A typographical error occurred in the implementation of the Coulomb energy-loss term (Eq. (4) of Rephaeli & Persic 2015), which was used to calculate the steady-state spectra of secondary electrons (CRe) in the original paper. This caused an underestimate of the Coulomb loss rate and resulted in the secondary CRe spectrum to be overestimated and steeper. The revised spectral parameters are specified in Table 1, which replaces Table 3 of the original paper. At low energies the revised indices, q_1, are essentially unchanged but the breaks, γ_{b1}, are ~ 2–3 times higher, so the effective slopes are flatter.

The error is largely inconsequential to the non-thermal (NT) spectral energy distribution (SED) models of the Magellanic Cloud galaxies presented in the original paper. The reason is that the frequencies of the modeled radio data are, for both galaxies, well above the frequency range of the synchrotron radiation emitted by the Coulomb-affected portions of the respective secondary-CRe spectra. Furthermore, secondary synchrotron is subdominant in both SED models. Correspondingly, the updated SED models in Figs. 1 (radio) and 2 (broadband) hardly differ from their counterparts in the original paper (see Figs. 3 (right) and 5 (right) and Figs. 4 and 6 (top) in the original paper, respectively). For simplicity, in this Erratum we plot revised models only for the reference T+17 dataset, which uses the G1 γ-ray data of Tang et al. (2017). Similar considerations, however, hold for the auxiliary A+16 dataset, which uses the E0 γ-ray data of Ackermann et al. (2016).

References
Ackermann, M., Albert, A., Atwood, W. B., et al. 2016, A&A, 586, A71 (A+16)
Rephaeli, Y., & Persic, M. 2015, ApJ, 805, 111
Tang, Q. W., Peng, F. K., Liu, R. Y., Tam, P. H. T., & Wang, X. Y. 2017, ApJ, 843, 42 (T+17)
Table 1. SED model parameters.

	N_e	q_e	γ_{max}^{-1}	u_p	q_p	E_p^{max}	N_{e0}	q_1	q_2	γ_{b1}	γ_{b2}	η	$F(\text{H}\alpha)$	T_e
SMC	3.70×10^{-8}	2.23	1.0	0.45	2.40	30	0.20	0.11	2.60	3.50	0.95	2.65	1.6×10^{-8}	1.10
LMC$^{(+)}$ [1]	3.50×10^{-7}	2.32	2.4	1.00	2.38	80	0.35	0.07	2.65	3.70	2.50	2.50	2.0×10^{-7}	1.30
LMC$^{(+)}$ [2]	3.60×10^{-7}	2.32	2.6	1.55	2.60	25	0.90	0.08	2.77	2.75	0.85	3.20	2.0×10^{-7}	1.35

Notes. $^{(*)}$ Fermi/LAT γ-ray data from T+17 [1] and A+16 [2].

Fig. 1. Radio spectra of the Small (left) and Large (right) Magellanic Cloud. Data points are shown as dots, and model predictions as curves. For each galaxy the two-component model (solid curve) includes synchrotron radiation (dot-short-dashed curve) and thermal free-free emission (dot-long-dashed curve); primary and secondary synchrotron are also shown (dashed and dotted curves, respectively).

Fig. 2. Broadband SEDs of the NT disk-diffuse emission of the Small (left) and Large (right) Magellanic Cloud. Data points are shown as dots, and model predictions as curves. Emission components are plotted by the following line types: synchrotron, dot-long-dashed; thermal free-free, dot-short-dashed; total radio, solid; Comptonized CMB, long-dashed; Comptonized starlight (EBL+FGL), short-dashed; NT bremsstrahlung, dotted; and pionic, solid. For each type of NT leptonic yield, secondary, primary, and total emissions are denoted as curves with a progressively higher flux. For the Large Magellanic Cloud, in the X-ray and γ-ray range, a solid line on top of the emissions resulting from the various radiative processes indicates the cumulative emission.