A NONLINEAR LAZAREV–LIEB THEOREM:
L²-ORTHOGONALITY VIA MOTION PLANNING

FLORIAN FRICK AND MATT SUPERDOCK

Abstract. Lazarev and Lieb showed that finitely many integrable functions from the unit interval to \(\mathbb{C} \) can be simultaneously annihilated in the \(L^2 \) inner product by a smooth function to the unit circle. Here we answer a question of Lazarev and Lieb proving a generalization of their result by lower bounding the equivariant topology of the space of smooth circle-valued functions with a certain \(W^{1,1} \)-norm bound. Our proof uses a relaxed notion of motion planning algorithm that instead of contractibility yields a lower bound for the \(\mathbb{Z}/2 \)-coindex of a space.

1. Introduction

In 1965 Hobby and Rice established the following result:

Theorem 1.1 (Hobby and Rice [4]). Let \(f_1, \ldots, f_n \in L^1([0,1]; \mathbb{R}) \). Then there exists \(h: [0,1] \to \{ \pm 1 \} \) with at most \(n \) sign changes, such that for all \(j \),

\[
\int_0^1 f_j(x) h(x) \, dx = 0.
\]

If we restrict the \(f_j \) to lie in \(L^2([0,1]; \mathbb{R}) \), we can view this as an orthogonality result in the \(L^2 \) inner product. The Hobby–Rice theorem and its generalizations have found a multitude of applications, ranging from mathematical physics [6] and combinatorics [1] to the geometry of spatial curves [2].

The theorem also holds for \(f_1, \ldots, f_n \in L^1([0,1]; \mathbb{C}) \), provided \(h \) is allowed \(2n \) sign changes, by splitting the \(f_j \) into real and imaginary parts. Lazarev and Lieb showed that for complex-valued \(f_j \), the function \(h \) can be chosen in \(C^\infty([0,1]; S^1) \), where \(S^1 \) denotes the unit circle in \(\mathbb{C} \):

Theorem 1.2 (Lazarev and Lieb [5]). Let \(f_1, \ldots, f_n \in L^1([0,1]; \mathbb{C}) \). Then there exists \(h \in C^\infty([0,1]; S^1) \) such that for all \(j \),

\[
\int_0^1 f_j(x) h(x) \, dx = 0.
\]

If \(h \) is obtained by smoothing the function \(h_0 \) guaranteed by Theorem 1.1, then we would expect its \(W^{1,1} \)-norm, given by

\[
\| h \|_{W^{1,1}} = \int_0^1 |h(x)| \, dx + \int_0^1 |h'(x)| \, dx
\]

to be approximately \(1 + 2\pi n \), since \(|h(x)| = 1 \), and each sign change of \(h_0 \) contributes approximately \(\pi \) to \(\int_0^1 |h'(x)| \, dx \). However, Lazarev and Lieb did not establish any bound on the \(W^{1,1} \)-norm of \(h \) and left this as an open problem; this was accomplished by Rutherfoord [9], who established a bound of \(1 + 5\pi n \). Here we improve this bound to \(1 + 2\pi n \); see Corollary 1.4.

Date: July 31, 2019.
The Hobby–Rice theorem has a simple proof due to Pinkus [8] via the Borsuk–Ulam theorem, which states that any map $f: S^n \rightarrow \mathbb{R}^n$ with $f(-x) = -f(x)$ for all $x \in S^n$ has a zero. Lazarev and Lieb asked whether there is a similar proof of their result and write: “There seems to be no way to adapt the proof of the Hobby–Rice Theorem (which involves a fixed-point argument).” Rutherford [9] offered a simplified proof of Theorem 1.2 based on Brouwer’s fixed point theorem. Here we give a proof using the Borsuk–Ulam theorem directly, which adapts Pinkus’ proof of the Hobby–Rice theorem. The advantage of this approach is that our main result gives a nonlinear extension of the result of Lazarev and Lieb; see Section 4 for the proof:

Theorem 1.3. Let $\psi: C^\infty([0,1]; S^1) \rightarrow \mathbb{R}^n$ be continuous with respect to the L^1-norm such that $\psi(-h) = -\psi(h)$ for all $h \in C^\infty([0,1]; S^1)$. Then there exists $h \in C^\infty([0,1]; S^1)$ with $\psi(h) = 0$ and $\|h\|_{W^{1,1}} \leq 1 + \pi n$.

This is a non-linear extension of Theorem 1.2 since for given $f_1, \ldots, f_n \in L^1([0,1]; \mathbb{C})$ the map $\psi(h) = (\int_0^1 f_j(x)h(x)dx)_j$ is continuous (see Section 2) and linear, so in particular, ψ satisfies $\psi(-h) = -\psi(h)$. Using the L^1-norm is no restriction; as we show in the next section, the L^p norms on $C^\infty([0,1]; S^1)$ for $1 \leq p < \infty$ are all equivalent, so we could replace L^1 with any such L^p. In fact, the only relevant feature of the L^1-norm is that functions h_1, h_2 are close in the L^1-norm if h_1, h_2 are uniformly close outside of a set of small measure. As a consequence, we recover the result of Lazarev and Lieb, with a $W^{1,1}$-norm bound of $1 + 2\pi n$ since ψ takes values in $\mathbb{C}^n \cong \mathbb{R}^{2n}$; see Section 2 for the proof:

Corollary 1.4. Let $f_1, \ldots, f_n \in L^1([0,1]; \mathbb{C})$. Then there exists $h \in C^\infty([0,1]; S^1)$ with $\|h\|_{W^{1,1}} \leq 1 + 2\pi n$ such that for all j,

$$\int_0^1 f_j(x)h(x)dx = 0.$$

Given a space Z with a $\mathbb{Z}/2$-action $\sigma: Z \rightarrow Z$, the largest integer n such that the n-sphere S^n with the antipodal $\mathbb{Z}/2$-action (i.e. $x \mapsto -x$) admits a continuous map $f: S^n \rightarrow Z$ with $f(-x) = \sigma(f(x))$ for all $x \in S^n$ is called the $\mathbb{Z}/2$-coindex of Z, denoted $\text{coind} Z$. We show that the coindex of the space of smooth S^1-valued functions in the L^1-norm with $W^{1,1}$-norm at most $1 + \pi n$ is between n and $2n - 1$; see Theorem 6.2. Determining the coindex exactly remains an interesting open problem. Our proof proceeds by constructing $\mathbb{Z}/2$-maps from S^n, i.e., commuting with the antipodal $\mathbb{Z}/2$-actions, via elementary obstruction theory, that is, inductively dimension by dimension.

We find it illuminating to phrase our proof using the language of motion planning algorithms. A motion planning algorithm (mpa) for a space Z is a continuous choice of connecting path for any two endpoints in Z; see Section 3 for details and Farber [3] for an introduction. An mpa for Z exists if and only if Z is contractible. Here we introduce the notion of (full) lifted mpa, which does not imply contractibility but is sufficiently strong to establish lower bounds for the coindex of Z; see Theorem 3.5. We refer to Section 3 for details.

