Identification of key genes in calcific aortic valve disease via weighted gene co-expression network analysis

Jin-Yu Sun1†, Yang Hua1†, Hui Shen1, Qiang Qu1, Jun-Yan Kan1, Xiang-Qing Kong1, Wei Sun1* and Yue-Yun Shen2*

Abstract
Background: Calcific aortic valve disease (CAVD) is the most common subclass of valve heart disease in the elderly population and a primary cause of aortic valve stenosis. However, the underlying mechanisms remain unclear.

Methods: The gene expression profiles of GSE83453, GSE51472, and GSE12644 were analyzed by ‘limma’ and ‘weighted gene co-expression network analysis (WGCNA)’ package in R to identify differentially expressed genes (DEGs) and key modules associated with CAVD, respectively. Then, enrichment analysis was performed based on Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, DisGeNET, and TRRUST database. Protein–protein interaction network was constructed using the overlapped genes of DEGs and key modules, and we identified the top 5 hub genes by mixed character calculation.

Results: We identified the blue and yellow modules as the key modules. Enrichment analysis showed that leukocyte migration, extracellular matrix, and extracellular matrix structural constituent were significantly enriched. SPP1, TNC, SCG2, FAM20A, and CDS2 were identified as hub genes, and their expression levels in calcified or normal aortic valve samples were illustrated, respectively.

Conclusions: This study suggested that SPP1, TNC, SCG2, FAM20A, and CDS2 might be hub genes associated with CAVD. Further studies are required to elucidate the underlying mechanisms and provide potential therapeutic targets.

Keywords: Calcific aortic valve disease, Weighted gene co-expression network analysis, Differentially expressed genes, Integrated bioinformatics analysis

Introduction
Calcific aortic valve disease (CAVD) is the most common subclass of valve heart disease in the elderly population and a primary cause of aortic valve stenosis [1]. It was reported that the incidence of aortic valve stenosis was 2% in patients ≥ 65 years old, whereas aortic valve sclerosis occurred in 26% of these patients [2, 3]. Considering the prolonged life expectancy and aging of the population, the burden of CAVD is expected to substantially increase from 2.5 million in 2000 to 4.5 million in 2030 [4], thus conferring a high economic and health burden worldwide [5, 6].

In CAVD, the fibro-calcific remodeling and pathological thickening of the aortic valve disturb pressure overload and hemodynamic stability. The following progressive cardiac outflow obstruction and left ventricular hypertrophy are likely to result in heart failure and even premature death within a few years [4, 7]. Accumulating
studies have revealed that CAVD is a complex multi-stage disease with sequential and interacting processes, including endothelial dysfunction/injury, lipid deposition, inflammation, extracellular matrix remodeling, dystrophic calcification, and so forth [8–10]. However, mechanisms underlying the development or progression of CAVD remain unclear, and there lacks conservative treatment against CAVD. Surgical or transcatheter aortic valve replacement is the only available treatment, while pharmacotherapy beyond valve replacement is still limited [5, 11].

Weighted gene co-expression network analysis (WGCNA) is a bioinformatics algorithm [12], which has been widely applied to explore the changes of transcriptome expression patterns in complex diseases and to identify gene modules associated with clinical features [13–15]. Compared with the standardized analysis of differentially expressed genes (DEGs), WGCNA is a powerful systematic analysis method to recognize the higher-order correlation between genes instead of detecting disease-related individual genes. Our study identified DEGs between calcified and normal aortic valve samples based on the gene expression profiles of GSE83453 and GSE51472, GSE12644. Moreover, WGCNA was performed on the GSE83453 dataset to screen key genes and modules related to CAVD. Then, the enrichment analysis of genes in key modules was used to explore the molecular mechanisms underlying CAVD. Finally, we identified hub genes related to CAVD and establish a protein–protein interaction (PPI) network.

Materials and methods

Microarray data

The gene expression profiles of GSE83453 [16], GSE51472 [17], and GSE12644 [18] were acquired from the Gene Expression Omnibus database. All three gene expression profiles were acquired from human samples. Dataset GSE83453 was performed based on the platform GPL10558 (Illumina HumanHT-12 V4.0 expression beadchip), which includes 9 calcified aortic valve samples and 8 normal aortic valve samples [16]. Series GSE51472 was performed by GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array) and included 5 calcified aortic valve samples and 5 normal aortic valve samples [17]. GSE12644, based on the GPL570 platform, included 10 calcified and 10 normal aortic valve samples (Fig. 1).

