Orbits in bootstrapped Newtonian gravity

Anna D’Addio,1,2,* Roberto Casadio,3,4,† Andrea Giusti,5,‡ and Mariafelicia De Laurentis1,2,6,*

1Dipartimento di Fisica “E. Pancini”, Università di Napoli “Federico II”,
Complesso Universitario di Monte Sant’Angelo, via Cintia Edificio 6, 80126 Napoli, Italy
2I.N.F.N., Sezione di Napoli, Complesso Universitario di Monte Sant’Angelo, via Cintia Edificio 6, 80126 Napoli, Italy
3Dipartimento di Fisica e Astronomia “A. Righi”, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy
4I.N.F.N., Sezione di Bologna, I.S. FLAG, viale B. Pichat 6/2, 40127 Bologna, Italy.
5Institute for Theoretical Physics, ETH Zurich, Wolfgang Pauli Strasse 27, 8093 Zurich, Switzerland.
6Laboratory of Theoretical Cosmology, Tomsk State University, 634050 Tomsk, Russia.

(Dated: April 26, 2022)

Bootstrapped Newtonian gravity is a nonlinear version of Newton’s law which can be lifted to a fully geometric theory of gravity starting from a modified potential. Here, we study geodesics in the bootstrapped Newtonian effective metric in vacuum and obtain bounds on a free parameter from Solar System data and S-star orbits near our Galaxy center. These bounds make vacuum bootstrapped Newtonian gravity experimentally indistinguishable from General Relativity.

I. INTRODUCTION

General Relativity is presently the most successful theory for describing the gravitational interaction at the classical level. Its own failure is marked by the prediction of the formation of geodesic singularities whenever a trapped surface arises from the gravitational collapse of a compact object.1 Such considerations open up the possibility that significant departures from General Relativity might occur where our experimental data do not yet place strong enough constraints, like for example in regions of strong gravity near a very massive source. However, Einstein’s field equations are not linear and this makes it difficult to modify the laws of gravity in the strong-field regime without affecting also the weak-field behavior, since these regimes are likely to be related nontrivially in any nonlinear theories.

The bootstrapped Newtonian gravity [3, 4] is an attempt at investigating these issues in a somewhat simplified context. The approach, based on Deser’s conjecture [6], consists of retrieving the full Einstein’s theory including gravitational self-coupling terms in the Fierz-Pauli action.2 These additional terms must be consistent with diffeomorphism invariance, in order to preserve the covariance of any (modified) metric theory. We can obtain different modified gravitational theories depending on the choice of boundary conditions in the reconstruction procedure [8]. A key observation is that a practically effective dynamics can be derived only starting with a “small” contribution of matter sources. For large astrophysical sources, this implies that the matter source must also be included in a nonperturbative way. In the present approach this task is addressed starting from the Fierz-Pauli action corresponding to the potential generated by an arbitrarily large static source, and putting in extra terms representing gravitational self-coupling. Furthermore, the coupling constants for the additional terms are not fixed to their Einstein-Hilbert values in order to accommodate for diverse underlying dynamics. This approach then results in a nonlinear equation including pressure effects and the gravitational self-interaction terms to next-to-leading order in the Newton constant, whose solution is the gravitational potential operating on test particles at rest. Such equation was useful to investigate compact objects [9–11] and coherent quantum states [12, 13].

The motion of (test) particles and photons in the surroundings of a compact object represents the most immediate tool to gather information on the gravitational potential in which they revolve. In Ref. [16], a full (effective) metric tensor was obtained from the bootstrapped Newtonian potential, which allows one to study these trajectories in general, and to compare them with results from General Relativity. The requirement that the resulting theory of gravity is covariant is satisfied by the use of an effective metric tensor, since the bootstrapped Newtonian dynamics is implicitly assumed to be invariant after coordinate transformations. Nonetheless, the particular metric found in Ref. [16] differs from the Schwarzschild geometry; hence, it is not a solution of the Einstein equations in the vacuum. An effective fluid is therefore present, as was already noted in the cosmological context [17].

