Evidence for the direct decay of the 125 GeV Higgs boson to fermions

CMS Collaboration; Canelli, M F; Chiochia, V; Kilminster, B; Robmann, P; et al

Abstract: The discovery of a new boson with a mass of approximately 125 GeV in 2012 at the LHC has heralded a new era in understanding the nature of electroweak symmetry breaking and possibly completing the standard model of particle physics. Since the first observation in decays to gamma gamma, WW, and ZZ boson pairs, an extensive set of measurements of the mass and couplings to W and Z bosons, as well as multiple tests of the spin-parity quantum numbers, have revealed that the properties of the new boson are consistent with those of the long-sought agent responsible for electroweak symmetry breaking. An important open question is whether the new particle also couples to fermions, and in particular to down-type fermions, since the current measurements mainly constrain the couplings to the up-type top quark. Determination of the couplings to down-type fermions requires direct measurement of the corresponding Higgs boson decays, as recently reported by the CMS experiment in the study of Higgs decays to bottom quarks and tau leptons. In this paper we report the combination of these two channels which results, for the first time, in strong evidence for the direct coupling of the 125 GeV Higgs boson to down-type fermions, with an observed significance of 3.8 standard deviations, when 4.4 are expected.

DOI: https://doi.org/10.1038/nphys3005

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-108366
Journal Article
Accepted Version

Originally published at:
CMS Collaboration; Canelli, M F; Chiochia, V; Kilminster, B; Robmann, P; et al (2014). Evidence for the direct decay of the 125 GeV Higgs boson to fermions. Nature Physics, 10(2014):557.
DOI: https://doi.org/10.1038/nphys3005
Evidence for the direct decay of the 125 GeV Higgs boson to fermions

The CMS Collaboration

Abstract

The discovery of a new boson with a mass of approximately 125 GeV in 2012 at the LHC [1–8] has heralded a new era in understanding the nature of electroweak symmetry breaking and possibly completing the standard model of particle physics [4–9]. Since the first observation in decays to $\gamma\gamma$, WW, and ZZ boson pairs, an extensive set of measurements of the mass [10, 11] and couplings to W and Z bosons [11–13], as well as multiple tests of the spin-parity quantum numbers [10, 11, 13–14], have revealed that the properties of the new boson are consistent with those of the long-sought agent responsible for electroweak symmetry breaking. An important open question is whether the new particle also couples to fermions, and in particular to down-type fermions, since the current measurements mainly constrain the couplings to the up-type top quark. Determination of the couplings to down-type fermions requires direct measurement of the corresponding Higgs boson decays, as recently reported by the CMS experiment in the study of Higgs decays to bottom quarks [15] and τ leptons [16]. In this letter we report the combination of these two channels which results, for the first time, in strong evidence for the direct coupling of the 125 GeV Higgs boson to down-type fermions, with an observed significance of 3.8 standard deviations, when 4.4 are expected.

Published in Nature Physics as doi:10.1038/nphys3005.
The CMS and ATLAS experiments at the Large Hadron Collider (LHC) have reported the discovery of a new boson [1–3] with a mass near 125 GeV and with production rates, decay rates, and spin-parity quantum numbers [10–14] compatible with those expected for the standard model Higgs boson [4–9]. In the standard model, the Higgs boson is a spin zero particle predicted to arise from the Higgs field which is responsible for electroweak symmetry breaking [17, 18]. As such, the standard model Higgs boson couples directly to the W and Z bosons, and indirectly to photons. To date, significant signals have been reported in channels where the boson decays to either $\gamma\gamma$, WW, or ZZ boson pairs [11–13] as predicted by the theory. Overall, these results directly demonstrate that the new particle is intimately related to the mechanism of spontaneous electroweak symmetry breaking, whereby the W and Z bosons become massive, and thus it has been identified as a Higgs boson.

The standard model also predicts that the Higgs field couples to fermions through a Yukawa interaction, giving rise to the masses of quarks and leptons. The structure of the Yukawa interaction is such that the coupling strength between the standard model Higgs boson and a fermion is proportional to the mass of that fermion. As the masses of many quarks and leptons are sufficiently well known from experiment, it is possible within the standard model to accurately predict the Higgs boson decay rates to these fermions. The existence of such decays and the corresponding rates remain to be established and measured by experiment. Indirect evidence for the Higgs coupling to the top quark, an up-type quark and heaviest elementary particle known to date, is implied by an overall agreement of the gluon-gluon fusion production channel cross section with the standard model prediction. However, the masses of down-type fermions may come about through different mechanisms in theories beyond the standard model [19]. Therefore, it is imperative to observe the direct decay of this new particle to down-type fermions to firmly establish its nature. As a consequence of the Yukawa interaction discussed above, the most abundant fermionic Higgs boson decays will be to third-generation quarks and leptons, namely the bottom quark and the τ lepton, since the decay of a Higgs boson with a mass around 125 GeV to top quarks is kinematically not allowed. Therefore, the most promising experimental avenue to explore the direct coupling of the standard model Higgs boson to fermions is in the study of the decay to bottom quark-antiquark pairs (denoted as $b\bar{b}$) as well as to tau lepton-antilepton pairs (denoted as $\tau\bar{\tau}$).

