Anti-Parity-Time Symmetry in a Single Damping Mechanical Resonator

Xun-Wei Xu,1,∗ Jie-Qiao Liao,1,† Hui Jing,1,‡ and Le-Man Kuang1,§

1Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China

(Dated: August 18, 2022)

Abstract

A damping mechanical resonator undergoes a phase transition from an oscillatory motion with damping amplitude (under-damping) to a monotonically damping motion without oscillation (over-damping) across a critical-damping state. However, what kind of symmetry is broken for this phase transition in the damping mechanical resonator is still unclear. Here we discover a hidden symmetry, i.e., anti-parity-time (anti-PT) symmetry, in the effective Hamiltonian of a damping mechanical resonator. We show that the broken of anti-PT symmetry with an exceptional point (EP) yields the phase transition between different damping behaviors, i.e., the over-damping and under-damping across a critical-damping. We propose that the mechanical anti-PT phase transition can be induced by the optical spring effect in a quadratic optomechanical system with a strong driving field, and highly sensitive optomechanical sensing can be realized around the EPs for anti-PT phase transition.

∗Electronic address: xwxu@hunnu.edu.cn
†Electronic address: jqliao@hunnu.edu.cn
‡Electronic address: jinghui73@gmail.com
§Electronic address: lmkuang@hunnu.edu.cn
I. INTRODUCTION

Damping oscillation is one of the most fundamental and important physical processes [1], for such behavior appears in almost all kinds of systems, such as electronic, atomic, mechanical (acoustic) and optical (photonic) resonators. It is well known that a damping resonator undergoes a phase transition from the oscillatory behavior with a damping amplitude (under-damping) to a monotonically damping without oscillation (over-damping) across a critical-damping state with the damping rate as much as twice the frequency of the resonator. But, there is no discussion on whether there is a kind of symmetry that is broken for this phase transition in the damping resonator. According to the quantum theory in open systems [2], the damping effect can be described simply with a damping rate by eliminating the reservoir coupling to the resonator adiabatically; thus the symmetry in the damping oscillator should be discussed based on a non-Hermitian Hamiltonian with damping rate included.

Non-Hermitian physics has attracted intense interest in the past decades due to the entirely real spectrum in systems with Parity-time (PT) symmetry [3–7] and the phase transition with an exceptional point (EP) in the parameter space [8]. With a significant progress in experiment, PT symmetry has been demonstrated in photonic [8–12], acoustic [13–16], electronic [17–19], magnonic [20], atomic [21, 22], and single-spin [23] systems. Non-Hermitian systems showcase a variety of features that may not be available in Hermitian counterparts, such as directional invisibility [24–27], giant enhancement of mechanical gain [28, 29], parameter sensing [30–32], single-mode lasing [33], loss-induced suppression and revival of lasing [34], coherent perfect absorption [35], and robust wireless power transfer [36, 37]. However, the requirement of balanced gain and loss has hindered the possibilities of exhibiting PT symmetry in a single damping resonator.

Anti-PT symmetry is another non-Hermitian symmetry [38] has been a subject of considerable recent theoretical and experimental interest for it can be used to achieve exotic functionalities in pure dissipative systems, such as unidirectional reflectionless [39], nanoparticle sensing [40], topological energy transfer [41]. A tremendous effort has also been witnessed in achieving anti-PT symmetry, which has been demonstrated by using dissipative coupled systems, including atomic systems [42–44], electrical circuits [45], thermal materials [46], optical devices [47–51], mechanical [52] and magnonic systems [53]. Theoretically, anti-PT
symmetry can also be realized in a single mode system containing parametric (nonlinear) driving [54, 55]. Nevertheless, the possibility of achieving anti-PT symmetry in a single damping linear resonator has not been reported yet.

Here, taking mechanical system as a simple example, we find that the effective Hamiltonian of a damping mechanical resonator without any nonlinearity is anti-PT symmetric, and the broken of anti-PT symmetry induces the phase transition from the over-damping to under-damping states, and the EP corresponds to the critical-damping state. This result is general, which can be applied to any resonant systems. We propose that anti-PT phase transition can be observed in a single damping mechanical resonator by optical string effect in a optomechanical system, which provides us a ideal platform to modify the the spring constant as well as the resonant frequency of a damping mechanical resonator through radiation pressure or gradient force [56]. Moreover, we show that anti-PT symmetry in a damping mechanical resonator can be used for ultra-sensitive sensing for the frequency splitting around the EP is highly sensitive to the external perturbation, such as the change of mass induced by small nano-particles. Our work provides an alternative method to achieve ultra-sensitive sensing based on the EPs for the anti-PT phase transition in a single damping mechanical resonator.

II. MECHANICAL ANTI-PT SYMMETRY

We consider a mechanical resonator with mass m and spring constant k, which can be described by a Hamiltonian $H_m = p^2/(2m) + kx^2/2$, with the displacement x and momentum p. The resonant frequency of the mechanical resonator is $\omega_m = \sqrt{k/m}$, and H_m can be rewritten as $H_m = \hbar \omega_m (Q^2 + P^2)/2$ with the dimensionless displacement $Q = x/\sqrt{\hbar/(m\omega_m)}$ and momentum $P = p/\sqrt{\hbar m \omega_m}$. The equations of motion for the mean values of dimensionless displacement $\langle Q \rangle$ and momentum $\langle P \rangle$ are given by $d\langle Q \rangle/dt = \omega_m \langle P \rangle$ and $d\langle P \rangle/dt = -\omega_m \langle Q \rangle - \gamma_m \langle P \rangle$, where γ_m is damping rate induced by the coupling to the thermal reservoir [57]. It is well known that the damping mechanical resonator exhibits under-damping, critical-damping, and over-damping states, corresponding to $\omega_m > \gamma_m/2$, $\omega_m = \gamma_m/2$, and $\omega_m < \gamma_m/2$. The dynamic behaviors for these three different states are shown in Figs. 1(a)-1(c), respectively.

