Predictions for the strangeness $S = -3$ and -4 baryon-baryon interactions in chiral effective field theory

J. Haidenbauera,*, U.-G. Meißnera,b

aInstitut für Kernphysik, Jülich Center for Hadron Physics and Institute for Advanced Simulation
Forschungszentrum Jülich, D-52425 Jülich, Germany

bHelmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics
Universität Bonn, D-53115 Bonn, Germany

Abstract

The leading order strangeness $S = -3$ and -4 baryon-baryon interactions are analyzed within chiral effective field theory. The chiral potentials consist of contact terms without derivatives and of one-pseudoscalar-meson exchanges. Assuming SU(3) flavor symmetry those contact terms and the couplings of the pseudoscalar mesons to the baryons are related to the corresponding quantities of the $S = -1$ hyperon-nucleon channels. Specifically, the values of the pertinent five low-energy constants related to the contact terms are already fixed from our preceding study of the ΛN and ΣN systems and thus genuine predictions for the $\Xi \Lambda$, $\Xi \Sigma$, and $\Xi \Xi$ interactions can be made. Strong attraction is found in some of the $S = -3$ and -4 channels, suggesting the possible existence of bound states.

Key words: Hyperon-hyperon interaction, Hyperon-nucleon interaction, Effective field theory, Chiral Lagrangian

PACS: 13.75.Ev, 12.39.Fe, 21.30.-x, 21.80.+a

1. Introduction

The study of baryon-baryon systems involving strangeness has the potential of considerably deepening our understanding of strong interaction physics. Unfortunately, the experimental information on such systems is rather limited. Though there is at least a fair amount of concrete data on the ΛN and ΣN systems, the empirical information on the strangeness $S = -2$ sector is only of qualitative nature. It consists of limits for the $\Xi^- p \rightarrow \Xi^- p$ and $\Xi^- p \rightarrow \Lambda \Lambda$ reaction cross sections [1] and in the binding energy of $^6\Lambda \Lambda$ He [2], where the latter implies that the $\Lambda \Lambda$ interaction can be only moderately attractive. Virtually nothing is known about the baryon-baryon interaction in the $S = -3$ and -4 systems. Indeed, even theoretical investigations on those systems are rather scarce [3,4]. In 1999, the Nijmegen group presented an extension of their meson-exchange hyperon-nucleon (YN, $Y = \Lambda$, Σ) potential [5] to interaction channels with $S = -2$, -3, and -4 [3] invoking SU(3) flavor symmetry arguments. In the actual model calculation, SU(3)$_f$ symmetry is broken by using the physical values of the involved baryon and meson masses and, in addition, some breaking of the baryon-baryon-meson coupling constants is allowed. The interactions predicted in this way for the $S = -3$
and -4 sectors turned out to be fairly strong and attractive and even suggests the existence of bound states in the $\Xi\Sigma$ and $\Xi\Xi$ channels [3]. Such strongly attractive $S = -3$ and -4 baryon-baryon interactions have further interesting implications. For example, Filkin and Gal argued that then fairly light hypernuclei with $S = -3$ should exist [17]. In particular, $\Xi^0\Lambda$ He could then already mark the onset of nuclear stability for Ξ hyperons. A strong $\Xi\Xi$ interaction could induce a first order phase transition from neutron matter to hyperon-rich matter [8] so that, besides ordinary white dwarfs and neutron stars, a new class of compact stars, namely hyperon stars, could exist.

The baryon-baryon interaction of Fujiwara and collaborators [4] is derived in the constituent quark model. It contains the color Fermi-Breit interaction and effective-meson exchanges (pseudoscalar, scalar, vector mesons) between quarks, among others. Also here SU(3)$_f$ symmetry plays a key role in extending the model from the NN and YN interaction (where free parameters are fixed) to the $S = -3$ and -4 channels. And also here an explicit flavor-symmetry breaking is introduced, namely in the Fermi-Breit interaction. But in this approach it was found that the baryon-baryon interaction becomes step by step less attractive when going from strangeness $S = 0$ to $S = -4$. In particular, no di-baryon bound states are supported, except for the deuteron.

