A NEW SPECTRAL CONJUGATE GRADIENT METHOD WITH DESCENT CONDITION AND GLOBAL CONVERGENCE PROPERTY FOR UNCONSTRAINED OPTIMIZATION

MAULANA MALIK1,2,*, MUSTAFA MAMAT1, SITI S. ABAS1, IBRAHIM M. SULAIMAN1, SUKONO3

1Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA), Terengganu 22200, Malaysia
2Department of Mathematics, Universitas Indonesia (UI), Depok 16424, Indonesia
3Department of Mathematics, Universitas Padjadjaran (Unpad), Jatinangor 45361, Indonesia

Copyright © 2020 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. The Spectral conjugate gradient method is an efficient method for solving large-scale unconstrained optimization problems. In this paper, we propose a new spectral conjugate gradient method in which performance is analyzed numerically. We establish the descent condition and global convergence property under some assumptions and the strong Wolfe line search. Numerical experiments to evaluate the method’s efficiency are conducted using 98 problems with various dimensions and initial points. The numerical results based on the number of iterations and central processing unit time show that the new method has a high performance computational.

Keywords: spectral conjugate gradient method; unconstrained optimization; descent condition; global convergence property; strong Wolfe line search.

2010 AMS Subject Classification: 65K10, 49M37, 90C06.

1. INTRODUCTION

The conjugate gradient method is an efficient method and very interesting for solving large-scale optimization problems since it can be done with lower storage and easy calculation. For

\footnote{*Corresponding author}

E-mail address: m.malik@sci.ui.ac.id

Received July 4, 2020
good reference for studies application of the conjugate gradient method, see [1, 2, 3]. In this article, we consider the following problem to be unconstrained minimization:

\[\text{(1)} \quad \min \{ f(x) \mid x \in \mathbb{R}^n \} \]

where \(\mathbb{R} \) is real number and \(f \) is a continuously differentiable function. Generally, conjugate gradient method is an iterative method with iterations formula defined as

\[\text{(2)} \quad x_{k+1} = x_k + \alpha_k d_k, \quad k = 0, 1, 2, 3, \ldots, \]

where \(x_k \) is \(k \)th approximation to a solution of problem (1) with \(x_0 \) is starting point, and \(\alpha_k \) is step length obtained by some line search. In this article, we use strong Wolfe line search as follows

\[\text{(3)} \quad f(x_k + \alpha_k d_k) \leq f(x_k) + \delta \alpha_k g_k^T d_k, \quad \left| g(x_k + \alpha_k d_k)^T d_k \right| \leq -\sigma g_k^T d_k \]

where \(g_k = g(x_k) = \nabla f(x_k) \) is a gradient of function \(f \) at point \(x_k \), \(g_k^T \) is transpose \(g_k \), and \(0 < \delta < \sigma < 1 \) [4]. Search direction in conjugate gradient method \(d_k \) defined as

\[d_k = \begin{cases} -g_k, & k = 0 \\ -g_k + \beta_k d_{k-1}, & k \geq 1 \end{cases} \]

where \(\beta_k \) is a coefficient determining different formulas [5]. The most well-known conjugate gradient methods are the Hestenes-Stiefel (HS) method [6], Fletcher-Reeves (FR) method [7], Conjugate Descent (CD) [8], Polak-Ribiére-Polyak (PRP) [9], and Wei-Yao-Liu (WYL) method [10], where the formulas \(\beta_k \) for corresponding method respectively are

\[\beta_k^{HS} = \frac{g_k^T (g_k - g_{k-1})}{d_{k-1}^T (g_k - g_{k-1})}, \]

\[\beta_k^{FR} = \frac{\|g_k\|^2}{\|g_{k-1}\|^2}, \]

\[\beta_k^{CD} = \frac{\|g_k\|^2}{d_{k-1}^T g_{k-1}}, \]

\[\beta_k^{PRP} = \frac{g_k^T (g_k - g_{k-1})}{\|g_{k-1}\|^2}, \]

\[\beta_k^{WYL} = \frac{g_k^T (g_k - \frac{\|g_k\|}{\|g_{k-1}\|} g_{k-1})}{\|g_{k-1}\|^2}. \]
Another common way to solve the problem (1) is to use the spectral conjugate gradient method introduced by Raydan [11] and initially the idea of the spectral conjugate gradient method proposed by Barzilai and Borwein [12]. The main difference between spectral gradient method and gradient conjugate method lies in the calculate of the search direction. The search direction of the spectral gradient method is as follows:

\[d_k = -\theta_k g_k + \beta_k s_{k-1} \]

where \(s_{k-1} = \alpha_{k-1} d_{k-1} \), and \(\theta_k \) is the spectral gradient parameter. In 2001, Birgin and Martinez [13] developed three kinds of the spectral methods which are a combination of spectral methods and conjugate gradient methods with the following parameters \(\beta_k \):

\[\beta_k = \frac{(\theta_k y_{k-1} - s_{k-1})^T g_k}{s_{k-1}^T y_{k-1}}, \quad \beta_k = \frac{\theta_k g_k^T y_{k-1}}{\alpha_{k-1} \theta_{k-1} s_{k-1}^T g_k}, \quad \beta_k = \frac{\theta_k g_k^T g_k}{\alpha_{k-1} \theta_{k-1} g_{k-1}^T g_{k-1}}. \]

where

\[y_{k-1} = g_k - g_{k-1}, \quad \theta_k = \frac{s_{k-1}^T s_{k-1}}{s_{k-1}^T y_{k-1}}. \]

