Cloning and Recombinant Expression of Phospholipase A2 Present in Rheumatoid Arthritic Synovial Fluid*

(Received for publication, October 11, 1988)

Jeffrey J. Seilhamer1, Waldemar Pruzanski2, Peter Vadas3, Shelley Plant3, Judy A. Miller2, Jean Kloet4, and Lorin K. Johnson5

From 1California Biotechnology Inc., Mt. View, California 94043 and 2The Wellesley Hospital, University of Toronto, Toronto, Ontario, Canada M4Y 1J3

Synovial fluid from arthritic patients contains multiple forms of phospholipase A2 (PLA2), as resolved by high performance liquid chromatography (Seilhamer, J. J., Plant, S., Pruzanski, W., Schilling, J., Stefanski, E., Vadas, P., and Johnson, L. K. (1989) J. Biochem. (Tokyo), submitted for publication). Here we describe the cloning of a human 4.5-kilobase gene and 800-base pair cDNA encoding the form representing the major peak of activity and protein mass (peak A). The clones encode a mature peptide of 124 amino acids, which follows a prepeptide of 20 residues. The deduced amino acid sequence constitutes an enzyme of the “Type II” class of PLA2s, and resembles PLA2s from other mammalian sources. This represents the first report of a full length mammalian non-pancreatic PLA2 sequence. Active transcription of this PLA2 gene was detected in two different inflammatory cell sources. Recombinant human peak A PLA2 was expressed in vaccinia as a secreted protein which accumulated in conditioned medium.

Phospholipase A2 (PLA2) plays a central role in liberating lysophosphatidies and free fatty acids from membrane phospholipids, thereby initiating the production of eicosanoid mediators which profoundly influence inflammatory reactions. Evidence to date has shown that both membrane-associated and secreted (soluble) forms of PLA2 are present in and produced by cells participating in the inflammatory reaction. These same enzymes, when sequestered in peritoneal or joint cavities, may accumulate to very high levels in diseases such as arthritis (1-6) and may play a role in such chronic inflammatory conditions. Consistent with this hypothesis are findings that injection in knee joints of purified synovial fluid PLA2 at concentrations found in vivo caused acute inflammatory and subacute proliferative changes in synovial structures (5). Inhibition of the specific PLA2 enzyme(s) present in arthritic synovial fluid could represent a possible point of therapeutic intervention in such inflammatory disorders.

Despite the extensive knowledge of structure and enzymatic mechanism of the relatively abundant venom and mammalian pancreatic PLA2s (7-10), relatively little is known about other mammalian PLA2 enzymes. The amino-terminal portion of the amino acid sequences of several mammalian non-pancreatic PLA2s have been determined, including enzymes isolated from porcine intestine (11), rabbit ascites (12), rat platelet (13), rat spleen (14), and rat peritoneal exudate (15). Recently, amino-terminal sequences for human synovial fluid PLA2 (16) and another putative PLA2 sequence of unknown function (19) have become the first human non-pancreatic PLA2 sequences available. This information has yielded much insight into relative form, function, and identity of these mammalian PLA2 isolates. On the other hand, information about the other two-thirds of these molecules, which contains both the active site regions and many important structural and functional determinants has been nonexistent. Furthermore, the extrapolation of the biochemical properties and sequences of other mammalian enzymes to a form relevant to human disease has been, at best, ambiguous. An additional limitation is that without PLA2 form-specific probes, it has been difficult to attribute biological effects to specific enzyme forms.

The isolation and characterization of PLA2 from human arthritic synovial fluid has been detailed previously (20-21). Upon further purification of the enzyme on high performance liquid chromatography, we were able to resolve the enzyme into multiple peaks of activity, each with distinct biochemical properties. The fraction eluting earliest, peak A, constituted the majority of activity and protein mass present in the extract. A second most abundant fraction (peak B), could readily be distinguished from the former by its enhanced activity in 0.5 M Tris and/or 0.2% sodium deoxycholate. In the present work we describe the isolation of both genomic and cDNA clones encoding the peak A PLA2 sequence. Also, we have examined transcription of this gene in cells obtained from inflamed sources. Finally, we have demonstrated recombinant expression from the peak A cDNA of a secreted active PLA2 with properties similar to the native enzyme.

EXPERIMENTAL PROCEDURES

Library Screening—106 clones from a human genomic library (CloneTech, Inc.) were lifted onto nitrocellulose filters, denatured, baked at 80 °C 2 h, prehybridized for 4 h in 20% formamide, 6 × SSC (1.0 M NaCl, 0.1 M sodium citrate), 1 × Denhardt’s solution (0.02% Ficoll, 0.02% polyvinylpyrrolidone, and 0.02% bovine serum albumin), and 0.1% sodium dodecyl sulfite (SDS) at 37 °C, and hybridized overnight in the same solution with 106 cpm/filter of 32P-labeled oligonucleotide probes, with each probe on one of two duplicate filters. The filters were washed in 1 × SSC, 0.1% SDS at 60 °C for 60 min and autoradiographed overnight.

