TAKIFF ALGEBRAS WITH POLYNOMIAL RINGS OF SYMMETRIC IN INVARI ANTS

DMITRI I. PANYUSHEV AND OKSANA S. YAKIMOVA

INTRODUCTION

The ground field \(\mathbb{k} \) is algebraically closed and of characteristic 0. Let \(Q \) be a connected algebraic group with \(q = \text{Lie} \ Q \) and \(S(q) = \mathbb{k}[q^*] \) the symmetric algebra of \(q \). The subalgebra of \(Q \)-invariants in \(\mathbb{k}[q^*] \) is denoted by \(\mathbb{k}[q^*]^Q \) or \(\mathbb{k}[q^*]^\mathfrak{g} \). The elements of \(\mathbb{k}[q^*]^Q \) are called symmetric invariants of \(q \). Interesting classes of non-reductive groups \(Q \) such that \(\mathbb{k}[q^*]^Q \) is a polynomial ring have recently been found, see e.g. [J07, P07, PP, PY12, PY13, CM16, Y17]. A quest for this type of groups continues. Let \(q\langle m \rangle := q \otimes \mathbb{k}[T]/(T^m+1) \) be the \(m \)-th Takiff algebra (= truncated current algebra) of \(q \). Since \(q\langle 0 \rangle \simeq q \), we may assume that \(m \geq 1 \).

Our main result is that under a mild restriction, the passage from \(q \) to \(q\langle m \rangle \) preserves the polynomiality of symmetric invariants. We also (1) discover a new phenomenon that a certain ideal of \(q\langle m \rangle \) has a polynomial ring of invariants in \(\mathbb{k}[q\langle m \rangle]^* \), and (2) show that the property of \(q \) that \(\mathbb{k}[q^*] \) is a free \(\mathbb{k}[q^*]^Q \)-module does not always extend to \(q\langle 1 \rangle \).

The story began in 1971, when Takiff proved that if \(\mathfrak{g} \) is semisimple, then \(\mathfrak{g}\langle 1 \rangle = \mathfrak{g} \times \mathfrak{g}^{ab} \) has a polynomial ring of symmetric invariants whose Krull dimension equals \(2 \cdot \text{rk} \mathfrak{g} \) [Ta71]. Then Raïs and Tauvel proved a similar result for \(\mathfrak{g}\langle m \rangle \) with arbitrary \(m \in \mathbb{N} \) [RT92]. This is the classical analogue of the description of the Feigin-Frenkel centre \(Z(\mathfrak{g}) \subset \mathcal{U}(t^{-1} \mathfrak{g}[t^{-1}]) \), see [FF92]. Recently, Macedo and Savage came up with a multi-parameter generalisation of the Raïs-Tauvel result. Namely, let

\[
(0.1) \quad \hat{\mathfrak{g}} = \mathfrak{g} \otimes \mathbb{k}[T_1, \ldots, T_r]/(T_1^{m_1+1}, \ldots, T_r^{m_r+1}) =: \mathfrak{g}\langle m_1, \ldots, m_r \rangle
\]

be a truncated multi-current algebra of a semisimple \(\mathfrak{g} \). Then \(\mathbb{k}[\hat{\mathfrak{g}}^*] \) is a polynomial ring of Krull dimension \((m_1 + 1) \ldots (m_r + 1) \cdot \text{rk} \mathfrak{g} \), see [MS16]. The proofs heavily use the fact that \(\mathfrak{g} \) is semisimple, when many structure results are available. For instance, both [RT92] and [MS16] exploit Kostant’s section for the set of the regular elements of \(\mathfrak{g} \). On the other hand, if \(\mathfrak{g} \) is simple and \(q = \mathfrak{g}_e \) is the centraliser of a nilpotent element \(e \in \mathfrak{g} \) such that \(\mathfrak{g}_e \) has the “codim-2 property” and \(e \) admits a “good generating system” in \(\mathbb{k}[\mathfrak{g}]^G \), then \(\mathbb{k}[\mathfrak{g}_e \langle m \rangle^*]^{\mathfrak{g}_e(m)} \) is a polynomial ring for all \(m \in \mathbb{N} \), see [AP17, Theorem 3.1]. In all these cases, the free

2010 Mathematics Subject Classification. 14L30, 17B08, 17B20, 22E46.

Key words and phrases. index of Lie algebra, coadjoint representation, symmetric invariants.

The research of the first author was carried out at the IITP RAS at the expense of the Russian Foundation for Sciences (project No 14-50-00150). The second author is supported by the DFG (Heisenberg–Stipendium).
generators of the ring of symmetric invariants of \(\hat{g} \) or \(g_e\langle m \rangle \) are explicitly described via those of \(g \) or \(g_e \), respectively. This goes back to a general construction of [RT92].

Our main theorem provides a substantial generalisation of all these partial results. To state it, we need some notation. The index of \(q \), \(\text{ind} \ q \), is the minimal codimension of the \(Q \)-orbits in \(q^* \), hence \(\text{ind} \ q = \text{rk} \ q \) if \(q \) is reductive. Let \(df \) be the differential of \(f \in \mathbb{k}[q^*] \). We regard \(df \) as a polynomial mapping from \(q^* \) to \(q \) and write \((df)_\xi \) for its value at \(\xi \in q^* \). If \(f \in \mathbb{k}[q^*]^Q \), then \(df \) is \(Q \)-equivariant. The image of \(q \otimes T + \cdots + q \otimes T^m \) in \(q\langle m \rangle \) is an ideal of codimension \(\dim q \), which is denoted by \(q\langle m \rangle^u \). An open subset of an irreducible variety is called big, if its complement does not contain divisors. Then a brief version of our result is

Theorem 0.1. Let \(q \) be an algebraic Lie algebra such that \(\mathbb{k}[q^*]^q = \mathbb{k}[f_1, \ldots, f_l] \) is a graded polynomial ring, where \(l = \text{ind} \ q \). Set \(\Omega_{q^*} = \{ \xi \in q^* \mid (df_1)_\xi \land \cdots \land (df_l)_\xi \neq 0 \} \), and assume that \(\Omega_{q^*} \) is big (in \(q^* \)). For any \(m \geq 1 \), we then have

(i) \(\mathbb{k}[\langle m \rangle^*]^{q\langle m \rangle^u} \) is a graded polynomial ring of Krull dimension \(\dim q + ml \).

(ii) the Takiff algebra \(q\langle m \rangle \) has the same properties as \(q \), i.e., \(\mathbb{k}[\langle m \rangle^*]^{q\langle m \rangle} \) is a graded polynomial ring of Krull dimension \((m + 1)l = \text{ind} q\langle m \rangle \) and the similarly defined subset \(\Omega_{q\langle m \rangle^*} \subset q\langle m \rangle^* \) is also big.

(See also Theorem 2.2 for a description of free generators and \(\Omega_{q\langle m \rangle^*} \).) As is well-known, a semisimple Lie algebra \(q \) satisfies the assumptions of Theorem 0.1. (This goes back to Chevalley and Kostant.) Therefore, Theorem 0.1 yields another proof and a generalisation of [MS16, Theorem 5.4], see Corollary 2.6. A notable difference between our Theorem 0.1 and results of [AP17] is that we do not impose a constraint on \(\sum_i \deg f_i \), which is a part of the definition of a “good generating system”, and do not require the codim--2 property for \(q \) (see Section 1 for the definition). A weaker assumption that \(\Omega_{q^*} \) is big appears to be sufficient. That is, our result applies to a larger supply of non-reductive Lie algebras, see examples in Sections 3 and 4. For instance, the canonical truncation, \(\tilde{q} \), of a Frobenius Lie algebra \(q \) satisfies the hypotheses of Theorem 0.1, see Section 3.2.

If \(g \) is semisimple, then \(\mathbb{k}[g\langle m \rangle^*] \) is a free \(\mathbb{k}[g\langle m \rangle^*]^{g\langle m \rangle} \)-module for any \(m \) [M01, Appendix]. In Section 5, we prove that this property does not generalise to the truncated multi-current algebras of \(g \) or the truncated current algebras \(q\langle m \rangle \) for arbitrary \(q \) such that \(\mathbb{k}[q\langle m \rangle^*] \) is a free \(\mathbb{k}[q\langle m \rangle^*]^{q\langle m \rangle} \)-module. Namely, \(\mathbb{k}[g\langle 1, 1, 1 \rangle] \) is not a free \(\mathbb{k}[g\langle 1, 1, 1 \rangle]^{g\langle 1, 1, 1 \rangle} \)-module (Theorem 5.5). This can also be interpreted as follows. Since the passage \(g \sim g\langle 1 \rangle \) preserve freeness of the module [G94, M01], in the chain of Takiff extensions

\[
g \sim g\langle 1 \rangle \sim g\langle 1 \rangle \langle 1 \rangle \simeq g\langle 1, 1 \rangle \sim g\langle 1, 1 \rangle \langle 1 \rangle \simeq g\langle 1, 1, 1 \rangle,
\]

...
we lose the freeness of the module at the second or third step (conjecturally, at the third step!). This also implies that, for $g \langle 1, 1, \ldots, 1 \rangle = g(1^n)$ and every $r \geq 3$, $\mathbb{k}[g(1^n)]$ is not a free module over the ring of symmetric invariants.

