Decentralized Learning with Multi-Headed Distillation

Andrey Zhmoginov Mark Sandler Nolan Miller Gus Kristiansen Max Vladymyrov
Google AI
1600 Amphitheatre Pkwy
Mountain View, CA 94043, USA
{azhmogin,sandler,namiller,gusatb,mxv}@google.com

Abstract

Decentralized learning with private data is a central problem in machine learning. We propose a novel distillation-based decentralized learning technique that allows multiple agents with private non-iid data to learn from each other, without having to share their data, weights or weight updates. Our approach is communication efficient, utilizes an unlabeled public dataset and uses multiple auxiliary heads for each client, greatly improving training efficiency in the case of heterogeneous data. This approach allows individual models to preserve and enhance performance on their private tasks while also dramatically improving their performance on the global aggregated data distribution. We study the effects of data and model architecture heterogeneity and the impact of the underlying communication graph topology on learning efficiency and show that our agents can significantly improve their performance compared to learning in isolation.

1. Introduction

Supervised training of large models historically relied on access to massive amounts of labeled data. Unfortunately, since data collection and labeling are very time-consuming, curating new high-quality datasets remains expensive and practitioners are frequently forced to get by with a limited set of available labeled datasets. Recently it has been proposed to circumvent this issue by utilizing the existence of large amounts of siloed private information. Algorithms capable of training models on the entire available data without having a direct access to private information have been developed with Federated Learning approaches [24] taking the leading role.

While very effective in large-scale distributed environments, more canonical techniques based on federated averaging, have several noticeable drawbacks. First, gradient aggregation requires individual models to have fully compatible weight spaces and thus identical architectures. While this condition may not be difficult to satisfy for sufficiently small models trained across devices with compatible hardware limitations, this restriction may be disadvantageous in a more general setting, where some participant hardware can be significantly more powerful than the others. Secondly, federated averaging methods are generally trained in a centralized fashion. Among other things, this prohibits the use of complex distributed communication patterns and implies that different groups of clients cannot generally be trained in isolation from each other for prolonged periods of time.

Another branch of learning methods suitable for distributed model training on private data are those based on distillation [3, 6, 15]. Instead of synchronizing the inner states of the models, such methods use outputs or intermediate representations of the models to exchange the information. The source of data for computing exchanged model predictions is generally assumed to be provided in the form of publicly available datasets [12] that do not have to be annotated since the source of annotation can come from other models in the ensemble (see Figure 1). One interesting interpretation of model distillation is to view it as a way of using queries from the public dataset to indirectly gather information about the weights of the network (see Appendix A).
Unlike canonical federated-based techniques, where the entire model state update is communicated, distillation only reveals activations on specific samples, thus potentially reducing the amount of communicated bits of information. By the data processing inequality, such reduction, also translates into additional insulation of the private data used to train the model from adversaries. However, it is worth noting that there exists multiple secure aggregation protocols including SecAgg [5] that provide data privacy guarantees for different Federated Learning techniques.

The family of approaches based on distillation is less restrictive than canonical federated-based approaches with respect to the communication pattern, supporting fully distributed knowledge exchange. It also permits different models to have entirely different architectures as long as their outputs or representations are compatible with each other. It even allows different models to use various data modalities and be optimizing different objectives, for example mixing supervised and self-supervised tasks within the same domain. Finally, notice that the distillation approaches can and frequently are used in conjunction with weight aggregation [21,30,31,37], where some of the participating clients may in fact be entire ensemble of models with identical architectures continuously synchronized using federated aggregation (see Figure 8 in Supplementary).

Our contributions. In this paper, we propose and empirically study a novel distillation-based technique that we call Multi-Headed Distillation (MHD) for distributed learning on a large-scale ImageNet [9] dataset. Our approach is based on two ideas: (a) inspired by self-distillation [2,10,38] we utilize multiple model heads distilling to each other (see Figure 2) and (b) during training we simultaneously distill client model predictions and intermediate network embeddings to those of a target model. These techniques allow individual clients to effectively absorb more knowledge from other participants, achieving a much higher accuracy on a set of all available client tasks compared with the naive distillation method.

In our experiments, we explore several key properties of the proposed model including those that are specific to decentralized distillation-based techniques. First, we analyse the effects of data heterogeneity, studying two scenarios in which individual client tasks are either identical or very dissimilar. We then investigate the effects of working with nontrivial communication graphs and using heterogeneous model architectures. Studying complex communication patterns, we discover that even if two clients in the ensemble cannot communicate directly, they can still learn from each other via a chain of interconnected clients. This “transitive” property relies in large part on utilization of multiple auxiliary heads in our method. We also conduct experiments with multi-client systems consisting of both ResNet-18 and ResNet-34 models [14] and demonstrate that: (a) smaller models benefit from having large models in the ensemble, (b) large models learning from a collection of small models can reach higher accuracies than those achievable with small models only.

2. Related Work

Personalized Federated Learning. While many early canonical Federated Learning approaches trained a single global model for all clients [24], it has been quickly realized that non-IID nature of private data in real systems may pose a problem and requires personalized approaches [20]. Since then many Personalized Federated Learning approaches have been developed, many covered in the surveys [18,33].

