Identification of seven long noncoding RNAs signature for prediction of biochemical recurrence in prostate cancer

Ning Shao1,2,*, Yao Zhu1,2,*, Fang-Ning Wan1,2, Ding-Wei Ye1,2

Accumulating evidence suggested that long noncoding RNAs (lncRNAs) possess a potential role in prostate cancer (PCa) diagnosis and prognosis. Rapid biochemical recurrence (BCR) is considered as a sign for clinical recurrence metastasis and PCa-specific mortality. Hence, the aim of the present study was to identify a lncRNA signature that can predict BCR of PCa accurately. Bioinformatics analysis, Kaplan–Meier analyses, Cox regression analyses, and Gene Set Enrichment Analysis (GSEA) were performed in a publicly available database with 499 PCa tissues and 52 matched normal tissues. A signature was identified. All these lncRNAs were differentially expressed between tumor and normal tissues and differentially expressed between high Gleason score and low Gleason score tissues. Furthermore, we developed a seven lncRNAs signature that can predict PCa BCR. Patients classified into low-risk group showed better BCR survival significantly than the patients in the high-risk group (hazard ratio = 0.32, 95% CI: 0.20–0.52, concordance index = 0.63). The area under the curve was 0.68 for BCR. The signature also had good discrimination for BCR in men with Gleason 7 PCa. In conclusion, our results suggest that the seven lncRNAs signature is a new biomarker of BCR and high risk in PCa. In addition, the individual lncRNA warrants further study to uncover the associated mechanisms of PCa progression and the signature could be used to design direct clinical trials for adjuvant therapy.

Asian Journal of Andrology (2019) 21, 618–622; doi: 10.4103/aja.aja_118_18; published online: 5 March 2019

Keywords: biochemical recurrence; biomarker; high risk; long noncoding RNA; prostate cancer
MATERIALS AND METHODS

Data preparation and processing

Raw IncRNAs sequencing data (fragments per kb of exon per million fragments mapped, FPKM) from PCa samples were obtained from TCGA data portal (https://cancergenome.nih.gov/, accessed on 13 Jan 2018). Then, IncRNA expression levels were converted into transcripts per kilobase million (TPM) values.

To identify differentially expressed IncRNAs between PCa and normal tissues, IncRNA sequencing data from both tumor and normal samples were included. To construct the IncRNAs signature, only tumor samples with clinical information and adequate BCR information were included. Differential IncRNA expression between PCa and normal tissues were compared using limma package. Fold changes (FCs) were calculated and only IncRNAs with log_{2}[FC] > 2.0 and P < 0.05 were defined as significantly expressed IncRNAs. The overlapping significantly expressed IncRNAs were considered candidate IncRNAs for further analyses.

Developing the IncRNAs expression signature

The prognostic value for BCR of candidate IncRNAs was evaluated using Kaplan–Meier curve and the log-rank method. A total of 457 patients with sufficient BCR information were included in the analysis. The IncRNAs, significantly associated with BCR, were then subjected to Cox logistic regression analysis. Risk scores for each patient based on IncRNAs expression were calculated by their regression coefficients. Subsequently, a prognostic IncRNA signature was constructed. According to our seven-IncRNA signature, PCa patients were classified into high- or low-risk groups using the median risk score. Kaplan–Meier analysis of BCR was used to validate the prognostic value in the two groups.

Identifying a lncRNA signature associated with signaling pathways

The target miRNAs or genes of IncRNAs were predicted using online analysis tools, such as StarBase (http://starbase.sysu.edu.cn/), RBPDB (http://rbpdb.ccbr.utoronto.ca/), circlncRNA.net (http://app.cgu.edu.tw/circlnc/), and LncRNAMAP (http://lncrnamap.mbc.nctu.edu.tw/php/). Then, the overlapping target miRNAs or genes were identified using Venn diagrams. Gene Set Enrichment Analysis (GSEA) was performed to identify various gene sets that share common biological functions, chromosomal locations, or regulation. Thus, the biological pathways altered in our IncRNAs signature risk score were identified via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The FDR < 0.05 and P < 0.01 were set as the cutoff criteria.

