Movement of water in compacted bentonite and its relation with swelling pressure

Journal:	Canadian Geotechnical Journal
Manuscript ID	cgj-2019-0219.R1
Manuscript Type:	Article
Date Submitted by the Author:	16-Jun-2019
Complete List of Authors:	Wang, Hailong; Waseda University, Waseda Research Institute for Science and Engineering
Shirakawabe, Takumi; Waseda University, Department of Civil and Environmental Engineering	
Komine, Hideo; Waseda University, Department of Civil and Environmental Engineering	
Ito, Daichi; Waseda University, Department of Civil and Environmental Engineering	
Gotoh, Takahiro; Waseda University, Materials Characterization Central Laboratory	
Ichikawa, Yuta; Waseda University, Department of Civil and Environmental Engineering	
Chen, Qiao; Waseda University, Department of Civil and Environmental Engineering	
Keyword:	Bentonite, swelling pressure, XRD, diffusivity, multi-ring mold
Is the invited manuscript for consideration in a Special Issue?	Not applicable (regular submission)

https://mc06.manuscriptcentral.com/cgj-pubs
Movement of water in compacted bentonite and its relation with swelling pressure

Hailong WANG1* Takumi SHIRAKAWABE2 Hideo KOMINE3

Daichi ITO2 Takahiro GOTOH4 Yuta ICHIKAWA2 Qiao CHEN2

1*: Corresponding author, whlxy2002@aoni.waseda.jp

Institute for Sustainable Future Society, Waseda University

2: Department of Civil and Environmental Engineering, Waseda University

3: Faculty of Science and Engineering, Waseda University

4: Materials Characterization Central Laboratory, Waseda University
Abstract

A testing procedure was proposed to study movement water in compacted bentonite and the development of swelling pressure \((p_s)\) when compacted bentonite specimens were wetted. In this procedure, a multi-ring mold was introduced for \(p_s\) measurements, after which the specimen was sliced for X-ray diffraction test to find movement of water in the interlayer space of montmorillonite. Results revealed a relation between four phases of \(p_s\) development and evolution of four states of interlayer water molecule arrangement of montmorillonite \((L)\): when \(p_s\) reached its first peak in phase I, \(L\) moved from 1 row water arrangement \((1w)\) to at least 2w; when \(p_s\) decreased and re-increased in phase II or III, \(L\) moved from 2w to at least 3w; and when \(p_s\) reaches a steady state in phase IV for \(L = 3w\). The \(w\) distribution in the compacted bentonite was also measured as water absorption time increased. Based on those results, the global water movement was estimated in terms of diffusivity \((D)\) following a method employing Boltzmann transform. Results of comparisons implied that \(D\) calculated using this method well matched experimental data well and the method was rather easily handled.

Keywords: Bentonite, swelling pressure, XRD, diffusivity, multi-ring mold
Nomenclature

\(\chi\): Boltzmann transform \(=z/\sqrt{t}\)

\(\lambda\): wavelength of incident wave \(=1.5418 \text{ Å for Cu}\alpha\)

\(2\theta\): angle between incident and reflected waves in XRD test

\(\theta_{\text{peak}}\): \(\theta\) at peak maximum

\(\Theta\): volumetric water content.

\(\Theta_i\) and \(\Theta_s\): \(\Theta\) at initial and saturated conditions, respectively

\(\Theta_z\): \(\Theta\) at position \(z\)

\(\rho_d\): dry density of the compacted specimens

\(\rho_{\text{ini}}\) and \(\rho_{\text{fini}}\): \(\rho_d\) before and after water absorption, respectively

\(\rho_{\text{XRD}}\): \(\rho_d\) of slices for XRD tests

\(\rho_w\): water density

\(A\) and \(B\): parameters for relation between \(\Theta\) and \(\chi\)

\(A'\): section area of the specimen

\(D\): soil water diffusivity \(=K(\Theta)\frac{d\theta}{dt}\)

\(d_{001}\): basal spacing of montmorillonite

\(G_s\): specific gravity

\(H=H(z, t)\): pressure head of the soil water

\(IA\): X-ray irradiated area by the incident wave

\(K(\Theta)\): hydraulic conductivity function of the soil

\(K_\text{V1}\): tested material Kunigel V1

\(L\): state of interlayer water molecule arrangement of montmorillonite. \(L=0w, 1w, 2w\) and \(3w: 0, 1, 2, 3\) rows of water molecules
n: a positive integer ($=1$)

n': effective porosity ($=\Theta_s-\Theta$).

Phases I, II, III, IV: phases of swelling pressure development

p_s: swelling pressure

Q: amount of absorbed water

RH: relative humidity

S_s: degree of saturation

t: water absorption time

Types I and II: specimen installation types, see Fig. 4d and 3e

$v(z,t)$: volumetric flux or flow velocity of soil water

w: gravimetric water content

w_{ini}: w under the air-dried condition

z: position, $z=0$ at bottom of the specimen and upwards as positive
1. Introduction

Geological disposal for the high level radioactive waste (HLW) is expected to be commercialized in many countries by the middle of the 21st century (METI 2018). In Japan, it has been decided that a disposal system will be placed in stable host rock formation more than 300 m underground (NUMO 2019). To guarantee the safety of the disposal system over a long timescale (i.e. several thousands to several tens of thousands years), a multi-barrier system consisting of engineered and natural barriers is under consideration as shown in Fig. 1 (JNC 1999, p IV-63). In such a system, bentonite is selected as a candidate material for buffer and backfill materials because of its excellent natural properties after being heavily compacted. One crucially important periods for this system is expected to be the saturation process during which ground water fills voids in the initially unsaturated buffer and backfill materials and engineering gaps of the disposal pits. This period is expected to last approximately 50-100 years, during which the surrounding temperature might reach a maximum level (e.g. a maximum temperature of 100 °C is a value for design in Japanese project) because of the extensive release of the radioactive energy from the waste (JNC 1999, p IV-94). Concerning on the saturation process of buffer and backfill materials, the water movement behaviors in the compacted bentonite is studied.

For most bentonite candidates for buffer materials, montmorillonite, a clay mineral belonging to smectite group, is the main component: it makes the bentonite swell when wetted. The swelling feature of montmorillonite results from penetration of water molecules into the 2:1 crystalline layer structure of montmorillonite. Consequently, at least three types of water exist in the compacted bentonite: interlayer water in montmorillonite, absorbed water sounding the outside surface of montmorillonite, and free water in voids between soil particles. Movements of interlayer water and water of all kinds (global water) are discussed in this study.