In this context we present here a first study of the baryon-baryon interaction in the $S = -3$ and -4 sectors in the framework of *chiral effective field theory* (EFT). Outlined by Weinberg in the early 1990s [9,10] the concepts of chiral EFT have been applied very successfully in the last decade to the NN (and NNN) interaction and to the physics of light nuclei, resulting in a high-precision description of the experimental data, see e.g. Refs. [11,12,13] and references therein. Recently, this framework was utilized by us also for investigating the YN interactions as well as the baryon-baryon interaction in the $S = -2$ sector [14,15]. In particular, we showed that the leading order (LO) chiral EFT successfully describes the available YN scattering data [14]. Also the binding energies of the light hypernuclei are predicted well within chiral EFT [10,17].

The extension of our investigations of the baryon-baryon interaction within chiral EFT to the strangeness $S = -3$ and -4 sectors is straightforward. The LO potential consists of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges [14,17]. Under the assumption of SU(3)$_f$ symmetry the interaction for the $S = -3$ and -4 baryon-baryon sector depends on the same (five) contact terms that enter also in the YN interaction. Thus, we can take over the values which were fixed in our study of the YN sector by a fit to the pertinent (ΛN, ΣN) data [14]. Then the interaction in the $S = -3$ and -4 channels is a genuine prediction that follows from the results of Ref. [14] and SU(3)$_f$ symmetry.

The paper is structured as follows: In Sect. II we provide a short overview of the chiral EFT approach with emphasis on its extension to the strangeness $S = -3$ and -4 sectors. In Sect. III we show results for the coupled $\Xi\Lambda - \Xi\Sigma$ system and for the $\Xi\Xi$ channel. Specifically, we present integrated cross sections and effective range parameters for the S-waves and we compare our results to those of the two potential models mentioned above. The paper ends with a short summary.

2. The effective strangeness $S = -3$ and -4 baryon-baryon potential

We construct the chiral effective potentials for the strangeness $S = -3$ and -4 sector at LO using the Weinberg power counting similar to the YN case considered in [14]. The LO potential consists of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. Details on the derivation of the LO contact terms for the octet baryon-baryon interaction can be found in Ref. [14,17]. Here we only list the final result for the ΞY and $\Xi\Xi$ partial wave potentials in the singlet and triplet S-waves, cf. Table I. Also the $S = 0$ and -1 potentials are included in Table I for completeness. For convenience in the present paper we express the baryon-baryon potentials in terms of the SU(3)$_f$ irreducible representations, see e.g. [18] and also [19,20], so that the contact interaction is given by

$$V^{B_1 B_2 \rightarrow B'_1 B'_2} = \frac{1}{4}(1 - \sigma_1 \cdot \sigma_2) C_{1S0} + \frac{1}{4}(3 + \sigma_1 \cdot \sigma_2) C_{3S1}.$$ (1)
Table 1
Various LO baryon-baryon contact potentials for the 1S_0 and 3S_1 partial waves in the isospin basis. These potentials are flavor symmetric. C^{27} etc. refers to the corresponding SU(3)$_f$ irreducible representation $[15][20]$.

Channel	Isospin C_{1S0}	Isospin C_{3S1}	
$S = 0$	$NN \rightarrow NN$	1 C^{27}	0 C^{10^*}
$S = -1$	$\Lambda N \rightarrow \Lambda N$	$\frac{1}{10}$ ($9C^{27} + C^{8^*}$)	$\frac{1}{2} (C^{8^*} + C^{10^*})$
$\Lambda N \rightarrow \Sigma N$	$\frac{1}{2}$ ($-C^{27} + C^{8^*}$)	$\frac{1}{2} (C^{8^*} + C^{10^*})$	
$\Sigma N \rightarrow \Sigma N$	$\frac{1}{10}$ ($C^{27} + 9C^{8^*}$)	$\frac{1}{4} C^{8^*} + C^{10^*}$	
$S = -3$	$\Xi \Lambda \rightarrow \Xi \Lambda$	$\frac{1}{10}$ ($9C^{27} + C^{8^*}$)	$\frac{1}{4} (C^{8^*} + C^{10^*})$
$\Xi \Lambda \rightarrow \Xi \Sigma$	$\frac{1}{2}$ ($-C^{27} + C^{8^*}$)	$\frac{1}{2} (C^{8^*} + C^{10^*})$	
$\Xi \Sigma \rightarrow \Xi \Sigma$	$\frac{1}{10}$ ($C^{27} + 9C^{8^*}$)	$\frac{1}{4} C^{8^*} + C^{10^*}$	
$S = -4$	$\Xi \Xi \rightarrow \Xi \Xi$	1 C^{27}	0 C^{10}

Table 2
The S-wave contact terms corresponding to the irreducible representations of SU(3)$_f$ for various cut-offs. The values of the LECs are in 10^4 GeV$^{-2}$; the values of Λ are in MeV.

