TESTING FOR REAL INTEREST RATE PARITY USING PANEL STATIONARYNESS TESTS WITH DEPENDENCE: A NOTE*

by

MARIAM CAMARERO
Jaume I University

JOSEP LLUIS CARRION-I-SILVESTRE
University of Barcelona

and

CECILIO TAMARIT†
University of Valencia

In this paper we test for real interest parity (RIRP) among the 19 major OECD countries over the period 1978:Q1–2006:Q1 using both short- and long-run definitions of interest rates. Once the independence hypothesis is rejected among these series, we test for RIRP using panel data unit root and stationarity tests based on common factor models that allow for pervasive forms of dependence. Our results indicate that there is no evidence in favor of the weak version of the RIRP since one of the common factors that have been estimated is non-stationary.

1 INTRODUCTION

The empirical literature that tests for the real interest rate parity (RIRP hereafter) is abundant and extends back to the pioneer papers of Cumby and Obstfeld (1984) and Mishkin (1984). The flurry of papers that have analyzed this topic has given mixed results but, in general, the short-run RIRP is overwhelmingly statistically rejected (Chinn and Frankel, 1995). The empirical literature has explained this result by the existence of non-traded goods and/or transaction costs (Goodwin and Grennes, 1994). However, recent financial and real sector integration is expected to reduce the deviations from uncovered interest parity (UIP) and from purchasing power parity (PPP), the sum of which is the deviations from RIRP. Thus, the study of real interest rate differentials across countries either under the Bretton Woods regime or under the present system of floating exchanges that replaced it deserves further attention (Goldberg et al., 2004).

The aim of this empirical note is to test for RIRP among the major OECD countries over the period 1978:Q1–2006:Q1 using panel data unit root

* Manuscript received 26.6.07; final version received 11.3.08.
† M. Camarero and C. Tamarit gratefully acknowledge the financial support from CICYT Project SEJ2005-01163 (Spanish Ministry of Education and European Fund for Regional Development) and the Generalitat Valenciana Complementary Action ACOMPLE07/102. Carrion-i-Silvestre gratefully acknowledges the financial support from CICYT Project SEJ2005-08646/ECON.

© 2009 The Authors
Journal compilation © 2009 Blackwell Publishing Ltd and The University of Manchester
Published by Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK, and 350 Main Street, Malden, MA 02148, USA.
and stationarity tests. The main contribution of this study to the existing literature on RIRP is in terms of the econometric methodology. We pool data on real interest differentials between the USA and other major OECD countries as a panel, and then use panel-data-based statistics as a way to increase the power of the statistical inference controlling for cross-section dependence.

Starting with Levin et al. (2002), much work has also been done on testing for unit roots in panels, including the IPS test developed by Im, Pesaran and Shin (2003) or the test proposed by Hadri (2000). However, it is worth noting that, when there is cross-section dependence in the disturbances, these tests no longer converge to a standard normal. Therefore, one of the major concerns about the application of panel-data-based statistics is the assumption of cross-section independence. This assumption is rarely found in practice, especially in a globalized economy where the shocks over-pass country borders. This is of special interest in our study, due to the inclusion of several EU countries in the panel data set, which are partially ruled by common governmental institutions. These facts question the validity of the independence assumption, which is tested here using the Ng (2006) statistic. In order to overcome this criticism, we have applied some statistics that allow us to control for the presence of different kinds of cross-section dependence. In particular, we apply approximate common factor models, as suggested by Bai and Ng (2004). The application of the panel techniques that we use allows us to disentangle the sources of non-stationarity and carry out the analysis both at a global and at an individual basis.

The remainder of the paper is organized as follows. Section 2 briefly describes the theoretical background. Section 3 presents the data, the test statistics and the econometric results. Finally, Section 4 concludes.

2 Theoretical Issues

A standard derivation of the RIRP condition can be found in Moosa and Bhatti (1996). Starting with the Fisher equation for two countries and after using some algebra, we arrive at an expression for the RIRP in a univariate framework such as

$$r_t - r_t^* = u_t = \text{rid}_t$$

$t = 1, \ldots, T$, where r_t is the real interest rate and the asterisk denotes foreign variable. In order to test for RIRP, we impose the cointegration vector $(1, -1)$ on r_t and r_t^* and then test for the stationarity of the error term $\{u_t\}$. Since $\{u_t\}$ is assumed to be iid $(0, \sigma_u^2)$, the expected value of rid_t is zero. This procedure is effectively testing for mean reversion in the real interest differential, which implies verifying whether shocks to the series of rid_t dissipate and the series return to their long-run zero mean level. This goal can be accomplished by performing unit root and stationarity tests on the series of rid_t.

