Multi-harmonic correlations of different flow amplitudes in Pb–Pb collisions at \(\sqrt{s_{\text{NN}}} = 2.76 \text{ TeV} \)

ALICE Collaboration

Abstract

The event-by-event correlations between three flow amplitudes are measured for the first time in Pb–Pb collisions, using higher-order Symmetric Cumulants. We find that different three-harmonic correlations develop during the collective evolution of the medium, when compared with correlations that exist in the initial state. These new results cannot be interpreted in terms of previous lower-order flow measurements, since contributions from two-harmonic correlations are explicitly removed in the new observables. Comparison with Monte Carlo simulations provides new and independent constraints for the initial conditions and system properties of nuclear matter created in heavy-ion collisions.

*See Appendix A for the list of collaboration members
Under conditions of extreme temperature and density, the fundamental theory of the strong interaction, quantum chromodynamics (QCD), predicts the existence of a quark–gluon plasma (QGP). In this state, quarks are deconfined from hadrons, but contrary to the initial theoretical expectations, remain strongly coupled and form a liquid state [11]. Results from heavy-ion collision data are consistent with the scenario in which the produced nuclear matter undergoes collective expansion, dominated by its hydrodynamic response to the anisotropies in the initial state geometry. This phenomenon is known as anisotropic flow [2]. This collective dynamics is sensitive to η/s and ζ/s, where η and ζ are shear and bulk viscosities, and s the entropy density. The successful description of heavy-ion data with hydrodynamic models was essential to determine the low value of η/s of the QGP [3] and established the perfect liquid paradigm, one of the most striking recent discoveries in high-energy physics [4–6].

In models that describe heavy-ion collisions, the produced matter evolves collectively, with particles being emitted independently along the azimuthal direction with a distribution $f(\varphi)$. The corresponding Fourier series is given by

$$f(\varphi) = \frac{1}{2\pi} \left[1 + 2 \sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)] \right],$$

where the flow amplitude v_n and the symmetry plane angle Ψ_n designate the magnitude and orientation of the nth order anisotropic flow [7]. Experimental challenges of measuring these anisotropic flow observables are overcome with the development of multiparticle azimuthal correlations [8–12]. A great deal of additional information can be extracted from correlations between different flow amplitudes and/or different symmetry planes [13–17].

The correlations between event-by-event fluctuations of two different flow amplitudes were quantified with the Symmetric Cumulants (SC) observables [12, 13], defined by $SC(k, l) \equiv \langle v_k^2 v_l^2 \rangle - \langle v_k^2 \rangle \langle v_l^2 \rangle$, with the angular brackets denoting an average over all events. The measurements of their centrality and transverse momentum (p_T) dependences revealed that correlations among different flow magnitudes depend on harmonic orders as well as the collision centrality, while showing moderate p_T dependence in semicentral collisions. The results in Refs. [12, 18] showed that the different SC(k, l) observables have different sensitivities to the initial conditions of a heavy-ion collision and properties of the created system, and can therefore help in separating the effects of η/s in the final state anisotropies from the contributions originating in the initial state. Furthermore, it was demonstrated that the SC observables are more sensitive to the temperature dependence $\eta/s(T)$ than the individual flow amplitudes, which are sensitive only to the average values $\langle \eta/s \rangle$ [18, 19].

In this paper, a new set of observables, dubbed higher order SC, are analyzed [20]. These higher order observables extract the genuine correlation among multiple flow amplitudes, and provide new and independent constraints for both the initial conditions and the QGP properties. The genuine correlation (or cumulant) of three flow amplitudes, where lower-order two-harmonic correlations have been removed, can be obtained with the following expression [20, 21]:

$$SC(k, l, m) \equiv \langle v_k^2 v_l^2 v_m^2 \rangle - \langle v_k^2 \rangle \langle v_l^2 v_m^2 \rangle - \langle v_k^2 v_l^2 \rangle \langle v_m^2 \rangle - \langle v_k^2 v_l^2 \rangle \langle v_m^2 \rangle + 2 \langle v_k^2 \rangle \langle v_l^2 \rangle \langle v_m^2 \rangle. \tag{2}$$

The observable $SC(k, l, m)$ is, by definition, the 3rd order cumulant of three flow amplitudes v_k^2, v_l^2 and v_m^2. If the previously used low order flow observables, like $v_n(2), v_n(4)$ [10] or SC(k, l) [12], would be able to characterize all collective correlations and anisotropic flow in the system, SC(k, l, m) would be identically zero. On the contrary, the non-vanishing results for SC(k, l, m) provide access to the information to which these traditionally used flow observables are insensitive. The normalized versions of these observables are defined as

$$NSC(k, l, m) \equiv \frac{SC(k, l, m)}{\langle v_k^2 \rangle \langle v_l^2 \rangle \langle v_m^2 \rangle}, \tag{3}$$

which makes it easier to identify the origin of the correlations, either from the initial stage or from the collective expansion [20].
Another important aspect is the sign of the $\text{SC}(k, l, m)$ observables which is not trivial and can be understood if the definition in Eq. (2) is rewritten as:

$$\text{SC}(k, l, m) = \langle (v_k^2 - \langle v_k^2 \rangle) (v_l^2 - \langle v_l^2 \rangle) (v_m^2 - \langle v_m^2 \rangle) \rangle.$$

(4)

For $\text{SC}(k, l, m) > 0$ there are the following two distinct possibilities: a) if in an event it was found that $v_k^2 > \langle v_k^2 \rangle$ and $v_l^2 > \langle v_l^2 \rangle$, then the probability to find $v_m^2 > \langle v_m^2 \rangle$ in that event is enhanced (this case is marked as $(+, +, +)$ pattern in the event-by-event flow fluctuations); b) if $v_k^2 > \langle v_k^2 \rangle$ and $v_l^2 < \langle v_l^2 \rangle$ in an event, that enhances the probability to find $v_m^2 < \langle v_m^2 \rangle$ in that event and this is marked as $(+, +, -)$ pattern. By using the same reasoning, it can be concluded that $\text{SC}(k, l, m) < 0$ permits only the $(+, +, -)$ and $(-, -,-)$ patterns. These persistent patterns of event-by-event flow fluctuations are invariant with respect to permutations of amplitudes of flow harmonics in the definition of $\text{SC}(k, l, m)$, and they are a direct imprint of the three-harmonic correlations.

