Some Nonlinear Fractional PDEs Involving $\beta$-Derivative by Using Rational $\exp(-\Omega(\eta))$-Expansion Method

Haifa Bin Jebreen

Mathematics Department, College of Science, King Saud University, Riyadh, Saudi Arabia

Correspondence should be addressed to Haifa Bin Jebreen; hjebreen@ksu.edu.sa

Received 12 November 2019; Revised 16 March 2020; Accepted 16 April 2020; Published 27 May 2020

In this article, some new nonlinear fractional partial differential equations (PDEs) (the space-time fractional order Boussinesq equation; the space-time (2 + 1)-dimensional breaking soliton equations; and the space-time fractional order SRLW equation) have been considered, in which the treatment of these equations in the diverse applications are described. Also, the fractional derivatives in the sense of $\beta$-derivative are defined. Some fractional PDEs will convert to consider ordinary differential equations (ODEs) with the help of transformation $\beta$-derivative. These equations are analyzed utilizing an integration scheme, namely, the rational $\exp(-\Omega(\eta))$-expansion method. Different kinds of traveling wave solutions such as solitary, topological, dark soliton, periodic, kink, and rational are obtained as a by product of this scheme. Finally, the existence of the solutions for the constraint conditions is also shown. The outcome indicates that some fractional PDEs are used as a growing finding in the engineering sciences, mathematical physics, and so on.

1. Introduction

Traveling wave and soliton solutions are one of the most interesting and fascinating areas of research in different fields of engineering and physical sciences. This type of solutions, basically structured by solving nonlinear partial differential equations (NLPDEs), arises in physical phenomena such as optic, acoustic wave, and mechanic sciences. Consequently, it is imperative to address the dynamics of these soliton solutions from a mathematical aspect. This will lead to a deeper understanding of the engineering perspective of these solutions [1–10]. Some of the authors investigated novel models of partial differential equations containing the Fokas–Lenells equation [11], the General Satisfaction Index [12], the multiasset option pricing problem [13], the affine jump-diffusion model [14], and the (1 + 1)-dimensional coupled nonlinear Schrödinger equation [15]. An important analysis in signal analysis including the transfer function, Bode diagram, Nyquist plot, and Nichols plot was obtained based on the Laplace transform by Atangana and Akgül [16]. As a result, in the past few years, several effective, rising, and realistic methods have been initiated and dilated to extract closed form solutions to the NLPDEs; for example, the semi-inverse principle method is one of the powerful methods many scholars studied including the fractional nonlinear model of the low-pass electrical transmission lines [17] and the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term [18]. Xie et al. worked on nonlinear optical soliton containing a variable-coefficient AB system in the geophysical fluids or nonlinear optics [19], studied the turbulence for a coupled nonlinear Schrödinger system to find the rogue waves solutions [20], and described the propagation of ultrashort optical pulses in a birefringent fiber in the coupled Hirota equations [21]. Rizvi et al. investigated the optical solitons for the Biswas–Milovic equation by the new extended auxiliary equation method [22] and the modulated compressional dispersive alfven and heisenberg ferromagnetic spin chains [23]. Some authors studied the conformable fractional derivative on some of the conformable time-fractional variant bussinesq equations [24], the space-time fractional simplified MCH and SRLW...
equations [25], and the fractional and classical GEW-Burgers equations [26] by utilizing the analytical methods.

In this paper, we will study the different kinds of traveling wave solutions in generalized nonlinear Schrödinger equation modeling which describe the model of few-cycle pulse propagation in metamaterials with parabolic law of nonlinearity from a purely mathematical viewpoint. Therefore, the importance of this paper will be to extract exact traveling wave solution for the nonlinear model. This model is described by the decoupled nonlinear Schrödinger equation (NLSE) with group velocity mismatch, group velocity dispersion, and spatio-temporal dispersion. There are several integration tools available to solve the model. Many nonlinear Schrödinger equations have been examined with regards to soliton theory, where complete integrability was emphasized by various analytical techniques. A few methods are improved tan(φ/2)-expansion method, the homotopy analysis method, the variation iteration principle, the exp-function method, etc. [1–46]. The space-time fractional order Boussinesq equation (STFBE) with quadratic-cubic nonlinearity involving the β-derivative [47, 48] is presented as follows:

\[ D_i^{1\alpha}\psi + bD_i^{2\alpha}\psi + \beta D_i^{2\alpha}(\psi^2) + \gamma D_i^{4\alpha}\psi = 0, \quad t > 0, \quad 0 < \alpha \leq 1, \]

where \( D_i^{2\alpha}(\cdot) = (d^{2\alpha}/dt^{2\alpha})(\cdot) \) is the vertical deflection, \( \beta \) is the coefficient controlling nonlinearity and the quadratic nonlinearity, and \( \gamma \) is the dispersion parameter depending on the rigidity characteristics of the material and compression [47, 48]. Furthermore, we take the space-time (2 + 1)-dimensional breaking soliton equations (STFBSEs) [48, 49] in the following:

\[ D_i^{2\alpha}\psi + D_i^{2\alpha}\psi + \psi D_i^\alpha(D_i^\alpha\psi) + D_i^\alpha\psi D_i^\alpha\psi + D_i^\alpha(D_i^{2\alpha}\psi) = 0, \quad t > 0, \quad 0 < \alpha \leq 1. \]

Mohyud-Din and Bibi [48] used the exponential rational function method to get exact solutions of nonlinear STFBSEs. Also, Wen and Zheng [49] implemented the new fractional subequation method to nonlinear STFBSEs.

The rest of this paper is structured as follows. The initial definitions are given in Section 2. In Section 3, an overview of the integration scheme is given along with the analysis of the model. In Sections 4, 5, and 6, respectively, the STFBE, STFBSEs, and STFSRLWE have been employed to obtain the rational dark, periodic, kink-singular, cupson, and travelling wave solutions with the considered method. In Section 7, discussion of mitigating internet bottleneck of parabolic law of nonlinearity has been offered. In Section 8, the conclusion has been given.

2. Initial Definitions

Definition 1 (definition of β-derivative). Suppose \( \chi: [0; 1] \rightarrow \mathbb{R} \), then the β derivative of \( \chi \) of order \( \alpha \) is defined as

\[ D_t^\alpha(\chi(t)) = \lim_{\epsilon \to 0} \frac{\chi(t + \epsilon (t + (1/\Gamma(\alpha)))^{1-\alpha}) - \chi(t)}{\epsilon}, \quad \alpha \in (0, 1], \quad t > 0. \]

The properties and new theorems will be used as follows.

Theorem 1. Suppose \( \alpha \in (0, 1] \); let \( \chi \) and \( \psi \) be α-differentiable at a point \( t \); therefore,

1. \( D_t^\alpha(a\chi(t) + b\psi(t)) = aD_t^\alpha(\chi(t)) + bD_t^\alpha(\psi(t)), \) for \( a, b \in \mathbb{R} \)
2. \( D_t^\alpha(c) = 0, \) for \( c \in \mathbb{R} \)
3. \( D_t^\alpha(\chi(t)\psi(t)) = \chi(t)D_t^\alpha(\psi(t)) + \psi(t)D_t^\alpha(\chi(t)) \)

Theorem 2. Suppose \( \chi: [0; 1] \rightarrow \mathbb{R} \) be a function such that \( \chi \) is differentiable and also α-differentiable. Assume \( \psi \) be a differentiable function defined in the range of \( \chi \). Therefore, we have

\[ \frac{D_t^\alpha(\chi(t))}{\psi(t)} = \frac{\chi(t)D_t^\alpha(\psi(t)) - \psi(t)D_t^\alpha(\chi(t))}{\psi^2(t)} \]

\[ D_t^\alpha(\chi(t)) = (t + (1/\Gamma(\alpha)))^{1-\alpha} (d\chi(t)/dt) \]
\[ D_t^n (\chi \psi) (t) = (t + (1/\Gamma (\alpha)))^{-\alpha} \psi' (t) \psi' (\psi (t)), \]  

where prime denotes the classical derivatives with respect to \( t \).

The proofs of the above \( \beta \)-derivative properties were obviously presented in [52]. Also, improvement of fractional derivative has been made in works of Atangana and Baleanu in Refs. [53, 54].

3. The Rational \( \exp (-\Omega (\eta)) \)-Expansion Method

This section elucidates a systematic explanation of rational \( \exp (-\Omega (\eta)) \)-expansion method so that it can be further applied to optical metamaterials with parabolic nonlinearity in order to furnish its exact solutions.

Step 1: the following NLPDE,

\[ \mathcal{N} (u, u_x, u_{xx}, u_{xxx}, \ldots) = 0, \]  

can be transformed into an ordinary differential equation (ODE)

\[ \mathcal{L} (U, U', U'', U''' \ldots) = 0, \]  

by using the suitable transformation \( \eta = x + vt \), where \( v \) is the free parameter which would be calculated subsequently.

Step 2: assume the solution of the ODE to be of the following form:

\[ U (\eta) = \sum_{j=0}^{N} A_j F^j (\eta), \]  

where \( F (\eta) = \exp (-\Omega (\eta)) \) and \( A_j (0 \leq j \leq N) \) and \( B_j (0 \leq j \leq M) \) are constants to be determined, such that \( A_N, B_M \neq 0 \); \( \Omega = \Omega (\eta) \) satisfying the ODE is given below:

\[ \Omega' = \mu F^{-1} (\eta) + F (\eta) + \lambda. \]  

The special cases formed from the solutions of the ODE given in equation (9) are mentioned below.

Solution 1. If \( \mu \neq 0 \) and \( \lambda^2 - 4\mu > 0 \), then we have

\[ \Omega (\eta) = \ln \left( \frac{\sqrt{\lambda^2 - 4\mu}}{2\mu} \tanh \left( \frac{\sqrt{\lambda^2 - 4\mu}}{2} (\eta + E) \right) - \frac{\lambda}{2\mu} \right), \]  

where \( E \) is integral constant.

