Protonic Magnetic Resonance Properties of the Hard Rocks Fracture Zones in the Department of Donga

Euloge N. Yalo, Bertrand H. Akokponhoué and Marc Youan Ta

Abstract—The Donga Department is located in the northwest of Benin in an area made up of crystalline and crystallophyllic basement rocks where most of the groundwater resources are found in the area of weathered and conductive fractures. The carrying out of drilling campaigns in this department are often crowned with a significant number of negative boreholes (<0.7 m³/h) due to the poor choice of sites for drilling. This leads to situations of difficulties in supplying drinking water, or even more frequent shortages during the dry season. The objective of this study is to use geophysical methods to characterize the fractured basement areas, with a view to improving the implantations and the sustainable management of the aquifers they contain. The application of the Protonic Magnetic Resonance (PMR) method made it possible to determine the hydrogeological properties of the fracture zones. As a result, the determination of the hydrodynamic properties shows that the W_{PMR}, $T₁$ and S_y values in 5 different localities of the study area are between 4 and 13% respectively, between 150 and 212.5 ms and between 2.3 and 8.2%. The minimum height of the water slide is 820 mm and the maximum height is estimated at 3672 mm for a water reserve of up to 2313 mm in the Donga gneisses. It emerges from this study that in the department of Donga the PMR water content is also a function of the particle size, $T₂$ of the fractured zone.

Index Terms—Weathered Zone (WZ), Fractured Zone (FZ), Benin, Geophysics, Protonic Magnetic Resonance (PMR).

I. INTRODUCTION

In the middle of the basement rocks, discontinuous aquifers are affected by tectonic dislocations which generate zones of fractures and weathered layers. The detection of tectonic dislocations contributes to the understanding of the functioning of the underground system [1].

Most of the groundwater resources in the Donga department are contained in basement fracture reservoirs. The work of [2], [3], [4] under the same conditions in West Africa, [5], [6] in Greece and [7], [8] in India have proposed a hydrogeological prospecting approach. This approach makes it possible to combine geology, hydrogeology and geophysics on the one hand. The combination of these methods has made it possible to characterize fractured zones favorable to the establishment of boreholes in Ivory Coast ([9], [10], in India [8], in Burkina Faso, [11] and in Benin [12], [13], [14]. Then, the present study aims to identify the hydrogeological properties of fracture zones favorable to the establishment of boreholes in the department of Donga. This study will contribute to improving prospecting of basement fracture aquifers for access to water for populations in Africa.

II. GEOGRAPHIC, GEOLOGICAL AND HYDROGEOLOGICAL CONTEXT OF THE DONGA DEPARTMENT

The department of Donga is located in the northwest of Benin, between 08°28’ and 10°02’ north latitude and between 1°20’ and 2°14’ east longitude. It covers an area of 11.126 km² with a population of approximately 543 130 inhabitants. It has a very dense hydrographic network with a total length of the drains estimated at 7870 km, i.e. a drainage density of 1.66 km/km² (Fig. 1a). The relief of the Donga department is represented by the digital terrain model (Fig. 1b). This model shows the different elevation levels of the Donga department. There are essentially two types of relief. A rugged terrain, located in the northwest and central part, especially northwest of the village of Alfa-kpara and Tanéka Koko (Couffé Mount, Tanéka Mount, d’Alédjo-Koura Mount). It is the domain of the high peaks of the Donga department where the altitudes generally exceed 660 meters. A monotonous relief, located particularly in the South-East, North-East parts, where the altitudes vary from 177 to 382 m. It is a vast, slightly inclined peneplain sharing the runoff from the Donga watersheds in the northeast and that of the Oueme watershed in the southeast. Small rivers criss-cross the peneplain in a disorderly fashion, sculpting its surface and giving it a bas-relief character.

Geologically, the study area is comprised between the outer and inner zone of the Pan-African Dahomeyides chain, comprising the structural unit of the Atacora and the structural unit of the Benin plain (Fig. 2). In lithological terms, these units are respectively made up of three large ensembles (quartzites, schists and sandstones) and four large ensembles: migmatites, granulites, matasediments, gneisses with a high degree of metamorphism [15], [16]. Structurally, the department of Donga has been affected by several phases of tectonic deformation, the most important of which are: The Eburnean and Pan-African orogeny (650-600 M.a.).

