CANCELLABLE ELEMENTS OF THE LATTICE OF MONOID VARIETIES

S. V. GUSEV1,∗,† and E. W. H. LEE2

1Institute of Natural Sciences and Mathematics, Ural Federal University, Lenina str. 51,,
620000 Ekaterinburg, Russia
e-mail: sergey.gusb@gmail.com

2Department of Mathematics, Nova Southeastern University, Fort Lauderdale, FL 33314, USA
e-mail: edmond.lee@nova.edu

(Received January 13, 2021; revised June 21, 2021; accepted June 22, 2021)

Abstract. The set of all cancellable elements of the lattice of semigroup varieties has recently been shown to be countably infinite. But the description of all cancellable elements of the lattice MON of monoid varieties remains unknown. This problem is addressed in the present article. The first example of a monoid variety with modular but non-distributive subvariety lattice is first exhibited. Then a necessary condition of the modularity of an element in MON is established. These results play a crucial role in the complete description of all cancellable elements of the lattice MON. It turns out that there are precisely five such elements.

1. Introduction and summary

The present article is concerned with the lattice MON of all monoid varieties, where monoids are considered as semigroups with an identity element that is fixed by a 0-ary operation. For many years, results on the lattice MON were scarce. But recently, interest in this lattice has grown significantly; in particular, the study of its special elements was initiated in the articles \cite{5,6}. In the present work, we continue these investigations.

Special elements play an important role in general lattice theory; see \cite[Section III.2]{3}, for instance. We recall definitions of those types of special elements that are relevant here. An element x of a lattice L is

\begin{itemize}
 \item \textit{cancellable} if $\forall y, z \in L$: $x \lor y = x \lor z$ \& $x \land y = x \land z \implies y = z$;
\end{itemize}
modular if $\forall y, z \in L: y \leq z \rightarrow (x \land z) \lor y = (x \lor y) \land z$.

It is easy to see that every cancellable element is modular.

Our main goal is to describe all cancellable elements of the lattice MON. To formulate our main result, we need some definitions and notation. Let \mathcal{X}^+ (respectively, \mathcal{X}^*) denote the free semigroup (respectively, monoid) over a countably infinite alphabet \mathcal{X}. Elements of \mathcal{X} are called letters and elements of \mathcal{X}^* are called words. Words unlike letters are written in bold. An identity is written as $u \approx v$, where $u, v \in \mathcal{X}^*$.

Let T, SL, and MON denote the variety of trivial monoids, the variety of semilattice monoids, and the variety of all monoids, respectively. For any identity system Σ, let $\text{var}\Sigma$ denote the variety of monoids given by Σ. Put

$$C_2 = \text{var}\{x^2 \approx x^3, xy \approx yx\} \quad \text{and} \quad D = \text{var}\{x^2 \approx x^3, x^2y \approx yxy \approx yx^2\}.$$

Then the following is our main result.

Theorem 1.1. A monoid variety is a cancellable element of the lattice MON if and only if it coincides with one of the varieties T, SL, C_2, D or MON.

Many articles were devoted to special elements of different types in the lattice SEM of all semigroup varieties; an overview of results published before 2015 can be found in the survey [16].\(^1\) It is natural to compare Theorem 1.1 with the description of cancellable elements of the lattice SEM that was found in 2019 [15]. Theorem 1.1 shows that there are only five cancellable elements in the lattice MON. In contrast, the set of all cancellable elements of the lattice SEM is countably infinite.

In general, the set of cancellable elements in a lattice need not form a sublattice. For example, the elements x and y of the lattice in Fig. 1 are cancellable but their join $x \lor y$ is not. However, the class of all cancellable elements of SEM forms a distributive sublattice of SEM; see Corollary 3.14 in the extended version of the survey [16].\(^2\) Theorem 1.1 shows that the same is true for monoid varieties too; in fact, the five cancellable elements in MON constitute a chain.

For a variety V of monoids, we denote its subvariety lattice by $\mathcal{L}(V)$. Now since the chain $T \subseteq SL \subseteq C_2 \subseteq D$ coincides with the lattice $\mathcal{L}(D)$ of subvarieties of D (see Fig. 2), a monoid variety V is a cancellable element of the lattice MON if and only if either $V \subseteq D$ or $V = \text{MON}$. It is routinely verified that the variety D can be given by the single identity $x^3yz \approx yxzx$.

\(^1\) An extended version of this survey, which is periodically updated as new results are found and/or new articles are published, is available at http://arxiv.org/abs/1309.0228v20.

\(^2\) Actually, this fact easily follows from Theorem 1.1 in [15] but it is not mentioned in [15] explicitly.
Therefore it is easy to check the cancellability of proper elements of the lattice MON; a monoid variety is proper if it is different from MON.

Corollary 1.2. Suppose that M is any monoid that generates a proper subvariety V of MON. Then V is a cancellable element of the lattice MON if and only if M satisfies the identity $x^3yz \approx yzx$.

