Systematic Review

The 2008 Financial Crisis and Changes in Lifestyle-Related Behaviors in Italy, Greece, Spain, and Portugal: A Systematic Review

Monica Sane Schepisi 1,2,†, Anteo Di Napoli 1,†, Rosario Asciutto 1,†, Simona Vecchi 3,†,©, Concetta Mirisola 1,† and Alessio Petrelli 1,*†

1 National Institute for Health, Migration and Poverty (INMP), 00153 Rome, Italy; m.saneschepisi@gmail.com (M.S.S.); anteo.dinapoli@inmp.it (A.D.N.); rosarioasciutto@gmail.com (R.A.); concetta.mirisola@inmp.it (C.M.)
2 Ministry of Health—General Directorate for Health Prevention, 00144 Rome, Italy
3 Department of Epidemiology—Lazio Region, ASL Rome 1, 00147 Rome, Italy; s.vecchi@deplazio.it
* Correspondence: alessio.petrelli@inmp.it
† Equally contributed.

Abstract: Italy, Greece, Spain, and Portugal have all been strongly affected by the 2008 financial crisis, which had a negative impact on health. We systematically evaluated the effects of the crisis on lifestyle and socioeconomic inequalities. We conducted a literature search using MEDLINE, Embase, the Cochrane Library, and health economics databases for studies reporting quantitative comparisons before and after (or during) the crisis on the following risk behaviors: alcohol consumption, smoking habit, healthy diet, physical activity, and psychotropic drugs and substance abuse, without setting any age restrictions. We selected 34 original articles published between 2011 and 2020. During/after the crisis, alcohol consumption and substance abuse decreased, while psychotropic drug use increased. We also observed a deterioration in healthy eating behavior, with a reduction in fruit and vegetable consumption. Smoking habit and physical activity showed a more complex, controversial trend. Socioeconomic inequalities were affected by the recession, and the negative effects on unhealthy lifestyle tended to be more pronounced among the disadvantaged. These results suggest the need to implement health policies and interventions aimed at monitoring risk behaviors, with special regard to disadvantaged people, and considering the potential additional impact of the COVID-19 pandemic.

Keywords: economic crisis; COVID-19; risk behaviors; lifestyles; inequalities; socioeconomic

1. Introduction

Before the COVID-19 pandemic, the 2008 Great Recession was the most severe crisis experienced by Europe since the Second World War, particularly in the southern European countries of Italy, Greece, Spain, and Portugal [1]. The considerable amount of literature on the topic shows that the financial crisis has had a strong impact on the health of most European populations [2]. Despite the trend towards reduced mortality, a deterioration in mental health, an increase in the number of suicides and, to a varying extent, in some non-communicable and communicable diseases, and a worsening in perceived health has been observed in most European populations [3,4]. However, an increase in mortality due to alcohol-related causes and to the consumption of drugs [5] has been observed in some countries.

Italy, Greece, Spain, and Portugal have been affected both by the direct effects of the financial crisis on the health of their populations and by the barriers to healthcare access imposed by the austerity policies introduced by governments to pay off the public debt [2]. In Greece, the austerity measures implemented to contain public spending contributed to
an increase in forgoing health care due to economic reasons, especially among the poor, people with lower incomes, and the unemployed [6]; similar results were observed in Italy [7]. A deeper analysis by Karanikolos [2] suggests that, although recession poses risks to health, the interaction between fiscal austerity with economic shocks and weak social protection is what ultimately seems to escalate health and social crises in Europe.

The impact of the financial crisis on the health of the populations has been disproportionate. In fact, the more limited decrease in the number of deaths among the more disadvantaged social groups compared to the general population has determined a widening of mortality inequalities [8]. A recent systematic review has found an increase in socioeconomic inequalities [9]. Historical evidence supports the hypothesis that recession periods are associated with worse lifestyle, including increased alcohol consumption [10] or drug use [11], but the association between the Great Recession and worse lifestyle has not yet been systematically evaluated.

In this context, the COVID-19 pandemic began while the effects of the 2008 financial crisis were still manifesting; in addition to the dramatic impact on mortality and the direct long-term effects on the health of those who have recovered, there have also been indirect effects due to the cancellation or postponement of non-urgent assistance or interventions to decongest overwhelmed care facilities, technologies, and personnel.

The purpose of our review was to systematically evaluate the effects of the 2008 financial crisis on lifestyle and socioeconomic inequalities in Italy, Greece, Spain, and Portugal.

2. Materials and Methods

The review protocol was registered (CRD42019129105) in the PROSPERO open access database of systematic reviews (Available online: http://www.crd.york.ac.uk/PROSPERO) (accessed on 12 August 2021). Conducting and reporting are in accordance with PRISMA guidelines. The Covidence systematic review software (Veritas Health Innovation, Melbourne, VIC, Australia. Available online: http://www.covidence.org) (accessed on 12 August 2021) was used as the reference manager tool for the phases of importation, deduplication, and selection.

2.1. Information Sources and Search Strategy

The literature search was performed using MEDLINE (via Ovid), Embase, The Cochrane Library and health economics databases (EconLit). Search terms for financial crisis were combined with the terms “eating behavior”, “smoking habit”, “alcohol consumption”, “psychotropic drug use”, “drug abuse”, or “gambling”. Supplementary Table S1 shows the full search strategy for MEDLINE. To identify additional relevant documents, the grey literature was searched for using OpenGrey and through the screening of the websites of the following referral organizations on population health and healthcare: The World Health Organization, the Organization for Economic Co-operation and Development, the European Observatory on Health Systems and Policies, the European Commission, and the European Centre for Disease Prevention and Control.

The references of included articles were also screened to identify potentially eligible articles for inclusion.

We included observational studies reporting quantitative comparisons before and after, before and during, or during and after the crisis of the following key health behaviors: diet, smoking, physical activity, alcohol consumption, and psychotropic drug use or substance abuse affecting individuals of any age. We considered studies published between January 2008 and November 2020 in English, Italian, Spanish, Portuguese, and Catalan. Multi-country studies were included when individual country data were available.

The exclusion criteria were:

1. Type of study: publications lacking primary data and/or explicit descriptions of the methods. Abstracts, editorials, correspondence, and commentaries were deemed acceptable for inclusion if they reported sufficient data;
2. Methodology: pre–post comparison missing;
3. Data not suitable for extraction (e.g., reporting data on a group of countries);
4. Study population overlap.

Studies were selected through a three-step selection procedure based on: (1) screening of title and abstract, (2) screening of full-text article, and (3) final screening during the data extraction phase. Two independent researchers with experience in reviews and in the topic filtered and selected the references. In cases of discordance, a third researcher was consulted to determine inclusion or exclusion of the reference.

2.2. Data Extraction, Quality Evaluation, and Synthesis of Results

The following data were extracted from each included article: study population (number, age range, sex), population characteristics (e.g., students, household members), data source (e.g., national registry, questionnaires), study design, outcome definition, results (if available, by sex and socioeconomic status), main conclusions.

Two independent researchers judged the quality of each eligible study using a modified Newcastle-Ottawa Scale (NOS) for cross-sectional studies [12]: a study is assigned a maximum total score (stars) of nine for the following domains: selection, comparability, and outcome. We considered scores of 0–3, 4–6, and 7–9 as indications of low, medium, and high quality, respectively. Any doubt was resolved by consulting with a third reviewer. The score of the included articles are shown in the Supplementary Table S2.

The results, organized by country, report study population (number and age range) and data sources, outcome definition, results, and effects on inequalities, if reported. Given the highly heterogeneous nature of the studies, we did not attempt to conduct a meta-analysis, and we report the results narratively.

3. Results

Our search identified 2325 unduplicated records; after the selection process, 31 cross-sectional studies [13–43] were identified, as detailed in the PRISMA flow diagram (Figure 1). The main characteristics of the eligible studies are reported in Table 1. The articles, published between 2011 and 2020, were conducted primarily in Spain (n = 19); the remainder were conducted in Italy (n = 6), Greece (n = 6), and Portugal (n = 4). Two studies were multi-country [19,34]. Of the studies included, six also considered a juvenile population (age ≤ 15 years) [21,29,33,34,41,43], while the remaining were on adolescents aged > 15 years and on adults. The studies used validated questionnaires or administrative registries as data sources.

Regarding the outcomes considered, most of the studies concerned diet (n = 18) and smoking habit (n = 17), followed by alcohol consumption (n = 15) and physical activity (n = 13). Antidepressant/anxiolytic/antipsychotic drug use was examined by nine studies and substance abuse by six. In order to report briefly the main findings of the studies from a public health perspective, we created Table 2, which shows the variation in health behavior during or after the 2008 crisis by means a symbol for each risk behavior.

Regarding study quality, the available evidence was affected by a high risk of bias for exposure and for outcome assessment due to the study design, use of self-reported measures, and lack of adjusting for potential confounding factors. Supplementary Table S2 summarizes the NOS assessment of the included studies, which obtained scores between 2 and 7, with an average score of 4.7; four studies appeared to be of very low quality (total score 2 or 3). Confidence in ascertainment of exposure and of outcome assessment was very low in most studies. Even though most studies used a large sample of individual-level data, most data were collected by surveys that collected information using questionnaires on self-reported changes in several indicators on health-related behaviors as well as on consumption of medications. Some studies used aggregate data, which could mask individual-level effects, or self-reported questionnaires that had not been previously validated. Only six studies received a total score of >7, which was considered high quality.
3.1. The Financial Crisis and Lifestyle-Related Behaviors

3.1.1. The Financial Crisis and Alcohol Consumption

Compared to the pre-crisis period, alcohol consumption decreased during or after among adults in Spain, Greece, and Italy [16,19,20,25–29,35], and among young Spanish people [13,43]. Two studies showed a significant upward overall trend in binge drinking [20]. Conversely, two studies provided evidence of increased prevalence of moderate [18] and heavy alcohol intake after the recession [16], while a Spanish study showed no differences [17].

When stratifying by socioeconomic level, controversial results were observed. Two studies suggested a widening of socioeconomic inequalities, although this effect is due to contrasting results: one study showed that heavy alcohol consumption increased during the crisis among the least educated men [16], while another showed an increase among the most educated people [17]. Finally, a more relevant reduction in alcohol intake among the lower class was also observed elsewhere, showing a narrowing of inequalities [25].
Table 1. Characteristics of the included studies by country.

COUNTRY: SPAIN
Author

Aguilar-Palacio 2015 [13]
Arroyo 2019 [15]
Table 1. Cont.

Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
Bartoll 2015	Cross-sectional Spanish National Health Survey (2001, 2003/04, 2006/07 and 2011/12) Economically active adults: 25–64 years N = 47,156	Alcohol consumption in the last 2 weeks	Alcohol by socioeconomic status Adjusted regression coefficients (％) and p-value of the interaction between economic recession dummy (2001–2006/2007 vs. 2011/2012) and employment status (employed; unemployed) WOMEN Last two weeks −5.0; −12.4 (p = 0.054) Adjusted regression coefficients (%) and p-value of the interaction between economic recession dummy (2001–2006/2007 vs. 2011/2012) and education level (university, high secondary, lower secondary or primary, without any qualification) MEN: Heavy alcohol consumption +0.2; +0.8; +3.1; +5.4 (p = 0.012) WOMEN: Heavy alcohol consumption −1.5; +0.1; +1.4; −0.2 (p = 0.012)
		Heavy alcohol consumption more than 17 Standard Basic Units of alcohol per week	
		Smoking habits	
		Frequency of consumption of food	
		Physical activity moderate or intense physical activity	
		Tranquilizer or sleeping tablet intake at least 1 tablet in the last 2 weeks.	
		Diet	

Trend percentages (%), 2001–2012

Last two weeks: MEN: −5.4 (p < 0.01); WOMEN: −6.9 (p < 0.01)

Heavy alcohol consumption: MEN: +2.0 (p < 0.01); WOMEN: −0.4 (ns)
Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
	By socioeconomic status		
	Adjusted regression coefficients (%) and p-value of the interaction between economic recession dummy (2001–2006/2007 vs. 2011/2012) and employment status (employed; unemployed)		
	MEN:		
	Vegetables daily: +9.0; 6.3 (p = 0.004)		
	Fruits daily: −7.4; −12.1 (p = 0.041)		
	Legumes (3 times or more per week): +3.8; −7.4 (p = 0.041)		
	Fish (3 times or more per week): +1.2; −6.4 (p = 0.055)		
	WOMEN:		
	Vegetables daily: −1.7; −4.3 (p = 0.065)		
	Adjusted regression coefficients (%) and p-value of the interaction between economic recession dummy (2001–2006/2007 vs. 2011/2012) and education level (university, high secondary, lower secondary or primary, without any qualification)		
	MEN:		
	Fruits daily: −4.5; −6.1; −11.4; −21.8 (p = 0.06)		
	Sweet food (3 times or more per week): −1.7; +2.5; +3.1; −16.9 (p = 0.067)		
	WOMEN:		
	Vegetables daily: −1.3; +3.4; −3.0; −27.1 (p = 0.004)		
	Physical activity		
	Moderate or intense		
	Trend percentages (%), 2001–2012		
	MEN: +3.2 (p < 0.05); WOMEN: +1.4 (ns)		
	By socioeconomic status		
	Adjusted regression coefficients (%) and p-value of the interaction between economic recession dummy (2001–2006/2007 vs. 2011/2012) and education level (university, high secondary, lower secondary or primary, without any qualification)		
	WOMEN:		
	+6.5; +4.6; −1.6; −0.7 (p = 0.014)		
Table 1. Cont.

COUNTRY: SPAIN

Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
Drugs			
Tranquilizers or sleeping pills	Trend percentages (%) of consumption, 2001–2012	MEN: -0.5 (ns); WOMEN: -2.4 ($p < 0.01$)	
By socioeconomic status	Adjusted regression coefficients (%) and p-value of the interaction between economic recession dummy (2001–2006/2007 vs. 2011/2012) and employment status (employed; unemployed)	WOMEN: -3.7; +0.1 ($p < 0.001$)	
	Adjusted regression coefficients (%) and p-value of the interaction between economic recession dummy (2001–2006/2007 vs. 2011/2012) and education level (university, high secondary, lower secondary or primary, without any qualification)	WOMEN: -2.6; -1.2; -2.1; -18.3 ($p = 0.051$)	
Alcohol			
Prevalence (%), 2006 vs. 2011–2012	25.9 vs. 25.6		
By socioeconomic status	Adjusted OR:		
2006	Unemployed less than 6 months: 0.87 (95% CI: 0.72–1.05)		
	Education: Noncompulsory and pre-university secondary education: 0.90 (95% CI: 0.81–1.00)		
	Specific labor training: 0.98 (95% CI: 0.85–1.14)		
	University graduate: 0.85 (95% CI: 0.76–0.95) 2011–2012		
	Unemployed less than 6 months: 1.26 (95% CI: 1.06–1.50) Noncompulsory and pre-university secondary education: 1.36 (95% CI: 1.19–1.56) Specific labor training: 1.35 (95% CI: 1.13–1.61) University graduate: 1.37 (95% CI: 1.19–1.58)		

Blázquez-Fernández 2019 [17]

- Cross-sectional
 - National Health Interview Survey
 - Economically active adults: 18–65 years
 - $N = 29,677$ (2006:14,696; 2011–2012: 14,981)

- Drinker
 - people consuming five or more drinks a week
| Author | Study Design, Sample Characteristics | Outcome Definition | Findings * |
|--------------|---|---|--|
| Colell 2015 | Cross-sectional | Alcohol: Daily average of alcohol intake (g/day), 2005–2007 vs. 2009–2011 | Alcohol: Daily average of alcohol intake (g/day), 2005–2007 vs. 2009–2011 |
| | Economically active adults: 50–64 years
N = 62,440 | Men: 16.9 vs. 15.1 (p < 0.001) Women: 7.7 vs. 7.1 (p = 0.002) | Men: 16.9 vs. 15.1 (p < 0.001) Women: 7.7 vs. 7.1 (p = 0.002) |
| | | **Heavy drinking**
Prevalence (%), 2005–2007 vs. 2009–2011
Men: 6.9 vs. 5.2 (p < 0.001)
Women: 3.3 vs. 2.8 (p = 0.013)
Adjusted prevalence ratio (PR) (ref pre-crisis):
Men: 0.73 (95% CI: 0.67–0.79)
Women: 0.86 (95% CI: 0.75–0.99) | **Heavy drinking**
Prevalence (%), 2005–2007 vs. 2009–2011
Men: 6.9 vs. 5.2 (p < 0.001)
Women: 3.3 vs. 2.8 (p = 0.013)
Adjusted prevalence ratio (PR) (ref pre-crisis):
Men: 0.73 (95% CI: 0.67–0.79)
Women: 0.86 (95% CI: 0.75–0.99) |
| | | **Binge drinking**
Prevalence (%), 2005–2007 vs. 2009–2011
Men: 19.3 vs. 22.0 (p < 0.001)
Women: 7.1 vs. 10.1 (p < 0.001)
Adjusted prevalence ratio (PR) (ref pre-crisis):
Men: 1.17 (95% CI: 1.12–1.22)
Women: 1.62 (95% CI: 1.49–1.76) | **Binge drinking**
Prevalence (%), 2005–2007 vs. 2009–2011
Men: 19.3 vs. 22.0 (p < 0.001)
Women: 7.1 vs. 10.1 (p < 0.001)
Adjusted prevalence ratio (PR) (ref pre-crisis):
Men: 1.17 (95% CI: 1.12–1.22)
Women: 1.62 (95% CI: 1.49–1.76) |
| | | Drugs: Hypnotics/sedatives sporadic users
Prevalence (%), 2005–2007 vs. 2009–2011
Men: 1.2 vs. 1.6 (p = 0.005)
Women: 2.1 vs. 2.4 (ns) | Drugs: Hypnotics/sedatives sporadic users
Prevalence (%), 2005–2007 vs. 2009–2011
Men: 1.2 vs. 1.6 (p = 0.005)
Women: 2.1 vs. 2.4 (ns) |
| | | Hypnotics/sedatives heavy users
Prevalence (%), 2005–2007 vs. 2009–2011
Men: 1.8 vs. 2.1 (p = 0.005)
Women: 3.7 vs. 5.4 (p < 0.001)
Prevalence ratio (PR) (ref pre-crisis):
Men: 1.19 (95% CI: 0.99–1.42)
Women: 1.32 (95% CI: 1.17–1.49) | Hypnotics/sedatives heavy users
Prevalence (%), 2005–2007 vs. 2009–2011
Men: 1.8 vs. 2.1 (p = 0.005)
Women: 3.7 vs. 5.4 (p < 0.001)
Prevalence ratio (PR) (ref pre-crisis):
Men: 1.19 (95% CI: 0.99–1.42)
Women: 1.32 (95% CI: 1.17–1.49) |
Table 1. Cont.

Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
COUNTRY: SPAIN			
Substance abuse			
Cannabis sporadic users			
Prevalence (%), 2005–2007 vs. 2009–2011	MEN: 5.6 vs. 5.2 (p ns)	WOMEN: 3.1 vs. 2.4 (p < 0.001)	Adjusted prevalence ratio (PR) (ref pre-crisis)
	MEN: 0.90 (95% CI: 0.81–1.01)	WOMEN: 0.77 (95% CI: 0.64–0.91)	
By socioeconomic status	Interaction (RRR) between activity (unemployed vs. employed) and period (2009–2011 vs. 2005–2007)		
MEN: 0.69 (95% CI: 0.49–0.97)			
WOMEN: 1.40 (95% CI: 1.10–1.77)			
Cannabis heavy users			
Prevalence (%), 2005–2007 vs. 2009–2011	MEN: 6.0 vs. 5.7 (ns)	WOMEN: 2.0 vs. 1.9 (ns)	
Diet			
Frequency of consumption of food			
Diaz-Mendez 2019 [22]	Cross-sectional	Adults >16 years	
N = 50,485 (2006: 29,478; 2011–2012: 21,007)			

By socioeconomic status
Interaction (RRR) between activity (unemployed vs. employed) and period (2009–2011 vs. 2005–2007)
MEN: 0.69 (95% CI: 0.49–0.97)
WOMEN: 1.40 (95% CI: 1.10–1.77)

Substance abuse
Cannabis sporadic users
Prevalence (%), 2005–2007 vs. 2009–2011
MEN: 5.6 vs. 5.2 (p ns)
WOMEN: 3.1 vs. 2.4 (p < 0.001)
Adjusted prevalence ratio (PR) (ref pre-crisis)
MEN: 0.90 (95% CI: 0.81–1.01)
WOMEN: 0.77 (95% CI: 0.64–0.91)

By socioeconomic status
Interaction (RRR) between activity (unemployed vs. employed) and period (2009–2011 vs. 2005–2007)
MEN: 0.69 (95% CI: 0.49–0.97)
WOMEN: 1.40 (95% CI: 1.10–1.77)

Cannabis heavy users
Prevalence (%), 2005–2007 vs. 2009–2011
MEN: 6.0 vs. 5.7 (ns)
WOMEN: 2.0 vs. 1.9 (ns)

Diet
Trend 2006–2011
Fruits (daily): falling
Meat (3 or more times a week): rising
Eggs (3 or more times a week): falling
Fish (3 or more times a week): falling
Pasta-rice-potatoes (daily): falling
Bread (daily): remaining within guidelines.
Vegetables (daily): falling
Pulses (once or twice a week): rising
Processed meats (occasionally/seldom or never): continuing
Table 1. Cont.

