Molecular epidemiology of enteroviruses in Cyprus 2008-2017

Jan Richter, Christina Tryfonos, Christina Christodoulou

Department of Molecular Virology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus

* richter@cing.ac.cy

Abstract

Enteroviruses (EVs) are associated with a broad spectrum of disease manifestations, including aseptic meningitis, encephalitis, hand, foot and mouth disease, acute flaccid paralysis and acute flaccid myelitis with outbreaks being reported frequently world-wide. The aim of this study was the molecular characterization of all enteroviruses detected in Cyprus in the ten-year period from January 2008 and December 2017 as well as a description of the circulation patterns associated with the most frequently encountered genotypes. For this purpose, serum, cerebrospinal fluid, nasal swab, skin swab and/or stool samples from 2666 patients with a suspected EV infection were analysed between January 2008 and December 2017. Enteroviruses were detected in 295 (11.1%) patients, which were then investigated further for epidemiologic analysis by VP1 genotyping. Overall, 24 different enterovirus types belonging to three different species were identified. The predominant species was EV-B (209/295, 71%), followed by species EV-A (77/295, 26.1%). Only one virus belonged to species EV-D, whereas EV-C enteroviruses were not identified at all. The most frequent genotypes identified were echovirus 30 (26.1%), echovirus 6 (14.2%) and coxsackievirus A6 (10.9%). While Echovirus 30 and echovirus 6 frequency was significantly higher in patients older than 3 years of age, the opposite was observed for CV-A16 and EV-A71, which dominated in young children less than 3 years. Importantly, for the current study period a significant increase of previously only sporadically observed EV-A types, such as EV-A71 and CV-A16 was noted. A phylogenetic analysis of EV-A71 showed that the majority of the EV-A71 strains from Cyprus belonged to sub-genogroup C1 and C2, with the exception of one C4 strain that was observed in 2011. The data presented provide a comprehensive picture of enteroviruses circulating in Cyprus over the last decade and will be helpful to clinicians and researchers involved in the treatment, prevention and control of enteroviral infections by helping interpret trends in enteroviral diseases by associating them with circulating serotypes, for studying the association of enteroviruses with clinical manifestations and develop strategies for designing future EV vaccines.

Introduction

The genus Enterovirus belongs to the Picornaviridae family and is divided into 15 species, 7 of which contain human pathogenic viruses, namely the species Enterovirus A-D and Rhinovirus
Enteroviruses (EVs) can be distinguished in respiratory, include all rhinovirus types, and enteric EVs, on the basis of their primary replication site. Enteric EVs are transmitted fecal-oral and replicate primarily in the gastrointestinal tract from where they can sporadically disseminate and cause infection in a wide range of other organs, including the central nervous system. Enteroviruses have long been recognized as the most common cause of aseptic meningitis, but have also been associated with a wide range of other illnesses including myocarditis, newborn sepsis, conjunctivitis, hepatitis and severe flaccid paralysis [2]. The virions possess an icosahedral symmetry and contain a single stranded positive sense RNA genome of approx. 7.5 kb length [3]. They are extremely resistant against adverse environmental conditions and disinfectants, tolerating high salinity of water as well as temperature fluctuations.

In the US, there are between 10 and 15 million new infections, giving rise to tens of thousands of hospitalizations with a seasonal peak of infection in summer and fall in temperate climates [2,4].

Outbreaks of disease caused by single genotype strains are frequently reported and represent a major public health problem [5–8]. In Southeast Asia, enterovirus A71 and coxsackieviruses A6 and A16 have been responsible for large outbreaks of hand-foot-and-mouth disease (HFMD) during the last 10 to 20 years and having caused severe complications in thousands of cases with China alone exceeding more than 1 million HFMD cases annually [9]. EV-A71 has also been reported to be responsible for clusters of severe neurological illnesses in Europe [10,11] and the United States [12]. In 2014 enterovirus D68 attracted world-wide attention when it was implicated in outbreaks of severe respiratory illness and cases of acute flaccid myelitis in the United States and subsequently also other regions of the world [13–15]. A European study group comprising 17 countries subsequently showed that EV-D68 did circulate in Europe during summer and fall of 2014 [16]. The disease burden and pathogenic profile, however, was milder compared to the North-American epidemic even though the isolated viruses were genetically very similar to those the North-American isolates.

Fig 1. 10-year monthly distribution of EV positive samples in Cyprus. Increased Enterovirus activity was usually observed during summer and early autumn.
https://doi.org/10.1371/journal.pone.0220938.g001
Table 1. Enterovirus genotypes identified between 2008 and 2017 in Cyprus. The most frequent genotype each year is indicated in bold. For 8 out of the 295 samples genotyping could not be performed due to very low sample concentration. In the last row the number of patients analysed each year is indicated.

