Optimizing Mycophenolic Acid Exposure in Kidney Transplant Recipients: Time for Target Concentration Intervention

David K. Metz, MBBS, Nick Holford, MSc, Joshua Y. Kausman, PhD, Amanda Walker, MD, Noel Cranswick, MBBS, Christine E. Staatz, PhD, Katherine A. Barraclough, PhD, and Francesco Ierino, PhD

Abstract. The immunosuppressive agent mycophenolate is used extensively in kidney transplantation, yet dosing strategy applied varies markedly from fixed dosing (“one-dose-fits-all”), to mycophenolic acid (MPA) trough concentration monitoring, to dose optimization to an MPA exposure target (as area under the concentration-time curve [MPA AUC0-12]). This relates in part to inconsistent results in prospective trials of concentration-controlled dosing (CCD). In this review, the totality of evidence supporting mycophenolate CCD is examined: pharmacological characteristics, observational data linking exposure to efficacy and toxicities, and randomized controlled trials of CCD, with attention to dose optimization method and exposure achieved. Fixed dosing of mycophenolate consistently leads to underexposure associated with rejection, as well as over-exposure associated with toxicities. When CCD is driven by pharmacokinetic calculation to a target concentration (target concentration intervention), MPA exposure is successfully controlled and clinical benefits are seen. There remains a need for consensus on practical aspects of mycophenolate target concentration intervention in contemporary tacrolimus-containing regimens and future research to define maintenance phase exposure targets. However, given ongoing consequences of both overimmunosuppression and underimmunosuppression in kidney transplantation, impacting short- and long-term outcomes, these should be a priority. The imprecise “one-dose-fits-all” approach should be replaced by the clinically proven MPA target concentration strategy.

(Transplantation 2019;103: 2012–2030)

INTRODUCTION

Graft Loss and Mortality

Outcomes from kidney transplantation remain suboptimal. Effective immunosuppressive drugs, along with attention to cardiovascular disease and prophylaxis against infection, have significantly reduced rates of acute rejection (15.4%), graft loss (3.6%), and death (2.8%) in the first posttransplant year for standard risk recipients. However, time to allograft failure remains substantially shorter than typical recipient life expectancy following transplantation, due largely to chronic antibody-mediated rejection. Approximately 20% of kidney allografts...
recipients have returned to dialysis 5 years after transplantation, increasing to around 50% after 15 years.11-13 At the same time, drug toxicities remain an important cause of morbidity and mortality from cardiovascular,14 infectious,15 and malignant16,17 diseases.

Immunosuppression and MPA

Immunosuppressant dosing aims for a sufficient biological drug effect to prevent rejection, while minimizing dose-dependent toxicities. Precision dosing requires an understanding of between-subject variability in both the pharmacokinetics (PK) and pharmacodynamics (PD) of the immunosuppressant agents.18-21

For all drugs, concentration at site of action (the “biophase”) is more directly linked to drug effect than dose.19,22 For certain drugs, concentrations vary widely between individuals on fixed dosing (FD), due primarily to differences in the extent of absorption (bioavailability) and rate of elimination (drug clearance). If FD leaves an unacceptable proportion of individuals outside the range of safe and effective concentrations,23 then dosing to a therapeutic range (therapeutic drug monitoring [TDM]) or a target concentration (target concentration intervention [TCI])24,25 has the potential to both maximize the beneficial effect and minimize toxicities (see Figure 1).

Mycophenolate mofetil (MMF) was initially marketed as a “one-dose-suits-all” drug, despite evidence obtained during drug development supporting concentration-controlled dosing (CCD).26 It displays wide between-subject variability in PK,27,28 leading to an over 10-fold range in mycophenolic acid (MPA) exposure (area under the total MPA concentration-time curve from 0 to 12 h [AUCt 0-12]) with mycophenolate FD. This ranges from <10 to >100 mg/L·h,29 well beyond the widely proposed therapeutic range of 30–60 mg/L·h.28-33

Two randomized controlled trials (RCTs) of CCD in kidney transplantation have demonstrated substantially reduced graft rejection when doses are individualized to a target MPA AUCt 0-12.26,34,35 However, 2 decades and numerous publications later, the benefit of CCD over FD remains contentious.29,36-40 Critically, the 2 largest RCTs, “fixed-dose concentration-controlled trial (FDCC)” and “Opticipet,” failed to significantly differentiate MPA exposure between treatment arms.31,41

To establish a role for CCD, it must first be shown that a measure of systemic exposure is associated with clinical outcomes. Biophase concentrations are rarely available in clinical practice; hence, easily accessible concentrations (eg, blood) are used as surrogate. Depending on the exposure metric (eg, trough or AUC), the matrices (eg, whole blood, plasma, or protein-free plasma for unbound concentrations), and the time-course of drug effect,19 measured concentrations may or may not predict outcomes. The pharmacokinetic-pharmacodynamic (PKPD) characteristics of MPA,30 including enterohepatic cycling (EHC),42 high protein binding,43,44 and presumed local gut toxicity,45 may have complicated assessment of the exposure-effect relationship.

For example, although trough concentrations are considered sufficiently well correlated with AUC for many therapeutic drugs,46,47 the relationship between trough and AUC for MPA is less precise.48,49 The use of MPA trough concentrations in clinical care is contentious.30,33,49-51 Despite this, reviews examining the MPA exposure-effect relationship have not distinguished exposure derived from trough concentrations versus AUC.0-12. This has likely diluted the relationship between exposure and effect.

Drug concentrations are almost always measured as “total concentration,” the sum of unbound drug and drug bound to plasma proteins. However, it is the unbound concentration that is the “effective” concentration, as only this concentration in kidney plasma may equilibrate across cellular membranes.43,44,52 While the relationship between unbound and total MPA concentrations is linear in normal physiological states, this is not the case in certain settings, including hypoalbuminemia or severe renal impairment.35,36

If an association between a measure of exposure and drug response is shown, the next question is whether using drug concentration to individualize dose, CCD, improves outcomes. Gold standard is the randomized concentration-controlled trial (RCCT), where participants are randomized to 2 or more treatment arms based on target concentration (or exposure) rather than dose size.24,54-56 This removes confounding influence between PK and PD characteristics55,56 and allows direct comparison of different exposure targets.

FIGURE 1. An explanation of how drug dosing decisions can be made by examining the relationship between drug exposure (AUC) at a fixed dose and the acceptable range for safe and effective exposure. Drug A can use fixed dosing, as this gives acceptable drug exposure in all. Drug B is being dosed too low—the population dose should be increased. Drug C is being dosed too high—the population dose should be decreased. Drug D shows both overexposure and underexposure on a fixed dose. Some form of dose optimization is required, AUC, area under the concentration-time curve.
There are 2 distinct advantages to TCI. First, it promotes determination of the optimal point of balance between benefit and toxicity, a more precise goal consistent with the concentration-effect relationship. Second, the required dose can be calculated directly from the target concentration and clearance. This could be by proportional dose adjustment from an estimate of AUC or by maximum a posteriori Bayesian estimation (MAPBE). The latter involves estimation of an individual’s PK characteristics using a limited sample of concentrations and a population PK model (Bayesian prior).

Given controversies regarding the benefit of CCD, and an ongoing need to improve immunosuppressant precision in kidney transplantation, a systematic literature review was performed. The aim was to provide an updated perspective on the MPA concentration-effect relationship and a critical analysis of exposure and effectiveness in the RCTs of CCD.

Literature Review Methodology

A systematic literature search was undertaken to identify studies in kidney transplant recipients:

1. Assessing the relationship between MPA exposure and beneficial effects.
2. Assessing the relationship between MPA exposure and toxicities.
3. Assessing benefit of mycophenolate CCD by RCT.

To assess the exposure-effect relationships, only studies using estimates of MPA AUC\(_{0-12}\) were included. This was to clarify the strength of association based upon the more reliable measure of drug exposure. MPA AUC\(_{0-12}\) is estimated by full PK profiling (numerous samples over the entire dosing interval), or from a more limited number of samples (limited sampling strategy [LSS]), using multilinear regression equation or MAPBE.

For studies involving MMF, estimates of MPA AUC\(_{0-12}\) were included whatever the method. In contrast, for studies involving mycophenolate sodium, only prolonged sampling profiles were included (to at least 8h postdose), as shorter LSS have not been shown to adequately predict exposure due to slow absorption of mycophenolate sodium.

For outcomes, the relationship between MPA AUC\(_{0-12}\) and rejection, hematological toxicity and infection were assessed. The relationship between MPA AUC\(_{0-12}\) and gastrointestinal toxicities was not examined as the mechanism is thought due to direct toxicity from MPA metabolites in the gut via EHC, thus indirectly linked to plasma MPA concentrations.

Due to low patient numbers without prespecified power calculation in a significant number of studies, the likelihood of type II errors, particularly for toxicities, was considered high. Thus, in addition to reporting the number of articles where statistical significance was met (\(P < 0.05\)), the number showing an association or trend was reported. While it might be argued that these articles do not meet sufficient statistical standards, it would be erroneous to suggest that they support the null hypothesis of no association.

Studies were examined altogether, and after separation into concurrent calcineurin inhibitor (CNI) usage (if >75% use of specific agent by cohort or if separate data given). This is because concurrent CNI impacts MPA exposure. Cyclosporine inhibits the EHC of MPA, reducing dose-normalized MPA exposure, particularly in the initial posttransplant period with high cyclosporine concentrations. When tacrolimus is used, the initial reduction in dose-normalized exposure is less, while MPA AUC\(_{0-12}\) above 60 mg/L.h is more common.

Electronic databases were searched up to January 25, 2019. Medline (Ovid) and Embase (Ovid) databases were searched using the following thesaurus or keywords:

- Population: “kidney transplantation”;
- Intervention: “mycophenol*,” “pharmaco*,” “drug monitoring”;
- Outcomes: “drug effects,” “rejection,” “survival,” “mortality” or “survival rate,” “severity of illness index,” “treatment outcome or treatment failure,” “infection,” “anemia,” “leucopenia,” “lymphopenia/lymphocytopenia/lymphocyte depletion,” “diarrhea,” “IMP dehydrogenase,” and “adverse outcome.”

In addition, PubMed was searched using keywords “mycophenol*” and “transplant*,” from 2013 onward, to identify e-pubs not yet indexed in Medline. Results were

![FIGURE 2. Schematic diagram of exposure-effect relationships for hypothetical “DRUG X,” with exposure-response curves for benefit (reduction in rejection from the baseline rate), toxicity 1 (infectious risk, including opportunistic), and toxicity 2 (suppression of hematopoiesis). Magnitude of response and likelihood and magnitude of toxicities increase with increasing exposure. From the bottom to the top of the therapeutic range (dashed red lines, 30–60 units), magnitude of beneficial response increases, as do toxicities. The optimal balance of efficacy and toxicities is seen at 40 units (optimal target exposure).](image-url)
limited to the English language and merged with the references from Staatz and Tett. Finally, additional references were sourced through searching of reference lists of relevant retrieved articles.

Duplicate entries were identified and removed. Remaining articles were then screened for relevancy, first through perusing of their title and abstract, then if these appeared suitable, through a full-text examination.

RESULTS
A total of 6029 unique articles were identified through the literature search. This was reduced by title review to 476 articles and by abstract review to 104 articles. Following full-text review, a total of 36 publications were identified as appropriate and included in the systemic review.