Λ	550	600	650	700
C^{27}	-0.766	-0.763	-0.757	-0.744
C^{10^*}	-0.239	-0.182	-0.097	0.013
C^{10}	0.236	0.2391	0.2392	0.2501
C^{8^*}	0.2241	0.2839	0.3595	0.3650
C^{8^*}	-0.206	-0.0144	-0.0097	-0.0057

From the relations in Table 1 we can see that for the 1S_0 channel there is a one-to-one correspondence between the $S = 0$ and $S = -4$ sectors, i.e. the NN and $\Xi\Xi$ interactions, and also between the $S = -1$ and $S = -3$ sectors, i.e. the YN and ΞY interactions. Thus, if SU(3)$_f$ symmetry is fully realized then not only the potentials but even the reaction amplitudes would be the same in the corresponding sectors. Of course, the symmetry is no longer fulfilled once physical values for the baryon masses are used in the evaluation of the scattering observables, even for a SU(3)$_f$ symmetric interaction potential. Note that there is no such correspondence for the 3S_1 channel because here the role of the 10 and 10* representations is interchanged when going from $S = 0$ to $S = -4$ and from $S = -1$ to $S = -3$, respectively.

The actual values of the S-wave contact terms corresponding to the irreducible representations of SU(3)$_f$ are summarized in Table 2 for the various cut-offs (as defined more precisely below). These values were fixed by a fit to the YN date in our earlier study [14]. They are obtained from the low-energy constants listed in Table 2 of that paper via the relations Eqs. (2.8) - (2.13) given therein as well.

The lowest order SU(3)$_f$ invariant pseudoscalar-meson–baryon interaction Lagrangian with the appropriate symmetries was discussed in [14]. In the isospin basis it reads

$$
\mathcal{L} = -f_{NN\pi} N^\gamma \gamma_5 \tau N \cdot \partial_\mu \pi + if_{\Sigma \Sigma \pi} \Sigma^\gamma \gamma_5 \times \Sigma \cdot \partial_\mu \pi
- f_{\Lambda \Sigma \pi} [\Lambda^\gamma \gamma_5 \Sigma + \Sigma^\gamma \gamma_5 \Lambda] \cdot \partial_\mu \pi - f_{\Xi \Xi \pi} \Xi^\gamma \gamma_5 \tau \Xi \cdot \partial_\mu \pi
- f_{\Lambda \Lambda K} [N^\gamma \gamma_5 \Lambda \partial_\mu K + \Lambda^\gamma \gamma_5 N \partial_\mu K]\n- f_{\Sigma \Lambda K} [\Sigma^\gamma \gamma_5 K \partial_\mu K + \Lambda^\gamma \gamma_5 N \partial_\mu K]\n- f_{\Sigma \Sigma K} [\Sigma^\gamma \gamma_5 \Sigma \partial_\mu K + \Sigma^\gamma \gamma_5 \Lambda \partial_\mu K]\n- f_{NN\eta} N^\gamma \gamma_5 \eta \partial_\mu \eta - f_{\Lambda \Lambda \eta} \Lambda^\gamma \gamma_5 \Lambda \partial_\mu \eta - f_{\Sigma \Sigma \eta} \Sigma^\gamma \gamma_5 \Sigma \partial_\mu \eta - f_{\Xi \Xi \eta} \Xi^\gamma \gamma_5 \Xi \partial_\mu \eta. \tag{2}
$$
Table 3
Isospin factors I for the various one–pseudoscalar-meson exchanges.