Recently, the CMS Collaboration reported on a search for the decays of the new boson to $b\bar{b}$ quark pairs [15] as well as to $\tau\bar{\tau}$ lepton pairs [16] based on data collected in 2011 and 2012. In this letter, we report on the combination of the results from the study of these two decays to down-type fermion-antifermion pairs, performed for the first time at the LHC.

The CMS apparatus comprises several detectors specialised in identifying different types of particles. These detectors are arranged inside and outside a superconducting solenoid of 6 m internal diameter, that provides a magnetic field of 3.8 T. The detector electronics process collision information at a rate of up to 40 MHz, and decide whether or not the crossing of proton beam bunches that took place at the centre of the detector produced proton-proton collisions of sufficient interest. Through a layered decision system, from the 20 MHz of proton bunch crossings, fewer than 1 kHz are saved for further analysis. A detailed description of the full CMS apparatus can be found in Ref. [20]. Data were collected at the LHC which delivered proton-proton collisions at centre-of-mass energies of 7 TeV (2011) and 8 TeV (2012). A total integrated luminosity of 5.1 (4.9) fb$^{-1}$ and 18.9 (19.7) fb$^{-1}$, for the $H \rightarrow b\bar{b}$ ($H \rightarrow \tau\bar{\tau}$) decay, has been analyzed at 7 and 8 TeV, respectively. Each proton bunch crossing gave rise to a large number of simultaneous proton-proton collisions, on average 9 in 2011 and 21 in 2012. Such a large number of overlapping collisions presented exceptional challenges in reconstructing the individual particles produced in the collision where an interesting interaction took place.
Those challenges were successfully met thanks to the CMS tracking system, able to separate collision vertices as close as 0.5 mm along the beam direction.

The Higgs boson lifetime is $\sim 10^{-22}$ seconds. As a consequence, the detectors at the LHC only record the interactions of its decay products. For a Higgs boson mass of 125 GeV, the channels expected to be experimentally accessible include the decays to two photons, two W or Z bosons, a $b\bar{b}$ quark pair, and a $\tau\tau$ lepton pair. The last two are especially challenging since the backgrounds due to standard model processes other than Higgs boson production are overwhelming and the invariant mass distributions of the reconstructed decay products do not produce sharp peaks. Techniques to estimate the background contributions directly from the collision data have been developed to face this challenge. The results are typically expressed in terms of upper limits on the product of the production and decay rates, significances for the background-only hypothesis to describe excesses as large, or larger, than those present in the data, and signal strengths relative to the expectation for the production and decay of the standard model Higgs boson. Both the observations in data and the expectations for the standard model Higgs boson are quoted. The expected quantities are important measures of the sensitivity of a particular search which do not depend on statistical fluctuations affecting actual observations in the data. Thus, they can also be used to compare the sensitivity of different experiments.

The CMS search for a Higgs boson decaying into a $b\bar{b}$ quark pair is reported in Ref. [15]. The inclusive production of Higgs bosons in this decay channel is extremely hard to exploit due to the overwhelming direct production of $b\bar{b}$ quark pairs, as predicted by quantum chromodynamics (QCD). For this reason, present searches target the so-called “VH production” mode in which the Higgs boson is produced in association with a heavy vector boson, V, namely a W or a Z boson, identified via its leptonic decay. Requiring the presence of additional leptons with high transverse momentum provides an effective handle to reduce the QCD background. The Higgs boson candidate is reconstructed from two jets of particles, each of which has been identified as having a high probability of arising from the hadronisation of a bottom quark. The identification is based on properties of hadrons containing bottom quarks, such as their long lifetimes which lead to displaced vertices, or their decay to muons, both producing distinctive signatures that the CMS detector is sensitive to. Owing to the 10% mass resolution of the identified pair of b-quark jets [15], the standard model Higgs boson signal is expected to produce a broad enhancement over the background in the $b\bar{b}$ invariant mass distribution. The result of this analysis shows an excess over the background expectation for Higgs boson mass hypotheses, m_H, in the range of 120–135 GeV, with an observed (expected for the standard model Higgs boson) significance of 2.1 (2.1) standard deviations, σ, at a Higgs boson mass of 125 GeV. Correspondingly, the strength of this excess relative to the expectation for the standard model Higgs boson is 1.0 ± 0.5, where the uncertainty includes the effect of both statistical and systematic sources of uncertainty. A result obtained by the CDF and D0 experiments at the Tevatron proton-antiproton collider, which operated at a centre-of-mass collision energy of 1.96 TeV, initially revealed an excess of $b\bar{b}$ events consistent with the mass of the Higgs boson observed at the LHC, yielding an observed significance of 2.8σ for $m_H = 125$ GeV [21]. In a subsequent analysis the observed significance decreased, with the CDF and D0 experiments reporting an excess $1.59^{+0.69}_{-0.71}$ times the expectation for the standard model Higgs boson with $m_H = 125$ GeV [22]. At the LHC, in previous studies based solely on the 2011 data, the CMS and ATLAS Collaborations have reported 95% confidence level (CL) upper limits of 2.5 to 5.5 times the standard model expectation for a Higgs boson in the 110–130 GeV mass range [23][24].

