The complex existence of γδ T cells following transplantation: the good, the bad and the simply confusing

Lucy C Sullivan¹,², Evangeline M Shaw¹, Sanda Stankovic¹, Gregory I Snell², Andrew G Brooks¹ & Glen P Westall²

¹Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
²Lung Transplant Service, The Alfred Hospital, Melbourne, VIC, Australia

Correspondence
LC Sullivan, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia. E-mail: lcsull@unimelb.edu.au

Received 23 May 2019; Revised 5 August 2019; Accepted 5 August 2019
doi: 10.1002/cti2.1078

Clinical & Translational Immunology 2019; 8: e1078

INTRODUCTION

Gamma delta (γδ) T cells consist of ~4% of the total T cell population in human peripheral blood; however, they typically comprise a higher proportion of T cells in skin and mucosal epithelium.¹ γδ T cells are a highly heterogenous group of lymphocytes that display broad functional abilities, interacting with both innate and adaptive immune compartments. A body of evidence indicates that γδ T cells are important in tissue homeostasis and repair, both in the skin and mucosa.² Mice deficient in γδ T cells spontaneously develop inflammatory bowel disease³ and succumb to dextran sodium sulphate-induced colitis (reviewed by Nanno et al.⁴). In addition, through the production of TGFβ, γδ T cells limit damage to renal epithelial cells in a rat model of autoimmune-mediated glomerulonephritis⁵ and protect pulmonary epithelial cells from damage after ozone exposure.⁶ Furthermore, studies on antigenic tolerance in animal models have shown dependence on γδ T cells.⁷

Gamma delta T cells are mediators of both anti-inflammatory and pro-inflammatory responses. γδ T cells exert their effects largely through MHC-independent mechanisms and can be directly cytotoxic but can also be activated by other immune cells. Furthermore, γδ T cells appear to be central in the control of post-transplant infection, particularly to cytomegalovirus (CMV). Their role in transplantation outcome remains unclear, with evidence suggesting they can be both effectors and suppressors of allogenic rejection, but nonetheless highlighting them as an important component of the post-transplant immune response.

Abstract

Gamma delta (γδ) T cells are a highly heterogeneous population of lymphocytes that exhibit innate and adaptive immune properties. Despite comprising the majority of residing lymphocytes in many organs, the role of γδ T cells in transplantation outcomes is under-researched. γδ T cells can recognise a diverse array of ligands and exert disparate effector functions. As such, they may potentially contribute to both allograft acceptance and rejection, as well as impacting on infection and post-transplant malignancy. Here, we review the current literature on the role and function of γδ T cells following solid organ and hematopoietic stem cell transplantation.

Keywords: gamma delta T cells, transplant immunology, graft-versus-host disease
\(\gamma \delta \) T CELL RECEPTORS, LIGANDS AND EFFECOR FUNCTIONS

Gamma delta T cells are controlled by a suite of cell-surface expressed molecules, including a T cell receptor (TCR) and several receptors more commonly associated with natural killer (NK) cells. The loci encoding the \(\gamma \delta \) TCR genes are the T cell receptor gamma (TRG, encoding the gamma chain) and T cell receptor delta (TRD, encoding the delta chain).\(^1\) Largely analogous to classical \(\alpha \beta \) T cells, TCR rearrangement is dependent on the expression of recombination activating genes (RAG). However, compared to \(\alpha \beta \) T cells, the repertoire of \(\gamma \delta \) V and J gene segments is restricted, with the TRG locus containing only 12 Variable (V) segment genes, of which 6 are functional, and the TRD locus containing eight functional V region genes. This is in comparison with \(\alpha \beta \) T cells, which have 52 V\(\beta \) genes and 70 V\(\alpha \) genes.\(^2\) Furthermore, of the TRD genes, only four of these are frequently used: V\(\delta 1 \), V\(\delta 2 \), V\(\delta 3 \) and V\(\delta 5 \). However, \(\gamma \delta \) TCR still has extreme sequence variation because of a high degree of junctional diversity as a result of D segment rearrangement.\(^3\) Also, unlike \(\alpha \beta \) T cells, the vast majority of \(\gamma \delta \) T cells do not express either the CD4 or CD8 co-receptor. Important in the context of transplantation, \(\gamma \delta \) T cells with different TCR localise to distinct regions. The vast majority of healthy adult peripheral blood \(\gamma \delta \) T cells are V\(\gamma 9 \delta 2 \), whereas \(\gamma \delta \) T cells bearing V\(\delta 1 \), V\(\delta 3 \) or V\(\delta 5 \) TCR are located in the skin, intestine, lung and liver.\(^4\)

In addition to their TCR, \(\gamma \delta \) T cells express many receptors in common with NK cells. The NK cell receptor NKG2D is expressed on a large proportion of \(\gamma \delta \) T cells and recognises the stress-inducible ligands MHC class I chain-related proteins (MIC)-A and (MIC)-B and UL16 binding proteins (ULBPs), many of which may be upregulated following transplantation.\(^5\) \(\gamma \delta \) T cells reportedly recognise MIC-A via both TCR and NKG2D, although TCR interactions were not involved in their cytotoxic activity.\(^6\) Cytotoxic activity is also triggered by V\(\gamma 9 \delta 2 \) \(\gamma \delta \) T cells upon ligation of another NK cell receptor, DNAM-1.\(^7\) Subsets of \(\gamma \delta \) T cells also express other NK cell receptors, including Nkp30, Nkp44 and CD94-NKG2 receptors.\(^8\) Another important receptor also shared with NK cells is CD16, a low-affinity receptor for the constant region of IgG. The expression of CD16 allows \(\gamma \delta \) T cells to recognise IgG opsonised pathogens or target cells without a strict requirement for TCR engagement.\(^9\)

