Book Chapter

Vaginal Microbiota Evaluation and Lactobacilli Quantification by qPCR in Pregnant and Non-pregnant Women: A Pilot Study

David Pacha-Herrera¹, Gabriela Vasco¹,², Cecilia Cruz-Betancourt³, Juan Miguel Galarza³, Verónica Barragán¹ and António Machado¹ *

¹Laboratorio de Bacteriología, Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Ecuador
²Cátedra de Microbiología de la Escuela de Medicina, Facultad de Ciencias Médicas, Universidad Central del Ecuador, Ecuador
³Laboratorio de Biología Molecular, Unidad Técnica de Genética y Molecular, Hospital de Especialidades Carlos Andrade Marín del IESS, Ecuador

*Corresponding Author: António Machado, Laboratorio de Bacteriología, Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador

Published **November 23, 2020**

This Book Chapter is a republication of an article published by António Machado, et al. at Frontiers in Cellular and Infection Microbiology in June 2020. (Pacha-Herrera D, Vasco G, Cruz-Betancourt C, Galarza JM, Barragán V and Machado A (2020) Vaginal Microbiota Evaluation and Lactobacilli Quantification by qPCR in Pregnant and Non-pregnant Women: A Pilot Study. Front. Cell. Infect. Microbiol. 10:303. doi: 10.3389/fcimb.2020.00303)

How to cite this book chapter: David Pacha-Herrera, Gabriela Vasco, Cecilia Cruz-Betancourt, Juan Miguel Galarza, Verónica...
Barragán, António Machado. Vaginal Microbiota Evaluation and Lactobacilli Quantification by qPCR in Pregnant and Non-pregnant Women: A Pilot Study. In: Alexandre Morrot, editor. Prime Archives in Microbiology. Hyderabad, India: Vide Leaf. 2020.

© The Author(s) 2020. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author Contributions: AM, GV, and DPH were responsible for modelling and experimental design. Samples collection oversaw doctors of Gynecology and Obstetrics Service of Carlos Andrade Marin Hospital (HCAM), Gynecological-Obstetric Hospital Isidro Ayora (HGOIA), and Center for Teaching Health Cipriana Dueñas. The DNA extraction was performed at Hospital Carlos Andrade Marín by CC. Molecular characterization was conducted by DPH in the Microbiology Institute at USFQ. Biostatistics analysis was developed by VB and DPH at USFQ.

Funding: This work was supported by Chancellor Grant 2018 and COCIBA research budget, under the informed consent approved by the Bioethics Committee of the USFQ and the Ministry of Health of Ecuador (Contrato Marco de Acceso a los Recursos Genéticos No. MAE-DNB-CM-2016-0046).

Acknowledgments: A special recognition deserves all the staff of the Microbiology Institute of USFQ, doctors involved in the project, and volunteer researchers, more exactly, Sully Márquez, Erika Montenegro, and Sebastián Almagro.
Abstract

Pregnancy outcomes and women’s health are directly affected by vaginal microbiota. This microbiota consists of a dynamic ecosystem of various microbes in different ratios, which in healthy conditions protect the vaginal epithelium from infections. However, cases of vaginal infection are regularly diagnosed in women of reproductive age, contributing to more severe outcomes. Therefore, our main goal was to determine the prevalence of bacterial vaginosis (BV), aerobic vaginitis (AV), and vulvovaginal candidiasis (VVC) among Ecuadorian pregnant and non-pregnant women. A cross-sectional study was conducted among 217 women between 13 and 40 years old seeking primary healthcare in Carlos Andrade Marin Hospital (HCAM), Gynecological-Obstetric Hospital Isidro Ayora (HGOIA) and Center for Teaching Health Cipriana Dueñas during October 2018 to February 2019. The classical characterization of the vaginal microbiota was performed through microscopy by the Nugent criteria to evaluate the presence of BV, healthy and intermediate microbiota, by the criteria of Donders to determine the presence of AV and by the Marot-Leblond criteria to diagnose VVC. DNA extraction from vaginal samples and Polymerase Chain Reaction (PCR) analysis was performed to characterize the presence of Gardnerella spp., Mobiluncus mulieris, Escherichia coli, Enterococcus spp., and Lactobacillus spp. Finally, quantification of the lactobacilli was performed by quantitative real-time PCR (qPCR) for samples from women with normal vaginal microbiota and women with AV.

Our results showed 52% of women with healthy microbiota, 7% with intermediate microbiota, and 41% with vaginal dysbiosis, comprising 27% with AV, 8% with BV and 4% with VVC and 2% with co-infections or co-dysbiosis. Additionally, a higher amount of lactobacilli were found in pregnant women when compared to non-pregnant women, while AV cases were characterized by a significant drop of Lactobacillus spp., more precisely, between 1E3 and 1E5 colony forming units (CFU)/ml. Finally, women with normal vaginal microbiota showed an average load of lactobacilli between 1E6 and 1E7 CFU/ml. This
pilot study showed no statistically significant differences between pregnant and non-pregnant women, pointing to the possibility to use lactobacilli quantification for the prevention of future vaginal infections.

Keywords

Vaginal Microbiota, Vaginal Infection, Bacterial Vaginosis, Aerobic Vaginitis, Pregnant, Opportunistic Pathogen, Lactobacillus spp. (Min.5-Max. 8)

Introduction

The normal vaginal microbiota plays a crucial role for the health of pregnant and non-pregnant women [1], preventing several urogenital diseases [2], including bacterial vaginosis (BV) [2-6], aerobic vaginitis (AV) [7-11], urinary tract infections (UTI) [12-14], yeast vaginitis [3,15,16], and sexually transmitted diseases (such as HIV) [3,6,17-19]. In the context of this study, it is also important to mention that women and teenagers in Ecuador have a wide range of health care needs, in particular, related to sexual and reproductive health [20]. In Ecuador, a major concern is the high rate of adolescent pregnancy, i.e. pregnancy between ages 10 to 19. Several studies worldwide also demonstrated a higher risk of acquiring HIV, herpes simplex virus type 2 and other sexually transmitted infections in non-pregnant women with vaginal infections or intermediate vaginal microbiota [6,18,21,22]. Thus, lactic acid-producing bacteria (such as Lactobacillus spp.) metabolize glycogen, increasing lactic acid and a normal acidic vaginal pH of 3.8 – 4.4 [1,12,23,24].

The vaginal microbial community is a variable econiche that fluctuates between normal and dysbiotic microbiota [1], which could be influenced by several intrinsic and extrinsic factors [24] and eventually leading to an increment of both aerobic and anaerobic microorganisms [25-28]. However, the most predominant genus in a healthy vaginal microbiota is Lactobacillus [1,12]. Lactobacillus genus is known to inhibit the adhesion and proliferation of opportunistic and primary pathogens [17]. The mechanisms by which vaginal lactobacilli
Prime Archives in Microbiology

provide colonization resistance is generally considered to be through production of several antimicrobial compounds such as, hydrogen peroxide, lactic acid and/or bacteriocins [29-32], as well as acting as biosurfactant on the vaginal epithelium [12,33].

Although several species of *Lactobacillus* were already identified in vaginal microbiota, the most predominant species found in normal vaginal microbiota are *L. crispatus*, *L. gasseri*, *L. jensenii*, and *L. iners* [12,23,34]. Also, other species could be detected in low amount among healthy vaginal microbiota such as *Atopobium*, *Enterobacter*, *Escherichia*, *Gardnerella*, *Mobiluncus*, *Prevotella*, *Staphylococcus*, *Shigella* [34-37]. These species can also behave as opportunistic pathogens [32,36]. Several factors can induce disruptions of the healthy microbiota equilibrium, establishing a microbial dysbiosis and, thus, future vaginal infections [18,32,36,38].

