Research progress on the next-generation probiotic *Akkermansia muciniphila* in the intestine

Wei Han | Xuhui Zhuang

Academy of National Food and Strategic Reserves Administration, Beijing, China

Correspondence
Wei Han, Room 1103, No.11 Baiwanzhuang Street, Xicheng District, Beijing, China, 100037.
Email: hw@ags.ac.cn

Funding information
National Food and Strategic Reserves Administration P.R.China, Grant/Award Number: ZX1712

Abstract
Probiotics are widely used for various fields, such as agriculture, food, and treatment and so on. *Akkermansia muciniphila*, the candidate for next-generation probiotics, is an intestinal bacterium that was isolated from a human fecal sample. It has been proved that *A. muciniphila* is closely related to multiple disease and metabolic disorders. What’s more, its functions are not limited to intestinal diseases only, and even affect aging and cognition. Therefore, we would like to summarize the related research progress on *A. muciniphila* though this review, which help us to learn its role in the microbial networks, as well as to understand its positive impacts on the health of animals and human.

KEYWORDS
Akkermansia muciniphila, intestinal bacterium, probiotics, *Verrucomicrobia*

1 | INTRODUCTION

A dense and diverse microbial community colonizes the human intestine, namely the microflora (10^{13}-10^{14}, about 1.3 times than the total number of human cells). Over 1000 microbes have been obtained by pure cultures, including *Bacteria*, *Archaea*, and *Eukarya*. They are the important players in human health and physiology with a great number of functions, such as the inhibition of pathogen, stimulation of immunity, digestion of unprocessed nutrients, and production of vitamins (e.g., Vitamin K). However, we have to face one problem that the intestinal microbiome and its metabolic functions are often impaired in many circumstances. In addition, many diseases are also associated with microbiota imbalance, such as type 2 or type 1 diabetes, obesity, inflammatory bowel disease (IBD), and irritable bowel syndrome (IBS) and so on (Derrien et al., 2017; Ouwerkerk et al., 2013; Ropot et al., 2020; Sender et al., 2016).

A growing amount of evidence have shown that probiotics are the strategy to maintain and improve intestinal homeostasis. But classical probiotics have shown the limited effects on the microbiota modulation in humans (El Hage et al., 2017). So, we need to develop new probiotic members that can cope with dysbiosis.

Maybe these aforementioned kinds of probiotics live in the intestine. A mucus layer (mainly composed of mucin) usually covers the intestinal epithelial cells (IECs), which can protect IECs from microbial invasion, and also provide growth energy for microbes as nutrients (Gao et al. 2013; Zhao & Li, 2017). The mucus-degrading *Akkermansia muciniphila* (AKK) are found to be enriched in the mucus layer, which implicates the colonization of the only known *Verrucomicrobia* in the gut. AKK is abundantly present in the colon, varying from 1% to 4% of the bacterial population (Ouwerkerk et al., 2013). In an investigation in southern China, AKK, colonized in intestinal samples of the different aged people, has a high colonization rate and over 12 different subtype strains (Guo et al., 2015). In recent decades, due to the significant role for hosts’ nutritional metabolism, diseases, and immunity, AKK related researches have become a hot spot in the domestic and foreign studies (Feng et al., 2016).

This review is devoted to the description of the current research on AKK, which is summarized into four aspects: AKK’s properties...
that include the physiological characteristics and genetic information, AKK’s functions and effects that may affect hosts’ health, factors that have a positive or negative effect on the abundance of AKK, and possibility that AKK becomes the commercial probiotic.