In contrast to \(\alpha \beta \) T cells, \(\gamma \delta \) T cells typically do not recognise ligands in the context of MHC molecules. Of the known ligands, V\(\gamma 9 \delta 2 \) \(\gamma \delta \) T cells are activated by phosphoantigens, which can be produced by microbes or as a result of malignant transformation,\(^10\) whereas V\(\gamma 4 \delta 5 \) TCRs bind to endothelial protein C receptor (EPCR)\(^11\) (Table 1). The ligands for V\(\delta 1 \) cells have remained somewhat more elusive, but are reported to include MHC-like molecules, such as the CD1 family\(^12\) and MIC-A/B\(^13\) (Table 1). Another member of the CD1 family, CD1d, is recognised by subsets of V\(\delta 3 \) \(\gamma \delta \) T cells,\(^14\) whereas other subsets of V\(\delta 3 \) cells recognise annexin A2.\(^15\) The ligands for TCR of other \(\gamma \delta \) T cells are still largely undefined.

Interestingly, \(\gamma \delta \) T cell effector function depends on their niche. For example, intestinal epithelium-resident \(\gamma \delta \) T cells produce keratinocyte growth factor, contributing to the intestinal barrier health and homeostasis.\(^16\) Firmly placed at the interface of innate and adaptive immunity, following recognition of ligands by the TCR and/ or activating NK cell receptors, \(\gamma \delta \) T cells are potent producers of pro-inflammatory cytokines (IFN-\(\gamma \), TNF-\(\alpha \), IL-17) and can directly lyse infected or transformed cells via perforin- and granzyme-dependent mechanisms. Following activation, \(\gamma \delta \) T cells can also induce several cell types into antigen-presenting cells, thereby promoting dendritic cell maturation, CD4\(^+\) and CD8\(^+\) T cell priming, as well as antibody production.\(^17\) \(\gamma \delta \) T cells can also produce inflammatory and chemotactic chemokines such as RANTES, CXCL10 and lymphotactin. They are also capable of cross-presenting antigens, thereby inducing CD8\(^+\) T cell responses.\(^18\) In addition, \(\gamma \delta \) T cells do not require TCR engagement for cytokine production. Instead, they can be activated to produce IL-17 by cytokines such as IL-1\(\beta \) and IL-23.\(^19\)

In summary, given the complexity of receptors expressed, ligands bound and responses exerted by \(\gamma \delta \) T cells, it is not surprising that they have been implicated as playing diverse roles in transplantation outcome.

EVIDENCE FOR \(\gamma \delta \) T CELLS IN ADVERSE OUTCOMES FOLLOWING TRANSPLANTATION

A large proportion of the research implicating \(\gamma \delta \) T cells in adverse outcomes following transplantation comes from small animal models (Figure 1). Although \(\gamma \delta \) T cell phenotypes and...
function in mice and humans are broadly consistent, there are also distinct differences between species, most notably the types of TCR ligands that have been identified (Table 2).

In small animal models, γδ T cells have been implicated in playing a role in ischaemia-reperfusion injury (IRI). This has been demonstrated by reduced IRI in TCR γδ-deficient mice in a model of kidney transplantation and the observation that IL-17A, produced by γδ T cells, is elevated in a mouse model of cardiac transplantation. However, the proposed mechanisms differ between the studies, with γδ T cells either inducing the recruitment γδ T cells into the allograft or alternatively by inducing neutrophil recruitment through the production of IL-17. The production of IL-17 from γδ T cells also is reported to contribute to acute and chronic allograft dysfunction in small animal models of skin, heart and lung transplantation. However, in the mouse model of lung transplantation, despite being potent producers of intragraft IL-17, there was no effect of γδ T cell depletion on the development of acute rejection or fibrosis. In addition, the literature is void of a link between IL-17 producing γδ T cells and rejection following solid organ transplantation in humans.

There is also a disconnect between animal studies and human transplantation with respect to the role of γδ T cells in graft-versus-host disease (GVHD) following hematopoietic stem cell transplantation (HSCT). Early animal studies linked γδ T cells to the progression of GvHD. For example, Blazar and others created a transgenic mouse model where a large proportion of T cells expressed the γδ TCR. These transgenic cells proliferated and killed mismatched cells in vitro. Moreover, when the transgenic cells were infused into mismatched mice following bone-marrow transplantation, they infiltrated GvHD target tissues, indicating their capacity to cause pathology. Another early study in mice revealed that depletion of γδ T cells resulted in reduced GvHD. However, the evidence for γδ T cells contributing to GvH following HSCT in humans is varied. While some studies showed that higher numbers of γδ T cells were correlated with increased incidence of acute GvHD, other studies have either found no correlation between numbers of γδ T cells and GvHD or that lower numbers were associated with increased incidence of GvHD. However, it is also possible that only specific subsets of γδ T cells adversely contribute to GvHD, notably Vδ2 γδ T cells which were implicated in the study by Viale et al.

