UNIQUENESS OF QUASI-EINSTEIN METRICS
ON 3-DIMENSIONAL HOMOGENEOUS MANIFOLDS

ABDÉNAGO BARROS 1, ERNANI RIBEIRO JR 2 AND JOÃO F. SILVA 3

Abstract. The study of 3-dimensional homogeneous Riemannian manifolds is done, in general, according to the dimension of its isometry group $\text{Iso}(M^3, g)$, which can be 3, 4 or 6. Following this trend we present here a complete description of m-quasi-Einstein metrics, when this manifold is compact or not compact provided $\text{dim} \, \text{Iso}(M^3, g) = 4$. In addition, we shall show the absence of such gradient structure on Sol^3, which corresponds to $\text{dim} \, \text{Iso}(M^3, g) = 3$. When $\text{dim} \, \text{Iso}(M^3, g) = 6$ it is well known that M^3 is a space form. In this case, its canonical structure gives a trivial example. Moreover, we prove that Berger’s spheres carry a non-trivial quasi-Einstein structure with non gradient associated vector field, this shows that Perelman’s Gradient Theorem cannot be extend to quasi-Einstein metrics. Finally, we prove that a 3-dimensional homogeneous manifold carrying a gradient quasi-Einstein structure is either Einstein or $H^2 \times \mathbb{R}$.

1. Introduction and statement of the results

One of the motivation to study m-quasi-Einstein metrics on a Riemannian manifold (M^n, g) is its closed relation with warped product Einstein metrics, see e.g. [8], [7] and [12]. For instance, when m is a positive integer, m-quasi-Einstein metrics correspond to exactly those n-dimensional manifolds which are the base of an $(n+m)$-dimensional Einstein warped product. One fundamental ingredient to understand the behavior of such a class of manifold is the m-Bakry-Emery Ricci tensor which is given by

\begin{equation}
Ric^m = Ric + \nabla^2 f - \frac{1}{m} df \otimes df,
\end{equation}

where f is a smooth function on M^n and $\nabla^2 f$ stands for the Hessian form.

This tensor was extended recently, independently, by Barros and Ribeiro Jr [3] and Limoncu [14] for an arbitrary vector field X on M^n as follows:

\begin{equation}
Ric^m_X = Ric + \frac{1}{2} \mathcal{L}_X g - \frac{1}{m} X^\flat \otimes X^\flat,
\end{equation}

where $\mathcal{L}_X g$ and X^\flat denote, respectively, the Lie derivative on M^n and the canonical 1-form associated to X.

With this setting we say that (M^n, g) is a m-quasi-Einstein metric, if there exist a vector field $X \in \mathfrak{X}(M)$ and constants $0 < m \leq \infty$ and λ such that

\begin{equation}
Ric^m_X = \lambda g.
\end{equation}

Classically the study of such metrics are considered when X is a gradient of a smooth function f on M^n. Noticing that the trace of Ric^m_X is given by $R + \text{div} X - \frac{1}{m} |X|^2$, where R denotes the scalar curvature, we deduce

\begin{equation}
R + \text{div} X - \frac{1}{m} |X|^2 = \lambda n.
\end{equation}

Date: November 15, 2012.

2000 Mathematics Subject Classification. Primary 53C25, 53C20, 53C21; Secondary 53C65.

Key words and phrases. quasi-Einstein metrics, homogeneous manifolds, isometry group, scalar curvature.

1, 2 Both partially supported by CNPq-BR and FUNCAP-BR.
3 Partially supported by CNPq-BR.
On the other hand, when m goes to infinity, equation (1.2) reduces to the one associated to a Ricci soliton, for more details in this subject we recommend the survey due to Cao [6] and the references therein. Whereas, when m is a positive integer and X is gradient, it corresponds to warped product Einstein metrics, for more details see [7]. Following the terminology of Ricci solitons, a m-quasi-Einstein metric g on a manifold M^n will be called expanding, steady or shrinking, respectively, if $\lambda < 0$, $\lambda = 0$ or $\lambda > 0$.

Definition 1. A m-quasi-Einstein metric will be called trivial if $X \equiv 0$. Otherwise, it will be nontrivial.

We notice that the triviality implies that M^n is an Einstein manifold. It is important to detach that gradient 1-quasi-Einstein metrics satisfying $\Delta e^{-f} + \lambda e^{-f} = 0$ are more commonly called static metrics with cosmological constant λ. These static metrics have been studied extensively because their connection with scalar curvature, the positive mass theorem and general relativity, for more details see e.g. [1], [2] and [9]. On the other hand, it is well known that on a compact manifold M^n a gradient ∞-quasi-Einstein metric with $\lambda \leq 0$ is trivial, see [10]. The same result was proved in [13] for gradient m-quasi-Einstein metric on compact manifold with m finite. Besides, we known that compact shrinking Ricci solitons have positive scalar curvature, see e.g. [10]. An extension of this result for shrinking gradient m-quasi-Einstein metrics with $1 \leq m < \infty$ was obtained in [7]. Recently, in [5] Brozos-Vázquez et al. proved that locally conformally flat gradient m-quasi-Einstein metrics are globally conformally equivalent to a space form or locally isometric to a pp-wave or a warped product. In [12] it was given a classification for m-quasi-Einstein metrics where the base has non empty boundary. Moreover, they proved a characterization for m-quasi-Einstein metrics when the base is locally conformally flat. We point out that Case et al. in [7] proved that every compact gradient m-quasi-Einstein metric with constant scalar curvature is trivial, as well as we remember that in [15], Perelman proved that every compact Ricci soliton is gradient.

Here we shall show that Berger’s spheres carry naturally a non trivial structure of quasi-Einstein metrics. Since they have constant scalar curvature, their associated vector fields can not be gradient. In particular, we can not extend Perelman’s result to compact quasi-Einstein metrics. Moreover, these examples show that Theorem 4.6 of [12] can not be extended for a non gradient vector field.