© 2009 The Authors
Journal compilation © 2009 Blackwell Publishing Ltd and The University of Manchester 2009
Now consider that \(r_{it} \) follows a more general stochastic process. As in Ferreira and León-Ledesma (2007), the former equation can be represented as a \(p \)-th order autoregressive process, so that we get an expression suitable for unit root testing:

\[
\Delta r_{it} = a_0 + \delta r_{i,t-1} + \sum_{j=1}^{p-1} \gamma_j \Delta r_{i,t-j} + \varepsilon_t
\]

(2)

The following possibilities arise from the estimation of the former augmented Dickey–Fuller (ADF)-type equation:

\[
\delta = 0 \quad (3)
\]

\[
\delta < 0 \quad \text{and} \quad a_0 = 0 \quad (4)
\]

\[
\delta < 0 \quad \text{and} \quad a_0 \neq 0 \quad (5)
\]

In (3) the series contain a unit root and \(r_{it} \) follows a random walk with shocks affecting the variable on a permanent basis. This case is inconsistent with the RIRP hypothesis.

Conversely, if either (4) or (5) holds, \(r_{it} \) is a stationary process, which means that deviations from the mean are temporary and the estimated root provides information on whether the \(r_{it} \) is short-lived or persistent. In (4) the process converges to a zero mean and a strong definition of RIRP holds, while in (5) the process converges to a non-zero mean and the weak version of RIRP prevails. The equality of real interest rates can be derived from the UIP condition together with the PPP hypothesis. The strict equality of real interest rates (strong version of RIRP) requires the fulfillment of PPP, as well as perfect substitutability of financial assets located in different countries. There is abundant empirical evidence against the validity of PPP. If PPP does not hold, then real interest rates cannot be equalized. It is worth noticing that strong RIRP can be violated due to the existence of transaction costs, non-traded goods, non-zero country-specific risk premia or different national tax rates, among other things.

Finally, it would be interesting to analyze whether a long-run relationship between \(r_i \) and \(r_i^* \) exists, and then to estimate the cointegrating vector instead of imposing it to be \((1, -1)\). However, in this case the analysis departs from the RIRP hypothesis, as testing for the RIRP requires equality of real rates—note that cointegration of real interest rates is a weaker requirement than the equality of real rates. Cointegration of the real rates means that the variances of two or a group of real interest rates are bounded, and in the long run these rates approach an equilibrium. In the next section we will test for the weak version of the RIRP imposing the cointegrating vector to be \((1, -1)\).
3 Empirical Methodology and Results

The empirical literature on RIRP is quite abundant and diverse. Although some authors have been able to find supportive evidence for weak RIRP in OECD countries using panel data (Fujii and Chinn, 2002) or non-linearities (Mancuso et al., 2003; Holmes and Maghrebi, 2004; Ferreira and León-Ledesma, 2007), the traditional time-series unit root tests have not been able to provide satisfactory results and additional empirical refinement is needed. More specifically, we can find two different clusters of research based on the type of unit root test that is used. A first one would include those that apply classical univariate unit root tests (basically ADF-type) with non-conclusive results.1

This outcome can be explained by a commonly accepted flaw associated with standard unit root tests: the power of these tests tends to be very low when the root is close to one, especially in small samples (Shiller and Perron, 1985). Therefore, we can conclude that the traditional time-series unit root tests did not provide satisfactory results and additional empirical refinements can be a useful line of research.

In an attempt to solve the above-mentioned problems, Moosa and Bhatti (1996) find that a series of alternative univariate unit root tests that are more powerful than the conventional ADF tests lead to more promising results. Some other authors try to find more accurate evidence by enlarging the sample period considered.2 Other empirical studies have tried to increase the power of the unit root tests using recent tests developed for panel data. The main advantage of the panel tests is that they add the cross-section dimension and increase the amount of information for each time period. In this context, Wu and Chen (1998), Holmes (2002) and Baharumshah et al. (2005) have found more promising results using panel unit root tests. Notwithstanding, it is widely recognized that these tests have some flaws in terms of lack of power and size distortion in the presence of correlation among contemporaneous cross-sectional error terms (O’Connell, 1998). As mentioned above, cross-section independence is hardly found in practice, especially when using macroeconomic time series that derive from globalized financial markets. However, the interest rates linkages that exist, both by construction of the variables and as a result of an economic integration process among a group of countries, are usually neglected in this type of analysis. In this particular case, using panel methods may increase the power of the tests, but the commonly used assumption of cross-section independence would not adequately capture the actual cross-relations present in the data.

1See for instance Meese and Rogoff (1988) and Edison and Pauls (1993).
2Lothian (2000) uses annual data on real interest rate differentials over the long period 1791–1992 with mixed results.
In this paper we present an alternative testing procedure to deal with the problem of cross-section dependence. We first suggest computing the test statistic by Ng (2006) to assess whether time series in the panel are cross-section independent. In addition, the Ng (2006) test statistic provides some guide about the best way to model cross-section dependence. Since panel data unit root tests are known to be biased towards concluding in favor of variance stationarity when individuals are cross-section dependent—see O’Connell (1998) and Banerjee et al. (2004, 2005)—we proceed in a second stage to compute statistics that account for such dependence when required.

There are several alternative proposals formulated in the literature to overcome the cross-section dependence problem. First, Levin et al. (2002) suggest computing the test removing the cross-section mean. Although simple, this implies assuming, quite restrictively, that cross-section dependence is driven by one common factor with the same effect for all individuals in the panel data set. Second, Maddala and Wu (1999) propose obtaining the bootstrap distribution to accommodate general forms of cross-section dependence. Third, Breuer et al. (2002) also propose a panel unit root test that allows for contemporaneous correlation among the errors. Separate null and alternative hypotheses are tested for each panel member using the information captured through the variance–covariance matrix in a system estimated within a seemingly unrelated regression (SUR) framework and the critical values are obtained by bootstrap methods.

