Väisälä, Miikka; Pekkilä, Johannes; Käpylä, Maarit; Rheinhardt, Matthias; Shang, Hsien; Krasnopolsky, Ruben

Interaction of large- and small-scale dynamos in isotropic turbulent flows from GPU-accelerated simulations

Published in:
The Astrophysical Journal

DOI: 10.3847/1538-4357/abceca

Published: 01/02/2021

Document Version
Peer reviewed version

Published under the following license:
Unspecified

Please cite the original version:
Väisälä, M., Pekkilä, J., Käpylä, M., Rheinhardt, M., Shang, H., & Krasnopolsky, R. (2021). Interaction of large- and small-scale dynamos in isotropic turbulent flows from GPU-accelerated simulations. The Astrophysical Journal, 907(2), [83]. https://doi.org/10.3847/1538-4357/abceca
Interaction of large– and small–scale dynamos in isotropic turbulent flows from GPU–accelerated simulations

MIKKI S. VÄISÄLÄ,1 JOHANNES PEKKILÄ,2 MAARIT J. KÄPYLÄ,3,2,4 MATTHIAS RHEINHARDT,2 HSIEH SHANG,1 AND RUBEN KRASNOPOLSKY1

1 Academia Sinica, Institute of Astronomy and Astrophysics, Taipei, Taiwan
2 Department of Computer Science, Aalto University, Espoo, Finland
3 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
4 Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden

ABSTRACT

Magnetohydrodynamical (MHD) dynamos emerge in many different astrophysical situations where turbulence is present, but the interaction between large-scale (LSD) and small-scale dynamos (SSD) is not fully understood. We performed a systematic study of turbulent dynamos driven by isotropic forcing in isothermal MHD with magnetic Prandtl number of unity, focusing on the exponential growth stage. Both helical and non-helical forcing was employed to separate the effects of LSD and SSD in a periodic domain. Reynolds numbers (ReM) up to ≈ 250 were examined and multiple resolutions used for convergence checks. We ran our simulations with the Astaroth code, designed to accelerate 3D stencil computations on graphics processing units (GPUs) and to employ multiple GPUs with peer-to-peer communication. We observed a speedup of ≈ 35 in single-node performance compared to the widely used multi-CPU MHD solver Pencil Code. We estimated the growth rates both from the averaged magnetic fields and their power spectra. At low ReM, LSD growth dominates, but at high ReM SSD appears to dominate in both helically and non-helically forced cases. Pure SSD growth rates follow a logarithmic scaling as a function of ReM. Probability density functions of the magnetic field from the growth stage exhibit SSD behaviour in helically forced cases even at intermediate ReM. Our results are consistent with the SSD inhibiting the growth of the LSD at moderate ReM, while the dynamo growth is enhanced at higher ReM.

Keywords: Magnetic fields — Magnetohydrodynamics — Astrophysical fluid dynamics — Computational methods — GPU computing

1. INTRODUCTION

1.1. Astrophysical background

Nearly all astrophysical objects, ranging from planets, accretion disks, stars and galaxies to the intergalactic medium, host magnetic fields coherent over the largest scales of the system. At the same time, the matter in which the magnetic fields originate, is in a vigorously turbulent state, and often the driving scale of the turbulence is at small or intermediate scales with respect to the system scale (see, e.g., Rincon 2019). Hence, a theoretical explanation of how these objects can sustain large-scale magnetic fields, driven by small-scale turbulence, is required. One such theoretical framework is the theory of αΩ dynamos, where helical turbulence together with large-scale non-uniformities in the rotation profile excite magnetic field at the largest scales (as originally proposed by Parker 1955). Here, kinetic helicity is thought to arise from stratification and rotation. Large-scale dynamos (hereafter LSD) do not necessarily need rotational non-uniformities, but can also work solely based on helical turbulence, then denoted as α2 dynamos (see, e.g., Krause & Rädler 1980). As the α effect is such a fundamental building block of LSDs, studying it in isolation has been a persistent task. Many details and questions, however, still remain open, especially at vigorously turbulent regimes, which to reach numerical models still struggle.
Another dynamo instability, namely the fluctuation dynamo (or small-scale dynamo, hereafter SSD) is excited in astrophysical flows for magnetic Reynolds numbers (Re_M) exceeding a threshold value, which is thought to happen in most astrophysical settings (as originally proposed by Kazantsev 1968). SSD generates random magnetic fields primarily below the scales of the forcing, and their growth rate is high, providing a plausible explanation for magnetic fields in galaxy clusters, or fluctuating fields seen on the solar surface. The latter, however, remains under some debate, as SSD in a low magnetic Prandtl number (Pr_M) environment like the Sun is notoriously hard to excite in numerical experiments.

In nearly all astrophysical objects, LSD and SSD instabilities may co-exist. Their interactions, however, are poorly understood, mainly because it is very challenging numerically to include them both in one and the same model, and only quite recently, such modelling efforts have become feasible. Also, whenever turbulent enough regimes can be reached, it becomes very difficult to disentangle the two dynamos, as also LSD produces fluctuating magnetic fields by turbulent tangling of the large-scale field. One of the earliest theoretical scenarios was catastrophic quenching of the LSD by the growing magnetic fluctuations, resulting in the suppression of the α effect proportional to Re_M^{-1}, meaning in practice that no α-effect related LSD could be excited in astrophysical objects (Cattaneo & Vainshtein 1991). This is now understood to be a special case, detrimentally constrained by magnetic helicity conservation, e.g. due to closed boundaries, such that helicity fluxes cannot occur (Brandenburg & Subramanian 2005). How these fluxes, which alleviate catastrophic quenching, occur in cosmic objects, however, is not known in detail.

It has also been proposed that SSD can help LSD in shear dynamos in the absence of the α effect, through the so-called magnetic shear-current effect (e.g. Squire & Bhattacharjee 2015), but its potential still remains debated (e.g. Käpylä et al. 2020). Hotta et al. (2016) claimed that, in simulations of turbulent magnetoconvection, the SSD would first suppress LSD at intermediate Re_M, but would let it recover at higher Re_M. This result was based on measuring the strength of the large-scale field at a few Re_M values, but the diffusion scheme was changed in between the different runs, due to which a straightforward interpretation is difficult.

Many numerical studies have been undertaken concentrating on LDS driven by helical forcing or SSDs by non-helical forcing, in the former case also including unintentionally or intentionally both dynamos. Brandenburg (2001) demonstrated how helically driven turbulence could give rise to large-scale structures based on non-local interactions at the forcing scale. Their simulations employed isotropically driven forced turbulence with various resolutions and Reynolds numbers, to systematically demonstrate the inverse cascade of MHD-turbulence. In some of these runs both LSD and SSD were present, but even though the evolution of mean and fluctuating fields was monitored separately, no attempt to study the LSD-SSD interactions was made.

In the galactic context, Gent et al. (2013) studied supernova-driven flows, where the magnetic Reynolds number again permitted both dynamos together. They made an attempt to separate the growth rates of SSD and LSD by using a Gaussian smoothing procedure, but their setup was too complex to derive any reliable information on the two dynamo processes. Moreover, their viscosity scheme allowed for a spatially varying Pr_M, hence the excitation conditions for the different dynamos were more favourable in regions with hot gas, in which most likely, most of the SSD action occurred. Both dynamos together have also been seen in turbulent convection simulations Käpylä et al. (2008), and there different growth rates were detected for mean and fluctuating magnetic fields, following a Re_M^{1/2} scaling. Brandenburg et al. (2018) compare the results from several studies of helically and non-helically forced turbulence models, and show that the growth rate of the SSD is following the same scaling. Moreover, in helical system possessing both dynamos, the same growth rate is observed. Their data, however, is sparse, hence the Re_M-dependence not very certain.

There is a rich literature on SSDs, studied in isolation in non-helical setups. Most of it concentrates either on high Pr_M, relevant for ISM and intergalactic medium, or low Pr_M, important for accretion disks and stellar convection zones. Both regimes are numerically extremely challenging, as the magnetic diffusivity has to be set to values much lower/higher than viscosity, and resolving such systems numerically is difficult. Here we avoid these complications by concentrating on the regime Pr_M = 1 and make an effort to analyze the interaction of LDS and SSD.

