Serum levels of 25-hydroxy-vitamin D in patients with oral squamous cell carcinoma: Making a case for chemoprevention

Samuel E. Udeabor1 | Abdullah M. Albejadi1 | Waleed A. K. Al-Shehri1 | Chidozie I. Onwuka1 | Saeed Y. Al-Fathani1 | Abdullah A. Al Nazeh2 | Saleh F. Aldhahri3 | Faleh A. Alshahrani4

1Oral and Maxillofacial Surgery Department, College of Dentistry, King Khalid University, Abha, Saudi Arabia
2Department of Pediatrics and Orthodontics, King Khalid University, Abha, Saudi Arabia
3College of Medicine, King Saud University and King Fahad Medical City, Riyadh, Saudi Arabia
4Oral and Maxillofacial Surgery Department, King Fahad Medical City, Riyadh, Saudi Arabia

Correspondence
Samuel E. Udeabor, Department of Oral and Maxillofacial Surgery, College of Dentistry, King Khalid University, Abha, Saudi Arabia. Email: seudeabor@kku.edu.sa

Abstract

Objectives: Serum level of vitamin D has been used as a predictor for cancer development. We intend to measure the baseline vitamin D level in patients with oral squamous cell carcinoma (OSCC) and to compare same with non-cancer controls to determine any association.

Materials and methods: Patients with OSCC presenting to our clinics were included in this study. Their baseline serum vitamin D levels were measured prior to cancer treatment after obtaining their consents. These patients were then matched with at least 2 cancer-free subjects to serve as controls and whose serum vitamin D levels were also measured. The serum vitamin D levels obtained for the two groups were then categorized into normal (>35 ng/ml), mild deficiency (25–35 ng/ml), moderate deficiency (12.5–25 ng/ml), and severe deficiency (<12.5 ng/ml). The data were analyzed statistically and the two groups compared.

Results: A total of 51 patients with OSCC (Male 22 [43%] and female 29 [57%]) and 113 cancer-free controls (Male 36 [31.86%] and female 77 [68.14%]) were included in the study. The commonest site for OSCC was the tongue, accounting for 45% of the cancer cases. Mean age for cancer patients was 59.33 years ±12.54 and 49.24 years ±15.79 for the control. Among the OSCC patients, 74.51% had moderate to severe vitamin D deficiencies, whereas only 20.35% had a moderate deficiency in the control group with no severe deficiency.

Conclusion: Logistic regression analysis shows a positive association between vitamin D deficiency and OSCC risk especially in levels below 25 ng/ml. This further corroborates the assertion that vitamin D deficiency may be a useful indicator of OSCC. It may, therefore, be necessary to routinely prescribe vitamin D supplements to subjects with moderate to severe deficiencies in order to decrease the chances of OSCC development.

Keywords
25-Hydroxy-vitamin D, Oral squamous cell carcinoma, Chemoprevention

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2020 The Authors. Clinical and Experimental Dental Research published by John Wiley & Sons Ltd

Clin Exp Dent Res. 2020;6:428–432.
We, therefore, aim to measure the serum vitamin D levels of OSCC patients visiting our Maxillofacial Centers and comparing it with those in normal healthy OSCC-free patients to determine any associations. This may further elucidate the significance or importance of vitamin D in the etiology and prevention of OSCC.

2 | MATERIALS AND METHODS

The ethical review committees of King Fahad Medical City (KFMC), Riyadh, and College of Dentistry and King Khalid University (KKU), Abha, approved this study. Consecutive patients attending these hospitals and who were histologically diagnosed with OSCC were included in this study. Demographic data were recorded for these patients and additional information regarding tumor site, duration, and treatment received if any were also documented. Their baseline serum vitamin D levels were measured prior to the cancer treatment after obtaining their consents. These patients were then matched with at least two cancer-free subjects to serve as controls and whose serum vitamin D levels were also measured. Patients who have commenced any form of cancer treatment were excluded from this study. In addition, patients and controls that are on any form of vitamin D supplements were also excluded.