Based on numerical results, three methods above are quite efficient, but the descent direction is not necessarily fulfilled. Therefore, Zhang et al. [14] make a modification to the FR method (MFR) so that the method has been proven descent direction, and satisfies global convergence property under Armijo line search, where the search direction is defined as

\[d_k = \begin{cases} -g_k, & k = 0 \\ -\theta_k g_k + \beta_k d_{k-1}, & k \geq 1 \end{cases} \]

and

\[\beta_k = \beta_{k-1}^{FR}, \quad \theta_k = \frac{d_{k-1}^T y_{k-1}}{||g_{k-1}||^2}, \]

which search direction of the MFR method can be written as follows:

\[d_k = \left(1 + \beta_{k-1}^{FR} \frac{g_k^T d_{k-1}}{||g_k||^2}\right) g_k + \beta_k^{FR} d_{k-1}. \]

As well as in 2012, Liu and Jiang [15] has proposed a new kind of the spectral conjugate gradient method (SCD), where the coefficient \(\beta_k \), and spectral gradient parameter \(\theta_k \) determined
by
\[
\beta_k = \begin{cases}
\beta_k^{CD}, & \text{if } g_k^T d_{k-1} \leq 0 \\
0, & \text{else}
\end{cases}
\]

\[
\theta_k = 1 - \frac{g_k^T d_{k-1}}{g_{k-1}^T d_{k-1}}.
\]

Recently, Jian et al. [16] proposed a new class of the spectral conjugate gradient method, which they are choice for spectral parameter \(\theta_k \) as follows:

\[
\theta_k^{JYJLL} = 1 + \frac{|g_k^T d_{k-1}|}{g_{k-1}^T d_{k-1}}
\]

and conjugate gradient parameter in form

\[
\beta_{k}^{JYJLL} = \frac{\|g_k\|^2 - (g_k^T d_{k-1})^2}{\max \{ \|g_{k-1}\|^2, d_{k-1}^T \left(g_k - g_{k-1} \right) \}}
\]

The JYJLL spectral conjugate gradient method (JYJLL-SCGM) always fulfills the descent condition without depending any line search and the global convergence properties under Wolfe line search are met also. The numerical experiments of the JYJLL-SCGM in comparison with AN1 [17], KD [18], HZ [19], and LFZ [20] methods show that JYJLL-SCGM is most effective.

The main objective of this paper is to propose a new spectral conjugate gradient method and compare its performance with the MFR, SCD, JYJLL, and NPRP method (see Zhang [21]). This paper will be organized as follows: In section 2, a new spectral conjugate gradient formula, and the algorithm will be presented. In section 3, we will show the descent condition and global convergence property of our new method. Numerical experiments will be presented in section 4. Finally, our conclusion will be written in section 5.

2. New Spectral Conjugate Gradient Formula

In this section, we first propose a new conjugate gradient coefficient based on the NPRP conjugate gradient formula in Ref. [21]. NPRP method is a modification of the PRP method, and development of WYL method. The coefficient \(\beta_k \) of NPRP method is defined as:

\[
\beta_k^{NPRP} = \frac{\|g_k\|^2 - \|g_k - g_{k-1}\| \cdot |g_k^T g_{k-1}|}{\|g_{k-1}\|^2},
\]
and our new coefficient defined as:

\[
\beta_k^{\text{MMSMS}} = \begin{cases}
\frac{\|g_k\|^2 - \|g_k\| \|g_{k-1}\| - \|g_k^T g_{k-1}\|}{(1-\mu)\|d_{k-1}\|^2 + \mu \|g_{k-1}\|^2}, & \text{if } \|g_k\|^2 > \left(\frac{\|g_k\|}{\|g_{k-1}\|} + 1 \right) \|g_k^T g_{k-1}\|, \\
0, & \text{otherwise}
\end{cases}
\]

that is, we add a negative \(|g_k^T g_{k-1}|\) in the numerator \(\beta_k^{\text{NPRP}}\), extend the denominator by \((1-\mu)\|d_{k-1}\|^2 + \mu \|g_{k-1}\|^2\), and prevent negative value, where \(\mu = 0.9\).

Secondly, we propose a new spectral parameter which is quite same to MFR formula (5) but different coefficient of \(\beta_k\) as follows:

\[
\theta_k^{\text{MMSMS}} = 1 + \beta_k^{\text{MMSMS}} \frac{g_k^T d_{k-1}}{\|g_k\|^2}.
\]

The MMSMS is symbolizes Malik, Mustafa, Sabariah, Mohammed, Sukono.

In the following, we describe the algorithm spectral MMSMS (SpMMSMS) method for solving unconstrained optimization problems.

Algorithm 2.1. (SpMMSMS Method)

Step 1. Choose an initial point \(x_0 \in \mathbb{R}^n\). Given the stopping criteria \(\varepsilon > 0\), parameter \(\sigma\), and \(\delta\).

Step 2. Compute \(\|g_k\|\), if \(\|g_k\| \leq \varepsilon\) then stop, \(x_k\) is optimal point. Else, go to Step 3.

Step 3. Compute \(\beta_k\) using (6).

Step 4. Compute search direction \(d_k\) using (4) with \(\beta_k^{\text{MMSMS}}\) and \(\theta_k^{\text{MMSMS}}\).

Step 5. Compute step length \(\alpha_k\) using the strong Wolfe line search (3).

Step 6. Set \(k := k + 1\), calculate the next iteration \(x_{k+1}\) using (2), and go to Step 2.

