Analysis of a transgenic Oct4 enhancer reveals high fidelity long-range chromosomal interactions

Mingyang Cai1,2,3, Fan Gao1,2, Peilin Zhang1, Woojin An4, Jiandang Shi5, Kai Wang2,3,6 & Wange Lu1,7

Genome structure or nuclear organization has fascinated researchers investigating genome function. Recently, much effort has gone into defining relationships between specific genome structures and gene expression in pluripotent cells. We previously analyzed chromosomal interactions of the endogenous Oct4 distal enhancer in pluripotent cells. Here, we derive ES and iPS cells from a transgenic Oct4 distal enhancer reporter mouse. Using sonication-based Circularized Chromosome Conformation Capture (4C) coupled with next generation sequencing, we determined and compared the genome-wide interactome of the endogenous and transgenic Oct4 distal enhancers. Integrative genomic analysis indicated that the transgenic enhancer binds to a similar set of loci and shares similar key enrichment profiles with its endogenous counterpart. Both the endogenous and transgenic Oct4 enhancer interacting loci were enriched in the open nucleus compartment, which is associated with active histone marks (H3K4me1, H3K27ac, H3K4me3 and H3K9ac), active cis-regulatory sequences (DNA hypersensitivity sites (DHS)), 5-hydroxymethylcytosine (5-hmc), and early DNA replication domains. In addition, binding of some pluripotency-related transcription factors was consistently enriched in our 4C sites, and genes in those sites were generally more highly expressed. Overall, our work reveals critical features that may function in gene expression regulation in mouse pluripotent cells.

Pluripotent embryonic stem (ES) cells can self-renew indefinitely and generate all cell lineages in an organism, including the germ line1–3. Induced pluripotent stem (iPS) cells are genetically reprogrammed to a ES cell-like state by over-expression of genes that maintain ES cell properties4. Both types of cells are valuable tools in disease modeling, drug development and, particularly, cell replacement therapy. Understanding molecular mechanisms underlying pluripotency is a pressing task if we are to take full advantage of these cell types.

Recent studies have provided insight into chromatin folding patterns in 3D space as a mechanism governing stem cell pluripotency5. In fact, in addition to the linear arrangement of information encoded on DNA fibers, the 3-D architecture of the genome is increasingly thought to be a defining factor in gene regulation6. Both critical stem cell activities, self-renewal and pluripotency, require a distinct

1Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA. 2Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA. 3Division of Biostatistics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA. 4Department of Biochemistry and Molecular Biology, Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. 5College of Life Sciences, Nankai University, Tianjin 300071, China. 6Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. 7Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA. Correspondence and requests for materials should be addressed to J.S. (email: shijd@nankai.edu.cn) or K.W. (email: kaiwang@usc.edu) or W.L. (email: wangelu@usc.edu)
A determinant of genome architecture is long-range chromatin-chromatin interactions occurring genome-wide. Since 2002, when chromosome conformation capture (3C) was first used to investigate interactions between two genomic segments, a repertoire of high-throughput assays (4C9, 4C-seq10,11, 5C12, Hi-C13, and ChIA-PET14) has been developed to create chromatin interaction maps. These methods have greatly advanced our understanding of genome organization. Among them, circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) is an unbiased “one-versus-all” approach used to detect all genomic regions interacting with a region of interest15,16. Previously, we applied enzyme-based 4C-seq to capture genome-wide regions targeting the Oct4 locus, a region regulating ES cell pluripotency2,16. Furthermore, we have applied sonication-based 4C-seq to identify regions strongly interacting with a specified “bait”16,17. This modified approach was found as effective as enzyme-based methods but minimized bias due to enzyme digestion17.

Oct4 gene expression is governed by upstream distal and proximal enhancers18. The former is responsible for Oct4 expression in ES cells, while the latter controls expression in epiblasts19. Oct4 regulation by the distal enhancer is achieved by spatial proximity via looping19,20. Furthermore, there is evidence that enhancer elements can regulate genes hundreds to thousands of base pairs away. Therefore, we reasoned that Oct4 distal enhancer could regulate both nearby and distant genes on the same or even different chromosomes and that these interactions could be effectively detected by 4C-seq technology using the Oct4 distal enhancer as “bait”.

