Noise induced rupture process: Phase boundary and scaling of waiting time distribution

Srutarshi Pradhan
Sintef Petroleum Research, N-7465 Trondheim, Norway

Anjan Kumar Chandra and Bikas K. Chakrabarti
Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, India

A bundle of fibers has been considered here as a model for composite materials, where breaking of the fibers occur due to a combined influence of applied load (stress) and external noise. Through numerical simulation and a mean-field calculation we show that there exists a robust phase boundary between continuous (no waiting time) and intermittent fracturing regimes. In the intermittent regime, throughout the entire rupture process avalanches of different sizes are produced and there is a waiting time between two consecutive avalanches. The statistics of waiting times follows a Gamma distribution and the avalanche distribution shows power law scaling, similar to what have been observed in case of earthquake events and bursts in fracture experiments. We propose a prediction scheme that can tell when the system is expected to reach the continuous fracturing point from the intermittent phase.

PACS numbers: 02.50.-r, 05.40.-a, 91.30.-f

Rupture and breakdown [1, 2] are complex processes that occur both in micro and macro scales. Natural rupture phenomena like earthquake, land-slide, mine-collapse, snow-avalanches often appear catastrophic to human society. It is therefore a fundamental challenge to understand the underlying rupture process so that the losses in terms of properties and lives can be minimised by providing early alarms. The same crisis persists in construction engineering and material industry where detail knowledge of the strength of the materials and their failure properties, are essential. But the physical processes which initiate rupture, help its growth and finally results in breakdown, are not completely understood yet.

Fiber bundle model (FBM) has become a useful tool for studying rupture and failure [3] of composite materials under different loading conditions. The simple geometry of the model and clear-cut load-sharing rules allow to achieve analytic solutions [4, 5] to an extent that is not possible in any of the fracture models studied so far by the fracture community. FBM was introduced first in connection with textile engineering [5] and recently physicists took interest in it, mainly to explore the critical failure dynamics and avalanche phenomena in this model [6, 10]. Not only the classical fracture-failure (stress-induced) in composites, FBM has been used successfully for studying noise-induced (fatigue) failure [11–13], creep [16, 18] and thermally induced failures [13, 20]. The statistics of avalanches in this type of failure models show similarities with results for acoustic emissions [21] (during material failure) and earthquakes [22–24].

In this work, through waiting time and avalanche statistics, we analyze a noise induced intermittent fracturing process in composite materials under fixed external loading. The waiting time is defined as the time (Monte-Carlo steps) between two consecutive avalanches in the avalanche time series for the entire failure process. Through a mean-field calculation we show that in the stress-noise space, there exists a robust phase boundary between continuous (no waiting time) and intermittent fracturing regimes and that can be verified by numerical simulations. In the intermittent fracturing regime we study the distributions of avalanches and waiting times for different type of fiber strength distributions. Finally we mention and discuss studies on waiting-time statistics in other fracture models, earthquake events and fracture experiments.

We consider first a bundle of N parallel fibers - and a load ($W = \sigma N$) is applied on the bundle. The fibers have different individual strengths (ϕ) which are drawn from a probability distribution and the bundle has a critical strength σ_c [3], so that without any noise, the bundle does not fail completely for stress $\sigma \leq \sigma_c$, but it fails immediately for $\sigma > \sigma_c$. We now assume that each fiber having strength ϕ_i has a finite probability $P(\sigma, T)$ of failure at any stress σ induced by a nonzero noise T:

$$P(\sigma, T) = \begin{cases} \exp \left[-\frac{1}{T}(\frac{\sigma}{\sigma_c} - 1)\right], & 0 \leq \sigma \leq x_i \\ 1, & \sigma > x_i \end{cases}$$ \hspace{1cm} (1)$$

Here $P(\sigma, T)$ increases as T increases and for a fixed value of T and σ_c, as we increase σ, the bundle breaks more rapidly. We simulate this failure phenomenon following Eq. (1) in discrete time t. After each failure (at the fixed stress σ), the total load $N\sigma$ is redistributed among the remaining fibers equally and we check at time $t + 1$, if the present stress $\sigma(t + 1) = W/N(t + 1)$ can induce any further failure following Eq. (1). When the value of σ is considerably large, it so happens that at every time step at least a single fiber breaks until the complete collapse of the bundle. This is a single avalanche and there is no waiting time [15]. But as we decrease the initial value of
σ, at a limiting value, in a particular time step t not a single fiber breaks. We consider this as a single waiting time (t_W = 1) and the limiting value of σ, at which the waiting time appears for the first time is denoted by σ_0. This is the onset of intermittent fracturing process. After one waiting time, again another avalanche starts and eventually all the fibers break after such finite number of avalanches. The number of fibers broken during a single avalanche is counted as the avalanche size (m). It is obvious that as we increase the value of T, the value of σ_0 decreases. When the noise is large, the initial applied load has to be smaller for the emergence of a waiting time. Thus stress (σ) and noise (T) values determine whether the system is in continuous rupture phase or in the intermittent rupture phase. It may be mentioned that T can be interpreted as a measure of thermal noise in the system and similar thermally activated breakdown in fiber bundle model had been studied experimentally [13] and theoretically [14].

