Establishment of a novel ovine kidney cell line for isolation and propagation of viruses infecting domestic cloven-hoofed animal species

Katsuyoshi Matsuura · Yasuo Inoshima · Ken-ichiro Kameyama · Kenji Murakami

Abstract A sheep kidney-derived cell line, FLK-N3, was successfully established after serial (>100) passages. Persistent infection of this cell line with viruses and mycoplasma was not detected. The cells grew well and showed susceptibility to a wide variety of viruses derived from ovine, bovine, and porcine species, including orf virus, maedi visna virus, bovine herpesvirus 1, bovine parainfluenza virus 3, bovine viral diarrhea viruses 1 and 2, bovine coronavirus, bovine respiratory syncytial virus, bovine enterovirus, suid herpesvirus 1, and porcine enterovirus. These results suggest that the FLK-N3 cell line could be useful for isolation and propagation of viruses that affect cloven-hoofed animals.

Keywords Cell line · Establishment · Ovine · Virus propagation

Cells of ovine origin are widely used for various experiments. Madin–Darby ovine kidney (MDOK) cells (Madin and Darby 1958) are popular and commercially available from the American Type Culture Collection. Primary cells from the ovine embryonic kidney and lung seem to be the most useful types of cells for isolation and propagation of sheep viruses. However, in some situations, obtaining fresh primary cells has proven to be difficult. In particular, since the outbreak of bovine spongiform encephalopathy (BSE) was reported in 2001 in Japan, the Japanese government has prohibited using any tissues from cattle aged 2 yr and older, or goats and sheep 1 yr and older. This includes fetuses in these animals, until BSE and scrapie test results have been returned and are negative. The Japanese government has also strongly limited the import of products from cloven-hoofed animal species including sheep cell lines and cells maintained with bovine sera such as MDOK cells.

Many cell lines from various organs are established by introducing the simian virus 40 (SV40) T antigen gene, the E6E7 gene of papillomavirus, or a telomerase gene into primary cells (Le Poole et al. 1997; Inoshima and Ishiguro 2009; Pan et al. 2010). However, in recent years, the development and application of living genetically modified organisms using recombination techniques are regulated and monitored by law (Yamanouchi 2007). Thus, a cell line originating from sheep that has not been subjected to recombination techniques is essential in studying the outbreak of infectious diseases and the cytophysiology of sheep.

We attempted to establish a novel cell line originating from sheep using standard methods and without any genetic recombination techniques. We report the establishment of a novel cell line that shows susceptibility to several viruses derived from sheep and other animal species.

Primary fetal lamb kidney (FLK) cells from the fetus of a normal sheep were maintained in Eagle’s minimal essential medium supplemented with 5% of fetal calf serum and 10% tryptose phosphate broth. The cells were successfully cultured over 100 serial passages and the cell line designated FLK-N3.

To examine cell growth, approximately 5×10^4 cells were seeded in a 10-cm tissue culture dish. Cells at passage 106 (P106) were collected by treatment with trypsin–ethylene diaminetetraacetic acid (EDTA) at 1, 3, 4, and 7 d of
culture and then counted following staining with 0.05% (w/v) trypan blue diluted in phosphate-buffered saline.

To examine persistent infection of viruses such as ovine herpesvirus-2, alcelaphine herpesvirus-1, bovine viral diarrhea virus (BVDV), bovine leukemia virus, maedi/visna virus (MVV), border disease virus, and mycoplasma in FLK-N3 cells, polymerase chain reactions (PCR) were performed according to previous reports (Hsu et al. 1990; Baxter et al. 1993; Harasawa et al. 1993; Harasawa and Tomiyama 1994; Vileek et al. 1994; Fechner et al. 1997; Celer et al. 2000). DNAs were extracted from FLK-N3 cells using a Sepa Gene kit (Sanko Junyaku, Tokyo, Japan), and RNAs were also extracted using a Sepa Gene RNA isolation kit (Sanko Junyaku) according to the manufacturer’s instructions. Persistent infection by BVDV in the cells was also estimated by an immunoperoxidase method.

