Study of dynamical status of the globular cluster NGC 1851 using Ultraviolet Imaging Telescope

Gaurav Singh1,2*, R. K. S. Yadav1, Snehalata Sahu3 and Annapurni Subramaniam3

1Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital, 263001
2Department of Physics and Astrophysics, University of Delhi, Delhi 110007
3Indian Institute of Astrophysics, Koramangala II Block, Bangalore-560034, India

Abstract. We present the study of dynamical status of the globular cluster NGC 1851. A combination of multi-wavelength space and ground-based data sets are used for the present analysis. In order to select the genuine cluster members, we used the astro-photometric data available from HST and GAIA-DR2 catalogs. The BSS radial distribution of the cluster is plotted from the center of the cluster to the outskirts. The radial distribution of BSS shows a central peak, followed by a dip at the intermediate radii ($r_{\text{min}} \sim 90''$) and a rising trend in the outskirts. We also estimated A_{pp}^r parameter as 0.391 ± 0.006 to validate the findings of the radial distribution study. On the basis of the minima in the BSS radial distribution and the value of A_{pp}^r parameter, we conclude that NGC 1851 belongs to Family II classification and is an intermediate dynamical state cluster.

Keywords. (Galaxy:) globular clusters: individual: NGC 1851 - (stars:) blue stragglers - (stars:) Hertzsprung-Russell and colour-magnitude diagrams

1. Introduction

Globular clusters (GCs) are compact, centrally concentrated and gravitationally bound systems of stars. The high density in the central region of globular clusters lead to frequent gravitational interactions. The gravitational interactions among stars result in various dynamical processes i.e., two-body relaxation, core collapse, mass segregation, stellar collisions, stellar mergers etc (Meylan & Heggie 1997). These dynamical processes give rise to several exotic populations i.e., millisecond pulsars, cataclysmic variables, and blue straggler stars (BSSs), etc (Ferraro 2001; Bailyn 1995). BSSs are bright and are more populous among these exotic population, therefore serve as a crucial probe to understand the internal dynamics of the GCs.

In 1953, Sandage discovered BSSs populating an unusual location in the Optical color-magnitude diagram (CMD) of the GC, M3 (Sandage 1953). He found the location of these stars to be bluer with respect to the main sequence stars and they appear as an extension of the main sequence turnoff (MS-TO). Based on isochrone fitting technique, Shara \textit{et al.} (1997) found BSSs to be more massive ($M \sim 1.2 M_\odot$) than the average mass of stars in the GCs ($M \sim 0.3 M_\odot$). Using Spectral energy distribution (SED) fitting technique, Raso \textit{et al.} (2019) found similar estimates of BSS masses, with a few BSSs having masses larger that 2 times of MS-TO. Being more massive than the normal stars, they are subject to dynamical friction, which segregates the BSSs towards the centre of the cluster (Ferraro \textit{et al.} 2006).

At the very centrally dense regions of GCs, HST astro-photometric catalog provides useful information to select cluster members. Also, after the release of GAIA DR2 it has now become feasible to select genuine BSS population from the outer region of the cluster. Once, the selection of genuine BSS population are completed, their radial distribution can be studied to infer the dynamical status of the GCs. On the basis of the shape of the observed radial distribution, Ferraro \textit{et al.} (2012) (hereafter F12) classified GCs into three main categories:

1. \textit{Family I}: The radial distribution of BSSs show a flat distribution, and are classified as dynamically young systems. The examples of GCs classified in \textit{Family I} are e.g., Palomar 14 (Beccari \textit{et al.} 2011) , NGC 2419 (Dalessandro \textit{et al.} 2008b), and ω Centauri (Ferraro \textit{et al.} 2006).

2. \textit{Family II}: The radial distribution of BSSs show a bimodal distribution with a central peak, followed by a minima at some intermediate radii (r_{min}), and an external rising trend. These clusters are classified as dynamically intermediate clusters. The example of the clusters showing bimodal distribution are: NGC 6388 studied by Dalessandro \textit{et al.} (2008a), M53 by Beccari \textit{et al.}
al. (2008), M5 by Lanzoni et al. (2007a), and 47 Tuc by Ferraro et al. (2004), M55 by Lanzoni et al. (2007c), NGC 6752 by Sabbì et al. (2004) and NGC 5824 by Sanna et al. (2014).