Solution 2. If \( \mu \neq 0 \) and \( \lambda^2 - 4\mu < 0 \), then we have

\[ \Omega (\eta) = \ln \left( \frac{\sqrt{-\lambda^2 + 4\mu}}{2\mu} \tan \left( \frac{\sqrt{-\lambda^2 + 4\mu}}{2} (\eta + E) \right) - \frac{\lambda}{2\mu} \right). \]  

Solution 3. If \( \mu = 0 \), \( \lambda \neq 0 \), and \( \lambda^2 - 4\mu > 0 \), then we obtain

\[ \Omega (\eta) = -\ln \left( \frac{\lambda}{\exp (\lambda (\eta + E)) - 1} \right). \]  

Solution 4. If \( \mu \neq 0 \), \( \lambda \neq 0 \), and \( \lambda^2 - 4\mu = 0 \), then we obtain

\[ \Omega (\eta) = \ln \left( \frac{2\lambda (\eta + E) + 4}{\lambda^2 (\eta + E)} \right). \]  

Solution 5. If \( \mu = 0 \), \( \lambda = 0 \), and \( \lambda^2 - 4\mu = 0 \), then we obtain

\[ \Omega (\eta) = \ln (\eta + E), \]  

where \( A_j (0 \leq j \leq N) \) and \( B_j (0 \leq j \leq M) \); \( \lambda \) and \( \mu \) are the constants to be explored later. The values \( N \) and \( M \) are determined by equalizing the maximum order nonlinear term and the maximum order partial derivative term appearing in (7). If \( N \) and \( M \) are the rational, then the appropriate transformations can be applied to conquer these hurdles.

Step 3. Put (8) into equation (7), as well as the values of \( N \) and \( M \) determined in previous step, into (8). Gathering coefficients of all the powers of \( F (\eta) \) and then equating every coefficient with zero, we derive a set of overdetermined nonlinear algebraic equations for \( A_0, B_0, A_1, B_1, \ldots, A_N, B_M, \lambda, \) and \( \mu \).

Here, it is important to note that \( E \) is the integration constant. We have the following relations as

\[ \Psi (\eta) = \delta E^{N-M}, \]  

\[ \Psi' (\eta) = \delta E^{N-M-1} F' = -\delta (\mu F^{N-M-1} + \lambda F^{N-M} + F^{N-M+1}) = -\delta E^{N-M+1}, \]  

\[ (\Psi'' (\eta)) = \delta E^{2N-2M}, \]  

\[ (\Psi (\eta))^2 = \delta F^{2N-2M}, \]  

where \( \delta = (A_N/B_M) \). Balancing \( \Psi'' \) with \( \Psi^2 \) yields

\[ F^{N-M+2} = \Psi'' (\xi) = (\Psi (\eta))^2 = F^{2N-2M}. \]  

We can determine values of \( N \) and \( M \) as follows:

\[ N - M + 2 = 2N - 2M \Rightarrow N = M + 2. \]  

4. The STFBE

Consider the nonlinear space-time fractional order Boussinesq equation by the following variable change as

\[ \eta = k \left( x + \frac{1}{\Gamma (\alpha)} \right)^a - \omega \left( t + \frac{1}{\Gamma (\alpha)} \right)^a. \]  

Then, equation (1) is transformed to
\[ \omega^2 \Psi'' + bk^2 \Psi'' + \beta k^2 (\Psi'')' + \gamma k^4 \Psi'' = 0, \]  

in which \( \Psi' = d\Psi/d\eta \). By integrating equation (22) twice with respect to \( \eta \) reads as

\[ (\omega^2 + bk^2)\Psi + \beta k^2 \Psi^2 + \gamma k^4 \Psi'' = 0. \]  

With the help of relations (15)–(18), we balance the term of nonlinear and derivative of higher order in equation (23) and we attain \( N = M + 2 \). We investigated two following cases as follows.

4.1. Case I: \( N = 2, M = 0 \). The IEFM allows us to recruit the substitutions:

\[ \Psi(\eta) = \frac{A_0 + A_1 F(\eta) + A_2 F^2(\eta)}{B_0}. \]  

Plugging (24) along with (9) into equation (23) and equating all the coefficients of powers of \( F(\eta) \) to be zero, one gains a system of algebraic equations. Solving the considered system by the help of Maple the following results will be obtained.

Set I:

\[ \begin{align*}
  k &= k, \\
  \omega &= \omega, \\
  A_0 &= A_0, \\
  B_0 &= B_0, \\
  A_1 &= 2 \sqrt{-9b\gamma k^2 B_0^2 - 6\beta k^2 A_0 B_0 - 9\gamma^2 \omega^2 B_0^2} / \beta, \\
  A_2 &= -6\gamma k^2 B_0 / \beta, \\
  \lambda &= 1 - \frac{1}{3} \sqrt{-9b\gamma k^2 B_0^2 - 6\beta k^2 A_0 B_0 - 9\gamma^2 \omega^2 B_0^2} / \gamma k^2 B_0, \\
  \mu &= \frac{1}{6} \frac{\beta A_0}{\gamma k^2 B_0}, \\
  \lambda^2 - 4\mu &= \frac{bk^2 + \omega^2}{\gamma k^4},
\end{align*} \]

where \( A_0 \) and \( B_0 \) are arbitrary values. Imposing the solution set (25) into (24) can be concluded in the following cases.

Subcase IA:

With the help of (10), the dark soliton solution to STFBE is deduced as

\[ \Psi_1(x, t) = \frac{A_0}{B_0} - \frac{2(2/B_0) \sqrt{-9b\gamma k^2 B_0^2 - 6\beta k^2 A_0 B_0 - 9\gamma^2 \omega^2 B_0^2} \beta}{(\lambda^2 - 4\mu/2\beta) \tanh\left(\sqrt{\lambda^2 - 4\mu}/2\beta \eta\right) + (\lambda/2\beta)}.
\]

As seen in Figure 1, we can observe dark behavior in the \(-20 < x < 20\) range. Different interpretations and studies can be made for this situation. In Figure 1(c), for three cases \( \alpha = 0.5 \), \( \alpha = 0.75 \), and \( \alpha = 0.99 \), the fractional model of equation has been plotted and compared.

Subcase IB:

With the help of (11), the periodic wave solution to STFBE is concluded as

\[ \Psi_2(x, t) = \frac{A_0}{B_0} + \frac{2(2/B_0) \sqrt{-9b\gamma k^2 B_0^2 - 6\beta k^2 A_0 B_0 - 9\gamma^2 \omega^2 B_0^2} \beta}{(\lambda^2 - 4\mu/2\beta) \tanh\left(\sqrt{\lambda^2 - 4\mu}/2\beta \eta\right) - (\lambda/2\beta)}
\]

where \( \eta = k(x + (1/\Gamma(\alpha)))^\alpha + \omega(t + (1/\Gamma(\alpha)))^\alpha + E. \) It should be noted that this soliton exist for

\[ \gamma k^4 \left( bk^2 + \omega^2 \right) < 0. \]

As seen in Figure 2, we can observe periodic behavior in the \(-20 < x < 20\) range. Different interpretations and studies can be made for this situation. In Figure 2(c), for three cases \( \alpha = 0.5 \), \( \alpha = 0.75 \), and \( \alpha = 0.99 \) at the space \( 0 < x < 10 \) the fractional model of equation have been plotted and compared.

Subcase IC:
With the help of (12), the kink-singular wave solution to STFBE is concluded as

\[ \Psi_3(x, t) = \frac{2\sqrt{-9b\gamma k^2 - 9\gamma^2}}{\beta(\exp(\lambda\eta) - 1)} - \frac{6\gamma^2 k^2}{\beta[\exp(\lambda\eta) - 1]^2} \]

\[ \lambda = \frac{-\sqrt{-9b\gamma k^2 - 9\gamma^2}}{3\gamma k^2}, \]

in which \( \eta = k(x + (1/T(\alpha)))^\alpha + \omega(t + (1/T(\alpha)))^\alpha + E \). It should be noted that this soliton exist for

\[ \gamma(bk^2 + \omega^2) < 0. \]

(31)

Subcase ID:

With the help of (13), the rational cupson wave solution to STFBE is obtained as

\[ \Psi_4(x, t) = \frac{A_0}{B_0} - \frac{2\lambda^2 \eta \sqrt{-6\gamma k^2 A_0 B_0}}{B_0 \beta (2\lambda \eta + 4)} - \frac{6\gamma^2 (2\lambda \eta + 4)^2}{\beta \lambda^4 \eta^2}, \]

in which \( \eta = k(x + (1/T(\alpha)))^\alpha + \omega(t + (1/T(\alpha)))^\alpha + E \). Also, it should be noted that, for getting the soliton solution in the rational analysis of the function \( \Psi \), we have the relation as follows:

\[ b = \frac{-\omega^2}{k^2}. \]

(33)

Set II:
\[ k = k, \]
\[ \omega = \frac{1}{6} \sqrt{-3\gamma (12\beta y k^2 B_0^2 - 24\beta y k^2 A_0 B_0 - \beta^2 A_1^2)} y B_0, \]
\[ A_0 = A_0, \]
\[ B_0 = B_0, \]
\[ A_1 = A_1, \]
\[ A_2 = -\frac{6y k^2 B_0}{\beta}, \]
\[ \lambda = \frac{\beta A_1}{6y k^2 B_0}, \]
\[ \mu = -\frac{\beta(36y k^2 A_0 B_0 + \beta A_1^2)}{72y^2 k^2 B_0^2}, \]
\[ \lambda^2 - 4\mu = \frac{\beta(24y k^2 A_0 B_0 + \beta A_1^2)}{12y^2 k^2 B_0^2}, \]

where \( A_0, B_0, \) and \( A_1 \) are arbitrary constants. Imposing the solution set \( (34) \) into \( (24) \), one can conclude the following cases.

