Title: Prognostic features of STAT3 in an ER(+) breast cancer model system

Supplementary Information

Table of Contents (pages 1-8)

Suppl.1-4 are summarized gene pools in four combined Tables starting with sets of their corresponding Venn diagrams. Some of gene symbols (~100) are left as “blank” within Tables based on annotation provided by Gene Spring GX7.3.1(March, 2011). The gene symbols high-lighted with light blue are either transcription factors or transcription factor subunits. Some of gene symbols high-lighted with light yellow are molecules of interest. We only mark “Y” in each table that means the gene symbol to be one of components listed in the analysis of interest.

Suppl. 5 contains heatmaps for the common gene pools shared by both 11 signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A), respectively.

Suppl. 6 has the prognostic value(s) of component(s) in the STAT3 subnetworks (Figure S6.2) and not in the STAT3 subnetworks (Figure S6.3) in 90A (Groups I and II) and 72A (Luminal A and Luminal B), respectively. Two controls in survival analyses are made for pair-wise comparisons between subtypes used in this study (see Figure S6.1). Additional Survival analyses are provided (Table S6.1).

Suppl. 7 contains ANOVA test results on genes of interest in 90A and 72A, respectively. They are presented by ten mean plots and a table.

Suppl 1-4 (pages 9-261)

Suppl.1.

Table S 1.1. Clinically significant STAT3 transcriptional regulatory network for mitotic count parameter in 90 ER(+) infiltrating ductal carcinomas (IDCs).

Table S1.2. The gene pool for the MYC transcriptional regulatory network relevant to clinical mitotic count parameter in ER(+)IDCs (i.e. 90A).
Table S1.3. The gene pool for the overlapped network of MYC&STAT3 in ER(+)IDCs (i.e. 90A) relevant to clinical mitotic count parameter.

Table S1.4. The gene pool for the STAT3 transcriptional regulatory network in ER(+) IDCs (i.e. 90A).

Table S1.5. The gene pool for the MYC transcriptional regulatory network in ER(+) IDCs (i.e. 90A).

Table S1.6. The common gene pool for the overlapped network of MYC&STAT3 in ER(+)IDCs (i.e. 90A).

Table S1.7. The shared gene pool between the overlapped network of MYC&STAT3 relevant to ER(+) IDCs and that significant to clinical mitotic count parameter.

Table S1.8. The gene pool for the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 72A).

Table S1.9. The shared gene pool between overlapped networks of MYC&STAT3 in 90A and 72A and their non-overlapping gene pools.

Table S1.10. The FOXC1 transcriptional regulatory network in 90 ER(+) infiltrating ductal carcinomas.

Table S1.11. The FOXC1 transcriptional regulatory network in 72 ER(+) infiltrating ductal carcinomas.

Suppl. 2.

Table S2.1. The shared gene pool between the overlapped networks of MYC&STAT3 in 90A (for ER(+) IDCs) and 77A (for ER(-) IDCs) and their non-overlapping gene pools. The gene pool shared by two univariate overlapped networks of MYC and STAT3 in ER(+) and ER(-) IDCs indicating different percentages of shared network activities for MYC and STAT3 in two subtypes (81.93% (77A) versus 45.81% (90A)), respectively. A cohort (77A) consisting of 48 triple negatives (TN) and 29 ERBB2+ was used (see reference 9 in the main text).

Table S2.2. The shared gene pool between networks of MYCnSTAT3 in 90A (for ER(+))
IDCs) and 77A (for ER(-) IDCs) and their non-overlapping gene pools. The gene pool shared by two networks of $MYCnSTAT3$ in ER(+) and ER(-) IDCs indicating different percentages of shared network activities for MYC and $STAT3$ in two subtypes (73.14% (77A) versus 45.75% (90A)), respectively.

Table S2.3. The common gene pool overlapped by networks of $ESR1$, MYC and $STAT3$ in ER(+) IDCs (i.e. 90A).

Table S2.4. The common gene pool overlapped by networks of $ESR1nSTAT3$ and $MYCnSTAT3$ in ER(+) IDCs (i.e. 90A).

Table S2.5. The common gene pool overlapped by networks of MYC & $STAT3$ and $MYCnSTAT3$ in ER(+) IDCs (i.e. 90A).

Table S2.6. The common gene pool overlapped by networks of $ESR1$ & $STAT3$ and $ESR1nSTAT3$ in ER(+) IDCs (i.e. 90A).

Table S2.7. Venn diagrams and their overlapping and non-overlapping gene pools for both networks of $ESR1$ and MYC in ER(+) IDCs (i.e. 90A). The common gene pool overlapped by networks of $ESR1$ & MYC (S2.7a), the potential $ESR1$ regulated gene pool but not in MYC network (S2.7b) and the potential MYC regulated gene pool but not in $ESR1$ network (S2.7c) are listed.

Suppl. 3.

Table S3.1. The common gene pool between age-related gene pool in ER(+) IDCs (i.e.90A) and the overlapped network of MYC&$STAT3$ not only relevant to ER(+) IDCs but to clinical mitotic count parameter.

Table S3.2. The common gene pool between grade-related gene pool in ER(+) IDCs (i.e. 90A) and the overlapped network of MYC&$STAT3$ not only relevant to ER(+) IDCs but to clinical mitotic count parameter.

Table S3.3. The common gene pool between LNM-related gene pool in ER(+) IDCs (i.e. 90A) and the overlapped network of MYC&$STAT3$ not only relevant to ER(+) IDCs but to clinical mitotic count parameter.

Table S3.4. The common gene pool between LVI-related gene pool in ER(+) IDCs
(i.e. 90A) and the overlapped network of MYC&STAT3 not only relevant to ER(+) IDCs but to clinical mitotic count parameter.

Table S3.5. The common gene pool between LYM-related gene pool in ER(+) IDCs (i.e. 90A) and the overlapped network of MYC&STAT3 not only relevant to ER(+) IDCs but to clinical mitotic count parameter.

Table S3.6. The common gene pool between MC-related gene pool in ER(+) IDCs (i.e. 90A) and the overlapped network of MYC&STAT3 not only relevant to ER(+) IDCs but to clinical mitotic count parameter.

Table S3.7. The common gene pool between NP-related gene pool in ER(+) IDCs (i.e. 90A) and the overlapped network of MYC&STAT3 not only relevant to ER(+) IDCs but to clinical mitotic count parameter.

Table S3.8. The common gene pool between size-related gene pool in ER(+) IDCs (i.e. 90A) and the overlapped network of MYC&STAT3 not only relevant to ER(+) IDCs but to clinical mitotic count parameter.

Table S3.9. The common gene pool between stage-related gene pool in ER(+) IDCs (i.e. 90A) and the overlapped network of MYC&STAT3 not only relevant to ER(+) IDCs but to clinical mitotic count parameter.

Suppl. 4.

Table S4.1. The common gene pool in both cell cycle signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A).

Table S4.2. The common gene pool in both VEGF signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A).

Table S4.3. The common gene pool in both BER signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A).
Table S4.4. The common gene pool in both DRS signal transduction pathway and the overlapped network of \(\text{MYC} \& \text{STAT3} \) in ER(+) IDCs (i.e. 90A).

Table S4.5. The common gene pool in both HR signal transduction pathway and the overlapped network of \(\text{MYC} \& \text{STAT3} \) in ER(+) IDCs (i.e. 90A).