The article consists of five sections. Section 2 contains definitions, notation, certain known results and their simple corollaries. In Section 3, the first example of a monoid variety with modular but non-distributive subvariety lattice is given. In Section 4, a necessary condition of the modularity of an element in MON is established in Proposition 4.3. Results from Sections 3 and 4 will then be used in Section 5 to prove Theorem 1.1.

2. Preliminaries

Acquaintance with rudiments of universal algebra is assumed of the reader. Refer to the monograph [2] for more information.

Recall that a variety is periodic if it consists of periodic monoids. Equivalently, a variety is periodic if and only if it satisfies the identity $x^n \approx x^{n+m}$ for some $n, m \geq 1$. For any word w and any set X of letters, the word obtained from w by deleting all the letters of X is denoted by w_X. The content of a word w, denoted by $\text{con}(w)$, is the set of letters occurring in w. The partition lattice over a set X is denoted by $\text{Part}(X)$. Let $\mathcal{L}_{\text{FIC}}(\mathfrak{X}_*)$ denote the lattice of all fully invariant congruences on the monoid \mathfrak{X}_*, and for any variety V of monoids, let $\text{FIC}(V)$ denote the fully invariant congruence on \mathfrak{X}_* corresponding to V. It is well known that the mapping $\text{FIC}: \text{MON} \longrightarrow \mathcal{L}_{\text{FIC}}(\mathfrak{X}_*)$ is an anti-isomorphism of lattices; see [2, Theorem 11.9 and Corollary 14.10], for instance. For any $u, v \in \mathfrak{X}_+$, we put $u \preceq v$ if $v = a\xi(u)b$ for some words $a, b \in \mathfrak{X}_+$ and some endomorphism ξ of \mathfrak{X}_+. It is easily seen that the relation \preceq on \mathfrak{X}_+ is a quasi-order. For an arbitrary anti-chain $A \subseteq \mathfrak{X}_+$ under the relation \preceq, let L_A denote the set of all monoid varieties V for which A is a union of $\text{FIC}(V)$-classes. Define the map $\varphi_A: L_A \longrightarrow \text{Part}(A)$ by the rule $\varphi_A(V) = \text{FIC}(V)|_A$ for any $V \in L_A$.

Acta Mathematica Hungarica 165, 2021
Lemma 2.1 [4, Lemma 3]. Let A be any anti-chain under the quasi-order \preceq. Suppose that for any words $u, v \in A$ and any nonempty set $X \subseteq \text{con}(u)$, the equalities $\text{con}(u) = \text{con}(v)$ and $u_X = v_X$ hold. Then

(i) the set L_A is a sublattice of the lattice MON;
(ii) the map φ_A is a surjective anti-homomorphism of the lattice L_A onto the lattice $\text{Part}(A)$;
(iii) for any partition $\beta \in \text{Part}(A)$, there exists a non-periodic monoid variety $V \in L_A$ such that $\varphi_A(V) = \beta$.

Recall that a band is left regular if it is a semilattice of left zero bands. It is well known that the class of left regular band monoids coincides with the variety

$$\text{LRB} = \text{var}\{xy \approx xyx\}.$$

The initial part of a word w, denoted by $\text{ini}(w)$, is the word obtained from w by retaining the first occurrence of each letter. The following assertion is well known and easily verified.

Lemma 2.2. An identity $u \approx v$ holds in LRB if and only if $\text{ini}(u) = \text{ini}(v)$.

For any $n \geq 2$, the variety

$$C_n = \text{var}\{x^n \approx x^{n+1}, xy \approx yx\}$$

is generated by the monoid $\langle a, 1 \mid a^n = 0 \rangle$ [1, Corollary 6.1.5]. Note that the variety C_2 has already been introduced in Section 1. A word w is an isoterm for a variety V if the $\text{FIC}(V)$-class of w is singleton. The following result is easily deduced from [10, Lemma 3.3].

Lemma 2.3. Let $n \geq 1$. For any monoid variety V, the following are equivalent:

a) x^n is not an isoterm for V;

b) V satisfies the identity $x^n \approx x^{n+m}$ for some $m \geq 1$;

c) $C_{n+1} \not\subseteq V$.

A monoid is completely regular if it is a union of its maximal subgroups. A variety is completely regular if it consists of completely regular monoids. It is well known that a monoid variety is completely regular if and only if it satisfies the identity $x \approx x^{n+1}$ for some $n \geq 1$.

Lemma 2.4 [7, Lemma 2.14]. If a monoid variety V is non-completely regular and noncommutative, then $D \subseteq V$.

