Induction of Cyp450 enzymes by 4-thiazolidinone-based derivatives in 3T3-L1 cells in vitro

Konrad A. Szychowski 1 • Bartosz Skóra 1 • Anna Kryshchysyn-Dylevych 2 • Danylo Kaminskyy 2 • Kamila Rybczyńska-Tkaczyk 3 • Roman Lesyk 1,2 • Jan Gmiński 1

Received: 18 September 2020 / Accepted: 15 November 2020 / Published online: 21 November 2020
© The Author(s) 2020

Abstract

4-Thiazolidinones and related derivatives are regarded as privileged structures in medicinal chemistry and a source of new drug-like compounds. To date it is known that thiazolidinones are able to induce CYP1A1 activity in 3T3-L1 cells. Therefore, to extend the knowledge of the mechanism of thiazolidinones in the cell, four chemically synthesized heterocycles were tested on 3T3-L1 cells. The 3T3-L1 cells were exposed to Les-2194, Les-3640, Les-5935, and Les-6166. Our study showed that 1 μM βNF, Les-2194, and Les-6166 decreased the expression of Ahr mRNA. In turn, βNF, Les-2194, and Les-3640 increased the Cyp1a1 mRNA expression at the same time interval. On the other hand, Les-5935 was found to decrease the Cyp1a1 mRNA expression. Interestingly, the expression of Cyplaa2 mRNA was activated only by βNF and Les-2194. The expression of Cyp1b1 mRNA in the 3T3 cell line increased after the βNF and Les-2194 treatment but declined after the exposure to Les-5935 and Les-6166. Moreover, the Les-2194 and Les-5935 compounds were shown to increase the activity of EROD, MROD, and PROD. Les-3640 increased the activity of EROD and decreased the activity of PROD. In turn, the treatment with Les-6166 resulted in an increase in the activity of EROD and a decrease in the activity of MROD and PROD in the 3T3-L1 cells.

Keywords CYP450 • 4-Thiazolidinone • Cyp1a1 • 3T3-L1 cells • Cyp1b1 • AhR

Highlights

• Les-2194, Les-3640, Les-5935, and Les-6166 do not affect cell viability in the range from 100 nM to 1 μM.
• Compounds Les-3640 and Les-6166 at the 50 and 100 μM concentrations activate caspase-3 in 3T3-L1 cells.
• Les-2194 increases the activity of EROD, MROD, and PROD and the Cyp1a2 mRNA expression in 3T3-L1 cells.
• Les-2194 and Les-3640 increase the Cyp1a1 mRNA expression in 3T3-L1 cells.
• Les-6166 increases the activity of EROD and decreases the activity of MROD and PROD in 3T3-L1 cells.

© Konrad A. Szychowski
kszychowski@wsiz.edu.pl

Bartosz Skóra
bskora@wsiz.edu.pl

Anna Kryshchysyn-Dylevych
kryshchysyn.a@gmail.com

Danylo Kaminskyy
dankaminskyy@gmail.com

Kamila Rybczyńska-Tkaczyk
kamila.rybczynska-tkaczyk@up.lublin.pl

Roman Lesyk
rlesyk@wsiz.edu.pl

Jan Gmiński
jgminski@wsiz.edu.pl

1 Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland

2 Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halysy Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine

3 Department of Environmental Microbiology, University of Life Sciences, Leszczyńskiego 7, 20-069 Lublin, Poland
Abbreviations

AhR Aryl hydrocarbon receptor
DMSO Dimethyl sulfoxide
PBS Phosphate-buffered saline
PPARs Peroxisome proliferator-activated receptors
ROS Reactive oxygen species
XO Xanthine oxidize
\(\alpha\)NF Alpha-naphthoflavone
\(\beta\)NF Beta-naphthoflavone
EROD Ethoxyresorufin-O-deethylase
MROD 7-Methoxyresorufin O-demethylation
PROD Pentoxysorufin O-dealkylase
DMEM Dulbecco’s Modified Eagle’s Medium

Introduction

4-Thiazolidinones and related derivatives are regarded as privileged structures in medicinal chemistry and are a source of new drug-like compounds (Tripathi et al. 2014; Kaminskyy et al. 2017a). In terms of modern medicinal chemistry, 4-thiazolidinones possess a variety of biological activities (both in screening campaigns and directed experiments). They are also regarded as a tool for synthesis of related heterocycles, simplified analogs, and diverse complex heterocycles in various approaches. Moreover, among the variety of thiazolidinone subtypes, 5-ene-4-thiazolidinones are of special interest as hit and lead compounds with anticancer, antimicrobial, antiviral, and antitrypanosomal activities (Kaminskyy et al. 2017a; Lesyk 2020a, b). However, a new trend in medicinal chemistry refers to these compounds as frequent hitters or pan-assay interference compounds, which are useless due to their possible low selectivity. This is challenged by the Michael acceptor property of 5-ene-4-thiazolidinones (Kaminskyy et al. 2017b). Such a thesis is actively discussed in the literature and requires further investigation. Nevertheless, we established earlier that annealing of the thiazoline core into fused analogs (thiopyrano[2,3-d]thiazoles, chromeno[2,3-d]thiazoles, thiazolo[4,5-b]pyridine, etc.) is one of the prominent optimization directions that helps to conserve the activity pattern of synthetic precursors (5-ene-4-thiazolidinones), decrease the toxicity, and avoid the Michael acceptor properties as well (Kryshchyshn et al. 2018).