3. Family III: The radial distribution of BSSs show a monotonic behaviour, with a central peak followed by a decreasing trend and no signs of an external rise. These clusters are classified as dynamically old systems. The examples of GCs showing unimodal behavior are e.g., M79 studied by Lanzoni et al. (2007b), M80 & M30 by F12, and M75 by Contreras Ramos et al. (2012).

In the recent years, a new parameter (A_{rb}^+) has been proposed to measure the dynamical segregation of BSSs by Alessandri et al. (2016), which is given as the area between the cumulative distribution curves of the reference population ($\phi_{REF}(x)$) and BSSs ($\phi_{BSS}(x)$):

$$A_{rb}^+(x) = \int_{x_{min}}^{x} \phi_{BSS}(x') - \phi_{REF}(x') dx'$$ \hspace{1cm} (1)

In the above equation, $x (= \log(r/r_h))$ is defined as the logarithmic distance from the center of the cluster and scaled over the half-mass radius r_h of the cluster. Lanzoni et al. (2016) (hereafter L16) found a direct correlation between r_{min} and A_{rb}^+ parameter, suggesting that both the parameters are governed by a basic mechanism i.e., dynamical friction.

UVIT/AstroSat observations have also been beneficial in the BSS radial distribution studies. Sahu et al. (2019) studied the specific frequency of BSS in the cluster NGC 288 and found a bimodal radial distribution using UVIT/AstroSat data.

In this paper, we present the study of dynamical status of the cluster, NGC 1851. This is a high density globular cluster with the core (r_c) and tidal (r_t) radii around 5′.4 and 481′.6, respectively (Ferraro et al. 2018). NGC 1851 ($\alpha_{J2000} = 5^h 14^m 6^s.76, \delta_{J2000} = -40^o 2^' 47^".6; l = 244^o.51, b = -35^o.03, Harris 1996 (2010 edition) \[\text{hereafter HA10}\]) is located at a distance of 12.1 kpc from the Sun. NGC 1851 is an intermediate metallicity cluster ([Fe/H] = −1.18). In Table 1, we list all the known properties of the cluster NGC 1851. Subramaniam et al. (2017) and Singh et al. (2020) presented the UV and Optical CMDs of the cluster using UVIT/AstroSat data.

The paper is organized in the following manner: data used for the present analysis is presented in Section 2, the selection of BSS and reference population followed by the results obtained from radial distribution in Section 3 and we discuss the results, followed by summary and conclusions in Sections 4 and 5.

Table 1. Parameters of the cluster NGC 1851 used in this paper.

Parameter	Value	References
RA (J2000)	5° 14′ 6.76	HA10
DEC (J2000)	−40° 2′ 47.6	HA10
Distance	12.1 kpc	HA10
Metallicity, [Fe/H]	−1.18 dex	Kunder et al. (2013)
Distance modulus	15.47 mag	Cassisi et al. (2008)
Age	10 Gyr	Cassisi et al. (2008)
Core radius (r_c)	5′.4	Ferraro et al. 2018
Tidal radius (r_t)	481′.6	Ferraro et al. 2018

2. Data sets

To study the dynamical status and to create the radial distribution of BSS in the cluster NGC 1851, we use space and ground-based data sets in NUV and Optical wavelengths. We aim to study the BSSs located in the entire cluster extension i.e., from the cluster centre to the tidal radii (r_t).

We use the astro-photometric catalog from Nardiello et al. (2018) in the central dense region ($r \leq 90′$) of the cluster, observed as a part of the HST UV Legacy Survey of Galactic Globular Cluster (HUGS) program (Piotto et al. 2015). The catalog contains the photometric data sets in F275W, F336W, and F438W pass-bands, which were observed through WFC3/UVIS channel. The F606W and F814W pass-bands were observed through ACS/WFC channel. The catalog also contains the membership information of all the stars that are common to WFC3/UVIS and ACS/WFC field of view (FOV).

