Phase diagram for ensembles of random close packed Ising-like dipoles as a function of texturation

Juan J. Alonso,1,2 B. Allés,3 and V. Russier4

1Física Aplicada I, Universidad de Málaga, 29071 Málaga, Spain
2Instituto Carlos I de Física Teórica y Computacional, Universidad de Málaga, 29071 Málaga, Spain
3INFN-Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
4ICMPE, UMR 7182 CNRS and UPE 2-8 rue Henri Dunant 94320 Thiais, France.

(Dated: October 1, 2019)

We study random close packed systems of magnetic spheres by Monte Carlo simulations in order to estimate their phase diagram. The uniaxial anisotropy of the spheres makes each of them behave as a single Ising dipole along a fixed easy axis. We explore the phase diagram in terms of the temperature and the degree of alignment (or texturation) among the easy axes of all spheres. This degree of alignment ranges from the textured case (all easy axes pointing along a common direction) to the non-textured case (randomly distributed easy axes). In the former case we find long-range ferromagnetic order at low temperature but, as the degree of alignment is diminished below a certain threshold, the ferromagnetic phase gives way to a spin-glass phase. This spin-glass phase is similar to the one previously found in other dipolar systems with strong frozen disorder. The transition between ferromagnetism and spin-glass passes through a narrow intermediate phase with quasi-long-range ferromagnetic order.

I. INTRODUCTION

The study of ensembles of magnetic nanoparticles (NP) is an active field of research due to its potential application in areas as disparate as biomedicine, data storage or nanofluids. Present technology allows to synthesize NPs with a wide variability of sizes and shapes, in addition to coating them with non-magnetic layers. Moreover they can be produced in nearly monodisperse ensembles so as to enjoy a good control on their spatial distribution. This know-how opens the possibility to realizes densely packed ensembles of NPs that behave as systems of interacting dipoles. It is the magnetic order of such structures that stirs a renewed interest in their use in technological applications.

NPs with diameters d_p up to a few tens of nanometers have a single domain (typical values are 15 nm for Fe, 35 nm for Co, 30 nm for maghemite γ-Fe_2O_3) that behaves as a magnetic dipole. Even when they are spherical, such NPs can have anisotropies that oblige the dipole to lie along a local easy axis and to surmount an anisotropy energy barrier E_a whenever the magnetic moment is inverted, resulting in a blocking temperature $T_b \approx E_a/30k_B$. When the NPs are closely packed, their dipolar interaction energies E_{dd} are not negligible but typically larger than $E_a/10$, leading to $E_{dd}/k_BT_b \gtrsim 3$. Consequently, low-temperature signatures of collective order induced by the dipolar interaction can be (and have indeed been) observed experimentally. This is to be compared with the super-paramagnetism observed in very diluted systems for which $E_{dd}/k_BT_b \ll 1$.

Dilute dispersions of NPs gather into highly ordered 3D super-crystals on account of their ability to self-assemble after the evaporation of the solvent. Such crystals exhibit dipolar super-ferromagnetism in FCC, BCC of I-tetragonal lattices. This behavior was predicted to exist in such lattices by Luttinger and Tisza.

Less ordered (non-crystalline) dense packings may be obtained by pressing powders to obtain a granular solid, or in concentrated colloidal suspensions by freezing the carrier fluid. The frozen disorder on the positions of the NPs and on the orientation of the anisotropy axes in those systems may induce frustration resulting in super-spin-glass (SG) behavior. This behavior, originated by dipolar interactions, has been observed experimentally in random close packed (RCP) samples of dipolar spheres with volume fractions ϕ about 64%. An equilibrium SG phase for non-textured RCP ensembles of dipolar spheres has recently been found by numerical simulations.

Nevertheless, the role of positional and orientational disorder in non-crystalline ensembles is far from being completely understood. Numerical simulations have shown that frozen amorphous densely packed systems with volume fractions as high as $\phi = 0.42$ order ferromagnetically provided they are textured. This texture shows up in colloidal suspensions by freezing the solution in the presence of large magnetic fields h. Even when $h = 0$, ensembles of dipolar spheres moving in a non-frozen fluid with volume fractions as low as 42% tend spontaneously to become textured by aligning their axes, exhibiting nematic order (i.e. with no positional long range order).

The picture that emerges is that the ordering of dense non-crystalline systems may change from ferromagnetic (FM) to SG as the anisotropy-axes alignment dwindles from textured (i.e., parallel axes dipoles or PAD) to non-textured (random oriented axes dipoles or RAD).

The purpose of the present work is to depict the phase diagram of non-crystalline dense packings of Ising dipoles with different degrees of texturation by employing Monte Carlo (MC) simulations (see Fig. 2). In this effort, spe-
Cial attention will be paid to (i) examine whether a SG phase exists comparable to the one previously found for very diluted as well as RAD systems of Ising dipoles, and (ii) explore the transition between FM and SG in order to look for possible intermediate phases. We will pursue this investigation on ensembles of Ising dipoles placed at the center of RCP spheres that occupy a 64% fraction of the entire volume. Given that here we do not focus on time-dependent properties, we conceive to the Ising dipoles (i.e. dipoles with large anisotropy energies) all the necessary time to flip up and down along their easy axes and reach equilibrium, which is tantamount to say that we choose $T_b = 0$. Such a model may be relevant for experimental situations in which one expects $E_a \sim 10 E_{dd}$.\footnote{In order to investigate the effect of the easy axes alignment we will introduce a parameter σ that interpolates from the textured to the completely random axes cases. The nature of the low temperature phases is investigated by measuring the spontaneous magnetization, the SG overlap parameter, and the associated fluctuations and probability distributions.}

The paper is organized as follows. In Sec. II we carefully define the model, give the details of the MC algorithm, and introduce the observables that will be measured. The results are presented in Sec. III and some concluding remarks in Sec. IV.

II. MODEL, METHOD, AND OBSERVABLES

A. Model

We study RCP systems of N identical NPs that behave as single magnetic Ising dipoles. The NPs are labelled with $i = 1, \ldots, N$. We will regard each NP as a sphere of diameter d carrying a permanent pointlike magnetic moment $\hat{\mu}_i = \mu s_i \hat{a}_i$ at its center, where the unit vector \hat{a}_i is the local easy-axis and $s_i = \pm 1$.