EV species	Type	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total
EV-A	CV-A2	0	0	1	0	0	0	0	0	0	1	1
	CV-A4	0	0	0	0	1	1	3	0	1	0	6
	CV-A5	0	0	0	0	1	1	0	1	0	2	2
	CV-A6	0	0	8	1	11	0	3	3	3	3	32
	CV-A8	0	0	1	2	2	2	0	0	0	0	5
	CV-A10	0	1	1	3	0	0	0	1	0	6	6
	CV-A16	0	0	0	4	2	0	2	0	1	0	9
	EV-A71	1	2	0	1	2	0	1	2	5	1	14
EV-B	CV-A9	1	0	1	0	0	0	0	0	0	0	0
	CV-B1	0	0	0	0	7	0	0	0	0	0	7
	CV-B2	1	0	2	4	0	0	0	0	0	0	7
	CV-B3	0	0	0	0	0	0	0	0	0	1	2
	CV-B4	0	2	1	2	0	2	0	4	0	2	11
	CV-B5	0	4	1	0	2	0	2	0	8	0	17
	E5	0	0	0	0	1	0	0	0	1	0	1
	E6	0	0	12	4	0	0	0	7	2	17	42
	E7	0	0	0	12	0	0	0	0	0	0	12
	E9	0	1	3	0	0	2	1	0	1	0	8
	E11	0	0	1	1	4	0	0	0	0	1	7
	E18	0	0	0	0	0	4	0	0	0	0	7
	E21	0	0	0	0	0	0	2	1	0	0	3
	E25	2	0	0	1	0	0	0	0	1	0	3
	E30	53	0	13	0	0	5	5	0	0	1	77
EV-D	EV-D68	0	0	1	0	0	0	0	0	0	0	1
	Untyped	0	0	2	0	2	0	2	0	0	0	8
Total		58	10	48	35	34	13	21	19	24	33	295
Patients analysed		308	283	473	327	337	172	165	191	201	209	2666

https://doi.org/10.1371/journal.pone.0220938.t001

Table 2. Frequency of enterovirus genotypes in persons less than 3 years old vs. persons older than 3 years. Percentages refer to the total number in each age group as shown in the header.

EV type	< = 3 years old N = 150	>3 years old N = 145
CV-A2	1 (0.7%)	0 (0.0%)
CV-A4	6 (4.1%)	0 (0.0%)
CV-A5	1 (0.7%)	1 (0.7%)
CV-A6	27 (18.4%)	5 (3.6%)
CV-A8	5 (3.4%)	0 (0.0%)
CV-A10	6 (4.1%)	0 (0.0%)
CV-A16	6 (4.1%)	3 (2.1%)
EV-A71	11 (7.5%)	3 (2.1%)
CV-A9	0 (0.0%)	2 (1.4%)
CV-B1	7 (4.8%)	0 (0.0%)
CV-B2	3 (2.0%)	4 (2.9%)
CV-B3	2 (1.4%)	0 (0.0%)
CV-B4	7 (4.8%)	4 (2.9%)

(Continued)
Previously, we had reported on the epidemiology of enteroviruses in Cyprus over the period 2003–2007 [17]. Twenty-two different serotypes had been identified in total with the main EV types echovirus 18 and echovirus 30 followed by coxsackievirus B5 and echovirus 9.
changes in serotype frequency and diversity over time were observed while the overall serotype
distribution corresponded with observations reported from other European countries during
the same period. Aim of the current study was the molecular characterization of all enterovi-
ruses obtained in Cyprus in the ten-year period from January 2008 and December 2017 as well
as a description of the circulation patterns associated with the most frequently encountered
genotypes.

Materials and methods

Patients and clinical samples

According to a decision taken by the Cyprus National Bioethics committee (EEBK/
21.1.02.01.05), all samples taken for diagnostic purposes and have been anonymized are acces-
sible for research without requiring neither specific written consent nor additional approval
from a bioethics committee. Between January 2008 and December 2017, serum, CSF, skin
swab, nasal swab and/or stool samples from 2666 patients with suspected EV infection from all
districts of Cyprus were sent to our laboratory for analysis. The median patient age was 3 years
ranging from one month to 77 years with a male/female ratio of 1.66. For routine laboratory
diagnosis an in-house Real-Time RT-PCR assay targeting the highly conserved 5'-noncoding
region was used [17]. Enterovirus positive swab, CSF and/or stool samples were then analysed
further for epidemiological surveillance.

Detection and typing

Viral RNA was extracted from 200–400μl clinical specimen (Serum, CSF, Stool, Swab) using
the iPrep PureLink Virus Kit on an iPrep Purification Instrument (Thermo Fisher Scientific)
according to the manufacturer’s instructions. The details of the Real-Time RT-PCR assay for
routine diagnosis of enteroviruses as well as the assay for VP1 typing have been described pre-
viously [17]. In short, partial VP1 sequences of approx. 360bp length encompassing the entire
hypervariable BC-loop were amplified making an unambiguously identification of the serotype
possible.

Amplicons were purified using the Montage DNA Gel Extraction Kit (Millipore) and
sequenced on an ABI 3500 (Applied Biosystems) in the forward and reverse directions using
the respective PCR primers and the ABI BigDye V3.1 cycle sequencing kit (Applied Biosys-
tems). Sample quality values (SQV) were assigned using the KB Basecaller (Applied Biosys-
tems) and only sequences with SQV>25 were accepted, otherwise sequencing was repeated.
Forward and reverse sequences were assembled using ClustalW and queried to sequences in
GenBank using BLAST as well as the Enterovirus Genotyping Tool Version 1.0 [18,19].