Notation. Let Q act on an irreducible affine variety X. Then $\mathbb{k}[X]^Q$ is the algebra of Q-invariant regular functions on X and $\mathbb{k}(X)^Q$ is the field of Q-invariant rational functions. If $\mathbb{k}[X]^Q$ is finitely generated, then $X//Q := \text{Spec} \mathbb{k}[X]^Q$, and the quotient morphism $\pi_Q : X \to X//Q$ is induced by the inclusion $\mathbb{k}[X]^Q \hookrightarrow \mathbb{k}[X]$. If $\mathbb{k}[X]^Q$ is a graded polynomial ring, then the elements of any set of algebraically independent homogeneous generators are called basic invariants. If V is a Q-module and $v \in V$, then $q_v = \{ \zeta \in q \mid \zeta \cdot v = 0 \}$ is the stabiliser of v in q and $Q_v = \{ s \in Q \mid s \cdot v = v \}$ is the isotropy group of v in Q; H^o is the identity component of an algebraic group H.

1. Preliminaries on the coadjoint representation

Let Q be a connected affine algebraic group with Lie algebra q. The symmetric algebra $S(q)$ over \mathbb{k} is identified with the graded algebra of polynomial functions on q^* and we also write $\mathbb{k}[q^*]$ for it.

The index of q, ind q, is the minimal codimension of Q-orbits in q^*. Equivalently, ind $q = \min_{\xi \in q^*} \dim q_{\xi}$. By Rosenlicht’s theorem [VP89, 2.3], one also has ind $q = \text{tr.deg} \mathbb{k}(q^*)^Q$. The “magic number” associated with q is $b(q) = (\dim q + \text{ind} q)/2$. Since the coadjoint orbits are even-dimensional, the magic number is an integer. If q is reductive, then ind $q = rk q$ and $b(q)$ equals the dimension of a Borel subalgebra. The Poisson bracket $\{ , \}$ in $\mathbb{k}[q^*]$ is defined on the elements of degree 1 (i.e., on q) by $\{ x, y \} := [x, y]$. The centre of the Poisson algebra $S(q)$ is $S(q)^a = \{ H \in S(q) \mid \{ H, x \} = 0 \ \forall x \in q \}$. Since Q is connected, we also have $S(q)^a = S(q)^Q = \mathbb{k}[q^*]^Q$.

The set of Q-regular elements of q^* is $q^*_{\text{reg}} = \{ \eta \in q^* \mid \dim Q \cdot \eta \geq \dim Q \cdot \eta' \text{ for all } \eta' \in q^* \}$. We say that q has the codim-n property if $\text{codim} (q^* \backslash q^*_{\text{reg}}) \geq n$. The following useful result appears in [P07’, Theorem 1.2]:

Theorem 1.1. Suppose that q has the codim–2 property and there are homogeneous algebraically independent $f_1, \ldots, f_l \in \mathbb{k}[q^*]^Q$ such that $l = \text{ind} q$ and $\sum_{i=1}^l \deg f_i = b(q)$. Then

(i) $\mathbb{k}[q^*]^Q = \mathbb{k}[f_1, \ldots, f_l]$ and

(ii) $(df_1)_\xi, \ldots, (df_l)_\xi$ are linearly independent if and only if $\xi \in q^*_{\text{reg}}$.

Furthermore, if q has the codim–2 property, then for any collection of algebraically independent homogeneous $f_1, \ldots, f_l \in \mathbb{k}[q]^Q$ with $l = \text{ind} q$, one has $\sum_{i=1}^l \deg f_i \geq b(q)$.

Definition 1 (cf. [P08]). An algebraic Lie algebra q is said to be n-wonderful, if

(i) q has the codim–n property.
(ii) \(\mathbb{k}[q^*]^Q \) is a polynomial algebra of Krull dimension \(l = \text{ind} q \);

(iii) If \(f_1, \ldots, f_l \) are basic invariants in \(\mathbb{k}[q^*]^Q \), then \(\sum_{i=1}^l \deg f_i = b(q) \).

For instance, any semisimple Lie algebra is 3-wonderful.

It follows from Theorem 1.1 that if \(q \) is 2-wonderful, then \(\Omega_{q^*} = q_{\text{reg}} \) is big. Therefore, Theorem 0.1 applies to all 2-wonderful Lie algebras. (A more precise statement is given in Corollary 2.5 below.) For instance, it applies to all centralisers of nilpotent elements in types \(A_n \) or \(C_n \), see [PPY, Theorems 4.2 & 4.4] and [AP17, Section 3].

Suppose that \(\mathbb{k}[q^*]^Q \) is a polynomial ring, but nothing is known about the \(\text{codim} \)-2 property. Theorem 0.1 suggests that one needs some tools to decide whether \(\Omega_{q^*} \) is big. In many cases, the following assertion is helpful.

Proposition 1.2 (see [JS10, Prop. 5.2]). If \(\mathbb{k}[q^*]^Q \) is a polynomial ring and \(Q \) has no proper semi-invariants in \(\mathbb{k}[q^*] \), then \(\Omega_{q^*} \) is big.

Remark 1.3. Using some ideas of Knop (see [Kn86, Satz 2]), we can prove a more general assertion, which we do not need here. Namely,

Let an algebraic group \(Q \) act on an irreducible affine factorial variety \(X \). Suppose that \(X//Q \) exists (i.e., \(\mathbb{k}[X]^Q \) is finitely generated) and \(\mathbb{k}[X] \) contains no proper \(Q \)-semi-invariants. Let \(X_{\text{sm}} \) denote the smooth locus of \(X \) and \(\pi_Q : X \to Y := X//Q \) the quotient morphism. Set \(\Omega_X = \{ x \in X_{\text{sm}} | \pi_Q(x) \in Y_{\text{sm}} \& (d\pi_Q)_x \text{ is onto} \} \). Then \(\Omega_X \) is big.

2. TAKIFF ALGEBRAS AND THEIR SYMMETRIC INVARIANTS

By definition, the \(m \)-th Takiff algebra of \(q \) is \(q^{(m)} := q \otimes \mathbb{k}[T]/(T^{m+1}) \). In particular, \(q^{(1)} = q \ltimes q^{ab} \) is the semi-direct product, where the second factor is an abelian ideal. For \(j \leq m \), the image of \(q \otimes T^j \) in \(q^{(m)} \) is denoted by \(q^{(j)} \). A typical element of \(q^{(m)} \) can be written as \(x = (x_0, x_1, \ldots, x_m) \), where \(x_j \in q^{(j)} \). Likewise, we have \(q^{(m)^*} \simeq \bigoplus_{j=0}^m (q^{(j)})^* \) as vector space, and \(\xi = (\xi_0, \xi_1, \ldots, \xi_m) \) is an element of \(q^{(m)^*} \), where \(\xi_j \in q^{(j)^*} \). Then the pairing of \(q^{(m)} \) and \(q^{(m)^*} \) is given by \(\langle x, \xi \rangle_{q^{(m)}} = \sum_{i=0}^m \langle x_i, \xi_i \rangle_q \). It is sometimes convenient to regard the elements of \(q^{(m)} \) and \(q^{(m)^*} \) as “polynomials” in \(\epsilon \), where \(\epsilon^{m+1} = 0 \). Namely,

\[
\begin{align*}
\sum_{i=0}^m x_i \epsilon^i & \quad \text{and} \quad \sum_{j=0}^m \xi_j \epsilon^{m-j}.
\end{align*}
\]

Using this notation, the Lie bracket in \(q^{(m)} \) is

\[
[x, y]_\epsilon = \sum_{0 \leq i + j \leq m} [x_i, y_j] \epsilon^{i+j}
\]

and the coadjoint representation \(\text{ad}^*_{q^{(m)}} \) of \(q^{(m)} \) is given by

\[
(\text{ad}^*_{q^{(m)}} x) \xi = \sum_{0 \leq j - i \leq m} (\text{ad}^*_{q^i}(x_i) \xi_j) \epsilon^{m-j+i}.
\]
Then \(q(m)^u = \bigoplus_{j=1}^{m} q[j] \) is an ad-nilpotent ideal of \(q(m) \) and the corresponding connected algebraic group is

\[
Q(m) \simeq Q \ltimes \exp(q(m)^u) = Q \ltimes Q(m)^u.
\]

(If \(Q \) is reductive, then \(Q(m)^u \) is the unipotent radical of \(Q(m) \).) For a non-Abelian \(Q \), the unipotent group \(Q(m)^u \) is commutative if and only if \(m = 1 \).