Interestingly, these same Vδ2 γδ T cells may also be associated with poorer outcomes following solid organ transplantation. Yu et al. showed higher proportions of Vδ2 cells in liver transplant patients with acute allograft rejection. Similarly, lower proportions of Vδ2 γδ T cells were observed in operationally liver transplant recipients, having not received immunosuppression for at least 12 months. However, these findings need to be interpreted with caution as an expansion of Vδ1 γδ T cells (thereby decreasing the proportion of Vδ2 γδ T cells) was observed following liver and kidney transplantation, regardless of immunosuppressive treatment. It is possible that Vδ1 T clonotypes expand in the blood as a result of post-transplant infections, such as CMV, as reported in healthy individuals and following transplantation.

γδ TCR subset	Anatomical location	TCR ligand	Co-expressed receptors	References
Vγ9Vδ2	PB	Phosphoantigens	NKG2D, DNAM-1	17,20
Vδ1	PB, skin, gut, spleen, liver	CD1 family, MHC-A/B, ULBPs	NKG2D, Nkp30, CD16	16,19,22,23
Vδ3	PB, liver	CD1d		24
Vγ8Vδ3	PB	Annexin A2		25
Vγ4Vδ5	PB	Endothelial protein C receptor		21

MIC, MHC class I chain-related protein; PB, peripheral blood; TCR, T cell receptor; ULBPs, UL16 binding proteins.
EVIDENCE FOR γδ T CELLS IN FAVORABLE OUTCOMES FOLLOWING TRANSPLANTATION

γδ T cells in the control of post-transplant CMV infection

γδ T cells have been implicated in the control of several pathogens, including tuberculosis, bacterial meningitis, human immunodeficiency virus and hepatitis C virus. However, CMV is the most common infectious complication following transplantation and γδ T cells are emerging as a significant player in the immunity to CMV. Following murine CMV (MCMV) infection, γδ T cells prevented an increase in viral load in all organs and were as effective as γβ T cells at controlling viral load in the lungs. The same authors also showed that transfer of MCMV-induced γδ T cells into mice lacking innate and adaptive lymphocytes rescued the animals from MCMV-induced death, indicating that γδ T cells were important in the response to MCMV. Another study confirmed that γδ T cells can effectively control MCMV in the absence of CD4+ T cells, CD8+ T cells and B cells.

Figure 1. Gamma delta T cells in transplantation: the good, the bad and the simply confusing. Adverse and favorable associations between γδ T cells and outcomes following transplantation have been reported. Left: ‘Bad’ outcomes in animal studies include ischaemia-reperfusion injury (in heart and kidney), and acute rejection of heart and lung allografts via IL-17-mediated mechanisms. Other adverse outcomes in humans include the presence of γδ T cell infiltration in kidney and heart allografts; the presence of Vδ2 γδ T cells in patients with liver allograft rejection; antibody-mediated rejection mediated by Vδ2-negative (Vδ2−) γδ T cells via recognition of donor-specific antibodies (DSA) through CD16, and an increased incidence of graft-versus-host disease (GVHD). Right: ‘Good’ outcomes include decreased GVHD incidence; increase in Vδ1-positive (Vδ1+) infiltration in tolerant liver recipients; secretion of IL-4 and IL-10 leading to allograft protection (observed in skin, kidney and liver); control of cytomegalovirus (CMV) infection by Vδ2− cells via IFNγ and the killing of infected cells through their T cell receptor (TCR) or CD16 engagement; and control of post-transplant malignancies by Vδ2− cells which recognise tumor cells through CD16, TCR or other receptor engagements.
Following kidney transplantation in humans, reactivation of CMV drives a persistent expansion of γδ T cells expressing predominantly Vδ1 and Vδ3 TCR, collectively referred to as Vδ2-negative γδ T cells (Figure 1). Their expansion parallels that of CMV-specific CD8+ T cells, often resulting in an increase from 1% of circulating T cells to more than 10% of the total lymphocyte count. The expanded CMV-specific Vδ2-negative γδ T cells persisted for more than 1 year in kidney transplant recipients and their presence correlated with the resolution of viraemia, whereas their absence was associated with recurrent CMV disease. Similar to CMV-specific CD8+ T cells, CMV-specific γδ T cells possess an effector memory phenotype, in contrast to CMV-negative patients, where they exhibited a naïve phenotype. Both effector memory Vδ2-negative γδ T cells and CMV-specific CD8+ T cells of CMV-infected renal transplant patients produced high levels of perforin, granzyme B, and expressed the activating NK cell receptor NKG2D. They appeared to be fully differentiated effector cells with a lower surface expression of CD28 compared to naïve T cells. Not only do effector memory Vδ2-negative γδ T cells have the same differentiated effector phenotype as CD8+ T cells, but they expand more rapidly in patients with CMV reactivation as opposed to primary CMV infection, which suggests that they may have an adaptive memory function. The persistent expansion of Vδ2-negative γδ T cells following CMV infection, coupled with their differentiation into an effector/memory phenotype with expression of cytotoxic agents, implies that γδ T cells respond to CMV in an adaptive manner similar to cytotoxic CD8+ T cells. Like CD8+ T cells, recognition of CMV-infected targets by Vδ2 negative γδ T cells is TCR-dependent, although this occurs independent of MHC. The nature of the ligand(s) for Vδ2-negative γδ T cells remains unknown but may include EPCR. However, EPCR expression is not upregulated by CMV infection and recognition of target cells by EPCR-reactive clones requires costimulatory ligands.

