On arrangements of real roots of a real polynomial and its derivatives

Vladimir Petrov Kostov

To Prof. A.A.Bolibrukh

Abstract

We prove that all arrangements (consistent with the Rolle theorem and some other natural restrictions) of the real roots of a real polynomial and of its s-th derivative are realizable by real polynomials.

Key words: arrangement of roots
AMS classification: 12D10

In the present paper we consider a real polynomial of one real variable $P(x, a) = x^n + a_1x^{n-2} + \ldots + a_{n-1}$. We are interested in the question what arrangements between the real roots of P and $P^{(s)}$ are possible $(1 \leq s \leq n-1)$. To define an arrangement means to write down the roots of P and $P^{(s)}$ in a chain in which every two consecutive roots are connected either by an equality or by an inequality $<$. The arrangement α is said to belong to the closure of the arrangement β if it is obtained from β by replacing some inequalities by equalities. The results are the first step towards the study of real discriminant sets \{ $a \in \mathbb{R}^{n-1} | \text{Res}(P, P^{(s)}) = 0$ \}.

In an earlier paper [KoSh] it is shown that if P is hyperbolic, i.e. with n real roots, then the standard Rolle restrictions are necessary and sufficient conditions for a root arrangement to be realizable (see Theorems 2 and 4.4 in [KoSh]). Namely, denote by $x_1 \leq \ldots \leq x_n$ the roots of P and by $\xi_1 \leq \ldots \leq \xi_{n-s}$ the ones of $P^{(s)}$ (which is also hyperbolic). Then one has

$$x_l \leq \xi_l \leq x_{l+s}$$

for $l = 1, \ldots, n-s$ and every arrangement of the roots of P and $P^{(s)}$ which is consistent with (1) is realizable. One presumes also that the following conditions hold:

A) If a root of P of multiplicity $d > s$ coincides with a root of $P^{(s)}$ of multiplicity g, then $g = d - s$ (self-evident).

B) If a root ξ of $P^{(s)}$ coincides with a root of P of multiplicity $\kappa \leq s$, then ξ is a simple root of $P^{(s)}$ (see [KoSh], Lemma 4.2) and one has $\kappa \leq s - 1$.

C) If $x_l = \xi_l$ or $x_{l+s} = \xi_l$, then $x_l = x_{l+1} = \ldots = x_{l+s} = \xi_l$ (self-evident for $s = 1$ and easy to prove by induction on s for $s > 1$).

Example 1 If $n = 2$, $s = 1$, then there are two possible arrangements (i.e. consistent with (1), A) B) and C)): $x_1 < \xi_1 < x_2$ and $x_1 = \xi_1 = x_2$. They are both realizable by hyperbolic polynomials.

In the present paper we treat the case when P is arbitrary (not necessarily hyperbolic). (Notice that $P^{(s)}$ can be hyperbolic even if P is not.)
Definition 2 Suppose that P has m conjugate couples of complex roots and $n - 2m$ real roots. Then a priori $P^{(s)}$ has at least $n - 2m - s$ real roots counted with the multiplicities. Indeed, a real root of $P^{(i)}$ of multiplicity $l \geq 1$ is a root of $P^{(i+1)}$ of multiplicity $l - 1$ and between every two real roots of $P^{(i)}$ there is a root of $P^{(i+1)}$. Iterating this rule s times one obtains the existence of $n - 2m - s$ real roots of $P^{(s)}$ (we call them Rolle roots) which together with the real roots of P satisfy conditions (1), (A) and (B). A Rolle root is multiple only if it coincides with a root of P of multiplicity $> s$. Eventually, $P^{(s)}$ can have $\leq 2m$ other (non-Rolle) real roots counted with the multiplicities some (or all) of which can coincide with Rolle ones. Which real roots of $P^{(s)}$ should be chosen as Rolle and which as non-Rolle ones is not always uniquely defined and when it is not we assume that a choice is made.

