The Order of the Unitary Subgroups of Group Algebras

Zsolt Adam Balogh

Department of Mathematical Sciences
United Arab Emirates University, Al Ain,
United Arab Emirates, P.O.Box: 15551

Abstract
Let FG be the group algebra of a finite p-group G over a finite field F of positive characteristic p. Let \otimes be an involution of the algebra FG which is a linear extension of an anti-automorphism of the group G to FG. If p is an odd prime, then the order of the \otimes-unitary subgroup of FG is established. For the case $p = 2$ we generalize a result obtained for finite abelian 2-groups. It is proved that the order of the \ast-unitary subgroup of FG of a non-abelian 2-group is always divisible by a number which depends only on the size of F, the order of G and the number of elements of order two in G. Moreover, we show that the order of the \ast-unitary subgroup of FG determines the order of the finite p-group G.

Keywords: group algebras; unit group of group algebras; unitary subgroups

1. Introduction and main results
Let FG be the group algebra of a finite p-group G over a finite field F of positive characteristic p. Let

$$V(FG) = \{ x = \sum_{g \in G} \alpha_g g \in FG \mid \chi(x) = \sum_{g \in G} \alpha_g = 1 \}$$

be the group of normalized units of FG, where $\chi(x)$ is the augmentation map (see [3, Chapters 2-3, p. 194-196]). In this case, the order of the group $V(FG)$ is equal to $|F|^{|G|-1}$, so the order of $V(FG)$ can be very large even for...
a small group G. Note that, studying the structure of the group $V(FG)$ is a rather difficult task (for more details see the survey [5]).

Let \boxdot be an involution of the algebra FG. We say that the involution \boxdot arises from the group G, if \boxdot is a linear extension of an anti-automorphism of G to FG. An example for such kind of involution is the canonical involution that is the linear extension of the anti-automorphism of G which sends each element of G to its inverse. This involution is usually denoted by \ast.

An element $u \in V(FG)$ is called \boxdot-unitary, if $u^{\boxdot} = u^{-1}$ with respect to the involution \boxdot of FG. The set $V_\boxdot(FG)$ of all \boxdot-unitary units forms a subgroup of $V(FG)$ which is called \boxdot-unitary subgroup. Interest in the structure of unitary subgroups arose in algebraic topology and unitary K-theory (see Novikov’s papers [17] and Bovdi’s paper [8]). Let L be a finite Galois extension of F with Galois group G, where F is a finite field of characteristic two. Serre [18] identified an interesting relation between the self-dual normal basis of L over F and the \ast-unitary subgroup of FG. This relationship also makes the study of the unitary subgroups timely.

The unitary subgroups have been proven to be very useful subgroups in several studies (see [2, 3, 6, 7, 10, 11, 13, 14, 15] and [16]). However, we know very little about their structure, as even finding their order is a challenging problem. The first results in this area were published in the 1980’s. For finite abelian p-groups G the order of $V_\ast(FG)$ was given in [6].

Proposition 1. ([9, Theorem 2]) Let G be a finite abelian 2-group. If F is a finite field of characteristic 2, then the order $|V_\ast(FG)|$ is divisible by $|F|^\frac{1}{2}(|G|+|G\{2\}|) - 1$, that is,

$$|V_\ast(FG)| = \Theta \cdot |F|^\frac{1}{2}(|G|+|G\{2\}|) - 1,$$

where $\Theta = |G^2\{2\}|$ and $|S|$ denotes the size of a finite set S.

It follows that the number Θ does not depend on the size of the field F. The following breakthrough result was proved for certain non-abelian 2-groups by Bovdi and Roza.

Proposition 2. ([12, Corollary 2]) If $|F| = 2^m \geq 2$, then:

$$|V_\ast(FG)| = \Theta \cdot |F|^\frac{1}{2}(|G|+|G\{2\}|) - 1,$$

where
(i) \(\Theta = 1 \) if \(G \) is a dihedral 2-group;

(ii) \(\Theta = 4 \) if \(G \) is a generalized quaternion 2-group.

