Seasonal heat stress alters the milk yield, antioxidative levels and serum metabolites in primiparous and 3 multiparous dairy cows

Xue Chen
Jilin Agricultural University

Jia Nan Dong
Jilin Agricultural University

Ji Ye Rong
Jilin Agricultural University

Jun Xiao
Jilin Agricultural University

Wei Zhao
Jilin Agricultural University

Natnael D. Aschalew
Jilin Agricultural University

Xue Feng Zhang
Jilin Agricultural University

Tao Wang
Jilin Agricultural University

Guixin Qin
Jilin Agricultural University

Zhe Sun (sunzhe198615@163.com)
Jilin Agricultural University
https://orcid.org/0000-0003-1872-2194

Yuguo Zhen
Jilin Agricultural University

Research Article

Keywords: Early lactation, Milk yield, Oxidative status, Serum metabolites, Heat stress

DOI: https://doi.org/10.21203/rs.3.rs-696285/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Seasonal heat stress alters the milk yield, antioxidative levels and serum metabolites in primiparous and multiparous dairy cows

Xue Chen 1,6 · Jia Nan Dong 1 · Ji Ye Rong 1 · Jun Xiao 1,6 · Wei Zhao 1,6 · Natnael D. Aschalew 1 · Xue Feng Zhang 1,3,6 · Tao Wang 1,3,6 · Gui Xin Qin 1,3,4 · Zhe Sun 2,3,5,6 · Yu Guo Zhen 1,2,3,6

1 Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, P.R. China
2 Postdoctoral Scientific Research Workstation, Feed Engineering Technology Research Center of Jilin Province, Changchun Borui Science & Technology Co., Ltd, Changchun 130118, P.R. China
3 Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, P.R. China
4 Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, P.R. China
5 College of Life Science, Jilin Agricultural University, Changchun 130118, P.R. China
6 JLAU-Borui Dairy Science and Technology R&D Center, Jilin Agricultural University, Changchun 130118, P.R. China

Abstract

This study aimed to explore the seasonal heat stress affects the milk yield, antioxidative levels and serum metabolites in primiparous and multiparous dairy cows during early lactation. A total of two hundred dairy cows were selected according to their calving months (June, temperature humidity index (THI) = 66.72; July, THI = 70.30; August, THI = 69.32; September, THI = 67.20; October, THI = 59.45). Blood samples were collected on day 0, 21, 50, 80, 100 after calving for serum oxidative status analysis and milk yield was recorded every day. The lower average daily milk yield in cows that calved in June and July (P < 0.05), and average daily milk yield of multiparous cows was higher than that of primiparous cows that calved in the same month (P < 0.05), suggesting that seasonal (June) heat stress negatively affected milk yield in both primiparous and multiparous cows at early lactation. Besides, 15 and 11 serum metabolites were changed in heat stress (average THI = 70.30) group compared with non heat stress (average THI = 59.45) group in primiparous cows and multiparous cows, respectively. These metabolites were mainly involved in the pathways of aminoacyl-tRNA biosynthesis, glyoxylate and dicarboxylate metabolism, and the metabolism of glycine, serine and threonine. These data suggested that heat stress negatively affected the milk yield and thus caused the the elevation of
the serum oxidative and antioxidative index Metabolic biomarkers associated with the heat stress in serum were found which providing the basement of evaluating indicator between heat stress and non heat stress groups in primiparous and multiparous cows.

Key words Early lactation, Milk yield, Oxidative status, Serum metabolites, Heat stress

Corresponding author: Zhe Sun, sunzhe198615@163.com; Yu Guo Zhen, nickzhen@263.net.

Declarations

Funding

This study was supported by the Jilin Province Major Scientific & Technological Achievement Transformation Project (20160301003NY), Jilin Province Feed Engineering and Technology Research Center (20170623075TC) and the 2021 Scientific and Technological Developing Scheme of Jilin Province.

Conflict of interest

The Authors declare that they have no conflict of interest.

Ethics approval

The cows were managed according to the guidelines for the care and use of experimental animals of Jilin Agricultural University (JLAUACUC-2018-019).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Data availability

All the data are included in the manuscript.

Code availability
Not applicable.

Authors' contributions

ZS and YZ contributed to conception and design of the study. XC, ND, YR, XQ and FZ organized the database.