From now on, we shall consider (M^3, g) a simply connected homogeneous Riemannian manifold. We recall that the classification of these manifolds is already well-known according to their isometry group $Iso(M^3, g)$, whose dimension can be 3, 4 or 6, detaching that 6-dimensional are space forms, which are Einstein. But Einstein structures are well known in dimension 3, see e.g. [4]. So, it remains to describe m-quasi-Einstein metrics on simply connected homogeneous spaces with isometry group of dimension 3 and 4. When this dimension is 3 they have the geometry of the Lie group Sol^3. Concerning to this manifold we have the next result.

Theorem 1. Sol^3 does not carry any gradient m-quasi-Einstein metric.

Proceeding, we consider $dim Iso(M^3, g) = 4$. In this case, such a manifold is a Riemannian fibration onto a 2-dimensional space form N^2_κ with constant sectional curvature κ. In other words, denoting these manifolds by $E^3(\kappa, \tau)$ there is a Riemannian submersion $\pi: E^3(\kappa, \tau) \to N^2_\kappa$ with fibers diffeomorphic either to S^3 or to \mathbb{R}, depending whether $E^3(\kappa, \tau)$ is compact or not compact. One remarkable propriety of the vector field E_3 tangent to the fibers is that it is a Killing vector field for which $\nabla_X E_3 = \tau X \times E_3$ for all $X \in \mathfrak{x}(M)$, where τ is a constant, called curvature of the bundle, while \times means cross product. Denoting Heisenberg’s space by $Nil_3(\kappa, \tau)$ and Berger’s sphere by $S^3_{\kappa, \tau}$ we have the following
alternatives for $E^3(\kappa, \tau)$:

$$E^3(\kappa, \tau) = \begin{cases}
\mathbb{S}_\kappa^2 \times \mathbb{R}, & \kappa > 0, \tau = 0 \\
\mathbb{H}_\kappa^2 \times \mathbb{R}, & \kappa < 0, \tau = 0 \\
\text{Nil}_3(\kappa, \tau), & \kappa = 0, \tau \neq 0 \\
\text{PSL}_2(\kappa, \tau), & \kappa < 0, \tau \neq 0 \\
\mathbb{S}_\kappa^3, & \kappa > 0, \tau \neq 0.
\end{cases}$$

On the other hand, we shall show in Lemma 6 that for a 3-dimensional homogeneous Riemannian manifold $E^3(\kappa, \tau)$ whose group of isometries has dimension 4 its Ricci tensor satisfies

$$(1.5) \quad \text{Ric} - (4\tau^2 - \kappa)E^3_3 \otimes E^3_3 = (\kappa - 2\tau^2)g.$$

Now taking into account that E_3 is a Killing vector field, if the vector field $X = \sqrt{m(4\tau^2 - \kappa)}E_3$ is well defined, then we have $\frac{1}{2}\mathcal{L}_X g = 0$. Whence, letting $\lambda = \kappa - 2\tau^2$ we obtain

$$\text{Ric} + \frac{1}{2}\mathcal{L}_X g - \frac{1}{m}X^3 \otimes X^3 = \lambda g,$$

which gives the next example:

Example 1. Let $E^3(\kappa, \tau)$ be a 3-dimensional homogeneous Riemannian manifolds with 4-dimensional isometry group such that $X = \sqrt{m(4\tau^2 - \kappa)}E_3$ is well defined. Letting $\lambda = \kappa - 2\tau^2$ we deduce that $(E^3(\kappa, \tau), g, X, \lambda)$ is a m-quasi-Einstein metric. We notice that in this case X is not necessarily type gradient.

We point out that if $\lambda > 0$ we can prove by a similar argument used in [11] and [18] that $(E^3(\kappa, \tau), g)$ is compact. On the other hand, for $\mathbb{S}_\kappa^2 \times \mathbb{R}$ we have $4\tau^2 < \kappa$, therefore, in the previous example we must have $(E^3(\kappa, \tau), g) \neq \mathbb{S}_\kappa^2 \times \mathbb{R}$. Moreover, we shall show that $\mathbb{H}_\kappa^2 \times \mathbb{R}$ is the unique case for which the associated vector field is gradient, more precisely, X is the gradient of f given according to Example 3 and Example 4. In the others cases the associated vector fields are not gradient. Whence, we present the first examples of compact and not compact m-quasi-Einstein metrics with not gradient vector field making sense the general definition (1.2) of $E^3(\kappa, \tau)$.

Concerning to Berger’s sphere we detach that they admit shrinking, expanding and steady not gradient m-quasi-Einstein metrics, since $\lambda = \kappa - 2\tau^2$ can assume any sign.

Proceeding, it is important to detach that on $\mathbb{H}_\kappa^2 \times \mathbb{R}$ we have two examples of gradient quasi-Einstein structure. First, we have the following example for a Killing vector field.

Example 2. We consider $\mathbb{H}_\kappa^2 \times \mathbb{R}$ with its standard metric and the potential function $f(x, y, t) = \pm \sqrt{-\kappa t} + c$, where c is a constant. It is easy to see that $\nabla f = \pm \sqrt{-\kappa} \partial_t$, hence $\text{Hess} f = 0$. Therefore $(\mathbb{H}_\kappa^2 \times \mathbb{R}, \nabla f, \kappa)$ is a quasi-Einstein metric.

Next we shall describe our second example on $\mathbb{H}_\kappa^2 \times \mathbb{R}$, where its associated vector field is not a Killing vector field.

Example 3. We consider $\mathbb{H}_\kappa^2 \times \mathbb{R}$ with its standard metric and the potential function $f(x, y, t) = -m \ln \cosh \left[\sqrt{-\frac{\kappa}{m}} (t + a) \right] + b$, where a and b are constants. Under these conditions $(\mathbb{H}_\kappa^2 \times \mathbb{R}, \nabla f, \kappa)$ is a quasi-Einstein metric.

Now, it is natural to ask what are the m-quasi-Einstein metrics on $E^3(\kappa, \tau)$? In fact, for gradient quasi-Einstein structure on not compact manifolds those presented in Example 3 and Example 4 are unique. Therefore, we deduce the following uniqueness theorem.

