Determination of Ras-GTP and Ras-GDP in patients with acute myelogenous leukemia (AML), myeloproliferative syndrome (MPS), juvenile myelomonocytic leukemia (JMML), acute lymphocytic leukemia (ALL), and malignant lymphoma: assessment of mutational and indirect activation

D. Raepple · F. von Lintig · T. Zemojtel · M. Duchniewicz · A. Jung · M. Lübbert · G. R. Boss · J. S. Scheele

Received: 15 March 2008 / Accepted: 5 August 2008 / Published online: 11 September 2008 © Springer-Verlag 2008

Abstract The 21-kD protein Ras of the low-molecular-weight GTP-binding (LMWG) family plays an important role in transduction of extracellular signals. Ras functions as a ‘molecular switch’ in transduction of signals from the membrane receptors of many growth factors, cytokines, and other second messengers to the cell nucleus. Numerous studies have shown that in multiple malignant tumors and hematopoietic malignancies, faulty signal transduction via the Ras pathway plays a key role in tumorigenesis. In this work, a non-radioactive assay was used to quantify Ras activity in hematologic malignancies. Ras activation was measured in six different cell lines and 24 patient samples, and sequence analysis of N- and K-ras was performed. The 24 patient samples comprised of seven acute myelogenous leukemia (AML) samples, five acute lymphocytic leukemia (ALL) samples, four myeloproliferative disease (MPD) samples, four lymphoma samples, four juvenile myelomonocytic leukemia (JMML) samples, and WBC from a healthy donor. The purpose of this study was to compare Ras activity determined by percentage of Ras-GTP with the mutational status of the Ras gene in the hematopoietic cells of the patients. Mutation analysis revealed ras mutations in two of the seven AML samples, one in codon 12 and one in codon 61; ras mutations were also found in two of the four JMML samples, and in one of the four lymphoma samples (codon 12). We found a mean Ras activation of 23.1% in cell lines with known constitutively activating ras mutations, which was significantly different from cell lines with ras wildtype sequence (Ras activation of 4.8%). Two of the five activating ras mutations in the patient samples correlated with increased Ras activation. In the other three samples, Ras was probably activated through “upstream” or “downstream” mechanisms.

Keywords Ras · LMWG · Oncogenes · Mutation · Signal transduction · Hematopoietic malignancies

Introduction

Mutations in the ras proto-oncogenes (H-ras, N-ras, K-ras) are the most common genetic aberrations in human tumors, occurring in 20–30% of all tumors; although this figure
varies considerably depending on the tumor entity. The most frequently observed ras mutations occur in codons 12, 13, and 61, with these mutations disrupting the GTPase function of Ras. Although the mutated Ras still forms a complex with regulatory GTPase activating proteins (GAPs), conversion of guanosine-5′-triphosphate (GTP) to guanosine-5′-diphosphate (GDP), i.e., Ras inactivation, is attenuated. This blockade leads to a longer half-life of the active GTP-binding form of Ras. Besides mutations in codons 12, 13, and 61, sporadic mutations have been described in codons 116, 117, 119, and 146. These mutations decrease the protein’s affinity towards nucleotides, leading to an exchange in favor of cytosolic GTP, of which there is a tenfold higher level than GDP. In addition, the binding of hydrolysis-enhancing GAPs is inhibited. Moreover it has been shown that mutations in codons 59 and 63 activate the transforming potential of the H-ras gene [1] but are of little clinical relevance. Hence, all known mutations lead to an accumulation of constitutively active Ras and uninterrupted signal transfer. In malignant hematopoietic diseases, activating Ras mutations occur most commonly in myeloid disorders, in myelodysplastic syndrome (MDS) and AML, with the level of Ras activation ranging from 6 to 37%. The mutations occur largely in N-ras codons 12, 13, and 61, and in K-ras codon 12; H-ras mutations are rarely seen in this entity. The most common mutation is a G→A mutation in codon 12 [2, 3]. Activated Ras mutations appear to play an important part in the transformation from MDS to AML, and a high percentage of patients with MDS-based AML develop Ras mutations in the course of their disease [4]. Furthermore, a prospective study showed that MDS patients with a confirmed ras mutation have a significantly higher risk of developing AML [5].

