Urinary Incontinence as a Predictor of Death: A Systematic Review and Meta-Analysis

Gregor John¹ *, Claire Bardini², Christophe Combescure³, Patrick Dällenbach⁴

1 Department of Internal medicine, Hôpital neuchâtelois, Chasseral 20, 2300, La Chaux-de-Fonds, Switzerland, Department of Internal Medicine, Rehabilitation and Geriatrics, Geneva University Hospitals (HUG), Gabrielle-Perret-Gentil 4, CH-1205, Geneva, Switzerland, 2 Faculty of Medicine, Geneva University, Geneva, Switzerland, 3 CRC & Division of clinical-epidemiology, Department of health and community medicine, University of Geneva & Geneva University Hospitals (HUG), Geneva, Switzerland, 4 Department of Gynecology and Obstetrics, Perineology Unit, Geneva University Hospitals (HUG), Geneva, Switzerland

* gregor.john@h-ne.ch

Abstract

Background

The association between urinary incontinence (UI) and increased mortality remains controversial. The objective of our study was to evaluate if this association exists.

Methods

We performed a systematic review and meta-analysis of observational studies comparing death rates among patients suffering from UI to those without incontinence. We searched in Medline, Embase and the Cochrane library using specific keywords. Studies exploring the post-stroke period were excluded. Hazard ratios (HR) were pooled using models with random effects. We stratified UI by gender and by UI severity and pooled all models with adjustment for confounding variables.

Results

Thirty-eight studies were retrieved. When compared to non-urinary incontinent participants, UI was associated with an increase in mortality with pooled non adjusted HR of 2.22 (95% CI 1.77–2.78). The risk increased with UI severity: 1.24 (95%CI: 0.79–1.97) for light, 1.71 (95%CI: 1.26–2.31) for moderate, and 2.72 (95%CI: 1.90–3.87) for severe UI respectively. When pooling adjusted measures of association, the resulting HR was 1.27 (95%CI: 1.13–1.42) and increased progressively for light, moderate and severe UI: 1.07 (95%CI: 0.79–1.44), 1.25 (95%CI: 0.99–1.58), and 1.47 (95%CI: 1.03–2.10) respectively. There was no difference between genders.

Conclusion

UI is a predictor of higher mortality in the general and particularly in the geriatric population. The association increases with the severity of UI and persists when pooling models adjusted for confounders. It is unclear if this association is causative or just reflects an
impaired general health condition. As in most meta-analyses of observational studies, methodological issues should be considered when interpreting results.

Background

Urinary incontinence (UI) -the complaint of any involuntary loss of urine [1]- is frequent in the general population and affects men and women of all ages. It has been found in 11 to 34% of men and 13–50% of women older than 60 years (depending on the method used), and in 43–80% of all nursing home residents [2–4].

UI decreases quality of life of men and women, and has been associated with many unfavourable outcomes, including longer hospital length of stay and lower chance of regaining home after hospital discharge [5–7]. Thus, UI carries an unsuspected load on the healthcare system, with an estimate of 14 billion dollars spent each year in the United States (5 billion dollars for institutionalised citizens), and 4.6 billion Euros in France [8]. Besides, this condition will affect over 423 million people worldwide by 2018 [9].

Frail and older patients are at the highest risk for developing UI [7]. Therefore, mortality rate of patients suffering from UI is expected to be higher than the one of patients who are not suffering from this condition. UI may be a marker of an impaired general health condition and an indirect cause of death consecutive to falls, for example [10]. However the extent of the increased mortality is not clear yet, and varies across studies according to gender, as well as UI severity. Furthermore, after adjustment for the high number of comorbid conditions and disability found among urinary incontinent patients, studies differ in their conclusions. Some find a persisting association, while others don’t. An association independent of these factors could stimulate research on UI treatment.

Thus the aim of this systematic review and meta-analysis was to determine the effect of UI on mortality, in subgroups of men and women, and according to UI severity strata. We explored all published adjusted models to determine if the association persisted after adjustment for confounders.

Subjects/Patients and Methods

We performed a systematic review and meta-analysis of all studies exploring UI and death. The study was divided into two subsets: those exploring the post-stroke period (published separately) and those in the general population. Search strategy, study selection, data extraction, and analysis were performed according to a pre-defined protocol (available on request).

Search strategy

The search strategy in Medline, Embase and the Cochrane library used predefined keywords (Search strategy in S1 File) and was limited to articles written in English, French, and Italian and published before December 7, 2014. We examined reference lists from retrieved articles, guidelines and systematic reviews and asked experts in urology and gynaecology for studies we might have missed.

Study selection and data extraction

We included retrospective and prospective studies comparing mortality rate between patients with and without UI. Urge, stress, or mixed UI had not to be the main focus of the study.
Diurnal and nocturnal episodes of UI that happened at least once during the previous year were considered. UI could be diagnosed based either on caregiver records or patient’s self reporting, and as defined according to the International Continence Society by the complaint of any involuntary loss of urine [1]. Publications on the same cohort of patients were all included, but duplicate data was avoided in the meta-analyses. We excluded all case reports, studies with patients under eighteen, and articles exploring the post-stroke period.

CB and GJ independently evaluated studies for possible inclusion. Irrelevant studies were excluded based on title and abstract. Full texts were then obtained to ascertain each study’s eligibility and for data extraction. Variables extracted in all studies were: all-cause mortality of patients with and without UI, study design, population characteristics, place of living (or inclusion), variables used in adjusted models, and UI sub-type, severity, and definition. Disagreements on article inclusion and data extraction were resolved by consensus.

Quality assessment
The quality of the observational cohort studies was assessed through the Newcastle-Ottawa Quality Assessment scale (NOS) [11]. This scale explores three domains: “selection of study groups”, “comparability of groups”, and “ascertainment of exposure/outcome”. In the “selection of study groups” domain, two points were automatically achieved in all studies (“demonstration that outcome of interest was not present at start of study” and “selection of the non exposed cohort”), one point was obtained if the cohort was not restricted to a specific sub-population (eg. post fracture), and another point if UI was diagnosed through a valid structured questionnaire. One point was given to the domain “comparability of groups” if the analyses were adjusted for age and two points if another adjustment variable was used in the models. Regarding the “ascertainment of exposure/outcome” domain, one point was attributed if the follow-up was more than one month, a second point if subjects lost were less than 10% (or if a description was provided for all patients lost to follow-up) and a third point for the assessment of outcome. Two investigators (CB, GJ) assessed study quality independently.

