Research Article

Quoc-Hung Nguyen* and Nguyen Cong Phuc

Quasilinear Riccati-Type Equations with Oscillatory and Singular Data

https://doi.org/10.1515/ans-2020-2079
Received December 30, 2019; accepted February 17, 2020

Abstract: We characterize the existence of solutions to the quasilinear Riccati-type equation

\[
\begin{aligned}
- \text{div} A(x, \nabla u) &= |\nabla u|^q + \sigma \quad \text{in } \Omega, \\
u &= 0 \quad \text{on } \partial \Omega,
\end{aligned}
\]

with a distributional or measure datum \(\sigma \). Here \(\text{div} A(x, \nabla u) \) is a quasilinear elliptic operator modeled after the \(p \)-Laplacian \((p > 1)\), and \(\Omega \) is a bounded domain whose boundary is sufficiently flat (in the sense of Reifenberg). For distributional data, we assume that \(p > 1 \) and \(q > p \). For measure data, we assume that they are compactly supported in \(\Omega \), \(p > \frac{2n}{n+1} \), and \(q \) is in the sub-linear range \(p - 1 < q < 1 \). We also assume more regularity conditions on \(A \) and on \(\partial \Omega \) in this case.

Keywords: Quasilinear Equations, Wolff and Riesz Potentials, Hardy–Littlewood Maximal Function, Renormalized Solutions, Bessel and Riesz Capacities

MSC 2010: 31C15, 35J62, 35J92, 35R06, 45G15

Communicated by: Julián López-Gómez and Patrizia Pucci

1 Introduction and Main Results

We address in this note the question of existence for the quasilinear Riccati-type equation

\[
\begin{aligned}
- \text{div} A(x, \nabla u) &= |\nabla u|^q + \sigma \quad \text{in } \Omega, \\
u &= 0 \quad \text{on } \partial \Omega,
\end{aligned}
\] \hspace{1cm} (1.1)

where the datum \(\sigma \) is generally a signed distribution given on a bounded domain \(\Omega \subset \mathbb{R}^n \), \(n \geq 2 \).

In (1.1) the nonlinearity \(A : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n \) is a Carathéodory vector-valued function, i.e., \(A(x, \xi) \) is measurable in \(x \) for every \(\xi \) and continuous in \(\xi \) for a.e. \(x \). Moreover, for a.e. \(x \), \(A(x, \xi) \) is differentiable in \(\xi \) away from the origin. Our standing assumption is that \(A \) satisfies the following growth and monotonicity conditions: for some \(1 < p < \infty \) and \(\Lambda \geq 1 \) there hold

\[
|A(x, \xi)| \leq \Lambda|\xi|^{p-1}, \quad |\nabla_\xi A(x, \xi)| \leq \Lambda|\xi|^{p-2}
\]

and

\[
\langle A(x, \xi) - A(x, \eta), \xi - \eta \rangle \geq \Lambda^{-1}(|\xi|^2 + |\eta|^2)^{\frac{p-2}{2}}|\xi - \eta|^2
\]

for any \((\xi, \eta) \in \mathbb{R}^n \times \mathbb{R}^n \setminus (0,0)\) and a.e. \(x \in \mathbb{R}^n \). The special case \(A(x, \xi) = |\xi|^{p-2}\xi \) gives rise to the standard

*Corresponding author: Quoc-Hung Nguyen, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, P. R. China, e-mail: qhnguyen@shanghaitech.edu.cn
Nguyen Cong Phuc, Department of Mathematics, Louisiana State University, 303 Lockett Hall, Baton Rouge, LA 70803, USA, e-mail: pcnguyen@math.lsu.edu
p-Laplacian $\Delta_p u = \text{div}(|\nabla u|^{p-2} \nabla u)$. Note that these conditions imply that $\mathcal{A}(x, 0) = 0$ for a.e. $x \in \mathbb{R}^n$, and

$$\langle \nabla \mathcal{A}(x, \xi), \lambda, \lambda \rangle \geq 2 \frac{\varepsilon^2}{n} \Lambda^{-1} |\xi|^{p-2} |\lambda|^2$$

for every $(\lambda, \xi) \in \mathbb{R}^n \times \mathbb{R}^n \setminus \{(0, 0)\}$ and a.e. $x \in \mathbb{R}^n$.

More regularity conditions will be imposed later on the nonlinearity $\mathcal{A}(x, \xi)$ in the x-variable and on the boundary $\partial \Omega$ of Ω.

One can view (1.1) as a quasilinear stationary viscous Hamilton–Jacobi equation or Kardar–Parisi–Zhang equation, which appears in the physical theory of surface growth [18, 19].

Necessary Conditions. For $q > p - 1$, it is known (see [15, 26]) that in order for (1.1) to have a u with $|\nabla u| \in L^q_{\text{loc}}(\Omega)$ it is necessary that σ be regular and small enough. In particular, if σ is a signed measure, these necessary conditions can be quantified as

$$\int \frac{|\varphi|^q}{|\nabla \varphi|^p} \, d\sigma \leq \Lambda \frac{q}{q - p + 1} \left(\int \frac{|\nabla u|^{p-1}}{|\nabla \varphi|^q} |\nabla \varphi| \, dx \right) \int \frac{|\nabla u|^q}{|\nabla \varphi|^q} \, dx$$

for all $\varphi \in C^0_0(\Omega)$. This can be seen by using $|\varphi|^q / |\nabla \varphi|^p$ as a test function in (1.1) and applying the first inequality in (1.2) to get

$$\int \frac{|\varphi|^q}{|\nabla \varphi|^p} \, d\sigma \leq \Lambda q \frac{q - p + 1}{q - p} \int \frac{|\nabla u|^{p-1}}{|\nabla \varphi|^q} |\nabla \varphi| \, dx - \int |\nabla u|^q \frac{|\varphi|^q}{|\nabla \varphi|^q} \, dx.$$

Then by an appropriate Young’s inequality one arrives at (1.4) (see also [26] and [17]). Note that estimate (1.4) also holds when σ is a distribution in $W^{-1, \frac{q}{p-1}}_{\text{loc}}(\Omega)$ in which case the left-hand side should be understood as $\langle \sigma, |\varphi|^q / |\nabla \varphi|^p \rangle$.

Thus if σ is a *nonnegative measure* (or equivalently a nonnegative distribution) compactly supported in Ω, then condition (1.4) implies the capacitary condition

$$\sigma(K) \leq C \text{Cap}_{1, \frac{q}{p-1}}(K)$$

for every compact set $K \subset \Omega$ and a constant C independent of K. Here $\text{Cap}_{1, s}$, $s > 1$, is the capacity associated to the Sobolev space $W^{1, s}(\mathbb{R}^n)$ defined for each compact set $K \subset \mathbb{R}^n$ by

$$\text{Cap}_{1, s}(K) = \inf \left\{ \int_{\mathbb{R}^n} (|\nabla \varphi|^s + \varphi^s) \, dx : \varphi \in C^0_0(\mathbb{R}^n), \varphi \geq \chi_K \right\},$$

where χ_K is the characteristic function of K.