In addition to mutations in the ras gene, Ras can be activated by constitutively active proto-oncogenes and inactivated by tumor suppressor genes [6]. Several receptor tyrosine kinases and non-receptor tyrosine kinases signal via the Ras transduction pathway. Point mutations in the CSF-1 receptor (c-FMS) are found in 10−20% of all AML and MDS patients [7]. Another common defect in AML and MDS is tandem duplications in the FLT3 receptor, which occur in 20−25% of all AML cases. Simultaneous mutations in N-ras and FLT3 are very rare [8]. Members of the c-Kit/c-FMS receptor kinase family (e.g., c-Kit, c-FMS, FLT3) associate with proteins of the Ras/MAPK signal transduction pathway (e.g., Grb-2 and She). Hence, their activation could activate Ras [9].

The Bcr-Abl fusion protein occurs in 95% of chronic myelogenous leukemia (CML) cases and in 10% of ALL cases. Although ras mutations in CML are rare, several experiments have shown that Ras activation via the constitutively active Bcr-Abl protein plays an important role. Inhibition of Ras activity by antisense oligonucleotides, microinjection of a blocking monoclonal antibody, or overexpression of domin-
before further processing. As discussed later in Results, none of these isolation procedures altered the activation state of Ras.

Samples from 23 patients were used: seven patients with AML, four patients with MPS (one osteomyelofibrosis (OMF), three CML), four patients with JMML, four patients with ALL and four with lymphoma including plasma cell leukemia. Except for the four patients with JMML, all patients were being treated in the Department of Medicine I at the University of Freiburg Medical Center.

Because of problems associated with using 32PO$_4$ to assess Ras activation, we used biochemical non-radioactive methods for measuring GTP and GDP bound to Ras family proteins as described before [25, 26]. Ras was immunoprecipitated with the rat monoclonal antibody Y13-259. Absolute amounts of GTP and GDP were measured in coupled enzymatic reactions. GTP was measured by converting it to ATP using the enzyme nucleoside diphosphate kinase (NDPK, Sigma St. Louis, MO) in the presence of ADP. The resulting ATP was measured by firefly luciferase (Calbiochem, San Diego, CA) in a photon counting luminometer. The firefly luciferase system is extremely sensitive, allowing detection of 1 fmol of GTP. To measure GDP, we converted it to GTP using the enzyme pyruvate kinase (PK, Sigma St. Louis, MO) with phosphoenolpyruvate serving as a source of high-energy phosphate.

As positive controls, HL-60 cells (AML FAB M2) with a known N-ras mutation in codon 61 (CAA→CTA) were used. As negative controls with known wildtype ras, the myelogenous cell line U937 and the pre-B-ALL cell line 697 were used. Murine 3T3 fibroblasts were used both as a negative and a positive control, the latter after being transfected with an activated H-Ras V12 vector (Table 1).

Genomic DNA was isolated using the commercially available “QIAamp DNA Blood Mini Kit” (QIAGEN GmbH, Hilden, Germany). Amplification was performed with K-ras and N-ras specific primers containing 5′ universal M13 primer sequence attached, which were then used for genomic sequencing (ABI PRISM® BigDye Terminator Cycle Sequencing Kit and ABI310 Genetic Analyzer-System, Applied Biosystems, Foster City, USA)

Results

1. Frequency of N-ras and K-ras mutations in 23 patients with several hematological disorders and in one healthy control

Table 2 shows results of Ras activation in peripheral blood and bone marrow WBCs from a total of 23 patients: seven with AML, four with ALL, two with CML, four with JMML and one with lymphoma. No diagnosis could be given to five of the patients.

Mutation analysis confirmed mutations in the positive controls, and showed mutations in two of the seven AML samples (29%), one in codon 12 (exon1) and one in codon 61 (exon2). The latter data are consistent with the mutation frequencies reported in the literature. Our results are also in accordance with recent data indicating that the frequency of Ras mutations in AML and MDS has been overestimated in the past (M. Lübbert, personal communication).

In the samples from patients with MPS again no mutation of Ras could be detected, a finding which has been previously explained by constitutive Ras activation via the uncontrolled Bcr-Abl signal upstream of Ras [31]. None of the four ALL samples showed a mutation. This is compatible with the lower frequency of ras mutations in this entity. Ras mutations were also found in two of the JMML samples. A N-Ras mutation has been found in codon 12 (exon 1) of a sample from a patient with a plasma cell leukemia.

