Research article

In vitro antimicrobial activity of natural toxins and animal venoms tested against *Burkholderia pseudomallei*

R Perumal Samy¹, A Pachiappan¹, P Gopalakrishnakone*¹, Maung M Thwin¹, Yap E Hian², Vincent TK Chow², Ho Bow² and Joseph T Weng²

Address: ¹Venom and Toxin Research Programme, Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore - 117597 and ²Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore - 117597

Email: R Perumal Samy - antbps@nus.edu.sg; A Pachiappan - antap@nus.edu.sg; P Gopalakrishnakone* - antgopal@nus.edu.sg; Maung M Thwin - antmmt@nus.edu.sg; Yap E Hian - mcyeh@nus.edu.sg; Vincent TK Chow - mchb@nus.edu.sg; Ho Bow - mctch@nus.edu.sg; Joseph T Weng - mctw@nus.edu.sg

* Corresponding author

Abstract

Background: *Burkholderia pseudomallei* are the causative agent of melioidosis. Increasing resistance of the disease to antibiotics is a severe problem in treatment regime and has led to intensification of the search for new drugs. Antimicrobial peptides are the most ubiquitous in nature as part of the innate immune system and host defense mechanism.

Methods: Here, we investigated a group of venoms (snakes, scorpions and honey bee venoms) for antimicrobial properties against two strains of Gram-negative bacteria *Burkholderia pseudomallei* by using disc-diffusion assay for in vitro susceptibility testing. The antibacterial activities of the venoms were compared with that of the isolated L-amino acid oxidase (LAAO) and phospholipase A₂ (PLA₂s) enzymes. MICs were determined using broth dilution method. Bacterial growth was assessed by measurement of optical density at the lowest dilutions (MIC 0.25 mg/ml). The cell viability was measured using tetrazolium salts (XTT) based cytotoxic assay.

Results: The studied venoms showed high antimicrobial activity. The venoms of *C. adamanteus*, *Daboia russelli russelli*, *A. halys*, *P. australis*, *B. candidus* and *P. guttata* were equally as effective as Chloramphenicol and Ceftazidime (30 μg/disc). Among those tested, phospholipase A₂ enzymes (crotoxin B and daboatoxin) showed the most potent antibacterial activity against Gram-negative (TES) bacteria. Naturally occurring venom peptides and phospholipase A₂ proved to possess highly potent antimicrobial activity against *Burkholderia pseudomallei*. The XTT-assay results showed that the cell survival decreased with increasing concentrations (0.05–10 mg/mL) of *Crotalus adamanteus* venom, with no effect on the cell viability evident at 0.5 mg/mL.

Conclusion: This antibacterial profile of snake venoms reported herein will be useful in the search for potential antibacterial agents against drug resistant microorganisms like *B. pseudomallei*.
Background

Gram-negative *Burkholderia pseudomallei*, the causative agent of melioidosis, are found widely in soil and surface water throughout the tropics. High incidence of melioidosis has been found particularly in Southeast Asia and Northern Australia [1,2]. A number of cases have been reported in Malaysia [3], Thailand [4], Northern Australia [5], South China [6], Taiwan [7], South India, Africa and America. The majority of adult patients develop acute pulmonary or septicemia with high mortality rates [8], or subacute melioidosis, characterized by multiple-abscess formation. In cases of septicemic melioidosis, which is associated with a vigorous inflammatory cytokine response [9], septic shock continues to be a major cause of morbidity and mortality in patients. Tumor necrosis factor (TNF) is involved in the acquisition of melioidosis, and is also related to disease severity [10].

Antibiotic resistance has been of great concern during the last decades due to the extensive clinical use of classical antibiotics [11]. Currently available antimicrobials fail to lower the mortality rate of melioidosis [12,13]. *B. pseudomallei* demonstrate high levels of resistance to the action of cationic antimicrobial peptides such as polylsine, protamine sulfate, human neutrophil peptides (HNP-1), and polymyxins [14,15]. Therefore, it is of considerable interest to develop antimicrobials with a new mechanism(s) of action which can potentially evade the emergence of drug resistance. In the search for such new agents, we are looking for effective bactericidal peptides from multi-cellular animals that have potential activity against *B. pseudomallei*. The antimicrobial peptides are ubiquitous in nature as part of the innate immune system and host defence mechanisms. They have been increasingly recognized as a critical first line of defence against many pathogens isolated from various sources [16].

Proteinacious components such as neurotoxin, cytotoxin, myotoxin, protease and nuclease are found in varying quantities in snake venoms depending on the species. It has been reported that the basic myotoxic PLA2 enzymes, (myotoxin II) of *Bothrops asper* [17] and BnPtx I of *Bothrops neuwiedi pauloensis* [18], possess bactericidal activity against *E. coli* and *S. aureus*. The crude venom and enzymes (LAAO1 and LAAO2) from *Pseudechis australis* are also known to have antibacterial effects against gram (+) and gram (-) bacteria [19]. Besides the strong haemolytic activity shown against sheep erythrocytes, the magainin-type polycationic antimicrobial peptides (pandinin 1 & 2) from the venom of African scorpion *Pandinus imperator* demonstrate high antimicrobial activity against a range of gram (+) and gram (-) bacteria [20]. Moreover, anti-bacterial peptides called the cecropins and defensins have been identified in the hemolymph of scorpions [21]. They are active against bacteria through lysis of their cells thus causing death of the microorganisms. Bactericidal peptides (lycotoxins) have also been identified in the venom of the spider *Lycosa singoriensis* [22], while another family of peptides (cupiennius) with bactericial activity has been isolated from the venom of a different species of *Cupiennius salei* [23]. Melittin is an important venom component of *Apis mellifera* (common honey bee) which is more active against gram (+) and gram (-) bacteria [24,25]. The highly cationic and salt insensitive cathelicids of mammalian origin are also reported to have a broad-spectrum of antimicrobial activities [26]. The peptides differ widely in sequence and structure, yet kill bacteria by thinning and disrupting the bacterial membrane [27], and as a result these peptides are important as unique source leads for the development of new therapeutic agents [28]. The above examples thus emphasize the fact that animal toxins or peptides can be rich sources of antimicrobials which may be useful as therapeutics in human.

