Transfer Potential of Plasmids Conferring Extended-Spectrum-Cephalosporin Resistance in Escherichia coli from Poultry

Solveig Sølverød Mo, a Marianne Sunde, a,b Hanna Karin Ilag, c Solveig Langsrud, d Even Heird d

Department of Diagnostic Services, Norwegian Veterinary Institute, Oslo, Norway; Department of Bacteriology and Immunology, Norwegian Institute of Public Health, Oslo, Norway; Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway; Department of Food Safety and Quality, Nofima, The Norwegian Institute for Food, Fishery and Aquaculture Research, Ås, Norway

ABSTRACT Escherichia coli strains resistant to extended-spectrum cephalosporins (ESC) are widely distributed in Norwegian broiler production, and the majority harbor transferable IncK or IncI1 plasmids carrying blaCMY-2. Persistent occurrence in broiler farms may occur through the survival of ESC-resistant E. coli strains in the farm environment, or by transfer and maintenance of resistance plasmids within a population of environmental bacteria with high survival abilities. The aim of this study was to determine the transferability of two successful blaCMY-2-carrying plasmids belonging to the incompatibility groups IncK and IncI1 into E. coli and Serratia species recipients. Initially, conjugal plasmid transfer from two E. coli donors to potential recipients was tested in an agar assay. Conjugation was further investigated for selected mating pairs in surface and planktonic assays at temperatures from 12°C to 37°C. Transfer of plasmids was observed on agar, in broth, and in biofilm at temperatures down to 25°C. The IncK plasmid was able to transfer into Serratia marcescens, and transconjugants were able to act as secondary plasmid donors to different E. coli and Serratia species recipients. All transconjugants displayed an AmpC phenotype corresponding to the acquisition of blaCMY-2. In summary, the results indicate that the IncK plasmid may transfer between E. coli and Serratia spp. under conditions relevant for broiler production.

IMPORTANCE Certain blaCMY-2-carrying plasmids are successful and disseminated in European broiler production. Traditionally, plasmid transferability has been studied under conditions that are optimal for bacterial growth. Plasmid transfer has previously been reported between E. coli bacteria in biofilms at 37°C and in broth at temperatures ranging from 8 to 37°C. However, intergeneric transfer of blaCMY-2-carrying plasmids from E. coli to environmental bacteria in the food-processing chain has not been previously studied. We demonstrate that blaCMY-2-carrying plasmids are capable of conjugal transfer between different poultry-associated bacterial genera under conditions relevant for broiler production. Transfer to Serratia spp. and to hosts with good biofilm-forming abilities and with the potential to act as secondary plasmid donors to new hosts might contribute to the persistence of these resistance plasmids. These results contribute to increased knowledge of factors affecting the persistence of ESC resistance in broiler production and can provide a basis for improvement of routines and preventive measures.

KEYWORDS AmpC, biofilms, cephalosporin, conjugation, plasmid-mediated resistance

Received 28 March 2017 Accepted 6 April 2017 Accepted manuscript posted online 14 April 2017

Citation Mo SS, Sunde M, Ilag HK, Langsrud S, Heir E. 2017. Transfer potential of plasmids conferring extended-spectrum-cephalosporin resistance in Escherichia coli from poultry. Appl Environ Microbiol 83:e00654-17. https://doi.org/10.1128/AEM.00654-17.

Editor Donald W. Schaffner, Rutgers, The State University of New Jersey

Copyright © 2017 Mo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Solveig Sølverød Mo, solveig.mo@vetinst.no.

* Present address: Hanna Karin Ilag, Division for Medical Microbiology, Ullevål University Hospital, Oslo, Norway.

June 2017 Volume 83 Issue 12 e00654-17

AeM.asm.org
During the course of the last decade, an increasing occurrence of *Escherichia coli* strains resistant to extended-spectrum cephalosporins (ESC) has been observed in both human and veterinary medicine (1, 2). This is concerning, as ESC are considered critically important for the treatment of human infections (3), and a reduced number of antimicrobials are available for treatment of infections caused by ESC-resistant bacteria (4). Recently, the World Health Organization included ESC-resistant *Enterobacteriaceae* on the top of their list of bacteria for which new antimicrobials are urgently required (5). Broilers and broiler products have been reported to be highly associated with ESC-resistant *E. coli* strains worldwide (1, 6). Furthermore, they have been suggested as a potential source from which humans can acquire such bacteria and/or their resistance plasmids (6–9). The Norwegian monitoring program for antimicrobial resistance in the veterinary sector (NORM-VET) has documented that ESC-resistant *E. coli* strains are widely distributed in Norwegian broiler production. All isolates have displayed an AmpC phenotype, mainly mediated by plasmids carrying *bla*CMY-2 (10–13).

Conjugative plasmids of incompatibility (Inc) groups K and I1 carrying *bla*CMY-2 have been associated with ESC-resistant *E. coli* strains from the broiler production chain in several European countries, including Norway (14–19). Also, highly similar IncK plasmids have been detected in *E. coli* strains of different multilocus sequence types (STs) (19). A high degree of similarity has been identified between IncK (19, 20) and IncI1 (S. S. Mo and M. Sunde, unpublished data) plasmids with *bla*CMY-2 isolated from broiler production in Norway and other European countries (20, 21) (Fig. S1 and S2 in the supplemental material). The findings suggest that these plasmids may be common and successful and represent plasmids endemic in European broiler production.

Import of breeding animals has been suggested as the probable source of ESC-resistant *E. coli* into Norwegian broiler production (22, 23), as the use of antimicrobial agents is almost absent (24–26). The number of imported batches of breeding animals positive for ESC-resistant *E. coli* is currently low (24, 25). Also, it has been suggested that ESC-resistant *E. coli* persists on broiler farms, even between production cycles (27, 28), and that the epidemiology is also affected by the transfer of ESC resistance plasmids between bacteria (29).

