Multi-Dimensional Nonsystematic Reed-Solomon Codes

Akira Shiozaki *

May 2, 2014

Abstract

This paper proposes a new class of multi-dimensional nonsystematic Reed-Solomon codes that are constructed based on the multi-dimensional Fourier transform over a finite field. The proposed codes are the extension of the nonsystematic Reed-Solomon codes to multi-dimension. This paper also discusses the performance of the multi-dimensional nonsystematic Reed-Solomon codes.

Index terms: Reed-Solomon codes, multi-dimensional, Fourier transform, error correction, error-correcting-codes

1 Introduction

Many error-correcting-codes [1],[2] have been developed to enhance the reliability of data transmission systems and memory systems. One class of superior error-correcting-codes is the Reed-Solomon codes that are maximum-distance codes. The nonsystematic Reed-Solomon codes [3] are constructed based on the one-dimensional Fourier transforms over a finite field. The code length of the nonsystematic Reed-Solomon codes over a finite field \(GF(q) \) is \(q \), while the code length of the systematic and cyclic Reed-Solomon codes is \(q - 1 \).

The author presented the two-dimensional nonsystematic Reed-Solomon codes based on two-dimensional Fourier transform [4] and showed the extension of the codes to multi-dimensional codes [5]. On the other hand, Shen, et al. [6] presented the multidimensional extension of the Reed-Solomon codes using a location set contained in a multidimensional affine or projective space over a finite field. But they described only the two-dimensional extension concretely.

This paper proposes a new class of multi-dimensional nonsystematic Reed-Solomon codes that are constructed based on the multi-dimensional Fourier transform over a finite field. The proposed codes are the extension of the nonsystematic Reed-Solomon codes to multi-dimension, and are the developments of the codes in [5]. The code length of the \(n \)-dimensional nonsystematic Reed-Solomon codes over a finite field \(GF(q) \) is \(q^n \). This paper also discusses the performance of the multi-dimensional nonsystematic Reed-Solomon codes.

2 2-dimensional Reed-Solomon codes

Firstly, we consider the following codes based on 2-dimensional Fourier transform.

Let \(a_{ij} \) (\(0 \leq i \leq K_j; 0 \leq j \leq L \)) be any elements of a finite field \(GF(q) \) and let \(f(x_1, x_2) \) be a polynomial of two variables whose coefficients are \(a_{ij} \):

\[
f(x_1, x_2) = \sum_{j=0}^{L} \left(\sum_{i=0}^{K_j} a_{ij} x_1^i \right) x_2^j
\]

\[
= \sum_{j=0}^{L} f_j(x_1) x_2^j \quad (L \leq q - 1)
\]

\[
f_j(x_1) = \sum_{i=0}^{K_j} a_{ij} x_1^i \quad (K_j \leq q - 1)
\]

We consider the code whose codeword consists of \(q^2 \) elements \(\{ f(\beta_k, \beta_l) \} \) (\(k = 0, 1, \cdots, q - 1; l = 0, 1, \cdots, q - 1 \)), where \(\beta_k \) and \(\beta_l \) are any elements of \(GF(q) \). The transformation of the information symbols \(\{ a_{ij} \} \) to a codeword

*Emeritus professor, Osaka Prefecture University, Japan. E-mail: shiozaki.akira@gmail.com
is at most $q - m$ because the number of the roots of $f_j(x_1)$ is at most K_j.

A nonzero codeword has at least one $f_j(x_1)$ ($0 \leq j \leq L$) such that $f_j(x_1) \neq 0$. Now let m be the maximum j of the nonzero $f_j(x_1)$, that is, $f_m(x_1) \neq 0$, $f_{m+1}(x_1) = f_{m+2}(x_1) = \cdots = f_L(x_1) = 0$. The number of β_k such that $f_m(\beta_k) \neq 0$ is at least $q - K_m$. For an element β_k such that $f_j(\beta_k) \neq 0$ ($0 \leq j \leq m$), the number of β_i such that $f(\beta_i, \beta_i) \neq 0$ is at least $q - m$ because the number of the roots of