**Subcase IIA:**

With the help of \( (10) \), the hyperbolic function solution to the STFBE is deduced as

\[
\Psi_5(x, t) = \frac{A_0}{B_0} + \frac{A_1/B_0}{\sqrt{-\lambda^2 + 4\mu/2} \tanh\left(\sqrt{-\lambda^2 + 4\mu/2} \eta\right) + (\lambda/2\mu)} - \frac{6yk^2/\beta}{\left(\sqrt{-\lambda^2 + 4\mu/2} \tanh\left(\sqrt{-\lambda^2 + 4\mu/2} \eta\right) + (\lambda/2\mu)\right)^2},
\]

where \( \eta = k(x + (1/\Gamma (\alpha)))^\alpha + (1/6) \) \((\sqrt{-3\gamma (12\beta y k^2 B_0^2 - 24\beta y k^2 A_0 B_0 - \beta^2 A_1^2)} / y B_0) (t + (1/\Gamma (\alpha)))^\gamma + E \). Moreover, indeed need to be assured to warrant the rational analysis of the function \( \Psi \) as

\[
\beta(24y k^2 A_0 B_0 + \beta A_1^2) < 0.
\]

**Subcase IIB:**

With the help of \( (11) \), the periodic wave solution to the STFBE is obtained as

\[
\Psi_6(x, t) = \frac{A_0}{B_0} + \frac{A_1/B_0}{\left[\sqrt{-\lambda^2 + 4\mu/2} \tanh\left(\sqrt{-\lambda^2 + 4\mu/2} \eta\right) + (\lambda/2\mu)\right] - \frac{6yk^2/\beta}{\left[\sqrt{-\lambda^2 + 4\mu/2} \tanh\left(\sqrt{-\lambda^2 + 4\mu/2} \eta\right) + (\lambda/2\mu)\right]^2}},
\]

where \( \eta = k(x + (1/\Gamma (\alpha)))^\alpha + (1/6) \) \((\sqrt{-3\gamma (12\beta y k^2 B_0^2 - 24\beta y k^2 A_0 B_0 - \beta^2 A_1^2)} / y B_0) (t + (1/\Gamma (\alpha)))^\gamma + E \). Also, instead need to be assured to warrant the rational analysis of the function \( \Psi \) as

\[
\gamma A_0 B_0 \beta < 0.
\]

**4.2. Case II: N = 3, M = 1.** The IEFM allows us to recruit the substitutions:

\[
\Psi (\eta) = \frac{A_0 + A_1 F(\eta) + A_2 F^2(\eta) + A_3 F^3(\eta)}{B_0 + B_1 F(\eta)}.
\]

Plugging \( (43) \) along with \( (9) \) into equation \( (1) \) and equating all the coefficients of powers of \( F^k (\eta), k = 0, 1, \ldots, 7 \) to be zero, one gains a system of
algebraic equations. Solving the considered system with the help of Maple the following results will be obtained.

Set I:

\[
k = k, \\
\omega = \omega, \\
A_0 = -\frac{B_0(3yk^4\lambda^2 - bk^2 - \omega^2)}{2\beta k^2}, \\
B_0 = B_0, \\
A_1 = -\frac{3yk^4\lambda^2B_1 + 12yk^4\lambda B_0 - bk^2B_1 - \omega^2B_1}{2\beta k^2}, \\
B_1 = B_1, \\
A_2 = -\frac{6yk^2(\lambda B_1 + B_0)}{\beta}, \\
A_3 = -\frac{6yk^2B_1}{\beta}, \\
\lambda = \lambda, \\
\mu = \frac{yk^4\lambda^2 - bk^2 - \omega^2}{4yk^4}, \\
\lambda^2 - 4\mu = \frac{bk^2 + \omega^2}{yk^4}.
\]

(44)

where \(A_0\) and \(B_0\) are arbitrary constants. Imposing the solution set (44) into (24), one can conclude the following cases.

Subcase IA:

With the help of (10), the exact solution to the STFBE is deducted as

\[
\Psi_1(x, t) = \frac{B_0(3yk^4\lambda^2 - bk^2 - \omega^2)^2/2\beta k^2 - (3yk^4\lambda^2B_1 + 12yk^4\lambda B_0 - bk^2B_1 - \omega^2B_1/2\beta k^2)\Delta(\eta) - (6yk^2(\lambda B_1 + B_0)/\beta)\Delta(\eta) - (6yk^2B_1/\beta)\Delta(\eta)^2}{B_0 + B_1\Delta(\eta)}.
\]

(45)

\[
\Delta(\eta) = \frac{1}{\sqrt{\lambda^2 - 4\mu/2\mu}}\tanh\left(\sqrt{\lambda^2 - 4\mu/2\mu}\eta + \lambda/2\mu\right).
\]

Subcase IB:

With the help of (11), the periodic wave solution to the STFBE is concluded as

\[
\Psi_2(x, t) = \frac{-B_0(3yk^4\lambda^2 - bk^2 - \omega^2)^2/2\beta k^2 - (3yk^4\lambda^2B_1 + 12yk^4\lambda B_0 - bk^2B_1 - \omega^2B_1/2\beta k^2)\Delta(\eta) - (6yk^2(\lambda B_1 + B_0)/\beta)\Delta(\eta) - (6yk^2B_1/\beta)\Delta(\eta)^2}{B_0 + B_1\Delta(\eta)}.
\]

(47)

\[
\Delta(\eta) = \frac{1}{\sqrt{\lambda^2 - 4\mu/2\mu}}\tanh\left(\sqrt{\lambda^2 - 4\mu/2\mu}\eta + \lambda/2\mu\right).
\]

where \(\eta = k(x + (1/\Gamma(\alpha)))^a + \omega(t + (1/\Gamma(\alpha)))^a + E\). It should be noted that this soliton is available for

\[
\gamma(bk^2 + \omega^2) > 0.
\]

Subcase IC:

where \(\eta = k(x + (1/\Gamma(\alpha)))^a + \omega(t + (1/\Gamma(\alpha)))^a + E\). Also, indeed need to be assured to warrant the rational analysis of the function \(\Psi\) as

\[
\gamma(bk^2 + \omega^2) < 0.
\]
With the help of (12), the rational kink-singular solution to the STFBE is obtained as
\[
\Psi_5(x, t) = \frac{-\left( B_0 \left( 3y k^4 \lambda^2 - bk^2 - \omega^2 \right)/2Bk^2 \right) - \left( 3y k^4 \lambda^2 B_1 + 12y k^4 \lambda B_0 - bk^2 B_1 - \omega^2 B_1/2Bk^2 \right) \Delta(\eta) - (6yk^2 (\lambda B_1 + B_0)/\beta) \Delta(\eta)^2 - (6yk^2 B_1/\beta) \Delta(\eta)^3}{B_0 + B_1 \Delta(\eta)},
\]
\[
\Delta(\eta) = \frac{1}{\sqrt{\lambda^2 - 4\mu/2\mu} \tanh \left( \frac{\sqrt{\lambda^2 - 4\mu/2\mu} \eta}{\lambda/2\mu} \right)}
\]
where \( \eta = k(x + (1/T(\alpha))a + \omega(t + (1/T(\alpha)))a + E \). It should be noted that this soliton is available for
\[
\lambda = \frac{\sqrt{\gamma \left( bk^2 + \omega^2 \right)}}{\gamma k^2} > 0. \tag{50}
\]
\[
\Psi_4(x, t) = \frac{-\left( B_0 \left( 3y k^4 \lambda^2 - bk^2 - \omega^2 \right)/2Bk^2 \right) - \left( 3y k^4 \lambda^2 B_1 + 12y k^4 \lambda B_0 - bk^2 B_1 - \omega^2 B_1/2Bk^2 \right) \Delta(\eta) - (6yk^2 (\lambda B_1 + B_0)/\beta) \Delta(\eta)^2 - (6yk^2 B_1/\beta) \Delta(\eta)^3}{B_0 + B_1 \Delta(\eta)},
\]
\[
\Delta(\eta) = \frac{-\lambda^2 (\eta + E)}{2\lambda (\eta + E) + 4}
\]
in which \( \eta = k(x + (1/T(\alpha))a + \omega(t + (1/T(\alpha)))a \). It should be noted that these solitons exist for
\[
b = -\frac{\omega^2}{k^2} \tag{52}
\]
Set II:
\[
k = k,
\omega = \omega,
A_0 = -\frac{3B_0 \left( 3y k^4 \lambda^2 + bk^2 + \omega^2 \right)}{2Bk^2},
B_0 = B_0,
A_1 = -\frac{3 \left( 3y k^4 \lambda^2 B_1 + 12y k^4 \lambda B_0 + bk^2 B_1 + \omega^2 B_1 \right)}{2Bk^2},
A_2 = -\frac{6yk^2 (\lambda B_1 + B_0)}{\beta}
\]
where \( A_0, B_0, \) and \( B_1 \) are arbitrary constants. Imposing the solution set (53) into (24), one can obtain the following cases.