Table 1. Propagation of viruses derived from different animal species in FLK-N3 cells

Animal species	Virus strain	Culture method	CPE/DPI	Virus titer^a (TCID₅₀/mL)	References
Ovine	ORFV HIS	Static	+/-4	NT	Kanou et al. (2005)
Ovine	ORFV Iwate	Static	+/-2	NT	Kumagai et al. (1971)
Ovine	MVV M88	Static	+/-10	NT	Kindly provided by Dr. Onuma
Caprine	CAEV N40-8	Static	-	NT	Konishi et al. (2004)
Bovine	BoHV-1 758	Static	++/2	10⁵	Nishimado et al. (1972)
Bovine	BVDV Nose	Static	++/2	10^{2.5}	Kodama et al. (1974)
Bovine	BVDV KZ91CP	Static	++/3	10^{2.9}	Nagai et al. (1998)
Bovine	BCoV Kakegawa	Static	+/-2	10⁴	Akashi et al. (1980)
Bovine	BCoV Mebus	Static	+/-5	NT	Mebus et al. (1973)
Bovine	BCoV 119WN	Static	-	NT	Tsunemitsu et al. (1995)
Bovine	BPIV-3 BN-1	Static	-	NT	Inaba et al. (1963)
Bovine	BPIV-3 BN-1	Rotary	+/-4	NT	Inaba et al. (1963)
Bovine	BPIV-3 YN-1	Rotary	+/-4	NT	Inaba et al. (1963)
Bovine	BPIV-3 910N	Rotary	+/-4	NT	Inaba et al. (1970)
Bovine	BRSV NMK-7	Static	+/2	10⁴	Inaba et al. (1970)
Bovine	BRSV NMK-7	Rotary	+/-3	NT	NT
Bovine	BEV BF-1	Static	++/3	10⁶	Inaba et al. (1960)
Bovine	BEV C-121E	Static	+/-3	10⁵	Kurogi et al. (1976)
Swine	SuHV-1 Yamagata S-81	Static	+/-1	10⁷	Fukusho et al. (1981)
Swine	PEVA (PEV-8) 4CC	Static	-	NT	Honda et al. (1990)
Swine	PEV B (PEV-9) UKG410/73	Static	+/-3	10⁴	Knowles et al. (1979)
Swine	PEV B (PEV-10) W47H	Static	++/3	10⁵	Honda et al. (1990)
Swine	PTV-1 SF12	Static	-	NT	Morimoto et al. (1968)
Swine	PTV-2 SF10	Static	-	NT	Morimoto et al. (1968)
Swine	PTV-4 SF16	Static	-	NT	Morimoto et al. (1968)
Swine	PPV 90HS	Static	+/-7	NT	Morimoto et al. (1972)

^aVirus titer was estimated at 7 DPI

ORFV orf virus, MVV maedi visna virus, CAEV caprine arthritis encephalitis virus, BoHV-1 bovine herpesvirus 1, BVDV bovine viral diarrhea virus, BCoV bovine coronavirus, BPIV-3 bovine parainfluenza virus 3, BRSV bovine respiratory syncytial virus, BEV bovine enterovirus, SuHV-1 suid herpesvirus 1, PEV porcine enterovirus, PTV porcine teschovirus, PPV porcine parvovirus, NT not tested, CPE cytopathic effect, ++ prominent, + clear, ± weak, − no effect on the cells, DPI days post-inoculation

Figure 1. Growth of FLK-N3 cells. Approximately 5 × 10⁵ cells were seeded in 10-cm tissue culture dishes. Cells were collected by treatment with trypsin–EDTA after 1, 3, 4, and 7 d in culture. Then, cells were counted after staining with trypan blue. Data are shown as the means of three independent experiments±SD.
that employed a monoclonal antibody against the BVDV NS3 protein (Kameyama et al. 2006).

To investigate the viral susceptibility of FLK-N3 cells, the cells were infected with several viruses derived from ovine, bovine, and swine species (Table 1) at a multiplicity of infection of 0.1. The cells were cultured in a conventional static culture or rotary culture. Cytopathic effect (CPE) of the cells was observed, and the virus titer in the culture supernatant was determined by the Reed–Muench method (Reed and Muench 1938).

