Traffic noise level handling on A P Pettarani road towards elevated toll road construction

N Azizah¹, M Hustim² and M Pasra²
¹Department of Civil Engineering, Hasanuddin University, Makassar, Indonesia
²Department of Environmental Engineering, Hasanuddin University, Makassar, Indonesia

Email: nurulazizahyala@yahoo.co.id

Abstract. The construction of the elevated toll road is part of the transportation network system, in addition to managing the traffic system in the area to be more integrated, the facility is also used to deal with congestion that often occurs, as well as the construction plan of elevated toll on Pettarani road is expected to reduce the level of congestion that occurs. Based on previous studies, the prediction of noise levels on AP. Pettarani roads when the elevated toll road is operating is 80.4 dB in 2011, 79.8 dB in 2014, and 80.4 dB in 2017. Therefore, we need a way to handle the noise level on the AP Pettarani road if the elevated toll road is operating. Traffic load analysis is performed using the V-S-D (volume, speed and density) model analysis. The V-S-D model analysis consists of 3 models namely the Greenshield Model, the Greenberg Model, and the Underwood Model. The results of the V-S-D model analysis obtained are the Underwood Model at each point of the scenario so that it is used to calculate the average speed on the road segment according to the traffic volume. Then the results of the analysis and statistical tests through several variations of the simulation have obtained the best noise level handling by using traffic loading on the AP Pettarani Road through 50% motorcycle switch to the BRT (Bus Rapid Transyt) and can reduce the noise level by 3.05 dB.

1. Introduction
The construction of the elevated toll road is part of the transportation network system, in addition to managing the traffic system in the area to be more integrated, the facility is also used to deal with congestion that often occurs, as well as the construction plan of an elevated toll on AP. Pettarani road is expected to reduce the level of congestion that occurs. Overall, the existence of the elevated toll road will have a positive impact. However, after the road is operated. It is estimated to have several impacts including a decrease in environmental quality, namely high noise levels. Traffic noise will cause environmental discomfort. Based on previous studies the average noise level on the AP. Pettarani road in 2011 was 74 dB, in 2014 it was 79.8 dB, and in 2017 it was 80.4 dB [1], [2]. Then based on previous studies the prediction of noise levels on AP. Pettarani roads is 79.58 dB when the elevated toll road operates with 25% shift estimated volume of vehicles to the elevated toll road [3]. This shows that the noise level on AP Pettarani increased Road. During the three years of research and has exceeded the noise level standard according to Minister of Environment Decree No. Kep-48 / MENLH / 1/1996, namely 60 dB for Allotment of Government Areas and public facilities [4]. Then we need a way to handle the noise level on the AP. Pettarani road when it is operating.
2. Research method

Research conducted is a type of quantitative analysis. Primary data are data of road segments, road characteristics, and location points to measure traffic volume, vehicle speed measurements, and vehicle noise level measurements [5]. Secondary data are the AP Pettarani road map and technical specifications for the AP Pettarani Toll Road. Data analysis is performed in mitigating noise levels using the V-S-D method [6].

2.1. Research location

The location of this research was carried out at 16 points on the AP Pettarani road, where on this road every day many motorized vehicles pass and other high public activities cause traffic noise on the road. Figure 1. The following research location.

![Figure 1. Location of AP. Pettarani roads.](image)

2.2. Research time

The data collection process is carried out for 2 weeks, Monday - Thursday, starting at 07.00-17.00. Measurements are made every 1 hour where every 1 hour requires 10 minutes.

![Figure 2. Tools.](image)

Information:
1. Sound level meter tenmars TM-103
2. Tripod
3. Speed Gun.
4. Counter
5. Stopwatch
6. Mobile
7. Laptop
8. The meter
2.3. Noise level mitigation method
After obtaining the predicted noise level, the next step is to analyze the traffic load on the road network as an alternative solution to handling traffic noise on AP. Pettarani Road after the elevated toll road is operated [7]. Based on a simulation of traffic loading. The traffic loading simulation begins with a loading analysis through the measurement of traffic volume data that has been processed based on vehicle growth rates in Makassar City. Then the traffic volume is converted from vehicles/hour to smp/hour for all observation points on the road section. Traffic load analysis is performed using the V-S-D (volume, speed and density) analysis model [8]. The V-S-D analysis model consists of 3 models namely the Greenshield Model, the Greenberg Model, and the Underwood Model [9].

