Percutaneous closure of patent foramen ovale: “Closed” door after the last randomized trials?

Joel Hernandez, Raul Moreno

Percutaneous closure of patent foramen ovale (PFO) has been an accepted intervention for the prevention of recurrent cryptogenic stroke on the basis of observational studies. However, randomized trials have been lacking until now. Three recently published randomized trials (CLOSURE I, PC and RESPECT) do not demonstrate the superiority of this intervention versus optimal medical therapy, therefore making this practice questionable. Nonetheless, these trials have had certain pitfalls, mainly a lower than initially estimated number of patients recruited, therefore lacking sufficient statistical power. On the other hand, different closure devices were used in the three trials. In two of them (PC and RESPECT), the Amplatzer PFO Occluder was used and the STARflex device was used in the other one (CLOSURE I). Taken altogether, a meta-analysis of these three trials does not demonstrate a statistically significant benefit of percutaneous PFO closure (1.9% vs 2.9%; P = 0.11). However, if we analyze only the PC and RESPECT trials together, in which the Amplatzer PFO Occluder was used, a statistically significant benefit of percutaneous PFO closure is observed (1.4% vs 3.0%, P = 0.04). In conclusion, our interpretation of these trials is that the use of a dedicated, specifically designed Amplatzer PFO device could possibly reduce the risk of stroke in patients with PFO and cryptogenic stroke. This consideration equally applies to patients who have no contraindications for anticoagulant or anti-thrombotic therapy.

Hernandez J, Moreno R. Percutaneous closure of patent foramen ovale: “Closed” door after the last randomized trials? World J Cardiol 2014; 6(1): 1-3 Available from: URL: http://www.wjgnet.com/1949-8462/full/v6/i1/1.htm DOI: http://dx.doi.org/10.4330/wjc.v6.i1.1

COMMENTARY ON HOT TOPICS

Percutaneous closure of patent foramen ovale (PFO) has been used for the prevention of recurrent cryptogenic stroke on the basis of observational studies; however, recent randomized trials do not support its use for this indication. A detailed analysis of these randomized trials could suggest that when the Amplatzer PFO Occluder is used, the risk of stroke is reduced.

Hernandez J, Moreno R. Percutaneous closure of patent foramen ovale: “Closed” door after the last randomized trials? World J Cardiol 2014; 6(1): 1-3 Available from: URL: http://www.wjgnet.com/1949-8462/full/v6/i1/1.htm DOI: http://dx.doi.org/10.4330/wjc.v6.i1.1
stroke despite antithrombotic therapy\cite{4}, but this procedure has also been performed in many patients after a first stroke, mainly in younger patients and in those with a concomitant atrial septal aneurysm.

Non-randomized studies suggested that the recurrence of stroke in patients with cryptogenic stroke was lower if a percutaneous closure of PFO was performed, compared with patients that remained on medical therapy alone\cite{2,5,6}. However, the main limitation for a wider acceptance of percutaneous closure has been the absence of randomized trials\cite{4}.

Last year, the final results of the CLOSURE I trial were published. In this study, 909 patients between 18 and 60 years of age with a cryptogenic stroke (72%) or transient ischemic attack (TIA) (28%) and a PFO were randomized to percutaneous closure using the STARflex (NMT Medical Inc.,) device in addition to medical treatment (aspirin 81 or 325 mg daily for two years and clopidogrel for the first six months) or to medical treatment alone (aspirin 325 mg daily and/or warfarin for a target INR 2.0-3.0) and followed-up for two years\cite{3}. This study was negative, since the primary endpoint at 2 years (stroke or TIA, death from any cause during the first 30 d, or death from neurological causes between 31 d and 2 years) was not reduced with percutaneous closure (5.5% vs 6.8% in the medical therapy group; $P = 0.37$). Moreover, the risk of stroke at 2 years was similar between both groups of patients (2.9% with percutaneous closure vs 3.1% with medical treatment; $P = 0.79$). The CLOSURE I had some limitations, such as a much lower than initially intended number of patients recruited (909 instead of 1600)\cite{6}, patients with either stroke or TIA were included, three of twelve (25%) strokes occurred within 30 d after the procedure, other possible causes of stroke became apparent in patients who had recurrences, patients with prothrombotic disorders were excluded, and randomization was not locally blind. Another possible explanation for the negative results is the relatively short follow-up period\cite{8}.

