Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz

James E. Wilhelm, 1 Meredith Hilton, 1 Quinlan Amos, 1 and William J. Henzel 2

1 Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21210
2 Genentech, Inc., South San Francisco, CA 94080

In Drosophila oocytes, precise localization of the posterior determinant, Oskar, is required for posterior patterning. This precision is accomplished by a localization-dependent translational control mechanism that ensures translation of only correctly localized oskar transcripts. Although progress has been made in identifying localization factors and translational repressors of oskar, none of the known components of the oskar complex is required for both processes. Here, we report the identification of Cup as a novel component of the oskar RNP complex. cup is required for oskar mRNA localization and is necessary to recruit the plus end–directed microtubule transport factor Barentsz to the complex. Surprisingly, Cup is also required to repress the translation of oskar. Furthermore, eukaryotic initiation factor 4E (eIF4E) is localized within the oocyte in a cup-dependent manner and binds directly to Cup in vitro. Thus, Cup is a translational repressor of oskar that is required to assemble the oskar mRNA localization machinery. We propose that Cup coordinates localization with translation.

Introduction

Localization of mRNAs is used by many polarized cells as a means of restricting the distribution of a protein to a particular cytoplasmic domain. One of the most extensively characterized systems for studying mRNA localization is the Drosophila oocyte (Bashirullah et al., 1998; Johnstone and Lasko, 2001). The basic unit of Drosophila oogenesis is the egg chamber, which is comprised of an oocyte and 15 nurse cells surrounded by a layer of somatic follicle cells. The oocyte is connected to the nurse cells by a network of cytoplasmic bridges called ring canals. This network allows the nurse cells to synthesize various mRNAs that are required for early embryogenesis and transport them in a microtubule-dependent manner to discrete locations within the oocyte (Pokrywka and Stephenson, 1995). The correct localization of oskar mRNA to the posterior pole is particularly crucial for development since this localization is essential for both posterior patterning and establishment of the germ line (Ephrussi et al., 1991). During early oogenesis (stages 1–6), oskar mRNA accumulates at the posterior pole of the oocyte where the minus ends of the microtubule array are concentrated (Fig. 1 A) (Ephrussi et al., 1991; Kim-Ha et al., 1991; Theurkauf et al., 1993). At stages 7 and 8, the microtubules reorganize so that microtubule nucleation occurs over most of the oocyte cortex with the majority of the minus ends being concentrated at the anterior of the oocyte (Fig. 1 A) (Cha et al., 2002). Tracking the minus ends of the microtubules, oskar mRNA transiently localizes to the anterior of the oocyte during these stages (Ephrussi et al., 1991; Kim-Ha et al., 1991). During stages 9 and 10, however, oskar mRNA transits back to the posterior pole in a plus end–directed transport step that requires kinesin heavy chain (khc) (Fig. 1 A) (Brendza et al., 2000). Once oskar mRNA reaches the posterior pole it is translated (Fig. 1 A). The mechanism for coupling translational activation to completion of the last step in oskar mRNA localization has remained elusive.

One general model for how coupling of localization and translation might occur is that there are factors common to both the localization and translational control complexes that are required to coordinate the completion of localization with translational activation. Mutations in a gene product that is common to both complexes might be predicted to

The online version of this article includes supplemental material.

Address correspondence to James Wilhelm, Department of Embryology, Carnegie Institution of Washington, 115 West University Parkway, Baltimore, MD 21210. Tel.: (410) 554-8192. Fax: (410) 243-6311. email: wilhelm@ciwemb.edu

