Research Paper
The Effect of an 8-week NASM Corrective Exercise Program on Upper Crossed Syndrome

*Mahsa Abdolahzade*1, Hassan Daneshmandi2

1. Department of Sports Injuries and Corrective Exercise, Shafagh Institute of Higher Education, Tonekabon, Iran.
2. Department of Sports Injuries and Corrective Exercise, Faculty of Physical Education and Sport Sciences, University of Guilan, Rasht, Iran.

**Abstract**

**Objective:** Upper Crossed Syndrome (UCS) is a disorder caused by muscle imbalance of the upper quadrant of the body. Using National Academy of Sports Medicine (NASM) protocol for corrective exercises is one of the new approaches to restore muscle balance, and prevent/correct postural abnormalities. The purpose of the present study is to evaluate the effect of an 8-week NASM corrective exercise program on UCS.

**Methods:** Participants were 30 female students with forward head > 46 degrees, forward shoulder > 52 degrees and thoracic kyphosis > 42 degrees, who were selected using a purposive sampling method and then randomly divided into control and intervention groups. The intervention group received corrective exercise program for eight weeks, three sessions per week. Forward head and shoulder angles were measured using side photography, and thoracic kyphosis angle was measured using a flexible ruler (r=0.093) before and after intervention. Paired t-test and analysis of covariance were used for data analysis at the significance level of P≤0.05.

**Results:** The mean angles of forward head, forward shoulder and thoracic kyphosis decreased significantly after 8 weeks of NASM corrective exercise in the intervention group compared to the control group.

**Conclusion:** Corrective trainers and therapists are advised to regularly use the NASM corrective exercise program proposed in this study for UCS patients.

**Key words:** Corrective exercises, Upper crossed syndrome, NASM

**Extended Abstract**

**1. Introduction**

Muscle imbalance can affect the body’s natural alignment and cause a variety of postural abnormalities [1]. Improper posture and long-term work tasks can lead to musculoskeletal disorders [2]. Early and timely identification of these postural defects and their treatment can reduce its complications and help save time and money [3]. Muscle imbalance can have serious and known consequences in the body [1]. Upper Crossed Syndrome (UCS) occurs in the neck and shoulder girdle [4]. This syndrome is a type of musculoskeletal system involvement that results in shortening of the upper posterior and anterior muscles in the neck, which are tonic muscles (e.g. pectoralis major muscle, upper trapezius, levator scapula, sternocleidomastoid) and the anterior deep muscles of the neck and posterior shoulder girdle, which are mainly phasic (e.g. Rhomboid major, middle and lower trapezius muscles, serratus anterior muscle, and deep neck flexors) are inhibited and weakened. Postural changes seen in UCS include forward head, rounded shoulders, and thoracic kyphosis [5].
There have been several reports of osteoarthritis of the temporomandibular joint due to forward head and mechanical pain in the head [4]. There are also some reports of radicular pain in the arms and hands due to osteoarthritis of the neck due to UCS [2]. Such adverse secondary changes resulting from this syndrome are also present in people with thoracic kyphosis in the glenohumeral joint [4, 11].

2. Methods

In this study, 30 female students [15] with forward head posture > 46 degrees [16], forward shoulder posture > 52 degrees [16] and thoracic kyphosis > 42 degrees [17] were selected as samples using purposive sampling method and randomly divided into groups of control and intervention. Participants in the intervention group received 8 weeks of corrective exercise, 3 sessions per week, each for 30-70 min. National Academy of Sports Medicine (NASM) principles were used to develop the training program. The program follows certain training protocols in designing and implementing corrective exercises. It consists of four stages of inhibition, stretch, activation and coherence [9].

The head-forward and shoulder-forward angles were measured using side photography [19], the kyphosis angle was measured using a flexible ruler (r=0.093) [20] before and after intervention. The type of movements was determined by referring to specialists and resources of movement therapy and then finalized and implemented through a pilot study on some study samples [21]. The Shapiro-Wilk test was used to measure the normal distribution of data. In order to analyze the data obtained from pre-test and post-test phases, pair t test was used, and ANOVA test was used to compare the study changes.

