Biodegradation of Volatile Organic Compounds and Their Effects on Biodegradability under Co-Existing Conditions

MIHO YOSHIKAWA1,2, MING ZHANG1*, and KOKI TOYOTA2

1Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1–1–1, Higashi, Tsukuba, Ibaraki 305–8567, Japan; and 2Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2–24–16, Koganei, Tokyo 184–8588, Japan

(Received December 6, 2016—Accepted July 23, 2017—Published online September 12, 2017)

Volatile organic compounds (VOCs) are major pollutants that are found in contaminated sites, particularly in developed countries such as Japan. Various microorganisms that degrade individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes is available. However, the biodegradation of multiple VOCs remains a challenging issue. Practical sites, such as chemical factories, research facilities, and illegal dumping sites, are often contaminated with multiple VOCs. In order to investigate the potential of biodegrading multiple VOCs, we initially reviewed the biodegradation of individual VOCs. VOCs include chlorinated ethenes (tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride), BTEX (benzene, toluene, ethylbenzene, and xylene), and chlorinated methanes (carbon tetrachloride, chloroform, and dichloromethane). We also summarized essential information on the biodegradation of each kind of VOC under aerobic and anaerobic conditions, together with the microorganisms that are involved in VOC-degrading pathways. Interactions among multiple VOCs were then discussed based on concrete examples. Under conditions in which multiple VOCs co-exist, the biodegradation of a VOC may be constrained, enhanced, and/or unaffected by other compounds. Co-metabolism may enhance the degradation of other VOCs. In contrast, constraints are imposed by the toxicity of co-existing VOCs and their by-products, catabolite repression, or competition between VOC-degrading enzymes. This review provides fundamental, but systematic information for designing strategies for the bioremediation of multiple VOCs, as well as information on the role of key microorganisms that degrade VOCs.

Key words: biodegradation, chlorinated ethene, BTEX, chlorinated methane, multiple VOCs

Volatile organic compounds (VOCs) are major pollutants that are found in soil and groundwater in developed countries. Contamination by tetrachloroethene (PCE), trichloroethene (TCE), benzene, and cis-dichloroethene (cis-DCE) accounts for approximately 11%, 10%, 9%, and 8%, respectively, in areas in which contamination exceeds environmental standards in Japan (121). In the United States, contamination by TCE, vinyl chloride (VC), benzene, and PCE accounts for 22%, 9%, 8%, and 7%, respectively, in the operable units of superfund sites (182). The International Agency for Research on Cancer reported the carcinogenic properties of VOCs, and, among them, TCE, VC, and benzene are associated with high cancer risks to humans (http://monographs.iarc.fr/). Thus, soil and groundwater that are contaminated with VOCs require remediation.

Regarding remediation technologies, bioremediation, which uses the degradation abilities of microorganisms, has received much attention because it is inexpensive, environmentally friendly, and applicable in situ (77, 210). According to a report by the United States Environmental Protection Agency (181), bioremediation accounted for 24% of the remediation technologies for contaminated groundwater. Various environmental microorganisms that are capable of degrading individual VOCs have been reported, and genomic information related to their phylogenetic classification and VOC-degrading enzymes are also available.

* Corresponding author. E-mail: m.zhang@aist.go.jp; Tel: +81–29–861–3943; Fax: +81–29–861–8773.
Biodegradation of chlorinated ethenes

Aerobic biodegradation of chlorinated ethenes. The aerobic biodegradation of chlorinated ethenes with natural gas containing methane, which acts as a co-substrate, was first discovered in the 1980s (201). Besides methane, aromatic compounds (133, 152), alkanes (63, 191, 196), alkenes (50, 64, 192), and ammonia (10) have been confirmed as co-substrates for the degradation of chlorinated ethenes. In addition, phytochemicals from poplar (Populus) leaves also function as co-substrates, resulting in the degradation of TCE (78). Oxygenases that degrade co-substrates lead to the degradation of chlorinated ethenes to epoxide compounds (Fig. 1). The growth-linked oxidation of chlorinated ethenes has only been reported for cis-DCE and VC. Limited information is currently available on the aerobic degradation of PCE (155), and, thus, further studies are required.

Aerobic microorganisms that degrade chlorinated ethenes with oxygenases have been isolated. Methanotrophs such as Methylocystis sp. SB2 (73), and Methylobacterium trichosporium OB3b (142) use methane monooxygenases to degrade chlorinated ethenes. Aromatic compound degraders, such as Burkholderia vietnamiensis G4 (132) and Pseudomonas putida F1 (134), use toluene monooxygenases and dioxygenases to degrade TCE.

Anaerobic biodegradation of chlorinated ethenes. The anaerobic biodegradation of chlorinated ethenes is caused by dechlorination, in which hydrogen sequentially displaces chlorine (186) (Fig. 2). PCE is mainly degraded to TCE, TCE epoxide

\[\text{TCE} \rightarrow \text{TCE epoxide} \]

Table 1. Mechanisms associated with the initial step in the biodegradation of each type of VOC.

Category	Compounds	Aerobic degradation	Anaerobic degradation
Chlorinated ethenes	Tetrachloroethene (PCE)	Oxidation*1	Dechlorination*3,140
	Trichloroethene (TCE)		
	cis-dichloroethene (cis-DCE)	Oxidation*1	Reductive dechlorination*3,140
	trans-dichloroethene (trans-DCE)		
	1,1-dichloroethene (1,1-DCE)		
Vinyl chloride (VC)		Oxidation*1	Fumarate addition*3,199
BTEX	Benzene		
	Toluene		
	Ethylbenzene	Oxidation*2	Reductive dechlorination*3,140
	Xylenes		
	o-xylene		
	m-xylene		
	p-xylene		
Chlorinated methanes	Chloroform (CF)	Oxidation*2	Fermentation*15
	Dichloromethane (DCM)	Dechlorination (glutathione substitution)*27	

*1 The aerobic degradation of PCE is limited, except as described by Ryoo et al. (155).
*2 The mechanisms underlying the anaerobic degradation of benzene are unclear, although hydroxylation to phenol, methylation to toluene, and carboxylation to benzoate were proposed by Weelink et al. (199).
*3 The aerobic degradation of CT remains ambiguous.

Fig. 1. Possible initial step in the aerobic biodegradation of trichloroethene. TCE denotes trichloroethene. Abbreviations of involved enzymes indicate the following. TomA, toluene 2-monooxygenase; sMMO, soluble methane monooxygenase; pMMO, particulate methane monooxygenase; TmoA, toluene-4-monooxygenase; TodC1, toluene 2,3-dioxygenase; TbuA1, toluene 3-monooxygenase.

