PECULIAR VELOCITIES OF NONLINEAR STRUCTURE: VOIDS IN McVITTIE SPACETIME

Nobuyuki Sakai
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan; sakai@yukawa.kyoto-u.ac.jp

AND

Paul Haines
Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755

Received 1999 September 10; accepted 2000 January 13

ABSTRACT

As a study of peculiar velocities of nonlinear structure, we analyze the model of a relativistic thin-shell void in the expanding universe. First, adopting McVittie (MV) spacetime as a background universe, we investigate the dynamics of an uncompensated void with negative MV mass. Although the motion itself is quite different from that of a compensated void, as shown by Haines & Harris, the present peculiar velocities are not affected by MV mass. Second, we discuss how precisely the formula in the linear perturbation theory applies to nonlinear relativistic voids, using the results of our first investigation as well as previous results for the homogeneous background (Sakai, Maeda, & Sato). Third, we reexamine the effect of the cosmic microwave background radiation. Contrary to the results of Pim & Lake, we find that the effect is negligible. We show that their results are due to inappropriate initial conditions. Our results in the three parts of our study suggest that the formula in the linear perturbation theory is approximately valid even for nonlinear voids.

Subject headings: cosmology: theory — large-scale structure of universe — relativity

1. INTRODUCTION

Measurements of large-scale peculiar velocities can provide a constraint on the universe model (see, e.g., Zehavi & Dekel 1999). In contrast to other cosmological tests, they give a constraint on the density parameter \(\Omega_0 \) alone, almost independent of the cosmological constant \(\lambda_0 \) (Carroll, Press, & Turner 1992).

Although the relation between the peculiar velocity and the density parameter \(\Omega_0 \) is usually given in the linear perturbation theory (LPT) (Peebles 1976), the observed universe has nonlinear density profiles. In fact, a network of nonlinear voids filling the entire universe has been suggested by redshift surveys such as the CfA2 (Geller & Huchra 1989) and the SSRS2 (da Costa et al. 1994). Moreover, using such redshift surveys, the description of a void-filling universe was confirmed quantitatively (El-Ad & Piran 1997; El-Ad, Piran, & da Costa 1996, 1997). The relation between \(\Omega_0 \) and peculiar velocities inside underdense regions suggests \(\Omega_0 \leq 0.3 \) can be ruled out at the 2.4 \(\sigma \) level Dekel & Rees (1994).

It is therefore important to investigate peculiar velocities of nonlinear void structure. Here we consider the model of a relativistic thin-shell void. The expansion law of relativistic voids was investigated originally by Maeda & Sato (1983a, 1983b), developing the metric junction method proposed by Israel (1966). They found analytically that, in the flat universe, the shell radius \(R \) expands asymptotically as \(R \propto t^{15 + \sqrt{77}/24} \approx t^{0.797} \) Maeda & Sato (1983a). For the self-similar void model, on the other hand, Bertschinger (1985) obtained the solution with \(R \propto t^{0.8} \). The difference between the two results is so small that we do not have to care which model is better, which is physically determined by the radiative process in the shell. For other universe models, the motion of the shell was calculated numerically Maeda & Sato (1983b): in the open universe, the shell expansion is eventually frozen to the background expansion; on the other hand, in the closed universe, the shell expands much faster and its velocity finally approaches the speed of light. The relation between the peculiar velocity of the shell and the universe model was later investigated systematically (Sakai, Maeda, & Sato 1993).

Lake and Pim extended the work of Maeda and Sato so as to include a mass inside a void (Lake & Pim 1985) and the cosmic microwave background (CMB) radiation (Pim & Lake 1986, 1988). In particular, they claimed that the inclusion of radiation has significant quantitative and qualitative effects on the evolution of the void. It was shown, for instance, that the asymptotic behavior of the shell is \(R \propto t \) in the flat universe if the CMB radiation is included (Pim & Lake 1986). This result is in contrast to that for the vacuum void \((R \propto t^{0.8}) \), and hence quite surprising.

Haines & Harris (1993), on the other hand, included a mass outside a void by employing the McVittie (1966, hereafter MV) metric instead of the Friedman-Robertson-Walker (FRW) metric. The MV metric approximates a spherical mass embedded in an asymptotically FRW spacetime. “MV mass” represents the degree to which the void is not compensated by the mass of the shell. Haines & Harris demonstrated the history of the shell in the flat MV spacetime, showing that the negative MV mass acts to accelerate the shell expansion.

