Optimization and sound absorption modeling of Yucca Gloriosa natural fiber composites

Seyed Ehsan Samaei, PhD, Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Hasan Asilian Mahabadi, (*Corresponding author), Associate Professor, Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran. asili_h@modares.ac.ir.

Seyyed Mohammad Mousavi, Associate Professor, Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran.

Ali Khavanin, Professor, Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Mohammad Faridan, Assistant Professor, Department of Occupational Health and Safety at Work Engineering, School of Health and Nutrition, Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.

Abstract

Background and aims: The use of natural fibers brought fundamental changes to natural fibers production, considering its vast environmental, physical, mechanical, and sound absorbing qualities. Nowadays, considering their new revenue at absorbing sound, the acoustic behavior analysis of natural fibers composites, called “The Green Fibers”, has received increasing attention by researchers. In this regard, the present study is aimed to optimize and imitate the sound absorption behavior of Yucca Gloriosa (YG) composites via using mathematical imitation and optimization approach.

Methods: In order to fabricate the natural acoustic composites, in this experimental cross-sectional study, the alkaline treatment of the fibers was employed. Therefore, the design of experiments and determination of the optimum amount of alkaline treatment parameters (NaOH concentration and immersion time), was promoted to improve the sound absorption by Response Surface Methodology (RSM). Moreover, the sound absorption coefficient (SAC) of YG fiber was measured by an impedance tube system (ISO10534-2 standard). To predict the sound absorption coefficients of the natural composites, the applicability of Delany-Bazley (DB) and Miki analytical models was investigated by coding formulas in MATLAB software as well.

Results: Comparison of the obtained SAC showed that, the value of optimized composites was higher than the untreated ones at all frequencies. Particularly, when compared to the raw composites, the sound absorption average (SAA) index increased by 18.92%. Also, a good compatibility was found, between the empirical models' and the experimental results in the low and mid-frequency range of one-third octave band.

Conclusion: With regard to the prominent benefits of natural fibers and the wide use of these fibers, the optimization of alkaline treatment and prediction of SAC by empirical models, is considered as an acceptable strategy for acoustic applications (industries and buildings).

Conflicts of interest: None

Funding: None

Keywords

Optimization
Empirical models
Sound absorption
Composite
Yucca natural fiber

Received: 2020/01/05
Accepted: 2020/08/16

Copyright © 2021 The Authors. Published by Tehran University of Medical Sciences.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license (https://creativecommons.org/licenses/by-nc/4.0/). Non-commercial uses of the work are permitted, provided the original work is properly cited.
Introduction

Today, persistent noise pollution, as one of the environmental pollutants, has contributed to serious health risks. Therefore, the control and prevention of such noise pollution levels, are of utmost importance. The use of acoustic absorbers (1), is one of the most effective and technical engineering methods of noise control.

Recently, in the field of sound/noise control, sound absorbers have provided a good opportunity to study the process of acoustic attenuation in a variety of materials. Particularly, the synthetic fibrous and porous materials (2). However, increase in the greenhouse gas emissions, the huge amount of wastes generated due to the use of these synthetic matters and increasing concerns about the safety and health issues, has generated a motive to make use of eco-friendly and green alternatives, such as natural fibers (3). The overall properties of natural sound absorbers such as their biodegradable characteristics, lightweight, low density, acceptable tensile strength, minimum adverse effects on human health, reasonable price and being non-toxic, have made them a good choice for special applications in the composite industry. Therefore, particularly when used as fillers and reinforcement agents in the multi-purpose hybrid composites construction, they are considered as an acceptable alternative to the synthetic fibers. Accordingly, in recent years, numerous studies have reported the use of natural fibers in the fields of sound absorption and thermal insulation (4). However, despite their promising advantages, practical application of these natural fibers has not yet become as popular as synthetic fibers due to shortcomings such as, low adhesion properties, high fiber diameter, low moisture resistance as well as poor antifungal qualities. So this has led researchers to develop the treatment process methods in order to improve the quality of natural fibers and overcome these limitations (5, 6).

The use of natural fibers, has led to fundamental changes in the manufacturing of a variety of acoustic composites due to their obvious environmental characteristics and high physical, mechanical and acoustic properties. Today, the analysis of acoustic behavior and other properties of this group of composites, called “Green Composites”, has received more and more attention from researchers. Referring to the above and the limitations in optimizing and modeling of natural composites’ acoustic behavior in local studies (in Iran), The aim of this study was to optimize and model the sound absorption characteristics of Yucca Gloriosa (YG) natural fiber composites, using mathematical optimization and modeling approaches.

Experimental procedure or Methodology

Materials

The YG fibers were extracted using the manual traditional method. Extracted fibers were washed and dried.

Design, statistical analysis and optimization

To determine the effects of multiple variables on a response, the full factorial design (FFD) was used in this article. The concentrations NaOH (three levels) and immersion time (two levels) were considered as the parameters impacting the SAA in the alkaline treatment process and the fabrication of natural composites. The design and analysis of data was performed using the Design Expert software (version 11).

Alkaline treatment

In this article, designing the experiments and determination of the optimal values of these two parameters were taken into account based on the factorial design approach, since different values of these two parameters have been reported in the previous studies.

Fabrication of the composites

The fibers were cut into small pieces (5 mm) using scissors, after fibers were treated (based on RMS approach). Then, the Polyvinyl Alcohol (PVA; Sigma-Aldrich Company) was used to bind the fibers and hence fabricate the composite samples with constant density of 200 kg/m³ (based on impedance tube dimensions).