Here, we report that the Oct4 distal enhancer interacts with genomic loci that exhibit open chromosome features and contain active histone marks. Genes residing at these loci were expressed at levels higher than genes in other regions. We also demonstrate that long-range chromosomal interaction correlates with Oct4 gene transcription and show that somatic cells reprogrammed to IPS cells establish long-range chromosome interactions at the Oct4 locus before activating Oct4 transcription. When we compared the interactome of a transgenic Oct4 distal enhancer with its endogenous counterpart in IPS cells using sonication-based 4C-seq, we observed similar interacting loci. Overall, this analysis yields insight into high-fidelity interacting regions likely critical for gene expression in mouse pluripotent stem cells.

Results
Identification of endogenous and transgenic Oct4 enhancer interactomes in mouse ES and IPS cells. We applied a sonication-based 4C-seq technique to identify interacting partners of an Oct4 distal enhancer “bait” in three pluripotent lines, including mouse ES cells, mouse transgenic ES cells and mouse transgenic IPS cells (Fig. 1). The transgenic ES cell line contained both endogenous and transgenic Oct4 distal enhancer loci, enabling us to obtain two sets of 4C interactomes in that line. Thus, we obtained five sets of 4C interactomes: one for mouse ES cells, two for mouse transgenic ES cells, and two for mouse transgenic IPS cells. Notations used to identify Oct4 enhancer mouse lines were: MES, endogenous enhancer in wild-type ES cells; MES-E, endogenous enhancer in transgenic ES cells; MES-G, transgenic enhancer in transgenic ES cells; MIPS-E, endogenous enhancer in transgenic IPS cells; and MIPS-G, transgenic enhancer in transgenic mouse IPS cells. We obtained two biological replicates per experiment.

Details relevant to sonication-based 4C are found in Gao et al.17. Briefly, chromosome crosslinking via fixation captured spatial proximities within the nucleus, and a circular structure was formed by sonication followed by ligation. We then employed “bait”-specific primers to capture genomic regions interacting with an Oct4 distal enhancer “bait” by inverse nested PCR. Two sets of primers were designed to target endogenous or exogenous enhancers (see Methods). 4C libraries were then constructed and subjected to next-generation sequencing.

Based on our previously established protocol, we employed a paired-end tag (PET) mapping strategy15,17, in which short paired tags are extracted from DNA fragment ends. In our hands, this is an optimal approach to identify bait-interacting regions by spotting reads that are mosaics of the bait and interacting regions17. Here, we define the “bait” as a ~0.6 kb region including a 300-bp extension from locations of the second set of PCR primers (Fig. 2). Overall, we identified thousands of distal sites in 10 datasets (see Table 1). Here, we focused primarily on inter-chromosomal interactions as they account for most of the interaction pool.

Reproducibility of inter-chromosomal interactions. We initially determined reproducibility of inter-chromosomal interactions between biological replicates by counting interactions in every 2Mb genomic bin and correlating them between biological replicates. For inter-chromosomal interactions generated in replicates, Pearson’s correlation coefficient was >0.4 in all five 4C experiment groups (Fig. 3). This finding suggests that the chromosome conformation capture strategy captures only a subset of diverse interactions occurring within the nucleus.

To evaluate consistency between biological replicates in a different manner, we employed a strategy devised by Favorov et al.20, namely, to measure relative distance between two sets of genomic intervals. When we plotted distribution of relative distance between 4C sites in two biological replicates,
we observed a significant enrichment in frequency around the relative distance 0 (Fig. 4), indicating consistency between replicates.

Identification of significantly enriched interacting regions. Application of our custom computational pipeline identified thousands of sites interacting with the bait region (Table 1). To minimize noise due to random collisions within the nucleus and identify only biologically relevant sites, we applied a statistical model with a permutation-based false discovery rate (FDR) procedure. A z-score was assigned...
to each site based on the number of interacting sites within a 2Mb window around that site. FDR was calculated by random permutation of the data 100 times and the 0.05 threshold was chosen to select positive sites. Positive sites and nearby interacting sites within ± 1 Mb (Supplementary Table 1) were grouped as enriched interacting regions, and overlapping regions were further merged (Table 1).

Comparison of enriched interacting regions identified from 4C-seq data. Statistical analysis identified dozens of enriched interacting regions in each of the five experimental contexts (Fig. 5, Supplementary Table 2), with numerous regions shared between two replicates. Such regions represent high-confidence interactions of potential biological significance. Of note, we identified some regions that interact with both the endogenous and transgenic Oct4 distal enhancer (13 for MES and 24 for MIPS, Supplementary Table 2), suggesting that both bind a similar set of genomic loci and that these regions could be relevant to stem cell fate. Of note, 9 regions (Supplementary Table 2) are consistently identified in MES and MIPS. In addition, we concluded that information in individual datasets could be masked if we focused only on high-fidelity regions. Thus, in the following association analysis, we compared interacting sites in individual datasets.