The number of cells increased in wells during culture and was almost confluent by day 4 (Fig. 1). The PCR and immunoperoxidase studies clearly showed that no viruses could be detected in the FLK-N3 cells. FLK-N3 cells grew well with no persistent infection observed in the cells.

The viruses used in this study grew well in FLK-N3 cells, grew within almost 7 d after inoculation (Table 1). Representative CPEs of susceptible viruses on FLK-N3 cells are shown in Fig. 2. FLK-N3 cells showed a high susceptibility to orf virus (ORFV), bovine herpesvirus 1 (BoHV-1), bovine enterovirus (BEV), suid herpesvirus 1 (SuHV-1), and porcine enterovirus (PEV) type B. Bovine coronavirus (BCoV) and PEV showed strain specificity or type specificity in the cells.

Furthermore, bovine parainfluenza virus 3 (BPIV-3) and bovine respiratory syncytial virus (BRSV) exhibited a

Figure 2. Cytopathic effects on FLK-N3 by virus infection. FLK-N3 cells were infected with ORFV Iwate (A), BoHV-1 758 (B), BEV C-121E (C), SuHV-1 Yamagata S-81 (D), PEV B W47H (E), BCoV Kakegawa (F), BRSV NMK-7 (G), BVDV KZ-91CP (H), MVV M88 (I), and virus-uninfected negative control FLK-N3 cells (J). Cytopathic effects were observed at days 1 (D), 2 (A, B, F and G), 3 (C, E and H), and 10 (J) post-infection, respectively. Original magnification, ×100.

ESTABLISHMENT OF A NOVEL OVINE CELL LINE 461

© Springer
different type of CPE, when static or rotary culturing methods were used. The virus titers at the time of CPE appearance were almost equal to or lower than titers which were propagated in the Madin–Darby bovine kidney, a human rectal adenocarcinoma cell line (HRT-18), and a monkey kidney epithelial cell line (Véro) (data not shown).

FLK-N3 cells had some novel characteristics. For propagation and isolation of BCoV, HRT-18 cells are routinely used in many laboratories (Mebus et al. 1973; Akashi et al. 1981; Tsunemitsu et al. 1995). However, it is well known that the CPE is hard to observe in HRT-18 cells infected with BCoV. In contrast, FLK-N3 cells infected with BCoV clearly demonstrated a CPE. Furthermore, observation of CPE because of BVDV infection is normally carried out in primary BFM cells. FLK-N3 cells showed clear CPE after BVDV inoculation. However, the titers of BVDV 1 and BVDV 2 propagated in FLK-N3 were 10^2.7- and 10^1.6-fold lower at 7 d post-inoculation, respectively, than that in primary bovine fetal muscle (BFM) cells (data not shown). The titer of other viruses that showed a CPE in FLK-N3 cells was almost the same as that in primary cells. Susceptibility of FLK-N3 cells to BVDV may be lower than that of BFM cells.

MVV showed CPE at day 10, whereas caprine arthritis encephalitis virus (CAEV) did not exhibit any CPE. MVV and CAEV are ovine/caprine lentiviruses (Linal et al. 2005), with MVV showing a CPE and CAEV infection not resulting in any CPE on FLK-N3 cells. This may be dependent on the species susceptibility in FLK-N3 cells.

The cell line established in this study supported the in vitro growth of several viruses of cloven-hoofed animals. This suggested that FLK-N3 cells may be useful in studying general host–parasite relationships. In addition, because viruses derived from different animal species can grow in these cells, preparation of several kinds of cells may not be required. The usage of FLK-N3 cells might lead to less labor intensive and quicker assay results. FLK-N3 cells should be useful for in vitro research and the diagnosis of viral diseases.

Acknowledgments We thank Dr. Misao Onuma (Hokkaido University) for providing MVV and Dr. Yoshihiro Sakoda (Hokkaido University) for providing the anti-BVDV NS3 monoclonal antibody. This study was partly supported by the Ministry of Agriculture, Forestry and Fishery of Japan and by the Kakenhi from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

Akashi H.; Inaba Y.; Miura Y.; Tokuhisa S.; Sato K.; Satoda K. Properties of a coronavirus isolated from a cow with epizootic diarrhea. *Vet Microbiol* 5: 265–276; 1980.

