Global dynamics of the integrable Armbruster-Guckenheimer-Kim galactic potential

Jaume Llibre1 · Claudia Valls2

Received: 3 April 2019 / Accepted: 6 August 2019 / Published online: 12 August 2019 © Springer Nature B.V. 2019

Abstract We study the global dynamics of the completely integrable Armbruster-Guckenheimer-Kim galactic potential. In these cases this system has two first integrals H_1 and H_2 independent and in involution. Let I_{h_1} and I_{h_2} be the set of points of the phase space on which H_1 and H_2 take the values h_1 and h_2, respectively. The sets $I_{h_1} \cap I_{h_2}$ are invariant by the dynamics. We characterize the global flow on these sets and we describe the foliation of the phase space by the invariant sets $I_{h_1} \cap I_{h_2}$.

Keywords Armbruster-Guckenheimer-Kim galactic potential · Invariant manifolds · Complete integrability

1 Introduction

The Armbruster-Guckenheimer-Kim potential is a galactic potential introduced in Armbruster et al. (1989) that studies the dynamics for the interchanging of nearly nondegenerate modes with square symmetry. They derived the model starting with a normal form given by a system of differential equations which represented the codimension two bifurcation problem. More precisely, the Hamiltonian function that they provided is

$$H(x, p_x, y, p_y) = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) - \frac{a}{4}(x^2 + y^2)^2 - \frac{b}{2} x^2 y^2,$$

where a, b are arbitrary constants. If we add the term $-\omega (xp_y - yp_x)$ then the system describes the dynamics of rotation of a nearly axisymmetric galaxy rotating with a constant velocity ω around a fixed axis. The existence of such ω denotes that the rotation of the galaxy must be taken into account when we study the stellar orbits (see Zeeuw and Merritt 1983). Many studies concerning the integrability and non-integrability of such systems have been done (see for instance Acosta-Humánez et al. 2018; Elmandouh 2016; El-Sabaa et al. 2019) using different techniques such as the Painlevé analysis and the Morales-Ramis theory as well as the study of the existence of periodic orbits which was done in Llibre and Roberto (2012). In particular, it was proved in El-Sabaa et al. (2019) that if $b = 2a$ or $b = -a$ the system is completely integrable but the authors do not describe completely the dynamics of the integrable systems form the point of view of the Liouville-Arnold theorem (see Sect. 2). This is the main aim of this paper.

When $b = 2a$ the Hamiltonian has the form

$$H = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) - \frac{a}{4}(x^2 + y^2)^2 - ax^2 y^2.$$

Introducing the new variables

$$u = \frac{1}{\sqrt{2}}(x - y), \quad v = \frac{1}{\sqrt{2}}(x + y),
\quad p_u = \frac{1}{\sqrt{2}}(p_x - p_y), \quad p_v = \frac{1}{\sqrt{2}}(p_x + p_y),$$

$J.$ Llibre
jllibre@mat.uab.cat

C. Valls
cvalls@math.tecnico.ulisboa.pt

1 Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

2 Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
it can be written as
\[H(x, p_x, y, p_y) = \frac{1}{2}(p_x^2 + p_y^2) + \frac{a}{4}(x^4 + y^4) - \frac{1}{2}(x^2 + y^2) = \tilde{H}_1(x, p_x) + \tilde{H}_2(y, p_y), \]

where \(a \in \mathbb{R} \), we have renamed the variables \((u, v)\) again as \((x, y)\) and
\[
\tilde{H}_1(x, p_x) = \frac{1}{2} p_x^2 + \frac{a}{4} x^4 - \frac{1}{2} x^2,
\]
\[
\tilde{H}_2(y, p_y) = \frac{1}{2} p_y^2 + \frac{a}{4} y^4 - \frac{1}{2} y^2.
\]

Note that \(\tilde{H}_1 : \mathbb{R}^2 \to \mathbb{R} \) while \(H : \mathbb{R}^4 \to \mathbb{R} \). In all the paper we will denote by \(H \) the Hamiltonian associated to a system with two degrees of freedom and so \(H = H(x, p_x, y, p_y) : \mathbb{R}^4 \to \mathbb{R} \), \(H_i = H_i(x, p_x, y, p_y) : \mathbb{R}^4 \to \mathbb{R} \) for \(i = 1, \ldots, 4 \), and we will denote by \(\tilde{H} \) the Hamiltonian associated to a system with one degree of freedom and so \(\tilde{H}_1 = \tilde{H}_1(x, p_x) : \mathbb{R}^2 \to \mathbb{R} \) and \(\tilde{H}_2 = \tilde{H}_2(y, p_y) : \mathbb{R}^2 \to \mathbb{R} \).

