Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Prevention and treatment of COVID-19: Focus on interferons, chloroquine/hydroxychloroquine, azithromycin, and vaccine

Bianza Moise Bakadia a,c, Feng He b,e, Tiatou Souho d, Lallepak Lamboni a,e, Muhammad Wajid Ullah b,s, Biaou Ode Boni b, Abeer Ahmed Qaed Ahmed a, Biampata Mutu Mukole 1, Guang Yang b,s

a Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
b Hubi Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, PR China
c Institut Supérieur des Techniques Médicales de Lubumbashi, Lubumbashi, Democratic Republic of the Congo
Laboratoire de Biochimie des Aliments et Nutrition, Faculté des Sciences et Techniques, Université de Kara, Kara, Togo
Labaratoire de Biologie Moléculaire et Virologie, Institut National d’Hygiène-Togo, 26 Rue Nangbeto, Quartier Administratif- PO. Box 1396, Lomé, Togo
1 Institut National de Recherche Biomédicale, Ministère de la Santé, Democratic Republic of the Congo

ARTICLE INFO

Keywords:
COVID-19
Treatment
Interferons
Chloroquine/hydroxychloroquine
Azithromycin
Vaccine

ABSTRACT

The ongoing pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has drawn the attention of researchers and clinicians from several disciplines and sectors who are trying to find durable solutions both at preventive and treatment levels. To date, there is no approved effective treatment or vaccine available to control the coronavirus disease-2019 (COVID-19). The preliminary in vitro studies on viral infection models showed potential antiviral activities of type I and III interferons (IFNs), chloroquine (CQ)/hydroxychloroquine (HCQ), and azithromycin (AZM); however, the clinical studies on COVID-19 patients treated with CQ/HCQ and AZM led to controversies in different regions due to their adverse side effects, as well as their combined treatment could prolong the QT interval. Interestingly, the treatment with type I IFNs showed encouraging results. Moreover, the different preliminary reports of COVID-19 candidate vaccines showcase promising results by inducing the production of a high level of neutralizing antibodies (NAbs) and specific T cell-mediated immune response in almost all participants. The present review aims to summarize and analyze the available data on immunization options to prevent the COVID-19 are also analyzed with the aim to present the promising options which could be investigated in future for sustainable control of the pandemic.

1. Introduction

In less than one year, the pandemic of coronavirus disease-2019 (COVID-19) has killed more than 1,193,755 out of over 45,899,858 people infected in the world, as of October 31st, 2020 [1]. To date, no antiviral therapy or vaccines are available against COVID-19; nevertheless, scientists around the world are mobilized to identify the treatment candidates and vaccines. To date, several solutions have been proposed, involving the use of existing antivirals, antibiotics, and anti-inflammatory drugs with known features such as optimal dosage and pharmacokinetics in the therapeutic strategies, for the treatment of COVID-19 [2–4]. Most strategies considered in the clinical trials aim to accelerate the viral clearance and inhibit the cytokine storm to minimize the need for mechanical ventilation, long hospital stays, and COVID-19 associated mortality. To date, different anti-inflammatory drugs such as tocilizumab, chloroquine (CQ)/hydroxychloroquine (HCQ), and dexamethasone have been proposed to decrease or suppress the release/production of pro-inflammatory cytokines with the aim to minimize the cytokine storm associated with SARS-CoV-2 [5,6]. Several clinical trials are underway; however, none of the drugs has been consistently proven significantly effective (Fig. 1) [7–10]. Among the trials of using different drugs, the use of CQ/HCQ in combination with azithromycin (AZM) has the highest numbers of trials and patients [7]. In vitro studies have shown the effectiveness of CQ/HCQ and AZM as antiviral and

* Corresponding authors.
E-mail addresses: hfeng@hust.edu.cn (F. He), wajid_kundi@hust.edu.cn (M.W. Ullah), yang_sunny@yahoo.com (G. Yang).

https://doi.org/10.1016/j.biopha.2020.111008
Received 17 August 2020; Received in revised form 3 November 2020; Accepted 8 November 2020
Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license.
anti-inflammatory drugs [4,11–13]. In addition, there are specially approved treatment strategies for urgent use during the COVID-19 pandemic despite the lack of substantial data. These emergency treatment strategies include the use of remdesivir and convalescent plasma in the USA and favipiravir in China [14–16]. Along with trials of different treatment options, several vaccine candidates are under evaluation. An effective vaccine could ultimately reduce the person-to-person transmission, viral shedding, and disease severity [17].

Likewise in earlier viral outbreaks, some patients recover without any treatment at account of effective immune system, including the innate immunity, cell-mediated immunity, and humoral immunity [18]. Such patients either have an effective primary immune response or a secondary immune response due to previous contact with a pathogen showing similar epitopes with SARS-CoV-2 [19]. The use of drugs that can restore, strengthen, and modulate the immune system is, therefore, a perfect approach in handling the COVID-19. The immune response against human coronaviruses (HCoVs), including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [6,20–24] and severe acute respiratory syndrome coronavirus (SARS-CoV) [25–28], is characterized in most cases by low levels of type I and III interferons (IFNs) resulting in reduced innate response despite the excessive production of pro-inflammatory cytokines (cytokine storm). Although the IFNs effectors’ pathways are not affected by HCoVs, it makes sense to consider exogenous IFNs as therapeutic options which could increase the body’s response to the infecting virus. This strategy is already in use considerable success in treating viral infections such as hepatitis viruses [29, 30]. In fact, the IFNs stimulate the important factors of innate immunity, that is an essential pivot of host defense against viruses and intracellular pathogens [29,30].

This review aims to describe and summarize the recent progress evidence concerning the use of IFNs, CQ/HQ, and AZM for the treatment of COVID-19. We highlight the importance of IFNs in the treatment of COVID-19 and describe the modalities of the immune response protection against coronaviruses, including SARS-CoV, SARS-CoV-2, and MERS-CoV viruses.

2. Interferons and coronaviruses

Interferons (IFNs) are important cytokines which orchestrate the immune response to pathogens such as fungi, bacteria, and viruses. The production of IFNs is triggered by the recognition of pathogenic components through pattern-recognition receptors (PRR) [31]. The types I
The discovery of the effectiveness of IFNs in antiviral control has made it possible to envisage their therapeutic use [33]. The IFN-α and β are mainly used to treat hepatitis viruses because these induce a state of antiviral resistance used in conjunction with other drugs with direct antiviral action [46,47]. In clinical studies, IFN-λ also showed promising results against chronic hepatitis viruses [48–50]. Many viruses inhibit the production of IFNs by acting on the JAK/STAT signaling pathway [51,52]. As for coronaviruses, these use various strategies to escape the antiviral response of the innate immune system [52,53]. The HCoVs RNA genome (Fig. 2) consisted of open-reading frames (ORFs) encodes the nonstructural proteins (NSP1-16), structural proteins (nucleocapsid N, membrane M, envelope E, and spike S), and accessory proteins, which target numerous signaling pathways involved in antiviral response (Table 1 and Fig. 3) [54,55]. HCoVs can interfere with the processes of induction of innate immunity, including the recognition of the virus by PRRs, inhibition of IFNs signaling, IFNs production, and ISG effector’s function. SARS-CoV avoids its recognition by the PRR either by protecting its PAMPs (viral RNA) or by inhibiting the activation of PRR [56]. To avoid activation of the RIG-I-like receptor (RLR) by dsRNA replication intermediates, the SARS-CoV can replicate inside the double-membrane vesicles [56].

In vitro observations and clinical studies of SARS-CoV patients have shown a deficiency of cytokines, including IFN-α/β and IFN-γ, compared to influenza patients [25]. Specifically, decreased amounts of IFN-α/β and IFN-γ is also reported in COVID-19 patients [22]. Similarly, in mice, SARS-CoV infection induces a low level of IFN-α/β and IFN-λ [27]. Moreover, a study in ferrets has shown that SARS-CoV-2 significantly induces a lower production of IFNs than the Influenza A virus (IAV) [22]. Additionally, the production of IFN-β and ISGs in IAV infection arises more rapidly than in SARS-CoV and MERS-CoV (Middle East respiratory syndrome coronavirus) [57]. Thus, a cohort clinical study of Covid-19 patients tested 8–12 days subsequent first symptoms showed a low level of blood type I IFN associated with higher viral load, chemokines, and pro-inflammatory cytokines resulting in decreased innate immunity and COVID-19 progression. The ISGs expression was lower in severe than in mild COVID-19 [20]. In contrast, a study carried out using bronchoalveolar lavage fluid from 8 cases of COVID-19 reported a higher expression of ISGs and pro-inflammatory genes, including chemokines, compared to controls [58]. Clinical studies of SARS-CoV and MERS patients reported that the severity of the disease leads to a high increase in IFNs with the viral load remaining high [59,60].

In vitro studies involving Vero cells showed that SARS-CoV-2 exhibits a greater sensitivity to IFN-α/β than SARS-CoV; where the viral titers were significantly reduced by over 4 log after IFN-α or IFN-β treatment at 50 IU/MI [61,62]. Similar results were found with MERS-CoV infected cells [63]. Better viral outcomes were observed in SARS-CoV infected macaques after receiving pegylated IFN-α [64]. During IAV infection in mice, IFNs-λ was the predominant IFN type with viral replication control capability without induction of inflammation [65]. IFN-λ plays a role by providing protection against IAV respiratory tract infection. Similarly, in vitro studies showed that IFN-λ inhibits the replication of MERS-CoV in the respiratory epithelial cells, with higher induction of ISG [66]. Moreover, the use of IFN-β decreased the viral load and lung pathology in marmosets infected with MERS-CoV [67]. Similar results were found with MERS-CoV infected macaques after receiving IFN-α2b and ribavirin [68]. Similarly, mycophenolic acid and IFN-β reduced viral load in MERS-CoV infected cells [69]. In contrast, IFN-β associated with lepinavir/ritonavir (LV/RTV) ameliorated the pulmonary function but did not heal the lung pathology in mice infected with MERS-CoV [70].