Pooled data analysis
Measures of association were unadjusted and adjusted hazard ratios (HR), between UI and mortality. When several HRs were reported, we kept the HR for the longest follow-up period. If published information was not sufficient to extract HR, authors were contacted. If the HR could not be obtained, we estimated it and its variance using the ratio of logarithms of event-free proportions from the proportion of death in the exposed and unexposed groups. [12] This method uses the published proportion of death, and does not consider patients lost to follow-up.

For one study [13], the unadjusted HRs were derived from the published survival curves: survival estimates were extracted from the digitalized picture of survival curves. Individual survival data were extrapolated from the sample size and the survival estimates. The estimate of HR was then obtained using a Cox regression model. The censorship rate was very low in this study and we assumed a null censorship rate to derive the HRs.

In two studies adjusted HRs were only given by gender. We assessed a global logarithm of HR as a weighted average of the gender-specific logarithm of HRs (Supplemental statistics A in S1 File). Three studies reported the adjusted HR by sub-group of severity of UI but no global HR for UI. We combined the HRs reported by severity of UI in a single global HR using a similar approach. However, in contrast to the gender-specific HRs, the severity-specific HRs from a study are not independent, as the same control participants (continent subjects) are used to calculate the HR in the different UI severity strata. Therefore, we pooled the severity-specific HRs assuming a correlation between the HRs of 0.20 (Supplemental statistics A in S1 File).
validity of this approach was tested by re-assessing global HRs—through this approach—for all studies and comparing them to the published global HR. We then explored the effect of varying the coefficient of correlation of the three considered studies on the pool estimates of adjusted HRs. The result was robust (Supplemental statistics A in S1 File).

All pooled estimates (except for those dedicated to summarize HRs for a single study) were systematically obtained using models with random effects (Der Simonian and Laird’s method). The significance level was set at 0.05 for all analyses and all statistical tests were two-sided.

We performed other meta-analyses to explore a modification of the association between UI and mortality by gender and severity of UI. For gender, we pooled the difference in logarithm of HR between men and women. By taking the exponential, we expressed results as an increase/decrease of HR in men compared with women. A positive difference means that the association between UI and mortality is stronger in men than in women. With this approach, the advantage is that we account for the fact that HR in men and women are assessed in the same studies.

For UI severity, we used two strategies. First, we stratified severity using the categories published in any articles regardless of the differences in definitions between studies. Second, we classified all articles (and severity strata, when available in articles) depending on the least number of episodes of urinary leakage needed for the diagnosis of UI. Thus we grouped monthly, weekly, or daily episodes of UI. To analyse the increase of HR with the severity of UI, we assessed for each study the difference in logarithm of HRs between two stages of severity (assuming a correlation of 0.20) and we combined these differences (Supplemental statistics B in S1 File). The results were expressed as the pooled ratio of HRs between two stages of severity of UI (exponential of the pooled difference in logarithm of HRs).

Heterogeneity was measured with I² statistics (>75% being considered highly heterogeneous). Potential heterogeneity factors were explored by leave-one-out strategy, and sub-group analyses. Pre-specified subgroup analysis included: stratification by study design, date of publication, country, population studied (general geriatrics versus specific population), and settings. Settings were divided in community, hospital, nursing care, and a mixture of these. We stratified the pooled adjusted models into two categories: highly adjusted models (with adjustment for at least both functional status and age) and models with low adjustment variables. We tested heterogeneity across subgroups. [14]

In sensitivity analyses, we pooled published odds ratios (OR) stratified by length of follow-up (6 months, 1, 3, 5, and 10 years). We also restricted the analysis to the studies with good to fair quality in each of the three domains of the NOS.

Publication bias for each outcome was graphically explored through funnel plot and Egger’s test. The trim and fill method was used to check the impact of a potential publication bias on pooled estimates. The R package “meta: Meta analysis with R”, version 1.6–1 and Review Manager of the Cochrane Library (RevMan), version 5.3 was used for these analyses.

Results

We explored 3731 citations and retrieved 38 studies (exploring 35 single cohorts) (Fig 1). Six studies reported association between UI and death at different time points at follow-up for 3 individual cohorts. The main characteristics of the studies included in the systematic review are displayed in Table 1.

This review included 158 456 patients from nineteen countries. The prevalence of UI ranged from 5.6% to 99%, but the proportion of incontinent patients was unknown in four studies [17, 22,44,47]. The selected studies mainly explored the effect of UI in the general geriatric population. Nine articles assessed this effect on more specific populations such as individuals affected by cognitive failure [19], Alzheimer’s disease [30], spinal cord injury [44], post myocardial infarction
[20], learning disability [34], pneumonia [21,22], post surgery after a hip fracture [45] and familial amyloid polyneuropathy after liver transplantation [16]. Time to follow-up ranged from four weeks [21,29] to ten years [43]. Twelve studies included hospitalized patients, 13 explored participants in the community, five among home care patients, and five studies among a mixture of settings (hospitalized and home care patients [26,46] or community and home care [23,34,42]).

Seven studies [15,22,29,38,40,44,47] included in the review could not be incorporated in the meta-analysis as part of the data on UI and mortality was lacking. The authors of those studies were unreachable or the databases were no longer available.