Here, we find that the effective Hamiltonian of a damping mechanical resonator is anti-
FIG. 1: (Color online) Three states of a damping mechanical resonator: (a) under-damping \((\gamma_m/\omega_m = 1/2)\), (b) critical-damping \((\gamma_m/\omega_m = 2)\), and (c) over-damping \((\gamma_m/\omega_m = 4)\). Eigenvalues of the effective Hamiltonian \(H_{\text{eff}}\) with exceptional point (EP) at \(\gamma_m/\omega_m = 2\): (d) real parts and (e) imaginary parts. (f) The correspondence between the dynamic states and the sorts of symmetry for a damping mechanical resonator.

\(\mathcal{PT}\) symmetric, and the over-, under- and critical-damping states are associated with the phases of anti-\(\mathcal{PT}\) symmetry, anti-\(\mathcal{PT}\) broken, and EP, respectively. To reveal the anti-\(\mathcal{PT}\) symmetry in a damping mechanical resonator, we rewrite the mechanical displacement \(Q\) and momentum \(P\) as \(Q = (b^\dagger + b)/\sqrt{2}\) and \(P = i (b^\dagger - b)/\sqrt{2}\), then the equations of motion are rewritten as \(id(\langle b\rangle, \langle b^\dagger\rangle)^T/dt = H_{\text{eff}}(\langle b\rangle, \langle b^\dagger\rangle)^T\), with the effective Hamiltonian

\[
\frac{H_{\text{eff}}}{\hbar} = \begin{pmatrix}
\omega_m - i \frac{\gamma_m}{2} & i \frac{\gamma_m}{2} \\
-i \frac{\gamma_m}{2} & -\omega_m - i \frac{\gamma_m}{2}
\end{pmatrix}.
\]

(1)

It is easy to verify that this Hamiltonian Eq. (1) is anti-\(\mathcal{PT}\)-symmetric, i.e., \((\mathcal{PT})H_{\text{eff}}(\mathcal{PT})^{-1} = -H_{\text{eff}}\), with the parity operation \(P \equiv \sigma_x\) for switching \(b \leftrightarrow b^\dagger\), and the time-reversal operation \(\mathcal{T}\) for complex conjugation. The eigenvalues of the effective
Hamiltonian H_{eff}/\hbar are given by

$$\lambda_\pm = -i\frac{\gamma_m}{2} \pm i\sqrt{\left(\frac{\gamma_m}{2}\right)^2 - \omega_m^2},$$

(2)
corresponding to eigenstate $\Psi_\pm = (\beta_\pm, \beta'_\pm)^T$, with coefficients

$$\frac{\beta_\pm}{\beta'_\pm} = -i\frac{2\omega_m}{\gamma_m} \pm \sqrt{1 - \left(\frac{2\omega_m}{\gamma_m}\right)^2}.$$

(3)

As shown in Figs. 1(d) and 1(e), there are two different phases for the damping mechanical resonator with phase transition occurring at $\gamma_m/\omega_m = 2$. In the anti-\mathcal{PT}-symmetric phase with $\gamma_m/\omega_m > 2$, Ψ_\pm is also the eigenstates of the parity-time operator \mathcal{PT}, corresponding to the well known over-damping state for $\omega_m < \gamma_m/2$. In the anti-\mathcal{PT} broken phase with $\gamma_m/\omega_m < 2$, Ψ_\pm is no longer the eigenstates of the parity-time operator \mathcal{PT}, corresponding to the well known under-damping state for $\omega_m > \gamma_m/2$. Moreover, the critical point $\gamma_m/\omega_m = 2$ for anti-\mathcal{PT} phase transition, i.e., EP, corresponds to the well known critical-damping state for $\omega_m = \gamma_m/2$. The correspondence between the dynamic states and the sorts of symmetry for a damping mechanical resonator is demonstrated in Fig. 1(f). As the symmetry of the damping resonator depends on the rate of γ_m/ω_m, anti-\mathcal{PT} phase transition can be realized by adjusting the decay rate γ_m or the resonant frequency ω_m of the damping mechanical resonator.

III. OPTOMECHANICAL INDUCED ANTI-\mathcal{PT} PHASE TRANSITION

Optomechanical system, that a mechanical resonator coupling to a optical mode through radiation pressure or gradient force [56], provides us a ideal platform to observe anti-\mathcal{PT} phase transition via regulating the resonant frequency ω_m of a mechanical resonator based on optical spring effect. Specifically, we consider a mechanical resonator quadratically coupled to an optical mode (A and A^\dagger, with frequency ω_c) through optomechanical interaction, and the optical mode is driven resonantly by an external field with the strength Ω and frequency $\omega_L = \omega_c$. In the rotating reference frame with frequency ω_L of the external optical driving field, the system can be described by a Hamiltonian

$$H_{\text{OM}} = \frac{p^2}{2m} + \frac{1}{2}(k + 4m\omega_m gA^\dagger A)x^2 + \hbar\Omega (A^\dagger + A),$$

(4)
where \(4m\omega_mA^\dagger A\) is the spring effect induced by the optical mode with the quadratic optomechanical coupling strength \(g\).