Data pre-processing and DEG screening

We performed log2-transformation, background correction, and quantile normalization on the expression profiles of GSE83453, GSE51472, and GSE12644 using the ‘linear models for microarray data (limma)’ package in R 3.6.1 software (R Foundation for Statistical Computing, Vienna, Austria). The probe IDs were converted into gene symbols according to the annotation file. For multiple probes mapping to a single gene, the average expression value of all its corresponding probes was used. Importantly, the batch effect was corrected using the combat function of the ‘SVA’ package, which is a widely used empirical Bayes method for batch correction [19]. To control the false discovery rate caused by multiple testing, the adjusted P-value was applied. After pre-processing, DEGs between calcified and normal aortic valve samples were screened with a threshold of adjusted P-value < 0.05 and |log2 fold-change (FC)| ≥ 0.5 by ‘limma’ package. Furthermore, the DEGs were visualized as a volcano plot and heatmap using ‘ggplot2’ and ‘pheatmap’ package.

Weighted gene co-expression network analysis (WGCNA)

WGCNA is an algorithm for constructing a co-expression network, which reveals the correlation patterns across genes and provides the biologically functional interpretations of network modules. As previously described [20], we selected the top 25% most variant genes in GSE83453 to construct a co-expression network using the ‘WGCNA’ package (version 1.60). After evaluating the presence of obvious outliers by cluster analysis, the one-step network construction function was used to construct the co-expression network and identify key modules. Moreover, to identify the significance of each module, we summarized the module eigengene (ME) based on the first principal component of the module expression, and the module-trait relationships were assessed according to the correlation between MEs and clinical traits. Then, we evaluated the correlation strength by module significance (MS), referring to the average absolute gene significance (GS) of all genes within one module. Notably, the GS value was determined by the log10-transformation of the P-value in the linear regression between expression and clinical traits. In general, the modules with the highest MS values were considered as the key modules.

Furthermore, we used the modulePreservation function to evaluate the preservation levels of key modules. Zsummary analysis combines different preservation statistics into one single overall measure of preservation. According to WGCNA instruction, a higher Zsummary value indicated the stronger the evidence that a module should be preserved: the module with Zsummary value < 2 indicated ‘no evidence’, 2 < Zsummary value < 10 indicated ‘weak evidence’, and Zsummary value > 10 indicated strong evidence. Additionally, to confirm the clustering ability of the key modules, we also performed principal component analysis (PCA) on the gene expression profile of the key modules.
Enrichment analysis of genes in key modules
To understand the biological meaning of the genes in key modules, we used the ‘clusterProfiler’ package to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Moreover, pathway and process enrichment analysis were also conducted and visualized by Metascape [21], a biologist-oriented tool for analyzing systems-level datasets. To illustrate the relationships between the terms, a subset of terms was further selected and rendered as a network plot (with a similarity of > 0.3). Each node represented an enriched term and colored first by its cluster ID. Furthermore, we performed association and enrichment analysis using DisGeNET [22] and TRRUST [23] database and visualized by ‘ggplot2’ package. DisGeNET is a database of gene-disease associations, which collects one of the largest publicly available collections of genes and human diseases-related variants [22]. TRRUST is a manually-curated database of transcriptional regulatory networks based on a sentence-based text mining approach, containing 8444 and 6552 transcription factor-target regulatory relationships of 800 human and 828 mouse transcription factors, respectively [23].

PPI network construction and identification of hub genes
In WGCNA, we defined the genes from key modules with |module membership (MM)| ≥ 0.8 and |GS| ≥ 0.2 as key genes. After overlapping the DEGs and key genes from WGCNA, we inputted these genes into the STRING (http://string-db.org) database to collect the interaction of target proteins with a medium confidence score of >0.4 [24] and constructed a PPI network by Cytoscape software (v3.7.2) [25]. Further, we identified the top 5 hub genes using the Cytoscape plug-in software ‘cytoHubba’ based on mixed character calculation.

