Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication

Yongfeng Zhou, Mélanie Massonnet, Jaleal S. Sanjak, Dario Cantù, and Brandon S. Gaut

*Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697; and †Department of Viticulture and Enology, University of California, Davis, CA 95616

Edited by Andrew G. Clark, Cornell University, Ithaca, NY, and approved September 25, 2017 (received for review June 5, 2017)

We gathered genomic data from grapes (Vitis vinifera ssp. vinifera), a clonally propagated perennial crop, to address three ongoing mysteries about plant domestication. The first is the duration of domestication; archaeological evidence suggests that domestication occurs over millennia, but genetic evidence indicates that it can occur rapidly. We estimated that our wild and cultivated grape samples diverged ~22,000 years ago and that the cultivated lineage experienced a steady decline in population size (N_e) thereafter. The long decline may reflect low-intensity management by humans before domestication. The second mystery is the identification of genes that contribute to domestication phenotypes. In cultivated grapes, we identified candidate-selected genes that function in sugar metabolism, flower development, and stress responses. In contrast, candidate-selected genes in the wild sample were limited to abiotic and biotic stress responses. A genomic region of high divergence corresponded to the sex determination region and included a candidate male sterility factor and additional genes with sex-specific expression. The third mystery concerns the cost of domestication. Annual crops accumulate putatively deleterious variants, in part due to strong domestication bottlenecks. The domestication of perennial crops differs from that of annuals in several ways, including the intensity of bottlenecks, and it is not yet clear if they accumulate deleterious variants. We found that grape accessions contained 5.2% more deleterious variants than wild individuals, and these were more often in a heterozygous state. Using forward simulations, we confirm that clonal propagation leads to the accumulation of recessive deleterious mutations but without decreasing fitness.

Significance

We generated genomic data to estimate the population history of grapes, the most economically important horticultural crop in the world. Domesticated grapes experienced a protracted, 22,000-y population decline prior to domestication; we hypothesize that this decline reflects low-intensity cultivation by humans prior to domestication. Domestication altered the mating system of grapes. The sex determination region is detectable as a region of heightened genetic divergence between wild and cultivated accessions. Based on gene expression analyses, we propose candidate genes that alter sex determination. Finally, grapes contain more deleterious mutations in heterozygous states than do their wild ancestors. The accumulation of deleterious mutations is due in part to clonal propagation, which shelters deleterious recessive mutations.

Author contributions: Y.Z., D.C., and B.S.G. designed research; Y.Z. and J.S.S. performed research; Y.Z., M.M., and J.S.S. analyzed data; and Y.Z. and B.S.G. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

Data deposition: The sequence reported in this paper has been deposited in the National Center for Biotechnology Information Sequence Read Archive (NCBI SRA) database (accession no. PRJNA388292).

†To whom correspondence should be addressed. Email: bgaut@uci.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1709257114/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1709257114
horticultural crop in the world (23). Grapes (hereafter *vinifera*) have been a source of food and wine since their hypothesized domestication ~8.0 kya from their wild progenitor, *V. sylvestris* (hereafter *sylvestris*) (24). The exact location of domestication remains uncertain, but most lines of evidence point to a primary domestication event in the Near East (23, 24). Domestication caused morphological shifts that include larger berries and bunch sizes, higher sugar content, altered seed morphology, and a shift from dioecy to a hermaphroditic mating system (25). There is interest in identifying the genes that contribute to these morphological shifts. For example, several papers have attempted to identify the gene(s) that are responsible for the shift to hermaphroditism, which were mapped to an ~150-kb region on chromosome 2 (26, 27).