The quadratic optomechanical interaction has been demonstrated in various cavity-optomechanical systems, including mechanical resonator (membrane [58–60], nanosphere [61–63], cold atoms [64]) trapped in Fabry-Perot cavities, or coupled to whispering-gallery-mode [65–67] or photonic crystal cavities [68, 69]. Without loss of generality, in calculations, we will take the experimental parameters in a planar silicon photonic crystal optomechanical cavity [69] with quadratic optomechanical coupling strength \(g/2\pi = 245\) Hz, mechanical resonance frequency \(\omega_m/2\pi = 8.7\) MHz (quality factor \(Q_m = 10^4\)), and optical damping rates \(\gamma_c/2\pi = 5\) GHz, i.e., the system works in the sideband unresolved regime with \(\gamma_c \gg \omega_m\).

Radiation pressure-induced buckling transitions have been reported in the optomechanical system with a dielectric membrane in the middle of a symmetrical optical cavity [70]. These transitions can be understood from the effective potential energy of the mechanical mode which changes smoothly from a single-well to a multi-well potential with the increasing of the optical driving power. The mean values in the steady states (i.e., evolution time \(t \gg 1/\gamma_c\)) \(\langle A \rangle = \alpha_s\), \(\langle P \rangle = P_s\), and \(\langle Q \rangle = Q_s\) can be obtained analytically from the dynamic equations (See Ref. [71] for more details). Two different results appear when the coupling \(g\) is positive \(g > 0\) or negative \(g < 0\). If \(g > 0\), we always have \(\alpha_s = -i2\Omega/\gamma_c\) and \(Q_s = 0\). If \(g\) is negative \(g < 0\), then we have \(\alpha_s = -i2\Omega/\left(\gamma_c + i4gQ_s^2\right)\) and

\[
\begin{align*}
Q_s^2 &= \begin{cases}
0 & \Omega \leq \Omega_c, \\
\frac{1}{g\omega_m} \left(\Omega^2 - \Omega_c^2\right) & \Omega > \Omega_c,
\end{cases}
\end{align*}
\]

with the appearance of spontaneous symmetry broken (SPB) phase transition at the critical driving strength \(\Omega_c = \sqrt{-\gamma_c^2\omega_m/(16g)}\), as shown Fig. 2(a). The effective potential energy of the mechanical mode can be obtained analytically by eliminated the optical freedom adiabatically under the conditions that \(\omega_m \ll \gamma_c\), as \(U_{\text{eff}} = \frac{1}{2}\omega_m \langle Q \rangle^2 + \frac{2\Omega^2}{\gamma_c} \arctan \left(\frac{4g\langle Q \rangle^2}{\gamma_c^2}\right)\). Here the second term describes the optical spring effect induced by the quadratic optomechanical interaction, which is negative for negative \(g\). Then under the critical driving for \(0 < \Omega \leq \Omega_c\), the effective spring constant \(k_{\text{eff}} = k(1 - \Omega^2/\Omega_c^2)\) monotonously decreases (i.e., the spring softens) with the driving strength \(\Omega\). When the driving strength \(\Omega\) exceeds the critical point (CP) \(\Omega_c\), the effective potential energy of the mechanical mode becomes a double well,
i.e., the parity symmetry of the ground states of the mechanical resonator is broken when $\Omega > \Omega_c$. Apart from SPB phase transition, here we propose the observation of mechanical anti-\mathcal{PT} phase transitions in both the regimes of under and over the critical driving Ω_c.

Under the critical driving for $0 < \Omega \leq \Omega_c$, as the effective frequency $\omega_{\text{eff}} = \sqrt{k_{\text{eff}}/m}$ with the effective spring constant $k_{\text{eff}} = k(1 - \Omega^2/\Omega_c^2)$, the first EP (EP1) appears around the point $\omega_{\text{eff}} = \gamma_m/2$ with the optical driving strength

$$
\Omega_{\text{EP1}}^2 = \Omega_c^2 \left[1 - \left(\frac{\gamma_m}{2\omega_m} \right)^2 \right].
$$

EP1 corresponds to the transition from anti-\mathcal{PT}-broken to anti-\mathcal{PT}-symmetric phase. EP1 can also be obtained from the eigenvalues of the effective Hamiltonian Eq. (2) with ω_m replaced by ω_{eff}, as

$$
\lambda_{\pm} = -i\frac{\gamma_m}{2} \pm i \sqrt{\left(\frac{\gamma_m}{2} \right)^2 - \omega_m^2 \left(1 - \frac{\Omega^2}{\Omega_c^2} \right)}.
$$

The eigenvalues are shown in Figs. 2(b) and 2(c), which is consistent well with the analytical results.

FIG. 2: (Color online) (a) Mean value of the mechanical displacement operator in the steady states Q_s versus the driving strength Ω. Eigenvalues of the effective mechanical Hamiltonian $\lambda_{m,\pm}$ versus the driving strength Ω: (b) real parts and (c) imaginary parts.
Over the critical driving for $\Omega > \Omega_c$, the position of $Q_s = 0$ become unstable [see the dashed curves in Fig. 2(c)], and two new stable positions $Q_s = \pm [(\Omega_c^2 - \Omega^2)/(g\omega_m)]^{1/4}$ appear. Around the new stable positions, we have the effective spring constant $k_{\text{eff}} = 4k(1 - \Omega^2_c/\Omega^2)$, and the eigenvalues of the effective Hamiltonian

$$\lambda_\pm = -i\gamma_m^2 \pm i\sqrt{\left(\frac{\gamma_m^2}{2}\right)^2 - 4\omega_m^2 \left(1 - \frac{\Omega_c^2}{\Omega^2}\right)}. \tag{8}$$

So the driving strength for the second EP (EP2) in the SPB regime can be given by

$$\Omega_{\text{EP2}}^2 = \Omega_c^2 \left[1 - \left(\frac{\gamma_m^2}{2\omega_m}\right)^2\right]^{-1}. \tag{9}$$

Different from the EP1, EP2 is corresponding to the transition from anti-\mathcal{PT}-symmetric to anti-\mathcal{PT}-broken phase as the driving power increases.

