POLYNOMIALLY CONVEX EMBEDDINGS OF EVEN-DIMENSIONAL COMPACT MANIFOLDS

PURVI GUPTA AND RASUL SHAFIKOV

Abstract. We show that, for $k > 1$, any $2k$-dimensional compact submanifold of \mathbb{C}^{3k-1} can be perturbed to be polynomially convex and totally real except at a finite number of points. This lowers the known bound on the number of smooth functions required on every $2k$-manifold M to generate a dense subalgebra of $\mathcal{C}(M)$. We also show that the obstruction to isotropic embeddability of all $2k$-dimensional manifolds in \mathbb{C}^{3k-1} does not persist if we allow for Kähler forms with isolated degeneracies.

1. Introduction and main results

Polynomial convexity is an important notion largely owing to the Oka-Weil theorem which states that holomorphic functions in a neighbourhood of a polynomially convex set M (see Section 2 for relevant definitions) can be approximated uniformly on M by holomorphic polynomials. Although polynomial convexity imposes topological restrictions on M, it is known that if M is a nonmaximally totally real submanifold of \mathbb{C}^n, it can be deformed via a small perturbation into a polynomially convex one, as proved by Forstnerič-Rosay [11], Forstnerič [9], and Løw-Wold [18]. The condition that any abstract m-dimensional compact real manifold admits a totally real embedding into \mathbb{C}^n is well understood: one must have $\lfloor \frac{3m}{2} \rfloor \leq n$. Thus, any m-dimensional compact manifold can be embedded as a totally real polynomially convex submanifold of \mathbb{C}^n provided that $n \geq \lfloor \frac{3m}{2} \rfloor$ and $(m, n) \neq (1, 1)$.

The bound discussed above is sharp for manifolds without boundary, see [15]. That is, if $n < \lfloor \frac{3m}{2} \rfloor$, then certain m-dimensional compact manifolds necessarily acquire complex tangent directions when embedded into \mathbb{C}^n. The points where the tangent space of $M \subset \mathbb{C}^n$ contains complex directions are called the CR-singularities of M. The size of these singularities is governed by Thom’s transversality theorem (see, e.g., [13]): for a generic m-dimensional submanifold $M \subset \mathbb{C}^n$, CR-singular points (if exist) form a submanifold in M of dimension $3m - 2n - 2$, $m \leq n$. CR-singularities encode topological information about M, such as its Euler characteristic and Pontryagin numbers; see Lai [17], Webster [26], and Domrin [7].

The simplest nontrivial case of CR-singularities is that of complex points of a real surface in \mathbb{C}^2. This has been an actively explored area starting from the seminal work of Bishop [4]. Stable complex points are classified into two types: elliptic and hyperbolic. A surface is locally polynomially convex near its hyperbolic points (Forstnerič-Stout [12]) but never near its elliptic points ([4]). Regardless of the type of complex points a compact real closed surface M may have in \mathbb{C}^2, it can never be (globally) polynomially convex; see Stout [25].

In this paper we consider the only other case when CR-singularities are generically discrete and $m \leq n$, namely when $m = 2k$ and $n = 3k - 1$, $k > 1$, (if $m > n$, problems of polynomial convexity become rather trivial). As discussed above, any $2k$-dimensional real compact manifold M admits an embedding into \mathbb{C}^{3k-1} that is totally real except for a finite number of isolated CR-singularities. Beloshapka [3] for $k = 2,$
and Coffman [6] for \(k > 2 \), constructed the normal form (2.1) for generic CR-singularities of this kind. Our principal result is to show that, unlike the case of complex points of real surfaces, \(M \) is locally polynomially convex near any such CR-singularity, and as a result, there exists a polynomially convex embedding of \(M \) in \(\mathbb{C}^{3k-1} \). More precisely the following holds.

Theorem 1.1. Suppose \(M \) is a 2k-dimensional \((k > 1) \) smooth compact submanifold (closed or with boundary) of \(\mathbb{C}^{3k-1} \). Then, given any \(s \geq 2 \), there exists a \(C^s \)-small perturbation \(M' \) of \(M \) that is polynomially convex. The submanifold \(M' \) is totally real with finitely many generic CR-singularities.

The proof is based on the idea of perturbation of \(M \) away from the set of CR-singularities where \(M \) is already locally polynomially convex; a general result of this type is contained in Arosio-Wold [1]. When \(M \) has nonempty boundary, \(M' \) can be further perturbed to be totally real and polynomially convex. This can be done by ‘pushing’ any CR-singularity of \(M' \) to one of its boundary components and then removing a thin collar neighbourhood of the boundary, leaving the manifold with no CR-singularities. A small perturbation can now be used to further make it polynomially convex.

Our main application of Theorem 1.1 deals with the structure of the space of continuous complex-valued functions on real manifolds. To illustrate this, consider first an elementary example. Any continuous function on the circle \(S^1 \subset \mathbb{C} \) can be uniformly approximated on \(S^1 \) by a sequence of polynomial combinations of \(z \) and \(1/z \). This follows from the Stone-Weierstrass approximation theorem, but can alternatively be deduced from the fact that the map \(z \mapsto (z, 1/z) \) embeds \(S^1 \) in \(\mathbb{C}^2 \) as a polynomially convex and totally real submanifold, thus allowing the combined use of the Oka-Weil theorem and an approximation result by Nirenberg-Wells [20, Theorem 1]. Generally, given a real manifold \(M \) we say that the space \(\mathcal{C}(M) \) has \(n \)-polynomial density if there is a tuple \(F = (f_1, \ldots, f_n) \) of \(n \) functions in \(\mathcal{C}^\infty(M) \) such that the set

\[
\{ P \circ F : P \text{ is a holomorphic polynomial on } \mathbb{C}^n \}
\]

is dense in \(\mathcal{C}(M) \). We refer to our paper [14] for a detailed discussion of polynomial and rational density of the spaces \(\mathcal{C}^\ell(M) \), \(\ell \geq 0 \), and its connection with polynomially convex and isotropic embeddings. In complete analogy with \(S^1 \) above, a totally real and polynomially convex embedding \(F : M \hookrightarrow \mathbb{C}^n \) guarantees \(n \)-polynomial density of \(\mathcal{C}(M) \). Thus, any compact real \(m \)-manifold has \(n = \lfloor \frac{3m}{2} \rfloor \)-polynomial density. This value of \(n \) does not appear to be sharp, with the optimal \(n \) being somewhere in the range \(m < n < \lfloor \frac{3m}{2} \rfloor \). While it is an open problem to find the best \(n \) for all \(m \)-dimensional manifolds, Theorem 1.1 gives the following improvement for even-dimensional manifolds.

Corollary 1.2. Let \(M \) be a 2k-dimensional \((k > 1) \) compact manifold. Then, \(\mathcal{C}(M) \) has \((3k-1) \)-polynomial density. Furthermore, if \(M \) has nonempty boundary, then \(\mathcal{C}^\ell(M) \) has \((3k-1) \)-polynomial density for all \(\ell \geq 0 \).

Recall that a real submanifold \(\iota : M \hookrightarrow \mathbb{C}^n \) is called Lagrangian (isotropic) with respect to a Kähler form \(\omega \) on \(\mathbb{C}^n \) if \(\dim M = n \) (\(\dim M < n \)) and \(\iota^* \omega = 0 \). Our second application can be viewed as a variation of the Gromov-Lees theorem [2], which in turn is an application of Gromov’s h-principle. The Gromov-Lees theorem says that a compact \(n \)-dimensional manifold \(M \) admits a Lagrangian immersion into \((\mathbb{C}^n, \omega_M) \) if and only if its complexified tangent bundle is trivializable. This is the same topological condition that completely characterizes the totally real immersability of a manifold \(M \) in \(\mathbb{C}^n \) (see [10, Prop. 9.1.4]). Subcritical versions of these results imply that any compact \(m \)-dimensional manifold admits an
POLYNOMIALLY CONVEX EMBEDDINGS

isotropic embedding into \((\mathbb{C}^n, \omega_{\text{K}})\) for \(n \geq \left\lfloor \frac{3m}{2} \right\rfloor\). Furthermore, there exist \(m\)-dimensional manifolds that do not admit such embeddings when \(n < \left\lfloor \frac{3m}{2} \right\rfloor\); see [14] for details. Despite this fact, our next result says that if \(m\) is even, any \(m\)-dimensional \(M\) can be embedded as an isotropic submanifold in \(\mathbb{C}^{\left\lfloor \frac{3m}{2} \right\rfloor - 1}\) with respect to some degenerate Kähler form.

Corollary 1.3. Suppose \(M\) is a \(2k\)-dimensional \((k > 1)\) smooth compact closed submanifold of \(\mathbb{C}^{3k-1}\). Then, given any \(s \geq 2\), there exists a \(C^s\)-small perturbation \(M'\) of \(M\) such that \(M'\) is isotropic with respect to \(dd^c\varphi\), for some plurisubharmonic function \(\varphi\) on \(\mathbb{C}^{3k-1}\) that is strictly plurisubharmonic on \(\mathbb{C}^{3k-1}\) except at the isolated CR-singularities of \(M'\).