3. Results

Table 1 presents the characteristics of participants and test results. Due to the long and incorrect sitting position and repetitive use of the upper limbs in students, there is a possibility that the balance of the muscles of the upper extremity is disturbed. Since muscle imbalances in the upper quarter of the body increase the risk of UCS, and UCS is associated with three postures of head forward, rounded shoulder and thoracic kyphosis, the exercises in this study were comprehensively and simultaneously based on these three abnormalities. The people with UCS need to pay special attention to the issue of muscle balance while sitting, in addition to correcting the posture of the head, neck and back. The results showed the positive impact of exercise based on NASM principles on muscle balance and correcting head forward, rounded shoulder and thoracic kyphosis postures.

4. Discussion

UCS is commonly seen in people who sit for long periods of time or in people who apply frequent overload patterns to upper limbs [8, 9]. Corrective exercises have been reported to be one of the most effective ways to restore performance [23]. Eight weeks of corrective exercises regulates muscle activity and musculoskeletal disorders in the upper body [24]. In this study, the four-step NASM-based corrective protocol was focused on all three abnormalities caused by UCS at the same time, and is consistent with the Janda approach and the Bruegger’s exercise [8]. Researchers have shown that strength training affects the length of the muscle tendon, displacing different parts of the skeleton and stabilizing the ligaments. On the other hand stretching exercises act as coordinator of agonist and antagonist muscles. Thus, such exercises increase the length of the muscles on the concave side, the muscle power and strength on the convex side, and thus reduce the rate of postural abnormalities [37]. We attempted to apply the exercise program more in a closed chain of motion and more in a weight-bearing position to simulate real-life activities [36].

5. Conclusion

In general, it seems that the use of corrective exercises can lead to improvements in flexibility and strength following
the correction of postural abnormalities. Hence, the use of corrective exercises to reduce UCS abnormalities and improve strength and flexibility is recommended.

Ethical Considerations

Compliance with ethical guidelines

The present study ethically approved by the Research Ethics Committee of Sport Sciences Research Institute code:.1398.628 IR.SSRI.REC.

Funding

This study was extracted from the master thesis of first author approved by Department of Sport Injuries and corrective exercises, Shafagh Institute of Higher Education, Tonekabon, Iran.

Authors' contributions

Conceptualization, methodology, validation, analysis, research and supervision: All authors; writing original draft and resources: Mahsa Abdolahzadeh. Editing & review: Dr Hassan Daneshmandi.

Conflicts of interest

The author declared no conflict of interest
تأثیر هشتم هفته تمرینات اصلاحی مبتنی بر اصول NASM بر سندروم متقاطع فوقانی

مهسا عبداله زاده

نحوه بازگشت و حملات اصلاحی و اصلاحات زنانه و حملات اصلاحی ناشی از عدم تعادل عضلانی و انحرافات عضلانی است. استفاده از تمرینات اصلاحی مبتنی بر اصول NASM یکی از روش‌های جدید برای برگرداندن تعادل عضلانی و پیشگیری و اصلاح ناهنجاری‌های عضلانی است. هدف از پژوهش حاضر، بررسی تأثیر هشت هفته تمرینات اصلاحی مبتنی بر اصول NASM در صورت اجرای برنامه تمرینی در گروه آزمایش و کنترل بود.

در این پژوهش، 42 نفر دختر دانشجوی حسین بهمنی را با عارضه سر به جلو بیش از 30 درجه، شانه به جلو بیش از 46 درجه و کایفوز بیش از 52 درجه، تصادفی به دو گروه کنترل و آزمایش تقسیم شدند. شرکت کنندگان گروه آزمایش 42 دقیقه به تمرینات اصلاحی پرداختند. زوایای سر به جلو، شانه به جلو و کایفوز قبل و بعد از هشت هفته تمرینات اصلاحی اندازه‌گیری شدند. برای تجزیه و تحلیل داده‌ها از آزمون تی‌زوجی و آزمون تحلیل کوواریانس استفاده شد. نتایج نشان داد که هشت هفته تمرینات اصلاحی مبتنی بر اصول NASM منجر به بهبود صورت‌های زیر را یافتند: کایفوز، درجه سر به جلو و شانه به جلو در گروه آزمایش نسبت به گروه کنترل بهبود یافت.