Channel	Isospin	π	K	η
$\Xi \Xi \rightarrow \Xi \Xi$	0	-3	0	1
	1	1	0	1
$\Xi \Lambda \rightarrow \Xi \Lambda$	$\frac{1}{2}$	0	1	1
$\Xi \Sigma \rightarrow \Xi \Sigma$	$\frac{1}{2}$	-2	-1	1
	$\frac{1}{2}$	1	2	1

The interaction Lagrangian in Eq. \((2)\) is invariant under SU(3)$_f$ transformations if the various coupling constants fulfill specific relations which can be expressed in terms of the coupling constant f and the $F/(F + D)$-ratio α as \([13]\),

\[
\begin{align*}
 f_{NN} &= f, & f_{NNm} &= \frac{1}{\sqrt{3}}(4\alpha - 1)f, & f_{NK} &= \frac{1}{\sqrt{3}}(2\alpha + 1)f, \\
 f_{\Xi \Xi} &= -(1 - 2\alpha)f, & f_{\Xi \Xi m} &= -\frac{1}{\sqrt{3}}(2\alpha + 1)f, & f_{\Xi \Lambda} &= \frac{1}{\sqrt{3}}(4\alpha - 1)f, \\
 f_{\Lambda \Lambda} &= \frac{2}{\sqrt{3}}(1 - \alpha)f, & f_{\Sigma \Sigma} &= \frac{2}{\sqrt{3}}(1 - \alpha)f, & f_{\Sigma N} &= (1 - 2\alpha)f, \\
 f_{\Sigma \Xi} &= 2\alpha f, & f_{\Lambda \Lambda m} &= -\frac{1}{\sqrt{3}}(1 - \alpha)f, & f_{\Xi \Sigma} &= -f.
\end{align*}
\]

(3)

Here $f \equiv g_A/2F_\pi$, g_A is the axial-vector strength, $g_A = 1.26$, which is measured in neutron β-decay and F_π is the weak pion decay constant, $F_\pi = 92.4$ MeV. For the $F/(F + D)$-ratio we adopt here the SU(6) value ($\alpha = 0.4$) which was already used in our study of the YN system \([14]\). The spin-space part of the one-pseudoscalar-meson-exchange potential resulting from the interaction Lagrangian Eq. \((2)\) is in leading order similar to the static one-pion-exchange potential in Ref. \([21]\),

\[
V_{B_1 B_2 \rightarrow B'_1 B'_2} = -f_{B_1 B'_1} f_{B_2 B'_2} \frac{\langle \Sigma_1 \cdot k \rangle \langle \Sigma_2 \cdot k \rangle}{k^2 + m_P^2},
\]

(4)

where $f_{B_1 B'_1} f_{B_2 B'_2}$ are the appropriate coupling constants as given in Eq. \((3)\) and m_P is the actual mass of the exchanged pseudoscalar meson. With regard to the η meson we identified its coupling with the octet value, i.e. the one for η_8. The transferred momentum k is defined in terms of the final and initial center-of-mass (c.m.) momenta of the baryons, p_f and p_i, as $k = p_f - p_i$. To find the complete LO one-pseudoscalar-meson-exchange potential one needs to multiply the potential in Eq. \((4)\) with the isospin factors I given in Table 3.

The SU(3)$_f$ symmetry of the one-pseudoscalar-meson exchanges is broken by the masses of the pseudoscalar mesons. This is taken into account explicitly in Eq. \((4)\) by taking the appropriate values for m_P. In case one would consider identical pseudoscalar-meson masses, the corresponding potential obeys the SU(3)$_f$ relations as shown in the 4th and 6th column of Table 3 respectively.

Finally, for completeness we briefly comment on the used scattering equation. The calculations are done in momentum space. We solve the coupled–channel (non–relativistic) Lippmann-Schwinger (LS) equation,

\[
T_{\rho' \rho, \nu' \nu, J}^{\rho \rho', \nu \nu', J}(p', p; \sqrt{s}) = V^{\rho' \rho, \nu' \nu, J}(p', p) + \sum_{\rho, \nu, J} \int_0^\infty \frac{dp^{2}}{(2\pi)^3} \frac{2\mu_{\nu}}{q_0^2 - p^2 + i\epsilon} T_{\rho' \rho, \nu' \nu, J}(p, p; \sqrt{s}).
\]

(5)

The label ν indicates the particle channels and the label ρ the partial wave. μ_{ν} is the pertinent reduced mass. The on-shell momentum in the intermediate state, q_ν, is defined by $\sqrt{s} = \sqrt{M_{B_1 \nu}^2 + q_\nu^2 + \sqrt{M_{B_2 \nu}^2 + q_\nu^2}}$.