One should note that the form \(dd^c\phi\) in the above corollary is not arbitrary, and is specific to the perturbation of \(M\). The proof no longer relies on the h-principle. Instead, we use the connection between rational convexity and isotropy with respect to Kähler forms established by Duval-Sibony [8].

2. Background material

The reader can refer to this section for the notation, terminology and definitions used in this paper. We begin with some notation.

- \(\mathbb{D}_\varepsilon\) and \(\overline{\mathbb{D}}_\varepsilon\) denote the open and closed discs, respectively, of radius \(\varepsilon\) centred at the origin in \(\mathbb{C}\).
- \(B_p(r)\) and \(\overline{B}_p(r)\) denote the open and closed Euclidean balls, respectively, of radius \(r\) centred at \(p\) in \(\mathbb{C}^n\), \(n > 1\).
- \(O\) denotes the origin in \(\mathbb{C}^n\) (the ‘\(n\)’ will be clear from the context).
- \(Z = (z, w_1, ..., w_{2k-2}, \zeta_1, ..., \zeta_k)\) denotes the complex coordinates in \(\mathbb{C}^{3k-1}\), where

\[
\begin{align*}
 z &= x + iy, \\
 w_\tau &= u_\tau + iv_\tau, \quad 1 \leq \tau \leq 2k - 2, \\
 \zeta_\sigma &= \xi_\sigma + iv_\sigma, \quad 1 \leq \sigma \leq k,
\end{align*}
\]

is the decomposition of the coordinates into their real and imaginary parts.
- \(Z' = (z, w_1, ..., w_{2k-2}, w)\) denotes the complex coordinates in \(\mathbb{C}^{2k}\).
- \(\xi^*\) is the conjugate transpose of the vector \(\xi \in \mathbb{C}^n\) (viewed as a matrix).
- \(J_C f(Z)\) denotes the complex Jacobian at \(Z\) of the map \(f : \mathbb{C}^{3k-1} \to \mathbb{C}^m\).
- \(\text{Hess}_C f(Z)\) denotes the complex Hessian of \(f : \mathbb{C}^{3k-1} \to \mathbb{R}\) at \(Z\).
- For any compact set \(X \subset \mathbb{C}^n\), \(C(X)\) is the algebra of complex-valued continuous functions on \(X\), and \(\mathcal{P}(X)\) is the closure in \(C(X)\) of the subalgebra generated by all the holomorphic polynomials restricted to \(X\).

Using the notation introduced above, it is of interest to determine when \(C(X) = \mathcal{P}(X)\). A necessary condition is that \(X \subset \mathbb{C}^n\) must coincide with its polynomially convex hull

\[
\hat{X} := \left\{ x \in \mathbb{C}^n : |P(x)| \leq \sup_{z \in X} |P(z)|, \text{ for all polynomials } P \in \mathbb{C}^n \right\}.
\]

If \(X = \hat{X}\), we say that \(X\) is polynomially convex. If \(X = M\) is an embedded submanifold in \(\mathbb{C}^n\), it is known that \(M\) cannot be polynomially convex unless \(m = \dim M \leq n\) (see [25, Section 2.3]). We will henceforth assume that \(m \leq n\).
A sufficient condition for a polynomially convex submanifold $M \subset \mathbb{C}^n$ to satisfy $C(M) = P(M)$ is that M be totally real, i.e., $T_p M \cap i T_p M = \{0\}$ for all $p \in M$, where $T_p M$ denotes the real tangent space of M at p. Thus, $C(M) = P(M)$ if M is a totally real and polynomially convex submanifold of \mathbb{C}^n. In situations where CR-singularities necessarily occur, the following result due to O’Farrel-Preskenis-Walsch (see [21]; also see [25]) is useful. Let X be a compact holomorphically convex set in \mathbb{C}^n, and let X_0 be a closed subset of X for which $X \setminus X_0$ is a totally real subset of the manifold $\mathbb{C}^n \setminus X_0$. A function $f \in C(X)$ can be approximated uniformly on X by functions holomorphic on a neighbourhood of X if and only if $f|_{X_0}$ can be approximated uniformly on X_0 by functions holomorphic on X. One can also achieve approximation results in higher norms. This leads to the following general definition.

Let M be a smooth compact abstract manifold. We say that $C^\ell(M)$, the space of ℓ-times continuously differentiable \mathbb{C}-valued functions on M, has n-polynomial density if there is a tuple $F = (f_1, \ldots, f_n)$ of n functions in $C^\infty(M)$ such that the set

$$\{P \circ F : P \text{ is a holomorphic polynomial on } \mathbb{C}^n\}$$

is C^ℓ-dense in $C^\ell(M)$. If F exists, we call $\{f_1, \ldots, f_n\}$ a PD-basis of $C^\ell(M)$. The notions of rational density and an RD-basis can be defined analogously. The existence of 2-RD bases for surfaces is discussed in Shafikov-Sukhov [23]. The optimal value of n for which $C^\ell(M)$ has n-polynomial density for all m-dimensional manifolds without boundary is known for $\ell \geq 1$ (see [14]) but not for $\ell = 0$.

As discussed earlier, it is not always possible to arrange $M \subset \mathbb{C}^n$ to be totally real everywhere. Given a point $p \in M$, let $H_p M$ denote the maximal complex-linear subspace of $T_p M$. A point $p \in M$ is called a CR-singularity of order μ if $\dim_{\mathbb{C}}(H_p M) = \mu$. As a consequence of Thom’s transversality theorem, the set S of CR-singularities of a generically embedded $M \subset \mathbb{C}^n$ is either empty or is a smooth submanifold of codimension $2(n - m) + 2$ in M. Moreover, S is stratified by smooth submanifolds S_μ of codimension $2\mu^2 + 2\mu(m - n)$ (if nonempty) in M, each S_μ being the set of CR-singularities of order μ in M, see Domrin [7] for more details. For global polynomial convexity, it is desirable to find an embedding of M that is, at the very least, locally polynomially convex near S. The situation is nontrivial even when S is a discrete set, i.e., when $m = 2k$ and $n = 3k - 1$.

When $k = 1$ (or $m = n = 2$), the only possible CR-singularities are complex points. These were classified by Bishop as follows. Given an isolated nondegenerate complex point p of a surface M, one can find local holomorphic coordinates in which M can be written as

$$w = \begin{cases} \frac{1}{\alpha} z \overline{z} + \frac{1}{\alpha^2} (z^2 + \overline{z}^2) + o(|z|^2), & \text{if } 0 \leq \alpha < \infty, \\ z \overline{z} + o(|z|^2), & \text{if } \alpha = \infty. \end{cases}$$

Depending on whether $\alpha \in [0, 1)$, $\alpha = 1$ or $\alpha \in [1, \infty]$, p is said to be a hyperbolic, parabolic or elliptic complex point, respectively. Parabolic points are not generic, and have varying local convexity properties (see [27] and [16]). Although, elliptic and hyperbolic points are both stable under small C^2-deformations, a surface is locally polynomially convex only near its hyperbolic complex points. In [24], Slapar proves a (possibly stronger) result for flat hyperbolic points ([12]), i.e., when local holomorphic coordinates can be chosen so that $\text{Im} o(|z|^2) \equiv 0$, i.e., M is locally contained in $\mathbb{C} \times \mathbb{R}$. It is shown that, near a flat hyperbolic p, M is the zero set of a nonnegative function that is strictly plurisubharmonic in its domain except at p. To achieve global polynomial convexity in our setting, we will rely on Slapar’s technique to obtain a similar result.
The case $k > 1$ is qualitatively different because of higher codimension ($m < n$). We are interested in understanding the local polynomial hull of a $2k$-submanifold M in \mathbb{C}^{3k-1} near an isolated CR-singularity. Unlike the $k = 1$ case, stable CR-singularities do not show diverse behaviour in this regard. In fact, we show that it suffices to understand one special case of M to answer this question.

