Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Identification of pathogens from the upper respiratory tract of adult emergency department patients at high risk for influenza complications in a pre-Sars-CoV-2 environment

Justin Hardick, Kathryn Shaw-Saliba, Breana McBrayde, Charlotte A. Gaydos, Yu-Hsiang Hsieh, Frank Lovecchio, Mark Steele, David Talane, Richard E. Rothman, for the Emergency Department National Network Influenza Investigators

Johns Hopkins University School of Medicine, Department of Infectious Diseases, Baltimore, MD, USA
Johns Hopkins University School of Medicine, Department of Emergency Medicine, Baltimore, MD, USA
Maricopa Medical Center, Phoenix AZ, USA
Truman Medical Center, Kansas City MO, USA
Oliver View Medical Center, Los Angeles, CA, USA

ARTICLE INFO

Article history:
Received 17 December 2020
Revised in revised form 9 February 2021
Accepted 13 February 2021
Available online 17 February 2021

Keywords:
Emergency department
Influenza
Multiplex diagnostics
Respiratory infections
Coinfections

ABSTRACT

The emergence of SARS-CoV-2 and subsequent COVID-19 pandemic highlights the morbidity and potential disease severity caused by respiratory viruses. To elucidate pathogen prevalence, etiology of coinfections and URIs from symptomatic adult Emergency department patients in a pre-SARS-CoV-2 environment, we evaluated specimens from four geographically diverse Emergency departments in the United States from 2013-2014 utilizing ePlex RP RUO cartridges (Genmark Diagnostics). The overall positivity was 30.1% (241/799), with 6.6% (16/241) coinfections. Noninfluenza pathogens from most to least common were rhinovirus/enterovirus, coronavirus, human metapneumovirus and RSV, respectively. Broad differences in disease prevalence and pathogen distributions were observed across geographic regions; the site with the highest detection rate (for both mono and coinfections) demonstrated the greatest pathogen diversity. A variety of respiratory pathogens and geographic variations in disease prevalence and copathogen type were observed. Further research is required to evaluate the clinical relevance of these findings, especially considering the SARS-CoV-2 pandemic and related questions regarding SARS-CoV-2 disease severity and the presence of coinfections.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Acute upper respiratory tract infections (URIs) that are caused by a diverse range of viral and bacterial pathogens are one of the most common illnesses observed in humans (Berry et al., 2015). The morbidity, mortality, and economic burden associated with all types of URIs have been demonstrated significant, with influenza virus being the focus of identification as a causative pathogen for URIs in ambulatory clinical settings (Berry et al., 2015, Fendrick et al., 2003). The emergence of SARS-CoV-2, and the subsequent COVID-19 pandemic further highlights the impact and clinical consequences of respiratory virus infections (Lotfi and Rezaei, 2020). Traditional diagnostic testing methods for URIs including antigenic methods, cell culture, and serology have limitations with regard to sensitivity, specificity, and/or turn-around-times, rendering them relatively limited for routine use in ambulatory care settings (van Elden et al., 2002, Mahony, 2010, Mahony et al., 2011).

Recent technological advances have led to the development of multiplexed molecular amplification assays that are capable of detecting multiple common causes of URI pathogens from a single nasopharyngeal swab (NP). These methods have been shown to be rapid, highly sensitive, and specific (Zimmerman et al., 2015, Green et al., 2016, Chan et al., 2018, Babady et al., 2018), although uptake for routine practice has been relatively limited to research studies, due in part to lack of available treatment options for noninfluenza respiratory viruses and the added expense of employing multiplex molecular methods (Zimmerman et al., 2015). More recently several of these methods including the BioFire RP panels (BioFire Diagnostics, Salt Lake City; UT), ePlex RP panels (Genmark Diagnostics; Carlsbad, CA) and Verigene panels (Luminex; Austin, TX) have been FDA approved and are commonly used, permitting early rapid
identification of respiratory infections, and in some instances impacting the use of antivirals (Huang et al., 2018). These assays also afford new opportunities to better understand the etiologic distribution, prevalence of co-infections associated with URIs. Several recent studies employing multiplex technologies have been conducted with specific select populations, including patients with community-associated pneumonia (Zhou et al., 2019, Lim et al., 2019, Quah et al., 2018), hospitalized patients, (Zhou et al., 2019, Lim et al., 2019, Quah et al., 2018, Çağlayan Serin et al., 2014, Vissieux et al., 2017) military personnel (Ho et al., 2015, Lau et al., 2018, Tavakoli et al., 2019), relatively healthy outpatients (Green et al., 2016, Galanti et al., 2019, Kaku et al., 2018, Busson et al., 2019), and selected pediatrics cohorts (Assane et al., 2018, Kenmoe et al., 2016, Finiano et al., 2016).

