Spatial Extent of Amyloid-β Levels and Associations with Alzheimer’s Disease Biomarkers

Hazal Ozlen
McGill University https://orcid.org/0000-0001-9715-6252

Alexa Pichet Binette
McGill University https://orcid.org/0000-0001-5218-3337

Theresa Köbe
German Center for Neurodegenerative Disease

Pierre-Francois Meyer
McGill https://orcid.org/0000-0002-9283-0997

John Breitner
McGill University

Judes Poirier
McGill University, Canada https://orcid.org/0000-0002-8018-4545

Sylvia Villeneuve (✉️ sylvia.villeneuve@mcgill.ca)
Douglas Mental Health Institute, McGill University, Montreal https://orcid.org/0000-0003-2338-0467

Article

Keywords: PET Imaging, Alzheimer’s Disease, Aβ, Biomarkers, Cognition

DOI: https://doi.org/10.21203/rs.3.rs-711524/v1

License: ☛ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective: To investigate the biological and clinical correlates of Aβ spatial extent deposition levels in cognitively unimpaired older adults.

Methods: We included cognitively unimpaired older adults from three cohorts, totalling 529 participants (PREVENT-AD, n=129; ADNI, n=400 and HABS, n=288) who underwent Aβ positron emission tomography (PET). We used Gaussian-mixture models to identify region-specific thresholds of Aβ positivity in seven brain regions prone to early Aβ accumulation. Individuals were classified as having “widespread” Aβ deposition if they were positive in all seven regions, “regional” Aβ deposition if they were positive in one to six regions, or Aβ negative if negative in all regions. We compared demographics, genetics, tau-PET binding, and cognitive performance and decline between the three groups.

Results: In all cohorts, most participants with regional Aβ-PET binding did not meet the cohort-specific criteria for Aβ-positivity (79% for PREVENT-AD, 57% for ADNI, and 100% for HABS). Regional Aβ groups had normal baseline cognition and relatively normal tau-PET binding, but a greater proportion of APOE ε4 carriers, decreased CSF Aβ1-42 levels, and greater amount of longitudinal Aβ-PET binding accumulation (only available in ADNI and HABS) when compared with the Negative Aβ groups. Widespread Aβ groups had lower baseline cognitive performance (PREVENT-AD only), faster cognitive decline (all cohorts) and greater amount of longitudinal tau binding than the other groups (only available in ADNI and HABS).

Conclusions: Individuals with regional Aβ deposition might be the best candidate for preventive trials since they do not yet have widespread tau and cognitive decline. Widespread levels of Aβ seem to be needed for tau spreading.

Introduction

Amyloid-beta (Aβ) and tau are the main pathological hallmarks of Alzheimer’s disease (AD). The deposition of these pathological proteins is a continuous process that starts decades before the onset of AD symptoms. While tau deposition may initiate prior to Aβ accumulation, it is widely held that Aβ pathology is required to make tau spread out of the temporal lobe and start the pathological cascade leading to AD dementia, making it an ideal target for clinical trials. Several clinical trials have now successfully reduced brain Aβ without slowing down AD clinical progression. While the role of Aβ in the pathological cascade of AD has been questioned based on large-scale clinical trial failures, one could argue that Aβ needs to be targeted before the spread of tau pathology. The appropriate timing likely corresponds to a stage where there is a limited amount and spreading of Aβ pathology, hence making it challenging to identify.

Accumulation of Aβ starts in a few distinct brain regions almost simultaneously, which makes it possible to characterize early regional Aβ deposition in vivo using positron emission tomography (PET) imaging, before it rapidly evolves to widespread distribution. In general, most studies have used global brain...
load to classify individuals with intermediate or high levels of Aβ15,18,19. We took advantage of the spatial distribution of Aβ deposition to identify different groups of cognitively unimpaired individuals based on the extent of Aβ tracer uptake with the objective of identifying early Aβ deposition. In three cohorts of cognitively unimpaired older adults, including one with a family history of AD dementia, we sought to investigate the characteristics of the different groups based on various AD markers.