Theorem 2. Let $(E^3(\kappa, \tau), g, \nabla f, \lambda)$ be a 3-dimensional homogeneous gradient quasi-Einstein metric. Then this structure is either Einstein or is $\mathbb{H}_\kappa^2 \times \mathbb{R}$ such as in either Example 3 or Example 4. In particular, g is a static metric provided $m = 1$.

As a consequence of Theorem 2 we shall derive the following corollary.

Corollary 1. $S^2 \times \mathbb{R}, Nil_3(\kappa, \tau)$ and $\tilde{PSl}_2(\kappa, \tau)$ do not carry a gradient quasi-Einstein structure.

2. Preliminaries

In this section we shall develop a few tools concerning to 3-dimensional homogeneous Riemannian manifolds according to the dimension of their isometry group in order to prove our results. A good reference for this subject is the book of Thurston [17].

2.1. 3-dimensional homogeneous manifold with isometry group of dimension 3

It is well-known that 3-dimensional homogeneous manifold with 3-dimensional isometry group has the geometry of the Lie group Sol^3. Moreover, we may consider Sol^3 as \mathbb{R}^3 endowed with the metric

$$g_{Sol^3} = e^{2t}dx^2 + e^{-2t}dy^2 + dt^2.$$ \hfill (2.1)

Whence, we can check directly that the next set gives an orthonormal frame on Sol^3.

$$\{E_1 = e^{-t}\partial_x, E_2 = e^{t}\partial_y, E_3 = \partial_t\}. \hfill (2.2)$$

By using this frame we obtain the next lemma.

Lemma 1. Let us consider on Sol^3 the metric and the frame given, respectively, by (2.1) and (2.2). Then its Riemannian connection ∇ obeys the rules:

$$\begin{align*}
\nabla_{E_1}E_1 &= -E_3 & \nabla_{E_1}E_2 &= 0 & \nabla_{E_1}E_3 &= E_1 \\
\nabla_{E_2}E_1 &= 0 & \nabla_{E_2}E_2 &= E_3 & \nabla_{E_2}E_3 &= -E_2 \\
\nabla_{E_3}E_1 &= 0 & \nabla_{E_3}E_2 &= 0 & \nabla_{E_3}E_3 &= 0.
\end{align*} \hfill (2.3)$$

Moreover, the Lie brackets satisfy:

$$[E_1, E_2] = 0, [E_1, E_3] = E_1 \text{ and } [E_2, E_3] = -E_2. \hfill (2.4)$$

Next we use this lemma in order to compute the Ricci tensor of Sol^3. More exactly, we have.

Lemma 2. The Ricci tensor of Sol^3 is given by $Ric = -2E_3 \otimes E_3$.

Proof. Computing $Ric(E_1, E_1)$ with the aid of (2.3) and (2.4) we obtain

$$Ric(E_1, E_1) = \langle \nabla_{E_2}\nabla_{E_1}E_1 - \nabla_{E_1}\nabla_{E_2}E_1 + \nabla_{[E_1, E_2]}E_1, E_2 \rangle$$

$$+ \langle \nabla_{E_3}\nabla_{E_1}E_1 - \nabla_{E_1}\nabla_{E_3}E_1 + \nabla_{[E_1, E_3]}E_1, E_3 \rangle$$

$$= \langle -\nabla_{E_2}E_3, E_2 \rangle + \langle \nabla_{E_1}E_1, E_3 \rangle = 0.$$

In a similar way we show that $Ric(E_i, E_j) = 0$, for $i \neq j$ as well as $i = j = 2$. Finally, we have

$$Ric(E_3, E_3) = \langle \nabla_{E_2}\nabla_{E_3}E_3 - \nabla_{E_3}\nabla_{E_2}E_3 + \nabla_{[E_3, E_2]}E_3, E_1 \rangle$$

$$+ \langle \nabla_{E_2}\nabla_{E_3}E_3 - \nabla_{E_3}\nabla_{E_2}E_3 + \nabla_{[E_3, E_2]}E_3, E_2 \rangle$$

$$= \langle \nabla_{[E_3, E_1]}E_1, E_1 \rangle + \langle \nabla_{[E_3, E_2]}E_3, E_2 \rangle = -2,$$

which completes the proof of the lemma. \hfill □

Proceeding we have the following lemma for Sol^3.

Lemma 3. Suppose that (Sol^3, g, X, λ) carries a m-quasi-Einstein metric. Then the following statements hold:
Lemma 3 to obtain
This proves the first part of the proof.

Now, we substitute the last three equations in (2.6) to arrive at
and
Proof. Firstly, computing $\text{Ric}^m_{\lambda}(E_1, E_1)$ in equation (1.2), we obtain

$$\text{Ric}(E_1, E_1) + \langle \nabla_{E_1} X, E_1 \rangle - \frac{1}{m}(X, E_1)^2 = \lambda.$$

We may use Lemma 2 to deduce $\text{Ric}(E_1, E_1) = 0$, thus, since $\nabla_{E_1} E_1 = -E_3$, we obtain the first assertion.

The other ones are obtained by the same way. Computing $\text{Ric}^m_{\lambda}(E_2, E_2)$, $\text{Ric}^m_{\lambda}(E_3, E_3)$, $\text{Ric}^m_{\lambda}(E_2, E_1)$, $\text{Ric}^m_{\lambda}(E_3, E_1)$ and $\text{Ric}^m_{\lambda}(E_3, E_2)$ we arrive at (2), (3), (4), (5) and (6). We left its check in for the reader. So, we finish the proof of the lemma. \square

2.1.1. Proof of Theorem 7

Proof. Let us suppose the existence of a gradient quasi-Einstein structure on S^3. From item (3) of Lemma 3 we have

$$(2.5) \quad \partial_t \langle \nabla f, \partial_t \rangle = \frac{1}{m}(\nabla f, \partial_t)^2 + \lambda + 2,$$

where f is the potential function. Under this condition (2.5) is a separable ODE and we may use the differentiability of $\langle \nabla f, \partial_t \rangle$ to obtain the solutions $\langle \nabla f, \partial_t \rangle = \pm \sqrt{-m(\lambda + 2)}$ and

$$\langle \nabla f, \partial_t \rangle = -\sqrt{-m(\lambda + 2)} \tanh \left[\sqrt{-\frac{\lambda + 2}{m}}(\psi + t) \right],$$

where ψ is a function that does not depend on t. Therefore, we may say that the potential function is either $f = \varphi \pm \sqrt{-m(\lambda + 2)}t$ or $f = \varphi - m \ln \cosh \left[\sqrt{-\frac{\lambda + 2}{m}}(\psi + t) \right]$, where φ does not depend on t. Now, we divide our proof in two cases.

