) in South Khorasan, Iran. *Vet Res* 2011; **4**(1): 18-23.

[23] Azizi HR, Pourjafar M, Dabaghzadeh B, Rajabi H. A survey on prevalence of *Cryptosporidium parvum* infection in less than 1 year old calves in Shahrekord dairy farms. *Iran Vet J* 2008; **4**(17): 96-99.

[24] Tavasouli M, Sodagar SM, Soltan AF. A survey on cryptosporidial infection in horse in Urmia area, Northwestern Iran. *Iran J Vet Res* 2007; **8**(118): 86-90.

[25] Keyvanloo Shahrestanakey R, Taghavi Razavizadeh A, Razmi GH. A survey on prevalence of *Cryptosporidium* spp. infection in lambs with and without clinical signs of diarrhea in Jovein area. *Vet Clin Pathol (Vet J Tabriz)* 2017; **11**(3): 233-241.

[26] Ghaedran Mashhadi A, Hamidienjat H, Alizadehnia P. A survey on frequency of equine cryptosporidiosis in Ahvaz. *Vet Clin Pathol (Vet J Tabriz)* 2013; **6**(4): 1723-1727.

[27] Borji H, Khoshnegah J, Razni G, Amini H, Shariatzadeh M. A survey on intestinal parasites of golden hamster (*Mesocricetus auratus*) in the northeast of Iran. *J Parasit Dis* 2014; **38**(3): 265-268.

[28] Pirestani M, Sadraei J, Dalimi ASH. A survey on prevalence rate of cryptosporidial infection of farms in Shahriar county of Tehran and its hygienic importance in human. *Vet J* 2010; **22**(4): 44-53.

[29] Maleki SH, Nayeizadeh H. A survey on prevalence rate of cryptosporidiosis among diarrheic and healty cattle and calves in Khoram-abad, Iran. *Iran J Vet Res* 2008; **6**(6): 423-426.

[30] Mohaghegh MA, Vafaei MR, Ghomashlooyan M, Azami M, Falahati M, Azadi Y, et al. A wide diversity of zoonotic intestinal parasites in domestic and stray dogs in rural areas of Kermanshah province, Iran. *Trop Biomed* 2018; **35**(1): 82-90.

[31] Mosallanejad B, Hamidinejat H, Avizheh R, Ghorbanpoor Najafabadi M, Razi Jalali MH. Antigenic detection of *Cryptosporidium parvum* in feces of camel (*Camelus dromedarius*) in Iran. *Sci Parasitol* 2013; **14**(3): 147-152.

[32] Radfar MH, Gowhari MA, Khaliili M. Comparison of capture ELISA and modified Ziehl-Neelsen for detection of *Cryptosporidium parvum* in feces of camel (*Camelus dromedarius*) in Iran. *Vet Ital* 2013; **49**(3): 309-313.

[33] Ranjbar-Bahadori Sh, Sangsefidi H, Shemshadi B, Kashefinejad M. Cryptosporidiosis and its potential risk factors in children and calves in Babol, North of Iran. *Trop Biomed* 2011; **28**(1): 125-131.

[34] Fasihi Harandi M, Fotouhi Ardakani R. *Cryptosporidium* infection of
sheep and goats in Kerman: Epidemiology and risk factor analysis. J Vet Res 2008; 63(1): 47-51.

[36] Mirzai Y, Yakhchali M, Mardani K. Cryptosporidium parvum and Cryptosporidium andersoni infection in naturally infected cattle of northwest Iran. Vet Res Forum 2014; 5(1): 55-60.

[37] Heidarnegadi SM, Mohebali M, Maraghi S, Babaee S, Farnia S, Baimani A, et al. Cryptosporidium spp. infection in human and domestic animals. Iran J Parasitol 2012; 7(1): 53-58.

[38] Mirzaghamvani M, Sadraei J, Forouzandeh M. Detection of Cryptosporidium spp. in free ranging animals of Tehran, Iran. J Parasit Dis 2016; 40(4): 1528-1531.