Statistical analyses

Relationships between IncRNA expression and clinical features were assessed by the Wilcoxon rank-sum test for continuous variables and Chi-square test for categorical variables. To assess associations between IncRNA expression and BCR, Kaplan–Meier curves and the log-rank tests were used. Cox proportional hazards analysis was used to assess the relative impacts of different groups (high vs low level) on BCR. The concordance index (C-index) was used to evaluate the discriminatory powers of the signature. To assess predictive ability, the likelihood ratio test was used to compare the C-index of different signatures. All statistical analyses were performed using R (version 3.4.2, www.r-project.org). All statistical tests were 2-sided, and P < 0.05 was considered statistically significant.

RESULTS

Identifying IncRNAs with significantly altered expression in PCa

To identify target IncRNAs, 499 PCa tissues and 52 matched normal tissues were enrolled in this study. According to the definition ([log_{2}FC] > 2.0 and P < 0.05), a total of 163 differentially expressed IncRNAs were identified between PCa and normal tissues, including 131 upregulated and 32 downregulated IncRNAs (Figure 1A). A total of 22 IncRNAs were found to have significantly different expression levels between Gleason score ≤ 6 and Gleason score ≥ 8 tissues, including 5 upregulated and 17 downregulated IncRNAs (Figure 1B). Volcano plots were performed to more intuitively reflect these expression data. Fifteen differentially expressed IncRNAs overlapped between the two analyses and were considered candidate IncRNAs. Based on differentially expressed IncRNAs patterns, hierarchical cluster analysis revealed that PCa tissues and tissues with high Gleason score could be distinguished from normal tissues and tissues with low Gleason score, respectively (Supplementary Figure 1).

Seven IncRNAs were associated with BCR in PCa

Associations between IncRNA expression and BCR were assessed by Kaplan–Meier analysis and the log-rank test. The average age of included patients was 60.8 years. We also evaluated detailed clinical characteristics, including diagnosis at age, metastasis, lymph node status, T stage, and Gleason score. Among this group, 181 patients had high Gleason scores (≥ 8) PCa and 43 patients had low Gleason scores (≤ 6) PCa. The remaining patients had Gleason score 7 PCa. Finally, 85 patients had BCR and 2 had metastases.

Our results indicated that a total of 1334 IncRNAs were significantly correlated with PCa BCR. Based on this analysis, seven of 15 candidate IncRNAs were associated with BCR and were used to construct the IncRNA signature (Figure 1C). Small nuclear RNA host gene 1 (SNHG1) and colorectal neoplasia differentially expressed (CRNDE) were upregulated in the PCa tissues compared with normal tissues and were also upregulated in high Gleason score tissues compared with low Gleason score tissues. Conversely, the remaining five IncRNAs (RNA-Glu [CTC]-296K1.4, ubiquitin-binding protein domain protein 10 antisense RNA 1 [UBXN10-AS1], prostate androgen-regulated transcript 1 [PART1], CTC-296K1.3, and phosphoglucomutase 5 antisense RNA 1 [PGM5-AS1]) were all downregulated in PCa tissues and high Gleason score tissues. In addition, SNHG1 and CRNDE were positively associated with BCR, while the other five IncRNAs were negatively correlated with BCR.

The associations between seven IncRNAs and clinical features were evaluated in PCa patients (Table 1). The results showed that all seven IncRNAs were significantly associated with T stage (T1+T2 and T3+T4), lymph node status (N0 and N1), and Gleason score (< 7, = 7, and > 7). In addition, SNHG1 and PART1 expression were significantly different between the groups with different ages at diagnosis (< 60 years and ≥ 60 years).

Prognostic value of the seven IncRNAs signature risk score in PCa

The prognostic signature was constructed by integrating the expression of seven IncRNAs and their corresponding regression coefficients. The risk score formula was then expressed as the expression levels of each IncRNAs weighted by their regression coefficients as follows:

Risk score = (0.02117 × SNHG1 expression level) + (0.06256 × CRNDE expression level) + (0.17258 × CTC-296K1.4 expression level) + (-0.03433 × UBXN10-AS1 expression level) + (-0.02706 × PART1 expression level) + (-0.13507 × CTC-296K1.3 expression level) + (-0.00522 × PGM5-AS1 expression level).

