REVIEW

An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling

[version 1; peer review: 2 approved]

Jiahuai Han¹, Jianfeng Wu¹, John Silke¹,²,³

¹State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
²The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia
³Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia

Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.

Keywords
p38, MAPK, inflammation, signalling
Corresponding authors: Jiahui Han (jiahuihan@xmu.edu.cn), John Silke (silke@wehi.edu.au)

Author roles: Ha J: Writing – Original Draft Preparation, Writing – Review & Editing; Wu J: Writing – Original Draft Preparation; Silke J: Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This work was supported by the National Natural Science Foundation of China (81788101, 31420103910 and 81630042 to J.H.), the 111 Project (B12001 to J.H.) and by an NHMRC fellowship (1107149) to JS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2020 Han J et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite this article: Han J, Wu J and Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling [version 1; peer review: 2 approved] F1000Research 2020, 9(F1000 Faculty Rev):653 https://doi.org/10.12688/f1000research.22092.1

First published: 29 Jun 2020, 9(F1000 Faculty Rev):653 https://doi.org/10.12688/f1000research.22092.1
p38 mitogen-activated protein kinases

p38α (originally named p38) was identified and cloned as a 38 kDa protein that was tyrosine-phosphorylated in response to LPS stimulation in mammalian cells. Sequence comparison, on the day p38α was cloned, revealed that it belonged to the mitogen-activated protein kinase (MAPK) family and that a Saccharomyces cerevisiae osmotic response protein kinase HOG1 was a p38α homologue. p38α was also named cytokine suppressive drug binding protein (CSBP) because it was identified as the target of a series of anti-inflammatory pyridinyl-imidazole compounds and as reactivating kinase (RK) because it phosphorylated and activated MK2. There are four members of the p38 group of MAPKs encoded by four different genes in mammals: p38α (MAPK14, chromosome 6p21.31 in humans), p38β (MAPK11, SAPK2b, Chr22q13.33), p38γ (MAPK12, ERK6, SAPK3, Chr22q13.33), and p38δ (MAPK13, SAPK4, Serk4, Chr6p21.31). As can be surmised from their chromosomal locations, MAPK14/p38α and MAPK13/p38δ are physically close and separated by just over 15 kb, as are MAPK11/p38β and MAPK11/p38γ, which are separated by less than 2 kb. All the p38s contain a conserved Thr–Gly–Tyr (TGY) consensus kinase activation loop, and both Thr and Tyr phosphorylation are necessary to fully activate the kinase. However, monophosphorylated p38α Thr180 has some kinase activity in vitro, but a different substrate specificity, when compared with dual-site phosphorylated p38α. p38 group members are expressed ubiquitously, but p38γ and p38δ are enriched in certain cell types and tissues, such as p38γ in skeletal muscle and p38δ in the salivary, pituitary, and adrenal glands. p38β shares more amino acid sequence identity with p38α (~70%), while p38γ and p38δ share ~60% identity with p38α. p38α and p38δ also share high sequence homology with cyclin-dependent kinases (CDKs) and are sensitive to some CDK inhibitors.

Activation and inactivation of p38

p38α is involved in the response to almost all stressful stimuli, including LPS, UV light, heat shock, osmotic shock, inflammatory cytokines, T cell receptor ligation, glucose starvation, and oncogene activation. Under certain circumstances, it is also activated upon growth factor stimulation. It should be noted that the activation of p38 in some cases is cell type specific, since an activating stimulus in one cell type may inhibit p38 in other cell types. The study of p38 group members other than p38α has been less intensive; however, where it has been examined, the other p38s are frequently co-activated with p38α.

Like other MAPK signaling pathways, the activation of all p38s is mediated by a kinase cascade: MAPKKK (MAP3K), which activates MAPKK (MAP2K), which in turn activates MAPK. The MAP2K kinases MKK3 and MKK6 are the major upstream kinases for p38 activation. Although MKK3 and MKK6 phosphorylate most p38 isoforms in vitro, selective activation and substrate specificity have been observed in vivo. MKK4 has also been reported to phosphorylate p38α and p38δ in specific cell types. A number of MAP3Ks have been reported to participate in p38 activation including TAK1, ASK1, DLK, and MEKK4. Low-molecular-weight GTP-binding proteins in the Rho family, such as Rac1 and Cdc42, can activate p38 through binding to MEK1 or MLK1, which function as upstream activators of MAP3K.

p38α can also be activated by MAP2K-independent mechanisms. TAB1 (TAK1-binding protein 1) directly interacts with p38α and can promote trans autophosphorylation on Thr180 and Tyr182 and thus full activation of p38α. A subsequent study revealed that autophosphorylation of Thr180 and Tyr182 requires a conserved Thr residue. TAB1-dependent p38α activation has been implicated in ischemic myocardial injury and T cell energetic responses. TAB1 is also claimed to play a role in Sestrin-mediated p38α activation. Another MAP2K-independent activation is mediated by ZAP70 after T cell receptor ligation. ZAP70 can directly phosphorylate p38α/β on Tyr182, leading to autophosphorylation on Thr180, one of the dual phosphorylation sites. As discussed, mono-Thr180 phosphorylated p38α still has some kinase activity, and loss of ZAP70-mediated p38 activation in p38αβ−/− double knock-in mice reduces autoimmunity and inflammation in several autoimmune disease models. Interestingly, p38α also phosphorylates ZAP70, resulting in a decrease in the size and persistence of the T cell receptor signaling complex, and therefore acts as a feedback regulator of ZAP70.

Conversely, de-phosphorylation of both threonine and tyrosine residues in the activation loop inactivates MAPks, and this is mainly carried out by dual-specificity phosphatases of the MAPK phosphatase (MKP)/dual specificity phosphatase (DUSP) family. Although several MKPs have been reported to dephosphorylate p38α, MKP1/DUSP1, MKP5/DUSP10, MKP8/DUSP26, and DUSP8 are more potent inhibitors of p38α and JNK than ERK. A recent report showed that DUSP12 is also a p38α phosphatase. While there are a number of p38α DUSPs, no DUSP for p38δ has been reported, and these two p38s are resistant to several known p38α MKPs such as MKP1, 3, 5, and 7. p38α-dependent upregulation of MKP1 was reported and is believed to be part of a negative feedback loop of p38α activation. Other types of phosphatases have also been reported to target p38 MAPks, such as CacyBP/SIP, Wip1, and PP2C. The substrate specificity between p38 and phosphatases and the related physiological functions in vivo still need further investigation. p38γ has also been reported to be degraded by a p38/JNK/ubiquitin-proteasome-dependent pathway, which represents an additional mechanism by which p38 kinases may cross regulate each other. Yet other ways of regulating p38 are suggested from studies in Caenorhabditis elegans, where a genetic screen for resistance against bacterial infection identified RIOK-1, an atypical serine kinase and human RIO kinase homolog, as a suppressor of the p38 pathway. As RIOK-1 is a transcriptional target of the p38 pathway in C. elegans, this suggests that RIOK-1 is part of a negative feedback loop. A brief summary of the p38 pathway is shown in Figure 1.
Downstream substrates of p38

Protein kinases
The p38 MAPK cascade does not end at p38. Members of the MAPK-activated protein kinase (MAPKAPK) family such as MK2, MK3, and MK5 (PRAK) are all p38 substrates. The MKs have a broad range of substrates that extend the range of functions regulated by p38 kinases. Mitogen- and stress-activated protein kinase-1/2 (MSK1/2), which are important for CREB activation and chromosome remodeling, have also been identified as substrates of p38. MNK1/2, kinases that phosphorylate the eukaryotic initiation factor-4e (eIF-4E), are phosphorylated by p38. p38 has also been reported to inactivate murine GSK3β by phosphorylating Ser389, and since GSK3β is required for the continuous degradation of β-catenin in the Wnt signaling pathway, this can lead to an accumulation of β-catenin. It was also reported that p38 negatively regulates insulin secretion by catalyzing an inhibitory phosphorylation of PKD1. A number of p38 protein kinase substrates are summarized in Table 1.

Transcription factors
p38 targets a large number of transcription factors, including myocyte-specific enhancer factor 2 (MEF2) family members, cyclic AMP-dependent transcription factor 1, 2, and 6 (ATF-1/2/6), CHOP (growth arrest and DNA damage inducible gene 153, or GADD153), p53, C/EBPβ, MITF1, DDIT3, ELK1/4, NFAT, and STAT1/4. p38 phosphorylation of transcription factors predominantly leads to enhanced transcriptional activity. However, in some cases, it represses transcription, and this is summarized in Table 2. Transcription factor phosphorylation by p38 is often stimulus and cell type dependent and plays a role in the cellular response to inflammation, DNA damage, metabolic stress, and many other stresses. The effects of p38 on transcription seem to constitute the major part of p38’s responses to stress stimuli.

Transcriptional regulators
A large number of transcriptional regulators, including epigenetic enzymes, are substrates of p38, and these are summarized...
Table 1. Substrates of p38 group members – kinases.