We observe that \(H_1 \) and \(H_2 \) are two first integrals, independent and in involution. Hence, the Hamiltonian system associated to the Hamiltonian \(H \) is
\[
\begin{align*}
\dot{x} &= p_x, & \dot{y} &= p_y, \\
\dot{p}_x &= -ax^3 + x, & \dot{p}_y &= -ay^3 + y
\end{align*}
\]
and it is completely integrable. We recall that \(H_1 \) and \(H_2 \) are independent if the matrix
\[
\begin{pmatrix}
H_{1x} & H_{1p_x} & H_{1y} & H_{1p_y} \\
H_{2x} & H_{2p_x} & H_{2y} & H_{2p_y}
\end{pmatrix}
\]
has rank 2 in any point of \(\mathbb{R}^4 \) except, perhaps in a zero Lebesgue-measure set. As usual \(H_y = \partial_x H / \partial y \). Moreover, we say that \(H_1 \) and \(H_2 \) are in involution if their Poisson bracket is zero. Finally, a Hamiltonian system with two degrees of freedom is completely integrable if it has two independent first integrals in involution.

Note that the phase space of system (1) is \(\mathbb{R}^4 \). Since \(H_1 \) and \(H_2 \) are first integrals the sets
\[
\begin{align*}
I_{h_1} &= \{(x, p_x, y, p_y) \in \mathbb{R}^4 : H_1 = h_1\} \\
&= \{(x, p_x) \in \mathbb{R}^2 : \tilde{H}_1 = \tilde{h}_1\} \times \mathbb{R}^2 \\
&= \tilde{h}_1 \times \mathbb{R}^2,
\end{align*}
\]
\[
\begin{align*}
I_{h_2} &= \{(x, p_x, y, p_y) \in \mathbb{R}^4 : H_2 = h_2\} \\
&= \{(y, p_y) \in \mathbb{R}^2 : \tilde{H}_2 = \tilde{h}_2\} \times \mathbb{R}^2 \\
&= \mathbb{R}^2 \times \tilde{h}_2,
\end{align*}
\]

are invariant by the flow of the Hamiltonian system (1). The first objective of this paper is to describe the foliations of the phase space \(\mathbb{R}^4 \) by the invariant sets \(I_{h_i} \) for \(i = 1, 2 \) as well as by \(I_{h_1 h_2} \). The foliations provide a good description of the phase portraits of the Hamiltonian flow (1) when \(a \) varies.

When \(b = -a \) the Hamiltonian has the form
\[
\begin{align*}
H(x, p_x, y, p_y) &= \frac{1}{2}(p_x^2 + p_y^2) - \frac{a}{4}(x^4 + y^4) \\
&\quad+ \frac{1}{2}(x^2 + y^2)
\end{align*}
\]
\[
\begin{align*}
\tilde{H}_3(x, p_x) &= \frac{1}{2} p_x^2 - \frac{a}{4} x^4 + \frac{1}{2} x^2,
\tilde{H}_4(y, p_y) &= \frac{1}{2} p_y^2 - \frac{a}{4} y^4 + \frac{1}{2} y^2.
\end{align*}
\]

Note that \(H_3 \) and \(H_4 \) are two first integrals, independent and in involution. Hence the Hamiltonian system
\[
\begin{align*}
\dot{x} &= p_x, & \dot{y} &= p_y, \\
\dot{p}_x &= ax^3 - x, & \dot{p}_y &= ay^3 - y
\end{align*}
\]
is completely integrable. The sets
\[
\begin{align*}
I_{h_3} &= \{(x, p_x, y, p_y) \in \mathbb{R}^4 : H_3 = h_3\} = \tilde{I}_{h_3} \times \mathbb{R}^2, \\
I_{h_4} &= \{(x, p_x, y, p_y) \in \mathbb{R}^4 : H_4 = h_4\} = \mathbb{R}^2 \times \tilde{I}_{h_3},
\end{align*}
\]
as well as
\[
\begin{align*}
I_{h_3 h_4} &= \{(x, p_x, y, p_y) \in \mathbb{R}^4 : H_3 = h_3, H_4 = h_4\} \\
&= I_{h_3} \cap I_{h_4} = \tilde{I}_{h_3} \times I_{h_4}
\end{align*}
\]
are invariant by the flow of the Hamiltonian system (2). The second main objective of the paper is to describe the foliations of \(\mathbb{R}^4 \) by the invariant sets \(I_{h_i} \) for \(i = 3, 4 \) and by the invariant sets \(I_{h_3 h_4} \). Again, these foliations provide a good description of the phase portraits of the Hamiltonian flow (2) when \(a \) varies.

