A future linear e^+e^- collider with a clean environment, tunable collision energy, high luminosity, polarized incoming beams, and additional e^-e^-, $e\gamma$ and $\gamma\gamma$ modes, will offer precision tools to explore new physics. Here we summarize three papers submitted to the ICHEP04 conference in which polarized e^+e^- and $\gamma\gamma$ beams are exploited to search for CP violation, and universal extra dimensions (UED).

1 Transverse beam polarization at a linear e^+e^- collider and new physics1,2,3

A 1 TeV linear e^+e^- collider with high luminosity and polarized beams is now a distinct possibility. If spin rotators can produce transversely polarized beams (TPB), providing two more vectors, they would make it possible to observe CP violation by observing a single final-state particle without measuring its spin. Two specific processes have been considered:

a) $e^+e^- \rightarrow t\bar{t}$

The four-Fermi Lagrangian of beyond the SM contact $e\bar{e}t\bar{t}$ interactions (CI), after Fierz transformation, takes the form

$$\mathcal{L}^{4F} = \sum_{ij} [S_{ij}(\bar{e}e)_i(\bar{t}t)_j + V_{ij}(\bar{e}\gamma_{\mu}e)_i(\bar{t}\gamma^{\mu}t)_j + T_{ij}(\bar{e}\sigma_{\mu\nu}e)_i(\bar{t}\sigma^{\mu\nu}t)_j]$$ (1)

where $(\bar{f}O_f) = \bar{f}O_f \gamma_5$, $S_{RR} = S_{LL}^\text{L}$, $V_{ij} = V_{ij}^\text{L}$, $T_{RR} = T_{LL}^\text{L}$ and non-diagonal S and T vanish.

With TPB the chirality-violating S and T terms interfere with the SM contributions and can be studied, in contrast to the cases of no or longitudinal beam polarization, where they appear only at second order. Assuming P_{L} along the x-axis and anti-parallel P_{R}, the CP-odd azimuthal asymmetry, defined as

$$A_1(\theta_0) = \frac{N(\sin \phi > 0) - N(\sin \phi < 0)}{N(\sin \phi > 0) + N(\sin \phi < 0)}$$ (2)

is sensitive to

$$\text{Im} S \equiv \text{Im}(S_{RR} + \frac{2c_A^2 c_V}{c_V^2} T_{RR})$$ (3)

Here N is the number of events with a given azimuthal angle ϕ and polar angle of the top quark within the θ_0 cut as $\theta_0 < \theta < \pi - \theta_0$. Fig.1 (left) shows the 90% C.L. limit on $\text{Im} S$ for an integrated luminosity of $\int Ldt = 500\text{ fb}^{-1}$ and $\sqrt{s} = 500\text{ GeV}$ and 100% TPB. The limit of $1.6 \cdot 10^{-8} \text{ TeV}^{-2}$ translates to a scale Λ of CI of order 8 TeV (for \sqrt{s} of 800 GeV the sensitivity increases to ~ 9.5 TeV). For realistic TPB of $P_{L} = 0.8$ and $P_{R} = 0.6$, the limit on Λ goes down to about 6.7 TeV.

A specific example of chirality-violating couplings at tree level has been considered in2 with an $SU(2)_L$ doublet of scalar leptoquarks coupled only to first-generation leptons and third-generation quarks. The azimuthal asymmetry A_1 turns to be proportional to $\text{Im}(g_R g_L^*)$ while an asymmetry A_2, defined as in Eq.(2) but with $\phi \rightarrow \phi + \pi/2$ and with parallel P_{L} and \vec{P}_{R}, is proportional to $\text{Re}(g_R g_L^*)$: g_i is the leptoquark coupling to the chiral current $(ie)_{ij}$. Fig.1 (cen-
ter) shows the 90% C.L. limits on $\text{Re}(g g L)$ and $\text{Im}(g g L^*)$ for leptoquark mass of 1 TeV with realistic TPB. The limit on $\text{Re}(g g L)$ is competitive with $|\text{Re}(g g L^*)| < 0.1$ derived from $\theta_c^w - 2$, while the limit $|\text{Im}(g g L^*)| < 10^{-6}$ from the electron EDM is much stronger.

b) $e^+ e^- \to \gamma Z^3$

Here the final-state particles are both self-conjugate. With TPB, a T-odd, CP-even azimuthal asymmetry can be combined with the T-even, CP-odd forward-backward (FB) asymmetry to give an asymmetry which is both CP- and T-odd. A CP-violating contribution can arise if anomalous CP-violating γZ and γZZ couplings are present.