Evidence for a Higgs boson decaying to a $\tau\tau$ lepton pair is reported by the CMS Collaboration in Ref. [16]. The lifetime of the τ lepton is 2.9×10^{-13} s, short enough that τ leptons decay be-
fore reaching any of the CMS detector systems. The predominant decay modes of τ leptons are to a lighter lepton, i.e. an electron or a muon, and two neutrinos, or to one or more pions and a neutrino \[25\]. In all cases, among the decay products there are neutrinos which cannot be directly detected. However, the presence of neutrinos among the products of an interaction can be inferred from an overall imbalance in the transverse momentum, measured using the visible products of the interaction. The τ-lepton decays involving pions are dominated by the decays to a single charged pion, a charged and a neutral pion, or three charged pions observed as a collimated jet of particles. All of these decay modes can be identified by the CMS detector, providing an important handle to suppress the QCD background. The main irreducible background is due to the copiously produced Z bosons which, like the Higgs boson, can decay to a $\tau\tau$ lepton pair. The mass difference between the Z boson (91.2 GeV) and the region where a Higgs boson was observed (\sim125 GeV), together with a dedicated $\tau\tau$ mass reconstruction technique \[16\], allow for a good separation of the two contributions. The gluon-gluon fusion production, the associated VH production, and the vector-boson fusion production processes are probed through the classification of the events according to kinematic and topological properties of the reconstructed particles. The result of the analysis shows a broad excess over background in the Higgs boson mass range of 115–130 GeV with an observed (expected) significance of 3.2σ (3.7σ) at a Higgs boson mass of 125 GeV. Corresponingly, the signal strength relative to the expectation for the standard model Higgs boson is found to be 0.78 ± 0.27 at the Higgs boson mass of 125 GeV. Earlier, the CDF and D0 experiments at the Tevatron reported, for $m_H = 125$ GeV, an observed (expected) 95% CL upper limit of 7.0 (5.7) times the standard model expectation \[22\]. Using the LHC data taken at 7 TeV, the ATLAS and CMS Collaborations reported, for $m_H = 125$ GeV, observed (expected) 95% CL upper limits of 3.7 (3.5) \[26\] and 4.2 (3.1) \[27\] times the standard model expectation, respectively.

The CMS measurements in the VH \rightarrow $b\bar{b}$ and H \rightarrow $\tau\tau$ searches \[15, 16\] are both consistent, within the precision of the present data, with each other and with the expectation for the production and decay of the standard model Higgs boson. Hence, as a next step, a combination of these two results, requiring the simultaneous analysis of the data selected by the two individual measurements, is performed. Such a simultaneous fit to both datasets accounts for all statistical and systematic uncertainties and their correlations. The statistical methods used for the combination were developed by the ATLAS and CMS Collaborations in the context of the LHC Higgs Combination Group. The presence of the signal is assessed by performing a fit to the observed data and using a test statistic based on the profile likelihood ratio. Systematic uncertainties are incorporated through nuisance parameters and are treated according to the frequentist paradigm. A detailed description of the methodology can be found in Refs. \[28, 29\] and results presented here are obtained using asymptotic formulae \[30\]. To quantify an excess of events over the background expectation, the test statistic is defined as

$$q_0 = -2 \ln \frac{L(\text{obs.} | b, \hat{\theta}_0)}{L(\text{obs.} | \hat{\mu} \cdot s + b, \theta)},$$

where the likelihood, L, appearing in the numerator is that of the background-only hypothesis, s stands for the signal expected under the standard model Higgs boson hypothesis, $\hat{\mu}$ is a signal strength modifier introduced to accommodate deviations from standard model Higgs boson predictions, b stands for background contributions, and θ are nuisance parameters describing the systematic uncertainties. The value $\hat{\theta}_0$ maximises the likelihood in the numerator under the background-only ($\hat{\mu} = 0$) hypothesis, while $\hat{\mu}$ and $\hat{\theta}$ define the point at which the likelihood reaches its global maximum in the signal-plus-background fit. The post-fit model, obtained after the signal-plus-background fit to the data, is used when deriving expected quantities.
The post-fit model corresponds to the parametric bootstrap described in the statistics literature, and includes information gained in the fit regarding the values of all parameters \([31, 32]\). The \(p\)-value for the background-only hypothesis is calculated as the tail probability \(p_0 = P(q_0 \geq q_0^{\text{obs.}} | b)\), where \(q_0^{\text{obs.}}\) is the value of the test statistic observed in data.

While the expected Higgs boson signal in the \(VH \to b\bar{b}\) analysis consists exclusively of Higgs bosons decaying to down-type fermions, that is not the case in some event categories in the \(H \to \tau\tau\) analysis where a sizable contribution from \(H \to WW\) decays is expected. The contribution from \(H \to WW\) decays has kinematic properties sufficiently different from those of \(H \to \tau\tau\) decays such that the two contributions do not overlap. In order to exclusively assess the fermionic decays of a Higgs boson, the expected contribution from \(H \to WW\) decays is considered as a background process. Given the discovery of a Higgs boson with properties as expected in the standard model and a mass close to 125 GeV, the \(pp \to H \to WW\) background contribution is taken from the expectation for the standard model Higgs boson with a mass of 125 GeV, including all associated uncertainties.