2 | AKK’S PROPERTIES

AKK, the only cultivated representative of the *Verrucomicrobia*, is an intestinal bacterium that was isolated from a human fecal sample through strict anaerobic condition in 2004, which was first identified and named by Wageningen University. Usually, AKK can utilize the viscous substrate as the sole source of nutrients for growth. AKK is Gram-negative, nonmotile, nonspore-forming, and elliptical, which can grow alone, in pairs, or in clumps (in the medium containing mucin). In strictly anaerobic circumstances, its main metabolite of that is propionic acid (Derrien et al., 2004; Zhao & Li, 2017). AKK’s growth relies on high-energy nitrogen-carbon compounds in mucin, such as fucose, galactose, N-acetylgalactosamine, and so on, but it still retains the ability to utilize glucose (Fenn, 2014; Ropot et al., 2020). Lipopolysaccharide (LPS) also exists in the outer membrane of AKK, which is considered to be a potential stimulation of inflammation, but AKK has not been found that there is a negative correlated to any sign of pathogenicity so far (Karls-son et al., 2012).

In 2011, genome sequence and functional gene information of AKK had been reported. In its genome of 2.66 M bp, the related genes encoding the mucin-degrading enzymes were more than 61, for 11% of the total genes. Some AKK strains’ whole genome, which were derived from human and mouse feces, included genome size ranging from 2.65 to 3.20 0 M bp and more than 2192 genes of ATCC BAA-835 (the AKK type strain) genome (Caputo et al., 2015; Guo et al., 2017). By proteomic analysis, a lot of mucin-degrading enzymes, such as glycosidase, sulfatase, and sialidase, were also found in human feces (Zhao & Li, 2017). Among them, four sialidase isoenzyme genes were cloned, expressed, and purified from human intestinal AKK (Huang, 2015; Huang et al., 2015). GH35 (one of glycoside hydrolase families) β-galactosidase gene from AKK was successfully cloned and its purified enzyme’s properties were clarified (Guo et al., 2018).

3 | FUNCTIONS AND EFFECTS OF AKK ON HOSTS

To better understand AKK’s properties, it is important to clarify the functions and effects of AKK. Numerous evidence have showed that AKK is closely related to the hosts’ immunity and diseases (Feng et al., 2016). Moreover, AKK is not only related to lipid metabolism and intestinal diseases, but also affects nervous system diseases, respiratory diseases, and so on (Table 1).

3.1 | Intestinal diseases

Ye’s (2009) study was the first to report an association of AKK with IBD. According to the author, the ratio of AKK/total bacteria was about 0.5% in healthy groups, and decreased in the IBD groups. And the population of AKK also decreased in colitis model. Earley et al. (2019) found that AKK abundance was reduced in ulcerative colitis, with lower percentage of sulphated mucin than healthy controls; AKK’s abundance was positively associated with the percentage of sulphated

Target	Microbiota analysis approach	Samples	AKK population	References
IBD	16S rRNA gene sequence; qPCR	IL-10−/− mice	Negatively associated with IBD	Ye, 2009
Colitis	qPCR	Healthy humans and patients	Reduced in ulcerative colitis	Earley et al., 2019
Obese and overweight	qPCR	C57BL/6J mice; Healthy and obese children	Negatively associated with obese and overweight	Karlsson et al., 2012; Wang et al., 2020
Autism	qPCR	Autistic and normal children	Negatively associated with autistic children	Wang et al., 2011
Alzheimer	qPCR	patients	Accepted as a key bio-marker for Alzheimer’s disease	Ou et al., 2020
Asthma	16S rRNA gene sequence	Obese asthmatics	Negative-correlated with asthma	Michalovich et al., 2019
Alcoholic liver	–	Lieber-DeCarli mouse and patients	Negatively associated with Alcoholic liver	Neyrinck et al., 2017
Type 2 diabetes	qPCR	C57BL/6 mice	Negatively associated with type 2 diabetes	Amandine, et al., 2017; Everard et al., 2013
Type 1 diabetes	DGGE; 16S rRNA gene sequence	NOD/BomTac mice	Negatively associated with type 1 diabetes	Hansen et al., 2012
Stress-related disorders	16S rRNA gene sequence	C57BL/6J and CD-1 mice	Negatively associated with stress	McGaughey et al., 2019
mucin (\(\rho = 0.546, p = 0.000 \)) and inflammatory scores (\(\rho = 0.294, p = 0.001 \)).