To date, there is limited data regarding the etiology of noninfluenza, non-RSV, URI viral and bacterial pathogens in unselected ambulatory populations considered at high risk for respiratory and influenza virus related complications. Such research could be helpful not only for understanding the epidemiology and etiology of acute URIs, but also could help inform future research to address antibiotic stewardship. (Green et al., 2016, Kenmoe et al., 2016, Finiano et al., 2016)

Our aim was to contribute to the existing knowledge regarding the epidemiology and etiology of acute URIs in a pre-SARS-CoV-2 ED environment. We collected residual samples from a broad population of patients presenting to 4 geographically disparate EDs, who were considered to be at high-risk for influenza complications (Dugas et al., 2020, Kumar et al., 2009). These patients were tested for influenza (Dugas et al., 2020), and the residual specimens were subsequently tested for other pathogens utilizing the multiplex Genmark ePlex respiratory panel (RP) research use only (RUO) platform.

2. Methods

2.1. Study design

Adults at high risk for influenza complications according to the Centers for Disease Control and Prevention (CDC) definition (Dugas et al., 2020) reporting to 4 U.S. EDs (Johns Hopkins Hospital, Baltimore, MD (JHH), Truman Medical Center, Kansas City, MO (TMC), Maricopa Medical Center, Phoenix, AZ (MMC), and Olive View-UCLA Medical Center, Sylmar, CA (OMC)) were systematically screened by trained research coordinators, who assessed consecutive ED patients. All adult patients (age ≥18 years) were assessed for the presence of fever and/or respiratory symptoms, including documented fever (defined as >100.4 °F) measured in the ED and any of the following, self-reported symptoms beginning within the previous 7 days: subjective fever, cough, nasal congestion, sinus congestion, rhinorrhea, sore throat, or shortness of breath. A patient who reported 1 or more of the above complaints was further evaluated to determine whether he or she met at least 1 of the 2011 CDC high-risk for influenza complication criteria for antiviral medication (Dugas et al., 2020, Kumar et al., 2009). Those patients, who met the CDC criteria for influenza antiviral treatment, spoke English, had not had a diagnosis of influenza within the last 2 weeks, had not been previously enrolled, and had the ability for follow-up were offered participation in the study and signed written consent forms. The Institutional Review Boards at each site approved the study protocol.

2.2. Clinical specimen and data collection

NPs were collected by trained clinical coordinators. Specimens were transported immediately to the laboratory in viral transport media, aliquoted, and stored at –80 °C. Clinical data was collected as previously described (Dugas et al., 2020), and included the following variables: age, sex, ethnicity, race (African American vs White vs Other), body mass index, influenza vaccination status, private residence, current symptoms, medical history, ED physical exam, temperature, pulse, respiratory rate, systolic blood pressure, oxygen saturation, pharyngeal erythema, cervical lymphadenopathy, altered mental state or confusion, oxygen supplementation, hospital admission, hospital length of stay (days), ICU admission, ICU length of stay, diagnosis of pneumonia, and death.

2.3. Molecular detection of respiratory pathogens

NPs underwent testing for influenza virus utilizing Prodesse ProFlu + (Hologic, Bedford, MA) according to manufacturer instructions. A total of 41% (799/1941) had sufficient residual volumes to permit further testing with the ePlex RP RUO cartridge (Genmark Diagnostics; Carlsbad, CA). This multiplex assay detects: adenovirus (AdV); coronavirus HKU1, NL63, OC43, 229E, MERS (CoV); human metapneumovirus (hMPV); influenza A, A/H1N1, A/H1N1pdm 2009, A/H3N2 (IAV); influenza B (IBV), parainfluenza 1–4 (PIV), rhinovirus/enterovirus (RhV/EV), RSV A/B (RSV), Bordetella pertussis, Chlamydia pneumoniae, Legionella pneumophila, Mycoplasma pneumoniae (M. pneumonia). Testing was performed per manufacturer's instructions. Briefly, 200 μL of NP was added to the specimen delivery device, vortexed for 10 seconds and added to the RP RUO cartridge. RP RUO cartridges were run on the ePlex platform. The complete assay time was 1 hour and 40 minutes.