Moreover, in the case of nonnegative measure datum σ, all solutions of (1.1) must obey the regularity condition

$$\int_K |\nabla u|^q \, dx \leq C \text{Cap}_{1, \frac{q}{p-1}}(K)$$

for every compact set $K \subset \Omega$. However, unlike (1.5), the constant C in (1.6) might depend on the distance from K to the boundary of Ω (see [15, 26]).

Motivated from (1.5), we now introduce the following definition.

Definition 1.1. Given $s > 1$ and a domain $\Omega \subset \mathbb{R}^n$, we define the space $M^{1, s}(\Omega)$ to be the set of all signed measures μ with bounded total variation in Ω such that the quantity $|\mu|_{M^{1, s}(\Omega)} < +\infty$, where

$$[\mu]_{M^{1, s}(\Omega)} := \sup \left\{ \frac{|\mu(K)|}{\text{Cap}_{1, s}(K)} : \text{Cap}_{1, s}(K) > 0 \right\},$$

with the supremum being taken over all compact sets $K \subset \Omega$.

It is well known that a measure $\mu \in M^{1, s}(\Omega)$ if and only if the trace inequality

$$\int_{\mathbb{R}^n} |\varphi|^s \, d|\mu| \leq C \int_{\mathbb{R}^n} (|\nabla \varphi|^s + |\varphi|^s) \, dx$$

holds for all $\varphi \in C^0_0(\mathbb{R}^n)$, with a constant C independent of φ. Here μ is extended by zero outside Ω. For this characterization see, e.g., [1]. Other characterizations are also available (see [20]).
In practice, it is useful to realize that the condition $\mu \in M^{1,2}(\Omega)$ is satisfied if μ is a function verifying the Fefferman–Phong condition $\mu \in L^{1+c\ell(1+\varepsilon)}(\Omega)$ for some $c > 0$ (see [10]). Here $L^{1+c\ell(1+\varepsilon)}(\Omega)$ is a Morrey space (see, e.g., [21]). In particular, it is satisfied provided μ is a function in the weak Lebesgue space $L^{2,\infty}(\Omega)$, $s < n$. Another sufficient condition is given by $(G_1 + |\mu|)^{s/n} \in L^{1+c\ell(1+\varepsilon)}(\Omega)$ for some $c > 0$ (see [20]), where G_1 is the Bessel kernel of order 1 defined via its Fourier transform by $G_1(\xi) = (1 + |\xi|^2)^{s/2}$.

Now in view of (1.6), it is natural to look for a solution u of (1.1) such that $|\nabla u|^q$ belongs to $M^{2/q}(\Omega)$. In this paper, we will be interested in only such a space of solutions.

Sufficient Conditions in Capacitary Terms. There are many papers that obtain existence results for equation (1.1) under certain integrability conditions on the datum σ which are generally not sharp. The pioneering work [15] originally used capacities to treat (1.1) in the ‘linear’ case $p = 2$ in \mathbb{R}^n ($q > 1$), or in a bounded domain Ω ($q > 2$). For $p > 2 - \frac{1}{q}$ and $q \geq 1$, it was shown in [28, 30] (see also [13, 27] for the sub-critical case $p - 1 < q < \frac{2n-2}{n-2}$) that, under certain regularity conditions on A and $\partial \Omega$, if σ is a finite signed measure in $M^{2/q}(\Omega)$, with $[\sigma]_{M^{2/q}(\Omega)}$ being sufficiently small, then equation (1.1) admits a solution $u \in W^{1,q}_0(\Omega)$ such that $|\nabla u|^q \in M^{2/q}(\Omega)$. Similar existence results have recently been extended to the case $\frac{3n-2}{2n-2} < p \leq 2 - \frac{1}{q}$, $q \geq 1$, in [23] and to the case $1 < p \leq \frac{3n-2}{2n-4}$, $q \geq 1$, in [25]. We also mention that the earlier work [26, 29] covers all $p > 1$ but only for $q > p$.

We observe that whereas the existence results of [15, 23, 25, 26, 28] are sharp when σ is a nonnegative measure, they could not be applied to a large class distributional data σ with strong oscillation. Take for example the function

$$f(x) = |x|^{-\varepsilon-d} \sin(|x|^s),$$

where $s = \frac{q}{q-p+1}$ and $\varepsilon > 0$ such that $\varepsilon + s < n$. Then $\sigma = |f(x)| \, dx$ fails to satisfy the capacitary inequality (1.5), but it is possible to show that the equation

$$-\Delta_p u = |\nabla u|^q + \lambda |f|, \quad q \geq p,$$

admits a solution $u \in W^{1,q}_0(B_1(0))$ provided $|\lambda|$ is sufficiently small. For this see [21] which addresses oscillatory data in the Morrey space framework. See also [2, 5, 11, 12] in which the case $q = p$ is considered.

Note that in this special case, the Riccati-type equation $-\text{div} \, A(x, \nabla u) = |\nabla u|^p + \sigma$ is strongly related to the Schrödinger-type equation $-\text{div} \, A(x, \nabla u) = |\nabla u|^{p-2} u$ (see [14]). This relation has been employed in an essential way in [16, 17] to study the existence of local solutions in this case. Here by a local solution we mean one that belongs to $W^{1,p}(\Omega)$ and has no pre-specified boundary condition.

Main Results. The first main result of this paper is to treat (1.1) with oscillatory data in the framework of the natural space $M^{1-p/q}(\Omega)$. This provides non-trivial improvements of the results of [15, 23, 25, 26, 28] and [21] at least in the case $q > p$. We first observe the following necessary condition on σ so that (1.1) has a solution u such that $|\nabla u|^q \in M^{1-p/q}(\Omega)$.

Theorem 1.2. Let $p > 1$, $q \geq 1$, and let A satisfy the first inequality in (1.2). Suppose that σ is a distribution in a bounded domain Ω such that the Riccati-type equation

$$-\text{div} \, A(x, \nabla u) = |\nabla u|^q + \sigma \quad \text{in} \, \mathcal{D}'(\Omega)$$

admits a solution $u \in W^{1,q}_0(\Omega)$ with $|\nabla u|^q \in M^{1-p/q}(\Omega)$. Then there exists a vector field f on Ω such that $\sigma = \text{div} \, f$ and $|f|^p \in M^{1-p/q}(\Omega)$. In particular, we have $\sigma \in W^{-1,\frac{p}{p-1}}(\Omega)$, and moreover

$$|\langle \sigma, |\varphi|^{\frac{p}{p-1}} \rangle| \leq C \int_{\Omega} |\nabla \varphi|^{\frac{p}{p-1}} \, dx$$

for all $\varphi \in C^\infty_0(\Omega)$, with a constant C independent of φ.

