Transcriptome analysis implicates secondary metabolite production, redox reactions, and programmed cell death during allorecognition in *Cryphonectria parasitica*

Anatoly A. Belov,1 Thomas E. Witte,1 David P. Overy,2 and Myron L. Smith1,*

1Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
2Agriculture and Agri-Food Canada, Ottawa, ON, K1Y 4X2, Canada

*Corresponding author: Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada. Myron.Smith@carleton.ca

Abstract

The underlying molecular mechanisms of programmed cell death associated with fungal allorecognition, a form of innate immunity, remain largely unknown. In this study, transcriptome analysis was used to infer mechanisms activated during barrage formation in vic3-incompatible strains of *Cryphonectria parasitica*, the chestnut blight fungus. Pronounced differential expression occurred in barraging strains of genes involved in mating pheromone (m12-1, m12-2), secondary metabolite production, detoxification (including oxidative stress), apoptosis-related, RNA interference, and HET-domain genes. Evidence for secondary metabolite production and reactive oxygen species (ROS) accumulation is supported through UPLC-HRMS analysis and cytological staining, respectively. Differential expression of mating-related genes and HET-domain genes was further examined by RT-qPCR of incompatible interactions involving each of the six vegetative incompatibility (vic) loci in *C. parasitica* and revealed distinct recognition process networks. We infer that vegetative incompatibility in *C. parasitica* activates defence reactions that involve secondary metabolism, resulting in increased toxicity of the extra- and intracellular environment. Accumulation of ROS (and other potential toxins) may result in detoxification failure and activation of apoptosis, sporulation, and the expression of associated pheromone genes. The incompatible reaction leaves abundant traces of a process-specific metabolome as conidiation is initiated.

Keywords: allorecognition; transcriptomics; programmed cell death; heterokaryon incompatibility; secondary metabolites; RNA-seq

Introduction

Programmed Cell Death (PCD) in filamentous fungi is involved in a variety of processes including intraspecific mycelial incompatibility, aging, and spor formation (Raju and Perkins 2000; Barhoom and Sharon 2007) and demonstrates morphological features of apoptotic death (Glass and Kaneko 2003; Dementhon et al. 2006). The pathways that lead to PCD in fungi are not clearly identified (Shlezinger et al. 2012) but may be unraveled through studies on mycelial incompatibility systems that are referred to as heterokaryon incompatibility (HI) in *Podospora anserina* and *Neurospora crassa* and vegetative incompatibility (VI) in *Cryphonectria parasitica*. In these ascomycete species, HI and VI are genetically determined by 6–12 incompatibility loci and polymorphisms at these loci create the basis for conspecific nonself recognition (Glass and Dementhon 2006; Paoletti and Saupe 2009; Smith and Lafontaine 2013). Hyphal fusion of two members of the same species that possess different alleles at one or more vic or het loci results in an incompatibility reaction in the fusion cells and subtending cells that progresses from cytoplasmic granulation and vacuolization to plasmolysis and cell death. In most cases, known vic (and het) loci contain two or more tightly linked genes, at least one of which encodes an HET domain (IPR010730) (Glass et al. 2000; Smith et al. 2000; Paoletti and Clavé 2007; Smith and Lafontaine 2013). Although the molecular function of the HET domain remains unclear, an association exists between the HET domain and fungal nonself recognition, where transcriptional activation of HET-domain genes correlates with activation of PCD (Paoletti et al. 2007). Fungal genomes can carry over 50 HET-domain genes. However, in any given genome, only a small subset of the genes containing HET domains have been associated with conspecific incompatibility and general allorecognition (Paoletti and Clavé 2007).

There are six characterized vic loci associated with VI in *C. parasitica* and each locus comprises at least two linked genes that interact to modulate nonself recognition (Choi et al. 2012; Zhang et al. 2014). Molecular genetic analyses indicate that the vic1, vic6, and vic7 loci all possess genes with a HET domain whereas vic2, vic3, and vic4 do not (Zhang et al. 2014). Therefore, it may appear that an HET domain is not a necessary component for VI reaction, at least in *C. parasitica*. However, in some systems, incompatibility loci are known to interact with unlinked HET-domain genes. For example, in *N. crassa*, HI is triggered by differences at the mat locus only when the unlinked tol gene (contains HET and leucine-rich repeat domains) is expressed (Shiu and Pang 2010)
Glass 1999). When tol is deleted, strains of opposite mating types are able to form viable heterokaryons during the vegetative phase of the life cycle. When tol is present, cells containing mat-A and mat-a exhibit HI during vegetative growth. Thus, incompatibility loci that do not contain genes with an HET domain may be functionally coupled with unlinked genes that do have the HET domain that do not necessarily show genetic polymorphism in incompatible strains.

In this study, we analyze transcription profiles to identify genes that are differentially expressed (DE) during vic3-associated nonself recognition in C. parasitica. We provide general observations on overall expression patterns, perform functional annotations on DE genes using gene databases, and enrichment analyses in order to understand the underlying mechanisms involved in allorrecognition in this fungus. The analysis of DE genes showed activation of mating pheromone genes, apoptotic-like factors, and indicate the involvement of reactive oxygen species (ROS) and secondary metabolite biosynthesis pathways in allorrecognition processes. These patterns were confirmed with secondary assays based on quantitative RT-PCR, microscopy using redox-sensitive stains and metabolomic profiling by mass spectrometry.

Materials and methods

Strains and growth conditions

Cryphonectria parasitica strains P74-3, EP155, and DZ-66 were used for transcriptome analysis in this study. Strains P74-3 and EP155 are of a distinct genetic background (Biella et al. 2002), but carry identical alleles at all vic loci except for vic3. The EP155 strain carries the vic3-1 haplotype and P74-3 carries the vic3-2 haplotype. Strain DZ-66 is derived from EP155 where genes vic3a-1 and vic3b-1 were knocked out (Zhang et al. 2014). Additional C. parasitica strains used in this study are listed in Supplementary Table S1.

Strains were inoculated into 12-ml liquid of 2% potato dextrose broth (PDB, BD Difco Brand, NJ, USA) and incubated static for 7 days at 30°C in the dark. They were then diluted 10 times with fresh 2% PDB and blended at high speed. We reasoned the maceration of mycelia into small fragments maximizes the number of contacts formed when strains are co-inoculated together, thereby amplifying transcriptomic and metabolomic signals associated with incompatibility. The resulting cell suspensions had approximately 2000 Colony Forming Units (CFUs) per ml. Three strains (EP155, P74-3, DZ-66) were used as “monoculture” controls. The mixed culture EP155 + P74-3 represented the vic3-incompatible (barraging) interaction while DZ-66 + P74-3 was used as a vic-compatible control.

Cultures for RNA extraction were grown in 8.5-cm Petri plates on potato dextrose agar (PDA, BD Difco Brand, NJ, USA) overlaid with sterile semipermeable cellophane membranes. Approximately 200 CFUs (100 µl) of each hyphal suspension was evenly spread over the membrane. Cultures were incubated in the dark at 30°C for 3 days, at which point all mycelium was removed from the membrane (approximately 3 g per sample), frozen with liquid nitrogen, and stored at −80°C. Three biological replicates were plated for RNA extraction, and six biological replicates were plated for metabolite extraction.

RNA preparation and analysis

Total RNA was extracted using the Qiagen RNeasy Plant RNA extraction kit following the manufacturer manual (Qiagen, Valencia, CA, USA) with a DNase treatment step. RNA quality was assessed with Agilent Bioanalyser (Santa Clara, CA, USA). RNA sequencing was done on Illumina NovaSeq 6000 platform, with paired-read length of 150 bp and 70 M read depth (Genome Quebec, Montreal, Canada).