2.4. Statistical analysis

Categorical variables were analyzed by Fisher’s exact using R software and GraphPad Prism v 8.0.1. and a P value of <0.05 was considered significant.

3. Results

3.1. Molecular detection of respiratory pathogens

The original cohort had influenza prevalence 9.4% (183/1941), with no subtype reported (Dugas et al., 2020). The ePlex results in this study, demonstrated that 30.1% (241/799) of patients tested positive for any respiratory pathogen, with 2% of the total specimens having co-infections (16/799) (Fig. 1A). The composition of different pathogens detected is summarized in Fig. 1B. RhV/EV was the most common pathogen detected (32.7% of the total detections: mono- or co-infections), followed by IAV (26.1%), CoV and hMPV (both 10.9%), and RSV (9.3%). Overall, 28.4% (69/241) of positives were infected with influenza (IAV or IBV). Less common pathogens were AdV (3.5%), PIV (3.1%), IBV (2.3%), and M. pneumonia (1.2%).

Sixteen patients had co-infections (32 detections total), the composition of which is shown in Fig. 1B and C. IAV (7/16, 43.8%), RhV/EV (7/16, 43.8%), and AdV (6/16, 37.5%) were the most frequently detected pathogens in individuals with coinfections. For individuals infected with AdV, co-infections (N = 6, 66.6%) were more common than monoinfections (N = 3, 33.3%), ratio of 2.0 (Fig. 1B).

3.2. Geographical analysis

The prevalence of pathogens at the 4 sites was compared (Fig. 2). The lowest rate of any pathogen detection was seen at JHH; 22.9% (60/262) of specimens positive (Fig. 2A). This was significantly different than those seen at MMC, 39.3% (59/150, P = 0.007, Fig. 2B), TMC 31.5% (53/168, P = 0.003, Fig. 2C), and OVM 31.5% (69/219, P = 0.04, Fig 2D). Co-infections were most commonly found at MMC: 5.3% of specimens compared to approximately 1% at other sites.

All respiratory pathogens detected were observed at each site, with the exception of M. pneumoniae (N = 2), which was only detected at MMC (Fig. 2G). While not statistically significant, other differences were observed in the composition of pathogens between sites (Fig. 2E-H). MMC had the greatest number of unique pathogens
3.3. Temporal analysis

Specimens were collected from November 2013 to April 2014, the traditional time period for influenza/respiratory virus season. Graphing pathogens with >20 total detections (CoV, hMPV, IAV, and RhV/EV) across the 4 sites, temporal differences at the sites were observed (Fig. 3). Trends in RhV/EV detection at all 4 sites were consistent over time. CoV, hMPV, and IAV showed similar trends at JHH, MMC, and OVM, but were distinct at TMC. TMC had an early IAV peak and later peaks of CoV and hMPV than the other sites.

3.4. Patient characteristics

Patient characteristics are described in Table 1. Briefly, a total of 799 specimens from 799 unique patients were analyzed. The range of ages was 18 to 93 years of age, median was 50 years and 60.6% (484/799) were females. 67.3% (538/799) had more than one condition of high-risk for influenza complication criteria, with the median being 2 conditions. Comparisons of patient demographics and outcomes with no detection, influenza detection, or other respiratory pathogen detections are shown in Table 1. While results were not statistically significant, there was a trend for a greater number of influenza-positive patients being admitted to the ICU and having radiographic diagnosis of pneumonia, compared to those with no pathogen or other pathogen.

