A Manipulation of Air Temperature and Light Quality and Intensity can Maximize Growth and Folate Biosynthesis in Leaf Lettuce

Seiichi OKAZAKI1,2 and Tamaki YAMASHITA1
1 Keystone Technology, 5-68-5 Ohta-machi, Naka, Yokohama, Kanagawa 231-0011, Japan
2 Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwa-dai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan

(Received November 18, 2018; Accepted January 18, 2019)

We evaluated effects of different air temperature and light quality/intensity on growth and folate biosynthesis in leaf lettuce using a plant growth cabinet with light-emitting diodes (LEDs) combining red, green and blue (RGB) lights. Leaf lettuce was cultivated under combination conditions with 3 different air temperatures (20°C, 25°C and 28°C) and 4 different light irradiations (photosynthetic photon flux density [PPFD] of 150 μmol m⁻² s⁻¹ [P150/RGB, P200/RGB, P200/RB and P200/RGB] for 21 days. At the end of the cultivation, growth endpoints including edible portion weight, and folate contents were examined. The results demonstrated significant effects of air temperature and light quality and intensity on lettuce growth and folate biosynthesis. Under the optimal combination condition that we identified, 25°C and P200/RGB, the edible portion weight and folate contents in leaf lettuce were 15%–62% and 83%–137% greater, respectively, compared to any light conditions at 20°C, an optimal temperature for conventionally growing leaf lettuce. Addition of green LED to red and blue LEDs maximized leaf lettuce growth and folate biosynthesis. Plant factory with optimal air temperature and light conditions utilizing RGB LED lights is a promising novel agriculture concept maximizing plant growth and critical nutrients such as folate.

Keywords : artificial light-type plant factory, edible portion weight, photosynthetic photon flux density (PPFD), RGB independent dimming type LED lights

INTRODUCTION

Closed-type plant factories with artificial light enable us to grow various vegetables, fruits and leafy greens under controlled environments to maximize their yield and nutritional contents (Kitazaki et al., 2018). When we plan to develop specific nutrient-rich plants in plant factories, it is important to select critical nutrients that are highly involved in human health; therefore, we have been focusing on one of the most critical nutrients, folate. Insufficient folate consumption is known to cause severe developmental disorders in humans including spina bifida and anencephaly (Nishimura and Mori, 2012). Since mammals lack de novo folate biosynthetic pathway, animals including humans entirely depend on their dietary sources for the folate supply (Neuberger et al., 1996). However, most of staple crops such as rice, potato and maize are poor sources of folate, and rich sources include green leaf vegetables and some meat, especially liver and kidneys, eggs, and some seafood.

Previous investigations for the mechanism of folate biosynthesis suggest that manipulation of photosynthetic photon flux density (PPFD) and growing air temperature could increase folate contents in plants (Scott et al., 2000; Hanson and Roje, 2001; Hesse et al., 2004). Rébeillé et al. (2006) reported that folate synthesis and accumulation were elevated in leaves upon exposure to light.

Although fluorescent lights have been mainly used for closed-type plant factories, light-emitting diodes (LEDs) have attracted attention for cultivation of functional vegetables (Kitazaki et al., 2018). LEDs enable us to combine lights with specific wavelengths suitable for light absorption property of photosynthetic pigments and photoreceptors in plants; therefore, LEDs have been used for the investigation about the mechanism of plant light response (Matsumoto et al., 2010; Saito et al., 2012). Cultivation under the condition of combination with red and blue lights was studied in various vegetables including spinach, radish, lettuce, komatsuna (Yorio et al., 2001; Hanyu and Shoji, 2002; Ohashi-Kaneko et al., 2007; Oshima et al., 2015). It has been reported that light is highly involved in the production of various high-value secondary metabolites (Dougal, 1979; Constable and Vasil, 1988; Rao and Ravishankar, 2002; Takayama, 2010). As far as we searched, there are no studies evaluating effects of light quality and intensity on growth and folate biosynthesis in leaf lettuce. Thus, we evaluated effects of different air temperature and light irradiation conditions on growth and folate biosynthesis in leaf lettuce using a plant growth cabinet with LEDs.
MATERIALS AND METHODS

