Differentiating Catalysis in the Dearomative [4+2]-Cycloaddition Involving Enals and Heteroaromatic Aldehydes

Aleksandra Topolska, Sebastian Frankowski, and Łukasz Albrecht

Institute of Organic Chemistry
Faculty of Chemistry
Lodz University of Technology
Żeromskiego 116, 90-924 Łódź, Poland
E-mail: lukasz.albrecht@p.lodz.pl

Contents

1. General methods S2
2. Differentiating catalysis in the [4+2]-cycloaddition – general procedure S3
3. Selective transformations of the product 3a S10
4. Crystal and X-ray data for 3a S13
5. Non-linear effects study S16
6. NMR data S17
7. UPC2 data S35
1. General methods

NMR spectra were acquired on a Bruker Ultra Shield 700 instrument, running at 700 MHz for 1H and 176 MHz for 13C, respectively. Chemical shifts (δ) are reported in ppm relative to residual solvent signals (CDCl$_3$: 7.26 ppm for 1H NMR, 77.16 ppm for 13C NMR). Mass spectra were recorded on a Bruker Maxis Impact quadrupole-time-of-flight spectrometer using electrospray (ES+) ionization (referred to the mass of the charged species). Analytical thin layer chromatography (TLC) was performed using pre-coated aluminum-backed plates (Merck Kieselgel 60 F254) and visualized by ultraviolet irradiation or Hanessian’s stain. Unless otherwise noted, analytical grade solvents and commercially available reagents were used without further purification. For flash chromatography (FC) silica gel (Silica gel 60, 230-400 mesh, Fluka). The enantiomeric ratio (er) of the products were determined by Ultra Performance Convergence Chromatography (UPC2) using Daicel Chiralpak IA column as chiral stationary phases. Aldehydes 2 were synthesized according to the literature procedure.1 Heteroaromatic aldehydes 1 were prepared from the corresponding starting materials following the literature procedure.2

(1) Daubresse, N.; Francesch, C.; Rolando, C. Phase transfer Wittig reaction with 1,3-dioxolan-2-yl-methyltriphenyl phosphonium salts: An efficient method for vinylogation of aromatic aldehydes. *Tetrahedron* **1998**, *54*, 10761-10770.
(2) Bojanowski, J.; Skrzyńska, A.; Albrecht, A. Dearomatizative and Decarboxylative Reaction Cascade in the Aminocatalytic Synthesis of 3,4-Dihydrocoumarins. *Asian J. Org. Chem.* **2019**, *8*, 844-848.
2. Differentiating catalysis in the [4+2]-cycloaddition – general procedure

In an ordinary 4 mL glass vial equipped with a magnetic stirring bar α,β-unsaturated aldehyde 2 (0.12 mmol, 1.2 equiv.) and heteroaromatic aldehyde 1 (0.1 mmol, 1 equiv.) were dissolved in Et₂O (0.4 mL) and catalyst 4c (4.7 mg, 0.02 mmol, 0.2 equiv.) and benzoic acid (4.9 mg, 0.04 mmol, 0.4 equiv.) were added and the reaction mixture was stirred in room temperature for indicated time. The progress of the reaction was controlled by ¹H NMR spectroscopy. After full conversion of the starting material 1, the reaction mixture was directly subjected to column chromatography on silica gel (hexanes : diethyl ether 85:15) to afford pure products 3a-o.

(6S,7S)-6,7-Diphenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3a

Following the general procedure, using 1a (18.6 mg), product 3a (>20:1 dr in a crude reaction mixture) was isolated in 95% yield (28.5 mg) as light-yellow solid (m.p. = 148 – 150 °C after recrystallization from hexane/diethyl ether mixture). ¹H NMR (700 MHz, CDCl₃) δ 9.54 (s, 1H), 7.46 (s, 1H), 7.42 (d, J = 2.0 Hz, 1H), 7.31 – 7.28 (m, 3H), 7.28 – 7.26 (m, 3H), 7.25 – 7.21 (m, 2H), 7.05 – 7.04 (m, 2H), 6.60 (d, J = 2.0 Hz, 1H), 4.44 (s, 1H), 4.34 (s, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 191.3, 157.6, 144.3, 142.6, 141.6, 139.7, 136.5, 129.2 (2C), 129.0 (2C), 127.6, 127.4, 127.0 (2C), 126.8 (2C), 117.6, 108.6, 47.4, 47.1. The er was determined by UPC² using a chiral Chiralpack IA column gradient from 100% CO₂ up to 40%; i-PrOH, flow rate = 2.2 mL/min, l = 295 nm) tR = 3.1 min (major), 2.9 min (minor), (>99:1 er). [α]D²³ = + 625.9 (c = 1.0, CHCl₃). HRMS (ESI) m/z [M+H]+ Calcd. for C₂₁H₁₇O₂+: 301.1224; found: 301.1230.
(6S,7S)-6-(4-Nitrophenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3b