RNA-seq data analysis

Short reads quality was assessed with FastQC and reference-based alignment was performed with STAR 2.7 (Dobin et al. 2013). Reference genome and functional annotation and gene mapping were acquired from the JGI C. parasitica genome portal (https://mycoscos.jgi.doe.gov/Crypa2/Crypa2.home.html), which contains information about 11,609 C. parasitica protein-coding areas (Crouch et al. 2020). Additionally, novel transcripts from regions of the genome that showed significant expression, but were not previously annotated as genes were identified using StringTie v.2.1.3 (Pertea et al. 2015). Transcripts were identified using alignment data obtained from STAR alignment. Identified transcripts showing counts less than 10 were discarded. As a result, 84 novel transcripts were identified, for a total of 11,693 genes. Differential expression analysis was done with the R package DESeq2 (Love et al. 2014) and further, data analysis and visualization were done in the R environment. Gene Enrichment analysis was done using DAVID v6.7 (Huang et al. 2009; Huang da et al. 2009). The significance threshold for gene differential expression was set to LFC (log2[fold change]) ≥ 2 and FDR adjusted P-value < 0.001.

Analysis of intracellular ROS

ROS production during vic3 barrage was assessed using the previously described microscopy protocol by Biella et al. (2002) coupled with DCFDA (2’,7’-dihydrodichlorofluorescein diacetate, Sigma-Aldrich, ON, Canada) staining. Inoculum blocks of 0.5 mm 3 were taken from the edges of cultures grown for 7–10 days on PDA. These agar cubes with mycelium were placed approximately 1 cm apart on microscope slides coated with PDA. Slides were incubated in a damp chamber for 2 days in the dark at room temperature, after which inoculum agar cubes were removed and a stained with DCFDA (10 µM) (LeBel et al. 1992; Hutchison et al. 2009). ROS accumulation oxidizes DCFDA to fluorescent DCF and barraging cells were observed with fluorescent microscopy (Carl Zeiss, AxioVision).

RT-qPCR conditions

Reverse transcription from RNA template was performed using M-MuLV Reverse Transcriptase (New England Biolabs, Whitby, ON, Canada) according to manufacturer recommendations. Real-time quantitative PCR analysis was performed using a CFX Connect Real-Time PCR Detection System (BioRad, Mississauga, ON, Canada) with KAPA SYBR FAST Universal 2x master mix (KAPA, Wilmington, MA, USA). Gene expression values were normalized against 18S rRNA. Relative abundance of normalized transcripts was calculated using 2−ΔΔCt method (Livak and Schmittgen 2001). Real-time PCR primers used for measuring transcript abundance of selected C. parasitica genes are given in Supplementary Table S2.

Liquid chromatography-mass spectrometry analysis

Mycelium and the agar directly underneath the membrane were harvested into glass scintillation vials as separate samples from each plate after 5 days of incubation in the dark at 30°C, in six replicates, along with media controls (PDA with sterile membrane overlaid) and immediately frozen at −20°C. Thawed samples were extracted by immersion in ethyl acetate (gently shaking for 1.5 h), dried under vacuum, and then reconstituted in MeOH to a concentration of 500 µg/ml. The ultra-
high performance liquid chromatography coupled high resolution mass spectrometry (UPLC-HRMS) analysis was carried out on a Thermo Ultimate 3000 UPLC coupled to a Thermo LTQ Orbitrap XL high-resolution mass spectrometer, using a reverse-phase Phenomenex C18 Kinetex column in ESI+ mode (with an m/z 100–2000m/z range). Data preprocessing closely followed the methodology of Overy et al. (2017), using MZMine v2.29 [Cell Unit, Okinawa Institute of Science and Technology (OIST), Onna, Okinawa, Japan], with a mass detection noise cutoff level set to 5.0 × 10^7. Mass features (each representing an associated retention time and mass/charge ratio) from agar and mycelium extracts were normalized to the total ion current detected from each sample and then summed, scaled, and centered.

Data availability
Supplementary files are available at G3 FigShare. File “Belovetal_TableS1_2.pdf” contains information about C. parasitica strains used and qPCR primer sequence information. Supplementary File “Belovetal_TableS3.xlsx” contains data for Figure 3 (heatmap). Table 1 and Supplementary Table S3 contain data for gene differential expression with annotations. Supplementary “Belovetal_TableS4.xlsx” contains a list of orthologs DE in C. parasitica during vic3-associated barrage and N. crassa and P. anserina during HI. R scripts used in this work can be found on https://github.com/anabeloff/vic3PCD.

Supplementary material is available at figshare DOI: https://doi.org/10.25387/g3.8239778.

Results and discussion
Fungal anastomosis and cell death
Allorecognition following incompatible hyphal fusions is associated with rapid activation of PCD in C. parasitica and other filamentous ascomycetes (Jacobson et al. 1998; Biella et al. 2002). This process can be observed macroscopically when the vic3-incompatible strains (P74-3 vic3a-2 vic3b-2 + EP155 vic3a-1 vic3b-1) are co-inoculated on agar plates (Figure 1A). In these pairings, a barrage zone appears where the two mycelia meet, characterized macroscopically by a clear line that is flanked by a region with pigmentation and active sporulation. We confirmed that barrage zones do form with pairings of P74-3 + EP155 but not in pairings of P74-3 + DZ66 (vic3a-1 vic3b-1). Hyphal anastomosis of V1 strains was observed microscopically with the Evans Blue assay, where hyphal fusion results in dead cells that are unable to actively transport dye out of the cell and thus become brightly fluorescent (Figure 1B). ROS accumulation was also observed at the site of hyphal fusion only in pairings of P74-3 and EP155 (Figure 1C).

Hierarchical cluster and enrichment analyses
Principal component analysis (PCA) revealed differences in overall gene expression patterns between vic3-incompatible strain pairings (P74-3 + EP155), control pairing (P74-3 + DZ66), and monocultures (P74-3, EP155, or DZ66 alone) (Figure 2). Samples formed two distinct clusters, one of monocultures grouped close together with the control pairing (P74-3 + DZ66) and a second of vic3-incompatible strain pairings (P74-3 + EP155). Separation between barraging and control samples accounted for 70% of variance in the sample set. Significant (over 50%) variance provided evidence of differential gene expression between the two clusters. Differential expression analysis was performed using the DESeq2 package to obtain a list of 531 (501 genes + 30 novel transcripts) most DE genes based on the set threshold (LFC ≥ 2, P-value < 0.001). Using hierarchical clustering, we arranged these 531 DE genes in clusters based on individual LFC values (Figure 3, for detailed description of each cluster, see Table 1).

Table 1 Notable genes and their differential expression during vic3-associated barrage formation (P-values > 0.001 shown grey)

Groups	Cp ID	LFCa	P-value	UniProt ID	Putative protein function
Apoptosis	66954	6.1	2.52e–16	P55211	Weak similarity to human Caspase-9
	75073	5.1	1.27e–6	Q9VFP2	Protein roadkill (rdx)
	333952	3.4	4.22e–12	Q5SF7A	Quinone oxidoreductase (QO)
	259069	3.3	9.58e–20	Q15392	3-beta-hydroxysterol delta-24-reductase (DHCR24)
	258862	2.4	1.97e–20	Heterokaryon incompatibility (vic1a)	
	262887	2.3	1e–10	Heterokaryon incompatibility (vic2a)	
	261856	2	1.29e–14	Heterokaryon incompatibility (vic3)	
	67224	–1.1	3.08e–11	Heterokaryon incompatibility (vic3)	
	85578	12.9	2.63e–11	Heterokaryon incompatibility (vic4)	
	CPNOV.6992c	10.4	8.88e–25	O14431	Mating pheromone precursor m2-1
	44005	7.1	1.01e–51	O14431	Mating pheromone precursor m2-2
	96416	5.6	0	P35693	MAT-2
	262923	3.9	5.21e–12	MAT-2	
	351932	3.6	1.54e–27	MAT-2	
	285012	2.8	2.21e–10	MAT-2	
Mating	66950	0	0.767	P33561	NRC1 ortholog
	58765	6.9	0	Q9Y7Q2	Glutathione S-transferase
	274617	4.6	3.49e–66	Q5V0505	Cytochrome P45o
	269746	4.6	4.14e–29	Q5V0505	Cytochrome P45o
Oxidative stress	322509	–2.4	6.68e–05	Q5V0505	Cytochrome P45o
Pigment	263100	8.9	2.67e–27	Q5V0505	Cytochrome P45o
	261854	2.8	9.98e–15	Q5V0505	Cytochrome P45o
	345802	4.4	1.33e–10	Q5V0505	Cytochrome P45o
	342071	4	1.75e–10	Q5V0505	Cytochrome P45o
	339678	2.2	8.73e–14	Q5V0505	Cytochrome P45o
	255335	–1.9	4.5e–09	Q5V0505	Cytochrome P45o
Sec. Metabolite	18749	–2.9	5.85e–11	Q5V0505	O-methyltransferase
Biosynthesis				Q5V0505	Peroxidase

a Proteins IDs of C. parasitica genome v2 from JGI.

b LFC—Log2(fold change).

c CPNOV—Novel transcripts identified in this study and not annotated in C. parasitica genome v2.
Six robust clusters were identified with a majority of DE genes (70%) upregulated during allorecognition. Downregulation was not a notable feature of barraging strains, evident only in cluster 6 (Figure 3). Clusters 5 and 6 comprise genes with mean LFC rates close to the threshold (LFC/C21j; P/C0 < 0.001), making interpretation of activation or deactivation of these genes inconclusive. Thus, using clustering analysis, we narrowed down the list of possible candidate genes involved in barrage formation and associated PCD within clusters 1–4.