Transgenic and endogenous Oct4 enhancer interactomes are similarly enriched with active nuclear compartments. Hi-C studies suggest a "two-compartment" model of nuclear chromatin, in which "open" compartments are enriched with active histone features, while "closed" compartments lack such marks. To examine association of our 4C interactomes of the Oct4 enhancer with histone marks, we examined enrichment of those marks around 4C sites. For all 10 datasets, histone marks related to gene activation, including H3K4me1, H3K27ac, H3K4me3 and H3K9ac, were enriched around identified 4C sites (± 0.5 Mb) compared with randomly shuffled genomic sites. By contrast, enrichment for the repressive mark H3K27me3 and the heterochromatin mark H3K9me3 was not significant (Fig. 6A for mouse ES cells; Fig. 6B for mouse iPS cells). This result supports the idea that the Oct4 enhancer physically interacts with active genomic regions and reveals a consistent pattern of histone marks in endogenous and transgenic enhancer interactomes.

Chromatin compartments are also defined by DNA replication domains, and some studies show that DNA replication timing shapes the genomic landscape in specific cell types. Using DNA replication timing data of three ES cell lines and three iPS cell lines (see Methods), we established that Oct4 is located at an early DNA replication domain (log2 transformed early/late replication timing ratio: mean = 1.334, standard deviation = 0.382, p-value = 0.00018). Thus, we asked whether the interactomes identified were similarly correlated with replication timing. We found that Oct4 enhancer interacting sites overlapped primarily with early DNA replication domains in mouse ES and iPS cells (p < 2.2e-16, Wilcoxon rank-sum test, Fig. 7). Early DNA replication domains are reportedly correlated with active gene transcription, suggesting that contact of the Oct4 enhancer with distant interacting regions has functional significance.

DNase I hypersensitivity (DHS) sites are universal features of active cis-regulatory sequences. We counted DHS sites around ± 0.5 Mb of 4C sites and at random sites in 10 pluripotent datasets (Fig. 8) and observed significant enrichment around 4C compared with random sites (p < 2.2e-16, Wilcoxon rank-sum test). The enrichment pattern of transgenic enhancer datasets was similar to that of endogenous

cell line	BR	# read pairs	# sites	# significant sites	# merged regions	# overlapping regions
MES	1	12351814	3931	953	97	43
	2	12096428	3131	713	85	
MES-E	1	11682797	1863	424	76	30
	2	11912574	1597	359	66	
MES-G	1	11895568	6983	1487	83	42
	2	12230450	7734	1808	95	
MIPS-E	1	10136007	5055	1096	83	43
	2	12134379	4440	1041	93	
MIPS-G	1	11801371	7254	1680	90	47
	2	11788007	6727	1568	86	

Table 1. Summary of metrics in 4C-seq analysis. Shown are counts of overlapping regions between biological replicates, together with counts of overlapping regions in analysis of the endogenous and transgenic Oct4 enhancer. Asterisks (*) indicate counts of regions consistently identified in endogenous and transgenic enhancer interactomes. Asterisk (**) indicates the count of regions consistently identified in MES and MIPS. BR, biological replicates.
enhancer datasets, further supporting the idea that the Oct4 distal enhancer resides in accessible chromatin and likely contains elements regulating stem cell activity.

DNA methylation marked by hydroxymethylcytosine (5-hmC) also regulates pluripotent cell activity. Thus, we counted 5-hmC peaks genome-wide within +/- 0.5 Mb of 4C sites (Fig. 9). 5-hmC sites were relatively more enriched in the proximity of Oct4 enhancer interactomes than were randomly selected sites (p < 2.2e-16, Wilcoxon rank-sum test), and that pattern was comparable between endogenous and transgenic enhancer interactomes.

