Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone.

Valérie Bordeau, Brice Felden

To cite this version:
Valérie Bordeau, Brice Felden. Curli synthesis and biofilm formation in enteric bacteria are controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone. Nucleic Acids Research, Oxford University Press, 2014, 42 (7), pp.4682-96. 10.1093/nar/gku098. inserm-00941995

HAL Id: inserm-00941995
https://www.hal.inserm.fr/inserm-00941995
Submitted on 4 Feb 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Curli synthesis and biofilm formation in enteric bacteria is controlled by a dynamic small RNA module made up of a pseudoknot assisted by an RNA chaperone.

Valérie Bordeau and Brice Felden*

Université de Rennes I, Inserm U835-UPRES EA2311, Biochimie Pharmaceutique, 2 avenue du Prof. Léon Bernard 35043 Rennes, France.

*Corresponding author: bfelden@univ-rennes1.fr

Supplemental Material
Figure S1. Complex formation between RydC and two csgD mRNA fragments of different lengths. csgD mRNA\textsubscript{100} and csgD mRNA\textsubscript{215} correspond to 100 and 215 nts from the csgD mRNA 5’-end, respectively. Native gel retardation assays of purified labelled RydC with increasing amounts of unlabelled csgD mRNA\textsubscript{215} and csgD mRNA\textsubscript{100} (10 to 1000-fold more than RydC) in the absence of the Hfq protein. This indicates that in the absence of the Hfq protein, the affinity between the two RNAs is weak.
Figure S2. Structural analysis of the conformational changes in csgD mRNA_{215} induced by complex formation with RydC. Autoradiograms of the cleavage products of 5’- (A, B) or 3’-labelled (C) csgD mRNA_{215} by RNases V_{1} (5.10^{-5} unit) and nuclease S_{1} (2 units) in the presence or absence of unlabelled RydC at a 1:100 molar ratio. Lanes G_{L}, RNase T_{1} hydrolysis ladder; lanes A_{L}, RNase U_{2} hydrolysis ladder. The RNA sequences are indexed on the right sides of each panel. The conformational changes of the csgD mRNA upon complex formation with RydC are indicated with vertical blue bars. The SD sequence and AUG initiation codon of the mRNA are also shown.
Figure S3. Structural analysis of the conformational changes of RydC and csgD mRNA\textsubscript{100} induced by complex formation with csgD mRNA\textsubscript{100} and RydC, respectively. A, B. Autoradiograms of cleavage products of 5’-labelled csgD mRNA\textsubscript{100} (100 nts-long) (A) or 5’-labelled RydC (B) by RNases V\textsubscript{1} (5 \times 10^{-5} unit), nuclease S\textsubscript{1} (0.5 and 1 unit) and lead acetate (0.5 and 1 mM) in the presence or absence of either unlabelled RydC (A) or unlabelled csgD mRNA\textsubscript{100} (B) at 1:100 molar ratios. The csgD mRNA\textsubscript{100} or RydC structural domains are indicated on the left sides of each panel. Upon complex formation, the conformational changes of csgD mRNA\textsubscript{100} or RydC are highlighted by vertical blue bars. C. Secondary structure of the csgD mRNA\textsubscript{100} inferred from the probing results, which support the proposed model. Triangles are V\textsubscript{1} cuts; arrows capped by a circle are S\textsubscript{1} cuts; uncapped arrows are lead cuts. The cut and cleavage intensities are proportional to the darkness of the symbols. The structural domains are indicated and the AUG and SD sequences are outlined. The red nucleotides are those proposed to interact with RydC. Structural changes detected in the csgD mRNA\textsubscript{100} upon RydC complex formation are in blue.
Figure S4. Structural analysis of the conformational changes of csgD mRNA induced by complex formation with Hfq. Autoradiograms of the cleavage products of 5’csgDmRNA215 by RNases V₁ (15.10⁻⁵ unit), nuclease S₁ (0.5 units), and lead acetate (1 mM) in the presence or absence of Hfq at a 1:20 molar ratio. Lanes G₁, RNase T₁ hydrolysis ladder; lanes A₁, RNase U₂ hydrolysis ladder. The RNA sequences are indexed on the right sides of the panels. Upon complex formation with Hfq, the conformational changes in csgD mRNA are emphasized by the vertical blue bars. The SD sequence and AUG initiation codon of the mRNA are indicated.
Table S1. Strains used and constructed in this study.

Strain	Description	Source, Reference
E. coli MG1655Z1	Z1(lacR tetR SpR)	(4)
E. coli MG1655Z1 ΔrydC	Z1(lacR tetR SpR) ΔRNA1114::Cm	(4)
E. coli MG1655Z1 pUC18	MG1655Z1 + pUC18	(4)
E. coli MG1655Z1 pUC18-rydC	MG1655Z1 + pUC18-RNA1114	(4)
S. enterica subsp. *bongori*+pUC18	*Salmonella enterica subsp. bongori* + pUC18	This study
S. enterica subsp. *bongori*+pUC18-rydC	*Salmonella enterica subsp. bongori* + pUC18-RNA1114	This study
S. sonnei+pUC18	*Shigella sonnei* + pUC18	This study
S. sonnei+pUC18-rydC	*Shigella sonnei* + pUC18-RNA1114	This study

Table S2. DNA oligodeoxyribonucleotides used in this study.

