Water Security Policies in Iraq (Strategic Perspective)

Aminaadbul-elahhamoon
Department of agricultural Economics – Faculty of Agriculture and Forestry- University of Mosul
Email : Abdamina239@Gmail.com

Abstract. Water security is a central environmental issue at the global level for economical, political and health consequences in the economies of developing countries. The concept of virtual water is a new tool in water resources management. Water crises are a global problem of long-term economic repercussions and an unbalanced conflict between the supply and demand sides in needing water, which leads to imbalance in the water balance structure and consequently in water policies. And it is particularly important for effective water governance (water management, and its governance) through water politicization, the use of virtual water and dealing with water as an economic commodity rather than a free one. The analysts and economic researchers are calling for the era of water in the third millennium instead of the era of oil that characterized at previous years. The research concluded that, in economic terms, water is expected to become a commodity sold and bought as any economic commodity. Water security should be studied from the point of view that relates the problem of water through three dimensions. The first one is related to climate variables and the second to the mismanagement and planning of water resources and the last dimension is the regional because the water sources originate from outside the Iraqi borders. Finally, the research recommends the necessity to move away from linking water with political positions and politics because politics is a rapidly changing world. As the countries of the upstream from the strategic perspective to apply the concept of political economic works to trade bartered oil for water and internationalization of the issue to take a regional dimension and internationally revealing the seriousness of the water situation in Iraq.

1. introduction

There are factors and reasons contributing to the imbalance of water security, which is one of the silent crises, which are rarely received enough attention from economic researchers, the developing countries are suffering from quantity of water crisis and not quality due to the water resources and the resulting problems are one of the most prominent issues facing Iraq in the future and the problem research about the lack of clear water policy and a strategic vision related to the optimal utilization of natural resources in Iraq. Due to the limited resource, increasing demand, intensive and inefficient use, and large losses in quantity, for many reasons, including natural and man-made, which led to a severe shortage of water needs and low per capita water needs in Iraq, which is the core of the research problem. Importance of research and investigation And study to find out the problems and obstacles faced. The importance of research in the existence of random water policies of neighboring countries and the optimal exploitation of water and natural resources in developing countries, especially water resources in Iraq, which contribute significantly to the process of
sustainable development and agricultural development and achieving water security and thus food security, which is an imperfect part of water security. The aim of the research is to link the concepts of virtual water and water footprint and their role in achieving water security policies as a renewable, non-renewable resource. To achieve the objective of the research, the following hypothesis was developed that the watermark and correct water policies play a major role in achieving the water balance as the water footprint is a function of water security. The research method included descriptive analysis based on the description of the relations under study in a methodological framework and quantitative approaches to water security policies through analyzing the phenomena related to water resources and ways to rationalize their use, The study focused on publications and research on water resources, which are led by the League of Arab States and the Arab Organization for Agricultural Development, as well as reliance on letters, papers and scientific researches in various journals and periodicals, and to highlight the most important studies and researches that dealt with the study of water resources (Najafi, 2001) The heritage of the economic approaches of the twentieth century in which there is a difference in the distribution of surface water among the Arab countries, with five countries (Egypt, Sudan, Iraq, Morocco and Syria) representing more than 80% of the water. The water is the most important in providing food supplies in the Arab world. Agriculture accounts for more than 90% of this water while about 10% is distributed on non-agricultural uses. The study (Al-Badri, 2012) About the solutions and technical and economic options for the water crisis in Iraq. The research discussed modern irrigation technologies and their impact on the increase in production and productivity of these crops in addition to addressing all the problems resulting from the traditional irrigation system, especially the waste of water resources. Al-Tikriti (2013) tackled the motives of the water crisis and the future vision to confront the crisis, and highlighted the vision of establishing a water strategy by the institutions concerned with the Western dams to determine policies and procedures for water resources development and adoption as priorities to address the negative effects of limited water. The establishment of advanced networks for water monitoring and the development of plans to stop the spread of desertification between water and population policies and the construction of dams and reservoirs to protect water from leakage and waste. In a press conference on the environmental and economic effects of water pollution in Iraq, (Al-Batat, 2013) stressed the necessity of dealing with water as an economic commodity, not free of charge, stressing that the practical uses of the concept of virtual water have two main uses: In discussing the methods and technologies used to conserve and increase water resources in Iraq, (Al-Azzawi, 2015) discussed the most important systems and technologies to protect surface and groundwater resources, such as freshwater technologies, water improvement technologies, reuse, and evaporation prevention techniques. The study (Majbil, 2015) Iraq's water security and the prospects for its development (the case of Iraq is a model) that Iraq's water security must be a strategic objective and harness all the potentials to achieve it. Given that the main financial resources in Iraq are the Tigris and Euphrates rivers coming to Iraq from the neighboring countries geographically (Turkey and Iran) The study of the two waterways is subject to the water policy of these countries and the study recommends not to link the issue of water with politics because politics is a fast-changing world and the fluctuations with time The study of (Abd, 2016) was entitled Turkish water policy and its impact on food security in the country S stressed that water will be a cause of conflict between riparian countries, especially fears of major changes in the international situation and the new vision of the international system and globalization With all these international changes must be drawn water policy consistent with future directions in achieving agricultural development Iraq is the downstream state for the Tigris (2016) on the management of water resources in Iraq (reality and solutions) addressed the need to consider water as an economic commodity of great material value and the study showed the importance of studying the issue of stress And a study of water balance, which is a global problem with large economic and social repercussions. In another study on the future of water in the Arab region for drylands and arid lands studies (2017) A water deficit of 261 billion cubic meters is expected in 2030 as water reserves are linked to population growth rates and to narrowing the gap between available water resources
and future needs. The first is the development of new water resources and the exploitation of groundwater resources represented in the basins of several countries. Water use and protection. (Al-Zubari, 2017) on the challenges and issues of water security in the Gulf Cooperation Council states, recommended the need for effective governance in water management, so that the society’s behavior becomes an integral part of the water problem. Water and its driving force by improving governance and financial management to achieve water security.