Published on February 6, 2020.
E. N. Yalo is with Laboratory of Applied Hydrology (LAH), National Water Institute (NWI), University of Abomey-Calavi, 01BP : 526 Cotonou (Benin); (email : yalonicaise@yahoo.fr).
B. H. Akokponhoué is with Laboratory of Applied Hydrology (LAH), National Water Institute (NWI), University of Abomey-Calavi, 01BP : 526 Cotonou (Benin); (email : akognibo1986@yahoo.com).
M. Youan Ta is with University Research Center of Remote Sensing (URCRS), U.F.R of Earth Sciences and Mineral Resources, University of Félix Houphouët Boigny, 22 B.P. 801 Abidjan 22, (Ivory Coast); email: jeankkan@yahoo.fr).

DOI: http://dx.doi.org/10.24018/ejers.2020.5.2.1737

112
These different events affected the territory by numerous fractures generally structured N00°-20° and N20°-30°, the most important of which is the Kandi fault, which is a transcontinental lithospheric fracture crossing the whole territory of Benin. The work of [15], [17] has shown the complexity of this zone, both locally and regionally. In addition to tectonics, other processes such as weathering, surface decompression, seismicity, etc... may favor the establishment of fracturing [18], [19], [20], [21]. Hydrologically, there are two types of aquifers: weathered aquifer and fractured aquifer. The first hydrogeological studies in the basement zone in Benin were carried out by [22], [23], [24] with a view to a better knowledge of the hydrogeological characteristics of this very complex environment and the possibilities of setting up wells for the water supply of the populations. During the last century, several works have increased the knowledge of the hydrogeology of the Precambrian basement rocks of West Africa and many authors [23], [25], [26], [27], [28] have shown that this environment contains a stock of groundwater resources likely to supply populations. Consequently, the work of [21] on groundwater has classically made it possible to establish different conceptual models of underground aquifers that have evolved over time. These models of aquifer structures show three main zones constituting potential reservoirs, controlled by the type of fracturing encountered: the weathered layer, the fissured horizon and the hard rock (Fig. 3) locally affected.
by geological discontinuities and deep fracturing. In this study we refer to Wyns' model and our fracture zones are located in the fissured layer just below the base of laminated layer (Fig. 3).

III. METHODOLOGY

A. PMR surveys

The PMR soundings were conducted with NUMIS plus RGT equipment. Generally, to implement an PMR sounding, a transmitting loop is deployed on the ground surface from which an alternating electrical current is injected. This alternating electrical current injected into the loop creates an excitation field that varies according to the Larmor frequency. This frequency is calculated after measuring the field amplitude. In fact, the implementation of an PMR survey is always conditioned by two activities. Firstly, it consists of measuring the electromagnetic noise of the site to be studied. Then, using a proton magnetometer, the ambient H₀ geomagnetic field of the site is measured. This makes it possible to determine the resonance frequency of the protons and to construct the inversion matrix of the acquired data. The size and type of loop to be deployed at a site is related to the depth to be investigated and the resistivity of the ground. Different antenna geometries (square or "8") can be used. But on a noisy site, it is advisable to use a loop in the form of an "8". This often significantly improves the signal-to-noise ratio [29], [11].

Depending on the amplitude of the electromagnetic noise, the square loop was used at two sites and the figure-of-eight loop at the other three sites (Table I). The precise location of these five boreholes is shown in Fig. 6. The characteristics of the acquisition parameters of the PMR measurements used in the Department of Donga are shown in Table I.

| TABLE I: CHARACTERISTICS OF MRS SURVEYS |
Survey	Loop shape and size	Larmor frequency	Average number of stacks
S1 (Tanëka Koko)	Eight 125 m	1418 Hz	550
S2 (Donga)	Square 125 m	1413.5 Hz	130
S3 (Ara)	Eight 75 m	1412 Hz	400
S4 (Séméré)	Eight 125 m	1416.8 Hz	600
S5 (Daranga)	Square 125 m	1411 Hz	250

The NumRun acquisition software is usually used to invert PMR surveys. All the soundings in this study were conducted with fourteen pulses. Several authors [29], [30] deemed it necessary to specify before any treatment that the water content (W₉₀) and the time constant decay T₂* are not hydrogeological parameters. The inversion of E₀(q) data provides the depth, thickness and water content of each water-containing layer. The W₉₀ water content can be defined as follows (Equation 1):

\[W_{PMR} = \frac{V_0}{V} \times 100 \]

With V₀ – water subjected to a homogeneous magnetic field called open water.