RNA Blot Hybridization—Total cell RNAs were isolated using the method of Gubler and Hoffman (22) and were electrophoresed on a
RESULTS AND DISCUSSION

Using the 25-residue amino-terminal amino acid sequence we obtained from material purified from human synovial fluid, recently confirmed elsewhere (16), and by making allowances for conserved Cys and Gly residues, two partially overlapping 45-mer oligonucleotide probes were designed (Fig. 1A). Since the cellular source of synovial fluid PLA2 was unknown, a genomic library was screened first to obtain the nucleotide sequence, and then non-degenerate probes made specific for the sequence which would subsequently be used to find an mRNA source. A human genomic library was screened for coincident hybridization signals to both probes. Six such signals were detected, and the clones were purified through additional rounds of screening. Restriction digest analysis of the cloned DNAs revealed that they were identical. An AluI fragment containing the hybridizing DNA (Fig. 1B, bases 202-287) was subcloned into M13 and the DNA sequence was determined. The DNA sequence of the AluI fragment was found to contain a region encoding the correct amino acid sequence. It also contained the remainder of the coding exon (bases 176-320), including a sequence resembling the Ca**+**-binding loop (bases 265-282), conserved in known PLA's (7, 8). The presence of the remainder of the exon confirmed that the clone contained a PLA2 gene.

In order to screen various sources for the presence of transcripts from this gene, a 60-base oligonucleotide matching the DNA sequence of the genomic clone was synthesized. RNAs from various sources, including phorbol ester-induced human cell lines U937 and HL60, inflamed human synovial tissue, and a cell pellet from a human peritoneal exudate cell suggested it would make the best cDNA source. A cDNA library was prepared and screened using a 60-base oligonucleotide probe described in Fig 2. Sixteen signals were obtained from two to three sources, and the clones were purified further. The DNA sequence of the longest clone was synthesized, and then non-degenerate probes made from the DNA sequence were made. The DNA sequence of a genomic clone was synthesized, and then non-degenerate probes made from the DNA sequence were made. The DNA sequence of a genomic clone was synthesized, and then non-degenerate probes made from the DNA sequence were made. The DNA sequence of a genomic clone was synthesized, and then non-degenerate probes made from the DNA sequence were made. The DNA sequence of a genomic clone was synthesized, and then non-degenerate probes made from the DNA sequence were made.
with the encoded sequence of the enzyme. The coding regions of the genomic clone were determined by matching the sequence from the clone with the cDNA (see Fig. 1C). The gene spans 4.6 kilobases and contains 5 exons. Introns 2, 3, and 4 fall in precisely the same positions within the sequence as they occur in the gene encoding pancreatic PLA₂ (23). The first intron occurred 107 bases upstream from the initiating Met, and interrupts the 5'-noncoding region of the cDNA. In the gene sequence (Fig. 1D), a TATA-like sequence (TATTTAA) was found 41 bases upstream from the start of the cDNA sequence. Another putative transcriptional control signal, CCAAT, was located 121 bases upstream from the start of the cDNA sequence.

The CCAAT located 121 bases upstream from the start of the cDNA clone will require primer extension analysis; however, the presence of these putative transcriptional control signals suggests that it is unlikely to be significantly upstream from the start of the cDNA clone.

The cDNA clone 4 encoded a mature protein with a calculated molecular mass of 13,939 daltons, taking into account the amino terminus observed from the protein sequence. The amino acid sequence was aligned in Fig. 3 with other relevant published PLA₂ sequences. Its sequence bears a striking resemblance to those of other known PLA₂s. First, like the other non-pancreatic mammalian enzymes, the placement of its Cys residues follows a Type II pattern, consistent with its proinflammatory nature. Notably, the key residues implicated in the hydrolytic mechanism of other PLA₂ enzymes (8, 9), including Phe², Ile³, His⁴, Asp⁶, Asp⁶, Ala³, and Ala³ are present in the clone 4 sequence. The Ca²⁺-binding loop (residues Tyr⁴-Gly⁵) is entirely conserved except for His³, the only variable position within the loop. Overall, its spacing and Cys residues exactly match the sequence from Crotalus venom, except for the short α-helical region immediately following the active site (residues 52–56). In this region, the spacing of residues more closely resembles the pancreatic enzyme. This sequence contains, like other PLA₂s with strong anticoagulant activity (27), a strong net positive charge within