In broiler production, bacteria are likely to be present in suspension, on surfaces, and occasionally in biofilms. Bacteria in biofilms will form multispecies or multigenus consortia where bacterial interaction can occur under different environmental conditions and temperatures (30). Both conjugative transfer of plasmids and transduction of bacteriophages between bacteria in biofilm have been reported (31, 32). In general, conjugal transfer of plasmids has often been studied under optimal growth conditions not reflecting the conditions encountered in food production. We performed conjugation experiments on agar, in broth, and in biofilm to mimic bacterial growth on surfaces, in suspension, and in biofilm. Furthermore, all experiments were performed at three different temperatures, mimicking different parts of broiler production in addition to optimal growth conditions. *E. coli* strains harboring successful plasmids with *bla*CMY-2 at several levels of the broiler production pyramid may facilitate horizontal spread and dissemination to other bacterial hosts in the environment, including hosts with good survival abilities. This may also play an important role in the epidemiology and maintenance of ESC resistance in broiler production. *Serratia* spp. are environmental bacteria commonly occurring in broiler production (33–36). In addition, they can have the ability to survive and multiply in the presence of disinfectants (37) and to be good biofilm producers (38–40). We therefore hypothesized that *Serratia* spp. may act as a reservoir for and secondary donor of ESC resistance plasmids. The aim of this study was to determine the transferability of two well-characterized *bla*CMY-2-carrying plasmids belonging to the IncK and IncI1 incompatibility groups. Transfer experiments were performed with other *E. coli* and *Serratia* spp. as recipient strains at different temperatures and under both planktonic and biofilm modes of growth, reflecting conditions relevant for the broiler production chain.
RESULTS

In the initial conjugation experiments on agar, transfer of pNV1292 carrying IncK (pNV1292/IncK) from \textit{E. coli} 1292 was observed to seven out of 14 \textit{E. coli} recipients and four out of 18 \textit{Serratia} species recipients (Table 1). In addition, the plasmid was transferred from \textit{S. marcescens} and \textit{Serratia proteamaculans} transconjugants to the same seven \textit{E. coli} recipients. Furthermore, pNV1292/IncK was transferred from \textit{S. marcescens} transconjugants to an \textit{S. proteamaculans} recipient and from the \textit{S. proteamaculans} transconjugant to an \textit{S. marcescens} recipient. The pNV2798/IncI1 plasmid from \textit{E. coli} 2798 was transferred to 12 out of 14 \textit{E. coli} recipients. No transfer of pNV2798/IncI1 to \textit{Serratia} species recipients was observed in the initial conjugation experiment. In addition, we were unable to transform the pNV2798/IncI1 plasmid into \textit{Serratia} spp. by electroporation in subsequent control experiments. The pNV2798/IncI1 plasmid was transformed into electrocompetent \textit{E. coli} DH5\textalpha, and the pNV1292/IncK plasmid was transformed into all three electrocompetent recipients (\textit{S. marcescens} 3306 and 3307 and DH5\textalpha), confirming that the method used was reliable.

PCR screening for the IncK and IncI1 replicons showed that none of the recipient strains carried IncK or IncI1 plasmids prior to the experiments.

Seventeen mating pairs were selected and subjected to extended conjugation experiments under various temperatures and modes of bacterial growth (Tables 2 and 3). In the extended conjugation experiments, plasmid transfer was observed on agar, in

TABLE 1 Overview of results from initial conjugation experiments on agar

Recipient	\textit{E. coli} 1292, IncK	\textit{E. coli} 2798, IncI1	\textit{S. marcescens} 3306 transconjugant, IncK	\textit{S. marcescens} 3307 transconjugant, IncK	\textit{S. proteamaculans} 5685 transconjugant, IncK
\textit{E. coli} 1553	–	–	NP	NP	NP
\textit{E. coli} 6154	–	+	NP	NP	NP
\textit{E. coli} 706	–	+	NP	NP	NP
\textit{E. coli} 7079	–	–	NP	NP	NP
\textit{E. coli} 3460-5	–	+	NP	NP	NP
\textit{E. coli} 6927-5	+	+	+	+	+
\textit{E. coli} 1268	+	+	–	+	+
\textit{E. coli} 1450	+	+	–	+	+
\textit{E. coli} 1667	+	+	–	+	+
\textit{E. coli} 2362	–	+	NP	NP	NP
\textit{E. coli} 4922	+	+	+	+	+
\textit{E. coli} 5792	+	+	+	+	+
\textit{E. coli} 3064-2	+	+	+	+	+
\textit{E. coli} 4064-1	–	+	NP	NP	NP
\textit{S. marcescens} 2336	–	–	NP	NP	–
\textit{S. marcescens} 3297	–	–	NP	NP	NP
\textit{S. marcescens} 3298	–	–	NP	NP	–
\textit{S. marcescens} 3299	–	–	NP	NP	–
\textit{S. marcescens} 3300	–	–	NP	NP	–
\textit{S. marcescens} 3301	–	–	NP	NP	–
\textit{S. marcescens} 3302	–	–	NP	NP	–
\textit{S. marcescens} 3303	–	–	NP	NP	–
\textit{S. marcescens} 3304	–	–	NP	NP	–
\textit{S. marcescens} 3305	–	–	NP	NP	–
\textit{S. marcescens} 3306	+	–	NP	NP	–
\textit{S. marcescens} 3307	+	–	NP	NP	+
\textit{S. marcescens} 3308	–	–	NP	NP	–
\textit{S. marcescens} 3309	+	–	+	+	–
\textit{Serratia} sp. 3612	+	–	NP	NP	NP
\textit{S. liquefaciens} 5676	–	–	–	–	–
\textit{S. proteamaculans} 5682	–	–	NP	NP	NP
\textit{S. proteamaculans} 5685	+	+	+	+	NP

\(\text{+}, \text{ confirmed plasmid transfer; –, no observed plasmid transfer; NP, not performed.}\)