To date, it has been described that 4-thiazolidinones derivatives can be peroxisome proliferator-activated receptor (PPAR) agonists (Wright et al. 2014; Zhou et al. 2015; Szychowski et al. 2017a). PPARs are members of the nuclear receptor superfamily that can be activated by various natural fatty acids and xenobiotics (Berger et al. 2005; Scatena et al. 2008; Wojtowicz et al. 2014). Three subtypes of PPARs, i.e., PPAR\(\alpha\), PPAR\(\beta\), and PPAR\(\gamma\), have been identified (Lea et al. 2004; Scatena et al. 2008; Tachibana et al. 2008). After activation, PPARs bind with the retinoid X receptor (RXR) and form PPARs/RXR heterodimers, which regulate transcription of genes involved in different metabolic pathways (Bardot et al. 1993). Similarly, the aryl hydrocarbon receptor (AhR) requires participation of RXR for activation of gene expression (Hessel-Pras et al. 2018). Moreover, Wójtowicz et al. (2017) described crosstalk between AhR and PPAR\(\gamma\) receptors in mouse neurons. Similarly, as reported by Kim et al. (2008), troglitazone (PPAR\(\gamma\) agonist) affects induction of Cyp1a1, whose expression is AhR dependent, in murine hepatoma Hepa-1c1c7 cells. It has also been described that alpha-naphthoflavone (\(\alpha\)NF), which is an AhR antagonist, inhibits differentiation of 3T3-L1 pre-adipocytes, which is a well-documented PPAR\(\gamma\)-dependent process (He et al. 2013). To date, PPAR\(\gamma\) activators have been reported to act as carcinogens as well, as described in some papers (Scatena et al. 2008).

It is well known that many xenobiotics can accumulate in adipose tissue (Barouki 2013). Unfortunately, the consequences of this accumulation are still poorly understood (Jackson et al. 2017). Moreover, adipose tissue can also metabolize xenobiotics to a small extent with the involvement of cytochrome P450 enzymes (Ellero et al. 2010), e.g., CYP1A1, which has been examined extensively for its capacity to activate compounds with carcinogenic properties (Androutsopoulos et al. 2009). Exposure to chemicals and environmental carcinogens is thought to increase the level of CYP1A1 expression in extrahepatic tissues through the AhR receptor (Nebert et al. 2000; Di Bello et al. 2007). Dysregulation of these pathways may be implicated in tumor progression (Androutsopoulos et al. 2009). Similarly CYP1B1, which is expressed in liver and extrahepatic tissues, carries out the metabolism of numerous xenobiotics, including the metabolic activation of polycyclic aromatic hydrocarbons (Spink et al. 1998). Moreover, CYP1B1 has also been shown to be important in regulating endogenous metabolic pathways, including the metabolism of steroid hormones, fatty acids, melatonin, and vitamins (Li et al. 2017). CYP1B1 and its interaction with PPARs, estrogen receptors (ERs), and retinoic acid receptors (RARs) contribute to the maintenance of the homeostasis of these endogenous compounds (Angus et al. 1999; Nebert and Dalton 2006). Accumulating data indicate that modulation of CYP1B1 can decrease adipogenesis and tumorigenesis and prevent obesity, hypertension, atherosclerosis, and cancer (Malik et al. 2012; Song et al. 2016; Li et al. 2017). Therefore, it may be feasible to consider CYP1B1 as a therapeutic target for the treatment of metabolic diseases (Li et al. 2017; Alzahrani and Rajendran 2020).

The molecular mode of the anticancer action of the abovementioned compounds is still unclear, but it is believed to be related with PPAR pathways (Lu et al. 2011; Asati et al. 2014). Our previous study has demonstrated that 4-thiazolidinone-based derivatives (thiopyrano[2,3-d]thiazole
derivative Les-2194 and thiazolidinone-pyrazoline hybrid molecule Les-3640) cause apoptotic cell death in human squamous carcinoma cells (SCC-15) with key involvement of PPARγ (Szychowski et al. 2017a, b). Moreover, another compound studied by our team 5Z-(4-fluorobenzylidene)-2-(4-hydroxyphenylamino)-1H-thiazol-4-one (Les-236) has been found to exhibit broad cytotoxic and proapoptotic action in SCC-15, lung carcinoma (A549), colon adenocarcinoma (Caco-2), neuroblastoma (SH-SY5Y), and skin fibroblast (BJ) cell lines (Szychowski et al. 2019).

At present, there are very limited data on the influence of anticancer 4-thiazolidinone-based derivatives on Cyp1a1, Cyp1b1, Cyp1a2, and Cyp2b10 expression or activity. Moreover, the impact of Les-2194, Les-3640, Les-5935 (thiazolidinone-indole hybrid) on induction of Cyp1a1, Cyp1b1, Cyp1a2, and Cyp2b10 expression or activity has never been studied. These compounds represent the most promising classes of 4-thiazolidinone-based derivatives as potential anticancer agents. In particular, Les-2194 (Havrylyuk et al. 2012), Les-3640 (Kryshchyshyn et al. 2012), and Les-5935 (Table S1, ESI) inhibited the growth of sixty cancer cell lines (Szychowski et al. 2019).

Due to the lipophilic nature of the studied compounds, the mouse non-cancerous preadipocyte 3T3-L1 cell line was selected for metabolism studies. In addition, it is possible that they accumulate in adipose tissue. Therefore, the aim of our study was to determine whether the 4-thiazolidinone-based derivatives induce the expression and/or activity of Cyp1a1, Cyp1b1, Cyp1a2, and Cyp2b10 in the 3T3-L1 cell line.

Materials and methods

Reagents

Dulbecco’s Modified Eagle’s Medium (DMEM) without phenol red (10-013CV) and phosphate-buffered saline without calcium and magnesium (PBS) (21-040-CVR) were purchased from Corning (Manassas, VA, USA). Trypsin, penicillin, streptomycin, amphotericin B, β-napthoflavone (βNF) (N3633), and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Substrates for P450 cytochrome P450 (CYP) ethoxyresorufin-O-deethylase (EROD) (5725-91-7), 7-methoxyresorufin O-demethylation (MROD) (5725-89-3), and pentoxyresorufin O-dealkylase (PROD) (87687-03-04) were supplied by Tocris Bioscience. Fetal bovine serum (FBS) (E0423) were purchased from EURx (Gdańsk, Poland). TaqMan probes corresponding to specific genes encoding Gapdh (Mm99999915_g1), Ahr (Mm01291777_m1), Cyp1a1 (Mm00487218_m1), Cyp1b1 (Mm00487229_m1), Cyp1a2 (Mm00487224_m1), and Cyp2b10 (Mm01972453_s1) were purchased from Thermo Fisher Scientific (Grand Island, NY, USA).

