GRB Theory in the Fermi Era

Jonathan Granot
University of Hertfordshire
(Royal Society Wolfson Research Merit Award Holder)

on behalf of the Fermi LAT & GBM Collaborations

“Accretion and Outflow in Black Hole Systems”
Kathmandu, Nepal, October 15, 2010
Outline of the Talk:

- Theoretical framework & pre-Fermi observations
- Fermi LAT & GBM overview
- LAT GRB detection rate: what can it teach us?
- The Bulk Lorentz factor: lower limits & actual value
- Properties of high-energy prompt GRB emission: distinct spectral component, delayed onset & longer duration
- Pros & cons of different models
- Comparing between short & long LAT GRBs
- Limits on Lorentz Invariance Violation
- Conclusions
GRB Theoretical Framework:

- **Progenitors:**
 - Long: massive stars
 - Short: binary merger?

- **Acceleration:**
 fireball or magnetic?

- **Prompt γ-rays:**
 internal shocks? emission mechanism?

- **Deceleration:** the outflow decelerates (by a reverse shock for $\sigma \lesssim 1$) as it sweeps-up the external medium

- **Afterglow:** from the long lived forward shock going into the external medium; as the shock decelerates the typical frequency decreases: X-ray \rightarrow optical \rightarrow radio
Prompt GRB Observations ($\lesssim \text{MeV}$)

- Variable light curve

- Duration: $\sim 10^{-2} - 10^3$ sec

- Spectrum: non-thermal νF_ν peaks at $\sim 0.1-1$ MeV (well fit by a Band function)

- Rapid variability, non-thermal spectrum & $z \sim 1$
 \Rightarrow relativistic source ($\Gamma \gtrsim 100$) (compactness problem: Schmidt 1978; Fenimore et al. 1993; Woods & Loeb 1995;...)
High energy emission from GRBs: Pre-Fermi era

- Little known about GRB emission above ~100 MeV
- **EGRET** detected only 5 (long) GRBs, most notably:
 - **GRB940217**: GeV photons were detected up to 90 minutes after the GRB trigger
 - **GRB941017**: distinct high-energy spectral component (up to 200 MeV), with a different temporal evolution & at least 3 times more energy
- **AGILE** recently observed **GRB080514B** and detected photons up to a few 100 MeV lasting somewhat longer than the soft gamma-rays
Fermi Gamma-ray Space Telescope (Fermi Era; launched on June 11, 2008):

- Fermi GRB Monitor (GBM): 8 keV – 40 MeV (12×NaI 8 – 10³ keV, 2×BGO 0.15 – 40 MeV), full sky
- Comparable sensitivity + larger energy range than its predecessor - BATSE
- Large Area Telescope (LAT): 20 MeV – >300 GeV
 FoV ~ 2.4 sr; up to 40× EGRET sensitivity, ≪ deadtime

(Band et al. 2009)
Fermi GRBs:

- **GBM:**
 - ~ 250 GRB/yr (~20% short)
 - ~ ½ in LAT FoV

- **LAT:** 18 GRBs in ~ 2 yr
 - 2 out of 18 are short: ~ 11%

First detections of sort GRBs at HE
Fermi LAT GRB detection rate

- $\sim 7.3, 8.7$ GRB/yr with $\geq 1, 10$ photons above 1, 0.1 GeV
- ~ 2.7 GRB/yr with $\geq 1, 10, 100$ γ's above 10, 1, 0.1 GeV
- Comparable to estimates based on Band spectrum fits to bright BATSE GRBs
- Suggests: on average GRBs don’t have much excess (HE component) or deficit (cutoff) in the LAT energy range w.r.t the extrapolated Band spectrum from <2 MeV ($\sim 5-10$ times less energy in the LAT range)

(Band et al. 2009)
Constraints on the Bulk Lorentz factor:

GRB080916C: \(\Gamma \gtrsim 900 \) (\(\Delta t = 2 \text{ s} \))

GRB090510: \(\Gamma \gtrsim 1200 \)

- Our \(\Gamma_{\text{min}} \) is more robust than before: it doesn’t assume the spectrum extends beyond the highest energy detected photon.
- For our conservative assumption
 \[\Gamma_{\text{min}} \lesssim (1+z)E_{\text{ph,max}}/m_e c^2 \approx 200(1+z)(E_{\text{ph,max}}/100 \text{ MeV}) \]

so that a high \(\Gamma_{\text{min}} \) requires the observed spectrum to reach a sufficiently high energy \(E_{\text{ph,max}} \).
Constraints on the Bulk Lorentz factor:

- Γ_{min}: no high-energy cutoff due to intrinsic pair production
 \Rightarrow strict lower limits on Lorentz factor of the emitting region

- For bright LAT GRBs (long/short): $\Gamma \gtrsim 10^3$ for simple model (steady-state, uniform, isotropic) but $\Gamma \gtrsim 10^{2.5}$ for more realistic time-dependent self-consistent thin shell model (JG et al. 2008)

- GRB 090926A: high-energy cutoff – if due to intrinsic pair production then $\Gamma \sim 200\text{--}700$

The diagrams show the time-integrated photon spectrum and various energy spectra with different time intervals.
Delayed Onset of High-Energy Emission

- The 1st LAT peak coincides with the 2nd GBM peak
- Delay in HE onset: \(\sim 4-5\) s

\begin{itemize}
 \item GRB080916C
 \item GRB090510
\end{itemize}

\begin{itemize}
 \item The first few GBM peaks are missing in LAT but later peaks coincide; the delay is \(0.1-0.2\) s
\end{itemize}

(Abdo et al. 2009, Science, 323, 1688)

(Abdo et al. 2009, Nature, 462, 331)
Temporally extended emission: HE afterglow?

Most LAT detected GRBs show significant HE emission lasting after the low-energy emission becomes (almost) undetectable (originally detected by EGRET; Hurley et al. 94)

\[t^{-1.2\pm0.2} \]

\[t^{-0.6} \]

\[t^{-3.3} \]

\[t^{-1.37\pm0.08} \]

Possible origins:

- Afterglow SSC emission (though no spectral hardening, time gap, or synchrotron/SSC valley in the spectrum are observed)
- Afterglow synchrotron: likely at \(t \gg T_{GRB} \); but: variability, \(E_{\text{syn,max}} \)
- Late X-ray flare photons IC scattered by afterglow electrons; var?
- Long lived cascade induced by ultra-relativistic ions (\(t_{\text{ad,cool}} \sim t_{\text{var}} \))
- Pair echo: TeV + EBL \(\gamma\gamma \rightarrow e^+e^- \), & the \(e^+e^- \) IC scatter the CMB
Distinct High-Energy Spectral Component

- Clearly (>5σ) appears only in 3 LAT GRBs, but these are the brightest in LAT so far
- Suggests it is very common but good photon statistics is needed for clear evidence

![Graph](image1.png)

- (GRB090502B; Abdo et al. 2009, ApJ, 706, L138)

- (GRB090510; arXiv:0908.1832)

- (GRB080816C; Abdo et al. 2009, Science, 323, 1688)

PRELIMINARY!
Late onset/HE spectral component: Possible Origin

- **Leptonic**: inverse-Compton (or synchrotron self-Compton)?
 - Hard to produce a delayed onset longer than spike widths (the seed photon field builds-up on the dynamical time)
 - A gradual increase in the HE photon index β (determined by the electron energy dist.) is not naturally expected
 - Hard to account for the different photon index values of the HE component & the Band spectrum at low energies
 - Hard to produce a low-energy power-law (GRB090902B)

Preliminary data:

- GRB090510; arXiv:0908.1832
- GRB090902B; Abdo et al. 2009, ApJ, 706, L138
Late onset/HE spectral component: Possible Origin

- **Hadronic**: (pair cascades, proton synchrotron)?
 - Late onset: time to accelerate protons + develop cascades?
 - Does not naturally account the gradual increase in β
 - Hard to produce the observed sharp spikes that coincide with those at low energies (+ a longer delay in the onset)

- **GRB090510**: large energy needed: $E_{\text{total}}/E_{\gamma,\text{iso}} \sim 10^2 - 10^3$
- **GRB090902B**: synchrotron emission from secondary e^\pm pairs can naturally explain the power-law at low energies

PRELIMINARY!