1.1. Water security policies (quantitative approaches and methodological framework)

The term water policies emerged in the last decades of the twentieth century due to the deterioration of drinking water sources in the world and in developing countries in particular, which led to regional crises. The developing countries are suffering from a real water policy crisis and due to the random water policies of neighboring countries. For the downstream countries and the increasing numbers of people and the lack of water resources. Water security and harnessing potentials are a strategic and necessary goal for achieving food security. This is due to the nature of the climate, its elements, the terrain and geographical location of countries. Environment (2009, Water Security and Food Security). Iraq is the most affected by the water policies of the neighboring countries by virtue of its geographical location as an estuary state or the impact of climate change or projects and water dams in Syria and Turkey and the Turkish policy is based on the fact that the Tigris and Euphrates rivers are not international rivers across the border but they belong to Turkey as they originate from Turkey as it claims absolute sovereignty over them until the end of its borders. At the opening of the Ataturk Dam in 1992, Suleiman Demirel said that the source of the water belongs to Turkey and that the oil belongs to the Arabs and since we are telling the Arabs half of your oil, they can’t demand what we have. Turkey's former Prime Minister Turkut Ozal has said water is a tool for political stagnation. Turkey blew up the prelude to the conflict with Syria and Iraq when the Ataturk Dam was completed and the first phase in the reservoir was completed. Only 24 hours after the beginning of the operation of the reservoir, the two rivers fell by a meter at the Syrian border. Two weeks later, crops were affected. Loss of 15% of the crop due to the interruption of water flow. Syria built the Euphrates dam in 1974, which reduced the flow of water to about 25% of the normal flow to Iraq, resulting in the escalation of Iraqi threats, which reached the threat of destruction of the dam. (Rabaya, 2012, 29). They must take the same stance in the Turkish water policy. They are influenced by the Turkish policy in the water issue. Therefore, the issue of Syrian-Iraqi coordination is an important and necessary issue because it is a state of course. In particular, Iraqi water security is more closely related to the Syrian water security because of the participation of both countries in the two main regions. Iraq has been affected by the protocol signed between Syria and Turkey since 1987, where its share does not exceed 9 billion cubic meters per year and this represents half of the minimum Iraqi needs. There is no agreement between Syria and Iraq on the relative distribution of what remains of the Euphrates. Salinity has increased in water because of water shortage and because of water use in the upper reaches (ibid., 30). That the issue of water between Iraq and Syria is a fundamental issue because they are taking the same position on the Turkish water policy, they are influenced by the same impact on Turkish policy on the water issue and therefore Syrian-Iraqi coordination is an important and necessary because they are my country flowing and downstream. In particular, Iraq's water security is more closely related to Syria's water security than its participation in the two most important aqueducts in the Arab Mashreq: the Euphrates River Basin and, to a lesser extent, the Tigris River basin. Syria and Iraq each constitute a strategic depth for the other (Khaddam, 2000, 177). Water policies can lead to serious complications that could lead to future water wars, posing a serious environmental and social threat as well as costly economic costs. Turkey is likely to change the balance of water power in the region to its advantage and enhance its role in water policy, which would serve to serve the external debt of the downstream countries and destabilize significantly, increasing the
likelihood of conflict. Which will have negative and serious implications for the future on the future of water security in Iraq, which will in turn reflect on food security and national. The Iraqi country must adopt a water policy that reduces these conflicts from a strategic perspective in water governance and optimal use of water resources management, including the establishment of modern irrigation projects, addressing the problem of water salinity and other threats to the environment. And the creation of strategic water reservoirs in anticipation of any emergency and to take advantage of virtual water technologies and water footprint and work to exploit the water of the Shatt al-Arab instead of wasting this water to the Arabian Gulf. (278 Ibid., 278) Aron Hans defines the term hydro polices as a systematic study of the conflict and cooperation between In relation to transboundary water resources. A policy that is often followed in countries with water scarcity that include decisions and guidelines on water for human use, securing it and providing a sustainable source so as to ensure the continuity of water and human