Synthesis and physicochemical data of the tested compounds were described previously: Les-2194, rel-N-(2,4-dichlorophenethyl)-2-[(5aR,11bR)-2-oxo-5a,11b-dihydro-2H,5H-chromeno[4′,3′:4,5]thiopyran-[2,3-d][1,3]thiazol-3(6H)-yl]acetamide (Kryshchyshyn et al. 2012), and Les-3640, 3-[(2-[4-(dimethylaminophenyl)-3-phenyl-4,5-dihydropyrazol-1-yl]-4-oxo-4,5-dihydro-1,3-thiazol-5-ylidene)-2,3-dihydro-1H-indol-2-one (Havrylyuk et al. 2012). Spectral and analytical data for Les-5935 (9H-benzo[5,6]chromeno[2,3-d][1,3]thiazol-9-one) and Les-6166 (methyl 5-fluoro-3-[2-(4-hydroxyanilino)-4-oxo-4,5-dihydro-1,3-thiazol-5-ylidenemethyl]-1H-2-indolecarboxylate) are described in the Supplementary information.

All stock solutions were prepared by dissolving the compounds in DMSO. The final concentration of DMSO in the culture medium was always 0.1%.

Synthesis of anticancer 4-thiazolidinone-based derivatives

The synthesis of Les-2194 and Les-3166 was performed according to the method described by Kryshchyshyn et al. (2012) and Havrylyuk et al. (2012), respectively.

General procedure for the synthesis of 9H-benzo[5,6]chromeno[2,3-d][1,3]thiazol-9-one (Les-5935)

Mixtures of 4-aminothiazol-2(5H)-one (5 mmol), 2-hydroxynaphthalene-1-carboxide (5 mmol), and sodium acetate (5 mmol) were heated at reflux for 2 h in a mixture of AcOH and Ac2O (10 mL, 1:1). After cooling, the precipitate formed was filtered off, washed with Ac2O, H2O, and EtOH, and recrystallized from a mixture of DMSO/EtOH (2:1). Spectral and analytical data for compound Les-5935 is provided in supplementary material 1.

General procedure for the synthesis of methyl 5-fluoro-3-[2-(4-hydroxyanilino)-4-oxo-4,5-dihydro-1,3-thiazol-5-ylidenemethyl]-1H-2-indolecarboxylate (Les-6166)

A mixture of 0.1 mole of 4-hydroxyphenylthiouria (0.1 mol), methyl 5-fluoro-3-formylindole-2-carboxylate (0.11 mol), chloroacetic acid (0.1 mol), and fused sodium acetate (0.1 mol) in 100 mL of acetic acid was heated under reflux for 3 h. The crystalline precipitate was filtered off, washed with acetic acid, water, ethanol, and diethyl ether, and then recrystallized from a mixture of DMF-acetic acid (1:2). Spectral and
analytical data for compound Les-6166 is provided in supplementary material 1.

3T3-L1 cell culture

Mouse embryonic fibroblast cell line 3T3-L1 was obtained from the American Type Culture Collection (ATCC, distributor: LGC Standards, Lomianki, Poland). The 3T3-L1 cell line was maintained in phenol red-free DMEM supplemented with 10% FBS, 100 U/mL penicillin, 0.10 mg/mL streptomycin, and 250 ng/mL amphotericin B. The cells were maintained at 37 °C in a humidified atmosphere with 5% CO2. They were seeded in 96-well culture plates at a density of 6 \times 10^3 (for the 24-h treatment), 5 \times 10^3 (for the 48-h treatment), and 4 \times 10^3 (for the 72-h treatment) per well and initially cultured before the experiment for 24 h. Subsequently, the medium was replaced with a fresh one by raising the concentrations (100 nM, 1 μM, 10 μM, 50 μM, and 100 μM) of Les-2194, Les-3640, Les-5935, and Les-6166 (resazurin reduction and caspase-3 activity).

Resazurin reduction assay

The resazurin reduction assay was used to determine the rate of cell metabolism and, based on this, cell viability (Rampersad 2012). Resazurin is a redox dye showing colorimetric and fluorometric changes depending on the cell metabolic activity. The resazurin reduction assay is based on the ability of metabolically active cells to convert blue resazurin (non-fluorescent form) to red resorufin (fluorescent form). To determine viability, the cells were seeded in 96-well plates. To confirm the results of the qPCR reaction and their translation into functional protein, the activity of the Cyp1a1/ Cyp1b1, Cyp1a2, and Cyp2b10 enzymes using the fluorometric ethoxyresorufin-O-deethylase (EROD), 7-methoxyresorufin O-demethylation (MROD), and pentoxyresorufin O-dealkylase (PROD) substrates,
respectively. The fluorescence EROD, MROD, and PROD assays were performed according to the method proposed by Kennedy et al. (1993). For the assays, the cells were seeded on 12-well plates and initially cultured for 24 h. Measurement of the EROD, MROD, and PROD activity was performed after 24 or 48 h of exposure to 1 μM βNF, Les-2194, Les-3640, Les-5935, and Les-6166. To perform the EROD, MROD, and PROD assays, lysed cells were transferred into multiwell plates, and the fluorescent product resorufin was quantified within the wells with a fluorescence plate reader (FilterMax F5) at an excitation wavelength of 530 nm and an emission wavelength of 590 nm. The protein concentration was determined spectrophotometrically in triplicate for each sample at 280 nm using the ND/1000 UV/Vis Thermo Fisher NanoDrop device.

Statistical analysis

The data are presented as means ± SD of three independent experiments. Each treatment was repeated six times in each independent experiment (n = 18). The data were analyzed with one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison procedure ***P < 0.001, **P < 0.01, and *P < 0.05 vs. the control.

