Article

Polynomial-Exponential Bounds for Some Trigonometric and Hyperbolic Functions

Yogesh J. Bagul 1, Ramkrishna M. Dhaigude 2, Marko Kostić 3 and Christophe Chesneau 4,*

1 Department of Mathematics, K. K. M. College, Manwath 431505, India; yjbagul@gmail.com
2 Department of Mathematics, Government Vidarbha Institute of Science and Humanities, Amravati 444604, India; rmdhaigude@gmail.com
3 Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125 Novi Sad, Serbia; marco.si@verat.net
4 Department of Mathematics, University of Caen-Normandie, 14032 Caen, France
* Correspondence: christophe.chesneau@unicaen.fr

Abstract: Recent advances in mathematical inequalities suggest that bounds of polynomial-exponential-type are appropriate for evaluating key trigonometric functions. In this paper, we innovate in this sense by establishing new and sharp bounds of the form $(1 - \alpha x^2)e^{\beta x^2}$ for the trigonometric sinc and cosine functions. Our main result for the sinc function is a double inequality holding on the interval $(0, \pi)$, while our main result for the cosine function is a double inequality holding on the interval $(0, \pi/2)$. Comparable sharp results for hyperbolic functions are also obtained. The proofs are based on series expansions, inequalities on the Bernoulli numbers, and the monotone form of the l’Hospital rule. Some comparable bounds of the literature are improved. Examples of application via integral techniques are given.

Keywords: polynomial-exponential bounds; l’Hôpital’s rule of monotonicity; Bernoulli numbers; Jordan’s inequality; Kober’s inequality; trigonometric functions

MSC: 26D05; 26D07; 26D20; 33B10

1. Introduction

We know that the sinc and cosine functions, i.e., $\sin x / x$ and $\cos x$, are less than 1 for $0 < x < \pi/2$. These rude inequalities have been refined over time in several ways. In this regard, we may mention Jordan’s and Kober’s inequalities, which are

$$\frac{2}{\pi} < \frac{\sin x}{x} < 1; 0 < x < \frac{\pi}{2}$$

(1)

and

$$1 - \frac{2x}{\pi} < \cos x < 1 - \frac{x^2}{\pi}; 0 < x < \frac{\pi}{2},$$

(2)

respectively. Several proofs of these results exist. We refer the reader to [1–6] for more information. Due to their importance in mathematics, the inequalities (1) and (2) are sharpened and generalized in many ways by researchers. Moreover, different bounds for sine and cosine functions have been established in the literature so far. The list of references of this topic is extensive, and includes [3,4,7–30]. The obtained bounds involve polynomial functions, trigonometric functions, exponential functions, and combinations of them. In
particular, recently, Chouikha et al. in [18] obtained the polynomial-exponential bounds for the sinc and cosine functions, as follows:

\[
\left(1 - \frac{x^2}{\pi^2}\right)^{\frac{3}{4}} e^{\left(\frac{x^2}{\pi^4} - \frac{1}{6}\right)x^2} < \frac{\sin x}{x} < 0 < x < \pi, \tag{3}
\]

\[
\frac{\sin x}{x} < \frac{2}{3} + \frac{1}{3} \left(1 - \frac{4x^2}{\pi^2}\right)^{\frac{3}{4}} e^{\left(\frac{x^2}{\pi^4} - \frac{1}{6}\right)x^2}; 0 < x < \frac{\pi}{2}, \tag{4}
\]

and

\[
\left(1 - \frac{4x^2}{\pi^2}\right)^{\frac{3}{4}} e^{\left(\frac{x^2}{\pi^4} - \frac{1}{6}\right)x^2} < \cos x < 0 < x < \frac{\pi}{2}. \tag{5}
\]

The inequalities (3)–(5) were proven by infinite product methods. They demonstrate that bounds of polynomial-exponential-type are appropriate for evaluating, with precision, these key trigonometric functions. This paper aims to provide some contributational material on this subject.

In the first part of this work, we aim to provide new sharp bounds for polynomial-exponential types of the form \(\left(1 - \alpha x^2\right)e^{\beta x^2}\) for the sinc and cosine functions. In the second part, we aim to present sharp polynomial-exponential bounds for the hyperbolic sinc and hyperbolic cosine functions. The constants are obtained such that the bounds are as sharp as possible. The proofs include series expansions, Bernoulli number inequalities, and the monotone form of the l’Hospital rule. As a result, we employ techniques that are completely different from those used by [18]. Furthermore, under some conditions on the domain of \(x\), we improve the existing bounds of the literature, including those in (3)–(5).

Another advantage of the findings is that the obtained bounds are manageable from the mathematical viewpoint. To illustrate that, some applications based on integral techniques are given to get new bounds for the cosine and hyperbolic cosine functions.

The organization of the paper is divided into the following sections: Section 2 presents the main theorems. Preliminaries and lemmas are described in Section 3. The proofs of the main results are detailed in Section 4. Applications are given in Section 5. Final discussions and conclusions are given in Section 6.

2. Main Theorems

We begin with our new polynomial-exponential bounds of the form \((1 - \alpha x^2)e^{\beta x^2}\) for the sinc and cosine functions. Our main results are stated below.