By [RT92, 2.8], one has \(\text{ind } q(m) = (m + 1) \cdot \text{ind } q \). Hence also \(b(q(m)) = (m + 1) \cdot b(q) \).

Moreover,

\[
(2.1) \quad \xi \in q(m)^*_\text{reg} \text{ if and only if } \xi_m \in q^*_\text{reg}.
\]

Therefore, the presence of \(\text{codim } n \) property for \(q \) implies that for \(q(m) \).

A general method for constructing symmetric invariants of \(q(m) \) is presented in [RT92]. Suppose that \(f \in \mathbb{k}[q^*] \) is homogeneous. Recall that \(df \in \text{Mor}(q^*, q) \) is the differential of \(f \). Consider \(\xi_e \) as an element of \(q^* \otimes \mathbb{k}[\epsilon] \) with \(\epsilon^{m+1} = 0 \), and expand \(f(\xi_e) \) as a polynomial in \(\epsilon \):

\[
f(\xi_m + \epsilon \xi_{m-1} + \cdots + \epsilon^{m-1} \xi_1 + \epsilon^m \xi_0) = \sum_{j=0}^{m} F^j(\xi) \epsilon^j.
\]

It is readily seen that \(F^0(\xi) = f(\xi_m) \) and \(F^1(\xi) = \langle (df)_{\xi_m}, \xi_{m-1} \rangle_q \). More generally, the following assertion is true.

Proposition 2.1 (see [RT92, Section III]). For any \(j \in \{0, 1, \ldots, m\} \), we have

\[
(i) \quad F^j(\xi) = \langle (df)_{\xi_m}, \xi_{m-j+1} \rangle_q + H_j(\xi_m, \ldots, \xi_{m-j+1}) \text{ for some } H_j \in \mathbb{k}[q(m)^*];
(ii) \quad \text{If } f \in \mathbb{k}[q^*]Q, \text{ then every } F^j \text{ is a symmetric invariant of } q(m), \text{ i.e., } F^j \in \mathbb{k}[q(m)^*]Q(m).
\]

Let \(f_1, \ldots, f_l \) be a set of basic invariants in \(\mathbb{k}[q^*]Q \), where \(l = \text{ind } q \). Using the above construction of [RT92], we associate to each \(f_i \) the set of \(Q(m) \)-invariants \(F^0_i, \ldots, F^m_i \). Now, we are ready to state precisely our main result.

Theorem 2.2. Let \(Q \) be a connected algebraic group such that \(\mathbb{k}[q^*]Q = \mathbb{k}[f_1, \ldots, f_l] \) is a graded polynomial ring, where \(l = \text{ind } q \). Set \(\Omega_{q^*} = \{ \xi \in q^* \mid (df_1)_\xi \land \cdots \land (df_l)_\xi \neq 0 \} \), and assume that \(\Omega_{q^*} \) is big. For any \(m \geq 1 \), we then have

\[
(i) \quad \mathbb{k}[q(m)^*]Q(m)^u \text{ is a graded polynomial ring of Krull dimension } \dim q + ml, \text{ which is freely generated by the coordinate functions on } q^*_m \text{ and the } \{ F^j_i \}'s \text{ with } i = 1, \ldots, l \text{ and } j = 1, \ldots, m.
(ii) \quad \text{the Takiff algebra } q(m) \text{ has the same properties as } q, \text{ i.e.,}
\]

- \(\mathbb{k}[q(m)^*]Q(m) \) is a graded polynomial ring of Krull dimension \(\text{ind } q(m) = (m + 1)l \).
- \(\Omega_{q(m)^*} = \bigoplus_{j=0}^{m-1} q^*_j \ltimes \Omega_{q^*} \text{ is big, where } \Omega_{q^*} \subset q^*_m \simeq q^*. \)
Proof. (i) Recall that \(q^m \simeq q \times q^m \), where \(q = q[0] \) and \(q^m = \bigoplus_{j=1}^m q[j] \), and \(Q^m = Q \times Q^m \). Here \(Q^m \) is a unipotent normal subgroup of \(Q^m \).

Note that the subspace \(q|m| \subset q^m \) regarded as a subset of \(k[q^m]^* \) belongs to the subalgebra of \(Q^m \)-invariants, and \(F_j^0 = f_i \in S[q|m] \). Let \(\mathcal{A} \) denote the subalgebra of \(k[q^m]^*Q^m \) generated by \(q|m \) and \(\{ F_j^0 \} \) with \(j = 1, \ldots, m \) and \(i = 1, \ldots, l \). (Note that we do not include \(F_j^0 \) in the generating set for \(A \! \) !)

For \(x = (x_0, \ldots, x_m) \) with \(x_i \in q[i] \), we say that \(x_j \neq 0 \) is the lowest component of \(x \), if \(x_0 = \cdots = x_{j-1} = 0 \). Now, \((dF_j^0) \xi \in q^m \) and using Proposition 2.1(i), one readily verifies that its lowest component is \((dF_j^0) \xi \mid_{m-j} = (df_i) \xi_m \in q|m-j| \), where \(j = 0, 1, \ldots, m-1 \).

Clearly, these lowest components are linearly independent if and only if \(\xi_m \in \Omega_q^* \). If \(v_1, \ldots, v_{\dim q} \) is a basis for \(q|m| \), then \((dF_i) \xi = v_i \in q|m| \). Since all these differentials have a block-triangular form w.r.t. the decomposition \(q^m = \bigoplus_{i=1}^m q[i] \) (cf. Table 1), it follows that the differentials per se are linearly independent at \(\xi \) if and only if \(\xi_m \in \Omega_q^* \). Therefore, the polynomials

\[
v_1, \ldots, v_{\dim q}, \text{ and } \{ F_j^0 \} \text{ with } j = 1, \ldots, m, \ i = 1, \ldots, l
\]

are algebraically independent and generate \(\mathcal{A} \). As the differentials of this family are linearly independent on the big open subset \(\bigoplus_{j=0}^{m-1} q[j] \times \Omega_q^* \) of \(q^m \), Theorem 1.1 in [PPY] guarantee us that \(\mathcal{A} \) is an algebraically closed subalgebra in \(k[q^m]^* \), of Krull dimension \(\dim q + m \).

On the other hand, if \(\xi = (0, \ldots, 0, \xi_m) \) and \(\xi_m \in q^m_{\reg} \), then \(\dim Q^m \cdot \xi = m(\dim q - l) \). Hence \(\text{tr.deg} k[q^m]^*Q^m \leq \dim q^m - \dim Q^m \cdot \xi = \dim q + m \). Therefore \(\mathcal{A} = k[q^m]^*Q^m \) is an algebraic extension, which implies that \(\mathcal{A} = k[q^m]^*Q^m \). In other words, \(k[q^m]^*Q^m \) is \(\{ F_j^0 \} = k[q|m]|F_j^0, \ i = 1, \ldots, l; \ j = 1, \ldots, m \} \).

(ii) Since \(Q^m \simeq Q \times Q^m \) and the \(F_j^0 \)'s are already \(Q^m \)-invariant (Prop. 2.1(ii)), it follows from part (i) that

\[
k[q^m]^*Q^m = (k[q^m]^*Q^m)^Q = k[q^m]^Q[\{ F_i^0 \}, 1 \leq i \leq l; 1 \leq j \leq m] = k[F_i^0, 1 \leq i \leq l; 0 \leq j \leq m].
\]

Furthermore, the differentials of the total set of generators \(\{ F_i^0 \} \), with the value \(j = 0 \) included, are also linearly independent if and only if \(\xi_m \in \Omega_q^* \subset q^m_{\reg} \), see [RT92, Lemma 3.3] and Table 1. Therefore, \(\Omega_{q^m}^* = \bigoplus_{j=0}^{m-1} q[j] \times \Omega_q^* \) is big. \(\square \)

For future use, we record a by-product of the proof:

Corollary 2.3. \(\xi \in \Omega_{q^m}^* \iff \xi_m \in \Omega_q^* \).