Following the general procedure, using 1a (18.6 mg), product 3b (10.5:1 dr in a crude reaction mixture) was isolated in 69% yield (23.8 mg) as light-yellow oil. 1H NMR (700 MHz, CDCl$_3$) δ 9.56 (s, 1H), 8.15 – 8.13 (m, 2H), 7.55 (s, 1H), 7.47 (d, $J = 2.0$ Hz, 1H), 7.43 (d, $J = 8.6$ Hz, 2H), 7.34 – 7.31 (m, 2H), 7.30 – 7.27 (m, 1H), 7.06 – 7.04 (m, 2H), 6.65 (d, $J = 2.0$ Hz, 1H), 4.53 (s, 1H), 4.31 (s, 1H). 13C NMR (176 MHz, CDCl$_3$) δ 190.9, 157.0, 149.7, 147.4, 144.9, 140.7, 135.3, 129.3 (2C), 128.0 (2C), 127.9, 126.7 (2C), 124.3 (2C), 117.7, 108.7, 47.0, 46.9. The er was determined by UPC2 using a chiral Chiralpack IA column gradient from 100% CO$_2$ up to 40%; i-PrOH, flow rate = 2.2 mL/min, l = 358 nm) tR = 4.0 min (major), 3.7 min (minor), (97:3 er). [α]$_D^{22}$ = +776.8 (c = 1.0, CHCl$_3$). HRMS (ESI) m/z [M+H]$^+$ Calcd. for C$_{21}$H$_{16}$NO$_4$+: 346.1074; found: 346.1085.

(6S,7S)-6-(4-Chlorophenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3c

Following the general procedure, using 1a (18.6 mg), product 3c (>20:1 dr in a crude reaction mixture) was isolated in 71% yield (23.7 mg) as light-yellow oil. 1H NMR (700 MHz, CDCl$_3$) δ 9.52 (s, 1H), 7.46 (s, 1H), 7.42 (d, $J = 2.0$ Hz, 1H), 7.30 – 7.27 (m, 2H), 7.25 – 7.21 (m, 3H), 7.19 – 7.17 (m, 2H), 7.04 – 7.01 (m, 2H), 6.60 (d, $J = 2.0$ Hz, 1H), 4.39 (s, 1H), 4.27 (s, 1H). 13C NMR (176 MHz, CDCl$_3$) δ 191.1, 157.3, 144.5, 141.2, 141.0, 139.8, 136.1, 133.2, 129.2 (2C), 129.1 (2C), 128.4 (2C), 127.7, 126.7 (2C), 117.6, 108.6, 47.3, 46.4. The er was determined by UPC2 using a chiral Chiralpack IA column gradient from 100% CO$_2$ up to 40%; i-PrOH, flow rate = 2.2 mL/min, l = 330 nm) tR = 3.6 min (major), 3.2 min (minor), (98:2 er). [α]$_D^{23}$ = +753.3 (c = 1.0, CHCl$_3$). HRMS (ESI) m/z [M+H]$^+$ Calcd. for C$_{21}$H$_{16}$ClO$_2$+: 335.0761; found: 335.0769.

(6S,7S)-7-Phenyl-6-(p-tolyl)-6,7-dihydrobenzofuran-5-carbaldehyde 3d

Following the general procedure, using 1a (18.6 mg), product 3d (>20:1 dr in a crude reaction mixture) was isolated in 69% yield (21.7 mg) as light-yellow oil. 1H NMR (700 MHz, CDCl$_3$) δ 9.53 (s, 1H), 7.43 (s, 1H), 7.41 (d, $J = 2.0$ Hz, 1H), 7.28 – 7.27 (m, 2H), 7.25 – 7.21 (m, 1H), 7.16 –
7.13 (m, 2H), 7.07 – 7.06 (m, 2H), 7.05 – 7.04 (m, 2H), 6.59 (d, J = 2.0 Hz, 1H), 4.40 (d, J = 1.4 Hz, 1H), 4.32 (s, 1H), 2.30 (s, 3H). 13C NMR (176 MHz, CDCl3) δ 191.3, 157.6, 144.3, 141.6, 139.7, 139.5, 137.0, 136.6, 129.6 (2C), 129.1 (2C), 127.5, 126.9 (2C), 126.8 (2C), 117.6, 108.6, 47.5, 46.7, 21.2. The er was determined by UPC2 using a chiral Chiralpack IA column gradient from 100% CO2 up to 40%; i-PrOH, flow rate = 2.2 mL/min, l = 230 nm) tR = 3.3 min (major), 3.0 min (minor), (98:2 er). [α]D23 = +329.3 (c = 1.0, CHCl3). HRMS (ESI) m/z [M+H]+ Calcd. for C22H19O2+: 315.1380; found: 315.1388.

(6S,7S)-6-(4-Methoxyphenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3e

Following the general procedure, using 1a (18.6 mg), product 3e (>20:1 dr in a crude reaction mixture) was isolated in 76% yield (25.1 mg) as light-yellow oil. 1H NMR (700 MHz, CDCl3) δ 9.52 (s, 1H), 7.41 – 7.40 (m, 2H), 7.28 – 7.27 (m, 2H), 7.24 – 7.21 (m, 1H), 7.18 – 7.16 (m, 2H), 7.05 – 7.01 (m, 2H), 6.79 – 6.77 (m, 2H), 6.59 (d, J = 2.1 Hz, 1H), 4.37 (s, 1H), 4.30 (s, 1H), 3.76 (s, 3H). 13C NMR (176 MHz, CDCl3) δ 191.4, 158.9, 157.6, 144.3, 141.6, 139.3, 136.8, 134.8, 129.1 (2C), 128.1 (2C), 127.5, 126.8 (2C), 117.6, 114.3 (2C), 108.6, 55.4, 47.5, 46.3. The er was determined by UPC2 using a chiral Chiralpack IA column gradient from 100% CO2 up to 40%; i-PrOH, flow rate = 2.2 mL/min, l = 215 nm) tR = 3.6 min (major), 3.3 min (minor), (98:2 er). [α]D23 = +593.4 (c = 1.0, CHCl3). HRMS (ESI) m/z [M+H]+ Calcd. for C22H19O3+: 331.1329; found: 331.1337.