3. Descent Condition and Global Convergence Property

In this section, we analyze the descent condition and global convergence property of the SpMMSMS method. Therefore, we need the following definition.

Definition 3.1. [22] Let \(d_k\) is the search direction. If

\[
g_k^T d_k < 0, \text{ for all } k \geq 0.
\]

then the descent condition holds.
Definition 3.2. [22] We say that a conjugate gradient method is global convergence if

\[
\lim_{k \to \infty} \inf \| g_k \| = 0.
\]

The theorem below shows that the SpMMSMS method always fulfills the descent condition.

Theorem 3.3. Suppose that the search direction \(d_k \) is generated by SpMMSMS method, then

\[
g_k^T d_k = -\| g_k \|^2 < 0
\]

holds for any \(k \geq 0 \).

Proof. If \(k = 0 \), then \(d_0 = -g_0 \) and we obtain \(g_0^T d_0 = -g_0^T g_0 = -\| g_0 \|^2 < 0 \). So, for \(k = 0 \), the SpMMSMS method satisfies the descent condition. Now, for \(k \geq 1 \), we have

\[
d_k = -\theta_k g_k + \beta_k d_{k-1}.
\]

Substituting \(\theta_k \) by \(\theta_k^{MMSMS} \) and \(\beta_k \) by \(\beta_k^{MMSMS} \), then we get

(8) \[
d_k = -\theta_k^{MMSMS} g_k + \beta_k^{MMSMS} d_{k-1} = -\left(1 + \beta_k^{MMSMS} \frac{g_k^T d_{k-1}}{\| g_k \|^2} \right) g_k + \beta_k^{MMSMS} d_{k-1}.
\]

Based on value of \(\beta_k^{MMSMS} \), we have two cases for \(d_k \):

Case 1. For \(\| g_k \|^2 \leq \left(\| g_k \| \| g_{k-1} \| + 1 \right) \| g_k^T g_{k-1} \| \), then from (6), and (8), we have

\[
d_k = -g_k.
\]

Multiplying both sides by \(g_k^T \), we get \(g_k^T d_k = -g_k^T g_k = -\| g_k \|^2 < 0 \). Hence, the descent condition holds.

Case 2. For \(\| g_k \|^2 > \left(\| g_k \| \| g_{k-1} \| + 1 \right) \| g_k^T g_{k-1} \| \), then from (8) and multiplying both sides by \(g_k^T \), we obtain

\[
g_k^T d_k = -\left(1 + \beta_k^{MMSMS} \frac{g_k^T d_{k-1}}{\| g_k \|^2} \right) \| g_k \|^2 + \beta_k^{MMSMS} g_k^T d_{k-1} = -\left(1 + \frac{\| g_k \|^2 - \| g_k \| \| g_k^T g_{k-1} \| - \| g_k^T g_{k-1} \|}{(1 - \mu) \| d_{k-1} \|^2 + \mu \| g_{k-1} \|^2} \right) \| g_k \|^2 + \beta_k^{MMSMS} g_k^T d_{k-1}.
\]
\[-\|g_k\|^2 - \left(\frac{\|g_k\|^2 - \|g_{k-1}\| \left| g_k^T g_{k-1} \right| - \|g_k^T g_{k-1}\|}{(1 - \mu)\|d_{k-1}\|^2 + \mu\|g_{k-1}\|^2} \right) g_k^T d_{k-1} \]

\[+ \left(\frac{\|g_k\|^2 - \|g_{k-1}\| \left| g_k^T g_{k-1} \right| - \|g_k^T g_{k-1}\|}{(1 - \mu)\|d_{k-1}\|^2 + \mu\|g_{k-1}\|^2} \right) g_k^T d_{k-1} \]

\[= -\|g_k\|^2 < 0. \]

So that the descent condition holds. Hence, for any \(k \geq 0 \), the descent condition \(g_k^T d_k < 0 \) always satisfies. The proof is completed.

The following lemma is essential to prove the global convergence of the SpMMSMS method.

Lemma 3.4. The relation

\(0 \leq \beta_k^{\text{MMSMS}} \leq \frac{10}{9} \frac{\|g_k\|^2}{\|g_{k-1}\|^2} \)

always holds for any \(k \geq 0 \).

Proof. Clearly, from (6) \(\beta_k^{\text{MMSMS}} \) can be 0 or

\[\beta_k^{\text{MMSMS}} = \frac{\|g_k\|^2 - \|g_{k-1}\| \left| g_k^T g_{k-1} \right| - \|g_k^T g_{k-1}\|}{(1 - \mu)\|d_{k-1}\|^2 + \mu\|g_{k-1}\|^2} \]

\[= \frac{\|g_k\|^2 - \left(\frac{\|g_k\|}{\|g_{k-1}\|} + 1 \right) \left| g_k^T g_{k-1} \right|}{(1 - \mu)\|d_{k-1}\|^2 + \mu\|g_{k-1}\|^2}. \]

Since \(\left(\frac{\|g_k\|}{\|g_{k-1}\|} + 1 \right) \left| g_k^T g_{k-1} \right| > 0 \), (6), \((1 - \mu)\|d_{k-1}\|^2 > 0 \), and \(\mu = 0.9 \), then

\[\beta_k^{\text{MMSMS}} \leq \frac{10}{9} \frac{\|g_k\|^2}{\|g_{k-1}\|^2}, \text{ and } \beta_k^{\text{MMSMS}} > 0. \]

Hence, the relation (9) is true. The proof is finished.

To investigate the global convergence property of the SpMMSMS method, we need the following assumption.

Assumption 3.5.