Oct4 enhancer interactomes are adjacent to transcription start sites and CpG sites. To correlate Oct4 enhancer interactomes with annotated gene locations, we examined distribution of genomic
distances of 4C sites to nearby genomic elements, including to transcription start sites (TSSs) and CpG sites, which regulate gene expression and govern chromatin organization. Kernel density was plotted to show the distribution of distance from our 4C sites to TSSs (Fig. 10A) and to CpG sites (Fig. 10B). As shown, the plots show sharp peaks around the zero relative position. Compared to the randomly simulated sites in the whole genome, we observed that peaks of enhancer interactomes were steeper in a statistically significant manner (p < 2.2e-16), suggesting that endogenous and transgenic Oct4 enhancers preferentially interact with gene-rich regions. Proximity of interactomes to defined TSSs supports the concept of “transcription factories”, in which multiple active gene loci are co-regulated. Proximity of interactomes to CpG sites also supports the two-compartment model of interphase chromosome organization.

Expression of Oct4 enhancer interacting genes is higher than random genes. Since Oct4 enhancer interactomes are closely associated with genes, we identified all genes overlapping with or closest to 4C sites. Gene counts from 10 datasets are summarized in Table 2. We also collected RNA-seq data to examine expression levels of those genes. All interactomes identified in pluripotent cells were associated with genes expressed at a higher level than genes near randomly selected sites (Fig. 11). Genes consistently identified between biological replicates are listed in Supplementary Table 3. The overlapping genes found in endogenous and transgenic enhancer interactomes in MES and MIPS are listed in Supplementary Table 4.

The Oct4 enhancer interactome is enriched in transcription factor binding sites. Transcription factors can mediate chromatin–chromatin interactions by binding to two DNA segments. We thus asked whether the Oct4 enhancer interactome is enriched with transcription factor binding sites. To determine this, we analyzed ChIP-seq profiles of 13 sequence-specific transcription factors (Nanog, Oct4, STAT3, Smad1, Sox2, Zfx, c-Myc, n-Myc, Klf4, Esrrb, Tcfcp2l1, E2f1, and CTCF) and 2 transcription regulators (p300 and Suz12) reported previously. We obtained the binding sites for the 15 TFs (Methods), and
compared normalized and background-subtracted ChIP-seq tag counts around 4C and random sites using the Wilcoxon rank-sum test. Binding sites for Oct4, Tcfcp2l1, Klf4 and Esrrb were enriched in a statistically significant manner around +/− 1 kb of 4C sites in all 10 datasets (p < 1e-04), while Zfx was significantly enriched in 9 datasets (p < 1e-04) (Fig. 12, Table 3). These transcription factors may mediate chromatin interactions governing stem cell fate.

Discussion
To study the role of the Oct4 gene locus in establishing and maintaining pluripotency, previous studies have mapped its interaction partners in mouse and human ES cells. To our knowledge, ours is the first interactome map established for a transgenic enhancer, allowing comparison with endogenous enhancer interactomes. Our work shows that even if the Oct4 distal enhancer resides at a different locus, its interaction partners are comparable to those of the endogenous enhancer.

Figure 5. Venn diagram of interacting regions between biological replicates and between endogenous and exogenous interactomes. The number of regions overlapping between biological replicates in all five experiments (A–E) is shown. 13 high-fidelity regions are identified between MES-E and MES-G and 24 between MIPS-E and MIPS-G (E,G).
Figure 6. Enrichment analysis of histone marks around 4C sites in mouse ES (A) and iPS (B) cells. 4C sites are enriched with enhancer (H3K4me1 and H3K27ac) and promoter (H3K4me3 and H3K9ac) marks in both endogenous and transgenic enhancer interactomes relative to random sites. In contrast, no obvious enrichment of repressive marks (H3K9me3 and H3K27me3) is observed in sites interacting with the endogenous or transgenic enhancer.
Figure 7. Enrichment analysis of early DNA replication timing domains around 4C sites. Distribution of log2 transformed early/late replication timing ratio of regions +/- 50 kb from interacting sites indicates a shift toward positive values relative to genome-wide counterparts. DNA replication timing data for ES cells (ESC_46C, ESC_D3, and ESC_TT2) were used for analysis of MES, MES-E and MES-G, while data for iPS cells (iPSC, iPSC_1D4, and iPSC_2D4) were used for analysis of MIPS-E and MIPS-G.
Here, we applied sonication-based 4C-seq to identify loci interacting with the Oct4 distal enhancer bait in transgenic mouse ES cells. We found that interacting partners tend to occupy active genomic regions labeled by active histone modifications and other epigenetic marks. This observation suggests that physical contact between the Oct4 enhancer and other loci may be crucial for activity of transcription factors regulating pluripotency. Particularly, the Oct4 enhancer are closer to other enhancer regions in 3D space, thus may interact and synergize with enhancers of other genes functioning in pluripotent stem cells. In fact, synergy among enhancers has been previously shown in analysis of the mouse immunoglobulin kappa (Igκ) gene35–38. Besides, the fact that Oct4 enhancer interacts with a set of actively transcribed genes in pluripotent cells supports the association of genomic architecture with gene expression, as reported in a previous study39. Genes residing in the 4C regions identified were actively expressed, revealing how far-reaching chromosome-chromosome interactions can have functional consequences in cells.