XC, ZS performed the statistical analysis. XC and SZ wrote the first draft of the manuscript. XC, TW, JX, WZ and ND wrote sections of the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.
Introduction

The effects of heat stress on dairy cows are multifactorial and not only have great impact on the productivity of cows, present hazards to animal health and the oxidative-antioxidative balance, and even negatively affect an animal’s offspring when they mature to adulthood (Dahl et al. 2017). It has been reported that THI is a major factor that can decrease the milk production of dairy cows when it is higher than 72, and which usually considered the threshold of heat stress (Du et al. 1996(a); Du et al. 1996(b)). Milk yield is closely related to heat stress especially for the high-producing cows (Gantner et al. 2017). Ravagnolo et al. (2000) founded that milk yield declines by about 0.2 kg when THI (> 72) increased one unit. According to Kadzere et al. (2002) and Igono and Johnson (1990), cows in early lactation are more sensitive to heat stress than those in late lactation.THII has been used as an indicator of thermal comfort for dairy cows (Savaliya et al. 2019).

Many studies have assessed oxidative status by monitoring malondialdehyde (MDA) levels since increased MDA concentration is a biomarker of free radical-mediated damage and oxidative stress (Bouwstra, et al. 2008; Castillo et al. 2006) and antioxidant enzymes like superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) that represent major antioxidant responses by protecting the cells against increased reactive oxygen species (Konvicna et al. 2015).

Metabolomics is a powerful analytical technology for understanding biological systems from hundreds of thousands of low-molecular weight metabolites in animals, and gas chromatography mass spectrometry (GC-MS) has also been used in metabolomics studies to provide a global understanding of the pathophysiological changes brought about by the environment (Zhao et al. 2015). For example, Tian et al. (2016) used metabolomics to study the heat stress candidate biomarkers in milk serum. We hypothesized that the damage degree via THI before and after calving and serum metabolites associated with the heat stress on primiparous and multiparous cows would be different. Therefore, this study investigated the effect of THI on the milk yield, oxidative status, and serum metabolites in primiparous and
multiparous cows during early lactation. Our findings may provide guidance for the management of heat stress in dairy
farms and draw people’s more attention to the health of dairy cows.

Materials and Methods

Animals and experimental design
This study was performed from June to the following February (next year) at a commercial dairy farm in Shandong
Province, P.R. China. Primiparous Holstein cows (n=100) and multiparous (parity: 2.5±0.5) Holstein cows (n=100)
were selected according to their calving days in June, July, August, September and October, respectively. All the cows
suffered different THI before and after calving. All experimental cows were fed the total mixed ration (TMR) ad libitum
as described previously (Zhao et al. 2019). Air temperature and humidity at a height of 1.5 m above the ground at both
ends and in the middle of the cowshed were recorded three times per day. Average daily temperature humidity index
(THI) was calculated every day (NRC, 1971). The cows were managed according to the guidelines for the care and use
of experimental animals of Jilin Agricultural University (JLAUACUC-2018-019).

Sample’s collection
Blood was individually sampled from coccygeal veins on the calving day and 3–4 h after the morning feed on d 0,
21, 50, 80, and 100. Serum was collected after centrifuging at 3000 rpm at 4°C for 10 min and stored at -40°C for the
latter analysis.

Oxidative and antioxidative index analysis
MDA, SOD, GSH-PX, and total antioxidant capacity (T-AOC) in serum were analyzed using a commercial bovine
enzyme-linked immunosorbent assay kit (Shanghai Enzyme-linked Biotechnology Co. Ltd., Shanghai, China).

GC-MS analysis
The serum of dairy cows with the highest THI (July-calved, average THI = 70.30) and lowest THI (October-calved,
average THI = 59.45) were selected for GC-MS analysis (sampling on calving day from cows calved in July and October, respectively). Thus, the cows that calved in July and October were in the heat stress (HS) group and in non-heat stress (NHS) group, respectively. The serum samples (100 μL) and methoxyamine hydrochloride (20 μL, 0.3 mg/mL) were mixed with 300 μl methyl alcohol:chloroform (3:1) for 30 s. After approximately 10 min latter, the mixed liquor was centrifuged at 12,000 × g at 4°C for 10 min. The supernatant (300 μl) was transferred to a centrifugal tube and dried using nitrogen gas. Subsequently, a 60 μL solution (methoxyamine hydrochloride and pyridine) was added to the serum samples and incubated in a water bath at 37°C for 120 min. After that, 60 μl BSTFA (bis(trimethylsilyl)-trifluoroacet-amide) with 1% TMCS (trimethylchlorosilane) was added and incubated at 37°C for 60 min. The samples were centrifuged at 13,000 × g at 4°C for 5 min, and then 50 μl supernatant of each sample was transferred to a GC vial. Each sample (1 μl) was injected into an Agilent 7890/5975C system equipped with a fused silica capillary column (30.0 m × 0.25 mm i.d.) with a 0.25-μm HP-5MS stationary phase (Agilent, Shanghai, China) (Chen et al. 2019).

