BROWNIAN SUPER-EXPONENTS

VICTOR GOODMAN

Abstract. We introduce a transform on the class of stochastic exponentials for d-dimensional Brownian motions. Each stochastic exponential generates another stochastic exponential under the transform. The new exponential process is often merely a supermartingale even in cases where the original process is a martingale. We determine a necessary and sufficient condition for the transform to be a martingale process. The condition links expected values of the transformed stochastic exponential to the distribution function of certain time-integrals.

1. Introduction

If $X(t)$ is a d-dimensional progressively measurable process and W is a Brownian motion under a measure P, the stochastic exponential determined by X is the process

$$Z_X(t) = \exp\left\{ \int_0^t X(u) \cdot dW(u) - \frac{1}{2} \int_0^t |X(u)|^2 \, du \right\}.$$

The problem of checking whether $Z_X(t)$ is a true martingale is important for the use of Girsanov’s theorem. Two well-known sufficient conditions are due to Novikov and to Kazamaki; see for example Revuz and Yor [7]. Examples where the process $Z_X(t)$ is strictly a supermartingale appear in Goodman and Kim [3], Levental and Skorohod [6], and Wong and Heyde [9].

In their recent paper, Wong and Heyde [9] present a necessary and sufficient condition for any stochastic exponential to form a martingale process. Their condition is formulated in terms of an explosion time. We consider a class of stochastic exponentials for which their condition becomes more explicit. We begin with any stochastic exponential and we describe a modification, or transform, of it which generates another stochastic exponential.

The transform involves a time-integral of the form

$$\int_0^t |X(u)|^2 Z_X(u) \, du.$$

We derive a necessary and sufficient condition for the transform to be a martingale. Our condition is formulated in terms of the distribution of time integrals, and we use the relation to obtain bounds on the tail behavior of these distributions.

2000 Mathematics Subject Classification. 60H30; 60J65.

Key words and phrases. Girsanov theorem, stochastic exponential, time-integral.
Definition 1.1. Suppose that \(X(t) \) is a progressively measurable process such that for some \(T > 0 \),
\[
P \left\{ \int_0^T ||X(u)||^2 du < \infty \right\} = 1 \tag{1.1}\]
If \(Z_X(t) \) is the stochastic exponential generated by \(X(t) \) and \(y > 0 \), the associated super-exponent process \(Y_X(t) \), defined for \(t \leq T \), is
\[
Y_{X,y}(t) = \frac{Z_X(t)}{y^{-1} + \frac{1}{2} \int_0^t ||X(u)||^2 Z_X(u)du} \tag{1.2}
\]
Notice from Equation (1.2) that \(Y_{X,y}(0) = y \). In addition, \(Y_{X,y}(t) \) is positive so that the random variable
\[
\exp(Y_{X,y}(t))
\]
is greater than one. We show that this random variable has a finite expected value which is less than or equal to \(e^y \). This result is surprising since \(Y_{X,y}(t) \) is used as an exponent here. According to Definition 1.1, \(Y_{X,y}(t) \) itself contains an exponential factor \(Z_X(t) \). For this reason, we say that the process \(Y_{X,y}(t) \) is a Brownian super-exponent.

2. Transform Properties

Proposition 2.1. Suppose that a progressively measurable process \(X \) satisfies condition (1.1). Let \(Y_{X,y}(t) \) denote the super-exponent process in Definition 1.1. Then for each \(t \leq T \),
\[
Y_{X,y}(t) = y + \int_0^t Y_{X,y}(u)X(u) \cdot dW(u) - \frac{1}{2} \int_0^t ||X(u)||^2 Y_{X,y}^2(u)du \tag{2.1}
\]
Moreover, the process
\[
\exp(Y_{X,y}(t)) \tag{2.2}
\]
is a positive supermartingale on the interval \(0 \leq t \leq T \). In addition, the process
\[
\tilde{Z}(t) = \exp(Y_{X,y}(t) - y) \tag{2.3}
\]
is a stochastic exponential for \(W \). This stochastic exponential is generated by the \(d \)-dimensional process
\[
Y_{X,y}(t)X(t) \tag{2.4}
\]
Proof. It follows from the definition of $Z_X(t)$ that