FIG. 2. Northern blot of RNA from various sources. Electrophoresed RNA was prepared from U937 (lane 4) and HL60 cells (lane 3) induced with 0.16 mM 12-O-tetradecanoylphorbol-13-acetate, HL60 cells induced with 0.1 nM 1,25-dihydroxyvitamin D₃ (lane 1) and 1.25% dimethyl sulfoxide (lane 2), inflamed human synovial tissue (lane 6), a cell pellet from a peritoneal exudate from a nonsterile peritonitis patient (lane 7), porcine jejunum (lane 9), pancreas (lane 12), and spleen (lane 11), and rat liver (lane 10). The blot was probed with a 60-base oligonucleotide probe represented by the complementary strand of bases 208–267 in Fig. 1B. Lanes 5 and 8 contained molecular weight standards.

FIG. 3. Homology of known PLA₂ sequences. The amino acid sequence deduced from peak A cDNA clone 4 is shown, aligned by exons, with other known PLA₂ sequences from porcine ileum (p ileum; 11), rabbit ascites (rab Ascites; 12), rat platelet (13), spleen (14), and peritoneal exudate (15; rat), "non-pancreatic" PLA₂ (h pancreas; 19), human pancreas (h pancreas; 23, 24), and Crotalus atrox (C. atrox; 25) and Agkistrodon piscivorus "K-49" venom (A. pisc; 26) recombinant expression of peak A PLA₂. Serum-free medium conditioned during a 4-h collection, harvested 48 h after viral infection, and lysed cells were assayed from each of four recombinant vaccinia clones (inset). PLA₂ levels present in conditioned media sampled at indicated times following infection of CV-1 cells by wild type vaccinia (solid squares) and recombinant vaccinia/PLA₂ clone 4B were assayed under standard (open square) conditions. Activity is expressed as percent hydrolysis of [³⁵S]-labeled 2-arachidonyl phosphatidylcholine per 10 μl of media under standard assay conditions.²
this region. Within the amino-terminal 15 residues, 4 positively charged residues (His, Arg, Lys, and Lys) occur. If this region folds into an α-helix as proposed for other PLAs (7–9, 12), these 4 positively charged residues would align along one side of the helix. Positively charged residues occurring in this manner have been proposed as determinants of responsiveness to the "bactericidal/permeability-increasing protein" isolated by Elsbach et al. (12, 28). Upstream from the 124-residue mature coding sequence lies a 20-residue peptide which most likely represents a signal sequence for membrane translocation (29). A proenzyme segment was not evident within this region, suggesting the enzyme is probably not secreted as a zymogen (trypsin-activated) as is the case for pancreatic PLA2 (30).

Recombinant expression of the cloned gene fragments in the vaccinia virus system (17) represented an appropriate method to test whether this gene encoded a secreted active PLA2. The cDNA clone 4 was trimmed of its 5'- and 3'-noncoding DNA through digestion at SacI and HindIII sites (bases 125–130 and 588–593, respectively), both of which were engineered into the sequence via oligonucleotide-directed mutagenesis. The resulting coding segment was blunted by fill-in synthesis and cloned into the Smal site of plasmid pSC11 (18). Purified plasmid DNA was co-transfected into CV-1 cells with wild type vaccinia viral DNA, and the resulting recombinants were screened by selection in medium containing 5′-bromodeoxyuridine. Four recombinant vaccinia clones were selected for analysis by quantitating secreted and cell-associated PLA2 activity (Fig. 4, inset). Clone 5B, showing the highest media PLA2 levels was chosen for further study. In a subsequent larger culture, media samples taken at various times after viral infection were assayed for PLA2 activity. As seen in Fig. 4, PLA2 activity from the PLA2/vaccinia recombinant virus was primarily extracellular and accumulated linearly in the medium over 72 h, after which viral cell lysis became significant. The expressed PLA2 activity retained the property of sensitivity to Tris inhibition exhibited by the native enzyme.

In summary, a cloned cDNA encoding the major PLA2 species present within rheumatoid synovial fluid has been obtained, and when expressed in the vaccinia expression system yields a secreted enzyme retaining properties of the native enzyme. While this form may not be the only PLA2 present in all forms of arthritis, it clearly represents the most prevalent and active form found in the types examined. Its abundance in peritoneal exudate cells suggests this enzyme occurs systemically and could play a role in many types of acute inflammatory disorders. Further work will be necessary to determine the cell type(s) from which this enzyme originates, and to elucidate its precise role in the perpetuation of inflammatory disorders.

Acknowledgments—We wish to thank J. Iwasa and P. Lundquist for synthesis of oligonucleotides and E. Stefanski for technical assistance.