$$f(\beta_k, x_2) = \sum_{j=0}^{m} f_j(\beta_k)x_2^j$$

is at most m. Therefore the number of the pairs (β_k, β_i) such that $f(\beta_k, \beta_i) \neq 0$ is at least

$$\min_{0 \leq m \leq L} [(q - K_m)(q - m)]$$

and it is equal to the minimum distance d_{min} of the code. From Eq. (4), $K_m = q - \lceil \frac{d_{\text{min}}}{q - m} \rceil$ because $q - K_m$ ($m = 0, 1, \cdots, L$) must be $\lceil \frac{d_{\text{min}}}{q - m} \rceil$. L should be determined as the maximum integer such that $K_L = q - \lceil \frac{d_{\text{min}}}{q - L} \rceil \geq 0$. Then the number of the information symbols K is

$$K = \sum_{m=0}^{L} (K_m + 1) = \sum_{m=0}^{L} \left(q + 1 - \lceil \frac{d_{\text{min}}}{q - m} \rceil \right)$$

and the number of the check symbols $N - K = q^2 - K$ is

$$N - K = \sum_{m=0}^{L} \left(\lfloor \frac{d_{\text{min}}}{q - m} \rfloor - 1 \right) + q(q - L - 1).$$

The above statement is summarized in the following theorem:

[Theorem 1] Let a_{ij} ($0 \leq i \leq K_j; 0 \leq j \leq L$) be any elements of a finite field $GF(q)$, where K_j is $K_j = q - \lceil \frac{d_{\text{min}}}{q - j} \rceil$ and L is the maximum integer such that $K_L = q - \lceil \frac{d_{\text{min}}}{q - L} \rceil \geq 0$.

For a polynomial of two variables such that

$$f(x_1, x_2) = \sum_{j=0}^{L} \sum_{i=0}^{K_j} a_{ij}x_1^ix_2^j,$$

the code whose codeword consists of q^2 elements $f(\beta_k, \beta_i)$ ($k = 0, 1, \cdots, q - 1; l = 0, 1, \cdots, q - 1$) is a linear code with minimum distance d_{min}, where β_k and β_i are the elements of $GF(q)$.

Figure 1 shows the example of a 2-dimensional Reed-Solomon code. Table 1 shows the distribution of K_m in case of $q = 5$.

![Figure 1: 2-dimensional Reed-Solomon codes](image)

\[\text{[x]}\] denotes the minimum integer not less than x
Table 1: Number of information symbols of 2-dimensional Reed-Solomon code \((q = 5)\)

\(d_{\text{min}}\)	\(m\)	\(K_m\)									
3	0	4	1	4	1	2	4	2	3	4	2
1	1	4	1	1	3	2	3	2	3	2	3
2	4	4	1	1	4	4	2	4	4	0	4
3	3	3	3	3	3	3	2	3	3	0	0
4	2	2	4	1	4	4	0	0	4	0	3
\(K = 22\)	\(K = 20\)	\(K = 17\)	\(K = 15\)								

\[
K = L \sum_{m=0}^{L} \left(q + 1 - \left\lceil \frac{d_{\text{min}}}{q - m} \right\rceil \right)
\geq L \sum_{m=0}^{L} \left(q - \frac{d_{\text{min}}}{q - m} \right) \quad \text{(because} \left\lceil \frac{d_{\text{min}}}{q - m} \right\rceil \leq \frac{d_{\text{min}}}{q - m} + 1) \]

\[
K = L - L \sum_{m=0}^{L} \frac{d_{\text{min}}}{q - m} > L \left(q - \frac{d_{\text{min}}}{q - m} \right) - d_{\text{min}} L \sum_{m=0}^{L} \frac{1}{q - m} \quad \left(L > q - \frac{d_{\text{min}}}{q - m} \because q \geq \left\lceil \frac{d_{\text{min}}}{q - L} \right\rceil \right)
\]

\[
K > q^2 - d_{\text{min}} - \frac{d_{\text{min}}}{q - m} \sum_{m=0}^{L} \frac{1}{q - m} \quad \left(L \leq q - \frac{d_{\text{min}}}{q} \right). \quad (8)
\]

So

\[
\frac{K}{N} > 1 - \frac{d_{\text{min}}}{N} - \frac{d_{\text{min}}}{N} \sum_{m=0}^{L} \frac{1}{q - m} \quad (9)
\]

Figure 2 shows the relation between \(d_{\text{min}}/N\) and \(K/N\).