The serum vitamin D levels obtained for the two groups were then categorized into normal (>35 ng/ml), mild deficiency (25–35 ng/ml), moderate deficiency (12.5–25 ng/ml), and severe deficiency (<12.5 ng/ml) (Alipour et al., 2014). The data generated were analyzed statistically using SPSS Statistics package Version 20 software (IBM, Chicago, IL) and descriptive statistics applied. Chi-square test of association was performed to assess the association between the two groups. Simple logistics regression analysis was applied to see the association between the levels of Vitamin D in cancer cases and controls. Statistical significance was set at 5% level of significance (p < .05).

3 | RESULTS

A total of 51 patients with OSCC and 113 cancer-free controls were included in the study. Among the cancer patients, 22 (43%) were male and 29 (57%) female; whereas 36 (31.9%) were male and 77 (68.1%) female among the cancer-free controls. The commonest site for OSCC was the tongue, accounting for 45% of the cancer cases (Table 1). Mean age for cancer patients was 59.33 years ±12.54, whereas it was 49.24 years ±15.79 for the control. Table 2 gives a full analysis of age and sex distribution. Among the cancer patients, 22 (43%) were male and 29 (57%) female; whereas 36 (31.9%) were male and 77 (68.1%) female among the cancer-free controls. The commonest site for OSCC was the tongue, accounting for 45% of the cancer cases (Table 1). Mean age for cancer patients was 59.33 years ±12.54, whereas it was 49.24 years ±15.79 for the control. Table 2 gives a full analysis of age and sex distribution.
relation to vitamin D deficiency, revealed a mean of 20.42 ± 12.02 for the cancer group and 34.99 ± 12.38 for the control group with a p-value of .001.

4 | DISCUSSION

The chemopreventive and therapeutic roles of vitamin D in a wide range of human cancers have been suggested in the literature (Bikle, Oda, & Teichert, 2011; Kamradt et al., 2003). Indeed, many of these malignant lesions including OSCC have been shown to express the receptor for 1,25 Dihydroxyvitamin D3; also known as VDR (vitamin D receptor) (Adisa et al., 2017; Grimm et al., 2013 and 2015; Osafi et al., 2014 and Russel et al., 2010). The suggested mechanism of action may be through its effect on p53-mediated DNA damage in cases of skin squamous cell carcinoma (Reichrath & Reichrath, 2013). As for OSCC, Osafi et al. (2014) via an in vitro study opined that the activation of two apoptotic pathways (caspase and bcl:bax) by vitamin D may be responsible for its anti-OSCC effects.
The importance of vitamin D in cancer management has been previously investigated (Anand et al., 2017; Bochen et al., 2018). In patients with advanced cancers, it has been shown that vitamin supplementation reduced therapy-related toxicities and improved the overall quality of life of the patients (Anand et al., 2017; Bochen et al., 2018).

In the present study, we focused on the estimation of serum vitamin D levels of OSCC patients in a Middle Eastern subpopulation and made comparisons with cancer-free controls. This is intended to show any associations between serum vitamin D level and the development of OSCC. More than 74% of the OSCC patients from our study had moderate to severe deficiency of vitamin D. This is in keeping with what was previously reported by other authors (Anand et al., 2017; Bochen et al., 2018 and Grimm et al., 2015). Grimm et al. (2015) reported that among the 42 OSCC patients in their study in a Caucasian population, 100% of them had moderate to severe vitamin D deficiency, while Anand et al. (2017) reported 76.4% deficiency among the tested group. Bochen et al. (2018) in an analysis of 231 patients with HNSCC reported a significantly lower median serum vitamin D levels among the cancer cases when compared to the cancer-free controls.

