Abstract: The time-resolved fluorescence quenching method was applied to determine the micelle aggregation number of cationic single-chain surfactants dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and anionic surfactant sodium dodecyl sulfate (SDS). The concentration dependence of micelle aggregation number was found to be linear for all investigated surfactants in the concentration range 2‒15 × the value of critical micelle concentration of the respective surfactant. The values of micelle aggregation number were found in the range 30‒77. Different trends in the linear concentration dependence of micelle aggregation number were observed for cationic surfactants and for the anionic surfactant SDS. A small slope value was found for cationic surfactants, while the SDS micelle aggregation number concentration dependence showed significantly a larger slope value. The aggregation number increase with the increasing SDS concentration results in the micellar growth. Results from a simple analysis based on computer models of cationic and anionic surfactant molecules with dodecyl chains supports, the formation of intramicellar hydrogen bonding between surfactant molecules in SDS micelle shell.

Keywords: micelle aggregation number; fluorescence quenching; sodium dodecyl sulfate; hydrogen bonding

1 Introduction

Amphiphilic molecules are used in a variety of applications that take advantage of their ability to form self-assembled structures. Surfactants are amphiphilic molecules with relatively long (8–24 carbon atoms) hydrophobic tails and short hydrophilic heads. The self-assembling behaviour of amphiphilic molecules into colloidal aggregates has direct implications on a broad scale of processes, such as the performance of detergents, lubrication, molecular self-assembly, solubilisation of drugs and biologically efficient systems, non-viral gene transfecting agents etc. To provide a correct understanding of how these molecules behave, a description of surfactant aggregates at the molecular level is required. Simple molecular modeling software packages as well as more advanced Monte Carlo simulations [1,2] and molecular dynamics simulations [3-5] of surfactant micelles often provide valuable data, such as micelle diameter and aggregation number, which can be compared with those obtained by experimental methods. The aggregation number of surfactant micelles, which provides the number of surfactant molecules making up a micelle, represents one of the experimental characteristics describing micelles. Along with the hydrodynamic size and shape of micellar aggregate, it provides important information of the micellar structure. Therefore, an easy and reliable experimental determination of micellar aggregation number is of particular interest. A number of physical methods have been used for the determination of micelle aggregation number such as NMR spectroscopy [6,7], static light scattering (references in the text below), small-angle neutron scattering [8-10], small-angle X-ray scattering [11], fluorescence probing methods, and electron paramagnetic resonance [8,12-16]. Some of them are limited to the aggregation number determination at the surfactant concentration equal to CMC which only provides aggregation number values for isolated non-
interacting particles. Particularly, static light scattering represents an indirect method of the aggregation number determination through the calculation of molecular weight of surfactant aggregate at the surfactant CMC. The utilisation of this method for the aggregation number determination is rather complicated as it requires the independent determination of refractive index increment of the measured surfactant solution and the extrapolation of the data to the CMC which does not allow measurement of the concentration dependence of the aggregation number. Using this method, micelle aggregation numbers of some conventional single-chain ionic surfactants were determined at different solution ionic strength as published in the papers of Imae and Ikeda – dodecyltrimethylammonium bromide (DTAB) [17], dodecyldimethylammonium bromide [18] and chloride [19], dodecylpyridinium bromide [20], tetradecltrimethylammonium halides [21], sodium dodecyl sulfate (SDS) [22,23]. Small angle neutron scattering data permit the determination of the average charge of micelles, the average micelle aggregation number [24] as well as providing information on the micelle shape. Due to the complexity and high cost of the neutron scattering experimental facilities, this experimental method is not easily available for a routine determination of micelle aggregation number.