Author	Study Design, Sample Characteristics	Outcome Definition	Findings *	
Garcia-Mayor	Cross-sectional	Alcohol use during the last 2 weeks		
2019 [25]	Spanish National Health Survey (SNHS)	Alcohol	Differences in prevalence, 2012 vs. 2006, 2017 vs. 2006	
	Adults 18–64 years	MEN: −4.7% (p < 0.001), −8.7% (p < 0.001)	MEN: −4.7% (p < 0.001), −8.7% (p < 0.001)	
		WOMEN: −3.3% (p < 0.001), −5.8% (p < 0.001)	WOMEN: −3.3% (p < 0.001), −5.8% (p < 0.001)	
		By socioeconomic status	By socioeconomic status	
		High (−2.8%, −4.4%) Middle (−1.2%, −4.0%) Low (−0.8%, −7.2%)	High (−2.8%, −4.4%) Middle (−1.2%, −4.0%) Low (−0.8%, −7.2%)	
		Smoking	Smoking	
		Differences in prevalence, 2012 vs. 2006, 2017 vs. 2006	Differences in prevalence, 2012 vs. 2006, 2017 vs. 2006	
		MEN: −3.5% (p < 0.001), −7.7% (p < 0.001)	MEN: −3.5% (p < 0.001), −7.7% (p < 0.001)	
		WOMEN: +0.3% (ns), −1.6% (ns)	WOMEN: +0.3% (ns), −1.6% (ns)	
		By socioeconomic status	By socioeconomic status	
		High (−3.4%, −7.0%) Middle (−0.4%, −5.2%) Low (−0.6%, −2.3%)	High (−3.4%, −7.0%) Middle (−0.4%, −5.2%) Low (−0.6%, −2.3%)	
		Diet	Diet	
		Fruit consumption	Fruit consumption	
		Differences in prevalence, 2012 vs. 2006, 2017 vs. 2006	Differences in prevalence, 2012 vs. 2006, 2017 vs. 2006	
		MEN: −3.9% (p < 0.001), −4.6% (p < 0.001)	MEN: −3.9% (p < 0.001), −4.6% (p < 0.001)	
		WOMEN: −7.2% (p < 0.001), −4.9% (p < 0.001)	WOMEN: −7.2% (p < 0.001), −4.9% (p < 0.001)	
		By socioeconomic status	By socioeconomic status	
		High (−5.2%, −1.2%) Middle (−5.4%, −5.3%) Low (−6.2%, −8.1%)	High (−5.2%, −1.2%) Middle (−5.4%, −5.3%) Low (−6.2%, −8.1%)	
		Vegetable consumption	Vegetable consumption	
		Differences in prevalence, 2012 vs. 2006, 2017 vs. 2006	Differences in prevalence, 2012 vs. 2006, 2017 vs. 2006	
		MEN: +4.8% (p < 0.001), −2.1% (p = 0.005)	MEN: +4.8% (p < 0.001), −2.1% (p = 0.005)	
		WOMEN: +3.5% (p < 0.001), −0.7% (ns)	WOMEN: +3.5% (p < 0.001), −0.7% (ns)	
		By socioeconomic status	By socioeconomic status	
		High (+4.6%, +2.3%) Middle (+5.2%, −1.0%) Low (+2.1%, −3.8%)	High (+4.6%, +2.3%) Middle (+5.2%, −1.0%) Low (+2.1%, −3.8%)	
		Sweets consumption	Sweets consumption	
		Differences in prevalence, 2012 vs. 2006, 2017 vs. 2006	Differences in prevalence, 2012 vs. 2006, 2017 vs. 2006	
		MEN: −4.4% (p < 0.001), −8.8% (p < 0.001)	MEN: −4.4% (p < 0.001), −8.8% (p < 0.001)	
		WOMEN: −6.7% (p < 0.001), −9.3% (p < 0.001)	WOMEN: −6.7% (p < 0.001), −9.3% (p < 0.001)	
		By socioeconomic status	By socioeconomic status	
		High (−3.5%, −8.9%) Middle (−7.7%, −9.9%) Low (−5.4%, −9.2%)	High (−3.5%, −8.9%) Middle (−7.7%, −9.9%) Low (−5.4%, −9.2%)	
		Diet	Diet	
		Fruit consumption	Fruit consumption	
		Differences in prevalence, 2012 vs. 2006, 2017 vs. 2006	Differences in prevalence, 2012 vs. 2006, 2017 vs. 2006	
		MEN: −3.9% (p < 0.001), −4.6% (p < 0.001)	MEN: −3.9% (p < 0.001), −4.6% (p < 0.001)	
		WOMEN: −7.2% (p < 0.001), −4.9% (p < 0.001)	WOMEN: −7.2% (p < 0.001), −4.9% (p < 0.001)	
		By socioeconomic status	By socioeconomic status	
		High (−5.2%, −1.2%) Middle (−5.4%, −5.3%) Low (−6.2%, −8.1%)	High (−5.2%, −1.2%) Middle (−5.4%, −5.3%) Low (−6.2%, −8.1%)	
COUNTRY: SPAIN	Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
----------------	--------	-------------------------------------	--------------------	-----------

Sweetened beverages
Differences in prevalence, 2012 vs. 2006, 2017 vs. 2006
MEN: −4.7% (*p* < 0.001), −3.5% (*p* < 0.001)
WOMEN: −8.9% (*p* < 0.001), −5.0% (*p* < 0.001)
By socioeconomic status
High (−2.2%, −7.1%) Middle (−4.1%, −5.4%) Low (−5.2%, −8.1%)

Physical activity
Differences in prevalence, 2012 vs. 2006, 2017 vs. 2006
MEN: +0.7% (*p*: ns), +4.9% (*p* < 0.001)
WOMEN: −4.7% (*p* < 0.001), +3.3% (*p* < 0.001)
By socioeconomic status
High (−0.1%, +7.6%) Middle (−0.3%, +6.3%) Low (−2.1%, +3.6%)

Alcohol consumption
In the last month (EDADES)
Habitual (ENS)

Smoking habits
In the last month (EDADES)
Daily (ENS)

Drugs use
In the last month: sedatives, tranquilizer, hypnotics (EDADES)
Last 2 weeks: antidepressants (ENS)

Alcohol
Prevalence (%), 2005 vs. 2011 (EDADES) and 2006 vs. 2012 (ENS)
EDADES: 64.6 vs. 62.3; ENS: 48.4 vs. 38.3

Smoking
Prevalence (%), 2005 vs. 2011 (EDADES) and 2006 vs. 2012 (ENS)
EDADES: 38.4 vs. 37.6; ENS: 26.4 vs. 24.0

Drugs
Prevalence (%), 2005 vs. 2011
Sedatives (EDADES): 3.7 vs. 8.3;
Tranquilizers (EDADES): 2.7 vs. 6.9;
Hypnotics (EDADES): 2.0 vs. 3.4;
Antidepressants (ENS): 8.5 vs. 7.0

Physical activity
Sedentary lifestyle
Prevalence (%), 2006 vs. 2012: 39.4% vs. 41.3%
Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
Martin Bassols	Cross-sectional	Substance abuse	
2016 [28]	People aged 15-64 years N = 92,102 (2005: 27,400; 2007: 23,276; 2009: 19,713; 2011: 21,713)	Prevalence (%), 2005 vs. 2011	
		Cannabis: 8.7 vs. 7.0	
		Ecstasy: 0.6 vs. 0.3	
		Hallucinogens: 0.2 vs. 0.2	
		Amphetamines: 0.4 vs. 0.3	
		Cocaine powder: 1.6 vs. 1.1	
		Cocaine base: 0.1 vs. 0.1	
		Heroin: 0.1 vs. 0.1	
	Alcohol	Alcohol consumption	
		Smoking habits	
		Substance abuse	
		marijuana and hard drugs such as crack, cocaine, heroin, ecstasy, hallucinogens, inhalants, and amphetamines in the last 12 months, last 30 days, every day in last 30 days	
		Alcohol in the past 12 months: −3.4 (p < 0.1)	
		Alcohol in the past 12 months: −3.4 (p < 0.1)	
		Not consuming any alcohol: +3 (p < 0.05)	
		Consuming alcohol fewer than 20 days in the last year: 1.1 (p < 0.05)	
		Consuming alcohol between 20 and 29 days during the last year: −0.1 (p < 0.05)	
		Consuming alcohol between 30 and 150 during the last year: −1.7 (p < 0.05)	
		Consuming alcohol more than 150 days during the last year: −2.3 (p < 0.05)	
		Smoking	
		Smoking	
		Alcohol consumption	
		Alcohol consumption	
		Smoking	
		Alcohol consumption	
		Smoking	
Table 1. Cont.

