Transcriptional regulation of the MET receptor tyrosine kinase gene by MeCP2 and sex-specific expression in autism and Rett syndrome

JT Plummer1, OV Evgrafov1,2, MY Bergman3, M Friez4, CA Haiman5, P Levitt1,6 and KA Aldinger1,7

Single nucleotide variants (SNV) in the gene encoding the MET receptor tyrosine kinase have been associated with an increased risk for autism spectrum disorders (ASD). The MET promoter SNV rs1858830 C ‘low activity’ allele is enriched in ASD, associated with reduced protein expression, and impacts functional and structural circuit connectivity in humans. To gain insight into the transcriptional regulation of MET on ASD-risk etiology, we examined an interaction between the methyl CpG-binding protein 2 (MeCP2) and the MET 5’ promoter region. Mutations in MeCP2 cause Rett syndrome (RTT), a predominantly female neurodevelopmental disorder sharing some ASD clinical symptoms. MeCP2 binds to a region of the MET promoter containing the ASD-risk SNV, and displays rs1858830 genotype-specific binding in human neural progenitor cells derived from the olfactory neuroepithelium. MeCP2 binding enhances MET expression in the presence of the rs1858830 C allele, but MET transcription is attenuated by RTT-specific mutations in MeCP2. In the postmortem temporal cortex, a region normally enriched in MET, gene expression is reduced dramatically in females with RTT, although not due to enrichment of the rs1858830 C ‘low activity’ allele. We newly identified a sex-based reduction in MET expression, with male ASD cases, but not female ASD cases compared with sex-matched controls. The experimental data reveal a prominent allele-specific regulation of MET transcription by MeCP2. The mechanisms underlying the pronounced reduction of MET in ASD and RTT temporal cortex are distinct and likely related to factors unique to each disorder, including a noted sex bias.

Translational Psychiatry (2013) 3, e316; doi:10.1038/tp.2013.91; published online 22 October 2013

Keywords: autistic disorder; gene expression regulation; methyl-CpG-binding protein 2
MeCP2 was a strong candidate as an additional transcriptional regulator of MET. The present report provides multiple lines of evidence that support this hypothesis, and further uncovered a previously unrecognized ASD sex-based and Rett-associated disruption of MET expression in human neocortex.

MATERIALS AND METHODS

Cultured olfactory neuroepithelial cells

Protocols were approved by the Institutional Review Board at the University of Southern California and written informed consent was obtained from each subject. Genomic DNA samples from 27 control individuals that also had nasal biopsy tissue samples collected and olfactory neuroepithelial cultures established were genotyped for rs1858830 as described below. A total of nine cultured olfactory neuroepithelial cells (CNON) cells from male participants with mixed ancestry and representative rs1858830 genotypes were cultured as previously described.

Chromatin immunoprecipitation

Human embryonic kidney (HEK) cells and CNON cells (n = 9) were grown to a confluence of 1 × 10^7 cells on 10 cm dishes as previously described. Chromatin immunoprecipitation (ChIP) assays were conducted as previously described for HEK cells. Approximately 25% of cells were pelleted and frozen for later RNA extraction. ChIP assays using CNON cells differed only in sonication time. Lysates from ON cells were sheared by sonication for a total of 8 min with pulsed intervals of 15 s ON and 45 s OFF on ice. For qPCR followed by ChIP, the LightCycler FastStart DNA Master SybrGreen I Kit (Roche, Madison, WI, USA) was used. Primers spanning 1.43 kb of 5′ MET promoter were used for the ChIP qPCR (Supplementary Table S1). Assays were analyzed using a CFX96 real-time PCR detection system (Bio-Rad, Hercules, CA, USA). Fold enrichment was calculated relative to the immunoglobulin G ChIP and percent recovery was calculated relative to sample input. Total RNA was isolated from frozen CNON cell pellets (n = 6) and semi-quantitative real-time PCR was performed as previously described using rs1858830 genotyping primers.