The paper is organized as follows. In Sect. 2 we recall the Liouville-Arnold theory for Hamiltonians systems with
two degrees of freedom. In Sect. 3 we describe the topology of the sets \(I_{h_1} \) (since the study for \(I_{h_2} \) is analogous). For doing that and taking into account that \(I_{h_1} = I_{h_1} \times \mathbb{R}^2 \) we will only describe the topology of the sets \(I_{h_1} \) by computing the sets of singular points and critical values for \(\tilde{H}_1 \) and the Hill regions according to the different values of \(a \) and \(\tilde{h}_1 \). In Sect. 4 we study the topology of the sets \(I_{h_1 h_2} \). In Sect. 5 we describe the topology of the sets \(I_{h_1} \) (again because the study for \(I_{h_2} \) is analogous) and recalling that \(h_1 = I_{h_1} \times \mathbb{R}^2 \) we will only describe the topology of the sets \(I_{h_3} \) by computing the sets of singular points and critical values for \(\tilde{H}_3 \) and the Hill regions according to the different values of \(a \) and \(\tilde{h}_3 \). In Sect. 6 we study the topology of the sets \(I_{h_3 h_4} \).

2 Integrable Hamiltonian systems

In this section we recall the Liouville-Arnold theorem for the integrable Hamiltonian systems with two degrees of freedom. We recall that a flow defined on the phase space \(\mathbb{R}^4 \) is complete if its solutions are defined for all time \(t \) in \(\mathbb{R} \).

Theorem 1 The Hamiltonian system \((1)\) (resp. system \((2)\)) defined on the phase space \(\mathbb{R}^4 \) has the Hamiltonians \(H_1 \) and \(H_2 \) (resp. \(H_3 \) and \(H_4 \)) as two independent first integrals in involution. If \(I_{h_1 h_2} \neq \emptyset \) (resp. \(I_{h_3 h_4} \neq \emptyset \)) and \((h_1, h_2) \) (resp. \((h_3, h_4) \)) is a regular value of the map \((H_1, H_2) \) (resp. \((H_3, H_4) \)) then the following statements hold.

(a) \(I_{h_1 h_2} \) (resp. \(I_{h_3 h_4} \)) is a two-dimensional submanifold of \(\mathbb{R}^4 \) invariant under the flow of system \((1)\) (resp. system \((2)\)).

(b) If the flow on a connected component \(I_{* h_1 h_2} \) (resp. \(I_{* h_3 h_4} \)) of \(I_{h_1 h_2} \) (resp. \(I_{h_3 h_4} \)) is complete, then \(I_{h_1 h_2} \) (resp. \(I_{h_3 h_4} \)) is diffeomorphic either to the torus \(S^1 \times S^1 \), to the cylinder \(S^1 \times \mathbb{R} \), or to the plane \(\mathbb{R}^2 \).

(c) Under the assumption of statement (b), the flow on \(I_{h_1 h_2} \) (resp. \(I_{h_3 h_4} \)) is conjugated to a linear flow either on \(S^1 \times S^1 \), or on \(S^1 \times \mathbb{R} \), or on \(\mathbb{R}^2 \).

Note that Theorem 1 does not provide information on the topology of the invariant sets \(I_{h_1 h_2} \) (resp. \(I_{h_3 h_4} \)) when \((h_1, h_2) \) (resp. \((h_3, h_4) \)) is not a regular value of the map \((H_1, H_2)\) (resp. \((H_3, H_4)\)), or how the energy levels \(I_{h_1} \) or \(I_{h_2} \) (resp. \(I_{h_3} \) or \(I_{h_4} \)) foliate \(\mathbb{R}^4 \).

In this paper we solve these problems for systems \((1)\) and \((2)\).