Gene enrichment analysis included two main elements: a list of DE genes and a background list, against which enrichment of Gene Ontology (GO) annotation terms and protein domains were estimated (Figure 4). A total of 8031 C. parasitica gene IDs with UniProt annotations were used as a background list. For this analysis, we used annotation terms to form gene enrichment groups. In Figure 4, GO terms and INTERPRO domains were grouped together based on their functional similarity and then an enrichment score was calculated as an average ratio of the term among DE genes versus number of genes associated with the term in the background list. Using the above techniques, we distinguish five functional gene groups that represent processes playing major roles during barrage formation. The groups are designated as mating, apoptosis, HI, secondary metabolism, oxidative stress and detoxification, and RNA interference.

Transcriptome analysis—mating

In C. parasitica, there are two mating types, MAT-1 and MAT-2. Each haploid strain carries a single mating-type transcription
factor gene, mat-1 or mat-2, but carries all three mating pheromone genes (mf1-1, mf2-1, mf2-2) (Kazmierczak et al. 1996; Zhang et al. 1998; Marra and Milgroom 2001). Expression of pheromones depends on what mating type is present in the haploid mycelium. Strains expressing MAT-2 activate mf2-1 and mf2-2 pheromone precursor genes, while ones with MAT-1 activate mf1-1. Strains used in our RNA-seq experiment, P74-3, EP155, and DZ66, are all MAT-2. In the RNA-seq analysis, the mat-2 gene and associated pheromone genes mf2-1 and mf2-2 show the most dramatic change in expression of any genes during barrage (Figure 3, Cluster 1, Table 1).

Involvement of mating genes in barrage processes was unexpected and merited closer examination. We identified additional DE orthologs that were previously connected to mating in yeast. In cluster 4, we find genes cpste6 and cpste11 (orthologs of Ste11 associated with reproduction) that were overexpressed in incompatible barraging cultures. There are two yeast genes identified as Ste11 in the literature. One encodes MAP kinase Ste11p, a homolog of N. crassa NRC1 (cprnc-1, Cp ID: 66950), which is a component of the fusion oscillation complex (Pandey et al. 2004; Dettmann et al. 2014). The second gene identified as Ste11 (Cp ID: 351932, cpste11) is an ortholog of the Schizosaccharomyces pombe transcription factor Ste11p. cpste11 gene orthologs belong to a family of high-mobility group transcription factors involved in conjugation and activation of the meiotic cycle (Qin et al. 2003). In S. pombe, Ste11p is activated in response to starvation or mating pheromones. As a transcription factor, Ste11p regulates the expression of several genes related to yeast mating, which include mating genes, pheromones, and meiosis regulatory factors (Kjaerulff et al. 1997; Kitamura et al. 2001; Mata and Bähler 2006).

In our dataset, we identified two overexpressed orthologs of yeast genes that are known to be regulated by Ste11p. The first of these genes is a meiotic factor mei2 ortholog (ID: 285012) that was upregulated during barrage. The second is Ste6 (cpste6, Cp ID: 96416) that encodes an ABC-transporter responsible for secretion of a factor (Sugimoto et al. 1991; Kolling and Hollenberg 1994). Overexpression of cpste6 and MAT-2 pheromones could indicate that barraging cells increase pheromone production and pump them out with cpste6, while other cells react to extracellular pheromone signal and activate the Ste11 system.

Transcriptome analysis—RNA interference

In analyzing enriched genes associated with sexual reproduction, we identified a homolog of the fruitfly tud gene. TUD carries a Tudor domain and works as an essential part of the nuage structure, activated during germline cell development. This structure employs PIWI, an RNAi complex of proteins that prevents activation of retrotransposons (Kibanov et al. 2011). That cpste11 (ID: 262923) is overexpressed may indicate a role for RNAi during barrage in C. parasitica.

According to our RNA-seq analysis, the Argonaute-4 ortholog (previously identified in C. parasitica as agl4) (Sun et al. 2009) was overexpressed during barrage (Cluster 5); the RNAi specialization of agl4 has yet to be confirmed. Among four Argonautes (agl1, agl2, agl3, and agl4) and two Dicer genes (dcl1 and dcl2) in C. parasitica, only the RISC complex formed by Dicer-2 and Argonaute-2 was found to function as an antiviral defence, where expression of agl2 is important to activate expression of dcl2 (Zhang and Nuss 2008; Sun et al. 2009). Others, Dicer-1 and Argonautes 1, 3, and 4, were not found to be associated with known RNAi processes. None of agl1, agl2, agl3, dcl1, nor dcl2 were DE during barrage. An increase in Argonaute expression should be followed by

Figure 4. Gene enrichment analysis of GO terms for biological process and INTERPRO domains. Similar GO terms and INTERPRO domains were grouped together by DAVID using Kappa statistic. For GO term enrichment group, names were assigned based on types of GO terms in each group. Enrichment estimated as a ratio of genes in DE list associated with the term (GO or INTERPRO) to the total number of genes associated with the term in the background list.
an increase in Dicer expression (Sun et al. 2009); therefore, it is possible that the observed overexpression of agt4 during the initial onset of barrage represents an early stage of RNAi activation and that activation of Dicer will follow.

Transcriptome analysis—HI
There are 124 ORFs annotated with an HET domain in the C. parasitica genome v.2. Even though HET-domain genes are associated with barrage formation, only three are linked to vic loci in C. parasitica. While genetic polymorphism in HET-domain genes is associated with VI in fungi (Smith et al. 2000), the majority of examined HET-containing ORFs lack genetic polymorphism among C. parasitica strains (Choi et al. 2012; Zhang et al. 2014).

Our analysis demonstrates that vic3 incompatibility triggers upregulation of three HET-domain genes (F-value < 0.001) that are unlinked to the vic3 locus. Surprisingly, one of these HET-domain genes, vic1a (Cp ID: 258862), is a component of the vic1 locus and is also associated with barrage formation when strains carry different alleles at vic1 (Zhang et al. 2014). Since the vic3-incompatible strains used in this experiment are identical at the vic1 locus, we infer that differences at vic3 act in trans to activate vic1a. The other two upregulated HET-domain genes were not previously associated with incompatibility and have not been assigned genetic designations. We refer to these genes as dev3-1 (Cp ID: 261856) and dev3-2 (Cp ID: 262887).

Transcriptome analysis—apoptosis
Overall, the observation of enrichment in the “Apoptosis/Stress response” GO group indicates that PCD processes involved in vic3 incompatibility are most likely activated by external signaling. This group of transcripts comprises GO terms associated with positive and negative regulation of apoptosis. In P74-3 + EP155 mixed-culture plates, it is expected that both positive and negative regulation of apoptosis would be occurring simultaneously: positive regulation in barraging cells as evidenced by cell death, and negative regulation (likely related to defence mechanisms) occurring in nearby cells that are not directly involved in compatible cell fusions.

