Occurrence of *bla* genes encoding carbapenem-resistant *Pseudomonas aeruginosa* and *Acinetobacter baumannii* from Intensive Care Unit in a tertiary care hospital

Jayanthi Siva Subramaniyan, Jeya Meenakshi Sundaram

Abstract:

CONTEXT: ICU shows increasing incidence of infection associated with the use of invasive procedures for the diagnostic purpose as well as the indiscriminate use of antibiotics. *Pseudomonas aeruginosa* and *Acinetobacter species* are “very successful” pathogen and the emergence of the Metallo-β-Lactamases (MBL) is becoming a therapeutic challenge.

AIMS: To isolate the Nonfermenting Gram negative bacilli from the ICU samples. To identify the metallo betalactamase producers and to detect the *bla* gene presence among the *Pseudomonas aeruginosa* and *Acinetobacter baumannii*.

SETTINGS AND DESIGN: The Nonfermenting Gram negative bacilli isolates from the ICU samples were taken over for 5 years (2009-2014) in a tertiary care hospital.

METHODS AND MATERIALS: The isolates of *Pseudomonas species* and *Acinetobacter species* were confirmed by API analyser and processed according to standard procedures. Detection of the MBL producers were done by E strip method and subjected for *bla* gene detection by PCR method.

RESULTS: In our study a total of 195 isolates of NFGNB were obtained from various ICU. Of these MBL producers, 26 % were *Pseudomonas aeruginosa* and 25 % were *Acinetobacter baumannii*. The subtypes of *bla*VIM MBL producing *P.aeruginosa* were 26%.The predominant gene coding for MBL activity in *A.baumannii* were found to be *bla*OXA gene 11.9%. The gene accession numbers were KF975367, KF975372.

CONCLUSIONS: We have to control the development and dissemination of these superbugs among the ICU’s.

Key words: *Acinetobacter baumanni*, *bla* genes, ICU, Metallo-β-lactamases, *Pseudomonas aeruginosa*

Introduction

Isolation of nonfermenters from the clinical specimens obtained from Intensive Care Unit (ICU) shows that increasing incidence of infection associated with the use of invasive procedures, indiscriminate use of antibiotics, inadequate sterilization, and immune compromised condition due to lifestyle disease have also contributed.[1]

Among the nonfermenters, *Pseudomonas aeruginosa* is inherently resistant and *Acinetobacter* species capable of surviving in various environmental conditions are adapted at acquiring resistance.[2,3] The digestive tracts of patients within ICUs often serve as reservoirs for multidrug-resistant (MDR) isolates.[4,5]

How to cite this article: Subramaniyan JS, Sundaram JM. Occurrence of *bla* genes encoding carbapenem-resistant *Pseudomonas aeruginosa* and *Acinetobacter baumannii* from Intensive Care Unit in a tertiary care hospital. J Lab Physicians 2018;10:208-13.
P. aeruginosa resistance is a global disease burden[6] and it is a therapeutic challenge.[8] The Acinetobacter baumannii complex is emerging multidrug resistant nosocomial and community acquired pathogen. The incidence of infection by these species among the patients receiving the mechanical ventilation are quite increasing.[8] These organisms are “very successful” pathogen which possesses both acquired and intrinsic mechanisms of resistance to various classes of antibiotics.[9-11]

Infections in the ICU patients were commonly associated with ventilator-associated pneumonia, urinary tract infection, and bacteremia caused by MDR organism Gram-negative bacilli with increasing morbidity and mortality.[12,13] The emergence of the metallo-β-lactamases (MBL) is becoming a therapeutic challenge.[12] Antimicrobial resistance pattern has emerged as an important determinant of the outcome for patients in the ICUs.[14]

In our study, drug-resistant isolates in the ICUs were detected and the gene encoding carbapenem resistance in P. aeruginosa and Acinetobacter baumannii was identified. The resulting sequences were compared with those available in GenBank.

Methods

All the suspected colonies of the NFGNB were identified by Gram staining, colony characteristics, oxidase test, motility, and standard biochemical reactions, and further confirmation of the species was carried out by API analyzer. The study was carried out in a tertiary care hospital (2009–2014). All the organisms identified were tested for the susceptibility according to the standard Clinical and Laboratory Standards Institute guidelines.[15] The sensitivity pattern of first- and second-line drugs was tested.