Methods

Methods

a. **Participants and Study Design**

PREVENT-AD

One hundred twenty-nine participants were recruited from the Presymptomatic Evaluation of Experimental or Novel Treatments for Alzheimer's Disease (PREVENT-AD) cohort. The PREVENT-AD cohort is an ongoing longitudinal observational study launched in 2011 comprising a total sample size of 385 individuals20. Only the subsample of PREVENT-AD participants who underwent Aβ and tau PET imaging were included in the current study. Enrollment criteria included: (1) having a parent or multiple siblings with a history of AD; (2) age >60 years or age between 55 and 59 years if the onset of symptomatic dementia of their youngest affected relative was within 15 years of their age; (3) no major neurological diseases; and (4) no evidence of cognitive impairment at enrollment21.

ADNI

Four hundred participants were included from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer's disease (AD). The current study included individuals from the ADNI-2 extension who underwent Aβ PET.

HABS

Two hundred and eighty-eight participants were drawn from the Harvard Aging Brain Study (HABS), an ongoing longitudinal study focusing on preclinical AD, launched in 2010, funded by the National Institute on Aging22. Inclusion criteria included: (1) scores of 0 on the Clinical Dementia Rating, (2) 11 or less on the Geriatric Depression Scale, (3) 27 or more on the education-adjusted Mini-Mental State Examination, and (4) performed within education-adjusted norms on Logical Memory–delayed recall. Participants who had a score of 5 or more in Hachinski, history of stroke with residual deficits, and history of intercranial
hemorrhage were excluded from the study. Data were obtained from the HABS data release 2.0 in October 2020 via habs.mgh.harvard.edu.

Note that all participants from the three different cohorts were cognitively normal at the time of Aβ PET to be included in the study.

Standard protocol approvals, registrations, and patient consents. All PREVENT-AD participants were fully briefed and gave their explicit consent for participation using procedures and consent forms approved by the Institutional Review Board of the McGill University Faculty of Medicine. Data collection and sharing in ADNI were approved by the Institutional Review Board of each participating institution and written informed consent was obtained from all participants. Participants from the HABS cohort provided written informed consent prior to study procedures, which used protocols approved by the Partners Healthcare institutional review board.

b. Neuropsychological Evaluation

In the three cohorts, participants underwent cognitive testing annually. We analyzed both baseline (corresponding to the time of Aβ PET scan) and longitudinal cognitive performance.

In PREVENT-AD, the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) was used as the main neuropsychological test. The total score and the five RBANS composite domain scores (Immediate Memory, Attention, Visuospatial Construction, Language and Delayed Memory), derived from twelve tasks were the measures of interest. Longitudinal cognitive assessment was available for all subjects, with a median follow-up time of 7 [interquartile range (IQR): 2, 8] years.

In ADNI, we used the available four composite scores reflective of memory, executive functions, language, and visuospatial functioning that have been previously described. Longitudinal cognitive assessment was available for 393 (98%) subjects, with a median follow-up time of 6 [IQR: 1, 14] years.

In HABS we used the preclinical Alzheimer's cognitive composite (PACC5) that is a composite score including memory, executive function and semantic processing that was available through the HABS data release. All participants had a longitudinal cognitive assessment, with a median follow-up time of 6 [IQR: 1, 9] years.

c. APOE Genotyping

Genomic DNA was extracted from whole blood, and the apolipoprotein E (APOE) genotype was determined. The same procedure was done for all cohorts participants at their baseline visit. Participants were classified as APOE ε4 carriers (i.e., those who had at least one ε4 allele) or noncarriers.

d. Cerebrospinal Fluid Biomarkers
In PREVENT-AD, a subsample of 77 participants underwent a lumbar puncture, with a maximum of up to 2 years before PET (mean difference to PET scan 10.42 ± 8.38 months). Cerebrospinal fluid samples (CSF) were collected in the morning after an overnight fast and stored in cryovial tubes at −80°C. CSF Aβ_{1-42}, p-tau_{181} (phosphorylated at threonine 181) and total tau levels were assayed in duplicate with the INNOTEST ELISA (Fujirebio, Ghent, Belgium).