Unadjusted association between UI and death

All but three [31,33,48] out of 38 studies (92.1%) found a positive association between UI and death in unadjusted analysis. However some studies considered the association between death
First author/year	Design	Country	N	Follow-up (m)	Age (UI %)	Patient	Inclusion	Men (%)	Death (%)	Association Other association		
Anpalahan 2008	prosp	Australia	110	3	83	16.4	Geriatrics	Hospital	31.8	33.3 ± *		
Adams 2000	prosp	France	45	48	41	20	Fam amyl PNP	Community	55.5	30.0 ± *		
Abrahamik 1993	prosp	France	1025	2	78.1	41%	Geriatrics	Hospital	43.5	20.2 ± *		
Baztan 2005	prosp	Spain	205	6	80	68.6	Geriatrics	Hospital	39.5	14.9 ± *		
Berrios 1986	prosp	UK	100	18	80.5	35	Cognitive failure	Community	40.8	68.6 ± *		
Berardelli 2013	prosp	Italy	570	84	73 + 92†	32.1	Geriatrics	Community	43.3	- ± †		
Bootsma 2013	prosp	Netherlands	639	12	78.2	20.7	Geriatrics	Hospital	46.2	36.4 ± 5		
Brauer 1978	prosp	Denmark	1486	24	80–89			NA	Geriatrics	HC	34.7	- ±
Campbell 1985	prosp	New Zealand	559	36	80–84			18.7	Geriatrics	Community/HC	35.2	72.5 ±
Campbell 1985	prosp	Switzerland	559	12	80.9	6.8	Geriatrics	HC	100	18.4 ±		
Donaldson 1983	prosp	UK	4490	36	75–84			NA	Geriatrics	Hospital/HC	NA	52.7 ±
Donaldson 1980	prosp	USA	4514	12								
Ekelund 1987	prosp	Sweden	837	6	NA	27.9	Geriatrics	Hospital	37.6	36.9 ±		
Espallargues 2008	prosp	6 countries	1667	1	78.1	18.5	Geriatrics	Hospital	43.5	- ±		
Gambassi 1999	prosp	USA	9264	23	82.1	60.5	Alzheimer	HC	30.8	55.5 ±		
Gavira 2005	prosp	Spain	827	60	75–84			39.8	Geriatrics	Community	41.2	23.0 ±
Goldfarb 1969	prosp	USA	1280	84	75–84			21	Geriatrics	HC	33.3	97.1 ±
Herzog 1994	prosp	USA	1956	72	60–69			29.9	Geriatrics	Community	41.1	19.7 ±
Hollins 1998	prosp	UK	2026	96	NA	39.9	Learning disability	Community/HC	NA	21.1 ± *		
Holroyd-Leduc 2004	prosp	USA	6506	24	77	14.8	Geriatrics	Community	37	10.9 ±		
First author/year	Design	Country	N	Follow-up (m)	Age (UI %)	Patient	Inclusion	Men (%)	Death (%)	Association Other association		
-------------------	--------	---------	----	---------------	------------	---------	-----------	---------	-----------	-------------------------------		
John 2014	retro	Switzerland	699	36	80	27.8	Home care services	Community	24.6	24.9 ±		
Johnson 2000	prosp	USA	3485	36	75–84			28.7	Geriatrics	Community	51.5	- ±
Kohn 1991	prosp	Israel	188	60	82.2	30.1	Geriatrics	Hospital	42.1	95.9 ±		

(Continued)
and UI along with other geriatric symptoms [15,25,29] or together with faecal incontinence [41,44]. The association was true only for severe UI in the study by Berardelli et al., and only found at three months (not afterwards) in the study by Bootsma et al.

Unadjusted survival analysis was available in 5 studies (Fig 2). Estimated HR from published proportions of death was calculated for 21 studies. HR could be estimated from the Kaplan-Meier curve for one study [13]. The resulting pooled HR was 2.22 (95%CI: 1.77–2.78).

Table 1. (Continued)

Author	Year	Country	Age (Mean)	Sex	Mortality	Diagnosis	Setting	HR (95%CI)
Koyano 1986	37	Japan	72.4	NA	+	Geriatrics Community	47.6	2.22
Krumholz 2001	20	USA	76.8	+	+	Myocardial infarct	50.1	2.22
Landi 2012	38	Italy	80.4	+	NA	Geriatrics Community	39.8	2.22
Luk 2013	39	Hong Kong	88	+	NA	Cognitive failure	22.8	2.22
Min 2009	40	USA	82	+	NA	Geriatrics Community	37.2	2.22
Nakanishi 1999	41	Japan	65–74	+	NA	Geriatrics Community	40.1	2.22
Nuotio 2009	42	Finland	70–79	+	NA	Geriatrics Community	43.5	2.22
Nuotio 2002	43	Finland	73.3	+	NA	Spinal cord injury	49.8	2.22
Pagliacci 2007	44	Italy	511	+	NA	Hip fracture	80	2.22
Sorbye 2013	45	Norway	331	+	NA	Spinal cord injury	20.2	2.22
Thom 1997	5	USA	5986	+	NA	Geriatrics Community	49.8	2.22
Tilvis 1995	46	Finland	649	+	NA	Geriatrics Community	26.3	2.22
Venkatsen 1990	22	UK	73	+	NA	Pneumonia >65y	52.1	2.22
Zweig 1990	21	USA	133	+	NA	Pneumonia >60y	45	2.22

* Urinary incontinence along with other geriatric symptoms.
† Two cohorts;
§ association found among sever UI;
¶ same cohort published in two articles;
|| mode;
¶¶ only for moderate dementia;
†† association found for men, not women;
‡‡ for bowel and urinary loss of control.
§§ depending on the adjusted model considerate.
BMI: body mass index; fam amyl PNP: familial amyloidoic polyneuropathy; HC: home care; read: hospital readmission; IUC: indwelling urinary catheters; LOS: length of hospital stay; NA: not assessed; UI: urinary incontinence; unadj and adj: association between urinary incontinence and death unadjusted or adjusted for confounders; prosp: prospective study; retro: retrospective study; read: hospital readmission; >65y: patients older than 65 years old.

doi:10.1371/journal.pone.0158992.t001
In a sensitivity analysis, a pooled analysis was done computing all OR published, stratified by their follow-up period (Fig A in S2 File). The result was statistically significant for all periods.

The association between UI and time to death increased gradually with the severity of leakage, when stratified according by published categories (light, moderate, severe) (Fig 3) or extracted frequencies of leakage episodes (Fig B in S2 File). In the analyses conducted with all studies, the pooled HRs were 1.24 (95%CI 0.79–1.97; I² = 71%), 1.71 (95%CI 1.26–2.31; I² = 92%), and 2.72 (95%CI 1.90–3.87; I² = 92%) for light, moderate, and severe UI respectively (Fig 3). Four studies reported HRs for both light and severe UI. The pooled ratio of HRs was 1.83 (95%CI 1.16–2.89). Ten studies reported HRs for both moderate and severe UI. The pooled ratio of HRs was 1.47 (95%CI 1.28–1.69). Thus the HR in patients with severe UI was approximately 1.5 times the HR in patients with moderate UI and those differences were statistically significant. Four studies reported HRs for both light and moderate UI. The pooled ratio of HRs was 1.08 (95%CI: 0.81–1.44): the HR was slightly greater in patients with moderate UI than in patients with light UI, but the difference was not statistically significant.