(6S,7S)-6-(3-Methoxyphenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3f

Following the general procedure, using 1a (18.6 mg), product 3f (>20:1 dr in a crude reaction mixture) was isolated in 68% yield (22.4 mg) as light-yellow oil. 1H NMR (700 MHz, CDCl3) δ 9.53 (s, 1H), 7.45 (s, 1H), 7.40 (d, J = 2.0 Hz, 1H), 7.30 – 7.26 (m, 2H), 7.25 – 7.22 (m, 1H), 7.19 – 7.17 (m, 1H), 7.06 – 7.03 (m, 2H), 6.88 – 6.86 (m, 1H), 6.81 (d, J = 2.0 Hz, 1H), 6.78 – 6.76 (m, 1H), 6.58 (d, J = 2.2 Hz, 1H), 4.41 (s, 1H), 4.35 (s, 1H), 3.76 (s, 3H). 13C NMR (176 MHz, CDCl3) δ 191.3, 160.0, 157.6, 144.3, 144.1, 141.6, 139.8, 136.3, 130.0, 129.2 (2C), 127.5, 126.8 (2C), 119.4, 117.5, 113.2, 112.3, 108.6, 55.3, 47.3, 47.0. The er was determined by UPC2 using a chiral Chiralpack IA column gradient from 100% CO2 up to
40%; i-PrOH, flow rate = 2.2 mL/min, λ = 251 nm) tR = 3.2 min (major), 3.1 min (minor), (98:2 er). \([\alpha]_D^{23} = +468.0 \ (c = 1.0, \text{CHCl}_3)\). HRMS (ESI) m/z [M+H]⁺ Calcd. for C₂₂H₁₉O₃⁺ : 331.1329; found: 331.1338.

(6S,7S)-6-(2-methoxyphenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3g

Following the general procedure, using 1a (18.6 mg), product 3g (>20:1 dr in a crude reaction mixture) was isolated in 57% yield (18.8 mg) as light-yellow oil. \(^1\)H NMR (700 MHz, CDCl₃) δ 9.54 (s, 1H), 7.60 (s, 1H), 7.36 – 7.35 (d, J = 1.8 Hz, 1H), 7.29 – 7.26 (m, 2H), 7.23 – 7.19 (m, 1H), 7.20 – 7.19 (m, 1H), 7.10 – 7.06 (m, 2H), 6.95 – 6.94 (m, 1H), 6.88 (d, J = 1.8 Hz, 1H), 6.78 – 6.74 (m, 1H), 6.59 (s, 1H), 4.86 (s, 1H), 4.28 (s, 1H), 4.00 (s, 3H). \(^{13}\)C NMR (176 MHz, CDCl₃) δ 191.3, 158.2, 157.0, 144.1, 141.6, 141.2, 135.4, 128.8 (2C), 128.4, 128.3, 127.2, 127.0 (2C), 126.9, 120.4, 117.7, 111.2, 108.5, 55.6, 45.9, 40.7. The er was determined by UPC² using a chiral Chiralpack IA column gradient from 100% CO₂ up to 40%; i-PrOH, flow rate = 2.2 mL/min, λ = 339 nm) tR = 3.2 min (major), 3.0 min (minor), (>99:1 er). \([\alpha]_D^{23} = +402.2 \ (c = 1.0, \text{CHCl}_3)\). HRMS (ESI) m/z [M+H]⁺ Calcd. for C₂₂H₁₉O₃⁺ : 331.1329; found: 331.1340.

(6R,7S)-6-(2,4-Dichlorophenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3h

Following the general procedure, using 1a (18.6 mg), product 3h (>20:1 dr in a crude reaction mixture) was isolated in 70% yield (25.8 mg) as light-yellow oil. \(^1\)H NMR (700 MHz, CDCl₃) δ 9.57 (s, 1H), 7.43 (s, 1H), 7.40 (d, J = 2.0 Hz, 1H), 7.34 – 7.31 (m, 1H), 7.28 – 7.26 (m, 2H), 7.25 – 7.20 (m, 1H), 7.05 – 7.01 (m, 2H), 6.56 (d, J = 1.9 Hz, 1H), 6.22 (dd, J = 3.2, 1.9 Hz, 1H), 5.96 (d, J = 3.2 Hz, 1H), 4.61 (s, 1H), 4.60 (s, 1H). \(^{13}\)C NMR (176 MHz, CDCl₃) δ 190.8, 157.8, 154.1, 144.2 (2C), 142.0 (2C), 140.5, 140.0, 133.5, 129.1, 127.6 (2C), 126.9 (2C), 117.2, 110.3, 108.7, 105.8, 43.9, 40.5. The er was determined by UPC² using a chiral Chiralpack IA column gradient from 100% CO₂ up to 40%; ACN, flow rate = 2.2 mL/min, λ = 235 nm) tR = 3.0 min (major), 3.4 min (minor), (90:10 er). \([\alpha]_D^{23} = +591.1 \ (c = 1.0, \text{CHCl}_3)\). HRMS (ESI) m/z [M+H]⁺ Calcd. for C₂₁H₁₅Cl₂O₂⁺ : 369.0444; found: 369.0455.
(6R,7S)-6-(Furan-2-yl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3i