Evidence for an Exposure-response Relationship for Reduction of Acute Rejection

Twenty-seven cohorts were identified that assessed the relationship between MPA AUCt0-12 and rejection, comprising 3794 individuals. Study features and findings are summarized in Table 1.

A statistically significant relationship between MPA AUCt0-12 and rejection was evident in 20 of the 27 cohorts (comprising 3382 of 3794 individuals, 89.1%). An additional 3 studies showed a trend in favor of this association (5.7% of individuals), leaving only 4 cohorts (5.1% of individuals) without association.

For cyclosporine cotreated transplant recipients, 12 of 16 cohorts (comprising 1181 of 1518 individuals, 77.8%) reported a statistically significant association between MPA exposure and acute rejection. Of the remaining 4, 2 (18.1% of individuals) reported a trend between MPA exposure and acute rejection. Only 2 cohorts reported no relationship (4.2% of individuals). One of these negative cohorts involved 31 recipients receiving antithymocyte globulin, a lymphocyte-depleting agent with more potent immunosuppressive effects. Rejection occurring in 4 of 31 participants (12.9%), 3 of the 4 having a lower MPA AUCt0-12 than those without rejection (without application of a statistical test) following dose reduction for leukopenia.

For tacrolimus cotreated transplant recipients, 7 of 11 cohorts (comprising 1373 of 1696 individuals, 81.0%) revealed a statistically significant association. Two further cohorts reported a trend (11.9% of individuals). This left 2 cohorts (7.2% of individuals). One reported twice the rate of AR with MPA AUCt0-12 below 70 mg/L.h, without application of a statistical test. The other involved 51 transplant recipients (2.7% of individuals) who received high target tacrolimus concentrations by today’s standards; 10–20 ng/mL in the initial 2 weeks and then 5–15 ng/mL thereafter. Rejection occurred in 5 of 51 recipients (5.8%), with no relationship to MPA exposure.

Evidence for an Exposure-response Relation for Reduction of Immunosuppressant Toxicity

Twenty-two cohorts involving 3225 kidney transplant recipients were identified that assessed the relationship between MPA AUCt0-12 and hematological or infectious toxicities. Study features and findings are summarized in Table 2.

Only 9 of 22 cohorts reported a statistically significant association between MPA exposure and toxicities, comprising 1097 individuals (34.0% of the 3225 individuals). A further 2 cohorts (3.1% of individuals) supported a trend towards this association. Eleven of 22 cohorts (62.9% of individuals) reported no association.

In cyclosporine cotreated cohorts, only 2 of 11 studies reported a statistically significant association between exposure and toxicities (comprising 9.1% of 1065 individuals), along with a trend in 1 study (3.0% of individuals).

However, the association was far more consistent in cohorts cotreated with tacrolimus (6 relevant cohorts involving 502 individuals). A statistically significant association was reported in 5 of the 6 cohorts (comprising 481 of 502 individuals, 95.8%). There was just 1 cohort that did not report any relationship with toxicities (4.2% of individuals).

There were 3 publications where unbound MPA concentrations were measured alongside total drug concentrations, comprising 375 individuals. All 3 reported a statistically significant association between unbound exposure (MPA AUCu0-12) and toxicities. Of these, 2 of the 3 studies concurrently failed to show an association between total concentrations (MPA AUCt0-12) and toxicities.

Evidence for CCD and Improved Clinical Outcome

Five RCTs of mycophenolate CCD were identified. Study features and findings are summarized in Table 3.

All used the MMF formulation. Three used a TCI strategy: the multitarget RCCT published in 1998, “APOMYGRE” published in 2007, and “OPERA” published in 2011. Two used a TDM strategy: the FDCC, published in 2008 and “Opticept” published in 2009.

MMPA Dose Individualization Using TCI

All 3 TCI trials optimized mycophenolate dose using MAPBE. Two showed a statistically significant and clinically important benefit. A third trial, with 2 distinct interventions in the treatment arm, neither supported nor refuted benefit of TCI.

Multitarget RCCT

The first trial was the only RCCT, with more than one target-exposure arm. One hundred and fifty recipients were randomized to 3 separate target MPA AUCt0-12 arms: 16.1 mg/L.h (low target), 32.2 mg/L.h (medium target), or 60.6 mg/L.h (high target). Though concentration targets were exceeded in later posttransplant periods (due to so-called “time-dependant clearance”), the trial was successful in separating treatment arms into 3 distinct MPA exposure groups (see Figure 1, trial publication). In each arm, within-group PK variability was reduced from 40%–50% to almost 30%.

The primary end point, biopsy-proven acute rejection (BPAR) at 6 months, was less frequent with increasing exposure target: 27.5%, 14.9%, and 11.5% in low, medium, and high AUC target arms (P = 0.043, low versus medium/high target groups). The requirement for treatment with muromonab-CD3 or antithymocyte globulin (reflecting more severe rejection) also numerically
TABLE 1
A summary of studies that have examined the relationship between MPA exposure and beneficial outcomes

Reference	Population	Concurrent therapy	Daily dose MPA	Effect metric	Exposure method	
Takahashi et al⁷⁴	32 Adults, first grafts, living or deceased donor	No induction	CsA Steroids	1–3.5 g	Immunosuppressive effects (freedom from rejection) shown in patients with MPA AUC_{t0-12} >40 mg/L.h	12 h AUC at 1, 2, and 3 wk
Hale et al⁷⁵ and van Gelder et al⁷⁶	150 Adults, first or second graft, deceased donor	No induction	CsA Steroids		Strong association between MPA AUC_{t0-12} and BPAR, P < 0.001.	12 h AUC days 3, 7, 11, and then 2 h LSS with MAPBE of full AUC days 21 and 28, then 4 weekly
Mourad et al⁷⁵	51 Adults, deceased donor	No induction	Tac Steroids	1 g	Significant association not seen	12 h AUC at 2 wk, 3 mo, and for cause
Mourad et al⁷⁶	31 adults, deceased donor (living donor N = 3)	ATG	CsA Steroids	2 g	Significant association not seen	12 h AUC at 2 wk, 3 mo, and for cause
Pillans et al⁷⁷	27 Adults	No induction	CsA Steroids	2 g	MPA AUC_{t0-12} <30 mg/L.h associated with twice the rejection rate (4/14, 29%, compared to 8/13, 62%)	6 h AUC on days 3–5
Cattaneo et al⁷⁸	46 Adults, first deceased donor graft	No induction	CsA Steroids	2 g	Higher CrCl at 6–9 mo after transplantation if MPA AUC_{t0-12} >40 mg/L.h: 85.7 mL/min (± 23.2) vs 64.5 mL/min (± 17.5), P < 0.05, with significant correlation between MPA AUC_{t0-12} and CrCl (P < 0.01)	Estimated full AUC from 2 h LSS (MLR equation), at 6–9 mo after transplantation
Weber et al⁷⁹	54 Children, first or second graft, living or deceased donor	No induction	CsA Steroids		Best ROC threshold 33.8 mg/L.h, relative risk BPAR 41% if below, 14% if above. MPA AUC_{t0-12} strong discriminator for AR, P = 0.009	12 h AUC days 7 and 21, 3 mo, and 6 mo
Kuypers et al⁸⁰	100 Adults, first or second graft, deceased donor, excluded if CIT > 36 h or DCD donor	IL2RB (31%)	Tac Late steroid withdrawal	1–2 g	For thresholds of MPA AUC_{t0-12} = 45 mg/L.h and Tac AUC_{t0-12} = 150 ng/mL.h, BPAR seen in 7.7%, 15%, 18.2%, and 26.3% (P = 0.09), for groups with (1) both drugs above threshold, (2) Tac below threshold, (3) MPA below threshold, and (4) both below threshold respectively (P = 0.09 across the four cohorts, P = 0.07 for dual above vs dual below threshold)	12 h AUC LSS day 7, 4 h LSS at 3, 6, and 12 mo, 2 h LSS at 6 wk (MLR equations)
Kiberd et al⁸¹	94 Adults, first graft	IL2RB (76.6%)	CsA Steroids	2 g	Optimal ROC threshold for rejection = MPA AUC_{t0-12} = 22 mg/L.h (24.9 mg/L.h if IL2RB used)	Estimated full AUC from 4 h LSS on days 3, 5, and 7 (MLR equation)
Atcheson et al⁸²	42 Adults	Tac used in participants with higher PRA (N = 10)	IL2RB CsA (76%) Steroids	2 g	Significant association not seen	6 h AUC on day 5

Continued next page
Reference	Population	Concurrent therapy	Daily dose MPA	Effect metric	Exposure method
Hazzan et al 83	108 Adults, first deceased donor graft, PRA <30%, no AR during first 3 m; randomized at 3 m to MPA or CsA withdrawal (N = 54)	ATG CsA Steroids	2 g	In CsA withdrawal group: odds ratio AR based on MPA AUC_{t0-12} at 3 mo, by Cox multivariate analysis, 0.89 (0.82 to 0.99) per 5 mg/L.h, P = 0.028. For entire group, odds ratio 0.79 (0.64 to 0.98) per 5 mg/L.h, P = 0.033	12 h AUC at 3 mo
Okamoto et al 84	67 Adults, living donor (deceased donor N = 2)	IL2RB (37.3%) CsA (52%) Steroids	TDM	MPA AUC_{t0-4} <20 mg/L.h associated with increased risk rejection. Significantly higher MPA AUC_{t0-4} in nonrejectors, mean (SD) 11.4 ± 7.23 mg/L.h vs 34 ± 26.8 mg/L.h, P = 0.01	4 h AUC
Satoh et al 85	30 Adults first graft, living donor, no DGF	No induction Tac (initial target 15–20 ng/mL) Steroids	2 g	MPA AUC_{t0-12} <40 mg/L.h in 71.4% of rejectors vs 26.1% of nonrejectors. Risk ratio for acute rejection 1.06 (1.01–1.11, P = 0.04) for daytime MPA AUC_{t0-12} and 1.09 (1.01–1.18, P = 0.021) for nighttime MPA AUC_{t0-12}.	12 h AUC on day 28
Kuriata-Kordek et al 86	26 Adults, deceased donor grafts	No induction CsA Steroids	Not stated	MPA AUC_{t0-12} <20 mg/L.h in 71.4% of rejectors vs 26.1% of nonrejectors. Risk ratio for acute rejection 1.06 (1.01–1.11, P = 0.04) for daytime MPA AUC_{t0-12} and 1.09 (1.01–1.18, P = 0.021) for nighttime MPA AUC_{t0-12}.	4 h AUC
Pawinski et al 87	51 Adults	No induction CsA Steroids	2 g	MPA AUC_{t0-12} of 24.1 mg/L.h 77.8% sensitivity and 91.7% specificity for discriminating rejectors from nonrejectors	Estimated AUC from 2 h LSS (MLR equation) at 1 wk and 2 mo and 3 mo
Le Meur et al 88	137 Adults first or second graft, exclusion PRA >50%	IL2RB CsA Late steroid withdrawal	2 g or TDM	Of 10 rejection episodes in first 3 mo, 7/10 associated with MPA AUC_{t0-12} <30 mg/L.h, 3/10 associated with MPA AUC_{t0-12} 30–45 mg/L.h, none with MPA AUC_{t0-12} >45 mg/L.h.	Estimated AUC from 3 h LSS using MAPBE, days 7, 14, and months 1, 3, 6, and 12
Kagaya et al 89	71 Adults, first living donor graft	No induction Tac Steroids	1–2 g	Significant association not reported. Acute rejection rate 33% with MPA AUC_{t0-12} <70 mg/L.h vs 13%–17% if MPA AUC_{t0-12} >70 mg/L.h (no statistical test performed).	12 h AUC on day 28
van Gelder et al 81,89	901 (839 Adults and 62 children), living or deceased donor. Exclusion PRA >50% within 6 mo, CIT >48 h. “High-risk” subpopulation, one or more of: DGF, second or third graft, PRA >15%, >3 HLA mismatches, or African descent	Induction (46.4%) CsA (54.2%) Steroids	2 g or 600 mg/m² or TDM	Day 3 MPA AUC_{t0-12} <30 mg/L.h identified 79% of individuals suffering BPAR in the following 3 mo: associated with BPAR at mo 1 (P = 0.009) and mo 12 (P = 0.006). Low MPA AUC_{t0-12} on day 10 showed trend to increased BPAR in the first mo (P = 0.0655). For entire cohort, higher BPAR in those with a day 3 MPA AUC_{t0-12} <30 mg/L.h (18.8% vs 13.3%, P = 0.018). For tacrolimus cohort, substantially higher BPAR in “high-risk” individuals with MPA AUC_{t0-12} <30 mg/L.h on day 3 (23.9% vs 10.4%, P = 0.012), while MPA AUC_{t0-12} not associated with BPAR in low-risk individuals. Excluding DGF from the “high-risk” tacrolimus cohort, significance remained: 14.2% vs 5.5%, P = 0.017.	Estimated AUC from 2 h LSS (MLR equation) on days 3 and 10, wk 4, and mo 3, 6, and 12