Unlike CD8+ T cells, Vδ2-negative γδ T cells may have the capacity to contribute to CMV immune control via antibody-dependent cell-mediated cytotoxicity (ADCC). CD16 is expressed by the majority of CMV-induced γδ T cells, whereas it is expressed only by a small amount of Vδ2-negative γδ T cells in renal transplant patients without CMV, suggesting that CD16 on Vδ2-
negative γδ T cells is upregulated in the response to CMV. However, the presence of CD16+ Vδ2-negative γδ T cells may be problematic in transplant recipients with donor-specific antibodies because of their ability to lyse antibody-coated target cells.51

The expansion of CMV-specific Vδ2-negative γδ T cells was first observed in kidney transplant recipients but has subsequently been shown to occur in heart and lung transplant recipients57 and following HSCT.58 Longitudinal monitoring of γδ TCR repertoires in HSCT patients using next-generation sequencing revealed that the CMV-induced Vδ2-negative γδ T cells were clonal in nature.59 Reactivation of CMV following HSCT induced significant changes in both the TRG (TCRβ) and TRD (TCRδ) repertoires. There were no public or shared sequences specific to CMV, as individual patients had distinct clonal γδ TCR responses to CMV, although there was some homology.59 Another study also showed that the TRD repertoire had reduced diversity in patients with CMV, further demonstrating the remarkable impact CMV can exert on γδ T cells.60

γδ T cells in the control of post-transplant malignancies

Interestingly, in addition to their antiviral function, CMV-induced Vδ2-negative γδ T cells have been associated with reduced occurrence of skin and solid cancers in kidney transplant patients.61 Patients who had not experienced CMV infection either prior to or following transplantation, and therefore lacked CMV-induced γδ T cells, experienced a higher rate of malignancies. The expansion of CMV-specific Vδ2-negative γδ T cells was associated with reduced cancer occurrence, and these CMV-specific Vδ2-negative γδ T cells were shown to be able to kill tumor cells as efficiently as CMV-infected cells in vitro.51 Akin to recognition of CMV-infected cells, the killing of tumor targets by Vδ2-negative γδ T cells was dependent on TCR engagement.56 This implies that CMV infection and transformation causes the upregulation of a common antigen that is recognised by the TCR of Vδ2-negative γδ T cells. This phenomenon is not restricted to kidney transplant patients, as CMV-associated Vδ2-negative γδ T cells show anti-leukaemic effects following HSCT.62,63 However, the anti-leukaemic effector functions of Vδ1-positive γδ T cells were only partially dependent on TCR and strongly dependent on the expression of B7-H6, a ligand for the NK cell receptor NKp30.64

Vδ2-positive γδ T cells, in particular the Vγ9Vδ2 subset, have also been found to exert anti-tumor effects. Vγ9Vδ2 cells isolated from the blood of patients following HSCT can be expanded in vitro and efficiently lyse lymphoid and myeloid targets.63 This subset is selectively expanded in vitro by phosphoantigen stimulation following exposure of cells to zoledronic acid.18 The in vivo activity of the Vγ9Vδ2 subset can be further boosted by direct infusion of zoledronic acid to the patient. These features have seen clinical trials of Vγ9Vδ2 γδ T cells in cell therapy for the treatment of solid tumors and haematological malignancies.18

Additionally, CD16+ Vγ9Vδ2 γδ T cells have been shown to lyse lymphoma, chronic lymphocytic leukaemia and breast cancer cells coated with antibodies via ADCC.65 Moreover, γδ T cells were shown to have a beneficial role against refractory leukaemia by specifically targeting the recipient's cancer cells without GvHD.66 Taken together, the data suggest that γδ T cells are efficient in controlling post-transplant malignancies by multiple mechanisms including direct recognition of tumor antigens, ADCC and through the recognition of stress-associated antigens.

Suppression of post-transplant immune responses by γδ T cells

γδ T cells may also contribute to favorable outcomes through suppression of immune responses. Lower proportions of CD8+ regulatory γδ T cells were found in the blood of renal transplant recipients with acute or chronic rejection.67 Similarly, higher numbers of CD8+ regulatory γδ T cells in renal allografts were associated with prolonged survival in a rat model of renal transplantation.68 The proposed mechanism is through the production of IL-4 and IL-10 from CD8+ regulatory γδ T cells, which acts to effectively dampen T helper responses. Supporting this notion, improved graft survival was associated with expansions of γδ T cells and the increased production of IL-4 and IL-10 in an animal model of skin transplantation.69 IL-4 in turn has a profound effect on the γδ T cell population and favors the survival of IL-10-producing Vδ1 cells.70 Improved survival in this model was lost following the administration of an antibody to γδ TCR. Interestingly, the production of IL-10 from Vδ1 γδ
T cells has been hypothesised to induce operational tolerance following paediatric liver transplantation.

Likewise, higher proportions of regulatory V61 γδ T cells that co-expressed CD4 and CD25 were found in the blood of tolerant adult liver transplant recipients. Therefore, both animal models and human studies indicate regulatory γδ T cells can positively contribute to engraftment following transplantation, possibly by the production of IL-4 and/or IL-10.