Relativistic kinematics is used for relating the laboratory energy T_{lab} of the baryons to the center-of-mass momentum. Suppressing the particle channel label, the partial wave projected potentials $V_{\rho' \rho, \nu' \nu, J}(p', p)$ are
Results and discussion

The LO chiral EFT interaction for the S = −3 and −4 baryon-baryon sector depends only on those five contact terms that enter also in theYN interaction. Thus, we can take over the values which were fixed in our study of the YN sector [14]. Then the interaction in the S = −3 and −4 channels is a genuine prediction that follows from the results of Ref. [14] and SU(3)j symmetry.

Results for the ΞΛ → ΞΛ, ΞΣ− → Ξ−Λ, Ξ0Σ− → Ξ+Σ0, Ξ0Σ− → Ξ0Σ−, and Ξ0Σ+ → Ξ0Σ+ scattering cross sections are shown in Fig. 1. Partial waves with total angular momentum up-to-and-including J = 2 are taken into account. The shaded bands show the cut-off dependence. From that figure one observes that the Ξ0Λ → Ξ0Λ and Ξ0Σ+ → Ξ0Σ− cross sections are rather large near threshold. Though the cross section for Ξ0Σ− → Ξ−Λ rises too, in this case it is only due to the phase space factor pΞ−Λ/pΞ0Σ−. There is a clear cusp effect visible in the Ξ0Σ− cross section at p_{lab} ≈ 106 MeV/c, i.e. at the opening of the Ξ−Σ0 channel. On the other hand, we do not observe any sizeable cusp effects in the Ξ0Λ cross section around p_{lab} = 690 MeV/c, i.e. at the opening of the ΞΣ channels. The latter is in line with the results reported by the Nijmegen group for their interactions, where a cusp effect in that channel is absent too. In this context we would like to remind the reader that the cusp seen in the corresponding strangeness S = −2 case, namely in the ΛN cross section at the ΣN threshold, is rather pronounced in our chiral EFT interaction [14] but also in conventional meson-exchange potential models [21,22].

Cross section results for the Ξ0Σ0 and Ξ0Σ− channels are shown in Fig. 2 again as a function of p_{lab} and with shaded bands that indicate the cut-off dependence.

Results for scattering cross sections at p_{lab} = 150 MeV/c for the various ΞY and ΞΞ channels are listed in Table 4. We also include predictions by other models [14,18] for channels where pertinent results are available in the literature. Those cross sections were evaluated from the effective range parameters given in the corresponding publications.

The table makes clear again that our predictions for the Ξ0Λ cross section are indeed sizeable. The results of the Nijmegen meson-exchange potential and of the quark model of Fujiwara et al. are significantly smaller in that channel. But we would like to mention that at least one of the interactions from the Nijmegen group (NSC97b) yields values that are already fairly close to ours (with σΞΛ ≈ 250 mb at p_{lab} = 150 MeV/c). In the Ξ0Σ+ channel (which is a pure isospin I = 3/2 state) the cross sections are also rather large. But here the predictions from the other interactions considered are of comparable magnitude.

It is reassuring to see that the variation of our results with the cut-off mass is not very pronounced. In fact, in general the differences in the cross sections are not more than 20% at p_{lab} = 150 MeV/c and, thus, exhibit uncertainties very similar to those that we have observed in our analysis of the ΛN and ΣN cross sections [14]. In this context let us mention that Stoks and Rijken noticed much more pronounced differences between their six NSC97 models when going to the S = −3 and −4 sectors, as reported in [8]. Their cross sections often differ by a factor 2 or 3, or even more. But one should keep in mind that in the Nijmegen potential an SU(3) breaking, in addition to the one induced by the mass differences of the pseudoscalar mesons, was introduced, cf. Ref. [5].