The Beloshapka-Coffman normal form denotes the manifold

$$\mathcal{M}_k := \left\{ Z \in \mathbb{C}^{3k-1} : \begin{array}{l} v_\tau = 0, \quad 1 \leq \tau \leq 2k - 2, \\ \zeta_1 = |z|^2 + \overline{\tau}(u_1 + iu_2), \\ \zeta_\sigma = \overline{\tau}(u_{2\sigma - 1} + iu_{2\sigma}), \quad 2 \leq \sigma \leq k - 1, \\ \zeta_k = z^2 \end{array} \right\}. \quad (2.1)$$

Note that $\dim \mathcal{M}_k = 2k$ and it has an isolated CR-singularity of order 1 at the origin. In [3] and [6], Beloshapka ($k = 2$) and Coffman ($k > 2$) showed that a nondegenerate CR-singularity p of a $2k$-dimensional submanifold M of \mathbb{C}^{3k-1} is locally formally equivalent to \mathcal{M}_k at the origin. The nondegeneracy conditions appearing in their work are the full-rank conditions on matrices involving the second-order derivatives of the graphing functions of M at p. Any isolated CR-singular point can, thus, be made nondegenerate with the help of a small C^ℓ-perturbation, $\ell \geq 2$. In [5], Coffman further proved that if M is also real analytic in a neighbourhood of p, then there is a local normalizing transformation that is given by a convergent power series. Since any smooth M near a nondegenerate CR-singularity p can be made real analytic after a small C^ℓ-perturbation, we will only concern ourselves with real analytic nondegenerate CR-singularities. These will be referred to as generic CR-singularities in this paper. We will rely heavily on the fact that any M at a generic CR-singularity p is locally biholomorphic to \mathcal{M}_k at O.

3. A defining function for the Beloshapka-Coffman normal form

In this section and the next, we collect the technical tools required to prove our main results. The primary result here is the existence of a special plurisubharmonic defining function for \mathcal{M}_k at O, which allows us to control the hull of a generic $2k$-manifold near its CR-singularities under small perturbations.

Proposition 3.1. Let $k > 1$. There exists a smooth plurisubharmonic function ψ defined in some neighbourhood U of O in \mathbb{C}^{3k-1} such that

(a) $\{ \psi = 0 \} = \mathcal{M}_k \cap U$,
(b) $\psi > 0$ on $U \setminus \mathcal{M}_k$, and
(c) ψ is strictly plurisubharmonic on $U \setminus \{ O \}$.

Proof. We work with an auxiliary family of $2k$-manifolds in \mathbb{C}^{2k}. Let $\alpha < 1$. Set

$$S_\alpha = \left\{ Z' \in \mathbb{C}^{2k} : \begin{array}{l} \text{Im}(w_1) = \cdots = \text{Im}(w_{2k-2}) = 0, \\ w = \alpha \frac{1}{2}|z|^2 + \frac{1}{4}(z^2 + \overline{z}^2) \end{array} \right\}. \quad (3.2)$$

Note that each slice $S_\alpha \cap \{ Z' \in \mathbb{C}^{2k} : (w_1, \ldots, w_{2k-2}) = (s_1, \ldots, s_{2k-2}) \}$, where $(s_1, \ldots, s_{2k-2}) \in \mathbb{R}^{2k-2}$, is a totally real surface with an isolated hyperbolic complex point at the origin in \mathbb{C}_z^2. In [24], Slapar has constructed plurisubharmonic defining functions with additional properties for such surfaces. A slight modification of Slapar’s construction yields the following key ingredient of our proof.
Lemma 3.2. For each $\alpha < 0.46$, there is a neighbourhood V_α of the origin in \mathbb{C}^{2k} and a smooth plurisubharmonic function $\rho_\alpha : V_\alpha \to \mathbb{R}$ such that

* $\{\rho_\alpha = 0\} = S_\alpha \cap V_\alpha$,
* $\rho_\alpha > 0$ on $V_\alpha \setminus S_\alpha$, and
* ρ_α is strictly plurisubharmonic on $V_\alpha \setminus Y$, where

$$Y := \{z' \in \mathbb{C}^{2k} : z = \text{Im} w_1 = \cdots = \text{Im} w_{2k-2} = w = 0\}.$$

(3.1)

We relegate the proof of this lemma to the appendix (see Section 6). To continue with the proof of Proposition 3.1, we produce holomorphic maps that send the Beloshapka-Coffman normal form \mathcal{M}_k into S_α. These allow us to pull back ρ_α to \mathbb{C}^{3k-1} (locally near O) to give plurisubharmonic functions that vanish on \mathcal{M}_k. The required ψ will be designed from these pulled-back functions. For this purpose, let $f_\alpha : \mathbb{C}^{3k-1} \to \mathbb{C}^{2k}$ be the map

$$Z \mapsto \left(z + \frac{\alpha w_1}{2}, w_1, \ldots, w_{2k-2}, \frac{1}{2} z + \frac{\alpha w_2}{2} + \frac{1}{2} w_1, w_1, \ldots, w_{2k-2}, \xi \right).$$

For $1 \leq \sigma \leq k - 1$, let $f_\sigma^\alpha : \mathbb{C}^{3k-1} \to \mathbb{C}^{2k}$ be the map given by

$$f_\sigma^\alpha = f_\alpha \circ F^\sigma,$$

where $F^\sigma : \mathbb{C}^{3k-1} \to \mathbb{C}^{3k-1}$ is the automorphism

$$\left(z, w_1, \ldots, w_{2k-2}, \frac{1}{2} z + \frac{1}{2} w_1, \ldots, w_{2k-2}, \frac{1}{2} w_1, \ldots, w_{2k-2}, \frac{1}{2} \xi_1, \ldots, \xi_k\right) \mapsto$$

$$\left(z, \frac{w_1 + w_{2\sigma-1}}{2}, \frac{w_2 + w_{2\sigma}}{2}, w_3, \ldots, w_{2k-2}, \frac{1}{2} \xi_1, \ldots, \xi_k\right).$$

Each f_σ^α is holomorphic on \mathbb{C}^{3k-1} and has the following properties.

- $(f_\sigma^\alpha)^{-1}(S_\alpha) = M_\sigma^\alpha$, where

$$M_\sigma^\alpha = \left\{ Z \in \mathbb{C}^{3k-1} : \alpha \left[\frac{\xi_1 + \xi_\sigma}{2} + \frac{1}{2} \right] + \frac{i \alpha}{2} \left[w_{2\sigma-1} + i \left(w_2 + w_{2\sigma} \right) \right] + \frac{\xi_\sigma - \overline{\xi}_2}{2} = 0, \right\}.$$

- $(f_\sigma^\alpha)^{-1}(Y) = X_\sigma^\alpha$, where

$$X_\sigma^\alpha = \left\{ Z \in \mathbb{C}^{3k-1} : \alpha \left[\frac{\xi_1 + \xi_\sigma}{2} + \frac{1}{2} \right] + \frac{i \alpha}{2} \left[w_2 + w_{2\sigma} \right] = 0, \right\}.$$

- ker $J_C(f_\sigma^\alpha)(Z) = \left\{ \left(0, \ldots, 0, \xi_1, \ldots, \xi_{k-1}, -\alpha \left[\frac{\xi_1 + \xi_\sigma}{2} \right] \right) : \left(\xi_1, \ldots, \xi_{k-1} \right) \in \mathbb{C}^{k-1} \right\}$.

Next, let $\psi_\sigma^\alpha := \rho_\alpha \circ f_\sigma^\alpha$ on $U_\sigma^\alpha := (f_\sigma^\alpha)^{-1}(V_\alpha)$, where ρ_α and V_α are as in Lemma 3.2. Then, owing to the properties of ρ_α and f_σ^α, we have that ψ_σ^α is a plurisubharmonic function on U_σ^α, satisfying the following properties (compare with the required properties (a)-(c)).

- (a') $\{\psi_\sigma^\alpha = 0\} = M_\sigma^\alpha \cap U_\sigma^\alpha$,
- (b') $\psi_\sigma^\alpha > 0$ on $U_\sigma^\alpha \setminus M_\sigma^\alpha$, and
- (c') $\xi^* \cdot \text{Hess}_C \psi_\sigma^\alpha(Z) \cdot \xi > 0$, when $Z \in U_\sigma^\alpha \setminus X_\sigma^\alpha$ and $\xi \in \mathbb{C}^{3k-1} \setminus \text{ker} \ J_C(f_\sigma^\alpha)(Z)$.

As $\mathcal{M}_k \subseteq M_\sigma^*$, we need to ‘correct’ ψ_σ. For this, let

$$g(Z) = |\zeta_k - Z|^2 + \sum_{\sigma=2}^{k-1} |\zeta_\sigma - \overline{z(w_{2\sigma-1} + i w_{2\sigma})}|^2.$$

Since $M_\sigma^* \cap g^{-1}(0) = \mathcal{M}_k$, and $\xi \cdot \text{Hess}_g g(Z) \cdot \xi > 0$ for any $Z \in \mathbb{C}^{3k-1}$ and any nonzero $\xi \in \ker J_\xi(f_\sigma^*)(Z)$, we have that each $g + \psi_\sigma^*$ is a plurisubharmonic function on U_σ^* satisfying properties (a), (b) and

$$(c') \quad \psi_\sigma^* + g \text{ is strictly plurisubharmonic on } U_\sigma^* \setminus X_\sigma^*.$$

Finally, to obtain property (c), we observe that

$$\bigcap_{\sigma=1}^{k-1} (X_\sigma^* \cap X_\sigma^*) = \{0\}$$

when $\alpha \neq \beta$. Thus, choosing $\alpha = 1/4$ and $\beta = 1/3$, we have that

$$(3.2) \quad \psi := g + \sum_{\sigma=1}^{k-1} \left(\psi_{1/4}^\sigma + \psi_{1/3}^\sigma \right)$$

is a plurisubharmonic function on $U := \bigcap_{\sigma=1}^{k-1} (U_{1/4}^\sigma \cap U_{1/3}^\sigma)$ with the required properties (a)-(c). This completes the proof of Proposition 3.1. \hfill \Box

We now have the means to construct a defining function for a generic $2k$-dimensional real submanifold M in \mathbb{C}^{3k-1}, which is strictly plurisubharmonic except at finitely many points in M. This gives a degenerate Kähler form — defined only in a neighbourhood of M — with respect to which M is isotropic. We will use this construction to prove Corollary 1.3.