We observed high reproducibility in our study, both between biological replicates and between endogenous and transgenic enhancer interactomes. However, we saw some variation in outcomes potentially due to the methodologies employed. The Pearson’s correlation coefficient of >0.4 is large enough in evaluating reproducibility between replicates, and is comparable to similar studies of this type. Chromatin-chromatin interactions are highly dynamic and transient40, and 4C-seq takes a snapshot of chromatin interaction patterns across millions of cells. By comparison, a previous study of the CTCF-mediated chromatin interactome in pluripotent cells using ChIA-PET reported that overlap between two biological replicates was 38%41.

4C-seq provides genome-wide candidate of regions and genes that interact with Oct4 enhancer. However, validation of the function of individual locus and gene is still required for unveiling the specific function. DNA fluorescence in situ hybridization (FISH) is a powerful approach to reveal nuclear positioning of a pair of loci42–44, and thus could be applied to validate specific interacting candidates suggested by 4C-seq. In addition, chromosome conformation capture (3C)45 could be used to quantify contact frequencies between selected genomic sites in a more targeted manner.

In summary, we report consistent interactome profiles for both the endogenous and transgenic Oct enhancer and conclude that interactions we observed are likely relevant to gene expression and pluripotency. It is important to keep in mind that we are relying on millions of cells and that our observations...
reflect behavior of cell populations. Such profiles should be interpreted with caution when predicting the function of a single cell.

Methods

Cell culture. Mouse E14 ES cells were grown in culture dishes coated with 0.1% gelatin in Glasgow Minimum Essential Medium (GMEM) supplemented with 15% fetal bovine serum (FBS), 100 mM nonessential amino acids, 1% sodium pyruvate, 200 mM glutamate, 1% penicillin streptomycin, 50 uM β-mercaptoethanol and 10 ng/mL LIF. Medium was replaced every 24 hours.

Generation of sonication-based 4C libraries. Immediately before library preparation, 10 million cells were cross-linked in culture dishes with freshly prepared 1% formaldehyde. To extract chromatin, cells were detached and treated with Triton X100 buffer (0.25% Triton X100, 10 mM EDTA, 10 mM Tris-HCl, pH8.0, 100 mM NaCl, 1 × protease inhibitor cocktail). Isolated chromatin pellets were resuspended in SDS lysis buffer (1% SDS, 5 mM EDTA, 50 mM Tris-HCl, pH8.0, 1 × protease inhibitor cocktail) and sonicated to an average size of 500-bp. Fragments were diluted, blunt-end repaired, and ligated.
with T4 ligase for 24 hours at 4. Reverse crosslinking was carried out at 65 °C for 20 hours with proteinase K. Protein-free DNA was purified as template for nested PCR using two sets of primers. Primers targeting endogenous Oct4 enhancer are as follows. 1st set, Forward 1: ACAGGCACTCTGAGGGCTAT, Reverse 1: TCGTTCAGAGCATGGTGTAGG; 2nd set, Forward 2: GTAATGGGATCCTCAGACTGGG, Reverse 2: AGGCTGTGTGATTCACCCTG. Primers targeting transgenic Oct4 enhancer are the same as those targeting endogenous enhancer, except for the Forward 2: GTAATGGGATCGTGACCCAAGG (Fig. 2). Purified PCR products were further sonicated to an average size of 200-bp, which were sequenced using an Illumina HiiSeq2000 Sequencer.

Computational analysis of sonication-based 4C libraries. 4C libraries were sequenced using 90-bp paired-end reads. Using this method, we extracted 20-bp end tags from forward and reverse reads and aligned them to the mouse reference genome assembly (mm10) separately using Burrows-Wheeler Aligner (BWA)\(^6\). We retained only uniquely mapped reads, with both paired end reads of mapping quality MAPQ >20. Junction reads were identified as one end-tag mapping uniquely to the “bait” region and the other to genomic locations >300-bp away on the same chromosome or different chromosome. We paid particular attention to distal junction reads in which two tags were either 1) on the same chromosome separated by >10 kb, or 2) on different chromosomes. Distal junction reads were further processed to identify distal chromatin interactions. Tags within a 100-bp window were interpreted as PCR products from a single ligation event and merged as one unique distal interacting site. Unique distal sites with only one read were excluded as background noise.

