Abstract
The $\Delta\Delta$ dibaryon resonance $d^*(2380)$ with $(J^P,I) = (3^+,0)$ is studied theoretically on the basis of the 3-flavor lattice QCD simulation with heavy pion masses ($m_\pi = 679, 841$ and 1018 MeV). By using the HAL QCD method, the central $\Delta\Delta$ potential in the 7S_3 channel is obtained from the lattice data with the lattice spacing $a \approx 0.121$ fm and the lattice size $L \approx 3.87$ fm. The resultant potential shows a strong short-range attraction, so that a quasi-bound state corresponding to $d^*(2380)$ is formed with the binding energy 25-40 MeV below the $\Delta\Delta$ threshold for the heavy pion masses. The tensor part of the transition potential from $\Delta\Delta$ to NN is also extracted to investigate the coupling strength between the S-wave $\Delta\Delta$ system with $J^P = 3^+$ and the D-wave NN system. Although the transition potential is strong at short distances, the decay width of $d^*(2380)$ to NN in the D-wave is kinematically suppressed, which justifies our single-channel analysis at the range of the pion mass explored in this study.

Keywords: Lattice QCD, Decuplet baryons, ABC effect, $d^*(2380)$

1. Introduction
Recently much interest has been attracted to decuplet-decuplet dibaryons as well as to octet-octet and octet-decuplet dibaryons [1,2,4,5,6,7]. Theoretically, the quark Pauli principle provides an important guideline to identify possible dibaryon channels [9,10]. If the overlap of the quark wave functions is forbidden by the quark Pauli principle, it is difficult to form dibaryons, while if the overlap is allowed or only partially forbidden, there is a chance.

To see the role of quark Pauli principle more explicitly in the decuplet-decuplet system, let us consider its irreducible representation of the SU(3) flavor symmetry,

$$10 \otimes 10 = (28 \oplus 27)_{\text{sym.}} \oplus (35 \oplus 10^*)_{\text{anti-sym.}}$$

where “sym.” and “anti-sym.” stand for the flavor symmetry under the exchange of two baryons. Then one finds that there are two Pauli-allowed S-wave states: Spin 0 in symmetric 28 representation and spin 3 in anti-symmetric 10* representation. The $\Omega\Omega$ system in the spin-0 channel belongs to the former, while the $\Delta\Delta$ system in the spin-3 and isospin-0 channel belongs to the latter [11]. In fact, these two systems have been studied exten-
sively by using phenomenological models (see e.g. 12 13 14 15 for the \(\Omega\Omega\), and 16 17 for the \(\Delta\Delta\)). Only recently, the first principle lattice QCD simulation of the baryon-baryon interactions near the physical point became possible thanks to the HAL QCD method, and it was shown that the \(\Omega\Omega\) interaction in the spin-0 channel supports a shallow dibaryon state, the di-Omega, near unitarity 3. It is also proposed to search for such a state by the momentum correlation of \(\Omega\)-pairs in future heavy-ion collision experiments 6.

As for the \(\Delta\Delta\) system, a dibaryon with spin-3 and isospin-0 has been reported experimentally 18 19. It is now called \(\Delta^*\) and isospin-0 has been reported experimentally 3 19 18. It is also proposed to search for such a state by the momentum correlation of \(\Omega\)-pairs in future heavy-ion collision experiments 6.

In QCD, the \(\Delta\Delta\) potential in the S-channel is constructed to the reduced four-point function, \(\langle \Delta\Delta | \bar{\psi}\gamma_{\mu}\gamma_{\nu}(x)\psi\gamma_{\nu}\gamma_{\mu}\psi(x) | \Delta\Delta \rangle\). The \(\Delta\Delta\) wave function \(\psi_{\Delta\Delta}(\vec{r})\) may only be derived from the free-field theory through the Schrödinger-type equation obtained from the equal-time NBS equation as 24:

\[
\psi_{\Delta\Delta}(\vec{r}) = \langle 0 | \Delta\Delta \rangle_{(s=3,I=0)}(\vec{r},0) | W_n; J = 3, I = 0 \rangle,
\]