Vapor inhalation of IFN-α combined with ribavirin was
Table 1

Coronavirus	Mechanism of evasion upstream of IFN signaling	References
SARS-CoV	Viral protein NSP14 mimics the 5’cap structure on the viral RNA by its guanine N7-methyltransferase activity.	[92]
	Viral protein NSP15 acts on negative-sense viral RNA by cleaving its 50-polyuridines.	[93]
	ORF2a induces the degradation of IFNAR1.	[94]
	Viral EP, ORF3a, and ORF6b induce the pro-inflammatory cytokines through NF-κB activation after triggering the NLPR3 inflammasome.	[95,96,97,98]
SARS-CoV-2	NSP13 interacts with the signaling transitional TBK1 that mediates the production of IFN3.	[99]
	NSP13 antagonizes the NF-κB pathway.	[100]
MERS-CoV	Viral protein NSP10 inhibits the production of cytokine storm by facilitating the IL-8 induction after interacting with NLRK.	[101]
	ORF6 inhibits nuclear export of host mRNA by targeting the NUP98-RAE1 complex.	[105]
	ORF6 antagonizes the NF-κB pathway.	[106,107]
	ORF. 4a, 4b, and 5 inhibit the nuclear translocation of IFN3 and induce the suppression of IFN production.	[108,109]
HCoVs	Viral protein NS4a is a type I and type III IFNs antagonist, which itself binds to the dsRNA, impedes PKR activation, and inhibits the PACT, an activator of RLRs.	[102,103,104]
	Viral protein NS4b prevents the host RNase L activation, another activator of RLRs. ORF4b impedes the innate immune response by inhibiting the NF-κB nuclear transport.	[109]
	Viral proteins NS10 and NS16 protect the viral RNA from MDA5 recognition by modifying the 5’ cap structure with its 2’-O-methyltransferase activity.	[110]
	Viral protein NSP1 inhibits the phosphorylation of STAT1 and host mRNA translation by binding to 40S ribosomal subunit. ORF6b (except for MERS-CoV) interacts indirectly with the RIG-I/MAVS signaling adapter via its association with Tom70, suggesting a preserved mechanism of IFNs escape. ORF6b interacts with the IFN3 signaling pathway. Viral MP inhibits the TBK1 signaling and nuclear translocation of IRF3. Viral MP interacts with the innate receptors and signaling molecules to impound them in the cytoplasmic compartments. ORF6 (except for MERS-CoV) inhibits the MAVS, TBK1, and IFN3.	[111]

NSP, nonstructural protein; IRF, IFNs regulatory factor; STAT1, signal transducer and activator of transcription 1; ORF, open reading frame; PLP, papain-like protease; ISG, IFN-stimulated genes; TRIM 25, tripartite motif-containing 25; NP, nucleocapsid protein; MP, matrix protein; EP, envelope protein; RIG-1, retinoic acid-inducible gene 1; MAVS, mitochondrial antiviral signaling protein; TBK1, tank-binding kinase-1; Tom70, translocase of the mitochondrial outer membrane 70; RNF41, ring finger protein 41; NKR, NF-Kβ repressing factor; PKR, protein kinase R; RLRs, RIG-I-like receptors; STING, stimulator of interferon genes; PACT, protein activator; RAEl, ribonucleic acid export 1; NUP98, Nucleoporin 98.

recommended in China as guidelines for the treatment of COVID-19 [71, 72]. In Hubei province, 2,944 healthcare workers categorized in high-risk and low-risk groups received daily nasal drops of the recombinant human interferon-gamma (rHIFN-α) during 28 days for COVID-19 prevention. The rHIFN-α was combined with thymosin-α1 for the high-risk group. The findings of the study showed the potential of IFN for the prevention of COVID-19 [73]. In Hong Kong, the administration of LV/RTV and ritavirin (RV) in addition to subcutaneous injection of IFN-β1b significantly reduced the virus load, symptoms, and the recovery time in COVID-19 patients in comparison to the antiviral drugs used without IFN [74]. In another clinical trial in Wuhan, China on 77 patients with moderate COVID-19, who were administered either oral umifenovir (N = 24), IFN-α2b (N = 7) or a combination of both compounds (N = 46), showed that patients treated with IFN present rapid viral clearance and reduced inflammatory signs compared to others [74]. A retrospective cohort study in Shenzhen city and Hubei province (China) on 141 patients with COVID-19 who inhaled IFN-α2b (N = 70) or a combination of IFN-α2b and umifenovir (N = 71) showed that patients treated with IFN-α2b present rapid SARS-CoV-2 clearance and reduced hospital stay [75]. In a study made in Turkey, the type I IFN associated with HCQ, AZM, and enoxaparin sodium was used to treat COVID-19 patients with multiple sclerosis, which demonstrated a rapid recovered of patients. It was difficult to evaluate the effect of IFN because the patients were treated with other drugs [76]. In the United Arab Emirates, the Pegylated IFN-α-2a was used to treat three patients with severe COVID-19 (2 patients with no significant medical history and one patient was known as types II diabetes mellitus), where the patients recovered with progress in clinical status within 36 h [77]; however, the reliability of the findings of this study is limited because of the small sample size (i.e., n = 3). In a clinical study conducted in Iran, 20 COVID-19 patients received IFN-β-1a in combination with HCQ, and LV/RTV as the treatment [78]. Within 10 days, the viral clearance results showed a significant decrease with the recovery of all patients in 14 days. In a randomized clinical trial (RCT) in Iran, the IFN β-1b reduced the mortality by significantly raising the discharge rate of 33 patients on day 14 compared to the control group comprising of 33 patients treated with LV/RTV or atazanavir/ RTV in combination with HCQ [98]. Furthermore, the inhaled IFN-β-1a reduced the risk of developing severe COVID-19 among 101 patients by 79 % in phase 2 clinical trial (NCT04385095) in the United Kingdom [79].

Overall, these studies demonstrate that despite the inhibition of endogenous IFNs production by HCoVs, the supply of exogenous IFN represents a promising therapeutic approach. An early and suitable administration of IFN-α/β and IFN-λ to COVID-19 patients could be of great value in controlling the viral infection while avoiding inflammation and tissue damage. In animal models, an early IFN administration better protects animals in comparison to the late treatments [28,45,80]. Moreover, IFN-α/β signaling avoids excessive IFN-γ-mediated inflammatory responses and therefore prevents lung injury and chronic inflammation [81]. IFN-λ is essential for controlling viral replication in the upper respiratory tract [82]. It decreases the viral spread in the lower respiratory tract as well as the transmission to the new hosts. When the virus reaches the lungs due to failed initial viral control, the lungs are protected by IFNs-α/β1 for the α/β-1b response is long-lasting without inflammatory effects [61]. These features make IFN-λ attractive for COVID-19 prevention and treatment strategies.

3. Chloroquine/hydroxychloroquine, azithromycin, and coronaviruses

Chloroquine (CQ) is a drug indicated in the treatment and prevention...
of malaria as well as in rheumatology and dermatology for rheumatoid arthritis and certain lupus [117, 118]. It induces the production of reactive oxygen species (ROS)-mediated toxicity in inner glial cells after prolonged treatment requiring the use of vitamin C to prevent the ROS production [119]. High dose of vitamin C inhibits cytokines storm in COVID-19 patients by exerting immunomodulatory properties [120, 121] and induces the production of IFNs in patients with viral infections [122]. Furthermore, vitamin C reduces pulmonary lung inflammation and lung injury due to ROS release by phagocytes (Fig. 4) [26, 123]. Hydroxychloroquine (HCQ) is a less toxic drug derived from CQ with similar properties to the latter [124] and used in the management of certain autoimmune diseases, including rheumatoid arthritis and lupus erythematosus [118]. In vitro and in vivo studies have certified that CQ can inhibit the replication of numerous intracellular microorganisms, including HCoVs, Zika virus, and HIV [4, 11, 12]. The action of CQ and HCQ may be different depending on the type of microorganisms, but it is shown that it targets the interaction between the SARS-CoV and its receptor by hampering the glycosylation of its cellular receptors blocking the SARS-CoV infections [125]. Besides, CQ/HCQ blocks the sialic acid receptors, thus preventing the entry of SARS-CoV-2 into the upper respiratory tract [126]. Furthermore, CQ has an immunomodulatory ability on activated immune cells [11, 127]. It downregulates the expression of TLRs (Toll-like receptors) and TLR-mediated signal transduction and decreases or suppresses the release and production of TNF-α, IL-1, and IL-6, which facilitate the inflammation (cytokines storm) in COVID-19. In fact, CQ inhibits the interactions between TLRs of antigen-presenting cells (APC) and viral nucleic acid, and subsequently prevent the production of IFNs [11, 127–129]. CQ (lysosomotropic drug) is also a powerful inhibitor of endosome-lysosome acidification, which allows the development of SARS-CoV and then its processing in the cytosol [11, 127]. CQ inactivates all endosomal proteinases and results in APC reduced function; hence, impairing the adaptive immunity [130]. Moreover, CQ inhibits the viral RNA and DNA polymerase, virion assembly, and viral shedding (Fig. 1) [16]. CQ can interact with the LV/RTV in COVID-19 patients, and cause the prolongation of the QT interval [131]. HCQ being less toxic with potent antiviral activity against SARS-CoV-2 compared to the CQ, is preferred for the treatment of COVID-19 [131, 132].

Azithromycin (AZM) is the first macrolide antibiotic in the azalide group, which inhibits the synthesis of bacterial proteins, quorum-sensing, and biofilm formation [133, 134]. It has an antibacterial mechanism related to that of other macrolides but accumulates more
effectively in the cells, mainly phagocytes [133]. Recently, AZM has received increasing attention because of additional properties on host-defense reactions by exerting the immunomodulation effects in chronic inflammatory diseases [133,135]. The modulation of immune responses enables the lasting therapeutic advantage of AZM in chronic obstructive pulmonary disease, cystic fibrosis, non-eosinophilic asthma, and non-fibrous cystic bronchiectasis [133]. Macrolides such as AZM present the antiviral properties on bronchial epithelial cells by decreasing the rate of rhinovirus replication in the isolated bronchial cells of cystic fibrosis patients using a mechanism related to IFN induction [136]. AZM is associated with increased expression of PRR, IFN β, IFN λ, and IFN-stimulated genes [136]. It also has antiviral properties against rhinoviruses by decreasing the synthesis of intercellular adhesion molecules such as ICAM-1, which are determinant routes for virus integration [137]. In vitro studies have also demonstrated an inhibitory effect of macrolides on the respiratory syncytial virus (RSV) in bronchial epithelial cells [138]. This would be linked to the prevention of interaction with the cellular viral target [138]. AZM also seems to inhibit the Zika virus replication in vitro on Vero cells; however, the antiviral action mechanism, in this case, has not been studied [139]. Similarly, AZM has shown in vitro activity against the Ebola virus on Vero cells [140]. In in vitro model for the influenza virus (H1N1), AZM interferes with the cellular internalization process of the virus [141]; however, the drug must be present before the infection for its maximum efficacy in this model. Macrolides such as AZM and spiramycin have also shown some activity on Enterovirus species in animal models of Enterovirus A71 infection by relieving the symptoms and increasing the animal survival [142]. As a senolytic drug, AZM has the ability to accelerate the phagocytic power of macrophages and selectively kills the senescent cells [143,144]. In a retrospective study on Saudi patients with severe MERS-CoV infection, macrolides used according to different regimens showed a weak (but not statistically significant) protective effect on mortality or viral clearance compared to the macrolide-free approach [145]. In a clinical trial carried out in 40 children with RSV infection randomized between AZM (10 mg/kg once a day for 7 days, then 5 mg/kg once a day for an additional 7 days) and placebo treatment for 14 days showed a significant statistical reduction in IL-8 and wheezing were put forward in the AZM group compared to placebo. An anti-inflammatory effect has been advanced to explain the decrease in the release of cytokines [146]. In another clinical trial on 50 patients hospitalized for influenza, randomized between oseltamivir versus oseltamivir and AZM, the effect on viral clearance was not significant, on the other hand, the decrease in pro-inflammatory cytokines (IL-6, IL-18, IL-17, CXCL-8, CXCL-9, sTNFR-1) and C-reactive protein was faster in the group receiving AZM and oseltamivir compared to the oseltamivir alone [13]. AZM increases the pH of organelles such as trans-Golgi network and endosome in primary bronchial epithelial cells and then alters the intracellular activities of virus [147]. These organelles play a significant role in packaging the proteins into vesicles for secretion, in a process exploited by the viruses to facilitate their replication [147]. The increase in pH of these organelles may alter the glycosylation of ACE2 (Angiotensin-Converting Enzyme 2) and therefore inhibit SARS-CoV-2 and host-cell interaction [147]. AZM reduces the level of furin in the spike protein of SARS-CoV-2, and therefore prevents the viral entry into the cells (Fig. 1) [147].