Although a large number of bioactive components have previously been isolated and characterized from snake venoms, no systematic search for antibacterial components from animal venoms has yet been reported. In our previous studies, majority of the venoms exerted a broad spectrum of antimicrobial activity against various gram-negative and gram-positive bacteria (Journal of Applied Microbiology – under revision). We describe here the antimicrobial properties of 34 different venoms of scorpions, snakes and honey bee, along with those of nine purified venom phospholipase A2 enzymes and two L-aminoacid oxidase, evaluated against multi-drug resistant pathogen obtained from the patient with melioidosis (*B. pseudomallei* strains KHW and TES).

Methods

Venoms

Lyophilized venoms – *Acanthophis australis*, *Acanthophis antarcticus*, *Acanthophis praelongus*, *Acanthophis Pyrrhus*, *Androctonus australis*, *Bungarus candidus*, *Hyrophis cyanocinctus*, *Naja naja naja*, *Naja atheris*, *Naja kaouthia*, *Pseudechis australis*, *Pseudechis porphyriacus*, *Pseudechis colletti*, *Pseudonaja nuchalis*, *Pseudonaja textilis*, *Cupiennius salei*, *Daboia russelli russelli*, *Daboia russelli siamensis*, *Thamnophis wagneri*, *Apis mellifera*, *Bothotus hottentota*, *Buinthus rottenota rottenota*, *Butius martensis* and *Naja naja naja* venoms were extracted from long-term captive specimens. Venoms from captive specimens were collected manually by milking. Each sample of freeze-dried venom was stored at 4°C. The solid venoms were obtained from commercial sources (Venom supplies Pte Ltd, Tanunda, South Australia). L-amino acid oxidase
purified from the venom of B. arotx and C. adamanteus were obtained commercially (Sigma Aldrich, St Louis, MO, USA).

Antibacterial effects of venoms
Each sample of freeze-dried venom was dissolved in 1 mL of 50 mM Tris- HCl buffer (pH 7.4), vortexed (Labnet VX100), and filtered using 0.22 μm syringe filter (Millipore, NY, USA) before storage at 4°C. All the venoms were tested for their antibacterial activity against gram-negative bacteria *Burkholderia pseudomallei* (KHW) and *Burkholderia pseudomallei* (TES) by disc-diffusion susceptibility tests were performed following standards recommended by the NCCLS [29] with some modifications. Bacterial inoculums (200 μL of a 0.1 A600 culture containing 3.2 × 10⁸ colony forming units cfu/mL) were spread by using a sterile cotton swab onto 20 mL of sterile TS agar plates (90 mm diameter). The surface of the medium was allowed to dry for about 3 min. Sterile paper discs (7 mm diameter) were then placed onto the TS agar surface and 20 μL (0.1 mg/mL) of venom sample was added per disc in 5 replicates. Disc containing 20 μL of Tris-HCl buffer served as a normal control and discs containing antibiotics were used as drug controls. The plates were incubated at 37°C for 24 h, following which the diameter of inhibition zones were measured and calculated, and the resultant activities compared with purified PLA₂ enzymes.

Purification of phospholipase A₂ (PLA₂) enzymes
Phospholipase A₂ enzymes were purified from their corresponding crude venoms as described [30] with minor modification. In brief, the venom (0.4 g/4 ml) was fractionated on a Superdex-G75 column with Tris-HCl buffer (50 mM, pH 7.4) as an eluant, followed by further purification on a RP-HPLC Jupiter C18 column (AKTA explorer Workstation, Amersham Pharmacia Biotech, Sweden), eluted with a linear gradient of 80% acetonitrile in 0.1% trifluoroacetic acid. Elution of proteins was monitored at 280 nm and 215 nm. The homogeneity of purified PLA₂ was determined by using MALDI-TOF on a Voyager DE-STR Biospectrometry workstation (Applied Biosystem CA, USA).

Antibacterial effects of purified PLA₂
All the venom enzymes used in the experiment have been purified by successive chromatographic steps with the final purity of at least 95% as assessed by Reversed-phase HPLC. The activities of the following phospholipase A₂ enzymes purified from the venoms of different snake species (in parenthesis) – crotoxin A (*Crotalus durissus terrificus*), crotoxin B (*Crotalus durissus terrificus*), ammodytoxin A (*Vipera ammodytes ammodytes*), mojavetoxin (*Crotalus scutulatus scutulatus*), β-bungarotoxin (*Bungarus multicinctus*), taipoxin (*Oxyuranus scutellatus scutellatus*), mulgatoxin (*Pseudechis australis*), Daboitoxin (*Daboia russelli*), honey bee (*Apis mellifera*), venom phospholipase A₂ – and two L-amino acid oxidase – LAAO (*B. arotx*), LAAO (*C. adamanteus*) were evaluated. 0.5 μmoles of each of the enzyme dissolved in 500 μL of 50 mM Tris-HCl (pH7.4) buffer was examined. In vitro antimicrobial activity was determined by the previously described disc-diffusion method [29] with some modifications.