The frequency bifurcates around the EPs in the mechanical anti-\mathcal{PT} system provides us a sensitive way to detect the small variations of the parameters, such as the frequency shift of the mechanical resonator ω_m caused by external perturbation, which can be used for ultra-sensitive sensing, such as the mass sensing of small nano-particles.

IV. OPTOMECHANICAL ANTI-\mathcal{PT} SENSOR

High sensitivity is a long-term pursue goal due to the vital importance in both fundamental and applied physics. We noted that ultrasensitive sensing based on the EP have been studied both theoretically [40, 72–74] and experimentally [31, 49]. However, the proposal of ultrasensitive nanoparticle sensing based on the EPs in a single damping mechanical resonator has not reported yet. Without loss of generality, we consider ultrasensitive sensing on the frequency perturbation of the mechanical resonator $\omega_m' = \omega_m + \delta$, which is one of the most important parameters for optical sensing.

The sensitivity of the frequency splitting ω_m,\pm on the mechanical resonator ω_m can be described by the derivative of ω_m,\pm with respect to ω_m as

$$\frac{d\omega_m,\pm}{d\omega_m} = \begin{cases} \pm \frac{\omega_m}{\omega_m,\pm} \left(1 - \frac{\Omega_{\text{EP1}}^2}{2\omega_m^2}\right) & \Omega < \Omega_{\text{EP1}}, \\
0 & \Omega_{\text{EP1}} < \Omega < \Omega_{\text{EP2}}, \\
\pm \frac{4\omega_m}{\omega_m,\pm} \left(1 - \frac{3\Omega_{\text{EP2}}^2}{2\omega_m^2}\right) & \Omega > \Omega_{\text{EP2}}. \end{cases} \tag{10}$$
FIG. 3: (Color online) (a) The sensitivity $|d\omega_{m,\pm}/d\omega_m|$ versus the driving strength Ω. (b) Dependence of frequency splitting $\omega_{m,\pm}$ corresponding to EP1 (blue dashed curves for $\Omega = \Omega_{EP1}$) and EP2 (red solid curves for $\Omega = \Omega_{EP2}$) on the frequency perturbation δ.

The sensitivity $|d\omega_{m,\pm}/d\omega_m|$ are shown in Fig. 3(a). It is clear that the sensitivity is enhanced sharply as the driving strength coming close to the EPs, and it becomes divergent at the two EPs as $|\omega_{m,\pm}| \to 0$.

As the frequency splitting $\omega_{m,\pm}$ dependencies on the value of the frequency perturbation δ, we show the dependence of frequency splitting $\omega_{m,\pm}$ on the frequency perturbation δ in Fig. 3(b), corresponding to EP1 (dashed curves) and EP2 (solid curves). Around the two EPs, the frequency splitting $\omega_{m,\pm}$ is given by

$$\frac{\omega_{m,\pm}}{\gamma_m} \approx \begin{cases} \pm \sqrt{\frac{\omega_m}{\gamma_m}} \sqrt{\frac{\delta}{\gamma_m}} \Omega = \Omega_{EP1}, \\ \pm 2 \sqrt{\frac{\omega_m}{\gamma_m}} \sqrt{-\frac{\delta}{\gamma_m}} \Omega = \Omega_{EP2}. \end{cases}$$

As $\omega_{m,\pm}/\gamma_m$ depends on the square root of δ/γ_m, the sensitivity can be enhanced sharply when $|\delta/\gamma_m| \ll 1$. Moreover, there is an enhancement factor $\sqrt{\omega_m/\gamma_m}$ in front of the frequency perturbation δ, so that the sensitivity becomes even higher for a mechanical resonator with higher quality.

Making the effect of EP enhancement more clearly, we can compare the frequency splitting $\omega_{m,\pm}$ for the driving strength around the EPs with the results for the driving strength far
away from the EPs. The frequency splitting $\omega_{m,\pm}$ for the driving strength far away from the EPs are given approximately as

$$\omega_{m,\pm} \approx \begin{cases} \pm (\omega_m + \delta) & \Omega \ll \Omega_{EP1}, \\ \pm 2(\omega_m + \delta) & \Omega \gg \Omega_{EP2}. \end{cases}$$ \hfill (12)

There are two differences in expressions of the frequency splitting $\omega_{m,\pm}$ for the driving strength close to and far away from the EPs. First, $\omega_{m,\pm}$ depends on the square root of the frequency perturbation δ for the driving strength close to the EPs, while $\omega_{m,\pm}$ is linearly dependent on the frequency perturbation δ for the driving strength far away from the EPs. Second, there is an enhancement factor $\sqrt{\omega_m/\gamma_m}$ in the expressions of $\omega_{m,\pm}$ for the driving strength close to the EPs. Based on these two points, ultra-sensitive sensing can be realized based on the frequency splitting around the EP for the driving strength close to the EPs.

As a specific application, let us consider the detection of the mass of a nanoparticle as a simple example for ultra-sensitive sensing based on the EPs. Consider a nanoparticle with mass m_p adheres to the mechanical resonator, then the frequency of the mechanical resonator is shifted from ω_m to $\omega'_m = \omega_m + \delta$ with $\delta \approx -\omega_m^2 m_p/m$. With a driven strength of the driving field close to the EP2, i.e., $\Omega \approx \Omega_{EP2}$, we have

$$\frac{\omega_{m,\pm}}{\gamma_m} \approx \pm \sqrt{2}\frac{\omega_m}{\gamma_m} \sqrt{\frac{m_p}{m}}.$$ \hfill (13)

The frequency splitting can be resolved, i.e., $|\omega_{m,+} - \omega_{m,-}| > \gamma_m$, when the mass of the nanoparticle $m_p/m \geq 1/(8Q_m^2)$ for $Q_m \equiv \omega_m/\gamma_m$. Taking the experimental parameters [69]: mechanical mass $m = 3.6 \text{ pg}$ and Q-factor $Q_m = 7 \times 10^5$, we can detect a nanoparticle with mass as small as $m_p \approx 1 \times 10^{-24} \text{ g}$, which is much smaller than the mass sensitivity ever reported in the optomechanical systems [75–81].