The Hamiltonian governing the interaction is

$$
\mathcal{H} = \sum_{i < j} \varepsilon_d \left(\frac{d}{r_{ij}} \right)^3 \left(\hat{a}_i \cdot \hat{a}_j - 3 \frac{\hat{a}_i \cdot \hat{r}_{ij} (\hat{a}_j \cdot \hat{r}_{ij})}{r_{ij}^3} \right) s_i s_j ,
$$

where $\varepsilon_d = \mu_0 \mu^2 / (4 \pi d^3)$ is an energy and μ the magnetic permeability in vacuum. \hat{r}_{ij} is the vector position of dipole j viewed from dipole i, and $r_{ij} = \| \hat{r}_{ij} \|$. The summation runs over all pairs of dipoles i and j, with $i \neq j$. The particles’ positions as well as their easy axes \hat{a}_i remain fixed during the simulations.

The spheres are placed in frozen RCP configurations in a cube of edge L assuming periodic boundary conditions. As in previous work, these configurations are obtained by using the Lubachevsky-Stillinger algorithm\footnote{placed at the center of RCP spheres that occupy a 64% fraction of the entire volume. Given that here we do not focus on time-dependent properties, we conceive to the Ising dipoles (i.e. dipoles with large anisotropy energies) all the necessary time to flip up and down along their easy axes and reach equilibrium, which is tantamount to say that we choose $T_b = 0$. Such a model may be relevant for experimental situations in which one expects $E_a \sim 10 E_{dd}$.\footnote{In order to investigate the effect of the easy axes alignment we will introduce a parameter σ that interpolates from the textured to the completely random axes cases. The nature of the low temperature phases is investigated by measuring the spontaneous magnetization, the SG overlap parameter, and the associated fluctuations and probability distributions.} in which the spheres, that are initially very small, are allowed to move and collide while growing in size at a sufficiently high rate until the sample gets eventually stuck in a non-crystalline state with volume fraction $\phi = 0.64$.\footnote{where $\varepsilon_d = \mu_0 \mu^2 / (4 \pi d^3)$ is an energy and μ the magnetic permeability in vacuum. \hat{r}_{ij} is the vector position of dipole j viewed from dipole i, and $r_{ij} = \| \hat{r}_{ij} \|$. The summation runs over all pairs of dipoles i and j, with $i \neq j$. The particles’ positions as well as their easy axes \hat{a}_i remain fixed during the simulations.}

We shall specify the size of the system by the number N of spheres inside it, or, equivalently by the lateral size of the cube they fill to capacity,

$$
L = \left(\frac{N \pi}{6 \phi} \right)^{1/3} d .
$$

where d is the final diameter attained by the spheres after they ended growing.

To investigate the effect of texturation, we consider the alignment of the vectors \hat{a}_i with the direction \hat{z} follows a Gaussian-like distribution

$$
p(\theta_i) \propto e^{-\sigma^2/2 \sigma^2} + e^{-\gamma^2/2 \sigma^2} \sin \theta_i ,
$$

where θ_i is the polar angle of the i-th dipole while each azimuthal angle is chosen at random. The variance σ controls the degree of texturation, intended as the amount of alignment of the easy axes along the Cartesian axis \hat{z}. σ ranges from $\sigma = 0$ for textured systems (PAD) to $\sigma = \infty$ for non-textured samples with axes completely oriented at random (RAD).

We let each Ising dipole flip up and down along its easy axis \hat{a}_i, assuming that the dipoles are able to overcome the local anisotropy barriers. In what follows, distances and temperatures will be given in units of d and ϵ_d / k_B respectively, where k_B is the Boltzmann’s constant.

B. Samples

We define a sample \mathcal{S} as a given, arbitrary realization of disorder which, for the systems under study, comes from two sources: from the randomness of the positions of the spheres and from the degree of texturation or of alignment of their easy axes \hat{a}_i. This disorder does not participate in the dynamics but remains frozen during MC simulations. Only the signs s_i evolve during a simulation.

As a consequence of the above definitions, we shall call configuration any set of N signs $\{s_i\}_{i=1,\ldots,N}$. In Figs. I a,b) two statistically independent configurations obtained from a given sample by MC simulation are depicted. Dark blue (red) colored spheres in the figures stand for dipoles pointing up (down) along axes \hat{a}_i nearly parallel to \hat{z}, while light greyish spheres stand for those whose axes deviate significantly from \hat{z}.

Results susceptible to be compared with empirical data require an average over N_s independent samples. The need of this average is crucial at large σ due to the sizeable sample-to-sample fluctuations that appear in this regime, where SG order is expected. Moreover, because of the lack of self-averaging associated with SG order, we have not made N_s smaller with increasing N. However, for large systems (the largest ones contain $N = 1728$ dipoles) we could employ no more than 3000 samples because of computer time limitations. The number of samples N_s is listed in Table I for the values of N and σ.\footnote{We define a sample \mathcal{S} as a given, arbitrary realization of disorder which, for the systems under study, comes from two sources: from the randomness of the positions of the spheres and from the degree of texturation or of alignment of their easy axes \hat{a}_i. This disorder does not participate in the dynamics but remains frozen during MC simulations. Only the signs s_i evolve during a simulation. As a consequence of the above definitions, we shall call configuration any set of N signs $\{s_i\}_{i=1,\ldots,N}$. In Figs. I a,b) two statistically independent configurations obtained from a given sample by MC simulation are depicted. Dark blue (red) colored spheres in the figures stand for dipoles pointing up (down) along axes \hat{a}_i nearly parallel to \hat{z}, while light greyish spheres stand for those whose axes deviate significantly from \hat{z}. Results susceptible to be compared with empirical data require an average over N_s independent samples. The need of this average is crucial at large σ due to the sizeable sample-to-sample fluctuations that appear in this regime, where SG order is expected. Moreover, because of the lack of self-averaging associated with SG order, we have not made N_s smaller with increasing N. However, for large systems (the largest ones contain $N = 1728$ dipoles) we could employ no more than 3000 samples because of computer time limitations. The number of samples N_s is listed in Table I for the values of N and σ.\footnote{placed at the center of RCP spheres that occupy a 64% fraction of the entire volume. Given that here we do not focus on time-dependent properties, we conceive to the Ising dipoles (i.e. dipoles with large anisotropy energies) all the necessary time to flip up and down along their easy axes and reach equilibrium, which is tantamount to say that we choose $T_b = 0$. Such a model may be relevant for experimental situations in which one expects $E_a \sim 10 E_{dd}$.\footnote{In order to investigate the effect of the easy axes alignment we will introduce a parameter σ that interpolates from the textured to the completely random axes cases. The nature of the low temperature phases is investigated by measuring the spontaneous magnetization, the SG overlap parameter, and the associated fluctuations and probability distributions.} in which the spheres, that are initially very small, are allowed to move and collide while growing in size at a sufficiently high rate until the sample gets eventually stuck in a non-crystalline state with volume fraction $\phi = 0.64$.\footnote{where $\varepsilon_d = \mu_0 \mu^2 / (4 \pi d^3)$ is an energy and μ the magnetic permeability in vacuum. \hat{r}_{ij} is the vector position of dipole j viewed from dipole i, and $r_{ij} = \| \hat{r}_{ij} \|$. The summation runs over all pairs of dipoles i and j, with $i \neq j$. The particles’ positions as well as their easy axes \hat{a}_i remain fixed during the simulations.}
the highest temperature, where \(n + 1 \) are applied separately to all variables. The algorithm involves two steps. In the first one, 10 Metropolis sweeps are applied to each replica in parallel. The TMC algorithm in- 12 times the transition temperature from the paramagnetic phase to an ordered one. The TMC algorithm is typically efficient in beating slowing down. In these sums, the use of neutralizing Gaussian distributions with standard deviation \(\alpha/2 \) allows to split the computation of the dipolar fields into two rapidly convergent sums: a first sum in real space with a cutoff \(r_c = L/2 \), and a second sum in reciprocal space with a cutoff \(k_c \). We have used \(k_c = 10 \), and \(\alpha = 7.9/L \) as a good compromise between accuracy and computational speed. More importantly, given that textured systems in our model are expected to exhibit spontaneous magnetization at low temperatures, we have chosen the so-called conducting external conditions using surrounding permeability \(\mu' = \infty \), in order to eliminate shape dependent depolarizing effects.

