CASE REPORT

A Case of Heart Failure with Hyperthyroidism Demonstrating Discrepancy between the Clinical Course and B-type Natriuretic Peptide Levels

Chiaki Kishida1, Ryo Naito1, Hiroki Kasuya1, Tomohiro Kaneko1, Kosuke Yabe1, Midori Kakihara1, Ryosuke Shimai1, Hiroyuki Isogai1, Dai Ozaki1, Yuki Yasuda1, Fuminori Odagiri1, Tetsuro Miyazaki1, Ken Yokoyama1, Takashi Tokano1, Hajime Koyano2 and Yuji Nakazato1

Abstract:
A 35-year-old Japanese man was emergently admitted to our hospital with chief complaints of palpitation and dyspnea. He has been treated for Basedow’s disease. He was diagnosed with acute decompensated heart failure, atrial fibrillation and thyrotoxicosis. We started anti-thyroid agents and a treatment for heart failure with beta blockers and diuretics under anti-coagulation therapy. His B-type natriuretic peptide levels remained high, although the heart failure had been compensated and the heart rate was well controlled while hyperthyroidism still existed. We should bear in mind that a discrepancy can exist between the clinical course and the B-type natriuretic peptide level in heart failure patients complicated with hyperthyroidism.

Key words: BNP, hyperthyroidism, heart failure

Case Report

A 35-year-old Japanese man was emergently admitted to our hospital with chief complaints of palpitation and dyspnea that had started a month prior to presentation. He had been treated medically for Basedow’s disease since the age of 28. The patient has discontinued the treatment approximately six months prior to presentation. One week prior to his admission, he had visited a local physician, and the treatment of his hyperthyroidism was resumed, which resulted in no improvement of his symptoms.

A physical examination upon admission revealed the following: height 173.0 cm, body weight 73.3 kg, body mass index 24.5, Glasgow Coma Scale 15, blood pressure 125/89 mmHg, heart rate 183/min, body temperature 36.5°C, and respiratory rate 20/min. Cardiac auscultation revealed irregular heart sounds and a Levine II/VI systolic murmur with the point of maximum intensity located at the apex. Moist rales were auscultated over the lower lung fields. Edema in the lower extremities was also present.

Chest X-ray showed bilateral lung congestion, dullness of the costophrenic angle and cardiomegaly with a cardiothoracic ratio of 58%. His electrocardiogram revealed atrial fibrillation with a heart rate of 175/min and an inverted T wave in V1 and V6. Blood examinations indicated an elevated white blood cell count, slight anemia (hemoglobin concentration 12.4 g/dL; hematocrit 39.4%) and hyperthyroidism (free T3 12.33 pg/mL, free T4 4.24 ng/dL and undetectable levels of thyroid-stimulating hormone). His B-type natriuretic peptide (BNP) level was 800.6 pg/mL. Echocardiography revealed a reduced left ventricular systolic function with a left ventricular ejection fraction (LVEF) of 26%, severe functional mitral regurgitation, moderate tricuspid regurgitation, a high estimated right ventricular systolic pressure (RVSP) of 60 mmHg, bilateral atrial enlargement and dis-
tended inferior vena cava without any changes in his respiratory status.

Upon admission, he was diagnosed with acute decompensated heart failure, atrial fibrillation with a rapid ventricular response and thyrotoxicosis. We managed his hyperthyroidism with thiamazole accompanied by treatment for heart failure using beta blockers, diuretics and anti-coagulants. On the 14th day of admission, the BNP level remained high despite compensation for the heart failure, improved echocardiographic findings (LVEF 48%, moderate MR and RVSP 49 mmHg) and a well-controlled ventricular rate of atrial fibrillation while hyperthyroidism still existed (Figure). The BNP level and thyroid status along with heart failure were carefully followed during the clinical course after discharge. There were no clinical findings of exacerbated heart failure, and the BNP levels gradually decreased with an accompanying improvement in his hyperthyroidism. At his 9-month follow-up examination, his BNP level was 22.8 pg/mL, and no hyperthyroidism was found, with an improvement in his LVEF from 26% to 53%.

Discussion

We herein report a patient with heart failure complicated with hyperthyroidism with a discrepancy between the clinical course and the BNP levels. BNP-guided therapy is considered to be useful for managing heart failure. A higher BNP at discharge was found to be related to a higher incidence of re-hospitalization for heart failure (1-5). In our patient, the BNP level remained relatively high despite improvement in his heart failure, including the symptoms and examination findings. However, on the 14th day of admission, the thyroid function was still high although his thyrotoxicosis had improved. Thyrotoxicosis is a life-threatening condition, although its incidence is not very high (6), and it is often accompanied by heart failure (estimated incidence of approximately 40%) (7).

