Review Article

A Perspective on therapeutic potential of weeds

Vikrant Arya1* and Ranjeet Kaur Parmar2

1Assistant Professor, Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, India
2Home Maker, Pranav Kuteer, Jayanti Vihar, Kangra, Himachal Pradesh, India

Abstract

Nature gives us a diverse plethora of floral wealth. Weeds have been recognized as invasive plant by most of scholars in today’s world with extraordinary travel history. They are considered to be noxious for adjoining plant species and also as economic hazard. Weeds inhabited in almost entire biomes and have capability to survive in harsh conditions of environment thereby become source of inspiration for finding novel phytoconstituents. Weeds play a significant role in absorbing harmful micro pollutants that are affecting ecosystem adversely. There are so many examples like canna lily, bladder wort, coltsfoot, giant buttercup etc. playing crucial part in absorbing harmful micro pollutants that are affecting ecosystem adversely. Different isolation and characterization approaches like high pressure liquid chromatography, gas chromatography, ion exchange chromatography, nuclear magnetic resonance, mass spectroscopy etc. have also been fetched for obtaining novel constituents from weeds. The main aim of this review is to analyze the therapeutic potential of weeds established in New Zealand and effort to unfold the wide scope of its applications in biological sciences. Upon exploration of various authorized databases available it has been found that weeds not only are the reservoir of complex phytoconstituents exhibiting diverse array of pharmacological activities but also provide potential role in environment phytoremediation. Phytoconstituents reported in weeds have immense potential as a drug targets for different pathological conditions. This review focuses on the literature of therapeutic potential of weeds established in New Zealand and tried to unveil the hidden side of these unwanted plants called weeds.

Introduction

‘Horse Hoeing Husbandry’ named famous writing by Jethro Tull (1731) mentioned first time the word ‘weed’ [1]. Weeds may be considered as plants whose abundance must be over above a specific level can cause major environmental concern [2]. Aldrich and Kremer, 1997 defined weed as a part of dynamic ecosystem [3]. Plant originated in natural environment and, in response to imposed or natural environments, evolved, and continues to do so, as an interfering associate with crops and activities. Weeds may interfere with the utilization of land and water resources thereby adversely affect human welfare [4]. According to Ancient Indian Literature earth is blessed with diverse flora and every existing plant has their own importance. Some plants are considered unwanted but they may have beneficial properties. Scholars are trying hard to explore the hidden potential of such unwanted plants [5]. Weeds have interactions with other organisms and some of these interactions can have direct effects on the functioning of agro-ecosystem [6]. They serve as an indirect resource for predatory species [7] and it could alternative food sources for organisms that play prominent role in insect control [8]. Weeds have a unique travel history. Clinton L. Evans in his book ‘The war on weeds in the prairie west- An Environmental History’ mentioned about travelling of weeds in ships, railways, automobiles from one country to another as food contaminants, animal feed, farm implements etc. during trade [9]. Weeds are firmly distributed and established all over New Zealand. Authors Ian Popay, Paul Champion and Trevor James in their book ‘An Illustrated Guide to Common Weeds of New Zealand’ (edition 3rd) published by New Zealand Plant Protection Society in 2010 mentioned the detailed description of around 380 weed species established in New Zealand [10]. Different scientific databases/ information resources (governmental, private, universities, initiatives, organizations etc.) of New Zealand extensively explored over a year as mentioned in table 1 to obtain data pertaining to weeds prevalent within geographical boundaries of New Zealand. After obtaining desired data of different weeds, a literature search was performed using the keyword “Name of weed (e.g. Aristea ecklonii) Pharmacology”, “New Zealand plants”, “weed pharmacology”, “therapeutic weed” individually or all together in different scientific databases of Scopus, Web of Science and Pubmed to obtain therapeutic potential of weeds. Celastrus orbiculatus (Climbing spindle berry) [59], Robinia pseudoacacia (False acacia) [63], Daphne laureola
A Perspective on therapeutic potential of weeds

Chemical profile of weeds established in New Zealand

Weeds established in New Zealand encompass wide array of therapeutic phytoconstituents. Weeds serve as biosynthetic factory for synthesis of phytochemicals. They are sources of rich medicinal wealth which includes primary metabolites (polysaccharides and secondary metabolites (alkaloids, flavonoids, glycosides, tannins, volatile oils etc). They are the potential sources of complex phytoconstituents. Selaginella kraussiana (African club moss) [11], Lonicer japonica (Japanese honeysuckle) [32], Eriobotrya japonica (Loquat) [35] and Anredera cordifolia (Mignonette vine) [38] contains polysaccharides. Alternanthera philoxeroides (Alligator weed) [13] and Rhamnus alaternus (Evergreen buckthorn) [26] contains anthraquinone glycosides. Lamium galeobdolon (Artillery plant) [14] and Heracleum mantegazzianum (Giant hogweed) [27] contains appreciable amount of volatile oil. Modern spectroscopic methods have been explored for structural elucidation of bioactive constituents present in weeds. LC-MS has been used for quantitative detection of xyloglucan oligosaccharide in Selaginella kraussiana [11], betulonic acid in Alnus glutinosa (Black alder) [12], jasmonic acid in Drosera capensis (Cape sundew) [20], flavonoids in Gunnera tinctoria (Chilean rhubarb) [24], pyrrolizidine alkaloid esters in Gymnocoronis spilanthoides (Senegal tea)

Table 1: Description of scientific databases/information resources of New Zealand for weed identification.

PRIMARY INFORMATION SOURCES	SECONDARY INFORMATION SOURCES*			
Source name	Source type	Authors	Web address	Database/information resource
An encyclopedia of New Zealand, 1966	Encyclopedia	McLintock AH	http://www.agpest.co.nz	AgPest: It is an open access tool available for New Zealand farmers and agricultural professionals containing information about weeds, pest identification, their biology, impact and management
Common weeds in New Zealand, 1976	Book	Parham BEV, Healy AJ	http://www.agriculture.vic.gov.au	Agriculture victoria : Platform is used to promote agriculture industry in New Zealand and encompass information related to weeds and plant protection
Weeds in New Zealand protected natural areas: A review for the Department of Conservation, 1990	Book	Williams PA, Timmins SM	http://www.cropsience.bayer.co.nz	Bayer crop science: It is one of the major information providers of crop protection products
Problem weeds on New Zealand islands, 1997	Book	Bourdzt GW, Fowler SV, Edwards GR, Kriticos DJ, Kean JM, Rahman A, Parsons AJ	http://www.learnz.org.nz	Learnz: It is a initiative of free virtual field trips that help students to acquire inaccessible knowledge regarding various agricultural activities
New Zealand Journal of Agricultural Research, 50(2), 2007	Journal	Howell C	http://www.massey.ac.nz	Massey university: In Massey University, College of Sciences prepared a database dedicated to provide information regarding weeds in New Zealand
Consolidated list of environmental weeds in New Zealand, 2008	Journal	Sullivan JJ, Williams PA, Timmins SM, Smale MC	http://www.mpi.govt.nz	Ministry for primary industries: The Ministry for Primary Industries is dedicated to improving agriculture productivity, food safety, increasing sustainability and reducing biological risk
New Zealand Journal of Ecology, 33 (2), 2009	Journal	Popay I, Champion P, James T	http://www.nzpcn.org.nz	New Zealand plant conservation network: This network system is framed to conserve the floral wealth of New Zealand
New Zealand Journal of Ecology, 39(1), 2015	Journal	McPine KE, Lamoureux SL, Westbrooki I	http://www.ourbigbackyard.nz	Our big backyard: This aims to restore, create and maintain healthy habitats of New Zealand
Agronomy, 9, 2019	Journal	Ghanizadeh H, Harrington KC	http://www.waikoregion.govt.nz	Waikato: This local government body works for maintaining agriculture resources and sustainability to ensure strong economy
Climate change risk assessment for terrestrial species and ecosystems in the Auckland region. Auckland Council, 2019	Technical report	Bishop C, Landers TJ	http://www.weedbusters.org.nz	Weedbusters: Programme facilitates to eradicate weeds in New Zealand

*Secondary information resources/databases have been explored from March 2019 to March 2020
A Perspective on therapeutic potential of weeds

NMR employed for characterization of compounds present in *Fraxinus excelsior* (Ash) [15], *Berberis glaucocarpa* (Barberry) [17], *Ligustrum sinense* (Chinese privet) [25], *Rhamnus alaternus* [26], *Cestrum parqui* (Green cestrum) [30], *Ranunculus sardous* (Hairy buttercup) [49]. Detailed summary of chemical compounds isolated from weeds established in New Zealand indicated in table 2.

