Therapeutic significance and pharmacological activities of antidiarrheal medicinal plants mention in Ayurveda: A review

Ashish Mishra, Ankit Seth, Santosh Kumar Maurya

Department of Ayurvedic Pharmacy Laboratory, Rajiv Gandhi South Campus, Banaras Hindu University, Barkachha, Mirzapur, Uttar Pradesh, India

Address for correspondence: Santosh Kumar Maurya, Ayurvedic Pharmacy Laboratory, Rajiv Gandhi South Campus, Banaras Hindu University, Barkachha, Mirzapur - 231 001, Uttar Pradesh, India. E-mail: dravyapharma@gmail.com

Received: February 23, 2016
Accepted: April 08, 2016
Published: May 04, 2016

ABSTRACT

Diarrhea is a serious problem affecting 3-5 billion people per year around the world, especially children of below 5 years. 70% of the world population uses traditional and indigenous medicine for their primary health care. The facts of these indigenous remedies are passed verbally and sometimes as documents. Since ancient time, Ayurveda is the main system of healing in South East Asian countries. Indian literature from ayurvedic texts and other books claim the potency of several plants in the treatment of diarrhea. As the global prospective of ayurvedic medicine is increasing, interest regarding the scientific basis of their action is parallely increasing. Researchers are doing experiments to establish the relation between the claimed action and observed pharmacological activities. In the present article, an attempt was made to compile the scientific basis of medicinal plants used to cure diarrhea in Ayurveda. Literature was collected via electronic search (PubMed, ScienceDirect, Medline, and Google Scholar) from published articles that reports antidiarrheal activity of plants that were mentioned in Ayurveda classics. A total of 109 plant species belonging to 58 families were reported for their antidiarrheal activity. Several Indian medicinal plants have demonstrated promising antidiarrheal effects, but the studies on the antidiarrheal potentials of these plants are not taken beyond proof of concept stage. It is hoped that the article would stimulate future clinical studies because of the paucity of knowledge in this area.

KEY WORDS: Ayurveda, diarrhea, medicinal plant, traditional medicine

INTRODUCTION

Gastroenteritis is a clinico-pathological term that refers to inflammation and oxidative stress of the intestines which leads to disturbance in the balance of secretory and absorptive function of the intestines resulting in diarrhea [1,2]. Hence, diarrhea can be defined as a gastrointestinal disorder in which there is a rapid transit of gastric contents through the intestine, which is characterized by abnormal fluidity and high frequency of fecal evacuation, usually semisolid or watery fecal matter, three or more times/day [1-3]. There is an increase in flow rate of feces with or without the presence of blood and mucus, accompanied by increased secretion and decreased absorption of fluid, leading to loss of water and electrolytes [2,4]. The major causative agents of diarrhea in human beings include a variety of enteric pathogenic bacteria such as Salmonella typhi, Shigella flexneri, Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Candida albicans [4,5]. Viruses, protozoans, helminths, intestinal disorders, immunological factor, and medications can also cause diarrhea in human being [6-8]. Etiological factors for diarrhea include the food intolerances, contaminated drinking water, undercooked meat and eggs, inadequate kitchen hygiene, poor sanitation [9], bile salts, hormones, irritable bowel syndrome, and intoxication [10].

According to the World Health Organization (WHO), diarrhea affects 3-5 billion people/year worldwide and causes 5 million deaths per annum [11]. Children, however, are more susceptible to the disease, which is the one of the leading causes of death in infants and children below 5 years of age [12].

Due to high mortality and morbidity, especially in children, the WHO together with the United Nations Children’s Fund has initiated Diarrhea Disease Control Program to control diarrhea in developing countries. Oral rehydration solution [13], zinc solution [14], probiotics [15], and specific antibiotics have reduced mortality rate in diarrheal disease. However, chronic diarrhea is still a life challenging problem in some regions of the world. Unfortunately, the program does not reach to the needy, and the disease is still a major challenge in front of primary health practitioner as well as researcher. Therefore, the different traditional systems of medicines such as Chinese medicine [16], Japanese medicine [17], acupuncture therapy [18], and ayurvedic medicine [19] are included in this program.
Since ancient times, medicinal plants have been used to treat different ailments due to their accessibility, availability, inherited practice, economic feasibility, and perceived efficacy [20]. Nowadays, the use of medicines from plant source increases significantly with conventional therapies. Hence, the plants are gaining more attention by the researchers to find out new and effective agents for different diseases. Several medicinal plants in the different regions of the world have been used to cure diarrhea [19,21].

The knowledge of indigenous medicines is passing from generation to generation orally worldwide [22]. It is, therefore, documentation of such knowledge as well as reported the scientific basis of their pharmacological potential is necessary since they are usually considered as free from adverse effects. A range of medicinal plants were reported for their effectiveness in diarrhea [23-27]. The protective role of these plants is probably due to their anti-inflammatory, antioxidant, and astringent properties [28]. India has a rich plant resources providing valuable medicine, which are conveniently used in Ayurveda, Unani, and other system of medicines for the treatment of various diseases [29]. Keeping this in view, the present article was initiated, with an aim to compile the scientific basis of medicinal plants used to cure diarrhea. A variety of curative agents from these indigenous plants has been isolated. These isolated compounds are belonging to different phytochemical classes such as flavonoids, saponins, terpenoids, steroids, phenolic compounds, and alkaloids [30-32]. Flavonoids and saponins inhibit the release of prostaglandins, autacoids, and contractions caused by spasms, as well as motility and hydroelectrolytic secretions [33,34] while saponins may prevent release of histamine [35]. Polyphenols and tannins provide strength to intestinal mucosa, decrease intestinal secretion, intestinal transit and promotes balance in water transport across the mucosal cells [36].

Previously, we enumerated a large number of plants, which are used in the ayurvedic system as antidiarrheal [19]. A majority of these plants have been investigated pharmacologically with respect to the potential antidiarrheal activity. In this review, we present ethnopharmacological data of 109 plant species belonging to 58 families mentioned in ayurvedic texts for controlling diarrhea with their possible mechanism of action [Table 1 and Figure 1]. Mostly, leaf (23%), root (14%), barks (11%), fruit (9%), and seed (8%) of the plants are used for antidiarrheal activity [Figure 2].

DISCUSSION

Since ages, human beings have relied on plants as a resource of the therapeutic arsenal in the fight against certain human diseases. Plant-based drugs have formed the basis of traditional medicine systems, i.e., Ayurveda, Siddha, Unani, Homeopathy, and Chinese. Herbal-based therapy is one of the popular and effective practices to overcome the illness. The WHO also promotes utilization of local knowledge of plant-based medicines in health care. It has been reported by the WHO that about 70-80% of the population in developing countries relies on traditional/ethno medicines for their primary health care. Since ancient time ayurvedic system of medicine is indigenous to and widely practiced in India. Nature has bestowed India with an enormous wealth of medicinal plants. Therefore, their rational uses for combating diseases are described traditionally.

Acharya charaka has mentioned a group of antidiarrheal plants named as Parish-Samagrabhishay Mahakshayasa, which includes priyangu (Callicarpa macrophylla), ananta (Hemidesmus indicus R.B.), seed of amra (Mangifera indica), katvanga (Ailanthus excelsa Roxb.), lodhra (Syringococcus racemosus), mocharasa (Salacia malabarica Schott and Endl.), samanga – Rubia cordifolia, flower of dhakati – Woodfordia fruticosa, padma – lotus (Nelumbo nucifera), and filaments of padma – lotus (N. nucifera). Moreover, he also listed some most useful antidiarrheal plants such as katavanga (A. excelsa Roxb.), mustaka (Cyperus rotundus Linn.), amrita (Tinospora cordifolia [Willd.] Miers ex Hook. f. & Thoms.), atishiva (Aconitum heterophyllum Wall. ex. Royle.), bila (Aegle marmelos Correa), cumuda (N. nucifera Gaertn.), utpala, padma, kutaja bark (Holarhena antidysenterica [Linn.] Wall.), gambhari fruit (Gmelina arborea Roxb.), prishnapuri (Uraria picta [Jacq.] Dev. ex DC.), and bala (Sida cordifolia) [187]. In addition, Acharya Susurata mentioned that the vacha (Acorus calamus Linn.) and harida (Curcuma longa Linn.), etc., are best for amatisara (diarrhea where undigested food matter pass in stool) while ambastha (Cissampelos pareira Linn.) and priyangu (C. macrophylla) are best for pakwatsara (diarrhea where only digested food matter pass in stool) [188].

