Photodynamic inhibitory effects of three perylenequinones on human colorectal carcinoma cell line and primate embryonic stem cell line

Lan Ma, Hong Tai, Cong Li, Yu Zhang, Ze-Hua Wang, Wei-Zhi Ji

INTRODUCTION

Perylenequinones are a type of photosensitive pigments widespread in nature, which have been isolated from fungi, as well as other organisms[1-5]. These lipid-soluble 4,9-dihydroxy-3,10-perylenequinone derivatives are efficient producers of singlet oxygen (\(O_2^+\)) in visible light[6-11]. Due to their excellent photosensitive properties, they are expected to be developed as new phototherapeutic medicines[8,12-17]. Among them, Elsinochrome A (EA) was first reported in 1966 by Chen CT et al.[18], who isolated EA from Elsinoe spp. I[19]. And Meille SV et al. reported the structure of EA[20]. Since then, there are no more related reports about EA. Hypocrellins are well-known photosensitizers, including hypocrellin A (HA) and hypocrellin B (HB), isolated from natural fungus sacs of Hypocrella bambusae growing in north western region of Yunnan Province in China[20]. Hypocrellins were potent inhibitors of protein kinase C (PKC)[20], and could inactivate some types of viruses in the presence of visible light and oxygen. These processes appeared to be mediated predominately by \(O_2^+\). This was further supported by the extremely high quantum yield of \(O_2^+\) generation by hypocrellin[21-23]. Many investigations demonstrated that hypocrellins had a strong photodynamic effect on tumours[24] and impressive antiviral activity against human immunodeficiency virus type 1 (HIV-1)[25]. Recently, it has been reported that hypocrellin can photosensitize apoptotic cell death[26]. The above investigations collectively provide a compelling rationale for the development of hypocrellin and its derivatives as PDT photosensitizers.

Our group has recently isolated a filamentous fungal strain from western region of Yunnan Province in China and identified it as Ascomycetes Hypocreales Hypocrella Hypomyces(Fr) Tul.Sp based on the taxonomic study. Hypomyces (Fr) Tul.Sp. was found for the first time to produce Elsinochrome A (EA), Hypocrellin A (HA) and Hypocrellin B (HB), under solid-phase fermentation conditions. Colorectal cancer is common in China. Since EA and Hypocrellins could be a potential tumor photopreventive and phototherapeutic agents, it is worthwhile to investigate the photodynamic effects of these photosensitizers. In this study, we examined the relative potency of EA, HA and HB against two cell lines, human colorectal carcinoma Hce-8693 cells and rhesus monkey embryonic stem cells, and attempted to correlate anticancer activity with chemical structure and quantum yield of \(O_2^+\).
MATERIALS AND METHODS

Synthesis
The fungal metabolites were isolated from solid-substrate fermentation cultures of Hypomyces (Fr) Tul.Sp. and evaporated to dryness. The powder of Hypomyces (Fr) Tul.Sp. was extracted with acetone at room temperature and then evaporated to dryness in vacuo. The recrystallized crude product was purified by silica gel column chromatography with a mixed solvent of petroleum ether:EtOAc:EiOH (4:2:1). The purified crystallized products were characterized with element analysis measurement (PE 2400), UV-visible spectrophotometry (PE UV/V is Lambda Bio), fluorescence spectra instruments (Hitachi-850), FT-IR(PE 1000), 'H, 13C-nuclear magnetic resonance (Bruker AM-400). The results were consistent with literate data.

Each of the above products was dissolved respectively in dimethylsulfoxide (DMSO) at 1 M and stored at 4 °C in dark conditions. Under these conditions the solutions were stable for 2 months. The stock solutions were diluted 104 to 107 fold and in the final experimental conditions, the final DMSO concentration (0.1%) did not affect the viability of the culture cells, as demonstrated in control experiments.

