SECTION 9: Chemistry and chemical technology.

ELECTROTHERMIC ATOMIC-ABSORPTION DETERMINATION OF LEAD AND CADMIUM IN FOOD USING TWO-FREQUENCY ULTRASOUND

Abstract: Use of simultaneous influence of ultrasound of high and low frequencies to intensify processes of wet mineralization of various kind of food was studied. It was shown that use of simultaneous influence of ultrasound of high and low frequencies let us, compare with use only ultrasound in low frequency, to increase extraction degree, to use only one oxidizer for all kinds of food, and let to develop unified methodic of electrothermic atomic-absorption determination of lead and cadmium in various kinds of food.

Key words: ultrasound, mineralization, extraction degree.

Language: English

Citation: Yurchenko OI, Baklanov AN, Chernozhuk TV, Bakanova LV, Kravchenko OA (2017) ELECTROTHERMIC ATOMIC-ABSORPTION DETERMINATION OF LEAD AND CADMIUM IN FOOD USING TWO-FREQUENCY ULTRASOUND. ISJ Theoretical & Applied Science, 05 (49): 201-206.

Introduction
Ultrasound (US) is used to intensify the most prolonged stadium of analysis of food – mineralization that takes more than 90% of time of the analysis. We use US for intensification of minerals by dry as well as wet methods [1,c.11;4,c.159].

To intensify dry mineralization, US was used only to create effect of boiling layer, and due to it, every particle of foods carbonizate was undergone by influence of oxidizers in vapor phase. Due to the fact, an express of the analysis was increased in 10-12 times compared to classic variant of dry mineralization [2,c.99;3,c.124].

More effective is use of US for intensification of wet mineralization [1,c.14]. We investigated the use of ultrasound (US) of frequency from 18 up to 100 MHz. When using it, mineralization time decreased in 10-20 times, depending on the type of food, and extraction degree of lead and cadmium was 94-98 % [1.c.15].

We investigated before the use of simultaneous influence of US of high and low frequencies to...
intensify acidic extraction of lead and cadmium from fats and oils. It was shown that the use of simultaneous influence of US of high and low frequencies let us to decrease energetic intensity of the analysis due to decrease of intensity of US and to make better metrological characteristics of the results of analysis [5,c.127]. Also we investigated simultaneous influence of US of high and low frequencies to intensify sample preparation at analysis of sugar and products based on it to find out lead, copper and cadmium in it. At the analysis US was used to transfer compounds of lead, copper and cadmium in kinetically labile ones, and due to it, its extraction in form of diethylidithiocarbamates in chloroform from sugar solutions with concentration up to 100 g/l is possible [4, c.160].

The main purpose of the work is to study simultaneous influence of US of high and low frequencies to intensify possessions of food wet mineralization and to develop unified methodic of determination of lead and cadmium in food of plant and animal origin.

Experimental

To produce fluctuations in low frequency tubular magnetostriction emitters were used. A test tube with investigated solution was placed into the emitters. On the high top of the test tube ring shaped piezoelectric emitter (with work frequency 1 or 2 MHz) of ZTL-19, made from titanium zirconate-lead was put on. Magnetostriction emitter was united with modernized ultrasound dispergator UZDN–1M, which led us to create the investigated solutions ultrasound fluctuations of frequency from 18 up to 44 kHz and intensity from 0,05 up to 15 W/cm² (was limited by durability of the test tube). Supplement of piezoelectric emitter was done by the use lamp generator 24–UZGI–K–1,2 which led us to produce in investigated solution ultrasound fluctuations of frequency from 1 up to 2 MHz and intensity up to 12 W/cm² (was limited by the durability of emitter) [4,c.161].

Methodic of the experiment for analysis of meat

To produce fluctuations in low frequency tubular magnetostriction emitters were used. A test tube with investigated solution was placed into the emitters. On the high top of the test tube ring shaped piezoelectric emitter (with work frequency 1 or 2 MHz) of ZTL-19, made from titanium zirconate-lead was put on. Magnetostriction emitter was united with modernized ultrasound dispergator UZDN–1M, which led us to create the investigated solutions ultrasound fluctuations of frequency from 18 up to 44 kHz and intensity from 0,05 up to 15 W/cm² (was limited by durability of the test tube). Supplement of piezoelectric emitter was done by the use lamp generator 24–UZGI–K–1,2 which led us to produce in investigated solution ultrasound fluctuations of frequency from 1 up to 2 MHz and intensity up to 12 W/cm² (was limited by the durability of emitter) [4,c.161].