کلیدواژه‌های مقاله: تمرینات اصلاحی، سندرم متقاطع فوقانی, NASM

مقدمه

تعادل عضلانی در راستای طبیعی بدن، به موجب عدم عضله، اثرگذار باشد و فرد را به انواع ناهنجاری‌های پاسچرال مبتلا کند. وضعیت‌های نامناسب حین انجام کارها و تکالیف شغلی به مدت طولانی می‌تواند منجر به اختلالات اسکلتی-عضوی شود. از طرفی، شناخت زودهنگام و به مدت افراد با مشکلات انحرافات و ایجاد این اختلالات به تدریج منجر به کاهش ایمنی و کاهش کارایی و کاهش پوشش سیستم عصبی، ضعیفی و کاهش عملکرد. به علاوه، کاهش توانایی کمربند تحتانی و شانه در حمله، فک‌گینه و سون ایجاد می‌شود. استفاده از تمرینات اصلاحی مبتنی بر اصول NASM منجر به بهبود صورت‌های زیر را یافتند: کایفوز، درجه سر به جلو و شانه به جلو در گروه آزمایش نسبت به گروه کنترل بهبود یافت.

1. Muscle imbalance
2. Upper crossed syndrome (UCS)
3. Lower crossed syndrome (LCS)
4. Layer syndrome

159
آذر 1398

نویسنده مسئول: مهسا عبداله زاده

مراجع: 1. حسن‌قلی‌نژاد، گروه آسیب‌شناسی و حملات اصلاحی، دانشگاه علوم پزشکی، رشت، ایران. 2. جانی لامکا، گروه آسیب‌شناسی و حملات اصلاحی، دانشگاه گیلان، رشت، ایران.
در لین میان‌کلامی ملی طب ورزش آمریکا (NASM) تجاری، تمرینات اصلاحی را با یازده‌گی جمجمه داشته‌اند تا روشی با طرح پیشرفته‌تری و کسب‌کردن کاربرد در محیط‌های محیطی و فیزیکی‌های مالی‌سازی و اسکچینگ را پیش‌برده داشته‌اند. در این پروتکل توصیه برای این تمرینات همکاری با این اتکاک عمل‌های کلیه‌ای است. برای این تمرینات به عنوان مثال یک بخش از روش‌های فیزیکی، مراقب کردن از وضعیت عضلانی و هماهنگی عضله‌ها در منطقه‌های مختلف از فیزیک به فیزیک به بررسی ضعف عضله‌ها و بهبود آنها با ترکیب تمرینات اصلاحی، بهبود کیفیت زندگی و بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود روش‌های توانبخشی محقق برای بهبود روش‌های توانبخشی و نیز بهبود Roshi شناختی

روشی شباهتی
بیانات تمرینی به مدت هفده هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.

برنامه تمرینی به مدت هشت هفته، هر هفته سه جلسه و دوازده تمرین به ترتیب در طول جلسات ارائه صورت ایستگاهی اجرا شد و شدت آن برای شرکت کنندگان بر دقیقه زیر نظر آزمونگر انجام شد.
کایفوز بعد از هشت هفته تمرینات اصلاحی نشان داد. این یافته‌ها هدف تحقیق حاضر بررسی تأثیر هشت هفته تمرینات اصلاحی آلگوی سندرم متقاطع فوقانی معمولاً در افرادی که در نسخه ۲۳ در سطح معنی‌داری (p<0.05) انجام شد.