The bootstrapped effective metric is given as a function of parameterized post-Newtonian (PPN) parameters [5] in the weak-field expansion. These parameters can be consistently chosen so as to minimize deviations from the Schwarzschild metric only up to a point. In fact, some of the PPN parameters are uniquely related, and at the PPN order determined in Ref. [16], they can be expressed in terms of one free parameter. In this work, we report on a phenomenological investigation aiming at placing bounds on this remaining free

*Electronic address: anna.daddio@unina.it
†Electronic address: casadio@bo.infn.it
‡Electronic address: agiusti@phys.ethz.ch
§Electronic address: mariafelicia.de laurentis@unina.it
1 We also recall that pointlike sources are mathematically incompatible with the Einstein field equations [2].
2 This idea is indeed older, see e.g. Ref. [7].

3 These quantum states show some of the properties [14] found in the corpuscular model of black holes [15]. However, we shall not discuss quantum aspects in this work.
II. BOOTSTRAPPED NEWTONIAN VACUUM

We shall only review briefly the derivation of the bootstrapped Newtonian equation, since all the details can be found in Refs. [3, 9, 11, 13]. We shall use units with the speed of light $c = 1$ in this section. We start from the Lagrangian for the Newtonian potential $V = V(r)$ generated by a static and spherically symmetric source of density $\rho = \rho(r)$, to wit

$$L_N[V] = -4\pi \int_0^\infty r^2 \frac{d}{dr} \left[\frac{(V')^2}{8\pi G_N} + V\rho \right]. \tag{II.1}$$

The corresponding Euler-Lagrange field equation is given by Poisson’s

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dV}{dr} \right) = 4\pi G_N \rho, \tag{II.2}$$

where we recall that the radial coordinate r is the one obtained from harmonic coordinates [5, 16]. We next couple V to a gravitational current proportional to its own energy density,

$$J_V \simeq 4 \frac{dU_N}{dV} = -\frac{[V'(r)]^2}{2\pi G_N}, \tag{II.3}$$

where V is the spatial volume and U_N is the Newtonian potential energy. We also add the “one loop term” $J_\rho \simeq -2V^2$, which couples to ρ, and the pressure term p [9]. The total Lagrangian then reads

$$L[V] = -4\pi \int_0^\infty r^2 \frac{d}{dr} \left[\frac{(V')^2}{8\pi G_N} (1 - 4q_V V) \right]$$

$$+ (\rho + 3q_p p) V (1 - 2q_p V)] \tag{II.4}$$

where the coupling constants q_V, q_p, and q_ρ can be used to track the effects of the different contributions. For instance, the case $q_V = q_p = q_\rho = 1$ reproduces the Einstein-Hilbert action at next-to-leading order in perturbations around Minkowski [9, 11, 13]. Finally, the bootstrapped Newtonian field equation reads

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dV}{dr} \right) = 4\pi G_N \frac{1 - 4q_V V}{1 - 4q_V V} (\rho + 3q_p p)$$

$$+ 2q_V \frac{(V')^2}{1 - 4q_V V}. \tag{II.5}$$

which must be solved along with the conservation equation $p' = -V'(\rho + p)$.

The asymptotic expansion away from the source yields

$$V_2 \simeq -\frac{G_N M}{r} + q \frac{G_N M^2}{r^2} = q^2 \frac{8G_N^3 M^3}{3r^3}, \tag{II.8}$$

so that the Newtonian behavior is always recovered (for $q = 0$) and the post-Newtonian terms are seen to depend on the coupling q (see Fig. 1).