The thermal equilibration times \(t_0 \) are assessed by the same procedure of Ref. The overlap \(q(t) \) of configurations created from two replicas of the same sample \(J \) are obtained by evolving the replicas independently after having started from random configurations. Then \(t_0 \) is the average over samples of the value of \(t \) at which \(q(t) \) attains a plateau \(q_0 \) for each sample. In order to test the value thus obtained for \(t_0 \), we observed that a second overlap \(q(t_0, t_0 + t) \) calculated for pairs of configurations of a single replica taken at times \(t_0 \) and \(t_0 + t \) remains stuck to \(q_0 \) as \(t \) increases. It is found that the less textured the system is, the longer the equilibration time appears. This is due to the large roughness of the free-energy landscapes for non-textured systems. For these hard-to-equilibrate systems, the overlap distributions \(p_J(q) \) exhibit numerous spikes associated with the existence of several pure states. In the simulations we have examined the \(\pm q \) symmetry of the overlap distributions \(p_J(q) \) as an additional indication that all samples are well thermalized.

A double average, the thermal one for each sample \(J \) and the above-mentioned average over the \(N_s \) samples, is needed to achieve physical results. The first average is taken within the time interval \([t_0, 2t_0] \). Given an observable \(u \), the result of both averages will be symbolized by \(\langle u \rangle \). For simplicity, \(\langle |u|^p \rangle \) will often be denoted by \(u_p \). The values of all the simulation parameters are listed in Table I.

After that step, we give to any pair of replicas evolving at neighboring temperatures \((T, T \pm \Delta) \) a chance to be exchanged, according to tempering rules that satisfy detailed balance. We choose \(\Delta \) such that at least 30% of all attempted exchanges are accepted. Due to limitations in computer time we simulate systems containing up to \(N = 12^3 = 1728 \) dipoles and choose \(T_{\text{min}} \) larger than half the transition temperature.

We have imposed periodic boundary conditions in the simulations. That means that each dipole is allowed to interact with all dipoles within an \(L \times L \times L \) box centered at \(i \), see (2). Due to the long-range nature of the dipolar-dipolar interaction, we need to take into account contributions from beyond this box by using Ewald’s sums. Details on the use of Ewald’s sums for dipolar systems are given in Ref. In these sums, the use of neutralizing Gaussian distributions with standard deviation \(\alpha/2 \) allows to split the computation of the dipolar fields into two rapidly convergent sums: a first sum in real space with a cutoff \(r_c = L/2 \), and a second sum in reciprocal space with a cutoff \(k_c \). We have used \(k_c = 10 \), and \(\alpha = 7.9/L \) as a good compromise between accuracy and computational speed. More importantly, given that textured systems in our model are expected to exhibit spontaneous magnetization at low temperatures, we have chosen the so-called conducting external conditions using surrounding permeability \(\mu' = \infty \), in order to eliminate shape dependent depolarizing effects.

The thermal equilibration times \(t_0 \) are assessed by the same procedure of Ref. The overlap \(q(t) \) of configurations created from two replicas of the same sample \(J \) are obtained by evolving the replicas independently after having started from random configurations. Then \(t_0 \) is the average over samples of the value of \(t \) at which \(q(t) \) attains a plateau \(q_0 \) for each sample. In order to test the value thus obtained for \(t_0 \), we observed that a second overlap \(q(t_0, t_0 + t) \) calculated for pairs of configurations of a single replica taken at times \(t_0 \) and \(t_0 + t \) remains stuck to \(q_0 \) as \(t \) increases. It is found that the less textured the system is, the longer the equilibration time appears. This is due to the large roughness of the free-energy landscapes for non-textured systems. For these hard-to-equilibrate systems, the overlap distributions \(p_J(q) \) exhibit numerous spikes associated with the existence of several pure states. In the simulations we have examined the \(\pm q \) symmetry of the overlap distributions \(p_J(q) \) as an additional indication that all samples are well thermalized.

A double average, the thermal one for each sample \(J \) and the above-mentioned average over the \(N_s \) samples, is needed to achieve physical results. The first average is taken within the time interval \([t_0, 2t_0] \). Given an observable \(u \), the result of both averages will be symbolized by \(\langle u \rangle \). For simplicity, \(\langle |u|^p \rangle \) will often be denoted by \(u_p \). The values of all the simulation parameters are listed in Table I.