For *Pseudomonas* species, the following 15 drugs were used: amikacin (Ak-30 μg), aztreonam (Az-30 μg), colistin (Cl-10 μg), ciprofloxacin (Cip-5 μg), ceftazidime (Caz-5 μg), cefepime (Cpm-5 μg), carbenicillin (Cb-100 μg), gentamicin (G-10 μg), imipenem (Im-10 μg), meropenem (Mr-10 μg), netilmicin (Net-30 μg), ofloxacin (Of-5 μg), piperacillin-tazobactam (Pit-100 μg/10 μg), polymyxin B (Pb-300 units), tobramycin (Tb-10 μg).

For *Acinetobacter* species, amikacin (Ak-30 μg), cefepime (Cpm-5 μg), ceftazidime (Caz-5 μg), ciprofloxacin (Cf-5 μg), cefotaxime (Ce-5 μg), colistin (E strip), cotrimoxazole (Cot-5 μg), gentamicin (G-10 μg), imipenem (IMP-10 μg), meropenem (Mr-10 μg), piperacillin-tazobactam (Pt-100 μg/10 μg), and polymyxin B (E strip) were used, and in case of urine samples, nitrofurantoin (Nit-300 μg) disks were used.

The study was confined to the MBL-producing *P. aeruginosa* and *A. baumannii* species. The antibiotic discs used in our study were purchased from HiMedia. The E strip was purchased from HiMedia, Biomerieux, and Radianz biotechnologies. Screening for MBL production was done in imipenem-resistant isolates by the E strip method using the ceftazidime and ceftazidime + ethylendiaminetetraacetic acid.[16]

The MBL-producing resistant strains of *P. aeruginosa* were screened for the *bla* genes – *bla*

| Table 1: The primers used for bla gene detection in *Pseudomonas aeruginosa* |
|---------------|-------------------|-----------------|
| Gene | Primers | Product size |
| blaVIM | Forward primer | 5’TCT ACA TGA CCG CTG CTG TC-3’ | 748 bp |
| blaVIM | Reverse primer | 5’TGT GCT TTA ACA ACG TGC GC-3’ | 587bp |
| blaIMP | Forward primer | 5’CCA GAT TTA AAA GAA GAG AAG CT-3’ | 522 bp |
| blaIMP | Reverse primer | 5’TGG CCA AGC TTC TAC ATT TCG T-3’ | 989bp |
| blaNDM | Forward primer | 5’GGT TTT GGC GAT CTG GTC CT-3’ | 522 bp |
| blaNDM | Reverse primer | 5’CGG AAT GGC TCA CGA TCA TCC GC-3’ | 989bp |
| blaKPC | Forward primer | 5’GCT ACA CCT AGC TCC ACC TTC-3’ | 442bp |
| blaKPC | Reverse primer | 5’ACA GTT GTT GGT AAT CCA TGC-3’ | 442bp |

Table 2: The primers used for bla gene detection in *Acinetobacter baumannii* |

Gene	Primers	Product size	
blaVIM	Forward primer	-5’GTCTTGGACAACGTTGTC-3’	442 bp
blaVIM	Reverse primer	-5’TCCACGCATTTCATGGCA-3’	220 bp
blaIMP	Forward primer	-5’TTCAGCAGTCTGATTCA-3’	220 bp
blaIMP	Reverse primer	-5’ACAGCTCACAACAAAGTGC-3’	220 bp
blaNDM	Forward primer	-5’AGTATGGGGCTTGTGCT-3’	398bp
blaNDM	Reverse primer	-5’AATACCTGATGCATTTG-3’	660 bp
blaKPC	Forward primer	5’GTT GCA TGC CGG GTG AAA TTC T-3’	660 bp
blaKPC	Reverse primer	5’ATG CTG GCC TTG GGG AAC G-3’	400 bp

Internal control
at 94°C for 2 min, followed by 30 amplifications cycles of 94°C for 1 min, 55°C for 1 min, and 72°C for 1 min 30 sec, with final extension step of 72°C for 5 min. The cycling parameters for the bla\textsubscript{IMP, VIM, NDM, OXA} genes were as follows: initial denaturation: 94°C for 3 min, denaturation: 94°C for 1 min, annealing: 58°C for 1 min 35 cycles, extension: 72°C for 1 min, final extension: 72°C for 5 min. After screening for the MBL, the positive PCR products were sequenced. Sequencing the amplified products, the BLAST results were analyzed.