Plasmid constructs

Luciferase reporter plasmids pGL4.10 (empty) and pGL4.10[Luc2] containing 0.66 kb of 5′ MET promoter were previously described. Coexpression of MeCP2 was accomplished using a MeCP2 cDNA clone (HsCD00018627) purchased from the DNAs Repos Repository (Biosedite Institute, Arizona State University, Tempe, AZ, USA). PCR was used to generate site-specific mutations in MeCP2 cDNA. PCR mutagenesis was performed according to the method described in the QuickChange Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA). We utilized the MeCP2 cDNA plasmid as template and followed the manufacturer’s primer design software (Stratagene). Primers are provided in Supplementary Table S1. All PCR was performed using Pfu Turbo (Stratagene) by initially denaturing the template at 95°C for 30 s, followed by denaturing at 95°C for 30 s, annealing at 60°C for 1 min, extension at 72°C for 7 min with this cycle repeated 18 times. Original template DNA was digested by Dpn I treatment at 37°C for 2 h. Digested DNA was transformed into XL1-Blue cells for blue-white screening (Strategene). Positive clones were purified using Promega Wizard Purification Kit (Promega, Madison, WI, USA). The expected MeCP2 mutations were verified by DNA sequencing.

MET 5′ promoter luciferase assays

HEK cells were plated onto 12-well plates. Twenty-four hours post plating, 4 μl of Lipofectamine2000 (Invitrogen, Carlsbad, CA, USA) was added to 600 μl DMEM media containing a total of 0.3 μg per well of the desired pGL4.10 reporter construct and/or MeCP2 expression construct and 0.5 μg of the reference Renilla luciferase reporter was included. The Lipofectamine and DNA solutions were then combined following manufacturer recommendations. Following 24 h of culture, cell lysates were prepared according to the manufacturer’s recommendations of the Dual Luciferase Reporter Assay System (Promega). Both firefly and Renilla luciferase products were measured in the Tecan Infinite 200 Plate Reader (San Jose, CA, USA). Firefly luciferase activity was compared with Renilla luciferase activity as a relative ratio. This ratio represents the transcriptional activity of a particular luciferase reporter construct. Fold of activation in the luciferase assays was calculated after normalization against the empty firefly control vector. Each experiment was performed minimally in triplicate.

RESULTS

MeCP2 binds to the MET 5′ promoter ASD-associated region

We first identified MeCP2 as a putative regulator of MET transcription during an in vitro TF screen using arrays containing 140 TF proteins (Supplementary Figure S1). An oligonucleotide probe generated from the 5′ region of MET bound to several TF proteins, including Hand2, Lhx2 and MeCP2. We further investigated the putative binding of MeCP2 to the MET promoter using several additional assays. MeCP2 binds to CpG dinucleotides, having a complex role in transcriptional regulation during brain development. The MET 5′ promoter harbors a putative 700 bp CpG island containing >70 CpG sites (Supplementary Methods and Figure 1a). We examined MeCP2 binding within the 5′ MET promoter in HEK cells by ChIP. Anti-MeCP2 specifically precipitates MET DNA, whereas control immunoglobulin G yields no MET

RNA and DNA isolation from human postmortem brain samples

Fresh-frozen postmortem brain samples were obtained through the Autism Speaks-supported Autism Tissue Program at the Harvard Brain Tissue Resource Center (http://www.brainbank.mclean.org/) or the NICHID Brain and Tissue Bank at the University of Maryland School of Medicine (http://www.medschool.umd.edu/BTBank/). Superior temporal gyrus samples were obtained from 15 ASD and 5 Rett brain samples that were sex, age and postmortem interval (when possible) matched to 18 CTL brain samples. The majority of samples (37/38) were from individuals of European descent; one sample was from an individual of African-American descent. Total RNA was isolated using the mirVana miRNA Isolation Kit (Invitrogen) according to the manufacturer’s protocol. Total RNA concentration was determined using an Agilent Bioanalyzer 2100 system (Santa Clara, CA, USA); average RNA integrity number (RIN) = 7.3. Genomic DNA isolation was performed previously.
enrichment. PCR using primers tiled across the \textit{MET} 5' promoter region revealed that MeCP2 binds to multiple regions (Figures 1a and b). By ChIP, we show robust MeCP2 binding within the CpG island (primers 2 and 7), Primer 7 includes the region that contains the rs1858830 ASD-risk SNV (Figures 1a and c and Supplementary Figure S2).