Remark 2.4. It appears that Theorem 2.2 is fully analogous to [P07, Theorem 11.1], where the polynomiality of invariants for the adjoint representation of \(q^m \) is studied.
Table 1. Components of the differentials of basic invariants

	\(q_{[m]} \)	\(q_{[m-1]} \)	\(q_{[m-2]} \)	\ldots	\(q_{[0]} \)
\((dF^0)\xi\)	\((df_1)\xi_m\)	0	\ldots	\ldots	0
\vdots	\vdots	\vdots	\ldots	\ldots	\vdots
\((dF^0)\xi\)	\((df_i)\xi_m\)	0	\ldots	\ldots	0
\((dF^1)\xi\)	*	\((df_1)\xi_m\)	0	\ldots	0
\vdots	\vdots	\vdots	\ldots	\ldots	\vdots
\((dF^1)\xi\)	*	\((df_i)\xi_m\)	0	\ldots	0
\((dF^2)\xi\)	*	*	\((df_1)\xi_m\)	\ldots	0
\vdots	\vdots	\vdots	\ldots	\ldots	\vdots
\((dF^2)\xi\)	*	*	\((df_i)\xi_m\)	\ldots	0

Corollary 2.5. If \(q \) is an \(n \)-wonderful algebra for \(n \geq 2 \), then so is \(q^{(m)} \) for any \(m \in \mathbb{N} \).

Proof. Let us check that the properties of Definition 1 carry over from \(q \) to \(q^{(m)} \).

- As noted above, the presence of \(\text{codim} – n \) property for \(q \) implies that for \(q^{(m)} \). We also have \(\dim q^{(m)} = (m+1) \cdot \dim q \) and \(\text{ind} q^{(m)} = (m+1) \cdot \text{ind} q \).

- If \(q \) is 2-wonderful, then \((df_1)\xi, \ldots, (df_i)\xi\) are linearly independent if and only if \(\xi \in q_{\text{reg}}^* \) (Theorem 1.1). Hence \(\Omega^*_q = q_{\text{reg}}^* \) and its complement does not contain divisors. Therefore, \(\mathbb{k}[q^{(m)}]^*Q^{(m)} \) is polynomial ring of Krull dimension \((m+1)l = (m+1) \cdot \text{ind} q \), freely generated by the \(F_{ij} \)'s.

- Clearly, \(\deg F_{ij} = \deg f_i \) for all \(i \) and \(j \). Therefore

\[
\sum_{i=1}^{l} \sum_{j=0}^{m} \deg F_{ij} = (m+1) \sum_{i=1}^{l} \deg f_i = (m+1) b(q) = b(q^{(m)}). \quad \square
\]

Corollary 2.6 (cf. [MS16, Thm. 5.4]). For any \(r \)-tuple \(m_1, \ldots, m_r \), the truncated multi-current algebra \(q^{(m_1, \ldots, m_r)} \) has a polynomial ring of symmetric invariants.

Proof. A truncated multi-current algebra of any \(q \) is obtained as an iteration of various Takiff algebras. That is,

\[
(2.2) \quad q := q^{(m_1, \ldots, m_r)} \simeq (\cdots (q^{(m_1)})^{(m_2)}) \cdots)^{(m_r)}. \]

Therefore, if \(q \) satisfies the hypotheses of Theorem 2.2, then so is \(q \). In particular, \(\mathbb{k}[q^*]^Q \) is a polynomial ring. \quad \square
Note that if \(q = g \) is semisimple, then one can use results of [RT92] only for the first iteration \(g \sim g(m_1) \), because afterwards the algebra in question becomes non-reductive.

Remark 2.7. An essential point in our proof of Theorem 2.2 is the use of Theorem 1.1 in [PPY]. This ensures that the subalgebra \(\mathcal{A} \) is algebraically closed in \(k[q(m)]^* \) and hence \(\mathcal{A} = k[q(m)]^* Q(m)^u \) for the dimension reason. However, one can use instead an invariant-theoretic (geometric) argument related to Igusa’s lemma (see e.g. [VP89, Theorem 4.12]) or [P07, Lemma 6.1]). Namely, consider the morphism

\[
\tau : q(m)^* \to q[m] \times \mathbb{A}^m_{\mathbb{C}} =: Y
\]

given by \(\tau(\xi) = (\xi_m, F^1_l(\xi), \ldots, F^m_l(\xi), \ldots, F^m_l(\xi)) \). From the assumption on \(\Omega_q^* \) and a “triangular” form of \(\{ F^i_l \} \) (see Prop. 2.1(i)), one derives that

1. \(\text{Im} \tau \supset \Omega_q^* \times \mathbb{A}^m_{\mathbb{C}} \), where the RHS is a big open subset of \(Y \);

2. for any \(y \in \Omega_q^* \times \mathbb{A}^m_{\mathbb{C}} \), the fibre \(\tau^{-1}(y) \) is a sole \(Q(m)^u \)-orbit.

Then Igusa’s lemma asserts that \(k[Y] \simeq k[q(m)]^*[Q(m)^u] \), i.e., \(Y \simeq q(m)^*/Q(m)^u \) and \(\tau = \pi_{Q(m)^u} \). (Cf. the similar use of Igusa’s lemma in [P07, Theorems 6.2 & 11.1] and [P07′, Theorem 5.2].)

3. **Prehomogeneous vector spaces and rings of semi-invariants**

Here we show that some old results of Sato–Kimura [SK77] on prehomogeneous vector spaces allow us to construct Lie algebras satisfying the hypotheses of Theorem 2.2.

3.1. Prehomogeneous vector spaces. Let \(H \subset GL(V) \) be a representation of a connected group \(H \) having an open orbit in \(V \), i.e., \(V \) is a prehomogeneous vector space w.r.t. \(H \). By [SK77, § 4], the algebra of \(H \)-semi-invariants in \(k[V] \), denoted \(k[V]^{(H)} \), is polynomial. More precisely, let \(O \subset V \) be the open \(H \)-orbit and \(D_1, \ldots, D_l \) all simple divisors in \(V \setminus O \) (we do not need the irreducible components of codimension \(\geq 2 \) in \(V \)). If \(D_l = \{ f_l = 0 \} \), then \(f_l \in k[V]^{(H)}, f_1, \ldots, f_l \) are algebraically independent, and \(k[V]^{(H)} = k[f_1, \ldots, f_l] \). Moreover, let \(\lambda_i : H \to \mathbb{C}^\times \) be the \(H \)-character corresponding to \(f_i \), i.e., \(h \cdot f_i = \lambda_i(h) f_i \) for all \(h \in H \). Then the differentials of \(\lambda_i \)'s are linearly independent and \(\tilde{H} := \{ h \in H | \lambda_i(h) = 1 \ \forall i \}^o \) is of codimension \(l \) in \(H \). Then \([H,H] \subset \tilde{H} \subset H \) and \(k[V]^{[H,H]} = k[V]^{\tilde{H}} = k[V]^{(H)} \) is a polynomial ring.

3.2. Frobenius Lie algebras. Suppose that \(\text{ind} \ h = 0 \), i.e., \(h \) is Frobenius. Then \(H \) has an open orbit in \(\mathfrak{h}^* \) and the above results apply to \(V = \mathfrak{h}^* \). Then \(k[\mathfrak{h}^*]^{(H)} = k[\mathfrak{h}^*]^{\tilde{H}} \) is a polynomial ring of Krull dimension \(\dim H - \dim \tilde{H} = \text{ind} \ h \). Note that

\[
k[k][\mathfrak{h}^*] = S(\tilde{h}) \subset S(h) = k[\mathfrak{h}^*],
\]

and an important additional feature of the “coadjoint” situation is that \(k[\mathfrak{h}^*]^{\tilde{H}} \subset k[\mathfrak{h}^*] \), see [BGR, Kap. II, § 6]. Hence \(k[\mathfrak{h}^*]^{\tilde{H}} = k[\mathfrak{h}^*]^{\tilde{H}}, \) i.e., \(h \) has a polynomial ring of symmetric
invariants whose Krull dimension equals \(\text{ind} \, \tilde{h} \). By the very construction, \(\tilde{H} \) has no proper semi-invariants in \(\mathbb{k}[h^*] \) and hence in \(\mathbb{k}[\tilde{h}^*] \). It then follows from Proposition 1.2 that \(\Omega_{\tilde{h}} \) is big. Thus, Theorem 2.2 applies to \(\tilde{h} \), and hence \(\tilde{h}(m) \) has a polynomial ring of symmetric invariants for any \(m \geq 1 \).

