Commuting Involution Graphs for Certain Exceptional Groups of Lie Type

Ali Aubad1 · Peter Rowley2

Received: 3 September 2020 / Revised: 31 March 2021 / Accepted: 12 April 2021 / Published online: 16 May 2021 © The Author(s) 2021

Abstract
Suppose that G is a finite group and X is a G-conjugacy classes of involutions. The commuting involution graph $C(G, X)$ is the graph whose vertex set is X with $x, y \in X$ being joined if $x \neq y$ and $xy = yx$. Here for various exceptional Lie type groups of characteristic two we investigate their commuting involution graphs.

Keywords Commuting involution graphs · Exceptional groups of Lie type · Disc structure

1 Introduction
Suppose that G is a finite group and X is a subset of G. The commuting graph, $C(G, X)$, has X as its vertex set and two vertices $x, y \in X$ are joined by an edge if $x \neq y$ and x and y commute. The extensive bibliography in [9] points towards the many varied commuting graphs which have been studied. But here we shall be considering commuting involution graphs—these are commuting graphs $C(G, X)$ where X is a G-conjugacy class of involutions. From now on X is assumed to be a G-conjugacy class of involutions. Because involutions are often centre stage in the study of non-abelian simple groups, there is a large literature on their commuting involution graphs. Indeed, such graphs have been instrumental in the construction of some of the sporadic simple groups. For example, the three Fischer groups with the conjugacy class being the 3-transpositions were investigated by Fischer [11], resulting in the construction of these groups. Later, also prior to their construction, commuting involution graphs for the Baby Monster ($\{3, 4\}$-transpositions) and the
Table 1 Disc sizes for $\mathcal{C}(G,X)$, $G \cong 3D_4(2), E_6(2), 2F_4(2)'$ and $F_4(2)$

| G | $X = tx$ | $|\Delta_1(t)|$ | $|\Delta_2(t)|$ | $|\Delta_3(t)|$ |
|--------|----------|-----------------|-----------------|-----------------|
| $3D_4(2)$ | 2A | 18 | 288 | 512 |
| | 2B | 339 | 11112 | 57344 |
| $E_6(2)$ | 2A | 127782 | 4954112 | |
| | 2B | 285311 | 8819313408 | |
| | 2C | 3384671 | 609992912640 | 977994252288 |
| $2F_4(2)'$ | 2A | 90 | 1664 | |
| | 2B | 147 | 7712 | 3840 |
| $F_4(2)$ | 2A | 2286 | 67328 | |
| | 2B | 2286 | 67328 | |
| | 2C | 20944 | 4364800 | |
| | 2D | 50511 | 113896448 | 236912640 |

Monster (6-transpositions) were analyzed. Recently the commuting involution graphs of the sporadic simple groups have received much attention, see [5, 12, 14, 15, 17]. For those simple groups of Lie type consult [1, 4, 8–10], while an analysis of the commuting involution graphs of finite Coxeter groups may be found in [2, 3].

The aim of this short note is to describe certain features of $\mathcal{C}(G,X)$ when G is one of the exceptional Lie type groups of characteristic two. Specifically we consider G being one of the simple groups $3D_4(2), E_6(2), 2F_4(2)'$ and $F_4(2)$.

For $x \in X$ we define the ith disc of x, $\Delta_i(x)$, $(i \in \mathbb{N})$ to be

$$\Delta_i(x) = \{ y \in X \mid d(x, y) = i \}$$

where $d(,) \text{ is the usual distance metric on the graph } \mathcal{C}(G,X)$. Of course, G acting by conjugation on X embeds G in the group of graph automorphisms of $\mathcal{C}(G,X)$ and, evidently, G is transitive on the vertices of $\mathcal{C}(G,X)$. We now choose $t \in X$ to be a fixed vertex of $\mathcal{C}(G,X)$—our main focus is the description of the discs of t in $\mathcal{C}(G,X)$. The diameter of $\mathcal{C}(G,X)$ will be denoted by $\text{Diam } \mathcal{C}(G,X)$ and we shall rely upon the ATLAS [7] for the names of conjugacy classes of G. Our main result is as follows.