where \(| W_n; J = 3, I = 0 \rangle\) stands for a QCD eigenstate which has the total energy \(W_n = 2\sqrt{k_n^2 + m_{\Delta}^2}\) with \(m_{\Delta}\) being \(\Delta\)-baryon’s mass, the total spin \(J = 3\) and the isospin \(I = 0\). \(| \Delta\Delta \rangle_{(s=3,I=0)}(\vec{r},t) = \sum_{\alpha,\beta,l,m,A,B} F_{(s=3,I=0)}^{(\alpha,\beta,l,m,A,B)}(\vec{r}+\vec{r},t) \Delta^{(s=3)}_{\alpha,\beta,l,m,A,B}(\vec{x},t)\) is a two \(\Delta\)-baryon operator with \(F_{(s=3,I=0)}^{(\alpha,\beta,l,m,A,B)}(\vec{x},t)\) being the projection operator onto the internal spin \(s = 3\) and \(I = 0\). The \(\Delta\)-baryon operator \(\Delta^{(s=3)}_{\alpha,\beta,l,m,A,B}(\vec{x},t)\) is constructed from the linear combinations of interpolating operators, \(e^{ikq_{\gamma}(x)C_{\gamma}\psi(x)\bar{\psi}(x)}\) with \(q = u, d\) and \(C \equiv \gamma_1\gamma_2\gamma_3\).

We first assume that the couplings of \(\Delta\Delta(7S_3)\) to the \(D\)-wave and the \(G\)-wave \(NN\) states below the \(\Delta\Delta\) threshold is small and consider the single channel analysis between \(\Delta\Delta\). Justification of this assumption will be discussed in Appendix A.

Since the NBS wave function in the asymptotically large distance is identical to that of the scattering state or bound state in 2-body quantum mechanics 22 23, one can define the \(\Delta\Delta\) potential via the Schrödinger-type equation obtained from the equal-time NBS equation as 24:

\[
\psi_{\Delta\Delta}(\vec{r}) = \langle 0 | \Delta\Delta \rangle_{(s=3,I=0)}(\vec{r},0) | e^{-2m_{\Delta}t} + O(e^{-DE^*t})\)
\]

with \(m_{\Delta}\) being the mass of \(\Delta\) and \(E_n = k_n^2/m_{\Delta}\). Note that the non-local potential \(U_{\Delta\Delta}(\vec{r},\vec{r}')\) is energy-independent. The NBS wave function is related to the reduced four-point function,

\[
R_{j_3=3}(\vec{r},t) = \langle 0 | \Delta\Delta \rangle_{(s=3,I=0)}(\vec{r},t) | J_{j_3=3}(0) | J_{\Delta}(0) | e^{-2m_{\Delta}t} + O(e^{-DE^*t})\)
\]

with \(a_n = \langle W_n; J = 3, I = 0 | J_{\Delta}(0) \rangle\) being the energy difference between the inelastic threshold and \(2m_{\Delta}\), and \(J_{\Delta}(0)\) being a source operator with \(J = 3\).

Below the inelastic threshold, \(R_{j_3=3}(\vec{r},t)\) satisfies

2. HAL QCD method for \(\Delta\Delta\) interaction

In QCD, the \(\Delta\Delta\) potential in the \(7S_3\) channel is obtained from the equal-time Nambu-Bethe-Salpeter (NBS) wave function defined by

\[
\psi_{\Delta\Delta}(\vec{r}) = \langle 0 | \Delta\Delta \rangle_{(s=3,I=0)}(\vec{r},0) | W_n; J = 3, I = 0 \rangle,
\]
the time-dependent HAL QCD equation \[25,\]
\[
\left(\frac{\nabla^2}{m_\Delta} - \frac{\partial}{\partial t} + \frac{1}{4m_\Delta} \frac{\partial^2}{\partial t^2} \right) R^\Delta_3(r, t) = \int U^\Delta(r, r') R^\Delta_3(r', t) d^3r'. \tag{4}
\]

Using the derivative expansion of the non-local potential, \(U^\Delta(r, r') = V^\Delta(r)\delta(r - r') + O(\nabla),\) the leading-order (LO) local potential can be obtained as
\[
V^\Delta(r) = \left[R^\Delta_3(r, t) \right]^{-1} \left(\frac{\nabla^2}{m_\Delta} - \frac{\partial}{\partial t} + \frac{1}{4m_\Delta} \frac{\partial^2}{\partial t^2} \right) R^\Delta_3(r, t). \tag{5}
\]

The conventional finite volume method with the naive plateau fitting to obtain \(E_n\) turns out to have difficulty in disentangling the ground state from other excited states in large lattice volumes as demonstrated in \[24,27,28,\] On the other hand, the present HAL QCD method provides a potential from the information of both ground state and excited states below the inelastic threshold without such disentanglement. The resultant potential can then be used to calculate the observables such as the binding energy and the phase shift in the infinite volume.