An example of an upregulated positive regulator of cell death was gene Cp ID: 75073, an ortholog of Protein roadkill (rdx). Similar to AIF (Apoptosis-inducing factor), rdx orthologs are involved in the extrinsic cell death pathway, as they are known to activate the JNK-dependent apoptotic cycle (Liu et al. 2009). As demonstrated in animals, JNKs are part of an external stress-activated kinase cascade, which leads to apoptosis through the activation of PCD transcription factors like p53 (Davis 2000; Yin et al. 2000). To activate the downstream PCD pathway, JNK must be activated by other protein kinases (PKs). Studies showed that an ortholog of yeast Ste20 in animals is responsible for activation of JNK (Brown et al. 1996). Ste20 belongs to a group of PKs called PAK (p21-activated serine/threonine kinases) that are upstream activators of the MAPK cascade (Dan et al. 2001). Orthologs of Ste20 were not among the differentially regulated genes observed during vic3-associated incompatibility.

Of additional interest within the “Apoptosis/Stress response” group was the upregulated Caspase-9 gene (Cp ID: 66954). It has low identity to human Caspase-9 and prediction of gene function in this case is difficult to interpret due to low sequence homology. Furthermore, transcript upregulation of fungal metacaspases is not necessarily an indicator of increased protein activity and apoptosis (Tsitsigianis et al. 2011). As a hallmark of the classic apoptosis pathway, the caspase cascade is activated primarily by post-translational modifications and increased accumulation of transcripts is not an expected outcome (Riedl and Salvesen 2007). Accordingly, previous studies on N. crassa showed no differential caspase expression during HI (Hutchison et al. 2009). Similarly, the other three predicted C. parasitica metacaspases show no significant change in expression during vic3-associated incompatibility.

Lastly, the “Apoptosis/Stress response” group contains genes that function to delay apoptosis onset. Gene 33952, an ortholog of a negative regulator of apoptosis QO (Quinone Oxidoreductase) was found to be differentially upregulated in incompatible mixed cultures. The activation of QO may be a response by cells near barraging cells in the mixed cultures. In animals, QOs are part of the cell defence mechanism that is activated in response to abiotic stress factors to maintain the cell’s redox balance (Johnson et al. 2008). Similarly, gene 259069, an ortholog of human DHCR24 (3β-hydroxysterol Δ24-reductase), was also upregulated during incompatibility. In humans, this gene is part of the cholesterol biosynthesis pathway and determines resistance to apoptosis caused by abiotic stress, where increased expression of DHCR24 leads to more resistance to apoptosis caused by ROS and other abiotic factors (Di Stasi et al. 2005; Kuehnle et al. 2008).

Transcriptome analysis—oxidative stress and detoxification
The transcription of multiple genes relating to oxidative stress and detoxification was found to be upregulated in barraging strains (Table 1 and Supplementary Table S3) and corresponds with ROS production and accumulation that is observed at the site of incompatible hyphal fusions (Figure 1C). Three Glutathione S-Transferase (GST) paralogs (where ID 58765 was highly overexpressed) and an ortholog of QOs were activated during barrage formation and relate to cellular detoxification; GST is a member of the Phase II detoxification program and QOs are part of the antioxidant response system in animal cells (Johnson et al. 2008). GSTs and QOs are transcriptionally regulated by the Nrf2 transcription factor that activates a battery of anti-stress enzymes (including increases in QO and GST expression) in response to ROS-induced redox imbalance and elevated toxicity due to toxin exposure (Jaiswal 2000; Johnson et al. 2008; Ray et al. 2012; Tew and Townsend 2012). GSTs bind glutathione to toxic molecules, making them more accessible for transport out of the cell and QOs deactivate toxic quinone derivatives (Jaiswal 2000). Glutathione balance within the cell is pertinent to survival and dramatic reductions of glutathione levels due to high toxic exposure may lead to apoptotic death (Circu and Aw 2012).

One of the highly enriched INTERPRO domain terms relates to cytochrome P450 proteins responsible for phase I detoxification (see Figure 4). Activation of these genes is strongly correlated with toxic environmental stress and often used as a diagnostic marker of oxidative stress (Uno et al. 2012). For example, we identified upregulation of the ortholog (Cp ID: 345802) of cytochrome p450 from Fusarium oxysporum, an example of a self-sufficient p450 monooxygenase that is capable of functioning without the aid of an external p450 reductase (Kitazume et al. 2000). Cytochrome p450 was found to be more highly active in barraging cells. Its analogs are believed to be responsible for denitrogenation performed by various fungi (Shoun and Takaya 2002).

During allorrecognition in C. parasitica, expression of a lipoygenase ortholog ppOA (Cp ID: 332509) was significantly decreased in barraging strains. Downregulation of lipoygenase orthologs (P. anserina ID: Pa_5_1240) during HI in P. anserina has been previously reported (Bidard et al. 2013). Tsitsigianis et al. (2005) suggest that downregulation of ppOA leads to increased resistance to...
ROS and higher virulence by Aspergillus in animal models. Similarly, this model may be applied to barraging cells in C. parasitica, as both ROS and secondary metabolite production evidently occur.

Transcriptome analysis—secondary metabolite biosynthesis

GO terms associated with “Mycotoxin (secondary metabolite) biosynthesis” were also found to be highly enriched in DE genes (see Figure 4). These DE genes included various “tailoring” enzymes involved in adding functional groups and post-transcriptional structural modification during secondary metabolite biosynthesis (P450 monoxygenases, O-methyltransferases, and a peroxidase) (Usui et al. 1998; Fujii et al. 2001; Qiao et al. 2011; Kato et al. 2013, Niehaus et al. 2013).

Mass spectrometry-based metabolomics was used to further explore the involvement of secondary metabolite biosynthesis in barraging cultures during allore cognition. PCA analysis of mass features shows a clear separation of barraging P74-3 + EP155 cultures from control treatments along the x-axis or PC1, explaining 43.9% of the variation in the data set (Figure 5). Univariate analysis comparing data from incompatible co-inoculation to monoculture controls and the P74-3 + DZ66 co-inoculation was performed using the R package “muma” (Edoardo et al. 2013), which led to the creation of a list of 208 mass features significantly (P-value < 0.05) associated with vic3 allore cognition. Each mass feature represents a discrete m/z detected in the HRMS associated with a retention time derived from the chromatography. Many of these mass features represent pseudomolecular ions (protonated, salt adducts, neutral losses, and fragments) associated with a single metabolite and further analysis is required to distill this list into representative or “parent ions.”

It should also be noted that GO term groups associated with secondary metabolite production notably overlap in their gene content with other categories such as “apoptosis,” “mycotoxin biosynthesis,” and “oxidative stress.” Considering the above, activation of genes that have general involvement in secondary metabolite production presents a challenge for further functional analysis. Given a paucity of information in the literature surrounding known secondary metabolites produced by C. parasitica, an in-depth metabolomic analysis of the data generated here including annotation of mass feature groups and biosynthetic gene clusters relating to vic3 incompatibility is beyond the scope of this study.

Comparison of allore cognition across vic loci

Expression of the mating-type pheromone gene, mf2-1, drastically increases as a result of vic3 incompatibility. This is surprising since P74-3 and EP155-derived strains have the same mating type, MAT-2, so a mating interaction is not expected, and yet mf2-1 demonstrated the highest rate of differential expression in the entire sample set (Figure 3, cluster 1). Upregulation of mf2-1 is characterized by very low transcript abundance in controls in comparison to very high abundance in barraging cultures. High differential expression was confirmed by RT-qPCR tests with mf2-1 and this can apparently be used as a marker of vic3-associated barrage development (Figure 6B). We used RT-qPCR analysis to further examine mf2-1 and mf1-1 mating pheromone expression with each of vic1-, vic2-, vic3-, vic4-, vic6-, and vic7-incompatible pairings using strain pairs that carry MAT-1 and MAT-2 (Supplementary Table S1). Here, vic1-, vic2-, and vic3-associated barrages yielded dramatic increases in expression of mf2-1 and mf1-1 (Figure 6B) whereas vic6- and vic7-associated barrages showed only moderate increases in mf2-1 and mf1-1 gene expression.

vic4-incompatible interaction appears to be uncoupled from mating pheromone gene expression since, similar to monocultures, mf2-1 and mf1-1 show almost no change in expression on the 3rd day after co-inoculation of vic4-incompatible strains. This may indicate that each type of vic incompatibility involves different regulatory networks in C. parasitica.