The rs1858830 C allele enhances MeCP2 transcriptional regulation of \textit{MET}

To determine whether the rs1858830 SNV influences MeCP2 transcriptional regulation of \textit{MET}, we transfected two luciferase reporter constructs containing 663 bp of the \textit{MET} promoter (Figure 1a), differing only at the rs1858830 nucleotide, together with \textit{MECP2} cDNA into HEK cells. First, we replicated previous findings10 that the reporter construct containing the G allele generates greater luciferase activity compared with the construct containing the C allele ($P = 0.022$; Figure 2a). Next, cells were cotransfected with MeCP2 cDNA and each of the two \textit{MET} promoter constructs. Surprisingly, greater luciferase activity was detected when the C allele construct was cotransfected with \textit{MECP2} compared with the C allele alone ($P = 0.0002$). No significant difference in luciferase activity was detected when the G allele was cotransfected with \textit{MECP2} compared with the G allele alone ($P = 0.099$). In the presence of MeCP2, the C allele also showed greater transcriptional activity than the G allele ($P = 0.0001$). These data indicate that the rs1858830 C allele can directly modulate MeCP2 activation of \textit{MET} transcription.

Overexpression of mutant MECP2 impacts \textit{MET} transcriptional regulation

To further establish a role for MeCP2 in the transcriptional activation of \textit{MET}, we next tested whether RTT-causing \textit{MECP2} mutations could disrupt \textit{MET} promoter activity. Several constructs containing common RTT-causing \textit{MECP2} mutations located within the methyl-binding domain or the transcription repressor domain of MeCP2 (Figure 2b) were generated using site-directed mutagenesis. The mutant constructs were transfected into HEK cells and luciferase activity was monitored to assess transcriptional activity of the \textit{MET} promoter (Figure 2c). Again, cotransfection of \textit{MECP2} cDNA and the rs1858830 C allele construct activated \textit{MET} transcription. A two-way ANOVA followed by Tukey HSD post hoc comparisons were used to evaluate the statistical significance of rs1858830 allele by \textit{MECP2} mutation on \textit{MET} transcription. Both rs1858830 allele and \textit{MECP2} mutation had a significant effect on \textit{MET} transcription ($P = 0.038$ and $P = 0.002$, respectively). The interaction between rs1858830 allele and \textit{MECP2} mutation approached significance ($P = 0.055$).

In comparison with wild-type \textit{MECP2}, \textit{MECP2} with p.T158M or p.R168X mutation failed to enhance the activation of the C allele ($P = 0.017$ and $P = 0.048$, respectively). Notably, no mutations in the methyl-binding domain of MeCP2 significantly altered \textit{MET} transcription in the presence of the G allele compared with wild-type \textit{MECP2} ($P > 0.879$). Mutations in the transcription repressor domain of \textit{MECP2} (p.R270X and p.R306C) did not significantly alter \textit{MET} transcriptional activation in the presence of either the C or G allele ($P > 0.627$). Thus, in the presence of the rs1858830 C allele, \textit{MET} transcription is attenuated by RTT-specific mutations in MeCP2 (p.T158M and p.R168X) that impact the methyl-binding domain, but not those in the transcription repressor domain.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure1}
\caption{MeCP2 directly binds to the \textit{MET} promoter. (a) Schematic of the 5' promoter region of \textit{MET} drawn to scale; Human Genome Browser (hg19), chr7: 116098419–116099867. Horizontal lines indicate the relative locations for the CpG island (green), primers used in ChIP assays (gray), functional promoter variant (rs1858830), \textit{MET} transcriptional start site (TSS). (b) Anti-MeCP2 antibody directly pulls down the \textit{MET} promoter sequence using primers 2 and 7 (red bars). Anti-acetyl histone 3 (H3) and anti-immunoglobulin G (IgG) antibodies were used as positive and negative controls, respectively. (c) qPCR analysis of ChIP by MeCP2 of the \textit{MET} promoter sequence using primer 7. *$P < 0.001$.}
\end{figure}
progenitor cells derived from human olfactory neuroepithelium of normal subjects followed by qPCR using primers within the region containing rs1858830, as in the HEK ChIP experiments (Figure 3). Genomic DNA was previously isolated from peripheral blood samples from 27 control subjects who underwent a nasal biopsy.32 We determined the genotype at rs1858830 by direct sequencing and selected three different CNON for each of the three rs1858830 genotypes. Anti-MeCP2 specifically precipitates MET DNA in the presence of the ASD-risk genotype (CC), but not in the presence of the ASD-non-risk genotypes (GG and GC) (P < 0.037). The negative control immunoglobulin G does not yield enrichment of the MET sequence (P = 0.642). MET expression was not significantly different among the ASD-risk (CC), the heterozygous (GC) genotype and the non-risk (GG) genotypes (P = 0.059; Supplementary Figure S3). However, we noted a trend for increased MET expression in the CNON cells with the rs1858830 ASD-risk (CC) genotype.