Movement of interlayer water has been extensively studied experimentally (Moore and Hower 1986; Watanabe and Sato 1988; Iwasaki and Watanabe 1988; Olis et al. 1990; Sato et al. 1992; Yamada et al. 1994; Fernandez et al. 2004; Morodome and Kawamura 2009) and numerically (Ferrage et al. 2005; Holmboe et al. 2012). However, in the past studies, water vapor with controlled relative humidity (up to 100%) rather than liquid water was mostly used to cure powder bentonite rather than compacted one. Under such testing conditions, maximum water content of cured bentonite was limited and the
interlayer movement might be different between powder and compacted bentonites. Additionally, in the above mentioned works, no attempt was made to correlate swelling pressure and interlayer water movement. In this study, a testing procedure is designed to measure the swelling pressure development when it is wetted, and then to measure the interlayer water movement of the bentonite. Discussions are made on the relation between development of swelling pressure and movement of interlayer water. For the movement of global water, some students were conducted to obtain the diffusivity of water in compacted bentonite (Takeuchi et al. 1995; Chijimatsu et al. 2000; Komine et al. 2018). In this work, diffusivity was also studied in the same manner, while a different calculation method is proposed, which provides good accuracy and simple calculation.

2. Testing program and methodology

2.1 Testing material

A commercial bentonite, Kunigel V1 (K_V1) produced from Tsukinuno mine, Japan, was used for this study. The swelling characteristics of K_V1 has been widely investigated (Komine and Ogata 1994; Sun et al. 2009 and among others). Its main mineral components were reported by Ito et al. (1993, 1994) based on several analytical methods. Their results were reproduced in Table 1. It is apparent that montmorillonite and chalcedony occupy more than 80% by mass. The cation exchange capacity (CEC) and amount of extractable cations (EXC) are also listed in Table 1, which were obtained base on method of JGS (2009) while considering the results by Okazaki et al. (1961) and Rollins and Pool (1968). It can be seen that Na\(^+\) and Ca\(^{2+}\) are dominant in K_V1. The specific gravity \((G_s)\) shown in Table 1 is an average value of six data obtained from two independent tests according to (JIS 2009a).

It is not straightforward to measure the gradation curve of K_V1 by the settlement method following JIS (2009b), which bases on the Stokes' law. JIS (2009b) recommends a mass of ~50 g for clayey material to mix with water for a 1 L solution. Tests by varying the mass of K_V1 from 5-36g were conducted and the results are plotted in Fig. 2. It can be seen that the passing percentage exceeds 100% significantly for 36g cases, which indicates that Stokes' law may be not applicable in these cases. Curves obtained by 15-30g cases seem reasonably consistent and repeatable, while curves deviate when further reducing mass to 5-10g. Two points obtained by Ito et al. (1994) with settlement and sieving methods are close to 20g cases. They pointed out about 5% variation affected by testing methods. An average line based on 15-30g cases is recommended herein.
Fig. 3 depicts an XRD profile of an air dried K_V1 specimen compacted to a dry density (ρ_d) of 1.45 Mg/m3. The laboratory environments for air drying are controlled for a relative humidity RH of ~50% and temperature of ~23°C. The corresponding minerals of peaks in Fig. 3 are determined based on Komine and Ogata (1994), Komine (2004), and Ito and Komine (2008). The peak near $2\theta=7^\circ$ is the reflection of 001 surface of montmorillonite and is the object detailed observed in this study. It is noteworthy that the peaks indicated by quartz might also be chalcedony because their reflection positions are the same (Ito et al. 1994).

2.2 Test apparatus, procedure, and programs

Swelling pressure and XRD tests were conducted to measure interlayer and global movements of water and swelling pressure (p_s). The apparatus used to measure swelling pressure of compacted K_V1 powder is shown in Fig. 4. Fig. 4a shows a traditional swelling pressure apparatus by which the vertical and lateral displacements of the specimen can be constrained by clamps and a metal mold, respectively. In this study, the metal mold was changed to a multi-ring mold (Fig. 4b and 4c). The multi-ring mold was composed of five mold rings (thickness: 2 mm), and four two-piece rings (thickness: 0.25–0.30 mm) installed between mold rings. The specimen was prepared by statically compressing the air dried K_V1 powder to 28 mm in diameter and 11 mm in height directly in the multi-ring mold. Then the specimen was installed to the apparatus in the mode of either Fig. 4d or Fig. 4e. The two methods were tried to access any effect of mold wall friction on test results. For Fig. 4d, an extra mold was mounted on the multi-ring mold to seal the bottom side of multi-ring mold by O-ring. For Fig. 4e, a larger cap and a filter paper were mounted directly on multi-ring mold and a soft silicone O-ring was used at bottom for sealing, by which the side wall friction of the mold was expected to be alleviated. In both cases, an outer ring was used to avoid squeezing out of two-piece rings during the test. After installing the specimen, a small vertical stress was applied for contact. After fixing the clamp, p_s and vertical displacement were recorded while supplying water from the bottom for a certain time period. The specimen conditions and water absorption time (t) are shown in Table 2. Nine specimens were prepared for t varying from ~2 to ~450 hr. The average value of the air dried water content (w_{ini}) of the bentonite powder before compression was 7.9% and the average initial dry density after compression (ρ_{dini}) was 1.54 Mg/m3. The specimen volume would generally swell slight during water absorption because of the system compliance, although final dry densities after water absorption (ρ_{df}) of two specimens (t = 139 and 188 hr.) were found to increase according to vertical displacement measurements.
After water absorption, the multi-ring mold was taken out and gripped to constrain specimen deformation (Fig. 5a). Then, two-piece rings were removed and the specimen was sliced carefully one-by-one into five slices by using a thin saw (thickness: 0.20-0.25mm). The slices were then immediately sealed by Parafilm for at least 24 hr. under the constrained condition. It is noteworthy that even though much care was taken to reduce specimen disturbance and deformation, a certain amount of swelling or elastic rebound or both might occur during slicing work. The XRD tests were conducted on 45 slices under the instrumental setup of XRD equipment (RIGAKU RINT-Ultima III) shown in Fig. 5 and Table 3. As shown in Table 3, X-ray scan range was set as 2.7-20° with the scanning speed of 10°/min (i.e. <2 min for one slice). The testing duration was limited to the greatest extent possible because w may change and non-uniform deformation of slices might occur in the laboratory environment. The employment of a 1-D detector with 128 strips enhanced the scanning speed and guaranteed a sufficient reflected intensity. The irradiated area (IA) on the slices by the X-ray incident wave increases as diffraction angle 2θ (the angle between incident and reflected waves) decreases. An example of the calculated IA is shown in Fig. 5b-5e. IA slightly exceeds the area of the slice for 2θ=2.7°-3.43°, which would reduce the reflection intensity. Because 2θ of the peak interested is generally larger than 3.43°, it poses no issue for current study.

