Prevalence of potential drug–drug interactions with disease-specific treatments in patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension: A registry study

Puck N. Norell1 | Bodil Ivarsson2 | Maria Selin3 | Barbro Kjellström4,5

1Department of Medicine, Karolinska Institutet, Stockholm, Sweden
2Department of Clinical Sciences, Lund University Lund, Cardiothoracic Surgery, and Medicine Services University Trust, Region Skåne, Lund, Sweden
3Heart Centre, Cardiology, Umeå University Hospital, Umeå, Sweden
4Department of Clinical Sciences Lund, Clinical Physiology and Skåne University Hospital, Lund University, Lund, Sweden
5Cardiology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden

Abstract
Polypharmacy increases the risk of drug–drug interactions that may disturb treatment effects. The aim of this study was to investigate the frequency of codispensing of potentially interacting or contraindicated drugs related to PH-specific treatment in the Swedish pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) population. All prescribed drugs, on an individual level, dispensed 2016–2017 at pharmacies to patients with PAH or CTEPH were obtained from The National Board of Health and Welfare's pharmaceutical registry. Potential drug–drug interactions were investigated using the Drug Interaction tool in the IBM Micromedex® database. There were 4785 different dispensed drugs from 572 patients (mean age 61 ± 16 years, 61% female, mean number of drugs per patient 8.4 ± 4.2) resulting in 1842 different drug combinations involving a PH-specific treatment. Of these drug combinations, 67 (3.5%) had a potential drug–drug interaction considered clinically relevant and it affected 232 patients (41%). The PH-specific drugs with the highest number of potential drug–drug interactions was bosentan (n = 23, affected patients = 171) while the most commonly codispensed, potentially interacting drug combination was sildenafil/furosemide (119 patients affected). Other common codispensed and potentially interacting drugs were anticoagulants (n = 11, affected patients = 100) and antibiotic treatment (n = 12, affected patients = 26). In conclusion, codispensing of PH-specific therapy and potentially interacting drugs was common, but codispensing of potentially contraindicated drugs was rare.

KEYWORDS
clinical relevance, lexicomp, micromedex, patient safety, polypharmacy
INTRODUCTION

Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are rare and serious cardiopulmonary diseases that frequently require lifelong pharmacological treatment.1 Disease-specific treatment includes endothelin receptor antagonists (ERA), phosphodiesterase type 5 inhibitors (PDE-5i), soluble guanylate cyclase stimulators (SGCs) as well as selective prostacyclin receptor agonists and prostacyclin analogs. Combination therapy is recommended to improve quality of life and outcome but monotherapy is not uncommon.2–5

An improved survival and an older population being diagnosed have increased the presence of comorbidities and thus, polypharmacy is common in this population.6–10 Further, side effects from pulmonary hypertension (PH)‐specific drugs such as headache, nausea, diarrhea, or constipation often require additional medical treatment.

With polypharmacy, the potential of a drug–drug interaction causing adverse effects on treatment outcomes increases.9 Drug–drug interactions can be caused by pharmacokinetic (PK) changes such as altered drug metabolism, or by pharmacodynamic (PD) changes such as additive effects. Combination of drugs that use the same metabolizing enzymes, for example, cytochrome P450, may cause reduced or enhanced systemic drug concentrations.11,12 To avoid unwanted treatment effects, identification and understanding the risk of potential drug–drug interactions are important. The primary aim of this study was to investigate the frequency of codispensing of potentially interacting combinations of drugs or contraindicated drugs related to PH‐specific drugs in the Swedish PAH and CTEPH population. A secondary aim was to increase the awareness outside the PH specialist clinics of potential drug–drug interactions related to PH‐specific drugs.

METHODS

Study population

In Sweden, individual-level data for all residents can be linked across national databases. The current study was a retrospective observational study including all drug prescriptions registered by the Swedish prescribed drug registry and dispensed by patients with PAH or CTEPH, aged ≥18 years, alive January 2016 through December 2017 and registered in the Swedish PAH & CTEPH registry (SPAHR13).

The Swedish Prescribed Drug Registry use the anatomical therapeutic chemical (ATC) classification system. The drug interaction tool in the IBM Micromedex® database15 was used to search for known interacting combinations of drugs or contraindicated drug combinations. If drugs could not be found in the Micromedex® database, the Lexicomp® Interactions database was used.16 Seven drugs were not found in either database. Using the Swedish interaction database Janusmed Interaktioner,17 these seven drugs were determined not to have any recorded drug–drug interaction in combinations found in the present study. The classifications of drug–drug interactions from Micromedex® and Lexicomp® Interactions can be found in Table 1. Micromedex® classifications moderate, major, and contraindicated correspond to Lexicomp® classifications C, D, and X, respectively. Interactions were considered clinically relevant if moderate to severe in Micromedex® (C in Lexicomp®). Drugs that did not have a systemic uptake were excluded from the study. The reliability and quality of documentation that formed basis on the potential drug–drug interactions that was found ranged between fair, good, and excellent.15,16

PH‐specific treatment

All PH‐specific treatments approved in Sweden at the time of the study were included in the analyses18 and are listed here by ATC code and generic name in parenthesis; B01AC09 (epoprostenol), B01AC11 (iloprost), B01AC21 (treprostinil), B01AC27 (selexipag), C02KX01.

