Clptm1 Downregulation Exerts Antiepileptic Activity by Regulating GABAAR-mediated Inhibitory Synaptic Transmission in PTZ-induced Epileptic Model

Peng Zhang  
Chongqing Medical University

Lan Lin  
Affiliated Hospital of Kunming University of Science and Technology: First People's Hospital of Yunnan

Rong Mei  
Affiliated Hospital of Kunming University of Science and Technology: First People's Hospital of Yunnan

Fengli Zhang  
Affiliated Hospital of Kunming University of Science and Technology: First People's Hospital of Yunnan

Yangmei Chen  
The Second Affiliated Hospital of Chongqing Medical University

Rong Li (lirong0919@163.com)  
Affiliated Hospital of Kunming University of Science and Technology: First People's Hospital of Yunnan Province  
https://orcid.org/0000-0002-4465-3324

Research Article

Keywords: Clptm1, GABAARy2, inhibitory synaptic, epileptic seizure

Posted Date: December 17th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1160998/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

**Background:** Disruption of GABA\textsubscript{A}R synaptic clustering and a decrease number in their cell surface are thought to contribute to the alteration in the balance between excitatory and inhibitory neurotransmission, which contributes to seizure induction and propagation. Cleft lip and palate transmembrane protein 1 (Clptm1), a multi-pass transmembrane protein, has been showed that it is an intracellular molecule that controls forward trafficking of GABA\textsubscript{A}R. Clptm1 downregulating increased miniature inhibitory postsynaptic current (mIPSC) in vivo. Thus, Clptm1 controls phasic and tonic inhibitory transmission in brain. In this study, we hypothesized that Clptm1 may be involved in epileptic seizure by regulating GABA\textsubscript{A}R-mediated inhibitory synaptic transmission in epileptic model.

**Methods and Results:** In PTZ-induced epileptic model, we found that Clptm1 was increased in temporal lobe epilepsy (TLE) patients as well as in epileptic model. Then, we showed that Clptm1 downregulation exerted antiepileptic activities in epileptic model, which was associated to the increased surface GABA\textsubscript{A}R\textsubscript{γ2} expression and mIPSCs amplitudes.

**Conclusions:** Clptm1 downregulation exerted antiepileptic activities in epileptic model, thus, it may be a promising target for antiepileptic treatments.

Introduction

TLE is the most prevalent form of focal epilepsy. It is characterized as a form of adult focal onset epilepsy and is highly associated with refractory epilepsy (1). Abnormal neuronal discharges in patients with TLE is due to failure of inhibitory and/or excitatory neurotransmission. Gamma-aminobutyric acid (GABA) receptors (GABA\textsubscript{A}R), the main inhibitory neurotransmitter, may be involved in seizure induction and propagation (2). Of all of the GABAR, the GABA\textsubscript{A} receptors (GABA\textsubscript{A}Rs) are considered as the most important in TLE induction and propagation (3), which persistently activated GABA\textsubscript{A}Rs can suppress neuronal voltage responses towards incoming excitation (4). Thus, it is important to investigate the molecular mechanisms underlying the effects of GABA\textsubscript{A}R-mediated inhibitory synaptic transmission on epileptic seizure.

Clptm1 is identified by association of a chromosomal translocation with cleft lip and palate (5). It modulates postsynaptic assembly of GABA\textsubscript{A}Rs. Knocking down Clptm1 increased the number of GABA\textsubscript{A}R\textsubscript{γ2} in cell surface and mIPSC amplitudes in neurons (6). However, whether Clptm1 regulates epileptic seizure by regulating GABA\textsubscript{A}R-mediated inhibitory synaptic transmission has not been established.