Statistical analyses

The THI, milk yield, serum oxidative and antioxidative index, and Pearson correlation were analyzed using SPSS computer software (SPSS Statistics for Windows, Version 17.0; Chicago: SPSS Inc.), and P-values < 0.05 were statistically considered to be significant. Metabolic data was preprocessed including noise reduction, retention time correction, peak alignment, and other data standardization using AMDIS in Agilent, and then analyzed by SIMCA 14.0 software (Umetrics AB, Umeå, Sweden). Principal component analysis (PCA) was performed on the data to visualize the sample distribution and separation trends. An orthogonal partial least squares-discriminate analysis (OPLS-DA) model was used to identify differences in metabolites. Both the variable importance in the projection (VIP > 1) values and Student’s t-test (P < 0.05) were compared to find potential metabolites.
Results

Variation of temperature humidity index (THI) during experimental period

The maximum THI, minimum THI, and average THI by month during the experiment are shown in Fig. 1. Briefly, the average THI decreased from July to January. Average THI values in July and August were higher than that in other months ($P < 0.05$). During the calving time (from June to October), the THI in October was lower than in other months ($P < 0.05$). The maximum THI values in June, July, and August were 74.78, 75.65, and 75.17, respectively. All of these maximum THI values were higher than 72, which are in the range of heat stress for dairy cows (Armstrong 1994) and recent data indicates that a THI of approximately 68 affected the milk yield of high-yielding dairy cows (Zimbelman et al. 2009), consistently, we found that cows were affected by heat stress in June, July, and August months.

![Temperature humidity index (THI) during experimental period](image)

Fig. 1 Temperature humidity index (THI) during experimental period

- A different letter means significant difference ($P < 0.05$) and same letter means no significant difference ($P > 0.05$) among different months

Milk yield

The effect of different calculated THI before and after calving on the cows as shown in Table 1. The cows that calved in June and July suffered high calculated THI after calving. The average daily milk yield (from 1- 100 days) and average daily milk yield after peak milk to 100 days of the primiparous cows that calved in June and July were lower
than those calved in September and October ($P < 0.05$). No significant difference was found among multiparous cows that calved in different months ($P > 0.05$). And average daily milk yield after peak milk to 100 days of multiparous cows that calved in June were lower than those calved in the other months ($P < 0.05$). In the same calving month, the average daily milk yield of multiparous cows over 100 days and average daily milk yield after peak milk to 100 days were higher than that of primiparous cows ($P < 0.05$). When compared with the cows that calved in June, the average daily milk yield of primiparous cows that calved in September and October increased by 19.15% and 13.83%, respectively. However, the average daily milk yield of multiparous cows increased by 2.86% and 7.64%, respectively. Milk yield negatively correlated with THI in both primiparous cows and multiparous cows ($P < 0.05$).

Table 1 Effect of temperature humidity indexes (THI) on milk yield (kg/d)

Calving month	June	July	August	September	October
Average THI (100 days)	69.08±0.48c	66.00±0.80d	60.70±1.18c	53.04±1.07b	49.16±1.04a
Calculated THI (before calving, >72)	1549.13	2361.60	2947.86	3240.90	3240.90
Calculated THI (after calving, >72)	1691.77	879.29	293.03	0.00	0.00
Average daily milk yield (ADMY, 100 days, primiparous cows)	35.87±1.26Aa	35.67±1.93Aa	39.06±1.26Ab	40.83±0.76Ab	42.74±1.11Ab
Average daily milk yield (ADMY, 100 days, multiparous cows)	47.63±1.26Bb	46.69±1.54Bb	48.88±2.04Bb	48.99±0.76Bb	51.27±2.07Bb
Average daily milk yield after peak milk to 100 days	37.22±0.88Aa	38.20±0.81Ab	42.26±1.31Ad	44.55±1.18Ad	44.04±1.24Ad
(primiparous cows)

Average daily milk yield after peak milk to 100 days (multiparous cows)

Calendar Year	Average Daily Milk Yield (kg/d)
June	42.35, 44.84, 44.03
July	42.35, 44.84, 44.03
August	42.35, 44.84, 44.03
September	42.35, 44.84, 44.03
October	42.35, 44.84, 44.03

Correlation analysis of average THI and ADMY (primiparous cows)

Correlation analysis of average THI and ADMY (multiparous cows)

Calculated THI before calving: THI above 72 from April 1st to calving day were calculated.

