A Network Pharmacology Study of Chinese Medicine QiShenYiQi to Reveal Its Underlying Multi-Compound, Multi-Target, Multi-Pathway Mode of Action

Xiang Li1, Leihong Wu1, Wei Liu1, Yecheng Jin1, Qian Chen1, Linli Wang1, Xiaohui Fan1*, Zheng Li2*, Yiyu Cheng1

1 Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China, 2 State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China

Abstract

Chinese medicine is a complex system guided by traditional Chinese medicine (TCM) theories, which has proven to be especially effective in treating chronic and complex diseases. However, the underlying modes of action (MOA) are not always systematically investigated. Herein, a systematic study was designed to elucidate the multi-compound, multi-target and multi-pathway MOA of a Chinese medicine, QiShenYiQi (QSYQ), on myocardial infarction. QSYQ is composed of Astragalus membranaceus (Huangqi), Salvia miltiorrhiza (Danshen), Panax notoginseng (Sanqi), and Dalbergia odorifera (Jiangxiang). Male Sprague Dawley rat model of myocardial infarction were administered QSYQ intragastrically for 7 days while the control group was not treated. The differentially expressed genes (DEGs) were identified from myocardial infarction rat model treated with QSYQ, followed by constructing a cardiovascular disease (CVD)-related multilevel compound-target-pathway network connecting main compounds to those DEGs supported by literature evidences and the pathways that are functionally enriched in ArrayTrack. 55 potential targets of QSYQ were identified, of which 14 were confirmed in CVD-related literatures with experimental supporting evidences. Furthermore, three sesquiterpene components of QSYQ, Trans-nerolidol, (35,65,7R)-3,7,11-trimethyl-3,6-epoxy-1,10-dodecadien-7-ol and (35,6R,7R)-3,7,11-trimethyl-3,6-epoxy-1,10-dodecadien-7-ol from Dalbergia odorifera T. Chen, were validated experimentally in this study. Their anti-inflammatory effects and potential targets including extracellular signal-regulated kinase-1/2, peroxisome proliferator-activated receptor-gamma and heme oxygenase-1 were identified. Finally, through a three-level compound-target-pathway network with experimental analysis, our study depicts a complex MOA of QSYQ on myocardial infarction.

Citation: Li X, Wu L, Liu W, Jin Y, Chen Q, et al. (2014) A Network Pharmacology Study of Chinese Medicine QiShenYiQi to Reveal Its Underlying Multi-Compound, Multi-Target, Multi-Pathway Mode of Action. PLoS ONE 9(5): e95004. doi:10.1371/journal.pone.0095004

Editor: Christina Chan, Michigan State University, United States of America

Received September 21, 2013; Accepted March 21, 2014; Published May 9, 2014

Copyright: © 2014 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was financially supported by the National Basic Research Program of China (no. 2012CB518405) and the National Natural Science Foundation of China (no. 81373893). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The Microarray test was performed by National Engineering Center for Biochip at Shanghai by Dr. Huasheng Xiao’s team.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: fanxhil@zju.edu.cn (XF); lizheng1@gmail.com (ZL)

Introduction

Chinese medicine, an important branch of the healthcare system in China, has gradually gained popularity both at home and abroad [1]. Chinese medicine, a complex system with guidance from traditional Chinese medicine (TCM) theories, has proven to be especially effective to treat chronic and complex diseases. However, the underlying mechanisms of action (MOA) are rarely investigated systematically.

One of the consensus is that TCM produces its efficacy in a holistic way [2], taking the advantage of multi-target therapy being more effective in combating polygenic diseases than mono-therapies [3]. With the advancements in understanding of pathobiology of human diseases, people find that most diseases are not simply caused by one single factor [4]. It is especially true for the complex multifactorial chronic diseases such as cardiovascular disease (CVD), cancer and diabetes [5,6]. The TCM treatments can be visualized as a complexity against complexity paradigm between multi-target therapy such as TCM and the complex biological networks of human diseases. The development of analytical tools such as systems biology [7], network biology [8] and network pharmacology [9,10] provide an opportunity to unravel the complex and holistic mechanisms of TCM in treating complex diseases. In today’s post-genomic era, it has become much easier to obtain huge amounts of data related to the effect of drugs on transcriptome of target tissues. Data analysis becomes critical to identify the MOA of drugs. Recently, network models and network analysis of genomic data has been proven useful to translate the microarray information and identify potential targets [11,12] and enriched pathways involved in the MOA [13–15]. Tools such as Cytoscape have often been used to construct and analyze networks [16].

QiShenYiQi (QSYQ) dropping pills are a Chinese medicine prescription approved by the State Food and Drug Administration (SFDA) of China. QSYQ is widely and effectively used in China to treat CVD, including myocardial infarction, angina, myocarditis, myocardial fibrosis and heart failure [17–19]. QSYQ is composed of Astragalus membranaceus (Huangqi), Salvia miltiorrhiza (Danshen), Panax notoginseng (Sanqi), and Dalbergia odorifera (Jiangxiang). Twelve
compounds including astragaloside IV (Ast), calycosin (Cal) and formononetin (For) from Huangqi; danshensu (DSS), protocatechuic aldehyde (PCA) and rosmarinic acid (RSA) from Danshen; ginsenoside Rg1 (Rg1), ginsenoside Rb1 (Rb1) and notoginsenoside R1 (R1) from Sanqi; trans-nerolidol (ENL), (3S,6R,7R)-3,7,11-trimethyl-3,6-epoxy-1,10-dodeca-1,7-dien-7-ol (SDL) and (3S,6R,7R)-3,7,11-trimethyl-5,6-epoxy-1,10-dodeca-1,7-dien-7-ol (RDL) from Jiangxiang are main components of QSYQ, and they were absorbed into blood and distributed into tissues after oral administration [20]. SDL and RDL were identified in Jiangxiang in our previous study [21]. However, the potential targets and the underlying molecular mechanisms of actions of these 12 compounds remain to be systematically elucidated.

In this study, the differentially expressed genes (DEGs) were identified from myocardial infarction (MI) rat model treated with QSYQ, followed by constructing a CVD related compound-target-pathway network linking main compounds to those DEGs supported with literature evidences and the pathways that are functionally enriched in ArrayTrack. The associations of DEGs with CVD were evaluated based on information in database CHD@ZJU of its version 1.0 [http://tcm.zju.edu.cn/chd/] developed by our group [22]. We also manually collected the information of targets reported for 9 compounds (i.e. Ast, Cal, For, DSS, PCA, RSA, Rg1, Rb1 and R1) from literatures in PubMed. The judging criteria of a gene being a target is that a CVD related DEG can be found directly influenced by a compound of QSYQ in literature. Furthermore, as there were no reports on the targets of ENL, SDL, and RDL, the potential targets of these three sesquiterpenes were proposed based upon gene expression data and further experimentally validated in this study. Finally, we constructed the compound-target-pathway network on anti-MI of QSYQ to decipher the underlying multi-compound, multi-target and multi-pathway mechanism.