Historically, genetic diversity among *V. vinifera* varieties has been studied with simple sequence repeats (28). More recently, a group genotyped 950 *vinifera* and 59 *sylvestris* accessions with a chip containing 9,000 SNPs (23). Their data suggest that grape domestication led to a mild reduction of genetic diversity, indicating that grape is a reasonable perennial model for studying the accumulation of deleterious variation in the absence of a pronounced bottleneck. Still more recent studies have used whole-genome sequencing (WGS) to assess structural variation among grape varieties (29–31). Surprisingly, however, WGS data have not been used to investigate the population genomics of grapes. Here, we perform WGS on a sample of *vinifera* cultivars and on putatively wild *sylvestris* accessions to focus on three sets of questions. First, what do the data reveal about the demographic history of cultivated grapes, specifically, the timing and severity of a domestication bottleneck? Second, what genes bear the signature of selection in *vinifera*, and do they provide insights into the agro-nomic shifts associated with domestication? Finally, do domesticated grapes have more derived, putatively deleterious variants relative to *sylvestris*, or have the unique features of perennial domestication permitted an escape from this potential cost?

Results

Plant Samples and Population Structure. We collected WGS data from nine putatively wild *sylvestris* individuals from the Near East that represent a single genetic group (23), 18 *vinifera* individuals representing 14 cultivars, and one outgroup (*Vitis rotundifolia*) (SI Appendix, Table S1). Our *sylvestris* accessions are a subset of the wild sample from ref. 23, which was filtered for provenance and authenticity. We nonetheless label the *sylvestris* sample as “putatively wild,” because it can be difficult to identify truly wild individuals and to investigate the population genomics of grapes. Here, we perform WGS on a sample of *vinifera* cultivars and on putatively wild *sylvestris* accessions to focus on three sets of questions.

To investigate population structure, we applied principal component analysis (PCA) to genotype likelihoods (33). Only the first two principal components (PCs) were significant (*P* < 0.001); they explained 23.03% and 21.88% of the total genetic variance, respectively (Fig. 1A). PC1 separated samples of wine and table grapes, except for two accessions (Italia and Muscat of Alexandria) positioned between the two groups. PC2 divided wild and cultivated samples. Wine, table, and wild grapes clustered separately in a neighbor-joining tree, except for Muscat of Alexandria, which has been used historically for both wine and table grapes (Fig. 1B). Finally, STRUCTURE analyses revealed an optimal grouping of *K* = 4, which separated *sylvestris* accessions, table grapes, wine grapes, and the Zinfandel/Primitivo subgroup of wine grapes while also identifying admixed individuals (SI Appendix, Fig. S1).

Nucleotide Diversity and Demographic History. We estimated population genetic parameters based on the *sylvestris* accessions (*n* = 9) and on a cultivated sample of *n* = 14 that included only one Thompson clone and one Zinfandel/Primitivo clone (SI Appendix, Table S1). Both samples harbored substantial levels of nucleotide diversity across all sites (*sylvestris*: *π* = 0.0147 ± 0.0011; *vinifera*: *π* = 0.0139 ± 0.0014; SI Appendix, Fig. S2). Although *π* was higher in *sylvestris* (*π*/*π* = 0.94 ± 0.14), *vinifera* had higher levels of heterozygosity and Tajima’s *D* values (*vinifera*, *D* = 0.5421 ± 0.0932; *sylvestris*, *D* = −0.4651 ± 0.1577; SI Appendix, Fig. S2).

Linkage disequilibrium (LD) decayed to *r* < 0.2 within 20 kb in both samples, but it declined more slowly for *vinifera* after ~20 kb (SI Appendix, Fig. S2).

We inferred the demographic history of the *vinifera* sample using MSMC, a method that infers both population size and gene flow using phased SNPs (34). Assuming a generation time of 3 y (24) and a mutation rate of 2.5 × 10−9 mutations per nucleotide per year (35), we converted scaled population parameters into years and individuals (*N*) (Table S1). Based on these analyses, *vinifera* experienced a continual reduction of *N* starting ~22.0 kya until its nadir from ~7.0 kya to 11.0 kya (Fig. 2A), which corresponds to the time of domestication and implies a mild domestication bottleneck. Notably, there was no evidence for a dramatic expansion of *N* since domestication. MSMC results were similar across two separate analyses (Fig. 2B), based on *n* = 4 samples of either table or wine grapes (SI Appendix, Table S1), suggesting that analyses captured shared aspects of the samples’ histories. We also used MSMC to compute divergence times. The divergence between *sylvestris* and *vinifera* was estimated to be ~22 kya (Fig. 2B), which corresponds to the onset of the decline of *vinifera* *N* (Fig. 2A), implying the shift in diversity was primarily caused by the domestication bottleneck (Discussion).