3.2 | Lipid metabolism

Wang et al. (2020) evaluated whether alginate oligosaccharides can protect from diet-induced metabolic disorders and modulate gut microbial communities. According to the authors, alginate oligosaccharide intervention significantly prompted the growth of AKK under this premise that AKK was thought to be related to lipid metabolism. Being obese and overweight can also bring about dramatic changes in microbiota. In obese/overweight children, the abundance of the Gram-negative family (Enterobacteriaceae, Desulfovibrio, and AKK) showed significant differences. However, in children with normal weight, the abundance of AKK-like bacteria and Desulfovibrio did not show significant differences (Karlsson et al., 2012).

3.3 | Other intestinal microflora

AKK could accelerate the cogrowth of some mucus-dependent microorganisms, for example, Bacteroides vulgatus and Ruminococcus gnavus (Fenn, 2014). However, the mechanism through which AKK promotes the growth of other bacteria in hosts is still unknown.

3.4 | Autism

In the intestine of autistic children, the average abundance of AKK was \(1.18 \times 10^5 \) CFU/g, respectively; which was significantly lower than those of normal children \((1.51 \times 10^{14} \) CFU/g) (Wang et al., 2011).

3.5 | Alzheimer’s disease

Treated with AKK by gavage for 6 months, the test mice’s blood glucose, blood lipid, serum diamine oxidase levels were significantly reduced. Moreover, AKK treatment promoted the reduction of amyloid \(\beta \)-protein 40-42 levels, which was widely accepted as a key biomarker for Alzheimer’s disease (Qu et al., 2020).

3.6 | Asthma

According to Michalovich et al. (2019), asthma severity was significantly negatively correlated with AKK abundance. Meanwhile, AKK administration could significantly reduce airway hyperreactivity and airway inflammation in mice.

3.7 | Other diseases

AKK was associated with some chronic diseases, such as colitis (Seregín et al., 2017), alcoholic liver (Neyrinck et al., 2017), type 2 diabetes (Amandine et al., 2017; Everard et al., 2013b), type 1 diabetes (Hansen et al., 2012), stress-related disorders (McGaughey et al., 2019), and so on. Furthermore, it was found that AKK could modulate gut intestinal tumor development and microbiota composition in mice (Dingemanse et al., 2015). AKK could also activate the proliferation of intestinal cells and protect poultry from intestinal mucosal damage (Zhu et al., 2020).

4 | INFLUENCING FACTORS OF AKK ABUNDANCE

4.1 | Diet

Diet is one of the most direct and significant factors influencing intestinal microbiota in human and animals. High-fat intake damaged gut barrier integrity and increased translocation of proinflammatory gut bacteria; however, AKK administration restored gut barrier function and reduces endotoxemia (Underwood, 2014).

It was found that the high-fat diet-induced metabolic disorders (including fat-mass gain, metabolic endotoxemia, adipose tissue inflammation, and insulin resistance) could be reversed by AKK treatment, while AKK abundance decreased in obese and type 2 diabetic mice model (Everard et al., 2013). Kefir could up-regulate AKK ratio and down-regulate Alistipes indistinctus of the hamster model (Gao et al., 2017). After drinking Pu-er tea for 4 weeks, the healthy young volunteers had four dominant microflora, namely, Firmicutes, Bacteroidetes, Proteobacteria, and Verrucomicrobia. Among them, the relative abundance of Verrucomicrobia changed significantly, with a trend of increasing first, then decreasing slightly, and increasing as a whole. The quantity of AKK increased significantly during the intervention of Pu-er tea (Gao, 2017). In the gut of Yukihikari (a Japanese rice) fed mice, AKK was associated with the intestinal barrier function and intestinal permeation of food antigens (Sonoyama et al., 2009).

4.2 | Antibiotic

Antibiotic treatment affects the composition of intestinal microflora. AKK abundance was fourfold lower in the subtherapeutic-antibiotic-treat than the control (Christine, 2014). AKK was sensible to doxycycline and imipenem, while resistant to vancomycin and metronidazole (Dubourg et al., 2013). AKK level in the vancomycin-treated mice was negatively related to NKG2D level, whereas AKK level was not increased in the ampicillin-treated mice (Hansen et al., 2013).