Fluorescence probing methods represent an important area of micelle aggregation number determination. There are steady-state [25-27] and time-resolved fluorescence methods which can be used for the determination of micelle aggregation number. The advantage of these methods is based on the fact that the aggregation number determination is affected neither by the micellar shape nor by the interactions between micelles. Time-resolved fluorescence quenching (TRFQ) represents a relatively easy and accurate method which is based on the calculation of the aggregation number from the fluorescence decay curves [28,29]. Unlike steady-state fluorescence measurements taking advantage of conventional spectrophotometers, this method requires the application of single-photon counting equipment LiveSpec II (Edinburgh Instruments) at the emission wavelength of 381 nm. The incident beam with the excitation wavelength of 340 nm was generated by a picosecond pulse diode laser. The fluorescence decay curves were recorded by the Edinburgh Instruments F900 software and fitted by the equation

\[I(t) = I(0) \exp \left\{- \frac{t}{\tau_0} - \frac{t}{\tau_Q} \left[1 - \exp \left(- \frac{t}{\tau_Q} \right) \right]\right\} \]

utilizing the Edinburgh Instruments FAST software module for non-linear fitting. \(I(t)\) and \(I(0)\) are fluorescence intensities at time \(t\) and zero, respectively. \(\tau_0, \tau_Q, R\) are three adjustable parameters representing the results of the non-linear fit. \(\tau_0\) is pyrene lifetime in the absence of quencher. \(\tau_Q\) is pyrene lifetime in the presence of quencher. In the presence of quencher, the fluorescence decay is described by the Eq. 1 with \(k_Q = 1/\tau_Q\) being the rate constant for intermicellar quenching. The fitting parameter \(R\) is equal to \(c_Q/c_{mic}\) which is the ratio of the quencher concentration \(c_Q\) to the concentration of surfactant micelles \(c_{mic}\). The relation can be rewritten as

\[N = R \frac{(c - CMC)}{c_Q} \]

In the literature, micelle aggregation numbers of single-chain ionic surfactants are mostly reported as single values at different concentrations and utilizing various experimental methods. The aim of this work is to provide concentration dependences of micelle aggregation number for the ionic surfactants DTAB, CTAB and SDS using the time-resolved fluorescence quenching method and to correlate the found concentration dependences of micelle aggregation number with intramicellar molecular structure.

2 Experimental procedure

2.1 Chemicals

The fluorescence quencher cetylpyridinium chloride was used as purchased from Sigma. Pyrene (Aldrich) was recrystallized prior to use and its ethanol stock solution was kept in dark. CTAB, DTAB and SDS (Sigma) were purified by multiple crystallisation from methanol and acetone-methanol mixtures.

2.2 Time-resolved fluorescence quenching

All fluorescence experiments were carried out with pyrene as a fluorescent probe. Cetylpyridinium chloride was used as the quencher. The fluorescence decay curves were recorded using a single-photon counting equipment LiveSpec II (Edinburgh Instruments) at the emission wavelength of 381 nm. The incident beam with the excitation wavelength of 340 nm was generated by a picosecond pulse diode laser. The fluorescence decay curves were recorded by the Edinburgh Instruments F900 software and fitted by the equation

\[I(t) = I(0) \exp \left\{- \frac{t}{\tau_0} - \frac{t}{\tau_Q} \left[1 - \exp \left(- \frac{t}{\tau_Q} \right) \right]\right\} \]

utilizing the Edinburgh Instruments FAST software module for non-linear fitting. \(I(t)\) and \(I(0)\) are fluorescence intensities at time \(t\) and zero, respectively. \(\tau_0, \tau_Q, R\) are three adjustable parameters representing the results of the non-linear fit. \(\tau_0\) is pyrene lifetime in the absence of quencher. \(\tau_Q\) is pyrene lifetime in the presence of quencher. In the presence of quencher, the fluorescence decay is described by the Eq. 1 with \(k_Q = 1/\tau_Q\) being the rate constant for intermicellar quenching. The fitting parameter \(R\) is equal to \(c_Q/c_{mic}\) which is the ratio of the quencher concentration \(c_Q\) to the concentration of surfactant micelles \(c_{mic}\). The relation can be rewritten as

\[N = R \frac{(c - CMC)}{c_Q} \]
N is micelle aggregation number, c is surfactant concentration. The molar concentration ratio c_Q/c_{mic} was set approximately to 1 which means one quencher molecule per surfactant micelle. The pyrene concentration was chosen to be less than 0.05 \times quencher concentration which avoids the formation of pyrene excimers [36]. Individual solutions at a given surfactant concentration were prepared by dilution from the solution with the largest surfactant concentration. For each solution, the fluorescence decay curves were recorded and analyzed and the concentration plots of the aggregation number were constructed.