In this paper we extend the previous work to clarify the following points.

1. Peculiar velocities of uncompensated void, which is characterized by negative MV mass. Although Haines & Harris (1993) discussed the dynamics of voids with nonzero MV mass, the effect of MV mass on the peculiar velocity is not clear. It is important to see it because there is no evidence that actual voids have the shells with compensated mass. For example, if voids originate from primordial bubbles that are nucleated in a phase transition during inflation (see, e.g., Amendola et al. 1996), it is unlikely that voids have compensated shells.

515
2. The relation between Ω_0 and peculiar velocities was derived in LPT (Peebles 1976). It is important to see how precisely the formula applies to nonlinear relativistic voids. We address this question, using the results obtained in item 1 above, as well as the previous results (Sakai, Maeda, & Sato 1993).

3. As we mentioned above, Pim & Lake (1986, 1988) arrived at the surprising conclusion that the effect of CMB radiation is significant. If it is true, we should take it into account seriously when we constrain the cosmological parameters from the observation of bulk flow. Therefore, their result deserves closer examination.

This paper is organized as follows. In § 2 we present the relativistic equations of motion for a thin shell in MV spacetime, which will be solved later numerically. In § 3 we investigate how the peculiar velocity changes due to MV mass for uncompensated voids. In § 4 we compare the results for the present model and those in the LPT. In § 5 we examine the effect of the CMB radiation on the void evolution. These results are summarized in § 6.

2. BASIC EQUATIONS

2.1. McVittie Spacetime

The spacetime described by the MV metric has several useful properties:

1. The near-field limit is Schwarzschild, in isotropic coordinates.
2. The far field is a FRW spacetime.
3. The energy-momentum tensor has a perfect-fluid form.

It is an exact embedding of the Schwarzschild metric into the FRW metric.

The line element is

$$ds^2 = -\left(\frac{1-h}{1+h}\right)^2 dt^2 + a^2(t)(1+h)^4 [d\chi^2 + f(\chi)(d\theta^2 + \sin^2 \theta \, d\varphi^2)] ,$$ \hspace{1cm} (2.1)

where

$$f(\chi) \equiv \begin{cases} \sin \chi & (k = +1), \\ \chi & (k = 0), \\ \sinh \chi & (k = -1) , \end{cases}$$ \hspace{1cm} (2.2a)

and

$$h \equiv \frac{m}{4a(t)f(\chi)/2} .$$ \hspace{1cm} (2.2b)

The Einstein equations yield

$$\frac{8\pi G\rho}{3} = H^2 + \frac{k}{a^2(1+h)^5} ,$$ \hspace{1cm} (2.3)

$$8\pi Gp = \frac{1}{1-h} \left[-\frac{2(1+h)}{a} \frac{d^2a}{dt^2} - (1-5h)H^2 - \frac{k}{a^4(1+h)^5} \right] ,$$ \hspace{1cm} (2.4)

where ρ and p are the energy density and the pressure, respectively, which are inhomogeneous in general. $H \equiv (da/dt)/a$ is the Hubble parameter at $\chi \to \infty$. m is a constant and is called the MV mass. The $h \to 0$ limit is clearly FRW, while the Schwarzschild solution is recovered by $a \to 1$. If $k = 0$ or -1, the scale factor $a(t)$ always takes the Friedmann solution.

To see the meaning of the MV mass, let us calculate the local gravitational mass defined by Misner & Sharp (1964):

$$M \equiv \frac{R}{2G} \left(1 - \rho^{\alpha \nu} \partial_{\nu} R \partial_\alpha R \right) \quad \text{with} \quad R \equiv \sqrt{g_{\theta \theta}} .$$ \hspace{1cm} (2.5)

For each k we find

$$M(R) = \frac{4\pi}{3} \rho R^3 + my(\chi) \quad \text{with} \quad y(\chi) \equiv \begin{cases} \cos^5 \left(\chi/2\right) & (k = +1) , \\ 1 & (k = 0) , \\ \cosh^5 \left(\chi/2\right) & (k = -1) . \end{cases}$$ \hspace{1cm} (2.6)

As long as the void's size is much smaller than the horizon scale, $\chi \ll 1$ and $y(\chi) \approx 1$ for any background model. In this limit, we may therefore interpret the MV mass as approximately the Misner-Sharp mass minus the background mass $(4\pi/3)\rho R^3$.