Lemma 2.5. Let V be any monoid variety such that $C_2 \subseteq V$. Suppose that V does not contain the variety

$$E = \text{var}\{x^2 \approx x^3, x^2y \approx xyx, x^2y^2 \approx y^2x^2\}.$$

Then V satisfies the identity $x^py^q \approx xy^r$ for some $p, q \geq 1$ and $r \geq 2$.
Proof. If $D \subseteq V$, then the result follows from [7, Lemma 4.1 and Proposition 4.2]. Therefore suppose that $D \not\subseteq V$, so that by Lemma 2.4, the variety V is either completely regular or commutative. But V cannot be completely regular because $C_2 \subseteq V$. Hence V is commutative and satisfies the identity $yx x \approx y x^2$. □

3. Monoid variety with modular but non-distributive subvariety lattice

There are many examples of monoid varieties with non-distributive subvariety lattice; see [5,6,13], for instance. However, all these varieties have non-modular subvariety lattice as well. In this section, we present the first example of a monoid variety whose subvariety lattice is modular but non-distributive. To this end, the following varieties are required: the variety D_2 generated by the monoid

$$\langle a, b, 1 \mid a^2 = b^2 = bab = 0 \rangle = \{a, b, ab, ba, aba, 1, 0\},$$

the variety R generated by the monoid

$$\langle a, b, 1 \mid a^3 = b^2 = ba = 0 \rangle = \{a, b, a^2, ab, a^2b, 1, 0\}$$

and the variety R^δ dual to R. It is proved in [9, Lemmas 2.2.8 and 2.2.9] that

$$D_2 = \text{var}\{x^3 \approx x^2, x^3yzt \approx yxztx, xyzty \approx yxzty, xzxyty \approx xzytx, xtyzxy \approx xtyzyx\},$$

$$R \vee R^\delta = \text{var}\{x^4 \approx x^3, x^3yzt \approx yxztx, xyzty \approx yxzty, xzxyty \approx xzytx, xtyzxy \approx xtyzyx\}.$$

It is easily seen that $D_2 = (R \vee R^\delta) \land \text{var}\{x^3 \approx x^2\}$.

Proposition 3.1. The lattice $\mathcal{L}(R \vee R^\delta)$ of subvarieties of $R \vee R^\delta$ is given in Fig. 2. In particular, this lattice is modular but not distributive.

Proof. It is easily shown that $C_3 \subseteq R \vee R^\delta$. According to Lemma 2.3, any subvariety V of $R \vee R^\delta$ such that $C_3 \not\subseteq V$ satisfies the identity $x^3 \approx x^2$, whence $V \subseteq D_2$. Therefore, the lattice $\mathcal{L}(R \vee R^\delta)$ is the disjoint union of the lattice $\mathcal{L}(D_2)$ and the interval $[C_3, R \vee R^\delta]$. It is proved in [10, Lemmas 4.4 and 4.5] that the lattice $\mathcal{L}(D_2)$ coincides with the 5-element chain in Fig. 2. Thus it remains to describe the interval $[C_3, R \vee R^\delta]$. It follows from [12, Proposition 4.1] that every noncommutative variety in this interval is defined within $R \vee R^\delta$ by some of the identities $xy x \approx x^2 y$, $yx x \approx y x^2$ or $x^2 y \approx y x^2$.

Acta Mathematica Hungarica 165, 2021
It is then routinely shown that the interval \([C_3, R \lor R^\delta]\) is as described in Fig. 2, where

\[
R = (R \lor R^\delta) \land \text{var}\{xyx \approx yx^2\},
\]

\[
D_2 \lor C_3 = (R \lor R^\delta) \land \text{var}\{x^2y \approx yx^2\},
\]

and \(D \lor C_3 = (D_2 \lor C_3) \land R = (D_2 \lor C_3) \land R^\delta = R \lor R^\delta\). The proof of this proposition is thus complete. □

4. Necessary condition of the modularity of an element in \(\text{MON}\)

Given any word \(w\) and letter \(x\), let \(\text{occ}_x(w)\) denote the number of occurrences of \(x\) in \(w\). Let \(\lambda\) denote the empty word. Let \(W = W_1 \cup W_2\), where

\[
W_1 = \{y^{r_1}xt^{r_2}z^{r_3}y^{r_4}t^{r_5}x^{r_6} | r_1, r_2, r_3, r_4, r_5, r_6 \geq 2\},
\]

\[
W_2 = \{y^{r_1}xt^{r_2}z^{r_3}xy^{r_4}t^{r_5}x^{r_6} | r_1, r_2, r_3, r_4, r_5, r_6 \geq 2\}.
\]

Let us fix the following two words:

\[p = y^2xt^2z^2y^2t^2xz^2\] and \[q = y^2xt^2z^2x^2y^2t^2xz^2\].

Put \(K = \text{var}\{p \approx q\}\).

Lemma 4.1. The set \(W\) is a \(\text{FIC}(K)\)-class.