Table S4.6. The common gene pool in both MRP signal transduction pathway and the overlapped network of \(\text{MYC} \& \text{STAT3} \) in ER(+) IDCs (i.e. 90A).

Table S4.7. The common gene pool in both NER signal transduction pathway and the overlapped network of \(\text{MYC} \& \text{STAT3} \) in ER(+) IDCs (i.e. 90A).

Table S4.8. The common gene pool in p53 signal transduction pathway and the overlapped network of \(\text{MYC} \& \text{STAT3} \) in ER(+) IDCs (i.e. 90A).

Table S4.9. The common gene pool in both proteasome signal transduction pathway and the overlapped network of \(\text{MYC} \& \text{STAT3} \) in ER(+) IDCs (i.e. 90A).

Table S4.10. The common gene pool in both ribosome signal transduction pathway and the overlapped network of \(\text{MYC} \& \text{STAT3} \) in ER(+) IDCs (i.e. 90A).

Table S4.11. The common gene pool in both PDGFRB signal transduction pathway and the overlapped network of \(\text{MYC} \& \text{STAT3} \) in ER(+) IDCs (i.e. 90A).

Table S4.12. The common gene pool in both ERBB2 signal transduction pathway and the overlapped network of \(\text{MYC} \& \text{STAT3} \) in ER(+) IDCs (i.e. 90A).

Table S4.13. The common gene pool shared between the multivariate space of \(\text{STAT3} \) network (\(\text{MYCnSTAT3} \)) and ERBB2 signal transduction pathway in ER(+) IDCs (i.e. 90A).

Table S4.14. The common gene pool in both ERBB2 signal transduction pathway and the \(\text{MYC} \& \text{STAT3} \) overlapped network in ER(-) IDCs (i.e. 77A). ER(-) IDCs contain 48 triple negatives (TN) and 29 ERBB2+.

Table S4.15. The common gene pool shared between the \(\text{MYCnSTAT3} \) network and ERBB2 signal transduction pathway in ER(-) IDCs (i.e. 77A).
Suppl.5 (pages 262-267)

Figure S5.1. Heatmaps for the common gene pool in both cell cycle signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A).

Figure S5.2. Heatmaps for the common gene pool in both VEGF signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A).

Figure S5.3. Heatmaps for the common gene pool in both BER signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A).

Figure S5.4. Heatmaps for the common gene pool in both DRS signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A).

Figure S5.5. Heatmaps for the common gene pool in both HR signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A).

Figure S5.6. Heatmaps for the common gene pool in both MRP signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A).

Figure S5.7. Heatmaps for the common gene pool in both NER signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A).

Figure S5.8. Heatmaps for the common gene pool in both p53 signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A).

Figure S5.9. Heatmaps for the common gene pool in both proteasome signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A).

Figure S5.10. Heatmaps for the common gene pool in both ribosome signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A). Grey color within the heatmap stands for data not available after data processing.

In this case, we do not use this piece of information for further discussion due to most data not available.
Figure S5.11. Heatmaps for the common gene pool in both PDGFRB signal transduction pathway and the overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. 90A).

Suppl.6 (pages 268-278)

Figure S6.1. The survival analyses on subtypes of ER(+) infiltrating ductal carcinoma in this study. Figure S6.1a. stands for survival analysis on Group IE vs. Group IIE; Figure S6.1b. stands for survival analysis on Luminal A vs. Luminal B. Both results are not significant.

Figure S6.2. The survival analyses on probes in the STAT3 driven subnetworks in coupling with its major transcription factor partner - MYC for (a) proliferation; (b) sustained angiogenesis; (c) Warburg effect; (d) ES-like phenotype; (e) FOXC1 transcriptional regulatory network and (f) ERBB2 signaling in ER(+) IDCs. We compared the probes in the subnetworks in both 90A and 72A for predicting clinical outcome that was evaluated by overall disease free survival. Their results are summarized in Figure 3F (please see main text).

Figure S6.3. The survival analyses on a probe –FOXC1(12715) not in the STAT3 subnetwork. We compared this probe in the subnetworks in both 90A and 72A for predicting clinical outcome that was evaluated by overall disease free survival. It is a significant favorable prognostic factor in 90A cohort but not in 72A cohort.

Table S6.1. Univariate and multivariate analyses for survival on prognostic factors in 90A and 181A cohorts, respectively. The p values of tests in the Cox proportional hazard model to be less or equal to 0.05 are high-lighted with light blue. Both univariate and multivariate analyses are negative except univariate COXPH analysis on subcohort 1 versus non subcohort1.

Suppl. 7 (279-284)

Figure S7.1 Mean plot analyses of MELK mRNA levels in eight clinical categories of two cohorts of infiltrating ductal carcinomas (IDCs). Lymphovascular invasion (LVI), nodal category (lymph node metastasis (LYM), number of nodal metastasis (LNM)), histological grade (Grade) category (nuclear pleomorphism (NP) and tubule formation (TF)) and stage were analyzed. Cohort 1 (90IDCs) has Groups IE and IIE. Cohort 2 (72A) has Luminal A and Luminal B (see
the main text for definitions).

Figure S7.2. Mean plot analyses of *METAP2* mRNA levels in eight clinical categories of two cohorts of infiltrating ductal carcinomas (IDCs).

Figure S7.3. Mean plot analyses of *SRC* mRNA levels in eight clinical categories of two cohorts of infiltrating ductal carcinomas (IDCs).

Figure S7.4. Mean plot analyses of a transcript variant *SRC* mRNA levels in eight clinical categories of two cohorts of infiltrating ductal carcinomas (IDCs).

Figure S7.5. Mean plot analyses of *OIP5* mRNA levels in eight clinical categories of two cohorts of infiltrating ductal carcinomas (IDCs).