پیشنهاد تحقیق حاضر بررسی تأثیر هشت هفته تمرینات اصلاحی بر سطح متقاطع فوقانی فوتوپی بود. نتایج تحقیق نشان می‌دهد که در زبان دارای چهار بیشترین سطح خودکاری کایفوز بیشتر می‌شود. همچنین پایان‌نامه‌ها و کایفوز گروه آزمایش داشته است (۱/۰۰۰۷یی).
را تأثیرگذاری تمرینات اصلاحی تحصیل کرده بودند و باعث شده که از ارائه تمرینات متمرکز در یک چهارم فوقانی بدن و توجه اسکلت عضلانی را در ناحیه فوقانی بدن بازیابی کنند. در مطالعات اخیر، لازم به توجه به واکنش‌های عضلات کوتاه شده و تقویت عضلات ضعیف شده در موضع انتهایی است که سبب انحرافات و وضعیت جذب‌کننده بدن و بررسی کردن و ارتباط دوره‌های قسمتی‌سازی مدت زمانی داشته باشد. نتایج این مطالعه نشان داد که این تمرینات بهترین روش مناسبی برای اصلاح ناهنجاری‌ها در این منطقه از جمله در سندرم متقارن فوقانی و ناحیه عضلات کوتاه شده و ضعیف شده در موضع انتهایی است به عنوان یک روش موثر برای اصلاح ناهنجاری‌ها در این منطقه می‌باشد.
در حالت تحمل عضلات سینه ای کوچک و بزرگ پرداختیم. سعی شد که برنامه عضلات جناغی، چنبری، پستانی، ذوزنقه فوقانی، بالا برنده کتف و میانی و تحتانی و همچنین به کشش عضلات کوتاه شده مانند عضلات فلکسورهای عمقی گردن، مربع، ذوزنقه تمرینات اصلاحی، به تقویت عضلات ضعیف شده در این سندرم شده است. نیز بی ارتباط با کاهش مطلوب این ناهنجاری نیست. در همین راستا دو برنامه تمرینی مانند حرکت کبری رو در فضای محدود، شکم و دو پا به مدت ۲۰ ثانیه، توانسته است به کاهش این و تقویت عضلات موجود تمریناتی نظیر ریترکشن کتف با باندکشی و چین تاک تقویت کافی عضلات است که به نظر می رسد در پژوهش حاضر، شانه به جلو می شود؛ از این رو برای اصلاح این عارضه نیازمند ثابت کننده و عضلات بین استخوان کتف و در نتیجه ناهنجاری بی تمرینی موجب ضعیف شدن عضلات پرداخت. نتایج نشان دهنده تأثیر سریع تر تمرینات مقاومتی در و تمرینات مقاومتی ریترکشن کتف بر وضعیت شانه به جلو (۲۰۰۵ NASM) وضعیت سینه ای کوچک و ضعف ذوزنقه میانی ایجاد می شود. همچنین محققانی که تمرکز داشتند که کشف عضلات تحت تاثیر تمریناتی خون‌ریزی و معناداری را بین کایفوز و سر به جلو در این تحقیق باشد. همچنین نواحی مرتبط با عضلات سینه ای، چربی‌سازی شکم و دو پا به مدت ۱۸ ثانیه، توانسته است با کاهش این و تقویت عضلات موجود تمریناتی نظیر ریترکشن کتف با باندکشی و چین تاک تقویت کافی عضلات است که به نظر می رسد در پژوهش حاضر، شانه به جلو می شود؛ از این رو برای اصلاح این عارضه نیازمند ثابت کننده و عضلات بین استخوان کتف و در نتیجه ناهنجاری بی تمرینی موجب ضعیف شدن عضلات پرداخت. نتایج نشان دهنده تأثیر سریع تر تمرینات مقاومتی در و تمرینات مقاومتی ریترکشن کتف بر وضعیت شانه به جلو (۲۰۰۵ NASM) وضعیت سینه ای کوچک و ضعف ذوزنقه میانی ایجاد می شود. همچنین محققانی که تمرکز داشتند که کشف عضلات تحت تاثیر تمریناتی خون‌ریزی و معناداری را بین کایفوز و سر به جلو در این تحقیق باشد. همچنین نواحی مرتبط با عضلات سینه ای، چربی‌سازی شکم و دو پا به مدت ۱۸ ثانیه، توانسته است با کاهش این و تقویت عضلات موجود تمریناتی نظیر ریترکشن کتف با باندکشی و چین تاک تقویت کافی عضلات است که به نظر می رسد در پژوهش حاضر، شانه به جلو می شود؛ از این رو برای اصلاح این عارضه نیازمند ثابت کننده و عضلات بین استخوان کتف و در نتیجه ناهنجاری بی تمرینی موجب ضعیف شدن عضلات پرداخت. نتایج نشان دهنده تأثیر سریع تر تمرینات مقاومتی در و تمرینات مقاومتی ریترکشن کتف بر وضعیت شانه به جلو (۲۰۰۵ NASM) وضعیت سینه ای کوچک و ضعف ذوزنقه میانی ایجاد می شود. همچنین محققانی که تمرکز داشتند که کشف عضلات تحت تاثیر تمریناتی خون‌ریزی و معناداری را بین کایفوز و سر به جلو در این تحقیق باشد. همچنین نواحی مرتبط با عضلات سینه ای، چربی‌سازی شکم و دو پا به مدت ۱۸ ثانیه، توانسته است با کاهش این و تقویت عضلات موجود تمریناتی نظیر ریترکشن کتف با باندکشی و چین تاک تقویت کافی عضلات است که به نظر می رسد در پژوهش حاضر، شانه به جلو می شود؛ از این رو برای اصلاح این عارضه نیازمند ثابت کننده و عضلات بین استخوان کتف و در نتیجه ناهنجاری بی تمرینی موجب ضعیف شدن عضلات پرداخت. نتایج نشان دهنده تأثیر سریع تر تمرینات مقاومتی در و تمرینات مقاومتی ریترکشن کتف بر وضعیت شانه به جلو (۲۰۰۵ NASM) وضعیت سینه ای کوچک و ضعف ذوزنقه میانی ایجاد می شود. همچنین محققانی که تمرکز داشتند که کشف عضلات تحت تاثیر تمریناتی خون‌ریزی و معناداری را بین کایفوز و سر به جلو در این تحقیق باشد. همچنین نواحی مرتبط با عضلات سینه ای، چربی‌سازی شکم و دو پا به مدت ۱۸ ثانیه، توانسته است با کاهش این و تقویت عضلات موجود تمریناتی نظیر ریترکشن کتف با باندکشی و چین تاک تقویت کافی عضلات است که به نظر می رسد در پژوهش حاضر، شانه به جلو می شود؛ از این رو برای اصلاح این عارضه نیازمند ثابت کننده و عضلات بین استخوان کتف و در نتیجه ناهنجاری بی تمرینی موجب ضعیف شدن عضلات پرداخت. نتایج نشان دهنده تأثیر سریع تر تمرینات مقاومتی در و تمرینات مقاومتی ریترکشن کتف بر وضعیت شانه به جلو (۲۰۰۵ NASM) وضعیت سینه ای کوچک و ضعف ذوزنقه میانی ایجاد می شود. همچنین محققانی که تمرکز داشتند که کشف عضلات تحت تاثیر تمریناتی خون‌ریزی و معناداری را بین کایفوز و سر به جلو در این تحقیق باشد. همچنین N
پژوهش جامعه برگرفته از پایان‌نامه کارشناسی ارشد مهسا عبداله‌زاده در گروه آسیب‌شناسی ورزشی و حرکات و فنی‌شناسی، مؤسسه آموزش عالی شفق تنکابن است.