Methodic of the experiment for analysis of meat

To produce fluctuations in low frequency tubular magnetostriction emitters were used. A test tube with investigated solution was placed into the emitters. On the high top of the test tube ring shaped piezoelectric emitter (with work frequency 1 or 2 MHz) of ZTL-19, made from titanium zirconate-lead was put on. Magnetostriction emitter was united with modernized ultrasound dispergator UZDN–1M, which led us to create the investigated solutions ultrasound fluctuations of frequency from 18 up to 44 kHz and intensity from 0,05 up to 15 W/cm² (was limited by durability of the test tube). Supplement of piezoelectric emitter was done by the use lamp generator 24–UZGI–K–1,2 which led us to produce in investigated solution ultrasound fluctuations of frequency from 1 up to 2 MHz and intensity up to 12 W/cm² (was limited by the durability of emitter) [4,c.161].

Methodic of the experiment at analysis of beer and cereals.

4 ml of beer or 0,5 g of grinded cereals was placed into test tube and poured in 10 ml of mixture, which consists of hydrogen peroxide and nitric acid (1 : 1).

Methodic of the experiment at analysis of milk products.

The sample of product of 2,00 g mass (at analysis of milk, milk cream 8 % and fermented milk products) or 1,00 g (at analysis of curds, dry and condensed milk, butter, milk cream with fats contain more than 8 %) was placed in test tube and poured by 3 ml of nitric acid (1:1) in the first case; and by mixture from 3 ml of nitric (1:1) and chloric (1:1) acids (3:1).

Methodic of the experiment at analysis of bakery.

At analysis of sugar contained bakery (cake donetsky, cake with jam) sample of the product of 1,00 g mass was placed in test tube and poured in 6 ml of mixture of nitric acid with hydroxide peroxide (1:1), and at analysis of bread by 6 ml of nitric acid (1:1). The obtained mineralize is poured by 1 ml 0,001 mg/l solution of Pd(NO₃)₂, diluted by bidistilled water up to 10 ml volume and content of lead and cadmium by flameless atomic-absorption method, according to [6,c.18] by temperature-time program [1,c.17]. is determined. The same samples were analyzed by atomic absorption standard method after mineralization by dry and wet methods [1,c.18]. at the same time. As a criteria of extraction fullness of the toxic elements the term “extraction degree”, proposed in [1,c.20], was used.

An extraction degree was determined by the next formulas:

\[X = \frac{m}{N} \times 100 \]

where \(m \) is an arithmetical mean of six measurements of contain of determined element by proposed method, mg/kg;

\[n = \frac{p+g}{2}, \text{mg/kg} \]

where \(p \) is an arithmetical mean of six measurements of contain of determined element, that obtained by atomic-absorption method after dry aching, mg/kg [1,c.23];

\(g \) is an arithmetical mean of six measurements that contains the determined element that is obtained by atomic-absorption method after mineralization, mg/kg [6,c.20].

Results and discussion

As a result of proper investigations it was established that at the use of simultaneous influence of US of high and low frequencies an extraction degree of lead and cadmium was higher (98–99 %), than the use of only US of low frequency US (93-96 %) during extraction, using optimal oxidizers, selected for every type of food (pointed out above in the method of experiments) [4,c.164]. (table 1). Frequency change of US of low frequency from 18 to 47 KHZ did not make influence on the value of extraction degree, compare to the results, obtained by using the US with high frequency (1 and 2 MHz), what shows us that better results were obtained in the first case (table 2). Optimal intensity of US with high frequency and with low one depends on the type of food product, intensity of high-frequency US did not
to the use of only US with low frequency, to increase an extraction degree, to use only one oxidizer for all types of food, and to develop unified methodic to analyze food. More higher efficiency of simultaneous influence of US of high and low frequencies compared to US only of low frequencies can be explained by prevalence of total mass of the small spherical bubbles, that promote sound chemical reactions, in the first case, upon big deformation bubbles, that promote mass exchange possesses, dispergation, emulgation [9,c.60;10,c.95]. Unified methodic of lead and cadmium determination in various food was developed. The accuracy of the method was checked by analysis of the same samples by standard method (table 4).

Unified methodic of lead and cadmium determination in food of plant and animal origin.

Sample of food by animal origin of 0,50 g, or plant origin of 1,00 g placed into test tube and poured in 5 ml of hydrogen peroxide.(90%). The test tube is placed in magnetostriction emitter and affected by US with frequencies in 22 kHz and 1 MHz and intensity 2,0 and 2,5 W/cm² correspondingly. Time of US influence at analysis of food of plant origin is 2 minutes, and 3 minutes for food of animal origin.