Key words: oskar mRNA; oogenesis; Drosophila; Barentsz; eIF4E binding protein

Abbreviations used in this paper: Btz, Barentsz; eIF4E, eukaryotic initiation factor 4E; Exu, Exuperantia; Yps, Ypsilon Schachtel.
cause mislocalization of *oskar* mRNA and premature translation of the *oskar* message. However, mutants that disrupt *oskar* mRNA localization typically have phenotypes similar to those observed in *barentsz* (*btz*) mutants: failure of plus end-directed transport of the *oskar* message during stages 9 and 10, resulting in a complete lack of *oskar* translation (van Eeden et al., 2001). Conversely, a number of translational repressors of *oskar* mRNA (e.g., *BicC*, *bruno*, *ME31B*) have been identified, but their effects on *oskar* mRNA localization appear to be limited (Kim-Ha et al., 1995; Saffman et al., 1998; Nakamura et al., 2001). For instance, mutating all of the Bruno response elements in the *oskar* 3’UTR causes premature translation of *oskar* at stages 7 and 8, but does not interfere with *oskar* mRNA localization (Kim-Ha et al., 1995). Thus, although a number of components are known to be required for either localization or translational repression, no component isolated to date appears to be a part of both complexes.

To identify new components of the *oskar* RNP complex, we previously purified an eight-protein complex that contains *oskar* mRNA (Wilhelm et al., 2000). In this study, we identify the 147-kD protein of this complex as Cup. To confirm that Cup is a bona fide component of the *oskar* RNP complex, we immunoprecipitated both GFP-Exu and Yps and immunoblotted with α-Cup antibody. Cup specifically coimmunoprecipitates with both GFP-Exu and Yps, demonstrating that Cup is a component of the complex (Fig. 1 B).

Cup was originally identified as a female sterile mutation that forms eggs that are open at the anterior due to a failure in chorion deposition at the anterior of the oocyte (Schupbach and Wieschaus, 1991; Keyes and Spradling, 1997). This previous work established that Cup is a cytoplasmic protein that is localized early to the oocyte (Keyes and Spradling, 1997). Since Cup copurifies with components of an *oskar* RNP complex, we decided to examine the distribution

Results and discussion

Cup is a component of the *oskar* RNP complex

To identify novel components that play a role in either localization or translational regulation of *oskar* mRNA, we previously purified an *oskar* RNP complex that contains Exuperantia (Exu), Ypsilon Schachtel (Yps), and six unidentified proteins (Wilhelm et al., 2000). Using mass spectrometry, we identified the 147-kD protein of this complex as Cup. To confirm that Cup is a bona fide component of the *oskar* RNP complex, we immunoprecipitated both GFP-Exu and Yps and immunoblotted with α-Cup antibody. Cup specifically coimmunoprecipitates with both GFP-Exu and Yps, demonstrating that Cup is a component of the complex (Fig. 1 B).
of Cup during oogenesis in more detail. Immunostaining of different stage egg chambers (see Spradling, 1993, for staging) revealed that Cup accumulates at the posterior of the oocyte during stages 1–6, consistent with previously published results (Fig. 1 C) (Keyes and Spradling, 1997). At stages 7 and 8, Cup was localized to the anterior of the oocyte (Fig. 1 D), followed by redistribution to the posterior of the oocyte during stages 9 and 10 (Fig. 1 E). Thus, Cup copurifies with components of the oskar RNP complex and is localized within the oocyte in a temporal–spatial pattern identical to that of oskar mRNA.

One of the rationales for using GFP-Exu as a biochemical handle for the purification of localization complexes is that GFP-Exu forms particles in nurse cells that move in a microtubule-dependent manner (Theurkauf and Hazelrigg, 1998). Previously, we demonstrated that Yps, which