GRB090902B; Abdo et al. 2009, ApJ, 706, L138

GRB090510; arXiv:0908.1832
Summary of the 14 LAT GRBs so far:

GRB	Angle From LAT	Duration (or class)	Number of events > 100 MeV	Number of events > 1 GeV	Delayed HE onset	Long-lived HE emission	Extra spectral comp.	Highest Energy γ (GeV)	Redshift
080825C	~ 60°	long	~ 10	0	?	✓	X	0.57	
080916C	~ 16°	long	145	14	✓	✓	?	13	~ 4.35
081006	~ 16°	long	~10	0	X	X	X	0.65	
081024B	21°	short	~ 10	2	✓	✓	?	3.1	
081215A	~ 86°	long	—	—	—	—	—	—	—
090217	~ 34°	long	~ 10	0	X	X	X	0.31	
090323	~ 55°	long	~ 20	> 0	?	✓	?	7.5	3.57
090328	~ 64°	long	~ 20	> 0	?	✓	?	25	0.7354
090510	~ 14°	short	> 150	> 20	✓	✓	✓	31	0.903
090626	~ 15°	short	> 20	> 0	?	✓	?	2.1	
090902B	51°	long	> 200	> 30	✓	✓	✓	33	1.822
090926	~ 52°	long	> 150	> 50	✓	✓	✓	20	2.1062
091003A	~ 13°	long	~ 30	> 0	?	?	?	2.8	0.8969
091031	~ 22°	long	~ 20	> 0	?	?	?	1.2	
100116A	~ 29°	long	~ 20	3	?	?	?	2.2	
100225A		long							
100325A		long?							
100414A		long		~ 30				4.7	1.368
100707A		long							
100724A		long							
Long vs. Short GRBs @ High-Energies:

Property (HE: >0.1GeV)	Short GRBs	Long GRBs
Delayed HE onset	1 or 2 out of 2 ✓	3 out of 5 ✓ (+ many inconclusive cases)
Long-lived HE emission	2 out of 2 ✓	7 out of 9 ✓ (+ some inconclusive cases)
Redshift	1 out of 2 ✓ (z = 0.903 for GRB090510)	7 out of 16 ✓ (0.74, 0.90, 1.37, 1.82, 2.11, 3.57, 4.35)
Bright	1 out of 2 ✓ >100 (10) events >0.1 (1) GeV	3 out of 16 ✓ >100 (10) events >0.1 (1) GeV
Γ_{min}	1200 for GRB090510	900, 1000 (080916C, 090902B)
HE spectral component	1 out of 2 ✓ (GRB090510)	2 out of 16 ✓ (GRBs 090902B, 090926)

They show similar HE emission properties!
Limits on LIV from Fermi GRBs

GRB	duration or class	# of events > 0.1 GeV	# of events > 1 GeV	method	Lower Limit on $\frac{M_{QG,1}}{M_{\text{Planck}}}$	Valid for S_n =	Highest photon Energy	redshift
080916C	long	145	14	1	0.11	+1	~ 13 GeV	~ 4.35
090510	short	> 150	> 20	1	1.2, 3.4, 5.1, 10	+1	~ 31 GeV	0.903
				2	102	±1		
				3	1.2	±1		
090902B	long	> 200	> 30	1	0.068	+1	~ 33 GeV	1.822
090926	long	> 150	> 50	1, 3	0.066, 0.082	+1	~ 20 GeV	2.1062

- **Method 1**: assuming a high-energy photon is not emitted before the onset of the relevant low-energy emission episode
- **Method 2**: associating a high-energy photon with a spike in the low-energy light-curve that it coincides with
- **Method 3**: DisCan (dispersion cancelation; very robust) – lack of smearing of narrow spikes in high-energy light-curve
Conclusions:

- LAT detection rate ~ 9 GRB/yr \Rightarrow on average GRBs radiate only ~ 10-20% of their energy in the LAT range.

- Prompt spectrum: the 3 brightest LAT GRBs clearly ($>5\sigma$) show a distinct high-energy spectral component.

- Many LAT GRBs show later onset & longer duration of the high-energy emission, relative to low energies.

- Lower limits on GRB outflow Lorentz factor are model dependent: $\Gamma_{\text{min}} \sim 10^{2.5} - 10^3$; GRB090626A: $\Gamma \sim 220$-720

- Short & long GRBs seem to have similar HE properties: delayed onset, longer duration, distinct HE spectral component & high Γ_{min}, but short GRBs may be harder.

- Limit on a possible variation of the speed of light with photon energy, beyond Planck scale: $M_{QG,1} > 1.2M_{\text{Planck}}$.