TIME REVERSAL OF VOLterra PROCESSES DRIVEN
STOCHASTIC DIFFERENTIAL EQUATIONS

L. DECREUSEFOND

Abstract. We consider stochastic differential equations driven by some Volterra processes. Under time reversal, these equations are transformed into past dependent stochastic differential equations driven by a standard Brownian motion. We are then in position to derive existence and uniqueness of solutions of the Volterra driven SDE considered at the beginning.

1. Introduction

Fractional Brownian motion is one the first example of a process which is not a semi-martingale and for which we aim to develop a stochastic calculus. That means we want to define a stochastic integral and solve stochastic differential equations driven by such a process. From the very beginning of this program, two approaches do exist. One approach is based on the sample-paths properties of fBm, mainly its Hölder continuity or its finite $p$-variation. The other way to proceed relies on the gaussianity of fBm. The former is mainly deterministic and was initiated by Zähle [41], Feyel, de la Pradelle [12] and Russo, Vallois [31, 32]. Then, came the notion of rough paths introduced by Lyons [22], whose application to fBm relies on the work of Coutin, Qian[4]. These works have been extended in the subsequent works [20, 21, 3, 15, 14, 23, 26, 27, 16, 25, 8]. A new way of thinking came with the independent but related works of Feyel, de la Pradelle [13] and Gubinelli [17]. The integral with respect to fBm was shown to exist as the unique process satisfying some characterization (analytic in the case of [13], algebraic in [17]). As a byproduct, this showed that almost all the existing integrals throughout the literature are all the same as they all satisfy these two conditions. Behind each approach but the last too, is a construction of an integral defined for a regularization of fBm, then the whole work is to show that under some convenient hypothesis, the approximate integrals converge to a quantity which is called the stochastic integral with respect to fBm. The main tool to prove the convergence is either integration by parts in the sense of fractional deterministic calculus, either enrichment of the fBm by some iterated integrals proved to exist independently or by analytic continuation [37, 36].

In the probabilistic approach [7, 6, 5, 9, 19, 30, 29, 2, 1], the idea is also to define an approximate integral and then prove its convergence. It turns out that the key tool is here the integration by parts in the sense of Malliavin calculus.

In dimension greater than one, with the deterministic approach, one knows how to define the stochastic integral and prove existence and uniqueness of fBm driven

2010 Mathematics Subject Classification. 60G18, 60H10, 60H07, 60H05, 60H10.

Key words and phrases. fractional Brownian motion, Malliavin calculus, stochastic differential equations, time reversal.
SDEs for fBm with Hurst index greater than 1/4. Within the probabilistic framework, one knows how to define a stochastic integral for any value of $H$ but one can’t prove existence and uniqueness of SDEs whatever the value of $H$. The primary motivation of this work was to circumvent this problem.

In [7, 9], we defined stochastic integrals with respect to fBm as a “damped-Stratonovitch” integral with respect to the underlying standard Brownian motion. This integral is defined as the limit of Riemann-Stratonovitch sums, the convergence of which is proved after an integration by parts in the sense of Malliavin calculus. Unfortunately, this manipulation generates non-adaptiveness: Formally the result can be expressed as

$$\int_0^t u(s) \circ dB^H(s) = \delta(K_n^* u) + \text{trace}(K_n^* \nabla u).$$

Even if $u$ is adapted (with respect to the Brownian filtration), the process $(s \mapsto K_n^t u(s))$ is anticipative. However, the stochastic integral process $(t \mapsto \int_0^t u(s) \circ dB^H(s))$ remains adapted so the anticipativeness is in some sense artificial. The motivation of this work is to show that up to time reversal, we can work with adapted process and Itô integrals.

In what follows, there is no restriction about the dimension but we need to assume that for any component $B^H$ is an fBm, the Hurst index of which is greater than $1/2$.

Consider that we want to solve the equation

(1) \[ X_t = x + \int_0^t \sigma(X_s) \circ dB^H(s), \quad 0 \leq t \leq T \]

where $\sigma$ is a deterministic function whose properties will be fixed below. It turns out that it is essential to investigate the more general equations:

(A) \[ X_{r,t} = x + \int_r^t \sigma(X_{r,s}) \circ dB^H(s), \quad 0 \leq r \leq t \leq T. \]

The strategy is then the following: We will first consider the reciprocal problem:

(B) \[ Y_{r,t} = x - \int_r^t \sigma(Y_{s,t}) \circ dB^H(s), \quad 0 \leq r \leq t \leq T. \]

The first critical point is that when we consider \( \{Z_{r,t} := Y_{t-r,t}, \ r \in [0, t]\} \), this process solves an adapted, past dependent, stochastic differential equation with respect to a standard Brownian motion. Moreover, because $K_H$ is lower-triangular and sufficiently regular, the trace term vanishes in the equation defining $Z$. We have then reduced the problem to an SDE with coefficients dependent on the past, a problem which can be handled by the usual contraction methods. This paper is organized as follows: After the preliminaries of Section 2, we address, in Section 3, the problem of Malliavin calculus and time reversal. This part is interesting in its own since stochastic calculus of variations is a framework oblivious to time. Constructing such a notion of time is achieved using the notion of resolution of the identity as introduced in [40]. We then introduce the second key ingredient which is the notion of strict causality or quasinilpotence, see [42] for a related application. In Section 4, we show that solving Equation (B) reduces to solve a past dependent stochastic differential equation with respect to a standard Brownian motion, see Equation (C) below. In Section 5, we prove existence, uniqueness and some properties of this equation. Technical lemmas are postponed to Section 6.
2. Preliminaries

Let $T > 0$ be a fixed real number. For a function $f \in L^1([0, T]; \mathbb{R}^n)$, we define $\tau_T f$ by

$$\tau_T f(s) = f(T - s) \text{ for any } s \in [0, T].$$

For $t \in [0, T]$, $e_t f$ will represent the restriction of $f$ to $[0, t]$, i.e., $e_t f = f(0, t]$. For any linear map $A$, its adjoint in $L^2([0, T]; \mathbb{R}^n)$. For $\eta \in (0, 1]$, the space of $\eta$-Hölder continuous functions on $[0, T]$ is equipped with the norm

$$\|f\| = \sup_{0 \leq s < t \leq T} \frac{|f(t) - f(s)|}{|t - s|^\eta} + \|f\|_{L^\infty}.$$ 

Its topological dual is denoted by $\text{Hol}(\eta)^\ast$. For $f \in L^1([0, T]; \mathbb{R}^n; dt)$, (denoted by $L^1$ for short) the left and right fractional integrals of $f$ are defined by:

$$\left(I^\gamma_{-} f\right)(x) = \frac{1}{\Gamma(\gamma)} \int_0^x f(t)(x - t)^{\gamma - 1} \, dt, \quad x \geq 0,$$

$$\left(I^\gamma_{+} f\right)(x) = \frac{1}{\Gamma(\gamma)} \int_x^T f(t)(t - x)^{\gamma - 1} \, dt, \quad x \leq T,$$

where $\gamma > 0$ and $I^0_{+} = I^0_{-} = \text{Id}$. For any $\gamma \geq 0$, $p, q \geq 1$, any $f \in L^p$ and $g \in L^q$ where $p^{-1} + q^{-1} \leq \gamma$, we have:

$$\int_0^T f(s)(I^\gamma_{+} g)(s) \, ds = \int_0^T (I^\gamma_{-} f)(s)g(s) \, ds.$$

The Besov-Liouville space $I^\gamma_{+} (L^p) := I^\gamma_{+} I^p$ is usually equipped with the norm:

$$(3) \quad \|I^\gamma_{+} f\|_{I^\gamma_{+} I^p} = \|f\|_{L^p}.$$ 

Analogously, the Besov-Liouville space $I^\gamma_{-} (L^p) := I^\gamma_{-} I^p$ is usually equipped with the norm:

$$\|I^\gamma_{-} f\|_{I^\gamma_{-} I^p} = \|f\|_{L^p}.$$ 

We then have the following continuity results (see [12, 33]):

**Proposition 2.1.**

i. If $0 < \gamma < 1, 1 < p < 1/\gamma$, then $I^\gamma_{+}$ is a bounded operator from $L^p$ into $L^q$ with $q = p(1 - \gamma)p)^{-1}$.

ii. For any $0 < \gamma < 1$ and any $p \geq 1$, $I^\gamma_{+}$ is continuously embedded in $\text{Hol}(\gamma - 1/p)$ provided that $\gamma - 1/p > 0$.

iii. For any $0 < \gamma < \beta < 1$, $\text{Hol}(\beta)$ is compactly embedded in $I^\gamma_{-}\infty$.

iv. For $\gamma < 1$, the spaces $I^\gamma_{+}$ and $I^\gamma_{-}$ are canonically isomorphic. We will thus use the notation $I^\gamma$ to denote any of this spaces.