Federated Distillation. Emergence of Federated Distillation was motivated by the need to perform learning across ensembles of heterogeneous models\(^1\), reducing communication costs and improving performance on non-IID data. Existing distillation-based approaches can be categorized based on the system setup and the types of the messages passed between participants. A number of approaches including [8,12,21,23,30,31,37,40] combine aggregation of weight updates with model distillation. They are typically centralized and frequently involve client-side distillation, which may restrict the size of the aggregated model. A different body of work is concentrated on decentralized systems, where only model predictions are communicated between the clients and the server [11,13,16,19,26,29,32,39]. Another related family of approaches is based on communicating embedding prototypes [34], or using embeddings for distillation directly [1,26]. In this paper, we concentrate on a more general decentralized setup, where there is not single central authority and all clients exchange knowledge via distillation [4].

3. Model

3.1. Setup

We consider a system of \(K\) clients \(C = \{C_1, \ldots, C_K\}\). (See Table 9 in Appendix for a summary of notation.) Each client \(C_i\) is assumed to possess their own private dataset \(\mathcal{D}_i\) while training a private model \(\mathcal{M}_i\) that solves a corresponding task \(\mathcal{T}_i\). In the following, we assume that all tasks \(\mathcal{T}_i\) are supervised.

While using their local dataset \(\mathcal{D}_i\) to train the private model, each client can also communicate with other clients to learn from them. At each global training step \(t\), we define a local directed graph \(\mathcal{G}_t\) that determines the pattern of this communication. While the set of nodes of \(\mathcal{G}_t\) is fixed to be the set of all clients, the set of edges \(\mathcal{E}_t\) with the cor-

\(^1\)note that multiple existing approaches like [28,35] allow using FedAvg for training heterogeneous model ensembles
responding incidence function can be dynamic and change every training step.

The local datasets \mathcal{D}_i are not directly exchanged between the clients, instead the information exchange occurs via a shared public source of unlabeled data \mathcal{D}_e. We assume that at training step t, each client C_i can perform inference on a set of public samples and request the results of a similar computation on the same samples from other clients that are incident to it by directed edges of \mathcal{G}_t. In other words, each client C_i is optimizing a local objective L_i defined as (see Algorithm 1 in Appendix):

$$L_i(t) = L_{i,CE} + \sum_{\alpha} \mathbb{E}_{x \sim \mathcal{D}_e} L_{\text{dist}}^{\alpha}(\psi_i^{\alpha}(x), \Phi_{i,t,i}^{\alpha}),$$

where $L_{i,CE} = \mathbb{E}_{(x,y) \sim \mathcal{D}_i} L_{CE}(x, y)$ and L_{CE} is a cross-entropy loss optimized locally by each client on their private data \mathcal{D}_i, L_{dist}^{α} is a collection of different distillation losses enumerated by α that use some local computation result ψ_i^{α} and a remote results $\Phi_{i,t,i}^{\alpha}(x) \equiv \{ \phi_j^{\alpha}(x) \mid j \in e_t(i) \}$ computed on the same sample and $e_t(i)$ is a set of clients connected to i via a set of outgoing edges (from \mathcal{G}_t).

Notice that in contrast with Federated Learning, here we do not require different models \mathcal{M}_i to have compatible architectures, but instead optimize local and remote sample representations $\psi_i(x)$ and $\phi_j(x)$ to be compatible. In the next section, we discuss several potential choices of the distillation losses.

In this paper, we are interested in evaluating the impact that the communication and cross-learning between the clients has on (a) how well these models can be suited for their original private tasks and (b) how much of the knowledge gets shared and distributed to the other tasks over time. Notice that if each client has a sufficiently simple model and enough training data (making the model underfit), the communication between individual models is not expected to improve their private task performance, but can only enhance their learned representations making them more suitable for adapting to other client’s tasks. However, if the private training data is scarce (making the model overfit), the model communication could improve generalization and ultimately improve client performance on their private tasks.

3.2. Distillation Losses

Embedding distillation.

We utilize the embedding regularization loss [1, 26] in our experiments. If $\xi_i(x)$ is an intermediate embedding produced for a sample x coming from the shared public dataset by the model \mathcal{M}_i, then we can choose $\psi_i^{\text{emb}}(x) \equiv \xi_i(x)$, $\phi_j^{\text{emb}}(x) \equiv \xi_j(x)$ and define $L_{\text{dist}}^{\text{emb}}(\psi_i^{\text{emb}}(x), \Phi_{i,t,i}^{\text{emb}}(x))$ as

$$L_{\text{dist}}^{\text{emb}} = \sum_{j \in e_t(i)} \rho \left(\| \psi_i^{\text{emb}}(x) - \phi_j^{\text{emb}}(x) \| \right),$$

where ρ is the weighting constant and $\rho(x) \in C^\infty$ is some monotonically growing function. The choice of this distillation loss forces compatibility between sample embeddings across the ensemble. In practice, we noticed that the embedding norms of different models frequently diverge during training, and to adapt to that we use normalized embeddings preserving regularization consistency across the entire duration of training: $\psi_i^{\text{norm}}(x) \equiv \xi_i(x)/\|\xi_i(x)\|$.