According to previous studies, bacterial vaginosis (BV) is the most common vaginal dysbiosis among women of reproductive age [3,5,39,40], being characterized by lactobacilli replacement by anaerobes [7]. *Gardnerella* spp., *Atopobium vaginae*, *Bacteroides* spp. and *Mobiluncus* spp. are the main pathogenic anaerobes associated with BV [24], which is usually diagnosed by Nugent criteria [41] or the Amsel criteria [6]. Besides BV, a condition designated aerobic vaginitis (AV) has also been recognized, characterized by the presence of aerobic bacteria in detriment of lactobacilli and by inflammation diagnosed a yellow-green discharge [24,42]. This vaginal infection is usually dominated by *Streptococcus* sp., *Enterococcus* sp., and/or Gram-negative bacteria of enteric origin (mainly, *Escherichia coli*). Finally, vulvovaginal candidiasis (VVC) is the most prevalent cause of vaginal infection by fungi, with at least 75% of healthy women suffering one episode of VVC during lifetime [15] and whereby *Candida albicans* is the most important species [43].

Our main goal of the present study was to evaluate the presence of vaginal infection among Ecuadorian women by classical and standard microbiological techniques or criteria [25] and to determine the dominance of different types of vaginal infection among pregnant and non-pregnant women. Also, the present
study aimed to detect the presence of specific opportunistic pathogens (Escherichia coli, Enterococcus faecalis, Gardnerella spp., and Mobiluncus mulieris) by Polymerase Chain Reaction (PCR) and quantified the number of lactobacilli through quantitative real-time PCR (qPCR). The analysis of the normal amount of lactobacilli in pregnant and non-pregnant women might enable to determine the lactobacilli threshold associated with the establishment of vaginal infection.

Materials and Methods

Study Population, Design and Subject Selection

The study was conducted in the Microbiology Institute at USFQ in collaboration with Hospital Carlos Andrade Marín (HCAM) and Universidad Central del Ecuador (UCE) from October 2018 to February 2019. The research team recruited 217 Ecuadorian female volunteers of Hispanic ethnicity but in reproductive age (13 and 40 years old), of which 111 were pregnant. Applicants were excluded from the study if they reported antimicrobial treatment in the last three months or any evidence of bleeding, and also if they had sexual intercourse within the previous 48 hours. Also, a questionnaire was taken regarding demographic characteristics, sexual and health behavior of each patient, and each enrolled woman provided a usable vulvovaginal swab sample.

Ethics Statement

This study was approved by the Ethics Committee of Universidad San Francisco de Quito (USFQ) and the Ministry of Health of Ecuador (Protocol code: 2016-140M by MSP-SDM-10-2013-2019-O review board). The female participants were recruited to our study set, after having read and signed the informed consent or, in the case of underaged participants, from their parents or legal representatives.

Sample Collection

Samples were taken by a gynecologist using a sterile disposable vaginal speculum. The lateral vaginal walls were swabbed with a
sterile swab to collect the cervical fluid, to prepare a smear on a microscope slide. Briefly, each vaginal smear was obtained by rolling the previous swab onto a glass slide, then heat-fixed and Gram-stained by using safranin as the counterstain. Following the Gram smear procedure, the swab was placed in 1 ml of phosphate buffer saline (PBS) and vortexed vigorously for approximately 3 minutes. The remaining vaginal material was collected by centrifugation at 16000 g for 5 minutes. The obtained pellet was suspended into an aliquot of 1 ml of saline (0.9% NaCl) which was used for culture of Candida spp. in different media (see section 2.4) and for wet mount microscopy for a better diagnosis of AV and VVC (see section 2.5).

A second sample was taken by a cervical brush (Rovers Cervex Brush®) through endo and exo-cervical brushing, placed immediately in Cobas® Preservative Fluid, stored at 4 °C until processing in the clinical laboratory of HCAM, and used for DNA extraction (see section 2.6). Each sample was further used to culture of Candida spp.

Culture of Candida spp.

Candida spp. was cultured on different media from the saline aliquot (see section 2.3). Briefly, 100 µl of saline solution was plated onto Petri dishes containing 5% human blood agar (HBA), chocolate agar (heated human blood agar) or Sabouraud dextrose agar (SDA). The plates were incubated at 37 °C for 48 h, under aerobic conditions, and colonies were analyzed and identified by gram staining, biochemical properties (catalase, oxidase, and hemolysis) and PCR (data not shown).

Microbiological Classification of Vaginal Infections

The Gram-stained vaginal smears were classified according to Nugent criteria for bacterial vaginosis (BV) [41], the criteria of Donders et al. for aerobic vaginitis (AV) [44] and those of Marot-Leblond et al. for vulvovaginal candidiasis (VVC) [43]. The evaluation of several cell types present in each smear was performed for 10 to 15 microscopic fields under oil immersion at 1000 X magnification [7].
After an initial evaluation of the Gram-stained smears by the Nugent criteria, all samples were evaluated by means of phase-contrast microscopy (X400 magnification) of wet smears, according to Schröders classification [8] and the Marot-Leblond et al. [43] criteria (see Table 1). The absence of *Lactobacillus* spp., presence of coccii or coarse bacilli in high numbers, presence of parabasal epithelial cells representing >10% of the epithelial cells, and/or presence of leucocytes were considered as indicative for AV [8]. In addition, aggravated AV diagnosis was defined as the most extreme form of aerobic vaginitis under Donders evaluation from Schröders classification [8], where AV samples showed lactobacilli severely depressed or absent because of overgrowth of other bacteria (Cocci or chains), more than 10 leucocytes per epithelial cell present in the samples and more than 50% of the leucocytes had a toxic appearance. It is important to mention that leucocytes were also evaluated on their granular appearance due to abundant lysozyme activity (‘toxic leucocytes’) [8]. Finally, VVC was assessed accordingly to Marot-Leblond and colleagues through at least one of the following criteria: positive Gram-stain preparation with budding yeasts in high numbers (five or more) in more than two microscopic fields, pseudohyphae, and/or hyphal forms in wet smears observation; and positive culture in Chocolate agar, HBA and/or SDA, along with negative microscopic examination results associated with eventual symptoms (thick, white vaginal discharge with no odor, vulvar and vaginal pruritus, burning, or dyspareunia) or clinical history (previous infection) obtained from the medical survey with the professional gynecologist. Absence of *Candida* cells in more than two microscopic fields and/or a low number of *Candida* spp. result on wet smears observation and culture growth was considered as normal *Candida* colonization rather than VVC [43].

Table 1: Parameters used for the diagnosis of vaginal infections.

Infection	Symptoms	Discharge	Odor	Diagnosis	References
Uninflamed candidiasis	Pruritus	Thick, white to	Absent	Microscopic examination (Gram-stained smears and Wet mount prep) and medical survey	Carr et al., 1988; Donders et al., 2003
Aerotic vaginitis	Inflationation	Yellow	Foul, rotten	Microscopic examination (Gram-stained smears and Wet mount prep) and medical survey	Donders et al., 2003; Donders et al., 2005
Bacterial vaginosis	Infestation, 50% asymptomatic	Thin, white to gray	Foul,usty	Microscopic examination (Gram-stained smears and Wet mount prep) and medical survey	Carr et al., 1989; Nugent et al., 1991

www.videleaf.com
DNA Extraction of Vaginal Swabs

The Cobas® 4800 system (Roche Molecular Systems Inc., Pleasanton, CA) was used to extract the DNA of vaginal brushes, according to the manufacturer’s instructions. DNA was quantified with a Nanovue spectrophotometer (GE Healthcare Life Science). DNA was eluted at 20 ng/µl with molecular grade water and stored at -20°C until the Polymerase Chain Reaction (PCR) analysis was performed. The quality of DNA was evaluated by measuring the concentration of phenolic compounds or the presence of salts (260/230) and protein contaminants (260/280).