[39] Mirzai M, Ramezanpour A. Diagnosis of Cryptosporidium infection in companion dogs in Kerman city. J Vet Lab Res 2009; 1(2): 95-103.

[40] Pestechian N, Rasoli A, Yoosefi H. Distribution of intestinal worms among stray dogs in Isfahan, Iran. J Isfahan Med Sch 2012; 29(172): 2827-2012.

[41] Nourmohammadzadeh F, Davoodi Y, Jamali R, Nowrouzian I. Epidemiological study on Cryptosporidiosis in newborn calves in eastern Azarbaijan province. J Vet Res 2010; 65(3): 247-254.

[42] Mirzai M. Epidemiological survey of Cryptosporidium spp. in companion and stray dogs in Kerman, Iran. Vet Ital 2012; 48(3): 291-296.

[43] Bahrami A, Doosti A, Nahravanian H, Noorian AM, Asbcin SA. Epidemiological survey of gastro-intestinal parasites in stray dogs and cats. Aust J Basic Appl Sci 2011; 5(9): 1944-1948.

[44] Fotouhi Ardakani R, Fasihi Harandi M, Solayman Banai S, Kamyabi H, Atapour M, Sharifi I. Epidemiology of Cryptosporidium infection of cattle in Kerman/Iran and molecular genotyping of some isolates. J Kerman Univ Med Sci 2008; 15(4): 313-320.

[45] Behzadi MA, Razavi SM, Yazdanpoor H, Mirzai A, Tamadon A, Gandomani MJ. Epidemiology of Cryptosporidium infection in ostriches (Struthio camelus) in Iran. Biol J Vet Med 2009; 12(1): 55-61.

[46] Rasuli S, Khodadadi A, Sadagiyani M, Moradpoor A, Salimanzadeh R. Equine Cryptosporidium prevalence in border line villages of Urmia province. J Vet Clin Res 2012; 3(1): 41-49.

[47] Badparva E, Ezatpour B, Azami M, Badparva M. First report of birds infection by intestinal parasites in Khorramabad, west Iran. J Parasit Dis 2015; 39(4): 720-724.

[48] Haghbin Nazarpak H, Moussavi SA, Ranjbar Bahadori SH, Mohammadi Malayeri MR, Hoseini SM. Frequency of Cryptosporidium infection in broiler breeding flock of Ghaemshahr. Vet Res (Garmar Branch) 2011; 7(1): 1-5.

[49] Tavassoli M, Iran U, Javadi S, Soltanalinejad F, Rosouli S, Emjminfar R. Gastrointestinal parasites of pet dogs in Urmia city. Vet J 2010; 23(2): 18-24.

[50] Mohaghegh MA, Kalani H, Azami M, Falahati M, Heydarian P, Ghomashiooyan M. Gastrointestinal parasitic infection in laboratory rats: A challenge for researchers. Comp Clin Path 2018; 27(5): 1237-1240.

[51] Nematollahi A, Jaberi S, Helan JA, Sheikhzadeh N. Histopathological study on parasites in freshwater ornamental fishes in Iran. J Parasit Dis 2016; 40(3): 756-759.

[52] Arzamani K, Rouhani S, Mousazadeh-Mojarrad A, Sedeghi S, Rostami M, Raeghi S. Identification of zoonotic parasites isolated from stray dogs in Bojnurd county located in North-East of Iran. Nov Biomed 2016; 4(4): 185-188.

[53] Ranjbar-Bahadori Sh, Toni S. Infection to Cryptosporidium in diarrheic calves: A provincial study in southern Khorasan. J Vet Res 2013; 68(1): 13-19.

[54] Hamedi H, Heydari M, Soleymani Ahmadi M. Intestinal and blood parasites of brown rats in Bandar Abbas. Hormozgan Med J 2003; 7(3): 123-127.