3 3-dimensional Reed-Solomon codes

We extend the discussion in the preceding chapter to 3-dimensional Fourier transform over a finite field.

Let \(a_{ij,k} \quad (0 \leq i_1 \leq K_{ij} ; \ 0 \leq i_2 \leq L_i ; \ 0 \leq i_3 \leq L)\) be any elements of a finite field \(GF(q)\), and let \(f(x_1, x_2, x_3)\) be a polynomial of three variables whose coefficients are \(a_{ij,k}\):

\[
f(x_1, x_2, x_3) = \sum_{i_1=0}^{L_{i_1}} \sum_{i_2=0}^{L_{i_2}} \left(\sum_{i_3=0}^{K_{ij,k}} a_{ij,k} x_1^{i_1} x_2^{i_2} x_3^{i_3} \right)
\]

\[
= \sum_{i_2=0}^{L_{i_2}} \sum_{i_3=0}^{L} \left(f_{ij} (x_2) \ x_2^{i_2} x_3^{i_3} \right) \quad (10)
\]
We consider the code whose codeword consists of \(q^3 \) elements \(\{ f(\beta_{k_1}, \beta_{k_2}, \beta_{k_3}) \} \) \((k_j = 0, 1, \ldots, q - 1)\), where \(\beta_{k_j} \) \((j = 1, 2, 3)\) are any elements of \(GF(q) \). The transformation of the information symbols \(\{ a_{i_1i_2i_3} \} \) to a codeword \(\{ f(\beta_{k_1}, \beta_{k_2}, \beta_{k_3}) \} \) is the three-dimensional Fourier transform over \(GF(q) \), and so the code is the three-dimensional extension of a non-systematic Reed-Solomon code. The code length \(N \) is \(N = q^3 \).

When \(f_{i_1i_2i_3}(x_1) \neq 0 \), the number of \(\beta_{k_1} \) \((0 \leq k_1 \leq q - 1)\) such that \(f_{i_1i_2i_3}(\beta_{k_1}) \neq 0 \) is at least \(q - K_{i_1i_2} \), because the number of the roots of \(f_{i_1i_2i_3}(x_1) \) is at most \(K_{i_1i_2} \).

Now let \(m_2 \) be the maximum \(i_2 \) of the nonzero \(f_{i_1i_2i_3}(x_1) \) and let \(m_3 \) be the maximum \(i_3 \) of the nonzero \(f_{i_1i_2i_3}(x_1) \). Then let \(K_{m_2,m_3} \) be the maximum \(i_1 \) in this case.

For the equations

\[
f(\beta_{k_1}, x_2, x_3) = \sum_{i_3=0}^{m_3} \left(\sum_{i_2=0}^{m_2} f_{i_1i_2i_3}(\beta_{k_1}) x_2^{i_2} \right) x_3^{i_3} = \sum_{i_3=0}^{m_3} f_{i_1i_3}(\beta_{k_1}, x_2) x_3^{i_3}
\]

and

\[
f_{i_1i_2i_3}(\beta_{k_1}, x_2) = \sum_{i_3=0}^{m_3} f_{i_1i_2i_3}(\beta_{k_1}) x_2^{i_2},
\]

the number of \(\beta_{k_1} \) such that \(f_{i_1}(\beta_{k_1}, \beta_{k_2}) \neq 0 \) is at least \(q - m_2 \) because the number of the roots of \(f_{i_1}(\beta_{k_1}, x_2) \) is at most \(m_2 \). For \(\beta_{k_2} \) such that \(f_{i_1}(\beta_{k_1}, \beta_{k_2}) \neq 0 \), the number of \(\beta_{k_3} \) such that \(f(\beta_{k_1}, \beta_{k_2}, \beta_{k_3}) \neq 0 \) is at least \(q - m_3 \) because the number of the roots of