3 The topology of the invariant sets \(I_{h_1} \)

As explained in the introduction, taking into account that \(I_{h_1} = I_{h_1} \times \mathbb{R}^2 \) we will restrict all the study to \(I_{h_1} \).

A point \((x, p_x) \in \mathbb{R}^2 \) is a singular point for the map \(\tilde{H}_1 \) if it is a solution of

\[
\frac{\partial \tilde{H}_1}{\partial p_x} = 0, \quad \frac{\partial \tilde{H}_1}{\partial x} = 0.
\]

The value \(\tilde{h}_1 \in \mathbb{R} \) is a critical value for the map \(\tilde{H}_1 \) if there is some singular point belonging to \(\tilde{H}_1^{-1}(\tilde{h}_1) = I_{h_1} \). If \(\tilde{h}_1 \) is not critical value it is said a regular value. It is well-known that if \(\tilde{h}_1 \) is a regular value of the map \(\tilde{H}_1 \) then \(I_{h_1} \) is a one-dimensional manifold (see Hirsch 1976).

Note that the singular points for the map \(\tilde{H}_1 \) are

\[
p_x = 0, \quad x(ax^2 - 1) = 0,
\]

and so the set of singular points of \(\tilde{H}_1 \) is \((0, 0) \) if \(a \leq 0 \), and \((0, 0) \cup (0, -1/\sqrt{a}) \cup (0, 1/\sqrt{a}) \) if \(a > 0 \).

We define the Hill region as

\[
R_{h_1} = \left\{ x \in \mathbb{R} : \frac{a}{4} x^4 - \frac{x^2}{2} \leq \tilde{h}_1 \right\}
\]

This is the region of the configuration space \(\{ x \in \mathbb{R} \} \) where the motion of all orbits of the Hamiltonian system associated to \(\tilde{H}_1 \) have energy \(\tilde{h}_1 \) takes place. By \(R_{h_1} \) \(\approx \) \(S \), we denote that \(R_{h_1} \) is diffeomorphic to \(S \). We will also denote by

\[
P_1 = \sqrt{1 - \sqrt{1 + 4ah_1}} \quad \text{and} \quad P_2 = \sqrt{1 + \sqrt{1 + 4ah_1}}
\]

have:

(i) \(R_{h_1} \approx \mathbb{R} \) if \(a = 0 \) and \(\tilde{h}_1 > 0 \),

(ii) \(R_{h_1} \approx \mathbb{R} \) but here \(\{ 0 \} \), which is a singular point for \(\tilde{H}_1 \), is in the boundary of the Hill region, if \(a = 0 \) and \(\tilde{h}_1 = 0 \),

(iii) \(R_{h_1} \approx (-\infty, -\sqrt{-2h_1}) \cup [\sqrt{-2h_1}, \infty) \) if \(a = 0 \) and \(\tilde{h}_1 < 0 \),

(iv) \(R_{h_1} \approx \mathbb{R} \) if \(a > 0 \) and \(\tilde{h}_1 > 0 \),

(v) \(R_{h_1} \approx \mathbb{R} \) but here \(\{ 0 \} \), which is a singular point for \(\tilde{H}_1 \), is in the boundary of the Hill region, if \(a > 0 \) and \(\tilde{h}_1 = 0 \),

(vi) \(R_{h_1} \approx (-\infty, -P_-) \cup [P_-, \infty) \) if \(a < 0 \) and \(\tilde{h}_1 < 0 \),

(vii) \(R_{h_1} \approx \emptyset \) if \(a > 0 \) and \(\tilde{h}_1 < -1/(4a) \),

(viii) \(R_{h_1} \approx \left[-\frac{1}{a} \right] \cup \left[\frac{1}{a} \right] \) which are two of the singular points for the map \(\tilde{H}_1 \), if \(a > 0 \) and \(\tilde{h}_1 = -1/(4a) \),

(ix) \(R_{h_1} \approx [P_-, P_-] \cup [P_-, P_+] \) if \(a > 0 \) and \(\tilde{h}_1 \in (-1/(4a), 0) \),

(x) \(R_{h_1} \approx \left[-\sqrt{\frac{2}{a}}, \sqrt{\frac{2}{a}} \right] \) but here \(\{ 0 \} \), which is a singular point for \(\tilde{H}_1 \), is in the boundary of the Hill region, if \(a > 0 \) and \(\tilde{h}_1 = 0 \),