This very high prevalence of vitamin D deficiency among oral cancer patients, generally, therefore raises the question as to the significance of this nutrient in the etiopathogenesis of OSCC and by implication its place in the prevention of the disease. It is important to note that a significant number of OSCC patients in our study have moderate to severe deficiencies of vitamin D in comparison to the cancer-free controls. Overall, the estimated mean serum vitamin D levels were also significantly lower for the cancer group than the controls. Logistic regression analysis shows a positive association between vitamin D deficiency and OSCC risk, especially in levels below 25 ng/ml with an OR of 1.65. This means that subjects with moderate to severe vitamin D deficiency from the present study have a 1.65 increase in odds of developing OSCC.

Epidemiological studies in Saudi Arabia, the location of our study, show that vitamin D deficiency is prevalent in the general population (Al-Alyani, Al-Turki, Al-Essa, Alani, & Sadat-Ali, 2018; Alsuwadia et al., 2013). This makes the findings of this study even more significant and relevant to this population.

5 | CONCLUSION

The results of the present study further corroborate the assertion that vitamin D deficiency may be a useful indicator or pointer of OSCC risk. It may, therefore, be necessary to routinely assess vitamin D status of patients attending our medical and dental outpatient clinics and to prescribe vitamin D supplements to subjects with moderate to severe deficiencies in order to decrease the chances of OSCC development. However, further multicenter study involving a larger sample size would be necessary to confirm the results of this study in this part of the world.
Nagao, Y., & Sata, M. (2009). High incidence of multiple primary cancers in HCV-infected patients with oral squamous cell carcinoma. *Medical Science Monitor, 15*(9), CR453–CR459.

Osafi, J., Hejazi, A., Stutz, D. D., Keiserman, M. A., Bergman, C. G., & Kingsley, K. (2014). Differential effects of 1,25-dihydroxyvitamin D₃ on oral squamous cell carcinomas in vitro. *Journal of Dietary Supplements, 11*(2), 145–154.

Reichrath, J., & Reichrath, S. (2013). The relevance of the vitamin D endocrine system (VDES) for tumorigenesis, prevention, and treatment of non-melanoma skin cancer (NMSC): Present concepts and future perspectives. *Dermato-Endocrinology, 5*(1), 38–50.

Russel, D. S., Rassnick, K. M., Erb, H. N., Vaughan, M. M., & McDonough, S. P. (2010). An immunohistochemical study of vitamin D receptor expression in canine cutaneous mast cell tumours. *Journal of Comparative Pathology, 143*(2–3), 223–226.

Sinha, N., Mukhopadhyay, S., Das, D. N., Panda, P. K., & Bhusar, S. K. (2013). Relevance of cancer initiating/stem cells in carcinogenesis and therapy resistance in oral cancer. *Oral Oncology, 49*(9), 854–862.

Tuohimaa, P., & Lou, Y. R. (2012). Optimal serum calcidiol concentration for cancer prevention. *Anticancer Research, 32*(1), 373–381.

Udeabor, S. E., Rana, M., Wegener, G., Gellrich, N. C., & Eckardt, A. M. (2012). Squamous cell carcinoma of the oral cavity and oropharynx in patients less than 40 years of age: A 20-year analysis. *Head & Neck Oncology, 4*, 28. https://doi.org/10.1186/1758-3284-4-28

Warnakulasuriya, S. (2009). Global epidemiology of oral and oropharyngeal cancer. *Oral Oncology, 45*, 309–316.

Zygogianni, A. G., Kyrgias, G., Karakitsos, P., Psyrri, A., Kouvaris, J., Kelekis, N., & Koulioulias, V. (2011). Oral squamous cell cancer: Early detection and the role of alcohol and smoking. *Head & Neck Oncology, 3*, 2.

How to cite this article: Udeabor SE, Albejadi AM, Al-Shehri WAK, et al. Serum levels of 25-hydroxy-vitamin D in patients with oral squamous cell carcinoma: Making a case for chemoprevention. *Clin Exp Dent Res*. 2020;6:428–432. https://doi.org/10.1002/cre2.294