Subcase IIA:
With the help of (10), the exact dark soliton solution to the STFBE is deducted as
\[
\Psi_5(x, t) = \frac{-\left( B_0 \left( 3y k^4 \lambda^2 - bk^2 - \omega^2 \right)/2Bk^2 \right) - \left( 3y k^4 \lambda^2 B_1 + 12y k^4 \lambda B_0 - bk^2 B_1 - \omega^2 B_1/2Bk^2 \right) \Delta(\eta) - (6yk^2 (\lambda B_1 + B_0)/\beta) \Delta(\eta)^2 - (6yk^2 B_1/\beta) \Delta(\eta)^3}{B_0 + B_1 \Delta(\eta)},
\]
\[
\Delta(\eta) = \frac{1}{\sqrt{\lambda^2 - 4\mu/2\mu} \tanh \left( \frac{\sqrt{\lambda^2 - 4\mu/2\mu} \eta}{\lambda/2\mu} \right)}
\]
Subcase ID:
With the help of (13), the exact rational cupson solution to the STFBE is gained as
where \( \eta = k(x + (1/\Gamma(\alpha))^n + \omega(t + (1/\Gamma(\alpha))^n + E. \) Also, indeed need to be assured to warrant the rational analysis of the function \( \Psi \) as
\[
\gamma(bk^2 + \alpha^2) < 0. \tag{55}
\]

Subcase IB:

With the help of (11), the periodic wave solution to the STFBE is concluded as

\[
\Psi_s(x, t) = \frac{-\left(3B_0 \left(3y^2k^4 - \alpha^2\right)/2\beta k^2 \right)(\Delta(\eta) - (6y^2k^2(\lambda B_1 + B_0)/\beta) \Delta(\eta)^3)}{B_0 + B_1 \Delta(\eta)}.
\]

Subcase IIC:

With the help of (12), the kink-singular solution to the STFBE is obtained as

\[
\Psi_s(x, t) = \frac{-\exp([(\sqrt{-\gamma(bk^2 + \alpha^2)} + E)] \eta + E) - 1}{\sqrt{-\gamma(bk^2 + \alpha^2)}/\sqrt{\gamma(\eta + E) - 1}}.
\]

Subcase IID:

With the help of (13), the exact rational solution to the STFBE is resulted as

\[
\Psi_s(x, t) = \frac{-\left(3B_0 \left(3y^2k^4 - \alpha^2\right)/2\beta k^2 \right)(\Delta(\eta) - (6y^2k^2(\lambda B_1 + B_0)/\beta) \Delta(\eta)^3)}{B_0 + B_1 \Delta(\eta)}.
\]

in which \( \eta = k(x + (1/\Gamma(\alpha))^n + \omega(t + (1/\Gamma(\alpha))^n. \) Also, indeed need to be assured to warrant the rational analysis of the function \( \Psi \) as

\[
b = \frac{\alpha^2}{k^2}. \tag{61}
\]

5. The STFBEs

Consider the nonlinear space-time \((2 + 1)\)-dimensional breaking soliton equations by the following variable change as

\[
\eta = k\left(x + \frac{1}{\Gamma(\alpha)}\right)^a + \omega\left(y + \frac{1}{\Gamma(\alpha)}\right)^a - \epsilon\left(t + \frac{1}{\Gamma(\alpha)}\right)^a.
\]

(62)
Then, equation (2) is transformed to
\[ -c\Psi' + ak^2 \omega' + 4a k \Psi' \Omega + 4ak \Psi' \Omega = 0, \] (63)
\[ \omega' - k \Omega' = 0, \] (64)
in which \(\Psi' = d\Psi/d\eta\) and \(\Omega' = d\Omega/d\eta\). By integrating equation (64) once with respect to \(\eta\), we obtain
\[ \omega' - k \Omega' = 0. \] (65)
Inserting equation (65) into first equation of system (63) and integrating the obtained equation once with respect to \(\eta\), we obtain
\[ -c\Psi + ak^2 \omega' + 4a k \Psi = 0. \] (66)
With the help of relations (15)–(18), we balance the term of nonlinear and derivative of higher order in equation (64), and we attain \(N = M + 2\). We investigate the following two cases.

5.1. Case I: \(N = 2, M = 0\). The IEFM allows us to recruit the substitutions:
\[ \Psi(\eta) = \frac{A_0 + A_1 F(\eta) + A_2 F^2(\eta)}{B_0}. \] (67)
Plugging (67) along with (9) into equation (2) and equating all the coefficients of powers of \(F(\eta)\) to be zero, one gains a system of algebraic equations. Solving the considered system with the help of Maple the following results will be obtained.

Set I:
\[ \lambda = 0, \]
\[ \mu = \mu, \]
\[ k = k, \]
\[ c = 2\sqrt{14}a k^2 \mu, \]
\[ \omega = \omega, \] (68)
\[ A_0 = \left( -1 + \frac{1}{4}\sqrt{14} \right) B_0 k^2, \]
\[ B_0 = B_0, \]
\[ A_1 = 0, \]
\[ A_2 = -\frac{1}{4} k^2 B_0, \]
where \(B_0\) is arbitrary constant. Imposing the solution set (68) into (24), one can conclude the following cases.

Subcase IA:
With the help of (10), the singular solution to the STFBSEs is deduced as
\[ \Psi_1(x, y, t) = \left( -1 + \frac{1}{4}\sqrt{14} \right) ak^2 + \frac{1}{4} k^2 \mu \coth^2 \left( \sqrt{-\mu} \eta + E \right), \]
\[ \Omega_1(x, y, t) = \left( -1 + \frac{1}{4}\sqrt{14} \right) \omega k + \frac{1}{4} \omega k^2 \coth^2 \left( \sqrt{-\mu} \eta + E \right), \] (69)
where \(\eta = k(x + \langle 1/\Gamma(\alpha) \rangle) + \omega(y + \langle 1/\Gamma(\alpha) \rangle) - 2\sqrt{14} a k^2 \mu(t + \langle 1/\Gamma(\alpha) \rangle)\). Also, indeed need to be assured to warrant the rational analysis of the function \(\Psi\) as
\[ \mu < 0. \] (70)
As seen in Figure 3, we can observe dark behavior in the \(-10 < x < 20\) range. Different interpretations and studies can be made for this situation. In Figure 3(b), for one case \(\alpha = 1\), the fractional model of the equation has been plotted and compared for the two-dimensional plot.

Subcase IB:
With the help of (11), the periodic solution to the STFBSEs is resulted as
\[ \Psi_2(x, y, t) = \left( -1 + \frac{1}{4}\sqrt{14} \right) ak^2 + \frac{1}{4} k^2 \mu \cot^2 \left( \sqrt{\mu} \eta + E \right), \]
\[ \Omega_2(x, y, t) = \left( -1 + \frac{1}{4}\sqrt{14} \right) \omega k + \frac{1}{4} k^2 \mu \cot^2 \left( \sqrt{\mu} \eta + E \right), \] (71)
where \(\eta = k(x + \langle 1/\Gamma(\alpha) \rangle) + \omega(y + \langle 1/\Gamma(\alpha) \rangle) - 2\sqrt{14} a k^2 \mu(t + \langle 1/\Gamma(\alpha) \rangle)\). It should be noted that this soliton exists for
\[ \mu > 0. \] (72)
As seen in Figure 4, we can observe periodic behavior in the \(-10 < x < 10\) range. Different interpretations and studies can be made for this situation. In Figure 4(c), for three cases \(\alpha = 0.5, \alpha = 0.75, \) and \(\alpha = 0.99\), the fractional model of the equation has been plotted and compared.

Set II:
\[ \lambda = 0, \]
\[ \mu = \frac{8}{3} \frac{A_1^2}{k^2 B_0^2}, \]
\[ k = k, \]
\[ c = \frac{16}{3} \frac{i a \omega A_1^2}{k^2 B_0^2}, \]
\[ A_0 = \frac{2}{3} \frac{(-1 + i) A_1^2}{B_0 k^2}, \]
\[ B_0 = B_0, \]
\[ A_1 = A_1, \]
\[ A_2 = -\frac{1}{4} k^2 B_0, \] (73)
where $B_0$ is arbitrary constant. Imposing the solution set (73) into (24), one can conclude the following cases.

Subcase IA:

With the help of (10), the exact solution to the model is deduced as

$$
\Psi_3(x, y, t) = \frac{2}{3} \left( -1 + i \right) \frac{A_1^2}{B_0^2 k^2} + \frac{A_1}{B_0} \sqrt{-\mu} \coth (\sqrt{-\mu} \eta + E) + \frac{1}{4} k^2 \mu \coth^2 (\sqrt{-\mu} \eta + E),
$$

$$
\Omega_3(x, y, t) = \frac{2}{3} \left( -1 + i \right) \frac{A_1^2}{B_0^2 k^2} + \frac{A_1 \omega}{B_0 k} \sqrt{-\mu} \coth (\sqrt{-\mu} \eta + E) + \frac{1}{4} k^2 \mu \coth^2 (\sqrt{-\mu} \eta + E),
$$

(74)

where $\eta = k(x + (1/\Gamma (\alpha)))^a + \omega (y + (1/\Gamma (\alpha)))^a - (16/3) (iaaA_1^2/k^2B_0^2)(t + (1/\Gamma (\alpha)))^a$. It should be noted that this soliton exist for $\mu < 0$.

Subcase IB:
With the help of (11), the exact solution to the model is concluded as

\[
\Psi_4(x, y, t) = \frac{2}{3} \left(\frac{1}{A_0} \right) \left[ \frac{1}{B_0} \right] \frac{\sqrt{\mu}}{\sqrt{\eta}} \cot \left( \sqrt{\eta} \eta + E \right) - \frac{1}{4} k^2 \mu \cot^2 \left( \sqrt{\eta} \eta + E \right),
\]

\[
\Omega_4(x, y, t) = \frac{2}{3} \left(\frac{1}{A_0} \right) \left[ \frac{1}{B_0} \right] \frac{\sqrt{\mu}}{\sqrt{\eta}} \cot \left( \sqrt{\eta} \eta + E \right) - \frac{1}{4} k^2 \mu \cot^2 \left( \sqrt{\eta} \eta + E \right),
\]

where \( \eta = k(x + (1/\Gamma(\alpha))) + \omega (y + (1/\Gamma(\alpha))) - (16/3) (i\omega A_1^2/k^2 B_0^2) (t + (1/\Gamma(\alpha)))^\alpha \). Moreover, indeed need to be assured to warrant the rational analysis of the function \( \Psi \) as

\[
\mu > 0.
\]  

\( 5.2. \) Case II: \( N = 3, M = 1 \). The IEFM allows us to recruit the substitutions

\[
\nu(\eta) = \frac{A_0 + A_1 F(\eta) + A_2 F^2(\eta) + A_3 F^3(\eta)}{B_0 + B_1 F(\eta)} \tag{78}
\]

Plugging (78) along with (9) into equation (3) and equating all the coefficients of powers of \( F^k(\eta), k = 0, 1, \ldots, 7 \) to be zero, one gains a system of algebraic equations. Solving the considered system, with the help of Maple, the following results can be obtained.