$$dZ_X = Z_XX \cdot dW$$

and

$$d \int_0^t ||X||^2 Z_X du = ||X||^2 Z_X dt$$

Direct calculation shows that

$$dY_{X,y} = \frac{dZ_X}{y^{-1} + \frac{1}{2} \int_0^t ||X||^2 Z_X du} + Z_X \frac{d(y^{-1} + \frac{1}{2} \int_0^t ||X||^2 Z_X du)^{-1}}{y^{-1} + \frac{1}{2} \int_0^t ||X||^2 Z_X du}$$

$$= Y_{X,y} X \cdot W - \frac{1}{2} ||X||^2 Y_{X,y}^2 dt$$

From this equation we see that $Y_{X,y} - y$ is the sum of the Itô integral of $Y_{X,y} X$ and the elementary integral of $-\frac{1}{2} ||X||^2 Z_X$. This establishes Equation (2.1). It follows immediately from Equation (2.1) that $Y_{X,y} - y$ is the exponent of a stochastic exponential. Therefore, the process

$$\exp(Y_{X,y}(t) - y)$$

is a positive local martingale. It is well known that a positive local martingale is a supermartingale; see, for instance, Karatzas and Shreve [4]. In addition, Equation (2.3) is a direct consequence of Equation (2.1) and the definition of stochastic exponential processes.

\square

Theorem 2.2. Suppose that $X(t)$ is a deterministic function such that for some $T > 0$

$$\int_0^T ||X(u)||^2 du < \infty.$$

Let $Z_X(t)$ and $Y_{X,y}$ denote the stochastic exponential and super-exponent process generated by $X(t)$. Then for each non-negative measurable function $G(u), u > 0$, and $t < T$,

$$E[G(Y_{X,y}(t)) \exp(Y(t) - y)]$$

$$= E \left[G \left(\frac{Z_X(t)}{y^{-1} + \frac{1}{2} \int_0^t ||X(u)||^2 Z_X(u) du} ; \int_0^t ||X(u)||^2 Z_X(u) du < \frac{2}{y} \right) \right]$$

(2.6)

Proof. For $N = 1, 2, \ldots$ let τ_N be the stopping time defined by

$$\tau_N = \inf\{t \leq T : Y_{X,y}(t) \geq N\}$$

It follows from Equation (2.1) that

$$Y_{X,y}(t \land \tau_N) - y = \int_0^{t \land \tau_N} Y_{X,y}(u)X(u) \cdot dW(u) - \frac{1}{2} \int_0^{t \land \tau_N} ||X(u)||^2 Y_{X,y}^2(u) du$$

From this equation we see that $\exp(Y_{X,y}(t \land \tau_N) - y)$ is another stochastic exponential which is generated by

$$Y_{X,y}(u)1_{\{u < \tau_N\}}X(u)$$
Since this process is uniformly bounded in $L^2[0,T]$, it satisfies Novikov’s condition. It is well known (see Karatzas and Shreve [4]) that the associated stochastic exponential is a martingale. We apply Girsanov’s Theorem to change measure using the Radon-Nykodym derivative

$$\Lambda(T) = \exp(Y_{X,y}(T \land \tau_N) - y)$$

The probability measure Q_N is given by

$$\frac{dQ_N}{dP} = \Lambda(T)$$

Then with respect to Q_N the process

$$\tilde{W}(t) = W(t) - \int_0^{t \land \tau_N} Y_{X,y}(u)X(u)du$$

is a Brownian motion for $t \leq T$. Since $Y_{X,y}(t)$ is a strong solution to equation (2.1), we may consider its SDE with respect to the Brownian motion \tilde{W}:

For $t < \tau_N$

$$dY_{X,y} = Y_{X,y}X \cdot d\tilde{W} - \frac{1}{2}||X||^2Y_{X,y}^2dt$$

$$= Y_{X,y}X \cdot \{ d\tilde{W} + Y_{X,y}Xdt \} - \frac{1}{2}||X||^2Y_{X,y}^2dt$$

$$= Y_{X,y}X \cdot d\tilde{W} + \frac{1}{2}||X||^2Y_{X,y}^2dt$$

(2.7)