Biodegradation of chlorinated ethenes

Aerobic biodegradation of chlorinated ethenes. The aerobic biodegradation of chlorinated ethenes with natural gas containing methane, which acts as a co-substrate, was first discovered in the 1980s (201). Besides methane, aromatic compounds (133, 152), alkanes (63, 191, 196), alkenes (50, 64, 192), and ammonia (10) have been confirmed as co-substrates for the degradation of chlorinated ethenes. In addition, phytochemicals from poplar (Populus) leaves also function as co-substrates, resulting in the degradation of TCE (78). Oxygenases that degrade co-substrates lead to the degradation of chlorinated ethenes to epoxide compounds (Fig. 1). The growth-linked oxidation of chlorinated ethenes has only been reported for cis-DCE and VC. Limited information is currently available on the aerobic degradation of PCE (155), and, thus, further studies are required.

Aerobic microorganisms that degrade chlorinated ethenes with oxygenases have been isolated. Methanotrophs such as Methylocystis sp. SB2 (73), and Methylobacterium trichosporium OB3b (142) use methane monooxygenases to degrade chlorinated ethenes. Aromatic compound degraders, such as Burkholderia vietnamiensis G4 (132) and Pseudomonas putida F1 (134), use toluene monooxygenases and dioxygenases to degrade TCE. Nocardioides sp. CF8 and Thauera butanivorans use butane monooxygenases to degrade TCE, cis-DCE, and VC (63). Mycobacterium ethylenense NBB4, which was isolated on ethene, degrades VC (113). In contrast to the microorganisms described above, Mycobacterium aurum L1 oxidizes VC with growth, and uses an alkene monooxygenase to degrade cis-DCE, trans-DCE, and 1,1-DCE without growth (64, 65). Two microbes, Polaromonas sp. JS666 (38) and Rhodococcus jostii RHA1 (8), are known to oxidize cis-DCE with growth.

Anaerobic biodegradation of chlorinated ethenes. The anaerobic biodegradation of chlorinated ethenes is caused by dechlorination, in which hydrogen sequentially displaces chlorine (186) (Fig. 2). PCE is mainly degraded to TCE, PCE epoxide
Biodegradation of Multiple VOCs

DCEs, VC, and harmless ethene, and among DCEs, cis-DCE predominates over trans-DCE and 1,1-DCE (164, 186). Dechlorination produces energy for degrading microbes; however, they cannot use chlorinated ethenes as a carbon source (86). Besides the main sequential dechlorination pathway described above, the anaerobic oxidation of cis-DCE, VC, and ethene have also been observed under sulfate-reducing and methanogenic conditions (22, 49, 115).

Anaerobic microbes that degrade chlorinated ethenes are diverse (Fig. 2). However, only the genus Dehalococcoides is known to degrade DCEs and VC. The isolation of anaerobic degraders of DCEs and VC has been a significant issue for a long time, and Dehalococcoides mccartyi 195 was first isolated in 1997 (102, 116). Strain 195 degrades PCE, TCE, cis-DCE, and 1,1-DCE as growth-linked substrates, and degrades trans-DCE and VC as non-growth substrates. Unlike other Dehalococcoides species, D. mccartyi strains MB and CBDB1 dechlorinate TCE and generate trans-DCE, rather than cis-DCE (32, 111). Dehalococcoides has key reductive dehalogenases, such as TceA, which dechlorinate TCE and all DCE isomers to VC, as well as VC to ethene at low dechlorinating rates (107), VcrA, which dechlorinates all DCE isomers to ethene, as well as TCE to cis-DCE at low dechlorinating rates. (129), and BvcA, which dechlorinates all DCE isomers to VC, and dechlorinates TCE without growth (91, 171). A gene expression analysis suggested that the reductive dehalogenase gene mbrA is involved in the production of trans-DCE in the dechlorinating pathway (34). Desulfotobacterium strains as well as Dehalococcoides, have the dehalogenase, PceA, which dechlorinates PCE and TCE to cis-DCE (60, 168). Strains of Dehalococcoides, such as BTF08 highly enriched from groundwater and UCH007 isolated from groundwater in Japan, contain the genes of three well-known reductive dehalogenases, pceA, tceA, and vcrA (148, 175). Accompanied by advances in genome sequencing techniques, putative reductive dehalogenases in Dehalococcoides have been reported (148, 158, 198). Multiple reductive dehalogenase genes may be induced by a single chlorinated ethene in a microbial enrichment culture containing Dehalococcoides, as demonstrated by Futamata et al. (55). The X-ray crystal structure of PceA from Sulfospirillum multivorans has been reported by Bommer et al. (20), and revealed that cobalamin supports reductive dechlorination.

In engineering practices associated with the bioremediation of chlorinated ethenes, electron donors (e.g. lactate, methanol, molasses, hydrogen release compounds, and vegetable oils) and vitamin B12 are commonly injected into contaminated sites in order to stimulate reductive dechlorination (144, 182). Yeast extract also stimulates reductive dechlorination (122). As for bioaugmentation, microbial consortia containing Dehalococcoides, such as KB-1 (45), have been introduced into contaminated sites. Successful case studies on bioaugmentation have been reported (48, 110). The density of useful microorganisms is used as a criterion for selecting biostimulation or bioaugmentation, and genetic biomarkers such as the Dehalococcoides 16S rRNA gene and reductive dehalogenase genes including tceA, vcrA, and bvcA are used as indicators (75, 182).

Biodegradation of BTEX

Aerobic biodegradation of BTEX. The aerobic biodegradation of BTEX has a long history, and BTEX-degrading pathways may be traced back to the 1960s (57, 58). BTEX are oxidized by oxygenases (Fig. 3). The intermediates, catechol compounds, are produced by these pathways: catechol during benzene and toluene degradation, 3-methylcatechol during toluene, o-xylene, and m-xylene degradation, and 4-methylcatechol during p-xylene degradation.

The degradability of BTEX and the degrading pathway

Fig. 2. Possible pathways of anaerobic biodegradation for chlorinated ethenes. Abbreviations of involved enzymes indicate the following: PceA, dehalogenase dechlorinating PCE and TCE to cis-DCE; BvcA, dehalogenase dechlorinating VC; TceA, dehalogenase dechlorinating TCE to VC; VcrA, dehalogenase dechlorinating all DCE isomers to ethene. Abbreviations of VOCs indicate the following: PCE, tetrachloroethene; TCE, trichloroethene; DCE, dichloroethene; VC, vinyl chloride.
used by microorganisms depend on the types of degrading enzymes. **Pseudomonas mendocina** KR1, *Ralstonia pickettii* PKO1, and *B. vietnamiensis* G4 degrade benzene as well as toluene using toluene-4-monooxygenase (TmoA), toluene 3-monooxygenase (TbuA1), and toluene 2-monooxygenase (TomA), respectively (26, 52, 59, 138, 160, 161, 173, 200). *Pseudomonas* sp. OX1 degrades benzene, toluene, and o-xylene using the toluene/o-xylene monooxygenase TouA (12, 18, 19, 131, 190). *P. putida* mt-2 degrades toluene and xylenes using the xylene monooxygenases XylA and XylM (25, 159, 169, 202). *Pseudomonas aeruginosa* I104 degrades benzene with the benzene monooxygenase BmoA (84, 85, 205). BmoA has low substrate specificity, and attacks toluene, xylene, and ethylbenzene, as well as benzene. **Pseudoxanthomonas spadix** BD-a59 degrades all BTEX (83), and has genes encoding TmoA, a xylene monooxygenase, and naphthalene monooxygenase (33). **Nitrosomonas europaea** degrades benzene, toluene, ethylbenzene, and p-xylene with an ammonia monooxygenase (82). In addition to monooxygenases, dioxygenases degrade BTEX. Toluene 2,3-dioxygenase (TodC1) from *P. putida* F1 degrades benzene, toluene, and ethylbenzene (57, 80, 131, 190, 211, 212). *R. jostii* RHA1 degrades benzene, toluene, ethylbenzene, and o-xylene with a biphenyl dioxygenase and/or an ethylbenzene dioxygenase (145, 203). *Thauera* sp. DNT-1 degrades toluene with a dioxygenase under aerobic conditions (163). Strain DNT-1 also degrades toluene under anaerobic conditions via a pathway that produces benzylic succinate.

