Efecto de la PEEP sobre el componente resistivo inspiratorio en pacientes con sindrome de distrés respiratorio agudo ventilados a bajo volumen corriente

Effect of PEEP on inspiratory resistance components in patients with acute respiratory distress syndrome ventilated at low tidal volume

RESUMEN

Objetivo: Describir el comportamiento del componente resistivo ante el incremento de la presión positiva espiratoria final (PEEP) en pacientes con sindrome de distrés respiratorio agudo ventilados con una estrategia de ventilación protectora.

Métodos: En modo controlada por volumen, a 6mL/Kg y flujo constante se realizaron oclusiones teleinspiratorias a PEEP 0, 5, 10, 15 y 20cmH₂O. Se obtuvieron valores de presión pico, inicial, plateau y se calculó resistencias máxima, mínima y diferencial. Las comparaciones se realizaron mediante test de ANOVA para muestras relacionadas con corrección post hoc de Bonferroni. Se consideró significativo una p < 0,05.

Resultados: La resistencia máxima más elevada se observó en los niveles de PEEP más bajos. Los valores de PEEP 10 y 15 cmH₂O tuvieron diferencias significativas con PEEP 0 y 5 cmH₂O (p < 0,05). La resistencia diferencial se expresó de manera opuesta a la resistencia máxima y mínima. El único nivel de PEEP que experimentó diferencias significativas con PEEP 0 y 5 cmH₂O fue PEEP 20 cmH₂O. También hubo diferencias entre PEEP 15 y PEEP 5 cmH₂O (p < 0,05).

Conclusiones: Durante ventilación protectora en pacientes con sindrome de distrés respiratorio agudo, la resistencia máxima del sistema respiratorio tiene un comportamiento decreciente con la PEEP y refleja la respuesta que tiene la resistencia mínima. Mientras que la resistencia diferencial mantiene su conducta creciente con los valores de PEEP.

Descriptores: Síndrome de dificultad respiratoria del adulto; Presión de las vías aéreas positiva contínua; Respiración artificial

INTRODUCCIÓN

El monitoreo básico en pacientes con ventilación mecánica (VM) ventilados en modalidad controlada por volumen (VC-CMV) con flujo constante es una herramienta invaluarable en términos de diagnóstico, tratamiento y seguimiento. El conocimiento y la experiencia en la interpretación de las gráficas del respirador permiten un abordaje personalizado al paciente. Este monitoreo permite clasificar el estado del sistema respiratorio según sus modificaciones en la elastancia y resistencia (Rsr).
El síndrome de distrés respiratorio agudo (SDRA) es una afección respiratoria de inicio agudo que cursa con hipoxemia, opacidades bilaterales en la radiografía de tórax y alteraciones en la mecánica del sistema respiratorio. La elastancia del sistema respiratorio ha sido foco de atención en términos de investigación, mientras que la Rsr ha quedado en segundo plano. Hay varios métodos descriptos para evaluar la Rsr. Una de ellas es la “técnica de interrupción rápida”, que consiste en realizar una pausa teleinspiratoria de 2 segundos y observar las modificaciones de la presión con flujo constante. El cese abrupto de flujo generará una caída de la presión del sistema. Esta tiene una morfología bifásica: una porción inicial, en la que el descenso es abrupto, cuya variación se da entre la presión pico (Ppico) y la inicial (P1) y la segunda en la que se da de manera más paulatina. En este caso el cambio de presión es entre P1 y la presión luego de 2 segundos de pausa inspiratoria (Pplat). La primera de ellas se denomina “resistencia mínima” (Rinit): teniendo en cuenta que la inercia del gas es despreciable, la caída inicial de la presión luego del cese del flujo es adjudicada exclusivamente a la fricción de este con la vía aérea. La segunda es llamada “resistencia diferencial” (DRsr), que se vincula al stress de relajación y al fenómeno de pendelluft, propio de la heterogeneidad del pulmón. El primero es una condición de los materiales, que habla de la dependencia temporal de las medidas mecánicas: a medida que transcurre el tiempo se requiere menos energía para mantener deformado un sistema y esto aplica al sistema respiratorio. Por otro lado, el pendelluft explica la redistribución del gas dentro del pulmón ante la ausencia de flujo, cuestión que aumenta en circunstancias de heterogeneidad. Sin embargo, estos dos fenómenos parecen ser indistinguibles el uno del otro (Figura 1). La relación entre el Δ presión y el flujo es igual a la Rsr (Rsr=ΔP/F). En el SDRA el aumento de la Rsr se puede adjudicar a la inundación alveolar, pérdida del volumen pulmonar, reflejo vagal e hiperreactividad bronquial.