(A1) For any initial point \(x_0 \), the set \(\Omega = \{ x \in \mathbb{R}^n : f(x) \leq f(x_0) \} \) is bounded.

(A2) In any neighborhood \(\Omega_0 \) of \(\Omega \), \(f \) is continuous and differentiable, and its gradient \(g(x) \) is Lipschitz continuous; in other words, there exists a Lipschitz constant \(L > 0 \) such that

\[\|g(x) - g(y)\| \leq L\|x - y\|, \text{ for all } x, y \in \Omega_0 \]
In the lemma below, we discuss the well-known condition of lemma Zoutendijk [23], which plays an essential role in the conjugate gradient method about convergence analysis.

Lemma 3.6. Suppose that Assumption 3.5 holds, let x_k be generated by iterative method $x_{k+1} = x_k + \alpha_k d_k$, where α_k is a step length which calculated by the strong Wolfe line search (3), and the search direction d_k satisfies the descent direction such that $g_k^T d_k < 0$. Then

\[
\sum_{k=0}^{\infty} \frac{(g_k^T d_k)^2}{\|d_k\|^2} < \infty.
\]

The theorem below, we establish the global convergence property of our new method.

Theorem 3.7. Suppose that Assumption 3.5 holds, and let the sequences $\{g_k\}$ and $\{d_k\}$ be generated by the SpMMSMS method with the strong Wolfe line search (3). Then

\[
\lim_{k \to \infty} \inf \|g_k\| = 0.
\]

Proof. The proof is done by contradiction. Suppose that (11) is not true. Then there exist a positive constant $\phi > 0$ such that $\|g_k\| \geq \phi$, $\forall k \geq 0$, which means

\[
\frac{1}{\|g_k\|^2} \leq \frac{1}{\phi^2}.
\]

From (8), we have $d_k + \theta_k^{MMSMS} g_k = \beta_k^{MMSMS} d_{k-1}$, and squaring the both sides, we get

\[
\|d_k\|^2 = \left(\beta_k^{MMSMS}\right)^2 \|d_{k-1}\|^2 - 2\theta_k^{MMSMS} g_k^T d_k \left(\theta_k^{MMSMS}\right)^2 \|g_k\|^2.
\]
Dividing both sides of (13) by \((g_k^T d_k)^2\), and combining with Theorem 3.3, and (9), we obtain

\[
\frac{\|d_k\|^2}{(g_k^T d_k)^2} = (\beta_k^{MMSMS})^2 \frac{\|d_{k-1}\|^2}{\|g_k\|^4} + \frac{2\theta_k^{MMSMS}}{\|g_k\|^2} - \left(\frac{\theta_k^{MMSMS}}{\|g_k\|^2}\right)^2
\]

\[
= (\beta_k^{MMSMS})^2 \frac{\|d_{k-1}\|^2}{\|g_k\|^4} - \frac{1}{\|g_k\|^2} \left(\left(\frac{\theta_k^{MMSMS}}{\|g_k\|^2}\right)^2 - 2\theta_k^{MMSMS}\right)
\]

\[
= (\beta_k^{MMSMS})^2 \frac{\|d_{k-1}\|^2}{\|g_k\|^4} - \frac{1}{\|g_k\|^2} \left(\left(\frac{\theta_k^{MMSMS}}{\|g_k\|^2} - 1\right)^2 - 1\right)
\]

\[
= (\beta_k^{MMSMS})^2 \frac{\|d_{k-1}\|^2}{\|g_k\|^4} - \frac{\left(\theta_k^{MMSMS} - 1\right)^2}{\|g_k\|^2} + \frac{1}{\|g_k\|^2}
\]

\[
\leq (\beta_k^{MMSMS})^2 \frac{\|d_{k-1}\|^2}{\|g_k\|^4} + \frac{1}{\|g_k\|^2}
\]

\[
\leq \left(\frac{100}{9}\right) \frac{\|g_k\|^2}{\|g_{k-1}\|^2} \frac{\|d_{k-1}\|^2}{\|g_k\|^4} + \frac{1}{\|g_k\|^2} = \frac{100}{81} \frac{\|d_{k-1}\|^2}{\|g_{k-1}\|^4} + \frac{1}{\|g_k\|^2}.
\]

We know that \(\frac{\|d_0\|^2}{\|g_0\|^2} = \frac{1}{\|g_0\|^2}\), applying (12) to above relation, we have

\[
\frac{\|d_k\|^2}{(g_k^T d_k)^2} \leq \frac{100}{81} \frac{\|d_{k-1}\|^2}{\|g_{k-1}\|^4} + \frac{1}{\|g_k\|^2}
\]

\[
\leq \left(\frac{100}{81}\right)^2 \frac{\|d_{k-2}\|^2}{\|g_{k-2}\|^4} + \frac{1}{\|g_{k-1}\|^2} + \frac{1}{\|g_k\|^2}
\]

\[
\leq \ldots \leq \left(\frac{100}{81}\right)^k \frac{1}{\|g_0\|^2} + \sum_{i=1}^{k} \frac{1}{\|g_i\|^2}
\]

\[
\leq \left(\frac{100}{81}\right)^k \frac{1}{\|g_0\|^2} + \frac{k}{\phi^2} = Z,
\]

where \(Z\) is an arbitrary scalar. So, we have \(\frac{(g_k^T d_k)^2}{\|d_k\|^2} \geq \frac{1}{Z}\). Furthermore,

\[
\left(\sum_{k=0}^{\infty} \frac{(g_k^T d_k)^2}{\|d_k\|^2}\right) = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{(g_k^T d_k)^2}{\|d_k\|^2} \geq \left(\sum_{k=0}^{\infty} \frac{1}{Z}\right) = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{1}{Z} = \lim_{n \to \infty} \frac{n+1}{Z} = \infty.
\]