Obtained mineralizate is poured by 1 ml of 0,001 mg/l solution of Pd(NO₃)₂, diluted by distilled water up to 10 ml volume and content of lead and cadmium by flameless atomic-absorption method, by temperature-time program is determined [3,c.124].

ISRA (India)	SIS (USA)	ICV (Poland)
1.344	0.912	6.630
ISI (Dubai, UAE)	PhII (Russia)	PIF (India)
0.829	0.234	1.940
Gf (Australia)	ESJI (KZ)	IBI (India)
0.564	3.860	4.260
Jf	Sjif (Morocco)	
1.500	2.031	

Table 1

Type of food	Extraction degree, %	Extraction degree of lead and cadmium from various food products at simultaneous influence of US of high and low frequencies and US of low frequency.			
	simultaneous influence of US of high and low frequencies	US of low frequency			
	Lead	Cadmium	Lead	Cadmium	
Meat (beef)	2	99	98	94	93
Meat (pork)	99	98	95	93	
Milk, fat content 2.5 %	99	99	96	95	
Milk, fat content 3.2 %	99	99	95	93	
Milk cream, fat content 10 %	99	98	93	94	
Milk cream, fat content 20 %	98	98	93	95	
Flour of high quality	99	98	93	93	
Pearl barley	99	99	96	94	

Conclusions

Therefore, use of simultaneous influence of ultrasound of high and low frequencies let us, compare

Impact Factor:

Impact Factor	
JIF	4.043
ISPC Technology and progress, Philadelphia, USA	203

Philadelphia, USA | 203 |
Impact Factor:

	ISRA (India)	SIS (USA)	1CV (Poland)	ISI (Dubai, UAE)	PHHII (Russia)	PIF (India)	GIF (Australia)	ESJI (KZ)	ICV (Poland)	SIS (USA)	RIHNC (Russia)	ESJI (KZ)	JIF	SIS (USA)	RIHNC (Russia)
	1.344	0.912	6.630	0.829	0.234	1.940	0.564	3.860	4.260	0.912	0.234	2.031	1.500	0.912	0.234

Type of food	Extraction degree, %																															
	1 MHz	2 MHz																														
	Lead	Cadmium																														
Milk, fat content 2,5 %	100	98	92	93	100	98	95	96	100	98	92	93	100	98	92	93	100	98	92	93	100	98	92	93	100	98	92	93	100	98	92	93
Milk, fat content 3,2 %	100	100	95	96	100	100	92	93	100	100	92	93	100	100	92	93	100	100	92	93	100	100	92	93	100	100	92	93				
Milk cream, fat content 10 %	99	98	91	90	99	98	89	84	99	98	89	84	99	98	89	84	99	98	89	84	99	98	89	84	99	98	89	84				
Flour of high quality	99	98	95	97	99	98	95	97	99	98	95	97	99	98	95	97	99	98	95	97	99	98	95	97	99	98	95	97				
Pearl barley	100	100	94	95	100	100	94	95	100	100	94	95	100	100	94	95	100	100	94	95	100	100	94	95	100	100	94	95				
Buckwheat	100	100	95	93	100	100	97	95	100	100	97	95	100	100	97	95	100	100	97	95	100	100	97	95	100	100	97	95				
Bread «Dondassky New»	100	100	97	95	100	100	97	95	100	100	97	95	100	100	97	95	100	100	97	95	100	100	97	95	100	100	97	95				
Cake with jam	98	100	91	90	98	100	91	90	98	100	91	90	98	100	91	90	98	100	91	90	98	100	91	90	98	100	91	90				
Coffee	98	100	94	91	98	100	94	91	98	100	94	91	98	100	94	91	98	100	94	91	98	100	94	91	98	100	94	91				
Apples	99	98	92	92	99	98	92	92	99	98	92	92	99	98	92	92	99	98	92	92	99	98	92	92	99	98	92	92				
Cabbage	100	99	95	94	100	99	95	94	100	99	95	94	100	99	95	94	100	99	95	94	100	99	95	94	100	99	95	94				
Apricot juice	98	98	94	94	98	98	94	94	98	98	94	94	98	98	94	94	98	98	94	94	98	98	94	94	98	98	94	94				
Light beer “Obolon”	98	98	90	91	98	98	90	91	98	98	90	91	98	98	90	91	98	98	90	91	98	98	90	91	98	98	90	91				

Note. There are represented the average results of six experiments in the table and in the next ones. Mass of sample of the investigated product is 1.00 g. Oxidizer is hydrogen peroxide, 5 ml. US parameters at simultaneous influence: frequency of high frequency-1 MHz, low frequency-22 kHz, intensity of high frequency-2.0 W/sm², low frequency-2.5 W/sm², time of influence 3 min. At use only US of low frequency: frequency-22 kHz, intensity -7 W/sm², time of influence 7 min.
Intensity of US of high frequency-2.0 W/sm², low frequency-2.5 W/sm², frequency of low frequency: US-22 kHz time of influence 3 min.