\[
f(\beta_{k_1}, \beta_{k_2}, x_3) = \sum_{i_3=0}^{m_3} f_{i_1i_3}(\beta_{k_1}, \beta_{k_2}) x_3^{i_3}
\]

is at most \(m_3 \). Therefore the number of the three-tuples \((\beta_{k_1}, \beta_{k_2}, \beta_{k_3}) \) such that \(f(\beta_{k_1}, \beta_{k_2}, \beta_{k_3}) \neq 0 \) is at least

\[
\min_{0 \leq m_2 \leq L, 0 \leq m_3 \leq L} \{ (q - K_{m_2,m_3})(q - m_2)(q - m_3) \},
\]

and it is equal to the minimum distance \(d_{\text{min}} \) of the code.

From Eq. (15), \(K_{m_2,m_3} = q - \lceil \frac{d_{\text{min}}}{(q-m_2)(q-m_3)} \rceil \) because \(q - K_{m_2,m_3} \) \((m_2 = 0, 1, \ldots, L; m_3 = 0, 1, \ldots, L)\) must be \(\lceil \frac{d_{\text{min}}}{(q-m_2)(q-m_3)} \rceil \). \(L_{m_2} \) and \(L \) should be respectively determined as the maximum \(m_2 \) and the maximum \(m_3 \) such that
\(K_{m_2m_1} = q - \left\lfloor \frac{d_{\text{min}}}{(q-m_2)(q-m_3)} \right\rfloor \geq 0\). Then the number of the information symbols \(K\) is

\[
K = \sum_{m_1=0}^{L} \sum_{m_2=0}^{L_{m_1}} (K_{m_2m_1} + 1) = \sum_{m_1=0}^{L} \sum_{m_2=0}^{L_{m_1}} \left(q + 1 - \left\lfloor \frac{d_{\text{min}}}{(q-m_2)(q-m_3)} \right\rfloor \right)
\]

(16)

and the number of the check symbols \(N-K = q^3-K\) is

\[
N-K = \sum_{m_1=0}^{L} \sum_{m_2=0}^{L_{m_1}} \left(\left\lfloor \frac{d_{\text{min}}}{(q-m_2)(q-m_3)} \right\rfloor - 1 \right) + q^3 - q(L+1)(L_{m_1} + 1).
\]

(17)

The above statement is summarized in the following theorem:

[Theorem 2] Let \(a_{i_1i_2i_3} (0 \leq i_1 \leq L_{i_1}; 0 \leq i_2 \leq L_{j}; 0 \leq i_3 \leq L)\) be any elements of a finite field \(GF(q)\), where \(K_{i_1j} = q - \left\lfloor \frac{d_{\text{min}}}{(q-i_1j)(q-i_3)} \right\rfloor\) and \(L_{i_3}\) and \(L\) are the maximum integers such that \(K_{L_{i_3}L} = q - \left\lfloor \frac{d_{\text{min}}}{(q-L_{i_3}L)} \right\rfloor \geq 0\). For a polynomial of three variables such that

\[
f(x_1, x_2, x_3) = \sum_{i_3=0}^{L} \sum_{i_2=0}^{L_{i_3}} \sum_{i_1=0}^{K_{i_1i_2i_3}} a_{i_1i_2i_3} x_1^{i_1} x_2^{i_2} x_3^{i_3},
\]

(18)

the code whose codeword consists of \(q^3\) elements \(\{f(\beta_{k_1}, \beta_{k_2}, \beta_{k_3})\} (k_l = 0, 1, \cdots, q-1; l = 1, 2, 3)\) is a linear code with minimum distance \(d_{\text{min}}\), where \(\beta_{k_1}, \beta_{k_2}, \beta_{k_3}\) are the elements of \(GF(q)\). \(\square\)

4 \(n\)-dimensional Reed-Solomon codes

We extend the discussion in the preceding chapter to \(n\)-dimensional Fourier transform over a finite field.