Figure 2. *Cup mutations specifically disrupt oskar mRNA localization and Btz recruitment.* Localization of *oskar* mRNA in ovaries from *yw* females during stage 4 (A), stage 7 (B), and stage 10 (C). Localization of *oskar* mRNA in *cup1/cup4506* females during stage 5 (D), stage 8 (E), and stage 9 (F). *oskar* mRNA is distributed along the cortex of the oocyte in stages 8–10 in *cup1/cup4506* egg chambers. (G) Btz (green) is localized to the nuclear envelope as well as the posterior pole of the oocyte (arrow) in *yw* egg chambers. (H) In *cup1/cup4506* egg chambers, Btz accumulates at the nuclear envelope, but is only weakly present at the posterior pole of the oocyte (arrow). Yps (green) is localized normally to the posterior pole of the oocyte in both *yw* (I) and *cup1/cup4506* (J) egg chambers. Actin is in red. Bars, 10 μm.
binds directly to Exu, localizes to these motile particles (Wilhelm et al., 2000). To determine if Cup is also a component of these particles, we immunostained egg chambers for both Cup and Yps. The particulate staining observed for both Cup and Yps in the nurse cells showed a high degree of overlap, indicating that Yps and Cup are part of the same particles in vivo (Fig. 1 F–H). Recently, a novel component of the oskar mRNA localization machinery, Btz, was identified that has a staining pattern that is strikingly similar to that of Cup (van Eeden et al., 2001). We immunostained egg chambers for both Cup and Btz to determine if they were also present in the same nurse cell particles. Most cytoplasmic particles contained both Cup and Btz (Fig. 1 I–K). Interestingly, Btz protein that localized tightly to the nuclear rim did not display a large amount of overlap with Cup (Fig. 1 K), indicating that this pool of Btz might be part of a separate complex. Thus, Cup is present in motile RNP particles that contain Btz, a known component of the oskar mRNA localization machinery.

Cup is required for oskar mRNA localization.

Since Cup colocalizes and copurifies with components of the oskar RNP complex, we next asked if Cup plays a role in oskar mRNA localization. For this and subsequent experiments, we focused our attention on the heteroallelic combination of cup1/cup4506 since the combination of the strong cup4506 allele with the intermediate strength cup1 allele allowed oogenesis to proceed far enough to assay oskar mRNA localization. This allelic combination yielded results that were representative of other heteroallelic combinations (Fig. S1, available at http://www.jcb.org/cgi/content/full/jcb.200309088/DC1) and also allowed us to minimize the effects of secondary mutations since cup1 and cup4506 were isolated in separate screens. In situ hybridization of oskar mRNA in cup1/cup4506 egg chambers revealed that although oskar mRNA localization is normal in stages 1–7 of oogenesis (Fig. 2, A and B, D and E), during stages 8–10, oskar mRNA is predominantly cortical with some enrichment at the posterior pole (Fig. 2, C and F). This dispersed localization pattern is similar to that observed in weak alleles of oskar where low levels of oskar mRNA are localized to the posterior pole (van Eeden et al., 2001).

Figure 3. Cup is required for translational repression of oskar mRNA.

(A) Oskar protein (green) is not present in stage 7 yw egg chambers. Actin is in red. (B) Oskar protein is prematurely translated at the anterior of the oocyte in stage 7 cup/cup4506 egg chambers. The distribution of Gurken protein (arrows) is normal in both yw (C) and cup/cup4506 (D) egg chambers. Gurken is green. Actin is red. Bars, 10 μm.

Cup is required to recruit the localization factor Btz

Because btz mutants display a late stage oskar mRNA localization defect similar to that of cup mutants (van Eeden et al., 2001), we next examined the effect of cup mutants on the distribution of Btz. Normally, Btz protein is present on the nuclear envelope in nurse cells and colocalizes with oskar mRNA in the oocyte (Fig. 2 G). However, in cup1/cup4506 egg chambers, the accumulation of Btz protein within the oocyte is greatly reduced from stage 1 onward, whereas the Btz present on the nuclear envelope in the nurse cells is unaffected (Fig. 2 H). The failure in the transport of Btz to the oocyte is not due to a general defect in assembly of the oskar RNP since cup1/cup4506 egg chambers localize Yps and oskar mRNA normally during early oogenesis (Fig. 2, I and J, D and E; Figs. S1 and S2, available at http://www.jcb.org/cgi/content/full/jcb.200309088/DC1). Thus, Cup is specifically required to localize Btz to the oocyte. This result, together with the findings that Cup and Btz colocalize as well as sharing similar oskar mRNA localization defects, argues that cup mutants fail to localize oskar mRNA because Cup is required to recruit Btz to the complex.