Lemma 3.3. Suppose $M \subset \mathbb{C}^{3k-1}$ is a real $2k$-dimensional $(k > 1)$ smooth compact submanifold that is totally real except for finitely many generic CR-singularities $p_1, \ldots, p_n \in M$. Then there exists a smooth function Ψ defined in a neighbourhood \mathcal{U} of M such that

1. $\{ \Psi = 0 \} = M$,
2. $\Psi \geq 0$, and
3. Ψ is strictly plurisubharmonic on $\mathcal{U} \setminus \{ p_1, \ldots, p_n \}$.

In particular, M admits a Stein neighbourhood basis.

Proof. As each p_j, $j = 1, \ldots, n$, is a generic CR-singularity of M, we can use the biholomorphic equivalence of (M, p_j) and $(M(k), O)$, together with Proposition 3.1, to conclude that there exist pairwise disjoint open sets $U_j \ni p_j$ and smooth plurisubharmonic functions $\psi_j : U_j \to \mathbb{R}$, $j = 1, \ldots, n$, such that

(a) $\{ \psi_j = 0 \} = M \cap U_j$,
(b) $\psi_j > 0$ on $U_j \setminus M$, and
(c) ψ_j is strictly plurisubharmonic on $U_j \setminus \{ p_j \}$.

Let $\widetilde{M} := M \setminus \bigcup_{1 \leq j \leq n} U_j$. Then, as \widetilde{M} is totally real in \mathbb{C}^{3k-1}, $\psi_0(z) := \text{dist}^2(z, M)$ is strictly plurisubharmonic on some neighbourhood U_0 of M in \mathbb{C}^{3k-1}. Now, let $\mathcal{U} := \bigcup_{0 \leq j \leq n} U_j$. The neighbourhoods U_j’s in the above construction should be chosen small enough so that $\pi : \mathcal{U} \to M$ given by $z \mapsto p$, where
\[\text{dist}(p, M) = \text{dist}(p, z), \] is well-defined and smooth. Let \(\{\chi_j\}_{0 \leq j \leq n} \) be a partition of unity subordinate to \(\{U_j \cap M\}_{0 \leq j \leq n} \). Define

\[\Psi(z) := \sum_{j=0}^{n} \chi_j(\pi(z))\psi_j(z). \]

Since \(M \cap U_j \subseteq \{\nabla \psi_j = 0\} \), we have that

\[\frac{\partial}{\partial c} \Psi(p) = \sum_{0}^{n} \chi_j(p)\frac{\partial}{\partial c} \psi_j(p), \]

when \(p \in M \). Thus, \(\frac{\partial}{\partial c} \Psi(p) \) is strictly positive on any compact subset of \(M \setminus \{p_1, \ldots, p_n\} \). Moreover, since \(\chi_j \equiv 1 \) near \(p_j \), \(\frac{\partial}{\partial c} \Psi = \frac{\partial}{\partial c} \psi_j \) near \(p_j \). Thus, shrinking \(U \) if necessary, we have that \(\Psi \) is plurisubharmonic on \(U \) and strictly plurisubharmonic on \(U \setminus \{p_1, \ldots, p_n\} \).

To obtain a Stein neighbourhood basis of \(M \), one can take \(\{\Psi < \varepsilon\} \) where \(\Psi \) as above and \(\varepsilon > 0 \) is chosen small enough.

\section{4. Local polynomial convexity at CR-singularities}

For the purpose of our main theorem, we establish the local polynomial convexity of \(M \) at a generic CR-singularity by constructing a global version of \(\psi \) from Proposition 3.1.

\textbf{Proposition 4.1.} Let \(M \) be a \(2k \)-dimensional submanifold of \(\mathbb{C}^{3k-1} \) with a generic CR-singularity at \(p \in M \). Then there exists a neighbourhood \(U \) of \(p \in \mathbb{C}^{3k-1} \) such that for any ball \(B \subset U \), there exists a smooth plurisubharmonic function \(\rho : \mathbb{C}^{3k-1} \to \mathbb{R} \) such that

- \(\{\rho = 0\} = M \cap \bar{B} \),
- \(\rho \geq 0 \), and
- \(\rho \) is strictly plurisubharmonic on \(\mathbb{C}^{3k-1} \setminus \{p\} \).

In particular, \(M \) is locally polynomially convex at \(p \).

\textbf{Proof.} Owing to the biholomorphic equivalence of \((M, p)\) and \((M_k, O)\) (see Section 2) and Proposition 3.1, there is a neighbourhood \(U \subset \mathbb{C}^{3k-1} \) of \(p \in M \) and a smooth plurisubharmonic function \(\psi : U \to \mathbb{R} \) such that

(a) \(\{\psi = 0\} = M \cap \bar{B} \),
(b) \(\psi > 0 \) on \(U \setminus M \), and
(c) \(\psi \) is strictly plurisubharmonic on \(U \setminus \{p\} \).

Now, let \(B \subset U \) be a ball. As \(\bar{B} \) is polynomially convex, there is a smooth plurisubharmonic function \(\sigma \) on \(\mathbb{C}^{3k-1} \setminus \{p\} \) such that

(i) \(\{\sigma = 0\} = \bar{B} \),
(ii) \(\sigma > 0 \) on \(\mathbb{C}^{3k-1} \setminus \bar{B} \), and
(iii) \(\sigma \) is strictly plurisubharmonic on \(\mathbb{C}^{3k-1} \setminus \bar{B} \).

To combine the properties of \(\psi \) and \(\sigma \), we choose balls \(B' \) and \(B'' \) such that \(B \Subset B' \Subset B'' \subset U \). Let \(\chi \in C^\infty(\mathbb{C}^{3k-1}) \) be such that \(0 \leq \chi \leq 1 \), and

\[
\chi(Z) = \begin{cases}
1, & \text{if } Z \in B'; \\
0, & \text{if } Z \in \mathbb{C}^{3k-1} \setminus B''.
\end{cases}
\]
Then, for any $C > 0$, the function $\chi \psi + C\sigma$ is well-defined on \mathbb{C}^{3k-1} as χ vanishes outside U. Moreover, because of property (c) of ψ and (iii) of σ, there is a large enough $C > 0$ such that $\rho = \chi \psi + C\sigma$ is strictly plurisubharmonic on $\mathbb{C}^{3k-1} \setminus \{0\}$. It also follows that ρ vanishes precisely on $M \cap \overline{B}$ and is positive everywhere else. Since plurisubharmonic hulls coincide with polynomial hulls, $M \cap \overline{B}$ is polynomially convex. As $B \subseteq U$ is an arbitrarily chosen ball, M is locally polynomially convex at p. \hfill \Box

Remark. We note that there is a more direct way of proving the local polynomial convexity of M_k at O. For this, we recall the following criterion (an iterated version of Theorem 1.2.16 from [25]). If $X \subseteq \mathbb{C}^n$ is a compact subset and if $G : X \to \mathbb{R}^m$ is a map whose components are in $\mathcal{P}(X)$, then X is polynomially convex if and only if $G^{-1}(t)$ is polynomially convex for each $t \in \mathbb{R}^m$. Now, choosing the restriction to M_k of $G : \mathbb{C}^{3k-1} \to \mathbb{C}^{2k-2}$ that maps $Z \mapsto (w_1, \ldots, w_{2k-2})$, and noting that the subalgebra generated by z and \overline{z} in $\mathcal{C}(\overline{D}_z)$ coincides with $\mathcal{C}(\overline{D}_z)$ (see [19]), we have that every fibre of G is polynomially convex. Hence, by the criterion stated above, M_k is locally polynomially convex at O.

We now use Propositions 3.1 and 4.1 to prove a lemma that allows us to simultaneously handle multiple CR-singularities.