MET expression is reduced in postmortem brain tissue of females with RTT and males with ASD Few risk genes implicated in ASD have been directly examined in RTT cases. Thus, in order to translate the in vitro findings of a direct MeCP2-MET interaction, we assayed MET expression by qPCR in temporal cortex from age-matched RTT and control females (Figure 4a). Temporal cortex was used due to the enrichment of MET expression in this region of primate neocortex.15,28,40,41 MET expression was reduced dramatically in the temporal cortex of females with RTT compared with sex-matched controls (P = 0.007). A significant reduction in MET protein was previously described in the temporal cortex of individuals with ASD,14 with similar findings when transcript was examined;15 these studies comprise predominantly male subjects. The RTT findings raised the possibility of differential sex-based changes of MET in ASD. Thus, we assayed MET expression by qPCR in temporal cortex from age- and sex-matched ASD and control individuals (Figure 4b). There was a significant reduction in MET expression in the temporal cortex of all individuals with ASD compared with controls (P = 0.032), consistent with previous results. Stratification by sex further showed a significant reduction in MET expression in males (P = 0.016), but not females (P = 0.720), with ASD compared with controls (Figure 4c). MET expression is not different between male and female controls (P = 0.403).
Figure 4. Sex-specific MET expression in postmortem brain of individuals with ASD. Samples are represented by open circles and group means are represented by horizontal bars. (a) MET expression in temporal cortex of females with RTT and controls (CTL). **P < 0.001** (b) MET expression in temporal cortex of individuals with ASD and controls as shown in panel b, separated by sex. No significant difference in MET expression was detected between males (M) and females (F) among controls. *P < 0.05.

DISCUSSION

The present study demonstrates binding of MeCP2 to the MET promoter that is functionally relevant, with regulation of MET transcription by MeCP2 influenced by the rs1858830 SNV *in vitro*. This regulation is likely to be cell context specific, as binding differences were discovered between HEK cells and primary human neural progenitors from the olfactory epithelium. Moreover, the analyses of postmortem brain samples from cases and controls for both ASD and RTT demonstrate sex-based differences in reduced MET expression, which has functional implications in light of the role of MET in cortical development and circuit function,16,18,19 and in individuals with ASD.48 Although our data also reveal pronounced reduction of MET in both ASD and RTT temporal cortex, the sex-based differences appear to occur through distinct mechanisms, with males impacted in ASD and females in RTT. Future analyses are required to provide additional insight with regard to mechanisms, but irrespective of these differences, these findings indicate that like other molecules involved in synaptic and circuit development, disruption of MET expression in different neurodevelopmental disorders, either directly through genetic variants that impact transcription (ASD), or indirectly through as yet unknown factors (RTT), will have functional consequences that contribute to disorder symptoms.