TABLE 1 Classification of drug–drug interactions in Micromedex® and Lexicomp® interaction tools

Micromedex® interactions	Lexicomp® interactions
Unknown	Unknown (none found)
Minor	Limited clinical effects, where interactions may include an increase in the frequency or severity of the side effects but generally would not require a major alteration in therapy
Moderate	Interaction may result in exacerbation of the patient’s condition and/or require an alteration in therapy
Major	Interaction could prove life-threatening and/or require medical intervention to minimize or prevent serious adverse effects
Contraindicated	Drugs contraindicated for concurrent use

Note: Micromedex® classifications moderate, major and contraindicated correspond to Lexicomp® classifications C, D, and X, respectively.

Statistical analyses and data management

Lists of drug combinations were exported from the SAS statistical software to Microsoft Excel® (Microsoft 365) and potential drug–drug interactions were analyzed with using the drug interaction tools described earlier. Descriptive statistics were used to characterize the data. The SAS statistical software (The SAS system for Windows 9.4. SAS Institute Inc.) was used for all analyses.

RESULTS

Study population

There were 4785 different drugs with filled prescriptions from 572 patients included in the analyses. Of those, 433 patients were treated with a PH-specific treatment. The average number of drugs per patient was 8.4 ± 4.2, including PH-specific treatment (Table 2). Mean age of the study cohort was 61 ± 16 years and 61% were female (Table 2). A prescription of ERA was filled by 61% of the patients, PDE-5i by 60%, SGCs by 6%, and PRO by 12% (Table 3). The most common combinations of PH-specific treatments were macitentan/sildenafil (17%) and macitentan/tadalafil (14%). There were no potential drug–drug interactions related to these drug combinations.

The study population was evenly distributed between patients <65 years (50%) and ≥65 years (50%). ERA and PRO were prescribed more often to patients <65 years (ERA 65% vs. 58% and PRO 16% vs. 9%) while PDE-5i and SGCs were more often prescribed to patients ≥65 years (PDE-5i 57% vs. 64% and SGCs 4% vs. 8%).

Drug–drug interactions

There were 1842 different drug combinations involving a PH-specific treatment. Of those drug combinations, 67 (3.5%) had a potential drug–drug interaction affecting 232 patients (41%), whereof 25 combinations were classified as moderate (183 patients), 41 combinations as major (97 patients), and one combination as contraindicated (2 patients) (Table 2). The codispensed contraindicated drug combination was tadalafil/isosorbide (bosentan), C02KX02 (ambrisentan), C02KX04 (macitentan), C02KX05 (riociguat), G04BE03 (sildenafil), and G04BE08 (tadalafil).
TABLE 2 Study population characteristics (n = 572), drug combinations including a PH-specific drug and their drug–drug interaction severity

Characteristic	Value
Age (years)	61 ± 16
Sex (% women)	61
Time since diagnosis (years)	5.3 ± 4.7
Drugs per patient (polypharmacy, n)	8.4 ± 4.2
Drug combinations including PH-specific drugs (n)	1842

Potential drug–drug interactions (n)	65
Moderate (n)	23
Major (n)	41
Contraindicated (n)	1

Patients that codispensing potentially interacting drugs or contraindicated drugs (n)	232
Moderate (n)	183
Major (n)	97
Contraindicated (n)	2

Patients with no potential drug–drug interaction (n)	201
Patients with 1 potential drug–drug interaction (n)	132
Patients with 2 potential drug–drug interaction (n)	51
Patients with 3 potential drug–drug interaction (n)	32
Patients with ≥4 potential drug–drug interaction (n)	17

Note: Data are shown as mean ± SD, as number, or as proportion (%). PH indicates pulmonary hypertension.

Patients <65 years had more different drug combinations involving a PH-specific treatment than patients ≥65 years (1318 vs. 1281). Potential drug–drug interactions affected 125 patients (44%) <65 years and 157 patients (55%) ≥65 years. This difference between the age groups related to a higher proportion of drug combinations classified as moderate among patients ≥65 years.

DISCUSSION

Forty-one percent of the patients treated with a PH-specific treatment were simultaneously codispensed potentially interacting drugs or contraindicated drugs. The most common potential interaction was between sildenafil and furosemide, whereas bosentan had the highest total number of related potential interactions and affected the largest number of patients. Anticoagulants, antibiotics, and antidepressants were commonly dispensed in combination with a PH-specific treatment and presented with major potential drug–drug interactions.

Potential drug–drug interactions between PH-specific treatment and other concomitant drug treatments are common. It has been reported to affect 67% in a PAH and CTEPH population, whereas 16% of potential drug–drug interactions were considered contraindicated. The prevalence of potentially interacting or contraindicated drugs among codispensed drugs in the present study was low, only one contraindicated potential drug–drug interaction was dispensed, and it affected only two patients. The declining use of bosentan in Sweden during the studied time period is likely a contributing factor to this. Another contributing factor might be the direct communication link that exists between the Swedish medical records systems and the Janus Interactions database. This provides an easy access, one-click-tool that allow the prescriber to consider the presence of drug–drug interaction already at the time of writing the prescription. In addition, using the tool will likely increase the familiarity with common drug–drug interactions that can then be avoided in upcoming prescriptions.