Lemma 4.2. Suppose $M \subset \mathbb{C}^{3k-1}$ is a real $2k$-dimensional ($k > 1$) smooth compact submanifold that is totally real except for finitely many generic CR-singularities $p_1, \ldots, p_n \in M$. For $r > 0$, define

$$B_p(r) := \bigcup_{j \leq n} \overline{B}_{p_j}(r), \quad p = \{p_1, \ldots, p_n\}.$$

Then, there exists an $r > 0$ such that

1. $B_p(r')$ is polynomially convex for all $r' \leq 3r$,
2. $B_p(r') \cap M$ is polynomially convex for all $r' \leq 3r$, and
3. For small enough $\varepsilon > 0$ and any diffeomorphism ϕ of \mathbb{C}^{3k-1} satisfying $\phi = \text{Id}$ on $B_p(r)$ and outside a tubular neighbourhood of M, and $\|\phi - \text{Id}\|_{C^3(\mathbb{C}^{3k-1})} < \varepsilon$,

the set $\phi(M) \cap B_p(2r)$ is polynomially convex.

Proof. To prove (1), we use induction on the number of CR-singularities of M to show that $B_p(3r)$ is polynomially convex for some $r > 0$. Let us assume that if M has m CR-singularities, then there is an $r > 0$ such that $B_p(3r)$ is polynomially convex, where $p = \{p_1, \ldots, p_m\}$ is the set of CR-singularities of M. Since the union of two disjoint balls is polynomially convex, this assumption holds if $m \leq 2$. Now suppose the set of CR-singularities of M is $p' = \{p_1, \ldots, p_m, p_{m+1}\}$. We claim that for some $r > 0$, $B_{p'}(3r) = B_p(3r) \cup \overline{B}_{p_{m+1}}(3r)$ is polynomially convex. To see this, first we choose $r > 0$ so that $B_p(3r)$ is polynomially convex (the induction hypothesis grants this), and $B_p(3r)$ and $\overline{B}_{p_{m+1}}(3r)$ are disjoint. As $B_p(3r)$ is rationally convex and $p_{m+1} \notin B_p(3r)$, there is a polynomial H on \mathbb{C}^{3k-1} such that $H(p_{m+1}) = 0$ but H does not vanish on $B_p(3r)$. Thus, $1/H$ is holomorphic in a neighbourhood of $B_p(3r)$. By the Oka-Weil theorem for polynomially convex sets, there exists a sequence $\{Q_j\}_{j \in \mathbb{N}}$ of polynomials on \mathbb{C}^{3k-1} that converges to $1/H$ uniformly on $B_p(3r)$. Thus, the sequence of polynomials $\{HQ_j\}_{j \in \mathbb{N}}$ converges to the constant function 1 on $B_p(3r)$ and vanishes identically at p_{m+1}. Hence, for some sufficiently large $j \in \mathbb{N}$ and a sufficiently small $r > 0$, the polynomial $P := HQ_j$ maps $B_p(3r)$ to the point 1 and $\overline{B}_{p_{m+1}}(3r)$ into $\overline{D}_{1/2}$ in \mathbb{C}. By Kalinin’s lemma, $B_p(3r) \cup \overline{B}_{p_{m+1}}(3r) = B_{p'}(3r)$ is polynomially convex. Thus, we have (1) for $r' = 3r$ by induction. The proof of (1) for $r' < 3r$ now follows easily.
For (2), we will repeat the technique used in the proof of Proposition 4.1. First, we assume that \(r > 0 \) is such that (1) holds, and there exists a smooth plurisubharmonic function \(\psi \) defined in a neighbourhood \(U \) of \(\bar{B}_p(3r) \) such that

(a) \(\{ \psi = 0 \} = M \cap U \),
(b) \(\psi > 0 \) on \(U \setminus M \), and
(c) \(\psi \) is strictly plurisubharmonic on \(U \setminus \{ p \} \).

The latter can be arranged due to Proposition 3.1. Now, let \(r' \leq 3r \). As \(B_p(r') \) is polynomially convex, there is a smooth plurisubharmonic function \(\sigma \) on \(\mathbb{C}^{3k-1} \) such that

(i) \(\{ \sigma = 0 \} = B_p(r') \),
(ii) \(\sigma > 0 \) on \(\mathbb{C}^{3k-1} \setminus B_p(r') \), and
(iii) \(\sigma \) is strictly plurisubharmonic on \(\mathbb{C}^{3k-1} \setminus B_p(r') \).

Next, we choose \(r_1, r_2 > 0 \) such that \(r' < r_1 < r_2 \) and \(B_p(r_2) \Subset U \), and define \(\chi \in C^\infty(\mathbb{C}^{3k-1}) \) such that \(0 \leq \chi \leq 1 \), and

\[
\chi(Z) = \begin{cases}
1, & \text{if } Z \in B_p(r_1); \\
0, & \text{if } Z \in \mathbb{C}^{3k-1} \setminus B_p(r_2).
\end{cases}
\]

As in the proof of Proposition 4.1, there is a large enough \(C > 0 \) such that \(\rho = \chi \psi + C \sigma \) is strictly plurisubharmonic on \(\mathbb{C}^{3k-1} \setminus p \) and vanishes precisely on \(M \cap B_p(r') \). Thus, (2) is proved.

In order to prove (3), we rely on the function \(\rho \) constructed above. Let \(r > 0 \) be such that (1) and (2) hold. Let \(\varepsilon > 0 \) be such that for any diffeomorphism \(\phi \) of \(\mathbb{C}^{3k-1} \) satisfying

- \(\phi = \text{Id on } B_p(r) \) and outside a tubular neighbourhood of \(M \), and
- \(||\phi - \text{Id}||_{C^2(\mathbb{C}^{3k-1})} < \varepsilon \),

the set \(K := \phi(M \cap B_p(3r)) \) satisfies \(\mathcal{P}(K) = \mathcal{C}(K) \). This is because, for \(\varepsilon > 0 \) small enough, the function \(\tilde{\rho} := \rho \circ \phi^{-1} \) is strictly plurisubharmonic on \(\mathbb{C}^{3k-1} \setminus p \). Since \(\tilde{\rho} \) vanishes precisely on \(K \), \(K \) is polynomially convex (and holomorphically convex). Moreover, \(K \setminus p \) is a totally real submanifold of \(\mathbb{C}^{3k-1} \setminus p \), and any continuous function on \(p \) can be approximated uniformly on \(p \) by holomorphic polynomials (\(p \) is polynomially convex). Thus, by a result due to O’Farrel-Preskenis-Walsch (stated in Section 2) and the Oka-Weil theorem for polynomially convex sets, \(\mathcal{P}(L) = \mathcal{C}(L) \) for all compact subsets \(L \) of \(K \). Shrinking \(\varepsilon > 0 \) further, if necessary, we ensure that for \(\phi \) as above, \(\phi(M) \cap B_p(2r) \) is a compact subset of \(\phi(M \cap B_p(3r)) \). Thus, \(\mathcal{P}(\phi(M) \cap B_p(2r)) = \mathcal{C}(\phi(M) \cap B_p(2r)) \). This implies that \(\phi(M) \cap B_p(2r) \) is polynomially convex. The proof of the lemma is now complete. \(\square \)

5. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. Let \(\iota : M \hookrightarrow \mathbb{C}^{3k-1} \) be the inclusion map of a smooth \(2k \)-dimensional submanifold \(M \subset \mathbb{C}^{3k-1} \). Fix \(s \geq 2 \). By Thom’s Transversality Theorem, there exists a \(C^s \)-small perturbation \(j \) of \(\iota \) such that \(j(M) \) is smooth and totally real except at a finite number of CR-singular points (see [7, Section 1] for details). Without loss of generality, we may further assume that \(j(M) \) has generic CR-singular points (see end of Section 2). Let \(p \) denote the set of CR-singularities of \(j(M) \). From Lemma 4.2, we know that there exists an open neighbourhood \(U \) of \(p \) contained in \(j(M) \) such that \(K := \overline{U} \) is polynomially convex and \(j(M) \setminus U \) is a compact submanifold of \(\mathbb{C}^{3k-1} \) with boundary. Since, \(j(M) \setminus U \) is totally real, we can now apply the following result due to Arosio-Wold (see [1, Theorem 1.4]). Let \(N \) be a compact smooth
This is possible because of O’Farrel-Preskenis-Walsch \cite{18}. Let \(N \) be a compact smooth manifold (possibly with boundary) of dimension \(d < n \) and let \(f : N \to \mathbb{C}^n \) be a totally real \(C^\infty \)-embedding. Let \(K \subset \mathbb{C}^n \) be a compact polynomially convex set. Then for all \(s \geq 1 \) and for all \(\varepsilon > 0 \), there exists a totally real \(C^\infty \)-embedding \(f_\varepsilon : N \to \mathbb{C}^n \) such that

1. \(||f - f_\varepsilon||_{C^s(N)} < \varepsilon \)
2. \(f_\varepsilon = f \) near \(f^{-1}(K) \), and
3. \(K \cup f_\varepsilon(N) \subset U \cup f_\varepsilon(N) \).

