A new approach for the solution of fuzzy games

To cite this article: G Krishnaveni and K Ganesan 2018 J. Phys.: Conf. Ser. 1000 012017

View the article online for updates and enhancements.

Related content

- A NEW APPROACH TO POINT PATTERN MATCHING
 F. Murtagh

- Efficient solution of a multi objective fuzzy transportation problem
 V Vidhya and K Ganesan

- Yager’s ranking method for solving the trapezoidal fuzzy number linear programming
 Karyati, D U Wutsqa and N Insani
A new approach for the solution of fuzzy games

G. Krishnaveni¹ and K. Ganesan²
Department of Mathematics, SRM Institute of Science and Technology, Kattankulathur, Chennai - 603203, INDIA
E-mail: krishnaveni.g@ktr.srmuniv.ac.in; ganesan.k@ktr.srmuniv.ac.in

Abstract. In this paper, a new approach is proposed to solve the games with imprecise entries in its payoff matrix. All these imprecise entries are assumed to be trapezoidal fuzzy numbers. Also the proposed approach provides fuzzy optimal solution of the fuzzy valued game without converting to classical version. A numerical example is provided.

1. Introduction

Game theory is a method for the study of decision-making in situations of conflicts and sometimes cooperation. Game theory provides a mathematical process for selecting an optimal strategy. It was developed to quantify, model and explain human behavior under conflicts between individuals and public interests. A player in a game is an autonomous decision-making unit. A strategy is a decision rule that specifies how the player will act in every possible circumstance. The mathematical treatment of the Game Theory was made available in 1944 by John Von Newmann et.al[10] through their book “Theory of Games and Economic Behavior”. The Von Newmann’s approach to solve the Game Theory problems was based on the principle of best out of the worst i.e., he utilized the idea of minimization of the maximum losses. Most of the competitive game theory problems can be handled by this principle. However, in real life situations, the information available is of imprecise nature and there is an inherent degree of vagueness or uncertainty present in the system under consideration. Hence the classical mathematical techniques may not be useful to formulate and solve the real world problems. In such situations, the fuzzy sets introduced by Zadeh[11] in 1965 provide effective and efficient tools and techniques to handle these problems. Many authors such as Campos[2], Sakawa et.al[6], Selvakumari et.al[8], Thirucheran et.al[9] etc., have studied fuzzy games. Sakawa et.al[6] introduced max-min solution procedure for multi-objective fuzzy games. Charilas et.al [3] collected applications of game theory in wireless networking and presents them in a layered perspective, emphasizing on which fields game theory could be effectively applied. Bompard et.al [1] presented a medium run electricity market simulator based on game theory. Fiestras-Janeiro et.al [4] provides a review of the applications of cooperative game theory in the management of centralized inventory systems. Madani [5] reviewed applicability of game theory to water resources management and conflict resolution through a series of non-cooperative water resource games. His paper illustrates the dynamic structure of water resource problems and the importance of considering the game’s evolution path while studying such problems. In this paper, we have proposed a new approach based on the principle of dominance for the fuzzy optimal solution of the fuzzy valued game without converting to its equivalent crisp form.

The rest of this paper is organized as follows. In section 2, we recall the basic concepts and the results of trapezoidal fuzzy numbers and their arithmetic operations. In section 3, we have proposed a matrix method for the solution of fuzzy games. In section 4, Numerical example is provided to illustrate the efficiency of the proposed method. Section 5 gives the conclusion of this Paper.
2. Preliminaries

Definition 2.1. A fuzzy set \(\tilde{A} \) defined on the set of real numbers \(\mathbb{R} \) is said to be a fuzzy number, if its membership function \(\tilde{A} : \mathbb{R} \to [0,1] \) has the following characteristics:

(i) \(\tilde{A} \) is convex, (ie.) \(\tilde{A}(\lambda x_1 + (1 - \lambda)x_2) \geq \min\{\tilde{A}(x_1), \tilde{A}(x_2)\}, \lambda \in [0,1] \), for all \(x_1, x_2 \in \mathbb{R} \)

(ii) \(\tilde{A} \) is normal, (ie.) there exists an \(x \in \mathbb{R} \) such that \(\tilde{A}(x) = 1 \)

(iii) \(\tilde{A} \) is piecewise continuous.