In the biostimulation of BTEX, an injection of oxygen release compounds (30) and an air sparging technique are commonly used in practical sites (79, 204). Various primer sets for PCR to detect genes coding BTEX-degrading enzymes have been developed (14, 68) and reverse-transcriptase (RT)-quantitative PCR for these genes is used in order to judge the effectiveness of oxygen injections (15).

Anaerobic biodegradation of BTEX. The anaerobic biodegradation of BTEX was regarded as difficult for a long time, and the microbial transformation of xylenes under anoxic conditions was first confirmed in the mid-1980s (96). In addition to xylenes, the biodegradation of aromatic compounds such as benzene, toluene, and ethylbenzene, in the absence of oxygen has been reported since the 1990s (e.g. 44, 97, 151). During the anaerobic biodegradation of BTEX, aromatic compounds supply electrons to various electron acceptors such as NO₃⁻, Fe³⁺, SO₄²⁻, and HCO₃⁻ (194, 199). The anaerobic degradation of toluene, as well as xylenes and ethylbenzene, starts with fumarate addition. In addition to fumarate addition, ethylbenzene is oxidized by a dehydrogenase that is produced by nitrate-reducing bacteria (16). Regarding the anaerobic degradation of benzene, the degradation pathway remains unclear; however, possible pathways have been proposed in previous reviews (37, 53, 194, 199).

Fig. 3. Possible initial steps in the aerobic biodegradation of benzene, toluene, ethylbenzene, and xylene. Each figure shows initial steps for a particular VOC: a), benzene; b), toluene; c), ethylbenzene; d), o-xylene; e), m-xylene; f), p-xylene. Abbreviations of involved enzymes indicate the following: TomA, toluene 2-monooxygenase; TmoA, toluene-4-monooxygenase; BmoA, benzene monooxygenase; TouA, toluene/o-xylene monooxygenase; TbuA1, toluene 3-monooxygenase; TodC1, toluene 2,3-dioxygenase; XylA, xylene monooxygenase; XylM, xylene monooxygenase.

Fig. 3. Possible initial steps in the aerobic biodegradation of benzene, toluene, ethylbenzene, and xylene. Each figure shows initial steps for a particular VOC: a), benzene; b), toluene; c), ethylbenzene; d), o-xylene; e), m-xylene; f), p-xylene. Abbreviations of involved enzymes indicate the following: TomA, toluene 2-monooxygenase; TmoA, toluene-4-monooxygenase; BmoA, benzene monooxygenase; TouA, toluene/o-xylene monooxygenase; TbuA1, toluene 3-monooxygenase; TodC1, toluene 2,3-dioxygenase; XylA, xylene monooxygenase; XylM, xylene monooxygenase.

Fig. 3. Possible initial steps in the aerobic biodegradation of benzene, toluene, ethylbenzene, and xylene. Each figure shows initial steps for a particular VOC: a), benzene; b), toluene; c), ethylbenzene; d), o-xylene; e), m-xylene; f), p-xylene. Abbreviations of involved enzymes indicate the following: TomA, toluene 2-monooxygenase; TmoA, toluene-4-monooxygenase; BmoA, benzene monooxygenase; TouA, toluene/o-xylene monooxygenase; TbuA1, toluene 3-monooxygenase; TodC1, toluene 2,3-dioxygenase; XylA, xylene monooxygenase; XylM, xylene monooxygenase.
Various anaerobic BTEX degraders have been isolated (e.g. 199). Among them, those using nitrate as an electron acceptor, such as *Aeromicrobium aromaticum* EbN1 (151), *Azotobacter* sp. T (44), and *Thauera aromatica* K172 (5), have been isolated most frequently. In addition, microorganisms that use ferrous iron and sulfate as electron acceptors, such as *Geobacter gr bladder TACP-2T* (36) and *Desulfobacula toluola* Tol2 (150), have also been isolated. Under methanogenic conditions, members of *Desulfovibionales* and *Coriobacteriaceae* are involved in the anaerobic degradation of benzene, which has been confirmed by stable isotope probing (140). Microorganisms that degrade *p*-xylene were only recently isolated; *Desulfosarcina* sp. PP31 was isolated as a degrader under sulfate-reducing conditions by Higashioka *et al.* (69). In the anaerobic toluene degradation pathway, the initial step, fumarate addition to toluene, is catalyzed by a benzyl succinate synthase (BssA) (100). BssA may also catalyze fumarate addition to *m*-xylene (1, 17).

Biodegradation of chlorinated methanes

Aerobic biodegradation of chlorinated methanes. Although the aerobic biodegradation of carbon tetrachloride (CT) remains uncertain, chloroform (CF) and dichloromethane (DCM) may be degraded under aerobic conditions. Methane, toluene, and butane monoxygenases oxidize CF to phosgene through trichloromethanol (28). Aerobic growth-linked DCM degradation mainly relies on glutathione, and DCM is dechlorinated and transformed to formaldehyde (127). The aerobic oxidation of DCM also occurs when methane and ammonia co-exist, although the degrading microorganisms do not assimilate DCM (142, 189).

Aerobic CF degraders have been obtained, as reported by Cappelletti *et al.* (28). Microorganisms, such as *M. trichosporium* OB3b (142), *Nocardioles* sp. CFS (63), and *P. mendocina* KR1 (200), which degrade CF, use methane, butane, and toluene, respectively, as carbon and energy sources. An aerobic DCM-dechlorinating bacterium, *Methylloplana helvetica* DM1, was first reported by Brunner *et al.* (23). A wide variety of methylotrrophic bacteria, such as *Ancylobacter*, *Bacillus*, *Chryseobacterium*, *Hyphomicrobiurn*, and *Methyllobacterium* (127) species, have been shown to degrade DCM with growth. *Rhodococcus* sp. EH381 degrades DCM and BTEX (99), suggesting that it has potential as a degrader of multiple VOCs. Most of these degrading microorganisms have been assessed for the presence of the DCM dehalogenase DcmA, which catalyzes the dechlorination of DCM. *Methyllobacterium extorquens* DM4 is considered to have acquired the *dcmA* gene through horizontal gene transfer (156). In *M. extorquens* DM4, the acquired *dcmA* gene has been shown to participate in enzymatic or metabolic pathways, such as stress responses, metabolic tuning, regulation, cell structure adjustments to the solvent properties of DCM, DNA repair following damage with mutagenic agents, and chloride export (81, 120, 128). In addition, microbes that degrade DCM as non-growth substrates have also been isolated. *M. trichosporium* OB3b and *N. europaea* degrade DCM using a methane monoxygenase and ammonia monoxygenase, respectively (142, 189).