Proof. Let \(u \approx v\) be any identity of \(K\) with \(u \in W\). We need to verify that \(v \in W\). By assumption, there is a deduction of the identity \(u \approx v\)
from the identity $p \approx q$, that is, a sequence w_0, w_1, \ldots, w_m of words such that $w_0 = u$, $w_m = v$ and, for each $i = 0, 1, \ldots, m - 1$, there are words $a_i, b_i \in \mathcal{X}^*$ and an endomorphism ξ_i of \mathcal{X}^* such that $w_i = a_i \xi_i(s_i) b_i$ and $w_{i+1} = a_i \xi_i(t_i) b_i$, where $\{s_i, t_i\} = \{p, q\}$. By trivial induction on m, it suffices to only consider the case when $u = a \xi(s) b$ and $v = a \xi(x) b$ for some words $a, b \in \mathcal{X}^*$, an endomorphism ξ of \mathcal{X}^* and words s and t such that $\{s, t\} = \{p, q\}$.

Since any subword of u of the form ab, where a and b are distinct letters, occurs only once in u and all letters occurring in s are multiple, the following holds:

(I) For any $a \in \text{con}(s)$, either $\xi(a) = \lambda$ or $\xi(a)$ is a power of some letter. Further, since $\text{occ}_x(u) \leq 3$ and $\text{occ}_y(s) = \text{occ}_z(s) = \text{occ}_t(s) = 4$, we have

$$(\Pi) \ x \not\in \text{con}(\xi(yzt)).$$

We note that if $\xi(s) = \lambda$ or $\xi(s)$ is a power of some letter, then the required statement is evident. So, we may assume that

$$(\PiII) |\text{con}(\xi(s))| \geq 2.$$ Let $u = y_{\ell_1} x_{\ell_2} z_{\ell_3} x_{\ell_4} y_{\ell_5} x_{\ell_6}$, where $c \in \{0, 1\}$ and $\ell_1, \ell_2, \ell_3, \ell_4, \ell_5, \ell_6 \geq 2$, and let

$$d = \begin{cases}
0 & \text{if } s = p, \\
1 & \text{if } s = q.
\end{cases}$$

If $\xi(x) = \lambda$, then $\xi(s) = \xi(t)$, whence $v = u \in W$. So, it remains to consider the case when $\xi(x) \neq \lambda$. Then (I) implies that $\xi(x)$ is a power of some letter.

Suppose that $\xi(x)$ is a power of y. Then (II) implies that

$$\text{con}(\xi(t^2 z x^d y^2 t^2))$$

contains one of the letters x, z and t. This is only possible when $\xi(t^2 z x^d y^2 t^2) = y^p x_{\ell_2} z_{\ell_3} x_{\ell_4} y^q$ for some $0 \leq p \leq \ell_1$ and $0 \leq q \leq \ell_4$. But since $x \not\in \{y\} = \text{con}(\xi(x))$ by assumption and $x \not\in \text{con}(\xi(yzt))$ by (II), the contradiction $x \not\in \text{con}(\xi(t^2 z x^d y^2 t^2))$ is deduced. Therefore, $\xi(x)$ cannot be a power of y. Similarly, $\xi(x)$ cannot be a power of z as well.

Suppose now that $\xi(x)$ is a power of t. Then (III) implies that $\text{con}(\xi(t^2 z x^d y^2 t^2))$ contains one of the letters x, y, and z. This is only possible when $\xi(t^2 z x^d y^2 t^2) = t^p z_{\ell_3} x_{\ell_4} y^q$ for some $0 \leq p \leq \ell_2$ and $0 \leq q \leq \ell_5$. Then by (I), either $\xi(t) = \lambda$ or $\xi(t)$ is a power of t. This implies that $\xi(z_{\ell_3} x_{\ell_4} y^q) = z_{\ell_3} x_{\ell_4} y^q$. Taking into account that $\xi(x)$ is a power of t, we apply (I) again and obtain that $\xi(z_{\ell_3} y^q) = z_{\ell_3} x_{\ell_4}$, $\xi(y^q) = y^{q_0}$ and $c = d = 0$. This is only possible when $\xi(x t^2 z x^d) = y^r x_{\ell_2} z_{\ell_3} x_{\ell_4}$ for some $0 \leq r \leq \ell_1$. But since $x \not\in \{t\} = \text{con}(\xi(x))$ by assumption and $x \not\in \text{con}(\xi(yzt))$ by (II), the contradiction $x \not\in \text{con}(\xi(x t^2 z x^d))$ is deduced. Therefore, $\xi(x)$ cannot be a power of t.

Finally, suppose that $\xi(x)$ is a power of x. Then since x^2 is not a subword of u, we have $\xi(x) = x$.

Acta Mathematica Hungarica 165, 2021
Suppose that \(c = 0 \). Then \(d = 0 \) because otherwise, \(\text{occ}_x(u) < \text{occ}_x(\xi(s)) \). Then \(\xi(t^2 z^2 y^2 t^2) = t^{\ell_2} z^{\ell_3} y^{\ell_4} t^{\ell_5} \). It follows from (I) that \(\xi(z^2) = z^{\ell_3}, \xi(y^2) = y^{\ell_4} \) and \(\xi(t^2) = t^{\ell_2} = t^{\ell_5} \). Then

\[
\xi(s) = y^{\ell_4} x t^{\ell_2} z^{\ell_3} y^{\ell_4} t^{\ell_5} x z^{\ell_3}, \quad a = y^{\ell_1 - \ell_4} \quad \text{and} \quad b = z^{\ell_6 - \ell_3}.
\]

Therefore, \(\xi(t) = y^{\ell_4} x t^{\ell_2} z^{\ell_3} y^{\ell_4} t^{\ell_5} x z^{\ell_3} \), whence \(v = y^{\ell_1} x t^{\ell_2} z^{\ell_3} y^{\ell_4} t^{\ell_5} x z^{\ell_6} \in W \), and we are done.