Therapeutic potential of weeds established in New Zealand

Weeds have been explored for diverse pharmacological actions like anti cancer, anti microbial, anti-inflammatory, antioxidant, antiviral etc. as mentioned in table 3 and figure 1.

Anticancer weeds: Some important cytotoxic weeds

Common name	Botanical name	Native of	Compound reported	Analytical approach adopted	References
African club moss	Selaginella kraussiana	Africa	Xyloglucan oligosaccharide	Matrix assisted laser desorption ionization	[11]
	Selaginellaceae			time of flight (MS), high performance anion	
				exchange chromatography	
Black alder	*Alnus glutinosa*	Eurasia, Africa	Betulin, betulonic acid, betulonic acid, lupeol	Desorption atmospheric pressure	[12]
	Betulaceae			photoionization (MS)	
Alligator weed	*Alternanthera philoxeroides*	South America	Anthraquinone glycosides	Spectral analysis	[13]
Artillery plant	*Lamium galeobdolon*	Europe, Asia	Volatile compounds	GC-MS	[14]
Ash	*Fraxinus excelsior*	Europe, Asia	Nodulisporiviridin M	ID, 2D 1H & 13C NMR	[15]
Asiatic knotweed	*Fallopia japonica*	Asia	Carotenoid	HPTLC, HPLC-MS	[16]
Barberry	*Berberis glaucocarpa*	Himalayas	Bisbenzylisoquinoline alkaloid, oxyacanthine	1D, 2D NMR	[17]
Blackberry	*Rubus fruticosus*	North temperate	Polysaturated fatty acids	Supercritical carbon dioxide method	[18]
Boxthorn	*Lycium feroxissimum*	South Africa	Betaine	Fast atom bombardment mass spectroscopy	[19]
Cape sundew	*Drosera capensis*	South Africa	Jasmonic acid	LC-MS/MS	[20]
Castor oil	*Ricinus communis*	Africa, Eurasia	Ricin	Spectral analysis	[21]
Century plant	*Agave americana*	Mexico	Fructans	Thermogravimetric analysis	[22]
Cherry laurel	*Prunus laurocerasus*	South East Europe	Cyanogentic glycosides, benzoic acid derivative	LC-ESIMS	[23]
Chilean rhubarb	*Gunnera tinctoria*	South America	Flavonoids	HPLC-MS/MS	[24]
Chinese privet	*Ligustrum sinense*	China	10-hydroxy-oleuropein, 3-O-alpha-L-hamnopyranosyl-kaempherol-7-O-beta-D-gluco	1D, 2D NMR	[25]
	Oleaceae		pyranoside		
Evergreen buckthorn	*Rhamnus alaternus*	Mediterranean region	Anthraquinone glycosides	1D, 2D NMR, FAB-MS	[26]
Giant hogweed	*Heracleum mantegazzianum*	Eurasia	Essential oil	GC-MS	[27]
Giant knotweed	*Fallopia sachalinensis*	Asia	Olymeric procyanidins, flavones, flavonoids	GC-MS	[28]
Giant reed	*Arundo donax*	Eurasia	Bis-indole alkaloid, phenylpropanoid	Spectral analysis	[29]
Green cestrum	*Cestrum parqui*	Chile, Peru	Saponin	1H, 13C NMR	[30]
Heather	*Calluna vulgaris*	Europe	Catechin, epicatechin	HPLC-DAD-ESI/MS	[31]
Japanese honeysuckle	*Loniceria japonica*	Japan	Polysaccharides	HPLC, FTIR	[32]
Khasia berry	*Cotoneaster simonsii*	China	Tocopherols	Spectral analysis	[33]
Kudzu vine	*Pueraria lobata*	Japan	Lobatamunsolides A-C, nortignans	LC-MS	[34]
Loquat	*Eriobotrya japonica*	China, Japan	Polysaccharides	UMAE	[35]
Manchurian rice	*Zizia latifolia*	China	Proanthocyanidins	UAE	[36]
grass	*Poaceae*				
Mexican devil	*Ageratina adenophora*	South America	Thymol derivatives	1H NMR, HR-ESI-MS, IR	[37]
Table 3: A summary of pharmacological activities exhibited by weeds.