The systematic error in Eq.(5) originating from the LO truncation of the derivative expansion can be estimated from the residual time-dependence of \(V^\Delta(r)\). Also, the higher-order terms can be determined by using the multiple source functions for \(J^\Delta_\bar{r}J_3\). It was shown in \[28,29\] that the next-to-LO potential obtained by combining a wall source and a smeared source for a two-octet baryon system gives negligible effects to physical observables at low energies for heavy pion masses.

3. Simulation setup

We employ the full QCD gauge configurations in the flavor-SU(3) limit with the renormalization-group improved gauge action and the non-perturbatively \(O(a)\) improved Wilson quark action at \(\beta = 1.83\) and \(\kappa_{uds} = 0.13710, 0.13760, 0.13800\) for \(32^3 \times 32\) lattice. The lattice spacing \(a\) and the physical volume corresponds to 0.121fm and (3.87fm\(^3\))\(^3\), respectively. We have used 360 configurations for \(\kappa_{uds} = 0.13710, 0.13800\) and 480 configurations for \(\kappa_{uds} = 0.13800\) given in Ref.\[10\]. The wall-type quark source with the Coulomb gauge fixing is employed.

To increase the statistics, the forward and backward propagations are averaged and the rotational symmetry on the lattice (4 rotations) and the translational invariance for the source position (32 temporal positions) are utilized for each configuration. The hadron masses obtained by the single exponential fit are summarized in Table I. The statistical errors are estimated by the Jackknife method with 18 samples for \(\kappa_{uds} = 0.13710, 0.13800\) and 24 samples for \(\kappa_{uds} = 0.13760\). The fit results are slightly different from Ref.\[10\], because we use more statistics and different fit ranges. In all cases, \(m_\Delta\) is below the threshold, \(m_\pi + m_N\), so that \(\Delta\) is a stable baryon.

Table 1: The hadron masses obtained from the single exponential fit in the intervals, \(t/a = 6 - 11\) (pion) and \(t/a = 7 - 12\) (baryons).

\(\kappa_{uds}\)	\(m_\pi\) [MeV]	\(m_N\) [MeV]	\(m_\Delta\) [MeV]
0.13710	1017.5(2)	2019.4(5)	2213.6(7)
0.13760	840.6(2)	1739.1(5)	1940.3(6)
0.13800	679.0(2)	1476.9(5)	1676.9(8)

4. \(\Delta\Delta\) potential, phase shift, and binding energy

Shown in Fig.1 are the central potentials in the \(7S_3\) channel, \(V^\Delta_\bar{r}(r)\) as a function of \(r\) in the range, \(t/a = 9, 10, 11\) and \(m_\pi = 679, 841, 1018\) MeV. As seen from Fig.1 (a), \(V^\Delta_\bar{r}(r)\) for different \(t\) are nearly identical within the statistical errors indicating that the contribution from higher-order potential is not relevant. We also find that \(V^\Delta_\bar{r}(r)\) is attractive in the whole range of \(r\). Moreover, the long-range part of the attraction becomes stronger as \(m_\pi\) decreases as seen from Fig.1 (b). These features can be understood by (i) the absence of Pauli exclusion effect for quarks in this channel, (ii) the absence of the color magnetic effect in one-gluon exchange at short distance \[9\], and (iii) the attractive one-pion exchange at long distance. We fit the lattice data of the \(\Delta\Delta\) potential in the range \(r = 0 - 1.5\) fm by two Gaussians plus one Yukawa.
The ∆∆ central potential $V^{\Delta\Delta}(r)$ in the $7S_3$ channel. (a) Results at $t/a = 9, 10, 11$ and $m_\pi = 1018\text{MeV}$, (b) Results at $m_\pi = 1018\text{MeV}, 841\text{MeV}, 679\text{MeV}$ and $t/a = 10$.

The binding energy $B_{\Delta\Delta}$ can be also obtained from the Schrödinger equation. The results of the bound state energy $E_0 = -B_{\Delta\Delta}$ for different t/a and m_π are shown in Fig.2(a). Also shown in Fig.2(b) are the bound state energy E_0 and the root-mean-square distance $\sqrt{\langle r^2 \rangle}_\Delta$ of the ∆∆ quasi-bound state. The typical size of the quasi-bound state is $0.8 - 1\text{ fm}$ and the final values of the binding energies read

$$m_\pi = 1018\text{ MeV} : B_{\Delta\Delta} = 37.4(3.3)(^{+1.2}_{-0.4}) \text{ MeV},$$
$$m_\pi = 841\text{ MeV} : B_{\Delta\Delta} = 33.6(3.7)(^{+1.7}_{-0.8}) \text{ MeV},$$
$$m_\pi = 679\text{ MeV} : B_{\Delta\Delta} = 29.8(3.4)(^{+0.7}_{-0.5}) \text{ MeV},$$

(7)

with the statistical errors (first) and systematic errors from the t dependence (second).