In ADNI, 276 participants had CSF biomarkers available, based on a two-year interval between PET and CSF (mean time from PET scan 0.40 ± 0.75 months). CSF samples were frozen within 1 hour after collection and were shipped overnight frozen on dry ice to the Penn AD Biomarker Fluid Bank Laboratory. Aliquots of 500 μL were stored in polypropylene tubes at −80°C. CSF Aβ_{1-42} and p-tau_{181} were measured using Elecsys immunoassays.

e. PET Acquisition

PET imaging in PREVENT-AD was performed using [18F]NAV4694 (NAV; Navidea Biopharmaceuticals, Dublin, OH) for Aβ and Flortaucipir (FTP) (Eli Lilly&Co, Indianapolis, IN) for tau deposition. Aβ scans were performed 40 to 70 minutes after injection (≈6mCi) and tau scans 80 to 100 minutes after tracer injection (≈10 mCi). Most scans were operated on 2 consecutive days. Imaging was performed at the McConnell Brain Imaging Centre at the Montreal Neurological Institute (Montreal, Canada) between February 2017 and May 2019. T1-weighted structural MRI scans had been acquired prior to the PET scans (median delay 9.06 [interquartile range (IQR): 0.03,34] months) on a 3T Siemens Trio scanner (Siemens, Munich, Germany) (repetition time of 2300 milliseconds, echo time of 2.98 milliseconds, 176 slices, and 1-mm slice thickness).

Acquisition of the multicentric MRI and PET imaging data in ADNI has been reported previously and described in detail at adni.loni.usc.edu/methods/. Briefly, Aβ PET scans were acquired using Florbetapir ([18F] AV45) during a 50-to-70-minute interval following a 370 MBq bolus injection (≈10 mCi) and FTP scans were acquired during a 75-to-105-minute interval following a 370 MBq bolus injection (≈10 mCi). T1-weighted structural MRI data were acquired on 3T scanning platforms using sagittal 3D magnetization-prepared rapid gradient-echo sequences. The T1 sequence was the same as for the PREVENT-AD cohort. A subsample of 176 participants (44%) underwent tau-PET scans. Tau-PET was added later on in the course of the study, around 2016, and thus most tau scans were acquired 5 years after the Aβ-PET (median delay 5 [IQR: 0, 8] years in ADNI).

In HABS, PET data were acquired as described previously. Aβ PET scans were acquired using PIB (11C Pittsburgh Compound B) during a 60-minute dynamic acquisition starting directly after the injection and FTP scans were acquired from 80-100 minutes after a 9.0 to 11.0 mCi bolus injection. MRI scans were performed on a 3T Tim Trio (Siemens) with a 12-channel phased-array head coil. The imaging measures were typically collected every two years (mean delay between FTP and PIB scans 3.5 months). 195 participants (67%) in HABS underwent tau-PET scans.
f. PET Processing

In all cohorts, T1-weighted MRI were processed using FreeSurfer (version 5.3 or 6) and parcellated according to the Desikan-Killiany atlas31. PREVENT-AD PET images were processed with a standard, in-house pipeline (available on Github: \url{https://github.com/villeneuvelab/vlpp}). Briefly, the 4D PET images were realigned, averaged, and registered to the corresponding T1-weighted MRI. Images were then masked to exclude CSF signal and smoothed with 6 mm3 Gaussian kernels. Standardized uptake value ratios (SUVRs) were computed by dividing the tracer uptake in each voxel by the uptake in the whole cerebellum gray matter for NAV scans32 and the inferior cerebellum gray matter for FTP scans33.

PET images for ADNI went through standardized preprocessing steps in order to increase data uniformity across the multicentric data acquisition34. Briefly, Florbetapir-PET frames were co-registered, averaged, reoriented into a standardized image and voxel size, and smoothed to produce a uniform resolution. FTP frames were co-registered and resliced to the structural MRI closest in time to the FTP-PET. The cerebellum gray matter was used as the reference region for Florbetapir scans and the inferior cerebellum gray matter was used for FTP scans. The Aβ (2019-12-04 version) and tau (2020-02-04) regional SUVR data were downloaded from the ADNI database.