Common name	Botanical name	Native of	Reported pharmacological activity	Outcome of study	Reference
Aristea	Aristeae ecklonii	West and South Africa	Antimicrobial	Plumbagin isolated from plant exhibited antimicrobial activities with MIC 2 μg/ml and 16 μg/ml	[50]
Arrow bamboo	Pseudosasa japonica	Japan, South Korea	Antioxidant	Leaves extract has potential to ameliorate oxidative stress by improving antioxidant activity	[51]
Bear’s breeches	Acanthus mollis	South West Europe	Antioxidant, anti-inflammatory	Ethanol extract inhibited NO production	[52]
Blue spur flower	Plectranthus ecklonii	South Africa	Against pancreatic cancer	Antiproliferative effect was found to be effective against BxPC3, PANC-1, Ins1-E, HaCat, Caco-2 cell lines	[53]
Buddleja	Buddleja davidii	China	AChE inhibitory activity	Linarin isolated from plant inhibit AChE activity	[54]
Cape honeysuckle	Tecomania capensis	South Africa	Analgesic, antipyretic, anti-inflammatory activities	Methanolic extract of leaves significantly prevented increase in volume of paw edema	[55]
Cat’s claw creeper	Macfadyena unguis-cati	Central and South America	Anti-inflammatory, cytotoxic	Crude ethanol extract exhibited marked anti-inflammatory and cytotoxicity against lung cancer cell line	[56]
Chocolate vine	Akebia quinata Lardizalaceae	China, Korea	Anti-fatigue agent	Akebia extract showed marked improvement in lethargic behavioral test	[57]
Clematis	Clematis flammula	Southern Europe and Northern Africa	Cytotoxic	Weed extract cause kinases and transcription factor induction	[58]
Climbing spindle berry	Celastrus orbiculatus	Eastern Asia, Korea, Japan, China	Against gastric cancer	Compound 28-hydroxy-3-oxoolean-12-en-29-oic acid inhibited the migration and invasion of gastric cancer cells	[59]
Darwin’s barberry	Berberis darwinii	Chile, Argentina	Alzheimer’s disease	Methanolic extract of stem bark exhibited acetycholinelastre inhibitory activity	[60]
Elder	Sambucus nigra Caprifoliaceae	Europe, West Asia, North Africa	Antioxidant	Free radical scavenging potential	[61]
Elephant ear	Alocasia brisanensis	Ceylon, Tahiti	Antimicrobial	Extract showed promising antimicrobial activities against Staphylococcus aureus	[62]
False acacia	Robinia pseudoacacia	South Eastern USA	Antilumor	Inhibition of IL-1β signaling	[63]
False tamarisk	Myrcianthus germanica	Eurasia	Cytotoxic	Compound tamagerntin exhibited potent anti cancer effect	[64]
Field horsetail	Equisetum arvense	Temperate Northern Hemisphere	Antioxidant	Potent antioxidant in DPPH assay	[65]
Green daphne laurel	Daphne laureola Thymelaeaceae	North Africa, South West Europe	Anticancer	Cytotoxic against lung cancer	[66]
Green goddess	Zantedeschia aethiopica	South Africa	Antimicrobial	Peptides in weed exhibited antimicrobial activities	[67]
Gipsywort	Lycopus europaeus	Europe, Asia	Antimicrobial	Compound euroabienol showed broad spectrum activity	[68]
Sp.	Family	Distribution	Effect	Reference	
------------------------------	-----------------------------	-------------------------------------	--	-----------	
Hop	Cannabaceae	Europe, Western Asia, North America	Osteogenic	[69]	
Homed poppy	Papaveraceae	Western Europe, South Western Asia	Against breast cancer	[70]	
Houttuynia	Saururaceae	Asia	Antiinflammatory	[71]	
Ivy	Araliaceae	Europe, North Africa	Inhibition of Staphylococcus aureus strain	[72]	
Jerusalem cherry	Solanaceae	South America	Acetylcholinesterase inhibitor	[73]	
Lantana	Verbenaceae	Tropical America	Sedative	[74]	
Mexican water lily	Nymphaeaceae	Mexico	Antiinflammatory	[75]	
Nasturtium	Nymphaceae	Europe, America, Africa, Asia	Antimicrobial	[76]	
Needlebrush	Proteaceae	Australia	Cytotoxic	[77]	
Old man's beard	Clematis vitata	Europe, South West Asia	Antinoceptive and antipyretic	[78]	
Pig's ear	Crassulaceae	Africa	Anticonvulsant	[79]	
Pink ragwort	Asclepiadaceae	South Africa	Cytotoxicity in HepG2 cells caused depletion of cellular GSH	[80]	
Rough horsetail	Equisetaceae	Temperate Northern Hemisphere	Antilyranosomosal	[81]	
Royal fern	Osmundaceae	Europe, India, Africa	Inhibition of head and neck cancer cell proliferation	[82]	
Tree privet	Oleaceae	China	Hepatocellular carcinoma	[83]	
Tsutsan	Clusiaceae	South and Western Europe	Anti-lipid peroxidation	[84]	
Chingma lantern	Malvaceae	North Western Africa	Antiinfectious	[85]	
Black night shade	Chenopodiaceae	Eurasia	Hypoglycemic	[86]	
Broad leaved dock	Polygonaceae	Eurasia	Ethanol extract improved glucose tolerance in rabbits	[87]	
Broad leaved fleabane	Asteraceae	South America	Antiplasmodial	[88]	
Broad leaved plantain	Plantaginaceae	Eurasia	Potential wound healer	[89]	
Chick weed	Caryophyllaceae	India	Antifungal	[90]	
Cleavers	Rubiaceae	Temperate zone	Immunomodulator	[91]	
Dandelion	Asteraceae	Africa	Extract from leaf provide protection against free radical mediated oxidative stress	[92]	
Father	Amaranthaceae	Temperate zone	Antioxidant	[93]	
Galinsoga	Asteraceae	Tropical America	Photocarcinogenesis	[94]	
Hedge mustard	Brassicaceae	Southern Europe	Inhibition of oxidative mutagenicity	[95]	
Hemlock	Apiaceae	Temperate region	Osteogenic	[96]	
Manuka	Myrtaceae	New Zealand, South East Australia	Antibacterial	[97]	
Nettle	Ulricaceae	Europe	Anxiolytic	[98]	
Pennyroyal	Lamiaceae	Northern Africa	Antidiabetic	[99]	
Red dead nettle	Lamiaceae	Eurasia	Haemostatic activity	[100]	
Scarlet pimpernel	Primulaceae	Northern Africa	Aqueous leaf extract showed activity against Schistosoma mansoni	[101]	
Scotch thistle	Asteraceae	Europe	Hepatoprotective	[102]	
Scrambling speedwell	Plantaginaceae	Eurasia, America	Antiviral	[103]	
Antimicrobial weeds

Invasive weed *Aristea eklonii* containing Plumbagin exhibited antimicrobial activity with minimum inhibitory concentration between 2 μg/ml and 16 μg/ml [50]. Antimicrobial peptides isolated from arum lily (*Zantedeschia aethiopica*) exhibited potent antimicrobial activity [67]. Euroabienol (abietane-type diterpenoid) isolated from fruits of *Senecio latifolius* (*Bis (False acacia)* [63], *Robinia pseudoacacia* [64], *Senecio latifolius* (Pink ragwort) [80], *Osmanda regalis* (Royal fern) [82]. Parvifloron D isolated from *Plectranthus ecklonii* flash dry column chromatography exhibited antiproliferative effects against pancreatic cancer when evaluated against *HaCat, BxPC3, Caco-2, MCF-7, Ins1-E and PANC-1* cell lines [53].

Aqueous extract of weed *Solanum nigrum* at concentration of 10 g/l caused 43% cytotoxicity in MCF7 cell line by inhibiting migration, suppression of hexokinase and pyruvate kinase [86]. Triterpene (28-Hydroxy-3-oxoolean-12-en-29-oic acid) 10 g/l caused 43% cytotoxicity in *MCF7* cell line by inhibiting *Aqueous extract of weed HaCat, BxPC3, Caco-2, MCF-7, Ins1-E and PANC-1 cell lines* [53].

Flash dry column chromatography exhibited antiproliferative effects against pancreatic cancer when evaluated against *HaCat, BxPC3, Caco-2, MCF-7, Ins1-E and PANC-1 cell lines* [53].

Antioxidant weeds

Strong antioxidant activity was reported by ferulic acid derived from leaves of weed *Pseudosa japonica* when evaluated using DPPH (54 %) and ABTS (65 %) [51]. Antioxidant potential of *Taraxacum officinale* was determined using in vitro methods (DPPH, ABTS, FRAP). The ABTS method revealed that antioxidant activity was 156±5.28 μg/ml [92]. Other potential antioxidant weed includes *Acanthus mollis* [52], *Sambucus nigra* [61], *Equisetum arvense* [65].

Anti-inflammatory weeds

A study by Akhtar, et al. 2019 investigated the anti-inflammatory properties of *Hedera helix* and its major compounds on *Staphylococcus aureus* induced inflammation in mice. *Hedera* species-C isolated from weed exerted profound anti-inflammatory effects [72]. Mexican water lily (*Nymphaea mexicana*) was found to be potent COX-2 inhibitor [75]. Active compounds isolated from aerial parts of weed *Clematis vitalba* when evaluated in vivo against carrageenan, serotonin, PGE-2 induced hind paw edema showed antinoiceptive and antipyretic effects [78]. Methanolic extract of leaves of *Tecomaria capensis* significantly prevented increase in volume of paw edema [55]. Extract of *Persicaria hydropiper* exerted marked anti-inflammatory effects [106]. Aqueous extract alongwith compounds (calcereoside B, homoplantaginin, plantamajoside) isolated from the aerial parts of *Plantago major* showed inhibition against hyaluronidase enzyme [89].

Antiviral weeds

Methanolic extract of scrambling speedwell weed (*Veronica persica*) reported potent activity against herpes simplex viruses and synergistic activity in combination with acyclovir anti-HSV therapy [103].

Figure 1: Therapeutic potential of weeds.