The traffic loading simulation is done based on a scenario. Scenarios for traffic loading are carried out through 4 variations. Simulation variations consist of:

Table 1. Variations a.
Simulation Variations A
a1
a2
a3
a4
a5

Table 2. Variations b.
Simulation Variations B
b1
b2
b3

Table 3. Variations c.
Simulation Variations C
c1
c2
c3

Table 4. Variations d.
Simulation Variations D
d1
d2
d3

3. Discussion

3.1. Traffic loading simulation
Results Analysis of the V-S-D model obtained at each observation point illustrates the relation of volume, speed and traffic density so that the ideal traffic conditions are obtained. Based on the results of the analysis, the Underwood Model is obtained at each point based on the scenario so that it is used to calculate the average speed on a road segment in accordance with the volume of new traffic obtained based on traffic simulations conducted by trial and error, so as to produce the following analysis:
3.1.1. Variations A.

Based on the simulation variations in table 1, the noise level of the simulation variations a can be generated as can be seen in table 5.

Table 5. Noise level results of simulation variations A.

Code	LAeqDay Existing Predictions (dB)	LAeqDay Pre simulation Pettarani (dB)	LAeqDay The traffic loading simulation Pettarani (dB)
	R01 78.60	78.50	77.9
	R02 80.90	80.80	80.2
	R03 80.40	80.30	79.7
	R04 80.10	80.00	79.3
	R05 79.80	79.70	79.1
	R06 79.70	79.60	79.1
	R07 78.00	77.80	77.7
	R08 79.60	79.40	78.9
	R09 80.30	80.20	79.6
	R10 81.30	81.10	80.5
	R11 79.90	79.80	79.2
	R12 78.50	78.40	78.7
	R13 77.30	77.20	76.5
	R14 79.30	79.10	78.6
	R15 76.90	76.80	76.2
	R16 79.00	78.80	78.3
	Average 79.51	79.38	78.79
	Difference 0.13	0.72	0.72

In table 5 variation a. Simulation scenario occurs in 5 variations by switching LV (pete-pete) to BRT ranging from 20% -100% through 5 variations. It can be seen that the highest reduction in pete-pete volume can reduce the noise level by 0.37 dB - 0.75 dB. This shows that shifting the volume of LV (pete-pete) to BRT by up to 100% can reduce noise levels.

To find out how the value of the noise level between the scenario simulation and the predicted noise level is different or not, a statistical test with the hypothesis to be tested is as follows in table 6.

Ho: There is no significant difference between the results of existing predictions and the results of simulation variations.

Ha: There is a significant difference between the results of existing predictions and the results of simulation variations.

Table 6. Variation Statistical Test Results.

No. Variations	Sig.(2-tailed)	Taraf Sig.	Description
1	a1	0.145	Ho is accepted
2	a2	0.143	Ho is accepted
3	a3	0.135	Ho is accepted
4	a4	0.133	Ho is accepted
5	a5	0.128	Ho is accepted

Based on the hypothesis test, it can be seen that the variations in a1 to a5 produce a significance value or sig. (2-tailed)> 0.05 means no significant decrease in noise level due to a reduction in the volume of LV (pete-pete) transferred to the BRT. This shows the value of the noise level between the predicted results and the results of the simulation scenario have not been able to reduce the noise level.
3.1.2. Variations B.

B Simulation variations scenario results of noise level can be seen in Table 7. Based on Table 7 variation b. The simulation scenario occurs in 3 variations with the object shifting the volume of LV (light vehicles) to BRT by 15% - 50% it can be seen that there is a reduction in the noise level of 0.39 dB - 0.75 dB on A.P Pettarani road. To find out how the noise level value between the variation of simulation and the value of the predicted noise level is different or the same, a statistical test with the hypothesis to be tested is as follows in Table 8.

Ho: There is no significant difference between the results of existing predictions and the results of simulation variations.
Ha: There is a significant difference between the results of existing predictions and the results of simulation variations.