Phylogenetic analysis

All phylogenetic analyses were conducted in MEGA7 [20]. The alignment of VP1 sequences
was performed using MUSCLE. Bayesian information criterion (BIC) scores were calculated
for different models to determine the best fitting nucleotide substitution model. In addition, jModelTest [21] was used for evaluating the best fitting nucleotide substitution model under BIC yielding the same result (Kimura 2-Parameter model + gamma distributed rates). This model then was used to construct Maximum Likelihood (ML) phylogenetic trees with 1000 bootstrap replicates. All positions containing alignment gaps and missing data were eliminated only in pairwise sequence comparisons.

Nucleotide sequence accession numbers
The sequences reported in this study were submitted to the GenBank sequence database under accession numbers MK111117 to MK111405.

Results
For the 2666 patients a total of 4212 samples (2022 CSF samples, 1137 stool samples, 590 serum samples and 463 nasal/skin swab samples) were analysed. 295 patients (11.1%) were found to be enterovirus positive in at least one sample. EV genotype was determined for 287/295 samples, while 8 samples remained undetermined due to low sample concentration. The proportion of EV-positive samples per year ranged from 3.5% in 2009 up to 18.9% in 2008 with an average of 11.1% over the 10-year study period. EVs circulated throughout the year with an increased proportion detected during the summer and in early autumn. Fig 1 shows in detail the monthly distribution of enterovirus detection over the 10-year study period.

The results of the Enterovirus typing based on partial VP1 sequencing are shown in Table 1. Overall, 24 different enterovirus types belonging to three different species were identified. The predominant species was EV-B with 209 viruses distributed among 14 genotypes. 77 viruses belonged to 9 different genotypes within species EV-A. Only one virus belonged to species EV-D, whereas no EV-C enteroviruses were identified at all.

The five most frequently observed enteroviruses were E30 (26.1%), E6 (14.2%), CV-A6 (10.8%), CV-B5 (5.7%) and EV-A71 (4.7%), which made up more than 60% of all enteroviruses detected. It should be noted that no polioviruses, either wild-type or vaccine-related, have been encountered reflecting the adaption of the IPV only immunization plan by paediatricians in 2006 and confirming the poliovirus-free status of Cyprus.

Regarding the diversity of the enterovirus spectrum, on average approx. 8 different genotypes were isolated in a given year (Range 5–14).

The data were then further analysed with regard to the age of the patients (Table 2). In patients ≥ 3 years old (145/295) E30 and E6 were by far the most prevalent genotypes accounting for almost 70% of all positive samples, while CV-A6 and EV-A71 were the dominant genotypes in children less than 3 years of age (see Fig 2). The genotype and EV species dependent age relation is also reflected in the mean age of patients as shown in Table 3 and illustrated in Fig 2. While EV-A was found mainly in patients older than 3 months and younger than 3 years old, EV-B displayed a bi-modal distribution with one peak among neonates younger than 3 months and a second peak in children between 3 and 6 years old.
Molecular epidemiology of enteroviruses in Cyprus
Overall, EV-A species constituted a rather small proportion in the older patient cohort (~10%), in contrast to the children ≤ 3, where they accounted for 41% of infections. The analysis also showed an increased diversity of EV genotypes in the younger children (22 genotypes) compared to those present in the older patient group (17 genotypes) over the ten-year study period (Table 2).

In order to further characterise the isolates from Cyprus and examine them in a global context, a phylogenetic analysis was performed for the five most frequently encountered genotypes. Fig 3 shows the phylogenetic relationship of E30 sequences obtained between 2008 and 2017. E30 genogroups were assigned according to Savolainen-Kopra et al. \[22\]. The majority of the echovirus 30 strains (73/77) belonged to the most recent sub-genogroup VIIa, two samples to VIIb and two samples from 2008 to sub-genogroup V clustering closely with strains isolated from other European countries, especially from Russia, during the same years, which is consistent with previous observations of large-scale emergence and turnover of E30 variants with detection of related viruses from widely separated countries \[23\]. It is also evident that in 2008 and 2013 viruses belonging to different sub-genogroups co-circulated in Cyprus.

All echovirus 6 sequences from Cyprus obtained in this study period belong to sub-genogroup C1 displaying a ladder-like evolution, while those obtained in previous studies all belonged to sub-genogroup C9 clustering into three distinct sublineages (9b, 9f, 9h) according to their year of isolation (Fig 4). While the 2010 and 2015 samples cluster very closely with isolates obtained in the Netherlands, Poland, France or Great Britain of the same years, the 2016/2017 samples did not have closely related matches in GenBank differing by at least 6% on the nucleotide level.

Regarding coxsackievirus A6, sequences clustered mainly monophyletic according to their year of isolation (Fig 5). There was a close temporal relationship to CV-A6 isolates recovered in other countries in Europe with the exception of two samples co-circulating in 2014 and 2015, which were closely related to strains observed in China and Thailand during that period.