More recently, Phillips and Sul (2003), Bai and Ng (2004), Moon and Perron (2004) and Pesaran (2007) have suggested other proposals that are especially relevant. They assume that the process is driven by a group of common factors, so that it is possible to distinguish between the idiosyncratic component and the common component. Although there are differences among the methods proposed, their driving idea is similar.

Phillips and Sul (2003), Moon and Perron (2004) and Pesaran (2007) focus on the extraction of the common factors that generate the cross-correlations in the panel to assess the non-stationarity of the series, while in Bai and Ng (2004) the non-stationarity of the series can come from the common factors, the idiosyncratic component or both. Moreover, Phillips and Sul (2003) and Pesaran (2007) only consider the existence of one common factor, while in Bai and Ng (2004) and Moon and Perron (2004) there can be multiple common factors. Finally, Bai and Ng (2004) consider also the possibility of cointegration relationships among the series of the panel. Banerjee et al. (2004) stated that there is a tendency to over-reject the null of non-stationarity when cointegration is present. As the existence of cointegrating relations between interest rate series is a very plausible hypothesis in economic integrated areas, the proposal in Bai and Ng (2004) is the best approach in our case. Moreover, Monte Carlo comparisons developed by Gegenbach et al. (2004) and Jang and Shin (2005) show that, for all the specifications considered in their simulation experiments, the test in Bai and
Ng (2004) has more power than those by Moon and Perron (2004) and Pesaran (2007), and better empirical size than that of Phillips and Sul (2003). Consequently, our analysis is based on Bai and Ng’s (2004) approach. Finally, we apply the Harris et al. (2005) test for the null hypothesis of stationarity, which also uses common factors to account for dependence.

To the best of our knowledge, cross-section dependence has only been taken into account for RIRP testing in three recent papers. The SURADF test of Breuer et al. (2002) has been used in Chan et al. (2007) for East Asian economies and in Kim (2006) for some OECD countries distinguishing between traded and non-traded goods. Singh and Banerjee (2006) have applied the Pesaran (2007) CADF test to emerging economies. Therefore, our analysis increases the empirical evidence on this topic.

We test the null hypothesis of stationarity in the real interest differential over the period 1978:Q1–2006:Q1—i.e. post-Bretton Woods and European Monetary Union era. We have chosen this period due to its relevance for the financial integration process both at a global and at a regional (i.e. European) level. In fact, it covers from the beginning of the European Monetary System up to now. The advent of the flexible exchange rate regime in 1973 and the relaxation of capital controls in some major OECD countries had opposite effects on the degree of real interest rate convergence among these countries. However, for countries that belonged to the exchange rate mechanism of the European Monetary System, the relaxation of the capital controls in the 1990s along with the lower variability of nominal and real exchange rates, as the member countries were increasingly coordinating their monetary policies, should be expected to lead to increasing long-run real interest rate convergence. All in all, under a system of flexible exchange rates (or under an adjustable peg system such as the European Monetary System), real interest rate equalization may not be obtained because of expectations about exchange rate changes and foreign exchange risk premia. However, this would be compatible with the fulfillment of the weak version of RIRP, and therefore with the stationarity of interest rate differentials, which can lead to cointegrating relationships in the cross-sections of our panel data set.

The sample includes quarterly data of money market interest rates, long-term bond yields and consumer prices for up to 18 OECD countries, with the USA as the numeraire. The data have been taken from the International Financial Statistics database of the International Monetary Fund. We have chosen both short-term and long-term asset rates for the analysis because these rates reflect market forces better than deposit ones.

3Namely, Australia, Austria, Belgium, Canada, Denmark, France, Germany, Ireland, Italy, Japan, Luxembourg, the Netherlands, New Zealand, Norway, Portugal, Spain, Switzerland and the UK.

4While deposit rates are much more widely available, they are often subject to administrative controls and in many cases display little movement over prolonged periods, which renders them uninformative (Frankel et al., 2004).
short-run rates are T-bill rates when available for the whole period (Canada, the UK and the USA) and call money rates otherwise. Unfortunately, data unavailability excludes from the analysis the short-run real interest rates from Luxembourg and New Zealand. The long-run rates are 10-year bond yields. It is generally accepted that results on RIRP depend crucially on the maturities considered. The empirical literature is far more supportive of RIRP at 5- to 10-year horizons while the RIRP hypothesis is decisively rejected with short-run data (Fujii and Chinn, 2002). Therefore, our study compares the results using short-term horizon instruments with the long-term ones.

In addition, we allow for two different definitions of real interest rates, depending on whether they are *ex ante* (RIRPEXA) or *ex post* (RIRPEXPO). For the *ex ante* real interest rate we have used the Hodrick–Prescott filter to extract the trend and cycle of inflation and obtain its expectation. For the *ex post* real interest rate we have used the actual CPI annual variation.