**Theorem 1.** The inequalities

\[
\left(1 - \frac{x^2}{\pi^2}\right)^{\frac{3}{4}} e^{-\frac{\ln 2}{\pi^2} x^2} < \frac{\sin x}{x} < \left(1 - \frac{x^2}{\pi^2}\right)^{\frac{3}{4}} e^{\left(\frac{1}{\pi^4} - \frac{1}{6}\right)x^2}; 0 < x < \pi
\]

hold; \(\beta = -(\ln 2) / \pi^2\) and \(\beta = 1 / \pi^2 - 1 / 6\) are the best possible constants for lower and upper bounds for \(\sin x/x\) of the form \((1 - \alpha x^2)e^{\beta x^2}\) with \(\alpha = 1 / \pi^2\), respectively.

**Theorem 2.** The inequalities

\[
\left(1 - \frac{4x^2}{\pi^2}\right)^{\frac{3}{4}} e^{\frac{4 \ln(\pi/4)}{\pi^2} x^2} < \cos x < \left(1 - \frac{4x^2}{\pi^2}\right)^{\frac{3}{4}} e^{\left(\frac{4}{\pi^4} - \frac{1}{6}\right)x^2}; 0 < x < \frac{\pi}{2}
\]

hold; \(\beta = 4 \ln(\pi/4) / \pi^2\) and \(\beta = 4 / \pi^2 - 1 / 2\) are the best possible constants for lower and upper bounds for \(\cos x\) of the form \((1 - \alpha x^2)e^{\beta x^2}\) with \(\alpha = 4 / \pi^2\), respectively.
Now, we aim to present sharp polynomial-exponential bounds for the hyperbolic sinc and hyperbolic cosine functions. In particular, we establish hyperbolic counterparts of (6) and (7) in the following theorems.

**Theorem 3.** Let \( r > 0 \). Then the inequalities
\[
\left(1 + \frac{x^2}{\pi^2}\right)e^{ax^2} < \frac{\sinh x}{x} < \left(1 + \frac{x^2}{\pi^2}\right)e^{\left(\frac{1}{6} - \frac{1}{\pi^2}\right)x^2}, \quad 0 < x < r
\]
hold, with \( a = \ln \left[\pi^2 \sinh r/(r(\pi^2 + r^2))\right]/r^2 \); \( \beta = a \) and \( \beta = 1/6 - 1/\pi^2 \) are the best possible constants for lower and upper bounds for \( \sinh x/x \) of the form \((1-\alpha x^2)e^{\beta x^2}\) with \( \alpha = -1/\pi^2 \), respectively.

**Theorem 4.** Let \( r > 0 \). Then, the inequalities
\[
\left(1 + \frac{4x^2}{\pi^2}\right)e^{bx^2} < \cosh x < \left(1 + \frac{4x^2}{\pi^2}\right)e^{\left(\frac{1}{2} - \frac{4}{\pi^2}\right)x^2}, \quad 0 < x < r
\]
hold with the best possible constants \( b = \ln \left[\pi^2 \cosh r/(\pi^2 + 4r^2)\right]/r^2 \); \( \beta = b \) and \( \beta = 1/2 - 4/\pi^2 \) are the best possible constants for lower and upper bounds for \( \cosh x \) of the form \((1-\alpha x^2)e^{\beta x^2}\) with \( \alpha = -4/\pi^2 \), respectively.

The proofs of these new results, several applications, and a discussion of the significance of the findings and existing literature results are presented in the remainder of the work.

### 3. Preliminaries and Lemmas

We first recall the following simple geometric series expansion:
\[
\frac{1}{1-x} = 1 + x + x^2 + x^3 + \cdots = \sum_{k=0}^{\infty} x^k; \quad |x| < 1,
\]
as well as the following known power series expansions of \( \cosh x \) and \( \sinh x \):
\[
\cosh x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}, \quad \sinh x = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}.
\]
Furthermore, the following series expansions:
\[
\frac{\tan x}{x} = \sum_{k=1}^{\infty} \frac{2^{2k} (2^{2k} - 1)}{(2k)!} |B_{2k}| x^{2k-2}; \quad |x| < \frac{\pi}{2}
\]
and
\[
\frac{\cot x}{x} = \frac{1}{x^2} - \sum_{k=1}^{\infty} \frac{2^{2k}}{(2k)!} |B_{2k}| x^{2k-2}; \quad |x| < \pi.
\]
can be found in ([31], 1.411). Here, \( B_{2k} \) stands for the even indexed Bernoulli number.

**Lemma 1** (see [32]). The inequality
\[
|B_{2k}| > \frac{2(2k)!}{(2\pi)^{2k}} \frac{2^{2k}}{2^{2k} - 1}
\]
holds for all integers \( k \geq 1 \).
The following lemma is known as a monotone form of l’Hôpital’s rule ([33] p. 10) (see also [34]).