Table S7.1. ANOVA tests on *ARNT* mRNA levels in eight clinical categories of two cohorts of infiltrating ductal carcinomas (IDCs).
FeatureNum	ProbeName	GeneSymbol																																		
358	A_23_P96440	S1.10																																		
639	A_23_P11171	S2.10																																		
347	A_23_P83179	S2.11																																		
873	A_23_P91163	S2.12																																		
403	A_23_P11180	S2.13																																		
675	A_23_P129974	S3.1																																		
1043	A_23_P211248	S3.2																																		
1679	A_23_P141037	S3.3																																		
107	A_23_P321108	OMR13																																		
1490	A_23_P96612	OMR1F1																																		
786	A_23_P90352	ESF1																																		
1249	A_23_P212399	ESF2																																		
2922	A_23_P61177	ESF3																																		
1492	A_23_P231741	ESF4																																		
1706	A_23_P2901	ESF5																																		
2031	A_23_P71340	ESF6																																		
556	A_23_P709739	ESF7																																		
469	A_23_P14243	ESREB2																																		
1138	A_23_P221841	ESREB3																																		
1440	A_23_P232912	ETS1																																		
1005	A_23_P727009	ETS2																																		
6.02M	A_23_P721725	TOXOA1																																		
3040	A_23_P138525	TOXOA2																																		
1828	A_23_P293058	TOX1																																		
1647	A_23_P413385	TOXO2																																		
395	A_23_P112348	KLF1																																		
1735	A_23_P129752	KLF2																																		
1780	A_23_P140827	KLF3																																		
970	A_23_P110029	KLF4																																		
620	A_23_P711595	KLF5																																		
1452	A_23_P352529	KLF6																																		
1749	A_23_P197969	KLF7																																		
314	A_23_P231703	KLF9																																		
1490	A_23_P75026	KLF10																																		
311	A_23_P212048	GATA5																																		
1255	A_23_P266168	GATA1																																		
1256	A_23_P168569	GATA2																																		
1222	A_23_P255251	GATA3																																		
1429	A_23_P141350	GATA4																																		
806	A_23_P821750	GATA5																																		
648	A_23_P4212	GATA6																																		
2079	A_23_P721728	GATA7																																		
3129	A_23_P32013	GATA8																																		
960	A_23_P821756	GATA9																																		
1244	A_23_P221180	GATA10																																		
924	A_23_P210164	GATA11																																		
3584	A_23_P178018	GATA12																																		
1755	A_23_P235841	HIF1																																		
2093	A_23_P709749	HIF2																																		
449	A_23_P354805	HIF3																																		
873	A_23_P411190	HIF4																																		
3225	A_23_P211875	HIF5																																		
1132	A_23_P434072	HIF6																																		
1515	A_23_P35805	HIF7																																		
716	A_23_P211716	HIF8																																		
1679	A_23_P311197	HIF9																																		
1450	A_23_P210164	HIF10																																		
15150	A_23_P340906	LMX1																																		
5586	A_23_P11073	MOR1																																		
1486	A_23_P222180	MOR2																																		
13	A_23_P207373	MYCN																																		
292	A_23_P111148	NFI																																		
456	A_23_P169555	NFXA																																		
1944	A_23_P202183	NFXA2																																		
614	A_23_P233497	NFXA3																																		
1084	A_23_P383772	NFXA4																																		
2477	A_23_P108326	NFXA5																																		
2051	A_23_P131979	NFXA6																																		
1249	A_23_P311227	NFXA7																																		
452	A_23_P111148	NFXA8																																		
1665	A_23_P169556	NFXA9																																		
1123	A_23_P959651	NFXA10																																		
1185	A_23_P210757	NFXA11																																		
1190	A_23_P971350	NFXA12																																		
947	A_23_P249608	NFXA13																																		
658	A_23_P212545	NFXA14																																		
3889	A_23_P212110	NFXA15																																		
1013	A_23_P124523	NFXA16																																		
A_23_P207218	A_23_P87941	A_23_P1361	A_23_P256061	A_23_P217114	A_23_P373475	A_23_P115356	A_23_P255185	A_23_P1322	A_23_P161314	A_23_P149928	A_23_P1307	A_23_P46186	A_23_P7843	A_23_P256148	A_23_P309261	A_23_P259594	A_23_P14346	A_23_P106103	A_23_P11081	A_23_P14035	A_23_P313652	A_23_P214897	A_23_P317105	A_23_P100935	A_23_P75380	A_23_P138567	A_23_P94380	A_23_P392384	A_23_P97451	A_23_P36642	A_23_P155509	A_23_P372467	A_23_P117599	A_23_P127789		
-------------	-------------	------------	---------------	-------------	--------------	--------------	--------------	------------	--------------	--------------	------------	--------------	-------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------
Gene Symbol	Description																																			
-------------	-------------																																			
ATP13A4	ATP synthase, H(+)-translocating, mitochondrial A3 subunit 4																																			
ATP13A3	ATP synthase, H(+)-translocating, mitochondrial A3 subunit 3																																			
ATP13A2	ATP synthase, H(+)-translocating, mitochondrial A3 subunit 2																																			
ATP12A	ATP synthase, H(+)-translocating, mitochondrial A2 subunit																																			
ATP10A	ATP synthase, H(+)-translocating, mitochondrial A10 subunit																																			
ATOX1	ATP synthase, H(+)-translocating, mitochondrial A10 subunit 1																																			
ATG4D	Autophagy related protein 4D																																			
ATG3	Autophagy related protein 3																																			
ATG12	Autophagy related protein 12																																			
ATG10	Autophagy related protein 10																																			
ATF7IP2	ATP synthase, H(+)-translocating, mitochondrial A10 subunit 2																																			
ATF7IP	ATP synthase, H(+)-translocating, mitochondrial A10 subunit 1																																			
ATF3	ATP synthase, H(+)-translocating, mitochondrial A10 subunit 3																																			
ATCAY	ATP synthase, H(+)-translocating, mitochondrial A10 subunit 4																																			
ATAD5	ATP synthase, H(+)-translocating, mitochondrial A5 subunit																																			
ATAD4	ATP synthase, H(+)-translocating, mitochondrial A4 subunit																																			
ATAD3B	ATP synthase, H(+)-translocating, mitochondrial A3 subunit B																																			
ASXL1	ATP synthase, H(+)-translocating, mitochondrial A3 subunit 1																																			
ASTL	ATP synthase, H(+)-translocating, mitochondrial A3 subunit 10																																			
ASPM	ATP synthase, H(+)-translocating, mitochondrial A3 subunit 11																																			

Notes:
- Y indicates presence in the dataset.
- ** indicates presence in the dataset with additional information.
| Gene | Symbol | Function |
|------|--------|----------|
| ATRIP | ATR | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP | ATP | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATPIF1 | ATPIF1 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATPBD4 | ATPBD4 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP8B2 | ATP8B2 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP8A2 | ATP8A2 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP7B | ATP7B | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP7A | ATP7A | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6V1G2 | ATP6V1G2 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6V1D | ATP6V1D | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6V1C2 | ATP6V1C2 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6V1C1 | ATP6V1C1 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6V1B2 | ATP6V1B2 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6V1B1 | ATP6V1B1 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6V0E2 | ATP6V0E2 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6V0E1 | ATP6V0E1 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6V0C | ATP6V0C | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6V0A4 | ATP6V0A4 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6V0A2 | ATP6V0A2 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6V0A1 | ATP6V0A1 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6V0A1 | ATP6V0A1 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6AP2 | ATP6AP2 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP6AP1 | ATP6AP1 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP5SL | ATP5SL | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP5S | ATP5S | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP5O | ATP5O | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP5J2 | ATP5J2 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP5J | ATP5J | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP5H | ATP5H | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP5G2 | ATP5G2 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP5E | ATP5E | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP5D | ATP5D | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP5B | ATP5B | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP4A | ATP4A | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP2C2 | ATP2C2 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP2B2 | ATP2B2 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP2B1 | ATP2B1 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP2A2 | ATP2A2 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP2A1 | ATP2A1 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP1B3 | ATP1B3 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP1B1 | ATP1B1 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP1B1 | ATP1B1 | ATP-binding cassette, sub-family I (ABCI), member 1 |
| ATP1A4 | ATP1A4 | ATP-binding cassette, sub-family I (ABCI), member 1 |