In this study, we examined the role of Clptm1 in epilepsy. We demonstrated that Clptm1 is increased in TLE patients as well as in epileptic models. Then, we showed that Clptm1 downregulation attenuated seizure susceptibility and severity in PTZ mouse and that these changes are associated with the increase
of the number of GABA\textsubscript{A}R\textsubscript{\gamma}2 in cell surface and mIPSCs amplitudes. These results show the significance role of Clptm1 in GABA\textsubscript{A}R-mediated inhibitory synaptic transmission and involved in epileptic seizure. Therefore, Clptm1 is a promising target for antiepileptic treatments.

**Materials And Methods**

**Ethical statement**

This study was conducted following the guidelines for the National Institutes of Health of China and the Committee on Human Research at Chongqing Medical University. Written informed consent for human brain tissues were collected. All protocols for the performing animal experiments were admitted by the Commission of Chongqing Medical University for Ethics in Animal Experiments (Approval number:0002648).

**Human samples**

Ten samples of TLE patients and ten normal samples who experienced head trauma were obtained as our previous publication (7). Clinical characteristics of patients are shown in Table1.

**Mouse model of seizure or epilepsy**

All animal were obtained from the Laboratory Animal Center of Chongqing Medical University. We established PTZ-induced epileptic model, which is considered an appropriate animal model for preclinical research on the roles of GABA\textsubscript{A}Rs in epilepsy (8-10). Acute and chronic epileptic models were established as our previous publication (7).

**Behavioural tests**

The behaviours were scored as previous study (11). For the shRNA-clptm1+ PTX intervention, mice were administered with shRNA-clptm1 or LV-GFP two weeks before inducing PTZ and thereafter with PTX (1 mg/kg. Ip. 5 min before PTZ inducing).

**Double immunofluorescence labelling**

Immunofluorescence (IF) staining was operated as previously described (7). The antibodies were mouse anti- Clptm1 (1:50, sc-374619; Santa Cruz), mouse anti-GABA\textsubscript{A}R\textsubscript{\gamma}2 (1:50, cat no.: MABN875) and chicken anti-MAP2 (1:100, catalogue number: MAB377) both from Millipore, Billerica, MA, USA as well as rabbit anti-glial fibrillary acidic protein (GFAP) (1:50, cat no: 16825-1-AP ; Wuhan, China).
Biochemical Measurement of Surface-expressed Receptors and Immunoblotting

According to ProteoExtract™ Native Membrane Protein Extraction Kit (M-PEK Kit, Merck Millipore, USA) instructions, we extracted membrane-associated proteins. Then, bicinchoninic acid protein (BCA) assay was determined the concentration of pure protein. SDS-polyacrylamide gel electrophoresis separated proteins and transferred to a polyvinylidene fluoride (PVDF) membrane. Next, the PVDF membrane was incubated with a polyclonal mouse anti-Clptm1 (1:50, sc-374619; SANTA CRUZ) or a mouse anti-GABA<sub>A</sub>Rγ<sub>2</sub> (1:50, catalogue number: MABN875, Millipore, Billerica, MA, USA). The next day, the membrane incubated with a goat anti-rabbit IgG antibody (1:1500, Proteintech, Wuhan, China) or a goat anti-mouse IgG antibody (1:2000, Proteintech, Wuhan, China) for 1.5 h at 37 °C.

Coimmunoprecipitation

Co-immunoprecipitation was conducted as described in our previous study (7). The antibodies were mouse anti-Clptm1 (1:50, sc-374619; SANTA CRUZ), GABA<sub>A</sub>Rγ<sub>2</sub> (1:50, catalogue number: MABN875, Millipore, Billerica, MA, USA). Immunoblotting assays were conducted with anti-GABA<sub>A</sub>Rγ<sub>2</sub> or anti-Clptm1 antibodies.

Establishment of the Lentiviral Vector and Stereotactically Injection

LV vectors with Clptm1 constructs shRNA-Clptm1 were constructed by GeneChem company (GeneChem Co., Ltd. Shanghai, China). We microinjected Clptm1-shRNA or scramble-shRNA into the bilateral CA1 region of every mouse.