Now we have an explicit solution to the SDE in equation (2.7):

$$Y_{X,y}(t) = \frac{\tilde{Z}_X(t)}{y^{-1} - \frac{1}{2} \int_0^t ||X(u)||^2\tilde{Z}_X(u)du}$$

(2.8)

In this equation, $\tilde{Z}_X(t)$ denotes the stochastic exponential (generated by X) with respect to the Brownian motion \tilde{W}. Now we consider

$$E[G(Y_{X,y}(t)) \exp(Y_{X,y}(t) - y)1_{\{t < \tau_N\}}]$$

$$= E[G(Y_{X,y}(t))\Lambda(T)1_{\{t < \tau_N\}}]$$

$$= E_{Q_N}[G(Y_{X,y}(t))1_{\{t < \tau_N\}}]$$

$$= E_{Q_N}[G(\frac{\tilde{Z}_X(t)}{y^{-1} - \frac{1}{2} \int_0^t ||X(u)||^2\tilde{Z}_X(u)du})1_{\{t < \tau_N\}}]$$

(2.9)

Here we used the identity for $Y_{X,y}$ in Equation (2.8).

Moreover, from Equation (2.8) we also have

$$t < \tau_N \quad \text{iff.} \quad \max_{s \leq t} \frac{\tilde{Z}_X(s)}{y^{-1} - \frac{1}{2} \int_0^s ||X(u)||^2\tilde{Z}_X(u)du} < N$$

This allows us to write the last expected value in Equation (2.9) as

$$E[G(\frac{Z_X(t)}{y^{-1} - \frac{1}{2} \int_0^t ||X(u)||^2Z_X(u)du}) \cdot \max_{s \leq t} \frac{Z_X(s)}{y^{-1} - \frac{1}{2} \int_0^s ||X(u)||^2Z_X(u)du} < N]$$

since the integrand involves only the distribution of a Brownian motion for each choice of N. The limit of this expected value as $N \to \infty$ is
Since the limit of the first expected value in Equation (2.9) is
\[E[G(Y_{X,Y}(t)) \exp(Y_{X,Y}(t) - y)] \]
the theorem is proved. \(\square \)

3. Examples Using the Transform

Proposition 3.1. Suppose that \(X(t) \) is a deterministic function such that
\[\int_0^t ||X(u)||^2 du \]
is strictly increasing and finite for \(t \leq T < \infty \). Let \(Z_{X}(t) \) and \(Y_{X,Y} \) denote the stochastic exponential and super-exponent process generated by \(X(t) \). Then the process
\[\exp(Y_{X,Y}(t)) \]
is a strict supermartingale for \(t \leq T \). Moreover,
\[E[\exp(Y_{X,Y}(t))] = e^y \Pr \left\{ \int_0^t ||X(u)||^2 Z_{X}(u) du < \frac{2}{y} \right\} \quad (3.1) \]

Proof. We apply Theorem 2.2 using the choice \(G(u) \equiv 1 \). Equation (2.6) becomes
\[E[\exp(Y_{X,Y}(t)) - y] = \Pr \left\{ \int_0^t ||X(u)||^2 Z_{X}(u) du < \frac{2}{y} \right\} , \]
and Equation (3.1) follows. Now since each \(Z_{X}(u) \) is a log normal random variable, the process
\[\int_0^t ||X(u)||^2 Z_{X}(u) du \quad (3.2) \]
has strictly increasing sample paths. It follows that the right hand expression in Equation (3.1) is strictly decreasing. Therefore, \(\exp(Y_{X,Y}(t)) \) is a strict supermartingale. \(\square \)

