Classical magnetization of a four-dimensional Platonic solid

N. P. Konstantinidis

Department of Mathematics and Natural Sciences, The American University of Iraq, Sulaimani, Kirkuk Main Road, Sulaymaniyah, Kurdistan Region, Iraq

(Dated: July 25, 2022)

The 600-cell is a regular 4-polytope that is a four-dimensional analog of a Platonic solid. Three-dimensional Platonic solids with icosahedral I_h-symmetry have been shown to have a discontinuous ground-state magnetization response in an external field at the classical and quantum level, when spins mounted on their vertices interact according to the antiferromagnetic Heisenberg model. The discontinuities are not due to anisotropy in spin space, but rather to the special connectivity of the molecules. Here the nearest-neighbor antiferromagnetic XX and Heisenberg models in a magnetic field are considered for classical spins mounted on the 120 vertices of the 600-cell. The ground-state magnetization response is rich, characterized by six magnetization discontinuities in the XX case, and six magnetization and three susceptibility discontinuities in the Heisenberg case. This demonstrates that going from three to four spatial dimensions enriches the ground-state magnetization response.

The 600-cell is a regular 4-polytope that is a four-dimensional analog of a Platonic solid. Three-dimensional Platonic solids with icosahedral I_h-symmetry have been shown to have a discontinuous ground-state magnetization response in an external field at the classical and quantum level, when spins mounted on their vertices interact according to the antiferromagnetic Heisenberg model. The discontinuities are not due to anisotropy in spin space, but rather to the special connectivity of the molecules. Here the nearest-neighbor antiferromagnetic XX and Heisenberg models in a magnetic field are considered for classical spins mounted on the 120 vertices of the 600-cell. The ground-state magnetization response is rich, characterized by six magnetization discontinuities in the XX case, and six magnetization and three susceptibility discontinuities in the Heisenberg case. This demonstrates that going from three to four spatial dimensions enriches the ground-state magnetization response.

The 600-cell has $N = 120$ vertices. It is the dual of the 120-cell, the four-dimensional analog of the dodecahedron. The Hamiltonian for spins s_i and s_j mounted on the vertices $i, j = 1, \ldots, N$ of the molecule is

$$H_n = \sum_{<ij>} \sum_{\sigma=\pm1} s_i^{\sigma} s_j^{\sigma} - h \sum_{i=1}^{N} s_i^z \tag{1}$$

The first term describes exchange interactions, which are two-dimensional in spin space for the AXXM ($n = 2$) and three-dimensional for the AHM ($n = 3$). The brackets in $<ij>$ indicate that interactions are limited to nearest neighbors. The first term defines the unit of energy. The second term is the energy due to an external magnetic field of strength h, taken along one of the interaction axes. The spins $\vec{s_i}$ are unit vectors whose direction is determined by a polar θ_i and an azimuthal ϕ_i angle in three-dimensional spin space, with only the polar angle needed in two dimensions.

The lowest-energy configuration of Hamiltonian (1) is a result of the competition for minimization between the exchange and the magnetic energy, with the frustrated connectivity of the 600-cell playing a central role. Minimization of the Hamiltonian gives the lowest-energy spin configuration as a function of β.

In the absence of magnetic field the ground-state energy per bond of the AXXM equals -0.2710231 and the magnetization per spin 1.436124×10^{-3}. The magnetization as a function of h in the lowest-energy configuration of Hamiltonian (1) has six discontinuities. Table I lists...
the fields for which they occur, the magnetization right below and above the jump and the corresponding change. Except for the highest-field jump the rest are associated with smaller changes in the magnetization. The magnetization as a function of the external field is shown in Fig. 1.

In the case of the AHM, the zero-field ground-state energy per bond is lowered to \(-0.2909842\) \(^2\) and the magnetization per spin is zero. The magnetization as a function of \(h\) in the lowest-energy configuration of Hamiltonian \(^1\) has a total of six magnetization and three susceptibility discontinuities, listed in Tables II and III. Again one of the high-field jumps is associated with a significantly higher magnetization change than the rest. The magnetization as a function of the external field is shown in Fig. 2. The response is much richer than the one of the three-dimensional icosahedron, which has a single magnetization discontinuity in an external field.

Platonic solids are unique in that they have equivalent vertices and are made up of a single type of polygon. Here the lowest-energy configuration magnetic response of a four-dimensional Platonic solid, the 600-cell, has been calculated for the AXXM and the AHM. It has a significant number of magnetization and susceptibility discontinuities, showing that going from three to four-dimensional Platonic solids enriches the magnetic properties.