Financial support

This article is derived from the Master's thesis of the first author, Mehsa Abdollahzadeh in the field of Sports Science and Correctional movements in the Shafii University of Tabriz.

Torial relationship

None of the authors have any conflict of interest.

IR.SSRI.REC.1398.628

References

یکین افراد باید در هنگام نشستن، ضمن اصلاح وضعیت سر، گردن و پشت، به مسئله تعادل عضلانی توجه ویژه داشته باشند.

نتیجه‌گیری نهایی

با توجه به نتایج حاصل از مطالعه فوق به دلیل طولانی‌مدت پیاده‌سازی و بی‌توجهی به دو دقیقه تکنیک رهاسازی مایوفاشیال توسط خود فرد، به طور معنی‌داری افزایش می‌دهد.

نتیجه‌گیری

با توجه به نتایج حاصل از مطالعه فوق به دلیل طولانی‌مدت پیاده‌سازی و بی‌توجهی به دو دقیقه تکنیک رهاسازی مایوفاشیال توسط خود فرد، به طور معنی‌داری افزایش می‌دهد.

نتیجه‌گیری

با توجه به نتایج حاصل از مطالعه فوق به دلیل طولانی‌مدت پیاده‌سازی و بی‌توجهی به دو دقیقه تکنیک رهاسازی مایوفاشیال توسط خود فرد، به طور معنی‌داری افزایش می‌دهد.

نتیجه‌گیری

با توجه به نتایج حاصل از مطالعه فوق به دلیل طولانی‌مدت پیاده‌سازی و بی‌توجهی به دو دقیقه تکنیک رهاسازی مایوفاشیال توسط خود فرد، به طور معنی‌داری افزایش می‌دهد.

نتیجه‌گیری

با توجه به نتایج حاصل از مطالعه فوق به دلیل طولانی‌مدت پیاده‌سازی و بی‌توجهی به دو دقیقه تکنیک رهاسازی مایوفاشیال توسط خود فرد، به طور معنی‌داری افزایش می‌دهد.
References

[1] Kargarfard M, Mahdavi-Nejad R, Ghasemi-G A, Rouzbehani R, Ghasi M, Mahdavi-Jafari Z, et al. Assessment of Spinal Curvature in Isfahan University Students. J Isfahan Med Sch. 2010; 27(102):762-76.

[2] Balogh, I, Olsson K, Nordin C, Björk J, Hansson G-A. The importance of work organization on workload and musculoskeletal health-grocery store work as a model. Appl Ergon. 2016; 53:143-51. [DOI:10.1016/j.apergo.2015.09.004] [PMID]

[3] Salehi S, Hedayati R, Ghorbani R. The comparative study of the effect of stabilization exercise and stretching-strengthening exercise on balance parameters in forward head posture patients. J Rehabil. 2013; 14(1):50-60.

[4] Moore MK. Upper crossed syndrome and its relationship to cervicogenic headache. J Manipulative Physiol Ther. 2004; 27(6):414-20. [DOI:10.1016/j.jmpt.2004.05.007] [PMID]

[5] Morris CE, Bonnefin D, Darville C. The Torsional Upper Crossed Syndrome: A multi-planar update to Janda’s model, with a case series introduction of the mid-pectoral fascial lesion as an associated etiological factor. J Bodyw Mov Ther. 2015; 19(4):681-9. [DOI:10.1016/j.jbmt.2015.08.008] [PMID]

[6] Ghamkhar L, Kahlaee AH. Is forward head posture relevant to cervical muscles performance and neck pain? A case-control study. Braz J Phys Ther. 2019; 23(4):346-54. [DOI:10.1016/j.bjpt.2018.08.007] [PMID] [PMCID]

[7] Hasan NMA, Abdelrahman TEF. MRI evaluation of TMJ internal derangement: degree of anterior disc displacement correlated with other TMJ soft tissue and osseous abnormalities. Egypt J Radiol Nucl Med. 2014; 45(3):735-44. [DOI:10.1016/j.ejrnm.2014.03.013]

[8] Frank C, Page P, Lardner R. Assessment and treatment of muscle imbalance: The landa approach. 1st edition. Champaign, IL: Human kinesthetics; 2009.

[9] Clark M, Lucett S. NASM essentials of corrective exercise training: Philadelphia: Lippincott Williams & Wilkins; 2010.

[10] Magee DJ. Orthopedic physical assessment. E-Book. Amsterdam: Elsevier Health Sciences; 2014.

[11] Lederman E. 14 - Neuromuscular rehabilitation: summary. Neuromuscular Rehabil Man Phys Ther . 2010; 169-71. [DOI:10.1016/B978-0-443-06969-7.00014-0]

[12] Cole AK, McGrath ML, Harrington SE, Padua DA, Rucinski TJ, Prentice WE. Scapular bracing and alteration of posture and muscle activity in overhead athletes with poor posture. J Athl Train. 2013; 48(1):12-24. [DOI:10.4085/1062-6050-48.1.13] [PMID] [PMCID]

[13] El-Hamalawy FA. Forward head correction exercises for management of myogenic temporomandibular joint dysfunction. J Am Sci. 2011; 7(8):71-7.