4. Discussion

The recent emergence of SARS-CoV-2 (COVID-19) has demonstrated the importance of surveillance for noninfluenza respiratory viruses. Here we present descriptive findings from noninfluenza surveillance and how it can provide meaningful information regarding their composition and prevalence. Our goal was to add to the knowledge generated by other studies (Green et al., 2016, Zhou et al., 2019, Lim et al., 2019, Quah et al., 2018, Çağlayan Serin et al., 2014, Vissieux et al., 2017, Ho et al., 2015, Lau et al., 2018, Tavakoli et al., 2019, Galanti et al., 2019, Kaku et al., 2018, Busson et al., 2019, Assane et al., 2018, Kenmoe et al., 2016, Finianos et al., 2016) regarding viral etiologies associated with URIs aside from influenza viruses in a population of adults characterized as high-risk for influenza complications.

A few studies focusing on high-risk populations have employed multiplex molecular methods. For example, one study illustrated that there was a high incidence of complications related to noninfluenza respiratory viruses, and that disease severity was similar to influenza, indicating that surveillance of these viruses is important (Zhou et al., 2019). A large longitudinal retrospective study highlighted that picornaviruses, specifically RhV/EV, are potentially neglected as a
significant contributor to the development of disease severity and can lead to lower respiratory infections (Quah et al., 2018). Lastly, other studies utilizing multiplex molecular methods have highlighted the importance of coinfections (Ho et al., 2015), and diversity of non-influenza respiratory viruses. (Tavakoli et al., 2019).

Ho et al. (2015) found a substantially higher proportion of coinfections at 20.2% than our study did, but Ho et al., included surveillance of additional bacterial pathogens, including *S. pneumoniae* and *H. influenza* that likely contributed to the difference between studies. In this population of adults at high-risk for influenza complications, we identified a viral or bacterial respiratory pathogen etiology in 30.1% (241/799) of the total specimens with a coinfection detection rate of 6.6% (16/241). Overall, the pathogens identified, AdV, CoV, hMPV, IV, PIV, RhV/EV, RSV, and *M. pneumoniae*, are consistent with known causes of URIs, regardless of the specific population (Grief, 2013). We found that RhV/EV was the most common single pathogen detected in high-risk adult ED patients, and other studies have presented similar findings, albeit in military personnel (Lau et al., 2018, Tavakoli et al., 2019).

We found that AdV was more commonly associated with coinfections and this finding is supported by previous studies in military recruits (Ho et al., 2015) and a study in hospitalized children that suggested that AdV may play a larger role than previously thought in the development of more severe disease, such as bronchitis and pneumonia (Kenmoe et al., 2016). The pathogen detection rate and time of year for varied across the sites. The lowest detection rate was observed at JHH, while the highest detection (both mono- and coinfections) observed at MMC. MMC also had the greatest pathogen detection rate.

Table 1

Total	No detection	Influenza only	Other pathogens	Coinfections	
N	799	558	66	159	16

Demographics

| Age | 50 (18–93) | 51 (18–93) | 47 (19–80) | 50 (18–88) | 46 (28–62) |
| Gender | 484 (60.6%) | 332 (59.5%) | 38 (57.6%) | 104 (65.4%) | 10 (62.5%) |

Ethnicity

Hispanic or Latino	259 (32.7%)	166 (29.7%)	25 (37.9%)	64 (40.3%)	4 (25%)
Race	348 (43.6%)	254 (45.5%)	27 (40.9%)	59 (37.1%)	8 (50.0%)
White	199 (24.9%)	144 (25.8%)	11 (16.7%)	39 (24.5%)	5 (31.3%)
Asian	10 (1.3%)	7 (1.3%)	0 (0%)	2 (1.3%)	1 (6.3%)
American Indian	12 (1.3%)	11 (2.0%)	1 (1.5%)	0 (0%)	0 (0%)
Other	224 (28.0%)	137 (24.6%)	27 (40.9%)	58 (36.5%)	2 (12.5%)

CDC high risk

| Greater than 1 | 538 (67.3%) | 387 (69.4%) | 46 (69.7%) | 96 (60.4%) | 9 (56.3%) |