Example 3 The polynomial $x^6 - x^2 = x^2(x^2 - 1)(x^2 + 1)$ has real roots $x_1 = -1, x_2 = x_3 = 0, x_4 = 1$ (and complex roots $\pm i$). One has $P' = 6x^5 - 2x = 2x(\sqrt{3}x^2 - 1)(\sqrt{3}x^2 + 1)$, i.e. P' has three Rolle roots (and no non-Rolle ones) $- 0$ and $\pm 1/3^{1/4}$ where 0 is a common root for P and P', see (A). It has also two complex roots $\pm i/3^{1/4}$. One has $P'' = 30x^4 - 2$, i.e. P'' has two Rolle roots $\pm 1/15^{1/4}$, no non-Rolle ones and two complex roots $\pm i/15^{1/4}$. One has $P''' = 120x^3$, i.e. P''' has a triple real root at 0 and no complex roots. One copy of this real root should be considered as a Rolle one and which as non-Rolle ones.

Proposition 4 Suppose that a real root of P of multiplicity d coincides with a real root of $P^{(s)}$ of multiplicity g. Then

1) if $d > s$, then one has $g = d - s$; in this case this is a Rolle root of $P^{(s)}$ of multiplicity $d - s$;

2) if $0 \leq d \leq s$, then one has $g \leq 2m + 1$ (and if $g \geq 1$, then $d < s$).

Observe that in the above example one has $m = 1$ and for $s = 3$ the estimation $2m + 1$ is attained by the multiplicity of 0 as a root of P'''. The proposition generalizes conditions A) and B) in the case of arbitrary m.

Proof:

Part 1) is self-evident. Prove part 2). If the root is non-Rolle and does not coincide with a Rolle one, then its multiplicity is $\leq 2m$. If the root is Rolle and does not coincide with a non-Rolle one, then either it coincides with a root of P of multiplicity $> s$ and we are in case 1) or it is a simple root. Finally, if the root is Rolle and coincides with a non-Rolle one, then the Rolle root must be simple (otherwise there will be a contradiction with part 1)) and the sum of their two multiplicities is $\leq 2m + 1$. □

Definition 5 An arrangement of the real roots of P and $P^{(s)}$ is called a priori admissible if there exist $n - 2m - s$ Rolle roots of $P^{(s)}$ in the sense of Definition 2 and if conditions 1) and 2) of Proposition 4 hold.

Theorem 6 All a priori admissible root arrangements are realizable by real polynomials of degree n.

Proof:

1. We explain first in $1^0 - 7^0$ why all a priori admissible arrangements in which the derivative $P^{(s)}$ is hyperbolic and which are the least generic are realizable. "Least generic" means that all non-Rolle roots of $P^{(s)}$ coincide with Rolle ones or with roots of P. The general case is treated in $8^0 - 11^0$.

To realize an a priori admissible arrangement with $P^{(s)}$ hyperbolic and with the necessary multiplicities of the real roots of P consider the family of polynomials.
\[P(x, w, g, t) = \prod_{j=1}^{q} (x - w_j)^m_j \prod_{j=1}^{m} ((x - g_j)^2 + t_j^2) \]

where \(w_j, j = 1, \ldots, q \), are the real roots of \(P \), of multiplicities \(m_j \) \((w_0 = 0 \leq w_1 \leq \ldots \leq w_q \leq 1 = w_{q+1}) \), and \(g_j \pm it_j \) are its complex roots (not necessarily distinct), \(t_j \geq 0, 0 \leq g_j \leq 1 \). We allow here equalities between the roots \(w_j \) for convenience; it will be shown that the necessary arrangement is realizable for roots with strict inequalities between them.

Denote by \(\xi_1 \leq \ldots \leq \xi_{n-s} \) the real parts of the roots of \(P^{(s)} \) \((n - 2m - s \text{ of them are just Rolle roots}) \) and by \(\eta_1 \leq \ldots \leq \eta_m \) the biggest nonnegative imaginary parts of the roots of \(P^{(s)} \) (recall that for a least generic arrangement one has \(\eta_j = 0 \)). Set \(\xi_0 = 0, \xi_{n-s+1} = 1 \). (Notice that \(P^{(s)} \) has not more conjugate couples of complex roots than \(P \), i.e. not more than \(m \).) The functions \(\xi_i, \eta_j \) are continuous in \((w, g, t)\).