It was demonstrated in Ref. [20] that $\text{SC}(k, l, m)$, as defined in Eq. (2), can be estimated reliably in an experiment with the following combination of azimuthal correlators:

$$\text{SC}(k, l, m) = \langle \cos[k\phi_1 + l\phi_2 + m\phi_3 - k\phi_4 - l\phi_5 - m\phi_6] \rangle$$

(5)

The double average notation indicates that in the first step averaging is performed over all distinct combinations of 2, 4, or 6 particles within the same event, and then these results are averaged over all events. Each azimuthal correlator in the above estimator can be measured efficiently and exactly with the Generic Framework published in Ref. [12]. By definition, this estimator ensures that large systematic biases from self-correlations and symmetry planes Ψ_n are eliminated. In the absence of nonflow (correlations between a few particles unrelated to collective phenomena and anisotropic flow), it reduces analytically to Eq. (2), even for the case of large event-by-event flow fluctuations [20].

The results presented in this paper are obtained with the data from Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV collected with the ALICE detector in 2010. After the event and track selection, the data sample corresponds to about 8.2×10^6 minimum bias events for the 0–50% centrality range. The Pb–Pb dataset from 2011 is not included due to the significantly different detector and trigger conditions.

Detailed descriptions of the ALICE detector and performance can be found in Refs. [22–25]. The time projection chamber (TPC) was used to reconstruct charged particles and measure their momenta [26]. The inner tracking system (ITS) was used to improve the vertex determination and momentum resolution, while its innermost part, the silicon pixel detector (SPD) [27,28], provided the default centrality estimation. Two scintillator arrays (V0A and V0C) were used for triggering and for an alternative determination of centrality [29,31]. The trigger conditions are identical to those described in Refs. [29,32].

The event and track selection are based on previous SC analyses [18,33]. The reconstructed primary vertex (PV) is required to be within ± 10 cm from the nominal interaction point along the beam axis. The main analysis is performed using tracks reconstructed only with the TPC (referred to as TPC-only from now on) in the kinematic range $0.2 < p_T < 5.0$ GeV/c and $|\eta| < 0.8$. The low p_T cutoff decreases the biases from the smaller reconstruction efficiency, while the high p_T cutoff reduces the anisotropic contaminations in the azimuthal distributions from jets. The selected tracks are reconstructed with a minimum of 70 space points out of a maximum of 159 in TPC and the χ^2/NDF of their momentum fit is required to satisfy $0.1 < \chi^2/NDF < 4.0$. Only tracks with a maximum distance of closest approach (DCA) to the primary vertex of 2.4 cm in the transverse plane and 3.2 cm along the beam axis are kept.
for the analysis. This choice reduces the contributions from secondary tracks and has already been used in Ref. [18] with hybrid tracks, for which the tracking information is combined from both the TPC and the ITS detectors to achieve the best transverse momentum resolution and to correct for the non-uniform azimuthal acceptance due to dead zones in the SPD [25, 34]. Also, tracks with abrupt change of direction, e.g. due to multiple scattering or K^\pm decays, are rejected. With this selection, the contamination from secondaries in TPC-only tracks varies from about 16% at 0.2 GeV/c to about 7% at 5 GeV/c. The track reconstruction efficiency is almost constant at about 80–88% as a function of transverse momentum. Its uncertainties are found to be negligible and thus not propagated in the final results.

Corrections both for non-uniform reconstruction efficiency (NUE) as a function of transverse momentum and non-uniform acceptance (NUA) as a function of azimuthal angle are computed as particle weights, following Ref. [12]. Particle weights for NUE were obtained with the Monte Carlo generator HIJING (Heavy-Ion Jet I[n]teraction Generator) [35], while the ones for NUA are data driven. Only the corrections for NUE are applied to all the selected tracks in the main analysis with the default selection. Effects of NUA in TPC-only tracks were also checked, but found to be negligible. The nonflow contributions estimated with HIJING are found to be negligible for all SC(k,l,m) observables reported in this paper [20].

The systematic uncertainties are estimated by varying each selection criterion independently. The values of SC(k,l,m) with the variation and with the default selection are compared in each centrality interval. If the difference between the two results when taking into account the correlations between their statistical uncertainties is larger than one σ (σ is the uncertainty of the difference), the variation is included in the quadratic sum for the total systematic uncertainty. The importance of each trial depends on the considered SC(k,l,m). The data sample was collected with two configurations of the magnetic field polarity in the solenoid magnet surrounding the ALICE central barrel detectors, giving two samples with similar size. The main analysis uses both samples, and no significant systematic effect is seen for the analysis on each individual orientation of the field polarity. Below, the ranges of relative variations observed in semicentral collisions (20–50%) for each trial are reported. Moreover, the variations observed in collisions with a centrality up to 20%, and for SC$(2,4,6)$ and SC$(3,4,5)$ in the range 20–30%, can be larger than the ones indicated due to the small size of the signal and are therefore not reported. The systematic uncertainties are represented by the shaded boxes around each data point in all figures.

On the other hand, there are variations which impact only some SC(k,l,m) observables. For example, the variation of the distance of the PV to the nominal interaction point along the beam direction (±6 cm and ±12 cm) does not impact SC$(2,3,5)$, NSC$(2,3,5)$ and SC$(3,4,5)$, but results to an uncertainty of about 3.2% for SC$(2,3,4)$ and NSC$(2,3,4)$. For the DCA variation in the plane transverse to the beam direction (from 2.4 cm to 1 cm and 2 cm) only SC$(2,4,6)$ is not affected, while there is an effect of about 12% for NSC$(2,3,4)$ to about 36% for SC$(2,3,5)$. The default analysis uses the centrality estimated with the SPD, while the systematic check is based on the determination of the centrality with the V0 detector. This change impacts the final results for all combinations with the exception of SC$(3,4,5)$, ranging from about 15% for SC$(2,3,4)$ and NSC$(2,3,4)$ to 21% for SC$(2,3,5)$. The variation of the minimum number of space points in the TPC (from 70 to 50 and 100 space points) leads to systematic biases in SC$(2,3,4)$, SC$(2,3,5)$ and NSC$(2,3,5)$, ranging from 5% for SC$(2,3,4)$ to 14% for SC$(2,3,5)$. This is also the case for the quality of fit χ^2/NDF for $0.3 < \chi^2/NDF < 4.0$ and $0.1 < \chi^2/NDF < 3.5$. This leads to significant differences for SC$(2,4,6)$, SC$(3,4,5)$ and NSC$(2,3,5)$ (about 12% for NSC$(2,3,5)$). For the tightening of the DCA criterion along the beam axis from 3.2 cm to 2.1 cm, we report the systematic bias of about 8–10% for SC$(2,3,5)$ and NSC$(2,3,5)$. Finally, non-negligible systematic effects are seen when repeating the analysis with hybrid tracks, which have a smaller contamination from secondaries, allowing an estimation of their systematic effects in the default selection. For this last check, all SC(k,l,m) see significant changes (between 4% and 19% for SC$(2,3,4)$ and NSC$(2,3,5)$, respectively).

