Electronic Supplementary Information

Formation and Photochemical Properties of Aqueous Brown Carbon through Glyoxal Reactions with Glycine

Yan Gao¹ and Yunhong Zhang*¹

School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

School of Materials and Chemical Engineering, Bengbu College, Bengbu 233030, China.
FTIR measurements of the samples were carried out by using a Thermo Scientific Nicolet 10 spectrometer, over 4000-400 cm⁻¹, at a resolution of 0.4 cm⁻¹.

Raman spectra of the brown carbon samples were recorded by the method similar to that reported by Wang et al. Brown carbon samples were discharged from a syringe. Then, the residual solutions in the syringe were pushed rapidly to generate aerosol droplets spraying onto a polytetrafluoroethylene (PTFE) substrate fixed to the bottom of the sample cell. The sample cell was promptly sealed with a transparent polyethylene film. Lastly, the aqueous brown carbon droplets with diameters of 30-40 µm detected by using an optical microscope (50 × objective, 0.75 numerical aperture) were selected to acquire Raman spectra.

FTIR spectral properties

FTIR spectra of Gly and the GX-Gly mixtures after subtracting the baseline are shown in Fig. S1. In this region, there are several peaks that can be assigned to the corresponding functional groups of Gly: \(\nu(\text{CN}) \) due to \(\sim 1092 \text{ cm}^{-1} \), \(\nu(-CH_2) \) due to \(\sim 1337 \text{ cm}^{-1} \), \(\nu_s(-COO^-) \) and \(\sim 1620 \text{ cm}^{-1} \) due to \(\omega(-NH_3^+) \). The FTIR spectra of Gly and the GX-Gly mixtures have very similar size distributions. Therefore, FTIR spectrum is unsuitable for detecting the formation of this kind of brown carbon mixtures.

![FTIR spectra of glycine (Gly) and the aqueous brown carbon aerosol from the GX-Gly mixtures.](image)

Fig. S1 FTIR spectra of glycine (Gly) and the aqueous brown carbon aerosol from the GX-Gly mixtures.
Raman spectroscopy

Fig. S2 shows vibrational spectra of the un-reacted Gly and the brown carbon samples of the GX-Gly mixtures that were reacted for 23 days. In this region, the characteristic vibrational bands observed at 733 and 1384 cm$^{-1}$ are from the PTFE. The peaks that can be assigned to Gly include: ~895 cm$^{-1}$ due to ν(CC) + ν(CN), ~1332 cm$^{-1}$ due to ω(CH$_2$) + ν(CN), ~1414 cm$^{-1}$ due to ν(COO) + ν(CC), ~1631 cm$^{-1}$ due to δ(NH$_3$) + ν(COO), ~2972 cm$^{-1}$ due to ν(δ(CH$_2$), ~3011 cm$^{-1}$ due to ν(δ(CH$_2$)). No visible difference is observed in the Raman spectra of the samples studied.

![Raman spectra of Gly and the aqueous brown carbon from the GX-Gly mixtures.](image)

Notes and references

1. X. Wang, B. Jing, F. Tan, J. Ma, Y. Zhang and M. Ge, Atmos. Chem. Phys., 2017, 17, 12797-12812.
2. Y. Yu and S. Liu, Chemistry (Huaxue Tongbao), 2006, 4, 282-286.
3. Z. Li, M. Zhang and Y. Zhao, Journal of Baoji College of Arts and Sciences (Natural Science), 1994, 2, 101-104.
4. J. L. Koenig and F. J. Boerio, J. Chem. Phys., 1969, 50, 2823-2829.
5. H. Yang, W. Xia, J. Feng, X. Wu, G. Wang and Z. Zhang, Spectronic Instruments & Analysis, 2011, 2, 1-5.
6. Y. Sun, J. Yang, J. Zhang, K. Zhu and X. Liang, Acta. Biophysica. Sinica., 1993, 9, 16-19.
7. X. Li, Journal of Atomic and Molecular Physics, 2016, 33, 603-607.