Conversely, when $q > p$, we obtain the following existence result.

Theorem 1.3. Let $1 < p < q < \infty$, $R_0 > 0$, and assume that A satisfies (1.2)–(1.3). Then there exists a constant $\delta = \delta(n, p, A, q) \in (0, 1)$ such that the following holds. Let $\omega \in M^{1-p/q}(\Omega)$ and let f be a vector field on Ω
such that \(|f|^{\frac{p}{q}} \in M^{1,\frac{p}{q}}(\Omega)\). Assume that \(\Omega\) is \((\delta, R_0)\)-Reifenberg flat and that \(A\) satisfies the \((\delta, R_0)\)-BMO condition. Then there exists a positive constant \(c_0 = c_0(n, p, \Lambda, q, \text{diam}(\Omega), \frac{\text{diam}(\Omega)}{R_0})\) such that whenever
\[
|\omega|^{\frac{p}{q}}_{M^{1,\frac{p}{q}}(\Omega)} + |[f]^{\frac{p}{q}}|_{M^{1,\frac{p}{q}}(\Omega)} \leq c_0,
\]
there exists a solution \(u \in W^{1,\frac{p}{q}}(\Omega)\) to the Riccati-type equation
\[
\begin{cases}
- \text{div} \, A(x, \nabla u) = |\nabla u|^q + \omega + \text{div} \, f & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,
\end{cases}
\]
with \(|\nabla u|^q \in M^{1,\frac{p}{q}}(\Omega)\).

Remark 1.4. Under a slightly different condition on \(A(x, \xi)\), it is possible to use the results of [3, 4] and the method of this paper to extend Theorem 1.3 to the end-point case \(q = p\). However, this case has been treated in [2] by using a different method (see also [5]).

The notion of \((\delta, R_0)\)-Reifenberg flat domains mentioned in Theorem 1.3 is made precise by the following definition.

Definition 1.5. Given \(\delta \in (0, 1)\) and \(R_0 > 0\), we say that \(\Omega\) is a \((\delta, R_0)\)-Reifenberg flat domain if for every \(x_0 \in \partial \Omega\) and every \(r \in (0, R_0)\), there exists a system of coordinates \([y_1, y_2, \ldots, y_n]\), which may depend on \(r\) and \(x_0\), so that in this coordinate system \(x_0 = 0\) and that
\[
B_r(0) \cap \{y_n > \delta r\} \subset B_r(0) \cap \Omega \subset B_r(0) \cap \{y_n < -\delta r\}.
\]

Examples of such domains include those with \(C^1\) boundaries or Lipschitz domains with sufficiently small Lipschitz constants. They also include certain domains with fractal boundaries.

On the other hand, the \((\delta, R_0)\)-BMO condition imposed on \(A(x, \xi)\) allows it to have small jump discontinuities in the \(x\)-variable. More precisely, given two positive numbers \(\delta\) and \(R_0\), we say that \(A(x, \xi)\) satisfies the \((\delta, R_0)\)-BMO condition if
\[
[A]_{R_0} := \sup_{y \in \mathbb{R}^n, \delta < r < R_0} \int_{B_r(y)} Y(A, B_r(y))(x) \, dx \leq \delta,
\]
where for each ball \(B = B_r(y)\) we let
\[
Y(A, B)(x) := \sup_{\xi \in \mathbb{R}^n \setminus \{0\}} \frac{|A(x, \xi) - \overline{A}_B(\xi)|}{|\xi|^{p-1}},
\]
with
\[
\overline{A}_B(\xi) = \int_B A(x, \xi) \, dx.
\]
Thus one can think of the \((\delta, R_0)\)-BMO condition as an appropriate substitute for the Sarason VMO condition.

The second main result of the paper is to treat (1.1) for the case \(p > \frac{2n-2}{2n-1}, \ p - 1 < q < 1, \) and \(\sigma\) is a signed measure compactly supported in \(\Omega\). This extends the results of [23] to the sublinear range \(p - 1 < q < 1\), which cannot be dealt with by the method of [23] due to the lack of convexity. However, here we cannot assume that \(A(x, \xi)\) is Hölder continuous in the \(x\)-variable, i.e.,
\[
|A(x, \xi) - A(x_0, \xi)| \leq A|x - x_0|^{\theta} |\xi|^{p-1}
\]
for some \(\theta \in (0, 1)\) and all \(x, x_0, \xi \in \mathbb{R}^n\). We note that this regularity assumption can be relaxed by using a weaker Dini’s condition as in [24]. Moreover, for \(\Omega\) we further assume the following integrability condition (besides the \((\delta, R_0)\)-Reifenberg flatness condition):
\[
\int_{\Omega} d(x)^{-\epsilon_0} \, dx < +\infty
\]
Thus by (1.8) we have that
\[
|x \in \Omega : \tau < d(x) \leq 2\tau| \leq C\epsilon
\]
holds for all small \(\tau > 0 \).

Theorem 1.6. Let \(p > \frac{3n-2}{2n-1} \), \(p - 1 < q < 1 \), \(R_0 > 0 \), and assume that \(A \) satisfies (1.2), (1.3), and (1.11). Suppose that (1.12) holds for an \(\epsilon_0 > 0 \) and that \(\omega \in M^{1, \frac{q}{p-1}}(\Omega) \) with \(\text{supp}(\omega) \in \Omega \). Then there exists a constant \(\delta = \delta(n, p, \Lambda, q, \epsilon_0) \in (0, 1) \) such that the following holds. If \(\Omega \) is the \((\delta, R_0)\)-Reifenberg flat, then there exists a positive constant
\[
c_0 = c_0(n, p, \Lambda, q, \theta, \epsilon_0, \text{diam}(\Omega), \frac{\text{diam}(\Omega)}{R_0}, \text{dist}(\text{supp}(\omega), \partial \Omega))
\]
such that whenever
\[
[\omega]_{M^{1, \frac{q}{p-1}}(\Omega)} \leq c_0,
\]
there exists a renormalized solution \(u \), with \(|\nabla u|^q \in M^{1, \frac{q}{p-1}}(\Omega) \), to the Riccati-type equation
\[
\begin{cases}
-\text{div} A(x, \nabla u) = |\nabla u|^q + \omega & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega.
\end{cases}
\]

We refer to [9] for the notion of renormalized solutions. Note that in the case \(p \leq 2 - \frac{1}{n} \) the gradients of such solutions should be interpreted appropriately.