Cup is required to maintain translational repression of oskar mRNA

Since all mutations isolated to date that disrupt oskar mRNA localization also block oskar translation, we next examined the role of cup in oskar translation. To our surprise, Oskar protein accumulated prematurely in the oocyte during stages 6 and 7 in cup1/cup4506 egg chambers, indicating that cup is required to translationally repress oskar mRNA during these stages (Fig. 3, A and B; Fig. S3, available at http://www.jcb.org/cgi/content/full/jcb.200309088/DC1). It is also worth noting that in cup mutants we only observe accumulation of Oskar protein at those sites where oskar mRNA is most enriched (Fig. 3 B; Fig. S3). This may be due to the fact that the cup alleles used in this study are hypomorphic alleles. The effects of cup are specific for oskar mRNA since the localized translation of gurken mRNA at the dorsal anterior region of the oocyte during stage 9 is unaffected in a cup1/cup4506 mutant background (Fig. 3, C and D). Thus, cup is not a general translational regulator of localized messages.
eIF4E is localized to the posterior pole in a cup-dependent manner

To better understand the role of Cup in maintaining the translational repression of oskar mRNA, we first sought to identify components of the translation machinery that were present in the complex by testing likely candidates. Immunoprecipitation of GFP-Exu and Yps showed that eIF4E, the 5' cap binding component of the translation initiation machinery, was localized to the posterior pole in a cup-dependent manner. This localization was confirmed by immunoblot analysis of immunoprecipitates from GFP-Exu extract using α-GFP (GFP), α-Yps (YPS), or rabbit IgG (IgG) antibodies. The eIF4E protein was concentrated at the posterior of the developing oocyte in stages 1–6 (stage 6 is shown). eIF4E transiently accumulated at the anterior of the oocyte during stages 7 and 8 (late stage 8 is shown). eIF4E then accumulated at the posterior pole during stages 9 and 10 (stage 10 is shown). In yw egg chambers, eIF4E protein (arrow) is concentrated at the posterior of the oocyte (stage 6 is shown). In cup/cup4506 egg chambers, eIF4E is distributed homogenously throughout the oocyte and nurse cells and is not localized to the posterior pole (arrows; stages 4 and 6 are shown). In doubly transformed yeast expressing a GAL4 DNA binding domain Cup fusion in combination with either a transcriptional activation domain (AD) fusion to eIF4E or the activation domain alone. All interactions were scored based on growth on his- ade- media. Deletion analysis of Cup to identify regions required for eIF4E binding. The yellow box is the region of homology with 4E-T, a mouse eIF4E binding protein. The red box is the site of the canonical eIF4E binding motif YXXXXLΦ, where X is any amino acid and Φ is any hydrophobic amino acid. Bars, 10 μm.
complex, is specifically associated with these components of the oskar RNP complex (Fig. 4 A). eIF4E and other components of the translation initiation machinery are generally thought of as being homogeneously distributed due to their critical role in translation throughout the cell. Surprisingly, we found that eIF4E is localized in a dynamic pattern within the oocyte. eIF4E is localized to the posterior of the oocyte early in oogenesis during stages 1–6 (Fig. 4 B). At stages 7 and 8, eIF4E redistributed to the anterior of the oocyte (Fig. 4 C), and during stages 9 and 10, eIF4E accumulated at the posterior of the oocyte (Fig. 4 D). This pattern of localization was also observed with a GFP-eIF4E protein trap line (unpublished data). Thus, eIF4E localizes in a temporally–spatially identical pattern to that of Cup, suggesting that it is a component of the complex in vivo.