Disease severity

Oxygen supplementation	214 (26.8%)	148 (26.5%)	21 (31.8%)	41 (25.8%)	4 (25.0%)
Admitted	348 (43.6%)	269 (48.2%)	27 (40.9%)	48 (30.2%)	4 (25.0%)
Hospital length of stay (d)	3 (5–29)	3 (3–17)	2 (1–21)	2.5 (5–29)	1 (1–5)
ICU	45 (13%)	34 (12.6%)	6 (22.2%)	5 (10.4%)	0 (0%)
ICU length of stay (d)	3 (1–21)	3.5 (1–13)	6 (1–21)	2 (2–3)	0 (0–0)
Pneumonia	158 (19.8%)	107 (19.2%)	15 (22.7%)	31 (19.5%)	5 (31.3%)
Death	1 (0%)	0 (0%)	1 (1.5%)	0 (0%)	0 (0%)

Values shown as N (%).
For length of stay = median (range).
diversity and was the only site where atypical bacteria were found. While the Rh/DEV proportion of pathogens was fairly consistent across the sites, the peak detections for pathogens varied based on time of year. TMC had an early peak of influenza activity, with shifted peak detections of CoV and hMPV observed as compared to the other three sites. Similar results, in terms of temporal variation have been observed in other studies and each of these studies (Ho et al., 2015, Busson et al., 2019, Kenmoe et al., 2016) illustrated the temporal nature of respiratory virus infections. Situational awareness from broad surveillance may impact patient management.

This study had several limitations. First, it was only conducted over a single season and the numbers of positive tests was too low to make major comparisons. Additionally, because the population had many underlying conditions, there were not many differences found in the clinical outcomes and many confounders exist. Larger scale studies would be needed to make major conclusions on the impact of multiplex methods. However, this study does provide a description of the variety of pathogens found in adults at high-risk of influenza infections who report with influenza symptoms to the ED.

The value and meaningfulness of applying multiplex molecular methods for respiratory viruses aside from influenza virus has been under debate, although there is a growing rationale for broader employment and new strategies have been suggested to mitigate potential barriers (Diaz-Decaro et al., 2018). Some studies utilizing point-of-care diagnostic tests for these specific organisms have shown value in terms of patient management, patient cohorting, droplet precautions, and appropriate antiviral therapy (Pedersen et al., 2018, Benirschke et al., 2019, Rahamat-Langendoen et al., 2019). Additionally, 2 relatively recent studies indicate the clinical impact of employing these methods, and illustrate they can be applied to antimicrobial stewardship, (Echavarría et al., 2018, Yang et al., 2020), while other studies have illustrated the value in differentiating the cause of illness (Green et al., 2016, Çağlayan Serin et al., 2014, Galanti et al., 2019, Kaku et al., 2018, Busson et al., 2019, Echavarría et al., 2018, Yang et al., 2020, Lai et al., in press). The importance of detecting coinfections has also been highlighted in a recent study from China, and the importance of detecting coinfections and differentiating respiratory virus etiologies beyond influenza is further emphasized by the emergence of SARS-CoV-2 (Echavarría et al., 2018, Yang et al., 2020, Lai et al., in press). A recent pilot analysis of NP samples (N = 320) collected at The Johns Hopkins Hospital from April 2020 to November 2020 found that 1.8% (6/320) of sample tested were coinfected (unpublished data). It should be noted that these coinfections were observed during a period where mask wearing and social distancing practices were state mandated. The SARS-CoV-2 pandemic has illustrated that broad surveillance of respiratory viruses should be considered critical for identifying changes in respiratory virus epidemiology and etiology, as well as mitigating the spread of emerging viruses.

Overall, the applicability, clinical value and value to surveillance efforts of employing multiplex molecular methods may be specific to certain populations, such adults at high-risk for influenza complications, or may be of more benefit when applied locally, to identify small outbreaks of specific viruses not routinely surveyed for, in specific locations.

Author contributions

Justin Hardick-manuscript preparation, sample analysis, data summarization; Kathryn Shaw-Saliba-manuscript preparation, data analysis, statistical analysis, table and figure preparation; Breana McBryde-clinical recruitment, inventory management, data analysis; Charlotte A Gaydos-co-investigator, manuscript preparation, consultation; Yu-Hsiang Hsieh-co-investigator, project conceptualization, statistical analysis; Richard Rothman-primary investigator, project conceptualization, manuscript preparation.

