Measurements of Time-Dependent CP
Asymmetries in $b\rightarrow s$ Penguin Dominated
Hadronic B Decays at $B_{\Lambda}B_{AR}$

Pietro Biassoni
(On behalf of the $B_{\Lambda}B_{AR}$ Collaboration)

Università degli Studi and INFN Milano, via Celoria 16, I-20133 Milano, Italy

Abstract. We report measurements of Time-Dependent CP asymmetries in several $b\rightarrow s$ penguin dominated hadronic B decays, where New Physics contributions may appear. We find no significant discrepancies with respect to the Standard Model expectations.

Keywords: Charmless Hadronic B decays, Time-Dependent CP Violation, $\sin^2\beta$ Measurement.

PACS: 13.25.Hw, 12.15.Hh, 11.30.Er, 13.66.Bc, 14.40.Cs, 13.25.Gv, 13.25.Jx, 13.20.Jf.

INTRODUCTION

The measurement of CP violation in B meson decays provides crucial tests of the Standard Model (SM) and of the Cabibbo-Kobayashi-Maskawa (CKM) mechanism [1].

CKM-suppressed $b\rightarrow q\bar{q} s$ ($q = u, d, s$) processes are dominated by a single loop (penguin) amplitude, that, assuming penguin dominance and neglecting higher order contributions, is expected to have the same phase β of the CKM-favored $b\rightarrow c\bar{c}s$ transition [2]. In many extensions of the SM new heavy particles may appear in the loop [3], giving rise to deviations from this expectation. These deviations are expected to be channel dependent. The measurement of the phase difference between $B^0\rightarrow K^*(892)^+\pi^-$ and $\bar{B}^0\rightarrow K^*(892)^-\pi^+$ can be used to constrain the CKM parameters in the $(\bar{\rho}, \bar{\eta})$ plane [4].

TIME-DEPENDENT DECAY RATES

The CKM phase β is accessible experimentally through the interference between the decay of mixed and unmixed B meson into a CP eigenstate. This interference is observable through the time evolution of the decay.

In the studies reported in this presentation, one B^0 from $\Upsilon(4S) \rightarrow B^0\bar{B}^0$ is reconstructed in $\eta'K^0_s$, $\eta'K^0_s$, ωK^0_s, or $K^0_SK^0_S$ CP eigenstate, or in $\pi^+\pi^- K^0_S$ or $K^+K^- K^0_S$ non-CP eigenstate final state (B_{sig}), and its vertex fitted using all charged daughter tracks. In $K^0_SK^0_S$ mode, where no charged track is present at B^0 meson decay vertex, B_{sig} vertex is identified using the K^0_S reconstructed flight directions and the knowledge of the average interaction point [5]. From the remaining particles in the event we reconstruct the decay vertex of the other B meson (B_{tag}) and identify its flavor, through the analysis of the decay product of B_{tag} [6].
The distribution of the difference $\Delta t \equiv t_{CP} - t_{tag}$ of the proper decay times of B mesons into CP-eigenstate final states is given by

$$f(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left\{ 1 \pm \left[-\eta_f S_f \sin(\Delta m_d \Delta t) - C_f \cos(\Delta m_d \Delta t) \right] \right\}$$

(1)

where η_f is the CP eigenvalue of the final state f and τ is the B^0 meson lifetime. The upper (lower) sign denotes a decay accompanied by a $B^0(\bar{B}^0)$ tag, and Δm_d is the mixing frequency.

For three body non-CP-eigenstate final state, the CP-violating parameters are a function of the position over the Dalitz Plot (DP). In this case Eq. (1) is written as

$$f(\Delta t) = \frac{e^{-|\Delta t|/\tau}}{4\tau} \left\{ |A|^2 + |\bar{A}|^2 \pm \left[\eta_f 2Im[\bar{A}A^*] \sin(\Delta m_d \Delta t) - (|A|^2 - |\bar{A}|^2) \cos(\Delta m_d \Delta t) \right] \right\}$$

(2)

Let the decay $B^0 \rightarrow X_1 X_2 X_3$ proceed through N intermediate states: the amplitude A depends only on the Mandelstam invariants s_{12} and s_{23}, and in the isobar approximation is

$$A(s_{12}, s_{23}) = \sum_{j=1}^{N} |c_j| e^{-i\phi_j} R_j(m_j) X_L(|\vec{p} * |r')X_L(|\vec{q} |r) T_j(L, \bar{p}, \bar{q})$$