Then, the 457 patients were classified into high-risk (n = 229) and low-risk group (n = 228) according to the median risk score. Time-dependent receiver operating characteristic (ROC) curves of
BCR indicated that the area under the curves (AUC) at 1, 2, and 3 years were all 0.68 (Supplementary Figure 2). BCR-free survival analysis was performed using the Kaplan–Meier method. Patients with below-median scores had significantly lower BCR-free survival than patients with high scores. The BCR-free survival rates of patients in low-risk group were 95.4% for 1 year, 90.3% for 3 years, and 79.6% for 5 years, compared with 86.9%, 69.6%, and 53.6% in high-risk patients, respectively. The patients in low-risk group showed better BCR survival (Hazard Ratio [HR] = 0.32, 95% CI: 0.20–0.52, C-index = 0.63, Figure 2a). Furthermore, incorporating other clinical parameters into our seven-lncRNA signature provided better discriminatory power. When taking patient age and Gleason score into consideration, the AUCs at 1, 2, and 3 years were 0.71, 0.70, and 0.72, respectively (Supplementary Figure 2). The HR for patients in low-risk group was 0.26 (95% CI: 0.16–0.44, C-index = 0.63, Figure 2b).

The same analysis was performed to evaluate the discriminatory powers of our seven lncRNAs signature in PCa patients with Gleason 7. The results suggested that our seven lncRNAs signature exhibited greater discrimination of BCR survival. The BCR survival of patients in low-risk group was significantly better than that of patients in high-risk group (HR = 0.39, 95% CI: 0.17–0.87, C-index = 0.60, Supplementary Figure 3).

Identifying pathways associated with seven lncRNAs signature

Target genes of the seven lncRNAs (SNHG1, CRNDE, CTC-296K1.4, UBXN10-AS1, PART1, CTC-296K1.3, and PGM5-AS1) were predicted using the online analysis tools lncRNAbase, RBPDB, and circlncRNA.net, while target miRNAs were predicted with lncRNAbase, circlncRNA.net, and LncRNA MAP. We then combined all of the identified target genes and miRNAs from each database (Figure 3 and Supplementary Table 1). GSEA in TCGA database was performed to identify biological signaling pathway associated with the seven lncRNAs. Significant gene sets (P < 0.001 and FDR < 0.05) are displayed as enrichment plots (Supplementary Figure 4 and Supplementary Table 2). The lncRNAs associated gene sets regulated chromatin binding, protein serine/threonine kinase activity, RNA helicase activity, core promoter binding, and oxidoreductase activity.

DISCUSSION

Tumor risk stratification tools have significant clinical value for personalized medicine. However, using the current pathological parameters, risk stratification in PCa patients with Gleason 7 PCa remains a challenge. Similarly, establishing prediction models for PCa BCR also remains one of the most important problems that needs to be addressed. Most of the previous studies that developed molecular signatures have focused on gene expression. Here, we investigated the potential role of lncRNAs as novel signatures in this field.

LncRNAs play important roles in various cancers, including transcriptional regulation and mRNA posttranscriptional processing. Several studies have shown that lncRNAs differentially expressed in PCa. Evidence is mounting that lncRNAs may be useful diagnostic and prognostic biomarkers for cancer. Hence, lncRNAs were chosen as potential markers in our novel signature for predicting biochemical recurrence and high-risk in PCa.

In our study, seven lncRNAs (SNHG1, CRNDE, CTC-296K1.4, UBXN10-AS1, PART1, CTC-296K1.3, and PGM5-AS1) were identified to be significantly associated with PCa BCR and were differentially expressed not only between tumor and normal tissues, but also between tissues with Gleason score ≥8 and those with Gleason score ≤6. Moreover, our seven lncRNAs signature showed better discrimination...
of BCR survival curves and HRs both in all PCa patients and in patients with Gleason score 7 from TCGA database. In addition, our IncRNA signature predicted BCR well and provided novel tools for better clinical management of PCa patients with intermediate risk.

Previous studies suggested that active surveillance might be the most appropriate treatment for low-risk PCa patients, while high-risk patients should be treated aggressively. However, management decisions for patients with intermediate risk remain controversial. Approximately 20% of these patients will have BCR within 18 months after primary local therapy (radical prostatectomy or radiotherapy). Early BCR is considered a sign of clinical recurrence, metastasis, and PCa-specific mortality. Therefore, our signature that could classify patients into high or low risk of BCR may help select the most appropriate treatments and play an important role in the clinical management of PCa patients. Overestimating the risk of patients with low recurrence rates could lead to overtreatment. Identification of the real high-risk patients is key to precision medicine, preventing progression of PCa and reducing the burden of overtreatment.