Results

Synthesis of 4-thiazolidinone-based derivatives

The general methods for the synthesis of the target thiazolidinone-based compounds Les-2194, Les-3640, Les-5935, and Les-6166 are presented in Fig. 1. Les-2194 was obtained via N-alkylation of rel-(5aR,11bR)-3,5a,6,11b-tetrahydro-2H,5H-chromeno[4′,3′:4,5]thiopyran[2,3-d]thiazol-2-one by 2-chloro-N-(3,4-dichlorophenyl)-acetamide. Les-3640 and Les-6166 were synthesized in one-pot three-component reaction involving [2+3]-cyclocondensation of appropriate S,N-binucleophile and chloroacetic acid followed by the Knoevenagel reaction with an appropriate oxo compound. In the case of Les-3640, 3-phenyl-5-(dimethylaminophenyl)-1-thiocarbamoyl-2-pyrazoline was used as the S,N-binucleophile, and isatin was used as the oxo compound; for the Les-6166 synthesis, 4-hydroxyphenylthiourea and methyl 5-fluoro-3-formylindole-2-carboxylate were used, respectively. The chromeno[2,3-d]thiazole Les-5935 was obtained via one-pot condensation of 4-aminothiazol-2(5)H-one and 2-hydroxynaphthalene-1-carbaldehyde.

Measurement of resazurin reduction

Several thiazolidinone-based compounds have been previously shown to impact the viability of tumor cells (Szychowski et al. 2017a,b, 2019). Resazurin reduction experiments were performed to measure the effects of Les-2194, Les-3640, Les-5935, and Les-6166 on the viability of 3T3-L1 preadipocytes. After the 24-h exposure to 100 nM, 1 μM, 10 μM, 50 μM, and 100 μM of Les-2194, Les-3640, Les-5935, or Les-6166, only 100 μM of Les-2194 and Les-3640 induced a decrease in resazurin reduction in the 3T3-L1 cells (a decrease by 16.43 and 15.77%, respectively, compared to the control) (Fig. 2a).

Similarly, after the 48-h exposure to 100 nM, 1 μM, 10 μM, 50 μM, and 100 μM of Les-2194, Les-3640, Les-5935, or Les-6166, 100 μM of Les-2194 and Les-3640 caused a decrease in resazurin reduction in the 3T3-L1 cells (a decrease by 17.07 and 24.83% respectively, compared to the control). Moreover, Les-6166 decreased resazurin reduction at the concentrations of 50 μM and 100 μM (a decrease by 16.44 and 28.19%, respectively, compared to the control). In turn, compound Les-5935 at the concentration of 100 μM increased resazurin reduction by 14.19%, compared to the control (Fig. 2b).

After the 72-h exposure to the studied compounds, or Les-6166, similar as in the previous variant, 100 μM of Les-2194 and Les-3640 contributed to a decrease in resazurin reduction in the 3T3-L1 cells (a decrease by 17.88 and 13.20%, respectively, compared to the control). In turn, compound Les-5935 at the concentration of 10 μM increased resazurin reduction by 13.12, 11.68, and 11.75%, respectively, compared to the control (Fig. 2c).

Measurement of caspase-3 activity

To date, thiazolidinone-based compounds have been shown to initiate the apoptotic process in various cancerous cell lines (Szychowski et al. 2017a,b, 2019). Caspase-3 activity assay was performed to measure the effects of Les-2194, Les-3640, Les-5935, and Les-6166 on the apoptotic process in the 3T3-L1 cell line.

After the 24-h exposure to 100 nM, 1 μM, 10 μM, 50 μM, and 100 μM of Les-2194, Les-3640, Les-5935, or Les-6166, compounds Les-2194 and Les-5935 did not affect caspase-3 activity in the 3T3-L1 cells. Compounds Les-3640 and Les-6166 at the concentrations of 50 μM and 100 μM caused an increase in caspase-3 activity (an increase by 44.27 and 79.75%, respectively, for Les-3640 and an increase by 95.09 and 147.44%, respectively, for Les-6166) (Fig. 3a).

After the 48-h exposure to the studied compounds, as in the case of the 24-h exposure, compounds Les-2194 and Les-5935 did not affect caspase-3 activity in the 3T3-L1 cells. Moreover, compounds Les-3640 and Les-6166 at the concentrations of 50 μM and 100 μM induced an increase in caspase-3 activity (an increase by 40.33 and 82.33%, respectively, for Les-3640 and an increase by 98.26 and 151.47%, respectively, for Les-6166) (Fig. 3b).
Similarly, after the 72-h exposure to the studied compounds, Les-2194 and Les-5935 did not affect caspase-3 activity in the 3T3-L1 cells. Compound Les-6166 at the concentrations of 50 μM and 100 μM increased caspase-3 activity (an increase by 90.85 and 163.21%, respectively, compared to the control). Compound Les-3640 caused an increase in caspase-3 activity at the concentrations of 10 μM, 50 μM, and 100 μM (an increase by 16.18; 47.36 and 85.06%, respectively, compared to the control) (Fig. 3c).

Expression of Ahr, Cyp1a1, Cyp1b1, Cyp1a2, and Cyp2b10 mRNA

AhR and AhR-related genes are involved in the metabolism and detoxification system of different ligands, such as drugs, tetrachlorodibenzo-p-dioxin (TCDD), or βNF (Tian et al. 2015). To date, the Les-2194 and Les-3640 compounds have been shown to exhibit properties of PPARγ receptor agonists (Szychowski et al. 2017a, b). Therefore, due to crosstalk between AhR and PPARγ receptors, investigations of the mRNA expression of Ahr and Ahr-related genes were performed.

The expression of Ahr, Cyp1a1, Cyp1b1, Cyp1a2, and Cyp2b10 mRNA was measured after 6 h of exposure to βNF, Les-2194, Les-3640, Les-5935, or Les-6166. βNF, Les-2194, and Les-6166 increased the Cyp1a1 mRNA expression by 1240051.71, 1325.58, and 106.18%, respectively, compared to the control. In turn, Les-5935 decreased the Cyp1a1 mRNA expression by 56.16%, compared to the control (Fig. 4b). Interestingly, the expression of Cyp1a2 mRNA was activated only by βNF and Les-2194 (41.22% compared to the expression induced by βNF); therefore, βNF was regarded to be the control in this analysis (Fig. 4c). After the βNF and Les-2194 treatment, the expression of Cyp1b1 mRNA in the 3T3 cell line increased by 105.11 and 33.04%, respectively, compared to the control. In turn, Les-5935 and Les-6166 decreased the expression of Cyp1b1 mRNA by 23.66 and 27.02%, respectively, compared to the control (Fig. 4d). No expression of Cyp2b10 mRNA was detected in the 3T3 cell line (Fig. 4e).