Author Study Design, Sample Characteristics	Outcome Definition	Findings *	
By socioeconomic status Probability (%) of smoking tobacco given a 10% increase in the provincial unemployment rate	Smoked daily during the last 12 months: +3 (p < 0.01)		
	Probability of using drugs in last 12 months given a 10% increase in the provincial unemployment rate	Marijuana: +3.1 (p < 0.01) Hard drugs: +0.9 (ns) Cocaine: +1.2 (p < 0.01) Ecstasy: −0.4 (ns)	
	Probability of using drugs in last 30 days given a 10% increase in the provincial unemployment rate	Marijuana: +2.4 (p < 0.01) Hard drugs: +0.7 (ns) Cocaine: +0.9 (p < 0.1) Ecstasy: −0.2 (ns)	

COUNTRY: SPAIN

Author Study Design, Sample Characteristics	Outcome Definition	Findings *		
Substance abuse	Drug consumption in last 12 months	Marijuana: 12.79, 10.56, 13.21, 11.38 Hard drugs: 4.03, 3.73, 3.99, 3.47 Cocaine: 3.31, 2.96, 3.09, 2.81 Ecstasy: 1.46, 1.17, 1.19, 0.91		
	Drug consumption in last 30 days	Marijuana: 9.79, 7.42, 9.40, 8.26 Hard drugs: 2.21, 2.00, 1.93, 1.46 Cocaine: 1.76, 1.64, 1.43, 1.33 Ecstasy: 0.62, 0.41, 0.50, 0.33		
By socioeconomic status Probability of using drugs in last 12 months given a 10% increase in the provincial unemployment rate	Marijuana: +3 (p < 0.01) Hard drugs: +0.9 (ns) Cocaine: +1.2 (p < 0.01) Ecstasy: −0.4 (ns)			
By socioeconomic status Probability of using drugs in last 30 days given a 10% increase in the provincial unemployment rate	Marijuana: +2.4 (p < 0.01) Hard drugs: +0.7 (ns) Cocaine: +0.9 (p < 0.1) Ecstasy: −0.2 (ns)			
COUNTRY: SPAIN	Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
---------------	--------	-------------------------------------	-------------------	----------
Moreno Lostao 2019 [30]	Cross-sectional Spanish National Health Survey. People aged 15–74 years	Tobacco consumption daily and occasional smokers	By socioeconomic status Smoking Age-adjusted percentage ratio by sex and area of residence (rural vs. large urban areas), 2006, 2011 and 2016	MEN: 0.99 (95% CI: 0.92–1.07), 0.90 (95% CI: 0.83–0.97), 0.89 (95% CI: 0.83–0.97) WOMEN: 1.09 (1.00–1.19), 0.96 (0.87–1.05), 1.03 (0.94–1.13)
		Physical inactivity no physical exercise and leisure time spent in sedentary habits	Physical activity Age-Adjusted percentage ratio of physical inactivity by sex and area of residence (rural vs. large urban areas), 2006, 2011 and 2016	MEN: 0.89 (95% CI: 0.86–0.92), 0.89 (95% CI: 0.83–0.95), 0.86 (95% CI: 0.79–0.92) WOMEN: 1.02 (95% CI: 0.98–1.06), 0.98 (95% CI: 0.91–1.03), 0.99 (95% CI: 0.92–1.05)
Perez-Romero 2016 [31]	Cross-sectional Spanish National Health Survey Adults aged 18-64 years N = 30,817 (2006–2007: 18,202; 2011–2012: 12,615)	Drugs consumption hypnotics and anxiolytics in the last 2 weeks	Drugs Adjusted odds ratios (OR), 2011-2012 vs. 2006–2007 MEN: OR 2.3 (95% CI: 1.8–2.8) WOMEN: OR 1.7 (95% CI: 1.4–1.9)	
Rajmil 2013 [33]	Cross-sectional Children <15 years old enrolled in Catalan Health Survey (ESCA) N = 4167 (2006: 2200; first wave 2010–2012: 1967)	Junk food consumption never vs. at least once per week	Diet Junk food consumption Prevalence (%), 2006 vs. 2010–2012 50.24 (95% CI: 49.74–50.74) vs. 52.34 (95% CI: 51.92–52.76) By socioeconomic status Maternal education level: primary 47.46 vs. 50.14, secondary 50.21 vs. 52.13, university degree 52.79 vs. 53.78 Family employment status: employed 50.35 vs. 52.70, unemployed 50.25 vs. 51.04 Never having breakfast Prevalence (%), 2006 vs. 2010–2012: 4.9 (95% CI: 3.8–6.0) vs. 5.4 (4.8–6.7)	
		Having breakfast at home no physical exercise and leisure time spent in sedentary habits	Physical Activity Time spent on screen	
Author	Study Design, Sample Characteristics	Outcome Definition	Findings *	
--------	-------------------------------------	--------------------	-----------	
	Physical activity			
	Prevalence (%), 2006 vs. 2010–2012	50.14 (95% CI: 49.52–50.76) vs. 48.23 (95% CI: 47.59–48.87)		
	By socioeconomic status			
	Maternal education level: primary 5.9 vs. 7.7, secondary 5.1 vs. 6.4, university degree 3.5 vs. 2.7)			
	Family employment status: employed 4.3 vs. 5.6, unemployed 8.8 vs. 4.4			
	Time (hours/day) spent on screen			
	Mean, 2006 vs. 2010–2012	2.03 (95% CI: 1.98–2.07) vs. 1.41 (95% CI: 1.35–1.47)		
	By socioeconomic status			
	Maternal education level: primary 47.46 vs. 50.14, secondary 50.21 vs. 52.13, university degree 52.79 vs. 53.86			
	Family employment status: employed 50.35 vs. 52.70, unemployed 50.25 vs. 51.04			
	Alcohol			
	Annual percentage change (APC) in different time intervals:			
	–0.1 (2004–2006) (ns)			
	–2.3 (2008–2010) (p = 0.024)			
	–0.2 (2011–2013) (ns)			
	+2.1 (2014–2016) (p = 0.059)			
Table 1. Cont.

Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
Regidor 2019 [35]	Cross-sectional	Alcohol consumption	Smoking
		Tobacco smoking	Tobacco smoking
		number of cigarettes sold per inhabitant aged ≥15 years;	Annual percentage change (APC) in different time intervals:
			−1.9 (2004–2006) (ns)
			−8.3 (2008–2010) (p < 0.001)
			−13.5 (2011–2013) (p < 0.001)
			−1.1 (2014–2016) (ns)
		Fruit and vegetable intake measured by purchase	Diet
			Fruit and vegetable consumption:
			Annual percentage change (APC) in different time intervals:
			−0.1 (2004–2006) (ns)
			2.1 (2008–2010) (p < 0.001)
			1.2 (2011–2013) (p = 0.026)
			−1.9 (2014–2016) (p = 0.003)
			Away-from-home dinners
			Annual percentage change (APC) in different time intervals:
			−0.2 (2004–2006) (ns)
			−3.3 (2008–2010) (p < 0.001)
			−1.6 (2011–2013) (p = 0.009)
			3.2 (2014–2016) (p < 0.001)
			Physical activity
			Going to a gym
			Annual percentage change (APC) in different time intervals:
			0.2 (2004–2006) (ns)
			4.4 (2008–2010) (p = 0.001)
			1.6 (2011–2013) (ns)
			7.1 (2014–2016) (p < 0.001)
Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
---------------------	--------------------------------------	--------------------	------------
COUNTRY: SPAIN			Physical activity
		Sedentary life	
Spijker 2018 [39]	Cross-sectional	Sedentary life	
	Catalan Health Survey (ESCA)		
	Adults aged >50 years		
	N = 16,593 (2006: 6667; 2010–2012: 4458; 2013–2015: 5469)		
			Prevalence (%), 2006, 2010–2012, 2013–2015
			MEN:
			50–64 years old: 20.8, 18.3, 24.4
			65+: 37.4, 28.0, 34.6
			WOMEN:
			50–64 years old: 18.9, 16.0, 22.5
			65+: 41.7, 33.4, 41.9
			By socioeconomic status
			Occupational status (employed, unemployed)
			Prevalence (%)
			2006: 0.26, 0.31
			2010–2012: 0.23, 0.26
			2013–2015: 0.28, 0.34
Trujillo-Aleman 2019 [40]	Cross-sectional	Smoking habits	Smoking
	Catalan Health Survey	daily and not daily smokers	
	N = 5919 mothers (2003–2004: 2951; 2011–2012: 2698)		
			Social class (non-manual, manual)
			Lone mothers household heads vs. couple mothers
			Adjusted prevalence ratios, 2003-2004 2011-2012
			Non-manual: 1.26 (95% CI: 1.00–1.59) 1.23 (95% CI: 0.95–1.58)
			p interaction ns
			Manual: 1.30 (95% CI: 1.08–1.67) 1.34 (95% CI: 1.08–1.66)
			p interaction ns
Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
---------------------	--------------------------------------	--	---
COUNTRY: SPAIN			
Zapata Moya 2020	Cross-sectional	Anxiolytics and/or antidepressant consumption before 2008 and in the last two	Drugs
	People aged >= 18	weeks before the interview (2015)	Adjusted OR: 2015 vs. 2008 1.51 (95% CI: 1.05–2.42)
	N = 5679		By socioeconomic status Interaction between crisis impact on family SES and
			period (2015 vs. 2008) Adjusted OR: 2.18 (95% CI: 1.48–3.16)
Zozaya 2020	Cross sectional	Alcohol consumption drinking any alcoholic beverage at least every week	Alcohol
	Health Behavior in School-Aged		Prevalence (%), 2002, 2006, 2010, 2014
	Children and adolescents aged 9-21		17.57, 18.29, 16.09, 7.11
	years N = 77,651		Smoking
			Prevalence (%) 2002, 2006, 2010, 2014
			24.92, 16.10, 17.00, 10.00
COUNTRY: ITALY			
Bonaccio 2014	Cross-sectional	Adherence to Mediterranean diet (MD) measured through the Italian Mediterranean	Alcohol
	Moli-sani study	Index score	Mean grams/day of alcohol intake, 2005–2006 vs. 2007–2010 16.0 (SD: 21.8)
	Adults aged > 35 years		vs. 16.9 (SD: 23.2) (p < 0.01)
	N = 21,001		Diet
			% of high adherence to MD, 2005–2006 vs. 2007–2010 31.3 vs. 18.3 (p < 0.01)
			By socioeconomic status Prevalence ratios (PR), 2005–2006 and 2007–2010
			High Wealth Index score vs. Low Wealth Index score: 1.05 (95% CI: 0.94–1.16)
			1.31 (95% CI: 1.18–1.46)
			>13 years of education vs. < = 8 years of education: 1.16 (95% CI: 1.04–1.31)
			1.32 (95% CI: 1.17–1.50)
			Manual non-manual job vs: 0.97 (95% CI: 0.82–1.15) 0.67 (95% CI: 0.57–0.79)
Table 1. Cont.

Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
Mattei 2017	Time trend analysis	Alcohol consumption	
	People aged \geq 15 years		
		Smoking habit	
Petrelli 2017	Cross-sectional	Smoking habits	
	Istat National Health Interview Survey 2005 and 2013		
	Adults aged 18–64 years		
	N = 153,137 (2005: 80,661; 2013: 72,476)		
Sarti 2018	Time-trend analysis	Alcohol consumption	
	Multipurpose surveys on aspects on daily life (2005–2013)		
	Adults aged 30–64 years		
	N = 187,731		

COUNTRY: ITALY

Alcohol
Overall rate of people aged 15 or more who consume alcohol more than once per week
Regression coefficient (beta), 2008–2015 vs. 2000–2007
-0.60 (95% CI: -0.96–-0.24

Smoking
Number of smokers
Regression coefficient (beta), 2008–2015 vs. 2000–2007
1.68 (95% CI: 0.17–3.20)
People who smoke more than 20 cigarettes per day
Regression coefficient (beta), 2008–2015 vs. 2000–2007
1.04 (95% CI: 0.45–1.62)

Smoking
Current smokers
Prevalence (%), 2005–2013
Men: Italians 32.1–31.6, immigrants 33.7–32.5
Women: Italians 20.4–20.0, immigrants 17.5–16.2

Alcohol
Alcohol consumption
Prevalence (%), 2005–2013
6.6, 6.4, 6.4, 5.7, 5.2, 4.9, 4.5, 3.9, 3.5
Table 1. Cont.

Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
Smoking			
	Current smokers	Prevalence (%), 2013	
	25.9, 27.2, 26.6, 26.7, 27.5, 27.2, 26.6, 26.2, 25.2		
	Heavy smokers	Prevalence (%), 2005–2013	
	8.6, 9.2, 8.8, 9.0, 8.8, 8.5, 8.1, 7.9, 7.0		
Diet			
	Unbalanced diet	Prevalence (%), 2013	
	27.0, 26.6, 27.4, 27.5, 27.3, 26.8, 27.0, 26.0, 26.7		
Physical activity	Physical inactivity: no activity in the workplace, at home, or voluntary	Prevalence (%), 2005–2013	
	13.3, 14.2, 13.7, 14.0, 14.1, 15.8, 14.5, 14.7, 14.5		

COUNTRY: PORTUGAL

Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
Alves 2019 [14]	Cross-sectional National Health Interview Surveys Adults aged 25–79 years N = 43,273 (2005–2006: 41,193; 2014: 18,204)	Diet consumption of food groups in the day before the interview Fruits or vegetables: the number of days in the last week (2014)	Diet Prevalence (%) of consumption, 2005/2006 vs. 2014 fish 52 vs. 49 (p < 0.01) soup 68 vs. 64 (p < 0.01) fruit 82 vs. 73 (p < 0.01) vegetables 78 vs. 52 (p < 0.01) legumes 27 vs. 32 (p < 0.01) sweets/desserts 26 vs. 37 (p < 0.01)
Table 1. Cont.

Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
COUNTRY: PORTUGAL			Smoking
			Prevalence (%), 2006, 2010, 2014
			never: 87.8, 88.1, 92.5
			every day: 5.0, 4.5, 2.6
			Diet
			Rarely or never eats fruit
			Prevalence (%), 2006, 2010, 2014
			8.7, 7.7, 9.0
			Fruits more than once per week
			Prevalence (%), 2006, 2010, 2014
			22.2, 22.1, 21.2
			Rarely or never eats vegetables
			Prevalence (%), 2006, 2010, 2014
			12.2, 11.8, 14.6
			Vegetables more than once per week
			Prevalence (%), 2006, 2010, 2014
			11.7, 12.2, 13.3
de Matos 2015 [21]	Time-trend analysis	Fruit or vegetable consumption rarely or never; more than once per week	
		Physical activity more than 3 times per week	
		Substance abuse never, more than once in a month, hashish more than once.	
	Young people attending 6th, 8th and 10th year of school N = 15,953 (2014: 6026; 2010: 5050; 2006: 4877)		
Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
-----------------	--------------------------------------	--------------------	-----------
Cross-sectional	World Mental Health Survey Initiative Portugal (2008/09) and the National Mental Health Survey Follow-Up (2015/16)	Drugs use of psychotropic drugs in the previous 12 months	**Drugs**
Silva 2020 [38]	Adults aged 18+ N = 911		

COUNTRY: GREECE

Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
Cross-sectional	Hellas Health I, II and IV	Current smokers those who smoke every day or occasionally **Smoking** Daily or occasional smokers Difference 2011–2008–2006 (%): −11.56, p for linear trend: 0.014	
Filippidis 2014 [23]	Adults aged 18+ N = 3503 (2006: 1005; 2008: 1490; 2011: 1008)	Fruit and vegetable consumption daily number of portions **Diet** At least 5 daily portions of fruit and vegetables Difference 2011–2008–2006 (%): −66.27, p for linear trend: 0.001 By socioeconomic status Higher: −68.79, p < 0.001 Middle: −50.89, p < 0.001 Lower: −81.76, p < 0.001	
		Physical activity high, moderate, or low **Physical activity** High or moderate level of physical activity Difference 2011–2008–2006 (%): +20.49 p for linear trend: 0.001 By socioeconomic status Higher: +10.66, ns Middle: +22.44, p = 0.001 Lower: +23.02, p < 0.001	
Table 1. Cont.

Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
COUNTRY: GREECE			
Filippidis 2017 [24]	Cross-sectional Hellas Health I, II, III, IV, and V Adults aged 18+ N = 5504 (2006: 1005; 2008: 1490; 2010: 1000; 2011: 1008; 2015: 1001)	Smoking habit every day or occasionally Fruit and vegetable consumption daily number of portions Physical activity high, moderate, or low	Smoking
Current smokers			
Prevalence (%), 2008 and 2015			
42.6 (95% CI: 40.0–43.1) 36.5 (95% CI: 33.3–39.7)			
Adjusted risk ratio (RR) 2015 vs. 2008: 0.86 (95% CI: 0.77–0.95)			
Diet			
Low fruit/vegetable consumption			
Prevalence (%), 2008 and 2015			
52.1 (95% CI: 49.6–54.7) 51.2 (95% CI: 47.9–54.6)			
Adjusted risk ratio (RR) 2015 vs. 2008: 1.00 (95% CI: 0.92–1.09)			
Physical activity			
Sedentary lifestyle			
Prevalence (%), 2006 and 2015			
43.4 (95% CI: 40.2–46.6) 29.0 (95% CI: 26.0–32.0)			
Adjusted risk ratio (RR), 2015 vs. 2006: 0.69 (95% CI: 0.61–0.79)			
Madianos 2014 [26]	Time-trend analysis Greek Population at census N = 10,387,000 (1991), 10,964,000 (2001), 10,939,000 (2011)	Alcohol per capita consumption (liters) Antidepressant consumption (daily unit)	Alcohol
Per capita consumption (liters), 2005 and 2011: 9.24 and 8.80			
Drugs			
Daily unit consumption of antidepressants, 2005 and 2011: 215.40, 284.85			
Sanidas 2018 [36]	Retrospective study Hospitalized patients subjected to cardiac catheterization N = 3895 (2006-07: 1228; 2011-15: 2667)	Current smokers at least 1 cigarette per day	Smoking
Prevalence (%) of smokers, 2006–2007 vs. 2011–2015: 45.4 vs. 36.9, \(p < 0.001 \) |
Table 1. Cont.

Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
COUNTRY: GREECE			
Venetsanou 2020 [41]	Cross-sectional	Physical activity measured with Omron Walking style pro HJ-720IT-E2 pedometer	Physical activity
	Children attending childcare centers (mean age: 52.72 ± 3.55 months)		Step counts, 2009, 2012, 2015, 2018
	N = 652 (2009: 182; 2012: 161; 2015: 165; 2018: 144)		Weekly: 8032 ± 2026, 7816 ± 2087, 6708 ± 2739, 6943 ± 2729
			School-time: 3646 ± 1372, 3459 ± 1175, 3233 ± 1590, 2991 ± 1433
			Leisure-time: 4906 ± 1300, 4899 ± 1321, 4026 ± 1531, 4312 ± 1466
			Weekend 6700 ± 2914, 7112 ± 2802, 5676 ± 3321, 6031 ± 3412
			Statistically significant differences between cohort
			School-time: 2009 vs. 2018
			Leisure-time: 2009 vs. 2015, 2009 vs. 2018, 2012 vs. 2015
			Weekend: 2009 vs. 2015, 2012 vs. 2015
Country: Multicenter			
Bosque-Prous 2017 [19]	Cross-sectional	Hazardous drinking average daily consumption of >2 and >3 alcoholic drinks in the previous 3 months	Alcohol
	Economically active adults: 50–64 years		Hazardous drinking
	N = 25,479 (2006: 8016; 2013: 17463)		Changes in the prevalence (%), 2006–2007 vs. 2013
			SPAIN
			MEN: −5.4 (95% CI: −8.8—−2.0)
			WOMEN: −1.9 (95% CI: −5.7—−1.8)
			ITALY
			MEN: −5.6 (95% CI: −9.1—−2.2)
			WOMEN: −1.4 (95% CI: −4.7—−1.9)
			Adjusted prevalence ratio (PR), 2013 vs. 2006–2007
			SPAIN
			MEN: PR = 0.42 (95% CI: 0.23–0.81)
			WOMEN: PR = 0.67 (95% CI: 0.24–1.97)
			ITALY
			MEN: PR = 0.44 (95% CI: 0.27–0.79)
			WOMEN: PR = 0.63 (95% CI: 0.21–1.70)
Author	Study Design, Sample Characteristics	Outcome Definition	Findings *
--------	-------------------------------------	--------------------	-----------
Country: Multicenter		Abstention	Changes in the prevalence (%), 2006–2007 vs. 2013
		SPAIN	MEN: 3.3 (95% CI: −1.9–8.4)
		WOMEN: 3.5 (95% CI: −4.7–11.7)	
		ITALY	MEN: 6.8 (95% CI: 1.1–12.4)
		WOMEN: 5.2 (95% CI: −3.0–13.4)	
	Number of drinks per drinker per week	Crude relative risks (RR), 2013 vs. 2006–2007	
		SPAIN	MEN: RR 0.59 (95% CI: 0.43–0.82)
		WOMEN: RR 0.63 (95% CI: 0.35–1.14)	
		ITALY	MEN: RR 0.65 (95% CI: 0.52–0.81)
		WOMEN: RR 0.60 (95% CI: 0.38–0.93)	

Rathmann 2017	Cross-sectional	Smoking habit	Smoking
	Adolescents aged 15 Health Behaviour in School-aged Children (HBSC) study	regular smokers: adolescents who smoke at least weekly	Regular smokers
	2009–2010 N = 6554 (Greece n = 1606, Italy n = 1495, Portugal n = 1511, Spain n = 1942)		Prevalence (%) 2005–2006 vs. 2009–2010
		Greece (16.2 vs. 15.2; −6.1%), Italy (19.8 vs. 22.3; +12.6%), Portugal (10.5 vs. 10.8; +3.1%), Spain (17.7 vs. 18.5; +4.6%)	

*: for stratified analysis, we report results of association when at least one strata is statistically significant.
Table 2. Variation of behavior influencing health status during or after the 2008 financial crisis.