![Figure 1: Bootstrapped Newtonian potential V in Eq. (II.7) compared to its expansion V_2 from Eq. (II.8) and to the Newtonian potential V_N (for $q = 1$).](image)

A. Vacuum potential

In vacuum, we have $\rho = p = 0$, and Eq. (II.5) simplifies to

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dV}{dr} \right) = \frac{2q(V')^2}{1 - 4qV}, \tag{II.6}$$

where we renamed $q \equiv q_V$ for simplicity. The exact solution was found in Ref. [3] and reads

$$V(r) = \frac{1}{4q} \left[1 - \left(1 + \frac{6G_N M}{r} \right)^{2/3} \right]. \tag{II.7}$$

B. Vacuum effective metric

A complete spacetime metric was reconstructed from the vacuum potential (II.7) in Ref. [16]. The procedure is rather cumbersome, and we shall only recall here a few main steps leading to the necessary expressions in the weak-field regime. We explicitly show the speed of light c from here on. One starts from the PPN form [5]
\(ds^2 \simeq \left[1 - \alpha \frac{2R_g}{r} + (\beta - \alpha\gamma) \frac{2R_g^2}{r^2} + (\zeta - 1) \frac{8R_g^3}{r^3} \right] c^2 dt^2 + \left[1 + \gamma \frac{2R_g}{r} + \xi \frac{4R_g^2}{r^2} + \sigma \frac{8R_g^3}{r^3} \right] dr^2 + r^2 d\Omega^2 \) (II.9)

where \(R_g = \frac{G}\alpha^2 M \) and \(r \) is the areal radius, which differs from the radial coordinate \(r \) in which the potential (II.7) is expressed. The latter is obtained from harmonic coordinates and the two radial coordinates are related by [16]

\[
r \approx r + (1 - 3\gamma) \frac{R_g}{2} r^2 + \left(1 - 3\gamma + 2\gamma^2 - 2\Xi\right) \frac{R_g^2}{r}, \tag{II.10}
\]
in which \(\Xi \) is a free parameter. Furthermore, we have

\[
q = \beta + \gamma - \frac{1}{2}. \tag{II.11}
\]

We can next set \(\alpha = 1 \) by simply absorbing this coefficient in the definition of the mass \(M \) [28], and \(\beta = \gamma = 1 \) in order to satisfy the experimental constraints \(|\gamma - 1| \approx |\beta - 1| \ll 1 \). From Eq. (II.11), this is tantamount to setting \(q = 1 \), as expected. The higher order PPN parameters are then fully determined by \(\Xi \) according to

\[
\xi = 1 + \Xi, \tag{II.12}
\]
\[
\zeta = 1 - \frac{5 + 6\Xi}{12} = \frac{13 - 6\xi}{12}, \tag{II.13}
\]
\[
\sigma = \frac{9 + 14\Xi}{4}. \tag{II.14}
\]

As already noted in Ref. [16], the General Relativistic PPN combination \(\xi = \zeta = 1 \) cannot be obtained for any value of \(\Xi \), and the bootstrapped metric for which we have the minimum deviation from the Schwarzschild form is thus given by

\[
\bar{\bar{r}} = R_g \left\{ 4 \left(1 + \Xi \right) R_g r \dot{r}^2 + R_g^2 \left[3 \left(9 + 14\Xi \right) r^2 - c^2 \left(5 + 6\Xi \right) \dot{r}^2 \right] + r^2 \left(\dot{r}^2 - c^2 \dot{\dot{r}}^2 \right) \right\} + r^5 \left(\dot{\phi}^2 + \dot{\bar{\theta}}^2 \sin^2 \theta \right) \frac{1}{r \left[2 \left(9 + 14\Xi \right) R_g^3 + 4 \left(1 + \Xi \right) R_g^2 r + 2 R_g r^2 + r^3 \right]}
\]
\[
\bar{\bar{\dot{\theta}}} = \dot{\phi}^2 \sin \theta \cos \theta - \frac{2 \dot{\bar{\theta}}}{r}
\]
\[
\bar{\bar{\dot{\phi}}} = -\frac{2 \phi}{r} (\bar{\bar{\dot{r}}} + \dot{r} \dot{\phi} \cot \theta)
\]
\[
\bar{\bar{\ddot{t}}} = \frac{6 \dot{\bar{\ddot{r}}} \left[\left(5 + 6\Xi \right) R_g^3 + R_g r^2 \right]}{2 \left(5 + 6\Xi \right) R_g^3 r + 6 R_g r^2 + 3 r^3}. \tag{II.21}
\]