In seven studies, association between UI and death could be stratified by gender and another study included only men [25]. Although the HR was slightly higher for men 2.23 (95%CI: 1.45–3.42) compared to women 2.01 (95%CI: 1.19–3.38), there was no statistical difference in the logarithmic of HR between genders (Fig C in S2 File).
Twelve studies (31.6%) included in the review gave no adjusted results and eight (21.0%) showed no association between UI and death after adjustment for different confounders. Sixteen studies (42.2%) still showed a positive association in adjusted models (Table 1). Adjusted HRs were available in fourteen studies (Fig 4). UI was associated with death with a pooled HR of 1.27 (95%CI: 1.13–1.42).

The association between UI and time to death increased gradually with the severity of leakage, when stratified according to published categories (Fig 5), or estimated frequencies of leakage episodes (Fig D in S2 File). In the analyses conducted with all studies, the pooled HRs were 1.07 (95%CI 0.79–1.44; I² = 0%), 1.25 (95%CI 0.99–1.58; I² = 0%), and 1.47 (95%CI 1.03–2.10; I² = 61%) for light, moderate, and severe UI respectively (Fig 5).

Three studies reported HRs for both light and severe UI. The pooled ratio of HRs was 1.79 (95%CI 1.23–2.61): the HR in patients with severe UI was approximately 1.8 times the HR in patients with light UI and the difference was statistically significant. Four studies reported HRs for both moderate and severe UI and two studies reported HRs for both light and moderate UI. The pooled ratio of HRs were 1.12 (95%CI 0.71–1.75) and 1.13 (95%CI 0.63–2.01), respectively: the HR was slightly greater.
in patients with severe UI than in patients with moderate UI, and in patients with moderate UI compared to patients with light UI, but those differences were not statistically significant.

In three studies, association between UI and death could be stratified by gender. The HRs for men and women were 1.50 (95%CI: 1.01–2.22) and 1.17 (95%CI: 1.00–1.37), respectively. There was no statistical difference between genders (Fig E in S2 File).

Study quality/risk of bias

Quality scale. The NOS is shown in Table A in S2 File. Quality was mainly limited by poor definition of exposure (UI) and comparability of groups. Many studies defined UI based on unspecified personal patient information, carer report [27,34,46,47,49], or medical records [5,20,21,26]. Only 19 reports were based on more reliable sources like specific questionnaires [41,42,50,13,17,40] or pre-existing scales such as the modified Barthel index [18,39], or the Minimum Data Set [6,30,38,45]. Information on the diagnosis of UI was lacking in many articles. In eight studies patients with indwelling urinary catheters were classified as being continent of urine [6,17,18,23,24,31,45,50]. However, except for five studies [13,15,28,39,49], most of the other studies gave no information regarding that consideration. Comparability was limited when none or low adjustment was reported.

Sources of heterogeneity. The results of stratified subgroup analysis are shown in Table 2. No statistically significant differences were found between subgroups that were observed both in unadjusted and adjusted models. For the unadjusted pool analysis, the country where the study took place explained part of the heterogeneity. In unadjusted models, the published HR subgroup represented 23.8% of the total population and had only mild heterogeneity (I² 48%). The variables of adjustment included in the models varied greatly, but could be regrouped into categories (Table B in S2 File). The high heterogeneity found in unadjusted models (I² 98%) decreased marginally in adjusted ones (I² 88%), particularly in the subgroup of highly adjusted models (I² 47%), but the subgroup difference was not statistically different.

Risk of publication bias. Funnel plots showed no obvious publication bias and Egger test failed to detect heterogeneity (Fig 6). However, for the adjusted association between UI and
death, the Fill and Trim method detected one missing study on the left part of the funnel plot. When adding this hypothetical study, the pooled HR was not affected: 1.25 (95%CI 1.11–1.40).

Sensitivity analyses. The pooled published ORs gave the same results as the pooled estimated HRs. Taking out all studies one by one did not alter the direction of the association. However in adjusted analysis, the study by Krumholz et al. explained part of the heterogeneity as the I² decreased from 91% to 55% without changing the extent of the association. This large-scale prospective study explores a specific population of elderly patients after heart infarct.

When restricting the analysis to studies with good to fair quality in each of the three domains of the NOS, no differences were noted for most of the adjusted and unadjusted pool estimates (Table C in S2 File). However, the pooled unadjusted HR dropped to 1.85 (95%CI: 1.33–2.58), when studies with poor quality in the domain of "comparability of groups" were excluded. When studies with poor quality in the domain of "selection of study groups" were excluded, the pooled adjusted HR was 1.17 (95%CI: 1.04–1.32).

Discussion

Our study confirms that UI is associated with a higher risk of death in the general (geriatric) population. The association is also seen in a broad range of specific conditions (e.g.: myocardial
Table 2. Subgroup analyses.

Factors	Unadjusted analysis			Adjusted analysis		
	N studies	Pooled HR	Within strata comparison	N studies	Pooled HR	Within strata comparison
Publication year						
Less than 10 y	7	1.77 (1.29 to 2.42)	0.0004	3	1.34 (1.08 to 1.65)	0.0070
10 to 20 y	10	2.29 (1.59 to 3.30)	<0.0001	9	1.26 (1.09 to 1.46)	0.0020
More than 20 y	10	2.30 (1.61 to 3.29)	<0.0001	2	1.25 (1.09 to 1.45)	0.0002
Study' continent						
America (North)	7	1.83 (1.16 to 2.91)	0.02	5	1.17 (0.96 to 1.43)	0.1300
Asia/Oceania	6	3.31 (2.44 to 4.49)	<0.0001	2	1.32 (1.13 to 1.53)	0.0003
Europe	15	2.07 (1.75 to 2.45)	<0.0001	7	1.35 (1.11 to 1.65)	0.0020
Population studied						
General geriatrics	18	2.06 (1.66 to 2.56)	<0.0001	9	1.19 (1.07 to 1.32)	0.0010
Other	9	2.53 (1.62 to 3.97)	<0.0001	5	1.40 (1.12 to 1.75)	0.0030
Setting						
Hospital inpatients	8	2.60 (1.92 to 3.52)	<0.0001	2	1.49 (1.20 to 1.86)	0.0003
Community	10	2.07 (1.43 to 3.00)	<0.0001	7	1.23 (1.01 to 1.49)	0.0400
Home care	4	1.94 (1.39 to 2.71)	<0.0001	1	1.15 (1.06 to 1.25)	0.0008
Mix	5	2.14 (1.47 to 3.13)	<0.0001	4	1.24 (1.08 to 1.43)	0.0030
Follow-up						
<1 y	4	2.38 (1.85 to 3.05)	<0.0001	0	-	-
1–5 y	14	2.21 (1.57 to 3.10)	<0.0001	10	1.30 (1.09 to 1.55)	0.0040
>5 y	9	2.06 (1.47 to 2.88)	<0.0001	4	1.16 (1.10 to 1.23)	<0.0001
Design						
Prospective	13	2.20 (1.71 to 2.82)	<0.0001	12	1.26 (1.10 to 1.45)	0.0009
Retrospective	3	2.05 (1.63 to 2.57)	<0.0001	2	1.31 (0.94 to 1.84)	0.1200
Adjustment level*						
Low	-	-	-	6	1.31 (1.09 to 1.57)	0.0040
High	-	-	-	8	1.22 (1.06 to 1.40)	0.0070