MIC determinations
In preliminary experiments, the disc-diffusion assay for determining antibacterial effects of crude venoms was compared to the activity of isolated phospholipase A₂ (PLA₂) enzymes using broth-microdilution method. Differences in data between these two assays were observed. Thus, we used the broth-microdilution technique to test the activities of the phospholipase A₂ against pathogen from patients by comparing their activities to the activity of the antibiotics. Bacteria from frozen suspensions were sub-cultured onto Tryptic soya (TS) agar plates and passaged twice prior to susceptibility testing. The bacteria were grown in Tryptic soy broth (TSB) for 5 – 7 h (exponential phase) before adjusting their concentration to a 0.5 McFarland turbidity standard. The adjusted bacterial cultures were diluted to approximately (A600 of 0.8) 3.2 × 10⁸ colony forming units (cfu/mL). The enzymes (PLA₂) to be examined were dissolved in 1 M Tris-HCl buffer (pH 7.4) for determination of the activities (MIC). The bacteria were washed and incubated with the enzymes in appropriate buffer. MICs were determined by the broth microdilution method recommended by the NCCLS [31,32], for which serial dilutions of each enzyme solutions were prepared (final concentration 0.5, 0.25, 0.125, 0.0625 and 0.03125 mg/mL) in microtiter trays with appropriate medium (TSB). Each dilution series included control wells containing bacteria without enzymes. A total of 200 μL of the adjusted inoculum of 10⁵ cfu/mL was added to each well (96-well plates). The culture trays were incubated at 37°C for 24 h with shaking at 230 rpm. The inhibition of bacterial growth was determined by measuring the absorbance at 560 nm (Molecular Devices E precision microplate reader). The MIC was taken as the lowest concentration of phospholipase A₂ enzyme that inhibited visible growth of the organism. The results given are mean values of three independent determinations.

Biochemical characterization

Phospholipase A₂ enzyme activity
Phospholipase A₂ (PLA₂) catalyzes the hydrolysis of phospholipids at the sn-2 position yielding a free fatty acid and a lysophospholipid. The Cayman Chemical secretory PLA₂ (sPLA₂) assay kit was used for the measurement of enzyme activity. This assay uses the 1, 2-dithio analog of diheptanoyl phosphatidylcholine which serves as a substrate for most PLA₂s [33]. sPLA₂ specific activity is expressed as μmole/min/mg protein.
Protein assay
The protein concentration of the crude venom solutions was determined using the Bio-Rad protein assay reagent [34] and bovine serum albumin as a standard.

Cell Proliferation assay (XTT-based cytotoxicity assay)
The human macrophage cell line (U-937) was purchased from ATCC (Virginia, USA) and cell Proliferation Kit II was from Roche Applied Sciences (Singapore). Sterile Roswell Park Memorial Institute (RPMI) medium, Fetal Bovine Serum (FBS), 1 M Tris-HCl buffer (pH 7.4), and 10 mM HEPES were purchased from National University Medical Institute (NUMI), Singapore. All chemicals were of analytical and cell culture grade. Human macrophage (U-937) cell line was cultured in 72 cm² flasks at a density of 1×10^5 cells/mL in RPMI culture medium supplemented with 10% fetal bovine serum (FBS), and 1 ml of HEPES. The cell viability was measured using tetrazolium salts (XTT) as described [35]. Briefly, the cells were allowed to adhere to the bottom of the flask for overnight at 37°C in a humidified atmosphere of 5% CO₂ and 95% air. The culture medium was changed every three days. To analyze the initial events of venom-mediated cell viability, five different venoms were applied to cultured macrophage cell lines with each venom tested at different concentrations (0.05 – 10 mg/mL) and varied time intervals (12, 24, and 48 h). Cell proliferation was spectrophotometrically quantified using an ELISA plate reader at 490 nm. All assays were prepared in triplicates and repeated thrice. The cytotoxicity of purified PLA₂ enzymes was also tested at different concentrations (0.05–10 μg/mL) using XTT assay.

Statistical analysis
The results (mean ± S.D, n = 5) were analysed by one way-ANOVA with repeated measures to analyze factors influencing the zone size of growth inhibition, and for comparison with standard drugs.

Results and discussion
In the present study, both the strains of *B. pseudomallei* (KHW & TES) proved to be highly or intermediately susceptible to various snake venoms at the tested concentrations (Table 1). The venom from crotalid (*C. adamanteus*) species showed the most potent antibacterial activity and exhibited larger zone of inhibition on *B. pseudomallei* (Fig. 1) than the venoms of a viperid, *D. russelli russelli* and an Australian elapid, *Pseudechis australis*. Crotalid venoms have previously been reported to have broad activity against aerobic gram-positive and negative bacteria [36], but this is the first report showing the potent antibacterial property of *C. adamanteus* venom against the drug resistant *B. pseudomallei*. The antibacterial effects of crotalid, viperid and elapid venoms established in the present study may likely be due to the cyto-toxins (direct lytic factors) and phospholipase A₂ enzymes contained in those venoms [37]. Association between L-amino acid oxidase (LAAO1 and LAAO2) activity and antibacterial property of *Pseudechis australis* venoms has previously been suggested [19]. However, according to our results, the 5 different venoms of *C. adamanteus, Daboia russelli russelli, P. guttata, P. australis, P. guttata* and *A. halys* exhibited stronger antimicrobial activity against both strains of *B. pseudomallei* than that shown by the L-amino acid oxidase enzymes of *C. adamanteus* and *B. atrox* venoms, thus suggesting that LAAO activity alone may not be solely responsible for the antibacterial activity of these venoms.

In the present study, we have therefore tested a variety of phospholipase A₂ enzymes purified from different snake venoms against *Burkholderia pseudomallei*, and have found
Table 1: Antibacterial properties of animal venoms tested against *Burkholderia pseudomallei* at 0.1 mg/mL concentration.