(xi) \(R_{h_1} \approx \{-P_+, P_+\} \) if \(a > 0 \) and \(\tilde{h}_1 > 0 \).
Now we compute the energy levels I_{h_1}. From the definition of I_{h_1} we have

$$I_{h_1} = \bigcup_{x \in R_{h_1}} E_x$$

where

$$E_x = \left\{ (x, p_x) \in \mathbb{R}^2 : \frac{p_x^2}{2} + \frac{a}{4} x^4 - \frac{1}{2} x^2 = h_1 \right\}.$$

Clearly for each $x \in \mathbb{R}$ the set E_x is either two points, or one point or the empty set, if the point x is in the interior of the Hill region R_{h_1}, in its boundary, or it does not belong to R_{h_1}, respectively. Therefore, from (3) and using the Hill region, the topology of I_{h_1} is:

(i) $I_{h_1} \approx \mathbb{R} \cup \mathbb{R}^2$ if $a < 0$ and $h_1 \neq 0$,
(ii) $I_{h_1} \approx X$ if $a \leq 0$ and $h_1 = 0$. Here X denotes two straight lines intersecting the origin of the two straight lines,
(iii) $I_{h_1} \approx \emptyset$ if $a > 0$ and $h_1 < -1/(4a)$,
(iv) $I_{h_1} \approx \pm (\pm \sqrt{2a}, 0)$ which are the two equilibrium points of H_1 if $a > 0$ and $h_1 = -1/(4a)$,
(v) $I_{h_1} \approx \mathbb{S}^1 \cup \mathbb{S}^1$ if $a > 0$ and $h_1 \in (-1/(4a), 0)$,
(vi) $I_{h_1} \approx \infty$ if $a > 0$ and $h_1 = 0$. Here ∞ denotes two homoclinic orbits at the origin,
(vii) $I_{h_1} \approx \mathbb{S}^1$ if $a > 0$ and $h_1 < 0$.

See in Fig. 1 the phase portraits associated to the Hamiltonian system with Hamiltonian H_1 depending on whether $a > 0$, $a = 0$, and $a < 0$. The phase portraits in Fig. 1 are drawn in the Poincaré disc, which essentially is a unit closed disc centered at the origin of coordinates with its interior identified to \mathbb{R}^2 and with its boundary (the circle \mathbb{S}^1) identified with the infinity of \mathbb{R}^2, for more details on the Poincaré disc see Chap. 5 of Dumortier et al. (2006).

4 The topology of the invariant sets $I_{h_1 h_2}$

To obtain $I_{h_1 h_2}$ we recall that I_{h_2} is exactly the same as I_{h_1} and that $I_{h_1 h_2} = I_{h_1} \cap I_{h_2} = I_{h_1} \times I_{h_2}$. Hence, in Table 1 we have given the description of the invariant sets $I_{h_1 h_2}$ for the different values of h_1, h_2 and a.

5 The topology of the invariant sets I_{h_3}

As we did for the case H_1, we recall that $I_{h_3} = I_{h_1} \times \mathbb{R}^2$ and so we will study only I_{h_3}. The singular points for the map H_3 satisfy

$$p_x = 0, \quad x(1 - ax^2) = 0$$

and so they are $(0, 0)$ if $a \leq 0$ and $(0, 0) \cup (0, -1/\sqrt{a}) \cup (0, 1/\sqrt{a})$ if $a > 0$. The Hill region is

$$R_{h_3} = \left\{ y \in \mathbb{R} : -\frac{a}{4} y^4 + \frac{y^2}{2} \leq h_3 \right\}$$

and so taking the notation

$$Q_- = \sqrt{\frac{1 - \sqrt{1 - 4ah_3}}{a}}, \quad Q_+ = \sqrt{\frac{1 + \sqrt{1 - 4ah_3}}{a}}$$