The centrality dependence of SC(k,l,m) and NSC(k,l,m) for the different combinations of flow am-
Multi-harmonic correlations of different flow amplitudes is shown in Fig. 1 (a) and Fig. 1 (b), respectively. When moving from central to semicentral collisions, the magnitude of both SC(2,3,4) and SC(2,3,5) increases, albeit with opposite sign. These non-zero values for semicentral collisions are the first experimental indications of correlations between three flow amplitudes. The results for SC(2,3,5) provide new and independent constraints on the non-linear response contribution in v_5 from v_2 and v_3, which for the first time do not require any assumption in the derivation on the nature of two-harmonic correlations. For the higher order flow amplitudes, the measurements for SC(2,4,6) and SC(3,4,5) are compatible with zero for all centralities. The negative increasing trend observed for SC(2,3,4) is also present for NSC(2,3,4). However, this is not the case for SC(2,3,5) and NSC(2,3,5). The increase seen in the former cannot be found in the latter, which shows a decrease for semicentral events. This different behavior originates from the fact that the non-linear response introduces a correlation among all three amplitudes in SC(2,3,5), while the contribution from non-linear response is not present in SC(2,3,4).

The results for the higher order SC observables are compared with the event-by-event Eskola-Kajantie-Ruuskanen-Tuominen (EKRT)+viscous [19] and TRENTo + iEBE-VISHNU hydrodynamic models [37]. In the EKRT model, the initial energy density profiles are calculated using a next-to-leading order

![Figure 1: Centrality dependence of SC(2,3,4), SC(2,3,5), SC(2,4,6) and SC(3,4,5) (a) and of NSC(2,3,4) and NSC(2,3,5) (b) in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The statistical (systematic) uncertainties are shown with the lines (boxes). The data points are shifted horizontally for visibility.](image-url)
Figure 2: Predictions from the hydrodynamical models for the centrality dependence for the SC\((k,l,m)\) [panels (a), (c), (e) and (f)] and NSC\((k,l,m)\) [panels (b) and (d)] in Pb–Pb collisions at \(\sqrt{s_{NN}} = 2.76\) TeV. The statistical uncertainties are shown with coloured bands. The predictions are compared with the ALICE results from Fig. 1 shown with red markers. The bands represent the statistical uncertainty of each model.

The calculations for the \(\eta/s(T)\) = “param1” parametrisation, which gives a good description of the lower perturbative-QCD+saturation model [38, 39]. The subsequent space–time evolution is described by relativistic dissipative fluid dynamics with different temperature parameterizations \(\eta/s(T)\). This state-of-the-art model gives a good description of the charged hadron multiplicity and the low-\(p_T\) region of the charged hadron spectra at BNL’s Relativistic Heavy Ion Collider and at CERN’s Large Hadron Collider. Each of the \(\eta/s(T)\) parameterizations is adjusted to reproduce the measured \(v_n\) from central to semiperipheral collisions. The model calculations in which the temperature of the phase transition is larger than for “param1” parameterization are ruled out by the previous measurements [18, 33]. In the study presented in this paper, the EKRT prediction for the centrality dependence of SC\((k,l,m)\) was obtained from a sample consisting of 40k events in the 0–100% centrality range. The subsequent space–time evolution is described by relativistic dissipative fluid dynamics with different temperature parameterizations \(\eta/s(T)\). This state-of-the-art model gives a good description of the charged hadron multiplicity and the low-\(p_T\) region of the charged hadron spectra at BNL’s Relativistic Heavy Ion Collider and at CERN’s Large Hadron Collider. Each of the \(\eta/s(T)\) parameterizations is adjusted to reproduce the measured \(v_n\) from central to semiperipheral collisions. The model calculations in which the temperature of the phase transition is larger than for “param1” parameterization are ruled out by the previous measurements [18, 33]. In the study presented in this paper, the EKRT prediction for the centrality dependence of SC\((k,l,m)\) was obtained from a sample consisting of 40k events in the 0–100% centrality range.
order SC results, are thus compared to our new results for higher order SC in Fig. 2. They can describe the overall trends of all combinations in the centrality dependence. However, SC(2,4,6) is found to be strictly positive in models.

The hybrid hydrodynamic model $T_{K\text{R}E\text{NTo}}+i\text{EBE-VISHNU}$ has successfully described the previous ALICE measurements [37]. It consists of the $T_{K\text{R}E\text{NTo}}$ model [40] for the initial condition, which is connected with a free streaming to a 2+1 dimensional causal hydrodynamic model VISH2+1 [41, 42]. The evolution is continued in the hadronic phase via the UrQMD model [43, 44]. The initial conditions, $\eta/s(T)$, $\zeta/s(T)$ and other free parameters of the hybrid model are extracted by the global Bayesian analysis. We perform a model calculation with the best-fit parameter points chosen by maximum a posteriori (MAP) for Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV as they are reported in Ref. [37]. All the kinematic cuts such as transverse momentum and pseudorapidity intervals are matched with the data reported in this paper.

In heavy-ion collisions, the main source of anisotropy in the azimuthal distribution in the final state originates from anisotropies in the initial state geometry. The initial state geometry can be described by quantities called eccentricities ε_n which are the moments of the initial energy (or entropy) density. For instance, the values of ε_2 and ε_3 indicate to what extent the initial geometry is elliptical and triangular, respectively. For small values of eccentricities, one can approximate the response of the collective evolution to the initial state geometry as a linear relation $v_n = k_n \varepsilon_n$ [45, 46]. For $n = 2, 3$, this linear approximation is more accurate than for higher harmonics where non-linear terms play a non-negligible role [13]. If the higher order eccentricity cumulants are normalized by their averages (analogous to Eq. (3)), the response coefficients k_n can cancel between numerator and denominator. Therefore, any difference in the NSC values calculated from the eccentricities in the initial state to those obtained from the measured flow amplitudes in the final state is an indication of a hydrodynamic non-linear response.