Baxter S. I.; Pow I.; Bridgen A.; Reid H. W. PCR detection of the sheep-associated agent of malignant catarrhal fever. *Arch Virol* 132: 145–159; 1993.

Celer Jr. V.; Celer V.; Nejedla A. C.; Elwert J.; Geue L.; Albrecht C.; Kurg A.; Beier D.; Marquardt O.; Ebner D. Provirus variants of the bovine leukemia virus and their relation to the serological status of naturally infected cattle. *Virology* 237: 261–269; 1997.

Fukusho A.; Shimizu M.; Kudo M.; Nanba K.; Shimizu Y.; Konno S.; Suzuki K.; Otaki T. The outbreak of Aujeszky’s disease in swine in Japan. II. Virus isolation. *Bull. Natl. Inst. Anim. Health* 82: 5–11; 1981.

Harasawa R.; Mizusawa H.; Nozawa K.; Nakagawa T.; Asada K.; Kato I. Detection and tentative identification of dominant mycoplasma species in cell cultures by restriction analysis of the 16S-23S rRNA intergenic spacer regions. *Res Microbiol* 144: 489–493; 1993.

Harasawa R.; Tomiyama T. Evidence of pestivirus RNA in human virus vaccines. *J Clin Microbiol* 32: 1604–1605; 1994.

Honda E.; Kimata A.; Hattori I.; Kamagai T.; Tsuda T.; Tokui T. A serological comparison of 4 Japanese isolates of porcine enteroviruses with the international reference strains. *Jpn J Vet Sci* 52: 49–54; 1990.

Hsu D.; Shih L. M.; Castro A. E.; Zee Y. C. A diagnostic method to detect alcelaphine herpesvirus-1 of malignant catarrhal fever using the polymerase chain reaction. *Arch Virol* 114: 259–263; 1990.

Inaba Y.; Omori T.; Kodama M.; Ishii S.; Matumoto M. BFI virus, cytopathogenic virus isolated from bovine feces. Isolation and properties. *C R Seances Soc Biol Fil* 153: 1653; 1960.

Inaba Y.; Omori T.; Kono M.; Matumoto M. Parainfluenza 3 virus isolated from Japanese cattle. I. Isolation and identification. *Jpn J Exp Med* 33: 313; 1963.

Inaba Y.; Tanaka Y.; Omori T.; Matumoto M. Isolation of bovine respiratory syncytial virus. *Jpn J Exp Med* 40: 473; 1970.

Inoshima Y.; Ishiguro N. Establishment of vascular endothelial cell lines from the aortas of wild Japanese serows (*Capricornis crispus*). *Cell Biol Int* 33: 617–620; 2009.

Kameyama K.; Sakoda Y.; Tamai K.; Igarashi H.; Tajima M.; Mochizuki T.; Namba Y.; Kida H. Development of an immuno-chromatographic test kit for rapid detection of bovine viral diarrhea virus antigen. *J Vet Med Methods* 138: 140–146; 2006.

Kanou Y.; Inoshima Y.; Shibahara T.; Ishikawa Y.; Kadota K.; Ohashi S.; Morioka K.; Yoshida K.; Yamada S. Isolation and characterization of a parapoxvirus from sheep with papular stomatitis. *Jpn Agr Res Quart* 39: 197–203; 2005.

Knowles N. J.; Buckley L. S.; Pereira H. G. Classification of porcine enteroviruses by antigenic analysis and cytopathic effects in tissue culture: description of 3 new serotypes. *Arch Virol* 62: 201–208; 1979.

Kodama K.; Sasaki N.; Fukuyama S.; Izumida A.; Ishii F. Studies on cytopathogenic bovine viral diarrhea virus recovery, identification, and properties of the isolated virus. *Bull. Nippon Vet. Zootech. College* 23: 51–60; 1974.