For a thorough discussion of the MV metric, its history, and its place among inhomogeneous models, see Krasinski (1997).

2.2. Junction Conditions

Let us derive the equations of motion for a spherical shell around a void, by developing the thin-shell formalism of Israel (1966). The basic equations for the shell in the flat MV spacetime were given by Haines & Harris (1993). Here we rewrite the equations in a simpler form, which also describes the shell in a closed or open background, by extending the equations of
(Sakai, Maeda, & Sato 1993). Because we are interested only in the effect of the outer MV mass, we assume the inside region to be homogeneous throughout the paper.

Let a timelike hypersurface Σ, which denotes the world hypersurface of a spherical shell, divide a spacetime into two regions, V^+ (outside) and V^- (inside). We define a unit spacelike vector N_{μ}, which is orthogonal to Σ and pointing from V^- to V^+. It is convenient to introduce a Gaussian normal coordinate system $(n, x^i)^1$ in such a way that the hypersurface of $n = 0$ corresponds to Σ. From the assumption that a shell is infinitely thin, the surface energy-momentum tensor of the shell is defined as

$$S_{\mu\nu} \equiv \lim_{\epsilon \to 0} \int_{-\epsilon}^{\epsilon} T_{\mu\nu}^0 \, dn$$ \hspace{1cm} (2.7)

Using the extrinsic curvature tensor of the hypersurface of the shell, $K_{ij} \equiv N_{(i} \partial_{j)}$, and the Einstein equations, we can write down the jump conditions on the shell as Berezin, Kuzmin, & Tkachev (1987)

$$[K_{ij}]^\pm = -8\pi G [S_{ij} - \frac{1}{2} h_{ij} \text{Tr} S]$$, \hspace{1cm} (2.8)

$$S_{ij} \mid_{\Sigma} = \left[T^\pm_{ij} \right]$$, \hspace{1cm} (2.9)

$$\frac{K_{ij}^+ + K_{ij}^-}{2} S_{ij}^\prime = \left[T^\pm_{ij} \right]$$, \hspace{1cm} (2.10)

where h_{ij} denotes the 3-metric of Σ, and the vertical bar in equation (2.9) denotes the covariant derivative with respect to h_{ij}. We have denoted the value of any field variable Ψ on Σ on the side of V^\pm by Ψ^\pm and defined a bracket as $[\Psi]^\pm \equiv \Psi^+ - \Psi^-$. Eliminating K_{ij} from equations (2.8) and (2.10), we can derive the equation Berezin et al. (1987):

$$K_{ij}^+ S_{ij}^\prime + 4\pi G [S_{ij}^\prime - \frac{1}{2} (\text{Tr} S) S_{ij}] = \left[T^\pm_{ij} \right]$$ \hspace{1cm} (2.11)

If the outer region is homogeneous, equation (2.11) leads to a simple expression of the basic equation, because it does not contain the metric in V^-. Let a timelike hypersurface V^- be homogeneous throughout the paper.

The line elements in V^+ and in V^- are described by

$$ds^2 = -\left(\frac{1-h}{1+h}\right)^2 dt^2 + a^2(t_+)(1+h)^2 [d\chi^2 + (\chi_+)^2 d\theta^2 + \sin^2 \theta d\varphi^2]$$, \hspace{1cm} (2.13)

$$ds^2 = -dt^2 + a^2(t_-)(d\chi_-^2 + f^2(\chi_-) d\theta^2 + \sin^2 \theta d\varphi^2)$$, \hspace{1cm} (2.14)

The direct calculation of K_{ij}^- yields Sakai & Maeda (1993a)

$$K_{\theta}^\phi = \gamma_- (f_- + v_- H_- R)$$, \hspace{1cm} (2.15)

where the circumference radius of the shell R, the peculiar velocity of the shell v_-, and its Lorentz factor γ_- are defined as

$$R \equiv a_+ f_+ = a_+ f_-, \hspace{1cm} v_- \equiv a_- \frac{d\chi_-}{dt_-}, \hspace{1cm} \gamma_- \equiv \frac{1}{\sqrt{1 - v_-^2}}$$ \hspace{1cm} (2.16)