Common name	Scientific name	Phospholipase A$_2$ enzymatic activity	Yield of protein (mg/mL)	Micro-organisms		
		Total activity (μmoles/min)	Specific activity (μmoles/min/mg protein)	*B. pseudomallei* (KHW)	*B. pseudomallei* (TES)	
Elapidae						
Death adder	Acanthophis augtra	3.74	74.5 ± 0.5	0.1	-	
Common death adder	Acanthophis antarcticus	190	487.5 ± 0.96	0.78	16.6 ± 0.43	14.3 ± 0.34
Northern death adder	Acanthophis praelongus	241.2	1416 ± 3.84	0.34	8.90 ± 0.23	8.47 ± 0.21
Desert death adder	Acanthophis pyrrhus	138	1150 ± 0.98	0.24	14.7 ± 0.23	16.5 ± 0.32
Hector	Androctonus australis	22.2	85.2 ± 0.27	0.52	-	8.13 ± 0.14
Malayan krait	Bungarus candidus	34.9	166.3 ± 0.56	0.42	-	-
Sea snake	Hydrophis cyanocinctus	3.3	40.5 ± 0.56	0.16	-	-
Indian cobra	Naja naja naja	293.4	1333 ± 1.7	0.44	12.2 ± 0.16	10.2 ± 0.09
Kretz's tiger snake	Notechis aterater	41.96	183.1 ± 0.59	0.46	-	-
Spitting cobra	Naja sumatrana	406.5	903.5 ± 0.6	0.90	-	-
Cobra	Naja kaouthia	228.4	1904 ± 3.8	0.24	8.17 ± 0.14	8.13 ± 0.14
King brown snake	Pseudechis occidentalis	434.5	3949 ± 0.98	0.22	27.7 ± 0.13	29.8 ± 0.105
Speckled brown snake	Pseudechis guttata	308.5	791 ± 2.0	0.78	25.4 ± 0.19	26.8 ± 0.109
Red-bellied black snake	Pseudechis porphyriacus	726.7	3303 ± 1.7	0.44	16.8 ± 0.15	14.2 ± 0.17
Collett's snake	Pseudechis colletti	15.7	111.8 ± 0.89	0.28	-	-
Western brown snake	Pseudechis annulatus	1995	5945 ± 26.6	0.66	8.17 ± 0.14	8.13 ± 0.14
Eastern brown snake	Pseudechis textilis	416.8	832.3 ± 0.6	0.34	26.2 ± 0.14	27.8 ± 0.12
Dugite	Pseudechis affinis	218.7	376.8 ± 0.9	1.16	-	-
Tiger keelback	Rhabdophis tigrinus	36.3	259.1 ± 0.42	0.28	-	-
The coastal taipan	Oxyuranus scutellatus	1275.7	6075 ± 0.98	0.63	-	-
Viperidae						
Pallas	Agkistrodon halys	86.5	157.4 ± 0.20	1.1	20.4 ± 0.14	26.4 ± 0.08
Puff adder	Bitis arietans	124.1	248.2 ± 0.27	0.54	18.2 ± 0.16	16.2 ± 0.17
West African gaboon viper	Bitis gabonica rhinoceros	126.5	452.4 ± 0.57	0.56	16.0 ± 0.19	14.5 ± 0.26
Common lancehead snake	Bothrops atrox	3.8	63.6 ± 0.06	1.2	24.4 ± 0.19	26.2 ± 0.19
South American rattlesnake	Crotalus durissus terrificus	34.2	200.2 ± 0.21	0.34	25.4 ± 0.20	23.4 ± 0.18
South American rattlesnake	Crotalus durissus horridus	236.4	619.4 ± 0.46	1.56	30.0 ± 0.23	28.3 ± 0.23
Saw-scaled viper	Echis carinatus	53.4	106.5 ± 0.49	1.4	8.0 ± 0.14	7.5 ± 0.15
Indian Russell's viper	Daboia russellii russellii	392.8	785.2 ± 0.40	1.36	29.9 ± 0.12	28.6 ± 0.16
Burmese Russell's viper	Daboia russelii siamensis	262.4	524.4 ± 0.44	1.24	16.2 ± 0.15	15.6 ± 0.18
Wagler's pit viper	Trimeresurus wagleri	4.6	38.2 ± 0.26	0.24	15.1 ± 0.14	16.3 ± 0.14
Apidae						
Honeybee venom	Apis mellifera	3.7	20.5 ± 0.1	0.36	7.22 ± 0.23	12.3 ± 0.21
Scorpionidae						
Black scorpion	Androctonus crassicauda	3.6	69.5 ± 0.3	0.104	-	-
Scorpio	Bathus diabolicus	4.4	10.4 ± 0.2	0.86	-	-
Scorpion	Bathus hottenota hottenota	5.1	38.8 ± 0.1	0.26	-	-
Chinese red scorpion	Bathus martensii Karsch.	4.6	90.4 ± 0.2	0.102	-	-
Cefazidime (CF)	30 μg/disc	-	-	-	28.9 ± 0.56	31.7 ± 0.78
Chloramphenicol (C)	30 μg/disc	-	-	-	28.5 ± 0.37	30.0 ± 0.12
Streptomycin (S)	10 μg/disc	-	-	-	27.3 ± 0.25	26.4 ± 0.29

Values of Phospholipase A$_2$ enzymatic activity (μmoles/min/mg protein) are presented as mean ± S.D. (n = 10) of ten replicates.

The values given as mean ± S.D. (n = 5) represent a venom inhibition zone in mm, including the 7 mm diameter of the disc, after 24 h incubation.

The bacterial inoculum per plate contained 3.2×10^8 colony forming units (cfu/mL) which were spread onto the TS agar surface with sterile cotton swap. Sterile paper discs (7 mm diameter) were placed onto the TS agar surface and 20 μL of venom solution (0.1 mg/mL) added. Micro-organisms: B.p (KHW)-*Burkholderia pseudomallei* (KHW) and B.p (TES) *Burkholderia pseudomallei* (TES), Control (0); No activity (-), Drug controls: Chloramphenicol (30 μg/disc); Cefazidime (30 μg/disc); Streptomycin (10 μg/disc).
that crotoxin B and daboioatxin display the strongest antibacterial activity against both the strains of *B. pseudomallei* (KHW & TES) (Table 2). Crotoxin B is a basic neurotoxic phospholipase A₂ (*Crotalus durissus terrificus*) containing three chain protein that enhances the lethal potency of crotoxin [38], while daboioatxin is a monomeric PLA₂ (*Daboia russelli siamensis*) with strong neurotoxic and myotoxic activities [30]. Moreover, mulgatoxin (myotoxic PLA₂ of *P. australis*) and bee (*Apis mellifera*) venom PLA₂ have also been found to exert significant antibacterial activity against both strains (KHW & TES) of *B. pseudomallei*.