Our first case is when $f = \varphi \pm \sqrt{-m(\lambda + 2)}t$. In this case, we can admit without loss generality, that $f = \varphi + \sqrt{-m(\lambda + 2)}t$. Thus, item (5) of Lemma 3 gives $E_1(f) = 0$, which implies from the first item of Lemma 3 that $0 \leq \sqrt{-\frac{\lambda + 2}{m}} \lambda \leq -2$, giving a contradiction. This proves the first part of the proof.

Otherwise, if $f = \varphi - m \ln \cosh \left[\sqrt{-\frac{\lambda + 2}{m}}(\psi + t) \right]$, we may substitute f in equation (5) of Lemma 3 to obtain

$$(2.6) \quad \partial^2_{xx} f = \left(\frac{1}{m} \partial_t f + 1 \right) \partial_x f.$$

On the other hand, we have

$$(2.7) \quad \partial^2_{xx} f = (\lambda + 2) \partial_x \varphi \sech^2 \left[\sqrt{-\frac{\lambda + 2}{m}}(\psi + t) \right],$$

$$(2.8) \quad \partial_x f = \partial_x \varphi - \sqrt{-m(\lambda + 2)} \partial_x \psi \tanh \left[\sqrt{-\frac{\lambda + 2}{m}}(\psi + t) \right]$$

and

$$(2.9) \quad \partial_t f = -\sqrt{-m(\lambda + 2)} \tanh \left[\sqrt{-\frac{\lambda + 2}{m}}(\psi + t) \right].$$

Now, we substitute the last three equations in (2.6) to arrive at
(2.10) \[\sqrt{m}(\partial_x \varphi - (\lambda + 2)\partial_x \psi) = \sqrt{-m}(\partial_x \varphi + m\partial_x \psi) \tanh \left[\sqrt{-\frac{\lambda + 2}{m}}(\psi + t) \right]. \]

From what it follows that
(2.11) \[\partial_x \varphi - (\lambda + 2)\partial_x \psi = 0 \]

and
(2.12) \[\partial_x \varphi + m\partial_x \psi = 0. \]

In a similar way, we may substitute \(f \) in item (6) of Lemma 3 to obtain
(2.13) \[\partial_{yt}^2 f = \left(\frac{1}{m} \partial_t f - 1 \right) \partial_y f. \]

On the other hand, it easy see that
(2.14) \[\partial_{yt}^2 f = (\lambda + 2)\partial_y \psi \tanh \left[\sqrt{-\frac{\lambda + 2}{m}}(\psi + t) \right], \]
(2.15) \[\partial_y f = \partial_y \varphi - \sqrt{-m(\lambda + 2)} \partial_y \psi \tanh \left[\sqrt{-\frac{\lambda + 2}{m}}(\psi + t) \right] \]
and
(2.16) \[\partial_t f = -\sqrt{-m(\lambda + 2)} \tanh \left[\sqrt{-\frac{\lambda + 2}{m}}(\psi + t) \right]. \]

Therefore, substituting (2.14), (2.15) and (2.16) in item (4) of Lemma 3 we have
\[\sqrt{m}[\partial_y \varphi + (\lambda + 2)\partial_y \psi] = \sqrt{-m}[\partial_y \varphi - m\partial_y \psi] \tanh \left[\sqrt{-\frac{\lambda + 2}{m}}(\psi + t) \right], \]
which implies
(2.17) \[\partial_y \varphi + (\lambda + 2)\partial_y \psi = 0 \]
and
(2.18) \[\partial_y \varphi - m\partial_y \psi = 0. \]

Now, we consider \(\lambda \neq -m - 2 \), therefore, from (2.11), (2.12), (2.17) and (2.18) we have
\[\partial_x \varphi = \partial_y \varphi = \partial_x \psi = \partial_y \psi = 0, \]
which implies that \(f \) do not depend of \(x \) and \(y \). Moreover, by using items (1) and (2) of Lemma 3 we conclude that \(f \) does not depend on \(t \) and then \(f \) is constant, which is a contradiction.

Since \(\lambda = -m - 2 \), we may derive item (1) of Lemma 3 with respect to \(t \), item (5) with respect to \(x \) and we compare the results to arrive at
(2.19) \[(\partial_t f + m)\partial_{xx}^2 f - \partial_x f\partial_{xt}^2 f = -m[2(\partial_t f - \lambda) + \partial_{tt}^2 f]e^{2t}. \]

Next, we substitute item (5) of Lemma 3 in (2.19) to obtain
\[(\partial_t f + m) \left(\partial_{xx}^2 f - \frac{1}{m}(\partial_x f)^2 \right) = -m[2(\partial_t f - \lambda) + \partial_{tt}^2 f]e^{2t}, \]
thus we may use again item (1) of Lemma 3 to conclude
\[(\partial_t f - m)(\partial_t f - \lambda) = m\partial_{tt}^2 f. \]
Finally, it suffices to use item (3) of Lemma 3 to obtain $\partial_t f = m$, which is a contradiction. So, we finish the proof of the theorem.

