Genotype-phenotype correlations in SCN8A-related epilepsy: a cohort study of Chinese children in southern China

Bing-wei Peng, Yang Tian, Li Chen, Li-fen Duan, Xiuying Wang, Hai-xia Zhu, Kai-li Shi, Ke-lu Zheng, Hui-ling Shen, Wei Liang, Xiao-jing Li and Wen-xiong Chen

1 Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
2 Epilepsy Treatment Center, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
3 Division of Neurology, The Kunming Children’s Hospital, Kunming, Yunnan, China

Correspondence to: Prof. Xiao-Jing Li
Department of Neurology
Guangzhou Women and Children’s Medical Center
Guangzhou Medical University
318# Ren Min Road, 510120, Guangzhou City
Guangdong Province, China
E-mail: lixiaojingfy@163.com

Correspondence may also be addressed to: Prof. Wen-Xiong Chen, PhD, MD
E-mail: gzchcwx@126.com

We read with great interest the article recently published in Brain by Johannesen and colleagues,1 which revealed the clear genotype-phenotype correlations between the age at seizure onset, type of epilepsy and gain-of-function (GOF) or loss-of-function (LOF) effects of SCN8A variants. The authors collected the largest cohort of individuals with SCN8A-related epilepsy from a multi-country study and found that generalized epilepsy with absence seizures is the main epilepsy phenotype of LOF variant carriers and the extent of the electrophysiological dysfunction of the GOF variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Their pharmacological data indicated that sodium channel blockers (SCBs) present a treatment option in the SCN8A-related focal epilepsy with onset in the first year of life.1

We believe that this study constitutes to the understanding of SCN8A-related epilepsy. However, we would also like to discuss the similarities and discrepancies with respect to our results based on a cohort study of Chinese children and propose an interpretative linking on the findings of the study.

Specifically, we recruited 21 children (13 males and eight females) with SCN8A de novo missense variants from three hospitals in Southern China between January 2017 and February 2021 (Table 1); two of the patients were identical twins. All children experienced their first seizure during infancy with the average onset age of 3.9 ± 2.97 months and the maximum onset age of 9 months. Among the 21 cases, five experienced onset during the neonatal period. All 21 cases were de novo heterozygous mutations estimated as either pathogenic or likely pathogenic based on the American College of Medical Genetics and Genomics guidelines,2 and 14 sites have not been reported previously: c.2654T > C, p.I885T; c.5303A > G, p.N1768S; c.4378A > G, p.I1460V; c.4384G > A, p.V1462I; c.656T > C, p.L219F; c.1243G > A, p.E415K; c.4814T > C, p.I1605T; c.3815T > A, p.A982S; and c.2945C > T, p.A982V. Seven variants were previously confirmed as pathogenic: c.1099A > G, p.M367V;3 c.667A > G, p.R223G;4 c.3953A > G, p.N1318S;6 c.5614C > T, p.R1872W;7 c.638T > C, p.I213P;8 c.2300C > T, and p.T767I.4 The domains in the voltage-gated sodium channel amino acid sequence were grouped according to approximate functional domains based on the method reported by Holland et al.9: the pore region was defined as segments S5, S5-S6, and S6, while the voltage sensor region was classified as S4 and its associated linkers of S3-S4 and S4-S5. Other transmembrane segments and their linking regions (TMOs) were grouped, and the intracellular loops linking domains I-III were also grouped together (Loops). The inactivation gate, N-terminus, and C-terminus were also grouped separately. The clinical data from all patients were also collected, focusing on the age of onset, the forms of seizures, the frequency of seizures, neurological development at onset, the effect of SCBs during follow-up, and neurologic and EEG evaluations during follow-up.