Remark 3.2. Equation (3.1) provides a useful tool for investigating the distribution of a time integral given by Equation (3.2). Since each super-exponent
\[Y_{X,Y}(t) = \frac{Z_{X}(t)}{y^{-1} + \frac{1}{2} \int_0^t ||X(u)||^2 Z_{X}(u) du} \]
is point-wise increasing as a function of y, it follows from the identity

$$\Pr \left\{ \int_0^t ||X(u)||^2 Z_X(u) \, du < a \right\} = \exp\left(-\frac{2}{a}\right) E[\exp(Y_{X,2/a}(t))]$$

that the distribution function is the product of a decreasing function of a and the explicit factor $\exp(-2/a)$. It is not known whether $\exp(Y_{X,\infty}(t))$ has finite expectation. A finite expected value would produce sharp estimates for the lower tail probability of (3.2). We conjecture that

$$E[\frac{2Z_X(t)}{\int_0^t ||X(u)||^2 Z_X(u) \, du}] = \infty.$$

Example 3.3. In the case of $d = 1$ the choice $X(t) \equiv \sigma$ specializes the time integral in (3.2) to a time integral of *geometric Brownian motion*:

$$\int_0^t \exp(\sigma W(u) - \sigma^2 u/2) \, du \tag{3.3}$$

Expected values involving related time integrals appear in computational problems of financial mathematics. Consequently, distribution properties of these time integrals have been studied by many authors; see Dufresne [1], Geman and Yor [2], Rogers and Shi [8], and Goodman and Kim [3]. Although most works have used analytic techniques to express the distribution in various integral forms, in Goodman and Kim [3] martingales techniques are used exclusively. A special case of Equation (3.1) appears in [3], Theorem 4.1:

$$\Pr \left\{ \int_0^t \exp(W(u) - u/2) \, du \leq a \right\}$$

$$= \exp\left(-\frac{2}{a}\right) E[\exp(\frac{2 \exp(W(t) - t/2)}{a + \int_0^t \exp(W(u) - u/2) \, du})]$$

The right hand expression for the distribution can be differentiated with respect to a. Consequently, it is shown in [3] that the density function multiplied by $a^2/2$ equals the difference between two distribution functions of time integrals of slightly different geometric Brownian motions.

Example 3.4.

In contrast to deterministic choices for $X(t)$, where the stochastic exponential

$$\exp(Y_{X,y}(t))$$

is never a martingale, stochastic choices for X may produce martingales. Of course, the introduction of a stopping time, as we have seen in the proof of Theorem 2.2, may produce a martingale. In other cases, stopping times are not required.

Consider the example of $X(t) = \cos(W(t))$, again in the case $d = 1$. Then

$$Z_X(t) = \exp(\int_0^t \cos(W(u)) \, dW(u) - \frac{1}{2} \int_0^t \cos^2(W(u)) \, du)$$
SUPER-EXPONENTS

\[= \exp(\sin(W(t)) + \frac{1}{2} \int_0^t \sin(W(u) - \cos^2(W(u)))du) \]

is a bounded random variable. Therefore, its super-exponent, \(Y_{\cos(W),y}(t) \) is also bounded. Then since the local martingale
\[\exp(Y_{\cos(W),y}(t)) \]
is also bounded, it is a martingale. It is of interest then to know when a super-exponent generates a martingale process.

4. THE MARTINGALE CONDITION

Theorem 1 of Wong and Heyde [9] identifies a necessary and sufficient condition for a progressively measurable process \(\tilde{X} \) to generate a martingale stochastic exponential process. For completeness, we state their result here.

Proposition 4.1. ([9], Proposition 1) Consider a d-dimensional progressively measurable process \(\tilde{X}(t) = \xi(W(\cdot), t) \). Then there will also exist a d-dimensional progressively measurable process
\[\tilde{R}(t) = \xi(W(\cdot) + \int_0^t \tilde{R}(u)du, t) \]
defined possibly up to an explosion time \(\tau^{MR} \) where
\[\tau^{MR} = \inf \left\{ t \in \mathbb{R}^+ : M_{\tilde{R}}(t) = \int_0^t ||\tilde{R}(u)||^2 du = \infty \right\} \]

Theorem 4.2. ([9], Theorem 1) Consider \(\tilde{X}(t) \) and \(\tilde{R}(t) \) as defined in Proposition 4.1. The stochastic exponential \(Z_{\tilde{X}}(T) \) satisfies
\[P(\tau^{MR} > T) = E_P[Z_{\tilde{X}}(T)] \]
and hence is a martingale if and only if \(P(\tau^{MR} > T) = 1 \).