2.2. Non compact 3-dimensional homogeneous manifold with isometry group of dimension 4. We recall that the projection $\pi : E^3(\kappa, \tau) \to N^2_\kappa$, given by $\pi(x, y, t) = (x, y)$ is a submersion, where N^2_κ is endowed with its canonical metric $ds^2 = \rho^2(dx^2 + dy^2)$, where $\rho = 1$ or $\rho = \frac{2}{1+\kappa(x^2+y^2)}$ according to $\kappa = 0$ or $\kappa \neq 0$, respectively. The natural orthonormal frame on N^2_κ is given by $\{e_1 = \rho^{-1}\partial_x, e_2 = \rho^{-1}\partial_y\}$. Moreover, translations along the fibers are isometries, therefore E_3 is a Killing vector field. Thus, considering horizontal lifting of $\{e_1, e_2\}$ we obtain $\{E_1, E_2\}$, which jointly with E_3 gives an orthonormal frame $\{E_1, E_2, E_3\}$ on $E^3(\kappa, \tau)$. In addition, since $\{\partial_t, \partial_y\}$ is a natural frame for N^2_κ, then a natural frame for $E^3(\kappa, \tau)$ is $\{\partial_x, \partial_y, \partial_t\}$, where ∂_t is tangent to the fibers. Using this frame we have the following lemma for a non compact 3-dimensional homogeneous manifold which can be found in [17].

Lemma 4. Rewriting the referential $\{E_1, E_2, E_3\}$ in terms of $\{\partial_x, \partial_y, \partial_t\}$, we have:

1. If $\kappa \neq 0$, then $E_1 = \frac{1}{\rho}\partial_x + 2\kappa\tau y \partial_t$, $E_2 = \frac{1}{\rho}\partial_y - 2\kappa\tau x \partial_t$ and $E_3 = \partial_t$.

2. If $\kappa = 0$, then $E_1 = \partial_x - \tau y \partial_t$, $E_2 = \partial_y + \tau x \partial_t$ and $E_3 = \partial_t$.

Moreover, endowing $E^3(\kappa, \tau)$ with the metric

$$g = \begin{cases} dx^2 + dy^2 + [\tau(xdy - ydx) + dt]^2, & \kappa = 0 \\ \rho^2(dx^2 + dy^2) + [2\kappa\tau\rho(ydx - xdy) + dt]^2, & \kappa \neq 0. \end{cases}$$

we have the following identities for its Riemannian connection ∇:

\begin{align}
\nabla_{E_1} E_1 &= \kappa y E_2 \\
\nabla_{E_1} E_2 &= -\kappa y E_1 + \tau E_3 \\
\nabla_{E_1} E_3 &= -\tau E_2 \\
\nabla_{E_2} E_1 &= -\kappa x E_2 - \tau E_3 \\
\nabla_{E_2} E_2 &= \kappa x E_1 \\
\nabla_{E_2} E_3 &= \tau E_1 \\
\nabla_{E_3} E_1 &= -\tau E_2 \\
\nabla_{E_3} E_2 &= \tau E_1 \\
\nabla_{E_3} E_3 &= 0.
\end{align}

In particular, we obtain from the above identities the following relations for the Lie brackets:

\begin{align}
\{E_1, E_2\} &= -\kappa y E_1 + \kappa x E_2 + 2\tau E_3 \\
\{E_1, E_3\} &= [E_2, E_3] = 0.
\end{align}

Moreover, up to isometries, we may assume that $\kappa = -1, 0$ or 1.

2.3. Compact 3-dimensional homogeneous manifold with isometry group of dimension 4. Firstly, we recall that compact homogeneous Riemannian manifolds $E^3(\kappa, \tau)$ are Berger’s spheres. For sake of completeness and to keep the same notation we shall choose the next construction for Berger’s sphere, for more details see [4]. In what follow, Berger’s sphere is a standard 3-dimensional sphere

$$S^3 = \{(z, w) \in \mathbb{C}^2; |z|^2 + |w|^2 = 1\}$$

endowed with the family of metrics

$$g_{\kappa, \tau}(X, Y) = \frac{4}{\kappa} \left[\langle X, Y \rangle + \left(\frac{4\tau^2}{\kappa} - 1 \right) \langle X, V \rangle \langle Y, V \rangle \right],$$

where $\langle \cdot, \cdot \rangle$ stands for the standard metric on S^3, $V_{(z, w)} = (iz, iw)$ for each $(z, w) \in S^3$ and κ, τ are real numbers with $\kappa > 0$ and $\tau \neq 0$. In particular, $g_{1, 1}$ is the round metric. In addition, Berger’s sphere $(S^3, g_{\kappa, \tau})$ will be denoted by $S^3_{\kappa, \tau}$, which is a model for a homogeneous space $E^3(\kappa, \tau)$ when $\kappa > 0$ and $\tau \neq 0$. In this case the vertical Killing vector
field is given by $E_3 = \frac{1}{\sqrt{2}} V$. In order to obtain an orthonormal frame we choose $E_1(z, w) = \frac{1}{\sqrt{2}} (-z, w)$ and $E_2(z, w) = \frac{1}{\sqrt{2}} (-w, z)$.

Using this frame we have the following lemma for $\mathbb{S}^3_{\kappa, \tau}$ which can be found in [5].

Lemma 5. The Riemannian connection ∇ on $\mathbb{S}^3_{\kappa, \tau}$ is determined by

\[
\begin{align*}
\nabla_{E_1} E_1 &= 0 \\
\nabla_{E_2} E_1 &= \tau E_3 \\
\nabla_{E_3} E_1 &= \frac{\kappa - 2\tau^2}{2\tau} E_2 - \frac{\kappa - 2\tau^2}{2\tau} E_3 \\
\nabla_{E_2} E_2 &= 0 \\
\nabla_{E_2} E_3 &= -\tau E_1 \\
\nabla_{E_3} E_2 &= \frac{\kappa - 2\tau^2}{2\tau} E_1 \\
\nabla_{E_3} E_3 &= 0.
\end{align*}
\]

It is immediate to verify that the Lie brackets satisfy:

\[
[E_1, E_2] = -2\tau E_3, \quad [E_2, E_3] = -\frac{\kappa}{2\tau} E_1, \quad [E_1, E_3] = \frac{\kappa}{2\tau} E_2.
\]

3. Key Results

As a consequence of Lemmas 4 and 5 we can explicit the Ricci tensor of a 3-dimensional homogeneous Riemannian manifold with 4-dimensional isometry group according to next lemma.