Determination of the SAC

Investigation of acoustic behavior of the samples, was performed using an impedance tube system (type SW 422 and SW 477, BSWA Technology Co., Ltd., China) based on the transfer function method recommended by ISO10534-2 (Figure 1). Moreover, the SAA index was calculated according to ASTM C423 standards in order to investigate the effect of alkaline treatment on the sound absorption values of the fabricated sample composites. For this purpose, standard calculation of 12 band centers (from 200 to 2500 Hz) in the frequency range of 1/3 octave band was estimated according to the following equation:

\[
SAA = \frac{1}{12} \sum_{i=200\ Hz}^{2500\ Hz} \alpha_i
\]

Empirical models

The proposed empirical models usually considers some of the basic physical properties of porous/fibrous
Optimization and sound absorption modeling

Results and Discussions

Study’s design, statistical analysis and optimization process

The number of experiments (runs) required for optimization was determined based on FFD. Also, using Design-Expert software, a quadratic model for the

Table 1. Analysis of Variance for Response Surface Models for SAA

Response	Model	ANOVA					
		Source	Sum of square	DF	Mean square	F	P
SAA	Quadratic	Model	3.26×10^{-3}	4	8.16×10^{-4}	1088.42	0.022
		A	3.02×10^{-5}	1	3.02×10^{-3}	40.33	0.048
		B	2.90×10^{-7}	1	2.90×10^{-5}	3872.00	0.010
		AB	2.40×10^{-4}	1	2.40×10^{-2}	320.33	0.055
		A²	9.07×10^{-5}	1	9.07×10^{-3}	121.72	0.057
		Residual	7.50×10^{-7}	1	7.50×10^{-5}		
		Total	3.26×10^{-3}	5			

\(R^2 = 0.98, R^2_{adj}=0.99\)

Figure 1. The actual and schematic view of impedance tube system for sound absorption measurements

Figure 2. Related predicted vs. actual (A) and 3D surface (B) plots with the effect of chemical treatment’s parameters on SAA index

materials before predicting their SAC. In the present study, as one of the first accepted empirical models in prediction of the fabricated samples’ SAC (in the frequency range of 63-6300 Hz), the Delany-Bazley (DB) and Miki models, were performed by coding in MATLAB software.
response variable (SAA) was obtained. The statistical values of the presented model are shown in Table 1.

Figure 2 (a), shows the differences between the predicted and actual values. The experiment results are in good agreement with the results obtained from the equation. Likewise, an acceptable correlation between the predicted and actual values was reported ($R^2 = 0.98$). Based on the results from the ANOVA (F=1088.42), it was determined that the model is capable of estimating the expected results for the desired response, as was predicted. Figure 2 shows how two factors affect the SAA as well as, how the parameters interact with each other.

Therefore, the NaOH and immersion time should be selected respectively at 5% and 8 hours, to design and fabricate the sound absorbers as well as achieving optimal conditions.

The SAC in optimal sample

As shown in the Figure 3, in the low, mid, and high frequency ranges, the sound absorption coefficients of the optimal treated samples were higher than the untreated. The results of the present study and the previous studies in this field shows that, the diameter of natural fibers is an important parameter in improving the acoustic absorption of the natural fiber composites. In line with the presented results, due to the reduced diameter of coir fibers in numerical simulations performed by Nor et al, a significant increase in the acoustic absorption of natural composites in the low and mid-frequency range, was reported (7). In this study, a gradual increase in acoustic absorption peak and a shift to the low and mid-frequency region was reported by reducing the diameter of YG fibers. Accordingly, the alkaline treatment process, reduces the fiber diameter, removes moisture, impurities, hemicellulose and wax from natural fibers’ surface, hence improves the adhesion quality and antifungal (antibacterial) properties of the composite (8).

Prediction of sound absorption based on models

Based on the results, the compatibility of both models for predicting the SAC of the untreated and modified composites with the experimental results, in the low (Hz 50-500) and middle-frequency range (Hz 500-1600) of one-third octave band, is evident. In other words, the SAC of samples are well-estimated at the low and mid-frequency ranges of these two models. However, the results of the models differed from the experimental results, by increasing the frequency and moving towards the high-frequency range (more than 1600 Hz) for the untreated composites. Therefore, the difference is observable in the frequency range above 1600 Hz. However, in the high-frequency region for both types of composites, the results from the models did not differ from the experimental results. As presented in Figure 4, the proximity of the experimental results for the treated composite, was more prominent.

![Figure 3. Sound absorption comparison of the untreated and treated YG sample.](image)

![Figure 4. Comparison of experimental and empirical models’ results in untreated (A) and treated (B) samples.](image)
than that of the raw composite compared to the results of the D-B and Miki empirical models.

Based on the results from the analytical models used in this study, an acceptable fit between analytical and experimental results was established, in low and mid-frequency range of composites made of optimally treated fibers. Nonetheless, the results of the models do not correspond to the experimental results that were obtained from increasing the frequency and moving towards a high-frequency range. Appropriate efficiency of sound energy absorption of porous materials through the thermal mechanism, depends on the influence of non-acoustic variables, including airflow resistivity, tortuosity, and porosity.

Despite the fact that a number of experiments have been conducted on the study of acoustic absorption of these types of composites, due to more credibility and accuracy, optimal matching of experimental and analytical results, the use of empirical models have limitations in studies. In this regard, today the process of developing and applying predictive models in the field of acoustics and sound absorption is progressing, and the need to create practical, accurate and easy empirical models is considered more than ever. Performing mathematical modeling by different empirical models to achieve a comprehensive understanding of existing models and the ability to choose the best one for predicting the sound absorption level is of particular importance in future studies. As a result, it would be very useful to conduct studies on the development of empirical models, based on the performance of natural-sound absorbers. Since empirical models have advantages such as, time and cost saving and simplification of the sound absorption process. Therefore, there is a need to develop models, with the ability to accurately measure the sound absorption coefficient in natural fiber composites.