A third of the study population in the present study was treated with sildenafil and two-thirds with diuretics, rendering the single most common potential drug–drug interaction to be between sildenafil and furosemide. The hypotensive effect of this drug combination is well known and careful monitoring of patients will likely be sufficient. A less known effect is ototoxicity that can cause hearing loss. The mechanism behind this may be further enhanced as an additive effect, as hearing loss can be induced temporarily by diuretics and as a sensorineural effect induced by sildenafil. The...
PH-drug (n = patients at risk, i.e., treated with the PH-drug)	PH drug metabolism	Codispensed drug	ATC codispensed drug	Patients on combination treatment (n)	Severity	Probable mechanism (PK/PD)	Risk
Ambrisentan (n = 95) (C02KX02)	Hepatic metabolism by uridine 5'-diphosphate glucuronosyltransferases (UGTs) UGT1A9S, -2B7S, -1A3S, and by CYP450 enzymes CYP3A4, -3A5, and -2C19	Ciclosporin	L04AD01	1	Moderate	Inhibition of ambrisentan metabolism by cyclosporine, a strong CYP3A4 inhibitor	† Ambrisentan exposure
Ambrisentan (n = 95) (C02KX02)	Hepatic metabolism by uridine 5'-diphosphate glucuronosyltransferases (UGTs) UGT1A9S, -2B7S, -1A3S, and by CYP450 enzymes CYP3A4, -3A5, and -2C19	Oxycodone	N02AA05	13	Major	Bosentan induces CYP3A4 which reduces oxycodone exposure	↓ Oxycodone exposure
Bosentan (n = 87) (C02KX01)	Hepatic metabolism by CYP2C9, -3A4 and to lesser extent -2C19	Tramadol	N02AX02	7	Major	Bosentan induces CYP3A4 which reduces tramadol exposure	↓ Tramadol exposure
Bosentan (n = 87) (C02KX01)	Hepatic metabolism by CYP2C9, -3A4 and to lesser extent -2C19	Paracetamol + codeine	N02AJ06	5	Major	Bosentan induces CYP3A4 which reduces codeine efficacy and may increase withdrawal	↓ Opioid efficacy, risk opioid withdrawal
Bosentan (n = 87) (C02KX01)	Hepatic metabolism by CYP2C9, -3A4 and to lesser extent -2C19	Medroxyprogesterone acetate	G03DA02	3	Major	Bosentan induces CYP3A4 which reduces medroxyprogesterone acetate exposure	↓ Medroxyprogesterone concentrations
Bosentan (n = 87) (C02KX01)	Hepatic metabolism by CYP2C9, -3A4 and to lesser extent -2C19	Estradiol	G03CA03	3	Major	Bosentan induces CYP3A4 which reduces estradiol plasma levels	↓ Hormonal contraceptive plasma levels
Bosentan (n = 87) (C02KX01)	Hepatic metabolism by CYP2C9, -3A4 and to lesser extent -2C19	Buprenorphine	N02AE01	2	Major	Bosentan induces CYP3A4 which reduces buprenorphine exposure	↓ Buprenorphine plasma levels
Bosentan (n = 87) (C02KX01)	Hepatic metabolism by CYP2C9, -3A4 and to lesser extent -2C19	Medroxyprogesterone acetate	G03AC06	1	Major	Bosentan induces CYP3A4 which reduces medroxyprogesterone acetate exposure	↓ Medroxyprogesterone concentrations

