Strong connectivity and directed triangles in oriented graphs. Partial results on a particular case of the Caccetta-Häggkvist conjecture

Nicolas Lichiardopol
Lycée A. de Craponne, Salon, France
e-mail: nicolas.lichiardopol@neuf.fr

Abstract

A particular case of Caccetta-Häggkvist conjecture, says that a digraph of order n with minimum out-degree at least $\frac{1}{3}n$ contains a directed cycle of length at most 3. In a recent paper, Kral, Hladky and Norine (see [7]) proved that a digraph of order n with minimum out-degree at least $0.3465n$ contains a directed cycle of length at most 3 (which currently is the best result). A weaker particular case says that a digraph of order n with minimum semi-degree at least $\frac{1}{3}n$ contains a directed triangle. In a recent paper (see [8]), by using the result of [7], the author proved that for $\beta \geq 0.343545$, any digraph D of order n with minimum semi-degree at least βn contains a directed cycle of length at most 3 (which currently is the best result). This means that for a given integer $d \geq 1$, every digraph with minimum semi-degree d and of order md with $m \leq 2.91082$, contains a directed cycle of length at most 3. In particular, every oriented graph with minimum semi-degree d and of order md with $m \leq 2.91082$, contains a directed triangle. In this paper, by using again the result of [7], we prove that every oriented
graph with minimum semi-degree \(d \), of order \(md \) with \(2.91082 < m \leq 3 \) and of strong connectivity at most 0.679\(d \). contains a directed triangle. This will be implied by a more general and more precise result, valid not only for \(2.91082 < m \leq 3 \) but also for larger values of \(m \). As application, we improve two existing results. The first result (Authors Broersma and Li in \([2]\)) concerns the number of the directed cycles of length 4 of a triangle free oriented graph of order \(n \) and of minimum semi-degree at least \(n \). The second result (Authors Kelly, Kühn and Osthus in \([10]\)) concerns the diameter of a triangle free oriented graph of order \(n \) and of minimum semi-degree at least \(\frac{5}{4} \).

Keywords: Oriented graph, strong connectivity, girth, triangle

1 **Introduction and definitions**

The definitions which follow are those of \([1]\).

We consider digraphs without loops and without parallel arcs. \(V(D) \) is the *vertex set* of \(D \) and the *order* of \(D \) is the cardinality of \(V(D) \). \(A(D) \) is the set of the arcs of \(D \).

We denote by \(a(D) \) the number of the arcs of \(D \) (size of \(D \)). Two arcs \((x,y)\) and \((x',y')\) are *independent* if the pairs \(\{x,y\} \) and \(\{x',y'\} \) are disjoint.

We say that a vertex \(y \) is an *out-neighbor* of a vertex \(x \) (*in-neighbour* of \(x \)) if \((x,y)\) (resp. \((y,x)\)) is an arc of \(D \). \(N^+_D(x) \) is the set of the out-neighbors of \(x \) and \(N^-_D(x) \) is the set of the in-neighbors of \(x \). The cardinality of \(N^+_D(x) \) is the *out-degree* \(d^+_D(x) \) of \(x \) and the cardinality of \(N^-_D(x) \) is the *in-degree* \(d^-_D(x) \) of \(x \). We also put \(N_D(x) = N^+_D(x) \cup N^-_D(x) \) and \(N'_D(x) = N^+_D(x) \cup N^-_D(x) \cup \{x\} \). When no confusion is possible, we omit the subscript \(D \).

We denote by \(\delta^+(D) \) the minimum out-degree of \(D \) and by \(\delta^-(D) \) the minimum in-degree of \(D \). The *minimum semi-degree* of \(D \) is \(\delta^0(D) = \min\{\delta^+(D), \delta^-(D)\} \).

For a vertex \(x \) of \(D \) and for a subset \(S \) of \(V(D) \), \(N^+_S(x) \) is the set of the out-neighbors of \(x \) which are in \(S \), and \(d^+_S(x) \) is the cardinality of \(N^+_S(x) \). Similarly, \(N^-_S(x) \) is the set of the
in-neighbors of \(x \) which are in \(S \), and \(d^-_S(x) \) is the cardinality of \(N^-_S(x) \).

A directed path of length \(p \) of \(D \) is a list \(x_0, \ldots, x_p \) of distinct vertices such that \((x_{i-1}, x_i) \in \mathcal{A}(D) \) for \(1 \leq i \leq p \). A directed cycle of length \(p \geq 2 \) is a list \((x_0, \ldots, x_p, x_0) \) of vertices with \(x_0, \ldots, x_p \) distinct, \((x_{i-1}, x_i) \in \mathcal{A}(D) \) for \(1 \leq i \leq p - 1 \) and \((x_{p-1}, x_0) \in \mathcal{A}(D) \). From now on, we omit the adjective ” directed”. A \(p \)-cycle of \(D \) is a directed cycle of length \(p \).