In [1], the value of the number \(\Theta \) was given for all non-abelian groups of order \(2^4 \). Although, for these groups, the number \(\Theta \) is not equal to \(|G^2\{2\}|\) it does not depend on the field \(F \). Wang and Liu [19] evaluated \(\Theta \) in the case when \(G \) is a non-abelian 2-group given by a central extension of the form

\[
1 \rightarrow C_{2^m} \rightarrow G \rightarrow C_2 \times \cdots \times C_2 \rightarrow 1,
\]

in which \(m \geq 1 \) and \(|G'| = 2\). At present, the question of whether the quotient \(\Theta \) depends on the field \(F \) is still open.

Our main results are the following.

Theorem 1. Let \(G \) be a finite \(p \)-group, where \(p \) is an odd prime and let \(F \) be a finite field of characteristic \(p \). If \(\otimes \) is an involution of \(FG \) that arises from the group \(G \), then

\[
|V_{\otimes}(FG)| = |F|^\frac{1}{2}(|G|-|G_{\otimes}|),
\]

where \(G_{\otimes} = \{ g \mid g = g^{\otimes} \} \).

Let \(\xi(G) \) denote the center of the group \(G \) and \(\xi(G)\{2\} \) denote the set of elements of order two in \(\xi(G) \).

Theorem 2. Let \(G \) be a finite 2-group. If \(F \) is a finite field of characteristic two, then

\[
|V_*(FG)| = \Theta \cdot |F|^\frac{1}{2}(|G|+|G\{2\})-1
\]

for some integer \(\Theta \). Moreover, if the set \(T_c = \{ g \in G \mid g^2 = c \} \) is commutative for some \(c \in \xi(G)\{2\} \), then \(\Theta \) does not depend on the field \(F \).

By combining Theorem 1 and Theorem 2 we have the following.

Corollary 1. Let \(G \) be a finite \(p \)-group. If \(F \) is a finite field of characteristic \(p \), then the order of the \(*\)-unitary subgroup of \(FG \) determines the order of \(G \).
2. Proofs

Let G be a finite p-group, let F be a finite field of $\text{char}(F) = p > 2$ and let \otimes be an involution of FG which arises from G. An element $x \in FG$ is called skew-symmetric under the involution \otimes if $x^{\otimes} = -x$. Let FG_{\otimes} denote the set of all skew-symmetric elements of FG.

Proof of Theorem 1. Let $z \in FG$ such that $1 + z$ is invertible. Clearly, $1 - z$ and $1 + z$ commute, therefore $1 - z$ and $(1 + z)^{-1}$ also commute.

Let $Q = \{x \in FG \mid 1 + x \text{ is invertible in } FG\}$. Let us define the map $f : Q \to FG$ by

$$f(x) = (1 - x)(1 + x)^{-1}.$$

If $y \in FG_{\otimes}$, then $\chi(y) = 0$, so

$$\chi(1 + y) = \chi(1 - y) = \chi(1 + y^{\otimes}) = 1$$

and $1 + y, 1 - y, 1 + y^{\otimes}$ are normalized units. Hence

$$f(y)f(y^{\otimes}) = (1 - y)(1 + y)^{-1}(1 + y^{\otimes})^{-1}(1 - y^{\otimes})$$
$$= (1 - y)(1 + y)^{-1}(1 - y)^{-1}(1 + y)$$
$$= (1 + y)^{-1}(1 - y)(1 - y)^{-1}(1 + y)$$
$$= 1.$$

Consequently, $f(y) \in V_{\otimes}(FG)$ and $f : FG_{\otimes} \to V_{\otimes}(FG)$ is a surjection.

Let $x \in V_{\otimes}(FG)$. Evidently, $1 + x, 1 + x^{\otimes}$ and $1 + x^{-1}$ are invertible, because $\chi(1 + x) = \chi(1 + x^{\otimes}) = \chi(1 + x^{-1}) = 2$ is invertible in F. Therefore $V_{\otimes}(FG)$ is a subset of Q. Let y denote the element $f(x)$. Then

$$y^{\otimes} = f(x)^{\otimes} = (1 + x^{\otimes})^{-1}(1 - x^{\otimes}) = (1 + x^{-1})^{-1}(1 - x^{-1})$$
$$= (x^{-1}(x + 1))^{-1}x^{-1}(x - 1) = -(1 + x)^{-1}xx^{-1}(1 - x)$$
$$= -y.$$

Therefore $f : V_{\otimes}(FG) \to FG_{\otimes}$ is a surjection.