Following the general procedure, using 1a (18.6 mg), product 3i (>20:1 dr in a crude reaction mixture) was isolated in 64% yield (18.6 mg) as light-yellow oil. 1H NMR (700 MHz, CDCl$_3$) δ 9.55 (s, 1H), 7.64 (s, 1H), 7.48 (d, J = 2.0 Hz, 1H), 7.39 (d, J = 2.1 Hz, 1H), 7.29 – 7.27 (m, 2H), 7.25 – 7.22 (m, 1H), 7.14 – 7.12 (m, 2H), 7.05 (dd, J = 8.4, 2.0 Hz, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.60 (d, J = 2.1 Hz, 1H), 4.88 (s, 1H), 4.20 (s, 1H). 13C NMR (176 MHz, CDCl$_3$) δ 190.7, 157.4, 144.6, 141.2, 140.4, 136.5, 135.3, 134.5, 133.7, 130.3, 129.2, 127.7, 127.3, 127.2, 117.6, 108.5, 46.0, 42.8. The er was determined by UPC2 using a chiral Chiralpack IA column gradient from 100% CO$_2$ up to 40%; ACN, flow rate = 2.2 mL/min, l = 237 nm) tR = 2.5 min (major), 2.7 min (minor), (95:5 er). $[\alpha]_D^{23}$ = + 614.1 (c = 1.0, CHCl$_3$). HRMS (ESI) m/z [M+H]$^+$ Calcd. for C$_{19}$H$_{15}$O$_3$ + : 291.1016; found: 291.1022.

(6S,7S)-7-(4-Fluorophenyl)-6-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3j

Following the general procedure, using 1b (20.4 mg), product 3j (>20:1 dr in a crude reaction mixture) was isolated in 90% yield (28.6 mg) as light-yellow oil. 1H NMR (700 MHz, CDCl$_3$) δ 9.56 (s, 1H), 7.48 (s, 1H), 7.45 (d, J = 2.1 Hz, 1H), 7.31 – 7.22 (m, 5H), 7.06 – 6.97 (m, 4H), 6.63 (d, J = 2.1 Hz, 1H), 4.41 (s, 1H), 4.35 (s, 1H). 13C NMR (176 MHz, CDCl$_3$) δ 191.3, 162.8 (d, J = 246.1 Hz, 2C), 161.5, 157.3, 144.5, 142.3, 139.6, 137.3, 136.3, 129.0, 128.4 (d, J = 8.2 Hz, 2C), 127.5, 127.0, 117.6, 116.0 (d, J = 21.2 Hz, 2C), 108.6, 47.2, 46.5. The er was determined by UPC2 using a chiral Chiralpack IA column gradient from 100% CO$_2$ up to 40%; i-PrOH, flow rate = 2.2 mL/min, l = 244 nm) tR= 3.0 min (major), 2.7 min (minor), (97:3 er). $[\alpha]_D^{23}$ = + 734.4 (c = 1.0, CHCl$_3$). HRMS (ESI) m/z [M+H]$^+$ Calcd. for C$_{21}$H$_{16}$FO$_2$ + : 319.1129; found: 319.1141.

(6S,7S)-6-Phenyl-7-(p-tolyl)-6,7-dihydrobenzofuran-5-carbaldehyde 3k

Following the general procedure, using 1c (20.0 mg), product 3k (15:1 dr in a crude reaction mixture) was isolated in 56% yield (17.6 mg) as light-yellow oil. 1H NMR (700 MHz, CDCl$_3$) δ 9.54 (s, 1H), 7.45 (s, 1H), 7.41 (dd, J = 2.0, 0.6 Hz, 1H), 7.27 (s, 4H), 7.25 – 7.21 (m, 1H), 7.11 – 7.08 (m,
Following the general procedure, using 1d (21.6 mg), product 3l (>20:1 dr in a crude reaction mixture) was isolated in 93% yield (30.7 mg) as light-yellow oil. 1H NMR (700 MHz, CDCl$_3$) δ 9.54 (s, 1H), 7.45 (s, 1H), 7.42 (d, J = 2.1 Hz, 1H), 7.29 – 7.26 (m, 4H), 7.24 – 7.18 (m, 2H), 6.79 – 6.77 (m, 1H), 6.68 – 6.67 (m, 1H), 6.59 (d, J = 2.1 Hz, 1H), 6.58 – 6.57 (m, 1H), 4.44 (s, 1H), 4.32 (s, 1H), 3.77 (s, 3H). 13C NMR (176 MHz, CDCl$_3$) δ 191.3, 160.1, 157.4, 146.9, 144.3, 142.9, 139.5, 139.3, 136.7, 134.9, 131.3, 129.0, 127.4, 127.3, 127.0, 126.6, 126.5, 118.4, 108.5, 85.3, 46.4, 43.1, 27.6. The er was determined by UPC2 using a chiral Chiralpack IA column gradient from 100% CO$_2$ up to 40%; i-PrOH, flow rate = 2.2 mL/min, l = 230 nm) tR = 3.2 min (major), 3.1 min (minor), (81:19 er). [α]$_D^{23}$ = + 692.2 (c = 1.0, CHCl$_3$). HRMS (ESI) m/z [M+H]$^+$ Calcd. for C$_{22}$H$_{19}$O$_3^+$: 331.1329; found: 331.1343.

