INTRODUCTION

Ovarian cancer is one of the leading causes of mortality in the females.\(^1\) The annual percentage of increase in age standardized incidence rates ranged from 0.7% to 2.4%.\(^2\) Gynaecological cancer constituting about 30% of the total cancers among women in India and ovarian cancer contributes about 19.8% of the total cases.\(^3\)

Risk malignancy index (RMI) is a simple scoring system based on serum CA 125, USG score & menopausal status. It is useful in predicting a malignant ovarian mass and in differentiating malignant from benign ovarian mass. Most of the ovarian tumors are diagnosed at a later stage since onset and progression of this tumor makes early diagnosis difficult.

There is a significant difference in management of a malignant and benign tumor. Pre-operative knowledge is necessary to determine the nature of adnexal mass for optimal and appropriate primary treatment.

RMI-1 was developed by Jacobs et al. in 1990 and RMI-2 was developed by Tingulstad et al. with slight modification in score value of menopausal status and ultrasound score. It was modified to RMI-3 in 1994.\(^4\) Cut-off value of Risk of malignancy index is taken 250 to increase the detection rate of true negative cases.\(^5\)

Preoperative determination of the nature of adnexal mass is necessary for optimal and appropriate primary treatment. RMI is a simple scoring system which can be applied in less specialized centers.

MATERIAL AND METHODS

The present study was conducted in the Department of Obstetrics & Gynaecology in collaboration with Department of Pathology and Department of Radiodiagnosis, Institute of Medical Sciences, Banaras Hindu University from July 2017 to June 2019.
This is a prospective study on 100 patients with clinically diagnosed ovarian masses attending either outdoor or admitted in the gynaecology ward of SSH, BHU, Varanasi.

Written informed consent was obtained from all the participants prior to the enrolment for the study.

Confirmed adnexal masses cases were selected purposively from outdoor and those hospitalized in Gynaecology ward, SSH, BHU.

Inclusion criteria

Women with clinically detected ovarian mass of any age group. In premenopausal women, criteria for ovarian masses size are more than 8 cm. Postmenopausal status defined as more than 1 year of amenorrhea or, who underwent hysterectomy and criteria for ovarian mass size is more than 5 cm.

Exclusion criteria

Women having ovarian tumor with other conditions like endometriosis, fibroid, pregnancy, PID, women in menstruating phase and associated with concurrent malignancy. Patients who were unfit for major surgery, inoperable cases, previous major pelvic surgery.

Intraoperatively, any other mass other than ovary was also excluded from study. Women with already diagnosed cases of ovarian malignancy receiving chemotherapy, masses arises from GI tract or urinary bladder, pregnancy and its complications like ectopic, molar and post abortive were excluded.

Clinical history was taken including Age, Parity, menstrual history, socioeconomic status and symptoms. Personal, family and history of any medical illness were also obtained.

Premenopausal and Postmenopausal status was certain in each subject.

Serum CA125 level was estimated in all subjects.

Risk of malignancy index (RMI)

RMI = U x M x value of CA-125 (Table 1)

USG scoring

Transabdominal scans were done using a 3.5MHz and transvaginal scan done with 7.5Mz transducer. The lesions were evaluated according to size, shape and multiplicity, thickness of wall and septa and ascites. Scoring system based on sonographic findings. Morphological evaluation was done using ultrasonography. USG score was done within 2 week prior to laparoscopy.

Serum CA-125 level estimation

A peripheral venous sample was taken from each patient, prior to surgery for the estimation of serum CA-125 levels by radioimmunoassay. Abnormal CA-125 level is defined as serum levels > 35 U/ml, (considered as high risk for ovarian malignancy).

Menopausal scoring (M)

Menopausal status was defined as one or more years of amenorrhea or women who had undergone hysterectomy. All other women were considered premenopausal. For premenopausal women score 1 was given and for postmenopausal women score 3 was given.

Risk of malignancy index was calculated for each subject by multiplying USG score, absolute values of CA-125 serum levels and menopausal score.