Similarly, v_+ and γ_+ in the MV spacetime are defined as

$$v_+ \equiv \frac{a_+(1+h)^3}{1-h} \frac{d\chi_+}{dt_+} \hspace{1cm} \text{and} \hspace{1cm} \gamma_+ \equiv \frac{1}{\sqrt{1 - v_+^2}}$$ \hspace{1cm} (2.17)

As energy-momentum tensors, we consider perfect fluid on Σ and in V^\pm, i.e.,

$$S_{\mu\nu} = (\sigma + \omega) u^\pm_{\mu} v^\pm_{\nu} + \omega h_{\mu\nu}$$, \hspace{1cm} (2.18)

$$T^\pm_{\mu\nu} = (\rho^\pm + p^\pm) u^\pm_{\mu} u^\pm_{\nu} + pg_{\mu\nu}$$, \hspace{1cm} (2.19)

1 In this paper, greek letters run from 0 to 3, while latin letters run 0, 2, 3.
where σ, ν, v_ν, and u_ν are the surface density, the surface pressure, the 4-velocity of the shell, and the 4-velocity of the background fluid, respectively. In the Gaussian normal coordinate system, we have

$$T_{n^\pm} = \gamma^2(v^2\rho + p)^\pm, \quad T_{i^\pm} = \gamma^2v(\rho + p)^\pm. \quad (2.20)$$

Now, with the help of equations (2.15), (2.18), and (2.20), we can write down equations (2.9) and (2.12) explicitly as

$$\gamma - \frac{d\sigma}{dt} = -2\gamma - \frac{dR}{dt} \frac{\sigma + \sigma}{R} + \frac{[\gamma(v^2\rho + p)]^\pm}{\sigma}, \quad (2.21)$$

$$\gamma^2 \frac{dv^-}{dt} = -\gamma \left[(1 - 2\frac{\sigma}{\sigma})v^- H_\pm - \frac{2f^\pm}{\sigma} \right] - 2\pi G(\sigma + 4\nu) - \frac{[\gamma^2(v^2\rho + p)]^\pm}{\sigma}. \quad (2.22)$$

The relation between dR/dt_- and v_- is given by

$$\frac{dR}{dt_-} = f'\nu - H_\nu. \quad (2.23)$$

Further, the conditions of the continuity of the metric,

$$d\tau^2 = \left(1 - \frac{h}{1 + h}\right)^2 dt_\pm^2 - a_\pm(t_\pm)(1 + h)^2d\chi_\pm^2 = dt_-^2 - a_\pm(t_-)d\chi_-^2, \quad (2.24)$$

$$\frac{dR}{d\tau} = \frac{d}{d\tau} [(1 + h)^2a_+ f_+] = \frac{d}{d\tau} (a_- f_-), \quad (2.25)$$

reduce to

$$\frac{dt_+}{dt_-} = \frac{1 + h}{1 - h} \frac{\gamma_+}{\gamma_-}, \quad (2.26)$$

$$\gamma_+ \left[f'_+ + \frac{2hf_+}{1 + h} + v_+ H_+ R \right] = \gamma_-(f'_- + v_- H_- R) = -4\pi G\sigma R, \quad (2.27)$$

The equations of motion for the shell are determined by equations (2.21), (2.22), and (2.23). We use the above supplementary equations (2.26) and (2.27) to give t_+ and v_+, respectively; they are used at the initial time as well as at each step of time evolution.

The angular component of the jump condition (2.8),

$$\gamma_+ \left[f'_+ + \frac{2hf_+}{1 + h} + v_+ H_+ R \right] - \gamma_- (f'_- + v_- H_- R) = -4\pi G\sigma R, \quad (2.28)$$

gives a constraint for the relation between the surface density σ and MV mass m. We use it for giving initial data as well as for checking numerical errors of integration. For integration we adopt the fourth-order Runge-Kutta method. Throughout the analysis we did not encounter any numerical problem: the relative errors of equation (2.28) were always less than 10^{-13}.

The equations of motion presented here and by Sakai, Maeda, & Sato (1993) have several advantages compared with the equations derived in other papers. First, the expression is much simpler. Second, there is no sign ambiguity in the relation between t_+ and t_- (eq. [2.26]), contrary to the comment by Pim & Lake (1986). Third, our expression for the extrinsic curvature K^θ_θ (eq. [2.15]), can take both positive and negative values without ambiguity. Although our equations make numerical integration easier, they may not be so convenient for analytic arguments.