Table 3
The value of optimal US intensity depends on the type of food product and US frequency

Name of sample	Optimal US, W/sm²	
	1 MHz	22 Hz
Meat (pork)	1,8	2,0
Milk, fat content 2.5 %	1,7	2,0
Milk cream, fat content 20 %	2,0	2,5
Buckwheat	1,5	1,8
Cake with jam	1,6	2,0
Coffee	1,5	2,0
Apples	1,6	1,5
Apricot juice	1,6	1,7
Beer “Donetskoe”, 14%	1,8	2,0

Table 4
Results of determination of lead and cadmium in various types of food

Name of sample	Found out, mg/kg; (n=6)							
	By proposed method	By standard method [1]						
	Pb	S	Cd	S	Pb	S	Cd	S
Meat (beef)	0,195	0,06	0,037	0,08	0,192	0,09	0,035	0,10
Meat (pork)	0,092	0,07	0,013	0,07	0,095	0,10	0,012	0,11
Milk, fat content 2.5 %	0,114	0,07	0,020	0,07	0,116	0,10	0,018	0,10
Milk, fat content 3.2 %	0,128	0,07	0,021	0,06	0,134	0,10	0,019	0,09
Milk cream, fat content 10 %	0,160	0,06	0,020	0,07	0,155	0,09	0,022	0,10
Milk cream, fat content 20 %	0,150	0,07	0,014	0,08	0,153	0,10	0,013	0,09
Flour of high quality	0,066	0,07	0,041	0,07	0,061	0,10	0,036	0,09
Pearl barley	0,085	0,07	0,053	0,06	0,081	0,10	0,048	0,10
Impact Factor:

Journal	Impact Factor
ISRA (India)	1.344
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
PIF (India)	1.940
GIF (Russia)	0.564
ESJI (KZ)	3.860
ICV (Poland)	6.630
RIHNC (Russia)	0.234
ESJI (KZ)	3.860
IBI (India)	4.260

Note. At analysis of food products according to proposed methodic the main criteria were next. Mass of sample of the investigated product is 1.00 g. Oxidizer is hydrogen peroxide, 5 ml. US parameters at simultaneous influence: frequency of high frequency -1 MHz, low frequency -22 kHz, intensity of high frequency -2.0 W/sm², low frequency -2.5 W/sm², time of influence 3 min. At use only US of low frequency: frequency - 22 kHz, intensity -7 W/sm², time of influence 3 min.

References:

1. Baklanov AN, Avdeenko AP, Konovalova SA, Baklanova LV (2012) 'Ultrazvuk y analyticeckoi himii I himicheskoi technologii '. DGMA, Kramatorsk, 332 p.
2. Yurchenko OI, Baklanov AN, Kalinenko OS, Belova YA, Baklanova LV, Larin VI (2015) Ukrainsky chimichny journal, T. 81, p.98-102.
3. Yurchenko OI, Baklanov AN, Kalinenko OS (2015) International Scientific Journal Theoretical & Applied Science. Section 9. Chemistry and chemical technology, T.7, p.122-129.
4. Yurchenko OI, Baklanov AN, Kalinenko OS, Belova YA, Baklanova LV (2016) International Scientific Journal Theoretical & Applied Science. Section 9. Chemistry and chemical technology, T. 1, p. 158-163.
5. Yurchenko OI, Baklanov AN, Kalinenko OS (2014) Visnyk Kharkivskogo nationalnogo universytety 2014, T. 1136, p. 126-132.
6. (1986) GOST 26927–GOST 26935 – 86. Methody opredeleny toxiceckih elementov. USSR Industrial Standards Committee, Moscow USSR, 85 p.
7. Margulis MA (1986) Zvykovye chimicheskie reacii i sonoluminescencia . Chimia, Moscow USSR, 288 p.
8. Frydman VM (1976) Ultrazykovoe himicheskoe oborudovanie, Mashinostroenie, Moscow, 193 p.
9. Vorontsov MA (2008) Journal prikladnoi chimii, T.81, p. 59-71.
10. Zivnov VA, Rumuanthev IY, Tomin VI (1976) Izviesta AN BSSR. T.3, p.91-103.