2. Relationship between topologies on $C^\infty([0,1]; S^1)$

We now make precise our introductory comments about the topologies on $C^\infty([0,1]; S^1)$ induced by the various L^p-norms and the $d_{0,\infty}$ metric.
Proposition 2.1. The L^p-norms for $1 \leq p < \infty$ induce equivalent topologies on $C^\infty([0, 1]; S^1)$.

Proof. For $1 \leq p < \infty$, let Z_p be $C^\infty([0, 1]; S^1)$, equipped with the topology induced by the L^p-norm. Note that $\|h\|_p < \infty$ for all $h \in C^\infty([0, 1]; S^1)$, so the identity maps $1_{p,q}: Z_p \to Z_q$ are well-defined as functions. It suffices to show that $1_{p,q}$ is continuous for all $p, q \in [1, \infty)$.

It is a standard fact that $1_{p,q}$ is continuous for $p \geq q$ when the domain has finite measure, as is the case here for $[0, 1]$. For $p < q$, we have

$$
\|h_2 - h_1\|_q = \left(\int_0^1 |h_2(x) - h_1(x)|^q \, dx\right)^{1/q} \\
\leq \left(\int_0^1 |h_2(x) - h_1(x)|^p \cdot (\text{diam}(S^1))^{q-p} \, dx\right)^{1/q} \\
\leq (\text{diam}(S^1))^{(q-p)/q} \cdot \|h_2 - h_1\|_p^{p/q}
$$

Since S^1 is bounded, $1_{p,q}$ is continuous. Hence the Z_p are all homeomorphic. □

In the introduction, we claimed that “the only relevant feature of the L^1-norm is that functions h_1, h_2 are close in the L^1-norm if h_1, h_2 are uniformly close outside of a set of small measure.” To give content to this statement, we define a metric $d_{0,\infty}$ on $C^\infty([0, 1]; S^1)$ by

$$
d_{0,\infty}(h_1, h_2) = \inf\{\delta > 0 : |h_2(x) - h_1(x)| < \delta \text{ for all } x \in [0, 1] \setminus S, \text{ for some } S \subseteq [0, 1] \text{ with } \mu(S) < \delta\}.
$$

Proposition 2.2. The function $d_{0,\infty}$ is a metric.

Proof. By the continuity of maps in $C^\infty([0, 1]; S^1)$, we have $d_{0,\infty}(h_1, h_2) = 0$ iff $h_1 = h_2$. For the triangle inequality, suppose:

- $|h_2(x) - h_1(x)| < \delta_1$ for all $x \in [0, 1] \setminus S_1$, where $\mu(S_1) < \delta_1$.
- $|h_3(x) - h_2(x)| < \delta_2$ for all $x \in [0, 1] \setminus S_2$, where $\mu(S_2) < \delta_2$

Then $|h_3(x) - h_1(x)| < \delta_1 + \delta_2$ for all $x \in [0, 1] \setminus (S_1 \cup S_2)$, and $\mu(S_1 \cup S_2) < \delta_1 + \delta_2$. Hence $d_{0,\infty}(h_1, h_3) \leq \delta_1 + \delta_2$. Taking the infimum over δ_1, δ_2, we obtain $d_{0,\infty}(h_1, h_3) \leq d_{0,\infty}(h_1, h_2) + d_{0,\infty}(h_2, h_3)$. □

Proposition 2.3. The metric $d_{0,\infty}$ and the norm $\|\cdot\|_1$ induce equivalent topologies on $C^\infty([0, 1]; S^1)$.

Proof. Let $Z_{0,\infty}$ be $C^\infty([0, 1]; S^1)$, equipped with the topology induced by $d_{0,\infty}$; it suffices to show that the identity maps between $Z_{0,\infty}, Z_1$ are continuous.

For the identity map $1: Z_{0,\infty} \to Z_1$, suppose $d_{0,\infty}(h_1, h_2) < \delta$, so that there exists $S \subseteq [0, 1]$ with $\mu(S) < \delta$ such that $|h_2(x) - h_1(x)| < \delta$ on $[0, 1] \setminus S$. Then

$$
\int_0^1 |h_2(x) - h_1(x)| \, dx \leq \int_S \text{diam}(S^1) \, dx + \int_{[0, 1] \setminus S} \delta \, dx \leq \delta(\text{diam}(S^1) + 1).
$$

This shows that $1: Z_{0,\infty} \to Z_1$ is continuous.

For the identity map $1: Z_1 \to Z_{0,\infty}$, let $\varepsilon > 0$ and suppose $\|h_2 - h_1\|_1 < \delta$ for $\delta = \varepsilon^2$. If $d_{0,\infty}(h_1, h_2) \geq \varepsilon$, then $|h_2(x) - h_1(x)| \geq \varepsilon$ on a set S with $\mu(S) \geq \varepsilon$, implying $\|h_2 - h_1\|_1 \geq \varepsilon^2$, a contradiction. Hence $d_{0,\infty}(h_1, h_2) < \varepsilon$, and $1: Z_1 \to Z_{0,\infty}$ is continuous. □
Now we expand our view to consider L^p spaces under other measures μ. We show that finite, absolutely continuous measures can only produce coarser topologies than Lebesgue measure:

Proposition 2.4. Let μ be a finite measure on $[0,1]$ that is absolutely continuous with respect to Lebesgue measure. Let Z_1 be $C^\infty([0,1];S^1)$, equipped with the topology induced by the L_1-norm with respect to Lebesgue measure, and let $Z_{1,\mu}$ be $C^\infty([0,1];S^1)$, equipped with the topology induced by the L_1-norm with respect to μ. Then the identity function $1: Z_1 \to Z_{1,\mu}$ is continuous.

Proof. By Proposition 2.3, it suffices to show that $1: Z_{0,\infty} \to Z_{1,\mu}$ is continuous. The argument is similar to the argument that $1: Z_{0,\infty} \to Z_1$ is continuous. Using λ to denote Lebesgue measure, suppose $d_{0,\infty}(h_1, h_2) < \delta$, so that there exists $S \subseteq [0, 1]$ with $\lambda(S) < \delta$ such that $|h_2(x) - h_1(x)| < \delta$ on $[0, 1] \setminus S$. Then

$$\int_{[0,1]} |h_2(x) - h_1(x)|d\mu \leq \int_S \text{diam}(S^1)d\mu + \int_{[0,1]\setminus S} \delta d\mu \leq \text{diam}(S^1)\mu(S) + \delta\mu([0,1])$$

Note that since μ is finite, we have $\mu([0,1]) < \infty$. As $\delta \to 0$, we have $\lambda(S) \to 0$, so $\mu(S) \to 0$ by absolute continuity, hence the right side approaches 0. This shows the desired continuity. \qed

The relationships between the topologies on $C^\infty([0,1];S^1)$ can be summarized as follows, where $1 < p_1 < p_2 < \infty$ and μ is a finite measure on $[0,1]$ which is absolutely continuous with respect to Lebesgue measure:

$$Z_{\infty} \not\rightarrow Z_{p_2} \leftarrow \cong Z_{p_1} \leftarrow \cong Z_1 \leftarrow \cong Z_{0,\infty}$$

$$Z_{p_2,\mu} \leftarrow \cong Z_{p_1,\mu} \leftarrow \cong Z_{1,\mu}$$

Therefore, when establishing the continuity of ψ for the sake of applying Theorem 1.3, we may use any L^p norm on $C^\infty([0,1];S^1)$, with respect to any finite measure μ on $[0,1]$ which is absolutely continuous with respect to Lebesgue measure. (If we use a measure μ other than Lebesgue measure, we can precompose ψ with $1: Z_1 \to Z_{1,\mu}$ before applying Theorem 1.3.)