The expression of hub genes in calcified or normal aortic valve sample
We compared the expression of hub genes between calcified or normal aortic valves from GSE83453 by Student’s t-test. The ‘ggplot2’ and ‘ggsignif’ packages were used to create the box plots of the expression of hub genes.
Results

DEGs between calcified and normal aortic valve

After data pre-processing of the dataset GSE83453, GSE51472, and GSE1264, we screened DEGs according to the cut-off criterion of adjusted P-value < 0.05 and |log₂ FC| ≥ 0.5. In GSE83453, we identified 269 up-regulated and 170 down-regulated genes. The volcano diagram for all genes and the expression heatmap of the top 10 DEGs are shown in Fig. 2a, b. In GSE51472, 963 genes were up-regulated, and 978 genes were down-regulated (Fig. 2c, d). A total of 28 up-regulated and 11 down-regulated genes were identified in GSE12644 (Fig. 2e, f).

Construction of co-expression network and key modules identification

With a scale-free network and topological overlaps, a hierarchical clustering tree was created based on the dynamic hybrid cut (Fig. 3a). Based on the scale-free topology criterion, the soft-thresholding power of 12 was selected (scale-free R² = 0.88; Fig. 3b, c), and a total of 24
modules were identified for further analysis. In addition, the gray module included all genes that could not be put into any other modules. The cluster dendrogram of the modules is shown in Fig. 3d, whereas the clustering of module eigengenes is provided in Fig. 3e.

Moreover, we analyzed the association of gene modules with CAVD status and age (Fig. 4a). The blue module showed the highest positive correlation ($r = 0.93$, $P = 5e-08$), while the yellow module was the most negatively associated with CAVD ($r = -0.83$, $P = 3e-05$). As shown in Fig. 4b, the blue and yellow modules were also the two most significantly correlated with CAVD. Therefore, we identified the blue and yellow modules as key modules for further analysis. A total of 436 and 82 genes were included in the blue and yellow modules, respectively. Additionally, we illustrated the correlation between module membership and GS for CAVD in blue (correlation coefficient $= 0.91$, $P < 1e-200$) and yellow module (correlation coefficient $= 0.74$, $P = 1.8e-111$), respectively (Fig. 4c, d).

Figure 4e shows the module preservation statistics, and the Z_{summary} values of both blue and yellow modules were >10. The PCA on the genes in blue and yellow modules illustrated the overlap of samples within the CVAD or control groups, which suggested the high-level clustering ability of the key modules (Fig. 4f).

Enrichment analysis of key modules

We performed functional enrichment analysis on the blue and yellow modules based on GO and KEGG databases. As shown in Fig. 5a, the ontology encompasses three domains (biological process, cellular component, and molecular function). The enriched biological processes were mainly involved in leukocyte migration, extracellular structure organization, extracellular matrix organization, T cell activation, cell-substrate adhesion, and renal system development. The cellular components were mainly enriched in the extracellular matrix and collagen-containing extracellular matrix, whereas the enriched molecular functions were mainly involved in extracellular matrix structural constituent. In Fig. 5b, KEGG pathway analysis shows that the human papillomavirus infection and PI3K-Akt signaling pathway were the most enriched pathways, followed by focal adhesion, extracellular matrix-receptor interaction, cell adhesion molecules, and pathogenic *Escherichia coli* infection. In addition, Fig. 5c shows the top 20 clusters of the pathway and process enrichment.
analysis, such as regulation of cell adhesion, regulation of cell projection organization, ossification, collagen metabolic process, and so forth.

Moreover, the enrichment analysis in DisGeNET showed that the genes in key modules were significantly associated with liver cirrhosis, immunologic deficiency syndromes, and pulmonary fibrosis (Fig. 5d). Based on the TRRUST database, we also identified multiple transcription factors associated with the genes in key modules, including SP1, FOS, JUN, ETS1, NFKB1, and RFX5 (Fig. 5e).