Substrate	Kinase	Function	References
MAPKAPK2	p38α, p38β, p38γ, p38δ	Activates the kinase substrate	Freshney NW et al., Cell, 1994⁶
			Rouse J et al., Cell, 1994⁴
MAPKAPK3	p38α, p38β, p38γ, p38δ	Activates the kinase substrate	McLaughlin MM et al., J Biol Chem, 1996⁵
			Waskiewicz AJ et al., EMBO J, 1997¹⁷
MNK1/2	p38α	Activates the kinase substrate	Deak M et al., EMBO J, 1998¹⁵
			Pierrat B et al., EMBO J, 1998¹⁷
PAK6	p38α	Activates the kinase substrate	Kaur R et al., J Biol Chem, 2005⁷⁸
PIP4Kb	p38α	Inactivates the kinase substrate	Jones DR et al., Mol Cell, 2006⁷⁹
RPAK (MK5)	p38α, p38β	Activates the kinase substrate	New L et al., EMBO J, 1998⁵⁸
PKCε	p38α, p38β	Completes cytokinesis	Saurin AT et al., Nat Cell Biol, 2008⁸⁰
GSK3β	p38α	Inactivates the kinase substrate, activates Wnt pathway.	Bikkavilli RK et al., J Cell Sci, 2008⁸⁰
			Thornton TM et al., Science, 2008⁸¹

GSK3β, glycogen synthase kinase 3 beta; MAPKAPK, mitogen-activated protein kinase activated protein kinase; MSK1/2, mitogen- and stress-activated protein kinase; PAK6, p21-activated kinase 6; PIP4Kb, phosphatidylinositol 5 phosphate 4-kinase; PKCε, protein kinase C epsilon type.

Table 2. Substrates of p38 group members – transcription factors.

Substrate	Kinase	Function	References
ATF2	p38α, p38β, p38γ, p38δ	Enhances transcriptional activity	Cuenda A et al., EMBO J, 1997⁸¹
			Jiang Y et al., J Biol Chem, 1997³
C/EBPα	p38α	Enhances transcriptional activity	Qiao L et al., J Biol Chem, 2006⁸²
C/EBPβ	p38α	Enhances transcriptional activity	Engelman JA et al., J Biol Chem, 1998⁶³
C/EBPε	p38α	Enhances transcriptional activity	Williamson EA et al., Blood, 2005⁸⁴
CHOP	p38α, p38β	Enhances transcriptional activity	Wang XZ et al., Science, 1996⁸⁵
E2F4	p38α	Enhances transcriptional activity	Morillo SM et al., Mol Cell Biol, 2012⁸⁵
Elk-1	p38α	Enhances transcriptional activity in specific cell types	Janknecht R et al., EMBO J, 1997⁸⁶
			Whitmarsh AJ et al., Mol Cell Biol, 1997⁸⁶
ERα	p38α	Enhances nuclear localization and transcriptional activity	Lee H et al., Mol Cell Biol, 2002⁸⁶
Fos	p38α, p38β, p38γ, p38δ	Enhances transcriptional activity	Tanos T et al., J Biol Chem, 2005⁸⁷
FOXO3a	p38α	Enhances nuclear relocalization	Ho KK et al., J Biol Chem, 2012⁸⁸
GR	p38α	Enhances transcriptional activity	Miller AL et al., Mol Endocrinol, 2005⁸⁹
IUF1	p38α, p38β	Enhances transcriptional activity	Macfarlane WM et al., J Biol Chem, 1997⁶⁰
JDP2	p38α	N/D	Katz S et al., Biochem J, 2002⁹¹
c-JUN	p38α, p38β, p38γ	Enhances transcriptional activity	Humar M et al., Int J Biochem Cell Biol, 2007⁵²

Substrate	Kinase	Function	References
MafA	p38α, p38β, p38γ, p38δ	Enhances transcriptional activity	Sii-Felice K et al., FEBS Lett, 2005⁵⁵
MEF2A	p38α, p38β, p38γ	Enhances transcriptional activity	Zhao M et al., Mol Cell Biol, 1999⁵⁴
MEF2C	p38α, p38β, p38γ, p38δ	Enhances transcriptional activity	Han J et al., Nature, 1997¹²
MEF2D	p38α	Enhances recruitment of Ash2L to muscle-specific promoters	Zhao M et al., Mol Cell Biol, 1999⁵⁴; Rampalli S et al., Nat Struct Mol Biol, 2007¹³
MIF	p38α	Enhances transcriptional activity	Mansky KC et al., J Biol Chem, 2002⁶⁰
MRF4	p38α	Represses transcriptional activity	Suelves M et al., EMBO J, 2004⁵⁶
NFATc1	p38α	Enhances transcriptional activity and interaction with PU.1	Matsumoto M et al., J Biol Chem, 2004⁵⁷
NFATc4	p38α, p38β, p38γ	Represses nuclear localization and transcriptional activity	Yang TT et al., Mol Cell Biol, 2002⁵⁸
NR4A	p38α	Enhances transcriptional activity	Sekine Y et al., J Cell Sci, 2011⁵⁹
Nur77	p38α	Disrupts interaction with p65 and represses transcriptional activity	Li L et al., Nat Chem Biol, 2015¹⁰⁰
Osterix	p38α	Enhances recruitment of coactivators	Ortuño MJ et al., J Biol Chem, 2010⁶¹
p53	p38α	Increases protein stability and apoptosis	Bulavin DV et al., EMBO J, 1999⁵⁹
Pax6	p38α	Enhances transcriptional activity	Mikkola I et al., J Biol Chem, 1999¹⁰²
PPARα	p38α	Enhances transcriptional activity	Barger PM et al., J Biol Chem, 2001¹⁰³
SAP1	p38α, p38β, p38γ, p38δ	Enhances transcriptional activity	Janknecht R et al., EMBO J, 1997⁶⁷
Smad3	p38α	Enhances nuclear translocation	Hayes SA et al., Oncogene, 2003¹⁰⁴
Snail	p38α	Increases protein stability and transcriptional activity	Ryu KJ et al., Cancer Res, 2019¹⁰⁵
STAT1	p38α, p38β	Enhances transcriptional activity	Kovarik P et al., Proc Natl Acad Sci U S A, 1999¹⁰⁶
STAT4	p38α	Enhances transcriptional activity	Visconti R et al., Blood, 2000¹⁰⁷
TEAD4	p38α	Enhances cytoplasmic translocation and suppresses transcriptional activity	Lin KC et al., Nat Cell Biol, 2017¹⁰⁶
Twist1	p38α	Increases protein stability and transcriptional activity	Hong J et al., Cancer Res, 2011¹⁰⁸
USF1	p38α	Enhances transcriptional activity	Galibert MD et al., EMBO J, 2001¹¹
Xbp1s	p38α	Enhances nuclear translocation and transcriptional activity	Lee J et al., Nat Med, 2011⁷¹

ATF2, activating transcription factor 2; C/EBP, CCAAT/enhancer binding protein; CHOP, CCAAT/enhancer-binding protein homologous protein; ER, estrogen receptor; GR, glucocorticoid receptor; IUF1, insulin upstream factor 1; JDP2, Jun dimerization protein 2; MEF, myocyte-specific enhancer factor; MITF, microphthalmia transcription factor; MRF, muscle regulatory factor; NFAT, nuclear factor of activated T cells; Pax6, paired box 6; PPARα, peroxisome proliferator-activated receptor alpha; TEAD4, TEA domain family transcription factor 4; USF1, upstream transcription factor 1; Xbp1s, spliced form of X-box binding protein 1.
Enhances nucleocytoplasmic transport and represses transcription activity

Other substrates

Given the wide range of responses that p38 is involved in, it is not surprising that many p38 substrates cannot be so easily categorized into groups, and these miscellaneous substrates are summarized in Table 4. Some of them are involved in metabolism such as Raptor phosphorylation by p38β, which enhances mTORC1 activity in response to arsenite-stress(13), and DEPTOR (mTOR-inhibitory protein) phosphorylation by p38γ and p38δ, leading to its degradation and mTOR hyperactivation(14). p38α phosphorylation of Tip60 at Thr182 promotes senescence and DNA-damage-induced apoptosis(15,16). Some p38 substrates are cell death regulators. In the ER stress response, p38α locates to the lysosome and phosphorylates the chaperone-mediated autophagy (CMA) receptor LAMP2A, leading to activation of CMA and thus protecting cells from ER stress-induced death(17).

Biological functions of the p38 pathway

Embryo development

p38α is required for embryo development, since the mouse Mapk14−/− embryo dies between embryonic days (E) 10.5 and 12.5(18–23). Mutant mice with a single Thr180 to Ala mutation or with the double T180A Y182F mutation are also embryonic lethal(22,23). Surprisingly, given the importance of the dual phosphorylation for complete p38 activation, substitution of Tyr182 with Phe results in mice that have reduced p38 signaling but are nevertheless viable(23), although this is consistent with previous studies showing that the p38 phosphorylated on Thr180 alone retains some activity in vitro(17). Histological analysis demonstrates that p38α is required for placental angiogenesis, but not embryonic cardiovascular development, and tetraploid rescue of the placental defect in Mapk14−/− embryos confirmed that p38α is

Table 3. Substrates of p38 group members – transcriptional regulators.