V. DISCUSSIONS AND CONCLUSIONS

In summary, we discovered the inherent anti-PT symmetry in a damping mechanical resonator, which provided new perspectives on the dynamic behaviors of a damping mechanical resonator, and similar results can be observed in any resonant systems. Our work indicates that anti-PT symmetry is commonly presented and can be realized in a simple damping resonator, without deliberate design as done in previous studies. Damping resonator with anti-PT symmetry could be a useful element for more complex applications,
such as high-order EPs [82–85] and non-Hermitian topological phases [86]. In addition, we proposed to observe mechanical anti-\(\mathcal{PT}\) phase transition by optical spring effect in a quadratic optomechanical system, and the frequency bifurcation around the EPs in the mechanical anti-\(\mathcal{PT}\) symmetric system provides us an effective way for ultra-sensitive sensing, such as mass sensing.

Acknowledgement.—X.-W.X. was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 12064010), and Natural Science Foundation of Hunan Province of China (Grant No. 2021JJ20036). J.-Q.L. was supported in part by the NSFC (Grants No. 12175061 and No. 11935006) and the Science and Technology Innovation Program of Hunan Province (Grants No. 2021RC4029, No. 2017XXK2018, and No. 2020RC4047). H.J. was supported by the NSFC (Grants No. 11935006 and No. 11774086) and the Science and Technology Innovation Program of Hunan Province (Grant No. 2020RC4047). L.-M.K. was supported by the NSFC (Grants No. 1217050862, 11935006 and No. 11775075) and the Science and Technology Innovation Program of Hunan Province (Grant No. 2020RC4047).

[1] Frank S. Crawford Jr. Waves (In SI Units), Berkeley Physics Course-Volume 3. McGraw-Hill Asia Holdings (Singapore) PTE. LTD and China Machine, 2014.
[2] H.-P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. Oxford University Press, Oxford, 1993.
[3] Carl M. Bender and Stefan Boettcher. Real spectra in non-hermitian hamiltonians having \(\mathcal{PT}\) symmetry. *Phys. Rev. Lett.*, 80:5243–5246, Jun 1998.
[4] Carl M. Bender. Making sense of non-Hermitian Hamiltonians. *Reports on Progress in Physics*, 70(6):947–1018, Jun 2007.
[5] Vladimir V. Konotop, Jianke Yang, and Dmitry A. Zezyulin. Nonlinear waves in \(\mathcal{PT}\)-symmetric systems. *Rev. Mod. Phys.*, 88:035002, Jul 2016.
[6] Ramy El-Ganainy, Konstantinos G. Makris, Mercedeh Khajavikhan, Ziad H. Musslimani, Stefan Rotter, and Demetrios N. Christodoulides. Non-Hermitian physics and PT symmetry. *Nature Physics*, 14(1):11–19, Jan 2018.
[7] Hongfei Wang, Xiujuan Zhang, Jinguo Hua, Dangyuan Lei, Minghui Lu, and Yanfeng Chen. Topological physics of non-Hermitian optics and photonics: a review. *Journal of Optics,* 11
23(12):123001, Dec 2021.

[8] Mohammad-Ali Miri and Andrea Alù. Exceptional points in optics and photonics. *Science*, 363(6422):eaar7709, Jan 2019.

[9] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides. Observation of \mathcal{PT}-symmetry breaking in complex optical potentials. *Phys. Rev. Lett.*, 103:093902, Aug 2009.

[10] Christian E. Rüter, Konstantinos G. Makris, Ramy El-Ganainy, Demetrios N. Christodoulides, Mordechai Segev, and Detlef Kip. Observation of parity-time symmetry in optics. *Nature Physics*, 6(3):192–195, Mar 2010.

[11] Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang. Parity-time symmetry and exceptional points in photonics. *Nature Materials*, 18(8):783–798, Apr 2019.

[12] F. Klauck, L. Teuber, M. Ornigotti, M. Heinrich, S. Scheel, and A. Szameit. Observation of PT-symmetric quantum interference. *Nature Photonics*, 13(12):883–887, Sep 2019.

[13] Carl M. Bender, Bjorn K. Berntson, David Parker, and E. Samuel. Observation of PT phase transition in a simple mechanical system. *American Journal of Physics*, 81(3):173–179, Mar 2013.

[14] Xuefeng Zhu, Hamidreza Ramezani, Chengzhi Shi, Jie Zhu, and Xiang Zhang. \mathcal{PT}-symmetric acoustics. *Phys. Rev. X*, 4:031042, Sep 2014.

[15] Romain Fleury, Dimitrios Sounas, and Andrea Alù. An invisible acoustic sensor based on parity-time symmetry. *Nature Communications*, 6:5905, Jan 2015.

[16] Kun Ding, Guancong Ma, Meng Xiao, Z. Q. Zhang, and C. T. Chan. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. *Phys. Rev. X*, 6:021007, Apr 2016.

[17] Joseph Schindler, Ang Li, Mei C. Zheng, F. M. Ellis, and Tsampikos Kottos. Experimental study of active lrc circuits with \mathcal{PT} symmetries. *Phys. Rev. A*, 84:040101, Oct 2011.

