Supporting information

Highly effective removal of Hg(II) solution using corn bract@MoS$_2$

as a new biomass adsorbent

Xiaoxu Xu1*, Qihui Guo2*, Chengyue Yang2, Zhuang Hu2, Qifan Chen1, Jianshe Hu2

1College of Chemical Engineering and Machinery, Eastern Liaoning University, Dandong, 118001, P. R. China

2Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang, 110819, P. R. China.

Corresponding author: E-mail for J.S. Hu: hujs@mail.neu.edu.cn and Q.F. Chen: qifan_C405@163.com

*These authors contributed equally to this work.

Materials and instruments

CB come from farmers’ markets; Ammonium molybdate tetrahydrate solution (AR 20%) and thiourea were purchased from Tianjin Daomao Chemical Reagent Company (Tianjin, China); Mercurium nitrate was supplied by Guizhou Tongren Tailuiier Chemical Plant (Guizhou, China). FT-IR spectrum was recorded on the PerkinElmer spectrum One (B) spectrometer using KBr particles in the range of 4000-500 cm$^{-1}$. Using the Bruker D8 device, X-ray powder diffraction (XRD) spectrum of the Cu-K$_\alpha$ radiation (λ=1.54a) sample under 40kv and 40ma was obtained in the range of 1~10°(2θ). The morphology of the sample was observed with a scanning
electron microscope (SEM, JEOL-6500F). Using Netzsch 209C under N2 flow conditions, the heating rate is 20 °C min⁻¹ to perform thermogravimetric analysis (TGA) on the stability of the sample. X-ray photoelectron spectroscopy (XPS) used ESCALAB250 to detect the surface composition of the sample.

![Figure S1 TEM images of CB@MoS₂ (a,b)](image)

Table S1 Langmuir and Freundlich isotherm parameters

Models	Parameters	value
Langmuir	\(Q_{m,\text{cal}} \) (mg/g)	990.10
	\(K_L \) (min⁻¹)	0.2583
	\(R^2 \)	0.9992
	ln\(K_F \)	6.0181
Freundlich	\(n \)	5.4177
	\(R^2 \)	0.9088
Table S2 Pseudo-first-order, pseudo-second-order and intraparticle diffusion model parameters

Models	Parameters	value
Pseudo-first-order equation	$Q_{e, \text{exp}}$ (mg/g)	332.50
	$Q_{e, \text{cal}}$ (mg/g)	295.75
	k_1 (min$^{-1}$)	0.0659
	R^2	0.8281
Pseudo-second-order equation	k_2 (g·mg$^{-1}$·min$^{-1}$)	0.0006
	R^2	0.9991
	k_{p1} (mg·g$^{-1}$·min$^{-0.5}$)	45.104
	C_1	80.156
	R^2_1	0.9762
	K_{p2} (mg·g$^{-1}$·min$^{-0.5}$)	13.627
Intraparticle diffusion	C_2	200.34
	R^2_2	0.9630
	K_{p3} (mg·g$^{-1}$·min$^{-0.5}$)	2.5264
	C_3	302.03
	R^2_3	0.5639

Table S3 Thermodynamic parameters at different temperatures

T(K)	298	308	318	328
ΔG(kJ/mol)	-6.69	-10.00	-13.32	-16.64

Notes: ΔH^0 = 92.108 kJ/mol, ΔS^0 = 331.534 J/mol
Figure S2 (a) FT-IR spectra of CB@MoS₂ and CB@MoS₂@HgS; (b) XRD patterns of CB@MoS₂ and CB@MoS₂@HgS; (c) High-resolution XPS spectrum of Mo3d