The objective of this study is twofold. First, we aim at replicating the work of Brandenburg (2001), and then at exploring a wider range of resolution and Re_M. Second, we provide the first physical application of the multi-GPU magnetohydrodynamics code Astaroth (Pekkilä et al. 2017; Väisälä 2017; Pekkilä 2019) which features novel methods for efficiently calculating high-order finite-difference derivatives, based on large stencils.
1.2. Emergence of GPU computation

In the last ten years, the emergence of graphics processing units (GPUs) has enabled several times higher throughput in data-parallel tasks, compared with central processing units (CPUs) traditionally used in high-performance computing\(^1\). GPUs excel in tasks, where the same operation can be executed on a very high number of data elements in parallel. In contrast to CPUs, GPUs have been designed to maximize the throughput of memory systems with the cost of higher memory access latency (Hennessy & Patterson 2011). Therefore, ensuring there is a sufficient amount of parallel work to hide latencies is critical for obtaining high performance.

GPUs provide an attractive platform for stencil codes, where each grid point in the problem domain can be updated in parallel. Stencil codes are commonly used in, for example, finite-difference fluid simulations (Brandenburg 2001) and image processing (Mullapudi et al. 2015; Ragan-Kelley 2014). However, following the multi-core revolution and the introduction of highly-parallel accelerators to general-purpose computing, converting existing codes to use all of the capabilities of the hardware has been a significant challenge (Asanovic et al. 2009). Writing efficient programs for these architectures often requires deep knowledge in their hardware and execution models.

GPUs are programmed using the stream programming model, where the programmer defines a stream of instructions to be executed in parallel on a multitude of stream processors. Each individual stream can access data from different memory locations or follow different execution paths.

A notable complication in GPU programming is finding efficient caching techniques to reduce pressure onto off-chip memory. As GPUs are capable of high arithmetic throughput, it is paramount to ensure that the stream processors do not become starved of data. This is especially an issue in high-order finite-difference codes, where the ratio of arithmetic operations to bytes transferred is generally low. Because the optimal caching technique depends on several factors, such as the problem size and stencil shape, the optimal implementation for one workload does usually not carry to another. This presents a major obstacle in studying physical phenomena, or developing new mathematical models by GPUs, as a significant amount of time must be spent on writing, debugging and optimizing the code.

There have been several proposals to make GPU programming more convenient, e.g. high-level language extensions, such as OpenACC (OpenACC.org 2019). However, high-level programming models are argued to lack the expressiveness to translate more complex tasks, especially those that require advanced caching techniques, into efficient code (Sujeeth et al. 2014; Carter Edwards et al. 2014). More specialized approaches have also been suggested. Frameworks focusing on solving PDEs in structured grids include SBLOCK (Brandvik & Pullan 2010), Fargo3D (Benítez-Llambay & Masset 2016) and Cactus (Goodale et al. 2003). Alternative approaches focused on achieving near hand-tuned performance and performance-portability have been demonstrated by Lift (Hagedorn et al. 2018) and Delite (Sujeeth et al. 2014). Lift translates high-level algorithmic primitives into lower-level code based on rewrite rules, while Delite provides an intermediate language, which can be used as a basis for building domain-specific languages (DSLs).

Yet another approach is to provide a compiler for generating efficient code from sources written in a DSL. For example, Polymage (Mullapudi et al. 2015) and Halide (Ragan-Kelley 2014) provide a DSL and a compiler for generating two-dimensional image processing pipelines. In contrast to the above approaches, Astaroth has been tailored for high-order stencil computations with special consideration of caching coupled fields commonly found in multiphysics simulations, such as velocity coupled with magnetic field in MHD induction equation (See Equation 3). By caching the results of intermediate stencil operations, traffic to main memory is reduced significantly when these intermediate results are used to update multiple fields.

In previous work, we have presented the Astaroth library (Pekkilä 2019). In the case of this study, we have extended it to work on multiple GPUs and utilized it to simulate resistive MHD turbulence and the emergence of dynamos. Inter-GPU communication is carried out using peer-to-peer memory copy functions provided by the CUDA API. However, as these functions do not support inter-node transfers, our implementation is limited to computations within a single node. An implementation for multiple nodes is the subject of ongoing work.

2. CORE METHODS

In this study, we use the model of magnetohydrodynamics to examine the growth of small- and large-scale dynamos (SSD and LSD respectively). Hence, the sys-

\(^1\) A Tesla V100-SXM2-32GB GPU provides an arithmetic performance of 7.83 TFLOPS (floating-point operations per second) and 863 GB/s off-chip memory bandwidth (NVIDIA 2017; Jia et al. 2018), whereas an Intel Xeon Gold 6230 CPU has the theoretical peak performance of 1.25 TFLOPS and 131 GB/s bandwidth (Intel 2020). Therefore a GPU could theoretically provide roughly 6× improved throughput in data-parallel tasks.
tems examined are essentially non-linear. To excite a dynamo, turbulence is a highly suitable (but not necessary) ingredient. Some properties of dynamo-capable systems can be described qualitatively: In a small-scale dynamo, the magnetic field grows through cascading turbulence and the resulting entanglements, at scales smaller than the turbulence driving scale. In such a situation merely sufficiently high magnetic Reynolds numbers are required (Haugen et al. 2004). In a large-scale dynamo, turbulent helical flows result in growth of magnetic field at scales larger than the flow scales, in the extreme at the largest scales possible (Brandenburg 2001). To understand LSD action, often the perspective of mean-field theory is taken which is discussed more closely in Section 5.4.

Because the dynamo processes are non-linear, exploring them requires direct numerical simulations (DNS). They can mimic laboratory experiments by studying how the systems react to changing parameters. For such DNS, codes are required which can support two central features. The first is resistive MHD, as a dynamo is commonly supposed to be impossible under ideal-MHD conditions because magnetic reconnections are thought to be a necessary part of the self-amplification of the magnetic field (Rincon 2019). The second important feature is a high-order numerical PDE solver to effectively minimize uncontrolled numerical diffusion and to resolve the fine structure of turbulence with high accuracy (Brandenburg 2003).

There are many openly accessible codes which meet these requirements, such as the Pencil Code (NORDITA 2020). However, the Pencil Code works presently only with traditional CPU-parallelism via MPI communication. GPU acceleration can significantly reduce the computational costs, and here we demonstrate the use of the GPU code Astaroth with similar properties as the Pencil Code. Astaroth is a software library developed for accelerating stencil computations especially in high-order accurate simulations. In such tasks, Astaroth has been shown to provide higher throughput and energy-efficiency than CPU-based solvers (Pekkilä 2019). The Astaroth library consists of an application-programming interface (API), a domain-specific language (DSL), an optimizing compiler that performs source-to-source translation from DSL sources to CUDA kernels, and a toolbox for carrying out common tasks, such as executing reductions on GPUs.

However, this study uses Astaroth in a more specific way. The Astaroth API is surrounded by supplementary code, like tools for purposes of input and output, testing, interfacing, data analysis and data processing. These additions allow Astaroth to be used as a self-sufficient MHD code. As a self-sufficient MHD code, Astaroth has following properties, in addition to the general features provided by the library:

- **Physics (with DSL)**
 - Continuity equation.
 - Momentum equations, with full description of viscosity.
 - Resistive induction equation.
 - Energy equation in terms of entropy and ideal gas equation of state. (Not used in this study.)
 - Isotropic random forcing.

- **Numerical methods**
 - 6th-order finite difference scheme for calculating derivatives.
 - 3rd-order 2N-Runge-Kutta time integration.

- **Auxiliary tools**
 - Simulation suite for running DNS, which handles the tasks required on the CPU host side.
 - Autotest suite to check coherence between GPU and CPU operations.
 - Limited live rendering features for testing and demonstration purposes.
 - Python toolbox for data post-processing, visualization and analysis.

What is novel about Astaroth, is the versatile GPU implementation. Because Astaroth can be directed using the Domain Specific Language (DSL), it is flexible with adding new physics operations additionally to the ones that exist without making demanding case-by-case implementations on the level of CUDA. In the following Section 3, we will discuss GPU implementation aspect of this work before returning to the physical problem (Sections 4 and 5).

Astaroth outputs time series and binary datacubes, which were reduced, Fourier transformed, imaged and fitted with Python using tools from the SciPy, NumPy and Matplotlib packages (Virtanen et al. 2020; Harris et al. 2020; Hunter 2007). Our analysis resulted in several values from performed post-processing, and for this, the Pandas tool (The Pandas Development Team 2020; McKinney 2010) proved to be useful. Pandas made it possible to store results from several post-processing routines into an extended table. This table could then be accessed to organize and cross-reference our results with relative ease. Paraview was utilized for 3D visualization (Ayachit 2015).
3. MULTI-GPU IMPLEMENTATION

Next, we describe our approach of distributing the workload to multiple GPUs on a single computational node.

3.1. Terminology

The finite-difference method belongs to the class of stencil schemes, where data values assigned to points in a structured grid are updated by sampling the neighborhood of each grid point according to a specific pattern, called a stencil, see Figure 1. The radius of a symmetric stencil is denoted as \(r \), which is the Chebyshev distance in grid indices from the center point to the furthest points of the stencil. We use the term \(k \)th-order stencil for a stencil used to calculate derivatives with \(k \)th-order accurate finite differences.