Anaerobic biodegradation of chlorinated methanes. CT is dechlorinated under anaerobic conditions, and this process is mediated by cofactors such as corrinoid (93), coenzyme F430 (92), iron compounds (147), cytochromes (29), and humic substances (114). Under sulfate-reducing conditions, CT is mainly degraded to CS₂ with the cofactor vitamin B₁₂, a type of corrinoid, while it is degraded to CF in the absence of vitamin B₁₂ (87). The dechlorination of CF to DCM occurs with or without growth. The growth-linked dechlorination of CF was first reported by Grostern *et al.* (61), and, in their study, *Dehalobacter* appeared to dechlorinate CF to DCM. The pathway of anaerobic DCM biodegradation remains unknown. Rather than being dechlorinated, DCM is considered to be fermented into formate and acetate (105).

Although anaerobic CT degraders have been isolated (146), the microorganisms that use CT as a carbon source have not. Acetogens, iron reducers, and methanogens degrade CT with co-factors. An aceticogenic microorganism, *Acetobacterium woodii* DSM1030, anaerobically degrades CT and CF with vitamin B₁₂ (46). Iron-reducing microorganisms, such as *Geobacter metallireducens* and *G. sulfurreducens*, degrade CT with iron compounds (109). Chloroform-reductive dehalogenases that are involved in CF degradation with growth have recently been isolated from *Dehalobacter* sp. CF50 (170, 172) and *Desulfotibiala* sp. PR (42). As anaerobic DCM degraders, *Dehalobacterium formicoacetatum* DMC (104) and *Dehalobacter* strains (76) have been successfully isolated; however, the enzymes involved in the fermentative degradation of DCM have yet to be identified. In addition to degrading DCM under aerobic conditions, *Hyphomicrobiurn* sp. DM2 also degrades DCM using DcmA under anaerobic conditions (90).

Interactions among co-existing VOCs

VOC biodegradation may be enhanced (207), constrained (141), and/or unaffected (24) by co-existing VOCs. In most cases, the enhancement of VOC degradation occurs because of the co-metabolism of VOC-degrading enzymes. Conversely, constraints of VOC degradation occur because of the toxicity of co-existing VOCs and their degradation products, catabolite repression, and competition with VOC-degrading enzymes (Fig. 4). We analyze the interactions among co-existing chlorinated ethenes, BTEX, and chlorinated methanes below.

Enhancement

Co-metabolism of multiple VOCs. Co-metabolism is defined as the transformation of an organic compound by a microorganism that is unable to use the compound as a source of energy or one of its constituent elements (3, 4). The co-existence of multiple VOCs may lead to co-metabolism in which one VOC is degraded as a growth-linked substrate and the other is co-metabolically degraded as a non-growth substrate. In co-metabolism, VOCs may be degraded by the same enzymes or one VOC functions as an inducer for the degradation of the other VOCs. Other VOC-degrading enzymes may be gratuitously induced by growth-linked substrates or their metabolites.

As described earlier, chlorinated ethenes are known to be degraded under aerobic conditions while degrading microorganisms utilize another chlorinated ethene, benzene, toluene, or xylene as the growth-linked substrate (Table 2). Degradation
enzymes for BTEX, such as TouA, work on multiple BTEX in some cases, while BTEX are utilized as a growth-linked or non-growth substrate (18, 131).

The chlorinated methane, CF, is degraded as a non-growth substrate under aerobic conditions with a growth-linked substrate such as toluene and \(\alpha \)-xylene (31, 119).

Constraints

Toxicity of co-existing VOCs. The toxicity of VOCs to microorganisms is caused by their inability to detoxify VOCs. The toxicity of VOCs influences microbial growth (88) and the degradability of VOCs (54). These effects are generally greater at high VOC concentrations (13, 45, 88).

Table 2. Enhancement of VOC degradation by co-metabolism.

Microorganism	Targeted VOC for degradation	Growth-linked VOCs	Possible degrading enzyme	Reference
Burkholderia vietnamiensis G4	TCE	benzene, toluene	TomA	(152, 161, 173)
Pseudomonas mendocina KR1	CF	toluene	TmoA	(119)
Pseudomonas putida F1	\(\alpha \)-xylene	ethylbenzene	*¹*	(131)
Pseudomonas sp. ENVBF1	CF	toluene	*¹*	(119)
Pseudomonas sp. ENVCP5	CF	toluene	*¹*	(119)
Pseudomonas sp. OX1	TCE*²	toluene, \(\alpha \)-xylene	TouA	(31, 131)
	1,1-DCE*²			(31, 131)
	CF*²	ethylbenzene	*²*	(131)
	\(\alpha \)-xylene*²			(131)
	\(m \)-xylene*²			(131)
	\(p \)-xylene*²			(131)
Ralstonia pickettii PKO1	TCE	toluene	TbuA	(98, 206)
Ralstonia sp. TRW-1	\(c i s \)-DCE*¹	VC	*¹*	(47)
	\(t r a n s \)-DCE*¹			(47)

*¹ Unidentified enzymes degrading growth-linked VOCs and/or enzymes induced by growth-linked VOCs or their metabolites may be related to degradation.

*² The degradation of VOCs was confirmed with Escherichia coli JM109 (pBZ1260) expressing touA.

Abbreviations of VOCs indicate the following: TCE, trichloroethene; DCE, dichloroethene; VC, vinyl chloride; CF, chloroform. Abbreviations of degrading enzymes denote the following: TomA, toluene 2-monoxygenase; TmoA, toluene-4-monoxygenase; TouA, toluene-\(\alpha \)-xylene monoxygenase; TbuA, toluene-3-monoxygenase; TbuAl, toluene 3-monoxygenase.

Fig. 4. Possible interaction among the targeted VOC for degradation and co-existing VOCs. BTEX means benzene, toluene, ethylbenzene, and xylene. + and - indicate enhancement and constraint, respectively. AE and AN in brackets mean the effects occurring under aerobic and anaerobic conditions, respectively.
Biodegradation of Multiple VOCs

Table 3. Constraints of VOC degradation caused by the toxicity of co-existing VOCs to microorganisms.