The table lists various genes related to ATP-binding cassette (ABC) transporters, along with their symbols and functions.
ID	Gene	Value
1234	CD59	Y
1245	CD53	Y
1256	CD3G	Y
1267	CD3D	Y
1278	CD38	Y
1289	CD33	Y
1290	CD320	Y
1301	CD2BP2	Y
1312	CD276	Y
1323	CD248	Y
1334	CD200R1	Y
1345	CD1D	Y
1356	CD19	Y
1367	CD177	Y
1378	CD164	Y
1389	CD163L1	Y
1400	CD160	Y
1411	CCT8	Y
1422	Y	Y
1433	Y	Y
1444	Y	Y
1455	Y	Y
1466	Y	Y
1477	Y	Y
1488	Y	Y
1499	Y	Y
1510	Y	Y
1521	Y	Y
1532	Y	Y
1543	Y	Y
1554	Y	Y
1565	Y	Y
1576	Y	Y
1587	Y	Y
1598	Y	Y
1609	Y	Y
1620	Y	Y
1631	Y	Y
1642	Y	Y
1653	Y	Y
1664	Y	Y
1675	Y	Y
1686	Y	Y
1697	Y	Y
1708	Y	Y
1719	Y	Y
1730	Y	Y
1741	Y	Y
1752	Y	Y
1763	Y	Y
1774	Y	Y
1785	Y	Y
1796	Y	Y
1807	Y	Y
1818	Y	Y
1829	Y	Y
1840	Y	Y
1851	Y	Y
1862	Y	Y
1873	Y	Y
1884	Y	Y
1895	Y	Y
1906	Y	Y
1917	Y	Y
1928	Y	Y
1939	Y	Y
1950	Y	Y
1961	Y	Y
1972	Y	Y
1983	Y	Y
1994	Y	Y
2005	Y	Y
2016	Y	Y
2027	Y	Y
2038	Y	Y
2049	Y	Y
2060	Y	Y
2071	Y	Y
2082	Y	Y
2093	Y	Y
2104	Y	Y
2115	Y	Y
2126	Y	Y
2137	Y	Y
2148	Y	Y
2159	Y	Y
2170	Y	Y
2181	Y	Y
2192	Y	Y
2203	Y	Y
2214	Y	Y
2225	Y	Y
2236	Y	Y
2247	Y	Y
A_23_P93737	Y	Y
A_23_P170518	Y	Y
A_23_P201342	Y	Y
A_23_P347432	Y	Y
A_23_P158257	Y	Y
A_23_P308685	Y	Y
A_23_P134935	Y	Y
A_23_P400255	Y	Y
A_23_P143650	Y	Y
A_23_P104471	Y	Y
A_23_P110712	Y	Y
A_23_P325542	Y	Y
A_23_P255569	Y	Y
A_23_P1885	Y	Y
A_23_P347040	Y	Y
A_23_P336709	Y	Y
A_23_P3215	Y	Y
A_23_P210319	Y	Y
A_23_P208158	Y	Y
A_23_P373541	Y	Y
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Y	Y	
Accession	Description	
-----------	-------------	
A_23_P25926	EIF2C1	
A_23_P105313	EIF2B5	
A_23_P65068	EIF2B4	
A_23_P148114	EIF2B1	
A_23_P119753	EIF2AK2	
A_23_P216225	EID3	
A_23_P214080	EID1	
A_23_P162954	EHMT2	
A_23_P7462	EHMT1	
A_23_P343935	EHF	
A_23_P34710	EGR4	
A_23_P149476	EGLN3	
A_23_P333498	EGLN1	
A_23_P146294	EGFLAM	
A_23_P14411	EGF	
A_23_P1411	EFNA1	
A_23_P27	EFHC2	
A_23_P149010	EFHB	
A_23_P113400	EFHC1	
A_23_P105059	EFNA4	
A_23_P213267	EFNA5	
A_23_P13134	EFNA6	
A_23_P144886	EFNA7	
A_23_P144806	EFNB1	
A_23_P144811	EFNB2	
A_23_P144807	EFNB3	
A_23_P144808	EFNB4	
A_23_P144810	EFNB5	
A_23_P131113	EFNB6	
A_23_P144789	EFNB7	
A_23_P144791	EFNB8	
A_23_P144793	EFNB9	
A_23_P144795	EFN	

Note: The table represents a list of protein accessions with their descriptions.
Gene Symbol	Description												
FAM115C	Family with sequence similarity 115C												
FAM115A	Family with sequence similarity 115A												
FAM114A2	Family with sequence similarity 114A2												
FAM114A1	Family with sequence similarity 114A1												
FAM113B	Family with sequence similarity 113B												
FAM113A	Family with sequence similarity 113A												
FAM111A	Family with sequence similarity 111A												
FAM110B	Family with sequence similarity 110B												
FAM108C1	Family with sequence similarity 108C1												
FAM107B	Family with sequence similarity 107B												
FAM107A	Family with sequence similarity 107A												
FAM104A	Family with sequence similarity 104A												
FAM100A	Family with sequence similarity 100A												
FAIM3	Fatty acid amide amidase 3												
FAIM2	Fatty acid amidase 2												
FAHD2B	Fatty acid amidase domain containing 2B												
FAF1	Fatty acid amidase 1												
FADS6	Fatty acid desaturase 6												
FADS2	Fatty acid desaturase 2												
FABP9	Fatty acid binding protein 9												
FABP6	Fatty acid binding protein 6												
FABP3	Fatty acid binding protein 3												
FABP1	Fatty acid binding protein 1												
FAAH2	Fatty acid amide hydrolase 2												
FA2H	Fatty acid amidase domain containing 1												
F9	Coagulation factor IX												
F8A1	Coagulation factor VIII												
F8	Coagulation factor VIII												
F5	Coagulation factor V												
F3	Coagulation factor III												
F2RL1	Coagulation factor II receptor ligand 1												
F2R	Coagulation factor II receptor												
F13B	Coagulation factor XI												
F13A1	Coagulation factor XI												
F11R	Coagulation factor XI												
F11	Coagulation factor XI												
F10	Coagulation factor X												
EZH2	Enhancer of zeste 2												
EYA4	Eye abducens 4												
EYA3	Eye abducens 3												
EXTL2	Extin-like 2												
EXTL1	Extin-like 1												
A_23_P343963	A_23_P314250	A_23_P321473	A_23_P134204	A_23_P354288	A_23_P431305	A_23_P210577	A_23_P10363	A_23_P13663	A_23_P104509	A_23_P96445	A_23_P137751	A_23_P127275	
------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	
FAM83G	FAM82B	FAM73B	FAM71F1	FAM71E2	FAM69B	FAM62B	FAM60A	FAM57B	FAM57A	FAM55D	FAM53B	FAM49A	
Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	15977	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
12379	23790	12203	15468	12659	15642	15762	15791	15866	15883	15972	15976	15977	
Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
A_23_P14995	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P43296	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P214739	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P257111	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P102462	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P151805	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P211631	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P127438	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P58489	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P28590	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P215140	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P44132	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P369815	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P56746	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P356021	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P206441	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P77455	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P411215	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P59884	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P510584	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P731583	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P171789	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P76676	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P150035	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P205555	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P708763	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P86889	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P737300	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P75892	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P752448	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P63846	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P396948	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P113515	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P765278	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P736250	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P22565	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P127438	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P127438	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P38841	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P34134	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P162489	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P25890	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P70949	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P54409	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P280224	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P59398	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P6431	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P767298	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P22946	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P22565	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P54412	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P38841	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P38918	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P727313	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FBXL2	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FBXL18	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FBXL14	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FBXL12	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FBP2	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FBXL7	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FBXL20	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FBXL1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FBLN7	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FBLN1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FAT1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FASTK	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FARP2	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FARP1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FANK1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FAM98C	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FAM96B	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FAM89B	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
1374
14020
18854
12923
18378
20634
9947
4896
547
8353
14519
3233
5978
21747
8144
1372
9236
21712
15939
18470
12504
20803
9615
17554
5738
5690
2231
14812
7391
19773
802
15300
14603
15025
7323
20130
12836
18333
13588
621
2644
21195
19301
14831
13338
5761
17106
5478
12062
13841
10036
10533
15110
6163
10516
6187
12471
20613
3097
5599
9068
15447
15828
11310
6096
10824
1721
7086
3046
10681
2489
2202
4555
18282
C10288
12703
16367
2012
9637