In summary, several in vitro studies showed a possible antiviral and anti-inflammatory effect of CQ/HCQ and AZM in preclinical models of viral infections. Different hypotheses on the mechanism of antiviral and anti-inflammatory activities have been proposed. CQ or its derivative HCQ and AZM have been used in treating COVID-19 patients [4,125,148].

Fig. 4. The immunological response to SARS-CoV-2 infection showing the release of ROS by phagocytes.

pDC, plasmacytoid dendritic cells; IL, interleukin; TNF-α, tumor necrosis factor-alpha; IFN-γ, interferon-gamma; Inflam: inflammatory; Eosino, eosinophils; Mono, monocytes; Macs, macrophages; Neutro, neutrophils; NK cell, Natural killer cell; Abs, antibodies; ADCC, Antibody-dependent cell-mediated cytotoxicity; ROS, reactive oxygen species.
In vitro evaluation indicated that HCQ and AZM exhibit a synergistic effect on SARS-CoV-2 at concentrations similar to that achieved in humans [148]. Additionally, AZM increases the effectiveness of HCQ in decreasing the viral load [149]. Several studies published at the start of the COVID-19 pandemic have confirmed the effectiveness of CQ on COVID-19. An in vitro study conducted in China demonstrated that CQ prevents the entry steps as well as the release of SARS-CoV-2, thus preventing its replication and propagation in the host [150]. Another study reported an apparent efficacy and an acceptable tolerability of a treatment based on CQ in view of the data from 10 hospitals in Guangzhou, Shanghai, Beijing, Jinzhou, Changning, Wuhan, and Ningbo in China [125]. HCQ also presented encouraging results in clinical studies showing the high rates of patients’ recovery in comparison to the untreated COVID-19 patients in France, China, and Italy [18,151–155]. Despite the small number of patients (i.e., sample size), these studies show that these drugs deserve deeper investigations. It was also shown in several studies that the association of HCQ with AZM increases the treatment effectiveness in comparison to HCQ alone [18,153,152–155].

Besides the studies showing the effectiveness of HCQ associated with AZM, some studies revealed adverse effects, which limit the administration of this treatment to COVID-19 patients [156–158]. These adverse effects include prolonged QT interval, death, and transfer to intensive care with the persistence of virus after 6 days of treatment in more than 80 % of the patients [159,160]. Moreover, an RCT (ChiCTR2000029868) revealed no significant difference in the rate of viral elimination between HCQ and standard of care [160]. A retrospective study on 807 COVID-19 patients in the USA concluded that HCQ used alone or in combination with AZM did not reduce the risk of mechanical ventilation but increased the mortality [161]. In another retrospective study conducted in the USA on 1376 patients showed that HCQ does not reduce or increase the risk of a composite endpoint for intubation or death [162]. In a randomized trial (NCT04308668) of HCQ as the post-exposure prophylaxis for COVID-19 conducted across the USA and Canada, HCQ did not show significant results between the participants receiving HCQ (49/414) and those receiving placebo (58/407) [163]. In this study, no significant adverse effects were reported in the HCQ group. Moreover, an early administration of HCQ did not reduce the severity of symptoms in non-hospitalized patients with early COVID-19 in another randomized trial (NCT04308668) [164]. In Spain, an early administration of HCQ to mild COVID-19 patients did not improve the viral clearance, disease regression, and symptoms reduction. In this study, the HCQ-treated patients experienced adverse events during the 28 days of follow up [165]. In another RCT (NCT04381936) conducted in 176 hospitals across the United Kingdom on 7,513 participants, HCQ did not reduce the mortality rate after 28 days compared to the standard of care. Moreover, the patients who received HCQ had a longer hospital stay associated with a higher risk of undergoing mechanical ventilation [166]. Additionally, HCQ provided no clinical benefit in 11,000 hospitalized patients with COVID-19 in phase 2/3 clinical trials (NCT04381936) across the United Kingdom [167]. Among the 504 COVID-19 hospitalized patients, HCQ, as well as HCQ/AZM regimens, did not improve the clinical outcomes after 15 days in an RCT (NCT04322123) performed in Brazil. In this study, patients treated with HCQ/AZM (39.3 %) or HCQ alone (33.7 %) presented adverse events, whereas the standard of care group showed 22.6 % of adverse outcomes [168]. In another RCT (NCT04322127) conducted in 57 centers in Brazil, 39 % of patients treated with AZM/HQ presented adverse events with no special improvement regarding healing [169]. Similarly, The European discovery trial (NCT04315948) and the World Health Organization (WHO)/Solidarity trial have stopped their clinical trials, declaring that the CQ/HQ did not reduce the death rate in hospitalized COVID-19 patients compared to the standard care [170,171]. Based on scientific data associated with serious adverse effects, the US Food and Drug Administration (US FDA) revoked the authorization for emergency use of CQ and HQ, stating that these two drugs are not effective in treating COVID-19 [172]. Similarly, the US National Institutes of Health (NIH), Agenzia Italiana del Farmaco (AIFA), European Medicines Agency (EMA), and Infectious Disease Society of America (IDSA) did not recommend the use of CQ/HQ or CQ/HQ/AZM for COVID-19 treatment in hospitalized and non-hospitalized patients [173–175]. Among the adverse effects associated with CQ/HQ and AZM, the QT prolongation was the most common [176–178]. It was recorded in several countries on COVID-19 patients treated with HCQ/AZM combination with prolongations exceeding 500 ms in some studies [158,176]. The rate of HCQ/AZM treated patients presenting QT prolongation ranges from 0.77 % to 61 %, according to some studies [158,176,179]. The polymorphic ventricular tachycardia or fibrillation, acute kidney failure, and resuscitated cardiac arrest were also recorded in the patients under HCQ/AZM treatment [169,177]. In a randomized, double-blind, and phase 2b study (NCT04323527), a high dose of CQ (600 mg x 2/day for 10 days) was associated with an increased risk of the prolonged QT interval and mortality in severe COVID-19 patients, mainly when used in combination with AZM compared to low dose (450 mg x 2/day followed by 450 mg x 1/day for 4 days) [180]. A reduced dose of CQ/HQ results in a normal QT interval [178].

Overall, elevated doses of CQ/HQ or their combination with AZM are associated with serious adverse effects and do not provide post-exposure prophylaxis nor reduce the infection rate. However, at this time, no significant antiviral results regarding the impacts of CQ/HQ on the first viral phase of COVID-19 have been reported. In contrast, the inhibition of IFNs production, an essential pivot of host defense against SARS-CoV-2, by CQ/HQ may exclude the use of the latter in the viral phase of COVID-19. Besides, CQ/HQ administration may not control the entire inflammatory process (i.e., cytokine storm) in the COVID-19 course compared to other anti-inflammatory drugs [181,182].

4. Vaccine for coronaviruses

Effective SARS-CoV-2 vaccines are required to control the COVID-19 pandemic [183]. Presently, no vaccine is approved to prevent the SARS-CoV-2 infection. It was shown that coronavirus S protein, that binds to ACE2 during the infection process, is highly conserved between SARS-CoV-2, SARS-CoV, and MERS-CoV, indicating this protein a good vaccination target [184]. It was shown that SARS-CoV-2 infection induces the production of protective antibodies [185]. Two monkeys were protected from re-infection during the convalescence period after recovering from SARS-CoV-2 infection [186]. In a study carried out in Shanghai on 175 COVID-19 patients, 30 % showed a low titer of neutralizing antibodies (NAbs), whereas undetectable titers were registered in 10 patients [187]. These results demonstrate that a robust antibody response necessary for lasting the immunity is not systematically induced by mild COVID-19. Epidemiological analyses have projected that infections with other coronaviruses causing mild cold symptoms only confer immunity for approximately one year [188]. The NAbs titers decreased 2–3 years post-infection in individuals infected with SARS-CoV or MERS-CoV [189,190], indicating that immunity may not last a lifetime even with more serious coronaviral infections. Sub-neutralizing or non-NAbs against certain epitopes of SARS-CoV may induce the Antibody Disease Enhancement (ADE), which results in negating the main objective of vaccination. These antibodies can improve the entry of the virus into the human cells either by interacting with the conformational epitopes in the ACE2-binding domain [191] or via the Fcy II receptor [192]. Although the in vivo significance of these results remains to be determined, we can add the ADE to the list of concerns that need to be addressed in the COVID-19 vaccine development. Three methods have been proposed to alleviate the harmful effects of ADE, including the shielding of the non-neutralizing epitopes of the S proteins, immunofocusing marking only the critical neutralizing epitope, and removing the epitope sequences which promote the ADE [193,194]. The protein sequences responsible for ADE have been recognized at S₁₉₉₋₂₀₉ of the SARS-CoV S protein, a section that is also
It was shown that the COVID-19 vaccine comprising residues of S-RBD (S-Receptor-Binding Domain) induce a strong protective antibody immune response in non-human primates, rabbits, and mice [185]. ADE is of clinical impact in some viral infections, including MERS-CoV, SARS-CoV [195,196], influenza [197], Dengue virus [198,199], RSV [200], HIV [201,202], and Ebola virus (EVB) [197,203]. The vaccine PiCoVacc Sinovac Biotech candidate was administered to non-human primates, rats, and mice [204], where the immune system induced in animals was able to combat SARS-CoV-2 strains without observable ADE of infection. Similarly, partial or whole protection in animals against SARS-CoV-2 was achieved after three immunizations of two doses (3 μg or 6 μg per dose) each. Recently, Chinese macaques infected with SARS-CoV after being vaccinated with a modified vaccinia virus Ankara (MVA) coding for the glycoprotein SARS-CoV S produced a high titer of antibodies associated with reduced viral load [205]. However, these macaques showed severe acute lung damage associated with diffuse alveolar damage. Immunization of mice with an inactivated SARS-CoV with or without adjuvant or a recombinant baculovirus expressing an S protein or particles of coronavirus (VLP) reduced the occurrence of morbidity and mortality related to the virus by decreasing the viral load [206,207]. However, histopathological findings revealed the type 2 inflammatory response at the pulmonary level characterized by the eosinophilic pulmonary infiltrates. The vaccine against the RSV [208] and recombinant vaccinia virus (VV) [209] expressing the SARS-CoV S and N proteins have also shown pneumonia or pulmonary manifestations in pediatric subjects and mice, respectively. Similarly, the inactivated MERS-CoV vaccine candidate has also induced NAbS in mice associated with type 2 pulmonary pathology as depicted by the eosinophilic infiltration and elevated concentrations of IL-13 and IL-5 [210]. Interestingly, TLR agonists [211] or Inulin Delta [212] could be used as an adjuvant to improve the healing of type 2 lung disease. An immunization study involving ferrets, naturally susceptible to SARS-CoV, revealed that the recombinant vaccinia virus Ankara (rMVA) expressing the SARS-CoV S induces a rapid and high titer of NAbS. However, the rMVA-S immunized ferrets developed severe hepatitis [213]. Several attempts to develop vaccines against the coronavirus (FIPV) which causes feline infectious peritonitis (FIP) in cats have failed. In fact, the vaccine induced low levels of NAbS, and the immune response induced by the FIPV vaccine was turned out harmful to the animals [214,215]. When the FIPV virus was injected into animals, the mortality of the treated group was further elevated compared to the control group [214]. The hypothesis was that the virus itself, in the presence of antibodies and macrophages, induced the formation of immune complexes that led to the mortality in immunized animals [216]. These data, on previous vaccine experiments with coronaviruses, suggest that the histopathological pulmonary and clinical evaluation should be carried out during the preclinical development of SARS-CoV2 vaccines.