Remark 3.1. More generally, for any Lie algebra \(h \), the ring of symmetric semi-invariants \(\mathbb{k}[h^*]^{(H)} \) (i.e., the Poisson semi-centre of \(S(h) = \mathbb{k}[h^*] \)) is isomorphic to the ring of symmetric invariants of a canonically defined subalgebra \(\tilde{h} \subset h \) [BGR, Kap. II, §6], see also [OVdB, Sect. 3]. The subalgebra \(\tilde{h} \) is called the *canonical truncation* of \(h \). It has the property that \(\dim h - \dim \tilde{h} = \text{ind} \, \tilde{h} - \text{ind} h \) [OVdB, Lemma 3.7], hence \(b(h) = b(\tilde{h}) \). Furthermore, since \(\tilde{H} \) has no proper semi-invariants in \(\mathbb{k}[\tilde{h}^*] \), \(\mathbb{k}(\tilde{h}^*)^{\tilde{H}} \) is the field of fractions of \(\mathbb{k}[\tilde{h}^*]^{\tilde{H}} \) and the Krull dimension of \(\mathbb{k}[\tilde{h}^*]^{\tilde{H}} \) equals \(\text{ind} \, \tilde{h} \). Therefore, if \(\mathbb{k}[h^*]^{(H)} = \mathbb{k}[\tilde{h}^*]^{\tilde{H}} \) is a polynomial ring, then Proposition 1.2 and Theorem 2.2 apply to \(\tilde{h} \), and hence \(\tilde{h}(m) \) has a polynomial ring of symmetric invariants for all \(m \geq 1 \). In the special case, where \(h \) is Frobenius, this is already explained in the previous paragraph.

Let us illustrate this theory in both Frobenius and non-Frobenius cases.

Example 3.2. Let \(G \) be a simple algebraic group with \(\text{Lie}(G) = g \), \(b \) a Borel subalgebra of \(g \), and \([b, b] = u \). The corresponding connected subgroups of \(G \) are \(B \) and \(U \). Here we are interested in the symmetric invariants of \(b \) and \(u \), and the canonical truncation of \(b \).

Most of these results are due to Kostant [K12] and Joseph [J77]. (Actually, many Kostant’s results are rather old and had been cited in [J77].) Our idea is to demonstrate utility of the Sato–Kimura theory in this context.

(\(\diamond_1 \)) If \(\text{ind} \, b = 0 \), then \(\text{ind} \, u = \text{rk} \, g \) and \(\tilde{b} = [b, b] = u \). Hence \(S(b)^U = S(u)^U \) is a polynomial ring of Krull dimension \(\text{rk} \, g \). As explained above, Theorem 2.2 applies to \(u = \tilde{b} \). It is well known that \(\text{ind} \, b = 0 \) *if and only if* \(g \in \{ B_n, C_n, D_{2n}, E_7, E_8, F_4, G_2 \} \).

Let \(f_1, \ldots, f_{\text{rk} \, g} \) be the basic invariants in \(S(u)^U \). Their weights and degrees are pointed out in [J77, Tables I,II], with some corrections in [FJ05, Annexe A]. It follows from those data that \(\sum_{i=1}^{\text{rk} \, g} \text{deg} \, f_i < b(u) = \frac{1}{2} \text{dim} \, b \) unless \(g = C_n \). This means that, for all but one case, the *codim–2* property does not hold for \(u \) (use Theorem 1.1!).

(\(\diamond_2 \)) If \(\text{ind} \, b > 0 \), then \(\text{ind} \, u < \text{rk} \, g \) and \(S(u)^U \) is a proper subalgebra of \(S(b)^U \). (Actually, one always has \(\text{ind} \, u + \text{ind} \, b = \text{rk} \, g \).) There are two possibilities to construct a suitable subalgebra of \(b \): one is related to the Sato–Kimura approach, and the other exploits the canonical truncation.

\((-1-) \) Since \(B \) has a dense orbit in \(u^* \) [K12], one applies Sato–Kimura results to \(V = u^*, H = B \), and \(U = [B, B] \). This shows that \(S(u)^U \) is still a polynomial ring. Moreover, \(\Omega_{u^*} \) is big for the same reason as above. For all these cases (i.e., \(g \in \{ A_n, D_{2n+1}, E_6 \} \)), we have \(\sum_i \text{deg} \, f_i < b(u) \). Hence there is no *codim–2* property for \(u \), but Theorem 2.2 applies to \(u \).
Now, the canonical truncation of \(b \) is a subalgebra that properly contains \(u \). Namely, the toral part of \(\tilde{b} \) has dimension \(\text{ind} \ b \). If \(b = t \oplus u \) and \(\Delta^+ \) is the set of positive roots (= roots of \(u \)), then one canonically constructs the cascade \(K \) of strongly orthogonal roots in \(\Delta^+ \) (Kostant’s cascade), see [J77, Section 2]. If \(K = \{ \gamma_1, \ldots, \gamma_t \} \), then \(\text{ind} \ b = \dim t - t \) and \(\tilde{b} = t \oplus u \), where \(t = \{ \gamma_1, \ldots, \gamma_t \}^\perp \). Thus, we obtain that

\[
\text{k}[b^*]^U = \text{k}[b^*]^{(B)} = \text{k}[\tilde{b}^*]^\tilde{B}.
\]

By [J77, 4.16], \(S(b)^U \) is a polynomial ring of Krull dimension \(\text{rk} \, g \). Hence Theorem 2.2 applies to \(\tilde{b} \).

The output of this example is that, for any simple Lie algebra \(g \), our main theorem applies to both \(b \) (the canonical truncation of \(b \)) and \(u = [b, b] \). These two subalgebras of \(b \) coincide if and only if \(b \) is Frobenius.

4. More examples

We provide other applications of Theorem 2.2 to Lie algebras with or without the codim–2 property.

Example 4.1. Let \(G \subset SL(V) \) be a representation of a connected semisimple algebraic group. Consider the semi-direct product \(q = g \ltimes V^{ab} \). The corresponding connected group \(Q = G \ltimes \exp(V) \) has no non-trivial characters, hence \(\text{k}[q^*] \) does not contain proper \(Q \)-semi-invariants. Therefore, if (we know that) \(\text{k}[q^*]Q \) is a polynomial ring, then \(\Omega_q^\ast \) is big (use Proposition 1.2) and Theorem 2.2 applies to \(q \). The classification of representation \((G : V)\) of simple algebraic groups \(G \) such that \(\text{k}[q^*]Q \) is a polynomial ring is the subject of an ongoing project initiated by the second author. First non-trivial results for \(G = SL_n \) are found in [Y17], and the representations of the exceptional groups are considered in [PY17]. The representations of \(SO_n \) and \(Sp_{2n} \) will be handled in our forthcoming publication. (However, it is not always easy to decide whether the codim–2 property holds for such \(q \).)

Consider a concrete elementary example, where everything can be verified by hand. For an \(n \)-dimensional vector space \(V \) with \(n \geq 2 \), take the semi-direct product \(q = sl(V) \times nV = sl_n \rtimes n\text{k}^n \). The elements of \(nV \) (resp. \(nV^\ast \)) are regarded as \(n \times n \) matrices, where \(sl_n \) acts via left (resp. right) multiplications. Since \(\text{k}[nV^\ast]^{SL(V)} = \text{k}[\det] \) and generic stabilisers for the action \((SL(V) : nV)\) are trivial, we have

\[
\text{k}[q^*]^Q = \text{k}[nV^\ast]^{SL(V)} = \text{k}[\det].
\]

(The first equality here stems from [P07, Theorem 6.4].) Hence \(\text{ind} \, q = 1 \) and \(b(q) = n^2 \). For an \(n \times n \) matrix \(\eta \), one has \(d(\det) \eta = 0 \iff \text{rk} \, \eta < n - 1 \). Therefore, \(d(\det) \) vanishes on the determinantal variety of matrices of rank \(\leq n - 2 \), which is of codimension 4 in \(nV^\ast \). Thus, \(\Omega_q^\ast \) is big.
On the other hand, \(q^*_{\text{reg}} = \mathfrak{sl}_n^* \times (nV)^*_{\det} \) is a principal open subset, i.e., \(q^* \setminus q^*_{\text{reg}} = \mathfrak{sl}_n^* \times \{ \det = 0 \} \) is a divisor. Hence the codim–2 property does not hold here. This also follows from the fact that \(n = \deg(\det) < b(q) = n^2 \).

Example 4.2. Let \(\mathfrak{Hei}_n \) be the Heisenberg Lie algebra of dimension \(2n + 1 \). It has a basis \(x_1, \ldots, x_n, y_1, \ldots, y_n, z \) such that the only nonzero brackets are \([x_i, y_i] = z, i = 1, \ldots, n\). Then \(\text{ind} (\mathfrak{Hei}_n) = 1 \) and \(\mathbb{k}[\mathfrak{Hei}_n^*]^{\mathfrak{Hei}_n} = \mathbb{k}[z] \). Therefore, \(\Omega_{\mathfrak{Hei}_n} = \mathfrak{Hei}_n^* \) and Theorem 2.2 applies here. It is easily seen that the hyperplane \(\{ \xi \in \mathfrak{Hei}_n^* \mid \langle \xi, z \rangle = 0 \} \) consists of the fixed points of the Heisenberg group. Hence, \(\mathfrak{Hei}_n \) does not have the codim–2 property.