We present empirical evidence in two stages. First, we test the assumption of independence using the Ng (2006) statistic and find evidence that points to the presence of cross-correlation among the time series. It is worth mentioning that strong correlation is expected, as cross-section correlation arises almost by construction given that the RIRP series are defined using the same base country. However, instead of assuming in the analysis that the time series are cross-section dependent, we have preferred to check it to get rid of unproved priors. Then, we perform the panel data statistical analysis accounting for cross-section dependence.

3.1 Testing the Null Hypothesis of Cross-section Independence

In this section we test the null hypothesis of independence against the alternative hypothesis of correlation using the approach suggested by Ng (2006). Besides, this framework allows us to gain some insight on the kind of cross-section dependence in terms of how pervasive and strong the cross-section correlation is—see Ng (2006).

In brief, the procedure works as follows. First, we get rid of the autocorrelation pattern in individual time series through the estimation of an autoregressive model—we use the Modified Bayesian Information Criterion (MBIC) suggested by Ng and Perron (2001) to select the order of autoregressive correction with \(p_{\text{max}} = \lceil 12(T/100)^{1/4} \rceil \), where \(\lceil \cdot \rceil \) denotes the integer part, as the maximum order of the autoregression. This allows us to isolate the cross-section regression from serial correlation. Taking the estimated residuals from the autoregressive regression equations as individual series, we compute the absolute value of Pearson’s correlation coefficients \(|p_{ij}| = |\hat{p}_{ij}| \) sorted in ascending order for all possible pairs of individuals, \(j = 1, 2, \ldots, n \), where \(n = N(N - 1)/2 \), with \(N \) denoting the number of individuals. As a result, we obtain the sequence of ordered statistics given by \(\{ \hat{p}_{[1:n]}, \hat{p}_{[2:n]}, \ldots, \hat{p}_{[n:n]} \} \). Under the null hypothesis that \(p_j = 0 \) and assuming that

© 2009 The Authors
Journal compilation © 2009 Blackwell Publishing Ltd and The University of Manchester 2009
the individual time series are normally distributed, \(\bar{P}_j \) is half-normally distributed. Furthermore, let us define \(\phi_j \) as
\[
\Phi(T P_j n),
\]
where \(F \) denotes the cumulative distribution function of the standard normal distribution, so that \(\phi_1, \ldots, \phi_n \). Finally, let us define the spacings as \(\Delta \phi_j = \phi_j - \phi_{j-1}, j = 1, \ldots, n \).

Second, Ng (2006) proposes splitting the sample of (ordered) spacings at arbitrary \(\vartheta \in (0,1) \), so that we can define the group of small (S) correlation coefficients and the group of large (L) correlation coefficients—we have followed Ng (2006) and set the required trimming at 0.10. Once the sample has been split, we can proceed to test the null hypothesis of non-correlation in both subsamples. Obviously, the rejection of the null hypothesis for the small correlations sample will imply also rejection for the large correlations sample as the statistics are sorted in ascending order. Therefore, the null hypothesis can be tested for the small, large and the whole sample using the spacing variance ratio (svr(\(\eta \))) in Ng (2006), where \(\eta = [\vartheta n] \) is the number of statistics in the small correlations group. Under the null hypothesis that a subset of correlations are jointly zero, \(\text{svr}(\eta) = \sqrt{\eta \text{svr}(\eta)} / \sqrt{\omega_q^2} \to d N(0,1), \omega_q^2 = 2(2q-1)(q-1)/(3q) \), as \(\eta \to \infty \).

As can be seen from Table 1, we can split the whole sample of spacings in two groups, where the break point is estimated at \(\hat{\eta} = 12 \) or \(\hat{\eta} = 15 \), depending on the maturity and the definition of real interest rates. The analysis indicates that, except for the short-run RIRPEXPO, the \(\text{svr}(\eta) \) statistic rejects the null hypothesis of non-correlation when focusing on the whole sample of correlations. When we split the whole sample in two groups, we observe that the null hypothesis of non-correlation is strongly rejected for the L group, whereas, with the exception of the long-run RIRPEXPO interest rate, it is not rejected for the S group. This leads us to conclude that some form of cross-section correlation is present among the time series, so that it has to be accounted for when assessing the stochastic properties of the real interest rates.

In addition, the fact that the break point is estimated at the beginning—\(\hat{\eta} = 12 \) or \(\hat{\eta} = 15 \)—implies that the proportion of correlation coefficients that form the S group is small compared with the correlation

\[
\begin{array}{cccccc}
\text{Whole sample} & \text{Small group} & \text{Large group} \\
\text{svr}(\eta) & p \text{ value} & \text{svr}(\eta) & p \text{ value} & \hat{\eta} & \text{svr}(\eta) & p \text{ value} \\
\hline
\text{Short-run real interest rates} & \hline
\text{RIRPEXPO} & -2.485 & 0.994 & -0.776 & 0.781 & 12 & 4.449 & 0.000 \\
\text{RIRPEXA} & 2.794 & 0.003 & 0.834 & 0.202 & 12 & 8.612 & 0.000 \\
\text{Long-run real interest rates} & \hline
\text{RIRPEXPO} & 3.025 & 0.001 & 0.209 & 0.417 & 15 & 8.372 & 0.000 \\
\text{RIRPEXA} & 4.669 & 0.000 & 2.027 & 0.021 & 15 & 6.851 & 0.000 \\
\end{array}
\]
coefficients in the L group. This indicates that pervasive cross-correlation is present among the time series in the panel data sets. In this case, approximate factor models as suggested in Bai and Ng (2004) are revealed as a good option to account for cross-section dependence in panels.