Figure 1 shows, as a function of the mass hypothesis for the Higgs boson decaying to fermions, the median expected and the observed \(p\)-value for the background-only hypothesis. The expectation is calculated after having performed the signal-plus-background fit to the observed data. The background-only hypothesis includes the \(pp \to H(125 \text{ GeV}) \to WW\) process for every value of \(m_H\). The \(p\)-value can be expressed in terms of Gaussian tail probabilities and given in units of standard deviation (\(\sigma\)), shown in the right vertical axis of Fig. 1. For all \(m_H\) values tested, the evidence against the background-only hypothesis is found to be 3\(\sigma\) or more, with a maximum of 3.8\(\sigma\) for \(m_H = 125 \text{ GeV}\), corresponding to a \(p\)-value of \(7.3 \times 10^{-5}\).

The study of the fermionic-decay contribution under the \(m_H = 125 \text{ GeV}\) hypothesis is particularly relevant because of the discovery of a Higgs boson with a mass near 125 GeV in the analysis of non-fermionic decays. Since the mass resolution in the \(H \to b\bar{b}\) and \(H \to \tau\tau\) channels is, at best, around 10\%, and the expected yields do not change significantly around \(m_H = 125 \text{ GeV}\), the exact choice of \(m_H\) does not affect the conclusions. A scan of the profile likelihood is performed to estimate the best-fit signal strength relative to the standard model expectation as well as confidence intervals. As described earlier, the \(H \to WW\) contribution is not treated as part of the signal. The result is shown in Fig. 2 from which a combined signal strength of \(0.83 \pm 0.24\) with respect to the standard model expectation is inferred for the production of a Higgs boson decaying to down-type fermions. The statistical component of the uncertainty represents 80\% of the total uncertainty. This result is compatible with the expectation for the standard model Higgs boson, as summarised in Table 1.

In conclusion, the existing CMS searches for a Higgs boson decaying into bottom quarks and \(\tau\) leptons are consistent with the standard model prediction of a Yukawa structure, where the fermionic couplings are proportional to the fermion masses. Combining the results of the CMS measurements in the \(H \to b\bar{b}\) and \(H \to \tau\tau\) decay channels and assuming that the Higgs boson is produced as expected in the standard model, reveals, for the first time, strong evidence for the direct coupling of the 125 GeV Higgs boson to down-type fermions, with an observed (expected) significance of 3.8 (4.4) standard deviations.
Figure 1: The p-value for the background-only hypothesis as a function of the Higgs boson mass hypothesis for both the observed data (obs.) and pseudo-data constructed using the median expectation for the standard model Higgs boson after the signal-plus-background fit to the data (exp.). To help visualize the results, smooth lines connect the points at which the probabilities are evaluated. The $H \to \tau\tau$ analysis results are broken down into a contribution from $VH \to \tau\tau$ categories, which share the production process with the $VH \to bb$ analysis, and another contribution with all other $H \to \tau\tau$ event categories. For every mass hypothesis tested, the non-fermionic decay contributions are taken to be those of the standard model Higgs boson with a mass of 125 GeV. Non-fermionic decays are considered as part of the background and consequently do not contribute to the measurement.

Table 1: Summary of results for the Higgs boson mass hypothesis of 125 GeV. The p-values for the background-only hypothesis are expressed in terms of one-sided Gaussian tail significances and are provided in units of standard deviation (σ). The expected significance is that obtained after the fit of the signal-plus-background hypothesis to the data. Note that the expected significance of 2.1σ quoted in Ref. [15] for the $VH \to bb$ channel was obtained before the fit of the signal-plus-background hypothesis to the data. The best-fit value of the signal strength relative to the expectation from the standard model, μ, summarises the profile likelihood scan of Fig. 2. For simplicity, uncertainties have been symmetrised. The statistical component represents more than 80% of the uncertainties.

Channel $(m_H = 125 \text{ GeV})$	Significance (σ)	Best-fit μ	
	Expected	Observed	
VH $\to bb$	2.3	2.1	1.0 \pm 0.5
$H \to \tau\tau$	3.7	3.2	0.78 \pm 0.27
Combined	4.4	3.8	0.83 \pm 0.24
Figure 2: Scan of the profile likelihood as a function of the signal strength relative to the expectation for the production and decay of a standard model Higgs boson, μ, for $m_H = 125$ GeV. The statistical significance against the background-only ($\mu = 0$) hypothesis is shown for the two channels and their combination. By definition, the expectation for the standard model Higgs boson with a mass of 125 GeV is $\mu = 1$. The non-fermionic decay contributions expected for the standard model Higgs boson with a mass of 125 GeV are considered as part of the background and therefore not scaled with μ.

$\sigma = 125$ GeV

$H \rightarrow \tau \tau$

$VH \rightarrow b\bar{b}$

Combined

$\mu
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8$

$\ln L\Delta 2 -2 4 6 8 10 12 14 16 18 20$

$\sigma 1 \sigma 2 \sigma 3 \sigma 4 \sigma 5 \sigma 2.1 \sigma 3.2 \sigma 3.8$

$m_H = 125$ GeV

CMS $\sqrt{s} = 7$ TeV, $L = 5$ fb$^{-1}$; $\sqrt{s} = 8$ TeV, $L = 19$–20 fb$^{-1}$
Acknowledgements

This letter is dedicated to our dear colleague and friend Professor Lorenzo Foà who passed away on January 13, 2014. Lorenzo’s contribution to CMS was unique and left an indelible impact on the experiment in all its phases: Lorenzo was the CMS principal referee in the CERN LHC Committee during the approval process, initiated the participation of many groups during the formation of the CMS Collaboration, provided prescient advice and guidance during his period as CERN Director of Research, was Chair of the CMS Collaboration Board during the critical phase of construction, and was the first Chair of the Thesis Award Committee enabling him to stay close to young physicists.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[1] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

[2] CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp collisions at $\sqrt{s} = 7$ and 8 TeV”, JHEP 06 (2013) 081, doi:10.1007/JHEP06(2013)081, arXiv:1303.4571.