Microorganism	Targeted VOC for degradation	Co-existing toxic VOCs	Concentration of co-existing toxic VOCs	Reference
Dehalobacter sp.	DCM	CF	42 μM	(76)
Desulfitobacterium hafniense Y51	PCE	cis-DCE	5 mM*1	(54)
	TCE		5 mM*1	(54)
		cis-DCE	14 mM*2	(136)
		CT	(100 μM*2)	(136)
Sulfurospirillum multivorans	PCE	DCM	50 μM*2	(136)
		VC	10–15 μM	(2)
Microcosm	PCE	CT	10–15 μM	(2)
		CF	4 μM	(13)
		VC	2.5 μM	(45)
		TCE	1.6 μM	(117)

*1 Desulfitobacterium hafniense Y51 lost the pceA gene.
*2 The concentration indicates the inhibition of PCE dehalogenase activity by 50%.

Abbreviations of VOCs indicate the following: PCE, tetrachloroethene; TCE, trichloroethene; DCE, dichloroethene; VC, vinyl chloride; CT, carbon tetrachloride; CF, chloroform; DCM, dichloromethane.

Tolerance to the toxicity of VOCs differs among microorganisms. Koenig et al. (88) reported that fast-growing microorganisms in VOC-free cultures, such as Klebsiella spp., have a higher tolerance to VOCs than Desulfovibrio vulgaris.

The constraints caused by the toxicity of co-existing VOCs occur in the anaerobic degradation of chlorinated ethenes (Table 3). In addition, the co-existence of chlorinated methanes inhibits the anaerobic degradation of chlorinated ethenes. During the anaerobic degradation of DCM, CF-mediated inhibition occurs, and this is attributed to its toxicity (76).

Toxicity of by-products following the degradation of co-existing VOCs. When multiple VOCs co-exist, the toxicity of their by-products may affect the degradation of other VOCs. The by-products of VOC degradation, such as epoxide compounds and catechol compounds, are toxic. Epoxide compounds, which may be toxic to microorganisms and inhibit VOC degradation, are produced from the aerobic degradation of chlorinated ethenes (188). Of a mixture of four toluene-degrading bacteria, P. putida mt-2, P. putida F1, P. putida GJ31, and B. vietnamiensis G4, only P. putida mt-2 survived exposure to TCE and subsequent TCE degradation (112). This was because the other three microorganisms degraded TCE and then died because of the toxicity of the TCE by-product. In order to avoid the toxicity of epoxide compounds, a system such as the epoxide:coenzyme M transferase (EaCoMT) of Mycobacterium sp. JS60 (39, 40), is required to metabolize and/or detoxify by-products. The etnE gene, which encodes EaCoMT, is distributed in various environments, and has been detected in Mycobacterium, Nocardiooides-like microorganisms, and Haliea-like microorganisms (101).

Catechol compounds are the main by-products of BTEX degradation, and concerns have been expressed regarding their toxicity (130). P. putida PPO1 produces toxic by-products, such as catechol compounds, during the degradation of p-xylene in the presence of benzene (141). The by-products from p-xylene inhibit benzene degradation, and the accumulation of these by-products increases the inhibition of VOC degradation. 3-Methylcatechol is produced in the degradation pathway of toluene, o-xylene, and m-xylene. Microbial growth ceases with the accumulation of 3-methylcatechol and toluene degradation is limited by P. putida strains (72, 154). In order to avoid constraints, microorganisms need enzymes, such as catechol 2,3-dioxygenase encoded by xylE of P. putida mt-2 (74, 202) and 3-methylcatechol 2,3-dioxygenase encoded by tode of P. putida F1 (21, 211), which degrade 3-methylcatechol.

Catabolite repression. Catabolite repression occurs when microbes are exposed to multiple carbon sources. This leads the microorganisms to use a rapidly metabolizable carbon source first. Catabolite repression has been extensively studied in Escherichia coli, which uses glucose and other carbon sources (41), and, thus, catabolite repression may occur in the presence of multiple VOCs.

The degradation of toluene and xylene is inhibited by catabolite repression, which is induced by a rapidly metabolizable carbon source first. Catabolite repression has been extensively studied in Escherichia coli, which uses glucose and other carbon sources (41), and, thus, catabolite repression may occur in the presence of multiple VOCs.

The degradation of toluene and xylene is inhibited by catabolite repression, which is induced by a rapidly metabolizable carbon source first. Catabolite repression has been extensively studied in Escherichia coli, which uses glucose and other carbon sources (41), and, thus, catabolite repression may occur in the presence of multiple VOCs.

Competition for degrading enzymes. Degrading enzymes...
work on different co-existing VOCs in some cases (Table 4). Methane monooxygenases degrade chlorinated ethenes and chlorinated methanes (43, 73, 142), and toluene monooxygenases also degrade chlorinated ethene and chlorinated methane compounds such as TCE and CF (119, 161). The oxygenases of BTEX react with multiple compounds of BTEX (57, 80). Thus, these enzymes compete for substrates.

Future perspectives

Previous studies on VOC biodegradation mostly examined the degradation of a single VOC, even though contaminated sites are often polluted with multiple VOCs. In this review, a systematic survey associated with the biodegradation of chlorinated ethenes, BTEX, and chlorinated methanes was performed. The enhancement and constraint of VOC degradation were discussed with an emphasis on the effects of co-existing VOCs on useful microorganisms for a certain VOC. This review may provide fundamental, but useful knowledge for developing novel approaches to the biodegradation of multiple VOCs. There are diverse interactions among co-existing VOCs, depending on the kinds of degrading microorganisms and types of VOCs. In order to achieve effective designs and operations associated with the bioremediation of multiple VOCs in practice, the use of combined multiple microorganisms that degrade VOC and/or the introduction of microorganisms that degrade multiple VOCs may be a feasible strategy. Further studies on the interactions among VOCs are required, particularly on stimulatory interactions for increasing the efficiency of bioremediation. The use of new tools, such as isotopic and enzymatic analyses, will increase our understanding of the detailed mechanisms associated with interactions among co-existing VOCs.

References

1. Achong, G.R., A.M. Rodriguez, and A.M. Spormann. 2001. Benzylsuccinate synthase of Azotobacter sp. strain T: cloning, sequencing, transcriptional organization, and its role in anaerobic toluene and m-xylene mineralization. J. Bacteriol. 183:6763–6770.

2. Adamson, D.T., and G.F. Parikh. 2000. Impact of mixtures of chlorinated aliphatic hydrocarbons on a high-rate, tetrachloroethene-dechlorinating enrichment culture. Environ. Sci. Technol. 34:1959–1965.

3. Alexander, M. 1967. The breakdown of pesticides in soils, p. 331–342. In N.C. Brady (ed.), Agriculture and the Quality of Our Environment. American Association for the Advancement of Science, Washington, D.C.

4. Alexander, M. 1994. Biodegradation and Bioremediation. Academic Press, San Diego.

5. Altenschmidt, U., and G. Fuchs. 1991. Anaerobic degradation of toluene in denitrifying Pseudomonas sp.: indication for toluene methylhydroxylation and benzoyl-CoA as central aromatic intermediate. Arch. Microbiol. 156:152–158.