3. Testing results

3.1 Development of swelling pressure

The measured p_s is shown in Fig. 6 and t is shown in the legend. It can be seen from Fig. 6a that p_s curves are generally converged to 0.8-0.9 MPa for specimens with $t>100$ hr., although the case for $t=453$ hr. deviates from others somewhat. Values of p_s with t up to 50 hr. are shown in Fig. 6b, from which it can be seen that p_s after passing their maxima varies in a band of 0.7-0.8 MPa, except the case of $t=43.1$ hr. Additionally, it can also be seen that p_s curves gather to two groups for $t<5$ hr. and the three specimens with gentle increasing slopes are those with the specimen installation type I (Fig. 4d and Table 2). This fact implies that for instillation type I, measurement may be delayed because of the side wall friction. However, the side wall friction seems not to affect the final magnitudes of p_s.

The variation of p_s curves of similar specimens in Fig. 6 is partially because some detailed optimizations of test procedures conducted between tests. On the other hand, it is indeed a task to produce technically identical p_s curves especially as ρ_d increases (Pusch 1980;
Sridharan et al. 1986; Komine 2004; Tanai et al. 2010; Sun et al. 2013; Wang et al. 2017). The variation of p_s may be induced by very slight differences between tests such as initial dry densities of specimens, compliance of the system, etc., since p_s may significant change accompanying a slight deformation (Komine 2004; Tanaka 2011).

From Fig. 6a, it can be seen that p_s development can be divided roughly into four phases: I, the p_s initial increase phase from beginning of water absorption until ~18 hr.; II, the p_s reduction phase until ~70 hr.; III, the p_s re-increase phase until ~130 hr.; and IV, the p_s steady state phase from ~130 hr. In the Discussion section, some attempt is made to connect this apparent phenomenon to the water molecule state in montmorillonite.

3.2 Water content distributions

The distributions of w and degree of saturation (S_r) in specimen after water absorption are shown respectively in Fig. 7a and 7b, respectively. It can be seen that in general, w and S_r increase as the position close to the water supply end and as t increases. It seems that w and S_r are in a steady state for specimens with $t>139$ hr. (note steady state herein stands for a state that no further increase trend of w can be observed). However, the interesting points is that S_r in many positions exceeds 100% significantly (i.e. up to ~130%). Note that S_r was calculated based on w measured by a balance with 0.1 mg accuracy, G_s (=2.792-2.799) and dry density after water absorption (ρ_{df}), which do not scatter large enough to explain $S_r>100\%$ issue fully.

Some attribute $S_r>100\%$ issue to water density $\rho_w>1$ Mg/m3. The interlayer water density in bentonite has been disputed for decades, which was said to be in a range from 0.7 to 1.4 Mg/m3 (Pusch et al. 1990). For compacted bentonite, Jacinto et al. (2012) claimed that water density in Na-montmorillonite may reach 1.32 Mg/m3 because S_r values of their two compacted bentonite specimens were up to 117% if $\rho_w=1$ Mg/m3, and Komine (2018) expressed the same idea since their S_r values ranged in 105%-121% for three types of bentonites in 17 compacted specimens with ρ_s of 1.21-1.85 Mg/m3. The mechanism of intermolecular and surface forces also shown that water density may vary significantly from bulk water when it is sandwiched between two plates as the distance between plates becomes very close, i.e., Nano- or angstrom-level (Israelachvili 2011). Calculation of S_r in Fig. 7b was based on ρ_{df}, while calculation based on dry density of XRD slices (ρ_{XRD}), which is the density after slicing and trimming, is shown in Fig. 8. It can be seen that $S_r \leq100\%$ with only one apparent exception. The difference of dry densities between ρ_{df} and ρ_{XRD} (negative sign for a small ρ_{XRD}) is plotted in Fig. 9, which demonstrates that in general dry density declines, especially at lower parts of specimens after slicing. Fig. 7
and Fig. 8 imply that interlayer water molecules with \(\rho_w > 1 \text{ Mg/m}^3 \) may change to a state or arrangement like bulk water with \(\rho_w = 1 \text{ Mg/m}^3 \) during swelling or elastic rebounding after their \(\rho_s \) was released. If it is true, if may be said that a saturated condition could not be reached from about 3 mm away from the water supply end even for \(t=453 \text{ hr.} \) (~19 days).

3.3 XRD diffractions for different water contents

Three typical results of XRD tests are shown in Fig. 10 (note the range of y-axis scales are all adjusted to the same; y-axis origins are shifted for clear visualization). It can be seen from Fig. 10 that the 001 peak of montmorillonite move gradually to small \(2\theta \) as \(w \) increases and all the peaks move to \(2\theta = -4.6^\circ \) for specimens of \(t=139 \text{ hr.} \). From the peak position, the basal spacing \((d_{001}) \) of montmorillonite can be calculated by Bragg’s law:

\[
\text{Eqn. 1} \quad d_{001} = n\lambda/2\sin\theta_{\text{peak}}
\]

Therein, \(\lambda \): wavelength of incident wave (\(=1.5418 \text{ Å for Cu}\alpha \)), \(n \): a positive integer (\(=1 \)), \(\theta_{\text{peak}} \): \(\theta \) at peak maximum.

The relation between \(d_{001} \) and \(w \) is plotted in Fig. 11, in which data for oven (i.e. \(110^\circ \text{C} \)) and air dried specimens and 10 other specimens cured under different relative humidity (RH) values are also added. It is readily apparent that \(d_{001} \) increases stepwise as \(w \) increases. This results are consistent with past studies (Moore and Hower 1986; Watanabe and Sato 1988; Iwasaki and Watanabe 1988; Olis et al. 1990; Sato et al. 1992; Yamada et al. 1994; Fernandez et al. 2004; Ferrage et al. 2005; Morodome and Kawamura 2009; Holmboe et al. 2012). Note that for the experimental works of past studies above, tested materials were not compacted generally and water vapor with controlled RH rather than liquid water was used to control water content. The general idea for the stepwise \(d_{001} \) is that each step represents a state of water molecule arrangement \((L) \). As shown in Fig. 11 and Fig. 12, a step-up of \(d_{001} \) implies one more row of water molecule increase. Currently, it is generally agreed that there are four states in montmorillonite (i.e., \(L=0w, 1w, 2w \) and \(3w \)) and \(d_{001} \) values shown in Fig. 12 are average values read from Fig. 11.