(3)

where c_j and ϕ_j are the relative magnitude and phase of the decay mode j, $R_j(m)$ is the lineshape term, X_L are Blatt-Weisskopf barrier factors [7], T_j is the angular distribution, \vec{p} (\vec{q}) is the momentum of the prompt particle (one of the resonance daughters), L is the orbital angular momentum between \vec{p} and the resonance momentum, and asterisk denotes B rest frame. For a decay into a quasi-two-body CP eigenstate, one can extract the parameters $\beta_{eff} = \frac{1}{2} \arg (c_1 \bar{c}_1^*)$ and $\alpha_{ch}(k) = [||\vec{e}_k||^2 - |c_k|^2]/[|\vec{e}_k|^2 + |c_k|^2]$. For a decay into quasi-two-body non-CP eigenstate, we measure the charge asymmetry and the phase between the two conjugate states $\Delta \Phi(k) = \arg (c_k \bar{c}_k^*)$.

A nonzero value of the parameter C_f or α_{ch} would indicate direct CP violation. In these modes we expect $-\eta_f S_f \equiv -\eta_f \sin 2\beta_{eff} \approx \sin 2\beta$. Deviations $\Delta S_f = S_f - \sin 2\beta$ from this expectation may appear even within the SM [8, 9], and are estimated in several theoretical approaches [8, 10].

ANALYSIS TECHNIQUE

Analyses presented here are based on a sample of $465 \times 10^6 B\bar{B}$ pairs (383×10^6 for $B^0 \rightarrow K_S^0 \pi^+ \pi^-$), collected at a center-of-mass energy equal to the mass of the $Y(4S)$ resonance at the PEP-II asymmetric e^+e^- collider, at the SLAC National Accelerator Laboratory, and recorded by the BABAR detector [11]. The B meson is reconstructed into the above-mentioned CP eigenstates. The B meson is kinematically characterized by the variables $\Delta E \equiv E_B - \frac{1}{\sqrt{3}} \sqrt{s}$ and $m_{ES} \equiv \sqrt{s/4 - |\vec{p}_B|^2}$, where (E_B, \vec{p}_B) is the B four-momentum vector expressed in $Y(4S)$ rest frame.
Background arises primarily from random combinations of particles in $e^+e^-\rightarrow q\bar{q}$ events ($q=u,d,s,c$). We suppress this background with requirements on the event shape variables and on the energy, invariant mass and particle identification signature of the decay products. All events are required to have $|\Delta t|<20$ ps and $\sigma_{\Delta t}<2.5$ ps.

For each mode, results are obtained from an extended maximum likelihood fit with input variables ΔE, m_{ES}, Δt, and the output of a multivariate discriminant combining different event shape variables. In ωK^0_s decay we also use ω mass and angular variables into the fit. K^0_s momentum is determined using a B mass constraint, hence m_{ES} is fully correlated to ΔE, and is not used into the fit in $\eta'K^0_s$ modes. The likelihood for a given event is the sum of the signal, continuum and the B-background components, weighted by their respective event yields. In $K^0_s\pi^+\pi^-$ and $K^0_sKK^-$ modes, a time-dependent DP analysis is performed. The DP model includes $f_0(980)$, $\rho^0(770)$, $K^{*\pm}(892)$, $(K\pi)^0_{\pm}$, $f_2(1240)$, $f_2(1300)$, χ_{c0} ($f_0(980)$, $\phi(1020)$, $X(1550)$), $f_2(1270)$, χ_{c0}, D^\pm, D^\mp) and non resonant component for $K^0_s\pi^+\pi^-$ ($K^0_sKK^-$) decay mode. In $K^0_sKK^-$ analysis, the fit is first performed on the whole DP, and then in the low (high) mass region $m_{K^+K^-} < 1.1$ GeV/c^2 ($m_{K^+K^-} > 1.1$ GeV/c^2), fixing all the parameters to the values found in the whole DP fit, except the ones involving the $f_0(980)$ ($\phi(1020)$) resonance.

RESULTS

In Table 1 and 2 we report the results for CP-violating parameters in analyses of the decay of a B^0 meson into a CP eigenstates and a three body non-CP eigenstates final state (DP analyses), respectively [12]. Results for $K^0_sK^+K^-$ and $K^0_sK^0_sK^0$ are preliminary.