Materials and Methods

Cell Lines and Reagents

RAW264.7 cells were purchased from the cell bank of Chinese academy of sciences (Shanghai, China). Trans-nerolidol (ENL) was obtained from Sigma-Aldrich (Cat No. 18143, Sigma, Germany). (3S,6R,7R)-3,7,11-trimethyl-3,6-epoxy-1,10-dodeca-1,7-dien-7-ol (SDL) and (3S,6R,7R)-3,7,11-trimethyl-5,6-epoxy-1,10-dodeca-1,7-dien-7-ol (RDL) was extracted from volatile oil of Dalbergia odorifera T. Chen [21] [Fig. 1A]. Lipopolysaccharide (LPS), U0126 monoethanolate (U0126), T0070907, DMSO, and Thiazolyl blue tetrazolium bromide (MTT) were obtained from Sigma. Pioglitazone hydrochloride (Pio) was purchased from National Institutes for Food and Drug Control (Beijing, China). Nitric oxide assay kit was purchased from Beyotime Institute of Biotechnology (Cat No. S0021, Hai- men, Jiangsu, China). Porcine primary antibodies, including anti-ERK1 (cat. ab17942) for ERK1/2, anti-ERK1 (phospho T185+Y187) antibody (Cat No. ab1819) for ERK1/2, anti-PPAR gamma (Cat No. ab19481) for PPARγ, and anti-Heme Oxygenase 1 antibody (HO-1) (Cat No. ab13248) for HO-1, were purchased from Abcam (Hongkong, China).

Preparation of QiShenYiQi Extracts

QSYQ was prepared from four herbs, Radix Astragali membranaceus (Chinese name Huangqi), Radix Salvia miltiorrhiza (Chinese name Danshen), Panax notoginseng (Chinese name Sanqi), and Dalbergia odorifera T. Chen (Chinese name Jiangxiang). Briefly, crude drug Huangqi were crushed, for Huangqi, we added water and extracted with refluxing twice, then the extract was filtrated on gauzes. Filtrate was concentrated on a rotary evaporator. In the alcohol sedimentation step, we slowly added 95% ethanol to the filtrate to make alcohol concentration to about 70%. Cooled the solution at room temperature and the supernatant was filtered through cotton gauzes. After recycling the alcohol, the residue was concentrated again to form Huangqi extract. As for crude drug Danshen and Sanqi, they were extracted together with the same procedure as that of Huangqi. For Jiangxiang, we boiled crushed crude drug Jiangxiang with refluxing, and essential oil was extracted in an extraction apparatus. Roots of Sanqi, the trunk and dry heartwood of root from Jiangxiang have been used.

Animal Study and Gene Expression Data Analysis

Male Sprague-Dawley rats (~250 g) were obtained from Zhejiang Experimental Animal Center. The Animal Ethic Review Committee of Zhejiang University approved all experimental procedures.

The rats were maintained in air-conditioned rooms (temperature, 22–26°C; humidity, 40%–70%) with a 12-h light-dark cycle, and were acclimatized to the setting. To provide comfortable conditions for rats, each cage contained 5 rats, and the bedding material sawdust was renewed every 2 days. Rats were free to get fresh foods and water, and the water was renewed everyday. All surgery was performed under 10% chloral hydrate anesthesia (300 mg/kg), and all efforts were made to minimize suffering. Rat myocardial infarction was made by occlusion of left anterior descending coronary artery (LAD) according to Yamaguchi [23,24]. Rats post-operation were laid flat on an electric blanket to help maintain the body temperature of rats. And for those rats which were really weak post-operation, we helped them to recover heart beating with chest cardiac massage and recover breath by connecting the animals with rodent ventilator. For the LAD ligation operation, the mortality was about 40%. Six surviving rats after LAD ligation were randomly divided into myocardial infarction group (MI) and QSYQ-treated group. Three sham-operated rats were treated in the same ways as the rats in MI group but without LAD ligation, which were served as control group (Control). In clinical, QSYQ pills are administered orally administrated to patients with unstable angina and heart failure to prevent acute coronary syndrome. In accordance with clinical recommendations, QSYQ was given intragastrically (i.g) at a dose of 105.6 mg/kg once a day. Rats in control, and MI groups were administered with saline. Rats were sacrificed after 7 days of i.g. administration under 10% chloral hydrate anesthesia (300 mg/kg). Rats were fixed on a flat plate, and blood samples were collected by abdominal aortic method, then the chest was carefully dissected and the heart was cut quickly. Three tissue samples on the border between infarct and non-infarct area were dissected from left ventricles of each group. The tissue samples were stored at ~80°C refrigerator.

Total RNA was extracted using TRizol Reagent (Invitrogen) and purified using RNAeasy Mini kit (QIAGEN), following manufacturers’ protocols. RNA quality was evaluated using an Agilent 2100 Bioanalyzer and electrophoresis in 2% (w/v) agarose gels. Only RNA with RNA integrity number (RIN) greater than 7.0 and 28S/18S ratio greater than 0.7 was used for microarray analyses. Whole genome microarray analysis was performed using Affymetrix rat Genome 230 2.0 array. Briefly, total RNA were amplified, labeled, and purified using GeneChip 3’IVT Express Kit (Affymetrix) according to the manufacturer’s instructions to obtain biotin labeled cRNA. Array hybridization and wash were performed using GeneChip Hybridization, Wash and Stain Kit in Hybridization Oven 645 (Affymetrix) and Fluidics Station 450 (Affymetrix) following the manufacturer’s instructions. Slides were
scanned by GeneChip Scanner 3000 and Command Console Software 3.1 with default settings. Spike-in control transcripts were monitored to verify hybridization integrity. The dataset as CEL files was deposited to GEO and the access number is GSE54134. Significant genes were identified through an algorithm developed in-house [25].

As mentioned above, we validated the CVD-related DEGs by manually checking published literatures in PubMed (by April 10th, 2013). The keywords used to search papers in PubMed were: “Astragaloside IV”, “Calycosin”, “Formononetin”, “Danshensu”, “Salvianic Acid A”, “Tanshinol”, “Protocatechuic Aldehyde”, “Protocatechualdehyde”, “Rosmarinic Acid”, “Ginsenoside Rg1”, “Ginsenoside Rb1”, “Notoginsenoside R1”. The literatures related to pharmacology and activity of Ast, Cal, For, DSS, PCA, RSA, Rg1, Rb1 and R1 were manually read. A DEG was considered as a potential target of a compound if it was found to be affected directly by the compound in a paper. For each paper, the information of target, PubMed ID, and CVD relevancy were recorded. Detailed information on the references used in this study can be found in Table S1.