Theorem 1 Let G be isomorphic to one of $3D_4(2), E_6(2), 2F_4(2)'$ and $F_4(2)$.

(i) The sizes of the discs $\Delta_i(t)$ are listed in Table 1 and the G-conjugacy classes of tx for $x \in \Delta_i(t), i \in \mathbb{N}$ are given in Table 2.

(ii) If $(G,X) = (E_6(2), 2A), (E_6(2), 2B), (2F_4(2)', 2A), (F_4(2), 2A), (F_4(2), 2B)$ or $(F_4(2), 2C)$, then $\text{Diam } \mathcal{C}(G,X) = 2$.

(iii) If $(G,X) = (3D_4(2), 2A), (3D_4(2), 2B), (E_6(2), 2C), (2F_4(2)', 2B)$ or $(F_4(2), 2D)$, then $\text{Diam } \mathcal{C}(G,X) = 3$.

Table 1 Disc sizes for $\mathcal{C}(G,X), G \cong 3D_4(2), E_6(2), 2F_4(2)', F_4(2)$
These results were obtained computationally with the aid of MAGMA [6], GAP [16] and the ONLINE ATLAS [18]. In the course of these calculations we determined the $C_G(t)$-orbits on X (where $C_G(t)$ is acting by conjugation). Representatives, in MAGMA format, for each of these orbits are to be found as downloadable files at [13], as they may be of value in other investigations of these groups. In Sect. 2 we also collate information on the action of $C_G(t)$ on X. In particular, we give the $C_G(t)$-orbit sizes on each (non-empty) X_C, X_C being defined below.

We observe that some “obvious” groups are missing in this paper. First $G_2(2)_{0}^{'}$ being isomorphic to $PSU_3(3)$ means it is covered in [8]. As for $G \cong E_6(2)$, the cases $X = 2A$ and $X = 2B$ are done in [1], while there are partial results in the case $X = 2C$. Likewise [1] also has partial results for $E_7(2)$. While $E_8(2)$ is far and away beyond current computational capabilities.

We remark on the graphs studied here. First we note that as the outer automorphism of $F_4(2)$ interchanges the two classes $2A$ and $2B$, we have that $C(F_4(2), 2A)$ and $C(F_4(2), 2B)$ are isomorphic graphs. A very noteworthy consequence of the present work is that the distance between t and x in $C(G, X)$ is almost always determined by the G-class to which tx belongs. The exceptions are $G \cong$.
is the union of eighteen CG-orbits of size 294,912 and one of size 1,179,648 with those of size 294,912 being in $\Delta_2(t)$ and the one of size 1,179,648 in $\Delta_3(t)$.

A word or two about the information in our tables is required. As mentioned we employ the class names given in the ATLAS though we make some modifications. First we suppress the “slave” notation. So, for example, the classes $7B \ast 2, 7C \ast 4$ of $3D_4(2)$ are just written as $7B, 7C$, respectively. Secondly we compress the letter part of a class name when we mean the union of these classes and their letters are in alphabetical sequence. As an example, in Table 2, for $G \cong F_4(2)$ and $X = 2D$, $8AF$ is short-hand for $8A \cup 8B \cup 8C \cup 8D \cup 8E \cup 8F$.

Let C be a G-conjugacy class and define

$$X_C = \{ x \in X \mid tx \in C \}.$$

It is clear that X_C will either be empty or be a union of certain $C_G(t)$-orbits of X (where G acts upon X by conjugation). In locating which discs of t contain the vertices in X_C we sometimes need to determine how X_C breaks into $C_G(t)$-orbits. Also of interest to us is the size of X_C which leads us to class structure constants. Class structure constants are the sizes of sets

$$\{(g_1, g_2) \in C_1 \times C_2 \mid g_1 g_2 = g \}$$

where C_1, C_2, C_3 are G-conjugacy classes and g is a fixed element of C_3. Now these constants can be calculated directly from the complex character table of G which are recorded in the ATLAS and are available electronically in the standard libraries of the computer algebra package GAP [16]. If we take $C_1 = C$, $C_2 = X = C_3$ and $g = t$, then in this case

$$|X_C| = \frac{|G|}{|C_G(t)||C_G(h)|} \sum_{r=1}^{k} \chi_r(h) \overline{\chi_r(t)} \overline{\chi_r(1)},$$

where h is a representative from C and χ_1, \ldots, χ_k the complex irreducible characters of G.