Remark 1.7. It is worth mentioning that the case \(p > 2 - \frac{1}{n} \) and \(p - 1 < q < 1 \), which is a sub-critical case, has been addressed in [13, 27] by different methods that require no compact support condition on \(\omega \). However, our proof of Theorem 1.6 produces a solution to (1.14) whose gradient is well controlled pointwise. Moreover, our proof also works in the super-linear case \(q \geq 1 \) that was considered earlier in [23].

2 Proof of Theorems 1.2 and 1.3

In this section we prove Theorems 1.2 and 1.3. We begin with the proof of Theorem 1.2.

Proof of Theorem 1.2. Here we employ an idea of [16, 17] that treated the case \(q = p \). Let \(B \) be a ball of radius \(\text{diam}(\Omega) \) containing \(\Omega \) and let \(G(x, y) \) be the Green function with zero boundary condition associated to \(-\Delta \) on \(B \). Then it follows that
\[
|\nabla u(x)|^q = -\text{div} \int_B \nabla_x G(x, y)|\nabla u(y)|^q \chi_{\Omega}(y) \, dy \quad \text{in } \mathcal{D}'(\Omega).
\]

Thus by (1.8) we have that \(\sigma = \text{div} f \) in \(\mathcal{D}'(\Omega) \) with
\[
f = -A(x, \nabla u) + \int_B \nabla_x G(x, y)|\nabla u(y)|^q \chi_{\Omega}(y) \, dy.
\]

Note that by the first inequality in (1.2) we find
\[
\left[|A(x, \nabla u)| \right]^{\frac{p-1}{q}}_{M^{1, \frac{q}{p-1}}(\Omega)} \leq \Lambda \left[|\nabla u|^q \right]^{\frac{p-1}{q}}_{M^{1, \frac{q}{p-1}}(\Omega)}.
\]

On the other hand, using the pointwise estimate
\[
|\nabla_x G(x, y)| \leq C(n, \text{diam}(\Omega))|x - y|^{1-n} \quad \text{for all } x, y \in B, x \neq y,
\]

for some \(\epsilon_0 > 0 \). Here \(d(x) \) is the distance from \(x \) to \(\partial \Omega \), i.e., \(d(x) = \inf \{|x - y| : y \in \partial \Omega\} \). It is not clear to us if the \((\delta, R_0)\)-Reifenberg flatness condition for a sufficiently small \(\delta \) will imply (1.12). Note that (1.12) holds (even with any \(0 < \epsilon_0 < 1 \)) for any bounded Lipschitz domain. More generally, (1.12) holds for some \(\epsilon_0 > 0 \) provided we can find an \(\epsilon > 0 \) such that
\[
|\nabla \sigma(x)| \leq C\epsilon \quad \text{in } B.
\]
and [26, Corollary 2.5] we obtain
\[
\left[\int_B \left(\nabla G(\cdot, y) \nabla |u(y)|^q \chi(y) \right) \, dy \right]^{\frac{q}{q-1}}_{M^{1, \frac{q}{p-1}}(\Omega)} \leq C \left[\int \left| \nabla u \right|^q \right]_{M^{1, \frac{q}{p-1}}(\Omega)}.
\]
These show that \(|f|^{\frac{q}{p-1}} \in M^{1, \frac{q}{p-1}}(\Omega) \) with the estimate
\[
\left[\int |f|^{\frac{q}{p-1}} \right]_{M^{1, \frac{q}{p-1}}(\Omega)} \leq C \left(\int |\nabla u|^q \right)_{M^{1, \frac{q}{p-1}}(\Omega)} + \left[\int |\nabla u|^q \right]_{M^{1, \frac{q}{p-1}}(\Omega)}.
\]
Finally, given any \(\varphi \in C^0_0(\Omega) \) we have
\[
\left| \langle \sigma, |\varphi|^{\frac{q}{p-1}} \right| = \int_{\Omega} \varphi \cdot \nabla (|\varphi|^{\frac{q}{p-1}}) \, dx \leq \frac{q}{q-p+1} \int_{\Omega} |\varphi|^q |\nabla \varphi| \, dx
\]
\[
\leq \frac{q}{q-p+1} \left(\int_{\Omega} |f|^{\frac{q}{p-1}} |\varphi|^{\frac{q}{p-1}} \, dx \right)^{\frac{q-p+1}{q}} \left(\int_{\Omega} |\nabla \varphi|^{\frac{p}{p-1}} \, dx \right)^{\frac{q-p+1}{q}}
\]
\[
\leq C \left[|\nabla \varphi|^{\frac{p}{p-1}} \right]_{\Omega}.
\]
Here the last inequality follows since by (1.7) and Poincaré’s inequality we have
\[
\int_{\Omega} |f|^{\frac{q}{p-1}} |\varphi|^{\frac{q}{p-1}} \, dx \leq C(\text{diam}(\Omega)) \int_{\Omega} |\nabla \varphi|^{\frac{p}{p-1}} \, dx.
\]
Thus (1.9) is verified, which completes the proof of the theorem.

In order to Theorem 1.3, we need the following equi-integrability result.

Lemma 2.1. For each \(j = 1, 2, 3, \ldots \), let \(f_j \in L^{p_j}(\Omega, \mathbb{R}^n) \), \(q > p \), and \(u_j \in W^{1,q}_0(\Omega) \) be the solution of
\[
\text{div} \mathcal{A}(x, \nabla u) = \text{div} f_j \quad \text{in} \ \Omega.
\]
Assume that \(\{|f_j|^{\frac{p_j}{p-1}}\}_j \) is a bounded and equi-integrable subset of \(L^1(\Omega) \). Then there exists \(\delta = \delta(n, p, \Lambda, q) \in (0, 1) \) such that if \(\Omega \) is (\(\delta, R_0 \))-Reifenberg flat and \(|\mathcal{A}|_{L_p} \leq \delta \) for some \(R_0 > 0 \), then the set \(\{|\nabla u_j|^q\}_j \) is also a bounded and equi-integrable subset of \(L^1(\Omega) \).

Proof. By de la Vallée–Poussin Lemma on equi-integrability we can find an increasing and convex function \(G : [0, \infty) \to [0, \infty) \) with \(G(0) = 0 \) and \(\lim_{t \to \infty} \frac{G(t)}{t} = \infty \) such that
\[
\sup_j \int_{\Omega} G(|f_j|^{\frac{p_j}{p-1}}) \, dx \leq C.
\]
Moreover, we may assume that \(G \) satisfies a \(\Delta_2 \) (moderate growth) condition (see, e.g., [22]): there exists \(c_1 > 1 \) such that
\[
G(2t) \leq c_1 G(t) \quad \text{for all} \ t \geq 0.
\]
It follows that the function \(\Phi(t) := G\left(\frac{t}{p-1} \right) \) also satisfies a \(\Delta_2 \) condition since
\[
\Phi(2t) = G\left(\frac{2t}{p-1} \right) \leq G\left(\frac{t}{p-1} + \frac{t}{p-1} \right) \leq c_1 \left(\frac{t}{p-1} + \frac{t}{p-1} \right) \Phi(t),
\]
where \(\left[\frac{q}{p} \right] \) is the integral part of \(\frac{q}{p} \).