The third and fourth equations are the usual conservation equations for the angular momentum and energy conjugated to \(t \), respectively. Spherical symmetry as usual implies that

in which we drop the bar from the areal coordinate for simplicity from now on. We can see that there are contributions in the metric coefficients which cannot be reduced to the Schwarzschild expressions. This deviation from the Schwarzschild solution is encoded by the free parameter \(\Xi \), whose value is \textit{a priori} unknown and must be constrained by observations. In particular, we will test these corrections by analyzing the planets in the Solar System and S-stars motion around Sgr A*.

The geodesic equations

\[
\ddot{x}^\mu + \Gamma^\mu_{\alpha\beta} \dot{x}^\alpha \dot{x}^\beta = 0, \tag{II.16}
\]

where a dot indicates the derivative with respect to the proper time, can be equivalently computed using the Euler-Lagrange equations

\[
\frac{d}{ds} \frac{\partial \mathcal{L}}{\partial \dot{x}^\mu} - \frac{\partial \mathcal{L}}{\partial x^\mu} = 0, \tag{II.17}
\]

with \(\mathcal{L} = g_{\alpha\beta} \dot{x}^\alpha \dot{x}^\beta = -1 \) for a massive object. From the metric in Eq. (II.15), one then finds
tions can be integrated numerically in order to study the orbits.

1. Precession

It is easy to express the perihelion precession in terms of the PPN parameters [5]. At leading order, one has

$$\Delta \phi^{(1)} = 2 \pi (2 - \beta + 2 \gamma) \frac{R_g}{\ell}, \quad (\text{II.22)}$$

where $\ell = a (1 - e^2)$ is the semilatus rectum, a is the semimajor axis and e is the eccentricity. For $\beta = \gamma = 1$, Eq. (II.22) reproduces the General Relativistic result

$$\Delta \phi_S^{(1)} = 6 \pi \frac{R_g}{\ell}. \quad (\text{II.23})$$

The second order correction depends on ξ and ζ, and for $\beta = \gamma = 1$, it reads [16]

$$\Delta \phi^{(2)} = \pi \left[(41 + 10 \xi - 24 \zeta) + (16 \xi - 13) \frac{e^2}{2} \right] \frac{R_g^2}{\ell^2}$$

$$\simeq \pi \left[(37 + 22 \Xi) + (3 + 16 \Xi) \frac{e^2}{2} \right] \frac{R_g^2}{\ell^2}$$

$$\simeq \Delta \phi_S^{(2)} + 2 \pi \left[11 \xi - 7 + 4 (\xi - 1) e^2 \right] \frac{R_g^2}{\ell^2}, \quad (\text{II.24})$$

where the General Relativistic result $\Delta \phi_S^{(2)}$ corresponds to $\xi = \zeta = 1$. From Eqs. (II.12) and (II.13), it follows that we cannot have $\xi = \zeta = 1$ for any value of Ξ, and a deviation from General Relativity remains.

III. ASTRONOMICAL TESTS

In order to constrain the free parameter of the bootstrapped Newtonian potential, Ξ, we confronted the theoretical results exposed in Sec. II B with astronomical data.

To infer a range of validity for Ξ, we compared the analytical expression of the precession with the observed values of the perihelion advance of Solar System’s planets (Sec. III A).

Then, we turned our attention to the Galactic Center, and we studied the motion of S-stars orbiting around Sgr A*. To constrain Ξ, we let it vary in a given range and fit the corresponding simulated orbits to astrometric observations. In particular, we adopted a fully relativistic approach which consists of integrating numerically Eqs. (II.18)-(II.21) in order to get the mock orbits, instead of solving Newton’s law with the standard potential replaced by the modified one.