Fig 6 shows that the majority of CV-B5 sequences obtained in Cyprus belong to sub-genogroup B2 according to the classification introduced by Henquell et al \[24\] and closely matched with other European isolates. Only one sample from 2010 was identified as sub-genogroup A4 that was highly similar to Chinese isolates from the same year.

With regard to EV-A71, the majority of the strains belonged to sub-genogroup C1 and C2, with the exception of one C4 strain that was observed in 2011 (Fig 7). Most of the EV-A71 strains from Cyprus clustered closely with other European isolates of the same time period with the exception of two C1 samples of 2016, which had the closest matchings in GenBank for strains from India from 2012. The 2015, 2016 and 2017 EV-A71 sub-genogroup C1 strains from Cyprus cluster closely with a new recombinant strain identified in Germany in 2015 that had been labelled C1 variant and was found in Spain 2016 during an EV-A71 outbreak that was associated with severe neurological disease.

Discussion

In the current study echovirus 30 was the most frequently detected enterovirus accounting for 20% (57/295) of all EV positive samples. In 4 out of the 5 years, when it was detected, it was the predominant type (2008, 2010, 2013 and 2014).
Echovirus 30 regularly causes large outbreaks of meningitis worldwide and was shown to circulate with a pattern of successive dominant lineages that reach a global prevalence with a 3- to 5-year turnover and replacement in Europe [26–28]. A similar pattern was also observed previously in Cyprus, where it caused outbreaks in 2000/2001 and 2007 with almost no detection in between [29,30]. Similar outbreaks of E30 have been observed in Europe during the same decade, such as in Finland in 2009 [6] in Greece and Italy in 2012 [31,32], in Germany in 2008 and 2013 [33], the UK in 2008 and 2013 [34] and notably in 5 European countries in 2018 [35]. It is worth noting that with regard to the age of the patients, in our study E30 was mainly identified in patients older than 3 years old (60 out of 77, 78%). A similar E30 dominance in older patients had previously been reported also from the UK and Switzerland [34,36].

Echovirus 6 is one of the most frequently identified EV types in Europe and worldwide and usually associated with outbreaks or sporadic cases of aseptic meningitis [34,37–41]. In the current study, E6 was the second most prevalent enterovirus overall and the most prevalent type in the years 2015 and 2017. A similar increase in E6 incidence was seen in the Netherlands in 2016 [42]. As noticed for E30, a significant higher frequency of echovirus 6 was observed in the patient group older than 3 years (35 out of 42, 83%).

Long known to be one of the main pathogens responsible for causing HFMD outbreaks, in Asia enterovirus CV-A6 has in recent years replaced EV-A71 and CV-A16 as the primary pathogen causing HFMD [43–45]. Before 2008, A6 was considered a rare enterovirus in European countries including Cyprus, however, since then an increasing activity is evident with outbreaks reported from Finland [46] France [47] and Spain [48]. In Cyprus in the 10-year period investigated, a strong increase in the number of CV-A6 positive cases was observed being detected in 7 out of the 10 years and being the predominant type in 2012 compared to our previous studies covering the period 2000–2007, where the virus was detected only sporadically [17,29]. Even though in other countries coxsackievirus A6 was characterized by a high incidence in adults [46], the majority of CV-A6 in our study were found in children less than 3 years of age (27 out of 32, 84%).

Coxsackievirus B5 is frequently reported in virus isolation and regularly appears in the top five commonly identified EV types in the United States, China and Europe being commonly associated with acute viral meningitis [37,49–51]. It was the fourth most frequent genotype detected and the predominant enterovirus in 2009 and 2016. In the years between, however, it was only sporadically detected. Previously, an analysis of the phylodynamic pattern of coxsackieviruses B5 circulation showed the existence of two CV-B5 genogroups with opposed evolutionary pathways as a result of immune selection pressure [26]. An important feature of CV-B5 transmission pattern was the co-circulation of virus strains of multiple subpopulations resulting in a fluctuation of the predominant genogroup in the epidemic waves. This was also evident in a previous study, where we had analyzed enteroviruses in sewage samples in Cyprus and had observed that different strains of CV-B5 were continuously circulating in the population without being detected in clinical samples during the same time period [30]. With regard to age, there was no significant difference in the detection frequency in younger vs. older patients.
EV-A71 and CV-A16 are the most important causative agents of hand, foot, and mouth disease, however, EV-A71 can also cause a diverse range of neurological diseases, including brainstem encephalitis and neurogenic pulmonary edema and is now considered as the primary etiological agent for acute flaccid paralysis [52]. Compared to the previous studies conducted in Cyprus [17,29] there was a significant increase in EV-A71, which was detected in 7 out of the 10 years investigated. The majority of the EV-A71 strains from Cyprus were identified belonging to sub-genogroup C1 and C2, with the exception of one C4 strain in 2011. In Spain an outbreak of EV-A71 that was associated with severe neurological disease was observed in 2016 [53]. Most of the isolates had been classified as sub-genogroup C1 that was phylogenetically related to a new recombinant variant strain associated with severe neurological diseases in Germany and France in 2015 and 2016. EV-A71 strains from Cyprus in the Asia-Pacific region and especially China, large outbreaks of HFMD caused by EV-A71 are observed regularly, especially by sub-genogroup C4 strains [9,54,55]. In Europe an increase in the otherwise rarely seen EV-A71 sub-genogroup C4 strain was reported in France and Denmark in 2012 [56,57] and Russia in 2013 [58], but has not been continued afterwards so far.