2 $C_G(t)$-Orbits on X

As promised, we tabulate the sizes of the $C_G(t)$-orbits in their action upon X_C where C is a G-conjugacy class for which X_C is non-empty. In the ensuing tables we use an exponential notation to indicate the multiplicity of a particular size. Thus in the table for $G \cong 3D_4(2)$ with $X = 2B$ the entry $4^6, 24^{12}$ next to $2B$ is telling us that X_{2B} is the union of eighteen $C_G(t)$-orbits, six of which have size 4 and twelve of which have size 24. Still looking at the same table, the entry $512, 1536$ next to $9AC$ indicates that each of X_{9A}, X_{9B} and X_{9C} is the union of two $C_G(t)$-orbits of sizes 512 and 1536. We give details of the permutation ranks in Table 3.
2.1 $G \cong \mathbb{Z}_3 D_4(2)$

$X = 2A$

	2A	18	3A	512	4A	288

$X = 2B$

	2A	3, 24	2B	$4^6, 24^{12}$	3A	384	3B	512
4A	245, 192	4B	24^{10}, 192	4C	3846	6A	1536	
6B	3846	7AC	512	7D	3072	8A	3846	
8B	3848	9AC	512, 1536	12A	15362	13AC	3072	
14AC	1536	18AC	15362	21AC	3072	28AC	15362	

2.2 $G \cong E_6(2)$

$X = 2A$

	2A	2790	2B	124992	3A	2097152	4B	2856960

$X = 2B$

	2A	63, 21602	2B	56, 4320, 302402, 307202, 64512, 120960	2C	604802, 7257602, 967680										
3A	2359296	3B	16777216	4A	774144											
4B	725760, 9676802, 22118402	4C	19353604, 38707204, 44236804, 77414402	4D	78643202, 8847360											
4E	464486402	4F	20643842, 619315204	4J	1238630402											
4K	743178240	5A	939524096	6A	707788802											
6D	990904320	6F	1056964608	8C	9909043202											
12B	11324620802															
	X = 2C															
----	--	----														
2A	3, 84, 1536, 2016	2B	168, 224, 2016, 5376, 8064, 10752, 16128, 32256, 43008, 86016													
			2C	96^2, 5376, 16128^3, 32256^4												
3A	917504, 1572864	3B	29360128													
4A	1536, 21504, 32256, 36864^3, 64512^3, 86016, 786432, 1032192	4B	1536^2, 16128, 32256^4													
			4C	64512^3, 129024^3, 258048^3												
4D	1032192, 1376256, 2752512^3, 11010048, 16515072	4E	258048^4, 516096^10, 1032192^10, 2064384^12, 4128768^22, 8257536^2													
			4F	1032192^2, 2064384^2, 275251^2, 4128768^8, 550502^4, 16515072^8												
4G	4128768^2, 8257536^2, 16515072^4, 33030144^3, 66060288^2	4H	3748736^2, 66060288^2													
			4I	11010048^2, 16515072^2, 33030144^0, 66060288^7, 88080384, 264241152												
4J	1376256^2, 2064384^2, 4128768^6, 8257536^16, 16515072^10, 33030144^22, 66060288^10	4K	4128768, 8257536^6, 16515072^13, 33030144^12, 66060288^8, 264241152													
			5A	234881024, 1409286144												
6A	2752512, 33030144^3, 44040192^2	6B	402653184													
			6C	528482304, 704643072												
6D	1835008, 66060288^4, 88080384^3, 132120576^4, 176160768, 264241152, 528482304	6E	37748736^2, 66060288^2, 88080384^2, 132120576^2, 528482304													
			6F	88080384, 352321536, 528482304, 704643072, 1056964608												
6G	2818572288	6H	1056964608^2, 4227858432	6I	8455716864											
----	------------	----	------------------------	----	-------------											
7C	805306368	7D	3221225472	8A	1572864^2, 33030144^2, 37748736^2, 66060288^2, 88080384^2, 132120576^2, 528482304^2											
8B	37748736^2, 44040192^2, 66060288^2, 88080384^2, 132120576^2, 528482304^2	8C	16515072^2, 33030144^2, 66060288^2, 88080384^2, 132120576^12, 264241152^10	8D	132120576^2, 264241152^20, 1056964608^2											
8E	176160768^2, 528482304^4, 2113929216^2	8F	2113929216^5	8G	26441152^4, 528482304^4, 105664608^12											
8H	2113929216^3	8I	427858432^6	8J	1056964608^2, 2113929216^6, 4227858432^4											
8K	16515072	8L	33030144	8M	66060288	8N	88080384	8O	132120576	8P	528482304	8Q	12A	402653184^2	12B	132120576^2, 528482304^6
12C	264241152^8, 528482304^4, 1056964608^16	12D	1409286144^2, 2113929216^4, 4227858432	12E	2818572288^2, 4227858432											
12F	4227858432, 8455716864	12G	5637144576	12H	352321536^2, 2113929216^6, 4227858432^4	12I	8455716864^2									
12J	1056964608^2, 2113929216^6, 4227858432^8	12K	1409286144^2, 4227858432	14A	8455716864^4											
12L	16911433728	12M	16911433728^2	12P	16911433728^2											
13A	19327352832	14G	16911433728	14H	9663676416											
15C	22548578304	15D	7516192768, 22548578304	16A	8455716864^4											
---	---	---	---	---												
16C	16911433728^4	17A	45097156608	17B	45097156608											
18A	9663676416^2	18B	67645734912	20A	16911433728^2											
20B	33822867456^4	21G	19327352832	21H	45097156608											
24A	8455716864^8	24B	16911433728^4	24C	33822867456^2											
24D	33822867456^2	28K	9663676416^2	28L	33822867456											
30E	22548578304^2	30F	67645734912													