On the other hand, as \(G \) is convex and \(G(0) = 0 \), for \(c_2 = \left(\frac{p}{q} \right)^{\frac{q}{p-1}} > 1 \) we have
\[
\Phi(t) = G\left(c_2 \frac{t}{p-1} \right) \leq c_2 \frac{t}{p-1} G\left(c_2 \frac{t}{p-1} \right) = \frac{1}{2c_2} \Phi(c_2 t).
\]
In other words, \(\Phi \) satisfies a \(\nabla_2 \) condition.
Also, by the above properties of G we have that Φ is an increasing and convex Young function, i.e.,

$$
\Phi(0) = 0, \quad \lim_{t \to 0^+} \frac{\Phi(t)}{t} = 0, \quad \text{and} \quad \lim_{t \to \infty} \frac{\Phi(t)}{t} = \infty.
$$

With these properties of Φ, by the main result of [7] (see also [8]), we have that

$$
\sup_{\Omega} \int \Phi(|\nabla u|^p) \, dx = \sup_{\Omega} \int G(|\nabla u|^q) \, dx \leq C.
$$

Here the constant C depends only on n, p, q, G, Λ, Ω, and δ. Hence by de la Vallée–Poussin Lemma, it follows that the sequence $\{ |\nabla u|^q \}$ is equi-integrable in Ω.

We now recall that G_1 is the Bessel kernel of order 1. For any nonnegative measure ν, we define a Bessel potential of ν by

$$
G_1(\nu)(x) := G_1 * \nu(x) = \int_{\mathbb{R}^n} G_1(x-y) \, d\nu(y), \quad x \in \mathbb{R}^n.
$$

Lemma 2.2. Let $q > p > 1$ and suppose that $\mu \in M^{1, \frac{q}{p}}(\Omega)$ and that g is a vector field on Ω such that $|g|^{\frac{q}{p-1}} \in M^{1, \frac{q}{p-1}}(\Omega)$. There exists a constant $\delta = \delta(n, p, \Lambda, q) \in (0, 1)$ such that if Ω is (δ, R_0)-Reifenberg flat and $|A|_{R_0} \leq \delta$ for some $R_0 > 0$, then the equation

$$
\begin{cases}
\text{div} A(x, \nabla U) = \mu + \text{div} g & \text{in} \Omega, \\
u = 0 & \text{on} \partial \Omega,
\end{cases}
$$

admits a unique solution $U \in W^{1,q}_0(\Omega)$ with

$$
G_1(|\nabla U|^q) \leq C \left[G_1(|g|^{\frac{q}{p-1}}) + |\mu|^{\frac{q}{p-1}} \frac{q}{p-1} G_1(|\mu|) \right] \quad \text{a.e. in} \, \mathbb{R}^n.
$$

Here U, g, and μ are extended by zero outside Ω. The constant C in (2.3) depends only on n, p, Λ, q, $\text{diam}(\Omega)$, and $\frac{\text{diam}(\Omega)}{R_0}$.

Proof. Again, let B be a ball of radius $\text{diam}(\Omega)$ containing Ω and let $G(x, y)$ be the Green function with zero boundary condition associated to $-\Delta$ on B. Then we can write $\mu = -\text{div} h_\mu$ in $D'(\Omega)$, where h_μ is a gradient vector field on B given by

$$
h_\mu(x) = \int_B \nabla_x G(x, y) \, d\mu(y).
$$

In what follows, we say that a function $w \in A_1$ if $w \in L^1_{\text{loc}}(\mathbb{R}^n)$, $w \geq 0$, and

$$
\sup_{r > 0} \int_{B_r(x)} w(y) \, dy \leq Aw(x) \quad \text{for a.e.} \, x \in \mathbb{R}^n.
$$

The least possible constant A in the above inequality is called the A_1 constant of w and is denoted by $[w]_{A_1}$.

By [21, Theorem 1.10], for any weights $w \in A_1$, there exists a constant $\delta = \delta(n, p, \Lambda, q, [w]_{A_1}) \in (0, 1)$ such that if Ω is (δ, R_0)-Reifenberg flat and $|A|_{R_0} \leq \delta$, then (2.2) admits a unique solution $U \in W^{1,q}_0(\Omega)$ such that

$$
\int_{\Omega} |\nabla U|^q w \, dx \leq C \int_{\Omega} |g - h_\mu|^{\frac{q}{p-1}} \, w \, dx.
$$

Moreover, the constant C in (2.5) depends on w only through $[w]_{A_1}$.

We now observe from the asymptotic behavior of G_1 (see [1, Section 1.2.4]) that the function

$$
w(x) = G_1(g)(x),
$$

where g is any nonnegative and bounded function with compact support, satisfies the following local A_1 condition:

$$
\sup_{0 < r \leq 1} \int_{B_r(x)} w(y) \, dy \leq Aw(x) \quad \text{for a.e.} \, x \in \mathbb{R}^n.
$$
The constant A is independent of g. Thus by [31, Lemma 1.1] there exists a weight $\overline{w} \in A_1$ such that $w = \overline{w}$ in B and $[\overline{w}]_{A_1} \leq C = C(n, \text{diam}(\Omega), A)$. Then using \overline{w} in (2.5) and applying Fubini’s Theorem, we find

$$
\int_{\mathbb{R}^n} G_1(|\nabla U|^q(x)) dx \leq C \int_{\mathbb{R}^n} G_1(|g - h_\mu|^q(x)) dx.
$$

Due to the arbitrariness of g, this yields

$$
G_1(|\nabla U|^q(x)) \leq C G_1(|g - h_\mu|^q(x)) \quad \text{a.e. in } \mathbb{R}^n
$$

(2.6)

for a constant C that depends only on $n, p, \Lambda, q, \text{diam}(\Omega)$, and $\text{diam}(\Omega)/R_0$.