Results

The nonfermenters isolated from ICU were found to be notorious as there were possibilities of drug-resistant strains being horizontally spread among the patients. In our study, a total of 195 isolates of NFGNB were obtained from various ICUs. Among them, 61 (31.2%) were *Pseudomonas* spp and 134 (68.8) were *Acinetobacter* spp. Among the 84 isolates of NFGNB, 32 (38%) were *P. aeruginosa* and 61.9% *A. baumannii* were isolated from surgical ICU. Distribution of NFGNB – *P. aeruginosa* and *A. baumannii* in different ICUs is shown in Table 3. Among 61 *P. aeruginosa* from ICU patients, 19 (31.1%) were from males and 42 (68.8%) were from females. Distribution of *P. aeruginosa* from ICU among different sexes is shown in Chart 1. Among 134 *A. baumannii* from ICU patients, 89 (66.4%) were from males and 45 (33.5%) were from females [Chart 2].

Among 195 NFGNB isolates from ICU, 89 (45.6%) were drug resistant. Out of these, 26 (13.33%) were *P. aeruginosa* and 63 (32.3%) were *A. baumannii*. Overall, the MDR isolates from ICU were 33.33%. The MBL producers from ICU were 49 (25.12%) [Table 4]. Of these MBL producers, 16 (26.22%) were *P. aeruginosa* and 33 (24.62%) were *A. baumannii* [Table 5 and Chart 3].

The maximum numbers of MBL producers were in surgical ICU followed by general ICU. Among ICUs, 6.1% of isolates were from pediatric ICU and one isolate of *P. aeruginosa* was MBL producer [Table 6]. Among the MBL producers in ICU, *P. aeruginosa* was obtained from

Table 3: Distribution of *P. aeruginosa* and *A. baumannii* in different ICUs

Source	No of isolates	*P. aeruginosa (%)	*A. baumannii (%)
Surgical ICU	84	32 (38)	52 (61.9)
General ICU	57	17 (29.8)	40 (70.1)
Paediatric ICU	12	9 (75)	3 (25)
Neuro ICU	35	1 (2.8)	34 (97.2)
Neonatal ICU	7	2 (28.5)	5 (71.4)
Total ICU	195	61	134

Table 4: Drug resistance in ICU isolates

Isolates from ICU (n)	Drug resistant isolates	Multidrug resistant isolates	Metallo beta lactamase producers
P. aeruginosa (61)	26	23	16
A. baumannii (134)	63	42	33
Total (195)	89	65	49

Table 5: Showing MBL positive by Estrip method

Method (E strip–MIC E strip)	*P. aeruginosa* (n=61)	*A. baumannii* (n=63)
CDT - Imp, Imp + EDTA	16	33

![Chart 1](image1.png)

Chart 1: Distribution of *Pseudomonas aeruginosa* from Intensive Care Unit among different sexes

![Chart 2](image2.png)

Chart 2: Distribution of *Acinetobacter baumannii* from Intensive Care Unit among different sexes
11 males and 5 females and *A. baumannii* was isolated from 13 males and 20 females.

MDR and MBL producers were more from general ICU and surgical ICU. Among the 63 drug-resistant *A. baumannii*, 42 (66.6%) were multidrug resistant and 33 (52.3%) were MBL producer.

Clinical sources of the MBL-producing *P. aeruginosa* are shown in Table 7. The subtypes of *bla* VIM-MBL-producing *P. aeruginosa* were 26% and strains of *P. aeruginosa* from ICU were negative for other *bla* KPC, NDM, IMP genes. Distribution of all three subtypes of MBL-producing *P. aeruginosa* was as follows: 13.1% *bla* VIM-4, 9.8% *bla* VIM-5, and 3.2% *bla* VIM-38 strains [Chart 4].