(Continues)
PH-drug (n = patients at risk, i.e., treated with the PH-drug)	PH drug metabolism	Codispensed drug	ATC codispensed drug	Patients on combination treatment (n)	Severity	Probable mechanism (PK/PD)	Risk
Desogestrel		G03AC09	1	Major	Bosentan induces CYP3A4 which reduces desogestrel plasma levels	↓ Hormonal contraceptive plasma levels	
Estrogen + norethindrone		G03FB05	1	Major	Bosentan induces CYP3A4 which reduces norethindrone plasma levels	↓ Hormonal contraceptive plasma levels	
Codeine		N05DA04	1	Major	Bosentan induces CYP3A4 which reduces codeine efficacy and may increase withdrawal	↓ Opioid efficacy, opioid withdrawal	
Aspirin + caffeine + codeine		N02AJ09	1	Major	Bosentan induces CYP3A4 which reduces codeine efficacy and may increase withdrawal	↓ Opioid efficacy, opioid withdrawal	
Warfarin		B01AA03	55	Moderate	Bosentan induces CYP3A4 (and possibly 2C9) which reduces warfarin exposure	↓ Warfarin efficacy	
Sildenafil		G04BE03	35	Moderate	Sildenafil induces increased bosentan exposure due to CYP3A4 metabolism	↑ Bosentan, ↓ sildenafil plasma levels	
Tadalafil		G04BE08	19	Moderate	Bosentan induces CYP3A4 which reduces tadalafil exposure	↓ Tadalafil plasma levels	
Atorvastatin		C10AA05	7	Moderate	Bosentan induces CYP3A4 which reduces atorvastatin exposure	↓ Atorvastatin plasma levels and efficacy	
Simvastatin		C10AA01	7	Moderate	Bosentan induces CYP3A4 which reduces simvastatin exposure	↓ Simvastatin plasma levels and efficacy	
PH-drug (n = patients at risk, i.e., treated with the PH-drug)	PH drug metabolism	Codispensed drug	ATC codispensed drug	Patients on combination treatment (n)	Severity	Probable mechanism (PK/PD)	Risk
---	---	---	---	---	---	---	---
		Didofenac	M02AA15	3	Moderate	Bosentan induces CYP2C9 which reduces diclofenac exposure	† Diclofenac exposure
		Verapamil	C08DA01	2	Moderate	Inhibition of CYP3A4-mediated bosentan metabolism by verapamil	† Bosentan plasma levels
		Ebastin	R06AX22	1	Moderate	Bosentan induces CYP3A4 which reduces ebastin exposure (increased ebastin metabolism)	† Ebastin plasma levels
		Fluconazole	J02AC01	1	Moderate	Fluconazole is a CYP2C9 inhibitor which may reduce bosentan metabolism	† Bosentan plasma levels
		Didofenac	M01AB05	1	Moderate	Bosentan induces CYP2C9-mediated diclofenac metabolism	† Diclofenac plasma levels
		Amiodarone	C01BD01	1	Moderate	Bosentan induces CYP3A4 which reduces amiodarone exposure; reduced CYP3A4- and CYP2C9-mediated bosentan metabolism	† Amiodarone and/or † bosentan exposure
		Clarithromycin	J01FA09	1	Moderate	Clarithromycin is a CYP2C9 inhibitor which may reduce bosentan metabolism	† Bosentan plasma levels

Macitentan (n = 169) (C02XX04) | Hepatic metabolism by CYP3A4, -2C8, -2C9, -2C19 | Fluconazole | J02AC01 | 2 | Major | Fluconazole is a dual CYP3A4- and CYP2C9-inhibitor and may inhibit macitentan metabolism | † Macitentan plasma levels, toxicity |

(Continues)
PH-drug (n = patients at risk, i.e., treated with the PH-drug)	PH drug metabolism	Codispensed drug	ATC codispensed drug	Patients on combination treatment (n)	Severity	Probable mechanism (PK/PD)	Risk
Esomeprazole + amoxicillin + clarithromycin		A02BD06	2	Major		Clarithromycin is a strong CYP3A4 inhibitor and may inhibit macitentan metabolism	† Macitentan plasma levels
Clarithromycin		J01FA09	1	Major		Clarithromycin is a strong CYP3A4 inhibitor and may inhibit macitentan metabolism	† Macitentan plasma levels
Carbamazepine		N03AF01	1	Major		Carbamazepine is a strong CYP3A4 inducer and may increase macitentan metabolism	† Macitentan plasma levels
Iloprost (n = 14) (B01AC11)	β-oxidation					Additive effects on hemostasis combining antiplatelet agents (iloprost) and warfarin	Bleeding
Warfarin		B01AA03	5	Major		Additive effects on hemostasis combining antiplatelet agents (iloprost) and low molecular weight heparin (dalteparin)	Bleeding
Dalteparin		B01AB04	4	Major		Additive effects on hemostasis combining antiplatelet agents (iloprost) and dalteparin	Bleeding
Apixaban		B01AF02	2	Major		Additive effects on hemostasis combining antiplatelet agents (iloprost) and apixaban	Bleeding
Sertraline		N06AB06	1	Major		Additive effects combining antiplatelet agents (iloprost) with sertraline	Bleeding
Duloxetine		N06AX21	1	Major		Additive effects on hemostasis combining antiplatelet agents (iloprost) and duloxetine	Bleeding
PH-drug (n = patients at risk, i.e., treated with the PH-drug)	PH drug metabolism	Codispensed drug	ATC codispensed drug	Patients on combination treatment (n)	Severity	Probable mechanism (PK/PD)	Risk
---	---------------------	------------------	---------------------	-------------------------------------	----------	---------------------------	------
Tinzaparin	Hepatic metabolism by CYP1A1, -3A4, -3A5, -2J2 and -2C8	B01AB10	1	Major	Additive effects combining antiplatelet agents (iloprost) and low molecular weight heparin (tinzaparin)	Bleeding	
Didofenac	Sodium picosulfate	M02AA15	1	Major	Additive effects on hemostasis combining antiplatelet agents (iloprost) with NSAID (diclofenac)	Bleeding	
Dipyridamole	Calcium carbonate	A12AX	4	Moderate	Decreased riociguat absorption due to calcium carbonate	☯ Riociguat exposure	
	Sodium picosulfate	A06AB08	1	Moderate	Decreased riociguat absorption due to sodium picosulfate (prepopik)	☯ Riociguat exposure	
	Magnesium hydroxide	G04BX01	1	Moderate	Decreased riociguat absorption due to magnesium hydroxide	☯ Riociguat exposure	
Selexipag (n = 29)	Hepatic metabolite activation by carboxylesterase 1	B01AF02	4	Major	Additive effects combining antiplatelet agents (selexipag) with apixaban	Bleeding	