Weed Name	Scientific Name	Family	Therapeutic Potential
Selfheal	Prunella vulgaris	Lamiaceae	Inhibition of IHNV infection, Ursolic acid decrease cytopathic effect and viral titer
Sow thistle	Sonchus oleraceus	Asteraceae	Inhibition of IHNV infection, Ursolic acid decrease cytopathic effect and viral titer
Water pepper	Persicaria hydropiper	Polygonaceae	Anti-inflammatory, Extract showed desired therapeutic effect
Yarrow	Achillea millefolium	Asteraceae	Anti-inflammatory, Antiabesial activity, Different extract were active against *Brucella canis*
Woolly mullein	Verbascum thapsus	Scrophulariaceae	Antimicrobial, Ethanolic extract were potent against gram positive bacteria
Wild teasel	Dipsacus fullonum	Caprifoliaceae	Antibacterial, Compounds isolated from root exhibited activity against *Staphylococcus aureus*
Cocklebur	Xanthium strumarium	Asteraceae	Hepatocellular carcinoma, Weed induce apoptosis in HCC cell lines in a dose dependent manner

Extracts obtained from leaves of weed *Abutilone theophrasti* elicited antimicrobial potential against *Staphylococcus aureus, Salmonella, Streptococcus* and *E. coli* species [85]. Essential oils isolated from weeds *Conium maculatum, Leptospermum scoparium* showed antimicrobial activity against several strains of *Pseudomonas aeruginosa* [96,97]. Ethanolic extracts of woolly mullein reported positive against gram positive bacteria (*Bacillus cereus*) [108]. Phenolic compounds from *Dipsacus fullonum* exerted inhibitory effects on *Staphylococcus aureus* DSM 799 and *E. coli* ATCC 10536 strains [109].

Antioxidant weeds: Strong antioxidant activity was reported by ferulic acid derived from leaves of weed *Pseudosa japonica* when evaluated using DPPH (54 %) and ABTS (65 %) [51]. Antioxidant potential of *Taraxacum officinale* was determined using in vitro methods (DPPH, ABTS, FRAP). The ABTS method revealed that antioxidant activity was 156±5.28 μg/ml [92]. Other potential antioxidant weed includes *Acanthus mollis* [52], *Sambucus nigra* [61], *Equisetum arvense* [65].

Anti-inflammatory weeds: A study by Akhtar, et al. 2019 investigated the anti-inflammatory properties of *Hedera helix* and its major compounds on *Staphylococcus aureus* induced inflammation in mice. *Hedera* species-C isolated from weed exerted profound anti-inflammatory effects [72]. Mexican water lily (*Nymphaea mexicana*) was found to be potent COX-2 inhibitor [75]. Active compounds isolated from aerial parts of weed *Clematis vitalba* when evaluated in vivo against carrageenan, serotonin, PGE-2 induced hind paw edema showed antinoiceptive and antipyretic effects [78]. Methanolic extract of leaves of *Tecomaria capensis* significantly prevented increase in volume of paw edema [55]. Extract of *Persicaria hydropiper* exerted marked anti-inflammatory effects [106]. Aqueous extract alongwith compounds (calcereoside B, homoplantaginin, plantamajoside) isolated from the aerial parts of *Plantago major* showed inhibition against hyaluronidase enzyme [89].

Antiviral weeds: Methanolic extract of scrambling speedwell weed (*Veronica persica*) reported potent activity against herpes simplex viruses and synergistic activity in combination with acyclovir anti-HSV therapy [103].

References:

[58], [62], [52], [61], [65], [72], [51], [106], [75], [108], [89].
acid isolated form weed *Prunella vulgaris* inhibited HNV infection in aquaculture with an inhibitory concentration of 99.3 % at 100 mg/l [104].

Weeds acting on CNS: Methanolic extract of stem bark of darwin’s barberry (*Berberis darwinii*) inhibited acetylcholinesterase *in vitro* with IC₅₀ value of 1.23±0.05 microg/mL thereby provide relief in alzheimer’s disease [60]. Alkaloid solanocapsine isolated from weed *Solanum pseudocapsicum* reported to inhibit activity of enzyme acetylcholinesterase [73]. Nettle (*Urtica urens*) exhibited anxiolytic activity in mice when evaluated using hole board test, light-dark box test and rota rod test. Extract showed increased head-dip and head-dip counts in hole board test [98]. Aqueous (50-400 mg/kg i.p.) and methanol extracts (100-400 mg/kg i.p.) of Pig’s ear (*Cotyledon orbiculata*) exhibited anticonvulsant activity which predominantly delayed onset of seizures induced by N-methyl-dl-aspartic, bicuculline, picrotoxin in mice models [79].

Other pharmacological activities of weeds: Aqueous extract of *Akebia quinata* showed positive effect against fatigue in mice exposed to chronic restraint stress when evaluated using forced swimming behavioral test, sucrose preference and open field tests [57]. n-butanol fraction of weed *Equisetum hyemale* exerted antiprotozoal effects against *Trypanosoma evansi* tryptomastigotes after nine hours exposure [81]. Chen, et al. 2019 reported osteogenic activities of *Humulus lupulus* in MC3T3-E1 cell lines [69]. Ethanolic extract of weed *Galiaum aparine* stimulated the transformational activity of immunocompetent blood cells in vitro [91]. Aqueous extract of aerial parts of *Mentha pulegium* (20 mg/kg) showed antihyperglycemic effect by marked improvement in oral glucose tolerance test in streptozotocin induced diabetic rats [99]. Butanolic extracts of aerial parts of *Anagallis arvensis* (Scarlet pimpernel) were effective against *Babesia canis* parasite at 2 µl concentration [107].

Other potential applications of weeds established in New Zealand

A large number of weed communities has been reported to clean environment through phytoremediation process and act as bioindicators (Figure 2). Phytoremediation is described as a process of eradicating toxic contaminants from soil, water and air. This process involves phytostabilization (treating the environment [119], annual poa (*Poa annua*) have been involved in removing toxic metals (chromium, cadmium, zinc, lead) from the environment [119]. Parrot feather (*Myriophyllum aquaticum*) aids in removing antibiotic (tetracycline) from water [120]. Oxyeye daisy (*Leucanthemum vulgare*) potentiated crude oil phytoremediation and used in eliminating pollution from environment [121]. Apart from these properties weeds have also been found to be employed in other industries e.g. buffalo grass weed (*Stenotaphrum secundatum*) used in turf grass industry [122]. Mucoidhesive properties of water soluble gum obtained from *Hakea gibbos a* added in sustained release dosage forms [123]. Silver nanoparticles having average particle size 20 nm synthesized from *Cestrum nocturnum* showed more antioxidant potential as compared to vitamin C alongwith strong antibacterial activity against *Vibrio cholerae* with MIC of 16 μg/ml [124]. Organic fertilizer manufactured via aquatic weed *Salvinia molesta* when evaluated using FT-IR, plant bioassay test for determination of its fertilizer value and chemical composition showed promising results as vermicompost [125]. *Eragrostis species* (*E. capensis* and *E. curvula*) and grass *Stenotaphrum secundatum* exhibited drought resistant ability [126,127].

Besides the therapeutic potential exhibited by weeds, toxicity profile should be taken into consideration while exploring them. *Equisetum arvense* (Field horsetail) exerted hepatotoxicity in rats [128], weeds like *Zantedeschia aethiopica* (Arum lily), *Conium maculatum* (Hemlock), *Solanum nigrum* (Black night shade) are considered poisonous in New Zealand.