development. When water management is limited to a local level. Water Law In the event that the water resource is involved within the borders of more than one country or passes through more than one regional river state, for example, the state shall establish a policy known as water policy. (Hassan Masoud, 2016). Water security is based on economic terms, namely, adequacy and security through time and space. It means meeting the different water needs of quantity and quality while ensuring that this efficiency is sustained without negative impacts through protection and the available use of water resources. On the development of water resources. It is necessary to consider water security through a single system to develop a water insurance plan that increases the efficiency of water use because it is economically dangerous to rely on water transfer from one country to another as a major source of danger to water and food security and country security (Badri, 2013, 56) The changing water security policies are of great importance because they are strategic issues related to food security. The first achievement leads to achieving the second. The loss of the first ends in the loss of the second. The research deals with three axes, the first relates to the climatic variables and the second is regional. Iraq faces serious challenges in its water policy because of the water policies of some of the relevant regional parties: Turkey, Israel and Iran. Turkey has established dam and reservoir projects on the Tigris and Euphrates rivers, which pose a direct threat to Iraq. Thus, the use of water as a political weapon and a pressure on them to reach their goal in the exchange of water with oil. The political nature is most likely Turkey’s motives in its water policy as it worked to build 21 dams largest dam Ataturk, one of the largest dams in the world to control C As Iraq and climate change have become a low-rainfall country, water policies need to be studied to reduce the risk of scarcity and pollution of environmental awareness. The most important causes of climate change are the effects of industrial development since the Industrial Revolution, Thermal, such as carbon dioxide and methane gas, which is working to raise the temperature of the planet to (0.8) Celsius, which works on the scarcity of water in the world in general and Iraq in particular. The world is suffering from the spread of water-related diseases and about 6-8 million people are dying from disease, as well as the lack of access to drinking water and sanitation due to the inefficient use of water management (Hoekstra, 2013)Climate change is expected to put pressure on the water resources used and to forget the effects of the climate on the pollution of ecosystems. Turkey is looking for a regional role to achieve greater dominance in the future through the conscious use of water tools as Turkey seeks to achieve the principle of water politicization Turkey seeks to politicize the Turkish way of dealing with the water wealth towards both Syria and Iraq to the detriment of its national interests. Turkey seeks to politicize water for an effective and influential role in the new international order and the use of water as a pressure and blackmail. 011, 41). All of this is the politicization of water, a term that has imposed itself on the international scene and means the use of water as a fundamental element in the political strategy of some countries. Turkey used the water paper as a tool of political pressure and threat to achieve political goals when it seized the Euphrates River under the pretext of Ataturk reservoir exploits the circumstances of Iraq using the paper to bargain for oil concessions, which posed a threat to the Iraqi economy (Haddad, 2001, 31). Turkey regards
water as one of the sources of power it possesses. Its aim is to trade water with oil, not only on Iraqi oil, Al-Arabi, through the Peace Pipeline project, which extends one of its pipelines to the Arab Gulf states in order to obtain Arab oil (Haddad, 2001, 218-794). Turkey has developed a new system in its strategy of selling water, Economic and other strategic reasons through the sale of water (River Manugat) as water commodity trade strategy has prices are sold and bought in the case of any other commodity and this would threaten the security of water and food as the water becomes a commodity sold to the Arabs or pressure them as a weapon, Downstream will be the hardest hit by Turkish politics If its right is not guaranteed by the upstream state. The water balance is one of the most important tools for managing water resources, especially when developing the investment water policy available in a specific water system and in estimating the adequacy of available water resources for different purposes and thus developing a vision on the conditions of groundwater formation in the region. (NetovWagga, 2012, 563) Comparison of the quantity of water falling on a certain area of the earth surface as an example basin and the different forms of transformation or distribution that this water flows from evaporation and runoff and leaks to the soil and underground reservoirs of the land and summarizes the water balance by the following equation:

\[T = B + H + X \]

where: T: Falling B: Evaporation A: Water running on the surface of the earth X: Water stored in soil It appears that the water budget is based on the evaluation of the natural elements of evaporation, flow and moisture of the surface soil and its capacity and then distributed and the role played in the water cycle. Optimal water policy tools is to achieved a balance between the demand for water and the supply of water through the rationalization rationing of demand for water consumption, namely water balance, water footprint and virtual water. The most important methods of water conservation are raising the efficiency of agricultural water use. The irrigation system prevailing in agriculture is traditional surface irrigation, The total water losses in large irrigation projects and during transport and distribution in the fields are not less than 50% at most. Irrigation efficiency can be increased to at least 75% if the existing irrigation systems are improved and improved by means of lining Canalization and distribution of water in pipelines and improvement of irrigation facilities in addition to improving the management of water distribution and associated with the introduction of modern surface irrigation methods. There is a number of ways to control evaporation of water bodies, such as reducing the energy of water bodies (such as changing the color of the water, misleading the surface of the water, breaking the wind, using floating materials that have the opposite properties of the sun) and other water conservation policies Is the conservation of water in the soil of these methods using malach by using plastic soft soil soils and in sandy soils can be placed a thin layer of Albomin placed in a special place at a depth of (60 - 90s) under the surface of the soil, which in turn prevent the leakage of water down and there are water preservatives (Hayofilk) can be added The soil increases its ability to absorb water and retain it for a long time in the reservoir from the leak down and close to the plant roots (AOAD, 2015, 14-25). The water policy emphasizes the need to recharge groundwater. There is a growing desire for artificial groundwater recharge because it provides safe reservoirs of pollution and prevents evaporation and can combine water harvesting and water tank feeding where rainwater surface water can be collected in local depressions and thus artificial recharge is performed. Large agricultural production in small quantities of water through the use of protected agriculture. This is done by producing crops in water vapor preservative houses, but they are transparent (plastic or glass) but the houses are very expensive but high production of vegetables Is equivalent to ten to forty times than can be produced in the normal fields and quantities of water does not exceed 60% compared to the same area in normal agriculture and reduce the erosion as only 1% of the water absorbed by the plant is used
in the formation of tissues and 99% of the leaves in the form of steam water (The phenomenon of transpiration), and a practical method can be found to reduce transpiration without affecting the productivity of the plant. A method can be found to reduce transpiration without affecting the productivity of the plant by producing highly efficient crops in the conversion of water into food and fiber. Water resources development and protection Water harvesting means the means by which water can be collected from areas treated to increase the flow of rain and snow from them superficially. The harvesting of water can provide water to an isolated area where there are no sources of water close to them or the cost of delivery high or the possibility of drilling local wells and The methods used to harvest water are to mechanically treat the surface of the earth to increase surface flow and the use of chemicals. And covering the ground surface with insulating materials. As well as the treatment and reuse of wastewater as the reuse of wastewater is gaining an importance in the proportion of scarcity of water sources in some areas of Iraq first and increase the amount of sewage water with the increase in the population, especially in cities, which provides sewerage networks and the reuse of wastewater as planned and seriously planned. Will achieve two objectives I avoid contamination of surface water from this source and second exploitation of this source and the content of nutrients in the nutrition of the plant using it in Riyadh, the use of sewage will become more important over time to increase competition for traditional water resources specified. By those who need to increase water with over the years.