Since Cup is required for the correct localization of Btz to the oocyte, we next investigated whether Cup is required for eIF4E localization. Immunostaining of cup/cup

oskar mRNA. Second, Cup protein exhibits the same dynamic localization pattern as that seen for oskar mRNA as well as other components of the complex. Third, Cup colocalizes with Yps and Btz particles, indicating that this these proteins form a complex in vivo. Finally, the relevance of the biochemical association is supported by genetic studies of cup function, demonstrating a role for cup in translational repression of oskar mRNA as well as recruitment of Btz and eIF4E to the RNP complex.

A model for coupling oskar localization to translational derepression

Figure 5. A model for coupling oskar mRNA localization and translational activation via Cup. (A) During stages 1–7, Cup is required to recruit plus end–directed transport factors, such as Btz, that will later be used to dock to kinesin. (B) During stages 8 and 9, the oskar RNP rearranges so that Btz can recruit kinesin. (C) During stages 9 and 10, oskar mRNA localizes to the posterior pole and is anchored there. This anchoring event or a posterior localized signal acts on Cup to cause partial disassembly of the complex and breaks the interaction between Cup and eIF4E allowing translation. Asterisks (*) mark interactions that may not be direct.
The molecular trigger for such rearrangements is unknown, however, the ability of 4E-T to bind eIF4E is regulated by phosphorylation (Pyronnet et al., 2001). Studies directed at identifying regulators of the Cup–eIF4E interaction might lead to greater mechanistic insights into the coupling mechanism.

One of the attractive features of this model is that it suggests how coupling might be accomplished in other systems. Recent work in neurons on the translational regulator CPEB suggests that it can promote the transport of mRNA into dendrites (Huang et al., 2003). Since CPEB represses translation by recruiting the eIF4E binding protein, maskin, to transcripts (Stebbins-Boaz et al., 1999), it is possible that the observed transport effect is due to a requirement for maskin to assemble the localization machinery. Thus, Cup may be representative of a general class of eIF4E binding proteins whose role is to couple mRNA localization to translational activation.

Materials and methods

Drosophila strains and culture

Fly stocks were cultured at 22–25°C on standard food. The *cup*, *cup¹³⁵⁵*, and *cup⁴⁵⁰⁶* alleles have been previously described (Schupbach and Wieschaus, 1991; Keyes and Spradling, 1997). The y^{w^{Oss2}} strain is described in FlyBase.

Extract preparation, immunoblots, and immunoprecipitations

All protein work was performed as previously described (Wilhelm et al., 2000). For immunoblot analysis, primary antibodies were used at a 1:1,000 dilution of α-Cup rat antibody (Keyes and Spradling, 1997) or 1:1,000 α-eIF4E rabbit antibody (a gift from P. Lasko, McGill University, Montréal, Canada).

Identification of p147

p147 was resolved by SDS-PAGE and mass spectrometry performed as described (Wang et al., 1999).

Immunostaining and fluorescence microscopy

Immunostaining and microscopy was performed as previously described (Cox and Spradling, 2003) with the following modifications: the washes immediately following fixation consisted of PBT (1 x PBS, 0.2% Triton X-100). All subsequent washes or incubations were done in PBT + 5% BSA; primary antibodies were diluted in PBT + 5% BSA as follows: rat α-Cup 1:1,000 (Keyes and Spradling, 1997), rabbit α-Osk 1:3,000 (a gift from A. Ephrussi, European Molecular Biology Laboratory, Heidelberg, Germany), rabbit α-Btz 1:1,000 (van Eeden et al., 2001), rabbit α-Yps 1:1,000 (Wilhelm et al., 2000), 1:1 mouse α-Grk (1D12, Developmental Studies Hybridoma Bank), rabbit α-eIF4E 1:1,000 (a gift from P. Lasko). The following secondary antibodies were used: goat α-rabbit and α-rat AlexaFluor488 (1:200) and goat α-rat AlexaFluor568 (1:200). Samples were mounted in Vectashield. Confocal analysis was performed using the PL APO40X 1.25NA and 100X 1.40NA objectives on the Leica TCS NT confocal microscope at 25°C.