Lemma 6. Let $E^3(\kappa, \tau)$ be a 3-dimensional homogeneous Riemannian manifold with 4-dimensional isometry group. Then, each frame $\{E_1, E_2, E_3\}$ constructed before on $E^3(\kappa, \tau)$ diagonalizes the Ricci tensor. More precisely, we have

\[
\text{Ric} = (\kappa - 2\tau^2)g - (\kappa - 4\tau^2)E_3^\flat \otimes E_3^\flat.
\]

Proof. Firstly, we consider $E^3(\kappa, \tau)$ a non compact 3-dimensional homogeneous Riemannian manifold with 4-dimensional isometry group. Since we can write the Ricci tensor as follows

\[
\text{Ric}(X, Y) = \sum_{j, k=1}^{3} \langle X, E_j \rangle \langle Y, E_k \rangle \text{Ric}(E_j, E_k),
\]

in order to find $\text{Ric}(E_j, E_k)$ we shall show that $\text{Ric}(E_j, E_k) = \lambda_j \delta_{jk}$. Indeed, using Lemma 5 we have

\[
\begin{align*}
\text{Ric}(E_1, E_1) &= \langle \nabla_{E_2} \nabla_{E_1} E_1 - \nabla_{E_1} \nabla_{E_2} E_1 + \nabla_{[E_1, E_2]} E_1, E_2 \rangle \\
&+ \langle \nabla_{E_3} \nabla_{E_1} E_1 - \nabla_{E_1} \nabla_{E_3} E_1 + \nabla_{[E_1, E_3]} E_1, E_3 \rangle \\
&= \langle \nabla_{E_2} (\kappa y E_2) + \kappa x \nabla_{E_1} E_1 + \kappa x \nabla_{E_2} E_1 + 2\tau \nabla_{E_3} E_1, E_2 \rangle \\
&+ \langle \nabla_{E_3} (\kappa y E_2) + \nabla_{E_1} (\tau E_2), E_3 \rangle \\
&= \frac{2\kappa}{\rho} - \kappa^2 (x^2 + y^2) - 2\tau^2 = \kappa - 2\tau^2.
\end{align*}
\]

In a similar way, we have $\text{Ric}(E_2, E_2) = \kappa - 2\tau^2$ and $\text{Ric}(E_3, E_3) = 2\tau^2$.

Now we claim that $\text{Ric}(E_j, E_k) = 0$ for $j \neq k$. In fact, let us compute only $\text{Ric}(E_1, E_2)$, since the others term follow mutatis mutandis.

\[
\begin{align*}
\text{Ric}(E_1, E_2) &= \langle \nabla_{E_3} \nabla_{E_1} E_2 - \nabla_{E_1} \nabla_{E_3} E_2 + \nabla_{[E_1, E_3]} E_2, E_2 \rangle \\
&= \langle \nabla_{E_1} (\kappa y E_1 + \tau E_3) - \nabla_{E_1} (\tau E_3), E_3 \rangle \\
&= \kappa y \langle \nabla_{E_1} E_1, E_3 \rangle - \tau \langle \nabla_{E_1} E_1, E_3 \rangle = 0,
\end{align*}
\]

which finishes our claim. Therefore, using (3.2), we deduce

\[
\text{Ric} = (\kappa - 2\tau^2)g - (\kappa - 4\tau^2)E_3^\flat \otimes E_3^\flat.
\]
which completes the proof in this case. We now point out that using Lemma 4 straightforward computations as above give the same result for Berger’s spheres. Then we complete the proof of the lemma.

Lemma 7. Let \((E^3(\kappa, \tau), g, X, \lambda)\) be a non compact 3-dimensional homogeneous m-quasi-Einstein metric with 4-dimensional isometry group. If \(E_1, E_2\) and \(E_3\) are given by Lemma 4 then hold:

\[
\begin{align*}
(3.4) \quad & E_1(X, E_1) - \kappa y(X, E_2) = \frac{1}{m} (X, E_1)^2 + \lambda - (\kappa - 2\tau^2). \\
(3.5) \quad & E_2(X, E_2) - \kappa x(X, E_1) = \frac{1}{m} (X, E_2)^2 + \lambda - (\kappa - 2\tau^2). \\
(3.6) \quad & E_3(X, E_3) = \frac{1}{m} (X, E_3)^2 + \lambda - 2\tau^2. \\
(3.7) \quad & E_2(X, E_1) + E_1(X, E_2) + \kappa (g(X, E_1) + x(X, E_2)) = \frac{2}{m} (X, E_1)(X, E_2). \\
(3.8) \quad & E_3(X, E_1) + E_1(X, E_3) + 2\tau(X, E_2) = \frac{2}{m} (X, E_1)(X, E_3). \\
(3.9) \quad & E_3(X, E_2) + E_2(X, E_3) - 2\tau(X, E_1) = \frac{2}{m} (X, E_2)(X, E_3).
\end{align*}
\]

Proof. We notice that by using equation (1.2) we can write

\[
(3.10) \quad \mathcal{L}_X g(E_i, E_j) = 2 \left(\lambda \delta_{ij} - \text{Ric}(E_i, E_j) + \frac{1}{m} (X, E_i)(X, E_j) \right).
\]

Taking into account that \(\mathcal{L}_X g(E_i, E_j) = \langle \nabla E_i, X, E_j \rangle + \langle \nabla E_j, X, E_i \rangle\) we use the compatibility of the metric \(g\) to infer

\[
(3.11) \quad E_i(X, E_j) + E_j(X, E_i) - \langle X, \nabla E_i, E_j + \nabla E_j, E_i \rangle = 2 \left(\lambda \delta_{ij} - R_{ij} + \frac{1}{m} X_i X_j \right).
\]

Therefore, using Lemma 4 and (3.11) straightforward computations give the desired statements.

4. Proof of Theorem 2

Proof. Since \(M^3\) is a 3-dimensional homogeneous manifold, its isometry group has dimension 3, 4 or 6. Making use of Theorem 1 we can discard \(\text{Sol}^3\). Moreover, when \(\dim \text{Iso}(E^3(\kappa, \tau), g) = 6\) we have space forms, which give Einstein metrics. Therefore, it remains to describe gradient quasi-Einstein structures of homogeneous spaces with isometry group of dimension 4, which were denoted by \(E^3(\kappa, \tau)\).

