Заместительная терапия препаратами антитромбина в комплексном лечении сепсиса

И. В. Редкин1, А. Ф. Лопатин1, А. Г. Яворовский2, В. В. Лихванцев1,2

1 Московский областной научно-исследовательский клинический институт им. М. Ф. Владимирского, Россия, 129110, г. Москва, ул. Щепкина, д. 61/2
2 Первый Московский государственный медицинский университет им. И. М. Сеченова Минздрава России, Россия, 119991, г. Москва, ул. Трубецкая, д. 8, стр. 2

Supplementation therapy with Antithrombin Drugs in the Combined Treatment of Sepsis

Ivan V. Redkin1, Andrey F. Lopatin1, Andrey G. Yavorovskiy2, Valery V. Likhvantsev1,2

1 M.F. Vladimirsky Moscow Regional Research Clinical Institute, 61/2 Shchepkin Str., Moscow 129110, Russia
2 I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8 Trubetskaya Str., Bldg. 2, 119991 Moscow, Russia

Цель работы — оценить эффективность применения заместительной терапии недостаточности антитромбина при комплексном лечении сепсиса.

Материал и методы. Провели проспективно — ретроспективное исследования эффективности заместительной терапии недостаточности антитромбина при сепсисе; обследованы 90 пациентов. В зависимости от того, проводили ли коррекцию недостаточности антитромбина, пациентов разделили на две группы. Первой точкой исследования выбрали композитный исход — частоту развития осложнений со стороны сердечно-сосудистой системы через 28 дней после начала лечения. Вторичные точки исследования — частота развития неблагоприятных событий на 28 день от начала лечения и 180 дневная летальность.

Результаты. Группы не различались между собой ни по 28-дневной летальности, ни по композитному исходу. При анализе вторичных точек выявили, что в группе пациентов получавших заместительную терапию антитромбином, риск развития острого почечного повреждения был существенно ниже на 28 и 180 сутки от начала лечения: OR 3,5 [95% CI 1,05–11,66] при р=0,04 и OR 2,92 [95% CI 1,02–8,31] при р=0,045, соответственно.

Заключение. Коррекция уровня антитромбина до уровня активности ‘более 61%’ ассоциирована со снижением частоты развития острой почечной недостаточности III ст. (KDIGO).

Ключевые слова: сепсис; заместительная терапия; антитромбин; острая почечная недостаточность

Purpose — to assess the efficacy of supplementation therapy for antithrombin deficiency in the combined treatment of sepsis.

Materials and methods. A prospective-retrospective study of the efficacy of supplementation therapy for antithrombin deficiency during sepsis was carried out; 90 patients were examined. The patients were split into two groups whether antithrombin deficiency correction was or was not undertaken. The composite outcome — the incidence of cardiovascular complications as of day 28 from the therapy commencement — was chosen as the primary endpoint of the study. The secondary endpoints of the study were prevalence of adverse events as of day 28 from the therapy commencement and 180-day mortality.

Results. There was no difference between the groups either in respect of 28-day mortality or composite outcome. Analysis of secondary endpoints revealed that in the group of patients who received antithrombin supplementation therapy, the risk of development of an acute renal injury was significantly lower on day 28 and 180 from therapy commencement: OR 3.5 [95% CI 1.05–11.66] at P=0.04 and OR 2.92 [95% CI 1.02–8.31] at P=0.045, respectively.

Conclusion. Correction of antithrombin level to activity level ‘over 61%’ is associated with decreased incidence degree III acute kidney failure (KDIGO).

Keywords: sepsis; antithrombin supplementation therapy; acute kidney failure

DOI:10.15360/1813-9779-2019-5-34-43

Адрес для корреспонденции:
Иван Валерьевич Редкин
E-mail: redkin70@mail.ru

Correspondence to:
Ivan V. Redkin
E-mail: redkin70@mail.ru
Введение

SEPSIS III (Surviving Sepsis Campaign III) предлагает рассматривать сепсис, как опасную для жизни дисфункцию органов, вызванную дисрегуляцией ответной реакции организма на инфекцию [1]. Летальность пациентов с сепсисом составляет 25–30%, а у больных с септическим шоком может достигать 35–40% и более [2].