Identification of the Major Bacterial Species by PCR

From 217 vaginal samples previously diagnosed by classical criteria through microscopy analysis, 97 were selected for molecular characterization by PCR in a Bio-Rad Thermocycler (Bio-Rad, Hercules, CA). Samples with scores between 0 and 1 of Nugent criteria were selected as healthy microbiota, while samples with scores between 9 and 10 of Nugent criteria (BV) and diagnosed as representing aggravated AV (see section 2.5) were used as dysbiotic microbiota. Thus, sixty samples with healthy microbiota (38 pregnant and 22 non-pregnant women), 23 samples with AV (14 pregnant and 9 non-pregnant women), and 14 samples with BV microbiota (6 pregnant and 8 non-pregnant women) were included. All samples were analyzed with a total of five primer pairs, targeting two anaerobes (Gardnerella species, and Mobiluncus mulieris), two aerobes (Escherichia coli and Enterococcus faecalis) and for the genus Lactobacillus. Single-template PCR assays were performed for each primer set. The sequence, amplicon size, target gene, and temperature of annealing for each primer pair are described in Table 2.

For PCR, a final volume of 20 µl was used according to the reference protocols [45-49]; which included 0.5 U of Go Taq® DNA Polymerase (Promega, Madison, WI), 1X of Green GoTaq® Flexi Buffer (Promega), 0.25 mM of MgCL₂ (Promega), 200 µM of dNTP mix (Promega), 0.5 µM of each
primer and target template DNA concentration of approximately 4 ng/μL, and the remaining volume with molecular grade H₂O. The PCR thermal cycling consisted of initial denaturation at 94 °C for 2 min; followed by 29 cycles of denaturation at 94 °C for 30 s, annealing at each primer pair temperature (Table 2) for 30 s and extension at 72 °C for 1 min, and final extension of 5 min at 72°C. The respective use of negative (without DNA sample and samples with other related bacteria) and positive (collection of identified strains of each species through DNA sequencing) controls were used in each PCR assay. These positive controls were provided by the Microbiology Institute at USFQ. All samples were randomly performed in duplicate or triplicate with different negative and positive controls.

Table 2: PCR primers used in this study.

Set	Name	Sequence (5′-3′)	Target	T (°C) of annealing	Size of fragment	Specificity %	Validation	References
1	Primer E1	ATCAAGTCAGTGAATGCCTTT	Enterococcus	54°C	641 bp	100.0%	Increase of annealing	DTU National Food Institute, 2014
	Primer E2	AGTATCCTGCCCTCCTGCTGCTG						
	adk R	CTCCTGCACTTTTGCCATTATT	Escherichia	57°C	583 bp	49.0%	Increase of annealing	Sopiri et al., 2009
	Gard154-Fr	GCCTGCACTTTTGCCATTATT	Gardnerella	60°C	301 bp	100.0%	NiD	Henriksson et al., 2012
	Gard154-Hf	TTGACTGCAACAAAAGCCTGTG	Lactobacillus	62°C	233 bp	47.1%	NiD	Henriksson et al., 2012
	LactF	GCTGCACTTTTGCCATTATT	Malobactrum	62°C	449 bp	100.0%	NiD	Fredricks et al., 2007
	Malol-577F	GCTGCACTTTTGCCATTATT	Malobactrum	62°C	449 bp	100.0%	NiD	Fredricks et al., 2007

After PCR amplification, a volume of 4 µL from each PCR product was visualized in 1.5% (w/w) agarose (Promega) gel electrophoresis using 0.1% ethidium bromide staining. The DNA analysis was performed under permit No. MAE-DNB-CM-2016-0046.

Quantification of Lactobacillus sp. by Quantitative Real-Time PCR (qPCR)

To create positive controls and standard quantification solutions with a well-known *Lactobacillus* sp. concentration (CFU/mL), a sample of known concentration (also known as a calibrator) (e.g., number of CFU per mL) was obtained through a validated method.
calibration curve (CFU/OD) [50]. This calibrator was serially diluted tenfold and used to construct a standard curve for qPCR assays. Accordingly, *Lactobacillus gasseri* strain JCM1131 was cultured during 24 hours in Mann Rogosa Sharp Agar at 37 °C under microaerophilic conditions [50-52]. The calibrator concentration was previously proved by media growth culture counting as previously described [53]. The DNA extraction was performed from the highest CFU/ml concentration, and serial dilutions from 1×10^9 to 1×10^0 CFU/mL were used as qPCR standards. The DNA extraction of this solution with the highest concentration was performed under the same procedure already described in section 2.6. In each qPCR assay, two random controls were also used as blind samples in triplicate.

Each reaction was performed with GoTaq® Master Mix qPCR (Promega, Madison, WI, USA) in a final volume of 20 µl, 0.5 µM of each primer (LactoF-TGGAAACAGRTGCTATACCG and LactoR-GTCCATTGTGGAAGATTCCC) and 2 µl of DNA template. Each qPCR assay was performed in a quantitative real-time PCR Thermocycler (Bio-Rad CA, USA) under the following conditions: initial denaturation at 94°C for 2 min followed by 40 cycles of denaturation at 94 °C for 30 s, annealing at 62 °C for 30 s, extension at 72 °C for 1 min, and a final extension for 5 minutes at 72°C. Each qPCR assay was followed by this melt curve analysis, allowing amplicon validation and identification of false positives through its profile and the specific temperature of melting (Tm). Each sample was analyzed by triplicate, and qPCR assays were realized in different days. Negative target controls and no template controls were included in all plates.

Primers used for these qPCR assays were previously described to amplify *Lactobacillus* spp. through classical PCR, but not for quantitative real-time PCR. Therefore assay metrics were determined by testing their performance across the limit of quantification (LoQ) and limit of detection (LoD), as well as linearity as previously described [54]. The optimized assay exhibited the LoQ and LoD to be 1×10^2 CFU per ml, while the range of linearity of the assay was from 1×10^9 to 1×10^3 CFU/mL. The load of lactobacilli in each sample was determined by
running six or five standard dilutions (1E9-1E3 CFU/mL), both in duplicate or triplicate on each qPCR assay.

For the quantification of *Lactobacillus* spp., 83 samples were selected for qPCR analysis from the initial subset of 97 vaginal samples previously characterized by PCR assays to molecular characterization of the main bacteria (see section 2.7), i.e. sixty from healthy microbiota samples and 23 from AV samples.

Statistical Analysis

Statistically significant differences in *Lactobacillus* spp. quantity among women with healthy and dysbiotic microbiota were evaluated using Kruskal Wallis one-way ANOVA and Mann Whitney tests. In addition, the same statistical analysis was carried out among pregnant and non-pregnant women. Finally, multivariable analysis was performed for sociodemographic and behavioral factors by using Minitab 2017 (Version 17, Minitab, State College, PA).

Results

Population Study

The sociodemographic characteristics for 217 women were included in the statistical analysis and presented in Table 3. Half of the women in the study were pregnant (51.2%) and approximately half (47.4%) were non-pregnant. They were between 21 and 30 years of age. Only 11 women (5.1%) identified themselves as White, Afro-Ecuadorian, or Indigenous women. So, the majority of the women in our study set (94.9%) were categorized as ‘Half-blood’, being of Hispanic ethnicity mixed with another background ethnicity (Caucasian, African, or Indigenous women). When performing an overall statistical analysis of age, the results do not show a significant relationship between age and the probability of having a specific diagnosis. Hence, there is no statistical evidence to determine that a woman's age is directly related to a specific vaginal disruption or having a healthy microbiota. From all sociodemographic factors analyzed, only the occupation category had a statistical significance over the diagnostic classification of vaginal
infection with a P-value of 0.003 through the Chi-square test (see Table 3). Similarly, the use of contraceptive methods, having different sexual partners, vaginal douches, or cigarette smoking did not show any relation to the development of any vaginal infection type during the study (see Table 4).