Since by decreasing the degree of texturation, the system could end up in a SG phase, we have performed parallel simulations with the tempered Monte Carlo (TMC) algorithm as this algorithm has proved to be satisfactorily efficient in beating slowing down. Indeed, the TMC method allow replicas to overcome energy barriers within which the system could sink and remain confined at low temperatures. These potential wells are minima of the rough energy landscapes that characterize glassy phases. Concretely, for each sample \(J \), we run in parallel \(n + 1 \) identical replicas at temperatures \(T = T_{\text{min}} + k\Delta \) where \(k = 0, 1, 2, ..., n \). We have found useful to choose the highest temperature, \(T_{\text{max}} = T_{\text{min}} + n\Delta \), larger than twice the transition temperature from the paramagnetic (PM) phase to the ordered one. The TMC algorithm involves two steps. In the first one, 10 Metropolis sweeps are applied separately to all \(n + 1 \) replicas, in order to make them evolve independently from each other. Dipolar fields are updated whenever a sign \(s_j \) flip is accepted.

FIG. 1. (Color online) (a) and (b) show two statistically independent configurations of a sample with 1728 magnetic nanospheres with \(\sigma = 0.6 \) at the temperature \(T = 0.55 \). The position of the spheres and the orientation of their local easy axes are both frozen. The color of each sphere stands for the value of the \(z \) component of the magnetic moment \(\mu_s = s_i \hat{a}_i \), where \(\hat{a}_i \) is the local easy-axis and \(s_i = \pm 1 \). Picture (c) represents the overlap between the configurations (a) and (b). Black (white) color of spheres in (c) means \(s_i = s_j = +1 (-1) \).
The specific heat c from the fluctuations of the energy $e \equiv \langle \mathcal{H} \rangle / N$;

(ii) the m_z component of the magnetization vector

$$\vec{m} = \frac{1}{N} \sum_i \vec{a}_i s_i,$$

as a way to characterize the FM behavior. Note that for a given sample, \vec{m} does not rotate during the MC simulation. Rather, it aligns along the nematic director \hat{x} that, for the model under study, is the eigenvector corresponding to the largest eigenvalue of the tensor $\mathbf{Q}_J \equiv \frac{1}{N} \sum_i (\vec{S}_i \otimes \vec{a}_i - \vec{I})$. Since \mathbf{Q}_J is constant in time, \hat{x} remain frozen during the simulation.

We find that, for the values of σ considered here, \hat{x} practically coincides with \hat{z}. Then, it makes sense using m_z as the FM order parameter instead of $||\vec{m}||$. In fact, we have also computed $||\vec{m}||$ and their related quantities and found that they provide the same qualitative results that m_z.

(iii) The moments $m_p = \langle |m_z|^p \rangle$ for $p = 1, 2, 4$, that prove useful to calculate the magnetic susceptibility

$$\chi_m \equiv \frac{N}{k_B T} (m_2 - m_1^2),$$

and the dimensionless Binder cumulant

$$B_m \equiv \frac{1}{2} \left(\frac{m_4}{m_2} - 3 \right) \frac{m_2}{m_1^2}.$$

(iv) As an useful tool to look for SG behavior, we calculate the overlap parameter

$$q \equiv \frac{1}{N} \sum_i s_i^{(1)} s_i^{(2)},$$

given a sample \mathcal{J}. $s_i^{(1)}$ and $s_i^{(2)}$ in this expression are the signs at site j of two replicas of the given sample, denoted (1) and (2), that evolve independently in time at the same temperature. Similarly as it has been done for m_z, we also measure $q_p = \langle |q|^p \rangle$ for integer p, and the corresponding Binder parameter $B_q \equiv \frac{1}{2} \left(3 - \frac{q_4}{q_2} \right)$.

(v) Finally, for each sample \mathcal{J} we compute the probability distributions $p_{\mathcal{J}}(m)$ and $p_{\mathcal{J}}(q)$, as well as their average over samples, which will be denoted by $p(m)$ and $p(q)$.

σ	T_{max}	T_{min}
0	N_{max}	4.5, 1.55
N	216	512
N_s	100	500
0.1	N_{max}	4.5, 1.55
N	216	512
N_s	100	500
0.2	N_{max}	4, 1.05
N	216	512
N_s	100	500
0.3	N_{max}	4, 1.05
N	216	512
N_s	100	500
0.4	N_{max}	3.5, 0.55
N	216	512
N_s	100	500
0.5	N_{max}	3.5, 0.55
N	216	512
N_s	100	500
0.55	N_{max}	3.5, 0.55
N	216	512
N_s	100	500
0.57	N_{max}	3.5, 0.55
N	216	512
N_s	100	500
0.60	N_{max}	3.5, 0.55
N	216	512
N_s	100	500

σ	T_{max}	T_{min}
0.70, 0.80	N_{max}	3.5, 0.55
N	216	512
N_s	100	4800
FIG. 2. (Color online) Phase diagram on the temperature-degree of texturation plane for the dipolar Ising model. Symbols • indicate the PM-FM transition and have been obtained from data of B_m vs T. Symbols ○ stand for PM-FM and PM-SG transitions and were obtained from the B_m vs T plots. Symbols □ represent the FM-SG transition and follow from the B_m vs σ plots. The error bars for the data marked with • and ○ are smaller than the size of these symbols. FM quasi-long range order cannot be discarded in the grey region.

Errors for all quantities are obtained from the mean squared deviations of the sample-to-sample fluctuations.

III. RESULTS

A. The FM Phase

The main result of the paper is the phase diagram on the plane temperature-degree of texturation shown in Fig. 2. It displays regions with FM, PM and SG phases. The FM order arises at low temperatures in the range $0 \leq \sigma \leq 0.53$. A thermally driven second order transition takes place at the phase boundary between the PM and FM phases. Next we give the numerical evidence that supports this interpretation.

FM phases are defined by the presence of a non-vanishing magnetization. In Fig. 2(a) we show the behavior of the moment m_2 with the temperature for $\sigma = 0.3$ in a number of system sizes. We obtain similar results for the magnetization for all values of σ below 0.53. This is a first piece of evidence of the existence of the FM phase. Fig. 2(a) shows plots of the specific heat c vs T. The sharp variation of c near $T = 2.5$ suggests the presence of a singularity as N increases, as it is expected for a second order PM-FM phase transition. The same happens with the plots of the magnetic susceptibility χ_m vs T shown in Fig. 2(b). The data are consistent with a logarithmic divergence of c, and with an approximate power-law divergence of χ_m with N^p (up to logarithmic corrections in N) where $p \sim 2/3$.