To select the BSSs from the outer region ($90′ \leq r \leq 480′$), we use Near-UV (NUV) data in N279N filter, observed through Ultra Violet Imaging Telescope (UVIT) on board AstroSat satellite during 19th–21st March 2016, as a part of Performance Verification (PV) phase. UVIT/AstroSat provides a simultaneous observations in a wide range of electromagnetic spectrum from Far-UV (130-180 nm) to NUV (200-300 nm) wavelengths. It provides a circular field of view of about ~28′ and an angular resolution better than 1.′8 in both the channels. Subramaniam et al. (2016) and Tandon et al. (2017) presented the details of instrument and calibration of the UVIT data. For this cluster, the data acquisition and reduction procedures are described in detail in Subramaniam et al. (2017).

http://physwww.physics.mcmaster.ca/~harris/mwGC.dat
Figure 1. The frequency vs membership probability for all the stars lying in the outer region is shown. In this histogram star counts start rising after 50 % membership probability. Therefore, we can use membership criteria of \(P \geq 50 \% \) for the selection of cluster members in the further analysis.

For the optical wavelength in the outer region, we used the \(UBVRI \) photometric catalog provided by Stetson et al. (2019). The Gaia DR2 catalog provides the information of photometry and astrometry of all the stars down to \(G \sim 21 \) mag (Gaia Collaboration et al. 2016, 2018). We, therefore, obtained the membership information using the method given in Sanders (1971) based on the maximum likelihood principle for all the stars located outside the HST region and using Gaia DR2 catalog. Figure 1 shows the histogram plot (frequency vs membership probability) for all the stars lying in the outer region. Since, in the histogram star counts start rising after 50 % membership probability. We have used membership criteria of \(P \geq 50 \% \) for the selection of cluster members in the further analysis. So, by combining the HST membership catalog with the Gaia DR2 membership data, we now have membership information of most of the stars used in the present analysis.

3. Analysis and Results

3.1 BSS and reference population selection

The first step towards studying the BS radial distribution is to carefully select the genuine BSS and a reference population. For this purpose, we will use NUV pass-bands for the primary selection of the BSSs. To select the reference population and complete BSS population, we will use the Optical pass-bands for the selection, as described in (Singh & Yadav 2019).

3.2 BSS population selection

For selecting the BSSs in the inner region, we use HST CMD (F275W, (F275W−F606W)) and for selecting BSSs from the outer region we use UVIT CMD (N279N, (N275N−V)). The NUV-Optical CMDs are fitted with the hybrid models i.e., the isochrone is fitted with the the Flexible Stellar Population Synthesis (FSPS) models of Conroy et al. (2009) and HB sequence is fitted with the HB model generated using the updated Bag of Stellar Tracks and Isochrones (BaSTI-IAC®) model of Hidalgo et al. (2018). Both the FSPS and BaSTI-IAC® model are generated for a metallicity of \([\text{Fe/H}] = \) −1.2 dex (Kunder et al. 2013), a distance modulus of 15.47 mag and an assumed age of 10 Gyr (Cassisi et al. 2008). The theoretical isochrones are fitted well with the observed data points.

Raso et al. (2017) have used UV CMD (F275W, (F275W−F336W)) to select the BSSs from the central region of the cluster. In the UV CMD, BSS sample can be selected both efficiently and reliably, since it can be easily separated from the optical blends just above the MS-TO. Therefore, to select the BSSs from the entire region, we use NUV-Optical CMD (HST and UVIT CMDs) as our primary selection criteria where the contamination from the optical blends can be minimized. In the NUV-Optical CMD, the BSSs can be separated from the optical blends which extends a vertical sequence just above the main sequence while in Optical CMD it is difficult to separate these two sequences. The selection box criteria is shown in the Figure 2. Since, in NUV-Optical CMDs the BSSs can be easily distinguished and are separated from the optical blends and visible plumes. The evolutionary track of BSS in the theoretical isochrones also provides useful information for defining the selection criteria for the selection of BSSs. In Figure 2 the BSSs defines a vertical sequence, while the cooler giants like SGB, RGB are suppressed. The selected BSSs are shown with filled circles. To minimize the contamination from the MS-TO and the sub-giant branch, we adopted a limiting magnitude of \(F275W = 19.85 \) mag and \(N279N = 19.30 \) mag in the HST and UVIT CMDs, respectively. The upper limit extends up to the brightest BSSs found in both the samples. We have identified 154 BSSs in the inner region and 10 BSSs in the outer region using NUV-Optical CMDs.