2.3 Molecular modeling

Molecular models of low-energy conformers of DTAB and SDS were created using the Alchemy III molecular modeling software for MS Windows (Tripos, Inc.) The Alchemy software allows molecules to be built using an expandable library of molecular fragments and a built-in energy minimizer. Within the Alchemy software, the potential energy E of the molecule is being minimized as the sum of the following energy contributions:

$$E = E_{\text{str}} + E_{\text{ang}} + E_{\text{tor}} + E_{\text{vdw}} + E_{\text{oop}} + E_{\text{el}}$$

E_{str} – bond stretch, E_{ang} – deformation of bond angles, E_{tor} – deformation of torsional angles, E_{vdw} – van-der-Waals interactions, E_{oop} – out-of-plane bending, E_{el} – electrostatic interactions. The individual energy terms are expressed as follows:

$$E_{\text{str}} = \sum i \frac{1}{2} k_i d_i^2$$

d_i – bond length in Å, d_i^0 – equilibrium bond length in Å, k_i – force constant in kcal Å$^{-2}$ mol$^{-1}$

$$E_{\text{ang}} = \sum i \frac{1}{2} k_i \theta_i^0 (\theta_i - \theta_i^0)^2$$

θ_i – bond angle in degrees, θ_i^0 – equilibrium bond angle in degrees, k_i – force constant in kcal degree$^{-2}$ mol$^{-1}$

$$E_{\text{tor}} = \sum i \frac{1}{2} k_i (1 + \text{sign}(\text{peri}_i) \times \cos(\text{peri}_i \times w_i))$$

w_i – torsional angle in degrees, k_i – force constant in kcal mol$^{-1}$, peri – periodicity

The van der Waals interactions (Lennard-Jones potential) is defined as follows:

$$E_{\text{vdw}} = \sum \sum \frac{a_i}{r_{ij}^6} - \frac{2}{r_{ij}^{12}}$$

Summation is over 1-4 and more remote interactions. E_{oop} – van-der-Waals constant in kcal mol$^{-1}$, $a_{ij} = r_{ij} / (R_i + R_j)$ – relative distance, R_i – van-der-Waals radius of atom i in Å

$$E_{\text{el}} = \sum \sum q_i q_j / 4 \pi \varepsilon r_{ij}$$

q_i – partial charge of the atom i, r_{ij} – interatomic distance between atoms i and j, ε – dielectric constant

3. Results and discussion

3.1 Pyrene spectra

The ratio I1/I3 of the intensities of the first (I) and third (III) vibronic peaks in pyrene is strongly dependent on the solvent polarity, that is 1.87 in water and 0.58 in cyclohexane [37,38]. Therefore, it is possible to use pyrene as an indicator of the change in the micropolarity of pyrene molecule environment which can be used e.g. for the determination of critical micelle concentration of surfactants. In Fig. 1, characteristic peaks in the pyrene spectrum are shown in the presence of CTAB micelles.
3.2 Concentration dependence of aggregation number

In Fig. 2, concentration dependence of aggregation number N of CTAB micelles in the concentration range $0–15 \times \text{CMC}$ is plotted, as determined from the time-resolved fluorescence quenching measurements.

The concentration dependences of N for CTAB micelles are plotted for three different emission wavelengths. As follows from the plot, a moderate increase of CTAB aggregation number with the increasing concentration is observed. Three wavelengths for the time-resolved fluorescence quenching experiment were chosen as the peak I. and III. wavelengths from the Fig. 1 and the wavelength 381 nm previously used in a similar TRFQ experiment [36]. As results from the plot, CTAB aggregation number is moderately increasing with the increasing surfactant concentration. The dependence on emission wavelength is very weak. The aggregation number values were found in the range 68–77. The previously published value at $10 \times \text{CMC}$ (denoted by the star symbol in Fig. 2) falls well into this range of aggregation number values.