Next we examine the dependence of m_2 on the number N of dipoles. Fig. 3(b) shows log-log plots of m_2 vs N for several temperatures. The data at T below $T_c = 2.55(5)$ reflect that m_2 does not vanish in the $N \to \infty$ limit. On the contrary the plot of m_2 vs N for $T > T_c$ shows a faster than a power-law decay with a T-dependent exponent, and consequently the slope of the curves is steeper for increasing T and approaches a $1/N$ trend, which is the expected trend in PM phases. The dashed line in Fig. 3(b) separating the two regimes represents a $1/N^{0.35}$ decay. Although we are aware that these graphs do not

FIG. 3. (Color online) (a) Plots of the squared magnetization m_2 vs temperature T for $\sigma = 0.3$. △, ◦, □ and ○ stand for $N = 216, 512, 1000$ and 1728 dipoles respectively. Lines are guides to the eye. (b) Log-log plots of m_2 vs N for different temperatures at $\sigma = 0.3$. From top to bottom, ■, □, ◦, △, ◦ and ○ stand for $T = 1.6$, 2.2, 2.4, 2.5, 2.6, 2.8 and 3.4 respectively. Dotted lines are guides to the eye. The dashed line separates two regimes and stand for a $1/N^{0.35}$ decay. The dot-dashed line shows the N^{-1} decay expected for paramagnets in the thermodynamic limit.

FIG. 4. (Color online) (a) Plots of the specific heat versus T for $\sigma = 0.3$. △, ◦, □ and ○ stand for systems with $N = 216, 512, 1000$ and 1728 dipoles respectively. (b) Plots of the magnetic susceptibility χ_m vs T for $\sigma = 0.3$. Same symbols as in (a). Lines in both panels are guides to the eye.
allow a precise determination of T_c, we have followed this criterion as a first rough approach for establishing the boundary of the FM phase.

The Binder parameter B_m grants a more precise determination of the transition temperature. It follows from its definition in \(B_m\rightarrow 1\) as $N\rightarrow \infty$ in the FM phase. On the other hand, from the law of large numbers it follows that, in the PM phase, with short-range FM order, $B_m\rightarrow 0$ as N increases. Finally, at a critical point, B_m becomes size independent, as it must occur to every scale-free observable (recall that B_m is dimensionless). The latter is also true in the case of a marginal phase with quasi-long-range magnetic order. Then, curves of B_m vs T for various values of N should cross at T_c if it is a second order transition. Note however that when a marginal phase exists these curves should collapse rather than cross for all the critical region.\(^{23}\)

The plots of B_m vs T are shown in Fig. 5(a) for different values of N at $\sigma = 0.3$. It is apparent that all curves intersect at a precise temperature, allowing to extract the Curie temperature $T_c(\sigma)$, and permitting to establish a clear-cut boundary between the PM and FM phases. The relatively modest system sizes that we have used (a limitation due to the long-range nature of the dipolar interaction) does not allow the precise determination of the critical exponents.

However, from finite size scaling relevant for dipolar Ising models we get acceptable data-collapse plots of B_m vs $L^{5/2} \log^{16} L (T/T_c - 1) + v (\log L)^{-1/2}$, that provide a more reliable determination of $T_c(\sigma)$ (see Fig. 5). This finite size scaling behavior corresponds to the mean field one and agrees with the fact that the upper critical dimension of the dipolar Ising model is $d_u = 3.45$.\(^{23,35}\) For $\sigma = 0.3$, we get $T_c = 2.57(2)$. Likewise, precise determinations of $T_c(\sigma)$ can be obtained for $\sigma \leq 0.53$, the overall result being shown in Fig. 2.

For $\sigma = 0.55$ and 0.57 the curves B_m vs T merge rather than cross at low temperatures, giving a less precise determination of T_c. We will return to this point in subsection III C. Given that for our model \tilde{m} does not rotate, m_c and the overlap q are expected to give similar information in the FM phase. Thus, crossing points in the plots of B_q vs T like the ones shown in Fig. 5(b), may in principle provide an additional way for obtaining T_c. This is true for $\sigma \geq 0.53$ for which clean crossing points are obtained. For smaller values of σ, see Fig. 5(b), a characteristic dip near the transition temperature makes it difficult to accurately locate the critical point.\(^{36}\)

B. The SG phase

This subsection is devoted to the study of small texturizations, which quantitatively entails large values of σ. As σ grows, we observe large sample-to-sample fluctuations which obliges us to increase the number of samples up to roughly ten thousand (see Table I) in order to attain trustworthy averages. Also large relaxation times are observed, a typical feature of SG behavior. Indeed, we are going to report numerical data that evidence the absence of magnetic order and the existence of an equilibrium SG phase for systems with $\sigma \geq 0.6$. With the aim of exploring this low-temperature ordered phase within a reasonable amount of computer time, we have performed the TMC simulations at temperatures no less than $T = 0.55$ and system sizes no larger than $N = 1728$, to the detriment of the accuracy.

Plots of the moment m_2 vs T are shown in Fig. 2(a) at $\sigma = 0.6$. m_2 decreases as N increases at all temperatures. In the inset of the figure, we show the plots of the specific heat c/k_B vs T. They display a gentle variation and no signature of any possible singularity is seen. Similar
graphs follow if the study is repeated at larger values of σ. These are the first pieces of evidence that point to the non-existence of FM order and of any PM-FM transition for $\sigma \geq 0.6$.

In Fig. 7(b) we show log-log plots of m_2 vs N. They exhibit a decay faster than $1/N^{1/2}$ for all available temperatures. At low temperatures $T \leq 1$ the results are in principle consistent with quasi-long-range magnetic order. We will further discuss this point in the next subsection. For the PM phase (with short-range magnetic order), we expect to observe $m_2 \sim 1/N$ for large enough systems. For the available system sizes, we discern such a trend only for extremely large temperatures, (see for example the data at $T = 2.55$).

A definite signature of the presence of a SG phase is the divergence of the magnetic susceptibility at low temperatures. The plots of χ_m vs T for $\sigma = 0.6$ showing an increase with N, see Fig. 8(a), are consistent with that scenario. Notice that this is in clear contrast with the behavior shown in Fig. 7(b) for $\sigma = 0.3$. Log-log plots of χ_m vs N for low temperatures show a power-law increase $\chi_m \sim N^p$ with an exponent p that changes slightly with T but that is never greater than $p = 0.55$ (see Fig. 8(b)). For $T \geq 1.25$, the curves detach from an algebraic growth and bend downwards indicating a non-diverging χ_m in the macroscopic limit, as expected for a PM phase.