Conclusion

It should be reminded that optimizing the process of alkaline modification of natural fibers, should be taken into account. In order to achieve the maximum SAA, when the NAOH concentration is in the middle range (about 4% to 6 %) and the immersion time is in the range of 7 to 8 hours. Also, many empirical models of sound absorption in porous materials, perform well in their respective frequency ranges (some at low and some at high frequencies). Therefore, they can be used for mixed models and approaches to predict the sound absorption of all frequencies. Finally, it can be stated that alkaline treatment has been effective on improving the acoustic properties in YG fiber composite. According to the outstanding benefits of natural fibers (economic and environmental) and increasing use of these fibers in hybrid composites, the alkaline treatment under optimal conditions, is considered a good method of improving the compatibility between natural fibers and polymer matrix, as well as enhancing the overall properties of hybrid composites.

Acknowledgments

The authors would like to express their deepest gratitude to Tarbiat Modares University for supporting and providing the necessary research environment.

How to cite this article:
Seyed Ehsan Samaei, Hasan Asilian Mahabadi, Seyyed Mohammad Mousavi, Ali Khavanin, Mohammad Faridan. Optimization and sound absorption modeling of Yucca Gloriosa natural fiber composites. Iran Occupational Health. 2021 (01 Jan);18:1.
بهبود سازی و مدل سازی جذب صوتی در کامپوزیت‌های الیاف طبیعی یوکا

سید احسان سمایی، حسن اسیلی مهابادی، سیدمحمد موسوی، علی خیاونین، محمدفاریاند.

بهبود سازی و مدل سازی جذب صوتی در کامپوزیت‌های الیاف طبیعی یوکا

شیوه استناد به این مقاله:
Seyed Ehsan Samaei, Hasan Asilian Mahabadi, Seyyed Mohammad Mousavi, Ali Khavanin, Mohammad Faridan. Optimization and sound absorption modeling of Yucca Gloriosa natural fiber composites. Iran Occupational Health. 2021 (01 Jan);18:1.

مقدمه:
تحقیقات قبلی نشان می‌دهند که ایجاد مناسب‌تری بهبود جذب صوتی در کامپوزیت‌های الیاف طبیعی به ویژه یوکا برای کنترل صدا شتاب و منجر به بهبود شرایط محیطی اثرگذار است.

مکانیسم جذب صوت در کامپوزیت‌های الیاف طبیعی یوکا به ویژه چسب و سازندگی الیاف و ریزپیوکسید، نرم‌کننده فیبر و نرم‌کننده آلومینیوم و دیگر عوامل موثر در جذب صوتی یوکا می‌باشد.

بحث:
1. انتخاب مناسب‌تری ژن‌های غیر فیبری در کامپوزیت‌های الیاف طبیعی یوکا
2. انتخاب مناسب‌تری پارامترهای مصرفی کامپوزیت‌های الیاف طبیعی یوکا
3. انتخاب مناسب‌تری دما برای استفاده در محیط‌های صوتی

ملاحظات:
1. کامپوزیت‌های الیاف طبیعی یوکا می‌توانند بهبود جذب صوتی را در محیط‌های صوتی بازه‌های وسیعی ارائه دهند.
2. کامپوزیت‌های الیاف طبیعی یوکا می‌توانند بهبود جذب صوتی را در محیط‌های صوتی بازه‌های وسیعی ارائه دهند.

نمونه‌بندی:
نمونه‌بندی نسبت به تقارن منفی در محیط‌های صوتی مبنا شده است.

 آماری:
1. تحقیقات قبلی نشان می‌دهند که ایجاد مناسب‌تری بهبود جذب صوتی در کامپوزیت‌های الیاف طبیعی به ویژه یوکا برای کنترل صدا شتاب و منجر به بهبود شرایط محیطی اثرگذار است.

نتایج:
1. کامپوزیت‌های الیاف طبیعی یوکا می‌توانند بهبود جذب صوتی را در محیط‌های صوتی بازه‌های وسیعی ارائه دهند.
2. کامپوزیت‌های الیاف طبیعی یوکا می‌توانند بهبود جذب صوتی را در محیط‌های صوتی بازه‌های وسیعی ارائه دهند.

استاندارد:
ISO10534

پیشنهادهای ممکن برای افزایش جذب صوتی در کامپوزیت‌های الیاف طبیعی یوکا:
1. افزایش جاذبیت الیاف و بهبود پیوکسید
2. افزایش جاذبیت الیاف و بهبود پیوکسید
3. افزایش جاذبیت الیاف و بهبود پیوکسید

کلیدواژه‌ها:
کامپوزیت‌های الیاف طبیعی، جذب صوتی، مدل‌سازی، صربستی

تاریخ دریافت: 1399/02/15
تاریخ پذیرش: 1399/02/26

کانال پژوهشی
http://ioh.iums.ac.ir

http://ioh.iums.ac.ir

14/00 - 18/18

Persian Occupational Health. 2020 (1 Jan);17:1.
گزارشی از کسب‌کردن و حجم گسترش صنایع و زاله‌های حاصل از بهینه‌سازی یکی از چندین مسئله ترویج و افزایش جذب صوتی سازگاری‌هایی است که به‌صورت مثبت در سطوح کارکنان می‌تواند به‌طور کلی به بهبود یک亁ی‌ویجی‌هدی‌زی‌ست‌خی‌م‌دی‌ز و صدا، ورزش بخشی از صداکنده سازه‌ای می‌باشد.