Code	LAeqDay Existing Predictions (dB)	LAeqDay Pre simulation Pettarani (dB)	b1	b2	b3
R01	78.60	75.90	78.2	78.2	78.2
R02	80.90	80.80	80.3	80.3	80.3
R03	80.40	80.40	80.4	80.4	80.4
R04	80.10	80.10	79.7	79.7	79.7
R05	79.80	79.70	79.4	79.4	79.4
R06	79.70	79.60	79.4	79.4	79.4
R07	78.00	77.80	77.6	77.6	77.6
R08	79.60	79.40	79.2	79.2	79.2
R09	80.30	80.20	79.9	79.9	79.9
R10	81.30	81.10	80.8	80.8	80.8
R11	79.90	79.80	79.6	79.6	79.6
R12	78.50	78.40	78.1	78.1	78.1
R13	77.30	77.20	76.9	76.9	76.9
R14	79.30	79.10	78.9	78.9	78.9
R15	76.90	76.80	76.5	76.5	76.5
R16	79.00	78.80	78.6	78.6	78.6
Average	79.51	79.38	79.12	79.12	79.12
Difference	0.13	0.75	0.39	0.39	0.39

No.	Variasi	Sig.(2-tailed)	Taraf Sig.	Adjective
1	b1	0.413		Ho is accepted
2	b2	0.382	0.05	Ho is accepted
3	b3	0.382		Ho is accepted

In testing the hypothesis Table 8 can be seen in the variation of b1 to b3 produce a significance value or sig. (2-tailed)> 0.05 means that there has not been a significant decrease in noise level due to the reduction in the volume of LV (light vehicles) diverted to the BRT. This shows the value of the noise level between the existing prediction results and the results of the simulation scenario have not been able to reduce the noise level.
3.1.3. Variations C.

C simulation noise level variation result can be seen in Table 9. Based on Table 9 variations C. Simulation variations occur in 3 variations with the object of reducing the volume of MC (motorcycle) by 15% - 50% transferred to BRT. The results of the noise level can be seen switching the volume of MC to BRT can reduce up to 3.05 dB in the C3 variation. This shows that the reduction in the volume of MC (motorcycles) up to 50% is able to influence noise levels.

To find out how the noise level value between the variation simulation and the predicted value of the noise level occurs or not, a statistical test with the hypothesis to be tested is as follows in Table 8.

Ho: There is no significant difference between the results of existing predictions and the results of simulation variations.
Ha: There is a significant difference between the results of existing predictions and the results of simulation variations.

Table 9. Noise results of c variation simulation.

Code	LAeqDay Existing Predictions (dB)	LAeqDay Pre simulation Pettarani (dB)	LAeqDay The traffic loading simulation Pettarani (dB)
R01	78.60	78.50	77.6
R02	80.90	80.80	79.9
R03	80.40	80.30	79.5
R04	80.10	80.00	79.1
R05	79.80	79.70	78.8
R06	79.70	79.60	78.8
R07	78.00	77.80	77
R08	79.60	79.40	78.6
R09	80.30	80.20	79.3
R10	81.30	81.10	80.2
R11	79.90	79.80	78.9
R12	78.50	78.40	77.5
R13	77.30	77.20	76.3
R14	79.30	79.10	78.3
R15	76.90	76.80	75.9
R16	79.00	78.80	78
Average	79.51	78.51	77.75
Difference	0.13	0.99	1.76 3.05

Table 10. C statistic result variation

No.	Variasi	Sig.(2-tailed)	Taraf Sig.	Adjective
1	c1	0.135		Ho is accepted
2	c2	0.000	0.05	Ha is accepted
3	c3	0.000		Ha is accepted

Based on the hypothesis testing, it can be seen that variation data on C1 variations produce significance values or sig. (2-tailed)> 0.05 meaning that there has not been a significant reduction in noise levels due to a 15% reduction in MC (motorcycle) volume that was diverted to the BRT. Then in the variations of C2 and C3 produce a significance value or sig. (2-tailed) <0.05 means that there is a significant decrease in noise level due to a reduction in the volume of MC (motorcycle) by 30% - 50% which is diverted to the BRT. This shows the value of the noise level between the predicted results and the results of the simulation scenario can reduce the noise level.
3.1.4. Variations D.
D Variation is a variation with the scenario of switching LV (light vehicle) to BRT volume plus the switching of MC volume to BRT (motorcycle) volume.