The aggregation number of DTAB micelles does not depend on surfactant concentration within the inspected concentration range and lies within the range of values 49–57 (Fig. 3).

The aggregation number N for micelles composed of the anionic surfactant SDS molecules increases approximately linearly with the increasing SDS concentration (Fig. 4). This trend of SDS aggregation number increase with the increasing concentration was also observed for the previously published data.

The plot of aggregation numbers vs. surfactant concentration dependence for all investigated surfactants CTAB, DTAB and SDS is shown in Fig. 5 and the data are plotted in Table 1.

3.3 Analysis of intramicellar interactions

As follows from Fig. 5, there is a significant difference in the slopes of aggregation number vs. concentration dependence between the anionic surfactant SDS (slope value 4.57) and the cationic surfactants DTAB (0.27) and CTAB (1.07). There is also a slight difference to be seen in the shape of the fluorescence decay curves for DTAB micelles (left column, Fig. 6 a–e) and those for SDS micelles (right column, Fig. 6 f–j) indicating a steeper decrease of SDS decay curves.
The slope value of micelle aggregation number vs. concentration dependence for both cationic surfactants is significantly smaller than that of SDS micelles. The small slope value indicates a weak dependence of aggregation number on surfactant concentration for DTAB and CTAB. On the contrary, aggregation number of SDS micelles significantly increases with the increasing SDS concentration which is an indication of micellar growth. Micellar growth is observed for micelles of anionic surfactant SDS while absent for DTAB and CTAB surfactants micelles. Aggregation number of ionic surfactant micelles does not change much with the increasing surfactant concentration in the concentration region close to the CMC and the micelles are spherical with a hydrophobic core of radius equal to the length of a fully stretched alkyl chain conformation [42]. In Fig. 7, molecules of DTAB (a) and SDS (b) in the straight conformation are shown.

The distance between the oppositely located oxygen atoms which are bonded to the central sulfur atom of SDS sulfate group, is 0.241 nm. The distance of the oppositely located methyl groups bonded to the central nitrogen atom of the polar ammonium head of DTAB molecule, is 0.243 nm (Fig. 7). As follows from the distance comparison, there is no significant difference in size of polar parts of SDS and DTAB. Therefore, the micellar growth of SDS micelles with the increasing SDS concentration cannot be related only to the geometry of molecule but may indicate a significant role of intermolecular interactions in the explanation of different aggregation behaviour of DTAB vs. SDS surfactant molecules. In molecular dynamics simulation studies of SDS micelles [43-50], interactions through hydrogen bonds and electrolyte ions were found as one of the main factors determining the micellar structure. As follows from the charge distribution in the polar parts of DTAB and SDS molecules which are shown in Fig. 8, the polar part of SDS molecule has a significant negative charge.

![Figure 4](image1.png)

Figure 4: SDS concentration dependence of aggregation number \(N \). The published aggregation number values taken from [26,33] are denoted by star symbols.

![Figure 5](image2.png)

Figure 5: Concentration dependence of aggregation number \(N \) for CTAB, DTAB and SDS micelles as determined from fluorescence decay measurements at the excitation wavelength 381 nm.