A digon is a 2-cycle, and a triangle is a 3-cycle of \(D \) of length 3. The girth \(g(D) \) of \(D \) is the minimum length of the cycles of \(D \). The digraph \(D \) is said to be strongly connected (for briefly strong) if for every distinct vertices \(x \) and \(y \) of \(D \), there exists a path from \(x \) to \(y \). It is known that in a non-strong digraph \(D \), there exists a partition \((A, B) \) of \(V(D) \) with \(A \neq \emptyset \) and \(B \neq \emptyset \) such that there are no arcs from a vertex of \(B \) to a vertex of \(A \). (one say that \(A \) dominates \(B \)). We say that a subset \(S \) of \(V(D) \) disconnects \(D \), if the digraph \(D - S \) is non-strong. The strong connectivity \(k(D) \) of \(D \) is the smallest of the positive integers \(m \) such that there exists a subset of \(V(D) \) of cardinality \(m \) disconnecting \(D \). \(D \) is said to be \(p \)-strong connected if \(k(D) \geq p \). It is well known that in a \(p \)-strong connected digraph, if \(S \) is a subset of \(V(D) \) such that \(|S| \geq p \) and \(|V(D) \setminus S| \geq p \), then there exist \(p \) independent arcs with starting vertices in \(S \) and with ending vertices in \(V(D) \setminus S \).

In a strong digraph \(D \), for vertices \(x \) and \(y \) of \(D \), the distance \(d(x, y) \) from \(x \) to \(y \) is the length of a shortest path from \(x \) to \(y \). The diameter \(\text{diam}(D) \) is the maximum of the distances \(d(x, y) \). The eccentricity \(\text{ecc}(x) \) of a vertex \(x \) is the maximum of the distances \(d(x, y), y \in V(D) \). It is clear that \(\text{ecc}(x) \leq \text{diam}(D) \) for every vertex \(x \) of \(D \).

An oriented graph, is a digraph \(D \) such that for any two distinct vertices \(x \) and \(y \) of \(D \), at most one of the ordered pairs \((x, y) \) and \((y, x) \) is an arc of \(D \). The author proved in \([9]\) that the strong connectivity \(k \) of an oriented graph \(D \) of order \(n \), satisfy \(k \geq \frac{2(\delta^+(D) + \delta^-(D) + 1) - n}{3} \), and this shows that an oriented graph of order \(n \) and of
minimum semi-degree at least $\frac{n}{3}$, is strongly connected.

Caccetta and Häggkvist (see [3]) conjectured in 1978 that the girth of any digraph of order n and of minimum out-degree at least d is at most $\lceil n/d \rceil$.

The conjecture is still open when $d \geq n/3$, in other words it is not known if any digraph of order n and minimum out-degree at least $n/3$ contains a cycle of length at most 3.

In fact it is also unknown if any digraph of order n with both minimum out-degree and minimum in-degree at least $n/3$ contains a cycle of length at most 3 and then a special case of the Caccetta-Häggkvist conjecture is :

Conjecture 1.1 Every digraph of order n and of minimum semi-degree at least $\frac{n}{3}$, contains a cycle of length at most 3.

Two questions were naturally raised :

Question Q$_1$ What is the minimum constant c such that any digraph of order n with minimum out-degree at least cn contains a cycle of length at most 3.

Question Q$_2$ What is the minimum constant c' such that any digraph of order n with both minimum out-degree and minimum in-degree at least $c'n$ contains a cycle of length at most 3.

It is known that $c \geq c' \geq 1/3$ and the conjecture is that $c = c' = 1/3$. In a very recent paper (See [7]), Hladký, Král' and Norine proved that $c \leq 0.3465$, which currently is the best result.

By using this result, the author proved in [8] that $c' \leq 0.343545$, which currently is the best result. In other terms, this means :

Theorem 1.2 For $d \geq 1$, any digraph with minimum semi-degree d and of order at most $2.91082d$ contains a cycle of length at most 3.
In our paper, we will see that in an oriented graph D of minimum semi-degree d and of order md with $2.91082 < m < \frac{2}{c}$, an adequate upper bound on the connectivity of D forces the existence of a triangle. More precisely, we prove:

Theorem 1.3 Let D be an oriented graph of minimum semi-degree d, of order $n = md$ with $2.91082 < m < \frac{2}{c}$. If the connectivity k of D verifies $k \leq \max \left\{ \frac{5 - m - 4c + c^2}{(1 - c)(2 - c)} d, \frac{2 - cm}{2 - c} d \right\}$, then D contains at least a triangle.