We repeated demographic analyses with SMC++, which estimates population histories and divergence without phasing (36) (Fig. 2C). This method yielded no evidence for a discrete bottleneck from ~7.0 kya to 11.0 kya, but SMC++ and MSMC analyses had four similarities: (i) an estimated divergence time (~30 kya) that greatly predates domestication; (ii) a slow decline in *vinifera* *N* since divergence; (iii) no evidence for a rapid expansion in *N* after domestication; and (iv) an ~2.5-kya divergence of wine and table grapes (Fig. 2C and SI Appendix, Fig. S3). We also used SMC++ to infer the demographic history of our *sylvestris* sample, revealing a complex *N* pattern that corresponds to features of climatic history (Discussion).
overrepresented ($P \leq 0.01$), including the “alcohol dehydrogenase superfamily,” “monoterpenoid indole alkaloid biosynthesis,” and “flower development” (SI Appendix, Table S3). XP-CLR identified a similar number of genes (367); both tests identified genes involved in berry development and/or quality, including the SWEET1 gene (SI Appendix, Fig. S4), which encodes a bidirectional sugar transporter (39). SWEET1 was overexpressed in full-ripe berries compared with immature berries [adjusted (adj.) $P = 9.4 \times 10^{-3}$; SI Appendix, Fig. S6], suggesting an involvement in sugar accumulation during berry ripening. Additional genes of interest detected by both tests included: (i) a leucoanthocyanidin dioxygenase (LDox) gene (VIT_08s0105g00380) that peaks in expression at the end of veraison [adj. $P = 8.9 \times 10^{-10}$; SI Appendix, Fig. S6] and may be involved in proanthocyanidin accumulation (40–42); (ii) genes potentially involved in berry softening, such as two pectinesterase-coding genes and a xyloglucan endotransglycosylase/hydrolase gene that exhibited maximal expression in postveraison berry pericarps (SI Appendix, Fig. S6); and (iii) flowering-time genes, including a Phytocrome C homolog.

As a comparison, we applied CLR analyses to the sylvestris sample, which were notable for three reasons. First, the top 0.5% of windows yielded far fewer (88 vs. 309) genes (SI Appendix, Table S2). Second, candidate-selected regions within sylvestris were distinct from those in vinifera (Fig. 3A); none of the putatively selected regions overlapped between taxa. Third, candidate-selected genes were enriched primarily for stress resistance (SI Appendix, Table S4), including flavonoid production ($P = 6.27 \times 10^{-3}$). Candidate-selected regions within sylvestris were distinct from those in vinifera (Fig. 3B and SI Appendix, Fig. S5), which coincides with the sex determination region (44). With both methods, the region contained two peaks of divergence. In F_ST analyses, the two peaks contain 13 and 32 genes, respectively. In the first peak, six genes were overexpressed in female (F) compared with both male (M) and hermaphroditic (H) flowers (adj. $P \leq 0.05$; SI Appendix, Fig. S7 and Table S6), representing a nonrandom enrichment of F expression under the peak (binomial; $P < 10^{-7}$). One of these genes had been identified as a candidate male sterility gene (VitFSEX) (45). The second peak included four genes with biased sex expression: one with higher F expression, two with higher H expression, and one with higher M expression (SI Appendix, Table S6).

