Honeybee Iflaviruses Pack Specific tRNA Fragments from Host Cells in Their Virions

Anna Šimonová, Veronika Romanská, Barbora Benoni, Karel Škubník, Lenka Šmerdová, Michaela Procházková, Kristina Spustová, Ondřej Moravčík, Lenka Gahurova, Jan Pačes, Pavel Plevka, and Hana Cahová*
Table SI 1: The list of screened nucleosides in analysed digested RNA from virions.

Name	Short name	Fragment structure	Exact fragment mass (Da)	Detected exact mass [X+H]^+	Retention time (LC)
Adenosine	A	![Image](image)	135.054	136.062	8.2 min
2′-O-methyladenosine	Am	![Image](image)	135.054	136.062	13.3 min
1-methyladenosine	m1A	![Image](image)	149.070	150.078	4.3 min
N6-methyladenosine	m6A	![Image](image)	149.070	150.078	13.6 min
N6-threonylcarbamoyladenosine	t6A	![Image](image)	279.121	280.128	20.3 min
Guanosine	G	![Image](image)	151.049	152.057	9.1 min
2′-O-methylguanosine	Gm	![Image](image)	151.049	152.057	13.8 min
1-methylguanosine	m1G	![Image](image)	165.065	166.072	13.6 min
N2-methylguanosine	m2G	![Image](image)	165.065	166.072	13.8 min
Compound	Structure	m/z	Relative Abundance	Retention Time	
-----------------------------	-----------	------	--------------------	----------------	
7-methylguanosine	![Structure](image)	166.072	166.072	5.9 min	
Cytidine	![Structure](image)	111.043	112.051	2.9 min	
2'-O-methylcytidine	![Structure](image)	111.043	112.051	6.7 min	
3-methylcytidine	m^3^C	125.059	126.067	3.9 min	
5-methylcytidine	m^5^C	125.059	126.067	4.4 min	
Uridine	U	112.027	113.035	5.0 min	
2'-O-methyluridine	Um	112.027	113.035	13.5 min	
5-methyluridine	m^5^U	126.043	127.051	11.4 min	

Table SI 2: Codon usage of SBV.

Codon	Count	%	aa
GAT	128	4.477089892	Asp
AAT	99	3.462749213	Asn
GAA	99	3.462749213	Glu
TTT	97	3.392794683	Phe
TAT	94	3.287862889	Tyr
ACT	84	2.938090241	Thr
TTG	81	2.833158447	Leu
ATG	80	2.798181182	Met
Codon	Frequency	Amino Acid	
-------	-----------	------------	
ATA	79	Ile	
ATT	77	Ile	
GCT	77	Ala	
GTA	75	Val	
AAG	73	Lys	
GTG	72	Val	
TTA	72	Leu	
GTT	70	Val	
AAA	69	Lys	
CAA	69	Gln	
GAG	68	Glu	
AGT	66	Ser	
GGA	65	Gly	
GGT	59	Gly	
TCT	56	Ser	
ACA	54	Thr	
GCA	49	Ala	
GGG	49	Gly	
CCT	48	Pro	
TCA	44	Ser	
AGA	43	Arg	
CCA	43	Pro	
CAT	42	His	
GCG	41	Ala	
TGG	41	Trp	
ACG	40	Thr	
CAG	40	Gln	
TGT	33	Cys	
AAC	32	Asn	
CGA	32	Arg	
AGG	30	Arg	
CCG	29	Pro	
TAC	29	Tyr	
CGT	28	Arg	
CCC	26	Pro	
ACC	25	Thr	
CTT	24	Leu	
TCG	23	Ser	
GAC	20	Asp	
TCC	20	Ser	
CAC	19	His	
GCC	19	Ala	
ATC	18	Ile	
TTC	18	Phe	
CTG	17	Leu	
codon	count	%	aa
-------	-------	--------------	-----
GAT	123	4.250172771	Asp
AAT	114	3.93918452	Asn
GAA	108	3.731859019	Glu
ATT	102	3.524533518	Ile
TAT	101	3.489979267	Tyr
TTA	100	3.45425017	Leu
GCT	86	2.971665515	Ala
TTT	83	2.868002764	Phe
AAA	82	2.833448514	Lys
GGT	81	2.798894264	Gly
ATG	80	2.764340014	Met
CAA	79	2.729785764	Gln
AAG	77	2.660677263	Lys
GTT	77	2.660677263	Val
TTG	74	2.557014513	Leu
ACT	71	2.453351762	Thr
CCT	67	2.315134762	Pro
CAT	62	2.142363511	His
GAG	62	2.142363511	Glu
CGT	57	1.96959226	Arg
TGG	57	1.96959226	Trp
GTG	55	1.90048376	Val
GGA	53	1.831375259	Gly
TCT	52	1.796821009	Ser
TGT	51	1.762266759	Cys
CCA	50	1.727712509	Pro