1.2. Watermark and virtual water (two complementary variables) to achieve water security.

The water footprint is a powerful tool to show the impact of humans on natural resources. Argin Hoekstra (2002) first recognized the concept of water footprint as a quantitative dimension of water use in the product. The amount and volume of fresh water used to produce goods and services consumed by individuals or society (Water Footprint Workshop, 2015). The water footprint of the individual represents the direct and indirect consumption of water per capita. The watermark of a country represents all fresh water used in the production of goods and services consumed by citizens, which means the amount of water required from various water sources to ensure the production of the state and to know the water footprint between the two countries. We use the following scheme:

![Figure (1)](source: Y. Hoekstra, Arjen)

Figure (1) the relationship between the water footprint of the state and the consumption of the state.
It is also known as the amount of water consumed in order to produce the goods and services consumed by the individual or the community or the companies produced by them (Water Footprint Workshop, 2017). The British Institute is the way in which the potential environmental impact of water is assessed. One of its benefits is a necessity Assessment and preparedness for future risks in water use, identification of ways to reduce the environmental impact of water use, and improve efficiency at the product, process and enterprise levels among water security policy makers. (Salam, 20. 77). A distinction must be drawn between two types of water footprint for production and one watermark. - Water footprint of production: the volume of fresh water used by people to produce goods and measured the amount of water throughout the life of goods from to consumption. The footprint is classified into three categories:

1. **Green Water Footprint:** It expresses the volume of rainwater evaporating through the process of production of goods, such as within agriculture represented by the amount of water stored in the soil that evaporates from the crop field.
2. **Blue water footprint:** reflects the amount of water consumed and the sources of surface water or groundwater and within agriculture represents.
3. **Grey Footprint:** Reflects the amount of water needed to reduce pollutants from the production process. The direct water consumption of water is the result of the use of water in drinking, washing and irrigation. Indirect consumption is the amount of fresh water consumed, which was used to produce goods and services purchased by the individual (salam,27,2013).

Below shows how to calculate watermark within the state.

Source: Salam, Mohammed Osama (2013), 76

Figure (2) How to calculate watermark within a water state and Virtual Water Trading.
The concept of virtual water was discovered in London in 1990 by the researcher ALAN and means the amount of water consumed in the production of a commodity, whether food or industrial until it reaches the calculation of the virtual water for agricultural crops through the following relationship:

$$VWC_{(c)} = \frac{CWU_{(c)}}{\text{production}_{(c)}}$$

Where as :

- $VWC = \text{the default water quantity of the crop c} \ m^3 / t.$
- $CWU = \text{Quantity of water consumed by crop and measured by m}^3\ \text{Production = tons per crop}$

Virtual water means the water contained in the product, product or service is not in the real sense, but in the virtual sense it refers to the water needed to produce the product or the commodity, sometimes referred to as external water (which refers to the default water imported to a country which means the use of this water in the importing country) To the original water in the country. (Hassian, 2012, 56)

Table 1. The volume of virtual water for some agricultural crops

The crop size of virtual water is 3 m / t	Crops
4305	Wheat
0033	Corn
6633	Corn
5534	Potatoes

Source: Based on the equation above.

The principle of virtual water is to solve the problem of water security in the drought. Instead of storing water to use the time of the drought. Wheat is grown and stored in its capacity and has the water needed to grow it, which is called virtual water. It is an important tool for calculating the real consumption of fresh water, where total domestic consumption equals domestic water consumption plus the total water imported from imports of goods, products and crops. The domestic consumption of a country is equal to the total of consumer goods and services within the country. It is essential that these water concepts be adopted when planning water and water security policies in general. Elements of water use policy planning through the concept of virtual water, which can be summarized in three points: increasing the efficiency of water use, reducing waste and loss during harvesting and storage of crops, As well as the efficiency of irrigation systems. One of the benefits of virtual water trade is the transfer of water from a place of water availability to another place that suffers from a shortage of water resources that can be used as a tool to achieve water security. The ability to efficiently use imported virtual water helps water-scarce countries ease pressure on their limited water resources. Virtual water can be seen as an alternative source of water and as an additional tool for regional security of water and food. It also produces water-intensive products in places where water is abundant. The virtual water trade is from a country where water productivity is relatively high for another country where water productivity is relatively low, resulting in real water savings worldwide. The actual water content of a product or product (virtual water content) is measured by taking into account this set of factors and is the location and time period for producing the product or commodity. Measure the quantities of water used in the case of crop production, as well as the quantities of water polluted by irrigation, if any, and calculate the waste water contaminated in the estimate and calculate the default water ratios of the intermediate inputs to the default water content of the final product or product (Salam, 2013,126)The water footprint consists of two nooks: the internal watermark and
the external watermark:

$$WFP = IWFP + EWFP$$

Where As:

IWFP: Internal water footprint (Internal water footprint) EWFP: External water footprint

The internal watermark is calculated from the following relationship: $IWFP = DWW + IWW + AWW - VWE$

DWW: The amount of water withdrawal for the domestic sector.

IWW: The amount of water withdrawal for the industrial sector based on the principle of virtual water.

AWW: The amount of water consumption in the agricultural sector. VWE: The amount of water exported through agricultural products to other countries.

The external watermark is calculated from the relationship:

$$EWFP = VWI - VWE_{export}$$

Where As:

VWI: The virtual water size of imported products.

VWE_{export}: Re-exported virtual water volume of imported products.

Water footprint is measured by reliance on external water (WD) water footprint Dependency (WD) and the ratio of the external watermark to the total water footprint is multiplied by one hundred.

$$WD = EWFP / WFP \times 100$$

Or measured by self-sufficiency of water self-sufficiency, equal to the ratio of the inland watermark to the total water footprint (Hassion, 2012, 73)

$$WSS = IWFP / WFP$$

The total water footprint is calculated by collecting the green, blue and gray water footprint through the following equation:

$$WF = WF_{grey} + WF_{blue} + WF_{green}$$

(Daniela Lovarelli , 2016, 239)

Finally, it can be said that the content of the virtual water trade indicates that imported or exported goods include water. When a country imports a ton of wheat, in this case it saves the water needed to produce this ton of wheat.

2. Conclusions

1. The countries of the upstream countries seek from a strategic economic perspective to implement a political economic concept, which means exchanging oil with water, considering water as a political tool, and internationalizing the issue to take a regional and
international dimension that reveals the seriousness of the water situation in Iraq.

2. Implementing the principle of integrated water resource management is a prerequisite for sustainable development of water resources and utilization of the strategic reservoirs of water stored in lakes and dams.

3. Water balance is one of the most important tools in the governance of water management, especially in the development of water policies and planning of water investment projects available within a specific water system.

4. Development of rainwater and benefit from the so-called (water harvesting), especially in the plateau of Western Iraq and means to benefit from rain water directly without entering the river systems dry rivers Oxyol.

5. Due to the random water policies of the neighboring countries and the change in the various climatic phenomena and the spread of desert lands due to drought, lack of water resources and increasing population, which led to imbalance of water.

6. The necessity of establishing a channel linking the Tigris River in the Euphrates in the location of south of Baghdad and north of the Indian basin in addition to the Shatt al-Arab basin to regulate the discharge of groundwater and the proposal to open a channel to invest the Sea of Najaf as a natural water reservoir recommended by the governance of water management in water economics.

3. Recommendations

1. Water policies should be considered as a strategic objective to achieve and harness all potentials to achieve water security, work on water pricing and activate the role of agricultural extension, as there are factors and reasons contribute to increase water insecurity, which is a silent crisis.

2. Water security policy makers must stimulate water reuse and treatment through pricing Taxation of pollution levels as it is based on the watermark on the calculation of Water quantities and evaluated as calculating the amount of water consumed instead of calculating other inputs and not calculating the opportunity costs of production inputs.

3. The sustainability of the water footprint should be assessed from an environmental perspective as well as from a social and economic perspective The water footprint is considered to be a direct indicator of the use of freshwater in the direct and indirect use of the consumer and the commodity and can be considered a comprehensive indicator of freshwater dependence.

4. The necessity of virtual water trade. It is used as a tool to achieve water security and the ability to use virtual water efficiently, which helps countries that suffer from water scarcity, in addition to pressure on their specific water resources, can see virtual water as an alternative source of water and additional equipment to achieve regional security in water and food.