Definition 2.2. A fuzzy number \(\tilde{A} \) is a trapezoidal fuzzy number denoted by \(\tilde{A} = (a_1, a_2, a_3, a_4) \) where \(a_1, a_2, a_3, a_4 \) are real numbers and its membership function is given by

\[
\tilde{A}(x) = \begin{cases}
\frac{x - a_1}{a_2 - a_1} & \text{if } a_1 \leq x \leq a_2 \\
1 & \text{if } a_2 \leq x \leq a_3 \\
\frac{a_4 - x}{a_4 - a_3} & \text{if } a_3 \leq x \leq a_4 \\
0 & \text{otherwise}
\end{cases}
\]

Without loss of generality we represent the trapezoidal fuzzy number \(\tilde{A} = (a_1, a_2, a_3, a_4) \) as \(\tilde{A} = (m, w, \alpha, \beta) \), where \(m = \left(\frac{a_2 + a_3}{2} \right) \) and \(w = \left(\frac{a_4 - a_2}{2} \right) \) are the midpoint and width of the core \([a_2, a_3]\) respectively. Also \(\alpha = (a_2 - a_1) \) denotes the left spread and \(\beta = (a_4 - a_3) \) denotes the right spread of the trapezoidal fuzzy number.

Definition 2.3. Ranking of Trapezoidal Fuzzy Number

An efficient approach for comparing the fuzzy numbers is the ranking function based on the graded means. For every \(\tilde{A} = (a_1, a_2, a_3, a_4) \in F(\mathbb{R}) \), define the ranking function \(R : F(\mathbb{R}) \to \mathbb{R} \) by its graded mean as

\[
R(\tilde{A}) = \left[\frac{a_2 + a_3}{2} + \frac{\beta - \alpha}{4} \right].
\]

Here \(F(\mathbb{R}) \) denotes the set of all trapezoidal fuzzy numbers defined on \(\mathbb{R} \). For any two arbitrary numbers \(\tilde{A} = (\bar{a}_1, \bar{a}_2, \bar{a}_3, \bar{a}_4) \) and \(\tilde{B} = (b_1, b_2, b_3, b_4) \) in \(F(\mathbb{R}) \), we have the following comparison:

(i) \(\tilde{A} \prec \tilde{B} \) if and only if \(R(\tilde{A}) < R(\tilde{B}) \)

(ii) \(\tilde{A} \succ \tilde{B} \) if and only if \(R(\tilde{A}) > R(\tilde{B}) \)

(iii) \(\tilde{A} \approx \tilde{B} \) if and only if \(R(\tilde{A}) = R(\tilde{B}) \)

Definition 2.4. Arithmetic Operations on Trapezoidal Fuzzy Numbers

For arbitrary trapezoidal fuzzy numbers \(\tilde{A} = (m(\bar{a}), w(\bar{a}), \alpha_1, \beta_1) \) and \(\tilde{B} = (m(\bar{b}), w(\bar{b}), \alpha_2, \beta_2) \) and \(* \in \{+,-,\times,\div\} \) the arithmetic operations on trapezoidal fuzzy numbers are defined by

\[
\tilde{A} * \tilde{B} = (m(\bar{a}) * m(\bar{b}), w(\bar{a}) \vee w(\bar{b}), \alpha_1 \lor \alpha_2, \beta_1 \lor \beta_2)
\]

That is the midpoint is taken in the ordinary arithmetic, whereas the width, left and right spread are considered to follow the lattice rule. That is for \(a, b \in \mathbb{L} \), define \(a \lor b = \max\{a, b\} \) and \(a \land b = \min\{a, b\} \).
In particular for any two trapezoidal fuzzy numbers \(\tilde{A} = (m(\tilde{a}), w(\tilde{a}), \alpha, \beta) \) and
\(\tilde{B} = (m(\tilde{b}), w(\tilde{b}), \alpha, \beta) \), we define