Hence \(\sum_{k=0}^{\infty} \frac{(g_k^T d_k)^2}{\|d_k\|^2} \geq \infty\), which contradicts (10) in Lemma 3.6. So, base on Definition 3.2, we say that SpMMSMS fulfills global convergence property. The proof is completed. \(\Box\)

4. Numerical Experiments and Discussion

In this section, we present the computational results of SpMMSMS, MFR, SCD, JYJLL, and NPRP method. Some test functions considered in Andrei [24] to analyze the efficiency of each
method. The comparison is made using 98 problems with various initial points and dimensions, as in Table 1. Most of the initial points used are suggestions from Andrei [24], and dimensional variations by Malik et al. [25, 26], namely 2, 3, 4, 10, 50, 100, 500, 1000, 5000 and 10000. The function that is used is an artificial function. Artificial functions are used to detect algorithmic behavior under different conditions such as local optimal functions, valley-shaped function, unimodal functions, bowl-shaped functions, plate-shaped functions, and other functions.

Comparison of numerical results based on the number of iterations (NOI) and central processing unit (CPU) times (in second). The results are said to fail if the number of iterations exceeds 10,000, and no solution is reached. To get entries in Table 2, we use the algorithm code written in Matlab R2019a and ran on a personal laptop with specifications; processor Intel Core i7, 16 GB RAM memory, and operating system Windows 10 Pro 64 bit. All results have the same stopping criteria with $\varepsilon = 10^{-6}$ and implemented under strong Wolfe line search with $\sigma = 0.001$ and $\delta = 0.0001$.
Table 1. List of the test functions, dimension, and initial point.