The number of grid points in the computational domain is denoted by the triple \(\mathbf{N} = (N_x, N_y, N_z) \). In this work, we split the grid along the \(z \)-axis for \(p \) devices such that the size of the computational domain, local to each device is \(\mathbf{n} = (n_x, n_y, n_z) = (N_x, N_y, N_z/p) \). We use the term device to refer to a GPU controlled by a host CPU.

Some stencil points, required for updating grid points near its boundaries, fall outside the local computational domain. The entirety of those points is called the halo. The total size of the grid, including the halo, is therefore \(\mathbf{m} = (n_x + 2r, n_y + 2r, n_z + 2r) \). For \(p \geq 2 \), some of the halo points map to the computational domain of a neighboring device. The data values at these points must be communicated between the contributing devices after each update step. The structure of the grid is visualized in Figure 2.

To make a distinction between the halo and the area which is subject to boundary conditions (BCs), we call the latter the ghost zone. The ghost zone exists for all devices assigned to the boundaries of the global computational domain. Our discussion here focuses specifically on communicating non-ghost-zone halos between neighboring devices, which we refer to as halo exchange. Halo exchange can be easily adapted to support periodic BCs by wrapping ghost zones around the global computational domain instead of excluding them from communication. Other BCs may require an additional communication step to update the ghost zone. These are left out of scope.

3.2. Astaroth domain-specific language

The Astaroth domain-specific language (DSL) is a stream programming language designed to facilitate the writing of stencil kernels for GPUs. It provides an abstraction level similar to graphics shading languages, such as GLSL (Khronos Group 2020). The syntax is an extended subset of C-like languages, providing basic datatypes, operators and tools for control flow, and extending the syntax by adding stream programming constructs and, for example, function type qualifiers for specifying reusable data. Precision of real numbers is not specified by the DSL, but instead passed as a compilation parameter when building the Astaroth executable.

In previous work, we made three assumptions when designing our DSL. Firstly, we assumed that computations are carried out on a structured grid. Secondly, we assumed that each grid point is updated using the same memory access pattern. Finally, we assumed that the result of intermediate operations can be cached and used multiple times when updating a grid point. This assumption is the most significant one in terms of per-
formance, as it avoids the repetition of expensive intermediate operations which involve reading from slow off-chip memory. In our case, for example, the current density can be reused to update velocity and entropy.

Astaroth provides a source-to-source compiler for generating efficient CUDA kernels from functions written in the DSL. In addition to optimizations applied during code generation, an automatic optimization is performed at runtime to find the most efficient problem decomposition for the given problem size and hardware.

For this work, we have written the integration kernel used for the MHD simulations solely with the DSL. For further discussion on its syntax and implementation details, we refer the reader to Pekkilä (2019).

3.3. Domain decomposition

In this work, we decompose the computational domain along a single axis before distributing the subdomains to multiple GPUs. The major benefit of this approach is, that it is simple to implement, while providing sufficiently efficient scaling within a single node. The main drawback is, that one-dimensional decomposition is not suitable for large-scale applications, due to the fact that the size of the exchanged halo decreases at a much slower rate as a function of the number of devices compared with multi-dimensional decomposition schemes. The benefits of the latter for high-order stencil codes will be discussed in more detail in upcoming work.

3.4. Functions and data dependencies

In order to hide communication latency, it is critical to carry out computations in parallel with communication. For this, the computational domain must be divided into inner and outer subdomains. The inner computational domain consists of the grid points which can be updated without sampling points in the halo, hence the update can be carried out in parallel with halo exchange. The outer computational domain is formed by the remaining points which can only be updated if the data in the halos is up-to-date. The CUDA API provides concurrency primitives, called streams, which can be used to achieve parallel execution of asynchronous kernels and memory transfers.

We use two buffers for storing the state of the system in order to avoid data races. During integration, we read the data from an input buffer and store the result in a separate output buffer. The buffers are swapped after each substep.

A single simulation step comprises the execution of the following functions. Here we use the term local to refer to computations or memory operations which do not require halo exchange. The term global is used for operations depending on non-local data.

- **Local boundary transfer.** Update the portion of the halo, which depends exclusively on data resident in the local memory system according to the BCs.
- **Local update.** Advance the state of the points in the inner computational domain in time.
- **Halo exchange.** Exchange a portion of the halos between neighboring devices.
- **Global update.** Advance the state of the points in the outer computational domain in time.
- **Buffer swap.** Swap the input and output buffers in preparation for the next substep.
- **Barrier synchronization.** Synchronize the execution state of all devices.

The dependencies between these functions and their execution order are visualized in Figure 3. Performance enhancements provided by this implementation are listed in Appendix A.

4. MAGNETOHYDRODYNAMICAL MODEL

We used the continuity, momentum and induction equations of isothermal resistive MHD, corresponding with Brandenburg (2001):

$$\frac{D \ln \rho}{Dt} = -\nabla \cdot \mathbf{u}$$

(1)
\[
\frac{Du}{Dt} = -c_s^2 \nabla \ln \rho + \frac{j \times B}{\rho} + \nu \left[\nabla^2 \mathbf{u} + \frac{1}{3} \nabla (\nabla \cdot \mathbf{u}) + 2 \mathbf{S} \cdot \nabla \ln \rho \right] + \mathbf{f}
\]
\[\frac{\partial \mathbf{A}}{\partial t} = \mathbf{u} \times \mathbf{B} + \eta \nabla^2 \mathbf{A},\]

where, \(\rho \) is density, \(\mathbf{u} \) is velocity, \(\mathbf{A} \) is the magnetic vector potential with \(\mathbf{B} = \nabla \times \mathbf{A} \) being the magnetic field, \(\mathbf{j} = \nabla \times \mathbf{B}/\mu_0 \) is the current density, \(\mathbf{S} \) is the traceless rate-of-strain tensor and \(\mathbf{f} \) is an external forcing. Of constants, \(c_s \) is the isothermal speed of sound, \(\mu_0 \) the magnetic vacuum permeability, \(\nu \) the kinematic viscosity and \(\eta \) the ohmic diffusivity. Note the use of the diffusive gauge in Equation (3) for enhanced numerical stability. In the continuity Equation (1) we have used the high-order upwinding method of Dobler et al. (2006) to enhance numerical stability.

We included a forcing function similar to the one in Pencil Code (NORDITA 2020) to generate turbulence. It can be described as,

\[
f(\mathbf{x}, t) = \text{Re} \left\{ N f_k(t) \exp \left[ik(t) \cdot \mathbf{x} + i\phi(t) \right] \right\}.
\]

Here \(\mathbf{k}(t) = (k_x, k_y, k_z) \) is a wave vector that changes randomly in each time step, \(\mathbf{x} \) is a position on the grid and \(\phi(t) \) is a random phase in range \([- \pi, \pi]\). The normalization factor is set as

\[
N = f_0 c_s \sqrt{\frac{k c_s}{\delta t}}.
\]

where \(k = |\mathbf{k}| \) and \(f_0 \) is a scaling factor. For each given time step we randomly generate vectors where \(4.5 \leq |\mathbf{k}| \leq 5.5 \), such that \(k_x, k_y \) and \(k_z \) are integers.

We determine eigenfunctions of the curl operator as

\[
f_k = \frac{\mathbf{k} \times (\mathbf{k} \times \hat{\mathbf{e}}) - i\sigma |\mathbf{k}| (\mathbf{k} \times \hat{\mathbf{e}})}{\sqrt{1 + \sigma^2 k^2 / \sqrt{1 - (\mathbf{k} \cdot \hat{\mathbf{e}})^2 / k^2}}},
\]

where \(\hat{\mathbf{e}} \) is a random unit vector perpendicular to \(\mathbf{k} \). The forcing function is almost identical to the one presented in Brandenburg (2001). However, the factor \(\sigma \in [0, 1] \) is included to control the degree of helicity, so that with \(\sigma = 1 \) we get \(\sqrt{2} \) instead of \(2 \) of Brandenburg (2001) in the denominator of Equation (6). Therefore, to match the normalizations, we have set \(f_0 = 0.08 \) instead of \(f_0 = 0.1 \) in our models.

For the numerical domain we have adopted the size \(L_{x,y,z} = 2\pi \) so that the smallest wave number in the domain is \(k_1 = 1 \), hence the unit length of \(\mathbf{x} \) was set to unity. We set the unit of velocity \(\mathbf{u} \) to be \(c_s = 1 \), and the unit of density \(\rho \) to \(\rho(\mathbf{x}, 0) = \rho_0 = 1 \), where \(\rho_0 \) is the uniform initial density. For the magnetic field \(\mathbf{B} \) we choose a unit system in which \(\mu_0 = 1 \) and hence set its unit as \(\sqrt{\mu_0 \rho_0 c_s} = 1 \). Therefore the units are equivalent to the ones in Brandenburg (2001).