http://basti-iac.oa-abruzzo.inaf.it/hbmodels.html
Once the BSSs are selected from the NUV-Optical CMDs, they are used to define the selection box criteria in the Optical CMD (V, (V−I)), as shown in Figure 3. By combining the Stetson’s catalog with the Gaia DR2 data and HST photometry, it is possible to cover both the inner and outer regions (Stetson et al. 2019). Therefore, we have used Stetson’s catalog in the outer region, and HST in the inner region. In order to select the BSS and reference population from a common Optical CMD, the F606W and F814W magnitudes are transformed to calibrated V and I magnitudes available in the Stetson’s catalog, using the relationship derived by Sirianni et al. (2005). We found 3 additional BSSs from the Optical CMD in the inner region and 5 additional BSSs in the outer region. The reason for getting these additional BSSs is attributed to the fact that there are 3 BSSs that lies in the ACS FOV but are not present in the WFC3 FOV. However, the 4 additional BSSs in the outer region are due to the incompleteness of the UVIT N279N and one is the BSS+EHB photometric binary companion identified by Singh et al. (2020), that is located in the EHB sequence in the UVIT CMD.

Therefore, in total we have found 172 BSSs throughout the entire cluster region, 157 in the inner and 15 in the outer region. All the BSSs are genuine cluster members with a membership probability, $P \geq 80\%$.

3.3 Reference population selection

Reference populations are important to understand the segregation of BSSs and we used post-MS stars, since they define a natural trend in radial distribution against which the radial distribution of the BSSs can be compared. The number of stars in a Post-MS stage is directly proportional to its evolutionary time scales (Lanzoni et al. (2007c); Renzini & Fusi Pecci (1988)). These Post-MS stars are, therefore, important for qualitative study of BSS specific frequency and radial distribution studies. The specific frequency of these branches are constant throughout the entire cluster region and are equal to the evolutionary time scales of the HB and GB (SGB+RGB) phase respectively. Therefore, these branches are considered as the reference population.

For the reference population selection, we consider the same limiting magnitudes subtended by the BSS population in the optical CMD. Therefore, our selection of reference population are not affected by the completeness of the sample. To select the genuine reference population, we have adopted the membership criteria of $P \geq 50\%$, since at higher membership cutoffs, we found a significant change in the number of reference population. In Figure 3, the selection criteria for reference population is shown. We used the same selection criteria followed by Singh & Yadav (2019) to select the reference population. Hence, we found 394 and 127 HB stars in the inner and outer sample respectively. Also, 2690 and 634 GB stars from the inner and outer regions, respectively.

In total, we found, 521 HB and 3324 GB stars from the entire cluster region.

Figure 4, show the spatial distribution of BSSs selected from the entire cluster region. The BSSs are more concentrated towards the center and a large fraction of them are located in the inner region, much within the half-mass radius (r_h). However, significant number of BSSs are present in the outer region of the cluster as well. We also plotted the spatial distribution of GB population which is nearly symmetric in comparison to the spatial distribution of BSSs.

3.4 BSS radial distribution

In this section, we present the radial distribution of BSS with respect to the reference population. To obtain the radial distribution plot of BSS with respect to the reference population, we divided the cluster area into six
Figure 3. The selection of the BSS and the reference population using Optical CMD (V, (V−I)). The selection box criteria of BSS and reference population are shown for both the inner and outer regions in the left and the right panels, respectively. The selected BSSs are marked by filled circles.

Figure 4. The plot show the spatial distribution of BSSs in the entire cluster region and are marked by filled blue circles. The GB population is shown as black dots.