Table SI 3: Codon usage of DWV.
Table SI 4: List of host tRNAs present in virions.

tRNA in SBV	tRNA in DWV	Bee - codon usage	
1. Lys CTT	Gly GCC-1	Glu GAA	
2. Gly GCC-1	Asp GTC	Lys AAA	
	SBV – co-packed tRNA	C position	% of reads without conversion to U in this position
---	---------------------	------------	---
3.	Lys TTT	Lys TTT	Asn AAT
4.	Asp GTC	Glu CTC	Asp GAT
5.	Ala TGC	His GTG	Gln CAA
6.	Glu CTC	Glu TTC	Leu TTA
7.	Glu TTC	Met-1 CAT	Glu GAG
8.	Val AAC	Ala TGC	Ile ATT

Table SI 5: List of co-packed host tRNAs confirmed by bisulfite sequencing for SBV.

	DWV – co-packed tRNA	C position	% of reads without conversion to U in this position
9.	Ala AGC	49	100
10.	Ala TGC	49	97
11.	Asp GTC	48	33
12.	Glu CTC	49	95
13.	Glu TTC	49	98
14.	Gly TCC	49	100
15.	50	100	
16.	His GTG	48	75
17.	49	77	
18.	Val CAC	49	100

Table SI 6: List of co-packed host tRNAs confirmed by bisulfite sequencing for DWV.
Residue	C position	% of reads without conversion to U in this position
Glu CTC	90	5.5
Glu TTC	1080	5.0
Gly GCC	1142	7.5
Gly TCC	4557	6.7
His GTG	4676	5.9
Lys TTT	4684	5.3

Table SI 7: Detected positions of m⁵C in SBV genomic RNA.
Position	m2C Position	DWV after bisulfite sequencing
1663	5.6	4801
1685	5.1	4813
1949	5.1	5008
1956	7.6	5744
1973	5.8	6114
2031	5.1	6461
2154	5.2	6648
2316	7.1	6741
2633	9.1	6843
2700	10.4	7233
2768	5.2	7240
2783	6.3	7437
3285	6.1	7439
3729	5.7	7469
3993	6.0	7513
4077	6.3	7811
4207	8.7	8142
4209	9.1	8378
4278	6.2	8491
4509	5.8	8671
4554	5.9	8772

Table SI 8: Detected positions of m2C in DWV genomic RNA.

DWV – after bisulfite sequencing
C position	% of reads without conversion to U in this position
321	6.5
1073	16.7
1096	7.4
1113	5.9
1170	5.1
4512	7.4
5874	6.7
7055	9.1
7541	5.5
9009	5.1

Table S1 9: Presence of typical eucaryotic tRNA adenosine modifications in analysed RNA from virions.

	Genome length (nt)	t^6A/100A	mS^t^6A/100A	i^6A/100A
SBV	8832	0.02 ± 0.01	0.01 ± 0.004	0.01 ± 0.004
DWV	10071	0.16 ± 0.01	0.06 ± 0.004	0.03 ± 0.04
RV2	7120	0.00	0.00	0.00
E18	7410	0.00	0.00	0.00
Figure SI 1: Cryo-electron micrographs of purified SBV (a) and DWV (b) virions after DNase and RNase treatment and before RNA isolation. Smaller particles in the background are pentamers of capsid protein protomers originating from disrupted capsids. Scale bar 100 nm.
Figure SI 2: The results of Tape station analysis of purified RNA from viral particles (a) and from Honeybees (b).
Standards

Figure SI 3: Extracted Ion Chromatograms for adenosine a guanosine standards.
Standards

Figure SI 4: Extracted Ion Chromatograms for cytidine and uridine standards.
Figure SI 5: Extracted Ion Chromatograms for detected nucleosides in Sacbrood virus.
Figure SI 6: Extracted Ion Chromatograms for detected nucleosides in Deformed wing virus.
Figure SI 7: Extracted Ion Chromatograms for detected nucleosides in human rhinovirus type 2.
Figure SI 8: Extracted Ion Chromatograms for detected nucleosides in human Echovirus 18.