[3] ATLAS Collaboration, “Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.

[4] F. Englert and R. Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Rev. Lett. 13 (1964) 321, doi:10.1103/PhysRevLett.13.321.

[5] P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, Phys. Lett. 12 (1964) 132, doi:10.1016/0031-9163(64)91136-9.

[6] P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, Phys. Rev. Lett. 13 (1964) 508, doi:10.1103/PhysRevLett.13.508.
[7] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global conservation laws and massless particles”, *Phys. Rev. Lett.* 13 (1964) 585, [doi:10.1103/PhysRevLett.13.585](https://doi.org/10.1103/PhysRevLett.13.585).

[8] P. W. Higgs, “Spontaneous symmetry breakdown without massless bosons”, *Phys. Rev.* 145 (1966) 1156, [doi:10.1103/PhysRev.145.1156](https://doi.org/10.1103/PhysRev.145.1156).

[9] T. W. B. Kibble, “Symmetry breaking in non-Abelian gauge theories”, *Phys. Rev.* 155 (1967) 1554, [doi:10.1103/PhysRev.155.1554](https://doi.org/10.1103/PhysRev.155.1554).

[10] CMS Collaboration, “Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs”, *Phys. Rev. Lett.* 110 (2013) 081803, [doi:10.1103/PhysRevLett.110.081803](https://doi.org/10.1103/PhysRevLett.110.081803), arXiv:1212.6639.

[11] CMS Collaboration, “Measurement of the properties of a Higgs boson in the four-lepton final state”, (2013). arXiv:1312.5353 Accepted for publication in Phys. Rev. D.

[12] ATLAS Collaboration, “Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC”, *Phys. Rev. Lett.* 726 (2013) 88, [doi:10.1016/j.physletb.2013.08.010](https://doi.org/10.1016/j.physletb.2013.08.010), arXiv:1307.1427.

[13] CMS Collaboration, “Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states”, *JHEP* 01 (2014) 096, [doi:10.1007/JHEP01(2014)096](https://doi.org/10.1007/JHEP01(2014)096), arXiv:1312.1129.

[14] ATLAS Collaboration, “Evidence for the spin-0 nature of the Higgs boson using ATLAS data”, *Phys. Lett. B* 726 (2013) 120, [doi:10.1016/j.physletb.2013.08.026](https://doi.org/10.1016/j.physletb.2013.08.026), arXiv:1307.1432.

[15] CMS Collaboration, “Search for the standard model Higgs boson produced in association with a W or a Z boson and decaying to bottom quarks”, *Phys. Rev. D* 89 (2014) 012003, [doi:10.1103/PhysRevD.89.012003](https://doi.org/10.1103/PhysRevD.89.012003), arXiv:1310.3687.

[16] CMS Collaboration, “Evidence for the 125 GeV Higgs boson decaying to a pair of \(\tau \) leptons”, (2014). arXiv:1401.5041 Submitted for publication in JHEP.

[17] S. L. Glashow, “Partial-symmetries of weak interactions”, *Nucl. Phys.* 22 (1961) 579, [doi:10.1016/0029-5582(61)90469-2](https://doi.org/10.1016/0029-5582(61)90469-2).

[18] S. Weinberg, “A model of leptons”, *Phys. Rev. Lett.* 19 (1967) 1264, [doi:10.1103/PhysRevLett.19.1264](https://doi.org/10.1103/PhysRevLett.19.1264).

[19] Particle Data Group, J. Beringer et al., “Review of Particle Physics”, *Phys. Rev. D* 86 (2012) 010001, [doi:10.1103/PhysRevD.86.010001](https://doi.org/10.1103/PhysRevD.86.010001). See the “Status of Higgs boson physics” in the 2013 update for the 2014 edition available online.

[20] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* 3 (2008) S08004, [doi:10.1088/1748-0221/3/08/S08004](https://doi.org/10.1088/1748-0221/3/08/S08004).

[21] CDF and D0 Collaborations, “Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron”, *Phys. Rev. Lett.* 109 (2012) 071804, [doi:10.1103/PhysRevLett.109.071804](https://doi.org/10.1103/PhysRevLett.109.071804), arXiv:1207.6436.

[22] CDF and D0 Collaborations, “Higgs boson studies at the Tevatron”, *Phys. Rev. D* 88 (2013) 052014, [doi:10.1103/PhysRevD.88.052014](https://doi.org/10.1103/PhysRevD.88.052014), arXiv:1303.6346.
[23] CMS Collaboration, “Search for the standard model Higgs boson decaying to bottom quarks in pp collisions at $\sqrt{s} = 7$ TeV”, *Phys. Lett. B* **710** (2012) 284, doi:10.1016/j.physletb.2012.02.085, arXiv:1202.4195.