In situ hybridization

In situ hybridization and detection were performed as described (Wilkie et al., 1999).

Two-hybrid analysis of cup and elf4E

The Rí cassette (Invitrogen) was inserted into the two-hybrid vectors, pGADT7 and pGBK7 (CLONTECH Laboratories, Inc.), to facilitate cloning via the Gateway cloning system (Invitrogen). The following deletion constructs were generated by PCR and were cloned into the appropriate vector for analysis: CupA 1–912 aa, CupC 1–652 aa, CupC 1–457 aa, CupD 1–233 aa, CupE 233–457 aa. Transformants were tested for positive interactions based on their ability to grow on leu/tp his ade plates as described in the protocols for the Clontech matchmaker system (CLONTECH Laboratories, Inc.). The expression of all constructs was confirmed by immunoblot of yeast lysate with either α-myc (9E10) or α-HA (12CA5) antibodies.

Online supplemental material

Online supplemental figures are available at http://www.jcb.org/cgi/content/full/jcb.200309088/DC1. Fig. S1 shows the effect of other heteroallelic combinations of cup on oskar mRNA localization and localization of Btz. Fig. S2 shows the localization of Yps and elf4E in a variety of stages of cup^{+/cup}¹⁴⁷ egg chambers. Fig. S3 shows oskar derepression in cup^{+/cup}¹⁴⁷ egg chambers during stages 6–9.

The authors would like to thank D. St. Johnston, A. Ephrussi, P. Lasko, and A. Spradling for strains and antibodies. J. Wilhelm is a Howard Hughes Medical Institute fellow of the Life Sciences Research Foundation.

Submitted: 12 September 2003
Accepted: 7 November 2003

References

Bashirullah, A., R.L. Cooperstock, and H.D. Lipshitz. 1998. RNA localization in development. *Annu. Rev. Biochem.* 67:335–394.

Brendza, R.P., L.R. Serbus, J.B. Duffy, and W.M. Saxton. 2000. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. *Science.* 289:2120–2122.

Cha, B.J., L.R. Serbus, B.S. Koppetsch, and W.E. Theurkauf. 2002. Kinesin I-dependent cortical exclusion restricts pole plasm to the oocyte posterior. *Nat. Cell Biol.* 4:592–598.

Cox, R.T., and A.C. Spradling. 2003. A Balbiani body and the fusome mediate mitochondrial inheritance during *Drosophila* oogenesis. *Development.* 130: 1579–1590.

Dostie, J., M. Ferraiuolo, A. Passe, S.A. Adam, and N. Sonenberg. 2000. A novel shuttling protein, 4E-T, mediates the nuclear export of the mRNA 5′ cap-binding protein, elf4E. *EMBO J.* 19:3142–3156.

Ephrussi, A., L.K. Dickinson, and R. Lehmann. 1991. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. *Cell.* 66: 47–50.

Huang, Y.S., J.H. Carson, E. Barbarese, and J.D. Richter. 2003. Facilitation of dendritic mRNA transport by CPEB. *Genes Dev.* 17:658–653.

Johnstone, O., and P. Lasko. 2001. Translational regulation and RNA localization in dendritic mRNA transport by CPEB. *Genes Dev.* 15:499–508.

Keyes, L.N., and A.C. Spradling. 1997. The *Drosophila* gene fis2 interacts with otu to define a cytoplasmic pathway required for the structure and function of germ-line chromosomes. *Development.* 124:1419–1431.

Kim-Ha, J., K. Kerr, and P.M. Macdonald. 1995. Translational regulation of oskar mRNA by bruno, an ovarian RNA-binding protein, is essential. *Cell.* 81: 405–412.