PPI network construction and identification of hub genes

With a threshold of $|MM| \geq 0.8$ and $|GS| \geq 0.2$, 252 and 210 key genes were identified from the blue and yellow modules, respectively. After overlapping the DEGs and key genes, a total of 55 genes were screened out (Fig. 6a; Additional file 1: Table 1). The PPI network of these genes is shown in Fig. 6b. Moreover, CytoHubba revealed the top 5 hub genes according to the topological parameters of the interaction network, including secreted phosphoprotein 1 ($SPP1$), tenascin C (TNC), secretogranin II ($SCG2$), family with sequence similarity 20-member A ($FAM20A$), and secreted phosphoprotein 1 ($SPP1$).
Fig. 5 Enrichment analysis of key modules. a Gene ontology and b Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis in blue and yellow modules. The significance of enrichment gradually increases from blue to red, and the size of the dots indicates the number of genes contained in the corresponding pathway. c The network of enriched terms. Each node represents an enriched term and is colored by cluster ID. Nodes sharing the same cluster ID are typically close to each other. d Summary of enrichment analysis in DisGeNET. e Summary of enrichment analysis in TRRUST.
As shown in Fig. 6d, the expression of SPP1, TNC, SCG2, FAM20A, and CD52 was all significantly up-regulated in calcific aortic valve disease.

Discussion

Compared with previous studies [26, 27], we used three gene expression profiles from 24 human calcified aortic valve samples and 23 normal samples, and both expression analysis and weighted co-expression network analysis were applied to identify key genes related to CAVD comprehensively. Our study performed WGCNA to reveal the correlation patterns between genes across samples and interpret the straightforward biological function of gene network modules. We also used multiple databases in the enrichment analysis to explore the possible mechanisms underlying CAVD, including GO, KEGG, DisGeNET, and TRRUST databases. Notably, the batch effect was corrected using an empirical Bayes framework in our study.

CAVD is a chronic inflammatory disease sharing similar pathogenesis with atherosclerosis [9]. The sterile inflammation in all stages of CAVD is accompanied by extensive immune cell infiltration (such as macrophages, T cells, and mast cells) [28–31]. In this process, cell adhesion molecules facilitate their adhesion and transendothelial migration via interacting with the ligands on the immune cells [32, 33]. The GO analysis revealed that leukocyte migration, extracellular structure organization, extracellular matrix organization, T cell activation, and cell-substrate adhesion were significantly enriched. These invading immune cells release pro-fibrotic and pro-inflammatory cytokines, contributing to the reactive oxygen species production, mast cell degranulation, and synthesis of valvular extracellular matrix [34], thus ultimately increasing valve thickness. Among the many cytokines, TNF-α has been demonstrated as a particularly important regulator in CAVD that triggers the transition of valvular smooth muscle cells and myofibroblasts to myofibroblasts via activating Wnt pathway activation.
and increasing ALP, BMP-2, and RUNX2 expression [35–37]. However, the role of other pro-fibrotic and pro-inflammatory cytokines remains limited.

TNC, also named Tenascin-C, is a large extracellular matrix glycoprotein and the main component of extracellular matrix-induced dynamic mechanical stress [38]. Our study showed that TNC was significantly up-regulated in calcified aortic valves. TNC is transiently present during extracellular matrix remodeling and is involved in cell differentiation, proliferation, and migration [39]. In healthy valves, TNC was primarily distributed on the basement membrane beneath the endothelial cells, whereas senescent valves exhibited no such distribution but immunoreactivity in the deeper layers, especially in calcific nodules [40]. Interestingly, TNC has been demonstrated to induce phenotypic changes of fibroblasts to myofibroblasts in human breast cancer. Moreover, TNC is also reported to be detrimental in cardiac fibrotic remodeling and hypertrophy after myocardial infarction, probably via up-regulating angiotensin-converting enzyme [41, 42].

In CAVD, a disorganized and disrupted valvular extracellular matrix is susceptible to the dystrophic calcification induced by calcium and phosphate deposits. Activated valve interstitial cells may differentiate into myofibroblasts and osteoblasts, contributing to the fibrosis and ossification of the aortic valve, respectively [43, 44]. SPP1 (also termed osteopontin) plays a central role in the progression of biomineralization, which accelerates reparative fibrosis and contributes to the differentiation of valvular interstitial cells into osteoblasts [45–47]. Consistent with our research, multiple studies have revealed an elevated SPP1 expression in calcified aortic valves compared with healthy valves [48, 49]. Vadana et al. [50] analyzed the high glucose-induced calcification on gelatin-populated 3D constructs with human valvular extracellular matrix protein SPP1 could contribute to the differentia- tion based on the current dataset would be unreliable. First, the paucity of confirmatory experiments is a significant limitation. Considering the accumulating publically available disease-related gene expression profiles, it would be necessary to perform a comprehensive analysis and make full use of the existing resources economically and effectively. However, a further mechanism investigation based on the current dataset would be unreliable. Therefore, this study is descriptive without mechanism research, and further molecular biology experiments would be necessary to validate the results of the present study. Second, all samples were derived from male
individuals. Given the sex-dependent features of CAVD [68], the sex-unbalanced samples are likely to result in selection bias. Third, although a total of 47 samples were used for analysis, the input data might still be insufficient to identify and validate key genes in the CAVD development.