5. Summary

We have studied the ∆∆ system in the $J = 3$ channel, where the resonant dibaryon $d^*(2380)$ was observed, from the lattice QCD simulation with heavy quark masses in the flavor-$SU(3)$ limit. The $\Delta-\Delta$ central potential in the $7S_3$ channel calculated by the HAL QCD method is found to be attractive in all distance. The phase shifts obtained by solving the Schrödinger equation using the potential show the presence of the deep quasi-bound state below the $\Delta\Delta$ threshold. The energy below the threshold is estimated from $t/a = 10$ to be about 30MeV in the case of the lightest pion mass $m_\pi = 679\text{MeV}$.

The lattice simulation of the $\Delta\Delta$ system near the physical point is left for future studies. Since Δ baryon can decay into $N \pi$, the $\Delta\Delta$ system can also
by JSPS Grant No. JP16H03978. T.D. was partially supported by JSPS Grant No. JP19K03879 and JP18H05407. The lattice QCD calculations have been performed on HOKUSAI supercomputers at RIKEN. This work was partially supported by Priority Issue on Post-K computer (Elucidation of the Fundamental Laws and Evolution of the Universe), Program for Promoting Researches on the Supercomputer Fugaku (Simulation for basic science: from fundamental laws of particles to creation of nuclei) and Joint Institute for Computational Fundamental Science (JICFuS).

Appendix A. Transition from $\Delta\Delta$ to NN

The threshold of the NN system ($J = 3$) in higher partial waves, 3D_3 and 3G_3, are below the quasi-bound state of $\Delta\Delta$ system. In the main text, we have neglected such transition and derived the single-channel $\Delta\Delta$ potential in the S-wave. To estimate the magnitude of the decay rate from the quasi-bound state to the NN scattering states, let us calculate the transition potential $V^{NN;\Delta\Delta}(\vec{r})$ by using the general operator form in $I = 0$ \cite{31,32}.

\begin{equation}
V^{NN;NN}(\vec{r})=V_0^{NN;NN}(r) + V_\sigma^{NN;NN}(r)\vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_T^{NN;NN}(r)\vec{S}^T_1_2
\end{equation}

\begin{equation}
V^{NN;\Delta\Delta}(\vec{r})=V_S^{NN;\Delta\Delta}(r)\vec{S}_1 \cdot \vec{S}_2 + V_T^{NN;\Delta\Delta}(r)\vec{S}^S_1_2,
\end{equation}

where $\vec{S}_i (i = 1,2)$ is the transition operator from the spin-3/2 state to the spin-1/2 state \cite{1}, and $S^S_1 2 \equiv (A = \sigma, S)$ is the tensor operator associated with $\vec{\sigma}$ and \vec{S}, respectively:

\begin{equation}
S^S_1 2 \equiv 3 \left(\frac{\vec{A}_1 \cdot \vec{r}}{r} - \vec{A}_2 \cdot \vec{r} \right) \vec{S}_2
\end{equation}

For NN system with $s = 1$ and $I = 0$, we have $\vec{\sigma}_1 \cdot \vec{\sigma}_2 = 1$, so that $V_0^{NN;NN}(r)$ and $V_\sigma^{NN;NN}(r)\vec{\sigma}_1 \cdot \vec{\sigma}_2$ are combined into

\begin{equation}
V_C^{NN;NN}(r) \equiv V_0^{NN;NN}(r) + V_\sigma^{NN;NN}(r).
\end{equation}

The potentials, $V^{NN;NN}(r)$ and $V^{NN;\Delta\Delta}(r)$, appear in the coupled channel equations between NN and $\Delta\Delta$ \cite{30}.

\begin{equation}
\left(\frac{\nabla^2}{m_N} - \frac{\partial}{\partial t} + \frac{1}{4m_N} \frac{\partial^2}{\partial t^2} \right) R^{NN}_J(\vec{r},t) = V^{NN;\Delta\Delta}(\vec{r})R^{\Delta\Delta}_J(\vec{r},t) + V^{NN;NN}(\vec{r})R^N_N(\vec{r},t),
\end{equation}

\begin{footnote}{The definition of \vec{S} corresponds to that of \vec{S}^1 in Ref. \cite{31}}