Varios estudios, con más de 20 años de antigüedad, han evaluado los efectos de la presión positiva al final de la espiración (PEEP) sobre la Rsr en el SDRA. En ellos se observó que la Rsr tenía un comportamiento creciente con la PEEP, producto de un aumento en la DRsr debido a una posible sobredistensión de unidades ventiladas o un aumento en la heterogeneidad del pulmón, o ambas.

Figura 1 - Gráfico de presión y flujo en tiempo. Se puede observar la presión máxima en la vía aérea durante el ciclo inspiratorio, la presión en el primer instante de flujo = 0 o presión inicial y la presión plateau luego de una pausa teleinspiratoria de 2 segundos (presión plateau). La resistencia máxima se calcula como la diferencia entre la presión pico y la presión plateau sobre el flujo inspiratorio. La resistencia mínima se obtiene como la diferencia entre presión pico y presión inicial en relación al flujo inspiratorio máximo, y la resistencia diferencial como la diferencia entre resistencia máxima y mínima. Rinit - resistencia mínima; DRsr - resistencia diferencial; Rsr - resistencia máxima.
El objetivo del presente trabajo es describir el comportamiento de los distintos componentes resitivos ante el incremento de la PEEP en pacientes con SDRA moderado/severo ventilados con una estrategia de bajo volumen corriente (VC).

MÉTODOS

Las mediciones se llevaron a cabo unidad de cuidados intensivos (UCI) del Sanatorio de La Trinidad Mitre de la Ciudad Autónoma de Buenos Aires, durante el periodo octubre del año 2015 a septiembre del 2017.

Se llevó a cabo un estudio de tipo transversal, descriptivo, retrospectivo.

Se incluyeron pacientes en VM mayores de 18 años con criterios diagnósticos de SDRA según la definición de Berlín(1) al inicio de la VM o como complicación de la misma. Se excluyeron pacientes embarazadas, aquellos con limitación del esfuerzo terapéutico, antecedentes de enfermedad neuromuscular, presencia de fístula broncopleural o imposibilidad de colocación de balón esofágico.(7)

Se recolectaron los datos demográficos de los participantes, como así también escores de severidad, índices de oxigenación, variables de monitoreo ventilatorio, motivo de VM, y variables de resultado.