1 - تاثیر دمای
2 - مواد خشک کننده
3 - استفاده از موادهای صوتی
4 - طبیعت غیر مصرفی
5 - تغییر در طول فرکانس
6 - استفاده از موادهای صوتی
روش بررسی:

مواد:

در این مطالعه، جهت آماده سازی و ساخت جاذب‌های صوتی، برگ گیاهی با نوک‌های ترش در صدای زندگی و سپس استخراج یافته توسط روش سنتی استفاده شد. از جهت ساخت ابزار‌های صوتی گرفته شد، حاصل از این استخراج، با استفاده از آب مرطوب، با بسته‌بندی، نمونه‌ها به صورت سه مدل ساخته شدند. نمونه‌های جهت خشک نشان شدند و ثابت شدن وزن پایه در درجه‌اکنون به وقوع پیوست. در مدت 24 ساعت در دامنه 70-80 درجه سانتی‌گراد گرفته شد.

طرح آزمایش‌اتن، آزمایش‌ت

1 Sound Absorption Average (SAA)

Iran Occupational Health, 2021 (01 Jan):18: 1.
بهینه سازی و مدل سازی جذب صوتی

در این پژوهش، طراحی و آنالیز داده‌ها توسط نرم‌افزار Design Expert (نسخه 11) انجام گردید. آزمایش‌ها به صورت تصادفی انجام شدند و نتایج آن‌ها صورت تصویفی در این مقاله نشان داده شد. همچنین پس از انجام آزمایشات بر اساس طرح آزمایشی فاکتورهای متغیر، با استفاده از روش آنالیز واریانس 1، مدل‌های بین پارامترهای مورد بررسی و متغیرهای پیش‌بینی مورد نظر توصیف و برای پیش‌بینی شرایط بهینه بکار گرفته شد. از روش آنالیز واریانس برای بررسی تاثیر فاکتورهای اصلی (ساختار سیدم هیدرورکسید و زمان غوطه وری) و تاثیرات مشترک، بر مدل‌های پاسخ‌دهنده استفاده شد (SAA: شاخص استفاده)

جدول 1

متغیرها	واحد اندازه‌گیری	مقدار متوسط	
ظرفیت شرکتی	مقدار سیدم هیدرورکسید A	4.2	8.4
وزن غوطه وری	مقدار سیدم هیدرورکسید B	4.2	8.4

در این پژوهش، طراحی و آنالیز داده‌ها توسط نرم‌افزار Design Expert (نسخه 11) انجام گردید. آزمایش‌ها به صورت تصادفی انجام شدند و نتایج آن‌ها صورت تصویفی در این مقاله نشان داده شد. همچنین پس از انجام آزمایشات بر اساس طرح آزمایشی فاکتورهای متغیر، با استفاده از روش آنالیز واریانس 1، مدل‌های بین پارامترهای مورد بررسی و متغیرهای پیش‌بینی مورد نظر توصیف و برای پیش‌بینی شرایط بهینه بکار گرفته شد. از روش آنالیز واریانس برای بررسی تاثیر فاکتورهای اصلی (ساختار سیدم هیدرورکسید و زمان غوطه وری) و تاثیرات مشترک، بر مدل‌های پاسخ‌دهنده استفاده شد (SAA: شاخص استفاده).
الیاف خام از روش اندازه‌گیری ضریب جذب صوتی استفاده شد. به طور کلی، روش های مختلف برای اندازه‌گیری ضریب جذب صوتی وجود دارد. در این مطالعه ضریب جذب صوتی و در واقع دانشگاه تربیت مدرس (مدل 477) ساخته شد. استفاده شده، پایین‌تر کردن منبع استاندارد و این استاندارد بسیار کمتر است. گردد. این بشکل‌ها و در تحقیقات مختلف به عنوان همین‌الیاف استفاده شده است. (منبع ISO 10534-2). در یک انتهای اندازه‌گیری صوتی (SH)) در بی‌پایایی این تصویر و نمای شماتیک از دستگاه لوله‌امپدانس مورد استفاده در این مطالعه نشان داده شده است. البته نمونه‌های مختلفی از این طبیعی صوتی استفاده شده است. 100 کیلوگرم بر مترمکعب ساخته شده. ساخته شده. البته نمونه‌های منفرد و با اندازه‌گیری صوتی به طول تابع‌های اکوستیکی، در دو مکان ثابت با استفاده از مکیف‌کننده‌های صوتی به دو میدان و محاسبه ی تابع تبدیل همبند، جغرافیا و حتی عضویت و مدلی امپدانس تحقیقات برای شنیدن، می‌باشد. اگر گزینه‌های مورد استفاده با اندازه‌گیری می‌گردد. سپس این لوله امپدانس گزینه به لولای یا پایین‌تر و انتقال صوت در فرآیند یا کاهش، یا پایین‌تر و انتقال صوت در فرآیند یا کاهش. این گزینه می‌گردد. سپس این لوله امپدانس صوتی مجهز به لولای یا پایین‌تر و یا قطار برگز (10 سانتی‌متر) ساخته شده است. که در مورد بررسی رفتار کامپوزیتی طبیعی الیاف یاک در طول فرآیند اصلاح آلکانلی در شرایط بهینه و مقایسه آن با