Calculated THI after calving: THI above 72 during early lactation days (100 days) were calculated.

Different lowercase letters (a,b) means significant difference \((P < 0.05)\) in the same row.

Different capital letters (A, B) means average daily milk yield and average daily milk yield after peak milk to 100 days is significantly different \((P < 0.05)\) in the same column.

Means correlation analysis between average THI and average daily milk yield is significantly different \((P < 0.01)\).

The lactation curve of primiparous and multiparous cows from days 1 to 100 is shown in Fig. 2. The milk yield of primiparous cows reached a peak from about the 46th to 50th days of lactation and the peak milk yield was 38.86, 38.77, 42.35, 44.84 and 44.03 kg/d for the calves that calved in June, July, August, September and October. And multiparous cows reached a peak milk yield was from about the 37th to 43rd day of lactation and the peak milk yield was 52.52, 54.66, 54.05, 54.07 and 58.07 kg/d for the calves that calved in June, July, August, September and October. The time at which the milk yield of primiparous and multiparous cows that calved in June reached a peak was later than that of...
other groups, and the peak milk yield and persistency of milk yield after peak milk to 100 days were lower than that of other groups. The downward trend of milk curve for multiparous cows was much more obvious than primiparous cows.

![Fig. 2 Lactation curves of primiparous and multiparous cows from days 1 to 100.](image)

a: primiparous cows, b: multiparous cows.

Oxidative and antioxidative index

Our results showed that all of the serum oxidative indexes showed different variation trends during the early lactation period, however, the overall concentration of every index in primiparous cows was higher than that in multiparous cows in the same month (Fig. 3). On days 50 and 100, all the indexes were relatively low compared to other times. Although no significant difference in MDA, SOD, and T-AOC in serum was found among the groups in primiparous dairy cows on the calving day ($P > 0.05$), but GSH-Px of primiparous cows that calved in August, September, and October was significantly higher than that in June and July ($P < 0.05$). No significant differences were found in the above serum oxidative indexes were found in multiparous dairy cows on calving day. On day 21 after calving, SOD and GSH-PX values in cows that calved in September and October were significantly higher than in those that calved in June and July ($P < 0.05$). On day 50 after calving, SOD in primiparous cows that calved in October was
highest and GSH-PX and T-AOC were lowest when compared with other groups ($P < 0.05$). GSH-PX in multiparous cows that calved in September and October was significantly higher than in those that calved in June and July ($P < 0.05$). On 80 and 100 days after calving, MDA in primiparous cows that calved in June and July was significantly higher than that in cows that calved in October, and T-AOC in primiparous cows that calved in October was highest on day 80 ($P < 0.05$). SOD in multiparous cows that calved in September and October was significantly higher than that in those that calved in June on day 80 ($P < 0.05$). On day 100 after calving, GSH-PX in primiparous cows that calved in September and October was significantly higher than that in those that calved in June and July ($P < 0.05$). Positive Pearson correlation coefficients were observed among the serum oxidative indexes (MDA, SOD, GSH-PX and T-AOC) in primiparous cows and multiparous cows ($P < 0.01$) whereas no significant difference was found between THI and serum oxidative index (Fig. 4).
Fig. 3 Effect of temperature humidity indexes (THI) on serum oxidative indexes.
Metabolic candidate and pathway analysis