Electrophysiological Assessments

Mouse cortical brain slices (300 μm thick) were cut and immersed in an ice-cold buffer. Then brain sections were immediately placed in artificial cerebrospinal fluid (ACSF) for 1.5 h at 34°C. Cells in the CA1 region of the hippocampus were recordings under an inverted phase contrast microscope (Nikon, Japan). When stable mIPSCs were obtained, recordings were sustained for at least 3 min. Then, GABA (100 or 500 μM, Sigma, USA) was added to the brain slices to assess whether the mIPSCs required GABA activity.

Statistics

All data are shown as mean ± SEM. Student’s t test was conducted for between group comparisons and LSD tests if three or four groups were compared. ANOVA repeated measures were used for comparisons.
of sequential measurements to a single control measurement followed by Dennett's test. P < 0.05 was the cut-off for significance.

Results

Clptm1 is localized in neuron and interacted with GABA_A Ry2 in epileptic brain

We first detected whether Clptm1 protein is localized in neuron, which epilepsy is known to be characterized by neuronal hyperexcitability. Confocal microscopy analyses revealed that Clptm1 immunoreactivity is located at cortical neurons of TLE patients (Fig. 1A-1C), and we showed that Clptm1 is located at the cortex as well as hippocampal of the epileptic mouse. Clptm1 co-localize with the specific neural marker MAP2. However, it did not co-localize with the specific astrocyte marker GFAP. Additionally, we found Clptm1 co-localizes with GABA_A Ry2/3 in epileptic brain, and co-immunoprecipitation showed that Clptm1 is interacted with GABA_A Ry2 in TLE patients, and the hippocampus and cortex of the epileptic mouse are also (Fig. 1D-1F). These findings suggest that Clptm1 localized in neuron and interacted with GABA_A Ry2 in epileptic brain.

GABA_A Ry2 expression is decreased in epileptic brain

Disruption of GABA_A R-mediated inhibitory synaptic transmission is related to a post synaptic mechanism in epilepsy, thus, we first detected GABA_A Ry2 levels in the epileptic brain. As shown in figures 2A, 2B and 2C, the immunoreactivity of GABA_A Ry2 in the cortex of patients with TLE and in chronic epileptic model showed a significant decrease compared to the control. These changes may underlie the disrupted GABAergic transmission in epilepsy.

Clptm1 expression is increased in epileptic brain

To observe whether Clptm1 plays a role in epilepsy, we first detected the Clptm1 expression in the brains of the TLE patients and epileptic mouse model. Immunoblotting showed that Clptm1 expression was increased in TLE patients compared to the control (Fig. 2D), and in hippocampal and cortical tissue of the epileptic mouse model were also increased (Fig. 2E-2F). These findings suggested that Clptm1 upregulation may be involved in epileptic seizure.

Clptm1 downregulation attenuates PTZ-induced Seizure

Subsequently, to identify the relation between the increasing of Clptm1 expression and epilepsy, we used Clptm1-shRNA to downregulate Clptm1 proteins and assessed the effects of Clptm1 on PTZ-
induced seizures. Two weeks post-administration of the exogenous recombinant lentivirus vector (LV), we found green fluorescent protein (LV-GFP)-positive cells in the hippocampus (Fig. 3A). Moreover, immunoblotting revealed Clptm1 expression is decreased after initial administering (Fig. 3B). These findings suggesting that Clptm1-shRNA was transfected successfully in epileptic model. Subsequently, we observed behavioural alterations after PTZ-induced seizures (Fig. 3C), we found seizure susceptibility and severity were markedly decreased in Clptm1-shRNA group compared to the control (Fig. 3D). Taken together, we found Clptm1 regulates epileptic seizures and that Clptm1 downregulation exerts anti-epileptic activities in epileptic model.