Table SI 10: NGS library sequences.

Sequence Type	Sequence
3'-adapter	5’p-CNNNNNNAGATCGGAAGAGCACACGTCTG-(C3)
RT primer	5’CAGACGTGTGCTCTTCCGAT
cDNA-anchor-sense oligonucleotide	5’p-CAGATCGGAAGAGCGTCGTGT-(C3)
cDNA anchor-antisense oligonucleotide	5’ACACGACGCTCTTCCGATCTGGG
Table SI 11: NGS primers.

m1^A mapping	Forward primer	Reverse primer
SBV_m^8A_SS III	CACGCTACGTACACGAGCTCTCTCCGATCT	ACTAGCAGTACAGACGCTCTCTCCGATCT
SBV_m^1A_SS III	CAGTAGACGTAACACGAGCTCTCTCCGATCT	CGATCGTATACAGACGCTCTCTCCGATCT
SBV_m^8A_TGIRT	ACGCCGATATACACGAGCTCTCTCCGATCT	AGTACGCTATACAGACGCTCTCTCCGATCT
SBV_m^1A_TGIRT	ACTGTACGTACACGAGCTCTCTCCGATCT	ATAGAGTACTACAGACGCTCTCTCCGATCT

Bisulfite seq.

Forward primer	Reverse primer
SBV+	ACGAGTGCGTAACACGAGCTCTCTCCGATCT
SBV-	TGATACGTCTACACGAGCTCTCTCCGATCT
DWV +	ATCAGACAGACACGAGCTCTCTCCGATCT
DWV-	TACTGAGCTTACACGAGCTCTCTCCGATCT

Table SI 12: Probes and templates used for Northern blot

Name	Sequence (starting at 5'end)
LysTTT 3'end	TGGCCCGAACAGGGACTCG
LysTTT 5'end	GACTGAGCTATCCGGGCG
LysTTT central	CCGTCAATAAGCTCCTGCTGAC
LysCTT 3'end	TGGCCCAACGTGGGGCTC
LysCTT 5'end	GACTGAGCTACCCGGGCA
AspGTC 3'end	TCTCCCGACGGGAATCG
AspGTC 5'end	CACTATACATAGGGAAA
GlyGCC-1 3'end	TCGATCGGGCGGAATCGA
GlyGCC-1 5'end	CCACGAAACCACGATG
GluCCTC 3'end	TCCGGTACCGGAATCGA
GluCCTC 5'end	CCACTGAGCATTACCGA
LysTTT ladder 21nt sense	CAGTAATACGACTCATATAGGCGATCCCTGCTCCGAG
LysTTT ladder 21nt antisense	TGCCCGGAAACAGGGACTCG
LysTTT ladder 38nt sense	CAGTAATACGACTCATATAGGCGATCCCTGCTCCGAG
LysTTT ladder 38nt antisense	TGCCCGGAAACAGGGACTCG
LysTTT ladder 75nt sense	CAGTAATACGACTCATATAGGCGATCCCTGCTCCGAG
LysTTT ladder 75nt antisense	TGCCCGGAAACAGGGACTCG
Figure SI 9: Bioinformatic data for Lys CTT confirmed m1A in position 59.
Figure S1 10: Bioinformatic data for Gly GCC confirmed m^1A in position 56.
Lys.TTT

Overall statistics

	114444-m1ASBY-sh	114444-m6ASBY-sh	114444-m1ASBYT-sh	114444-m6ASBYT-sh
Total reads	2452	2223	129	139
Coverage	1035 (60%)	1039 (43%)	85 (40%)	57 (40%)
Average errors	17 (0.68%)	16 (0.60%)	1 (0.02%)	1 (0.02%)
Total errors	1.77%	1.57%	0.2%	0.2%
Total "A" errors	1.40%	1.22%	8.15%	7.10%

Figure SI 11.1: Bioinformatic data for Lys TTT.
Figure SI 12: Bioinformatic data for Asp GTC.
Table SI 12: Bioinformatical data – presence of m^1A in SBV genomic RNA.