1. A. Auerbach, *Interacting Electrons and Quantum Magnetism* (Springer Verlag, New York, 1998).
2. P. Fazekas, *Lecture Notes on Electron Correlation and Magnetism* (World Scientific, Singapore, 1999).
3. C. Lhuillier and G. Misguich, in *High Magnetic Fields Applications in Condensed Matter Physics and Spectroscopy*, Lecture Notes in Physics (Springer Series) Vol. 595, edited by C. Berthier, L. P. Levy, and G. Martinez (Springer, New York 2001).
4. G. Misguich and C. Lhuillier, in *Frustrated Spin Systems*, edited by H.T. Diep (World Scientific, Singapore, 2003).
5. A. P. Ramirez, MRS Bull. **30**, 447 (2005).
6. J. Schnack, Dalton Trans. **39**, 4677 (2010).
7. W. Florek, G. Kamieniarz, and A. Marlewska, Phys. Rev. B **100**, 054434 (2019).
8. H.-J. Schmidt and W. Florek, cond-mat/2002.12705 (2020).
9. Plato, *Timaeus*.
10. S. L. Altmann and P. Herzig, *Point-Group Theory Tables* (Oxford University Press, London, 1994).
11. C. Schröder, H.-J. Schmidt, J. Schnack, and M. Luban, Phys. Rev. Lett. **94**, 207203 (2005).
12. N. P. Konstantinidis, J. Phys.: Condens. Matter **27**, 076001 (2015).
13. D. Coffey and S. A. Trugman, Phys. Rev. Lett. **69**, 176 (1992).
14. N. P. Konstantinidis, Phys. Rev. B **72**, 064453 (2005).
15. N. P. Konstantinidis, Phys. Rev. B **76**, 104434 (2007).
16. P. W. Fowler and D. E. Manolopoulos, *An Atlas of Fullerenes* (Oxford University Press, Oxford, 1995).
17. N. P. Konstantinidis, Phys. Rev. B **80**, 134427 (2009).
18. N. P. Konstantinidis, J. Phys.: Condens. Matter **29**, 215803 (2017).
19. N. P. Konstantinidis, J. Magn. Magn. Mater. **449**, 55 (2018).
20. N. P. Konstantinidis, J. Phys.: Condens. Matter **33**, 325801 (2021).
21. H. S. M. Coxeter, *Regular Polytopes* (Dover Publication Inc., New York, 1973).
22. N. P. Konstantinidis and S. Lounis, Phys. Rev. B **88**, 184414 (2013).
23. N. P. Konstantinidis, Eur. Phys. J. B **88**, 167 (2015).
24. N. P. Konstantinidis, J. Phys.: Condens. Matter **28**, 016001 (2016).
25. N. P. Konstantinidis, J. Phys.: Condens. Matter **28**, 456003 (2016).
26. N. P. Konstantinidis, J. Phys.: Condens. Matter **28**, 456003 (2016).
27. A. Machens, N. P. Konstantinidis, O. Waldmann, I. Schneider, and S. Eggert, Phys. Rev. B **87**, 144409 (2013).
28. N. P. Konstantinidis, cond-mat/2207.10535 (2022).
TABLE I: Magnetization discontinuities of the AXXM \[1\].

The columns give the value of the magnetic field \(h \) for which the discontinuity appears over its saturation value \(h_{\text{sat}} \), the reduced magnetization \(\frac{M}{N} \) below and above the discontinuity, and the reduced magnetization change. The saturation magnetic field \(h_{\text{sat}} = 15.70820 \).

\(h \)	\(\left(\frac{M}{N} \right)_{\text{below}} \)	\(\left(\frac{M}{N} \right)_{\text{above}} \)	\(\Delta \frac{M}{N} \times 10^{-3} \)
0.0284380	0.0292860	0.0307879	1.50188
0.1108123	0.1187076	0.1211165	2.408849
0.1433832	0.1557494	0.1569121	1.16263488
0.1974717	0.2119367	0.2153885	3.45184
0.5034437	0.4997158	0.4950044	1.78462
0.5364572	0.5311187	0.5858516	54.739293

TABLE II: Magnetization discontinuities of the AHM \[1\].

The columns give the value of the magnetic field \(h \) for which the discontinuity appears over its saturation value \(h_{\text{sat}} \), the reduced magnetization \(\frac{M}{N} \) below and above the discontinuity, and the reduced magnetization change. The saturation magnetic field \(h_{\text{sat}} = 15.70820 \).

\(h \)	\(\left(\frac{M}{N} \right)_{\text{below}} \)	\(\left(\frac{M}{N} \right)_{\text{above}} \)	\(\Delta \frac{M}{N} \times 10^{-4} \)
0.0005047	0.0015516	0.001682	1.30
0.0150123	0.0266205	0.0266332	0.127
0.1072130	0.1160844	0.1167255	6.4108
0.1729125	0.1793218	0.1798761	5.5432
0.4365934	0.4298667	0.4579936	281.26869
0.5580964	0.6012727	0.6012773	0.0466

TABLE III: Susceptibility discontinuities of the AHM \[1\].

The columns give the value of the magnetic field \(h \) for which the discontinuity appears over its saturation value \(h_{\text{sat}} \), and the reduced magnetization \(\frac{M}{N} \) at this field value. The saturation magnetic field \(h_{\text{sat}} = 15.70820 \).

\(h \)	\(\frac{M}{N} \)
0.37245	0.36872
0.51263	0.53026
0.53929	0.55568
FIG. 1: Ground-state magnetization per spin $\frac{M}{N}$ in the ground state of the AXXM model (1) as a function of the magnetic field h over its saturation value h_{sat}. The solid arrows point to the locations of the magnetization discontinuities.

FIG. 2: Ground-state magnetization per spin $\frac{M}{N}$ in the ground state of the AHM model (1) as a function of the magnetic field h over its saturation value h_{sat}. The solid arrows point to the locations of the magnetization discontinuities and the dashed arrows to the locations of the susceptibility discontinuities.