An increase in regulatory γδ T cells also reportedly reduces the occurrence of GvHD following HSCT. Novel subsets of regulatory γδ T cell that express Foxp3 were associated with lower GvHD in HSCT patients. Interestingly, the Foxp3-positive subsets utilised both V61 and Vα2 TCR segments, and a follow-up study narrowed the effective subset to be CD27+V61+. However, in direct contrast, grafts containing higher proportion of CD8+ γδ T cells were associated with increased incidence of GvHD. Therefore, as reported in the above section, the role of γδ T cells in the prevention or promotion of GvHD following HSCT is far from clear.

CONCLUSIONS AND FUTURE DIRECTIONS

γδ T cells represent an under-researched population of immune cells with the propensity to significantly contribute to adverse and positive outcomes following transplantation, via both innate and adaptive pathways (Figure 1). However, as the underlying cause of transplantation and the infectious insults following transplantation vary widely between recipients, the role of γδ T cells needs to be carefully evaluated in the specific context.

Adverse functions of γδ T cells appear to be largely linked to the production of IL-17. On the one hand, CD16+, CMV-specific cells may exert ADCC on transplanted cells coated in donor-specific antigens, thereby contributing to antibody-mediated rejection. On the other hand, these same CMV-specific γδ T cells effectively control viral replication and post-transplant malignancies. Furthermore, other γδ T cell subsets can efficiently suppress adaptive immune responses and aid in immune tolerance following transplantation. The role of γδ T cells in preventing or promoting GvHD following HSCT is highly controversial and may be dependent on different subsets exerting opposite effects.

Although the role of particular subsets of γδ T cells is dependent on the individual context, it is clear these cells are an active and dynamic component of the transplant environment. An identification of the ligands for γδ T cells will significantly aid in harnessing their therapeutic potential following transplantation. Indeed, more research is required to unveil specific subsets of γδ T cells with a view to develop novel therapies that can meaningfully contribute to positive outcomes following transplantation.

ACKNOWLEDGMENTS

The authors thank Dr Philippa Saunders for creating the figure in this manuscript.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

1. Minulescu L, Sengelov H. The role of γδ T cells in haematopoietic stem cell transplantation. Scand J Immunol 2015; 81: 459–468.

2. Nielsen MM, Witherden DA, Havran WL. γδ T cells in homeostasis and host defence of epithelial barrier tissues. Nat Rev Immunol 2017; 17: 733–745.

3. Inagaki-Ohara K, Chinen T, Matsuzaki G et al. Mucosal T cells bearing TCRγδ play a protective role in intestinal inflammation. J Immunol 2004; 173: 1390–1396.

4. Nanno M, Shiohara T, Yamamoto H et al. γδ T cells: firefighters or fire boosters in the front lines of inflammatory responses. Immunol Rev 2007; 215: 103–113.

5. Wu H, Knight JF, Alexander SL. Regulatory γδ T cells in Heymann nephritis express an invariant Vγ6/Vδ1 with a canonical CDR3 sequence. Eur J Immunol 2004; 34: 2232–2233.

6. King DP, Hyde DM, Jackson KA et al. Cutting edge: protective response to pulmonary injury requires γδ T lymphocytes. J Immunol 1999; 162: 5033–5036.

7. Ke Y, Pearce K, Lake JP et al. γδ T lymphocytes regulate the induction and maintenance of oral tolerance. J Immunol 1997; 158: 3610–3618.

8. Lawand M, Dechante-Merville J, Dieu-Nosjean MC. Key features of γδ T-cell subsets in human diseases and their immunotherapeutic implications. Front Immunol 2017; 8: 761.

9. Arden B, Clark SP, Kabelitz D et al. Human T-cell receptor variable gene segment families. Immunogenetics 1995; 42: 455–500.

10. Davis MM, Bjorkman PJ. T-cell antigen receptor genes and T-cell recognition. Nature 1988; 334: 395–402.

11. Carding SR, Egan PJ. γδ T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2002; 2: 336–345.

12. Bonneville M, O’Brien RL, Born WK. γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10: 467–478.
γδ T cells following transplantation

13. Quiroga I, Salio M, Koo DD et al. Expression of MHC class I-related Chain B (MICB) molecules on renal transplant biopsies. *Transplantation* 2006; 81: 1196–1203.

14. Hankey KG, Drachenberg CB, Papadimitriou JC et al. MIC expression in renal and pancreatic allografts. *Transplantation* 2002; 73: 304–306.

15. Suarez-Alvarez B, Lopez-Vazquez A, Gonzalez MZ et al. The relationship of anti-MICA antibodies and MICA expression with heart allograft rejection. *Am J Transplant 2007;* 7: 1842–1848.

16. Yin S, Zhang J, Mao Y et al. Vav1-phospholipase C-γ1 (Vav1-PLC-γ1) pathway initiated by T cell antigen receptor (TCRγδ) activation is required to overcome inhibition by ubiquitin ligase Cbl-b during γδ T cell cytotoxicity. *J Biol Chem* 2013; 288: 26448–26462.

17. Toutirais O, Cabillic F, Le Friec G et al. Antibody-dependent anti-cytomegalovirus activity of human γδ T cells expressing CD16 (FcγRIIIa). *Blood* 2012; 119: 1418–1427.