The ayurvedic Pharmacopoeia mentioned more than 1200 species of plants, nearly 100 minerals and over 100 animal products officially. Although there is no record of pharmacological testing during the period when ayurvedic texts were written. However, nowadays, extensive researches are carried out concerning the phytopharmacological basis of their therapeutic principles. Public, academic as well as government organizations are showing interest in the scientific mechanism of action exerted by these plants. Similar to modern and other traditional medicines, ayurvedic medicines have been also evaluated for their phytopharmacology with the help of advances in science and technology. Scientific screening on laboratory animal and in vitro evaluations supports traditional uses of medicinal plants.

In the present scenario, modern pharmaceuticals offer a number of medicines for diarrhea, but diarrhea still remains a major health threat to the people in tropical and subtropical countries. It is one of the leading causes of mortality in children especially under the age of 5 years [12]. Different factors such as infections, malnutrition, food intolerances, intestinal disorders, and some medications may trigger diarrhea [6-8]. Currently, available pharmacological treatments are seem to be insufficient in diarrhea control. It is because of lack of admittance, high cost, and adverse effects of modern pharmaceuticals as well as therapeutic approaches. Therefore, investigations on drugs from different alternative and complementary medicines along with traditional system of medicines were going on.
Sanskrit name	Botanical name	Family	Part used	Extract/dose	Standard drug and dose	Model	Mechanism	References
Atibala	*Abutilon indicum* (Linn.)	Malvaceae	Leaf	Methanolic and aqueous extract	Loperamide (1 mg/kg)	Gastrointestinal motility test, castor oil-induced diarrhea model, and PGE₂-induced enteropooling model	Prevented Na⁺ and K⁺ loss	[37]
Khadir	*Acacia catechu* Willd.	Fabaceae	Heartwood	Ethyl acetate extract (250 mg/kg)	Diphenoxylate (10 mg/kg) and atropine (1 ml/200 g, p.o.)	Castor oil-induced diarrhea model		[38]
Babool	*Acacia nilotica* Dellie & Ssp. *indica* (Benth.) Brenan.	Caesalpiniaceae	Bark	Petroleum ether, methanolic and aqueous extract				[39]
Ativisha	*Aconitum heterophyllum* Wall. ex. *Royle.*	Ranunculaceae	Root	Ethanolic extract (50, 100, and 200 mg/kg) and isolatedaconitine	Loperamide (2 mg/kg, p.o.) and atropine (0.1 mg/kg, s.c.)	Castor oil-induced diarrhea model, small intestinal transit time, PGE₂-induced enteropooling, and gastric emptying test	Inhibition of spontaneous and high K⁺-induced contractions and antispasmodic activity	[40]
Vacha	*Acorus calamus* Linn.	Araceae	Root and essential oil	Methanolic extract and n-hexane fraction		Castor oil-induced diarrhea model, spasmylytic activity		[41,42]
			Rhizome	Aqueous and methanolic extract (3, 7.5, and 15 mg)		Castor oil-induced diarrhea model		
Bilva	*Aegle marmelos* Correa.	Rutaceae	Unripe fruit pulp	Aqueous extract	-	Antimicrobial activity	Through reduced bacterial adherence to intestinal wall and invasion of Hep-2 cells	[43-50]
			Leaf	Aqueous extract (50, 100, and 200 mg/kg)	Loperamide (3 mg/kg orally)	Castor oil-induced diarrhea, magnesium sulfate-induced diarrhea, and gastric transit time	Inhibition of intestinal transit of food material and inhibition of intestinal secretion	
			Fruit	Polyherbal formulation (25, 50, and 100 mg/kg)	Mebidid (10 ml/kg, p.o.)	Castor oil-induced diarrhea model, intestinal secretion model, and antispasmodic effect		
			Unripe fruit extract	Aqueous and methanolic extract		Castor oil-induced diarrhea model		
			Fruit	Aqueous extract	Diphenoxylate and yohimbine	Castor oil-induced diarrhea model		
			Dried fruit pulp	Ethanolic extract	-	In vitro antibacterial activity		
			Root	Chloroform extract	-	Castor oil-induced diarrhea model		
Sanskrit name	Botanical name	Family	Part used	Model and dose	Standard drug	Extract/dose	Mechanism	References
--------------	----------------	--------	-----------	----------------	---------------	---------------	-----------	------------
Gorakhgajra	Alchornea humboldtiana	Simaroubaceae	Stem and leaf	Alcoholic and aqueous extract (400 mg/kg, i.p.)	Loperamide	(3 mg/kg, i.p.)	Gastrointestinal motility test and castor oil-induced diarrhea model	[51]
Aralu	Aerva lanata	Amaranthaceae	Whole plant	Ethanolic and aqueous extract (400 and 800 mg/kg, i.p.)	Loperamide	(3 mg/kg, i.p.)	Gastrointestinal motility test and castor oil-induced diarrhea model	[52]
Saptaparna	Alstonia scholaris	Apocynaceae	Bark	Ethanolic and aqueous extract (250 mg/kg)	Loperamide	(50 mg/kg)	Gastrointestinal motility test and castor oil-induced diarrhea model	[54,55]
Sinduri	Bixa orellana	Bixaceae	Leaf	Methanolic extract (125, 250, and 500 mg/kg)	Loperamide	(3 mg/kg orally)	Castor oil-induced diarrhea model	[66]
Sanskrit name	Botanical name	Family	Part used	Extract/dose	Standard drug and dose	Model	Mechanism	References
--------------	----------------	-----------------	-----------	-----------------------------------	------------------------	--	--	------------
Sallaki	*Boswellia serrata* Roxb.	Burseraceae	Gum resin	Hydroalcoholic extract and 3–acetyl–11–keto–b–boswellic acid	Loperamide (5 mg/kg)	Upper gastrointestinal transit in croton oil-treated animal, castor oil-induced diarrhea model	Inhibition of acetylcholine-induced contractions by the L-type Ca\(^{2+}\) channel blockers	[67]
Parnabija	*Bryophyllum pinnatum* (Lam.) Kurz.	Crassulaceae	Leaf	Aqueous extract (100, 200, and 300 mg/kg)	Loperamide (1 mg/kg)	Castor oil-induced diarrhea model, castor oil-induced enteropooling, small intestinal transit time	Inhibition Na\(^{+}\)-K\(^{-}\)ATPase activity	[68]
Priyala	*Buchanania lanzan* Spreng.	Fagaceae	Leaf	(200 and 400 mg/kg)	Loperamide (3 mg/kg orally)	Castor oil-induced diarrhea model and PGE\(_2\)-induced enteropooling	Castor oil-induced diarrhea model and PGE\(_2\)-induced enteropooling	[69]
Palash	*Butea monosperma* Lam. Kunze.	Fabaceae	Stem bark	Ethanolic extract	Loperamide (5 mg/kg, p.o.)	Castor oil-induced diarrhea model	Antibacterial activity	[70]
Latakaranja	*Caesalpinia bonducella* Flem.	Caesalpiniaceae	Leaf	Methanolic extract and its ethyl acetate, chloroform, and petroleum ether fractions (200 and 400 mg/kg)	Loperamide (50 mg/kg)	Castor oil-induced diarrhea model	Castor oil-induced diarrhea model	[71]
Gumohar	*Caesalpinia pulcherrima* Linn.	Caesalpiniaceae	Bark	Ethanolic extract (500 mg/kg)	Loperamide (5 mg/kg)	Castor oil-induced diarrhea model	Castor oil-induced diarrhea model	[72]
Arka	*Calotropis gigantea* R.Br.	Asclepiadaceae	Aerial part	Hydroalcoholic extract (200 and 400 mg/kg)	Atropine (3 mg/kg, i.p.)	Castor oil-induced diarrhea model	Castor oil-induced diarrhea model	[73]
Arka	*Calotropis procera* (Ait.) R.Br.	Asclepiadaceae	Dry latex	Ethanol extract (500 mg/kg)	Loperamide (4 mg/kg)	Castor oil-induced diarrhea model	Castor oil-induced diarrhea model	[74-77]
Tea	*Camellia sinensis* (Linn.) O. Kuntze.	Theaceae	Leaf	Aqueous and alcoholic extract (100, 200 mg/kg)	Loperamide (3 mg/kg orally)	Castor oil-induced diarrhea model	Castor oil-induced diarrhea model and PGE\(_2\)-induced enteropooling	[78]
Hinsra	*Capparis zeylanica* Linn.	Capparidaceae	Leaf	Methanolic extract (100, 150, 200 mg/kg)	Loperamide (3 mg/kg orally)	Castor oil-induced diarrhea model	Castor oil-induced diarrhea model and small intestine transit method	[79]
Erand karkati	*Carica papaya* Linn.	Caricaceae	Fruit	Methanolic and aqueous extract (100, 200 and 400 mg/kg)	Loperamide (3 mg/kg, p.o.)	Castor oil-induced diarrhea model	Castor oil-induced diarrhea model and magnesium sulfate-induced diarrhea	[80]
Shitiwar	*Celosia argentea* Linn.	Amaranthaceae	Leaf	Alcoholic extract (100, 200 mg/kg)	Atropine (0.1 mg/kg, i.p.)	Castor oil-induced diarrhea model	Castor oil-induced diarrhea model	[81]
Patra	*Cinnamomum tamala* Buch.–Ham.	Lauraceae	Bark	Ethanolic extract (25, 50, and 100 mg/kg)	Loperamide (5 mg/kg)	Castor oil-induced diarrhea model	Castor oil-induced diarrhea model	[82]
Twaka	*Cinnamomum zeylanicum* Linn.	Lauraceae	Bark	Aqueous extract (100 and 200 mg/kg)	Loperamide (5 mg/kg)	Castor oil-induced diarrhea model	Castor oil-induced diarrhea model and magnesium sulfate-induced diarrhea	[83]
Sanskrit name	Botanical name	Family	Part used	Extract/dose	Standard drug and dose	Model	Mechanism	References
--------------	----------------	--------	-----------	--------------	------------------------	-------	-----------	------------
Patha	Cissampelos pareira Linn.	Menispermaceae	Root	Ethanolic extract (25-100 mg/kg)		Castor oil-induced diarrhea model	Inhibitory effect on the concentration of Na⁺ and K⁺, reduction in the lipid peroxidation and Prevention from oxidative stress	[84]
Hulhul	Cleome viscosa L.	Capparidaceae	Whole plant	Methanolic extract	Diphenoxylate (5 mg/kg orally)	Castor oil-induced diarrhea model and PG_E₂-induced enteropooling gastrointestinal motility		[85]
Vaamana–haati	Clerodendrum indicum	Verbenaceae	Leaf	Methanolic extract and chloroform fraction		Castor oil-induced diarrhea model		[86]
Aparajita	Clitoria ternatea L.	Fabaceae	Leaf	Methanolic extract (100, 200, and 300 mg/kg)	Loperamide (3 mg/kg)	Castor oil-induced diarrhea model		[87,88]
Vaamana–haati	Clerodendrum indicum	Verbenaceae	Root	Methanolic extract (100, 200, and 400 mg/kg)	Atropine (5 mg/kg, i.p.)	Castor oil-induced diarrhea model, intestinal transit and castor oil-induced enteropooling		
Dhanyaka	Coriandrum sativum Linn.	Apiaceae	Leaf	Aqueous extract (150 and 300 mg/kg)	Loperamide (3 mg/kg)	Castor oil-induced diarrhea model		[89]
Varuna	Crataeva nurvala	Fabaceae	Stem bark	Ethanolic extract (500 mg/kg)		Castor oil-induced diarrhea model, castor oil-induced enteropooling, and small intestine transit model		[90]
Jiraka	Cuminum cyminum Linn.	Apiaceae	Seed	Aqueous extract	Loperamide (3 mg/kg)	Castor oil induced diarrhea model, PG_E₂-induced enteropooling model, intestinal transit by charcoal		[91]
Haridra	Curcuma longa Linn.	Zingiberaceae	Rhizome	Aqueous extract (200 mg/kg)		Castor oil-induced diarrhea model		[92]
Durva	Cynodon dactylon Pers.	Poaceae	Whole plant	Methanolic extract (200 and 300 mg/kg)	Atropine (5 mg/kg orally)	Castor oil-induced diarrhea model, gastrointestinal charcoal meal test, and enteropooling model		[93]
Mustaka	Cyperus rotundus Linn.	Cyperaceae	Rhizome	Methanolic extract (250-500 mg/kg)		Castor oil-induced diarrhea model		[94,95]
Goraksha	Dalbergia lanceolaria Linn.f.	Fabaceae	Bark	Petroleum ether, ethanolic extract	Diphenoxylate (5 mg/kg, p.o.)	Castor oil and magnesium sulfate-induced diarrhea		[96]
Shimsapa	Dalbergia sissoo Roxb. ex DC.	Fabaceae	Leaf	Ethanol extract		Castor oil-induced diarrhea model and magnesium sulfate-MgSO₄-induced diarrhea		[97]
Kusha	Desmostachya bipinnata L.	Poaceae	Leaf	Alcohol aqueous extract (200, 400 mg/kg)	Loperamide (3 mg/kg, p.o.)	Castor oil-induced diarrhea model, gastrointestinal motility test with charcoal meal test		[98]
Virataru	Dicrostachys cinerea W. & A.	Mimosaceae	Leaf bark and root	Ethanol extract (200 and 400 mg/kg)	Loperamide (5 mg/kg, p.o.)	Castor oil-induced diarrhea model and small intestinal transit model		[99]
Tinduka	Diospyros peregrina Hude.	Ebenaceae	Bark and seed	Ethanol extract (250 and 500 mg/kg)		Castor oil-induced diarrhea model		[100]