Deleterious Variants. Domesticated annual crops accumulate more deleterious variants than their progenitors (17, 20, 46). To examine the potential increase in the number and frequency of deleterious variants at nonsynonymous sites between vinifera and sylvestris samples, we predicted deleterious SNPs using SIFT (47). A total of 33,653 nonsynonymous mutations were predicted to be deleterious in both samples. The number of derived deleterious variants was 5.2% higher, on average, for vinifera individuals than for sylvestris individuals (Fig. 4), and the ratio of deleterious to synonymous variants was also elevated in vinifera (SI Appendix, Fig. S8). Most (∼77%) deleterious variants were found in a heterozygous state in both samples, but the distribution by state differed between taxa because deleterious variants were more often homozygous in sylvestris ($P < 0.001$, Fig. 4). Cultivated accessions had a higher proportion of homozygous deleterious variants ($P = 0.002$, Fig. 4) and an elevated ratio of deleterious to synonymous variants ($P < 0.001$, SI Appendix, Fig. S8).

We also examined the distribution of putatively deleterious variants for vinifera in sweep regions compared with the remainder of the genome (i.e., the “control”). Sweep regions contained a significantly lower number of deleterious mutations when corrected for length ($P < 0.001$, Fig. 4), but these variants were also found at significantly higher frequencies ($P < 0.001$, Fig. 4) and in higher numbers relative to synonymous variants ($P < 0.001$; Fig. 4). All of these trends—including the number of deleterious variants per individual, the distribution by state, and the effects in sweep regions—were qualitatively similar using PROVEAN (48) to identify deleterious variants (SI Appendix, Fig. S9).

Like grapes, cassava is clonally propagated, and it also has high levels of heterozygous deleterious variants (20). To determine whether clonal propagation can contribute to the accumulation of deleterious variants, we performed forward simulations under two mating systems: outcrossing and clonal propagation that began at the time of domestication (~8 ky). Each mating system was considered under three demographic models: a constant size population, a long 30,000-y population decline similar to that inferred from SMC++ analysis, and a discrete bottleneck (Materials and Methods and SI Appendix, Fig. S10). Under an additive model without back mutation, the discrete bottleneck increased the number of deleterious
alleles under both mating systems but with little effect on load (SI Appendix, Fig. S12). Under a recessive model, an outcrossing, bottlenecked population purged deleterious variants (49, 50) (Fig. 5), and clonal propagation increased the number of deleterious variants under all demographic scenarios (Fig. 5). Despite the increase in deleterious variants, clonal propagation decreased load under the recessive model (Fig. 5) because clonality hides deleterious, recessive variants.

Discussion

The Eurasian wild grape (Vitis vinifera subsp. sylvestris) is a dioecious, perennial, forest vine that was widely distributed in the Near East and the northern Mediterranean before its domestication (51). The earliest archaeological evidence of wine production suggests that domestication took place in the Southern Caucasus between the Caspian and Black Seas ∼6.0–8.0 kya (24, 52). After domestication, the cultivars spread south by 5.0 kya to the western side of the Fertile Crescent, the Jordan Valley, and Egypt and finally reached Western Europe by ∼2.8 kya (24, 53).

Here, however, we are not concerned with the spread of modern grapes, but rather with demographic history before and during domestication, the identity of genes that may have played a role in domestication, and the potential effects of domestication and breeding on the accumulation of deleterious variants.

A Protracted Predomestication History? We have gathered genome-wide resequencing data from a sample of table grapes, wine grapes, and putatively wild grapes to investigate population structure and demographic history. These analyses lead to our first conclusion, which is that our sylvestris sample represents bona fide wild grapes, as opposed to feral escapes. This conclusion is evident from the fact that the sylvestris accessions cluster together in population structure analyses (Fig. 1), that they are estimated to have diverged from cultivated grapes ∼22 kya to ∼30 kya (Fig. 2), and that the set of putatively selected genes differs markedly between the vinifera and sylvestris samples (Fig. 3A). The divergence time between wild and cultivated samples suggests, however, that our sylvestris accessions likely do not represent the progenitor population of domesticated grapes.