3. Malliavin calculus and time reversal

Our reference probability space is $\Omega = C_0([0, T], \mathbb{R}^n)$, the space of $\mathbb{R}^n$-valued, continuous functions, null at time 0. The Cameron-Martin space is denoted by $H$ and is defined as $H = I^1_{+} (L^2([0, T]))$. In what follows, the space $L^2([0, T])$ is identified with its topological dual. We denote by $\kappa$ the canonical embedding from $H$ into $\Omega$. The probability measure $P$ on $\Omega$ is such that the canonical map $W : \omega \mapsto (\omega(t), t \in [0, T])$ defines a standard $n$-dimensional Brownian motion. A mapping $\phi$ from $\Omega$ into some separable Hilbert space $H$ is called cylindrical if it is of the
form \( \phi(w) = \sum_{i=1}^{d} f_i((v_{i,1}, w), \cdots, (v_{i,n}, w))x_i \) where for each \( i, f_i \in C^\infty_0(\mathbb{R}^n, \mathbb{R}) \) and \((v_{i,j}, j = 1 \ldots n)\) is a sequence of \( \Omega^* \). For such a function we define \( \nabla^W \phi \) as

\[
\nabla^W \phi(w) = \sum_{i,j=1}^{d} \partial_j f_i((v_{i,1}, w), \cdots, (v_{i,n}, w))\tilde{v}_{i,j} \otimes x_i,
\]

where \( \tilde{v} \) is the image of \( v \in \Omega^* \) by the map \((I_1^+ \circ \kappa)^*\). From the quasi-invariance of the Wiener measure [39], it follows that \( \nabla^W \) is a closable operator on \( L^p(\Omega; \mathcal{F}) \), \( p \geq 1 \), and we will denote its closure with the same notation. The powers of \( \nabla^W \) are defined by iterating this procedure. For \( p > 1, k \in \mathbb{N} \), we denote by \( \mathbb{D}^p,k(\mathcal{F}) \) the completion of \( \mathcal{F} \)-valued cylindrical functions under the following norm

\[
\|\phi\|_{p,k} = \sum_{i=0}^{k} \|((\nabla^W)^i \phi)\|_{L^p(\Omega; \mathcal{F} \otimes L^{p}([0,1]))}.
\]

We denote by \( L^p,1 \) the space \( \mathbb{D}^1,1(\mathbb{L}^p([0,T]; \mathbb{R}^n)) \). The divergence, denoted \( \delta^W \) is the adjoint of \( \nabla^W \): \( v \) belongs to Dom\( p \delta^W \) whenever for any cylindrical \( \phi \),

\[
|E \left[ \int_0^T v_s \nabla^W_s \phi \, ds \right]| \leq c\|\phi\|_{L^p}
\]

and for such a process \( v \),

\[
E \left[ \int_0^T v_s \nabla^W_s \phi \, ds \right] = E \left[ \phi \delta^W v \right].
\]

We need first to introduce the “time reversal” operator, denoted by \( \tau_T \) and defined by:

\[
\tau_T : \mathcal{L}^0([0,T]; \mathbb{R}^n) \longrightarrow \mathcal{L}^0([0,T]; \mathbb{R}^n)
\]

\[
\omega \longmapsto \omega(T - \cdot).
\]

We introduced the temporary notation \( W \) for standard Brownian to clarify the forthcoming distinction between a standard Brownian motion and its time reversal. Actually, the time reversal of a standard Brownian is also a standard Brownian motion and thus, both of them “live” in the same Wiener space. We now precise how their respective Malliavin gradient and divergence are linked. Consider \( B = (B(t), t \in [0, T]) \) an \( n \)-dimensional standard Brownian motion and \( B^T = (B(T) - B(T - t), t \in [0, T]) \) its time reversal. Consider the following map

\[
\Theta_T : \Omega \longrightarrow \Omega
\]

\[
\omega \longmapsto \hat{\omega} = \omega(T) - \tau_T \omega,
\]

and the commutative diagram

\[
\begin{array}{ccc}
\mathcal{L}^2 & \xrightarrow{\tau_T} & \mathcal{L}^2 \\
\mathcal{L}^2 & \xrightarrow{\theta_T} & \mathcal{L}^2 \\
\mathcal{L}^2 & \xrightarrow{\theta_T} & \mathcal{L}^2 \\
\end{array}
\]

\[
\begin{array}{ccc}
\mathbb{H} & \xrightarrow{\theta_T} & \mathbb{H} \\
\mathbb{H} & \xrightarrow{\theta_T} & \mathbb{H} \\
\mathbb{H} & \xrightarrow{\theta_T} & \mathbb{H} \\
\end{array}
\]
Note that $\Theta^{-1}_T = \Theta_T$ since $\omega(0) = 0$. For a function $f \in C^\infty_{0}(\mathbb{R}^{nk})$, we define
\[
\nabla_r f(\omega(t_1), \cdots, \omega(t_k)) = \sum_{j=1}^{k} \partial_j f(\omega(t_1), \cdots, \omega(t_k)) \mathbf{1}_{[0, t_j]}(r) \text{ and }
\]
\[
\tilde{\nabla}_r f(\bar{\omega}(t_1), \cdots, \bar{\omega}(t_k)) = \sum_{j=1}^{k} \partial_j f(\bar{\omega}(t_1), \cdots, \bar{\omega}(t_k)) \mathbf{1}_{[0, t_j]}(r).
\]

The operator $\nabla = \nabla^B$ (respectively $\tilde{\nabla} = \tilde{\nabla}^B$) is the Malliavin gradient associated with a standard Brownian motion (respectively its time reversal). Since,
\[
f(\bar{\omega}(t_1), \cdots, \bar{\omega}(t_k)) = f(\omega(T) - \omega(T - t_1), \cdots, \omega(T) - \omega(T - t_k)),
\]
we can consider $f(\bar{\omega}(t_1), \cdots, \bar{\omega}(t_k))$ as a cylindrical function with respect to the standard Brownian motion. As such its gradient is given by
\[
\nabla_r f(\bar{\omega}(t_1), \cdots, \bar{\omega}(t_k)) = \sum_{j=1}^{k} \partial_j f(\bar{\omega}(t_1), \cdots, \bar{\omega}(t_k)) \mathbf{1}_{[t_j - T, T]}(r).
\]

We thus have, for any cylindrical function $F$,
\[
(4) \quad \nabla F \circ \Theta_T(\omega) = \tau_T \tilde{\nabla} F(\bar{\omega}).
\]

Since $\Theta_T^* \mathcal{P} = \mathcal{P}$ and $\tau_T$ is continuous from $\mathcal{L}^p$ into itself for any $p$, it is then easily shown that the spaces $\mathcal{D}_{p,k}$ and $\tilde{\mathcal{D}}_{p,k}$ (with obvious notations) coincide for any $p, k$ and that (4) holds for any element of one of these spaces. Hence we have proved the following theorem:

**Theorem 3.1.** For any $p \geq 1$ and any integer $k$, the spaces $\mathcal{D}_{p,k}$ and $\tilde{\mathcal{D}}_{p,k}$ coincide. For any $F \in \mathcal{D}_{p,k}$ for some $p, k$,
\[
\nabla (F \circ \Theta_T) = \tau_T \tilde{\nabla} (F \circ \Theta_T), \quad \mathcal{P} \text{ a.s.}
\]

By duality, an analog result about follows for divergences.

**Theorem 3.2.** A process $u$ belongs to the domain of $\delta$ if and only if $\tau_T u$ belongs to the domain of $\delta$ and then, the following equality holds:
\[
(5) \quad \delta(u(\bar{\omega}))(\bar{\omega}) = \delta(\tau_T u(\bar{\omega}))(\omega) = \delta((\tau_T u) \circ \Theta_T)(\omega).
\]

**Proof.** For $h \in \mathcal{L}^2$, for cylindrical $F$, we have on the one hand:
\[
\mathbf{E} \left[ F(\bar{\omega}) \delta h(\bar{\omega}) \right] = \mathbf{E} \left[ (\tilde{\nabla} F(\bar{\omega}), h)_{\mathcal{L}^2} \right],
\]
and on the other hand,
\[
\mathbf{E} \left[ (\tilde{\nabla} F(\bar{\omega}), h)_{\mathcal{L}^2} \right] = \mathbf{E} \left[ [\tau_T \nabla F \circ \Theta_T(\omega), h]_{\mathcal{L}^2} \right] = \mathbf{E} \left[ ([\nabla F \circ \Theta_T(\omega), \tau_T h]_{\mathcal{L}^2} \right] = \mathbf{E} \left[ (F \circ \Theta_T(\omega) \delta(\tau_T h)(\omega) \right] = \mathbf{E} \left[ F(\bar{\omega}) \delta(\tau_T h)(\omega) \right].
\]

Since this is valid for any cylindrical $F$, (5) holds for $h \in \mathcal{L}^2$. Now, for $u$ in the domain of divergence (see [28, 39]),
\[
\delta u = \sum_i \left( (u, h_i)_{\mathcal{L}^2} \delta h_i - (\nabla u, h_i \otimes h_i)_{\mathcal{L}^2_\mathcal{L}^2} \right),
\]
where \((h_i, i \in \mathbb{N})\) is an orthonormal basis of \(L^2([0, T]; \mathbb{R}^n)\). Thus, we have
\[
\delta(u(\omega))(\tilde{\omega}) = \sum_i \left((u(\omega), h_i)_{L^2} \delta h_i(\tilde{\omega}) - (\nabla u(\omega), h_i \otimes h_i)_{L^2 \otimes L^2}\right)
\]
\[
= \sum_i \left((u(\omega), h_i)_{L^2} \delta(\tau_T h_i)(\omega) - (\nabla u(\omega), \tau_T h_i \otimes h_i)_{L^2 \otimes L^2}\right)
\]
\[
= \sum_i \left((\tau_T u(\omega), \tau_T h_i)_{L^2} \delta(\tau_T h_i)(\omega) - (\nabla \tau_T u(\omega), \tau_T h_i \otimes \tau_T h_i)_{L^2 \otimes L^2}\right),
\]
where we have taken into account that \(\tau_T\) in an involution. Since \((h_i, i \in \mathbb{N})\) is an orthonormal basis of \(L^2([0, T]; \mathbb{R}^n)\), identity (5) is satisfied for any \(u\) in the domain of \(\delta\).

### 3.1. Causality and quasi-nilpotence

In anticipative calculus, the notion of trace of an operator plays a crucial role, we refer to [10] for more details on trace.