3. Peculiar Velocities of Uncompensated Voids

Here we consider only dust as matter fluid:

$$p_\infty = 0 \quad \text{and} \quad \nu_\infty = 0, \quad (3.1)$$

where the subscript ∞ denotes quantities at $\chi_\infty \to \infty$. A compensated void simply means $m = 0$, i.e., the background is described by the FRW metric. On the other hand, an uncompensated void is characterized by a negative MV mass. Here we fix the value of m by supposing no shell ($\sigma = 0$) at the initial time t_i. The initial time t_i is a free parameter, which is determined by the structure formation model; in the following we set t_i as the decoupling time, i.e., $z_i = 1000$. The remaining initial parameters are fixed as follows:

$$v_i^+ = 0, \quad R_i H_i^+ = 0.1, \quad H_i^+ = H_i^-, \quad \rho_i^- = 0, \quad \Omega_i \equiv \frac{8\pi G\rho_i^+}{3H_i^2} = 1 \quad \text{or} \quad 0.98. \quad (3.2)$$

Figure 1a shows the motion of the shell in terms of the comoving coordinate χ. As shown by Haines & Harris (1993), negative MV mass pushes the shell faster. Although Figure 1a indicates that the effect of MV mass looks quite large, the
behavior of χ is not observable. What we can observe is the radius and velocity of the shell at the present epoch. We thus plot the peculiar velocity normalized by the Hubble expansion,

$$\tilde{v} \equiv \frac{v}{HR},$$

in Figure 1b. The asymptotic behavior is determined by Ω_0, independent of MV mass. Figure 2 reports the relation between \tilde{v}_0 and Ω_0, which confirms that \tilde{v}_0 does not depend on whether the void is compensated or not.

4. COMPARISON WITH LINEAR PERTURBATION THEORY

In this section we discuss the relation between Ω_0 and \tilde{v}_0, comparing the results in the relativistic void model and those in LPT.
The peculiar velocity \(v \) for general density fluctuations in LPT is Peebles (1976)

\[
v = \frac{2Fg}{3H\Omega} \quad \text{with} \quad F \approx \Omega^{0.6},
\]

where \(g \) is the peculiar gravitational acceleration. For a spherically symmetric system, the gravitational acceleration is given by

\[
g(R) = -\frac{G\delta M(R)}{R^2},
\]

where \(\delta M(R) \) is the difference between the mass within a sphere and the unperturbed mass within the sphere with the same radius \(R \).

For the void model, \(\delta M(R) \) depends on whether we measure it just inside the shell \((R = R_-)\) or just outside it \((R = R_+)\):

\[
\delta M(R_-) = -\frac{4\pi}{3}(\rho^+ - \rho^-)R^3, \quad \delta M(R_+) = -\frac{4\pi}{3}(\rho^+ - \rho^-)R^3 + 4\pi\sigma R^2.
\]

It is therefore reasonable to define the mass difference as the average:

\[
\delta M(R) = \frac{\delta M(R_+) + \delta M(R_-)}{2} = -\frac{4\pi}{3}(\rho^+ - \rho^-)R^3 + 2\pi\sigma R^2.
\]

On the other hand, one of the junction conditions (eq. [2.28]) can be rewritten as

\[
e^+ \sqrt{1 + \left(\frac{dR}{d\tau}\right)^2 - \frac{8\pi G\rho^+}{3} R^2} - \frac{2G\rho}{R} - e^- \sqrt{1 + \left(\frac{dR}{d\tau}\right)^2 - \frac{8\pi G\rho^-}{3} R^2} = -4\pi G\sigma,
\]

where \(e^\pm \equiv \text{sign} K_y^\pm \). In the Newtonian approximation, \((dR/d\tau)^2 \ll 1, y(\chi) \approx 1, \) and \(e^\pm = +1 \), equation (4.5) reduces to mass conservation:

\[
m + \frac{4\pi}{3}(\rho^+ - \rho^-)R^3 = 4\pi\sigma R^2.
\]

From equations (3.3), (4.1), (4.2), (4.4), and (4.6), we obtain

\[
\dot{\tilde{v}} = \frac{\Omega^{0.6}}{6} \left(1 - \frac{\rho^-}{\rho^+} - \frac{m}{4\pi\rho^+ R^3/3}\right).
\]