Table 1: (Contd...)
Sanskrit name	Botanical name	Family	Part used	Extract/dose	Standard drug and dose	Model	Mechanism	References
Amalaki	Emblica officinalis Gaertn.	Euphorbiaceae	Fruit	Ethanolic extract (500 mg/kg)	Loperamide (3 mg/kg)	Castor oil-induced diarrhea model	Inhibition of intestinal motility, antimicrobial action, and antisecretory effects	[101-103]
			Crude extract (500-700 mg/kg)	Loperamide (10 mg/kg)	Castor oil-induced diarrhea model and enteropooling model	Mediated possibly through dual blockade of muscarinic receptors and Ca\(^{2+}\) channels		
			Methanolic extract					
Paribhadra	Erythrina indica Lam.	Fabaceae	Leaf	Ethanolic and aqueous extract (500 mg/kg)	Loperamide (5 mg/kg)	Castor oil-induced diarrhea model, PGE\(_2\)-induced intestinal fluid enteropooling, and gastrointestinal motility in both BaSO\(_4\) and charcoal meal tests		[104]
Dugdhika Big	Euphorbia hirta Linn.	Euphorbiaceae	Whole plant	Ethanolic and water extract (2.0 mg/kg)		Castor oil-induced diarrhea model, PGE\(_2\)-induced enteropooling, gastrointestinal motility in both BaSO\(_4\) and charcoal meal tests		[105]
Kapittha	Feronia limonia Linn. Swingle	Rutaceae	Leaf	Ethanolic extract (250, 500 mg/kg)	Loperamide (50 mg/kg)	Antibacterial activity, castor oil-induced diarrhea model		[106,107]
Vata	Ficus benghalensis	Moraceae	Leaf	Methanolic (3, 7.5 and 15 mg/kg)	Loperamide (25 mg/kg)	Castor oil-induced diarrhea model		[108,109]
			Root	Ethanolic extract (400 mg/kg)	Diphenoxylate (5 mg/kg, p.o.)	Gastrointestinal motility in charcoal meal test, castor oil-induced diarrhea model, and PGE\(_2\)-induced enteropooling		
Kakudumbara	Ficus hispida Linn.	Moraceae	Leaf	Methanolic extract	Diphenoxylate (5 mg/kg, p.o.)	Castor oil-induced and PGE\(_2\)-induced enteropooling model		[110]
Udumbara	Ficus racemosa Linn.	Moraceae	Bark	Ethanolic extract 400 mg/kg	Diphenoxylate (5 mg/kg, p.o.)	Castor oil-induced diarrhea model and PGE\(_2\)-induced enteropooling model		[109]
Ashvattha	Ficus religiosa Linn.	Moraceae	Stem bark	Hydroalcoholic, acetone extract	Loperamide (3 mg/kg, p.o.)	Castor oil-induced diarrhea model		[111]
Udumber	Ficus glomerata L.	Moraceae	Leaf	Methanolic extract (100 and 200 mg/kg)	Atropine (3 mg/kg)	Castor oil-induced diarrhea model, castor oil-induced enteropooling, and intestinal transit		[112]
Parpata	Fumaria parviflora	Papaveraceae	Aerial part	Aqueous and methanolic extract	Dicyclomine, (50 and 100 mg/kg) and Loperamide (10 mg/kg, p.o.)	Castor oil-induced diarrhea model	CCB blockade of muscarinic receptors	[113]
Sanskrit name	Botanical name	Family	Part used	Extract/dose	Standard drug and dose	Model	Mechanism	References
--------------	---------------	--------	-----------	--------------	------------------------	-------	-----------	------------
Kasmari	Gmelina arborea Roxb.	Verbenaceae	Root	Ethanolic and N–butanol (200, 400 mg/kg)	Loperamide (3 mg/kg, p.o.)	Castor oil-induced diarrhea model	Inhibition of intestinal motility and bactericidal activity	[114,115]
Sariva	Hemidesmus indicus R.Br.	Apocynaceae	Root	Methanolic extract (500-1500 mg/kg)	Loperamide (5 mg/kg)	Castor oil-induced diarrhea model	Charcoal meal test and enteropooling model	[116,117]
Kutaja	Holarrhena antidysenterica (Linn.) Wall.	Asclepiadaceae	Seed	Ethanolic extract (100 and 200 mg/kg)	Loperamide (3 mg/kg)	Castor oil-induced diarrhea model, antibacterial activity against EPEC *in vitro*		[118]
Cirabilva	Holoptelea integrifolia Planch.	Urticaceae	Leaf	Ethanolic extract (250 and 500 mg/kg), isolated alkaloid	Loperamide (5 mg/kg)	Castor oil and magnesium sulfate-induced diarrhea model		[119]
Bandhuka	Ixora coccinea Linn.	Rubiaceae	Flower	Aqueous extract (400 mg/kg)	Loperamide (5 mg/kg)	Castor oil-induced diarrhea model		[120,121]
Bandhuka	Ixora coccinea Linn.	Rubiaceae	Leaf	Aqueous extract (400 mg/kg)	Loperamide (5 mg/kg)	Castor oil-induced diarrhea model		
Vyaghra errand	Jatropha curcas Linn.	Euphorbiaceae	Root	Methanolic extract (50 and 100 mg/kg)	Chlormepazine (30 mg/kg, i.p.)	Castor oil or magnesium sulfate-induced diarrhea	Inhibition of prostaglandin biosynthesis and reduction of osmotic pressure, decreases in peristaltic activity, Castor oil-induced permeability changes in intestinal mucosal membrane to water and electrolyte Inhibition of prostaglandin biosynthesis and reduction propulsive movement of small intestine	[122,123]
Madhuca	Madhuca indica J. F. Gmel.	Sapotaceae	Dried bark	Ethanolic extract (250 and 500 mg/kg)	Loperamide (50 mg/kg)	Castor oil-induced diarrhea model		[124]
Amra	Mangifera indica Linn.	Anacardiaceae	Stem bark and root bark	Methanolic extract (3, 7.5, and 15 mg/kg)	Loperamide (50 mg/kg)	Castor oil-induced diarrhea model		[108,125-127]
			Seed	Alcoholic and aqueous extract	Loperamide	Castor oil-induced diarrhea model	By increasing colonic water and electrolyte reabsorption or by inhibiting intestinal motility	
			Leaf	Aqueous extract (25 and 50 mg/kg)	Loperamide (2 mg/kg)	Castor oil-induced diarrhea model	Enhancement of Na⁺-K⁺ ATPase activity	
			Seed	Methanolic and aqueous extract (250 mg/kg)	Loperamide (3 mg/kg, p.o.)	Castor oil- and magnesium sulfate-induced diarrhea model		
Sanskrit name	Botanical name	Family	Part used	Extract/dose	Standard drug and dose	Model	Mechanism	References
--------------	---------------	--------	-----------	--------------	------------------------	-------	-----------	------------
Pudina	Mentha longifolia (Linn.) Huds.	Lamiaceae	Whole plant	Crude extract, petroleum spirit fraction, aqueous fraction (100-1000 mg/kg)	Loperamide	Castor oil-induced diarrhea model	Inhibition of spontaneous and high K⁺-induced contractions, spasmolytic activity, mediated possibly through CCB	[128,129]
Lajjalu	Mimosa pudica Linn.	Mimosaceae	Leaf	Essential oil (20-80 mg/kg)	Loperamide (3 mg/kg, p.o.)	Castor oil-induced diarrhea model		[130,131]
Lajjalu	Mimosa pudica Linn.	Mimosaceae	Root	Ethanolic and aqueous extract (150 and 250 mg/kg)	Castor oil-induced diarrhea model, gastrointestinal motility in charcoal meal test		[132]	
Karvellaka	Monordica charantia	Cucurbitaceae	Leaf	Aqueous extract	Castor oil-induced diarrhea model, gastrointestinal transit, intestinal fluid accumulation and gastric emptying		[133,134]	
Shobhanjana	Moringa oleifera Lam.	Moringaceae	Leaf	Hydroalcoholic extract (2500 mg/kg)	Diphenoxylate (5 mg/kg orally)	Castor oil- and magnesium sulfate-induced gastro-intestinal motility, castor oil, and PGE₂-induced enteropooling, charcoal meal test	[135,136]	
Surabhi-nimba	Murraya koenigii (Linn.) Spreng.	Rutaceae	Leaf	Ethanolic extract (150 and 300 mg/kg) and alcoholic extract (400 mg/kg)	Atropine (0.1 mg/kg, i.p. and 0.5 mg/kg)	Castor oil-induced diarrhea model, charcoal meal test, and PGE₂-induced diarrhea		[137]
Kamini	Murraya paniculata (L.) Jack.	Rutaceae	Leaf	Ethanolic extract (300 and 600 mg/kg)	Diphenoxylate (5 mg/kg orally)	Castor oil-induced diarrhea model, gastro-intestinal motility in the charcoal meal test		[138]
Kadali	Musa paradisiaca Linn.	Musaceae	Sap	0.25, 0.50, and 1.00 mL	Diphenoxylate (5 mg/kg orally)	Castor oil-induced diarrhea model, castor oil-induced enteropooling, and gastro-intestinal motility	Inhibition Na⁺-K⁺ ATPase activity	[139]
Jatiphala	Myristica fragrans Houtt.	Myristicaceae	Flower bud	Aqueous extract and petroleum ether extract	Atropine	Antispasmodic	Inhibited the contraction produced by acetylcholine, histamine, and prostaglandin	[140-142]
Kamala	Nelumbo nucifera Gaertn.	Nymphaeaceae	Rhizome	(100, 200, 400, and 600 mg/kg)	Castor oil-induced diarrhea model and PGE₂-induced enteropooling and charcoal meal test			
Sanskrit name	Botanical name	Family	Part used	Extract/dose	Standard drug and dose	Model	Mechanism	References
--------------	----------------	--------	-----------	--------------	------------------------	-------	-----------	------------
Root bark	*Castor officinalis*	**Euphorbiaceae**	Root bark	Methanolic extract (100, 200, 400, and 600 mg/kg)	Loperamide (10 mg/kg, p.o.)	Castor oil-induced diarrhea model	Possibly through the presence of Ca²⁺ antagonist	[143]
Rhizome	*Oroxylum indicum*	**Bignoniaceae**	Rhizome	Methanolic extract (400 mg/kg)	Loperamide (66.67 μg/kg, p.o.)	Castor oil-induced diarrhea model	-	[144, 145]
Seed oil	*Oxalis corniculata*	**Gerniaceae**	Seed oil	Crude hexane extract	-	Castor oil-induced diarrhea model	-	[146]
Root	*Paederia foetida*	**Rubiaceae**	Root	Aqueous, ethanolic extract (300-1000 mg/kg)	Atropine (5 mg/kg)	Castor oil-induced diarrhea model	-	[147]
Stem bark	*Phoenix dactylifera*	**Palmaceae**	Stem bark	Methanolic extract (400 mg/kg)	Loperamide (5 mg/kg)	Castor oil-induced diarrhea model	-	[148]
Bark	*Piper nigrum*	**Piperaceae**	Bark	Flavonoids rich fraction	-	Castor oil-induced diarrhea model	-	[149-153]