**Lemma 2.** Let \( p, q : [a, b] \rightarrow \mathbb{R} \) be continuous functions. Moreover, let \( p, q \) be differentiable functions on \((a, b)\), with \( q'(x) \neq 0, x \in (a, b) \). Set

\[
\begin{align*}
  r_1(x) &= \frac{p(x) - p(a)}{q(x) - q(a)}, \\
  r_2(x) &= \frac{p(x) - p(b)}{q(x) - q(b)}, \
\end{align*}
\]

Then we have:

(i) \( r_1(x) \) and \( r_2(x) \) are increasing (strictly increasing) on \((a, b)\) if \( p'(x)/q'(x) \) is increasing (strictly increasing) on \((a, b)\).

(ii) \( r_1(x) \) and \( r_2(x) \) are decreasing (strictly decreasing) on \((a, b)\) if \( p'(x)/q'(x) \) is decreasing (strictly decreasing) on \((a, b)\).

In addition to this, we need the following lemmas, which can be proven in a scholarly manner.

**Lemma 3.** Let \( \gamma(k) = 32 \pi^4(k - 2) + 16 \pi^2k(2k - 1)(2k - 6) + 2k(2k - 1)(2k - 2)(2k - 3)(2k - 16). \) Then \( \gamma(k) > 0 \) for all integers \( k \geq 4 \).

**Lemma 4.** Let \( \zeta(k) = \pi^4 + 2 \pi^2(2k + 2)(2k + 3) + (2k + 1)(2k + 2)(2k - 3)(2k - 8). \) Then \( \zeta(k) > 0 \) for all integers \( k \geq 2 \).

The above preliminaries are the basis of the proofs of the main results, which are the subject of the next section.

4. Proofs of Main Results

**Proof of Theorem 1.** Let us set

\[
f(x) = \frac{\ln\left(\frac{\sin x}{\pi x}\right)}{x^2} = \frac{f_1(x)}{f_2(x)}, \quad 0 < x < \pi,
\]

where \( f_1(x) = \ln\left(\frac{\sin x}{\pi x}/(\pi^2 - x^2)\right) = \ln(\sin x/x) + \ln\left(\pi^2/(\pi^2 - x^2)\right) \) and \( f_2(x) = x^2 \) with \( f_1(0+) = 0 = f_2(0) \). After differentiation, we get

\[
\frac{f_1'(x)}{f_2'(x)} = \frac{1}{2x} \left(\frac{x \cos x - \sin x}{x \sin x} + \frac{2x}{\pi^2 - x^2}\right) = \frac{1}{2x} \cot x - \frac{1}{2x^2} + \frac{1}{\pi^2} - \left(\frac{\pi}{x}\right)^2.
\]

Using (10) and (13), we have

\[
\frac{f_1'(x)}{f_2'(x)} = -\sum_{k=1}^{\infty} \frac{2^{2k-1}}{(2k)!} B_{2k} x^{2k-2} + \frac{1}{\pi} \sum_{k=0}^{\infty} \left(\frac{\pi}{x}\right)^{2k}
\]

\[
= \sum_{k=0}^{\infty} \frac{1}{\pi^{2k+2}} x^{2k} - \sum_{k=0}^{\infty} \frac{2^{2k+1}}{(2k + 2)!} x^{2k} = \sum_{k=0}^{\infty} \left(\frac{1}{\pi^{2k+2}} - \frac{2^{2k+1}}{(2k + 2)!}\right) B_{2k+2} x^{2k}.
\]

Then

\[
\left(\frac{f_1'(x)}{f_2'(x)}\right) = \sum_{k=1}^{\infty} 2k \left[ \frac{1}{\pi^{2k+2}} - \frac{2^{2k+1}}{(2k + 2)!} B_{2k+2} \right] x^{2k-1} = \sum_{k=1}^{\infty} 2ka_k x^{2k-1},
\]

where \( a_k \) is a sequence that can be determined explicitly.
where \( a_k := 1/\pi^{2k+2} - [2^{2k+1}/(2k+2)!] |B_{2k+2}|, \ k \geq 1 \). Lemma 1 implies that
\[
|B_{2k+2}| > \frac{(2k+2)!}{2^{2k+1}\pi^{2k+2}} \frac{2^{2k+2}}{2k+2} - 1 > \frac{(2k+2)!}{2^{2k+1}\pi^{2k+2}}.
\]
giving us \( a_k < 0 \) for each \( k \geq 1 \). Therefore \( f_1'(x)/f_2'(x) \) is decreasing on \((0, \pi]\) and hence \( f(x) \) is also decreasing on \((0, \pi]\) by Lemma 2. So \( f(0^+) > f(x) > f(\pi^-) \). Since \( f(0^+) = 1/\pi^2 - 1/6 \) and \( f(\pi^-) = -(\ln 2)/\pi^2 \), we simply obtain the required inequalities (6).