With these results in hand, we can now deduce Corollary 1.4 from Theorem 1.3:

Proof of Corollary 1.4. Let $\psi: C^\infty([0,1];S^1) \to \mathbb{C}^n$ be given by component maps

$$\psi_j: h \mapsto \int_0^1 f_j(x)h(x)dx.$$

We claim ψ_j is continuous. Since $f_j \in L^1([0,1];\mathbb{C})$, f_j induces a finite measure μ_f which is absolutely continuous with respect to Lebesgue measure, given by

$$\mu_f(S) = \int_0^1 |f_j(x)|dx.$$
By the above, we may view $C^\infty([0,1];S^1)$ as having the topology induced by the L^1-norm $\| \cdot \|_1$ with respect to μ_f. Then

$$|\psi_j(h_2) - \psi_j(h_1)| \leq \int_0^1 |f_j(x)| \cdot |h_2(x) - h_1(x)|dx$$

$$\leq \int_{[0,1]} |h_2 - h_1|d\mu_f$$

$$\leq \|h_2 - h_1\|_1.$$

Therefore, ψ_j is continuous, so ψ is continuous. Viewing the codomain \mathbb{C}^n of ψ as \mathbb{R}^{2n}, we may apply Theorem 1.3 and get $\|h\|_{W^{1,1}} \leq 1 + 2\pi n$. \qed

3. Lifts of motion planning algorithms and the coindex

Our proof of Theorem 1.3 makes use of motion planning algorithms; see Farber [3]. We use Y,Z in the following definitions to match our notation later:

Definition 3.1. Let Z be a topological space, and let PZ be the space of continuous paths $\gamma: [0,1] \to Z$, equipped with the compact-open topology. Then a motion planning algorithm (or mpa) is a continuous map $s: Z \times Z \to PZ$, such that $s(z_0, z_1)(0) = z_0$ and $s(z_0, z_1)(1) = z_1$.

For Z a locally compact Hausdorff space, using the compact-open topology for PZ ensures that a function $s: Z \times Z \to PZ$ is continuous if and only if its uncurried form $\tilde{s}: Z \times Z \times [0,1] \to Z$ given by $(z_0, z_1, t) \mapsto s(z_0, z_1)(t)$ is continuous; see Munkres [7, Thm. 46.11]. One basic fact is that an mpa for Z exists if and only if Z is contractible [3].

We weaken the definition above for our purposes:

Definition 3.2. Let Y,Z be topological spaces, and let $\phi: Y \to Z$ be continuous. Let (\preceq) be a preorder on Y, and let $Y^2_\preceq = \{(y_0, y_1) \in Y^2 : y_0 \preceq y_1\}$, giving Y^2 the product topology and Y^2_\preceq the resulting subspace topology.

A lifted motion planning algorithm (or lifted mpa) for (Y,Z,ϕ,\preceq) is a family of maps $s_w: Y^2_\preceq \to PY$ for $w \in (0,1]$ with $s_w(y_0, y_1)(0) = y_0$ and $s_w(y_0, y_1)(1) = y_1$, assembling into a continuous map $s: (0,1] \times Y^2_\preceq \to PY$, with the following continuity property:

For all $y \in Y$ and all neighborhoods V of $\phi(y) \in Z$,

there exists a neighborhood U of $\phi(y) \in Z$ and $\delta > 0$ such that:

if $\phi(y_0), \phi(y_1) \in U$, $w < \delta$,

then $\phi(s_w(y_0, y_1)(t)) \in V$ for all $t \in [0,1]$.

Definition 3.3. A lifted mpa $s: (0,1] \times Y^2_\preceq \to PY$ for (Y,Z,ϕ,\preceq) is full if $y_0 \preceq y_1$ for all $y_0, y_1 \in Y$.

In this case we say s is a full lifted mpa for (Y,Z,ϕ), omitting (\preceq).

The continuity property essentially says that if two points $y_1, y_2 \in Y$ have images in Z close to $\phi(y) \in Z$, then s_w carries (y_0, y_1) to a path whose image under ϕ is a path that stays close to $\phi(y)$, provided w is small.
Note that an mpa $s: Z \times Z \to PZ$ satisfying $s(z, z) = e_z$ for all $z \in Z$ extends to a full lifted mpa for $(Z, Z, 1_Z)$ by taking $s_w = s$ for all w; the continuity property just restates the continuity of s at diagonal points $(z, z) \in Z \times Z$.

This relaxed notion of mpa still provides lower bounds for the (equivariant) topology of Z that are weaker than contractibility. Recall that for a topological space Z with $\mathbb{Z}/2$-action generated by $\sigma: Z \to Z$ the $\mathbb{Z}/2$-coindex of Z denoted by $\text{coind} Z$ is the largest integer n such that there is a $\mathbb{Z}/2$-map $f: S^n \to Z$, that is, a map satisfying $f(\alpha) = \sigma(f(x))$.

Definition 3.4. Let $x \in S^k$, and let $x = (x_1, \ldots, x_{k+1})$. We say that x is **positive** if its last nonzero coordinate is positive, and **negative** otherwise.

Our main tool in proving Theorem 1.3 will be the following theorem:

Theorem 3.5. Let Y, Z be topological spaces, equip Y with a \mathbb{Z}-action generated by $\rho: Y \to Y$, and equip Z with a $\mathbb{Z}/2$-action generated by $\sigma: Z \to Z$. Let $\phi: Y \to Z$ be continuous and equivariant, i.e., $\sigma \circ \phi = \phi \circ \rho$. Let (\preceq) be a preorder on Y and $s: (0, 1] \times Y^2_2 \to PY$ a lifted mpa for (Y, Z, ϕ, \preceq) such that:

1. $y \preceq \rho(y)$.
2. $\rho(y_0) \preceq \rho(y_1)$ if and only if $y_0 \preceq y_1$.
3. $y_0 \preceq y_1$ implies $y_0 \preceq s_w(y_0, y_1)(t) \preceq y_1$, for all $w \in (0, 1]$, $t \in [0, 1]$.

Then for each integer $n \geq 0$, there exists a $\mathbb{Z}/2$-map $\beta_n: S^n \to Z$. Moreover, for any choice of initial point $y^* \in Y$, the maps β_n can be chosen such that β_n maps each positive point of S^n to a point in Z of the form $\phi(y)$, with $y^* \preceq y \preceq \rho^n(y^*)$, that is, the subspace of these points $\phi(y)$ and their antipodes $\sigma(\phi(y))$ in Z has coindex at least n.