SBV-CZ2	11bAS4-m1SBV-SBVCZ2.sam	11bAS4-m6ASBV-SBVCZ2.sam	11bAS4-m1ASBV-T-SBVCZ2.sam	11bAS4-m6ASBV-T-SBVCZ2.sam	p-value
71 (G)	0%	0%	0%	0%	0.08
115 (T)	0%	0%	0%	0%	0.66
155 (A)	11%	11%	16%	0%	0.31
177 (T)	2%	2%	0%	0%	0.94
502 (T)	2%	0%	0%	0%	0.83
848 (A)	1%	0%	0%	0%	0.03
1242 (T)	0%	10%	0%	0%	0.80
1534 (T)	0%	0%	0%	0%	0.89
1561 (A)	8%	0%	53%	0%	0.31
1652 (A)	1%	0%	0%	0%	0.09
1892 (T)	12%	0%	0%	0%	0.87
1986 (A)	12%	1%	63%	0%	0.29
2567 (G)	0%	0%	0%	0%	0.42
2812 (T)	1%	8%	9%	3%	0.55
----------	-----	-----	-----	-----	------
0% (0%)	0%	0%	0%	0%	0.42
I: 0%, D: 13%	I: 0%, D: 17%	I: 0%, D: 30%	I: 0%, D: 32%		
(855)	(528)	(10)	(25)		
2949 (T)	1%	1%	2%	1%	0.07
0% (0%)	0%	0%	0%	0%	----
I: 0%, D: 13%	I: 0%, D: 17%	I: 0%, D: 28%	I: 0%, D: 26%		
(1529)	(998)	(81)	(91)		
3333 (T)	7%	12%	0%	0%	0.29
0% (0%)	0%	0%	0%	0%	0.37
I: 0%, D: 0%	I: 0%, D: 0%	I: 0%, D: 1%	I: 0%, D: 2%		
(1499)	(1146)	(101)	(128)		
3590 (A)	6%	10%	4%	12%	0.03
0% (0%)	0%	0%	0%	0%	0.42
I: 0%, D: 0%					
(1673)	(993)	(120)	(93)		
4142 (T)	4%	10%	0%	0%	0.08
0% (0%)	0%	0%	0%	0%	----
I: 0%, D: 0%					
(1599)	(943)	(30)	(37)		
4216 (T)	22%	9%	22%	5%	0.01
0% (0%)	0%	0%	0%	0%	----
I: 0%, D: 0%					
(1498)	(942)	(21)	(40)		
4371 (T)	13%	4%	13%	1%	0.03
0% (0%)	0%	0%	0%	0%	0.64
I: 0%, D: 0%					
(1472)	(931)	(120)	(68)		
5363 (T)	3%	20%	2%	59%	0.20
0% (0%)	0%	0%	0%	0%	0.37
I: 0%, D: 0%					
(1996)	(1495)	(313)	(236)		
5571 (A)	3%	1%	5%	0%	0.10
49% (T: 4%)	48% (T: 4%)	52% (T: 53%)	52% (T: 53%)	1.00	
I: 0%, D: 1%	I: 0%, D: 2%	I: 0%, D: 2%	I: 0%, D: 7%		
(1952)	(1456)	(157)	(229)		
5770 (T)	3%	8%	0%	10%	0.05
0% (0%)	0%	0%	0%	0%	0.92
I: 0%, D: 0%					
(2752)	(1822)	(179)	(149)		
5929 (T)	7%	2%	50%	0%	0.32
0% (0%)	0%	0%	0%	0%	----
I: 0%, D: 0%	I: 0%, D: 0%	I: 0%, D: 0%	I: 0%, D: 8%		
(1972)	(736)	(51)	(88)		
6282 (T)	11%	1%	0%	0%	0.03
0% (0%)	0%	0%	0%	0%	0.28
I: 0%, D: 0%					
(1952)	(799)	(50)	(106)		
6345 (C)	4%	11%	0%	18%	0.08
5% (T: 1%)	8% (T: 0%)	0% (A: 0%)	0% (A: 0%)	0.84	