(Continues)
PH-drug (n = patients at risk, i.e., treated with the PH-drug)	PH drug metabolism	Codispensed drug	ATC codispensed drug	Patients on combination treatment (n)	Severity	Probable mechanism (PK/PD)	Risk
Sertraline		N06AB06	2	Major	Combining antiplatelet agents (selexipag) with SSRIs (sertraline) may alter platelet function and induce bleeding	Bleeding	
Citalopram		N06AB04	1	Major	Combining antiplatelet agents (selexipag) with SSRIs (citalopram) may alter platelet function and induce bleeding	Bleeding	
Paroxetine		N06AB05	1	Major	Additive effects combining antiplatelet agents (iloprost) with paroxetine	Bleeding	
Sildenafil (n = 199) (G04BE03)	Hepatic metabolism primarily by CYP3A4, to lesser extent -2C9	Fluconazole	J02AC01	3	Major	CYP3A4- and CYP2C9-mediated sildenafil metabolism inhibition by fluconazole	↑ Sildenafil exposure, toxicity risk
		Esomeprazole + amoxicillin + clarithromycin	A02BD06	2	Major	CYP3A4-mediated sildenafil metabolism inhibition by clarithromycin	↑ Sildenafil exposure
		Clarithromycin	J01FA09	2	Major	CYP3A4-mediated sildenafil metabolism inhibition by clarithromycin	↑ Sildenafil exposure
		Itraconazole	J02AC02	1	Major	Itraconazole is a CYP3A4 inhibitor which may increase sildenafil exposure	↑ Sildenafil exposure
		Furosemide	C03CA01	119	Moderate	Additive ototoxicity, potentiation of antihypertensive activities of furosemide	Ototoxicity (hearing loss)
PH-drug	Codispensed drug	ATC codispensed drug	Patients on combination treatment (n)	Severity	Probable mechanism (PK/PD)	Risk	
-------------------------	------------------	----------------------	---------------------------------------	----------	---	---	
Bosentan	G04BE03	35	Moderate		CYP3A4 metabolism alterations (increased bosentan and decreased sildenafil exposure)	↓ Sildenafil, ↑ bosentan, plasma levels	
Ciprofloxacin	J01MA02	9	Moderate		CYP3A-mediated sildenafil metabolism inhibition by ciprofloxacin	↑ Sildenafil exposure and plasma levels	
Alfuzosin	G04CA01	4	Moderate		Sildenafil inhibits PDE5-mediated degradation of cyclic guanosine monophosphate (cGMP) which could cause peripheral vasodilation that may be additive with alfuzosin effects	Potentiation hypotensive effects	
Erythromycin	J01FA01	3	Moderate		Erythromycin is a CYP3A4 inhibitor and may inhibit sildenafil metabolism	Sildenafil adverse effects ↑; hypotension, visual changes, priapism	
Ciprofloxacin	S02AA15	1	Moderate		Ciprofloxacin is a CYP3A4 inhibitor and may inhibit sildenafil metabolism	↑ Sildenafil exposure and plasma levels	

Tadalafil (n = 146) (G04BE08)
Hepatic metabolism by CYP3A4
Isosorbide dinitrate C01DA14 2 Contraindicated increased levels of cGMP from tadalafil and nitrates POTENTIATION hypotensive effects

Simvastatin C10AA01 21 Major Unknown; may be due to CYP3A4 Myopathy

Alfuzosin G04CA01 1 Major Additive hypotensive effects (vasodilation and lowered blood pressure) Potentiation hypotensive effects

(Continues)
PH-drug (n = patients at risk, i.e., treated with the PH-drug)	PH drug metabolism	Codispensed drug	ATC codispensed drug	Patients on combination treatment (n)	Severity	Probable mechanism (PK/PD)	Risk
Esomeprazole + amoxicillin + clarithromycin	Hepatic metabolism, primarily by CYP2C8	Warfarin	B01AA03	20	Major	Additive effects on hemostasis combining antiplatelet agents (treprostinil) with warfarin	Bleeding
Clarithromycin		Dalteparin	B01AB04	6	Major	Additive effects combining antiplatelet agents (treprostinil) and low molecular weight heparin (dalteparin)	Bleeding
Itraconazole		Sertraline	N06AB06	2	Major	Combining antiplatelet agents (treprostinil) with SSRIs (sertraline) may alter platelet function and induce bleeding	Bleeding
Bosentan		Citalopram	N06AB04	1	Major	Combining antiplatelet agents (treprostinil) with SSRIs (citalopram) may alter platelet function and induce bleeding	Bleeding
synergistic ototoxic effect might also be further enhanced if combined with other drugs inhibiting cytochrome P450 enzymes. Underreporting of this drug–drug interaction is plausible since hearing loss is commonly attributed to ageing both by the patients themselves and by the health care staff.