4.3 | Medicines

AKK abundance was higher in mice treated with metformin than the control, which suggested that the administration in favor of AKK may be a potential treatment for type 2 diabetes (Lee & Koa, 2014; Shin et al., 2014). In C57BL/6J mice with experimental autoimmune encephalomyelitis, the relative abundance of AKK decreased after
Omeprazole treatment (Sand et al., 2014). In Zucker (fa/fa) rats given pterostilbene for 6 weeks, the levels of Firmicutes phyla decreased and that of Verrucomicrobia phyla and AKK increased (Etzeberria et al., 2017).

4.4 Probiotics and prebiotics

Lactobacillus casei SY13 and lactulose had the remarkable effect on increasing the abundance of AKK in the intestine of mice; and the mice age and gavage-time could affect remarkably the abundance of AKK. At the same time, a long gavage-time could extend the retention time of AKK (Ti et al., 2018). After 135 obese participants consumed one capsule (10^{10} CFU) of *Bifidobacterium animalis* subsp. *lactis* for 3 months, AKK abundance was significantly increased ($p = 0.003$)(Pedret et al., 2018). In the rats inoculated long-chain arabinoxylans and inulin for 6 weeks, AKK abundance increased continuously in cecum, colon, and feces (Van den Abbeele et al., 2011). The microbiota including AKK were also altered by oligofructose intake during pregnancy and lactation (Paul et al., 2016).

4.5 Other natural products

Flaxseed diet altered the fecal microbial community structure, including a 30-fold reduction in AKK in face (Power et al., 2016). After 8-week-old C57BL/6 male mice were fed with fucoidans for 16 weeks, AKK was highly enriched (Shang et al., 2017). Similarly, the rhubarb extract altered the intestinal microbiota in favor of AKK (Neyrinck et al., 2017). Supplementation of culture broth with ellagic acid did not change AKK growth, while the addition of pomegranate extract altered the intestinal microbiota in favor of AKK (Neyrinck et al., 2017). After 135 obese participants consumed one capsule (10^{10} CFU) of *Bifidobacterium animalis* subsp. *lactis* for 3 months, AKK abundance was significantly increased ($p = 0.003$)(Pedret et al., 2018). In the rats inoculated long-chain arabinoxylans and inulin for 6 weeks, AKK abundance increased continuously in cecum, colon, and feces (Van den Abbeele et al., 2011). The microbiota including AKK were also altered by oligofructose intake during pregnancy and lactation (Paul et al., 2016).

4.6 Temperature

Cold exposure led to significant changes in the gut microbiota composition and reduced the quantity of AKK (Chevalier et al., 2015).

5 POSSIBILITY OF BECOMING COMMERCIAL PROBIOTICS AND CONCLUSION

The mucus layer, which covers the intestinal epithelial, can serve as an ecological niche for human intestinal bacteria, such as mucosa-associated bacteria—AKK. AKK, one novel candidate for promising next-generation probiotics, have been searched among the gut bacteria that are associated with health. AKK can be colonized in a wide range, with unrelated to the intestinal location, dietary, and mucin type (Ouwerkerk et al., 2013). However, if people want to use AKK for foods, dietary supplements, medical foods, and medical drugs, this will depend on demonstration of safety and efficacy for these uses within regulatory frameworks (Cani & Hul, 2015; Hill et al., 2014). For example, there exist four obvious problems: (1) To date, AKK available strains is too few, which include several cultures (such as DSM 22959, ATCCBAA-835T) in a majority of papers. (2) AKK’s mechanism is not completely clear. We have realized the relationship between AKK’s amounts and certain targets, but it is not sure what has happened between them. (3) At present, there are no appropriate application methods for AKK, such as fecal microbiota transplantation is not the reliable administration routes yet. (4) The effective dose of AKK required for treatment and probiotic-function to humans remains unknown.