Following the general procedure, using 1e (20.0 mg), product 3m (6:1 dr in a crude reaction mixture) was isolated in 67% yield (21.0 mg) as light-yellow oil. 1H NMR (700 MHz, CDCl$_3$) δ 9.51 (s, 1H), 7.44 (d, J = 3.6 Hz, 2H), 7.32 – 7.30 (m, 2H), 7.29 – 7.26 (m, 2H), 7.26 – 7.23 (m, 2H), 7.14 (td, J = 7.6, 1.3 Hz, 1H), 7.05 (td, J = 7.6, 1.3 Hz, 1H), 6.63 (d, J = 2.0 Hz, 1H), 6.60 (dd, J = 7.6, 1.3 Hz, 1H), 4.59 (d, J = 1.3 Hz, 1H), 4.28 (d, J = 1.3 Hz, 1H), 2.51 (s, 3H). 13C NMR (176 MHz, CDCl$_3$) δ 191.3, 157.9, 146.9, 144.3, 142.9, 139.5, 139.3, 136.7, 134.9, 131.3, 129.0, 127.4, 127.3, 127.0, 126.6, 126.5, 118.4, 108.5, 85.3, 46.4, 43.1, 27.6. The er was determined by UPC2 using a chiral Chiralpack IA column gradient from 100% CO$_2$ up to 40%; i-
PrOH, flow rate = 2.2 mL/min, l = 248 nm) tR = 2.7 min (major), 2.9 min (minor), (>99:1 er). [α]_D^{23} = + 496.5 (c = 1.0, CHCl₃). HRMS (ESI) m/z [M+H]^+ Calcd. for C_{22}H_{16}O₂^+: 315.1380; found: 315.1388.

(6S,7R)-6-Phenyl-7-vinyl-6,7-dihydrobenzofuran-5-carbaldehyde 3n

Following the general procedure, using 1f (13.6 mg), product 3n (>20:1 dr in a crude reaction mixture) was isolated in 91% yield (22.8 mg) as light-yellow oil. \(^1\)H NMR (700 MHz, CDCl₃) δ 9.55 (s, 1H), 7.42 (d, \(J = 2.0\) Hz, 1H), 7.36 (s, 1H), 7.23 – 7.19 (m, 2H), 7.19 – 7.16 (m, 3H), 6.53 (dd, \(J = 2.0, 0.6\) Hz, 1H), 5.85 (ddd, \(J = 17.0, 10.1, 6.7\) Hz, 1H), 5.05 (dt, \(J = 10.1, 1.1\) Hz, 1H), 4.88 (ddd, \(J = 17.0, 1.4, 1.1\) Hz, 1H), 4.28 (d, \(J = 1.1\) Hz, 1H), 3.76 (dd, \(J = 6.8, 1.4\) Hz, 1H). \(^13\)C NMR (176 MHz, CDCl₃) δ 191.5, 157.2, 144.1, 141.5, 139.9, 136.9, 136.2, 128.8 (2C), 127.3, 127.1 (2C), 117.0, 115.7, 108.6, 45.4, 43.7. The er was determined by UPC² using a chiral Chiralpak IA column gradient from 100% CO₂ up to 40%; ACN, flow rate = 2.2 mL/min, l = 228 nm) tR = 2.5 min (major), 2.1 min (minor), (94:6 er). [α]_D^{23} = + 85.6 (c = 1.0, CHCl₃).

HRMS (ESI) m/z [M+H]^+ Calcd. for C_{17}H_{15}O₂^+: 251.1067; found: 251.1074.

(3S,4S)-3,4-Diphenyl-3,4-dihydrodibenzo[b,d]furan-2-carbaldehyde 3o

Following the general procedure, using 1g (23.6 mg), product 3o (>20:1 dr in a crude reaction mixture) was isolated in 86% yield (30.1 mg) as light-yellow oil. \(^1\)H NMR (700 MHz, CDCl₃) \(^1\)H NMR (700 MHz, CDCl₃) δ 9.66 (s, 1H), 7.79 – 7.76 (m, 2H), 7.47 (dt, \(J = 8.1, 0.9\) Hz, 1H), 7.39 (td, \(J = 7.5, 1.1\) Hz, 1H), 7.36 – 7.34 (m, 1H), 7.32 – 7.28 (m, 4H), 7.28 – 7.26 (m, 1H), 7.26 – 7.21 (m, 3H), 7.17 – 7.14 (m, 2H), 4.56 (d, \(J = 1.3\) Hz, 1H), 4.49 (d, \(J = 1.3\) Hz, 1H). \(^13\)C NMR (176 MHz, CDCl₃) δ 191.1, 161.0, 156.3, 142.4, 141.0, 137.4, 136.3, 129.3 (2C), 129.1 (2C), 127.8, 127.5, 127.0 (2C), 126.9 (2C), 125.0, 124.7, 124.1, 119.1, 113.8, 112.2, 47.8, 46.9. The er was determined by UPC² using a chiral Chiralpak IA column gradient from 100% CO₂ up to 40%; i-ProH, flow rate = 2.2 mL/min, l = 216 nm) tR = 3.5 min (major), 3.3 min (minor), (92:8 er). [α]_D^{21} = + 395.5 (c = 1.0, MeOH). HRMS (ESI) m/z [M+H]^+ Calcd. for C_{25}H_{19}O₂^+: 351.1380; found: 351.1389.
3. Selective transformations of the product 3a

3.1. Oxidation of the product 3a to benzofuran-5-carbaldehyde 9

In an ordinary 4 mL glass vial, equipped with a Teflon-coated magnetic stirring bar the aldehyde 3a (30.1 mg, 0.1 mmol, 1 equiv.) was dissolved in CHCl₃ (0.2 mL). Then DDQ (34 mg, 0.15 mmol, 1.5 equiv.) was added and the reaction mixture was stirred at room temperature overnight. After full conversion of the starting material 3a (as confirmed by ¹H NMR spectroscopy), the reaction mixture was directly subjected to column chromatography on silica gel (eluent: hexanes/diethyl ether 4:1) to afford pure product 9 in 80% yield (23.9 mg) as light-yellow oil.