Непосредственной причиной смерти при сепсисе в большинстве случаев является полиорганная недостаточность. Чаще всего поражается сердечно — сосудистая (до 80% случаев) система, почки (до 70%) и система дыхания (60–65%), реже, нервная система (до 50%) и печень (35% случаев) [3–5]. Свертывающая система крови страдает более чем у половины больных (до 55–60%), занимая, таким образом, положение «где-то в середине списка».

Нарушения коагуляции часто проявляются в виде синдрома диссеминированного внутрисосудистого свертывания крови (ДВС) [6]. При этом наблюдается снижение уровня физиологических антикоагулянтов в плазме, включая антитромбин (АТ), что является маркерами активации системной коагуляции [7, 8]. В частности, снижение активности АТ является следствием чрезмерного образования тромбина [9], повышенной проницаемости сосудов [10], ускоренной деградации АТ, развивающихся в рамках ДВС [11] и в значительной степени влияющих на летальность при сепсисе [12].

Эффективность заместительной терапии антитромбином в составе комплексного лечения сепсиса изучалась, по крайней мере, в шести рандомизированных контролируемых исследованиях [13–18]. Были получены противоречивые результаты. Так, в исследовании «KyberSept» (2001) не было обнаружено какого-либо положительного эффекта от введения высоких доз АТ [18]. Однако, анализ в подгруппах показал лучшую выживаемость пациентов с сепсис-ассоциированным ДВС [17]. Hayakawa et al. (2018) продемонстрировали, что терапия препаратами АТ в низких дозах (1500 МЕ/сут в течение 3 дней) улучшает результаты лечения; летальность пациентов группы «с очень низкой антитромбиновой активностью» была заметно ниже среди тех пациентов, которые получали терапию антитромбином [19].

О положительных эффектах терапии антитромбином сообщалось и в нескольких менее мощных исследованиях [13, 14, 16, 20, 21].

Тем не менее, в последней редакции SEPSIS III рекомендация по включению АТ в состав комплексного лечения сепсиса отсутствуют ввиду недоказанной эффективности [22].

Если именно это является причиной сдержанного отношения к терапии антитромбином
при сепсисе, то исследование предприяли с целью получения дополнительных данных в этом направлении.

Материал и методы
Общая характеристика больных и методы исследования. Проведено проспективно-ретроспективное когортное исследование 137 пациентов с сепсисом. Контрольная группа (терапия антитромбина не проводилась) была сформирована ретроспективно на основании анализа истории болезни 83 пациентов с сепсисом, проходивших лечение в ГБУЗ МО МОНИКИ им. М. Ф. Владимировского и ФГКУ ГКБГ г. Голицыно в период с 11.2017 г. по 04.2019 г. 33 пациента этой группы не соответствовали критериям включения во второй этап исследования (уровень активности антитромбина >61%). Таким образом, 50 пациентов приняли участие в исследовании в качестве контрольной группы, согласно одобрению Независимого комитета по этике, протокол № 9 от «12» октября 2017 г.

Исследуемая группа (54 пациента с сепсисом с уровнем антитромбина «менее 60%» вводили антитромбин) набиралась проспективно с 01.2016 г. по 12.2018 г. 4 пациента этой группы встретили критерии исключения и 10 пациентов критерии не включили. Таким образом, исследуемая группа состояла из 40 пациентов, отвечающих требованиям настоящего исследования. Схема исследования показана на рисунке.

Исследуемая и контрольная группы были сравнимы по гендерному и возрастному признакам, по активности антитромбина, а также наличию в анамнезе заболеваний: нарушение ритма сердца, ишемическая болезнь сердца, сердечная недостаточность и хроническая болезнь почек (табл. 1).

Таким образом, проведенное сравнение, позволило считать выделенные группы сравнимыми, а результаты проведенного исследования корректными.

Критерии включения:
1. Установленный сепсис хирургического и нехирургического профиля с выявленным источником инфекции.
2. Возраст 18–75 лет.
3. Активность антитромбина <61%.
4. Отсутствие хронических воспалительных заболеваний в анамнезе.