Implications of MeCP2 Regulation of MET

MeCP2 acts as a global transcriptional regulator by recruiting chromatin-remodeling complexes or regulating higher-order chromatin structures.44–50 Thus, MeCP2 function may be determined by its interaction with numerous protein partners that produce functional outcomes, or MeCP2 may globally alter chromatin state to regulate transcription based on the status of DNA methylation and MeCP2 activation.51 Each of these scenarios is consistent with the modest changes in gene expression detected in human and mouse tissues with altered levels of MeCP2.52–60 These complex molecular and biochemical interactions obfuscate the impact of MeCP2 transcriptional regulation of specific genes. Thus, few specific MeCP2-regulated genes are known.51–61 However, large number of genes are dysregulated in discrete brain regions of MeCP2 mouse models,52,53,56,60 suggesting pronounced, yet restricted cell-specific influences of MeCP2 may depend on both developmental and physiological states.50,64–66
These interactions would be difficult to discern in analyses of human brain tissue.

The indirect connection between MET and MeCP2, first highlighted in a network model of ASD-risk genes, has been demonstrated as a direct relationship here using methodologies that measure both protein-to-DNA binding and transcriptional activity. MeCP2 binding to the MET promoter within CpG domains raises the possibility that there may be activity-dependent changes in DNA methylation status in combination with MeCP2-mediated chromatim state to regulate MET transcriptional regulatory complexes, as is seen with MeCP2 regulation in mouse brain development and function. This is consistent with the recent discovery of environmental factors that alter MET protein expression in vitro and in vivo, reflecting the regulatory sensitivity of this gene. The data measuring transcriptional activity of the MET promoter support this concept, as both the C and G allele are permissive for MeCP2-mediated transcriptional activity, but the magnitude of MeCP2 binding to the MET promoter was less pronounced in HEK cells relative to CNON cells. These findings indicate additional MeCP2 cofactors specific to neural progenitor cells are responsible for the differential activity of rs1858830 G versus C. Identifying the specific protein complexes that are influenced by MeCP2 binding to the MET promoter are part of ongoing investigations. Additionally, differences in DNA methylatation at the MET promoter between HEK cells and CNON cells may contribute to the differential effects of MeCP2 transcriptional regulation detected here; future studies are required to test this possibility.

Sex-Based Differences in MET Expression in Neurodevelopmental Disorders

Perhaps most surprising in our studies was the finding that there are sex-based differences in MET expression in the temporal neocortex. This arose from our analysis of RTT postmortem neocortical tissue, which had not been investigated previously for MET expression. We based the rationale on two factors: (1) the cooccurrence of gastrointestinal disturbances in girls with RTT; and (2) in mice, MeCP2 and Met forebrain expression peaks during periods of dendritic growth and synaptic formation, and each mouse mutant displays synaptic hyperconnectivity, reminiscent of MET influence on functional activation and network connectivity in humans. Though there were a limited number of RTT postmortem brains for analysis, the nearly undetectable levels of MET compared with matched female controls was highly statistically significant and has functional implications. Because reports of altered gene and protein expression in postmortem cases of ASD are generally dominated by male subjects (due to the 5:1 ratio of male:female diagnoses), minimal data were available on MET expression in females with ASD. In contrast to what we found in RTT, MET expression was reduced in male, but not female temporal neocortex. There are several noteworthy conclusions from these data. First, RTT and ASD share some common clinical symptoms during the initial regressive period of RTT, suggesting there are distinct mechanisms that underlie the primary etiologies. Notably, a major difference between ASD and RTT etiology is deletion or mutation of MECP2 in RTT patients. However, RTT remains a clinical diagnosis that displays a range of severity in its clinical presentation, suggesting additional factors modulate clinical characteristics. Our results suggest mutant MeCP2 binding fails to enhance MET expression in some cases, rather than decreases MET expression when the rs1858830 C allele is present, yet MET expression is reduced in RTT brain. In ASD, MET expression is reduced in the presence of the rs1858830 C allele. Thus, the factors that influence the sex-based reductions of MET must be disorder specific. Second, the ASD-associated rs1858830 C allele is associated with severe social and communication phenotypes, and is enriched even further in children with ASD and co-occurring gastrointestinal disturbances, yet it is not associated with RTT, which shows both severe communication and gastrointestinal disturbances phenotypes. There are several possible explanations. Other MET variants associated with ASD or variants in genes that regulate MET transcription could be enriched in RTT cases. Additionally, non-heritable factors may contribute to the pronounced reduction in MET. These analyses raise the issue of whether there are fundamental sex-based differences in normal transcriptional regulation of MET, as well as of other ASD and neurodevelopmental disorder risk genes. Ongoing studies examining larger human female and male cohorts, as well as experiments in model systems are required to determine sex-based differences of intrinsic regulation and response to environmental factors in order to elucidate novel mechanisms relevant to understanding disorder etiologies.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