(i) Addition: \(\tilde{A} + \tilde{B} = (m(\tilde{a}), w(\tilde{a}), \alpha, \beta) + (m(\tilde{b}), w(\tilde{b}), \alpha, \beta) \)
\[= (m(\tilde{a}) + m(\tilde{b}), \max\{w(\tilde{a}), w(\tilde{b})\}, \max\{\alpha, \beta\}) \]

(ii) Subtraction: \(\tilde{A} - \tilde{B} = (m(\tilde{a}), w(\tilde{a}), \alpha, \beta) - (m(\tilde{b}), w(\tilde{b}), \alpha, \beta) \)
\[= (m(\tilde{a}) - m(\tilde{b}), \max\{w(\tilde{a}), w(\tilde{b})\}, \max\{\alpha, \beta\}) \]

(iii) Multiplication: \(\tilde{A} \times \tilde{B} = (m(\tilde{a}), w(\tilde{a}), \alpha, \beta) \times (m(\tilde{b}), w(\tilde{b}), \alpha, \beta) \)
\[= (m(\tilde{a}) \times m(\tilde{b}), \max\{w(\tilde{a}), w(\tilde{b})\}, \max\{\alpha, \beta\}) \]

(iv) Division: \(\tilde{A} \div \tilde{B} = (m(\tilde{a}), w(\tilde{a}), \alpha, \beta) \div (m(\tilde{b}), w(\tilde{b}), \alpha, \beta) \)
\[= (m(\tilde{a}) \div m(\tilde{b}), \max\{w(\tilde{a}), w(\tilde{b})\}, \max\{\alpha, \beta\}) \]

3. Matrix games

A finite two-person zero-sum game which is represented in matrix form is called a matrix game. This is a direct consequence of the fact that two opponents with exactly opposite interests play a game under a finite number of strategies, independently of his or her opponent’s action. Once both players each make an action, their decisions are disclosed. A payment is made from one player to the other based on the outcome, such that the gain of one player equals the loss of the other, resulting in a net payoff summing to zero.

3.1. The Fuzzy Payoff Matrix

The problem that we are aiming to solve is a two player zero sum fuzzy game in which the entries in the payoff matrix \(A \) are trapezoidal fuzzy number. The fuzzy payoff matrix is

\[
\tilde{A} = \begin{bmatrix}
\tilde{a}_{11} & \tilde{a}_{12} & \cdots & \tilde{a}_{1n} \\
\tilde{a}_{21} & \tilde{a}_{22} & \cdots & \tilde{a}_{2n} \\
\cdots & \cdots & \cdots & \cdots \\
\tilde{a}_{m1} & \tilde{a}_{m2} & \cdots & \tilde{a}_{mn}
\end{bmatrix}
\]

Player A has \(m \) strategies and Player B has \(n \) strategies. If Player A chooses the \(i \)th strategies and Player B chooses \(j \)th strategies, the Player A win.

Definition 3.1. Saddle point

If the max-min value equals the mini-max value then the game is said to a saddle (equilibrium) point and the corresponding strategies are called optimum strategies. The amount of payoff at an equilibrium point is known as the value of the game.

3.2. The Principle of Dominance (Dominant Strategy or Dominance Method)

Step 1. Represent the trapezoidal fuzzy numbers in the fuzzy game problem in its parametric form.

Step 2. Identify any two rows. If the elements in one row is found to be less than or equal to the corresponding elements in the other row that row dominates the other.

Step 3. Consider the elements in any column which are greater than or equal to the corresponding elements in any other column then that column is dominated.