In summary, as one of the potential functional probiotics, AKK has a profound impact on host immunity, metabolism, and disease, and shows good symbiotic characteristics. Therefore, there is no denying that AKK has a wide application prospect and market potential. Moreover, AKK’s inactivated cells or metabolites may exist the unpredictable value. The future work should focus on clarifying the safety and function of AKK to the human intestinal tract, and developing various means for regulating the quantity of AKK.

ACKNOWLEDGMENTS

This work was financially supported by grants from Academy of National Food and Strategic Reserves Administration P.R. China (Grant No. ZX1712).

I would like to express my gratitude to all colleagues of Fermentation biotechnology team, who helped me in the process of scientific research.

CONFLICT OF INTEREST

The authors confirm that they have no conflict of interest to declare for this publication.

ORCID

Wei Han https://orcid.org/0000-0002-4292-0150

REFERENCES

Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M., & Cani, P. D. (2013a). *Akkermansia muciniphila* commune avec l’épithélium intestinal pour contrôler le développement de l’obésité du diabète de type 2. *Diabetes & Metabolism*, 39, A1–A20. https://doi.org/10.1016/S1262-3636(13)71692-6

Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M., & Cani, P. D. (2013b). Cross-talk between *Akkermansia muciniphila* and intestinal epithelium controls diet-induced obesity. *PNAS*, 110(22), 9066–9071. https://doi.org/10.1073/pnas.1219451110

Ropot, A. V., Karamzin, A. M., & Sergeyev, O. V. (2020). Cultivation of the next-generation probiotic *Akkermansia muciniphila*, methods of its safe delivery to the intestine, and factors contributing to its growth in vivo. *Current Microbiology*, 77, 1363–1372. https://doi.org/10.1007/s00284-020-01992-7

Neyrinck, A. M., Etzeberria, U., Taminiau, B., Daube, G., Hul, M. V., Everard, A., Cani, P. D., Bindels, L. B., & Delzenne, N. M. (2017). Rhubarb extract
prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota. Molecular Nutrition Food Research, 61(11), 1500899. https://doi.org/10.1002/mnfr.201500899

Caputo, A., Dubourg, G., Croce, O., Gupta, S., Robert, C., Papazian, L., Rolain, J.-M., & Raoult, D. (2015). Whole-genome assembly of Akkermansia muciniphila sequenced directly from human stool. Biology Direct, 10(5), 1–11. https://doi.org/10.1186/s13062-015-0041-1

Hansen, C. H. F., Holm, T. L., Krych, L., Andresen, L., Nielsen, D. S., Rune, I., Hansen, A. K., & Skov, S. (2013). Gut microbiota regulates NKG2D ligand expression in intestinal epithelial cells. European Journal of Immunology, 43, 447–457. https://doi.org/10.1002/eji.201242462

Christine, T. P. (2014). The structure and function of the murine gut microbiome in sub-therapeutic antibiotic induced obesity. George Washington University.

Chevalier, C., Stojanović, O., Colin, D. J., Suarez-Zamarano, N., Tarallo, V., Veyrat-Durex, C., Rigo, D., Fabbiano, S., Stevanović, A., Hageman, S., Montet, X., Seimbille, Y., Zamboni, N., Hapfelmeier, S., & Trajkovski, M. (2015). Gut microbiota orchestrates energy homeostasis during cold. Cell, 163, 1360–1374. https://doi.org/10.1016/j.cell.2015.11.004

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Hutson, J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sander, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506–514. https://doi.org/10.1038/nrgastro.2014.66

Michalovich, D., Rodriguez-Perez, N., Smolsinska, S., Pirozynski, M., Mayhew, D., Uddin, S., Van Horn, S., Sokolowska, M., Altunbulakli, C., Eljaszewicz, A., Pugin, B., Barcik, W., Kurnik-Lucka, M., Saunders, K. A., Simpson, K. D., Schmid-Grendelmeier, P., Ferstl, R., Frei, R., Sievi, N., Kohler, M., ... O’Mahony, L. (2019). Obesity and disease severity magnify disturbed microbiome-immune interactions in asthma patients. Nature Communications, 10(10), 5711. https://doi.org/10.1038/s41467-019-13751-9