In the Table 2, we listed the number of genuine BSS and reference population corresponding to each of the radial bin (N_{BSS}, N_{GB} and N_{HB}). We also obtain the specific frequency (F_{BSS} = N_{BSS}/N_{GB}, F_{HB} = N_{HB}/N_{GB}) of BSS and plotted them in Figure 5. The errors are plotted with 1 sigma error bar. The specific frequency of BSS show a bimodal distribution with a central peak followed by a minima and an external rising trend in the outer region, while the reference population show a flat radial distribution. In order to check the significance of the rise in the external region, we performed Z-test and found the significance level of rise in the outer region to be ∼ 77 %.

We also obtained the doubly normalized ratio for BSS with respect to the reference population. These population ("Pop") could be BSS, HB or RGB. It is defined as the number of "Pop" observed in a region to the total number of "Pop" divided by the fraction of light sampled in the same region with respect to the total measured luminosity (Ferraro et al. 1993). It is written as,

\[R_{\text{Pop}} = \frac{N_{\text{Pop}}/N_{\text{tot}}}{L_{\text{ samp}}/L_{\text{ tot}}}. \]

We estimated the sampled to the total luminosity for each radial bin by integrating the isotropic single-mass King profile using parameters taken from HA10 catalog. We assumed the Poisson error in the values of luminosities and numbers. Using the formula described in Sabbi et al. (2004), we considered propagation of errors to estimate the errors in the double normalized ratios. In Table 2, we listed the luminosity ratios computed in the corresponding annulus.

In Figure 6, we plot the radial distribution of BSS, HB and GB, using double normalized ratios with respect to the radial distance scaled over \(r_c \). In the upper panel, double normalized ratio of BSS with respect to HB is plotted and the lower panel shows the variation of double normalized ratio of BSS with respect to GB.

http://www.stat.yale.edu/Courses/1997-98/101/sigtest.htm
The specific frequency of BSS with respect to HB and GB are plotted in the upper and middle panels, respectively, while the specific frequency of HB and GB is plotted in the lower panel. The specific frequency distribution of BSS show a bimodal distribution, whereas for the reference population, it shows a constant value throughout the entire cluster region.

The value of R_{BS} shows a bimodal distribution with a peak in the center, a minima at $r \sim 17 r_c$ and an outward rising trend. The double normalized ratios of the reference population (R_{HB} and R_{GB}), however show a flattened behaviour (~ 1), as expected from the stellar evolution theories (Renzini & Fusi Pecci 1988).

To recheck the dynamical segregation of the BSSs, we obtained the A^+_{rh} parameter defined by L16, as the area enclosed between the cumulative radial distribution of BSS and the reference populations scaled over r_h. In Figure 7, the cumulative radial distributions of BSS with respect to HB and GB are plotted in the left and right panels, respectively. The value of A^+_{rh} are estimated as 0.394 and 0.386 with respect to GB and HB respectively. The corresponding values of mean and standard deviation of A^+_{rh} are therefore 0.391 and 0.006, respectively.

In the upper panel of Figure 8 we plot the empirical dynamical clock relation defined by F12, which correlates the position of minima of the BSS radial distribution (r_{min}/r_c) with the core relaxation time (t_{rc}/t_H). In the lower panel of Figure 8 we plot the correlation of A^+_{rh} parameter and t_{rc}/t_H. The cluster NGC 1851 is shown with filled circle. The value of error in r_c is taken from Miocchi et al. (2013) for estimating the error in

The cluster NGC 1851 is shown with filled circle. The value of error in r_c is taken from Miocchi et al. (2013) for estimating the error in the r_{min}/r_c. The values of r_{min}, t_{rc}, and r_c of other clusters are adopted from F12.
from the HUGS data set. The di-

Figure 8. The plot showing the location of the cluster NGC 1851 in the empirical dynamical clock relation defined by F12 in the upper panel. The filled triangles are dynamically old clusters while open circles are the dynamically intermediate age clusters. The dynamically young clusters are plotted as lower-limit arrows at \(r_{\text{min}} \sim 0.1 \). The cluster location in the empirical relation defined by L16 is shown in lower panel.

