Supporting Information

Theophylline-Bearing Microspheres with Dual Features as Coordinative Adsorbent and Catalytic Support for Palladium Ions

Katsuya Kaikake*, Masafumi Takada, Daiki Soma, and Ren-Hua Jin*

Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan

Fig. S1. Snapshot image of wettability of μ-T1 (left), μ-T2 (right) (5mg) in the phase-separated mixture of diethyl ether/water (2.0 mL/2.0 mL).
Fig. S2. SEM section images of the internal structure of μ-T2.

Table S1. Specific surface areas and pore properties of microspheres

type of microball	surface area a) (m² g⁻¹)	Pore size (nm)	pore volume (cm³ g⁻¹)
μ-1	1.7	76.3	0.0055
μ-T1	1.9	61.7	0.0068
μ-2	1.5	77.0	0.0071
μ-T2	1.9	62.2	0.0130

a) Specific surface area based BET method.
Fig. S3. DLS results of μ-1, μ-T1 and μ-2, μ-T2.

Fig. S4. UV-vis spectra of μ-T2 adsorbed from different palladium(II) concentration solutions and comparison of benzyltheophylline-PdCl$_2$ complex. Enlargement view indicate absorbance at 420 nm corresponding to palladium.
Fig. S5. The recycling test of the catalyst of Pd-loaded microsphere of μ-T2. Reaction conditions: bromobenzene (1.0 mmol), phenylboronic acid (1.5 mmol), K₂CO₃ (2.5 mmol), 2.0 mol% of Pd, H₂O (2 mL), 50 °C for 1h.

Fig. S6. SEM image of Pd-loaded μ-T2 after reuse of the 4th time.