6. Alvarez, P.J., and T.M. Vogel. 1991. Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl. Environ. Microbiol. 57:2981–2985.

7. Alvarez-Cohen, L., and P.L. McCarty. 1991. Product toxicity and cometabolic competitive inhibition modeling of chloroform and trichloroethylene transformation by methanotrophic resting cells. Appl. Environ. Microbiol. 57:1031–1037.

8. Araki, N., K. Chino, D. Kasai, E. Masai, and M. Fukuda. 2014. Degradation of cis-1,2-dichloroethylene by Rhodococcus jostii RHA1. The 66th Annual Meeting of the Society of Biotechnology of Japan 3P-091. (in Japanese)

9. Aranda-Olmedo, I., P. Marin, J.L. Ramos, and S. Marquès. 2006. Role of the ptsN gene product in catabolite repression of the Pseudomonas putida TOL toluene degradation pathway in chemostat cultures. Appl. Environ. Microbiol. 72:7418–7421.

10. Arciero, D., T. Vannelli, M. Logan, and A.B. Hooper. 1989. Degradation of trichloroethylene by the ammonia-oxidizing bacterium Nitrosomonas europaea. Biochem. Biophys. Res. Commun. 159:640–643.

11. Aziz, C.E., G. Georgiou, and G.E. Speitel, Jr. 1999. Cometabolism of chlorinated solvents and binary chlorinated solvent mixtures using M. trichosporium OB3b PPS38. Biotechnol. Bioeng. 65:100–107.

12. Baggio, G., P. Barbieri, E. Galli, and S. Toller. 1987. Isolation of a Pseudomonas stutzeri strain that degrades o-xylene. Appl. Environ. Microbiol. 53:2129–2132.

13. Bagley, D.M., M. Lalonde, V. Kaseros, K.E. Stasiuk, and B.E. Slep. 2000. Acclimation of anaerobic systems to biodegrade tetrachloroethylene in the presence of carbon tetrachloride and chloroform. Water Res. 34:171–178.

14. Baldwin, B.R., C.H. Nakatsu, and L. Nies. 2003. Detection and enumeration of aromatic oxygenase genes by multiplex and real-time PCR. Appl. Environ. Microbiol. 69:3350–3358.
Biodegradation of Multiple VOCs

35. Coates, J.D., V.K. Bhopathiraju, L.A. Achenbach, M.J. Mclnerny, and D.R. Lovley. 2001. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter griibliciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int. J. Syst. Evol. Microbiol. 51:581–588.

36. Coates, J.D., R. Chakrabarti, and M.J. McInerny. 2002. Anaerobic benzoic acid biodegradation in a new era. Res. Microbiol. 153:621–628.

37. Coleman, N.V., T.E. Mattes, J.M. Gossett, and J.C. Spain. 2002. Biodegradation of cis-dichloroethene as the sole carbon source by a β-proteobacterium. Appl. Environ. Microbiol. 68:2726–2730.

38. Coleman, N.V., and J.C. Spain. 2003. Epoxalkane: coenzyme M transferase in the ethene and vinyl chloride biodegradation pathways of Mycobacterium strain JS60. J. Bacteriol. 185:5536–5545.

39. Coleman, N.V., and J.C. Spain. 2003. Distribution of the coenzyme M pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains. Appl. Environ. Microbiol. 69:6041–6046.

40. Deutscher, J. 2008. The mechanisms of carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 11:87–93.

41. Di, C., S. Zhao, and J. He. 2014. A Desulfotibetaobacterium sp. strain PR reductively dechlorinates both 1,1,1-trichloroethene and chloroform. Microbiol. 16:3387–3397.

42. DiSpirito, A.A., J. Gullek, A.K. Siementje, J.C. Murrell, M.E. Lidstrom, and C.L. Krema. 1992. Trichloroethylene oxidation by the membrane-associated methane monooxygenase in type I, type II, and type X methanotrophs. Biodegradation 2:151–164.

43. Dörr, J., I. Zeyer, E.P. Binder, and R.P. Schwarzenbach. 1990. Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch. Microbiol. 154:336–341.

44. Duhamel, M., S.D. Weir, L. Yu, H. Rizvi, D. Seepersad, S. Dwaratzek, E.E. Cox, and S.A. Edwards. 2002. Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res. 36:4193–4202.

45. Egli, C., T. Tschan, R. Scholtz, A.M. Cook, and T. Leisinger. 1988. Transformation of tetrachloroethene to dichloromethane and carbon dioxide by Acetobacter woodyi. Appl. Environ. Microbiol. 54:2819–2824.

46. Elango, V.K., A.S. Liggenstoffer, and B.Z. Fathepure. 2006. Biodegradation of vinyl chloride and cis-dichloroethene by a Ralstonia sp. strain TRW-1. Appl. Microbiol. Biotechnol. 72:1270–1275.

47. Ellis, D.E., E.J. Lutz, J.M. Odom, R.J. Buchanan, C.L. Bartlett, M.D. Lee, M.R. Harkness, and K.A. Deweerd. 2000. Bioaugmentation for accelerated in situ anaerobic bioremediation. Environ. Sci. Technol. 34:2254–2260.

48. Elsgaard, L. 2013. Reductive transformation and inhibitory effect of ethene under methanogenic conditions in peat-soil. Soil Biol. Biochem. 60:19–22.

49. Ensink, S.A., M.R. Hyman, and D.J. Arp. 1992. Cometabolic degradation of chlorinated alkanes by alken monooxygenase in a propylene-grown Xanthobacter strain. Appl. Environ. Microbiol. 58:3038–3046.

50. Ensink, S.A. 1996. Aliphatic and chlorinated alkanes and epoxides as inducers of alkene monooxygenase and epoxide activities in Xanthobacter strain Py2. Appl. Environ. Microbiol. 62:61–66.

51. Fishman, A., Y. Tao, and T.K. Wood. 2004. Toluene 3-monooxygenase of Ralstonia pickettii PKO1 is a para-hydroxylating enzyme. J. Bacteriol. 186:3117–3123.

52. FOG, J. 2008. Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J. Mol. Microbiol. Biotechnol. 15:93–120.

53. Furukawa, K., S. Suyama, Y. Tsuibo, T. Futagami, and M. Goto. 2005. Biochemical and molecular characterization of a tetrachloroethene dechlorinating Desulfitobacterium sp. strain Y51; a review. J. Ind. Microbiol. Biotechnol. 32:534–541.

54. Futamata, H., S. Kaitya, M. Sugawara, and A. Hiraishi. 2009. Phylgetic and transcriptional analyses of a tetrachloroethene-dechlorinating "Dehalococcoides" enrichment culture TUT2264 and its reductive-dehalogenase genes. Microbes Environ. 24:330–337.

55. Gerrise, J., O. Drzyzga, G. Kloetstra, M. Keijmel, L.P. Wiersum, R. Hutson, M.D. Collins, and J.C. Gottschal. 1999. Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl. Environ. Microbiol. 65:5212–5221.