(Parts of the results of this study were presented at the 26th ECCMID conference in Amsterdam, The Netherlands, 9 to 12 April 2016.)
When transfer of plasmids occurred in the biofilm experiments, the transfer frequencies of the pNVI1292/IncK plasmid \((T/R) \) ranged from \(5 \times 10^{-7} \) to \(8 \times 10^{-7} \). The highest frequencies were observed between \(E. coli \)-\(E. coli \) mating pairs, ranging from \(3 \times 10^{-6} \) to \(8 \times 10^{-2} \) (Table 3). Furthermore, the pNVI1292/IncK plasmid was transferred from \(E. coli \) to \(S. marcescens \), from the \(S. marcescens \) transconjugant to an \(E. coli \) recipient, and from the \(S. marcescens \) transconjugant to an \(S. proteamaculans \) recipient in biofilm. The confirmed routes for horizontal transfer of the pNVI1292/IncK plasmid in biofilm are illustrated in Fig. 1. The transfer frequencies observed for the pNVI2798/IncI1 plasmid ranged from \(4 \times 10^{-5} \) to \(2 \times 10^{-2} \). The pNVI2798/IncI1 plasmid was not subjected to conjugation experiments with \(S. marcescens \) as a recipient in biofilm on steel coupons, as no transfer was observed after the initial conjugation experiments on agar. In general, the transfer frequencies were higher at 30°C/37°C than at 25°C.

None of the recipient strains were resistant to any beta-lactam antimicrobials prior to the conjugation experiments. All transconjugants displayed a beta-lactam resistance profile corresponding to an AmpC phenotype after acquisition of either the pNVI1292/IncK or pNVI2798/IncI1 plasmid (Table 4). No additional determinants conferring resistance to the antimicrobials tested were transferred with the plasmids (Table S2).

DISCUSSION

Conjugative IncK and IncI1 plasmids harboring \(\text{bla}_{\text{CMY-2}} \) are commonly occurring in ESC-resistant \(E. coli \) strains in European broiler production (14–19). To our knowledge, this is the first description of the transfer of these plasmids between \(E. coli \) and \(Serratia \) spp. under conditions relevant in the broiler production chain. In food-processing environments, bacteria will be present and grow on the surfaces of equipment and

TABLE 2 Overview of results from extended conjugation experiments on agar and in broth

Mating pair (donor→recipient)	Mating time (h)	25°C	30/37°C		
		Agar	Brothc	Agar	Brothc
\(E. coli \) 1292(IncK)→\(E. coli \) 6927-5	4	NA	+	+	
	24	+	+	+	
	48	+	+	+	
\(E. coli \) 2798(IncI1)→\(E. coli \) 6927-5	4	NA	NA	+	
	24	–	–	–	
	48	–	–	–	
\(E. coli \) 1292(IncK)→\(S. marcescens \) 3306	4	NA	NA	–	
	24	+	–	–	
	48	–	–	–	
\(E. coli \) 1292(IncK)→\(S. marcescens \) 3307	4	NA	NA	+	
	24	+	+	+	
	48	+	+	+	
\(S. marcescens \) 3306 transconjugant (IncK)→\(E. coli \) 6927-5	4	NA	NA	+	
	24	+	+	+	
	48	+	+	+	
\(S. marcescens \) 3307 transconjugant (IncK)→\(E. coli \) 6927-5	4	NA	NA	+	
	24	+	+	+	
	48	+	+	+	
\(S. marcescens \) 3307 transconjugant (IncK)→\(S. proteamaculans \) 5685	4	NA	NA	+	
	24	–	–	+	
	48	–	+	+	

\(^a \), confirmed transfer of plasmid carrying \(\text{bla}_{\text{CMY-2}} \); \(^b \), no observed transfer of \(\text{bla}_{\text{CMY-2}} \)-carrying plasmid; NA, not applicable.

\(^c \) 30°C was applied for all matings involving \(Serratia \) spp., while 37°C was applied for matings involving \(E. coli \) only.

\(^d \) Transconjugant detection limit, 10 CFU/ml.
environments where biofilm formation and interaction between organisms are likely to occur. Likewise, the present bacteria will also be suspended in liquids, both during process and postprocess cleaning and disinfection. Conjugation experiments were therefore performed on surfaces, in biofilms on stainless steel, and in suspension at

![Diagram](https://via.placeholder.com/150)

FIG 1 Schematic overview of confirmed routes of conjugative transfer in biofilm for the pNVI1292/IncK plasmid harboring *bla*CMY-2 commonly found in *E. coli* strains resistant to extended-spectrum cephalosporins isolated from retail chicken meat. The red circle symbolizes the IncK plasmid in the initial *E. coli* host. The arrows indicate the routes of transfer confirmed in this study.

TABLE 3 Overview of maximum transfer frequencies for different mating pairs and incubation times for conjugation experiments in biofilm

Mating pair (donor → recipient)	Mating time (h)	Transfer frequency at a	25°C	30/37°Cb
E. coli 1292 (IncK) → *E. coli* 6927-5	4	NA	3 × 10⁻⁶	5 × 10⁻⁴
	24	NTD	2 × 10⁻⁵	3 × 10⁻⁵
	48	NTD	4 × 10⁻⁵	2 × 10⁻⁵
E. coli 2798 (IncI) → *E. coli* 6927-5	4	NA	4 × 10⁻⁵	4 × 10⁻³
	24	NTD	4 × 10⁻⁴	4 × 10⁻³
	48	NTD	2 × 10⁻⁵	2 × 10⁻⁵
E. coli 1292 (IncK) → *S. marcescens* 3306	4	NA	4 × 10⁻⁵	4 × 10⁻³
	24	NTD	4 × 10⁻⁴	4 × 10⁻³
	48	NTD	4 × 10⁻²	7 × 10⁻⁶
E. coli 1292 (IncK) → *S. marcescens* 3307	4	NA	4 × 10⁻⁵	4 × 10⁻³
	24	NTD	4 × 10⁻³	4 × 10⁻³
	48	NTD	5 × 10⁻³	2 × 10⁻²
S. marcescens 3306 transconjugant (IncK) → *E. coli* 6927-5	4	NA	9 × 10⁻⁶	9 × 10⁻⁶
	24	NTD	2 × 10⁻⁶	2 × 10⁻⁵
	48	NTD	2 × 10⁻⁵	2 × 10⁻⁵
S. marcescens 3307 transconjugant (IncK) → *E. coli* 6927-5	4	NA	1 × 10⁻⁵	1 × 10⁻⁵
	24	NTD	6 × 10⁻⁴	6 × 10⁻⁴
	48	NTD	2 × 10⁻³	2 × 10⁻³
S. marcescens 3307 transconjugant (IncK) → *S. proteamaculans* 5685	4	NA	5 × 10⁻⁷	5 × 10⁻⁷
	24	NTD	5 × 10⁻⁷	5 × 10⁻⁷
	48	NTD	5 × 10⁻⁷	5 × 10⁻⁷