2. Frequency of Ras activation in 23 patients with several hematological disorders and in one healthy control (Fig. 2) and in six cell lines (Fig. 1)

Recent mathematical models of the Ras signaling pathway supported by experimental observations have underlined the function of Ras as a ‘molecular switch’ in signal transduction. Given four hypothetical disruptions in Ras signaling—GAP insensitivity, reduced GTPIase activity, increased effector affinity and competitive inhibition of Ras-GAP by Ras—RasVal12—it was hypothesized that cells harboring a heterozygous ras mutation resulting in a GAP-insensitive RasVal12 show an hypothetical activation (total Ras bound GTP) of approximately 28%. By contrast, wildtype (WT) cells should show an activation of approximately 5% [27].

In Fig. 1, Ras activation from 12 different determinations [GTP/(GDP+GTP)]% were grouped according to their
Table 2 Results of Ras activation in peripheral blood and bone marrow WBCs from patients with AML, ALL, CML, JMML and lymphoma

Patient #	Diagnosis	Ras activation	Mutated Ras region	Length	Mutation sequence		
1	AML	19.8	Mutation	N-ras	exon 1	12	GGT-TGT
2	AML	1.6	WT				
3	AML	4.6	WT				
4	AML	1.9	WT				
5	AML	0.6	WT				
6	AML	2.1	WT				
7	AML	1.2	Mutation	N-ras	exon 2	61	CAA-AAA
8	ALL	2.5	WT				
9	ALL	2.7	WT				
10	ALL	5.1	WT				
11	ALL	1.5	WT				
12	CML	2.4	WT				
13	CML	5.9	WT				
14	lymphoma	15.4	Mutation	N-ras	exon 1	12	GGT-GAT
15	JMML	38.6	WT				
16	JMML	11.7	Nd				
17	JMML	16.4	Mutation	nd			
18	JMML	1.1	Mutation	nd			
19	nd	32.7	WT				
20	nd	1.7	WT				
21	nd	7.3	WT				
22	nd	2.9	Nd				
23	nd	4.9	Nd				

Overall, the sequences of \(n\)-, \(k\)-ras were determined in 23 patient samples. The patient samples comprised seven AML samples, four ALL samples, two CML samples, one lymphoma sample and four JMML samples. No diagnosis could be given to five of the patients. The mutation analysis confirmed the existence of mutations in the positive controls as well as in two of the seven AML samples (29%).

3. Discrepancy between Ras activation and ras activating mutations

One of the two samples with activating Ras from patients with AML, the a N-ras mutation of codon 61 in exon 2 resulting in a CAA-AAA sequence, did not show a higher percentage of GTP-Ras which would be indicative of an activation of the protein, whereas the N-ras mutation in codon...
12 of Exon resulting in a GGT-TGT sequence was correlated with a GTP/GTP+GDP ratio of 19.8%. In the samples from patients with JMML, one sample had no increased Ras-GTP in spite of an activating mutation. One wildtype sample showed a Ras-GTP percentage of 38.6% without an activating Ras-mutation.

Discussion

The frequencies of mutations found in our study for different forms of hematological malignancies do not reach significance levels due to the low number of samples, but in general they reflect the tendencies found in previous reports [35].

We showed that cell lines with known constitutively activating ras mutations had significantly higher levels of Ras-GTP (mean activation 23.1%, $p=0.006$) than did cell lines with WT-Ras (mean activation 4.8%). These data show the high degree of selectivity of the assay in distinguishing between cells with activated and non-activated Ras and are consistent with hypothetical and observed activations [28]. Determination of a threshold for positive Ras activation in patient samples is difficult. Given the aspect of Ras functioning as ‘molecular switch’ and taking into account the expected heterogeneity of patients’ primary cells (Ras isoforms, clonality, etc.) we established two ranges (95% CIs) of cell populations with either WT ras or mutated ras in order to be able to classify patients’ values as activated or not activated in the setting of our assay. A patient sample was considered to have an activated Ras if activation level was within the 95% CI of the positive controls. Three of the five patient samples (60%) with proven ras mutations belong in this category. On the other hand, 12 of 14 patient samples (approximately 86%) with wildtype sequence are within the 95% CI of the negative controls.

The lack of intermediate values reflects the function of Ras as a ‘molecular switch’. Therefore, patient samples with increased Ras activation lacking a mutational activation are of interest for further analysis of the Ras signal transduction cascade, since various up- and downstream effectors contribute to Ras activation.