In our situation, \(N = M \setminus j^{-1}(U) \), \(f = j|_N \) and \(K = \overline{U} \). Let \(\varepsilon > 0 \) be arbitrary. We set \(M' := f_\varepsilon(M \setminus j^{-1}(U)) \cup U \) to obtain a polynomially convex perturbation of \(M \) that is totally real outside of the finite set \(p \).

Remark. The proof of the Arosio-Wold result used above depends crucially on the following lemma (an earlier version is due to Loe-Wold in \cite{18}). Let \(N \) be a compact smooth manifold (possibly with boundary) of dimension \(d < n \) and let \(f : N \to \mathbb{C}^n \) be a totally real \(C^\infty \)-embedding. Let \(K \subset \mathbb{C}^n \) be a compact polynomially convex set, and \(U \) be a neighbourhood of \(K \). Then for all \(s \geq 1 \) and for all \(\varepsilon > 0 \), there exists a totally real \(C^\infty \)-embedding \(f_\varepsilon : N \to \mathbb{C}^n \) such that

1. \(||f - f_\varepsilon||_{C^s(N)} < \varepsilon \)
2. \(f_\varepsilon = f \) near \(f^{-1}(K) \), and
3. \(K \cup f_\varepsilon(N) \subset U \cup f_\varepsilon(N) \).

In our setting, our result can be obtained directly from this lemma using the following argument. Choose \(r > 0 \) granted by Lemma 4.2. Let \(K = B_p(r) \), \(U = \text{int} B_p(2r) \) and \(N = M \setminus j^{-1}(U) \). Note that \(r \) is chosen so that \(K \) is polynomially convex. Then, letting \(\varepsilon > 0 \) be small enough, we obtain an \(f_\varepsilon : N \to \mathbb{C}^{3k-1} \) such that

\[
(5.1) \quad K \cup f_\varepsilon(N) \subset \text{int} B_p(2r) \cup f_\varepsilon(N).
\]

We extend \(f_\varepsilon \circ f^{-1} \) to a diffeomorphism \(\phi \) of \(\mathbb{C}^{3k-1} \) satisfying

* \(\phi = \text{Id} \) on \(B_p(r) \) and outside a tubular neighbourhood of \(M \), and
* \(||\phi - \text{Id}||_{C^2(\mathbb{C}^{3k-1})} < \varepsilon \).

This is possible because \(f_\varepsilon \circ f^{-1} \) is identity near \(K \). Now, (5.1) can be rewritten as

\[
\overline{\phi(M)} \subset \text{int} B_p(2r) \cup \phi(M).
\]

But, \(\phi(M) \cap B_p(2r) \) is polynomially convex (by Lemma 4.2). By Rossi’s maximum principle, we have that

\[
\overline{\phi(M)} \subset \phi(M) \cup (\phi(M) \cap B_p(2r)).
\]

Thus, \(M' := \phi(M) \) is polynomially convex (and totally real away from \(p \)).

Proof of Corollary 1.2. Let \(M \) be a compact \(2k \)-dimensional abstract manifold without boundary. By Theorem 1.1, there exists a \(C^\infty \)-smooth embedding \(F = (f_1, \ldots, f_{3k-1}) : M \to \mathbb{C}^{3k-1} \) such that \(F(M) \) is polynomially convex and totally real outside a finite set \(p \subset F(M) \). For any compact set \(X \subset \mathbb{C}^n \), we let

\[
\mathcal{O}(X) = \{ f|_X : f \text{ is holomorphic in some open neighbourhood of } X \}.
\]

Note that \(X := F(M) \) and \(X_0 := p \) satisfy the hypothesis of the result due to O’Farrel-Preskenis-Walsch \cite{21} stated in Section 2. Hence, \(\mathcal{O}(F(M)) = C(F(M)) \). Further, by the Oka-Weil theorem for polynomially
convex sets, we have that \(\mathcal{P}(X) = \overline{\mathcal{O}(F(M))} \). Thus, \(\{ P \circ F : P \text{ is a holomorphic polynomial on } \mathbb{C}^{3k-1}\} \) is dense in \(\mathcal{C}(M) \). In other words, \(\{ f_1, \ldots, f_{3k-1}\} \) is a PD-basis of \(\mathcal{C}(M) \).

Now, if \(M \) is a manifold with boundary, Theorem 1.1 guarantees a smooth embedding \(F : M \to \mathbb{C}^{3k-1} \) such that \(F(M) \) is totally real and polynomially convex (see the comment following the statement of Theorem 1.1). We fix an \(\ell \geq 0 \), a \(g \in \mathcal{C}^\ell(M) \) and an arbitrary \(\varepsilon > 0 \). Let \(\bar{c} = C\varepsilon \), where \(C \) is a constant to be determined later. Since \(F(M) \) is totally real, a result due to Range-Siu (see Theorem 1 in [22]; although not explicitly stated, the result therein works for compact manifolds with or without boundary) grants the existence of a neighbourhood \(U \) of \(F(M) \) and a \(h \in \mathcal{O}(U) \) such that

\[
\|g - h\|_{C^\ell(F(M))} < \bar{c}.
\]

Due to the polynomial convexity of \(F(M) \), we can find a neighbourhood \(V \Subset U \) of \(F(M) \), such that \(\mathcal{V} \) is polynomially convex. By the Oka-Weil approximation theorem, there is a polynomial \(P \in \mathcal{C}^n \) such that

\[
\|h - P\|_{C(\mathcal{V})} < \bar{c}.
\]

As \(F(M) \) is compact, there is an \(r > 0 \) such that \(B_r(r) \Subset V \) for all \(x \in F(M) \). We fix an \(x \in F(M) \). As \(h - P \in \mathcal{O}(B_x(r)) \), we can combine Cauchy estimates and (5.3) to obtain

\[
\left| h^{(j)}(x) - P^{(j)}(x) \right| \leq \frac{j!}{r^j} \sup_{y \in B_x(r)} |h(y) - P(y)| \leq \frac{j!}{r^j} \bar{c},
\]

for any \(j \in \mathbb{N}_+ \). So, we obtain from (5.2) and (5.4) that

\[
\begin{align*}
\|g - P\|_{C^\ell(F(M))} &\leq \|g - h\|_{C^\ell(F(M))} + \|h - P\|_{C^\ell(F(M))} \\
&= \|g - h\|_{C^\ell(F(M))} + \sum_{j=0}^{k} \|h^{(j)} - P^{(j)}\|_{C(F(M))} \\
&< \bar{c} \left(1 + \sum_{j=0}^{k} \frac{j!}{r^j} \right) = C\varepsilon \left(1 + \sum_{j=0}^{k} \frac{j!}{r^j} \right).
\end{align*}
\]

Setting \(C = \left(1 + \sum_{j=0}^{k} \frac{j!}{r^j} \right)^{-1} \), we obtain that \(\|g - P\|_{C^\ell(M)} < \varepsilon \). Since \(\varepsilon \) and \(g \) were chosen arbitrarily, and \(C \) is independent of \(\varepsilon \), we conclude that polynomials are dense in the space of \(\mathcal{C}^\ell \)-smooth functions on \(F(M) \) in the \(\ell \)-norm. Thus, the components of \(F \) form a PD-basis of \(\mathcal{C}^\ell(M) \), for every \(\ell \geq 0 \).

\[\square\]

Remark. The following statement is implicit in the above proof. If we view a PD-basis of \(M \) from \(M \) to \(\mathbb{C}^{3k-1} \), then the set of all PD-bases of \(\mathcal{C}(M) \) is dense in \(\mathcal{C}(M; \mathbb{C}^{3k-1}) \). This follows from the fact that smooth embeddings of \(M \) into \(\mathbb{C}^{3k-1} \) are dense in \(\mathcal{C}(M; \mathbb{C}^{3k-1}) \) for \(k > 1 \).