Several studies have indicated that IncRNAs can be powerful predictors for survival in a variety of cancers. A previous gene molecular signature (HDDA10) that was established by TA Bismar showed significant performance for predicting PCa BCR with AUC = 0.65 in 2018. In comparison, our seven-IncRNA signature with AUC = 0.68 had relatively better discriminatory power. These results need to be prospectively validated, but provide evidence for the role of IncRNAs in the diagnosis and prognosis of PCa. If the negative predictive value (nNPV) is sufficiently high, the IncRNAs could be used to better identify patients that would benefit from adjuvant therapies in future randomized controlled trials (RCTs). Patients with a high risk of BCR should be enrolled into adjuvant or other systemic therapies, while low-risk patients should be entered into active surveillance. Subsequently, efficacy and safety evaluations of novel adjuvant therapies could be more accurately assessed.

Among our seven IncRNAs signature, SNHG1 had previously been identified, both alone and in combination with other IncRNAs as a biomarker for hepatocellular carcinoma, glioma, and lung cancer before. In addition, Li et al. found that SNHG1 could promote cell proliferation and cell cycle progression in PCa by binding miR-199a-3p. Similarly, previous studies demonstrated that PART1 was associated with poor prognosis in lung cancer. With regard to PCa, data published by Sun et al. suggested that PART1 promoted cell proliferation and blocked apoptosis via inhibiting TLR pathways. The roles of CRNDE and PGM5-AS1 as potential prognostic biomarkers were also validated in past findings. However, neither had been investigated in PCa. To date, there are few studies associated with...
the remaining three lncRNAs. From above results, SNHG1 and PART1 were identified as being involved in PCa carcinogenesis and development. CRNDE and PGMS-A51 served as biomarkers and prognosis factors in other cancers. Hence, these studies suggested that our signature was reasonable and reliable. Future studies may focus on the other lncRNAs and investigate their function in PCa. Furthermore, these lncRNAs may have potential value in molecular targeted treatments.

Accumulating evidence has proved that lncRNAs participate in various biological processes by regulating mRNA expression at epigenetic, transcriptional, and posttranscriptional levels. However, most lncRNAs have not been functionally annotated in PCa. The present study indicated the associated biological signaling pathway of the seven lncRNAs through GSEA. Furthermore, previous studies have suggested that transcription factors associated with epithelial-to-mesenchymal transition (EMT) and androgen receptor (AR) splice variant-7 (AR-V7) may serve as biomarkers and play an important role in cancer progression and resistance to treatment. Our lncRNA signature was associated with the expression of zinc finger E-box binding homeobox 1 (ZEB1), vimentin (VIM, key EMT transcription factors), and AR (data not shown). Validation of the associations between the lncRNAs and actual signaling pathway is warranted. The potential molecular function of these lncRNAs, like protein serine threonine kinase activity, RNA helicase activity, core promoter binding, and oxidoreductase activity, may direct further studies that investigate mechanisms of PCa progression.

CONCLUSION
In summary, our study identified several lncRNAs that are significantly differentially expressed in PCa versus benign tissue and in high Gleason versus low Gleason score PCa. Furthermore, we developed a seven lncRNAs signature that can predict PCa BCR. The signature also has good discrimination for BCR in men with Gleason 7 PCa. Further studies are needed to validate our results and further RCTs can test the role of this signature for predicting the efficacy and safety of adjuvant therapy. In addition, functional studies are required to better understand the molecular mechanisms in PCa.

AUTHOR CONTRIBUTIONS
FNW and DWY conceived of the study and participated in its design and coordination. NS and YZ did the formal analysis. NS drafted the manuscript. YZ and DWY revised the manuscript. DWY reviewed the results and provided expert insight into the writing of the report. All authors read and approved the final manuscript.

COMPETING INTERESTS
The authors declared no competing interests.