Ras mutations were found in hematological neoplasia known to have mutated Ras: two of six AML cases, one of two plasma cell leukemias (PCL), and two of four JMML cases. In two of the five patients with Ras mutations, Ras showed increased activation. However, one AML and one JMML sample showed noticeably low levels of activation though harboring a ras mutation.

In addition to technical difficulties with the applied highly sensitive enzyme-based method, heterogeneity of the underlying patients’ samples has to be taken into account. In further studies, the issue of clonality of samples could be overcome by pre-sorting cells, e.g., by fluorescence activated cell sorter (FACS). Another explanation might be additional compensatory factors bypassing Ras such as, for example, by GAP [29] regulation or compensatory up-regulation of WT-Ras.

In the patient sample with a Ras activation of 32.7% but no underlying mutation, the diagnosis was pre-B-ALL. In this context, CD40-stimulated Ras activation in the early developmental stages of B-cells has been described [30].

Assessing Ras quantitatively in hematopoietic neoplasia may provide a basis for understanding the role of Ras in various signal transduction pathways and may provide new routes toward targeted treatment strategies. The most promising category influencing Ras signalling is farnesyltransferase inhibitors (FTIs), which inhibit the attachment of the farnesyl moiety to the Ras protein [32, 33]. In addition, drugs which interfere with the interaction of the farnesyl group with the cell membrane, such as farnesyl thiosalicylic acid, also influence the activity of Ras on a protein level [34].
Acknowledgment This work was supported by the Deutsche Krebshilfe Grant 10-728 sche2. We thank Prof. Dr. C. Niemeyer, Department of Pediatric Hematology and Oncology, Centre for Pediatric and Adolescent Medicine Freiburg, for providing the samples of JMML patients.