We will apply Theorem 3.5 by taking Z to be $C^\infty([0, 1]; S^1)$ with the topology induced by the L^1-norm, and Y to be $C^\infty([0, 1]; \mathbb{R})$ with the L^1-norm, restricted to increasing functions. Using lifted mpa’s allows us to reason about paths in Y, which are simpler than paths in Z. The theorem encapsulates the inductive construction of a function $\alpha_n: S^n \to Y$, from which we produce $\beta_n: S^n \to Z$; the continuity property of a lifted mpa is needed for this construction to work. The last part of the theorem will give us the $W^{1,1}$-norm bound.

Proof of Theorem 3.5. We will inductively construct a function $\alpha_n: S^n \to Y$ and then take $\beta_n = \phi \circ \alpha_n$. We will allow α_n to be discontinuous on the equator of S^n, but in such a way that $\phi \circ \alpha_n$ is continuous everywhere.

Specifically, let $\alpha_k: S^k \to Y$ be a function, not necessarily continuous. Let $m: S^k \to S^k$ be given by $(x_1, \ldots, x_k, x_{k+1}) \mapsto (x_1, \ldots, x_k, -x_{k+1})$, so that m mirrors points across the plane perpendicular to the last coordinate axis. Then we say that α_k is **good** if

- **(α-1)** For x positive, $y^* \preceq \alpha_k(x) \preceq \rho^k(y^*)$, and $\alpha_k(-x) = \rho(\alpha_k(x))$.
- **(α-2)** For x in the open upper hemisphere, $\alpha_k(x) \preceq \alpha_k(m(x))$.
- **(α-3)** α_k is continuous on the open upper hemisphere.
- **(α-4)** $\phi \circ \alpha_k$ is continuous.
Let $u, l: B^{k+1} \to S^k$ be the projections to the closed upper and lower hemispheres, that is, $u(x)$ is the unique point in the closed upper hemisphere sharing its first k coordinates with x, and similarly for $l(x)$ for the lower hemisphere. Then we have the following claim:

Claim. If $\alpha_k: S^k \to Y$ is good, then α_k extends to $\tilde{\alpha}_k: B^{k+1} \to Y$, such that:

$(\tilde{\alpha}-1)$ For all $x \in B^{k+1}$, we have $y^* \preceq \tilde{\alpha}_k(x) \preceq \rho^{k+1}(y^*)$.

$(\tilde{\alpha}-2)$ For all $x \in B^{k+1}$, we have $\alpha_k(u(x)) \preceq \tilde{\alpha}_k(x) \preceq \alpha_k(l(x))$.

$(\tilde{\alpha}-3)$ $\tilde{\alpha}_k$ is continuous in the interior of B^{k+1}.

$(\tilde{\alpha}-4)$ $\phi \circ \tilde{\alpha}_k$ is continuous.

Proof of Claim. Let $E \subset S^k$ be the equator, the set of points neither in the open upper or lower hemisphere. The set E is compact, so the distance $d(x, E)$ for $x \in B^{k+1}$ is well-defined and nonzero for $x \notin E$. Define $\tilde{\alpha}_k: B^{k+1} \to X_{k+1}$ by

$$
\tilde{\alpha}_k(x) = \begin{cases}
\alpha_k(x) & x \in E \\
 s_w(x)(\alpha_k(u(x)), \alpha_k(l(x)))(t(x)) & x \notin E
\end{cases}
$$

where $w(x) = \min(d(x, E), t(x), 1 - t(x))$

$$
t(x) = \frac{d(u(x), x)}{d(u(x), l(x))}
$$

Note that $l(x) = m(u(x))$, so $(\tilde{\alpha}-2)$ implies $\alpha_k(u(x)) \preceq \tilde{\alpha}_k(x) \preceq \alpha_k(l(x))$, so $s_w(x)(\alpha_k(u(x)), \alpha_k(l(x)))$ is well-defined, and (3) gives $\alpha_k(u(x)) \preceq \tilde{\alpha}_k(x) \preceq \alpha_k(l(x))$, establishing $(\tilde{\alpha}-2)$.

By $(\tilde{\alpha}-1)$, we have $\rho(y^*) \preceq \rho(\alpha_k(x)) \preceq \rho^{k+1}(y^*)$ for x negative, so $y^* \preceq \alpha_k(x) \preceq \rho^{k+1}(y^*)$ for all $x \in S^k$. Along with the inequality above, this implies $y^* \preceq \tilde{\alpha}_k(x) \preceq \rho^{k+1}(y^*)$, establishing $(\tilde{\alpha}-1)$.

The function $\tilde{\alpha}_k$ is continuous for $x \notin E$, since $u(-), l(-), d(-,-), d(-, E)$ are all continuous, $u(x), l(x) \notin E$, and α_k is continuous on the open upper (and hence lower) hemisphere. In particular, $\tilde{\alpha}_k$ is continuous in the interior of B^{k+1}, establishing $(\tilde{\alpha}-3)$.

It remains to show $\phi \circ \tilde{\alpha}_k$ is continuous at $x \in E$. Let V be a neighborhood of $\phi(\tilde{\alpha}_k(x)) = \phi(\alpha_k(x)) \in Z$, and obtain $\delta > 0$ and a neighborhood U of $\phi(\alpha_k(x)) \in Z$ as in the lifted mpa definition. Since $u(-), l(-), d(-, E)$ are continuous, there exists a neighborhood $W \subseteq B^{k+1}$ of x such that for all $x' \in W$ we have $d(x', E) < \delta$ and $u(x'), l(x') \in (\phi \circ \alpha_k)^{-1}(U)$, using the continuity of $\phi \circ \alpha_k$ given by $(\tilde{\alpha}-4)$. Then $\phi(\alpha_k(u(x'))), \phi(\alpha_k(l(x'))) \in U$, so the lifted mpa property implies $\phi(\tilde{\alpha}_k(x)) \in V$, which shows $\phi \circ \tilde{\alpha}_k$ is continuous at x, establishing $(\tilde{\alpha}-4)$.

We use the claim above to inductively construct $\alpha_k: S^k \to Y$, by extending each α_k to a map $\tilde{\alpha}_k: B^{k+1} \to Y$, using $\tilde{\alpha}_k$ for the upper hemisphere of α_{k+1}, and extending to the negative hemisphere via $\alpha_{k+1}(-x) = \rho(\alpha_{k+1}(x))$. Specifically, we have the following claim:

Claim. For all $k \geq 0$ there exists $\alpha_k: S^k \to Y$, not necessarily continuous, such that α_k is good.

Proof of Claim. We use induction. For the base case, use ± 1 to denote the points of S^0; then let α_0 map ± 1 to $y^*, \rho(y^*)$, respectively. Then α_0 is good.