Prediction distillation.

Ability to predict on classes that are rarely present in private data can be improved by utilizing prediction vector as an additional distillation target. However, since \mathcal{M}_i is tasked with fitting ground truth on a particular dataset \mathcal{D}_i, distilling this prediction to labels relevant for another client may be damaging for the model performance on \mathcal{T}_i. Instead, we choose to add another single prediction head to \mathcal{M}_i that is distilled from all existing tasks thus (a) not polluting the main prediction head of the model \mathcal{M}_i, but (b) at the same time forcing the intermediate representation $\xi_i(x)$ to contain information relevant for solving all existing tasks $\{\mathcal{T}_j \mid j \in 1, \ldots, K\}$.

Let $h_i(\xi_i(x))$ be the main head of the model \mathcal{M}_i used for computing L_{CE} and $h_i^{\text{aux}}(\xi_i(x))$ be the auxiliary head. Then, the naïve prediction distillation loss takes the following form:

$$L_{\text{dist}}^{\text{aux}}[h_i^{\text{aux}}, h_i] \equiv -\nu_{\text{aux}} \sum_{j \in e_t(i)} h_j \log h_i^{\text{aux}}(x),$$

where ν_{aux} is the auxiliary loss weight. Here all the distillation targets from $e_t(i)$ are essentially treated the same irrespective of their confidence in their prediction. One way of integrating the knowledge of the distillation target quality is to use some confidence metric for their prediction on x. For example, we could consider the following modification of the loss (3):

$$-\nu_{\text{aux}} \sum_{j \in e_t(i) \cup \{i\}} Q(\Lambda(h_j); H[h]) \times h_j \log h_i^{\text{aux}}(x),$$

where $\Lambda(h_j(x))$ is the confidence of the classifier prediction, Q is some function of the client confidence and $H[h] \equiv \{\Lambda(h_j) \mid j \in e_t(i) \cup \{i\}\}$ is the information about confidence of all possible distillation targets including the ith client itself. We considered perhaps the simplest choice for Λ defining it as $\text{arg max}_k h_k(x)$. This measure of the model confidence that we end up using in our method is, of course, not reliable (see Appendix A) and using a separate per-client density model $p_i(x)$ for detecting in-distribution and out-of-distribution samples could potentially improve model performance (for an alternative approach see [22]).

For Q, we only considered perhaps the most obvious choice of $Q[\Lambda(h_j)] = 1$ if jth client has the largest confidence...
from \(H \) and 0 otherwise, effectively selecting the most confident client and using it as the distillation target (see Appendix A for a detailed discussion).

Self-distillation with multiple auxiliary heads. Self-distillation is a well-known technique that improves model performance by repeatedly using the previous iteration of the model as the distillation target for itself \([2, 10, 25, 38]\). The most direct application of this technique to training an ensemble of models is to perform multiple cycles of self-distillation across all available networks. Here, however, we propose a different approach, where we modify a conventional training procedure by equipping each classifier with a collection of multiple auxiliary heads \(\{h^{\text{aux}, 1}, \ldots, h^{\text{aux}, m}\} \). These auxiliary heads distill from each other by optimizing the following loss:

\[
L_{\text{dist}}^{\text{aux}}(h, h) + \sum_{k=2}^{m} L_{\text{dist}}^{\text{aux}}(h^{\text{aux}, k}, h^{\text{aux}, k-1}),
\]

where \(L_{\text{dist}}^{\text{aux}}(h^{(a)}, h^{(b)}) \) is defined according to Eq. (4). In other words, \(h^{\text{aux}, 1} \) distills from \(h \) and \(h^{\text{aux}, k} \) distills from \(h^{\text{aux}, k-1} \) for all \(1 < k \leq m \). This approach illustrated in Figure 2 is one of the core contributions of our paper.

Communication efficiency. In terms of communication efficiency, this approach could suffer from ineffective communication when the distillation targets are frequently a poor source of knowledge for a particular sample class. This problem would ideally require client awareness of the label distribution on each client that it communicates with. However, since in practice, prediction distillation (embedding distillation is more costly) only requires a transmission of several highest-confidence predictions for each sample, each step with batch size of 512 would require a communication of only a few thousand floating point numbers (assuming that shared public set images could be uniquely identified with a small hash). At the same time, a single back-and-forth round of FedAvg communication of a ResNet-34 model would require more than 100 million floating-point parameters, which would be equivalent to around 50k prediction distillation steps.

3.3. Dataset

In this work, we study distributed learning in systems with varying degrees of data heterogeneity: from those where the distribution of data is the same across all clients, to more extreme cases where each client specializes on its own unique task. We simulate these scenarios using an underlying labeled dataset \(\mathcal{D} \). Let \(S \) be the set of all samples from \(\mathcal{D} \). Some fraction of samples \(\gamma_{\text{pub}} \) (typically around 10\%) is treated as a set of unlabeled public samples. The remaining samples are treated as the source of private data and are distributed without repetition across all of \(K \) clients as discussed below.