Схема исследования.

Table 1. Characterization of patients in groups.

Parameters	Values of parameters in groups	Control	Study	P
Number of patients, n		50	40	0.9
Men/women, n (%)		33/17	23/17	0.9
Age of patients, years mean ± SD		49±15	51±15	0.8
AT activity % [IQR]		51 [38-60.8]	44 [32-60.3]	0.7
Arrhythmias, n (%)		12 (23)	7 (17.5)	0.62
IHD, n (%)		8 (12)	4 (10)	0.6
CI, n (%)		10 (20)	6 (15)	0.77
CKD (w/o reference to a stage), n (%)		3 (1.5)	1 (2.3)	0.43

Примечание. Для табл. 1, 2: parameters — параметры; values of ... in groups — значения в группах; men/women — мужчины/женщины; age, years, mean — возраст, лет, среднее; activity [IQR] — активность [МКИ]; arrhythmias — аритмии; IHD — ИБС; CI — ЧС; CKD (w/o reference to a stage) — ХВП (без указания стадии).

DOI:10.15360/1813-9779-2019-5-34-43

Clinical Studies and Practice
Клинические исследования и практика

DIAGNOSIS AND THERAPY OF SEPSIS IN PATIENTS WITH SERIOUS SURGICAL COMPLICATIONS

DOI:10.15360/1813-9779-2019-5-34-43

GENERAL REANIMATOLOGY, 2019, 15; 5

www.reanimatology.com

Критерии не включения:
1. Наличие онкологических заболеваний.
2. Наличие ВИЧ-инфекции.
3. Беременность.

Критерии исключения:
1. Серьезные хирургические осложнения, связанные с оперативным вмешательством (массивное кровотечение, геморрагический шок).

Диагностику и терапию сепсиса проводили в соответствии с рекомендациями SEPSIS III [22]. Статистическая антибактериальная терапия включала препараты широкого спектра действия; после верификации патогена и установления чувствительности, при необходимости, проводили коррекцию назначений. Инфузионную терапию также проводили в соответствии с рекомендациями SEPSIS III [22].

Стратегия и тактика интенсивной терапии была одинакова для всех пациентов. Суточный мониторинг проводился в соответствии с требованиями «Гарвардского стандарта» [23].

Единственным отличием исследуемой группы явилась коррекция уровня антиглобулина путем в/в введения препарата АНТИГЛОБУЛАН III человеческий «BAXTER, AG» США. Принимая во внимание результаты проведенного ранее исследования [24], пациентам, у которых уровень антиглобулина на 5-е сутки составлял менее 61% активности, проводили заместительную терапию АТ до достижения целевого уровня «более 61% активности». Данный уровень АТ поддерживали все время пребывания пациента в ОРИТ, путем, при необходимости, проведения повторных трансфузий.

Дозу и частоту введения всегда устанавливали на основании клинической эффективности и результатов лабораторных исследований в каждом конкретном случае, индивидуально.

Начальную дозу рассчитывали согласно инструкции по применению препарата:

\[Dd = Mt \times \sqrt{\frac{(Lt-Li)}{2}} \]

где, \(Lt \) — целевой уровень активности АТ (%); \(Li \) — исходный уровень активности АТ (%); \(Mt \) — масса тела (кг); \(Dd \) — необходимая доза препарата (ME).

Исследования показательной гемостаза выполнялись на анализаторе ACL TOP 700 («Instrumentation Laboratory», США).

Конечные точки исследования. Первичная конечная точка — композитный исход и 28 дневная летальность, вторичная композитный исход и 180 дневная летальность.

Неблагоприятными клиническими событиями (осложнениями) считали:
- ОРДС в соответствии с Берлинским определением [25].
- ОНС (острая сердечная недостаточность). Диагноз ОНС ставили на основании стойкого снижения среднего АД ниже 65 мм рт. ст. с исключением других возможных причин артериальной гипотензии и потребность в инотропной поддержке в виде постоянной инфузии вазопрессоров с подсчетом общей дозы Vasopressor Score (вазопрессорный индекс) [добутамин × 1] + [норадреналин × 100] [26].
- ОПН в соответствии с критериями KDIGO, 2012 г. [27];
- ОНСО — основные неблагоприятные сердечно-сосудистые и церебральные осложнения:

Patients meeting the study requirements. The study design is presented on fig. 1.