1. Binder
2. Polyvinyl alcohol
بهینه سازی و مدل سازی جذب صوتی

و افزایش جذب صوتی در فرکانس‌های بالا (6300-16900 هرتز) کاربرد دارد. همچنین در این مطالعه جهت بررسی اصلاح آلکالینی بر جذب صوتی الاف یکاک ساختار ASTM میانگین ضریب جذب صوتی) مطلق استفاده و استاندارد C423 و طبق رابطه زیر محاسبه شد. بیدین مشورت مطلق استاندارد محسوب حسابی ۱۲ معکوس با توجه به (از فرکانس تا ۲۵۰۰ هرتز) در محدوده (۱۸ فرکانس) ۳/۱ اکتاو باند مطلق رابطه لبه برآورد گردید:

$$SAA = \frac{1}{12} \sum_{i=2500 \text{ Hz}}^{i=200 \text{ Hz}} \alpha_i$$

بهینه سازی و مدل سازی جذب صوتی

مدل هایی برای محاسبه حاکم بر موارد مخلخل اندازه‌گیری مستقیم ضریب جذب صوتی (توضیحات امیدرانی تیپ) با استفاده از اکت لات سکی و برخوردار یک موج آنیا بیان این مفرکانس گیبرد. این روش فکری در حالت نیم‌ریال یک‌تا چهارم می‌تواند به این زمینه تکنولوژی (هولدر) مستند شود تا اندازه‌گیری نیز هست. بسیاری از نویسنده‌ها تغییرات و فرمول‌های های تجربی برگرفته شده در نوشته‌هایی اشاره دارند. برای بررسی تحلیلی، با روش گروه پیاک خواص و صدا می‌تواند انواعی انتقال گذشته در فناوری اپتیکی اولیه موارد. اندازه‌گیری نشده، انتخاب نشده (نورترانسپرنس) و مقادیر در مراحل جهانی ها در بررسی بررسی ضریب جذب صوتی و مدل نیز گیری در همبستگی است (۸۰٪). برای بازیابی نهایی در محدوده ۱.۰، نیز می‌تواند مقدار محلی بالایی باشد. در ماه‌های اندازه‌گیری های آکوستیک در سایر فناوری‌های دیگر استفاده از آن در مختصات مورد نظر توصیه نمی‌شود.

مدل دلایلي-باریکی ولی مدل پیشنهاد شده تجربی است که در جهت دهندگی مورد استفاده قرار گرفته است، مدل دلایلی-باریکی (۲۹) که در جهت های صوتی ساخته شده از طیف مانند پشم شیشه و پشم سیکا با تغییر نزدیکی به یک می‌رود، و به صورت معادله زیر است:

$$Z_c = \rho_c f \left[1 + 0.0571(X)^{-0.574} - 0.087 (\frac{\rho_0 f}{\sigma})^{-0.312} \right]$$

$$K_c = \frac{\rho_c f}{\sigma} \left[1 + 0.0978(X)^{-0.7} - 0.189 (\frac{\rho_0 f}{\sigma})^{-0.589} \right]$$

$$X = \rho_f f / \sigma$$

$$Z_c = - jZ_c \cot(kd)$$

$$R_c = \frac{Z_c - \rho_c c_0}{Z_c + \rho_c c_0}$$

$$\alpha = 1 - |R_c|^2$$

به طوریکه، امیدرانی مشخصه ρ_c سرعت صوت در مایع مخلخل c_0، مقاومت در بر اثر حریان هوا و جکالی یافته، فرکانس مقاومت در بر اثر حریان هوا و جکالی یافته، فرکانس را امیدرانی زمینه و Z_c امیدرانی سطح و d ضخامت ماده هستند. لازم به ذکر است که در محدوده $d < 0.01 D$, این مدل تحلیلی حتی از آن در خارج از محدوده مورد نظر توصیه نمی‌شود.

مدل میکی: مدل بهبود پایه‌گذاری امیدرانی و تاثیر انرژی انتقال نمود که پیش‌تر توسط دلایلی-باریکی ارائه بود (۲۹). این مدل در مورد ویژگی‌های جدید و مشبک به‌طور منفی مبهم و مهوی می‌باشد. مصاق است از این رو این مدل مقادیر منفی محاسبه به‌طور خصوصی امیدرانی سطح را به شکل نمی‌دهد. نتایج این بررسی به‌طور مشخص به‌همراه داشته باشند به صورت زیر بایان می‌شود:

$$Z_c = \rho_c f \left[1 + 5.05 \left(\frac{10^3 f}{\sigma} \right)^{0.643} - 8.43 \left(\frac{10^3 f}{\sigma} \right)^{0.643} \right]$$

$$K_c = \frac{\rho_c f}{\sigma} \left[1 + 7.81 \left(\frac{10^3 f}{\sigma} \right)^{0.643} - 11.41 \left(\frac{10^3 f}{\sigma} \right)^{0.643} \right]$$

همچنین مشخص شده است که مدل میکی در مقایسه

1. **Empirical Models**
2. **Porosity**
3. **Tortuosity**
4. **Air flow resistivity**
5. **Delany-Bazley**
6. **Miki**

Iran Occupational Health. 2021 (01 Jan);18: 1.
بیشتر ضرایب و R^2 ها مدل برابری، ضریب بیشتر بهینه را نشان می‌دهد. به طرزی که مدل دوم آماری، مدل دوم می‌تواند در حالت شرایط نخلی جدول 2- شرایط انجام آزمایش بر اساس طرح فاکتوریل کامل

پایکوب	متغیرهای مستقل (پارامترها)	آزمایشات	مقدار سیدهمیونکسید	مقدار غوطه وری
A		B		
0		0		
0.0492		0.0184		
0.0492		0.0184		
0.0492		0.0184		
0.0492		0.0184		

زاویه برای هر مدل در جدول شماره 3 امتیاز آماری در این مطالعه است. همچنین با استفاده از نرم‌افزار Design-Expert، مدل درجه دوم برای متغیر اول (ضمناهمبستگی پراکندگی) با دقت 0.953425، 0/0168112 زیر ماتریس بهینه بهینه جدول 3- آنالیز واریانس:

پایکوب	مدل	مقدار F	مقدار p	جمع مراتب	درجه ازادی	میانگین مراتب	مدل راه‌شده
A	A	1	0.022	0.003	0.003	0.003	Model
B	B	2	0.003	0.003	0.003	0.003	Model
AB	AB	3	0.003	0.003	0.003	0.003	Model