**Clptm1 modulates GABA<sub>A</sub>R-mediated inhibitory synaptic transmission in epileptic mouse model**

Since Clptm1 limits GABA<sub>A</sub>R forward trafficking and synaptic inhibition by altering surface GABA<sub>A</sub>R<sub>γ2</sub> expression (6), we studied weather this mechanism is involved in epilepsy. Biochemical measurements of surface-expressed receptors showed the surface GABA<sub>A</sub>R<sub>γ2</sub> expression is increased in the Clptm1-shRNA group compared to the control (Fig. 4A). Moreover, to determine whether these effects of Clptm1 downregulation on surface GABA<sub>A</sub>R<sub>γ2</sub> numbers were involved in the efficacy of synaptic suppression, mIPSCs were recorded from mouse treated with either PTZ alone or Clptm1-shRNA. As shown in Fig. 4B, the mIPSC amplitudes were increased in Clptm1-shRNA group compared to the control, but mIPSC frequencies were not changed. Taken together, these findings indicate that Clptm1 regulate GABA<sub>A</sub>R-mediated inhibitory synaptic transmission in epileptic model.

**Discussion**

Epilepsy frequently dues to an imbalance in inhibition and excitation, which is a failure of neurotransmission. The evidence between epilepsy and dysfunctional GABA<sub>A</sub>R-mediated inhibitory synaptic transmission is substantial and has been extensively reported (12-16). A decrease in the number of GABA<sub>A</sub>Rs present on the cell surface increased excitability in animal models of TLE (17-20). The epileptic animals which experienced spontaneous seizures also show failed inhibitory neurotransmission in the chronic stage (21). Association between GABA<sub>A</sub>R and regulatory proteins regulate synaptic transmission and plasticity via multiple pathways. Firstly, GABA<sub>A</sub>R exits the endoplasmic reticulum (ER) and is trac to the plasma membrane. Receptor trafficking and accumulation is regulated by associations between GABA<sub>A</sub>R and several binding partners. These associations lead to the formation of mature receptor complexes, which enables their proper localization and functions at cell surfaces and in synapses (22,23). Recently, Ge et al confirmed that Clptm1, a negative regulator that traps GABA<sub>A</sub>Rs within intracellular compartments, could limit their expression on the cell surface (6). In this study, we examined the role of clptm1 function and dysregulation of GABAergic neurotransmission in epilepsy.
Clptm1 was originally reported in a study of gene mutations in a cleft lip and palate patient family and has a role in intrathymic T-cell development (5, 24, 25). Very recently, Clptm1 has been shown to modulates forward trafficking of GABA<sub>A</sub>R and inhibitory transmission in neuron (5). However, the function of clptm1 is not fully clear in central nervous system diseases. Few studies showed that Clptm1 is associated with Alzheimer disease (AD) and low-density lipoprotein cholesterol levels (26,27). In this study, we confirmed that Clptm1 regulates epileptic seizures by modulating the number of GABA<sub>A</sub>R<sub>γ2</sub> in the plasma membrane and efficacy of inhibitory synaptic. We demonstrated that Clptm1 was upregulated in chronic epileptic animal models and in TLE patients. Then we observed that Clptm1 downregulation increased the number of GABA<sub>A</sub>R<sub>γ2</sub> in the plasma membrane and mIPSCs amplitudes. Taken together, we showed that Clptm1 downregulation may be a molecular target for treatment of epilepsy.

The γ2 subunit is distributed throughout the central nervous system and is near-ubiquitous at synaptic GABAA receptors (28,29). Thus, mutations in this receptor fundamentally change synaptic GABA<sub>A</sub> receptor-mediated phasic inhibition. γ2 subunit mutations have been involved in severe myoclonic epilepsy in infancy (SMEI), Dravet syndrome (DS), genetic epilepsy syndromes, simple febrile seizures (FS) and childhood absence epilepsy (CAE) (30). γ2 mutations disrupt inhibitory synaptic transmission by aggravating IPSCs decay rates, whereas the other four mutations all reduce the number of GABA<sub>A</sub>Rs in the plasma membrane (30-36).