The most convincing evidence for the absence of FM order at low temperatures for $\sigma = 0.6$ is given in Fig. 8(a). The B_m vs T plots show that B_m diminishes as N increases for all temperatures. As a consequence, curves for different system sizes do not cross, in contrast with the behavior found in Fig. 5(a). Recall that, in case of short-range FM order, B_m should vanish in the thermodynamic limit. In the inset of Fig. 7(b), we have represented B_m vs $1/L$ for $T = 0.55$, showing that that is indeed the case. We obtain a similar trend for all $\sigma \geq 0.6$ and temperatures. This finding, consistent with short-range FM order, seems to be in contradiction with the effective power-law decay of m_2 with N observed for low T for the system sizes we have used (see Fig. 8(b)). Some clues could be obtained by inspecting the two independent magnetic configurations displayed in Fig. 6. These are thermalized configurations at $\sigma = 0.6$, $T = 0.55$ in the largest system size considered in this work, $N = 1728$. The sample appears to be broken into large magnetic domains whose frontiers appear to be frozen. The large size of the domains explains the effective power-law decay found in the m_2 vs N plots in Fig. 8(b). In striking contrast, the overlap between the two configurations covers practically the whole system (see Fig. 1(c)), suggesting a diverging SG overlap correlation length.

Provided that the magnetic correlation length (i.e. the size of the magnetic domains) does not diverge, then m_z would be expected to be normally distributed, as follows from the law of large numbers. In Fig. 10(a) we represent the distribution $p(m_z)$ where $m_z \equiv m_z/m_1$ averaged over all samples for $\sigma = 0.6$ and the lowest temperature available, $T = 0.55$. Clearly, $p(m_z)$ tends to $1/(\pi N^2) \exp(-m_z^2/\pi N)$ as $N \to \infty$, in agreement with short-range magnetic order. We obtain qualitatively similar results for all $\sigma \geq 0.6$ and T, a fact that leads us to discard the existence of a critical FM phase with quasi-long-range order at low temperature. For this to be the case, we should have seen a non-Gaussian broad distribution $p(m_z)$ that behaves as an scaling function that does not

![FIG. 7. (Color online) (a) Plots of the squared magnetization m_2 vs T for $\sigma = 0.6$. In the inset, the specific heat c/k_B vs T for $\sigma = 0.6$, $N = 216$, 512, 1000, and 1728 dipoles respectively. All lines in this panel are guides to the eye. (b) Log-log plots of m_2 vs N for $\sigma = 0.6$. From top to bottom, Δ, Φ, \square and \bigcirc stand for $\sigma = 0.6$, $N = 216$, 512, 1000, and 1728 respectively. The arrow marks the onset of the PM phase. Dotted lines are guides to the eye. The dashed line shows the N^{-3} decay expected for a paramagnet in the thermodynamic limit.](https://example-image-url.com)

![FIG. 8. (Color online) (a) Plots of the magnetic susceptibility χ_m vs T for $\sigma = 0.6$. Δ, Φ, \square and \bigcirc stand for systems with $N = 216$, 512, 1000 and 1728 dipoles respectively. Solid lines are guides to the eye. (b) Log-log plots of χ_m vs N for $\sigma = 0.6$. Δ, Φ, and \square stand for temperatures $T = 0.55$, 1.25, and 1.55 respectively. As stressed by the dotted lines connecting the points, data ceases to grow linearly (the solid lines) at large temperatures. The arrow marks the onset of the PM phase.](https://example-image-url.com)
change with the system size. It seems to be the case, within errors, for a bit larger texturization ($\sigma = 0.55$), as shown in Fig. 11(b) for $T = 0.55$. More details on this point will be discussed in the next subsection.

Finally, we report numerical evidence in favor of the positive existence of a SG phase for $\sigma \geq 0.6$ by studying the overlap parameter q_2 and B_q. Plots of q_2 vs T are shown in Fig. 11(a) for $\sigma = 0.6$. It is worth comparing this figure with its counterpart for m_2, Fig. 11(a), to appreciate the qualitative differences between the behavior of q_2 and m_2 at low temperature. Note however that q_2 also decreases appreciably as N increases for all temperatures. This fact raises the question on whether or not q_2 vanishes as $L \to \infty$. To clarify this, we have prepared the log-log plots of q_2 vs N shown in Fig. 11(b). Data are consistent with $q_2 \sim 1/N^p$ for low temperatures, and with a T-dependent exponent p. The N^{-1} trend, expected for PM phases, shows up only at large temperatures. All of this suggests the presence of a phase with quasi-long-range SG order. We draw additional evidence on this point from the behavior of B_q. Recall that in the thermodynamic limit $B_q \to 1$ in case of strong long-range order, vanishes in the PM phase, and tends to some intermediate value at criticality. In Fig. 9(b), plots of B_q versus T for $\sigma = 0.6$ show that curves of different system sizes cross at a precise temperature T_{sg} that delimits the extend of the region with SG order. These crossings permit to obtain the points $T_{sg}(\sigma)$ of the PM-SG transition line in Fig. 2(b). Note that T_{sg} does not vary strongly with σ. The results agree well with the limiting value $T_{sg} = 0.8$ found in previous work for the RAD case ($\sigma = \infty$). It is important to stress that the fact that the B_q curves cross at T_{sg} does not imply the existence of strong long-range order for $T < T_{sg}$. Indeed, plots of B_q vs $1/L$ for $T \leq T_{sg}(\sigma)$ show that B_q stays below 1 (see the inset in Fig. 9(b)). Then, the B_q curves should collapse in the $N \to \infty$ limit when $T \leq T_{sg}(\sigma)$, which is consistent with the algebraic decay found for q_2.