Funding support

This work was supported by a cooperative agreement between Johns Hopkins University (JHU) and the US Department of Health and Human Services Biomedical Advanced Research and Development Authority (BARDA; grant number IDSEP150026-01-00). Work was also supported in part by the National Institute of Allergy and Infectious Diseases Contract HHSN272201400007C awarded to the Johns Hopkins Center for Influenza Research and Surveillance (JHCIRS) at the Johns Hopkins University. Any opinions, findings, conclusions or recommendations expressed in this publication are those of the author(s) and do not represent the policy or position of NIAID or NIH.

Disclosures

Justin Hardick received grants from BARDA and NIAID (BARDA IDSEP150026-01-00); NIAID (Contract HHSN272201400007C).

Acknowledgments

The Emergency Department National Influenza Network investigators. University of Missouri–Kansas City School of Medicine/Truman Medical Center: Mark Steele, MD and Amy Stubbbs, MD, (Principal Investigators) and Laurie Kemble (BHS, CRC), Danielle Beckham (RN, MSN, BSN), and Niccole Neal (RN, BSN, CRC), Study Coordinators::; Maricopa Medical Center: Frank Lovecchio, MD, Principal Investigator, Mary Mulrow (RN), Study Coordinator; Oliver View UCLA Medical Center, David Talan, MD and Greg Moran, MD (Principal Investigators) Anusha Krishnadasan (PhD), Kativha Pathmarajah (MPH), Raquel Torrez (BS), Eva Gonzalez (BS), Gabina Martin (RN), Noemi Quinteros Urzagaste (BS), Jacklyn Furoy (MPH), Mayra Hernandez (MSPPS, MPH), and Claire Collison (BS), Study Coordinators; Johns Hopkins University, Andrea Dugas, MD, Principal Investigator, Anna Duval (MPH), Raphaelle Beard (BA, MPH), Ana Avornu (BA), and Rebecca Medina (MHS), Study Coordinators.

References

Assane D, Makhtar C, Abdoulaye D, Amara F, Djibril B, Amoudou D, et al. Viral and bacterial etiologies of acute respiratory infections among children under 5years in Senegal. Microbiol Insights 2018:11: 1178636118758651.
Babady NE, England MR, Juric SM, KL He T, Wijetunge DS, Tang YW, et al. Multicenter evaluation of theplex respiratory pathogen panel for the detection of viral and bacterial respiratory tract pathogens in nasopharyngeal swabs. J Clin Microbiol 2018;56: e01658–17.
Benirschke RC, MclEvana E, Thomson Jr RB, Kaul KL, Das S. Clinical impact of rapid point-of-care PCR influenza testing in an urgent care setting: a single-center study. J Clin Microbiol 2019:57.
Berry M, Camielde J, Fielding BC. Identification of new respiratory viruses in the new millennium. Viruses 2015;7:996–1019.
Busson L, Bartaux M, Brahim S, Kononicki D, Dauby N, Gérard M, et al. Contribution of the FilmArray Respiratory Panel in the management of adult and pediatric patients attending the emergency room during 2015-2016 influenza epidemics: an inter-ventional study. Int J Infect Dis 2019:83:32–9.
Çağlayan Serin D, Pusulcu H, Ciçek C, Sipahi OR, Taşbakan S, Atalay S, et al. Bacterial and viral etiology in hospitalized community acquired pneumonia with molecular methods and clinical evaluation. J Infect Dev Ctries 2014;8:510–8.
Chan M, Koo SH, Jiang B, Lim PQ, Tan FY. Comparison of the Biofire FilmArray Respiratory Panel, Sequoene Anyplex II RV16, and Argene for the detection of respiratory viruses. J Clin Virol 2018;106:13–7.
Diaz-Decaro JD, Green NM, Godwin HA. Critical evaluation of FDA-approved respiratory multiplex assays for public health surveillance. Expert Rev Mol Diagn 2018;18:631–43.
Dugas AF, Hsieh YH, Lovecchio F, Moran GJ, Steele MT, Talan DA, et al. Derivation and validation of a clinical decision guideline for influenza testing in four U.S. Emergency Departments. Clin Infect Dis 2020:70:49–58.
Echavarría M, Marcone DN, Querci M, Seoane A, Vázquez C, et al. Clinical impact of rapid molecular detection of respiratory pathogens in patients with acute respiratory infection. J Clin Virol 2018;108:90–5.