Continued next page
TABLE 1. (Continued)

Reference	Population	Concurrent therapy	Daily dose MPA	Effect metric	Exposure method
Gaston et al41	720 Adults, first or second, living donor or deceased donor graft	ATG (43%) and IL2RB (32%) Tac (81.9%) Steroids	2 g or 600 mg/m² or TDM	For tacrolimus subgroup (N = 590): Low MPA trough associated with time to BPAR, risk ratio 0.322 (P < 0.0001) and risk ratio 0.390 (P < 0.0001) and 6 and 12 mo, respectively. Optimal cutoff ≥1.6 µg/mL by ROC analysis. Low MPA AUCₜ₀₋₁₂ also associated with BPAR at 6 mo (P < 0.0002) and 12 mo (P < 0.0001). Not tested for CsA subgroup (too small).	Estimated AUC from 3 h LSS on days 3, 10, and 30 and mo 3, 6, and 12
Kuypers et al90	16 Adults, CsA withdrawal arm of CEASER trial, first grafts, excluded if depleting induction, CIT >30 h, PRA >20% within 6 mo	IL2RB CsA late withdrawal (6 m) Steroids	2 g	Lower rejection with day 5 MPA AUCₜ₀₋₁₂ >30 mg/L.h (15.5% vs 50%, P = 0.0047). Significant difference in rejection-free survival remained with exclusion of suspected and borderline AR cases (P = 0.0002, log-rank test of Kaplan-Meier survival distributions)	12 h AUC on day 7 and mo 3, 7, and 12
Gourishankar et al81	126 Adult, deceased or non-HLA-identical living donor graft, excluded if CIT >30 h, PRA >25% within 6 mo, polyclonal anti-T-cell therapy	IL2RB (85%) Tac Steroids	2 g or initial 3 g for 5 d, then 2 g	Median (IQR) day 4 MPA AUCₜ₀₋₁₂ lower in rejecters: 19.6 mg/L.h (17.1, 27.1) vs 31.1 mg/L.h (24.6, 41.3), P = 0.004. Optimal ROC cutoff for predicting rejection 23 mg/L.h (sensitivity 80%, specificity 75%). By multivariable regression (including adjustment for DGF), a 0.2 change in odds of rejection for a 12.2 mg/L.h (SD) increase in MPA AUCₜ₀₋₁₂ (P = 0.04).	12 h AUC days 3 and 5
Sommerer et al92	66 adults, eGFR >20	IL2RB CsA Steroids	720–2880 mg (MPS)	MPA AUCₜ₀₋₁₂ lower in those with acute rejection episodes [median 28 mg/L.h (7–45) vs 40 mg/L.h (16–130), P < 0.01]. Significance remained in multivariable regression that included other PK (dose, Cmax) and PD (IMPDH enzyme activity curve) parameters.	12 h AUC, 1 profile per patient, day 14 (10–56) posttransplant
Barraclough et al93	120 adults, living or deceased donor	IL2RB Tac Steroids	2 g	Median (IQR) day 4 MPA AUCₜ₀₋₁₂ lower in rejecters: 19.6 mg/L.h (17.1, 27.1) vs 31.1 mg/L.h (24.6, 41.3), P = 0.004. Optimal ROC cutoff for predicting rejection 23 mg/L.h (sensitivity 80%, specificity 75%). By multivariable regression (including adjustment for DGF), a 0.2 change in odds of rejection for a 12.2 mg/L.h (SD) increase in MPA AUCₜ₀₋₁₂ (P = 0.04).	Estimated AUC from 4 h LSS (MLR equation) on day 4 and mo 1
Fu et al94	183 Adults, living related donor grafts, PRA <10%. First graft in 99%, >80% had 1–3 HLA mismatches.	No induction Tac Steroids	TDM vs FD (nonrandomized)	In TDM group, rejection in 8/101 (7.9%). MPA AUCₜ₀₋₁₂ <30 mg/L.h in 3/8 with rejection, and 30–40 mg/L.h in 5/8 with rejection. No rejection seen in those with MPA AUCₜ₀₋₁₂ >40	Estimated AUC from 4 h LSS (MLR equation) on days 3, 7, 14, and 30
Daher Abdi et al95,96	490 Adults, pooled from APOMYGERE (N = 128, first or second graft, PRA <50%), OPERA (N = 221, first graft, recent PRA 0%, CIT <36 h) and routine care (N = 141)	IL2RB (minority Thymo) CsA (79.6%) Late steroid withdrawal (most)	2 g or TDM	Optimal “threshold” MPA AUCₜ₀₋₁₂ >35 mg/L.h in the first days, increasing to >41 mg/L.h by 6 mo. Strong association MPA AUCₜ₀₋₁₂ and rejection, P = 0.0081. Subsequently followed to 2 y (N = 222, 57.5% CsA and 42.5% Tac), significant association shown between MPA exposure and the composite of acute rejection, graft loss, and death.	Estimated AUC from 3 h LSS using MAPBE on days 7 and 14 and mo 1, 3, 6, and 12

Continued next page
decereased with increasing exposure targets—13.7%, 6.4%, and 3.9%, respectively—failing to reach statistical significance though in small numbers.34

By logistic regression analysis, the relationship between randomly assigned MPA AUC_{0-12} and rejection was highly significant (P < 0.001).26 Increasing MPA AUC_{0-12} was associated with a reduction in the probability of BPAR by 50%, 75%, and 90% at MPA AUC_{0-12} values of 15, 25, and 40 mg/L.h, respectively.26 The association between rejection and trough MPA total concentration was also significant, though weaker (P < 0.01). With doses adjusted to randomly assigned exposure targets, the association between MPM dose and BPAR was not significant (P = 0.082).34

For toxicities, there was a significant relationship between serious adverse events or death and increased MMF dose (P < 0.001), but no significant relationship was found with total MPA AUC_{0-12}, peak or trough concentration.34

APOMYGRE

The second RCT (“APOMYGRE”) randomized 137 renal transplant recipients to FD MMF (2 g/d) or TCI to a target MPA AUC_{0-12} of 40 mg/L.h.35 The primary outcome, treatment failure, was a composite of acute rejection, death, graft loss, and MMF withdrawal at 12 months. TCI improved MPA exposure. At day 14 (the first posttransplant assessment), proportions were 90.8% portion above 60 mg/L.h (1.6% in each). At the next MPA AUC_{0-12} of 40 mg/L.h, Steroids were withdrawn on day 7 in both arms.

On multivariable regression analysis, odds ratio for BPAR was 0.842 (95% CI, 0.784 to 0.903, P = 0.021) if MPA AUC_{0-12} at 1 wk ≥30 mg/L.h vs <30 mg/L.h.

Day 7 MPA AUC_{0-12} significantly lower in rejecters vs nonrejecters: mean ± SD = 33.5 ± 20.2 mg/L.h vs 55.7 ± 30.6 mg/L.h, P = 0.006

The benefit of TCI may have been even greater.107

The TCI dosing in APOMYGRE cost <1% of total yearly costs (hospital and treatment) after a renal transplant. This can be compared with the marginal cost saving in preventing a single transplant failure of 8% of total yearly costs.108

OPERA

The third RCT, “OPERA,” was not a pure TCI trial. It involved 247 kidney transplant recipients considered to be at a low risk of rejection (primary allograft, panel reactive antibody at transplantation of 0%, cold ischemia time <36 h).106 Randomization was to either MMF 2 g/d (FD) or an MMF optimization arm with 2 aspects: an empiric increased dose of 3 g/d for 10 days following transplantation (“dose intensification”), followed by TCI to a target MPA AUC_{0-12} of 40 mg/L.h. Steroids were withdrawn on day 7 in both arms.

The optimization arm received significantly higher dose and MPA exposure for the first 6 weeks after transplantation (P = 0.001 at week 2; P = 0.002 at week 6). MPA AUC_{0-12} >30 mg/L.h in 66% versus 38% of optimization versus FD patients at week 2 (due to “dose intensification”) and 81% versus 62% at week 6 (due to TCI). Doses ranged from 1 to 4 g/d in the TCI arm, with significantly reduced within-group AUC variability.106

The primary outcome, BPAR (including subclinical rejection) at 3 months, was lower than expected, with no
TABLE 2

A summary of studies that have examined the relationship between MPA exposure and toxicity