The comparison to the $T_{K\text{R}E\text{NTo}}+i\text{EBE-VISHNU}$ calculation is also shown in Fig. 2. The overall trends in the centrality dependence are captured by this model. However, both SC(2,3,4) and SC(2,3,5) are clearly underestimated, while NSC(2,3,4) and NSC(2,3,5) are in a better agreement with the data. In the case of NSC(k,l,m), predictions from $T_{K\text{R}E\text{NTo}}$ for the initial state are shown in Fig. 2 (b) and Fig. 2 (d). As $i\text{EBE-VISHNU}$ uses $T_{K\text{R}E\text{NTo}}$ as input, the comparisons between the two sets of predictions can give insights about the development of multi-harmonic correlations in the system. The relative change in NSC(2,3,4) for $i\text{EBE-VISHNU}$ calculations from the ones from $T_{K\text{R}E\text{NTo}}$ for 10–30% centralities indicates that in addition different correlations have developed during the hydrodynamic evolution of the medium. The same phenomenon is hinted at within uncertainties in NSC(2,3,5). In this latter case, this can be explained by the non-linear response contribution to v_5 induced by the low order v_2 and v_3 found in Refs. [37, 48]. For SC(2,4,6) and SC(3,4,5), iEBE-VISHNU is in agreement with the predictions from EKRT within uncertainties.

Recent Bayesian analyses [37, 49] show that the $T_{K\text{R}E\text{NTo}}$ model reproduces certain features of EKRT models with the energy deposition parameter, $p \approx 0.0$. However, as it is shown in Fig. 2 (b) and Fig. 2 (d), in semicentral collisions the $T_{K\text{R}E\text{NTo}}$ model shows stronger initial-state correlations among eccentricities than the EKRT model, and the resulting final-state multi-harmonic correlations obtained with SC(k,l,m) show differences as well. This difference can originate from the fact that EKRT does not include effects from bulk viscosity while the extracted bulk viscosities from two different Bayesian analyses give sizable differences.

In summary, we have presented the first measurements of correlations between three flow amplitudes, obtained with higher order SC observables in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The non-zero values of SC(k,l,m) for semicentral collisions are the first experimental indication of correlations (cumulants) between three flow amplitudes. The relative changes between $T_{K\text{R}E\text{NTo}}$ and iEBE-VISHNU for NSC(2,3,4) and NSC(2,3,5) are consistent with the development of different correlations during the collective evolu-
tion of the medium. A similar conclusion can be extracted from the EKRT model. These results provide the first constraints on the non-linear response contribution in v_5 from v_2 and v_3, which do not require any assumption on the nature of lower-order two-harmonic correlations. The new results for $SC(k,l,m)$ provide independent constraints for the initial conditions, system properties, non-linear response and possible patterns of event-by-event flow fluctuations, when compared to the previous flow measurements obtained with lower-order observables.

Acknowledgements

The ALICE Collaboration would like to thank Harri Niemi for providing the latest predictions from the state-of-the-art hydrodynamic model.

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and National-stiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Min-
References

[1] B. Jacak and P. Steinberg, “Creating the perfect liquid in heavy-ion collisions”, *Phys. Today* **63**, N5 (2010) 39–43.

[2] J.-Y. Ollitrault, “Anisotropy as a signature of transverse collective flow”, *Phys. Rev. D* **46** (1992) 229–245.

[3] P. Kovtun, D. T. Son, and A. O. Starinets, “Viscosity in strongly interacting quantum field theories from black hole physics”, *Phys. Rev. Lett.* **94** (2005) 111601, arXiv:hep-th/0405231 [hep-th].

[4] U. Heinz and R. Snellings, “Collective flow and viscosity in relativistic heavy-ion collisions”, *Ann. Rev. Nucl. Part. Sci.* **63** (2013) 123–151, arXiv:1301.2826 [nucl-th].

[5] P. Braun-Munzinger, V. Koch, T. Schäfer, and J. Stachel, “Properties of hot and dense matter from relativistic heavy ion collisions”, *Phys. Rept.* **621** (2016) 76–126, arXiv:1510.00442 [nucl-th].

[6] W. Busza, K. Rajagopal, and W. van der Schee, “Heavy Ion Collisions: The Big Picture, and the Big Questions”, *Ann. Rev. Nucl. Part. Sci.* **68** (2018) 339–376, arXiv:1802.04801 [hep-ph].

[7] S. Voloshin and Y. Zhang, “Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions”, *Z. Phys. C* **70** (1996) 665–672, arXiv:hep-ph/9407282 [hep-ph].

[8] S. Wang, Y. Z. Jiang, Y. M. Liu, D. Keane, D. Beavis, S. Y. Chu, S. Y. Fung, M. Vient, C. Hartnack, and H. Stoecker, “Measurement of collective flow in heavy ion collisions using particle pair correlations”, *Phys. Rev. C* **44** (1991) 1091–1095.

[9] J. Jiang et al., “High order collective flow correlations in heavy ion collisions”, *Phys. Rev. Lett.* **68** (1992) 2739–2742.

[10] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, “Flow analysis from multiparticle azimuthal correlations”, *Phys. Rev. C* **64** (2001) 054901, arXiv:nucl-th/0105040 [nucl-th].

[11] A. Bilandzic, R. Snellings, and S. Voloshin, “Flow analysis with cumulants: Direct calculations”, *Phys. Rev. C* **83** (2011) 044913, arXiv:1010.0233 [nucl-ex].

[12] A. Bilandzic, C. H. Christensen, K. Gulbrandsen, A. Hansen, and Y. Zhou, “Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations”, *Phys. Rev. C* **89** no. 6, (2014) 064904, arXiv:1312.3572 [nucl-ex].
Multi-harmonic correlations of different flow amplitudes...