Results for the Ξ0Λ, Ξ0Σ+, and ΞΞ scattering lengths and effective ranges are listed in Table 5. Also here values from the S = −3 and −4 baryon-baryon interaction potentials of Refs. [3,4] are included. This table reveals the reason for the sizeable Ξ0Λ cross section predicted by the chiral EFT interactions, namely a rather
large scattering length in the corresponding 1S_0 partial wave. It is obvious that its value is strongly sensitive to cut-off variations. It even changes sign (in other words, it becomes infinite) within the considered cut-off range. This means that a virtual bound state transforms into a real bound state, where the strongest binding occurs for the cut-off $\Lambda = 700$ MeV and leads to a binding energy of -0.43 MeV. While this behaviour is interesting per se, one certainly has to stress that in such a case the predictive power of our LO calculation is rather limited. One has to wait for at least an NLO calculation, where we expect that the cut-off dependence will become much weaker so that more reliable conclusions on the possible existence of a virtual or a real bound state should be possible. The 1S_0 scattering lengths of the other potentials suggest also an overall attractive interaction in this partial wave though only a very moderate one.

The results for the 3S_1 state of the $\Xi^0\Lambda$ channel are fairly similar for all considered interactions. Moreover, with regard to the chiral EFT interaction there is very little cut-off dependence. The S-waves in the $\Xi\Sigma$ $I = 3/2$ channel belong to the same (10^* and 27, respectively) irreducible representations where in the NN case real ($^3S_1 - ^3D_1$) or virtual (1S_0) bound states exist, cf. Table II. Therefore, one expects that such states can also occur for $\Xi\Sigma$. Indeed, bound states are present for both partial waves in the Nijmegen model, cf.
Fig. 2. Total cross sections for the reactions $\Xi^0\Xi^- \to \Xi^0\Xi^-$ and $\Xi^0\Xi^0 \to \Xi^0\Xi^0$ as a function of p_{lab}. The shaded band shows the chiral EFT results for variations of the cut-off in the range $\Lambda = 550$\ldots700 MeV.

Table 4

The $\Xi\Sigma$ and $\Xi\Xi$ integrated cross sections (im mb) at $p_{lab} = 150$ MeV/c for various cut-off values Λ. The last columns show results for the Nijmegen potential (NSC97a, NSC97f) [3] and the model by Fujiwara et al. (fss2) [4].

	EFT	NSC97a	NSC97f	fss2
Λ (MeV)	550	600	650	700
$\Xi^0\Lambda \to \Xi^0\Lambda$	254	269	268	262
$\Xi^0\Sigma^- \to \Xi^-\Lambda$	66.4	58.8	49.5	40.9
$\Xi^0\Sigma^- \to \Xi^-\Sigma^0$	82.0	83.0	85.2	89.0
$\Xi^0\Sigma^- \to \Xi^0\Sigma^-$	92.8	99.0	99.0	96.8
$\Xi^0\Sigma^+ \to \Xi^0\Sigma^+$	430	469	484	492
$\Xi^0\Xi^0 \to \Xi^0\Xi^0$	351	302	261	237
$\Xi^0\Xi^- \to \Xi^0\Xi^-$	231	184	160	145

The discussion in Sect. III.B in Ref. [3]. Their presence is reflected in the positive and fairly large singlet and triplet scattering lengths for $\Xi^0\Sigma^+$, cf. Table 5. The chiral EFT interaction has positive scattering lengths of comparable magnitude for 1S_0, for all cut-off values, and therefore bound states, too. These binding energies lie in the range of $-2.23\text{ MeV (}\Lambda = 550\text{ MeV)}$ to $-6.15\text{ MeV (700 MeV)}$. In the $^3S_1 - ^3D_1$ partial wave the attraction is obviously not strong enough to form a bound state. The same is the case (but for both S waves) for the quark model fss2 of Fujiwara et al. [4].

The 1S_0 state of the $\Xi\Xi$ channel belongs also to the 27plet irreducible representation and also here the Nijmegen as well as the chiral EFT interactions produce bound states (see also [27]). In our case the binding energies lie in the range of $-2.56\text{ MeV (}\Lambda = 550\text{ MeV)}$ to $-7.28\text{ MeV (700 MeV)}$. The predictions of both approaches for the 3S_1 scattering length are comparable. The quark model of Fujiwara et al. exhibits a different behavior for the $\Xi\Xi$ channel, see the last column in Table 5. The small and negative 1S_0 scattering length signals an interaction that is only moderately attractive. The large and positive scattering length in the $^3S_1 - ^3D_1$ partial wave, produced by that potential model, is usually a sign for the presence of a bound state, though according to the authors this is not the case for this specific interaction. Nevertheless, the $\Xi^0\Xi^-$ cross section predicted by the quark model is significantly larger than the results of our chiral EFT interaction as well as those of the Nijmegen meson-exchange potential, see, Table 4.
Table 5

Selected \(\Xi Y \) and \(\Xi\Xi \) singlet and triplet scattering lengths \(a \) and effective ranges \(r \) (in fm) for various cut-off values \(\Lambda \). The last columns show results for the Nijmegen potential (NSC97a, NSC97f) [3] and the model by Fujiwara et al. (fss2) [4].