\end{footnote}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure3.png}
\caption{(a) Bound state energy in the $\Delta\Delta(\vec{S}_3)$ channel at $t/a = 9,10,11$ and $m_\pi = 1018\text{MeV}, 841\text{MeV}, 679\text{MeV}$. (b) Bound state energy and the root-mean-square distance at $t/a = 10$ and $m_\pi = 1018\text{MeV}, 841\text{MeV}, 679\text{MeV}$. Inner bars correspond to the statistical errors, while the outer bars are obtained by the quadrature of the statistical and systematic errors estimated from the central values for $t/a = 9,11$.}
\end{figure}

\section*{Acknowledgment}

S.G. was supported by the Special Postdoctoral Researchers Program of RIKEN and iTHEMS Program. The authors thank K. Yazaki and T. Abe for fruitful discussions on the $\Delta\Delta$ system and its transition potential to NN system. T.H., S.A. and T.D. was partially supported by JSPS Grant No. JP18H05236. S.A. was partially supported...
with \([NN]_{s=1,l=0}^{(s=1,I=0)} (\vec{r}, t) \) being the NN operator with \(s = 1, I = 0 \), and \(J = 1,3 \), and \(J_{\Delta \Delta}^{(s', I=0)} (0) \) being the \(\Delta \Delta \) source operator constructed from wall-type quark source with internal spin \(s' = J \). \(R_{\Delta \Delta} (\vec{r}, t) \) is defined to include the wave function renormalization factor (Z-factor) and the kinetic correction factor to compensate the threshold energy difference between \(\Delta \Delta \) and \(NN \) [33, 35].

To extract the potentials from Eq. (A.4), we have to utilize \(R_{j}^{NN}(\vec{r}, t) \) and \(R_{j}^{\Delta \Delta}(\vec{r}, t) \) with given \(J \). Since our \(\Delta \Delta \) source operator with internal spin \(s' \) is invariant under the \(A_{1}^{T} \) projection, it contains not only \(l = 0 \) but also \(l \geq 4 \). Therefore, it couples to the multiple total angular momenta, \(J = s', |s' - 4|, |s' - 4| + 1, \ldots \). To construct the NN-\(\Delta \Delta \) correlation with given \(J \), we employ the Misner's projection, where each \((l,l_z) \) contribution can be obtained separately by using points inside the shell that are not connected with each other under the cubic transformation [33, 35]. For the sink operator with the internal spin \(s \), we perform the \((l,l_z) \) projection by Misner's method and have constructed \(J \)-projection using appropriate Clebsch-Gordan coefficients.

In principle, we can determine the four potentials, \(V_{C}^{NN,NN}(r) \), \(V_{T}^{NN,NN}(r) \), \(V_{s}^{NN,\Delta \Delta}(r) \), and \(V_{T}^{NN,\Delta \Delta}(r) \), from the four independent equations obtained by the projection of (A.4) into \(l = 0 \) (S-wave) and \(l = 2 \) (D-wave) components in \(J = 1 \) and \(l = 4 \) (G-wave) components in \(J = 3 \). In practice, however, due to large statistical fluctuations of the \(l = 4 \) component, we cannot determine them precisely.

Alternatively, by assuming that the spin-spin part of the transition potential, \(V_{s}^{NN,\Delta \Delta}(r) \overrightarrow{S}_{1} \cdot \overrightarrow{S}_{2} \), which cannot make the transition from S-wave to higher partial waves, is negligibly small, we have extracted the remnant three potentials from the \(l = 0 \) and \(l = 2 \) components in \(J = 1 \) and \(l = 2 \) component in \(J = 3 \). Again, we have used Misner's projection.

Shown in Fig. A.4(a)-(c) are the quark mass dependence of the three potentials, \(V_{C}^{NN,NN}(r) \), \(V_{T}^{NN,NN}(r) \), \(V_{T}^{NN,\Delta \Delta}(r) \), at \(t/a = 10 \). In Fig. A.4(a) -(b), we observe that the central potential \(V_{C}^{NN,NN}(r) \) and the tensor potential \(V_{T}^{NN,NN}(r) \) show the qualitatively similar behavior of the phenomenologically well-known potential in the spin-triplet channel of NN system: the short-range repulsion and the intermediate-range and long-range attraction for the central potential and the all-range negative tensor potential. Furthermore, we find that all the results obtained by the coupled channel equations using \(\Delta \Delta \) sources in \(J = 1 \) and \(J = 3 \) are nearly identical with the previous results obtained by the single-channel equation using NN source in \(J = 1 \) [36, 10]. In Fig. A.4(a) -(b), we also show the results from the single-channel equation at \(\kappa_{uds} = 0.13800 \) corresponding to \(m_{\pi} = 679 \text{MeV} \), taken from Ref. [10] (where \(m_{\pi} = 672 \text{MeV} \) is quoted due to the different statistics and fit-range). This good agreement implies that the analysis of the three potentials by neglecting the spin-spin part of the transition potential works well [2].