The original data obtained from GC/MS were classified into a two-dimensional matrix, and then analyzed by SIMCA-P+14.0 software for PCA pattern recognition. Serum PCA plots had an obvious separation among different groups, and all the samples were within the 95% confidence interval (Fig. 5-A). On the basis of the PCA model, OPLS-DA was used to further analyze the different metabolites in serum between HS and NHS groups of primiparous cows and multiparous cows (Fig. 5-B, C).
GC-MS identified the different metabolites between heat stress (average THI in calving month = 70.30) and non-heat stress (average THI in calving month = 59.45) groups of primiparous and multiparous cows. According to the metabolic candidates, a heat map was constructed as shown in Fig. 6. A total of 15 and 11 metabolic candidates were obtained in primiparous and multiparous cows, respectively. The concentrations of L-threonine and D-fructose in the HS group of primiparous cows were higher than in the NHS group of primiparous cows ($P < 0.01$). Urea and dodecane in the HS group were higher than in the NHS group of multiparous cows ($P < 0.01$). Four different metabolites were found in both primiparous cows and multiparous cows: L-alanine, glycine, serine, and DL-ornithine, and the levels were lower in the HS group compared to the NHS group of primiparous cows. However, the opposite result was found in multiparous cows, in which the abundance was higher in the HS group.
The pathway enrichment analysis and pathway topology analysis of metabolic candidates were performed by metaboanalyst 4.0 (http://www.metaboanalyst.ca). The Kyoto Encyclopedia of Genes and Genomes (KEGG, http://www.genome.jp/kegg/) was used to reveal metabolic pathways. A total of 30 and 15 pathways were related to primiparous and multiparous cows, respectively (Fig. 7), and the pathways with P values < 0.05 and impact value > 0 are listed in Table 2. The metabolic candidates in the primiparous cows were mainly involved in 8 pathways that are related to translation, carbohydrate metabolism, amino acid metabolism, metabolism of other amino acids, metabolism of cofactors and vitamins, and lipid metabolism. The metabolic candidates in the multiparous dairy cows were mainly involved in the pathways of aminoacyl-tRNA biosynthesis; valine, leucine, and isoleucine biosynthesis; glycine, serine, and threonine metabolism; valine, leucine, and isoleucine degradation; and glyoxylate and dicarboxylate metabolism, which are related to translation, amino acid metabolism, and carbohydrate metabolism. The common metabolic candidates in both primiparous and multiparous cows are involved in aminoacyl-tRNA biosynthesis; glyoxylate and dicarboxylate metabolism; and glycine, serine, and threonine metabolism.
Table 2. Affected metabolic pathways based on KEGG classification

Class	Pathway Name	Metabolites	P-value	Impact value
Primiparous cows	Translation	Glycine, Serine, L-Alanine,		
	Aminoacyl-tRNA biosynthesis	L-Threonine, L-Tyrosine, Glutamic acid	<0.01	0.24
	Glyoxylate and dicarboxylate metabolism	Serine, Glycine, Glutamic acid	<0.01	0.19
Carbohydrate	glyoxylate metabolism	acid		
Amino acid	Alanine, aspartate and glutamate metabolism	L-Alanine, Glutamic acid	<0.05	0.16
Metabolism of other amino acids	Glutathione metabolism	Glycine, Glutamic acid	<0.05	0.05
Metabolism of cofactors and vitamins	Porphyrin and chlorophyll metabolism	Glycine, Glutamic acid	<0.05	0.08
Lipid metabolism

Linoleic acid metabolism 9,12-Octadecadienoic acid =0.05 0.75

Multiparous cows

Aminoacyl-tRNA translation

Glycine, Serine, L-Alanine,
L-Proline

Translation aminoacyl-tRNA biosynthesis

L-Isoleucine, L-Leucine, <0.01 0.24

Valine, leucine and isoleucine biosynthesis

L-Leucine, L-Isoleucine <0.01 0.25

Amino acid metabolism

Glycine, serine and threonine metabolism

Glycine, Serine <0.05 0.36

Valine, leucine and isoleucine degradation

L-Isoleucine, L-Leucine <0.05 0.04

Carbohydrate metabolism

Glyoxylate and dicarboxylate metabolism

Serine, Glycine <0.05 0.15

Pathway of common metabolic candidates

Aminoacyl-tRNA translation

Glycine, L-Serine, L-Alanine <0.01 0.14

Carbohydrate metabolism

dicarboxylate metabolism

L-Serine, Glycine <0.01 0.15
Amino acid	Glycine, serine and threonine metabolism
L-Serine, Glycine | <0.01 | 0.36

Discussions

Studies have demonstrated a negative effect of heat stress on daily milk yield of dairy cows. Bouraoui et al. (2002) reported that a negative correlation existed between THI and milk yield and daily milk yield reduced by 21% when the THI value increased from 68 to 78. Collier et al. (2012) found milk yield decreased 2.2 kg/day when daily THI was 68. Dunn et al. (2014) studied the effect of heat stress on milk yield in the UK, and milk yield decreased during the heatwaves of 2003 and 2006. A study by Zimbelman et al. (2009) indicated that milk yield decreases by an average of 2.2 kg when animals experience a minimum THI of 65 or greater. The results of previous studies above were similar with the results of current study. In the present study, when compared with the cows that calved in June, the average daily milk yield of primiparous cows that calved in September and October increased by 19.15% and 13.83%, respectively. However, the average daily milk yield of multiparous cows increased by 2.86% and 7.64%, respectively.