The effective CP-violating Lagrangian for $\gamma \gamma Z$ and γZZ interactions, up to dimension 6 terms, can be written as

$$\mathcal{L} = \frac{e \lambda_1}{2m_Z^2} F_{\mu\nu} \left(\partial^\mu Z^\lambda \partial^\nu Z^\lambda - \partial^\nu Z^\lambda \partial^\mu Z^\lambda \right) + \frac{e \lambda_2}{16c_W s_W m_Z^2} F_{\mu\nu} F^{\nu\lambda} \left(\partial^\mu Z^\lambda + \partial^\nu Z^\lambda \right) \quad (4)$$

To isolate appropriate anomalous couplings three different CP-odd asymmetries, which combine a FB asymmetry with an appropriate asymmetry in ϕ, have been identified in3. The derived 90% C.L. limits on real and imaginary parts of the λ_1 and λ_2 couplings, plotted as functions of the cut-off θ_c, are shown in the right panel of Fig.1.

2 Resonant H/A mixing in the CP-noninvariant SUSY4

The tree level Higgs potential of the MSSM is CP-conserving implying two h, H of the three neutral states to be CP-even, while the third A is CP-odd. With non-vanishing CP phases in the soft SUSY-breaking terms, however, radiative corrections induce the three neutral bosons to mix forming a triplet (H_1, H_2, H_3) with even and odd components in the wavefunctions under CP transformations.

As expected from quantum mechanical rules, the mixing can become very large if the states are nearly mass-degenerate. This situation is naturally realized in the decoupling limit in which two of the neutral states, H and A, are heavy. The lightest Higgs H_1 then becomes the CP-even SM-like Higgs, and does not mix with the H/A system. In this limit the off-diagonal mixing term of the 2×2 mass matrix M^2 in the H, A basis reads

$$M^2_{HA} = v^2 \left[\frac{1}{2} \lambda^I_1 c_{2\beta} - \frac{1}{2} (\lambda^I_0 - \lambda^I_2) s_{2\beta} \right] \quad (5)$$

where λ^I_0 are imaginary parts of loop-induced quartic Higgs couplings4.

For small mass differences, the mixing is strongly affected by the widths of the states and the complex, symmetric Weisskopf–Wigner mass matrix $M_c^2 = M^2 - iM\Gamma$ must be considered in total, not only the real part. Recently a coupled-channel method has been employed5 for the Higgs formation and decay.

Figure 1. The 90% CL limits on: $\text{Im} S$ (left), leptoquark (center), and $\gamma \gamma Z$ and γZZ couplings (right), as functions of the cut-off angle θ_c. [$\sqrt{s}=500$ GeV, $\int L dt=500$ fb$^{-1}$]
processes at the LHC.

In Ref.\(^4\) an alternative approach has been followed where the full mass matrix \(M^2\) is diagonalized

\[
M^2_{\text{diag}} = C M^2 C^{-1}
\]

For the \(H/A\) system, the complex 2×2 rotation matrix is expressed in terms of a complex mixing angle \(\theta\), which is given by

\[
X = \frac{1}{2} \tan 2\theta = \frac{M^2_{HA} - i M_{HA} \Gamma_{HA}}{M^2_{HH} - M^2_{AA}}
\]

where \(\Gamma_{HA} (M^2_{HH}, M^2_{AA})\) is the off-diagonal (diagonal) entry of the decay (complex mass \(M^2\) matrix.

In Fig.2 the complex \(H/A\) mixing in the MSSM is shown for a typical set of parameters: \(M_S=0.5\) TeV, \(|A_t|=1\) TeV, \(\mu=1\) TeV, \(\tan\beta=5\), while varying the phase \(\phi_A\) of the trilinear parameter \(A_t\).

A future photon collider would be an ideal tool to study resonant CP-violation in the Higgs sector. Two promising signatures have been considered in Ref.\(^4\):

a) \(\gamma\gamma \rightarrow H_i\) formation with polarized beams

For linearly polarized photons, the CP-even component of the \(H_i\) wave-functions is projected out if the polarization vectors are parallel, and the CP-odd component if they are perpendicular. This can be observed in the CP-even asymmetry \(A_{lin}\),

\[
A_{lin} = \frac{\sigma_{||} - \sigma_{\perp}}{\sigma_{||} + \sigma_{\perp}}, \quad A_{hel} = \frac{\sigma_{++} - \sigma_{--}}{\sigma_{++} + \sigma_{--}}
\]

since \(|A_{lin}|<1\) requires both scalar and pseudoscalar \(\gamma\gamma H_i\) non-zero couplings. Moreover, CP-violation due to \(H/A\) mixing can directly be probed via the CP-odd asymmetry \(A_{hel}\) constructed with circular photon polarization, as defined in Eq.(8).

b) polarization of top quarks in \(H_i\) decays

CP-induced correlations between the transverse \(t\) and \(\bar{t}\) polarization vectors \(s_{\perp}, \bar{s}_{\perp}\) in the decay process \(H_i \rightarrow t\bar{t}\),

\[
C_\parallel = \langle s_{\perp} \cdot \bar{s}_{\perp} \rangle, \quad C_\perp = \langle \hat{p}_t \cdot (s_{\perp} \times \bar{s}_{\perp}) \rangle
\]

lead to a non–trivial CP-even and a CP-odd azimuthal correlation, respectively, between the decay planes of \(t \rightarrow bW^+\) and \(\bar{t} \rightarrow bW^-\).