Since $c \leq 0.3465$, an easy consequence will be:

Theorem 1.4 Let D be an oriented graph of minimum semi-degree d, of order $n = md$ with $2.91082 < m \leq 3$. If the connectivity k of D verifies $k \leq 0.679d$, then D contains at least a triangle.

Broersma and Li proved in [2] that in a triangle-free oriented graph of order n and of minimum semi-degree at least $\frac{n}{3}$, every vertex is in more than $1 + \frac{28}{15}(11 - 4\sqrt{6})$ 4-cycles. We improve this result by proving:

Theorem 1.5 Let D be a triangle-free oriented graph of minimum semi-degree d, of order $n = md$ with $m \leq 3$. Then every vertex x of D is contained in more than $\frac{2(5 - m - 4c + c^2)d}{(1 - c)(2 - c)} + (2 - m)d + 1$ cycles such that two of these cycles have only the vertex x in common.

If we allow distinct 4-cycles with others vertices than x in common, we give an even more spectacular improvement, by proving:

Theorem 1.6 Let D be a triangle-free oriented graph of minimum semi-degree d, of order $n = md$ with $m \leq 3$. Then every vertex x of D is contained in more than $\frac{11 - 15c + 7c^2 - c^3 - (c^2 - 3c + 3)m}{(1 - c)^2(2 - c)} d$ 4-cycles.
Kelly, Kühn and Osthus proved in [10] that if D is an oriented graph of order n and of minimum semi-degree greater than $\frac{n}{3}$, then either the diameter of D is at most 50 or D contains a triangle. We will considerably improve this result by proving:

Theorem 1.7 If D is a triangle-free oriented graph of minimum semi-degree d and of order $n = md$ with $m \leq 5$, then the diameter of D is at most 9.

A result of Chudnovsky, Seymour and Sullivan (see [5]) asserts that one can delete k edges from a triangle-free digraph D with at most k non-edges to make it acyclic. Hamburger, Haxell, and Kostochka used this to prove in [6] that in a triangle-free digraph D with at most k non-edges, $\delta^+(D) < \sqrt{2k}$ (and $\delta^-(D) < \sqrt{2k}$ also).

Chen, Karson, and Shen improved in [4] the initial result of [5] by asserting that one can delete $0.8616k$ edges from a triangle-free digraph D with at most k non-edges to make it acyclic. From this result, by using the reasoning of Hamburger, Haxell and Kostochka in [6], it is easy to prove that in a triangle-free digraph D with at most k non-edges, $\delta^+(D) < \sqrt{1.7232k}$ and $\delta^-(D) < \sqrt{1.7232k}$. As the maximum size of an oriented graph of order n is $\frac{n(n-1)}{2}$, an immediate consequence is:

Lemma 1.8 If D is a triangle-free oriented graph of order n, then $a(D) < \frac{n^2}{2} - \frac{(\delta^+(D))^2}{1.7232}$ and $a(D) < \frac{n^2}{2} - \frac{(\delta^-(D))^2}{1.7232}$.

2 Proofs of Theorems 1.3 and 1.4

By hypothesis, D is an oriented graph of minimum semi-degree d, of order $n = md$ with $2.91082 < m < \frac{2}{c}$ and of strong connectivity k. We put $k' = \frac{k}{d}$. Let K be a set of k vertices disconnecting D. Then there exists a partition of $V(D) \setminus K$ into two subsets A and B, such that there are no arcs from a vertex of B to a vertex of A. Without loss of generality, we
may suppose that \(|B| \leq |A|\). We put \(a = \frac{|A|}{d}\) and \(b = \frac{|B|}{d}\). Since \(b \leq a\), it holds \(b \leq \frac{m - k'}{2}\).

First we claim that:

Lemma 2.1 If \(D\) is triangle-free, then for every arc \((y, x)\) of \(D\) with \(y \in A\) and \(x \in B\), it holds \(d_B^+(x) + d_A^-(y) \geq 2d - k'd\).

Proof. Since \(x\) has no out-neighbors in \(A\), \(x\) has \(d^+(x) - d_B^+(x)\) out-neighbors in \(K\), which means \(|N_K^+(x)| = d^+(x) - d_B^+(x)\). Since \(y\) has no in-neighbors in \(B\), \(y\) has \(d^-(y) - d_A^-(y)\) in-neighbors in \(K\), which means \(|N_K^-(y)| = d^-(y) - d_A^-(y)\). Since \(N_K^+(x)\) and \(N_K^-(y)\) are vertex-disjoint (for otherwise, we would have a triangle), we have \(d^+(x) - d_B^+(x) + d^-(y) - d_A^-(y) \leq k'd\), hence \(d_B^+(x) + d_A^-(y) \geq d^+(x) + d^-(y) - k'd\) and since \(d^+(x) \geq d\) and \(d^-(y) \geq d\), the result follows \(\blacksquare\)

Now, we claim:

Lemma 2.2 Suppose that \(2.91082 < m < 5 - 4c + c^2\). If the connectivity \(k\) of \(D\) verifies \(k \leq \frac{5 - m - 4c + c^2}{(1-c)(2-c)}d\), then \(D\) contains at least a triangle.