![Figure 2: An overview of Phytoremediation process.](https://doi.org/10.29328/journal.jpsp.1001050)
A Perspective on therapeutic potential of weeds

[129]. *Hedera helix* (Ivy) caused contact dermatitis [130], *Lantana camara* exerted in vivo cell toxicity [131], *Xanthium strumarium* (Cocklebur) responsible for causing poisoning in cattle [132].

Conclusion

Humans define weeds as per their appropriateness and understanding of the plant. A plant investigated as weed in some region may be a plant of medicinal importance for another region. The usefulness of weeds has been ignored by humans for long time because of their invasive growth, competitors of genuine crop and no economic value. This human behaviour might be developed over time due to lack of proper knowledge of phytochemical screening as well as therapeutic potential of weeds. Weeds are the sources of human food, fodder in agriculture, shelter for some animals, helpful against soil erosion, indicators of soil nutrients, as well as sources of commercially important essential oils. In this era weeds have been extensively explored for their immense phytopharmacological prospects. It is evidenced that weeds have been sources of potential targets for different pathological conditions. However there is need of more scientific and clinical investigations required in assessment of toxicity profile to get the maximum potential of weeds. Weeds have protective role in environment as a component of phytoremediation and for sustainable ecosystem. Because of immense therapeutic potential implicit by weeds a new chain of thoughts emerge in our mind to consider the value of these important plants so called 'weeds'. Are they need to be redefined or we need to rethink the concept of weeds? It is clear from the studies documented in this review that the approach of whether a plant is wanted or not should depends on its pharmacological potential and role in ecosystem other than merely the competitive effect of plant with the particular crop. Further advancements are required in order to spin the concept of weeds into therapeutic weeds.

References

1. Jethro Tull. Horse hoeing husbandary, Berkshire. MDCC, 33; 1731.
2. Crawley MJ. Biodiversity. In: Crawley, M.J., (ed.) Plant Ecology, 2nd Edn. Blackwell Scientific, Oxford; 1997.
3. Aldrich RJ, Kremer RJ. Principles in weed management. Iowa State University Press; 1997.
4. Rao VS. Principles of Weed Science, 2nd Edn, Science Publishers, Enfield, New Hampshire, USA; 2000.
5. Oudhia P. Medicinal weeds in rice fields of Chhattisgarh, India. International Rice Research Notes. 1999; 24:40.
6. Gibbons DW, Bohan DA, Rothery P, Stuart RC, Haughton AJ, et al. Weed seed resources for birds in fields with contrasting conventional and genetically modified herbicide-tolerant crops. Proceedings of the Royal Society B: Biological Sciences. 2006; 273: 1921-1928. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16822753
7. Hawes C, Haughton AJ, Bohan DA, Squire GR. Functional approaches for assessing plant and invertebrate abundance patterns in arable systems. Basic and Applied Ecology. 2009; 10: 34-42.
8. Kromp B. Carabid beetles in sustainable agriculture: a review on pest
control efficacy, cultivation impacts and enhancement. Agriculture, Ecosystems & Environment. 1999; 74: 187-228.

9. Evans CL. The war on weeds in the Prairie west: an environmental history. University of Calgary Press; 2002.

10. Popay I, Champion P, James T. An Illustrated Guide to Common Weeds of New Zealand. 3rd Edn. New Zealand Plant Protection Society; 2010.

11. Hsieh YS, Harris PJ. Structures of xyloglucans in primary cell walls. Phytochemistry. 2012; 79: 87-101.

12. Rasane RM, Hieta JP, Immanen J, Nieminen K, Haavikko R, et al. Chemical profiles of birch and elder bark by ambient mass spectrometry. Anal Bioanal Chem. 2019; 411: 7573-7583.

13. Collett MG, Taylor SM. Photosensitising toxins in allergen weed (Alternanthera philoxeroides) likely to be anthraquinones. Toxicon. 2019; 167: 172-173. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31226258

14. Alipieva K, Evstatieva L, Handjieva N, Popova S. Comparative analysis of the composition of flower volatiles from Lamium L. species and Lamiastrum galeobdolon Heist. ex Fabr. Zeitschrift fur Naturforschung C. 2003; 58: 779-782.

15. Masi M, Di Lecce R, Handjieva N, Albreht A. Japanese and Bohemian Knotweeds as Sustainable Sources of Carotenoids. Plants. 2019; 8: 384. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31661270

16. Metlicar V, Vovk I, Albreht A. Japanese and Bohemian Knotweeds as Sustainsable Sources of Carotenoids. Plants. 2019; 8: 384. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31661270

17. Alamzeb M, Omer M, Ur-Rashid M, Raza M, Ali S, et al. Comparative analyses of structural composition and potential bioactivities of different plants. International journal of biological macromolecules. 2019. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31792639

18. Kityte V, Narkeviciute A, Tamkute L, Syrpas M, Pukalskiene M, et al. Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons. Planta. 1989; 178: 342-352.

19. Weretilnyk EA, Bednarek S, McCue KF, Rhodes D, Hanson AD. Consecutive high-pressure and enzyme assisted fractionation of blackberry (Rubus fruticosus L.) pomace into functional ingredients: Process optimization and product characterization. Food Chem. 2020; 312: 126072. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31893552

20. Mitchell HA, Harris PJ, Bannister M, Harris PH. Structure and properties of ricin—the toxic protein of Ricinus communis. Postepy Biochem. 2019; 65: 03-108. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31642648

21. Malajowicz J, Kusmirek S. Structure and properties of ricin—the toxic protein of Ricinus communis. Postepy Biochem. 2019; 65: 03-108. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31642648

22. Cruz-Salas CN, Prieto C, Calderon-Santoyo M, Lagaron JM, Ragazzo-Sanchez JA. Micro-and Nanostructures of Agave Fructans to Stabilize Compounds of High Biological Value via Electrohydrodynamic Processing. Nanomaterials. 2019; 9:1659. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31766573

23. Sendker J, Ellendorff T, Holzenbein A. Occurrence of benzoic acid esters as putative catabolites of prunasin in senescent leaves of Prunus laurocerasus. J Nat Prod. 2016; 79: 1724-1729. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27331617

24. Bridi R, Giordano A, Pennaillio MF, Montenegro G. Antioxidant Effect of Extracts from Native Chilean Plants on the Lipoperoxidation and Protein Oxidation of Bovine Muscle. Molecules. 2019; 24: 3264. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31500282

25. Ouyang MA, He ZD, Wu CL. Anti-oxidative activity of glycosides from Ligustrum sinense. Natural product research. 2003; 17: 381-387. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/14577686

26. Ben Ammar R, Miyamoto T, Chekhr-Ghederia L, Ghedira K, Lacaille-Dubois MA. Isolation and identification of new anthraquinones from Rhamnus alaternus L and evaluation of their free radical scavenging activity. Natural product research. 2019; 33: 280-286. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29533086/

27. Matouskova M, Jurova J, Grurova D, Wajs-Bonikowska A, Renco M, Sedlik V, Poracova J, Gogalova Z, Kalembo D. Phytotoxic Effect of Invasive Heracleum mantegazzianum Essential Oil on Dicot and Monocot Species. Molecules. 2018; 24: 425. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29384721/

28. Lachowicz S, Oszmianski J. Profile of Bioactive Compounds in the Morphological Parts of Wild Fallopia japonica (Houtt) and Fallopia sachalinensis (F. Schmidt) and Their Antioxidative Activity. Molecules. 2019; 24: 1436. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30979044

29. Liu QR, Li J, Zhao XF, Xu B, Xiao XH, et al. Alkaloids and phenylpropanoid from Rhizomes of Arundo donax L. Natural Product Res. 2019; 1-6.