In past studies, \(d_{001} \) were mostly shown versus RH rather than \(w \). And the tested materials were carefully washed to purify the exchangeable ions (mostly purifying to Na-, Ca-, K- or Mg-montmorillonite). In this study, such a washing process was not conducted considering the practical purpose of bentonite for geological disposal. For comparison purposes, data of past studies for materials produced from the same mine as K_V1 (i.e. Tsukinuno mine, Japan) are summarized in Fig. 13 together with some data in this study.
Temperature was 50°C in Morodome and Kawamura (2009) and room temperature for others. It can be seen that d_{001} of Ca-montmorillonite is one or two steps higher than that of Na-montmorillonite from RH=0% until 60-70%, and they converge thereafter. This observation implies that water molecules might be first absorbed into the interlayer space occupied by Ca$^{2+}$ ions mostly at low w, whereas once w exceeds w corresponding to RH=60-70%, the effect of ion types on d_{001} might be minor. Data in this study generally follow steps of Na-montmorillonite except that at RH=~10%.

4. Discussion

4.1 Relation between L states and p_s phases

To date, the only information used from XRD tests is θ_{peak}, which was often done in the past, because quantitative analyses for clay minerals are generally very complicated and difficult (Moore and Reynolds 1997; Drits and Tchoubar 1990; Dinnebier and Billinge 2008). In this section, the discussion is still limited to qualitative analysis, while efforts are made to extract a bit more information. It can be seen from Fig. 10 that values of θ_{peak} at 001 peaks of montmorillonite might be very close, however, the peak shapes (e.g. magnitude, width, symmetry, etc.) might be very different. The reason of shape difference is expected to be co-existence of L states for a certain w (Moore and Hower 1986; Ferrage et al. 2005; Morodome and Kawamura 2009; Holmboe et al. 2012). In other words, d_{001} of montmorillonite might be not a single value at certain w: it changes depending on w resulting in different peak shapes.

It was assumed that two L states co-existed for a certain w, and the peak decomposition (i.e. profile fitting) was conducted to separate peaks corresponding to each L states in a way illustrated by Fig. 14. First, the peak background (dashed line in Fig. 14a) was assumed as a linear line from the left peak tail (the bottom point of the curve valley) to the right peak tail. The background was subtracted from the profile, after which the resultant peak data were normalized by its intensity maximum, as indicated by hollow squares in Fig. 14b. For the normalized data, two peak positions near the L state lines were designated arbitrarily as the initial condition for peak fitting. The normalized data was fitted using the composed line of two peaks by the least square method. Then the two peaks were regarded respectively as the corresponding peaks of their nearest L states. Pearson VII function was used for the shape of two peaks because it is one of the most popular functions for XRD fitting (Wertheim et al. 1974; Hall Jr 1977; Langford 1978).
instrumental broadening (Klug and Alexander 1974; Bobert and Coelho 1992; Dinnebier and Billinge 2008; Ida et al. 2018) are not considered. And hence, the resultant peak positions might deviate from their corresponding L state lines somewhat.

Results obtained after the above processes are portrayed in Fig. 15. It can be seen that θ_{peak} of decomposed peaks move to small 2θ as t increases until t exceeds about 139 hr. (Fig. 15f). All θ_{peak} of decomposed peaks reach or exceed $L=2w$ state after $t=17.1$ hr., and $L=3w$ state after $t=139$ hr. Decomposed peaks seem to be in a stable state for specimens with $t>139$ hr. (i.e. no further movement trend towards small 2θ).

The corresponding d_{001} of θ_{peak} of decomposed peaks are calculated and plotted together with development of p_s as shown Fig. 16. It can be seen that phases of p_s generally coincide with L states, i.e., p_s reaches its first peak (i.e. phase I) when L moves from 1w to at least 2w throughout the specimen; p_s decreases and re-increases (i.e. phases II and III) when L moves from 2w to 3w; and p_s reaches a steady state (i.e. phase IV) when $L=3w$. These observations imply that development of p_s might be an apparent result of water molecule movement in the interlayer spaces. Currently, there is no data available to know if there are peaks at 2θ smaller than 2.7° (=the minimum 2θ in this study), and it cannot be said that the peaks measured in this study are the peaks before release of p_s during water absorption since specimens apparently deformed during slicing work. However, from Fig. 16, it might be said that water penetration up to $L=3w$ should at least a partial reason of p_s development. This is important because with a d_{001} \leq20 Å, net force between crystalline layers would be attractive force base on diffuse double layer theory. In other words, p_s measured in this ways might at least partially attribute to other mechanics, such as attractive and repel force oscillation when two planes are very close (Israelachvili 2011). On the other hand, there is not experimental evidence neither available to explain phases II (reduction phase) and III (re-increase phase) of p_s. It is expected that the reduction of p_s might be related to collapse behavior of unsaturated soils when wetted. If so, measured p_s would be a net swelling pressure resulted by swelling behavior of montmorillonite and collapse behavior of unsaturated soils.

4.2 Diffusivity for global water movement

With the water content distribution shown in Fig. 7, the global movement of water in the specimens may be evaluated in terms of diffusivity (Philip 1958; Takeuchi et al. 1995; Chijimatsu et al. 2000). The flow equation for the relation of volumetric water content (Θ) – soil water diffusivity (D) is obtainable by combining the extended Darcy equation for unsaturated soil and the conservation of mass (Richards 1931; Klute 1972) as shown
in Eqns. 2-4. Then, Eqn. 4 changes to Eqn. 5 if the elevation potential part ($\partial K / \partial z$) can be ignored.