The study and control groups were comparable as regards gender and age, antithrombin activity, and past history of: cardiovascular complications, ischemic heart disease, cardiac insufficiency, and chronic kidney disease (table 1).

Thus, the comparison between groups revealed no differences in parameters shown (table 1).

Endpoints of the study. The primary endpoint of the study was the composite outcome: the prevalence of cardiovascular complications on day 28 from treatment commencement. The secondary endpoints were the incidence of adverse events as of day 28 from treatment commencement and 180 day mortality.

The following was considered an adverse clinical event (complication):
- ARDS according to the Berlin definition [25].
Событие острого инфаркта миокарда [28].
• Хроническая сердечная недостаточность впервые появившиеся, внутрибольничные, признаки или симптомы стенокардии (одышка или усталость, ортоинъе, пароксизмальная ночной одышка, увеличение «легочного давления», легочные храпы при аускультации, кардиомегалия).
• НОС (нефатальная остановка сердца) — отсутствие сердечного ритма или наличие гастрохимического ритма, требующего любого компонента базовой или расширенной поддержки сердечной деятельности [29].
• ВВА (впервые выявленное или вновь возникшее нарушение ритма сердца): ЭКГ свидетельствует о трепетании, фибрилиации предсердий или блокаде атриовентрикулярной проводимости второй или третьей степени.
• Инсульт, который согласно ACS-NSQIP определяется как эмболическое, тромботическое или геморрагическое церебральное заболевание (осложнение) у стойчивой остаточной двигательной, сенсорной или когнитивной дисфункции [30].
• ОПН/Г — диагностика дисфункции печени согласно руководящим принципам SEPSIS III, основана на увеличении концентрации билирубина в сыворотке > 2 мг/дл (34,2 мкмоль/л) и возникновении коагулопатии (МНО > 1,5) [22].
• Композитный исход лечения — рассчитывали как сумму выше перечисленных осложнений [31].

Статистический анализ. Данные, полученные в ходе исследования, обрабатывали с помощью программ статистического анализа Statistica 10 (Stat Soft, Inc. 2011) и MedCalc 12.5.0. (MedCalc Software, США) [32].

Все переменные, полученные в ходе исследования, подвергли стандартизации и исследованию на нормальность распределения по критерию Шапиро–Уилка [33].

Переменные, получившие нормальное распределение — представили как средние арифметические величины (M) со стандартным квадратическим отклонением (s). Для определения статистической значимости отличий нормально распределённых переменных, применяли парный U-критерий Стьюдента.

Переменные, не получившие нормального распределения, представили в виде медианы и межквартильным интервалом (Me [25; 75]), доверительным интервалом считали значение в 95% (ДИ 95%). Определение значимости отклонений, используя следующие непараметрические критерии: U-критерий Манна–Уитни — для независимых групп. Для сравнения частот качественных переменных — chi-квадрат и двусторонний точный критерий Фишера, определение отношения шансов.

Статистическую значимость различий принимали при p<0,05.

Результаты и обсуждение

Использование антитромбина не повысило шансов на благоприятный исход при сепсисе OR 1,20 [95% CI 0,49–2,94] при p=0,84; и не влияло на шансах на благоприятный исход при сепсисе OR 1,5 [95% CI 0,49–2,94] при p=0,84; и не влияло