56. Gibson, D.T., J.R. Koch, and R.E. Kallio. 1968. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7:2653–2662.
65. Yoshikawa et al. 1985. Bacterial degradation of vinyl chloride. Biotechnol. Lett. 7:73–77.

66. Kao, C.M., C.Y. Chen, S.C. Chen, H.Y. Chien, and Y.L. Chen. 2008. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: Field and microbial evaluation. Chemosphere 70:1492–1499.

67. Juwarkar, A.A., S.K. Singh, and A. Mudhoo. 2010. A comprehensive overview of elements in bioremediation. Rev. Environ. Sci. Biotechnol. 9:215–288.

68. Gibson, T.D., M. Hensley, H. Yoshioka, and T.J. Magry. 1970. Formation of (+)-cis-2,3-dihydroxy-1-methylcyclohexa-4,6-diene from toluene by *Pseudomonas putida*. Biochemistry 9:1626–1630.

69. Gibbons, T.L., A.S. Abdul, and R.H. Olsen. 1988. Microbial degradation of aromatic hydrocarbons in hydrogeologic materials: microcosm studies, p. 53–69. In Proceedings of the Second National Outdoor Action Conference on Aquifer Restoration. Groundwater and Geophysical Methods, vol. I. National Water Well Association, Dublin, Ohio.

70. Goris, T.B., B. Hornung, T. Kruse, A. Reinhold, M. Westermann, P.J. Schaap, H. Smidt, and G. Diekert. 2015. Draft genome sequence and characterization of Desulfitobacterium hafniense FCE-S. Stand. Genomic Sci. 10:15.

71. Grostern, A.M., D. Huls, D. Towzak, and E.A. Edwards. 2010. Chloroformal degradation to dichloromethane by a *Dehalobacter* population. Environ. Microbiol. 12:1053–1060.

72. Halsey, K.H., J.A. Sayavedra-Soto, P.J. Bottomley, and D.J. Arp. 2005. Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects. Appl. Environ. Biotechnol. 68:794–801.

73. Hamamura, N., C. Page, T. Long, L. Semprini, and D.J. Arp. 1993. Chloroform cometabolism by butane-grown CF8, *Pseudomonas butanovora*, and *Mycobacterium vaccae* JOBS and methane-grown *Methylosinus trichosporium* OB3b. Appl. Environ. Microbiol. 63:3607–3613.

74. Hartmans, S.J.A.M. de Bont, J. Tramer, and K.Ch.A.M. Luyben. 1985. Bacterial degradation of vinyl chloride. Biotechnol. Lett. 7:383–386.

75. Hartmans, S.J.A.M. de Bont. 1992. Aromatic vinyl chloride metabolism in *Mycobacterium aurum* L1. Appl. Environ. Microbiol. 58:1220–1226.

76. He, J., K.M. Ritalahti, K.L. Yang, S.S. Koenigsberg, and F.E. Löffler. 2003. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 422:64–65.

77. He, J., Y. Sung, R. Krajmalnik-Brown, K.M. Ritalahti, and F.E. Löffler. 2005. Isolation and characterization of *Dehalococcoides* sp. strain FL2, a trichloroethene (TCE)—and 1,2-dichloroethene-respiring anaerobe. Environ. Microbiol. 7:1442–1450.

78. Hendrix, B., H. Junca, J. Vosahlova, et al. 2006. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTX degradation: distribution of the genes in BTX degrading isolates and in subsurface soils of a BTX contaminated industrial site. J. Microbiol. Methods. 64:250–265.

79. Higashioka, Y., H. Kojima, and M. Fujii. 2012. Isolation and characterization of novel sulfate-reducing bacterium capable of anaerobic chloroethene dehalogenation. Microbes Environ. 27:273–277.

80. Holliger, C., G. Schnur, A.J.M. Stams, and A.J.B. Zehnder. 1993. A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl. Environ. Microbiol. 59:2991–2997.

81. Holliger, C., D. Hahn, H. Harnsen, W. Ludwig, W. Schumacher, B. Tindall, F. Vazquez, N. Weiss, and A.J.B. Zehnder. 1998. *Dehalobacter restrictus* gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration. Arch. Microbiol. 169:313–321.

82. Hüsken, L.E., R. Beefink, J.A. de Bont, and J. Wery. 2001. High-rate 3-methylcatechol production in *Pseudomonas putida* strains by means of a novel expression system. Appl. Microbiol. Biotechnol. 55:571–577.

83. Im, J., and J.D. Semrau. 2011. Pollutant degradation by a *Methylcystis* strain SB2 grown on ethanol: bioremediation via facultative methanotrophy. FEMS Microbiol. Lett. 318:137–142.

84. Inouye, S.A., A. Nakazawa, and T. Nakazawa. 1981. Molecular cloning of TOL genes *yihA* and *yihE* in *Escherichia coli*. J. Bacteriol. 145:1137–1143.

85. Interstate Technology & Regulatory Council. 2013. Environmental Molecular Diagnostics, New Site Characterization and Remediation Enhancement Tools. EMD-2. Interstate Technology & Regulatory Council, Environmental Molecular Diagnostics Team, Washington, DC.

86. Justicia-Leon, S.D., K.M. Ritalahti, E.E. Mack, and F.E. Löffler. 2003. Dichloromethane fermentation by a *Dehalobacter* sp. in an enrichment culture derived from river sediment. Appl. Environ. Microbiol. 78:1288–1291.
Biodegradation of Multiple VOCs

97. Kunapuli, U., M.K. Jahn, T. Lueders, R. Geyer, H.J. Heipieper, and R.U. Meckenstock. 2010. Desulfotobacterium aromaticivorans sp. nov. and Geobacter toluexidans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int. J. Syst. Evol. Microbiol. 60:686–695.

98. Leahy, J.G., A.M. Byrne, and R.H. Olsen. 1996. Comparison of factors influencing trichloroethylene degradation by toluene-oxidizing bacteria. Appl. Environ. Microbiol. 62:825–833.

99. Lee, E.-H., J. Kim, K.-S. Cho, Y.G. Ahn, and G.-S. Hwang. 2010. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. HE831. Environ. Sci. Poll. Res. 17:64–77.

100. Leuthner, B., C. Letwin, H. Schulz, P. Höirth, W. Haehnel, E. Schütz, H. Schägger, and J. Heider. 1998. Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycol radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol. Microbiol. 28:615–628.

101. Liu, X., and T.E. Matthews. 2016. Epoxylkane:oenzyme M transferase gene diversity and distribution in groundwater samples from chlorinated-ethene-contaminated sites. Appl. Environ. Microbiol. 82:3269–3279.

102. Löffler, F.E., J. Yan, K.M. Ritalahti, L. Adrian, E.A. Edwards, K.T. Konstantinidis, J.A. Müller, H. Fullerton, S.H. Zinder, and A.M. Spormann. 2013. Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoides classis nov., order Dehalococcoidales ord. nov. and family Dehalococcicicicis fam. nov., within the phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 63:625–635.