Surfactant	\(c/\text{CMC} \)	\(R \)	\(N \)
DTAB	2	0.440	51.3
DTAB	3	0.326	50.8
DTAB	4	0.291	50.9
DTAB	5	0.279	52.1
CTAB	5	4.911	66.8
CTAB	10	4.906	75.1
CTAB	12	4.877	76.0
CTAB	15	4.870	77.3
SDS	2	0.962	29.8
SDS	4	0.735	45.5
SDS	6	0.693	53.7
SDS	8	0.712	61.8
SDS	10	0.725	67.4

Table 1: Values of fitting parameter \(R \), micelle aggregation number \(N \) as a function of surfactant concentration \(c/\text{CMC} \) for DTAB, CTAB and SDS surfactants determined from fluorescence decay measurements at the excitation wavelength 381 nm.
This charge is represented by lone electron pairs on oxygen atoms of the sulfate group which may take part in the formation of hydrogen bonding. Hydrogen bonding between SDS head groups and water molecules aligns the water molecules in such manner that the hydrogen atoms are directed toward the head group [49]. The results from the molecular dynamics simulation of a 60 monomer sodium dodecyl sulfate micellar system containing 7579 water molecules [45] reveals that 60% of the water molecules in the closest vicinity to the micelle have one micelle-to-water hydrogen bond. Formation of hydrogen bonds is assumed between SDS heads as results indicate from the molecular dynamics simulation study of SDS adsorption at the graphite interface [48]. As a result of hydrogen bonding, the electrostatic repulsion reduction and hence, the micellar growth are also assumed in the present case which would correspond with the aggregation number data shown in Fig. 5. According to the molecular dynamics simulation study [49], the distance between hydrogen of water and the sulfate oxygen is approximately 0.19 nm whereas the sulfate oxygen-water oxygen distance is about 0.29 nm. This is close enough for the water surrounding the sulfate group to hydrogen bond to the head group with one hydrogen and still participate in hydrogen bonding with neighbouring water molecules [49]. According to the rough estimation, the area per sulfate group on the surface of a SDS micelle is equal to $4\pi R^2/N$ for a SDS micelle with $R = 2.2$ nm and $N = 60$ [44] which gives the area value of 1.01 nm2. The longitudinal size of the area per SDS molecule may be related to the surface area per molecule as $(1.01)^{0.5} = 1.00$ nm. Given the hydrogen-to-hydrogen distance in water molecule is 0.163 nm, the maximum number of water molecules between the two neighbouring sulfate groups is approximately 6 water molecules.
Figure 7: Models of DTAB (bottom) and SDS (top) molecules in straight alkyl chain conformation.

Figure 8: Point charge distribution of DTAB (bottom) and SDS (top) molecules in straight alkyl chain conformation.
In all investigated cases, the linear dependence of the aggregation number on surfactant concentration was found. A difference in the slope values of micelle aggregation number vs. concentration dependence was observed between cationic surfactants and SDS. The small slope value indicates a weak dependence of aggregation number on surfactant concentration for DTAB and CTAB. Aggregation number of SDS micelles significantly increases with the increasing SDS concentration which indicates a micellar growth. As results from a simple analysis based on the computer models of cationic and anionic surfactant molecule with dodecyl chain, the formation of intramicellar hydrogen bonding between surfactant molecules in SDS micelle shell is assumed. The obtained results reveal the role of hydrogen bonding being an important factor controlling the values and concentration dependence of the aggregation number of single-chain ionic surfactant micelles.

Acknowledgements: This work was supported by the Slovak Research and Development Agency Grant No. APVV-0516-12 Small Molecules in Biomedical Research.