continued
2.3 \(G \cong 2F_4(2)' \)

\[X = 2A \]

\[
\begin{array}{ccccccc}
| G | & X = f^G | |X| | & \text{Permutation rank} \\
\hline
3D_4(2) & 2A & 819 & 4 \\
 & 2B & 68796 & 27 \\
E_6(2) & 2A & 5081895 & 5 \\
 & 2B & 8822169720 & 62 \\
 & 2C & 1587990549600 & 719 \\
2F_4(2)' & 2A & 1755 & 5 \\
 & 2B & 11700 & 30 \\
F_4(2) & 2A & 69615 & 5 \\
 & 2B & 69615 & 5 \\
 & 2C & 4385745 & 33 \\
 & 2D & 350859600 & 1002 \\
\end{array}
\]

2.4 \(G \cong F_4(2) \)

\[X = 2A \]

\[
\begin{array}{ccccccc}
| G | & X = f^G | |X| | & \text{Permutation rank} \\
\hline
2A & 270 & 2C & 2016 & 3A & 32768 & 4C & 34560 \\
\end{array}
\]

\[X = 2B \]

\[
\begin{array}{ccccccc}
| G | & X = f^G | |X| | & \text{Permutation rank} \\
\hline
2B & 270 & 2C & 2016 & 3A & 32768 & 4D & 34560 \\
\end{array}
\]
$X = 2C$							
2AB	30	2C	$32^2, 180, 1920^2$	2D	$720^2, 960^4, 11520$	3AB	32768
4AB	15360	4CD	11520	4F	10242	4JK	307202
4L	737280	4M	184320^2	5A	1048576	6GH	983040