Contd...
Sanskrit name	Botanical name	Family	Part used	Extract/dose	Standard drug and dose	Model	Mechanism	References
Karkatasringi	*Pistacia integerrima* (J. L. Stewart ex Brandis)	Anacardiaceae	Gall	Methanolic extract (700 and 900 mg kg)	Loperamide (10 mg/kg)	Castor oil-induced diarrhea model, spontaneous contractions in isolated rabbit jejunum	Inhibitory effect on prostaglandins	[154]
Karanja	*Pongamia pinnata* (Linn.) Pierre.	Fabaceae	Leaf	Aqueous extract	-	Antibacterial, antiangiudial and antirotaviral activity	Inhibits adherence of EPEC and invasion of EIEC and *Shigella flexneri* to epithelial cells	[155]
Peruka	*Psidium guajava* Linn.	Myrtaceae	Leaf	Aqueous extract (50-400 mg/kg)	Loperamide (10 mg/kg, p.o.)	Castor oil-induced diarrhea model		[156-158]
			Bark	Methanolic and aqueous extract (100 mg/kg)	Loperamide (1 mg/kg, i.p.)	Gastrointestinal Motility, castor oil-induced diarrhea model, and PGE₂-induced enteropooling		
Bijaka	*Pterocarpus marsupium*	Fabaceae	Heartwood	Ethanolic extract (250 and 500 mg/kg,)	Loperamide (5 mg/kg, p.o.)	Castor oil and charcoal-induced gastrointestinal motility test, intestinal transit of charcoal meal	Castor oil-induced diarrhea and PGE₂-induced enteropooling model, spontaneous movement of the isolated rat ileum, acetylcholine-induced contractions test	[159]
Dadima	*Punica granatum* Linn.	Punicaceae	Seed	Methanolic extract		Antimotility and antisecretory activity		[160-162]
			Peels	Aqueous extract (100, 200, 300, and 400 mg/kg)				
			Rinds of fruit	Polyherbal formulation Aqueous extract	Mebarid (10 ml/kg, po)	Castor oil-induced diarrhea model, intestinal secretion, and charcoal meal test		[163]
Mayaphala	*Quercus infectoria*	Fagaceae	Gall	Ethanolic extract (250 and 500 mg/kg,)	Loperamide (3 mg/kg, p.o.)	Castor oil and magnesium sulfate-induced diarrhea models		[164]
Sarpagandha	*Rauvolfia serpentina* Benth. ex Kurz.	Apocynaceae	Root	Methanolic extract (100, 200, and 400 mg/kg)	Diphenoxylate (5 mg/kg, p.o.)	Castor oil-induced diarrhea model		[165]
Manjistha	*Rubia cordifolia* L.	Rubiaceae	Root	Ethanolic extract (50, 100 mg/kg)		Castor oil-induced diarrhea model, gastrointestinal transit time		
Table 1: (Contd...)