The left panel of Fig.3 shows the asymmetries \(A_{lin}\) (blue solid line) and \(A_{hel}\) (red dashed line) in the \(\gamma\gamma\) collider as the \(\gamma\gamma\) energy is scanned from below \(M_{H_2}\) to above \(M_{H_2}\). The right panel shows the \(E_{1\parallel}\) dependence of the correlators \(C_\parallel\) (blue solid line) and \(C_\perp\) (red dashed line). Both figures are for \(\phi_A = 3\pi/4\), a phase value close to resonant CP-mixing. Detailed experimental simulations would be needed to estimate the accuracy with which they can be measured. However, the large magnitude and the rapid, significant variation of the CP-even and CP-odd asymmetries through the resonance region would be a very interesting effect to observe in any case.
3 Testing the UED at a linear e^+e^- collider6

In the simplest UED scenario considered in6 one extra dimension is accessed by all SM particles and low-energy data constrain the compactification radius $R^{-1} \gtrsim$ a few hundred GeV. The extra dimension y is compactified on a S^1/Z_2 orbifold, rendering all matter and gauge fields, viewed from 4d, dependent on y either as $\cos(ny/R)$ or $\sin(ny/R)$, where n is the corresponding KK number. The mass of the nth KK state is given by $M_n^2 = M_0^2 + n^2/R^2$, where M_0 is the zero mode mass of that field. A remnant Z_2 symmetry dictates that the KK parity defined as $(-1)^n$ is conserved, implying (i) the lightest Kaluza-Klein particle (LKP) is stable, and (ii) a single KK state cannot be produced – a reminiscent of supersymmetry with conserved R-parity.

A tree-level degeneracy of the KK modes of light SM particles is lifted by radiative corrections: finite bulk corrections $\Delta M_n^2 \propto \beta/16\pi^4R^2$, and logarithmically divergent orbifold corrections $\Delta M_n = M_n(\beta/16\pi^2) \ln(\Lambda^2/\mu^2)$; β represents the β-functions of the gauge and matter KK fields in the loop, and Λ is the UV cut-off scale.

The first KK modes of electrons, e_1^\pm, should be copiously produced in $e^+e^- \rightarrow e_1^+e_1^-$ at a future linear collider. The process proceeds through the s-channel γ and Z, and the t-channel γ_1 and Z_1 exchanges. The splitting between e_1 and γ_1 turns to be sufficient for the decay $e_1^- \rightarrow e^- + \gamma_1$ with γ_1 likely to be the LKP and escaping detection. So the final state is e^+e^- and $2\gamma_1$’s carrying away missing energy. The W_1^\pm pair production with $W_1^+ \rightarrow e+\nu_{e_1}$, $e_1+\nu_e$ is numerically insignificant. The main SM background from W^+W^- pair production can be eliminated by requiring that the final electrons are sufficiently soft.

Fig.4 shows the cross section for $e^+e^- \rightarrow e^+e^- + E_{\text{miss}}$ with e^\pm energies between 0.5 and 20 GeV and polar angle away from the beam pipe by 15$^\circ$. Events coming from excited W_1 have been neglected. Not much is gained from the beam polarization. The cross section enhances as ΔR is increased from 2 to 20 due to the change in the $n = 1$ Weinberg angle. Clearly the signal events are quite prominent, and the SM background after cuts is under control.

4 Conclusions

The examples discussed above add an additional weight to the physics case of a linear collider, strengthening its ability to explore physics beyond the standard model.

Acknowledgments

Thanks go to S.Y.Choi, A.Kundu, Y.Liao, S.Rindani, J.Stirling and P.Zerwas for useful comments. Work supported by the Polish Committee for Scientific Research (KBN) grant 2 P03B 040 24 (2003-2005).

References

1. B. Ananthanarayan and S.D. Rindani, Phys. Rev. D 70 (2004) 036005.
2. S.D. Rindani, hep-ph/0408083.
3. B. Ananthanarayan, S.D. Rindani, R.K. Singh and A. Bartl, Phys. Lett. B 593 (2004) 95.
4. S. Y. Choi, J. Kalinowski, Y. Liao and P. M. Zerwas, hep-ph/0407347.
5. J.R. Ellis, J.S. Lee and A. Pilaftsis, hep-ph/0404167.
6. G. Bhattacharyya, P. Dey, A. Kundu and A. Raychaudhuri, paper 12-0312 submitted to ICHEP04.