[13] H. Niemi, G. Denicol, H. Holopainen, and P. Huovinen, “Event-by-event distributions of azimuthal asymmetries in ultrarelativistic heavy-ion collisions”, Phys. Rev. C 87 no. 5, (2013) 054901, arXiv:1212.1008 [nucl-th]

[14] ATLAS Collaboration, G. Aad et al., “Measurement of event-plane correlations in $\sqrt{s_{NN}} = 2.76$ TeV lead-lead collisions with the ATLAS detector”, Phys. Rev. C 90 no. 2, (2014) 024905, arXiv:1403.0489 [hep-ex]

[15] J. Jia, “Event-shape fluctuations and flow correlations in ultra-relativistic heavy-ion collisions”, J. Phys. G 41 no. 12, (2014) 124003, arXiv:1407.6057 [nucl-ex]

[16] ATLAS Collaboration, G. Aad et al., “Measurement of the correlation between flow harmonics of different order in lead-lead collisions at $\sqrt{s_{NN}}=2.76$ TeV with the ATLAS detector”, Phys. Rev. C 92 no. 3, (2015) 034903, arXiv:1504.01289 [hep-ex]

[17] J. Qian and U. Heinz, “Hydrodynamic flow amplitude correlations in event-by-event fluctuating heavy-ion collisions”, Phys. Rev. C 94 no. 2, (2016) 024910, arXiv:1607.01732 [nucl-th]

[18] ALICE Collaboration, J. Adam et al., “Correlated event-by-event fluctuations of flow harmonics in Pb-Pb collisions at $\sqrt{s_{NN}}=2.76$ TeV”, Phys. Rev. Lett. 117 (2016) 182301, arXiv:1604.07663 [nucl-ex]

[19] H. Niemi, K. Eskola, and R. Paatelainen, “Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: Determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions”, Phys. Rev. C 93 no. 2, (2016) 024907, arXiv:1505.02677 [hep-ph]

[20] C. Mordasini, A. Bilandzic, D. Karakoç, and S. F. Taghavi, “Higher order Symmetric Cumulants”, Phys. Rev. C 102 no. 2, (2020) 024907, arXiv:1901.06968 [nucl-ex]

[21] R. Kubo, “Generalized Cumulant Expansion Method”, Journal of the Physical Society of Japan 17 (1962) 1100–1120.

[22] ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002

[23] ALICE Collaboration, P. Cortese et al., “ALICE: Physics performance report, volume I”, J. Phys. G30 (2004) 1517–1763.

[24] ALICE Collaboration, P. Cortese et al., “ALICE: Physics performance report, volume II”, J. Phys. G32 (2006) 1295–2040.

[25] ALICE Collaboration, B. B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, Int. J. Mod. Phys. A29 (2014) 1430044, arXiv:1402.4476 [nucl-ex]

[26] J. Alme et al., “The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events”, Nucl. Instrum. Meth. A622 (2010) 316–367, arXiv:1001.1950 [physics.ins-det]

[27] ALICE Collaboration, G. Dellacasa et al., “ALICE technical design report of the inner tracking system (ITS), CERN-LHCC-99-12”.

[28] ALICE Collaboration, K. Aamodt et al., “Alignment of the ALICE Inner Tracking System with cosmic-ray tracks”, JINST 5 (2010) P03003, arXiv:1001.0502 [physics.ins-det]

[29] ALICE Collaboration, K. Aamodt et al., “Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, Phys. Rev. Lett. 106 (2011) 032301, arXiv:1012.1657 [nucl-ex]
Multi-harmonic correlations of different flow amplitudes...
Multi-harmonic correlations of different flow amplitudes... ALICE Collaboration

[46] F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, “Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions”, *Phys. Rev. C* **85** (2012) 024908 [arXiv:1111.6538 [nucl-th]].

[47] ALICE Collaboration, S. Acharya *et al.*, “Linear and non-linear flow modes in Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 2.76$ TeV”, *Phys. Lett. B* **773** (2017) 68–80 [arXiv:1705.04377 [nucl-ex]].

[48] ALICE Collaboration, S. Acharya *et al.*, “Higher harmonic non-linear flow modes of charged hadrons in Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV”, *JHEP* **05** (2020) 085 [arXiv:2002.00633 [nucl-ex]].

[49] J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, and U. Heinz, “Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium”, *Phys. Rev. C* **94** no. 2, 024907 [arXiv:1605.03954 [nucl-th]].
A The ALICE Collaboration