* Highly adjusted models are those with adjustment for at least both functional status and neurological deficit.

HR: hazard ratio; NOQ scale: Newcastle-Ottawa Quality Assessment scale; UIC: urinary indwelling catheters; y: years

doi:10.1371/journal.pone.0158992.t002
Fig 6. Funnel plot for unadjusted (panel A) or adjusted (panel B) HR of death. Panel A: With The Trim and Fill approach, no missing study was detected. Panel B: With The Trim and Fill approach, one missing study was detected on the left part of the funnel plot (white dot).
infarct, hip fracture, or cognitive impairment) and in all settings (hospitalized patients, nursing home residents, and patients living in the community). The risk increases with the severity and number of events of urinary leakage, exists for men and women, and persists in adjusted survival regression models.

Only four studies retrieved in this systematic review gave the cause of death and no assumption could be made for a different cause in the subgroup of UI patients [16,22,34,39]. Pneumonia represented 20–65% of the deaths. However these studies were not representative of the general population and death might be bound to the disease/condition itself (e.g., infection after immunosuppressant [16], or pneumonia for patients with neurologic impairment [22,34,39]).

The association between UI and death is probably multifactorial. On one hand, risk factors for the development of UI by themselves have a negative impact on survival. Indeed this meta-analysis shows that the association is closely tied to age, comorbid conditions, and disability, since the pooled HR of 2.2 is reduced to 1.3 when pooling adjusted models. For this reason, unadjusted HR should not be interpreted on its own and studies exploring UI and death should report adjusted HR. On the other hand, UI gives rise to multiple unfavourable outcomes [7], such as increased risk of falls and related injuries [10,51,52], depression [53], and infections [54–56]. Infections affect 20% of patients with UI and cause a mortality rate of 0.3%. Falls and depression increase mortality by 15% and 17% respectively [57]. However, the exact interaction between fall, depression, infection, and UI is difficult to assess and must have multiple interconnections, since all of those symptoms are frequent in the general elderly population and share many confounding factors. Thus, mortality is probably not entirely explained by those conditions.

New evidence and understanding of the pathophysiology of UI have gone way beyond the simple “mechanical” model of UI. Higher intakes of some micronutrients such as calcium [58], vitamin B12, and Zinc [59], as well as the total energy consumption, and saturated (opposed to polyunsaturated) fat are associated with UI [59,60]. Indeed, the most promising gene associated with lower urinary tract symptoms is a variant of the vitamin D receptor [61]. Vitamin D and calcium have both been extensively studied and associated with death [62–64]. Finally, recurrent infections, and/or a specific microbiota in the bladder of UI patients [65–67] might trigger a systemic mechanism. The genetics, the microbiota, and the nutritional theories are promising and could offer a perspective for future research to find the missing rational link between UI and death.

A causal association is supported by the dose response observed across studies. Nevertheless, meta-analysis of observational studies always face methodological limits. The remaining effect after adjustment for confounding factors (like age, disability and comorbid conditions) may be explained by a persisting confounding effect (under adjustment), or a publication bias (only significant adjusted models, or only models where the UI is associated with death are published). In favour of the last two hypotheses is the fact that the effect of published models is close to each other, independently of the number of the variables used to adjust. Published models would be those with a maximum covariate and persistent positive effect (or with only a small loss of statistical significance). Furthermore, not all adjusted models included all important confounding factors. To overcome this hypothesis would necessitate a meta-analysis of individual data and/or to adjust all models with the same confounding factors. The second argument for bias unrecognized by standard evaluation is the fact that one third of studies gave no adjusted models.

To our knowledge, there are no studies exploring specific UI treatments with drugs or surgery using mortality as the main outcome. Future studies exploring the decreased mortality after UI treatment would strengthen the causal hypothesis. A relative drawback comes from the fact that some interventions to reduce UI (weight loss/bariatric surgery or treatments
addressing the disability) are also prone to affect mortality [68,69]. Causal or not, the association between UI and death is strong, and could offer—by simply UI and its severity assessment—an overall mortality risk indicator. Unfortunately, UI is still often overlooked with only around half of UI patients seeking medical help [70].

The strength of our study is the use of HR (reported, calculated or estimated) as an effect estimate to pool results. Many published models report ORs, but this measure of association overestimates the real ratio of incidence, especially when the event is frequent (more than 10%) or follow-up is long, and is limited to the specific time-point considered (e.g. at 1 month post inclusion) [12]. The two strategies of UI severity stratification make the dose-response more reliable. Nevertheless, this meta-analysis has several limitations. Firstly, the definition of UI used is inconsistent across studies and often based on unreliable sources (e.g medical chart or not specified). Secondly, most pooled HRs were estimated from the proportion of deaths. This measure does not take into account the loss to follow-up. However, the sensitivity analysis pooling published OR from a given proportion of deaths gave similar results. Thirdly, we could not stratify the analyses on UI subtype (urge, stress and mixed type incontinence), which have different risk factors and possibly different impacts on mortality.

Conclusion

UI is a predictor of higher mortality in the general and particularly in the geriatric population. The association increases with the severity of UI and persists when pooling models adjusted for confounders. UI being a widely spread disorder, more attention should be given to the elderly in terms of its screening and treatment.

Supporting Information

S1 File. Search strategy. Supplemental statistics A: assessment of global HR from different subgroups. Supplemental statistics B: pooled HR ratios for UI severity.