First Author	Country	Alcohol	Smoking	Healthy Diet	Physical Activity	Drugs	Substance Abuse
Aguilar-Palacio 2015 [13]	Spain	−	−	−	−	−	−
Arroyo 2018 [15]	Spain	−	−	−	−	−	−
Bartoll 2015 [16]	Spain	−	+	−	+	−	−
Blázquez-Fernández 2019 [17]	Spain	=	−	−	+	−	−
Bosque-Prous 2017 [19]	Spain	−	−	−	−	−	−
Colell 2015 [20]	Spain	−	+	−	−	−	−
Diaz-Mendez 2019 [22]	Spain	−	−	−	+	−	−
Garcia Mayor 2020 [25]	Spain	−	−	−	+	−	−
Marquez-Calderon 2014 [27]	Spain	−	−	−	+	−	−
Martin Bassols 2016 [28]	Spain	−	=	−	−	−	−
Moreno Lostao 2019 [30]	Spain	N/A	N/A	N/A	N/A		
Perez-Romero 2016 [31]	Spain	−	+	−	−		
Rajmil 2013 [33]	Spain	−	−	−	−	−	−
Rathmann 2017 [34]	Spain	−	−	−	+	−	−
Regidor 2019 [35]	Spain	−	−	−	+	−	−
Spijker 2018 [39]	Spain	−	−	−	+	−	−
Trujillo-Aleman 2019 [40]	Spain	−	−	−	−	−	−
Zapata Moya 2020 [42]	Spain	−	−	−	+	−	−
Zozaya 2020 [43]	Spain	−	−	−	−	−	−
Bonaccio 2014 [18]	Italy	+	−	−	−	−	−
Bosque-Prous 2017 [19]	Italy	−	−	−	−	−	−
Mattei 2017 [29]	Italy	−	+	−	−	−	−
Petrelli 2017 [32]	Italy	−	−	−	−	−	−
Rathmann 2017 [34]	Italy	+	−	−	−	−	−
Sarti 2018 [37]	Italy	−	−	−	−	−	−
Alves 2019 [14]	Portugal	−	−	−	−	−	−
de Matos 2015 [21]	Portugal	−	−	−	+	−	−
Rathmann 2017 [34]	Portugal	+	−	−	−	−	−
Silva 2020 [36]	Portugal	−	−	−	−	−	−
Filippidis 2014 [23]	Greece	−	−	−	+	−	−
Filippidis 2017 [24]	Greece	−	−	−	+	−	−
Maddanos 2014 [26]	Greece	−	−	−	+	−	−
Sandias 2018 [36]	Greece	−	−	−	−	−	−
Venetsanou 2020 [41]	Greece	−	−	−	−	−	−
Rathmann 2017 [34]	Greece	−	−	−	−	−	−

Note: statistically significant decrease (−); increase (+) or no variation (=) in the prevalence of healthy behavior; N/A: not applicable.

3.1.2. The Financial Crisis and Smoking

Similarly to alcohol consumption, smoking habit also appeared to decrease markedly in most studies conducted in different settings or subgroups: young Spanish men aged 16-24 [13], adolescents in Portugal [21] and Spain [43], and adults in Greece [23,24] and Spain (only men) [25]. A reduction in smoking prevalence was observed in Spain also when stratifying by the size of the municipality [30], in a sample of patients hospitalized for cardiac catheterization [36], and in a sample of Spanish mothers [40]. A few studies
reported a slight decrease [27,32], no difference [37], or a slight increase in the percentage of smokers after or during the crisis, for only women [16] in Spain and for both sexes in Italy [29,34], Portugal, and Spain [34].

Regarding socioeconomic status, controversial associations were reported during or after the crisis: a reduction in inequalities was identified by some studies, where percentages of daily or occasional smokers decreased more for those with a lower educational level [16], lower socioeconomic status [23], or having a manual occupation [40]. Conversely, other studies found an increase in socioeconomic inequalities due to an increase in smoking consumption among the unemployed [13,28,37,43] and among people belonging to a lower social class [25].

3.1.3. The Financial Crisis and Healthy Diet

Generally speaking, a deterioration in the quality of diet was observed during and after the crisis. Several studies showed a reduction in the consumption of meat [16], fish [14,22], fruits [14,16,21–25], and vegetables [14,22–24] in Spain and Portugal, although in Portugal the consumption of vegetables increased among young people [21], and legumes were more frequently consumed [14,16]. Sweets and desserts were more often consumed by adults in Portugal [14] and Spain [16].

Several studies reported an increase in socioeconomic inequalities in healthy diet, especially regarding fruits and vegetables. In Spain, the probability of declaring eating fruit daily decreased more among unemployed men and least educated men, and the probability of declaring eating vegetables daily among unemployed men and women and the least educated women [16]. Two other Spanish studies reported an increase in inequalities in the consumption of fruits and vegetables [22,25].

Similar results were observed regarding fish consumption [22]. During the crisis in Italy, the socioeconomic differences in adherence to the Mediterranean diet widened, becoming less probable among people with a low wealth index score, those with a lower education level, and those performing manual labor [18]. One study conducted in Spain on young people below the age of 15 reported that the prevalence of junk food consumption increased in families with low maternal education level [33].

3.1.4. The Financial Crisis and Physical Activity

Most of the studies highlighted an increase in physical activity in the adult population when comparing the periods after vs before the financial crisis, which was more robust and statistically significant in Spain [25,35] and Greece [23,24], and slighter in Portugal [21], while a limited reduction was observed in the few studies in adults [37] and in children [33,41].

Two Spanish studies reported an increase in socioeconomic inequalities in physical activity during and after the crisis. In one, an increase in the prevalence of physical activity was observed in all social classes, but this was slighter in the lower class, resulting in an increase in socioeconomic differences [25]. The other study observed that physical activity increased during or after the crisis among more educated women and decreased among the less educated, causing a widening of socioeconomic inequalities [16].

Instead, a Greek study showed a reduction in inequalities due to a significant increase in percentages of adults only, with those with a middle or lower socioeconomic status reporting high or moderate level of physical activity [24].

3.1.5. The Financial Crisis and Use of Antidepressant, Anxiolytic, and/or Antipsychotic Drugs

Most studies reported an increase in any type of psychotropic drug use among all individuals considered [31,42] or only among women [16]. In a Spanish study performed on the economically active population, heavy use of hypnotics/sedatives among men and women increased in the period examined [20]. In a population study conducted in Portugal, the odds of consuming any psychotropic drug was estimated to be 1.5 times higher than before the crisis, and when evaluating the interaction effect of the year with sex and
age, men and younger individuals reported higher odds of consuming any psychotropic drug [38]. Bartoll et al. [16] observed a stable trend in tranquilizer tablet use among men and a decrease among women.

This general increasing trend was not homogeneously reported for all psychotropic drugs: specifically, Marquez Calderon et al. [27] found an increase in sedative, tranquilizer, and hypnotic drugs, while antidepressant use decreased. According to Arroyo [15], only sedative use increased, and Madianos et al. evaluated only antidepressant use, finding an increase in its use in Greece [26].

When considering socioeconomic status, according to Arroyo et al. [15], the probability of consuming antidepressants or sedatives depended on employment status: in the case of individuals in short-term unemployment, both men and women showed that between 2006–2007 and 2011–2012, there was an increase in the risk of using sedatives. However, this increase was greater for women than for men. For the long-term unemployed, however, the differences between both sexes widened between 2006–2007 and 2011–2012: the risk of using sedatives in women increased, whereas it decreased in men, while antidepressant consumption decreased overall, and more markedly among short- and long-term unemployed subjects. Regarding education level, there was an increase in the intake of tranquilizers among those without any qualification and a slight decrease for men with high secondary education; among women, there was a drop-in intake, which was greater among those employed and those without any qualification [16].

Finally, an increase in psychotropic drug consumption was observed among households whose socioeconomic status was most affected by the crisis [42].

3.1.6. The Financial Crisis and Substance Abuse

One of the included studies described a stable or a slight downward trend in drug use [28]. A study performed in Portugal on adolescents reported a slight decrease in monthly drug use [21]. A decrease in cocaine, marijuana, ecstasy, and hard drug use caused by the economic downturn, which could have affected the prices of these drugs, was observed by a Spanish study [28]. According to another Spanish study, overall cannabis use remained stable during the crisis, but unemployed men and women were more likely to have increased sporadic use compared to their employed counterparts [20]. Given a 10% increase in the provincial unemployment rate in Spain, an increase in the probability of using marijuana and cocaine in the last 30 days and also over the previous 12 months was observed [28].

4. Discussion

Since the financial crisis of 2008, southern European countries, in particular Italy, Greece, Spain, and Portugal, have been affected by the economic recession [44–46].

The research articles included in our review, published between 2011 and 2020, concerned the impact of the crisis on unhealthy behaviors, such as smoking habit [13,16,21,23–25,27–30,32], alcohol consumption [13,16–20,25–29,35,37,43], antidepressant/anxiolytic/antipsychotic use [15,16,20,26,27,31,38,42], and substance abuse [20,21,27,28] and on healthy behaviors, such as physical activity [16,21,23–25,27,30,33,35]. The studies on diet examined the impact of the crisis both on favorable and unfavorable eating behavior, a classification depending on the type of food considered for analyses [14,16,18,21–25,33,35,37].

According to the findings of our extensive review, we observed controversial effects on healthy behaviors in the period characterized by the 2008 financial crisis.

In general, the studies found that alcohol consumption [13,16,19,20,25–29,35,43] and substance abuse [21,28] decreased during or after the Great Recession, while psychotropic drug use increased [16,20,31,38,42].