CYP450 activities

Currently, it is well known that mRNA expression does not fully translate into its functions (Perl et al. 2017). Therefore, enzymatic activity assays EROD, MROD, and PROD were carried out to confirm or deny that changes in mRNA expression affect protein activity.

EROD assay

After 24 and 48 h of exposure of the 3T3-L1 cells to 1 μM Les-2194, Les-5935, or Les-6166, we observed an increase in
EROD activity. An increase by 76.45 and 102.90% compared to the control was observed in the case of Les-2194. Les-5935 increased the activity by 84.31 and 83.90%, compared to the control, whereas an 81.29 and 74.30% increase was induced by Les-6166, compared to control. In turn, Les-3640 increased the EROD activity only after 48 h (by 35.40% compared to the control) (Fig. 5a).

PROD assay

After 24 and 48 h of exposure of the 3T3-L1 cells to 1 μM Les-2194, the PROD activity was increased by 61.70 and 67.67%, respectively, compared to the control. After 24 h of exposure to Les-3640, we observed an 18.70% decrease in the PROD activity, compared to the control. After 48 h, Les-5935 increased the PROD activity by 61.95%, compared to the control. Les-6266 induced a decrease in the PROD activity at both time intervals (a decrease by 36.00 and 38.43%, compared to the control) (Fig. 5b).

MROD assay

βNF reduced the MROD activity only after 48 h of exposure (a decrease by 24.89%, compared to the control). Likewise previously, Les-2194 increased the MROD activity in the 3T3-L1 cells after 24 and 48 h (an increase by 22.76 and 37.98%, respectively, compared to the control). After 24-h exposure, Les-5935 increased the MROD activity by...
34.64%, compared to the control. In turn, Les-3640 and Les-6166 contributed to a decrease in the MROD activity at both time intervals, i.e., by 34.10 and 23.55% in the case of Les-3640 and by 36.02 and 32.83% in the case of Les-6166, compared to the control (Fig. 5c).

Discussion

The present experiments showed that, after 24, 48, and 72 h of exposure to 100 nM, 1 μM, 10 μM, 50 μM, and 100 μM of Les-2194, Les-3640, Les-5935, or Les-6166 on caspase-3 activity after 24 h (a), 48 h (b), and 72 h (c) of exposure of 3T3-L1 fibroblasts (a). Control vehicle only and 1 μM β-naphthoflavone (βNF) were included in the experiments. Data are expressed as means ± SD of three independent experiments, each of which consisted of six replicates per treatment group.
the SCC-15 cell line. Furthermore, both Les-2194 and Les-3640 decrease cell viability (measured by the resazurin reduction assay) and increase cell apoptosis (measured as caspase-3 activity) (Szychowski et al. 2017b). Moreover, our study shows that both Les-2194 and Les-3640 act in a PPARγ-dependent way (Szychowski et al. 2017a). Resveratrol, which is known as a PPARγ agonist, has been described to inhibit AhR-induced cytochrome CYP1A1 enzyme activity and expression (Ciolino and Yeh 1999). Based on this, the next stage of our study was to check the impact of 1 μM Les-2194, Les-3640, Les-5935, or Les-6166 on the mRNA expression of Ahr (a), Cyp1a1 (b), Cyp1a2 (c), Cyp1b1 (d), and Cyp2b10 (e) genes after 6 h of exposure of 3T3-L1 fibroblasts. The lack of expression of Cyp2b10 mRNA was confirmed by the use of mouse astrocyte cells as a positive control; see supplementary material 2 for details. Data are expressed as means ± SD of three independent experiments, each of which consisted of six replicates per treatment group. **P < 0.01 and ***P < 0.001 versus the control cells

They demonstrated that Les-2194 affected the expression of AhR, Cyp1a1, Cyp1b1, and Cyp1a2 mRNA in a similar way to βNF. However, Les-3640 increased only the Cyp1a1 mRNA expression, while Les-5935 decreased the mRNA expression of this enzyme. The Les-6166 compound decreased only the expression of AhR receptor mRNA. It is important to underline that only βNF and Les-2194 induced the expression of Cyp1a2 mRNA in the 3T3-L1 cell line.

Our previous study demonstrated that Les-2194 and Les-3640 act in a PPARγ-dependent way in SCC-15 cells and similar to known PPARγ agonists (rosiglitazone and...
pioglitazone) (Szychowski et al. 2017a). Moreover, it was described that PPARγ agonists could activate the expression of CYP1A1 and CYP1A2 mRNA and protein by interfering with AhR-dependent signaling in rat liver (Gallagher et al. 1995; Shaban et al. 2004). Such data suggest that Les-5935 and Les-6166 may be at least weak PPARα agonists. The final part of our study was to evaluate the effect of Les-2194, Les-3640, Les-5935, or Les-6166 on the activity of Cyp1a1, Cyp1b1, Cyp1a2, and Cyp2b10 in the 3T3-L1 cell line. It has been shown in various studies that EROD activities can be related to both CYP1A1 and CYP1A2 isoenzymes (Zamaratskaia and Zlabek 2009). However, some authors have suggested that the EROD assay measures CYP1B1 activity as well (Deeni et al. 2013). The MROD assay has been applied for measurement of the CYP1A2 activity (Conaway et al. 1996), whereas the PROD assay has been used to measure the CYP2B activity (Séide et al. 2016). Our data showed an increase in the EROD activity after 24 and 48 h in the 3T3-L1 cells exposed to 1 μM Les-2194, Les-5935, or Les-6166; however, Les-3640 increased the EROD activity only after 48 h. In the case of Les-2194, the data on the Cyp1a1, Cyp1a2, and Cyp1b1 mRNA expression and activity measured by the EROD assay are consistent. The increase in the EROD activity induced by Les-6166 may be explained by the increase in the Cyp1a1 mRNA expression. Unfortunately, in the case Les-5935 and Les-3640, the increased EROD activity is not supported by the expression. This phenomenon may be a feedback effect where high enzyme activity inhibits its expression (Zanger and Schwab 2013).