Cell lines
Rhesus monkey embryonic stem cell line R366.4 was kindly provided by Dr James A Thomson (The Wisconsin Regional Primate Research Center, University of Wisconsin, US). Cells were plated in mouse embryonic fibroblasts (previously exposed to 3 000 rads γ-irradiation) in medium consisting of 85 % Dulbecco’s Modified Eagle medium (4 500 mg of glucose per liter, with L-glutamine, without sodium pyruvate; Gibco) with 15 % fetal bovine serum (HyClone), 1×10⁻⁷ Mol/L 2-mercaptoethanol (Sigma) and 1 % nonessential amino acid stock (Gibco). Human colorectal carcinoma Hce-8693 cells were obtained from ATCC. The cell lines Hce-8693 were maintained in Dulbecco’s Modified Eagle medium (Gibco) supplemented with 10 % new born calf serum (HyClone). All cell lines were grown at 37 °C under a water-saturated sterile atmosphere containing 5 % CO₂ (Forma Scientific Incubator). All cell manipulations in the presence of EA, HA and HB were performed under subdued light conditions.

Light irradiation
Cells incubated with EA, HA and HB were irradiated with a water-cooled 1 300 W tungsten-bromine lamp. All cells proliferated as monolayers attached to the plastic bottom of the plate which was completely transparent for the excitation light. Temperature recorded in tissue culture plate did not exceed room temperature during the irradiation period. Immediately after irradiation, cells were rinsed three times with PBS and grown in a fresh medium for 2 hours.

Flow cytometry
Cells were incubated with various doses of EA, HA or HB, irradiated, incubated for additional 2 h and then harvested, washed with phosphate-buffered saline (PBS) three times and fixed with 700 mL·L⁻¹ ethanol at 4 °C overnight. Fixed cells were washed three times with PBS and stained with 800 μL propidium iodide and 200 μL deoxyribonuclease-free ribonuclease A in PBS. The fluorescence intensity of propidium iodide-stained nuclei was detected with flow cytometer (EPICS-XL, Coulter, USA) and 10 000 cells were analyzed with Multicycle software.

Photocytotoxicity studies in R366.4 cell lines
R366.4 cells growing in sub-confluent culture were used to assess photocytotoxic effects of EA via flow cytometric assays. Graded doses of EA (1×10⁻⁷ Mol/L, 1×10⁻⁸ Mol/L, 1×10⁻⁹ Mol/L, 1×10⁻¹⁰ Mol/L) dissolved in DMSO were mixed into the medium overlying 5.0×10⁴ cells in 6-well plates. Following 2 h incubation, the cells were irradiated for 5 min, 6 min, 10 min and 20 min respectively (or not in case of darkness). After the drug-containing medium was removed, the cells were washed with phosphate-buffered saline (PBS) three times and the fresh ES culture medium was put on the cells prior to incubation for 2 h at 37 °C in saturated humidified air with 5 % CO₂. Finally, the cell proliferation was determined by flow cytometric assay.

Inhibitory effect of EA, HA and HB on the proliferation of Hce-8693 cells by inducing apoptosis
Hce-8693 cells growing in confluent culture were used to assess inhibitory effects of EA, HA and HB via flow cytometric assays. For each compound, graded doses (1×10⁻⁶ Mol/L, 1×10⁻⁷ Mol/L, 1×10⁻⁸ Mol/L) dissolved in DMSO were mixed into the medium overlying 5.0×10⁴ cells in 6-well plates. Following 2 h incubation, the cells were irradiated for 5 min, 6 min, 10 min and 20 min respectively (or not in case of darkness). After the drug-containing medium was removed, the cells were washed with phosphate-buffered saline (PBS) three times and the fresh culture medium was put on the cells prior to an incubation for 2 h at 37 °C in saturated humidified air with 5 % CO₂. Finally, the cell proliferation was determined by flow cytometric assay.

Statistical analysis
Student’s t test was used to assess statistical significance of differences. If P<0.01, the difference was considered very significant.

RESULTS

Synthesis
The structures of the compounds are shown in Figure 1, and their relevant photochemical properties are summarized in Table 1.