**Definition 3.1.** Let \(V\) be a bounded map from \(L^2([0, T]; \mathbb{R}^n)\) into itself. The map \(V\) is said to be trace-class whenever for one CONB \((h_n, n \geq 1)\) of \(L^2([0, T]; \mathbb{R}^n)\),
\[
\sum_{n \geq 1} |(V h_n, h_n)_{L^2}| \text{ is finite.}
\]

Then, the trace of \(V\) is defined by
\[
\text{trace}(V) = \sum_{n \geq 1} (V h_n, h_n)_{L^2}.
\]

It is easily shown that the notion of trace does not depend on the choice of the CONB.

**Definition 3.2.** A family \(E\) of projections \(E_\lambda, \lambda \in [0, 1]\) in a Hilbert space \(H\) is called a resolution of the identity if it satisfies the conditions
\[
(1) \quad E_0 = 0 \quad \text{and} \quad E_1 = \text{Id}.
\]
\[
(2) \quad E_\lambda E_\mu = E_{\lambda \wedge \mu}.
\]
\[
(3) \quad \lim_{\mu \downarrow \lambda} E_\mu = E_\lambda \quad \text{for any} \quad \lambda \in [0, 1) \quad \text{and} \quad \lim_{\mu \uparrow 1} E_\mu = \text{Id}.
\]

For instance, the family \(E = (e_{\lambda T}, \lambda \in [0, 1])\) is a resolution of the identity in \(L^2([0, T]; \mathbb{R}^n)\).

**Definition 3.3.** A partition \(\pi\) of \([0, T]\) is a sequence \(\{0 = t_0 < t_1 < \ldots < t_n = T\}\).

Its mesh is denoted by \(\|\pi\|\) and defined by \(\|\pi\| = \sup_i |t_{i+1} - t_i|\). For \(t \in \pi \setminus \{T\}\), \(t_+\) is the least term of \(\pi\) strictly greater than \(t\).

The causality plays a crucial role in what follows. The next definition is just the formalization in terms of operator of the intuitive notion of causality.

**Definition 3.4.** A continuous map \(V\) from an Hilbert space \(H\) into itself is said to be \(E\)-causal if the following condition holds:
\[
E_\lambda V E_\lambda = E_\lambda V \quad \text{for any} \quad \lambda \in [0, 1].
\]

For instance, for \(H = L^2([0, T]; \mathbb{R}^n)\), an operator \(V\) in integral form \(V f(t) = \int_0^T V(t, s) f(s) \, ds\) is causal if and only if \(V(t, s) = 0\) for \(s \geq t\), i.e., computing \(V f(t)\) needs only the knowledge of \(f\) up to time \(t\) and not after. Unfortunately, this notion of causality is insufficient for our purpose and we are led to introduce the notion of strict causality as in [11].
Definition 3.5. Let $V$ be a causal operator. It is a strictly causal operator whenever for any $\varepsilon > 0$ there exists a partition $\pi$ of $[0, T]$ such that for any $\pi' \subset \pi$,
$$
\|(E_{t_+} - E_t)V(E_{t_+} - E_t)\| < \varepsilon \quad \text{for any } t' \in \pi'.
$$

Note carefully that the identity map is causal but not strictly causal. Indeed, if $V = \text{Id}$,
$$
\|(E_{t_+} - E_t)V(E_{t_+} - E_t)\| = \|E_{t_+} - E_t\| = 1
$$
since $E_{t_+} - E_t$ is a projection. However, for $\gamma > 0$, we have the following result:

Lemma 3.3. Let $H = L^2([0, T]; \mathbb{R}^n)$. Assume the resolution of the identity to be either $E = (\pi_{\lambda T}, \lambda \in [0, 1])$ or $E = (\text{Id} - e_{(1-\lambda)T}, \lambda \in [0, 1])$. If $V$ is an $E$-causal map continuous from $L^2$ into $L^p$ for some $p > 2$ then $V$ is strictly $E$-causal.

Proof. Let $\pi$ be any partition of $[0, T]$. Assume $E = (\pi_{\lambda T}, \lambda \in [0, 1])$, the very same proof (replacing $t_+$ by $t_-$ and reordering bounds in the integrals) works for the other mentioned resolution of the identity. According to Hölder formula, we have: For any $t \in \pi$,
$$
\|(E_{t_+} - E_t)V(E_{t_+} - E_t)f\|_{L^2}^2 = \int_t^{t_+} V(f1_{(t, r)})(s)^2 \, ds
\leq (r - t)^{\gamma + 1/2}\|V(f1_{(t, r)})\|_{L^{2/(1-2\gamma)}}^2
\leq c(r - t)^{\gamma + 1/2}\|f\|_{L^2}^2.
$$
Thus for any $\varepsilon > 0$, there exists $\eta > 0$ such that $|\pi| < \eta$ implies $\|(E_{t_+} - E_t)V(E_{t_+} - E_t)f\|_{L^2} \leq \varepsilon$. The proof is thus complete. \hfill \Box

The importance of strict causality lies in the next theorem we borrow from [11].

Theorem 3.4. The set of strictly causal operators coincides with the set of quasi-nilpotent operators, i.e., trace-class operators such that trace$(V^n) = 0$ for any integer $n \geq 1$.

Moreover, we have the following stability theorem.

Theorem 3.5. The set of strictly causal operators is a two-sided ideal in the set of causal operators.

Definition 3.6. Let $E$ be a resolution of the identity in the Hilbert space $L^2([0, T]; \mathbb{R}^n)$. Consider the filtration $\mathcal{F}^E_t$ defined as
$$
\mathcal{F}^E_t = \sigma(\delta^w(E_\lambda h), \lambda \leq t, h \in L^2).
$$
An $L^2$-valued random variable $u$ is said to be $\mathcal{F}^E$-adapted if for any $h \in L^2$, the real valued process $< E_\lambda u, h >$ is $\mathcal{F}^E$-adapted. We denote by $\mathbb{D}_{p,k}(\mathcal{F})$ the set of $\mathcal{F}^E$-adapted random variable belonging to $\mathbb{D}_{p,k}(\mathcal{F})$.

If $E = (\pi_{\lambda T}, \lambda \in [0, 1])$, the notion of $\mathcal{F}^E$ adaptedness coincides with the usual one for the Brownian filtration and it is well known that a process $u$ is adapted if and only if $\nabla_r^w u(s) = 0$ for $r > s$. This result can be generalized to any resolution of the identity.

Theorem 3.6 (Proposition 3.1 of [40]). Let $u$ belongs to $\mathbb{D}_{p,1}$. Then $u$ is $\mathcal{F}^E$-adapted if and only if $\nabla_r^w u$ is $E$-causal.

We then have the following key theorem:
Theorem 3.7. Assume the resolution of the identity to be $E = (e^{\lambda T}, \lambda \in [0, 1])$ either $E = (\text{Id} - e^{(1-\lambda)T}, \lambda \in [0, 1])$. Assume that $V$ is continuous from $L^2$ into $L^p$ for some $p > 2$ and that $V$ is $E$-strictly causal. Let $u$ be an element of $\mathbb{D}^p_{E,1}(L^2)$. Then, $V \nabla^W u$ is of trace class and we have trace($V \nabla^W u$) = 0.

Proof. Since $u$ is adapted, $\nabla^W u$ is $E$-causal. According to Theorem 3.5, $V \nabla^W u$ is strictly causal and the result follows by Theorem 3.4. \qed

In what follows, $E^0$ is the resolution of the identity in the Hilbert space $L^2$ defined by $e_{\lambda} f = f 1_{[0, \lambda T]}$ and $\hat{E}^0$ is the resolution of the identity defined by $\hat{e}_{\lambda} f = f 1_{[(1-\lambda)T, T]}$. The filtration $\mathcal{F} E^0$ and $\mathcal{F} \hat{E}^0$ are defined accordingly. Next lemma is immediate when $V$ is given in the form $V f(t) = \int_0^T V(t, s) f(s) \, ds$. Unfortunately such a representation as an integral operator is not always available. We give here an algebraic proof to emphasize the importance of causality.

Lemma 3.8. Let $V$ a map from $L^2([0, T]; \mathbb{R}^n)$ into itself such that $V$ is $E^0$-causal. Then, the map $V_T \tau_T^{-1}$ is $E$-causal.

Proof. This is a purely algebraic lemma once we have noticed that
\begin{equation}
\tau_T e_r = (\text{Id} - e^{T-r}) \tau_T \text{ for any } 0 \leq r \leq T.
\end{equation}

For, it suffices to write
\begin{equation}
\tau_T e_r f(s) = f(T - s) 1_{[0, r]}(T - s)
= f(T - s) 1_{[T-r, T]}(s) = (\text{Id} - e^{T-r}) \tau_T f(s), \text{ for any } 0 \leq s \leq T.
\end{equation}

We have to show that
\begin{equation*}
e_r \tau_T V_T \tau_T e_r = e_r \tau_T V_T \tau_T, \text{ or equivalently } e_r \tau_T V \tau_T e_r = \tau_T V \tau_T e_r,
\end{equation*}

since $e_r^* = e_r$ and $\tau_T^* = \tau_T$. Now, (7) yields
\begin{equation*}
e_r \tau_T V \tau_T e_r = \tau_T V \tau_T e_r - e^{T-r} V \tau_T e_r.
\end{equation*}

Use (7) again to obtain
\begin{equation*}
e^{T-r} V \tau_T e_r = e^{T-r} V (\text{Id} - e^{T-r}) \tau_T = (e^{T-r} V - e^{T-r} V e^{T-r}) \tau_T = 0,
\end{equation*}

since $V$ is $E$-causal. \qed

4. Stochastic integration with respect to Volterra processes

In what follows, $\eta$ belongs to $(0, 1]$ and $V$ is a linear operator. For any $p \geq 2$, we set

Hypothesis I $(p, \eta)$. The linear map $V$ is continuous from $L^p([0, T]; \mathbb{R}^n)$ into the Banach space $\text{Hol}(\eta)$.