[18] J. Schindler, Z. Lin, J. M. Lee, H. Ramezani, F. M. Ellis, and T. Kottos. PT-symmetric electronics. *Journal of Physics A Mathematical General*, 45(44):444029, Nov 2012.

[19] Xin Yang, Jiawen Li, Yifei Ding, Mengwei Xu, Xue-Feng Zhu, and Jie Zhu. Observation of transient parity-time symmetry in electronic systems. *Phys. Rev. Lett.*, 128:065701, Feb 2022.

[20] Haoliang Liu, Dali Sun, Chuang Zhang, Matthew Groesbeck, Ryan Mclaughlin, and Z. Valy Vardeny. Observation of exceptional points in magnonic parity-time symmetry devices. *Science*
[21] Wei-Chen Wang, Yan-Li Zhou, Hui-Lai Zhang, Jie Zhang, Man-Chao Zhang, Yi Xie, Chun-Wang Wu, Ting Chen, Bao-Quan Ou, Wei Wu, Hui Jing, and Ping-Xing Chen. Observation of \mathcal{PT}-symmetric quantum coherence in a single-ion system. *Phys. Rev. A*, 103:L020201, Feb 2021.

[22] Liangyu Ding, Kaiye Shi, Qiuxin Zhang, Danna Shen, Xiang Zhang, and Wei Zhang. Experimental determination of \mathcal{PT}-symmetric exceptional points in a single trapped ion. *Phys. Rev. Lett.*, 126:083604, Feb 2021.

[23] Yang Wu, Wenquan Liu, Jianpei Geng, Xingrui Song, Xiangyu Ye, Chang-Kui Duan, Xing Rong, and Jianguo Du. Observation of parity-time symmetry breaking in a single-spin system. *Science*, 364(6443):878–880, May 2019.

[24] Zin Lin, Hamidreza Ramezani, Toni Eichelkraut, Tsampikos Kottos, Hui Cao, and Demetrios N. Christodoulides. Unidirectional invisibility induced by \mathcal{PT}-symmetric periodic structures. *Phys. Rev. Lett.*, 106:213901, May 2011.

[25] Bo Peng, Şahin Kaya Özdemir, Fuchuan Lei, Faraz Monifi, Mariagiovanna Gianfreda, Gui Lu Long, Shanhu Fan, Franco Nori, Carl M. Bender, and Lan Yang. Parity-time-symmetric whispering-gallery microcavities. *Nature Physics*, 10(5):394–398, May 2014.

[26] Long Chang, Xiaoshun Jiang, Shiyou Hua, Chao Yang, Jianming Wen, Liang Jiang, Guanyu Li, Guanzhong Wang, and Min Xiao. Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. *Nature Photonics*, 8(7):524–529, Jul 2014.

[27] Tuo Liu, Xuefeng Zhu, Fei Chen, Shanjun Liang, and Jie Zhu. Unidirectional wave vector manipulation in two-dimensional space with an all passive acoustic parity-time-symmetric metamaterials crystal. *Phys. Rev. Lett.*, 120:124502, Mar 2018.

[28] Hui Jing, S. K. Özdemir, Xin-You Lü, Jie Zhang, Lan Yang, and Franco Nori. \mathcal{PT}-symmetric phonon laser. *Phys. Rev. Lett.*, 113:053604, Jul 2014.

[29] Xin-You Lü, Hui Jing, Jin-Yong Ma, and Ying Wu. \mathcal{PT}-symmetry-breaking chaos in optomechanics. *Phys. Rev. Lett.*, 114:253601, Jun 2015.

[30] Zhong-Peng Liu, Jing Zhang, Şahin Kaya Özdemir, Bo Peng, Hui Jing, Xin-You Lü, Chun-Wen Li, Lan Yang, Franco Nori, and Yu-xi Liu. Metrology with \mathcal{PT}-symmetric cavities: Enhanced sensitivity near the \mathcal{PT}-phase transition. *Phys. Rev. Lett.*, 117:110802, Sep 2016.
tional points enhance sensing in an optical microcavity. *Nature (London)*, 548(7666):192–196, Aug 2017.

[32] Hossein Hodaei, Absar U. Hassan, Steffen Wittek, Hipolito Garcia-Gracia, Ramy El-Ganainy, Demetrios N. Christodoulides, and Mercedeh Khajavikhan. Enhanced sensitivity at higher-order exceptional points. *Nature (London)*, 548(7666):187–191, Aug 2017.

[33] Liang Feng, Zi Jing Wong, Ren-Min Ma, Yuan Wang, and Xiang Zhang. Single-mode laser by parity-time symmetry breaking. *Science*, 346(6212):972–975, Nov 2014.

[34] B. Peng, Ş. K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. M. Bender, F. Nori, and L. Yang. Loss-induced suppression and revival of lasing. *Science*, 346(6207):328–332, Oct 2014.

[35] Yong Sun, Wei Tan, Hong-qiang Li, Jensen Li, and Hong Chen. Experimental demonstration of a coherent perfect absorber with pt phase transition. *Phys. Rev. Lett.*, 112:143903, Apr 2014.

[36] Sid Assawaworrarit, Xiaofang Yu, and Shanhui Fan. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit. *Nature (London)*, 546(7658):387–390, Jun 2017.

[37] Zhenya Dong, Zhipeng Li, Fengyuan Yang, Cheng-Wei Qiu, and John Ho. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. *Nature Electronics*, 2:335–342, Aug 2019.

[38] Li Ge and Hakan E. Türeci. Antisymmetric \mathcal{PT}-photonic structures with balanced positive- and negative-index materials. *Phys. Rev. A*, 88:053810, Nov 2013.

[39] Jin-Hui Wu, M. Artoni, and G. C. La Rocca. Non-hermitian degeneracies and unidirectional reflectionless atomic lattices. *Phys. Rev. Lett.*, 113:123004, Sep 2014.