Similar computation shows that

$$f(f(x)) = (1 - (1 - x)(1 + x))^{-1}(1 + (1 - x)(1 + x))^{-1}$$
$$= ((1 + x) - (1 - x))(1 + x)^{-1}
(1 + (1 + x) + (1 - x))^{-1}$$
$$= ((1 + x) - (1 - x))(1 + x)^{-1}
((1 + x) + (1 - x))^{-1}$$
$$= ((1 + x) - (1 - x))(1 + x + (1 - x))^{-1}$$
$$= x$$

4
for every $x \in V_\circ(G)$, so f is a bijection between FG_\circ and $V_\circ(G)$.

Since FG_\circ is a linear space over F with basis $\{g - g^\circ \mid g \in G \setminus G_\circ\}$,

$$|V_\circ(G)| = |FG_\circ| = |F| \frac{|F[G]|}{|G_\circ|}. \quad \square$$

Let H be a normal subgroup of G and let $I(H) := \langle 1 + h \mid h \in H \rangle_{FG}$ be an ideal of FG generated by the set $\{1 + h \mid h \in H\}$. Clearly,

$$FG/I(H) \cong FG/\ker(\Psi) \cong F[G/H],$$

where $\Psi : FG \to FG/I(H)$ is the natural homomorphism.

Let us denote by $V_\ast(FG)\ast$ the *-unitary subgroup of the factor algebra $FG/I(H)$, where $G\ast = G/H$. It is easy to check that the set

$$N_\Psi^\ast = \{x \in V(FG) \mid \Psi(x) \in V_\ast(FG)\ast\}$$

forms a subgroup in $V(FG)$. Let $I(H)^+ = \{1 + x \mid x \in I(H)\}$. The subgroup $I(H)^+$ is normal in $V(FG)$ and $S_H = \{xx^\ast \mid x \in N_\Psi^\ast\}$ is a subset of $I(H)^+$, because $xx^\ast \in 1 + \ker(\Psi) = I(H)^+$ for all $x \in N_\Psi^\ast$.

First, we need the following.

Lemma 1. Let H be a normal subgroup of a finite 2-group G. Set $G\ast = G/H$. If $|F| = 2^m \geq 2$, then

$$|V_\ast(FG)| = |F|^{\frac{|G\ast|}{|H|}} \cdot \frac{|V_\ast(FG)\ast|}{|S_H|}. \quad (1)$$

Proof. Let $\Phi : V(FG) \to V(FG)$ be a map such that $\Phi(x) = xx^\ast$ for every $x \in V(FG)$. The sets $\Phi(x)$ and $\Phi(y)$ coincide if and only if $y \in x \cdot V_\ast(FG)$.

Indeed, if $y \in x \cdot V_\ast(FG)$, then $y = xv$ for some $v \in V_\ast(FG)$. Therefore

$$\Phi(y) = yy^\ast = xv(xv)^\ast = xvv^\ast x^\ast = xx^\ast = \Phi(x).$$

Assume that $\Phi(x) = \Phi(y)$ for some $x, y \in V(FG)$. Then $xx^\ast = yy^\ast$, or equivalently, $y^{-1}x = y^*(x^*)^{-1}$. Therefore

$$(x^{-1}y)^{-1} = y^{-1}x = y^*(x^*)^{-1} = (x^{-1}y)^\ast$$

which confirms that $x^{-1}y \in V_\ast(FG)$.

5
Since \([N^*_q : V_*(FG)] = |S_H| \),

\[
|V_*(FG)| = \frac{|N^*_q|}{|S_H|} = |I(H)^+| \cdot \frac{|V_*(FG)|}{|S_H|}.
\]

We should note that \(V_*(FG) \) is usually not a normal subgroup of \(N^*_q \).

The ideal \(I(H) \) can be considered as a vector space over \(F \) with the following basis \(\{ u(1 + h) \mid u \in T(G/H), \ h \in H \} \), where \(T(G/H) \) is a complete set of left coset representatives of \(H \) in \(G \). Consequently,

\[
|I(H)^+| = |I(H)| = |F|^{\frac{|G|}{|H|}}.
\]

\[\Box \]