For describing the results, the nondimensional kinetic and magnetic Reynolds numbers,

\[
\text{Re} = \frac{u_{\text{rms}}}{\nu k_1} \quad \text{and} \quad \text{Re}_M = \frac{u_{\text{rms}}}{\eta k_1}
\]

respectively, are useful. Here \(k_1 \) is the average wave number of the forcing function and \(u_{\text{rms}} \) is the root mean square of the velocity. For the Reynolds numbers presented, we have used measures of \(u_{\text{rms}} \) at the growth stage of dynamo, hereafter \(u_{\text{rms,0}} \). In most of our simulations, \(k_1 = 5 \) while a few have \(k_1 = 15 \), and we keep the magnetic Prandtl number \(\text{Pr}_M = \nu/\eta \) at unity.

Tables 1 and 2 list our helical and non-helical turbulence simulation setups. We run our forcing function with both full helicity (\(\sigma = 1 \)) and without helicity (\(\sigma = 0 \)). This allows us to compare effects which are either due to LSD or SSD. We started our simulations with uniform density, zero velocity and a weak Gaussian random magnetic field, which was \(\delta \)-correlated in space, as a seed field. We also run our models with multiple resolutions to monitor convergence. Apart from the forcing helicity, the other physical parameters varied were \(\nu = \eta \). At the high end, they correspond to the ones featured in Brandenburg (2001). At the low end however, the limit for \(\nu \) and \(\eta \) and therefore \(\text{Re}_M \) is set by the maximum available resolution, limited by the available total GPU memory in a computational node. A single node with 4 Tesla P100 devices was able to support \(512^3 \) grid resolution at maximum. A significant part of the analysis was dependent on global averages calculated during runtime, and the reduction method required a computational domain resolution with \(2^n \) grid points. The version of Astaroth used for this work did not yet provide support for multiple nodes, which would have overcome this issue.

The runs with insufficient resolution tended to crash very early. However, those that kept stable after beginning would keep stable until the end. We avoided using 512\(^3\) resolution unless necessary to save hard drive space in the computing cluster and for avoiding unnecessary post-processing time. In addition we set \(t_{\text{max}} = 2000 \) instead of 4000 for 512\(^3\), which might affect our estimates related to the saturation stage. In addition, we run a smaller set of runs to \(t_{\text{max}} = 600 \) and a short snapshot interval to perform some more advanced analysis at the exponential growth stage.

During the growth stage, we fit an exponential function to estimate the growth rate \(\lambda \) or \(\lambda_k \) of our models.
Table 1. Simulation setups and their properties, with helical forcing (\(\sigma = 1\))

\(N\)	\(\eta\)	\(\lambda\)	\(Re_M\)	\(\alpha\)	\(\eta\)
64	5.00e-03	1.37e-02	2.99e+00	2.18e-02	4.68e-03
128	5.00e-03	1.79e-02	3.50e+00	2.31e-02	4.68e-03
256	5.00e-03	2.85e-02	3.50e+00	2.28e-02	4.68e-03
64	3.00e-03	1.72e-02	2.77e+00	2.57e-02	5.24e-03
128	3.00e-03	2.05e-02	2.77e+00	2.59e-02	5.29e-03
256	3.00e-03	2.90e-02	2.77e+00	2.57e-02	5.29e-03
64	2.00e-03	1.71e-02	1.93e+00	2.81e-02	5.74e-03
128	2.00e-03	1.83e-02	1.93e+00	2.82e-02	5.74e-03
256	2.00e-03	2.07e-02	1.93e+00	2.81e-02	5.74e-03
64	1.50e-03	2.78e-02	1.41e+00	3.01e-02	6.07e-03
128	1.50e-03	2.90e-02	1.41e+00	3.01e-02	6.11e-03
256	1.50e-03	2.96e-02	1.41e+00	3.01e-02	6.11e-03
64	1.00e-03	1.76e-02	2.15e+00	3.23e-02	6.57e-03
128	1.00e-03	1.99e-02	2.15e+00	3.23e-02	6.57e-03
256	1.00e-03	2.12e-02	2.15e+00	3.23e-02	6.57e-03

\[B_{\text{rms}} \propto \exp(\lambda t) \text{ or } E_{B,k} \propto \exp(2\lambda_k t), \]

depending on whether we estimate the growth rate of a global average (like the rms value) or of a spectral channel of \(B\), \(E_{B,k} = B_k^2 / 2\mu_0\), where \(k\) is the wavenumber of the channel. The factor of 2 is required for both \(\lambda\) or \(\lambda_k\) to agree. Error estimates are based on Equation (10) of Morrison (2014).

For \(\lambda\) we set the time ranges for the fitting by hand, whereas for \(\lambda_k\) we find them by fitting in multiple ranges and picking the range with smallest error. Effectively the fitting errors are negligible, but \(\lambda_k\) can have some uncertainties due to automatically picked time ranges. In Section 5.4 we show results for \(\lambda\) based on estimated mean-field turbulent transfer coefficients.

5. RESULTS

The time development of the runs with helical forcing (see Table 1; Figures 4, 5 and 6) exhibits three stages: initial decay, exponential growth, and possible slow growth leading to saturation. The initial transient growth of the velocity field, and the contemporary decay of the initial magnetic field, are short for all runs. It is followed by saturation of the rms velocity and exponential growth of the magnetic field. The growing magnetic field starts eventually to quench the velocity, when their energy densities become comparable. The rms velocities then saturate at lower levels, the quenching being the strongest and taking place most slowly the lower \(Re_M\) is. The rms velocities used for calculated \(Re_M\) have been measured from the saturated values before quenching starts. Magnetic field values presented in the figures have been normalized with the equipartition magnetic field \(B_{eq} = \sqrt{\rho_0 p_0 u_{\text{rms},0}}\).

Table 2. Simulation setups and their properties, with non-helical forcing (\(\sigma = 0\)).

\(N\)	\(\eta\)	\(\lambda\)	\(Re_M\)
64	5.00e-03	-1.35e-02	3.53e+00
128	5.00e-03	-1.37e-02	3.52e+00
256	5.00e-03	-1.43e-02	3.52e+00
64	3.00e-03	-1.65e-02	7.16e+00
128	3.00e-03	-1.56e-02	7.16e+00
256	3.00e-03	-1.62e-02	7.16e+00
64	2.00e-03	-1.22e-02	1.21e+01
128	2.00e-03	-1.15e-02	1.21e+01
256	2.00e-03	-1.09e-02	1.21e+01
64	1.50e-03	-6.70e-03	1.73e+01
128	1.50e-03	-7.33e-03	1.73e+01
256	1.50e-03	-5.64e-03	1.73e+01
64	1.00e-03	-6.60e-03	2.80e+01
128	1.00e-03	-6.40e-03	2.80e+01
256	1.00e-03	-6.20e-03	2.80e+01
64	7.50e-04	7.38e-03	3.86e+01
128	7.50e-04	7.18e-03	3.86e+01
256	7.50e-04	6.98e-03	3.86e+01
64	5.00e-04	1.64e-03	6.05e+01
128	5.00e-04	1.64e-03	6.05e+01
256	5.00e-04	1.64e-03	6.05e+01
64	4.00e-04	1.46e-03	6.00e+01
128	4.00e-04	1.46e-03	6.00e+01
256	4.00e-04	1.46e-03	6.00e+01

\[B_{eq} = \sqrt{\rho_0 p_0 u_{\text{rms},0}}. \]
Figure 4. Snapshots of dynamo fields in helically (top) and non-helically (bottom) driven system with $\eta = \nu = 1 \cdot 10^{-3}$ and $N = 256$. Colours represent B_z, normalized with the equipartition magnetic field $B_{eq} = \sqrt{\mu_0 \rho_0 u_{rms}}$. (Animated figures display growth of the magnetic field from the initial seed field. During the early phases of evolution, magnetic fluctuations grow quickly. In the helical case (top) dominant large-scale structure with $k/k_1 = 1$ grows more slowly, but eventually dominates, whereas non-helical case (bottom) fluctuations grow without large-scale structure.)