I: 0%, D: 0%	I: 0%, D: 0%	I: 0%, D: 0%	I: 0%, D: 8%		
(2102)	(1511)	(44)	(179)		
6388 (T)	5%	9%	0%	0%	0.30
0% (0%)	0%	0%	0%	0%	0.32
I: 0%, D: 0%					
(1882)	(1257)	(27)	(126)		
7348 (T)	5%	12%	9%	11%	0.07
0% (0%)	0%	0%	0%	0%	0.25
I: 0%, D: 0%					
(1888)	(888)	(91)	(115)		
7672 (T) 6%	0%	0%	0%	0%	0.66
---	---	---	---	---	---
0% (A: 0%)	0% (C: 0%)	0% (G: 0%)	0% (G: 0%)	0% (A: 0%)	0.42
I: 0% (D: 3%)	I: 0% (D: 5%)	I: 0% (D: 8%)	I: 0% (D: 31%)	(1232)	(61)
7670 (T) 12%	5%	11%	0%	0%	0.7
0% (G: 0%)	0% (A: 0%)	0% (A: 0%)	0% (A: 0%)	0% (A: 0%)	0.42
I: 0% (D: 0%)	(1200)	(74)	(69)		
8008 (T) 14%	4%	11%	0%	0%	0.06
0% (A: 0%)	0% (A: 0%)	0% (A: 0%)	0% (A: 0%)	0% (A: 1%)	0.42
I: 0% (D: 0%)	(820)	(23)	(122)		
8206 (A) 4%	0%	0%	0%	0%	0.49
45% (G: 44%)	40% (D: 40%)	100% (D: 100%)	16% (G: 16%)	0.28	
I: 0% (D: 0%)	(318)	(2)	(6)		
8210 (A) 1%	0%	0%	0%	0%	0.76
0% (A: 0%)	-				
I: 1% (D: 0%)	I: 0% (D: 0%)	I: 50% (D: 0%)	I: 0% (D: 0%)	(267)	(2)
8234 (T) 11%	30%	0%	0%	50%	0.09
0% (A: 0%)	0% (A: 0%)	0% (G: 0%)	0% (A: 0%)	0% (A: 0%)	-
I: 0% (D: 0%)	(1044)	(15)	(12)		
8752 (T) 0%	0%	0%	0%	0%	0.86
0% (A: 0%)	-				
I: 0% (D: 0%)	(422)	(1)	(10)		
8767 (A) 2%	0%	0%	0%	0%	0.75
0% (A: 0%)	-				
I: 0% (D: 0%)	(508)	(2)	(10)		
8779 (A) 1%	2%	0%	0%	12%	0.34
0% (A: 0%)	-				
I: 0% (D: 0%)	(521)	(2)	(7)		
8826 (A) 0%	0%	0%	0%	0%	0.42
0% (C: 0%)	0% (A: 0%)	0% (A: 0%)	0% (A: 0%)	0% (A: 0%)	-
I: 4% (D: 0%)	I: 2% (D: 0%)	I: 0% (D: 0%)	I: 50% (D: 0%)	(437)	(2)

Overall statistics:

| libAS4-n1ASBV-SBVcZ2.sam libAS4-n6ASBV-SBVcZ2.sam libAS4-m1AS8VT-SBVcZ2.sam libAS4-m6AS8VT-SBVcZ2.sam libAS4-n8AS8VT-SBVcZ2.sam |
|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Total reads | 218071 | 161841 | 8379 | 9844 |
| Average coverage | 1788 (n=720) | 1229 (n=512) | 69 (n=59) | 108 (n=132) |
| Average errors | 1 (o=13) | 1 (o=10) | 0 (o=1) | 0 (o=1) |
| Total errors | 0.1% | 0.14% | 0.29% | 0.4% |
| Total "A" errors | 0.83% | 0.84% | 0.1% | 0.13% |
Figure SI 13: Bioinformatic data – presence of m^1A in SBV genomic RNA.