[55] Gharagozolou MJ, Dezfooulia O, Rahbari S, Bokaie S, Jahanzaad I, Razavi ANE. Intestinal cryptosporidiosis in Turkeys in Iran. J Vet Med Ser A Physiol Pathol Clin Med 2006; 53(6): 282-285.

[56] Dalimi A, Mojarad S, Jamshidi SH. Intestinal parasites of pet dogs in Tehran and evaluation of knowledge of dog owners about zoonotic risk of parasites of dog. J Vet Res 2002; 56(4): 13-16.

[57] Mahami Oskouei M, Fallah E, Ahmadi M, Safaiyan A, Bakhiyiyi S, Nasierifar R, et al. Molecular and parasitological study of Cryptosporidium isolates from cattle in Ilam, west of Iran. Iran J Parasitol 2014; 9(3): 435-440.

[58] Fallah E, Poor BM, Jamali R, Nahavandi KH, Asgharzadeh M. Molecular characterization of Cryptosporidium isolates from cattle in a slaughterhouse in Tabriz, Northwestern Iran. J Biol Sci 2008; 8(3): 639-643.

[59] Saki J, Asadpouri R. Molecular characterization of Cryptosporidium species isolated from cattle in southwest of Iran. Jundishapur J Microbiol 2018; 11(5). doi: 10.5812/jjm.59371.

[60] Saki J, Foroutan-Rad M, Asadpouri R. Molecular characterization of Cryptosporidium spp. in wild rodents of southwestern Iran using 18s rRNA gene nested-PCR-RFLP and sequencing techniques. J Trop Med 2016; 2016: 6834206. doi: 10.1155/2016/6834206.

[61] Hamidinejad H, Jalali MHR, Jafari RA, Nourmohammadi K. Molecular determination and genotyping of Cryptosporidium spp. in fecal and respiratory samples of industrial poultry in Iran. Asian Pac J Trop Med 2014; 7(7): 517-520.

[62] Jilas M, Tavalla M. Molecular diagnosis and genetic diversity of Cryptosporidium spp. in exotic birds of southwest of Iran. Trop Biomed 2018; 35(4): 944-950.

[63] Dalimi A, Tahvildar f, Kazemi B. Molecular identification of Cryptosporidium andersoni in Shahriar calves. Vet J (Pajouhesh Sazandegi) 2013; 28(2): 24-30.

[64] Mohammadi Ghalehbin B, Arzanlou M, Fallah E, Kazemi AH, Asgharzadeh M. Molecular identification of Cryptosporidium sp. in the cattle stool samples in Ardabil city, Northwestern Iran. J Anim Vet Ade
Gharekhani J, Heidari H, Youssefi M. Prevalence of Cryptosporidium spp. in Iranian dogs using semiested PCR: A first report. Vector–Borne Zoonotic Dis 2018; 18(2): 96-100.

Tavalla M, Kord E, Abdzadeh R, Asgarian F. Molecular study of Cryptosporidium spp. in dogs from southwest of Iran. Jundishapur J Microbiol 2017; 10(4). doi: 10.5812/jjm.43412.

Mohebali M, Zarei Z, Khamaliha K, Kia EB, Motavalli-Haghi A, Davoodi J, et al. Natural intestinal protozoa in rodents (Rodentia: Gerbillinae, Murinae, Cricetinae) in northwestern Iran. Iran J Parasitol 2017; 12(3): 382-388.

Keshavarz A, Haghhi A, Athari A, Kazemi B, Abadi A, Mogirad EN. Prevalence and molecular characterization of bovine Cryptosporidium in Qazvin province, Iran. Vet Parasitol 2009; 160(3-4): 316-318.

Asadpour M, Razmi G, Mohammadi M, Naghibi A. Prevalence and molecular identification of Cryptosporidium spp. in pre-weaned dairy calves in Mashhad area, Khorasan Razavi province, Iran. Iran J Parasitol 2013; 8(4): 601-607.