The vaccine approach often chosen is the induction of antibody-based immunity [217]. Unfortunately, the immune system cannot be reduced to antibody-based immunity alone but works in a coordinated and complementary manner, especially concerning the antiviral immunity [218]. Furthermore, the main difficulty in implementing a candidate vaccine against the viral infections is the ability of a vaccine to produce a high level of NAbS, hence the importance of acting on innate immunity, then on cell-mediated immunity as a vaccine supplement. Additionally, this involves upregulating a gene, descarting mainly from the extreme genetic variability of viruses. HIV is the perfect example, where during the progression of natural infection, only 1% of the individuals produced NAbS which can neutralize most HIV-1 subtypes [219,220].

Genetic analyses of 86 SARS-CoV-2 genomes have provided evidence of genetic diversity by revealing numerous mutations and deletions on coding and non-coding regions [221]. A study reported that 198 sites in the SARS-CoV-2 genome seem to have already undergone mutations [222], but the genetic variability of SARS-CoV remains limited compared to other RNA viruses such as HIV [223]. SARS-CoV-2 displays, like other RNA viruses, a relatively high potential of mutation that can cause the evolution of potential epitopes. Additionally, a mutation in SARS-CoV-2 spike protein such as D614G may increase its infectivity and make the vaccine less effective [224]. In parallel, the B cells, which produce antibodies, are also subject to the phenomena of somatic mutations at the origin of antibody variants exhibiting increasingly optimized activities [225]. There is, therefore, competition between the immune system and the virus. Thus, after several years of infection, this phenomenon of optimization of recognition sometimes leads to the appearance of more active antibodies capable of accessing very conserved areas of the virus [225]. This results in a broad-spectrum neutralization capacity, effective against many viral isolates; called broadly NAbS, or bNAbS.

Numerous COVID-19 vaccine technologies are in the process of development, including the DNA, RNA, protein subunit, live attenuated virus, inactivated virus, virus-like particles, non-replicating, and replicating viral vectors vaccines [226]. To date, 201 COVID-19 candidate vaccines have been listed by WHO landscape summary, out of which 45 are under clinical evaluation, including 21 in phase 1 (safety and dosage evaluation), 12 in phase 1/2, 2 in phase 2 (safety, immunogenicity and immunization process evaluation), 1 in phase 2/3, and 9 in phase 3 (safety and effectiveness evaluation) clinical trials (Table 2) and 156 in preclinical evaluation (efficacy and safety) [226]. A preliminary report of phase 1 clinical trial (NCT04283461) showed that candidate vaccine mRNA-1273 induced an immune response in 45 healthy participants (18-55 years old) with elevated levels of antibodies against the SARS-CoV-2 on day 28 without significant local or systemic adverse events [227]. The induction of antibodies was dose-dependent, and the titers of NAbS increased after the second vaccination. Moreover, this candidate vaccine induced T cells response with more T helper (Th) 1 cytokine (IFN-γ, TNF-α, IL-2) than the Th2 (IL-4, IL-13). The Th1 cell is often involved in antiviral immune responses by inducing the cell-mediated immunity, while the primary role of Th2 is to initiate an antibody response cooperating with B cell [228]. The Th1/Th2 cytokine profile constitutes an essential basis for the development of viral vaccines [228]. In the final study comprised of 40 aged adults (≥ 56 years old), the vaccine mRNA-1273 induced the NAbS and T cell immune response [229]. The side effects such as headache, pain at injection, chills, and myalgia were dose-dependent and increased after the second vaccination. In phase 1/2 clinical trial (NCT04324606), the ChAdOx1-S candidate vaccine induced a strong antibodies response in 1077 participants on day 28 and cellular immune response on day 14 [230]. All participants showed production of higher NAbS after receiving a second dose of the vaccine. The side effects such as headache, malaise, fever, chills, muscle ache, and pain were reduced by administering the prophylactic paracetamol to participants. Similarly, the Ad5 vectored COVID-19 candidate vaccine induced a robust NAbS response at day 28 and specific T cellular response at day 14 in most of the 108 participants included in the phase 1 clinical trial (NCT04313127) [231]. The side effects were associated with a higher dose of vaccine. In the phase 2 trial (NCT04341389), the Ad5 vectored COVID-19 candidate vaccine induced a strong immune response in the majority of 508 participants without side effects [232]. Moreover, the COVID-19 RNA vaccine BNT162b1 in phase 1/2 (NCT04367828) induced a strong NAbS in 45 participants. The NAbS titers were significantly higher than those of a panel of COVID-19 convalescent human plasma [233]. Most participants developed a strong Th1 response associated with IFN-γ, without severe adverse events. The robust NAbS associated with favorable IFN production is beneficial for protection against COVID-19 [234]. In two RCTs comprised of 96 adults in phase 1 and 224 adults in phase 2 (ChiCTR2000031809), the interim analysis of the inactivated vaccine against SARS-CoV-2 from Wuhan Institute of Biological Products/Sino-pharm reported that the vaccine induced a NAbS response in all participants after 14 days without severe adverse reactions [235]. The NAbS increased significantly after the second and third immunization.
Platform	Candidate vaccine (Developer)	Current stage (participants)	Status (completion date)	Subject	Study location
Inactivated + alum (Sinovac)	NCT04456595 (8,870) Phase 1/2 NCT04383574 (422) NCT04352608 (744) Phase 3	Recruiting (October 2021) Recruiting (December 2020)	18–59 years Brazil China		
Inactivated (Wuhan Institute of Biological Products/Sinopharm)	ChiCTR2000038780 (15,000) Phase 1/2 ChiCTR200001809 809 (1,120) Phase 3	Recruiting (July 2021) Completed	≥18 years United Arab Emirates China		
Inactivated (Beijing Institute of Biological Products/Sinopharm)	ChiCTR2000038780 (15,000) Phase 1/2 ChiCTR2000032459 (1,904) Phase 1/2	Recruiting (July 2021) Recruiting (-)	≥18 years United Arab Emirates China		
Inactivated (Research Institute for Biological Safety Problems, Rep of Kazakhstan)	NCT04530357 (244) Phase 1	Recruiting (April 2021)	18–100 years Kazakhstan		
Inactivated (Beijing M Inhai Biotechnology Co., Ltd.,)	ChiCTR2000038804 (180) Phase 1	Not yet recruiting (-)	≥18 years China		
Inactivated (Adenovirus Type 5 Vector (Cansino Biological Inc./Beijing Institute of Biotechnology))	Phase 2 ChCTR2000031781 (500) Phase 1/2 ChCTR2000030906 (108)	Recruiting (January 2022) Completed	≥18 years China		
Whole-Virion inactivated (Bharat Biotech)	NCT04471519 (755) Phase 3 ISRCTN8995424 (2000) Phase 2b/3 2020-001228-32 2020-001228-32 (-) Phase 1/2 FACTR20200692216 5132 (2000) NCT04324606 (1090) Phase 3 NCT04526990 (40,000) Phase 3	Recruiting (July 2021) Recruiting (-) Recruiting (December 2021) Completed	12–65 years India		
ChAdOx1-S (University of Oxford/Astrazeneca)	Phase 1/2 ChCTR2000031809 (1,120) Phase 1/2 ChCTR2000031809 (1,120)	Recruiting (July 2021) Recruiting (-)	≥18 years Brazil UK		
Replication defective Simian Adenovirus (GRAd) encoding S (ReiThera/LEUKOCARE Biotechnology, Academy of Military Medical Sciences, PLA of China)	NCT045528641 (90) Phase 1 NCT04552366 (144) Phase 1 NCT04552366 (144) Phase 1 NCT045200038096 (40,000) Phase 1/2 NCT04436471 NCT04437875 (38) Phase 1/2	Recruiting (July 2021) Recruiting (June 2021) Recruiting (May 2021) Active, not recruiting (August 2020)	18–85 years Italy 18–59 years China 18–59 years Russia 18–60 years Russia		
Ad26CoVS1 (Janssen Pharmaceutical Companies)	Phase 3 NCT04505722 (60,000) Phase 1/2 NCT04436276 (1045) Phase 3 NCT04436276 (1045)	Recruiting (March 2023) Recruiting (November 2023)	≥18 years Mexico, South Africa, Colombia USA, Belgium		
Platform	Candidate vaccine (Developer)	Current stage (participants)	Status (completion date)	Subject	Study location
----------	--------------------------------	-----------------------------	--------------------------	---------	----------------
Ad5 adjuvanted Oral Vaccine platform (Vaxart))	Phase 1 NCT04563702 (48)	Recruiting (October 2021)	≥ 18 years	USA	
MVA-SARS-2-S (Ludwig-Maximilians-University of Munich)	Phase 1 NCT04569383 (30)	Recruiting (May 2021)	18 – 55 years	Germany	
LNP-encapsulated mRNA NA (Modern/ NIAID)	Phase 1 NCT04470427 (30,000)	Recruiting (October 2022)	≥ 18 years	USA	
Matrix M (Novavax) adjuvanted with SARS-CoV-2 glycoprotein nanoparticle vaccine (Inovio Pharmaceuticals/International Pharmaceuticals Inc.)	Phase 1 NCT04450576 (600) Phase 2 NCT04283461 (155) Phase 2/3 NCT04368728 (43,998)	Active, not recruiting (August 2021)	18 – 99 years	USA	
DNA LNP-nCoVasRNA (Imperial College London)	Phase 1 ISRCTN17072692 (320)	Recruiting (July 2021)	18 – 75 years	UK	
mRNA (Curevac)	Phase 2 NCT045151 147 (691) Phase 1 NCT04449276 (168)	Recruiting (November 2021)	≥ 18 years	Germany	
mRNA (People’s Liberation Army (PLA) Academy of Military Sciences/Walvax Biotech)	Phase 1/2 NCT04489057 (92) Phase 1 NCT04447781 (160) Phase 1 NCT04363410 (120) Phase 1 NCT04463472 (30)	Recruiting (February 2022)	18 – 80 years	Belgium	
mRNA/Arcturus/Duke-Nax	Not yet recruiting (August 2021)	Recruiting (December 2021)	19 – 64 years	Republic of Korea	
DNA plasmid vaccine with electroporation (Inovio Pharmaceuticals/International Vaccine Institute)	Not yet recruiting (December 2021)	Recruiting (January 2021)	18 – 80 years	Belgium	
DNA plasmid + Adjuvant (Onaka University/AnGes/TakaraBio)	Recruiting (January 2021)	Recruiting (February 2022)	18 – 80 years	USA	
RNAs 3LNPs-mRNAs (BioNTech/Fosun Pharma/Pfizer)	Phase 1/2 2020-001038-36 (444) Phase 1 NCT04283461 (155)	Recruiting (December 2020)	≥ 18 years	China	
Protein Subunit SARS-CoV-2 glycoprotein nanoparticle vaccine adjuvanted with Matrix M (Novavax)	Recruiting (July 2021)	Recruiting (July 2021)	18 – 55 years	Brazil	
Native-like Trimeric subunit spike protein vaccine (Clover Biopharmaceuticals Inc./GSK/Dynavax)	Recruiting (March 2021)	Recruiting (August 2021)	≥ 18 years	Australia	
RBD (Baculovirus production expressed in S9 cells) (West China Hospital, Sichuan University)	Recruiting (August 2021)	Recruiting (November 2021)	18 – 65 years	China	
Adjuvanted recombinant protein (RBD Di mer) (Anhui Zhifei Longcom Biopharmaceutical Institute of Microbiology, Chinese Academy of Sciences)	Recruiting (September 2021)	Recruiting (July 2021)	18 – 65 years	China	
S protein (Baculovirus Production) Sanofi Pasteur/GSK	Recruiting (October 2021)	Recruiting (July 2021)	18 – 65 years	Australia	
Recombinant spike protein with Advax™ (NCT04453852 (40)) (participants)	Recruiting (July 2021)	Recruiting (July 2021)	18 – 65 years	China	