5. Develop a unified water policy for Syria and Iraq and be clear objectives for optimizing investment of water resources and management of water management.

6. The water component will be effective in any future international strategy. The water component will play a major role in redistributing the map of political forces in Iraq so that the countries with the available water resources become the dominant regional powers that control Turkey’s water policy.

4. References

[1] Agha, Wathiq Rasul and Netwof Kassem Khalid (2012), Methods of Calculation of Water Balance Components and their Application to the Qatana Region in Damascus Water Basin, Vol. 28, Second Issue, Damascus University Journal of Basic Sciences, 563-591.
[2] Al-Badri, Mohammed Hussein Nasser and Ahmed Hussein Nasser (2012), Technical and Economic Solutions and Options for the water crisis in Iraq, Al-Kout magazine for economic and administrative sciences.

[3] Tikriti Haifa Abdulrahman (2013), The Water Crisis in the Arab World: Reality, Use and Motivations: The Possible Vision for Confronting the Crisis, Kirkuk University Journal of Administrative Sciences and Al-Aftasadiyah, Vol. (3), (1), 2013.

[4] Al-Jaber, Sultan Ahmed (2012) Water security is the most important elements of development, article of water security and food securitybetween the budget and options.

[5] Jubouri, Mehdhi SaharGhilan (2004), Economic Efficiency of the Use of Supplementary Irrigation in Demian Agriculture / Nineveh Governorate (Applied Model), PhD thesis, Faculty of Agriculture, University of Baghdad.

[6] Haddad, Hamid Obaid, 2008, Turkish Water Policy and its Implications for the Future of Agriculture in Iraq, Al-Ustaz Magazine, Faculty of Education / IbnRushd, Baghdad University, No. 77, 794.

[7] Hassian, Kifah Mohamed (2012), Assessment of the Water Situation in Syria through the Implementation of the Virtual Water Principle in the Agricultural Sector, Damascus University Journal of Engineering Sciences, Volume 28, No. 1.

[8] Khaddam, Munther (2001), Arab Water Security - Reality and Challenges, Center for Arab Unity Studies, Beirut, February, 16.

[9] Rabaya, Ghazi Ismail (2002), The Water Problem in the Middle East, The Emirates Lecture Series, Emirates Center for Strategic Studies and Research, Abu Dhabi, 29.

[10] Zubari, Walid Khalil (2017), Challenges and issues of water security in the GCC countries, Kingdom of Bahrain.

[11] Salam, Mohammed Usama (2013), Egyptian Watermark, Water and Food Security Index. National Water Research Center, First Edition.

[12] Arab Monetary Fund, Unified Arab Economic Report, miscellaneous numbers.

[13] Abd, Salam Salem (2016), Turkish Water Policy and its Impact on Food Security, Kufa Journal Issue 26, 26.

[14] Al-Azzawi and Khalaf, Raad Rahim and QaisYassin (2015) Methods and technologies used in the conservation and increase of water resources in Iraq, No. 66, Diyalah Journal.

[15] Mejbel, Ali Muzahim, Iraqi Water Security and Prospects for Development of the Case of Iraq as a Model (2015), Master Thesis, Faculty of Management and Economics, University of Baghdad.

[16] Mohammed, Dalia Ismail, Water and International Relations, 2006, Madbouli Library, Cairo, 38

[17] Mohammed, TawfiqJassem Mohammed (2000), Managing Iraq's Water Resources Reality and Solutions. Ministry of Water Resources, General Commission for Dams and Reservoirs, Iraq The Arab Organization forAgricultural Development (1995), the National Meeting of Agriculture and Irrigation Sector Officials in the Arab World.

[18] Najafi (2001),“ Arab Water Resources the heritage of the twentieth century - economic approaches, House of Wisdom, Baghdad.

[19] A.Asokolov and T.G Chapmam (1974),methods for water balance computations an international Hydrological decade the Unesco press paris.

[20] Y.Hoekstra,arjen(2015)water footprint assessment an introduction university of twente the Nether lands.

[21] Y.Hoekstra,arjen and ashokk.chapagain and maid m.aldaya and mesfin.m.mekonnen 2011, the water footprint Assessment manualLondon.washington.