aThe transfer frequencies are calculated as the total number of transconjugants (T) divided by the total number of recipients (R). NTD, no transconjugants detected, transfer frequency of <5 × 10⁻⁶; NA, not applicable.
b30°C was applied for all matings involving *Serratia* spp., while 37°C was applied for matings involving *E. coli* only.
various temperatures. Transfer of plasmids was observed in conjugation experiments on agar, in broth, and in biofilm at 25°C and 30/37°C. In general, we observed higher transfer of plasmids at 30/37°C than at 25°C, which is in correspondence with previous findings (41). The fact that horizontal transfer of plasmids occurs at 25°C might indicate a possible relevance in parts of the production chain with higher temperatures, such as inside the broiler house. Low temperatures have been reported to decrease the conjugal transfer of plasmids in broth matings (41). No plasmid transfer was observed at 12°C. This indicates that conjugal transfer of resistance plasmids is a limited problem in the parts of food production where low temperatures are applied. Low temperatures in processing units may thus reduce or inhibit horizontal transfer of plasmids as well as hamper microbial growth. On the other hand, transfer of plasmids has previously been reported to take place at 8°C (41). Therefore, we cannot exclude the possibility that the plasmids can be transferred to and maintained within hosts that can facilitate further dissemination under growth conditions that are suboptimal for mesophilic *E. coli* but more optimal for psychrophilic bacteria.

Bacteria in biofilm can have an increased ability to survive cleaning and disinfection (42–45), possibly serving as a reservoir for recontamination of environments and foods after disinfection. All recipients included in the biofilm experiments showed moderate to good biofilm-forming abilities on stainless steel coupons at 12°C and 25°C (data not shown). Thus, it is reasonable to suggest that survival of ESC-resistant bacteria in biofilm, together with conjugative transfer of plasmids, is also a part of the puzzle when it comes to the maintenance and dissemination of ESC-resistant bacteria and plasmids.

We have demonstrated the ability of the pNVI1292/IncK plasmid to transfer within and between genera in the *Enterobacteriaceae* family. In addition, we have shown that transconjugants can act as secondary plasmid donors. The relatively high transfer frequencies observed from *S. marcescens* transconjugants to *E. coli* recipients indicate the ability of environmental bacteria to be efficient contributors in the dissemination of IncK resistance plasmids. The ability of *Serratia* spp. to acquire and harbor such resistance plasmids and act as secondary plasmid donors support the hypothesis that *Serratia* spp. can represent a reservoir for plasmid-mediated ESC resistance.

The pNVI1292/IncK and pNVI2798/IncI1 plasmids differed in their ability to transfer to or replicate within different *Enterobacteriaceae* hosts. Both plasmids were transferred to *E. coli* recipients, but no transfer of the pNVI2798/IncI1 plasmid to *Serratia* species recipients was observed in any of our conjugation or transformation experiments. None of the recipient strains were shown to harbor other IncI1 plasmids and should therefore be able to receive the pNVI2798/IncI1 plasmid. Based on these results, it was not possible to determine if the pNVI2798/IncI1 plasmid is unable to transfer into *Serratia* species hosts or if it is unable to replicate within *Serratia* species hosts. As only a limited number of strains and mating combinations were investigated, transfer of the pNVI2798/IncI1 plasmid or related plasmids to *Serratia* spp. cannot be excluded. Further

Recipient/transconjugant strain (plasmid)	MIC (epidemiological cutoff value for antimicrobial) (mg/liter)									
	FOX (8)	ETP (0.06)	IMI (0.5)	MERO (0.12)	TAZ (0.5)	FEP (0.12)	F/C (0.25/4)	T/C (0.5/4)	FOT (0.25)	TRM (NA)
E. coli 6927-5	4	≤0.015	≤0.12	≤0.03	≤0.25	≤0.06	≤0.06/4	≤0.012/4	≤0.25	4
E. coli 6927-5/IncK	32	0.03	≤0.12	≤0.03	8	0.12	4/4	4/4	4	4
E. coli 6927-5/IncI1	64	0.03	≤0.12	≤0.03	16	0.25	4/4	8/4	8	4
S. marcescens 3306	16	≤0.015	0.5	0.06	≤0.25	≤0.06	≤0.06/4	≤0.5/4	≤0.25	8
S. marcescens 3306/IncK	32	0.03	0.5	0.06	8	0.25	4/4	8/4	4	8
S. marcescens 3307	8	≤0.015	0.5	≤0.03	≤0.25	≤0.06	≤0.06/4	≤0.12/4	≤0.25	8
S. marcescens 3307/IncK	32	0.06	0.5	0.06	8	0.25	8/4	8/4	4	8
S. proteamaculans 5685	4	≤0.015	0.25	≤0.03	≤0.25	≤0.06	≤0.06/4	≤0.12/4	≤0.25	4
S. proteamaculans 5685/IncK	64	≤0.015	0.25	≤0.03	2	0.12	4/4	1/4	8	4

 FOX, cefoxitin; ETP, ertapenem; IMI, imipenem; MERO, meropenem; TAZ, ceftazidime; FEP, cefepime; F/C, cefotaxime-clavulanic acid; T/C, ceftazidime-clavulanic acid; FOT, cefotaxime; TRM, temocillin; NA, not available.
experiments should be performed in order to determine whether pNVI1292/IncK has a higher ability of transfer to and propagate in different bacterial hosts than pNVI2798/IncI1.