Table 1 The photochemical properties of the perylenequinones

Structure	UV λ_{max} (log ε)*	λ_{max} (log ε)*	ϕ *O₂
EA	459(1.60), 520(0.84), 568(1.04)	460(3.78), 531(3.13), 571(3.60)	0.94
HA	468(1.88), 542(0.83), 582(0.90)	417(5.51), 542(1.02), 582(7.70)	0.83
HB	470(0.27), 540(0.12), 583(0.13)	471(4.39), 543(3.01), 583(3.39)	0.76

Figure 1 Structures of the three perylenequinones for photodynamic activity.
Photodependent cytotoxicity studies in R366.4 cell lines

Embryonic stem (ES) cells are derived from preimplantation embryos, have a normal karyotype, and are capable of indefinite, undifferentiated proliferation [27]. Recently, in vitro mouse ES cell culture method has been used to test mutagenic, cytotoxic and embryotoxic effects of chemical substances [28-30]. In this study, rhesus monkey ES R366.4 cells were first used to measure the photocytotoxicity of EA by judging the apoptosis of ES cells. After treated the R366.4 ES cells with EA at various concentrations, with or without light irradiation, the rate of apoptosis induced by EA were shown in Table 2 and Figure 2. The data illustrated that photoactivated EA had no cytotoxic effects on the R366.4 ES cells at low concentrations, which were 10^{-7} Mol/L, 10^{-6} Mol/L, 10^{-5} Mol/L respectively. Whereas, all of photoactivated EA at higher concentrations (10^{-4} Mol/L and 10^{-3} Mol/L) respectively exhibited a potent cytotoxic effects on R366.4 cells. In general, no large differences in the photodependent cytotoxic effects of EA were found between the different irradiation time. In the case of the photocytotoxic EA no cytotoxic effect was observed in dark conditions.

Table 2: EA-induced apoptosis in R366.4 ES cells with FCM assay (means ± SD, n=3).

Group	Rate of apoptosis/ %			
	5 min	6 min	10 min	20 min
Control	0	0	0	0
10^{-7} Mol/L	0	0	0	0
10^{-6} Mol/L	0	0	0	0
10^{-5} Mol/L	0	0	0	0
10^{-4} Mol/L	48.8±5.06	50.3±4.14	52.1±2.35	50.5±3.68
10^{-3} Mol/L	54.9±2.99	53.4±4.01	52.4±3.50	50.2±4.39

*P <0.01, vs EA control.

Figure 2: Photodependent cytotoxic effects of EA on R366.4 ES cells at various concentrations: (1) 10^{-7} Mol/L, (2) 10^{-6} Mol/L, (3) 10^{-5} Mol/L, (4) 10^{-4} Mol/L, (5) 10^{-3} Mol/L respectively. Results are means ±SD of three independent experiments.

Inhibitory effect of EA on the proliferation of Hce-8693 cells by inducing apoptosis

In order to investigate the antiproliferative effect of EA, Hce-8693 cells were incubated with different concentrations of EA under dark conditions and subjected 2 hours to different irradiation time (5, 6, 10 and 20 min respectively). The cells were then further incubated for additional 2 hours in the dark without photosensitizer and measured via FCM assay. The rates of apoptosis induced by EA are shown in Table 3 and Figure 3. For each irradiation time, the data showed that there was dose-dependent relationship between EA doses and rate of Hce-8693 cell apoptosis. On the contrary, no large differences in the antiproliferative effect of the photoactivated EA was found between the different irradiation time.

Table 3: Hce-8693 cell apoptosis induced by photoactivated EA (means ± SD, n=3).

Group	Rate of apoptosis/ %			
	10^{-6} Mol/L	10^{-5} Mol/L	10^{-4} Mol/L	10^{-3} Mol/L
Control	0	0	0	0
5 min	32.7±5.56	53.6±6.62	63.4±10.24	68.4±15.93
6 min	19.3±4.16	32.8±7.30	55.5±7.00	68.4±15.93
10 min	31.3±5.39	44.9±5.46	68.0±5.93	68.4±15.93
20 min	40.5±8.58	52.7±11.62	65.2±11.22	68.0±5.93

*P <0.01, vs EA control.

Figure 3: Dose-dependent relationship between EA doses and rate of Hce-8693 cell apoptosis. Cells were incubated for 2 h with $1×10^{-6}$ Mol/L, $1×10^{-5}$ Mol/L, $1×10^{-4}$ Mol/L, $1×10^{-3}$ Mol/L EA photosensitizer respectively and then irradiated. Results are means ±SD of three independent experiments.