(continued on next page)
suggesting the necessity for at least two immunizations. Furthermore, analysis from two open and non-randomized phase 1/2 (NCT043647875) trials showed that the rAd26 and rAd5 vector-based vaccine induced a strong NAb at day 14 and cell-mediated immunity with favorable median CD4+ and CD8+ T cells proliferation associated with IFN-γ production at day 28 in 76 participants. The minor adverse events such as asthma (21%), headache (42%), hyperthermia (50%), and pain at the injection site (24%) were reported [236]. In this trial, participants who received the vaccine had the same titer of NAb against SARS-CoV-2 as recovering COVID-19 patients suggesting a neutralization function. This neutralization function is the main correlate of protection of many vaccines and convalescent plasma. The antibodies are also able to interact with many cells of the immune system through the receptors which recognize the constant region of immunoglobulins called the fragment crystallizable (Fc). These Fc receptors (FcR) are necessary for the proper functioning of the humoral response, for example for the clearance of immune complexes. Different types of cells of the immune system express these FcRs, allowing the induction of effector functions complementary to neutralization [240]. Among these, the antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) target the cells or the antigenic fragments which recognize the constant region of immunoglobulins called the fragment crystallizable (Fc). These Fc receptors (FcR) are necessary for the proper functioning of the humoral response, for example for the clearance of immune complexes. Different types of cells of the immune system express these FcRs, allowing the induction of effector functions complementary to neutralization [240]. Among these, the antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) target the cells or the antigenic elements that have been recognized and are covered by antibodies and lead to their destruction [Fig. 5] [240]. The cellular effectors of ADCC are mainly NK (natural killer) cells, which express the CD16 molecule (or FcγRIII), an FcR that recognizes the isotype G immunoglobulin. Moreover, monocytes, neutrophils, and macrophages are also involved in ADCC.

The production of antibodies is an essential part of the immune response following the infection or vaccination. The antibodies are produced by the B cells and are specific for the antigens that trigger the immune response. The term neutralization relates to the formation of the immune complex which prevents the biological activity of the antigen [239]. This neutralization function is the main correlate of protection of many vaccines and convalescent plasma. The antibodies are also able to interact with many cells of the immune system through the receptors which recognize the constant region of immunoglobulins called the fragment crystallizable (Fc). These Fc receptors (FcR) are necessary for the proper functioning of the humoral response, for example for the clearance of immune complexes. Different types of cells of the immune system express these FcRs, allowing the induction of effector functions complementary to neutralization [240]. Among these, the antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent phagocytosis (ADP) target the cells or the antigenic elements that have been recognized and are covered by antibodies and lead to their destruction [Fig. 5] [240]. The cellular effectors of ADCC are mainly NK (natural killer) cells, which express the CD16 molecule (or FcγRIII), an FcR that recognizes the isotype G immunoglobulin. Moreover, monocytes, neutrophils, and macrophages are also involved in ADCC.

The CD8+ T cells are involved in the adaptive cell-mediated immune response, which is an effective immune response against viruses and other intracellular parasites [241]. The effective control of viral infection requires the elimination of the infected cells in order to limit the production and the propagation of the virus as well as the establishment of an immune memory specifically directed against the viral antigens. The latter relies on the expansion of cytotoxic CD8+ T lymphocytes (CTL) [242]. In SARS-CoV survivors, the CD8+ T cells conferred lasting

Platform	Candidate vaccine (Developer)	Current stage (participants)	Status (completion date)	Subject	Study location
Adjuvant (Vaccine Pty Ltd./Medityox)	SARS-CoV-2 HLA-DR peptides (University Hospital Tuebingen)	Phase 1 NCT04456481 (36)	Not yet recruiting (December 2021)	≥ 18 years	Germany
Molecular clamp stabilized spike protein (University of Queensland /GSK/Dynavax)	RBD-based (Kentucky Bioprocessing, Inc.)	Phase 1 ACTRIN12620000674932P (120)	Recruiting (-)	18–55 years	Australia
S-2 P protein + CpG101	S1-RBD-protein (COVAXX)	Phase 1 NCT04473690 (180)	Not yet recruiting (November 2021)	18–70 years	USA
VLP	Finaly de Vacunas, Cuba	Phase 1/2 IFV/COR/04 (676)	Recruiting (February 2021)	19–80 years	Cuba
VLP	Meadigen Vaccine Biologics Corporation/NIAID /Dynavax	Phase 1/2 NCT04545749 (60)	Recruiting (August 2021)	20–55 years	Taiwan
VLP	RBD + Adjuvant (Instituto B VECTOR, Rospotrebnadzor, Koltsovo)	Phase 1/2 NCT04487210 (45)	Not yet recruiting (December 2021)	20–50 years	Taiwan
VLP	Plant-derived VLP (Medicago Inc. /Universite’ Lava)	Phase 1 NCT04450004 (180)	Recruiting (April 2021)	18–55 years	Canada
VLP	RBD-HBsAg VLPs (SpyBiotech/serum Institute of India)	Phase 1/2 ACTRIN1262000060 817943 (280)	Recruiting (-)	18–79 years	Australia
VLP	Intranasal flu-based-RBB (Beijing Wantai Biological Pharmacy/Institute Pasteur/Thermis/University of Pittsburgh CVR/Merck Sharp & Dohme)	Phase 1 ChCTR2000037782 (60)	Not yet recruiting (October 2021)	≥ 18 years	China
VLP	Measles-vector based Replicating viral vector	Phase 1 NCT04497298 (90)	Recruiting (October 2021)	18–55 years	France

Subject Study Location
55 UK (2021)
50 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
55 France (2021)
70 Germany (2021)
55 USA (2021)
80 USA (2021)
immune memory that persisted up to 11 years [243]. The candidate vaccine such as COVID-19 RNA vaccine BNT162b induced a robust release of IFN-γ, which participate in several antiviral responses in particular by inhibiting the replication of SARS-COV-2. The robust CD8+ producing IFN-γ with antiviral properties could complement the strong response of NAbs. Furthermore, the SARS-COV-2 specific cellular immune response could be effective in controlling the COVID-19, even in the absence of NAbs [244]. Therefore, the vaccine inducing strong NAbs and cell-mediated immune response could be effective in controlling the COVID-19 pandemic.

The BCG (Bacillus Calmette–Guérin) is an example of a vaccine that induces innate immunity [245]. It is a live vaccine obtained from the attenuation of Mycobacterium bovis strain that is injected into the infants usually in the first year after their birth [245]. The BCG vaccine has other long-standing effects, including the protection against other types of respiratory infections such as RSV infection [246–248]. BCG, as a live vaccine, induces the expression of genes which are involved in the innate immunity (trained immunity) as well as long-term cellular immunity [249,250]. The BCG vaccine offers protection up to 60 years of immunization, and therefore the old population must be revaccinated [249]. This very broad spectrum immunity presents a form of memory which would somehow be boosted by these live vaccines since they are real pathogens, even weakened. This practice would help the body to better regulate its overall immune response [250]. COVID-19, in the last phase of the infection, disrupts the inflammatory system (cytokine storm), which ends up in catastrophic chain reactions in the patient [5, 6]. However, the aforementioned trained innate immunity would prevent such unwanted chain reactions, and therefore partly avoid the severe cases of the disease. A recent publication shows that the nationwide differences in the impact of COVID-19 could be explained, in part, by the national policies concerning the vaccination of children with BCG [251]. Thus, countries without a BCG vaccination policy (United States, Italy, the Netherlands) were more seriously affected than those with long-standing universal BCG policies. In European countries, each 10 % increase in the BCG index was associated with a 10.4 % drop in the mortality from COVID-19 [252]. Clinical trials are underway in the Netherlands (NCT04328441) [253], South Africa (NCT04379336) [254], and Australia (NCT04327206) [255] to confirm this association.