S. Acharya1,2, D. Adamova3, A. Adler7, J. Adolfsson82, G. Aglieri Rinella33, M. Agnello31, N. Agrawal55, Z. Ahammed142, S. Ahmad16, S.U. Ahn7, Z. Akbar52, A. Akindinov94, M. Al-Turany39, D.S. Albuquerque124, D. Aleksandrova90, B. Alessandro60, H.M. Alfanda7, R. Alfaro Molina72, B. Ali61, Y. Ali14, A. Alici26, N. Alizadehvandchali27, A. Alkin35, J. Alme21, T. Ali69, L. Altenkamper1, I. Altseybene15, M.N. Aanaam7, C. Andrei99, D. Andreou92, A. Andronic145, V. Anguelov106, T. Antichi110, F. Antinori58, P. Antonioli55, C. Anuj16, N. Apudala81, L. Aphelten117, H. Appelshäuser69, S. Arcelli26, R. Arnaldi60, M. Arratia81, I.C. Arsene20, M. Arslendok147,106, A. Augustinus35, R. Averbeck109, S. Aziz79, M.D. Azmi16, A. Badalà57, Y.W. Baek42, X. Bai109, R. Bailhache69, R. Bala103, A. Balbino31, A. Baldissertii139, M. Ball44, D. Banerjee4, R. Barbera27, L. Barigiolo25, M. Barlow86, G.G. Barnaföldi146, L.S. Barnby96, V. Barre136, C. Bartels129, K. Barth35, E. Bartsch69, F. Baruffaldi28, N. Bastid136, S. Basi82,144, G. Batigine117, B. Batyunya76, D. Bauri50, J.L. Bazo Alba114, I.G. Bearden91, C. Beattie147, I. Belikov138, A.D.C. Bell Hechavarria145, F. Bellini35, R. Bellwied127, S. Belokurova15, V. Belyaev95, G. Benced70,146, S. Beole25, A. Bercucci49, Y. Berdnikov100, A. Berdnikova106, D. Berenyi146, L. Bergmann106, M.G. Besoü86, L. Betev35, P.P. Bhaduri142, A. Bhasin103, I.R. Bhat103, M.A. Bhat4, B. Bhattacharjee43, P. Bhattacharya23, A. Bianchi25, L. Bianchi25, N. Bianchi53, J. Bielčík38, J. Bielčíková97, A. Bilandzic107, G. Biro146, S. Biswas4, J.T. Blair121, D. Blau90, M.B. Blidaru109, C. Blume69, G. Boca99, F. Bock98, A. Bogdanov95, S. Boi23, J. Bok62, L. Boldizsár146, A. Bolozdynya95, M. Bombara9, P.M. Bond35, G. Bonomi141, H. Borei139, A. Borissov83,95, H. Bossi147, E. Botta25, L. Bratrud99, P. Braun-Munzinger109, M. Bregant123, M. Broz35, G.E. Bruno108,34, M.D. Buckland129, B. Budnikov111, H. Buesching69, S. Bufalino31, O. Bugnon117, P. Buhler116, P. Buncic35, Z. Buthelez33, J.B. Butt14, S.A. Byiski120, D. Caffarin92, A. Caliva109, E. Calvo Villar114, J.M.M. Camacho122, R.S. Camacho46, P. Camerini24, F.D.M. Canedo123, A.A. Capon116, F. Carsecucci26, R. Caron139, J. Castillo Castellanos129, E.A.R. Casula23, F. Catalano31, C. Ceballos Sanchez76, P. Chakraborty50, S. Chandra42, W. Chang7, S. Chapeland35, M. Chartier129, S. Chattopadhyay142, S. Chattopadhyay112, A. Chauvin23, T.G. Chavez46, C. Cheshkov137, B. Cheynik137, V. Chibante Barroso35, D.D. Chinellato124, S. Cho62, P. Chochula135, P. Christakoglou92, C.H. Christensen91, P. Christiansen82, T. Chujo135, C. Ciccalo56, L. Cifarelli26, F. Cindolo55, M.R. Ciupke109, G. Cilia115, J. Cleymans129, F. Colamarini34, J.S. Colburn113, D. Colecchia54,146, A. Collu8, M. Colocci35,66, M. ConcasII60, G. Conesa Balbastre80, Z. Conesa del Valle79, G. Contin24, J.G. Contreras38, T.M. Cormier98, P. Cortese32, M.R. Cosentino125, F. Costa35, S. Costanza29, P. Crocher136, E. Cuautle7, P. Cui7, L. Cunquiro8, A. Dainese58, F.P.A. Dama177,139, M.C. Danisch106, A. Danu68, I. Das112, P. Das88, P. Das4, S. Das4, S. Dash50, S. De88, A. De Caro30, G. de Cataldo55, L. De Cilliadi25, J. de Cuveland19, A. De Falcò23, D. De Gruttola30, N. De Marco60, C. De Martini24, S. De Pasquale30, S. Deh51, H.F. Degenhardt23, K.R. Deja143, L. Dello Stritto30, S. Delsanto25, W. Deng7, P. Dhankher19, D. Di Bari34, A. Di Mauro35, R.A. Diaz8, T. Dietel126, Y. Ding7, R. Divia35, D.U. Dixit19, Ø. Djupsund21, U. Dmitrieva64, J. Do62, A. Dobrin68, B. Dönigus59, O. Dordic20, A.K. Dubey42, A. Dubla109,92, S. Dudi102, M. Dukhishyam88, P. Dupieux136, T.M. Eder145, R.J. Ehlers98, V.N. Eikeland21, D. Elia54, B. Erazmus177, F. Ercolessi26, F. Erhardt101, A. Erokhin115, M.R. Ersdal21, B. Espagnon79, G. Eulisse35, D. Evans113, S. Evdokimov93, L. Fabbietti107, M. Faggine28, J. Faivre80, F. Fan7, A. Fantoni53, M. Fasoli28, P. Fecchio31, A. Felicetti60, G. Feofilov115, A. Fernández Téllez46, A. Ferrero139, A. Ferretti25, A. Festanti35, V.J.G. Feuillard106, J. Figiel120, S. Filchagin111, D. Finogeys64, F.M. Fionda21, G. Fiorenza54, F. Flor72, A.N. Flores121, S. Foerstch33, P. Foka109, S. Fokin90, E. Fragiacomo61, U. Fuchs35, N. Funicello30, C. Furget80, A. Furs64, M. Fusco Girardi39, J.J. Gaardehoj91, M. Gagliardi25, A.M. Gago114, A. Gal138, C.D. Galvan122, P. Gano86, C. Garabatos109, J.R.A. Garcia46, E. Garcia-Solis10, K. Garg117, C. Gargiulo35, A. Garibli39, K. Garner145, P. Gasik107, E.F. Gauger121, M.B. Gay Ducati71, M. Germain117, J. Ghosh112, P. Ghosh42, S.K. Ghosh4, M. Giacalone26, P. Gianotti53.
Multi-harmonic correlations of different flow amplitudes...

ALICE Collaboration

P. Giubellino, P. Giubilato, A.M.C. Glaenzer, P. Glässel, V. Gonzalez, L.H. González-Trueba, S. Gorbunov, L. Görlich, S. Gotovac, V. Grabski, L.K. Graczykowski, K.L. Graham, L. Greiner, A. Greli, C. Grigoras, V. Grigoriev, A. Grigoryan, S. Grigoryan, O.S. Groettvik, F. Grosa, J.F. Groote-Oetringhaus, R. Grossi, R. Guernane, M. Guibaud, M. Guittiere, K. Guilbrandsen, T. Gunji.