Prob	Function	Dim	Initial point	Prob	Function	Dim	Initial point	
1	Ext. White & Holst	1000	(-1.2,1,...,-1.2,1)	50	Ext. Maratos	10	(-1,...,-1)	
2	Ext. White & Holst	1000	(10,...,10)	51	Six hump camel	2	(-1.2)	
3	Ext. White & Holst	10000	(-1.2,1,...,-1.2,1)	52	Six hump camel	2	(-5,10)	
4	Ext. White & Holst	10000	(5,...,5)	53	Three hump camel	2	(-1.2)	
5	Ext. Rosenbrock	1000	(-1.2,1,...,-1.2,1)	54	Three hump camel	2	(2,-1)	
6	Ext. Rosenbrock	1000	(10,...,10)	55	Booth	2	(5,5)	
7	Ext. Rosenbrock	10000	(-1.2,1,...,-1.2,1)	56	Booth	2	(10,10)	
8	Ext. Rosenbrock	10000	(5,...,5)	57	Trecanni	2	(-1.0,5)	
9	Ext. Freudenstein & Roth	4	(0.5,-2,0.5,-2)	58	Trecanni	2	(-5,10)	
10	Ext. Freudenstein & Roth	4	(5,5,5,5)	59	Zettl	2	(-1.2)	
11	Ext. Beale	1000	(1.0,8,...,1.0,8)	60	Zettl	2	(10,10)	
12	Ext. Beale	1000	(0.5,...,0.5)	61	Shallow	1000	(0,...,0)	
13	Ext. Beale	10000	(-1,...,-1)	62	Shallow	1000	(10,...,10)	
14	Ext. Beale	10000	(0.5,...,0.5)	63	Shallow	10000	(-1,...,-1)	
15	Ext. Wood	4	(-3,-1.3,-1)	64	Shallow	10000	(-10,...,-10)	
16	Ext. Wood	4	(5,5,5,5)	65	Generalized Quartic	1000	(1,...,1)	
17	Raydan 1	10	(1,...,1)	66	Generalized Quartic	1000	(20,...,20)	
18	Raydan 1	10	(10,...,10)	67	Quadratic QF2	50	(0.5,...,0.5)	
19	Raydan 1	100	(-1,...,-1)	68	Quadratic QF2	50	(30,...,30)	
20	Raydan 1	100	(-10,...,-10)	69	Leon	2	(2,2)	
21	Ext. Tridiagonal 1	500	(2,...,2)	70	Leon	2	(8,8)	
22	Ext. Tridiagonal 1	500	(10,...,10)	71	Gen. Tridiagonal 1	10	(2,...,2)	
23	Ext. Tridiagonal 1	1000	(1,...,1)	72	Gen. Tridiagonal 1	10	(10,...,10)	
24	Ext. Tridiagonal 1	1000	(-10,...,-10)	73	Gen. Tridiagonal 2	4	(1,1,1,1)	
25	Diagonal 4	500	(1,...,1)	74	Gen. Tridiagonal 2	4	(10,10,10,10)	
26	Diagonal 4	500	(-20,...,-20)	75	POWER	10	(1,...,1)	
27	Diagonal 4	1000	(1,...,1)	76	POWER	10	(10,...,10)	
28	Diagonal 4	1000	(-30,...,-30)	77	Quadratic QF1	50	(1,...,1)	
29	Ext. Himmelblau	1000	(1,...,1)	78	Quadratic QF1	50	(10,...,10)	
30	Ext. Himmelblau	1000	(20,...,20)	79	Quadratic QF1	500	(1,...,1)	
31	Ext. Himmelblau	10000	(-1,...,-1)	80	Quadratic QF1	500	(-5,...,-5)	
32	Ext. Himmelblau	10000	(50,...,50)	81	Ext.quad.pen.QP2	100	(1,...,1)	
33	FLETCHCR	10	(0,...,0)	82	Ext.quad.pen.QP2	100	(10,...,10)	
34	FLETCHCR	10	(10,...,10)	83	Ext.quad.pen.QP2	500	(10,...,10)	
35	Ext. Powel	100	(3,...,1,0,1,...,1)	84	Ext.quad.pen.QP2	500	(50,...,50)	
36	Ext. Powel	100	(5,...,5)	85	Ext.quad.pen.QP1	4	(1,1,1,1)	
37	NONSCOMP	2	(3,3)	86	Ext.quad.pen.QP1	4	(10,10,10,10)	
38	NONSCOMP	2	(10,10)	87	Quartic	4	(10,10,10,10)	
39	Ext. DENSCHNB	10	(1,...,1)	88	Quartic	4	(15,15,15,15)	
40	Ext. DENSCHNB	10	(10,...,10)	89	Matyas	2	(1,1)	
41	Ext. DENSCHNB	100	(10,...,10)	90	Matyas	2	(20,20)	
42	Ext. DENSCHNB	100	(-50,...,-50)	91	Colville	4	(2,2,2,2)	
43	Ext. Penalty	10	(1,2,3,...,10)	92	Colville	4	(10,10,10,10)	
44	Ext. Penalty	10	(-10,...,-10)	93	Dixon and Price	3	(1,1,1)	
45	Ext. Penalty	100	(5,...,5)	94	Dixon and Price	3	(10,10,10)	
46	Ext. Penalty	100	(10,...,10)	95	Sphere	5000	(1,...,1)	
47	Hager	10	(1,...,1)	96	Sphere	5000	(10,...,10)	
48	Hager	10	(-10,...,-10)	97	Sum Squares	50	(0,1,...,0,1)	
49	Ext. Maratos	10	(1.1,0.1)	98	Sum Squares	50	(10,...,10)	
Problem	SpM	MMS	SMS	JYJL	MFR	SCD	NPRP	
---------	-----	-----	-----	------	-----	-----	------	
	NOI	CPU	NOI	CPU	NOI	CPU	NOI	CPU
1	16	0.0597	49	0.1059	15	0.0625	17	0.0574
2	54	0.1786	210	0.9704	105	0.252	55	0.2006
3	16	0.3636	50	0.8048	15	0.389	17	0.4105
4	40	1.1356	130	4.4795	382	5.0925	42	1.1005
5	24	0.0538	59	0.1179	5954	3.6831	35	0.0587
6	33	0.0562	104	0.1882	150	0.1317	25	0.0392
7	16	0.3636	81	0.1376	335	0.4867	25	0.0639
8	34	0.858	87	1.2204	87	1.2208	14	0.32
9	8	0.0011	21	0.0066	21	0.0029	9	0.0183
10	11	0.0175	fail	fail	fail	fail	fail	fail
11	13	0.0469	75	0.1352	75	0.1322	17	0.0732
12	12	0.0431	81	0.1376	81	0.1436	35	0.3867
13	14	0.2908	87	1.2204	87	1.2208	14	0.32
14	8	0.0024	19	0.0065	19	0.0047	20	0.015
15	33	0.0043	2350	0.1437	2620	0.1278	50	0.0087
16	91	0.0343	93	0.0311	95	0.0243	253	0.0509
17	149	0.0472	801	0.349	fail	fail	390	0.0782
18	12	0.0294	452	0.3883	452	0.4074	19	0.0373
19	8	0.0235	9	0.0169	9	0.0225	15	0.0258
20	12	0.0382	517	0.7546	517	0.767	19	0.0458
21	8	0.0376	8	0.0236	9	0.0265	17	0.0391
22	2	0.0002	2	0.0021	2	0.0017	5	0.0116
23	2	0.0021	2	0.0021	2	0.0021	3	0.0022
24	2	0.0037	2	0.0035	2	0.0025	4	0.0057
25	2	0.0034	2	0.0034	2	0.0031	4	0.0034
26	8	0.0148	14	0.0199	15	0.0208	21	0.042
27	6	0.0152	9	0.0164	9	0.0211	10	0.0149
28	11	0.1136	22	0.2385	17	0.2096	15	0.1613
29	7	0.0862	13	0.1242	13	0.1156	18	0.1403
30	37	0.0046	1142	0.0615	1208	0.0461	153	0.0217
31	82	0.0094	403	0.0373	299	0.0214	148	0.0105
32	109	0.0384	5487	1.1151	5589	1.0281	fail	fail
33	98	0.0525	6066	1.2068	6019	1.0706	fail	fail
34	12	0.0012	86	0.0081	156	0.0052	28	0.0071
35	14	0.0018	88	0.0049	93	0.0043	22	0.0025
36	7	0.0013	9	0.0011	9	0.00734	10	0.0105
37	9	0.0014	11	0.0014	11	0.0014	21	0.0027
38	10	0.0044	11	0.0026	11	0.0045	22	0.0087
39	7	0.0031	63	0.0132	63	0.0099	11	0.0055
40	14	0.0071	10	8.84E-04	11	0.0011	45	0.0151
41	9	0.0024	19	0.0024	19	0.0014	54	0.0058
42	9	0.0053	28	0.0087	28	0.0109	10	0.0044
43	9	0.0047	fail	fail	28	0.1552	17	0.0121
44	13	0.0014	11	0.0039	11	0.0031	12	0.0107
45	20	0.0038	96	0.0096	97	0.0076	18	0.0081
46	36	0.0057	3527	0.5159	fail	fail	1229	0.0732