4. Discussions

The specific frequency and double normalized ratio of BSS show bimodal distribution, with a peak in the central region, followed by a clear dip at the intermediate radii \(r_{\text{min}} \sim 90^\circ \) and a rising trend in the external region. The BSSs are more massive than the reference population and therefore are subjected to the dynamical friction which plays a crucial role in segregating the BSSs towards the cluster center. However, the BSSs that are located in the outskirts, show a flat distribution and are not yet affected by the action of dynamical friction. The radial distribution of BSS observed in NGC 1851 are in agreement with the previous studies (i.e., F12) on the cluster showing bimodal radial distribution.

Ferraro et al. (2018) found the value of \(A^+_{rh} \) parameter of the cluster NGC 1851 to be \(0.48 \pm 0.04 \). Our estimation of \(A^+_{rh} \) parameter is slightly less than the value estimated by Ferraro et al. (2018), and it could be due to the strict condition of membership probability, \(P \geq 50\% \) for the selection of BSS and reference population. Although, Ferraro et al. (2018) included proper motion selection criteria using the Vector-Point diagram (VPD) from the HUGS data set. The difference in the \(A^+_{rh} \) pa-

5. SUMMARY AND CONCLUSIONS

1. We present the dynamical status of the cluster NGC 1851, using data from HST, UVIT/AstoSat, GAIA DR2 and ground-based catalogs. All the BSS and reference population used in the study are bonafide members of the cluster.

2. We found in total 172 number of BSSs from the entire cluster sample using NUV-Optical and Optical CMDs for the selection. We also identified 521 and 3324 number of HB and GB stars as reference populations.
3. The observed radial distribution of BSS shows a peak in the central region, a dip at the intermediate radii ($r_{\text{min}} \sim 90''$) and a rising trend in the external region. We also estimated A^+_{rh} parameter to be 0.391 ± 0.006. The values of both the r_{min} and A^+_{rh} parameter therefore indicate that NGC 1851 is an intermediate dynamical state cluster and it belongs to Family II classification. This indicates that the BSSs located in the outskirts of the cluster are still not affected by the action of dynamical friction.

Acknowledgements

We are thankful to the reviewer for the thoughtful comments and suggestions that improved the quality of the manuscript. This publication uses the data from the AstroSat mission of the Indian Space Research Organisation (ISRO), archived at the Indian Space Science Data Centre (ISSDC). UVIT project is a result of the collaboration between IIA, Bengaluru, IUCAA, Pune, TIFR, Mumbai, several centers of ISRO, and CSA. This publication uses the data from the ASTROSAT mission of the Indian Space Research Organisation (ISRO), archived at the Indian Space Science Data Centre (ISSDC). This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).

Funding for the DPAC has been provided by national institutions, in particular, the institutions participating in the Gaia Multilateral Agreement. This research has made use of data, software and/or web tools obtained from the High Energy Astrophysics Science Archive Research Center (HEASARC), a service of the Astrophysics Science Division at NASA/GSFC and of the Smithsonian Astrophysical Observatory’s High Energy Astrophysics Division.