We apply Theorem 1 of [9] using \(\tilde{X}(t) = Y_{X,Y}(t)X(t) \). That is, our generating process is the one in Proposition 2.1 where the stochastic exponential process is
\[\exp(Y_{X,Y}(t) - y) \].

We first show that each generating process \(X \) implicitly defines another process \(X' \). This allows us to identify the process \(R(t) \).
Proposition 4.3. Suppose that a d-dimensional progressively measurable process \(X(t) \) satisfies
\[
Pr \left(\int_0^T ||X(u)||^2 du < \infty \right) = 1
\]
for some \(T > 0 \). Then there exists another progressively measurable process \(X'(t) \), so that if \(\tilde{X}(t) := Y_{X,y}(t)X(t)1_{\{t \leq T\}} \) in Proposition 4.1, then the process \(\tilde{R}(t) \) of the proposition satisfies
\[
\tilde{R}(t) = \frac{Z_{X'}(t)}{y^{-1} - \frac{1}{2} \int_0^t ||X'(u)||^2 Z_{X'}(u) du} X'(t)
\]
for all \(t < \tau_{MR} \).

Moreover,
\[
\tau_{MR} = \inf \left\{ t \in \mathbb{R}^+ : \int_0^{t \wedge T} ||X'(u)||^2 Z_{X'}(u) du = 2/y \right\}
\]

Proof. We follow the proof of Proposition 4.1. Let
\[
\tilde{X}(t) := Y_{X,y}(t)X(t)1_{\{t \leq T\}}.
\]
For each \(N = 1, 2, \ldots \) we define a sequence of stopping times by
\[
\tau_N = \inf \left\{ t \in \mathbb{R}^+ : \int_0^t Y_{X,y}^2(u)||X(u)||^2 1_{\{u \leq T\}} du \geq N \right\}
\]

It follows from Equation (2.1) that
\[
Z_{\tilde{X}}(t \wedge \tau_N) = \exp(Y_{X,y}(t \wedge \tau_N) - y)
\]
forms a martingale. As in the proof of Theorem 2.2, we apply Girsanov’s theorem using the Radon-Nikodym derivative
\[
\Lambda(T) = \exp(Y_{X,y}(T \wedge \tau_N) - y)
\]
to obtain the probability measure \(Q_N \) where
\[
dQ_N = \Lambda(T)dP.
\]

With respect to the measure \(Q_N \), the process
\[
\tilde{W}(t) = W(t) - \int_0^{t \wedge \tau_N} Y_{X,y}(u)X(u) du
\]
is a Brownian motion. Hence, on the set \(\{ t \leq \tau_N \wedge T \} \) we have
\[
\tilde{X}(t) = \xi(\tilde{W}(\cdot) + \int_0^{\tau_N} Y_{X,y}(u)X(u) du, t)
\]
That is,
\[
Y_{X,y}(t)X(t) = \xi(\tilde{W}(\cdot) + \int_0^{\tau_N} Y_{X,y}(u)X(u) du, t)
\] (4.1)
Now the process $Y_{X,y}(t)$ can also be described in terms of the Brownian motion \tilde{W}. The calculations in Equation (2.7) also apply to the stochastic case. Equation (2.8) gives an explicit formula for $Y_{X,y}$:

$$Y_{X,y}(t) = \frac{\tilde{Z}_X(t)}{y^{-1} - \frac{1}{2} \int_0^t \frac{||X(u)||^2\tilde{Z}_X(u)du}{||X(u)||^2}} \quad (4.2)$$

We see that each term of Equation (4.1) is a functional of X and the Brownian motion \tilde{W}. This demonstrates the existence of a process X so that (4.1) and (4.2) hold up to a time τ_N defined by the integral of $Y_{X,y}(u)X(u)$, using the Brownian motion \tilde{W}.