**Proof of Theorem 2.** We set
\[
g(x) = \frac{\ln \left( \frac{\pi^2 \cos x}{\pi^2 - 4x^2} \right)}{x^2} := \frac{g_1(x)}{g_2(x)}, \ 0 < x < \pi/2,
\]
where \( g_1(x) = \ln \left( \frac{x^2 \cos x}{(\pi^2 - 4x^2)} \right) = \ln(\cos x) + \ln \left( \frac{\pi^2}{(\pi^2 - 4x^2)} \right) \) and \( g_2(x) = x^2 \) such that \( g_1(0) = g_2(0) = 0 \). Upon differentiation, we get
\[
\frac{g_1'(x)}{g_2'(x)} = -\frac{1}{2} \frac{\tan x}{x} + \frac{4}{\pi^2 - 4x^2} = \frac{4}{\pi^2} \frac{1}{1 - \left( \frac{2x}{\pi} \right)^2} - \frac{1}{2} \frac{\tan x}{x}.
\]
Utilizing (10) and (12), we write
\[
\frac{g_1'(x)}{g_2'(x)} = \frac{4}{\pi^2} \sum_{k=0}^{\infty} \left( \frac{2x}{\pi} \right)^{2k} - \frac{1}{2} \sum_{k=1}^{\infty} \frac{2^{2k}(2^{2k} - 1)}{(2k)!} |B_{2k}| x^{2k-2}
\]
\[
= \frac{4}{\pi^2} \sum_{k=0}^{\infty} \frac{2^{2k}}{\pi^{2k}} x^{2k - 2} - \frac{1}{2} \sum_{k=0}^{\infty} \frac{2^{2k+2}(2^{2k+2} - 1)}{(2k+2)!} |B_{2k+2}| x^{2k}.
\]
Then
\[
\left( \frac{g_1'(x)}{g_2'(x)} \right)' = \sum_{k=1}^{\infty} 2^{2k+2} k \left[ \frac{2}{\pi^{2k+2}} \frac{1}{(2k+2)!} - \frac{2^{2k+2} - 1}{(2k+2)!} |B_{2k+2}| \right] x^{2k-1}
\]
\[
:= \sum_{k=1}^{\infty} 2^{2k+2} k \beta_k x^{2k-1},
\]
where \( \beta_k := 2/\pi^{2k+2} - [(2^{2k+2} - 1)/(2k+2)!] |B_{2k+2}| < 0 \) for \( k \geq 1 \) owing to Lemma 1. Therefore, we conclude that \( g_1'(x)/g_2'(x) \) is decreasing in \((0, \pi/2]\) and hence \( g(x) \) is also decreasing in \((0, \pi/2]\) by Lemma 2. So \( g(0^+) > g(x) > g(\pi/2^-) \). The required inequalities (1.7) follow from the obvious limit equalities \( g(0^+) = 4/\pi^2 - 1/2 \) and \( g(\pi/2^-) = 4 \ln(\pi/4)/\pi^2 \). This ends the proof.

**Proof of Theorem 3.** Let us consider the function
\[
h(x) = \frac{\text{arcsinh} x}{\pi^2 x} := \frac{h_1(x)}{h_2(x)}, \ x > 0,
\]
where \( h_1(x) = \ln \left( \frac{\sinh x}{x} \frac{\pi^2}{\pi^2 + x^2} \right) \) and \( h_2(x) = \pi^2 + x^2 \) that satisfy \( h_1(0^+) = h_2(0) = 0 \). By differentiation, we get
\[
\frac{h_1'(x)}{h_2'(x)} = \frac{1}{2} x \cosh x - \sinh x \frac{1}{x^2 \sinh x} = \frac{1}{2} \frac{1}{2} h_3(x),
\]
where \( h_3(x) = (x \cosh x - \sinh x)/(x^2 \sinh x) - 2/(\pi^2 + x^2) = \coth x/x - 1/x^2 - 2/(\pi^2 + x^2) \). From this, we obtain

\[
h'_3(x) = -\frac{x \text{cosech}^2 x - \coth x}{x^2} + \frac{2}{x^3} - \frac{1}{x^3} \frac{x \sinh x}{x^2 \sinh x} \sinh 2x
\]

\[
= \frac{4x}{(\pi^2 + x^2)^2} + \frac{2}{x^3} - \frac{1}{x^3} \frac{x \sinh 2x - 1}{x^2 \sinh(2x - 1)}
\]

\[
h_4(x) := -\frac{4x^4(\cosh 2x - 1) - 2(\pi^2 + x^2)(\cosh 2x - 1) + 2x(\pi^2 + x^2) + x \sinh 2x}{(\pi^2 + x^2)},
\]

and

\[
h_4(x) = (\pi^4 x + 2\pi^2 x^3 + x^5)(2x + \sinh 2x) - (2\pi^4 + 4\pi^2 x^2 + 6x^4)(\cosh 2x - 1)
\]

\[
= 2\pi^4 + (4\pi^2 + 2\pi^4)x^2 + (4\pi^2 + 6)x^4 + 2\pi^6 + \pi^4 x \sinh 2x
\]

\[
+ 2\pi^2 x^3 \sinh 2x + x^5 \sinh 2x - 2\pi^4 x^2 \cosh 2x - 6\pi^4 \cosh 2x.
\]