Inhibitory effect of HA on the proliferation of Hce-8693 cells by inducing apoptosis

In order to investigate the antiproliferative effect of HA, Hce-8693 cells were incubated with different concentrations of HA under dark conditions and subjected 2 hours to different irradiation time (5, 6, 10 and 20 min respectively). The cells were then further incubated for additional 2 hours in the dark without photosensitizer and measured via FCM assay. The rates of apoptosis induced by HA were shown in Table 4 and Figure 4. For each irradiation time, the data showed that there was dose-dependent relationship between HA doses and rate of Hce-8693 cell apoptosis. On the contrary, no large differences in the antiproliferative effect of the photoactivated HA was found between the different irradiation time.

Table 4: Hce-8693 cell apoptosis induced by photoactivated HA (means ± SD, n=3).

Group	Rate of apoptosis/ %			
	10^{-6} Mol/L	10^{-5} Mol/L	10^{-4} Mol/L	10^{-3} Mol/L
Control	0	0	0	0
5 min	29.5±2.29	47.2±8.79	48.4±6.66	58.8±8.40
6 min	32.0±5.64	39.1±6.41	43.2±8.84	66.4±8.02
10 min	40.2±6.23	45.2±8.40	45.5±8.38	53.4±8.77
20 min	22.6±3.39	56.6±8.86	62.8±4.23	68.4±8.85

*P <0.01, vs HA control.
Inhibitory effect of HB on the proliferation of Hce-8693 cells by inducing apoptosis

In order to investigate the antiproliferative effect of HB, Hce-8693 cells were incubated with different concentrations of HB under dark conditions and subjected 2 hours to different irradiation time (5, 6, 10 and 20 min respectively). The cells were then further incubated for additional 2 hours in the dark without photosensitizer and measured via FCM assay. The rates of apoptosis induced by HB were shown in Table 5 and Figure 5. For each irradiation time, the data showed that there was dose-dependent relationship between HB doses and rate of Hce-8693 cell apoptosis. On the contrary, no large differences in the antiproliferative effect of the photoactivated HB was found between the different irradiation time.

Table 5 Hce-8693 cell apoptosis induced by photoactivated HB (means ±SD, n=3)

Group	Rate of apoptosis/ %			
	10^4 Mol/L	10^5 Mol/L	10^6 Mol/L	10^7 Mol/L
Control	0	0	0	0
5 min	0	0	28.1±6.21	64.8±11.79
6 min	0	0	17.3±3.68	32.0±7.57
10 min	0	20.0±4.21	20.5±4.57	71.0±10.57
20 min	13.7±3.02	13.9±2.87	19.1±4.00	29.4±5.56

P <0.01, vs HB control.

DISCUSSION

Photodynamic therapy (PDT) is a medical treatment based on the use of a sensitizer to promote photoinduced damage to biological molecules including lipids, proteins and DNA[31,32]. It can be used to eradicate early localized tumors and for palliation of more advanced disease when metastasis has occurred. This treatment modality involves the use of light in combination with a photosensitizing compound. Following excitation of photosensitizers to long-lived excited singlet and/or triplet states, the tumor is destroyed either by reactive oxygen species (Type II mechanism) and/or by radical products (Type I mechanism)[33,37].

Hypocrellins are efficient singlet oxygen generators during
photochemical reactions and may also exert photosensitization via radical mechanisms, which may confer a degree of independence from classical oxidant-dependent photochemical mechanisms. This feature is important in the context of impaired radiosensitivity and chemosensitivity of hypoxic human tumour cells. However, the precise mode of action of these molecules at the cellular level is not clear and seems to go far beyond Type I and Type II photoprocesses.

An additional mechanism involving protons released in the excited state and leading to cellular pH drop has also been proposed for the related pigments hypocrellin and hypericin.

Apoptosis is a complex and programmed process which is regulated by a variety of factors. Recently, it has been reported that hypocrellins and their derivatives can photosensitize apoptotic cell death. However, the molecular mechanisms of tumor cell apoptosis induction by Hypocrellin A and B are poorly understood. The antiproliferative actions of hypocrellins may not be induced by reactive oxygen species, and the quantum yields of EA, HA and HB are 0.94, 0.83, 0.76 respectively. According to the photochemical properties, the quantum yields of EA, HA and HB are 0.94, 0.83, 0.76 respectively. From the results of inhibitory effect of EA, HA and HB on the molecular mechanisms of Hce-8693 cell apoptosis induction by EA, HA and HB may not be induced by reactive oxygen species.