Analyses of vinifera data suggest that its historical Ne has experienced a long decline starting from ∼22.0 kya to ∼30.0 kya. MSMC analyses indicate that this decline culminated in a weak bottleneck around the estimated time of domestication (Fig. 2A). The potential bottleneck corresponds to the estimated time of grape domestication and the shift from hunter-gatherer to agrarian societies (6). We note, however, that SMC++ analysis found no evidence for a distinct bottleneck, but instead inferred a consistent Ne decline (Fig. 2C). The question becomes, then, whether the domestication of vinifera included a discrete bottleneck. The evidence is mixed. The positive Tajima’s D for vinifera superficially suggests a population bottleneck, but forward simulations show that positive D values also result from a long population decline (SI Appendix, Fig. S11). If there was a discrete bottleneck for grapes, we join previous studies in concluding that it was weak (23, 54, 55), based on two lines of evidence. First, the diversity level in our vinifera sample is 94% that of sylvestris, representing a far higher cultivated-to-wild ratio than that of maize (83%) (4), indica rice (64%) (17), soybean (83%) (56), cassava (71%) (20), and tomato (54%) (57). Second, MSMC analyses suggest an approximately two- to threefold reduction in Ne at the time of domestication (Fig. 2A). This implies that 33–50% of the progenitor population was retained during domestication, a percentage that contrasts markedly with the <10% estimated for maize (3, 58) and ∼2% for rice (59).

The protracted decline in Ne for vinifera prompts a question about its cause(s). One possibility is that it reflects natural processes that acted on vinifera progenitor populations. For example, climatic shifts may have contributed to the long Ne decline because the Last Glacial Maximum (LGM) occurred between 33.0 and 26.5 kya (60). If the LGM caused vinifera’s population decline, one might expect to see population recovery during glacial retraction from 19.0 kya to 20.0 kya. We detect evidence of recovery in sylvestris but not in vinifera (Fig. 2C). A second possibility is that the domesticated germplasm is derived from a single deme of a larger metapopulation because population structure can produce a signal of apparent Ne decline (61). Finally, it is possible that proto-vinifera populations experienced a long period of human-mediated management, as suggested in the study of African rice (11). It is difficult to prove this proposition, but three factors are consistent with this possibility: (i) the contrasting historical pattern of the wild sample, (ii) the fact that some sites in the Southern Caucasus mountains have evidence of human habitation for ∼20,000 y (62), and (iii) a growing consensus that humans altered ecosystems long before the onset of agriculture (63).

A surprising feature of demographic inference is the lack of evidence for a postdomestication expansion of vinifera (Fig. 2). This

![Fig. 4. The number and frequency of derived deleterious alleles in cultivars and wild samples.](image)

![Fig. 5. Forward simulations under a model of recessive selection for three demographic scenarios and two mating systems.](image)
observation contrasts sharply with studies of maize (58) and African rice (11), both of which had greater than fivefold N_e increases following domestication. We hypothesize that the lack of expansion in grapes relates to the dynamics of perennial domestication, specifically clonal propagation and the short time frame (in generations). Data from peach are consistent with our hypothesis, but peach also has extremely low historical levels of N_e (64). Almond, which is another clonally propagated perennial, exhibits an approximately twofold N_e expansion after domestication (64), but it also may have been propagated sexually before the discovery of grafting (65). Clearly more work needs to be done to compare demographic histories across crops with varied demographic and life histories. Our demographic inferences have caveats. First, our study—along with all previous studies—has likely not measured genetic diversity from the precise progenitor population to *vinifera*. Indeed, such a population may be extinct or at least substantially modified since domestication. Second, our sample size is modest, but it is sufficient to infer broad historical patterns (34). Consistent with this supposition, the two runs of MSMC with two different samples of $n = 4$ yielded qualitatively identical inferences about the demographic history of *vinifera*. Larger samples will be necessary for investigating more recent population history and may provide further insights into the potential for population expansion after domestication. Finally, demographic calculations assume a mutation rate and a generation time that may be incorrect, and they also treat all sites equivalently. Note, however, that masking selected regions provides similar inferences (SI Appendix, Fig. S3) and also that our observations are consistent with independent estimates about domestication times and glacial events.