In the biofilm experiments, the number of transconjugants increased with time, which has also been described previously (46). However, with the method used here, it is not possible to determine if (i) this was due to an increased number of conjugative transfers from donor to recipient, (ii) transconjugants started to act as donors as well, (iii) transconjugant strains reproduced in the biofilm, or (iv) a combination of the three. Furthermore, it is not possible to exclude that the observed plasmid transfer in biofilm may actually have occurred in the broth in which the steel coupon with the biofilm was submerged. Recipient cells from the biofilm might have detached and entered the broth, received the plasmid from donor cells in the broth, and thereafter reattached to the biofilm. Surprisingly, transconjugants were observed after 24 h but not after 48 h for some mating pairs. This is probably due to methodological limitations, with the number of transconjugants being around the detection limit, causing inconsistent results for consecutive samplings. Another explanation could be that the plasmid was lost after 48 h. This seems less likely, as plasmid stability systems are present on both plasmids (19, 21).

In this study, we have demonstrated the ability of conjugative plasmids of poultry origin encoding ESC resistance to transfer into different E. coli and Serratia spp. both in suspension and on surfaces at different temperatures. Transfer occurred under suboptimal growth conditions and in biofilm, underlining the potential for horizontal transfer of these resistance plasmids. In food production, vertical spread of antimicrobial resistance through clonal dissemination is likely to represent a higher burden than the horizontal spread of resistance determinants between bacterial clones and/or genera. However, transfer to environmental Enterobacteriaceae or other residential bacteria with good survival abilities (e.g., growth at low temperature, biofilm formation, and increased tolerance to environmental conditions, such as cleaning and disinfection) and with potential to act as secondary plasmid donors to new hosts may contribute to maintenance of the resistance plasmids through the food chain. The results also indicate that low temperatures may contribute to a decrease in plasmid transfer and hamper microbial growth. Further research on the occurrence of ESC resistance in environmental bacteria and transfer of plasmids in models simulating relevant conditions is necessary to determine the importance of the environmental microbiota and environmental conditions for maintenance and dissemination of ESC resistance in broiler production.

MATERIALS AND METHODS

Bacterial isolates. Plasmid donor isolates used included E. coli 2012-01-1292 (designated E. coli 1292) carrying a recently characterized IncK plasmid (pNVI1292/IncK, accession no. KU312044, Fig. S1) (19) and E. coli 2012-01-2798 (designated E. coli 2798) carrying an IncI1 plasmid (pNVI2798/IncI1, Fig. S2). Both donor strains harbored blaCMY-2 and originated from domestically produced retail chicken meat collected in 2012 as part of the NORM-VET program (11). The plasmids did not harbor additional resistance genes. Potential recipient strains included a selection of E. coli from broiler feces and retail chicken meat (n = 14) displaying resistance to nalidixic acid (NalR), and Serratia spp. from food-processing units and retail chicken meat (n = 18). The Serratia species isolates were rifampin resistant (RifR) (n = 15) or made RifR (n = 3) by subculturing in broth with increasing Rif concentration, as previously described (47). None of the recipient strains displayed resistance to any beta-lactam antimicrobials (data not shown). All included recipient strains were subjected to PCR targeting the IncI1 and IncK replicons to ensure that they did not harbor other plasmids of these incompatibility groups (48). An overview of the included isolates and their characteristics is given in Table 5.

Preculturing of donor and recipient strains. Precultures of donor and recipient strains used in the initial screening experiments were grown on tryptone soy agar (TSA) plates (Oxoid Ltd., Basingstoke, England) at 30°C (Serratia spp.) or 37°C (E. coli) overnight. In the extended conjugation experiments, precultures for strains used in conjugation on agar were grown on TSA at 25°C for 3 days. Before mating was performed, the agar plates were incubated at the temperature used in the subsequent experiment for 1 h. Precultures of donor and recipient strains used in experiments in broth and donor strains used in the biofilm experiments at 25°C, 30°C, and 37°C were grown separately in Luria-Bertani (LB) broth (Oxoid Ltd.) (broth mating) or LB without NaCl (biofilm experiments) at 25°C for 3 days. Thereafter, they were incubated at the temperature used in the subsequent experiment for 1 h before broth mating was performed. Precultures used in experiments at 12°C were incubated at 12°C for 3 days. Recipient strains used in the biofilm experiments were grown in LB without NaCl at 30°C overnight.
Conjugation experiments. We used a two-step strategy for investigation of plasmid transfer. This included an initial screening using a simple agar assay, followed by extended transfer experiments with selected mating pairs performed under various conditions.

In the initial experiments, the two E. coli donor strains were mated with 32 recipient strains using conjugation experiments on agar to identify mating pairs where plasmids were transferred. In addition, we investigated if Serratia species transconjugants could act as secondary plasmid donors. Two S. marcescens transconjugants were mated with E. coli (n = 7) and Serratia spp. (n = 3), and one S. proteamaculans transconjugant was mated with E. coli (n = 7) and Serratia spp. (n = 16). The conjugation experiments on agar were carried out as follows: one colony each of the recipient and the donor were mixed on a TSA plate and incubated at 30°C. Matings were sampled after 4, 24, and 48 h by swiping a loop through the colonies. Samples were plated directly on Mueller-Hinton (MH) agar.

Conjugation in broth. Conjugation in broth was conducted as previously described (49). Briefly, 1 ml of the donor preculture and 1 ml of the recipient preculture were mixed in 4 ml of fresh LB broth. Sampling was performed by plating 100 μl of the broth on MH agar supplemented with two different antimicrobials to select for transconjugant strains.

Conjugation in biofilm. Biofilms of each recipient strain were established on autoclaved coupons of stainless steel (AISI 304), as previously described (50). Thereafter, the tubes were incubated at 25°C, 30°C, 37°C (S. marcescens spp.) or 37°C (E. coli), and sampling was performed after 4 h (30°C and 37°C), 24 h, and 48 h (all matings).