Reference	N	Concurrent therapy	Daily dose MPA	Adverse event against total MPA	Adverse event against unbound MPA
Takahashi et al74	32	No induction CsA Steroids	1–3.5 g	CMV infection in 2 of the 3 subjects with MPA AUC_{t0-12} >90 mg/L.h	Not tested
Hale et al 199835 and van Gelder et al34	150	No induction CsA Steroids	TCI	No significant association between adverse events and MPA AUC_{t0-12}	Not tested
Cattaneo et al78	46	No induction CsA Steroids	2 g	Significant association not seen	Not tested for MPA AUC_{u0-12}, P < 0.05, inverse correlation hematocrit with unbound MPA trough concentration and fraction; inverse correlation leukocyte count with unbound MPA fraction
Mourad et al75	51	No induction Tac Steroids	2 g	Significantly higher MPA AUC_{t0-12} in those with adverse effects (composite hematological/ GI side effects): 48.4 ± 18.5 vs 36.0 ± 10.8 mg/L.h, P = 0.0006	Not tested
Mourad et al76	31	ATG CsA Steroids	1 g	Significantly higher MPA AUC_{t0-12} in those with adverse effects (composite hematological/ GI side effects): 62.1 ± 21.1 vs 39.8 ± 15.3 mg/L.h, P = 0.0005	Not tested
Weber et al79	54	No induction CsA Steroids	600 mg/m²	No significant association	Increased risk of leukopenia and infections with MPA AUC_{u0-12} > 0.4 mg/L.h, sensitivity 92.3%, specificity 61%. Significant association between MPA AUC_{u0-12} and leukopenia/infections, P = 0.007
Kiberd et al81	94	IL2RB (76.6%) CsA Steroids	2 g	No significant association	Not tested
Kuppers et al80,99	100 at 1 y 56 at 3 y 43 at 5 y	IL2RB (31.3%) Tac Late steroid withdrawal	1–2 g	Significantly higher MPA AUC_{t0-12} in patients with (1) Leukopenia, at 3 mo: AUC_{t0-12} 61.4 ± 30.9 vs 42.3 ± 25.3 mg/L.h (P = 0.01), and at 12 mo: AUC_{t0-12} 84.4 ± 45.6 vs 42.2 ± 21.9 mg/L.h (P = 0.04) (2) Anemia at 3 mo: AUC_{t0-12} 49.4 ± 28.9 vs 37.5 ± 19.4 mg/L.h (P = 0.03), and at 12 mo: AUC_{t0-12} 61.1 ± 31.9 vs 42.3 ± 21.3 mg/L.h (P = 0.01) Followed to 5 y, ongoing finding of significantly higher MPA AUC_{t0-12} in patients with: (1) Leukopenia: AUC_{t0-12} 59.7 ± 31.0 vs 46.5 ± 26 mg/L.h (P = 0.004) (2) Anemia: AUC_{t0-12} 56.2 ± 32.5 vs 45.6 ± 24.7 mg/L.h (P = 0.005)	Not tested
Satoh et al100	21	No induction Tac Steroids	2 g	No significant association between MPA AUC_{t0-12} and viral infections MPA AUC_{t0-12} of patients with and without viral infections was 61.5 ± 30.3 and 50.4 ± 31.6 mg/L.h, respectively.	Not tested
Atcheson et al82	42	IL2RB CsA (76%) Steroids	2 g	No significant association	Significantly higher MPA AUC_{u0-12} in individuals with 1 or more hematological or infectious events (33% CMV, 17% MRSA bacteremia, 17% UTI, 33% wound infection/ cellulitis): 1.9 ± 0.3 vs 1.1 ± 0.1 mg/L.h, P = 0.0043

Continued next page
significant difference between treatment arms. The optimization arm did not tolerate therapy as well, with significantly more dose reductions for adverse events (58.7% versus 42.2%, \(P = 0.009 \)). Although lacking statistical significance, all toxicities associated with MPA were numerically higher in the optimization arm. Finally, there was a trend toward increased BPAR in the optimization arm (24.6% versus 14.9%, \(P = 0.06 \)).

Given the initial substantive difference in dose between treatment arms, the independent impact of subsequent TCI cannot be objectively assessed in this low-risk steroid withdrawal protocol.

Reference	N	Concurrent therapy	Daily dose MPA	Adverse event against total MPA	Adverse event against unbound MPA
Okamoto et al\(^{102}\)	67	IL2RB (37%) CsA (62%) or Tac Steroids	TDM	Trend to higher MPA AUC\(_{t0-9}\) among patients with infectious AE (CMV infection N = 12, varicella N = 2; Gl toxicity N = 1): MPA AUC\(_{t0-9}\) 39.2 ± 22.8 vs 30.1 ± 8 mg/L.h, \(P = 0.08772 \)	Not tested
Pawinski et al\(^{101}\)	33	No induction CsA Steroids	2 g	No significant association	Not tested
Armstrong et al\(^{102}\)	279	Induction (46.4%) CsA (54.2%) Steroids	2 g or 600 mg/m\(^2\) or TDM	Association seen between total MPA AUC\(_{t0-12}\) and leukopenia, thrombocytopenia, \(P = 0.023 \)	Association seen between MPA AUC\(_{t0-12}\) and leukopenia/thrombocytopenia, \(P = 0.004 \)
Le Meur et al\(^{105}\)	137	IL2RB CsA Late steroid withdrawal	2 g or TDM	No significant association	Not tested
van Gelder et al\(^{111}\)	901	Induction (46.4%) CsA (54.2%) Steroids Late steroid withdrawal	2 g or 600 mg/m\(^2\) or TDM	No significant association	Not tested
Gourishankar et al\(^{111}\)	126	IL2RB (85%) Tac Steroids	2 g (3 g for 5 d in half)	MPA AUC\(_{t0-12}\) on day 5 significantly associated with anemia (\(P = 0.0369 \)), not with other adverse events	Not tested
Sommerer et al\(^{112}\)	66	IL2RB CsA Steroids	720–2880 mg (MPS)	Patients with infections had significantly higher MPA AUC\(_{t0-12}^{\text{days-1}}\) median (range) 65 mg/L.h (37–130) vs 37 mg/L.h (7–120), \(P < 0.005 \)	Not tested
Daher Abdi et al\(^{115,116}\)	490	IL2RB (minority thymoglobulin) CsA (79.6%) Late steroid withdrawal (most)	2 g or TDM	No significant association with CMV disease	Not tested
Sobiak et al\(^{103}\)	61	No induction stated CsA (45.9%) or Tac (39.3%) Steroids	Not stated	In the late posttransplant period (>6 mo), no significant association between MPA AUC\(_{t0-14}^{\text{days-1}}\) and anemia, leucopenia, or thrombocytopenia	Not tested
Born-Duval et al\(^{114}\)	240	Thymoglobulin (77.5%) or IL2RB (22.5%) CsA (63.7%) or Tac (44.2%) Steroids (late withdrawal if low risk)	Not stated	On multivariable analysis, 3-month MPA AUC\(_{t0-12}^{\text{days-1}}\) >50 mg/L.h significantly associated with sustained BKV viremia (AHR 3.6, \(P = 0.001 \), and PyVAN (AHR 3.01; \(P = 0.05 \))	Not tested
Fu et al\(^{94}\)	183	No induction Tac Steroids	TDM vs FD (nonrandomized)	TDM group had lower MPA AUC\(_{t0-12}^{\text{days-1}}\) at day 30 (54.1 ± 9.7 vs 61.4 ± 18.9, \(P = 0.004 \)), along with fewer infections at 12 mo (16.8% vs 31.7%, \(P = 0.018 \))	Not tested
Kiang et al\(^{105}\)	21	Induction not stated Tac Steroid free	MMF 2 g/d	Significant inverse association between MPA AUC\(_{t0-12}^{\text{days-1}}\) at 1-month and ANC (\(P < 0.05 \))	Not tested

AE, adverse event; AHR, adjusted hazard ratio; ANC, absolute neutrophil count; ATG, antithymocyte globulin; AUC\(_{t0-9}\), area under the concentration-time curve from 0 to 12 h; BKV, BK virus nephropathy; CMV, cytomegalovirus; CsA, cyclosporine; FD, fixed dosing; Gl, gastrointestinal; Hb, hemoglobin; IL2RB, interleukin-2 receptor blocker; LSS, limited sampling strategy; MPA, mycophenolic acid; MPS, mycophenolate sodium; MRSA, methicillin-resistant Staphylococcus aureus; N, number; Tac, tacrolimus; TCI, target concentration intervention; TDM, therapeutic drug monitoring.
TABLE 3.
RCTs of concentration-controlled dosing and clinical outcome

Reference	N	Population	Concurrent therapy	Trial type	Outcome and comments
Hale et al36 and van Gelder et al34	150	Adults, first or second graft, deceased donor	No induction CsA Steroids	Multitarget RCCT 3 target MPA AUCt0-12 arms:16.1, 32.2, or 60.6 mg/L.h	BPAR 27.5%, 14.9%, and 11.5% in low, medium, and high target groups (P = 0.043, low vs medium/high target) By logistic regression, strong association between MPA AUCt0-12 and BPAR (P < 0.001) Significant association between increasing MMF dose and serious adverse events or death (P < 0.001) Treatment failure in 47.7% vs 29.2% (P = 0.03), FD vs TCI arms, respectively BPAR in 24.6% vs 7.7% (P = 0.01), FD vs TCI arms, respectively Cost neutral38 No benefit seen Lack of substantive dose adjustments in treatment arm leading to similar mean MPA AUCt0-12 and proportion in range between treatment arms Unable to test benefit of optimizing MPA exposure Noninferiority met for MMF TDM and “reduced” CNI vs 2 g/d and “standard” CNI Higher mean MMF dose group A than both groups B and C, though insufficient to improve MPA exposure Unable to test benefit of optimizing MPA exposure Optimization arm (dual intervention) had significantly higher MMF dose and MPA exposure for the first 2 wk (empirc), which continued for the subsequent 4 wk (TCI driven) No benefit seen on BPAR/SCAR at 3 mo Dose optimization associated with significantly more dose reductions (P = 0.009) and a trend to inferiority on 12-month BPAR (14.9% vs 24.6%, P = 0.06, FD vs dose optimization, respectively) Unable to independently assess benefit of TCI

Le Meur et al35 | 137 | Adults, first or second graft, exclusion PRA >50%, IL2RB CsA Late steroid withdrawal | RCT, TCI to an MPA AUCt0-12 of 40 mg/L.h vs 2 g/d | No treatment arm leading to similar mean MPA AUCt0-12 and proportion in range between treatment arms Unable to test benefit of optimizing MPA exposure Noninferiority met for MMF TDM and “reduced” CNI vs 2 g/d and “standard” CNI Higher mean MMF dose group A than both groups B and C, though insufficient to improve MPA exposure Unable to test benefit of optimizing MPA exposure Optimization arm (dual intervention) had significantly higher MMF dose and MPA exposure for the first 2 wk (empirc), which continued for the subsequent 4 wk (TCI driven) No benefit seen on BPAR/SCAR at 3 mo Dose optimization associated with significantly more dose reductions (P = 0.009) and a trend to inferiority on 12-month BPAR (14.9% vs 24.6%, P = 0.06, FD vs dose optimization, respectively) Unable to independently assess benefit of TCI

van Gelder et al31 | 901 | Adults (children N = 62), living or deceased donor. Exclusion PRA >50% CIT >48 h | Induction (46.4%) CsA (54.2%) Steroids | RCT, TDM to an MPA AUCt0-12 of 30–60 mg/L.h vs 2 g/d | No treatment arm leading to similar mean MPA AUCt0-12 and proportion in range between treatment arms Unable to test benefit of optimizing MPA exposure Noninferiority met for MMF TDM and “reduced” CNI vs 2 g/d and “standard” CNI Higher mean MMF dose group A than both groups B and C, though insufficient to improve MPA exposure Unable to test benefit of optimizing MPA exposure Optimization arm (dual intervention) had significantly higher MMF dose and MPA exposure for the first 2 wk (empirc), which continued for the subsequent 4 wk (TCI driven) No benefit seen on BPAR/SCAR at 3 mo Dose optimization associated with significantly more dose reductions (P = 0.009) and a trend to inferiority on 12-month BPAR (14.9% vs 24.6%, P = 0.06, FD vs dose optimization, respectively) Unable to independently assess benefit of TCI

Gaston et al41 | 720 | Adults (>13 y age), first or second graft, living or deceased donor. Exclusion PRA >50% CIT >48 h | Induction (75%), ATG in 43% Tac (80%) Steroids | 3 arm RCT: (A) MMF TDM to a trough MPA >1.3 or 1.9 µg/mL (if CsA or Tac, respectively) + “reduced” CNI vs (B) MMF TDM (as above) + “standard” CNI target vs (C) 2 g/d + “standard” CNI target | No treatment arm leading to similar mean MPA AUCt0-12 and proportion in range between treatment arms Unable to test benefit of optimizing MPA exposure Noninferiority met for MMF TDM and “reduced” CNI vs 2 g/d and “standard” CNI Higher mean MMF dose group A than both groups B and C, though insufficient to improve MPA exposure Unable to test benefit of optimizing MPA exposure Optimization arm (dual intervention) had significantly higher MMF dose and MPA exposure for the first 2 wk (empirc), which continued for the subsequent 4 wk (TCI driven) No benefit seen on BPAR/SCAR at 3 mo Dose optimization associated with significantly more dose reductions (P = 0.009) and a trend to inferiority on 12-month BPAR (14.9% vs 24.6%, P = 0.06, FD vs dose optimization, respectively) Unable to independently assess benefit of TCI