By (11), it follows

\[
h_4(x) = 2\pi^4 + (4\pi^2 + 2\pi^4)x^2 + (4\pi^2 + 6)x^4 + 2\pi^6
\]

\[
+ \pi^4 \sum_{k=0}^{\infty} \frac{2^{2k+1}}{(2k+1)!} x^{2k+2} + 2\pi^2 \sum_{k=0}^{\infty} \frac{2^{2k+1}}{(2k+1)!} x^{2k+4} + \sum_{k=0}^{\infty} \frac{2^{2k+1}}{(2k+1)!} x^{2k+6}
\]

\[
- 2\pi^4 \sum_{k=0}^{\infty} \frac{2^{2k}}{(2k)!} x^{2k} - 4\pi^2 \sum_{k=0}^{\infty} \frac{2^{2k}}{(2k)!} x^{2k+2} - 6 \sum_{k=0}^{\infty} \frac{2^{2k}}{(2k)!} x^{2k+4}
\]

\[
= 2\pi^4 + (4\pi^2 + 2\pi^4)x^2 + (4\pi^2 + 6)x^4 + 2\pi^6
\]

\[
+ \pi^4 \sum_{k=0}^{\infty} \frac{2^{2k-1}}{(2k-1)!} x^{2k} + 2\pi^2 \sum_{k=2}^{\infty} \frac{2^{2k-3}}{(2k-3)!} x^{2k} + \sum_{k=3}^{\infty} \frac{2^{2k-5}}{(2k-5)!} x^{2k}
\]

\[
- 2\pi^4 \sum_{k=1}^{\infty} \frac{2^{2k}}{(2k)!} x^{2k} - 4\pi^2 \sum_{k=2}^{\infty} \frac{2^{2k-2}}{(2k-2)!} x^{2k} - 6 \sum_{k=2}^{\infty} \frac{2^{2k-4}}{(2k-4)!} x^{2k}
\]

\[
= \frac{2}{45} (2\pi^4 - 180) x^6 + \sum_{k=4}^{\infty} \frac{2^{2k-5}}{(2k-5)!} c_k x^{2k},
\]

where

\[
c_k = 1 - \frac{12}{(2k-4)} + \frac{8\pi^2}{(2k-3)(2k-4)} - \frac{32\pi^2}{(2k-2)(2k-3)(2k-4)}
\]

\[
+ \frac{16\pi^4}{(2k-1)(2k-2)(2k-3)(2k-4)} + \frac{64\pi^4}{2k(2k-1)(2k-2)(2k-3)(2k-4)}
\]

\[
= \frac{\gamma(k)}{2k(2k-1)(2k-2)(2k-3)(2k-4)}.
\]

Since \( 2\pi^4 - 180 \approx 14.8182 > 0 \), and \( c_k > 0 \) for \( k \geq 4 \) thanks to Lemma 3, it is clear that \( h_4(x) > 0 \). Thus, we have \( h'_3(x) < 0 \). Consequently, \( h'_4(x)/h'_2(x) \) is decreasing for \( x > 0 \). By Lemma 2, \( h(x) \) is decreasing for \( 0 < x < r \), \( r > 0 \). Lastly, due to relation \( h(0+) = 1/6 - 1/\pi^2 > h(r) \), the inequalities (8) follow. \( \square \)
Proof of Theorem 4. Let us consider
\[ j(x) = \frac{\ln \left( \frac{\pi^2 \cosh x}{\pi^2 + 4x^2} \right)}{x^2} := \frac{j_1(x)}{j_2(x)}, \quad x > 0, \]
where \( j_1(x) = \ln \left( \pi^2 \cosh x / (\pi^2 + 4x^2) \right) = \ln(\cosh x) + \ln \left( \pi^2 / (\pi^2 + 4x^2) \right) \) and \( j_2(x) = x^2 \) with \( j_1(0+) = j_2(0) = 0 \). Differentiation gives
\[
\frac{j_1'(x)}{j_2(x)} = \frac{1}{2} \frac{\tanh x}{x} - \frac{4}{\pi^2 + 4x^2}
\]
and
\[
j_3(x) = (\sinh 2x - 2x)(\pi^2 + 4x^2)^2 - 64x^3(1 + \cosh 2x). \]
Next we show that \( j_3(x) \) is positive for \( x > 0 \). Using (11), we have
\[
j_3(x) = -128x^3 - 64x^3 \sum_{k=1}^{\infty} \frac{(2x)^{2k}}{(2k)!} + (\pi^4 + 8\pi^2 x^2 + 16x^4) \sum_{k=1}^{\infty} \frac{(2x)^{2k+1}}{(2k+1)!}
\]
\[
+ 8\pi^2 \sum_{k=1}^{\infty} \frac{2^{2k+1}}{(2k+1)!} x^{2k+3} + \pi^4 \sum_{k=1}^{\infty} \frac{2^{2k+1}}{(2k+1)!} x^{2k+5}
\]
\[
= \left( \frac{4\pi^4}{3} - 128 \right) x^3 - 64 \sum_{k=1}^{\infty} \frac{2^{2k}}{(2k)!} x^{2k+3} + \pi^4 \sum_{k=1}^{\infty} \frac{2^{2k+3}}{(2k+1)!} x^{2k+3}
\]
\[
+ 8\pi^2 \sum_{k=1}^{\infty} \frac{2^{2k+1}}{(2k+1)!} x^{2k+3} + 16 \sum_{k=2}^{\infty} \frac{2^{2k-1}}{(2k-1)!} x^{2k+3}
\]
\[
= \left( \frac{4\pi^4}{3} - 128 \right) x^3 + \left( \frac{4\pi^4}{15} + \frac{32}{3} \pi^2 - 128 \right) x^5
\]
\[
+ \sum_{k=2}^{\infty} \left( \frac{\pi^4 \cdot 2^{2k+3}}{(2k+3)!} + \frac{\pi^2 \cdot 2^{2k+4}}{(2k+1)!} + \frac{2^{2k+3}}{(2k-1)!} - \frac{2^{2k+6}}{(2k)!} \right) x^{2k+3}
\]
\[
:= \left( \frac{4\pi^4}{3} - 128 \right) x^3 + \frac{1}{15} \left( 4\pi^4 + 160\pi^2 - 1920 \right) x^5 + \sum_{k=2}^{\infty} \frac{2^{2k+3}}{(2k-1)!} d_k x^{2k+3},
\]
where
\[
d_k = 1 - \frac{8}{2k} + \frac{2\pi^2}{2k(2k+1)} - \frac{\pi^4}{2k(2k+1)(2k+2)(2k+3)}
\]
\[
= \frac{(2k-8)(2k+1)(2k+2)(2k+3) + 2\pi^2(2k+2)(2k+3) + \pi^4}{2k(2k+1)(2k+2)(2k+3)}
\]
\[
= \frac{\zeta(k)}{2(2k+1)(2k+2)(2k+3)},
\]
After rearranging the terms, we get the inequalities in (14).