3.2 Panel Data Unit Root Test with Cross-section Dependence

From the different approaches in the panel literature to deal with cross-section dependence the one we consider is based on the approximate common factor models of Bai and Ng (2004). This is a suitable approach when cross-correlation is pervasive, as the analysis with Ng (2006) has revealed. Furthermore, this approach controls for cross-section dependence given by cross-cointegration relationships, where time series in the panel might be cross-cointegrated—see Banerjee et al. (2004).

The Bai and Ng (2004) approach decomposes the $r_{id,t}$ time series as follows:

$$ r_{id,t} = D_{id,t} + F_{i}^\pi_{i} + e_{id,t} $$

$t = 1, \ldots, T$, $i = 1, \ldots, N$; here $D_{id,t}$ denotes the deterministic part of the model, either a constant or a linear time trend, F_{i} is an $(r \times 1)$-vector that accounts for the common factors that are present in the panel, and $e_{id,t}$ is the idiosyncratic disturbance term, which is assumed to be cross-section independent. Unobserved common factors and idiosyncratic disturbance terms are estimated using principal components on the first difference model. The estimation of the number of common factors is obtained using the panel MBIC in Bai and Ng (2002), with a maximum of six common factors.

Table 2 reports the results of applying this method, which admit two interpretations. At first sight, for both the short-term and long-term interest rates, the ADF statistic computed from the idiosyncratic disturbance terms rejects the null hypothesis of a panel unit root, while the procedure detects one non-stationary common factor in all cases—r_0 and r_1 denote the number of stationary and non-stationary common factors, respectively, so that $r = r_0 + r_1$. Given that the common factor that has been detected is non-stationary, we conclude that there is no evidence in favor of RIRP either in the short run or in the long run, regardless of the definition of inflation that is used.

The picture derived from the Bai and Ng (2004) test is especially interesting since it allows us to discriminate between the different sources of non-stationarity in the series. The results that we have obtained indicate that the null hypothesis of a panel unit root for the idiosyncratic shocks is rejected at the 5 per cent level of significance, which implies that there is a significant proportion of the idiosyncratic disturbance terms for which the unit root hypothesis is not adequate. Moreover, we have found that the interest rates

5Following a referee’s suggestion, we have also computed the individual ADF statistic for each idiosyncratic disturbance term, trying to gain some insight on the proportion of stationary
are led by one common stochastic trend, which undoubtedly leads us to conclude against RIRP. The presence of non-stationary common factors has been interpreted in Gengenbach et al. (2004) as a sign of the presence of cointegration in the cross-section among the series of the panel. Note that the existence of one common stochastic trend implies that the individual time series might cointegrate. This indicates that there is a high degree of integration among the international markets where, although the real interest rates of each country are non-stationary, they share the same stochastic trend.

However, it should be noted that the statistical inference based on these individual tests may be affected by lack of power. The results point to four (RIRPEXPO) and five (RIRPEXA) unit root rejections for the short-run series, while for long-run interest rates the null hypothesis is rejected seven (RIRPEXPO) and three times (RIRPEXA).

Table 2

Panel Data Statistics Based on Approximate Common Factor Models

	RIRPEXPO	RIRPEXA		
	Test	p value	Test	p value
(a) Short-run real interest rates				
Idiosyncratic ADF statistic	-5.150	0.000	-5.233	0.000
MQ test (parametric)	-7.646	1	-7.576	1
MQ test (non-parametric)	-10.777	1	-11.520	1
	RIRPEXPO		RIRPEXA	
	Test	p value	Test	p value
(b) Long-run real interest rates				
Idiosyncratic ADF statistic	-4.822	0.000	-2.246	0.012
MQ test (parametric)	-8.166	1	-9.980	1
MQ test (non-parametric)	-9.719	1	-11.102	1

MQ, modified version of the Q test by Stock and Watson (1988).
The estimated common factors that we have obtained might admit tempting interpretations in terms of whether they correspond to some of the real interest rates in our panel data sets. For instance, in our case the
ridₜ, t time series are constructed using the same base country, i.e. the USA, so that it might be the case that what we are capturing with the common factors is, basically, the US real interest rate. A formal assessment can be conducted using the proposal in Bai (2004). The idea consists of rotating the estimated factors towards the real interest rates (rᵢₜ) of the countries that we have analyzed running the regression rᵢₜ = ¹F,ᵢₜ + ²ξᵢₜ, i = 1, . . . , N, where ¹F is computed as explained in Bai (2004). Then, we can compute and plot the confidence intervals for the true underlying factors using the derivations in Bai (2004). If one particular real interest rate rᵢₜ—for instance, the one used as the benchmark—is a linear combination of the true factors, we would expect that 95 per cent of the T observations of rᵢₜ fall into the 95 per cent confidence interval. We have applied this procedure to our data, and found that none of the real interest rates is a linear combination of the estimated factors. This indicates that there are possibly other real determinants—for instance, productivity differentials—that might account for the non-stationary common factor; this analysis is beyond the scope of the paper. This result shows that using the US real interest rate as numeraire has not introduced a common factor (and, therefore, a form of cross-section dependence) by construction.