Table 3: Sociodemographic among women in this study with healthy vaginal microbiota, intermediate vaginal microbiota, and vaginal infections (bacterial vaginosis, aerobic vaginitis, candidiasis, and co-infections).

Focus group	Healthy microbiota N (%)	Intermediate microbiota N (%)	Candidiasis N (%)	Bacterial vaginosis N (%)	Aerobic vaginitis N (%)	Co-infections N (%)	Total N	X² (P)
Non-pregnant	52 (49.1)	7 (6.4)	4 (3.8)	12 (11.3)	28 (26.4)	3 (2.9)	128	0.666
Pregnant	63 (54.1)	9 (8.3)	5 (4.5)	6 (5.4)	30 (27.0)	1 (0.9)	111	0.467
Age								
20-24	38 (47.5)	4 (5.0)	5 (6.3)	10 (12.5)	31 (38.3)	2 (2.5)	80	0.759
25-30	26 (41.0)	6 (5.7)	1 (1.0)	4 (6.5)	24 (38.7)	1 (1.6)	62	0.625
31-40	24 (50.0)	3 (6.9)	0 (0.0)	2 (5.0)	4 (11.8)	1 (2.5)	34	0.305
Global Incidence	112 (52.0)	19 (8.7)	9 (4.0)	19 (8.6)	58 (27.9)	4 (2.2)	217	0.304
Ethnicity								
Afro-Ecuadorian	1 (25.0)	0 (0.0)	0 (0.0)	0 (0.0)	2 (60.0)	0 (0.0)	4	0.737
Half-blood	107 (51.0)	15 (7.3)	9 (4.4)	18 (7.7)	53 (25.7)	4 (1.9)	235	0.035
Indigenous	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	2 (100.0)	0 (0.0)	2	
White	4 (60.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (100.0)	0 (0.0)	5	
Occupation								
Housewife	31 (46.3)	1 (1.6)	2 (3.0)	11 (16.4)	32 (49.2)	2 (3.0)	67	0.033
Student	26 (41.4)	4 (7.0)	5 (8.9)	5 (8.0)	26 (41.4)	5 (8.0)	84	0.347
Employed	42 (63.6)	0 (1.5)	2 (3.2)	1 (1.6)	10 (15.3)	0 (0.0)	66	0.232
Civil Status								
Married	24 (63.2)	3 (7.0)	0 (0.0)	2 (5.0)	8 (21.6)	1 (2.5)	38	0.246
Divorced	1 (60.0)	0 (0.0)	0 (0.0)	1 (10.0)	1 (10.0)	0 (0.0)	2	
Single	59 (49.3)	6 (5.1)	6 (5.1)	7 (6.0)	37 (31.5)	3 (2.5)	117	0.023
Free Union	29 (40.3)	6 (10.0)	3 (5.0)	9 (15.0)	13 (21.7)	0 (0.0)	60	0.581
Education Level								
None	2 (66.7)	1 (33.3)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	3	0.018
Basic (High school students)	13 (41.9)	2 (6.5)	1 (3.3)	1 (2.9)	10 (30.3)	1 (3.0)	31	
Bachelor (Undergraduate students)	52 (47.7)	10 (9.2)	7 (6.4)	9 (8.3)	30 (27.5)	1 (0.9)	100	
Superior (Bachelor graduates)	30 (55.6)	3 (5.4)	1 (1.9)	5 (8.3)	14 (23.3)	1 (1.9)	54	
Higher Degree Research (HDR) candidates (Master and Doctorate degree students)	15 (71.4)	6 (29.6)	1 (4.6)	0 (0.0)	4 (20.0)	0 (0.0)	30	

N: number of women who responded in the survey within each category; %: assigned percentage for each classification within each category; $X^2 (P)$: p-value through the Chi-square test show any relation among each sociodemographic factor and the possibility of having a vaginal disruption or healthy microbiota.
Table 4: Behavioral variables among women in this study with healthy vaginal microbiota, intermediate vaginal microbiota, and vaginal infections (bacterial vaginosis, aerobic vaginitis, candidiasis, and co-infections).

Diagnosis of Vaginal Infections
The vaginal samples were evaluated in the Microbiology Institute of USFQ, according to microbiological criteria of Nugent et al. [41] to identify healthy microbiota, BV, and intermediate microbiota [41]; Schröders classification under criteria of Donders et al. [8] to characterize AV [8], and the criteria of Marot-Leblond et al. [43] to determine VVC [43]. As shown in Table 3, 112 (52.0%) vaginal samples were classified as healthy microbiota, sixteen (7.0%) were identified as intermediate microbiota, and 89 (41.0%) were diagnosed as dysbiotic (41.0%), which includes single cases of BV, AV, and VVC but also co-infections. The presence of a unique type of vaginal infection was identified in 85 vaginal samples (39.2%), whereby AV was the most prevalent infection with 26.7% of the vaginal samples, followed by BV (8.3%) and 4.1% with VVC. Furthermore, four vaginal samples were diagnosed with co-infections (1.8%), more precisely two of them with AV and BV, one with AV and VVC, and one with BV and VVC. None of the co-infection samples was further evaluated during qPCR analysis.
Prevalence of Vaginal Infections among Pregnant and Non-Pregnant Women

Each focus group (pregnant and non-pregnant women) was analyzed to identify any relation between vaginal infection and pregnancy (see Table 5). Although pregnant and non-pregnant women have similar prevalence values in the healthy microbiota, most cases of BV and co-infection were found in non-pregnant women with 67% (12/18) and 75% (3/4) of the cases, respectively, as shown in Table 5. However, these differences were not significant.

Table 5: Contingency table of vaginal samples between Focus Group and the diagnosis of vaginal infections, healthy and intermediate vaginal microbiota.

Group	Aerobic vaginitis	Bacterial vaginosis	Candidiasis	Co-infection	Healthy	Intermediate	Total
Non-Pregnant							
Number	28	12	4	3	52	7	106
(% within the column)	(48.3)	(60.7)	(44.4)	(78.9)	(66.4)	(63.8)	(66.8)
Pregnant							
Number	30	6	5	1	60	9	111
(% within the column)	(61.7)	(33.3)	(55.6)	(25.0)	(53.8)	(56.3)	(51.2)

Number of women who responded in the survey within each category. % assigned percentage for each classification within each category. No statistically significant differences were found between pregnant and non-pregnant groups among vaginal infections, healthy and intermediate microbiota (P-value = 0.596, 0.886; see Table 3).

Presence of Opportunistic Species and *Lactobacillus* spp. in Vaginal Microbiota

The presence of *G. vaginalis* and *M. mulieris* (as BV biomarkers), *E. coli* and *E. faecalis* (as AV biomarkers), and *Lactobacillus* spp. (as healthy biomarker) were analyzed by PCR assays from the selected 97 samples (see Section 2.7). As previously mentioned, almost a half of population set was chosen by classical criteria through microscopy analysis (data not shown), more exactly, healthy microbiota samples with 0-1 and BV samples with 9-10 according to Nugent criteria [41], and the most aggravated AV samples [44].