The PLA₂ enzymes showing potent inhibitory activity were further studied for minimum inhibitory concentrations (MICs) (Fig. 2, 3). Among those examined, the two purified PLA₂ enzymes (crotoxin B and daboioatxin) showed stronger inhibitory activity at a lower dilution (MICs 0.25 mg/mL) against *B. pseudomallei* (TES) than melittin and mulgatoxin. The two isolates (TES and KHW) of *B. pseudomallei* showed various levels of sensitivity to the two PLA₂ toxins with MICs ranging between 0.5 and 0.03125 mg/mL. The susceptibility of crotoxin B (69%) and daboioatxin (63%) against TES was more or less equal to that of chloramphenicol and ceftazidime against TES (Table 3). The antibiotics chloramphenicol (70%) and ceftazidime (80%) were highly susceptible against *B. pseudomallei* TES & KHW, but MIC breaking points of antibiotics were recorded at the lowest dilution (MICs 0.125 mg/mL) than the PLA₂ toxins. Our results corroborate with the previous report on the conventional four-drug regimen which has been replaced by ceftazidime for acute treatment. However, the chloramphenicol has also been given for the first 8 weeks of oral treatment [39]. In the present study, the antibiotic activity was gradually declined at the dilution 0.03125 mg/mL against *B. pseudomallei* (KHW) and (TES). The rate of resistance of ceftazidime and chloramphenicol against KHW was 20% and 30%, respectively. In a randomised trial previously reported, 161 severe melioidosis patients were treated with ceftazidime (120 mg/kg) + chloramphenicol (100 mg/kg) + doxycycline (4 mg/kg) + TMP/SMX for less than 7 days. The mortality was 37% for ceftazidime and 74% for chloramphenicol [40]. However, in our study, melittin was slightly more active than mulgatoxin against *B. pseudomallei* (strain KHW) at MIC 0.25 mg/mL. It showed very weak MICs (Fig. 2, 3) when compared with chloramphenicol and ceftazidime. Other PLA₂s (ammodytoxin A, Mojave toxin, β-bungarotoxin and taipoxin) however, lacked any activity against both isolates of *B. pseudomallei* at all tested dilutions (0.5 – 0.03125 mg/mL). Based on previous studies using cationic antibacterial peptides, cathelicidin-derived peptides had modest MIC against *S. maltophilia* and *A. xylosoxidans* (1.0 to > 32 mg/mL), but none inhibited *Burkholderia cepacia* [41]. Moreover, another cationic peptide (hBD-3) that was proven highly or immediately effective (MBCs >100 μg/mL) against 23 tested strains did not show any effect against *Burkholderia cepacia* at 50 μg/mL [42]. When the MIC of peptide D2A21 was compared with that of the tracheal antimicrobial peptide (TAP), the former peptide displayed greater potency than TAP against *P. aeruginosa* at 0.125 – 4 mg/mL, *S. aureus* at 0.25 – 4 mg/mL, and *Burkholderia cepacia* at 32 to >64 mg/mL, respectively [43]. Relative to the MIC of these cationic antimicrobial peptides, crotoxin B appears to have a much lower dose (MIC 0.25 mg/mL) against *B. pseudomallei*. MIC value of PLA₂s are more or less equally comparable to that of ceftazidime (MICs 0.125 mg/mL), a drug of choice for melioidosis infections in humans. The rat model of lung infection (14 days) showed that the *B. cenocepacia* LPS inner core oli-

Table 2: *In vitro* antibacterial activity of purified phospholipase A₂ enzymes from snake venoms.

Phospholipase A₂ enzymes (PLA₂s)	Snake species (Scientific name)	Mol. wt.(kDa)	Conc. (mg/mL)	Micro-organisms
Crototoxin A (CA)	Crotalus durissus terrificus	23.5	0.5 mg/mL	B. pseudomallei (Strain KHW)
Crototoxin B (CB)	Crotalus durissus terrificus	23.5	0.5 mg/mL	B. pseudomallei (Strain TES)
Ammodytoxin A	Vipera ammodytes ammodytes	13.8	0.5 mg/mL	-
Mojave toxin	Crotalus scutulatus scutulatus	23.5	0.5 mg/mL	-
β-Bungarotoxin	Bungarus multicinctus	20.5	0.5 mg/mL	-
Taipoxin	Oxyuranus scutellatus scutellatus	45.6	0.5 mg/mL	-
Mulgatoxin	Pseudechis australis	13.2	0.5 mg/mL	20.5 ± 0.075
Daboioatxin (DbTx)	Daboia russelli siamensis	15.0	0.5 mg/mL	24.8 ± 0.103
Bee venom PLA₂	Apis mellifera	19.0	0.5 μg/mL	18.3 ± 0.089

*The values given represent a venom inhibition zone in mm, including the 7 mm diameter of the disc, after 24 h incubation. The bacterial inoculum per plate contained 3.2 × 10⁸ cfu/mL forming units which were spread onto the TS agar surface with sterile cotton swap. Sterile paper discs (7 mm diameter) were placed onto the TS agar surface and 20 μL of enzymes (0.5 mg/mL concentration) added. Control (0); No activity (-).
Figure 2
Phospholipase A$_2$ activity against pathogen from patients with KHW. Micro-dilution technique was used to test the MICs of PLA$_2$s as compared to that of the antibiotics. The values are the optical density read at 560 nm (means ± S.D.) from a single experiment performed in triplicates.
gosaccharide is needed for resistance to three structurally unrelated antimicrobial peptides for in vivo survival in a rat model of chronic lung infection [44].

When PLA2 activity was examined, the highest activity was found in the Australian elapid venoms (Oxyuranus scutellatus > Pseudonaja inframaggula) followed by Pseudechis australis, Pseudechis porphyriacus, Naja kaouthia, Naja naja naja, Acanthophis praelongus and Acanthophis pyrrhus respectively. In contrast, the remaining venoms of the Apiidae and Scorpionidae showed relatively less phospholipase A2 activity than the viperidae venoms (Table 1).