A. Gupta, R. Gupta, I.B. Guzman, R. Haake, M.K. Habib, C. Hadjidakis, H. Hamagaki, G. Hamar, M. Hamid, R. Hannigan, M.R. Haque, A. Harlenderova, J.W. Harris, A. Harton, J.A. Hasenbichler, H. Hassan, D. Hatzifotiadiou, P. Hauer, L.B. Havener, S. Hayashi, S.T. Heckel, E. Hellbä, H. Helstrup, T. Herman, E.G. Hernandez, G. Herrera Corral, F. Herrmann, K.F. Hetland, H. Hillemanns, C. Hills, B. Hippolyte, B. Hohlweiger, J. Honermann, G.H. Hong, D. Horak, S. Hornung, R. Hosokawa, P. Hristov, C. Huang, C. Hughes, P. Huhn, T.J. Humanic, H. Hushnud, L.A. Husova, N. Hussain, D. Hutter, J.P. Iddon, R. Ilkev, H. Ilyas, M. Inaba, G.M. Innocenti, M. Ippolitov, A. Isakov, M.S. Islam, M. Ivanov, V. Ivanov, V. Izucheev, B. Jacak, N. Jacazio, P.M. Jacobs, S. Jadlovska, J. Jadhav, M. Kowalski, P.J. Konopka, S. Kiselev, B. Jakub, J. Jang, B. Jakus, P. Kalinak, A. Kalweitz, V. Kaplin, S. Kar, A. Karasu Uysal, D. Karatovic, O. Karavichev, T. Karavicheva, P. Karczmarczyk, E. Karpechev, A. Kazantsev, U. Kebschull, R. Keidel, M. Keil, B. Ketzer, Z. Khabanova, A.M. Khan, S. Khan, A. Khandze, A. Khatun, A. Khuntia, B. Kileng, B. Kim, D. Kim, D.J. Kim, E.J. Kim, H. Kim, J. Kim, J.S. Kim, J. Kim, J. Kim, M. Kim, S. Kim, I. Kissel, S. Kiselev, A. Kisiel, J.L. Klay, J. Klein, S. Klein, C. Klein-Bösing, M. Kleiner, T. Klenz, A. Kluge, A.G. Knope, C. Kobdaj, M.K. Köhler, T. Kollegger, A. Kondratyev, N. Kondratyuk, J. König, S.A. Königstorfer, P.J. Konopka, G. Kornakov, S.D. Koryciak, L. Koska, O. Kovalenko, V. Kovalenko, M. Kowalski, I. Králik, A. Kravčáková, L. Kreis, M. Krivda, I. Krizek, K. Križkova Gajdosova, M. Kroesen, M. Krüger, E. Kryshen, M. Krzewicki, V. Kučera, C. Kuhn, P.G. Kujer, T. Kumaoka, L. Kumar, S. Kundu, P. Kurashvili, A. Kurepin, A.B. Kurepin, A. Kuryakin, S. Kushpil, J. Kypail, M.J. Kweon, J.Y. Kwon, Y. Kwon, S.L. La Pointe, P. La Rocca, Y.S. Laï, A. Lakrathok, M. Lammann, R. Langoy, K. Lapidus, P. Laronov, E. Laudi, L. Lautner, R. Lavicka, T. Lazareva, R. Lea, J. Lee, J. Lehrbach, R.C. Lemmon, F. León Monzón, E.D. Lesser, M. Leutrich, P. Lévy, X. Li, X.L. Li, J. Lien, R. Lietava, B. Lim, S.H. Lim, V. Lindenstruth, A. Lindner, C. Lippmann, A. Liu, J. Liu, I.M. Lofnes, V. Logino, C. Loizides, P. Loncar, J.A. Lopez, X. Lopez, E. López Torres, J.R. Luhder, M. Lunardon, G. Luparello, Y.G. Ma, A. Maevskaya, M. Mager, S.M. Mahmood, T. Mahmoud, A. Mair, R.D. Majka, M. Malae, Q.W. Malik, L. Malinina, D. Mal' Kevich, N. Mallick, P. Malzacher, G. Mandaglio, V. Manko, F. Manso, V. Manzari, Y. Mao, J. Mare, G.V. Margaglioni, A. Margotti, A. Martin, C. Markert, M. Marquard, N.A. Martin, P. Martinengo, J.L. Martinez, M.I. Martinez, G. Martínez García, C. Martínez García, N. Masciochi, M. Masera, A. Masoni, L. Massacrier, A. Mastroserio, A.M. Mathis, O. Matonoha, P.F.T. Matuoka, A. Matyja, C. Mayer, A.L. Mazuecos, F. Mazzaschi, M. Mazzilli, M.A. Mazzoni, A.F. Mechl, F. Meddi, Y. Melikyan, A. Menchaca-Rocha, C. Mengke, E. Meninno, A.S. Menon, M. Meres, S. Mihlange, Y. Miake, L. Micheletti, L.C. Miglionir, D.L. Mihaylov, K. Mikhailov, A.N. Mishra, D. Miškowicz, A. Modak, N. Mohammadi, A.P. Mohanty, B. Mohanty, M. Mohišin Khan, Z. Moravcová, C. Mordasini, D.A. Moreira De Godoy, L.A.P. Moreno, I. Morozov, A. Morsch, T. Mrnjavac, V. Muccifora, E. Mudnic, D. Mühlheim, S. Muhuri, J.D. Mulligan, A. Mulliri, M.G. Munhoz, R.H. Munzer, H. Murakami, S. Murray.
Multi-harmonic correlations of different flow amplitudes... ALICE Collaboration
Multi-harmonic correlations of different flow amplitudes... ALICE Collaboration

M. Verweij63, L. Vickovic36, Z. Vilakazi133, O. Villalobos Baillie113, G. Vino54, A. Vinogradov90, T. Virgili30, V. Vlslavicius91, A. Vodopyanov76, B. Volkel35, M.A. Völkl105, K. Voloshin64, S.A. Voloshin144, G. Volpe34, B. von Haller35, I. Vorobyev107, D. Voscek119, J. Vrláková39, B. Wagner21, M. Weber116, A. Wegryznek35, S.C. Wenzel145, J. Wicke169, J. Wikne20, G. Will87, J. Wilkinson109, G.A. Willems145, E. Willsher113, B. Windelband106, M. Winn139, W.E. Witt132, J.R. Wright121, Y. Wu130, R. Xu7, S. Yalcin78, Y. Yamaguchi47, K. Yamakawa47, S. Yang21, S. Yano47,139, Z. Yin7, H. Yokoyama63, I.-K. Yoo17, J.H. Yoon62, S. Yuan21, A. Yuncu106, V. Yurchenko3, V. Zaccolo24, A. Zaman14, C. Zampolli135, H.J.C. Zanoli63, N. Zardoshti35, A. Zarochentsev115, P. Závada67, N. Zaviyalov111, H. Zbroszczyk143, M. Zhalov100, S. Zhang41, X. Zhang7, Y. Zhang130, V. Zherebchevskii115, Y. Zhi11, D. Zhou7, Y. Zhou91, J. Zhu7,109, Y. Zhu7, A. Zichichi26, G. Zinovjev3, N. Zurlo141