References

1. Fasano O, Aldrich T et al (1984) Analysis of the transforming potential of the human H-ras gene by random mutagenesis. Proc Natl Acad Sci U S A 81(13):4008–4012. doi:10.1073/pnas.81.13.4008
2. Guo W, Tang B et al (1998) N-ras mutations in 43 Chinese cases of acute myeloid leukemia. Chin Med J (Engl) 111:343–345
3. Farr C, Gill R et al (1991) Analysis of ras gene mutations in childhood myeloid leukaemia. Br J Haematol 77:323–327. doi:10.1111/j.1365-2141.1991.tb08578.x
4. Shih LY, Huang CF et al (2004) Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia 18:466–475. doi:10.1038/sj.leu.2403274
5. Padua RA, Guinn BA et al (1998) RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia 12:887–892. doi:10.1038/sj.leu.2401044
6. Hunter T (1997) Oncoprotein networks. Cell 88:333–346. doi:10.1016/S0092-8674(00)81872-3
7. Tobal K, Pagliuca A et al (1990) Mutation of the human FMS gene (M-CSF receptor) in myelodysplastic syndromes and acute myeloid leukemia. Leukemia 4:486–489
8. Kiyoi H, Naoe T et al (1999) Prognostic implication of FLT3 and N-ras mutations in acute myeloid leukemia. Blood 93:3074–3080
9. Roehrschneider LR, Bourette RP et al (1997) Growth and differentiation signals regulated by the M-CSF receptor. Mol Reprod Dev 46:96–103. doi:10.1002/(SICI)1098-2795(199701)46:1<96::AID-MRDR15>3.0.CO;2-1
10. Skorski T, Kanakaraj P et al (1994) Negative regulation of the neurofibromatosis type 1 gene in chronic myelogenous leukemia. Leukemia 8:159–166. doi:10.1038/sj.leu.2400411
11. Sawyers CL, McLaughlin J et al (1995) Genetic requirement for Ras in the transformation of fibroblasts and hematopoietic cells by the Bcr-Abl oncogene. J Exp Med 181:307–313. doi:10.1084/jem.181.1.307
12. Golub TR, Barker GF et al (1994) Fusion of PDGF receptor beta to a novel ets-like gene, tel, in chronic myelomonocytic leukemia with t(5;12) chromosomal translocation. Cell 77:307–316. doi:10.1016/0092-8674(94)90322-0
13. Golub TR, Goga A et al (1996) Oligomerization of the ABL tyrosine kinase by the Ets protein TEL in human leukemia. Mol Cell Biol 16:4107–4116
14. Elmlinger PG, Lozano MD et al (1995) Transcripts of the npm-alk fusion gene in anaplastic large cell lymphoma, Hodgkin’s disease, and reactive lymphoid lesions. Blood 86:3517–3521
15. Waggott W, Lo YM et al (1995) Detection of NPM-ALK DNA rearrangement in CD30 positive anaplastic large cell lymphoma. Br J Haematol 89:905–907
16. Xu GF, O’Connell P et al (1990) The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62:599–608. doi:10.1016/0092-8674(90)90224-9
17. DeClue JE, Papageorge AG et al (1992) Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69:265–273. doi:10.1016/0092-8674(92)90407-4
18. Side L, Taylor B et al (1997) Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant disorders. N Engl J Med 336:1713–1720. doi:10.1056/NEJM199706123362404
19. Miyawaki J, Asada M et al (1994) Mutations of the N-ras gene in juvenile chronic myelogenous leukemia. Blood 83:2248–2254
20. Kalra R, Paderanga DC et al (1994) Genetic analysis is consistent with the hypothesis that NF1 limits myeloid cell growth through p21ras. Blood 84:3435–3439
21. Tartaglia M, Niemeyer CM et al (2003) Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet 34:148–150. doi:10.1038/ng1156
22. Kratz CP, Niemeyer CM et al (2005) The mutational spectrum of PTPN11 in juvenile myelomonocytic leukemia and Noonan syndrome/myeloproliferative disease. Blood 106:2183–2185. doi:10.1182/blood-2005-02-0531
23. Pandit B, Sarkozy A et al (2007) Gain-of-function RAFl mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy. Nat Genet 39(8):1007–1012. doi:10.1038/ng2073
24. Razzaza MA, Nishizawa T et al (2007) Germline gain-of-function mutations in RAFl cause Noonan syndrome. Nat Genet 39(8):1013–1017. doi:10.1038/ng2078
25. Scheele JS, Rhee JM, Boss GR (1995) Determination of absolute amounts of GDP and GTP bound to Ras in mammalian cells: Comparison of parental and ras-overproducing NIH 3T3 fibroblasts. Proc Natl Acad Sci U S A 92:1097–1100. doi:10.1073/pnas.92.4.1097
26. Von Lintig FC, Huvar I et al (2000) Ras activation in normal white blood cells and childhood acute lymphoblastic leukemia. Clin Cancer Res 6:1804–1810
27. Stites EC, Trampont PC et al (2007) Network analysis of oncogenic Ras activation in cancer. Science 318(5849):463–467. doi:10.1126/science.1144642
28. Shen WP, Aldrich TH et al (1987) Expression of normal and mutant ras proteins in human acute leukemia. Oncogene 1:157–165
29. Bernards A, settlement J (2005) GAPs in growth factor signalling. Growth Factors 23(2):143–149. doi:10.1080/08977190500130480
30. Gullbins E, Brenner B et al (1996) Activation of the Ras signaling pathway by the CD40 receptor. J Immunol 157:2844–2850
31. Garicochea B, Giorgi R, Odone VF, Dorlhiac-Llacer PE, Bendit I, Kloog Y, Jansen B (2000) A novel Ras antagonist regulates both Ras activation in cancer. Science 285(5434):463–467. doi:10.1126/science.1144642
32. Cortes J, Quintás-Cardama A, Garcia-Manero G, O’Brien S, Jones D, Faderl S et al (2007) Phase 1 study of tipifarnib in combination with imatinib for patients with chronic myelogenous leukemia in chronic phase after imatinib failure. Cancer 110(9):2000–2006. doi:10.1002/cncr.23006
33. Reichert A, Heisterkamp N, Daley GQ, Groffen J (2001) Treatment of Bcr/Abl-positive acute lymphoblastic leukemia in P190 transgenic mice with the farnesyl transferase inhibitor SCH66336. Blood 97:1399–1403. doi:10.1182/blood.v97.5.1399
34. Halaschek-Wiener J, Wacheek V, Schlagbauer-Wald H, Wolff K, Kloo Y, Jansen B (2000) A novel Ras antagonist regulates both oncogenic Ras and the tumor suppressor p53 in colon cancer cells. Mol Med 6:693–704
35. Scheele JS, Raepple D, Luebber M (2000) The role of Ras and other low-molecular weight guanine nucleotide (GTP)-binding proteins during hematopoietic cell differentiation. Mol Cell Life Sci 57:1950–1963. doi:10.1007/PL00006755