Arsenic Carcinogenicity Testing

Chappell et al. (J) propose several valid ideas and procedures for accomplishing better drinking water standards for arsenic, a metalloid long known to be carcinogenic to humans (2–4). Another necessary recommendation, and in our opinion an obvious need, apparently not stated specifically in the Chappell et al. review on arsenic (J) is that we should test arsenic for long-term toxicity and carcinogenicity in laboratory animals. In our view, adequate long-term carcinogenesis bioassays have not been done on this metal or its common environmental and commercial inorganic derivatives. However, some evidence of carcinogenicity in animals has been reported but has not been associated specifically with arsenic, mainly because these experimental studies have been considered inadequate due to other confounding agents; for example, inappropriate or absent controls, and in one study arsenic was given with copper sulfate (Bordeaux mixture) to mimic the actual antifungal agent used in vineyards (4,5).

Arsenate undergoes methylation in liver nonenzymatically to methanearsonic acid and enzymatically to monomethylarsonic acid (MMA), and subsequently to dimethy-arsinic acid (DMA) via oxidative addition of a methyl group with S-adenosylmethyl-ine as the methyl donor. Enzymatic methylation is thought to detoxify arsenic. One reason given for the apparent lack of carcinogenicity of arsenic in animals is the methylation differential between humans and rodents. Humans excrete more MMA and less DMA, indicating effective methylation, than most rodent species (mice, rabbits, and hamsters), except rats, which display a unique biokinetics because they sequester arsenic in hemoglobin in red blood cells. This implied lower capacity to detoxify arsenic via methylation may be related to nutrition, particularly with nutrients associated with production of methyl donor groups. Nutrition appears to play an influential role in sensitivity to arsenic carcinogenesis. Poor nutrition may be the underlying reason why carcinogenic activity of arsenic is often seen in lower socioeconomic individuals. In arsenic carcinogenesis studies, we recommend the use of a diet with marginally low methyl content rather than the high protein laboratory chows currently used or available on the market. Prior carcinogenicity studies using rodents have consistently ignored this important aspect of arsenic metabolism.

Also in our view, we would suggest long-term inhalation studies using arsenic trioxide, the most common arsenic compound considered carcinogenic to humans. This could be done in both sexes of mice (using a strain known to methylate arsenic), and perhaps in rats as well. Further, another study could be done using drinking water as the medium for administering arsenic; as suggested by Chappell et al. (J), exposure levels could be geared toward actual and multiples of drinking water levels in the environment. Of course the highest exposure levels must be those typically chosen for long-term carcinogenicity studies (6,7). In addition, these studies should be conducted for longer periods of time than the standard 104 weeks to allow the opportunity for any late-stage carcinogenic effects to be manifest; perhaps 30 months or longer would be more adequate. Additionally, some experimental efforts could be directed to initiator–promoter systems.

In another testing scenario that is more environmentally based, the same animals could be exposed to arsenic via various media simultaneously to more closely model actual conditions for humans exposed to arsenic; that is, expose groups of animals with arsenic in drinking water, in food, and by inhalation—just like humans are exposed. One should additionally use groups exposed simultaneously to chlorinated drinking water (a suspected human carcinogen for the urinary bladder), rather than the typically deionized or distilled water used in long-term drinking water experiments. These proposed long-term studies could serve at least two purposes: 1) to generate more appropriate data to allow better environmental risk assessments to be made, especially for drinking water standards (J); and 2) to best answer the long-held view that arsenic may be a paradoxical carcinogen; that is, carcinogenic to humans but not to laboratory animals. In our opinion, given that arsenic has not been studied adequately and that some earlier experiments have shown limited evidence of carcinogenic activity, the use of current experimental design conditions will show arsenic to be carcinogenic to animals.

James Huff Po Chan
National Institute of Environmental Health Sciences Research Triangle Park, North Carolina

Michael Waalkes
National Cancer Institute at the National Institute of Environmental Health Sciences Research Triangle Park, North Carolina

References

1. Chappell WR, Beck BD, Brown KG, Chaney R, Cohran CR, Iroiglic J, North DW, Thornton I, Teengs TA. Inorganic arsenic: a need and an opportunity to improve risk assessment. Environ Health Perspect 105:1060–1067 (1997).
2. Hutchinson J. On some examples of arsenic-ketonis of the skin and of arsenic-cancer. Trans Pathol Soc London 39:352–363 (1888).
3. IARC. Arsenic. In: IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Man. Vol. 2. Some Inorganic and Organometallic Compounds. Lyon:International Agency for Research on Cancer, 1972:48–73.
4. Chan P, Huff JE. Arsenic carcinogenesis in animals and in humans: mechanistic, experimental, and epidemiological evidence. Environ Carcinogenic Ecotoxicol Rev C19(2):83–122 (1997).
5. Ivankovic S, Eisenbrand G, Praussmann R. Lung cancer induction in BD rats after a single intratra-echal instillation of an arsenic-containing pesticide mixture formerly used in vineyards. Int J Cancer 24:786–788 (1980).
6. Huff JE, McConnell EE, Haseman JK, Boorman GA, Eusitis SL, Schwartz BA, Rao GN, Jameson CW, Hart LG, Rall DP. Carcinogenesis studies: results from 398 experiments on 104 chemicals from the U.S. National Toxicology Program. Ann NY Acad Sci 524:1–30 (1988).
7. Chhabra RS, Huff JE, Schwartz BS, Selikirk JA. An overview of prechronic and chronic toxicity/car- cinogenicity experimental study designs and criteria used by the National Toxicology Program. Environ Health Perspect 96:313–321 (1990).