Eqn. 2 \(\mathbf{v}(z,t) = -K(\Theta)\left(\frac{\partial H}{\partial z} + 1\right) \)

Eqn. 3 \(\frac{\partial \Theta}{\partial t} = -\frac{\partial \mathbf{v}}{\partial z} \)

Eqn. 4 \(\frac{\partial \Theta}{\partial t} = \frac{\partial}{\partial z}\left(D\frac{\partial \Theta}{\partial z}\right) + \frac{\partial K}{\partial z} \)

Eqn. 5 \(\frac{\partial \Theta}{\partial t} = \frac{\partial}{\partial z}\left(D\frac{\partial \Theta}{\partial z}\right) \)

where \(\mathbf{v}(z,t) \): volumetric flux or flow velocity of soil water

\(H=H(z, t) \): pressure head of the soil water

\(K(\Theta) \): hydraulic conductivity function of the soil

\(z \): position, herein set \(z=0 \) at bottom of the specimen and upwards as positive

\(D \): soil water diffusivity = \(K(\Theta) \frac{d\Theta}{dH} \)

Eqn. 5 is of the same form as the nonlinear diffusion equation encountered in diffusion theory. Bruce and Klute (1956) and Jackson (1964) used the Boltzmann transform, of which \(D \) was set as a function of \(\chi = z/\sqrt{t} \). They obtained:

Eqn. 6 \(D(\Theta_z) = \frac{1}{2}\left(\frac{d\chi}{d\Theta}\right)_{\Theta_z} \int_{\Theta_i}^{\Theta_z} \chi d\Theta \)

with initial condition: \(\Theta=\Theta_i \) when \(z>0 \) and \(t=0 \), and boundary condition: \(\Theta=\Theta_s \) when \(z=0 \) and \(t\leq0 \). The subscripts \(i, s \) and \(z \) respectively denote initial (i.e. air dried) and saturated conditions and position. Also, \((d\chi/d\Theta)_{\Theta_z} \) is the slope of relation between \(\chi \) and \(\Theta \) at \(\Theta_z \).

The relation between \(\Theta \) and \(\chi \) is plotted in Fig. 17a based on measurement in Fig. 7. It can be seen that the relation is of a semi-logarithmic form. Eqn. 7 is used for fitting the \(\Theta \) and \(\chi \) relation and \(D(\Theta_z) \) is expressed in Eqn. 8 based on Eqn. 6 and Eqn. 7.

Eqn. 7 \(\chi = A - B\ln(\Theta - \Theta_i) \)
Eqn. 8 \[D(\theta_z) = \frac{AB}{2} - \frac{B^2}{2} (\ln(\theta_z - \theta_1) - 1) \]

It is worth mentioning that \(\theta_z \) in Eqn. 8 may larger than \(\theta_1 \) because, as discussed in Fig. 7, \(S_r \) of some data apparently exceed 100%. Takeuchi et al. (1995) also measured the \(w \) distribution of compacted K_V1 specimen with diameter of 20mm, height of 20mm and \(\rho_d \) of 1.6 Mg/m\(^3\) at \(t=4, 24, 48 \) and 72 hr. Eqn. 7 is also applied to their experimental data as shown in Fig. 17b. It can be seen that the data generally follow Eqn. 7, though some data near \(\theta=20\% \) deviate from the fitting line somehow.

The estimated \(D \) of K_V1 from Eqn. 8 is compared with results of past studies by Takeuchi et al. (1995) and Komine et al. (2018). Takeuchi et al. (1995) used Eqn. 9 to estimate \(D \), of which the change of \(\theta \) between two measurements was taken.

Eqn. 9 \[v = D \frac{\partial \theta}{\partial z}, \quad D = \frac{1}{t_2 - t_1} \int_{z_1}^{t_2} \left(\theta(t) - \theta_{t_1} \right) dz \]

Komine et al. (2018) measured the relation between \(t \) and amount of absorbed water \((Q) \) and derived Eqn. 10 claiming that there was a liner relation between \(\sqrt{t} \) and \(Q \) from the beginning of water absorption until somewhere close to saturation.

Eqn. 10 \[Q = 2A' n' e^{\frac{D}{\sqrt{\pi t}}} \]

where, \(A' \): sectional area of the specimen, \(n' \): effective porosity (\(= \theta_s - \theta_i \)). Consequently, Eqn. 10 might be regarded as an average \(D \).

The relation between \(S_r \) and \(D \) is plotted in Fig. 18 because this relation is more readily available from Takeuchi et al. (1995). In Fig. 18, estimated \(D \) from Eqn. 8 for data by Takeuchi et al. (1995) are also added. It can be seen that calculated \(D \) by Takeuchi et al. (1995) was markedly scatter, and an approximate U-shape curve was drawn as a representative. On the other hand, calculated \(D \) by Eqn. 8 seems to monotonically decrease at upper part of the U-shape curve. Nevertheless, it seems that, in general, all estimated \(D \) values are similar in terms of magnitude.

Predictions for experimental data obtained by Takeuchi et al. (1995) and Komine et al. (2018) using \(D \) obtained from Eqn. 8 are shown in Fig. 19. Fig. 19a shows that the prediction matches experiments of specimen with \(t=4h \) best, whereas partial deviation from experimental data of the other three specimens is observed. The positions of
deviation match deviation positions shown Fig. 17b as expected. The measured Q in Komine et al. (2018) was converted to average S_r, by which the final average S_r was about 105%. Consequently, S_r at different z was predicted by setting a maximum S_r of 105%. The result is shown in Fig. 19b, which indicates that the prediction well matches experimental data for the first about 50 hr. and that S_r is underestimated by ~7% thereafter. All in all, it might be said that estimation method of D (i.e. Eqn. 8) is easy and the predictions are reasonably good.

5. Conclusion

A testing procedure was proposed to study the movements of interlayer and global water movements in compacted bentonite as well as development of swelling pressure (p_s) when compacted bentonite specimens were wetted with water. In this procedure, bentonite powder was compressed in a newly introduced multi-ring mold. Then p_s was measured during a certain water absorption time (t). Finally, the specimens were sliced carefully for X-ray diffraction (XRD) tests to elucidate the movement of water in the interlayer space of montmorillonite. Gravimetric water content (w) for all slices were also carefully measured to observe the evolution of w distribution in the compacted bentonite as t increased, based on which the global water movement in terms of diffusivity (D) was estimated.

From p_s measurements, results demonstrated that p_s development can be divided into four phases: I, p_s initial increase phase from beginning of water absorption until ~18 hr.; II, p_s reduction phase until ~70 hr.; III, p_s re-increase phase until ~130 hr.; and IV, p_s steady state phase from ~130 hr. From XRD tests, it was confirmed that there were four states of interlayer water molecule arrangement of montmorillonite (L): $L=0w, 1w, 2w$ and $3w$, which respectively stand for 0, 1, 2, 3 rows of water molecules in the interlayer space of montmorillonite. Qualitative analysis on 001 peaks of montmorillonite obtained by XRD tests was conducted to decompose L states under a certain w condition. Results shown an apparent relation between phases of p_s development and evolution of L states: p_s reached its first peak in phase I when L moved from 1w to at least 2w throughout the specimen; p_s decreased and re-increased in phases II and III when L moved from 2w to 3w; and p_s reached a steady state in phase IV when $L=3w$. This result implied that p_s would be a net swelling pressure resulted by swelling behavior of montmorillonite and collapse behavior of unsaturated soils, and mechanisms other than diffuse double layer theory might also contribute to p_s measured.