Le Meur et al106 | 247 | Adults, first living or deceased donor graft, PRA 0% (current), CIT <36 h | Cyclosporine Steroids (withdrawn day 7) | RCT, dose optimization (3 g/d MMF for 10 d then TCI to a target MPA AUCt0-12 of 40 mg/L.h) vs 2 g/d | No treatment arm leading to similar mean MPA AUCt0-12 and proportion in range between treatment arms Unable to test benefit of optimizing MPA exposure Noninferiority met for MMF TDM and “reduced” CNI vs 2 g/d and “standard” CNI Higher mean MMF dose group A than both groups B and C, though insufficient to improve MPA exposure Unable to test benefit of optimizing MPA exposure Optimization arm (dual intervention) had significantly higher MMF dose and MPA exposure for the first 2 wk (empirc), which continued for the subsequent 4 wk (TCI driven) No benefit seen on BPAR/SCAR at 3 mo Dose optimization associated with significantly more dose reductions (P = 0.009) and a trend to inferiority on 12-month BPAR (14.9% vs 24.6%, P = 0.06, FD vs dose optimization, respectively) Unable to independently assess benefit of TCI

ATG, antithymocyte globulin; AUCt0-12, area under the concentration-time curve from 0 to 12 h; BPAR, biopsy proven acute rejection; CIT, cold ischemia time; CNI, calcineurin inhibitor; CsA, cyclosporine; DGF, delayed graft function; FD, fixed dosing; IL2RB, interleukin-2 receptor blocker; MMF, mycophenolate mofetil; MPA, mycophenolic acid; N, number; NS, not significant; PRA, panel reactive antibodies; RCT, randomized controlled trial; RCCT, randomized concentration-controlled trial; SCAR, subclinical acute rejection; Tac, tacrolimus; TCI, target concentration intervention; TDM, therapeutic drug monitoring.

MPS Dose Individualization Using TDM

Fixed Dose Concentration-controlled Trial

“FDCC” was the largest of the RCTs, with 901 kidney transplant recipients randomized to either FD of 2 g/d or CCD.31 Although designed to achieve a target MPA AUCt0-12 (45 mg/L.h), actual implementation used a TDM approach.31 Exposure within 30–60 mg/L.h was considered acceptable. Clinicians could also choose a different target concentration for individual patients based on their assessment of immunological risk, as long as this fell within the 30–60 mg/L.h range.31 Finally, only MPA AUCt0-12 values were provided. The decision to adjust dose, and by how much, was left to the individual clinician.

The TDM approach in FDCC was unsuccessful in improving MPA exposure. There was “nonadherence to required early dose increments” by clinicians, with an overall lack of substantive dose changes. Consequently, “mean MPA AUC values, and the proportion of patients achieving AUC values within the therapeutic range,” were similar in the TDM and FD groups. Outcomes were also the same: treatment failure in 25.6% versus 25.7% (P = 0.81) and BPAR in 14.9% versus 15.5%, in the TDM and FD groups, respectively. However, with minimal difference in exposure between the 2 groups,
differences in outcome “could not be expected, and were not observed.”31

As the CCD procedure was unsuccessful in differentiating MPA exposure between the 2 arms, a conclusion regarding method effectiveness of CCD cannot be drawn.56,109,110 This contrasts with the TCI trials, which clearly demonstrated that MPA exposure can be effectively controlled, leading to outcome benefits.26,34,35

Opticept

The second TDM trial, “Opticept,”41 was the only RCT of CCD using trough MPA concentrations. Seven hundred and twenty participants were randomized to 3 treatment arms with 2 intervention variables: MMF dosing strategy (TDM versus FD), and CNI therapeutic range (“standard” versus “reduced”). Group C was the control arm: FD mycophenolate and “standard” CNI. Group A was the primary intervention arm: MMF TDM and “reduced” CNI. Group B was halfway between: MMF TDM and “standard” CNI. The primary outcome was noninferiority of group A compared with C, based upon treatment failure at 12 months (a composite of BPAR, graft loss, loss to follow-up, or withdrawal).

MMF dose optimization was by TDM, to achieve MPA trough concentrations ≥1.3 or ≥1.9 µg/mL, alongside cyclosporine or tacrolimus, respectively. Dose individualization for MPA was according to clinician judgement rather than a centralized PK-guided calculation.

TDM led to significantly higher MMF dose in group A compared with groups B and C. The reason for dose difference between groups A and B—noting that both were TDM arms—was not made clear. Most importantly, however, as with FDCC, dose adjustments were insufficient to attain planned exposure, with “little differentiation among treatment groups in MPA exposure.” In tacrolimus-cotreated patients (81.9% of total participants), MPA trough concentrations were “identical at all time points with or without monitored dosing.”

The primary outcome end point was achieved: noninferiority of Group A (MMF TDM + “reduced” CNI) against Group C, based upon treatment failure at 12 months (a composite of BPAR, graft loss, loss to follow-up, or withdrawal).

All cohorts 27 3794 20/27 3382 (89.1) 3/27 217 (5.7) 4/27 195 (5.1)
Cyclosporine cotherapy 16 1518 12/16 1181 (77.8) 2/16 274 (18.1) 2/16 63 (4.2)
Tacrolimus cotherapy 11 1696 7/11 1373 (81.0) 2/11 201 (11.9) 2/11 122 (7.2)

MPA AUCt0-12 vs acute rejection

MMP AUCt0-12 vs acute rejection

Cyclosporine cotherapy 16 1518 12/16 1181 (77.8) 2/16 274 (18.1) 2/16 63 (4.2)
Tacrolimus cotherapy 11 1696 7/11 1373 (81.0) 2/11 201 (11.9) 2/11 122 (7.2)

MPA AUCt0-12 vs toxicities

All cohorts 22 3225 9/22 1097 (34.0) 2/22 99 (3.1) 11/22 2029 (62.9)
Cyclosporine cotherapy 11 1065 2/11 97 (9.1) 1/11 32 (3.0) 8/11 936 (87.9)
Tacrolimus cotherapy 6 502 5/6 481 (95.8) 0/6 0 (0) 1/6 21 (4.2)

MPA AUCu0-12 vs toxicities

3 375 3/3 375 (100)

AUCt0-12, area under the concentration-time curve from 0 to 12 h; MPA AUCu0-12, AUC for unbound mycophenolic acid concentration.

DISCUSSION

The consequences of both underimmunosuppression or overimmunosuppression, with potentially preventable morbidity and mortality, remain prevalent after kidney transplantation.1-3 For mycophenolate, the dosing strategy applied varies markedly, from “one-dose-suits-all” (FD),111 to trough concentration monitoring,10 to TCI to an estimated MPA AUCt0-12 target.112

This review demonstrates that mycophenolate FD consistently leaves a proportion of individuals with MPA underexposure associated with rejection (see Table 4). In addition, a link has been shown between MPA exposure and both hematological and infectious toxicities, more apparent with tacrolimus cotherapy or when unbound MPA is measured (see Table 4).

The link between MPA AUCt0-12 and rejection is considered “definitive.”113 Five prospective RCTs of mycophenolate CCD have been performed. When critically analyzed, these trials show that CCD using TCI leads to effective control of MPA exposure and to improved clinical outcomes.

The 1998 multitarget RCCT randomly assigned participants into 1 of 3 exposure targets,26,34 the pharmacological gold standard for unbiased assessment of the exposure-response relationship.55,56,114 It was hailed at the time as a landmark demonstration of science-based drug development based on clinical trial simulation.14,115 Increasing exposure target significantly reduced BPAR.26 With random assignment of participants to exposure targets, the association between MPA exposure and BPAR was highly significant, while that between MPA dose and BPAR was not.26

In “APOMYGRE,”35 the TCI approach was superior to FD, with a 39% reduction in treatment failure. This

© 2019 Wolters Kluwer

Metz et al 2023
involved initial individualized dose escalation followed by individualized dose reduction, with overall superiority and no increase in toxicities. In addition, TCI was cost neutral.108

In “OPERA,” TCI was effective in maintaining MPA exposure target and reducing within-group PK variability, beyond the initial “dose intensification” period. Notably, 3 other trials of MPA “dose intensification” (without subsequent TCI), in standard or higher-risk recipients, revealed either a significant reduction in rejection58,116 or strong trend,91 showing that this intervention alone can impact outcomes. In contrast, OPERA revealed no efficacy benefit at 3 months (and less tolerance). This suggests that intensified dose (3 g/d for 10 d) followed by TCI is not beneficial in a preselected low-risk early steroid withdrawal population. The trend to higher rejection at 12 months in the dose optimization arm is also of interest: perhaps more dose reductions secondary to toxicities might have contributed.108 Regardless, it is impossible to assess impact of increased precision in MPA exposure (by TCI) independent of the substantive dose difference in the initial phase.

Thus, 2 TCI trials (the multitarget RCCT26,34 and APOMYGRE35) reveal a statistically significant and clinically important benefit of TCI. This is not refuted by the subsequent OPERA trial.

The TCI trials, with effective control of MPA exposure, contrast with the 2 trials using TDM to individualize exposure. In FDCC31 and Opticept,41 TDM without consistent dosing advice did not reliably achieve target MPA exposure (nor even differentiate MPA exposure between treatment arms). As a result, both trials failed to show a clinical benefit of CCD.

A “dose optimization feedback loop” is recommended for RCCTs to maximize probability of target concentration attainment.55,56 A centralized system provides the clinician with a probability-based dose prediction that they can immediately use. Without this, CCD relies on the individual clinician having the time, and the experiential knowledge, to determine new doses themselves.

The clinical pharmacology community has long advocated active PK-guided dosing to a concentration target (TCI) in clinical care.24,25,117-119 TCI is more pharmacologically rational than TDM,23,117,120 although to the authors’ knowledge, the 2 have never been directly compared in terms of clinical outcomes. The RCCTs of mycophenolate CCD, while not head-to-head, provide an indirect but noteworthy comparison.

The question arises as to why TCI and PK-guided dosing appear necessary to improve MPA exposure, contrary to other immunosuppressant drugs where TDM suffices. It may relate to clinician experience with CNIs, where doses are generally increased cautiously, perhaps reflecting the lesser precision of trough concentrations and desire to avoid overshoot. For MPA, however, concentration attainment may require greater than proportional dose adjustment.112,124 In addition, TDM leaves the dose unchanged if drug exposure lies anywhere within the broad therapeutic window set for MPA, contrasting the TCI trials showing benefit where active intervention to reach an optimal target was used, even if the measured value was within 30–60 mg/L.\textsubscript{h}

Assessing the actual exposure achieved in CCD trials is critical. The Elite-Symphony trial6 reported superiority of low-dose tacrolimus over low- or standard-dose cyclosporine. However, while the target exposure in the tacrolimus arm was 3–7 ng/mL, the actual concentrations achieved were higher. Mean trough concentrations were above 7 ng/mL for the first 8 weeks (with almost 50% of individuals above the therapeutic range for this period).6,122 By 12 months, mean (SD) tacrolimus concentration was 6.4 ± 2.4 ng/mL, and at 3 years, 6.5 ± 2.3 ng/mL.6,123 This trial supports excellent outcomes out to 3 years posttransplant with the achieved tacrolimus trough concentrations. However, the results from the Elite-Symphony trial cannot be used to support the intended 3–7 ng/mL therapeutic range (outcomes achieving this have not been given). Equally, it is erroneous to assert that a trial of CCD with minimal difference in exposure between arms (because concentrations were not well controlled) proves the lack of benefit of CCD.