Set I:

\[
k = k,
\]
\[
\omega = \omega,
\]
\[
A_0 = -\frac{3}{2} k^2 \mu B_0,
\]

\[
B_0 = B_0,
\]
\[
A_1 = -\frac{3}{2} k^2 \lambda B_0 + \mu B_1,
\]
\[
A_2 = -\frac{3}{2} k^2 \lambda B_1 + B_0,
\]
\[
A_3 = -\frac{3}{2} k^2 B_1,
\]
\[
B_1 = B_1,
\]
\[
\lambda = \lambda,
\]
\[
\mu = \mu,
\]
\[
c = a \omega k^2(\lambda^2 - 4\mu),
\]

where \( A_0, B_0, \) and \( B_1 \) are arbitrary constants. Imposing the solution set (44) into (78), one can conclude the following cases.

Subcase IA:

With the help of (10), the exact solution to the model is obtained as

\[
\Psi_5(x, y, t) = \frac{-(3/2) k^2 \mu B_0 - (3/2) k^2 (\lambda B_0 + \mu B_1) \Delta(\eta) - (3/2) k^2 (\lambda B_1 + B_0) \Delta(\eta)^2 - (3/2) k^2 B_1 \Delta(\eta)^3}{B_0 + B_1 \Delta(\eta)},
\]

\[
\Omega_5(x, y, t) = \frac{-(3/2) \omega k \mu B_0 - (3/2) \omega k (\lambda B_0 + \mu B_1) \Delta(\eta) - (3/2) \omega k (\lambda B_1 + B_0) \Delta(\eta)^2 - (3/2) \omega k B_1 \Delta(\eta)^3}{B_0 + B_1 \Delta(\eta)},
\]

\[
\Delta(\eta) = \frac{1}{\left(\sqrt{\lambda^2 - 4\mu} / 2\mu\right) \tanh\left(\left(\lambda^2 - 4\mu / 2\right) \eta \right) + (\lambda / 2\mu)}.
\]
where \( \eta = k (x + (1/\Gamma (a)))^a + \omega (y + (1/\Gamma (a)))^a - \alpha \omega k^2 (\lambda^2 - 4\mu) (t + (1/\Gamma (a)))^a + E \). Moreover, indeed need to be assured to warrant the rational analysis of the function \( \Psi \) as

\[
\lambda^2 - 4\mu > 0. \quad (81)
\]

With the help of (11), the exact solution to the model is concluded as

\[
\Psi_6 (x, y, t) = \frac{- (3/2) k^2 \mu B_0 - (3/2) k^2 (\lambda B_0 + \mu B_1) \Delta (\eta) - (3/2) k^2 (\lambda B_1 + B_0) \Delta (\eta)^2 - (3/2) k^2 B_1 \Delta (\eta)^3}{B_0 + B_1 \Delta (\eta)},
\]

\[
\Omega_6 (x, y, t) = \frac{- (3/2) \omega k \mu B_0 - (3/2) \omega k (\lambda B_0 + \mu B_1) \Delta (\eta) - (3/2) \omega k (\lambda B_1 + B_0) \Delta (\eta)^2 - (3/2) \omega k B_1 \Delta (\eta)^3}{B_0 + B_1 \Delta (\eta)},
\]

\[
\Delta (\eta) = \frac{1}{\sqrt{\lambda^2 - 4\mu / 2\mu}} \tanh \left( \frac{\sqrt{\lambda^2 - 4\mu / 2\mu} \eta}{\eta} + \left( \frac{\lambda}{2\mu} \right) \right),
\]

where \( \eta = k (x + (1/\Gamma (a)))^a + \omega (y + (1/\Gamma (a)))^a - \alpha \omega k^2 (\lambda^2 - 4\mu) (t + (1/\Gamma (a)))^a + E \). Moreover, indeed need to be assured to warrant the rational analysis of the function \( \Psi \) as

\[
\lambda^2 - 4\mu < 0. \quad (83)
\]

Subcase IC:

With the help of (12), the kink-singular solution to the STFBSEs is obtained as

\[
\Psi_7 (x, y, t) = \frac{- (3/2) k^2 (\lambda B_0) \Delta (\eta) - (3/2) k^2 (\lambda B_1 + B_0) \Delta (\eta)^2 - (3/2) k^2 B_1 \Delta (\eta)^3}{B_0 + B_1 \Delta (\eta)},
\]

\[
\Delta (\eta) = \frac{\exp (\lambda (\eta + E)) - 1}{\lambda},
\]

\[
\Omega_7 (x, y, t) = \frac{- (3/2) \omega k (\lambda B_0) \Delta (\eta) - (3/2) \omega k (\lambda B_1 + B_0) \Delta (\eta)^2 - (3/2) \omega k B_1 \Delta (\eta)^3}{B_0 + B_1 \Delta (\eta)},
\]

\[
\Delta (\eta) = \frac{\exp (\lambda (\eta + E)) - 1}{\lambda},
\]

where \( \eta = k (x + (1/\Gamma (a)))^a + \omega (y + (1/\Gamma (a)))^a - \alpha \omega k^2 \lambda^2 (t + (1/\Gamma (a)))^a + E \). It should be noted that this soliton is available for

\[
\lambda^2 - 4\mu < 0. \quad (85)
\]
\[ A_0 = \frac{1}{4} B_0 k^2 (\lambda^2 + 2 \mu), \]
\[ B_0 = B_0, \]
\[ A_1 = -\frac{1}{4} k^2 (\lambda^2 B_1 + 6 \lambda B_0 + 2 \mu B_1), \]
\[ A_2 = -\frac{3}{2} k^2 (\lambda B_1 + B_0), \]
\[ k = k, \]
\[ \omega = \omega, \]
\[ A_3 = -\frac{3}{2} k^2 B_1, \]
\[ B_1 = B_1, \]
\[ \lambda = \lambda, \]
\[ \mu = \mu, \]
\[ c = -a \omega k^2 (\lambda^2 - 4 \mu), \]

where \( A_0, B_0, \) and \( B_1 \) are arbitrary constants. Imposing the solution set (86) into (24), one can conclude the following cases.

**Subcase IIA:**

With the help of (10), the exact dark solution to the STFBSEs is obtained as

\[ \Psi_8(x, y, t) = \frac{-(1/4) B_0 k^2 (\lambda^2 + 2 \mu) - (1/4) k^2 (\lambda^2 B_1 + 6 \lambda B_0 + 2 \mu B_1) \Delta(\eta) - (3/2) k^2 (\lambda B_1 + B_0) \Delta(\eta)^2 - (3/2) k^2 B_1 \Delta(\eta)^3}{B_0 + B_1 \Delta(\eta)}, \]
\[ \Omega_8(x, y, t) = \frac{-(1/4) B_0 \omega k (\lambda^2 + 2 \mu) - (1/4) \omega k (\lambda^2 B_1 + 6 \lambda B_0 + 2 \mu B_1) \Delta(\eta) - (3/2) \omega k (\lambda B_1 + B_0) \Delta(\eta)^2 - (3/2) \omega k B_1 \Delta(\eta)^3}{B_0 + B_1 \Delta(\eta)}, \]
\[ \Delta(\eta) = \frac{1}{(\sqrt{\lambda^2 - 4 \mu/2}) \tanh \left( \frac{\lambda^2 - 4 \mu/2}{2 \mu} \eta \right) + (\lambda/2 \mu)}, \]

where \( \eta = k(x + (1/\Gamma (\alpha)))^\alpha + \omega(y + (1/\Gamma (\alpha)))^\alpha + a \omega k^2 (\lambda^2 - 4 \mu) (t + (1/\Gamma (\alpha)))^\alpha + E. \) Also, indeed need to be assured to warrant the rational analysis of the function \( \Psi \) as

\[ \lambda^2 - 4 \mu > 0. \tag{88} \]

**Subcase IIB:**

With the help of (11), the periodic wave solution to the STFBSEs is obtained as

\[ \Psi_8(x, y, t) = \frac{-(1/4) B_0 k^2 (\lambda^2 + 2 \mu) - (1/4) k^2 (\lambda^2 B_1 + 6 \lambda B_0 + 2 \mu B_1) \Delta(\eta) - (3/2) k^2 (\lambda B_1 + B_0) \Delta(\eta)^2 - (3/2) k^2 B_1 \Delta(\eta)^3}{B_0 + B_1 \Delta(\eta)}, \]
\[ \Delta(\eta) = \frac{1}{(\sqrt{\lambda^2 - 4 \mu/2}) \tanh \left( \frac{\lambda^2 - 4 \mu/2}{2 \mu} \eta \right) + (\lambda/2 \mu)}, \]

where \( \eta = k(x + (1/\Gamma (\alpha)))^\alpha + \omega(y + (1/\Gamma (\alpha)))^\alpha + a \omega k^2 (\lambda^2 - 4 \mu) (t + (1/\Gamma (\alpha)))^\alpha + E \) and \( A_0 \) and \( B_0 \) are optional arbitraries. It should be noted that these solitons exist for

\[ \lambda^2 - 4 \mu < 0. \tag{90} \]