![Fig. 7 Pathway topology analysis related to primiparous cows and multiparous cows.](image)
These results indicate that the effect of THI on milk yield may be cumulative and delayed, and the multiparous cows are more susceptible to higher THI, which supported the hypothesis that the damage degree of calculated THI on dairy cows was more severe after calving than that before calving, and the effect of THI on multiparous cows was more severe than multiparous cows. In agreement with the present study by Bernabucci et al. (2014), milk yield started to decline when THI ranged from 73 to 76, and multiparous cows were more susceptible to heat stress than primiparous cows. The negative effects of heat stress on milk yield can be explained by decreased dry matter intake and decreased rumination and nutrient absorption (Liu et al. 2008; Baumgard and Rhoads 2012). Furthermore, there is an increase in peripheral blood flow for cooling, and mammary blood flow is reduced, which contributes to lower milk yield (West, 2003).

MDA is a product of lipid peroxidation, and previous studies have used increased levels of MDA to represent the imbalance between oxidants and antioxidants (Sharma, et al. 2011). Also, SOD, GSH-PX, and T-AOC are biomarkers for antioxidant status. The present study found that MDA was usually higher in cows that calved in June and July during the experimental period, especially in primiparous dairy cows compared to those that calved in September and October, which indicated that the cows calved in June and July were affected by heat stress. The concomitant increase in MDA, SOD, GSH-PX, and T-AOC may be a reaction of oxidative -antioxidative balance and a compensatory mechanism of homeostatic control in order to decrease the risk of oxidative damage (De et al. 1992). Consequently, heat stress affected the oxidative status, and the antioxidant mechanism would be activated by increasing the levels of SOD, GSH-PX, and T-AOC. Bernabucci et al. 2002 found that SOD was higher in cows that gave birth during the summer when THI ranged from about 71.2 to 75.2, which is similar with the results of the current research. Safa et al. (2019) found that the MDA and T-AOC were higher in heat-stressed cows, heat-stressed cows exhibited higher rectal temperatures, and milk yield decreased by 1442 kg over the whole lactation period when compared with cooled cows,
which is similar to the findings on milk yield and serum index in the current study.

Potential metabolic pathways that heat stress affected included aminoacyl-tRNA biosynthesis, amino acid metabolism, and carbohydrate metabolism of multiparous cows, and in addition to these, metabolism of cofactors and vitamins and lipid metabolism were influenced in primiparous cows. Amino acids are important substrates for the synthesis of proteins, and most of them in the present study are involved in the pathway of aminoacyl-tRNA biosynthesis. Aminoacyl-tRNAs are essential substrates for translation, providing precursors for the synthesis of proteins (Sheppard et al. 2008). Glycine is synthesized from serine, threonine, choline, glyoxylate, and hydroxyproline. Serine is derived from the diet or synthesized from glucose and glutamic acid, and alanine provides the amino group for glyoxylate (Wang et al. 2013; Thompson and Richardson 2014). Also, serine, glycine, and glutamic acid are involved in glyoxylate and dicarboxylate metabolism. Furthermore, glycine plays a critical role in anti-oxidative reactions by stimulating the synthesis of glutathione and reducing oxidative stress (Wang et al. 2014), and Senthilkumar et al. (2004) found that glycine inhibits the oxidative stress by increasing the GSH-Px and SOD in livers and brains of rats. The levels of amino acids in the HS group of primiparous cows were lower except for threonine, when compared with the NHS group. This could be due to the effect of heat stress, as animals will consume amino acids to synthesize antioxidant enzymes to resist heat stress and maintain an oxidative-antioxidative balance. However, the opposite results were found in multiparous cows, this could be due to the multiparous cows were more sensitive to heat stress than primiparous cows and the synthesis of antioxidant enzymes was restrained, which could explain that SOD, T-AOC and GSH-Px was higher in primiparous cows than that in multiparous cows. 9,12-Octadecadienoic acid is one isomer of conjugated linoleic acid (CLA) have antioxidant properties (Yurawecz et al. 1995). And the present study showed 9,12-Octadecadienoic acid in the serum of NHS group was higher when compared with HS group in primiparous cows.
Conclusions

This study demonstrated that heat stress negatively affected the milk yield and thus caused the elevation of the serum oxidative and antioxidative index. Metabolic biomarkers associated with the heat stress in serum were found which providing the basis of evaluating indicator between heat stress and non heat stress groups in primiparous and multiparous cows. Moreover, we found that the cows were more susceptible to the heat stress after calving than that before calving, and the multiparous cows were more sensitive to heat stress than the primiparous cows, and discover the candidate biomarkers in serum.