Names	Sequences (5’→3’)	Purposes
csgD215rev	CGCCTGCAAAGAAGATTTAGT	csgD mRNA₂₁₅ transcription
		csgD mRNA₁₀₀ transcription
		csgD mRNA₁₁₅ transcription
csgD215for	TAATACGACTCACTATAGGATGTAATCCATTAGTTTTATATTTTACCC	csgD mRNA₂₁₅ transcription
csgD100for	TAATACGACTCACTATAGGATGTAATCCATTAGTTTTATATTTTTTACCC	csgD mRNA₁₀₀ transcription
		csgD mRNA₁₁₅ transcription
csgD503	TTGCAACCCTTAATTGACACACGGTTCTTGAT	csgD mRNA₅₀₃ transcription
csgDΔ5’UTRfor	TAATACGACTCACTATAGGATGTAATCCATTAGTTTTATATTTTTTACCC	csgD mRNA_{Δ5’UTR}
csgD115rev	ACCTGACAGCTGCTCCTCTAAA	csgD mRNA₁₁₅ transcription
csgDnorth	CAATGTCCGGTGACGGGTAATCTTCAGGGCGTTTTAGCAA	csgD mRNA_{northern}
RydCfor	CCGGATCTCTAAATACGACTCCTAGGGCCTCGATGACCGTCGTTTTAGTTT	RydC transcription
RydCrev	AAGAAAAACGCCTGACTA AAAA	RydC transcription
RydCnorth	ACCGACCCGTTGGTACAGGCC	RydC_{northern}
RydC_{Δ5’}for	TAATACGACTCACTATAGGATGTAATCCATTAGTTTTATAGTA CAGGGCGTTTTTTCTT	RydC_{Δ5’} transcription
RydC_{Δ5’}rev	AAGAAAAACGCCTGACTA AAAA ACCGACCCCGTGTTACAGGGCCTATTAGTATA GTGAGTCGTTATTA	RydC_{Δ5’} transcription
tmRNA_{northern}	GTTTTAACGCTTCAACCCCA	tmRNA_{northern}
5Snorthern	CTTCTGAGTGGCAGCTGCCC	5S rRNA_{northern}
csgBA_{northern}	AACTGCAAGCACCCTGCTGACCACCAACCAGAAGCTATTAAACCGTCATT	csgBA_{northern}
RydC_{H1}for	GAAATTAATACGACTCACTATAGGCTCCGATGTAGACCCTGATTCTTT CGCCTGTACCCTCCAGGGTTTTAGTACAGGCGTTTTCTT	RydC_{H1} transcription
---	---	---
RydC_{H1}rev	AAGAAAACGCCTGTACTAAAAACCCCTGGCCAGGTACAGGCAAAGAAAT ACGGGTCTACATCGGAAGCCTATAGTGAGTCGTATTAATTTCC	RydC_{H1} transcription
RydC_{H2}for	GAAATTAATACGACTCCTAGGCTTCCGATGTACTGGGCAATTCTT CGCCTGTACCACGGGTCGGTTTTAGTACAGGCGTTTTCTT	RydC_{H2} transcription
RydC_{H2}rev	AAGAAAACGCTGTACTAAAAACCGACCCTGGGTACAGGCGAAAGAATT GCCCTGTACATCGGAAGCCTATAGTGAGTCGTATTAATTTCC	RydC_{H2} transcription
RydC_{H3}for	GAAATTAATACGACTCCTAGGCTTCCGATGTACTGGGCAATTCTT CGCCTGTACCCTCCAGGGTTTTAGTACAGGCGTTTTCTT	RydC_{H3} transcription
RydC_{H3}rev	AAGAAAACGCCTGTACTAAAAACCGACCCTGGGTACAGGCGAAAGAATT GCCCTGTACATCGGAAGCCTATAGTGAGTCGTATTAATTTCC	RydC_{H3} transcription
RydCPCRQ1	AAGAAAACGCCTGTACTAA	Real-Time PCR
RydCPCRQ2	CTTCCGATGTAGACCCGTA	Real-Time PCR
tmRNAPCRQ1	GGCAAGCGAATGTAAAGACTGA	Real-Time PCR
tmRNAPCRQ2	CCGCGTCCGAAATCTCTTA	Real-Time PCR
csgDPCRQ1	CACCGGAATCAGCCCTCCTTA	Real-Time PCR
csgDPCRQ2	GCCGATACGCAGCTATTTCAG	Real-Time PCR