Proof of Corollary 1.3. Suppose \(M \) is a \(2k \)-dimensional smooth compact closed submanifold of \(\mathbb{C}^{3k-1} \). By Theorem 1.1, there exists a \(\mathcal{C}^\infty \)-small perturbation \(M' \) of \(M \) such that \(M' \) is totally real except at finitely many generic CR-singularities, say \(p_1, \ldots, p_n \), and \(M' \) is polynomially convex. In particular, \(M' \) is rationally convex. Thus, as a consequence of a characterization of rationally convex hulls due to Duval-Sibony (see [8, Remark 2.2]), there is a smooth plurisubharmonic function \(\theta : \mathbb{C}^{3k-1} \to \mathbb{R} \) such that \(\omega = dd^c \theta \) vanishes on \(M' \) and is strictly positive outside \(M' \). Moreover, as \(M' \) satisfies the hypothesis of Lemma 3.3, there is a neighbourhood \(U \) of \(M' \) and a smooth plurisubharmonic function \(\Psi : U \to \mathbb{R} \) such that \(\{ z \in U : \Psi(z) = 0 \} = M \) and \(\Psi \) is strictly plurisubharmonic on \(U \setminus \{ p_1, \ldots, p_n \} \). Let \(\chi : \mathbb{C}^{3k-1} \to \mathbb{R} \) be a compactly supported nonnegative function that is identically 1 on some neighbourhood \(W \Subset U \). For
a large enough \(C \), the function \(\varphi := C\theta + \chi\Psi \) is well-defined and strictly plurisubharmonic except at \(p_1, \ldots, p_n \). Since the gradient of \(\psi \) vanishes along \(M' \), we also have that \(\iota^*dd^c\varphi = \iota^*dd^c\Psi = d(\iota^*d^c\Psi) = 0 \), where \(\iota : M' \to \mathbb{C}^{3k-1} \) is the inclusion map. Thus, \(M' \) is isotropic with respect to the degenerate Kähler form \(dd^c\varphi \).

\[\square \]

6. Appendix: Proof of Lemma 3.2

The main technical ingredient of this paper relies on Lemma 3.2. It is a mild generalization of Lemma 4 in Slapar’s work [24], whose proof has been omitted there due to its close analogy with the proof of Lemma 3 therein. For the sake of completeness, we reproduce Slapar’s technique to provide a full proof of Lemma 3.2. We continue to use the notation established in Section 2.

Lemma 3.2. Let

\[
S_\alpha = \left\{ Z' = (z, w_1, \ldots, w_{2k-2}, w) \in \mathbb{C}^{2k} : \begin{array}{l}
\text{Im}(w_1) = \cdots = \text{Im}(w_{2k-2}) = 0, \\
w = \frac{\alpha}{2}|z|^2 + \frac{1}{4}(z^2 + \overline{z}^2) \end{array} \right\}.
\]

For each \(\alpha < 0.46 \), there is a neighbourhood \(V_\alpha \) of the origin in \(\mathbb{C}^{2k} \) and a smooth plurisubharmonic function \(\rho_\alpha : V_\alpha \mapsto \mathbb{R} \) such that

\[
\begin{align*}
\star & \ \{ \rho_\alpha = 0 \} = S_\alpha \cap V_\alpha, \\
\star & \ \rho_\alpha > 0 \text{ on } V_\alpha \setminus S_\alpha. \\
\star & \ \rho_\alpha \text{ is strictly plurisubharmonic on } V_\alpha \setminus Y, \text{ where}
\end{align*}
\]

\[
Y := \{ Z' \in \mathbb{C}^{2k} : z = \text{Im} w_1 = \cdots = \text{Im} w_{2k-2} = w = 0 \}.
\]

Proof. We consider new real (nonholomorphic) coordinates in \(\mathbb{C}^{2k} \), given by

\[
\begin{aligned}
x &= \text{Re} z, \ y = \text{Im} z, \\
u_j &= \text{Re} w_j, \ v_j = \text{Im} w_j, \quad 1 \leq j \leq 2k-2, \\
u &= \text{Re} w - \frac{\alpha}{2}|z|^2 - \frac{1}{4}(z^2 + \overline{z}^2), \ v = \text{Im} w.
\end{aligned}
\]

(6.1)
For this expression to be nonnegative, it suffices for the following equalities and inequalities to hold.

\[
4\partial_{x,x} = \Delta_{x,y} - 2((\alpha + 1)x\partial_x + (\alpha - 1)y\partial_y + \alpha)\partial_u
\]

\[
+ (\alpha + 1)^2x^2 + (\alpha - 1)^2y^2)\partial_u,
\]

\[
4\partial_{x,y} = \partial_{x,u} + \partial_{y,v} + i(\partial_{x,v} - \partial_{y,u}) - (\alpha + 1)x(\partial_{u,j} + i\partial_{v,j})\partial_u
\]

\[
+ (\alpha - 1)y(\partial_{v,j} - i\partial_{u,j})\partial_u, \quad 1 \leq j \leq 2k - 2,
\]

\[
4\partial_{u,j} = \partial_{x,u} + \partial_{y,v} + i(\partial_{x,v} - \partial_{y,u}) - (\alpha + 1)x - i(\alpha - 1)y\partial_{u,u}
\]

\[
- (\alpha - 1)y + i(\alpha + 1)x)\partial_{u,u},
\]

\[
4\partial_{w,j} = \partial_{w,j} + \partial_{v,j} + i(\partial_{v,j} - \partial_{w,j})\partial_{u,u}, \quad 1 \leq j, l \leq 2k - 2,
\]

\[
4\partial_{w,j} = \partial_{u,j,v} + \partial_{v,j} + i(\partial_{u,j,v} - \partial_{v,j})\partial_{u,u}, \quad 1 \leq j \leq 2k - 2,
\]

\[
4\partial_{w,j} = \Delta_{u,j,v}, \quad 1 \leq j \leq 2k - 2,
\]

\[
4\partial_{w,j} = \Delta_{u,v}.
\]

Consider the following homogenous polynomial in \(\mathbb{R}[x^2, y^2, u]\) of degree 4.

\[
P_\alpha(x^2, y^2, u) = u^4 + ((4\alpha + c)x^2 - cy^2) u^3 + (Ax^4 + Bx^2y^2 + A'y^4) u^2.
\]

Using (6.2), we have that

\[
4\frac{\partial^2 P_\alpha}{\partial x\partial y} =
\]

\[
= \left[6(\alpha + 1)^2 - 3(4\alpha + c)(3\alpha + 2) + 6A + B\right] x^2 + [6(\alpha - 1)^2 + (9\alpha - 6)c + B + 6A'] y^2 \right] 2u^2
\]

\[
+ \left[(6\alpha + 1)^2(4\alpha + c) - 4A(5\alpha + 4)x^4 + (4\alpha' - 5\alpha)(9\alpha - 6) - 6(\alpha - 1)^2 c) y^{4}\right] u
\]

\[
+ \left[24\alpha((\alpha - 1)^2 - c) - 20\alpha B)x^2y^2\right] u
\]

\[
+ (6\alpha + 1)^2 x^2 + (\alpha - 1)^2 y^2 \right) (Ax^4 + Bx^2y^2 + A'y^4).
\]

For this expression to be nonnegative, it suffices for the following equalities and inequalities to hold.

(1) \(A = \frac{3(\alpha + 1)^2(4\alpha + c)}{2(5\alpha + 4)}\);

(2) \(A' = \frac{3(\alpha - 1)^2}{2(4 - 5\alpha)}\)

(3) \(B = \frac{6}{5}((\alpha - 1)^2 - c)\);

(4) \(6A + B + 6(\alpha + 1)^2 > 3(4\alpha + c)(3\alpha + 2)\);

(5) \(6A' + B + 6(\alpha - 1)^2 > (6 - 9\alpha)c\).

Also, we want that \(P_\alpha\) is strictly positive for \(u \neq 0\) and \((x, y)\) small. We use the following lemma for this.

Lemma 6.1 ([24, Lemma 2.]). Let \(p(x, y, u) = u^2 + b_1(x, y)u + b_0(x, y)\), where \(b_0, b_1\) are continuous functions in a neighbourhood of the origin in \(\mathbb{R}^3\), both vanishing at \((0, 0)\). Suppose \(b_1^2 < 4b_0\) for small \((x, y) \neq (0, 0)\). Then, there exists a small neighbourhood \(U\) of the origin in \(\mathbb{R}^3\) such that \(p\) is strictly positive on \(U \setminus \{u = 0\}\).
The above lemma yields the following constraints on A, A' and c.

(6) $(4\alpha + c)^2 < 4A$;
(7) $c^2 < 4A'$.

To find constants A, B and A' that are positive and satisfy inequalities (4) – (7), it suffices to find a $c > 0$ such that

$$c < \min \left\{ (\alpha - 1)^2, \frac{16 + 8\alpha - 64\alpha^2 - 60\alpha^3}{11 + 30\alpha + 20\alpha^2}, \frac{4(\alpha - 1)^2(4 - 5\alpha)}{20\alpha^2 - 30\alpha + 11}, \frac{6 - 4\alpha - 14\alpha^2}{4 + 5\alpha} \right\}.$$

The above condition follows from the positivity assumption on B and by writing inequalities (4) – (7) purely in terms of c and α with the means of (1) – (3). As long as $\alpha < 0.46$, the right-hand side of (6.3) is positive. Thus, there exists a homogeneous polynomial P_{α} of degree 4 in $\mathbb{R}[x^2, y^2, u]$ such that

- $P_{\alpha} > 0$ for $u \neq 0$ and (x, y) small enough;
- $\frac{\partial^2 P_{\alpha}}{\partial z \partial z} = 0$ when $(x, y) = (0, 0)$, but is strictly positive otherwise; and
- $\frac{\partial^2 P_{\alpha}}{\partial z \partial w} = q_1u^2 + q_3$, where $q_1, q_3 \in \mathbb{R}[x^2, y^2]$ are polynomials of degree 1 and 3, respectively, with strictly positive coefficients.