2°. Suppose that for the desired arrangement of the real roots of \(P \) and \(P^{(s)} \) the Rolle and non-Rolle roots of \(P^{(s)} \) are fixed. Denote the non-Rolle roots by \(u_1 \leq \ldots \leq u_{2m} \). Impose additional requirements upon the numbers \(g_j \) as follows: if the non-Rolle roots with odd indices \(u_{2p-1}, u_{2p+1}, \ldots, u_{2p+2p'-1} \) belong to the interval \([w_j, w_{j+1}]\), \(j < q \), or to \([w_q, w_{q+1}]\), then we require that \(w_j \leq g_p \leq \ldots \leq g_{p+p'} \leq w_{j+1} \). Define the variables \(h_1 \leq \ldots \leq h_{q+m} \) as the union of the variables \(w_j (j = 1, \ldots, q) \) and \(g_i (i = 1, \ldots, m) \) with the order defined above. Hence, they belong to the unit simplex \(\Sigma_{q+m} \).

3°. In what follows we assume that the variables \(t_j \) belong to some interval \([0, N] \) where \(N > 1 \). We define with the help of the variables \(h_j, t_i \) continuous functions \(\eta_j, \zeta_i \) such that \((\eta_1, \ldots, \eta_{q+m}), (\zeta_1, \ldots, \zeta_n) \in [0, N] \). The set \(S = \Sigma_{q+m} \times [0, N]^m \) is homeomorphic to \(\Sigma_{q+2m} \). By the Brouwer fixed point theorem (see [Do], p. 57), there exists a fixed point of the mapping \(\tau : S \to S, \tau : (h, t) \to (\eta, \zeta) \), i.e. a point where one has \(\eta_j = h_j, \zeta_i = t_i \). The functions \(\eta_j, \zeta_i \) are defined such that the arrangement of the real roots of \(P \) and \(P^{(s)} \) at the fixed point is the required one.

4°. Define the functions \(\eta_j \) by the following rules:

1) Want to achieve the additional conditions (at the fixed point) \(g_p = u_{2p-1}, \ldots, g_{p+p'} = u_{2p+2p'-1} \) for all appropriate indices, see 2°; therefore we set \(\eta_i = \xi_{i_2} \) whenever \(h_i \) is a variable \(g_{p+p} \) and \(\xi_{i_2} \) is the corresponding function \(u_{2p+2l-1} \);

2) If a variable \(h_j \), which is a root \(w_i \) of multiplicity \(s + 1 \), must coincide with a simple root \(\xi_k \) of \(P^{(s)} \) or, more generally, with the roots \(\xi_k = \xi_{k+1} = \ldots = \xi_{k+l} \), then we set \(\eta_j = \xi_k \);

3) If the variables \(h_r < h_{r+1} < \ldots < h_{r+l} \) (which are all consecutive roots \(w_j \) and among which there might be roots \(w_j \) of multiplicity \(\geq s + 1 \)) lie between the Rolle roots \(\xi_k \) and \(\xi_{k+v} \) of \(P^{(s)} \) and all roots among the roots \(\xi_{k+1}, \ldots, \xi_{k+v-1} \) (if \(v > 1 \)) coincide with roots \(w_j (r \leq j \leq r+l) \) of multiplicity \(\geq s + 1 \), then we set
\[
\eta_{r+j} = \xi_k + (j+1)(\xi_{k+v} - \xi_k)/(l+2), j = 0, 1, \ldots, l.
\]

Remark 7 It follows from rules 1) – 3) that there are \(q + m \) functions \(\eta_j – as many as the variables \(h_j \).

Recall that the arrangement is least generic, i.e. for every non-Rolle root \(\xi_i \) of \(P^{(s)} \) one has either \(\xi_i = \xi_{i_1} \) where \(\xi_{i_1} \) is a Rolle one or \(\xi_i = w_{i_2} = h_j \) for some \(i_2, j \). Denote by \(l_1, \ldots, l_{2m} \) the absolute values \(|\xi_i - \xi_{i_1}| \) and \(|\xi_i - w_{i_2}| \) for all \(i, i_1 \) and \(i_2 \) as above. Set \(\Phi = l_1 + \ldots + l_{2m} \) and
\[
\xi_i = \left| t_i - \frac{1}{3m} \sum_{j=1}^{m} \theta_j - \frac{t_i}{3(N+1)m} |t_1 t_2 \ldots t_m - 1| - \frac{t_i}{12m} \Phi \right| \quad (3)
\]
Denote by t_{i_0} the greatest variable t_i at the fixed point (see 3). Observe first that one can assume that $t_{i_0} > 0$. Indeed, if $t_{i_0} = 0$, then $t_i = 0$ for all i, P is hyperbolic and the roots of P and $P^{(s)}$ define an arrangement α from the closure of the desired least generic one β.