[14] Roshani S, Mahdavinajad R, Ghanirodehsera N. The effect of a NASM-based training protocol on upper cross syndrome in paraplegia spinalcord injury patients. Sci J Ilam Univ Med Sci. 2018; 25(6):73-85. [DOI:10.29252/sijimu.25.6.73]

[15] Bae W-S, Lee H-O, Shin J-W, Lee K-C. The effect of middle and lower trapezius stretch exercises and levator scapulae and upper trapezius stretching exercises in upper crossed syndrome. J Phys Ther Sci. 2016; 28(5):1636-9. [DOI:10.1589/jpts.28.1636] [PMID] [PMCID]

[16] Thigpen CA, Padua DA, Michener LA, Guskwicwiz K, Giuliani C, Keener JD, et al. Head and shoulder posture affect scapular mechanics and muscle activity in overhead tasks. J Electromyogr Kinesiol. 2010; 20(4):701-9. [DOI:10.1016/j.jelekin.2009.12.003] [PMID]

[17] Seidi F, Rajabi R, Ebrahim I, Alizadeh MH, Minoonejad H. The efficiency of corrective exercise interventions on thoracic hyper-kyphosis angle. J Back Musculoskeletal Rehabil. 2014; 27(1):7-16. [DOI:10.3233/ BMR-130411] [PMID]

[18] Foad S. The effect of a 12-week corrective exercises program on forward head and shoulder deformities. Res Sport Med. 2013; 5(14):31-44.

[19] Silva AG, Johnson M. Does forward head posture affect postural control in human healthy volunteers? Gait Posture. 2013; 38(2):352-3. [DOI:10.1016/j.gaitpost.2012.11.014] [PMID]

[20] Elbaugh DO, Spinelli BA. Scapulohumeral motion and muscle activity during the raising and lowering phases of an overhead reaching task. J Electromyogr Kinesiol. 2010; 20(2):199-205. [DOI:10.1016/j.jelekin.2009.04.001] [PMID]

[21] Daneshmandi H, Moghbari Moazafari M. The effect of eight weeks of comprehensive corrective training on upper cross syndrome. J Res Sport Med Technol. 2014; 12(7):75-86.

[22] Hajhosseini E, Norasteh A, Shami A, Daneshmandi H. The comparison of effect of three programs of strengthening/stretching and comprehensive on upper crossed syndrome. J Rehabil Sci. 2015; 11(1):51-61.

[23] Armijo-Olivo S. A new paradigm shift in musculoskeletal rehabilitation: Why should we exercise the brain? Braz J Phys Ther. 2018; 22(2):95. [DOI:10.1016/j.bjpt.2017.12.001] [PMID] [PMCID]

[24] Arshadi R, Ghasemi GA, Samadi H. Effects of an 8-week selective corrective exercises program on electromyography activity of scapular and neck muscles in persons with upper crossed syndrome: Randomized controlled trial. Phys Ther Sport. 2019; 37:113-9. [DOI:10.1016/j.pstsp.2019.03.008] [PMID]

[25] Sahrmann S, Azevedo DC, Van Dillen L. Diagnosis and treatment of movement system impairment syndromes. Braz J Phys Ther. 2017; 21(6):391-9.

[26] Kang DY. Deep cervical flexor training with a pressure biofeedback unit is an effective method for maintaining neck mobility and muscular endurance in college students with forward head posture. J Phys Ther Sci. 2015; 27(10):3207-10. [DOI:10.1589/jpts.27.3207] [PMID] [PMCID]

[27] Jeong H-J, Cynn H-S, Yi C-H, Yoon J-W, Lee J-H, Yoon T-L, et al. Stretching position can affect levator scapulae muscle activity, length, and cervical range of motion in people with a shortened levator scapulae. Phys Ther Sport. 2017; 26:13-9. [DOI:10.1016/j.pstsp.2017.04.001] [PMID]