Note Added in Proof—Since submission of this manuscript, Lai and Wada (1988) Biochem. Biophys. Res. Commun. 157, 488–493) have reported a PLA2 isolate from synovial fluid with identical sequence. Also, Hayakawa et al. (Hayakawa, M., Kudo, I., Tomita, M., Nojima, S., and Inoue, K. (1988) J. Biochem. (Tokyo) 104, 767–772) have reported a complete amino acid sequence for a PLA2 from rat platelets.

REFERENCES
1. Pruzanski, W., Vadas, P., Stefanski, E., and Urowitz, M. B. (1985) J. Rheumatol. 12, 211–216
2. Vadas, P., Wasi, S., Movat, H. Z., and Hay, J. B. (1981) Nature 293, 595–598
3. Pruzanski, W., Vadas, P., Kim, J., Jacobs, H., and Stefanski, E. (1989) J. Rheumatol. 16, 791–794
4. Vadas, P., and Pruzanski, W. (1984) Adv. in Inflamm. Res. 7, 51–59
5. Vadas, P., Pruzanski, W., Kim, J., and Fornasier, V. (1989) Am. J. Pathol., in press.
6. Vishwanath, B. S., Fawzy, A. A., and Franson, R. C. (1988) Inflammation 12, 549–561
7. Dufton, M. J., Eaker, D., and Hider, R. C. (1983) Eur. J. Biochem. 137, 537–544
8. Dufton, M. J., and Hider, R. C. (1983) Eur. J. Biochem. 137, 545–549
9. Renetzeder, R., Bunvie, S., Dijkstra, B. W., Drenth, J., and Sigler, P. F. (1985) J. Biol. Chem. 260, 11627–11634
10. Slootbloom, A. J., Verheij, H. M., and De Haas, G. H. (1982) New Comp. Biochem. 4, 354–434
11. Verger, R., Ferrato, F., Marnbach, C. M., and Pieroni, G. (1982) Biochemistry 21, 6885–6889
12. Forst, S., Weiss, J., Elsbach, P., Maraganore, J. M., Reardon, I., and Heinrikson, R. L. (1986) Biochemistry 25, 8381–8385
13. Chang, H. W., Kudo, I., Tomita, M., and Inoue, K. (1987) J. Biochem. (Tokyo) 102, 147–154
14. Ono, T., Tejo, H., Kuranita, S., Kagamiyama, H., and Okamoto, M. (1988) J. Biol. Chem. 263, 5732–5738
15. Hayakawa, M., Horigome, K., Kudo, I., Tomita, M., Nojima, S., and Inoue, K. (1987) J. Biochem. (Tokyo) 101, 1311–1314
16. Hara, S., Kudo, I., Matsuoka, K., Miyamoto, T., and Inoue, K. (1988) J. Biochem. (Tokyo) 104, 326–328
17. Mackett, M., and Smith, G. L. (1986) J. Gen. Virol. 70, 2067–2082
18. Chakrabarti, S., Brechling, K., and Moss, B. (1985) Mol. Cell. Biol. 5, 3403–3406
19. Seilhamer, J. J., Randall, T. L., Johnson, L. K., Heinzmann, C., Klisak, I., Sparkes, R. S., and Lusis, A. J. (1989) J. Cell Biol. 108, 327–337
20. Stefanski, E., Pruzanski, W., Sternby, B., and Vadas, P. (1986) J. Biochem. (Tokyo) 100, 1297–1303
21. Vadas, P., Stefanski, E., and Pruzanski, W. (1985) Life Sci. 36, 579–587
22. Gubler, U., and Hoffman, B. J. (1983) Gene (Amst.) 25, 263–269
23. Seilhamer, J. J., Randall, T. L., Yamamota, M., and Johnson, L. K. (1986) DNA (N. Y.) 5, 519–527
24. Verheij, H. M., Westerman, J., Sternby, B., and De Haas, G. (1983) Biochem. Biophys. Acta 747, 89–99
25. Verheij, H. M., Egmond, M. R., and De Haas, G. H. (1981) Biochemistry 20, 94–99
26. Maraganore, J., and Heinrikson, R. L. (1986) J. Biol. Chem. 261, 4797–4804
27. Kini, R. M., and Evans, H. J. (1987) J. Biol. Chem. 262, 14402–14407
28. Elsbach, P., Weiss, J., Franson, R., Beckerdite-Quagliata, S., Schneider, A., and Harris, L. (1979) J. Biol. Chem. 254, 11000–11009
29. Von Hejne, G. (1983) Eur. J. Biochem. 138, 17–21
30. Gratzolzi, R., Dijkman, R., Ditethal, C. E., Van Der Ouderaa, F., De Haas, G. H., and Figarella, C. (1982) Eur. J. Biochem. 122, 111–117