[24] ATLAS Collaboration, “Search for the standard model Higgs boson produced in association with a vector boson and decaying to a b-quark pair with the ATLAS detector”, *Phys. Lett. B* **718** (2012) 369, doi:10.1016/j.physletb.2012.10.061, arXiv:1207.0210.

[25] Particle Data Group, J. Beringer et al., “Review of Particle Physics”, *Phys. Rev. D* **86** (2012) 010001, doi:10.1103/PhysRevD.86.010001.

[26] ATLAS Collaboration, “Search for the standard model Higgs boson in the $H \rightarrow \tau^{+}\tau^{-}$ decay mode in $\sqrt{s} = 7$ TeV pp collisions with ATLAS”, *JHEP* **09** (2012) 070, doi:10.1007/JHEP09(2012)070, arXiv:1206.5971.

[27] CMS Collaboration, “Search for neutral Higgs bosons decaying to τ pairs in pp collisions at $\sqrt{s} = 7$ TeV”, *Phys. Lett. B* **713** (2012) 68, doi:10.1016/j.physletb.2012.05.028, arXiv:1202.4083.

[28] ATLAS and CMS Collaborations, LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005, 2011.

[29] CMS Collaboration, “Combined results of searches for the standard model Higgs boson in pp collisions at $\sqrt{s} = 7$ TeV”, *Phys. Lett. B* **710** (2012) 26, doi:10.1016/j.physletb.2012.02.064, arXiv:1202.1488.

[30] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, *Eur. Phys. J. C* **71** (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727.

[31] B. Efron, “Bootstrap methods: another look at the jackknife”, *Ann. Statist.* **7** (1979) 1, doi:10.1214/aos/1176344552. See “Remark K”.

[32] S. M. S. Lee and G. A. Young, “Parametric bootstrapping with nuisance parameters”, *Statist. Probab. Lett.* **71** (2005) 143, doi:10.1016/j.spl.2004.10.026.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, R. Frühwirth, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler, W. Kiesenhofer, V. Knünz, M. Krammer, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady, B. Rahbaran, H. Rohringer, R. Schönbeck, J. Strauss, A. Taurok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, S. Ochesanu, B. Roland, R. Rougny, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, N. Heracleous, A. Kalogeropoulos, J. Keaveney, T.J. Kim, S. Lowette, M. Maes, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
C. Caillol, B. Clerbaux, G. De Lentdecker, L. Favart, A.P.R. Gay, A. Léonard, P.E. Marage, A. Mohammadi, L. Perniè, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Cruyc, S. Dildick, G. Garcia, B. Klein, J. Lellouch, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, S. Walsh, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Baségmez, C. Beluffi, V. Bruno, R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco, J. Hollar, P. Jez, M. Komm, V. Lemaître, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, A. Popov, L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, J. Chinellato, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardes, F.A. Dias, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, R. Du, C.H. Jiang, D. Liang, S. Liang, X. Meng, R. Plestina, J. Tao, X. Wang, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgammal, A. Ellithi Kamel, M.A. Mahmoud, A. Mahrous, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Erola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, A. Nayak, J. Rander, A. Rosowsky, M. Titov

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, C. Charlot, N. Daci, T. Dahms, M. Dalchenko, L. Dobrzynski,
University of Hamburg, Hamburg, Germany
M. Aldaya Martin, V. Blobel, M. Centis Vignali, H. Enderle, J. Erfle, E. Garutti, K. Goebel,
M. Göerner, M. Gosselink, J. Haller, R.S. Höing, H. Kirschenmann, R. Klanner, R. Kogler,
J. Lange, T. Lapsien, T. Lenz, I. Marchesini, J. Ott, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander,
H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, J. Sibille, V. Sola, H. Stadie,
G. Steinbrück, D. Troendle, E. Usai, L. Vanelderen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm,
M. Feindt, M. Guthoff², F. Hartmann², T. Hauth², H. Held, K.H. Hoffmann, U. Husemann,
I. Katkov³, A. Kornmayer², E. Kuznetsova, P. Lobelle Pardo, D. Martschei, M.U. Mozer,
Th. Müller, M. Niegel, A. Nürnberg, O. Oberst, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker,
F. Schilling, G. Schott, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler,
R. Wolf, M. Zeise

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi,
Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, S. Kesisoglou, A. Kyriakis,
D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece
L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou², G. Flouris, C. Foudas², J. Jones, P. Kokkas, N. Manthos,
I. Papadopoulos, E. Paradas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencez², C. Hajdu, P. Hidas, D. Horvath¹⁹, F. Sikler, V. Veszpremi, G. Vesztergombi²⁰,
A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M. Mittal, N. Nishu, A. Sharma,
J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra,
M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana,
A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan, A.P. Singh

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty², L.M. Pant, P. Shukla, A. Topkar
INFIN Sezione di Padova a, Università di Padova b, Università di Trento (Trento) c, Padova, Italy
P. Azzia, N. Bacchettaa, D. Biselloa,b, A. Brancaa,b, R. Carlina,b, P. Checchiaa, T. Dorigoa, M. Galantia,b,2, F. Gasparinia,b, U. Gasparinia,b, P. Giubilatoa,b, F. Gonellaa, A. Gozzelinoa, K. Kanishcheva,c, S. Lacapraa, I. Lazzizzeraa,c, M. Margonia,b, A.T. Meneguzzoa, F. Montecassianoa, J. Pazzinia,b, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b, S. Vaniinia,b, P. Zottoa,b, A. Zumerlea,b