More precisely, these bounds will be obtained from Theorems 1 and 2, and integral developments.

Proposition 1. Let $0 < x < \pi$. Then
\[ \phi_1(x) < \cos x < \phi_2(x), \]
where
\[ \phi_1(x) = 1 - \frac{3\pi^2(\pi^2 - 12)}{(\pi^2 - 6)^2} + \frac{3\pi^2}{(\pi^2 - 6)^2} \left( \pi^2 - 6 \right) \left( 1 - \frac{x^2}{\pi^2} \right) - 6 \right] e^{\left( \frac{1}{\pi^2 - \frac{1}{2}} \right) x^2} \]
and
\[ \phi_2(x) = 1 + \frac{\pi^2(1 - \ln 2)}{2(\ln 2)^2} + \frac{\pi^2}{2(\ln 2)^2} \left( 1 - \frac{x^2}{\pi^2} \right) \ln 2 - 1 \right] e^{-\frac{\ln 2}{2\pi^2}x^2}. \]

Proof. By (6), we get
\[ \int_0^x \left( 1 - \frac{t^2}{\pi^2} \right) e^{-\frac{\ln 2}{2\pi^2}t^2} dt < \int_0^x \sin t dt < \int_0^x \left( 1 - \frac{t^2}{\pi^2} \right) e^{\left( \frac{1}{\pi^2 - \frac{1}{2}} \right) t^2} dt \]
for $0 < x < \pi$. Using integration by parts method, this simply implies
\[ 1 - \frac{18\pi^2}{(\pi^2 - 6)^2} \left[ e^{\left( \frac{1}{\pi^2 - \frac{1}{2}} \right) x^2} - 1 \right] + \frac{3\pi^2}{(\pi^2 - 6)^2} \left[ \left( 1 - \frac{x^2}{\pi^2} \right) e^{\left( \frac{1}{\pi^2 - \frac{1}{2}} \right) x^2} - 1 \right] \]
\[ < \cos x < 1 - \frac{\pi^2}{2(\ln 2)^2} \left( e^{-\frac{\ln 2}{2\pi^2}x^2} - 1 \right) + \frac{\pi^2}{2\ln 2} \left[ \left( 1 - \frac{x^2}{\pi^2} \right) e^{-\frac{\ln 2}{2\pi^2}x^2} - 1 \right]. \]
After rearranging the terms, we get the inequalities in (14). \qed

Proposition 2. Let $0 < x < r$ and $r > 0$. Then
\[ \psi_1(x) < \cosh x < \psi_2(x), \]
where
\[ \psi_1(x) = \left( 1 + 1 - \frac{\pi^22^2}{2\pi^2 a^2} \right) + \frac{1}{2\pi^2 a^2} \left[ \pi a \left( 1 + \frac{x^2}{\pi^2} \right) - 1 \right] e^{ax^2}, \]
\[ \psi_2(x) = \left( 1 - \frac{3\pi^4}{(\pi^2 - 6)^2} \right) + \frac{3\pi^2}{(\pi^2 - 6)^2} \left[ \left( \pi^2 - 6 \right) \left( 1 + \frac{x^2}{\pi^2} \right) - 6 \right] e^{\left( \frac{1}{\pi^2 - \frac{1}{2}} \right) x^2}, \]
and the constant $a$ being defined in Theorem 3.