Conclusions

In conclusion, this study provides a comprehensive picture of enteroviruses circulating in Cyprus over the last decade. A genotype distribution that corresponded closely with observations in other European countries during the same period was observed, which is plausible given the large number of tourists (>2.5 million) that visit the island each year compared to the number of inhabitants (~840,000).

A significant increase in EV-A incidence, namely coxsackievirus A6 and enterovirus A71, was noted. As research and development of HFMD vaccines has so far primarily focused on EV-A71 and CV-A16 vaccines, the emergence of CV-A6 as a major causative agent for HFMD may require a rapid shift towards appropriate intervention strategies.

The Global Disease Detection Operations Center at the CDC in the US included EV-A71 in the top-five global infectious disease threats, due to its potential to cause large outbreaks and severe, life threatening neurologic disease [59]. Continued monitoring and surveillance are therefore crucial to elucidate and recognize enteroviral infections and the changes in EV circulation and epidemic cycles.

Author Contributions

Conceptualization: Jan Richter, Christina Christodoulou.

Data curation: Jan Richter, Christina Tryfonos, Christina Christodoulou.

Formal analysis: Jan Richter, Christina Tryfonos, Christina Christodoulou.

Investigation: Jan Richter, Christina Tryfonos.

Methodology: Jan Richter, Christina Tryfonos.
Project administration: Christina Christodoulou.

Supervision: Christina Christodoulou.

Validation: Christina Christodoulou.

Writing – original draft: Jan Richter.

Writing – review & editing: Christina Christodoulou.

References

1. Zell R, Delwart E, Gorbalenya AE, Hovi T, King AMQ, Knowles NJ, et al. ICTV Virus Taxonomy Profile: Picornaviridae. J Gen Virol. 2017; 98: 2421–2422. https://doi.org/10.1099/jgv.0.000911 PMID: 28884666

2. Tapparel C, Siegrist F, Petty TJ, Kaiser L. Picornavirus and enterovirus diversity with associated human diseases. Infect Genet Evol. 2013; 14: 282–293. https://doi.org/10.1016/j.meegid.2012.10.016 PMID: 23201849

3. Jubelt B, Lipton HL. Enterovirus/Picornavirus infections. Handb Clin Neurol. 2014; 123: 379–416. https://doi.org/10.1016/B978-0-444-53488-0.00018-3 PMID: 26203854

4. Åkerbäck R, Kallikoski T, Lähdesmäki T, Peitola V, Ruuskanen O, Waris M. Echovirus 30 meningitis epidemic followed by an outbreak-specific RT-qPCR. J Clin Virol. 2015; 69: 7–11. https://doi.org/10.1016/j.jcv.2015.05.012 PMID: 26209368

5. Pons-Salort M, Parker EPK, Grassly NC. The epidemiology of non-polio enteroviruses: Recent advances and outstanding questions. Current Opinion in Infectious Diseases. 2015. https://doi.org/10.1097/QCO.0000000000000187 PMID: 26203854

6. Österback R, Kallikoski T, Lähdesmäki T, Peitola V, Ruuskanen O, Waris M. Echovirus 30 meningitis epidemic followed by an outbreak-specific RT-qPCR. J Clin Virol. 2015; 69: 7–11. https://doi.org/10.1016/j.jcv.2015.05.012 PMID: 26209368

7. Lu Y, Wang S, Zhang L, Xu C, Bian C, Wang Z, et al. Epidemiology of human respiratory viruses in children with acute respiratory tract infections in Jinan, China. Clin Dev Immunol. 2013; 2013: 210490. https://doi.org/10.1155/2013/210490 PMID: 24363757

8. Bian L, Wang Y, Yao X, Mao Q, Xu M, Liang Z. Coxsackievirus A6: A new emerging pathogen causing hand, foot and mouth disease outbreaks worldwide. Expert Review of Anti-Infective Therapy. 2015. pp. 1061–1071. https://doi.org/10.1586/14787210.2015.1058156 PMID: 26123207

9. Xing W, Liao Q, Viboud C, Zhang J, Sun J, Wu JT, et al. Hand, foot, and mouth disease in China, 2008–12: An epidemiological study. Lancet Infect Dis. 2014; 14: 308–318. https://doi.org/10.1016/S1473-3099(13)70342-6 PMID: 24485991

10. Rabenau HF, Richter M, Doerr HW. Hand, foot and mouth disease: Seroprevalence of Coxsackievirus A16 and Enterovirus 71 in Germany. Med Microbiol Immunol. 2010; 199: 45–51. https://doi.org/10.1007/s00430-009-0133-6 PMID: 19941005

11. Schuffenecker I, Mirand A, Antona D, Henquell C, Chomel JJ, Archimbaud C, et al. Epidemiology of human enterovirus 71 infections in France, 2000–2009. J Clin Virol. 2011; 50: 50–56. https://doi.org/10.1016/j.jcv.2010.09.019 PMID: 21035387