Se utilizaron respiradores Evita XL (Dräger, Lübeck, Alemania) y Maquet Servo I y S (Solna, Suecia), con circuito de ventilación de baja distensibilidad (1,5mL/cmH2O). Previa conexión del paciente a la VM se realizó el chequeo para la compensación del volumen compresible y la resistencia del circuito, más la prueba de válvulas proporcionales, módulos inspiratorio, espiratorio, sensores de flujo y presión. Para la adquisición de datos se utilizó un monitor de mecánica respiratoria (FluxMed, MBMed, Bs.As., Argentina). Con éste se midió flujo y presión en vía aérea (Paw) con un sensor de presión diferencial de orificio fijo conectado al tubo endotraqueal o cánula de traqueostomía del paciente. El volumen se obtuvo como integración del flujo en el tiempo. Las señales de flujo y Paw fueron adquiridas en forma simultánea utilizando un software especializado (FluxReview, MBMed, Bs.As., Argentina). Antes de comenzar con las mediciones se posicionó al paciente alineado y semisentado a 45°. Posteriormente se controló el balón de neumotaponamiento y se realizó aspiración de secreciones en caso de ser necesario. Luego de la inclusión, se programó el ventilador en modalidad VC-CMV, se ajustó el VC de 4 a 6mL/Kg del peso corporal predicho, con flujo constante a 60L/min, 10cmH2O de PEEP y FiO2 previa. En todos los pacientes incluidos se utilizó la presión esofágica (Pes) como guía para la programación de la VM. Se corroboró su correcto posicionamiento por medio del método de oclusión dinámica(8) y se constató la ausencia de esfuerzos respiratorios mediante la inspección de la curva la misma. Posteriormente, se programó la PEEP en 20cmH2O y se realizó una maniobra decreciente de PEEP desde 20 hasta 0cmH2O, en 4 pasos de 5cmH2O. La duración de cada paso fue de 10 minutos (total 50 minutos). Al final de cada paso se realizaron maniobras de pausa teleinspiratorias utilizando la función provista en los respiradores utilizados. Se llevó a cabo un análisis observacional offline de las señales de Paw, flujo y presión esofágica obtenidas del monitor de mecánica respiratoria. En cada nivel de PEEP se obtuvieron los valores de PPico, P1, presión plateau (PPlat), PEEP total (PEEPtot), presión esofágica de fin de inspiración (Pesi) y de espiración (Pese), se calcularon las presiones transpulmonares de fin de inspiración (Ptpi) y de espiración (Ptpe)(7) y se las definió de la siguiente manera:

- **Ppico** = aquel valor de Paw más alto durante el ciclo inspiratorio
- **P1** = Paw en el primer instante de F = 0 al inicio de la pausa inspiratoria
- **PPlat** = Paw luego de una pausa teleinspiratoria de 2 segundos.
- **PEEPtot** = Paw luego de una pausa teleespiratoria de 2 segundos.
- **Pesi** = Pes luego de una pausa teleinspiratoria de 2 segundos.
- **Pese** = Pes luego de una pausa teleespiratoria de 2 segundos.
- **Ptpi** = Diferencia entre PPlat y Pesi.
- **Ptpe** = Diferencia entre PEEPtot y Pese.

A la Rsr se la calculó como la diferencia entre Ppico y PPlat sobre el flujo inspiratorio (Rsr = Ppico - PPlat/F). Rinit como la diferencial de PPico y P1 sobre el flujo inspiratorio (Rinit = PPico - P1/F) y DRsr como la resta entre P1 y PPlat sobre el flujo (DRsr = P1 - PPlat/F) (Figura 1).

Con el objetivo de observar el comportamiento del componente elástico del sistema respiratorio ante los cambios en la PEEP se obtuvieron los valores de elastancias del sistema respiratorio, calculada como la diferencia entre PPlat y PEEP total sobre el VC, elastancia pulmonar, calculada como diferencia de presión transpulmonar inspiratoria y espiratoria en relación al VC, y elastancia torácica, calculada como diferencia de Pesi y Pese en relación al VC.
El estudio fue aprobado por el Comité de Docencia e Investigación del Sanatorio Anchorena, registro F004-01-A(01)2018. Dado su carácter retrospectivo se desistió de la solicitud de consentimiento informado. La confidencialidad de los datos se preservó mediante la creación de una planilla de registro codificada para cada participante. El nombre, o cualquier dato que pueda identificar al sujeto se mantendrá en extrema confidencialidad y en ningún caso se hará de conocimiento público.

Análisis estadístico

Se realizó análisis descriptivo de las variables. Los valores son reportados como media y desvío estándar o mediana y rango intercuartílico según el tipo de distribución para variables numéricas, o número y porcentaje para variables cualitativas. Las comparaciones se realizaron mediante test de ANOVA para muestras relacionadas con corrección post hoc de Bonferroni. Se analizaron los distintos niveles de PEEP como se hizo en la bibliografía publicada: valores de PEEP medio y elevado (10, 15 y 20cmH₂O) con PEEP baja (0 y 5cmH₂O). Se consideró significativo una p < 0,05.