There are six vic loci known to trigger incompatibility in C. parasitica and only three of these loci, vic1, vic6, and vic7, include genes that encode an HET domain (Cortesi and Milgroom 1998; Zhang et al. 2014). Other loci, including vic3, do not contain genes encoding an HET domain, suggesting that not all VI responses require HET domain involvement. However, our transcriptome analysis demonstrates that unlinked, nonpolymorphic HET genes

![Figure 5. PCA score plot differentiates metabolomes of incompatible co-inoculations (P74-3 + EP155, purple) compared to control samples P74-3 (green), EP155 (blue), DZ-66 (red), and DZ-66 + P74-3 (yellow). Circles represent 95% confidence intervals. Total variance explained in first two PCs is 56.9%.](https://academic.oup.com/g3journal/article-11/1/jkaa021/6025178)

![Figure 6. Comparison of differential expression (DE) data acquired by RNA-seq (A, P-value < 0.001) and RT-qPCR (panel B, P-value < 0.01) of pheromone precursor genes in strains undergoing barrage formation compared to control strains in monoculture. (A) RNA-seq DE data of mf1-1 (ID: 333020) mf2-1 (ID: 85578) pheromone gene from vic3-incompatible pairing of P74-3 and EP155 (both MAT-2). (B) DE based on RT-qPCR data for mf1-1 and mf2-1 genes when EP155 (MAT-2) interacts with strains that are incompatible due to a difference at one of five vic loci (x-axis). MAT-1 strains with vic loci that differs from EP155 in parentheses are P1-5 (vic1), P1-6 (vic2), P78-8 (vic3), P4-4 (vic4), MJ1-3-20 (vic6), and P24-33 (vic7). Whiskers indicate standard error for three replicates (RNA-seq) and at least four biological replicates (RT-qPCR) for each pairing. LFC, log2[fold change].](https://academic.oup.com/g3journal/article-11/1/jkaa021/6025178)
To our surprise, the gene and a difference at one of the loci (Supplementary Table S1). According to our data, cpvib-1 showed notable change in expression only in \(vic1 \), \(vic6 \), and \(vic7 \) pairings. There seems to be no correlation of cpvib-1 and the expression of tested HET genes.

Comparison of VI in C. parasitica to HI transcription profiles of N. crassa and P. anserina

Transcriptional response to HI was previously investigated by microarray analyses in *N. crassa* and *P. anserina* (Hutchison et al. 2009; Bidard et al. 2013). Both of these previous studies differed from the present study by employing "induced incompatibility techniques,” methods which activate HI factors at permissive temperatures. In the case of *N. crassa*, strains incompatible at the *het-c* locus can form heterokaryons in a temperature-dependent manner if one of the strains carries the mutant allele pin-c2m (Kaneko et al. 2006). This type of HI in *N. crassa* is referred as TScm (Temperature-Sensitive incompatibility). In this example, strains with *het-c1*/*pin-c1* can form a heterokaryon with *het-c2/*pin-c2m strains at 34°, showing a low death rate. However, when transferred to a lower temperature (20°) HI is rapidly induced in these heterokaryons. Similarly, in the *P. anserina* model, strains that are incompatible due to nonallelic interactions involving *het-R* and *het-V* present normal culture development at 32° whereas incompatibility reactions occur when these strains are transferred to 26°. One advantage of these systems is that they allow for synchronous induction of allelorecognition across the entire mycelium, providing a means to study the precise timing of incompatibility events. In the *C. parasitica* barrage experiment fusion time is not synchronized and cells undergoing nontarget fusion likely comprise a small fraction of total mass of mycelium at any given time point. This makes it challenging to separate signals from barrage and non-barraging cells. However, the induced incompatibility technique is restricted to temperature inducible HI systems and may not integrate processes such as cell contact and fusion that occur during natural barraging formation. Temperature-sensitive incompatibility systems are not available for *C. parasitica*. Thus, we used a different technique to analyze incompatibility processes in barrage cells and this should be kept in mind when comparing our results to those from *N. crassa* and *P. anserina*. We are also comparing incompatibility reactions triggered by nonorthologous incompatibility genes in these three species and processes may vary accordingly between these systems.

With the above differences in mind, we compared close gene orthologs (BLAST+ e-value < 1e-10) of *N. crassa* and *P. anserina* from the *C. parasitica* genome (Figure 8). We used the reference genome from *N. crassa* OR74a (Galagan et al. 2003) that includes 10,785 protein-coding genes, from which 3447 (32% of total genes in genome) were significantly DE during *het-c*-associated HI (Figure 8A) (Hutchison et al. 2009). However, in the *C. parasitica* dataset, we defined DE genes as significant when the DE value was above two (LFC > 2) and, in contrast, some DE values from the *N. crassa* study were below this value. By applying our
identified orthologs in N. crassa (2009). Finally, when we select C. parasitica identify how many of them show homology to e show significant (BLAST threshold Figure 8B, we identified 6863 or 63% of vic3 overall, and DE genes during HI (N. crassa or P. anserina), over all genes in C. parasitica.

threshold, we came to use only 2000 (18% of total genes in genome) out of 3447 HI DE genes reported for N. crassa (Hutchison et al. 2009). Finally, when we select N. crassa DE genes, we need to identify how many of them show homology to C. parasitica genes overall, and DE genes during vic3-incompatibility. As shown in Figure 8B, we identified 6863 or 63% of C. parasitica genes that show significant (BLAST threshold e – value < 10\(^{-16}\)) homology to N. crassa genes. Out of the 2000 N. crassa HI DE genes, only 1357 (68% of DE HI genes) show homology to C. parasitica genes. Similarly, for the P. anserina comparison, we used the genome from the S mat+ strain (Espagne et al. 2008) that contains 10,588 protein-coding genes. Out of these genes, 4672 (44% of total) were identified as significantly (LFC > 2, P-value < 0.001) DE as a result of HI (Bidard et al. 2013). Among total P. anserina genes, 7170 (67% of total) showed significant homology to C. parasitica. Among DE genes during HI in P. anserina, 2672 (57% of DE HI genes) showed significant homology to C. parasitica (Figure 8B). In comparison to the other two species, C. parasitica vic3 incompatibility causes differential expression of 531 (4.5% of total) genes. As we can see, induced HI in P. anserina and N. crassa causes a larger change in gene expression profiles than we observe in barraging C. parasitica. This may indicate that induced HI in N. crassa and P. anserina result in a larger impact on fungal cells compared to strains undergoing barrage or that differences in methodologies (discussed above) obscure some DE genes in C. parasitica. Furthermore, pairwise correlation analyses among DE HI genes between C. parasitica and N. crassa (P-value = 0.1) or C. parasitica and P. anserina (P-value = 0.3) was not statistically significant. However, there is a strong correlation between N. crassa and P. anserina HI genes DE during HI [calculated P-value < 10\(^{-6}\) in this study and P-value < 10\(^{-5}\) by Bidard et al. (2013)].

Even considering these differences, we can point out a few similarities between C. parasitica and the other two HI responses at the transcript level. There are five orthologs that are DE in all three species during incompatibility reactions (Table 2). These five genes represent some of the processes we already described: secondary metabolism, cell death, and growth. One gene universally downregulated in all three species is an ortholog of the Arabidopsis neutral ceramidase (see Table 2; IDs: 100328, NCU04721, Pa_4_6950). This protein catalyzes degradation of ceramide to sphingosine. Various studies on tumor cells in animals showed that ceramide promotes apoptotic signals coming from tumor necrosis factor (TNF) receptors (Obeid et al. 1993). Sphingosine, on the other hand, was shown to inhibit apoptosis and promotes cell growth in animals (Ohta et al. 1994). Also, a previous study indicated that activity of ceramidase in combination with growth factors promotes growth of human fibroblast cell culture (Coroneos et al. 1995). Additionally, it was shown that induction of ceramide can downregulate cytochrome p450 2C11 in mice, a process that mimics Interleukin-1 signaling (Nikolova-Karakashian et al. 1997). Downregulation of cytochrome p450s by Interleukin-1 activation is proposed to be part of the immune response making rat cells more prone to death by decreasing defense mechanisms (Chen et al. 1995). As we showed previously, p450s are enriched among DE genes and are mostly upregulated during barrage (see Figure 4 and Supplementary Table S1). Thus, we speculate that downregulation of ceramidase during HI may inhibit growth processes and favor apoptosis-like response in barraging cells.