Sanskrit name	Botanical name	Family	Part used	Extract/dose	Standard drug and dose	Model	Mechanism	References
Chandan	Santalum album Linn.	Santalaceae	Heartwood	Methanolic extract (200, 400, and 800 mg/kg)		Castor oil-induced diarrhea model	Spasmolytic role relaxed the acetylcholine-induced, 5-HT-induced and K⁺-induced contractions	[166]
Asoka	Saraca asoca (Roxb.) De Wilde	Caesalpiniaeae	Stem bark	Hydroalcoholic, acetone extract (200 mg/kg)	Loperamide (3 mg/kg, p.o.)	Castor oil-induced diarrhea model		[167]
Kushtha	Saussurea lappa Clarke	Asteraceae	Essential oil	100, 300, and 500 mg/kg	Loperamide (5 mg/kg)			[168]
Raj Bala	Sida rhombifolia	Malvaceae	Root	Methanolic extract (200 and 400 mg/kg)	Diphenoxylate (5 mg/kg)	Castor oil-induced diarrhea model, intestinal transit, and castor oil-induced intestinal fluid accumulation (enteropooling)		[169]
Kupilu	Strychnos nux-vomica Linn. f.	Loganiaceae	Root bark	Aqueous and Methanolic extract (3, 7.5, and 15 mg) Methanolic extract	Diphenoxylate (5 mg/kg)	Castor oil-induced diarrhea model		[42]
Kataka	Strychnos potatorum Linn.	Loganiaceae	Seed	Methanolic extract (125, 250, and 500 mg/kg)	Verapamil (50 mg/kg)	Castor oil-induced diarrhea model, effects on gastrointestinal motility and PGE₂-induced gastric enteropooling		[170]
Lodhra	Symplocos racemosa Roxb.	Symplocaceae	Bark	Ethylacetate chloroform, n-butanol and aqueous fraction (300, 500 mg/kg)	Loperamide (2 mg/kg, p.o.)	Castor oil-induced diarrhea model, charcoal meal test, castor oil-induced intestinal secretions		[171]
Jambu	Syzygium cuminii Linn. Skeels	Myrtaceae	Seed	Aqueous extract (125, 250, and 500 mg/kg)	Verapamil (50 mg/kg)	Castor oil-induced diarrhea model, effects on gastrointestinal motility and PGE₂-induced gastric enteropooling		[172]
Sharpunkha	Tephrosia purpurea (Linn.) Pers.	Fabaceae	Whole plant	Methanolic extract (300 mg/kg)	Verapamil (50 mg/kg)	Castor oil-induced diarrhea model, effects on gastrointestinal motility and PGE₂-induced gastric enteropooling		[173]
Arjuna	Terminalia arjuna (Roxb.) W. & A.	Combretaceae	Bark	Methanolic extract (100, 200, and 400 mg/kg)	Loperamide (3 mg/kg)	Castor oil-induced diarrhea model, effects on gastrointestinal motility and PGE₂-induced gastric enteropooling		[174]
Bibhitaki	Terminalia bellirica Roxb.	Combretaceae	Fruit	Aqueous and ethanolic extract (143, 200, and 334 mg/kg)	Loperamide (3 mg/kg)	Castor oil-induced diarrhea model, effects on gastrointestinal motility and PGE₂-induced gastric enteropooling		[175]
Parisha	Theespesia populnea Soland. Ex. Correa	Malvaceae	Stem bark	Methanolic fraction (100 mg/kg) and residue fraction (10, 25, and 50 mg/kg) of aqueous extract	Loperamide (3 mg/kg)	Castor oil-induced diarrhea model, PGE₂-induced diarrhea, charcoal meal test	Inhibition of elevated prostaglandin biosynthesis, reduced propulsive movement of the intestine	[176,177]
				Aqueous extract (100, 200, and 400 mg/kg) and alcoholic extract (50, 100, and 200 mg/kg)	Atropine (3 mg/kg)		Castor oil-induced diarrhea model; PGE₂-induced enteropooling, charcoal meal test	

Contd...
Sanskrit name	Botanical name	Family	Part used	Extract/dose	Standard drug and dose	Model	Mechanism	References
Guduchi	Tinospora cordifolia (Willd.) Miers ex Hook.f. & Thoms.	Menispermaceae	Stem	Ethanolic and aqueous extract	Loperamide (3 mg/kg, p.o.)	Castor oil and magnesium sulfate-induced diarrhea	[178]	
Adhapushpi	Trichodesma indicum R.Br.	Boraginaceae	Root	Ethanolic extract			[179]	
Methika	Trigonella foenum-graecum Linn.	Fabaceae	Whole plant	Aqueous extract (100, 200 mg/kg)	Loperamide (1 mg/kg, i.p.)	Castor oil-induced diarrhea model	[180]	
Pind tagar	Valeriana hardwickii Wall.	Valerianaceae	Rhizome	Aqueous-Methanolic extract	Loperamide (10 mg/kg)	Castor oil-induced diarrhea model	[181]	
Sampushpa	Vinca major L.	Apocynaceae	Aerial part	Ethanolic extract (250, 500, and 1000 mg/kg)	Loperamide (3 mg/kg, p.o.)	Castor oil-induced diarrhea model, castor oil and magnesium sulfate-induced enteropooling, gastrointestinal motility test using charcoal meal methods	[182]	
Kutaja	Wrightia tinctoria Roxb. R.Br.	Apocynaceae	Bark	Ethanolic extract (500 and 1000-189 mg/kg) and isolated steroidal alkaloid fraction (50 and 100 mg/kg)	Loperamide (0.5 mg/kg), atropine (0.1 mg/kg, i.p.)	Castor oil-induced diarrhea model, charcoal meal, PGE2-induced enteropooling	[183]	
Adaraka	Zingiber officinale Rosc.	Zingiberaceae	Rhizome	Zingerone	Loperamide (5 mg/kg, i.p.)	Intraluminal pressure changes and expelled fluid volume from the colon	[184]	
Badara	Ziziphus jujuba Mill.	Rhamnaceae	Leaf	Aqueous extract		Castor oil and magnesium sulfate-induced diarrhea models	[185]	
Badara	Ziziphus mauritiana	Rhamnaceae	Root	Methanolic extract (25 and 50 mg/kg)	Diphenoxylate (2.5, 5 mg/kg) orally	Castor oil-induced diarrhea model and castor oil-induced fluid accumulation, spontaneous movement of the isolated rabbit jejunum, gastrointestinal transit time	[186]	

PGE2: Prostaglandin E2, CCB: Calcium channel blockade, EPEC: Enteropathogenic Escherichia coli, EIEC: Enteroinvasive Escherichia coli
Many phytoconstituents such as lupinifolin isolated from *Eriosema chinense*, omonoukanin B, dimethoxyflavone isolated from the stem bark of *Stereospermum kunthianum*, 6-(4-hydroxy-3-methoxyphenyl)-hexanonic acid, isovanillin, iso-acetovanillon from *Pycnocycla spinosa* Decne. Ex Boiss., have been evaluated for anti-diarrheal activity. However, in the mentioned list of ayurvedic plants limited isolation of the active constituents have been done which accounts for the numerous scope in this area for analytical, pharmacognostical as well as pharmacological screening of the active principles from these plants. Some of the constituents such as kurryram, koenimbine, koenine, piperine, and berberine are mentioned in the list with reported antidiarrheal activity [189-192].