The survival bar resulting from the XTT assay shows that all five venoms (C. adamanteus, B. gabonica, P. australis, D. russelli russelli and A. halsy) do not have cytotoxic effects on the proliferation of cells up to 0.5 mg/mL concentration (Fig. 4a–e). However, the higher concentrations (1, 5 and 10 mg/mL) showed severe morphological changes of the cell lines such as membrane disruption and significant cell lyses when compared with control and the positive

Figure 3
Phospholipase A2 activity against pathogen from patients with TES. Micro-dilution technique was used to test the MICs of PLA2s as compared to that of the antibiotics. The values are the optical density read at 560 nm (means ± S.D.) from a single experiment performed in triplicates.
control (Fig. 5). In contrast, the purified PLA2s, crotoxin B and daboioxin, did not change the viability (Fig. 4f–g) of cells up to 0.05 – 10 μg/mL concentrations as compared to the control. The cell viability and morphology of macrophage cells were shown (Fig. 6) after exposure to crotoxin B in a dose- and time-dependent manner.

A comparison of the N-terminal sequences of crotoxin B with other snake venom PLA2s shows (Fig. 7) that most amino acid residues are conserved in Ca+2 binding and catalytic network regions. The C-terminal segment of crotoxin B, on the other hand, shows a modest difference in the amino acid residues as compared with the C-terminal sequences of other venom PLA2s. Moreover, comparison of the hydropathic profiles of different snake venom PLA2s reveals that the C-terminal segment of crotoxin B is relatively more hydrophobic than those of other PLA2s (Fig. 8). This cationic hydrophobic nature of crotoxin B phospholipase A2 enzyme may most likely be responsible for the strong antimicrobial action seen on B. pseudomallei.

Conclusion

The present study indicates that the purified PLA2 enzymes (crotoxin B, daboioxin) possess strong antibacterial activity against B. pseudomallei. The fact that viperidae (Crotalus adamanteus, Daboia russelli russelli) and elapidae (Pseudechis australis) venoms display more potency than other venoms may be due to the PLA2 enzymes present. However, this antibacterial profile of snake venoms reported herein will be useful in the search for potential antibacterial agents against drug resistant microorganisms like B. pseudomallei.

Abbreviations

LAAO – L-amino acid oxidase

PLA2s – Phospholipase A2 enzymes

MICs – Minimum Inhibitory Concentrations

XTT – Tetrazolium salts

KHW, TES – different isolates of Burkholderia pseudomallei

RPMI – Roswell Park Memorial Institute (RPMI) medium

FBS – Fetal Bovine Serum

Competing interests

The author(s) declare that they have no competing interests.

Authors’ contributions

RPS – Study design, performance of the entire parameters, data analysis and manuscript drafting.

AP – Cell proliferation study using XTT based cytotoxic assay.

PG – Supervision, laboratory support, critical analysis and manuscript edition.
Cell proliferation (U-937 Human macrophage cell line) was determined by XTT assay to evaluate the cytotoxic effect of different venoms (a – e) and PLA2s (f – j) exposed at different time intervals. (a) South American rattlesnake (*Crotalus adamanteus*), (b) Russells viper (*Daboia russelli russelli*), (c) King brown (*Pseudechis australis*), (d) Pallas (*Agkistrodon halys*), (e) Speckled brown (*Pseudechis guttata*), (f) Crotoxin B (*Crotalus durissus terrificus*), (g) Daboiatoxin (*Daboia russelli russelli*), (h) Melittin (*Apis mellifera*), (i) Mulgatoxin (*Pseudechis australis*), (j) Crotoxin A (*Crotalus durissus terrificus*). Macrophages were incubated with varying concentrations of venoms (0.05 – 10 mg/ml) and PLA2s (0.05 – 10 μg/ml).
Morphological changes of U-937 Human macrophage cell line after exposure to Crotalus adamanteus venom at different concentrations. (Ctrl) macrophage supplemented with medium without any treatment served as control; (PC), cells exposed with ceftazidime as a positive control. Macrophages were incubated with venom at different (0.05–10 mg/mL) concentrations (Other photos not shown).
Morphological changes of U-937 Human macrophage cell line after exposure to PLA2s at varying concentrations (0.05–10 μg/mL). (Ctrl), control macrophages supplemented with medium without any treatment; (PC), cells exposed with ceftazidime as a positive control.
Comparison of the amino acid sequences of Crotoxin basic chain 1, CB1 [Crotalus durissus terrificus] phospholipase A2 enzymes (Phosphatidylcholine 2-acylhydrolase) with other PLA2s of Mojave toxin basic chain, Mtx-b [Crotalus scutulatus scutulatus], Crotoxin basic chain 2, CB2 [Crotalus durissus terrificus], Agkistrotoxin, ATX [Agkistrodon halys], VRV-PL-VIIIa [Daboia russelli pulchella], BOTAS (Myotoxin I) Bothrops asper (Terciopelo), ATXA, ammodytoxin A precursor [Vipera ammodytes ammodytes]; RVV-VD [Daboia russelli russelli]; RV-4 precursor [Daboia russelli siamensis], BOTAS (Myotoxin II) Bothrops asper, BOTJR (BthTX-I) Bothrops jararacussu, ECHCA (Ecarpholin S) [Echis carinatus (Saw-scaled viper)], Crotoxin acid chain precursor (CA) [Crotalus durissus terrificus], β-bungarotoxin A6 chain precursor [Bungarus multicinctus (Many-banded krait)] and OXYSC taipoxin alpha chain [Oxyuranus scutellatus scutellatus] and completely conserved residues in all sequences are bolded and marked by asterisks. The gaps are inserted in the sequences in order to attain maximum homology.