Acute heart failure (AHF). AHF was diagnosed based on persistent decrease of mean ABP beneath 65 mm Hg with the exception of other possible reasons for arterial hypotension and requirement for inotropic support in the form of continuous infusion of vasoppressors with estimation of the total dose (Vasopressor Score) [Dobutaminum x 1] + [Noradrenaline x 100] [26].
• ARF according to KDIGO, 2012 [27];
• MACCE — major adverse cardiac and cerebral events:
• Acute myocardial infarction [28].
• Chronic cardiac failure, occurred for the first time nosocomial signs or symptoms of angina pectoris (dyspnea or fatigue, orthopnea, paroxysmal nocturnal dyspnea, increased ‘pulmonary pressure’, auscultated pulmonary rale, cardiomegaly).
• NCA (non-fatal cardiac arrest) — absence of hearth rhythm or presence of a chaotic rhythm, which requires any component of basic or extended cardiopulmonary resuscitation [29].
• FDA (first detected or first occurred arrhythmia): ECG signs of flutter, atrial fibrillation, or atrioventricular block of the second or third degree.
• Stroke, which, according to ACS-NSQIP, is defined as an embolic, thrombus, or hemorrhagic cerebral disease (complication) with persistent residual motor, sensory, or cognitive dysfunction [30].
• ALF — liver dysfunction according to SEPSIS III guidelines, (increased serum bilirubin > 2 mg/dl [34.2 µmol/l] and occurrence of coagulopathy (IHR>1.5)) [22].
• Composite outcome of treatment — was calculated as a sum of the above complications [31].

Data were acquired at two timepoints determined in the study: day 28 in ICU and day 180 from the treatment commencement.

Statistical analysis. Data obtained in the course of the study were processed using software for statistical analysis: Statistica 10 (Stat Soft, Inc. 2011) and MedCalc 12.5.0. (MedCalc Software, USA) [32].

All variables received in the course of the study were subjected to standardization and analysis for normality of distribution using the Shapiro–Wilk test [33].

Variables featuring normal distribution were presented as arithmetic means (M) and root-mean-square deviation values. To determine the significance of differences of normally distributed variable, paired Student t-test was used.

Variables that did not follow normal distribution were presented as a median and interquartile interval (Me [25; 75]). The confidence interval was regarded equal to 95% (CI 95%). Significance of differences was assessed with the help of the following non-parametric criteria: Mann–Whitney U-test for independent groups; frequencies of qualitative variables were compared using two-tailed Fisher’s exact test and odds ratio.

Differences were considered significant at P<0.05.

Results and Discussion

Antithrombin usage did not rise the chances for favorable outcome during sepsis: OR 1.20 [95% CI 0.49–2.94] at P>0.84; neither did it affect the composite outcome of treatment in the study group. Mann–Whitney U-test did not show statistically significant difference in the composite out-
на композитный исход лечения в исследуемой группе. У-критерий Манна–Уитни не показал статистически значимой разницы по композитному исходу между исследуемой и контрольной группами 2,0 [1,0–4,0] и 3,0 [1,0–5,0], p=0,22.

Применение заместительной терапии антитромбином не снизило риски развития и других неблагоприятных событий у пациентов на 28-е сутки лечения (табл. 2): ОНМК: OR 1,21 [95% CI 0,19–7,63] при p=0,84, ОРДС: OR 1,23 [95% CI 0,53–2,85] при p=0,63, ОНС: OR 0,91 [95% CI 0,36–2,72] при p=0,84, а также на риск развития впервые выявленной аритмии OR 1,22 [95% CI 0,53–2,81] при p=0,64, эпизодов ишемии миокарда OR 1,37 [95% CI 0,32–6,12] при p=0,68, ост- рой сердечной недостаточности OR 1,91 [95% CI 0,80–4,55] при p=0,14; инфаркта миокарда OR 1,63 [95% CI 0,14–18,6] при p=0,69 и «нефатальный остановки сердца» OR 1,21 [95% CI 0,19–7,63] при p=0,84.

Однако в исследуемой группе отмечено значимое снижение риска развития ОНН III ст. OR 0,29 [95% CI 0,09–0,95] при p=0,04.

Через полгода после выписки из стационара, выявленные тенденции не изменились (табл. 2). 180-ти дневная летальность составила в исследуемой группе 47,5%, в контрольной — 52% (p=0,83), таким образом, использование АТ не повышает шансы на благоприятный исход при сепсисе: OR1,20 [95% CI 0,52–2,75] при p=0,67.

Количество пациентов, продолжавших лечение по поводу ОНН 3 ст. через полгода после выписки из стационара составило 15% в исследуемой и 36% контрольной группах (p=0,03), таким образом, терапия АТ предупреждает риск развития хронической ПН с OR 2,92 [95% CI 1,02–8,31] при p=0,045.