(Continued on next page)
Table 2 – Continued

Problem	SpMM	SM	MS	MS	JYJJ	MFR	SCD	NPRP
	NOI	CPU	NOI	CPU	NOI	CPU	NOI	CPU
50	32	0.0087	165	0.0245	128	0.0121	47	0.0084
51	7	8.44E-04	27	0.0027	27	8.09E-04	13	0.0021
52	10	9.07E-04	264	0.0181	536	0.0154	13	0.0019
53	13	0.0036	11	0.0033	11	0.0024	13	0.0032
54	12	0.0033	11	0.0024	12	0.0039	13	0.0065
55	2	2.53E-04	2	2.63E-04	2	2.63E-04	2	2.93E-04
56	2	2.92E-04	2	2.03E-04	2	1.29E-04	2	0.0041
57	1	2.11E-04	1	1.82E-04	1	1.64E-04	1	2.40E-04
58	5	0.0013	7	8.31E-04	7	4.69E-04	5	0.0083
59	11	0.0011	11	0.0081	11	6.34E-04	105	0.0064
60	12	0.0081	16	0.0022	16	9.00E-04	68	0.0081
61	8	0.0157	18	0.0348	18	0.0261	10	0.0109
62	13	0.0252	78	0.0692	96	0.076	50	0.0393
63	9	0.0849	47	0.3093	47	0.2884	18	0.1548
64	10	0.0995	10	0.0883	9	0.0753	11	0.1134
65	5	0.0459	7	0.0345	7	0.0384	5	0.0311
66	10	0.0454	16	0.0646	40	0.2119	10	0.0477
67	79	0.0153	116	0.017	116	0.0106	200	0.0256
68	67	0.0149	1306	0.3108	fail	fail	187	0.0315
69	22	0.0025	180	0.0157	194	0.0062	8117	0.0352
70	49	0.0077	735	0.0449	736	0.0229	4249	0.1963
71	21	0.0028	27	0.002	27	0.0027	30	0.0046
72	29	0.0049	43	0.0038	43	0.005	34	0.0111
73	4	4.54E-04	5	5.72E-04	5	3.36E-04	5	6.25E-04
74	11	0.0013	4710	0.205	6315	0.1435	11	0.0086
75	101	0.0157	10	0.0013	10	6.97E-04	77	0.0089
76	114	0.0121	10	0.0012	10	6.85E-04	105	0.0102
77	67	0.0133	38	0.0072	38	0.0054	67	0.0087
78	74	0.0139	40	0.0041	40	0.0056	75	0.015
79	284	0.1225	131	0.0532	131	0.0504	234	0.0883
80	286	0.1324	137	0.0615	137	0.0489	255	0.1001
81	30	0.0204	255	0.141	388	0.1794	46	0.0189
82	33	0.0226	3690	0.997	490	0.1991	40	0.0205
83	60	0.1051	1149	3.5478	1217	3.475	87	0.1231
84	58	0.105	1763	4.102	1132	3.246	120	0.1653
85	9	9.53E-04	20	0.0022	20	0.001	8	8.67E-04
86	9	0.0014	51	0.0056	51	0.0025	12	0.0092
87	81	0.0108	272	0.0166	272	0.0111	4334	0.2208
88	91	0.0119	273	0.0181	273	0.0138	1230	0.0778
89	1	2.97E-04	1	2.58E-04	1	0.0011	1	0.0011
90	1	0.007	1	0.003	1	0.0015	1	0.0056
91	214	0.0227	fail	fail	fail	fail	4295	0.2079
92	87	0.0149	33	0.0029	33	0.0015	1346	0.0801
93	13	0.0014	16	0.0015	16	8.83E-04	55	0.006
94	23	0.0044	24	0.0027	25	0.002	105	0.0119
95	1	0.0065	1	0.0083	1	0.0075	1	0.0052
96	1	0.0109	1	0.0072	1	0.0043	1	0.0151
97	45	0.0137	25	0.005	25	0.0054	45	0.0065
98	77	0.0161	41	0.0048	41	0.0055	77	0.0181
Based on Table 2, we can summarize the results for each method, the total number of iterations, the total of CPU Times, and the problem that was successfully resolved in Table 3.

Methods	TNOI	TCPU	Successful
SpMMSMS	3,756	4.8720114	100%
JYJLL	38,483	30.2860924	94%
MFR	31,480	25.9044023	93%
SCD	46,778	66.3459239	96%
NPRP	9,625	7.1376309	96%

Figure 1 and Figure 2, respectively, display the performance profiles of each method using a performance profile introduced by Dolan and Moré [27]. The formulas used to describe the outcome of the profile will be explained as follows:

\[
 r_{p,s} = \frac{\tau_{p,s}}{\min\{\tau_{p,s} : p \in P \text{ and } s \in S\}}, \quad \rho_s(\tau) = \frac{1}{n_p} \text{size}\{p \in P : r_{p,s} \leq \tau\}
\]

where

- S is the set solvers,
- P is the test set of problems,
- n_s is the number of solvers,
- n_p is the number of problems,
- $\tau(p,s)$ is computing time (NOI or others) needed to solve problem p by solver s,
- $r_{p,s}$ is performance profile ratio,
- $\rho_s(\tau)$ is the probability for solvers,