We start solving the ODE of (3.6) to conclude that either

\[
\langle \nabla f, E_3 \rangle = \pm \sqrt{-m(\lambda - 2\tau^2)}
\]

or

\[
\langle \nabla f, E_3 \rangle = -\sqrt{-m(\lambda - 2\tau^2)} \tanh \left[\sqrt{-\frac{\lambda - 2\tau^2}{m}} (\psi + t) \right],
\]

where \(\psi \in C^\infty(E^3(\kappa, \tau))\) does not depend of \(t\). Taking into account this two possibilities to \(\langle \nabla f, E_3 \rangle\) we conclude that \(f\) is given by either

\[
f = \varphi \pm \sqrt{-m(\lambda - 2\tau^2)} t
\]
or

\[f = \varphi - m \log \cosh \left(\sqrt{\frac{\lambda - 2\tau^2}{m}} (\psi + t) \right), \]

where \(\varphi \in C^\infty(E^3(\kappa, \tau)) \) does not depend of \(t \).

Now, we shall divide this part of the proof in two cases.

First, if \(f = \varphi \pm \sqrt{-m(\lambda - 2\tau^2)} t \), then we substitute \(f \) in equations (3.8) and (3.9), respectively, to arrive at

\[
\tau E_2(f) = \pm \sqrt{\frac{\lambda - 2\tau^2}{m}} E_1(f)
\]

and

\[
\tau E_1(f) = \mp \sqrt{\frac{\lambda - 2\tau^2}{m}} E_2(f).
\]

On the other hand, by using equation (3.12) of Lemma 3.2 and item (b) of Proposition 3.6, both in [7], we conclude that \(\lambda \) and \(\tau \) can not be zero simultaneously.

Therefore, our two possibilities (4.1) gives

\[
E_1(f) = E_2(f) = 0,
\]

which substituted in (3.21) implies \(\lambda = \kappa - 2\tau^2 \). We notice that \(\mathbb{S}_k^2 \times \mathbb{R} \) has \(\tau = 0 \), therefore, if \((E^3(\kappa, \tau), g) = \mathbb{S}_k^2 \times \mathbb{R} \) we use Qian’s Theorem [16] to conclude that \(\mathbb{S}_k^2 \times \mathbb{R} \) is compact, which is a contradiction, see also [13] and [11]. On the other hand, since \([E_1, E_2] = -\kappa y E_1 + \kappa x E_2 + 2\tau E_3 \), we can use (4.3) to obtain \(2\tau E_3(f) = 0 \). From what it follows that \((E^3(\kappa, \tau), g) \) can not be \(Nil_3(\kappa, \tau) \) and \(\mathbb{PSL}_2(\kappa, \tau) \). Therefore, \(E^3(\kappa, \tau) = \mathbb{H}_k^2 \times \mathbb{R} \) and \(\lambda = \kappa \), which finishes the first case.

Proceeding we consider \(f = \varphi - m \log \cosh \left[\sqrt{\frac{\lambda - 2\tau^2}{m}} (\psi + t) \right] \). In this case, we start supposing that \(E^3(\kappa, \tau) = Nil_3(\kappa, \tau) \). Therefore, from (3.8) we obtain

\[
E_1 E_3(f) + \tau E_2(f) = \frac{1}{m} E_1(f) E_3(f).
\]

From what it follows that

\[
\partial^2_{tt} f - \tau y E_3 E_3(f) + \tau E_2(f) = \frac{1}{m} [\partial_x f - \tau y E_3(f)] E_3(f),
\]

which compared with (3.6) gives

\[
\partial^2_{tt} f - \tau(\lambda - 2\tau^2)y + \tau E_2(f) = \frac{1}{m} \partial_x f \partial_t f.
\]

Substituting the value of \(f \) in (4.3) we obtain

\[
\sqrt{-(\lambda - 2\tau^2)} [m \tau (\partial_y \psi + \tau x) - \partial_x \varphi] \tanh \left(\sqrt{\frac{\lambda - 2\tau^2}{m}} (\psi + t) \right)
\]

\[
= \sqrt{m} \left[(\lambda - 2\tau^2)(\partial_x \psi - \tau y) + \tau \partial_y \varphi \right]
\]

Now, we notice that the right hand side of the previous expression does not depend on \(t \), thus, since \(\lambda - 2\tau^2 \neq 0 \), we have \(\tanh \left[\sqrt{\frac{-(\lambda - 2\tau^2)}{m}} (\psi + t) \right] \neq 0 \), which implies that

\[
\partial_x \varphi - m \tau \partial_y \psi = m \tau^2 x
\]

and

\[
\tau \partial_y \varphi + (\lambda - 2\tau^2) \partial_x \psi = \tau(\lambda - 2\tau^2)y.
\]
In a similar way we use equations (3.6) and (3.9) to obtain

\[\partial_y \varphi + m \tau \partial_x \psi = m \tau^2 y \]

and

\[\tau \partial_x \varphi - (\lambda - 2 \tau^2) \partial_y \psi = \tau (\lambda - 2 \tau^2) x. \]

Now, we may combine (4.6) with (4.9) and (4.7) with (4.8) to obtain, respectively, \[\partial_y \psi = -\tau x \] and \[\partial_x \psi = \tau y, \] which gives \(\tau = 0 \). So, we obtain a contradiction.