Note that by (2.4) and the pointwise estimate (2.1) it follows that

$$
|h_\mu(x)| \leq C G_1(|\mu|)(x) \quad \text{a.e. in } \mathbb{R}^n.
$$

(2.7)

On the other hand, by [20, Theorem 1.2] we find

$$
G_1[|\mu|^q(x)] \leq C[\mu] \frac{q+1}{M^q + q + q^2 + 1} G_1(|\mu|)(x) \quad \text{a.e. in } \mathbb{R}^n.
$$

(2.8)

Thus in view of (2.7) we see that

$$
G_1[|h_\mu|^q] \leq C[\mu] \frac{q+1}{M^q + q + q^2 + 1} G_1(|\mu|)(x) \quad \text{a.e. in } \mathbb{R}^n.
$$

(2.9)

Combining (2.6) and (2.9) we arrive at the pointwise estimate (2.3) as desired.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let ω and f be as in the theorem. Our strategy is to apply Schauder Fixed Point Theorem to the following closed and convex subset of $W^{1,q}_0(\Omega)$:

$$
E := \{ v \in W^{1,q}_0(\Omega) : G_1(|\nabla v|^q) \leq T G_1(|\mu|^q) + G_1(|\omega|^q) \} \quad \text{a.e.},
$$

where $T > 0$ is to be chosen. Note that by (2.8) we have

$$
G_1[|\omega|^q] \leq C[\omega] \frac{q+1}{M^q + q + q^2 + 1} G_1(|\omega|).
$$

Thus by [20, Theorems 1.1 and 1.2] (see also [26, Theorem 2.3]), from the definition of E we obtain for any $v \in E$,

$$
[|\nabla v|^q]_{M^q + q + q^2 + 1} \leq C_0 T \left[[\omega] \frac{q}{M^q} + [f] \frac{q}{M^q + q + q^2 + 1} \right]
$$

for a constant C_0 depends only on $n, p, \Lambda, q, \text{diam}(\Omega)$, and $\frac{\text{diam}(\Omega)}{R_0}$. Therefore, if we assume that

$$
[\omega] \frac{q}{M^q + q + q^2 + 1} + [f] \frac{q}{M^q + q + q^2 + 1} \leq c_0,
$$

where c_0 is to be determined, then we have for any $v \in E$,

$$
[|\nabla v|^q]_{M^q + q + q^2 + 1} \leq c_0 C_0 T.
$$

(2.10)

Let $S : E \to W^{1,q}_0(\Omega)$ be defined by $S(v) = u$, where $u \in W^{1,q}_0(\Omega)$ is the unique solution of

\[
\begin{cases}
- \text{div} A(x, \nabla u) = |\nabla v|^q + \omega + \text{div} f & \text{in } \Omega, \\
\quad u = 0 & \text{on } \partial \Omega.
\end{cases}
\]

We claim that there are $T > 0$ and $c_0 > 0$ such that $S : E \to E$.

By Lemma 2.2 we may assume that

$$
G_1(|\nabla S(v)|^q) \leq C_1 \left[G_1(|g|^q) \right]_{M^q + q + q^2 + 1} G_1(|\nabla v|^q) \quad \text{a.e. in } \mathbb{R}^n.
$$

(2.11)
where \(g = f - h_\omega \) and \(h_\omega \) is the gradient vector field associated to \(\omega \) as in the proof of Lemma 2.2. We next note from (2.7) that
\[
|g|^{\frac{q}{p-1}} \leq C_2(|f|^{\frac{q}{p-1}} + G_1(|\omega|)^{\frac{q}{p-1}}) \quad \text{a.e.} \tag{2.12}
\]
Moreover, in view of (2.10) we have
\[
||\nabla v||^{\frac{q}{p-1}} \leq (c_0 C_0 T)^{\frac{q}{p-1}} T G_1(|f|^{\frac{q}{p-1}} + G_1(|\omega|)^{\frac{q}{p-1}}). \tag{2.13}
\]
Combining (2.11), (2.12), and (2.13) yields
\[
G_1(|\nabla (\nabla v)|^q) \leq (\max\{C_1, C_2\} + 1)^2 (c_0 C_0 T)^{\frac{q}{p-1}} T (G_1(|f|^{\frac{q}{p-1}} + G_1(|\omega|)^{\frac{q}{p-1}}).
\]
We now choose \(T = 2(\max\{C_1, C_2\} + 1)^2 \) and then choose \(c_0 > 0 \) so that \((c_0 C_0 T)^{\frac{q}{p-1}} T \leq 1 \). Then it follows that
\[
G_1(|\nabla (\nabla v)|^q) \leq T \left[G_1(|f|^{\frac{q}{p-1}}) + G_1(|\omega|) \right],
\]
and thus \(S(v) \in E \) as desired.

We next show that the set \(S(E) \) is precompact in the strong topology of \(W^{1,q}_0(\Omega) \). Let \(u_k = S(v_k) \), where \(\{v_k\} \) is a sequence in \(E \). We have
\[
\left\{- \text{div} A(x, \nabla u_k) = |\nabla v_k|^q + \omega + \text{div} f \quad \text{in} \ \Omega, \right.
\]
\[
\left. u_k = 0 \quad \text{on} \ \partial \Omega. \right.
\]
As \(|\nabla v_k|^q + \omega + \text{div} f = \text{div}(f - h_\omega - h_{\nabla v_k}) \) in \(\mathcal{D}'(\Omega) \), where
\[
|h_\omega| + |h_{\nabla v_k}| \leq C G_1(|\omega| + |\nabla v_k|^q)
\]
\[
\leq C (G_1(|\omega|) + T G_1(|f|^{\frac{q}{p-1}} + G_1(|\omega|)^{\frac{q}{p-1}}) \]
\[
\leq C (G_1(|\omega|) + G_1(|\omega|)^{\frac{q}{p-1}}),
\]
we may apply Lemma 2.1 to see that \(|\nabla u_k|^q \) is a bounded and equi-integrable subset of \(L^1(\Omega) \).

On the other hand, by [6, Theorem 2.1] there exists a subsequence \(\{u_{k'}\} \) and a function \(u \in W^{1,q}_0(\Omega) \) such that
\[
\nabla u_{k'} \to \nabla u \quad \text{a.e. in} \ \Omega.
\]
Thus the Vitali Convergence Theorem yields that \(u_{k'} \to u \) in \(W^{1,q}_0(\Omega) \) as desired.

Similarly, by uniqueness we see that the map \(S \) is continuous on \(E \) (in the strong topology of \(W^{1,q}_0(\Omega) \)). Then by Schauder Fixed Point Theorem, \(S \) has a fixed point in \(E \), which gives a solution \(u \) to problem (1.10). This completes the proof of the theorem.

\[\Box\]

3 Proof of Theorem 1.6

For any nonnegative measure \(\nu \) we define
\[
P^\beta [\nu](x) = \left(\int_0^R \left(\frac{\nu(B(x))}{r^{n-1}} \right)^{\beta} \frac{dr}{T} \right)^{\frac{1}{\beta}}, \quad R = 2 \text{diam}(\Omega),
\]
where \(\beta = 1 \) if \(p > 2 - \frac{1}{n} \) and \(\beta \) is any number in \((0, (p-1)n) \) if \(\frac{3n-2}{2n-1} < p \leq 2 - \frac{1}{n} \). For \(x > 0 \), we also let
\[
T^\nu [\nu](x) = d(x)^{-x} P^\beta [\nu](x) \chi_{\Omega}(x),
\]
where recall that \(d(x) \) is the distance from \(x \) to \(\partial \Omega \).