This equation implies that PMR water content is less than total porosity [31]. The two borderline cases are W₉₀ = 0 for dry rock and W₉₀=100% for lake water.

In the end, S₀ < W₀ < Φ₀; the PMR water content is therefore a quantity between the drainage porosity and the total porosity. The signal decay time constant, T₂*, is related to the environment in which the protons are located. The main factors that will influence this time T₂* are the average pore size and the inhomogeneity of the static field [32]. Table II gives indicative T₂* values for a few rocks:

| TABLE II: T₂*: DECAY TIME CONSTANT [32] |
Types of aquifer formation	Decay time T₂* (ms)
Sandy clay	<30
Clayey sands, very fine sand	30-60
Fine sand	60-120
Medium sands	120-180
Coarse-grained and gravelly sands	180-300
Gravel	300-600
Surface water	600-1500

In this study, the modelling software Samovar V11.5 [33] was used to invert the data. It offers the possibility of at least qualitative interpretation of the phase of the PMR signal.

Thanks to the SamovarMod subroutine the determination of W₉₀ and Δz is possible from numerical modelling. The aim is to find a model that fits well with the data collected in the field. The fit is considered acceptable if the difference between the field data and the "computed" data is less than the average noise contained in the data [11].

DOI: http://dx.doi.org/10.24018/ejers.2020.5.2.1737
B. Estimation of S_y and the R_{PMR} reserve from W_{PMR} and ΔZ_{PMR}

Using the W_{PMR} water content, and the saturated thickness PMR (ΔZ_{PMR}), the drainage porosity (S_y_{PMR}) and R_{PMR} reserve of the fracture zone can be determined. The equations (Equations II and III) below allow the calculation of the following parameters:

$$S_y = W_{PMR} \times b_i$$

(2)

$$R_{PMR} = S_{yPMR} \times \Delta Z_{PMR}$$

(3)

With: W_{PMR} the average water content of the aquifer; ΔZ the thickness of the aquifer; b_i – Calibration factor. These were estimated with the value 0.63 [34].

IV. RESULTS AND DISCUSSIONS

The results of the five PMR surveys carried out are generally of good quality as the signal-to-noise ratios are all above 2. The lowest ratio was found in the S5DR survey with 2.2 and the highest in the S4SE survey with 12.

An example of a signal-to-noise ratio of 8.3 for the PMR survey at the Ara site is shown in Fig. 5.

Fig. 5. Signal to Noise Ratio (125/15) on the PMR sounding of the Ara site

A. Water content, decay time and PMR water column

1) SITN survey

The analysis of this survey reveals that for all the pulses, the signal is clearly free of noise. The signal amplitude at this site has the highest signal-to-noise ratio of all the soundings with 6.5. The model fits the signal well for an average noise of 11.43 nV (Fig. 6). The inverted data indicate a W_{PMR} of 6.5%, a T_2^* of 176 ms and a saturated thickness of 23.4 m. In addition, the depths of the reservoir roof and impermeable bedrock are estimated as a function of static levels and bedrock depths revealed by drilling [35]. Thus, the depth of the roof is underestimated by 2.6 m by the PMR and that of the bedrock is overestimated by 1.2 m.

Fig. 6. Presentation of PMR SITN survey. a) Survey log b) Lithologs in the vicinity of the survey and c) Inversion results

2) S4SE Survey

The model fits well with the data set from this survey, which has a signal-to-noise ratio of 5.16. For the other pulses, the signal is well separated from the noise. Thus, the inversion of the data indicates 7.5% W_{PMR} and 171.7 ms for T_2^* for a saturated thickness of 50 m. The average noise for this borehole is 18.28 nV, concerning, the depth of the bedrock we note that it is overestimated by 1.4 m by the borehole and that of the static level is underestimated at 2.6 m (Fig. 7).