In summary, GABA<sub>A</sub> receptors determine the efficacy of GABA-targeting drugs in TLE patients (37 -40). Understandably, elucidating the cellular mechanisms that modulates their assembly on the cell surface is of considerable interest. This study showed that Clptm1 is likely to modulate GABA<sub>A</sub>R-mediated inhibitory synaptic transmission throughout the brain by regulating the number of GABA<sub>A</sub>Rs at the plasma membrane in epilepsy. Nevertheless, elucidation of molecular association networks involving Clptm1 and GABA<sub>A</sub>Rs is necessary.

**Abbreviations**

| Abbreviation | Description |
|--------------|-------------|
| GABA<sub>A</sub>Rs | γ-aminobutyric acid type A receptor |
| Clptm1 | Cleft lip and palate transmembrane protein 1 |
| PTZ | Pentylenetetrazol |
| mIPSC | Miniature inhibitory post-synaptic current |
| shRNA | Short hairpin RNA |

**Declarations**

**Ethical considerations**
All patients provided written informed consents. Chongqing Medical University admitted this study.

**Consents for publication**

Not applicable.

**Availability of data and materials**

The datasets generated during the current study are available from the corresponding author on reasonable request.

**Acknowledgements**

We sincerely thank all the participants involved in this study.

**Funding**

Our research was supported by a grant from the National Natural Science Fund of China (grant number: 81771390) and Open project of clinical medical center of The First People's Hospital of Yunnan Province in 2021 (grant number:2021LCZXXF-SJ01).

**Author Contribution Statement**

Rong Li designed the study and wrote the manuscript, Ruifeng Wu, Qing Shen, Lianglin Wang and Menghao Zhang performed or assisted with all experiments, Peng Zhang collected human samples, Rong Mei and Fengli Zhang analysed the data, Sha Ma and Lan lin revised the manuscript. Yangmei Chen provided funding for the project. This manuscript was approved by all authors.

**References**

1. Blümcke I, Thom M, Aronica E et al (2013) International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 54(7):1315–1329
2. Treiman DM (2001) GABAergic mechanisms in epilepsy. Epilepsia 42 Suppl 3:8–12
3. González MI, Grabenstatter HL, Cea-Del Rio CA et al (2015) Seizure-related regulation of GABAA receptors in spontaneously epileptic rats. Neurobiol Dis 77:246–256
4. Pavlov I, Walker MC (2013) Tonic GABA(A) receptor-mediated signalling in temporal lobe epilepsy. Neuropharmacology 69:55–61
5. Yoshiura K, Machida J, Daack-Hirsch S et al (1998) Characterization of a novel gene disrupted by a balanced chromosomal translocation t (2;19) (q11.2;q13.3) in a family with cleft lip and palate. Genomics. 1;54(2):231-40

6. Ge Y, Kang Y, Cassidy RM et al (2018) Clptm1 Limits Forward Trafficking of GABA<sub>A</sub> Receptors to Scale Inhibitory Synaptic Strength. Neuron 7;97((3):596–610e8

7. Li R, Wu B, He M et al (2020) HAP1 Modulates Epileptic Seizures by Regulating GABA<sub>A</sub>R Function in Patients with Temporal Lobe Epilepsy and in the PTZ-Induced Epileptic Model. Neurochem Res 45(9):1997–2008

8. Rattka M, Brandt C, Löscher W (2012) Do proconvulsants modify or halt epileptogenesis? is ineffective in two rat models of temporal lobe epilepsy. Eur J Neurosci 36(4):2505–2520

9. Ohno Y, Ishihara S, Terada R et al (2010) Antiepileptogenic and anticonvulsive actions of levetiracetam in a pentylentetrazol kindling model. Epilepsy Res 89:360–364

10. Loscher W (2009) Preclinical assessment of proconvulsant drug activity and its relevance for predicting adverse events in humans. Eur J Pharmacol 610:1–11

11. Nutt DJ, Cowen PJ, Batts CC et al (1982) Repeated administration of subconvulsant doses of GABA antagonist drugs. Psychopharmacology 76:84–87