Measurements of the w distribution revealed that the degree of saturation (S_r) of
compacted bentonite exceeded 100% by a considerable degree. This result may be due to
that water density (ρ_w) in the compacted bentonite might be larger than 1 Mg/m3. Based
on the w distribution data, D of compacted bentonite was estimated following the method
employing the Boltzmann transform. Comparisons between this and past studies implied
that D calculated using the method adopted for this study well matched data from past
studies, and the method is rather easy to handle.

Acknowledgements

A part of the present work was performed as a part of activities of Research Institute of
Sustainable Future Society, Waseda Research Institute for Science and Engineering,
Waseda University. Part of this study was supported by the Ministry of Economy, Trade
and Industry (METI) of Japan. The authors would like to thank Dr. Y. Watanabe and
Dr. S. Yokoyama of the Central Research Institute of Electric Power Industry, Japan for
their valuable comments related to swelling pressure and XRD tests. All the XRD tests
were conducted at the Materials Characterization Central Laboratory, Waseda University
(Izutani et al. 2016).
References

Bobert, W.C., and Coelho, A. 1992. A fundamental parameters approach to X-ray line-profile fitting. Journal of Applied Crystallography, 25: 109-121.

Bruce, R.R., and Klute, A. 1956. The measurement of soil moisture diffusivity. Soil Science Society Proceedings, 20: 458-462.

Chijimatsu, M., Fujita, T., Kobayashi, A., and Nakano, M. 2000. Experiment and validation of numerical simulation of coupled thermal, hydraulic and mechanical behaviour in the engineered buffer materials. International Journal of Numerical and Analytical Methods in Geomechanics, 24: 403–424.

Dinnebier, R.E., and Billinge, S.J.L. 2008. Power diffraction theory and practice. RSC Publishing, Cambridge, UK.

Drits, V.A., and Tchoubar, C. 1990. X-ray diffraction by disordered lamellar structures: theory and applications to microdivided silicates and carbons. Springer-Verlag, Berlin Heidelberg.

Fernandez, A.M., Baeyens, B., Bradbury, M., and Rivas, P. 2004. Analysis of the porewater chemical composition of a Spanish compacted bentonite used in and engineered barrier. Physics and Chemistry of the Earth, 29: 105-118.

Ferrage, E., Lanson, B., Sakharov, B.A., and Drits, V. 2005. Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Party I. Montmorillonite hydration properties. American Mineralogist, 90: 1358-1374.

Hall Jr, M.M. 1977. The approximation of symmetric X-ray peaks by Pearson type VII distributions. Journal of Applied Crystallography, 10: 66-68.

Holmboe, M., Wold, S., and Jonsson, M. 2012. Porosity investigation of compacted bentonite using XRD profile modeling. Journal of Contaminant Hydralogy, 128: 19-32.

Ida, T., Ono, S., Hattan, D., Yoshida, T., Takatsu, Y., and Nomura, K. 2018. Improvement of deconvolution–convolution treatment of axial-divergence aberration in Bragg–Brentano geometry. Powder Diffraction, 33 (2): 121-133.

Israelachvili, J.N. 2011. Intermolecular and surface forces (third edition). Elsevier.

Ito, M., Okamoto, M, Suzuki, K., Shibata, M., and Sasaki, Y. 1994. Mineral composition analysis of bentonite. ATOMΟΣ, 36 (11): 1055-1058. (in Japanese)
Ito, M., Okamoto, M, Shibata, M., Sasaki, Y, Danbara, T., Suzuki, K., and Watanabe, T. 1993. Mineral composition analysis of bentonite. PNC Technical Report, PNC TN 8430 93-003. (in Japanese)

Ito, H., and Komine, H. 2008. Dynamic compaction properties of bentonite-based materials. Engineering Geology, 98: 133-143.

Iwasaki, T., and Watanabe, T. 1988. Distribution of Ca and Na Ions in dioctahedral smectites and interstratified dioctahedral mica/smectites. Clays and Clay Minerals, 36 (1): 73-82.

Izutani, C., Fukagawa, D., Miyashita, M., Ito, M., Sugimura, N., Aoyama, R., Gotoh, T., Shibue, T., Igarashi, Y., and Oshio, H. 2016. The materials characterization central laboratory: an open-end laboratory program for fourth-year undergraduate and graduate students. Journal of Chemical Education, 93(9): 1667-1670.

Jackson, R.D. 1964. Water vapor diffusion in relatively dry soil: I. theoretical considerations and sorption experiments. Soil Science Society Proceedings, 28:172-176.

Jacinto, A.C., Villar, M.V., and Ledesma, A. 2012. Influence of water density on the water-retention curve of expansive clays. Geotechnique, 62 (8): 657-667.

JGS 2009. Determination of cation exchange capacity. JGS standard 0261. Japanese geotechnical society.

JIS 2009a. Test method for density of soil particles. JIS standard A1202. Japanese Industrial Standard Committee.

JIS 2009b. Test method for particle size distribution of soil. JIS standard A1204. Japanese Industrial Standard Committee.

JNC 1999. Technical reliability of the geological disposal for high-level radioactive waste in Japan - geological disposal research and development Second compiled - General report. Japan Nuclear Cycle Development Institute, JNC TN1400 99-020. (in Japanese) https://www.jaea.go.jp/04/tisou/houkokusyo/dai2jitoimatome.html (Accessed 10 Feb. 2019)

Kakinoki, J., and Komura, T. 1952. Intensity of X-ray diffraction by an one-dimensionally disordered crystal (1) general derivation in case of “Reichweite” S=0 and 1. Journal of the Physical Society of Japan, 7(1): 30-35.

Klug, H.P. and Alexander, L.E. 1974. X-Ray diffraction procedures: for polycrystalline
and amorphous materials, 2nd Edition. New York: Wiley Interscience.

Klute, A. 1972. The determination of the hydraulic conductivity and diffusivity of unsaturated soils. Soil Science, 113(4): 264-276.

Komine, H. 2004. Simplified evaluation for swelling characteristics of bentonites. Engineering Geology, 71: 265-279.

Komine, H. 2018. Analogism on water molecular formation in bentonite according to saturation degree calculated water absorption and water content, and previous studies’ knowledge. In proceeding: 53rd Japan national conference on geotechnical engineering, D-02, 393-394. (In Japanese)

Komine, H., Oyamada, T., Ozaki, T., and Iso, S. 2018. Discussion on water migration and swelling of compacted powder bentonites. Journal of JSCE(C), 74(1): 63-75. (In Japanese)

Komine, H., and Ogata, N. 1994. Experimental study on swelling characteristics of compacted bentonite. Canadian Geotechnical Journal, 31 (4): 478-490.