(R^2 = 0.99, R^2 adj = 0.99)
بهینه‌سازی و مدل سازی جذب صوتی

جدول ۴- نتایج آزمایش‌های تاییدی و مقایسه آن با یک تریال بهینه

پیش‌پیش	واقعی	پیش‌پیش	واقعی																																								
جاذبه	مشوق	جاذبه	مشوق																																								
ساخته‌شده	در	آزمایش	مقدار	در	آزمایش	مقدار																																					
اطمن	هیدروکسید	اطمن	۹۵	هیدروکسید	ساخته‌شده	در	شده	در	اطمن	۹۵	هیدروکسید	ساخته‌شده	در	شده	در	اطمن	۹۵	هیدروکسید	ساخته‌شده	در	شده	در	اطمن	۹۵	هیدروکسید	ساخته‌شده	در	شده	در	اطمن	۹۵	هیدروکسید	ساخته‌شده	در	شده	در	اطمن	۹۵	هیدروکسید	ساخته‌شده	در	شده	در
پاس‌خ	میانی	پاس‌خ	میانی																																								
مقدار	درصد	مقدار	درصد																																								
مقدار	درصد	مقدار	درصد																																								
مقدار	درصد	مقدار	درصد																																								

تخمین ضریب جذب صوتی (میانگین ضریب جذب صوتی) نیز، نتایج تایید متقابل بین پاس‌خ با مقدار سدیم هیدروکسید و زمان غلوت وری در این مطالعه به کمک ساده‌سازی جذب های اطمنی ساخته شده از ایاف طبیعی با درنظر گرفتن میانگین ضریب جذب صوتی بهینه از تحلیل تریال واریانس استفاده شد. برای این دسته طراحی و ساخت جاذبه‌های ساخته شده از ایاف پورا (سیبدنی) به شرایط بهینه پایا مورد انتظار) یاد مقدار سدیم هیدروکسید و زمان غلوت وری به ترتیب ۵ درصد و ۸ ساعت انتخاب شود. نتایج پیش بهینه شده در شرایط بهینه با ارزش کلمه ۴ روند است. همچنین پایش‌های بهینه بین شده در این حالت برای میانگین ضریب جذب صوتی مقدار ۰/۷۵۷/۰۵۷ محسوس شده که با پایش‌های آزمون های تاییدی (سه آزمون جهت تایید مدل در شرایط بهینه انجام شده پیش‌پیش واقعی) مطابقت دارد. (جدول ۴.

در راستای بررسی سایر نتایج در پایان مورد انتظار

Iran Occupational Health. 2021 (01 Jan); 18: 1.
اصلاح آلکالینی در شرایط بهینه تعيين شده سبب افزایش SAA 45/92 درصدی شاخه می‌گردد.

پیش بینی جذب صوتی کامپوزیت بهینه براساس مدل های رضایت حاکم بر مواد متخالف براساس نتایج، تطابق گود مدل پیش بینی کننده ضریب جذب صوتی در کامپوزیت طبیعی اصلاح شده (خام) و کامپوزیت طبیعی اصلاح شده یوکا، در Hz (محدوده فرکانسی پایین (0-500 Hz) و میانی (500-3000 Hz) یک سوم اکتاواند مشهود است. به عبارتی این دو مدل تحلیلی بررسی شده در این مطالعه، در کامپوزیت‌های خام و میانی توافته پیش بینی خوبی راد. ضریب جذب صوتی کامپوزیت‌های طبیعی ساخته شده از یوکا، مطالعه، توپایی پیش بینی خوبی راد در ضریب جذب صوتی کامپوزیت‌های طبیعی ساخته شده از یوکا با (الکالینی) شکل و بیان جذب صوتی در نمونه اصلاح شده در شرایط بهینه بیشتر از نمونه اصلاح نشده، بوده‌مانند که مشخص SAA است. انجام اصلاح آلکالینی سبب افزایش شاخه نیز می‌شود به طوری که این شاخه از مقدار اولیه خود قبل از اصلاح آلکالینی (بین 0/4594) به مقدار 0/550 به عبارتی انجام شاخه

شکل ۴: مقایسه ضریب جذب صوتی یوکا اصلاح شده یوکا در شرایط بهینه (خام) از شکل و بهینه توسط لوله امیدانی در شکل ۴ از یوکا اصلاح شده است. همان طور که در شکل مشخص است، به طور کلی در تمامی فرکانس‌های محدوده پایین، میانی و بالای یک سوم اکتاواند، ضریب جذب صوتی در نمونه اصلاح شده در شرایط بهینه بیشتر از نمونه اصلاح نشده است، به طور خاص که مشخص SAA است. انجام اصلاح آلکالینی سبب افزایش شاخه نیز می‌شود به طوری که این شاخه از مقدار اولیه خود قبل از اصلاح آلکالینی (بین 0/4594) به مقدار ۰/۵۵۰ به عبارتی انجام

شکل ۵: مقایسه ضریب جذب نمونه‌های یوکا طبیعی یوکا (A: نمونه خام - B: نمونه اصلاح شده) با خروجی های مدل تجربی

Iran Occupational Health. 2021 (01 Jan);18: 1.
بهینه سازی و مدیریت جذب صوتی

بحث و نتیجه‌گیری

همانطور که در این مطالعه مشخص شد که انجام اصلاح شیمیایی (اصلاح آلکالینی) توسط سیدم هیدروکسید سرب افزایش ضریب جذب کامپوزیت‌ها را نشان می‌دهد. این موضوع قابل توجه است که اصلاح آلکالینی باعث بهبود کیفیت و جذب صدا می‌شود و اضافه کردن مالئوم که از منابع مختلف بهبودی در بهبود کیفیت اصلاح حرارتی و جذب صدا می‌کند.