Operative finding during laparotomy of all cases were noted. Operative specimen or tissue was sent for histopathological examination. Ascitic fluid or peritoneal washing was sent for cytological examination. Histopathological diagnosis was considered as gold standard for defining outcome.

Therefore RMI is a simple, valuable, highly reliable and clinically applicable scoring system, in preoperative evaluation of ovarian mass for differentiating malignant from benign lesion.

Interpretation of risk malignancy index (RMI)

If the score was <25, considered as low risk.

If the score was 25-250, considered as moderate risk.

If the score was >250, considered as high risk.

STATISTICAL ANALYSIS

Chi-square, Fisher’s exact tests are used to compare proportion of benign and malignant cases with different ultrasonographic parameters. A p-value <0.05 was considered to be significant. Results of RMI were validated against histopathological confirmed lesions. For patient age and sonographic parameters univariate statistical analysis was performed.

RESULTS

- Maximum patients of benign and malignant ovarian tumor were clustered in age group of less than 45 year and more than 45 year respectively.
- The association between ultrasound score and disease status was not that statistically significant at a P-value of 0.009.
- The association between value of CA-125 and disease status was statistically significant at a p-value of <0.001.
- RMI had a sensitivity of 100%, a specificity of 91.67%, a positive predictive value of 97.50%, and negative predictive value of 100%.
Menopausal status had a sensitivity of 24.36%, specificity of 45.45%, positive predictive value of 61.29%, and negative predictive value of 14.49%.

Serum CA-125 level had a sensitivity 35.90%, a specificity of 9.09%, a positive predictive value of 58.33%, and a negative predictive value of 3.85%.

Ultrasound score had a sensitivity of 48.72%, a specificity of 81.82%, a positive predictive value of 90.48%, and a negative predictive value of 31.03%.

20 out of 100 subjects had RMI > 250 of which 20 subjects had malignant tumor. Eighty subjects had RMI < 250 of which 78 had benign tumor, and 2 had malignant tumor.

Analysing the diagnostic performance of RMI, we found that RMI performed better than individual parameters in differentiating benign and malignant ovarian tumors at the cut-off score of 250.

DISCUSSION

Risk of malignancy index is the multiplication of serum CA-125, menopausal status and USG findings. In this study, the cut-off level of RMI is taken as 250.[RMI 3 is calculated]

In this study, out of 100 cases 28 cases (28%) were malignan and 72 were benign. Out of 52 cases with lower CA-125 value (<35IU/ml), 28 cases were benign and 24 were malignant. Out of 48 cases with CA-125 value >35IU/ml, 28 cases were benign and 20 were malignant. 80 subjects had malignancy risk. This discrepancy in the present study was due to the proportion of sample size which included a large number of premenopausal women as compared to postmenopausal (86.3%) in their study. In premenopausal age group most of the ovarian masses were benign compared to postmenopausal patients with a P-value of 0.008.

In present study, out of 100 clinically diagnosed cases 52 cases were noted with lower CA-125 value (≤35IU/ml) and 48 cases with CA-125 value >35IU/ml (Table-4). Out of 48 patients of CA-125 value >35IU/ml, 28 cases were benign and 20 were malignant. Out of 52 cases with lower CA-125 value (≤35 IU/ml), 50 cases were benign and 2 were malignant (Table-7).

Ultrasonography is widely appreciated as the best imaging method for evaluation of ovarian pathology. Several groups have reported higher values for this method. In our study, an ultrasound score of 3 had the sensitivity (48.72%), specificity 81.82%, positive predictive value 90.48% and negative predictive value (31.03%) among the parameters evaluated. [Yelikar KA et al. 2016]¹⁰

Serum CA-125 level is widely appreciated as a useful biomarker for estimating the risk of ovarian cancer, though other gynaecological pathology can also increase its levels. Mayer AR et al. have earlier reported sensitivity and specificity of less than 80%, for this marker, in the prediction of ovarian cancers.¹¹Simsek et al. (2014) has reported a sensitivity of 78.6% and specificity of 63.5% for a CA-125 cut-off of 35 IU/ml.¹² In our study, CA-125 levels >35IU/ml had a sensitivity of 35.90%, specificity of only 9.09%, positive predictive value of 58.33%, and negative predictive value of 3.85% respectively. (Statistically significant p-value <0.001). This discrepancy in the present study was due to small sample size.