RESULTADOS

Se incluyeron 24 pacientes, 13 de género masculino, con SDRA moderado y severo (PaFiO₂ a la inclusión de 131,2 ± 32,4) según la Definición de Berlin(1) (Tabla 1). Los pacientes fueron ventilados en modalidad VC-CMV con una media de VC de 382,8mL que representaron 5,8mL/kg de peso corporal predicho, una media de frecuencia respiratoria (FR) 27 respiraciones por minuto y un V de 0,99L/seg. El 54,1% de los pacientes fueron extubados y la mortalidad en UCI fue del 33,3%.

El comportamiento de la Rsr, Rinit y DRsr se resumen en la tabla 2 y figura 2.

La Rsr más elevada se observó en los niveles de PEEP más bajos. Los valores de PEEP 10 y 15cmH₂O tuvieron diferencias estadísticamente significativas con PEEP 5 y 0cmH₂O, mientras que PEEP 20cmH₂O únicamente con PEEP 0cmH₂O (p < 0,05).

La Rinit tuvo la misma conducta que la Rsr. Se observaron valores más altos con la PEEP más baja. A partir del valor de PEEP 10cmH₂O todos tuvieron diferencias significativas con PEEP 0 y 5cmH₂O (p < 0,05).

La DRsr se expresó de manera opuesta a la Rsr y Rinit. A PEEP más baja, menos DRsr. En este caso el único nivel de PEEP que experimentó diferencias significativas con PEEP 0 y 5cmH₂O fue PEEP 20cmH₂O. También hubo diferencias entre PEEP 15 y PEEP 5cmH₂O (p < 0,05).

La elastancia del sistema respiratorio aumentó a valores elevados de PEEP (15 y 20cmH₂), al igual que la elastancia pulmonar. Sin embargo, estos valores no alcanzaron significancia estadística (Tabla 2).

Tabla 1 - Características de los pacientes incluidos en el estudio

Características de los pacientes incluidos	N
N	24
Sexo masculino	13/24 (54,16)
SAPS II	46.9 ± 14,78
PaFiO₂ a la inclusión	131.2 ± 32,45
SDRA moderado	22 (91,66)
SDRA severo	2 (8,34)
Motivo de VM	
ERC	1 (4,16)
IRA	19 (79,16)
Neumonía	4 (16,60)
Postoperatorio	4 (16,60)
Sepsis	3 (12,50)
Trauma	3 (12,50)
SDRA	1 (4,16)
Aspiración	1 (4,16)
EAP	1 (4,16)
PCR	1 (4,16)
Otra	1 (4,16)
Coma	3 (12,50)
Enfermedad neuromuscular	1 (4,16)
Seteo ventilatorio	
VC (mL)	382,8 ± 85,47
VC (mL/kg)	5,81 ± 0,80
FR	27,04 ± 4,98
Flujo	0,99 ± 0,06
Tiempo inspiratorio	0,75 ± 0,12
Días de VM	8 [4,5 - 12,5]
Extubados	13/24 (54,10)
Reintubados	3/13 (23)
Traqueostomizados	6/24 (25)
Días de UCI	11 [7 - 19,70]
Mortalidad en UCI	8/24 (33,33)

Notas:
- SAPS II - Simplified Acute Physiology Score II; PaFiO₂ - Relación entre presión arterial de oxígeno y fracción inspirada de oxígeno; SDRA - síndrome de distrés respiratorio agudo; VM - ventilación mecánica; ERC - enfermedad respiratoria crónica; IRA - insuficiencia respiratoria aguda; EAP - edema agudo pulmonar; PCR - paro cardiorespiratorio; VC - volumen corriente; FR - frecuencia respiratoria; UCI - unidad de cuidados intensivos.
Tabla 2 - Variación promedio diferencias de presión resistivas, resistencias y variables de mecánica estática del sistema respiratorio, en los diferentes niveles de PEEP según el test de Anova