Plant materials and growth conditions

A cultivation experiment was performed at the laboratory in the LED artificial light-type plant factory of Keystone Technology Inc. (Yokohama, Japan). Leaf lettuce (*Lactuca sativa var. crispa* (Fancy Green®, Nakahara Seed Product Co., Fukuoka, Japan) was cultivated in a 4-story growth cabinet (Plant Cellar TAPS 6T, Espec Mic Corp., Osaka, Japan; Fig. 1) in which air temperature and humidity were controllable. Each of the 4 trays had 15 holes for the deep flow technique (DFT) enabling a 24-hour continuous circulation of the nutrient solution (Vege-solution™, Keystone Technology Inc.) with pH of 6.0 and electric conductivity of 2.0 dSm⁻¹. RGB independent dimming type LED lights specialized for plant cultivation (Keystone Technology Inc.) including 660 nm red, 525 nm green, and 460 nm blue LEDs were set to the growth cabinets (Fig. 2).

Experimental design

To assess the effects of different air temperature and light intensity/quality conditions on the growth and folate biosynthesis, the experiment included 12 different combination conditions with 3 different air temperatures (20°C, 25°C and 28°C) and 4 different light irradiations (P150/ RB, P150/RGB, P200/RB and P200/RGB). Lettuce seeds were placed on the sponge medium containing sufficient water in the polystyrene white tray for a 3-week propagation. At the end of the propagation, uniformly sized lettuce seedlings were selected, and randomly planted on urethan foam placed in the holes of the trays in the 4-story growth cabinet (5 plants for each temperature/light irradiation condition). Light irradiation was controlled with the LED controller (HAC-M801A, Keystone Technology Inc.) with 16-hour light/8-hour dark cycle. Sensing and measurement of PPFD on the growth urethan foam were performed with LI-190 quantum sensor and LI-250A light meter (Li-Cor Biosciences, Lincoln, NE, USA), respectively. Four different light irradiation conditions were set by story in the 4-story growth cabinet. Detailed light quality characteristics and irradiation condition are shown in Table 1. The difference in B/R ratio due to different PPFD and addition with green light was minimized (0.29 to 0.34).

Relative humidity was maintained at 60±5% across

Table 1 Light intensity and quality characteristics of the plant growing LED lights.

Characteristic	P150	P200		
Color (Wavelength)	Photon flux density	Photon flux density		
(nm)	(μmol m⁻² s⁻¹)	(μmol m⁻² s⁻¹)		
Red (660 nm)	112	98	150	139
Green (525 nm)	—	22	—	21
Blue (460 nm)	38	30	50	40
PPFD	150	150	200	200
B/R ratio	0.34	0.31	0.33	0.29

PPFD: photosynthetic photon flux density
B/R ratio: blue/red ratio

Fig. 1 A 4-story growth cabinet (Plant Cellar TAPS-6T).

Fig. 2 RGB Independent dimming type LED light specialized for plant cultivation. A patent-registered LEDs having a green LED at the center surrounded by three blue LEDs and three red LEDs.

Fig. 3 The morphological characteristics of the harvested leaf lettuce. Leaf lettuce was cultivated in the growth cabinet for 21 days under the following air temperature and light irradiation conditions: (a) 20°C/P150/RB, (b) 25°C/ P150/RGB, (c) 28°C/ P150/RGB, (d) 20°C/ P200/RGB, (e) 25°C/ P200/RGB, (f) 28°C/ P200/RGB. The photograph includes representative plant for each air temperature and light irradiation condition.
groups throughout the cultivation, but carbon dioxide concentration within the growth cabinet was not controlled. The leaf lettuce was cultivated in the growth cabinet throughout the 21-day cultivation period from planting to harvest.