According to the photochemical properties, the quantum yields of EA, HA and HB are 0.94, 0.83, 0.76 respectively. From the results of inhibitory effect of EA, HA and HB on the proliferation of HcE-8693 cells, it seems that the order of efficiency would be approximately EA>HA>HB. In this way, the molecular mechanisms of Hce-8693 cell apoptosis induction by EA, HA and HB may not be induced by reactive oxygen species (Type II mechanism). It is also noteworthy that phototoxicated EA, HA and HB can selectively inhibit the growth of human colorectal carcinoma cells but not thesus monkey embryonic stem R366.4 cells at lower concentrations. Thus, the molecular mechanisms of apoptosis induced by photocatalyzed EA, HA and HB are worth further investigation.

REFERENCES

1. Chen CT, Nakanishi K, Natori S. Biosynthesis of elsinochrome A, the perylenequinone from Elsinoe spp. I. Chem Pharm Bull (Tokyo) 1966; 14: 1434-1437
2. Weissgraber KH, Weiss U. Pigments of Elsinoe species. VI. A simple synthesis of a related perylenequinone. J Chem Soc [Perkin 1] 1972; 1: 83-88
3. Stack ME, Mazzola EP, Page SW, Pohland AE, Hight R, Terrpessa MS, Corley DG. Mutagenic perylenequinone metabolites of Alternaria alternata: alternitoxins I, II, and III. J Nat Prod 1966; 49: 866-871
4. Davis VM, Stack ME. Mutagenicity of stemytholpxin III, a metabolite of Alternaria alternata. Appl Environ Microb 1991; 57: 180-182
5. Xu S, Chen S, Zhang M, Shen T. A novel method for the preparation of amino-substituted hypocrellin B. Bioorg Med Chem Lett 2001; 11: 2045-2048
6. Majs J, Yan F, Wang CQ, An JY. Hypocrellin-A sensitized photooxidation of bilirubin. Photochem Photobiol 1989; 50: 827-830
7. Miller GG, Brown K, Ballangrud AM, Barajas O, Xiao Z, Tulip J, Lown JW, Leithoff JM, Allalunis-Turner MJ, Mehta RD, Moore RB. Predinical assessment of hypocrellin B and hypocrellin B derivatives as sensitizers for photodynamic therapy of cancer: progress update. Photochem Photobiol 1997; 65: 714-727
8. He YY, An JY, Jiang LJ. Glycoconjugated hypocrellin: synthesis of [(beta-D-glucosyl)alythyl] hypocrellins and photosensitization generation of single oxygen. Biochim Biophys Acta 1995; 1247: 232-239
9. Daub ME, Ehrensight M. The photoactivated cercospora toxin: contributions to plant disease and fundamental biology. Annu Rev Phytopathol 2000; 38: 461-490
10. Yu C, Chen S, Zhang M, Shen T. Spectroscopic studies and photodynamic actions of hypocrellin B in liposomes. Photochem Photobiol 2001; 73: 482-488
11. Ververidis P, Davrazou F, Diallinas G, Georgakopoulos D, Kandilis AK, Panopoulos N. A novel putative reductase (Cpd1p) and the multidrug exporter Smp2p are involved in resistance to cercosporin and other singlet oxygen-generating photosensitizers in Saccharomyces cerevisiae. Curr Genet 2001; 38: 127-136
12. Wang SS, Mathes C, Thompson SH. Membrane toxicity of the protein kinase C inhibitor calphostin A by a free-radical mechanism. Neurosci Lett 1993; 157: 25-28
13. Gamou S, Shimizu N. Calphostin-C stimulates epidermal growth factor receptor phosphorylation and internalization via light-dependent mechanism. J Cell Physiol 1994; 158: 151-159
14. Pedron T, Girard R, Inoue K, Charon D, Chaby R. Lipopolysaccharide and the glycoside ring of staurosporine induce CD14 expression on bone marrow granulocytes by different mechanisms. Mol Pharmcol 1997; 52: 692-700