Definition 4.1. Assume that Hypothesis I$(p, \eta)$ holds. The Volterra process associated to $V$, denoted by $W^V$, is defined by
\begin{equation*}
W^V(t) = \delta^W(V(1_{[0, t]})), \text{ for all } t \in [0, T].
\end{equation*}
For any subdivision $\pi$ of $[0, T]$, i.e., $\pi = \{0 = t_0 < t_1 < \ldots < t_n = T\}$, of mesh $|\pi|$, we consider the Stratonovitch sums:

$$R^\pi(t, u) = \delta^W \left( \sum_{t_i \in \pi} \frac{1}{\theta} \int_{t_i \wedge t}^{t_{i+1} \wedge t} V(u(r)) \, dr \right)$$

$$+ \sum_{t_i \in \pi} \frac{1}{\theta} \int_{[t_i \wedge t, t_{i+1} \wedge t]^2} V(\nabla^W_r u)(s) \, ds \, dr.$$

**Definition 4.2.** We say that $u$ is $V$-Stratonovitch integrable on $[0, t]$ whenever the family $R^\pi(t, u)$, defined in (8), converges in probability as $|\pi|$ goes to $0$. In this case the limit will be denoted by $\int_0^t u(s) \circ dW^V(s)$.

**Example 1.** The first example is the so-called Lévy fractional Brownian motion of Hurst index $H > 1/2$, defined as

$$\frac{1}{\Gamma(H + 1/2)} \int_0^t (t - s)^H - 1/2 \, dB_s = \delta(t^{H-1/2}(1_{[0, t]})).$$

This amounts to say that $V = t^{H-1/2}$. Thus Hypothesis $I(p, H - 1/2 - 1/p)$ holds provided $p(H - 1/2) > 1$.

**Example 2.** The other classical example is the fractional Brownian motion with stationary increments of Hurst index $H > 1/2$, which can be written as

$$\int_0^t K_H(t, s) \, dB(s),$$

where

$$K_H(t, r) = \frac{(t - r)^{H - 1/2}}{\Gamma(H + 1/2)} F\left(\frac{1}{2} - H, H - \frac{1}{2}, H + \frac{1}{2}, 1 - \frac{r}{t} ; 1_{[0, t]}(r)\right).$$

The Gauss hyper-geometric function $F(\alpha, \beta, \gamma, z)$ (see [24]) is the analytic continuation on $\mathbb{C} \times \mathbb{C} \times \mathbb{C} \setminus \{0, 1, 2, \ldots\} \times \{z \in \mathbb{C}, \operatorname{Arg}|1 - z| < \pi\}$ of the power series

$$\sum_{k=0}^{+\infty} \frac{\alpha(\beta) \gamma_k}{k!} z^k,$$

and

$$(a)_0 = 1 \quad \text{and} \quad (a)_k = \frac{(a + k)!}{\Gamma(a)} = a(a + 1) \ldots (a + k - 1).$$

We know from [33] that $K_H$ is an isomorphism from $L^p([0, 1])$ onto $\mathcal{L}^{H+1/2,p}$ and

$$K_H f = \int_0^t x^{H-1/2} \int_0^{x^{1/2}} x^{1/2-H} f.$$
Example 3. Beyond these two well known cases, we can investigate the case of multi-fractional Brownian motion defined as

$$\int_0^t K_{H(t)}(t, s) \, dB(s),$$

for a deterministic function $H$. Consider the linear map $M_H$ defined by

$$M_H : \mathcal{L}^2 \rightarrow \mathcal{L}^2$$

$$f \mapsto \int_0^t K_{H(t)}(t, s) f(s) \, ds.$$

The next result is extracted from [7].

**Theorem 4.2.** Assume that Hypothesis I($p, \eta$) holds. Assume that $u$ belongs to $\mathbb{L}_{p, 1}$. Then $u$ is $V$-Stratonovitch integrable, there exists a process which we denote by $D^W u$ such that $D^W u$ belongs to $\mathbb{L}_{p}^d$ and

$$\int_0^T u(s) \circ dW(s) = \delta^W(Vu) + \int_0^T D^W u(s) \, ds.$$  \hspace{1cm} (9)

Moreover, for any $r \leq T$, $e_r u$ is $V$-Stratonovitch integrable and

$$\int_0^r u(s) \circ dW(s) = \int_0^T (e_r u)(s) \circ dW(s) = \delta^W(Ve_r u) + \int_0^r D^W u(s) \, ds.$$

**Proof.** Since $u$ belongs to $\mathbb{L}_{p, 1}$, $d\mathbb{P} \otimes dr$-a.s., the map $(s \mapsto \nabla^W u_s)$ belongs to $\mathcal{L}^p$. Then, hypothesis I($p$) entails that $(s \mapsto V(\nabla^W u_s))$ is $H_\lambda$-Hölder continuous. The map

$$\Omega \times [0, T] \rightarrow \text{Hol}^*(\eta) \times \text{Hol}(\eta)$$

$$(\omega, r) \mapsto (\varepsilon_r, (s \mapsto V(\nabla^W u_s)))$$
is measurable, hence the process
\[ D^W u(\omega, r) = \left< \varepsilon_r, V(\nabla^W u)(.) \right>_{\text{Hol}(\eta)^*}, \text{Hol}(\eta) = V(\nabla^W u)(r), \]
is measurable. Moreover,
\[
E \left[ \int_0^T |D^W u(r)|^p \, dr \right] = E \left[ \int_0^T |\varepsilon_r, V(\nabla^W u)(.) \rangle_{\text{Hol}(\eta)^*} |^p \, dr \right]
\leq E \left[ \int_0^T \|\varepsilon_r\|_{\text{Hol}(\eta)^*}^p \|V(\nabla^W u)\|_{\text{Hol}(\eta)}^p \, dr \right]
\leq cT^p \|u\|_{L_{p,1}}^p.
\]
(10)

Then, we have
\[
E \left[ \sum_{t_i \in I} \frac{1}{\theta_i} \int_{[t_i \wedge t_{i+1} \wedge t]} \left( V(\nabla^W u)(s) - D^W u(r) \right) \, ds \, dr \right]^p
\leq E \left[ \sum_{t_i \in I} \frac{1}{\theta_i} \int_{[t_i \wedge t_{i+1} \wedge t]} \langle \varepsilon_s - \varepsilon_r, V(\nabla^W u) \rangle_{\text{Hol}(\eta)^*}, \text{Hol}(\eta) \rangle^p \, ds \, dr \right]
\leq E \left[ \sum_{t_i \in I} \frac{1}{\theta_i} \int_{[t_i \wedge t_{i+1} \wedge t]} \|\varepsilon_s - \varepsilon_r\|_{\text{Hol}(\eta)}^p \|V(\nabla^W u)\|_{\text{Hol}(\eta)}^p \, ds \, dr \right]
\leq cE \left[ \sum_{t_i \in I} \frac{1}{\theta_i} \int_{[t_i \wedge t_{i+1} \wedge t]} (s - r)^{p q} \int_0^T |\nabla^W u(a)|^p \, da \, ds \, dr \right]
\leq c|\pi|^{p q} E \left[ \sum_{t_i \in I} \int_{t_i \wedge t_{i+1}} \int_0^T |\nabla^W u_a|^p \, da \, dr \right]
\leq c|\pi|^{p q} \|u\|_{L_{p,1}}^p.
\]

Since
\[
\sum_{t_i \in I} \frac{1}{\theta_i} \int_{[t_i \wedge t_{i+1} \wedge t]} D^W u(r) \, ds \, dr = \int_0^T D^W u(r) \, dr,
\]
Eqn. (11) means that
\[
\sum_{t_i \in I} \frac{1}{\theta_i} \int_{[t_i \wedge t_{i+1} \wedge t]}^T V(\nabla^W u)(s) \, dr \, ds \xrightarrow{L^p(\mathcal{P})} \frac{I_{\{\pi \to 0}}}{\int_0^T D^W u(r) \, dr}.
\]
The remaining of the proof of (9) follows the classical proof for convergence of Stratonovitch sums as exposed in [28].

**Theorem 4.3.** Assume that Hypothesis I(p, \eta) holds. Let u belong to \( L_{p,1} \). If \( V\nabla^W u \) is of trace class, then
\[
\int_0^T D^W u(s) \, ds \rightleftharpoons \text{trace}(V\nabla^W u).
\]
Moreover,
\[ E \left[ |\text{trace}(V \nabla W u)|^p \right] \leq c \| u \|_{L_{p,1}}^p. \]

Proof. For each \( k \), let \( (\phi_k, m, m = 1, \ldots, 2^k) \) be the functions \( \phi_k, m = 2^{k/2} 1_{[(m-1)2^{-k}, m2^{-k})} \). Let \( P_k \) be the projection onto the span of the \( \phi_k, m \), since \( \nabla W u \) is of trace class, we have (see [34])
\[ \text{trace}(V \nabla W p_t u) = \lim_{k \to +\infty} \text{trace}(P_k V \nabla W p_t u P_k). \]

Now,
\[ \text{trace}(P_k V \nabla W u P_k) = \sum_{m=1}^{2^k} \int_{(m-1)2^{-k} \wedge t}^{m2^{-k} \wedge t} \int_{(m-1)2^{-k} \wedge t}^{m2^{-k} \wedge t} V(\nabla_r W)(s) \, ds \, dr. \]

According to the proof of Theorem 4.2, the first part of the theorem follows. The second part is then a rewriting of (10).