Endpoints
At the end of the 21-day cultivation, leaf lettuce was harvested for the assessment of growth and folate contents. Growth endpoints included plant height (the length from the base to the top of the leaves), the number of leaves, chlorophyll content, and edible portion weight. Chlorophyll contents were measured with chlorophyll meter (SPAD-502; Konica Minolta Sensing Inc., Osaka, Japan) as SPAD score ranging from −9.9 to 199.9, and a mean value was obtained from 3 different measurement points on each plant. Edible portion weight was obtained from each plant after removing roots, cotyledons, and, discolored and dead leaves. In addition to the quantitative growth endpoints, morphological characteristics were macroscopically compared among different conditions at the harvest. Folate contents in the edible portion (pooled plants/combination condition x 3 experiments) were measured with microbiological assay at the Kanagawa Institute of Industrial Science and Technology (former name: Kanagawa Prefectural Industrial Technology Center, Ebina, Japan) (Koontz et al., 2005).

Statistical analysis
The cultivation experiments were repeated three times. Average and standard error were obtained from numerical data for each combination condition. The data were subjected to analysis of variance, followed by Tukey-Kramer multiple comparison across combination conditions using statistical software (JMP®, SAS, Cary, NC, USA) with a significance level of $P \leq 0.05$. In addition, potential correlations between each of 4 growth endpoints and folate contents were examined with logistic regression analysis.

RESULTS AND DISCUSSION

Effects of air temperature and light irradiation conditions on growth
Under combination cultivation conditions with 3 different air temperatures (20°C, 25°C and 28°C) and 4 different light environments (P150/RB, P150/RGB, P200/RB and P200/RGB) in the growth cabinet for 21 days, the leaf lettuce in general extended horizontally at 20°C while vertically at 25°C (Fig. 3). The plants tended to grow spindly accompanied with more leaves at 28°C compared to the conditions at 20°C and 25°C. Although lettuce tended to grow slightly better with P200 compared to P150, there was no apparent effect of different light intensities on morphological characteristics at each temperature.

Plant heights were significantly greater at 25°C than those at 20°C irrespective of light irradiation conditions (Fig. 4). There was a trend to increased number of leaves as increased air temperature. Chlorophyll contents (evaluated with SPAD scores) tended to be higher at 20°C and 28°C compared to 25°C, especially with P200/RB and P200/RGB at 20°C and P150/RGB, P200/RB and P200/RGB at 28°C. Edible portion weight was the highest at 25°C followed by 20°C, and the lowest at 28°C. Addition of green light to red and blue lights increased edible portion weight (Fig. 4). Namely the edible portion was significantly greater in P150/RGB compared to P150/RB at both 20°C and 25°C. Although statistically significant difference was not observed, the edible portion was always numerically greater with RGB compared to RB when it was compared within the same air temperature and light intensity. Especially the edible portion weight under the
combination condition at 25°C with P200/RGB was approximately 15% to 62% greater compared to any light irradiation conditions at 20°C, which was optimal temperature for natural growth of leaf lettuce.

The increased plant height at 25°C compared to 20°C might partially contribute to the increased edible portion at 25°C; however, pattern in the number of leaves and chlorophyll contents were not consistent with the change in edible portion across different air temperatures, warranting further detailed assessment.

Effects of air temperature and light conditions on folate contents

Folate contents were the highest at 25°C and the lowest at 28°C under all of the light irradiation conditions (Fig. 5). Lettuce is categorized into highland vegetables favoring cool climate, and the optimal temperature for natural growth is considered 20°C. Photorespiration is highly involved in folate biosynthesis (Leegood and Edwards, 1996; Scott et al., 2000; Jabrin et al., 2003); therefore, we hypothesized that increased photorespiration induced by higher temperature would enhance folate biosynthesis (Taiz and Zeiger, 2017). Our experiment successfully demonstrated greater folate contents at higher temperature (25°C) compared to the optimal temperature (20°C) for naturally growing lettuce.

Folate contents were the highest under the P200/RGB condition at all of the 3 temperatures; especially the condition with P200/RGB at 25°C successfully demonstrated more than 2-fold greater folate contents compared to the other temperatures and 1.8-fold compared to the P150/RB at the same temperature (Fig. 5). These results indicate that not only temperature-dependent photorespiration but also PPFD plays an important role for folate biosynthesis, which is consistent with the previous reports (Scott et al., 2000; Hanson and Roje, 2001; Hesse et al., 2004; Rébeillé et al., 2006).