12. Perez-Velez CM, Anderson MS, Robinson CC, McFarland EJ, Nix WA, Pallansch MA, et al. Outbreak of Neurologic Enterovirus Type 71 Disease: A Diagnostic Challenge. Clin Infect Dis. 2007; 45: 950–957. https://doi.org/10.1086/521895 PMID: 17879907

13. Lang M, Mirand A, Savvy N, Henquell C, Maridet S, Perignon R, et al. Acute flaccid paralysis following enterovirus D68 associated pneumonia, France, 2014. Eurosurveillance. 2014; 19: 1–5. https://doi.org/10.2807/1560-7917.ES2014.19.44.20952 PMID: 25394254

14. Holm-Hansen CC, Midgley SE, Fischer TK. Global emergence of enterovirus D68: A systematic review. Lancet Infect Dis. 2016; 16: e64–e75. https://doi.org/10.1016/S1473-3099(15)00543-5 PMID: 26929196

15. Oermann CM, Schuster JE, Conners GP, Newland JG, Selvarangan R, Jackson MA. Enterovirus D68: A focused review and clinical highlights from the 2014 U.S. outbreak. Ann Am Thorac Soc. 2015; 12: 775–781. https://doi.org/10.1513/AnnalsATS.201412-592FF PMID: 25714788

16. Poelman R, Schuffenecker I, Van Leer-Buter C, Josset L, Nieters HGM, Lina B, et al. European surveillance for enterovirus D68 during the emerging North-American outbreak in 2014. J Clin Virol. 2015; 71: 1–9. https://doi.org/10.1016/j.jcv.2015.07.296 PMID: 26364237
Molecular typing and epidemiology of enteroviruses in Cyprus, 2003–2007. J Med Microbiol. 2011; 60: 1433–1440. https://doi.org/10.1099/jmm.0.029892-0 PMID: 21596905

18. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007; 23: 2947–2948. https://doi.org/10.1093/bioinformatics/btm404 PMID: 17846036

19. Kroneman A, Vennema H, Deforche K, Avoort H, Peñaranda S, Oberste MS, et al. An automated genotyping tool for enteroviruses and noroviruses. J Clin Virol. 2011; 51: 121–125. https://doi.org/10.1016/j.jcv.2011.03.006 PMID: 21514213

20. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016; 33: 1870–1874. https://doi.org/10.1093/molbev/msw054 PMID: 27004904

21. Darriba D, Taboada GL, Doallo R, Posada D. JModelTest 2: More models, new heuristics and parallel computing. Nat Methods. 2012; 9: 772. https://doi.org/10.1038/nmeth.2109 PMID: 22847109

22. Savolainen-Kopra C, Paananen A, Blomqvist S, Klemola P, Simonen ML, Lappalainen M, et al. A large Finnish echovirus 30 outbreak was preceded by silent circulation of the same genotype. Virus Genes. 2011; 42: 28–36. https://doi.org/10.1007/s1262-010-0536-x PMID: 20960045

23. Savolainen C, Hovi T, Mulders MN. Molecular epidemiology of echovirus 30 in Europe: succession of dominant sublineages within a single major genotype. Arch Virol. 2001; 146: 521–37. Available: http://www.ncbi.nlm.nih.gov/pubmed/11338388 PMID: 11338388

24. Henquell C, Mirand A, Richter J, Richter J, Schuffenecker I, Bottiger B, Diedrich S, et al. Phylogenetic Patterns of Human Coxsackievirus B5 Arise from Population Dynamics between Two Genogroups and Reveal Evolutionary Factors of Molecular Adaptation and Transmission. J Virol. 2013; 87: 12249–12259. https://doi.org/10.1128/JVI.02075-13 PMID: 24006446

25. Cabreroz M, Trallero G, Simmonds P. Recombination and evolutionary dynamics of human echovirus 6. J Med Virol. 2014; 86: 857–864. https://doi.org/10.1002/jmv.23741 PMID: 24114692

26. Bailly JL, Mirand A, Henquell C, Archimbaud C, Chambon M, Charbonne F, et al. Phylogeography of circulating populations of human echovirus 30 over 50 years: Nucleotide polymorphism and signature of purifying selection in the VP1 capsid protein gene. Infect Genet Evol. 2009; 9: 699–708. https://doi.org/10.1016/j.meegid.2008.04.009 PMID: 18595781

27. Leitch ECM, Bendig J, Cabreroz M, Cardosa J, Hyypia T, Ivanova OE, et al. Transmission Networks and Population Turnover of Echovirus 30. J Virol. American Society for Microbiology (ASM); 2008; 83: 2109–2118. https://doi.org/10.1128/JVI.02109-08 PMID: 19091869

28. Yarmolskaya MS, Shumilina EY, Ivanova OE, Drexler JF, Lukashev AN. Molecular epidemiology of echoviruses 11 and 30 in Russia: Different properties of genotypes within an enterovirus serotype. Infect Genet Evol. 2015; 30: 244–248. https://doi.org/10.1016/j.meegid.2014.12.033 PMID: 25562123