Figure 7
Comparison of the amino acid sequences of Crotoxin basic chain 1, CB1 [Crotalus durissus terrificus] phospholipase A2 enzymes (Phosphatidylcholine 2-acylhydrolase) with other PLA2s of Mojave toxin basic chain, Mtx-b [Crotalus scutulatus scutulatus], Crotoxin basic chain 2, CB2 [Crotalus durissus terrificus], Agkistrotoxin, ATX [Agkistrodon halys], VRV-PL-VIIIa [Daboia russelli pulchella], BOTAS (Myotoxin I) Bothrops asper (Terciopelo), ATXA, ammodytoxin A precursor [Vipera ammodytes ammodytes]; RVV-VD [Daboia russelli russelli]; RV-4 precursor [Daboia russelli siamensis], BOTAS (Myotoxin II) Bothrops asper, BOTJR (BthTX-I) Bothrops jararacussu, ECHCA (Ecarpholin S) [Echis carinatus (Saw-scaled viper)], Crotoxin acid chain precursor (CA) [Crotalus durissus terrificus], β-bungarotoxin A6 chain precursor [Bungarus multicinctus (Many-banded krait)] and OXYSC taipoxin alpha chain [Oxyuranus scutellatus scutellatus] and completely conserved residues in all sequences are bolded and marked by asterisks. The gaps are inserted in the sequences in order to attain maximum homology.
Hydropathic profiles of phospholipase A₂ enzyme such as crotoxin b, daboiatoxin, mulgatoxin, taipoxin, ammodytoxin A, bee venom PLA₂, beta-bungarotoxin and mojavetoxin were calculated by using the kyte-doolittle method.

Figure 8
Hydropathic profiles of phospholipase A₂ enzyme such as crotoxin b, daboiatoxin, mulgatoxin, taipoxin, ammodytoxin A, bee venom PLA₂, beta-bungarotoxin and mojavetoxin were calculated by using the kyte-doolittle method.
MMT – Manuscript evaluation and critical analysis.

YHH, VTKC, HB – Co supervision of the antimicrobial susceptibility testing, provision of bacterial cultures and laboratory support.

JTW – Assisted in technical support for antimicrobial testing and culturing of bacteria.

Acknowledgements
This work was supported by the Research Grant from the Defence Science and Technology Agency (DSTA), Singapore (Grant No R-181 000 063 422). We thank the Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, for their support in Lab facility and the gift of bacterial cultures used in this investigation.