References

Alessandrini E., Lanzoni B., Ferraro F. R., Micocchi P., Vesperini E., 2016, ApJ, 833, 252
Bailyn C. D., 1995, ARA&A, 33, 133
Baldwin A. T., Watkins L. L., van der Marel R. P., Bianchini P., Bellini A., Anderson J., 2016, ApJ, 827, 12
Beccari G., Lanzoni B., Ferraro F. R., Pulone L., Bellazzini M., Fusi Pecci F., Rood R. T., Giallongo E., 2008, ApJ, 679, 712
Beccari G., Sollima A., Ferraro F. R., Lanzoni B., Bellazzini M., De Marchi G., Valls-Gabaud D., Rood R. T., 2011, ApJ, 737, L3
Cassisi, S., Salaris, M., Pietrinferni, A., et al. 2008, ApJL, 672, L115
Conroy, C., Gunn, J. E., & White, M. 2009, ApJ, 699, 486
Contreras Ramos R., Ferraro F. R., Dalessandro E., Lanzoni B., Rood R. T., 2012, ApJ, 748, 91
Dalessandro E., Lanzoni B., Ferraro F. R., Rood R. T., Milone A., Piotto G., Valentí E., 2008a, ApJ, 677, 1069
Dalessandro E., Lanzoni B., Ferraro F. R., Vespe F., Bellazzini M., Rood R. T., 2008b, ApJ, 681, 311
Ferraro F. R., Pecci F. F., Cacciari C., Corsi C., Buonanno R., Fahliman G. G., Richer H. B., 1993, AJ, 106, 2324
Ferraro F. R., D’Amico N., Possenti A., Mignani, P. R., Paltrinieri B., 2001, ApJ, 561, 337
Ferraro F. R., Beccari G., Rood R. T., Bellazzini M., Sills A., Sabbi E., 2004, ApJ, 630, 12
Ferraro F. R., Lanzoni, B., Raso, S., et al. 2018, ApJ, 860,36
Ferraro F. R., Sollima A., Rood R. T., Orizia L., Pancino E., Bellazzini M., 2006, ApJ, 638, 433
Ferraro F. R. et al., 2012, Nature, 492, 393 (F12)
Gaia Collaboration et al., 2016, A&A, 595, A1
Gaia Collaboration et al., 2018, A&A, 616, A1
Harris W. E., 1996, AJ, 112, 1487 (HA10)
Hidalgo, S. L., Pietrinferni, A., Cassisi, S., et al. 2018, ApJ, 856, 125
Kunder, A., Salaris, M., Cassisi, S., et al. 2013, AJ, 145, 25
Kunder, A., Dalessandro E., Ferraro F. R., Mancini C., Beccari G., Rood R. T., Mapelli M., Sigurdsson S., 2007a, ApJ, 663, 267
Lanzoni B. et al., 2007b, ApJ, 663, 1040
Lanzoni B., Dalessandro E., Perina S., Ferraro F. R., Rood R. T., Sollima A., 2007c, ApJ, 670, 1065
Lanzoni B., Ferraro F. R., Alessandrini E., Dalessandro E., Vesperini E., Raso S., 2016, ApJ, 833, L29 (L16)
Meylan G., Heggie D. C., 1997, A&AR, 8, 1
Micocchi, P., Lanzoni, B., Ferraro, F. R., et al. 2013, ApJ, 774, 151
Nardiello, D., Libralato, M., Piotto, G., et al. 2018, MNRAS, 481, 3382
Paresce F., Meylan G., Shara M., Baxter D., Greenfield P., 1991, Nature, 352, 297
Piotto G. et al., 2015, AJ, 149, 91
Raso S., Ferraro F. R., Dalessandro E. et al. 2017, ApJ, 839, 64
Raso, S., Pallanca, C., Ferraro, F. R., et al. 2019, ApJ, 879,56
Renzini A., Fusi Pecci F., 1988, ARA&A, 26, 199
Sabbi E., Ferraro F. R., Sills A., Rood R. T., 2004, ApJ, 617, 1296
Sahu, S., Subramaniam, A., Cote, P., Rao, N. K., Stetson, P. B. 2019, MNRAS, 482, 1080
Sandage A. R., 1953, AJ, 58, 61
Sanders, W. L. 1971, A&A, 14, 226
Sanna N., Dalessandro E., Ferraro F. R., Lanzoni B., Miocchi P., O’Connell R. W., 2014, ApJ, 780, 90
Shara M. M., Saffer R. A., Livio M., 1997, ApJ, 489, L59
Singh, G., Sahu, S., Subramaniam, A., & Yadav, R. K. S., 2020, ApJ, 905, 44
Singh, G., & Yadav, R. K. S., 2019, MNRAS, 482, 4874
Sirianni, M., Jee, M. J., Benitez, N., et al. 2005, PASP, 117, 1049
Stetson, P. B., Pancino, E., Zocchi, A., Sanna, N., & Monelli, M. 2019, MNRAS, 485, 3042
Subramaniam, A., Tandon, S. N., Hutchings, J., et al. 2016, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9905, In-orbit performance of UVIT on ASTROSAT, 99051F
Subramaniam, A., Sahu, S., Postma, J. E., et al. 2017, AJ, 154, 233
Tandon, S. N., Subramaniam, A., Girish, V., et al. 2017, AJ, 154, 128