INFIN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Salvinia, P. Vituloa,b

INFIN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
M. Biasinia,b, G.M. Bileia, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, F. Romeoa,b, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b

INFIN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsovaa,28, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia, M.A. Cioccia,28, R. Dell’Orsoa, S. Donatoa,c, F. Fioria,c, L. Foàa,c, A. Giassia, M.T. Grippoa,28, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martinia,b, A. Messineoa,b, C.S. Moona,29, F. Pallaa,b, A. Rizzia,b, A. Savoy-Navarroa,30, A.T. Serbana, P. Spagnoloa, P. Squillaciotia,28, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia, C. Vernieria,c

INFIN Sezione di Roma a, Università di Roma b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b, M. Diemoza, M. Grassia,b, C. Jordaa, E. Longoa,b, F. Margarolia,b, P. Meridiania, F. Michelia,b, S. Nourbakhsha,b, G. Orsinia,b, R. Paramattia, S. Rahatloua,b, C. Riccardia, L. Sofia,b, P. Traczyka,b

INFIN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, R. Bellana,b, C. Biinoa, N. Cartigliaa, S. Casassoa,b, M. Costaa,b, A. Deganoa,b, N. Demariaa, L. Ficinoa,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha, M.M. Obertinoa,c, G. Ortonaa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia,2, G.L. Pinna Angionia,2, A. Potenzaa,b, A. Romeroa,b, M. Ruspinia,c, R. Sacchia,b, A. Solanoa,b, A. Stolanoa, U. Tamponia

INFIN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, C. Licataa,b, M. Maronea,b, D. Montaninoa,b, A. Schizziia,b, T. Umera,b, A. Zanettia

Kangwon National University, Chuncheon, Korea
S. Chang, T.Y. Kim, S.K. Nam

Kyoungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, J.E. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu
Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, M. Perfilov, S. Petrushanko, V. Savrin

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, M. Ekmedzic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtiis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, C. Bernet, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, S. Colafranceschi, M. D’Alfonso, D. d’Enterría, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, M. Giffels, D. Gigi, K. Gill, M. Girone, M. Giunta, F. Glege, R. Gomez-Reino Garrido, S. Gowdy, R. Guida, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, E. Karavakis, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, P. Musella,
L. Orsini, E. Palencia Cortezon, L. Pape, E. Perez, L. Perrozzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, M. Pimiä, D. Piparo, M. Plagge, A. Racz, W. Reece, G. Rolandi, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwick, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas, J. Steggermann, B. Stieger, M. Stoye, D. Treille, A. Tsirou, G.I. Veres, J.R. Vlimant, H.K. Wöhrli, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, W. Lustermann, B. Mangano, A.C. Marini, P. Martinez Ruiz del Arbol, D. Meister, N. Mohr, C. Nägeli, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, M. Peruzzi, M. Quittnat, L. Rebane, F.J. Ronga, M. Rossini, A. Starodumov, M. Takahashi, K. Theofilatos, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland
C. Amsler, M.F. Canelli, V. Chiochia, A. De Cosa, A. Hinzmann, T. Hreus, M. Ivova Rikova, B. Kilminster, B. Millan Mejias, J. Ngadiuba, P. Robmann, H. Snoek, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, S.W. Li, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, Y.F. Liu, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, J.G. Shiu, Y.M. Tseng, M. Wang, R. Wilken

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturan, A. Polatoz, K. Sogut, D. Sunar Cerci, B. Tali, H. Topakli, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, G. Karapinar, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya, S. Ozkorucuklu

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar, E. Barlas, K. Cankocak, Y.O. Gündaydin, F.I. Vardarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold, S. Paramesvaran, A. Poll, S. Senkin, V.J. Smith, T. Williams
Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Ilic, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp, A. Sparrow, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lazic, C. Richardson, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA
J. Alimena, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, A. Kopecky, R. Lander, T. Miceli, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, B. Rutherford, M. Searle, S. Shalhout, J. Smith, M. Squires, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
V. Andreev, D. Cline, R. Cousins, S. Erhan, P. Everaerts, C. Farrell, M. Felcini, J. Hauser, M. Ignatenko, C. Jarvis, G. Rakness, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
J. Babb, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, P. Jandir, F. Lacroix, H. Liu, O.R. Long, A. Luthra, M. Malberti, H. Nguyen, A. Shrinivas, J. Sturdy, S. Sumowidagdo, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, D. Evans, A. Holzner, R. Kelley, D. Kovalskyi, M. Lebourgeois, J. Letts, I. Macneill, S. Padhi, C. Palmer, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech, F. Würthwein, A. Yagil, J. Yoo
University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, J. Incandela, C. Justus, R. Magaña Villalba, N. Mccoll, V. Pavlunin, J. Richman, R. Rossin, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, D. Kcira, A. Mott, H.B. Newman, C. Pena, C. Rogan, M. Spiropulu, V. Timciuc, R. Wilkinson, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, J. Chu, N. Eggert, L.K. Gibbons, W. Hopkins, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, V. Chetluru, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, D. Hare, R.M. Harris, J. Hirschner, B. Hooberman, S. Jindariani, M. Johnson, U. Joishi, K. Kaadze, B. Klima, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, M. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko33, S. Nahm, C. Newman-Holmes, V. O’Dell, O. Prokofyev, N. Ratnikova, E. Sexton-Kennedy, S. Sharma, A. Soha, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Updegger, E.W. Vaandering, R. Vidal, A. Whitbeck, J. Whitmore, W. Wu, F. Yang, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, T. Cheng, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic56, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska, N. Shchitlade, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaulnrey, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, V.E. Bazterra, R.R. Betts, I. Bucinskaite, R. Cavanaugh,
O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, P. Kurt, D.H. Moon, C. O’Brien, C. Silkworth, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, K. Dilsiz, F. Duru, M. Haytmyradov, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, R. Rahmat, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic, C. Martin, M. Swartz