В результате проведенного исследованного было установлено, что коррекция недостаточ-

Для оценки частоты развития неблагоприятных событий в сравнении с контрольной группой использовалась таблица 2. В ней указаны значения OR и их доверительные интервалы для различных событий. Также приведены значения p-значений, показывающие статистическую значимость различий между группами.

Parameters	Control, n=50	Study, n=40	P
Hospital (28-day) mortality, n (%)	17 (34)	12 (30)	0.69
NCA, n (%)	3 (6)	2 (3)	0.84
FDA, n (%)	25 (50)	18 (45)	0.47
Angina pectoris, n (%)	5 (10)	3 (7.3)	0.41
AHF, n (%)	35 (70)	22 (33)	0.16
Myocardial infarction, n (%)	2 (4)	1 (2.5)	0.39
ACVE, n (%)	3 (6)	2 (3)	0.84
ARDS, n (%)	30 (60)	22(55)	0.47
Stage III ARF, n (%)	14 (28)	4 (10)	0.04
ALF, n (%)	14(36)	12(30)	0.21
MACCE + ARDS + ARF + ALF, score per 1 patient	148 (2.96)	98 (2.45)	0.22
Me [interquartile interval]	3.0 [1,0–5,0]	2.0 [1,0–4,0]	

Примечание. For the meanings of abbreviations refer to material and methods.
nosti антитромбина ассоциирована со сниженным риском развития почечной недостаточности, как на 28 сутки лечения, так и на 180 сутки после выписки из стационара.

Сходные результаты были получены ранее Inthorn D et al. (1997). Авторы отобрали 40 пациентов с тяжелым сепсисом и септическим шоком [16]. Двадцать пациентов составили контрольную группу и двадцать исследуемую, в последней непрерывно в течение двух недель проводили терапию препаратами АТ до достижения целевой концентрации АТ в плазме >120%. Утверждалось, что «длгосрочная терапия АТ может снизить частоту развития почечной недостаточности у пациентов с тяжелым сепсисом», а также риск развития дисфункции лёгких и предотвратить развитие септической печеночной недостаточности. Конечно, к результатам этой работы следует отнестися критически: вызывает сомнение целесообразность подобной гиперкоррекции уровня антитромбина, да и малочисленность сравниваемых групп заставляет сомневаться в представительности результатов. Тем не менее, и совсем обойти вниманием приведенное исследование, по-видимому, было бы неправильно.

Имеются и некоторые экспериментальные данные, свидетельствующие об эффективности АТ в плане профилактики и лечения ОПН. Так в начале 2000-х годов проводились работы, которые показали, что терапия препаратами АТ, применяемая в модели экспериментального сепсиса у приматов, способствует уменьшению легочной и почечной недостаточности. Авторы объясняли обнаруженный феномен тем обстоятельством, что АТ ингибирует отложение фибрина, уменьшает воспаление и синдром полиорганной дисфункции [34]. В 2004 году была опубликована работа, в которой авторы показали, на примере кроликов с нефритом Мазуги, что плазма, обогащенная АТ, вводимая в почечную артерию, ингибирует образование протромбиназы и участвует в фибринолизе [35].

В качестве возможного объяснения результатов, полученных в ходе проведения настоящего исследования, можно предположить, что восстановление уровня активности антитромбина прерывает патологический процесс, звеньями которого являются: системное воспаление, эндотелиальная дисфункция, гемодинамические изменения, а также нарушение почечной микроциркуляции, способствующие повреждению нефронов, локализованному застою крови в микроциркуляторном русле почек, высвобождению воспалительных цитокинов и активации системы коагуляции [36, 37]. Восстановление активности антитромбина, по всей видимости, повлияло не только на процесс, инициировавший феномен клеточного апоптоза, приводящий впоследствии к ОПН и органной дисфункции [38–40].

В нашем исследовании терапия антитромбином не приводила к снижению летальности, что может быть следствием отсутствия тера-

Conclusion

Therapy for antithrombin deficiency by exogenously administrated drug prevents development of stage II acute renal failure in patients with sepsis.
певтического эффекта, как такого, но может быть и следствием недостаточной выборки. В любом случае, наши данные подтверждают результаты ранее проведенных исследований, также продемонстрировавших отсутствие влияние терапии АТ на выживаемость пациентов при сепсисе [13–15].