Experimental Target Validation

CVD-related DEGs were validated by manually checking published literature in PubMed (by April 10th, 2015). However, there were no previous studies reporting the targets of ENL, SDL and RDL. These three sesquiterpenes were isolated from volatile oils from Jiangxiang, which was reported to have anti-inflammatory activities, and was also used as a penetration enhancer [26]. Extracellular signal-regulated kinase-1/2 (ERK1/2), peroxisome proliferator-activated receptor-gamma (PPARγ), and heme oxygenase-1 (HO-1), which play important roles in inflammation, were identified as the potential targets of ENL and SDL. The anti-inflammatory activity of these targets was validated using LPS-stimulated RAW264.7 macrophage cells as models.

Cell Viability Analysis by MTT Assay

Murine macrophage cell line RAW264.7 was maintained in DMEM medium supplemented with 10% heat-inactivated fetal bovine serum at 37°C in 5% CO2. To determine the effect of ENL and SDL on cell viability, RAW264.7 cells were seeded in 96-well plates at concentrations of 5000 cells/well. Following overnight incubation, cells were treated with several concentrations of ENL, RDL and SDL for 24 h. Cell viability was determined by the MTT assay. For MTT assay, the media were replaced with fresh DMEM medium that containing 10% FBS, penicillin/streptomycin, and MTT (0.5 mg/ml). After 4 h of incubation at 37°C, the media were removed, and replaced with 150 μL/well of DMSO. After mixing at 400 rpm in Thermomixer comfort (Eppendorf) at
37°C for 10 min, absorbance at 550 nm was measured on a BioTek micro-plate reader. Each assay was conducted in triplicate and repeated three times.

Nitric Oxide Assay

RAW 264.7 cells (4x10⁶ cells in 96-well microplate) were stimulated with 200 ng/ml LPS in 37°C CO₂ incubator for 24 h. Nitric oxide (NO) production was detected by measuring nitrite levels in the culture media using the Griess reagent according to the manufacturer’s instructions (Beyotime Institute of Biotechnology, China). Absorbance was measured at 550 nm.

Effects of U0126, T0070907, and Pio on Nitric Oxide Secretion

U0126, a selective ERK1/2 phosphorylation inhibitor, was used to incubate with RAW264.7 macrophages together with LPS (200 ng/ml) or compounds with different concentrations plus LPS (200 ng/ml). PPARγ phosphorylation inhibitor T0070907 and PPARγ agonist Pio were also used in the same way as that of U0126. The concentration of U0126, T0070907 and Pio were used at 10 μM. NO production was determined using Griess Reagent. Each assay was conducted in triplicate and repeated three times, and outliers were excluded.

Western Blot Analysis

For western blot assay, RAW264.7 macrophages were seeded into 60-mm dishes, cells were cultured in the 37°C CO₂ incubator overnight. The second day, cells were treated with different compounds. The cells were collected after 24 h treatment. Cells were gently rinsed with ice-cold PBS. Then, 300 μL of cold RIPA buffer (RIPA lysis buffer, Cat No. P0013B, Beyotime Institute of Biotechnology, Haimen, Jiangsu, China) plus PMSE (Cat No. ST506, Beyotime Institute of Biotechnology, Haimen, Jiangsu, China), complete Mini (Cat No. 04693124001, Roche) and PhosSTOP (Cat No. 04906845001, Roche) were added to each dish. All steps of protein extraction were carried out on ice. Cells were lysed completely within 10 min, and the protein lysate was transferred to 1.5 ml centrifuge tubes, then the tubes were centrifuged at 12000 rpm for 10 min at 4°C. The supernatant in each tube was carefully collected without disturbing the sediments. Protein concentrations in the collected supernatants were determined using BCA protein assay kit (Cat No. P0012, Beyotime Institute of Biotechnology, Haimen, Jiangsu, China). Absorbance was measured at 550 nm.

Network Construction and Network Analysis

The DEGs related to CVD and the main compounds were used as input in ArrayTrack v3.5.0 to carry out pathway enrichment analysis, in which the MI or CVD associated pathways were selected for further analysis. Then, we constructed compound-target-pathway network and compound-pathway network in Cytoscape [16]. A compound and a target were connected with a solid line if the link was reported in at least one paper (≥1 literature) when they were; and the edge between target and pathway was constructed using the relationship found in ArrayTrack v3.5.0 pathway enrichment analysis [27].

Statistical Analysis

All experiments were performed three times in triplicate. Results are expressed as mean ± SD. Two-tailed unpaired Student’s t tests were used to compare two distinct groups. When more than three groups were compared, One-Way ANOVA was performed between different treatment groups using PASW Statistics 18 (SPSS Inc., USA). A p value <0.05 was considered to be statistically significant.

Results

DEGs Analysis

312 genes (442 probe sets) in CHD@ZJU V1.0 database were found to be differentially expressed, out of which 83 genes with reverse rate (RR)>0.5 and fold change (FC)>1.1 after the QSYQ treatment were selected for further analysis (Table S2). Combined with the targets information about the compounds collected manually from published papers, 52 genes were included in this study, with additional information about compound, target, pathway, category and Fisher P-value (Table S3). The number of targets and the compounds are listed in Table 1.

Effect of ENL, RDL and SDL on RAW264.7 Macrophages Viability

After 24 h co-incubation with different concentrations (50, 20, 10, 5 μM) of ENL, RDL and SDL, MTT assay results showed that there was no obvious cytotoxicity of the three compounds (Fig. 1B) at these concentrations. Concentrations ≤50 μM were used for subsequent experiments.

Effects of ENL and SDL on NO Production in LPS-stimulated RAW264.7 Macrophages

Two sesquiterpene compounds (ENL and SDL) from the volatile oil of Dalbergia odorifera T. Chen were able to suppress NO secretion from LPS-induced RAW264.7 macrophages. Both ENL and SDL significantly inhibited the NO secretion by LPS-stimulated RAW264.7 cells at 50 μM (p<0.01 for ENL, p<0.05 for SDL compared to model) (Fig. 1C). However, RDL at all concentrations had no obvious inhibition effect on NO secretion by LPS-stimulated RAW264.7 cells. Indomethacin at 25 μM was used as the positive control. More details of indomethacin, NEL and SDL on NO production can be found in Fig. 1C.