Newer technologies such as in-silico, docking studies, interaction with enterotoxin from causative organism and nanotechnology were also employed in the antidiarrheal agent research works [193,194]. However, unfortunately, such advanced techniques were not used for the above listed ayurvedic plants. However, a few clinical trials reveal that the plants acts via a number of mechanisms, i.e., anti-inflammatory, antisecretory antimicrobial effect against *V. cholerae* and enterotoxigenic *E. coli*, rotavirus, detoxification of toxins and constipate, adsorbent, providing a rich source of calories; antimotility and antispasmodics effects [195].

CONCLUSION

The ethnomedicinal approach for diarrhea is a practical, cost-effective, and a logical for its treatment. Present data show that only a few isolated compounds from plants were investigated for antidiarrheal potential. Therefore, a significant research of chemical and biological properties of such less explored plants is still needed to determine their antidiarrheal efficacy which will possibly define their exact mechanism of actions.

REFERENCES

1. Ghai OP, Paul VK, Arvind B. Ghai Essential Pediatrics. 7th ed. New Delhi: CBS Publishers & Distributors Pvt., Ltd.; 2009. p. 559-61.
2. Schiller LR. Definitions, pathophysiology, and evaluation of chronic diarrhoea. Best Pract Res Clin Gastroenterol 2012;26:551-62.
3. Whyte LA, Jenkins HR. Pathophysiology of diarrhoea. Paediatr Child Health 2012;22:443-7.
4. Teke GN, Kuiafa JR, Ngouateu OB, Gatsing D. Antidiarrhoeal and antimicrobial activities of *Emilia coccinea* (Sims) G. Don extracts. J Ethnopharmacol 2007;112:278-83.
5. Kitaoka M, Miyata ST, Unterweger D, Pukatzki S. Antibiotic resistance mechanisms of *Vibrio cholerae*. J Med Microbiol 2011;60:397-407.
6. Baldi F, Bianco MA, Nardone G, Pilotto A, Zamparo E. Focus on acute diarrhoeal disease. World J Gastroenterol 2009;15:3341-8.
7. Pimentel M, Hwang L, Melmed GY, Low K, Vasiliauskas E, Ippoliti A, et al. New clinical method for distinguishing D-IBS from other gastrointestinal conditions causing diarrhea: The LA/IBS diagnostic
58. Venkatesan N, Thiyagarajan V, Narayanan S, Arul A, Raja S, Vijaya Kumar SG, et al. Anti-diarrhoeal potential of Asparagus racemosus wild root extracts in laboratory animals. J Pharm Pharmacol 2005;8:39-46.

59. Sandhyaranjani G, Sathwika K, Gangarapu K, Kumar P, Ramesh A. Pharmacological studies of anti-diarrhoeal activity of Barringtonia acutangula (L.) In experimental animals. Int J Phytother Res 2015;9:33-6.

60. Zafar Imam M, Sultana S, Akter S. Antiinflammatory, antiarthritis, and neuropharmacological activities of Barringtonia acutangula. Pharm Biol 2012;50:1078-84.

61. Mukherjee KPK, Gopal TK, Subburaju T, Dhanabai SB, Duraiswamy B, Elango K, et al. Studies on the antidiarrheal profiles of Bauhinia purpurea L. Leaves (Caesalpinioideae) extract. Nat Prod Sci 1998;4:234-7.

62. Sengupta R, Ahmed AB. Evaluation of antidiarrheal activity of ethanol extract of Bauhinia variegata (Leguminosae) stem bark in Wistar albino rats. Int J Pharm Biol Res 2015;8:201503.

63. Shamkuwar PB, Pawar DP. Antidiarrhoeal and antispasmodic effect of Berberis aristata. Int J Pharm Pharmacogn Res 2013;5:24-6.

64. Joshi PV, Shirkhedkar AA, Prakash K, Maheshwari VL. Antidiarrheal activity, chemical and toxicity profile of Berberis aristata. Pharm Biol 2011;49:94-100.

65. Sheikh NW, Upwar NR, Patel RD, Rupapara DJ. Evaluation of anti diarrhoeal activity of alcoholic extract of stem of Berberis aristata DC. J Pharm Res 2010;3:2222-4.

66. Shilpi JA, Taufiq-Ur-Rahman M, Uddin SJ, Alam MS, Sadhu SK, Seidel V. Preliminary pharmacological screening of Bixa orellana L. Leaves. J Ethnopharmacol 2006;108:264-71.

67. Borrelli F, Capasso F, Capasso R, Ascione V, Aviello G, Longo R, et al. Effect of Boswellia serrata on intestinal motility in rodents: Inhibition of diarrhoea without constipation. Br J Pharmacol 2006;148:553-60.

68. Sharma U, Lahkar M, Lahon J. Evaluation of antidiarrhoeal potential of Bryophyllum Pinnatum in experimental animals. Asian J Biomed Pharm Sci 2012;2:28-31.

69. Sumithra M, Anbu J, Suganya S. Antidiarrheal activity of the methanolic extract of Bunchanian lanzan against castor oil induction. Int J Adv Pharm Bioarch 2011;2:521-5.

70. Gunakkunnu A, Padmanabhan K, Thirumal P, Pritila J, Parimala G, Vengatesan N, et al. Antidiarrheal activity of Butera monosperma in experimental animals. J Ethnopharmacol 2005;98:241-4.

71. Billah MM, Islam R, Khutan H, Parvin S, Islam E, Islam SA, et al. Antibacterial, antiarthritis, and cytotoxic activities of methanol extract and its fractions of Caesalpinia bonducella (L.) Roxb leaves. BMC Complement Altern Med 2013;13:101.

72. Alfroor T, Rampothad S, Mondal B, Haque A, Khan R, Antidiarrheal and analgesic activity of barks of medicinal plant Caesalpinia pulcherrima. Int J Pharm Sci 2013;4:1946-9.

73. Havigaray R, Ramesh C, Sadhna K. Study of antidiarrheal activity of Calotropis gigantea R. Br. in experimental animals. Int J Pharm Sci 2004;7:70-5.

74. Kumar S, Dewan S, Sangraula H, Kumar VL. Anti–diarrhoeal activity of the latex of Calotropis procera. J Ethnopharmacol 2001;76:115-8.

75. Das A, Dutta AK, Razaque S, Saha B, Gope PS, Choudhury N. Analgesic and antiarthritis properties of the latex of Calotropis procera. Int J Pharm Bio Arch 2011;2:521-5.

76. Patil SH, Adkar PP, Shelke TT, Oswal RJ, Borase SP. Antidiarrheal activity of methanol extract of leaves of Calotropis procera R. Br. J Pharm Toxicol 2011;1:25-30.

77. Abhinayani G, Sravya N, Naga Kishore R. Anti–diarrheal activity of Desmostachya bipinnata (L.) Weight & Arn. Int J Pharm Sci 2011;3:61-3.

78. Rouf R, Uddin SJ, Mondal K, Shilpi JA, Rahman MT. Antidiarrheal activity of Dysopyros lotus. J Ethnopharmacol 2012;9:1456-7.

79. Ravindra BDS, Neeruika V, Pallavi V, Reddy MB. Antidiarrheal activity of Dysnna Dactylon. Pers. Phycog Mag 2009;5:23-7.

80. Upwar NK, Patel R, Waseem N, Mahobia NK. Evaluation of antidiarrheal activity of the root of Citoria ternatae Linn. Int J Pharm Sci Res 2010;5:131-4.

81. Nithya V. Evaluation of antidiarrheal activity on Coriandum sativum Linn. in wistar albino rats. World J Pharm Res 2015;4:638-43.