Therefore, using the identical distribution of W and the (original) measure P, we see that there exists a progressively measurable process $X'(t)$ so that

$$Z_{X'}(t) = \frac{\tilde{Z}_X(t)}{y^{-1} - \frac{1}{2} \int_0^t ||X'(u)||^2\tilde{Z}_{X'}(u)du} \quad X'(t) = \xi(W(\cdot) + \int_0 \xi_{X,y}(u)X'(u)du, t)$$

Here, we have abbreviated the complete expression on the right hand side using (4.2) to provide the notation. That is, $Y_{X',y}$ denotes the expression in Equation (4.2) but in the original Brownian motion and X is replaced by the process X'.

As $N \to \infty$ the stopping time τ_N increases to the stopping time

$$\tau = \inf\{t \leq T : \int_0^t Y_{X,y}^2(u)||X'(u)||^2du = \infty\}$$

By construction, the new process X' satisfies

$$\int_0^T ||X'(u)||^2du < \infty \quad \text{a. s. and} \quad X'(u) = 0 \quad \text{for} \quad u > T$$

Therefore, the process $Y_{X',y}$ (again, defined as in (4.2)) is bounded along each sample path up to the time where its denominator first hits zero. This defines the stopping time τ_{M_R} of the Proposition.

\[\Box\]

Theorem 4.4. Suppose that $X(t)$ and $X'(t)$ are d-dimensional processes as defined in Proposition 4.3. Then the super-exponent process $Y_{X,y}(t)$ satisfies

$$E[\exp(Y_{X,y}(t) - y)] = Pr \left\{ \int_0^t ||X'(u)||^2\tilde{Z}_X(u)du < 2/y \right\} \quad (4.3)$$

for $t \leq T$.

Proof. From Theorem 4.2 and Proposition 4.3 we have

$$E[\exp(Y_{X,y}(t) - y)] = Pr \left\{ \tau_{M_R} > t \right\}$$

$$= Pr \left\{ \int_0^t Y_{X,y}^2(u)||X'(u)||^2du < \infty \right\}$$
\begin{align*}
= \Pr \left\{ \int_0^t \frac{Z_X'(u)}{y^{-1} - \frac{1}{2} \int_0^u \|X'(r)\|^2 \frac{y}{2} \|X'(r)\|^2 dr} \|X'(u)\|^2 du < \infty \right\} \\
= \Pr \left\{ \int_0^t \|X'(u)\|^2 Z_X(u) du < \frac{2}{y} \right\}
\end{align*}
\hspace{1cm} \Box

\textbf{References}

1. Dufresne, D.: The integral of geometric Brownian motion; \textit{Adv. in Appl. Probab.} \textbf{33} (2001) 223-241
2. Geman, H, and Yor, M.: Asian Options, Bessel Processes and Perpetuities; \textit{Math. Finance} \textbf{2} (1993) 349-375
3. Goodman, V. and Kim, K.: Exponential martingales and time integrals of Brownian motion \textit{preprint}
4. Karatzas, I., and Shreve, S.: \textit{Brownian Motion and Stochastic Calculus}. Springer-Verlag, New York, 1991
5. Kim, K.: Moment Generating function of the inverse of integral of geometric Brownian Motion; \textit{Proc. Amer. Math. Soc.} \textbf{132} (2004) 2753-2759
6. Levental, S. and Skorohod, A. V.; A necessary and sufficient condition for absence of arbitrage with tame portfolios; \textit{Ann. Appl. Prob.} \textbf{5} (1995) 906-925
7. Revuz, D. and Yor, M.; \textit{Continuous Martingales and Brownian Motion}, \textit{3rd edn}. Springer-Verlag, New York, 1999
8. Rogers, L.C.G., and Shi, Z.: The value of an Asian option \textit{J. Appl Appl. Probab.} \textbf{32} (1995) 1077-1088
9. Wong, B. and Heyde, C.C.; On the martingale property of stochastic exponentials; \textit{J. Appl Probab.} \textbf{41} (2004) 654-664
10. Yor, M.: On some exponential functionals of Brownian motion; \textit{Adv. in Appl. Probab.} \textbf{24} (1992) 509-531

\textbf{Victor Goodman}: \textit{Department of Mathematics, Indiana University, Bloomington, Indiana, U.S.A.}
\textit{E-mail address: goodmanv@indiana.edu}