Therefore, since \(E^3(\kappa, \tau) \neq Nil_3(\kappa, \tau) \), we can use (3.8) and (3.6) to arrive at

\[\frac{1}{\rho} \frac{\partial^2_{xy} f}{m} + 2 \kappa \tau (\lambda - 2 \tau^2) x + \tau E_2(f) = \frac{1}{m \rho} \partial_x f \partial_t f. \]

Now, we substitute the value of \(f \) in (4.10) to obtain

\[\sqrt{-\left(\lambda - 2 \tau^2\right)} \left\{ \frac{1}{\rho} \left(m \tau \partial_y \psi - \partial_x \varphi \right) - 2 m \kappa \tau^2 x \right\} \tanh \left\{ \sqrt{-\frac{(\lambda - 2 \tau^2)}{m}} (\psi + t) \right\} \]

by using a similar argument used previously we conclude

\[\partial_x \varphi - m \tau \partial_y \psi = -2 m \kappa \tau^2 x \rho \]

and

\[\tau \partial_y \varphi + (\lambda - 2 \tau^2) \partial_x \psi = -2 \kappa \tau (\lambda - 2 \tau^2) y \rho. \]

Analogously, from (3.6) and (3.9) we have

\[\frac{1}{\rho} \frac{\partial^2_{yx} f}{m} - 2 \kappa \tau (\lambda - 2 \tau^2) x - \tau E_1(f) = \frac{1}{m} \partial_y f \partial_t f. \]

Substituting the value of \(f \) we obtain

\[\sqrt{-\left(\lambda - 2 \tau^2\right)} \left\{ \frac{1}{\rho} \left(m \tau \partial_x \psi + \partial_y \varphi \right) + 2 m \kappa \tau^2 y \right\} \tanh \left\{ \sqrt{-\frac{(\lambda - 2 \tau^2)}{m}} (\psi + t) \right\} \]

\[= -\sqrt{m} \left\{ \frac{1}{\rho} \left[(\lambda - 2 \tau^2) \partial_y \psi - \tau \partial_x \varphi \right] - 2 \kappa \tau (\lambda - 2 \tau^2) \right\}, \]

which gives

\[\partial_y \varphi + m \tau \partial_x \psi = -2 m \kappa \tau^2 y \rho \]

and

\[\tau \partial_x \varphi - (\lambda - 2 \tau^2) \partial_y \psi = -2 \kappa \tau (\lambda - 2 \tau^2) x \rho. \]

Finally, we may combine (4.11) with (4.15) and (4.12) with (4.14), respectively, to obtain \(\partial_y \psi = 2 \kappa \tau x \rho \) and \(\partial_x \psi = -2 \kappa \tau y \rho \), hence \(\tau = 0 \). Since \(\tau = 0 \) we can use (4.11), (4.12), (4.14) and (4.15) to conclude that \(\varphi \) and \(\psi \) are constants. Thus, \(f \) depend only on \(t \) and then, from (3.9) we have \(\lambda = \kappa < 0 \) and \(E^3(\kappa, \tau) = E^2_\kappa \times \mathbb{R} \), which is in accordance to Example 3.

So, we finish the proof of the theorem.

Acknowledgement. The authors are grateful to J. Case and P. Petersen for helpful discussions and valuable suggestions during the elaboration of this paper.
References

[1] Anderson, M.: Scalar curvature, metric degenerations and the static vacuum Einstein equations on 3-manifolds, I. Geom. Funct. Anal. 9 (1999) n.5, 855-967.
[2] Anderson, M. and Khuri, M.: The static extension problem in General relativity. arXiv:0909.4550v1 [math.DG], (2009).
[3] Barros, A. and Ribeiro Jr, E.: Integral formulae on quasi-Einstein manifolds and applications. Glasgow Math. J. 54 (2012), 213-223.
[4] Besse, A.: Einstein manifolds, Springer-Verlag, New York (2008).
[5] Brozos-Vázquez, M., García-Río, E., Gavino-Fernández, S.: Locally conformally flat Lorentzian quasi-Einstein manifolds. J. Geom. Anal., to appear (doi: 10.1007/s12220-011-9283-z), arXiv:1202.1245v1 [math.DG], (2012).
[6] Cao, H.-D.: Recent progress on Ricci soliton. Adv. Lect. Math. (ALM), 11 (2009), 1-38.
[7] Case, J., Shu, Y. and Wei, G.: Rigidity of quasi-Einstein metrics. Differ. Geom. Appl., 29 (2011), 93-100.
[8] Case, J.: On the nonexistence of quasi-Einstein metrics. Pacific J. Math. 248 (2010), 227-284.
[9] Corvino, J.: Scalar curvature deformations and a gluing construction for the Einstein constraint equations. Comm. Math. Phys. 214 (2000) 137-189.
[10] Eminenti, M. La Nave, G. and Mantegazza, C.: Ricci solitons: the equation point of view. Manuscripta Math. 127 (2008) 345-367.
[11] Fernandez-Lopez, M. and García-Río, E.: A remark on compact Ricci solitons. Math. Ann. (2008), 893-896.
[12] He, C., Petersen, P., Wylie, W.: On the classification of warped product Einstein metrics. Commun. in Analysis and Geometry, 20 (2012) 271-312.
[13] Kim, D. S. and Kim, Y. H.: Compact Einstein warped product spaces with nonpositive scalar curvature. Proc. Amer. Math. Soc. 131 (2003) 2573-2576.
[14] Limoncu, M.: Modifications of the Ricci tensor and applications. Arch. Math. 95 (2010) 191-199.
[15] Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. Preprint, (2002). arXiv [math/0211159]
[16] Qian, Z.: Estimates for weighted volumes and applications, Quart. J. Math. Oxford Ser. (2) 48 (1997), no. 190, 235-242.
[17] Thurston, W.: Three-Dimensional Geometry and Topology. Princeton University Press, New Jersey (1997).
[18] Wylie, W.: Complete shrinking Ricci solitons have finite fundamental group. Proc. Amer. Math. Soc., 136 (2008), 1803-1806.

1 Departamento de Matemática-Universidade Federal do Ceará 60455-760-Fortaleza-CE-BR
E-mail address: abbarros@mat.ufc.br

2 Departamento de Matemática-Universidade Federal do Ceará 60455-760-Fortaleza-CE-BR
E-mail address: ernani@mat.ufc.br

3 Departamento de Matemática-Universidade Federal do Ceará, 60455-760-Fortaleza-CE-BR
E-mail address: jfsfmt@yahoo.com.br
URL: http://www.mat.ufc.br/pgmat