The results still evidenced the presence of *Lactobacillus* spp. in both types of vaginal dysbiosis, although their presence decreased to 21% in BV (P = 0.006) and 13% in AV (P = 0.019) when compared to healthy microbiota samples (see Figure S1 in the Supplementary section). Regarding the presence of *Gardnerella* species, it was present less frequently in healthy microbiota (37%) while in BV and AV prevalence was 71% (P =
0.001) and 78% ($P = 0.033$), respectively. On the other hand, *M. mulieris* and *E. coli* were found in BV at 79% and 36%, respectively; while being detected in low frequency in healthy microbiota and AV cases, as shown in Figure S1. The presence of *M. mulieris* was low in frequency on AV and normal microbiota, when compared to BV cases. However, presence of *M. mulieris* was statistically different among healthy microbiota against BV ($P < 0.001$) and AV cases ($P = 0.002$), being less recurrent in healthy samples. Finally, *E. coli* did not show statistical differences among healthy microbiota and BV cases ($P = 0.062$). Also, it is important to mention that *Enterococcus faecalis* was found to be absent in the population set of the present study.

Among pregnant and non-pregnant women with healthy microbiota, we found that prevalence of *Lactobacillus* spp. was similar, as shown in Figure 1. On the other hand, pregnant women evidenced higher presence of *Gardnerella* species (39%), and *M. mulieris* (16%) when compared to non-pregnant women (32% *Gardnerella* spp., and 9% of *M. mulieris*).

In the presence of vaginal dysbiosis and infection, no statistically significant differences were found around opportunistic species between pregnant and non-pregnant women, as shown in Figure 1. However, *Lactobacillus* spp. showed statistically significant differences between pregnant and non-pregnant women in both BV and AV cases, as shown in Figure 1. In the case of BV, a higher prevalence of *Lactobacillus* spp. is shown in pregnant women (100%) compared to non-pregnant women (63%; $P = 0.028$). No significant statistically differences were found on the frequency of *Gardnerella* spp. and *M. mulieris* in these samples. In opposition, a drop of *Lactobacillus* spp. prevalence is shown in pregnant women with AV (79%; $P = 0.051$) when compared to non-pregnant women (100%).
Figure 1: Prevalence of each bacterium in pregnant and non-pregnant women diagnosed as: (A) Healthy Microbiota, (B) Aerobic Vaginitis, and (C) Bacterial Vaginosis according to the microbiological diagnosis. Statistically significant differences were evaluated by Chi-square tests.

Lactobacilli Quantification by Quantitative Real-Time PCR (qPCR)

Due to the small number of samples with BV, we restricted comparison of the lactobacilli quantification to healthy (60) versus AV (23) cases.

Due to the low number of data, a non-parametrical statistical analysis was performed by means of a Mann-Whitney. Significant differences were shown between healthy and AV groups ($P < 0.001$; see Figure 2), whereby Lactobacillus spp. varied between $1E6$ and $1E7$ CFU/ml in healthy microbiota decreased to between $1E3$ and $1E5$ CFU/ml in AV cases. This was confirmed by Kruskal-Wallis one-way ANOVA testing ($P < 0.001$; see Figure 2).

Mann-Whitney testing indicated no statistically significant differences between pregnant and non-pregnant women with healthy vaginal microbiota and with AV ($P = 0.330$ and $P = 0.637$), as shown in Figure 2. However, the analysis showed
statistically significant differences ($P < 0.001$) when comparing pregnant women with healthy microbiota against AV. Likewise, we found slight differences ($P = 0.006$) when comparing non-pregnant women with healthy microbiota against AV. Finally, it is worth noting that the same significance levels were also observed between healthy pregnant women against AV non-pregnant women ($P < 0.001$) and between healthy non-pregnant women against AV pregnant women ($P = 0.0041$). These preliminary results showed similar ranges of lactobacilli load in pregnant and non-pregnant women from each group set (AV and healthy vaginal microbiota).

Figure 2: Box plot of the quantification by qPCR of Lactobacillus spp. among vaginal samples: (A) Non-parametric. Statistical analysis among the overall groups (Healthy Microbiota and Aerobic Vaginitis), (B) Non-parametric. Statistical analysis among pregnant and non-pregnant women of each overall group.

Discussion

Sociodemographic and Behavioral Variables among Women

This study evaluated a possible relationship between vaginal infection, vaginal dysbiosis and sociodemographic or behavioral variables among pregnant and non-pregnant women. A disruption of the vaginal microbiota usually occurs when any cause promotes a diminution in lactobacilli levels, leading to other microorganisms’ augmentation (primary or opportunistic pathogens). These causes of imbalance can be due to several intrinsic and extrinsic factors [12,17]. As intrinsic factors, the vaginal microbiota of women is driven mainly by hormonal changes during their reproductive life [23]. These intrinsic
factors were distinctively different in the two focus groups (pregnant and non-pregnant women). However, no statistically significant differences regarding composition of vaginal microbiota were detectable (see Table 3). Likewise, in this study, there was no statistically significant relationship among any extrinsic factor (behavioral variables) obtained in the questionnaire by multivariate analysis (see Table 4). This differs from other studies that established statistically significant association with some of the extrinsic factors analyzed by this study, such as the number of sexual partners [55], and ethnicity [14]. Others could not establish associations with the use of contraception, lubricant or spermicide, as well as personal hygiene habits [56]. Similarly, others did not find any effect of oral contraceptives on the vaginal microbiota of 36 women [57]. As such, several studies reported contradicting results regarding sociodemographic and behavioral variables, making conclusive comparisons difficult to achieve.

Prevalence and types of Vaginal Infection and Vaginal Dysbiosis

In our study set, 52% of women were characterized by a healthy vaginal microbiota, 7% were diagnosed with intermediate vaginal microbiota and 41% with some vaginal infection or vaginal dysbiosis (BV). Similar results were reported in the United Kingdom [56], identifying 48% of female participants with healthy vaginal microbiota and 19% with an abnormal microbiota. Similarly, Gondo et al. [5] reported that 47.5% of the women showed infection in a study enrolling 245 Brazilian women [5]. Bacterial vaginosis (BV) is usually reported as the most prevalent vaginal infection around the world [2,40,51], followed by vulvovaginal candidiasis (VVC) [15]. Another condition, aerobic vaginitis (AV), has been recently characterized by Donders and colleagues in 1999, and has been shown to play an important role for vaginal health [22,44,58]. Furthermore, Donders et al. [42] showed that this type of vaginal infection could easily be confused with an intermediate microbiota or even bacterial vaginosis [42], which may be a major reason why reliable data on the prevalence of AV in the general population are not very abundant [58].
AV can also be associated with the increased risk of preterm pre-labor rupture of membranes, chorioamnionitis, and preterm delivery [58]. Contrary to previous studies [8,13,55,59], in the present study AV was the most prevalent vaginal infection with a similar percentage of AV among pregnant (51.7%) and non-pregnant (48.3%) women. Again, the latter is in contradiction with other studies that reported low AV prevalence among pregnant women. Although Donders et al. [60] postulated that AV was not common in pregnancy, a more recently publication by Donders and colleagues [58] reported that AV could easily be confused with an intermediate microbiota and bacterial vaginosis and so reliable data on the prevalence of AV could be available in few amounts. In 2013, Jahic and colleagues diagnosed AV in 51% of the enrolled female participants, where *E. coli* and *E. faecalis* were the most prevalent bacteria [10]. In agreement, Fan et al. [9] reported the same main bacteria and *S. epidermidis* in their AV cases [9].

In non-pregnant women, several studies reported a prevalence of AV between 5 and 10.5% in symptomatic women [58,61,62], whereby the most frequently identified bacteria were *E. coli* (4 – 23%) [11], *Staphylococcus* (around 27%), *Streptococcus* (0.7 – 58.7%) and *Enterococcus* spp. (0.3 – 2.4%) [11,63,64]. These previous studies could partially explain the absence of *Enterococcus faecalis* in our study due to the low rate of detection. Finally, *E. coli* prevalence in pregnant (28.57%) and non-pregnant (11.11%), as established in our study, were within the range described by Tansarlini et al. [11] and in agreement with postulations made by Donders et al. [42].