As a result, in our cohort, only five out of 21 cases had a good response to SCBs, with the frequencies of seizures significantly reduced up to 75% after treatment. All five patients had combined anti-seizure medications (ASMs) with valproate...
(VPA) plus lamotrigine (LTG) for two cases, levetiracetam and LTG for one case, and VPA plus oxcarbazepine for the remaining two cases. Second, four of 21 cases had only a partial response to SCBs. Third, 7 of 21 patients had only some response to SCBs, i.e. the administration of SCBs could not reduce the frequencies of seizures, but the SCBs could not be stopped during treatment, because if reduced, status epilepticus would occur. Finally, the other five remaining patients had a negative response to SCBs, as non-SCBs had limited seizures controlled by VPA, with normal cognitive development; two children belonged to the IE group, with a better response to SCBs than the other phenotype groups; two children belonged to the GE group, one with seizures controlled by VPA + LTG and the other one with seizures controlled by levetiracetam. Interestingly, the study by Johannesen et al. revealed that the patients with BFIE or IE showed a mild GOF, whereas the patients with GE had severe developmental delay/intellectual disability. The findings of our study showed that the clinical phenotypes significantly correlated with the effect of SCBs (Fisher = 13.198, P = 0.016, r = 0.646). For example, one girl belonged to the BFIE group, having self-limiting seizures controlled by VPA, with normal cognitive development; two children belonged to the IE group, with a better response to SCBs than the other phenotype groups; two children belonged to the GE group, one with seizures controlled by VPA + LTG and the other one with seizures controlled by levetiracetam. Interestingly, the study by Johannesen et al. revealed that the patients with BFIE or IE showed a mild GOF, whereas the patients with GE had the LOF mutation of SCN8A. Similarly, our data supported the above findings.

However, some differences based on the outcomes of our cohort were as follows. The first discrepancy was regarding the outcomes of a subgroup of DEE patients. Johannesen and colleagues revealed that missense variants in most patients with DEE showed a strong GOF and only 3/34 patients with LOF exhibited DEE. Most patients with DEE revealed frequent resistance to ASMs. In our Chinese

Table 1 Clinical features of twenty-one cases with SCN8A-related epilepsy

No	Sex	Age (m)	Seizure	MRI	DEV	Diagnosis	Age (mo)	ASMs/Therapy	Current dev. (DQ/IQ)	Variants	Location	Drug response	Effect of SCBs
1	Male	9	CGFS	Normal	Normal	DEE	26	VPA,LTG	48 c.2654T > C, p.I885T	Pore	DE	+++	
2	Female	8	CGFS	Normal	Normal	BIFE	29	VPA	91 c.5303A > G, p.N1768S	C-terminus	C-terminus	–	
3	Male	2	GS	Normal	Normally	IE	36	VPA,OXC	65 c.4378A > G, p.I1460V	Pore	DE	+++	
4	Male	2	GS	Normal	Normally	DEE	48	VPA,OXC,LCM,NZP	33 c.4384G > A, p.V1462I	Inactivation gate	DR	++	
5	Male	3	GS	Normal	R	DEE	18	VPA,OXC	45 c.1099A > G, p.M367V	Pore	DE	+++	
6	Female	7	GS	Normal	Normal	DEE	13	VPA,NZP,TPM,VGB/ACTH	42 c.656T > C, p.L219F	VSR	DR	–	
7	Female	3	CGFS	Normal	R	DEE	48	VPA,TPM,LCM	31 c.1243G > A, p.E415K	Loops	DR	++	
8	Male	3	GS	Normal	Normal	DEE	12	OXC	61 c.4814T > C, p.I1605T	VSR	DR	++	
9	Male	6	GS	Atrophy	R	DEE	36	VPA,LEV,LCM	<20 c.667A > G, p.R223G	VSR	DR	–	
10	Male	3	GS	Atrophy	R	DEE	36	VPA,TPM,LCM	<20 c.2549G > A, p.R850E	VSR	DR	+	
11	Male	0	CGFS	Normal	ID	DEE	11	OXC,TPM/ACTH	<20 c.3815T > A, p.V1272E	TMOs	DR	+	
12	Female	6	GS	Normal	Normal	GE	60	LEV,LTG	48 c.4798A > G, p.M1600V	TMOs	DE	+++	
13	Female	2	GS	Normal	Normal	IE	60	VPA,LTG	34 c.3953A > G, p.N1318S	VSR	DE	+++	
14	Female	8	GS	Normal	Normal	DEE	32	OXC,LTG,OXC,VPA,TPM	45 c.2942G > C, p.S981T	Loops	DR	+	
15	Male	3	GS	Normal	DEE	DEE	20	LEV,OXC,LCM,VPA,NZP	<20 c.5614C > T, p.R1872W	C-terminus	DR	+	
16	Male	6	GS	Normal	Normal	DEE	21	VPA,LEV,LCM,VPA,NZP/KD	30 c.638T > C, p.L213F	VSR	DR	–	
17	Male	0	FS	Normal	ID	DEE	10	VPA,LTG,LEV	<20 c.2300C > T, p.T767I	TMOs	DR	+	
18	Male	0	CGFS	Normal	ID	DEE	26	CBZ,CZP	<20 c.2944G > T, p.T767I	Loops	DR	+	
19	Male	0	CGFS	Normal	ID	DEE	26	CBZ,CZP	<20 c.5614C > T, p.R1872W	TMOs	DR	+	
20	Male	0	CGFS	Normal	ID	DEE	4	PB,OXC,TPM,NZP	<20 c.2627G > A, p.G876D	Pore	DR	+	
21	Female	7	GS	Normal	Normal	GE	96	LEV	40 c.4948G > T, p.A1650S	VSR	DE	–	