Proof. We put \(k' = \frac{k}{d}\). Suppose, for the sake of a contradiction, that \(D\) does not contain triangles. Let \(sd\) be the minimum out-degree of \(D|B|\), and let \(x\) be a vertex of \(B\) with \(d_B^+(x) = sd\). It is easy to verify that \(\frac{5 - m - 4c + c^2}{(1-c)(2-c)} < 1\) and since all the out-neighbors of \(x\) are in \(B \cup K\), it follows that \(N_B^+(x) \neq \emptyset\), and so \(s > 0\). There exists a vertex \(x'\) of \(N_B^+(x)\), such that \(d_{N_B^+(x)}^+(x') < csd\). It follows that \(x'\) has more than \((s - cs)d = (1 - c)sd\) out-neighbors in \(B\) but not in \(N_B^+(x)\), and these out-neighbors cannot be in-neighbors of \(x\) (for otherwise, we would have a triangle). We get then \(d_{B\cup K}^+(x) < [b + k' - 1 - (1-c)s]d\).

Suppose that \(b + k' - 1 \geq 1\). Then \(k' \geq 2 - b\), and since \(b \leq \frac{m - k'}{2}\), we get \(k' \geq 2 - \frac{m - k'}{2}\), hence \(k' \geq 4 - m\). Then, since \(k' \leq \frac{5 - m - 4c + c^2}{(1-c)(2-c)}\), we get \(4 - m \leq \frac{5 - m - 4c + c^2}{(1-c)(2-c)}\), hence \((4 - m)(c^2 - 3c + 2) \leq 5 - m - 4c + c^2\). This yields \(m(c^2 - 3c + 1) \geq 3c^2 - 8c + 3\), hence \(m(c^2 - 3c + 1) \geq 3(c^2 - 3c + 1) + c\). Since \(c^2 - 3c + 1 > 0\), we get \(m \geq 3 + \frac{c}{c^2 - 3c + 1}\). It
is easy to verify that for \(\frac{1}{3} \leq c \leq 0.3465 \), it holds \(\frac{c}{c^2 - 3c + 1} > 1 \). We get then \(m > 4 \), and it is easy to verify that this is contradictory with \(m < 5 - 4c + c^2 \). Consequently, we have \(b + k' - 1 < 1 \). We deduce \(d_{B \cup K}^c(x) < d \), which means that \(N^-_A(x) \neq \emptyset \) (in fact, by the above reasoning, this is true for every vertex of \(B \)). More precisely, we have

\[
d^-_A(x) > [2 - k' - b + (1 - c)s]d
\]

There exists a vertex \(y \) of \(N^-_A(x) \) with fewer than \(cd^-_A(x) \) in-neighbors in \(N^-_A(x) \) (for otherwise \(D[N^-_A(x)] \) would contain a triangle). It follows \(d^-_A(y) < cd^-_A(x) + ad - d^-_A(x) \), hence \(d^-_A(y) < ad - (1 - c)d^-_A(x) \). From Lemma 2.1, we get \(d^-_A(y) \geq (2 - k')d - d^-_B(x) \), that is \(d^-_A(y) \geq (2 - k' - s)d \). We deduce \((2 - k' - s)d < ad - (1 - c)d^-_A(x)\), hence

\[
sd > (2 - k' - a)d + (1 - c)d^-_A(x)
\]

From (1) and (2), we deduce \(sd > (2 - k' - a)d + (1 - c)[2 - k' - b + (1 - c)s]d \), hence \(s > 2 - k' - a + 2 - 2c - k' + ck' - b + bc + (1 - c)^2 s \). It follows \((2c - c^2)s > 4 - 2k' - a - b - 2c + ck' + bc \), and since \(a + b = m - k' \), we get \((2c - c^2)s > 4 - m - k' - 2c + ck' + bc \). Since \(s < bc \) (for otherwise \(D[B] \) would contain a triangle), we get \((2c - c^2)bc > 4 - m - k' - 2c + ck' + bc \), hence \((1 - c)^2 bc < m + 2c - 4 + (1 - c)k' \). Since all the out-neighbors of \(x \) are in \(B \cup K \), we have \(1 - s \leq k' \), hence \(s \geq 1 - k' \), and since \(s < bc \), we get \(bc > 1 - k' \). It follows \((1 - k')(1 - c)^2 < m + 2c - 4 + (1 - c)k' \), hence \(k'(1 - c)(2 - c) > 1 - 2c + c^2 - m - 2c + 4 \). This implies \(k' > \frac{5 - m - 4c + c^2}{(1 - c)(2 - c)} \), which is contradictory with the hypothesis on \(k \). Consequently \(D \) contains at least a triangle, and so, the result is proved. \[\blacksquare\]