To determine the phase boundary we can give a mean-field argument that at σ = σ_0, at least one fiber must break to trigger the continuous fracturing process. After this single failure the load has to be redistributed on the intact fibers and the effective stress must be more than σ_0 - which in turn enhances failure probability for all the intact fibers. Therefore in case of homogeneous bundle where all the fibers have identical strength x_i = 1 (therefore σ_c = 1), at the phase boundary NP(σ_0, T) ≥ 1 giving

\[N \exp \left(\frac{-1}{T} \left(\frac{1}{\sigma_0} - 1 \right) \right) \geq 1 \]

which gives

\[\sigma_0 \geq \frac{1}{1 - T \log(1/N)} \]. \hspace{1cm} (3)

In the absence of noise T, σ_0 = 1 = σ_c, which is consistent with the static FBM results [3]. This analytic estimate coincides with the data obtained from simulation (Fig. 1). It shows a nice phase boundary between the continuous and intermittent fracturing regimes.

For heterogeneous cases where fibers have different strength and the whole bundle has a critical strength σ_c, we make the conjecture that

\[\sigma_0 \geq \frac{\sigma_c}{1 - T \log(1/N)}; \hspace{1cm} (4) \]

keeping in mind that in absence of noise T, σ_0 = σ_c. To verify our conjecture we choose heterogeneous bundles of N fibers where strength of the fibers are drawn from a statistical distribution. We have considered two different kinds of fiber strength distributions: (1) uniform distribution of fiber strength having cumulative form \(Q(x) = x \) for \(0 < x \leq 1 \) and (2) Weibull distribution \(Q(x) = 1 - \exp(-x^k) \) where k is the Weibull index (we have taken k = 2.0 and 5.0). Each fiber has a finite probability \(P(\sigma, T) \) of failure at any stress \(\sigma \) induced by a nonzero T as mentioned before. Similar to the homogeneous case, for a particular value of T, below a certain value of σ, the waiting time appears here. One can see that the theoretical estimate of phase boundary agree with the numerical data for the heterogeneous cases (Fig. 1). However this agreement was much better for homogeneous case. This difference can be explained through the amount of randomness involved in the respective systems. In case of homogeneous bundle there is no randomness in the fiber strength - the only randomness is coming from the noise term. Whereas in case of heterogeneous bundles - there are two sources of randomness - in the fiber strengths and in the noise term.

The mean-field calculation [3] suggests that σ_0 value depends on the number of intact fibers in the bundle (N). It increases with decrease in the number of intact fibers at time t (N_t). Therefore, when we start with a much lower stress value (σ < σ_0) the σ_0 value increases slightly with time (as N_t decreases with small individual failures). But the effective stress value follows a strict relation with applied stress and number of intact fibers as

\[\sigma_t = \sigma N / N_t. \hspace{1cm} (5) \]

These two equations [3] and [3] allow us to make a theoretical prediction of σ_0 value for a particular bundle of homogeneous fibers. If we plot together -σ_0 vs. N_t and σ_t vs. N_t for a particular σ - then the point of intersection will give the σ_0 value for that particular σ value (Fig. 4). Therefore, during a fracturing process if we
can measure the effective stress or the number of intact elements in the system, we can always predict the onset of continuous fracturing.

Existence of such a phase boundary has important consequences on fracturing study in material failure and other fracture-breakdown phenomena. In real situations of material/rock fracturing, acoustic emission measurements can show clearly whether an ongoing fracturing process belongs to continuous or intermittent fracturing phase. Acoustic emissions are basically sound waves produced during micro-crack opening within the material body due to external stress and noise factors. Once a system enters into continuous fracturing phase the breakdown must be imminent. Thus the identification of rupture phase can predict the fate of a system correctly.