Label assignment. Each client \(C_i \) is assigned a subset \(\ell_i \) of all labels, which are treated as *primary labels* for \(C_i \). Remaining labels from \(\mathcal{D} \) not belonging to \(\ell_i \) are treated as *secondary labels* for \(C_i \). For each label \(l \), we take all available samples and randomly distribute them across all clients. The probability of assigning a sample with label \(l \) to a client \(C_i \) is chosen to be \(1 + s \) times higher for clients that have \(l \) as their primary label. We call the parameter \(s \) *dataset skewness*. As a result, in the iid case with \(s = 0 \) all samples are equally likely to be assigned to any one of the clients. However, in the non-iid case in the limit of \(s \to \infty \), all samples for label \(l \) are only distributed across clients for which \(l \) is primary.

We considered two choices for selecting the primary label sets for the clients. One choice (we refer to as *even*) is to subdivide the set of all labels in such a way that each label has exactly \(m \) corresponding primary clients. Another choice (we refer to as *random*) is to randomly assign each client \(C_i \) a random fixed-size subset of all labels. This choice creates a variation in the number of primary clients for different labels, making it a less idealized and more realistic setup even in the limit of \(s \to \infty \). For example, for ImageNet with 1000 classes, if it is subdivided between 8 clients each receiving 250 random labels: (a) around 100 labels will be distributed evenly across all clients (no primary clients), (b) around 270 labels will have a single primary client, (c) around 310 labels will have two primary clients, (d) around 210 labels will have three primary clients and (e) around 110 remaining labels will have 4 or more primary clients.

4. Experiments

4.1. Experimental Framework

In most of our experiments, we used ImageNet dataset with samples distributed across multiple clients as discussed in Section 3.3. The public dataset used for distillation was chosen by selecting \(\gamma_{\text{pub}} = 10\% \) of all available train-
ing samples and the remaining 90% were distributed across clients as private labeled data. We used both random and even label distribution strategies and considered two cases of $s = 0$ and $s = 100$ corresponding to homogeneous and heterogeneous task distributions correspondingly. In most of our experiments, unless indicated otherwise, we used ResNet-34 models as individual clients, trained 8 clients and each was assigned 250 primary labels at random. The models were typically trained for 60,000 or 120,000 steps with SGD with momentum, batch size of 512, cosine learning rate decay and the initial learning rate of 0.1 and momentum 0.9.

Our experimental platform was based on distillation losses outlined in Section 3.2. However, being restricted by computational efficiency needed to run numerous experiments, we made several implementation choices that deviated from the general formulation of Section 3.2 (see Algorithm 2 in Appendix). Most importantly, individual clients do not directly exchange their predictions on the public dataset, but instead each client C_i keeps a rolling pool P_i of N_P model checkpoints. In most of our experiments, N_P was chosen to be equal to the total number of clients in the system. Every step, each client C_i picks a Δ random checkpoints from P_i and uses them for performing a distillation step on a new batch. Each pool P_i is updated every S_P steps, when a new checkpoint for one of the other clients is added into the pool (replacing another random checkpoint).

In most of our experiments, we used a single distillation client on every step, i.e., $\Delta = 1$ and $e_i(i)$ defined in Sec. 3.1 contains a single element every step t. However, a separate exploration of the parameter Δ was also performed. Also, since in most of our experiments we used $S_P = 200$, infrequent pool updates would typically introduce a time lag causing the model to distill knowledge from somewhat outdated checkpoints.

4.2. Embedding and Multi-Headed Distillation

In this section we start exploring distillation technique in the simplest scenario with identical model architectures and a complete graph connectivity, where each model can distill knowledge from any other existing client.

4.2.1 Evaluating Basic Distillation Approaches

Consider a set of models with identical ResNet-based architectures learning on their private subsets of ImageNet and distilling the knowledge from each other assuming a complete connectivity of the communication graph. We compare the efficiency of knowledge transfer for different distillation approaches: (a) distilling sample embeddings preceding the final logits layer (embedding distillation) and (b) distilling actual model predictions (prediction distillation) (see Sec. 3.2). We consider two extreme cases of an iid $(s = 0)$ and non-iid $(s = 100)$ distributed ImageNet datasets and study the final performance of individual agents while varying the strengths of the embedding and the prediction distillation losses, ν_{emb} and ν_{aux} correspondingly.

In our experiments, we study the performance of primary and auxiliary model heads on two data distributions: (a) private dataset defining the primary problem that the client is tasked with and (b) shared dataset reflecting the uniform label distribution averaged across all clients. Any technique improving the private dataset accuracy β_{priv} can be viewed as successful at learning from other clients and translating the acquired knowledge into better performance on their own task. On the other hand, a technique improving the shared dataset accuracy β_{sh} is successful at learning a more robust representation that can be easily adapted to solving other possible tasks (seen by other clients). Both of these potential capabilities can be viewed as positive outcomes of cross-client communication and learning, but their utility may be application specific.