There is another result from [7] which is worth quoting for the sequel.

**Theorem 4.4.** Assume that Hypothesis I(\( p, \eta \)) holds. Let \( u \) belong to \( L_{p,1} \). Then,
\[ E \left[ \left\| \int_0^T u(s) \circ dW^V(s) \right\|_{\text{Hol}(\eta)}^p \right] \leq c \| u \|_{L_{p,1}}^p, \]
where \( c \) does not depend on \( u \).

We can then follow the approach given for Stratonovitch integral as in [28] and show that we have a substitution formula. For \( p \geq 1 \), let \( \Gamma_p \) be the set of random fields:
\[ u : \mathbb{R}^m \to \mathbb{L}_{p,1} \]
\[ x \mapsto ((\omega, s) \mapsto u(\omega, s, x)) \]
equipped with the semi-norms,
\[ p_K(u) = \sup_{x \in K} \| u(x) \|_{L_{p,1}} \]
for any compact \( K \) of \( \mathbb{R}^m \).

**Corollary 4.5.** Assume that Hypothesis I(\( p, \eta \)) holds. Let \( \{u(x), x \in \mathbb{R}^m\} \) belong to \( \Gamma_p \). Let \( F \) be a random variable such that \( ((\omega, s) \mapsto u(\omega, s, F)) \) belongs to \( \mathbb{L}_{p,1} \).
Then,
\[ \int_0^T u(s, F) \circ dW^V(s) = \int_0^T u(s, x) \circ dW^V_s \bigg|_{x=F}. \]

Proof. Simple random fields of the form
\[ u(\omega, s, x) = \sum_{l=1}^{K} H_l(x) u_l(\omega, s) \]
with \( H_t \) smooth and \( u_t \) in \( L_{p,1} \), \( 1 \leq p \), are dense in \( \Gamma_p \). In view of (12), it is sufficient to prove the result for such random fields. By linearity, we can reduce the proof to random fields of the form \( H(x)u(\omega, s) \). Now for any partition \( \pi \),

\[
\delta^W \left( \sum_{\ell_i \in \pi} \frac{1}{\theta_i} \int_{t_{i,\ell}}^{t_{i+1,\ell}} H(F) V(u(\omega, ))(r) \, dr \, 1_{[t_i, t_{i+1})} \right)
\]

\[
= H(F) \delta^W \left( \sum_{\ell_i \in \pi} \frac{1}{\theta_i} \int_{t_{i,\ell}}^{t_{i+1,\ell}} V(u(\omega, ))(r) \, dr \, 1_{[t_i, t_{i+1})} \right)
\]

\[
- \sum_{\ell_i \in \pi} \int_{t_{i,\ell}}^{t_{i+1,\ell}} \int_{t_{i,\ell}}^{t_{i+1,\ell}} H'(F) \nabla_s^W F V u(r) \, ds \, dr.
\]

On the other hand,

\[
\nabla_s^W (H(F)u(\omega, r)) = H'(F) \nabla_s^W F u(r),
\]

hence

\[
\sum_{\ell_i \in \pi} \frac{1}{\theta_i} \int_{[t_{i,\ell}, t_{i+1,\ell}]} V(\nabla_r^W H(F)u)(s) \, ds \, dr
\]

\[
= \sum_{\ell_i \in \pi} \frac{1}{\theta_i} \int_{[t_{i,\ell}, t_{i+1,\ell}]} H'(F) \nabla_s^W F V u(r) \, ds \, dr.
\]

According to Theorem 4.2, Eqn. (13) is satisfied for simple random fields. \( \square \)

**Definition 4.3.** For any \( 0 \leq r \leq t \leq T \), for \( u \in L_{p,1} \), we define \( \int_r^t u(s) \circ dW^V(s) \) as

\[
\int_r^t u(s) \circ dW^V(s) = \int_0^t u(s) \circ dW^V(s) - \int_0^r u(s) \circ dW^V(s)
\]

\[
= \int_0^T e_t u(s) \circ dW^V(s) - \int_0^T e_r u(s) \circ dW^V(s)
\]

\[
= \delta^W (V(e_t - e_r) u) + \int_r^T D^W u(s) \, ds.
\]

**Lemma 4.6.** Let \( A \) and \( B \) be two continuous maps from \( L^2([0, T]; \mathbb{R}^n) \) into itself. Then, the map \( \tau_r A \otimes B \) (resp. \( A \tau_r \otimes B \)) is of trace class if and only if the map \( A \otimes \tau_r B \) (resp. \( A \otimes B \tau_r \)) is of trace class. Moreover, in such a situation,

\[
\text{trace}(\tau_r A \otimes B) = \text{trace}(A \otimes \tau_r B), \text{ resp. } \text{trace}(A \tau_r \otimes B) = \text{trace}(A \otimes B \tau_r).
\]

**Proof.** The map \( \tau_r A \otimes B \) is of trace class if and only if for \( (h_n, n \geq 1) \) a CONB of \( L^2 \),

\[
\sum_n \| (\tau_r A \otimes B, h_n \otimes h_n)_{L^2} \| < \infty.
\]
But,
\[\sum_n |(\tau T A \otimes B, h_n \otimes h_n)_{L^2}| = \sum_n |(A_h, \tau T B h_n)_{L^2}| = \sum_n |(A \otimes \tau T B, h_n \otimes h_n)_{L^2}|,\]
since \(\tau T\) is self-adjoint in \(L^2\). The first result follows. The second part follows by adjuction.

**Corollary 4.7.** Let \(u \in L_{2,1}\) such that \(\nabla^W \otimes \tau T V u\) and \(\nabla^W \otimes V_{\tau T} u\) are of trace class. Then, \(\tau T \nabla^W \otimes V u\) and \(\nabla^W \tau T \otimes V u\) are of trace class. Moreover, we have:
\[
\text{trace}(\nabla^W \otimes \tau T V u) = \text{trace}(\tau T \nabla^W \otimes V u)

\text{and } \text{trace}(\nabla^W \otimes (V_{\tau T}) u) = \text{trace}(\nabla^W \tau T \otimes V u).
\]

**Proof.** For \(u\) simple, i.e., of the form
\[
u(\omega, s) = \sum_{j=1}^n U_i(\omega) g_i(s),
\]
the result follows from Lemma 4.6. Such random fields are dense in \(\Gamma_p\) and according to Theorem 4.3, the trace function is continuous on \(\Gamma_p\) hence the result is satisfied in full generality.

**Theorem 4.8.** Assume that Hypothesis I(\(p, \eta\)) holds. Let \(u\) belong to \(w_{p,1}\) and let \(\tilde V_T = \tau T V\). Assume furthermore that \(V\) is \(E_0\)-causal and that \(\tilde u = u \circ \Theta_T^{-1}\) is \(F^{E_0}\)-adapted. Then,
\[
\int_{T-r}^{T-r} \tau T u(s) \circ dW^V(s) = \int_r^T \tilde V_T(1_{[r,t]} \tilde u)(s) d\tilde B^T(s), \quad 0 \leq r \leq t \leq T,
\]
where the last integral is an Itô integral with respect to the time reversed Brownian motion \(\tilde B^T(s) = B(T) - B(T-s) = \Theta_T(B)(s)\).

**Proof.** We first study the divergence term. In view of 3.2, we have
\[
\delta^B(V(eT-r - eT-t) \tau T \tilde u \circ \Theta_T) = \delta^B(V \tau T (e_t - e_r) \tilde u \circ \Theta_T)

= \delta^B(\tau T \tilde V_T (e_t - e_r) \tilde u \circ \Theta_T)

= \tilde \delta(\tilde V_T (e_t - e_r) \tilde u)(\tilde w)

= \int_r^T \tilde V_T(1_{[r,t]} \tilde u)(s) d\tilde B^T(s).
\]
According to Theorem 3.8, \((\tilde V_T)^*\) is \(\tilde E_0\) causal and according to 3.3, it is strictly \(E_0\) causal. Thus, Theorem 3.7 implies that \(\nabla \tilde V_T (e_t - e_r) \tilde u\) is of trace class and quasi-nilpotent. Hence Lemma 4.7 induces that
\[
\tau T \tilde V_T \tau T \otimes \tau T \tilde V_T (e_t - e_r) \tilde u
\]
is trace-class and quasi-nilpotent. Now, according to Theorem 3.1, we have
\[
\tau T \tilde V_T \tau T \otimes \tau T \tilde V_T (e_t - e_r) \tilde u = V(\nabla \tau T (eT-r - eT-t) \tilde u \circ \Theta_T).
\]
According to Theorem 4.2, we have proved (14).
Remark 4.1. Note that at a formal level, we could have an easy proof of this theorem. For instance, consider the Levy fBm, a simple computations shows that $\tilde{V}_T = I_{0+}^{H-1/2}$ for any $T$. Thus, we are led to compute $\text{trace}(I_{0+}^{H-1/2} \nabla u)$. If we had sufficient regularity, we could write

$$\text{trace}(I_{0+}^{H-1/2} \nabla u) = \int_0^T \int_0^s (s-r)^{H-3/2} \nabla_x u(r) \ dr \ ds = 0,$$

since $\nabla_x u(r) = 0$ for $s > r$ for $u$ adapted. Obviously, there are many flaws in these lines of proof: The operator $I_{0+}^{H-1/2} \nabla u$ is not regular enough for such an expression of the trace to be true. Even more, there is absolutely no reason for $\tilde{V}_T \nabla u$ to be a kernel operator so we can’t hope such a formula. These are the reasons that we need to work with operators and not with kernels.