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, J. Gray, R.P. Kenny III, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA
A.F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, G. Bauer, W. Busza, I.A. Cali, M. Chan, L. Di Matteo, V. Dutta, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, T. Ma, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephens, F. Stöckli, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch, M. Yang, A.S. Yoon, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. De Benedetti, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, L.M. Cremaldi, R. Kroeger, S. Oliveros, L. Perera, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, A. Massironi, D. Nash, T. Orimoto, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, K.A. Hahn, A. Kubik, L. Lusito, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won
University of Notre Dame, Notre Dame, USA
D. Berry, A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, J. Kolb, K. Lannon, W. Luo, S. Lynch, N. Marinelli, D.M. Morse, T. Pearson, M. Planer, R. Ruchti, J. Slaunwhite, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, C. Vuosalo, B.L. Winer, H. Wolfe, H.W. Wulsin

Princeton University, Princeton, USA
E. Berry, P. Elmer, V. Halyo, P. Hebda, A. Hunt, P. Jindal, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, A. Raval, H. Saka, D. Stickland, C. Tully, J.S. Werner, S.C. Zenz, A. Zuranski

University of Puerto Rico, Mayaguez, USA
E. Brownson, A. Lopez, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
E. Alagoz, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M.K. Jha, M. Jones, K. Jung, M. Kress, N. Leonardo, D. Lopes Pegna, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, B.C. Radburn-Smith, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
N. Parashar

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, D.C. Miner, G. Petrillo, D. Vishnevskiy, M. Ziebinski

The Rockefeller University, New York, USA
A. Bhatti, R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, S. Malik, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, J. Robles, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, Z.C. Yang, A. York

Texas A&M University, College Station, USA
O. Bouhali, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Khotilovich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Rose, A. Safonov, T. Sakuma, I. Suarez, A. Tatarinov, D. Toback

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev
Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane

University of Wisconsin, Madison, USA
D.A. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, S. Duric, E. Friis, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, C. Lazaridis, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W.H. Smith, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at California Institute of Technology, Pasadena, USA
8: Also at Laboratoire Leprince-Ringuet, École Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Suez Canal University, Suez, Egypt
10: Also at British University in Egypt, Cairo, Egypt
11: Also at Cairo University, Cairo, Egypt
12: Also at Fayoum University, El-Fayoum, Egypt
13: Also at Helwan University, Cairo, Egypt
14: Now at Ain Shams University, Cairo, Egypt
15: Also at Université de Haute Alsace, Mulhouse, France
16: Also at Joint Institute for Nuclear Research, Dubna, Russia
17: Also at Brandenburg University of Technology, Cottbus, Germany
18: Also at The University of Kansas, Lawrence, USA
19: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
20: Also at Eötvös Loránd University, Budapest, Hungary
21: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
22: Now at King Abdulaziz University, Jeddah, Saudi Arabia
23: Also at University of Visva-Bharati, Santiniketan, India
24: Also at University of Ruhuna, Matara, Sri Lanka
25: Also at Isfahan University of Technology, Isfahan, Iran
26: Also at Sharif University of Technology, Tehran, Iran
27: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
28: Also at Università degli Studi di Siena, Siena, Italy
29: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
30: Also at Purdue University, West Lafayette, USA
31: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
32: Also at National Centre for Nuclear Research, Swierk, Poland
33: Also at Institute for Nuclear Research, Moscow, Russia
34: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
35: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
36: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
37: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
38: Also at University of Athens, Athens, Greece
39: Also at Paul Scherrer Institut, Villigen, Switzerland
40: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
41: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
42: Also at Gaziosmanpasa University, Tokat, Turkey
43: Also at Adiyaman University, Adiyaman, Turkey
44: Also at Cag University, Mersin, Turkey
45: Also at Mersin University, Mersin, Turkey
46: Also at Izmir Institute of Technology, Izmir, Turkey
47: Also at Ozyegin University, Istanbul, Turkey
48: Also at Kafkas University, Kars, Turkey
49: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
50: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
51: Also at Kahramanmaras Sütçü Imam University, Kahramanmaras, Turkey
52: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
53: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
54: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
55: Also at Utah Valley University, Orem, USA
56: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
57: Also at Argonne National Laboratory, Argonne, USA
58: Also at Erzincan University, Erzincan, Turkey
59: Also at Yildiz Technical University, Istanbul, Turkey
60: Also at Texas A&M University at Qatar, Doha, Qatar
61: Also at Kyungpook National University, Daegu, Korea