Suppose now that \(c = 1 \). If \(x \in \text{con}(b) \), then \(d = 0 \) because otherwise, \(\text{occ}_x(u) < \text{occ}_x(\xi(s)b) \). This is only possible when

\[
\begin{align*}
a \xi(y^2) &= y^{\ell_1}, \quad x \xi(t^2 z^2 y^2 t^2)x = x t^{\ell_2} z^{\ell_3} x \quad \text{and} \quad \xi(z^2)b = y^{\ell_4} t^{\ell_5} x z^{\ell_6}.
\end{align*}
\]

The second equality implies that \(\xi(t^2 z^2 y^2 t^2) = t^{\ell_2} z^{\ell_3} \). Clearly, \(\xi(t^2) = \lambda \), whence \(\xi(z^2 y^2) = t^{\ell_2} z^{\ell_3} \). In view of (I), we have \(\xi(z^2) = t^{\ell_2} \) and \(\xi(y^2) = z^{\ell_3} \). But this contradicts the fact that \(\xi(z^2)b = z^{\ell_4} t^{\ell_5} x z^{\ell_6} \). Therefore, \(x \notin \text{con}(b) \).

Analogously, one can verify that \(x \notin \text{con}(a) \). It follows that \(d = 1 \). Then

\[
\begin{align*}
a \xi(y^2) &= y^{\ell_1}, \quad x \xi(t^2 z^2 y^2 t^2)x = x t^{\ell_2} z^{\ell_3} x y^{\ell_4} t^{\ell_5} x \quad \text{and} \quad \xi(z^2)b = z^{\ell_6}.
\end{align*}
\]

It follows from (I) that \(\xi(z^2) = z^{\ell_3}, \xi(y^2) = y^{\ell_4} \) and \(\xi(t^2) = t^{\ell_2} = t^{\ell_5} \). Then

\[
\begin{align*}
\xi(s) &= y^{\ell_3} x t^{\ell_2} z^{\ell_3} x y^{\ell_4} t^{\ell_5} x z^{\ell_4}, \quad a = y^{\ell_1 - \ell_3} \quad \text{and} \quad b = z^{\ell_6 - \ell_4}.
\end{align*}
\]

Therefore, \(\xi(t) = y^{\ell_3} x t^{\ell_2} z^{\ell_3} x y^{\ell_4} t^{\ell_5} x z^{\ell_4} \), whence \(v = y^{\ell_1} x t^{\ell_2} z^{\ell_3} y^{\ell_4} t^{\ell_5} x z^{\ell_6} \in W \), and we are done.

For any \(n \geq 1 \), put

\[
B_n = \text{var}\{x^n \approx x^{n+1}\}.
\]

Lemma 4.2. Suppose that \(V \) is any proper monoid variety that is a modular element of the lattice \(\text{MON} \). Then \(V \) is periodic.

Proof. Seeking a contradiction, suppose that \(V \) is not periodic, so that \(V \) contains the variety \(\text{COM} \) of all commutative monoids. Since \(V \) is proper and non-periodic, it satisfies some non-trivial identity \(u \approx v \) such that every letter from \(\text{con}(uv) \) occurs \(n \) times on both sides for some \(n \geq 1 \), that is, \(n = \text{occ}_a(u) = \text{occ}_a(v) \) for all \(a \in \text{con}(uv) \). Then by [14, Lemma 3.2], there exist two distinct letters \(x \) and \(y \) such that the identity obtained from \(u \approx v \) by retaining \(x \) and \(y \) is non-trivial. Therefore we may assume that \(\text{con}(u) = \text{con}(v) = \{x, y\} \) with \(n = \text{occ}_x(u) = \text{occ}_x(v) = \text{occ}_y(u) = \text{occ}_y(v) \).

Suppose that \(\text{LRB} \subseteq V \). In view of Lemma 2.2, we may assume without loss of generality that \(\text{ini}(u) = \text{ini}(v) = xy \). Let \(u' \) and \(v' \) be words that obtain from \(u \) and \(v \), respectively, by making the substitution \((x, y) \mapsto (y, x) \). Then \(\text{ini}(u') = \text{ini}(v') = yx \). Put

\[
A = \{w \in \{x, y\}^+ \mid \text{occ}_x(w) = n + 1, \text{occ}_y(w) = n\}.
\]
Let \(w, w' \in A \) and \(w \preceq w' \). This means that \(w' = aw(\xi)bw \) for some words \(a, b \in \mathcal{X}^+ \) and some endomorphism \(\xi \) of \(\mathcal{X}^+ \). Since the length of \(w \) equals to the length of \(w' \), we have \(a = b = \lambda \). Then \(w' = \xi(w) \). But this is only possible when \(\xi(x) = x \) and \(\xi(y) = y \) because \(\text{occ}_y(w) < \text{occ}_x(w) \). Hence \(w = w' \). So, \(A \) is an anti-chain under the quasi-order \(\preceq \). Then \(L_A \) is a sublattice of \(\text{MON} \) by Lemma 2.1(i) and \(V \in L_A \).