In 2013, Wang et al124 published a systematic review and meta-analysis of RCTs of mycophenolate CCD versus FD, concluding that the evidence was not supportive. However, whilst the result of this meta-analysis was technically correct, “an analysis is only as good as the data on which it was based.” Meta-analysis of the RCCTs without careful consideration of the trial methodologies and exposures achieved has led to misinterpretation of the strength of the evidence.

First, Wang et al124 excluded the original multitarget RCCT34,125 due to lack of FD comparator.124 While this trial design does not test the degree of benefit of CCF over FD, it remains the most robust method for determining the causative relationship between exposure and effect.74,54,56,114,126 In this case, it revealed a highly significant relationship between MPA exposure and BPAR,26,34 with MPA exposure values spanning those seen in a population on FD. Second, Wang et al124 included RCTs that, as has been shown in this review, cannot be used to support or refute benefit of CCD. Not accounting for these critical differences in trial methodologies and exposures achieved led Wang et al124 to a conclusion that we reject in this review.

Only 2 RCTs have been able to independently test the benefit of CCD.26,34,35 Both reported clear benefit, using TCI to a target MPA AUC\textsubscript{0-12} of 40 mg/L.h. Together, they confirm MPA AUC\textsubscript{0-12} as a valid biomarker of drug exposure linked causally with drug effect.74,55 No subsequent RCCTs have refuted this finding.

The link between exposure and toxicities has proven difficult to establish, particularly in cyclosporine cohorts. This is not because MPA has a “wide therapeutic index,” as dose-dependent toxicities remain prevalent with FD.36,35,127,130 Rather it relates to issues with the exposure metric in certain settings.

The use of total MPA concentration as surrogate for unbound concentration fails in certain pathophysiological states. Hypoalbuminemia (≤31 g/L) leads to a reduction in total MPA without changing unbound MPA concentration.33,131,132 Potentially missing toxic unbound concentrations if only total MPA concentrations are measured (Figure 3).

Severe renal impairment (creatinine clearance <25 mL/min) leads to reduced excretion of the major MPA metabolite, MPA-glucuronide (MPAG). This leads to an increase in both total and unbound MPA concentrations, presumed due to EHC and reactivation of accumulating MPAG.5,133 However, with cyclosporine cotherapy, EHC is inhibited,
significantly reducing reactivation of MPAG to MPA. Greater MPAG accumulation also increases displacement of MPA from albumin (hence a decrease in total MPA), with unbound concentration unchanged or elevated. Again, although for cyclosporine cohorts only, toxic unbound concentrations may be missed if only total MPA concentrations are measured (Figure 3).

MPA exposure is higher overall alongside tacrolimus in the initial period, further explaining better correlation with toxicities in such cohorts (a greater prevalence of overexposure).

Finally, although not examined in this review, MPA-induced gastrointestinal side effects are thought related to local toxicity from metabolites undergoing EHC. This puts the biophase at a site distal to the plasma compartment, explaining greater difficulty correlating exposure with effect.

After the initial multitarget RCT, it was noted that “the efficacy of MMF is primarily related to MPA AUC, whereas tolerability is more dependent on the dose of MMF. The apparent discrepancy between these findings cannot readily be explained.” We now have a plausible explanation: issues using total to predict unbound MPA concentrations in certain settings, and an indirect link between plasma concentration and amount of drug in the gut for GI toxicity.

To summarize, complicated PKPD characteristics and challenges in CCD have clouded understanding of the exposure-effect relationship of MPA in kidney transplantation. This has contributed to failure to recognize the better outcomes when dose optimization is based on PK-guided TCI compared with TDM and individual clinician-based dose adjustment. Only if MPA target exposure is effectively achieved are benefits seen.

It is of course noteworthy that the 2 RCTs that effectively tested mycophenolate CCD, showing benefit of TCI, were in cohorts concurrently receiving cyclosporine. Nowadays, tacrolimus use predominates in many centers, along with induction antibody therapy (“quadruple therapy”: induction, steroids, MPA, and CNI). In addition, rejection rates are low.

However, the validity of MPA AUC_{τ0-12} as a biomarker for drug exposure, causally linked to drug effect, will still apply with different drug combinations or populations, although exposure target may differ. Second, precision dosing aims to maximize benefits and minimize toxicities: in contemporary cohorts, there remains MPA underexposure associated with rejection, dose-dependent toxicities, and overexposure associated with toxicities, highlighting a potential value of TCI.

The MPA AUC_{τ0-12} target of 40 mg/L.h in the initial post-transplant period, based on the method effective RCTs, can reasonably be extrapolated to tacrolimus cohorts based on 2 lines of evidence. First, this approximates the typical (mean or median) MPA AUC_{τ0-12} seen in the initial posttransplant week in tacrolimus cotreated cohorts on 2 g/d dosing (ie, this is the exposure the typical patient receives). Continuing 2 g/d, typical MPA AUC_{τ0-12} then increases to over 50 mg/L.h by week 4 and to 60 mg/L.h by month 3 presumably due to higher serum albumin and glomerular filtration rate reduction in steroid dose.

This target also aligns with the observational data that exist, at least for recipients at increased risk. A substantial increase in rejection rates has been reported with an initial MPA AUC_{τ0-12} <30 mg/L.h and 1 of the following: >3 human leukocyte antigen mismatches, panel reactive antibody >15%, repeat transplant, delayed graft function, or African American descent; if concurrent underexposure to other immunosuppressants or for expanded criteria donation. Elsewhere, similar rejection “thresholds” have been reported in contemporary regimen. Rapid and effective target concentration attainment could ameliorate this risk in such individuals.

MPA underexposure in the immediate posttransplant week may not be detrimental in low-risk recipients. However, the authors would caution against concluding that early AUC estimation is unnecessary in this group. A substantial increase in rejection rates has been reported with an initial MPA AUC_{τ0-12} <30 mg/L.h and 1 of the following: >3 human leukocyte antigen mismatches, panel reactive antibody >15%, repeat transplant, delayed graft function, or African American descent; if concurrent underexposure to other immunosuppressants or for expanded criteria donation.

MPA underexposure in the immediate posttransplant week may not be detrimental in low-risk recipients. However, the authors would caution against concluding that early AUC estimation is unnecessary in this group. While a target of 40 mg/L.h may not be required in the immediate posttransplant period, identification of high exposure (ie, 60–100+ mg/L.h) provides an opportunity for early individualized dose reduction. Supporting benefit of such a strategy, reduced infection was reported in a non-randomized MMF CCD trial alongside tacrolimus in the first posttransplant month.
In the maintenance phase, “incomplete efficacy, patient intolerance, and side effects” to antiproliferatives remain an issue, although infrequency of hard outcomes makes it harder to show quantitative associations. Importantly, Daher Abdi et al used joint modeling to link longitudinal changes in MPA exposure with outcomes at 1 (490 subjects) and 2 years posttransplant (222 subjects), pooling cohorts from APOMYGRE, OPERA, and clinical care. Robust association was reported between MPA AUCt0-12 and hazard of rejection at 1 year (P = 0.0081), with suggestion to maintain exposure above a “threshold” of 37 mg/L.h at 1 month posttransplant, above 40 mg/L.h by month 3, and above 41 mg/L.h by month 6 and onward. Out to 2 years (excluding the OPERA cohort), all subjects having received induction therapy, MMF, CNI (42.5% tacrolimus), and steroid withdrawal after 3 months, a significant association was shown between MPA exposure and the composite of acute rejection, graft loss and death at 2 years (with each 1 mg/L.h increase in MPA AUCt0-12, there was a 4% hazard reduction).

In contemporary “quadruple therapy” regimen with steroid continuation, equivalent data to support a maintenance phase MPA exposure target do not yet exist (although presumably a lower target than for steroid withdrawal cohorts would suffice). Furthermore, there has been a trend to empiric reduction of the population dose of mycophenolate in the first few months in such regimens (to 1.5 g/d, and eventually 1 g/d if low risk), due to an increase in toxicities including BK virus nephropathy. Nevertheless, an association has been reported between MPA dose reduction and rejection in steroid continuation cohorts. In multivariable analysis of 240 kidney transplant recipients has revealed an association between an MPA AUCt0-12 >50 mg/L.h at 3 months posttransplantation and both sustained BK viremia (P < 0.0001) and polymavirus-associating nephropathy (P = 0.013) over the subsequent 2 years. Just as targeted dose reductions occurred in the TCI arm of APOMYGRE, TCI in contemporary regimens has the potential to more effectively reduce BK virus disease and other toxicities than the current trend to empiric population dose reduction, while avoiding iatrogenic underexposure in those with already low MPA exposure on initial FD.

Finally, the impact of tacrolimus exposure on subclinical inflammation and de novo donor-specific antihuman leukocyte antigen antibody (dnDSA) formation has been reported in recent years. In contrast, while some studies have linked the use of mycophenolate to reduced dnDSA formation, the impact of MPA dose or exposure on dnDSA formation is largely absent. Torres et al linked tubulointerstitial inflammation in low-risk recipients with combination of low tacrolimus concentrations and reduced MMF dosing, while Filler et al reported a significant association between minimum MPA trough concentrations and dnDSA formation in pediatric renal transplant recipients.

This review provides strong evidence favoring MPA TCI in kidney transplantation. However, there is an urgent need to better define target concentration beyond the initial phase in steroid continuation regimens, and to correlate MPA exposure with dnDSA formation. This could first involve prospective collection of MPA exposure, both for total and unbound MPA, within contemporary steroid continuation drug regimen. PKPD time to event analyses could then be performed, like that by Daher Abdi et al to link the time course of exposure with dnDSA formation and clinical outcomes. As a final definitive step, an RCT of FD versus TCI to an AUC target, with surrogate endpoints including dnDSA, would be of benefit.

There is in addition a need for consensus on practical aspects of MPA TCI. Frequent UAC estimation has been suggested in cyclosporine-cotreated cohorts: “in the first week after transplant, then each week for the first month, each month until month 3, and subsequently every 3 months up to 1 year.” This is due to a 30%–50% increase in dose-normalized exposure over the first 3 months, to avoid overshooting target. However, without the dose-dependent inhibitory effect of cyclosporine on EHC, the change in exposure over the first 3 months appears less substantial in tacrolimus-containing regimens and thus a lesser frequency should suffice.

Access to methods for MPA TCI is also required, by broadening access to MAPBE or using acceptably precise LSS methods for estimation of MPA AUCt0-12, for example, multilinear regression equation validated in an equivalent population or extended sampling for trapezoid estimation. To reduce practical burden of repeated blood sampling, validation of new technologies enabling precise dried blood spot testing is needed.