Conclusions

This study suggested that SPP1, TNC, SCG2, FAM20A, and CD52 might be key genes associated with the development and progression of CAVD. Further studies are required to elucidate the underlying mechanisms and provide possible therapeutic targets.

Abbreviations

CAVD: Calcific aortic valve disease; WGCNA: Weighted gene co-expression network analysis; DEG: Differentially expressed gene; GO: Gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPi: Protein-protein interaction; ME: Module eigengene; MS: Module significance; GS: Gene significance; PCA: Principal component analysis.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s12920-021-00989-w.

Acknowledgements

Mr. Jin-Yu Sun congratulated Dr. Shan-Shan Li on her graduation. Wish her a bright future.

Authors' contributions

Conceptualized and designed the study: JYS, YH, WS and YYS; Data analysis: JYS, QQ and JYH; Wrote the paper: JYS and XQK. All authors read and approved the final manuscript.

Funding

None.

Availability of data and materials

All the data were acquired from the Gene Expression Omnibus (GEO) database.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 5 February 2021 Accepted: 17 May 2021 Published online: 21 May 2021

References

1. Iung B, Vahanian A. Epidemiology of acquired valvular heart disease. Can J Cardiol. 2014;30(9):962–70.
2. Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottlieber JS, Smith VE, et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol. 1997;29(3):630–40.
3. Vahanian A, Alfieri O, Andreotti F, Antunes MJ, Baron-Esquivias G, Baumgartner H, et al. Guidelines on the management of valvular heart disease (version 2012): the Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur J Cardiothorac Surg. 2012;42(4):S1–44.
4. Yutzey KE, Derner LL, Body SC, Huggins GS, Towler DA, Giachelli CM, et al. Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler Thromb Vasc Biol. 2014;34(11):2387–93.
5. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Ervin JP 3rd, Fleisher LA, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017;70(2):252–89.
6. Thaden JJ, Nikomo VT, Enriquez-Sarano M. The global burden of aortic stenosis. Prog Cardiovasc Dis. 2014;56(8):565–71.
7. Lindman BR, Clavel MA, Mathieu P, Iung B, Lancellotti P, Otto CM, et al. Calcific aortic stenosis. Nat Rev Dis Primers. 2016;2(2):16006.
8. Mathieu P, Boulanger MC. Basic mechanisms of calcific aortic valve disease. Can J Cardiol. 2014;30(9):982–93.
9. Kostyuhn AE, Yuzhalin AE, Ovcharenko EA, Kutikhin AG. Development of immune and neutrophil-related gene networks in peripheral blood: a gene expression profile of normal and calcified stenotic human aortic valves. Mol Cell Cardiol. 2019;132:189–209.
10. Towler DA. Molecular and cellular aspects of calcific aortic valve disease. Circ Res. 2013;113(2):198–208.
11. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Ervin JP 3rd, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(22):2438–88.
12. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;29:59.
13. Wittenberg GM, Greene J, Vertes PE, Drevets WC, Bullmore ET. Major depressive disorder is associated with differential expression of innate immune and neutrophil-related gene networks in peripheral blood: a quantitative review of whole-genome transcriptional data from case-control studies. Biol Psychiatry. 2020;88:625.
14. Furusawa H, Cardwell JH, Okamoto T, Walts AD, Konigsberg JR, Kurche JS, et al. Chronic hypersensitivity pneumonitis, an interstitial lung disease with distinct molecular signatures. Am J Respir Crit Care Med. 2020;202:1430–44.
15. Wang G, Yu J, Yang Y, Liu X, Zhao X, Guo X, et al. Whole-transcriptome sequencing uncovers core regulatory modules and gene signatures of human fetal growth restriction. Clin Transl Med. 2020;9(1):9.
16. Guauque-Olarте S, Driot A, Tremblay-Marchand J, Gaudreault N, Kalavrouziotis D, Dagenais F, et al. RNA expression profile of calcified bicuspid, tricuspid, and normal human aortic valves by RNA sequencing. Physiol Genomics. 2016;48(10):749–61.
17. Ohukainen P, Syvaranta S, Napankasangs J, Rajamaki K, Taskinen P, Peltonen T, et al. MicroRNA-125b and chemokine CCL4 expression are associated with calcific aortic valve disease. Ann Med. 2015;47(5):423–9.
18. Boisse Y, Miqdad A, Fournier D, Pepin A, Pibarot P, Mathieu P. Refining molecular pathways leading to calcific aortic valve stenosis by studying gene expression profile of normal and calcified stenotic human aortic valves. Circ Cardiovasc Genet. 2009;2(5):489–98.
19. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.
20. Yuan Y, Chen J, Wang J, Xu M, Zhang Y, Sun P, et al. Identification hub genes in colorectal cancer by integrating weighted gene co-expression network analysis and clinical validation in vivo and vitro. Front Oncol. 2020;10:638.
21. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