3.3 Panel Data Stationarity Test with Cross-section Dependence

It is possible to complement the previous analysis by testing the null hypothesis of stationarity with cross-section dependence using the ¹Ŝₖ statistic of Harris et al. (2005). Their statistic is given by ¹Ŝₖ = (Ĉₖ + ²ξ̂)/²{âₖ, i}, with Ĉₖ = T⁻¹/²Σₖᵢ=¹₋ₖ âₖᵢ, the autocovariance of order k, âₖᵢ = Σᵢ=¹₋ₖ⁺²ηᵢ, ²ξᵢₜ, and ²ξᵢₜ as the ith element of the (N + r) × 1 vector (¹Fᵢᵢ, . . . , ¹Fᵢᵢ, ²ξᵢₜ, . . . , ²ξᵢₜ), which contains the estimated common factors and the idiosyncratic disturbance terms obtained as described above. Ĉₖ = (T - k)⁻¹/²Σₖᵢ=¹₋ₖ⁺²ηᵢ, where ²ξ̂ᵢₜ is a correction term defined in Harris et al. (2005) and ²ω²{a_i} is a consistent estimate of the long-run variance of {aᵢ}. Under the null hypothesis of joint stationarity in both common factors and idiosyncratic disturbance terms, ¹Ŝₖ → d N(0, 1).

Table 2 reports the ¹Ŝₖ statistics. These results reveal that the null hypothesis of stationarity is not rejected at the 5 per cent level of significance only for the short-run ex post interest rate, whereas it is rejected for the other cases. Note that for the evidence drawn from the ¹Ŝₖ statistic to be coherent with the results obtained using Bai and Ng’s procedure, we should reject the null hypothesis of stationarity, since we have found non-stationary common factors. As the ¹Ŝₖ statistic takes both the idiosyncratic and common factor components into account, the presence of non-stationary common factors should lead to the rejection of the null hypothesis of the ¹Ŝₖ statistic. One

⁶We have omitted these results from the paper to save space, but they are available upon request.
explanation for the non-rejection of the null hypothesis of joint stationarity for the short-run RIRPexo interest rates might be that the size (or proportion) of the non-stationary component is smaller than the stationary one. In this case, stationarity test statistics will have low power—see Bai and Ng (2004).

To sum up, our analysis has revealed that the RIRP hypothesis is not satisfied due to the non-stationarity of the common factor detected, even though the idiosyncratic disturbance terms are found to be stationary. According to White and Woodbury (1980) and Holmes (2005), the existence of common factors reflects the high degree of financial market integration achieved in the OECD countries, as we have found that there is only one stochastic trend that governs the different interest rates. This is not surprising due to the process of ongoing financial integration that started in the 1980s in the OECD. In fact, during the 1980s and 1990s there was an increasing opening up of the financial markets in OECD countries together with an important innovation process (new markets and instruments) that helped financial integration. For almost three decades the OECD countries have taken steps to promote economic efficiency by liberalizing their domestic financial systems and removing restrictions on capital flows. Financial liberalization efforts in these countries followed almost the same pattern and took place primarily in two stages. In the first stage, foreign exchange controls, as well as the ceilings on deposits and lending rates, were progressively removed, though at different times. The second stage of the liberalization process witnessed the opening up of the capital accounts during the late 1980s. Once national markets have been deregulated, real interest differentials between two national markets should be close to those found in the Eurocurrency markets. In that case, average real interest rates will differ only if nominal returns in one currency are consistently higher than in another (i.e. UIP does not hold) or if the relative prices consistently diverge between the two countries (i.e. PPP does not hold). Relative financing costs will no longer depend on the peculiar features of national loan markets shielded from international competition.

4 Conclusions

Many studies have re-examined the RIRP condition and found it rather hard to establish its fulfillment empirically. In this paper we present new evidence showing that RIRP is not satisfied either in the short run or in the long run for a group of OECD countries. We examine the behavior of cross-country real interest rate differentials for the USA and 18 other major industrial economies from 1978:Q1 to 2006:Q1. Our analysis is based on the use of panel data unit root and stationarity test statistics that accommodate the presence of the strong and pervasive cross-section dependence that has been found. Taking into account this dependence is important to overcome potential biases in statistical inference that will lead us to conclude in favor of the stationarity
hypothesis. By exploiting the cross-section information, these tests have higher power relative to the classical unit root and stationarity tests.