For helical forcing, the dynamo will always exhibit a large-scale ($k = 1$) magnetic field. If there is no simultaneous SSD operating, this field is well visible during exponential growth and saturation, otherwise it is fully emerging only during the saturated stage, with weak signatures during exponential growth. Typical field geometries are shown in Figures 4 and 5 for low and high Re_M, respectively. The presence of LSD is expected because in the helically turbulent regime, the critical dynamo number is close to unity. The emerging large-scale field is of the form of a Beltrami field,

$$\mathbf{B}(\mathbf{x}) = (B_z \sin(kz + \phi), B_y \cos(kz + \phi), 0),$$ \hspace{1cm} (9)

for alignment along z, analogously for x and y; ϕ is an arbitrary phase. Alignment and phase are unpredictable
as due to the non-linear nature of the MHD system, even tiny differences in initial conditions or round-off errors may lead to different orientation of the Beltrami field being realized in the simulation.

For non-helical forcing, magnetic field growth is not seen for all of our Re_M values, but only above a critical value $Re_{M,\text{crit}} \sim 25$. Below it, the magnetic field decays exponentially. In the case of non-helical turbulence, the overall structure and geometry of the magnetic field at the saturation stage retains similar form to the growth stage, but the magnetic field strength no longer increases (such as Figure 5, bottom). After the exponential growth, if an LSD is present, there can be still gradual growth of the magnetic field until full saturation is reached.

At low Re_M where our diffusivity parameters are within the same range as theirs, our results generally agree qualitatively with Brandenburg (2001) with the emergence of $k = 1$ Beltrami field, however we do get generally weaker growth rates than they do for unidenti-

Figure 5. As Figure 4, but with $\eta = \nu = 2.5 \cdot 10^{-4}$. (Animations behave as in Figure 4 but turbulent fluctuations cascade into smaller scales.)
fiable reason, with theirs being $\sim 2 - 3 \times$ larger with the points having comparable magnetic diffusivity (Brandenburg 2001, Run 2 and Run 3), – and at higher Re_M similar principles apply, with the large-scale magnetic field forming, despite increased randomness at smaller scales.

However, despite the chaotic nature of the system, the resolution does not appear to make a significant difference. As long as Re_M is not too high for the given resolution, practically identical results are produced. Therefore, for the figures we have chosen representative samples from the highest resolution runs. Agreement across resolutions also indicates that any effects caused by the numerical grid are not significant.

Growth and self-organization of the magnetic field can be seen at different resolutions in the animated Figures 4 and 5. With increasing Re_M the small-scale substructures accompanying the coherent mean-field tend to get finer. As we further discuss in Section 5.3, this could be an indication that an SSD is acting in parallel with the LSD.

5.1. Growth rates

Figures 6 and 7 show the early exponential growth stage as well as saturation, cf. Brandenburg (2001) (their Fig. 1) for helical turbulence and Haugen et al. (2004) (their Fig. 6) for non-helical turbulence.

Our estimated growth rates are shown in Figures 8 and 9. Those of the helically forced simulations with LSD are positive in all cases. Mildly higher values appear for $\text{Re}_M = 7.7, 13.7$, but otherwise the normalized growth rate curve appears flat until $\text{Re}_M \approx 100$. For the two highest values of Re_M, however, the growth rates become similar to those of the non-helical cases. This is indicative of simultaneous SSD action. Our results agree reasonably well with Brandenburg (2009, Figure 3), where they display growth rates at various Re_M for helical forcing, combined with data from Haugen et al. (2004) for the non-helical forcing. Their helical growth rate curve is also flat at low $\text{Re}_M \leq 70$, but approaches the non-helical growth rates at $\text{Re}_M = 670$. The helical and non-helical growth rates shown in Brandenburg (2009) align with comparable numerical range to ours. However, the comparison can be problematic for two reasons. First, their results are more limited with the respect to the number of data points at with 3 points for helical and 4 for non-helical turbulence. Therefore they did not truly resolve the shape of the curve. Second, Re_M is varied but Re is kept the same leading to variable Pr_M, which means that our setups are not completely equal type.

Brandenburg (2009) suspected that there is a point where a system would switch from exhibiting merely a LSD to a dynamo combined of LSD and SSD. Our re-
sults clearly support this interpretation as can been seen when comparing Figures 8 and 9 (see also the power spectra based growth rates in Figure 13 and magnetic field distributions in Figure 20). It should be noted that if the basic phenomenon observed by Brandenburg (2009) is the same as we observe, this could imply that it is more dependent on Re\textsubscript{M} than Re. However, our results cannot substantiate this claim, as we only examine Pr\textsubscript{M} = 1 regime.

![Figure 8](image)

Figure 8. Growth rate as a function of magnetic Reynolds number for helical forcing.

![Figure 9](image)

Figure 9. Growth rate as a function of magnetic Reynolds number for non-helical forcing.

There are two analytical predictions for the SSD growth rate: the more common \(\sqrt{\text{Re}_M}\) scaling (see e.g. Haugen et al. 2004) in contrast to the logarithmic scaling \(\ln(\text{Re}_M/\text{Re}_M\text{,crit})\), where \(\text{Re}_M\text{,crit}\) is the critical Reynolds number for the SSD (Kleeorin & Rogachevskii 2012), and validity is restricted to low magnetic Prandtl numbers and \(\text{Re}_M \approx \text{Re}_M\text{,crit}\). In Fig. 9, the SSD growth rates appear to be highly consistent with the logarithmic scaling, except at the lowest \(\text{Re}_M\). In contrast, the \(\sqrt{\text{Re}_M}\) scaling does not really apply, apart from high \(\text{Re}_M\). From Figure 9, \(\text{Re}_M\text{,crit} \sim 25\) has been estimated, while Haugen et al. (2004, Fig. 1) provide \(\sim 35\).

However, given the uncertainty due to their low number of \(\text{Re}_M\) data points, the estimates might not be significantly different. Figure 2 of Iskakov et al. (2007) shows that for incompressible turbulence with \(\text{Pr}_M = 1\), \(\text{Re}_M\text{,crit} \approx 60\) based on \(k_1 = 2\pi\), or \(\approx 42\) if their \(\text{Re}_M\) is scaled with \(k_1/k_1 = \sqrt{2}k_1/k_1 = \sqrt{2}\) instead, as noted by Brandenburg et al. (2018).

5.2. Saturation

Our main focus is on examining the kinematic growth stage of the SSD, with (helical forcing) and without (non-helical forcing) a co-existing LSD. Some conclusions about the saturated stage can also be drawn, but for its complete study, many of the helical runs would need to be continued longer, as the saturation of the LSD is known to occur on a resistive time scale only (e.g. Brandenburg 2001). Unfortunately, for the highest \(\text{Re}_M\), our datasets are not long enough to determine their saturation field strength. To compensate this, we performed a prolonged run with \(\nu = \eta = 1.5 \times 10^{-4}\), \(\text{Re}_M = 210\), extending to one diffusion time based on the forcing scale. This was the highest \(\text{Re}_M\) allowing numerical stability towards saturation. However, otherwise we have to restrict our analysis on low and intermediate \(\text{Re}_M\). The time development of the large-scale fields can be fitted well with a function \(B_{\text{sat}} \tanh (t/d_0 + d_1)\), where \(d_0\) and \(d_1\) are fitting parameters, and we use it to determine the saturation magnetic field \(B_{\text{sat}}\). Restricting to the helical runs with intermediate \(\text{Re}_M\), we find that \(B_{\text{sat}}/B_{\text{eq}}\) increases roughly logarithmically as a function of \(\text{Re}_M\) (See Figure 10).

The saturation values for the non-helical cases are easier to determine as they saturate quickly after their exponential growth, and compared to the helical cases, the field strengths are roughly by a factor of six smaller. Their \(B_{\text{sat}}/B_{\text{eq}}\) grows also in with \(\text{Re}_M\).

For helical forcing, in both the cases with only an LSD \((\text{Re}_M < 40)\) and a combined LSD-SSD, \(B_{\text{sat}}/B_{\text{eq}}\) as a function of \(\text{Re}_M\) obeys a logarithmic law as shown in Figure 10, albeit with different slopes. For combined LSD-SSD, the slope is roughly the same as in the non-helical cases. Therefore we hypothesize that the emergence of the SSD is to the disadvantage of the LSD, most likely due to a reduction of \(\alpha\), and thus prevents its saturation strength from further growing with \(\text{Re}_M\). Consequently, the observed growth of \(B_{\text{sat}}/B_{\text{eq}}\) with \(\text{Re}_M\) would be exclusively due to the SSD.

5.3. Power spectra

One substantial difference between SSD and LSD consists in the scale distribution of the magnetic energy dur-
ing growth and saturation. To investigate it, we have calculated magnetic power spectra \(E_B(k) \) (with normalization \(\int E_B(k)dk = \int B^2dV/2 \) \(n_{eq} \) for individual simulation snapshots.