Let \(a_{i_1i_2i_3} (0 \leq i_1 \leq K_{i_1j}; 0 \leq i_2 \leq L_{i_1i_2}; 0 \leq i_3 \leq L)\) be any elements of a finite field \(GF(q)\), and let a polynomial of \(n\) variables whose coefficients are \(a_{i_1i_2i_3}\):

\[
f(x_1, x_2, \cdots, x_n) = \sum_{i_3=0}^{L} \sum_{i_2=0}^{L_{i_3}} \sum_{i_1=0}^{K_{i_1i_2i_3}} a_{i_1i_2i_3} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_3} = \sum_{i_3=0}^{L} \sum_{i_2=0}^{L_{i_3}} \sum_{i_1=0}^{K_{i_1i_2i_3}} a_{i_1i_2i_3} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_3} = \sum_{i_3=0}^{L} \sum_{i_2=0}^{L_{i_3}} \sum_{i_1=0}^{K_{i_1i_2i_3}} a_{i_1i_2i_3} x_1^{i_1}, \quad (K_{i_1i_2i_3} \leq q-1)\]

(19)

(20)

We consider the code whose codeword consists of \(q^n\) elements \(\{f(\beta_{k_1}, \beta_{k_2}, \cdots, \beta_{k_n})\} (k_l = 0, 1, \cdots, q-1)\), where \(\beta_{k_j} (j = 1, 2, \cdots, n)\) are any elements of \(GF(q)\). The transformation of the information symbols \(\{a_{i_1i_2i_3}\}\) to a codeword \(\{f(\beta_{k_1}, \beta_{k_2}, \cdots, \beta_{k_n})\}\) is the \(n\)-dimensional Fourier transform over \(GF(q)\), and so the code is the \(n\)-dimensional extension of a nonsystematic Reed-Solomon code. The code length \(N\) is \(N = q^n\).

From the discussion in the preceding chapter, the number of \(n\)-tuples \((\beta_{k_1}, \beta_{k_2}, \cdots, \beta_{k_n})\) such that \(f(\beta_{k_1}, \beta_{k_2}, \cdots, \beta_{k_n}) \neq 0\) is at least

\[
\min_{0 \geq m_j \leq L} \prod_{0 \leq m_j \leq L} \left(q - K_{m_2m_1} - m_j(q-m_3) \cdots (q-m_n) \right)
\]

(21)

ant it is equal to the minimum distance \(d_{\text{min}}\) of the code.

From Eq.(21), \(K_{m_2m_1} - m_j = q - \left\lfloor \frac{d_{\text{min}}}{(q-m_2)(q-m_3)} \right\rfloor\) because \(q - K_{m_2m_1} - m_j = 0, \cdots, L_{m_jm_2m_1} - m_j; j = 2, 3, \cdots, n-1; m_0 = 0, 1, \cdots, L\) must be \(\left\lfloor \frac{d_{\text{min}}}{(q-m_2)(q-m_3)} \right\rfloor\). \(L_{m_2m_1} = L_{m_3m_2} = \cdots = L_{m_n} = L\) should be respectively determined as the maximum \(m_2, m_3, \cdots, m_n\) such that \(K_{m_2m_1} = q - \left\lfloor \frac{d_{\text{min}}}{(q-m_2)(q-m_3)} \right\rfloor \geq 0\).

The above statement is summarized in the following theorem:

[Theorem 3] Let \(a_{i_1i_2i_3} (0 \leq i_1 \leq K_{i_1j}; 0 \leq i_2 \leq L_{i_1i_2}; 0 \leq i_3 \leq L)\) be any elements of a finite field \(GF(q)\), where \(K_{i_1j} = q - \left\lfloor \frac{d_{\text{min}}}{(q-i_1j)(q-i_3)} \right\rfloor\) and \(L_{i_1i_2} = L_{i_1j}, L_{i_2j}, \cdots, L_i, \cdots, L\) are the maximum integers such that \(K_{i_1i_2i_3} = q - \left\lfloor \frac{d_{\text{min}}}{(q-i_1j)(q-i_3)} \right\rfloor \geq 0\).
For a polynomial of \(n \) variables such that

\[
f(x_1, x_2, \cdots, x_n) = \sum_{i_1=0}^{L} \sum_{i_2=0}^{L} \cdots \sum_{i_n=0}^{L} a_{i_1i_2\cdots i_n} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}
\]