[40] Huilai Zhang, Ran Huang, Sheng-Dian Zhang, Ying Li, Cheng-Wei Qiu, Franco Nori, and Hui Jing. Breaking anti-pt symmetry by spinning a resonator. *Nano Letters*, 20(10):7594–7599, Sep 2020. PMID: 32936650.

[41] H. Xu, D. Mason, Luyao Jiang, and J. G. E. Harris. Topological energy transfer in an optomechanical system with exceptional points. *Nature (London)*, 537(7618):80–83, Sep 2016.

[42] Jin-Hui Wu, M. Artoni, and G. C. La Rocca. Parity-time-antisymmetric atomic lattices without gain. *Phys. Rev. A*, 91:033811, Mar 2015.

[43] Peng Peng, Wanxia Cao, Ce Shen, Weizhi Qu, Jianming Wen, Liang Jiang, and Yanhong
Xiao. Anti-parity-time symmetry with flying atoms. *Nature Physics*, 12(12):1139–1145, Dec 2016.

[44] Yue Jiang, Yefeng Mei, Ying Zuo, Yanhua Zhai, Jensen Li, Jianming Wen, and Shengwang Du. Anti-parity-time symmetric optical four-wave mixing in cold atoms. *Phys. Rev. Lett.*, 123:193604, Nov 2019.

[45] Youngsun Choi, Choloong Hahn, Jae Woong Yoon, and Seok Ho Song. Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators. *Nature Communications*, 9:2182, Jun 2018.

[46] Ying Li, Yu-Gui Peng, Lei Han, Mohammad-Ali Miri, Wei Li, Meng Xiao, Xue-Feng Zhu, Jianlin Zhao, Andrea Alù, Shanhui Fan, and Cheng-Wei Qiu. Anti-parity-time symmetry in diffusive systems. *Science*, 364(6436):170–173, Apr 2019.

[47] Xu-Lin Zhang, Tianshu Jiang, and C. T. Chan. Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes. *Light: Science & Applications*, 8(1):88, Oct 2019.

[48] Qiang Li, Cheng-Jie Zhang, Ze-Di Cheng, Wen-Zheng Liu, Jun-Feng Wang, Fei-Fei Yan, Zhi-Hai Lin, Ya Xiao, Kai Sun, Yi-Tao Wang, Jian-Shun Tang, Jin-Shi Xu, Chuan-Feng Li, and Guang-Can Guo. Experimental simulation of anti-parity-time symmetric Lorentz dynamics. *Optica*, 6(1):67, Jan 2019.

[49] Yu-Hung Lai, Yu-Kun Lu, Myoung-Gyun Suh, Zhiquan Yuan, and Kerry Vahala. Observation of the exceptional-point-enhanced Sagnac effect. *Nature (London)*, 576(7785):65–69, Dec 2019.

[50] Zhao-Hui Peng, Chun-Xia Jia, Yu-Qing Zhang, Ji-Bing Yuan, and Le-Man Kuang. Level attraction and \mathcal{PT} symmetry in indirectly coupled microresonators. *Phys. Rev. A*, 102:043527, Oct 2020.

[51] Arik Bergman, Robert Duggan, Kavita Sharma, Moshe Tur, Avi Zadok, and Andrea Alù. Observation of anti-parity-time-symmetry, phase transitions and exceptional points in an optical fibre. *Nature Communications*, 12:486, Jan 2021.

[52] Qiankun Zhang, Cheng Yang, Jiteng Sheng, and Haibin Wu. Dissipative coupling induced phonon lasing with anti-parity-time symmetry. *arXiv e-prints*, page arXiv:2110.12456, Oct 2021.

[53] Jie Zhao, Yulong Liu, Longhao Wu, Chang-Kui Duan, Yu-xi Liu, and Jiangfeng Du. Obser-
vation of anti-\mathcal{PT}-symmetry phase transition in the magnon-cavity-magnon coupled system.

Phys. Rev. Applied, 13:014053, Jan 2020.

[54] Yu-Xin Wang and A. A. Clerk. Non-hermitian dynamics without dissipation in quantum systems. *Phys. Rev. A*, 99:063834, Jun 2019.

[55] Xin H. H. Zhang and Harold U. Baranger. Driven-dissipative phase transition in a kerr oscillator: From semiclassical \mathcal{PT} symmetry to quantum fluctuations. *Phys. Rev. A*, 103:033711, Mar 2021.

[56] Markus Aspelmeyer, Tobias J. Kippenberg, and Florian Marquardt. Cavity optomechanics. *Rev. Mod. Phys.*, 86:1391–1452, Dec 2014.

[57] Warwick P. Bowen and Gerard J. Milburn. *Quantum Optomechanics*. CRC Press, Boca Raton, 2015.

[58] J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. Harris. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. *Nature (London)* , 452(7183):72–75, Mar 2008.

[59] J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris. Strong and tunable nonlinear optomechanical coupling in a low-loss system. *Nature Physics*, 6(9):707–712, Sep 2010.

[60] M. Karuza, M. Galassi, C. Biancofiore, C. Molinelli, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali. Tunable linear and quadratic optomechanical coupling for a tilted membrane within an optical cavity: theory and experiment. *Journal of Optics*, 15(2):025704, Dec 2012.

[61] P. Z. G. Fonseca, E. B. Aranas, J. Millen, T. S. Monteiro, and P. F. Barker. Nonlinear dynamics and strong cavity cooling of levitated nanoparticles. *Phys. Rev. Lett.*, 117:173602, Oct 2016.