A_23_P26704
A_23_P253781
A_23_P43817
A_23_P406347
A_23_P72850
A_23_P28530
A_23_P340218
A_23_P72157
A_23_P30162
A_23_P154158
A_23_P49049
A_23_P37654
A_23_P58476
A_23_P65558
A_23_P91742
A_23_P28507
A_23_P213640
A_23_P10062
A_23_P16743
A_23_P79032
A_23_P110276
A_23_P164578
A_23_P253762
A_23_P42738
A_23_P154294
A_23_P127596
A_23_P210063
A_23_P86434
A_23_P13934
A_23_P104138
A_23_P255027
A_23_P79572
A_23_P8363
A_23_P159986
A_23_P59714
A_23_P133075
A_23_P63736
A_23_P105361
A_23_P343843
A_23_P206454
A_23_P398628
A_23_P408232
A_23_P373100
A_23_P379106
A_23_P372984
A_23_P389423
A_23_P393697
A_23_P157196
A_23_P73028
A_23_P84596
A_23_P1956
A_23_P355500
A_23_P319682
A_23_P359762
A_23_P432448
A_23_P348911
A_23_P254863
A_23_P102681
A_23_P74330
A_23_P405282
A_23_P91125
A_23_P350719
A_23_P206648
A_23_P139895
A_23_P254181
A_23_P151361
A_23_P256055
A_23_P202170
A_23_P80438
A_23_P104323
A_23_P204286
A_23_P36658
A_23_P110167
A_23_P51548
A_23_P4714
A_23_P205408
A_23_P117387
A_23_P433838
A_23_P436103

MFSD11
MFSD2
MFSD2
MFSD3
MFSD5
MFSD6
MFSD6L
MFSD7
MFSD8
MFSD9
MGA
MGA
MGAT1
MGAT2
MGAT3
MGAT4A
MGAT4B
MGAT4C
MGAT5
MGC10814
MGC10981
MGC11082
MGC12935
MGC12966
MGC13005
MGC13053
MGC13057
MGC14425
MGC14436
MGC15634
MGC15705
MGC16025
MGC16075
MGC16121
MGC16142
MGC16169
MGC16291
MGC16384
MGC16385
MGC16385
MGC16703
MGC23270
MGC24103
MGC24125
MGC24975
MGC26597
MGC27345
MGC27348
MGC2848
MGC29506
MGC3196
MGC3207
MGC33407
MGC33894
MGC3771
MGC40574
MGC42105
MGC4294
MGC4473
MGC45922
MGC4771
MGC52282
MGC52282
MGC5370
MGC5566
MGC5590
MGC70863
MGEA5
MGLL
MGMT
MGP
MGST1
MGST2
MGST3
MIA
MIA2
MIA2
MIB1
MIB2