Ali H, Mohammad M, Saeid S. Prevalence of cryptosporidiosis in foals and humans to be in contact them in Tabriz Rea in Iran. Adv Environ Biol 2011; 5(6): 1070-1072.

Davoudi J, Shiri SH, Mostofi S, Vahidi Madadlou S. Prevalence of cryptosporidiosis spp. in children, calf and rat in Tabriz city. Vet Res (Garmsar Branch) 2010; 6(1): 75-79.

Borji H, Razmi G, Movassaghi AR, Naghibi AG, Maleki M. Prevalence of Cryptosporidium and Eimeria infections in dromedary (Camelus dromedarius) in abattoir of Mashhad, Iran. J Camel Pract Res 2009; 16(2): 167-170.

Razavi SM, Oryan A, Bahrami S, Mohammadalipour A, Gowhari M. Prevalence of Cryptosporidium infection in camels (Camelus dromedarius) in a slaughterhouse in Iran. Trop Biomed 2009; 26(3): 267-273.

Gharekhani J, Heidari H, Youssefi M. Prevalence of Cryptosporidium infection in sheep in Iran. Turkiye Parazitol Derg 2014; 38(1): 22-25.

Nazifi S, Behzadi MA, Haddadi SH, Jahromi AR, Mehrshad S, Tamadon A. Prevalence of Cryptosporidium isolated from dromedary camels (Camelus dromedarius) in Qeshm Island, Southern Iran. Comp Clin Path 2010; 19(3): 311-314.

Ranjbar R, Fattahi R. Prevalence of Cryptosporidium spp. in calves under one year old in Ilim county (Iran), from March 2014 to February 2015. Electron Physician 2017; 9(6): 4631-4635.

Sazmand A, Rasooli A, Nouri M, Hamidinejat H, Hekmatinoghaddam S. Prevalence of Cryptosporidium spp. in camels and involved people in Yazd Province, Iran. Iran J Parasitol 2012; 7(1): 80-84.

Shafieyan H, Alborzi A, Hamidinejat H, Tabandehe MR, Hajikolaei MRH. Prevalence of Cryptosporidium spp. in ruminants of Lorestan province, Iran. J Parasit Dis 2016; 40(4): 1165-1169.

Babrami S, Alborzi AR, Molayan PH, Purbaram S, Mousavi B. Prevalence of Cryptosporidium spp. infection and its association with diarrhoea in buffalo calves in Khuzestan, a southwestern province of Iran. Buffalo Bull 2014; 33(4): 293-299.

Safavi EA, Mohammadi GR, Naghibi A, Rad M. Prevalence of Cryptosporidium spp. infection in some dairy herds of Mashhad (Iran) and its association with diarrhea in newborn calves. Comp Clin Path 2011; 20(2): 103-107.

Radfar MH, Molaei MM, Baghbannejad A. Prevalence of Cryptosporidium spp. oocysts in dairy calves in Kerman, southeastern Iran. Iran J Vet Res 2006; 7(2): 81-84.

Yakhchali M, Moradi T. Prevalence of Cryptosporidium-like infection in one-humped camels (Camelus dromedarius) of northwestern Iran. Parasite 2012; 19(1): 71-75.

Yagoob G, Atollah T, Muhammad F. Prevalence of dog intestinal parasites and zoonotic importance of them in Sarab city, Iran. Ciltech J Zool 2014; 3(3):78-86.

Tavassoli M, Dalir-Naghadeh B, Valipour S, Maghsoudlo M. Prevalence of gastrointestinal parasites in water buffalos (Bubalus bubalis) raised with cattle in smallholder farming system in the Northwest of Iran. Acta Vet Eurasia 2018; 44(1): 6-11.

Norolahi Fard F, Asl N, Rezaei Seghinsara H. Prevalence of intestinal cryptosporidiosis in pigeons in Mashhad. Iran J Vet Clin Sci 2010; 4(1): 21.

Mirzaei M, Mohammadi V, Fotouhi Ardakani R. Prevalence of intestinal Cryptosporidium infection in Kerman pigeons (short paper). Sci Iran Vet J 2008; 4(2): 115-121.