Substrate	Kinase	Function	References
BAF60c	p38α, p38β	Activates transcription of MyoD-target genes	Simone C et al., Nat Genet, 2004(10) Forcales SV et al., EMBO J, 2012(24)
RNF2	p38α	Modulates gene expression and histone 2B acetylation	Rao PS et al., Proteomics, 2009(24)
EZH2	p38α	Promotes cytoplasmic localization	Anwar T et al., Nat Commun, 2018(25)
dAFF2	p38α, p38β	Disrupts heterochromatin formation	Seong K-H et al., Cell, 2011(26)
CRTC2	p38α	Enhances nucleocytoplasmic transport and represses transcription activity	Ma H et al., Mol Cell Biol, 2019(27)
E47	p38α, p38β	Enhances the formation of MyoD/E47 heterodimers	Page JL et al., J Biol Chem., 2004(28) Lluis F et al., EMBO J, 2005(29)
HBP1	p38α	Increases protein stability and represses transcription	Xiu M et al., Biol, 2003(30)
p18(Hamlet)	p38α, p38β	Increases protein stability and enhances transcription	Cuadrado A et al., EMBO J, 2007(31)
PGC-1α	p38α, p38β	Increases protein stability and enhances transcription	Puigserver P et al., Mol Cell, 2001(32)
Rb1	p38α, p38γ	Induces Rb degradation and cell death; suppresses Rb activity and promotes the G0-to-G1 transition	Delston RB et al., Oncogene, 2011(33) Tomás-Loba A et al., Nature, 2019(34)
SRC-3	p38α	Induces SRC-3 degradation and suppresses RARα-dependent transcription	Gianni M et al., EMBO J, 2006(35)

CRTC2, CREB-regulated transcription coactivator 2; HBP1, HMG-box transcription factor 1; PGC-1α, peroxisome proliferator-activated receptor gamma co-activator 1 alpha; RAR, retinoic acid receptor; RNF2, ring finger protein 2.
Table 4. Substrates of p38 group members – others.

Substrate	Kinase	Function	References
Cdc25A	p38α	Increases protein stability	Goloudina A et al., Cell Cycle, 2003[32]
Cdc25B	p38α	Increases protein stability	Lemaire M et al., Cell Cycle, 2006[34]
Cyclin D1	p38α	Causes ubiquitination and degradation of cyclin D1	Casanova O et al., J Biol Chem, 2000[35]
Cyclin D3	p38α, p38β p38γ, p38δ	Causes ubiquitination and degradation of cyclin D3	Casanova O et al., Oncogene, 2004[36]
p57kip2	p38α	Enhances interaction with CDKs and inhibits CDKs	Joaquin M et al., EMBO J, 2012[37]
Bax	p38α	Prevents Bcl-2-Bax heterodimer formation, enhances apoptosis	Min H et al., Mol Carcinog, 2012[38]
BimEL	p38α	Enhances apoptosis	Cai B et al., J Biol Chem, 2006[39]
Caspase-3	p38α	Inhibits caspase-3 activity and apoptosis	Alvarado-Kristensson M et al., J Exp Med, 2004[40]
Caspase-8	p38α	Inhibits caspase-8 activity and apoptosis	Alvarado-Kristensson M et al., J Exp Med, 2004[41]
Caspase-9	p38α	Inhibits caspase-9 activity and apoptosis	Seifert A et al., Cell Signal, 2009[42]
Cdt1	p38α, p38β	Increases protein stability	Chandrasekaran S et al., Mol Cell Biol, 2011[43]
Drosha	p38α	Enhances nuclear export and degradation	Yang Q et al., Mol Cell, 2015[44]
FBP2	p38α	Promotes prothrombin mRNA 3’ end processing	Danckwardt S et al., Mol Cell, 2011[45]
FBP3	p38α	Promotes prothrombin mRNA 3’ end processing	Danckwardt S et al., Mol Cell, 2011[46]
H2AX	p38α, p38β	Promotes serum starvation-induced apoptosis	Lu C et al., FEBS Lett, 2008[47]
H3	p38α	N/D	Zhong SP et al., J Biol Chem, 2000[48]
HuR	p38α, p38β	Enhances cytoplasmic accumulation and increases mRNA stability	Lafarga V et al., Mol Cell Biol, 2009[49]
KSRP	p38α, p38β	Prevents KSRP-mediated ARE-directed mRNA decay	Briata P et al., Mol Cell, 2005[50]
Rps27	p38α	N/D	Knight JD et al., Skelet Muscle, 2012[51]
SPF45	p38α	Inhibits Fas alternative splicing (exon 6 exclusion)	Al-Ayoubi AM et al., Mol Cell Biol, 2012[52]
EEA1	p38α	Promotes recruitment to endocytic membranes and enhances MOR endocytosis	Macé G et al., EMBO J, 2005[53]
Rabenosyn-5	p38α	Promotes recruitment to endocytic membranes and enhances MOR endocytosis	Macé G et al., EMBO J, 2005[54]
GDI-2	p38α	Enhances GDI:Rab5 complex formation and modulates endocytosis	Cavalli V et al., Mol Cell, 2001[55]
JIP4	p38α	Enhances p38 activity	Kelkar N et al., Mol Cell Biol, 2005[56]
Tip60	p38α	Enhances the pro-senescent function of Tip60	Zheng H et al., Mol Cell, 2013[57]
TAB1	p38α	Inhibits TAK1 activity	Cheung PC et al., EMBO J, 2003[58]
TAB3	p38α	Inhibits TAK1 activity	Mendoza H et al., Biochem J, 2008[59]
FRS2	p38α	Downregulates FGF1-induced signaling	Zakrzewska M et al., Int J Mol Sci, 2019[60]
Substrate	Kinase	Function	References
-----------	--------	----------	------------
EGFR	p38α	Induces EGFR internalization	Winograd-Katz SE et al., Oncogene, 2006157
FGFR1	p38α	Regulates translocation of exogenous FGF1 into the cytosol/nucleus	Sørensen V et al., Mol Cell Biol, 2002158
Nav1.6	p38α	Promotes interaction with NEDD-4 and protein degradation	Gasser A et al., J Biol Chem, 2010159
NHE1	p38α	Induces intracellular alkalization	Khaled AR et al., Mol Cell Biol, 2001160
PLA2	p38α	N/D	Börsch-Haubold AG et al., J Biol Chem, 1998161
TACE	p38α, p38β	Increases TACE-mediated ectodomain shedding and TGF-alpha family ligand release	Xu P et al., Mol Cell, 2010162
ZAP70	p38α	Phosphorylation of ZAP70 increases stability of T cell receptor	Giardino Torchia ML et al., Proc Natl Acad Sci U S A, 2018163
Caldesmon	p38α	N/D	Hedges JC et al., Am J Physiol, 1998164
Hsp27	p38α	N/D	Knight JD et al., Skelet Muscle, 2012165
Keratin 8	p38α	Regulates cellular keratin filament reorganization	Ku NO et al., J Biol Chem, 2002166
Lamin B1	p38α	Enhances lamin B1 accumulation	Barascu A et al., EMBO J, 2012167
Paxillin	p38α	Required for NGF-induced neurite extension of PC-12 cells	Huang C et al., J Cell Biol, 2004168
Stathmin	p38δ	N/D	Parker CG et al., Biochem Biophys Res Commun, 1998169
SAP97	p38γ	Modulating the association of this protein with other cytoskeleton proteins	Sabio G et al., EMBO J, 2005170
Tau	p38α, p38γ, p38δ	Enhances formation of paired helical filaments	Reynolds CH et al., J Neurochem, 1997171
Tensin1	p38α	Regulates the binding specificity of tensin1 to different proteins	Hall EH et al., Mol Cell Proteomics, 2010172
DEPTOR	p38γ, p38δ	Enhances degradation and mTOR hyperactivation	González-Terán B et al., Nat Commun, 2016173
GS	p38β	Required for subsequent phosphorylation to inhibit enzyme activity	Kuma Y et al., Biochem J, 2004174
LAMP2A	p38α	Activates chaperone-mediated autophagy	Li W et al., Nat Commun, 2017175
Parkin	p38α	Decreases its interaction with PINK1 and suppresses mitophagy	Chen J et al., Cell Death Dis, 2018176
p47phox	p38α	Promotes NADPH oxidase activation and superoxide production	Makni-Maalej K et al., J Immunol, 2012177
p62	p38γ, p38δ	Enhances mTORC1 activity	Linares JF et al., Cell Rep, 2015178
Raptor	p38β	Enhances mTORC1 activity in response to arsenite stress	Wu X-N et al., J Biol Chem, 2011179
Rpn2	p38α	Inhibits proteasome activity	Lee SH et al., J Biol Chem, 2010180
Siah2	p38α	Increases Siah2-mediated degradation of PHD3	Khurana A et al., J Biol Chem, 2006181