30. Ikalb C, Habib B, Hichem B, Monia BH, Habib BH, et al. Purification of a natural insecticidal substance from Cestrum parqui (Solanaceae). Pak J Biol Sci. 2007; 10: 3822-3828. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19090236

31. Mandim F, Barros L, Heleno SA, Pires TC, Dias MI, Alves MJ, Santos PF, Ferreira IC. Phenolic profile and effects of acetone fractions obtained from the inflorescences of Calluna vulgaris (L.) Hull on vaginal pathogenic and non-pathogenic bacteria. Food & Function. 2019; 10: 2399-2407. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31049501

32. Zhang T, Liu H, Bai X, Liu P, Yang Y, et al. Fractionation and antioxidant activities of the water-soluble polysaccharides from Lonicerajaponica Thunb. International journal of biological macromolecules. 2019. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31739015

33. Matthaus B, Ozcan MM. Fatty acid, tocopherol and squalene contents of Rosaceae seed oils. Botanical studies. 2014; 55:48. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31049501

34. Jo MS, Yu JS, Lee JC, Lee S, Cho YC, et al. Lobatamunsolide A–C, Norlignans from the Roots of Pueraria lobata and their Nitric Oxide Inhibitory Activities. Molecules. 2019; 24: 9755. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31570727

35. Fu Y, Li F, Ding Y, Li HY, Xiang XR, et al. Polysaccharides from loquat (Eriobotrya japonica) leaves: Impacts of extraction methods on their physicochemical characteristics and biological activities. Int J Biol Macromolecules. 2020. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31923490

36. Chen MJ, Du YM, Liu XM, Yan N, Wang FZ, et al. Extraction of proanthocyanidins from Chinese wild rice (zizania latifolia) and analyses of structural composition and potential bioactivities of different fractions. Molecules. 2019; 24:1681. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31052148

37. Dong LM, Zhang M, Xu QL, Zhang Q, Luo B, et al. Two new thymol...
derivatives from the roots of Ageratina adenophora. Molecules. 2017; 22: 592. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154539/

38. Zhang ZP, Shen CC, Gao FL, Wei H, Ren DF, et al. Isolation, purification and structural characterization of two novel water-soluble polysaccharides from Annesadera cordifolia. Molecules. 2017; 22: 1276. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28769023

39. Priolo N, Del Valle SM, Arríbère MC, López L, Caffini N. Isolation and characterization of a cysteine protease from the latex of Araujia hortorum fruits. Journal of Protein Chemistry. 2000; 19: 39-49.

40. Akhara Y, Kamikawa S, Harashita Y, Ohta E, Nehira T, et al. HPLC profiles and spectroscopic data of cassane-type furanoditerpenoids. Data in brief. 2018; 21:1076-88. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30450403

41. Jordheim M, Calcott K, Gould KS, Davies KM, Schwinn KE, et al. High performance liquid chromatography coupled with electrospray ionization mass spectrometry for the identification of new triterpene glycosides, bryoniaosides A and B. Chemical and Pharmaceutical Bulletin. 2010; 58: 747-51. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20460809

42. Boppre M, Colegate SM. Recognition of pyrrolizidine alkaloid esters in the invasive aquatic plant Gymnocrinites sp. (Asteraceae). Phytochemical Analysis. 2015; 28: 215-225.

43. Du YQ, Yan ZY, Chen JJ, Wang XB, Huang XX, et al. The identification of phenylpropanoids isolated from the root bark of Ailanthus altissima (Mill.) Swingle. Nat Product Res. 2019: 1-8. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31315448

44. El-Tantawy ME, Shams MM, Affifi MS. Chemical composition and biological evaluation of the volatile constituents from the aerial parts of Nephrolepis exaltata (L.) and Nephrolepis cordifolia (L.) C. Presl grown in Egypt. Natural product research. 2016; 30: 1197-201. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26211503

45. Matsuda H, Nakashima S, Abdel-Halim OB, Morikawa T, Yoshikawa T, et al. Ferulic acid from Pseudosasa japonica leaves on enhancing exercise activity in mice. Phytother Res. 2010; 24: 1508-1513. PubMed: https://pubs.acs.org/doi/abs/10.1021/jf010514x

50. Mabona U, Viljoen A, Shikanga E, Marston A, Van Vuuren S. The invasive aquatic plant Gymnocrinites spilanthoides (Asteraceae). Phytochemistry. 2019; 165: 112047.

51. You Y, Kim K, Yoon HG, Lee KW, Lee J, et al. Chronic effect of ferulic acid from Pseudosasa japonica leaves on enhancing exercise activity in mice. Phytother Res. 2010; 24: 1508-1513. PubMed: https://pubs.acs.org/doi/abs/10.1021/jf010514x
A Perspective on therapeutic potential of weeds

65. Patova OA, Smimov VV, Golovchenko VV, Vityazev FV, Shashkov AS, et al. Structural, rheological and antioxidant properties of pectins from Equisetum arvense L. and Equisetum sylvaticum L. Carbohydrate Polymers. 2019; 209: 239-249.

66. Calderon-Montano JM, Martinez-Sanchez SM, Burgos-Moron E, Guillen-Manzana E, Jimenez-Alonso JJ, et al. Screening for selective antitumor activity of plants from Grazalema Natural Park, Spain. Nat Prod Res. 2019; 33: 345435-4.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29842791

67. Pires AS, Rigueiras PO, Doehms SM, Porto WF, Franco OL. Structure-guided identification of antimicrobial peptides in the spathe transcriptome of the non-model plant, arum lily (Zantedeschia aethiopica). Chem Biol Drug Design. 2019; 93: 1265-1275.

68. Radulovic N, Denic M, Stojanovic-Radic Z. Antimicrobial phenolic abietane diterpene from Lycopus europeus L.(Lamiaceae). Bioorg Med Chem Lett. 2010; 20: 4988-4981.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20674349

69. Chen X, Li T, Qing D, Chen J, Zhang Q, et al. Structural characterization and osteogenic bioactivities of a novel Humulus lupulus polysaccharide. Food Function. 2020; 11: 1165-1175.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31872841

70. Bourmine L, Bensalem S, Wauters JN, Igwer-Ouada M, Maiza-Benabdesselam F, et al. Identification and quantification of the main active anticancer alkaldoids from the root of Glaucom flavum. Int J Mol Sci. 2013; 14: 23533-23544.

PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3876061/

71. Basic M, Elgner F, Bender D, Sabino C, Herrlein ML, et al. A synthetic derivative of houttuynoid B prevents cell entry of Zika virus. Antiviral Res. 2019; 172: 104644.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31697958

72. Akhtar M, Shaukat A, Zahoor A, Chen Y, Wang Y, et al.. Anti-inflammatory effects of Hederaacisides-C on Staphylococcus aureus induced inflammation via TLRs and their downstream signal pathway in vivo and in vitro. Microbial Pathogenesis. 2019; 137: 103767.

PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580956

73. Garcia ME, Borioni JL, Cavallaro V, Puiatti M, Pierini AB, et al. Solanocapsine derivatives as potential inhibitors of acetylcholinesterase: Synthesis, molecular docking and biological studies. Steroids. 2015; 104: 95-110.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/26362598

74. Dougonn G, Ito M. Sedative effects of the essential oil from the leaves of Lantana camara occurring in the Republic of Benin via inhalation in mice. J Nat Med. 2020; 74: 159-169.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31446559

75. Hsu CL, Fang SC, Yen GC. Anti-inflammatory effects of phenolic compounds isolated from the flowers of Nymphaea mexicana Zucc. Food & function. 2013; 4: 1216-1222.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23727892

76. Ticona LA, SAnchez AR, GonzAlez OO, Domenech MO. Antimicrobial compounds isolated from Tropaeolum tuberosum. Natural Product Research. 2020: 1-5.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31913056

77. Luis A, Breitenfeld L, Ferreira S, Duarte AP, Domingues F. Antimicrobial, antibiofilm and cytotoxic activities of Hakea sericea Schrad er extracts. Pharmacognosy magazine. 2014; 10: S6.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24914310

78. Yesilada E, Kupeli E. Clematis vitalba L. aerial part exhibits potent anti-inflammatory, antinociceptive and antipyretic effects. J Ethnopharmacol. 2007; 110: 504-515.