Y

Y
Y
Y
Y
Y
Y

Y
Y

Y

Y

Y

Y

Y
Y

Y
Y

Y
Y

Y
Y

Y
Y
Y

Y

Y

Y

Y
Y
Y

Y
Y
Y
Y

Y
Y

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

Y

Y

Y
Y
Y
Y
Y

Y
Y

Y
Y
Y

Y
Y
Y

Y
Y
Y
Y

Y
Y
Y

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y

Y
Y
Y
Y

Y
Y
Y
Y

Y
Y

Y
Y

Y

Y
Y
Y

Y
Y
Y

Y

Y
Y

Y

Y

Y

Y

Y

Y

Y

Y
Y

Y
Y

Y
Y
Y
Y

Y
Y
Y
Y
Y

Y

Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y
Y

Y
Y
Y
Y

Y
Y
Y
Y

Y
Y

Y
Y
Y
Y
Y
Y
Y

Y
Y

Y

Y
Y

Y
Y

Y

Y

Y

Y

Y

Y
Y

Y
Y
Y

Y
Y
Y

Y
Y
Y

Y

Y
Y
Y
Y

Y
Y

Y

Y
Y

Y

Y
Y

Y

Y
Y

Y
Y
Y
Y
Y

Y
Y
Y

Y

Y
Y
Y
Y

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

Y
Y

Y

Y

Y

Y

Y

Y

Y
Y

Y
Y

Y
Y
Y
Y
Y

Y

Y
Y
Y
Y

Y

Y
Y

Y

Y
Y
Y
Y
Y

Y

Y

Y
Y

Y
Y

Y
Y

Y
Y

Y

Y
Y
Y
Y

Y
Y

Y

Y
Y
Y
Y
Y
Y

Y
Y

Y

Y
Y
Y

Y
Y

Y
Y
Y
Y
Y
Y
Y

Y

Y
Y
Y

Y
Y

Y

Y
Y
Y
Y

Y
Y
Y

Y
Y
Y

Y
Y

Y

Y

Y

Y
Y

Y
Y

Y

Y
Y

Y

Y
Y

Y

Y
Y
Y

Y

Y

Y

Y

Y
Y
Y
Y

Y

Y

Y
Y
Y

Y

Y

Y

Y
Y
Y
Y

Y
Y
Y
Y
Y

Y
Y

Y
Y

Y
Y

Y

Y

Y
Y

Y

Y

Y
Y

Y

Y

Y
Y
Y
Y
Y

Y

Y
Y

Y
Y
Y
Y

Y
Y
Y
Y
Y

Y

Y

Y

Y

Y
Y
Y

Y
Y

Y
Y

Y
Y
Y

Y
Y
Y
Y

Y
Y
Y

Y
Y

Y
Y
Y
Y

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y

Y
Y
Y
Y

Y
Y

Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y

Y
Y

Y
Y

Y
Y
Y
Y
Y
Y
Y
Y
Y

Y
Y
Y
Y

Y
Y
Y
Y
Y
Y
Y
Y

Y
Y

Y
Y

Y
Y
Y

Y
Y
Y
Y

Y
Y

Y
Y

Y
Y
Y

Y

Y

Y

Y
Y

Y
Y

Y
Y
Y
Y

Y
Y
Y

Y

Y

Y
Y
Y

Y
Y

Y
Y

Y
Y

Y
Y
Y
Y

Y

Y
Y
Y
Y

Y
Y

Y

Y
Y
Y

Y
Y
Y

Y
Y

Y
Y
Y

Y
Y
Y

Y
Y

Y

Y

Y

Y

Y
Y
Y

Y
Y
Y

Y
Y
Y

Y
Y
Y

Y
Y
Y

Y
Y

Y

Y
Y
Y
Y
Y
Y

Y

Y
Y
Y
Y
Y
Y

Y
Y
Y

Y
Y
Y

Y
Y
Y

Y
Y
Y
Y
Y

Y

Y
Y

Y
Y
Y

Y
Y
Y

Y
Y


ID	Description												
1468	A_23_P2029	MYPF											
1818	A_23_P1218	MYFAP											
5446	A_23_P1408	MYF1											
6115	A_23_P2070	MYF10											
2012	A_23_P3503	MYFIP1											
9079	A_23_P1513	MYFIP2											
14732	A_23_P2312	MYFIP3											
10377	A_23_P1473	MYF5											
22354	A_23_P1113	MYF7											
384	A_23_P0418	MYF9											
18223	A_23_P1878	MYC1											
756	A_23_P2153	MYC2											
16697	A_23_P1756	MYC3											
14458	A_23_P1352	MYC4											
7095	A_23_P1242	MYC5											
14422	A_23_P0521	MYC6											
20764	A_23_P3341	MYC9											
1732	A_23_P2126	MYC10											
9205	A_23_P2102	MYC11											
17358	A_23_P2022	MYC12											
1698	A_23_P0592	MYC13											
43085	A_23_P0710	MYC14											
13466	A_23_P2500	MYC15											
13716	A_23_P2509	MYC16											
13854	A_23_P1738	MYC17											
13017	A_23_P2059	MYC18											
10008	A_23_P2002	MYC19											
11324	A_23_P2003	MYC20											
9036	A_23_P2315	MYC21											
14882	A_23_P2023	MYC22											
9068	A_23_P2316	MYC23											
15095	A_23_P1909	MYC24											
10245	A_23_P2025	MYC25											
519	A_23_P1636	MYC26											
22398	A_23_P1327	MYC27											
17927	A_23_P2059	MYC28											
12832	A_23_P2005	MYC29											
449	A_23_P1819	MYC30											
21497	A_23_P2766	MYC31											
14498	A_23_P2623	MYC32											
292	A_23_P2408	MYC33											
7308	A_23_P2059	MYC34											
698	A_23_P2412	MYC35											
13432	A_23_P2590	MYC36											
10579	A_23_P2701	MYC37											
425	A_23_P2513	MYC38											
1902	A_23_P2344	MYC39											
11798	A_23_P2578	MYC40											
15727	A_23_P3011	MYC41											
5659	A_23_P2768	MYC42											
11630	A_23_P1431	MYC43											
1077	A_23_P2418	MYC44											
22209	A_23_P2429	MYC45											
20201	A_23_P2020	MYC46											
14171	A_23_P2735	MYC47											
15022	A_23_P2418	MYC48											
9127	A_23_P2606	MYC49											
8431	A_23_P2106	MYC50											
8698	A_23_P2015	MYC51											
18757	A_23_P1515	MYC52											
8088	A_23_P2418	MYC53											
2427	A_23_P2068	MYC54											
9275	A_23_P1342	MYC55											
379	A_23_P2106	MYC56											
79	A_23_P2065	MYC57											
2034	A_23_P2726	MYC58											
3142	A_23_P2020	MYC59											
17892	A_23_P2732	MYC60											
1379	A_23_P2464	MYC61											
2218	A_23_P2600	MYC62											
9120	A_23_P2409	MYC63											
18672	A_23_P2601	MYC64											
6308	A_23_P2063	MYC65											
14837	A_23_P2018	MYC66											
2196	A_23_P1099	MYC67											
16899	A_23_P2010	MYC68											
1147	A_23_P2318	MYC69											
16349	A_23_P2048	MYC70											
6065	A_23_P2101	MYC71											
Source	Description	Synonymity	Y/N	Source	Description	Synonymity	Y/N						
--------	-------------	------------	-----	--------	-------------	------------	-----						
C12928.2	P20050	NAK1	Y	A_23_P399250	NBPF3								
19120	P19652	NAC	Y										
20219	P20050	NAV3	Y										
15068	P19652	NAV2	Y										
3133	P19652	NAV2	Y										
19120	P19652	NAV2	Y										
20219	P20050	NAT9	Y										
17663	P19652	NAT5	Y										
20784	P19652	NAT13	Y										
3133	P19652	NAT13	Y										
19120	P19652	NAT13	Y										
20219	P20050	NARS2	Y										
17663	P19652	NARG1L	Y										
20784	P19652	NARF	Y										
3133	P19652	NARF	Y										
19120	P19652	NARF	Y										
20219	P20050	NAPG	Y										
17663	P19652	NAPB	Y										
20784	P19652	NAPB	Y										
3133	P19652	NAPB	Y										
19120	P19652	NAPB	Y										
20219	P20050	NAMS	Y										
17663	P19652	NAMPT	Y										
20784	P19652	NAMPT	Y										
3133	P19652	NAMPT	Y										
19120	P19652	NAMPT	Y										
20219	P20050	NAGS	Y										
17663	P19652	NAGK	Y										
20784	P19652	NAGK	Y										
3133	P19652	NAGK	Y										
19120	P19652	NAGK	Y										
20219	P20050	NAG	Y										
17663	P19652	NACT	Y										
20784	P19652	NACT	Y										
3133	P19652	NACT	Y										
19120	P19652	NACT	Y										
20219	P20050	NACAP1	Y										
17663	P19652	NAB1	Y										
20784	P19652	NAB1	Y										
3133	P19652	NAB1	Y										
19120	P19652	NAB1	Y										
20219	P20050	Y											
17663	P19652	Y											
20784	P19652	Y											
3133	P19652	Y											
19120	P19652	Y											
20219	P20050	Y											
17663	P19652	Y											
20784	P19652	Y											
3133	P19652	Y											
19120	P19652	Y											
20219	P20050	Y											
17663	P19652	Y											
20784	P19652	Y											
3133	P19652	Y											
19120	P19652	Y											
20219	P20050	Y											
17663	P19652	Y											
20784	P19652	Y											
3133	P19652	Y											
19120	P19652	Y											
20219	P20050	Y											
A_23_P11773	PLCL2	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P11891	PLCH1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P11917	PLCD4	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P11949	PLCD3	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P11975	PLCD2	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12001	PLCD1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12027	PLCH2	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12053	PLCH1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12089	PLCP	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12115	PLCP5	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12141	PLCP4	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12167	PLCP3	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12193	PLCP2	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12219	PLCP1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12245	PLCP0	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12271	PLCA	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12297	PLCB	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12323	PLCC	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12349	PLCD	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12375	PLCE	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12401	PLCF	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12427	PLCG	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12453	PLCJ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12479	PLCI	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12505	PLCH	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12531	PLCD1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12557	PLCD2	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12583	PLCD3	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12609	PLCD4	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12635	PLCD5	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12661	PLCD6	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12687	PLCD7	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12713	PLCD8	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12739	PLCD9	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12765	PLCD10	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12791	PLCD11	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12817	PLCD12	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12843	PLCD13	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12869	PLCD14	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12895	PLCE1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12921	PLCE2	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12947	PLCE3	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12973	PLCE4	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P13009	PLCE5	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P13035	PLCE6	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P13061	PLCE7	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P13087	PLCE8	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P13113	PLCE9	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P13139	PLCE10	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P13165	PLCE11	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P13191	PLCE12	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P13217	PLCE13	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P13243	PLCE14	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Gene	Description												
---------	---------------												
SHMT2	3-Methylmalonate Mutase 2												
SHMT1	3-Methylmalonate Mutase 1												
SHKBP1	S-Hydroxyaspartate Racemase												
SHISA5	S-Hydroxyaspartate Racemase												
SHC3	S-Hydroxyaspartate Racemase												
SHB	S-Hydroxyaspartate Racemase												
SH3YL1	S-Hydroxyaspartate Racemase												
SH3RF2	S-Hydroxyaspartate Racemase												
SH3GLB1	S-Hydroxyaspartate Racemase												
SH3GL2	S-Hydroxyaspartate Racemase												
SH3GL1	S-Hydroxyaspartate Racemase												
SH3BP5L	S-Hydroxyaspartate Racemase												
SH3BP4	S-Hydroxyaspartate Racemase												
SH3BP2	S-Hydroxyaspartate Racemase												
SH3BGRL2	S-Hydroxyaspartate Racemase												
SH3BGR	S-Hydroxyaspartate Racemase												
SH2D4A	S-Hydroxyaspartate Racemase												
SH2D1B	S-Hydroxyaspartate Racemase												
SH2D1A	S-Hydroxyaspartate Racemase												
SGTA	S-Grassmannian 2												
SGSM2	S-Grassmannian 2												
SGSH	S-Grassmannian 2												
SGPP1	S-Grassmannian 2												
SGOL2	S-Grassmannian 2												
SGK269	S-Grassmannian 2												
SGK2	S-Grassmannian 2												
SGEF	S-Grassmannian 2												
SGCZ	S-Grassmannian 2												