In Fig. A.4(c), we find that the tensor part of the transition potential increases significantly as \(r \) decreases for all the quark masses, while it has relatively large statistical errors compared with the other potentials. Using the transition potential, we then have estimated the decay rate at \(J = 3 \) from the quasi-bound state of the \(\Delta \Delta \) system in the S-wave to NN in the D-wave given by

\[
\Gamma \simeq \int \frac{d^3k_{1}}{(2\pi)^3} \int \frac{d^3k_{2}}{(2\pi)^3} (2\pi)^4 \delta^4(k_{1}^{T} + k_{2}^{T} - K^{T}) \\
\times \left| \int r^{3} dr \overline{\psi}_{NN}^{T}(r) V_{T}^{NN,\Delta \Delta}(r) \tilde{\psi}_{\Delta \Delta}^{T}(r) \right|^2
\]

(A.6)

with \(K^{T} \simeq (2m_{\Delta} - B_{\Delta \Delta}, 0) \) and \(\overline{\psi}_{NN}^{T}(r) \) and \(\tilde{\psi}_{\Delta \Delta}^{T}(r) \) being radial wave function of NN scattering state in \(^{3}D_{3} \) channel and that of the \(\Delta \Delta \) quasi-bound state in \(^{7}S_{3} \) channel, respectively. Here, we have used the transition potential at \(t/a = 10 \) by fitting the two \(r \)-Gaussian form, \(V_{T}^{NN,\Delta \Delta}(r) = \sum_{i=1}^{2} p_{i}r \exp \left[-(r/q_{i})^2\right] \) with fitting parameters \(p_{i}, q_{i} \) \((i = 1, 2)\), and the \(\Delta \Delta \) wave function by solving the Schrödinger equation using the central potential at \(t/a = 10 \). For the

Having neglected the tensor part instead of the spin-spin part, the obtained central potential and tensor potential in NN system are completely different from the previous results in Ref. [10]. Even the short-range repulsion cannot be found.
sake of simplicity, we have employed the free radial wave function for the \(N \) scattering state,
\[
\psi_{N}(r) = -\sqrt{\frac{10}{4\pi}} j_2(kr),
\]
with \(j_2(kr) \) being the spherical Bessel function of order two. This results in \(\Gamma = (1.6(6)\text{MeV}, 5.6(1.7)\text{MeV}, 6.4(1.8)\text{MeV}) \) for \(m_\pi = (1018\text{MeV}, 841\text{MeV}, 679\text{MeV}) \). Due to the repulsive interaction, the wave function for the \(N \) scattering state in higher partial waves becomes smaller at short distances, only where the transition potential becomes non-negligible. Therefore, the decay rate is further reduced if more realistic wave function is employed.

References

[1] A. Gal, Meson assisted dibaryons, Acta Phys. Polon. B47 (2016) 471. arXiv:1511.06605 doi:10.5506/APhysPolB.47.471

[2] H. Clement, On the History of Dibaryons and their Final Observation, Prog. Part. Nucl. Phys. 93 (2017) 105. arXiv:1610.05591 doi:10.1016/j.ppnp.2016.12.004

[3] S. Gongyo, et al., Most Strange Dibaryon from Lattice QCD, Phys. Rev. Lett. 120 (2018) 212001. arXiv:1709.00854 doi:10.1103/PhysRevLett.120.212001

[4] T. Iritani, et al., \(\Omega \Omega \) dibaryon from lattice QCD near the physical point, Phys. Lett. B792 (2019) 284–289. arXiv:1810.03416 doi:10.1016/j.physletb.2019.03.050

[5] K. Sasaki, et al., AA and N2 interactions from Lattice QCD near the physical point, Nucl. Phys. A (2019) 121737. arXiv:1912.08630 doi:10.1016/j.nuclphysa.2020.121737