Selective Sweeps and Agronomically Important Genes. Selective sweep analyses identified genes and regions that have been previously suspected to mediate agronomic change. One example is that of the *SWEETI* gene, which is within a potential *vinifera* sweep region. The same gene is also within a region of differentiation between nonadmixed table and wine grapes (SI Appendix, Fig. S4). Based on haplotype structures, we hypothesize that at least one difference between wine and table grapes is attributable to the *SWEETI* sugar transporter.

A major change during grape domestication was the switch from dioecy to hermaphroditism (66). The sex-determining region resides on chromosome 2, based on quantitative trait locus analyses that fine-mapped the sex locus between ~4.90 and 5.05 Mbp (26, 27). The region corresponds to a larger chromosomal segment from 4.75 Mbp to 5.39 Mbp based on Genotype-by-Sequencing data and on segregation patterns from multiple families (44). With WGS data, we have identified a similar region that contains two discrete divergence peaks, from ~4.90 to 5.05 Mb and from ~5.2 Mb to 5.3 Mb (Fig. 3B and Table S1). We posit that the two peaks are meaningful because the evolution of dioecy requires two closely linked loci: one that causes loss of M function and another that houses a dominant F sterility mutation (67, 68). The first peak contains six genes overexpressed in F flowers, including *Su* (77). Segregating sites within each sample were phased and imputed using Shapeit (76) based on a genetic map (44). Demographic history was also inferred with SMC++ (37), which analyzes multiple genotypes without phasing (38). SweeD (39) and XP-CLR (38) were also used to detect selective sweeps. d_{ST} and D_{xy} values were averaged within 20 kbp nonoverlapping windows using ANGSD (33).

Functionally Selected Sweeps and Agronomically Important Genes. We employed MSMC 2.0 to estimate N_e over time (34, 74), based on SNPs called in GATK v3.5 (75) (SI Appendix, Supplementary Text). Segregating sites within each sample were phased and imputed using Shapeit (76) based on a genetic map (44). Demographic history was also inferred with SMC++, which analyzes multiple genotypes without phasing (38). SweeD (39) and XP-CLR (38) were used to detect selective sweeps. d_{ST} and D_{xy} values were averaged within 20 kbp nonoverlapping windows using ANGSD (33).

Putatively Deleterious Mutations in a Clonally Propagated Perennial. Like grapes, most perennials have experienced moderate bottleneck (22), raising the question as to whether they typically have an increased burden of slantly deleterious mutations (21). We find that each *vinifera* accessions contains 5.2% more putatively deleterious SNPs, on average, than the wild individuals in our sample. This difference exceeds that observed for dogs (2.6%) (46) and rice (~3–4%) (17) but pales in comparison with cassava (26%), a clonally propagated annual (20). Our simulations show that clonal propagation can lead to the accumulation of deleterious recessive mutations and a reduction of load under a recessive model (Fig. 5). We do not know the dominance of variants in grapes, but we predict that most heterozygous, putatively deleterious mutations are recessive and hence do not contribute to increased load or to a cost associated with domestication. These same mutations, however, do provide a genomic explanation of a well-known feature of grape breeding: severe inbreeding depression (70).

Materials and Methods. For full materials and methods, see SI Appendix, Supplementary Text. We collected leaf tissue for 13 individuals from 11 *vinifera* cultivars, 9 sylvestris accessions, and 1 accession of *V. rotundifolia* (SI Appendix, Table S1). DNA was extracted from leaf samples, Illumina paired-end sequencing libraries were constructed (TrueSeq), and libraries were sequenced as 150-bp paired reads. Illumina raw reads for five other cultivars were gathered from the Short Read Archive (SRA) at the National Center for Biotechnology Information (SI Appendix, Table S1).