Figure 3 summarizes our empirical results (see Appendix B for raw numbers) showing the measurements of the average private accuracy β_{priv}, that is the accuracy of each client on their respective dataset D_i, and the averaged shared accuracy β_{sh} measured on a dataset with a uniform label distribution identical to that of the original ImageNet. While β_{priv} measures how well a particular client performs on their own task, β_{sh} is a reflection of the world knowledge (some may be irrelevant for the private task) that the client

\[\text{Figure 3. Comparison of private (on the client’s dataset) and shared accuracies (on a uniform class distribution) for models trained on datasets with iid and non-iid distributions (see Sec. 3.3) (a) with } s = 0 \text{ and (b) } s = 100. \text{ Both the main head (solid) and the auxiliary head accuracies (dashed) are shown}. \]
Here we empirically study the performance of the main model head, which stayed at 180k steps. We trained with Federated Averaging (FA) every u steps. MHD+ experiments were conducted with 180k steps and used the entire ImageNet as a public dataset (regime of plentiful public data). Separate corresponds to shared dataset performance for clients trained independently on their own private data. FA accuracy being higher than the supervised could be explained by a much larger number of samples being effectively processed during training (×8).

![Figure 4. Private (dot-dashed) and shared (solid) dataset accuracies of main and auxiliary heads in ensembles trained with different numbers of auxiliary heads: 1 aux head (blue), 2 heads (orange), 3 heads (green) and 4 heads (red). For the IID case the private and shared performance match.](image)

Table 1. Comparison of the shared accuracies β_{sh} for our technique and two “upper-bound” baselines trained for 60k steps on 90% of ImageNet: (a) supervised and (b) trained with Federated Averaging (FA) performed every u steps. MHD+ experiments were conducted with 180k steps and used the entire ImageNet as a public dataset (regime of plentiful public data). Separate corresponds to shared dataset performance for clients trained independently on their own private data. FA accuracy being higher than the supervised could be explained by a much larger number of samples being effectively processed during training (×8).

s = 0	Accuracy	s = 100	Accuracy
Separate	46.3%	Separate	25.1%
MHD (Ours)	59.9%	MHD (Ours)	54.5%
MHD+ (Ours)	68.6%	MHD+ (Ours)	63.4%
FA, $u = 200$	70.5%	FA, $u = 200$	68.0%
FA, $u = 1000$	69.1%	FA, $u = 1000$	65.7%
Supervised	68.9%	–	–

Figure 3 contains several interesting findings: (a) while both regularization techniques are useful for improving model performance, there is a threshold beyond which they start deteriorating both accuracies; (b) taken alone prediction distillation seems to have a stronger positive effect than the embedding distillation, while embedding distillation is more effective in the $s = 0$ case; (c) however, the best results are obtained by combining both distillation techniques. Furthermore, we see that the distillation techniques generally improve both β_{priv} and β_{sh} simultaneously. Notice that the positive effect of v_{aux} suggests that training a separate auxiliary head has an effect on the model embedding that leads to an improved performance on the main head trained with the client’s private dataset alone. Another interesting observation is that for uniform datasets with a small s, the auxiliary head ends up having better performance on both the private and shared tasks (identical for $s = 0$). At the same time, in a non-iid dataset with $s = 100$, auxiliary head performs much better on the shared dataset, but lags behind on the private task since it is not trained on it directly.

4.2.2 Improving Distillation Efficiency

While Figure 3 shows a clear evidence that distillation techniques can be useful for distributed learning even in the case of heterogeneous client data, there is a room for further improvement.

Ignoring poor distillation targets. In some cases, agents can be distilling knowledge about particular categories from agents that themselves do not possess accurate information. It is even possible that the agent’s auxiliary head is already “more knowledgeable” about the class than the main head of another agent that it is trying to distill from. As a result, the performance of the auxiliary head may degrade. One approach that we study here is to skip distillation on a sample if the auxiliary head confidence is already higher than that of the head it is trying to distill from. In our experiments, we observed that this simple idea had virtually no effect for $s = 0$, but allowed us to improve the performance of the auxiliary head for heterogeneous data distributions with $s = 100$. Specifically, for 8 clients and $s = 100$, this technique improved auxiliary head β_{sh} from 44.7% to 46.5%, while having virtually no effect on the private dataset accuracy β_{priv} of the main model head, which stayed at 72.2%. While effective for single auxiliary head, this technique did not improve results in multiple auxiliary heads scenario (see Appendix B) that we will discuss next.

Multiple auxiliary heads. Here we empirically study the multi-head approach inspired by self-distillation and described in detail in Section 3.2. Guided by earlier results from Section 4.2.1, we choose $v_{emb} = 1$ and $v_{aux} = 3$. We then train an ensemble of 8 models, each with 250 primary labels and two choices of dataset skew: $s = 0$ and $s = 100$. For each choice of parameters, we independently trained models with 1 to 4 auxiliary heads and then measured the performance of the main and every auxiliary head on the client’s private dataset and a shared test set with a uniform label distribution. The results of our experiments are presented in Figure 4 (see Appendix B for raw numbers). For a uniform data distribution, i.e., $s = 0$, we see that distilling multiple auxiliary heads has a positive impact on all model heads for up to 3 auxiliary heads, after which performance starts to degrade. Among the heads themselves, the peak performance is seen to be attained by the 2nd auxiliary head. However, we hypothesize that with the increase of the number of training steps, the final head will end up having the highest accuracy.