Cross-section dependence has been modeled through the use of common factor models. This has allowed us to shed light on the source of non-stationarity. Thus, we have detected the presence of one non-stationary common factor, i.e. one common stochastic trend, while the idiosyncratic disturbance terms are found to be stationary. This means that the non-stationarity of the real interest rate differentials is due to the presence of one common stochastic trend, which can be interpreted as a sign of high market integration. In our case, the non-stationary common factor represents the US real interest rate as, by definition, the differential of real interest rates has been computed relative to this benchmark variable. The presence of this non-stationary common factor implies that RIRP is not satisfied, although it shows that real interest rate differentials share one non-stationary common factor. We can interpret this result as a consequence of the increasing opening up of the financial markets in OECD countries during the 1980s and the 1990s, together with an important innovation process in the form of new markets and instruments that helped financial integration. This outcome is not surprising in a highly integrated area such as the OECD, where there is an increasing synchronization of business cycles. In this context, tests that do not impose independence across the panel are better in empirical research on economic integration.

How can we interpret the result that the real interest differentials between the USA and other OECD countries are non-stationary? We must recall that there is no direct economic mechanism that ensures the equality of real interest rates. So RIRP relies on its two underlying components: (nominal) UIP and PPP assuming that the two deviations almost exactly cancel out. If deviations from UIP and PPP are driven by a common factor, e.g. exchange rate forecast errors, then this canceling out is to be expected. On the other hand, if each deviation is driven by independent factors, deviations from UIP driven by risk premia and deviations from PPP driven by real trade factors—such as secular changes in competitiveness—then this canceling out could only have occurred by chance. Unfortunately, distinguishing between these two possibilities lies beyond the scope of this paper and is left for future research.

REFERENCES

Baharumshah, A. Z., Haw, C. T. and Fountas, S. (2005). ‘A Panel Study on Real Interest Rate Parity in East Asian Countries: Pre- and Post Liberalization Era’, Global Finance Journal, Vol. 16, pp. 69–85.
Bai, J. (2004). ‘Estimating Cross-section Common Stochastic Trends in Nonstationary Panel Data’, Journal of Econometrics, Vol. 122, pp. 137–183.
Bai, J. and Ng, S. (2002). ‘Determining the Number of Factors in Approximate Factor Models’, Econometrica, Vol. 70, pp. 191–221.
Bai, J. and Ng, S. (2004). ‘A PANIC Attack on Unit Roots and Cointegration’, *Econometrica*, Vol. 72, No. 4, pp. 1127–1177.

Banerjee, A., Marcellino, M. and Osbat, C. (2004). ‘Some Cautions on the Use of Panel Methods for Integrated Series of Macro-economic Data’, *Econometrics Journal*, Vol. 7, No. 2, pp. 322–340.

Banerjee, A., Marcellino, M. and Osbat, C. (2005). ‘Testing for PPP: Should We Use Panel Methods?’, *Empirical Economics*, Vol. 30, pp. 77–91.

Breuer, J., McNown, R. and Wallace, M. (2002). ‘Series-specific Unit Root Tests with Panel Data’, *Oxford Bulletin of Economics and Statistics*, Vol. 64, No. 5, pp. 527–546.

Chan, T. H., Baharumshah, A. Z. and Lau, E. (2007). ‘Real Financial Integration among the East Asian Economies: a SURADF Panel Approach’, *MPRA Paper 2021*.

Chinn, M. D. and Frankel, J. A. (1995). ‘Who Drives Real Interest around the Pacific Rim: the USA or Japan?’, *Journal of International Money and Finance*, Vol. 14, pp. 801–821.

Cumby, R. and Obstfeld, M. (1984). ‘International Interest Rate and Price Level Linkages under Flexible Exchange Rates: a Review of Recent Evidence’, in J. Bilson and R. C. Marston (eds), *Exchange Rate Theory and Practice*, Chicago, IL, University of Chicago Press.

Edison, H. and Pauls, D. (1993). ‘A Re-assessment of the Relationship between Real Exchange Rates and Real Interest Rates: 1974–1990’, *Journal of Monetary Economics*, Vol. 31, pp. 165–187.

Ferreira, A. L. and León-Ledesma, M. A. (2007). ‘Does the Real Interest Parity Hypothesis Hold? Evidence for Developed and Emerging Markets’, *Journal of International Money and Finance*, Vol. 26, No. 3, pp. 364–382.

Frankel, J. A., Schmukler, S. L. and Servén, L. (2004). ‘Global Transmission of Interest Rates: Monetary Independence and Currency Regime’, *Journal of International Money and Finance*, Vol. 23, pp. 701–733.

Fujii, E. and Chinn, M. D. (2002). ‘Fin de Siècle Real Interest Parity’, *Journal of International Financial Markets Institutions and Money*, Vol. 11, pp. 289–308.

Gengenbach, C., Palm, F. C. and Urbain, J. P. (2004). ‘Panel Unit Root Tests in the Presence of Cross-sectional Dependencies: Comparison and Implications for Modelling’, *METEOR Research Memorandum RM/04/039*, University of Maastricht.

Goldberg, L. G., Lothian, J. R. and Okunev, J. (2004). ‘Has International Financial Integration Increased?’, *Open Economies Review*, Vol. 14, No. 3, pp. 299–317.

Goodwin, B. and Grennes, T. (1994). ‘Real Interest Rate Equalisation and the Integration of International Financial Markets’, *Journal of International Money and Finance*, Vol. 13, pp. 107–124.