Previous reports have described a relationship between the BNP levels and thyroid hormones. Ertugrul et al. reported that BNP and thyroxine were positively correlated in patients without heart failure or cardiac disease (8). In that report, the BNP level was approximately four-fold higher in patients with hyperthyroidism than in other subjects in a euthyroid state.

The mechanism underlying the association between BNP and thyroid hormones has not been fully elucidated. BNP is generated from myocardium primarily following mechanical stimulation of the ventricular myocardium. BNP is produced rapidly through mRNA synthesis if proper stimuli exist. These stimuli are mainly excessive stretching of the myocytes rather than transmural pressure loading (9, 10). However, thyroid hormones can stimulate the secretion of BNP. Previous experimental studies have shown that free T3 hormone directly stimulates the secretion of BNP from myocardial cells via an increase in the gene expression of BNP (11, 12). These studies might explain the discrepancy between the clinical improvement of heart failure and the BNP level in our patient.

General management of heart failure usually involves a systemic evaluation, including the severity of symptoms, physical findings, and grade of fluid retention on chest X-ray, as well as an evaluation of the echocardiographic findings and serum BNP level. Nevertheless, in heart failure patients complicated with hyperthyroidism, the relationship between the clinical course and BNP level needs to be carefully interpreted and monitored.

The authors state that they have no Conflict of Interest (COI).

Acknowledgement

All authors declare no conflicts of interest related to this work.

References

1. Yancy CW, Jessup M, Bozkurt B, et al. Task Force on Clinical Practice Guidelines and the Heart Failure Society of America of Heart Failure: A Report of the American College of Cardiology/American Heart Association 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management. Circulation 2017 published online.
2. Kociol RD, Horton JR, Fonarow GC, et al. Admission, discharge, or change in B-type natriuretic peptide and long-term outcomes: data from Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure (OPTIMIZE-HF) linked to Medicare claims. Circ Heart Fail 4: 628-636, 2011.
3. Cheng V, Kazanagra R, Garcia A, et al. A rapid bedside test for B-type peptide predicts treatment outcomes in patients admitted for decompensated heart failure: a pilot study. J Am Coll Cardiol 37: 386-391, 2001.
4. Dhaliwal AS, Deswal A, Pritchett A, et al. Reduction in BNP lev-
els with treatment of decompensated heart failure and future clinical events. J Card Fail 15: 293-299, 2009.

5. Logeart D, Thabut G, Jourdain P, et al. Predischarge B-type natriuretic peptide assay for identifying patients at high risk of readmission after decompensated heart failure. J Am Coll Cardiol 43: 635-641, 2004.

6. Dillmann WH. Thyroid storm. Curr Ther Endocrinol Metab 6: 81-85, 1997.

7. Isozaki O, Satoh T, Wakino S, et al. Treatment and management of thyroid storm: analysis of the nationwide surveys: The taskforce committee of the Japan Thyroid Association and Japan Endocrine Society for the establishment of diagnostic criteria and nationwide surveys for thyroid storm. Clin Endocrinol (Oxf) 84: 912-918, 2016.

8. Ertugrul DT, Gursoy A, Sahin M, et al. Evaluation of brain natriuretic peptide levels in hyperthyroidism and hypothyroidism. J Natl Med Assoc 100: 401-405, 2008.

9. Wiese S, Breyer T, Dragu A, et al. Gene expression of brain natriuretic peptide in isolated atrial and ventricular human myocardium: influence of angiotensin II and diastolic fiber length. Circulation 102: 3074-3079, 2000.

10. Mizuno Y, Yoshimura M, Harada E, et al. Plasma levels of A- and B-type natriuretic peptides in patients with hypertrophic cardiomyopathy or idiopathic dilated cardiomyopathy. Am J Cardiol 86: 1036-1040, 2000.

11. Kohno M, Horio T, Yasunari K, et al. Stimulation of brain natriuretic peptide release from the heart by thyroid hormone. Metabolism 42: 1059-1064, 1993.

12. Liang F, Webb P, Marimuthu A, Zhang S, Gardner DG. Triiodothyronine increases brain natriuretic peptide (BNP) gene transcription and amplifies endothelin-dependent BNP gene transcription and hypertrophy in neonatal rat ventricular myocytes. J Biol Chem 278: 15073-15083, 2003.

The Internal Medicine is an Open Access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view the details of this license, please visit (https://creativecommons.org/licenses/by-nc-nd/4.0/).