* = somewhat response, ++ = partial response, +++ = good response, – = no response

ACTH = adrenocorticotropic hormone; ASMs = anti-seizure medicines; BIFE = benign familial infantile epilepsy; CGFS = combined generalized and focal seizures; CBZ = carbamazepine; CZP = clonazepam; DE = drug effective; DEE = developmental and epileptic encephalopathy; Dev. = development; DQ = developmental quotient; DR = drug refractory; FS = focal seizures; GE = generalized epilepsy; GOF = gain-of-function; ID = intellectual disability; IE = intermediate epilepsy; IQ = intellectual quotient; KD = ketogenic diet; LCM = lacosamide; LEV = levetiracetam; LTG = lamotrigine; mo = months; NZP = nitrodiazepam; OXC = oxcarbazepine; PB = phenobarbital; PER = perampanel; R = retardation; SCBs = sodium channel blockers; TMOs = other transmembrane segment and linking regions; VPA = valproate; VGB = vigabatrin; VSR = voltage sensor region.

Table 2 Relationship between the effect of SCBs and clinical characteristics in SCN8A-related epilepsy

Effect of SCBs	Fisher	\(r \)	\(P \)
+++	10.847	0.628	0.063
++	18.952	0.733	<0.001
+	13.163	0.632	0.010
None	7.659	0.517	0.054
	17.168	0.671	0.046

Age of onset	Newborn	<6 months	>6 months
	0	3	2
	0	1	0
	2	1	0
	0	1	0
	5	1	0
	18.952	0.733	<0.001
	13.163	0.632	0.010
	7.659	0.517	0.054
	17.168	0.671	0.046
	10.847	0.628	0.063

Forms of seizures	Only focal seizures	Only generalized seizures	Generalized seizures+focal seizures
	0	2	3
	0	0	4
	3	1	4
	0	3	3
	3	0	1
	3	1	4
	7.659	0.517	0.054
	17.168	0.671	0.046
	10.847	0.628	0.063

Distribution of missense variants	Voltage sensor region	Inactivation gate + C-terminus + loops	Pore	TMOs
	1	0	3	0
	4	3	0	2
	1	3	0	0
	1	1	0	2
	4	3	0	2
	7.659	0.517	0.054	
	17.168	0.671	0.046	
	10.847	0.628	0.063	

Distribution of missense variants	Clinical phenotype	Total
	BIFE	5
	IE	4
	DEE	7
	GE	5
		16

| BIFE = benign familial infantile epilepsy; DEE = developmental and epileptic encephalopathy; GE = generalized epilepsy, frequently with absence seizures; IE = intermediate epilepsy; SCBs = sodium channel blockers; TMOs = other transmembrane segment and linking regions. |
recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med. 2015;17(5):405–424.

3. Lindy AS, Stosser MB, Butler E, et al. Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders. Epilepsia. 2018;59(5):1062–1071.

4. Estacion M, O’Brien JE, Conravey A, et al. A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol Dis. 2014;69:117–1123.

5. Kong W, Zhang Y, Gao Y, et al. SCN8A mutations in Chinese children with early onset epilepsy and intellectual disability. Epilepsia. 2015;56(3):431–438.

6. Johannesen KM, Gardella E, Encinas AC, et al. The spectrum of intermediate SCN8A-related epilepsy. Epilepsia. 2019;60(5):830–844.

7. Denis J, Villeneuve N, Cacciagli P, et al. Clinical study of 19 patients with SCN8A-related epilepsy: two modes of onset regarding EEG and seizures. Epilepsia. 2019;60(5):845–856.

8. Zaman T, Abou Tayoun A, Goldberg EM. A single-center SCN8A-related epilepsy cohort: clinical, genetic, and physiologic characterization. Ann Clin Transl Neurol. 2019;6(8):1445–1455.

9. Holland KD, Bouley TM, Horn PS. Location: A surrogate for personalized treatment of sodium channelopathies. Ann Neurol. 2018;84(1):1–9.

10. Liu Y, Schubert J, Sonnenberg L, et al. Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability. Brain. 2019;142(2):376–390.