18. Pistoia V, Tumino N, Vacca P et al. Human γδ T-cells: from surface receptors to the therapy of high-risk leukemias. *Front Immunol* 2018; 9: 984.

19. Couzi L, Pitard V, Sicard X et al. Antibody-dependent anti-cytomegalovirus activity of human γδ T cells expressing CD16 (FcγRIIIa). *Blood* 2012; 119: 1418–1427.

20. Constant P, Davodeau F, Peyrat MA et al. Stimulation of human γδ T cells by nonpeptidic mycobacterial ligands. *Science* 1994; 264: 267–270.

21. Willcox CR, Pitard V, Netzer S et al. Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. *Nat Immunol* 2012; 13: 872–879.

22. Bai L, Picard D, Anderson B et al. The majority of CD1d-sulfatide-specific T cells in human blood use a semivariant Vδ1 TCR. *Eur J Immunol* 2012; 42: 2505–2510.

23. Xu B, Pizarro JC, Holmes MA et al. Crystal structure of a γδ T-cell receptor specific for the human MHC class I homolog MICA. *Proc Natl Acad Sci USA* 2011; 108: 2414–2419.

24. Mangan BA, Dunne MR, O’Reilly VP et al. Cutting edge: CD1d restriction and Th1/Th2/Th17 cytokine secretion by human Vδ3 T cells. *J Immunol* 2013; 191: 30–34.

25. Marlin R, Pappalardo A, Kaminski H et al. Sensing of cell stress by human γδ TCR-dependent recognition of annexin A2. *Proc Natl Acad Sci USA* 2017; 114: 3163–3168.

26. Yang H, Antony PA, Wildhaber BE et al. Intestinal intraepithelial lymphocyte γδ-T cell-derived keratinocyte growth factor modulates epithelial growth in the mouse. *J Immunol* 2004; 172: 4151–4158.

27. Petrasca A, Doherty DG. Human Vδ2+ γδ T cells differentially induce maturation, cytokine production, and alloreactive T cell stimulation by dendritic cells and B cells. *Front Immunol* 2014; 5: 650.

28. Brandes M, Willimann K, Bieley G et al. Cross-presenting human γδ T cells induce robust CD8+ γδ T cell responses. *Proc Natl Acad Sci USA* 2009; 106: 2307–2312.

29. Sutton CE, Lalor SJ, Sweeney CM et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. *Immunity* 2009; 31: 331–341.

30. Savransky V, Molls RR, Burne-Taney M et al. Role of the T-cell receptor in kidney ischemia-reperfusion injury. *Kidney Int* 2006; 69: 233–238.

31. Zhu H, Li J, Wang S et al. Hmg1-TLR4-IL-23-IL-17A axis promote ischemia-reperfusion injury in a cardiac transplantation model. *Transplantation* 2013; 95: 1448–1454.

32. Hocegger K, Schatz T, Eller P et al. Role of αβ and γδ T cells in renal ischemia-reperfusion injury. *Am J Physiol Renal Physiol* 2007; 293: F741–F747.

33. Li Y, Huang Z, Yan R et al. Vγ4 γδ T cells provide an early source of IL-17A and accelerate skin graft rejection. *J Invest Dermatol* 2017; 137: 2513–2522.

34. Itoh S, Nakae S, Axtell RC et al. IL-17 contributes to the development of chronic rejection in a murine heart transplant model. *J Clin Immunol* 2010; 30: 235–240.

35. Kimura N, Nakae S, Itoh S et al. Potential role of γδ T cell-derived IL-17 in acute cardiac allograft rejection. *Ann Thorac Surg* 2012; 94: 542–548.

36. Itoh S, Kimura N, Axtell RC et al. Interleukin-17 accelerates allograft rejection by suppressing regulatory T cell expansion. *Circulation* 2011; 124: S187–S196.

37. Wu Q, Gupta PK, Suzuki H et al. CD4 T cells but not Th17 cells are required for mouse lung transplant obliterator bronchiolitis. *Am J Transplant 2015;* 15: 1793–1804.

38. Blazar BR, Taylor PA, Panoskaltsis-Mortari A et al. Lethal murine graft-versus-host disease induced by donor γδ expressing T cells with specificity for host nonclassical major histocompatibility complex class Ib antigens. *Blood* 1996; 87: 827–837.

39. Ellison CA, MacDonald GC, Rector ES et al. γδ T cells in the pathobiology of murine acute graft-versus-host disease. Evidence that γδ T cells mediate natural killer-like cytotoxicity in the host and that elimination of these cells from donors significantly reduces mortality. *J Immunol* 1995; 155: 4189–4198.

40. Viale M, Ferrini S, Bacigalupo A. TCR γδ positive lymphocytes after allogeneic bone marrow transplantation. *Bone Marrow Transplant 1992;* 10: 249–253.

41. Pabst C, Schirutschke H, Ehninger G et al. The graft content of donor T cells expressing γδ TCR* and CD4*foxp3* predicts the risk of acute graft versus host disease after transplantation of allogeneic peripheral blood stem cells from unrelated donors. *Clin Cancer Res 2007;* 13: 2916–2922.

42. Cela ME, Holladay MS, Rooney CM et al. γδ T lymphocyte regeneration after T lymphocyte-depleted bone marrow transplantation from mismatched family members or matched unrelated donors. *Bone Marrow Transplant 1996;* 17: 243–247.