5. Concluding remarks

More effective COVID-19 patient management protocols to ensure the reduced need for prolonged mechanical ventilation, short hospital stays, and to reduce the morbidity and mortality associated with COVID-19 are still lacking. Despite the controversial results of CQ/HCQ and AZM in the treatment of COVID-19 in recent days, several countries continue to allow their use in the treatment of COVID-19 patients. However, the use of CQ/HCQ and AZM should remain restrained because the results of new studies do not validate these treatments in the management of COVID-19. Nevertheless, in the situation of a supposed bacterial super-infection that can complicate the COVID-19, clinicians may wish to prescribe AZM. The lung injury in COVID-19 patients is associated with ROS release by phagocytes, and thus the use of antioxidants is necessary for the management of COVID-19. Besides, type I and type III IFNs have shown antiviral activities both in vitro and in vivo. Type I IFN was effective in treating COVID-19 patients than other forms of treatment without IFN; thus, we hypothesize that the use of type I and III IFNs in the early stage of COVID-19 combined with an adapted antioxidant and anti-inflammatory drug in the advanced stage could help improve the clinical outcomes. The vaccine remains an efficient agent for COVID-19 protection, and the preliminary reports of the candidate vaccines showcase some encouraging results.

Author contribution

The manuscript was written through the contribution of all authors.
Funding Source

This work was supported by the National Natural Science Foundation of China (Grant No. 21774039) and the National Key Research and Development Program of China (2018YFE0123700).

Declaration of Competing Interest

The authors declare that there is no conflict of interest associated with the publication of this manuscript.

References

[1] Coronavirus Cases, 2020 (accessed October 31, 2020), https://www.worldometer.info/coronavirus/.
[2] R. Salvi, P. Patanakar, Emerging pharmacotheapies for COVID-19, Biomed. Pharmacother. 128 (2020) 110267, https://doi.org/10.1016/j.biopha.2020.110267.
[3] M.A. Martinez, Compounds with therapeutic potential against novel respiratory 2019 coronavirus, Antimicrob. Agents Chemother. 64 (2020) 1–7, https://doi.org/10.1128/AAC.00399-20.
[4] P. Colson, J.M. Rolain, J.C. Lagier, P. Brouqui, D. Raoult, Chloroquine and hydroxychloroquine as available weapons to fight COVID-19, Int. J. Antimicrob. Agents 55 (2020) 105932, https://doi.org/10.1016/j.ijantimicag.2020.105932.
[5] M. Zhao, Cytokine storm and immunomodulatory therapy in COVID-19: role of chloroquine and anti-IL-6 monoclonal antibodies, Int. J. Antimicrob. Agents. Agents 55 (2020) 105982, https://doi.org/10.1016/j.ijantimicag.2020.105982.
[6] J.Y. Jamilellou, T. Henry, A. Belot, S. Viel, M. Fauter, T. El Jammal, T. Walser, B. Francois, P. Sève, Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions, Autoimmun. Rev. 19 (2020) 102567, https://doi.org/10.1016/j.autrev.2020.102567.
[7] T. Liu, S. Luo, P. Libby, G.-P. Shi, Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients, Pharmacol. Ther. 213 (2020) 107587, https://doi.org/10.1016/j.pharmthera.2020.107587.
[8] US National Library of Medicine, Camostat Mesylate in COVID-19 Outpatients, ClinicalTrials.gov., 2020 (accessed September 28, 2020), https://clinicaltrials.gov/ct2/show/NCT04353284.
[9] M.W. Ullah, S. Manan, Z. Guo, G. Yang, Therapeutic options for treating COVID-19, Eng. Sci. (2020), https://doi.org/10.3919/esd876s.
[10] W. Luo, Y.-X. Li, L.-J. Jiang, Q. Chen, T. Wang, D.-W. Ye, Targeting JAK-STAT signaling to control cytokine release syndrome in COVID-19, Trends Pharmacol. Sci. 41 (2020) 531–543, https://doi.org/10.1016/j.tips.2020.06.007.
[11] A. Savarino, J.R. Boelaert, A. Cassone, G. Majori, R. Cauda, Effects of chloroquine on viral infections: an old drug against today’s diseases? Lancet Infect. Dis. 3 (2003) 722–727, https://doi.org/10.1016/S1473-3099(03)00806-5.
[12] E. Keyaerts, S. Li, V. Jijen, E. Rysman, J.J. Verbeeck, M. Van Ranst, P. Maes, Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice, Antimicrob. Agents Chemother. 53 (2009) 3416–3421, https://doi.org/10.1128/AAC.01559-08.
[13] N. Feng, C.K. Wong, M.C. Chan, E.S.L. Yeung, W.W.S. Tam, O.T.Y. Tsang, K.W. Choi, P.K.S. Chan, A. Kwok, G.C.Y. Lui, W.S. Leung, I.M.H. Yung, R.Y.K. Wong, C.S.K. Cheung, Plasmacytoid-Derived Type 1 IFN and Type III IFN, Immunity 50 (2019) 907–919, https://doi.org/10.1016/j.immuni.2019.01.007.
[14] J.A. McKinnell, S.S. Siegmund, S.N. Cox, P.J. Hotez, B.Y. Lee, Vaccine efficacy and immunogenicity characterization of a small molecule inhibitor of the MERS-coronavirus spike protein: evidence for cholesterol-independent entry and function of MERS-CoV in human alveolar epithelial cells, Antiviral Res. 131 (2018) 104–123, https://doi.org/10.1016/j.antiviral.2018.10.001.
[15] J. Hadjadi, N. Yatim, L. Barnabei, A. Corneu, J. Bousquet, H. Perez, B. Charbit, V. Bondet, C. Chevrier-Gobeaux, P. Breillat, N. Carlier, R. Gauzit, C. Morbieu, B. François, N. Marin, N. Roché, T.A. Saez-Correcher, S. Merkling, J.M. Treuelier, D. Veyer, L. Moutoun, C. Blanc, P.-L. Tharaux, F. Rozenberg, A. Fischer, D. Duffy, F. Rieux-Lauch, S. Kerneis, B. Terrier, Irreparable type I interferon activity and exacerbated inflammatory responses in severe COVID-19 patients, Science 369 (2020) 718–724, https://doi.org/10.1126/science.abc6057.
[16] T.R. O’Brien, D.L. Thomas, S.S. Jackson, L. Prokunina-Olsson, R.P. Donnelly, J. Harthmann, Weak induction of interferon expression by severe acute respiratory syndrome coronavirus 2 supports clinical trials of interferon-α to treat early coronavirus disease 2019, Clin. Infect. Dis. (2020), ciaa453, https://doi.org/10.1093/cid/ciaa453.
[17] B.M. Bakadia et al. [18] P. Gautret, J.-C. Lagier, P. Parola, V.T. Hoang, L. Meddeb, M. Mailhe, B. Doudier, J. Courjon, V. Giordanengo, V.E. Vieira, H.T. Dupont, S. Colson, E. Chabriere, B. La Scola, J.M. Rolain, P. Brouqui, D. Raoult, Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial, Int. J. Antimicrob. Agents. (2020) 105949, https://doi.org/10.1016/j.ijantimicag.2020.105949.
B.M. Bakadia et al.
"Biomedicine & Pharmacotherapy 133 (2021) 111008"

S. Stertz, M. Reichelt, M. Spiegel, T. Kuri, L. Martínez-Sobrido, A. García-Sastre, F. Weber, G. Kochs, The intracellular sites of early replication and budding of SARS-coronavirus, Virolology 361 (2007) 304–315, https://doi.org/10.1016/j.virol.2006.11.027.

V.D. Menachery, A.J. Esfiedl, A. Schäfer, L. Josset, A.C. Sims, S. Proll, S. Fan, C. Li, G. Neumann, S.C. Tilton, J. Chang, L.E. Graziulski, C. Long, R. Green, C. M. Safronetz, J. Williams, J. Weisblat, R. D. Veiga-Lopez, S. A. Lichtman, A. K. Shukla, T.O. Metz, R.D. Smith, K.M. Waters, M.G. Katze, Y. Kawakos, R. S. Baric, Pathogenic influenza viruses and coronaviruses utilize contrasting approaches to control interferon-stimulated gene responses, mBio 5 (2014) e01174–14, https://doi.org/10.1128/mBio.01174-14.

Z. Zhou, L. Ren, L. Zhang, J. Zheng, Y. Xiao, Z. Jia, L. Guo, J. Yang, C. Wang, S. Jiang, D. Yang, G. Zhang, L. Li, F. Chen, Y. Xu, M. Chen, Z. Gao, J. Yang, J. Dong, B. Liu, X. Zhang, W. Kang, K. He, Q. Jin, S. Pei, X. Wang, Heightened innate immune responses to SARCoV-2 during COVID-19, Cell Microbe 27 (2020) 883–890, https://doi.org/10.1002/cmi.20200417.2, e17.

M.J. Cameron, L. Ran, L. Xu, A. Danesh, J.F. Bermejo-Martin, C.M. Cameron, M. P. Muller, W.L. Gold, S.E. Richardson, S.M. Poulsom, B.M. Willey, M.E. DeVries, Y. Fang, C. Seneviratne, S.E. Bosinger, D. Persad, P. Wilkinson, L.D. Grifill, R. Somogyi, A. Humar, S. Keshavarz, M. Louie, M.B. Loeb, J. Brunton, A. J. McGeer, D.J. Kelvin, Interferon-mediated immunopathological events are associated with atypical influenza and adaptive immune responses in patients with severe acute respiratory syndrome, J. Virol. 81 (2007) 8692–8706, https://doi.org/10.1128/jvi.00527-07.

E.S. Kim, P.G. Cho, W.B. Park, H.S. Oh, E.J. Kim, E.Y. Nam, S.H. Na, M. Kim, K. Song, H.J. Bang, S.W. Park, H. Kim, N.J. Kim, M.D. Oh, Clinical progression and cytokine profiles of middle eastern respiratory syndrome coronavirus infection, J. Korean Med. Sci. 36 (2021) 1717–1725, https://doi.org/10.3345/jkms.2021.36.17.1717.