Significantly enriched interacting domain calling. We applied a statistical model to identify contact regions with significantly higher interaction frequency than that expected from background\(^10\). Every

![Image](image.png)

Table 2. Counts of genes identified around 4C sites. A substantial number of gene interactions overlap in two biological replicates. Asterisk (*) indicates counts of genes consistently identified in both the endogenous and transgenic enhancer interactomes.

cell line	BR	# genes	# overlapping genes
MES	1	734	198
	2	563	
MES-E	1	359	99 21*
	2	301	
MES-G	1	1014	305
	2	1195	
MIPS-E	1	804	236 63*
	2	755	
MIPS-G	1	1137	384
	2	1069	

![Image](image.png)

Figure 11. RNA-seq association study of targeted gene expression levels. The average FPKM (fragments per kilobase of exon per million fragments mapped) value was calculated for each of 10 datasets and compared with that of random set of genes. Gene expression levels are elevated in 4C regions relative to randomly selected regions in indicated cells. (p < 0.05 except for MES-E-2; Welch’s two sample t-test).
Figure 12. Boxplots of five transcription factors (Oct4, Klf4, Tcfcp2I1, Esrrb, Zfx) enrichment around the enhancer interacting sites (red) and random sites (blue) in 10 datasets. ChIP-seq tags within +/- 1 kb of an interacting site were counted and normalized to 10 million total tags.
TTSs and CpG sites were retrieved from UCSC Genome Bioinformatics site. DNA replication (GSE11431). A file containing genome-wide 5-hmc peaks in mouse ES cells was provided by Dr. Hao and Cufflinks. ChIP-seq peak files of 15 DNA-binding proteins were retrieved from the GEO database and RNA-seq data from ENCODE Project Portal. RNA-seq raw data were processed using Tophat Table 3.

interacting site \(i \) on chromosome \(W \) with length \(L_w \) was examined within window \(w \) with length \(L_w \). The number of interacting sites was defined as \(C_{i,w} \), and a \(z \) score was assigned to the window based on the following calculation:

\[
Z_i = \frac{(C_{i,w} - \mu_w)}{\sqrt{\mu_w(1 - \mu_w/L_w)}}
\]

in which \(\mu_w \) is the expected number of interacting sites in window \(w \) on chromosome \(W \).

We then applied an FDR-based approach to determine statistical significance of each interacting site. We randomly permutated \(z \)-score data obtained using the above calculations 100 times for every chromosome, and selected sites with FDR \(\leq 0.05 \) as significant interacting sites. An FDR for each site was the expected number of interacting sites in window \(W \) on chromosome \(i \).

\[
C_{i,w} = \sum_{i \in w} C_{i,w}
\]

Integrative association study. We retrieved ChIP-seq data for histone modifications, DHS data and RNA-seq data from ENCODE Project Portal. RNA-seq raw data were processed using Tophat and Cufflinks. ChIP-seq peak files of 15 DNA-binding proteins were retrieved from the GEO database (GSE11431). A file containing genome-wide 5-hmc peaks in mouse ES cells was provided by Dr. Hao Wu. TTSs and CpG sites were retrieved from UCSC Genome Bioinformatics site. DNA replication timing data for the mouse genome in 3 ES cell lines and 3 iPS cell lines were downloaded from the GEO database. The cell lines and GEO accessions are as follows: 46C (GSM450272), D3 (GSM450273), TT2 (GSM450274), iPSC (GSM450275), iPSC 1D4 (GSM450276), iPSC 2D4 (GSM450277). Segments with mean replication timing ratio above one (log2 transformed early/late replication timing ratio above zero) were defined as early replication regions.

Other methods. Statistical analysis was carried out using R (http://www.r-project.org/). Conversion of genomic coordinates between genome assemblies was executed using the liftOver tool from the UCSC Genome Bioinformatics Site.