A. Perihelion precession in the Solar System

In order to constrain Ξ we can start from the Solar System planets whose orbital precession has been measured, namely Mercury, Venus, Earth, Mars, Jupiter and Saturn [35]. The confidence region for Ξ can be identified as the set of values such that the precession

$$\Delta \phi = \Delta \phi^{(1)} + \Delta \phi^{(2)} \quad (\text{III.1)}$$

is compatible with the observations. The planetary parameters\(^4\), the corresponding observed values of the precession [35] and the General Relativistic value obtained by Eq. (II.23) are reported in Table I from first to seventh columns. The allowed region of Ξ for each planet is defined as the range of values compatible with data, having as extremes the values of Ξ solving the equation

$$\Delta \phi = \Delta \phi_{\text{obs}}. \quad (\text{III.2})$$

The inferred lower and upper limits on Ξ are reported in the last column of Table I, and the included area is depicted in Fig. 2 for each planet (gray shades). It is worth noticing the discrepancy between the General Relativistic value (the red line) and the observed precession (blue dashed lines) for Mars and Jupiter; it could be attributed to the incomplete subtraction of nonrelativistic effects from the observed value, complicated by the presence of the asteroid belt between Mars and Jupiter, and the presence of an anomalous residual precession [35, 36].

The tightest interval on the parameter Ξ is obtained with Venus, for which it can vary between -1149.67 and 1167.47. We can use the values defining such an interval to predict the precession for Uranus, Neptune and Pluto, for which no observation is available. The results, summarized in Table II, show that the bootstrapped theory predictions are in perfect agreement with General Relativity.

Now it is useful to move to a different scale and analyze S2 (see Table III), the only one among the S-stars whose precession was observed [32]. We can next calculate the precession for Mars, Jupiter, and $S2$ with the values of Ξ as obtained by Mercury, Venus, Earth and Saturn to check agreement with the corresponding Schwarzschild value and with the observations (Table IV). The results confirm the compatibility of our predictions with General Relativity. The mean value of the parameter Ξ such that

$$\Delta \phi = \Delta \phi_S \quad (\text{III.3})$$

given by

$$\Xi = -1.64236 \pm 0.10305. \quad (\text{III.4})$$

B. S-star dynamics

We can confirm the bounds on Ξ deduced from orbital precessions by comparing them with results deduced from the

\(^4\)The reported values are taken from NASA fact sheet at https://nssdc.gsfc.nasa.gov/planetary/factsheet/.
Planet	a($\times 10^8$ km)	P (years)	i (°)	e	$\Delta \phi_{obs}$ ("/cy)	$\Delta \phi_S$ ("/cy)	$[\Xi_{\text{min}}, \Xi_{\text{max}}]$
Mercury	57.909	0.24	7.005	0.2056	43.1000 ± 0.5000	42.9822	$[-89708.7; 144995]$
Venus	108.209	0.61	3.395	0.0067	8.6247 ± 0.0005	8.6247	$[-1149.67; 1167.47]$
Earth	149.596	1.00	0.000	0.0167	3.8387 ± 0.0004	3.8388	$[-3660.86; 2094.96]$
Mars	227.923	1.88	1.851	0.0935	1.3565 ± 0.0004	1.35106	$[155248; 179879]$
Jupiter	778.570	11.86	1.305	0.0489	0.0000 ± 0.3000	0.0623142	$[5.46709 \times 10^8; 1.92679 \times 10^9]$
Saturn	1433.529	29.45	2.485	0.0565	0.0105 ± 0.0050	0.0136394	$[-1.57315 \times 10^8; 3.59618 \times 10^7]$

Table I: Values of semimajor axis (a), orbital period (P), tilt angle (i), eccentricity (e), observed orbital precession ($\Delta \phi_{obs}$), orbital precession as predicted by General Relativity ($\Delta \phi_S$) and constraints on Ξ for Solar System’s planets.