In HABS, following the PET image acquisitions, a mean image was created (for PIB – the first 8-minute post-injection), and PET images were co-registered to the corresponding T1-weighted MRI with 6 DoF rigid body registration using spm_coreg from the SPM12 package. Bilateral cerebellum grey matter was used as the reference region for SUVR measurements.

Regions of interest regarding Aβ are described subsequently. For tau-PET, SUVR from six bilateral regions that represent early tau-PET deposition were investigated, i.e. entorhinal cortex, amygdala, fusiform, parahippocampal, inferior temporal, and middle temporal cortex35. The hippocampus was not included given the off-target binding spillover from the choroid plexus36,37.

g. Global Threshold of Aβ Positivity

Each cohort had an available global threshold described previously to categorize participants into Aβ positive and negative. All such thresholds were derived from the average SUVR of lateral and medial frontal, cingulate, parietal and lateral temporal regions. In PREVENT-AD, the NAV threshold for positivity was 1.3735. In ADNI, the Florbetapir threshold was 1.138,39, and the PIB threshold in HABS was 1.1940,41.

h. Regional Thresholds of Aβ Positivity

Aβ PET values were extracted across seven bilateral regions which were hypothesized to be sensitive to early Aβ accumulation: medial orbitofrontal, rostral anterior cingulate, posterior cingulate, precuneus, rostral middle temporal, superior frontal, inferior parietal32. Tracer uptake in those first five regions has also been found to be elevated in Aβ-negative individuals who subsequently had significant evidence of Aβ deposition14.
A Gaussian mixture modelling approach (GMM) was used to quantify region-specific Aβ thresholds in the 7 bilateral regions hypothesized to be sensitive to early Aβ accumulation. Typically, Aβ follows a bimodal distribution and thus we fitted two Gaussian distributions as commonly used to categorize Aβ positivity18,32,42. The two distributions acquired from GMM assigned each participant a probability of belonging to either the lower or higher distributions. We set a cut-off at the 90th percentile of the lower distribution. Those who had higher SUVR values than the regional cut-off was classified as “positive” for that specific region. According to the region-specific positivity, individuals who were Aβ-positive in all 7 regions were classified as the “Widespread Aβ group”; those who were positive in at most 6 regions were included in the “Regional Aβ group”; those who were negative in all the regions were considered as the “Negative Aβ group”.

As expected, the SUVR regional distribution of the data in all cohorts differed because of tracer differences. In PREVENT-AD and HABS (NAV and PIB tracer respectively), GMM analyses provided a clear distinction between distributions using thresholds for each region corresponding to a 90\% probability of belonging to the low Aβ distribution (Figure e-1). The distinction between regional positive and negative binding was less evident with Florbetapir (ADNI). As shown in Figure e-1, participants from ADNI followed a more continuous distribution without a distinctive cut-off between lower and higher distributions which might partly be due to the different properties of the tracers. This interfered with using the same cut-off criteria in ADNI. Based on previous publications41,43,44, we therefore decided to use a 50\% probability of belonging to the low-Aβ distribution as cut-off criteria instead of a 90\% probability.

Statistical Analysis

We compared demographics, APOE4 status, baseline and longitudinal cognition, baseline and longitudinal tau-PET between the three Aβ groups in the three cohorts separately using analysis of covariance tests and chi-squared tests for normally distributed continuous variables and categorical variables, respectively. Tukey HSD post hoc test and Bonferroni correction were applied to examine differences between the three Aβ groups.

Linear mixed-effects models were used to investigate longitudinal Aβ and tau-PET accumulation (ADNI and HABS) and cognitive decline (all cohorts) between the three Aβ groups. Participants who had at least 2 assessments were included in the analysis. Models included random slope and intercept, where the time by subject interaction determined change in cognition or tau. The analyses were anchored at the participant’s baseline visit. For Aβ and tau accumulation, age and sex were included as covariates in the models, and for cognitive decline, education was further included as a covariate. Post-hoc tests are reported only when there was a significant main effect.