Three out five genes in the list are associated with the modification of secondary metabolite scaffolds (as tailoring enzymes) or detoxification systems. An ortholog of cyanase from N. crassa (Table 2) is upregulated during barrage in C. parasitica. Cyanase is a detoxification enzyme that converts cyanate to NH\(_3\) and CO\(_2\) (Elmore et al. 2015). The other two genes show homology to fungal festuclavine dehydrogenase (an
oxidoreductase) (Coyle and Panaccione 2005) and cytochrome p450, both possibly involved in secondary metabolite modification. All three genes are upregulated in C. parasitica and DE (either up or down) in P. anserina and N. crassa, which may indicate strong activation of secondary metabolism during normal alore cognition reaction compared to temperature-induced HI.

Among upregulated genes, one functionally similar group worth noting are the genes involved in detoxification. As a particular example, the ortholog of GST gene (Cp ID: S8765) is one of the most highly upregulated genes during incompatibility in P. anserina and C. parasitica. This detoxification protein plays an anti-apoptotic function in neutralizing toxic compounds (Circu and Aw 2012). Considering this, it is no surprise to see cyanase and GST overexpressed during barrage, which may represent an increased detoxification signal in the C. parasitica system that originates in “non-barraging” cells exposed to the toxic environment produced by barraging hyphae. Such nonbarraging cells are presumably not present in the N. crassa and P. anserina temperature-induced systems.

Cell death mechanisms associated with HI seem to be distinct from known yeast PCD processes (Madeo et al. 2002; Severin and Hyman 2002, Wissing et al. 2004; Pozniakovsky et al. 2005; Zhang et al. 2006; Carmona-Gutierrez et al. 2010). Previous analysis showed that orthologs of 11 yeast apoptosis genes are not activated during HI-associated PCD in N. crassa (Hutchison et al. 2009). Disruption of similar genes in yeast leads to resistance to apoptotic death (Khan et al. 2005; Guaragnella et al. 2006), but in the case of N. crassa, disruption of two metacaspases (NCU09882, NCU02400) and AIF (apoptosis-inducing factor, NCU05850) does not impede HI-associated PCD (Hutchison et al. 2009). Eight of these 11 N. crassa genes have identifiable orthologs in the C. parasitica genome, but none are differentially regulated during the barrage process (data not shown). These genes include orthologs of two metacaspases (NCU09882, NCU02400), Cytochrome c (NCU01808), Ste4p (Cp ID: 105373, Nc ID: NCU00440), G-protein beta-subunit (NCU00440), Lag1 (NCU00008), Ppa1p (NCU09747), and HSF70 (NCU09602) (Hutchison et al. 2009). Similarly, other apoptotic genes identified in yeast do not show differential expression during barrage in C. parasitica.

A common feature in C. parasitica barrage and N. crassa induced HI is the production of ROS. In N. crassa, genes involved in ROS response, such as CuZnSOD, NADPH oxidase, and glutaredoxin are overexpressed during HI (Hutchison et al. 2009). In C. parasitica, none of these genes are DE in barraging strains. However, this does not indicate a lack of ROS accumulation in C. parasitica during barrage formation. On the contrary, stress response proteins like GST and QO (PIG3, see Table 1, ID: 339352) show increased expression during barrage and staining with DCFDA, an ROS indicator, confirmed ROS production in barraging cells, similar to observations from N. crassa (Hutchison et al. 2009) (see Figure 1C). As far as we know, no comparable experiments were performed for P. anserina. However, protein domains related to GST, QO, Cytochrome p450 proteins were found to be abundantly upregulated in P. anserina HI strains (Bidard et al. 2013). These data suggest that production of ROS and associated PCD mechanisms present a common feature of nonself recognition among filamentous fungi.

Lastly, the upregulation of HET-domain genes was identified in the transcriptome data sets for all three species. Cryphonectria parasitica and N. crassa showed very similar proportions of activated HET-domain genes (Hutchison et al. 2009). There were only five HET-domain genes DE in the N. crassa dataset, but surprisingly, four of them were downregulated. The one upregulated HET gene is a hypothetical protein (NCU03507) showing similarity to het-6 (NCU03533) and appears as upregulated 1h after HI induction (temperature decrease). The remaining four downregulated genes were het-6OR (NCU03533), het-c1 (NCU03125), het-c2 (NCU07947), and another uncharacterized HET-domain gene (NCU09045). Both het-c1 and het-c2 are alternate alleles from the het-c locus that are known triggers for HI (Kaneo et al. 2006; Hutchison et al. 2009). In contrast, out of 130 predicted HET-domain genes in the P. anserina genome, more than 50% are activated during induced HI. Even though C. parasitica and N. crassa have a smaller number of DE HET-domain genes compared to P. anserina, all three species demonstrate similarities in their incompatibility reactions. As described previously, HET-domain genes are only known as activators of incompatibility reactions, and activation of a single HET gene may be enough to produce the entire spectrum of incompatibility symptoms (Paoletti and Clavé 2007). Thus, in our analysis, we can additionally speculate that the number of HET-domain genes activated during barrage or HI may not influence the severity of an incompatibility reaction.

Discussion

In this study, we performed a transcriptome analysis to identify underlying molecular processes of vlc3-associated incompatibility in C. parasitica. From the analysis of DE genes, we infer that at least five major processes are activated during barrage formation: apoptosis, detoxification (against ROS and secondary metabolites), pheromones synthesis, RNA interference, and activation of HET-domain genes.

Of these general processes, overexpression of pheromone genes during barrage was surprising for at least two reasons. First, previous studies with C. parasitica indicate that pheromone genes are constitutively expressed (Kazmierczak et al. 1996; Turina et al. 2003), whereas we provide evidence that pheromone genes are upregulated during vlc3-associated incompatibility. Second, the drastic increase in expression of genes involved in sexual reproduction during VI is unexpected given that VI is not considered part of the sexual cycle. In addition, we would not expect sexual reproduction signaling during interaction between EP155 (nor DZ-66) and P74-3 given that these strains are of the same mating type (MAT-2). A connection between asexual sporulation and activation of genes involved in sexual process has not

Cp ID	Cp LFC	Pa ID	Pa LFC	Nc ID	Nc LFC	UniProt ID	Putative protein Function
254007	5.4	Pa_0_160	3.79	NCU02031	−2.09	Q12587	Cytochrome P450
263261	3.9	Pa_1_6810	2.83	NCU07474	−2.69	Q4WZ69	Festuclavine dehydrogenase
337700	3.1	Pa_1_5200	−3.38	NCU00821	−2.17	P99392	Sugar transporter STL1
358581	1.9	Pa_2_2300	−2.69	NCU01258	−3.10	Q871Z4	Cyanate hydratase (Cyanase)
100328	−2.4	Pa_4_6950	−2.88	NCU04721	−2.28	Q304B9	Neutral ceramidase (N-CDase)
been observed in filamentous fungi and it may be that any such connection is genus or species specific. A closer look at the C. parasitica life cycle shows that it does not involve development of specialized male sexual sporangia. Instead, C. parasitica uses assexual conidia as male gametes (Marra and Milgroom 2001). Thus, we can suggest inhibition of the sexual cycle happens downstream of mating genes and pheromones. Interplay between sexual and asexual sporulation has been demonstrated to involve ppoA from Aspergillus nidulans (Tsitsigiannis et al. 2004). PpoA is a fatty acid dioxygenase that is involved in regulation of balance between anamorph and teleomorph stages of development. Deletion of ppoA causes a shift toward increased asexual spore production. Downregulation of ppoA (ID: 332509) provides a plausible mechanism by which the fungus is able to inhibit the sexual cycle during barrage formation even while some mating genes are activated.

Additional evidence of association of pheromone genes with asexual sporulation comes from RT-qPCR data for other incompatibility types. In Figure 6, we can see that vic6-, vic7-, and especially vic4-associated barrages show moderate or complete lack of pheromone gene differential expression. In the case of vic4, we can suggest that barrage here is uncoupled from mating pheromones. Thus, considering our previous interpretation of the role of pheromones in barrage, we suggest that a lack of pheromone expression indicates low levels of conidiation and weak barrage reaction. This is consistent with previous observations that, out of the six characterized vic loci in C. parasitica, vic4 stands out as having a “weak” barrage phenotype that allows 100% hypovirus transmission (Cortesi et al. 2001) and does not prevent heterokaryon formation (Smith et al. 2006).