The authors thank Valeria Spitzyna and Evan Cohen for technical assistance. This work was supported by NIH grant MH067842 to PL and an Epilepsy Foundation of Greater Los Angeles fellowship to KAA.

REFERENCES

1 State MW, Levitt P. The conundrums of understanding genetic risks for autism spectrum disorders. Nat Neurosci 2011; 14: 1499–1506.
2 Geschwind DH. Advances in autism. Annu Rev Med 2009; 60: 367–380.
3 Berg JM, Geschwind DH. Autism genetics: searching for specificity and convergence. Genome Biol 2012; 13: 247.
4 Kiel L, Sanders SJ, Murtha MT, Hus V, Love JK, Willey AJ et al. Common genetic variants, acting additively, are a major source of risk for autism. Mol Autism 2012; 3: 9.
5 Sanders SJ, Murtha MT, Gupta MT, Gupta AR, Murdoch JD, Raubeson MJ et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 2012; 483: 237–241.
6 Lim ET, Raychaudhuri S, Sanders SJ, Stevens C, Sabo A, MacArthur DG et al. Rare complete knockouts in humans: Population distribution and significant role in autism spectrum disorders. Neuron 2013; 77: 235–242.
7 Levy D, Ronemus M, Yamrom B, Lee YH, Leotta A, Kendall J et al. Rare De Novo and transmitted copy-number variation in autistic spectrum disorders. Neuron 2011; 70: 886–897.
8 Gilliam SR, losslov I, Levy D, Ronemus M, Wigler M, Vilkut D. Rare De Novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 2011; 70: 898–907.
9 Scherer SW, Dawson G. Risk factors for autism: translating genomic discoveries into diagnostics. Hum Genet 2011; 130: 123–148.
10 Campbell DB, Sutcliffe JS, Ebert PJ, Millenri R, Bravaccio C, Trillo S et al. A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci USA 2006; 103: 16834–16839.
11 Campbell DB, Li C, Sutcliffe JS, Persico AM, Levitt P. Genetic evidence implicating multiple genes in the MET receptor tyrosine kinase pathway in autism spectrum disorder. Autism Res 2008; 1: 159–168.
12 Jackson PB, Boccuto L, Skinner C, Collins JS, Neri G, Gurrieri F et al. Further evidence that the rs1858830C variant in the promoter region of the MET gene is associated with autistic disorder. Autism Res 2009; 2: 232–236.
13 Sousa I, Clark TG, Toma C, Kobayashi K, Choma M, Holt R et al. De novo copy number variation in autistic spectrum disorders. Eur J Hum Genet 2009; 17: 749–758.
14 Campbell DB, D’Onorzo R, Garbett K, Ebert PJ, Mirnics K, Levitt P et al. Disruption of cerebral cortex MET signaling in autism spectrum disorder. Ann Neural 2007; 62: 243–250.
15 Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011; 474: 380–384.
16 Rudie JD, Hernandez LM, Brown JA, Beck-Pancer D, Colichi NL, Gorinndo P et al. Autism-associated promoter variant in MET impacts functional and structural brain networks. Neuron 2012; 75: 904–915.
17 Hedrick A, Lee Y, Wallace GL, Greenstein D, Claesen L, Giedd JN et al. Autism risk gene MET variation and cortical thickness in typically developing children and adolescents. Autism Res 2012; 5: 434–439.

18 Judson MC, Eagleson KL, Wang L, Levitt P. Evidence of cell-nonautonomous changes in dendrite and dendritic spine morphology in the met-signaling-deficient mouse forebrain. J Comp Neurol 2010; 518: 4463–4478.