We claim also:

Lemma 2.3 Suppose that \(2.91082 < m < \frac{2}{c} \). If the connectivity \(k \) of \(D \) verifies \(k \leq \frac{2 - cm}{2 - c}d \), then \(D \) contains at least a triangle.

Proof. Suppose, for the sake of a contradiction, that \(D \) does not contain triangles. Let \(sd \) be the minimum out-degree of \(D[B] \), and let \(x \) be a vertex of \(B \) with \(d_B^c(x) = sd \). We have
then \(k' \geq 1 - s \), hence \(s \geq 1 - k' \). Since \(s < bc \) (for otherwise we would have a triangle), we get \(bc > 1 - k' \). Since \(b \leq \frac{m - k'}{2} \), it follows \(\frac{(m - k')c}{2} > 1 - k' \), hence \(mc - k'c > 2 - 2k' \). It follows \(k' > \frac{2 - cm}{2 - c} \), which is contradictory with the hypothesis on \(k = k'd \). So, the result is proved.

It is easy to prove that \(5 - 4c + c^2 < \frac{2}{c} \). By using these two lemmas, we get Theorem 1.3.

It is easy to see that we have \(\frac{5 - m - 4c + c^2}{(1 - c)(2 - c)} \geq \frac{2 - cm}{2 - c} \) if and only if \(m \leq \frac{3 - 2c + c^2}{1 - c + c^2} \). Then Theorem 1.3 means that when \(2.91082 < m \leq \frac{3 - 2c + c^2}{1 - c + c^2} \), a strong connectivity not greater than \(\frac{5 - m - 4c + c^2}{(1 - c)(2 - c)}d \) forces a triangle in \(D \), and when \(\frac{3 - 2c + c^2}{1 - c + c^2} < m < \frac{2}{c} \), a strong connectivity not greater than \(\frac{2 - cm}{2 - c}d \) forces a triangle in \(D \).

It is easy to see that for \(2.91082 < m \leq 3 \), we have \(m < \frac{3 - 2c + c^2}{1 - c + c^2} \). Since \(c \leq 0.3465 \), it is easy to see that we have \(0.679d < \frac{5 - m - 4c + c^2}{(1 - c)(2 - c)}d \). Then by Lemma 2.2, a strong connectivity no greater than \(0.679d \) forces a triangle, and so Theorem 1.4 is proved. Since a digraph which is not oriented contains a digon, it is easy to see that proving Conjecture 1.1, amounts to proving that every oriented graph, of minimum semi-degree at least \(d \), of order \(md \) with \(2.91082 < m \leq 3 \) and of connectivity \(k > 0.679d \), contains at least a triangle.

3 Proofs of Theorems 1.5, 1.6 and 1.7

a) Proof of Theorem 1.5

By hypothesis \(D \) is a triangle-free oriented graph of minimum semi-degree \(d \), of order \(n = md \) with \(m \leq 3 \), and \(x \) is a vertex of \(D \). Let \(k \) be the strong connectivity of \(D \) (and \(k' = k/d \)).

We have \(k > 0 \) (for otherwise, by Theorem 1.3 we would have triangles). Clearly, we have \(d^+(x) + d^-(x) < md \), and since \(k \leq d^-(x) \), it follows \(d^+(x) + k < md \), hence \(md - d^+(x) > k \). As we have also \(d^+(x) \geq k \), there exist \(k \) independent arcs \((y_1, z_1), \ldots, (y_k, z_k)\) with
Let \(y_i \in N^+(x) \), \(z_i \notin N^+(x) \) and \(z_i \neq x \) for \(1 \leq i \leq k \). Since \(D \) is triangle-free, we have also \(z_i \notin N^-(x) \) for \(1 \leq i \leq k \). It follows that the set \(S_i = \{z_1, \ldots, z_k\} \) is contained in \(V(D) \setminus N'(x) \). Similarly, there exist \(k \) independent arcs \((v_1, u_1), \ldots, (v_k, u_k)\) with \(u_i \in N^-(x) \), \(v_i \notin N^-(x) \) and \(v_i \neq x \) for \(1 \leq i \leq k \). Since \(D \) is triangle-free, we have also \(v_i \notin N^+(x) \) for \(1 \leq i \leq k \). It follows that the set \(S_2 = \{v_1, \ldots, v_k\} \) is contained in \(V(D) \setminus N'(x) \).