In the case of a non-iid distribution with $s = 100$, we observed that increasing the number of auxiliary heads has a very profound positive affect on the shared dataset performance β_{sh} of the final auxiliary head. However, it is the
main head that achieves the highest private dataset accuracy β_{priv}. All consecutive auxiliary heads appear to lose their private dataset performance β_{priv} by specializing on capturing the overall data distribution.

Dependence on the number of distillation targets Δ. We studied the effect of using multiple distillation targets Δ at every training step by considering a typical 8-client setup with $s = 100$, 4 auxiliary heads, $\nu_{\text{emb}} = 1$ and $\nu_{\text{aux}} = 3$. While increasing Δ from 1 to 3 had virtually no effect on the main head private accuracy β_{priv}, the shared dataset accuracy β_{sh} for the last auxiliary head improved from 54.5% to 56.1% and then to 56.4% as we increased Δ from 1 to 3. At $\Delta = 4$, β_{sh} appeared to saturate and fell to 56.2% (within the statistical error of about 0.2%). Overall, earlier auxiliary heads appeared to be affected by Δ more strongly.

Choice of the confidence measure. The choice of the confidence $\Lambda(h(x))$ is central to the distillation technique. We compared our current choice based on selecting the most confident head, with a random selection of the distillation target. In our experiments with 8 clients each with 250 random primary labels, $\nu_{\text{emb}} = 1$, $\nu_{\text{aux}} = 3$, $s = 0$ and 3 auxiliary heads, we observed that randomizing confidence caused the main head β_{priv} degradation from 56% to 55.2% and the last auxiliary head β_{sh} went down from 59.5% to 58.4%. The degradation of model performance is more significant in the case of heterogeneous client data. In experiments with $s = 100$ and 4 auxiliary heads, we observed the main head β_{priv} degraded from 72.1% to 71.3% and the last auxiliary head β_{sh} decreased from 54.5% to 49%.

Dependence on the technique efficiency on the public dataset size. The efficiency of model distillation depends on the amount of data used for performing this distillation, in our case, on the size of the public dataset. In our experiments outlined in Appendix B.2, increasing the size of the public dataset while fixing the amount of private training data has a positive impact on the final model performance.

In practice, since unlabeled data is more abundant, one can expect that the public dataset size will be comparable or even larger than the total amount of labeled data available to clients. Being constrained by the ImageNet size and attempting to keep the amount of private training data unaffected, we simulate the abundance of public data by reusing the entirety of the ImageNet dataset as an unlabeled public dataset. This, of course, is not realistic and somewhat biased given that we reuse the same samples as labeled and unlabeled, but it allows us to explore the limits of the distributed training efficiency with distillation.

4.3. Baseline Comparisons

Before comparing our technique with a similar distillation-based method, we compared its performance with two strong “upper-bound” baselines (see Table 1): supervised training on all ImageNet and FedAvg algorithm implemented within our framework. A large performance gap between shared dataset accuracies obtained using our method and the strong baselines can be viewed as a price paid for learning via distillation in a decentralized multi-agent system. At the same time, we see that increasing the public dataset size and training for a longer period of time, allowing the information to propagate across all clients (Our+ results), brings us close to the supervised model performance. Notice that like many other distillation-based techniques [19, 39], our method reaches higher accuracy in the homogeneous data scenario.

We compared our method with FedMD [19] a similar, but centralized distillation-based methods. This comparison was carried out by replicating the dataset and 10 model architectures from the publicly available implementation. The dataset is based on CIFAR-100 [17] and makes use of 20 coarse labels, while the public dataset is chosen to be CIFAR-10. Due to the differences in the training process, our baseline results with individual models trained on all private data pooled together was higher than that reported in [19]. At the same time, we observed a much smaller gap in performance between this upper baseline and the results obtained using our method than the gap reported in [19] (see Table 2). Interestingly, we also observe a much smaller performance spread across all 10 models trained with our technique (deviation of 0.6% compared to 2.7% for FedMD).

4.4. Communication Topology Effects

In order to explore how our approach might scale to larger systems in which pairwise connections between all agents are not feasible, we aim to evaluate how the communication topology affects performance. In particular we are interested in the question of whether “transitive distillation” is possible with our approach – that is whether two agents that are not directly connected to one-another can still learn from each-other through an intermediary.

To evaluate this and determine how auxiliary heads play a role in the performance we ran a training sweep with 4

	MHD Base	MHD	FedMD Base	FedMD
	60.6%	57.0%	0.6%	56.5%
				50.2%
				2.7%

Table 2. Comparison of mean test accuracies (first number) and their deviations (second number after /) across 10 clients for our method and FedMD as reported in Ref. [19]. Baselines (Base) are obtained by training clients with all available private data.