Fig. 7. Presentation of PMR S4SE. a) Logs b) Lithologs in the vicinity of the borehole and c) Results of the inversion

3) SCBA S3 Survey

The model fits well with the data set from this survey, which has a signal-to-noise ratio of 5.6. For the other pulses, the signal is well separated from the noise. Thus, the inversion of the data indicates 3.9% W_{PMR} and 150 ms for T_2^* for a saturated thickness of 20.5 m. The average noise for this borehole is 8 nV, concerning, the depth of the bedrock we note that it is overestimated by 3 m by the borehole and that of the static level is underestimated at 2 m (Fig. 8).

Fig. 8. Presentation of the S3ARA PMR borehole. a) Borehole log b) Lithologs in the vicinity of the borehole and c) Inversion results

Table III summarizes the overall results of the five PMR surveys. Indeed, these results reveal that the PMR water content (W_{PMR}) in the department of Donga varies according to the investigated sites and the geological formations in place. This variation is between 4 and 13%. The decay time is between 150 and 210ms. The water content in the weathering of the Donga is a function of the grain size governed by the pore size (T_2^*). This correlation is 0.9 (Fig. 9). The weathering with coarse sand granulometry ($T_2^* = 210$ ms) has a water content twice as high as that of medium sand granulometry ($T_2^* = 176$ ms).
TABLE III: SUMMARY OF SOME PARAMETERS FROM THE RESULTS OF THE PMR INVERSIONS

Surveys	\(W_{PMR} \) (%)	\(T_2^* \) (ms)	Water-bearing roof (m)	Saturated thickness (m)	\((W_{PMR} \Delta x) \) (mm)
S1TN	6.5	176	4.6	23.4	1521
S2DG	9	175	4.2	40.8	3672
S3ARA	4	150	1.5	20.5	820
S4SE	7.5	171.7	3.8	22.2	1665
S5DN	13	210	5.4	24.6	3198

Fig. 9. Relation \(T_2^* \)- PMR water content

B. Drainage porosity (\(S_{y_{PMR}} \)) and water reserve (\(R_{PMR} \))

Determination of \(S_{y_{PMR}} \) and \(R_{PMR} \) values of aquifers in the department of Donga was made possible through the use of equations II and III and the work of [34]. The analysis in Table IV shows that the \(S_{y_{PMR}} \) values of the aquifers in the department of Donga vary from 2.52 and 8.19 per cent with an average value of 4.85 per cent. As for the \(R_{PMR} \) reserve of the studied reservoirs, it varies between 517 mm at the S3AA site and 2313 mm at the S2DG site.

TABLE IV: \(S_{y_{PMR}} \) and \(R_{PMR} \)

Surveys	\(W_{PMR} \) (%)	Saturated thickness \(\Delta x \) (m)	\(S_{y_{PMR}} \) (%)	\(R_{PMR} \) (mm)
S1TN	6.5	23.4	4.1	958
S2DG	9	40.8	5.67	2313
S3AA	4	20.5	2.52	517
S4SE	7.5	22.2	4.72	839
S5DN	13	24.6	8.19	2015

C. Analysis of PMR properties as a function of geological formations

The PMR hydrological properties of the weathering layers are intimately linked to the geological formations from which they are derived. Indeed, the analysis of the results from the PMR surveys shows that the low PMR (\(W_{PMR} \)) water contents (4%) are observed in the Djougou gneisses while the high \(W_{PMR} \) water contents (13%) were recorded in the granitoid migmatites (Table V). As for water levels (\(W_{PMR} \Delta x \)), the smallest (0.82 m) were also observed in the Djougou gneisses and the largest water column (3.67 m) was recorded in the Donga gneisses. The granitoid migmatites have a high drainage porosity (\(S_{y_{PMR}} = 8.19\% \)) compared to other formations in the study area. The weathering from the Donga gneisses and granitoid migmatites contain the largest groundwater stocks in the Donga Department with 2313 mm and 2015 mm respectively, i.e. double the stocks identified by [36] in the basement rocks area.