Langford, J. I. 1978. A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function. Journal of Applied Crystallography, 11: 10-14.

METI 2018. Learn from foreign experience in HLW management-2018 version. Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry. (in Japanese) http://www2.rwmc.or.jp/publications:hlwkj2018 (Accessed 10 Feb. 2019)

Moore, D.M., and Hower, J. 1986. Ordered interstratification of dehydrated and hydrated Na-Smectite. Clays and Clay minerals, 34 (4): 379-384.

Moore, D.M., and Reynolds, R.C. 1997. X-ray diffraction and the identification and analysis of clay minerals (second edition). Oxford University Press, New York.

Morodome, S., and Kawamura, K. 2009. Swelling behavior of Na- and Ca-montmorillonite up to 150°C by IN SITU X-ray diffraction experiments. Clays and Clay Minerals, 57 (2): 150-160.

NUMO 2019. The Nuclear Waste Management Organization of Japan, https://www.numo.or.jp/en/jigyou/geological.html (Accessed 10 Feb. 2019)

Olis, A.C., Malla, P.B., and Douglas, L.A. 1990. The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion. Clay Minerals, 25:
Okazaki, R., Smith, H.W., and Moodie, C.D. 1961. Development of a cation-exchange capacity procedure with few inherent errors. Soil science, 93:343-349.

Philip, J.R. 1958. Physics of water movement in porous solids. In Proceedings: The Thirty-Seventh Annual Meeting of the Highway Research Board, 40: 147-163.

Pusch, R. 1980. Swelling pressure of highly compacted bentonite. KBS technical report, KBS PROJ. 15:05.

Pusch, R., Karnland, O., and Hökmark, H. 1990. GMM-A general microstructural model for qualitative and quantitative studies of smectite clays. KBS technical report, 90-43.

Richards, L.A. 1931. Capillary conduction of liquids through porous mediums. Physics, 1(5): 318-333.

Rollins, M.B., and Pool, D.L. 1968. Measurement of exchangeable cations in bentonites. Clay and Clay Minerals, 16:165-172.

Sato, T., Watanabe, T., and Otsuka, R. 1992. Effects of layer charge, charge location, and energy charge on expansion properties of dioctahedral smectites. Clays and Clay Minerals, 40 (1): 103-113.

Sridharan, A., Sreepada Rao, A., and Sivapullaiah, P.V. 1986. Swelling pressure of clays. Geotechnical Testing Journal, 9 (1): 24-33.

Sun, D.A., Cui, H.B., and Sun, W.J. 2009. Swelling of compacted sand-bentonite mixtures, Applied Clay Science, 43(3): 485-492.

Sun, D.A., Zhang, J.Y., Zhang, J.R., and Zhang, L. 2013. Swelling characteristics of GMZ bentonite and its mixtures with sand. Applied Clay Science, 83: 224-230.

Takeuchi, S., Hara, K., and Nakano, M. 1995. Water retention curve, water diffusivity and water movement of compacted bentonite. Soil and Foundations, 35(3): 129-137. (in Japanese).

Tanai, K., Kikuchi, H., Nakamura, K., Tanaka, Y., and Hironaga, M. 2010. Survey on Current Status of Laboratory Test Method and Experimental Consideration for Establishing Standardized Procedure of Material Containing Bentonite. Report of Collaboration Research between JAEA and CRIEPI, JAEA-Research 2010-025. (in Japanese)
Tanaka, Y. 2011. Numerical simulation on effects of test conditions on measured swelling pressure of compacted bentonite by swelling model. Journal of JSCE(C), 67(4): 513-531. (In Japanese)

Wang, Q., Tang, A.M., Cui, Y.J., Delage, P., and Gatmiri, B. 2012. Experimental study on the swelling behaviour of bentonite/claystone mixture. Engineering Geology, 124: 59-66.

Watanabe, T. 1988. The structural model of illite/smectite interstratified mineral and the diagram for its identification. Clay Science, 7: 97-114.

Watanabe, T., and Sato T. 1988. Expansion characteristics of montmorillonite and saponite under various relative humidity conditions. Clay Science, 7: 129-138.

Wertheim, G.K., Butler M.A., West, K.W., and Buchanan, D.N.E. 1974. Determination of the Gaussian and Lorentzian content of experimental line shapes. Review of Scientific Instruments, 45 (11): 1369-1371.

Yamada, H., Nakazawa, H., and Hashizume, H. 1994. Hydration behavior of Na-Smectite crystals synthesized at high pressure and high temperature. Clays and Clay Minerals, 42(1): 77-80.
Figure list

Fig. 1 Japanese design example of the geological disposal method

Fig. 2 Particle size distribution of K_V1

Fig. 3 XRD profile of air dried K_V1 with dry density $\rho_d=1.45$ Mg/m3

Fig. 4 Apparatuses for swelling pressure tests

Fig. 5 Scheme for X-ray diffraction tests

Fig. 6 Measurements of p_s (a) t up to 500 hr., and (b) t up to 50 hr.

Fig. 7 Water distribution in specimens: (a) w distribution and (b) S_r distribution

Fig. 8 Water distribution in specimens for S_r calculated based on ρ_{dXRD}

Fig. 9 Dry density difference $\rho_{dXRD}-\rho_{df}$ (negative sign for a small ρ_{dXRD})

Fig. 10 Typical results for XRD tests: (a) $t=19.6$ hr., (b) $t=43.1$ hr., and (c) $t=139$ hr.