Affiliation Notes

1 Deceased
II Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy
III Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
IV Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia
V Also at: Institute of Theoretical Physics, University of Wroclaw, Poland

Collaboration Institutes

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 AGH University of Science and Technology, Cracow, Poland
3 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo, California, United States
7 Central China Normal University, Wuhan, China
8 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
9 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
10 Chicago State University, Chicago, Illinois, United States
11 China Institute of Atomic Energy, Beijing, China
12 Chungbuk National University, Cheongju, Republic of Korea
13 Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
14 COMSATS University Islamabad, Islamabad, Pakistan
15 Creighton University, Omaha, Nebraska, United States
16 Department of Physics, Aligarh Muslim University, Aligarh, India
17 Department of Physics, Pusan National University, Pusan, Republic of Korea
18 Department of Physics, Sejong University, Seoul, Republic of Korea
19 Department of Physics, University of California, Berkeley, California, United States
20 Department of Physics, University of Oslo, Oslo, Norway
Multi-harmonic correlations of different flow amplitudes... ALICE Collaboration

21 Department of Physics and Technology, University of Bergen, Bergen, Norway
22 Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy
23 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
25 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
26 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
28 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
29 Dipartimento di Fisica e Nucleare e Teorica, Università di Pavia and Sezione INFN, Pavia, Italy
30 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
31 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
32 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
33 Dipartimento di Scienze MIFT, Università di Messina, Messina, Italy
34 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
35 European Organization for Nuclear Research (CERN), Geneva, Switzerland
36 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
37 Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
38 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
39 Faculty of Science, P.J. Šafárik University, Košice, Slovakia
40 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
41 Fudan University, Shanghai, China
42 Gangneung-Wonju National University, Gangneung, Republic of Korea
43 Gauhati University, Department of Physics, Guwahati, India
44 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
45 Helsinki Institute of Physics (HIP), Helsinki, Finland
46 High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
47 Hiroshima University, Hiroshima, Japan
48 Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany
49 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
50 Indian Institute of Technology Bombay (IIT), Mumbai, India
51 Indian Institute of Technology Indore, Indore, India
52 Indonesian Institute of Sciences, Jakarta, Indonesia
53 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
54 INFN, Sezione di Bari, Bari, Italy
55 INFN, Sezione di Bologna, Bologna, Italy
56 INFN, Sezione di Cagliari, Cagliari, Italy
57 INFN, Sezione di Catania, Catania, Italy
58 INFN, Sezione di Padova, Padova, Italy
59 INFN, Sezione di Roma, Rome, Italy
60 INFN, Sezione di Torino, Turin, Italy
61 INFN, Sezione di Trieste, Trieste, Italy
62 Inha University, Incheon, Republic of Korea
63 Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht,
Multi-harmonic correlations of different flow amplitudes...

ALICE Collaboration

Netherlands
64 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia

Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia

Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India

Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic

Institute of Space Science (ISS), Bucharest, Romania

Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico

Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico

iThemba LABS, National Research Foundation, Somerset West, South Africa

Jeonbuk National University, Jeonju, Republic of Korea

Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany

Joint Institute for Nuclear Research (JINR), Dubna, Russia

Korea Institute of Science and Technology Information, Daejeon, Republic of Korea

KTO Karatay University, Konya, Turkey

Laboratoire de Physique des 2 Infinis, Irène Joliot-Curie, Orsay, France

Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France

Lawrence Berkeley National Laboratory, Berkeley, California, United States

Lund University Department of Physics, Division of Particle Physics, Lund, Sweden

Moscow Institute for Physics and Technology, Moscow, Russia

Nagasaki Institute of Applied Science, Nagasaki, Japan

Nara Women’s University (NWU), Nara, Japan

National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece

National Centre for Nuclear Research, Warsaw, Poland

National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India

National Nuclear Research Center, Baku, Azerbaijan

National Research Centre Kurchatov Institute, Moscow, Russia

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Nikhef, National institute for subatomic physics, Amsterdam, Netherlands

NRC Kurchatov Institute IHEP, Protvino, Russia

NRC «Kurchatov» Institute - ITEP, Moscow, Russia

NRNU Moscow Engineering Physics Institute, Moscow, Russia

Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom

Nuclear Physics Institute of the Czech Academy of Sciences, Řež u Prahy, Czech Republic

Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States

Ohio State University, Columbus, Ohio, United States

Petersburg Nuclear Physics Institute, Gatchina, Russia

Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia

Physics Department, Panjab University, Chandigarh, India

Physics Department, University of Jammu, Jammu, India

Physics Department, University of Rajasthan, Jaipur, India

Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany

Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

Physik Department, Technische Universität München, Munich, Germany

Politecnico di Bari and Sezione INFN, Bari, Italy

Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für
Multi-harmonic correlations of different flow amplitudes... ALICE Collaboration

Schwerionenforschung GmbH, Darmstadt, Germany
Rudjer Bošković Institute, Zagreb, Croatia
Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
St. Petersburg State University, St. Petersburg, Russia
Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
Suranaree University of Technology, Nakhon Ratchasima, Thailand
Technical University of Košice, Košice, Slovakia
The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
The University of Texas at Austin, Austin, Texas, United States
Universidad Autónoma de Sinaloa, Culiacán, Mexico
Universidade do Estado de São Paulo (UNICAMP), Campinas, Brazil
Universidade Federal do ABC, Santo Andre, Brazil
University of Cape Town, Cape Town, South Africa
University of Houston, Houston, Texas, United States
University of Jyväskylä, Jyväskylä, Finland
University of Liverpool, Liverpool, United Kingdom
University of Science and Technology of China, Hefei, China
University of South-Eastern Norway, Tonsberg, Norway
University of Tennessee, Knoxville, Tennessee, United States
University of the Witwatersrand, Johannesburg, South Africa
University of Tokyo, Tokyo, Japan
University of Tsukuba, Tsukuba, Japan
Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France
Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
Université Paris-Saclay Centre d’Etudes de Saclay (CEA), IRFU, Département de Physique Nucléaire (DPPhN), Saclay, France
Università degli Studi di Foggia, Foggia, Italy
Università di Brescia and Sezione INFN, Brescia, Italy
Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
Warsaw University of Technology, Warsaw, Poland
Wayne State University, Detroit, Michigan, United States
Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
Wigner Research Centre for Physics, Budapest, Hungary
Yale University, New Haven, Connecticut, United States
Yonsei University, Seoul, Republic of Korea