PEEP (cmH₂O)	PEEP 0	PEEP 5	PEEP 10	PEEP 15	PEEP 20
PPico - Pplateau	16,03 (4,06)	15,07 (3,82)	14,64 (3,77)	14,3 (3,83)	14,38 (3,83)
PPico - P1	13,41 (4,13)	12,56 (4,18)	11,94 (4,08)	10,99 (4,24)	10,02 (4,41)
P1 - Pplateau	2,64 (1,69)	2,5 (1,9)	2,69 (1,96)	3,3 (2,06)	4,36 (2,39)
Rsr (cmH₂O/L/seg)	16,33 (4,47)	15,33 (4,26)	14,91 (4,24)	14,54 (4,2)	14,65 (4,36)
Rinit (cmH₂O/L/seg)	13,61 (4,36)	12,76 (4,41)	12,13 (4,29)	11,15 (4,39)	10,14 (4,52)
DRsr (cmH₂O/L/seg)	2,72 (1,84)	2,56 (1,99)	2,77 (2,07)	3,38 (2,15)	4,5 (2,66)
Esr (cmH₂O/L)	36,53 (16,91)	31,43 (15,01)	31,31 (15,84)	34,54 (20,59)	38,16 (16,8)
Et (cmH₂O/L)	9,54 (5,21)	8,34 (5,59)	7,78 (4,49)	7,41 (4,62)	7,81 (4,46)
Ep (cmH₂O/L)	26,98 (16,87)	23,08 (16,43)	23,52 (17,24)	27,12 (21,74)	30,34 (17,67)

DISCUSIÓN

El objetivo de este estudio fue evaluar el efecto de la PEEP sobre los diferentes componentes resistivos inspiratorios en pacientes con síndrome de distrés respiratorio agudo ventilados con una estrategia de ventilación protectora. Encontramos que, cuando se emplea una estrategia de bajo VC los incrementos en la PEEP generan disminución de la Rinit y aumento de la DRsr. El hecho de que estas respuestas sean de magnitudes dispares determina una disminución en la Rsr.

La Rsr depende de dos componentes: las resistencias no elásticas o vinculadas al flujo, y las resistencias elásticas correspondientes al fenómeno de pendelluft, asociado a las heterogéneas constantes de tiempo espiratorias presentes en el pulmón, y al fenómeno de stress de relajación.

El estudio ARMA, (9) publicado hace más de 20 años, significó un cambio en la estrategia para ventilar a los pacientes, ya que demostró que los VC de 6mL/kg de peso predicho disminuían la mortalidad cuando se los comparaba con 12mL/kg. Sabemos que la evidencia de los cambios en la Rsr con los cambios de PEEP en pacientes con SDRA es previa a dicho trabajo, por lo que suponemos que la estrategia ventilatoria utilizada en ese entonces fue con altos VC.

En el año 1991, Pesenti et al. (4) estudiaron el efecto de la PEEP sobre el componente resistivo. Compararon 21 pacientes sanos con 11 con SDRA según criterios de un estudio previo de Gattinoni et al. (10). Los 21 pacientes sin patología pulmonar pasaron por 3 niveles de PEEP (0, 5 y 10cmH₂O), mientras que los que padecían SDRA por...
5 (0, 5, 10, 15, 20cm H₂O). Más allá de las diferencias con los pacientes sanos, se encontró que la Rsr tenía un comportamiento creciente con los valores incrementales de PEEP, reflejando el comportamiento de la DRsr, alcanzando diferencias significativas cuando se compraron PEEP 10 con 15 y 20cm H₂O. Los autores justificaron que a niveles altos de PEEP, en pulmones altamente heterogéneos, podría haber un aumento del stress de relajación y la PEEP podría sobredistender unidades y aumentar así el efecto “pendelluft”. Sin embargo, no han podido encontrar un método diagnóstico por medio del cual se pueda discriminar entre el efecto viscoelástico y el aumento en la inhomogeneidad. En este estudio se empleó una estrategia ventilatoria con volúmenes corrientes elevados.