Proof. We skip the proof, as it is similar to the proof of Proposition 1. The inequalities (15) can be easily obtained by integrating inequalities (8). \qed

5. Applications

The bounds established in the previous theorems have the quality of being manageable from the analytical viewpoint. In this section, we exploit this quality to propose some other sharp polynomial-exponential bounds for cosine and hyperbolic cosine functions. More precisely, these bounds will be obtained from Theorems 1 and 2, and integral developments.

5. Applications

The bounds established in the previous theorems have the quality of being manageable from the analytical viewpoint. In this section, we exploit this quality to propose some other sharp polynomial-exponential bounds for cosine and hyperbolic cosine functions. More precisely, these bounds will be obtained from Theorems 1 and 2, and integral developments.

6. Final Discussion and Conclusions

We now discuss the importance of our findings in the light of the existing results of the literature, and conclude the paper. Our first observation is that there are some limitations to the method used in [18] to obtain the polynomial-exponential bounds stated...
and proven in this paper. For instance, in [18], the lower bound for the sinc function is obtained in \((0, \pi)\), whereas the upper bound is obtained in a half interval \((0, \pi/2)\), and the upper bound of the cosine function is not obtained. We have adopted different methods and established comparable upper and lower polynomial-exponential bounds for sinc and cosine functions. The same kind of bounds for hyperbolic functions have never been discussed before in the literature. It is interesting to see that the bounds for hyperbolic functions in (8), (9), and (15) are very sharp and better than the existing bounds in the literature (they are better than the corresponding bounds presented in [19,24] and the references therein). Numerical calculations and graphical comparisons via the Maple software reveal the following important points:

- There is no strict comparison between the lower bounds of the sinc function in (3) and (6). The lower bound in (6) is sharper than that in (3) in the interval \((\lambda_1, \pi)\), where \(\lambda_1 \approx 2.5018\).
- The upper bound of the sinc function in (6) is uniformly sharper than that in (4). Moreover, it is valid in the extended interval \((0, \pi)\).
- The lower bound of the cosine function in (7) is sharper than that in (5) for the interval \((\lambda_2, \pi/2)\), where \(\lambda_2 \approx 1.2221\), and we also obtained the upper bound for the cosine function in (7).
- The lower bound in (14) is uniformly sharper than that in (5). Moreover, it is valid over a larger interval \((0, \pi)\).
- If \(0 < x < \pi/2\), then the upper bound of (7) is sharper than that of (14). So, considering the better bounds of the cosine function in (7) and (14) and combining them, we have the following sharp double inequality:

\[
\phi_1(x) < \cos x < \left(1 - \frac{4x^2}{\pi^2}\right)e^{\left(\frac{4}{\pi^2} - 1\right)x^2}; \quad 0 < x < \frac{\pi}{2},
\]

where \(\phi_1(x)\) is specified as in Proposition 1.
- Both the inequalities of (15) are sharper than those of (9).

**Author Contributions:** Conceptualization, Y.J.B., R.M.D., M.K. and C.C.; methodology, Y.J.B., R.M.D., M.K. and C.C.; validation, Y.J.B., R.M.D., M.K. and C.C.; formal analysis, Y.J.B., R.M.D., M.K. and C.C.; investigation, Y.J.B., R.M.D., M.K. and C.C.; writing—original draft preparation, Y.J.B., R.M.D., M.K. and C.C.; writing—review and editing, Y.J.B., R.M.D., M.K. and C.C. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research received no external funding.

**Acknowledgments:** We would like to thank the three reviewers for their constructive feedback on the initial draft of the work. Marko Kostić is partially supported by grant 451-03-68/2020/14/200156 of Ministry of Science and Technological Development, Republic of Serbia.