19 Qi S, Anderson CT, Levitt P, Shepherd GM. Circuit-specific intracortical hyperconnectivity in mice with deletion of the autism-associated Met receptor tyrosine kinase. J Neurosci 2011; 31: 5855–5864.

20 Heuer L, Braunischweig D, Ashwood P, Van de Water J, Campbell DB. Association of a MET genetic variant with autism-associated maternal autoantibodies to fetal brain proteins and cytokine expression. Transl Psychiatry 2011; 1: e48.

21 Judson MC, Eagleson KL, Levitt P. A new synaptic player leading to autism risk: MET receptor tyrosine kinase. J Neurodev Disord 2011; 3: 282–292.

22 Trusolino L, Bertotti A, Comoglio PM. MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 2010; 11: 834–848.

23 Liang H, O'Reilly S, Liu Y, Abounader R, Laterra J, Maher VM et al. MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 2010; 11: 834–848.

24 Macearnahas JB, Young KP, Littlejohn EL, Yoo BK, Salgia R, Lang D. PAX6 is expressed in pancreatic cancer and actively participates in cancer progression through activation of the MET tyrosine kinase receptor gene. J Biol Chem 2008; 283: 27524–27532.

25 Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD et al. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 2010; 6: e1000197.

26 Bill BR, Geschwind DH. Genetic advances in autism: heterogeneity and convergence on shared pathways. Curr Opin Genet Dev 2009; 19: 271–278.

27 Lai CS, Gerrelli D, Monaco AP, Fisher SE, Copp AJ, FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain 2006; 129: 2455–2462.

28 Mukamel Z, Konopka G, Wexler E, Osborn GE, Dong H, Bergman MY et al. Sensitivity of opioid receptor-like receptor ORL1 for chemical modification by Mecp2-null mice. Proc Natl Acad Sci U S A 2002; 99: 15536–15541.

29 Nectoux J, Fichou Y, Rosas-Vargas H, Cagnard N, Bahl-Buissin N, Nusbaum P et al. Cell cloning-based transgenic analysis in Rett patients: relevance to the pathogenesis of Rett syndrome of new human MeCP2 target genes. J Cell Mol Med 2010; 14: 1962–1974.

30 Ballestar E, Yusufzai TM, Wolff AE. Effects of Rett syndrome mutations on the methyl-CpG binding domain of the transcriptional repressor MeCP2 on selectivity for association with methylated DNA. Biochemistry 2000; 39: 7100–7106.

31 Colantuoni C, Jeon OH, Hyder K, Chenchik A, Khimani AH, Narayanarnan V et al. Gene expression profiling in postmortem Rett Syndrome brain: differential gene expression and patient classification. Neurobiol Dis 2001; 8: 847–865.

32 Delgado JJ, Kim DS, Thatcher KN, LaSalle JM, Van den Veyer IB. Expression profiling of clonal lymphocyte cell cultures from Rett syndrome patients. BMC Med Genet 2006; 7: 61.

33 Deng V, Matagane V, Baimne F, Freking M, Ohihger P, Budden S et al. FXD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and MeCP2-null mice. Hum Mol Genet 2007; 16: 640–650.

34 Gibson JH, Slombekman B, KN H, Williamson SL, Mindenbenko D, El-Osta A et al. Downstream targets of methyl-CpG binding domain 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci 2010; 11: 53.

35 Chahrouh M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 2008; 320: 1224–1229.

36 Chen H, Zhang S, Marshall D, Newfeld S, Miller S et al. MeCP2 disorders share gene expression changes in the cerebellum and hypothalamus. Hum Mol Genet 2009; 18: 2431–2442.

37 Abuhaltira L, Makedonski K, Kaufman Y, Razin A, Shemer R. MeCP2 deficiency in the brain decreases BDNF levels by REST/COREST-mediated repression and increases TRKB production. Epigenetics 2007; 2: 214–222.