Многобюджетные результаты в профилактике и терапии ОПП вынуждают осторожный оптимизм. Представляется, что только многоцентровое РКИ может дать ответ на вопрос, целесообразно ли проводить заместительную терапию недостаточности антитромбина при сепсисе.

Заключение
Терапия недостаточности антитромбина экзогенным введением препарата при сепсисе предупреждает развитие острой почечной недостаточности III стадии.

Литература
1. Shankar-Hari M., Phillips G.S., Levy M.L., Seymour C.W. Developing a New Definition and Assessing New Clinical Criteria for Septic Shock For the Third International Consensus Definitions for Sepsis and Septic Shock (3-ICD). JAMA, 2016; 15 (8): 775-787. DOI: 10.1001/ jama.2016.0289.
2. Marchioni A., Fantini F., Antonero F., Clini E., Fabbrini L. Chronic critical illness: the price of survival. European journal of clinical investigation. 2015; 45 (12): 1341-1349. DOI: 10.1111/eci.12547.
3. Angus D.C., van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013; Aug 29. 369 (9): 840-851. DOI: 10.1056/NEJMe1308063.
4. Cohen J., Vincent J-L., Adhikari N.K.J., Chiche J-F., Rello J., Marshall J.C., Olthuis K., Marshall J.C., Nitsch D., Hebert P., Lellouch J. AND THE ICON group. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015; 15 (5): 581-599. DOI: 10.1016/S1473-3099(15)00112-X.
5. Vincent J.L., Marshall J.C., Nitsch D., Hebert P., Suter PM., Sprung C.L., Marshall J.C., Nitsch D., Hebert P., Suter PM., Sprung C.L. Septic shock. N Engl J Med. 2016; 374 (9): 847-859. DOI: 10.1056/NEJMoa1608628.
6. Okamoto K., Tamura T., Sawatsubashi Y. Sepsis and disseminated intravascular coagulation. Journal of Intensive Care. 2016; 4: 23. DOI: 10.1186/s40560-016-0149-9.
7. Opal S.M., Kessler C.M., Boechtold J., Knaub S. Antithrombin, heparin, and heparin sulfate. Crit Care Med. 2002; 30 (5): 325-331. DOI: 10.1097/00003246-200205001-00024.
8. Aibiki M., Fukuoka N., Umakoshi K., Ohtsubo S., Kikuchi S. Serum albumin levels anticipate antithrombin III activities before and after antithrombin III agent in critical patients with disseminated intravascular coagulation. Crit Care Med. 2007; 35 (6): 1394-1400. DOI: 10.1097/00003246-200706000-00010.
9. Levi M., van der Poll T. The role of natural anticoagulants in the pathogenesis and management of systemic activation of coagulation and inflammation in critically ill patients. Semin Thromb Hemost. 2008; 34 (5): 459-468. DOI: 10.1055/s-0028-1092876.
10. Buadu E, Caimi TM., de Cataldo F, Bavizza A., Aralti S, Casella G., Carrugo D, Palarisi G., Legnani C., Ridolfi L., Rossi R., D’Angelo A., Crippa L., Giudici D, Gallioli G., Wofeff A., Catoro G. Antithrombin III (ATIII) replacement therapy in patients with sepsis and/or post-surgical complications: a controlled double-blind, randomized, multicenter study. Intensive Care Med. 1999; 24 (4): 336-342. PMID: 9909411. DOI: 10.1007/s001340050576.
11. Eisele B., Lamy M., Thiis LG., Keincke H.O., Schuster H.P., Matthias FR., Fourrier E., Heimrichs H., Delvos U. Antithrombin III in patients with severe sepsis. A randomized, placebo-controlled, double-blind multicenter trial plus a meta-analysis on all randomized, placebo-controlled, double-blind trials with antithrombin III in severe sepsis. Intensive Care Med. 1998; 24 (7): 663-672. PMID: 9722035. DOI: 10.1007/s001340050642.
12. Cona C., Sitzwohl C., Meier F., Weinstabl C., Kettner S.C. Four-day antithrombin therapy does not seem to attenuate hypercoagulability in patients suffering from sepsis. Crit Care. 2006; 10 (6): 160.
13. Inthorn D., Hoffmann J.N., Hartl W.H., Muller B., Jochum M. Antithrombin III supplementation in sepsis: beneficial effects on organ dysfunction. Shock. 1997; 8 (5): 328-334. PMID: 9361342. DOI: 10.1080/08977159711000003.
14. Kienast J., Juers M., Wiedermann C.J., Hoffmann J.N., Ostermann H. Treatment effects of high-dose antithrombin III agent in severe sepsis. A randomized, placebo-controlled, double-blind multicenter trial plus a meta-analysis on all randomized, placebo-controlled, double-blind trials with antithrombin III in severe sepsis. Intensive Care Med. 1998; 24 (7): 663-672. PMID: 9722035. DOI: 10.1007/s001340050642.
15. Cona C., Sitzwohl C., Meier F., Weinstabl C., Kettner S.C. Four-day antithrombin therapy does not seem to attenuate hypercoagulability in patients suffering from sepsis. Crit Care. 2006; 10 (6): 160.
16. Inthorn D., Hoffmann J.N., Hartl W.H., Muller B., Jochum M. Antithrombin III supplementation in sepsis: beneficial effects on organ dysfunction. Shock. 1997; 8 (5): 328-334. PMID: 9361342. DOI: 10.1080/08977159711000003.
17. Kienast J., Juers M., Wiedermann C.J., Hoffmann J.N., Ostermann H. Treatment effects of high-dose antithrombin III agent in severe sepsis. A randomized, placebo-controlled, double-blind multicenter trial plus a meta-analysis on all randomized, placebo-controlled, double-blind trials with antithrombin III in severe sepsis. Intensive Care Med. 1998; 24 (7): 663-672. PMID: 9722035. DOI: 10.1007/s001340050642.
18. Warren B.L., Eid A., Singer P., Pillay S.S., Carl P., Novak I., Chalupa P., Atherstone A., Pérès I., Kübler A., Knaub S., Keincke H.O., Heimrichs
33. Gmurman V.E. Theory and mathematical statistics: studies. manual for University students. Moscow: Moscow education, 2007. 478 [In Russ.].