15. Dubaukas Z, Beck TP, Chmura SJ, Kovar DA, Kadkhodai MM, Shrivastav M, Chung T, Stadler WM, Rinker-Schaeffer CW. Activated calphostin C cytotoxicity is independent of p53 status and in vivo metastatic potential. Clin Cancer Res 1998; 4: 2391-2398
16. Chen CL, Chen H, Zhu DM, Uckun FM. Quantitative high-performance liquid chromatography-based detection method for calphostin C, a naturally occurring perylenequinone with potent antileukemic activity. J Chromatogr B Biomed Sci Appl 1999; 724: 157-162
17. Chen CL, Tai HL, Zhu DM, Uckun FM. Pharmacokinetic features and metabolism of calphostin C, a naturally occurring perylenequinone with antileukemic activity. Pharm Res 1999; 16: 1054-1060
18. Meille SV, Malpezi L, Allegra G, Nasini G, Weiss U. Structure of elsinochrome A: a perylenequinone metabolite. Acta Crystallogr C 1989: 45: 628-632
19. Majes J, Yan F, Wang CQ, An JY. Hypocrellin-A sensitized photooxidation of bilirubin. Photochem Photobiol 1989: 50: 827-830
20. Diwu Z, Zimmermann J, Meyer T, Lown JW. Design, synthesis and investigation of mechanisms of action of novel protein kinase C inhibitors: perylenequinoneoid pigments. Biochem Pharmacol 1994; 47: 373-385
21. Fehr MJ, Carpenter SL, Wannemuehler Y, Petrich JW. Roles of oxygen and photoinduced acidification in the light-dependent antiviral activity of hypericin. Biochemistry 1995; 34: 15845-15848
22. Hirayama J, Ikobuchi K, Abe H, Kwon KW, Ohnishi Y, Horichi M, Shinagawa M, Iwata K, Kamo N, Sekiguchi S. Photoactivation of virus infectivity by hypericin. A. Photochem Photobiol 1997; 66: 697-700
23. Park J, English DS, Wannemuehler Y, Carpenter S, Petrich JW. The role of oxygen in the antiviral activity of hypericin and photocellin. Photochem Photobiol 1998; 68: 593-597
24. Diwu Z. Novel therapeutic and diagnostic applications of hypocrellins and hypericins. Photochem Photobiol 1995; 61: 529-539
25. Hudson JB, Zhou J, Chen J, Harris L, Yip L, Towers GH. Hypocrellin from Hypocrella bambuase, is phototoxic to human immunodeficiency virus. Photochem Photobiol 1994; 60: 253-255
26. Zhang J, Cao EH, Li JF, Zhang TC, Ma WJ. Photodynamic effects of hypocrellin A on three human malignant cell lines by inducing apoptotic cell death. J Photochem Photobiol B 1998; 43: 106-111
27. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP. Isolation of a primate embryonic stem cell line. PNAS 1995; 92: 7844-7848
28. Schlegier C, Krebsfaenger N, Kalkuhl A, Bader R, Singer T. Innovative cell culture methods in drug development. ALTEX 2001; 18: 5-8
29. Rohwedel J, Guhan K, Hegert C, Wobus AM. Embryonic stem cells as an in vitro model for mutagenicity, cytotoxicity and embryotoxicity studies: present state and future prospects. Toxicol in vitro 2001; 15: 741-753
30. Genschow E, Spielmann H, Scholz G, Seiler A, Brown N, Piersma A, Brady M, Clemen N, Huuskoenen H, Paillard F, Bremer S, Becker K. The ECVAM international validation study on in vitro embryotoxicity tests: results of the definitive phase and evaluation of prediction models. ALtern Lab Anim 2002; 30: 151-176
31 Xu Y, Zhao H, Zhang Z. Raman spectroscopic study of microcosmic and photosensitive damage on the liposomes of the mixed phospholipids sensitized by hypocrellin and its derivatives. J Photochem Photobiol B 1998; 43: 41-46
32 He YY, Jiang LJ. Photosensitized damage to calf thymus DNA by a hypocrellin derivative: mechanisms under aerobic and anaerobic conditions. Biochim Biophys Acta 2000; 1523: 29-36