Notes:
- Y indicates presence or activity.
- N indicates absence or inactivity.
| Id | Description | Symbol |
|-----|---------------|---------|
| 220 | TRPV4 | TSPYL4 |
| 221 | TRPV6 | TSPYL2 |
| 222 | TRPV2 | TSPY2 |
| 223 | TRPV1 | TSPO |
| 224 | TRPV1 | TSPAN9 |
| 225 | TRPV1 | TSPAN7 |
| 226 | TRPV1 | TSPAN6 |
| 227 | TRPV1 | TSPAN5 |
| 228 | TRPV1 | TSPAN32 |
| 229 | TRPV1 | TSPAN31 |
| 230 | TRPV1 | TSPAN2 |
| 231 | TRPV1 | TSPAN18 |
| 232 | TRPV1 | TSPAN13 |
| 233 | TRPV1 | TSPAN1 |
| 234 | TRPV1 | TSNAX |
| 235 | TRPV1 | TSNAP1 |
| 236 | TRPV1 | TSNAP2 |
| 237 | TRPV1 | TSNAXP1 |
| 238 | TRPV1 | TSNAXP2 |
| 239 | TRPV1 | TSNAXP3 |
| 240 | TRPV1 | TSNAXP4 |
| 241 | TRPV1 | TSNAXP5 |
| 242 | TRPV1 | TSNAXP6 |
| 243 | TRPV1 | TSNAXP7 |
| 244 | TRPV1 | TSNAXP8 |
| 245 | TRPV1 | TSNAXP9 |
| 246 | TRPV1 | TSNAXP10|
| 247 | TRPV1 | TSNAXP11|
| 248 | TRPV1 | TSNAXP12|
| 249 | TRPV1 | TSNAXP13|
| 250 | TRPV1 | TSNAXP14|
| 251 | TRPV1 | TSNAXP15|
| 252 | TRPV1 | TSNAXP16|
| 253 | TRPV1 | TSNAXP17|
| 254 | TRPV1 | TSNAXP18|
| 255 | TRPV1 | TSNAXP19|
| 256 | TRPV1 | TSNAXP20|
| 257 | TRPV1 | TSNAXP21|
| 258 | TRPV1 | TSNAXP22|
| 259 | TRPV1 | TSNAXP23|
| 260 | TRPV1 | TSNAXP24|
| 261 | TRPV1 | TSNAXP25|
| 262 | TRPV1 | TSNAXP26|
| 263 | TRPV1 | TSNAXP27|
| 264 | TRPV1 | TSNAXP28|
| 265 | TRPV1 | TSNAXP29|

Note: The table represents a list of genes with their symbols, and it seems to be part of a larger dataset or a specific context not fully provided in the image.
A_23_P19095	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P24000	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P10171	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P12115	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P31145	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P34210	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P19927	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P73081	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P71107	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P20674	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P25519	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P20228	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P21148	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P39441	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P17968	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P35599	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P37257	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P10605	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P15440	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P16114	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P19847	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P44886	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P49690	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P33519	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P14823	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P11017	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P39169	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P74028	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P15065	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P99006	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P32059	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P32265	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P10110	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P35588	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P31061	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P20714	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P71139	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P10541	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P39045	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P39169	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P11017	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P39169	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P74028	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P15065	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P99006	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P32059	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P32265	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P10110	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P35588	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P31061	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P71139	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P10541	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P39045	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P74028	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P15065	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P99006	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P32059	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P32265	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P10110	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P35588	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P31061	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P71139	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P10541	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P39045	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P74028	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P15065	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P99006	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P32059	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P32265	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P10110	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P35588	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P31061	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P71139	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P10541	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P39045	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P74028	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P15065	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P99006	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P32059	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P32265	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P10110	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P35588	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P31061	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P71139	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P10541	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P39045	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P74028	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P15065	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P99006	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P32059	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P32265	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P10110	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P35588	Y	Y	Y	Y	Y	Y	Y	Y	Y
A_23_P31061	Y	Y	Y	Y	Y	Y	Y	Y	Y
Figure S5.1. Heatmaps for the common gene pool in both cell cycle signal transduction pathway and overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. IDCs from 90A cohort).
Figure S5.2. Heatmaps for the common gene pool in both VEGF signal transduction pathway and overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. IDCs from 90A cohort).

NT	Group IE	Group IIE

Figure S5.3. Heatmaps for the common gene pool in both BER signal transduction pathway and overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. IDCs from 90A cohort).

NT	Group IE	Group IIE
Figure S5.4. Heatmaps for the common gene pool in both DRS signal transduction pathway and overlapped network of MYC & STAT3 in ER(+) IDCs (i.e. IDCs from 90A cohort).

Figure S5.5. Heatmaps for the common gene pool in both HR signal transduction pathway and overlapped network of MYC & STAT3 in ER(+) IDCs (i.e. IDCs from 90A cohort).

Figure S5.6. Heatmaps for the common gene pool in both MRP signal transduction pathway and overlapped network of MYC & STAT3 in ER(+) IDCs (i.e. IDCs from 90A cohort).

Figure S5.7. Heatmaps for the common gene pool in both NER signal transduction pathway and overlapped network of MYC & STAT3 in ER(+) IDCs (i.e. IDCs from 90A cohort).
90A cohort).

Figure S5.8. Heatmaps for the common gene pool in both p53 signal transduction pathway and overlapped network of MYC & STAT3 in ER(+) IDCs (i.e. IDCs from 90A cohort).
Figure S5.9. Heatmaps for the common gene pool in both proteasome signal transduction pathway and overlapped network of *MYC* & *STAT3* in ER(+) IDCs (i.e. IDCs from 90A cohort).

NT	Group IE	Group IIE

Figure S5.10. Heatmaps for the common gene pool in both ribosome signal transduction pathway and overlapped network of *MYC* & *STAT3* in ER(+) IDCs (i.e. IDCs from 90A cohort). Grey color within the heatmap stands for data not available after data processing.

In this case, we do not use this piece of information for further discussion due to most data not available.