Hadri, K. (2000). ‘Testing for Unit Roots in Heterogeneous Panel Data’, *Econometrics Journal*, Vol. 3, pp. 148–161.

Harris, D., Leybourne, S. and McCabe, B. (2005). ‘Panel Stationarity Tests for Purchasing Power Parity with Cross-sectional Dependence’, *Journal of Business and Economics Statistics*, Vol. 23, pp. 395–409.

Holmes, M. J. (2002). ‘Does Long-run Real Interest Parity Hold among EU Countries? Some New Panel Data Evidence’, *Quarterly Review of Economics and Finance*, Vol. 42, pp. 733–746.

Holmes, M. J. (2005). ‘Integration of Independence? An Alternative Assessment of Real Interest Rate Linkages in the European Union’, *Economic Notes*, Vol. 34, pp. 407–427.
Holmes, M. J. and Maghrabi, N. (2004). ‘Asian Real Interest Rates, Nonlinear Dynamics, and International Parity’, *International Review of Economics and Finance*, Vol. 13, pp. 387–405.

Im, K. S., Pesaran, M. H. and Shin, Y. (2003). ‘Testing for Unit Roots in Heterogenous Panels’, *Journal of Econometrics*, Vol. 115, pp. 53–74.

Jang, M. J. and Shin, D. W. (2005). ‘Comparison of Panel Unit Root Tests under Cross Sectional Dependence’, *Economics Letters*, Vol. 89, pp. 12–17.

Kim, J. (2006). ‘Reconsidering Real Interest Parity for Traded and Nontraded Goods’, *Review of International Economics*, Vol. 14, No. 2, pp. 306–315.

Levin, A., Lin, C. F. and Chu, C. S. J. (2002). ‘Unit Root Tests in Panel Data: Asymptotic and Finite-sample Properties’, *Journal of Econometrics*, Vol. 108, pp. 1–24.

Lothian, J. R. (2000). ‘Capital Market Integration and Exchange-rate Regimes in Historical Perspective’, *Research in Banking and Finance*, Vol. 1, pp. 141–176.

Maddala, G. S. and Wu, S. (1999). ‘A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test’, *Oxford Bulletin of Economics and Statistics*, Vol. 61, Special Issue, pp. 631–652.

Mancuso, A. J., Goodwin, B. K. and Grennes, T. J. (2003): ‘Nonlinear Aspects of Capital Market Integration and Real Interest Rate Equalization’, *International Review of Economics and Finance*, Vol. 12, pp. 283–303.

Meese, R. and Rogoff, K. (1988). ‘Was it Real? The Exchange Rate–Interest Rates’, *Journal of International Money and Finance*, Vol. 4, pp. 189–208.

Mishkin, F. S. (1984). ‘Are Real Interest Rates Equal across Countries? An Empirical Investigation of International Parity Conditions’, *Journal of Finance*, Vol. 39, No. 5, pp. 1345–1357.

Moon, H. R. and Perron, B. (2004). ‘Testing for a Unit Root in Panels with Dynamic Factors’, *Journal of Econometrics*, Vol. 122, pp. 81–126.

Moosa, I. and Bhatti, R. (1996). ‘Some Evidence on Mean Reversion in *ex ante* Real Interest Rates’, *Scottish Journal of Political Economy*, Vol. 43, pp. 177–191.

Ng, S. (2006). ‘Testing Cross-section Correlation in Panel Data Using Spacings’, *Journal of Business and Economics Statistics*, Vol. 24, No. 1, pp. 12–23.

Ng, S. and Perron, P. (2001). ‘Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power’, *Econometrica*, Vol. 69, pp. 1519–1554.

O’Connell, P. (1998). ‘The Overvaluation of Purchasing Power Parity’, *Journal of International Economics*, Vol. 44, pp. 1–19.

Pesaran, M. H. (2007). ‘A Simple Panel Unit Root Test in the Presence of Cross Section Dependence’, *Journal of Applied Econometrics*, Vol. 22, No. 2, pp. 265–312.

Phillips, P. C. B. and Sul, D. (2003). ‘Dynamic Panel Estimation and Homogeneity Testing under Cross-section Dependence’, *Econometrics Journal*, Vol. 6, pp. 217–260.

Shiller, R. J. and Perron, P. (1985). ‘Testing the Random Walk Hypothesis: Power versus Frequency of Observation’, *Economics Letters*, Vol. 18, No. 4, pp. 381–386.

Singh, M. and Banerjee, A. (2006). ‘Testing Real Interest Parity in Emerging Markets’, *IMF Working Paper WP/06/249*.

Stock, J. H. and Watson, M. W. (1988). ‘Testing for Common Trends’, *Journal of the American Statistical Association*, Vol. 83, pp. 1097–1107.

White, B. B. and Woodbury, J. R., III (1980). ‘Exchange Rate Systems and International Capital Market Integration’, *Journal of Money Credit and Banking*, Vol. 12, pp. 175–183.

Wu, J. L. and Chen, S. L. (1998). ‘A Re-examination of Real Interest Rate Parity’, *Canadian Journal of Economics*, Vol. 31, pp. 837–851.