References

[1] Floriano M.A., Caponetti E., Panagiotopoulos A., Micellization in Model Surfactant Systems, Langmuir, 1999, 15, 3143-3151.
[2] Rodriguez-Guadarrama L.A., Talsania S.K., Mohanty K.K., Rajagopalan R., Thermodynamics of Aggregation of Amphiphiles in Solution from Lattice Monte Carlo Simulations, Langmuir, 1999, 15, 437-446.
[3] Watanabe K., Ferrario M., Klein M, Molecular dynamics study of a sodium octanoate micelle in aqueous solution, J. Phys. Chem., 1988, 92, 819-821.
[4] Shelley J., Shelley M., Computer simulation of surfactant solutions, Curr. Opin. Colloid Interface Sci., 2000, 5, 101-110.
[5] Jonsson B., Edholm O., Telean O., Molecular dynamics simulations of a sodium octanoate micelle in aqueous solution, J. Chem. Phys., 1986, 85, 2259-2271.
[6] Törnblom M., Henriksson O., Grimley M., A Field Dependent 2H Nuclear Magnetic Relaxation Study of the Aggregation Behavior in Micellar Solutions of CTAB and SDS, J. Phys. Chem., 1994, 98, 7041-7051.
[7] Gharibi H., Sohrabi B., Javadian S., Hashemianzadeh M., Study of the electrostatic and steric contributions to the free energy of ionic/nonionic mixed micellization, Colloids Surf. A, 2004, 244, 187-196.
[8] Griffiths P.C., Paul A., Heenan R.K., Penfold J., Ranganathan R., Bales B.L., Role of Counterion Concentration in Determining Micelle Aggregation: Evaluation of the Combination of Constraints from Small-Angle Neutron Scattering, Electron Paramagnetic Resonance, and Time-Resolved Fluorescence Quenching, J. Phys. Chem. B, 2004, 108, 3810-3816.
[9] Peyre V., Bouguerra S., Testard F., Micellization of dodecyltrimethylammonium bromide in water-dimethylsulfoxide mixtures: A multi-lenght scale approach in model system, J. Colloid Interface Sci., 2013, 389, 164-174.

[10] Joshi J.V., Aswal V.K., Goyal P.S., Small angle neutron scattering study of mixed micelles of oppositely charged surfactants, J. Phys., 2008, 71, 1039-1043.

[11] Reiss-Husson F., Luzzati V., The Structure of the Micellar Solutions of Some Amphiphilic Compounds in Pure Water as Determined by Absolute Small-Angle X-Ray Scattering Techniques, J. Phys. Chem., 1964, 68, 3504-3511.

[12] Lebedeva N., Zana R., Bales B.L., A Reinterpretation of the Hydration of Micelles of Dodecyltrimethylammonium Bromide and Chloride in Aqueous Solution, J. Phys. Chem. B, 2006, 110, 9800-9801.

[13] Bales B.L., Zana R., Characterization of Micelles of Quaternary Ammonium Surfactants as Reaction Media I: Dodecyltrimethylammonium Bromide and Chloride, J. Phys. Chem. B, 2002, 106, 1926-1939.

[14] Bales B.L., A Definition of the Degree of Ionization of a Micelle Based on Its Aggregation Number, J. Phys. Chem. B, 2001, 105, 6798-6804.

[15] Bales B.L., Messina L., Vidal A., Peric M., Nascimento O.R., Precision Relative Aggregation Number Determinations of SDS Micelles Using a Spin Probe. A Model of Micelle Surface Hydration, J. Phys. Chem. B, 1998, 102, 10347-10358.

[16] Lebedeva N., Ranganathan R., Bales B.L., Location of Spectroscopic Probes in Self-Aggregating Assemblies. II. The Location of Pyrene and Other Probes in Sodium Dodecyl Sulfate Micelles, J. Phys. Chem. B, 2007, 111, 5781-5793.

[17] Imae T., Kamiya R., Ikeda S., Formation of spherical and rod-like micelles of cetyltrimethylammonium bromide in aqueous NaBr solutions, J. Colloid Interface Sci., 1985, 108, 215-225.

[18] Imae T., Ikeda S., The sphere-rod transition of micelles of dodecyltrimethylammonium bromide in aqueous NaBr solutions, and the effects of counterion binding on the micelle size, shape and structure, Colloid Polym. Sci., 1984, 262, 409-417.

[19] Ikeda S., Ozeki S., Tsunoda M.A., Micelle molecular weight of dodecyltrimethylammonium chloride in aqueous solutions, and the transition of micelle shape in concentrated NaCl solutions, J. Colloid Interface Sci., 1980, 27, 23-37.

[20] Fuji K., Ikeda S., Size of spherical micelles of dodecylpyridinium bromide in aqueous NaBr solutions, Langmuir, 1991, 7, 2899-2903.