All statistical analyses were conducted using RStudio, version 1.2.500145. The cutoff and mixtools packages (github.com/choisy/cutoff) were used for GMM and lme446 for mixed-effects models. The criterion for statistical significance was α ≤ 0.05 after correction for multiple comparisons by Tukey’s test.
Results

a. Defining Amyloid Groups based on Aβ spatial extent

In each cohort, GMMs were fit to the 7 bilateral early Aβ regions (Figure 1). Region-specific thresholds for all cohorts are presented in detail in Table e-1. In PREVENT-AD, 81 participants (62%) were in the Negative Aβ group, 28 participants were in the Regional Aβ group (22%) and 20 exceeded the positivity thresholds in all regions and were placed in the Widespread Aβ group (16%). Applying the thresholds to the ADNI cohort resulted in 202 (50.5%) in the Negative Aβ group, 108 (27%) individuals in the Regional Aβ group and 90 (22.5%) individuals in the Widespread Aβ group. In the HABS cohort, 139 participants (48%) were in the Negative Aβ group, 76 (26%) participants in the Regional group and 73 (25%) participants in the Widespread group.

Using a more standard binary classifier of positive/negative based on a global Aβ, 26 PREVENT-AD participants (20%) would have been classified as Aβ positive (SUVR 1.37; Centiloid 26.7)35, including all participants in the Widespread group and 6 out of the 28 participants from the Regional group. For ADNI, 137 (34%) participants would have been classified as positive (SUVR 1.1; Centiloid 18.5)38,47, including all participants in the Widespread group and 47 out of 108 participants (43%) of the Regional group. In HABS, all the Widespread participants would have been positive on global Aβ (SUVR 1.19; Centiloid 23.9)40,41 but none of the Regional Aβ group.

The results presented below were done on all participants. The analyses were repeated when only keeping individuals in the Regional group that would have been classified as Aβ-negative based on the cohort specific global Aβ thresholds (n=22 for the PREVENT-AD and n=61 for ADNI). The results were unchanged when removing Aβ positive participants from the Regional group (see Table e-2, Figure e-2 & Figure e-3).

b. Biological Markers of Interest

In all three cohorts, the Widespread group was older than the Negative group (PREVENT-AD F (2, 126) = 3.95, p < 0.05; ADNI F (1, 292) = 5.94, p < 0.05; HABS F (1, 211) = 3.11, p < 0.05). Participants in ADNI were also older in the Widespread Aβ group compared to the Regional Aβ group [F (1, 198) = 5.94, p < 0.01]. While there was no difference in education in both PREVENT-AD and ADNI, the Regional group had higher education compare to Widespread group in HABS [F (1, 144) = 4.76, p < 0.01]. Similarly, Widespread groups had greater proportion of females than males compared to compared to the Negative Aβ group in ADNI [X^2 (1, N = 292) = 4.39, p < 0.05]. However, Regional group in HABS had higher percentage of females compare to Negative group females [X^2 (1, N = 211) = 16.54, p < 0.001].

The Widespread and Regional Aβ groups had larger proportions of APOE ε4 carriers than the Negative Aβ groups in both the PREVENT-AD (Widespread vs. Negative X^2 (1, N = 101) = 8.54, p < 0.01; Regional vs. Negative X^2 (1, N = 109) = 10.8, p < 0.01) and ADNI (Widespread vs. Negative X^2 (1, N = 292) = 29.11, p <
0.01; Regional vs. Negative \(\chi^2 (1, N = 310) = 5.24, p < 0.05 \) cohorts (Table 1). In ADNI, the Widespread Aβ group also had a larger proportion of APOE ε4 carriers compare to the Regional Aβ group \(\chi^2 (1, N = 198) = 6.98, p < 0.01 \). In HABS, only Widespread Aβ group had larger proportions of APOE ε4 carriers than both groups (Widespread vs. Negative \(\chi^2 (1, N = 207) = 40.59, p < 0.001 \); Widespread vs. Regional \(\chi^2 (1, N = 144) = 16.54, p < 0.001 \)).