Clearly, \(ux, u'x, vx, v'x \in A \). Evidently, \(\text{ini}(ux) = \text{ini}(vx) = xy \) and \(\text{ini}(u'x) = \text{ini}(v'x) = yx \). In view of Lemma 2.2, the words \(ux \) and \(u'x \) lie in distinct \(\text{FIC}(V) \)-classes. Then, since \(V \) satisfies the nontrivial identities \(ux = vx \) and \(u'x = v'x \), the equivalence \(\gamma = \varphi(V) \) contains at least two non-singleton classes. It is verified in [11, Proposition 2.2] that a partition \(\rho \in \text{Part}(X) \) is a modular element in \(\text{Part}(X) \) if and only if \(\rho \) has at most one non-singleton class. This result implies that \(\gamma \) is not a modular element of the lattice \(\text{Part}(A) \). Then there are \(\alpha, \beta \in \text{Part}(A) \) such that \(\alpha \subset \beta \) and

\[
(\gamma \wedge \beta) \vee \alpha \subset (\gamma \vee \alpha) \wedge \beta.
\]

According to Lemma 2.1, we can find a non-periodic variety \(X \in L_A \) such that \(\varphi(X) = \alpha \). Put

\[
Y = X \wedge \text{var}\{w \approx w' \mid (w, w') \in \beta\}.
\]

Clearly, \(Y \in L_A \) and \(\varphi(Y) = \beta \). Then

\[
(V \wedge X) \vee Y \subset (V \vee Y) \wedge X
\]

because otherwise, the inclusion (4.1) does not hold. We see that \(V \) is not a modular element of the lattice \(\text{MON} \), which is a contradiction.

Suppose now that \(LRB \not\subseteq V \). Then Lemma 2.2 allows us to assume that \(u \) starts with the letter \(x \) but \(v \) starts with the letter \(y \). Let

\[
Z = \text{var}\{x^{n+1} \approx x^{n+2}, x^n v \approx x^{n+1} v\}.
\]

We note that \(V \wedge B_{n+1} \subseteq Z \). Indeed, \(V \wedge B_{n+1} \) satisfies the identities

\[
x^n v \approx x^n u \approx x^{n+1} u \approx x^{n+1} v
\]

and so the identity \(x^n v \approx x^{n+1} v \). Clearly, the word \(x^n v \) is an isoterms for both \(V \vee Z \) and \(B_{n+1} \). It follows that \(x^n v \) is an isoterms for \((V \vee Z) \wedge B_{n+1} \) as well. However, \(x^n v \) is not an isoterms for \(Z \) because \(Z \) satisfies \(x^n v \approx x^{n+1} v \). Therefore,

\[
(V \wedge B_{n+1}) \vee Z = Z \subset (V \vee Z) \wedge B_{n+1}.
\]

This means that \(V \) is not a modular element of the lattice \(\text{MON} \), which again is a contraction. \(\square \)

The following is the main result of this section.

\[Acta Mathematica Hungarica 165, 2021\]
Proposition 4.3. Suppose that V is any proper monoid variety that is a modular element of the lattice MON. Then V satisfies the identities

\begin{align}
(4.2) & \quad x^2 \approx x^3, \\
(4.3) & \quad x^2 y \approx y x^2.
\end{align}

Proof. By Lemma 4.2, the variety V is periodic and so it satisfies the identity $x^n \approx x^{n+m}$ for some $n, m \geq 1$; we may assume n and m to be the least possible.

First, suppose that $n = 1$, so that V is completely regular. If X is a non-commutative completely regular variety, then it is verified in [5, Lemma 3.1] that

$$(X \wedge D) \lor C_2 \subset (X \lor C_2) \land D,$$

whence X is not a modular element of the lattice MON. If X is a commutative variety containing a nontrivial group, then it is proved in [5, Lemma 3.2] that

$$(X \wedge B_2) \lor Q \subset (X \lor Q) \land B_2,$$

where $Q = \text{var}\{y x y z x y \approx y x z x y z\}$, whence X is again not a modular element of the lattice MON. In view of these two facts, the variety V is commutative and does not contain any nontrivial group. Since V is also completely regular, it is idempotent and so is contained in SL. Obviously, SL satisfies (4.2) and (4.3).