Nonetheless, these results were very discouraging, especially for interventional cardiologists. On top of this, two other negative randomized trials regarding the same issue but using a device specifically designed for PFO closure (Amplatzer PFO Occluder, St Jude Medical) have been published in March of this year\cite{9,10,11,12,13}. The RESPECT trial\cite{10} randomized 980 patients to medical treatment or PFO closure using the Amplatzer PFO Occluder. The primary endpoint was the occurrence of recurrent ischemic stroke or early death in patients 18-60 years of age. The intention-to-treat analysis was negative (HR = 0.49, 95%CI: 0.22-1.11, $P = 0.08$), but due to a high dropout rate in the medical treatment group, the between-group difference was significant in the rate of recurrent stroke in the pre-specified per-protocol cohort (HR = 0.37, 95%CI: 0.14-0.96, $P = 0.03$) and in the as-treated cohort (HR = 0.27, 95%CI: 0.10-0.75, $P = 0.007$).

The PC trial randomized patients with a PFO and ischemic stroke, TIA or a peripheral thromboembolic event to undergo closure of the PFO with the Amplatzer PFO Occluder or to receive medical therapy. The primary endpoint was a composite of death, nonfatal stroke, TIA or peripheral embolism and was not reduced with percutaneous closure (HR = 0.63, 95%CI: 0.24-1.62, $P = 0.34$). Non-fatal stroke occurred in 1 patient (0.5%) in the closure group and 5 patients (2.4%) in the medical therapy group (HR = 0.20, 95%CI: 0.02-1.72, $P = 0.14$).

A simplistic interpretation of these three trials could lead us to conclude definitively that percutaneous closure of PFO is not effective in reducing the risk of stroke in patients with cryptogenic stroke. Since these trials have been flawed by marked difficulties in patient recruitment, it is evident that each of them individually will probably lack sufficient power to prove any possible differences. In this sense, if we perform a pooled analysis from the 3 trials, including 2303 patients overall, percutaneous closure of PFO does not reduce the incidence of stroke (1.9% vs 2.9%, $P = 0.11$; Figure 1). However, if we include only the 2 trials in which an Amplatzer PFO Occluder device, specifically designed for PFO, was used, percutaneous closure was associated with a significant reduction in the incidence of stroke (1.4% vs 3.0% $P = 0.04$; Figure 2).

Possible explanations for these differences may be the following: the STARFlex closure system has been associated with a significantly higher thrombosis rate at 30 d than the Amplatzer PFO Occluder device in two different studies, 3.6% vs 0%, $P < 0.01$ and 5.7% vs 0%, $P < 0.05$\cite{12,13}, and the incidence of atrial fibrillation\cite{14} has also been documented more frequently at 30 d with STARFlex (4.5% vs 1.3%; $P = 0.02$). Also, a lower rate of periprocedural complications in the PC and respect trials could partly explain the better results of percutaneous closure in the PC and RESPECT trials.

Our interpretation of these trials is that the use of a dedicated, specifically designed Amplatzer PFO device.
could possibly reduce the risk of stroke in patients with PFO and cryptogenic stroke. Therefore, although present evidence does not support PFO closure for the prevention of recurrent cryptogenic stroke, a detailed analysis of recent randomized trials can make us consider that the door for PFO closure might not be entirely closed. This consideration equally applies to patients who have no contraindications for anticoagulant or antithrombotic therapy.