43. Yabe M, Hattori K et al. Transition of T cell receptor γδ expressing double negative (CD4–/CD8–) lymphocytes after allogeneic bone marrow transplantation. *Bone Marrow Transplant 1994;* 14: 741–746.

44. Yu X, Liu Z, Wang Y et al. Characteristics of Vδ1+ and Vδ2+ γδ T cell subsets in acute liver allograft rejection. *Transpl Immunol* 2013; 29: 118–122.

45. Martinez-Llordella M, Puig-Pey I, Orlando G et al. Multiparameter immune profiling of operational tolerance in liver transplantation. *Am J Transplant 2007;* 7: 309–319.
46. Davey MS, Willcox CR, Joyce SP et al. Clonal selection in the human Vβ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance. Nat Commun 2017; 8: 14760.

47. Bachelet T, Couzi L, Pitard V et al. Cytomegalovirus-responsive γδ T cells: novel effector cells in antibody-mediated kidney allograft microcirculation lesions. J Am Soc Nephrol 2014; 25: 2471–2482.

48. Khairallah C, Netzer S, Villacreses A et al. γδ T cells confer protection against murine cytomegalovirus (MCMV). PLoS Pathog 2015; 11: e1004702.

49. Sell S, Dietz M, Schneider A et al. Control of murine cytomegalovirus infection by γδ T cells. PLoS Pathog 2015; 11: e1004851.

50. Dechanet J, Merville P, Berge F et al. Major expansion of γδ T lymphocytes following cytomegalovirus infection in kidney allograft recipients. J Infect Dis 1999; 179: 1–8.

51. Couzi L, Pitard V, Moreau JP et al. Direct and indirect effects of cytomegalovirus-induced γδ T cells after kidney transplantation. Front Immunol 2015; 6: 3.

52. Couzi L, Pitard V, Netzer S et al. Common features of γδ T cells and CD8+ T cells responding to human cytomegalovirus infection in kidney transplant recipients. J Infect Dis 2009; 200: 1415–1424.

53. Dechanet J, Merville P, Lim A et al. Implication of γδ T cells in the human immune response to cytomegalovirus. J Clin Invest 1999; 103: 1437–1449.

54. Kaminski H, Garrigue I, Couzi L et al. Surveillance of γδ T cells predicts cytomegalovirus infection resolution in kidney transplants. J Am Soc Nephrol 2016; 27: 637–645.

55. Pitard V, Roumanes D, Lafarge X et al. Long-term expansion of effector/memory Vδ2 γδ T cells is a specific blood signature of CMV infection. Blood 2008; 112: 1317–1324.

56. Halyar F, Pitard V, Dlubek D et al. Shared reactivity of Vδ2 γδ T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. J Exp Med 2005; 201: 1567–1578.

57. Couzi L, Lafarge X, Pitard V et al. γδ T cell expansion is closely associated with cytomegalovirus infection in all solid organ transplant recipients. Transpl Int 2011; 24: e40–e42.

58. Knight A, Madrigal AJ, Grace S et al. The role of Vδ2-negative γδ T cells during cytomegalovirus reactivation in recipients of allogeneic stem cell transplantation. Blood 2010; 116: 2164–2172.

59. Ravens S, Schultz-Florey C, Raha S et al. Human γδ T cells are quickly reconstituted after stem-cell transplantation and show adaptive clonal expansion in response to viral infection. Nat Immunol 2017; 18: 393–401.

60. Arruda LCM, Gaballa A,Uhlin M. Graft γδ TCR sequencing identifies public clonotypes associated with hematopoietic stem cell transplantation efficacy in acute myeloid leukemia patients and unravels cytomegalovirus impact on repertoire diversity. J Immunol 2019; 202: 1859–1870.

61. Couzi L, Levaillant Y, Jamai A et al. Cytomegalovirus-induced γδ T cells associate with reduced cancer risk after kidney transplantation. J Am Soc Nephrol 2010; 21: 181–188.

62. Scheper W, van Dorp S, Kersting S et al. γδ T cells elicited by CMV reactivation after allo-SCT cross-recognize CMV and leukemia. Leukemia 2013; 27: 1328–1338.

63. Airolidi I, Bertaina A, Prigione I et al. γδ T-cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-αβ+/CD19+ lymphocytes. Blood 2015; 125: 2349–2358.

64. Di Lorenzo B, Simoes AE, Caiado F et al. Broad cytotoxic targeting of acute myeloid leukemia by polyclonal delta one T cells. Cancer Immunol Res 2019; 7: 552–558.

65. Tokuyama H, Hagi T, Mattarollo SR et al. Vγ9 Vδ2 T cell cytotoxicity against tumor cells is enhanced by monoclonal antibody drugs—rituximab and trastuzumab. Int J Cancer 2008; 122: 2526–2534.

66. Lamb LS Jr, Musk P, Ye Z et al. Human γδ T lymphocytes have in vitro graft vs leukemia activity in the absence of an allogeneic response. Bone Marrow Transplant 2001; 27: 601–606.

67. Malan Borel I, Racca A, Garcia MI et al. γδ T cells and interleukin-6 levels could provide information regarding the progression of human renal allograft. Scand J Immunol 2003; 58: 99–105.

68. Zhou J, Appleton SE, Stadnyk A et al. CD8+ γδ T regulatory cells mediate kidney allograft prolongation after oral exposure to alloantigen. Transpl Int 2008; 21: 679–687.