Table 3. Transcription factor enrichment around 4C sites identified in 10 datasets. \(p \)-values were calculated using the Wilcoxon rank-sum test of differences between tag counts in regions \(+/- 1 \) kb of 4C sites and randomly selected genomic sites.

cell line	BR	Transcription Factors
MES	1	Oct4 1.58e-09
		Klf4 1.76e-08
		Tcfcp21I <2.2e-16
		Esrrb <2.2e-16
		Zfx /
MES-E	1	Oct4 2.997e-06
		Klf4 5.473e-05
		Tcfcp21I 3.123e-13
		Esrrb 1.474e-06
		Zfx <2.2e-16
MES-G	1	Oct4 <2.2e-16
		Klf4 <2.2e-16
		Tcfcp21I <2.2e-16
		Esrrb <2.2e-16
		Zfx <2.2e-16
MIPS-E	1	Oct4 4.973e-13
		Klf4 1.405e-08
		Tcfcp21I 2.2e-16
		Esrrb 6.139e-12
MIPS-G	1	Oct4 <2.2e-16
		Klf4 <2.2e-16
		Tcfcp21I <2.2e-16
		Esrrb <2.2e-16

References
1. Smith, A. G. Embryo-derived stem cells: of mice and men. *Annual review of cell and developmental biology* **17**, 435–462, doi: 10.1146/annurev.celldis.17.1.435 (2001).
2. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. *Nature* **292**, 154–156 (1981).
3. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. *Proc Natl Acad Sci USA* **78**, 7634–7638 (1981).
4. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell* **126**, 663–676, doi: 10.1016/j.cell.2006.07.024 (2006).
5. Wei, Z. et al. Klf4 organizes long-range chromosomal interactions with the oct4 locus in reprogramming and pluripotency. *Cell stem cell* **13**, 36–47, doi: 10.1016/j.stem.2013.05.010 (2013).
6. Gorkin, D. U., Leung, D. & Ren, B. The 3D genome in transcriptional regulation and pluripotency. *Cell stem cell* **14**, 762–775, doi: 10.1016/j.stem.2014.05.017 (2014).
7. Meshorer, E. & Misteli, T. Chromatin in pluripotent embryonic stem cells and differentiation. *Nature reviews. Molecular cell biology* **7**, 540–546, doi: 10.1038/nrm1938 (2006).
31. Sutherland, H. & Bickmore, W. A. Transcription factories: gene expression in unions?

35. Blasquez, V. C., Hale, M. A., Trevorrow, K. W. & Garrard, W. T. Immunoglobulin kappa gene enhancers synergistically activate

29. Kundu, T. K. & Rao, M. R. CpG islands in chromatin organization and gene expression.

34. Chen, X.

37. Liu, Z. M.

38. Liu, Z. & Garrard, W. T. Long-range interactions between three transcriptional enhancers, active Vkappa gene promoters, and a

45. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760, doi: 10.1093/bioinformatics/btp324 (2009).

13. Lieberman-Aiden, E.

16. Gao, F., Wei, Z., An, W. & Wang, K. The interactomes of POU5F1 and SOX2 enhancers in human embryonic stem cells.

17. Gao, F., Wei, Z., Lu, W. & Wang, K. Comparative analysis of 4C-Seq data generated from enzyme-based and sonication-based methods. BMC genomics 14, 345, doi: 10.1186/1471-2164-14-345 (2013).

32. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311, doi: 10.1126/science.1067799 (2002).

33. Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nature genetics 38, 1341–1347, doi: 10.1038/ng1891 (2006).

30. Splinter, E. et al. The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes & development 25, 1371–1383, doi: 10.1101/gad.633311 (2011).

36. Ostie, J. et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome research 16, 1299–1309, doi: 10.1101/gr.5751506 (2006).

14. Fullwood, M. J. et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58–64, doi: 10.1038/ nature08497 (2009).

15. Fullwood, M. J., Wei, C., Liu, E. T. & Ruan, Y. Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome research 19, 521–532, doi: 10.1101/gr.074906.107 (2009).

18. Yeom, Y. I. et al. Germline regulatory element of Oct-4 specific for the totipotent cycloblast of embryonal cells. Development 122, 881–894 (1996).

19. Young, R. A. Control of the embryonic stem cell state. Cell 144, 940–954, doi: 10.1016/j.cell.2011.01.032 (2011).

22. Ryba, T.

23. Liu, L., De, S. & Michor, F. DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes. Nature communications 4, 1502, doi: 10.1038/ncomms2502 (2013).