Finally, more data are needed to determine optimal unbound MPA exposure in the initial posttransplant weeks to allow interpretation of MPA exposure in the setting of significant hypoalbuminemia or delayed graft function. In addition, the use of intracellular concentrations of MPA in peripheral lymphocytes or pharmacodynamic measurement of Inosine-5’-monophosphate dehydrogenase activity could in theory offer an alternative to systemic exposure estimation, though to date clinical value has not been shown.

The consequences of inefficacy and toxicities from current immunosuppressive agents remain significant, due to between-subject PKPD variability as well as individual patient susceptibilities. Expectations are for “slow, pains-taking, stepwise improvements in outcomes from the techniques we have … and careful honing of new methods with better efficacy than old ones.” Increasing precision with MPA by individualizing dose to a target concentration (TCI) provides such an opportunity.

CONCLUSION

MPA AUCt0-12 is a valid biomarker of drug exposure, more directly linked to drug effect than mycophenolate dose. FD leads to both overexposure and underexposure and off-target toxicities. Along with the overwhelming observational evidence, 2 adequately designed and executed trials have tested the benefit of dosing to a target MPA exposure, revealing statistically significant and clinically important benefit. No subsequent evidence refutes these findings.

There remains a need for consensus on frequency of exposure estimation in the early phase; to increase access to estimation methods that balance precision and practicality; to better define exposure targets in the maintenance phase; and to better define the exposure-effect relationship for the unbound concentration. These should be seen as
a priority, given ongoing prevalence of immune-mediated graft loss and life-limiting toxicities. The imprecise one-dose-suits-all approach with mycophenolate should come to end and be replaced by the scientifically based and evidence-proven TCI approach.

REFERENCES

1. Neuberger JM, Bechstein WO, Kuyper DR, et al. Practical recommendations for long-term management of modifiable risks in kidney and liver transplant recipients: A guidance report and clinical checklist by the consensus on managing modifiable risk in transplantation (COMMIT) group. Transplantation. 2017;101(4S Suppl 2):S1–S56.

2. O’Connell PJ, Kuyper DR, Mannion RB, et al. Clinical trials for immunosuppression in transplantation: the case for reform and change in direction. Transplantation. 2017;101:1527–1534.

3. Wadström J, Ericzon BG, Halloran PF, et al. Advancing transplantation: new questions, new possibilities in kidney and liver transplantation. Transplantation. 2017;101 (Suppl 25):S1–S41.

4. Pilmore H, Dent H, Chang S, et al. Reduction in cardiovascular death after kidney transplantation. Transplantation. 2010;89:851–857.

5. Parasuraman R, Vee J, Karkhiyev V, et al. Infectious complications in renal and liver transplant recipients. Adv Chronic Kidney Dis. 2006;13:280–294.

6. Ekberg K, Tedesco-Silva H, Demirbas A, et al; ELITE-Symphony Study. Reduced exposure to calcineurin inhibitors in renal transplantation. N Engl J Med. 2007;357:2562–2575.

7.Einecke G, Sis B, Reeve J, et al. Antibody-mediated microcirculation injury is the major cause of late kidney transplant failure. Am J Transplant. 2009;9:2520–2531.

8. Gaston RS, Cecka JM, Kasikie BL, et al. Evidence for antibody-mediated injury as a major determinant of late kidney allograft failure. Transplantation. 2010;90:68–74.

9. Sellares J, de Freitas DG, Mengel M, et al. Understanding the causes of kidney transplant failure: the dominant role of antibody-mediated rejection and nonadherence. Am J Transplant. 2012;12:388–399.

10. Halloran PF, Chang J, Famluksi K, et al. Disappearance of T cell-mediated rejection despite continued antibody-mediated rejection in late kidney transplant recipients. J Am Soc Nephrol. 2015;26:1711–1720.

11. Lamb KE, Lodhi S, Meier-Kriesche HU. Long-term renal allograft survival in the United States: a critical reappraisal. Am J Transplant. 2011;11:450–462.

12. Gondos A, Döhler B, Brenner H, et al. Kidney graft survival in Europe and the United States: strikingly different long-term outcomes. Transplantation. 2013;95:267–274.

13. Coemans M, Süss C, Döhler B, et al. Analyses of the short- and long-term graft survival after kidney transplantation in Europe between 1986 and 2015. Kidney Int. 2018;94:964–973.

14. Bamgbola O. Metabolic consequences of modern immunosuppressive agents in solid organ transplantation. Ther Adv Endocrinol Metab. 2016;7:110–127.

15. Karuthu S, Blumberg EA. Common infections in kidney transplant recipients. Clin J Am Soc Nephrol. 2012;7:2058–2070.

16. Chapman JR, Webster AC, Wong G. Cancer in the transplant recipient. Cold Spring Harb Perspect Med. 2013;3:6:11.

17. Au E, Wong G. Chapman JR. Cancer in kidney transplant recipients. Nat Rev Nephrol. 2018;14:508–520.

18. Holford NH, Sheiner LB. Understanding the dose-effect relationship: a PKPD approach. Br J Clin Pharmacol. 1999;48:9–13.

19. Holford NH, Nicholls AJ, Bullingham RE, et al. The pharmacokinetic-pharmacodynamic relationship for mycophenolate mofetil in renal transplantation. Clin Pharmacol Ther. 1998;64:672–683.

20. Shaw LM, Kaplan B, DeNofrio D, et al. Pharmacokinetics and concentration-control investigations of mycophenolic acid in adults after transplantation. Ther Drug Monit. 2000;22:14–19.

21. Shaw LM, Holt DW, Oellerich M, et al. Current issues in therapeutic drug monitoring of mycophenolic acid: report of a roundtable discussion. Ther Drug Monit. 2001;23:305–315.

22. Kuyper DR, Le Meur Y, Cantarovich M, et al; Transplantation Society (TTS) Consensus Group on TDM of MPA. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation. Clin J Am Soc Nephrol. 2010;5:341–358.

23. Jeong H, Kaplan B. Therapeutic monitoring of mycophenolate mofetil. Clin J Am Soc Nephrol. 2007;2:184–191.

24. van Gelder T, Silva HT, de Fijter JW, et al. Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation. 2008;86:1043–1051.

25. Tönshoff B, David-Neto E, Ettinger R, et al. Pediatric aspects of therapeutic drug monitoring of mycophenolic acid in renal transplantation. Transplant Rev (Orlando). 2011;25:78–89.

26. Tett SE, Saint-Marcoux F, Staatz CE, et al. Mycophenolate, clinical pharmacokinetics, formulations, and methods for assessing drug exposure. Transplant Rev (Orlando). 2011;25:47–57.

27. van Gelder T, Hilbrands LB, Vanrenterghem Y, et al. A randomized double-blind, multicenter plasma concentrator controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation. 1999;68:261–266.

28. Le Meur Y, Büchler M, Thierry A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant. 2007;7:2496–2503.

29. Knight SP, Morris PJ. Does the evidence support the use of mycophenolate mofetil therapeutic drug monitoring in clinical practice? A systematic review. Transplantation. 2008;85:1675–1685.

30. Byrne R, Yost SE, Kaplan B. Mycophenolate mofetil monitoring: is there evidence that it can improve outcomes? Clin Pharmacol Ther. 2011;90:204–206.

31. van Gelder T. Therapeutic drug monitoring for mycophenolic acid is value for (little) money. Clin Pharmacol Ther. 2011;90:203–204.

32. Kieng TK, Ensom MH. Therapeutic drug monitoring of mycophenolate mofetil in adult solid organ transplant patients: an update. Expert Opin Drug Metab Toxicol. 2016;12:545–553.

33. Filler G, Alvarez-Elias AC, Mclntyre C, et al. The compelling case for therapeutic drug monitoring of mycophenolate mofetil therapy. Pediatr Nephrol. 2017;32:21–29.

34. Gaston RS, Kaplan B, Shah T, et al. Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the Opticept trial. Am J Transplant. 2009;9:1607–1619.

35. Roberts MS, Magnusson BM, Buczynski FJ, et al. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet. 2002;41:71–90.

36. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71:115–121.

37. Dasgupta A. Therapeutic drug monitoring of mycophenolic acid. Adv Clin Chem. 2016;76:1–16.

38. Arns W. Noninfectious gastrointestinal (GI) complications of mycophenolic acid therapy: a consequence of local GI toxicity? Transplant Proc. 2007;39:88–93.

39. van Rossum HH, Press RR, den Hartigh J, et al. Point: a call for advanced pharmacokinetic and pharmacodynamic monitoring to guide calcineurin inhibitor dosing in renal transplant recipients. Clin Chem. 2010;56:732–735.

40. Marquet P. Counterpoint: is pharmacokinetic or pharmacodynamic monitoring of calcineurin inhibitor therapy necessary? Clin Chem. 2010;56:736–739.

41. Prémaud A, Debord J, Rousseau A, et al. A double absorption-phase model adequately describes mycophenolic acid plasma profiles in de novo renal transplant recipients given oral mycophenolate mofetil. Clin Pharmacokinet. 2005;44:837–847.

42. Barraclough KA, Isbell NM, Franklin ME, et al. Evaluation of limited sampling strategies for mycophenolic acid after mycophenolate
Sheiner LB, Beal S, Rosenberg B, et al. Forecasting individual pharmacokinetic parameters with side effects in kidney transplant patients treated with mycophenolate mofetil. Clin Pharmacokinet. 2001;47:88–94.

Pillans PI, Rigby RJ, Kubler P, et al. A retrospective analysis of mycophenolic acid and tacrolimus in combination with acute rejection in transplant recipients. Clin Biochem. 2001;34:77–81.

Cattaneo D, Gaspari F, Ferraris S, et al. Pharmacokinetics help optimizing mycophenolate mofetil dosing in kidney transplant patients. Transplant. 2001;15:402–409.

Weber LT, Shpakova M, Armstrong VW, et al. The pharmacokinetic-pharmacodynamic relationship for total and free mycophenolic acid in pediatrics transplant recipients: report of the mycophenolate mofetil trial. Am J Nephrol. 2002;13:759–768.

Kuyppers DR, Claes K, Evenepoel P, et al. Clinical efficacy and toxicity profile of tacrolimus and mycophenolic acid in relation to combined long-term pharmacokinetics in de novo renal allograft recipients. Clin Pharmacol Ther. 2004;75:434–447.

Kibend BA, Lawen J, Fraser AD, et al. Early adequate mycophenolic acid exposure and response frequency in kidney transplant patients. Am J Transplant. 2004;4:1079–1083.

Atcheson BA, Taylor PJ, Mudge DW, et al. Mycophenolic acid pharmacokinetics and related outcomes early after renal transplant. Br J Clin Pharmacol. 2005;59:271–280.

Hazzan M, Labatele M, Copin MC, et al. Predictive factors of acute rejection after early cyclosporine withdrawal in renal transplant recipients who receive mycophenolate mofetil: results from a prospective, randomized trial. J Am Soc Nephrol. 2005;16:2509–2516.

Okamoto M, Wakahayashi Y, Higuchi A, et al. Therapeutic drug monitoring of mycophenolic acid in renal transplant recipients. Transplant Proc. 2005;37:859–860.

Sato T, Sada H, Murakami M, et al. Circadian pharmacokinetics of mycophenolic acid and implication of genetic polymorphisms for early clinical events in renal transplant recipients. Transplantation. 2005;79:492–498.

Kuriatsa-Kordek M, Boratyńska M, Urbanik J, et al. Mycophenolic acid concentration profiles may select recipients with high-risk of acute rejection in renal transplant recipients. Pol Merkur Lekarski. 2006;14:219–3; discussion 164.