12. Olsen RW, DeLorey TM, Gordey M et al (1999) GABA receptor function and epilepsy. Advances in Neurology 79:499–510

13. Ben-Ari Y (2006) Seizures beget seizures: the quest for GABA as a key player. Crit Rev Neurobiol 18:135–144

14. Sperk G, Furtinger S, Schwarzer C et al (2004) GABA and its receptors in epilepsy. Advances in Experimental Medicine and Biology 548:92–103

15. Scharfman HE (2007) The neuro- biology of epilepsy. Curr Neurol Neurosci Rep 7:348–354

16. Engel JJr, Thompson PM, Stern JM et al (2013) Connectomics and epilepsy. Curr Opin Neurol 26:186–194

17. El-Hassar L, Milh M, Wendling F et al (2007) Cell domain-dependent changes in the glutamatergic and GABAergic drives during epileptogenesis in the rat CA1 region. J Physiol 578:193–211

18. Goodkin HP, Joshi S, Mtchedlishvili Z et al (2008) Subunit-specific trafficking of GABA(A) receptors during status epilepticus. J Neurosci 28:2527–2538

19. Terunuma M, Xu J, Vithlani M et al (2008) Deficits in phosphorylation of GABA(A) receptors by intimately associated protein kinase C activity underlie compromised synaptic inhibition during status epilepticus. J Neurosci. 9;28(2):376-84

20. González MI, Del Cruz Y, Brooks-Kayal A (2013) Down-regulation of gephyrin and GABAA receptor subunits during epileptogenesis in the CA1 region of hippocampus. Epilepsia 54:616–624

21. Brooks-Kayal AR, Shumate MD, Jin H et al (1998) Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med 4:1166–1172
22. Davenport EC, Pendolino V, Kontou G et al (2017) An Essential Role for the Tetraspanin LHFPL4 in the Cell-Type-Specific Targeting and Clustering of Synaptic GABA<sub>A</sub> Receptors. Cell Rep. 3;21(1):70-83
23. Yamasaki T, Hoyos-Ramirez E, Martenson JS et al (2017) GARLH Family Proteins Stabilize GABA<sub>A</sub> Receptors at Synapses. Neuron 93(5):1138–1152e6
24. Takeuchi T, Kuro-o M, Miyazawa H et al (1997) Transgenic expression of a novel thymic epithelial cell antigen stimulates aberrant development of thymocytes. J Immunol 159:726–733
25. Inoue K, Hatano K, Hanamatsu Y et al (2019) Pathobiological role of cleft palate transmembrane protein 1 family proteins in oral squamous cell carcinoma. J Cancer Res Clin Oncol 145(4):851–859
26. Gockley J, Montgomery KS, Poehlman WL et al (2021) Multi-tissue neocortical transcriptome-wide association study implicates 8 genes across 6 genomic loci in Alzheimer's disease. Genome Med. 4;13(1):76
27. Yang T, Wei P, Pan W, Olsen RW, Sieghart W (2021) (2009) GABA<sub>A</sub> receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology. 56:141–148
28. Olsen RW, Sieghart W (2009) GABA<sub>A</sub> receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56:141–148
29. Pirker S, Schwarzer C, Wieselthaler A et al (2000) GABA<sub>A</sub> receptors: immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 101:815–850
30. Kang JQ, Macdonald RL (2016) Molecular Pathogenic Basis for GABRG2 Mutations Associated With a Spectrum of Epilepsy Syndromes, From Generalized Absence Epilepsy to Dravet Syndrome. JAMA Neurol 73(8):1009–1016
31. Sancar F, Czajkowski C (2004) A GABA<sub>A</sub> receptor mutation linked to human epilepsy (b2R43Q) impairs cell surface expression of abg receptors. J. Biol Chem 279:47034–47039
32. Hales TG, Tang H, Bollan KA et al (2005) The epilepsy mutation, g2(R43Q) disrupts a highly conserved inter-subunit contact site, perturbing the biogenesis of GABA<sub>A</sub> receptors. Mol Cell Neurosci 29:120–127
33. Tan HO, Reid CA, Single FN et al (2007) Reduced cortical inhibition in a mouse model of familial childhood absence epilepsy. Proc. Natl. Acad. Sci. U S A, 104, 17536–17541
34. Chaumont S, André C, Perrais D et al (2013) Agonist-dependent endocytosis of g-aminobutyric acid type A(GABA<sub>A</sub>) receptors revealed by a g2(R43Q) epilepsy mutation. J Biol Chem 288:28254–28265
35. Huang X, Hernandez CC, Hu N et al (2014) Three epilepsy-associated GABRG2 missense mutations at the g+/b- interface disrupt GABA<sub>A</sub> receptor assembly and trafficking by similar mechanisms but to different extents. Neurobiol Dis 68:167–179
36. Todd E, Gurba KN, Botzolakis EJ et al (2014) GABA<sub>A</sub> receptor biogenesis is impaired by the g2 subunit febrile seizure-associated mutation, GABRG2(R177G). Neurobiol Dis 69:215–224
37. Naylor DE, Liu H, Wasterlain CG (2005) Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci 25:7724–7733
38. Kaila K, Ruusuvuori E, Seja P et al (2014) GABA actions and ionic plasticity in epilepsy. Curr Opin Neurobiol 26:34–41