There is no known direct connection on a molecular level between HET-domain genes and PCD. However, a plausible link of activation of HET-domain genes and PCD could occur concomitantly with the activation of genes involved with secondary metabolism as previous observations suggested that HI-associated PCD in fungi resembles basic defence reactions in animals and plants (Lam et al. 2001). Our transcriptome and metabolomics data indicate that rapid activation of detoxification mechanisms coincide with overexpression of genes involved in secondary metabolism. Our analyses indicated that secondary metabolism is triggered by incompatibility and we posit that this is a probable cause of PCD in C. parasitica. A majority of stress genes identified in this study are known to be activated in response to high levels of ROS as a result of apoptosis (Ray et al. 2012). This leads us to suggest that barrage formation may involve several PCD pathways. Activation of secondary metabolite production, detoxification pathways, and ROS levels point to heterogenic structure of barrage. Hyphae that undergo incompatible fusion represent a small minority and may in fact not undergo intrinsic PCD but produce signal molecules or toxins that trigger extrinsic PCD in neighboring cells.

Acknowledgments
We would like to thank our colleagues from Carleton University and Agriculture and Agri-Food Canada for their support and input.

Funding
This work was funded by Ontario Trillium Scholarship and Natural Sciences and Engineering Research Council (NSERC).

Conflicts of interest: None declared.

Literature cited
Barhoon S, Sharon A. 2007. Bcl-2 proteins link programmed cell death with growth and morphogenetic adaptations in the fungal plant pathogen Colletotrichum gloeosporioides. Fungal Genet Biol. 44:32–43.

Bidard F, Clavé C, Sauge SJ. 2013. The transcriptional response to non-self in the fungus Podospora anserina. G3 (Bethesda).

Biella S, Smith ML, Aist JR, Cortesi P, Milgroom MG. 2002. Programmed cell death correlates with virus transmission in a filamentous fungus. Proc R Soc Lond B. 269:2269–2276.

Brown JL, Stowers L, Baer M, Trejo J, Coughlin S, et al. 1996. Human Ste20 homologue hPAK1 links GT-Pases to the JNK MAP kinase pathway. Curr Biol. 6:598–605.

Carmona-Gutierrez D, Eisenberg T, Buttner S, Meisinger C, Kroemer G, et al. 2010. Apoptosis in yeast: triggers, pathways, subroutines. Cell Death Differ. 17:763–773.

Chen J, Nikolaou-Karakashian M, Merrill AH, Morgan ET. 1995. Regulation of cytophase P450 2C11 (CYP2C11) gene expression by interleukin-1, sphingomyelin hydrolysis, and ceramides in rat hepatocytes. J Biol Chem. 270:25233–25238.

Choi GH, Dawe AL, Churbanov A, Smith ML, Milgroom MG, et al. 2012. Molecular characterization of vegetative incompatibility genes that restrict hypovirus transmission in the chestnut blight fungus Cryphonectria parasitica. Genetics. 190:113–127.

Circu ML, Ay TY. 2012. Glutathione and modulation of cell apoptosis. Biochem Biophys Acta. 1823:1767–1777.

Coroneos E, Martinez M, McKenna S, Kester M. 1995. Differential regulation of sphingomyelinase and ceramidase activities by growth factors and cytokines: implications for cellular proliferation and differentiation. J Biol Chem. 270:23305–23309.

Cortesi P, McCulloch CE, Song H, Lin H, Milgroom MG. 2001. Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica. Genetics. 159:107–118.

Cortesi P, Milgroom MG. 1998. Genetics of vegetative incompatibility in Cryphonectria parasitica. Appl Environ Microbiol. 64:2988–2994.

Coyle CM, Fanacccone DG. 2005. An ergot alkaloid biosynthesis gene and clustered hypothetical genes from Aspergillus fumigatus. Appl Environ Microbiol. 71:3112–3118.

Crouch JA, Dawe A, Aerts A, Barry K, Churchill ACL, et al. 2020. Genome sequence of the chestnut blight fungus Cryphonectria parasitica EP155: a fundamental resource for an archetypical invasive plant pathogen. Phytopathology. 110:1180–1188.

Dan I, Watanabe NM, Kusumi A. 2001. The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol. 11:220–230.

Davis RJ. 2000. Signal transduction by the JNK group of MAP kinases. Cell. 103:239–252.

Dementhon K, Iyer G, Glass NL. 2006. VIB-1 is required for expression of genes necessary for programmed cell death in Neospora canina. Eukaryot Cell. 5:2161–2173.

Dettmann A, Heilig Y, Valerius O, Ludwig S, Seiler S. 2014. Fungal communication requires the MAK-2 pathway elements STE-20 and RAS-2, the NRC-1 adapter STE-50 and the MAP kinase scaffold HAM-5. PLoS Genet. 10:e1004762.

Di Stasi D, Vallacchi V, Campi V, Ranzani T, Daniotti M, et al. 2005. DHCR24 gene expression is upregulated in melanoma metastases and associated to resistance to oxidative stress-induced apoptosis. Int J Cancer. 115:224–230.

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. Star: ultrafast universal RNA-seq aligner. Bioinformatics. 29:15–21.

Edero G, Francesca C, Dimitrios S, Andrea S, Michela G, et al. 2013. muma, an R package for metabolomics univariate and multivariate statistical analysis. Curr Metabolomics. 1:180–189.
Elleuche S, Poggeler S. 2008. A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora. Fungal Genet Biol. 45:1458–1469.

Elmore MH, McGary KL, Wiseacver JH, Slot JC, Geiser DM, et al. 2015. Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages. Genome Biol Evol. 7:789–800.

Espagne E, Lepinnet O, Malagnac F, Da Silva C, Jaillon O, et al. 2008. The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol. 9:R77.

Fuji I, Watanabe A, Sankawa U, Ehizuka Y. 2001. Identification of Claision cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chem Biol. 8:189–197.

Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, et al. 2003. The genome sequence of the filamentous fungus Neosartorya fischeri reveals that reactive oxygen species, but not oxidative stress, is a major source of killing for invasive and noninvasive biofilm cells. Proc Natl Acad Sci U S A. 102:17326–17331.

Khan MA, Chock PB, Stadler EM. 2005. Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 102:17326–17331.

Khan MA, Chock PB, Stadler EM. 2005. Knockout of caspase-like gene, YCA1, abrogates apoptosis and elevates oxidized proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 102:17326–17331.

Kibar MO, Egorova KS, Ryazansky SS, Sokolova OA, Kotov AA, et al. 2011. A novel organelle, the pNIG-body, in the nuage of Drosophila male germ cells is associated with pRNA-mediated gene silencing. Mol Biol Cell. 22:3410–3419.

Kitamura K, Katayama S, Dhit S, Sato M, Watanabe Y, et al. 2001. Phosphorylation of MeI and SteII by Pkt1 kinase inhibits sexual differentiation via ubiquitin proteolysis and 14-3-3 protein in fission yeast. Dev Cell. 1:389–399.

Kitsuzume T, Takaya N, Nakayama N, Shoun H. 2000. Fusarium oxysporum fatty-acid subterminal hydroxylase (CYP505) is a membrane-bound eukaryotic counterpart of Bacillus megaterium cytochrome P450BM3. J Biol Chem. 275:39734–39740.

Kjaerulff S, Dooijes D, Clevers H, Nielsen O. 1999. Cell differentiation by interaction of two HMG-box proteins: Mat1-Mc activates M cell-specific genes in S. pombe by recruiting the ubiquitous transcription factor Ste11 to weak binding sites. EMBO J. 16:4021–4033.

Kolling R, Hollenberg CP. 1994. The ABC-transporter Ste6 accumulates in the plasma membrane in a ubiquitinated form in endocytosis mutants. EMBO J. 13:3261–3271.

Kuehnle N, Cramer A, Kaàln RE, Luciani P, Benvenuti S, et al. 2008. Prosurvival effect of DHCR24/Seladin-1 in acute and chronic responses to oxidative stress. Mol Cell Biol. 28:539–550.