Effects of ENL, RDL and SDL on NO Production in LPS-stimulated RAW264.7 Macrophages

Western blot results (Fig. 2) showed that LPS treatment significantly increased pERK1/2 to ERK1/2 ratio (p<0.05 vs.
control and HO-1 levels (**p<0.01 vs. control), but decreased PPARγ expression in RAW 264.7 macrophages (**p<0.01 vs. control). Both ENL and SDL attenuated the increased ratio of pERK1/2 to ERK1/2 at 50 μM compared to LPS treated alone (#p<0.05 for SDL), but RDL had no effect on the increased ratio (Fig. 2A). While ENL, RDL, SDL all partially increased PPARγ expression, ENL showed the strongest effect (#p<0.05 vs. model) (Fig. 2B). ENL, RDL, SDL further promoted HO-1 expression (for ENL p<0.05, and for RDL, SDL p<0.01, comparing with model) (Fig. 2C).

Effects of U0126, T0070907, and Pio on Nitric Oxide Secretion

U0126, an antagonist of ERK1/2 phosphorylation, Pio, a PPARγ agonist, and T0070907, a PPARγ phosphorylation inhibitor, were able to inhibit NO secretion by LPS-induced RAW264.7 macrophages. So these three tool drugs were used to validate the effects of ENL and SDL. 200 ng/ml LPS significantly induced NO secretion (#p<0.01, vs control by student’s t test) (Fig. 3). Combined-treatment with either of the three drugs, U0126, T0070907, and Pio, significantly strengthened the effect of ENL on suppressing NO secretion except 20 μM ENL plus Pio (Fig. 3A, B, C). U0126 also significantly enhanced the effect of SDL on inhibition of NO production (###p<0.01, vs. the group with SDL treated alone) (Fig. 3D).

Network Construction and Pathway Analysis

Combining the relationships in Table S3 and the relationships from the experimental validation part, that is the potential targets such as PPARG (targets of ENL and SDL), HMOX1 (targets of ENL, RDL and SDL), MAPK3 and MAPK1 (targets of ENL and SDL) were also used to construct the network (Fig. 4). Then the paired relationships information (link between compound and target genes, link between target gene and pathways) was imported to Cytoscape software, and a compound-target-pathway network was constructed (Fig. 4). The three-level network consisted of 84 nodes (12 compounds, 55 genes and 17 pathways) and 230 edges. The detailed information of the compound names, gene names, pathway names and their category, and Fisher P-values can be found in Table S3. Through the visualization and network analysis of the relationships among compound, target gene and pathway in the constructed network, 52 DEGs were affected by at least one compound, in which 14 genes (DUSPi, EPO, FGF1, FLT1, FN1, HIF1A, LDHA, LDHB, PLAT, PRKCB, RELA, VEGFA and VWF) were the potential targets of the compounds based on the CVD-related literatures in PubMed. Among the 52 genes, RELA was influenced by 9 compounds. RELA is associated with cell growth and death, immune system, and endocrine system. IL6, PTGS2 and VEGFA were affected by 6 compounds, which maybe related with inflammation and angiogenesis. GPX1, HIF1A, IL1B, LDHA, LDHB and PPARG were affected by 5 compounds. FN1 and PLAT were influenced by 4 compounds. While five targets were influenced by 3 compounds, nine targets were influenced by 2 compounds, and the rest twenty six were affected by only one compound.

Using the 52 DEGs, 16 KEGG pathways were enriched in the ArrayTrack v.3.5.0 pathway enrichment analysis (Table 2), in which apoptosis signaling pathway is a critical pathway in regulating cell death. Most of the pathways, such as Cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, PPAR signaling pathway, Toll-like receptor signaling pathway, MAPK signaling pathway, Hematopoietic cell lineage, Cytosolic DNA-sensing pathway, Complement and coagulation cascade and Arachidonic acid metabolism, are either directly involved in immune and inflammation or play important roles there. In addition, there are several energy metabolism associated pathways including PPAR signaling pathway, Adipocytokine signaling pathway, Pyruvate metabolism. The Glutathione metabolism is antioxidant related, Focal adhesion plays role in cell motility and structure, VEGF signaling pathway has function in vasodilation, Complement and coagulation cascade is related with coagulation, and mTOR signaling pathway plays a role in hypoxia induced angiogenesis.

Discussion

Based on the results of microarray data and published literature information available in PubMed, a compound-target-pathway network (Fig 4) was constructed for the multi-compound-multi-target-multi-pathway mode of action (MOA) of the Chinese medicine QSYQ. The cardioprotective or anti-MI function of QSYQ is complex, involving modulation of groups of targets and a number of associated pathways. Cardiomyocytes apoptosis occurs promptly following acute myocardial infarction (AMI), and
apoptosis pathway (including the mitochondrial death pathway) plays a pivotal role in this pathological process [28–30]. Inflammation accompanies from the initial stage of AMI and participates in the development of ischemia injury, one of the mechanisms is post-AMI hypoxia elicited inflammatory response [31].

Among the 16 pathways, nine are immune and inflammation related, including Cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway [32,33], PPAR signaling pathway [34–36], Toll-like receptor signaling pathway [37,38], MAPK signaling pathway [39], Hematopoietic cell lineage, Cytosolic DNA-sensing pathway [40], Complement and coagulation cascades [41,42] and Arachidonic acid metabolism [43]. Compounds from *Dalbergia odorifera* suppressed NO production in our in vitro target validation experiments. Anti-inflammatory effect of QSYQ has been reported. QSYQ can reduce high sensitivity C reactive protein level in atherosclerotic rabbit to prevent the progress of atherosclerosis [44]. Also, it was reported that QSYQ can inhibit inflammatory effect through reducing TNF-α and IL-6 levels both in AMI and chronic heart failure patients [47,48]. QSYQ could decrease the levels of high sensitivity C reactive protein, plasminogen activator inhibitor-1 and endothelin-1 in acute coronary syndrome patients [49]. Myocardial energy metabolism is another important event during and post-AMI, including fatty acid and glucose utilization. Acetyl-CoA is common end product of fatty acid, glucose and pyruvate to supply ATP. PPAR signaling pathway may prevent ischemic insult involving anti-inflammatory effect and promoting glucose utilization [36]. Adiponectin is a key adipocytokine having beneficial effect to facilitate fatty acid beta-oxidation and increase glucose utilization [50].

As for Glutathione metabolism pathway, glutathione has antioxidant activity [51] which is beneficial to prevent further myocardial injury elicited by reactive oxygen species (ROS) post-AMI. Focal adhesion plays a role in cell motility, cell proliferation, cell differentiation, and tissue remodeling after injury [52,53]. VEGF signaling pathway has a function in vasculature vasodilation through modulation of PKC, cPLA2, COX-2 and PGI2 [54–56]. Complement and coagulation cascades are activated early after injury. The modulation of coagulation may prevent secondary injury post AMI [41,57].