CDK, cyclin-dependent kinase; EGFR, epidermal growth factor receptor; FBP1, far upstream binding protein; FGF1, fibroblast growth factor 1; FGFR1, fibroblast growth factor receptor 1; FRS2, fibroblast growth factor receptor substrate 2; GDI, GDP dissociation inhibitor; KSRP, hnRNPK-homology type splicing regulatory protein; MAPK, mitogen-activated protein kinase; mTORC1, mammalian target of rapamycin complex 1; NADPH, nicotinamide adenine dinucleotide phosphate; NGF, nerve growth factor; NHE1, Na+/H+ exchanger isoform 1; PHD3, prolyl hydroxylase 3; PLA2, phospholipase A2; SAP97, synapse-associated protein 97; TAB, transforming growth factor-β-activated protein kinase-1-binding protein; TACE, tumor necrosis factor-alpha-converting enzyme; TAK1, transforming growth factor β-activated kinase 1; TGF, transforming growth factor.
essential for extraembryonic development13,121. Given the important role that p38 and MK2 play in regulating TNF-induced cell death179–182, it is intriguing that the Mapk14–/– embryonic lethal phenotype is very similar to that observed in other mice with defects in the TNF death pathway. Caspase-8, FADD, and cFLIP knockout mice also die at E10.5, and this is due to TNF-dependent endothelial cell death and disruption of the vasculature in the yolk sac183,184. Other p38 isoforms are not necessary for embryo development, but p38\(\alpha\) and p38\(\beta\) have overlapping functions, as Mapk14–/– Sox2-Cre embryos die before E16.5 with spina bifida that correlates with neural hyperproliferation and increased apoptosis in the liver, which was not observed in Mapk14–/– Sox2-Cre embryos185. Remarkably, p38\(\alpha\) appears to have a very specific function during embryogenesis because when p38\(\alpha\) was replaced by p38\(\beta\) in the Mapk14 chromosomal locus, which thereby placed p38\(\beta\) under the control of the endogenous p38\(\alpha\) promoter, it was unable to rescue the embryonic lethality induced by loss of p38\(\alpha\)185.

Immune responses
p38 is activated by many inflammatory stimuli, and its activity is important for inflammatory responses. Macrophase-specific deletion of Mapk14 inhibits inflammatory cytokine production and protects mice from CLP-induced sepsis108, p38\(\alpha\) controls the production of inflammatory cytokines, such as TNF and IL-6, at many levels. It directly phosphorylates transcription factors, such as MEF2C182,186, and regulators of mRNA stability, such as hnRNPK-homology (KH) type splicing regulatory protein (KSRP)187. MEF2C appears to play an anti-inflammatory role in endothelial cells in vivo188. Via MK2/MK3, p38 also upregulates cytokine mRNA transcription by the serum response transcription factor (SRF)189 and similarly, via MK2/MK3, p38 regulates mRNA stability by phosphorylating and inactivating TTP/Zip36, a protein that promotes rapid turnover of AU-rich mRNAs, many of which are cytokine mRNAs187,190. p38 activation also induces the expression of inflammatory mediators such as COX-2, MMP9, iNOS, and VCAM-1, which are involved in tissue remodeling and oxidation regulation191–194. The p38 pathway also regulates adaptive immunity. p38\(\alpha\) participates in antigen processing in CD8\(^+\) cDCs195, and ZAP70-mediated p38\(\alpha/\beta\) activation is important for T cell homeostasis and function196,197. In B cells, p38\(\alpha\) is important for CD40-induced gene expression and proliferation of B cells198 and the p38\(\alpha\)-MEF2c axis is believed to be necessary for germinal center B (GCB) cell proliferation and survival197,198. Excessive activation of p38\(\alpha\) has been observed in many inflammatory diseases, such as inflammatory bowel disease (IBD), asthma, rheumatoid arthritis, and steatohepatitis199–201. The other members of the p38 family also play roles in immune responses. For example, p38\(\gamma\) and p38\(\delta\) are required for neutrophil migration to damaged liver in non-alcoholic fatty liver disease202 and inhibition of euakaryotic elongation factor 2 in LPS-induced liver damage203. p38\(\delta\) is required for neutrophil accumulation in acute lung injury204. These observations, and the role that p38\(\delta\) play in TNF production, led to enormous pharmaceutical efforts to develop p38 inhibitors to treat chronic inflammatory diseases. However, unfortunately, these drugs were not efficacious in these diseases205.

Cell cycle
p38 has been implicated in G1 and G2/M phases of the cell cycle in several studies. The addition of activated recombinant p38\(\alpha\) caused mitotic arrest \textit{in vitro}, and an inhibitor of p38\(\alpha/\beta\) suppressed activation of the checkpoint by nocodazole in NIH3T3 cells206. G1 arrest caused by Cdc42 overexpression is also dependent on p38\(\alpha\) in NIH3T3 cells207. Besides, p38\(\gamma\) is specially required for gamma-irradiation-induced G2 arrest208. The link between p38 and cell cycle control has been proposed through the regulation of several p38 substrates. Both p38\(\alpha\) and p38\(\gamma\) regulate cell cycle progression via Rb but in opposite directions14,209. HBP1 represses the expression of cell cycle regulatory genes during cell cycle arrest in a p38-dependent manner209; p53 and p21 activation by p38\(\alpha\) prevented G1 progression through blockade of CDK activity210,211. The p38 pathway is also involved in cell cycle progression, as it is essential for self-renewal of mouse male germine stem cells213 and its regulation of G1-length plays a role in cell size uniformity214.

Cell differentiation
Participation of p38 in cell differentiation has been reported in certain cell types. p38\(\alpha\) activity is essential for neuronal differentiation in PC-12 cells and EPO-induced differentiation in SKT6 cells3,121. Treatment of 3T3-L1 fibroblasts with specific p38\(\alpha/\beta\) inhibitors prevents their differentiation into adipocytes by reducing C/EBP\(\beta\) phosphorylation16 and p38\(\alpha\)-dependent phosphorylation of MEF2C and BAF60 is critical for myogenic differentiation10,218. Intestinal epithelial cell-specific deletion of p38\(\alpha\) also influences goblet cell differentiation in a Notch-dependent manner20.

Cell metabolism
p38 group members participate in many cellular events related to metabolism. The p38\(\beta\)-PRAK axis specifically phosphorylates Rheb and suppresses mTORC1 activity under energy depletion conditions22. DEPTOR, an inhibitor of mTORC, can be phosphorylated by p38\(\gamma\) and p38\(\delta\), leading to its degradation223. Meanwhile, p38\(\delta\) directly phosphorylated p62 to enhance mTORC1 activity in response to amino acids175. In brown adipocytes, p38\(\alpha\) functions as a central mediator in \(\beta\)-adrenergic-induced UCP1 expression17,174, while in white adipocytes, p38\(\alpha\) inactivation leads to elevated white-to-beige adipocyte reprogramming and resistance to diet-induced obesity219,220. In hepatocytes, p38\(\alpha\) controls lipolysis and protects against nutritional steatohepatitis. Thus, mice with hepatectomy-specific loss of p38\(\alpha\) developed more severe steatohepatitis than wild type mice when fed high-fat or -cholesterol diets. Intriguingly, macrophase specific deletion of p38 had the opposite effect in the same high-fat diets and resulted in less steatohepatitis than in wild type mice, which probably reflects the inflammatory role of p38 in macrophages209. p38\(\alpha\) also directly phosphorylates Xbp1\(\alpha\) to enhance its nuclear migration for maintaining glucose homeostasis in obesity175. However, p38\(\alpha\) also functions as a negative regulator of AMPK signaling in maintaining gluconeogenesis, and hepatic p38\(\alpha\) could be a drug target for hyperglycemia211. It was also reported that p38\(\gamma\) directly phosphorylated p62 under imidazole propionate stimulation to promote mTORC1 activity in hepatocytes216.
Interestingly, AMPK also triggers the recruitment of p38α to scaffold protein TAB1 for p38α autoactivation in human T cells224.

Cell senescence

p38α appears to play a pivotal role in senescence. Constitutive activation of the p38 pathway by active MKK3 or MKK6 induces senescence in several cell types225,226, and p38α activity is responsible for senescence induced by multiple stimuli, such as telomere shortening227,228, H₂O₂ exposure229,230, and chronic oncogene activation230,231,232. p38α/β-specific inhibitors have been successfully used to prevent cellular senescence in cultured human corneal endothelial cells233. Since cellular senescence is considered a defense strategy against oncogene activation, the p38 pathway plays important roles in tumorigenesis234. Meanwhile, p38α activity is important for senescence-associated secretory phenotype (SASP), and its inhibition markedly reduces the secretion of most SASP factors, suggesting multiple roles for the p38 pathway in senescence233–235.

Cell survival and death

The role of the p38 pathway in cell fate is cell type and stimulus dependent. For example, p38α becomes activated upon NGF withdrawal in PC-12 cells, and p38α activated by overexpression of MKK3 induced apoptosis in NGF differentiated PC-12 cells236. Similarly, inhibition of p38 with PD169316 blocked NGF withdrawal-induced apoptosis in PC-12 cells237,238. The interplay between the p38 pathway and caspases, the central regulators/executors of apoptosis, is complicated because p38α activity can be elevated in a caspase-dependent manner in death stimulus treated cells239,240, and caspase activity can also be elevated in MKK6E (dominant active form) overexpressed cells239,240. In contrast, inhibition of caspase-8 and caspase-3 by p38α-mediated phosphorylation in neutrophils was also reported241. Recent studies show that p38-activated MK2 directly phosphorylates RIPK1 in TNF-treated cells or pathogen-infected cells, limiting TNF-induced cell death242–244. This represents an interesting link between cytokine production induced by TNF and cell death because TNF-induced MK2/MK3 phosphorylation of tristetraprolin/Zfp36 inactivates it and leads to increased stability of cytokine mRNAs245. Aberrant p38α activity is observed in many tumor cells, and inhibition of p38α/β enhances cell death in these cells246,247.