Mirzaei M. Prevalence of stray dogs with intestinal protozoan parasites. Am J Anim Vet Sci 2010; 5(2): 79-83.

Beigi S, Nourollahi Fard SR, Akhtardanesh B. Prevalence of zoonotic and other intestinal protozoan parasites in stray cats (Felis domesticus) of Kerman, South-East of Iran. Istanbul Univ Vet Fak Derg 2017; 43(1): 23-27.

Beirmomvand M, Akhlaghi L, Fattahi Massom SH, Meamar AR, Motevalian A, Oormazdi H, et al. Prevalence of zoonotic intestinal parasites in domestic and stray dogs in a rural area of Iran. Prev Vet Med 2013; 109(1-2): 162-167.

Nouroozi RV. Prevalence of Cryptosporidium in wild brown rat (Rattus norvegicus) population at Shoushtar, Iran. Int Electron J Med 2016; 5(1): 18-22.

Jafari R, Maghsoud AH, Fallah M. Prevalence of Cryptosporidium infection among livestock and humans in contact with livestock in Hamadan District, Iran. 2012. J Res Health Sci 2013; 13(1): 86-89.

Esmail F, Atallah H. Prevalence of Cryptosporidium oocysts from calves in Kurdistan province, of Iran. Internet J Parasit Dis 2012; 4(2). doi: 10.5580/17a2.

Yagoob G, Bahman K. Prevalence of intestinal protozoan parasites in stray dogs of Tabriz city, Iran. Indian J Fundam Appl Life Sci 2014; 4(2):
20-24.

[94] Ranjbar Bahadori S, Aliari M. Risk factors for cryptosporidial diarrhea in calves. J Vet Res 2012; 67(3): 205-209.

[95] Shirazi SH, Hashemzadeh Farhang H, Mirsamadi N, Shahbazi P. Studying the prevalence of cryptosporidiosis among human, calf and wild rat populations in Tabriz. J Large Anim Clin Sci Res (J Vet Med) 2009; 3(6): 53-58.

[96] Heidari H, Gharkhani J. Study of Cryptosporidium infection in the livestock (cattle, sheep, dogs, fowls) and humans, in Hamadan city and its suburbs during 2006-2011. Avicenna J Clin Med 2012; 19(3): 67-74.

[97] Shemshadi B, Bahadori SR, Mozafari A. Study on cryptosporidiosis incidence in broilers in Garmser region, Iran. Comp Clin Path 2011; 20(2): 143-149.

[98] Gharekhani J. Study on gastrointestinal zoonotic parasites in pet dogs in Western Iran. Turkiye Parazitol Derg 2014; 38(3): 172-176.

[99] Ranjbar-Bahadori Sh, Azizzadeh M, Taghvaei M. The report of cryptosporidiosis in suckling calves of Ghuchan district. Iran Vet J 2013; 9(3): 62-68.

[100] Changizi E, Salimi-Bejestani MR, Javheri Vayeghan A. The Cryptosporidium ryanae infection commences in Iranian cattle. J Vet Res 2012; 67(2): 127-133.

[101] Azami M, Moghaddam DD, Salehi R, Salehi M. The identification of Cryptosporidium species (protozoa) in lsfahan, Iran by PCR-RFLP analysis of the 18S rRNA gene. Mol Biol (Mosk) 2007; 41(5): 934-939.

[102] Khezri M, Khezri O. The prevalence of Cryptosporidium spp. in lambs and goat kids in Kurdistan, Iran. Vet World 2013; 6(12): 974-977.

[103] Akhannia MR, Nouri M, Karimi GR, Banani M, Ghadiri Abyaneh M. The report of cryptosporidiosis (Cryptosporidium infection) in commercial chicken farms of Tabriz area. Vet J 2011; 24(4): 1-5.