5. Volterra driven SDEs

Let $\mathfrak{G}$ the group of homeomorphisms of $\mathbb{R}^n$ equipped with the distance: We introduce a distance $d$ on $\mathfrak{G}$ by

$$d(\varphi, \phi) = \rho(\varphi, \phi) + \rho(\varphi^{-1}, \phi^{-1}),$$

where

$$\rho(\varphi, \phi) = \sum_{N=1}^{\infty} 2^{-N} \sup_{|x| \leq N} |\varphi(x) - \phi(x)|.$$

Then, $\mathfrak{G}$ is a complete topological group. Consider the equations

(A) \quad $X_{r,t} = x + \int_r^t \sigma(X_{r,s}) \circ dW^V(s), \ 0 \leq r \leq t \leq T.$

(B) \quad $Y_{r,t} = x - \int_r^t \sigma(Y_{s,t}) \circ dW^V(s), \ 0 \leq r \leq t \leq T.$

Definition 5.1. By a solution of (A), we mean a measurable map

$$\Omega \times [0,T] \times [0,T] \rightarrow \mathfrak{G}$$

$$((\omega, r, t) \mapsto (x \mapsto X_{r,t}(\omega, x)))$$

such that the following properties are satisfied:

1. For any $0 \leq r \leq t \leq T$, for any $x \in \mathbb{R}^n$, $X_{r,t}(\omega, x)$ is $\sigma\{W^V(s), r \leq s \leq t\}$-measurable,
2. For any $0 \leq r \leq T$, for any $x \in \mathbb{R}^n$, the processes $(\omega, t) \mapsto X_{r,t}(\omega, x)$ and $(\omega, t) \mapsto X_{r,t}^{-1}(\omega, x)$ belong to $L_{p,1}^p$ for some $p \geq 2$.
3. For any $0 \leq r \leq s \leq t$, for any $x \in \mathbb{R}^n$, the following identity is satisfied:

$$X_{r,t}(\omega, x) = X_{s,t}(\omega, X_{r,s}(\omega, x)).$$

4. Equation (A) is satisfied for any $0 \leq r \leq t \leq T$ $\mathbb{P}$-a.s.

Definition 5.2. By a solution of (B), we mean a measurable map

$$\Omega \times [0,T] \times [0,T] \rightarrow \mathfrak{G}$$

$$((\omega, r, t) \mapsto (x \mapsto Y_{r,t}(\omega, x)))$$

such that the following properties are satisfied:

1. For any $0 \leq r \leq t \leq T$, for any $x \in \mathbb{R}^n$, $Y_{r,t}(\omega, x)$ is $\sigma\{W^V(s), r \leq s \leq t\}$-measurable,
(2) For any $0 \leq r \leq T$, for any $x \in \mathbb{R}^n$, the processes $(\omega, r) \mapsto Y_{r,t}(\omega, x)$ and $(\omega, r) \mapsto Y_{r,t}^{-1}(\omega, x)$ belong to $\mathbb{L}_{p,1}$ for some $p \geq 2$.
(3) Equation (B) is satisfied for any $0 \leq r \leq t \leq T$ $P$-a.s..
(4) For any $0 \leq r \leq s \leq t$, for any $x \in \mathbb{R}^n$, the following identity is satisfied:
$$Y_{r,t}(\omega, x) = Y_{r,s}(\omega, Y_{s,t}(\omega, x)).$$

At last consider the equation, for any $0 \leq r \leq t \leq T$,

$$Z_{r,t} = x - \int_r^t \hat{V}_T(\sigma \circ Z_{r,s} 1_{[r,t]})(s) \, d\hat{B}^T(s)$$

where $B$ is a standard $n$-dimensional Brownian motion.

**Definition 5.3.** By a solution of (C), we mean a measurable map
$$\Omega \times [0, T] \times [0, T] \to \emptyset$$
$$(\omega, r, t) \mapsto (x \mapsto Z_{r,t}(\omega, x))$$

such that the following properties are satisfied:

1. For any $0 \leq r \leq t \leq T$, for any $x \in \mathbb{R}^n$, $Z_{r,t}(\omega, x)$ is $\sigma\{\hat{B}^T(s), s \leq r \leq t\}$ measurable,
2. For any $0 \leq r \leq t \leq T$, for any $x \in \mathbb{R}^n$, the processes $(\omega, r) \mapsto Z_{r,t}(\omega, x)$ and $(\omega, r) \mapsto Z_{r,t}^{-1}(\omega, x)$ belong to $\mathbb{L}_{p,1}$ for some $p \geq 2$.
3. Equation (C) is satisfied for any $0 \leq r \leq t \leq T$ $P$-a.s..

**Theorem 5.1.** Assume that $\hat{V}_T$ is an $E^0$ causal map continuous from $\mathcal{L}^p$ into $I_{\alpha,p}$ for $\alpha > 0$ and $p \geq 4$ such that $\alpha p > 1$. Assume $\sigma$ is Lipschitz continuous and sub-linear, see Eqn. (21) for the definition. Then, there exists a unique solution to equation (C). Let $Z$ denote this solution. For any $(r, r')$,
$$E[|Z_{r,T} - Z_{r',T}|^p] \leq c|r - r'|^{p\alpha}.$$  

Moreover,
$$(\omega, r) \mapsto Z_{r,s}(\omega, Z_{s,t}(\omega, x)) \in \mathbb{L}_{p,1}, \text{ for any } r \leq s \leq t \leq T.$$

Since this proof needs several lemmas, we defer it to Section 6.

**Theorem 5.2.** Assume that $\hat{V}_T$ is an $E^0$ causal map continuous from $\mathcal{L}^p$ into $I_{\alpha,p}$ for $\alpha > 0$ and $p \geq 2$ such that $\alpha p > 1$. For fixed $T$, there exists a bijection between the space of solutions of Equation (B) on $[0, T]$ and the set of solutions of Equation (C).

**Proof.** Set
$$Z_{r,T}(\hat{\omega}, x) = Y_{T-r,T}(\Theta_{T}^{-1}(\hat{\omega}), x)$$

or equivalently
$$Y_{r,T}(\omega, x) = Z_{T-r,T}(\Theta_{T}(\omega), x).$$

According to Theorem 4.8, $Y$ is satisfies (B) if and only if $Z$ satisfies (C). The regularity properties are immediate since $\mathcal{L}^p$ is stable by $\tau_T$. \qed

The first part of the next result is then immediate.
Corollary 5.3. Assume that $\hat{V}_T$ is an $E^0$ causal map continuous from $L^p$ into $I_{\alpha,p}$ for $\alpha > 0$ and $p \geq 2$ such that $\alpha p > 1$. Then Equation (B) has one and only solution and for any $0 \leq r \leq s \leq t$, for any $x \in \mathbb{R}^n$, the following identity is satisfied:

$$Y_{r,s}(\omega, x) = Y_{r,s}(\omega, Y_{s,t}(\omega, x)).$$

Proof. According to Theorem 5.2 and 5.1, (B) has at most one solution since (C) has a unique solution. As to the existence, point (1) to (3) are immediately deduced from the corresponding properties of $Z$ and Equation (15).

According to Theorem 5.1, $(\omega, r) \mapsto Y_{r,s}(\omega, Y_{s,t}(\omega, x))$ belongs to $L_{p,1}$ hence we can apply the substitution formula and we get:

$$E \left[ |Z_{s-r',s}(x) - Z_{s-r',s}(Y_{s,t}(x))|^p \right] \leq c E \left[ |x - Y_{s,t}(x)|^p \right].$$

Set

$$R_{r,s} = \begin{cases} Y_{r,t}(\omega, x) & \text{for } s \leq r \leq t \\ Y_{r,s}(\omega, Y_{s,t}(\omega, x)) & \text{for } r \leq s \leq t. \end{cases}$$

Then, in view of (17), $R$ appears to be the unique solution (B) and thus $R_{r,s}(\omega, x) = Y_{r,s}(\omega, x)$. Point (4) is thus proved.

Corollary 5.4. For $x$ fixed, the random field $(Y_{r,t}(x), 0 \leq r \leq t \leq T)$ admits a continuous version. Moreover,

$$E \left[ |Y_{t,r}(x) - Y_{t',r}(x)|^p \right] \leq c(1 + |x|^p)(|s' - s|^p + |r - r'|^p).$$

We still denote by $Y$ this continuous version.

Proof. W.l.o.g. assume that $s \leq s'$ and remark that $Y_{s',s}(x)$ thus belongs to $\sigma\{\hat{B}_{u}^{1}, u \geq s\}$.

$$E \left[ |Y_{t,r}(x) - Y_{t',r}(x)|^p \right]$$

$$\leq c \left( E \left[ |Y_{t,r}(x) - Y_{t',s}(x)|^p \right] + E \left[ |Y_{t',r}(x) - Y_{t',s}(x)|^p \right] \right)$$

$$= c \left( E \left[ |Y_{t,r}(x) - Y_{t',s}(x)|^p \right] + E \left[ |Y_{t',r}(x) - Y_{t',s}(x)|^p \right] \right)$$

$$= c \left( E \left[ |Z_{t-r',s}(x) - Z_{t-r',s}(x)|^p \right] + E \left[ |Z_{t-r',s}(x) - Z_{t-r',s}(Y_{s,t}(x))|^p \right] \right).$$

According to Theorem 6.2,

$$E \left[ |Z_{t-r',s}(x) - Z_{t-r',s}(x)|^p \right] \leq c |r - r'|^p (1 + |x|^p).$$

In view of Theorem 4.8, the stochastic integral which appears in Equation (C) is also a Stratonovitch integral hence we can apply the substitution formula and say

$$Z_{t-r',s}(Y_{s,s'}(x)) = Z_{t-r',s}(y)|_{y=Y_{s,s'}(x)}.$$

Thus we can apply Theorem 6.2 and we obtain

$$E \left[ |Z_{t-r',s}(x) - Z_{t-r',s}(Y_{s,s'}(x))|^p \right] \leq c E \left[ |x - Y_{s,s'}(x)|^p \right].$$
The right hand side of this equation is in turn equal to
\[ E[|Z_{0,s'} - Z_{s',s,s'}(x)|^p] \],
thus, we get
\[ (19) \quad E[|Z_{s-r',s}(x) - Z_{s-r',s}(Y_{s,s'}(x))|^p] \leq c(1 + |x|^p)|s' - s|^p \]
Combining (18) and (19) gives
\[ E[|Y_{r,s}(x) - Y_{r',s}(x)|^p] \leq c(1 + |x|^p)(|s' - s|^p + |r - r'|^p), \]
hence the result. \( \square \)

Thus, we have the main result of this paper.