Pawinski T, Dunik M, Szlaska I, et al. The weight of pharmacokinetic parameters for mycophenolic acid in prediction of rejection outcome: the receiver operating characteristic curve analysis. Transplant Proc. 2006;38:86–89.

Kagaya H, Miura M, Sato T, et al. No pharmacokinetic interactions between mycophenolic acid and tacrolimus in renal transplant recipients. J Clin Pharmacol. 2008;33:193–201.

van Gelder T, Pedroso Silva H, de Fijter JW, et al. Renal transplant patients at high risk of acute rejection benefit from adequate exposure to mycophenolic acid. Transplantation. 2006;81:594–599.

Kuyppers DR, Elkberg H, Grinyó J, et al. Mycophenolic acid exposure after administration of mycophenolate mofetil in the presence and absence of cyclosporin in renal transplant recipients. Clin Pharmacokinet. 2009;48:329–341.

Gourishankar S, Houde I, Keown PA, et al. The CLEAR study: a 5-day, 3-g loading dose of mycophenolate mofetil versus standard 2-g loading dose in renal transplantation. Clin J Am Soc Nephrol. 2005;1:1292–1298.

Sommerer C, Müller-Krebs S, Schairer M, et al. Pharmacokinetic and pharmacodynamic analysis of enteric-coated mycophenolate sodium: limited sampling strategies and clinical outcome in renal transplant patients. Br J Clin Pharmacol. 2010;69:348–357.

Barracough KA, Staatz CE, Johnson DW, et al. Kidney transplant outcomes are related to tacrolimus, mycophenolic acid and prednisolone exposure in the first week. Transplant Int. 2012;25:1193–1200.

Fu L, Huang Z, Song T, et al. Short-term therapeutic drug monitoring of mycophenolic acid reduces infection: a prospective, single-center cohort study in Chinese living-related kidney transplantation. Transplant Infect Dis. 2014;16:760–766.

Daher Abd Z, Essig M, Rizopoulos D, et al. Impact of longitudinal exposure to mycophenolic acid on acute rejection in renal transplant recipients using a joint modeling approach. Pharmacol Res. 2015;72:52–60.
96. Daher Abd Z, Prémard A, Essig M, et al. Exposure to mycophenolic acid better predicts immunosuppressive efficacy than exposure to calcineurin inhibitors in renal transplant patients. Clin Pharmacol Ther. 2014;96:508–519.

97. Ding CG, Jiao LZ, Han F, et al. Early immunosuppressive exposure of enteric-coated-mycophenolate sodium plus tacrolimus associated with acute rejection in expanded criteria donor kidney transplantation. Clin Med J Engl. 2018;131:1302–1307.

98. Peng W, Liu G, Huang H, et al. Short-term intensified dosage regimen of mycophenolic acid is associated with less acute rejection in kidney transplantation from donation after circulatory death. Urol Int. 2018;101:445–449.

99. Pogumas DR, de Jonge H, Naesens M, et al. Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clin Ther. 2008;30:673–683.

100. Satoh S, Tada H, Murakami M, et al. The influence of mycophenolate mofetil versus azathioprine and mycophenolic acid pharmacokinetics on the incidence of acute rejection and infectious complications after renal transplantation. Transplant Proc. 2005;37:1751–1753.

101. Pavinski T, Duflik M, Szlaska I, et al. Comparison of mycophenolic acid pharmacokinetic parameters in kidney transplant patients within the first 3 months post-transplant. J Clin Pharm Ther. 2006;31:27–34.

102. Armstrong V, Heller T, Brandhorst G, et al. Relationship between free mycophenolic acid and hematologic side effects: interim results from the FDCO study. Transplantation. 2006;82(Suppl 2):S44.

103. Szalki J, Kramský J, Ohyda M, et al. Effect of mycophenolate mofetil on hematological side effects incidence in renal transplant recipients. Clin Transplant. 2013;27:E407–E414.

104. Borni-Duval C, Caillard S, Olagne J, et al. Risk factors for BK virus infection in the era of therapeutic drug monitoring. Transplantation. 2013;95:1498–1505.

105. Kiang TLK, Partovi N, Shapiro RJ, et al. Regression and genomic analyses on the association between dose-normalized mycophenolic acid exposure and absolute neutrophil count in steroid-free, de novo kidney transplant recipients. Clin Drug Investig. 2018;38:1011–1022.

106. Le Meur Y, Thierry A, Glowacki F, et al. Early steroid withdrawal and optimization of mycophenolic acid exposure in kidney transplant recipients receiving mycophenolate mofetil. Transplantation. 2011;92:1244–1251.

107. Matthews I, Kirkpatrick C, Holford NH. Quantitative justification for target renal function in the FDCC study. Transplantation. 2006;82(Suppl 2):S44.

108. Metz et al. "Lessons from the past and a roadmap for the future. J Clin Pharmacol. 2013;53:977–13.

109. Neely M, Jelliffe R. Practical, individualized dosing: 21st century therapeutics and the clinical pharmacometrician. J Clin Pharmacol. 2010;50:842–847.

110. Neely M, Jelliffe R. Practical, individualized dosing: 21st century therapeutics and the clinical pharmacometrician. J Clin Pharmacol. 2010;50:842–847.

111. Saint-Marcoux F, Vandierdonck S, Prémaud A, et al. Large scale trials. Transplantation. 2011;91:779–785.

112. Seiner LB. Is intent-to-treat analysis always (ever) enough? Am J Transplant. 2017;10:646–654.

113. Sheiner LB. Is intent-to-treat analysis always (ever) enough? Am J Transplant. 2017;10:646–654.

114. Sobiak J, Kamiński A, Wroński M, et al. Comparison of mycophenolic acid better predicts immunosuppressive efficacy than exposure to mycophenolic acid during the first year after renal transplantation. Kidney Int. 2018;94:672–683.

115. Sobiak J, Kamiński A, Wroński M, et al. Comparison of mycophenolic acid better predicts immunosuppressive efficacy than exposure to mycophenolic acid during the first year after renal transplantation. Kidney Int. 2018;94:672–683.

116. Sommerer C, Glander P, Arns W, et al. Safety and efficacy of intensified versus standard dosing regimens of enteric-coated mycophenolate sodium in de novo renal transplant patients. Transplantation. 2011;91:779–785.

117. Matthews I, Kirkpatrick C, Holford N. Quantitative justification for target concentration intervention–parameter variability and predictive performance using population pharmacokinetic models for amino-glycosides. Br J Clin Pharmacol. 2004;58:9–19.

118. Neely M, Jelliffe R. Practical, individualized dosing: 21st century therapeutics and the clinical pharmacometrician. J Clin Pharmacol. 2010;50:842–847.
138. Barraclough KA, Isbel NM, Staatz CE, et al. BK virus in kidney transplant recipients: the influence of immunosuppression. J Transplant. 2011;2011:750836.

139. Su V, Greanya ED, Ensom MH. Impact of mycophenolate mofetil dose reduction on allograft outcomes in kidney transplant recipients on tacrolimus-based regimens: a systematic review. Ann Pharmacother. 2011;45:248–257.

140. Israni AK, Riad SM, Leduc R, et al; DeKAF Genomics Investigators. Tacrolimus trough levels after month 3 as a predictor of acute rejection following kidney transplantation: a lesson learned from dekaf genomics. Transpl Int. 2013;26:982–989.

141. Torres IB, Reisaeter AV, Moreso F, et al. Tacrolimus and mycophenolate regimen and subclinical tubulo-interstitial inflammation in low immunological risk renal transplants. Transpl Int. 2017;30:1119–1131.

142. Wiebe C, Rush DN, Nevins TE, et al. Class II eplet mismatch modulates tacrolimus trough levels required to prevent donor-specific antibody development. J Am Soc Nephrol. 2017;28:3353–3362.

143. Girerd S, Schikowski J, Girerd N, et al. Impact of reduced exposure to calcineurin inhibitors on the development of de novo DSA: a cohort of non-immunized first kidney graft recipients between 2007 and 2014. BMC Nephrol. 2018;19:232.

144. Béland MA, Lapointe I, Noël R, et al. Higher calcineurin inhibitor levels predict better kidney graft survival in patients with de novo donor-specific anti-HLA antibodies: a cohort study. Transpl Int. 2017;30:502–509.

145. Davis S, Grylla J, Klem P, et al. Lower tacrolimus exposure and time in therapeutic range increase the risk of de novo donor-specific antibodies in the first year of kidney transplantation. Am J Transplant. 2018;18:907–915.

146. O’Leary JG, Samaniego M, Barrio MC, et al. The influence of immunosuppressive agents on the risk of de novo donor-specific HLA antibody production in solid organ transplant recipients. Transplantation. 2016;100:39–53.

147. Lederer SR, Friedrich N, Banas B, Welser G, Albert ED, Sitter T. Effects of mycophenolate mofetil on donor-specific antibody formation in renal transplantation. Clin Transplant. 2005;19:168–174.

148. Filler G, Todorova EK, Bax K, et al. Minimum mycophenolic acid levels are associated with donor-specific antibody formation. Pediatr Transplant. 2016;20:34–38.

149. Zhang HX, Sheng CC, Liu LS, et al. Systematic external evaluation of published population pharmacokinetic models of mycophenolate mofetil in adult kidney transplant recipients co-administered with tacrolimus. Br J Clin Pharmacol. 2019;85:746–761.

150. Dong M, Fukuda T, Yinks AA. Optimization of mycophenolic acid therapy using clinical pharmacometrics. Drug Metab Pharmacokinet. 2014;29:4–11.

151. Zwart TC, Gokoel SRM, van der Boog PJM, et al. Therapeutic drug monitoring of tacrolimus and mycophenolic acid in outpatient renal transplant recipients using a volumetric dried blood spot sampling device. Br J Clin Pharmacol. 2018;84:2899–2902.

152. Md Dom ZI, Coller JK, Carroll RP, et al. Mycophenolic acid concentrations in peripheral blood mononuclear cells are associated with the incidence of rejection in renal transplant recipients. Br J Clin Pharmacol. 2018;84:2433–2442.

153. Raggi MC, Siebert SB, Steiner W, et al. Customized mycophenolate dosing based on measuring inosine-monophosphate dehydrogenase activity significantly improves patients’ outcomes after renal transplantation. Transplantation. 2010;90:1536–1541.

154. Thi MT, Mourad M, Capron A, et al. Plasma and intracellular pharmacokinetic-pharmacodynamic analysis of mycophenolic acid in de novo kidney transplant patients. Clin Biochem. 2015;48:401–405.

155. Chapman JR. The consequences of successful transplantation. Lancet. 2011;378:1357–1359.
Author/s:
Metz, DK; Holford, N; Kausman, JY; Walker, A; Cranswick, N; Staatz, CE; Barraclough, KA; Ierino, F

Title:
Optimizing Mycophenolic Acid Exposure in Kidney Transplant Recipients: Time for Target Concentration Intervention

Date:
2019-10-01

Citation:
Metz, D. K., Holford, N., Kausman, J. Y., Walker, A., Cranswick, N., Staatz, C. E., Barraclough, K. A. & Ierino, F. (2019). Optimizing Mycophenolic Acid Exposure in Kidney Transplant Recipients: Time for Target Concentration Intervention. TRANSPLANTATION, 103 (10), pp.2012-2030. https://doi.org/10.1097/TP.0000000000002762.

Persistent Link:
http://hdl.handle.net/11343/246623

File Description:
published version

License:
CC BY-NC-ND