Lemma 8 If $t_{i_0} = 0$, then there exists a real-analytic deformation of P into a real polynomial which together with its s-th derivative defines the arrangement β.

The lemma is proved after the theorem. It allows one to consider only the case $t_{i_0} > 0$. One has

$$\xi_{i_0} = t_{i_0} - \frac{1}{3m} \sum_{j=1}^{m} \theta_j - \frac{t_{i_0}}{3(N+1)^m} |t_1 t_2 \ldots t_m - 1| - \frac{t_{i_0}}{12m} \Phi.$$

Indeed, all roots of $P^{(s)}$ lie within the convex hull of all roots of P (see [PoSz], p. 108). Hence, one has $\theta_j \leq t_{i_0}$, $j = 1, \ldots, m$. One has also $|t_1 t_2 \ldots t_m - 1| \leq t_1 t_2 \ldots t_m + 1 < (N+1)^m$ and $\Phi \leq 4m$ (because for each term l_j one has $l_j \leq 2$). Thus

$$\frac{1}{3m} \sum_{j=1}^{m} \theta_j + \frac{t_{i_0}}{3(N+1)^m} |t_1 t_2 \ldots t_m - 1| + \frac{t_{i_0}}{12m} \Phi < mt_{i_0}/3m + t_{i_0}/3 + 4mt_{i_0}/12m = t_{i_0}$$

and for $i = i_0$ one can delete the absolute value sign in the right hand-side of (3). But then to have $\xi_{i_0} = t_{i_0}$ one must have $\theta_j = 0$ for $j = 1, \ldots, m$, $t_1 t_2 \ldots t_m - 1 = 0$ and $l_1 = \ldots = l_{2m} = 0$.

This means that $t_j \neq 0$, i.e. no root $g_j + i t_j$ of P will be real, that $P^{(s)}$ will indeed be hyperbolic ($\theta_j = 0$) and that all non-Rolle roots of $P^{(s)}$ equal either roots w_j of P or Rolle roots of $P^{(s)}$.

Remark 9 The condition $N > 1$ makes possible the choice of the values of the variables t_i so that $t_1 t_2 \ldots t_m - 1 = 0$. One can prove by analogy with (4) that $|\xi_i| < N$, i.e. the mapping τ is indeed from S into itself.

7. A priori the fixed point assures the existence of an arrangement only from the closure of the necessary one. The fact that at the fixed point no inequality between roots of P is replaced by equality is proved by analogy with 6 - 7 of the proof of Theorem 4.4 from [KoSh] where the case of P hyperbolic is considered. The proof there shows that equalities replacing inequalities between roots of P imply that a root of P of multiplicity $m \geq s+1$ is a root of $P^{(s)}$ of multiplicity $\geq m - s + 1$ which contradicts part 1) of Proposition 4. In the general case (P not necessarily hyperbolic) the proof is essentially the same, the presence of eventual non-Rolle roots can only increase the multiplicity of the root as a root of $P^{(s)}$.

Hence, the fixed point provides the necessary arrangement.

8. To obtain (in 8 - 9) all arrangements in which $P^{(s)}$ is hyperbolic but which are not necessarily least generic we use the same construction but with another function Φ. Namely, consider a family of such functions Φ depending on a parameter $b \in (\mathbb{R}_+, 0)$ defined as follows: if instead of $\xi_i - \xi_{i_1} = 0$, see 4, one must have $\xi_i - \xi_{i_1} > 0$ or $\xi_i - \xi_{i_2} < 0$ (and no root ξ_j or w_j lies between ξ_i and ξ_{i_1}), then in Φ we replace the absolute value $l_\nu = |\xi_i - \xi_{i_1}|$ by $|\xi_i - \xi_{i_1} - b|$ (resp. by $|\xi_i - \xi_{i_2} + b|$); in the same way for $\xi_i - w_{i_2}$, see 4. In a sense, we obtain the not least generic arrangements by deforming least generic ones the deformation parameter being b.