\(\Lambda \) (MeV)	EFT	NSC97a	NSC97f	fss2			
550							
600							
650							
700							
\(a_\Xi^\Lambda \)	-33.5	35.4	12.7	9.07	-0.80	-2.11	-1.08
\(r_\Xi^\Lambda \)	1.00	0.93	0.87	0.84	4.71	3.21	3.55
\(a_\Xi^\Lambda \)	0.33	0.33	0.32	0.31	0.54	0.33	0.26
\(r_\Xi^\Lambda \)	-0.36	-0.30	-0.29	-0.27	-0.47	2.79	2.15
\(a_\Xi^{\Xi\Sigma^+} \)	4.28	3.45	2.97	2.74	4.13	2.32	-3.63
\(r_\Xi^{\Xi\Sigma^+} \)	0.96	0.90	0.84	0.81	1.46	1.17	2.39
\(a_\Xi^{\Xi\Sigma^+} \)	-2.45	-3.11	-3.57	-3.89	3.21	1.71	-3.48
\(r_\Xi^{\Xi\Sigma^+} \)	1.84	1.72	1.70	1.70	1.28	0.96	2.52
\(a_\Xi^{\Xi\Xi} \)	3.92	3.16	2.71	2.47	17.28	2.38	-1.43
\(r_\Xi^{\Xi\Xi} \)	0.92	0.85	0.79	0.75	1.85	1.29	3.20
\(a_\Xi^{\Xi\Xi} \)	0.63	0.59	0.55	0.52	0.40	0.48	3.20
\(r_\Xi^{\Xi\Xi} \)	1.04	1.05	1.08	1.11	3.45	2.80	0.22

4. Summary

In this letter we have presented leading-order results for the \(\Xi Y \) \((Y = \Lambda, \Sigma)\) and \(\Xi\Xi \) interactions obtained within a chiral effective field theory approach based on Weinberg’s power counting, derived analogous to the \(YN \) potential presented in [14], by relating the strangeness \(S = -3 \) and \(-4 \) baryon-baryon interactions via \(SU(3) \) flavor symmetry to the one in the \(YN \) system.

The LO chiral potential consists of two pieces: firstly, the longer-ranged one-pseudoscalar-meson exchanges and secondly, shorter-ranged four-baryon contact terms without derivatives. All the occurring five contact terms were already fixed in our study of the \(YN \) interaction so that genuine predictions can be made for the \(S = -3 \) and \(-4 \) baryon-baryon interactions based on chiral EFT and the assumed \(SU(3) \) symmetry. The reaction amplitude is obtained by solving a regularized coupled-channel Lippmann-Schwinger equation for the LO chiral potential. We used an exponential regulator function to regularize the potential and applied cut-offs in the range between 550 and 700 MeV.

It will be interesting to see whether the new facilities J-PARC (Tokai, Japan) and FAIR (Darmstadt, Germany) allow access to empirical information about the interaction in the \(S = -3 \) and \(-4 \) sector. Such information could come from formation experiments of corresponding hypernuclei or from proton-proton and antiproton-proton collisions at such high energies that pairs of baryons with strangeness \(S = -3 \) or \(S = -4 \) can be produced. There is also a possibility to find signals for strange di-baryon states in heavy-ion collisions [28] which likewise would provide information on the corresponding baryon-baryon interaction. The chiral EFT developed here could then be used to analyze these upcoming data in a model-independent way. It would be also interesting to see how these interactions can be tested in multi-strange three-baryon systems recently explored in lattice QCD [29].
Acknowledgements
We would like to thank Andreas Nogga for comments and a careful reading of our manuscript. We acknowledge the support of the European Community-Research Infrastructure Integrating Activity “Study of Strongly Interacting Matter” (acronym HadronPhysics2, Grant Agreement n. 227431) under the Seventh Framework Programme of the EU. Work supported in part by DFG (SFB/TR 16, “Subnuclear Structure of Matter”), and by the Helmholtz Association through funds provided to the virtual institute “Spin and strong QCD” (VH-VI-231) and by BMBF “Strong interaction studies for FAIR” (grant 06BN9006).