**Theorem 5.5.** Assume that \( \hat{V}_T \) is an \( L^0 \) causal map continuous from \( L^p \) into \( I_{\alpha,p} \) for \( \alpha > 0 \) and \( p \geq 4 \) such that \( \alpha p > 1 \). Then Equation (A) has one and only solution.

**Proof.** Under the hypothesis, we know that Equation (B) has a unique solution which satisfies (16). By definition of a solution of (B), the process \( Y^{-1}(\omega, s) \) belongs to \( L_{p,1} \) hence we can apply the substitution formula. Following the lines of proof of the previous theorem, we see that \( Y^{-1} \) is a solution of (A).

In the reverse direction, two distinct solutions of (A) would give rise to two solutions of (B) by the same principles. Since this is definitely impossible in view of Theorem 5.3, Equation (A) has at most one solution. \( \square \)

6. The forward equation

**Lemma 6.1.** Assume that Hypothesis I holds and that \( \sigma \) is Lipschitz continuous. Then, for any \( 0 \leq a \leq b \leq T \), the map
\[ \bar{V}_T \circ \sigma : C([0,T], \mathbb{R}^n) \to C([0,T], \mathbb{R}^n) \]
\[ \phi \mapsto \bar{V}_T(\sigma \circ \psi \cdot 1_{[a,b]}) \]
is Lipschitz continuous and Gâteau differentiable. Its differential is given by:
\[ (20) \quad d\bar{V}_T(\sigma(\phi))[\psi] = \bar{V}_T(\sigma' \circ \phi(\psi)). \]
Assume furthermore that \( \sigma \) is sub-linear, i.e.,
\[ (21) \quad |\sigma(x)| \leq c(1 + |x|), \text{ for any } x \in \mathbb{R}^n. \]
Then, for any \( \psi \in C([0,T], \mathbb{R}^n) \), for any \( t \in [0,T] \),
\[ |\bar{V}_T(\sigma \circ \psi)(t)| \leq cT^{n+1/p}(1 + \int_{0}^{t} |\psi(s)|^p \, ds) \]
\[ \leq cT^{n+1/p}(1 + \|\psi\|_{\infty}). \]

**Proof.** Let \( \psi \) and \( \phi \) be two continuous functions, since \( C([0,T], \mathbb{R}^n) \) is continuously embedded in \( L^p \), \( \bar{V}_T(\sigma \circ \psi - \sigma \circ \phi) \) belongs to \( \text{Hol}(\eta) \). Moreover,
\[ \sup_{t \leq T} |\bar{V}_T(\sigma \circ \psi \cdot 1_{[a,b]})(t) - \bar{V}_T(\sigma \circ \phi \cdot 1_{[a,b]})(t)| \leq c ||\bar{V}_T(\sigma \circ \psi - \sigma \circ \phi) \cdot 1_{[a,b]}||_{\text{Hol}(\eta)} \]
\[ \leq c ||(\sigma \circ \psi - \sigma \circ \phi) \cdot 1_{[a,b]}||_{L^p} \]
\[ \leq c ||\phi - \psi||_{L^p([a,b])} \]
\[ \leq c \sup_{t \leq T} |\psi(t) - \phi(t)|, \]
since \( \sigma \) is Lipschitz continuous.
Let $\psi$ and $\psi$ two continuous functions on $[0, T]$. Since $\sigma$ is Lipschitz continuous, we have
\[
\sigma(\psi(t) + \varepsilon \phi(t)) = \sigma(\psi(t)) + \varepsilon \int_0^1 \sigma'(u\psi(t) + (1-u)\phi(t)) \, du.
\]
Moreover, since $\sigma$ is Lipschitz, $\sigma'$ is bounded and
\[
\int_0^T \left| \int_0^1 \sigma'(u\psi(t) + (1-u)\phi(t)) \, du \right|^p \, dt \leq c T.
\]
This means that $(t \mapsto \int_0^1 \sigma'(u\psi(t) + (1-u)\phi(t)) \, du)$ belongs to $L^p$. Hence, according to Hypothesis I,
\[
\| \tilde{V}_T(\int_0^1 \sigma'(u\psi(t)) + (1-u)\phi(t)) \, du) \|_C \leq c T.
\]
Thus,
\[
\lim_{\varepsilon \to 0} \varepsilon^{-1}(\tilde{V}_T(\sigma \circ (\psi + \varepsilon \phi)) - \tilde{V}_T(\sigma \circ \psi))
\]
exists, and $\tilde{V}_T \circ \sigma$ is Gâteaux differentiable and its differential is given by (20).

Since $\sigma \circ \psi$ belongs to $C([0, T], \mathbb{R}^n)$, according to Hypothesis I, we have:
\[
\| \tilde{V}_T(\sigma \circ \psi)(t) \| \leq c \left( \int_0^t s^{q+\eta} |\sigma(\psi(s))|^p \, ds \right)^{1/p}
\leq c T^q \left( \int_0^t (1 + |\psi(s)|^p) \, ds \right)^{1/p}
\leq c T^{q+1/p}(1 + \|\psi\|_\infty)^{1/p}
\leq c T^{q+1/p}(1 + \|\psi\|_\infty).
\]
The proof is thus complete. \qed

Following [38], we then have the following non trivial result.

**Theorem 6.2.** Assume that Hypothesis I holds and that $\sigma$ is Lipschitz continuous. Then, there exists one and only one measurable map from $\Omega \times [0, T] \times [0, T]$ into $\mathcal{G}$ which satisfies the first two points of Definition (C). Moreover,
\[
\mathbb{E}[|Z_{r,t}(x) - Z_{r',t}(x')|^p] \leq c(1 + |x|^p + |x'|^p)(|r - r'|^p + |x - x'|^p).
\]

Note even if $x$ and $x'$ are replaced by $\sigma(\tilde{B}^T(u), t \leq u)$ measurable random variables, the last estimate still holds.

**Proof.** Existence, uniqueness and homeomorphy of a solution of (C) follow from [38]. The regularity with respect to $r$ and $\varepsilon$ is obtained as usual by BDG inequality and Gronwall Lemma. For $x$ or $x'$ random, use the independance of $\sigma(\tilde{B}^T(u), t \leq u)$ and $\sigma(\tilde{B}^T(u), r \land r' \leq u \leq t)$. \qed

**Corollary 6.3.** Assume that Hypothesis I holds and that $\sigma$ is Lipschitz continuous and sub-linear. Let $Z$ be a solution of (C). Then, for any $x \in \mathbb{R}^n$, for any $0 \leq r \leq t \leq T$, we have
\[
\mathbb{E}[|Z_{r,t}(x)|^p] \leq c(1 + |x|^p)e^{cT^{q+1}}.
\]
Proof. According to BDG inequality and Lemma 6.1, we have:
\[ E[|Z_{r,t}(x)|^p] \leq c|x|^p + E \left[ \int_r^t |\hat{V}_T(\sigma \circ Z_{s,t}(x)1_{[r,t]})(s)|^p \, ds \right] \]
\[ \leq cT^{p+1} (1 + |x|^p + E \left[ \int_r^t |Z_{s,t}(x)|^p \, ds \right] \]
\[ \leq cT^{p+1} (1 + |x|^p + \int_r^t E[|Z_{r,t}|^p] \, ds). \]
We then conclude by Gronwall Lemma.

**Theorem 6.4.** Assume that Hypothesis I holds and that \( \sigma \) is Lipschitz continuous and sub-linear. Then, for any \( x \in \mathbb{R}^n \), for any \( 0 \leq r \leq s \leq t \leq T \), \( (\omega, r) \mapsto Z_{r,s}(\omega, Z_{s,t}(x)) \) and \( (\omega, r) \mapsto Z_{r,t}^{-1}(\omega, x) \) belong to \( L_{p,1} \).