9. Denote by $F(b)$ the set of fixed points of the mapping τ from 3. For b small enough one has $(\eta, \zeta) \in S$. The set $F(0)$ contains all limit points of the family of sets $F(b)$ when $b \to 0$ and there exists at least one such limit point because all sets $F(b)$ (for b small enough) are
non-empty and belong to S which is compact. Hence, one can choose $b > 0$ small enough and a fixed point of $F(b)$ at which there is an inequality between two roots in the arrangement if there is an inequality in the arrangement for $b = 0$, and the equalities $\xi - \xi_1 = 0$ or $\xi - w_i = 0$ where this is necessary are replaced by the desired inequalities.

100. Obtain all arrangements in which $P^{(s)}$ is non hyperbolic and which are least generic. Suppose that $P^{(s)}$ must have exactly m' conjugate couples of complex roots. In this case we assume that m' of the couples of roots $g_j \pm it_j$ are replaced by a couple $\pm iv$ where $v > 0$ is “large”, i.e. much bigger than N. Hence, $P^{(s)}$ also has exactly m' couples of conjugate complex roots with “large” imaginary parts. One has

$$Q := P/v^{2m'} = (1 + x^2/v^2)^{m'} \prod_{j=1}^q (x - w_j)^{m_j} \prod_{j=1}^{m-m'} ((x - g_j)^2 + t_j^2),$$

i.e. the family Q is a one-parameter deformation of a family of polynomials like (2) (the role of the small parameter is played by $1/v^2$) and the existence of the necessary arrangements can be deduced by analogy with $10^0 - 7^0$ (see 9^0 for the role of the small parameter; however, the function Φ is the one from $10^0 - 7^0$).

110. To obtain the existence of all arrangements (which are not necessarily least generic and with $P^{(s)}$ not necessarily hyperbolic) one has to combine 8^0, 9^0 and 10^0. The theorem is proved. \hfill \Box

Proof of Lemma 8:

10. We assume that P has the same number of distinct real roots as in the desired arrangement β. If not, then one can first deform P within the class of hyperbolic polynomials (while remaining in the closure of β) to achieve this condition. See [Ko] for such deformations.

We begin with two observations:

1) for $a > 0$, $\mu \in \mathbb{N} \cup \{0\}$ and ν even the polynomial $Q = x^\mu(x^\nu + a)$ has a μ-fold root for $x = 0$ and its s-th derivative for $s > \mu$ has a $(\mu + \nu - s)$-fold one; Q has also $\nu/2$ couples of conjugate complex roots;

2) with a, μ and ν as above, the polynomial $Q_1 = x^\mu(x^\nu + a + aQ_2(x, a))$ where Q_2 is a polynomial in x of degree $\leq \nu - 1$, $Q_2(0, a) \equiv 0$, has ν complex zeros for a small enough and a real μ-fold root at 0; to see this set $a = c^\nu$, $x = cy$; one has $Q_1(cy, c^\nu) = c^{\mu+\nu}y^\mu(y^\nu + 1 + Q_2(cy, c^\nu));$ the last polynomial has a μ-fold root at 0 and ν roots which for c small enough are close to the roots of $y^\nu + 1$, hence, are complex.

20. Suppose that the polynomial P of degree n realizing with $P^{(s)}$ the arrangement α has a real root of multiplicity $\mu + \nu$ (with ν even) which (in order to obtain the arrangement β) must split into $\nu/2$ couples of conjugate complex roots and into a real root of multiplicity μ. (If several roots of P must split, we make them split one by one.) Suppose in addition that in the deformed polynomial (denoted by R) the real root of multiplicity μ must coincide with a root of $R^{(s)}$ of multiplicity $\mu + \nu - s$. Assume that the bifurcating root is at 0 and that

$$P = x^{\mu+\nu}(1 + h(x)) \quad h(0) = 0$$

(P is not necessarily monic). Construct the necessary deformation of P in the form

$$R(x, a) = x^\mu(x^\nu + a + b_{s-\mu}x^{s-\mu} + \ldots + b_{\nu-1}x^{\nu-1})(1 + g(x, a))$$

where $a \in (\mathbb{R}, 0)$ and $b_i = b_i(a)$ and $g(x, a)$ ($g(0, a) \equiv 0$) are defined such that all equalities of the form $x_i = \xi_j$ defining the arrangement β will be preserved.