33 Fu NW. Advances in research on photosensitizers. Shengli Kexue Jinzhan 1992; 23: 36-40
34 Estey EP, Brown K, Diwu Z, Liu J, Lown JW, Miller GG, Moore RB, Tulip J, McPhee MS. Hypocrellins as photosensitizers for photodynamic therapy: a screening evaluation and pharmaco-kinetic study. Cancer Chemother Pharmacol 1996; 37: 343-350
35 Diwu ZJ, Haugland RP, Liu J, Lown JW, Miller GG, Moore RB, Brown K, Tulip J, McPhee MS. Photosensitization by anticancer agents 21: new perylene- and aminonaphthoquinones. Free Radic Biol Med 1996; 20: 589-593
36 Wang ZJ, He YY, Huang CG, Huang JS, Huang YC, An JY, Gu Y, Jiang LJ. Pharmacokinetics, tissue distribution and photodynamic therapy efficacy of liposomal-delivered hypocrellin A, a potential photosensitizer for tumor therapy. Photochem Photobiol 1999; 70: 773-780
37 Wu T, Xu S, Shen J, Song A, Chen S, Zhang M, Shen T. New potential photodynamic therapeutic anti-cancer agents: synthesis and characterization of demethoxy amino-substituted hypocrellins. Anticancer Drug Des 2000; 15: 287-293
38 Nenghui W, Zhiyi Z. Relationship between photosensitizing activities and chemical structure of hypocrellin A and B. Photochem Photobiol B 1992; 14: 207-217
39 Yuying H, Jingyi A, Lijin J. Effect of structural modifications on photosensitizing activities of hypocrellin dyes: EPR and spectrophotometric studies. Free Radic Biol Med 1999; 26: 1146-1157
40 Datta A, Smirnov AV, Wen J, Chumanov G, Petrov JW. Multidimensional reaction coordinate for the excited-state H-atom transfer in perylene quinones: importance of the 7-membered ring in hypocrellins A and B. Photochem Photobiol 2000; 71: 166-172
41 Wu T, Shen J, Song A, Chen S, Zhang M, Shen T. Photodynamic action of amino substituted hypocrellins: EPR studies on the photogenerations of active oxygen and free radical species. J Photochem Photobiol B 2000; 57: 14-21
42 Xu S, Shen J, Chen S, Zhang M, Shen T. Active oxygen species (\(O_2\), \(O_2^-\)) generation in the system of TiO\(_2\) colloid sensitized by hypocrellin B. J Photochem Photobiol B 2002; 67: 64-70
43 Chaloupka R, Sureau F, Kosarova E, Petrach JW. Hypocrellin A photosensitization involves an intracellular pH decrease in 3T3 cells. Photochem Photobiol 1998; 68: 44-50
44 Ali SM, Chee SK, Yuen GY, Olivo M. Hypericin and hypocrellin induced apoptosis in human mucosal carcinoma cells. J Photochem Photobiol B 2001; 65: 59-73
45 Ali SM, Olivo M, Yuen GY, Chee SK. Photodynamic-induced apoptosis of human nasopharyngeal carcinoma cells using Hypocrellins. Int J Oncol 2001; 19: 633-643
46 Maj J, Jiang L. Photogeneration of singlet oxygen (\(O_2\)) and free radicals (Sens, \(O_2^-\)) by tetra-brominated hypocrellin B derivative. Free Radic Res 2003; 35: 767-777
47 Wu T, Xu S, Shen J, Chen S, Zhang M, Shen T. EPR investigation of the free radicals generated during the photosensitization of TiO\(_2\) colloid by hypocrellin B. Free Radic Res 2001; 35: 137-143
48 Zhang WG, Ma LP, Wang SW, Zhang ZY, Cao GD. Antisense bc-2 retrovirus vector increases the sensitivity of a human gastric adenocarcinoma cell line to photodynamic therapy. Photochem Photobiol 1999; 69: 582-586
49 Ali SM, Chee SK, Yuen GY, Olivo M. Hypocrellins and Hypericin induced apoptosis in human tumor cells: A possible role of hydrogen peroxide. Int J Mol Med 2002; 9: 461-472
50 Ali SM, Chee SK, Yuen GY, Olivo M. Photodynamic therapy induced Fas-mediated apoptosis in human carcinoma cells. Int J Mol Med 2002; 9: 257-270

Edited by Xu JY