Perspectives

p38 is one of the most researched of all proteins, let alone kinases, and a search in PubMed for p38 MAPK or p38 kinase returns more than 36,000 publications, which is a higher number than some proteins listed in a review of the “top 10” most studied genes248. By contrast, searches for the kinases Raf and Src return about 17,000 and 25,000 hits, respectively. In 2018, there were more than 2,000 publications that mention p38, and it is clearly impractical to summarize such a vast amount of literature. As might be surmised from the preceding commentary, the studies are on a wide range of topics; however, the publications are more concentrated in some areas than others. The role of the p38 pathway in cancers (>10,000)249,250, inflammation (>8,000)250–254, and infections (>3,600)255,256 was intensively studied. About 1,600 publications include the specific term “p38 inhibitor”. This reflects the previously mentioned enormous interest of the pharmaceutical industry in developing p38 inhibitors to treat chronic inflammatory diseases, such as rheumatoid arthritis. Yet other publications report natural products that can activate or inhibit p38, with the ultimate aim of using them clinically252–254. In 2011, the European Commission approved Esbriet (pirfenidone), which was described as a p38γ inhibitor, for the treatment of idiopathic pulmonary fibrosis257. However, when this drug was approved by the FDA in 2014 for treating the same disease, it was described as a compound that acts on multiple pathways. In 2008, there were 27 clinical trials listed testing the use of p38 inhibitors in inflammatory disease settings258, while a search today for p38 inhibitors in clinicaltrials.gov returns 44 studies for conditions as diverse as pain, asthma, cognitive impairment, rheumatoid arthritis, cancer, myelodysplastic syndrome, and depression (Table 5). This indicates that there remains clinical interest in targeting the pathway

Table 5. Clinical trials of p38 inhibitors.

Drug	Target	Condition or disease	Status	NCT number
ARRY-371797	p38	Ankylosing spondylitis	Phase 2	NCT00811499
ARRY-371797	p38	Dental pain	Phase 2	NCT00542035, NCT00683767
ARRY-371797	p38	Healthy	Phase 1	NCT00790049
ARRY-371797	p38	LMNA-related dilated cardiomyopathy	Phase 2	NCT02351856, NCT02057341
ARRY-371797	p38	Osteoarthritis of the knee	Phase 2	NCT01366014
ARRY-37198	p38	Rheumatoid arthritis	Phase 1	NCT00729209
ARRY-614	p38 and TIE2	Myelodysplastic syndromes	Phase 1	NCT01496495, NCT00916227
AZD7624	p38	Corticosteroid-resistant asthma	Phase 2	NCT02753764
BIRB 796 BS	p38	Healthy	Phase 1	NCT02211170
BMS-582947	p38α	Rheumatoid arthritis	Phase 2	NCT00605735

Drug	Target	Condition or disease	Status	NCT number
BMS-582949	p38α	Vascular diseases (atherosclerosis)	Phase 2	NCT00570752
CHF6297	p38α	Chronic obstructive pulmonary disease	Phase 1/2	NCT02815488
Losmapimod (GS856553)	p38α/β	Acute coronary syndrome	Phase 1/2/3	NCT01756495 NCT02145468 NCT00910962
Losmapimod (GS856553)	p38α/β	Chronic obstructive pulmonary disease	Phase 2	NCT00642148 NCT01541852
Losmapimod (GS856553)	p38α/β	Depressive disorder, major	Phase 2	NCT00976560 NCT00569062
Losmapimod (GS856553)	p38α/β	Glomerulosclerosis, focal segmental	Phase 2	NCT02000440
Losmapimod (GS856553)	p38α/β	Pain, neuropathic	Phase 2	NCT011110057 NCT00969059
LY3007113	p38	Metastatic cancer	Phase 1	NCT01463631
Neflamapimod (VX-745)	p38α	Alzheimer's disease	Phase 2	NCT03402659 NCT02423200 NCT02423122
Neflamapimod (VX-745)	p38α	Dementia with Lewy bodies	Recruiting	NCT04001517
P38 inhibitor (4)	p38	Rheumatoid arthritis	Phase 2	NCT00303563 NCT00316771
PF-03715455	p38α	Asthma	Phase 2	NCT02219048
PF-03715455	p38α	Chronic obstructive pulmonary disease	Phase 2	NCT02366637
PF-03715455	p38α	Healthy	Phase 1	NCT01226693
PH-797804	p38α/β	Rheumatoid arthritis	Phase 2	NCT00383188 NCT00620685
Ralimetinib (LY2228820)	p38α/β	Adult glioblastoma	Phase 1/2	NCT02364206
Ralimetinib (LY2228820)	p38α/β	Advanced cancer	Phase 1	NCT01393990
Ralimetinib (LY2228820)	p38α/β	Epithelial ovarian cancer Fallopian tube cancer Primary peritoneal cancer	Phase 1/2	NCT01663857
Ralimetinib (LY2228820)	p38α/β	Postmenopausal metastatic breast cancer	Phase 2	NCT02322853
SB-681323	p38	Acute lung injury	Phase 2	NCT00996840
SB-681323	p38	Chronic obstructive pulmonary disease	Phase 1/2	NCT00564746 NCT00144859
SB-681323	p38	Pain, neuropathic	Phase 2	NCT00390845
SB-681323	p38	Rheumatoid arthritis Inflammation	Phase 1/2	NCT00419809 NCT00439881 NCT00134693
Talmipimod (SCIO-469)	p38α	Bone marrow diseases Myelodysplastic syndromes Hematologic diseases Bone marrow neoplasms	Phase 2	NCT00113893
Talmipimod (SCIO-469)	p38α	Multiple myeloma	Phase 2	NCT00095680 NCT00087867
Talmipimod (SCIO-469)	p38α	Rheumatoid arthritis	Phase 2	NCT00043732 NCT00089921
VX-702	p38α	Rheumatoid arthritis	Phase 2	NCT00395577 NCT00205478
and that there is therefore a need for more specific inhibitors of each of the p38 group members and more basic research to fully understand how each member of the p38 family, is utilized and regulated.

One consequence of the massive pharmaceutical effort over the last 20 years is a large number of very specific, well-tolerated, and readily bioavailable drugs that can enable such basic research. For example, one study using a boutique panel of kinase inhibitors was able to demonstrate that 11 potent and specific p38 inhibitors synergized with Smac-mimetic drugs to kill a subset of AML leukemias, providing the strongest evidence implicating p38 in Smac-mimetic-induced killing. Since several of these p38 inhibitors had already been clinically trialed, this presents an opportunity to fast-track such combinations into the clinic. In our opinion, it is likely that this is where the future of p38 research and p38 inhibitors lies, in revealing the intricate web of inter-connections and inter-dependencies of this core and central regulator of cell stress. We also believe that greater efforts to genetically assess the role of p38 and p38 isoforms in the pathophysiology of inflammatory and other diseases need to be made in order to push forward the clinical application of our burgeoning knowledge.

Acknowledgments
We thank Peipei Zhang and Ye-Hsuan Sun (School of Life Sciences, Xiamen University, China) for their help in preparing this manuscript.