We have \(|S_1 \cap S_2| = |S_1| + |S_2| - |S_1 \cup S_2|\). Since \(|S_1| = |S_2| = k'd\) and \(|S_1 \cup S_2|\) is contained in \(V(D) \setminus N'(x) \), it follows \(|S_1 \cap S_2| \geq 2k'd - (md - d^+(x) - d^-(x) - 1)\), hence \(|S_1 \cap S_2| \geq 2k'd - md + d^+(x) + d^-(x) + 1\). Since \(d^+(x) \geq d \) and \(d^-(x) \geq d \), it follows \(|S_1 \cap S_2| \geq (2k' + 2 - m)d + 1\). This implies the existence of at least \((2k' + 2 - m)d + 1\) 4-cycles containing \(x \) and such that any two of these cycles have only \(x \) in common. Now since \(D \) is triangle-free, we deduce from Theorem 1.3 that \(k' > \frac{5 - m - 4c + c^2}{(1 - c)(2 - c)}\), and then Theorem 1.5 is proved.

Since \(c \leq 0.3465 \) and \(m \leq 3 \), it is easy to see that the number \(n_D(x, 4) \) of 4-cycles of \(D \) containing \(x \), and such that any two of these cycles have only \(x \) in common, is at least \[\frac{2 \times (5 - 3 - 4 \times 0.3465 + 0.3465^2)d}{0.6535 \times 1.6535} - d + 1, \] hence \(n_D(x, 4) > 0.358d + 1 \), and since \(d \geq \frac{n}{3} \) (\(n \) being the order of \(D \)), we get \(n_D(x, 4) > 0.119n + 1 \). Since \(1 + \frac{n}{10}(11 - 4\sqrt{6}) \approx 1 + 0.08014n \) (exceeding value), it is clear that our result improve that of Broersma and Li.

b) Proof of Theorem 1.6

Let \(k = k'd \) be the strong connectivity of \(D \). By Theorem 1.4, we have \(k > 0.679d \).

Clearly the eccentricity \(\text{ecc}(x) \) of \(x \) is at least 3 (for otherwise, we would have a triangle). The author proved in [9] that the diameter of an oriented graph of order \(n \) and of minimum semi-degree at least \(\frac{n}{2} \) is at most 4. By this result, we have \(\text{ecc}(x) \leq 4 \), and consequently \(3 \leq \text{ecc}(x) \leq 4 \). For \(1 \leq i \leq \text{ecc}(x) \) let \(R_i \) be the set of the vertices \(z \) of \(D \) such that \(d(x, z) = i \). Since \(D \) is triangle-free, all the in-neighbors of \(x \) are in \(R_3 \cup \cdots \cup R_{\text{ecc}(x)} \).
We claim that $d^-_{R_3}(x) > d - \frac{m - 2 - k'}{1 - c}d$ (Assertion (Ass)).

We observe first that $m - 2 - k' > 0$. Indeed, for an arbitrary vertex u of D, there exists $k'd$ independent arcs with starting vertices in $N^+(u)$ and ending vertices in $V(D) \setminus N^+(u)$. Since D is triangle-free these ending vertices are not in $N^-(u)$. It follows $2d + k'd < md$, hence $m - 2 - k' > 0$.

Suppose first that $\text{ecc}(x) = 3$. Then all the in-neighbors of x are in R_3. This implies $d^-_{R_3}(x) \geq d$, and since $d > d - \frac{m - 2 - k'}{1 - c}d$, the assertion (Ass) is proved.