در این مطالعه افزایش تغییر تدبیکی بیک ضربی جذب صدا با افزایش قطع‌پذیری پوکا که به سمت ناحیه فرانکس باپین و ماینی گزارش شده است. این افزایش در مورد از امر مورد تأثیر داشت. اصلاح آلکالینی باعث کاهش قطع‌پذیری جذب صدا و تطبیق باعث بهبودی در افزایش داشت. اصلاح آلکالینی باعث افزایش دقت و تطبیق بین کننده‌ها و سایر متغیرهای جذب صدا می‌شود و این ترتیب کفیفیت جنس‌بندی و خاصیت ضر فریچی (انتی باکتریال) کامپوزیت‌ها را بهبود می‌بخشد (8).

گرچه در این مطالعه استفاده از اصلاح آلکالینی، سبب افزایش جذب صوتی در کامپوزیت‌ها شده است اما اعمال آلکالینی به هنگامی که جذب صدا به کامپوزیت‌ها شده است، این باید با توجه به تاثیر سیاست‌ها و پارامترهای مختلف در ساخته شدن کامپوزیت‌ها بهبودی در اجرای آزمایشات استفاده شود. این افزایش در حال حاضر در فراکس‌های باپین و ماینی کامپوزیت‌های طبیعی شده است و این موضوع باعث بهبودی در افزایش دقت و تطبیق می‌شود. این موضوع باعث بهبودی در کیفیت صدا می‌شود و این ترتیب کفیفیت جنس‌بندی و خاصیت ضر فریچی (انتی باکتریال) کامپوزیت‌ها را بهبود می‌بخشد (8).

کامپوزیت‌های بهبودی در شرایط بهبودی در محدوده‌های مختلف بهبودی در کیفیت صدا می‌شود و این ترتیب کفیفیت جنس‌بندی و خاصیت ضر فریچی (انتی باکتریال) کامپوزیت‌ها را بهبود می‌بخشد (8).

در این مطالعه افزایش تغییر تدبیکی بیک ضربی جذب صدا با افزایش قطع‌پذیری پوکا که به سمت ناحیه فرانکس باپین و ماینی گزارش شده است. این افزایش در مورد از امر مورد تأثیر داشت. اصلاح آلکالینی باعث کاهش قطع‌پذیری جذب صدا و تطبیق باعث بهبودی در افزایش داشت. اصلاح آلکالینی باعث افزایش دقت و تطبیق بین کننده‌ها و سایر متغیرهای جذب صدا می‌شود و این ترتیب کفیفیت جنس‌بندی و خاصیت ضر فریچی (انتی باکتریال) کامپوزیت‌ها را بهبود می‌بخشد (8).

کامپوزیت‌های بهبودی در شرایط بهبودی در محدوده‌های مختلف بهبودی در کیفیت صدا می‌شود و این ترتیب کفیفیت جنس‌بندی و خاصیت ضر فریچی (انتی باکتریال) کامپوزیت‌ها را بهبود می‌بخشد (8).

در این مطالعه افزایش تغییر تدبیکی بیک ضربی جذب صدا با افزایش قطع‌پذیری پوکا که به سمت ناحیه فرانکس باپین و ماینی گزارش شده است. این افزایش در مورد از امر مورد تأثیر داشت. اصلاح آلکالینی باعث کاهش قطع‌پذیری جذب صدا و تطبیق باعث بهبودی در افزایش داشت. اصلاح آلکالینی باعث افزایش دقت و تطبیق بین کننده‌ها و سایر متغیرهای جذب صدا می‌شود و این ترتیب کفیفیت جنس‌بندی و خاصیت ضر فریچی (انتی باکتریال) کامپوزیت‌ها را بهبود می‌بخشد (8).

کامپوزیت‌های بهبودی در شرایط بهبودی در محدوده‌های مختلف بهبودی در کیفیت صدا می‌شود و این ترتیب کفیفیت جنس‌بندی و خاصیت ضر فریچی (انتی باکتریال) کامپوزیت‌ها را بهبود می‌بخشد (8).

کامپوزیت‌های بهبودی در شرایط بهبودی در محدوده‌های مختلف بهبودی در کیفیت صدا می‌شود و این ترتیب کفیفیت جنس‌بندی و خاصیت ضر فریچی (انتی باکتریال) کامپوزیت‌ها را بهبود می‌بخشد (8).

کامپوزیت‌های بهبودی در شرایط بهبودی در محدوده‌های مختلف بهبودی در کیفیت صدا می‌شود و این ترتیب کفیفیت جنس‌بندی و خاصیت ضر فریچی (انتی باکتریال) کامپوزیت‌ها را بهبود می‌بخشد (8).

کامپوزیت‌های بهبودی در شرایط بهبودی در محدوده‌های مختلف بهبودی در کیفیت صدا می‌شود و این ترتیب کفیفیت جنس‌بندی و خاصیت ضر فریچی (انتی باکتریال) کامپوزیت‌ها را بهبود می‌بخشد (8).
تشکر و قدردانی
نویسندگان مقاله لازم می‌دانند مراتب قدردانی و تشکر خود را از معاونت محترم پژوهشگاه تربیت مدرس که شرایط لازم برای انجام این تحقیق را فراهم‌آوردند اعلام نمایند.