S2 File. Table A. Newcastle-Ottawa Quality Assessment scale. Table B. Adjustment variables included in multivariate models. Table C. Subgroup analyses stratified on the three domains of the Newcastle-Ottawa Quality Assessment scale. Table D. PRISMA checklist. Fig A. Forest plot of adjusted OR of death at 6 months, 1, 3, 5, and 10 years. Fig B. Forest plot of unadjusted HR of death for urinary incontinence by frequencies of leakage episodes. Fig C. Forest plot of unadjusted difference of logarithm of HR between men and women. Fig D. Forest plot of adjusted HR of death for urinary incontinence by frequencies of leakage episodes. Fig E. Forest plot of adjusted difference of logarithm of HR between men and women.

Acknowledgments

We gratefully acknowledge Aleksandra Porowska and Gaël Gosteli for the advices on the final manuscript, and Ezgi Dilek Demirtas and Joël Spaltenstein for their correction of the English manuscript.

Author Contributions

Conceived and designed the experiments: GJ PD. Performed the experiments: CB GJ. Analyzed the data: GJ CC. Contributed reagents/materials/analysis tools: GJ CC. Wrote the paper: GJ.
Critical revision of the manuscript for important intellectual content: PD CB CC. Statistical analysis: GJ CC. Study supervision: GJ.

References

1. Abrams P, Cardozo L, Fall M, Grifiths D, Rosier P, Ulmsten U, et al. The standardisation of terminology of lower urinary tract function: report from the Standardisation Sub-committee of the International Continence Society. *Am J Obstet Gynecol* 2002; 187(1):116–26. PMID: 12148999

2. Markland AD, Richter HE, Fwu CW, Eggers P, Kusek JW. Prevalence and trends of urinary incontinence in adults in the United States, 2001 to 2008. *J Urol* 2011; 186(2):589–93. doi: 10.1016/j.juro.2011.03.114 PMID: 21684555

3. Bedrettnovina D, Fritel X, Panjo H, Ringa V. Prevalence of Female Urinary Incontinence in the General Population According to Different Definitions and Study Designs. *Eur Urol* 2015.

4. Jerez-Roig J, Santos MM, Souza DL, Amaral FL, Lima KC. Prevalence of urinary incontinence and associated factors in nursing home residents. *Neurourol Urodyn* 2014.

5. Thom DH, Haan MN, Van Den Eeden SK. Medically recognized urinary incontinence and risks of hospitalization, nursing home admission and mortality. *Age Ageing* 1997; 26(5):367–74. PMID: 9351481

6. John G, Gerstel E, Jung M, Dallenbach P, Faltin D, Petoud V, et al. Urinary incontinence as a marker of higher mortality in patients receiving home care services. *BJU Int* 2014; 113(1):113–9. doi: 10.1111/bju.12359 PMID: 24053316

7. Coyne KS, Wein A, Nicholson S, Kvasz M, Chen CI, Milsom I. Comorbidities and personal burden of urgency urinary incontinence: a systematic review. *Int J Clin Pract* 2013; 67(10):1015–33. doi: 10.1111/ijcp.12164 PMID: 24073974

8. Faltin DL. [Epidemiology and definition of female urinary incontinence]. *J Gynecol Obstet Biol Reprod (Paris)* 2009; 38(Suppl):S146–52.

9. Irwin DE, Kopp ZS, Agatep B, Milsom I, Abrams P. Worldwide prevalence estimates of lower urinary tract symptoms, overactive bladder, urinary incontinence and bladder outlet obstruction. *BJU Int* 2011; 107(7):1132–8. doi: 10.1111/j.1464-410X.2010.09993.x PMID: 21231991

10. Brown JS, Vittinghoff E, Wyman JF, Stone KL, Nevitt MC, Ensrud KE, et al. Urinary incontinence: does it increase risk for falls and fractures? Study of Osteoporotic Fractures Research Group. *J Am Geriatr Soc* 2000; 48(7):721–5. PMID: 10894308

11. Deeks JJ, Dinnes J, D’Amico R, Sowden AJ, Song F, et al. Evaluating non-randomised intervention studies. *Health Technol Assess* 2003; 7(27):iii–x, 1–173. PMID: 14499048

12. Perneger TV. Estimating the relative hazard by the ratio of logarithms of event-free proportions. *Contemp Clin Trials* 2008; 29(5):762–6. doi: 10.1016/j.cct.2008.06.002 PMID: 18639651

13. Johnson TM 2nd, Bernard SL, Kincade JE, Defriese GH. Urinary incontinence as a marker of community-living elderly people: results from the National Survey on Self-Care and Aging. *J Aging Health* 2000; 12(1):25–46. PMID: 10848124

14. Borenstein M. *Introduction to meta-analysis*. Chichester, U.K.: John Wiley & Sons, 2009.

15. Anpalahan M, Gibson SJ. Geriatric syndromes as predictors of adverse outcomes of hospitalization. *Intern Med J* 2008; 38(1):16–23. PMID: 17542997

16. Adams D, Samuel D, Goulon-Goed C, Nakazato M, Costa PM, Feray C, et al. The course and prognostic factors of familial amyloid neuropathy after liver transplantation. *Brain* 2000; 123 (Pt 7):1495–504. PMID: 10869060

17. Abramik A, Leblond JB, Perilliat I, Henry O, Loison M, De Madet M, et al. [Evaluation and clinical management of urinary disorders in 1,025 patients in a geriatric department]. *Ann Med Interne (Paris)* 1993; 144(2):92–6.

18. Baztan JJ, Arias E, Gonzalez N, Rodriguez de Prada MI. New-onset urinary incontinence and rehabilitation outcomes in frail older patients. *Age Ageing* 2005; 34(2):172–5. PMID: 15713862

19. Berrios GE. Urinary incontinence and the psychopathology of the elderly with cognitive failure. *Gerontology* 1986; 32(2):119–24. PMID: 3710171

20. Knobholz HM, Chen J, Chen YT, Wang Y, Radford MJ. Predicting one-year mortality among elderly survivors of hospitalization for an acute myocardial infarction: results from the Cooperative Cardiovascular Project. *J Am Coll Cardiol* 2001; 38(2):453–9. PMID: 11499737

21. Zweig S, Lawhorne L, Post R. Factors predicting mortality in rural elderly hospitalized for pneumonia. *J Fam Pract* 1990; 30(2):153–9. PMID: 2299310