38 Swanson SE, Nagarakaraj RP, Peddada S, Yasui DH, LaSalle JM. Reciprocal co-regulation of Egr2 and MeCP2 is disrupted in Rett syndrome and autism. Hum Mol Genet 2009; 18: 525–534.

39 Zucchi L, Sassone-Corsi P. SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics 2012; 7: 695–700.

40 Durand S, Patrizi A, Quast RB, Hachigian L, Pavlyuk R, Saxena A et al. NMDA receptor regulation prevents regression of visual cortical function in the absence of MeCP2. Nature 2012; 496: 1078–1090.

41 Campbell DB, Warren D, Sutcliffe JS, Lee EB, Levitt P. Association of MET with social and communication phenotypes in individuals with autism spectrum disorder. Am J Med Genet B Neuropsychiatr Genet 2012; 153B: 438–446.

42 Bird A. The methyl-Cpg-binding protein MeCP2 and neurological disease. Biochem Soc Trans 2008; 36: 575–583.

43 Nan X, Campoy FJ, Bird A. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 1997; 88: 471–481.

44 Nan X, Ng IH, Johnson CA, Laberty CD, Turner BM, Eisenman RN et al. Transcriptional repression by the methyl-Cpg-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998; 393: 386–389.

45 Neehan RR, Lewis JD, Bird AP. Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res 1992; 20: 5085–5092.

46 Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD, Turner DJ et al. Neuronal MeCP2 is expressed at Jov puberty and histone acetylation levels and globally alters the chromatin state. Mol Cell 2010; 37: 457–468.

47 Baker SA, Chen L, Wilkins AD, Yu P, Lichtarge O, Zoghbi HY. An AT-domain in MeCP2 determines the clinical course of Rett syndrome and related disorders. Cell 2013; 152: 984–996.

48 Cohen S, Gabel HW, Hemborg M, Hutchinson AN, Sadacca LA, Ebert DH et al. Genome-wide activity-dependent MeCP2 Phosphorylation regulates nervous system development and function. Neuron 2011; 72: 72–85.

49 McGinty JF. The many faces of MeCP2. Neuropsychopharmacology 2012; 37: 313–314.

50 Tudor M, Albarran S, Chen NZ, Jaensch R. Transcriptional profiling of a mouse model of Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci U S A 2002; 99: 15536–15541.

51 Kerin T, Ramanathan A, Chen NZ, Jaensch R. Transcriptional profiling of a mouse model of Rett syndrome reveals subtle transcriptional changes in the brain. Proc Natl Acad Sci U S A 2002; 99: 15536–15541.

52 Campbell DB, Warren D, Sutcliffe JS, Lee EB, Levitt P. Association of MET with social and communication phenotypes in individuals with autism spectrum disorder. Am J Med Genet B Neuropsychiatr Genet 2012; 153B: 438–446.
69 Eagleson KL, Campbell DB, Thompson BL, Bergman MY, Levitt P. The autism risk genes MET and PLAUR differentially impact cortical development. Autism Res 2011; 4: 68–83.

70 Sheng L, Ding X, Ferguson M, McCallister M, Rhoades R, Maguire M et al. Prenatal polycyclic aromatic hydrocarbon exposure leads to behavioral deficits and downregulation of receptor tyrosine kinase, MET. Toxicol Sci 2010; 118: 625–634.

71 Motil KJ, Caeg E, Barrish JO, Geerts S, Lane JB, Percy AK et al. Gastrointestinal and nutritional problems occur frequently throughout life in girls and women with Rett syndrome. J Pediatr Gastroenterol Nutr 2012; 55: 292–298.

72 Campbell DB, Buie TM, Winter H, Bauman M, Sutcliffe JS, Perrin JM et al. Distinct genetic risk based on association of MET in families with co-occurring autism and gastrointestinal conditions. Pediatrics 2009; 123: 1018–1024.

73 Percy AK. Rett syndrome: exploring the autism link. Arch Neurol 2011; 68: 985–989.

74 Thanseem I, Nakamura K, Miyachi T, Toyota T, Yamada S, Tsujii M et al. Further evidence for the role of MET in autism susceptibility. Neurosci Res 2010; 68: 137–141.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)