(22)

the code whose codeword consists of \(q^n \) elements \((f(\beta_{k_1}, \beta_{k_2}, \cdots, \beta_{k_l})) \) \((k_l = 0, 1, \cdots, q - 1; l = 1, 2, \cdots, n) \) is a linear code with minimum distance \(d_{\text{min}} \), where \(\beta_{k_1}, \beta_{k_2}, \cdots, \beta_{k_n} \) are the elements of \(GF(q) \). \(\square \)

The number of the information symbols \(K \) is

\[
K = \sum_{i_k=0}^{L} \sum_{i_{k+1}=0}^{L} \cdots \sum_{i_{n}=0}^{L} (K_{i_1i_2\cdots i_n} + 1) = \sum_{i_k=0}^{L} \sum_{i_{k+1}=0}^{L} \cdots \sum_{i_{n}=0}^{L} \left(q + 1 - \left\lceil \frac{d_{\text{min}}}{\prod_{j=2}^{n} (q - i_j)} \right\rceil \right)
\]

(23)

and the number of the check symbols \(N - K = q^n - K \) is

\[
N - K = \sum_{i_k=0}^{L} \sum_{i_{k+1}=0}^{L} \cdots \sum_{i_{n}=0}^{L} \left(\left\lceil \frac{d_{\text{min}}}{\prod_{j=2}^{n} (q - i_j)} \right\rceil - 1 \right) + q^n - q(L + 1) \prod_{j=2}^{n} (L_{j,i+1,i+1} - i_n + 1).
\]

(24)

When \(L = q - 1 \) and \(L_{j,i+1,i+1,i_n} = q - 1 \) \((j = 2, 3, \cdots, n - 1) \), that is, \(d_{\text{min}} \leq q \), the number of the check symbols \(N - K \) is

\[
N - K = \sum_{i_k=0}^{q-1} \sum_{i_{k+1}=0}^{q-1} \cdots \sum_{i_{n}=0}^{q-1} \left(\left\lceil \frac{d_{\text{min}}}{\prod_{j=2}^{n} (q - i_j)} \right\rceil - 1 \right)
\]

\[
= \sum_{i_k=q-d_{\text{min}}+1}^{q-1} \sum_{i_{k+1}=q-d_{\text{min}}+1}^{q-1} \cdots \sum_{i_{n}=q-d_{\text{min}}+1}^{q-1} \left(\left\lceil \frac{d_{\text{min}}}{\prod_{j=2}^{n} (q - i_j)} \right\rceil - 1 \right)
\]

\[
= \sum_{i_k=1}^{d_{\text{min}}-1} \sum_{i_{k+1}=1}^{d_{\text{min}}-1} \cdots \sum_{i_{n}=1}^{d_{\text{min}}-1} \left(\left\lceil \frac{d_{\text{min}}}{\prod_{j=2}^{n} (i_j)} \right\rceil - 1 \right).
\]

(25)

The number of the check symbols \(N - K \) has no relation to the number \(q \) of the elements of a finite field \(GF(q) \) and is determined by only the minimum distance \(d_{\text{min}} \). Table 2 shows the number of the check symbols when \(d_{\text{min}} \leq q \).