Now consider

$$Q_{\alpha}(z, w_1, ..., w_{2k-2}, w) = P_{\alpha}(x^2, y^2, u) + (x^2 + y^2)u^4 + \frac{1}{2} \left(\sum_{j=1}^{2k-2} v_j^2 + v^2 \right),$$

where the coordinates $(z, w_1, ..., w_{2k-2}, w)$ and $(x, y, u_1, v_1, ..., u_{2k-2}, v_{2k-2}, u, v)$ are as in (6.1). Note that

$$\frac{\partial^2 Q_{\alpha}}{\partial z \partial w} = u^4 - (4\alpha)u^3 + (q_2 + \varepsilon q_1)u^2 + (1 - \varepsilon)q_1u^2 + q_3,$$

where $q_2 \in \mathbb{R}[x^2, y^2]$ is of degree 2. By Lemma 6.1, for any $\varepsilon > 0$, $u^4 - (4\alpha)u^3 + (q_2 + \varepsilon q_1)u^2$ is strictly positive for $u \neq 0$ and (x, y) small enough. So, there is a neighbourhood \mathcal{V}_{α} of the origin such that

$$\frac{\partial^2 Q_{\alpha}}{\partial z \partial w} \geq R_3,$$

where $R_3 = \sum r_{j,k,l} (x^2)^j (y^2)^k u^l$ is a homogeneous polynomial in $\mathbb{R}[x^2, y^2, u]$ of degree 3, which is nondegenerate in the sense that all $r_{j,k,l} > 0$ whenever l is even. Next, we have that

$$\frac{\partial^2 Q_{\alpha}}{\partial w \partial u} = \frac{\Delta_{w,u} P_{\alpha}}{4} + 3(x^2 + y^2)u^2 + \frac{1}{4} > \frac{1}{8},$$

Using (6.2), we also note that

$$\left| \frac{\partial^2 Q_{\alpha}}{\partial z \partial w} \right|^2 < R_3,$$

where $R_3(x^2, y^2, u)$ is some homogeneous polynomial of degree 5. Combining these estimates, we have that

$$\frac{\partial^2 Q_{\alpha}}{\partial z \partial u} \frac{\partial^2 Q_{\alpha}}{\partial w \partial u} - \left| \frac{\partial^2 Q_{\alpha}}{\partial z \partial w} \right|^2 \geq R_3 - R_5,$$
which — owing to the nondegeneracy of R_3 — is positive on V_α (shrinking if necessary) as long as $(x, y, u) \neq (0, 0, 0)$. As the characteristic polynomial of $\text{Hess} \ Q_\alpha$ (in the variable λ) is

$$\left(\lambda - \frac{1}{4} \right)^{2k-2} \left(\lambda^2 - \left(\frac{\partial^2 Q_\alpha}{\partial \bar{z} \partial z} + \frac{\partial^2 Q_\alpha}{\partial \bar{w} \partial w} \right) \lambda + \frac{\partial^2 Q_\alpha}{\partial \bar{z} \partial z} \frac{\partial^2 Q_\alpha}{\partial \bar{w} \partial w} - \left(\frac{\partial^2 Q_\alpha}{\partial \bar{z} \partial w} \right)^2 \right),$$

we obtain that Q_α is a plurisubharmonic function on V_α satisfying

- $Q_\alpha^{-1}(0) \cap V_\alpha = S_\alpha \cap V_\alpha$.
- $Q_\alpha > 0$ on $V_\alpha \setminus S_\alpha$.
- Q_α is strictly plurisubharmonic on $V_\alpha \setminus \{x = y = u = 0\}$.

To complete the construction of ρ_α, let $\eta(z, w_1, \ldots, w_{2k-2}, w) = \left(\frac{1}{2} + x^2 + y^2 \right) \left(\sum_{j=1}^{2k-2} v_j^2 + v^2 \right)$. In a small enough neighbourhood V of the origin, η is plurisubharmonic, and strictly plurisubharmonic when $(v_1, \ldots, v_{2k-2}, v) \neq (0, \ldots, 0, 0)$. Finally, to obtain the desired neighbourhood and function, set $V_\alpha := V \cap V$ and $\rho_\alpha := Q_\alpha + \eta$. This completes the proof of Lemma 3.2. \qed

References

[1] L. Arosio and E. F. Wold. Totally real embeddings with prescribed polynomial hulls. *arXiv preprint*, https://arxiv.org/pdf/1702.01002.pdf, 2017.

[2] M. Audin, F. Lalonde, and L. Polterovich. Symplectic rigidity: Lagrangian submanifolds. In *Holomorphic curves in symplectic geometry*, pages 271–321. Springer, 1994.

[3] V. K. Beloshapka. The normal form of germs of four-dimensional real submanifolds in \mathbb{C}^5 at generic R\&C-singular points. *Math. Notes*, 61(5):777–779, 1997.

[4] E. Bishop. Differentiable manifolds in complex Euclidean space. *Duke Math. J.*, 32:1–21, 1965.

[5] A. Coffman. Analytic stability of the CR cross-cap. *Pacific J. Math.*, 226(2):221–258, 2006.

[6] A. Coffman. *Unfolding CR singularities*. American Mathematical Society, 2010.

[7] A. V. Domrin. A description of characteristic classes of real submanifolds in complex manifolds via RC-singularities. *Izv. Math.*, 59(5):899–918, 1995.

[8] J. Duval and N. Sibony. Polynomial convexity, rational convexity, and currents. *Duke Math. J.*, 79(2):487–513, 1995.

[9] F. Forstnerič. Approximation by automorphisms on smooth submanifolds of \mathbb{C}^n. *Math. Ann.*, 300(1):719–738, 1994.

[10] F. Forstnerič. *Stein manifolds and holomorphic mappings*. Springer, 2011.

[11] F. Forstnerič and J.-P. Rosay. Approximation of biholomorphic mappings by automorphisms of \mathbb{C}^n. *Invent. Math.*, 112(1):323–349, 1993.

[12] F. Forstnerič and E. L. Stout. A new class of polynomially convex sets. *Ark. Mat.*, 29(1):51–62, 1991.

[13] M. Golubitsky and V. Guillemin. *Stable mappings and their singularities*. Springer-Verlag, 1973.

[14] P. Gupta and R. Shafikov. Stable and polynomial density on compact real manifolds. *Internat. J. Math.*, 28(05):1750040, 17pp, 2017.

[15] P. T. Ho, H. Jacobowitz, and P. Landweber. Optimality for totally real immersions and independent mappings of manifolds into \mathbb{C}^n. *New York J. Math.*, 18:463–477, 2012.

[16] B. Jörnche. Local polynomial hulls of discs near isolated parabolic points. *Indiana Univ. Math. J.*, pages 789–826, 1997.

[17] H. F. Lai. Characteristic classes of real manifolds immersed in complex manifolds. *Trans. Amer. Math. Soc.*, 172:1–33, 1972.

[18] E. Low and E. F. Wold. Polynomial convexity and totally real manifolds. *Complex Var. and Elliptic Equ.*, 54(3-4):265–281, 2009.

[19] S. Minsker. Some applications of the Stone-Weierstrass theorem to planar rational approximation. *Proc. Amer. Math. Soc.*, 58(1):94–96, 1976.

[20] R. Nirenberg and R. O. Wells Jr. Holomorphic approximation on real submanifolds of a complex manifold. *Bull. Amer. Math. Soc.*, 73(3):378–381, 1967.
[21] A. G. O’Farrell, J. K. Preskenis, and D. Walsh. Holomorphic approximation in Lipschitz norms. *Proceedings of the conference on Banach algebras and several complex variables (New Haven, Conn., 1983)* Contemp. Math., 32:187–194, 1984.

[22] R. M. Range and Y.-T. Siu. C^k-approximation by holomorphic functions and closed forms on C^k-submanifolds of a complex manifold. *Math. Ann.*, 210(2):105–122, 1974.

[23] R. Shafikov and A. Sukhov. Rational approximation and lagrangian inclusions. *To appear in Enseign. Math.*

[24] M. Slapar. On Stein neighborhood basis of real surfaces. *Math. Z.*, 247(4):863–879, 2004.

[25] E. L. Stout. *Polynomial convexity*, volume 261. Springer Science & Business Media, 2007.

[26] S. Webster. The Euler and Pontrjagin numbers of an n-manifold in \mathbb{C}^n. *Comment. Math. Helvetici*, 60:193–216, 1985.

[27] J. Wiegerinck. Local polynomially convex hulls at degenerated CR singularities of surfaces \mathbb{C}^2. *Indiana Univ. Math. J.*, pages 897–915, 1995.

Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, U.S.A., purvi.gupta@rutgers.edu

Department of Mathematics, University of Western Ontario, Middlesex College, London, Ontario N6A 5B7, Canada, shafikov@uwo.ca