1. Eyre-Walker A, Gaut RL, Hilton H, Feldman DL, Gaut B S (1998) Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci USA 95: 4441–4446.
2. Tenaillon MI, U’Ren J, Tenaillon O, Gaut B S (2004) Selection versus demography: A multilocus investigation of the domestication process in maize. Mol Biol Evol 21: 1214–1225.
3. Wright SI, et al. (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314.
4. Hufford MB, et al. (2012) Comparative population genomics of maize domestication and improvement. Nat Genet 44:808–811.
5. Meyer RS, Purugganan MD (2013) Evolution of crop species: Genetics of domestication and diversification. Nat Rev Genet 14:840–852.
6. Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:848-848.
7. Purugganan MD, Fuller DQ (2011) Archaeological data reveal slow rates of evolution during plant domestication. Evolution 65:171-183.
8. Fuller DQ, et al. (2014) Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc Natl Acad Sci USA 111:6147-6152.
9. Gaut BS (2015) Evolution is an experiment: Assessing parallelism in crop domestication and experimental evolution: (Nei Lecture, SMBE 2014, Puerto Rico). Mol Biol Evol 32:1661-1671.
10. Zhang LB, et al. (2009) Selection on grain shattering genes and rates of rice domestication. New Physiol 184:708-720.
11. Meyer KS, et al. (2016) Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat Genet 48:1083-1088.
12. Lu J, et al. (2006) The accumulation of deleterious mutations in rice genomes: A hypothesis on the cost of domestication. Trends Genet 22:126-131.
13. Charlesworth D, Willis JH (2009) The genomics of inbreeding depression. Nat Rev Genet 10:783-796.
14. Myles S, et al. (2014) The distribution of deleterious genetic variation in human populations. Curr Opin Genet Dev 29:139-146.
15. Henn BM, Botigué LR, Bustamante CD, Clark AG, Gravel S (2015) Estimating the mutation load in human genomes. Nat Rev Genet 16:333-343.
16. Miller AJ, Gross BL (2011) From forest to field: Perennial fruit crop domestication. Am J Bot 98:1389-1414.
17. Myles S, et al. (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci USA 108:3330-3335.
18. McGovern PE, Fleming SJ, Katz SH (2003) The Origins and Ancient History of Wine: Food and Nutrition in History and Anthropology (Routledge, Amsterdam).
19. This P, Lacombe T, Cadle-Davidson M, Owens CL (2007) Wine grape (Vitis vinifera L.) candidate genes within a 143 kb region of the flower sex locus and perennial domestication. Plant J 48:412-425.
20. Ramu P, et al. (2017) Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nat Genet 49:959-963.
21. Gaut BS, Diez CM, Morrell PL (2015) Genomics and the contrasting dynamics of annual and perennial domestication. Trends Genet 31:709-715.
22. Miller AJ, Gross BL (2011) From forest to field: Perennial fruit crop domestication. Am J Bot 98:1389-1414.
23. Fechter I, et al. (2012) Candidate genes within a 143 kb region of the flower sex locus and perennial domestication. Plant J 48:412-425.
24. Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:848-848.
25. Myles S, et al. (2014) The distribution of deleterious genetic variation in human populations. Curr Opin Genet Dev 29:139-146.
26. Lin J, et al. (2010) Selection on grain shattering genes and rates of rice domestication. New Physiol 184:708-720.
27. Meyer KS, et al. (2016) Domestication history and geographical adaptation inferred from a SNP map of African rice. Nat Genet 48:1083-1088.
28. Lu J, et al. (2006) The accumulation of deleterious mutations in rice genomes: A hypothesis on the cost of domestication. Trends Genet 22:126-131.
29. Charlesworth D, Willis JH (2009) The genomics of inbreeding depression. Nat Rev Genet 10:783-796.