[62] Uroš Delić, Manuel Reisenbauer, David Grass, Nikolai Kiesel, Vladan Vuletić, and Markus Aspelmeyer. Cavity cooling of a levitated nanosphere by coherent scattering. *Phys. Rev. Lett.*, 122:123602, Mar 2019.

[63] N. P. Bullier, A. Pontin, and P. F. Barker. Quadratic optomechanical cooling of a cavity-levitated nanosphere. *Phys. Rev. Research*, 3:L032022, Jul 2021.

[64] T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z.-Y. Ma, and D. M. Stamper-Kurn. Tunable cavity optomechanics with ultracold atoms. *Phys. Rev. Lett.*, 105:133602, Sep 2010.

[65] J. T. Hill. *Nonlinear Optics and Wavelength Translation via Cavity-Optomechanics*. Ph.D.
thesis, California Institute of Technology, 2013.

[66] C. Doolin, B. D. Hauer, P. H. Kim, A. J. R. MacDonald, H. Ramp, and J. P. Davis. Nonlinear optomechanics in the stationary regime. *Phys. Rev. A*, 89:053838, May 2014.

[67] G. A. Brawley, M. R. Vanner, P. E. Larsen, S. Schmid, A. Boisen, and W. P. Bowen. Nonlinear optomechanical measurement of mechanical motion. *Nature Communications*, 7:10988, Mar 2016.

[68] Hamidreza Kaviani, Chris Healey, Marcelo Wu, Rooollah Ghobadi, Aaron Hryciw, and Paul E. Barclay. Nonlinear optomechanical paddle nanocavities. *Optica*, 2(3):271–274, Mar 2015.

[69] Taofiq K. Paraïso, Mahmoud Kalaeec, Leyun Zang, Hannes Pfeifer, Florian Marquardt, and Oskar Painter. Position-squared coupling in a tunable photonic crystal optomechanical cavity. *Phys. Rev. X*, 5:041024, Nov 2015.

[70] H. Xu, U. Kemiktarak, J. Fan, S. Ragole, J. Lawall, and J. M. Taylor. Observation of optomechanical buckling transitions. *Nature Communications*, 8:14481, Mar 2017.

[71] H. Seok, L. F. Buchmann, E. M. Wright, and P. Meystre. Multimode strong-coupling quantum optomechanics. *Phys. Rev. A*, 88:063850, Dec 2013.

[72] Xuan Mao, Guo-Qing Qin, Hong Yang, Hao Zhang, Min Wang, and Gui-Lu Long. Enhanced sensitivity of optical gyroscope in a mechanical parity-time-symmetric system based on exceptional point. *New Journal of Physics*, 22(9):093009, Sep 2020.

[73] T. Li, W. Wang, and Xuexi Yi. Enhancing the sensitivity of optomechanical mass sensors with a laser in a squeezed state. *Phys. Rev. A*, 104:013521, Jul 2021.

[74] P. Djorwe, Y. Pennec, and B. Djafari-Rouhani. Exceptional point enhances sensitivity of optomechanical mass sensors. *Phys. Rev. Applied*, 12:024002, Aug 2019.

[75] Jin-Jin Li and Ka-Di Zhu. All-optical mass sensing with coupled mechanical resonator systems. *Physics Reports*, 525(3):223–254, 2013. All-optical Mass Sensing with Coupled Mechanical Resonator Systems.

[76] Fenfei Liu, Seyedhamidreza Alaie, Zayd C. Leseman, and Mani Hossein-Zadeh. Sub-pg mass sensing and measurement with an optomechanical oscillator. *Opt. Express*, 21(17):19555–19567, Aug 2013.

[77] Yong He. Sensitivity of optical mass sensor enhanced by optomechanical coupling. *Applied Physics Letters*, 106(12):121905, March 2015.
[78] Wenyan Yu, Wei C. Jiang, Qiang Lin, and Tao Lu. Cavity optomechanical spring sensing of single molecules. *Nature Communications*, 7:12311, July 2016.

[79] Qing Lin, Bing He, and Min Xiao. Mass sensing by detecting the quadrature of a coupled light field. *Phys. Rev. A*, 96(4):043812, October 2017.

[80] Shaopeng Liu, Bo Liu, Junfeng Wang, Tingting Sun, and Wen-Xing Yang. Realization of a highly sensitive mass sensor in a quadratically coupled optomechanical system. *Phys. Rev. A*, 99:033822, Mar 2019.

[81] Marc Sansa, Martial Defoort, Ariel Brenac, Maxime Hermouet, Louise Banniard, Alexandre Fafin, Marc Gely, Christophe Masselon, Ivan Favero, Guillaume Jourdan, and Sébastien Hentz. Optomechanical mass spectrometry. *Nature Communications*, 11:3781, July 2020.

[82] H. Jing, Ş. K. Ğademir, H. Lü, and Franco Nori. High-order exceptional points in optomechanics. *Scientific Reports*, 7:3386, Jun 2017.

[83] Yu-Long Liu and Yu-xi Liu. Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity. *Phys. Rev. A*, 96:023812, Aug 2017.

[84] Peichao Cao, Ying Li, Yugui Peng, Chengwei Qiu, and Xuefeng Zhu. High-order exceptional points in diffusive systems: Robust apt symmetry against perturbation and phase oscillation at apt symmetry breaking. *ES Energy Environ.*, 7: Special Topic on Thermal Metamaterials II:48–55, Mar 2020.

[85] S. M. Zhang, X. Z. Zhang, L. Jin, and Z. Song. High-order exceptional points in supersymmetric arrays. *Phys. Rev. A*, 101:033820, Mar 2020.

[86] Emil J. Bergholtz, Jan Carl Budich, and Flore K. Kunst. Exceptional topology of non-hermitian systems. *Rev. Mod. Phys.*, 93:015005, Feb 2021.