Figure 2: Bootstrapped orbital precession as a function of the parameter Ξ. Black lines give the theoretical prediction from Eq. (III.1), blue dashed lines represent the measurements adapted from Ref. [35] and red lines depict the General Relativistic values as in Eq. (II.23). Confidence regions for Ξ are shaded in gray.

This analysis of stellar orbits at the Galactic Center. This further analysis consists in comparing simulated orbits in bootstrapped Newtonian gravity, obtained by integrating numerically Eqs. (II.18)-(II.21), with observed orbits of three S-stars constructed by astrometric observations (see Sec. III B 1). In particular, we focused on stars $S2$, $S38$ and $S55$ for two
main reasons: among the brightest stars they are those with
the shortest period. These properties are desired because
highly bright stars are less prone to being confused with other
sources, and a short period allows us to observe a larger part
of the orbit in a given observation session. For simplicity,
we neglected perturbations from other members of the cluster and
any extended matter structures.

1. Astrometric data

Astrometric data are taken from Ref. [29] and cover 25
years of observations performed in the near-infrared (NIR),
where the interstellar extinction amounts to about three mag-
nitudes. Different instruments have been used, which we
briefly describe below.

1. SHARP.- First high-resolution data of the Galactic Center
were obtained in 1992 with the SHARP camera at the
European Southern Observatory’s (ESO) 3.5 m
New Technology Telescope (NTT) in Chile, operating
in Speckle mode with exposure times of 0.3 s, 0.5 s and
1.0 s. The data, described in detail in Ref. [30], led
to the detection of high proper motion near the central
massive object.

2. NACO.- The first Adaptive Optics (AO) imaging
data were produced by Nacn-Conica (NACO) system,
mounted at the telescope Yepun (8.0 m) of the VLT
and starting to operate in 2002. It followed a great improve-
dent due to larger telescope aperture, and the higher
Strehl ratio (about 40%).

3. GEMINI.- The dataset includes observations obtained
by the 8 m telescope Gemini North in Mauna Kea, Hawaii. These images, obtained using the AO system
in combination with the NIR camera Quirc, were
processed by the Gemini team.

The astrometric calibration of these data, treated in Ref. [31],
consists in the following steps: obtaining high-quality maps of
the S-stars, extracting pixel positions, and transforming them
to a common astrometric coordinate system. In particular,
The astrometric reference frame is implemented relating the
S-stars positions to a set of selected reference stars, which are
in turn related to a set of Silicon Monoxide (SiO) maser stars
whose positions relative to Sgr A* is known.

The first step of the fitting procedure is the numerical
integration of the system of parametric nonlinear differential
equations (II.18)-(II.21) to produce stellar simulated orbits in
bootstrapped Newtonian gravity.

Preliminarily, we fix the Keplerian elements and the param-
eters of the central mass to the values reported in Tables V
and VI. In particular, for the study of S2, we used the values
obtained by the GRAVITY Collaboration [32], and for S38
and S55, we used those obtained in Ref. [29]. In order
to have a well-defined Cauchy problem, we must provide ini-
tial conditions for the four-dimensional coordinates and their
derivatives with respect to the proper time: \(r(0), r(\theta(0), \theta(0)), \phi(0), \phi(0), t(0), t(0) \).
We assume that the star initially
lies on the equatorial plane of the reference system, for which
\(\theta(0) = \pi/2 \), and that its initial velocity is parallel to the equa-
torial plane, that is \(\dot{\theta}(0) = 0 \). It then follows that \(\dot{\theta}(0) = 0 \)
identically. In particular, we set the initial conditions for \(r \) and \(\phi \) at the time of passage of the apocenter, when the Cartesian
coordinates of the star expressed in the orbital plane are given
by
\[
(\hat{x}_{orb}, \hat{y}_{orb}) = (-a(1+e), 0) \quad \text{(III.5)}
\]
and the Cartesian components of its velocity read
\[
(v_x, \nu_y), v_y = \left(0, \frac{2\pi a^2}{T r} \sqrt{1-e^2} \right). \quad \text{(III.6)}
\]