Proof of Theorem 2. Let \(G \) be a 2-group of order \(2^n \) and let \(H \) be a subgroup of \(G \) generated by a central element \(c \) of order two. Evidently, the set \(S_H = \{ xx^* \mid x \in N^*_q \} \) is a subset of \(I(H)^+ \cap V_*(FG) \) and every \(y \in S_H \) is a symmetric element. Moreover, the support of \(y \) does not contain elements of order two by [1, Lemma 2.5]. Thus, every \(y \in S_H \) can be written as

\[
y = 1 + \sum_{g \in G \setminus (G \{2\} \cup T_c)} \alpha_g (g + g^{-1}) \hat{H} + \sum_{g \in T_c} \beta_g g \hat{H}, \quad (\alpha_g, \beta_g \in F)
\]

where \(T_c = \{ g \in G \mid g^2 = c \} \) and \(\hat{H} = 1 + c \). This yields that

\[
|S_H| \leq |F|^{\frac{1}{4}|(G|-(G \{2\})|)+\frac{1}{4}|T_c|} = |F|^{\frac{1}{4}|(G|-(G \{2\})|)+\frac{1}{4}|T_c|}. \tag{2}
\]

Let us prove that if \(T_c \) is a commutative set, then

\[
|F|^{\frac{1}{4}|(G|-(G \{2\})|)+\frac{1}{4}|T_c|} \cdot 2^{-\frac{1}{2}|T_c|} \leq |S_H|. \tag{3}
\]

Let \(N_1 \) be a group generated by the elements \(1 + \alpha_g (g + g^{-1}) \hat{H} \), in which \(g^2 \not\in H \) and \(\alpha_g \in F \). Evidently, \(N_1 \) is an elementary abelian subgroup of \(I(H)^+ \). Since \(g^2 \not\in H \) (equivalently \(g \in G \setminus (G \{2\} \cup T_c) \)),

\[
1 + \alpha_g (g + g^{-1}) \hat{H} = 1 + \alpha_g g^{-1}(1 + g^2) \hat{H} \neq 1
\]

and

\[
1 + \alpha_g (g + g^{-1}) \hat{H} = (1 + \alpha_g \hat{H})(1 + \alpha_g g \hat{H}) \in S_H.
\]

If \(z \in N_1 \), then

\[
z = \prod_{g^2 \not\in H} (1 + \alpha_g (g + g^{-1}) \hat{H}) = \prod_{g^2 \not\in H} (1 + \alpha_g \hat{H})(1 + \alpha_g g \hat{H}),
\]

and

\[
\prod_{g^2 \not\in H} \alpha_g \hat{H} = \prod_{g^2 \not\in H} \alpha_g g \hat{H}
\]

is a subset of \(P \). Thus, \(P \) is a normal subgroup of \(N^*_q \).

Since \(|N^*_q : P| = |S_H| \),

\[
|P| = \frac{|N^*_q|}{|S_H|} = |I(H)^+| \cdot \frac{|N^*_q|}{|S_H|}.
\]

Therefore, \(P \) is a normal subgroup of \(N^*_q \) and \(P \subset S_H \) is a normal subgroup of \(N^*_q \). Consequently,

\[
|P| = |N^*_q : S_H| = |I(H)^+| \cdot \frac{|N^*_q|}{|S_H|}.
\]
so \((1 + \alpha_g \hat{H}) \in I(H)^+\) and

\[
z = \left(\prod_{g^2 \in H} (1 + \alpha_g \hat{H}) \right) \cdot \left(\prod_{g^2 \in H} (1 + \alpha_g \hat{H}) \right)^* \in S_H.
\]

Thus \(N_1\) is a subgroup in the set \(S_H\) and \(|N_1| = |F|^{\frac{1}{2}(|G|+|G(2)|+|T_c|)}\).

The map \(\tau : F \to F\) defined by \(\tau(\alpha) = \alpha + \alpha^2\) \((\alpha \in F)\) is a homomorphism on the additive group of the field \(F\) with kernel \(\ker(\tau) = \{0, 1\}\) (see [1, Lemma 10]). Therefore \(|\text{im}(\tau)| = \frac{|F|^2}{2}\).