Addition of green light to red and blue lights increased folate contents (Fig. 5); however, the degree of increased folate contents was various depending on air temperature and light intensity. The folate contents with P200/RGB were numerically slightly greater than those with P200/RB; however, there was no statistically significant difference between RGB and RB, indicating that the addition of green light has an only modest effect on folate biosynthesis under P200 condition. In contrast, under the P150 condition, the RGB demonstrated significantly higher folate contents compared to the RB at 20°C and 25°C, indicating a large impact of green light on folate biosynthesis. Increased folate contents may be due to green light-induced increase in photorespiration mediated with supplemental light-harvesting action (Hashimoto, 1995) and xanthophyll cycle of carotenoid (Niyogi et al., 1998).

Correlation between edible portion weight and folate contents

The regression analysis revealed strong correlation between folate contents and edible portion weight (Fig. 6). The combination condition at 25°C and P200/RGB demonstrated the highest values for both edible portion weight and folate contents. There was no correlation between folate contents and the other growth endpoints including plant height, number of leaves and chlorophyll contents.

Scott et al. (2000) expected that folate contents would be increased when the weight gain of lettuce was enhanced based on the mechanism of folate biosynthesis, which was consistent with our results. Although our results were based on the data after the 21-day cultivation, a longer-term trial would provide further confirmatory data to support strong correlation based on the logistic growth curve (Mohr and Schopfer, 1999).

Compared to red and blue lights, green light had been considered inefficient for photosynthesis in green leaves. Several studies, however, indicated that green leaves of land plants absorb a substantial fraction of green light, and that green light, once absorbed by the leaves, drives photosynthesis with high efficiency (Nishio, 2000; Johkan et al., 2012).

Higher plants utilize chlorophylls a and b and variety of carotenoids to capture light for photosynthesis (Hashi-
growth and folate biosynthesis in leaf lettuce. We identified the effects of air temperature and light irradiation conditions on folate. Using RGB independent dimming type LED lights is a promising novel agriculture concept maximizing plant growth and critical nutrients such as folate.

CONCLUSION

Our experiment results demonstrated significant effects of air temperature and light irradiation conditions on growth and folate biosynthesis in leaf lettuce. We identified the optimal combination condition, 25°C and P200/RGB, significantly promoting growth and folate biosynthesis in leaf lettuce. The edible portion weight and folate contents in leaf lettuce cultivated under our optimal combination were 15–62% and 83–137% greater, respectively, compared to any light irradiation conditions at 20°C, an optimal temperature for conventionally growing leaf lettuce. Addition of green LED to red and blue LEDs maximized leaf lettuce growth and folate biosynthesis. Plant factory with optimal temperature and light irradiation conditions utilizing RGB independent dimming type LED lights is a promising novel agriculture concept maximizing plant growth and critical nutrients such as folate.

ACKNOWLEDGEMENTS

This experiment was partially supported by the 2016 Yokohama City Subsidized Program for the Development of Evolving Fields, and Research and Development of Urban Plant Factory System for Sustainable Production of High Quality Vegetables Utilizing LED Photo Regulation Technology. We would like to thank Professor Hiromichi Ito at Kobe University Graduate School of Agricultural Science for his providing the information and guidance about effects of cultivation environments on folate biosynthesis. We would also like to thank Professor Kazuyuki Hirasuka at Yokohama National University, Faculty of Environment and Information Science for his providing the information and guidance about mechanisms of folate biosynthesis.

REFERENCES

Constable, F., Vasil, I. K. 1988. Cell culture and somatic cell genetics of plant cell culture. Academic Press Inc, San Diego. CA, p 1–618.

Dougall, D. 1979. Factors affecting the yield of secondary products in plant tissue culture. In “Plant Cell and Tissue Culture: Principles and Applications” (ed by Sharp, W. R., Larsen, P. O., Paddock, E. F., Raghavan, V.) , Columbus, Ohio State University Press, pp 727–743.

Folta, K. M. 2004. Green light stimulates early stem elongation, antagonizing light mediated growth inhibition. Plant Physiol. 135: 1407–1416.