[6] K. Morita, S. Gongyo, T. Hatsuda, T. Hyodo, Y. Kamiya, A. Ohnishi, Probing \(\Omega \) and \(\Omega \) dibaryons with femtoscopic correlations in relativistic heavy-ion collisions, Phys. Rev. C101 (1) (2020) 015201. arXiv:1908.05414 doi:10.1103/PhysRevC.101.015201

[7] L. Tolos, L. Fabbietti, Strangeness in Nuclei and Neutron Stars (2020). arXiv:2002.09223

[8] S. Aoki, T. Doi, Lattice QCD and baryon-baryon interactions: HAL QCD method, 2020. arXiv:2003.10730

[9] M. Oka, K. Shimizu, K. Yazaki, Quark cluster model of \(\Omega \) dibaryons, Prog. Theor. Phys. Suppl. 137 (2000) 1–20. doi:10.1143/PTPS.137.1

[10] T. Inoue, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, N. Ishii, K. Murano, H. Nemura, K. Sasaki, Two-Baryon Potentials and H-Dibaryon from 3-flavor Lattice QCD Simulations, Nucl. Phys. A881 (2012) 28–43. arXiv:1112.5926 doi:10.1016/j.nuclphysa.2012.02.008

[11] F. Dyson, N. H. Xuong, Y=2 States in \(SU(6) \) Theory, Phys. Rev. Lett. 13 (26) (1964) 815–817. doi:10.1103/PhysRevLett.13.815

[12] Z. Y. Zhang, Y. W. Yu, P. N. Shen, L. R. Dai, A. Faessler, U. Straub, Hyperon nucleon interactions in a chiral \(SU(3) \) quark model, Nucl. Phys. A625 (1997) 59–70. doi:10.1016/S0375-9474(97)00033-X

[13] Z. Y. Zhang, Y. W. Yu, C. R. Ching, T. H. Ho, Z.-D. Lu, Suggesting a di-omega dibaryon search in heavy ion collision experiments, Phys. Rev. C61 (2000) 065204. doi:10.1103/PhysRevC.61.065204

[14] F. Wang, G.-h. Wu, L.-j. Teng, J. T. Goldman, Quark delocalization, color screening, and nuclear intermediate range attraction, Phys. Rev. Lett. 69 (1992) 2001–2004. arXiv:nucl-th/9209002 doi:10.1103/PhysRevLett.69.2901

[15] F. Wang, J.-l. Ping, G.-h. Wu, L.-j. Teng, J. T. Goldman, Quark delocalization, color screening and dibaryons, Phys. Rev. C51 (1995) 3411. arXiv:nucl-th/9512014 doi:10.1103/PhysRevC.51.3411

[16] T. Kamae, T. Fujita, Possible Existence of a Deeply Bound Delta-Delta System, Phys. Rev. Lett. 38 (1977) 471–475. doi:10.1103/PhysRevLett.38.471

[17] M. Oka, K. Yazaki, Nuclear Force in a Quark Model, Phys. Lett. 90B (1980) 41–44. doi:10.1016/0370-2693(80)90046-9

[18] T. Kamae, I. Arat, T. Fujii, H. Ideka, N. Kajiru, S. Kawabata, K. Nakamura, K. Ogawa, T. Takeda, Y. Watase, Observation of an Anomalous Structure in Proton Polarization from Deuteron Photodisintegration, Phys. Rev. Lett. 38 (1977) 468. doi:10.1103/PhysRevLett.38.468

[19] F. Adairson, et al., ABC Effect in Basic Double-Pionic Fusion — Observation of a new resonance?, Phys. Rev. Lett. 106 (2011) 242302. arXiv:1104.0123 doi:10.1103/PhysRevLett.106.242302

[20] M. Bashkanov, H. Clement, T. Skorodko, Branching Ratios for the Decay of \(d^*(2380) \), Eur. Phys. J. A51 (7) (2015) 87. arXiv:1502.07154 doi:10.1140/epja/i2015-15087-x

[21] J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meissner, W. Weise, Scattering of decuplet baryons in chiral effective field theory, Eur. Phys. J. C77 (11) (2017) 760. arXiv:1708.08071 doi:10.1140/epjc/s10052-017-4909-4

[22] S. Aoki, N. Ishii, T. Doi, Y. Ikeda, T. Inoue, Asymptotic behavior of Nambu-Bethe-Salpeter wave functions for multiparticles in quantum field theories, Phys. Rev. D88 (1) (2013) 014036. arXiv:1303.2210 doi:10.1103/PhysRevD.88.014036