![Figure 2. Effects of three sesquiterpene compounds from volatile oil of *Dalbergia odorifera* T. Chen on pERK1/2, ERK1/2, PPARγ and HO-1 expression in LPS-stimulated RAW264.7 macrophages.](image)

(A). LPS co-incubation induced significant increase of pERK1/2 expression, the ratio of pERK1/2 to ERK1/2 was higher than that in the control group (*p<0.05). 50 μM ENL attenuated the increased ratio of pERK1/2 to ERK1/2, while 50 μM SDL suppressed this ratio compared to LPS treated alone (#p<0.05), and RDL had no effect on the increased ratio. (B). LPS decreased PPARγ expression (**)p<0.01 vs. control), and ENL, RDL, SDL all partially increased PPARγ expression, ENL showed the most strong effect (#p<0.05 vs. model). (C). The expression of HO-1 was induced to increase with 200 ng/ml LPS stimulation (**p<0.01 vs. control), and ENL, RDL, SDL further promoted HO-1 expression (for ENL p<0.05, and for RDL, SDL p<0.01, comparing with model). The RAW264.7 was stimulated with 200 ng/ml LPS for 24 h, and the concentration of ENL, RDL and SDL were all at 50 μM. Each assay was conducted in triplicate and repeated three times. ENL is trans nerolidol; RDL is (3S,6R,7R)-3,7,11-trimethyl-3,6-epoxy-1,10-dodecadien-7-ol. SDL is (3S, 6S, 7R)-3,7,11-trimethyl-3,6-epoxy-1,10-dodecadien-7-ol. doi:10.1371/journal.pone.0095004.g002
plays a role in hypoxia-induced angiogenesis, which can help to recover blood supply to the ischemic myocardium post-MI [58,59]. In addition, Hypoxia-Inducible Factor-1 signaling is also an important pathway which can be triggered by both hypoxia and inflammation conditions. The activation of Hypoxia-Inducible Factor-1 signaling could minimize the ischemic tissue damage and plays a protective role in inflammatory diseases [60].

The potential targets of those 9 main compounds from Huangqi, Danshen, Sanqi were validated using CVD-related literatures, and there was no reference reporting the targets of two main sesquiterpenes from Jiangxiang. In our experimental study, we investigated the anti-inflammatory effects of two main sesquiterpenes in volatile oils of Jiangxiang, i.e. ENL and SDL. SDL was newly identified from Jiangxiang in our previous study [21]. To the best of our knowledge, the pharmacological activities of ENL and SDL, and their potential protein targets have not been previously reported. We used nitric oxide assay, Western blot technology and small molecular compounds specific to the proteins of interest to validate the identified targets. As discussed above, ENL and SDL could suppress NO production in LPS-stimulated RAW264.7 macrophages. ENL and SDL may attenuate LPS-induced NO release from RAW264.7 macrophages via inhibiting ERK1/2 phosphorylation; and NF-κB and iNOS may be involved in this process [65]. Furthermore, PPARγ plays an important role in inflammation [66,67]. Activation of PPARγ leads to anti-inflammatory effects of PPARγ ligands (such as thiazolidinediones (TZDs), GW1929, indomethacin, ibuprofen and fenoprofen) [34,35,68]. LPS treatment has been shown to decrease PPARγ expression both in vivo and in vitro [69], the latter was repeated in our study [Fig. 2B]. PPARγ ligand Pioglitazone inhibited LPS-stimulated microglia inflammation by inhibiting inflammatory mediators, including NO [70]. The effect of pioglitazone on NO synthase inhibition is potentially mediated through blocking of p38 MAPK activity [71]. Here in our study, 10 μM pioglitazone hydrochloride significantly inhibited NO production (p<0.01, Fig. 3B). ENL at 50 μM and 20 μM...
significantly suppressed NO secretion ($p < 0.01$) \cite{Fig. 3B}. Combined use of Pio further enhanced the anti-NO production effect of ENL \cite{Fig. 3B}. Interestingly, phosphorylation of PPARγ decreases its transcriptional activity \cite{72,73}. T0070907 is the antagonist of PPARγ phosphorylation, it also inhibits ERK1/2 phosphorylation dose-dependently \cite{74}. The results obtained in this study are consistent with those previously reported, as 10 μM T0070907 significantly inhibited NO release from LPS-stimulated RAW264.7 macrophages ($p < 0.01$, \textit{Fig. 3C}); 50 μM ENL attenuated NO secretion significantly ($p < 0.01$, \textit{Fig. 3C}), while 10 μM T0070907 further strengthened the effect of ENL ($p < 0.01$, \textit{Fig. 3C}). Therefore, ENL may inhibit NO production partially via inhibiting PPARγ phosphorylation and inducing PPARγ activity.

In cardiovascular disease, heme oxygenase-1 (HO-1) is another beneficial factor, it also plays an important role in anti-inflammatory process \cite{75}. LPS could enhance NO production through ROS generation, and induced HO-1 expression in RAW264.7 macrophages ($p < 0.01$, \textit{Fig. 3C}); 50 μM ENL attenuated NO secretion significantly ($p < 0.01$, \textit{Fig. 3C}), while 10 μM T0070907 further strengthened the effect of ENL ($p < 0.01$, \textit{Fig. 3C}). Therefore, ENL may inhibit NO production partially via inhibiting PPARγ phosphorylation and inducing PPARγ activity.

Flavonoids could promote HO-1 expression, which suppresses LPS-induced NO production \cite{77}. HO-1 was transcriptionally regulated by PPARγ \cite{78}, and PPARγ was able to stabilize HO-1 mRNA in monocytes/macrophages \cite{79}. Carbon monoxide (CO) was proposed to be involved in the protective effects of HO-1, including its anti-inflammatory actions \cite{80,81}. LPS induced an increase in HO-1 expression in RAW264.7 macrophages, while ENL, RDL and SDL further enhanced HO-1 expression ($p < 0.05$, $p < 0.01$, and $p < 0.01$, respectively, comparing with LPS treated alone, \textit{Fig. 2C}). We propose herein that the three sesquiterpene compounds (especially ENL and SDL) from volatile oil of Jiangxiang may suppress LPS-stimulated NO production from RAW264.7 macrophages at least partially via inhibition of ERK1/2 and PPARγ phosphorylation, and increasing expression of PPARγ and HO-1, in which NF-kB, ROS and iNOS maybe involved \cite{Fig. S1}).