![Figure 5. Topologies compared to validate transitive distillation.](image-url)
agents arranged in 3 different topologies (Figure 5) with 3 auxiliary heads each. In all cases we trained for 120k steps, with 250 primary labels per agent with $s = 100$. We observe (Figure 6) that performance on the shared dataset improves significantly between island and cycle topology, with the baseline performance matching closely the cycle performance. Without transitive distillation we would expect island and cycle performance to match closely so this provides strong evidence for transitive distillation. Also note that this behavior is only present on auxiliary heads and is more pronounced for later heads.

We further analyze the performance of each agent on other agents’ private data. Predictably we observe that island topologies perform well on in-island other agents, and poorly on agents from outside their island. Cycle topology agents perform best on their direct teacher (Cycle-1), but auxiliary heads 2 and 3 perform well on the “1-hop” transitive teacher (Cycle-2), and auxiliary head 3 has markedly improved performance on the “2-hop” transitive teacher (Cycle-3). We take this as strong evidence that auxiliary heads enable transitive distillation, and that additional heads make learning across additional degrees of separation more efficient.

4.5. Learning in Heterogeneous Systems

In Section 4.2, we conducted experiments with homogeneous ensembles of models. However, in many realistic scenarios of distributed deep learning, client devices may have different hardware-defined limitations and it may be desirable to train smaller models on some clients, while allowing other devices to utilize much larger networks. While model distillation allows one to achieve this, it is reasonable to ask why would this even be desirable? What do we expect to gain from having much larger models in the ensemble? Here we show two positive effects emerging from having larger models in an ensemble of smaller clients: (a) informally speaking, small models benefit from having stronger teachers and (b) large models can gain complex knowledge by distilling from smaller and simpler models.

Our ImageNet experiments were conducted with 4 clients each assigned 500 primary labels with one client being a ResNet34 model and the remaining clients being ResNet18. Primary label assignment was random across clients and we trained the model for 240k steps.

First, we observed that the presence of a larger model improved the accuracy of smaller clients suggesting that they benefited from seeing a stronger teacher holding some of the relevant data. Specifically, we observed that the presence of a ResNet34 model instead of ResNet18 in the ensemble led to an increase in the average shared accuracy β_{sh} of ResNet18 models from 66.2% to 66.7%.

Secondly, if small models achieve high performance on their limited personalized domains, a large model distilling from such an ensemble can potentially learn a much more complex picture of the entire dataset than would otherwise be accessible to any individual small learner. This observation has already inspired centralized distillation-based methods like [13]. In our experiments, we witnessed this by observing that ResNet34 trained in conjunction with 3 ResNet18 clients reached the shared accuracy β_{sh} of 68.6%, which exceeds the 67.7% accuracy of an ensemble of 4 ResNet18 models trained with FedAvg or 66.0% if trained with our approach (both with 200 steps between updates). Notice that if the ResNet34 model is isolated from ResNet18 models, it only reaches β_{sh} of 39.4%.

5. Discussion and Conclusions

In this paper, we proposed a novel distributed machine learning technique based on model distillation. The core idea of our approach lies in using a hierarchy of multiple auxiliary heads distilling knowledge from each other and across the ensemble. We show that this technique is much more effective than naive distillation and allows us to get close to the supervised accuracy on a large ImageNet dataset given a large public dataset and longer training time necessary for information to spread across the system. We also study two key capabilities of a distributed distillation-based learning technique. Specifically, we demonstrate that in systems where direct communication between the clients is limited, multiple auxiliary heads allow information exchange across clients that are not directly connected. We also demonstrate two positive effects of adding larger models into the system of small models: (a) small models benefit from seeing larger teachers and that (b) large models learning from a collection of small models can reach higher accuracies than those achievable with small models only.
References

[1] Gustavo Aguilar, Yuan Ling, Yu Zhang, Benjamin Yao, Xing Fan, and Chenlei Guo. Knowledge distillation from internal representations. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 7350–7357. AAAI Press, 2020.

[2] Sungsoo Ahn, Shell Xu Hu, Andreas C. Damianou, Neil D. Lawrence, and Zhenwen Dai. Variational information distillation for knowledge transfer. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 9163–9171. Computer Vision Foundation / IEEE, 2019.

[3] Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 2654–2662, 2014.

[4] Ilai Bistritz, Ariana J. Mann, and Nicholas Bambos. Distributed distillation for on-device learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[5] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving machine learning. In Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 1175–1191. ACM, 2017.

[6] Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Tina Eliassi-Rad, Lyle H. Ungar, Mark Craven, and Dimitrios Gunopulos, editors, Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20-23, 2006, pages 535–541. ACM, 2006.

[7] George Cazanavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu. Dataset distillation by matching training trajectories. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 10708–10717. IEEE, 2022.

[8] Hong-You Chen and Wei-Lun Chao. Fedbe: Making bayesian model ensemble applicable to federated learning. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[10] Tommaso Furlanello, Zachary Chase Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar. Born-again neural networks. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 1602–1611. PMLR, 2018.