Suppose now that $\text{ecc}(x) = 4$. Since R_2 disconnects D, we have $r_2 \geq k'd$. Suppose first that $r_3 \geq d$. We have $r_4 = md - r_1 - r_2 - r_3 - 1$, hence $r_4 < md - d - k'd - d$, that is $r_4 < (m - 2 - k')d$. It follows $d^-_{R_3}(x) > d - (m - 2 - k')d$, and since $d - (m - 2 - k')d > d - \frac{m - 2 - k'}{1 - c}d$, the Assertion (Ass) is proved. Suppose now that $r_3 < d$. Clearly, all the in-neighbors of a vertex of R_4 are in $R_3 \cup R_4$. It follows that every vertex of R_4 has at least $d - r_3$ in-neighbors in R_4. Since $D[R_3]$ is triangle-free, it holds $d - r_3 < cr_4$, hence $r_4 > \frac{d - r_3}{c}$, hence $r_4 > \frac{(1 - m)d + r_1 + r_2 + r_4}{c}$. Since $r_1 \geq d$ and $r_2 \geq k'd$, we get $r_4 > \frac{(2 - m + k')d + r_4}{c}$, hence $(1 - c)r_4 < (m - 2 - k')d$, and then $r_4 < \frac{m - 2 - k'}{1 - c}d$. It follows $d^-_{R_3}(x) > d - \frac{m - 2 - k'}{1 - c}d$, which is the assertion (Ass). It is easy to see that an in-neighbor z of x which is in R_3 has an in-neighbor z_2 in R_2 and that z_2 has an in-neighbor z_1 in R_1. Then $C_z = (x, z_1, z_2, z, x)$ is a 4-cycle of D, containing x. It is clear that the cycles C_z, $z \in N^-_{R_3}(x)$ are distinct. Consequently the vertex x is contained in more than $d - \frac{m - 2 - k'}{1 - c}d$ 4-cycles. Since $k > \frac{5 - m - 4c + c^2}{(1 - c)(2 - c)}d$ (By Theorem 1.3), the result follows.

Since $c \leq 0.3465$, $m \leq 3$ and $k' > 0.679$, it holds $d^-_{R_3}(x) > d - \frac{3 - 2 - 0.679}{1 - 0.3465}d$, hence $d^-_{R_3}(x) > 0.5087d$, hence $d^-_{R_3}(x) > 0.169n$. So D possess more than $0.169n$ 4-cycles containing x, which is much better that the result of Broersma and Li.
c) Proof of Theorem 1.7

By hypothesis D is a triangle-free oriented graph of minimum semi-degree d, of order $n = md$ with $m \leq 5$. Suppose, for the sake of a contradiction, that the diameter of D is at least 10. Then let x and y be two vertices of D such that $d(x, y) \geq 10$. For $1 \leq i \leq 6$, let R_i be the set of the vertices z of D such that $d(x, z) = i$, and for $1 \leq i \leq 3$, let R_{-i} be the set of the vertices z of D such that $d(y, z) = i$. For $1 \leq i \leq 6$, r_i is the cardinality of R_i and for $1 \leq i \leq 3$, r_{-i} is the cardinality of R_{-i}. The sets R_i, $1 \leq i \leq 6$ are mutually vertex-disjoint, the sets R_{-i}, $1 \leq i \leq 3$ are also mutually vertex-disjoint, and a set R_j, $1 \leq i \leq 6$ is a vertex-disjoint with a set R_{-j}, $1 \leq j \leq 3$ (for otherwise the diameter of D would be at most 9). For $2 \leq i \leq 6$ we put $R'_i = R_1 \cup \cdots \cup R_i$, for $2 \leq i \leq 3$ we put $R'_{-i} = R_{-1} \cup \cdots \cup R_{-i}$, and r'_i, r'_{-i} are the respective cardinalities.

We claim that $r'_3 \geq 2.239d$. Indeed, since $D[R_1]$ is triangle-free, there exists a vertex u of R_1 with fewer than $0.346d$ out-neighbors in R_1, and then we have $r_2 > 0.6535d$, hence $r_1 + r_2 > 1.6535d$. Now, if $r_3 \geq d$, it follows $r'_3 \geq 2.6535d$, and the assertion is proved.

Suppose now that $r_3 < d$. It is easy to see that a vertex of R_2 has all its out-neighbors in R'_3. It follows that a vertex of R_2 has at least $d - r_3$ out-neighbors in R'_3. Since every vertex of R_1 has all its out-neighbors in R'_3, it follows $a(D[R'_2]) \geq r_1d + r_2(d - r_3)$, hence:

$$a(D[R'_2]) \geq r_1d + r_2d - r_2r_3 \quad (3)$$

On the other hand by Theorem 1.7, we have

$$a(D[R'_2]) \leq \frac{(r'_3)^2}{2} - \frac{(d - r_3)^2}{1.7232} \quad (4)$$

From (3) and (4), we deduce $r_1d + r_2d - r_2r_3 \leq \frac{r'_1r'_2 + 2r_1r_2}{2} - \frac{d^2 - 2dr_3 + r_3^2}{1.7232}$, hence $3.4464r_1d + 3.4464r_2d - 3.4464r_3r_3 \leq 1.7232r_1^2 + 3.4464r_1r_2 + 1.7232r_2^2 - 2d^2 + 4r_3d - 2r_3^2$. An easy calculation yields: $1.7232(r_2 + r_3 + r_1 - d)^2 \geq 3.7232r_3^2 - (7.4464d - 3.4464r_1)r_3 + 3.7232d^2$.