**Conflicts of Interest:** The authors declare no conflict of interest.

**References**

1. Abramowitz, M.; Stegun, I.A. (Eds.) *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*; Applied Mathematics Series; Ninth Printing; National Bureau of Standards: Washington, DC, USA, 1972; Volume 55.
2. Bullen, P.S. A Dictionary of Inequalities. In *Pitman Monographs and Surveys in Pure and Applied Mathematics*; Addison Wesley Longman Limited: Harlow, UK, 1998; Volume 97.
3. Feng, Y.-F. Proof Without Words: Jordan’s Inequality \(2x/\pi \leq \sin x \leq x, 0 \leq x \leq \pi/2\). *Math. Mag.* 1996, 69, 126. [CrossRef]
4. Kober, H. Approximation by integral functions in the complex domain. *Trans. Am. Math. Soc.* 1944, 56, 7–31. [CrossRef]
5. Mitrinović, D.S. *Analytic Inequalities*; Springer: Berlin, Germany, 1970.
6. Sándor, J. On the concavity of \(\sin x/x\). *Octagon Math. Mag.* 2005, 13, 406–407.
7. Bagul, Y.J.; Chesneau, C. Generalized Bounds for Sine and Cosine Functions. *Asian-Eur. J. Math.* 2020. [CrossRef]
8. Bagul, Y.J.; Chesneau, C. Refined forms of Oppenheim and Cusa–Huygens type inequalities. *Acta Comment. Univ. Tartu. Math.* 2020, 24, 183–194. [CrossRef]
9. Bagul, Y.J.; Chesneau, C.; Kostić, M. On the Cusa-Huygens inequality. *RACSAM* 2021, 115, 29. [CrossRef]
10. Bagul, Y.J.; Banjac, B.; Chesneau, C.; Kosti´c, M.; Maleševi´c, B. New refinements of Cusa-Huygens inequality. *Results Math.* 2021, 76, 107. [CrossRef]
11. Bagul, Y.J.; Panchal, S.K. Certain inequalities of Kober and Lazarevi´c type. *J. Indian Math. Soc.* 2022, 89, 1–7.
12. Bercu, G. The natural approach of trigonometric inequalities—Padé approximant. *J. Math. Inequal.* 2017, 11, 181–191. http://dx.doi.org/10.7153/jmi-11-18. [CrossRef]
13. Bercu, G. Sharp bounds on the sinc function via the Fourier series method. *J. Math. Inequal.* 2019, 13, 495–504. [CrossRef]
14. Bhayo, B.A.; Klén, R.; Sándor, J. New trigonometric and hyperbolic inequalities. *Miskolc Math. Notes* 2017, 18, 125–137. [CrossRef]
15. Chen, C.-P.; Sándor, J. Sharp inequalities for trigonometric and hyperbolic functions. *J. Math. Inequal.* 2015, 9, 203–217. http://dx.doi.org/10.7153/jmi-09-19. [CrossRef]
16. Chesneau, C.; Bagul, Y.J. A note on some new bounds for trigonometric functions using infinite products. *Malays. J. Math. Sci.* 2020, 14, 273–283.
17. Chouikha, A.R. Sharp inequalities on circular and hyperbolic functions using Bernoulli inequality types. *RACSAM* 2021, 115. [CrossRef]
18. Chouikha, A.R.; Chesneau, C.; Bagul, Y.J. Some refinements of well-known inequalities involving trigonometric functions. *J. Ramanujan Math. Soc.* 2021, 36, 193–202.
19. Dhaigude, R.M.; Bagul, Y.J.; Raut, V.M. Generalized bounds for hyperbolic sine and hyperbolic cosine functions. *Tbilisi Math. J.* 2021, 14, 41–47. [CrossRef]
20. Maleševi´c, B.; Lutovac, T.; Banjac, B. One method for proving some classes of exponential analytic inequalities. *Filomat* 2018, 32, 6921–6925. [CrossRef]
21. Maleševi´c, B.; Lutovac, T.; Rašajski, M.; Banjac, B. Double-sided Taylor’s approximations and their applications in theory of trigonometric inequalities. In *Trigonometric Sums and Their Applications*; Raigorodskii, A., Rassias, M.T., Eds.; Springer: Cham, Switzerland, 2020; pp. 159–167. [CrossRef]
22. Mortici, C. The natural approach of Wilker-Cusa-Huygens inequalities. *Math. Inequal. Appl.* 2011, 14, 535–541. [CrossRef]
23. Nenezi´c, M.; Maleševi´c, B.; Mortici, C. New approximations of some expressions involving trigonometric functions. *Appl. Math. Comput.* 2016, 283, 299–315. [CrossRef]
24. Neuman, E. Refinements and generalizations of certain inequalities involving trigonometric and hyperbolic functions. *Adv. Inequal. Appl.* 2012, 1, 1–11.
25. Qi, F.; Niu, D.-W.; Guo, B.-N. Refinements, Generalizations and Applications of Jordan’s inequality and related problems. *J. Inequal. Appl.* 2009, 2009, 52. [CrossRef]
26. Zhang, L.; Ma, X. Some new results of Mitrinovi´c-Cusa’s and related inequalities based on the interpolation and approximation method. *J. Math.* 2021, 2021. [CrossRef]
27. Zhu, L. A source of inequalities for circular functions. *Comput. Math. Appl.* 2009, 58, 1998–2004. [CrossRef]
28. Zhu, L. Some new bounds for Sinc function by simultaneous approximation of the base and exponential functions. *RACSAM* 2020, 114. [CrossRef]
29. Zhu, L. New bounds for the sine function and tangent function. *Mathematics* 2021, 9, 2373. [CrossRef]
30. Zhu, L.; Maleševi´c, B. New Wilker-type and Huygens-type inequalities. *Hacet. J. Math. Stat.* 2021, 50, 46–62. [CrossRef]
31. Gradshteyn, I.S.; Ryzhik, I.M. *Table of Integrals, Series and Products*; Elsevier: Amsterdam, The Netherlands, 2007.
32. Alzer, H. Sharp bounds for the Bernoulli numbers. *Arch. Math.* 2000, 74, 207–211. [CrossRef]
33. Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. *Conformal Invariants, Inequalities and Quasiconformal Maps*; John Wiley and Sons: New York, NY, USA, 1997. [CrossRef]
34. Kwong, M.K. On Hopital-style rules for monotonicity and oscillation. *arXiv* 2015, arXiv:1502.07805.