22. Venkatesan P, Giadman J, Macfarlane JT, Barer D, Berman P, Kinnear W, et al. A hospital study of community acquired pneumonia in the elderly. *Thorax* 1990; 45(4):254–8. PMID: 2396532
23. Campbell AJ, Diep C, Reinken J, McCosch L. Factors predicting mortality in a total population sample of the elderly. *J Epidemiol Community Health* 1985; 39(4):337–42. PMID: 6086965
24. Campbell AJ, Reinken J, McCosh L. Incontinence in the elderly: prevalence and prognosis. *Age Ageing* 1985; 14(2):65–70. PMID: 4003185
25. Chen LK, Peng LN, Lin MH, Lai HY, Hwang SJ, Lan CF. Predicting mortality of older residents in long-term facilities: comorbidity or care problems? *J Am Med Dir Assoc*; 11(8):567–71. doi: 10.1016/j.jamda.2009.11.012 PMID: 20889092
26. Donaldson LJ, Jagger C. Survival and functional capacity: three year follow up of an elderly population in hospitals and homes. *J Epidemiol Community Health* 1983; 37(3):176–9. PMID: 6619715
27. Donaldson LJ, Clayton DG, Clarke M. The elderly in residential care: mortality in relation to functional capacity. *J Epidemiol Community Health* 1980; 34(2):96–101. PMID: 7400736
28. Ekelund P, Rundgren A. Urinary incontinence in the elderly with implications for hospital care consumption and social disability. *Arch Gerontol Geriatr* 1987; 6(1):11–8. PMID: 3592846
29. Espallargues M, Philip I, Seymour DG, Campbell SE, Primrose W, Arino S, et al. Measuring case-mix predicts 5-year functional decline and mortality outcomes in older ambulatory care patients. *J Am Geriatr Soc* 2012; 60(7):1243–50. doi:10.1111/j.1532-5415.2012.03886.x PMID: 22644457
30. Espallargues M, Caridad YOJM, Guerrero Munoz JB, Lopez Perez M, Romero Lopez M, Pavon Araujo AC. Mortality in relation to urinary incontinence and bowel symptoms among the oldest old: a population-based study. *Arch Gen Psychiatry* 1999; 56(5):439–46. PMID: 10369823
31. Gambassi G, Landi F, Lapane KL, Sgadari A, Mor V, Bernabei R. Predictors of mortality in patients with Alzheimer’s disease living in nursing homes. *J Neurol Neurosurg Psychiatry* 1999; 67(1):59–65. PMID: 10369823
32. Goldfarb AI. Predicting mortality in the institutionalized aged. A seven-year follow-up. *Arch Gen Psychiatry* 1969; 21(2):172–6. PMID: 5804014
33. Herzog AR, Diokno AC, Brown MB, Fultz NH, Goldstein NE. Urinary incontinence as a risk factor for mortality. *J Am Geriatr Soc* 1994; 42(3):264–8. PMID: 8120310
34. Hollins S, Attard MT, von Fraunhofer N, McGuigan S, Sedgwick P. Mortality in people with learning disability: risks, causes, and death certification findings in London. *Dev Med Child Neurol* 1998; 40(1):50–6. PMID: 9459217
35. Holroyd-Leduc JM, Mehta KM, Covinsky KE. Urinary incontinence and its association with death, nursing home admission, and functional decline. *J Am Geriatr Soc* 2004; 52(5):712–8. PMID: 15086650
36. Kohn D, Sinoff G, Strulov A, Ciechanover M, Wei JY. Long-term follow-up of patients aged 75 years and older admitted to an acute care hospital in Israel. *Aging (Milano)* 1991; 3(3):279–85.
37. Koyano W, Shibata H, Haga H, Suyama Y. Prevalence and outcome of low ADL and incontinence among the elderly: five years follow-up in a Japanese urban community. *Arch Gerontol Geriatr* 1986; 5(3):197–206. PMID: 2948464
38. Landi F, Liperoti R, Lattanzio F, Russo A, Tosato M, Barillaro C, et al. Effects of anorexia on mortality among older adults receiving home care: an observation study. *J Nutr Health Aging*; 16(1):79–83. PMID: 22238005
39. Luk JKH, Chan WK, Ng WC, Chiu PKC, Ho C, Chan TC, et al. Mortality and health services utilisation among older people with advanced cognitive impairment living in residential care homes. *Hong Kong Med J*; 19(6):518–24. doi: 10.12809/hkmj133951 PMID: 24096360
40. Min L, Yoon W, Mariano J, Wenger NS, Elliott MN, Kamberg C, et al. The vulnerable elders-13 survey predicts 5-year functional decline and mortality outcomes in older ambulatory care patients. *J Am Geriatr Soc* 2009; 57(11):2070–6. doi: 10.1111/j.1532-5415.2009.02497.x PMID: 19793154
41. Nakanishi N, Tatara K, Shinsho F, Murakami S, Takatorige T, Fukuda H, et al. Mortality in relation to urinary and faecal incontinence in elderly people living at home. *Age Ageing*; 28(3):301–6. PMID: 10475868
42. Nuotio M, Luukkaala T, Tammela TL, Jylha M. Six-year follow-up and predictors of urgency-associated urinary incontinence and bowel symptoms among the oldest old: a population-based study. *Arch Gerontol Geriatr* 2009; 49(2):e85–90. doi: 10.1016/j.archger.2008.08.009 PMID: 19058863
43. Nuotio M, Tammela TL, Luukkaala T, Jylha M. Urgency and urge incontinence in an older population: ten-year changes and their association with mortality. *Aging Clin Exp Res* 2002; 14(5):412–9. PMID: 12602577
44. Pagliacci MC, Franceschini M, Di Clemente B, Agostì M, Spizzichino L. A multicentre follow-up of clinical aspects of traumatic spinal cord injury. *Spinal Cord* 2007; 45(6):404–10. PMID: 17102809
45. Sorbye LW, Grue EV. Hip fracture and urinary incontinence—use of indwelling catheter postsurgery. *Scand J Caring Sci* 2013; 27(3):632–42. doi: 10.1111/j.1471-6712.2012.01075.x PMID: 22943160
46. Tilvis RS, Hakala SM, Vaivanne J, Erkinjuntti T. Urinary incontinence as a predictor of death and institutionalization in a general aged population. Arch Gerontol Geriatr 1995; 21(3):307–15. PMID: 15374206