Proof. According to [18, Theorem 3.1], the differentiability of \( \omega \mapsto Z_{r,t}(\omega, x) \) is ensured. Furthermore,
\[ \nabla_u Z_{r,t} = -\hat{V}_T(\sigma \circ Z_{s,t}1_{[r,t]})(u) - \int_r^t \hat{V}_T(\sigma'(Z_{s,t}) \nabla_u Z_{s,t}1_{[r,t]})(s) \, dB(s), \]
where \( \sigma' \) is the differential of \( \sigma \). Since \( \hat{V}_T \) is continuous from \( L^p \) to itself and \( \sigma \) is Lipschitz, according to BDG inequality, for \( r \leq u \),
\[ E[|\nabla_u Z_{r,t}|^p] \]
\[ \leq c E \left[ |\hat{V}_T(\sigma \circ Z_{s,t}1_{[r,t]})(u)|^p \right] + c E \left[ \int_r^t |\hat{V}_T(\sigma'(Z_{s,t}) \nabla_u Z_{s,t}1_{[r,t]})(s)|^p \, ds \right] \]
\[ \leq c \left( 1 + E \left[ \int_r^t u^{p_0} \int_r^s |Z_{r,t}|^p \, ds \, du \right] + E \left[ \int_r^t s^{p_0} \int_r^s |\nabla_u Z_{r,t}|^p \, ds \, ds \right] \right) \]
\[ \leq c \left( 1 + E \left[ \int_r^t |Z_{r,t}|^{p(\eta^p + 1 - \eta^{p+1})} \, ds \right] + E \left[ \int_r^t |\nabla_u Z_{r,t}|^{p(\eta^{p+1} - \eta^{p+1})} \, ds \right] \right) \]
\[ \leq c t^{p+1} \left( 1 + E \left[ \int_r^t |Z_{r,t}|^p \, ds \right] + E \left[ \int_r^t |\nabla_u Z_{r,t}|^p \, ds \right] \right). \]
Then, Gronwall Lemma entails that
\[ E[|\nabla_u Z_{r,t}|^p] \leq c \left( 1 + E \left[ \int_r^t |Z_{r,t}|^p \, ds \right] \right). \]
The integrability of \( E[|\nabla_u Z_{r,t}|^p] \) with respect to \( u \) follows.

Now, since \( 0 \leq r \leq s \leq t \leq T \), \( Z_{s,t}(x) \) is independant of \( Z_{r,s}(x) \), thus the previous computations still hold and \( (\omega, r) \mapsto Z_{r,s}(\omega, Z_{s,t}(x)) \) belong to \( L_{p,1} \).

According to [35], to prove that \( Z_{r,t}^{-1}(x) \) belongs to \( D_{p,1} \), we need to prove
1. for every \( h \in L^2 \), there exists an absolutely continuous version of the process \( (t \mapsto Z_{r,t}^{-1}(\omega + th, x)) \),
2. there exists \( DZ_{r,t}^{-1} \), an \( L^2 \)-valued random variable such that for every \( h \in L^2 \),
\[ \frac{1}{T} (Z_{r,t}^{-1}(\omega + th, x) - Z_{r,t}^{-1}(\omega, x)) \overset{t \to 0}{\longrightarrow} \int_0^T DZ_{r,t}^{-1}(s) h(s) \, ds, \]
where the convergence holds in probability.
(3) $DZ_{r,t}^{-1}$ belongs to $L^2(\Omega, L^2)$.

We first show that

$$E \left[ \left| \frac{\partial Z_{r,t}}{\partial x}(\omega, Z_{r,t}^{-1}(x)) \right|^p \right]$$

is finite.

Since

$$\frac{\partial Z_{r,t}}{\partial x}(\omega, x) = \text{Id} + \int_r^t \tilde{V}_T(\sigma'(Z_{r,t}(x)) \frac{\partial Z_{r,t}(\omega, x)}{\partial x})(s) \, d\tilde{B}(s),$$

Itô’s formula and BDG inequality yield, for any $q \in \mathbb{R}$, for any $0 \leq r \leq v \leq t \leq T$,

$$E \left[ \sup_{u \leq v} |\partial_x Z_{u,t}(x)|^{2q} \right]$$

$$\leq c + cE \left[ \int_u^t \tilde{V}_T(1_{[r,t]} \sigma'(Z_{r,t}(x)) \partial_x Z_{r,t}(x))(s) |\partial_x Z_{s,t}(x)|^{2(q-1)} \, ds \right]$$

$$+ cE \left[ \left( \int_u^t |\partial_x Z_{s,t}(x)|^{q-2} \tilde{V}_T(1_{[r,t]} \sigma'(Z_{r,t}(x)) \partial_x Z_{r,t}(x))(s)^2 \, ds \right)^2 \right].$$

Let $\Theta_v = \sup_{u \leq v} |\partial_x Z_{u,t}(x)|$, since $\tilde{V}_T$ maps $L^p$ to $L^\infty$, we have

$$E \left[ \Theta_v^{2q} \right] \leq c + cE \left[ \int_u^t \Theta_s^{2(q-1)} \left( \int_u^s |\partial_x Z_{r,t}(x)|^p \, dr \right)^{2/p} \, ds \right]$$

$$+ cE \left[ \left( \int_u^t \Theta_s^{-2} \left( \int_u^s |\partial_x Z_{r,t}(x)|^p \, dr \right)^{2/p} \right)^2 \, ds \right].$$

Hence,

$$E \left[ \Theta_v^{2q} \right] \leq c \left( 1 + \int_u^t E \left[ \Theta_s^{2q} \right] \, ds \right),$$

and (22) follows by Gronwall Lemma. Since $Z_{r,t}(\omega, Z_{r,t}^{-1}(x)) = x$, the implicit function theorem imply that $Z_{r,t}^{-1}(x)$ satisfies the first two properties and that

$$\nabla Z_{r,t}(\omega, Z_{r,t}^{-1}(x)) + \frac{\partial Z_{r,t}}{\partial x}(\omega, Z_{r,t}^{-1}(x)) \nabla Z_{r,t}^{-1}(\omega, x).$$

It follows by H"{o}lder inequality and Equation (22) that

$$\|DZ_{r,t}^{-1}(x)\|_{p,1} \leq c\|Z_{r,t}(x)\|_{2p,1}\|\partial_x Z_{r,t}(x)\|^{-1}_{2p},$$

hence $Z_{r,t}^{-1}$ belongs to $L_{p,1}$.

\[\square\]

\begin{thebibliography}{9}
[1]\ E. Alòs, O. Mazet, and D. Nualart. Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2. \textit{Stochastic Process. Appl.}, 86(1):121–139, 2000.
[2]\ E. Alòs, O. Mazet, and D. Nualart. Stochastic calculus with respect to Gaussian processes. \textit{Ann. Probab.}, 29(2):766–801, 2001.
[3]\ L. Coutin, P. Friz, and N. Victoir. Good rough path sequences and applications to anticipating stochastic calculus. \textit{Ann. Probab.}, 35(3):1172–1193, 2007.
[4]\ L. Coutin and Z. Qian. Stochastic analysis, rough path analysis and fractional Brownian motions. \textit{Probab. Theory Related Fields}, 122(1):108–140, 2002.
[5]\ L. Decreusefond. Stochastic integration with respect to Gaussian processes. \textit{C. R. Math. Acad. Sci. Paris}, 334(10):903–908, 2002.
\end{thebibliography}
L. Decreusefond. Stochastic integration with respect to fractional Brownian motion. In *Theory and applications of long-range dependence*, pages 203–226. Birkhäuser Boston, Boston, MA, 2003.

L. Decreusefond and A.S. Üstünel. Stochastic analysis of the fractional Brownian motion. *Potential Anal.*, 10(2):177–214, 1999.

D. Feyel and A. de La Pradelle. Curvilinear integrals along enriched paths. *Electronic Journal of Probability*, 11:860–892, 2006.

P. Friz and N. Victoir. A note on the notion of geometric rough paths. *Probab. Theory Related Fields*, 136(3):395–416, 2006.

I. Gradinaru, M. Nourdin, F. Russo, and P. Vallois. m-order integrals and generalized Itô’s formula: the case of a fractional Brownian motion with any Hurst index. *Ann. Inst. H. Poincaré Probab. Statist.*, 41(4):703–724, 2005.

D. Nualart and B. Saussereau. Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. *Stochastic Processes Appl.*, 119(2):391–409, 2009.

F. Russo and P. Vallois. Itô formula for $C^1$-functions of semimartingales. *Probab. Theory Related Fields*, 104(1):27–41, 1996.
[33] S.G. Samko, A.A. Kilbas, and O.I. Marichev. *Fractional Integrals and Derivatives*. Gordon and Breach Science, 1993.

[34] B. Simon. *Trace ideals and their applications*, volume 120 of *Mathematical Surveys and Monographs*. American Mathematical Society, Providence, RI, second edition, 2005.

[35] Hiroshi Sugita. On a characterization of the Sobolev spaces over an abstract Wiener space. *J. Math. Kyoto Univ.*, 25(4):717–725, 1985.

[36] J. Unterberger. An explicit rough path construction for continuous paths with arbitrary H"older exponent by Fourier normal ordering, 2009. arXiv.org:0903.2716.

[37] J. Unterberger. A Lévy area by Fourier normal ordering for multidimensional fractional Brownian motion with small Hurst index, 2009. arXiv.org:0906.1416.

[38] A. Uppman. Sur le flot d’une équation différentielle stochastique. In *Seminar on Probability, XVI*, volume 920 of *Lecture Notes in Math.*, pages 268–284. Springer, Berlin, 1982.

[39] A. S. Üstünel. *An Introduction to Analysis on Wiener Space*, volume 1610 of *Lectures Notes in Mathematics*. Springer-Verlag, 1995.

[40] A.S. Üstünel and M. Zakai. The construction of filtrations on abstract Wiener spaces. *Journal of Functional Analysis*, 143(1):10–32, 1997.

[41] M. Zähle. Integration with respect to fractal functions and stochastic calculus. I. *Probab. Theory Related Fields*, 111(3):333–374, 1998.

[42] M. Zakai and O. Zeitouni. When does the Ramer formula look like the Girsanov formula ? *The Annals of Probability*, 20(3):1436–1441, July 1992.

Institut TELECOM - TELECOM ParisTech - CNRS LTCI, Paris, France

E-mail address — : Laurent.Decreusefond@telecom-paristech.fr