Presence of Opportunistic Pathogens in Healthy Microbiota

The vaginal microbiota complexity in healthy and dysbiosis samples had already been described by several authors in women with AV and BV [65-67]. Similar to Zozaya-Hinchliffe et al. [66], we believed that the PCR characterization of the major bacterial species by PCR and the development of qPCR assays would be facilitated by first working with specimens whose
microbiota would be most likely to differ significantly [66]. So, we only selected vaginal samples from sixty women with normal vaginal microbiota who had Nugent scores of 0 and 1, twenty tree women with aggravated AV diagnosis (see section 2.5), and fourteen women with BV who had Nugent scores of 9 and 10. These 97 women were selected to identify the major bacterial species by PCR, and then healthy and AV women (83 samples) were evaluated by qPCR (see section 4.4). However, this selection of samples could be considered a limitation of the present study.

The presence of *Gardnerella* species in a low number in the vaginal microbiota is not an indicator of BV [26,68,69], being considered as part of the healthy vaginal microbiota. Meanwhile, several studies have shown that there are almost four different groups of *Gardnerella* species (A, B, C and D), previously all considered as *Gardnerella vaginalis* [70], which not all of them are related to the development of BV [71-73]. In 2019, Vaneechoutte and colleagues amended several species of *G. vaginalis*, through Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS), and described then as *Gardnerella leopoldii*, *Gardnerella piotii* and *Gardnerella swidsinskii*, Therefore, not all *Gardnerella* species detected in several studies constituted *Gardnerella vaginalis* and could explain virulence differences between *Gardnerella* species [74-76]. Since these species could not be delineated using full-length 16S rRNA gene sequences, Hill and colleagues applied partial chaperonin 60 (cpn60) sequences to resolve these four group species [73]. Both studies showed that *G. swidsinskii* and *G. leopoldii* constituted group A, *G. piotii* corresponded to group B, *G. vaginalis* belonged to group C, and finally, group D was the most diverse subgroup with several *Gardnerella* sp. (such as strains 101, 1500E, 6119V5 and 00703Dmash). However, this last group will require an analysis of additional isolates to establish a species differentiation [70,73]. Nonetheless, an abundance of *G. vaginalis* and *G. swidsinskii* was associated with vaginal symptoms of abnormal odor and discharge in their study set [73]. This heterogeneity and diversity within the genus *Gardnerella* may distinguish clades and how these features may impact BV development [77]. So, future studies should isolate all
Gardnerella species of the vaginal samples and further analysis could allow the qPCR methodology to quantify different species of Gardnerella.

Amount of Lactobacillus spp. among Healthy Women and Women with Vaginal Infections

As previously mentioned in results, statistically significant differences were found among the amount of Lactobacillus spp. between healthy and AV women ($P < 0.001$). Moreover, lactobacilli load among healthy women was established between $1E6$ and $1E7$ CFU/ml; meanwhile, the amount of Lactobacillus spp. in altered microbiota (AV) was defined between $1E3$ and $1E5$ CFU/ml. These results are comparable to previous studies with BV [67,78,79]. However, it is important to mention that the specificity of the lactobacilli primers (LactoF: 47.1%; LactoR: 66.7%) was a limitation of the present study.

Amount of Lactobacillus spp. among Pregnant and Non-Pregnant Women

Furthermore, the results of the present study showed that both healthy and AV pregnant women have a higher concentration of Lactobacillus spp. when compared to non-pregnant women of the same categories. These results agree with Walther-António et al. [80]. These authors reported that lactobacilli augmentation during pregnancy and preterm birth help to prevent vaginal infection and counteract higher immune tolerance [80,81]. However, there were no statistically significant differences between the amount of Lactobacillus spp. of pregnant and non-pregnant women per category. Although the present study is a preliminary analysis of lactobacilli load between pregnant and non-pregnant women, these results point to the possibility to use the same lactobacilli load range to evaluate AV and healthy vaginal microbiota (whether pregnant or non-pregnant) and thus to avoid future vaginal infection establishment in women by monitoring lactobacilli load through qPCR.

These results could corroborate with several studies, which postulated an increment of lactobacilli load in pregnant women
However, there are some major limitations of this study: (1) with 97 participants in PCR assays and 83 participants in qPCR assays, small numbers of particular cases were retained in each subgroup, (2) in PCR assays not all possible species of aerobic bacteria could be targeted in AV samples and, (3) in qPCR assays, normalized concentrations of lactobacilli were realized through low specificity primers for *Lactobacillus* spp. Therefore, future studies must optimize lactobacilli quantification, also quantify certain *Lactobacillus* species and other aerobic bacteria among pregnant and non-pregnant women. Previous studies showed that the presence of different *Lactobacillus* species is a major determinant to the stability of the vaginal microbial community in pregnancy [27,83]. Furthermore, Verstraelen and colleagues demonstrated *L. crispatus* ability to promote and stabilize the normal microbiota while *L. gasseri* and *L. iners* predisposed to some extent to the occurrence of abnormal microbiota [83]. Future studies should be realized with a bigger and more diverse population set as well as quantification of specific *Lactobacillus* species (such as *L. crispatus*, *L. gasseri*, and *L. iners*) as postulated by others authors [1,80,83].

References

1. Vaneechoutte M. The human vaginal microbial community. Res. Microbiol. 2017; 168: 811–825.
2. Ling Z, Liu X, Luo Y, Wu X, Yuan L, et al. Associations between Vaginal Pathogenic Community and Bacterial Vaginosis in Chinese Reproductive-Age Women. PLoS One. 2013; 8: e76589.
3. Dai Q, Hu L, Jiang Y, Shi H, Liu J, et al. An epidemiological survey of bacterial vaginosis, vulvovaginal candidiasis and trichomoniasis in the Tibetan area of Sichuan Province, China. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010; 150: 207–209.
4. Ling Z, Kong J, Liu F, Zhu H, Chen X, et al. Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics. 2010; 11: 488.
5. Gondo F, Da Silva MG, Polettini J, Tristao ADR, Peracoli JC, et al. Vaginal flora alterations and clinical symptoms in
low-risk pregnant women. Gynecol. Obstet. Invest. 2011; 71: 158–162.

6. Van De Wijgert JHHM, Borgdorff H, Verhelst R, Crucitti T, Francis S, et al. The vaginal microbiota: What have we learned after a decade of molecular characterization? PLoS One. 2014; 9.

7. Donders G, Bellen G, Rezeberga D. Aerobic vaginitis in pregnancy. BJOG. 2011; 118: 1163–1170.

8. Donders GGG, Vereecken A, Bosmans E, Dekeersmaecker A, Salembier G, et al. Aerobic vaginitis: Abnormal vaginal flora entity that is distinct from bacterial vaginosis. Int. Congr. Ser. 2005; 1279: 118–129.

9. Fan A, Yue Y, Geng N, Zhang H, Wang Y, et al. Aerobic vaginitis and mixed infections: Comparison of clinical and laboratory findings. Arch. Gynecol. Obstet. 2013; 287: 329–335.

10. Jahic M, Mulavdic M, Nurkic J, Jahic E, Nurkic M, et al. Clinical Characteristics of Aerobic Vaginitis and Its Association to Vaginal Candidiasis, Trichomonas Vaginitis and Bacterial Vaginosis. Med Arh. 2013; 67: 428–430.

11. Tansarli GS, Kostaras EK, Athanasiou S, Falagas ME. Prevalence and treatment of aerobic vaginitis among non-pregnant women: Evaluation of the evidence for an underestimated clinical entity. Eur. J. Clin. Microbiol. Infect. Dis. 2013; 32: 977–984.

12. Borges S, Silva J, Teixeira P. The role of lactobacilli and probiotics in maintaining vaginal health. Arch. Gynecol. Obstet. 2014; 289: 479–489.