ACKNOWLEDGMENTS
This study was supported by the National Natural Science Foundation of China (No. 81502192 to FNW, No. 81370073 to YZ and No. 81872099, 81472377 and 81672544 to DWY) and the Shanghai Rising Star Program (No. 16QA1401100).

REFERENCES
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin 2017; 67: 7–30.
2. Shao N, Wang Y, Jiang WY, Qiao D, Zhang SG, et al. Immunotherapy and endothelin receptor antagonists for treatment of castration-resistant prostate cancer. Int J Cancer 2013; 133: 1743–50.
3. Hirst CJ, Cabrera C, Kirby M. Epidemiology of castration resistant prostate cancer: a longitudinal analysis using a UK primary care database. Cancer Epidemiol Biomark Prev 2012; 36: e349–53.
4. Yin Y, Zhang Q, Zhang H, He Y, Huang J. Molecular signature to risk-stratify prostate cancer of intermediate risk. Clin Cancer Res 2017; 23: 6–8.
5. Dall’Era MA, Albertsens PC, Bangma C, Carroll PR, Carter HB, et al. Active surveillance for prostate cancer: a systematic review of the literature. Eur Urol 2012; 62: 976–83.
6. Perney KL, Sinnott JA, Fall K, Pawlitan Y, Hoshida Y, et al. mRNA expression signature of Gleason grade predicts lethal prostate cancer. J Clin Oncol 2011; 29: 2391–6.
7. Wang W, Zhao Z, Yang F, Wang H, Wu F, et al. An immune-related lncRNA signature for patients with anaplastic gliomas. J Neuro Oncol 2018; 136: 263–71.
8. Wulisz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Gene Dev 2009; 13: 2494–504.
9. Liang C, Zhang B, Ge H, Xu Y, Li G, et al. Long non-coding RNA CRNDE as a potential prognostic biomarker in solid tumors: a meta-analysis. Clin Chim Acta 2018; 481: 99–107.
10. Sun M, Geng D, Li S, Chen Z, Zhao W. LncRNA PART1 modulates toll-like receptor pathways to influence cell proliferation and apoptosis in prostate cancer cells. Biol Chem 2018; 399: 387–95.
11. Malik B, Feng FY. Long noncoding RNAs in prostate cancer: overview and clinical implications. Asian J Androl 2016; 18: 568–74.
12. Lalonde E, Ishkanian AS, Sykes J, Fraser M, Ross-Adams H, et al. Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study. Lancet Oncol 2014; 15: 1521–32.
13. Hansen J, Bianchi M, Sun M, Rink M, Castiglione F, et al. Percentage of high-grade tumour volume does not meaningfully improve prediction of early biochemical recurrence after radical prostatectomy compared with Gleason score. BJU Int 2014; 113: 399–407.
14. Zhang M, Wang W, Li T, Yu X, Zhu Y, et al. Long noncoding RNA SNHG1 predicts a poor prognosis and promotes hepatocellular carcinoma tumorigenesis. Biomed Pharmacother 2016; 80: 73–9.
15. Abou-Ouf H, Alshalfa M, Takhar M, Erho N, Donnelly B, et al. Validation of a 10-gene molecular signature for predicting biochemical recurrence and clinical metastasis in localized prostate cancer. J Cancer Res Clin Oncol 2018; 144: 883–91.
16. Wang Q, Li Q, Zhou P, Deng D, Xue L, et al. Upregulation of the long non-coding RNA SNHG1 predicts poor prognosis, promotes cell proliferation and invasion, and reduces apoptosis in glioma. Biomed Pharmacother 2017; 91: 906–11.
17. Li J, Jiang Z, Xiong L, Guo C, Jiang T, et al. SNHG1 lncRNA negatively regulates miR-199a-3p to enhance CDK7 expression and promote cell proliferation in prostate cancer. Biochem Biophys Res Commun 2017; 487: 146–52.
18. Li M, Zhang W, Zhang S, Wang C, Lin Y. PART1 expression is associated with poor prognosis and tumor recurrence in stage I-III non-small cell lung cancer. J Cancer 2017; 8: 1795-800.
19. Ellis BC, Molloy PL, Graham LD. CRNDE: a long non-coding RNA involved in cancer, neurobiology, and development. Front Genet 2012; 3: 270.
20. Liu T, Zhang X, Yang YM, Du LT, Wang DX. Increased expression of the long noncoding RNA CRNDE-h indicates a poor prognosis in colorectal cancer, and is positively correlated with IRX5 mRNA expression. Onco Targets Ther 2016; 9: 1437–48.
21. Zhu H, Yu J, Zhu H, Guo Y, Feng S. Identification of key lncRNAs in colorectal cancer progression based on associated protein-protein interaction analysis. World J Surg Oncol 2017; 15: 153.
Supplementary Figure 1: Heat map (a) showed differentially expressed IncRNAs in prostate cancer between Gleason score ≤6 and Gleason score ≥8. Heat map (b) showed differentially expressed IncRNAs between prostate cancer tissues and normal tissues. IncRNAs: long noncoding RNAs.
Supplementary Figure 2: Time-dependent ROC curves for seven lncRNAs signature at 1 (a), 2 (b) and 3 (c) years. ROC curves for seven lncRNAs signature incorporating age and Gleason score at 1 (d), 2 (e), and 3 (f) years. ROC: receiver operating characteristic.
Supplementary Figure 3: Kaplan–Meier survival curves of biochemical recurrence in prostate cancer patients with Gleason score = 7. The patients were stratified into high-risk group and low-risk group according to seven-lncRNAs signature. HR: hazard ratios; CI: credible interval; C-index: concordance index; lncRNAs: long noncoding RNAs.