Lam E, Kato N, Lawton M. 2001. Programmed cell death, mitochondria and the plant hypersensitive response. Nature. 411:848–853.

LeBel CP, Ischiropoulos H, Bondy SC. 1992. Evaluation of the probe 2',7'-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 5:227–231.

Liu J, Ghanim M, Brown CD, Iossifov I, et al. 2009. Analysis of drosophila segmentation network identifies a JNK pathway factor overexpressed in kidney cancer. Science. 323:1218–1222.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCt) Method. Methods. 25:402–408.

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550.

Mamedov F, Herker E, Maldener C, Wissing S, Lachelt S, et al. 2002. A caspase-related protease regulates apoptosis in yeast. Mol Cell. 9:911–917.

Marra RE, Milgroom MG. 2001. The mating system of the fungus Cryptococcus parasitica: selfing and self-incompatibility. Heredity (Edinb). 86:134–143.

Matar J, Bähr J. 2006. Global roles of Ste11p, cell type, and pheromone in the control of gene expression during early sexual differentiation in fission yeast. Proc Natl Acad Sci U S A. 103:15517–15522.

Niehaus E-M, Kleigrewe K, Wiemann P, Studt L, Sieber CK, et al. 2013. Genetic manipulation of the Fusarium fujikuroi fusarin gene cluster yields insight into the complex regulation and fusarin biosynthetic pathway. Chem Biol. 20:1055–1066.

Nikolova-Karakashian M, Morgan ET, Alexander C, Liotta DC, Merrill AH. 1997. Bimodal regulation of ceramide by interleukin-1: implications for the regulation of cytochrome P450 2C11 (CYP2C11). J Biol Chem. 272:18718–18724.

Obeid L, Linardic C, Karolak L, Hannun Y. 1993. Programmed cell death induced by ceramide. Science. 259:1769–1771.

Ohta H, Yatomi Y, Sweeney EA, Hakomori S-I, Igarashi Y. 1994. A possible role of sphingosine in induction of apoptosis by tumor
necrosis factor-alpha in human neutrophils. FEBS Lett. 355: 267–270.
Overly D, Correa H, Roullier C, Chi W-C, Fang K-L, et al. 2017. Does osmotic stress affect natural product expression in fungi? Mar Drugs. 15:254.
Pandey A, Roca MG, Read ND, Glass NL. 2004. Role of a mitogen-activated protein kinase pathway during conidial germination and hyphal fusion in Neurospora crassa. Eukaryot Cell. 3: 348–358.
Paoletti M, Clavé C. 2007. The fungus-specific HET domain mediates programmed cell death in Podospora anserina. Eukaryot Cell. 6: 2001–2008.
Paoletti M, Saupe SJ. 2009. Fungal incompatibility: evolutionary origin in pathogen defense? Bioessays. 31:1201–1210.
Paoletti M, Saupe SJ, Clave C. 2007. Genesis of a fungal non-self recognition repertoire. PLoS One. 2:e283.
Pertea M, Antonescu CM, Chang T-C, Mendell JT, et al. 2005. Stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 33:290–295.
Pozniakovskiy AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Turina M, Prodi A, Afren NK. 2003. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol. 168: 287–299.
Qiao K, Chooi Y-H, Tang Y. 2011. Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1. Metab Eng. 13:723–732.
Qin J, Kang W, Leung B, McLeod M. 2003. Ste11p, a high-mobility-group box DNA-binding protein, undergoes pheromone- and nutrient-regulated nuclear-cytoplasmic shuttling. Mol Cell Biol. 23:3253–3264.
Raju NB, Perkins DD. 2000. Programmed ascospore death in the homothallic ascomycete Coniochaeta tetraspora. Fungal Genet Biol. 30:213–221.
Ray PD, Huang BW, Tsuji Y. 2012. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 24:981–990.
Riedl SJ, Salvesen GS. 2007. The apopsmosome: signalling platform of cell death. Nat Rev Mol Cell Biol. 8:405–413.
Severin FF, Hyman AA. 2002. Pheromone induces programmed cell death in S. cerevisiae. Curr Biol. 12:R233–R235.
Shiu PKT, Glass NL. 1999. Molecular characterization of tola, a mediator of mating-type-associated vegetative incompatibility in Neurospora crassa. Genetics. 151:545–555.
Shlezinger N, Goldfinger N, Sharon A. 2012. Apoptotic-like programmed cell death in fungi: the benefits in filamentous species. Front Oncol. 2:97.
Shoun H, Takaya N. 2002. Cytochromes P450nor and P450oxo of the fungus Fusarium oxysporum. Int Congr Series. 1233:89–97.
Smith ML, Gibbs CC, Milgroom MG. 2006. Heterokaryon incompatibility function of barrage-associated vegetative incompatibility genes (vic) in Cryptocentrum parasitica. Mycologia. 98:43–50.
Smith ML, Lafontaine D. 2013. The fungal sense of nonself. In: Neurospora: Genomics and Molecular Biology, edited by Kasbeker D., McClusky K. Horizon Scientific Press, Norfolk, UK, p. 9–21.
Smith ML, Micali O, Hubbard S, Mir-Rashed N, Jacobson D, et al. 2000. Vegetative incompatibility in the HET-6 region of Neurospora crassa is mediated by two linked genes. Genetics. 155:1095–1104.
Sugimoto A, Iino Y, Maeda T, Watanabe Y, Yamanoto M. 1991. Schizosaccharomyces pombe Ste11+ encodes a transcription factor with an HMG motif that is a critical regulator of sexual development. Genes Dev. 5:1990–1999.
Sun Q, Choi GH, Nuss DL. 2009. A single argonaute gene is required for induction of RNA silencing antiviral defense and promotes viral RNA recombination. Proc Natl Acad Sci U S A. 106: 17927–17932.
Tew KD, Townsend DM. 2012. Glutathione-S-transferases as determinants of cell survival and death. Antioxid Redox Signal. 17: 1728–1737.
Tsitsiadi L, Van Breusegem F, Gallos P, Zavidov A, Lam E, et al. 2011. Metacaspases. Cell Death Differ. 18:1279–1288.
Tsitsiadi GI, Jagannath S, Keller NP. 2004. The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J Biol Chem. 279:11344–11353.
Turina M, Prodi A, Afren NK. 2003. Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica. Fungal Genet Biol. 40:242–251.
Uno T, Ishizuka M, Itakura T. 2012. Cytochrome P450 (CYP) in fish. Environ Toxicol Pharmacol. 34:1–13.
Usui T, Kondoh M, Cui CB, Mayumi T, Osada H. 1998. Tryprostatin A, a specific and novel inhibitor of microtubule assembly. Biochem J. 333(Pt 3):543–548.
Wissing S, Ludovic P, Herker E, BuTtner S, Engelhardt SM, et al. 2004. An AIF orthologue regulates apoptosis in yeast. J Cell Biol. 166:969–974.
Xiang Q, Glass NL. 2002. Identification of vib-1, a locus involved in vegetative incompatibility-mediated by het-c in Neurospora crassa. Genetics. 162:89–101.
Yin Z, Ivanov VN, Habelhah H, Tew K, Ronai Z. 2000. Glutathione S-transferase p elicits protection against H2O2-induced cell death via coordinated regulation of stress kinases. Cancer Res. 60: 4053–4057.
Zhang DX, Zhang Z, Spiering MJ, Dawe AL, Nuss DL. 2014. Vegetative incompatibility loci with dedicated roles in allorecognition restrict mycovirus transmission in chestnut blight fungus. Genetics. 197: 701–714.
Zhang L, Baasiri RA, Van Afren NK. 1998. Viral repression of fungal pheromone precursor gene expression. Mol Cell Biol. 18:953–959.
Zhang N, Dudgeon DD, Paliwal S, Levchenko A, Grote E, et al. 2006. Multiple signaling pathways regulate yeast cell death during the response to mating pheromones. Mol Biol Cell. 17:3409–3422.
Zhang X, Nuss DL. 2008. A host dicer is required for defective viral RNA production and recombinant virus vector RNA instability for a positive sense RNA virus. Proc Natl Acad Sci U S A. 105: 16749–16754.