REFERENCES

1 Overell JR. Bone I, Lees KR. Intratrial septal abnormalities and stroke: a meta-analysis of case-control studies. Neurology 2000; 55: 1172-1179 [PMID: 11071496]
2 Mas JL, Arquizan C, Lamy C, Zuber M, Cabanes L, De- rumeaux G, Coste J. Recurrent cerebrovascular events associated with patent foramen ovale, atrial septal aneurysm, or both. N Engl J Med 2001; 345: 1172-1176 [PMID: 11424048 DOI: 10.1056/NEJMoa011503]
3 Luermans JG, Budts W, Ten Berg JM, Plokker HW, Sutter MJ, Post MC. Comparison of outcome after patent foramen ovale closure in older versus younger patients. EuroIntervention 2011; 7: 209-215 [PMID: 21640663 DOI: 10.4244/EIJV7I2A3]
4 Furie KL, Kasner SE, Adams RJ, Albers GW, Bush RL, Fagan SC, Halperin JL, Johnstone SC, Katzan I, Kerman WN, Mitchell PH, Ovbiagele B, Palesch YY, Sacco RL, Schwamm LH, Wassef Howel-Smoller S, Turan TN, Wentworth D. Guidelines for the prevention of stroke in patients with stroke or transient ischemic attack: a guideline for healthcare profession- als from the american heart association/american stroke association. Stroke 2011; 42: 227-276 [PMID: 20966421 DOI: 10.1161/STR.0b013e31817d405]
5 Agarwal S, Bajaj NS, Kumbhani DJ, Tuzcu EM, Kapadia SR. Meta-analysis of transcatheter closure versus medical therapy for patent foramen ovale in prevention of recurrent neurological events after presumed paradoxical embolism. JACC Cardiovasc Interv 2012; 5: 777-789 [PMID: 22814784 DOI: 10.1016/j.jcin.2012.02.021]
6 Kitsios GD, Dahabreh IJ, Abu Dabrh AM, Thaler DE, Kent DM. Patent foramen ovale closure and medical treatments for secondary stroke prevention: a systematic review of observational and randomized evidence. Stroke 2012; 43: 422-431 [PMID: 22180252 DOI: 10.1161/STROKEAHA.111.631648]
7 Furlan AJ, Reisman M, Massaro J, Mauri L, Adams H, Albers GW, Felberg R, Herrmann H, Kar S, Landzberg M, Raizner A, Wechsler L. Closure or medical therapy for cryptographic stroke with patent foramen ovale. N Engl J Med 2012; 366: 991-999 [PMID: 22417252 DOI: 10.1056/NEJMoa1098639]
8 Furlan AJ, Reisman M, Massaro J, Schwartz RS, DelMasso J, Albers GW, Felberg R, Herrmann H, Kar S, Landzberg M, Raizner A, Wechsler L. Study design of the CLOSURE I Trial: a prospective, multicenter, randomized, controlled trial to evaluate the safety and efficacy of the STARFlex septal closure system versus best medical therapy in patients with stroke or transient ischemic attack due to presumed paradoxical embolism through a patent foramen ovale. Stroke 2010; 41: 2872-2883 [PMID: 21051670 DOI: 10.1161/STROKEAHA.110.593376]
9 Wahl A, Jüni P, Mono ML, Kalesan B, Praz F, Geister L, Räber L, Nedeltevch K, Mattlie WH, Windecker S, Meier B. Long-term propensity score-matchted comparison of percutaneous closure of patent foramen ovale with medical treatment after paradoxical embolism. Circulation 2012; 125: 803-812 [PMID: 22238228 DOI: 10.1161/CIRCULA- TIONAHA.111.030494]
10 Carroll JD, Saver JL, Thaler DE, Smalling RW, Berry S, MacDonald LA, Marks DS, Tirschwell DL. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N Engl J Med 2013; 368: 1092-1100 [PMID: 23514280 DOI: 10.1056/NEJMoa1303440]
11 Meier B, Kalesan B, Mattie WH, Thabet AA, Hildick-Smith D, Duduk D, Andersen G, Ibrahim R, Schuler G, Walton AS, Wahl A, Windecker S, Jüni P. Percutaneous closure of patent foramen ovale in cryptogenic embolism. N Engl J Med 2013; 368: 1083-1091 [PMID: 23514285 DOI: 10.1056/NEJMoa1211716]
12 Taaffe M, Fischer E, Baranowski A, Majunke N, Heinisch C, Leetz M, Hein R, Bayard Y, Büscheck F, Reschke M, Hoff- mann I, Wunderlich N, Wilson N, Sievert H. Comparison of three patent foramen ovale closure devices in a randomized trial (Amplatzer versus CardioSEAL-STARFlex versus Helex occluder). Am J Cardiol 2008; 101: 1353-1358 [PMID: 18435971 DOI: 10.1016/j.amjcard.2007.12.040]
13 Krumsdorff U, Ostermayer S, Billinger K, Trepels T, Zadan E, Horvath K, Sievert H. Incidence and clinical course of thrombus formation on atrial septal defect and patent foramen ovale closure devices in 1,000 consecutive patients. J Am Coll Cardiol 2004; 43: 302-309 [PMID: 14736453 DOI: 10.1016/j.jacc.2003.10.030]
14 Camm AJ, Kirchhoff P, Lip GY, Schotten U, Savelieva I, Ernst S, Van Gelder IC, Al-Attar N, Hindricks G, Prendergast B, Heidbuchel H, Aliferayi O, Angelini A, Arat D, Colonna P, De Caterina R, De Sutter J, Goette A, Gorenec B, Heldal M, Hohloser SH, Kolh P, Le Heuzey JY, Ponikowski P, Rutten FH. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur Heart J 2010; 31: 2369-2429 [PMID: 20802247 DOI: 10.1093/eurheartj/ehq278]