29. Richter J, Koptides D, Tryfonos C, Christodoulou C. Molecular typing of enteroviruses associated with viral meningitis in Cyprus, 2000–2002. J Med Microbiol. 2006; 55: 1035–1041. https://doi.org/10.1099/jmm.0.46447-0 PMID: 16849723

30. Richter J, Tryfonos C, Christodoulou C. Circulation of enteroviruses in Cyprus assessed by molecular analysis of clinical specimens and sewage isolates. J Appl Microbiol. 2011; 111: 491–498. doi:10.1111/j.1365-2672.2011.05061.x PMID: 21615636

31. Mantadakis E, Pogka V, Voulgaris-Kokota A, Tsouvala E, Emmanuell M, Kremastinou J, et al. Echovirus 30 Outbreak associated with a high meningitis attack rate in Thrace, Greece. Pediatr Infect Dis J. 2013; 32: 914–916. https://doi.org/10.1097/INF.0b013e31828b7f5c PMID: 23459085

32. Milia MG, Cerutti F, Gregori G, Burdino E, Allice T, Ruggiero T, et al. Recent outbreak of aseptic meningitis in Italy due to Echovirus 30 and phylogenetic relationship with other European circulating strains. J Clin Virol. 2013; 58: 579–583. https://doi.org/10.1016/j.jcv.2013.08.023 PMID: 24051044

33. Rudolph H, Prieto Dernbach R, Walka M, Rey-Hinterkopf P, Melichar V, Muschiol E, et al. Comparison of clinical and laboratory characteristics during two major paediatric meningitis outbreaks of echovirus 30 and other non-polio enteroviruses in Germany in 2008 and 2013. Eur J Clin Microbiol Infect Dis. 2017; 36: 1651–1660. https://doi.org/10.1007/s10096-017-2977-7 PMID: 28409290

34. Holmes CW, Koo SSF, Osman H, Wilson S, Xerry J, Gallimore CI, et al. Predominance of enterovirus B and echovirus 30 as cause of viral meningitis in a UK population. J Clin Virol. 2016; 81: 90–93. https://doi.org/10.1016/j.jcv.2016.06.007 PMID: 27367546

35. Broberg EK, Simone B, Jansa J, Prochazka B, Wyndham-Thomas C, Van Ranst M, et al. Upsurge in echovirus 30 detections in five EU/EEA countries, April to September, 2018. Eurosurveillance. 2018; 23. https://doi.org/10.2807/1560-7917.EES.2018.23.44.1800537 PMID: 30401013
36. Cordey S, Schibler M, L’Huillier AG, Wagner N, Gonçalves AR, Ambrosioni J, et al. Comparative analysis of viral shedding in pediatric and adult subjects with central nervous system-associated enterovirus infections from 2013 to 2015 in Switzerland. J Clin Virol. 2017; 89: 22–29. https://doi.org/10.1016/j.jcv.2017.01.006 PMID: 28214758

37. Guerra JA, Waters A, Kelly A, Morley U, O’Reilly P, O’Kelly E, et al. Seroepidemiological and phylogenetic characterization of neurotropic enteroviruses in Ireland, 2005–2014. J Med Virol. 2017; 89: 1550–1558. https://doi.org/10.1002/jmv.24765 PMID: 28071799

38. Papa A, Skoura L, Dumidu K, Spiropoulou A, Antoniadis A, Frantzidou F. Molecular epidemiology of Echovirus 6 in Greece. Eur J Clin Microbiol Infect Dis. 2009; 28: 683–687. https://doi.org/10.1007/s10096-008-0685-1 PMID: 19130106

39. Bailly JL, Mirand A, Henquell C, Archimbaud C, Regagnon C, et al. Repeated genomic transfers from echovirus 30 to echovirus 6 lineages indicate co-divergence between co-circulating populations of the two human enterovirus serotypes. Infect Genet Evol. 2011; 11: 276–289. https://doi.org/10.1016/j.meegid.2010.06.019 PMID: 20615482

40. Smura T, Kakko L, Blomqvist S, Klempa P, Parsons A, Kallio-Kokko H, et al. Molecular evolution and epidemiology of echovirus 6 in Finland. Infect Genet Evol. 2013; 16: 234–247. https://doi.org/10.1016/j.meegid.2013.02.011 PMID: 23462388

41. Tao Z, Song Y, Wang H, Zhang Y, Yoshida H, Ji S, et al. Intercity spread of echovirus 6 in Shandong province, China: Application of environmental surveillance in tracing circulating enteroviruses. Appl Environ Microbiol. 2012; 78: 6946–6953. https://doi.org/10.1128/AEM.01861-12 PMID: 22843520

42. Benschop KS, Geeraedts F, Beuvink B, Spit SA, Fanoy EB, Claas EC, et al. Increase in ECHOvirus 6 infections from 2008 to 2012 in Shenzhen China. J Clin Microbiol. 2013; 51: 3560–3566. https://doi.org/10.1128/JCM.01231-13 PMID: 23966496