In MBL-positive *A. baumannii*, *bla* VIM gene was demonstrated in 4.4% strains, *bla* OXA gene was seen in 11.9%, and *bla* IMP gene was seen in 5.2%. Thus, the predominant gene coding for MBL activity was found to be OXA. Distribution of genes responsible for MBL activity in *A. baumannii* and its clinical source is shown in Table 8. The resulting sequences were compared with those available in GenBank (www.ncbi.nih.gov/BLAST) and the gene accession numbers were KF975367, KF975372.

Discussion

There is an increase in infection caused by the MBL-producing NFGNB in the ICUs, along with the significant morbidity and mortality. The incidence of infection in ICUs, especially the nosocomial infections, is a rising trend with a spectrum of clinical conditions. They may be in the range from impaired immunity, lapse in the sterilization, use of various invasive devices, and procedure to indiscriminate use of antibiotics.

A study by Aliskan *et al.*[24] showed that there was a decrease in susceptibility pattern of *A. baumannii* and *P. aeruginosa* isolates from the ICU samples. In our study, maximum *P. aeruginosa* and *A. baumannii* were from tracheal aspirates, followed by wound swab which was in concordance with study of Jaggi *et al.*[25]

In a study by Orrett, 17.3% of *P. aeruginosa* were from ICU.[26] The prevalence of *Acinetobacter species* from various parts of our country was 3%,[27] 4.5%,[28] and 9.6% in West Bengal.[29] In our study, the prevalence of *P. aeruginosa* (31.2%) and *A. baumannii* (68.8%) in ICU was higher when compared with above study. Among the
$A.\ baumannii$ strains isolated from ICU, 65%–70% were resistant and they were not in concordance with our study\cite{33,30,31} which is higher when compared to our study.

The percentage of MDR $A.\ baumannii$ isolates increased from 4% to 55% and 2%–8% in $P.\ aeruginosa$ isolates. According to Yan et al., 56.7% and 58.3% of $P.\ aeruginosa$ were found to be imipenem resistant.\cite{33,32}

Many studies have reported <50% of resistance to imipenem and meropenem in $P.\ aeruginosa$. Imipenem resistance according to Livermore\cite{33} was 77.5% and Lone et al.,\cite{34} was 25.6%. Tan\cite{35} reported that 9.6% carbapenem-resistant $P.\ aeruginosa$ and 27.2% carbapenem-resistant $P.\ aeruginosa$ were from ICU reported by Hsu et al.,\cite{36} In our study, carbapenem-resistant $Acinetobacter\ spp.$ isolated from ICU were 25% and lesser than the resistance pattern (69%) reported by Tan.\cite{33}

A study by Hsu et al.,\cite{36} showed that carbapenem resistance of $Acinetobacter$ was 49.6%. Lagatolla et al.\cite{37} showed that 70% of carbapenem-resistant $P.\ aeruginosa$ were MBL producers. A study by Kabbaj et al.\cite{38} showed that, among 57.4% imipenem-resistant isolates of $Acinetobacter\ baumannii$, 74% were MBL producers and in concordance with our study. An Indian study stated that MBL producers among the $A.\ baumannii$ were 70.9%,\cite{39} and another study reported that 21%\cite{40} of $A.\ baumannii$ were MBL producers.

Tanzinah Nasrin showed the high level of MBL producers isolated from ICU unlike our study. Studies from the Indian subcontinent have shown the bla_{IMP} gene carried by meropenem-resistant isolates.\cite{41} Our study confirmed the presence of bla gene (bla_{VIM} 26% and bla_{OXA} 12%) among the isolates of $P.\ aeruginosa$ and $A.\ baumannii$ from the ICU samples and comparable with the study of Gautam et al.,\cite{30} 25% prevalence of NDM-1 $A.\ baumannii$ in ICU isolates.

Conclusion

We have to control the development and dissemination of these superbugs among the ICUs. Insight into the incidence of these superbugs alarms the need of every institution to have the interventional strategies to prevent these infections. The prevalence in ICU emphasizes the need for early detection of beta-lactamas-producing organisms.