It is clear that if \(c_0 \) is a positive number for which (1.12) holds, then for any \(0 < k \leq \frac{c_0}{nT} \)
\[
\|d^{-x}\|_{L^\infty(\Omega)} \leq C. \tag{3.1}
\]
On the other hand, note that for any $f \in L^{2n}(\Omega)$,
\[
\|P^R[|f|]\|_{L^{\infty}(\mathbb{R}^n)} \leq C(R, \beta)\|f\|^{\frac{1}{p}}_{L^{2n}(\Omega)}.
\]
Thus we have that, for any $0 < \kappa \leq \frac{c_0}{4^{n+1}}$,
\[
\|P^R[d(\cdot)^{-k}\chi(\cdot)]\|_{L^{\infty}(\mathbb{R}^n)} \leq C.
\] (3.2)

We now record the following result that was obtained in [24].

Lemma 3.1. Let $p > \frac{3n-2}{2n-1}$ and suppose that μ is finite signed measure in Ω. If u is a renormalized solution to
\[
\begin{cases}
-\text{div} A(x, \nabla u) = \mu & \text{in } \Omega,
\end{cases}
\]
and $\partial \Omega$ is sufficiently flat, then
\[
|\nabla u(x)| \leq C T[|\mu|](x)
\]
for a.e. $x \in \mathbb{R}^n$, where $|\nabla u(x)|$ is set to be zero outside Ω.

We can now prove Theorem 1.6.

Proof of Theorem 1.6. Let c_0 be as in the theorem and suppose that $\text{supp}(\omega) \subset \Omega_{\delta_0}$. In this proof, we shall fix $\kappa \in (0, \frac{c_0}{4^{n+1}})$.

By [26, inequality (2.10)] and condition (1.13) we have
\[
P^R[|P^R[|\omega|]|^q](x) \leq C[\omega]^\frac{1}{p} \|P^R[|\omega|]\|_{L^{\infty}(\mathbb{R}^n)} \leq C(c_0) \frac{1}{p} \|P^R[|\omega|]\|_{L^{\infty}(\mathbb{R}^n)} (3.3)
\]
for a.e. $x \in \Omega$. Moreover, since $\text{supp}(\omega) \subset \Omega_{\frac{\delta_0}{p}}$, we also have
\[
\|P^R[|\omega|]\|_{L^{\infty}(\mathbb{R}^n) \setminus \Omega_{\frac{\delta_0}{p}}} \leq C(\delta_0, \beta, p, n, R)|\omega(\Omega)\|_{p}^{\frac{1}{p}},
\]
and thus by (3.2),
\[
P^R[|d(\cdot)^{-k}P^R[|\omega|\chi(\cdot)]|^q](x) \leq C(\delta_0)P^R[|P^R[|\omega|]|^q](x) + C(|\omega|(|\Omega|)^{\frac{1}{p}}).
\]
Combining this with (3.3) and condition (1.13), we find
\[
P^R[|d(\cdot)^{-k}P^R[|\omega|\chi(\cdot)]|^q](x) \leq C(\delta_0) \frac{1}{p} P^R[|\omega|](x) + C(|\omega|(|\Omega|)^{\frac{1}{p}})
\]
\[
\leq C(\delta_0) \frac{1}{p} P^R[|\omega|](x) + C(\delta_0) \frac{1}{p} |\omega(\Omega)|^{\frac{1}{p}}
\]
\[
\leq C(\delta_0) \frac{1}{p} + (c_0) \frac{1}{p} |\omega(\Omega)|^{\frac{1}{p}}
\]
for a.e. $x \in \Omega$. This gives
\[
T|T[|\omega|]|^q](x) \leq C(c_0) \frac{1}{p} + (c_0) \frac{1}{p} |\omega(\Omega)|^{\frac{1}{p}} (3.4)
\]
for a.e. $x \in \mathbb{R}^n$.

Step 1. In this step, we assume that $\omega \in C^0_c$ with $\text{supp}(\omega) \subset \Omega_{\delta_0}$. Let us set
\[
V = \{v \in W^{1,1}_0 : |\nabla v| \leq N T[|\omega|] \text{ a.e.}\},
\]
where N is to be determined. Since $\omega \in C^0_c(\Omega)$, in view of (3.1) we have that
\[
|\nabla v(x)|^q \leq C(\omega) d(x)^{-qk} \in L^{2n}(\Omega),
\]
and in particular, $|\nabla v|^q \in W^{-1,\gamma\kappa}(\Omega)$ for any $v \in V$.
We next define a map \(S : V \to W^{1,1}_0 \) by letting \(S(v) = u \), where \(v \in V \) and \(u \) is the unique renormalized solution to
\[
\begin{align*}
- \operatorname{div} A(x, \nabla u) &= |\nabla v|^q + \omega \quad \text{in } \Omega, \\
\quad u &= 0 \quad \text{on } \partial\Omega.
\end{align*}
\]

By Lemma 3.1 and (3.4) we have
\[
|\nabla u|^p \leq T|\nabla v|^q + \omega
\]
\[
\leq C N^q T|\nabla \chi^q | + CT|\omega|
\]
\[
\leq C N^q T|\chi^q | + CT|\omega|.
\]
Thus if we choose \(N = 2C \) and \(c_0 \) sufficiently small, we obtain that \(S(V) \subset V \). Moreover, using the results of [9], it can be shown that \(S \) is continuous and compact (see also [23]). Thus by Schauder Fixed Point Theorem, there exists a solution \(u \in V \) to the equation (1.14).

Step 2. Let \(\omega_k = \rho_k \ast \omega \), where \(\{\rho_k\}_{k \in \mathbb{N}} \) is a standard sequence of mollifiers. Choose \(k \) sufficiently large so that \(\omega_k \in C^{0}_c(\Omega_{\delta/2}) \) for all such \(k \). It is easy to see from condition (1.13) that
\[
\frac{\omega_k}{\nabla v} \leq AC_0,
\]
where \(A \) is independent of \(k \). Thus we may apply Step 1 with \(\omega = \omega_k \) to obtain a sequence of solutions \(\{u_k\} \subset V \) to the equation
\[
\begin{align*}
- \operatorname{div} A(x, \nabla u_k) &= |\nabla u_k|^q + \omega_k \quad \text{in } \Omega, \\
\quad u_k &= 0 \quad \text{on } \partial\Omega.
\end{align*}
\]
Then we apply the results of [9] to get a subsequence \(\{u_{k'}\} \) and function \(u \) such that \(\nabla u_{k'} \to \nabla u \in L^q(\Omega) \) and \(u \) is a renormalized solution of (1.14) (see also [23]).

\[\square\]

Funding: Quoc-Hung Nguyen is supported by the ShanghaiTech University startup fund. Nguyen Cong Phuc is supported in part by Simons Foundation, award number 426071.