TABLE V: RELATIONSHIP OF PMR PROPERTIES TO GEOLOGICAL FORMATIONS

Surveys	Geological Formations	\(W_{PMR} \) (%)	\(T_2^* \) (ms)	\((W_{PMR} \Delta x) \) (mm)	\(S_{y_{PMR}} \) (%)	\(R_{PMR} \) (mm)
S1TN	Kara’s Orthogneiss	6.5	176	1.52	4.1	958
S2DG	Gneiss of Donga	9	175	3.67	5.67	2313
S3AA	Gneiss of Djougou	4	150	0.82	2.52	517
S4SE	Granulite	7.5	171.7	1.33	4.72	839
S5DN	Granitoid migmatites	13	210	3.19	8.19	2015

V. CONCLUSION

The analysis of the PMR surveys carried out made it possible to estimate the \(W_{PMR} \) and \(T_2^* \) values in five different localities in the study area. Indeed, the amplitudes of \(W_{PMR} \), \(T_2^* \), \(S_{y_{PMR}} \) and \(R_{PMR} \) are between 4 and 13%, 150 and 212.5 ms and 2.3 and 8.2% respectively. The values of \(T_2^* \) amplitudes recorded during this study show that the weathering layers of Donga Department have a coarse to medium sand grain size. The calculation of the PMR water column indicates that the gneisses of Donga have the highest water column (3672 mm) and the granitoid migmatites have the highest \(W_{PMR} \) with 13%. The contribution of the ERT is mainly related to the detection of fracture zones with precision on their geometric properties. The contribution of the PMR is relative to the estimation of the hydrogeological properties of the fractured zones in different geological basement rocks context.

ACKNOWLEDGMENT

The authors would like to thank the National Fund for Scientific Research and Technological Innovation of Benin for funding this project (N°7700/MESRS/DC/SGM/D-FNRST/SA). The authors would like to thank the IRD for providing the PMR equipment. The authors would also like to acknowledge the anonymous instructors for their criticisms, comments and suggestions which have contributed to the improvement of this document.

REFERENCES

[1] YALO NICAISE (2000). Geological and geophysical models of the Gulf of Benin and detection of tectonic dislocations in seismic data. PhD thesis PhD of the Moscow State Academy of Geological Prospecting (Russia) UDK 552.082.536. 128p.
[2] NAKOELDONOUSSE, S., SAVEODOGO N. A. & ROULEAU A., 1993. The factors of productivity of crystalline basement aquifers in Burkina Faso: the example of Pobé. J. M. Doufo, F. Cavayas and P. Lafrance (eds). Remote sensing applied to thematic and topographic mapping, collection. Univ. of France, PUQ, Ed. AUPELF UREF, 422.
[3] SALEY M. B. (2003). System of spatially referenced information, pseudo-image discontinuities and thematic mapping of water resources in the semi-mountainous region of Man (western Côte d’Ivoire). Single PhD thesis, University of Cocody, 209p.
[4] YOUAN TA M., YAO K.A.F., BAKA D., DE LASM Z.O., LASM S., NAKOLENDOUSSE, S., SAVADOGO N. A. & ROULEAU A., 2017. Mapping of potential zones for the implementation of high-flow drilling in fissured media by multi-criteria analysis: Case of the department of Oumé (central-western Côte d’Ivoire). Lathyss Journal 23, p. 155-181.

DOI: http://dx.doi.org/10.24018/ejers.2020.5.2.1737

116
ANTONAKOS, A., VOUDOURIS, K., LAMBRAKIS, N., 2014. Site selection for drinking-water pumping boreholes using a fuzzy spatial decision support system in the Korinthia prefecture, SE Greece. Hydrog. J., 32, 1763–1776.

GIKONOMIDIS, D., DIMOGIANNIS, S., KAZAKIS, N., VOUDOURIS, K., 2015. A GIS/remote sensing based methodology for groundwater potentiality assessment in Timavos area, Greece. J. Hydrol., 525, 197–208. DOI: 10.1016/j.jhydrol.2015.03.056

GUPTA, M., SRIVASTAVA, P.K., 2010. Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagadh, Gujarat, India. Water Int. 35, 233–245.