Environmental Lead Is a Problem in Lima, Peru

Blood lead levels as low as 10 μg/dl pose a threat to children's development (J). In Latin America's major cities, still afflicted by the massive use of leaded gasoline, prevalences above that level range from 25 to 100%.

Hitherto, no information exists on the magnitude of high blood levels in Peru. In the capital city of Lima, now with 8 million inhabitants, the most contaminated districts are those located in the northeastern sector, where most of the city's lead emissions are mobilized by a typical wind pattern. In 1991, the amount of lead particles that settled on the ground in the district of San Juan de Lurigancho was 0.151 metric tons per square kilometer in 30 days, three times higher than the upper tolerable limit (2). In 1993, the Peruvian Ministry of Health (3) reported that Lima's monthly average concentration of lead in the air (in micrograms per cubic meter) was 2.6 in April; 2.05 in May; 2.18 in June; and 1.5 on average from July through December. All exceeded the annual maximum limit of 0.3 μg/m3.

For preschool children, the lead health hazard is compounded by iron deficiency anemia, which is highly prevalent in this age group. In fact, several studies indicate that low iron stores may result in greater susceptibility to lead absorption by humans (4).
In May 1995, we decided to conduct an examination in Canto Grande, a periurban community located in San Juan de Lurigancho, the largest district of Lima. Forty children between 1 and 4 years of age were randomly selected, and following written consent by their parents, 5 cc of blood was drawn by venipuncture. Blood lead level examinations were performed at a laboratory of the Ministry of Health using atomic absorption spectroscopy. Hemoglobin (Hb) levels were examined at the laboratory of the Instituto de Investigación Nutricional. Mean blood lead levels [± standard deviation (SD)] were 11.7 ± 3.7 μg/dl, ranging from 4 to 18 μg/dl, and the prevalence above 10 μg/dl was 60%. A quality control of the local laboratory measurements (Blood Lead Laboratory Reference System of the Centers for Disease Control and Prevention), suggests a slight overestimation of the true blood lead levels in this population. On the other hand, mean ± SD of Hb was 11.59 ± 1.43 g/dl, with 30% of the children below the cut-off level of 11 g/dl. The correlation of blood lead levels and Hb was near zero (r = 0.02; p = 0.2), which is at odds with previous studies and is perhaps a result of the small sample size.

The results indicate that small children in the community of Canto Grande in Lima face a major health hazard due to the high prevalence of elevated blood lead levels. A similar situation may be true for other areas of Lima. Therefore, we believe that a more complete investigation is needed to confirm our results and provide the basis for sound health and environmental policy decisions.

Support for this study was provided by the Instituto de Investigación Nutricional.

Enrique Jacoby
Instituto de Investigación Nutricional
Lima, Peru

REFERENCES
1. CDC. Preventing Lead Poisoning in Young Children: A Statement by the CDC. Atlanta, GA: Centers for Disease Control and Prevention, 1991.
2. Servicio Nacional de Meteorología e Hidrografía. Resultados del Proyecto Víncula Final Report, 1991.
3. Webb R, Fernandez-Baca G. Concentración de metales pesados en el aire de Lima metropolitana 1990–1993. In: Peru en Numeros 1995, Anuario Estadístico. Lima: Cuanto S.A., 1996:186–187.
4. Yip R, Norris TN, Anderson AS. Iron status of children with elevated blood lead concentrations. J Pediatr 81(6):922–925 (1981).

NIEHS Excellence in Basic Research at the National Institute of Environmental Health Sciences

NIEHS scientists and grantees perform basic studies of our susceptibility to environment-related disease:
Demonstrating that a carcinogen in cigarette smoke (benzo(a)pyrene) alters part of a gene to cause lung cancer...showing the effects of fetal exposure to PCBs...developing a strain of mouse that lacks functional estrogen receptors and that helps evaluate how some pesticides and other estrogen-like compounds might affect development and reproduction...discovering the genes for breast, ovarian, and prostate cancers...finding women’s optimal days of fertility...seeking to reverse the damage from lead exposure...finding alternatives to traditional animal tests...

pinpointing the functions of specific genes by eliminating them from specially bred mouse lines...discovering a way, using ordinary yeast cells, to isolate and clone genes and other fragments of genetic material more quickly...showing the effects of urban air on lung function...

A part of the National Institutes of Health, the National Institute of Environmental Health Sciences is located in Research Triangle Park, North Carolina
See the NIEHS Home Page: http://www.niehs.nih.gov