Our data showed that only Les-2194 and Les-5935 increased the MROD activity, while βNF, Les-3640, and Les-6166 decreased the activity in the 3T3-L1 cells. To date, MROD activity has been correlated with CYP1A2 expression (Conaway et al. 1996). However, in our experiments, we observed increased expression of Cyp1a2 mRNA only after the treatment of the cells with Les-2194. It cannot be excluded that Les-5935 affects only the activity of Cyp1a2 without significant induction of mRNA expression.

Our data showed that only Les-2194 and Les-5935 contributed to an increase in the PROD activity, while the Les-6266 compound decreased it at both time intervals. Interestingly, the experiments showed no expression of Cyp2b10 in 3T3-L1. A single CYP2B gene, i.e., CYP2B6, has been described in humans. In turn, mice have five Cyp2b genes: Cyp2b9, Cyp2b10, Cyp2b13, Cyp2b19, and Cyp2b23 (Nelson et al. 2004). In mice, the Cyp2b9, Cyp2b10, and Cyp2b13 forms are primarily expressed in the liver (Finger et al. 2011). The most important is Cyp2b10, and its expression is regulated by CAR (Honkakoski et al. 1998; Wang et al. 2003; Kretschmer and Baldwin 2005). Therefore, it cannot be excluded that the Les-compounds affect other than Cyp2b10 mRNA expression.
Recently, it has been reported that different thiazolidinone derivatives exerted CYP inhibition activity in several isoforms (CYP1A2, CYP3A4, and CYP2C19) at 10 μM, but there was no CYP inhibition activity of CYP2C9 and CYP2D6 in human and rat liver microsomes (Ashraf et al. 2020). Unfortunately, the data on the CYP expression and/or activity after thiazolidinone treatment are limited.

It is well described that CYP1A1, CYP1A2, and CYP1B1 play an important role in the detoxification of environmental carcinogens and in the metabolic activation of dietary compounds with cancer preventive activity (Zanger and Schwab 2013; Alzahrani and Rajendran 2020). Moreover, the contribution of CYPs to cancer progression or prevention may depend on the balance of procarcinogen activation/detoxification and extrahepatic drug metabolism (Androutsopoulos et al. 2009). Similarly, CYP2B6 is involved in drug clearance (Zanger and Schwab 2013).

Conclusions

Our study is the first to explore the role of the Les-2194, Les-3640, Les-5935, and Les-6166 compounds in the 3T3-L1 cell line. The experiments show that compounds Les-3640 and Les-6166 at the 50 and 100 μM concentrations activate caspase-3 in 3T3-L1 cells and can be toxic in these concentrations. Moreover, the study has shown that only Les-2194 acts similarly to our positive control βNF by affecting the mRNA expression of AhR, Cyp1a1, Cyp1a2, and Cyp1b1 in the 3T3-L1 cell line. Interestingly, both Les-2194 and Les-5935 increased the activity of EROD, MROD, and PROD. Given the important role of the AhR receptor in the detoxification system and its crosstalk with the PPARy receptor, which is crucial in adipocyte differentiation, more research in this field is needed to explain the mechanism of the Les-2194, Les-3640, Les-5935, or Les-6166 action on drug metabolism or the detoxification system and adipocyte differentiation.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1007/s00210-020-02025-7.

Authors’ contributions

K.S. designed the research. A.K-L., D.K., and R.L. synthesized the compound used in the experiments. K.S., B.S., and J.G. performed the cell culture research. K.S. and R.L. analyzed the data and wrote the manuscript. J.G. obtained financial support for the project. All authors read and approved the manuscript. The authors declare that all data were generated in-house and that no paper mill was used.

Funding

This work was supported by statutory funds from the University of Information Technology and Management in Rzeszow, Poland (DS 503-07-01-21).