JHARIYA, D. C., TARUN, K., GOBINATH, M., PRABHAT, D. AND NAWAL, K., 2016. Assessment of Groundwater Potential Zone Using Remote Sensing, GIS and Multi Criteria Decision Analysis Techniques. J. geol. Soci. of India Vol.88, 481-492

JOURDA J. P. (2005). Methodology for the Application of Remote Sensing Techniques and Geographic Information Systems to the Study of Fractured Aquifers in West Africa. Concept of spatial hydrogeotectonics: the case of test zones in Côte d'Ivoire. PhD thesis, University of Cocaly, 430 p.

YOUAN TA. M., LASM T., JOURDA J. P.; SALEY B. M., ADJA M. G., KOUAME K. AND BIEMI J. (2011). Groundwater mapping in fissured environment by multi-criteria analysis Case of Bondoukou (Ivory Coast). International Journal of Geomatics, 2011, 21 (1), p. 43-71.

LAMOTTO D. D. (2017). Characterization and hydrogeological modelling of an aquifer in a fractured basement environment: case of the Sonon experimental site (central plateau region in Burkina Faso), PhD thesis, Univ. Pierre et Marie Curie-Paris 6 and 2IE, 287p.

VOUILLAMOZ J.-M., LAWSON F.M.A., YALO N., DESCLOTRES M. (2014). The use of magnetic resonance sounding for quantifying specific yield and transmissivity in hard rock aquifers: The example of Benin. Journal of Applied Geophysics 107, p.16-24

ALLE I. C., DESCLOTRES M., VOUILLAMOZ J.M., YALO N., LAWSON F.M.A., ADJIOU A. C., (2018). Why 1D electrical resistivity techniques can result in inaccurate siting of boreholes in hard rock aquifers and why electrical resistivity tomography must be preferred: the example of Benin, West Africa, Journal of African Earth Sciences 139, p. 341-353.

AKOKPONHOUE Bertrand (2019). Contribution of remote sensing, geographical information systems and geophysical methods in the exploration of fracture aquifers in the Donga department (north-western Benin). PhD thesis of the University of Abomey-Calavi. 246p.

AFFATON P. (1987). The volta basin (West Africa): a passive margin of the Upper Proterozoic tectonized Pan-African. State Thesis, vol. 2, Université Aix-Marseille III, 462p.

CAEN-VACHETTE M., PINTO K.J.M., ROQUES M. (1979). Ebunean plutons and metamorphism in the crystalline basement of the Pan-African chain in Togo and Benin. Review of Geological Dynamics Physical Geography, 21, p.351-357.

BOUSSARI W.T., 1975. Contribution to the geological study of the crystalline basement of the Pan-African mobile zone (Central Region of Dahomey), PhD thesis, Univ. of Besançon, 105p.

LASM T., YOUAN TA. M., BAKA D., DE LASM O., JOURDA J. P., KOUAME F. K., YAO T. K., KOUADIO K. E., YAO F. A. (2014). Fractures networks organization on Precambrian basement of Côte d’Ivoire: statistical and geostatistical approaches. International Journal of Emerging Techn. and Advanced Engineering Vol. 4, p. 1-10.

LACHASSAGNE P., WYNS R., DEWANDEL B. (2011). The fracture permeability of hard rock aquifer is due neither to tectonics, nor to unloading, but to weathering processes. Terna Nova, 23, p.145-161.

DEWANDEL B., LACHASSAGNE P., WYNS R., MARECHAL J.C., & KRISHNAMURTHY N.S. (2006). A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. Journal of Hydrology, 310 (1-2), p. 260-284.

WYNS R., QUESNEL F., SIMON-COINC, R., GUILLOCHEAU, F., & LAQUEMEMENT F. (2003). Major weathering in France related to lithospheric deformation. Géologie de France, 4, 79-90.

LANGSDORF W. (1971). Possibilities of groundwater exploitation in weathered schistose and crystalline structures in Dahomey/West Africa. Nahr. dscheggeol, Gesellsh, Dtsch. 1971 No. 4, trl. part. p. 82. Trad. ERGM, No. 5479.

BOUKARI M. (1982). Contribution to the hydrogeological study of the basement regions of intertropical Africa: the hydrogeology of the Dassa-Zoumé region (Benin). PhD thesis, University of Dakar. 173p

BOUKARI M., AKITI T.T. AND ASSOMA D. (1984). The hydrogeology of West Africa. Synthesis of the knowledge of ancient crystalline and crystallophyllicitic and sedimentary basement, 2nd edition, 147p.