Given α_k good and $\tilde{\alpha}_k$ obtained through the previous claim, we now construct $\alpha_{k+1}: S^{k+1} \to Y$. Let $\pi: S^{k+1}_{\geq 0} \to B^{k+1}$ be the projection of the closed upper hemisphere onto the first $k+1$ coordinates.
We define maps on the two closed hemispheres as follows:

\[(\alpha_{k+1})_{\geq 0}: S_{\geq 0}^{k+1} \to Y \quad x \mapsto \tilde{\alpha}_k(\pi(x))\]

\[(\alpha_{k+1})_{\leq 0}: S_{\leq 0}^{k+1} \to Y \quad x \mapsto \rho(\tilde{\alpha}_k(\pi(-x)))\]

Finally, we define \(\alpha_{k+1}\) by \(x \mapsto (\alpha_{k+1})_{\geq 0}(x)\) for \(x\) positive and \(x \mapsto (\alpha_{k+1})_{\leq 0}(x)\) for \(x\) negative.

For \(\alpha_{k+1}\), (α-1) holds by construction, due to (α-1). Next, since \(\tilde{\alpha}_k\) is continuous in the interior of \(B^{k+1}\), we have that \((\alpha_{k+1})_{\geq 0}\) is continuous on the open upper hemisphere, hence \(\alpha_{k+1}\) is also, so (α-3) holds also.

Since \(\tilde{\alpha}_k\) satisfies \(\tilde{\alpha}_k(-x) = \rho(\tilde{\alpha}_k(x))\) for positive \(x\) on the boundary sphere \(S^k \subset B^{k+1}\), we have \((\alpha_{k+1})_{\leq 0}(x) = \rho^2((\alpha_{k+1})_{\geq 0}(x))\) for positive \(x\) on the equator \(S^k \subset S^{k+1}\), and \((\alpha_{k+1})_{\leq 0}(x) = (\alpha_{k+1})_{\geq 0}(x)\) for negative \(x\) on the equator. Hence \(\phi \circ (\alpha_{k+1})_{\geq 0}, \beta \circ (\alpha_{k+1})_{\leq 0}\) agree on the equator, since \(\phi \circ \rho^2 = \sigma^2 \circ \phi = \phi\). Moreover, both composites are continuous; for the second, we have

\[\phi \circ (\alpha_{k+1})_{\leq 0} = \phi \circ \rho \circ \tilde{\alpha}_k \circ \pi \circ (-) = \sigma \circ (\phi \circ \tilde{\alpha}_k) \circ \pi \circ (-)\]

and \(\sigma, \phi \circ \tilde{\alpha}_k, \pi, (-)\) are continuous. Hence (α-4) holds.

Before showing (α-2), we show that (α-2) implies

\[\tilde{\alpha}_k(x) \leq \rho(\tilde{\alpha}_k(-x))\]

for all \(x \in B^{k+1}\) not on the equator. For such \(x\), \(u(-x)\) is on the open upper hemisphere and hence is positive. By (α-2), we have

\[\tilde{\alpha}_k(x) \leq \alpha_k(l(x)) = \alpha_k(-u(-x)) = \rho(\alpha_k(u(-x))) \leq \rho(\tilde{\alpha}_k(-x)).\]

This proves the inequality above.

Now we show (α-2). For \(x \in S^{k+1}\) in the open upper hemisphere, we have

\[\alpha_{k+1}(x) = \tilde{\alpha}_k(\pi(x)) \leq \rho(\tilde{\alpha}_k(-\pi(x))) = \rho(\tilde{\alpha}_k(\pi(-x))) = \alpha_{k+1}(m(x))\]

by the inequality above. Hence (α-2) holds.

Taking \(\beta_n = \phi \circ \alpha_n\), Theorem 3.5 follows from the claims above. To see that \(\beta_n\) is a \(\mathbb{Z}/2\)-map, note that for \(x \in S^n\) positive, we have

\[\beta_n(-x) = \phi(\alpha_n(-x)) = \phi(\rho(\alpha_n(x))) = \sigma(\phi(\alpha_n(x))) = \sigma(\beta_n(x))\]

The other conclusions of the theorem are clear.

For a full lifted mpa, the preorder conditions of Theorem 3.5 are trivially satisfied, so we get:

Corollary 3.6. Let \(Y, Z\) be topological spaces, equip \(Y\) with a \(\mathbb{Z}\)-action generated by \(\rho: Y \to Y\), and equip \(Z\) with a \(\mathbb{Z}/2\)-action generated by \(\sigma: Z \to Z\). Let \(\phi: Y \to Z\) be continuous and equivariant, i.e., \(\sigma \circ \phi = \phi \circ \rho\). If there is a full lifted mpa for \((Y, Z, \phi)\), then there exists a \(\mathbb{Z}/2\)-map \(\beta_n: S^n \to Z\) for all integers \(n \geq 0\).
4. Constructing a lifted mpa

The goal of this section is to prove our main result, Theorem 1.3, by constructing a lifted mpa satisfying the conditions of Theorem 3.5. As a warm-up, we use Theorem 3.5 to prove the Hobby-Rice theorem, Theorem 1.1:

Proof of Theorem 1.1. The idea is to lift the space of functions with range in \(\{\pm 1\} \) to nondecreasing functions with range in \(\mathbb{Z} \). By describing a continuous map from pairs of such functions to paths between them, we will produce a lifted mpa, which will imply the result by Theorem 3.5.

Let \(Y \) be the space of nondecreasing functions \(g; [0,1] \to \mathbb{Z} \) with finite range, and let \(Z \) be the space of functions \(h; [0,1] \to \{\pm 1\} \). Equip \(Y, Z \) with the \(L^1 \)-norm, and define \(\rho(g) = g + 1, \sigma(h) = -h \), and

\[
\phi(g)(x) = \begin{cases}
1 & g(x) \text{ even} \\
-1 & g(x) \text{ odd}
\end{cases}
\]

Let \(g_0 \leq g_1 \) if \(g_0(x) \leq g_1(x) \) for all \(x \in [0,1] \). Finally, for \(g_0 \leq g_1 \) define \(s_w(g_0,g_1) \) to be the path (in \(t \)) of functions following \(g_0 \) on \([0,1-t)\) and \(g_1 \) on \([1-t,1)\):

\[
s_w(g_0,g_1)(t)(x) = \begin{cases}
g_0(x) & x < 1-t \\
g_1(x) & x \geq 1-t \end{cases}
\]

Note that \(s_w \) is independent of \(w \). The conditions of Theorem 3.5 are straightforward to check, except perhaps the continuity property in the lifted mpa definition, which we check now.

We are given \(g \in Y \), and we may assume \(V \) is a basis set, so that \(V \) consists of all \(h \in Z \) with \(\|h - \phi(g)\| < \varepsilon \) for some \(\varepsilon > 0 \). By our choice of \(U \) we may ensure that \(g_0, g_1 \in Y \) have the same parity as \(g \) except on a sets \(S_0, S_1 \) with \(\mu(S_i) < \varepsilon/4 \). Then functions \(g' \) along the path \(s_w(g_0,g_1) \) have the same parity as \(g \) except on \(S_0 \cup S_1 \), where \(\mu(S_0 \cup S_1) < \varepsilon/2 \), which implies \(\|\phi(g') - \phi(g)\| < \varepsilon \).