30. Suppose first that in (6) one has $g(x, a) \equiv h(x)$. The condition
Suppose that in (6) one has $g = h(x) + \sum_{j=1}^{l} d_j h_j(x, d)$ where $d = (d_1, \ldots, d_l) \in (\mathbb{R}^l, 0)$ and h_j depend smoothly on d. Then condition (A) defines unique functions $b_i(a, d) = b_i^* a + a \sum_{j=1}^{l} d_j h_{i,j}(d)$ where $b_i^* \in \mathbb{R}$ and $h_{i,j}$ are smooth in d. This can also be checked directly.

4°. For each root $w_j \neq 0$ of P of multiplicity $< s$ which must be equal to a root ξ_i of $P(s)$ denote by d_j the deviation from its position in a deformation of P. Admitting such deviations means that in (5) the function h should be replaced by $h(x) + \sum_{j=1}^{l} d_j h_j(x, d)$.

Denote by (B) the system of all conditions $w_j = \xi_i$ for all such equalities with $w_j \neq 0$ characterizing the arrangement β.

5°. For any deformation $R^s(x, a, d) = x^\mu (x^\nu + a + b_{s-\mu} x^{s-\mu} + \ldots + b_{\nu-1} x^{\nu-1})(1 + g(x, d))$ of P (where b_k are considered as small parameters) one can find d depending smoothly on a and b_k such that for all a small enough all equalities from (B) hold. This follows from Propositions 11 and 13 from [Ko] where it is shown that the linearizations of the conditions (B) w.r.t. d are linearly independent. (In [Ko] their linear independence is proved only when P is hyperbolic; this independence is an “open” property, so it holds for all nearby polynomials as well.)

6°. The independence of these linearizations implies that for a small enough the system of conditions (B) applied to the deformation

$$\tilde{R}(x, a, d) = x^\mu (x^\nu + a + b_{s-\mu} (a, d) x^{s-\mu} + \ldots + b_{\nu-1} (a, d) x^{\nu-1})(1 + h(x) + \sum_{j=1}^{l} d_j h_j(x, d))$$

(with $b_i(a, d)$ defined as in 3°) defines unique $d_j = d_j(a)$ smooth in a. Indeed, the linearizations w.r.t. d of the system of conditions (B) from 6° and from 5° are the same.

On the other hand, b_i were defined such that condition (A) holds. Hence, for $d = d(a)$ and $b_i = b_i(a, d(a))$ (where $a > 0$ is small enough) the $(\mu + \nu)$-fold root of P at 0 splits into a real μ-fold root at 0 and ν complex roots close to 0 (see observation 2) from 1° and $P(s)$ has a $(\mu + \nu - s)$-fold root at 0. The arrangement of the other real roots of P and $P(s)$ remains the same. □

Acknowledgement. The present text is written under the impetus of the fruitful discussions with B.Z. Shapiro, the author’s host during a short visit at the University of Stockholm. The author thanks both him and his university for the kind hospitality.

References

[Do] Albrecht Dold, Lectures on algebraic topology, Classics in Mathematics, Springer (1980).

[Ko] Vladimir Petrov Kostov, On arrangements of the roots of a hyperbolic polynomial and of one of its derivatives. Electronic preprint math.AG/0211132.

[KoSh] Vladimir Petrov Kostov, Boris Zalmanovich Shapiro, On arrangements of roots for a real hyperbolic polynomial and its derivatives. Bull. Sci. Math. 126 (2002) 45-60.

[PoSz] G. Polya and G. Szegö, Problems and theorems in analysis vol. 1, Springer-Verlag (1972).
Author's address: Université de Nice, Laboratoire de Mathématiques, Parc Valrose, 06108 Nice Cedex 2, France. e-mail: kostov@math.unice.fr