SAVADOGO A. N. (1984). Geology and hydrogeology of the crystalline basement of Upper Volta. Regional study of the Sissili catchment area. Thesis Doctorate ès Sci., Univ. Grenoble 1, Inst. Dolomieu, 350p.

BIEMI J. (1992). Contribution to the geological, hydrogeological and remote sensing study of sub-Saharan catchments of the Precambrian basement of West Africa: Hydrostructural, hydrodynamic, hydrochemical and isotopic studies of discontinuous aquifers of furrows and granitic areas of the Haute Marahoué (Côte d'Ivoire). PhD thesis. ès Nat., University, Abidjan, 493p.

KOUAME K. F. (1999). Hydrogeology of discontinuous aquifers in the semi-mountainous region of Man-Danâné (Western Côte d'Ivoire). Contribution of satellite image data and statistical and fractal methods to the development of a spatially referenced hydrogeological information system. 3rd cycle thesis, Univ. Cocaly-Abidjan, (Ivory Coast), 194 pp.

LASM T. (2000). Hydrogeology of fractured basement reservoirs: Statistical and geostatistical analyses of fracturing and hydraulic properties. Application to the mountain region of Côte d'Ivoire (Archean Domain). Single PhD thesis University of Poitier, 272p.

BOUCHER M. (2007). Estimation of the hydrodynamic properties of aquifers by proton magnetic resonance in different geological contexts from sample to hydrogeological scale. PhD thesis, University of Orleans, France, 199p

CHALIKAKIS K. (2006). Application of geophysical methods for recognition and protection of water resources in karst environments. PhD thesis, Pierre and Marie Curie University - Paris 6, France, 212p.

LUCZYNSKI MW. ET ROY J. (2007). Use of MRS for hydrogeological system parameterization and modeling. Boletín Geológico y Minero 118 (3), p. 509-530.

SCHIROV M., LEGCHENKO A., CREER G. (1991). A new direct non-invasive groundwater detection technology for Australia. Explo. Geophysics 22 (2), p. 333-338.

LECHENKO A., EZERSKY M., GIRARD JF., BALKASSAT JM., BOUCHER M., CAMERLYNCK C., AL-ZOUBI A. (2008). Interpretation of magnetic resonance soundings in rocks with high electrical conductivity. Journal of Applied Geophysics 66 (3), p.118– 127.

HECTOR B., SEGUIS L., HINDERER J., DESCLOTRES M., VOUILLAMOZ J.-M., WUBDA M., BOY J.-P., LUCK B., MOINEG N.L. (2013). Gravity effect of water storage changes in a weathered hard-rock aquifer in West Africa: results from joint absolute gravity, hydrological monitoring and geophysical prospection. Geophys. J. Int. 194, p. 737-750.

VOUILLAMOZ JM. (2003). Aquifer characterization by a non-invasive method: p

SCHIROV M., LEGCHENKO A., CREER G. (1991). A new direct non-invasive groundwater detection technology for Australia. Explo. Geophysics 22 (2), p. 333-338.

LECHENKO A., EZERSKY M., GIRARD JF., BALKASSAT JM., BOUCHER M., CAMERLYNCK C., AL-ZOUBI A. (2008). Interpretation of magnetic resonance soundings in rocks with high electrical conductivity. Journal of Applied Geophysics 66 (3), p.118– 127.

HECTOR B., SEGUIS L., HINDERER J., DESCLOTRES M., VOUILLAMOZ J.-M., WUBDA M., BOY J.-P., LUCK B., MOINEG N.L. (2013). Gravity effect of water storage changes in a weathered hard-rock aquifer in West Africa: results from joint absolute gravity, hydrological monitoring and geophysical prospection. Geophys. J. Int. 194, p. 737-750.

VOUILLAMOZ JM. (2003). Aquifer characterization by a non-invasive method: proton magnetic resonance soundings. PhD thesis, Université Paris Sud - Paris XI, France. 236p.

VOUILLAMOZ J.-M., LAWSON F.M.A., YALO N., DESCLOTRES M. (2015). Groundwater in hard rocks of Benin: Regional storage and buffer capacity in the face of change. Journal of Hydrology 520, p.379-386.