K. Goklagamana, A. H. Schindewolf, R. Rajhatha, V.D. Menachery, SARS-CoV-2 is sensitive to type I interferon pretreatment, bioRxiv 21 (2020) 1–9, https://doi.org/10.1101/2020.03.07.982264.

E. Mantlo, N. Bukreyeva, J. Maruyama, S. Paesler, C. Huang, Antiviral activities of double interferons to treat SARS-CoV-2 infection, Antiviral Res. 179 (2020) 718846, https://doi.org/10.1016/j.antiviral.2020.104811.

A.H. de Wilde, V.S. Raj, D. Oudshoorn, T.M. Besteboero, S. van Nieuwkoop, R.W.A.L. Limpens, C.C. Posthumus, Y. van de Meir, M. Barcena, B.L. Haagmans, E.J. Kleijer, B.G. van den Brand, M. Modak, M. Kim, P. Haas, B.J. Polacco, H. Braberg, J.M. Fabius, M. Eckhardt, M. Kaake, A.L. Richards, B. Tutuncuoglu, H. Foussard, J. Batra, K. Haas, J. O’Brien, J. Yu, H. Zhu, P. Li, J. Liu, H. Qiu, J. Zhang, A. A. Alling, J. Zhou, J. Chen, K. Lou, S.A. Dai, T. Vallet, A. Mac Kain, L. Miorin, E. Moreno, Z.Z.C. Naing, Y. Zhou, S. Peng, M. Roberto, A.R. Sanchez-Paulete, J. Shang, D. Lozano-Ojalvo, G. Lubitz, A. Magen, Z. Mahmood, G. Martinez-Delgado, P. Hamon, E. Humblin, D. Hodge, W. Poomipak, N. Hiraunkam, T. Pitikun, Comprehensive proteomics identification of IFNα3-regulated antiviral proteins in HBV-transfected cells, Mol. Cell Proteomics 17 (2018) 2197–2205, https://doi.org/10.1074/mcp.M118.002190.

A. García-Sastre, Ten strategies of interferon evasion by viruses, Cell Host Microbe 22 (2017) 176–184, https://doi.org/10.1016/j.chom.2017.07.012.

B.L. Haagmans, T. Kuiken, P. G. M. Van Deun, D. Van Riel, M. de Jong, S. Itamura, K.H. Chan, M. Tashiro, A. D.M.E. Osterhaus, Pegylated interferon-α protects type I pneumocytes against SARS coronavirus infection in macaques, Nat. Med. 10 (2004) 290–293, https://doi.org/10.1038/nm1201.

E.L. Galani, V. Triantafyllia, E.E. Eleminadou, O. Kotsiada, A. Stavropoulou, M. Manioudaki, D. Thanos, S.E. Doyle, S.V. Kotenos, K. Thanopoulou, E. Andreoukas, Interferon-α mediates non-redundant front-line antiviral protection against influenza virus infection without compromising host fitness, Immunity 46 (2017) 875–890, https://doi.org/10.1016/j.immuni.2017.04.025, e6.

Y.J. Jeon, C.H. Gil, A. Jo, J. Won, S. Kim, H.J. Kim, The influence of interferon-lambda treatment in restricting SARS-CoV-2 Respiratory Syndrome Coronavirus replication in the respiratory epithelium, Antivir. Res. 180 (2020) 104860, https://doi.org/10.1016/j.antiviral.2020.104860.

K.-Y.T. Jasper Fuk-Woo Chan, Yanfeng Yao, Man-Lung Yeung, Wei Deng, Liliang Cho, Litong Ju, Shengbao Che, Shaoxuan Peng, Xiao Huang, Gaoyu Yu, Jin-Piao Cai, Hin Chiu, Ze Houlong, Chen Qian, Treatment with Lopinavir / ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset, J. Infect. Dis. 212 (2015) 1904–1913, https://doi.org/10.1093/infdis/jiv922.

D. Falzarano, E. De Wit, A.L. Rasmussen, F. Feldmann, A. Okumura, D.P. Scott, D. Brining, T. Bushmaker, C. Martello, L. Baseler, A.G. Bencsek, M.G. Katze, V. J. Munster, H. Feldmann, Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected macaque models, Nat. Med. 19 (2013) 1313–1317, https://doi.org/10.1038/nm.3362.

B.J. Hart, J. Dydl, E. Postnikova, H. Zhou, J. Kindrachuk, R.F. Johnson, G. G. Olinger, M.B. Frieman, M.R. Holbrook, P.B. Janharing, L. Hensley, Interferon-α and interferon-γ enhance the ability of human interferon-α in suppressing SARS coronavirus in cell-based assays, J. Gen. Virol. 95 (2014) 571–577, https://doi.org/10.1099/jgv.0.061910.1.

T.P. Sheahan, A.C. Sims, S.R. Leit, A. Schäfer, J. Won, A.J. Brown, S.A. Wisomoma, A.H. Babu, M.O. Clarke, J.J. G. O’Brien, J. S. Fox, D. Lu, J. Donn, D. Porter, J.Y. Feng, T. Cihlar, R. Jordan, M.R. Denison, R.S. Baric, Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV, Nat. Commun. 11 (2020) 41467, https://doi.org/10.1038/s41467-020-18277-w.

L. Dong, S. Hu, J. Gao, Discovering drugs to treat coronavirus disease 2019 (COVID-19), Drug Discov. Ther. 14 (2020) 58–60, https://doi.org/10.5582/ddt.2020.01020.

H. Lu, Drug treatment options for the new 2019-coronavirus (2019-nCoV), Biosci. Trends 14 (2020) 69–71, https://doi.org/10.5582/bts.2020.01020.

Z. Meng, T. Wang, C. Li, X. Chen, L. Li, X. Qin, H. Li, J. Luo, An Experimental trial of recombinant human interferon β2b in Middle East Respiratory Syndrome coronavirus disease 2019 in medical staff in an epidemiatic area, medRxiv (2020), https://doi.org/10.1101/2020.06.01.20110647, 2020.06.01.20110647.
[74] I.F.N. Hung, K.C. Lung, E.Y.K. Tso, W. Huang, C.H. Tang, M.S. Wu, W. Tsai, M.K. Lin, Y.Y. Ng, P. Xu, J. Huang, Z. Fan, W. Huang, M. Qi, X. Lin, W. Song, L. Yi, Arbidol/IFN-α2b therapy for patients with coronavirus disease 2019: a retrospective multicenter cohort study, Microbes Infect. 22 (2020) 200–205, https://doi.org/10.1016/j.micinf.2020.08.007.

E. Gencimorel, M. Davutoglu, E.E. Ozdemir, A. Erdem, Are type 1 interferon treatments in Multiple Sclerosis as a potential therapy against COVID-19? Mult. Scler. Relat. Disord. 42 (2020) 102196, https://doi.org/10.1016/j.msard.2020.102196.

R.M. El-Lababidi, M. Mooy, M.-F. Bonilla, N.M. Salem, Treatment of severe pneumonia due to COVID-19 with peginterferon alfa 2a, IDCases 21 (2020) e80877, https://doi.org/10.1016/j.idcases.2020.09.003.

F. Dastan, S.A. Nadji, A. Saffaei, M. Marjani, A. Moniri, H. Jamaati, S.M. Baker, Coronavirus nonstructural protein 15 mediates evasion of dsRNA endonucleolytic cleavage, PLoS Pathog. 7 (2011) 22174690, https://doi.org/10.1371/journal.ppat.1002867.

J. Klinkhammer, D. Schne, L. Ye, M. Schwaedler, H.H. Gad, R. Hartmann, D. Garcin, T. Mahlak, P. Saheb, IFN-α inhibits influenza virus spread from the upper airways to the lungs and limits virus transmission, Elife 7 (2018) e35454, https://doi.org/10.7554/eLife.35454.

S. Davidson, T.M. McCabe, S. Crotta, H.H. Gad, E.M. Hessel, S. Beinke, E. Kindler, V. Thiel, SARS-CoV and IFN: Too Little, Too Late, Cell Host Microbe 19 (2021) 157–163, https://doi.org/10.1016/j.chom.2020.08.012.

S. Zolghadri, Targeting SARS-COV-2 non-structural protein 16: a virtual drug repurposing study, J. Biomol. Struct. Dyn. (2020) 1-14, https://doi.org/10.1080/07391102.2020.1779133.

B.M. Bakadia et al., Biomedicine & Pharmacotherapy 133 (2021) 111008.
Biomedicine & Pharmacotherapy 133 (2021) 111008

P. Horby, M. Mathai, L. Linsell, et al., Effect of hydroxychloroquine in hospitalized patients with COVID-19: preliminary results from a multi-centre, randomized, open label trial, medRxiv (2020), https://doi.org/10.1101/2020.07.15.20151882.

[154] M. Million, J.-C. Lagier, P. Gautret, P. Colson, P.-E. Fournier, L. Linsell, et al., Effect of hydroxychloroquine in COVID-19 patients with at least a six-day follow up: a pilot observational study, Travel Med. Infect. Dis. 34 (2020) 101663, https://doi.org/10.1016/j.tmaid.2020.101663.

[156] M. Million, J.-C. Lagier, P. Gautret, P. Colson, P.-E. Fournier, S. Amrane, M. Argimon, J. Casabona, G. Cuatrecasas, P. Cañadas, A. Cortegiani, M. Ippolito, G. Ingoglia, P. Iozzo, A. Giarratano, S. Einav, I. Update, Chloroquine dosage regimens in patients with mild to moderate coronavirus disease 2019: open label, randomised controlled trial, BMJ 369 (2020) m1849, https://doi.org/10.1136/bmj.m1849.

[157] R.L. Mitra, S.A. Greenstein, L.M. Epstein, An algorithm for managing QT prolongation in coronavirus disease 2019 (COVID-19) patients treated with either chloroquine or hydroxychloroquine in conjunction with azithromycin: possible benefits of intravenous lidocaine, Heart Case Rep. 6 (2020) 244–248, https://doi.org/10.1136/heartcaserep-2020-001361.

[158] J.M. Molina, C. Delaugerre, J. Le Goff, B. Mela-Lima, D. Ponscarme, L. Goldwirt, R. Fabregat, M. Farré, J. Banchereau, S. Hong, B. Cantarel, N. Baldwin, J. Baisch, M. Edens, A.-M. S. Borba, F.F.A. Val, V.S. Sampaio, M.A.A. Alexandre, G.C. Melo, M. Brito, M. Cepika, P. Acs, J. Turner, E. Anguiano, P. Vinod, S. Khan, G. Obermoser, M. G. S. Lacerda, CloroCovid-19 Team, Effect of high vs low doses of chloroquine and hydroxychloroquine with or without azithromycin, Lancet Infec. Dis. 34 (2020) 101663, https://doi.org/10.1016/S1473-3099(20)30361-3.