Figures 11 and 12 show time-dependent spectra \(E_B(k; t) \) for the highest studied \(Re_M \) and a low one, respectively. In the case of helical forcing (LSD) with high \(Re_M > Re_{M, crit} \) (Figure 11, top), we witness a persistent peak at the forcing wavenumber \(k_f \) and at late times gradually growing power for \(k \geq 1 \), i.e. in the large-scale field. At late times, there is a typical forward energy cascade towards small scales \(k > k_f \). For SSD, (Figure 11, bottom), large scales follow persistently the Kazantsev scaling \(\propto k^{3/2} \) (Kazantsev 1968), while the spectrum peaks above \(k_f \) at \(k = 9 \); beyond that a similar forward cascade exists as in LSD. Qualitatively, this picture is the same for all \(Re_M > Re_{M, crit} \).

For high \(Re_M \), as shown in Figure 11, even with helical forcing we can clearly see SSD-type (Kazantsev) spectra during the growth stage, which signifies the presence of SSD during the growth. The SSD-type spectra can also appear during the growth of medium \(Re_M \) cases, which are not too diffusive. However, at low \(Re_M \), SSD and LSD spectral shapes are clearly different during this stage: In helically driven systems, the spectrum is essentially flat at large scales until the emergence of the \(k = 1 \) mode, see Figure 12. This resembles the spectral growth of Brandenburg (2001) with a flattened curve during the growth stage and the eventual emergence of \(k = 1 \) mode (Their Figures 2 ans 3 respectively).

As helical and non-helical growth rates converge at high \(Re_M \) (see Sec. 5.1 and Figures 8 and 9), we may explain this behavior by the assumption that in this range the SSD growth rate is higher than the LSD one, thus the former is dominating the latter during growth. But if

Figure 10. Estimated saturation magnetic field \(B_{sat} \) normalized to \(B_{eq} \). The solid lines represent logarithmic fits. We have included those datasets with 256\(^3\) and 512\(^3\) resolution from which a valid estimate could be obtained.

Figure 11. Time-dependent powerspectra of magnetic energy, \(E_B(k) \), for \(\eta = 1.25 \cdot 10^{-4} \) with resolution 512\(^3\) for helical (top) and non-helical (bottom) forcing and \(0 \leq t \leq 600 \). Both show Kazantsev scaling \(\propto k^{3/2} \) during growth (red dashed). Time difference between spectra \(\Delta t = 30 \). For \(t = 0 \), the spectrum reflects the initial random (Gaussian) field, hence \(\propto k^2 \). The dashed curves correspond to \(t = 0 \).

Figure 12. Time-dependent powerspectra of magnetic energy, \(E_B(k) \), for \(\eta = 2 \cdot 10^{-3} \) with resolution 256\(^3\) for helical forcing for \(0 \leq t \leq 600 \). Time difference between spectra \(\Delta t = 30 \).

SSD saturates earlier than LSD and also at lower magnitude, the spectrum has to undergo the observed change...
in its shape with finally dominating large scales. For medium ReM the situation would be less clear. The Kazantsev scaling is kept during most of the growth stage, but the growth of the magnetic energy is more rapid than for the respective non-helical runs. Therefore helical turbulence can enhance the accumulation of magnetic energy without affecting the spectral shape during the initial growth.

In an attempt to separate SSD and LSD behaviour, we have estimated the growth rates as functions of wavenumber. The resulting λ_k, displayed in Figure 13, for $k = 1$ and $k = 9$, are in general proportional to those estimated from B_{rms}. Again, the growth rates of SSD and LSD merge at high ReM and the SSD ones follow the logarithmic scaling. For both helical and non-helical forcing, both of the referred scales ($k = 1$ and $k = 9$) grow at similar rates, with a mild tendency of λ_1 being marginally higher than λ_9. In addition, the helical runs seem to show higher growth rates at high ReM than the nonhelical runs. Yet, because of fitting uncertainties, all this should be taken with caution.

Figure 14 displays the corresponding time development of the spectral channels $k = 1, 5, 9$ for the high ReM helical and non-helical runs featured in Fig. 11. In both cases, the exponential growth occurs at similar rates for all three channels with the $k = 5, 9$ ones dominating. The only difference is that when LSD is present, the $k = 1$ channel continues to grow past the exponential growth stage, while the other channels are almost saturated, to become finally dominating. At low ReM, with LSD alone (Figure 15), all three channels have approximately equal magnitude with minor deviations in the beginning. After the exponential growth phase the spectral channels differ with $k = 1$ becoming the strongest, as it happens in the spectra of Figure 12.

For the sake of testing and comparison, we changed the forcing scale to $k_f = 15$ to separate it more safely from the largest scale of the emergent mean field. During growth we see a more gradual buildup of the inverse energy cascade towards large scales, see Figure 16: the energy peak of the growing large-scale magnetic field moves gradually towards larger scales until reaching its largest values at $k = 1$. This is similar to the same phenomena visible in Figure 7 of Brandenburg et al. (2012). The time development of the spectral channels $k = 1, 5, 9$ is shown in Figure 17, indicating a clearly different growth rate of the $k = 1$ channel. The $k = 1$ channel curve consists of two different exponentials at concurrent stages. However, the data is too sparse in that range to produce meaningful fit estimates. There is even decay visible in the $k = 5$ channel which is explainable with the magnetic energy inverse-cascading onto larger scale over time as visible in Figure 16.

5.4. Mean-field analysis

For LSD, mean-field theory provides some testable predictions: First, an estimate of the growth rate based on turbulent transport coefficients. Second, quenching of the α-effect as a function of ReM.

Unfortunately, at this moment Astaroth is not capable of handling the test-field method (Schrinner et al. 2007) or other method for measuring the turbulent transport coefficients at runtime. Therefore, we calculated esti-
mates for the coefficients of α-effect and turbulent diffusion, η_h, using results from the second-order correlation approximation (SOCA) and other closures which have proven to be surprisingly useful (Sur et al. 2008; Väisälä et al. 2014).

According to the mean-field approximation, the growth rate of the mean field \mathbf{B} for isotropic stationary turbulence, hence constant α and η_t, is

\[\lambda = |\alpha|k - (\eta_h + \eta)k^2 \] \hspace{1cm} (10)

where k is the wavenumber of the mean field and $\alpha = \alpha_K + \alpha_M$. In the limit of ideal MHD, the constituents of α are related to kinetic and current helicity, respectively, by

\[\alpha_K = -\frac{1}{3}\tau \langle \mathbf{\omega} \cdot \mathbf{u} \rangle \] \hspace{1cm} and \hspace{1cm} \[\alpha_M = \frac{1}{3}\tau \langle \mathbf{j}' \cdot \mathbf{b}' \rangle / \mu_0 \rho_0, \] \hspace{1cm} (11)

with correlation time τ, and vorticity $\mathbf{\omega} = \nabla \times \mathbf{u}$ and primes indicating the fluctuating parts. Note two possible interpretations for α_M: First, it reflects the contribution of a magnetic background turbulence, like that provided by an SSD, to α. Here, α_M can be obtained already by SOCA (Rädler & Rheinhardt 2007). Second, it can be interpreted as reflecting the quenching of α by \mathbf{B} such that with its magnitude growing, α_M also grows,
but opposite in sign to α_K, resulting in a reduced total α. This can be obtained via closure approaches like the τ or eddy-damped quasi-normal Markovian approximations (Pouquet et al. 1976). Turbulent diffusivity in incompressible flows is estimated as

$$\eta_t = \frac{1}{3} \tau (u^2).$$ \hspace{1cm} (12)

If the Strouhal number $u_{rms} \tau / \ell$, ℓ a characteristic scale of the flow, is assumed to be unity, we can estimate $\tau = 1/k_i u_{rms}$. To obtain the fluctuating fields b', j' we have removed the large scale field via filtering out the contributions of the $k = 1$ mode from the magnetic field snapshots.

We estimated the growth rates by first calculating α and η_t for individual snapshots using data from runs with high snapshot frequency during exponential growth. Then we used Equation (10) to get λ for an individual snapshot, and subsequently time-averaged over the growth phase. We find results which are at least approximately aligned with the directly measured values with better agreement at low Re_M, see Fig. 18. Towards high Re_M, the results begin to diverge, most strongly at the highest Re_M. This appears to indicate that the closure estimates can work surprisingly well, but do not catch all of the details.

But how does α behave at the saturation stage? Brandenburg et al. (2008) measured α and η_t quenching, with both decreasing as functions of Re_M.

For comparison, we calculated $\alpha_{K,M}$ from the saturation stages of our runs and discovered similar results, see Figure 19. The normalized α_K approaches a constant whereas α_M keeps getting stronger with Re_M. Our results are close to Brandenburg et al. (2008) (their Fig. 3) within our range of Re_M, including substantially more points though. The total α decreases with growing Re_M reaching eventually a tentative plateau.