En línea con los resultados anteriores, en el año 95 Pelosi et al. (5) investigaron el efecto de la PEEP sobre la resistencia en pacientes sanos y con SDRA moderado/severo. Los sujetos sin patología respiratoria pasaron por 0, 5 y 10cm H₂O de PEEP, mientras que los que padecían SDRA lo hicieron por 0, 5, 10 y 15cm H₂O. Nuevamente, más allá de las disparidades con los sujetos sanos, aquellos que tenían SDRA presentaron un comportamiento creciente de la Rsr ante los incrementos de PEEP, con diferencias significativas entre PEEP 10 y 15cm H₂O. En este caso, al igual que el anterior, los autores especularon que el aumento en la DRsr refleja los cambios del stress de relajación y el aumento en la desigualdad de las constantes de tiempo propias de la sobredistensión por el VC, mientras que los valores elevados de PEEP podrían aumentar el diámetro de la vía aérea, disminuyendo así la Rinit. La diferente magnitud de en los cambios de cada componente ante el incremento en la PEEP implicaría que el aumento en la Rsr refleja el comportamiento creciente de la DRsr. Nuevamente en este caso se utilizaron VC elevados.

Por último Blanch et al. (6) en el año 1999, estudiaron los efectos de la PEEP en variables de capnografía volumétrica y mecánica respiratoria. Ellos analizaron tres grupos: 8 sujetos sanos ingresados para cirugías programadas sin antecedentes de tabaquismo, obesidad o patología cardíaca, 9 pacientes con injuria pulmonar aguda y 8 con SDRA según la Conferencia de Consenso Europeo Americana. (11) Todos los pacientes transitaron 4 niveles de PEEP (0, 5, 10 y 15cm H₂O). Los autores encontraron diferencias significativas en la Rsr, DRsr y Rinit tanto entre grupos como entre los niveles de PEEP. Consecuente a los trabajos previos, la DRsr tuvo un comportamiento creciente con la PEEP y este se reflejó en la Rsr, mientras que la Rinit decreció con la PEEP. En este caso la capnografía volumétrica no permitió ampliar las conclusiones de los trabajos previos, puesto que refleja las modificaciones tanto de la ventilación como de la perfusión, sin poder diferenciar la incidencia del aumento del stress de relajación o del efecto pendelluft. La estrategia ventilatoria utilizada no fue distinta a la empleada en la evidencia descripta previamente: los VC fueron elevados. Tanto en el trabajo de Pelosi et al. (5) como en el de Blanch et al. (6) a PEEP creciente, la Rmin tiene un comportamiento decreciente. Esto se explicaría por un aumento tamaño del espacio muerto anatómico, (12) generando un descenso en la resistencia friccional al flujo.

Encontramos las principales diferencias con nuestro estudio en lo que respecta a la estrategia ventilatoria utilizada. Los VC implementados fueron de 382 mililitros que representaron 5,8mL/kg de peso predicho. Al programar VC más bajos el impacto que éstos puedan llegar a tener sobre el stress de relajación y la inhomogeneidad pulmonar serían menores que los de los estudios mencionados. A tal punto que los pacientes de nuestro estudio experimentarían un descenso de la Rsr ante el incremento de la PEEP. Esto significa que, al emplear VC elevados la magnitud del impacto sobre DRsr es el que termina primando en las modificaciones de la Rsr. Este fenómeno podría explicarse a través de los cambios que genera la PEEP en la elastancia pulmonar: a PEEP elevadas, mayor elastancia del pulmón, aumentos en la sobredistensión, mayor inhomogeneidad y stress de relajación. En cambio cuando los VC son bajos, el efecto sobre DRsr es menor respecto al que genera el incremento de la PEEP distendiendo la vía aérea, por lo que la Rsr disminuye.

Este estudio tiene debilidades. En primera instancia no se buscó evaluar el efecto de la PEEP sobre los distintos componentes de la Rsr, sino que fue un análisis retrospectivo de una base de datos recolectada en forma prospectiva. Por otro lado, los niveles de PEEP empleados se implementaron en forma decreciente, y no en forma randomizada.

CONCLUSIÓN

En conclusión, a diferencia de la evidencia reportada, cuando se emplea una estrategia de bajo volumen corriente, la resistencia máxima del sistema respiratorio tiene un comportamiento decreciente con la PEEP, reflejando la respuesta que tiene la resistencia mínima. Mientras que la resistencia diferencial mantiene su conducta creciente con los valores de PEEP.
ABSTRACT

Objective: To describe the behavior of inspiratory resistance components when positive end-expiratory pressure (PEEP) increases in patients with acute respiratory distress syndrome under a protective ventilation strategy.