In summary, the data for $\sigma \geq 0.6$ point to the existence of a SG phase delimited by $T_{sg}(\sigma)$ for which quasi-long-range SG order occurs, like in the 2D XY model. A similar SG phase has been previously found for other dipolar systems with strong frozen disorder, namely for systems of parallel Ising dipoles with strong dilution.
as well as in dense arrays, both crystalline of not, of non-
textured systems of Ising dipoles with the axes oriented
completely at random.14,24 However, given the moderate
range of system sizes considered here, our data cannot
rule out completely the so-called replica symmetry break-
ing scenario in which q_2 does not vanish in the $N \to \infty$
limit, but there are long range SG order fluctuations
which provoke $B_q < 1$.14,24

C. The FM-SG transition.

From the previous sections, we expect to find a transi-
tion within the narrow region $0.53 < \sigma < 0.6$. In order
to identify it, we have carried out TMC simulations for
several values of σ in the interval $[0.45, 0.6]$ and a range
of temperatures in the TMC between $T_{\text{max}} = 3.5$ and
$T_{\text{min}} = 0.55$. The highest temperature has been chosen
well into the PM phase in order to refresh configurations
and ensure equilibrium results for $T_{\text{min}} = 0.55$ which is, in
turn, a temperature well deep into the low-temperature
phase. This procedure facilitates the exploration of the
FM boundary along several isothermal lines, allowing to
investigate whether there is an intermediate phase be-
tween this boundary and the SG phase determined in
the previous section. In addition, the slope of the FM
boundary line may discern between a forward or a reen-
trant behavior.

The magnetization m_2 vs σ in Fig.12(a) for a low
temperature $T = 0.55$ shows that m_2 decreases with N for
$\sigma > 0.5$. Log-log plots of m_2 vs N in Fig.12(b) show that
the m_2 curves deviate from an algebraic decay to tend
upwards at $\sigma = 0.53$, indicating also a non-vanishing
magnetization. In contrast, for $\sigma = 0.55$ and 0.57 we find
a power-law decay, giving some room for the existence of
an intermediate region with quasi-long-range FM order.
This decay is consistent with the behavior found for the
$p(m_2)$ distributions of Fig.10(b) for $\sigma = 0.55$. All $p(m_2)$
curves tend to collapse into a non-Gaussian broad distri-
bution for large N, as expected when quasi-long-range
order settles. We obtain the same qualitative results for
$\sigma = 0.57$. Finally, curves for larger values of σ tend to
the N^{-1} decay characteristic of short-range FM order, as
discussed in the previous section.

The plots for q_2 are shown Fig.13 Similarly as for
m_2, q_2 does not vanish for $\sigma \leq 0.53$, as it is expected
for a FM phase. For larger values of σ we find instead a
$1/N^p$ algebraic decay of q_2. Note that the slope of the
decay is small. For example, for $\sigma \geq 0.7$ we find $p \approx 1/8$,
indicating that we are far from a PM phase (for which
$p = 1$ is expected).

We next examine how the cumulants B_m and B_q vary
with σ and N at low temperatures. For the FM phase,
both quantities tend to 1 in the thermodynamic limit
while for the SG phase B_m should vanish as $N \to \infty$, and
B_q should tend to a non-zero value. Then, if there is a
transition line separating the FM and the SG phases,
we expect the related B_m vs σ curves to cross at the
transition point $\sigma_c(T)$. As for the B_q vs σ curve, it should
merge for $\sigma \gtrsim \sigma_c$ and splay out only for $\sigma < \sigma_c$.

In Fig.14(a) we show plots of B_m vs σ for $T = 0.8$,
a temperature that lies below the PM boundary. Curves
for different sizes do not cross at a precise point but
rather tend to collapse in the intermediate region $0.55 \lesssim
\sigma \lesssim 0.57$ as N increases. They only splay out for $\sigma \leq 0.53$
and for $\sigma \gtrsim 0.6$. Plotting instead B_m vs $1/L$ for several

\begin{figure}[h]
\centering
\includegraphics[width=\columnwidth]{fig12}
\caption{(Color online) (a) Semilog plots of the squared
magnetization m_2 vs σ for the lowest available temperature,
$T = 0.55$. \triangle, ϕ, \square and \circ stand for $N = 216, 512, 1000$ and
1728 respectively. Solid lines are guides to the eye. (b) Log-
log plots of m_2 vs the number of dipoles N at $T = 0.55$.
From top to bottom, \triangle, ϕ, \circ, \circ, \circ, \circ, and \circ stand for $\sigma =
0.4, 0.5, 0.53, 0.55, 0.57, 0.6, 0.7$, and 0.8 respectively.
Dotted lines are guides to the eye. The dashed line shows the
N^{-1} decay expected for the paramagnetic phase.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\columnwidth]{fig13}
\caption{(Color online) (a) Plots of the squared over-
lap parameter q_2 vs σ for the lowest available temperature,
$T = 0.55$. \triangle, ϕ, \square and \circ stand for $N = 216, 512, 1000$ and
1728 respectively. Solid lines are guides to the eye. (b) Log-
log plots of q_2 vs the number of dipoles N for $T = 0.55$.
From top to bottom, \triangle, ϕ, \circ, \circ, \circ, \circ, \circ, \circ, and \circ stand for $\sigma =
0.4, 0.5, 0.53, 0.55, 0.57, 0.6, 0.7$, and ∞ respectively.
Dotted lines are guides to the eye. The dashed line corresponds
approximately to a $N^{-1/18}$ decay.}
\end{figure}
values of σ, as shown in Fig. 13b), we see that B_m tends to values that are neither 1 nor 0, which is a trait of quasi-long-range order, only in this intermediate region. Similar plots are given for a lower temperature, $T = 0.55$, in panels (c) and (d) of the same figure. We obtain the same qualitative picture found for $T = 0.8$, apart from the fact that finite size effects are larger within the intermediate region. However, $1/L$ extrapolations of B_m for $\sigma = 0.55$ and 0.57 tend to non-vanishing values, which is consistent with marginal behavior. We have performed averages over thousands of samples in order to improve the statistics. However, the error bars of B_m do not allow a precise determination of the FM boundary $\sigma_c(T)$. The points along the FM boundary shown in Fig. 2 are just rough estimates obtained by taking the mean value of the crossing points of the pairs of curves B_m vs σ for different sizes $(N_1, N_2) = (8^3, 10^3)$ and $(10^3, 12^3)$. We find a boundary line which is nearly vertical with a positive slope suggesting a slight reentrance near $\sigma = 0.55$. However, at least for the system sizes we have employed, plots of m_q vs T for $\sigma = 0.55$ do not allow to discern any intermediate region with strong FM order separating the low temperature SG phase from the PM region (not shown). More extensive simulations for larger systems and for additional values of σ within the interval $(0.53, 0.6)$ would be needed to address this issue. In summary, the results point to the existence of a narrow intermediate region with quasi-long-range order between the FM boundary line and the SG phase, a phase which covers the low-temperature region for all $\sigma \geq 0.6$. For $\sigma = 0.57$ and all temperatures below the PM boundary, we obtain a non-vanishing B_m and an algebraic decay of m_2 with N, indicating that that region of the T-σ plane still stays in the quasi-long-range regime. The area shaded with grey color in Fig. 2 exhibits the extent of this intermediate phase.