![Figure 19. α_K and α_M at the saturated stage as functions of Re_M, normalized by $\alpha_0 = u_{rms}/3$. Bars represent the fluctuation level of α derived from their standard deviations. The jump at $Re_M \sim 20$ is due to an unclear disagreement between resolutions 128^3, 64^3 and 256^3, that at $Re_M \sim 100$ due to different saturation stage lengths in the runs with resolutions 256^3 and 512^3.](image)

Figure 19. α_K and α_M at the saturated stage as functions of Re_M, normalized by $\alpha_0 = u_{rms}/3$. Bars represent the fluctuation level of α derived from their standard deviations. The jump at $Re_M \sim 20$ is due to an unclear disagreement between resolutions 128^3, 64^3 and 256^3, that at $Re_M \sim 100$ due to different saturation stage lengths in the runs with resolutions 256^3 and 512^3.

Figure 18. Growth rates (10) based on closure estimates of α and η_t at the exponential growth stage, compared to directly estimated ones.

5.5. **Magnitude distribution of the magnetic field**

Next we investigate how the probability density functions (PDFs) of the magnetic field differ in the regimes where SSD or LSD alone and SSD and LSD together are acting. While spectra gave us information about the distribution of the magnetic field across different scales, PDFs can further reveal details of the structure of the field in different spatial directions. Additionally, we calculated kurtoses of these distributions using the Fisher’s definition, for which the kurtosis of a normal distribution is 0.

Figure 20 shows the temporal evolution of the PDFs of all three components of the dynamo-generated B for non-helical forcing and helical forcing with three different Re_M. Two basic types of PDFs are obtained: A SSD produces a symmetric exponential distribution, which expands over time, but keeps otherwise the same shape and eventually stops changing at the saturation stage, with its kurtosis ranging from ~ 4 to ~ 6. An LSD produces a more Gaussian–shaped distribution. As a pure Beltrami field has a PDF of top-hat shape, this can result in a PDF of the total field with a both widened and flattened peak if \mathbf{B} is strong enough. In Figure 20, such an indication of a top-hat profile is best visible in the PDFs of B_y at saturation for helically forced cases with $\eta = 0.002$ and 0.0005, with their kurtoses approaching 0, whether or not the top is flattened. This is not surprising because the top hat effect happens close to the peak and the PDF has still significant tails.
Figure 20. Probability density functions of $B_{x,y,z}$ for non-helical forcing (first column) and for helical forcing with low, intermediate and high Re_M (second to fourth column), as a function of time (rows). $K(B_x)$, $K(B_y)$ and $K(B_z)$ denote the respective kurtoses using Fisher’s definition.

The widened Gaussian PDF profile of LSD appears most pronouncedly at (or just before) the saturation stage, whereas during the exponential growth stage, the LSD cases show at high and intermediate Re_M rather an SSD type of PDF, including similar values of the kurtosis. Even after initial growth, there is a tendency of the SSD type of PDF, including similar values of the kurtosis, with helical forcings, approaching high Re_M even without helical forcing (first column) and for helical forcing with low, intermediate and high Re_M, both SSD and LSD become simultaneously with the LSD. However, even with high Re_M, where small-scale fluctuations are strong, the LSD will turn the field profile into a Gaussian type over time. In Figure 20, the highest Re_M simulation is not depicted at its most saturated state, but the $k = 1$ mode will keep growing mere over time and its feature will soften.

6. DISCUSSION

We examined emergence and growth of both large and small scale dynamos and found that with helical forcing, approaching high Re_M, both SSD and LSD become clearly simultaneous phenomena. This is visible both from the time evolution of the powerspectra and from the probability density functions of B. For high Re_M, the growth rates of helical and non-helical cases con-
verge, indicating the dominance of SSD in the helical ones.

![Figure 21. Schematic depiction of our hypothesis for the change of growth rate as a function of Re\(_M\) in helically forced simulations, cf. Figure 8.](image)

Under helically driven turbulence, an exact delimitation between LSD and SSD is difficult. At medium Re\(_M > \text{Re}_M,\text{crit}\), there is a tentative indication of an SSD in the powerspectra during the dynamo growth. While the growth rate is dominated by the LSD, an SSD can already be operating, so that SSD and LSD are coupled at this stage.

Based on the dependency of the growth rates of the helical simulations on Re\(_M\), we attempt a hypothetical explanation of the interaction of the two dynamos, see Figure 21: At low Re\(_M\), the system is diffusive enough to prevent any presence of SSD, and the – pure LSD – growth rate increases as a function of Re\(_M\). In the mid range of Re\(_M \gtrsim 10\), the growth rate decreases as a function of Re\(_M\). We suggest that now SSD becomes effective and starts to inhibit the growth of the LSD by reducing \(\alpha\) via, in turn, increasing \(\alpha_M\). However, to prove this we had to show that the Re\(_M,\text{crit}\) of helical turbulence is smaller than that of non-helical turbulence and that \(\alpha\) is really reduced. While possible, recognizing both of these affects conclusively would require more thorough mapping of \(\alpha\) than what we have available. At high Re\(_M\), SSD dominates the exponential growth, which is substantiated by our results.

We can find a point of comparison in Hotta et al. (2016), who have reported on the effect of SSD on LSD in the context of turbulent convection in stars with a solar–like convective envelope. They state that SSD shows both inhibiting and enhancing effects to the emerging magnetic field depending on Re\(_M\). In their low Re\(_M\) case, a large-scale magnetic field emerges, but in their medium Re\(_M\) case, the large-scale magnetic field is suppressed, while emerging again in their high Re\(_M\) case. Hotta et al. (2016) explain their medium Re\(_M\) case as the suppression of LSD by SSD, whereas in their high Re\(_M\) case the SSD would enhance the magnetic energy generation by LSD. Our hypothesis, illustrated by Figure 21 would be congruent with their scenario. However, caution should be shown because our methods are not completely equivalent to theirs. We have focused on exponential growth, and we cannot compare the saturated stages with equal detail. Our limited saturation data at low, medium and high Re\(_M\) shows that the saturated magnetic field increases towards high Re\(_M\), with is a tentative indication that SSD would exclusively contribute to the the increase of saturated field strength, but with SSD being a disadvantage of the LSD itself. Another caveat with respect to the Hotta et al. (2016) results is that their model diffusivities are implicit and their diffusion schemes changes between different simulation while ours are explicit and have an uniform scheme, which makes a direct comparison difficult.

When it comes to the pure SSD, our results show that the Re\(_M\) dependence of the growth rate matches the logarithmic prediction of Kleoerin & Rogachevskii (2012) very well. In contrast, the \(\propto \sqrt{\text{Re}_M}\) relation (Haugen et al. 2004) does not seem functional at low Re\(_M\). The logarithmic scaling appears to be empirically valid, although it has been derived for low magnetic Pr\(_M\), whereas in our simulations Pr\(_M\) was unity.

We also estimated the turbulent transport coefficients \(\alpha\) and \(\eta_t\) based on closure approaches. We found an \(\alpha\) quenching behaviour comparable to Brandenburg et al. (2008) and calculated the growth rates based on \(\alpha\) and \(\eta_t\). They appear to be in a similar approximate range, but there is a number of differences when compared to the direct measurements. The difference between closure and direct estimates are a possible result of the fact that the former are very rough. To improve and check the goodness of the estimate, a more refined method such as the test-field method (Schrinner et al. 2007) would be required, which is not currently supported by Astaroth. In addition, in further studies the number of points on the Re\(_M\) axis should be increased.

As we are also used this study as a way for exploring the scientific potential of the Astaroth API, some remarks should be made on the practical aspects of computation. The work presented here has benefited significantly from the performance enhancement provided by Astaroth. It was feasible to perform the dynamo simulations and related tests with two computing nodes, with four Tesla P100 devices per node. This made our simulation very affordable within the limits of the ASIAA high-performance computing cluster. More discussion of GPU performance can be found in the Appendix A. Ad-
Additionally, it should be noted that an efficient GPU code can produce substantial amounts of data. Therefore, benefits of the performance will come in contact with the limitation of the data processing tools, that might not be as efficient and/or optimized as the GPU code. Astrophysicists rely on data analysis libraries, and we should note that for the maximal benefit of GPU performance, also connected data processing tools should be improved in efficiency.

For future enhancements to this work, there are several possibilities. First, more points in the ReM-space could be covered. To better understand the scenario illustrated by our hypothesis depicted in Figure 21. As the computation is efficient, this approach is basically limited by the available data storage. Second, a test-field method could be implemented to estimate the turbulent transfer coefficients α and η in a more precise manner. The third possibility is to increase resolution and therefore ReM with the multi-node MPI implementation of Astaroth becoming available.