**Subcase IIC:**
With the help of (12), the exact solution to the model is obtained as

\[
\Psi_{10}(x, y, t) = \frac{-(1/4)B_0k^2\lambda^2 - (1/4)k^2(\lambda^2B_1 + 6\lambda B_0)\Delta(\eta) - (3/2)k^2(\lambda B_1 + B_0)\Delta(\eta)^2 - (3/2)k^2B_1\Delta(\eta)^3}{B_0 + B_1\Delta(\eta)},
\]

\[
\Delta(\eta) = \frac{\exp(\lambda(\eta + E)) - 1}{\lambda},
\]

\[
\Omega_{10}(x, y, t) = \frac{-(1/4)B_0\omega k^2\lambda^2 - (1/4)k^2(\lambda^2B_1 + 6\lambda B_0)\Delta(\eta) - (3/2)\omega k(\lambda B_1 + B_0)\Delta(\eta)^2 - (3/2)\omega k B_1\Delta(\eta)^3}{B_0 + B_1\Delta(\eta)},
\]

\[
\Delta(\eta) = \frac{\exp(\lambda(\eta + E)) - 1}{\lambda},
\]

where \( \eta = k(x + (1/\Gamma(\alpha)))^a + \omega(y + (1/\Gamma(\alpha)))^a + a\omega k^2\lambda^2(t + (1/\Gamma(\alpha)))^a + E. \)

### 6. The STFSRLWE

Take the nonlinear space-time fractional SRLW equation with the following variable change:

\[
\eta = k\left(x + \frac{1}{\Gamma(\alpha)}\right)^a - \omega\left(t + \frac{1}{\Gamma(\alpha)}\right)^a.
\]

Then, equation (3) is integrated respect to \( \eta \) and simplified to obtain

\[
2(\omega^2 + k^2)\Psi + k\omega\Psi^2 + 2k^2\omega^2\Psi'' = 0,
\]

in which \( \Psi' = d\Psi/d\eta \). With the help of relations (15)–(18), we balance the term of nonlinear and derivative of higher order in equation (93), and we attain \( N = M + 2 \). We investigate the two following cases,

#### 6.1. Case I: \( N = 2, M = 0 \)

The IEFM allows us to recruit the substitutions:

\[
\Psi(\eta) = \frac{A_0 + A_1F(\eta) + A_2F^2(\eta)}{B_0}
\]

Plugging (94) along with (9) into equation (93) and equating all the coefficients of powers of \( F(\eta) \) to be zero, one gains a system of algebraic equations. Solving the considered system with the help of Maple, the following results will be obtained.

Set I:

\[
k = k,
\]

\[
\omega = \omega,
\]

\[
A_0 = \frac{1}{48} \frac{48k^2B_0^2 + 48\omega^2B_0^2 - A_1^2}{k\omega B_0},
\]

\[
B_0 = B_0,
\]

\[
A_1 = A_1,
\]

\[
A_2 = -12k\omega B_0,
\]

\[
\lambda = \frac{1}{12} \frac{A_1}{k\omega B_0},
\]

\[
\mu = \frac{144k^2B_0^2 + 144\omega^2B_0^2 - A_1^2}{576k^2\omega^2B_0^2},
\]

\[
\lambda^2 - 4\mu = \frac{k^2 + \omega^2}{k^2\omega^2},
\]

where \( A_0, B_0, \) and \( A_1 \) are arbitrary constants. Imposing the solution set (95) into (24), one can conclude the following cases.

Subcase IA:

With the help of (10), the exact dark soliton solution to the STFSRLWE is deduced as
\( \Psi_1(x, t) = \frac{1}{48} \frac{48k^2B_0^2 + 48\omega^2B_0^2 - A_1^2}{k\omega B_0^2} \)

\[
= \frac{A_1/B_0}{\left( \sqrt{\lambda^2 - 4\mu/2\mu} \tanh \left( \frac{1}{2} \frac{\lambda^2 - 4\mu/2\mu}{\eta} \right) + (\lambda/2\mu) \right)} - \frac{12k\omega}{\left( \sqrt{\lambda^2 - 4\mu/2\mu} \tanh \left( \frac{1}{2} \frac{\lambda^2 - 4\mu/2\mu}{\eta} \right) + (\lambda/2\mu) \right)^2}.
\]

(96)

where \( \eta = k(x + (1/\Gamma(a)))^a + \omega(t + (1/\Gamma(a)))^a + E \). Moreover, indeed need to be assured to warrantee the rational analysis of the function \( \Psi \) as

\[ k^2 + \omega^2 > 0. \]

(97)

As seen in Figure 5, we can observe dark behavior in the \(-20 < x < 20 \) range. Different interpretations and studies can be made for this situation. In Figure 5(c), for three cases \( \alpha = 0.5, \alpha = 0.75, \) and \( \alpha = 0.99 \), the fractional model of the equation has been plotted and compared.

**Subcase IB:**

With the help of (11), the kink-singular solution to the model is concluded as

\[ \Psi_2(x, t) = -\frac{k^2 + \omega^2}{k\omega} + \frac{12k^2 + \omega^2 B_0}{B_0} \Delta(\eta) - 12k\omega \Delta^2(\eta), \Delta(\eta) = \frac{\lambda}{\exp(\lambda(\eta + E)) - 1}. \]

(98)

in which \( \eta = k(x + (1/\Gamma(a)))^a + \omega(t + (1/\Gamma(a)))^a + E \). Likewise, indeed need to be assured to warrantee the rational analysis of the function \( \Psi \) as

\[ \lambda = \frac{\sqrt{k^2 + \omega^2}}{k\omega}, \quad k\omega \neq 0. \]

(99)

As seen in Figure 6, we can observe periodic behavior in the \(-20 < x < 20 \) range. Different interpretations and studies can be made for this situation. In Figure 6(c), for three cases \( \alpha = 0.5, \alpha = 0.75, \) and \( \alpha = 0.99 \), the fractional model of the equation has been plotted and compared.

**Set II:**

\[ k = k, \]

\[ \omega = \omega, \]

\[ A_0 = -\frac{1}{48} \frac{48k^2B_0^2 + 48\omega^2B_0^2 + A_1^2}{k\omega B_0^2}, \]

\[ B_0 = B_0, \]

\[ A_1 = A_1, \]

\[ A_2 = -12k\omega B_0, \]

\[ \lambda = \frac{1}{12} \frac{A_1}{k\omega B_0}, \]

\[ \mu = \frac{144k^2B_0^2 + 444\omega^2B_0^2 + A_1^2}{576k^2\omega^2B_0^2}, \]

\[ \lambda^2 - 4\mu = \frac{k^2 + \omega^2}{k^2\omega^2}, \]

where \( A_0, B_0, \) and \( A_1 \) are arbitrary constants. Imposing the solution set (100) into (24), one can obtain the following cases.

**Subcase IIA:**

With the help of (10), the exact periodic wave solution to the STFSRLWE is deducted as

\[
\Psi_3(x, t) = \frac{1}{48} \frac{48k^2B_0^2 + 48\omega^2B_0^2 + A_1^2}{k\omega B_0^2} + \frac{A_1/B_0}{\left( \sqrt{\lambda^2 - 4\mu/2\mu} \tanh \left( \frac{1}{2} \frac{\lambda^2 - 4\mu/2\mu}{\eta} \right) + (\lambda/2\mu) \right)} - \frac{12k\omega}{\left( \sqrt{\lambda^2 - 4\mu/2\mu} \tanh \left( \frac{1}{2} \frac{\lambda^2 - 4\mu/2\mu}{\eta} \right) + (\lambda/2\mu) \right)^2}.
\]

(101)

where \( \eta = k(x + (1/\Gamma(a)))^a + \omega(t + (1/\Gamma(a)))^a + E \). Moreover, indeed need to be assured to warrantee the rational analysis of the function \( \Psi \) as

\[ k^2 + \omega^2 > 0. \]

(102)

**Subcase IB:**
With the help of (11), the exact solution to the STFSRLWE is obtained as
\[
\Psi_4(x, t) = -2k^2 + \omega^2 \frac{k \omega}{B_0} + 12\sqrt{-k^2 - \omega^2} B_0 \Delta(\eta) - 12k \omega \Delta^2(\eta), \quad \Delta(\eta) = \frac{\lambda}{\exp(\lambda (\eta + E)) - 1}
\]
(103)
where \( \eta = k(x + (1/\Gamma(\alpha)))^\alpha + \omega(t + (1/\Gamma(\alpha)))^\alpha + E \). Likewise, indeed need to be assured to warrant the rational analysis of the function \( \Psi^* \) as
\[
\lambda = -\frac{\sqrt{-k^2 - \omega^2}}{k \omega}, \quad k \omega \neq 0.
\]
(104)

6.2. Case II: \( N = 3, M = 1 \). The IEFM allows us to recruit the substitutions:

\[
\Psi_4(x, t) = A_0 + A_1 F(\eta) + A_2 F^2(\eta) + A_3 F^3(\eta)
\]
(105)

Plugging (105) along with (9) into equation (93) and equating all the coefficients of powers of \( F^k(\eta), k = 0, 1, \ldots, 7 \) to be zero, one gains a system of algebraic equations. Solving the considered system with the help of Maple, the following results will be obtained.