24. De, S. & Michor, F. DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes. Nature biotechnology 29, 1103–1108, doi: 10.1038/nbt.2030 (2011).

25. Woo, Y. H. & Li, W. H. DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nature communications 3, 1004, doi: 10.1038/ncomms1982 (2012).

26. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82, doi: 10.1038/nature11232 (2012).

27. Sultzwach, K. E. et al. Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS genetics 7, e1002154, doi: 10.1371/journal.pgen.1002154 (2011).

28. Wu, H. et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes & development 25, 679–684, doi: 10.1101/gad.2036011 (2011).

29. Kundu, T. K. & Rao, M. R. CpG islands in chromatin organization and gene expression. Journal of biochemistry 125, 217–222 (1999).

30. Gushchanskaia, E. S. et al. The clustering of CpG islands may constitute an important determinant of the 3D organization of interphase chromosomes. Epigenetics: official journal of the DNA Methylation Society 9, 951–963, doi: 10.4161/epi.28794 (2014).

31. Sutherland, H. & Bickmore, W. A. Transcription factories: gene expression in unions! Nature reviews. Genetics 10, 457–466, doi: 10.1038/nrg2892 (2009).

32. Deng, B., Melnik, S. & Cook, P. R. Transcription factories, chromatin loops, and the dysregulation of gene expression in malignancy. Seminars in cancer biology 23, 65–71, doi: 10.1016/j.semcancer.2012.01.003 (2013).

33. Zhang, J. et al. ChIA-PET analysis of transcriptional chromatin interactions. Methods 58, 289–299, doi: 10.1016/j.ymeth.2012.08.009 (2012).

34. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117, doi: 10.1016/j.cell.2008.04.043 (2008).

35. Blasquez, V. C., Hale, M. A., Trevorrow, K. W. & Garrard, W. T. Immunoglobulin kappa gene enhancers synergistically activate gene expression but independently determine chromatin structure. J Biol Chem 267, 23888–23893 (1992).

36. Liu, X., Prabhu, A. & Van Ness, B. Developmental regulation of the kappa locus involves both positive and negative sequence elements in the 3′ enhancer that affect the intron with the enhancer intron. J Biol Chem 274, 3285–3293 (1999).

37. Liu, Z. et al. Chromatin structural analyses of the mouse Igkappa gene locus reveal new hypersensitive sites specifying a transcriptional silencer and enhancer. J Biol Chem 277, 32640–32649, doi: 10.1074/jbc.M204632020 (2002).

38. Liu, Z. & Garrard, W. T. Long-range interactions between three transcriptional enhancers, active Vkappa gene promoters, and a 3′ boundary sequence spanning 46 kilobases. Mol Cell Biol 25, 3220–3231, doi: 10.1128/MCB.25.8.3220-3231.2005 (2005).

39. Schönenfelder, S. et al. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nature genetics 42, 53–61, doi: 10.1038/ng.946 (2010).

40. Lancot, C., Cheutin, T., Cremer, M., Cavalli, G. & Cremer, T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nature reviews. Genetics 8, 104–115, doi: 10.1038/nrg2041 (2007).

41. Handoko, L. et al. CTCF-mediated functional chromatin interactome in pluripotent cells. Nature genetics 43, 630–638, doi: 10.1038/ng.857 (2011).

42. Chamberyron, S. & Bickmore, W. A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes & development 18, 1119–1130, doi: 10.1101/gad.292104 (2004).

43. Ferrai, C. et al. Paused transcription factories prime silent uPA gene prior to activation. PLoS biology 8, e1000270, doi: 10.1371/journal.pbio.1000270 (2010).

44. Osborne, C. S. et al. Active genes dynamically colocalize to shared sites of ongoing transcription. Nature genetics 36, 1065–1071, doi: 10.1038/ng1423 (2004).

45. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760, doi: 10.1093/bioinformatics/btp324 (2009).
Acknowledgements
We thank people from the Lu lab, Wang lab and Shi lab for their inputs. The work was partially supported by a grant from NSFC (31470779).

Author Contributions
F.G., K.W. and W.L. designed the study. P.Z. prepared cell lines. F.G. performed experiments. M.C. analyzed the data. W.A. contributed to materials. M.C., J.S., K.W. and W.L. prepared the manuscript. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Cai, M. et al. Analysis of a transgenic Oct4 enhancer reveals high fidelity long-range chromosomal interactions. Sci. Rep. 5, 14558; doi: 10.1038/srep14558 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/