Hanson, A. D., Roje, S. 2001. One carbon metabolism in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 119–137.

Hanyu, H., Shoji, K. 2002. Acceleration of growth in spinach by short-term exposure to red and blue light at the beginning and at the end of the daily dark period. Acta Hortic. 580: 145–150.

Hashimoto, H. 1995. Structure and function of carotenoid in photosynthesis system (in Japanese). J. Phys. Soc. Jpn. 50: 555–561.

Hesse, H., Kreft, O., Mainmann, S., Zeh, M., Hoefgen, R. 2004. Current understanding of the regulation of methionine biosynthesis in plants. J. Exp. Bot. 55: 1799–1808.

Jabin, S., Ravanel, S., Gambonnet, B., Douce, R., Rébéillé, F. 2003. One-carbon metabolism in plants. Regulation of tetrahydrofolate synthesis during germination and seedling development. Plant Physiol. 131: 1431–1439.

Johkan, M., Shoji, K., Goto, F., Hahida, S. N., Yoshihara, T. 2012. Effect of green light wavelength and intensity on leaf lettuce growth. J. Phys. Soc. Jpn. 50: 555–561.
photomorphogenesis and photosynthesis in *Lactuca sativa.* Environ. Exp. Bot. 75: 128–133.

Kim, H. H., Goins, G. D., Wheeler, R. M., Sager, J. C. 2004a. Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. HortScience 39: 1617–1622.

Kim, H. H., Goins, G. D., Wheeler, R. M., Sager, J. C. 2004b. Stomatal conductance of lettuce grown under or exposed to different light quality. Ann. Bot. 94: 691–697.

Kitazaki, K., Fukushima, A., Nakabayashi, R., Okazaki, Y., Kobayashi, M., Mori, T., Nishizawa, T., Uno, Y., Watanabe, H., Shirai, Y., Shiraishi, N., Mori, K., Ohashi-Kaneko, K., Takase, M., Kon, N., Fujisawa, K., Kurata, K. 2007. Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ. Control Biol. 45: 189–198.

Oshina, T., Ohashi, K., Uno, E., Watanabe, H. 2015. Determination of optimum red and blue lighting conditions for production of red-leaf lettuce under LEDs. J. Sci. High-Tech. Agr. 27: 24–32.

Rao, S. R., Ravishankar, G. A. 2002. Plant cell cultures: chemical factories of secondary metabolites. Biotech. Adv. 20: 101–153.

Rébéillé, F., Jabrin, S., Bilgny, R., Lolzeau, K., Gambonnet, B., Wilder, V.V. 2006. Methionine catalysis in Arabidopsis cells is initiated by a gamma-cleavage process and leads to S-methylcysteine and isoleucine syntheses. Proc. Natl. Acad. Sci. U.S.A. 103: 15687–15692.

Saito, Y., Shimizu, H., Nakashima, H., Miyasaka, J., Ohdoi, K. 2012. Comparison of the effects of monochromatic red light and mixed light on the growth of lettuce. J. Sci. High-Tech. Agr. 24: 25–30.

Scott, J., Rébéillé, F., Fletcher, J. 2000. Folic acid and folates: the feasibility for nutritional enhancement in plant foods. J. Sci. Food Agric. 80: 795–824.

Taiz, L., Zeiger, E. (Original article), Nishitani, K., Kenichiro, S. (Supervised translation). 2017. Plant Physiology, Ed. 6 (in Japanese) Bafukan Co., Ltd., Tokyo, p 254–256.

Takayama, S. 2010. Effect of light irradiation on plant production in large-scale plant tissue culture. (in Japanese with English Abstract) J. Sci. High-Tech. Agr. 22: 88–94.

Terasima, I., Fujita, T., Inoue, T., Chow, W. S., Oguchi, R. 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol. 50: 684–697.

Yorio, N. C., Goins, G. D., Kagie, H. R., Wheeler, R. M., Sager, J. C. 2001. Improving spinach, radish, and lettuce growth under red light emitting diodes (LEDs) with blue light supplementation. HortScience 36: 380–383.