[159] A. Gérard, S. Romani, A. Fresse, D. Viard, N. Parassol, A. Granvilleneuf, L. Chouschana, B. Chabrun, C. P. Skipper, M. D. M. Drancourt, French Pharmacovigilance Centers, ‘Off-label’ use of hydroxychloroquine, azithromycin, lopinavir-ritonavir and chloroquine in COVID-19: a survey of cardiac adverse drug reactions by the French Network of Pharmacovigilance Centres, Therapie 800405-5970 (2020) 20991-20993, https://doi.org/10.5454/med.2020.06.001.

[160] J.M. Molina, C. Delaugerre, J. Le Goff, B. Mela-Lima, D. Ponscarme, L. Goldwirt, N. de Castro, No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection, Med. Mal. Infect. 50 (2020) 384, https://doi.org/10.1016/j.medmal.2020.03.006.

[161] W. Tang, Z. Cao, M. Han, Z. Wang, J. Chen, W. Sun, Y. Wu, W. Xiao, S. Liu, E. Chen, W. Chen, X. Wang, J. Yang, J. Lin, Q. Zhao, Y. Yan, Z. Xie, D. Li, Y. Yang, L. Liu, J. Gu, Q. Ning, G. Shi, X. Xie, Chloroquine monotherapy in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial, BMJ 369 (2020) m1849, https://doi.org/10.1136/bmj.m1849.

[162] R. Boulware, Hydroxychloroquine in Nonhospitalized Adults With Early COVID-19 Prophylaxis for Covid-19, N. Engl. J. Med. 383 (2020) 517–525, https://doi.org/10.1056/NEJMoa2012410.

[163] J. Magagnoli, S. Narendran, F. Pereira, T.H. Cummings, J.W. Hardin, S.S. Sutton, J. Ambati, Outcomes of hydroxychloroquine usage in United States veterans hospitalized with COVID-19, Med. (2020), https://doi.org/10.1016/j.međ.2020.06.001.

[164] J. Geleris, Y. T. Chang, E. J. Platt, J. Zucker, M. Baldwin, G. Hripcsak, A. Labella, D. J. Magagnoli, S. Narendran, F. Pereira, T. H. Cummings, J. W. Hardin, S. S. Sutton, J. Ambati, Outcomes of hydroxychloroquine usage in United States veterans hospitalized with COVID-19, Med. (2020), https://doi.org/10.1016/j.međ.2020.06.001.

[165] M. Million, J.-C. Lagier, P. Gautret, P. Colson, P.-E. Fournier, S. Amrane, M. Argimon, J. Casabona, G. Cuatrecasas, P. Cañadas, A. Cortegiani, M. Ippolito, G. Ingoglia, P. Iozzo, A. Giarratano, S. Einav, I. Update, Chloroquine dosage regimens in patients with mild to moderate coronavirus disease 2019: open label, randomised controlled trial, BMJ 369 (2020) m1849, https://doi.org/10.1136/bmj.m1849.

[166] J. Banchereau, J. Rossello-Urgell, T. Wright, V. Pascual, Personalized Immunotherapy Reduces Disease, Disability, Death and Inequity Worldwide, 2011.
infected and passively immunized chimpanzees, Proc. Natl. Acad. Sci. U. S. A. 86 (1989) 4710-4714, https://doi.org/10.1073/pnas.86.12.4710.

[23] A. Bekdah, H. Feldmann, M.W. Mitchell, Antibody-dependent enhancement of eboavirus infection, J. Virol. 77 (2003) 7539-7544, https://doi.org/10.1128/JVI.77.16.7539-7544.2003.

[24] Q. Gao, Q. Bao, H. Mao, L. Wang, K. Xu, M. Yang, Y. Li, L. Zhu, N. Wang, Z. Lv, H. Liu, X. Fei, G. Bai, K. Jiao, L. Liu, X. Li, C. Li, L. Gao, J. Cui, Y. Li, X. Lou, W. Shi, D. Wu, H. Zhang, L. Zhu, W. Deng, Y. Li, J. Lu, C. Li, L. Wang, W. Yin, Y. Zhang, C. Qin, Development of an inactivated vaccine candidate for SARS-CoV-2, Science (80-) (2020) 77-81, https://doi.org/10.1126/science.abc6048.

[25] L. Liu, Q. Wei, Q. Lin, J. Fang, H. Wang, H. Kwock, H. Tang, K. Nishiyura, J. Peng, Z. Tan, T. Wu, K.-W. Chung, K.-H. Chan, X. Alvarez, C. Qin, A. Lacksner, S. Perlman, K.-Y. Yuen, Z. Chen, Anti-Sars-cov-2 antibody activity but not neutralization by low concentrations of antibodies against spike proteins induces severe acute respiratory syndrome coronavirus (SARS-CoV) in children younger than 6 years of age, JCI Insight 4 (2019), e123158, https://doi.org/10.1172/jci.insight.123158.

[26] K.G. Lokugamage, N. Yoshikawa-Iwata, N. Ito, D.M. Watts, P.R. Wyde, N. Wang, P. Newman, C. Te-Tsong, C.J. Peters, S. Makino, Chimeric coronavirus-like particles carrying severe acute respiratory syndrome coronavirus (SARS-CoV) S protein protect mice against challenge with SCoV, Vaccine 26 (2008) 797-808, https://doi.org/10.1016/j.vaccine.2007.11.092.

[27] C. Te-Tsong, E. Shnara, N. Iwata-Yoshikawa, P.C. Newman, T. Rorison, R.L. Atmar, C.J. Peters, R.B. Couch, Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus, PloS One 7 (2012) e54421, https://doi.org/10.1371/journal.pone.0054421.

[28] E.M. Castile, M.R. Olton, S.M. Varga, Understanding respiratory syncytial virus (RSV) vaccine-enhanced disease, Immunol. Rev. 39 (2007) 225-239, https://doi.org/10.1111/j.0105-2896.2007.00716.x.

[29] T. Phan, Genetic diversity and evolution of SARS-CoV-2, Infect. Genet. Evol. 81 (2020), a103924-y, https://doi.org/10.1016/S1873-2999(20)30392-y.
2321 L. Van Dorph, M. Acman, D. Richard, L.P. Shaw, C.E. Ford, I. Head, J.A. Henry, J. Hill, S.H. J. Hamlyn, B. Hanumunthadu, I. Harding, S.A. Harris, A. Harris, D. Harrison, S.J. Dunachie, N.J. Edwards, F.D.L. Edwards, C.J. Edwards, S.C. Elias, M. K. Coy, W.E.M. Crocker, C.J. Cunningham, B.E. Damratoski, L. Dando, M. I. Chelysheva, J.-S. Cho, P. Cicconi, L. Cifuentes, H. Clark, E. Clark, T. Cole, F. Cappuccini, M. Carr, M.W. Carroll, V. Carter, K. Cathie, R.J. Challis, T. Brenner, P.D. Bright, C. Brown-O Truyền, H. Arbe-Barnes, G. Babbage, K. Baillie, M. Baker, P. Baker, I. Baleanu, J. Pollard, J. Aboagye, K. Adams, A. Ali, E. Allen, J.L. Allison, R. Anslow, E. L. Flaxman, B. Hallis, P. Heath, D. Jenkin, R. Lazarus, R. Makinson, A. NEJMoa2028436, https://doi.org/10.1056/NEJMoa2028436.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2 – preliminary report, N. Engl. J. Med. (2020), https://doi.org/10.1056/NEJMoa2028436.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2 – preliminary report, N. Engl. J. Med. (2020), https://doi.org/10.1056/NEJMoa2028436.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.

E. Ledgerwood, B.S. Graham, J.H. Beigel, Safety and immunogenicity of SARS-CoV-2 mRNA vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial, Lancet (2020), https://doi.org/10.1016/S0140-6736(20)31866-3.
L.A.J. O’Neill, M.G. Netea, BCG-induced trained immunity: can it offer protection against COVID-19? Nat. Rev. Immunol. 20 (2020) 335–337, https://doi.org/10.1038/s41577-020-0337-y.

L.G. Stensballe, E. Nante, I.P. Jensen, P.E. Kofoed, A. Poulsen, H. Jensen, M. Newport, A. Marchant, P. Aaby, Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls: community based case-control study, Vaccine 23 (2005) 1251–1257, https://doi.org/10.1016/j.vaccine.2004.09.006.

E.A. Wardhana, A. Datau, V.V. Sultana, E.Jim Mandang, The efficacy of Bacillus calmette-Guerin vaccinations for the prevention of acute upper respiratory tract infection in the elderly, Acta Med. Indones. 43 (2011) 185–190.

T. Ohrui, K. Nakayama, T. Fukushima, H. Chiba, H. Sasaki, Prevention of elderly pneumonia by pneumococcal, influenza and BCG vaccinations, Japanese J. Geriatr. 42 (2005) 34–36, https://doi.org/10.3143/geriatrics.42.34.

A.R. Sharma, G. Batra, M. Kumar, A. Mishra, R. Singla, A. Singh, R.S. Singh, B. Medhi, BCG as a game-changer to prevent the infection and severity of COVID-19 pandemic? Allergol. Immunopathol. (2020) https://doi.org/10.1016/j. aller.2020.05.002.

C.S. Benn, M.G. Netea, L.K. Selin, P. Aaby, A small jab - a big effect: nonspecific immunomodulation by vaccines, Trends Immunol. 34 (2013) 431–439, https://doi.org/10.1016/j.it.2013.04.004.

A. Miller, M.J. Reandelar, K. Fasciglione, V. Roumenova, Y. Li, G.H. Otazu, Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study, medRxiv (2020), https://doi.org/10.1101/2020.03.24.20042937, 2020.03.24.20042937.

L.E. Escobar, A. Molina-Cruz, C. Bartillas-Mury, BCG vaccine protection from severe coronavirus disease 2019 (COVID19), medRxiv 2019 (2020), https://doi.org/10.1101/2020.05.05.20091975, 2020.05.05.20091975.

US National Library of Medicine, Reducing Health Care Workers Absenteeism in Covid-19 Pandemic Through BCG Vaccine (BCG-CORONA), ClinicalTrials.Gov, 2020 (accessed August 6, 2020), https://clinicaltrials.gov/ct2/show/NCT04528441.

US National Library of Medicine, BCG Vaccination for Healthcare Workers in COVID-19 Pandemic, ClinicalTrials.Gov, 2020 (accessed August 6, 2020), https://clinicaltrials.gov/ct2/show/NCT04379936.

US National Library of Medicine, BCG Vaccination to Protect Healthcare Workers Against COVID-19 (BRACE), ClinicalTrials.Gov, 2020 (accessed August 6, 2020), https://clinicaltrials.gov/ct2/show/NCT04327206.