A deterioration in proper eating habits was also observed [14,16,21–25], but some comments regarding diet are necessary. In fact, although most of the studies report an overall worsening of eating behavior during the crisis, the evaluation of its impact is more complex than it is for the other lifestyle-related behaviors. A reduction in the consumption
of fish and meat, probably due to the reduction in available income, was observed, as was a reduction in fruit and vegetable consumption; both of these phenomena could cause a shift toward a worse diet. The crisis effect could have also contributed to determine the decrease in consumption of fruits and vegetables and the increase in junk food, sweets, and dessert consumption. Social inequality in proper eating habits generally increased because of the economic crisis [16,18,22,25,33]: several studies observed a decrease in the consumption of fruits and vegetables and an increase in junk food consumption among people with a low socioeconomic status.

However, even before the crisis, a decline in adherence to the Mediterranean diet had been observed in the younger population, so that a reduction in the mean consumption of fruit and vegetables was expected. Therefore, this decline may not be solely attributed to the economic crisis [23].

Most studies also showed an overall decrease in alcohol [13,16,19,20,25–28,35,37] and tobacco [13,21,23–25,27,32,34–40,43] consumption, while some highlighted an increase in tobacco consumption [16,29,34]. However, the pre- to post crisis variation in drinking and smoking habit were heterogeneous across socioeconomic levels, depending on the contexts and the dimension used to define socioeconomic status. For example, a study showed an increase in heavy alcohol consumption during the crisis among individuals with the lowest education level [16].

Less income available to purchase alcohol might have been behind the decrease in heavy drinking, while binge drinking could have increased as a means to deal with anxiety and emotional distress related to job loss, whether real or threatened, and to financial hardship [20]. However, it has been argued that a process of change in the pattern of alcohol use is taking place in Mediterranean countries such as Spain, where alcohol has traditionally been embedded in daily life, with wine drunk regularly with meals [20].

The decrease in tobacco use during times of economic downturn is related to price increases; it is likely that tobacco control measures may have interacted synergistically with the decline in disposable income. Therefore, austerity may have been a driving force in the decline among low-income individuals, along with the other public health measures [23].

Most of the studies found a slight increase in physical activity during the crisis [16,21,23–25,35], while other studies found a slight increase in sedentary habits [27,33,37,39,41]. There was an increase in socioeconomic differences in the prevalence of physical activity [16,25], with a heterogeneous gradient according to socioeconomic status.

The decrease in substance abuse observed during the crisis was slight, and generally referred to soft drugs [20,21,27,28], without any significant differences in terms of socioeconomic status.

Most studies reported an increase in the use of any psychotropic drug [20,26,27,31,38,42].

The decreased availability of income during the recession may have determined a reduction in the purchase of tobacco, alcohol, and drugs, but also of more expensive and healthier food. On the contrary, the increase in the use of psychotropic drugs can be considered a kind of coping mechanism against the insecurity and stress related to the economic crisis.

Our review appears to confirm previous evidence [47,48] that the financial crisis had an impact on socioeconomic inequalities and that negative effects on health tended to be more pronounced among the culturally, economically, and socially disadvantaged.

The low socioeconomic strata experienced inequalities in access to cultural and material resources (e.g., education, working conditions, income), which determined worse health and limited access to appropriate health care. These inequalities grew over the course of the global crisis, and the recession period could have accelerated the accumulation of such disadvantages [10,49,50].

The crisis itself may have played an independent, additional role, acting as a chronic stressor. Furthermore, it is possible that unemployed people and those at risk of unemployment or who experienced work instability may have had less time to dedicate to themselves and to their lifestyle, including food choice and physical activity [29].
In this scenario, the COVID-19 pandemic has exacerbated inequalities with a cumulative effect of the risks \cite{51}. In England, as already shown in the Marmot Review, COVID-19 infection and mortality risks have been much higher for those living in more deprived areas, in overcrowded housing, in key workers in close proximity to others, in those from minority groups, in those with underlying health conditions, and in those who are older and/or male \cite{52}. Furthermore, due to the effects of the mobility restrictions and the periods of lockdown as well as to the impoverishment of many sections of the population, it is reasonable to expect a further deterioration in lifestyles, especially among the people most affected by the economic crisis generated by the pandemic \cite{53}.

In fact, most countries were forced to introduce confinement measures to minimize the propagation of the SARS-CoV-2 virus, and for many people, it was difficult to maintain a healthy lifestyle, in particular a proper diet, regular physical exercise, quality of sleep, and limited smoking and alcohol consumption \cite{53–69}. However, similar to the analysis reporting on the 2008 recession, the effects on diet are not unidirectional. In fact, many people used the period of home isolation to improve their eating habits and to limit dietary excesses and bad eating behaviors. Having the opportunity to devote time daily to having breakfast and to cooking meals resulted in an increase in the consumption of fruit, vegetables, and pulses \cite{56,60,64,67,68}, and a general decrease in alcohol consumption \cite{56,66,67}.

Strengths and Limitations

Our review of the impact of the 2008 financial crisis on many health behaviors aimed to shed light on the links between changes in habits and health outcomes, an issue that has not yet been systematically investigated \cite{3}. The focus on four southern European countries represents an added value, as they were hit harder by the crisis than were other European countries.

By focusing exclusively on health outcomes, our study did not look at the impact of the crisis on health systems, such as shortages in the health workforce or in medical supplies, for which several studies have shown a negative trend during the financial crisis \cite{3,70,71}. The exact moment the financial crisis began is difficult to establish, and some studies, reporting data on different countries, have defined the duration of the crisis differently; this may have had an impact on the homogeneity of the reported results. The included studies had a high risk of bias in exposure and outcome assessment due to the study design, use of self-reported measures, and the lack of adjusting for potential confounding factors. Further, some observational studies did not apply any statistical tests \cite{21,22,26,27,32,34,37,39,43}. Most importantly, although the studies included in our review investigated changes in population health status and health behaviors associated with the Great Recession, it cannot be established whether this was a causal relationship.

Due to the nature of the data of most of the included studies, which were not designed to measure exposure at the individual level, no causal relationship between the economic recession and changes in lifestyles can be established. We can, however, state that these changes occurred after the crisis. In fact, although a causal association between the financial crisis and trends in risk factors seems reasonable, we cannot exclude unmeasured confounding, which would provide alternative explanations for the observed trends. On the other hand, the financial crisis is a natural experiment at the population level and the possibility of its effects on the findings may be supposed \cite{23}.

Finally, self-reported information collected by questionnaire, as was the case for most of the included studies, may have been affected by information bias.

5. Conclusions

Our results seem to show that the crisis has had a negative effect on eating habits and a positive effect on alcohol consumption and on smoking, the consequence of mechanisms probably determined by decreased available income. Psychophysical stress linked to unemployment and job loss, as well as the worsening mental health observed in nu-
merous studies, could explain the increase in the consumption of antidepressant and anxiolytic drugs.

These results suggest the need to implement health policies aimed at monitoring risk behaviors and for interventions aimed at contrasting the effects of the financial crisis in the countries studied. Inequalities in health behaviors should also be a priority area for action. Financial recommitment to public health system should accompany a substantial commitment to tackling the social determinants of poor health and wellbeing.

The identification of lifestyles and socioeconomic inequalities produced by the 2008 crisis may facilitate the understanding and the response to the possible effects of the current COVID-19 crisis.

The current pandemic provides harsh lessons on the societal vulnerabilities that arise from inequality. Investing in young people and supporting long-deprived regions and sectors of society are arguably the most powerful ways to break the chain of inequality transmitted from generation to generation. Adopting a broadened, equity-focused approach to population health should be an essential part of building a more resilient society that is better prepared to weather future pandemics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/ijerph18168734/s1, Table S1: MEDLINE Search—Updated November 2020, Table S2: Risk of bias assessment for all the selected studies.

Author Contributions: Conceptualization, A.P and A.D.N.; Methodology, S.V and M.S.S.; Software, M.S.S. and R.A.; Formal Analysis, M.S.S., A.D.N., R.A., S.V and A.P.; Data Curation, M.S.S., A.D.N., R.A., S.V and A.P; Writing—Original Draft Preparation, M.S.S., A.D.N., R.A., S.V and A.P; Writing—Review and Editing, A.D.N., S.V., C.M. and A.P; Project Administration, A.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We gratefully acknowledge Jacqueline M. Costa for the contribution in translation and English language editing.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. International Monetary Fund. World Economic Outlook; International Monetary Fund: Washington, DC, USA, 2011.
2. Karanikolos, M.; Mladovsky, P.; Cylus, J.; Thomson, S.; Basu, S.; Stuckler, D.; Mackenbach, J.P.; McKee, M. Financial crisis, austerity and health in Europe. Lancer 2013, 381, 1323–1331. [CrossRef]
3. Parmar, D.; Stavropoulou, C.; Ioannidis, J.P. Health outcomes during the 2008 financial crisis in Europe: Systematic literature review. BMJ 2016, 354, i4588. [CrossRef] [PubMed]
4. Karanikolos, M.; Heino, P.; McKee, M.; Stuckler, D.; Legido-Quigley, H. Effects of the global financial crisis on health in high-income Oecd countries: A Narrative Review. Int. J. Health Serv. 2016, 46, 208–240. [CrossRef] [PubMed]
5. WHO. Impact of the Economic Crises on Mental Health; World Health Organisation: Copenhagen, Denmark, 2011; pp. 1–34.
6. Zavras, D.; Zavras, A.I.; Kyriopoulos, I.I.; Kyriopoulos, J. Economic crisis, austerity and unmet healthcare needs: The case of Greece. BMC Health Serv. Res. 2016, 16, 309. [CrossRef] [PubMed]
7. Petrelli, A.; Rosano, A.; Rossi, A.; Mirisola, C.; Cislaghi, C. The geography and economics of forgoing medical examinations or therapeutic treatments in Italy during the economic crisis. BMC Public Health 2019, 19, 1202. [CrossRef] [PubMed]
8. Mackenbach, J.P.; Kulhánova, I.; Artnik, B.; Bopp, M.; Borrell, C.; Clemens, T.; Costa, G.; Dibben, C.; Kalediene, R.; Lundberg, O.; et al. Changes in mortality inequalities over two decades: Register based study of European countries. BMJ 2016, 353, i732. [CrossRef]
9. Heggebo, K.; Toge, A.G.; Dahl, E.; Berg, J.E. Socioeconomic inequalities in health during the Great Recession: A scoping review of the research literature. Scand. J. Public Health 2019, 47, 635–654. [CrossRef]
10. de Goeij, M.C.; Suhrcke, M.; Toffolutti, V.; van de Mheen, D.; Schoenmakers, T.M.; Kunst, A.E. How economic crises affect alcohol consumption and alcohol-related health problems: A realist systematic review. Soc. Sci. Med. 2015, 131, 131–146. [CrossRef]
11. Nagelhout, G.E.; Hummel, K.; de Goeij, M.C.M.; de Vries, H.; Kaner, E.; Lemmens, P. How economic recessions and unemployment affect illegal drug use: A systematic realist literature review. Int. J. Drug Policy 2017, 44, 69–83. [CrossRef]
37. Sarti, S.; Terraneo, M.; Tognetti Bordogna, M. Stili di vita nell’Italia della crisi: Il cambiamento nelle abitudini insalubri secondo le condizioni lavorative. *Sociologia del Lavoro* 2018, 150, 23–48. [CrossRef]

38. Silva, M.; Antunes, A.; Azeredo-Lopes, S.; Cardoso, G.; Xavier, M.; Saraceno, B.; Caldas-De-Almeida, J.M. How did the use of psychotropic drugs change during the Great Recession in Portugal? A follow-up to the National Mental Health Survey. *BMC Psychiatry* 2020, 20, 215. [CrossRef] [PubMed]

39. Spijkier, J.; Zuerna, P. Socioeconomic health inequalities in the Catalan population aged 50+ during the last economic crisis. *Rev. Esp. Salud Publica* 2018, 28, 92.