Rao (2014) has reported higher sensitivity, specificity and positive and negative predictive values for a postmenopausal score of 3.¹³ In our study, this parameter had sensitivity (24.36%), specificity (45.54%), positive predictive value (61.29%) and negative predictive values (61.29%) in assessing malignancy risk. This discrepancy in the present study was due to the proportion of sample size which included a large number of premenopausal women as compared to postmenopausal.

The RMI cut-offs in many studies ranged from 25 to 250 (reviewed in Geomini et al. 2009).¹⁴¹⁵ Most studies reported an increased diagnostic accuracy and performance with an RMI
cut-off of 200.16 Yamamoto et al. (2009) reported a sensitivity and specificity of 75% and 91%, respectively.17 A systematic review study by Geomini et al. in 2009,116 diagnostic studies for adnexal malignancy was reviewed.18 The reported results showed that RMI at cut-off point of 200 had a sensitivity of 78% and a specificity 87% for malignant mass diagnosis.

According to the results of Ulusoy et al. in 2007, the RMI in a cut-off level of 153 showed a sensitivity of 76.4%, a specificity of 77.9%, a PPV of 65.9% and an NPV of 85.5% for prediction of malignancy.19 In our present study, RMI, at a cut-off level of 250 had a high sensitivity (100%) and high specificity (91.67%), PPV of 97.50% and NPV of 100% respectively.

From our results RMI is suggested to be better than other single parameter.

False negative rate should ideally be zero or close to zero to exclude malignancies. Higher cut-off value of RMI is taken so that specificity increases and false negative cases decrease, so that problem of limitation of referral to distant centers can overcome.

Table-9, 10, when the distribution of ovarian tumors was studied according to histopathology report, 78% cases were benign and 22% were malignant. Out of benign cases 35.90% were Mucinous cystadenoma, 25.64% were serouscystadenoma and 15.38 % were dermoidcyst. Out of Malignant tumor 45.45% were papillary serous cystadenocarcinoma, 27.27% were Mucinoscystadenocarcinoma and 18.18% were serouscystadenocarcinoma. Nearly similar figures have been observed by Dora et al. in 2017.

CONCLUSION

The present study demonstrates that the validity of RMI is higher as compared to validity of individual parameters. In a low resource setting where sophisticated radiological and biochemical tests may not be available at all places, where RMI can be used as an investigation for the triage of patients and referral to a higher center.

ACKNOWLEDGEMENTS

We would like to thanks all the support member of department of Obstetrics and Gynaecology, department of Radiodiagnosis and Imaging and department of Pathology, Banaras Hindu University, and Varanasi India. We also acknowledge the immense help received from the scholar article are cited and included in references of this manuscript.

Source of Funding: Done by hospital.

Conflict of interest: No competing interests.

Ethical approval: The study was approved by the ethical committee of the hospital. The ethical committee approval number is Dean/2018/EC/482. The aim of the study was explained appropriately and informed written consent was obtained from all the patients.

Authors’ Contribution:

All the work including study conception and design, data collection, patientselection, consent, histopathology report collection, analysis and interpretation of results and manuscript preparation done by Dr Neha Kumari under guidance of Dr Mamta Singh.