Konishi M.; Tsuduku S.; Haritani M.; Murakami K.; Tsboi T.; Kobayashi C.; Yoshikawa K.; Kimura K. M.; Sentsui H. An epidemic of caprine arthritis encephalitis in Japan: isolation of the virus. *J Vet Med Sci* 66: 911–917; 2004.
Kumagai T.; Shimizu M.; Ito Y.; Konno S.; Nakagawa M.; Sato K.; Mukonakano K.; Ohta H. Contagious papular dermatitis of sheep. Proc 71st meeting of Jpn Soc Vet Sci. Tokyo, pp 15, 1971.

Kurogi H.; Inaba Y.; Takahashi E.; Sato E.; Omori E. Separation and properties of enterovirus and reovirus recovered from a fecal sample with diarrhea. Natl Inst Anim Health Q (Tokyo) 16: 49–58; 1976.

Le Poole I. C.; van den Berg F. M.; van den Wijngaard R. M.; Galloway D. A.; van Amstel P. J.; Buffing A. A.; Smits H. L.; Westerhof W.; Das P. K. Generation of a human melanocyte cell line by introduction of HPV16 E6 and E7 genes. In Vitro Cell Dev Biol Anim 33: 42–49; 1997.

Linial M. L.; Fan H.; Hahn B.; Lwer R.; Neil J.; Quackenbush S.; Rethwilm A.; Sonigo P.; Stoye J.; Tristem M. Virus taxonomy; Classification and nomenclature of viruses. Eight report of the international committee on the taxonomy of viruses. Elsevier Academic Press, San Diego, CA, pp 421–440; 2005.

Madin S. H.; Darby Jr. N. B. Established kidney cell lines of normal adult bovine and ovine origin. Proc Soc Exp Biol Med 98: 574–576; 1958.

Mebus C. A.; Stair E. L.; Rhodes M. B.; Twleicha M. J. Neonatal calf diarrhea: propagation, attenuation, and characteristics of a coronavirus-like agent. Am J Vet Res 34: 145–150; 1973.

Morimoto T.; Dunne H. W.; Wang J. T. Serologic comparison of North American and Japanese porcine picornaviruses. Am J Vet Res 29: 2275–2280; 1968.

Morimoto T.; Kurogi H.; Miura Y.; Sugimori T.; Fujisaki Y. Isolation of Japanese encephalitis virus and a hemagglutinating DNA virus from the brain of stillborn piglets. Natl Inst Anim Health Q (Tokyo) 12: 127; 1972.

Nagai M.; Sato M.; Nagano H.; Pang H.; Kong X.; Murakami T.; Ozawa T.; Akashi H. Nucleotide sequence homology to bovine viral diarrhea virus 2 (BVDV 2) in the 5' untranslated region of BVDVs from cattle with mucosal disease or persistent infection in Japan. Vet Microbiol 60: 271–276; 1998.

Nishimado M.; Fujii H.; Okamoto T.; Ebi Y.; Mike T.; Inaba Y.; Tanaka Y. A collective outbreak of infections bovine rhinotracheitis in imported cattle. J Jpn Vet Med Assoc 25: 600–604; 1972.

Pan X.; Du W.; Yu X.; Sheng G.; Cao H.; Yu C.; Lv G.; Huang H.; Chen Y.; Li J.; Li L. J. Establishment and characterization of immortalized porcine hepatocytes for the study of hepatocyte xenotransplantation. Transplant Proc 42: 1899–1906; 2010.

Redd L.; Muench H. A simple method of estimating fifty per cent endpoints. Am J Epidemiol 27: 493; 1938.

Tsunemitsu H.; el-Kanawati Z. R.; Smith D. R.; Redd H. H.; Saif L. J. Isolation of coronaviruses antigenically indistinguishable from bovine coronavirus from wild ruminants with diarrhea. J Clin Microbiol 33: 3264–3269; 1995.

Vilcek S.; Herring A. J.; Herring J. A.; Nettleton P. F.; Lowings J. P.; Paton D. J. Pestiviruses isolated from pigs, cattle and sheep can be allocated into at least three genogroups using polymerase chain reaction and restriction endonuclease analysis. Arch Virol 136: 309–323; 1994.

Yamanouchi K. Regulatory considerations on transgenic livestock in Japan in relation to the Cartagena protocol. Theriogenology 67: 185–187; 2007.