This has the following application to centralisers of nilpotent elements:

Example 4.3. Let \(G \) be a simple group of type \(G_2 \). If \(G \cdot e \subset \mathfrak{g} \) is the subregular nilpotent orbit, then \(\dim \mathfrak{g}_e = 4 \) and \(\mathfrak{g}_e \cong \mathfrak{Hei}_1 \oplus \mathfrak{k}e \).

Example 4.4. Associated with any parabolic subalgebra \(\mathfrak{p} \) of \(\mathfrak{g} \), there is an interesting contraction of \(\mathfrak{g} \), which is called a parabolic contraction, see [PY13]. If \(\mathfrak{p} = \mathfrak{b} \), then such a contraction has much better properties [PY12]. Let \(\mathfrak{b}^- \) be an opposite Borel and \(\mathfrak{u}^- = [\mathfrak{b}^-, \mathfrak{b}^-] \). Then \(\mathfrak{g} = \mathfrak{b} \oplus \mathfrak{u}^- \) is a vector space sum. The contraction in question is \(\mathfrak{q} := \mathfrak{b} \ltimes (\mathfrak{u}^-)^{\text{ab}} \), where \((\mathfrak{u}^-)^{\text{ab}} \) is an abelian ideal of \(\mathfrak{q} \) and \((\mathfrak{u}^-)^{\text{ab}} \) is regarded as \(\mathfrak{b} \)-module via isomorphism \(\mathfrak{g}/\mathfrak{b} \cong \mathfrak{u}^- \). Note that \(\mathfrak{q} \) is solvable.

By [PY12, Section 3], we have

1. \(\text{ind} \mathfrak{q} = \text{rk} \mathfrak{g} \),
2. \(\mathbb{k}[\mathfrak{q}^*]^{\mathfrak{q}} \) is a polynomial ring, and
3. the degrees of basic invariants are the same as those for \(\mathfrak{g} \).

In particular, \(b(\mathfrak{q}) = b(\mathfrak{g}) \) and if \(f_1, \ldots, f_l \) are the basic invariants in \(\mathbb{k}[\mathfrak{q}^*]^{\mathfrak{q}} \), then \(\sum_{i=1}^l \deg f_i = b(\mathfrak{q}) \).

However, \(\mathfrak{q} \) does not have the codim–2 property unless \(\mathfrak{g} \) is of type \(A_l \) [PY12, Theorem 4.2]. Furthermore, \(\Omega_{\mathfrak{q}^*} \) is not big, if \(\mathfrak{g} \neq A_l \) [Y14, Remark 5.3]. Therefore, Theorem 2.2 does not apply to \(\mathfrak{b} \ltimes (\mathfrak{u}^-)^{\text{ab}} \), if \(\mathfrak{g} \neq A_l \). But one can look at the canonical truncation of \(\mathfrak{q} \), where the situation improves considerably. Following [Y14, Sect. 5], consider

\[
\tilde{\mathfrak{q}} = \mathfrak{u} \ltimes (\mathfrak{u}^-)^{\text{ab}} \subset \mathfrak{b} \ltimes (\mathfrak{u}^-)^{\text{ab}} = \mathfrak{q}.
\]

Here one has \(\tilde{\mathfrak{q}} = [\mathfrak{q}, \mathfrak{q}] \), \(\text{ind} \tilde{\mathfrak{q}} = \text{ind} \mathfrak{q} + (\text{dim } \mathfrak{q} - \text{dim } \tilde{\mathfrak{q}}) = 2\text{rk } \mathfrak{g} \), and hence \(b(\tilde{\mathfrak{q}}) = b(\mathfrak{q}) = b(\mathfrak{g}) \).

By [Y14, Theorem 5.9], \(S(\tilde{\mathfrak{q}}) \) is a polynomial ring of Krull dimension \(2\text{rk } \mathfrak{g} \). The situation with the codim–2 property for \(\tilde{\mathfrak{q}} \) remains the “same” as for \(\mathfrak{q} \), but \(\Omega_{\tilde{\mathfrak{q}}^*} \) is already a big open subset of \(\tilde{\mathfrak{q}}^* \) (see the proof of Theorem 5.9 in [Y14]). Thus, Theorem 2.2 applies to \(\tilde{\mathfrak{q}} \) for all simple \(\mathfrak{g} \).
Example 4.5. Let \(g = g_0 \oplus g_1 \) be a \(\mathbb{Z}_2 \)-grading of a simple Lie algebra \(g \) and \(q = g_0 \ltimes g_1^{ab} \) the related \(\mathbb{Z}_2 \)-contraction. Then \(\text{ind} \ q = rk \ g \) and the \(\text{codim} \ = 2 \) property is always satisfied here (see [P07]). Here \(g_0 \) is reductive but not necessarily semisimple, and \(\mathbb{k}[q^*]^Q \) is a polynomial ring (in \(rk \ g \) variables) if and only if the restriction homomorphism \(\mathbb{k}[g]^G \to \mathbb{k}[g_1]^{G_0} \) is onto [Y17, Sect. 6]. This excludes only four \(\mathbb{Z}_2 \)-gradings related to the algebras of type \(E_n \).

Example 4.6. Let \(p \) and \(p' \) be two parabolic subalgebras of \(g \) such that \(p + p' = g \). Then \(s = p \cap p' \) is called a seaweed (or biparabolic) subalgebra of \(g \) [P01]. By work of Joseph and his collaborators, it is known in many cases that \(\mathbb{k}[s^*]^{(S)} \) is a polynomial ring. In particular, this is true for any \(s \), if \(g \) is of type \(A_n \) or \(C_n \) [J07]. (See also a summary of known results and other good cases in [FP].) Therefore, in all such good cases, the canonical truncation of \(s \) (= truncated biparabolic in Joseph’s terminology) is a good example for Theorem 2.2.

5. ON THE EQUIDIMENSIONALITY

Whenever a connected algebraic group \(Q \) has the property that \(\mathbb{k}[q^*]^Q \) is a polynomial ring, it is natural to inquire whether it is true that \(\mathbb{k}[q^*] \) is a free \(\mathbb{k}[q^*]^Q \)-module. The latter is equivalent to that the enveloping algebra \(U(q) \) is a free module over its centre \(Z(q) \simeq \mathbb{k}[q^*]^Q \). Assuming that \(\mathbb{k}[q^*]^Q \) is a polynomial ring, i.e., \(q^* \vert / Q \) is an affine space, the well-known geometric answer to this inquiry is that

\[\mathbb{k}[q^*] \] is a free \(\mathbb{k}[q^*]^Q \)-module if and only if \(\pi_Q : q^* \to q^* \vert / Q \) is equidimensional,

i.e., equivalently, the zero-fibre of \(\pi_Q \), \(\pi_Q^{-1}(\pi_Q(0)) \), has the ‘right’ dimension \(\dim q - \dim q^* \vert / Q \). In the setting of Takiff algebras, one can raise the following:

Question 1. Suppose that the hypotheses of Theorem 2.2 hold for \(q \) and \(\pi_Q \) is equidimensional. Is it true that \(\pi_{Q(m)} : q^*(m) \to q^*(m) \vert / Q(m) \) is equidimensional, too?

As we shall see below, the general answer to this question is “no”. The celebrated positive result is that if \(g \) is semisimple, then the zero-fibre of \(\pi_{G(m)} \) is irreducible and \(\pi_{G(m)} \) is equidimensional for any \(m \in \mathbb{N} \) [M01, Appendix]. The reason is that the usual nilpotent cone \(N \subset g \simeq g^* \) is an irreducible complete intersection, and it has rational singularities. Here \(N(m) := \pi_{G(m)}^{-1}(\pi_{G(m)}(0)) \) is a jet scheme of \(N \).

For \(m = 1 \), these results are obtained in [G94] via a case-by-case argument. (See also another approach and a generalisation in [P07, Theorem 10.2].)