Chinese medicine treats diseases in a holistic way to make body recovery from imbalanced state by modulating a complex MOA including multiple pathways. Therefore, rodent animal models mimicking human disease are more suitable to evaluate the therapeutic effects of TCM and discover its MOA than cell culture. In our study, the underlying MOA of a clinical effective Chinese medicine QSYQ is systematically investigated combining mRNA expression profiles at molecular level on a rat myocardial infarction model. Using rat model is more convenient and easy to

Figure 4. Multi-compound-multi-target-multi-pathway network of TCM QSYQ on treating myocardial infarction. There were 52 differentially expressed genes which were validated in published literatures. Node size of targets and pathways are proportional to the number of compounds associated with the node. This network depicted a clear three-level structure of the mode of action of main compounds of QSYQ, that is multi-compound regulated multi-pathways through modulating of groups of genes to show their pharmacological and clinical effects. Compound was linked to targets, while target were linked to pathways, a certain compound linked indirect link to pathways through certain targets. Diamond represents compounds; Circle represents target genes; Vee represents CVD related pathways. The edge went through compound to target, and target to pathway.

doi:10.1371/journal.pone.0095004.g004
perform research to get rich information about the drug investigated both at phenotype and molecular base. On the other hand, cell culture model can be used to mimic a certain biological step of the drug investigated. Cell culture experiment has its merit as it is much easier to manipulate and to set investigation conditions. The results from animal experiments can be confirmed and studied in depth within cell culture experiments. However the results from animal studies should be carefully interpreted and concluded to explain the potential MOA of drug in treating human disease.

For the additional predicted targets as shown in Fig. 4, it is also important to validate them for a better understanding of the underlying MOA of QSYQ. Cell culture models play an important role in target validation. For example, inflammation related targets validation can be done with LPS-stimulated macrophage RAW264.7 cell culture model. TNF-α injured endothelial cell models are also used for anti-inflammatory related targets validation. The other two important processes mentioned in our study, apoptosis and energy metabolism can be studied with H9C2 cell line and primary neonatal rat heart cells to investigate cardioprotective effects and mechanisms of active compounds and drugs. Hypoxia or hypoxia-reoxygenation conditions are used to mimic in vivo ischemia or ischemia-reperfusion conditions. In addition, siRNA technology and target specific small molecular tool drugs could help to further confirm the validation results. Secondly, the targets validated at the in vitro experiments need further in vivo experiments confirmation. Rat MI model can be used to investigate the contributions of several targets to the anti-MI effects of compounds. The mRNA and protein expression profiles of specific targets after the intervention of single compounds or compounds combinations are tested using RT-PCR and western blot technologies. Finally, transgenic mice models (both knock out and knock in) if available would provide more conclusive information for validating predicted targets with regard to cardioprotective effects.

The approach described in this paper provided an example on discovering the multi-compound, multi-target, multi-pathway MOA of a clinically effective Chinese medicine. A few steps have to be followed to ensure successful results. First, it is important to choose a clinically effective Chinese medicine with appropriate animal model available. Second, there should be reasonable understanding of the chemical compositions of the Chinese medicine. Third, in vitro experiments using cell culture models should be applied to test the pharmacological protective effects of potential compounds. Animal models (usually rodents) mimicking human disease are also used to confirm the effectiveness of potential compounds. Through these investigations, we understand the efficacious material basis of the Chinese medicine. Finally, network pharmacology analysis can be applied to integrate all these information to gain a full understanding of the MOA of the Chinese medicine.

In conclusion, the potential targets of 12 major compounds of QSYQ were identified by integrating gene expression data analysis and literature mining. These compounds may regulate multiple pathways through modulation of groups of genes to exert their anti-MI effects, involving biological processes of anti-apoptosis, anti-inflammation, antioxidant, anti-coagulation, energy utilization facilitation and angiogenesis promotion. Potential targets of 9 main compounds were validated by CVD-related references, while potential targets of three sesquiterpene compounds were further experimentally validated for their roles in mediation of inflammation.

Supporting Information

Figure S1 Proposed molecular mechanisms of the anti-inflammatory effects of two sesquiterpene compounds from volatile oil of *Dalbergia odorifera* T. Chen. ENL is proposed as an inhibitor of ERK1/2 phosphorylation and PPARγ phosphorylation, an agonist of PPARγ, via which ENL could suppress NO production from LPS-stimulated RAW264.7 macrophages. SDL is also an agonist of ERK1/2 phosphorylation, through which SDL may attenuate NO secretion. HO-1 may also participated in the regulation process of these two naturally occurring products in anti-inflammation. ENL is trans-nerolidol; SDL is (3S, 6S, 7R)-3,7,11-trimethyl-3,6-epoxy-1,10-dodecadien-7-ol.

Pathway	Category	Fisher P-value
Apoptosis	Cell Growth and Death/Cellular Processes	0.0001765
Cytokine-cytokine receptor interaction	Signaling Molecules and Interaction/Environmental Information Processing	0.000376
NOD-like receptor signaling pathway	Immune System/Cellular Processes	0.00015053
PPAR signaling pathway	Endocrine System/Cellular Processes	0.00027289
Glutathione metabolism	Metabolism of Other Amino Acids/Metabolism	0.00047522
Focal adhesion	Cell Communication/Cellular Processes	0.00122324
Adipocytokine signaling pathway	Endocrine System/Cellular Processes	0.00182003
Toll-like receptor signaling pathway	Immune System/Cellular Processes	0.0020686
MAPK signaling pathway	Signal Transduction/Environmental Information Processing	0.00263886
VEGF signaling pathway	Signal Transduction/Environmental Information Processing	0.00317584
Hematopoietic cell lineage	Immune System/Cellular Processes	0.0059589
Cytosolic DNA-sensing pathway	Immune System/Cellular Processes	0.00622074
Complement and coagulation cascades	Immune System/Cellular Processes	0.01287548
Pyruvate metabolism	Carbohydrate Metabolism/Metabolism	0.01558565
mTOR signaling pathway	Signal Transduction/Environmental Information Processing	0.03115849
Arachidonic acid metabolism	Lipid Metabolism/Metabolism	0.04113971

| Table 2. 16 KEGG pathways enriched in ArrayTrack v.3.5.0 pathway enrichment analysis using the 52 differentially expressed genes (DEGs) affected by nine compounds from the TCM QSYQ. |
Table S1 The target, PubMed ID, and CVD relevancy about the 9 main compounds of QSYQ. (XLS)

Table S2 Differentially expressed genes(DEGs) selected from CHD@ZJU V1.0 database with fold change (FC) and reverse rate (RR) information after the QSYQ treatment. (XLS)

Table S3 52 Differentially expressed genes(DEGs) with corresponding compounds, together with the information of pathways, categories and Fisher P-value. (XLS)

References

1. Cheng F (2011) TCM: made in China. Nature 480: 582–583.

2. Jiang W-Y (2005) Therapeutic wisdom in traditional Chinese medicine: a perspective from modern science. Trends in pharmacological sciences 26: 550–563.