$X = 2D$						
2AB	3, 12, 72^2, 192	2C	9, 12^2, 242, 724, 1442, 1922, 5764	2D	244, 14429, 57624	115216, 9216
3AB	2048, 6144, 24576	3C	262144	4AB	192, 5768, 11524, 9216, 12288	
4CD	1444, 1923, 2884, 57613, 11522, 23044, 46084, 12288	4EF	5764, 15364, 23044, 92168, 184324, 73728			
4I	921614, 184328, 368643, 737282	4JK	11524, 15364, 23044, 460820, 921616, 1843222	4L	92169, 368648, 1474565	
4M	23042, 460812, 921630, 1843210, 368642	4N	1474568, 3686412, 1474564	4O	3686412, 1474564	
5A	1966082, 589824	6AB	61442, 245762, 737283	6CD	368642, 491522, 737283, 294912	
6EF	786432	6GH	12288, 368642, 491522, 737283, 1474565, 294912	6J	737288, 1474564, 2949124	
6K	2359296	7AB	1572864	8A	2949124	
8B	1474568, 2949124	8CF	245762, 7372810, 1474564, 2949124	8G	5898242	
8HI	2949126	8J	58982416	8K	5898246	
9AB	1572864, 4718592	10AB	5898242, 11796483	10C	5898242, 11796484	
12AB	2949124, 1179648	12CD	7864322	12EH	983042, 2949124, 5898244	
12IJ	29491212, 1179648	12KL	23592962	12MN	58982414	
12O	23592964	13A	9437184	14AB	4718592	
15AB	1572864, 4718592	16AB	23592964	17AB	9437184	
18AB	47185922	20AB	23592964	21AB	9437184	
24AD	23592964	28AB	47185922	30AB	47185922	

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
References

1. Aubad, A.: On commuting involution graphs of certain finite groups. Ph.D. thesis, University of Manchester (2017)
2. Bates, C., Bundy, D., Perkins, S., Rowley, P.: Commuting involution graphs for symmetric groups. J. Algebra 266(1), 133–153 (2003)
3. Bates, C., Bundy, D., Perkins, S., Rowley, P.: Commuting involution graphs for finite Coxeter groups. J. Group Theory 6(4), 461–476 (2003)
4. Bates, C., Bundy, D., Perkins, S., Rowley, P.: Commuting involution graphs in special linear groups. Commun. Algebra 32(11), 4179–4196 (2004)
5. Bates, C., Bundy, D., Hart, S., Rowley, P.: Commuting involution graphs for sporadic simple groups. J. Algebra 316(2), 849–868 (2007)
6. Cannon, J.J., Playoust, C.: An Introduction to Algebraic Programming with Magma [Draft]. Springer, Berlin (1997)
7. Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, R.A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups. With Computational Assistance from J. G. Thackray. Oxford University Press, Eynsham (1985)
8. Everett, A.: Commuting involution graphs for 3-dimensional unitary groups. Electron. J. Combin. 18(1), 103,11 (2011)
9. Everett, A., Rowley, P.: Commuting involution graphs for 4-dimensional projective symplectic groups. Graphs Combin. 36(4), 959–1000 (2020)
10. Everett, A., Rowley, P.: On commuting involution graphs for the small Ree groups (preprint)
11. Fischer, B.: Finite Groups Generated by 3-Transpositions. Lecture Notes. University of Warwick, Warwick (1969)
12. Rowley, P.: Diameter of the monster graph. http://www.eprints.maths.manchester.ac.uk/id/eprint/2738
13. Rowley, P.: Personal webpage. peterrowley.github.io/code. Accessed 9 Aug 2020
14. Rowley, P., Taylor, P.: Involutions in Janko’s simple group J_4. LMS J. Comput. Math. 14, 238–253 (2011)
15. Taylor, P.: Involutions in Fischer’s sporadic groups. http://www.eprints.ma.man.ac.uk/1622 (2011) (preprint)
16. The GAP Group: GAP—groups, algorithms, and programming, version 4.4. http://www.gap-system.org (2005)
17. Wright, B.: Graphs associated with the sporadic groups Fi_{24}' and BM. Ph.D. thesis, University of Manchester (2011)
18. Wilson, R.A., Walsh, P., Tripp, J., Suleiman, I., Rogers, S., Parker, R., Norton, S., Nickerson, S., Linton, S., Bray, J., Abbott, R.: http://www.brauer.maths.qmul.ac.uk/Atlas/

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.