In this section, we prove that the equidimensionality does not carry over to the multi-current setting, even for semisimple \(g \). Let \(\hat{q} = q(m_1, \ldots, m_r) \) be a truncated multi-current algebra of \(q \), cf. (0.1). As in Section 2, we can write \(\hat{q} = \bigoplus_{i_1, \ldots, i_r} q[i_1, \ldots, i_r] \) and likewise for \(\hat{q}^* \), where \(0 \leq i_j \leq m_j \), \(j = 1, \ldots, r \). It then follows from (2.1) and the iteration process (2.2)
that
\[\xi = (\xi_{[i_1, \ldots, i_r]}) \in \hat{q}_{\text{reg}}^* \iff \xi_{[m_1, \ldots, m_r]} \in q_{\text{reg}}^* \]
(see also Prop. 4.1(b) in [MS16]). Assume that \(q \) satisfies all the assumptions of Theorem 2.2 and set \(\mathcal{N} = \pi_Q^{-1}(\pi_Q(0)) \subset q^* \). Then \(\mathcal{N} \langle m_1, \ldots, m_r \rangle \subset q^* \) stands for the zero-fibre of \(\pi_Q : \hat{q}^* \rightarrow \hat{q}^*/\hat{Q} \). We work below with the case in which all \(m_i = 1 \). Then \(\hat{q} \) is obtained as iteration of semi-direct products, the first step being \(q \sim q \ltimes q_{ab} = q(1) \). Let us investigate the relation between \(\mathcal{N} \) and \(N(1) \). This will also apply below to the passage from \(\mathcal{N}(1) \) to \(N(1,1) \).

Recall that \(\xi = (\xi_0, \xi_1) \) is an element of \(q(1)^* \). If \(k[q^*]^Q = k[f_1, \ldots, f_l] \) with \(l = \text{ind} q \), then \(k[q(1)^*]^Q(1) \) is freely generated by \(F_1^0, \ldots, F_l^0, F_1^1, \ldots, F_l^1 \), where \(F_i^0 \) depends only on \(\xi_1 \) and \(F_i^1(\xi_0, \xi_1) = \langle (df_i)_{\xi_1}, \xi_0 \rangle_q \). Therefore
\[
\mathcal{N}(1) = \{ (\xi_0, \xi_1) \mid \xi_1 \in \mathcal{N} \& \langle (df_i)_{\xi_1}, \xi_0 \rangle_q = 0 \ \forall i \}.
\]

Since \(df_i \) is a \(Q \)-equivariant morphism from \(q^* \) to \(q \), we have \((df_i)_{\xi} \in q_\xi \). Moreover, if \(\xi \in q_{\text{reg}}^* \cap \Omega_q \), then \(\{ (df_i)_{\xi} \} \) is a basis for \(q_\xi \). Consider the stratification of \(\mathcal{N} \) determined by the basic invariants \(f_1, \ldots, f_l \). Set
\[X_{i,\mathcal{N}} = \{ \xi \in \mathcal{N} \mid \text{dim span} \{ (df_1)_{\xi}, \ldots, (df_l)_{\xi} \} \leq i \} \]
Then \(\{ 0 \} = X_{0,\mathcal{N}} \subset X_{1,\mathcal{N}} \subset \cdots \subset X_{l,\mathcal{N}} = \mathcal{N} \). If \(\mathcal{N} = \bigcup_j \mathcal{N}_j \) is the irreducible decomposition, then \(X_{i,\mathcal{N}_j} \) is similarly defined for any \(j \). Set \(X_{i,\mathcal{N}_j}^0 = X_{i,\mathcal{N}_j} \setminus X_{i-1,\mathcal{N}_j} \) for \(i > 0 \) and \(X_{0,\mathcal{N}_j}^0 = \{ 0 \} \). Clearly, each \(X_{i,\mathcal{N}_j}^0 \) is irreducible and open in \(X_{i,\mathcal{N}_j} \). However, \(X_{i,\mathcal{N}_j}^0 \) can be empty for some \(i, j \). It follows from (5.1) that \(p : \mathcal{N}(1) \rightarrow \mathcal{N}, (\xi_0, \xi_1) \mapsto \xi_1 \), is a surjective projection and
\[\text{dim} p^{-1}(X_{i,\mathcal{N}_j}^0) = \text{dim} X_{i,\mathcal{N}_j}^0 + \text{dim} q - i. \]
Since \(q(1) \) has a polynomial ring of symmetric invariants, with \(2l \) basic invariants \(F_1^0, \ldots, F_l^0, F_1^1, \ldots, F_l^1 \), one can consider the corresponding stratification of \(\mathcal{N}(1) \):
\[\{ 0 \} = X_{0,\mathcal{N}(1)} \subset X_{1,\mathcal{N}(1)} \subset \cdots \subset X_{2l,\mathcal{N}(1)} = \mathcal{N}(1). \]

Lemma 5.1. We have \(p^{-1}(X_{i,\mathcal{N}}^0) \subset \bigcup_{j=2i}^{l+i} X_{j,\mathcal{N}(1)}^0 \).

Proof. By definition, \(\text{dim span} \{ (df_1)_{\xi}, \ldots, (df_l)_{\xi} \} = i \) for \(\xi \in X_{i,\mathcal{N}}^0 \). This clearly implies that, for \(\xi = (\xi_0, \xi_1) \in p^{-1}(\xi) \), we have \(\text{dim span} \{ (df_1^0)_{\xi}, \ldots, (df_l^0)_{\xi} \} = i \) and \(\text{dim span} \{ (df_1^1)_{\xi}, \ldots, (df_l^1)_{\xi} \} \geq i \) (cf. Table 1 with \(m = 1 \)). Furthermore, the lowest components of \((df_j^0)_{\xi} \) and \((df_j^1)_{\xi} \) belong to different graded pieces of \(q(1) \).

By Lemma 5.1, the closures of \(p^{-1}(X_{i,\mathcal{N}}^0) \) for all \(j \) are the only subvarieties of \(\mathcal{N}(1) \) that meet \(\Omega_{q(1)}^* \). Therefore, if \(X_{i,\mathcal{N}_j}^0 \neq \emptyset \), then \(p^{-1}(X_{i,\mathcal{N}_j}^0) \) is an irreducible component of \(\mathcal{N}(1) \) of dimension \(\text{dim} \mathcal{N}_j + \text{dim} q - l \). Since \(\text{dim} \mathcal{N}_j \geq \text{dim} q - l \) for all \(j \), one readily obtains
Proposition 5.2. If \(q \) satisfies all the assumptions of Theorem 2.2, then the following two conditions are equivalent:

1. \(\pi_{Q(1)} \) is equidimensional, i.e., \(\dim N(1) = \dim q(1) - \text{ind} q(1) = 2(\dim q - l) \);
2. (i) \(\pi_Q \) is equidimensional, i.e., \(\dim N_j = \dim q - l \) for all \(j \);
 (ii) \(X_{l,N_j}^o \neq \emptyset \) for all \(j \) (i.e., \(N_j \cap \Omega_{q^*} \neq \emptyset \));
 (iii) \(\text{codim}_{N_j}(X_{l,N_j}^o) \geq l - i \) for \(i < l \).

This yields a sufficient condition for the absence of equidimensionality of \(\pi_{Q(1)} \):

Corollary 5.3. If there is an irreducible component \(N_j \) of \(N \) such that \(N_j \cap \Omega_{q^*} = \emptyset \), then \(\dim p^{-1}(N_j) > 2(\dim q - l) \). Hence \(\pi_{Q(1)} \) is not equidimensional.

We say that such \(N_j \) is a bad irreducible component of \(N \).

Remark 5.4. If \(N \) is irreducible and \(\dim N = \dim q - l \), then a similar analysis shows that \(N(1) \) is irreducible if and only if conditions (i), (ii), and (iii)' hold, where (i), (ii) are as above, with \(N \) in place of \(N_j \), and the last one is a bit stronger than (iii):

(iii)' \(\text{codim}_{N}(X_{l,N}^o) > l - i \) for \(i < l \).

For, the closure of \(p^{-1}(X_{l,N}^o) \) is always an irreducible component of \(N(1) \) of the ‘right’ dimension \(2(\dim q - l) \), and we need the condition that \(p^{-1}(X_{l,N}^o) \) does not yield another component, i.e., \(\dim p^{-1}(X_{l,N}^o) < 2(\dim q - l) \) for \(i < l \).

From now on, we assume that \(q = g \) is a simple Lie algebra of rank \(l \). Let us recall some properties of the nilpotent cone \(N \subset g^* \cong g \):

- \(N \) is irreducible and contains finitely many \(G \)-orbits;
- \(X_{l,N}^o \) is the principal (or, regular) nilpotent orbit;
- \(X_{l-1,N}^o \) is irreducible of dimension \(\dim N - 2 \) and \(X_{l-1,N}^o \neq \emptyset \) (it contains the sub-regular nilpotent orbit as a dense open subset). Moreover, if \(\deg f_1 \leq \ldots \leq \deg f_l \), then \(\deg f_{l-1} < \deg f_l \) and \((df_l)_{\xi} = 0 \) for all \(\xi \in X_{l-1,N}^o \).