\(d_{\text{min}} \)	\(n = 2 \)	\(n = 3 \)	\(n = 4 \)	\(n = 5 \)
2	1	1	1	1
3	3	4	5	6
4	5	7	9	11
5	8	13	19	26
6	10	16	23	31
7	14	25	39	56
8	16	28	43	61
9	20	38	63	96
10	23	44	73	111
11	27	53	89	136
12	29	56	93	141
13	35	74	133	216
14	37	77	137	221
15	41	86	153	246
16	45	95	169	271
5 Performance

5.1 Comparison between 2-dimensional Reed-Solomon codes and product codes

The product code of a \((n_1, k_1, d_1)\) linear code and a \((n_2, k_2, d_2)\) linear code is a \((N, K, d_{\text{min}}) = (n_1 n_2, k_1 k_2, d_1 d_2)\) linear code. When two linear codes are the same \((n, k, d)\) Reed-Solomon codes over \(GF(q)\), the number of the check symbols of the product code is

\[N - K = (d - 1)(2n - d + 1) \]

(26)

Then the relation between \(\frac{d_{\text{min}}}{N}\) and \(\frac{K}{N}\) is

\[1 - \frac{K}{N} = \left(\sqrt{\frac{d_{\text{min}}}{N} - \frac{1}{q}} \right) \left(1 - \sqrt{\frac{d_{\text{min}}}{N}} + \frac{1}{q} \right) \]

(27)

when \(n = q\).

Figure 3 shows the relations between \(\frac{d_{\text{min}}}{N}\) and \(\frac{K}{N}\) of the 2-dimensional Reed-Solomon codes and the product codes when \(q = 8\) and \(q = 16\). As shown in Fig 3, the performance of the 2-dimensional codes is higher than that of the product codes.

![Figure 3: Performances of 2-dimensional codes and product codes](image)

5.2 Relation between dimension and performance

Figure 4 shows the relation between \(\frac{d_{\text{min}}}{N}\) and \(\frac{K}{N}\) when \(q = 4\). The code length increases exponentially when the dimension increases, but \(K/N\) much decreases.

5.3 Performance of shortened codes

Figure 5 shows the relation between \(\frac{d_{\text{min}}}{N}\) and \(\frac{K}{N}\) of the shortened 2-dimensional codes when \(q = 16\). Gilbert-Varshamov bounds are also shown in Fig 5. When \(\frac{d_{\text{min}}}{N}\) is small, the shortened codes have higher performance. Especially the shortened code of length \(N = 32\) is beyond the Gilbert-Varshamov bound when \(\frac{d_{\text{min}}}{N} \leq 0.15\).

6 Conclusion

This paper has proposed a new class of multi-dimensional nonsystematic Reed-Solomon codes that are constructed based on the multi-dimensional Fourier transform over a finite field. The proposed codes are the extension of the nonsystematic Reed-Solomon codes to multi-dimension. The code length of the Reed-Solomon codes can be lengthened by extending the dimension. Though the code length increases exponentially when the dimension increases, the code rate decreases. The nonsystematic Reed-Solomon codes are the maximum distance separable codes, but the proposed codes are not. However there exist some superior shortened 2-dimensional codes that are beyond the Gilbert-Varshamov bound when the minimum distance is small.
The codes presented by Shen, et al., which are constructed using a location set contained in a multidimensional affine or projective space over a finite field, seem to be equivalent to the proposed codes.

References

[1] F.J.MacWilliams and N.J.A.Sloane: "The theory of error-correcting codes," North Holland Publishing Company (1977).

[2] R.E.Blahut: "Theory and practice of error control codes," Addison-Wesley Publishing Company (1983).

[3] I.S.Reed and G.Solomon, "Polynomial codes over certain finite fields," J.SIAM, vol.8, pp.300-304 (1960).

[4] A.Shiozaki: "New class of codes based on two-dimensional Fourier transforms over finite fields," Electronics Letters, Vol.30, No.22, pp.1832-1833 (1994).

[5] A.Shiozaki: "A new class of error-correcting-codes based on multi-dimensional Fourier transform over finite field," Proc. of the 17th Symposium on Information Theory and Its Applications (SITA '94), pp.225-228 (Hi-roshima, Japan, Dec.6-9, 1994). (in Japanese)

[6] B.Z.Shen and K.K.Tzeng: "Multidimensional extension of Reed-Solomon codes," Proc. of 1998 IEEE International Symposium on Information Theory, p.54 (Cambridge, MA, USA, Aug.16-21, 1998).