Compliance with ethical standards

Conflict of interests

The authors declare that they have no conflict of interests.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alzahrani AM, Rajendran P (2020) The multifarious link between cytochrome P450s and cancer. Oxidative Med Cell Longev 2020:1–18. https://doi.org/10.1155/2020/3028387
Androutsopoulos VP, Tsatsakis AM, Spandidos DA (2009) Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 9:187. https://doi.org/10.1186/1471-2407-9-187
Angus WG, Larsen MC, Jefcoate CR (1999) Expression of CYP1A1 and CYP1B1 depends on cell-specific factors in human breast cancer cell lines: role of estrogen receptor status. Carcinogenesis 20:947–955
Asati V, Mahapatra DK, Bharti SK (2014) Thiazolidine-2,4-diones as multi-targeted scaffold in medicinal chemistry: potential anticancer agents. Eur J Med Chem 87:814–833. https://doi.org/10.1016/j.ejmech.2014.10.025
Ashraf S, Saeed A, Moon SH, Flörke U, Kim SH, Ashraf Z, Yaseen M, Latif M (2020) Design, synthesis and biological evaluation of 2-(naphthoyl) iminothiazolidin-4-ones as potential anticancer agents. ChemistrySelect 5:3965–3970. https://doi.org/10.1002/slct.202000579
Bardot O, Aldridge TC, Latruffe N, Green S (1993) PPAR-RXR heterodimer activates a peroxisome proliferator response element upstream of the bifunctional enzyme gene. Biochem Biophys Res Commun 192:37–45. https://doi.org/10.1006/bbrc.1993.1378
Barouki R (2013) Les xénobiotiques accumulés dans le tissu adipeux peuvent-ils contribuer à un risque carcinogène ? Ann Endocrinol (Paris) 74:154–155. https://doi.org/10.1016/j.anjo.2013.03.022
Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH (2008) The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr 18:207–250. https://doi.org/10.2964/jsk.kuni0223
Berger JP, Akiyama TE, Meinke PT (2005) PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26:244–251. https://doi.org/10.1016/j.tips.2005.03.003
Cioînă HP, Yeh GC (1999) Inhibition of aryl hydrocarbon-induced cytochrome P-450 1A1 enzyme activity and CYP1A1 expression by resveratrol. Mol Pharmacol 56:760–767
Conaway CC, Jiao D, Chung FL (1996) Inhibition of rat liver cytochrome P450 isozymes by isothiocyanates and their conjugates: a structure-activity relationship study. Carcinogenesis 17:2423–2427. https://doi.org/10.1093/carcin/17.11.2423
Deeni YY, Ibbotson SH, Woods JA, Wolf CR, Smith G (2013) Cytochrome P450 CYP1B1 interacts with 8-methoxypsoralen (8-MOP) and influences psoralen-ultraviolet A (PUVA) sensitivity. PLoS One 8:2–8. https://doi.org/10.1371/journal.pone.0075494
Di Bello D, Vaccaro E, Longo V et al (2007) Presence and inducibility by β-naphthoflavone of CYP1A1, CYP1B1 and phase II enzymes in...
Trematomus bermachii, an Antarctic fish. Aquat Toxicol 84:19–26. https://doi.org/10.1016/j.aquatox.2007.05.010
Ellero S, Chakhtoura G, Barreau C, Langouët S, Benelli C, Penicaud L, Beaune P, de Waziers I (2010) Xenobiotic-metabolizing cytochromes P450 in human white adipose tissue: expression and induction. Drug Metab Dispos 38:679–686. https://doi.org/10.1124/dmd.109.029249
Finger JH, Smith CM, Hayamizu TF, McCrugh JT, Eppig JT, Kadin JA, Richardson JE, Ringwald M (2011) The mouse gene expression database (GXD): 2011 update. Nucleic Acids Res 39:835–841. https://doi.org/10.1093/nar/gkq1132
Gallagher EP, Buettler TM, Stapleton PL, Wang CH, Eaton DL (1995) The effects of diquat and ciprofibrate on mRNA expression and catalytic activities of hepatic xenobiotic metabolizing and antioxidant enzymes in rat liver. Toxicol Appl Pharmacom 134:81–91. https://doi.org/10.1006/taap.1995.1171
Havrylyuk D, Zimenkovsky B, Vasylenko O, Gzella A, Lesyk R (2012) Synthesis of new 4-thiazolidinone-, pyrazoline-, and isatin-based conjugates with promising antitumor activity. J Med Chem 55:8630–8641. https://doi.org/10.1021/jm300788q
He Q, Huang C, Zhao L, Feng J, Shi Q, Wang D, Wang S (2013) α-Naphthol-2-aldehyde inhibits 3T3-L1 pre-adipocytes differentiation via modulating p38MAPK signaling. Int J Clin Exp Pathol 6:168–179
Hessel-Pras S, Ehlers A, B래우닝 A, Lampen A (2018) The aryldihydrocarbon receptor and retinoid receptors cross-talk at the Cyp1A1 promoter in vitro. EXCLI J 17:246–256. https://doi.org/10.17177/excli2018-1147
Honkakoski P, Zelko A, Sueyoshi T, Negishi M (1998) The nuclear orphan receptor CAR activator 4-thiopyrano[2,3-d]thiazole derivatives as potential anticancer agents. Sci Pharm 80:509–529. https://doi.org/10.3797/scipharm.1204-02
Kryshchyshyn A, Kaminskyy D, Kryshchyshyn A, Lesyk R (2012) Fused thiopyrano[2,3-d]thiazole derivatives as potential anticancer agents. Sci Pharm 80:509–529. https://doi.org/10.3797/scipharm.1204-02
Kryshchyshyn A, Roman O, Lozynsky A, Lesyk R (2018) Thiopyranos[2,3-d]thiazoles as new efficient scaffolds in medicinal chemistry. Sci Pharm 86:26. https://doi.org/10.3390/scipharm86020026
Lea MA, Sura M, Desborodes C (2004) Inhibition of cell proliferation by potential peroxisome proliferator-activated receptor (PPAR) gamma agonists and antagonists. Anticancer Res 24:2765–2771
Lesyk R (2020a) Drug design: 4-thiazolidinones applications. Part 1. Synthetic routes to the drug-like molecules. J Med Sci 89:e406. doi: 10.20883/medical.406
Lesyk R (2020b) Drug design: 4-thiazolidinones applications. Part 2. Pharmacological profiles. J Med Sci e407.
Li F, Zhu W, Gonzalez FJ (2017) Potential role of CYP1B1 in the development and treatment of metabolic diseases. Pharmacol Ther 178: 18–30. https://doi.org/10.1016/j.pharmthera.2017.03.007
Lu W, Che P, Zhang Y, Li H, Zou S, Zhu J, Deng J, Shen X, Jiang H, Li J, Huang J (2011) HL005 - a new selective PPARγ agonist specifically inhibits the proliferation of MCF-7. J Steroid Biochem Mol Biol 124:112–120. https://doi.org/10.1016/j.jsbmb.2011.01.019
Malik KU, Jennings BL, Yaghini FA, Sahin-Firtat S, Song CY, Estes AM, Fang XR (2012) Contribution of cytochrome P450 1B1 to hypertension and associated pathophysiology: a novel target for antihypertensive agents. Prostaglandins Other Lipid Mediat 98:69–74. https://doi.org/10.1016/j.prostaglandins.2011.12.003