79. Amabekou GJ, Green I, Kabatende J. Anticoagulant activity of Cotyledon orbiculata L.(Crassulaceae) leaf extract in mice. J Ethnopharmacol. 2007; 112: 101-107.

PubMed: https://pubmed.ncbi.nlm.nih.gov/17398051

80. Neuman MG, Jia AY, Steenkamp V. Senecio latifolius induces in vitro hepatocytotoxicity in a human cell line. Canadian journal of physiology and pharmacology. 2007; 85: 1063-1075.

81. dos Santos Alves CF, Bonec PC, de Souza MD, Da Cruz RC, Boligon AA, et al. Antimicrobial, antityranposomal and antibiofilm activity of Equisetum hyemale. Microbial pathogenesis. 2016; 101: 119-125.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27856271

82. Schmidt M, SkaJ F, Gavrili G, Polednic C, Ritter J, et al. The influence of Osmunda regalis root extract on head and neck cancer cell proliferation, invasion and gene expression. BMC Complement Altern Med. 2017; 17: 518.

PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716017/

83. Tian G, Chen J, Luo Y, Yang J, Gao T, Shi J. Ethanol extract of Ligusticum lucidum Ait. leaves suppressed hepatocellular carcinoma in vitro and in vivo. Cancer Cell Int. 2019; 19: 246.

PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572063

84. Sadique Z, Maimoona A, Abbas G, Naem I, Shahzad M. Pharmacological screening of Hypericum androsaemum extracts for antioxidant, anti-lipid peroxidation, antiglycation and cytotoxicity activity. Pakistan J Pharmaceut Sci. 2016; 29.

85. Tiana C, Yang C, Zhang D, Han L, Liu Y, et al. Antibacterial and antioxidant properties of various solvents extracts of Abutilon theophrasti Medic. leaves. Pak J Pharmaceut Sci. 2017; 30.

PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853920

86. Ling B, Xiao S, Yang J, Wei Y, Sakhrarkar MK, et al. Probing the Antitumor Mechanism of Solanum nigrum L. Aqueous Extract against Human Breast Cancer MCF7 Cells. Bioengineering. 2019; 6: 112.

PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/31835887

87. Aghajanyan A, Nikoyan A, Trchounian A. Biochemical activity and hypoglycemic effects of Rumex obtusifolius L. seeds used in Armenian traditional medicine. BioMed Res Int. 2018; 2018.

88. Boniface PK, Verma S, Shukla A, Cheema HS, Srivastava SK, et al. Bioactivity-guided isolation of antiplasmodial constituents from Conza sumatrensis (Retz.) EH Walker. Parasitol Int. 2015; 64: 119-123.

PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/25449289

89. Genc Y, Dereli FT, Saracoglu I, Akkol EK. The inhibitory effects of isolated constituents from Plantago major subsp. major L. on collagenase, elastase and hyaluronidase enzymes: Potential wound healer. Saudi Pharmaceut J. 2020; 28: 101-106.

PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/31920436

90. Rogozhin EA, Slezina MP, Slavokhotova AA, Istomina EA, Korostyleva TV, et al. A novel antifungal peptide from leaves of the weed Stellaria media L. Biochimie. 2015; 116: 125-132.

PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/26196691

91. Ilina T, Kashpur N, Granica S, Bazyklo A, Shinkovenko I, et al. Phytochemical Profiles and In vitro Immunomodulatory Activity of Ethanol Extracts from Galium aparine L. Plants. 2019; 8: 541.

PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/31775336

92. Aremu OO, Oyejede AO, Oyejede OO, Nkeh-Chungag BN, Rusike CR. In Vitro and In Vivo Antioxidant Properties of Taraxacum officinale in Nov-Nitro-l-Ariginine Methyl Ester (L-NAMe)-Induced Hypertensive Rats. Antioxidants. 2019; 8: 309.

PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/31431956

93. Jahan S, Azad T, Ayub A, Ullah A, Afsar T, et al. Ameliorating potency of Chenopodium album Linn. and vitamin C against mercuric chloride-induced oxidative stress in testes of Sprague Dawley rats. Environ Health Prevent Med. 2019; 24: 62.
A Perspective on therapeutic potential of weeds

94. Parzonko A, Kiss AK. Caffeic acid derivatives isolated from Galinsoga parviflora herb protected human dermal fibroblasts from UVA-radiation. Phytotherapy. 2019; 57: 215-22.
PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30785017

95. Di Sotto A, Di Giacomo S, Tonioi C, Nicoletti M, Mazzanti G, Sisyrmobium Officinale (L.) Scop., and its polyphenolic fractions inhibit the mutagenicity of Tert-butylhydroperoxide in Escherichia Coli WP2uvrAR strain. Phytotherapy Research. 2016; 30: 829-834.

96. Di Napoli M, Varcamonti M, Basile A, Bruno M, Maggi F, et al. Anti-Pseudomonas aeruginosa activity of hemlock (Conium maculatum, Apiceaeae) essential oil. Nat Prod Res. 2019; 33: 3436-3440.

97. Song SY, Hyeon JE, Kang JH, Hwang CY. In vitro antibacterial activity of the manukka essential oil from Leptospermum scoparium combined with Tris-EDTA against Gram-negative bacterial isolates from dogs with otitis externa. Vet Dermatol. 2019.

98. Doukkali Z, Taghzouti K, Bouididah EA, Nadjioumdine M, Cherrah Y, et al. Evaluation of anxiolytic activity of methanolic extract of Urtica urens in a mice model. Behav Brain Funct. 2015; 11: 19.
PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4423131/

99. Farid O, Zeggwagh NA, Ouadi FE, Eddouks M. Mentha pulegium Aqueous Extract Exhibits Antidiabetic and Hepatoprotective Effects in Streptozotocin-induced Diabetic Rats. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders). 2019; 19: 292-301.
PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30289084

100. Bubueanu C, Iuksel R, Panteli M. Haemostatic activity of butanolic extracts of Lamium album and Lamium purpureum aerial parts. Acta Pharmaceutica. 2019; 69: 443-449.
PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31259737

101. Ibrahim AM, Ghoname SI. Molluscicidal impacts of Anagallis arvensis aqueous extract on biological, hormonal, histological and molecular aspects of Biomphalaria alexandrina snails. Experimental Parasitology. 2018; 192: 36-41.

102. Fernandez-Martinez E, Jimenez-Santana M, Centeno-Alvarez M, Torres-Valencia JM, Shibayama M, et al. Hepatoprotective effects of nonpolar extracts from infl orescences of thistles Cirsium vulgaris and Cirsium ehrenbergii on acute liver damage in rat. Pharmacognosy magazine. 2017; 13: S860.
PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822512/

103. Sharifi-Rad J, Iriti M, Setzer WN, Sharifi-Rad M, Roorintan A, et al. Antiviral activity of Veronica persica Poir. on herpes virus infection. Cell Mol Biol. 2018; 64: 11-17.
PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29981678

104. Li BY, Hu Y, Li J, Shi K, Shen YF, et al. Ursolic acid from Prunella vulgaris L. efficiently inhibits HINV infection in vitro and in vivo. Virus Res. 2019; 273: 197741.