69. Gorczynski RM, Chen Z, Hoang Y et al. A subset of γδ T-cell receptor-positive cells produce T-helper type-2 cytokines and regulate mouse skin graft rejection following portal venous pretransplant preimmunization. Immunology 1996; 87: 381–389.

70. Mao Y, Yin S, Zhang J et al. A new effect of IL-4 on human γδ T cells: promoting regulatory Vδ1 T cells via IL-10 production and inhibiting function of Vδ2 T cells. Cell Mol Immunol 2016; 13: 217–228.

71. Koshiba T, Li Y, Takemura M et al. Clinical, immunological, and pathological aspects of operational tolerance after pediatric living-donor liver transplantation. Transpl Immunol 2007; 17: 94–97.

72. Gao L, Xuan L, Wu X et al. Increase of regulatory γδ T cells reduces the incidence of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Blood 2016; 128: 1.

73. Xuan L, Wu X, Qiu D et al. Regulatory γδ T cells induced by G-CSF participate in acute graft-versus-host disease regulation in G-CSF-mobilized allogeneic peripheral blood stem cell transplantation. J Transl Med 2018; 16: 144.

74. Stikvoort A, Gaballa A, Solders M et al. Risk factors for severe acute graft-versus-host disease in donor graft composition. Biol Blood Marrow Transplant 2018; 24: 467–477.

75. Vroom TM, Scholte G, Ossendorp F et al. Tissue distribution of human γδ T cells: no evidence for general epithelial tropism. J Clin Pathol 1991; 44: 1012–1017.

76. Hayday AC. γδ T cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 2000; 18: 975–1026.

77. Wisneski AV, Cain H, Magoski N et al. Human γδ T-cell lines derived from airway biopsies. Am J Respir Cell Mol Biol 2001; 24: 332–338.

78. Kenna T, Golden-Mason L, Norris S et al. Distinct subpopulations of γδ T cells are present in normal and tumor-bearing human liver. Clin Immunol 2004; 113: 56–63.
79. Itohara S, Farr AG, Lafaille JJ et al. Homing of a γδ thymocyte subset with homogenous T-cell receptors to mucosal epithelia. Nature 1990; 343: 754–757.
80. Hayes SM, Sirr A, Jacob S et al. Role of IL-7 in the shaping of the pulmonary γδ T cell repertoire. J Immunol 1996; 156: 2723–2729.
81. Michel ML, Pang DJ, Haque SF et al. Interleukin 7 (IL-7) selectively promotes mouse and human IL-17-producing γδ cells. Proc Natl Acad Sci USA 2012; 109: 17549–17554.
82. Ness-Schwickerath KJ, Jin C, Morita CT. Cytokine derived cytokines and growth factors in cancer. Int J Cancer 1979; 20: 343–349.
83. Ramstead AG, Jutila MA. Complex role of γδ T-cell-derived cytokines and growth factors in cancer. J Interferon Cytokine Res 2012; 32: 563–569.
84. Lafont V, Sanchez F, Laprevotte E et al. Plasticity of γδ T cells: impact on the anti-tumor response. Front Immunol 2014; 5: 622.
85. Paul S, Lal G. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer. Int J Cancer 2016; 139: 976–985.
86. Vidovic D, Roglic M, McKune K et al. Qa-1 restricted recognition of foreign antigen by a γδ T-cell hybridoma. Nature 1989; 340: 646–650.
87. Sciammas R, Bluestone JA. HSV-1 glycoprotein I-reactive TCR γδ cells directly recognize the peptide backbone in a conformationally dependent manner. J Immunol 1998; 161: 5187–5192.
88. Davies A, Lopez-Briones S, Ong H et al. Infection-induced expansion of a MHC Class Ib-dependent intestinal intraepithelial γδ T cell subset. J Immunol 2004; 172: 6828–6837.
89. Dieude M, Striegl H, Tzynik AJ et al. Cardiolipin binds to CD1d and stimulates CD1d-restricted γδ T cells in the normal murine repertoire. J Immunol 2011; 186: 4771–4781.
90. Ulrich AP, Le Nours J, Pellicci DG et al. CD1d-lipid antigen recognition by the γδ TCR. Nat Immunol 2013; 14: 1137–1145.
91. Siegers GM, Lamb LS Jr. Cytotoxic and regulatory properties of circulating Vδ1+ γδ T cells: a new player on the cell therapy field? Mol Ther 2014; 22: 1416–1422.
92. Sandstrom A, Peigne CM, Leger A et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Immunity 2014; 40: 490–500.
Author/s:
Sullivan, LC; Shaw, EM; Stankovic, S; Snell, GI; Brooks, AG; Westall, GP

Title:
The complex existence of gamma delta T cells following transplantation: the good, the bad and the simply confusing

Date:
2019-01-01

Citation:
Sullivan, L. C., Shaw, E. M., Stankovic, S., Snell, G. I., Brooks, A. G. & Westall, G. P. (2019). The complex existence of gamma delta T cells following transplantation: the good, the bad and the simply confusing. CLINICAL & TRANSLATIONAL IMMUNOLOGY, 8 (9), https://doi.org/10.1002/cti2.1078.

Persistent Link:
http://hdl.handle.net/11343/246545

File Description:
published version

License:
CC BY