22. Pinero J, Bravo A, Queralt-Rosich N, Guiterrez-Sacristan A, Deu-Pons J, Centeno E, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017;45(D1):D833–9.

23. Han H, Cho JW, Lee S, Yun A, Kim H, Eae D, et al. TTRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46(D1):D380–6.

24. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.

25. Shapshay L, Parkel A, O’Flaherty A, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2496–504.

26. Teng P, Xu X, Ni C, Yan H, Sun Q, Zhang E, et al. Identification of key genes in calcific aortic valve disease by integrated bioinformatics analysis. Medicine (Baltimore). 2020;99(29):e21286.

27. Zhang Y, Ma L. Identification of key genes and pathways in calcific aortic valve disease by bioinformatics analysis. J Thorac Dis. 2019;11(12):5417–26.

28. Edep ME, Shirani J, Brown DL. Matrix metalloproteinase expression and cell proliferation in calcific aortic valve stenosis. J Am Coll Cardiol. 2000;36(7):205–11.

29. Al-Aly Z, Shao JS, Lai CF, Huang E, Cai J, Behrmann A, et al. Aortic Msx2−/− mice exhibit accelerated aortic valve calcification potential. Am J Pathol. 2009;174(3):1109–19.

30. Spirina K, Endo J, Kataoka M, Katsumata Y, Arzani A, Moriyama H, et al. MetRTK and ERK activation are essential for the functional maturation of osteopontin-producing reparative macrophages after myocardial infarction. J Am Heart Assoc. 2020;9:e017071.

31. Olsson M, Dalsgaard CJ, Haegerstrand A, Rosenqvist M, Ryden L, Nilsen J, et al. Molecular mechanisms involved in high glucose-induced valve calcification in a 3D valve model with human valvular cells. J Cell Mol Med. 2020;24(11):6350–61.

32. Muller WA. Mechanisms of transendothelial migration of leukocytes. Circ Res. 2009;105(2):223–30.

33. Chen Y, Yeh Y, Noy A, Gavrilova O, Gorenstein A, et al. The transcription factor CCAAT/enhancer-binding protein β controls matrix metalloproteinase expression and matrix metalloproteinase activity in human aortic valve myofibroblasts: a potential regulatory mechanism of valvular disease. Int J Mol Med. 2020;45(1):49–70.

34. Heide KB. Regulatory peptides from chromogranin A and secretogranin II: putative modulators of cells and tissues involved in inflammatory conditions. Regul Pept. 2010;161(1):45–51.

35. Shirakawa K, Endo J, Kataoka M, Katsumata Y, Arzani A, Moriyama H, et al. Secretoneurin—a novel link between the Wnt calcification cascade and ROCK controls matrix synthesis in vascular smooth muscle cells: coupling vasconstriction to vascular remodeling. Circ Res. 2006;99(8):837–44.

36. Al-Aly Z, Shao JS, Lai CF, Huang E, Cai J, Behrmann A, et al. Aortic Msx2−/− mice exhibit accelerated aortic valve calcification potential. Am J Pathol. 2009;174(3):1109–19.

37. Al-Aly Z, Shao JS, Lai CF, Huang E, Cai J, Behrmann A, et al. Aortic Msx2−/− mice exhibit accelerated aortic valve calcification potential. Am J Pathol. 2009;174(3):1109–19.