TABLE 5 All isolates included in the study

Isolate ID (strain type)	Origin	Resistance profile	MIC (mg/liter)	Phylotype
E. coli 1292(IncK) (D)	Retail chicken meat	Ctxr	>2	D
E. coli 2798(IncI1) (D)	Retail chicken meat	Ctxr	>2	A
E. coli 1553 (R)	Retail chicken meat	Nalr	128	ND
E. coli 6154 (R)	Retail chicken meat	Nalr	>128	ND
E. coli 706 (R)	Retail chicken meat	Nalr	>128	ND
E. coli 7079 (R)	Retail chicken meat	Nalr	32	ND
E. coli 3446-5 (R)	Fecal flora of healthy broiler	Nalr	>128	ND
E. coli 6927-5 (R)	Fecal flora of healthy broiler	Nalr	>128	B1
E. coli 1268 (R)	Fecal flora of healthy broiler	Nalr	32	B1
E. coli 1450 (R)	Fecal flora of healthy broiler	Nalr	64	D
E. coli 1667 (R)	Fecal flora of healthy broiler	Nalr	32	D
E. coli 2362 (R)	Fecal flora of healthy broiler	Nalr	64	D
E. coli 4922 (R)	Fecal flora of healthy broiler	Nalr	64	D
E. coli 5792 (R)	Fecal flora of healthy broiler	Nalr	128	D
E. coli 3064-2 (R)	Fecal flora of healthy broiler	Nalr	128	A
E. coli 4064-1 (R)	Fecal flora of healthy broiler	Nalr	128	ND
S. marcescens 2336 (R)	Disinfecting footbath on dairy plant	Rifr	≥16	NA
S. marcescens 3297 (R)	Disinfecting footbath on dairy plant	Rifr	≥16	NA
S. marcescens 3298 (R)	Disinfecting footbath on dairy plant	Rifr	≥16	NA
S. marcescens 3299 (R)	Disinfecting footbath on dairy plant	Rifr	≥16	NA
S. marcescens 3300 (R)	Disinfecting footbath on dairy plant	Rifr	≥16	NA
S. marcescens 3301 (R)	Disinfecting footbath on dairy plant	Rifr	≥16	NA
S. marcescens 3302 (R)	Disinfecting footbath on dairy plant	Rifr	≥16	NA
S. marcescens 3303 (R)	Disinfecting footbath on dairy plant	Rifr	≥16	NA
S. marcescens 3304 (R)	Disinfecting footbath on dairy plant	Rifr	≥16	NA
S. marcescens 3305 (R)	Disinfecting footbath on dairy plant	Rifr	≥16	NA
S. marcescens 3306 (R)	Disinfecting footbath on dairy plant	Rifr	≥16	NA
S. marcescens 3307 (R)	Disinfecting footbath on dairy plant	Rifr	≥16	NA
S. marcescens 3308 (R)	Disinfecting footbath on dairy plant	Rifr	≥16	NA
S. marcescens 3309 (R)	Disinfecting footbath on dairy plant	Rifr	≥16	NA
Serratia sp. 3612 (R)	Slaughterhouse	Rifr	≥16	NA
Serratia liquifaciens 5676 (R)	Retail chicken meat	Rifr	≥100	NA
S. proteamaculans 5682 (R)	Retail chicken meat	Rifr	≥100	NA
S. proteamaculans 5685 (R)	Retail chicken meat	Rifr	≥100	NA

ND, not determined; NA, not applicable.

*ID, identification; D, donor strain; R, recipient strain.
*Ctxr, ceftoxime resistant; Nalr, nalidixic acid resistant; Rifr, rifampin resistant.
*MIC (mg/liter) Phylotype
Phylotyping was used for differentiation of mating pairs with cultures of the donor strain. Sampling of biofilms included harvesting the whole biofilm. The biofilms were washed with peptone water to remove loosely attached cells and then transferred to tubes centrifugation for 10 min at 14,000 rpm before discarding the supernatant. Then, 200 l of the supernatant was added to Eppendorf tubes containing 270 l of 5 M LiCl. The mixture was vortexed and placed at −20°C for 10 min. Subsequently, the tubes were centrifuged for 5 min at 14,000 rpm, and 500 l of the supernatant was transferred to a new tube containing 1,000 l of ethanol (EtOH). The mixture was left at −20°C for 10 min and subjected to centrifugation for 10 min at 14,000 rpm before discarding the supernatant. Then, 200 l of 70% EtOH was added, and the tubes were centrifuged for 10 min at 13,000 rpm. After discarding the supernatant, the pellet was resuspended in 30 l of Tris-EDTA (TE) buffer. S. marcescens 3306 and 3307 and E. coli DH5α (CCUG 32825) were made electrocompetent, as previously described. However, three washing steps were performed. Also, the pellet was resuspended in Milli Q water instead of transformation buffer or DnD solution and used immediately in transformation experiments. Electroporation was performed on 5 l of plasmid DNA mixed with 50 l of competent cells as follows: 1.25 kV/cm, 200 Ω, 25 microfarad.

Transformants were selected on LB agar supplemented with 1 mg/liter cefotaxime. The transformation experiments were performed in triplicate.

Confirmation of transconjugants and transformants. Donor and recipient strains of different genera and species (E. coli-S. marcescens matings and S. marcescens-S. proteamaculans matings) were differentiated by the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS; Bruker Daltonics). Phylotyping was used for differentiation of mating pairs with cultures of the donor strain. Sampling of biofilms included harvesting the whole biofilm. The biofilm was detached by scraping with a swab, followed by 15 min of sonication at 42 kHz at 25°C. One milliliter of the samples was diluted 10-fold, and 100 l of the dilution series was plated out on three different MH agar plates supplemented with different antimicrobials in order to quantify number of donors, recipients, and transconjugants in the sample. The transfer frequencies of plasmids in biofilms were calculated as number of transconjugants/number of recipients (T/R) (49, 51).

Antimicrobial susceptibility testing. Recipients and transconjugants were subjected to antimicrobial susceptibility testing to determine the MICs for a standard panel of antimicrobials and an extended panel of relevant beta-lactam antimicrobials by broth microdilution (EUVEC and EUVSEC2, Sensititre TREK; Thermo Scientific). E. coli ATCC 25922 was included as a quality control.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM.00654-17.