Mesnier A, Champion S, Louis L, Sauzet C, Mus J, Portugal H, Benbrahim K, Abraldes J, Alessi MC, Amiot-Carin MJ, Pieretti F, Piscerelle P, Nalbone G, Villard PH (2015) The transcriptional effects of PCB118 and PCB153 on the liver, adipose tissue, muscle and colon of mice: highlighting of Glut4 and Lipin1 as main target genes for PCB induced metabolic disorders. PLoS One 10:1–0. https://doi.org/10.1371/journal.pone.0128847, e0128847
Nebert DW, Dalton TP (2006) The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 6:947–960. https://doi.org/10.1038/nrc1925
Nebert DW, Roe AL, Dieter MZ, Solis WA, Yang Y, Dalton TP (2000) Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem Pharmacol 59:65–85. https://doi.org/10.1016/S0006-2952(99)00010-X
Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14:1–18. https://doi.org/10.1077/1055-9869.12980.31
Nicholls DW, Ali A, Thornbery NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, Munday NA, Raju SM, Smulson ME, Yamin TT, Yu VL, Miller DK (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43. https://doi.org/10.1038/3763730
Perl K, Ushakov K, Pozniak Y, Yizhar-Barnea O, Blonker Y, Shivatzki S, Geiger T, Avraham KB, Shamir R (2017) Reduced changes in protein compared to mRNA levels across non-proliferating tissues. BMC Genomics 18:305. https://doi.org/10.1186/s12864-017-3683-9
Rampersad SN (2012) Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability biosays. Sensors 12:12347–12360. https://doi.org/10.3390/s120912347
Roth A, Looser R, Kaufmann M, Bältter SM, Rencurel F, Huang W, Moore DD, Meyer UA (2008) Regulatory cross-talk between drug metabolism and lipid homeostasis: constitutive androstane receptor and pregnane X receptor increase Insig-1 expression. Mol Pharmacol 73:1282–1289. https://doi.org/10.1124/mol.107.041012
Scatena R, Bottini P, Giardina B (2008) Mitochondria, PPARs, and cancer: is receptor-independent action of PPAR agonists a key? PPAR Res 2008:1–10. https://doi.org/10.1155/2008/256251
Séïde M, Marion M, Mateescu MA, Averill-Bates DA (2016) The fungicide thiabendazole causes apoptosis in rat hepatocytes. Toxicol in Vitro 32:232–239. https://doi.org/10.1016/j.tiv.2015.12.018
Shaban Z, El-Shazly S, Ishizuka M et al (2004) PPARgamma-dependent modulation of hepatic CYP1A by clofibric acid in rats. Arch Toxicol 78. https://doi.org/10.1007/s00204-004-0569-9
Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823. https://doi.org/10.1038/nrc1951
Song CY, Ghafoor K, Ghafoor HU, Khan NS, Thirunavukkarasu S, Jennings BL, Estes AM, Zaidi S, Bridges D, Tso P, Gonzalez FJ, Malik KU (2016) Cytochrome P450 1B1 contributes to the development of atherosclerosis and hypertension in apolipoprotein E-deficient mice. Hypertension 67:206–213. https://doi.org/10.1016/j.hypertension.2015.10.025
Spink DC, Spink BC, Cao JQ et al (1998) Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells. Carcinogenesis 19:291–298. https://doi.org/10.1093/carcin/19.2.291
Szychowski KA, Leja ML, Kaminskyy DV, Kryshchyshyn AP, Binduga UE, Pinyazhko OR, Lesyk RB, Tobiasz J, Gmiński J (2017a) Anticancer properties of 4-thiazolidinone derivatives depend on peroxisome proliferator-activated receptor gamma (PPARγ). Eur J Med Chem 141:162–168. https://doi.org/10.1016/j.ejmech.2017.09.071
Szychowski KA, Leja ML, Kaminskyy DV, Binduga UE, Pinyazhko OR, Lesyk RB, Gmiński J (2017b) Study of novel anticancer 4-thiazolidinone derivatives. Chem Biol Interact 262:46–56. https://doi.org/10.1016/j.cbi.2016.12.008
Szychowski KA, Kaminskyy DV, Leja ML, Krzyshchyn AP, Lesyk RB, Tobiasz J, Wnuk M, Pomianek T, Gmiński J (2019) Anticancer properties of 5Z-(4-fluorobenzylidene)-2-(4-hydroxyphenylamino)thiazol-4-one. Sci Rep 9:10609. https://doi.org/10.1038/s41598-019-47177-6
Tachibana K, Yamazaki D, Ishimoto K, Doi T (2008) The role of PPARs in cancer. PPAR Res 2008:1–15. https://doi.org/10.1155/2008/102737
Tian J, Feng Y, Hu F, Xie HQ, Jiang JX, Zhao B (2015) The aryl hydrocarbon receptor: a key bridging molecule of external and internal chemical signals. Environ Sci Technol 49:9518–9531. https://doi.org/10.1021/acs.est.5b00385
Tripathi AC, Gupta SJ, Fatima GN, et al (2014) 4-Thiazolidinones: the advances continue… Eur J Med Chem 72:52–77. https://doi.org/10.1016/j.ejmech.2013.11.017
Wang H, Faucette S, Sueyoshi T, Moore R, Ferguson S, Negishi M, LeChuyse EL (2003) A novel distal enhancer module regulated by pregnane X receptor/constitutive androstane receptor is essential for the maximal induction of CYP2B6 gene expression. J Biol Chem 278:14146–14152. https://doi.org/10.1074/jbc.M212482200
Wojtowicz AK, Szychowski KA, Kajta M (2014) PPAR-γ agonist GW1929 but not antagonist GW9662 reduces TBBPA-induced neurotoxicity in primary neocortical cells. Neurotox Res 25:311–322. https://doi.org/10.1007/s12640-013-9434-z
Wojtowicz AK, Szychowski KA, Wnuk A, Kajta M (2017) Dibutyl phthalate (DBP)-induced apoptosis and neurotoxicity are mediated via the aryl hydrocarbon receptor (AhR) but not by estrogen receptor alpha (ERα), estrogen receptor beta (ERβ), or peroxisome proliferator-activated receptor gamma (PPARγ) in mouse C. Neurotox Res 31:77–89. https://doi.org/10.1007/s12640-016-9665-x
Wright MB, Bortolini M, Tadayyon M, Bopst M (2014) Minireview: challenges and opportunities in development of PPAR agonists. Mol Endocrinol 28:1756–1768. https://doi.org/10.1210/me.2013-1427
Zamaratskaia G, Zlabek V (2009) EROD and MROD as markers of cytochrome P450 1A activities in hepatic microsomes from entire and castrated male pigs. Sensors 9:2134–2147. https://doi.org/10.3390/s90302134
Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141. https://doi.org/10.1016/j.pharmthera.2012.12.007
Zhou L, Zhong Y, Xue MZ, Kuang D, Cao XW, Zhao ZJ, Li HL, Xu YF, Wang R (2015) Design, synthesis and evaluation of PPAR gamma binding activity of 2-thioxo-4-thiazolidinone derivatives. Chin Chem Lett 26:63–68. https://doi.org/10.1016/j.cclet.2014.10.008

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.