Funding

The study was supported by the National Natural Science Foundation of China (31902185) and the Preferential Funding of Science and Technology Innovation and Entrepreneurship Projects for Returned Overseas Scientific Research Personnel in Jilin Province (G11).

This research received no external funding.

Conflict of interest

The Authors declare that they have no conflict of interest.

Reference

Armstrong, D.V. 1994. Heat Stress Interaction with Shade and Cooling. Journal of dairy science 77: 2044-2050.

Baumgard, L.H., and Rhoads, R.P. 2012. RUMINANT NUTRITION SYMPOSIUM: Ruminant Production and Metabolic Responses to Heat Stress. Journal of Animal Science 90: 1855-1865.

Bernabucci, U., Bifani, S., Buggiotti, L., Vitali, A., Lacetera, N., and Nardone, A. 2014. The effects of heat stress in Italian Holstein dairy cattle. Journal of dairy science 97: 471-486.
Bernabucci, U., Ronchi, B., Lacetera, N., and Nardone, A. 2002. Markers of Oxidative Status in Plasma and Erythrocytes of Transition Dairy Cows During Hot Season. Journal of dairy science 85: 2173-2179.

Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, M., and Belyea, R.L. 2002. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Animal Research 51: 479-491.

Bouwstra, R.J., Goselink, R.M.A., Dobbelaar, P., Nielen, M., Newbold, J.R., and Van Werven, T. 2008. The relationship between oxidative damage and vitamin E concentration in blood, milk, and liver tissue from vitamin E supplemented and nonsupplemented periparturient heifers. Journal of dairy science 91: 977-987.

Castillo, C., Hernandez, J., Valverde, I., Pereira, V., Sotillo, J., Alonso, M.L., and Benedito, J.L. 2006. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Research in veterinary Science 80: 133-139.

Chen, X., Liu, Y.Z., Demelash, N., Dong, J.N. Xiao, J., Zhao, W., Lang, M., Han, Z.Y., Zhang, X.F., Wang, T., Sun, Z., Zhen, Y.G., and Qin, G.X. 2019. Effects of different probiotics on the gut microbiome and metabolites in the serum and caecum of weaning piglets. South African Journal of Animal Science 49: 494-504.

Collier, R.J., Hall, L.W., Rungruang, S., and Zimbleman, R.B. 2012. Quantifying heat stress and its impact on metabolism and performance. Proceedings of the Florida Ruminant Nutrition Symposium 74-83.

Dahl, G.E., Tao, S., and Laporta, J. 2017. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Late gestation heat stress of dairy cattle programs dam and daughter milk production. Journal of animal science 95: 5701-5710.

De Quiroga, G.B., Lopeztorres, M., and Perezcampo, R. 1992. Relationship between antioxidants, lipid peroxidation and aging. EXS 62: 109-123.

Du Preez, J.H., Giesecke, W.H., and Hattingh, P.J. 1990a. Heat stress in dairy cattle and other livestock under southern African conditions. I. Temperature-humidity index mean values during the four main seasons. Onderstepoort Journal
Du Preez, J.H., Hattingh, P.J., Giesecke, W.H., and Eisenberg, B.E. 1990b. Heat stress in dairy cattle and other livestock under southern African conditions. III. Monthly temperature-humidity index mean values and their significance in the performance of dairy cattle. Onderstepoort Journal of Veterinary Research 57: 243–248.

Dunn, R.J., Mead, N.E., Willett, K.M., and Parker, D.E. 2014. Analysis of heat stress in UK dairy cattle and impact on milk yields. Environmental research letters 9: 064006.

Gantner, V., Bobic, T., Gantner, R., Gregic, M., Kuterovac, K., Novakovic, J., and Potocnik, K. 2017. Differences in response to heat stress due to production level and breed of dairy cows. International journal of biometeorology 61: 1675-1685.

Igono, M.O., and Johnson, H.D. 1990. Physiologic stress index of lactating dairy cows based on diurnal pattern of rectal temperature. Journal of Interdisciplinary Cycle Research. 21: 303-320.

Kadzere, C.T., Murphy, M.R., Silanikove, N., and Maltz, E. 2002. HEAT STRESS IN LACTATING DAIRY COWS: A REVIEW. Livestock production science. 77: 59-91.