Derrien, M., Vaughan, E. E., Plugge, C. M., & De Vos, W. M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 54(5), 1469–1476. https://doi.org/10.1099/ijs.0.07277-0.9423-8

Dingemans, C., Belzer, C., Van Hjum, S. A. F. T., Gunthel, M., Salvatori, D., Dunnen, J. T. D., Kuijper, E. J., De Veere, D., De Vos, W. M., Van Ommen, G. B., & Robanus-Maandag, E. C. (2015). Akkermansian mucinophiland Helicobacter typhlonius modulate intestinal tumor development in mice. Carcinogenesis, 36(11), 1388–1396. https://doi.org/10.1093/carcin/bgv120

Etxeberria, U., Hijona, E., Aguirre, L., Milagro, F. I., Bujanda, L., Rimando, A. M., Martinez, J. A., & Portillo, M. P. (2017). Pterostilbene-induced modulation of 39 Akkermansia muciniphila expression on intestinal epithelial cells. J. Nutrigenetics and Genomics, 800. https://doi.org/10.1038/s41598-019-51878-3

Guo, Z., Zhang, J., Wu, F., Zhang, M., Ou, Z., Jie, Z., Yan, Q., Li, P., Yi, J., & Peng, Y. Z. (2017). Genome sequencing of 39 Akkermansia muciniphila isolates reveals its population structure, genomic and functional diversity, and global distribution in mammalian gut microbiotas. BMC Genomics, 18, 800. https://doi.org/10.1186/s12864-017-4195-3

Hansen, C. H., Krych, L., Nielsen, D. S., Vogensen, F. K., Hansen, L. H., Serensen, J. S., Buschard, K., & Hansen, A. K. (2012). Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse. Diabetologia, 55, 2285–2294. https://doi.org/10.1007/s00125-012-2564-7

Earley, H., Lennon, G., Balfie, A., Coffey, J. C., Winter, D. C., & O’Connell, P. R. (2019). The abundance of Akkermansia muciniphila and its relationship with sulphated colonic mucins in health and ulcerative colitis. Scientific Reports, 9, 15683. https://doi.org/10.1038/s41598-019-51878-3

Henning, S. M., Summanen, P. H., Lee, R. P., Yang, J. P., Finegold, S. M., Heber, D., & Li, Z. P. (2017). Pomegranate ellagitannins stimulate the growth of Akkermansia muciniphila in vivo. Anaerobe, 43, 56–60. https://doi.org/10.1016/j.anaerobe.2016.12.003

Huang, K. (2015). Gene cloning expression and enzymatic characterization of sialidases isolated from Akkermansia muciniphila. Nanjing Agricultural University.

Huang, K., Wang, M. M., Kulinch, A., Yao, H. L., Ma, H. Y., Martinez, J. E., Duan, X. C., Chen, H., Cai, Z. P., Flitsch, S. L., Liu, L., & Vogelmi, J. (2015). Biochemical characterization of the neumaminidase pool of the human gut symbiont Akkermansia muciniphila. Carbohydrate Research, 415, 60–65. https://doi.org/10.1016/j.carres.2015.08.001

Ouwerkerk, J. P., de Vos, W. M., & Belzer, C. (2013). Glycobiome: Bacteria and mucus at the epithelial interface. Best Practice & Research Clinical Gastroenterology, 27(1), 25–38. https://doi.org/10.1016/j.bjg.2013.03.001

McGaughy, K. D., Yilmaz-Swenson, T., Elsayed, N. M., Cruz, D. A., Rodriguez, R. M., Kritzer, M. D., Peterchev, A. V., Roach, J., Wetsel, W. C., & Williamson, D. E. (2019). Relative abundance of Akkermansia spp. and other bacterial phyotypes correlates with anxiety- and depressive-like behavior following social defeat in mice. Scientific Reports, 9, 3281. https://doi.org/10.1038/s41598-019-40140-5

Karlsson, C. L. J., Önnerråt, J., Xu, J., Molin, G., Ahrenk, S., & Thorngren-Jerneck, K. (2012). The microbiota of the gut in preschool Children with normal and excessive body weight. Obesity, 20, 2257–2261. https://doi.org/10.1038/oby.2012.110

Fenn, K. (2014). Mechanisms of bacterial unciuiculility in the human gut microbe. Northeastern University.