Additional information could be gathered from comparison of plots in Fig. 14 with their counterparts for B_q vs σ shown in Fig. 15. Note that, in contrast to B_m, the curves of B_q vs σ do not splay out for $\sigma \geq 0.6$ but merge for large N. This is expected for the SG phase described in the previous section. On the other hand, for $\sigma \leq 0.53$ we find that both B_m and B_q tend to 1 in the thermodynamic limit, indicating the existence of strong FM order. Finally, for $\sigma = 0.55$ and 0.57 (the only values we have simulated in the intermediate region), B_q increases with the size of the system. $1/L$ extrapolations of B_q for $T = 0.55$ point to values which are less than

FIG. 14. (Color online) (a) Plots of B_m vs σ for $T = 0.8$, and the values of N indicated in the panel. Solid lines are guides to the eye. (b) Plots of B_m vs $1/L$ for $T = 1$ for various values of σ. From top to bottom, σ, σ, σ, \cdot, \cdot, \cdot, \cdot, and \cdot stand for $\sigma = 0.45$, 0.5, 0.53, 0.55, 0.57, 0.6, and 0.7 respectively. Dotted lines are guides to the eye. (c) Same as in (a) but for $T = 0.55$. (d) Same as in (b) but for $T = 0.55$.

FIG. 15. (Color online) (a) Plots of B_q vs σ for $T = 0.8$, and the values of N indicated in the panel. Solid lines are guides to the eye. (b) Plots of B_m vs $1/L$ for $T = 1$ for various values of σ. From top to bottom, σ, σ, σ, \cdot, \cdot, \cdot, \cdot, and \cdot stand for $\sigma = 0.45$, 0.5, 0.53, 0.55, 0.57, 0.6, and 0.7 respectively. Dotted lines are guides to the eye. (c) Same as in (a) but for $T = 0.55$. (d) Same as in (b) but for $T = 0.55$.
1, suggesting that the intermediate phase includes quasi-long-range FM and SG order contemporaneously. Note however the data for $T = 0.8$ shown in Fig. 11B do not exclude the possibility of having strong SG order in this intermediate region. Simulations for larger systems far beyond our present CPU-time resources would be needed in order to address this point.

IV. CONCLUSIONS

We have studied by Monte Carlo simulations the effect of texturization on the collective behavior of disordered dense packings of identical magnetic nanospheres that behave as Ising dipoles along local easy axes. The local axes orientations follow a probability distribution parameterized by a single parameter σ. This allows to vary the amount of orientational disorder ranging from the complete textured case ($\sigma = 0$) with all axes pointing along a common direction, to the non-textured one with the axes oriented at random ($\sigma = \infty$).

We have obtained the phase diagram on the temperature-σ plane (see Fig. 2) from studying the magnetization, the spin-glass overlap parameter q, their fluctuations, as well as some other related observables, see Fig. 11B. The region $\sigma \leq 0.53$ contains a low-temperature ferromagnetic phase with strong order separated by a second order transition line from a paramagnetic high-temperature phase. For large orientational disorder (namely, for $\sigma \geq 0.6$) the ferromagnetic order gives way to a spin-glass phase for temperatures below a nearly flat transition line $T_{sg}(\sigma)$ that extends up to $T_{sg}(\infty) = 0.8$. The spin-glass phase is similar to the one previously observed in systems of Ising dipoles with strong structural disorder, at $\sigma = \infty$. The Binder cumulants allow to estimate the position of the low-temperature boundary separating the ferromagnetic and spin-glass phases. It is located near $\sigma = 0.55$ and consistent with a small reentrance. Moreover, a narrow intermediate region with quasi-long-range ferromagnetic order seems to lie between the ferromagnetic and the spin-glass phases.

Finally we comment on the applicability of our results to actual experimental situations. As stated in the introduction, the model corresponds to the limit $T_c/T_b \gg 1$ where T_b is the blocking temperature of the dispersed system and T_c a dipolar ordering temperature. This is for instance the situation of the maghemite NP ensembles with diameters $d_p \approx 6 \text{ nm} < d_p \approx 12 \text{ nm}$ studied in Ref. 2. In them, PM/SG freezing is observed for randomly distributed easy axes and a volume fraction $\phi \approx 0.67$ at a ratio of temperatures $4 < T_c/T_b < 12$. Moreover the aging phenomenon used to characterize the SG state is observable only at temperatures above T_b. We can thus conclude that the present model applies at a qualitative level to the latter experimental situations whenever the SG region of the phase diagram is reached.

ACKNOWLEDGEMENTS

We thank the Centro de Supercomputación y Bioinformática at University of Málaga, Institute Carlos I at University of Granada and Cineca for their generous allocations of computer time in clusters Picasso, and Proteus. We thank also access to the HPC resources of CINES under the allocation 2018-A0040906180 made by GENCI, CINES, France. Work performed under grants FIS2017-84256-P (FEDER funds) from the Spanish Ministry and the Agencia Española de Investigación (AEI), SOMM17/6105/UGR from Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía and European Regional Development Fund (ERDF), and ANR-CE08-007 from the ANR French Agency. J.J.A. also thanks the Italian “Fondo FAI” for financial support.

Each author also thanks the warm hospitality received during his stays in the other authors’ institutes: ICMPE, the Pisa INFN section, and the University of Málaga.
F. Fernández and J. J. Alonso, Phys. Rev. B 62, 53 (2000).
S. Sahoo, O. Petraic, W. Kleemann, P. Nordblad, S. Cardoso, and P. P. Freitas, Phys. Rev. B 67, 214422 (2003).
The authors reference a variety of scientific papers throughout their text, which are not displayed in the image. Their contributions span various fields including physics, materials science, and computational chemistry. For example, they cite works by S. Sahoo et al. on the study of magnetic properties, and S. Nakamae et al. on the application of advanced computational methods to understand complex systems.

The authors conclude with a discussion on the implications of their findings, emphasizing the importance of their work in advancing our understanding of magnetic materials and their potential applications. They also highlight the ongoing need for further research to explore the full potential of these materials in various technological contexts.