In the intermittent fracturing phase avalanches of different sizes are produced separated by waiting times (t_W) of different magnitudes. This happens for a stress value σ below σ_0 at a certain noise (T) level. We have studied the waiting time distribution for both homogeneous and heterogeneous bundles with $N = 20000$. Each curve can be fitted with a Gamma distribution

$$D(t_W) \propto \exp(-t_W/a)/t_W^{1-\gamma}$$ (6)

where $\gamma = 0.15$ for homogeneous case and $\gamma = 0.26$ for heterogeneous cases (Fig. 3). As shown in the inset of Fig. 3 the plot of $D(t_W)/N$ against $t_W \cdot N$ gives good data collapse for different N values ($D(t_W) = A(1-P)^{t_W} \sim A\exp(-Pt_W N)$, where P denotes individual failure probability and A is a constant, hence the normalization of $D(t_W)$ requires $A \sim N$). Such a data collapse indicates the robustness of the Gamma function form. The value of a is the measure of the extent of the power law regime and it has different values for different types of strength distribution. As we increase N, the value of a gradually decreases. We have also studied the waiting time distribution for a fixed value of N, but different sets of values of T and σ, all of which shows Gamma distribution of the form of Eq. 6. For a fixed value of N and T as σ decreases, the power law region extends longer and thus the value of a increases, but the exponent of power law decay remains same. Again for a certain value of N and σ as T decreases, the value of a increases without any change in the power law exponent. These results imply that the power law exponent remains unchanged with variation of σ, T and N.

The noise-induced rupture process, modeled here, has two basic ingredients, external stress σ and noise T. The noise term triggers initial rupture which induces one or
more load-redistribution cycles that finally enhances the effective stress level on the system. Therefore the initial phase of the rupture process is dominated by noise term and as the rupture process goes on stress factor becomes more dominating. At the final stage the stress redistribution mechanism drives the system toward complete collapse through a big avalanche.

For finite values of \(N \), we have studied the waiting time distribution at an interval of 0.20 of the fraction of the broken fibers (\(\phi \)). It has been observed that within the intermittent regime for homogeneous fiber bundle (\(N = 20000 \)) the waiting time distribution is purely a Gamma distribution during the first 0.20 fraction of fibers broken (Fig. 4). During the next 0.20 fraction of broken fibers (i.e., 0.20-0.40), the power law portion diminishes and for the next interval (0.40-0.60) there is no power law regime at all. For the next two intervals (0.60-0.80 and 0.80-1.00) no waiting time appears which implies that for homogeneous fiber bundle the waiting time monotonously disappears with the breaking of fibers (Fig. 4). The nature of evolution of waiting time distribution for the uniform distribution is different from that of the homogeneous one. In case of uniform fiber bundle up to 0.60 fraction of fibers (at an interval of 0.20) the value of \(a \) increases and large waiting times appear as more fibers break. This is due to the fact that initially the fibers of very low strength breaks down instantaneously as soon as a finite stress is applied. But gradually those fibers of low strength become scarce and due to the presence of fibers of intermediate strengths and the moderately increased stress (due to gradual breakdown of fibers), waiting times of broad range appear. But the breaking of the consequent fibers are faster due to the increased stress and gradually the \(a \) value decreases (Fig. 5).

In general, avalanches or bursts bear important information of the dynamics of intermittent processes. In our model the noise \(T \) triggers a rupture process which continues through load (or stress) redistribution mechanism. The avalanche size distributions follow an universal power law (\(D(s) \sim s^{-\xi} \)) scaling with exponent \(\xi = 2.5 \). This result (Fig. 6) demands that such intermittent rupture process belong to the quasi-static fracturing class, where the universality of the exponent value has already been established.

Instead of considering all the avalanches up to the complete failure of the system, if we gather avalanches within some window during the breaking process, the shape of the avalanche distributions change as the system approaches complete failure. In case of homogenous
FIG. 7: Evolution of the avalanche distributions with the fraction of broken fibers (ϕ) for a homogeneous fiber bundle ($N = 20000$, averages are taken over 25 samples) at $T = 0.9$ and $\sigma = 0.062$.

FIG. 8: Evolution of avalanche distributions with fraction of broken fibers (ϕ) for uniform fiber strength distribution ($N = 20000$, averages are taken over 100 samples) at $T = 0.7$ and $\sigma = 0.027$.

strength distribution, there is a monotonic variation (Fig. 7), i.e., more and more large avalanches appear as the failure point is approached but bundle with uniform strength distribution shows a non-monotonic variation (Fig. 8).

Our model for noise induced rupture process is not limited to any particular system, rather it is a general approach and can model more complex situations. There are evidences of stress redistribution and stress-localisation around fracture/fault lines and several factors that can help rupture evolution are friction, plasticity, fluid migration, spatial heterogeneities, chemical reactions etc. In our model such stress redistribution/localisation can be taken into account through a proper load sharing scheme and noise term (T) can represent the combined effect of other factors.

We would like to mention here that waiting times and their statistics in different types of fracture models have also been discussed recently. Creep rupture in a non-linear viscoelastic FBM was proposed and studied extensively by Hidalgo et. al in 2002 [16]. By construction it is a different class of fiber bundle model—there is no noise term and non-linearity in material response has been introduced through an exponent in the constitutive equation. This model is different from our simple noise-induced FBM. It has been observed that the strain-rate shows power-law relaxation in the creep regime followed by a power-law acceleration up to complete rupture [17] and the waiting time distributions in such creep models obey power laws [18].