3. Zimmermann GR, Lehár J, Keith CT (2007) Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov Today 12: 34–42.

4. Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, et al. (2007) The human protein network. PLoS biology 5: e80.

5. Terzie A, Waldman S (2011) Chronic diseases: the emerging pandemic. Clin Chem 57: 1546–1554.

6. Waldman SA, Terzie A (2011) Cardiovascular health: the global challenge. Clin Pharmacol Ther 90: 483–485.

7. Kitano H (2002) Systems biology: a brief overview. Science 295: 1662–1664.

8. Barabási A-L, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nature Reviews Genetics 5: 101–113.

9. Hopkins AL (2007) Network pharmacology. Nature biotechnology 25: 1110–1111.

10. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nature chemical biology 4: 682–690.

11. Gardner TS, Di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 300: 102–105.

12. Di Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, et al. (2004) Logic networks as models for cellular regulation. Bioinformatics 20: 2702–2709.

13. Zhao S, Iyengar R (2012) Systems pharmacology: network analysis to identify drug targets. Pharmacol Ther 90: 483–485.

14. Diez D, Wheelock A˚M, Goto S, Haeggstro¨m JZ, Paulsson-Berne G, et al. (2010) Cardiovascular disease risk reduction with QSYQ. PLoS One 5: e8424.

15. Berger SI, Iyengar R (2009) Network analyses in systems pharmacology. Nature chemical biology 4: 682–690.

16. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, et al. (2007) BioGRID: a general repository for interaction datasets. Nucleic Acids Research 35: D650–652.

17. Hopkins AL (2007) Network pharmacology. Nature biotechnology 25: 1110–1111.

18. Zhai S, Iyengar R (2012) Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annual review of pharmacology and toxicology 52: 505–521.

19. Di Bernardo D, Thompson MJ, Gardner TS, Chobot SE, Eastwood EL, et al. (2004) Logic networks as models for cellular regulation. Bioinformatics 20: 2702–2709.

20. Gardner TS, Di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science 300: 102–105.

21. Tao Y, Wang Y (2010) Bioactive sesquiterpenes isolated from the essential oil of Citrus reticulata Blanco. Journal of Ethnopharmacology 127: 717–722.

22. Wu L, Li X, Yang J, Liu Y, Fan X, et al. (2013) CHD@ZJU: a knowledgebase providing network-based research platform on coronary heart disease. Database: The Journal of Biological Databases and Curations 2013.

23. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher J, Spadaro J, et al. (1997) Myocardial infarct size and ventricular function in rats. Circulation Research 44: 503–512.

24. Yamaguchi F, Sanbe A, Takes T (1997) Cardiac sarcoplasmic reticular function in rats with chronic heart failure following myocardial infarction. Journal of molecular and cellular cardiology 29: 733–763.

25. Wang L, Li Z, Zhao X, Liu W, Liu Y, et al. (2013) A network study of Chinese medicine Xuesaitong Injection to elucidate a complex mode-of-action with multi-compound, multi-target and multi-pathway. Evidence-Based Complementary and Alternative Medicine 2013: Article ID 652573.

26. Zheng X, Zhao X, Wang S, Luo K, Wei Y, et al. (2007) Co-administration of Dalberga odorifera Increased Bioavailability of Sulfa mithramizide in Rabbits. The American Journal of Chinese Medicine 35: 831–840.

27. Tong W, Cao X, Harris S, Sun H, Fang H, et al. (2003) ArrayTrack—supporting toxicogenomic research at the UK Food and Drug Administration National Center for Toxicological Research. Environmental health perspectives 111: 1819.

28. Yang S, Ogasawara K, Maehara K, Maruyama Y (2000) Apoptosis in relevant clinical situations contribution of apoptosis in myocardial infarction. Cardiovascular research 45: 630–641.

29. Palojoki E, Saraste A, Eriksson A, Pulkkii K, Kallajo K, et al. (2001) Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. American Journal of Physiology-Heart and Circulatory Physiology 280: H7276–H7274.

30. Crow MT, Mani K, Nam YJ, Kitis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circulation Research 95: 975–970.

31. Schwartz RS, Eltzschig HK, Carmeliet P (2011) Hypoxia and inflammation. New England Journal of Medicine 364: 656–663.

32. Chen G, Shaw MH, Kinn Y-G, Nutez G (2009) NOD-like receptors: role in innate immunity and inflammatory disease. Annual Review of Pathological Mechanistic Disease 4: 363–398.

33. Fritz JH, Ferrero RL, Philpot DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nature immunology 7: 1250–1257.

34. Murphy GJ, Holdcr JC (2000) PPAR-gamma agonistic: therapeutic role in diabetes, inflammation and cancer. Trends in pharmacological sciences 21: 469.

35. Wali W, Michalk L, et al. (2012) PPARs at the crossroads of lipid signaling and inflammation. Trends in Endocrinology & Metabolism.

36. Finck BN (2007) The PPAR regulatory system in cardiac physiology and disease. Cardiovascular research 73: 269–277.

37. Zhao W (2009) Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. American Journal of Physiology-Heart and Circulatory Physiology 296: H1–H12.

38. Timmers L, Shajter JP, van Keulen JK, Hoeker IE, Nederhofer MG, et al. (2008) Toll-like receptor 4 mediates maladaptive left ventricular remodeling and impairs cardiac function after myocardial infarction. Circulation Research 102: 257–264.

39. Kaminska B (2005) MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochimica et biophysica acta 1754: 253–264.

40. Barber GN (2011) Innate immune DNA sensing pathways: STING, AIMII and cGAS. Nature protocols 2: 2366–2382.

41. Barber GN (2011) Innate immune DNA sensing pathways: STING, AIMII and cGAS. Nature protocols 2: 2366–2382.

42. Markiewski MM, Nilsson B, Nilsson Ekdahl K, Mollnes TE, Lambris JD (2007) Toll-like receptors 2 and 4 mediate the regulation of interferon production and inflammatory responses. Current opinion in immunology 20: 10–20.

43. Needelman P, Jakshick B, Morrison A, Lefkowith J (1986) Arachidonic acid accelerates apoptosis after myocardial infarction in rats. American journal of cardiology 143: 105–109.

44. Needelman P, Jakshick B, Morrison A, Lefkowith J (1986) Arachidonic acid accelerates apoptosis after myocardial infarction in rats. American journal of cardiology 143: 105–109.

45. Needelman P, Jakshick B, Morrison A, Lefkowith J (1986) Arachidonic acid accelerates apoptosis after myocardial infarction in rats. American journal of cardiology 143: 105–109.

46. Zhu M, Du W, Liu C, Zhang J, Feng L, et al. (2013) A dymatic mornitoring of Cardiac perfusion and metabolism. Journal of Clinical and Laboratory Medicine 46: 3.
48. Guan X, Deng R, Zhou X, Yao Y (2013) Effect of QishenYiQi dripping pills on cardiac remodelling and inflammatory factors of chronic heart failure patients. 24: 2.