REFERENCES

1. Spencer JA. A multidisciplinary approach to ovarian cancer at diagnosis. The British J Radiol. 2005;78(2005):595-102. rmi 17.
2. Murthy NS, Shalini S, Suman G, Pruthvish S, Mathew A. Changing trends in incidence of ovarian cancer - the Indian scenario. Asian Pac J Cancer Prev. 2009;10(6):1025-30.
3. Kanan AYSonali SD, Sandip SN, Sanjaykumar BP. Evaluation of the validity of risk malignancy index in clinically diagnosed ovarian masses and to compare it with the validity of individual constituent parameter of risk malignancy index. Int J Reprod Contracept Obstet Gynecol. 2016 Feb;5(2):460-464
4. Tingulstad S, Hagen B, Shjerdestad FE, Onsrud M, Kiserud T, Halorsen T, et al. Evaluation of a risk of Malignancy index based on serum CA 125, USG findings and menopause status in the preoperative diagnosis of pelvic masses. Br J Obstet Gynaecol. 1996:103:826-31
5. RCOG Guideline No. 34 October 2003, Reviewed 2010.
6. Bouzari Z, Yazdani S, Ahmadi MH, Barat S, Kelagar ZS, Kute naie MJ et al. Comparison of three malignancy risk indices and CA-125 in the preoperative evaluation of patients with pelvic masses. BMC Res Notes. 2011;4:206.
7. Javdekar R, Maitra N. Risk of Malignancy Index (RMI) in Evaluation of Adnexal Mass. The Journal of Obstetrics and Gynecology of India (March–April 2015) 65(2):117–121.
8. Santosh KD, Atal BD, Benudhar P and Jatindra PH. A prospective study to evaluate the risk malignancy index and its diagnostic implication in patients with suspected ovarian mass. Dora et al. Journal of Ovarian Research (2017)10:55. DOI 10.1186/ s13048-017-0351-2
9. Tahereh A, Mahdieh R. Risk of malignancy index in preoperative evaluation of pelvic masses. Asian Pac J Cancer Prev. 2011;12:1727-30.
10. Kanan AY, Sonali SD, Sandip SN, Sanjaykumar BP. Evaluation of the validity of risk malignancy index in clinically diagnosed ovarian masses and to compare it with the validity of individual constituent parameter of risk malignancy index. Int J Reprod Contracept Obstet Gynecol. 2016 Feb;5(2):460-464
11. Mayer AR, Chambers SK, Graves E, Home C, Tseng PC, Nelson GE, et al. Ovarian cancer staging: does it require a gynecologic oncologist? Gynecol Oncol. 1992; 47:223–7.
12. Simsek HS, Tokmak A, Ozgu E. Ole of a risk of malignancy index in clinical approaches to adnexal masses. Asian Pac J Cancer Prev. 2014;15(18):7793–7.
13. Rao JH. Risk of malignancy index in assessment of pelvic mass. Int J Biomed Res. 2014;5(3):184-6.

No competing interests.
Kumari et al: A prospective study of risk malignancy index in adnexal masses

14. Geomini P, Kruitwagen R, Bremer GL, Cnossen J, Mol BWJ. The accuracy of risk scores in predicting ovarian malignancy: a systematic review. Obstet Gynecol. 2009;113(2):384–94.
15. Tahereh A, Mahdieh R. Risk of malignancy index in preoperative evaluation of pelvic masses. Asian Pac J Cancer Prev. 2011;12:1727-30.
16. Jacobs I, Oram D, Fairbanks J, Turner J, Frost C, Grudzinskas JG. A risk of malignancy index incorporating CA125, ultrason and menopausal status for the accurate preoperative diagnosis of ovarian cancer. Br J Obstet Gynaecol. 1990;97(10):922-9.

Table 1: Risk of malignancy index (RMI) [RMI 3]

Criteria	Scoring system	Scores
Menopausal status		
Premenopausal	1	A (1 or 3)
Post-menopausal	3	
Ultrasonic features (one point for each)		
Multiloculated	No feature Or	
Solis areas	One feature = 1	B (1 or 3)
Bilaterality	> 1 feature = 3	
Ascites		
Metastasis		
Serum CA 125	Absolute level	C
Risk of malignancy index	A x B x C	

Table 2: Age distribution of cases

Age (in years)	Benign N=72	Malignant N=28	P-value
< 45	70	8	< 0.001
> 45	2	20	

Seventy eight cases of ovarian tumor came under age group of < 45 years out of which 70 were benign and 8 were malignant.