Yoshioka et. al. [19, 20] discussed thermally activated failure in FBM introducing a Gaussian fluctuation in local force (stress) on individual fibers. Potentially this model goes back to classical FBM if the fluctuation term is zero. But if the fluctuation is non-zero then the bundle can fail even when the external stress is zero which is confusing and not real. In that sense our noise-induced failure scheme in FBM (introduced in 2003 in ref. [15]) is more robust and some exact analytic results (failure time and avalanche distribution) have already been calculated through this scheme.

Identification of phase boundary is crucial for any dynamical system because a system usually changes its behavior as it moves from one phase to another. As we can see in our model, there is no waiting time above the phase boundary (continuous rupture phase) and waiting time appears below the phase boundary (intermittent phase). One can also estimate the failure time of the system exactly [15] in the continuous rupture phase. In case of fracturing in loaded rocks/materials, such study can help to identify reliable precursors which can warn of an imminent breakdown. We notice, in our model system, magnitude of waiting time reduces gradually towards the breakdown point which is reflected in the variation of a in the functional form of the distribution. What is the exact form of this variation? Does it depend on the applied stress and noise level? Which one is the more sensitive parameter? These questions must be answered to develop a prediction scheme based on available precursors prior to failure/breakdown.

This work is partially supported by Norwegian Research Council through grant no. 199970/S60 and 217413/E20. AKC thanks DST (India) for financial support under the Fast Track Scheme for Young Scientists Sanc. no. SR/FTP/PS-090/2010 (G).

* Electronic address: srutarshi.pradhan@sintef.no; srutarshi@gmail.com
† Electronic address: anjanphy@gmail.com
‡ Electronic address: bikash.chakrabarti@saha.ac.in
[1] B. K. Chakrabarti and L. G. Benguigui, *Statistical Physics of Fracture and Breakdown in Disordered Systems*, Oxford University Press (1997).
[2] H. J. Herrmann and S. Roux, *Statistical Models for the Fracture of Disordered Media*, North-Holland, Amsterdam (1990).
[3] S. Pradhan, A. Hansen and B. K. Chakrabarti, Rev. Mod. Phys. **82**, 499 (2010).
[4] S. Pradhan and B. K. Chakrabarti, Phys. Rev. E **65**, 016113 (2001).
[5] S. Pradhan, P. Bhattacharyya and B. K. Chakrabarti, Phys. Rev. E **66**, 016116 (2002).
[6] P. Bhattacharyya, S. Pradhan and B. K. Chakrabarti, Phys. Rev. E **67**, 046122 (2003).
[7] F. T. Peirce, J. Text. Ind. **17**, 355 (1926).
[8] P. C. Hemmer and A. Hansen, ASME J. Appl. Mech. **59**, 909 (1992).
[9] S. Pradhan, A. Hansen and P. C. Hemmer, Phys. Rev. Lett. **95**, 125501 (2005).
[10] S. Pradhan and P. C. Hemmer, Phys. Rev. E **75**, 056112 (2007).
[11] B. R. Lawn, *Fracture of Brittle Solids* (Cambridge University Press, Cambridge, 1993).
[12] B. D. Coleman, J. Appl. Phys. **29**, 968 (1958).
[13] R. Scorretti, A. Guarino and S. Ciliberto, Europhys. Lett. **55**, 626 (2001).
[14] S. Roux, Phys. Rev. E **62**, 6164 (2000).
[15] S. Pradhan and B.K. Chakrabarti, Phys. Rev. E **67**, 046124 (2003).
[16] R. C. Hidalgo, F. Kun and H. J. Herrmann Phys. Rev. E **65**, 032502 (2002).
[17] H. Nechad, A. Helmstetter, R. El Guerjouma and D. Sornette, Phys. Rev. Lett. **94**, 045501 (2005).
[18] T. Baxevanis and T. Katsaounis, Eur. Phys. J. B. **61**, 153-157 (2008).
[19] N. Yoshioka, F. Kun and N. Ito Phys. Rev. E. **82**, 055102 (2010).
[20] N. Yoshioka, F. Kun and N. Ito Eur. Phys. Lett. **97**, 26006 (2012).
[21] A. Petri, G. Paparo, A. Vespignani, A. Alippi and M. Costantini, Phys. Rev. Lett. **73**, 3423 (1994).
[22] A. Corral, Phys. Rev. Lett. **97**, 178501 (2006).
[23] A. Corral, Phys. Rev. E. **68**, 035102 (2003).
[24] P. Bak, K. Christensen, L. Danon and T. Scanlon, Phys. Rev. Lett. **88**, 178501 (2002).