Then \(N(1) \) is also irreducible, and for the projection \(p : N(1) \to N \), we have:

- \(p^{-1}(X_{l,N}^o) \) is the open dense \(G(1) \)-orbit in \(N(1) \), of dimension \(2(\dim g - l) \);
- \(\dim p^{-1}(X_{l-1,N}^o) = 2(\dim g - l) - 1 \). Hence the closure of \(p^{-1}(X_{l-1,N}^o) \) is a simple divisor, say \(D \), in \(N(1) \). By Lemma 5.1, \(p^{-1}(X_{l-1,N}^o) \subset X_{2l-2,N(1)}^o \cup X_{2l-2,N(1)}^{ab} \).

The next iteration replaces \(g(1) \) with \(g(1) \cong g(1) \rtimes g(1)^{ab} \) and provides the surjective projection \(p_1 : N(1,1) \cong N(1)\langle 1 \rangle \to N(1) \). Here we are interested in \(p_1^{-1}(D) \). There is a dichotomy: either (1) \(D \cap X_{2l-2,N(1)}^o \neq \emptyset \) or (2) \(D \subset X_{2l-2,N(1)}^{ab} \).

- In the first case, \(\dim p_1^{-1}(D) = 4(\dim g - l) \) and it is an irreducible component of \(N(1,1) \) that is different from the closure of \(p_1^{-1}(X_{2l,N(1)}^o) \). In other words, \(p_1^{-1}(D) \) is a bad irreducible component of \(N(1,1) \). Hence \(\pi_{g(1,1,1)} \) is not equidimensional by Corollary 5.3.
• In the second case, \(\dim p_1^{-1}(D) = 4(\dim g - l) + 1 \). Hence \(\pi_{g(1,1)} \) is already not equidimensional and then \(\pi_{g(1,1,1)} \) is not equidimensional, too.

Thus, we have proved

Theorem 5.5. Let \(g \) be a simple Lie algebra. Then

(i) \(N(1, 1) \subset g(1, 1)^* \) is reducible;
(ii) \(N(1, 1, 1) \subset g(1, 1)^* \) is not pure, i.e., \(\pi_{g(1,1,1)} \) is not equidimensional.

Remark 5.6. If \(g = g_1 \oplus \cdots \oplus g_s \) is semisimple, where each \(g_i \) is simple and \(s \geq 2 \), then \(g\langle m_1, \ldots, m_r \rangle \simeq \bigoplus_{i=1}^{s} g_i\langle m_1, \ldots, m_r \rangle \). Therefore, Theorem 5.5 readily extends to the semisimple case.

Although \(N(1, 1) \) is reducible, it still might be true that \(\pi_{g(1,1)} \) is equidimensional; in particular, it is likely that the second case above does not materialise. In fact, we hope (conjecture) that \(\pi_{g(1,1)} \) is always equidimensional.

REFERENCES

[AP17] T. ARAKAWA and A. PREMET. Quantizing Mishchenko–Fomenko subalgebras for centralizers via affine \(W \)-algebras, *Труды Моск. Матем. Общества*, 78 (2017), вып. 2 (= *Trans. Mosc. Math. Soc.*, 78 (2017), to appear).

[BGR] W. BORHO, P. GABRIEL and R. RENTSCHLER. “Primideale in einhüllenden auflösbaren Lie-Algebren”, Lecture Notes in Math., Bd. 357, Springer-Verlag, 1973.

[CM16] J.-Y. CHARBONNEL and A. MOREAU. The symmetric invariants of centralizers and Slodowy grading, *Math. Z.*, 282 (2016), no. 1-2, 273–339.

[FJ05] F. FAQUANT-MILLET and A. JOSEPH. Semi-centre de l’algèbre enveloppante d’une sous-algèbre parabolique d’une algèbre de Lie semi-simple. *Ann. Sci. École Norm. Sup.* 38 (2005), no. 2, 155–191.

[FP] F. FAQUANT-MILLET and P. LAMPROU. Polynomiality for the Poisson centre of truncated maximal parabolic subalgebras, (arXiv:1701.02238v2).

[G94] F. GEOFFRIAUI. Sur le centre de l’algèbre enveloppante d’une algèbre de Takiff, *Ann. Math. Blaise Pascal* 1 (1994), no. 2, 15–31.

[FF92] B. FEIGIN and E. FRENKEL. Affine Kac–Moody algebras at the critical level and Gelfand–Dikii algebras, *Int. J. Mod. Phys.* A 7, Suppl. 1A (1992), 197–215.

[J77] A. JOSEPH. A preparation theorem for the prime spectrum of a semisimple Lie algebra, *J. Algebra*, 48 (1977), 241–289.

[J07] A. JOSEPH. On semi-invariants and index for biparabolic (seaweed) algebras, II, *J. Algebra*, 312 (2007), 158–193.

[JS10] A. JOSEPH and D. SHAHRIR. Polynomiality of invariants, unimodularity and adapted pairs, *Transform. Groups*, 15, no. 4 (2010), 851–882.

[K12] B. KOSTANT. The cascade of orthogonal roots and the coadjoint structure of the nilradical of a Borel subgroup of a semisimple Lie group, *Mosc. Math. J.*, 12 (2012), no. 3, 605–620.

[Kn86] F. KNOP. Über die Glattheit von Quotientenabbildungen, *Manuscripta Math.*, 56 (1986), no. 4, 419–427.
[MS16] T. Macedo and A. Savage. Invariant polynomials on truncated multicurrent algebras, (arXiv:1607.06411v2).

[M01] M. Mustaţă. Jet schemes of locally complete intersection canonical singularities (with an appendix by D. Eisenbud and E. Frenkel), Invent. Math. 145 (2001), 397–424.

[OVdB] A. Ooms and M. Van den Bergh. A degree inequality for Lie algebras with a regular Poisson semi-center, J. Algebra, 323, no. 2 (2010), 305–322.

[P01] D. Panyushev. Inductive formulas for the index of seaweed Lie algebras, Mosc. Math. J., 1 (2001), 221–241.

[P07] D. Panyushev. Semi-direct products of Lie algebras and their invariants, Publ. RIMS, 43, no. 4 (2007), 1199–1257.

[P07'] D. Panyushev. On the coadjoint representation of \mathbb{Z}_2-contractions of reductive Lie algebras, Adv. Math., 213 (2007), 380–404.

[P08] D. Panyushev. Adjoint vector fields and differential operators on representation spaces. Bull. Lond. Math. Soc. 40, no. 6 (2008), 1045–1064.

[PPY] D. Panyushev, A. Premet and O. Yakimova. On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra, 313 (2007), 343–391.

[PY12] D. Panyushev and O. Yakimova. On a remarkable contraction of semisimple Lie algebras, Annales Inst. Fourier (Grenoble), 62, no. 6 (2012), 2053–2068.

[PY13] D. Panyushev and O. Yakimova. Parabolic contractions of semisimple Lie algebras and their invariants, Selecta Math. (New Series), 19 (2013), 699–717.

[PY17] D. Panyushev and O. Yakimova. Symmetric invariants related to representations of exceptional simple groups, Труды Моск. Матем. Общества, 78 (2017), вып. 2, с. 195–207 (= Trans. Mosc. Math. Soc., 78 (2017), to appear.)

[RT92] M. Raïs and P. Tauvel. Indice et polynômes invariants pour certaines algèbres de Lie, J. Reine Angew. Math., 425 (1992), 123–140.

[SK77] M. Sato and T. Kimura. A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65 (1977), 1–155.

[Ta71] S.J. Takiff. Rings of invariant polynomials for a class of Lie algebras, Trans. Amer. Math. Soc. 160 (1971), 249–262.

[VP89] Э.Б. Винберг, В.Л. Попов. “Теория Инвариантов”, В: Соврем. пробл. математики. Фундаментальные направл., т. 55, стр. 137–309. Москва: ВИНИТИ 1989 (Russian). English translation: V.L. Popov and E.B. Vinberg. “Invariant theory”, In: Algebraic Geometry IV (Encyclopaedia Math. Sci., vol. 55, pp.123–284) Berlin Heidelberg New York: Springer 1994.

[Y14] O. Yakimova, One-parameter contractions of Lie-Poisson brackets, J. Eur. Math. Soc., 16 (2014), 387–407.

[Y17] O. Yakimova. Symmetric invariants of \mathbb{Z}_2-contractions and other semi-direct products, Int. Math. Res. Notices, (2017) 2017 (6): 1674–1716.

[Y17'] O. Yakimova. Some semi-direct products with free algebras of symmetric invariants, to appear in “Perspectives in Lie theory”, Springer INdAM series, vol.19 (2017) (arXiv:1510.01093v2).
(D. Panyushev) Institute for Information Transmission Problems of the R.A.S, Bolshoi Karetnyi per. 19, Moscow 127051, Russia

E-mail address: panyushev@iitp.ru

(O. Yakimova) Universität zu Köln, Mathematisches Institut, Weyertal 86-90, 50931 Köln, Deutschland

E-mail address: yakimova.oksana@uni-koeln.de