SUPPLEMENTAL FILE 1, PDF file, 0.5 MB.

ACKNOWLEDGMENTS

We acknowledge Anette Wold Åsli for excellent technical assistance. Roger Simm is acknowledged for assistance during the transformation experiments.

This work was funded by the Foundation for Research Levy on Agricultural Agreement Research Fund (Matfondavtalen), grants 225165 and 224921, and Nofima strategic research program grant no. 262306. The funders had no role in the study design, data collection and interpretation, or the decision to submit the work for publication. The support of the EU-funded COST action FA1202 BacFoodNet is acknowledged.

We declare no conflicts of interest.

REFERENCES

1. Ewers C, Bethe A, Semmler T, Guenther T, Wieler LH. 2012. Extended-spectrum beta-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: a global perspective. Clin Microbiol Infect 18:646–655. https://doi.org/10.1111/j.1469-0691.2012.03850.x.

2. ECDC. 2015. Antimicrobial resistance surveillance in Europe 2014. Annual report of the European Antimicrobial Resistance Surveillance Net-
4. Dzielen G, Jauregui LL, Mathai E. 2012. The evolving threat of antimicrobial resistance: options for action. World Health Organization, Geneva, Switzerland. http://whqlibdoc.who.int/publications/2012/9789241503181_eng.pdf.

5. WHO. 2017. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization, Geneva, Switzerland. http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?

6. Overdevest I, Willemesen I, Rijsnburg M, Eustace A, Xu L, Hawkey P, Heck M, Savelkoul P, Vandenbroucke-Grauls CM, Savelkoul PH, Johnston BD, Gordon D, Johnston JR. 2013. Extended-spectrum beta-lactamase-producing Escherichia coli from retail chicken meat and humans: comparison of strains, plasmids, resistance genes, and virulence factors. Clin Infect Dis 56:478–487. https://doi.org/10.1093/cid/cis929.

7. Lazarus B, Paterson DL, Mollinger JL, Rogers BA. 2015. Do human extraintestinal Escherichia coli infections resistant to extended-spectrum cephalosporins originate from food-producing animals? A systematic review. Clin Infect Dis 60:439–452. https://doi.org/10.1093/cid/cis785.

8. Berg ES, Wester AL, Ahrenfeldt J, Mo SS, Slettemeås JS, Steinkbakk M, Samuelson O, Grude N, Simonsen GS, Løvland A, Urdahl AM, Sunde M. 2017. Norwegian patients and retail chicken meat share cephalosporin-resistant Escherichia coli and IncK/blaTEM-2 resistance plasmids. Clin Microbiol Infect, in press. https://doi.org/10.1016/j.cmi.2016.12.035.

9. Norm-Norm-Vet. 2012. Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway, 2011. Norm-Norm-Vet, Tromsø, Oslo, Norway.

10. Norm-Norm-Vet. 2013. Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway, 2012. Norm-Norm-Vet, Tromsø, Oslo, Norway.

11. Norm-Norm-Vet. 2015. Usage of antimicrobial agents and occurrence of antimicrobial resistance in Norway, 2014. Norm-Norm-Vet, Tromsø, Oslo, Norway.

12. Mo SS, Norström M, Slettemeås JS, Løvland A, Urdahl AM, Sunde M. 2015. Extended-spectrum beta-lactamase genomes of Escherichia coli in chicken meat and humans, The Netherlands. Emerg Infect Dis 17:1216–1222. https://doi.org/10.3201/eid1710.140707.

13. Börjesson S, Jernberg C, Englund S. 2013. Characterization of plasmid-mediated AmpC-producing Escherichia coli from Swedish broilers and association with human clinical isolates. Clin Microbiol Infect 19:E309–E311. https://doi.org/10.1111/1469-0691.12192.

14. Voets GM, Fluit AC, Scharringer J, Schapendonk C, van den Munckhof T, Leverstein-van Hall MA, Stuart JC. 2013. Identical plasmid AmpC beta-lactamase genes and plasmid types in E. coli isolates from patients and poultry meat in the Netherlands. Int J Food Microbiol 167:359–362. https://doi.org/10.1016/j.ijfoodmicro.2013.10.001.

15. Agero Y, Jensen JD, Hasman H, Pedersen K. 2014. Spread of extended spectrum cephalosporin-producing Escherichia coli clones and plasmids from parent animals to broilers and to broiler meat in a production without use of cephalosporins. Foodborne Pathog Dis 11:740–746. https://doi.org/10.1089/fpd.2014.1742.

16. Overdevest I, Willemesen I, Slettemeås JS, Løvland A, Urdahl AM, Sunde M. 2017. Continued decrease in the occurrence of resistant bacteria in poultry (in Norwegian: Fortsatt nedgang i forekomst av resistente bakterier hos fjørfe). http://www.who.int/medicines/who/medicines-no/animalia/aktuelt/tiltak-mot-antibiotikaresistens-virker/. Accessed 4 May 2017.

17. Assamila. 2015. Actions to combat antimicrobial resistance works (in Norwegian: Tiltak mot antibiotikaresistens virker). https://www.animalia.no/no/animalia/aktuelt/tiltak-mot-antibiotikaresistens-virker/. Accessed 4 May 2017.

18. Mo SS, Kristoffersen AB, Sunde M, Nadtværdt A, Norström M. 2016. Risk factors for occurrence of cephalosporin-resistant Escherichia coli in Norwegian broiler flocks. Prev Vet Med 130:112–118. https://doi.org/10.1016/j.prevetmed.2016.06.011.

19. Dierikx CM, van de Goot JA, Smith HE, Kant A, Mevius DJ. 2013. Presence of ESBL/AmpC-producing Escherichia coli in the broiler production pyramid: a descriptive study. PLoS One 8:e79005. https://doi.org/10.1371/journal.pone.0079005.

20. Nilsson O, Börjesson S, Landén A, Börjesson B. 2014. Vertical transmission of Escherichia coli carrying plasmid-mediated AmpC (pAmpC) through the broiler production pyramid. J Antimicrob Chemother 69:1497–1500. https://doi.org/10.1093/jac/dku030.