34. Welty-Wolf K.E., Carraway M.S., Miller D.L., Ortel T.L., Ezban M., Ghio A.J., Idell S., Piantadosi C.A. Coagulation blockade prevents sepsis-induced respiratory and renal failure in baboons. Am. J. Respir. Crit. Care Med. 2001; 164 (10,1): 1988–1996. PMID: 11734456

35. Sokratov N.V. Effect of antithrombin III on local hemostasis in the kidneys during experimental nephritis. Bull. Exp. Biol. Med. 2004; 138: 185–188. DOI: 10.1023/B: BEBM.0000048384.85774.c8

36. Ergin B., Kapucu A., Demirci-Tansel C., Ince C. The renal microcirculation in sepsis. Nephrol. Dial. Transplant. 2014; 30 (2): 169–177. PMID: 24848133, DOI: 10.1093/ndt/gfu105

37. Godin M., Murray P., Mehta R.L. Clinical approach to the patient with AKI and sepsis. Semin. Nephrol. 2015; 35: 12–22. PMID: 25795496, PMCID: PMC4567081, DOI: 10.1016/j.sne nephrol.2015.01.002.

38. Fourrier E., Chopin C., Goudemand J., Hendryc s, Caron C., Rime A., Marey A. Septic shock, multiple organ failure, and disseminated intravascular coagulation: Compared patterns of antithrombin III, protein C, and protein S deficiencies. Chest. 1992; 101: 816–823. PMID: 1531791, DOI: 10.1378/chest.101.3.816.

39. Hack C.E. Tissue factor pathway of coagulation in sepsis. Crit. Care Med. Sep 2000; 9 (28): 25–30. PMID: 11007193, DOI: 10.1097/00003246-200009001-00006

Поступила 04.06.19

Received 04.06.19