HR = 0.39, 95%CI: 0.17-0.87

C-index = 0.60
Supplementary Figure 4: The Enrichment Map of seven-lncRNAs signature associated biological signaling pathway using GSEA ($P < 0.001$ and FDR < 0.05). lncRNAs: long noncoding RNAs; GSEA: Gene Set Enrichment Analysis.
Table S1: The seven-lncRNAs-associated target genes and miRNAs using online tools

Gene	miRNAs
FUS	hsa-mir-3937
IGF2BP1	hsa-mir-4258
QKI	hsa-mir-4739
SFRS1	hsa-mir-4712
TIA1	hsa-mir-3937
ACO1	hsa-mir-3937
HNRNPA1	hsa-mir-4712
RBMX	hsa-mir-4739
MBNL1	hsa-mir-650
PTBP1	hsa-mir-3158
PABPC1	hsa-mir-650
NONO	hsa-mir-3158

Table S2: The seven-lncRNAs-associated biological signaling pathway using GSEA

Event	ES	NES	P	FDR
Chromatin binding	0.515	2.011	0.000	0.020
mitogen activated protein kinase binding	0.683	2.003	0.000	0.021
RNA helicase activity	0.670	2.012	0.000	0.022
demethylase activity	0.726	1.988	0.000	0.023
protein serine threonine kinase activity	0.503	2.012	0.000	0.024
purine ntp dependent helicase activity	0.642	1.964	0.000	0.025
receptor signaling complex scaffold activity	0.676	2.015	0.000	0.025
ubiquitin like protein specific protease activity	0.579	1.969	0.000	0.025
p53 binding	0.585	2.023	0.000	0.027
lysine n methyltransferase activity	0.619	2.051	0.000	0.027
kinesin binding	0.682	2.058	0.000	0.031
core promoter binding	0.546	2.067	0.000	0.034
protein complex scaffold	0.510	1.921	0.000	0.037
core promoter sequence specific dna binding	0.515	1.917	0.000	0.038
core promoter proximal region dna binding	0.452	1.903	0.000	0.041
RNA polymerase ii transcription cofactor activity	0.478	1.893	0.000	0.044
dynein binding	0.643	1.882	0.000	0.045
histone demethylase activity	0.821	1.887	0.000	0.046
glutathione peroxidase activity	-0.747	-1.983	0.000	0.015
oxidoreductase activity acting on nad P h quinone or similar compound as acceptor	-0.788	-2.003	0.000	0.018
electron carrier activity	-0.554	-1.930	0.000	0.021
oxidoreductase activity acting on a heme group of donors	-0.812	-2.043	0.000	0.030
disulfide oxidoreductase activity	-0.601	-1.880	0.000	0.034
hydrogen ion transmembrane transport	-0.652	-2.166	0.000	0.016
hydrogen transport	-0.568	-2.098	0.000	0.030
peptidyl lysine methylation	0.664	2.201	0.000	0.045