82. Inayathulla, Sharif W, Kariq AA, Sikanwar MS. Evaluation of anti diarrhoeal activity of Cistacea nuruval root bark in experimental animals. Int J Pharm Pharm Sci 2010;2:158-61.

83. Sahoo HB, Sahoo SK, Sarangi SP, Sagar R, Kori ML. Antidarrheal investigation from aqueous extract of Cuminum cyminum Linn. Seed in Albino rats. Pharmacognosy Res 2014;6:204-9.

84. Owalabi OJ, Arhewoh Mi, Aadam EJ. Evaluation of the antidiarrheal activity of the aqueous rhizome extract of Curcuma Longa. J Pharm Allied Sci 2012;9:1456-7.

85. Dasswani PG, Brijesh S, Tetali P, Birdi TJ. Studies on the activity of Curcus Longus. Roton. Tubers against infectious diarrhoea. Indian J Pharmacol 2011;43:340-4.

86. Mujumdur AM, Misar AV, Upadhye AS. Antidiarrheal activity of ethanol extract of the bark of Dalbergia lanceolacea. J Ethnopharmacol 2005;102:213-6.

87. Chandra P, Sachan N, Pa D. Protective effect of Dalbergia sissoo Roxb. Ex DC. (family: Fabaceae) leaves against experimentally induced diarrhoea and peristalsis in mice. Toxicol Ind Health 2015;31:1229-35.

88. Mukherjee MH, Lakshman K, Giri K, Kumar BA, Lakshmirprasanna V. Assessment of antidiarrhoeal activity of Desmostachya bipinnata (Poaceae) root extracts. Bol Latinam Caribe Plant Med Aromat 2010;9:312-8.

89. Jayakumari S, Srinivas RGH, Anbu J, Ravichandiran V. Antidiarrheal activity of Dichrostachys cinera (L.) Weight & Arn. Int J Pharm Sci 2013;5:61-3.

90. Rouf R, Uddin SJ, Shilpi JA, Toufig–UR–Rahman M, Ferdous MM, Sarker SD. Anti–diarrhoeal properties of Diospyros peregrina in the castor oil–induced diarrhoea model in mice. Arq Pharm 2006;47:81-9.

91. Hossen SMM, Sarkar R, Mahmud S, Aziz NMA. Medicinal potential of Phyllanthus emblica (Linn.) Fruits extracts: Biological and pharmacological activities. Br J Pharm Res 2014;4:1486-99.

92. Mehmooh MD, Siddiqi HS, Gilani AH. The antidiarrheal and spasmylocytic activities of Phyllanthus emblica are mediated through dual blockade of muscarinic receptors and Ca2 channels. J Ethnopharmacol 2011;133:856-65.

93. Perianayagam JB, Narayanan S, Gnanasekar A, Pandurangan A, Raja S, Rajagopal K, et al. Evaluation of antidiarrheal potential of Emblica officinalis. Pharm Bio 2005;43:373-7.

94. Kamalraj R. Anti–diarrhoeal potential of Erythrina indica Lam – Leaf extracts in laboratory animals. Int J Pharm Sci Drug Res 2011;3:155-7.

95. Khan IN, Jahan S, Bhuiya MAM, Mazumder K, Saha BK. Anti–diarrhoeal potential of Ethanolic and water extracts of Euphorbia hirta whole plant on experimental animals: A comparative study. Sch J Appl Med Sci 2013;1:199-204.

96. Bellah SF, Raju MI, Billah SM, Rahman SE, Murshid GM, Rahman MM. Evaluation of antibacterial and antidiarrheal activity of ethanolic extract of Feronia limonia leaves. Pharm Innov 2015;3:50-4.
107. Momin MAM, Khan MR, Rayhan J, Afrose A, Rana S, Begum AA. Evaluation of antibacterial and antidiarrhoeal activities of Feronia litorina leaf extract. Am J Plant Sci 2013;4:2181-85.

108. Mandal SC, Ashok Kumar CK. Studies on antidiarrhoal activity of Mangifera indica. J Ethnopharmacol 2012;144:128-37.

109. Panda SK, Das D, Tripthathy NK. Antidiarrhoeal activity of various plant extracts of Ficus bengalensis. J Ethnopharmacol 2012;144:128-37.

110. Mandal SC, Ashok Kumar CK. Studies on antidiarrhoeal activity of Ficus hispida. Leaf extract in rats. Fitoterapia 2002;73:663-7.

111. Panchawat S, Sisodia SS. Evaluation of anti-diarrhoeal activity of stem bark extracts of Ficus religiosa prepared by different methods of extraction. Int J Pharm Biol Arch 2012;3:218-22.

112. Rehman N, Bashir S, Al-Rehailly AJ, Gilani AH. Mechanisms underlying the antidiarrheal, antispasmodic and bronchodilator activities of Fumaria parviflora and involvement of tissue and species specificity. J Ethnopharmacol 2012;144:128-37.

113. Pretorius A, Joubert B, Prinsloo S. Antidiarrheal effect of alcoholic extract of Hemidesmus indicus. In vivo study. Indian J Exp Biol 2003;41:363-6.

114. Kavitha D, Shilpa PN, Devaraj SN. Antibacterial and antidiarrhoeal activity of Methanolic extract of Ficus glomerata in castor oil induced diarrhoea in rats. J Sci 2011;1:26-30.

115. Shalini R, Rajan S. Antidiarrhoeal activity of aqueous and alcoholic extracts of Hemidesmus indicus Root. Int J Pharm Pharm Sci 2015;7:403-6.

116. Mishra, Mishra. J Intercult Ethnopharmacol 2001;84:11-5.

117. Shahzadi R, Rajan S. Antidiarrhoeal activity of aqueous and alcoholic extracts of Ficus glomerata in castor oil induced diarrhoea in rats. J Sci 2011;1:26-30.

118. Joshi SV, Gandhi TR, Vyas BA, Shah PD, Patel PK, Vyas HG. Effect of Oroxylum indicum on intestinal motility in rodents. Orient Pharm Exp Med 2012;12:279-85.

119. Mujumdar AM, Misar AV, Salaskar MV, Upadhye AS. Antidiarrhoeal activity of flowers of ixora cocconea Linn. in rats. J Ayurvedic Integr Med 2010;1:287-91.

120. Afroz S, Alamgir M, Khan MT, Jabbar S, Nahar N, Choudhuri MS. Antidiarrhoeal and antispasmodic activities of piperine. Pharm Biol 2013;5:1138-41.

121. Asaduzzaman M, Sasrin N, Mehtah MR, Raimah SZ, Apu AS, Akbar. Antidiarrhoeal, analgesic and Cytotoxic activities of crude extract of Oroxylum indicum (L.) stem bark. J Pharm Res 2011;4:4296-98.

122. Joshi SV, Gandhi TR, Vyas BA, Shah PD, Patel PK, Vyas HG. Effect of Oroxylum indicum on intestinal motility in rodents. Orient Pharm Exp Med 2012;12:279-85.

123. Bajaj S, Bedi KL, Singh A, Kothari RK. Antidiarrhoeal activity of Piper nigrum in mice. J Sci Food Agric 2001;67:284-7.

124. Sairam K, Hemalatha S, Kumar A, Srinivasan T, Ganesh J, Shankar M. Screening of anti-diarrhoeal profile of some plant extracts of a specific Ficus species in Wistar rats. Evid Based Complement Alternat Med 2015;2015:683726.

125. Shareef H, Rizwani GH, Mandalhia SR, Watanabe N, Gilani AH, Shahzadi R. Studies on antidiarrheal, antispasmodic and bronchodilator activities of Oporculina turpethum Linn. BMC Complement Altern Med 2014:14:479.

126. Bakare RI, Okechukwu AC, Alabi AA. Antidiarrhoeal activity of Murraya koenigii leaves in wistar rats. J Ethnopharmacol 2006;22:48-60.

127. Afroz S, Alamgir M, Khan MT, Jabbar S, Nahar N, Choudhuri MS. Antidiarrhoeal activity of the ethanol extract of Paeonia foetida Linn. (Rubiacae). J Ethnopharmacol 2006;105:125-30.

128. Abbasi NA, Helen OK, Wilson OH. Antidiarrhoeal activity of aqueous fruit extract of Phoenix dactylifera (date palm) in wistar rats. Br J Pharmaco Toxicol 2013;4:121-7.