Set I:
\[ A_0 = \frac{\lambda (3k^2 \lambda^2 \omega B_1^2 + 21k^2 \lambda \omega^2 B_0 B_1 + 24k^2 \omega^2 B_0^2 + 3k^2 B_1^2 - k \omega A_1 B_1 + 3 \omega^2 B_1^2) + 9k^2 B_0 B_1 - 2k \omega A_1 B_0 + 9 \omega^2 B_0 B_1}{\omega k B_1} \]

\[ k = k, \]

\[ \omega = \omega, \]

\[ A_1 = \frac{-2\left(-\lambda^2 \omega^2 k^2 - k^2 - \omega^2\right)B_1 + \lambda^2 B_1 \omega^2 k^2 + 12 \lambda^2 \lambda \omega B_0 + (k^2 + \omega^2)B_1}{k \omega}, \]

\[ A_2 = -12 \lambda B_1 \omega k - 12 B_0 \omega k, \]

\[ \lambda = \lambda, \]

\[ \mu = \frac{1}{4} \frac{-\lambda^2 \omega^2 k^2 - k^2 - \omega^2}{k^2 \omega^2}, \]

\[ \lambda^2 - 4\mu = \frac{k^2 + \omega^2}{k^2 \omega^2}, \]

\[ A_3 = -12 \omega k B_1, \]

\[ B_0 = B_0, \]

\[ B_1 = B_1, \]

where \( B_0 \) and \( B_1 \) are arbitrary constants. Imposing the solution set (106) into (24), one can obtain the following cases.

Subcase IIA:

\[ \Psi_5(x, t) = \frac{A_0 + A_1 \Delta(\eta) - 12k \omega (\lambda B_1 + 12B_0) \Delta(\eta)^2 - 12 \omega k B_1 \Delta(\eta)^3}{B_0 + B_1 \Delta(\eta)}, \]

\[ \Delta(\eta) = \frac{1}{\left(\sqrt{\lambda^2 - 4\mu} / 2\mu\right) \tan\left(\left(\sqrt{\lambda^2 - 4\mu} / 2\right) \eta + (\lambda/2\mu)\right)}, \]

where \( \eta = k(x + (1/\Gamma(\alpha)))^a + \omega (t + (1/\Gamma(\alpha)))^a + E \). Moreover, indeed need to be assured to warrantee the rational analysis of the function \( \Psi \) as \( k \omega \neq 0 \).

Subcase IB:

\[ \Psi_6(x, t) = \frac{A_0 + A_1 \Delta(\eta) - 12k \omega (\lambda B_1 + 12B_0) \Delta(\eta)^2 - 12 \omega k B_1 \Delta(\eta)^3}{B_0 + B_1 \Delta(\eta)}, \]

\[ \Delta(\eta) = \frac{\sqrt{-k^2 - \omega^2}}{k \omega \left[\exp\left(\left(\sqrt{-k^2 - \omega^2} / k \omega\right) \eta} - 1\right)\right]} \]

With the help of (11), the exact periodic wave solution to the STFSRLWE is deduced as

With the help of (12), the kink-singular solution to the STFSRLWE is obtained as
where \( \eta = k(x + (1/\Gamma(a))^a + \omega(t + (1/\Gamma(a))^a) + E. \) It should be noted that this soliton is available for\[ k\omega \neq 0. \] Subcase IIC: With the help of (13), the exact rational solution to the STFSRLWE is gained as

\[
\Psi_7(x, t) = A_0 - 3\lambda^2 B_1 \omega^4 + 12\lambda B_0 \omega^4 B_1/\sqrt{-\omega} \Delta(\eta) - 12\omega \sqrt{-\omega}(\lambda B_1 + B_0) \Delta(\eta)^3 - 12\omega \sqrt{-\omega} B_1 \Delta(\eta)^3 \\
A_0 = \left(2k^2 \lambda^3 B_1^2 + 4\lambda^3 B_1^2 \omega^2 + 12\lambda^2 \omega^2 B_0 B_1^2 + 27\lambda^2 B_0 B_1 \omega^2 + 24\lambda \omega^2 B_0^2 B_1 + 24B_0^2 k^2 \lambda + 6B_1 B_0 \right) \sqrt{-\omega},
\]

\[
\Delta(\eta) = \frac{\lambda^2(\eta + E)}{2\lambda(\eta + E) + 4},
\]

where \( \eta = \sqrt{-\omega}(x + (1/\Gamma(a))^a + \omega(t + (1/\Gamma(a))^a). \) Also, indeed need to be assured to warrant the rational analysis of the function \( \Psi \) as\[ \omega < 0. \]

Set II:

\[
A_0 = \frac{\lambda \left(3k^2 \lambda^2 \omega^2 B_1^2 + 21k^2 \lambda^2 \omega^2 B_0 B_1 + 24k^2 \omega^2 B_1^2 + 3k^2 B_1^2 - k \omega A_1 B_1 + 3\omega^2 B_1^2 + B_0 \left(9k^2 B_1 - 2k \omega A_1 + 9\omega^2 B_1 \right) \right)}{\omega k B_1},
\]

\[
k = k,
\]

\[
\omega = \omega,
\]

\[
A_1 = \frac{-2(-\lambda^2 \omega^2 k^2 + k^2 + \omega^2)B_1 + \lambda^2 B_1 \omega^2 k^2 + 12k^2 \lambda \omega^2 B_0 + (k^2 + \omega^2)B_1}{k \omega},
\]

\[
A_2 = -12\lambda B_1 \omega k - 12B_0 \omega k,
\]

\[
\lambda = \lambda,
\]

\[
\mu = \frac{1}{4} - \frac{-\lambda^2 \omega^2 k^2 + k^2 + \omega^2}{k^2 \omega^2},
\]

\[
\lambda^2 - 4\mu = \frac{k^2 + \omega^2}{k^2 \omega^2},
\]

\[
A_3 = -12\omega k B_1,
\]

\[
B_0 = B_0,
\]

\[
B_1 = B_1,
\]

where \( B_0 \) and \( B_1 \) are arbitrary constants. Imposing the solution set (113) into (24), one can conclude the following cases.

Subcase IIA:

With the help of (11), the exact dark soliton solution to the STFSRLWE is deduced as
\[
\Psi_s(x,t) = \frac{A_0 + A_1 \Delta(\eta) - 12k\omega(\lambda B_1 + 12B_0)\Delta(\eta)^3 - 12\omega k B_1 \Delta(\eta)^3}{B_0 + B_1 \Delta(\eta)},
\]
\[
\Delta(\eta) = \frac{1}{\left(\sqrt{\lambda^2 - 4\mu^2/2\mu}\right) \tanh\left(\left(\sqrt{\lambda^2 - 4\mu^2/2}\right)\eta - (\lambda/2\mu)\right)},
\] (114)

where \( \eta = k(x + (1/T(\alpha))a^2 + \omega(t + (1/T(\alpha))a)^2 + E. \) It should be noted that this soliton is available for \( kw \neq 0. \) (115)

\[
\Psi_y(x,t) = \frac{A_0 + A_1 \Delta(\eta) - 12k\omega(\lambda B_1 + 12B_0)\Delta(\eta)^3 - 12\omega k B_1 \Delta(\eta)^3}{B_0 + B_1 \Delta(\eta)},
\]
\[
\Delta(\eta) = \frac{\sqrt{k^2 + \omega^2}}{kw \left[ \exp\left(\left(\sqrt{k^2 + \omega^2/kw}\right)\eta\right) - 1\right]},
\] (116)

where \( \eta = k(x + (1/T(\alpha))a^2 + \omega(t + (1/T(\alpha))a)^2 + E. \) Moreover, indeed need to be assured to warrant the rational analysis of the function \( \Psi \) as \( kw \neq 0. \) (117)

\[
\Psi_{10}(x,t) = \frac{A_0 - (3\lambda^2 B_1 \omega^2 + 12\lambda B_0 \omega^4 B_1 / \sqrt{-\omega}) \Delta(\eta) - 12\omega \sqrt{-\omega}(\lambda B_1 + B_0) \Delta(\eta)^2 - 12\omega \sqrt{-\omega} B_1 \Delta(\eta)^3}{B_0 + B_1 \Delta(\eta)},
\]
\[
A_0 = \lambda(3\lambda^2 \omega^4 B_1^2 + 21\lambda B_0 \omega^4 B_1 + 24\omega^4 B_0^2 + 6\omega^2 B_1^2 - \sqrt{-\omega} \omega A_1 B_1) + B_0(18\omega^2 B_1 - 2\sqrt{-\omega} \omega A_1),
\] (118)
\[
\Delta(\eta) = \frac{\lambda^2 (\eta + E)}{2\lambda (\eta + E) + 4},
\]

where \( \eta = \sqrt{-\omega}(x + (1/T(\alpha))a^2 + \omega(t + (1/T(\alpha))a)^2. \) Moreover, indeed need to be assured to warrant the rational analysis of the function \( \Psi \) as \( \omega < 0. \) (119)

**Remark.** This paper finds many novel hyperbolic, trigonometric, kink, and kink-singular soliton solutions to govern the model. These mathematical properties come from trigonometric and hyperbolic function properties. In this sense, from the mathematical and physical points of views, these results play an important role in explaining wave propagation of considered models. We obtained more and better results compared with the results of [48] as Mohyud-din and Bibi used the exponential rational function method.

7. Discussion and Remark

This paper finds many novel hyperbolic, trigonometric, kink, and kink-singular soliton solutions to govern model. With the help of some calculations, surfaces of results reported have been observed in Figures 1–6. In Figures 1–6, two dimension plots used the spaces \( x = -2, x = 0, \) and \( x = 2, \) respectively. These figures are depended on the family conditions which are important physically. It has been investigated that all figures plotted have symbolized the space-time fractional order Boussinesq equation, the space-time \((2 + 1)\)-dimensional breaking soliton equations, and the space-time fractional order SRLW equation. These mathematical properties come from trigonometric and hyperbolic function properties. In this sense, from the mathematical and physical points of views, these results play an important role in explaining waves propagation and nonlinear ocean...
8. Conclusion

In this paper, the traveling wave solutions of different kinds, which are solitary, topological, dark, kink, singular, periodic, and rational solutions to the model, for the some nonlinear fractional partial differential equations (the STFBE; the STFBSEs; and the STFSRLWE) involving the $\beta$-derivative have been obtained. The integration mechanism, namely, the rational $\exp(-\Omega(\eta))$-expansion scheme is used for the considered models. It is quite visible that this integration scheme has its limitation. Thus, this paper provides a lot of encouragement for future research with $\beta$-derivative for other models. Afterwards, other extra solution methods will be applied to obtain optical and singular soliton solutions to the nonlinear model. In addition, some fractional PDEs are converted to ordinary differential equations by with the help of transformation $\beta$-derivative. Finally, the existence of the solutions for the constraint conditions is also presented. The constructed results may be helpful in explaining the physical meaning of the studied models and other related as a growing finding in the engineering sciences, mathematical physics, and so forth. The results are beneficial to the study of the wave propagation. All calculations in this paper have been made quickly with the aid of the Maple.