Since $r_1 \geq d$, we get $1.7232(r_2 + r_3 + r_1 - d)^2 \geq 3.7232r_3^2 - 4r_3d + 3.7232d^2$, that is $1.7232(r_2 +
$r_3 + r_1 - d)^2 \geq f(r_3)$, f being the function defined by $f(t) = 3.7232t^2 - 4dt + 3.7232d^2$.

By a classical result on the functions of second degree, we have $f(r_3) \geq f\left(\frac{2d}{3.7232}\right)$, hence $f(r_3) > 2.648d^2$. We deduce then $1.7232(r_2 + r_3 + r_1 - d)^2 > 2.648d^2$, hence $r_2 + r_3 + r_1 - d > 1.239d$ which yields $r'_3 > 2.239d$, and the assertion is still proved. Similarly, we have $r'_1 > 2.239$. Since D is triangle-free, by Theorem 1.3, the strong connectivity k of D verifies $k > \frac{2 - 5c}{2 - c}d$, and since $c \leq 0.3465$, we get $k > 0.161d$. It is clear that each of the sets R_4, R_5 and R_6 disconnects D, and then $r_i > 0.161d$ for $4 \leq i \leq 6$. Suppose that $r_4 < 0.205d$.

Then $D[R'_3]$, which is triangle-free, is of minimum out degree at least $0.795d$. It follows $0.795 < 0.3465r'_3$, hence $r'_3 > 2.2943d$. We have then $v(D) > 2.2943d + 2.239d + 3 \times 0.161d$,

that is $v(D) > 5.0163d$, which is not possible. It follows $r_4 \geq 0.205d$. We deduce then $v(D) > 2.239d + 2.239d + 0.205d + 2 \times 0.161d$, that is $v(D) > 5.005d$, which is still impossible. Consequently, the diameter of D is at most 9, and the result is proved. □

4 An open problem

Theorem 1.3 gives rise to the following question:

Open Problem . For r with $2 < r < \frac{2}{c}$, what is the maximum number $\psi(r) \in [0, 1]$ such that every oriented graph D of minimum semi-degree d of order $n \leq rd$ and of connectivity $k(D) \leq \psi(r)d$, contains a triangle?

By the result of [8], we have $\psi(r) = 1$ for $2 < r \leq 2.91082$. By Theorem 1.3, for $2.91082 < r < \frac{2}{c}$ we have $\psi(r) \geq \max\left\{\frac{5 - r - 4c + c^2}{(1 - c)(2 - c)}d, \frac{2 - cr}{2 - c}d\right\}$. Thus, since $c \leq 0.3465$, we get $\psi(3) > 0.679$, $\psi(3.5) > 0.476$, $\psi(4) > 0.371$ $\psi(4.5) > 0.266$, $\psi(5) > 0.161$ and $\psi(5.5) > 0.057$. Observe that Conjecture 1.1 is true, if and only if $\psi(3) = 1$.
References

[1] J. Bang-Jensen and G. Gutin, Digraphs, Springer, 2002, p. 555.

[2] H. J Broersma and X. Li, Some approaches to a conjecture on short cycles in Digraphs, *Discrete Applied Math*, 120 (1-3), (2002), 45-53.

[3] L. Caccetta and R. Häggkvist, On minimal digraphs with given girth, *Congressus Numerantium*, 21, 1978, p. 181-187.

[4] K. Chen, S. Karson, D. Liu and J. Shen, On the Chudnovski-Seymour-Sullivan conjecture on cycles in triangle-free digraphs, arXiv:0909.2468v1[math.CO], submitted to Discrete Math.

[5] M. Chudnovsky, P. Seymour and B. Sullivan, Cycles in dense digraphs, Combinatorica 28 (2008), 1-18

[6] P. Hamburger, P. Haxell and A. Kostochka, On directed triangles in digraphs, Electronic Journ. of Combinatorics., 14 (2007) N19.

[7] J. Hladký, D. Král’, S. Norin, Counting flags in triangle-free digraphs, *Electronic Notes in Discrete Math*, 34 (2009), 621-625.

[8] N. Lichiardopol, A new bound for a particular case of the Caccetta-Häggkvist conjecture, *Discrete Math.*, 310(23) (2010), 3368-3372.

[9] N. Lichiardopol, A new lower bound on the strong connectivity of an oriented graph. Application to diameters with a particular case related to Caccetta-Häggkvist conjecture *Discrete Math*, 308(22) (2008), 5274-5279.

[10] L. Kelly, D. Kühn and D. Osthus, Cycles of given length in oriented graphs, *Journal of Comb. Theory, Series B*, 100 (3) (2010), 251-264.