Methods: In volume-controlled mode, at 6mL/kg and constant flow, end-inspiratory occlusions were performed at 0, 5, 10, 15, and 20cmH₂O PEEP. Peak, initial and plateau pressure values were assessed, calculating the maximum, minimum and differential resistances. The results were compared by repeated measures analysis of variance (ANOVA) with post hoc Bonferroni correction, considering p < 0.05 significant.

Results: The highest maximum resistance was observed at the lowest PEEP levels. The values for 10 and 15cmH₂O PEEP significantly differed from those for 5 and 0cmH₂O PEEP; whereas that for 20cmH₂O PEEP only significantly differed from that for 0cmH₂O PEEP (p < 0.05). The minimum resistance behaved similarly to the maximum resistance; the values for PEEP levels from 10cmH₂O to 20cmH₂O significantly differed from those for 0 and 5cmH₂O PEEP (p < 0.05). Differential resistance showed the opposite variation to the maximum and minimum resistances. The only PEEP level that showed significant differences from 0 and 5cmH₂O PEEP was 20cmH₂O PEEP. Significant differences were also found between 15 and 5cmH₂O PEEP (p < 0.05).

Conclusions: During protective ventilation in patients with acute respiratory distress syndrome, the maximum resistance of the respiratory system decreases with PEEP, reflecting the minimum resistance response, whereas differential resistance increases with PEEP.

Keywords: Respiratory distress syndrome, adult; Continuous positive airway pressure; Respiration, artificial

REFERENCIAS

1. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526-33.
2. Bates JH, Rossi A, Milic-Emili J. Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol (1985). 1985;59(6):1840-8.
3. Mauri T, Lazzeri M, Bellani G, Zanella A, Grasselli G. Respiratory mechanics to understand ARDS and guide mechanical ventilation. Physiol Meas. 2017;38(12):R280-H303.
4. Pesenti A, Pelosi P, Rossi N, Virtuani A, Brazzi L, Rossi A. The effects of positive end-expiratory pressure on respiratory resistance in patients with the adult respiratory distress syndrome and in normal anesthetized subjects. Am Rev Respir Dis. 1991;144(1):101-7.
5. Pelosi P, Cereda M, Foti G, Giacomini M, Pesenti A. Alterations of lung and chest wall mechanics in patients with acute lung injury: effects of positive end-expiratory pressure. Am J Respir Crit Care Med. 1995;152(2):531-7.
6. Blanch L, Lucangelo U, Lopez-Aguilar J, Fernandez R, Romero PV. Volumetric capnography in patients with acute lung injury: effects of positive end-expiratory pressure. Eur Respir J. 1999;13(5):1048-54.
7. Talmor D, Sarge T, Malhotra A, O'Donnell CR, Ritz R, Lisbon A, et al. Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med. 2006;359(20):2095-104.
8. Akoumianaki E, Maggiore SM, Valenza F, Bellani G, Jubran A, Loring SH, Pelosi P, Talmor D, Grasso S, Chiumello D, Guérin C, Patroniti N, Ranieri VM, Gattinoni L, Nava S, Terragni PP, Pesenti A, Tobin M, Mancebo J, Brochard L; PLUG Working Group (Acute Respiratory Failure Section of the European Society of Intensive Care Medicine). The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014;189(5):520-31.
9. Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301-8.
10. Bernard G, Artigas A, Brigham KL, Carlet J, Falke J, Hudson L, et al. The role of total static lung compliance in the management of severe ARDS unresponsive to conventional treatment. Intensive Care Med. 1984;10(3):121-6.
11. Bernard G, Artigas A, Brigham KL, Carlet J, Falke J, Hudson L, et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994;149(3 Pt 1):818-24.
12. Coffey RL, Albert RK, Robertson HT. Mechanics of physiological dead space response to PEEP after acute oleic acid lung injury. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(5):1550-7.