Hence the conditions of Theorem 3.5 are satisfied, so we obtain a \(\mathbb{Z}/2 \)-map \(\beta_n : S^n \to Z \). Applying the Borsuk–Ulam theorem to \(\psi \circ \beta_n : S^n \to \mathbb{R}^n \), where \(\psi : h \mapsto (\int_0^1 f_j(x)h(x)dx)_j \), we obtain \(x \in S^n \) with \(\psi(\beta_n(x)) = 0 \). Hence also \(\psi(\beta_n(-x)) = 0 \), so we may assume \(x \) is positive. Taking \(y^* = 0 \) in the last part of Theorem 3.5, we may ensure that \(\beta_n \) maps each positive point of \(S^n \) to a point in \(Z \) of the form \(\phi(g) \) with \(0 \leq g \leq n \), so that \(\phi(g) \) has at most \(n \) sign changes. This completes the proof.

Now we prove our main result, Theorem 1.3:

Proof of Theorem 1.3. Consider the space \(C^\infty([0,1];\mathbb{R}) \) with the \(L^1 \)-norm, and let \(Y \) be the subspace of nondecreasing functions in \(C^\infty([0,1];\mathbb{R}) \), equipped with the action \(\rho : g \mapsto g + \pi \). Let \(Z \) be \(C^\infty([0,1];S^1) \) with the \(L^1 \)-norm, equipped with the action \(\sigma : h \mapsto -h \).

Define \(\phi : Y \to Z \) by \(\phi(g)(x) = e^{ig(x)} \); then \(\phi \) is continuous since \(x \mapsto e^{ix} \) is 1-Lipschitz:

\[
\|\phi(g_2) - \phi(g_1)\|_1 = \int_0^1 |e^{ig_2(x)} - e^{ig_1(x)}|dx \\
\leq \int_0^1 |g_2(x) - g_1(x)|dx \\
\leq \|g_2 - g_1\|_1.
\]
Define \((\leq) \) on \(Y \) as \((\leq) \) pointwise. Then properties (1) and (2) of Theorem 3.5 and the commutativity property \(\phi \circ \rho = \sigma \circ \phi \) evidently hold.

It remains to construct the lifted map \(s \). Let \(\tau : \mathbb{R} \to [0, 1] \) be a smooth, nondecreasing function with \(\tau(x) = 0 \) for \(x \leq -1 \), and \(\tau(x) = 1 \) for \(x \geq 1 \). (For example, take an integral of a mollifier.) Then define \(s_w : Y^2 \to PY \) by

\[
s_w(g_0, g_1)(t)(x) = \left(1 - \tau \left(\frac{x - (1 - t)}{w} \right) \right) g_0(x) + \tau \left(\frac{x - (1 - t)}{w} \right) g_1(x).
\]

Since \(\tau \) is smooth, and since \(x \mapsto (x - (1 - t))/w \) is smooth for \(w \neq 0 \), the function \(s_w(g_0, g_1)(t) : [0, 1] \to \mathbb{R} \) is smooth. Also, \(s_w(g_0, g_1)(t) \) is nondecreasing:

\[
\frac{d}{dx} [s_w(g_0, g_1)(t)(x)] = -\frac{1}{w} \cdot \tau' \left(\frac{x - (1 - t)}{w} \right) \cdot g_0(x) + \left(1 - \tau \left(\frac{x - (1 - t)}{w} \right) \right) \cdot g_0'(x) + \frac{1}{w} \cdot \tau' \left(\frac{x - (1 - t)}{w} \right) \cdot g_1(x) + \tau \left(\frac{x - (1 - t)}{w} \right) \cdot g_1'(x) \geq \frac{1}{w} \cdot \tau' \left(\frac{x - (1 - t)}{w} \right) \cdot (g_1(x) - g_0(x)) \geq 0.
\]

Therefore, \(s_w(g_0, g_1) \) takes values in \(PY \). Since \(g_0 \leq g_1 \), we have \(g_0 \leq s_w(g_0, g_1)(t) \leq g_1 \), so property (3) of Theorem 3.5 holds.

Next we show \(s_w(g_0, g_1)(t) \) is continuous in \(w, g_0, g_1, t \). First we establish a helpful result. Let \(B \) be the subspace of \(L^\infty([0, 1]; \mathbb{R}) \) consisting of smooth functions, and let \(\tilde{Y} \) be the space \(L^1([0, 1]; \mathbb{R}) \), of which \(Y \) is a subspace; then pointwise multiplication \((b, g) \mapsto b \cdot g \) defines a continuous map \(B \times \tilde{Y} \to \tilde{Y} \), via the following inequality, using Hölder’s inequality:

\[
\|b_2g_2 - b_1g_1\|_1 \leq \|b_2(g_2 - g_1)\|_1 + \|g_1(b_2 - b_1)\|_1 \leq \|b_2\|_\infty \cdot \|g_2 - g_1\|_1 + \|g_1\|_1 \cdot \|b_2 - b_1\|_\infty.
\]

Since \((w, g_0, g_1, t) \mapsto g_0 \), \((w, g_0, g_1, t) \mapsto g_1 \) are continuous maps \([0, 1] \times Y \times Y \times [0, 1] \to Y \), by the result above it suffices to show that

\[
(w, g_0, g_1, t) \mapsto \left(x \mapsto \tau \left(\frac{x - (1 - t)}{w} \right) \right)
\]

is a continuous map to \(B \); the subtraction from 1 in the first term is handled by virtue of the fact that \(B \) is a normed linear space, so that pointwise addition and scalar multiplication by \(-1\) each define a continuous map.

Since \(\tau \) is constant outside of the compact set \([-1, 1]\), \(\tau \) is uniformly continuous, hence it suffices to prove that

\[
(w, g_0, g_1, t) \mapsto \left(x \mapsto \frac{x - (1 - t)}{w} \right)
\]

is a continuous map to \(B \). Note that

\[
\sup_{x \in [0, 1]} \left| \frac{x}{w_2} - \frac{x}{w_1} \right| = \left| \frac{1}{w_2} - \frac{1}{w_1} \right|
\]
Since $w \mapsto 1/w$ is a continuous map $\mathbb{R} \setminus \{0\} \to \mathbb{R}$, the map $(w, g_0, g_1, t) \mapsto (x \mapsto x/w)$ is a continuous map to B, as is $(w, g_0, g_1, t) \mapsto (x \mapsto -(1-t)/w)$, so the map above is indeed a continuous map to B. Hence $s_w(g_0, g_1)(t)$ is continuous in w, g_0, g_1, t.

It remains to show the continuity property for a lifted mpa. Let $g \in Y$, then for $g_0, g_1 \in Y$ we have

$$
\|\phi(s_w(g_0, g_1)(t)) - \phi(g)\|_1
= \int_0^{1-t-w} |\phi(g_0)(x) - \phi(g)(x)| dx + \int_{1-t+w}^1 |\phi(g_1)(x) - \phi(g)(x)| dx
+ \int_{1-t-w}^{1-t+w} |\phi(s_w(g_0, g_1)(t))(x) - \phi(g)(x)| dx
\leq \|\phi(g_0) - \phi(g)\|_1 + \|\phi(g_1) - \phi(g)\|_1 + 4w,
$$

where we use the fact that S^1 has diameter 2 in the last step. This inequality implies the continuity property for a lifted mpa.