we have

(i) $R_{h_3} \approx \emptyset$ if $a = 0$ and $h_3 < 0$,
(ii) $R_{h_3} \approx \mathbb{R}$ if $a = 0$ and $h_3 = 0$, then
(iii) $R_{h_3} \approx [-\sqrt{2h_3}, \sqrt{2h_3}]$ if $a = 0$ and $h_3 > 0$ then
(iv) $R_{h_3} \approx \emptyset$ if $a < 0$ and $h_3 < 0$,
(v) $R_{h_3} \approx \{0\}$ if $a < 0$ and $h_3 = 0$,
(vi) $R_{h_3} \approx [-Q_+, Q_-]$ if $a < 0$ and $h_3 > 0$,
(vii) $R_{h_3} \approx \mathbb{R}$ if $a > 0$ and $h_3 > 1/(4a)$,
(viii) $R_{h_3} \approx \mathbb{R}$, but here $\pm \sqrt{\frac{1}{4a}}$, which are singular points for H_1, are in the boundary of the Hill region, if $a > 0$ and $h_3 = 1/(4a)$,
(ix) $R_{h_3} \approx (-\infty, -Q_+ \cup [-Q_-, Q_-] \cup [Q_+, +\infty)$ if $a > 0$ and $h_3 \in (0, 1/(4a))$,
(x) $R_{h_3} \approx \mathbb{R}$, but here $\{0\}$, which is a singular point for H_1, is in the boundary of the Hill region, if $a > 0$ and $h_3 = 0$,
(xi) $R_{h_3} \approx (-\infty, -Q_+ \cup [Q_+, +\infty)$ if $a > 0$ and $h_3 < 0$.

Now we compute the energy levels I_{h_3}, From the definition of I_{h_3} we have

$$I_{h_3} = \bigcup_{y \in R_{h_3}} E_y$$

where

$$E_y = \left\{ (y, p_y) \in \mathbb{R}^2 : \frac{p_y^2}{2} - \frac{a}{4} y^4 + \frac{1}{2} y^2 = h_3 \right\}.$$
The invariant sets $I_{h_1 h_2}$ for the different values of h_1, h_2, and a

a	h_1	h_2	$I_{h_1 h_2}$
≤ 0	$\neq 0$	$\neq 0$	$(\mathbb{R} \cup \mathbb{R}) \times (\mathbb{R} \cup \mathbb{R})$
≤ 0	$\neq 0$	$= 0$	$(\mathbb{R} \cup \mathbb{R}) \times X$
≤ 0	$= 0$	$\neq 0$	$X \times (\mathbb{R} \cup \mathbb{R})$
≤ 0	$= 0$	$= 0$	$X \times X$
> 0	$<-1/(4a)$	$\in \mathbb{R}$	\emptyset
> 0	$= -1/(4a)$	$<-1/(4a)$	\emptyset
> 0	$= -1/(4a)$	$= -1/(4a)$	$(\pm \sqrt{1/4a}, 0) \times (\pm \sqrt{1/4a}, 0)$
> 0	$= -1/(4a)$	$\in (-1/(4a), 0)$	$(\pm \sqrt{1/4a}, 0) \times (S^1 \cup S^1)$
> 0	$= -1/(4a)$	$= 0$	$(\pm \sqrt{1/4a}, 0) \times \infty$
> 0	$= -1/(4a)$	< 0	$(-\sqrt{1/4a}, 0) \times S^1$
> 0	$\in (-1/(4a), 0)$	$<-1/(4a)$	\emptyset
> 0	$\in (-1/(4a), 0)$	$= -1/(4a)$	$(S^1 \cup S^1) \times (\pm \sqrt{1/4a}, 0)$
> 0	$\in (-1/(4a), 0)$	$\in (-1/(4a), 0)$	$(S^1 \cup S^1) \times (S^1 \cup S^1)$
> 0	$\in (-1/(4a), 0)$	$= 0$	$(S^1 \cup S^1) \times \infty$
> 0	$\in (-1/(4a), 0)$	< 0	$(S^1 \cup S^1) \times S^1$
> 0	$= 0$	$<-1/(4a)$	\emptyset
> 0	$= 0$	$= -1/(4a)$	$\infty \times (\pm \sqrt{1/4a}, 0)$
> 0	$= 0$	$\in (-1/(4a), 0)$	$\infty \times (S^1 \cup S^1)$
> 0	$= 0$	$= 0$	$\infty \times S^1$
> 0	< 0	$<-1/(4a)$	\emptyset
> 0	< 0	$= -1/(4a)$	$S^1 \times (\pm \sqrt{1/4a}, 0)$
> 0	< 0	$\in (-1/(4a), 0)$	$S^1 \times (S^1 \cup S^1)$
> 0	< 0	$= 0$	$S^1 \times \infty$
> 0	< 0	< 0	$S^1 \times S^1$