$r_{p,s}$ used to compare the performance method by solver s with the best performance by any solver on problem p, and $\rho_s(\tau)$ is a factor of the best possible ratio. In general, solvers with high vaules of $\rho_s(\tau)$ or in the upper right of the image represent the best solver.
Figure 1 and Figure 2 plots the performance profiles of the SpMMSMS, JYJLL, MFR, SCD, and NPRP methods based on the number of iteration and CPU time, respectively. From the pictures below, we can be seen that from the left side of Figure 1 and Figure 2; the SpMMSMS method is the high-performance method in solving of 98 the test problems. We can also see in Table 3; the SpMMSMS method has the best performance in a total of NOI and the total number of CPU times compared to the other methods. SpMMSMS method has the ability to solve all problems, so the percentage reaches 100%. All comparisons for performance profiles, the total number of NOI, the total number of CPU, and the successful percentage indicate that the SpMMSMS method has a high performance computational compared to the other methods.
5. Conclusion

In this article, we propose a new spectral conjugate gradient method, namely SpMMSMS method. The SpMMSMS method’s performance was tested by comparing it to the previous methods (JYJLL, MFR, SCD, and NPRP). Our new method fulfills the descent condition and global convergence property under the strong Wolfe line search. Through 98 test problems, the SpMMSMS method has a high performance computational compared with the JYJLL, MFR, SCD, and NPRP method.

Conflict of Interests

The author(s) declare that there is no conflict of interests.

References

[1] J. Guo, Z. Wan, A Modified Spectral PRP Conjugate Gradient Projection Method for Solving Large-Scale Monotone Equations and Its Application in Compressed Sensing, Math. Probl. Eng. 2019 (2019), Article ID 5261830.

[2] A.M. Awwal, P. Kumam, A.B. Abubakar, Spectral modified Polak-Ribiére-Polyak projection conjugate gradient method for solving monotone systems of nonlinear equations, Appl. Math. Comput. 362 (2019), 124514.

[3] G. Yuan, T. Li, W. Hu, A conjugate gradient algorithm for large-scale nonlinear equations and image restoration problems, Appl. Numer. Math. 147 (2020), 129-141.

[4] R. Pytlak, Conjugate Gradient Algorithms in Nonconvex Optimization, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[5] J. Nocedal, S.J. Wright, Numerical optimization, 2nd ed, Springer, New York, 2006.

[6] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bureau Stand. 49 (6) (1952), 409-436.

[7] R. Fletcher, C.M. Reeves, Function minimization by conjugate gradients, Computer J. 7 (2) (1964), 149-154.

[8] R. Fletcher, Practical methods of optimization, John Wiley & Sons, 2013.

[9] E. Polak, G. Ribiere, Note sur la convergence de méthodes de directions conjuguées, ESAIM, Math. Model. Numer. Anal. 3 (R1) (1969), 35-43.

[10] Z. Wei, S. Yao, L. Liu, The convergence properties of some new conjugate gradient methods, Appl. Math. Comput. 183 (2) (2006), 1341-1350.

[11] M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM J. Optim. 7 (1) (1997), 26-33.
[12] J. Barzilai, J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal. 8 (1988), 141-148.
[13] E.G. Birgin, J.M. Martínez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim. 43 (2) (2001), 117-128.
[14] L. Zhang, W. Zhou, D. Li, Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search, Numer. Math. 104 (4) (2006), 561-572.
[15] J. Liu, Y. Jiang, Global convergence of a spectral conjugate gradient method for unconstrained optimization, Abstr. Appl. Anal. 2012 (2012), Article ID 758287.
[16] J. Jian, L. Yang, X. Jiang, P. Liu, M. Liu, A Spectral Conjugate Gradient Method with Descent Property, Mathematics, 8 (2) (2020), 280.
[17] N. Andrei, New acceleration conjugate gradient algorithms as a modification of Dai-Yuan’s computational scheme for unconstrained optimization, J. Comput. Appl. Math. 234 (2010), 3397-3410.
[18] C.X. Kou, Y.H. Dai, A modified self-scaling memoryless Broyden-Fletcher-Goldfarb-Shanno method for unconstrained optimization, J. Optimiz. Theory. Appl. 165 (2015), 209-224.
[19] W.W. Hager, H. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16 (2005), 170-192.
[20] J.K. Liu Y.M. Feng, L.M. Zou, A spectral conjugate gradient method for solving large-scale unconstrained optimization, Comput. Math. Appl. 77 (2019), 731-739.
[21] L. Zhang, An improved Wei-Yao-Liu nonlinear conjugate gradient method for optimization computation, Appl. Math. Comput. 215 (6) (2009), 2269-2274.
[22] Y.-H. Dai, Nonlinear Conjugate Gradient Methods, in: Wiley Encyclopedia of Operations Research and Management Science, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2011: p. eorms0183.
[23] G. Zoutendijk, Nonlinear programming, computational methods, in Integer and Nonlinear Programming, J. Abadie (Ed.), North-Holland: Amsterdam, 1970, pp. 37-86.
[24] N. Andrei, An unconstrained optimization test functions collection, Adv. Model. Optim. 10 (1) (2008), 147-161.
[25] M. Malik, M. Mamat, S.S. Abas, Sukono, Convergence analysis of a new coefficient conjugate gradient method under exact line search, Int. J. Adv. Sci. Technol. 29 (5) (2020), 187-198.
[26] M. Malik, S.S. Abas, M. Mamat, Sukono, I.S. Mohammed, A new hybrid conjugate gradient method with global convergence properties, Int. J. Adv. Sci. Technol. 29 (5) (2020), 199-210.
[27] E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91 (2) (2002), 201-213.