Therefore, we may apply Theorem 3.5 to obtain a $\mathbb{Z}/2$-map $\beta_n: S^n \to Z$. Then $\psi \circ \beta_n: S^n \to \mathbb{R}^n$ is a $\mathbb{Z}/2$-map, so by the Borsuk–Ulam theorem, we have $\psi(\beta_n(x)) = 0$ for some $x \in S^n$, and we may assume x is positive. Taking $y^* = c_0$ in the last part of Theorem 3.5, we have $\rho^n(y^*) = c_n$, so we may ensure that $h = \beta_n(x)$ is of the form $\phi(g)$ for $g \in Y$, where g is an increasing function with range in $[0, \pi n]$. This gives the desired $W^{1,1}$-norm bound:

$$
\int_0^1 \left| \frac{d}{dx} e^{ig(x)} \right| dx = \int_0^1 |g'(x)| dx = g(1) - g(0) \leq \pi n,
$$

which implies $\|h\|_{W^{1,1}} \leq 1 + \pi n$. \hfill \Box

5. Improving the Bound Further

In the introduction we argued that a $W^{1,1}$-norm bound of $1 + 2\pi n$ in Theorem 1.2 might be expected from smoothing the Hobby–Rice theorem. In this section, we show an improved bound for Theorem 1.2 in the case where the f_j are real-valued. The idea is to modify the S^1 step of our construction so that some functions in the image of α_k have smaller range within $[0, \pi k]$, and to modify the later steps so that functions h in the image of α_k with large range have $\psi(\phi(h)) \neq 0$.

Theorem 5.1. Let $f_1, \ldots, f_n \in L^1([0, 1]; \mathbb{R})$. Then there exists $h \in C^\infty([0, 1]; S^1)$ such that for all j,

$$
\int_0^1 f_j(x) h(x) dx = 0.
$$

Moreover, for any $\varepsilon > 0$, h can be chosen such that

$$
\|h\|_{W^{1,1}} < 1 + \pi (2n - 1) + \varepsilon.
$$

Proof. Define $Y, Z, \rho, \sigma, \phi, s$ as in the proof of Theorem 1.3, let $y^* = c_0$, and let (\preceq) be (\leq). We will produce $\alpha_n: S^n \to Y$ and $\beta_n: S^n \to Z$ by the inductive construction in the proof of Theorem 3.5, but we modify the first step by defining $\alpha_1: S^1 \to Y$ by $e^{ix} \mapsto c_x$ for $x \in [0, 2\pi)$. This α_1 differs from the α_1 obtained in the proof of Theorem 3.5, which only gives constant functions at $\pm 1 \in S^1$,
but is still good in the sense introduced in the proof of Theorem 3.5. Using this \(\alpha_1 \) as our base case, we inductively construct \(\alpha_k \) as before with the following additional condition:

For \(\delta > 0 \) (depending on \(k \) and the \(f_j \)), \(\alpha_k \) may be chosen such that for all \(x \):

\[
\Re[e^{i\alpha_k(x)(t)}] = \pi_1(x) \quad \text{for } t \in [0,1] \setminus S, \text{ where } \mu_f(S) < \delta \quad (P_{\alpha_k,\delta})
\]

Here \(\mu_f \) is as in the proof of Corollary 1.4, that is,

\[
\mu_f(S) = \int_0^1 |f_j(x)| dx,
\]

and \(\pi_1 : S^k \to [-1,1] \) is the projection to the first coordinate.

The condition \((P_{\alpha_k,\delta})\) holds for \(k = 1 \) and all \(\delta > 0 \) by our definition of \(\alpha_1 \). To show that the condition carries through the inductive step, it suffices to show that given \(\delta > 0 \), there exists \(\delta'' > 0 \) such that given \(\alpha_k \) such that \((P_{\alpha_k,\delta''})\) holds, we can extend \(\alpha_k \) to \(\tilde{\alpha}_k \) as in the first claim in the proof of Theorem 3.5 such that \((P_{\tilde{\alpha}_k,\delta''})\) holds.

We accomplish this by modifying the definition of \(\tilde{\alpha}_k \) in the first claim in the proof of Theorem 3.5 to impose a universal upper bound on \(w(x) \). Since \(\mu_f \) is absolutely continuous with respect to Lebesgue measure \(\lambda \), for \(\delta''' > 0 \) there exists \(\delta'''' > 0 \) such that \(\lambda(S) \leq 2\delta'''' \) implies \(\mu_f(S) < \delta'''' \).

Then we use \(\delta'''' \) as our upper bound on \(w(x) \):

\[
\tilde{\alpha}_k(x) = \begin{cases}
\alpha_k(x) & x \in E \\
\min(w(x),\alpha_k(u(x)),\alpha_k(l(x)))(t(x)) & x \notin E
\end{cases}
\]

where \(w(x) = \min(d(x,E),t(x),1-t(x),\delta''''\)\)

\[
t(x) = \frac{d(u(x),x)}{d(u(x),l(x))}
\]

This ensures that functions in the image of \(\tilde{\alpha}_k \) are equal to one of the functions \(\alpha_k(u(x)),\alpha_k(l(x)) \) except on a set \(S \) with \(\mu_f(S) < \delta'''' \). Hence we may take \(\delta' = \delta'''' = \delta/2 \); then \((P_{\tilde{\alpha}_k,\delta})\) holds as desired. This shows that for any \(\delta > 0 \), \(\alpha_k \) may be chosen such that \((P_{\alpha_k,\delta})\) holds.

Now we apply the Borsuk–Ulam theorem as before. We have the following diagram:

\[
S^{2n} \xrightarrow{\phi \circ \alpha_{2n}} \mathbb{Z} / \mathbb{Z}^2 \xrightarrow{\psi} \mathbb{C}^n
\]

The composition \(\psi \circ \phi \circ \alpha_{2n} \) is a \(\mathbb{Z}/2 \)-map, so the Borsuk–Ulam theorem implies that it has a zero; that is, there exists \(x \in S^{2n} \) such that for all \(j \), we have

\[
\int_0^1 f_j(t)e^{i\alpha_{2n}(x)(t)} dt = 0.
\]

Moreover, we may assume \(x \in S^{2n} \) is positive.
But by the above, we have for the real parts, for all j,
\[
\text{Re} \left[\int_0^1 f_j(t)e^{i\alpha_2n(x(t))}dt \right] = \int_0^1 f_j(t) \cdot \text{Re}[e^{i\alpha_2n(x(t))}]dt = \pi_1(x) \cdot \int_0^1 f_j(t)dt + \int_S f_j(t)(\text{Re}[e^{i\alpha_2n(x(t))}]) - \pi_1(x))dx.
\]
We can bound the last term as follows:
\[
\left| \int_S f_j(t)(\text{Re}[e^{i\alpha_2n(x(t))}]) - \pi_1(x))dx \right| \leq \int_S |\text{Re}[e^{i\alpha_2n(x(t))}]) - \pi_1(x)|d\mu_f \leq 2\mu_f(S).
\]
Now if all $\int_0^1 f_j(t)dt$ are 0, then we may take h to be an arbitrary constant, which gives $\|h\|_{W^{1,1}} = 1$. Hence we may assume that some $\int_0^1 f_j(t)dt$ is nonzero. In this case, we may ensure that for the x with $\int_0^1 f_j(t)dt$ is nonzero, we have
\[
|\text{Re}[e^{i\alpha_2n(x(t))}]) - \pi_1(x)| < \delta
\]
for any constant we like, by taking δ small in (P_{α_2n}, δ). In particular, choose δ sufficiently small so that $|\text{Re}[e^{i\theta}]| < \delta$ implies $|\theta - \pi/2| < \varepsilon'$ for $\theta \in [0, \pi]$.