Clearly for each $y \in \mathbb{R}$ the set E_y is either two points, or one point or the emptyset, if the point y is in the interior of the Hill region R_{h_3}, in its boundary, or it does not belong to R_{h_3}, respectively. Therefore, from (4) and using the Hill region, the topology of I_{h_3} is:

(i) $I_{h_3} \approx \emptyset$ if $a \leq 0$ and $\tilde{h}_3 < 0$,
(ii) $I_{h_3} \approx \{(0, 0)\}$ if $a \leq 0$ and $\tilde{h}_3 = 0$,
(iii) $I_{h_3} \approx S^1$ if $a \leq 0$ and $\tilde{h}_3 > 0$,
(iv) $I_{h_3} \approx \mathbb{R} \cup \mathbb{R}$ if $a > 0$ and $\tilde{h}_3 > 1/(4a)$,
(v) $I_{h_3} \approx P$ if $a > 0$ and $\tilde{h}_3 = 1/(4a)$. Here P denotes two curves with the shape of a parabola intersecting in two different points (the points are the two singular points),
(vi) $I_{h_3} \approx \mathbb{R} \cup S^1 \cup \mathbb{R}$ if $a > 0$ and $\tilde{h}_3 \in (0, 1/(4a))$,
(vii) $I_{h_3} \approx \mathbb{R} \cup \{(0, 0)\} \cup \mathbb{R}$ if $a > 0$ and $\tilde{h}_3 = 0$,
(viii) $I_{h_3} \approx \mathbb{R} \cup \mathbb{R}$ if $a > 0$ and $\tilde{h}_3 < 0$.

See the phase portrait associated to \tilde{H}_3 depending on whether $a > 0$, $a = 0$, or $a < 0$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{phase_portraits}
\caption{Phase portraits associated to the Hamiltonian system with Hamiltonian H_3 depending on whether $a > 0$ or $a \leq 0$}
\end{figure}

See in Fig. 2 the phase portraits associated to the Hamiltonian system with Hamiltonian \tilde{H}_3 depending on whether $a > 0$ and $a \leq 0$.

6 The topology of the invariant sets $I_{h_3 h_4}$

To obtain $I_{h_3 h_4}$ we recall that I_{h_3} is exactly the same as I_{h_3} and that $I_{h_3 h_4} = I_{h_3} \cap I_{h_4} = I_{h_3} \times I_{h_4}$. Hence, in Table 2 we have given the description of the invariant sets $I_{h_3 h_4}$ for the different values of h_3, h_4 and a.

\[\text{Springer} \]
Acknowledgements The first author is partially supported by the Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación grants MTM2016-77278-P (FEDER), the Agència de Gestió d’Ajuts Universitaris i de Recerca grant 2017SGR1617, and the H2020 European Research Council grant MSCA-RISE-2017-777911. The second author is partially supported by FCT/Portugal through UID/MAT/04590/2013.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References
Acosta-Humánez, P., Alvarez-Ramirez, M., Stuchi, T.J.: Nonintegrability of the Armbruster Guckenheimer Kim quartic Hamiltonian through Morales Ramis theory. SIAM J. Appl. Dyn. Syst. 17, 78–96 (2018)

Armbruster, D., Guckenheimer, J., Kim, S.: Chaotic dynamics in systems with square symmetry. Phys. Lett. A 140, 416–420 (1989)

Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. UniversiText. Springer, New York (2006)

El-Sabaa, F.M., Hosny, M., Zakria, S.K.: Bifurcations of Armbruster Guckenheimer Kim galactic potential. Astrophys. Space Sci. 364, 34–43 (2019)

Elmandouh, A.A.: On the dynamics of Armbruster Guckenheimer Kim galactic potential in a rotating reference frame. Astrophys. Space Sci. 361, 182–194 (2016)

Hirsch, M.W.: Differential Topology. Graduate Texts in Mathematics. Springer, Berlin (1976)

Llibre, J., Roberto, L.: Periodic orbits and non-integrability of Armbruster-Guckenheimer-Kim potential. Astrophys. Space Sci. 343, 69–74 (2012)

Zeeuw, T., Merritt, D.: Stellar orbits in a triaxial galaxy II. Orbits in the plane of rotation. Astrophysics 267, 571–595 (1983)