Acknowledgement

My sincere gratitude goes to Dr. Sundararaj T., (Ret) Prof and Head of Dept of Microbiology, Dr. A.L. Mudaliar Post-Graduate Institute of Basic Medical Sciences, Tharamani, Chennai & Director of JASMN Education and Foundation, JASMN Laboratory, who has guided and spent valuable time during the course of our work.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Murray PR, Rosenthal KS, Pfaller MA, editors. Text Book of Medical Microbiology-Pseudomonas and Related Organisms. 5th ed. Vol. 34. Elsevier; 2005. p. 357-65.
2. Towner KJ. Plasmid and transposon behaviour in Acinetobacter. In: Towner KJ, Bergogne-Berezin E, Felson CA, editors. The Biology, Physiology, Industrial Relevance. New York: Plenum Press; 1991. p. 149-67.
3. Cisneros JM, Rodríguez-Baño J, Fernández-Cuenca F, Ribera A, Vila J, Pascual A, et al. Risk-factors for the acquisition of imipenem -Resistant $Acinetobacter\ baumannii$ in Spain: A nationwide study. Clin Microbiol Infect 2005;11:874-9.
4. Corbella X, Pujol M, Ayats J, Sendra M, Ardanuy C, Domínguez MA, et al. Relevance of digestive tract colonization in the epidemiology of nosocomial infections due to multiresistant $Acinetobacter\ baumannii$. Clin Infect Dis 1996;23:329-34.
5. Afzal-Shah M, Livemore DM. Worldwide emergence of carbapenem-resistant $Acinetobacter\ spp$. J Antimicrob Chemother 1998;41:576-7.
6. Paramythiotou E, Lucet JC, Timsit JF. Acquisition of multidrug resistant $Pseudomonas\ aeruginosa$ in patients in Intensive Care Units: Role of antibiotics with antipseudomonal activity. Clin Infect Dis 2003;38:676-7.
7. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant $Pseudomonas\ aeruginosa$: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009;22:582-610.
8. Talbot GH, Bradley J, Edwards JE Jr., Gilbert D, Scheld M, Bartlett JG, et al. Bad Bugs need drugs: An update on the development pipeline from the antimicrobial availability task force of the infectious diseases society of America. Clin Infect Dis 2006;42:657-68.
9. Perez F, Hujer AM, Hujer KM, Becker BK, Rather PN, Bonomo RA, et al. Global challenge of multidrug-resistant $Acinetobacter baumannii$. Antimicrob Agents Chemother 2007;51:3471-84.
10. Rice LB. Challenges in identifying new antimicrobial agents effective for treating infections with $Acinetobacter baumannii$ and $Pseudomonas\ aeruginosa$. Clin Infect Dis 2006;43 Suppl 2:S100-5.
11. Garnacho-Montero J, Amaya-Villar R. Multi resistant $Acinetobacter baumannii$ infections: Epidemiology and management. Curr Opin Infect Dis 2010;23:332-9.
12. Irfan S, Zafar A, Guhar D, Ahsan T, Hasan R. Metallo-beta-lactamase-producing clinical isolates of $Acinetobacter$ species and $Pseudomonas aeruginosa$ from intensive care unit patients of a tertiary care hospital. Indian J Med Microbiol 2008;26:243-5.
13. Oberoi L, Singh N, Sharma P, Aggarwal A. ESBL, MBL and ampC β lactamas producing superbugs - Havoc in the intensive care units of Punjab India. J Clin Diagn Res 2013;7:70-3.
14. Mohanasundaram KM. Retrospective analysis of the incidence of nosocomial infection in the ICU-associated risk factors and microbiological profile. J Clin Diagn Res 2010;4:3378-9.
15. Clinical and Laboratory Standards Institute. Performance Standards for the Antimicrobial Susceptibility Testing. CLSI Document M100-S20. Wayne, PA, USA: Clinical and Laboratory Standards Institute; 2010.
16. Segal H, Elisha BG. Use of E test MBL strips for the detection of carbapenemases in $Acinetobacter baumannii$. J Antimicrob
Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother 2008;52:3589-96.

Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, et al. Characterization of the new metallo-beta-lactamase VIM-13 and its integron-borne gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 2008;52:3589-96.

Yum JH, Yi K, Lee H, Yong D, Lee K, Kim JM, et al. Molecular characterization of metallo-beta-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: Identification of two new integrons carrying the bla VIM-2 gene cassettes. Antimicrob Agents Chemother 2002;49:837-40.