References

[1] D. R. Adams and L. I. Hedberg, *Function Spaces and Potential Theory*, Grundlehren Math. Wiss. 314, Springer, Berlin, 1996.

[2] K. Adimurthi and C. P. Nguyen, Quasilinear equations with natural growth in the gradients in spaces of Sobolev multipliers, *Calc. Var. Partial Differential Equations* 57 (2018), no. 3, Article ID 74.

[3] K. Adimurthi and N. C. Phuc, Global Lorentz and Lorentz–Morrey estimates below the natural exponent for quasilinear equations, *Calc. Var. Partial Differential Equations* 54 (2015), no. 3, 3107–3139.

[4] K. Adimurthi and N. C. Phuc, An end-point global gradient weighted estimate for quasilinear equations in non-smooth domains, *Manuscripta Math.* 150 (2016), no. 1–2, 111–135.

[5] K. Adimurthi and N. C. Phuc, Nonlinear equations with gradient natural growth and distributional data, with applications to a Schrödinger-type equation, *J. Lond. Math. Soc. (2)* 98 (2018), no. 2, 461–482.

[6] L. Boccardo and F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, *Nonlinear Anal.* 19 (1992), no. 6, 581–597.

[7] S.-S. Byun and S. Ryu, Weighted estimates for nonlinear elliptic problems with Orlicz data, *J. Elliptic Parabol. Equ.* 1 (2015), 49–61.

[8] S.-S. Byun, F. Yao and S. Zhou, Gradient estimates in Orlicz space for nonlinear elliptic equations, *J. Funct. Anal.* 255 (2008), no. 8, 1851–1873.

[9] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions of elliptic equations with general measure data, *Ann. Sc. Norm. Super. Pisa Cl. Sci. (4)* 28 (1999), no. 4, 741–808.

[10] C. L. Fefferman, The uncertainty principle, *Bull. Amer. Math. Soc. (N. S.)* 9 (1983), no. 2, 129–206.

[11] V. Ferone and F. Murat, Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, *Nonlinear Anal.* 42 (2000), no. 7, 1309–1326.

[12] V. Ferone and F. Murat, Nonlinear elliptic equations with natural growth in the gradient and source terms in Lorentz spaces, *J. Differential Equations* 256 (2014), no. 2, 577–608.
[13] N. Grenon, F. Murat and A. Porretta, A priori estimates and existence for elliptic equations with gradient dependent terms, *Ann. Sc. Norm. Super. Pisa Cl. Sci. (5)* **13** (2014), no. 1, 137–205.

[14] H. A. Hamid and M. F. Bidaut-Veron, On the connection between two quasilinear elliptic problems with source terms of order 0 or 1, *Commun. Contemp. Math.* **12** (2010), no. 5, 727–788.

[15] K. Hansson, V. G. Maz’ya and I. E. Verbitsky, Criteria of solvability for multidimensional Riccati equations, *Ark. Mat.* **37** (1999), no. 1, 87–120.

[16] B. J. Jaye, V. G. Maz’ya and I. E. Verbitsky, Existence and regularity of positive solutions of elliptic equations of Schrödinger type, *J. Anal. Math.* **118** (2012), no. 2, 577–621.

[17] B. J. Jaye, V. G. Maz’ya and I. E. Verbitsky, Quasilinear elliptic equations and weighted Sobolev–Poincaré inequalities with distributional weights, *Adv. Math.* **232** (2013), 513–542.

[18] M. Kardar, G. Parisi and Y.-C. Zhang, Dynamic scaling of growing interfaces, *Phys. Rev. Lett.* **56** (1986), 889–892.

[19] J. Krug and H. Spohn, Universality classes for deterministic surface growth, *Phys. Rev. A (3)* **38** (1988), no. 8, 4271–4283.

[20] V. G. Maz’ya and I. E. Verbitsky, Capacitary inequalities for fractional integrals, with applications to partial differential equations and Sobolev multipliers, *Ark. Mat.* **33** (1995), no. 1, 81–115.

[21] T. Mengesha and N. C. Phuc, Quasilinear Riccati-type equations with distributional data in Morrey space framework, *J. Differential Equations* **260** (2016), no. 6, 5421–5449.

[22] P.-A. Meyer, Sur le lemme de la Vallée Poussin et un théorème de Bismut, in: *Séminaire de Probabilités. XII* (Strasbourg 1976/1977), Lecture Notes in Math. 649, Springer, Berlin (1978), 770–774.

[23] Q.-H. Nguyen and N. C. Phuc, Good-λ and Muckenhoupt–Wheeden-type bounds in quasilinear measure datum problems, with applications, *Math. Ann.* **374** (2019), no. 1–2, 67–98.

[24] Q.-H. Nguyen and N. C. Phuc, Pointwise gradient estimates for a class of singular quasilinear equations with measure data, *J. Funct. Anal.* **278** (2020), no. 5, Article ID 108391.

[25] Q.-H. Nguyen and N. C. Phuc, Existence and regularity estimates for quasilinear equations with measure data: The case $1 < p \leq \frac{2n}{n-2} + 1$, to appear.

[26] N. C. Phuc, Quasilinear Riccati-type equations with super-critical exponents, *Comm. Partial Differential Equations* **35** (2010), no. 11, 1958–1981.

[27] N. C. Phuc, Morrey global bounds and quasilinear Riccati-type equations below the natural exponent, *J. Math. Pures Appl. (9)* **102** (2014), no. 1, 99–123.

[28] N. C. Phuc, Nonlinear Muckenhoupt–Wheeden-type bounds on Reifenberg flat domains, with applications to quasilinear Riccati-type equations, *Adv. Math.* **250** (2014), 387–419.

[29] N. C. Phuc, Erratum to: Quasilinear Riccati-type equations with super-critical exponents [MR2754075], *Comm. Partial Differential Equations* **42** (2017), no. 8, 1335–1341.

[30] N. C. Phuc, Corrigendum to: “Nonlinear Muckenhoupt–Wheeden-type bounds on Reifenberg flat domains, with applications to quasilinear Riccati-type equations” [Adv. Math. 250 (2014), 387–419][MR3122172], *Adv. Math.* **328** (2018), 1353–1359.

[31] V. S. Rychkov, Littlewood–Paley theory and function spaces with A^p_{∞} weights, *Math. Nachr.* **224** (2001), 145–180.