[11] Xuan Gong, Abhishek Sharma, Srikrishna Karanam, Ziyou Wu, Terrence Chen, David S. Doermann, and Arun Innanje. Preserving privacy in federated learning with ensemble cross-domain knowledge distillation. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022, pages 11891–11899. AAAI Press, 2022.

[12] Neel Guha, Ameet Talwalkar, and Virginia Smith. One-shot federated learning. CoRR, abs/1902.11175, 2019.

[13] Chaoyang He, Murali Annaram, and Salman Avetisian. Group knowledge transfer: Federated learning of large cnns at the edge. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society, 2016.

[15] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. CoRR, abs/1503.02531, 2015.

[16] Sohei Itahara, Takayuki Nishio, Yusuke Morikura, and Koji Yamamoto. Distillation-based semi-supervised federated learning for communication-efficient collaborative training with non-iid private data. CoRR, abs/2008.06180, 2020.

[17] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

[18] Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. Survey of personalization techniques for federated learning. CoRR, abs/2003.08673, 2020.

[19] Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning. CoRR, abs/1910.03581, 2019.

[20] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization in heterogeneous networks. In Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze, editors, Proceedings
Tao Lin, Lingjii Kong, Sebastian U. Stich, and Martin Jaggi. Ensemble distillation for robust model fusion in federated learning. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020*, virtual, 2020.

Jiaxin Ma, Ryo Yonetani, and Zahid Iqbal. Adaptive distillation for decentralized learning from heterogeneous clients. In *25th International Conference on Pattern Recognition, ICPR 2020, Virtual Event / Milan, Italy, January 10-15, 2021*, pages 7486–7492. IEEE, 2020.

Disha Makhija, Xing Han, Nhat Ho, and Joydeep Ghosh. Architecture agnostic federated learning for neural networks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, *International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning Research*, pages 14860–14870. PMLR, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas. Communication-efficient deep networks from decentralized data. In Aarti Singh and Xiaojin (Jerry) Zhu, editors, *Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA*, volume 54 of *Proceedings of Machine Learning Research*, pages 1273–1282. PMLR, 2017.

Hossein Mobahi, Mehrdad Farajtabar, and Peter L. Bartlett. Self-distillation amplifies regularization in hilbert space. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020*, virtual, 2020.

Minh N. H. Nguyen, Huy Q. Le, Shashi Raj Pandey, and Choong Seon Hong. CDKT-FL: cross-device knowledge transfer using proxy dataset in federated learning. *CoRR*, abs/2204.01542, 2022.

Timothy Nguyen, Roman Novak, Lechoa Xiao, and JaeHoony Lee. Dataset distillation with infinitely wide convolutional networks. *CoRR*, abs/2107.13034, 2021.

Krishna Pillutla, Kshitiz Malik, Abdelrahman Mohamed, Michael Rabbat, Maziar Sanjabi, and Lin Xiao. Federated learning with partial model personalization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato, editors, *International Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning Research*, pages 17716–17758. PMLR, 2022.

Felix Sattler, Arturo Marbán, Roman Rischke, and Wojciech Samek. Communication-efficient federated distillation. *CoRR*, abs/2012.00632, 2020.

Tao Shen, Jie Zhang, Xinkang Jia, Fengda Zhang, Gang Huang, Pan Zhou, Fei Wu, and Chao Wu. Federated mutual learning. *CoRR*, abs/2006.16765, 2020.

Stefán Páll Sturluson, Samuel Trew, Luis Muñoz-González, Matei Grama, Jonathan Passerat-Palmbach, Daniel Rueckert, and Amir Alansary. Fedrad: Federated robust adaptive distillation. *CoRR*, abs/2112.01405, 2021.

Lichao Sun and Lingjuan Lyu. Federated model distillation with noise-free differential privacy. In Zhi-Hua Zhou, editor, *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021*, pages 1563–1570. ijcai.org, 2021.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning. *CoRR*, abs/2103.00710, 2021.

Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou, Qinghua Lu, Jing Jiang, and Chengji Zhang. Fedproto: Federated prototype learning across heterogeneous clients. In *Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, I AAAI 2022, The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22 - March 1, 2022*, pages 8432–8440. AAAI Press, 2022.

Tianchun Wan, Wei Cheng, Dongsheng Luo, Wenchao Yu, Jingchao Ni, Liang Tong, Haifeng Chen, and Xiang Zhang. Personalized federated learning via heterogeneous modular networks. *CoRR*, abs/2210.14830, 2022.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation. *CoRR*, abs/1811.10959, 2018.

Chuhan Wu, Fangzhao Wu, Ruixuan Liu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie. Fedkd: Communication efficient federated learning via knowledge distillation. *CoRR*, abs/2108.13323, 2021.

Chenglin Yang, Lingxi Xie, Siyuan Qiao, and Alan L. Yuille. Training deep neural networks in generations: A more tolerant teacher educates better students. In *The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, I AAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019*, pages 5628–5635. AAAI Press, 2019.

Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao Xu, and Feijie Wu. Parameterized knowledge transfer for personalized federated learning. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, *Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021*, virtual, pages 10092–10104. 2021.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous federated learning. In Marina Meila and Tong Zhang, editors, *Proceedings of