Sundararaj T, Sundararaj A. Microbiology Laboratory Manual. 4th ed. Vol. 1. A.Sundararaj; 2005. p. 39-40.

Aliskan H, Colakoglu S, Turunç T, Demiroğlu YZ, Erdoğan F, Akin S, et al. Four years of monitoring of antibiotic sensitivity rates of Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from patients in Intensive Care Unit and inpatient clinics. Mikrobiyol Bul 2008;42:321-9.

Jaggi N, Sissodia P, Sharma L. Acinetobacter baumannii isolates: The epidemiology, antibiogram and the nosocomial status which were studied over a 25 months period in a tertiary care hospital in India. BMC Proc 2011;5:291.

Orrett FA. Antimicrobial susceptibility survey of Pseudomonas aeruginosa strains isolated from clinical sources. J Natl Med Assoc 2004;96:1065-9.

Dash M, Padhi S, Pattnaik S, Mohanty J, Misra P. Frequency, risk factors, and antibiogram of Acinetobacter species isolated from various clinical samples in a tertiary care hospital in Odisha, India. Avicenna J Med 2013;3:97-102.

Rit K, Saha R. Multidrug-resistant Acinetobacter infection and their susceptibility patterns in a tertiary care hospital. Niger Med J 2012;53:126-8.

Joshi SG, Litage GM, Satpute MG, Telang NV, Ghole VS, Niphadkar KB, et al. Clinical and demographic features of infection caused by Acinetobacter species. Indian J Med Sci 2006;60:351-60.

Gautam V, Mowara A, Raj A, Gupta V, Singla N, Ray P, et al. High prevalence of New Delhi metallo-beta-lactamase in Acinetobacter calcoaceticus-A. baumannii complex at two tertiary care centres in North India. Indian J Med Microbiol 2014;32:455-6.

Abbo A, Navon-Venezia S, Hammer-Muntz O, Krichali T, Siegman-Igra Y, Carmeli Y, et al. Multidrug-resistant Acinetobacter baumannii. Emerg Infect Dis 2005;11:22-9.

Yan JJ, Ko WC, Tsaï SH, Wu HM, Wu JJ. Outbreak of infection with multidrug resistant Klebsiella pneumoniae carrying bla IMP-8 in a university medical centre in Taiwan. J Clin Microbiol 2001;39:4453-9.

Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin Infect Dis 2002;34:634-40.

Lone R, Shah A, Kadri SM, Lone S, Shah F. Nosocomial multidrug resistant Acinetobacter infections-clinical findings, risk factors and demographic characteristics. Bangladesh J Med Microbiol 2009;3:34-8.

Tan TT. “Future” threat of Gram negative resistance in Singapore. Ann Acad Med Singapore 2008;37:884-90.

Hsu LY, Tan TY, Jureen R, Koh TH, Krishnan P, Tzer-Pin Lin R, et al. Antimicrobial drug resistance in Singapore hospitals. Emerg Infect Dis 2007;13:1944-7.

Fleischmann RW, White O, Bult CJ, et al. Whole-genome comparison of Mycobacterium tuberculosis with Mycobacterium bovis. Proc Natl Acad Sci USA 1998;95:6007-11.

Kabbaj H, Seffar M, Belefquih B, Akka D, Handor N, Amor M, et al. Prevalence of metallo-beta-lactamases producing Acinetobacter baumannii in a Moroccan hospital. ISRN Infect Dis 2013:2013:154921.

Kanungo R, Jayachandran S, Ann Acad Med Singapore 2008;37:884-90.

Anil VK, Vishnu SP, Kavitha R, Shamusul D. The phenotypic detection of carbapenemase in the meropenem resistant Acinetobacter calcoaceticus-baumannii complex in a tertiary care hospital in S. I. J Clin Diagn Res 2011;5:223-6.

Azim A, Dwivedi M, Rao PB, Baronia AK, Singh RK, Prasad KN, et al. Epidemiology of bacterial colonization at Intensive Care Unit admission with emphasis on extended-spectrum beta-lactamase-and metallo-beta-lactamase-producing Gram-negative bacteria – An Indian experience. J Med Microbiol 2010;59:955-60.