[21] Imae T., Ikeda S., Sphere-rod transition of micelles of tetradecyltrimethylammonium halides in aqueous sodium halide solutions and flexibility and entanglement of long rodlike micelles, J. Phys. Chem., 1986, 90, 5216-5223.

[22] Hayashi S., Ikeda S., Micelle size and shape of sodium dodecyl sulfate in concentrated sodium chloride solutions, J. Phys. Chem., 1980, 84, 744-751.

[23] Ikeda S., Hayashi S., Imae T., Rodlike micelles of sodium dodecyl sulfate in concentrated sodium chloride solutions, J. Phys. Chem., 1981, 85, 106-112.

[24] Cabane B., Small Angle Scattering Methods, In: Zana R. Ed., Surfactant Solutions, Dekker, New York, 1987.

[25] Yun F., Xue-Feng L., Young-Mei X., Yang Y., Kun C., Jung-Mok S., et al., Determination of Critical Micellar Aggregation Numbers by Steady state Fluorescence Probe Method, Acta Phys.-Chim. Sin., 2001, 17, 828-831, (In Chinese).

[26] Gracia K., Turner D., Palepu R., Thermodynamic properties of micellization of sodium dodecyl sulfate in binary mixtures of ethylene glycol with water, Can. J. Chem., 1996, 74, 1616-1625.

[27] Jing-Yuan C., Guo-Ting W., Jin-Zhu L., Investigation on the determination of micellar aggregation number by steady-state fluorescence quenching method, Acta Phys.-Chim. Sin., 1993, 9, 461-465. (In Chinese).

[28] Zana R., Luminiscence Probing Methods, In: Zana R. Ed., Surfactant Solutions, Dekker, New York, 1987.

[29] Turro N.J., Yekta A., Luminiscent Probes for Detergent Solutions: A Simple Procedure for Determination of the Mean Aggregation Number of Micelles, J. Am. Chem. Soc., 1978, 100, 5951-5952.

[30] Herrington K.L., Kaler E.W., Miller D.D., Zasadzinski J.A., Chiruvolu S., Phase Behavior of Aqueous Mixtures of Dodecyltrimethylammonium Bromide (DTAB), J. Phys. Chem., 1993, 97, 13792-13802.

[31] Feitoso E., Brazolin M.R.S., Naal R.M.Z.G., Freire de Morais Del Lama M.P., Lopes J.R., Loh W., Vasilescu M., Structural organization of cetyltrimethylammonium sulfate in aqueous solution: The effect of Na2SO4, J. Colloid Interface Sci., 2006, 299, 883-889.

[32] Kuperkar K., Abegaus L., Prasad K., Bahadur P., Formation and Growth of Micelles in Dilute Aqueous CTAB Solutions in the Presence of NaNO3, NaClO4, J. Surfact. Deterg., 2010, 13, 293-303.

[33] Ranganathan R., Tran L., Bales B.L., Surfactant- and Salt-Induced Growth of Normal Sodium Alkyl Sulfate Micelles Well above Their Critical Micelle Concentrations, J. Phys. Chem. B, 2000, 104, 2260-2264.

[34] Bales B.L., Almgren M., Fluorescence Quenching of Pyrene by Copper(II) in Sodium Dodecyl Sulfate Micelles. Effect of Micelle Size As Controlled By Surfactant Concentration, J. Phys. Chem., 1995, 99, 15153-15162.

[35] Friedrich L.C., Silva V.O., Moreira Jr. P.F., Tcacencov C.M., Quina F.H., Time-Resolved Fluorescence Quenching Studies of Sodium Lauryl Ehter Sulfate Micelles, J. Braz. Chem. Soc., 2013, 24, 241-245.

[36] Alargova R.G., Kochijansky I.I., Sierra M.L., Zana R., Micelle Aggregation Numbers of Surfactants in Aqueous Solutions: A Comparison between the Results from Steady-State and Time-Resolved Fluorescence Quenching, Langmuir, 1998, 14, 5412-5418.

[37] Kalyanasundaram K., Thomas J.K., Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems, J. Am. Chem. Soc., 1977, 99, 2039-2044.