Suppose that \(T_c\) is a commutative set. Let \(N_2\) be a group generated by the elements \(1 + \alpha_g \hat{H}\), in which \(g \in T_c\) and \(\alpha_g \in F\). Since

\[
(1 + \omega g + \omega g^2)(1 + \omega g + \omega g^2)^* = 1 + (\omega + \omega^2)g \hat{H}
\]

we have \(1 + \alpha_g \hat{H} \in S_H\) for every \(\alpha_g \in \text{im}(\tau)\). The group \(N_2\), being \(T_c\) commutative, is a subgroup in \(S_H\) and

\[
|N_2| = |\text{im}(\tau)|^{\frac{1}{2}|T_c|} = |F|^{\frac{1}{2}|T_c|} \cdot 2^{-\frac{1}{2}|T_c|}.
\]

Let \(x \in N_1\) and \(y \in N_2\). There exist \(x_1 \in I(H)^+\) and \(y_1 \in N_2^\ast\) such that \(x_1x_1^* = x\) and \(y_1y_1^* = y\). Since \(I(H)^+\) is an elementary 2-group, the element \(y \in N_1\) commutes with \(x_1\) and

\[
yx = yx_1x_1^* = x_1yx_1^* = x_1y_1y_1^* = x_1y_1)(x_1y_1)^* \in S_H.
\]

Therefore \(N_1 \times N_2\) is a subgroup in \(S_H\) and

\[
|N_1 \times N_2| = |F|^{\frac{1}{2}(|G|+|G(2)|+|T_c|)} \cdot 2^{-\frac{1}{2}|T_c|}.
\]

Consequently,

\[
|F|^{\frac{1}{2}(|G|+|G(2)|+|T_c|)} \cdot 2^{-\frac{1}{2}|T_c|} \leq |S_H|.
\]

Now, we are ready to prove the theorem. If \(n = 3\), then the theorem is true by Propositions [1] and [2]. Suppose that \(n > 3\). In the factor group \(\overline{G} = G/H\) the element \(\overline{g}\) has order two if and only if either \(g \in G\{2\}\) or \(g \in T_c\). Therefore, \(|\overline{G}\{2\}| = \frac{|G(2)|+|T_c|}{2}\). According to the inductive hypothesis

\[
|V_+(\overline{G})| = 2^s \cdot |F|^{\frac{1}{2}(|G|+|G(2)|+|T_c|)} - 1 = 2^s \cdot |F|^{\frac{1}{2}(|G|+|G(2)|+|T_c|)} - 1
\]

The number of subgroups of \(S_H\) is

\[
|S_H| = |F|^{\frac{1}{2}(|G|+|G(2)|+|T_c|)} \cdot 2^{-\frac{1}{2}|T_c|}.
\]
for some $s \geq 0$. Using Lemma 1 and equation (2) we obtain that

$$|V_s(FG)| = |F|^{\frac{|G|}{2}} \cdot \frac{|V_s(FG)|}{|S_H|}$$

$$\geq |F|^{\frac{|G|}{2}} \cdot 2^{s \cdot \frac{1}{2} \cdot \frac{(|G|+|G(2)|)+|T_c|}{(|G|-|G(2)|)+|T_c|}}$$

$$= 2^s \cdot |F|^{\frac{1}{4}(|G|+|G(2)|)-1}.$$

Therefore

$$2^s \cdot |F|^{\frac{1}{4}(|G|+|G(2)|)-1} \leq |V_s(FG)|$$

(4)

and $|V_s(FG)|$ is divisible by $|F|^{\frac{1}{4}(|G|+|G(2)|)-1}$.

Similarly, using Lemma 1 and (3), we obtain that

$$|V_s(FG)| = |F|^{\frac{|G|}{2}} \cdot \frac{|V_s(FG)|}{|S_H|}$$

$$\leq |F|^{\frac{|G|}{2}} \cdot 2^{s \cdot \frac{1}{2} \cdot \frac{(|G|+|G(2)|)+|T_c|}{(|G|-|G(2)|)+|T_c|}}$$

$$= 2^{s+\frac{1}{2}|T_c|} \cdot |F|^{\frac{1}{4}(|G|+|G(2)|)-1}.$$

The size of the set T_c does not depend on the field F. Since 2^s does not depend on the field F by the inductive hypothesis, the proof is complete. □

We should remark that 2^s in the inequality (4) is usually not inherited via the factorization. For example, for the semidihedral group D_{16} of order 16 we have that

$$|V_s(FD_{16})| = 2 \cdot |F|^{\frac{1}{4}(|D_{16}|+|D_{16}(2)|)-1}$$

by [1, Lemma 3.4]. However, $D_8 \cong D_{16}/H$, where H is the center of D_{16} and D_8 is the dihedral group of order 8 and $|V_s(FD_8)| = |F|^{\frac{1}{4}(|D_8|+|D_8(2)|)-1}$ by Proposition 2.