References

1. Han J, Lee JD, Tobias PS, et al.: Endotoxin induces rapid protein tyrosine phosphorylation in 7023 cells expressing CD14. J Biol Chem. 1993;268(33): 25009–25014. PubMed Abstract
2. Han J, Lee JD, Bibbs L, et al.: A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. J Biol Chem. 1994;269(173): 808–811. PubMed Abstract | Publisher Full Text
3. Roux J, Cohen P, Trigon S, et al.: A novel kinase cascade triggered by stress and heat shock that stimulates MAPKAP kinase-2 and phosphorylation of the small heat shock proteins. Cell. 1994;78(6): 1027–1037. PubMed Abstract | Publisher Full Text
4. Fresson NV, Rawlinson L, Guesdon F, et al.: Interleukin-1 activates a novel protein kinase cascade that results in the phosphorylation of Hsp27. Cell. 1994;78(6): 1039–1049. PubMed Abstract | Publisher Full Text
5. Lee JC, Laydon JT, McDonnell PC, et al.: A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994;372(6558): 739–746. PubMed Abstract | Publisher Full Text
6. Jiang Y, Chen C, Li Z, et al.: Characterization of the structure and function of a new mitogen-activated protein kinase (p38beta). J Biol Chem. 1996;271(30): 17920–17925. PubMed Abstract | Publisher Full Text
7. Lechner C, Zahalka MA, Giot JF, et al.: ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci U S A. 1996;93(9): 4365–4369. PubMed Abstract | Publisher Full Text | Free Full Text
8. Li Z, Jiang Y, Ulevitch Rj, et al.: The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem Biophys Res Commun. 1996;228(2): 334–340. PubMed Abstract | Publisher Full Text
9. Jiang Y, Gram H, Zhao M, et al.: Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p3delta. J Biol Chem. 1997;272(48): 30122–30128. PubMed Abstract | Publisher Full Text
10. Kumar S, McDonnell PC, Gum RJ, et al.: Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun. 1997;235(3): 533–538. PubMed Abstract | Publisher Full Text
11. Raingeaud J, Gupta S, Rogers JS, et al.: Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem. 1995;270(13): 7420–7426. PubMed Abstract | Publisher Full Text
12. Lanna A, Gomes DC, Muller-Durovic B, et al.: A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat Immunol. 2017;18(3): 354–363. PubMed Abstract | Publisher Full Text | Free Full Text
13. Ohta T, Brown GE, Yaffe MB: MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit Care Med. 2000;28(4 Suppl): N67–77. PubMed Abstract | Publisher Full Text | Free Full Text
14. Tomas-Loba A, Manieri E, Gonzalez-Teran B, et al.: p38 is Essential for Cell Cycle Progression and Liver Tumorigenesis. Nature. 2019;568(7753): 557–560. PubMed Abstract | Publisher Full Text | Faculty Opinions Recommendation
15. Gong X, Liu A, Ming X, et al.: UV-induced interaction between p38 MAPK and p53 serves as a molecular switch in determining cell fate. FEBS Lett. 2010;584(23): 4711–4716. PubMed Abstract | Publisher Full Text
16. Sauberan A, Zippori D, Krupsky M, et al.: Stress activated protein kinase p38 is involved in IL-6 induced transcriptional activation of STAT3. Oncogene. 1999;18(26): 3886–3893. PubMed Abstract | Publisher Full Text
17. Follt NH, Lee JC, Young PR, et al.: Hemopoietic growth factors with the exception of interleukin-4 activate the p38 mitogen-activated protein kinase pathway. J Biol Chem. 1997;272(6): 3296–3301. PubMed Abstract | Publisher Full Text
18. Salvador JM, Mittelstadt PR, Guzyczynski T, et al.: Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases. Nat Immunol. 2005;6(4): 390–396. PubMed Abstract | Publisher Full Text | Faculty Opinions Recommendation
19. Sun P, Yoshizuka N, New L, et al.: PRAK is essential for ras-induced senescence and tumor suppression. Cell. 2007;128(2): 235–238. PubMed Abstract | Publisher Full Text
20. Nagata Y, Takahashi N, Davis RJ, et al.: Activation of p38 MAP kinase and JNK but not ERK is required for erythropoitin-induced erythroid differentiation. Blood. 1996;98(6): 1859–1869. PubMed Abstract | Publisher Full Text
21. Zarubin T, Han J: Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005;15(1): 11–18. PubMed Abstract | Publisher Full Text
22. Zheng M, Wang YH, Wu XN, et al.: Inactivation of Rhee by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nat Cell Biol. 2011;13(3): 263–272. PubMed Abstract | Publisher Full Text | Free Full Text
23. Raingeaud J, Whirimah AJ, Barrett T, et al.: MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Mol Cell Biol. 1996;16(3): 1247–1255. PubMed Abstract | Publisher Full Text | Free Full Text
24. Derijard B, Raingeaud J, Barrett T, et al.: Independent human MAP kinase signal transduction pathways defined by MK6 and MKK isoforms. Science. 1995;267(5218): 682–685. PubMed Abstract | Publisher Full Text | Free Full Text
25. Enzen H, Raingeaud J, Davis RJ, et al.: Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the p38 mitogen-activated protein kinase pathway. J Biol Chem. 1996;273(3): 1741–1748. PubMed Abstract | Publisher Full Text | Free Full Text
26. Morizuchi T, Kuroyanagi N, Yamaguchi K, et al.: A novel kinase cascade mediated by mitogen-activated protein kinase 6 and MKK3. J Biol Chem. 1996;271(23): 13675–13679. PubMed Abstract | Publisher Full Text
27. Ichijo H, Nishida E, Irie K, et al.: Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 1997;275(5296): 90–94. PubMed Abstract | Publisher Full Text
phosphorylation of p38 protein at serine 389. J Biol Chem. 1999; 274(18): 12259–12263.

Pubmed Abstract | Publisher Full Text

71. Galibert MD, Carreira S, Godin CR. The Usf-1 transcription factor is a novel target for the stress-responsive phosphorylated kinase cascade in UV-induced Tyrosine expression. EMBO J. 2001; 20(17): 5022–5031.

Pubmed Abstract | Publisher Full Text | Free Full Text

72. Gomez del Arco P, Martinez-Martinez S, Maldonado JL, et al.: A role for the p38 MAP kinase pathway in the nuclear shuttling of NFATp. J Biol Chem. 2000; 275(18): 13872–13878.

Pubmed Abstract | Publisher Full Text

73. F Rampalli S, Li L, Mak E, et al.: p38 MAPK signaling regulates recruitment of Abi2/L-containing methyltransferase complex. J Biol Chem. 2000; 275(18): 13872–13878.

Pubmed Abstract | Publisher Full Text

74. Ramsauer K, Sadzak I, Porras A, et al.: p38 MAPK enhances STAT1-dependent transcription independently of Ser-727 phosphorylation. Proc Natl Acad Sci U S A. 2002; 99(20): 12859–12864.

Pubmed Abstract | Publisher Full Text | Free Full Text

75. Lee J, Sun C, Zhou Y, et al.: p38 MAPK-mediated regulation of Xbp1s is crucial for glucose homeostasis. Nat Med. 2011; 17(10): 1251–1260.

Pubmed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

76. Lin KC, Morsut T, Meng Z, et al.: Regulation of Hippo pathway transcription factor 17 by p38 MAPK-induced cytoplasmic translocation. Nat Cell Biol. 2017; 19(9): 996–1002.

Pubmed Abstract | Publisher Full Text | Free Full Text

77. Pierrat B, Correia JS, Mary JL, et al.: Tyrosinase expression. Nat Struct Mol Biol. 2001; 3841–3850.

Pubmed Abstract | Publisher Full Text | Free Full Text

78. Zhao M, Lee, Kravchenko VV, et al.: Regulation of the MEF2 family of transcription factors by p38. Mol Cell. 1999; 18(1): 21–30.

Pubmed Abstract | Publisher Full Text | Free Full Text

79. Mansky KC, Sankar U, Han J, et al.: Microphthalmia transcription factor is a target of the p38 MAPK pathway in response to receptor activator of NF-kappa B ligand signaling. J Biol Chem. 2002; 277(13): 11077–11083.

Pubmed Abstract | Publisher Full Text | Free Full Text

80. Suelves M, Lluis F, Ruiz V, et al.: Phosphorylation of MRE11A transcription domain by p38 mediates repression of specific myogenic genes. EMBO J. 2004; 23(24): 365–375.

Pubmed Abstract | Publisher Full Text | Free Full Text | Free Full Text

81. Matsumoto M, Kogawa M, Wada S, et al.: Essential role of p38 mitogen-activated protein kinase in catechepin K gene expression during osteoclastogenesis through association with c-Jun and NF-κB. J Biol Chem. 2004; 279(44): 45969–45979.

Pubmed Abstract | Publisher Full Text | Free Full Text

82. Yang TT, Xiong Q, Ensell H, et al.: Phosphorylation of NFATc4 by p38 mitogen-activated protein kinase. Mol Cell Biol. 2002; 22(11): 3892–3904.

Pubmed Abstract | Publisher Full Text | Free Full Text

83. Sekine Y, Takagahara S, Hatanaaka R, et al.: p38 MAPKs regulate the expression of genes in the dopamine synthesis pathway through phosphorylation of NR4A1 nuclear receptors. J Cell Sci. 2011; 124(17): 3006–3016.

Pubmed Abstract | Publisher Full Text | Free Full Text

84. Li L, Liu Y, Chen HZ, et al.: Impeding the interaction between Nur77 and p38 reduces LPS-induced inflammation. Nat Chem Biol. 2015; 11(5): 339–346.

Pubmed Abstract | Publisher Full Text

85. Ontono MJ, Ruiz-Gaspa S, Rodriguez-Carballo E, et al.: p38 regulates expression of osteoblast-specific genes by phosphorylation of c-fos. J Biol Chem. 2010; 285(42): 31985–31994.

Pubmed Abstract | Publisher Full Text | Free Full Text

86. Ryu KJ, Park SM, Park SH, et al.: p38 Stabilizes Snail by Suppressing Dyrk2-Mediated Phosphorylation That Is Required for GSK3beta-betaTrCP-Induced Snail Degradation. Cancer Res. 2019; 79(16): 4135–4148.

Pubmed Abstract | Publisher Full Text | Free Full Text

87. Kovap P, Stoiber D, Eysen PA, et al.: Stress-induced phosphorylation of STAT1 at Ser/Thr7 requires p38 mitogen-activated protein kinase whereas IISn-gamma uses a different signaling pathway. Proc Natl Acad Sci U S A. 1999; 96(24): 13956–61.

Pubmed Abstract | Publisher Full Text | Free Full Text

88. Vicenzi R, Gardina M, Chiariello M, et al.: Importance of the MKK6/p38 pathway for interleukin-12-induced STAT4 serine phosphorylation and transcriptional activation. Blood. 2000; 96(5): 1844–62.