So, it remains to consider the case when $n > 1$. Then $C_n \subseteq V$ and $C_{n+1} \not\subseteq V$ by Lemma 2.3. It follows from [6, Lemma 2] that $E \not\subseteq V$. Then by Lemma 2.5, V satisfies the identity $x^{p_1} y x^{q_1} \approx y x^{r_1}$ for some $p_1, q_1 \geq 1$ and $r_1 \geq 2$. The dual arguments imply that V also satisfies the identity $x^{p_2} y x^{q_2} \approx x^{r_2} y$ for some $p_2, q_2 \geq 1$ and $r_2 \geq 2$. Since one can substitute x^n for x in these identities and V satisfies $x^n \approx x^{n+m}$, we may assume without loss of generality that

$$p_1, p_2, q_1, q_2, r_1, r_2 \in \{n, n+1, \ldots, n+m-1\}.$$

Evidently, there exist ℓ_1 and ℓ_2 such that the identities

$$x^{p_1} y x^{q_1+\ell_1} \approx y x^{r_1+\ell_1} \quad \text{and} \quad x^{p_2+\ell_2} y x^{q_2} \approx x^{r_2+\ell_2} y$$

are equivalent modulo $x^n \approx x^{n+m}$ to the identities

$$x^{p_1} y x^{q_2} \approx y x^{r_1+\ell_1} \quad \text{and} \quad x^{p_1} y x^{q_2} \approx x^{r_2+\ell_2} y,$$

respectively. Therefore V satisfies $x^{r_2+\ell_2} y \approx y x^{r_1+\ell_1}$, whence it satisfies

\begin{align}
(4.4) & \quad x^k y \approx y x^k.
\end{align}
for some \(k \geq n \). It follows that the meet \(V \land B_2 \) satisfies the identities (4.2) and (4.4); it also satisfies the identity \(p \approx q \) because

\[
p = y^2xt^2z^2y^2t^2xz^2 \approx y^kxt^kz^k y^k x^k z^k \approx y^2xt^2z^2t^2z^2 = q.
\]

Therefore \(V \land B_2 \subseteq K \), so that \((V \land B_2) \lor K = K\).

Suppose that \(n > 2 \) or \(m > 1 \). Recall from the beginning of the section that

\[
W_1 = \{ y^{r_1}xt^{r_2}z^{r_3}y^{t_4}t^{t_5}x^rz^r \mid r_1, r_2, r_3, r_4, r_5, r_6 \geq 2 \}.
\]

Let \(a \approx b \) be any identity of \(V \lor K \) with \(a \in W_1 \). If \(n > 2 \), then \(b \in W_1 \) by Lemmas 2.3 and 4.1. Clearly, \(V \) contains the variety \(A_m \) of all Abelian groups of exponent \(m \). It is well known and easily verified that an identity \(w \approx w' \) holds in \(A_m \) if and only if \(\text{occ}_a(w) \equiv \text{occ}_a(w') \pmod{m} \) for all \(a \in \mathfrak{X} \). This fact and Lemma 4.1 imply that if \(m > 1 \), then \(b \in W_1 \). We see that if \(n > 2 \) or \(m > 1 \), then \(b \in W_1 \) in either case. Evidently, if \(B_2 \) satisfies an identity \(c \approx d \) with \(c \in W_1 \), then \(d \in W_1 \). This implies that if an identity of the form \(p \approx w \) holds in \((V \lor K) \land B_2\), then \(w \in W_1 \). In particular, \((V \lor K) \land B_2 \) violates \(p \approx q \). Therefore,

\[
(V \land B_2) \lor K = K \subset (V \lor K) \land B_2.
\]

This means that \(V \) is not a modular element in \(\text{MON} \). It follows that \(n = 2 \) and \(m = 1 \). Then \(V \) satisfies (4.2). Besides that, since (4.4) holds in the variety \(V \), this variety satisfies (4.3).

Proposition 4.3 is thus proved. \(\Box \)

5. Proof of Theorem 1.1

Necessity. Let \(V \) be any proper monoid variety that is a cancellable element of the lattice \(\text{MON} \). Since any cancellable element is modular, Proposition 4.3 implies that \(V \) satisfies the identities (4.2) and (4.3). If \(V \) does not coincide with any of the varieties \(T, \ S_L, C_2 \) and \(D \), then \(V \) contains the variety \(D_2 \) by [8, Lemma 3.3(i)]. Proposition 3.1 and the fact that \(C_3 \not\subseteq V \) imply that \(V \lor R = V \lor R^\delta \) and \(V \land R = V \land R^\delta = D \), contradicting the assumption that \(V \) is a cancellable element of \(\text{MON} \). Hence \(V \) coincides with one of the varieties \(T, \ S_L, C_2 \) and \(D \).

Sufficiency. Obviously, \(T \) and \(\text{MON} \) are cancellable elements of \(\text{MON} \). An element \(x \) of a lattice \(L \) is costandard if

\[
\forall y, z \in L: \quad (x \land z) \lor y = (x \lor y) \land (z \lor y).
\]

Acta Mathematica Hungarica 165, 2021
It is easily seen that any costandard element is cancellable. It is shown in [5, Theorem 1.2] that the varieties SL and C_2 are costandard elements of the lattice MON. Therefore, these varieties are cancellable elements of this lattice.