For compensated voids \((m = 0)\), equation (4.7) reduces to a simple expression:

\[
\dot{\tilde{v}} = \frac{\Omega^{0.6}}{6} \left(1 - \frac{\rho^-}{\rho^+}\right).
\]
For uncompensated voids ($\sigma_i = 0$), on the other hand, equations (4.7) and (4.6) and $\rho^+ a_i^+ = \text{constant}$ read

$$\tilde{v} = \Omega_0^{0.6} \left(1 - \frac{\rho^-}{\rho^+}\right) \left(1 + \left(\frac{r_i^+}{r_+}\right)^3\right).$$ \hspace{1cm} (4.9)

Figure 3 shows plots of \tilde{v}_0 versus Ω_0 for compensated voids, where the subscript zero denotes quantities at the present. (The details of the analysis for the homogeneous background were given by Sakai et al. (1993). In the linear case (a), our numerical result is in good accordance with the result in LPT. Even in the nonlinear case (b), the difference between the two results is relatively small (up to 10%).

Let us turn to the case of uncompensated voids. Obviously the term $(r_i^+/r_+)^3$ in equation (4.9) represents the effect of the MV mass: as the comoving radius r increases, the effect of the MV mass decreases. This argument explains the result that the eventual behavior of \tilde{v} does not depend on the MV mass, as shown in Figure 1b.

5. EFFECT OF CMB RADIATION WITHIN A VOID

As we mentioned in § 1, Pim & Lake (1986, 1988) showed that, if we include CMB radiation, the shell expands much faster than that in the absence of radiation, and that its asymptotic behavior is $R \propto t$ even in the flat universe. Here we reexamine the effect of radiation in the flat FRW background: $m = 0$ and $k^+ = 0$.

First, let us reproduce the results of Pim & Lake (1986). As background matter, a mixture of dust (ρ_d^+) and blackbody radiation (ρ_r^+) is considered:

$$\rho^+ = \rho_d^+ + \rho_r^+ = \rho_0 \equiv \frac{3H_0^2}{8\pi G}, \quad p^+ = \frac{\rho_0}{3}.$$ \hspace{1cm} (5.1)

Setting the present temperature and Hubble parameter as $T_0 = 2.7K$ and $H_0^+ = 100 \text{ km s}^{-1} \text{ Mpc}^{-1}$ and then using the relation

$$\rho_r^+ = \frac{8\pi^5 k_B^4 T^4}{15 \hbar^3 c^3},$$ \hspace{1cm} (5.2)

the background model is completely fixed. The interior is assumed to be the flat FRW spacetime with radiation only, of which abundance (ρ_r^-) is characterized by a parameter,

$$\alpha \equiv \left(\frac{\rho_r^-}{\rho_r^+}\right).$$ \hspace{1cm} (5.3)

For matter fluid on the shell, they assume that the equation of state has a form $w = \epsilon \sigma$. In one of their calculations, the initial parameters are fixed as follows:

$$z_i = 1000, \quad v_i^+ = 0.1, \quad R_i H_i^+ = 0.1, \quad \epsilon = 0, \quad k_+ = 0, \quad \alpha = 10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, \text{ or } 10^{-5}.$$ \hspace{1cm} (5.4)
Integrating the equations of motion in § 2, we obtain the result in Figure 4a, which is the reproduction of Figure 5 of Pim & Lake (1986).

This figure tells us that, no matter how little radiation exists, it affects the shell’s motion significantly. Because this result was surprising to us, we examine their analysis. As a result, we find that their assumption of \(k^z = 0 \) was inappropriate for the following reason. If \(k^z = 0 \) and \(\rho^+ > \rho^- \), the Friedman equation reads \(H^+ > H^- \). As Sato (1982) and Sato & Maeda (1983) argued, however, a thin shell is formed by compression of matter like a snowplow mechanism when the inner expansion is faster than the background expansion, i.e., \(H^- < H^+ \). Therefore, the assumption of \(k^z = 0 \) is inconsistent with the thin-shell description. If we still used the thin-shell equations for the case where the shell expands faster than the interior matter fluid, a part of the shell mass would be forced to “evaporate” so as to keep the inside homogeneous, i.e., the shell would emit mass and accelerate, which seems unphysical. This explains the odd behavior in Figure 4a.