The initial condition for \(\dot{\iota} \) can be retrieved from the normaliza-
tion of four-velocities requiring that the geodesic is timelike.
Starting from the initial conditions of each star, we proceed
with an explicit Runge-Kutta numerical integration of the rel-
itivistic equations of motion. The results are the stars mock
The Thiele-Innes elements \(\chi \) theory and observations as has the aim to constrain the parameter the point that maximizes the likelihood distribution. Guided by the re-

First, we show that bounds on \(\Xi \) in Ref. [16]. The inferred confidence region for \(\Xi = 17400 \pm 2283 \) (yr) \(\pm 37900 \pm 0.00016 \) \(10^7 \) [32] [29] [29] \(13.95 \) 17. 17.5

Table V: Orbital parameters of S2, S38, and S55: semimajor axis \(a \), eccentricity \(e \), inclination \(i \), angle of the line of node \(\Omega \), angle from ascending node to pericenter \(\omega \), orbital period \(T \), and the time of the pericenter passage \(t_p \).

Object	\(\Delta \phi \chi \)	\(\Delta \phi \chi_{\text{Mercury}} \)	\(\Delta \phi \chi_{\text{Venus}} \)	\(\Delta \phi \chi_{\text{Earth}} \)	\(\Delta \phi \chi_{\text{Saturn}} \)
Mars	1.35106 \(\pm 1.35113 \)				
Jupiter	0.0623142 \(\pm 0.0623147 \)	0.0623142 \(\pm 0.0623147 \)	0.0623142 \(\pm 0.0623147 \)	0.0623142 \(\pm 0.0623147 \)	
S2	7.30.382 \(\pm 57243.9 \)	1485.75	1634.61	2085.15	1.01666 \(\pm 10^7 \)

Table IV: Precession for Mars, Jupiter, and S2 as predicted by confidence regions for \(\Xi \) inferred from Mercury, Venus, Earth and Saturn.

3. Results

Our results are summarized in Table VII and represented in Figs. 3, 4 and 5.

In Fig. 3 we show the comparison between best fit and observed orbits of the selected stars: the top left panel, the top right panel, and the bottom panel illustrate the results respectively for S2, S55 and S38. Astrometric data are reported with their own error bars to note the effectiveness of our fitting procedure.

Figure 4 depicts the comparisons between the observed and simulated coordinates with the corresponding residuals. The left column contains the right ascension (RA), while the right column reports the declination (Dec). It is worth noticing that in all stars and for both coordinates, residuals are larger at the beginning observing epochs, and decrease as astrometric accuracy improves.

Finally, we show in Fig. 5 the orbits of the studied S-stars corresponding to the best multistar fit for \(\Xi = 17400 \pm 2283 \) (last row of Table VII). As expected, the parameter \(\Xi \) is compatible with the the mean value (III.4) such that the bootstrapped Newtonian precession recovers General Relativity.

IV. CONCLUSIONS

In this paper we tested astronomically the bootstrapped Newtonian gravity. The starting point is the complete space-

\[\chi^2_{\text{red}} = \frac{1}{2N-1} \sum_{i} \left[\frac{(x_{\text{obs}} - x_{i})}{\sigma_{x_{\text{obs}}}^{2}} + \frac{(y_{\text{obs}} - y_{i})}{\sigma_{y_{\text{obs}}}^{2}} \right]^{2}, \]

where \((x_{\text{obs}}, y_{\text{obs}}) \) and \((x_{i}, y_{i}) \) are respectively the observed and the predicted positions, \(N \) is the number of observations and \((\sigma_{x_{\text{obs}}}, \sigma_{y_{\text{obs}}}^{2}) \) are the observational uncertainties. Finally, we calculated the likelihood probability distribution, 2 log \(L = -\chi^2_{\text{red}}(\Xi) \). The best-fit value for \(\Xi \) was derived as the point that maximizes the likelihood distribution.
Star	$M (M_\odot)$	R (kpc)	Ref.
S2	$(4.261 \pm 0.012) \times 10^6$	8.2467 ± 0.0093	GRAVITY Collaboration [32]
S38	$(4.35 \pm 0.13) \times 10^6$	8.33 ± 0.12	Gillessen et al. [29]
S55	$(4.35 \pm 0.13) \times 10^6$	8.33 ± 0.12	Gillessen et al. [29]