Anticoagulant treatment with the vitamin K antagonist warfarin is recommended for patients with CTEPH, and though no longer recommended for patients with PAH, it is still commonly used in this population. In the present study, a vast majority of patients with CTEPH and almost half of the patients with PAH were treated with warfarin. The combination with bosentan may induce hepatic metabolism (cytochrome P2C9) and reduce warfarin plasma concentration. Combination of warfarin with prostacyclin analogs may cause additive effects of antiplatelets and result in bleeding, however, reports in the literature are conflicting. Careful monitoring of the prothrombin time in patients with warfarin should thus be undertaken when initiating or discontinuing PH treatments.

Antibiotic treatment was common and more than half of the study population filled a prescription at least once during the study period. Some antibiotic and antifungal treatments may increase plasma concentrations of sildenafil, tadalafil, bosentan and macitentan due to decreased systemic clearance by cytochrome P3A4. Interactions between antibiotic drugs and PH-specific treatment are well-known but its effect limited as antibiotics are generally administered occasionally and for short periods at a time. This allows for dose adjustment or, if warranted, even discontinuation of the PH-specific treatment during antibiotic treatment when needed. For long-term treatment with antibiotics, adjustments of PH-specific drugs might be warranted.

While it is recommended that patients with PAH and CTEPH are cared for by PH-specialist centers, other health care facilities will often meet the need for care of comorbidities and common colds and flues. Awareness of potential drug–drug interactions between PH-specific treatment and commonly prescribed treatments like diuretics, anticoagulants, and antibiotics are warranted, but awareness of less common drug–drug interactions also needs attention. In addition, nonprescriptions drugs and supplements such as vitamins or herbal products should also be closely monitored as they might contribute to unwanted drug–drug interactions. Close collaboration between the PH-specialist centres and other care facilities as well as easy access to available and reliable drug–drug interaction databases are important to increase patient safety.
TABLE 4 Potential drug–drug interactions and their related risks observed between PH-specific drugs and treatments with anticoagulants, antibiotics, or antidepressants

Drug class	Codispensed drug	ATC codispensed drug	PH-drug	PH-drug ATC	Patients on combination treatment (n)	Severity	Risk
Anticoagulants (B01)							
Warfarin	(B01AA03)	Bosentan	(C02KX01)	55	Moderate	↓ Warfarin efficacy	
Warfarin	(B01AA03)	Treprostinil	(B01AC21)	20	Major	Bleeding	
Dalteparin	(B01AB04)	Treprostinil	(B01AC21)	6	Major	Bleeding	
Warfarin	(B01AA03)	Iloprost	(B01AC11)	5	Major	Bleeding	
Dalteparin	(B01AB04)	Iloprost	(B01AC11)	4	Major	Bleeding	
Apixaban	(B01AF02)	Selexipag	(B01AC27)	4	Major	Bleeding	
Apixaban	(B01AF02)	Iloprost	(B01AC11)	2	Major	Bleeding	
Tinzaparin	(B01AB10)	Iloprost	(B01AC11)	1	Major	Bleeding	
Aspirin	(B01AC06)	Treprostinil	(B01AC21)	1	Major	Bleeding	
Apixaban	(B01AF02)	Treprostinil	(B01AC21)	1	Major	Bleeding	
Dipyridamole	(B01AC07)	Iloprost	(B01AC11)	1	Moderate	Bleeding	
Antibiotics (J01, J02, J04)							
Ciprofloxacin	(J01MA02)	Sildenafil	(G04BE03)	9	Moderate	↑ Sildenafil plasma concentration	
Erythromycin	(J01FA01)	Sildenafil	(G04BE03)	3	Moderate	Sildenafil adverse effects; hypotension, visual changes, priapism	
Fluconazole	(J02AC01)	Sildenafil	(G04BE03)	3	Major	↑ Sildenafil exposure, toxicity risk	
Clarithromycin	(J01FA09)	Sildenafil	(G04BE03)	2	Major	↑ Macitentan exposure, toxicity risk	
Clarithromycin	(J01FA09)	Macitentan	(C02KX04)	1	Major	↑ Macitentan exposure	
Itraconazole	(J02AC02)	Sildenafil	(G04BE03)	1	Major	↑ Sildenafil exposure	
Fluconazole	(J02AC01)	Bosentan	(C02KX01)	1	Moderate	↑ Bosentan plasma concentrations	
Clarithromycin	(J01FA09)	Tadalafil	(B01AC21)	1	Major	↑ Tadalafil bioavailability	
Itraconazole	(J02AC02)	Tadalafil	(B01AC21)	1	Major	↑ Tadalafil bioavailability	
Trimethoprim	(J01EA01)	Treprostinil	(B01AC21)	1	Moderate	↑ Treprostinil exposure	
Clarithromycin	(J01FA09)	Bosentan	(C02KX01)	1	Moderate	↑ Bosentan plasma concentrations	
Strengths and limitations

Drug interaction databases have different capacities to detect and classify severities of drug–drug interaction that might affect the results of a study investigating interactions between drugs.\(^26\) The decision to use Micromedex\(^5\) as the primary database might have affected the results.