منابع
1. Taban E, Soltani P, Berardi U, Putra A, Mousavi SM, Faridan M, et al. Measurement, modeling, and optimization of sound absorption performance of Kenaf fibers for building applications. Building and Environment. 2020;180:107087.
2. Arenas JP, Crocker MJ. Recent trends in porous sound-absorbing materials. Sound & vibration. 2010;44(7):12-8.
3. Ekici B, Kentli A, Küçük H. Improving sound absorption property of polyurethane foams by adding tea-leaf fibers. Archives of Acoustics. 2012;37(4):515-20.
4. Asdrubali F, D’Alessandro F, Schiavoni S. A review of unconventional sustainable building insulation materials. Sustainable Materials and Technologies. 2015;4:1-17.
5. Samaei SE, Asilian Mahabadi H, Mousavi SM, Khavanin A, Faridan M. Effect of Alkali Treatment on Diameter and Tensile Properties of Yucca Gloriosa Fiber Using Response Surface Methodology. Journal of Natural Fibers. 2020;1-14.
6. Sullins T, Pillay S, Komus A, Ning H. Hemp fiber reinforced polypropylene composites: The effects of material treatments. Composites Part B: Engineering. 2017;114:15-22.
7. Nor MJM, Ayub M, Zulkifli R, Amin N, Fouladi MH. Effect of different factors on the acoustic absorption of coil fiber. Journal of Applied Sciences. 2010;10(22):2887-92.
8. Mamta H, Fouladi MH, Al-Atabi M, Narayana Namisivayam S. Acoustic absorption of natural fiber composites. Journal of Engineering. 2016;2016.
9. Cao L, Fu Q, Si Y, Ding B, Yu J. Porous materials for sound absorption. Composites Communications. 2018;10:25-35.
10. Zhao X-D, Yu Y-J, Wu Y-J. Improving low-frequency sound absorption of micro-perforated panel absorbers by using mechanical impedance plate combined with Helmholtz resonators. Applied Acoustics. 2016;114:92-8.
11. Jayamani E, Hamdan S, editors. Sound absorption coefficients natural fibre reinforced composites. Advanced Materials Research; 2013: Trans Tech Publ.
12. Rahimabady M, Statbaras EC, Yao K, Sharifzadeh
23. Alavudeen A, Rajini N, Karthikeyan S, Thiruchitrambalam M, Venkateshwaren N. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation. Materials & Design (1980-2015). 2015;66:246-57.
24. Akhtar MN, Sulung AB, Radzi MF, Ismail N, Raza M, Muhamad N, et al. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Progress in Natural Science: Materials International. 2016;26(6):657-64.
25. Mahjoub R, Yatim JM, Sam ARM, Hashemi SH. Tensile properties of kenaf fiber due to various conditions of chemical fiber surface modifications. Construction and Building Materials. 2014;55:103-13.
26. Fiore V, Di Bella G, Valenza A. The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Composites Part B: Engineering. 2015;68:14-21.
27. Taban E, Khavanin A, Ohadi A. Experimental study and modelling of date palm fibre composite acoustic behaviour using differential evolution algorithm. Iran Occupational Health. 2019;16(2):94-108.
28. Standard B. Acoustics-determination of sound absorption coefficient and impedance in impedance tubes—part 2: Transfer-function method. BS EN ISO. 2001:10534-2.
29. Miki Y. Acoustical properties of porous materials-Modifications of Delany-Bazley models. Journal of the Acoustical Society of Japan (E). 1990;11(1):19-24.
30. Garai M, Pompoli F. A simple empirical model of polyester fibre materials for acoustical applications. Applied Acoustics. 2005;66(12):1383-98.
31. Oliva D, Hongisto V. Sound absorption of porous materials–Accuracy of prediction methods. Applied Acoustics. 2013;74(12):1473-9.
32. Delany M, Bazley E. Acoustical properties of fibrous absorbent materials. Applied acoustics. 1970;3(2):105-16.
33. Chen X, Du W, Liu D. Response surface optimization of biocatalytic biodiesel production with acid oil. Biochemical Engineering Journal. 2008;40(3):423-9.
34. Cox T, d’Antonio P. Acoustic absorbers and diffusers: theory, design and application: Crc Press; 2016.

Mirshekarloo M, Chen S, Tay FEH. Hybrid local piezoelectric and conductive functions for high performance airborne sound absorption. Applied Physics Letters. 2017;111(24):241601.
13. Lim Z, Putra A, Nor MJM, Yaakob M. Sound absorption performance of natural kenaf fibres. Applied Acoustics. 2018;130:107-14.
14. Yahaya R, Sapuan S, Jawaid M, Leman Z, Zainudin E. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites. Materials & Design. 2015;67:173-9.
15. Kalia S, Kaith B, Kaur I. Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polymer Engineering & Science. 2009;49(7):1253-72.
16. Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. Journal of Polymers and the Environment. 2007;15(1):25-33.
17. Othmani C, Taktak M, Zein A, Hentati T, Elnady T, Fakhfakh T, et al. Experimental and theoretical investigation of the acoustic performance of sugarcane wastes based material. Applied Acoustics. 2016;109:106-6.
18. Berardi U, Iannace G. Acoustic characterization of natural fibers for sound absorption applications. Building and Environment. 2015;94:840-52.
19. Martellotta F, Cannavale A, De Matteis V, Ayr U. Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Applied Acoustics. 2018;141:71-8.
20. Taban E, Khavanin A, Ohadi A, Putra A, Jafari AJ, Faridan M, et al. Study on the acoustic characteristics of natural date palm fibres: Experimental and theoretical approaches. Building and Environment. 2019;161:106274.
21. Balbaşi M. Application of full factorial design method to silicalite synthesis. Materials Research Bulletin. 2013;48(8):2908-14.
22. Hashim MY, Amin AM, Marwah OMF, Othman MH, Yunus MRM, Huat NC, editors. The effect of alkali treatment under various conditions on physical properties of kenaf fiber. Journal of Physics: Conference Series; 2017: IOP Publishing.