Fig. 11 Relation between w and d_{001}

Fig. 12 Schematic illustration of the state of water molecule arrangement (L)

Fig. 13 Comparison of RH and d_{001} relation between purified montmorillonite and K_V1 used for this study

Fig. 14 Data process for XRD measurement

Fig. 15 Results of peak decomposition for 001 XRD peaks of montmorillonite with different w

Fig. 16 Relation between p_s and L

Fig. 17 Relation between Θ and χ : (a) in this study and (b) for data in Takeuchi et al. (1995)

Fig. 18 Comparison of diffusivity of compacted K_V1

Fig. 19 Prediction of S_r by D for experimental data from (a) Takeuchi et al. (1995), and (b) Komine et al. (2018)
Table list

Table 1 Main mineral components and physical properties of K_V1
Table 2 Specimen conditions for the swelling pressure tests
Table 3 Instrumental setup for XRD test
Table 1 Main mineral components and physical properties of K_V1

Main mineral components, their standard formula and contents in weight from Ito et al. (1993 and 1994)	Montmorillonite	Quartz	Chalcedony	Plagioclase	Calcite	Dolomite	Analcime	Pyrite
Montmorillonite	SiO₂	-	-	-	-	-	-	-
Quartz	SiO₂	0.5-0.7%	0.5-0.7%	0.5-0.7%	0.5-0.7%	0.5-0.7%	0.5-0.7%	0.5-0.7%
Chalcedony	SiO₂	37-38%	37-38%	37-38%	37-38%	37-38%	37-38%	37-38%
Plagioclase	Na₂O·Al₂O₃·6SiO₂	2.7-5.5%	2.7-5.5%	2.7-5.5%	2.7-5.5%	2.7-5.5%	2.7-5.5%	2.7-5.5%
Calcite	CaCO₃	2.1-2.6%	2.1-2.6%	2.1-2.6%	2.1-2.6%	2.1-2.6%	2.1-2.6%	2.1-2.6%
Dolomite	CaMg(CO₃)₂	2.0-2.8%	2.0-2.8%	2.0-2.8%	2.0-2.8%	2.0-2.8%	2.0-2.8%	2.0-2.8%
Analcime	NaAlSi₂O₆·H₂O	3.0-3.5%	3.0-3.5%	3.0-3.5%	3.0-3.5%	3.0-3.5%	3.0-3.5%	3.0-3.5%
Pyrite	FeS₂	0.5-0.7%	0.5-0.7%	0.5-0.7%	0.5-0.7%	0.5-0.7%	0.5-0.7%	0.5-0.7%
Total cation exchange capacity (CEC) and amount of extractable cations (EXC)* (cmol/kg) *EXC includes exchangeable and water-soluble cations	CEC	66.8	66.8	66.8	66.8	66.8	66.8	66.8
	EXC (Na⁺)	57.1	57.1	57.1	57.1	57.1	57.1	57.1
	EXC (Ca²⁺)	35.5	35.5	35.5	35.5	35.5	35.5	35.5
	EXC (K⁺)	1.8	1.8	1.8	1.8	1.8	1.8	1.8
	EXC (Mg²⁺)	1.3	1.3	1.3	1.3	1.3	1.3	1.3
Specific gravity Gₛ	2.795 (min:2.792-max:2.799)							
Table 2 Specimen conditions for the swelling pressure tests

Water absorption time t (hours)	Air dried water content w_{ini} (%)	Initial dry density ρ_{ini} Mg/m3	Final average water content w_f (%)	Final dry density ρ_d Mg/m3	Specimen Installation type
1.96	8.11	1.55	13.31	1.54	II
4.37	8.33	1.53	15.32	1.51	II
17.1	8.24	1.56	19.26	1.55	I
43.1	9.65	1.54	23.38	1.52	I
65.7	7.98	1.53	27.37	1.52	II
139	7.91	1.54	29.61	1.56	II
188	8.09	1.53	30.55	1.54	I
327	7.88	1.53	29.47	1.51	II
453	8.07	1.56	30.59	1.54	II
Average	8.25	1.54	-	1.53	-
Min.	7.88	1.53	-	1.51	-
Max.	9.65	1.56	-	1.56	-
Table 3 Instrumental setup for XRD test					

Goniometer	Bragg-Brentano geometry (radius: 285mm)				
R-ray source	Ni-filtered CuKα radiation (40kV 40mA)				
Incident beam side	Soller slits	±2.5°			
	Divergence slit (DS)	0.125°			
Detector side	Soller Slits	±2.5°			
	Scattering slits (SS)	Open			
	Receiving slit (RS)	Open			
Scanning conditions	type	Continuous			
	speed	10°/min			
	step	0.02°			
	range	2.7-20°			
Detector	1-D detector				
	128 strips with width of 0.1mm				
Fig. 1 Japanese design example of the geological disposal method
Fig. 2 Particle size distribution of K_V1

Fig. 3 XRD profile of air dried K_V1 with dry density $\rho_d=1.45$ Mg/m3
Fig. 4 Apparatuses for swelling pressure tests

Fig. 5 Scheme for X-ray diffraction tests
Fig. 6 Measurements of p_s, (a) t up to 500 hr., and (b) t up to 50 hr.
Fig. 7 Water distribution in specimens: (a) w distribution and (b) S_r distribution
S_r was calculated based on dry density of XRD specimens

Fig. 8 Water distribution in specimens for S_r calculated based on ρ_{dXRD}

Fig. 9 Dry density difference $\rho_{\text{dXRD}} - \rho_{\text{df}}$ (negative sign for a small ρ_{dXRD})
Fig. 10 Typical results for XRD tests: (a) $t=19.6$ hr., (b) $t=43.1$ hr., and (c) $t=139$ hr.
Fig. 11 Relation between \(w \) and \(d_{001} \)

![Graph showing the relation between water content \(w \) and basal spacing \(d_{001} \).](image)

- \(L=0w \) with \(d_{001} \approx 10.1 \AA \)
- \(L=1w \) with \(d_{001} \approx 12.5 \AA \)
- \(L=2w \) with \(d_{001} \approx 15.5 \AA \)
- \(L=3w \) with \(d_{001} \approx 19.0 \AA \)

Fig. 12 Schematic illustration of the state of water molecule arrangement (\(L \))

![Schematic illustration showing different states of water molecule arrangement.](image)

- Water
- 2:1 sheet structure of montmorillonite
- Exchangeable cations

\(w = 8.51\% \) for air dried specimen
\(w = 6.58\% \) for RH = 58.4\%
Fig. 13 Comparison of RH and d_{001} relation between purified montmorillonite and K_V1 used for this study.
Fig. 14 Data process for XRD measurement

(a) Raw data and background

(b) Normalized data and decomposition

XRD intensity ($\times 10^4$ CPS)

Diffraction angle 2θ (°)

Assumed background

Peak reflected by 001 surface of montmorillonite

Composition of two peaks

L=3w L=2w L=1w L=0w
Fig. 15 Results of peak decomposition for 001 XRD peaks of montmorillonite with different w
Fig. 15 (continued)
Fig. 16 Relation between p_s and L
Fig. 17 Relation between Θ and χ: (a) in this study and (b) for data in Takeuchi et al. (1995)
Fig. 18 Comparison of diffusivity of compacted K_V1
Fig. 19 Prediction of S_r by D for experimental data from (a) Takeuchi et al. (1995), and (b) Komine et al. (2018)