40. Trujillo-Aleman, S.; Perez, G.; Puig-Barrachina, V.; Gotsens, M.; Reynolds, J.; Rueda, S.; Borrell, C. Inequalities in health and health behaviours between couple and lone mothers before and during the financial crisis in Spain (2003–2012). *SSM Popul. Health* 2019, 7, 100367. [CrossRef]

41. Venetsanou, F.; Emmanouilidou, K.; Kouli, O.; Bebetsos, E.; Comoutos, N.; Kambas, A. Physical activity and sedentary behaviors of young children: Trends from 2009 to 2018. *Int. J. Environ. Res. Public Health* 2020, 17, 1645. [CrossRef]

42. Zapata Moya, I.; Valdés-Ortiz, C.; Rodriguez-Pérez, A.; Hernández-Gómez, S.; et al. Urban regeneration policies and mental health in a context of economic crisis in Andalusia (Spain). *J. House Built. Environ.* 2021, 36, 393–405. [CrossRef]

43. Zozaya, N.; Vallejo, L. The effect of the economic crisis on adolescents’ perceived health and risk behaviors: A multilevel analysis. *Int. J. Environ. Res. Public Health* 2020, 17, 643. [CrossRef]

44. Stuckler, D.; Basu, S.; Suhrcke, M.; Couts, A.; McKee, M. The public health effect of economic crises and alternative policy responses in European empirical analysis. *Lancet* 2009, 374, 315–323. [CrossRef]

45. Quaglio, G.; Karapiperis, T.; Van Woesenl, L.; Arnold, E.; McDaid, D. Austerity and health in Europe. *Health Policy* 2013, 113, 13–19. [CrossRef]

46. Kentikelenis, A.; Karanikolos, M.; Papanicolas, I.; Basu, S.; McKee, M.; Stuckler, D. Health effects of financial crisis: Omens of a Greek tragedy. *Lancet* 2011, 378, 1457–1458. [CrossRef]

47. Kondo, N.; Subramanian, S.V.; Kawachi, I.; Takeda, Y.; Yamagata, Z. Economic recession and health inequalities in Japan: Analysis with a national sample, 1986–2001. *J. Epidemiol. Community Health* 2008, 62, 869–875. [CrossRef] [PubMed]

48. Marmot, M.G.; Allen, J.; Bell, R.; Bloomer, E.; Goldblatt, P. WHO European review of social determinants of health and the divide. *Lancet* 2012, 380, 1011–1029. [CrossRef]

49. Merton, R.K. The Matthew Effect in Science: The renard and communication systems of science are considered. *Ann. Rev. Sociol.* 2006, 32, 271–297. [CrossRef]

50. Di Prete, T.A.; Eirich, G.M. Cumulative advantage as a mechanism for inequality: A review of theoretical and empirical developments. *Ann. Rev. Sociol.* 2006, 32, 271–297. [CrossRef]

51. The Lancet Public Health. COVID-19-break the cycle of inequality. *Lancet Public Health* 2021, 6, e82. [CrossRef]

52. Marmot, M.; Allen, J.; Goldblatt, P.; Herd, E.; Morrison, J. *Build Back Fairer: The COVID-19 Marmot Review*. The Pandemic, Socioeconomic and Health Inequalities in England; Institute of Health Equity: London, UK, 2020.

53. ISS-Epicentro. COVID-19: Healthy Lifestyles also during the Emergency. Available online: https://www.epicentro.iss.it/en/coronavirus/sars-cov-2-healthy-lifestyles (accessed on 12 August 2021).

54. López-Sánchez, G.F.; López-Bueno, R.; Gil-Salmerón, A.; Zauder, R.; Skalska, M.; Jastrzębska, J.; Jastrzębski, Z.; Schuch, F.B.; Grabovac, I.; Tully, M.A.; et al. Comparison of physical activity levels in Spanish adults with chronic conditions before and during COVID-19 quarantine. *Eur. J. Publ. Health* 2020, 31, 161–166. [CrossRef]

55. Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 home confinement on eating behaviour and physical activity: Results of the ECLB-COVID19 International Online Survey. *Nutrients* 2020, 12, 1583. [CrossRef]

56. López-Bueno, R.; Calatayud, J.; Casaña, J.; Casajus, J.A.; Smith, L.; Tully, M.A.; Andersen, L.L.; López-Sánchez, G.F. COVID-19 Confinement and health risk behaviors in Spain. *Front. Psychol.* 2020, 11, 1426. [CrossRef] [PubMed]

57. Balanzá-Martínez, V.; Kapczinski, F.; de Azevedo Cardoso, T.; Atienza-Carbonell, B.; Rosa, A.R.; Mota, J.C.; De Boni, R.B. The assessment of lifestyle changes during the COVID-19 pandemic using a multidimensional scale. *Rev. Psiquiatr. Salud Ment.* 2021, 14, 16–26. [CrossRef] [PubMed]

58. Martínez-de-Quel, Ó.; Suárez-Iglesias, D.; López-Flores, M.; Pérez, C.A. Physical activity, dietary habits and sleep quality before and during COVID-19 lockdown: A longitudinal study. *Appetite* 2020, 158, 105019. [CrossRef] [PubMed]

59. Ruiz-Roso, M.B.; de Carvalho Padilha, P.; Mantilla-Escalante, D.C.; Ulloa, N.; Brun, P.; Acevedo-Correa, D.; Arantes Ferreira Peres, W.; Martorell, M.; Aires, M.T.; de Oliveira Cardoso, L.; et al. COVID-19 confinement and changes of adolescents’ dietary trends in Italy, Chile, Colombia and Brazil. *Nutrients* 2020, 12, 1807. [CrossRef]

60. Bourdas, D.I.; Zacharakis, E.D. Evolution of changes in physical activity over lockdown time: Physical activity datasets of four independent adult sample groups corresponding to each of the last four of the six COVID-19 lockdown weeks in Greece. *Data Brief* 2020, 32, 106301. [CrossRef] [PubMed]

61. Castañeda-Babarro, A.; Arbillaga-Etxarri, A.; Gutiérrez-Santamaría, B.; Coca, A. Physical activity change during COVID-19 confinement. *Int. J. Environ. Res. Public Health* 2020, 17, 6878. [CrossRef]

62. García-Tascón, M.; Sahelices-Pinto, C.; Mendana-Cuervo, C.; Magaz-González, A.M. The Impact of the COVID-19 confinement on the habits of PA practice according to gender (male/female): Spanish case. *Int. J. Environ. Res. Public Health* 2020, 17, 6961. [CrossRef]
63. Maugeri, G.; Castrogiovanni, P.; Battaglia, G.; Pippi, R.; D’Agata, V.; Palma, A.; Di Rosa, M.; Musumeci, G. The impact of physical activity on psychological health during COVID-19 pandemic in Italy. *Heliyon* 2020, *6*, e04315. [CrossRef]

64. ISS-Epicentro. Nutrition during the COVID-19 Emergency. Available online: https://www.epicentro.iss.it/en/coronavirus/sars-cov-2-healthy-lifestyles-nutrition (accessed on 12 August 2021).

65. Sinisterra Loaiza, L.I.; Vázquez Belda, B.; Miranda López, J.M.; Cepeda, A.; Cardelle Cobas, A. Food habits in the Galician population during confinement for COVID-19. *Nutr. Hosp.* 2020, *37*, 1190–1196.

66. Pišot, S.; Milovanović, I.; Šimunić, B.; Gentile, A.; Bosnar, K.; Prot, F.; Bianco, A.; Lo Coco, G.; Bartoluci, S.; Katović, D.; et al. Maintaining everyday life praxis in the time of COVID-19 pandemic measures (ELP-COVID-19 survey). *Eur. J. Public Health* 2020, *30*, 1181–1186. [CrossRef]

67. Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, F.; Attinà, A.; Cinell, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. *J. Transl. Med.* 2020, *18*, 229. [CrossRef]

68. Pietrobelli, A.; Pecoraro, L.; Ferruzzi, A.; Heo, M.; Faith, M.; Zoller, T.; Antoniazzi, F.; Placentini, G.; Fearnbach, S.N.; Heymsfield, S.B. Effects of COVID-19 lockdown on lifestyle behaviors in children with obesity living in Verona, Italy: A longitudinal study. *Obesity* 2020, *28*, 1382–1385. [CrossRef]

69. Cancello, R.; Soranna, D.; Zambra, G.; Zambon, A.; Invitti, C. Determinants of the lifestyle changes during COVID-19 pandemic in the residents of northern Italy. *Int. J. Environ. Res. Public Health* 2020, *17*, 6287. [CrossRef] [PubMed]

70. Correia, T.; Dussault, G.; Pontes, C. The impact of the financial crisis on human resources for health policies in three southern-Europe countries. *Health Policy* 2015, *119*, 1600–1605. [CrossRef] [PubMed]

71. Rachiotis, G.; Koureas, C.; Kamlarakis, M.; Symvoulakis, E.K.; Dounias, G.; Hadjichristodoulou, C. Medical supplies shortages and burnout among greek health care workers during economic crisis: A pilot study. *Int. J. Med. Sci.* 2014, *11*, 442–447. [CrossRef] [PubMed]