Above the age of 45 year most of ovarian tumors were malignant.

Table 3: Distribution of cases according to USG score

USG score	Total number of ovarian masses	Percentage of ovarian masses
1	42	42
3	58	58

42% patient had USG score of 1 and 58% patient had USG score of 4.

Table 4: Distribution of cases according to serum CA-125 level

CA-125 in IU/ml	Total number of ovarian masses	Percentage of ovarian masses
> cut off (35)	48	48
≤ cut off (≤ 35)	52	52

Cut-off value of CA-125 was 35 IU/ml, 48% of cases had CA-125 value more than 35 IU/ml, 52% cases had CA-125 value ≤ 35 IU/ml.

Table 5: Distribution of cases according to Menopausal status

Menopausal status	Total number of ovarian masses	Percentage of ovarian masses
Post-menopausal	31	31
Pre-menopausal	69	69

In our study most of the cases were pre-menopausal (69%) and 31% cases came under post-menopausal group.

Table 6: Distribution of cases according to RMI

RMI	Total number of ovarian masses	Percentage of ovarian masses
< 25 (Low risk)	17	17
25-250 (Moderate)	63	63
> 250 (High risk)	20	20

Twenty percent of total cases were in the high risk group according to risk malignancy index.

Table 7: Correlation of RMI and its individual parameter with histopathology

Variables	Histopathology	Total	p-value		
USG score					
Score 1	38	4	42	0.009	
Score 3	40	18	58		
CA-125 (Cut off = 35)	28	20	48	<0.001	
< Cut off	50	2	52		
≥ Cut off					
Menopausal status	Post-menopausal	19	12	31	0.008
Pre-menopausal	59	10	69		
RMI					
RMI < 250	78	2	80	<0.001	
RMI > 250	0	20	20		

The association between RMI and disease status was statistically significant at a P-value of < 0.001. The association between value of CA-125 and disease status was also statistically significant (p-value of <0.001).
Kumari et al: A prospective study of risk malignancy index in adnexal masses

Table 8: Comparison of validity of RMI and validity of individual parameters

Statistical Parameters	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
USG score	48.72	81.82	90.48	31.03
Serum CA-125 level	35.90	9.09	58.33	3.85
Menopausal status	24.36	45.45	61.29	14.49
RMI	100	91.67	97.50	100

RMI accurately differentiated between benign and malignant ovarian masses with a sensitivity of 100% and specificity of 91.67%, PPV of 97.5% and NPV of 100%.

Table 9: Distribution of ovarian tumors according to histopathology

Nature of Tumor	No	Percentage (%)
Benign tumors (B)		
01 Serous cystadenoma	20	25.64
02 Serous cystadenofibroma	0	0.00
03 Papillary serous cystadenoma	8	10.26
04 Mucinous cystadenoma	28	35.90
05 Papillary mucinous cystadenoma	6	7.69
06 Dermoid cysts	12	15.38
07 Granulosa cell tumor	0	0.00
08 Chocolate cyst	4	5.13
Total	78	100.00

In our study group most of the benign tumors were serous cystadenoma and most of the malignant ovarian tumors were papillary serous cystadenocarcinoma.

Table 10: Distribution of ovarian tumors according to histopathology

Malignant tumors (M)	No	Percentage (%)
01 Serous cystadenocarcinoma	4	18.18
02 Papillary serous cystadenocarcinoma	10	45.45
03 Mucinous cystadenocarcinoma	6	27.27
04 papillary mucinous cystadenocarcinoma	2	9.09
05 Dysgerminoma	0	0.00
06 Yolk sac tumor	0	0.00
07 Sertoli-leydig cell tumor	0	0.00
08 Krukenberg tumor	0	0.00
Total	22	100.00