13. Cauci S, Driussi S, De Santo D, Penacchioni P, Iannicelli T, et al. Prevalence of Bacterial Vaginosis and Vaginal Flora Changes in Peri-and Postmenopausal Women Downloaded from. J. Clin. Microbiol. 2002; 40: 2147–2152.

14. Zhou X, Bent S, Schneider M, David C, Islam M, et al. Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology. 2004; 150: 2565–2573.

15. Ringdahl EN. Recurrent vulvovaginal candidiasis. Mo. Med. 2006; 103: 165–168.

16. Xu C, Zhang W, Wu M, Zhang S. Prevalence and determinants of lower reproductive tract infections among
women aged 25 - 54 years in Beijing. Zhonghua Liu Xing Bing Xue Za Zhi. 2010; 31: 138–141.

17. Bolton M, van der Straten A, Cohen CR. Probiotics: Potential to Prevent HIV and Sexually Transmitted Infections in Women. Sex. Transm. Dis. 2008; 35: 214–225.

18. Petrova MI, van den Broek M, Balzarini J, Vanderleyden J, Lebeer S. Vaginal microbiota and its role in HIV transmission and infection. FEMS Microbiol. Rev. 2013; 37: 762–792.

19. Srinivasan S, Fredricks DN. The human vaginal bacterial biota and bacterial vaginosis. Interdiscip. Perspect. Infect. Dis. 2008; 2008: 750479.

20. Svanemyr J, Guijarro S, Riveros BB, Chandra-Mouli V. The health status of adolescents in Ecuador and the country’s response to the need for differentiated healthcare for adolescents. Reprod. Health. 2017; 14: 1–11.

21. Li J, McCormick J, Bocking A, Reid G. Importance of vaginal microbes in reproductive health. Reprod. Sci. 2012; 19: 235–242.

22. Datcu R. Characterization of the vaginal microflora in health and disease. Dan. Med. J. 2014; 61: 1–24.

23. Farage MA, Miller KW, Sobel JD. Dynamics of the Vaginal Ecosystem-Hormonal Influences. 2010.

24. Mendling W. Microbiota of the Human Body. 2016; 902: 83–93.

25. Fredricks DN. Molecular methods to describe the spectrum and dynamics of the vaginal microbiota. Anaerobe. 2011; 17: 191–195.

26. Larsen B, Monif GRG. Understanding the Bacterial Flora of the Female Genital Tract. 2001.

27. Ling XZ, Kong MJ, Liu F, Zhu BH, Chen YX, et al. Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics. 2010; 11: 488.

28. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, et al. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 4680–4687.

29. Alpay Ş, Aydin F, Kiliç SS, Kiliç AO. Antimicrobial Activity and Characteristics of Bacteriocins Produced by Vaginal Lactobacilli Received: TURKISH J. Med. Sci. 2003; 33: 7–
13. Aroutcheva A, Gariti D, Simon M, Shott S, Faro J, et al. Defense factors of vaginal lactobacilli. Am. J. Obstet. Gynecol. 2001; 185: 375–379.

30. Collins SL, McMillan A, Seney S, van der Veer C, Kort R, et al. Promising prebiotic candidate established by evaluation of lactitol, lactulose, raffinose, and oligofructose for maintenance of a Lactobacillus-dominated vaginal microbiota. Appl. Environ. Microbiol. 2018; 84.

31. Vaneechoutte M. Lactobacillus iners, the unusual suspect. Res. Microbiol. 2017; 168: 826–836.

32. Boris S, Barbés C. Role played by lactobacilli in controlling the. Microbes Infect. 2000; 2: 543–546.

33. Oliveira LMA, Diniz CG, Fernandes AAS, De Souza-Sotte DMK, De Freitas MCR, et al. Assessment of vaginal microbiota in Brazilian women with and without bacterial vaginosis and comparison with Nugent score. J. Infect. Dev. Ctries. 2018; 12: 127–136.

34. Hernández-Rodríguez C, Romero-González R, Albani-Campanario M, Figueroa-Damián R, Meraz-Cruz N, et al. Vaginal microbiota of healthy pregnant mexican women is constituted by four lactobacillus species and several vaginosis-associated bacteria. Infect. Dis. Obstet. Gynecol. 2011; 2011.

35. Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UME, et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 2012; 4: 132ra52.

36. Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome. 2014; 2: 4.

37. Johnson CL, Versalovic J. The Human Microbiome and Its Potential Importance to Pediatrics. Pediatrics. 2012; 129: 950–960.

38. Cristiano L, Rampello S, Noris C, Valota V. Bacterial Vaginosis: Prevalence in an Italian Population of Asymptomatic Pregnant Women and Diagnostic Aspects. Eur. J. Epidemiol. 1996; 12: 383–390.
associated bacteria among urban women. J. Perinat. Med. 2009; 37: 130–134.
41. Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis is improved by a standardized method of gram stain interpretation. J. Clin. Microbiol. 1991; 29: 297–301.
42. Donders GGG. Definition and classification of abnormal vaginal flora. Best Pract. Res. Clin. Obstet. Gynaecol. 2007; 21: 355–373.
43. Marot-Leblond A, Nail-Billaud S, Pilon F, Beucher B, Poulain D, et al. Efficient diagnosis of vulvovaginal candidiasis by use of a new rapid immunochromatography test. J. Clin. Microbiol. 2009; 47: 3821–3825.
44. Donders GGG. Erratum: Microscopy of the Bacterial Flora on Fresh Vaginal Smears. Infect. Dis. Obstet. Gynecol. 1999; 7: 177–179.
45. DTU- National Food Institute. Protocol for PCR amplification of E. faecium and E. faecalis recommended by the EURL-AR. 2014; 5–8.
46. Fredricks DN, Fiedler TL, Thomas KK, Oakley BB, Marrazzo JM. Targeted PCR for detection of vaginal bacteria associated with bacterial vaginosis. J. Clin. Microbiol. 2007; 45: 3270–3276.
47. Galán A, Veses V, Murgui A, Casanova M, Martínez JP. Rapid PCR-based test for identifying Candida albicans by using primers derived from the pH-regulated KER1 gene. FEMS Yeast Res. 2006; 6: 1094–1100.
48. Henriques A, Cereija T, Machado A, Cerca N. In silico vs in vitro analysis of primer specificity for the detection of Gardnerella vaginalis, Atopobium vaginae and Lactobacillus spp. BMC Res. Notes. 2012; 5: 637.
49. Sepehri S, Kotlowski R, Bernstein CN, Krause DO. Phylogenetic analysis of inflammatory bowel disease associated Escherichia coli and the FimH virulence determinant. Inflamm. Bowel Dis. 2009; 15: 1737–1745.
50. Begot C, Desnier I, Daudin JD, Labadie JC, Lebert A. Recommendations for calculating growth parameters by optical density measurements. J. Microbiol. Methods. 1996; 25: 225–232.
51. Machado A, Jefferson KK, Cerca N. Interactions between
Lactobacillus crispatus and bacterial vaginosis (BV)-associated bacterial species in initial attachment and biofilm formation. Int. J. Mol. Sci. 2013; 14: 12004–12012.

52. Mytilinaios I, Salih M, Schofield HK, Lambert RJW. Growth curve prediction from optical density data. Int. J. Food Microbiol. 2012; 154: 169–176.

53. Naghili H, Tajik H, Mardani K, Mehdi S, Rouhani R, et al. Validation of drop plate technique for bacterial enumeration by parametric and nonparametric tests. 2013.

54. Price EP, Dale JL, Cook JM, Sarovich DS, Seymour ML, et al. Development and validation of Burkholderia pseudomallei-specific real-time PCR assays for clinical, environmental or forensic detection applications. PLoS One. 2012; 7.