Now we analyze the ranges of functions $\alpha_k(x) : [0, 1] \rightarrow \mathbb{R}$ with x positive and $|\pi_1(x)| < \delta$, using the fact that functions $\alpha_{k+1}(x)$ are produced as transition functions between two functions $\alpha_k(x'), \alpha_k(x'')$ with $\pi_1(x') = \pi_1(x'') = \pi_1(x)$. For $k = 1$, $\alpha_k(x)$ has range in $[\pi/2 - \varepsilon', \pi/2 + \varepsilon']$, and each increment of k extends the right end of this interval by π. Hence $\alpha_{2n}(x)$ has range in $[\pi/2 - \varepsilon', \pi/2 + \pi(2n - 1) + \varepsilon']$.

Hence taking $h = \phi(\alpha_{2n}(x))$ gives $\|h\|_{W^{1,1}} \leq 1 + \pi(2n - 1) + 2\varepsilon'$. Choosing $\varepsilon' < \varepsilon/2$ gives the desired result.

\[\square\]

6. A LOWER BOUND

We ask whether $\|h\|_{W^{1,1}} \leq 1 + 2n\pi$ is the best possible bound in Theorem 1.2. We prove a lower bound of $1 + n\pi$ in the case that the f_j are real-valued, which implies the same lower bound in the case that the f_j are complex-valued.

Theorem 6.1. There exist $f_1, \ldots, f_n \in L^1([0, 1]; \mathbb{R})$, such that for any $h \in C^1([0, 1]; S^1)$ with
\[
\int_0^1 f_j(x)h(x)dx = 0 \quad j = 1, \ldots, n
\]
we have $\|h\|_{W^{1,1}} > n\pi + 1$.

Proof. Consider the case $n = 1$, and take f_1 constant and nonzero. Suppose for contradiction that $\|h\|_{W^{1,1}} \leq \pi + 1$, and write $h(x)$ as $e^{i\theta(x)}$ for $g \in C^1([0, 1]; \mathbb{R})$, so that $\int_0^1 |g'(x)|dx \leq \pi$. Since g is continuous, g attains its minimum m and maximum M on $[0, 1]$. By adding a constant to g, we may assume $m = 0$; then we have $M \leq \pi$.

Since f_1 is constant, we have $\int_0^1 h(x)dx = 0$, so $\int_0^1 \text{Im}(h(x))dx = 0$. But $\text{Im}(h(x))$ is continuous in x and nonnegative, so $\text{Im}(h(x)) = 0$ for all x. Hence h is constant at either 1 or -1, but this contradicts $\int_0^1 h(x)dx = 0$. Therefore, $\|h\|_{W^{1,1}} > \pi + 1$ for $n = 1$.

Now allow n arbitrary, and take each f_j to be the indicator function on a disjoint interval I_j. If $\|h\|_{W^{1,1}} \leq \pi n + 1$, then $\int_{I_j} |g'(x)|dx \leq \pi$ for some j, and we obtain a contradiction as above. Therefore, $\|h\|_{W^{1,1}} > \pi n + 1$. □

This $W^{1,1}$-norm bound establishes an upper bound for the coindex of the space of smooth circle-valued functions with norm at most $1 + \pi n$:

Theorem 6.2. For integer $n \geq 1$ let Y_n denote the space of C^∞-functions $f: [0, 1] \to S^1$ with $\|f\|_{W^{1,1}} \leq 1 + \pi n$. Then

$$n \leq \text{coind } Y_n \leq 2n - 1.$$

Proof. In the proof of Theorem 1.3 we constructed a $\mathbb{Z}/2$-map $\beta_n : S^n \to Y_n$, which shows that $\text{coind } Y_n \geq n$. Let f_1, \ldots, f_n be chosen as in Theorem 6.1. Then the map $\psi: Y_n \to \mathbb{R}^{2n}$ given by $\psi(h) = (\int_0^1 f_j(x)h(x)dx)_j$ has no zero and is a $\mathbb{Z}/2$-map. Thus ψ radially projects to a $\mathbb{Z}/2$-map $Y_n \to S^{2n-1}$. A $\mathbb{Z}/2$-map $S^{2n} \to Y_n$ would compose with ψ to a $\mathbb{Z}/2$-map $S^{2n} \to S^{2n-1}$, contradicting the Borsuk–Ulam theorem. This implies $\text{coind } Y_n \leq 2n - 1$. □

Problem 6.3. Determine the homotopy type of Y_n.

ACKNOWLEDGEMENTS

The first author would like to thank Marius Lemm for bringing [5] to his attention.

REFERENCES

[1] Noga Alon. Splitting necklaces. *Adv. Math.*, 63(3):247–253, 1987.
[2] Jai Aslam, Shujian Chen, Florian Frick, Sam Saloff-Coste, Linus Setiabrata, and Hugh Thomas. Splitting loops and necklaces: Variants of the square peg problem. *arXiv preprint arXiv:1806.02484*, 2018.
[3] Michael Farber. Topological complexity of motion planning. *Discrete Comput. Geom.*, 29(2):211–221, 2003.
[4] Charles R. Hobby and John R. Rice. A moment problem in L_1 approximation. *Proc. Amer. Math. Soc.*, 16(4):665–670, 1965.
[5] Oleg Lazarev and Elliott H. Lieb. A smooth, complex generalization of the Hobby–Rice theorem. *Indiana Univ. Math. J.*, 62(4):1133–1141, 2013.
[6] Elliott H. Lieb and Robert Schrader. Current densities in density-functional theory. *Phys. Rev. A*, 88(3):032516, 2013.
[7] James Munkres. *Topology*. Pearson Education, 2014.
[8] Allan Pinkus. A simple proof of the Hobby–Rice theorem. *Proc. Amer. Math. Soc.*, 60(1):82–84, 1976.
[9] Vermont Rutherfoord. On the Lazarev–Lieb extension of the Hobby–Rice theorem. *Adv. Math.*, 244:16–22, 2013.

(FF) DEPT. MATH. SCIENCES, CARNegie MELLON UNIVERsITY, PITTSBURGH, PA 15213, USA
E-mail address: frick@cmu.edu

(MS) DEPT. MATH. SCIENCES, CARNegie MELLON UNIVERsITY, PITTSBURGH, PA 15213, USA
E-mail address: msuperdo@andrew.cmu.edu