38. Albrecht-Schoer K, Schoer W, Hoffeld J, Thurler M, Wiedemann D, Steger C, et al. The angiogenic factor secretoneurin induces coronary angiogenesis in a model of myocardial infarction by stimulation of vascular endothelial growth factor signaling in endothelial cells. Circulation. 2012;126(2):2491–501.

39. Kossar AP, Anselmo W, Grau JB, Liu Y, Small A, Carter SL, et al. Circulating and tissue matrixcellular RNA and protein expression in calcific aortic valve disease. Physiol Genomics. 2020;52(4):191–9.

40. Monzack EL, Masters KS. Can valvular interstitial cells become true osteoblasts? A side-by-side comparison. J Heart Valve Dis. 2011;20(4):449–63.

41. Tanaseichuk O, Jiang X, Tanaseichuk O, Jan B, McKeever T, et al. Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res. 2018;111(1):190–9.

42. Ishiyama Y, Gallagher PE, Averill DB, Tallant EA, Brosnihan KB, Ferrario MC. Secretoneurin exerts a direct effect on arteriogenesis in vivo and in vitro. Anat Rec (Hoboken, NJ: 2007). 2009;301(11):1917–27.

43. Weiss RM, Miller JD, Heistad DD. Fibrocalcific aortic valve disease: opportunities to understand disease mechanisms using mouse models. Circ Res. 2013;113(2):209–22.

44. Schellings MW, Pinto YM, Heymans S. Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res. 2004;64(1):24–31.

45. Sanna D, Melkko J, Pollanen T, Tuukkanen J, Pakkao P, Ohtonen P, et al. Progression of human aortic valve stenosis is associated with tenascin-C expression. J Am Coll Cardiol. 2002;39(1):96–101.

46. Ishiyama Y, Gallagher PE, Averill DB, Tallant EA, Brosnihan KB, Ferrario MC. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension (Dallas, Tex. 1979). 2001;37(5):570–6.

47. Albrecht-Schoer K, Schoer W, Hoffeld J, Thurler M, Wiedemann D, Steger C, et al. The angiogenic factor secretoneurin induces coronary angiogenesis in a model of myocardial infarction by stimulation of vascular endothelial growth factor signaling in endothelial cells. Circulation. 2012;126(2):2491–501.

48. Liu W, Wang F, Zhao M, Fan Y, Cai W, Luo M. The neuropeptide secretoneurin exerts a direct effect on arteriogenesis in vivo and in vitro. Anat Rec (Hoboken, NJ). 2007;301(11):1917–27.

49. Schellings MW, Pinto YM, Heymans S. Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res. 2004;64(1):24–31.

50. Sanna D, Melkko J, Pollanen T, Tuukkanen J, Pakkao P, Ohtonen P, et al. Progression of human aortic valve stenosis is associated with tenascin-C expression. J Am Coll Cardiol. 2002;39(1):96–101.

51. Schellings MW, Pinto YM, Heymans S. Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res. 2004;64(1):24–31.

52. Sanna D, Melkko J, Pollanen T, Tuukkanen J, Pakkao P, Ohtonen P, et al. Progression of human aortic valve stenosis is associated with tenascin-C expression. J Am Coll Cardiol. 2002;39(1):96–101.
64. Jaureguiberry G, de la Dure-Molla M, Parry D, Quentin M, Himmerkus N, Koike T, et al. Nephrocalcinosis (enamel renal syndrome) caused by autosomal recessive FAM20A mutations. Nephron Physiol. 2012;122(1–2):1–6.
65. Zhao Y, Su H, Shen X, Du J, Zhang X, Zhao Y. The immunological function of CDS2 and its targeting in organ transplantation. Inflamm Res. 2017;66(7):571–8.
66. Krishnaswamy JK, Alsen S, Yrlid U, Eisenbarth SC, Williams A. Determination of T follicular helper cell fate by dendritic cells. Front Immunol. 2018;9:2169.
67. Rashidi M, Bandala-Sanchez E, Lawlor KE, Zhang Y, Neale AM, Vijayaraj SL, et al. CDS2 inhibits Toll-like receptor activation of NF-kappaB and triggers apoptosis to suppress inflammation. Cell Death Differ. 2018;25(2):392–405.
68. Summerhill VI, Moschetta D, Orekhov AN, Poggio P, Myasoedova VA. Sex-specific features of calcific aortic valve disease. Int J Mol Sci. 2020;21(16):5620.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.