129. Shami Kaur PB, Shari SR. Study of antidiarrhoeal activity of piperine. Der Pharmacia Lettre 2012;4:787-21.

130. Shami Kaur PB, Shari SR, Jadhav ST. Evaluation of antidiarrheal effect of black pepper (Piper nigrum L.). Asian J Plant Sci Res 2012;2:48-53.

131. Shami Kaur PB, Shari SR. Mechanisms of antidiarrhoeal effect of Piper nigrum. Int J Pharm Pharm Sci 2013;5:1384-41.

132. Bajaj S, Bedi KL, Singh AK, Johri RK. Antidiarrhoeal activity of piperine in mice. Planta Med 2001;67:284-7.

133. Sairam K, Hemalatha S, Kumar A, Srinivasan T, Ganesh J, Shankar M. Screening of anti-diarrhoeal profile of some plant extracts of a specific Ficus species in Wistar rats. Evid Based Complement Alternat Med 2015;2015:683726.
mechanisms) of action in infectious diarrhea. J Zhejiang Univ Sci B 2006;7:665-74.

156. Ojewole JA, Awe EO, Chiwororo WD. Antidiarrheal activity of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract in rodents. J Smooth Muscle Res 2008;44:195-207.

157. Birdi T, Daswani B, Briješ T, Tatali P, Natu A, Antia N. Newer insights into the mechanism of action of Psidium guajava leaves in infectious diarrhea. BMC Complement Altern Med 2010;10:33.

158. Prakash T, Bhoumik D, Shivakumar H, Venkatesh JS, Dutta AS. Antidiarrheal activity of Psidium guajava bark extracts. J Nat Rem 2007;7:278-82.

159. Jai D, Patel I, Somai R. Anti-diarrhoeal activity of ethanolic heartwood extract of Petrosarpus marsupium. Pharmacognosyonline 2011;1:552-9.

160. Das AK, Mandal SC, Banerjee SK, Saha S, Jha PK, et al. Antidiarrhoeal activity of leaf methanolic extract of Terminalia arjuna Roxb. Prepared by different extraction methods. Int J Pharm Bio Sci 2012;2:157-60.

161. Biswas S, Murugesan T, Sinha S, Maiti K, Gayen JR, Pal M, et al. Antidiarrheal activity of methanol extract of Stem bark of Sida rhombifolia Linn. In mice and gastrointestinal effect on the contraction of isolated jejunum in rats. J Ethnopharmacol 2014;154:704-10.

162. Panchawat S, Sisodias SS. In-vivo antidiarrhoeal activity of extracts from stem bark of Saraca asoca Roxb. Prepared by different extraction methods. Int J Pharm Bio Sci 2012;2:338-43.

163. Negi JS, Bishik VK, Bhardwaj AK, Bhatt VP, Satl MK, Mohanty JP, et al. Antidiarrhoeal activity of methanol extract and major essential oil contents of Stem bark of Punica granatum Linn. leaves in mice and gastrointestinal effect on the contraction of isolated jejunum in rats. J Ethnopharmacol 2013;7:474-7.

164. Sarangi RR, Mishra US, Panda SK, Behera S. Evaluation of antidiarrhoeal activity of Sida rhombifolia Linn. Root. Int J Res Pharm Bio Sci 2011;2:157-60.

165. Sivakumar G, Rao CG, Priya ESS, Sharan V, Somasekar P. Evaluation of anti-diarrhoeal activity of the bark of Terminalia arjuna [Roxb]. Int J Res Phytochem Pharmacol 2011;1:161-4.

166. Binodh K, Kalyani D, Prashant T, Manoj S, Diwakar G. Evaluation of anti-diarrhoeal effect of aqueous and ethanolic extracts from four coagulase positive Staphylococcus from the Infected human wounds. J Dis Dev Res 2010;2:769-79.

167. Viswanath GL, Hanumanthappa S, Krishnadas N, Ragupapa S, Prabhakarappa S, Rangappa S. Antidiarrheal effect of fractions from stem bark of Thespisia populnea in rodents: Possible antiotmotility and antisecretory mechanisms. Asian Pac J Trop Med 2011;4:451-6.

168. Viswanath GL, Srinath R, Nanakumar K, Shylaja H, Lakshman K. Antidiarrheal activity of alcoholic and aqueous extracts of stem bark of Thespisia populnea in rodents. Pharmacologyonline 2007;3:222-30.

169. Kaur M, Singh A, Kumar B. Comparative antidiarrheal and antilulcer effect of the aqueous and ethanolic stem bark extracts of Tinospora cordifolia in rats. J Adv Pharm Technol Res 2014;5:122-8.

170. Perianayagam JB, Sharma SK, Pillai KK. Evaluation of antidiarrheal potential of trichodesma indicum root extract in rats. Methods Find Exp Clin Pharmacol 2008;27:553-7.

171. Boyina R, Kosanam S, Rani TT. Evaluation of anti-diarrhoeal activity of aqueous extract of Trigonella foenum-graecum. Int J Pharmaco 2014;4:130-3.

172. Basheer S, Memon R, Gilani AH. Antispasmodic and antidiarrheal activities of valeriana hardwickii wall. Rhizome are putatively mediated through calcium Channel blockade. Evid Based Complement Alternat Med 2011;2011:304960.

173. Rajput MS, Nair V, Chauhan A, Javanan H, Dange VS. Evaluation of antidiarrheal activity of aerial parts of Vinca major in experimental animals. Middle East J Sci Res 2011;7:784-8.

174. Bigoniya P, Rana AC. Antidiarrheal and antispasmodic activity of Wrightia tinctoria bark and its steroidal alkaloid fraction. Pharmacologyonline 2009;3:298-310.

175. Iwani M, Shina T, Hirayama H, Shima T, Takewaki T, Shimizu Y. Inhibitory effects of zingerone, a pungent component of Zingiber officinale Roscoe, on colonic motility in rats. J Nat Med 2011;65:89-94.

176. Rao GH, Lakshmi P. Anti diarrheal activity of Ziziphus jujuba leaf extract in rats. Int J Pharm Bio Sci 2012;3:532-8.

177. Dahiru D, Sini JM, John–Africa L. Antidiarrhoeal activity of Ziziphus mauritiana root extract in rodents. Afr J Biotechnol 2006;5:941-5.

178. Jadavji TA. Caraka Samhita of Agnivesa, Elaborated by Caraka and Drinker with the Ayurveda Dipika Commentary by Cakrapandita. Varanasi: Chaukhambha Vidhyabharati, 2011.

179. Sharma PV, Susruta Samhita, with English Translation of Text and Dalhana Commentary Along With Critical Notes. 1st ed. Varanasi: Chaukhambha Bharati Academy, 2001.

180. Prasad SK, Laloo D, Kumar M, Hemalatha S. Antidiarrhoeal evaluation of root extract, its bioactive fraction, and lupinolin isolated from Eriosoma chinense. Planta Med 2013;79:1620-7.

181. Ching FP, Otoiki IJ, Egert-Omoneunnnin B. Dimethoxyflavone isolated from the stem bark of Stereospermum kunthianum possesses antidiarrhoeal activity in rodents. Afr J Tradit Complement Altern Med 2013;10:47-51.

182. Sadraei H, Ghanadian M, Asghari G, Madadi E, Azali N, Antispasmodic and antidiarrheal activities of 6-[4-hydroxy-3-methoxyphenyl]-hexanonic acid from Pycnocycla spinosa Dece. Exboiss. Res Pharm Sci 2014;9:279-86.

183. Sadraei H, Ghanadian M, Asghari G, Azali N. Antidiarrheal activities of isovanillin, iso-acetovanillon and Pycnocycla spinosa Dece ex Boiss extract in mice. Res Pharm Sci 2014;9:83-9.

184. Chen JC, Ho TY, Yang YS, Wu SL, Li CC, Hsiang CY. Identification of Eschschchia coli enterotoxin inhibitors from traditional medicinal herbs by in silico, in vitro, and in vivo analyses. J Ethnopharmacol 2009;121:372-8.

185. Velázquez C, Correa-Basurto J, García-Hernandez N, Barbosa E, Echeverría ME, et al. Anti-diarrheal activity of (-)-epicatechin from Chiranthodendron pentactylon Larreet: Experimental and analyses. J Ethnopharmacol 2014;152:307-13.

186. Asgari Z, Selvin BJ, Vonville H, DuPont HL. A systematic review of the Evidence for use of herbal medicine for the treatment of acute diarrhea. Nat Prod J 2012;2:1-81.

© SAGEYA. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, noncommercial use, distribution and reproduction in any medium, provided the work is properly cited.

Source of Support: Nil, Conflict of Interest: None declared.