49. Wei W, Zhang W, Zhang T, Tian G, Meng Q, et al. (2009) Effect of “Qishen Yiqi Droplet” on Inflammatory Factors in Patients With Acute Coronary Syndrome After Percutaneous Coronary Intervention. Chinese Circulation Journal 24: 182–184.

50. Yamauchi T, Kami M, Minokoshi Y, Ito Y, Waki H, et al. (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature medicine 8: 1289–1295.

51. Wu G, Fang Y-Z, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. The Journal of nutrition 134: 489–492.

52. Wozniak MA, Modzelewska K, Ksiong L, Keely PJ (2004) Focal adhesion kinase regulation of cell behavior. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1692: 103–119.

53. Petit V, Thery JP (2000) Focal adhesions: structure and dynamics. Biology of the Cell 92: 477–494.

54. Robinson ES, Khankin EV, Karumanchi SA, Humphreys BD, Hypertension. 54: 369–371.

55. Petit V, Thery JP (2000) Focal adhesions: structure and dynamics. Biology of the Cell 92: 477–494.

56. Robinson ES, Khankin EV, Karumanchi SA, Humphreys BD, Hypertension. 54: 369–371.

57. Xiao X, Tien R, Cui Y, Lin J, Lu W, et al. (2006) Inhibition of tumor growth by a naturally occurring biflavonoid, ochnaflavone, inhibits LPS-induced iNOS expression, which is mediated by ERK1/2 via NF-κB regulation, in RAW264.7 cells. Journal of ethnopharmacology 106: 364–370.

58. Liu M, Wang H, Zhang F, Li X, Xiang L, et al. (2010) PPARγ agonist pioglitazone inhibits microglia inflammation by blocking p38 mitogen-activated protein kinase signaling pathways. Inflammation Research 59: 921–929.

59. Wang G, Fang Y-Z, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. The Journal of nutrition 134: 489–492.

60. Hirota SA, Beck PL, MacDonald JA (2009) Targeting hypoxia-inducible factor-1 (HIF-1) signaling in therapeutics: implications for the treatment of inflammatory bowel disease. Recent patents on inflammation & allergy drug discovery 3: 1–10.

61. Suh S-J, Chung T-W, Son M-J, Kim S-H, Moon TC, et al. (2006) The naturally occurring biflavonoid, ochnaflavone, inhibits LPS-induced iNOS expression, which is mediated by ERK1/2 via NF-κB regulation, in RAW264.7 cells. Archives of Biochemistry and Biophysics 447: 136–146.

62. Kiefer FN, Berms H, Resnik Tj, Battegay EJ (2002) Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. The FASEB Journal 16: 771–780.

63. Laplante M, Sabatini DM (2009) mTOR signaling at a glance. Journal of cell biology 24: 182–184.

64. Lee M-Y, Yuk J-E, Kwon O-K, Oh S-R, Lee H-K, et al. (2012) Zuonin B inhibits lipopolysaccharide-induced inflammation via downregulation of the ERK1/2 and JNK pathways in RAW264.7 macrophages. Evidence-Based Complementary and Alternative Medicine 2012.

65. Jeong JB, Shin YK, Lee S-H (2013) Anti-inflammatory activity of patchouli alcohol in RAW264.7 and HT-29 cells. Food and Chemical Toxicology 55: 229–233.

66. Martin H (2009) Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 669: 1–7.

67. Campbell I (2005) The clinical significance of PPAR gamma agonism. Current medicinal chemistry 10: 821–834.

68. Jiang C, Ting AT, Seed B (1998) PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391: 82–86.

69. Miksa M, Wu R, Cui X, Dong W, Das P, et al. (2007) Vasoactive aromatic adenonucleotids and its binding protein: anti-inflammatory effects by up-regulating peroxisome proliferator-activated receptor-γ. The Journal of Immunology 179: 6263–6272.

70. Ji H, Wang H, Zhang F, Li X, Xiang L, et al. (2010) PPARγ agonist pioglitazone inhibits microglia inflammation by blocking p38 mitogen-activated protein kinase signaling pathways. Inflammation Research 59: 921–929.

71. Xing B, Xin T, Hunter RL, Bing G (2008) Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and P38/Akt. J Neuroinflammation 5: 1–11.

72. Burns KA, Vanden Heuvel JP (2007) Modulation of PPAR activity via phosphorylation. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1711: 952–960.

73. Adams M, Reginato MJ, Shao D, Lazar MA, Chatterjee VK (1997) Transcriptional activation by peroxisome proliferator-activated receptor γ is inhibited by phosphorylation at a consensus mitogen-activated protein kinase site. Journal of Biological Chemistry 272: 5128–5132.

74. ZAYTSEVA YY, WALLIS NK, SOUTHARD RC, KILGORE MW (2011) The PPARγ antagonist T0709007 suppresses breast cancer cell proliferation and motility via both PPARγ-dependent and-independent mechanisms. Anticancer research 31: 813–823.

75. Abraham NG, Kappas A (2000) Pharmacological and clinical aspects of heme oxygenase. Pharmacological Reviews 60: 79–127.

76. Kim B-C, Choi J-W, Hong H-Y, Lee S, Hong S, et al. (2006) Heme oxygenase-1 mediates the anti-inflammatory effect of mushroom Pluteus sapidus in LPS-stimulated RAW264.7 macrophages. Journal of ethnopharmacology 109: 364–371.

77. Lin H-Y, Juan S-H, Shen S-C, Hsu F-L, Chen Y-C (2003) Inhibition of lipopolysaccharide-induced nitric oxide production by flavonoids in RAW264.7 macrophages involves heme oxygenase-1. Biochemical pharmacology 66: 1821–1832.

78. Kronek G, Kadi A, Ikonoum E, Bluml S, Furrkranz A, et al. (2007) Expression of heme oxygenase-1 in human vascular cells is regulated by peroxisome proliferator-activated receptors. Atherosclerosis, thrombosis, and vascular biology 27: 1267–1272.

79. von Knethen A, Neb H, Morbitzer V, Schmidt MV, Kuhn A-M, et al. (2011) PPARγ stabilizes HO-1 mRNA in monocytes/macrophages which affects IFN-β expression. Free Radical Biology and Medicine 51: 396–405.

80. Osterbein LE, Soares MP, Yamashita K, Bach FH (2005) Heme oxygenase-1: unleashing the protective properties of heme. Trends in immunology 24: 449–455.

81. Savo P, Foresti R, Mann BE, Johnson TR, Green CJ, et al. (2005) Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. British journal of pharmacology 145: 800–810.