105. Torres-GonzAlaez L, Cienfuegos-Pecina E, Perales-Quintana MM, Alarcon-Galvan G, Munoz-Espinosa LE, et al. Nephroprotective effect of sonchus oleraceus extract against kidney injury induced by ischemia-reperfusion in wistar rats. Oxidative medicine and cellular longevity. 2018; 2018: 9572803.
PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29643981

106. Ayaz M, Ahmad I, Sadiq A, Ullah F, Ovais M, Khalil AT, Devkota HP, Persicaria hydropiper (L) Delarbre: A review on traditional uses, bioactive chemical constituents and pharmacological and toxicological activities. Journal of Ethnopharmacology. 2019; 112516.
PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31884037

107. Guz L, Adaszek L, Wawrzykowska J, Zietek J, Winiarczyk S. In vitro antioxidant and antibabesial activities of the extracts of Achillea millefolium. Polish journal of veterinary sciences. 2019; 389-376.
PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31269341

108. Mahdavi S, Amiradat M, Babashpour M, Sheikkhooei H, Miransari M. The antioxidant, anticarcinogenic and antimicrobial properties of Verbascum thapsus L. Medicinal chemistry (Sharigaq United Arab Emirates)). 2019.
PubMed: https://pubmed.ncbi.nlm.nih.gov/31456524

109. Oszmianski J, Wojdylo A, Juszczyk P, Nowicka P. Roots and Leaf Extracts of Dipsacus fullonum L. and Their Biological Activities. Plants. 2020; 9: 78.
PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31936189

110. Kim J, Jung KH, Ryu HW, Kim DY, Oh SR, et al. Apoptotic Effects of Xanthium strumarium via PI3K/AKT/mTOR Pathway in Hepatocellular Carcinoma. Evidence-Based Complementary and Alternative Medicine. 2019; 2019.

111. Shiomi N, editor. Advances in Bioremediation and Phytoremediation. BoD–Books on Demand; 2018.

112. Macci C, Peruzzi E, Doni S, Iannello R, Masiandaro G. Ornamental plants for micropollutant removal in wetland systems. Environ Sci Pollut Res. 2015; 22: 2406-2415.
PubMed: https://www.ncbi.nlm.nih.gov/pubmed/24798922

113. Augustynowicz J, Lukowicz K, Tokarz K, Plachno BJ. Potential for chromium (VI) bioremediation by the aquatic carnivorous plant Utricularia glabra L. (Lentibulariaceae). Environ Sci Pollut Res. 2016; 22: 9742-9748.

114. Cui X, Fang S, Yao Y, Li T, Ni Q, et al. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar. Sci Total Environ. 2016; 562: 517-525.
PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27107650

115. Wechler L, Laval-Gilly P, Bianconi O, Walderdorff L, Bonnefoy A, et al. Trace metal uptake by native plants growing on a brownfield in France: zinc accumulation by Tussilago farfara L. Environ Sci Pollut Res. 2019; 26: 36055-36062

116. Maleva M, Garmash E, Chukina N, Malek P, Waloszek A, et al. Effect of the exogenous anthocyanin extract on key metabolic pathways and antioxidant status of Brazilian elodea (Egeria densa (Planch.) C. Pass.) exposed to cadmium and manganese. Ecotoxicol Environ Safety. 2018; 160: 197-206.

117. Marchand L, Lam P, Berry T, Quintela-Sabaris C, Mench M. Potential of Ranunculus acris L. for biomonitoring trace element contamination of riverbank soils: photosystem II activity and phenotypic responses for two soil series. Environ Sci Pollut Res. 2016; 23: 3104-3119.
PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25956517

118. Pardo-Muras M, G Puig C, Pedrol N. Cytisus scoparius and Ulex europaeus Produce Volatile Organic Compounds with Powerful Synergistic Herbicidal Effects. Molecules. 2019; 24: 4539.
PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6943486/

119. Salinitro M, Tassoni A, Casoli S, de Laurentis F, Zappi A, et al. Heavy Metals Bioindication Potential of the Common Weeds Senecio vulgaris L., Polygonum aviculare L. and Poa annua L. Molecules. 2019; 24: 2813.
PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31374997

120. Guo X, Wang P, Li Y, Zhong H, Li P, et al. Effect of copper on the removal of tetracycline from water by Myriophyllum aquaticum: Performance and mechanisms. Bioresource Technol. 2019; 291: 121916.
PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31377514

121. Noori A, Zare Maivan H, Ailaei E, Newman LA. Leucanthemum vulgare Lam. crude oil phytoremediation. Int J Phytoremediation. 2019; 20: 1292-1299.
PubMed: https://pubmed.ncbi.nlm.nih.gov/26121329

122. Yu X, Brown JM, Graham SE, Carbauj EM, Zuleta MC, Milla-Lewis SR. Detection of quantitative trait loci associated with drought
tolerance in St. Augustinegrass. PloS one. 2019; 14.
Pubmed: https://www.ncbi.nlm.nih.gov/pubmed/31671135

123. Alur HH, Pather SI, Mitra AK, Johnston TP. Evaluation of the gum from Hakea gibbosa as a sustained-release and mucoadhesive component in buccal tablets. Pharmaceutical development and technology. 1999; 4: 347-358.
Pubmed: https://www.ncbi.nlm.nih.gov/pubmed/10434280

124. Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integrative Med. 2018.

125. Hussain N, Abbasi T, Abbasi SA. Generation of highly potent organic fertilizer from pernicious aquatic weed Salvinia molesta. Environ Sci Pollut Res Int. 2018; 25: 4989-5002.
Pubmed: https://www.ncbi.nlm.nih.gov/pubmed/29209963

126. Balsamo RA, Willigen CV, Bauer AM, Farrant J. Drought tolerance of selected Eragrostis species correlates with leaf tensile properties. Ann Botany. 2006; 97: 985-991.

127. Zhou Y, Lambrides CJ, Kearns R, Ye C, Fukai S. Water use, water use efficiency and drought resistance among warm-season turfgrasses in shallow soil profiles. Functional plant biology. 2012; 39: 116-125.
Pubmed: https://www.publish.csiro.au/fp/FP11244

128. Baracho NC, Vicente BB, Arruda GD, Sanches BC, Brito JD. Study of acute hepatotoxicity of Equisetum arvense L. in rats. Acta Cirurgia Brasileira. 2009; 24: 449-453.
Pubmed: https://www.ncbi.nlm.nih.gov/pubmed/20011829/

129. Slaughter RJ, Beasley DM, Lambie BS, Wilkins GT, Schep LJ. Poisonous plants in New Zealand: a review of those that are most commonly enquired about to the National Poisons Centre. NZ Med J. 2012; 125: 87-118.
Pubmed: https://www.ncbi.nlm.nih.gov/pubmed/23321887

130. Bregnbak D, Menné T, Johansen JD. Airborne contact dermatitis caused by common ivy (Hedera helix L. ssp. helix). Contact Dermatitis. 2015; 72: 243-244.
Pubmed: https://www.ncbi.nlm.nih.gov/pubmed/25630853

131. Pour BM, Sasidharan S. In vivo toxicity study of Lantana camara. Asian Pac J Trop Biomed. 2011; 1: 230-232.
Pubmed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3609184/

132. Botha CJ, Lessing D, Rösemann M, Van Wilpe E, Williams JH. Analytical confirmation of Xanthium strumarium poisoning in cattle. J Vet Diagn Invest. 2014; 26: 640-645.
Pubmed: https://pubmed.ncbi.nlm.nih.gov/25012081