6,7-Diphenylbenzofuran-5-carbaldehyde 9. ¹H NMR (700 MHz, CDCl₃) δ 9.83 (s, 1H), 8.35 (s, 1H), 7.70 (d, J = 2.2 Hz, 1H), 7.29 – 7.26 (m, 2H), 7.26 – 7.22 (m, 4H), 7.21 – 7.19 (m, 2H), 7.16 – 7.13 (m, 2H), 6.96 (d, J = 2.2 Hz, 1H). ¹³C NMR (176 MHz, CDCl₃) δ 192.7, 156.0, 147.7, 141.2, 136.0, 134.1, 131.8 (2C), 131.1, 130.8 (2C), 128.0 (2C), 127.8 (2C), 127.6, 127.5, 127.3, 126.1, 120.6, 107.7. HRMS (ESI) m/z [M+H]⁺ Calcd. for C₂₁H₁₅O₂⁺: 299.1067; found: 299.1074.
3.2. Synthesis of diazepine derivative 8

In an ordinary 8 mL glass vial, equipped with a Teflon-coated magnetic stirring bar the aldehyde 3a (30.1 mg, 0.1 mmol, 1 equiv.) was dissolved in MeOH/CH$_2$Cl$_2$ 3:1 v/v (1 mL). Then o-phenylenediamine (10.8 mg, 0.1 mmol, 1 equiv.) and CeCl$_3$·7H$_2$O (37.2 mg, 0.1 mmol, 1 equiv.) were added and the reaction mixture was stirred at 50 °C for 20 hours. After full conversion of the starting material 3a (as confirmed by TLC analysis), the reaction mixture was diluted with CH$_2$Cl$_2$ (10 mL) and washed with water (2×5 mL), dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The resulting solid was subjected to column chromatography on silica gel (eluent: CH$_2$Cl$_2$) to afford pure product 8 (>20:1 dr) in 62% yield (24.0 mg) as light-yellow oil.

(4S,5S)-4,5-Diphenyl-5,12-dihydro-4H-benzo[b]benzofuro[4,5-e][1,4]diazepine 8. 1H NMR (700 MHz, DMSO-d$_6$) δ 12.57 (s, 1H), 7.72 (s, 1H), 7.65 (d, $J = 1.9$ Hz, 1H), 7.45 (d, $J = 8.0$ Hz, 1H), 7.43 – 7.39 (m, 2H), 7.37 (d, $J = 8.0$ Hz, 1H), 7.30 (t, $J = 7.7$ Hz, 2H), 7.25 (t, $J = 7.7$ Hz, 2H), 7.24 – 7.20 (m, 1H), 7.20 – 7.15 (m, 3H), 7.14 – 7.03 (m, 2H), 6.79 – 6.75 (m, 1H), 4.93 (s, 1H), 4.33 (s, 1H). 13C NMR (176 MHz, DMSO-d$_6$) δ 152.6, 151.5, 143.9, 143.4, 142.1, 141.6, 134.7, 128.8 (2C), 128.5 (2C), 127.1 (2C), 127.0, 126.8, 126.7 (2C), 124.7, 122.5, 121.6, 121.3, 118.6, 118.0, 110.7, 108.6, 49.8, 47.1. $[\alpha]_D^{23}$ = + 249.9 (c = 1.0, MeOH). HRMS (ESI) m/z [M+H]$^+$ Calcd. for C$_{27}$H$_{21}$N$_2$O$^+$: 389.1649; found: 389.1644.
3.3. Selective reduction of aldehyde 3a

In an ordinary 4 mL glass vial equipped with a magnetic stirring bar the aldehyde 3a (30.1 mg, 0.1 mmol, 1 equiv.) was dissolved in CH$_2$Cl$_2$ (0.2 mL). Then MeOH (0.1 mL) and NaBH$_4$ (15.2 mg, 0.4 mmol, 4 equiv.) were added and the reaction mixture was stirred in room temperature for 30 min. Then the reaction mixture was directly subjected to column chromatography on silica gel (eluent: hexanes/ethyl acetate 4:1) to afford pure product 7 in 78% yield (23.6 mg) as light-yellow oil.

((6S,7S)-6,7-Diphenyl-6,7-dihydrobenzofuran-5-yl)methanol 7. 1H NMR (700 MHz, CDCl$_3$) δ 7.30 – 7.26 (m, 5H), 7.26 – 7.21 (m, 4H), 7.14 – 7.10 (m, 2H), 6.60 (dt, J = 1.5, 0.8 Hz, 1H), 6.43 (dd, J = 1.9, 0.6 Hz, 1H), 4.18 (d, J = 2.3 Hz, 1H), 4.05 – 4.01 (m, 1H), 3.97 (d, J = 13.9 Hz, 1H), 3.80 (d, J = 2.4 Hz, 1H). 13C NMR (176 MHz, CDCl$_3$) δ 151.5, 142.8, 142.7, 142.6, 135.7, 129.1 (2C), 129.0 (2C), 127.5 (2C), 127.3, 127.2, 127.1 (2C), 117.7, 117.2, 108.2, 65.3, 52.8, 48.2. HRMS (ESI) m/z [M+H]$^+$ Calcd. for C$_{21}$H$_{19}$O$_2$: 303.1380; found: 303.1384.
3.3. Enantioselective synthesis of (6S,7S)-6,7-diphenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3a on a 1 mmol scale