Sonoyama, K., Ogasaawara, T., Goto, H., Yoshida, T., Takemura, N., Fujiwara, R., Watanabe, J., Ito, H., Morita, T., Tokunaga, Y., & Yanagihara, T. (2009). Comparison of gut microbiota and allergic reactions in BALB/c mice fed different cultivars of rice. British Journal of Nutrition, 103, 218–226. https://doi.org/10.1017/S0007114509991589

Power, K. A., Lepp, D., Zarepoor, L., Monk, J. M., Wu, W., Tsao, R., & Liu, R. H. (2016). Dietary flaxseed modulates the colonic microenvironment in healthy C57Bl/6 male mice which may alter susceptibility to gut-associated diseases. The Journal of Nutritional Biochemistry, 28, 61–69. https://doi.org/10.1016/j.jnutbio.2015.09.028

Lee, H., & Koa, G. P. (2014). Effect of metformin on metabolic Improvement and gut microbiota. Applied Environment Microbiology, 80(19), 5935–5943. https://doi.org/10.1128/AEM.01357-14
Li, Z. P., Henning, S. M., Lee, R. P., Lu, Q. Y., Summanen, P. H., Thames, G., Downes, J., Tseng, C. H., Finegold, S. M., & Heber, D. (2015). Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers. Food & Function, 6, 2487–2495. https://doi.org/10.1039/c5fo00669d

Rodríguez-Daza, M. C., Daoust, L., Bouktarkat, L., Pilon, G., Varin, T., Dudonné, S., Levy, É., Marette, A., Roy, D., & Desjardins, Y. (2020). Wild blueberry proanthocyanidins shape distinct gut microbiota profile and influence glucose homeostasis and intestinal phenotypes in high-fat high sucrose fed mice. Scientific Reports, 10, 2217. https://doi.org/10.1038/s41598-020-58663-1

Underwood, M. A. (2014). Intestinal dysbiosis: Novel mechanisms by which gut microbes trigger and prevent disease. Preventive Medicine, 65, 133–137. https://doi.org/10.1016/j.ypmed.2014.05.010

Derrien, M., Belzer, C., & de Vos, W. M. (2017). Akkermansia muciniphila and its role in regulating host functions. Microb Pathogenesis, 106, 171–181.

Ou, Z. H., Deng, L. L., Lu, Z., Wu, F. F., Liu, W. T., Huang, D. Q., & Peng, Y. Z. (2020). Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutrition and Diabetes, 10, 12. https://doi.org/10.1038/s41387-020-0115-8

Cani, P. D., & Hul, M. V. (2015). Novel opportunities for next-generation probiotics targeting metabolic syndrome. Current Opinion in Biotechnology, 32, 21–27. https://doi.org/10.1016/j.copbio.2014.10.006

Paul, H. A., Bomhof, M. R., Vogel, H. J., & Reimer, R. A. (2016). Diet-induced changes in maternal gut microbiota and metabolic profiles influence programming of offspring obesity risk in rats. Scientific Reports, 6, 20683. https://doi.org/10.1038/srep20683

Pedret, A., Valls, R. M., Calderón-Pérez, L., Llaudró, E., Companies, J., Pla-Pagà, L., Moragas, A., Martín-Luján, F., Ortega, Y., Giralt, M., Caimari, A., Chenoll, E., Genovés, S., Martorell, P., Codoñer, F. M., Ramón, D., Arola, L., & Solà, L. A. (2018). Effects of daily consumption of the probiotic Bifidobacterium animalis subsp.lactisCECT 8145 on anthropometric adiposity biomarkers in abdominally obese subjects: A randomized controlled trial. International Journal of Obesity, 43, 1863–1868. https://doi.org/10.1038/s41366-018-0220-0