The study population consisted of all patients with PAH or CTEPH registered in SPAHR\(^13\) and alive during the study period of 2016–2017. Due to the high national coverage of SPAHR (>90%), the study population ably represents patients with PAH and CTEPH in Sweden. The study included all prescriptions filled by patients with PAH or CTEPH in Sweden, available from the National Board of Health and Welfare's pharmaceutical registry (Swedish Prescribed Drug Registry). Limitations are that dose adjustments or drug discontinuation of prescribed drugs are not available and drug adherence was not considered. The registry-based design of the study did not allow for investigation if actual drug–drug interaction occurred.

CONCLUSION

Codispensing of PH-specific therapy and potentially interacting drugs was common in the Swedish PAH and CTEPH population, but codispensing of potentially contraindicated drugs was rare. The most prevalent codispensed and potentially interacting drug combination were between sildenafil and furosemide while bosentan was associated with a higher proportion of potential drug–drug interactions and affected the highest number of patients. Potential drug–drug interactions of major severity were observed between PH-specific treatment and anticoagulants, antibiotics and antidepressants, and should warrant attention.

AUTHOR CONTRIBUTIONS

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Puck N. Norell, Bodil Ivarsson, Maria Selin, and Barbro Kjellström. The first draft of the manuscript was written by Puck N. Norell and Barbro Kjellström and all authors commented on previous versions of the manuscript. All authors have read and approved the final manuscript. All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship for this article, take responsibility for the integrity of the work as a whole, and have given their approval for this version to be published.
ACKNOWLEDGMENTS
We acknowledge the work of the SPAHR registrars at the PAH/CTEPH-specialist clinics, the members of the SPAHR steering committee and Uppsala Clinical Research Centre for administrating SPAHR; pharmacist and PhD Anna Sandqvist at Umeå University for support in designing the study, interpretation of the results and drafting the manuscript; and associate professor Per Näsman at the Royal Institute of Technology in Stockholm (KTH) for doing the statistic calculations.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ETHICS STATEMENT
The study was approved by the Regional Ethics Committee in Lund, Sweden (LU 2016/766), and performed in accordance with the Declaration of Helsinki. The study used retrospective, anonymized data from Swedish National Registries and in accordance to Swedish law, no informed consent from patients was needed.