[104] Baghban F, Moradimofrad MA. The survey of abundance of Cryptosporidium spp. oocysts in diarrhoeic calves in Yasuj city. J Large Anim Clin Sci Res (J Vet Med) 2009; 3(7): 17-22.

[105] Hashemzadehfarhang H, Shahbazi P, Bahavarnia SR. The survey on Cryptosporidium parasite infection in Tabriz and suburb native poultry. Sci J Manag Syst 2014; 8(3): 588-595.

[106] Gholipoury M, Rezai HR, Namroodi S, Khazaeli FA. Zoonotic and non-zoonotic parasites of wild rodents in Turkman Sahra, northeastern Iran. Iran J Parasitol 2016; 11(3): 350.

[107] Khurana S, Chaudhary P. Laboratory diagnosis of cryptosporidiosis. Trop Parasitol 2018; 8(1): 2-7.

[108] Adeyemo FE, Singh G, Reddy P, Stenström TA. Methods for the detection of Cryptosporidium and Giardia: From microscopy to nucleic acid based tools in clinical and environmental regimes. Acta Trop 2018; 184: 15-28.

[109] Shaposhnik EG, Abozaid S, Grossman T, Marva E, On A, Azrad M, et al. The prevalence of Cryptosporidium among children hospitalized because of gastrointestinal symptoms and the efficiency of diagnostic methods for Cryptosporidium. Am J Trop Med Hyg 2019; 101(1): 160-163.

[110] Robinson G, Chalmers RM. Cryptosporidium diagnostic assays: Microscopy. Methods Mol Biol 2020; 2052: 1-10. doi: 10.1007/978-1-4939-9748-0_1.

[111] Taghipour A, Olfatifar M, Foroutan M, Bahadory S, Malih N, Norouzi M. Global prevalence of Cryptosporidium infection in rodent: A systematic review and meta-analysis. Prev Vet Med 2020; 182: 105119. doi: 10.1016/j.prevetmed.2020.105119.

[112] García-Livia K, Martín-Alonso A, Foronda P. Diversity of Cryptosporidium spp. in wild rodents from the Canary Islands, Spain. Parasit Vectors 2020; 13(1): 1-9.

[113] Rabeei MH, Mahmoudi A, Siasarvije R, Kryšťufek B, Mostafavi E. Rodent-borne diseases and their public health importance in Iran. Parasitol Int 2020; 76: 194-206.

[114] Cai Y, Zhang NZ, Gong QL, Zhao Q, Zhang XX. Prevalence of Cryptosporidium in dairy cattle in China during 2008-2018: A systematic review and meta-analysis. Microbiol Pathog 2019; 132: 193-200.

[115] Odeniran PO, Ademola IO. Epidemiology of Cryptosporidium infection in different hosts in Nigeria: A meta-analysis. Parasitol Int 2019; 71: 194-206.

[116] Galván-Díaz AL. Cryptosporidiosis in Colombia: A systematic review. Curr Trop Med Rep 2018; 5(3): 144-153.

[117] Rashid M, Rashid MI, Akbar H, Ahmad L, Hassan MA, Ashraf K, et al. A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology 2019; 146(2): 129-141.

[118] Razakandrainibe R, Diawara EHI, Costa D, Le Goff L, Lemeteil D, Ballet JJ, et al. Common occurrence of Cryptosporidium hominis in asymptomatic and symptomatic calves in France. Parasitol Int 2020; 77(3): e006355.

[119] Taghipour A, Olfatifar M, Bahadory S, Godfrey SS, Abdoli A, Khatami A, et al. The global prevalence of Cryptosporidium hominis in asymptomatic and symptomatic calves in France. Parasitol Int 2020; 79(3): 109093. doi: 10.1016/j.parint.2020.109093.

[120] Berahmat R, Spotin A, Ahmadpour E, Mahami-Oskouei M, Rezamand A, Aminisani N, et al. Human cryptosporidiosis in Iran: A systematic review and meta-analysis. Parasitol Res 2017; 116(4): 1111-1128.