43. Blomqvist S, Klempa P, Parson A, Kallio-Kokko H, et al. Molecular evolution and epidemiology of echovirus 6 in Finland. Infect Genet Evol. 2013; 16: 234–247. https://doi.org/10.1016/j.meegid.2013.02.011 PMID: 23462388

44. Zhuang ZC, Kou ZQ, Bai YJ, Cong X, Wang LH, Li C, et al. Epidemiological research on hand, foot, and mouth disease in Mainland China. Viruses. 2015; 7: 6400–6411. https://doi.org/10.3390/v7122947 PMID: 26690202

45. He YQ, Chen L, Xu WB, Yang H, Wang HZ, Zong WP, et al. Emergence, circulation, and spatiotemporal phylogenetic analysis of coxsackievirus a6- and coxsackievirus a10-associated hand, foot, and mouth disease infections from 2008 to 2012 in Shenzhen China. J Clin Microbiol. 2013; 51: 3560–3566. https://doi.org/10.1128/JCM.01231-13 PMID: 23966496

46. Blomqvist S, Klempa P, Parson A, Kallio-Kokko H, et al. Molecular evolution and epidemiology of echovirus 6 in Finland. Infect Genet Evol. 2013; 16: 234–247. https://doi.org/10.1016/j.meegid.2013.02.011 PMID: 23462388

47. Mirand A, Henquell C, Archimbaud C, Antona D, Bailly JL, et al. Outbreak of hand, foot and mouth disease/hepangina associated with aseptic meningitis in Shandong Province, China, 2006–2012. PLoS One. 2014; 9. https://doi.org/10.1371/journal.pone.0089766 PMID: 24587020

48. Traillero G, Avellon A, Otero A, De Miguel T, Pérez C, Rabelia N, et al. Enteroviruses in Spain over the decade 1998–2007: Virological and epidemiological studies. J Clin Virol. 2010; 48: 49–54. https://doi.org/10.1016/j.jcv.2010.02.002 PMID: 20189452

49. Li H, Lao Q. The pulmonary complications associated with EV71-infected hand–foot–mouth disease. Radiol Infect Dis. 2017; 4: 137–142. https://doi.org/10.1016/j.rid.2017.01.001

50. Tao Z, Wang H, Li Y, Liu G, Xu A, Lin X, et al. Molecular epidemiology of human enterovirus associated with aseptic meningitis in Shandong Province, China, 2006–2012. PLoS One. 2014; 9. https://doi.org/10.1371/journal.pone.0089766 PMID: 24587020

51. Li H, Lao Q. The pulmonary complications associated with EV71-infected hand–foot–mouth disease. Radiol Infect Dis. 2017; 4: 137–142. https://doi.org/10.1016/j.rid.2017.01.001

52. González-Sanz R, Casas-Alba D, Launes C, Muñoz-Almagro C, Montserrat Ruiz-García M, Alonso M, et al. Molecular epidemiology of an enterovirus A71 outbreak associated with severe neurological disease, Spain, 2016. Eurosurveillance. 2019; 24. https://doi.org/10.2807/1560-7917.ES.2019.24.7.1800089 PMID: 30782267
54. Tan X, Huang X, Zhu S, Chen H, Yu Q, Wang H, et al. The persistent circulation of enterovirus 71 in people’s republic of China: Causing emerging nationwide epidemics since 2008. PLoS One. 2011; 6. https://doi.org/10.1371/journal.pone.0025662 PMID: 21980521

55. Zhang Y, Tan X, Cui A, Mao N, Xu S, Zhu Z, et al. Complete Genome Analysis of the C4 Subgenotype Strains of Enterovirus 71: Predominant Recombination C4 Viruses Persistently Circulating in China for 14 Years. PLoS One. 2013; 8. https://doi.org/10.1371/journal.pone.0056341 PMID: 23441179

56. Schuffenecker I, Henquell C, Mirand A, Coste-Burel M, Marque-Juillet S, Desbois D, et al. New introductions of enterovirus 71 subgenogroup C4 strains, France, 2012. Emerg Infect Dis. 2014; 20: 1343–1346. https://doi.org/10.3201/eid2008.131858 PMID: 25061698

57. Fischer TK, Nielsen AY, Sydenham T V., Andersen PH, Andersen B, Midgley SE. Emergence of enterovirus 71 C4a in Denmark, 2009 to 2013. Eurosurveillance. 2014; 19. https://doi.org/10.2807/1560-7917.es2014.19.38.20911 PMID: 25306878

58. Akhadishina L V., Eremeeva TP, Trotsenko OE, Ivanova OE, Mikhailov MI, Lukashev AN. Seroepidemiology and molecular epidemiology of enterovirus 71 in Russia. PLoS One. 2014; 9. https://doi.org/10.1371/journal.pone.0097404 PMID: 24819617

59. Christian KA, Ijaz K, Dowell SF, Chow CC, Chitale RA, Bresee JS, et al. What we are watching-five top global infectious disease threats, 2012: A perspective from CDC’s global disease detection operations center. Emerg Health Threats J. 2013; 6. https://doi.org/10.3402/ehtj.v6i0.20632 PMID: 23827387