Pubmed Abstract

89. Hong J, Zhou J, Fu J, et al.: Phosphorylation of serine 68 of Twist1 by MAPKs stabilizes Twist1 protein and promotes breast cancer cell invasiveness. Cancer Res. 2011; 71(11): 3980–8.

Pubmed Abstract | Publisher Full Text | Free Full Text

90. Simone C, Forcaes SV, Hill DA, et al.: p38 pathway targets SWS-SNF chromatin-remodeling complex to muscle-specific loci. Nat Genet. 2004; 36(7): 738–43.

Pubmed Abstract | Publisher Full Text | Faculty Opinions Recommendation

91. Forcaes SV, Albin S, Giordani L, et al.: Signal-dependent incorporation of MyoD-BAP60c into Brg1-based SWS/SNF chromatin-remodeling complex. EMBO J. 2012; 31(2): 301–16.

Pubmed Abstract | Publisher Full Text | Free Full Text

92. Anwar T, Arellano-Garcia C, Ropa J, et al.: p38-mediated phosphorylation

Page 15 of 20
at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. J. Natl. Cancer Inst. 2018: 11(1): 3901.

Pubmed Abstract | Publisher Full Text | Free Full Text

112. Seong KH, Li D, Shimizu H, et al.: Inheritance of stress-induced, ATF2-2 dependent epigenetic change. Cell. 2011: 145(7): 1049–1061.

Pubmed Abstract | Publisher Full Text | Faculty Opinions Recommendation

113. Wu XN, Wang XK, Wu SQ, et al.: Phosphorylation of Raptor by p38beta participates in arsenite-induced mammalian target of rapamycin complex 1 (mTORC1) activation. J. Biol. Chem. 2011: 286(36): 31501–31511.

Pubmed Abstract | Publisher Full Text | Free Full Text

114. Gonzalez-Teran B, Lopez JA, Rodriguez E, et al.: p38gammam and delta promote heart hypertrophy by targeting the mTOR-inhibitory protein DEPTOR for degradation. Nat. Commun. 2016: 7: 10477.

Pubmed Abstract | Publisher Full Text | Faculty Opinions Recommendation

115. Zheng H, Seil-Nebi A, Han X, et al.: A posttranslational modification cascade involving p38, Tip60, and PRAK mediates oncogene-induced senescence. Mol. Cell. 2015: 56(3): 699–710.

Pubmed Abstract | Publisher Full Text | Free Full Text

116. Xu Y, Liao R, Li N, et al.: Regulation of mitogen-activated protein kinase signaling pathways. Oncotarget. 2016: 7(36): 35091–35097.

Pubmed Abstract | Publisher Full Text | Free Full Text

117. Casanova O, Mir F, Estanyol JM, et al.: Osmotic stress regulates the stability of cyclin D1 in a p38APK2-dependent manner. J. Biol. Chem. 2000: 275(45): 35991–35997.

Pubmed Abstract | Publisher Full Text | Free Full Text

118. Casanova O, Jauml M, Paules AB, et al.: P38APK2 phosphorylates cyclin D3 at Thr-283 and targets it for proteasomal degradation. Oncogene. 2004: 23(4): 7537–7544.

Pubmed Abstract | Publisher Full Text | Free Full Text

119. Joaquin M, Guttern A, Gonzalez-Nunez D, et al.: The p57 CDKN1A integrates stress signals into cell-cycle progression to promote cell survival upon stress. EMBO J. 2012: 31(13): 2962–64.

Pubmed Abstract | Publisher Full Text | Free Full Text

120. Seifert A, Clarke PR: p38alphaph- and DYRK1A-dependent phosphorylation of caspase-9 at an inhibitory site in response to hyperosmotic stress. Cell Signal. 2009: 21(11): 1626–33.

Pubmed Abstract | Publisher Full Text | Free Full Text

121. Chandrasekaran S, Tan TX, Hall JR, et al.: Stress-stimulated mitogen-activated protein kinases control the stability and activity of the Cdt1 DNA replication licensing factor. Mol. Cell. Biol. 2011: 31(22): 4045–6. PubMed Abstract | Publisher Full Text | Free Full Text

122. Yang G, Li W, She H, et al.: Stress induces p38 MAPK-mediated phosphorylation and inhibition of Drosha-dependent cell survival. Mol. Cell. 2015: 57(4): 721–734.

Pubmed Abstract | Publisher Full Text | Free Full Text

123. Danewortd S, Gantzert AS, Maucher-Geppinger S, et al.: p38 MAPK controls prothrombin expression by regulated RNA 3’ end processing. J. Biol. Chem. 2011: 413(1): 298–310.

Pubmed Abstract | Publisher Full Text | Free Full Text

124. Lu C, Shi Y, Wang Z, et al.: Serum starvation induces H2AX phosphorylation to regulate apoptosis via p38 MAPK pathway. FEBS Lett. 2009: 582(18): 2703–8. PubMed Abstract | Publisher Full Text | Free Full Text

125. Zheng SP, Ma WY, Ding Z: ERKs and p38 kinases mediate ultraviolet B-induced phosphorylation of histone H3 at serine 10. J. Biol. Chem. 2000: 275(28): 20980–4.

Pubmed Abstract | Publisher Full Text | Free Full Text

126. Lafarga V, Cuadrado A, Lopez de Silanes I, et al.: Mitogen-activated protein kinase- and HUR-dependent stabilization of p21WAF1/RNA mediates the G1/S checkpoint. Mol. Cell. Biol. 2009: 29(16): 4341–4351.

Pubmed Abstract | Publisher Full Text | Free Full Text

127. Briata P, Formas SV, Ponassi M, et al.: p38-dependent phosphorylation of the miRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts. Mol. Cell. 2015: 60(6): 891–903.

Pubmed Abstract | Publisher Full Text | Free Full Text

128. Knight JD, Tian R, Lee RE, et al.: A novel whole-cell lysate kinase assay identifies substrates of the p38 MAPK in differentiating myoblasts. Skelet. Muscle. 2012: 2: S.

Pubmed Abstract | Publisher Full Text | Free Full Text

129. Ai-Ayoubi AM, Zheng H, Liu Y, et al.: Mitogen-activated protein kinase phosphorylation of splicing factor 45 (SPF45) regulates SPF45 alternative splicing site utilization, proliferation, and cell adhesion. Mol. Cell. Biol. 2012: 32(14): 2880–2893.

Pubmed Abstract | Publisher Full Text | Free Full Text

130. Mace G, Macizynska Z, Zerial M, et al.: Phosphorylation of EEAT1 by p38 MAP kinase regulates mu opioid receptor endocytosis. EMBO J. 2005: 24(18): 3235–46. PubMed Abstract | Publisher Full Text | Free Full Text

131. Cavela V, Vibos F, Corti M, et al.: The stress-induced MAP kinase p38 regulates endocytic trafficking via the G(1)RB5 complex. Mol. Cell. 2001: 7(2): 421–432. PubMed Abstract | Publisher Full Text | Free Full Text

132. Kelkar N, Standen CL, Davis RJ: Role of the JIP4 scaffold protein in the regulation of mitogen-activated protein kinase signaling pathways. Mol. Cell. Biol. 2005: 25(7): 2733–2743. PubMed Abstract | Publisher Full Text | Free Full Text
217. Cao W, Medvedev AV, Daniel KW, et al.: β-Arnergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J Biol Chem. 2001; 276(3): 2707–2708. PubMed Abstract | Publisher Full Text | Free Full Text

218. Wilker PR, Kohyama M, Senda MM, et al.: Transcription factor p62 is required for B cell proliferation and survival after antigen receptor stimulation. Nat Immunol. 2006; 7(6): 603–12. PubMed Abstract | Publisher Full Text | Free Full Text

219. Zhang S, Cao H, Li Y, et al.: Metabolic benefits of inhibition of p38α in white adipose tissue in obesity. PLoS Biol. 2018; 16(5): e2004225. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

220. Zhang S, Cao H, Li Y, et al.: Metabolic benefits of inhibition of p38α in white adipose tissue in obesity. PLoS Biol. 2018; 16(5): e2004225. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

221. Jang Y, Liu W, Cao H, et al.: Hepatic p38α regulates gluconeogenesis by suppressing AMPK. J Hepatol. 2015; 62(6): 1319–1327. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

222. Samanta A, Henson SM, Escors D, et al.: The kinase p38α activated by the metabolic regulator AMPK and scaffold TAK1 drives the senescence of human T cells. Nat Immunol. 2014; 15(10): 965–972. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

223. Wang W, Chen JX, Liao R, et al.: Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol. 2002; 22(10): 3389–3403. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

224. Nag R, Brenton JD, Takashashi M, et al.: Constitutive p38HOG mitogen-activated protein kinase activation induces permanent cell cycle arrest and senescence. Cancer Res. 2002; 62(17): 5076–5082. PubMed Abstract | Faculty Opinions Recommendation

225. Thy AM, Brok AJ, Rokicki MJ, et al.: p38α-mediated stress signalling in replicative senescence in fibroblasts from progeroid and genomic instability syndromes. Biogerontology. 2013; 14(1): 47–62. PubMed Abstract | Publisher Full Text | Free Full Text