47. Brauer E, Mackeprang B, Bentzon MW. Prognosis of survival in a geriatric population. Scand J Soc Med 1978; 6(1):17–24. PMID: 635496
48. Luk JK, Chan WK, Ng WC, Chiu PK, Ho C, Chan TC, et al. Mortality and health services utilisation among older people with advanced cognitive impairment living in residential care homes. Hong Kong Med J 2013; 19(6):518–24. doi: 10.12809/hkmj133951 PMID: 24096360
49. Bootsma AM, Buurman BM, Geerlings SE, de Rooij SE. Urinary incontinence and indwelling urinary catheters in acutely admitted elderly patients: relationship with mortality, institutionalization, and functional decline. J Am Med Dir Assoc; 14(2):147.e7–12.
50. Berardelli M, De Rango F, Morelli M, Corsonello A, Mazzei B, Mari V, et al. Urinary incontinence in the elderly and in the oldest old: correlation with frailty and mortality. Rejuvenation Res 2013; 16(3):206–11. doi: 10.1089/rej.2013.1417 PMID: 23496115
51. Oliver D, Daly F, Martin FC, McMurdo ME. Risk factors and risk assessment tools for falls in hospital in-patients: a systematic review. Age Ageing 2004; 33(2):122–30. PMID: 14960426
52. Hunter KF, Voaklander D, Hsu ZY, Moore KN. Lower urinary tract symptoms and falls risk among older women receiving home support: a prospective cohort study. BMC Geriatr 2013; 13:46. doi: 10.1186/1471-2318-13-46 PMID: 23672343
53. Farage MA, Miller KW, Berardesca E, Maibach HI. Psychosocial and societal burden of incontinence in the aged population: a review. Arch Gynecol Obstet 2008; 277(4):285–90. PMID: 18026973
54. Brogan E, Langdon C, Brookes K, Budgeon C, Blacker D. Can’t swallow, can’t transfer, can’t toilet: factors predicting infections in the first week post stroke. J Clin Neurosci 2015; 22(1):92–7. doi: 10.1016/j.jocn.2014.05.035 PMID: 25174763
55. Beeckman D, Van Lancker A, Van Hecke A, Verhaeghe S. A systematic review and meta-analysis of candidate gene association studies of lower urinary tract symptoms in men. BJU Int 2004; 94(7):727–41. doi: 10.1111/j.1464-410X.2004.05362.x PMID: 15374206
56. Mody L, Juthani-Mehta M. Urinary tract infections in older women: a clinical review. JAMA 2014; 311(8):844–54. doi: 10.1001/jama.2014.303 PMID: 24570248
57. Zivin K, Yosef M, Miller EM, Valenstein M, Duffy S, Kales HC, et al. Associations between depression and all-cause and cause-specific risk of death: a retrospective cohort study in the Veterans Health Administration. J Psychosom Res 2015; 78(4):324–31. doi: 10.1016/j.jpsychores.2015.01.014 PMID: 25697585
58. Maserejian NN, Giovannucci EL, McVary KT, McKinlay JB. Intakes of vitamins and minerals in relation to urinary incontinence, voiding, and storage symptoms in women: a cross-sectional analysis from the Boston Area Community Health survey. Eur Urol 2011; 59(6):1039–47. doi: 10.1016/j.eururo.2011.03.008 PMID: 21444148
59. Dallosso H, Matthews R, Mcgrother C, Donaldson M. Diet as a risk factor for the development of stress urinary incontinence: a longitudinal study in women. Eur J Clin Nutr 2004; 58(6):920–6. PMID: 15164113
60. Maserejian NN, Giovannucci EL, McVary KT, Mcgrother C, McKinlay JB. Dietary macronutrient and energy intake and urinary incontinence in women. Am J Epidemiol 2010; 171(10):1116–25. doi: 10.1093/aje/kwq065 PMID: 20421220
61. Cartwright R, Mangera A, Tikkinen KA, Rajan P, Pesonen J, Kirby AC, et al. Systematic review and meta-analysis of candidate gene association studies of lower urinary tract symptoms in men. Eur Urol 2014; 66(4):752–68. doi: 10.1016/j.eururo.2014.01.007 PMID: 24491308
62. Asemi Z, Saneel P, Sabihi SS, Feizi A, Esmaillzadeh A. Total, dietary, and supplemental calcium intake and mortality from all-causes, cardiovascular disease, and cancer: A meta-analysis of observational studies. Nutr Metab Cardiovasc Dis 2015; 25(7):623–34. doi: 10.1016/j.numecd.2015.03.008 PMID: 25912278
63. Zittermann A, Prokop S. The role of vitamin D for cardiovascular disease and overall mortality. Adv Exp Med Biol 2014; 810:106–19. PMID: 25207362
64. Bjelakovic G, Gluud LL, Nikolova D, Whitfield J, Simonetti RG, et al. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Syst Rev 2014; 1:CD007470. doi: 10.1002/14651858.CD007470.pub3 PMID: 24414552
65. Brubaker L, Wolfe AJ. The new world of the urinary microbiota in women. Am J Obstet Gynecol 2015; 213(5):644–9. doi: 10.1016/j.ajog.2015.05.032 PMID: 26003055
66. Pearce MM, Zilliox MJ, Rosenfeld AB, Thomas-White KJ, Richter HE, Nager CW, et al. The female urinary microbiome in urgency urinary incontinence. Am J Obstet Gynecol 2015; 213(3):347.e1–47.e11.
67. Pearce MM, Hilt EE, Rosenfeld AB, Zilliox MJ, Thomas-White K, Fok C, et al. The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. *MBio* 2014; 5(4): e01283–14. doi: 10.1128/mBio.01283-14 PMID: 25006228

68. Subak LL, King WC, Belle SH, Chen JY, Courcoulas AP, Ebel FE, et al. Urinary Incontinence Before and After Bariatric Surgery. *JAMA Intern Med* 2015; 175(8):1378–87. doi: 10.1001/jamainternmed.2015.2609 PMID: 26098620

69. Subak LL, Wing R, West DS, Franklin F, Vittinghoff E, Creasman JM, et al. Weight loss to treat urinary incontinence in overweight and obese women. *N Engl J Med* 2009; 360(5):481–90. doi: 10.1056/NEJMoa0806375 PMID: 19179316

70. Duralde ER, Walter LC, Van Den Eeden SK, Nakagawa S, Subak LL, Brown JS, et al. Bridging the Gap: Determinants of Undiagnosed or Untreated Urinary Incontinence in Women. *Am J Obstet Gynecol* 2015.