30. Myles S, et al. (2014) The distribution of deleterious genetic variation in human populations. Curr Opin Genet Dev 29:139-146.
31. Henn BM, Botigué LR, Bustamante CD, Clark AG, Gravel S (2015) Estimating the mutation load in human genomes. Nat Rev Genet 16:333-343.
32. Miller AJ, Gross BL (2011) From forest to field: Perennial fruit crop domestication. Am J Bot 98:1389-1414.
33. Myles S, et al. (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci USA 108:3330-3335.
34. McGovern PE, Fleming SJ, Katz SH (2003) The Origins and Ancient History of Wine: Food and Nutrition in History and Anthropology (Routledge, Amsterdam).
35. This P, Lacombe T, Cadle-Davidson M, Owens CL (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmbyA1. Theor Appl Genet 114:723-730.
36. Fechter I, et al. (2012) Candidate genes within a 143 kb region of the flower sex locus in Vitis. Mol Genet Genomics 287:247-259.
37. Picq S, et al. (2014) A small X-Y chromosomal region explains sex determination in wild dioecious violets and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biol 14:229.
38. Bowers J, et al. (2019) Deleterious variants in Asian rice and the potential cost of domestication. Mol Biol Evol 34:908-924.
39. Lian S, et al. (2017) The role of deleterious substitutions in crop genomes. Mol Biol Evol 33:2307-2317.
40. Renaud S, Rieseborg LH (2015) The accumulation of deleterious mutations as a consequence of domestication and improvement in sunflowers and other composite crops. Mol Biol Evol 32:2283-2293.
41. Ramu P, et al. (2017) Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nat Genet 49:959-963.
42. Gaut BS, Diez CM, Morrell PL (2015) Genomics and the contrasting dynamics of annual and perennial domestication. Trends Genet 31:709-715.
43. Miller AJ, Gross BL (2011) From forest to field: Perennial fruit crop domestication. Am J Bot 98:1389-1414.
44. Myles S, et al. (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci USA 108:3330-3335.
45. McGovern PE, Fleming SJ, Katz SH (2003) The Origins and Ancient History of Wine: Food and Nutrition in History and Anthropology (Routledge, Amsterdam).
46. This P, Lacombe T, Cadle-Davidson M, Owens CL (2007) Wine grape (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmbyA1. Theor Appl Genet 114:723-730.
47. Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of Oryza sativa and its wild relatives: Severe bottleneck during domestication of rice. Mol Biol Evol 2283-2289.
48. Delaneau O, Zagury JF, Marchini J (2013) Improved whole-chromosome phasing for next generation sequencing data. Nat Genet 45:1220-1226.
49. Velasco D, Hough J, Aradhya M, Ross-Ibarra J (2016) Evolutionary genomics of peach and almond domestication. G3 (Bethesda) 6:3985-3993.
50. Kirkpatrick M, Jarne P (2000) The effects of a bottleneck on inbreeding depression. Genet 224:875-888.
51. Clark PU, et al. (2009) The last glacial maximum. Science 325:710-714.
52. Liu Q, Zhou Y, Morrell PL, Grubb I (2010) Domestication genotyping-by-sequencing markers: A case study in grapevine. PLoS One 10:e0134880.
53. Liu Q, Zhou Y, Morrell PL, Grubb I (2010) Domestication genotyping-by-sequencing markers: A case study in grapevine. PLoS One 10:e0134880.
54. Liu Q, Zhou Y, Morrell PL, Grubb I (2010) Domestication genotyping-by-sequencing markers: A case study in grapevine. PLoS One 10:e0134880.
55. Liu Q, Zhou Y, Morrell PL, Grubb I (2010) Domestication genotyping-by-sequencing markers: A case study in grapevine. PLoS One 10:e0134880.
56. Liu Q, Zhou Y, Morrell PL, Grubb I (2010) Domestication genotyping-by-sequencing markers: A case study in grapevine. PLoS One 10:e0134880.
57. Liu Q, Zhou Y, Morrell PL, Grubb I (2010) Domestication genotyping-by-sequencing markers: A case study in grapevine. PLoS One 10:e0134880.