So, it remains to establish that D is a cancellable element in MON. Let X and Y be monoid varieties such that $D \vee X = D \vee Y$ and $D \wedge X = D \wedge Y$. If $D \subseteq X$, then $D = D \wedge X = D \wedge Y$, so that $D \subseteq Y$, whence $X = D \vee X = D \vee Y = Y$ and we are done. Therefore by symmetry, we may assume that $D \not\subseteq X$ and $D \not\subseteq Y$.

Now the subvariety lattice $L(D)$ is the chain $T \subseteq SL \subseteq C_2 \subseteq D$; see Fig. 2. It follows that $D \wedge X = D \wedge Y \in \{T, SL, C_2\}$. If $D \wedge X = D \wedge Y = T$, then X and Y are varieties of groups by [7, Lemma 2.1]. Then $X \vee Y$ is a variety of groups too and so $SL \not\subseteq X \vee Y$, whence

\[(5.1) \quad D \wedge (X \vee Y) = D \wedge X = D \wedge Y.\]

If $D \wedge X = D \wedge Y = SL$, then X and Y are completely regular varieties by [7, Corollary 2.6]. Then $X \vee Y$ is completely regular and so $C_2 \not\subseteq X \vee Y$, whence the equality (5.1) is true. Finally, if $D \wedge X = D \wedge Y = C_2$, then X and Y are commutative by Lemma 2.4. Then $X \vee Y$ is commutative and so $D \not\subseteq X \vee Y$, whence the equality (5.1) is true again. We see that the equality (5.1) holds in any case.

Clearly,

\[(5.2) \quad D \vee (X \vee Y) = D \vee X = D \vee Y.\]

Then

\[
X = (D \wedge X) \vee X \quad \text{because } D \wedge X \subseteq X \\
= (D \wedge (X \vee Y)) \vee X \quad \text{by (5.1)} \\
= (D \vee X) \wedge (X \vee Y) \quad \text{by [6, Proposition 4]} \\
= (D \vee (X \vee Y)) \wedge (X \vee Y) \quad \text{by (5.2)} \\
= (X \vee Y) \quad \text{because } X \vee Y \subseteq D \vee (X \vee Y).
\]

We see that $X = X \vee Y$. By symmetry, $Y = X \vee Y$, whence $X = Y$. Therefore, D is a cancellable element in MON. □

Acknowledgement. The authors would like to thank the anonymous referee for several useful comments.

References

[1] J. Almeida, *Finite Semigroups and Universal Algebra*, World Scientific (Singapore, 1994).
[2] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer Verlag (New York, 1981).
[3] G. Grätzer, Lattice Theory: Foundation, Springer Basel (Basel, 2011).
[4] S. V. Gusev, On the lattice of overcommutative varieties of monoids, Izv. VUZ. Matem., 62 (2018), 28–32 (in Russian); translation in Russ. Math. Izv. VUZ, 62 (2018), 23–26.
[5] S. V. Gusev, Special elements of the lattice of monoid varieties, Algebra Univ., 79 (2018), Article 29, 12 pp.
[6] S. V. Gusev, Standard elements of the lattice of monoid varieties, Algebra Logika, 59 (2020), 615–626 (in Russian); translation in Algebra Logic, 59 (2021), 415–422.
[7] S. V. Gusev and B. M. Vernikov, Chain varieties of monoids, Dissert. Math., 534 (2018), 1–73.
[8] S. V. Gusev and B. M. Vernikov, Two weaker variants of congruence permutability for monoid varieties, Semigroup Forum, 103 (2021), 106–152.
[9] M. Jackson, Small Semigroup Related Structures with Infinite Properties, Ph.D. thesis, University of Tasmania (Hobart, 1999).
[10] M. Jackson, Finiteness properties of varieties and the restriction to finite algebras, Semigroup Forum, 70 (2005), 154–187.
[11] J. Ježek, The lattice of equational theories. Part I: modular elements, Czechoslovak Math. J., 31 (1981), 127–152.
[12] E. W. H. Lee, Maximal Specht varieties of monoids, Mosc. Math. J., 12 (2012), 787–802.
[13] E. W. H. Lee, Varieties generated by 2-testable monoids, Studia Sci. Math. Hungar., 49 (2012), 366–389.
[14] O. Sapir, Finitely based words, Int. J. Algebra Comput., 10 (2000), 457–480.
[15] V. Yu. Shaprynskii, D. V. Skokov and B. M. Vernikov, Cancellable elements of the lattices of varieties of semigroups and epigroups, Comm. Algebra, 47 (2019), 4697–4712.
[16] B. M. Vernikov, Special elements in lattices of semigroup varieties, Acta Sci. Math. (Szeged), 81 (2015), 79–109.