NT	Group IE	Group IIE
Figure S5.11. Heatmaps for the common gene pool in both PDGFRB signal transduction pathway and overlapped network of MYC&STAT3 in ER(+) IDCs (i.e. IDCs from 90A cohort).
Figure S6.1. The survival analyses on subtypes of ER(+) infiltrating ductal carcinoma.
Fig. S6.1a demonstrates survival analysis on Group IE vs. Group IIE; Fig. S6.1b demonstrates survival analysis on Luminal A vs. Luminal B.

a. Group IE vs. Group IIE
b. Luminal A vs. Luminal B

Figure S6.2. The survival analyses on probes in \textit{STAT3} driven subnetworks in coupling with its major transcription factor partner - \textit{MYC} for (a) proliferation; (b) sustained angiogenesis; (c) Warburg effect; (d) ES like phenotype; (e) \textit{FOXC1} transcriptional regulatory network and (f) ERBB2 signaling in ER(+) IDCs. We compared the probes in those subnetworks (a - f) in cohorts 90A and 72A for predicting clinical outcome that was evaluated by overall disease free survival.
a. STAT3 subnetwork components for proliferation

![Image of graphs showing STAT3 subnetwork components for proliferation](image.png)
b. *STAT3* subnetwork components for sustained angiogenesis
c. STAT3 subnetwork components for Warburg effect

![Graph 90A](image1)

![Graph 72A](image2)
d. **STAT3** subnetwork components for ES like phenotype
e. *STAT3* subnetwork components in *FOXC1* driven subnetwork
f. *STAT3* subnetwork components for ERBB2 signal transduction pathway
Figure S6.3. The survival analysis on a probe - FOXC1(12715) not in the *STAT3* subnetwork. We compared this probe in cohorts 90A and 72A for predicting clinical outcome that was evaluated by overall disease free survival.
Table S6.1. Univariate and multivariate analyses for survival on prognostic factors in 90A cohorts. The p values of tests in the Cox proportional hazard model are provided.

Prognostic factor	Univariate Analysis	Multivariate Analysis												
	Hazard Ratio	P value												
Grade1 vs. 2&3	1.92	0.32	1.28	1.00	0.37	0.39	0.62	0.69	0.41	0.41	0.39	0.39	0.45	0.42
LVnegative vs. positive	3.30	0.13	0.13	0.95	4.84	0.34	56593646.52	1.00	10.13	0.11	2.21	0.51	3.67	0.33
Size 1 vs. 2&3&4	3.70	0.38	0.30	0.93	0.73	0.38	0.87	0.88	0.79	0.79	1.21	0.32	1.82	0.19
SP I vs. 2&3	80907452.95	0.00	0.23	1.00	87736350.72	1.00	43002016.86	1.00	307737650.19	1.00	307737650.19	1.00	288537890.52	1.00
TF I vs. 2&3	25794474.04	1.00	0.00	0.99	1.00	1.00	0.00	1.00	3.24	1.00	0.00	1.00	2.70	1.00
LNM 0 vs. 1& 2&3	6.82	0.00	40937617590.53	0.65	567995703.41	1.00	689162786.60	1.00	457946095.13	1.00	2804267118.40	1.00	3974365499.84	1.00
MC I vs.2&3	1.39	0.59	2615448.99	0.95	0.08	0.00	0.04	0.32	0.55	0.00	0.55	0.00	0.73	0.68
Stage 1vs. 2&3&4	2.32	0.42	8560.55	0.97	2.01	1.00	0.53	1.00	2.27	1.00	1.60	1.00	0.30	1.00
LYM positive vs. negative	0.49	0.07	0.00	0.54	0.23	0.35	1.00	0.00	0.38	0.48	0.11	0.07	0.07	0.07
15 gene signature (subcohort 1/2)	0.00	1.00	0.00	0.91	-	-	-	-	-	-	-	-	-	-
15 gene signature (subcohort 1/3)	0.47	0.16	-	-	0.40	0.37	-	-	-	-	-	-	-	-
15 gene signature (subcohort 2/3)	31113550.19	1.00	-	-	-	-	-	-	-	-	-	-	-	-
15 gene signature (subcohort 1/non1)	0.34	0.40	-	-	-	-	-	-	0.23	0.11	-	-	-	-
15 gene signature (subcohort 2/non2)	291402675.98	1.00	-	-	-	-	-	-	-	-	-	-	353542959.44	1.00
15 gene signature (subcohort 3/non3)	0.67	0.44	-	-	-	-	-	-	-	-	-	-	0.55	0.55
Figure S7.1. Mean plot analyses of mRNA levels for *MELK* in eight clinical categories and in two cohorts of infiltrating ductal carcinoma (IDCs), respectively. Lymphovascular invasion (LVI), nodal category (lymph node metastasis (LYM), number of nodal metastasis(LNM)), histological grade (Grade) category (nuclear pleomorphism (NP) and tubule formation (TF)) and stage were analyzed. Cohort 1 (90A) has Groups I and II. Cohort 2 (72A) has Luminal A and Luminal B (see main text for definitions).

A. Cohort 1

B. Cohort 2
Figure S7.2. Mean plot analyses of mRNA levels for METAP2 in eight clinical categories and in two cohorts of infiltrating ductal carcinoma (IDCs), respectively. Lymphovascular invasion (LVI), nodal category (lymph node metastasis (LYM), number of nodal metastasis(LNM)), histological grade (Grade) category (nuclear pleomorphism (NP) and tubule formation (TF)) and stage were analyzed. Cohort 1 (90A) has Groups IE and IIE. Cohort 2 (72A) has Luminal A and Luminal B (see main text for definitions).

A. Cohort 1

B. Cohort 2
Figure S7.3. Mean plot analyses of mRNA levels for SRC(6926) in eight clinical categories and in two cohorts of infiltrating ductal carcinoma (IDCs), respectively. Lymphovascular invasion (LVI), nodal category (lymph node metastasis (LYM), number of nodal metastasis (LNM)), histological grade (Grade) category (nuclear pleomorphism (NP) and tubule formation (TF)) and stage were analyzed. Cohort 1 (90A) has Groups IE and IIE. Cohort 2 (72A) has Luminal A and Luminal B (see main text for definitions).

A. Cohort 1.

B. Cohort 2.
Figure S7.4. Mean plot analyses of mRNA levels for SRC(17104) in eight clinical categories and in two cohorts of infiltrating ductal carcinoma (IDCs), respectively. Lymphovascular invasion (LVI), nodal category (lymph node metastasis (LYM), number of nodal metastasis(LNM)), histological grade (Grade) category (nuclear pleomorphism (NP) and tubule formation (TF)) and stage were analyzed. Cohort 1 (90A) has Groups IE and IIE. Cohort 2 (72A) has Luminal A and Luminal B (see main text for definitions).

A. Cohort 1.

B. Cohort 2.
Figure S7.5. Mean plot analyses of mRNA levels for OIP5 in eight clinical categories and in two cohorts of infiltrating ductal carcinoma (IDCs), respectively. Lymphovascular invasion (LVI), nodal category (lymph node metastasis (LYM), number of nodal metastasis (LNM)), histological grade (Grade) category (nuclear pleomorphism (NP) and tubule formation (TF)) and stage were analyzed. Cohort 1 (90A) has Groups IE and IIE. Cohort 2 (72A) has Luminal A and Luminal B (see main text for definitions).

A. Cohort 1.

B. Cohort 2.
Table S7.1. ANOVA test on mRNA levels for *ARNT* in eight clinical categories and in two cohorts of infiltrating ductal carcinoma (IDCs), respectively. Lymphovascular invasion (LVI), nodal category (lymph node metastasis (LYM), number of nodal metastasis(LNM)), histological grade (Grade) category (nuclear pleomorphism (NP) and tubule formation (TF)) and stage were analyzed. Cohort 1 (90A) has Groups IE and IIE. Cohort 2 (72A) has Luminal A and Luminal B (see main text for definitions).

clinical index	p value	90A	72A
PR		0.413	0.305
HER		0.820	0.820
stage		0.574	0.359
LYM		0.318	0.544
LVI		**0.010**	0.265
Age		0.786	0.584
Grade		0.821	0.131
TF		0.209	0.085
NP		0.130	0.116
MC		**0.025**	**0.008**
Size		0.576	0.733
LNM		0.818	0.599