ORCID
Barbro Kjellström @ http://orcid.org/0000-0002-7936-1209

REFERENCES
1. Galiè N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, Simonneau G, Peacock A, Vonk Noorderegraaf A, Beghetti M, Ghofrani A, Gomez Sanchez MA, Hansmann G, Klepetko W, Lancellotti P, Matsuic M, McDonagh T, Pierard LA, Trindade PT, Zompatori M, Hoepner M. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119.
2. Galiè N, Barberà JA, Frost AE, Ghofrani HA, Hoepner MM, McLaughlin VV, Peacock AI, Simonneau G, Vachiery JL, Grünig E, Oudiz RJ, Vonk-Noordegraaf A, White RJ, Blair C, Gillies H, Miller KL, Harris JH, Langley J, Rubin LJ, Ambition I. Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med. 2015;373:834–44.
3. Sitbon O, Channick R, Chin KM, Frey A, Gaine S, Galie N, Ghofrani HA, Hoepner MM, Lang IM, Preiss R, Rubin LJ, Di Scala L, Tapsen V, Adzerikho I, Liu J, Moiseeva O, Zeng X, Simonneau G, McLaughlin VV, Grippion I. Selexipag for the treatment of pulmonary arterial hypertension. N Engl J Med. 2015;373:2522–33.
4. Coghlan JG, Channick R, Chin K, Di Scala L, Galie N, Ghofrani HA, Hoepner MM, Lang IM, McLaughlin VV, Preiss R, Rubin LJ, Simonneau G, Sitbon O, Tapsen VF, Gaine S. Targeting the prostacyclin pathway with selexipag in patients with pulmonary arterial hypertension receiving double combination therapy: insights from the randomized controlled GRIPHON study. Am J Cardiovasc Drugs. 2018;18:37–47.
5. Galie N, Channick RN, Frantz RP, Grünig E, Jing ZC, Moiseeva O, Preston IR, Pulido T, Safdar Z, Tamura Y, McLaughlin VV. Risk stratification and medical therapy of pulmonary arterial hypertension. Eur Respir J. 2019;53:1801889.
6. Rådegran G, Kjellström B, Ekmeheh B, Larsen F, Rundqvist B, Blomquist SB, Gustafsson C, Hesselstrand R, Karlsson M, Kornhall B, Nisell M, Persson L, Rytenius H, Selin M, Ullman B, Wall K, Wikström G, Wilhelmdson M, Jansson K, Stefan Söderberg J, on behalf of SveFFP and SPAHR. Characteristics and survival of adult Swedish PAH and CTEPH patients 2000-2014. Scand Cardiovasc J. 2016;50:243–50.
7. Rosenkranz S, Channick R, Chin KM, Jenner B, Gaine S, Galie N, Ghofrani HA, Hoepner MM, McLaughlin VV, Du Rouce C, Rubin LJ, Sitbon O, Tapson V, Lang IM. The impact of comorbidities on selexipag treatment effect in patients with pulmonary arterial hypertension: insights from the GRIPHON study. Eur J Heart Fail. 2021;24:205–14. https://doi.org/10.1002/ejhf.2369
8. Bouzina H, Rådegran G, Butler O, Hesselstrand R, Hjalmarsson C, Holl K, Jansson K, Klok R, Söderberg S, Kjellström B. Longitudinal changes in risk status in pulmonary arterial hypertension. ESC Heart Fail. 2021;8:680–90.
9. Lang IM, Palazzini M. The burden of comorbidities in pulmonary arterial hypertension. Eur Heart J Suppl. 2019;21:K21–8.
10. Kjellström B, Sandqvist A, Hjalmarsson C, Nisell M, Näsman P, Ivarsson B. Adherence to disease specific drug treatment among patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension. ERJ Open Res. 2020;6:00299.
11. Cascorbi I. Drug Interactions—principles, examples and clinical consequences. Disch Arzteleb Int. 2012;109:546–56.
12. Ciraci R, Tirone G, Scaglione F. The impact of drug-drug interactions on pulmonary arterial hypertension therapy. Pulm Pharmacol Ther. 2014;28:1–8.
13. Swedish Pulmonary Arterial Hypertension Registry Annual Report 2019. (SPAHR Årsrapport 2019) [Internet]. [cited 2021 Feb 27]. Available from: https://www.ucr uu.se/spahr/arsrapporter
14. Socialstyrelsen (Swedish National Board of Health and Welfare). The Prescribed Drug Registry at the Swedish National Board of Health and Welfare, in Swedish) [Internet]. [cited 2021 Feb 27]. Available from: https://www.socialstyrelsen.se/statistik-och-data/register/allregister/lakemedelsregistret/
15. Truven Health Analytics. Micromedex Solutions Drug Interactions [Internet]. 2021 [cited 2021 Feb 28]. Available from: http://www.micromedexsolutions.com
16. Kluver Wolters. Lexicomp® Interactions [Internet]. 2021. Available from: http://online.lexi.com/ico/action/interact
17. Region Stockholm. Janusmed Interaktioner [Internet]. Available from: https://janusmed.sll.se/interaktioner
18. Socialstyrelsen (Swedish National Board of Health and Welfare). Pulmonell arteriell hypertension och kronisk
tromboembolisk pulmonell hypertension [Internet]. Socialstyrelsen. [cited 2021 Apr 16]. Available from: https://www.socialstyrelsen.se/stod-i-arbetet/sallsynta-halsotillstand/pulmonell-arteriell-hypertension-och-kronisk-tromboembolisk-pulmonell-hypertension

19. Suárez JA, Manzaneque A, Garcia NC, Creus MT, Mir JB. DI-058 risk of drug–drug interactions in a pulmonary arterial hypertension population. Eur J Hosp Pharm. 2017;24: A138–39.

20. Skeith L, Yamashita C, Mehta S, Farquhar D, Kim RB. Sildenafil and furosemide associated ototoxicity: consideration of drug–drug interactions, synergy, and broader clinical relevance. J Ther Popul Pharmacol Clin. 2013;20:e128–31.

21. Ding D, Liu H, Qi W, Jiang H, Li Y, Wu X, Sun H, Gross K, Salvi R. Ototoxic effects and mechanisms of loop diuretics. J Otol. 2016;11:145–56.

22. Barreto M, Bahmad F. Phosphodiesterase type 5 inhibitors and sudden sensorineural hearing loss. Braz J Otorhinolaryngol. 2013;79:727–33.

23. Cunningham LL, Tucci DL. Hearing loss in adults. N Engl J Med. 2017;377:2465–73.

24. Ascha M, Zhou X, Rao Y, Minai OA, Tonelli AR. Impact on survival of warfarin in patients with pulmonary arterial hypertension receiving subcutaneous treprostinil. Cardiovasc Ther. 2017;35:e12281.

25. Ogawa A, Matsubara H, Fujio H, Miyaji K, Nakamura K, Morita H, Saito H, Kusano KF, Emori T, Date H, Ohe T. Risk of alveolar hemorrhage in patients with primary pulmonary hypertension—anticoagulation and epoprostenol therapy. Circ J Off J Jpn Circ Soc. 2005;69:216–20.

26. Suriyapakorn B, Chairat P, Boonyopakorn S, Rojanarattanangkul P, Pisetchee P, Hunsakunachai N, Vivithanaporn P, Wongwiwatthanukit S, Khemawoot P. Comparison of potential drug–drug interactions with metabolic syndrome medications detected by two databases. PLoS One. 2019;14:e0225239.

How to cite this article: Norell PN, Ivarsson B, Selin M, Kjellström B. Prevalence of potential drug–drug interactions with disease-specific treatments in patients with pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension: a registry study. Pulm Circ. 2022;12:e12114. https://doi.org/10.1002/pul2.12114