55. Schwebke JR, Richey CM, Weiss HL. Correlation of Behaviors with Microbiological Changes in Vaginal Flora. 1999.

56. Keane FEA, Ison CA, Taylor-Robinson D. A longitudinal study of the vaginal flora over a menstrual cycle. Int. J. STD AIDS. 1997; 8: 489–494.

57. Eschenbach D, Patton D, Meier A, Thwin S, Aura J, et al. Effects of intrauterine device and oral contraceptive on vaginal flora and epithelium. Saudi Med. J. 2002; 62: 107–112.

58. Donders GGG, Bellen G, Grinceviciene S, Ruban K, Vieira-Baptista P. Aerobic vaginitis: no longer a stranger. Res. Microbiol. 2017; 168: 845–858.

59. Vieira-Baptista P, Grinceviciene S, Bellen G, Sousa C, Saldanha C, et al. Genital tract infections in an isolated community: 100 women of the Pr?ncipe Island. Infect Dis Obstet Gynecol. 2017; 2017: 1–6.

60. Donders GGG, Van Calsteren K, Bellen G, Reybrouck R, Van den Bosch T, et al. Predictive value for preterm birth of abnormal vaginal flora, bacterial vaginosis and aerobic vaginitis during the first trimester of pregnancy. BJOG. 2009; 116: 1315–1324.

61. Bologno R, Diaz YM, Giraudo MC, Fernández R, Menéndez V, et al. Importance of studying the balance of vaginal content (BAVACO) in the preventive control of sex workers. Rev. Argent. Microbiol. 2011; 43: 246–50.
62. Marconi C, Donders GGG, Martin LF, Ramos BRA, Duarte MTC, et al. Chlamydia infection in a high risk population: association with vaginal flora patterns. Arch. Gynecol. Obstet. 2012; 285: 1013–1018.
63. Von Gruenigen VE, Coleman RL, Li AJ, Heard MC, Miller DS, et al. Bacteriology and treatment of malodorous lower reproductive tract in gynecologic cancer patients. Obstet. Gynecol. 2000; 96: 23–27.
64. Iavazzo C, Vogiatzi C, Falagas ME. A retrospective analysis of isolates from patients with vaginitis in a private Greek obstetric/gynecological hospital (2003-2006). Med. Sci. Monit. 2008; 14: CR228-31.
65. Tempera G, Furneri PM. Management of aerobic vaginitis. Gynecol. Obstet. Invest. 2010; 70: 244–249.
66. Zozaya-Hinchliffe M, Lillis R, Martin DH, Ferris MJ. Quantitative PCR assessments of bacterial species in women with and without bacterial vaginosis. J. Clin. Microbiol. 2010; 48: 1812–1819.
67. Rumyantseva TA, Bellen G, Savochkina YA, Guschin AE, Donders GGG. Diagnosis of aerobic vaginitis by quantitative real-time PCR. Arch. Gynecol. Obstet. 2016; 294: 109–114.
68. de Vos W, Engstrand L, Drago L, Reid G, Schauber J, et al. Human microbiota in health and disease. 2012; 3.
69. De Backer E, Verhelst R, Verstraelen H, Alqumber MA, Burton JP, et al. Quantitative determination by real-time PCR of four vaginal Lactobacillus species, Gardnerella vaginalis and Atopobium vaginae indicates an inverse relationship between L. gasseri and L. iners. BMC Microbiol. 2007; 7: 115.
70. Vaneechoutte M, Guschin A, Van Simaey L, Gansemans Y, Van Nieuwerburgh F, et al. Emended description of Gardnerella vaginalis and description of gardnerella leopoldii sp. Nov., gardnerella piotii sp. nov. and Gardnerella swidsinskii sp. nov., with delineation of 13 genomic species within the genus Gardnerella. Int. J. Syst. Evol. Microbiol. 2019; 69: 679–687.
71. Santiago G, Deschaght P, El Aila N, Kiama T, Verstraelen H, et al. Gardnerella vaginalis comprises three distinct genotypes of which only two produce sialidase. Am J Obs. Gynecol. 2011; 204: 450.e1–7.
72. Hardy L, Jespers V, Van Bulck M Den, Buyze J, Mwambarangwe L, et al. The presence of the putative Gardnerella vaginalis sialidase A gene in vaginal specimens is associated with bacterial vaginosis biofilm. PLoS One. 2017; 12: 1–11.
73. Hill JE, Albert A, VOGUE Research Group. Resolution and Cooccurrence Patterns of Gardnerella leopoldii, G. swidsinskii, G. piotii, and G. vaginalis within the Vaginal Microbiome. Infect. Immun. Immun. 2019; 87; pii: e00532-19.
74. Iavazzo C, Vogiatzi C, Falagas ME. A retrospective analysis of isolates from patients with vaginitis in a private Greek obstetric/gynecological hospital (2003-2006). Med. Sci. Monit. 2008; 14: CR228-231.
75. Leite SR, de F, Amorim MMR, Calabria WB, Leite TN de F, et al. Clinical and microbiological profile of women with bacterial vaginosis. Rev Bras Ginecol Obs. 2010; 32: 82–87.
76. Muzny C, Schwebke JR. Gardnerella vaginalis: Still a Prime Suspect in the Pathogenesis of Bacterial Vaginosis. Curr. Infect. Dis. Rep. 2013; 15: 130–135.
77. Castro J, Jefferson KK, Cerca N. Genetic Heterogeneity and Taxonomic Diversity among Gardnerella Species. Trends Microbiol. 2020; 28: 202–211.
78. Sha BE, Chen HY, Wang QJ, Zariffard MR, Cohen MH, et al. Utility of Amsel Criteria, Nugent Score, and Quantitative PCR for Diagnosis of Bacterial Vaginosis in Human Immunodeficiency Virus-Infected Women. J. Clin. Mircobiology. 2005; 43: 4607–4612.
79. Ling Z, Liu X, Chen X, Zhu H, Nelson KE, et al. Diversity of Cervicovaginal Microbiota Associated with Female Lower Genital Tract Infections. Microbiol. Ecol. 2011; 61: 704–714.
80. Walther-António MRS, Jeraldo P, Berg Miller ME, Yeoman CJ, Nelson KE, et al. Pregnancy’s Stronghold on the Vaginal Microbiome. PLoS One. 2014; 9: e98514.
81. Kim JH, Yoo SM, Sohn YH, Jin CH, Yang YS, et al. Predominant Lactobacillus species types of vaginal microbiota in pregnant Korean women: quantification of the five Lactobacillus species and two anaerobes. J. Matern. Neonatal Med. 2017; 30: 2329–2333.
82. Aagaard K, Riehle K, Ma J, Segata N, Mistretta TAA, et al. A Metagenomic Approach to Characterization of the Vaginal Microbiome Signature in Pregnancy. PLoS One. 2012; 7: e36466.

83. Verstraelen H, Verhelst R, Claeys G, De Backer E, Temmerman M, et al. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol. 2009; 9: 116.

84. Carr PL, Felsenstein D, Friedman RH. Evaluation and Management of Vaginitis. J GEN INTERN MED. 1998; 13: 335–346.

85. Donders GGG, Vereecken A, Bosmans E, Dekeersmaecker A, Salembier G, et al. Definition of a type of abnormal vaginal flora that is distinct from bacterial vaginosis: aerobic vaginitis. Int. Congr. Ser. 2002; 1279: 118–129.

86. Schwebke JR, Hillier SL, Sobel JD, McGregor JA, Sweet RL. Validity of the vaginal gram stain for the diagnosis of bacterial vaginosis. Obstet. Gynecol. 1996; 88: 573–576.
Supplementary Material

Figure S1: Prevalence of each bacteria in 97 vaginal samples classified such as Healthy microbiota, Bacterial Vaginosis and Aerobic Vaginitis according to Microbiological Diagnosis. Statistically significant differences were evaluated by Chi-square tests.