Kim-Ha, J.J.L. Smith, and P.M. Macdonald. 1991. oskar mRNA is localized to the posterior pole of the *Drosophila* oocyte. *Cell.* 66:23–35.

Macchi, P., S. Kroening, I.M. Palacios, S. Baldassa, B. Grunewald, C. Ambrosino, B. Goetz, A. Lupas, D. St. Johnston, and M. Kiebler. 2003. Barentsz, a new component of the Staufen-containing ribonucleoprotein particles in mammalian cells, interacts with Staufen in an RNA-dependent manner. *J. Neurosci.* 23:5778–5788.

Mader, S., H. Lee, A. Passe, and N. Sonenberg. 1995. The translation initiation factor elf4E binds to a common motif shared by the translation factor eIF-4F. *Mol. Cell. Biol.* 15:4990–4997.

Nakamura, A., R. Amikura, K. Hanyu, and S. Kobayashi. 2001. Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during *Drosophila* oogenesis. *Development.* 128:3233–3242.

Pokrywka, N.J., and E.C. Stephenson. 1995. Microtubules are a general component of mRNA localization systems in Drosophila oocytes. *Dev. Biol.* 167: 563–570.

Pyronnet, S., J. Dostie, and N. Sonenberg. 2001. Suppression of cap-dependent translation in mitosis. *Genes Dev.* 15:2083–2093.

Saffman, E.E., S. Sryhler, K. Rother, W. Li, S. Richard, and P. Lasko. 1998. Premature translation of oskar in oocytes lacking the RNA-binding protein bicaudal-C. *Mol. Cell. Biol.* 18:4855–4862.

Schupbach, T., and E. Wieschaus. 1991. Female sterile mutations on the second chromosome of *Drosophila* melanogaster. II. Mutations blocking oogenesis.
or altering egg morphology. Genetics. 129:1119–1136.
Spradling, A.C. 1993. Developmental genetics of oogenesis. In The Development of Drosophila melanogaster. Vol. 1. Cold Spring Harbor Laboratory Press, Plainview, NY. 1–70.
Stebbins-Boaz, B., Q. Cao, C.H. de Moor, R. Mendez, and J.D. Richter. 1999. Maskin is a CPEB-associated factor that transiently interacts with eIF-4E. Mol. Cell. 4:1017–1027.
Theurkauf, W.E., B.M. Alberts, Y.N. Jan, and T.A. Jongens. 1993. A central role for microtubules in the differentiation of Drosophila oocytes. Development. 118:1169–1180.
Theurkauf, W.E., and T.I. Hazelrigg. 1998. In vivo analyses of cytoplasmic transport and cytoskeletal organization during Drosophila oogenesis: characterization of a multi-step anterior localization pathway. Development. 125:3655–3666.
van Eeden, F.J., I.M. Palacios, M. Petronczki, M.J. Weston, and D. St. Johnston. 2001. Barentz is essential for the posterior localization of oskar mRNA and colocalizes with it to the posterior pole. J. Cell Biol. 154:511–523.
Wang, K.H., K. Brose, D. Arnott, T. Kidd, C.S. Goodman, W. Henzel, and M. Tessier-Lavigne. 1999. Biochemical purification of a mammalian slit protein as a positive regulator of sensory axon elongation and branching. Cell. 96:771–784.
Wilhelm, J.E., J. Mansfield, N. Hom-Booher, S. Wang, C.W. Turck, T. Hazelrigg, and R.D. Vale. 2000. Isolation of a ribonucleoprotein complex involved in mRNA localization in Drosophila oocytes. J. Cell Biol. 148:427–440.
Wilkie, G.S., A.W. Shermoen, P.H. O'Farrell, and I. Davis. 1999. Transcribed genes are localized according to chromosomal position within polarized Drosophila embryonic nuclei. Curr. Biol. 9:1263–1266.