References
[1] J. K. Ahn et al., Phys. Lett. B 633 (2006) 214 \texttt{arXiv:nucl-ex/0502010}.
[2] H. Takahashi et al., Phys. Rev. Lett. 87 (2001) 212502.
[3] V. G. J. Stoks and T. A. Rijken, Phys. Rev. C 59 (1999) 3009 \texttt{arXiv:nucl-th/9901028}.
[4] Y. Fujiwara, Y. Suzuki and C. Nakamoto, Prog. Part. Nucl. Phys. 58 (2007) 439 \texttt{arXiv:nucl-th/0607013}.
[5] T. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C 59 (1999) 21.
[6] I.N. Filikin and A. Gal, Phys. Rev. C 65 (2002) 041001.
[7] A. Gal, \texttt{arXiv:nucl-th/0312071}.
[8] J. Schaffner-Bielich, Nucl. Phys. A 804 (2008) 309 \texttt{arXiv:0801.3791 [astro-ph]}.
[9] S. Weinberg, Phys. Lett. B 251 (1990) 288.
[10] S. Weinberg, Nucl. Phys. B 363 (1991) 3.
[11] P. F. Bedaque and U. von Kolck, Ann. Rev. Nucl. Part. Sci. 52 (2002) 339 \texttt{arXiv:nucl-th/0203055}.
[12] E. Epelbaum, Prog. Part. Nucl. Phys. 57 (2006) 654 \texttt{arXiv:nucl-th/0509063}.
[13] E. Epelbaum, H. W. Hammer and U.-G. Meißner, Rev. Mod. Phys., in print \texttt{arXiv:0811.1338 [nucl-th]}.
[14] H. Polinder, J. Haidenbauer and U.-G. Meißner, Nucl. Phys. A 779 (2006) 244 \texttt{arXiv:nucl-th/0605050}.
[15] H. Polinder, J. Haidenbauer and U.-G. Meißner, Phys. Lett. B 653 (2007) 29 \texttt{arXiv:0705.3753 [nucl-th]}.
[16] A. Nogga, \texttt{arXiv:nucl-th/0611081}.
[17] J. Haidenbauer, U.-G. Meißner, A. Nogga and H. Polinder, Lect. Notes Phys. 724 (2007) 113 \texttt{arXiv:nucl-th/0702015}.
[18] J. J. de Swart, Rev. Mod. Phys. 35 (1963) 916.
[19] S. Iwao, Nuovo Cimento 34 (1964) 1167.
[20] C. B. Dover and H. Feshbach, Annals Phys. 217 (1992) 51.
[21] E. Epelbaum, W. Glöckle and U.-G. Meißner, Nucl. Phys. A 637 (1998) 107 \texttt{arXiv:nucl-th/9801064}.
[22] E. Epelbaum, A. Nogga, W. Glöckle, H. Kamada, U.-G. Meißner and H. Witala, Eur. Phys. J. A 15 (2002) 543 \texttt{arXiv:nucl-th/0201064}.
[23] E. Epelbaum, W. Glöckle and U.-G. Meißner, Eur. Phys. J. A 19 (2004) 401 \texttt{arXiv:nucl-th/0308010}.
[24] M. M. Nagels, “Baryon-baryon scattering in a one-boson-exchange potential model,” Ph.D. thesis, University of Nijmegen, unpublished (1975).
[25] B. Holzenkamp, K. Holinde and J. Speth, Nucl. Phys. A 500 (1989) 485.
[26] J. Haidenbauer and U.-G. Meißner, Phys. Rev. C 72 (2005) 044005.
[27] G.A. Miller, \texttt{arXiv:nucl-th/0607006}.
[28] J. Schaffner-Bielich, R. Mattiello and H. Sorge, Phys. Rev. Lett. 84 (2000) 4305 \texttt{arXiv:nucl-th/9908043}.
[29] S. R. Beane et al., \texttt{arXiv:0905.0466 [hep-lat]}.