Step 4. The dominated columns and rows are identified and deleted to form the reduced matrix.
Theorem 3.1. For any 2×2 two person zero sum fuzzy game without any saddle point having the payoff matrix for player A as given below:

$$
\begin{bmatrix}
 a_{11} & a_{12} \\
 a_{21} & a_{22}
\end{bmatrix}
$$

The optimum mixed fuzzy strategies FS_A and FS_B are determined by

$$
\bar{p}_1 = \frac{a_{22} - a_{21}}{a_{11} + a_{22} - (a_{12} - a_{21})}, \quad \bar{p}_2 = \frac{a_{11} - a_{12}}{a_{11} + a_{22} - (a_{12} - a_{21})}, \quad \bar{q}_1 = \frac{a_{22} - a_{21}}{a_{11} + a_{22} - (a_{12} - a_{21})},
$$

$$
\bar{q}_2 = \frac{a_{11} - a_{21}}{a_{11} + a_{22} - (a_{12} - a_{21})} \quad \text{and} \quad \bar{v} = \frac{a_{11}a_{22} - a_{12}a_{21}}{a_{11} + a_{22} - (a_{12} - a_{21})}
$$

4. Numerical example

Consider the fuzzy game problem with payoff matrix as trapezoidal fuzzy numbers

$$
\begin{bmatrix}
 (1,4,5,6) & (1,2,4,5) & (3,4,7,8) & (4,5,7,8) \\
 (5,10,12,17) & (8,10,11,19) & (5,7,10,14) & (7,10,11,12) \\
 (-1,0,2,3) & (-1,2,3,4) & (12,14,18,20) & (8,17,21,30)
\end{bmatrix}
$$

Representing all trapezoidal fuzzy numbers in parametric form, we have

Player B

Player B	Row min	Player A	Column max
(4.5,0.5,3,1) & (3,1,1,1) & (11,1,5,5) & (10.5,0.5,2,8)			
(4,5,0.5,1,3) & (6,1,1,1) & (10.5,0.5,3,1) & (12,2,2,2)			
(3,1,1,1) & (1,1,1,1) & (8,5,1,5,2,4) & (20,17,21,30)			
(3,1,1,1) & (1,1,1,1) & (1,1,1,1) & (1,1,1,1)			

Max.min = (8.5,1.5,2,4) = maximum of row minimum
Min.max = (11,1,5,5) = minimum of column maximum and Max.min ≠ Min.max.

It has no saddle point, so we can apply Dominance method to solve the problem.

Table 1: Ranking of the trapezoidal fuzzy numbers in the fuzzy game problem

Trapezoidal fuzzy number	Rank of trapezoidal fuzzy number
$\tilde{a}_{11} = (4.5,0.5,3,1)$	R(\tilde{a}_{11}) = 4
$\tilde{a}_{12} = (3,1,1,1)$	R(\tilde{a}_{12}) = 3
$\tilde{a}_{13} = (4.5,0.5,1,3)$	R(\tilde{a}_{13}) = 5
$\tilde{a}_{14} = (6,1,1,1)$	R(\tilde{a}_{14}) = 6
$\tilde{a}_{21} = (11,1,5,5)$	R(\tilde{a}_{21}) = 11
$\tilde{a}_{22} = (10.5,0.5,2,8)$	R(\tilde{a}_{22}) = 12
$\tilde{a}_{23} = (8.5,1,5,2,4)$	R(\tilde{a}_{23}) = 9
$\tilde{a}_{24} = (10.5,0.5,3,1)$	R(\tilde{a}_{24}) = 10
$\tilde{a}_{31} = (1,1,1,1)$	R(\tilde{a}_{31}) = 1
$\tilde{a}_{32} = (2.5,0.5,3,1)$	R(\tilde{a}_{32}) = 2
$\tilde{a}_{33} = (16,2,2,2)$	R(\tilde{a}_{33}) = 16
$\tilde{a}_{34} = (19,2,9,9)$	R(\tilde{a}_{34}) = 19
By dominance principle applied between Row 1 and Row 2, Row 1 can be omitted.

Player B

\[
\begin{bmatrix}
11,1,5,5 & 10,5,0,5,2,8 & 8,5,1,5,2,4 & 10,5,0,5,3,1 \\
1,1,1,1 & 2,5,0,5,3,1 & 16,2,2,2 & 19,2,9,9 \\
\end{bmatrix}
\]

By dominance principle applied between column 1 and column 2, column 2 can be omitted.