Data Availability

The datasets supporting the conclusions of this article are included within the article and its additional file.

Conflicts of Interest

The author declares that she has no conflicts of interest.

Acknowledgments

The author extends her appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group (no. RG-1441-326).

References

[1] C.-K. Kuo and W.-X. Ma, “A study on resonant multi-soliton solutions to the (2 + 1)-dimensional Hirota-Satsuma-Ito equations via the linear superposition principle,” Nonlinear Analysis, vol. 190, Article ID 111592, 2020.
[2] S. Arshed and L. Arshad, “Optical soliton solutions for nonlinear Schrödinger equation,” Optik, vol. 195, Article ID 163077, 2019.
[3] H. Sarfraz and U. Saleem, “Integrable discretizations of AB system and multi-soliton solutions,” Communications in Nonlinear Science and Numerical Simulation, vol. 79, Article ID 104921, 2019.
[4] T. Xu and D. E. Pelinovsky, “Darboux transformation and soliton solutions of the semi-discrete massive Thirring model,” Physics Letters A, vol. 383, no. 32, Article ID 125948, 2019.
[5] X.-Y. Xie and G.-Q. Meng, “Multi-dark soliton solutions for a coupled AB system in the geophysical flows,” Applied Mathematics Letters, vol. 92, pp. 201–207, 2019.
[6] F. Tchier, M. Inc, A. Yusuf, A. I. Aliyu, and D. Baleanu, “Time fractional third-order variant Boussinesq system: symmetry analysis, explicit solutions, conservation laws and numerical approximations,” The European Physical Journal Plus, vol. 133, p. 240, 2018.
[7] J. Manafian and M. Lakestani, “Dispersive dark optical soliton with Tzitzéica type nonlinear evolution equations arising in nonlinear optics,” Optical and Quantum Electronics, vol. 48, p. 116, 2016.
[8] T. Xu, S. Lan, M. Li, L.-L. Li, and G.-W. Zhang, “Mixed soliton solutions of the defocusing nonlocal nonlinear Schrödinger equation,” Physica D: Nonlinear Phenomena, vol. 390, pp. 47–61, 2019.
[9] H. M. Baskonus and H. Bulut, “Exponential prototype structures for (2 + 1)-dimensional Boiti-Leon-Pempinelli systems in mathematical physics,” Waves in Random and Complex Media, vol. 26, pp. 201–208, 2016.
[10] H. M. Baskonus, D. A. Koç, and H. Bulut, “New travelling wave prototypes to the nonlinear Zakharov-Kuznetsov equation with power law nonlinearity,” Nonlinear Science Letters A, vol. 7, pp. 67–76, 2016.
[11] H. F. Ismael, H. Bulut, and H. M. Baskonus, “Optical soliton solutions to the Fokas Lenells equation via sine-Gordon expansion method and $(m + G'(G))$-expansion method,” Pramana, vol. 94, no. 1, p. 35, 2020.
[12] H. Bulut, “The construction of a composite index for general satisfaction in Turkey and the investigation of its determinants,” Socio-Economic Planning Sciences, 2020.
[13] F. Soleymani and A. Akgül, “Improved numerical solution of multi-asset option pricing problem: a localized RBF-FD approach,” Chaos, Solitons & Fractals, vol. 119, pp. 298–309, 2019.
[14] F. Soleymani and A. Akgül, “Asset pricing for an affine jump-diffusion model using an FD method of lines on nonuniform meshes,” Mathematical Methods in the Applied Sciences, vol. 42, no. 2, pp. 578–591, 2018.
[15] F. Soleymani and A. Akgül, “Optical solitons and modulation instability analysis of the (1 + 1)-dimensional coupled nonlinear Schrödinger equation,” Communications in Theoretical Physics, vol. 72, no. 2, Article ID 025003, 2020.
[16] A. Atangana and A. Akgül, “Can transfer function and Bode diagram be obtained from Sumudu transform,” Alexandria Engineering Journal, 2020.
[17] C. Park, M. M. A. Khater, R. A. M. Attia, W. Alharbi, and S. S. Alodhaibi, “An explicit plethora of solution for the fractional nonlinear model of the low-pass electrical transmission lines via Atangana-Baleanu derivative operator,” Alexandria Engineering Journal, 2020.
[18] M. M. A. Khater, R. A. M. Attia, A.-H. Abdel-Aty, M. A. Abdou, H. Eleuch, and D. Lu, “Analytical and semi-analytical ample solutions of the higher-order nonlinear Schrödinger equation with the non-Kerr nonlinear term,” Results in Physics, vol. 16, Article ID 103000, 2020.
[19] X. Y. Xie and G. Q. Meng, “Dark solitons for a variable-coefficient AB system in the geophysical fluids or nonlinear optics,” The European Physical Journal Plus, vol. 134, p. 359, 2019.
[20] X.-Y. Xie, S.-K. Yang, C.-H. Ai, and L.-C. Kong, “Integrable turbulence for a coupled nonlinear Schrödinger system,” Physics Letters A, vol. 384, no. 5, Article ID 126119, 2020.
[21] X.-Y. Xie and X.-B. Liu, “Elastic and inelastic collisions of the semirefringent solutions for the coupled Hirota equations in a birefringent fiber,” *Applied Mathematics Letters*, vol. 105, Article ID 106291, 2020.

[22] S. T. R. Rizvi, K. Ali, and M. Ahmad, “Optical solitons for Biswas-Milovic equation by new extended auxiliary equation method,” *Optik*, vol. 204, pp. 164–181, 2020.

[23] B. Nawaz, K. Ali, S. T. R. Rizvi, S. O. Abbas, and Q. Zhou, “Optical solitons for modulated compressionless dispersive allfven and heisenberg ferromagnetic spin chains,” *Results in Physics*, vol. 15, Article ID 102714, 2019.

[24] K. K. Ali, R. I. Nuruddeen, and K. R. Raslan, “New hyperbolic structures for the conformable time-fractional variant businesequs,” *Optical and Quantum Electronics*, vol. 50, p. 61, 2018.

[25] K. K. Ali, R. I. Nuruddeen, and K. R. Raslan, “New structures for the space-time fractional simplified MCH and SRLW equations,” *Chaos, Solitons & Fractals*, vol. 106, pp. 304–309, 2018.

[26] R. I. Nuruddeen and A. M. Nass, “Exact solitary wave solution for the fractional and classical GEW-Burgers equations: an application of Kudryashov method,” *Journal of Taibah University for Science*, vol. 12, no. 3, pp. 309–314, 2018.

[27] M. Dehghan, J. Manafian, and A. Saadatmandi, “Solving nonlinear fractional partial differential equations using the homotopy analysis method,” *Numerical Methods for Partial Differential Equations Journal*, vol. 26, pp. 448–479, 2010.

[28] B. Ren, J. Lin, and Z.-M. Lou, “A new nonlinear equation with lump-soliton, lump-periodic, and lump-periodic-soliton solutions,” *Complexity*, vol. 2019, Article ID 4072754, 10 pages, 2019.

[29] S.-T. Chen and W.-X. Ma, “Exact solutions to a generalized Bogoyavlensky-Konopelchenko equation via maple symbolic computations,” *Complexity*, vol. 2019, Article ID 8787460, 6 pages, 2019.

[30] X. Li, Y. Wang, M. Chen, and B. Li, “Lump solutions and resonance stripe solitons to the (2 + 1)-dimensional sawada-Kotera equation,” *Advances in Mathematical Physics*, vol. 2017, pp. 1–6, 2017.

[31] X.-z. Liu, Z.-M. Lou, X.-M. Qian, and L. Thiam, “A study on lump and interaction solutions to a (3 + 1)-dimensional soliton equation,” *Complexity*, vol. 2019, p. 12, 2019.

[32] S. Ahmadian and M. T. Darvishi, “New exact traveling wave solutions for space-time fractional (1 + 1)-dimensional SRLW equation,” *Optik*, vol. 127, no. 22, pp. 10697–10704, 2016.

[33] M. Ekici, Q. Zhou, A. Sonmezoglu, J. Manafian, and M. Mirzazadeh, “The analytical study of solitons to the nonlinear Schrödinger equation with resonant nonlinearity,” *Optik*, vol. 130, pp. 378–382, 2017.

[34] H. Zhang, X. Jiame, M. Zhao, and R. Zheng, “Spectral method for solving the time fractional Boussinesq equation,” *Applied Mathematics Letters*, vol. 85, pp. 164–170, 2018.

[35] T. A. Sulaiman and H. Bulut, “Boussinesq equations: M-fractional solitary wave solutions and convergence analysis,” *Journal of Ocean Engineering and Science*, vol. 4, no. 1, pp. 1–6, 2019.

[36] Z. Korpinar, F. Tchier, M. Inc, L. Ragoub, and M. Bayram, “New solutions of the fractional Boussinesq-like equations by means of conformable derivatives,” *Results in Physics*, vol. 13, p. 102339, 2019.

[37] A. R. Seadawy and J. Manafian, “New soliton solution to the longitudinal wave equation in a magnetoelectro-elastic circular rod,” *Results in Physics*, vol. 8, pp. 1158–1167, 2018.