In an ordinary 8 mL glass vial equipped with a magnetic stirring bar α,β-unsaturated aldehyde 2a (158.0 mg, 1.2 mmol, 1.2 equiv.) and heteroaromatic aldehyde 1a (186.0 mg, 1.0 mmol, 1.0 equiv.) were dissolved in Et₂O (4 mL) and catalyst 4c (47.0 mg, 0.2 mmol, 0.2 equiv.) and benzoic acid (49.0 mg, 0.4 mmol, 0.4 equiv.) were added and the reaction mixture was stirred in room temperature for indicated time. The progress of the reaction was controlled by ¹H NMR spectroscopy. After full conversion of the starting material 1a, the reaction mixture was directly subjected to column chromatography on silica gel (hexanes : diethyl ether 85:15) to afford pure product 3a as single diastereoisomer in 91% yield (273.0 mg) as light-yellow solid. Spectral data were in accordance with the previously reported on page S3.
4. Crystal and X-ray data for 3a

The crystal structure of the compound (6S,7S)-6,7-diphenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3a, C_{21}H_{16}O_{2}, was established by single-crystal X-ray diffraction at 100 K. The compound crystallizes in the non-centrosymmetric orthorhombic space group P2_{1}2_{1}2_{1} (Z = 4) and the crystal structure consists of one crystallographically independent formula unit in the unit cell (Figure 1).

![Molecular structure of 3a at 100 K](image)

Figure 1. The molecular structure of the compound 3a at 100 K, with the atom labeling scheme, showing 50% probability displacement ellipsoids. Hydrogen atoms are drawn with an arbitrary radius.

Single crystal X-ray diffraction data were collected at 100 K by the ω-scan technique using a RIGAKU XtaLAB Synergy, Dualflex, Pilatus 300K diffractometer with PhotonJet micro-focus X-ray Source Cu-Kα (λ = 1.54184 Å). Data collection, cell refinement, data reduction and absorption correction were performed using CrysAlis PRO software. The crystal structure was solved by using direct methods with the SHELXT 2018/2 program. Atomic scattering factors were taken from the International Tables for X-ray Crystallography. Positional parameters of non-H-atoms were refined by a full-matrix least-squares method on F^2 with anisotropic thermal
parameters by using the SHELXL 2018/3 program. All hydrogen atoms were found from the difference Fourier maps and for further calculations they were positioned geometrically in calculated positions (C–H = 0.95–1.00 Å) and constrained to ride on their parent atoms with isotropic displacement parameters set to 1.2 times the Ueq of the parent atom.

(6S,7S)-6,7-Diphenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3a: Formula C21H16O2, orthorhombic, space group P212121, Z = 4, unit cell constants a = 8.12398(4), b = 10.30996(6), c = 17.96578(9) Å, V = 1504.776(14) Å³. The integration of the data yielded a total of 41425 reflections with θ angles in the range of 4.92 to 66.59°, of which 2662 were independent (Rint = 2.92%), and 2642 were greater than 2σ(F²). The final anisotropic full-matrix least-squares refinement on F² with 209 parameters converged at R₁ = 2.34% and wR₂ = 5.92% for all data. The largest peak in the final difference electron density synthesis was 0.162 e Å⁻³ and the largest hole was -0.144 e Å⁻³. The goodness-of-fit was 1.055. The absolute configuration was unambiguously established from anomalous scattering, by calculating the Flack parameter of 0.00(3) using 1099 quotients.

CCDC 2103952 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures

References

(3) Rigaku OD. CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England, 2019.

(4) Sheldrick, G. M. SHELXT - integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3-8.

(5) Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.

(6) Parsons, S.; Flack, H. D.; Wagner, T. Use of intensity quotients and differences in absolute structure refinement. Acta Cryst. 2013, B69, 249-259.
5. Non-linear effect study

The experiments for non-linear effect study were carried out according to the procedure of the synthesis of 3a. The catalyst 4c mixtures with different ee values were prepared by mixing (S)-4c and (R)-4c in appropriate ratios (with the (R)-4c being the major). The ee value of product 3a was determined by UPC², which indicated a non-linear relationship between ee values of products 3a and amine catalyst 4c, as shown in the figure below.

![Non-linear effect studies](image)
6. NMR Data

(6S,7S)-6,7-Diphenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3a

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
(6S,7S)-6-(4-Nitrophenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3b

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
(6S,7S)-6-(4-Chlorophenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3c

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
(6S,7S)-7-Phenyl-6-(p-tolyl)-6,7-dihydrobenzofuran-5-carbaldehyde 3d

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
(6S,7S)-6-(4-Methoxyphenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3e

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
(6S,7S)-6-(3-Methoxyphenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3f

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
(6S,7S)-6-(2-Methoxyphenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3g

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
(6R,7S)-6-(2,4-Dichlorophenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3h

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
(6R,7S)-6-(Furan-2-yl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3i

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
(6S,7S)-7-(4-Fluorophenyl)-6-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3j

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
(6S,7S)-6-Phenyl-7-(p-tolyl)-6,7-dihydrobenzofuran-5-carbaldehyde 3k

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
(6S,7S)-7-(3-Methoxyphenyl)-6-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3l

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
(6S,7S)-6-Phenyl-7-(o-tolyl)-6,7-dihydrobenzofuran-5-carbaldehyde 3m

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
(6S,7R)-6-Phenyl-7-vinyl-6,7-dihydrobenzofuran-5-carbaldehyde 3n