[38] Dong D.C., Winnik M.A., The Py scale of solvent polarities, Can. J. Chem., 1984, 62, 2560-2565.

[39] Berr S.S., Solvent Isotope Effects on Alkyltrimethylammonium Bromide Micelles as a Function of Alkyl Chain Length, J. Phys. Chem., 1987, 91, 4760-4765.

[40] Berr S., Jones R.R.M., Johnson Jr. J.S., Effect of counterion on the size and charge of alkyltrimethylammonium halide micelles as a function of chain length and concentration as determined by small-angle neutron scattering, J. Phys. Chem., 1992, 96, 5611-5614.

[41] Thalberg K., van Stam J., Lindblad C., Almgren M., Lindman B.J., Time-resolved fluorescence and self-diffusion studies in systems of a cationic surfactant and an anionic polyelectrolyte, J. Phys. Chem., 1991, 95, 8975-8982.
[42] Danino D., Talmon Y., Zana R., Alkanediyl-a,w-bis(dimethylalkylammonium bromide) Surfactants (Dimeric Surfactants). 5. Aggregation and Microstructure in Aqueous Solutions, Langmuir, 1995, 11, 1448-1456.

[43] Gragson D.E., Richmond G.L., Potential Dependent Alignment and Hydrogen Bonding of Interfacial Water Molecules at Charged Air/Water and Oil/Water Interfaces, J. Am. Chem. Soc., 1998, 120, 366-375.

[44] Bruce C.D., Berkowitz M.L., Perera L., Forbes M.D.E., Molecular Dynamics Simulation of Sodium Dodecyl Sulfate Micelle in Water: Micellar Structural Characteristics and Counterion Distribution, J. Phys. Chem. B, 2002, 106, 3788-3793.

[45] Bruce C.D., Senapati S., Berkowitz M.L., Perera L., Forbes M.D.E., Molecular Dynamics Simulations of Sodium Dodecyl Sulfate Micelle in Water: The Behavior of Water, J. Phys. Chem. B, 2002, 106, 10902-10907.

[46] Sammalkorpi M., Karttunen M., Haataja M., Ionic Surfactant Aggregates In Saline Solutions: Sodium Dodecyl Sulfate (SDS) in the Presence of Excess Sodium Chloride (NaCl) or Calcium Chloride (CaCl2), J. Phys. Chem. B, 2009, 113, 5863-5870.

[47] Yoshi N., Okazaki S., A molecular dynamics study of structure and dynamics of surfactant molecules in SDS spherical micelle, Cond. Matt. Phys., 2007, 10, 573-578.

[48] Tummala N.R., Striolo A., Role of Counterion Condensation in the Self-Assembly of SDS at the Water-Graphite Interface, J. Phys. Chem. B, 2008, 112, 1987-2000.

[49] Schweighofer K.J., Essmann U., Berkowitz M., Simulation of Sodium Dodecyl Sulfate at the Water-Vapor and Water-Carbon Tetrachloride Interfaces at Low Surface Coverage, J. Phys. Chem. B, 1997, 101, 3793-3799.

[50] Tang X., Koenig P.H., Larson R.G., Molecular Dynamics Simulations of Sodium Dodecyl Sulfate Micelles in Water—The Effect of the Force Field, J. Phys. Chem. B, 2014, 118, 3864-3880.

[51] Nakagaki M., Yokohama S., Acid catalyzed hydrolysis of sodium dodecyl sulfate., J. Pharm. Sci., 1985, 74, 1047-1052.

[52] Rosen M.J., Surfactants and Interfacial Phenomena, 3rd ed., J. Wiley & Sons New York, 2004.

[53] Bethell D., Fessey R.E., Namwindwa E., Roberts D.W., The hydrolysis of C12 primary alkyl sulfates in concentrated aqueous solutions. Part 1. General features, kinetic form and mode of catalysis in sodium dodecyl sulfate hydrolysis, J. Chem. Soc. Perkin Trans., 2001, 2, 1489-1495.