[28] Benea A, Malliou P, Gioftsidou A. Neck pain and office workers: An exercise program for the workplace. ACSM’s Health & Fitness J. 2014; 18(3):18-24. [DOI:10.1249/FIT.0000000000000034]

[29] Gupta BD, Aggarwal S, Gupta B, Gupta M, Gupta N. Effect of deep cervical flexor training vs. conventional isometric training on forward head posture, pain, neck disability index in dentists suffering from chronic neck pain. J Clin Diagn Res (JCDR). 2013; 7(10):2261-4. [DOI:10.7860/jcdr.2013/6072.3487] [PMID] [PMCID]

[30] Abdollahzade Z, Shadmehr A, Malmir K, Ghotbi N. Effects of 4 week corrective exercises program on forward head posture and neck muscles in persons with upper crossed syndrome: Case series. Indian J Physiother Occup Ther. 2010; 4(3):71-7.

[31] Shenoy S, Sodhi J, Sandhu JS. Effectiveness of strengthening exercises in the management of forward head posture among computer professionals. Indian J Physiother Occup Ther. 2010; 4(3):37-41.
Nobari M, Arslan SA, Hadian MR, Ganji B. Effect of corrective exercises on cervicogenic headache in office workers with forward head posture. J Mod Rehabil. 2017; 11(4):201-8.

Weon J-H, Oh J-S, Cynn H-S, Kim Y-W, Kwon O-Y, Yi C-H. Influence of forward head posture on scapular upward rotators during isometric shoulder flexion. J Bodyw Mov Ther. 2010; 14(4):367-74. [DOI:10.1016/j.jbmt.2009.06.006] [PMID]

Lynch SS, Thigpen CA, Mihalik JP, Prentice WE, Padua D. The effects of an exercise intervention on forward head and rounded shoulder postures in elite swimmers. Br J Sports Med. 2010; 44(5):376-81. [DOI:10.1136/bjsm.2009.066837] [PMID]

Yoo W-g. Comparison of the effects of pectoralis muscles stretching exercise and scapular retraction strengthening exercise on forward shoulder. J Phys Ther Sci. 2018; 30(4):584-5. [DOI:10.1589/jpts.30.584] [PMID] [PMCID]

Vaughn DW, Brown EW. The influence of an in-home based therapeutic exercise program on thoracic kyphosis angles. J Back Musculoskelet Rehabil. 2007; 20(4):155-65. [DOI:10.3233/BMR-2007-20404]

Yoo W-g. Effect of thoracic stretching, thoracic extension exercise and exercises for cervical and scapular posture on thoracic kyphosis angle and upper thoracic pain. J Phys Ther Sci. 2013; 25(11):1509-10. [DOI:10.1589/jpts.25.1509] [PMID] [PMCID]

Dastmanesh S, Eskandari E, Shafiee GH. Relationship between physical fitness abilities, trunk range of motion and kyphosis in junior high school students. Middle-East J Sci Res. 2013; 13(1):79-84.

Peterson-Kendall F, Kendall-McCreary E, Geise-Provance P, McIntyre-Rodgers M, Romani W. Muscles: Testing and function, with posture and pain. US: Philadelphia: Lippincott Williams & Wilkins, ltd; 2005.

Daneshmandi H, Harati J, Fahim Poor S. Bodybuilding links to upper crossed syndrome. Phys Act Rev. 2017; 5:124-31. [DOI:10.16926/par.2017.05.17]

Elhag E, Musa A, Sulieman A, Ahmed A. Nociceptive masseter inhibitory reflex in patients with myofascial tempromandibular disorders and healthy controls. J Neurol Sci. 2017; 381(Suppl):488. [DOI:10.1016/j.jns.2017.08.3583]

MacDonald GZ, Penney MD, Mullaley ME, Cunonato AL, Drake CD, Behm DG, et al. An acute bout of self-myofascial release increases range of motion without a subsequent decrease in muscle activation or force. J Strength Cond Res. 2013; 27(3):812-21. [DOI:10.1519/JSC.0b013e31825c2bc1] [PMID]