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
(3S,4S)-3,4-Diphenyl-3,4-dihydrodibenzo[b,d]furan-2-carbaldehyde 3o

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
6,7-Diphenylbenzofuran-5-carboxaldehyde 9

\(^1H \text{ NMR (700 MHz, CDCl}_3 \)\)

\(^{13}C \text{ NMR (176 MHz, CDCl}_3 \)\)
((6S,7S)-6,7-Diphenyl-6,7-dihydrobenzofuran-5-yl)methanol 7

${^1}H$ NMR (700 MHz, CDCl$_3$)

${^{13}}C$ NMR (176 MHz, CDCl$_3$)
(4S,5S)-4,5-Diphenyl-5,12-dihydro-4H-benzo[b]benzofuro[4,5-e][1,4]diazepine 8.

1H NMR (700 MHz, CDCl$_3$)

13C NMR (176 MHz, CDCl$_3$)
7. UPC² Data

(6S,7S)-6,7-Diphenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3a

Racemic sample

![Racemic sample graph]

Peak Results
RT
1
2

Enantiomerically enriched sample

![Enantiomerically enriched sample graph]

Peak Results
RT
1
2
(65,7S)-6-(4-Nitrophenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3b

Racemic sample

Enantiomerically enriched sample
(6S,7S)-6-(4-Chlorophenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3c

Racemic sample

![Graph of racemic sample]

Peak Results

RT	% Area	
1	3.207	41.88
2	3.599	58.12

EnantiomERICally enriched sample

![Graph of enantiomERICally enriched sample]

Peak Results

RT	% Area	
1	3.212	2.16
2	3.599	97.82
(6S,7S)-7-Phenyl-6-(p-tolyl)-6,7-dihydrobenzofuran-5-carbaldehyde 3d

Racemic sample

Peek Results

RT	% Area
3.052	55.83
3.323	44.17

Enantiomerically enriched sample

Peek Results

RT	% Area
3.047	98.10
3.301	1.90
(6S,7S)-6-(4-Methoxyphenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3e

Racemic sample

Enantiomerically enriched sample

Peak Results

RT	% Area	
1	3.271	64.19
2	3.592	35.81

RT	% Area	
1	3.277	2.33
2	3.596	97.67
(6S,7S)-6-(3-Methoxyphenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3f

Racemic sample

Enantiomerically enriched sample

Peaks Results

RT	% Area
3.082	56.55
3.230	41.45

RT	% Area
3.082	1.72
3.230	98.26
(6S,7S)-6-(2-Methoxyphenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3g

Racemic sample

Enantiomerically enriched sample

Peak Results

	RT	% Area
1	2.996	56.31
2	3.212	43.69

	RT	% Area
1	2.996	0.37
2	3.213	99.63
(6\text{R}, 7\text{S})-6-(2,4-Dichlorophenyl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3h

Racemic sample

![Racemic sample graph]

RT	% Area
2.959	43.84
3.423	56.16

Enantiomerically enriched sample

![Enantiomerically enriched sample graph]

RT	% Area
2.951	90.14
3.423	9.88
(6R,7S)-6-(Furan-2-yl)-7-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3i

Racemic sample

Enantiomerically enriched sample

Peak Results

RT	% Area	
1	2.505	52.87
2	2.646	47.13

Peak Results

RT	% Area	
1	2.498	94.68
2	2.661	5.32
(6S,7S)-7-(4-Fluorophenyl)-6-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3j

Racemic sample

![Racemic sample graph]

Peak Results

RT	% Area
2.734	52.50
2.983	47.50

Enantiomerically enriched sample

![Enantiomerically enriched sample graph]

Peak Results

RT	% Area
2.731	3.27
2.961	96.73
(6S,7S)-6-Phenyl-7-(p-toly)-6,7-dihydrobenzofuran-5-carbaldehyde 3k

Racemic sample

![Racemic sample graph](chart1.png)

Peak Results

RT	% Area
2.833	58.54
3.016	41.46

Enantiomerically enriched sample

![Enantiomerically enriched sample graph](chart2.png)

Peak Results

RT	% Area
2.867	3.73
3.054	96.27
(6S,7S)-7-(3-Methoxyphenyl)-6-phenyl-6,7-dihydrobenzofuran-5-carbaldehyde 3l

Racemic sample

Enantiomerically enriched sample

Peak Results	RT	% Area
1	3.005	60.42
2	3.238	39.58

Peak Results	RT	% Area
1	3.059	18.99
2	3.229	81.01
(6S,7S)-6-Phenyl-7-(o-tolyl)-6,7-dihydrobenzofuran-5-carbaldehyde 3m

Racemic sample

Enantiomerically enriched sample

Peak Results

RT	% Area	
1	2.619	38.92
2	2.708	60.08

RT	% Area	
1	2.696	99.42
2	2.886	0.58
(6S,7R)-6-Phenyl-7-vinyl-6,7-dihydrobenzofuran-5-carbaldehyde 3n

Racemic sample

![Graph of racemic sample]

Peak Results

RT	% Area
2.081	49.25
2.524	50.77

Enantiomerically enriched sample

![Graph of enriched sample]

Peak Results

RT	% Area
2.092	5.66
2.525	94.44
(3S,4S)-3,4-Diphenyl-3,4-dihydrodibenzo[b,d]furan-2-carbaldehyde 3o

Racemic sample

Enantiomerically enriched sample

Peak Results
RT
1
2

Peak Results
RT
1
2