39. Li ZX, Yu HM, Jiang KW (2013) Tonic GABA inhibition in hippocampal dentate granule cells: its regulation and function in temporal lobe epilepsies. Acta Physiol (Oxf) 209(3):199–211

40. Pavlov I, Walke MC (2013) Tonic GABA(A) receptor-mediated signalling in temporal lobe epilepsy. Neuropharmacology 69:55–61

**Tables**
### Table 1-1 Clinical characteristics of patients with TLE

| No. | Sex (M/F) | Age (years) | Duration | AEDs (years) | Resected tissue | Pathology result |
|-----|-----------|-------------|----------|--------------|-----------------|------------------|
| 1   | M         | 7           | 3        | OXC, CLB, VPA, TPM | LTN             | G               |
| 2   | F         | 12          | 5        | OXC, VPA, GBP  | LTN             | G, NL            |
| 3   | F         | 23          | 8        | OXC, VPA, IPM  | RTN             | G, NL            |
| 4   | F         | 17          | 5        | VPA, CBZ, IPM  | RTN             | G, NL, ND        |
| 5   | M         | 21          | 5        | CBZ, VPA, CLB  | LTN             | G, NL, ND        |
| 6   | M         | 13          | /        | LTG, IPM, CBZ  | RTN             | G               |
| 7   | F         | 21          | 4        | VPA, PB, CBZ, LEV| LTN             | G, NL, ND        |
| 8   | M         | 36          | 18       | CBZ, VPA, CLB, IPM | LTN             | G, NL, ND        |
| 9   | M         | 16          | /        | OXC, VPA, PHT  | LTN             | G, NL            |
| 10  | F         | 28          | 11       | VPA, CBZ, PHT  | RTN             | G, NL            |

### Table 1-2 Clinical characteristics of the control group

| No. | Sex | Age (years) | Etiology diagnosis | Resected tissue | Seizure | Pathologic result |
|-----|-----|-------------|--------------------|-----------------|---------|-------------------|
| 1   | F   | 13          | Brain trauma       | LTN             | None    | Normal            |
| 2   | M   | 24          | Brain trauma       | LTN             | None    | Normal            |
| 3   | M   | 20          | Brain trauma       | RTN             | None    | Normal            |
| 4   | M   | 25          | Brain trauma       | LTN             | None    | Normal            |
| 5   | F   | 25          | Brain trauma       | RTN             | None    | Normal            |
| 6   | M   | 31          | Brain trauma       | LTN             | None    | Normal            |
| 7   | M   | 18          | Brain trauma       | LTN             | None    | Normal            |
| 8   | M   | 44          | Brain trauma       | RTN             | None    | Normal            |
| 9   | F   | 36          | Brain trauma       | LTN             | None    | Normal            |
| 10  | F   | 33          | Brain trauma       | RTN             | None    | Normal            |