TABLE 1. Results of analyses of $b\rightarrow s$ decays into CP eigenstates. For each decay mode we report $-\eta_fS_f$ and C_f. The first error is statistical, the second systematic.

Decay Mode	$-\eta_fS_f$	C_f
$\eta'K^0$	$0.57\pm0.08\pm0.02$	$-0.08\pm0.06\pm0.02$
ωK^0_s	$0.55\pm0.29\pm0.02$	$-0.22\pm0.20\pm0.03$
$K^0_sK^0_sK^0$	$0.90\pm0.20\pm0.04$	$-0.18\pm0.17\pm0.03$

In $K^0_s\pi^+\pi^-$ and $K^0_sK^+K^-$ low mass region, the likelihood function has two minima. In $B^0\rightarrow f_0(980)K^0_s$ with $f_0(980)\rightarrow K^+K^-$, the second solution is disfavored by the result from $f_0(980)\rightarrow \pi^+\pi^-$. In $K^0_s\pi^+\pi^-$ analysis we measure $\chi_{ch}(K^*(892)^+\pi^-) = 0.20\pm0.10\pm0.02$, where the first (second) error is statistical (systematic). We also exclude $-137^o<\Delta\Phi(K^*(892)^+\pi^-)<-5^o$ at 95% confidence level.

CONCLUSIONS

We have reported the results of measurements of CP-violating parameters in several $b\rightarrow s$ hadronic B meson decays. All the results are consistent with the SM. Results are
in agreement with and supersede previous BABAR measurements.

TABLE 2. Results of DP $b\to s$ analyses. For each decay mode we report β_{eff}, and \mathcal{A}_{ch}, for both solutions. The first error is statistical, the second systematic.

Decay Mode	Solution I	Solution II		
	β_{eff} ($^\circ$)	\mathcal{A}_{ch}	β_{eff} ($^\circ$)	\mathcal{A}_{ch}
$K^0_s \pi^+ \pi^-$				
$f_0(980)K^0_s$	36.0 ± 9.8 ± 3.0	0.08 ± 0.19 ± 0.05	56.2 ± 10.4 ± 3.0	0.23 ± 0.19 ± 0.05
$\rho^0(770)K^0_s$	10.2 ± 8.9 ± 3.6	0.05 ± 0.26 ± 0.10	33.4 ± 10.4 ± 3.6	0.14 ± 0.26 ± 0.10
ϕK^0_s	7.4 ± 7.4 ± 1.1	0.14 ± 0.19 ± 0.02	8.0 ± 8.0 ± 1.1	0.13 ± 0.18 ± 0.02
$f_0(980)K^0_s$	8.6 ± 7.4 ± 1.7	0.01 ± 0.26 ± 0.07	197.1 ± 10.9 ± 1.7	0.49 ± 0.25 ± 0.07

ACKNOWLEDGMENTS

I’d like to thank all my BABAR colleagues for their support and in particular Fernando Palombo and Alfio Lazzaro.

REFERENCES

1. N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
2. Belle Collaboration, K.-F. Chen et al., Phys. Rev. Lett. 98, 031802 (2007); BABAR Collaboration, B. Aubert et al., Phys. Rev. D 79, 072009 (2009).
3. Y. Grossman and M. P. Worah, Phys. Lett. B 395, 241 (1997); D. Atwood and A. Soni, Phys. Lett. B 405, 150 (1997); M. Ciuchini, E. Franco, and L. Silvestrini, Phys. Rev. D 74, 054001 (2006); M. Gronau, J. L. Rosner, and J. Zupan, Phys. Lett. B 596, 107 (2004); M. Beneke and M. Neubert, Nucl. Phys. B 75, 333 (2003).
4. D. London and A. Soni, Phys. Rev. D 40, 61 (1997).
5. M. Beneke, Phys. Lett. B 620, 143 (2005); H. Y. Cheng, C.-K. Chua, and A. Soni, Phys. Rev. D 72, 014006 (2005), Phys. Rev. D 71, 014030 (2005); S. Fajfer, T. N. Pham, and A. Prapotnik-Brndnik Phys. Rev. D 72, 114001 (2005); A. R. Williamson and J. Zupan, Phys. Rev. D 74, 014003 (2006); M. Gronau, J. L. Rosner, and J. Zupan, Phys. Rev. D 79, 093003 (2006).