103. Lontoh, S., and J.D. Semprau. 1998. Methane and trichloroethylene degradation by Methylosinus trichosporium OB3b expressing particular methanol monooxygenase. Appl. Environ. Microbiol. 64:1106–1114.

104. Mägli, A., M. Wendt, and T. Leisinger. 1996. Isolation and characterization of Dehalobacter formicoaceticum gen. nov., sp. nov., a strictly anaerobic bacterium utilizing dichloromethane as source of carbon and energy. Arch. Microbiol. 166:101–108.

105. Mägli, A., M. Messmer, and T. Leisinger. 1998. Metabolism of dichloromethane by strict anaerobic Dehalobacter formicoaceticum gen. nov. Appl. Environ. Microbiol. 64:646–650.

106. Magnuson, J.K., R.V. Stern, J.M. Gossett, S.H. Zinder, and D.R. Burris. 1998. Reductive dechlorination of tetrachloroethene to ethene by a two-component enzyme pathway. Appl. Environ. Microbiol. 64:1270–1275.

107. Magnuson, J.K., M.F. Romine, D.R. Burris, and M.T. Kingsley. 2000. Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: Sequence of ccr and substrate range characterization. Appl. Environ. Microbiol. 66:5141–5147.

108. Maillard, J., I. Nijenhuis, and T.E. Mattes. 2014. Expression of the global regulator Crc in the benzoate degradation pathway is Bcr transcriptional regulator. J. Bacteriol. 190:1539–1545.

109. Moreno, R., F. Rojo. 2004. The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J. Bacteriol. 186:1337–1344.

110. Muller, E.E.L., F. Bringel, and S. Vuilleumier. 2011. Dichloromethane-degrading bacteria in the genomic age. Res. Microbiol. 162:869–876.

111. Muller, E.E.L., E. Houmard, H. Schäffer, and G. Diekert. 1996. Purification and refinement. Elife 3:e04279.

112. Nelson, M.J.K., G.T. Prins, P. Wietzes, W. de Koning, and D.B. Janssen. 2005. Methane and trichloroethylene metabolism. Mol. Microbiol. 57:70:4880–4888.

113. Nelson, M.J.K., S.O. Montgomery, E.J. O'Neill, and P.H. Pritchard. 1988. Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl. Environ. Microbiol. 52:383–384.

114. Nelson, M.J.K., S.O. Montgomery, W.R. Hagen, and P.H. Pritchard. 1987. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl. Environ. Microbiol. 53:949–954.

115. Neumann, A.O. Montgomery, and P.H. Pritchard. 1988. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl. Environ. Microbiol. 54:604–606.

116. Neumann, A., H. Scholz-Muramatsu, and G. Diekert. 1994. Tetrachloroethene metabolism of Dehalospirillum multivorans. Arch. Microbiol. 162:295–301.

117. Neumann, A., G. Wohlfarth, and G. Diekert. 1996. Purification and characterization of tetrachloroethene reductive dehalogenase from Dehalospirillum multivorans. J. Biol. Chem. 271:16515–16519.
...
198. Wackett, L.P., G.A. Brusseau, S.R. Householder, and R.S. Hanson. 1989. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl. Environ. Microbiol. 55:2960–2964.

199. Wagner, D.D., L.A. Hug, J.K. Hatt, M.R. Spitzmiller, E. Padilla-Crespo, K.M. Ritalahiti, E.A. Edwards, K.T. Konstantinidis, and F.E. Löfler. 2012. Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae. BMC Genomics. 13:200.

200. Wang, S., K.R. Chng, C. Chen, D.L. Bedard, and J. He. 2015. Genomic characterization of Dehalococcoides mccartyi strain JNA that reductively dechlorinates tetrachloroethene and polychlorinated biphenyls. Environ. Sci. Technol. 49:14319–14325.

201. Weelink, S.A.B., M.H.A. van Eekert, and A.J.M. Stams. 2010. Degradation of BTEX by anaerobic bacteria: physiology and application. Rev. Environ. Sci. Biotechnol. 9:359–385.

202. White, G.M., and D.T. Gibson. 1991. Toluene-4-monoxygenase, a three-component enzyme system that catalyzes the oxidation of toluene to p-cresol in Pseudomonas mendocina KRI. J. Bacteriol. 173:3010–3016.

203. Wilson, J.T., and B.H. Wilson. 1985. Biotransformation of trichloroethylene in soil. Appl. Environ. Microbiol. 49:242–243.

204. Worsey, M.J., and P.A. Williams. 1975. Metabolism of toluene and xylene by Pseudomonas putida (putida arvilla) ntr-mr2: evidence for a new function of the TOL plasmid. J. Bacteriol. 124:7–13.

205. Yamada, A., H. Kishi, K. Sugiyama, T. Hatta, K. Nakamura, E. Masai, and M. Fukuda. 1998. Two nearly identical aromatic compound hydrolase genes in a strong polychlorinated biphenyl degrader, Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 64:2006–2012.

206. Yang, X., D. Beckmann, S. Fiorenza, and C. Niedermeier. 2005. Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater. Environ. Sci. Technol. 39:7279–7286.

207. Yamoff, J.J., Y. Kawakami, T. Yago, H. Maruo, and H. Nishimura. 1988. cis-Benzene glycol production using a mutant Pseudomonas strain. J. Ferment. Technol. 66:305–312.

208. Yeager, C.M., K.M. Arthur, P.J. Bottomley, and D.J. Arp. 2004. Trichloroethylene degradation by toluene-oxidizing bacteria grown on non-aromatic substrates. Biodegradation 15:19–28.

209. Yoshikawa, M., M. Zhang, and K. Toyoda. 2016. Enhancement and biological characteristics related to aerobic biodegradation of toluene with co-existence of benzene. Water Air Soil Pollut. 227:340.

210. Yoshikawa, M., M. Zhang, and K. Toyoda. 2017. Integrated anaerobic-aerobic biodegradation of multiple contaminants including chlorinated ethylenes, benzene, toluene and dichloromethane. Water Air Soil Pollut. 228:25.

211. Yu, H., B.J. Kim, and B.E. Rittmann. 2001. A two-step model for the kinetics of BTX degradation and intermediate formation by Pseudomonas putida F1. Biodegradation 12:465–475.

212. Zhang, M., and M. Yoshikawa. 2016. An overview of remediation technologies for sites contaminated with volatile organic compounds, p. 295–301. In Proceedings of Geo-Chicago 2016: Sustainability, Energy, and the Geoenvironment. ASCE Geotechnical Special Publication, Reston.

213. Zylstra, G.J., W.R. Comcombe, D.T. Gibson, and B.A. Finette. 1988. Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl. Environ. Microbiol. 54:1498–1503.

214. Zylstra, G.J., and D.T. Gibson. 1989. Toluene degradation by Pseudomonas putida F1. J. Biol. Chem. 264:14940–14946.