[23] S. Gongyo, S. Aoki, Asymptotic behavior of Nambu-Bethe-Salpeter wave functions for scalar systems with a bound state, JHEP 2018 (9) (2018) 093B03. arXiv:1807.02967 doi:10.1007/JHEP09(2018)036

[24] S. Aoki, T. Hatsuda, N. Ishii, Theoretical Foundation of the Nuclear Force in QCD and its applications to Central and Tensor Forces in Qenched Lattice QCD Simulations, Prog. Theor. Phys. 123 (2010) 89–128. arXiv:0909.5588 doi:10.1143/PTP.123.89

[25] N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, K. Murano, H. Nemura, K. Sasaki, Hadron-hadron interactions from imaginary-time Nambu-Bethe-Salpeter wave function on the lattice, Phys. Lett. B712 (2012) 437–441. arXiv:1203.3642 doi:10.1016/j.physletb.2012.04.076

[26] T. Iritani, et al., Mirage in Temporal Correlation functions for Baryon-Baryon Interactions in Lattice QCD, JHEP 10 (2016) 101. arXiv:1607.06371 doi:10.1007/JHEP10(2016)101

[27] T. Iritani, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, K. Sasaki, Are two nucleons bound in lattice QCD for heavy quark masses? Consistency check with Lüscher’s finite volume formula, Phys. Rev. D96 (3) (2017) 034521. arXiv:1703.07210 doi:10.1103/PhysRevD.96.034521

[28] T. Iritani, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda,
T. Inoue, N. Ishii, H. Nemura, K. Sasaki, Consistency between Lüscher’s finite volume method and HAL QCD method for two-baryon systems in lattice QCD, JHEP 03 (2019) 007. arXiv:1812.08539 doi:10.1007/JHEP03(2019)007

[29] T. Iritani, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, H. Nemura, K. Sasaki, Systematics of the HAL QCD Potential at Low Energies in Lattice QCD, Phys. Rev. D 99 (1) (2019) 014514. arXiv:1805.02365 doi:10.1103/PhysRevD.99.014514

[30] S. Aoki, B. Charron, T. Doi, T. Hatsuda, T. Inoue, N. Ishii, Construction of energy-independent potentials above inelastic thresholds in quantum field theories, Phys. Rev. D 87 (3) (2013) 034512. arXiv:1212.4896 doi:10.1103/PhysRevD.87.034512

[31] R. B. Wiringa, R. A. Smith, T. L. Ainsworth, Nucleon Nucleon Potentials with and Without Delta (1232) Degrees of Freedom, Phys. Rev. C 29 (1984) 1207–1221. doi:10.1103/PhysRevC.29.1207

[32] S. Okubo, R. E. Marshak, Velocity dependence of the two-nucleon interaction, Annals of Physics 4 (2) (1958) 166–179.

[33] K. Sasaki, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, T. Inoue, N. Ishii, K. Murano, Coupled-channel approach to strangeness S=-2 baryon–baryon interactions in lattice QCD, PTEP 2015 (11) (2015) 113B01. arXiv:1504.01717 doi:10.1093/ptep/ptv144

[34] C. W. Misner, Spherical harmonic decomposition on a cubic grid, Class. Quant. Grav. 21 (2004) S243–S248. arXiv:gr-qc/9910044 doi:10.1088/0264-9381/21/3/014

[35] T. Miyamoto, Y. Akahoshi, S. Aoki, T. Aoyama, T. Doi, S. Gongyo, K. Sasaki, Partial wave decomposition on the lattice and its applications to the HAL QCD method, Phys. Rev. D 101 (7) (2020) 074514. arXiv:1906.01987 doi:10.1103/PhysRevD.101.074514

[36] T. Inoue, N. Ishii, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, K. Murano, H. Nemura, K. Sasaki, Bound H-dibaryon in Flavor SU(3) Limit of Lattice QCD, Phys. Rev. Lett. 106 (2011) 162002. arXiv:1012.5928 doi:10.1103/PhysRevLett.106.162002

Figure A.4: The central part $V_{NN;NN}^{NN}(r)$ and the tensor part $V_{NN;NN}^{T}(r)$ of the diagonal potential in NN system and the tensor part of the transition potential $V_{NN;∆∆}^{T}(r)$ from $∆∆$ to NN at $κ_{uds} = 0.13710, 0.13760, 0.13800$ corresponding to $m_{π} = 1018\text{MeV}, 841\text{MeV}, 679\text{MeV}$, and $t/a = 10.$ The single channel results for the central potential and the tensor potential at $κ_{uds} = 0.13800$ obtained by using NN source in the conventional method are taken from Ref. [10].