Player B

\[
\begin{bmatrix}
11,1,5,5 & 8,5,1,5,2,4 & 10,5,0,5,3,1 \\
1,1,1,1 & 16,2,2,2 & 19,2,9,9 \\
\end{bmatrix}
\]

By dominance principle applied between column 3 and column 4, column 4 can be omitted.

Player B

\[
\begin{bmatrix}
11,1,5,5 & 8,5,1,5,2,4 \\
1,1,1,1 & 16,2,2,2 \\
\end{bmatrix}
\]

Max.min=(8,5,1,5,2,4); Min.max=(11,1,5,5) and Max.min ≠ Min.max.

It has no saddle point.

The reduced fuzzy payoff matrix represent a 2×2 two person zero sum fuzzy game without any saddle point. Then by theorem 3.1, we have optimum mixed fuzzy strategies as

\[
p_1 = \left(\frac{15}{17.5} , 2.5, 5.5 \right); p_2 = \left(\frac{2.5}{17.5} , 2.5, 5.5 \right); q_1 = \left(\frac{7.5}{17.5} , 2.5, 5.5 \right); q_2 = \left(\frac{10}{17.5} , 2.5, 5.5 \right)
\]

Strategy for player A = \((p_1, p_2) = (0,0,0,0), \left(\frac{15}{17.5} , 2.5, 5.5 \right), \left(\frac{2.5}{17.5} , 2.5, 5.5 \right))

Strategy for player B = \((q_1, q_2) = \left(\frac{7.5}{17.5} , 2.5, 5.5 \right), (0,0,0,0), \left(\frac{10}{17.5} , 2.5, 5.5 \right), (0,0,0,0))

Value of the game \(= \frac{a_{11}a_{32} - a_{12}a_{21}}{a_{11} + a_{22} - (a_{12} + a_{21})} = \frac{167.5}{17.5} , 2.5, 5.5 \)

Hence the value of the game in terms of \(\bar{a} = (a_1, a_2, a_3, a_4) \) is \((2.5714, 7.5714, 11.5714, 16.5714) \).

5. Conclusion

In this paper we have obtained the optimum solution of fuzzy game without converting to classical form by applying a new ranking method and a new fuzzy arithmetic on the parametric form of trapezoidal fuzzy numbers. It is evident from the above example that the proposed method is capable of giving fuzzy solution for the fuzzy matrix game.

References

[1] Bompad E, Carpaneto E, Ciwei G, Napoli R, Benini M, Gallanti Mand Migliavacca G, 2008 A game theory simulator for assessing the performances of competitive electricity markets Electric Power Systems Research 78 (2) pp 217-227.

[2] Campos L, Fuzzy linear programming models to solve fuzzy matrix games, 1989 Fuzzy Sets and Systems, 32(3)pp 275-289.

[3] Charlas D E, and Panagopoulos A D, 2010 A survey on game theory applications in wireless networks Computer Networks, 54 (18) pp 3421-3430.

[4] Fiestras-Janeiro M G, Garcia-Jurado I, Meca A and Mosquera M A, 2011 Cooperative game theory and inventory management European Journal of Operational Research, 210 (3) pp 459-466.

[5] Madani K, 2010 Game theory and water resources Journal of Hydrology, 381 (3-4) pp 225-238.

[6] Sakawa M and Nishizaki I, 1994 Max-min solution for fuzzy multi-objective matrix games
Fuzzy Sets and Systems, 67(1) pp 53-59

[7] Senthil Kumar R and Kumaraghuru S, 2015 Solution of Fuzzy Game Problem using Triangular Fuzzy Numbers IJISET, 2(2) pp 497-502.

[8] Selvakumari K and Lavanya S, 2015 An approach for solving fuzzy game problem Indian Journal of Science and Technology, 8(15) pp 1-6.

[9] Thirucheran M, Meena Kumari, E R and Lavanya S, 2017 A new approach for solving fuzzy game problem International Journal of Pure and Applied Mathematics, 114(6) pp 67 – 75.

[10] Von Neumann J and Morgenstern D, 1944 Theory of Games in Economic Bahavior, New York, Wiley.

[11] Zadeh L A, 1965 Fuzzy sets Information and Control, 8(3) pp 338-352.