Proof of Corollary 7. If $p = 2$, then Theorem 2 implies that

$$|F|^{\frac{|G|}{2}-1} \leq |F|^{\frac{1}{4}(|G|+|G(2)|)-1} \leq |V_s(FG)| \leq |F|^{\frac{|G|}{2}-1}.$$

If p is an odd prime, then $|V_s(FG)| = |F|^{\frac{1}{4}(|G|-1)}$ by Theorem 1. Hence, $|F|^{\frac{|G|}{2}-1} \leq |V_s(FG)| \leq |F|^{\frac{|G|}{2}-1}$, which confirms that the order of $V_s(FG)$ determines the order of G for every finite p-groups. □
References

[1] Z. Balogh. On unitary subgroups of group algebras. *Int. Electron. J. Algebra*, 29:187–198, 2021.

[2] Z. Balogh. Unitary units of the group algebra of modular groups. *J. Algebra Appl.*, 21(2):Paper No. 2250027, 7, 2022.

[3] Z. Balogh, L. Creedon, and J. Gildea. Involutions and unitary subgroups in group algebras. *Acta Sci. Math. (Szeged)*, 79(3-4):391–400, 2013.

[4] Z. Balogh and V. Laver. Unitary subgroups of commutative group algebras of characteristic 2. *Ukraïn. Mat. Zh.*, 72(6):751–757, 2020.

[5] A. Bovdi. The group of units of a group algebra of characteristic p. *Publ. Math. Debrecen*, 52(1-2):193–244, 1998.

[6] A. Bovdi and L. Erdei. Unitary units in modular group algebras of groups of order 16. *Technical Reports, Universitas Debrecen, Dept. of Math., L. Kossuth Univ.*, 4(157):1–16, 1996.

[7] A. Bovdi and L. Erdei. Unitary units in modular group algebras of 2-groups. *Comm. Algebra*, 28(2):625–630, 2000.

[8] A. A. Bovdi. Unitarity of the multiplicative group of an integral group ring. *Mat. Sb. (N.S.)*, 119(161)(3):387–400, 448, 1982.

[9] A. A. Bovdi and A. A. Sakach. Unitary subgroup of the multiplicative group of a modular group algebra of a finite abelian p-group. *Mat. Zametki*, 45:6:23–29, 1989.

[10] A. A. Bovdi and A. Szakács. A basis for the unitary subgroup of the group of units in a finite commutative group algebra. *Publ. Math. Debrecen*, 46(1-2):97–120, 1995.

[11] V. Bovdi and L. G. Kovács. Unitary units in modular group algebras. *Manuscripta Math.*, 84(1):57–72, 1994.

[12] V. Bovdi and A. L. Rosa. On the order of the unitary subgroup of a modular group algebra. *Comm. Algebra*, 28(4):1897–1905, 2000.
[13] V. Bovdi and M. Salim. On the unit group of a commutative group ring. *Acta Sci. Math. (Szeged)*, 80(3-4):433–445, 2014.

[14] V. A. Bovdi and A. N. Grishkov. Unitary and symmetric units of a commutative group algebra. *Proc. Edinb. Math. Soc. (2)*, 62(3):641–654, 2019.

[15] L. Creedon and J. Gildea. Unitary units of the group algebra $\mathbb{F}_2^kQ_8$. *Internat. J. Algebra Comput.*, 19(2):283–286, 2009.

[16] L. Creedon and J. Gildea. The structure of the unit group of the group algebra $\mathbb{F}_2^kD_8$. *Canad. Math. Bull.*, 54(2):237–243, 2011.

[17] S. P. Novikov. Algebraic construction and properties of Hermitian analogs of K-theory over rings with involution from the viewpoint of Hamiltonian formalism. Applications to differential topology and the theory of characteristic classes. I, II. *Izv. Akad. Nauk SSSR Ser. Mat.*, 34:253–288; ibid. 34 (1970), 475–500, 1970.

[18] J.-P. Serre. Bases normales autoduales et groupes unitaires en caractéristique 2. *Transform. Groups*, 19(2):643–698, 2014.

[19] Y. Wang and H. Liu. The unitary subgroups of group algebras of a class of finite p-groups. *Journal of Algebra and Its Applications*, 2021.