F, female; M, male; AEDs, anti-epileptic drugs; OXC, oxcarbazepine; CLB, clonazepam; VPA, valproic acid; TPM, topiramate; GBP, gabapentin; CBZ, carbamazepine; LTG, lamotrigine; PB, phenobarbital; LEV, levetiracetam; PHT, phenytoin; RTN, right temporal neocortex; LTN, left temporal neocortex; NL, neuronal loss; ND, neuronal degeneration; G, gliosis.

**Figures**
**Figure 1**

Clptm1 is localized in neuron and interacted with GABA$_A$Ry2 in epileptic brain

**A, B, C:** The location of Clptm1 in epileptic brain. Immunofluorescent labelling showed that Clptm1 (red) co-localized with MAP2 (green) in TLE patients and both at cortex or hippocampus of epileptic mouse, but Clptm1 (red) are not co-localized with GFAP (green). Additionally, Clptm1 (red) co-localized with GABA$_A$Ry2 (green) in epileptic brain. Scale bar = 50 µm (400×).

**D, E, F:** The interaction of Clptm1 and GABA$_A$Ry2 in epileptic brain. Coimmunoprecipitation showed that Clptm1 is interacted with GABA$_A$Ry2 in TLE patients, and the cortex as well as hippocampal neuron of the epileptic mouse are also.

**Figure 2**

GABA$_A$Ry2 and Clptm1 expression are altered in epileptic brain

**A.** GABA$_A$ Ry2 expression in TLE patients and control. Western blot demonstrated that GABA$_A$ Ry2 expression in TLE patients was decreased compared to the control (n=12 pairs, **P < 0.01).

**B, C.** GABA$_A$Ry2 expression in epileptic model and normal mouse. In chronic epileptic model, Clptm1 was decreased at hippocampus and cortex in epileptic model compared to the control (**P < 0.01, n=12 pairs).

**D:** Clptm1 expression in TLE patients and control. Western blot demonstrated that Clptm1 expression in TLE patients was increased compared to the control. (n=12 pairs, **P < 0.01).
E, F: Clptm1 expression in epileptic brain and normal mouse. Also, in chronic epileptic model, Clptm1 was increased at the hippocampus and cortex compared to the control. (n=12 pairs, *P < 0.05).

Figure 3

Clptm1 regulated PTZ-induced Seizure

A: Exogenous LV-GFP in the mouse hippocampus. Fluorescence (FITC)-labelled cells were transfected with exogenous LV-GFP. Scale bar = 50 µm (400×).

B: Clptm1 expression in Clptm1-shRNA mouse. Western blot demonstrated that Clptm1 was decreased at 7 and 14 d post Clptm1-shRNA administration compared to the control (n=5, *P<0.05).

C: Schematic overview of Clptm1-shRNA + PTZ administration in vivo.

D: Behavior evaluation in Clptm1-shRNA. The severity and susceptibility of seizures were decreased in the Clptm1-shRNA compare to controls (Thirty mice were randomized into 3 groups of 10 each, *P < 0.05).

Figure 4
Clptm1 regulates GABA\textsubscript{A}R-mediated inhibitory synaptic transmission in epileptic model

**A:** GABA\textsubscript{A}R\textsubscript{γ2} expression in Clptm1-shRNA and control. Western blot demonstrated that the surface GABA\textsubscript{A}R\textsubscript{γ2} expression in the Clptm1-shRNA group was increased compared to the control (n=5, *P < 0.05).

**B:** mIPSCs in Clptm1-shRNA and control. mIPSCs amplitudes were increased in Clptm1-shRNA group compared to the control (n=15, **P < 0.01). No difference in mIPSCs frequencies.

Error bars denote mean ± SEM.