Table VI: Parameters of the central BH: the mass M and the distance R.

Figure 3: Comparisons between the NTT/VLT astrometric observations with their errors (black circles) and the theoretical best-fit orbits using parameters reported in the first three rows of Table VII. The results for $S2$, $S55$ and $S38$ are illustrated respectively in the top left, top right, and bottom panels.

planet is reported in Table I and graphically depicted in Fig. 2. Based on the tightest interval obtained with Venus, we found that Ξ lies in the range $[-1149.67; +1167.47]$. With these values of the parameter Ξ we predicted the orbital precession for Uranus, Neptune and Pluto, and we found a theoretical precession in great agreement with the General Relativistic
value. Such a compatibility was confirmed by turning our attention to the Galactic Center and repeating the same analysis.
Table VII: Best-fit values for Ξ.

Star	Ξ
S_2	-50000^{+39625}_{-44964}
S_{38}	25500^{+22071}_{-23312}
S_{55}	60400^{+84136}_{-87446}
Multi-star	17400^{+30555}_{-32244}

sis for the star S_2 [32]. The mean value of the parameter Ξ such that the bootstrapped Newtonian precession equals the Schwarzschild value is

$$\Xi = -1.64236 \pm 0.10305 \ .$$ \hspace{1cm} (IV.1)

We next focused on the Galactic Center scale to constrain Ξ by investigating the orbital motion of S-stars. We used a fully relativistic approach based on an agnostic method: for each value of Ξ, we solved the geodesic equations numerically starting from initial conditions at the apocenter. After applying the Thiele-Innes formulas to the mock positions, we were able to compare the resulting solution with the observed stellar orbits. Finally, we quantified the discrepancy between the simulated and observed orbits performing a χ^2-statistics. The inferred confidence region for Ξ is compatible with the bounds obtained by the precession analysis, and thus with General Relativity. Indeed we found 17400^{+30555}_{-32244}. Since S-stars are at a distance of about $r > 1000 R_g$ from the source, strong-field effects are not relevant, and such a result was expected.

The proposed approach is completely general and represents a useful tool in the classification of extended theories of gravity. Moreover, this approach has already been used to test a Yukawa-like gravitational potential by means of dynamical tests at the Galactic Center [37–40], where no significant deviations from General Relativity were found. Nevertheless, the definitive confirmation/exclusion of a given extended theory of gravity requires the improvement of the constraints on its free parameters based on the observation of various strong-field effects. This task can be accomplished taking advantage of the increasing high accuracy observations of second generation instruments like GRAVITY [41].

In particular, we focus on finding stars with short semimajor axis and highly eccentric orbits within the pericenter of S_2. The existence of such a population of stars can be inferred from the recent discovery of the sources S_62, S_{4711} and S_{4714} [42, 43]. Observing stars at smaller radii is essential to detect strong-field effects, which become no longer negligible for distances of the pericenter $r \simeq 10 R_g$, and therefore any deviations from General Relativity to find out the underlying gravitational theory.

Acknowledgments

R.C. is partially supported by the INFN grant FLAG. M.D.L. and A.D. acknowledges INFN Sez. di Napoli (Iniziativa Specifica TEONGRAV). A.G. is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions (grant agreement No. 895648–CosmoDEC). The work of R.C. and A.G has also been carried out in the framework of activities of the National Group of Mathematical Physics (GNFM, INDAM).