21. Davey ME, O’Toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867. https://doi.org/10.1128/MMBR.64.4.847-867.2000.

22. Kröl JE, Nguyen HD, Rogers LM, Beyenal H, Krone SM, Top EM. 2011. Increased transfer of a multidrug resistance plasmid in Escherichia coli between the air-liquid interface. Appl Environ Microbiol 77:5079–5088. https://doi.org/10.1128/AEM.00909-11.

23. Solheim HT, Sekse C, Urdahl AM, Wasteson Y, Nesse LL. 2013. Biofilm as an environment for dissemination of stx genes by transduction. Appl Environ Microbiol 79:896–900. https://doi.org/10.1128/AEM.03512-12.

24. Klønno-Nthenge A, Røtch E, Naahasan SN. 2013. Evaluation of drug-resistant Enterobacteriaceae in retail poultry and beef. Poult Sci 92:1098–1107. https://doi.org/10.3382/ps.2012-02581.

25. Schaiger K, Huther S, Hölzel C, Kämpf P, Bauer J. 2012. Prevalence of antibiotic-resistant Enterobacteriaceae isolated from chicken and pork meat purchased at the slaughterhouse and at retail in Bavaria, Germany. Int J Food Microbiol 154:206–211. https://doi.org/10.1016/j.ijfoodmicro.2011.12.014.

26. Johnson JR, Sannes MR, Croy C, Johnston B, Clabots C, Kuskowski MA, Bender J, Smith KE, Winokur PL, Belongia EA. 2007. Antimicrobial drug-resistant Enterobacteriaceae from humans and poultry products, Minnesota and Wisconsin, 2002–2004. Emerg Infect Dis 13:838–846. https://doi.org/10.3201/eid1306.061576.

27. Søde E, Murros A, Björkroth J. 2013. Predominant enterobacteria on modified-atmosphere packaged meat and poultry. Food Microbiol 34:252–258. https://doi.org/10.1016/j.fm.2012.10.007.

28. Langsrud S, Møretø T, Sundheim G. 2003. Characterization of Seratia marcescens surviving in disinfecting footbaths. J Appl Microbiol 95:186–195. https://doi.org/10.1046/j.1365-2672.2003.01966.x.

29. Llabate M, Queck SY, Koh KS, Rice SA, Givskov M, Kjelleberg S. 2004. Quorum sensing-controlled biofilm development in Seratia liquefaciens.
Table of Contents

1. Introduction

2. Methods

3. Results

4. Discussion

5. Conclusions

6. References

7. Acknowledgments

8. Appendix

9. Appendix

10. Appendix

11. Appendix

12. Appendix

13. Appendix

14. Appendix

15. Appendix

16. Appendix

17. Appendix

18. Appendix

19. Appendix

20. Appendix

21. Appendix

22. Appendix

23. Appendix

24. Appendix

25. Appendix

26. Appendix

27. Appendix

28. Appendix

29. Appendix

30. Appendix

31. Appendix

32. Appendix

33. Appendix

34. Appendix

35. Appendix

36. Appendix

37. Appendix

38. Appendix

39. Appendix

40. Appendix

41. Appendix

42. Appendix

43. Appendix

44. Appendix

45. Appendix

46. Appendix

47. Appendix

48. Appendix

49. Appendix

50. Appendix

51. Appendix

52. Appendix

53. Appendix

54. Appendix

55. Appendix

56. Appendix

57. Appendix

58. Appendix

59. Appendix

60. Appendix

61. Appendix

62. Appendix

63. Appendix

64. Appendix

65. Appendix

66. Appendix

67. Appendix

68. Appendix

69. Appendix

70. Appendix

71. Appendix

72. Appendix

73. Appendix

74. Appendix

75. Appendix

76. Appendix

77. Appendix

78. Appendix

79. Appendix

80. Appendix

81. Appendix

82. Appendix

83. Appendix

84. Appendix

85. Appendix

86. Appendix

87. Appendix

88. Appendix

89. Appendix

90. Appendix

91. Appendix

92. Appendix

93. Appendix

94. Appendix

95. Appendix

96. Appendix

97. Appendix

98. Appendix

99. Appendix

100. Appendix

101. Appendix

102. Appendix

103. Appendix

104. Appendix

105. Appendix

106. Appendix

107. Appendix

108. Appendix

109. Appendix

110. Appendix

111. Appendix

112. Appendix

113. Appendix

114. Appendix

115. Appendix

116. Appendix

117. Appendix

118. Appendix

119. Appendix

120. Appendix

121. Appendix

122. Appendix

123. Appendix

124. Appendix

125. Appendix

126. Appendix

127. Appendix

128. Appendix

129. Appendix

130. Appendix

131. Appendix

132. Appendix

133. Appendix

134. Appendix

135. Appendix

136. Appendix

137. Appendix

138. Appendix

139. Appendix

140. Appendix

141. Appendix

142. Appendix

143. Appendix

144. Appendix

145. Appendix

146. Appendix

147. Appendix

148. Appendix

149. Appendix

150. Appendix

151. Appendix

152. Appendix

153. Appendix

154. Appendix

155. Appendix

156. Appendix

157. Appendix

158. Appendix

159. Appendix

160. Appendix

161. Appendix

162. Appendix

163. Appendix

164. Appendix

165. Appendix

166. Appendix

167. Appendix

168. Appendix

169. Appendix

170. Appendix

171. Appendix

172. Appendix

173. Appendix

174. Appendix

175. Appendix

176. Appendix

177. Appendix

178. Appendix

179. Appendix

180. Appendix

181. Appendix

182. Appendix

183. Appendix

184. Appendix

185. Appendix

186. Appendix

187. Appendix

188. Appendix

189. Appendix

190. Appendix

191. Appendix

192. Appendix

193. Appendix

194. Appendix

195. Appendix

196. Appendix

197. Appendix

198. Appendix

199. Appendix

200. Appendix

201. Appendix