Here we reanalyze voids with CMB radiation. Although the exact value of \(H^+_i / H^+_i \) cannot be determined without knowing the formation process, the consistency with thin shell requires \(H^- \geq H^+ \). Because we still assume the background universe to be flat, the inside region should be open. Adopting \(H^+_i = H^-_i \) instead of \(k^z = 0 \) and leaving the other conditions unchanged, we solve the equation of motion. The result is reported in Figure 4b, showing that the effect of radiation is much smaller.

We should note, however, that it is not so fruitful to investigate further details of the motion of voids including radiation in this approach. Because we do not know the physical process of radiation around the shell, the equation of state (e) is not determined; furthermore, even the validity of the thin-shell approximation is not clear. What we can conclude is that, under the condition that the thin-shell approximation is valid, the effect of CMB radiation on void expansion is negligible.

6. SUMMARY

As a model of nonlinear structure, we have considered a relativistic void in the expanding universe, and discussed peculiar velocities.

1. In order to investigate the dynamics of shells with uncompensated mass, we have adopted McVittie spacetime as a background universe. Although the motion itself is quite different from that of a compensated void, as shown by Haines & Harris (1993), the present peculiar velocities are unaffected by the MV mass.

2. We discuss the relation between \(\Omega_0 \) and peculiar velocities, comparing the results in the present model with those in the linear perturbation theory. For nonlinear voids, the quantitative difference between these two results is up to 10%, which is relatively small.

3. Because Pim & Lake (1986, 1988) arrived at the surprising conclusion that the effect of a small amount of CMB radiation is significant, we have reexamined their results. We have shown that these results are due to inappropriate initial conditions. With modified initial conditions, the effect of radiation turns out to be negligible.

Although we have investigated only specific models of nonlinear structure, our results (1)–(3), as a whole, indicate that the formula for peculiar velocities in the linear perturbation theory can apply approximately to nonlinear voids.

Numerical Computation of this work was carried out at the Yukawa Institute Computer Facility. N. S. was supported by JSPS Research Fellowships for Young Scientists, No. 9702603.

REFERENCES

Amendola, L., Baccigalupi, C., Konoplick, R., Occhionero, F., & Rubin, S. 1996, Phys. Rev. D, 54, 7199
Berezin, V. A., Kuzmin, V. A., & Tkachev, I. I. 1987, Phys. Rev. D, 36, 2919
Bertschinger, E. 1985, ApJS, 58, 1
Carroll, S. M., Press, W. H., & Turner, E. L. 1992, ARA&A, 30, 499
da Costa, L. N., et al. 1994, ApJ, 424, L1
Dekel, A., & Rees, M. J. 1994, ApJ, 422, L1
El-Ad, H., & Piran, T. 1997, ApJ, 491, 421
El-Ad, H., Piran, T., & da Costa, L. N. 1996, ApJ, 462, L13
---. 1997, MNRAS, 287, 790
Geller, M. J., & Huchra, J. P. 1989, Science, 246, 897
Haines, P., & Harris, J. D. 1993, ApJ, 418, 579
Israel, W. 1966, Nuovo Cimento, 44B, 1
Krasinski, A. 1997, Inhomogeneous Cosmological Models (Cambridge: Cambridge Univ. Press)
Lake, K., & Piran, R. 1985, ApJ, 298, 439
Maeda, K., & Sato, H. 1983a, Prog. Theor. Phys., 70, 772
---. 1983b, Prog. Theor. Phys., 70, 1273
McVittie, C. G. 1966, ApJ, 143, 682 (MV)
Misner, C. W., & Sharp, D. H. 1964, Phys. Rev., 136, B571
Peebles, P. J. E. 1976, ApJ, 205, 318
Pim, R., & Lake, K. 1986, ApJ, 304, 75
---. 1988, ApJ, 330, 625
Sakai, N., & Maeda, K. 1993a, Prog. Theor. Phys., 90, 1001
---. 1993b, Phys. Rev. D, 48, 5570
Sato, H. 1982, Prog. Theor. Phys., 68, 236
Sato, H., & Maeda, K. 1983, Prog. Theor. Phys., 89, 1193
Sato, H. 1982, Prog. Theor. Phys., 68, 236
Sato, H., & Maeda, K. 1983, Prog. Theor. Phys., 70, 119
Zehavi, I., & Dekel, A. 1999, Nature, 401, 252