7. CONCLUSIONS

In this paper, we extended the Astaroth library to work on multiple GPUs and applied it to study the turbulent dynamo problem. Our implementation scaled from one to four GPUs with at least 90% efficiency and exhibited a speedup of 35 in single-node performance on four V100-SXM2-32GB GPUs compared with Pencil Code runs on two 20-core Intel Xeon Gold 6230 Cascade Lake CPUs. Because of the limitations of CUDA peer-to-peer memory transfers, our implementation was restricted to a single node. Our results demonstrate that one-dimensional decomposition is sufficient to hide communication latencies within a node when carrying out computation and communication in parallel on current hardware. However, we expect that the use of MPI and multidimensional decomposition schemes are required for witnessing further scaling.

We simulated helical and non-helical MHD turbulence with homogeneous random forcing, and by modifying diffusivity and viscosity within the resolution limits to investigate the dependence of the dynamo growth on the magnetic Reynolds number, while keeping the magnetic Prandtl number fixed to unity. We were able to extend the ReM range to somewhat larger values than in some of the older studies, but most importantly, produce a large set of simulations to determine the dependence more accurately than before. We estimated growth rates from the simulations and saw that with helical turbulence an LSD would grow at any ReM ≳ 1, while SSD would appear only beyond a critical value ReM ∼ 25. SSD growth rates followed a clear logarithmic ReM dependence. Earlier studies have either not been able to determine a clear dependency due to the small amount of data points, or reported consistency with a √ReM dependence. In helical simulations with ReM > 25, both dynamo instabilities are evidently present simultaneously. To further inspect and separate the signatures of the SSD and LSD, we determined magnetic powerspectra. LSD spectra displayed growth at the largest scales while SSD ones showed a Kazantsev profile at low to intermediate wavenumbers, and peaked at scales smaller than the forcing scale. Spectra in the regime where both dynamo instabilities act together retains characteristic of the LSD at low wavenumbers, and those of the SSD at high wavenumbers, although there is always a peak at the forcing scale. In such circumstances, the powerspectra display SSD features during the exponential growth stage. We computed probability density functions of the magnetic field, which showed exponential shapes in the case of SSD, and a Gaussian distribution deformed by a top-hat profile from the mean (Beltrami) field for LSD. They also showed evidence for the coexistence of SSD with LSD towards high ReM. To explain the behaviour of the growth rate in helically driven simulations we presented a hypothesis that the growth of LSD is inhibited by a budding SSD around medium ReM. We analyzed LSD using closure estimates of turbulent transport coefficients. These estimated growth rates agreed at low and medium ReM with the direct measurements, but diverged at high ReM. The closure–estimated α displayed clear signs of quenching at high ReM.

Astaroth is open source and available under GPL 3 license at https://bitbucket.org/jpekkila/astaroth/.

This work utilized tools developed by the CHARMS group and high-performance computing resources and cluster in ASIAA. This research has made use of SAO/NASA Astrophysics Data System. Additional compute resources for this work were provided by CSC – IT Center for Science.

Authors thank Dr. Chun-Fan Liu for an useful insight. J.P., M.J.K., and M.R. acknowledge the support of the Academy of Finland ReSoLVE Centre of Excellence (grant number 307411). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Project UniSDyn, grant agreement n:o 818665). M.V., H.S., and R.K acknowledge funding support for Theory within ASIAA from Academia Sinica. H.S. acknowledges grant support from Ministry of Science and Technology (MoST) in Taiwan through 105-2119-M-001-044-MY3, and 108-2112-M-001-009-.
APPENDIX

A. PERFORMANCE AND SCALING

We ran the benchmarks on a compute cluster consisting of a total of 80 SuperServer 1029GQ-TVRT nodes. Each node consisted of two Intel Xeon Gold 6230 Cascade Lake 20-core processors running at 2.1 GHz and four Tesla V100-SXM2-32GB GV100GL (rev a1) GPUs running at 1.53 GHz. Each GV100GL was connected to the other three GPUs within a node via NVLink 2.0. Nodes were connected in a fat tree network via dual-rail Mellanox ConnectX-6 InfiniBand HDR100 MT28908 adapters, stated to provide an aggregate bandwidth of 23 GiB/s per adapter (Mellanox 2020). Error-correcting codes (ECC) were enabled on both the CPU and GPU memory systems. It should be noted that the performance benchmarks were run on a different computing cluster with newer hardware than what was available for the physics simulations.

The library used for the tests is available at (Aalto University 2020), commit e5dc5ca. The code was compiled with GCC 8.3.0 and CUDA toolkit 10.1.168. MPI implementation was provided by Mellanox HPC-X software toolkit 2.5.0 compiled with CUDA support. The single-GPU performance of Astaroth was analyzed in detail in previous work (Pekkilä 2019), where the performance was shown to be bound by cache bandwidth. Execution speed was roughly six times lower than the idealized theoretical upper limit.

The grid consisted of a total of 512^3 points in the computational domain in the strong scaling tests, shown in Figure A. In weak scaling tests, shown in Figure A, we used N_x = N_y = 512 and elongated the computational domain along the z-axis depending on the number of devices p to N_z = 512p. Double-precision arithmetic was used for all calculations. In our test cases, all fields were initialized to random values within range [0, 1] and the simulation was advanced using a constant time step δt = 1.19209 · 10^{-7}. We benchmarked the code by measuring the running time of 100 integration steps after 10 warm-up steps and reported the integration time at the 90th percentile. Forcing and upwinding were disabled in the benchmarks as they have negligible effects on computing performance and do not affect communication.

We compared single-node performance of Astaroth to the Pencil Code (NORDITA 2020). The Pencil Code was built using the Intel Fortran Compiler version 19.0.4 and HPC-X MPI version 2.5.0, using optimization level O3. We benchmarked the Pencil Code on the same compute node as Astaroth, using all the available 40 CPU cores. We measured the performance of 23.17 ns per integration step per grid point in a test case equivalent to the one used in the GPU benchmarks. The exact test case is available at a dedicated code repository. In contrast, the integration time per grid point with Astaroth was 0.65 ns on 4× Tesla V100 GPUs. This gives us 35× speedup with Astaroth over the Pencil Code in single-node performance.

The arithmetic performance and memory bandwidth of CPUs and GPUs can be used to calculate a rough estimate for the speedup that can be gained by computing data-parallel tasks on GPUs. In the ideal case, where both implementations fully utilize the hardware resources, the GPU implementation can be expected to exhibit a speedup of 12–13 on the compute nodes used in this work. We measured the effective aggregate bandwidth to be 2808 GiB/s and 173 GiB/s on GPUs and CPUs, respectively. For bandwidth-bound kernels, this would give an idealized speedup of 16.

As the speedup with Astaroth was higher than expected, we suspect that the Pencil Code does not fully utilize the hardware, even though we strove to employ the optimal build and runtime parameters for the benchmarks. Optimizing the internal implementation of the Pencil Code was out of scope of this work.

REFERENCES

Aalto University. 2020, The Astaroth Repository, Espoo, Finland
Asanovic, K., Bodik, R., Demmel, J., et al. 2009, Communications of the ACM, 52, 56
Ayachit, U. 2015, The ParaView Guide: A Parallel Visualization Application (Kitware)
Benítez-Llambay, P., & Masset, F. S. 2016, The Astrophysical Journal Supplement Series, 223, 11
Brandenburg, A. 2001, ApJ, 550, 824
Brandenburg, A. 2003, Computational aspects of astrophysical MHD and turbulence, Advances in Nonlinear Dynamics, ed. Ferriz-Mas & M. Núñez, 269

2 bitbucket.org/jpekkila/vaisala-pekkila-2020-artifacts
3 The aggregate performance on 4× V100 GPUs is 31.32 TFLOPS (arithmetic) and 3.452 GiB/s (memory), whereas the respective numbers for two Intel Xeon Gold 6230 CPUs are 2.5 TFLOPS and 262 GiB/s.
Strong scaling

The grid consisted of 512^3 points.

Number of GPUs	Measured (ms)	Ideal (ms)
1	327.48	327.48
2	166.2	163.74
4	86.34	81.87

Weak scaling

The grid consisted of 512^3p points, where p is the number of GPUs.

Number of GPUs	Measured (ms)	Ideal (ms)
1	327.55	327.55
2	328.32	327.55
4	328.35	327.55

Figure 22. Strong and weak scaling of *Astaroth*. The tests were run on one to four Tesla V100 GPUs on a single node using double precision. Times in milliseconds per integration step.