Based on table 11. Variations in the simulation scenario occur in 3 variations with the object of volume reduction occurring in the volume of LV (pete-pete) moved to BRT plus the reduction in volume of LV (private vehicle) and MC volume with various percentages can reduce the noise levels by 0.62 dB - 2.31 dB.

To find out how the value of the noise level between the variation simulation and the predicted noise level value there is a difference or not a statistical test with the hypothesis to be tested is as follows in table 10.
Ho: There is no significant difference between the results of existing predictions and the results of simulation variations.
Ha: There is a significant difference between the results of existing predictions and the results of simulation variations.

Tabel 11. Noise level of simulation results variation d
Code

R01
R02
R03
R04
R05
R06
R07
R08
R09
R10
R11
R12
R13
R14
R15
R16
Average
Difference

From the results of hypothesis testing (t test) using the SPSS program where the test results can be seen in Table 12.

Tabel 12. D variation statistic result
No.

1
2
3

Based on the hypothesis test in table 10, it can be seen that scenario data on the D1-D2 variation produces a significance value or sig. (2-tailed)> 0.05 which means there is no significant decrease in noise level due to the reduction in the volume of motorcycle and light vehicles diverted to the BRT. Then in the scenario of variation D3 produces a significance value or sig. (2-tailed) <0.05 which means there is a significant decrease in noise level due to the reduction in the volume of motorcycles.
and light vehicles that are diverted to the BRT. This shows that the D3 variation is a simulation variation that is able to reduce the noise level.

4. Conclusions
Results Analysis of the V-S-D model obtained at each observation point illustrates the relationship of volume, speed and traffic density so that the ideal traffic conditions are obtained. Based on the results of the analysis, the Underwood Model is obtained at each point of the scenario so that it is used to calculate the average speed on the road segment in accordance with the new traffic volume obtained based on traffic simulations conducted by trial and error. Then the results of the analysis and statistical tests through several variations of the simulation have obtained the best noise level handling by using traffic loading on the AP Pettarani Road through a 50% motorbike diversion to the BRT (Bus Rapid Transyt) and can reduce the noise level by 3.05 dB.

References
[1] Hustim M and Fujimoto K 2012 Acoustical Characteristics of Horn Sound of Vehicle Journal of Architecture and Urban Design Kyushu University Japan Anonymous 1996 Decree of the State Minister for the Environment Number: Kep-48 / MENLH / 11/1996 concerning noise level standards Jakarta: State Minister for the Environment
[2] Hustim M 2012 Road Traffic Noise under Heterogeneous Traffic Condition in Makassar City Journal of Habitat Engineering and Design 4 109-118
[3] Zulfiani 2017 Model of Prediction and Simulation of Heterogeneous Traffic Noise Management Based on the 2008 ASJ-RTN Model and RLS 90 Thesis. Makassar Postgraduate Program Faculty of Engineering Hasanuddin University
[4] Hustim M and Fujimoto K 2013 Road Traffic Noise Reduction Using TDM-TMS Strategies in Makassar City Indonesia. Journal of Environment AIJ 78 689: 551-559
[5] Kadir Andi Iin Nindy Karlinda 2017 Heterogen Traffic Noise Prediction Model Based on the 2008 ASJ-RTN Model for 4 / 2UD Road Types. Makassar Department of Environmental Engineering UNHAS.
[6] Raharjo B 2016 Learning programming in Fortran Informatics Bandung
[7] Samsat Makassar 2018 Interview with Samsat Makassar Administrative Officer Inspector Satu (Online) (https://www.wartaekonomi.co.id/read127322/pertumbuhan-kendaraan-di-makassar-ratarata-7-persen-tiap-tahun.html) accessed July 27 2018
[8] Yamamoto K. 2010 Road traffic noise prediction model ASJ RTN-Model 2008 Report of the Research Committee on Road Traffic Noise. Acoust. Sci & Tech. 31 1
[9] Ofyar T Z. 2012 Transportation Planning and Modeling Bandung Institute of Technology