Konvicna, J., Vargova, M., Paulikova, I., Kovac, G., and Kostecka, Z. 2015. Oxidative stress and antioxidant status in dairy cows during prepartal and postpartal periods. Acta Vet Brno. 84, 133-140.

Liu, Z.L., Chen, P., Li, J.M., Lin, S.B., Wang, D.M., Zhu, L.P., and Yang, D.P. 2008. Conjugated linoleic acids (CLA) moderate negative responses of heat-stressed cows. Livestock science 118: 255-261.

NRC (1971) A Guide to Environmental Research on Animals, Washington, DC: National Academy Science.

Ravagnolo, O., Misztal, I., and Hoogenboom, G. 2000. Genetic Component of Heat Stress in Dairy Cattle, Development of Heat Index Function. Journal of Dairy Science 83: 2120-2025.

Safa, S., Kargar, S., Moghaddam, G.A., Ciliberti, M.G., and Caroprese, M. 2019. Heat stress abatement during the
postpartum period: effects on whole lactation milk yield, indicators of metabolic status, inflammatory cytokines, and biomarkers of the oxidative stress. Journal of animal science 97: 122-132.

Savaliya, B.D., Parikh, S.S., Makwana, R.B., Patbandha, T.K., Gamit, P.M., and Murthy, K.S. 2019. Effect of Microclimate Alteration on Temperature Humidity Index (THI), Milk Production and Milk Composition in Jaffrabadi Buffaloes during Summer. International Journal of Current Microbiology and Applied Sciences 8: 1379-1385.

Senthilkumar, R., Viswanathan, P., and Nalini, N. 2004. Effect of glycine on oxidative stress in rats with alcohol induced liver injury. Die Pharmazie. 59: 55-60.

Sharma, N., Singh, N.K., Singh, O.P., Pandey, V., and Verma, P.K. 2011. Oxidative Stress and Antioxidant Status during Transition Period in Dairy Cows. Asian-australasian Journal of Animal Sciences 24: 479-484.

Sheppard, K., Yuan, J., Hohn, M.J., Jester, B. Devine, K.M., and Soll, D. 2008. From one amino acid to another: tRNA-dependent amino acid biosynthesis. Nucleic Acids Research 36: 1813-1825.

Tian, H., Nan, Z., Wang, W., Cheng, J., Li, S., Zhang, Y., and Wang, J. 2016. Integrated Metabolomics Study of the Milk of Heat-stressed Lactating Dairy Cows. Scientific Reports 6: 24208.

Thompson, J.S., and Richardson, K.E. 1967. Isolation and Characterization of an L-Alanine:Glyoxylate Aminotransferase from Human Liver. Journal of Biological Chemistry 242: 3614-3619.

Wang, W., Wu, Z., Dai, Z., Yang, Y., Wang, J., and Wu, G. 2013. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45: 463-477.

Wang, W., Wu, Z., Lin, G., Hu, S., Wang, B., Dai, Z., and Wu, G. 2014. Glycine Stimulates Protein Synthesis and Inhibits Oxidative Stress in Pig Small Intestinal Epithelial Cells. Journal of Nutrition 144: 1540-1548.

West, J. W. 2003. Effects of Heat Stress on Production in Dairy Cattle. Journal of dairy science 86: 2131-2144.

Yurawecz, M.P., Hood, J.K., Mossoba, M.M., Roach, J.A., and Ku, Y. 1995. Furan fatty acids determined as oxidation
products of conjugated octadecadienoic acid. Lipids. 30: 595-598.

Zhao, Y.N., Zhao, J.Y., Zhao, C.X., Zhou, H.N., Li, Y.L., Zhang, J.J., Li, L.L., Hu, C.X., Li, W.Z., Peng, X.J., Lu, X.,
Lin, F.C., and Xu, G.W. 2015. A metabolomics study delineating geographical location-associated primary metabolic
changes in the leaves of growing tobacco plants by GC-MS and CE-MS. Scientific Reports 5: 16346.

Zhao, W. Chen, X. Xiao, J. Chen, X.H. Zhang, X.F. Wang, T. Zhen, Y.G. and Qin, G.X., 2019. Prepartum body
condition score affects milk yield, lipid metabolism, and oxidation status of Holstein cows. Asian-australasian
Journal of Animal Sciences 32: 1889-1896.

Zimbelman, R.B. Rhoads, R.P. Rhoads, M.L. Duff, G.C. Baumgard, L.H. and Collier, R.J. 2009. A re-evaluation of the
impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high
producing dairy cows. Proceedings of the Southwest Nutrition Conference (ed. RJ Collier) 158-169.