226. Naka K, Tachibana A, Ikeda K, et al.: Stress-induced premature senescence in hTERT-expressing ataxia telangiectasia fibroblasts. J Biol Chem. 2004; 279(8): 2030–2037. PubMed Abstract | Publisher Full Text | Free Full Text

227. Dimozi A, Mavrogenou E, Skirou A, et al.: Oxidative stress inhibits the proliferation, induces premature senescence and promotes a catabolic phenotype in human nuclear pulposus intervertebral disc cells. Eur Cell Mater. 2015; 30: 89–102. PubMed Abstract | Publisher Full Text | Free Full Text

228. Borodkina AV, Shatrova AN, Nikolsky NN, et al.: Role of P38 Map-Kinase in the Stress-Induced Senescence Progression of Human Endometrium-Derived Mesenchymal Stem Cells. Tsitologiia. 2016; 56(6): 429–436. PubMed Abstract

229. Harada G, Neng Q, Fuji T, et al.: Molecular mechanisms for the p38-induced cellular senescence in normal human fibroblast. J Biochem. 2014; 156(5): 283–290. PubMed Abstract | Publisher Full Text | Free Full Text

230. Gubin A, Joaquin M, Marques M, et al.: The N-Terminal Phosphorylation of RB by p38 Bypasses Its Inactivation by CDKs and Prevents Proliferation in Cancer Cells. Mol Cell. 2016; 64(1): 25–36. PubMed Abstract | Publisher Full Text | Faculty Opinions Recommendation

231. Ye AS, Paulson EK, McDevitt MA, et al.: The HBPI transcriptional repressor and the p38 MAP kinase: unlikely partners in G1 regulation and tumor suppression. Gene. 2004; 336(1): 1–13. PubMed Abstract | Publisher Full Text | Free Full Text

232. Kumar G, Ulrich T, Gautschi S: A role for p38 in transcriptional elongation of p21**w** in response to Aurora B inhibition. Cell Cycle. 2012; 11(3): 2051–2060. PubMed Abstract | Publisher Full Text | Free Full Text

233. Saha K, Adhikary G, Kanade SR, et al.: p38α regulates p53 to control p21**w** expression in human epithelial keratinocytes. J Biol Chem. 2014; 289(16): 11443–11453. PubMed Abstract | Publisher Full Text | Free Full Text

234. Niu Z, Mu H, Zhu H, et al.: p38 MAPK pathway is essential for self-renewal of mouse germline stem cells (GSCs). Cell Profil. 2017; 50(1): e12314. PubMed Abstract | Publisher Full Text | Free Full Text

235. Liu S, Gillenberg MB, Patel N, et al.: Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length. eLife. 2018; 7: e26947. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

236. Morooka T, Nishida E: Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. J Biol Chem. 1998; 273(38): 24285–24288. PubMed Abstract | Publisher Full Text | Free Full Text

237. Li Y, Jiang B, Esmart WY, et al.: Myogenic differentiation requires signalling through both phosphatidylinositol 3-kinase and p38 MAP kinase. Cell Signal. 2000; 12(11): 751–757. PubMed Abstract | Publisher Full Text | Free Full Text

238. Cao W, Medvedev AV, Daniel KW, et al.: β-Arnergic activation of p38 MAP kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J Biol Chem. 2001; 276(39): 27077–27082. PubMed Abstract | Publisher Full Text | Free Full Text

239. Cao W, Daniel KW, Robidoux J, et al.: p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol. 2004; 24(7): 2677–2687. PubMed Abstract | Publisher Full Text | Free Full Text

240. Huang S, Jiang Y, Li Z, et al.: Apoptosis signaling pathway in T cells is composed

Page 18 of 20
of ICE/Ced-3 family proteases and MAP kinase kinase 6b. Immunity 1997; 6(6): 739–749. PubMed Abstract | Publisher Full Text

240. Cardone MH, Salvesen G2, Widmann C, et al.: The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. Cell. 1997; 90(2): 315–323. PubMed Abstract | Publisher Full Text

241. Tan W, Yu HG, Luo HS: Inhibition of the p38 MAPK pathway sensitizes human gastric cells to doxorubicin treatment in vitro and in vivo. Mol Med Rep. 2014; 10(4): 3275–3281. PubMed Abstract | Publisher Full Text

242. Slawinska-Brych A, Zdzisinska B, Mizerska-Dudka M, et al.: Reduced Expression 1 Activates Mitogen-Activated Protein Kinase Kinase 6b. Mol Med Rep. 2015; 11(9): 4371–4375. PubMed Abstract | Publisher Full Text

243. Alam MS, Gaida MM, Bergmann F, et al.: Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015; 21(11): 1337–1343. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

244. Salome M, Magee A, Yalla K, et al.: A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 2018; 9(5): 443. PubMed Abstract | Publisher Full Text | Free Full Text

245. Gibbe KL, Kalmar B, Rhymes ER, et al.: Inhibiting p38 MAPK alpha rescues axonal retrograde transport defects in a mouse model of ALS. Cell Death Dis. 2018; 9(6): 586. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

246. Fang C, Wu B, Le NTT, et al.: Prions activate a p38 MAPK synaptotoxic signaling pathway. PLoS Pathog. 2018; 14(9): e1007283. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

247. Obergasteiger J, Frappont G, Pramstaller PP, et al.: A new hypothesis for Parkinson’s disease pathogenesis: GTPase-p38 MAPK signaling and autophagy as convergence points of etiology and genomics. Mol Neurodegener. 2018; 13(1): 40. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

248. Wang PY, Hsu PI, Wu DC, et al.: SUMOs Mediate the Nuclear Transfer of p38 and p-p38 during Helicobacter Pylori Infection. Int J Mol Sci 2018; 19(9): 2482. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

249. Zhang F, Zhao Q, Tian J, et al.: Effective Pro-Inflammatory Induced Activity of GALT, a Conserved Antigen in A. Pleuropneumonieae, Improves the Cytokines Secretion of Macrophage via p38, ERK1/2 and JNK MAPKs Signal Pathway. Front Cell Infect Microbiol. 2018; 8: 337. PubMed Abstract | Publisher Full Text | Free Full Text | Faculty Opinions Recommendation

250. Zhu J, Yu W, Liu B, et al.: Escinc induces caspase-dependent apoptosis and autophagy through the ROS/p38 MAPK signalling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 2017; 8(10): e3113. PubMed Abstract | Publisher Full Text | Free Full Text

251. Fan H, Gao Z, Ji K, et al.: The in vitro and in vivo anti-inflammatory effect of osthol, the major natural coumarin from Cnidium monnieri (L.) Cuss, via the blocking of the activation of the NF-kappaB and MAPK/p38 pathways. Phytomedicine. 2019; 58: 152864. PubMed Abstract | Publisher Full Text

252. Li Y, Xu B, Xu M, et al.: 6-Gingerol protects intestinal barrier from ischemia/ reperfusion-induced damage via inhibition of p38 MAPK to NF-kappaB signalling. Pharmacol Res. 2017; 119: 137–146. PubMed Abstract | Publisher Full Text

253. Zhang X, Wang X, Wu T, et al.: Isoliquiritigenin induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015; 5: 12579. PubMed Abstract | Publisher Full Text | Free Full Text

254. Bachegowda L, Morrone K, Winski SL, et al.: Pexmetinib: A Novel Dual Inhibitor of Tie2 and p38 MAPK with Efficacy in Preclinical Models of Myelodysplastic Syndromes and Acute Myeloid Leukemia. Cancer Res. 2016; 76(16): 4841–4849. PubMed Abstract | Publisher Full Text | Free Full Text

255. O’Donoghue ML, Glaser R, Aylward PE, et al.: Rationale and design of the LomsAlpinod To Inhibit p38 MAPK as a Therapeutic target and modIfy outcomes after an acute coronary syndromeE trial. Am Heart J. 2015; 169(5): 622–630.e6. PubMed Abstract | Publisher Full Text

256. Emami H, Vucic E, Subramanian S, et al.: The effect of BMS-582949, a P38 mitogen-activated protein kinase (p38 MAPK) inhibitor on arterial inflammation: a multicenter FDG-PET trial. Atherosclerosis. 2015; 240(2): 490–496. PubMed Abstract | Publisher Full Text

257. Moran N: p38 kinase inhibitor approved for idiopathic pulmonary fibrosis. Nat Biotechnol. 2011; 29(4): 301. PubMed Abstract | Publisher Full Text
Open Peer Review

Current Peer Review Status: ✔️ ✔️

Editorial Note on the Review Process

Faculty Reviews are written by members of the prestigious Faculty Opinions Faculty. They are commissioned and are peer reviewed before publication to ensure that the final, published version is comprehensive and accessible. The reviewers who approved the final version are listed with their names and affiliations.

The reviewers who approved this article are:

Version 1

1. Guadalupe Sabio
 Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
 Competing Interests: No competing interests were disclosed.

2. Jonathan Ashwell
 Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
 Competing Interests: No competing interests were disclosed.

The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
Han, J; Wu, J; Silke, J

Title:
An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling.

Date:
2020

Citation:
Han, J., Wu, J. & Silke, J. (2020). An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res, 9, pp.653-653. https://doi.org/10.12688/f1000research.22092.1.

Persistent Link:
http://hdl.handle.net/11343/244933

File Description:
published version

License:
CC BY