Van den Abbeele, P., Gérard, P., Rabot, S., Bruneau, A., El Aidy, S., Derrien, M., Kleerebezem, M., Zoetendal, E. G., Smidt, H., Verstraete, W., Van de Wiele, T., & Possemiers, S. (2011). Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environmental Microbiology, 13(10), 2667–2680. https://doi.org/10.1111/j.1462-2920.2011.02533.x

El Hage, R., Hernandez-Sanabria, E., & Van de Wiele, T. (2017). Emerging trends in “Smart Probiotics”: Functional consideration for the development of novel health and industrial applications. Frontiers in Microbiology, 8, 1889. https://doi.org/10.3389/fmicb.2017.01889

Sands, S. A., Tsau, S., Yankee, T. M., Parker, B. L., Ericsson, A. C., & LeVine, S. M. (2014). The effect of omeprazole on the development of experimental autoimmune encephalomyelitis in C57BL/6J and SJL/J mice. BMC Research Notes, 7(605), 1–11. https://doi.org/10.1186/1756-0500-7-605

Sender, R., Fuchs, S., & Milo, R. (2016). Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 164, 337–340. https://doi.org/10.1016/j.cell.2016.01.013

Seregin, S. S., Golovchenko, N., Schaf, B., Chen, J., Pudlo, N. A., Mitchell, J., Baxter, N. T., Zhao, L., Schloss, P. D., Martens, E. C., Eaton, K. A., & Chen, G. Y. (2017). NLRP6 protects IL10/- mice from colitis by limiting colonization of Akkermansia muciniphila. Cell Report, 19, 733–745. https://doi.org/10.1016/j.celrep.2017.03.080

Shang, Q. S., Song, G. R., Zhang, M. F., Shi, J. J., Xu, C. Y., Hao, J. J., Li, G., & Yu, G. L. (2017). Dietary fucoidan improves metabolic syndrome in association with increased Akkermansia population in the gut microbiota of high-fat diet-fed mice. Journal of Functional Foods, 28, 138–146. https://doi.org/10.1016/j.jff.2016.11.002

Shin, N. R., Lee, J. C., Lee, H. Y., Kim, M. S., Whon, T. W., Lee, M. S., & Bae, J. W. (2014). An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut, 63, 727–735. https://doi.org/10.1136/gutjnl-2012-303839

Tri, P. P., Wang, J. M., Pang, X. Y., & Lu, J. P. (2018). Effects of Lactobacillus casei SY13 and its symbiotic on the abundance of Akkermansia muciniphila in mice intestine tract. Science Technological Food Industry, 39(10), 308–314. https://doi.org/10.13386/j.issn1002-0306.2018.10.057

Wang, L. Y., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Aingley, M. T., &Conlon, M. A. (2011). Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in faces of children with autism. Applied and Environmental Microbiology, 77(18), 6718–6721. https://doi.org/10.1128/AEM.02122-11

Wang, Y. T., Li, L. L., Ye, C. Q., Yuan, J. Y., & Qin, S. (2020). Alginate oligosaccharide improves lipid metabolism and inflammation by modulating gut microbiota in high-fat diet fed mice. Applied Microbiology and Biotechnology, 104, 3541–3554. https://doi.org/10.1007/s00253-020-10449-7

Ye, J. X. (2009). Intestinal bacteria associated with colitis and inflammatory bowel disease. University of Californiariaversit. Zhao, F., & Li, C. B. (2017). Characteristics of intestinal bacterium Akkermansia muciniphila and the association with host health. Microbiology China, 44(6), 1458–1463. https://doi.org/10.13344/j.microbialchina.160740

Zhu, L. D., Lu, X. X., Liu, L., Voglmeir, J., Zhong, X., & Yu, Q. H. (2020). Akkermansia muciniphila protects intestinal mucosa from damage caused by S. pullorum by initiating proliferation of intestinal epithelium. Veterinary Research, 51, 34. https://doi.org/10.1186/s13567-020-00755-3

How to cite this article: Han, W., & Zhuang, X. (2021). Research progress on the next-generation probiotic Akkermansia muciniphila in the intestine. Food Frontiers, 1–6. https://doi.org/10.1002/fft2.87