References
1. Chaowagul W, White NJ, Dance DAB, Wattanagoon Y, Naigowit P, Davis TME, Loaareauswan S, Pitakvatchara N: Melioidosis: a major cause of community acquired septicaemia in north-eastern Thailand. J Infect Dis 1989, 159:890-899.
2. Yabuuchi E, Arakawa M: Septicemia in pigs associated with Burkholderia pseudomallei. J Clin Microbiol 1979, 10:767-770.
3. Putthucheyr SD, Parassakti N, Lee MK: Septicaemic melioidosis: a review of 50 cases from Malaysia. Trans Roy Soc Trop Med Hyg 1992, 86:683-685.
4. White NJ: Melioidosis. Lancet 2003, 361:1715-1722.
5. Curtie BJ, Fisher DA, Howard DM: Endemic melioidosis in tropical northern Australia: a 10-year perspective. J Med Microbiol 2001, 50:981-986.
6. Hsueh PR, Teng LJ, Lee LN: Melioidosis: an emerging infection in Taiwan. Emerging Infect Dis 2001, 7:428-433.
7. Yang S: Melioidosis research in China. Acta Tropica 2000, 77:157-165.
8. Chaowagul W, Suputamangkol Y, Dance DAB, Rajchanuvong A, Pattara-archai J, White NJ: Relapse in melioidosis: incidence and risk factors. J Infect Dis 1993, 168:1181-1185.
9. Simpson AJ, Smith MD, Wererling GJ: Prognostic value of cytokine concentrations (tumor necrosis factor, interleukin 6 and interleukin 10) and clinical parameter in severe melioidosis. J Infect Dis 2000, 181:621-625.
10. Nuntayawanut S, Dharkalik T, Chaowagul W, Songsivilai S: Polymerorphism in the promot region of tumor necrosis factor-alpha gene is associated with severe melioidosis. Hum Immunol 1999, 60:977-983.
11. Bonomo RA: Multiple antibiotic-resistant bacteria in long-term-care facilities: an emerging problem in the practice of infectious diseases. Clin Infect Dis 2000, 31:1414-1422.
12. Chaowagul W, Suputamangkol Y, Dance DAB, Rajchanuvong A, Pattara-archai J, White NJ: Relapse in melioidosis: incidence and risk factors. J Infect Dis 1993, 168:1181-1185.
13. Crotalus durissus terrificus. In Mansons tropical diseases 20th edition. Edited by: Cook GC. London, England: W B. Saunders Co Ltd; 1996:925-930.
14. Leelarasamee A: Burkholderia pseudomallei: the unbeatable foe? Southeast Asian J Trop Med Public Health 1998, 29:410-415.
15. Eichhoff TC, Bennett JV, Hayes PS, Feeley J: Pseudomonas pseudomallei: susceptibility to chemotherapeutic agents. J Infect Dis 1970, 121:95-102.
16. Jones AL, Beveridge TJ, Woods DE: Intracellular survival of Burkholderia pseudomallei. Infect Immun 1996, 64:782-790.
17. Ganz T, Lehrer RI: Antimicrobial peptides of leukocytes. Current Opinion in Haematology 1997, 4:53-58.
18. Paramo L, Lomonte B, Pizarro-Cerda J, Bengoechea JA, Gorvel JP, Moreno E: Bacterial activity of Lys49 and Asp49 myotoxic phospholipase A2 from Bothrops asper snake venoms-synthetic Lys49 myotoxin II-(115-129)-peptide identifies its bactericidal region. Euro J Biochem 1998, 253:452-461.
19. Veridiana Rodrigues M, Silvania Marucci M, Rafael Cambraia S, Ana de Araujo L, Natale Maia-Neto R, Amelia Hamaguchi, Elosio Ferro AV, Maria Homsi-Brandeburgo I, José Gligio R, Andreimar Soares M: Bacterial and neurotoxic activities of two myotoxic phospholipase A2 from Bothrops neuwiedi pauloensis snake venom. Toxicon 2004, 44:305-314.
20. Bille BG, Sexton FW, Weinstein SA: Antibacterial effects of different serotypes of Pseudomonas aeruginosa from diverse human infections. J Infect Dis 1991, 29:1129-1141.
21. Carozzo G, Escobas P, Villegas E, Barnham KJ, Weiian HE, Norton RS, Nakajima T: Characterization of unique amphiphilic antibacterial peptides from venom of the scorpion Pandinus imperator. J Biochem 2001, 35:35-45.
22. Cosson LD, Zurita M, Delepiere M, Hernandez FH, Rodriguez MH: Fesc新鲜nixinostatin to Shiva-3, a peptide toxic to the sporocytic development of Plasmodium berghei. Toxicon 1998, 36:1683-1692.
23. Budnik BA, Olsen JV, Egorov TA, Anisimova VE, Galkina TG, Musuloyam AK, Grishin EV, Zubarev RA: De novo sequencing of an antimicrobial peptide isolated from the venom glands of the wolf spider Lycosa singoriensis. J Mass Spectrometry 2004, 39:193-201.
24. Haeberli S, Kuhn-Nentwig L, Schaller J, Nentwig W: Characterisation of antibacterial activity of peptides isolated from the venom of the spider Cupiamius selai (Araneae: Ctenidae). Toxicon 2000, 38:373-380.
25. Fennel JE, Shipman WH, Cole LJ: Antibacterial action of melittin, a polypeptide from the venom. Proc Soc Exp Biol Med 1968, 127:707-710.
26. Stacke JF, Traynor JR: The action of various venom on Escherichia coli. J Applied Bacteriol 1986, 61:383-88.
27. Hancock REW: Peptide antibiotics. Lancet 1997, 349:418-422.
28. Hancock RE, Scott MG: The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA 2000, 97:8856-8861.
29. Silphandhuang U, Noga EJ: Antimicrobial-peptide antibiotics in mast cells of fish. Nature 2001, 414:268-269.
30. National Committee for Clinical Laboratory Standards: Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard, M2-A6. National Committee for Clinical Standards, Wayne Pennsylvania. 1997.
31. Thwin MM, Gopalakrishnakone P, Yuen R, Tan CH: A major lethal factor of the venom of Burmese Russells's viper (Daboia russelli siamensis): Isolation, N-terminal sequencing and biological activities of daboiatoxin. Toxicon 2001, 38:1611-1617.
32. National Committee for Clinical Laboratory Standards: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard M7-A4. National Committee for Clinical Standards, Wayne Pennsylvania. 1997.
33. Amsterdam D: Susceptibility testing of antimicrobials in liquid media. In Antibiotics in laboratory medicine 4th edition. Edited by: Lorain V, Baltimore, MD: Williams and Wilkins; 1996:52-111.
34. Reynolds LJ, Hughes LL, Dennis EA: Analysis of human synovial fluid phospholipase A2, on short chain phosphatidylincholine-mixed micelles: Development of a spectrophotometric assay suitable for a microtiter plate reader. Ann Biochem 1992, 204:190-197.
35. Bradford MM: A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Ann Biochem 1976, 72:248-254.
36. Pachapiapinn A, Thiwon MM, Manikandan J, Gopalakrishnakone P, Glial inflammation and neurodegeneration induced by candoxin, a novel neurotoxin from Bungarus candidus venoms: global gene expression analysis using microarray. Toxicon 2005, 46:883-899.
37. Talan DA, Citron DM, Overturf GD, Singer B, Froman P, Goldstein JJ: Antibacterial activity of crotalid venoms against oral snake flora and other clinical bacteria. J Infect Dis 1991, 164:195-198.
38. Bloshock RM: Antibacterial properties of KwaZulu Natal snake venoms. Toxicon 2000, 38:1529-1534.
39. Oliveira DG, Toyama MH, Novell o JC, Beriam LOS, Marangoni S: Structural and functional characterization of basic PLA2, isolated from Crotalus durissus terrificus venom. J Protein Chem 2002, 21:161-168.
40. Rajchanuvong A, Chaowagul W, Suputamangkol Y, Smith MD, Dance DAB, White NJ: A perspective comparison of col-amoxiclav and the combination of chloramphenicol, doxycycline and...
co-trimoxazole for the oral maintenance treatment of melioidosis. Br J Clin Pharmacology 2000, 49:184-191.
40. White NJ, Dance DA, Chaiwagul W, Wattanagoon Y, Wuthienakan V, Pitsalawatchara N: Halving of mortality of severe melioidosis by ceftazidime. Lancet 1989, 2:697-701.
41. Bouchier C, Boulain JC, Bon C, Mezen A: Analysis of cDNAs encoding the two subunits of crotoxin, a phospholipase A2 neurotoxin from rattlesnake venom: the acidic non enzymatic subunit derives from a phospholipase A2-like precursor. Biochim Biophys Acta 1991, 1088:401-408.
42. Saiman L, Tabibi S, Starner TD, San Gabriel P, Winokur PL, Jia HP, McCray PB Jr, Tack BF: Cathelicidin peptides inhibit multiply antibiotic-resistant pathogens from patients with cystic fibrosis. Antimicrob Agents Chemother 2001, 45:2838-2844.
43. Sahly H, Schubert S, Harder J, Rautenberg P, Ullmann U, Schroder J, Podschn R: Burkholderia is highly resistant to human Beta-defensin 3. Antimicrob Agents Chemother 2003, 47:1739-1741.
44. Loutet SA, Flannagan RS, Kooi C, Sokol PA, Valvano MA: A complete lipopolysaccharide inner core oligosaccharide is required for resistance of Burkholderia cenocepacia to antimicrobial peptides and bacterial survival in vivo. J Bacteriol 2006, 188:2073-2080.

Pre-publication history
The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-2334/6/100/prepub