CSF biomarker measures were available for 77 PREVENT-AD participants and for 276 ADNI participants. In PREVENT-AD, when compared with the Negative group, both the Regional (\(F (2, 71) = 24.01, p<0.001 \)) and Widespread groups (\(F (2, 71) = 24.01, p<0.001 \)) had lower CSF Aβ1-42 levels. The Widespread group also had lower CSF Aβ1-42 levels than the Regional group (\(F (2, 71) = 24.01, p<0.001 \)). In ADNI, Regional Aβ (\(F (2, 275) = 71.76, p < 0.001 \)) and Widespread groups (\(F (2, 275) = 71.76, p < 0.001 \)) had lower Aβ1-42 levels when compared to the Negative Aβ group. The Widespread group also had lower CSF Aβ1-42 levels than the Regional group (\(F (2, 275) = 71.76, p < 0.001 \)).

In PREVENT-AD, CSF p-tau was higher in the Widespread group compared to the Negative group \([F (2,76) = 4.70, p<0.05] \). In ADNI, CSF p-tau levels were higher in the Widespread Aβ group compared to the Regional Aβ (\(F (2, 274) = 26.77, p < 0.001 \)) and Negative Aβ groups (\(F (2, 274) = 26.77, p < 0.001 \)).

c. Cross-sectional and Longitudinal Cognition

In PREVENT-AD, when compared with the Negative Aβ group, the Widespread Aβ group performed worse in Delayed Memory \([F (2, 112) = 3.923, p < 0.05] \) at their baseline visit. There were no differences in baseline cognitive performance between the other groups (Table 3). In ADNI and HABS, there were no differences in baseline cognitive performance between any of the groups (Table 2).

We examined 129 participants with a cognitive assessment follow-up period of up to 8 years from the PREVENT-AD cohort (median follow-up time of 7 [interquartile range (IQR): 2, 8] years), 393 participants with a follow-up period of up to 14 years from the ADNI cohort (median follow-up time of 6 [interquartile range (IQR): 1, 14] years) and 280 participants with a follow-up period up to 9 years from the HABS cohort (median follow-up time of 6 [IQR: 1, 9] years).

In PREVENT-AD, the Widespread Aβ group experienced greater cognitive decline compared with the Negative Aβ group and to the Regional group on the Total (\(\beta [SE], -0.11 [0.03]; p < 0.001 \) for Negative; -0.08 [0.04]; \(p < 0.05 \) for Regional), Immediate Memory (\(\beta [SE], -0.13 [0.05]; p < 0.01; -0.11 [0.05]; p < 0.05 \) for Regional), and Delayed Memory (\(\beta [SE], -0.10 [0.04]; p < 0.05; -0.13 [0.05]; p < 0.01 \) RBANS index scores (Figure 3). Negative and Regional groups were not different. In ADNI, the Widespread Aβ group had faster cognitive decline compared with the Negative and the Regional Aβ groups on Memory (\(\beta [SE], -0.10 [0.006]; p < 0.001 \) for Negative; -0.07 [0.01]; \(p<0.001 \) for Regional), and Executive Function (\(\beta [SE], -0.08 [0.008]; p < 0.001 \) for Negative; -0.06 [0.01]; \(p<0.001 \) for Regional). Although the Regional Aβ group did not have worse cognitive performance at baseline than the Negative Aβ group, they experienced greater cognitive decline over the 14 year-follow up period compared to the Negative Aβ group in Memory (\(\beta [SE], \)
-0.03 [0.006]; p < 0.001) and Executive Function (β [SE], -0.03 [0.008]; p < 0.001). Similar to Prevent-AD, HABS Widespread Aβ group experienced greater cognitive decline compared with both the Negative Aβ group and the Regional Aβ group on the PACC5 score (β [SE], -0.13 [0.02]; p < 0.001 for Negative; -0.09 [0.02]; p < 0.001 for Regional) (Figure 3).

d. **Longitudinal Aβ Trajectories**

In ADNI, all groups showed Aβ accumulation rates significantly different from zero over up to 4 years, with a median follow-up time of 3 [interquartile range (IQR): 1, 4] years. The amount of Aβ accumulation, however, differed between the groups (e-Table 3). The Widespread Aβ group showed faster Aβ accumulation over time than the Negative Aβ group in all the 7 early regions of interest (e-Table 3). The Regional group also showed faster Aβ accumulation than the Negative Aβ group in all the 7 early regions of interest (e-Table 3). Interestingly, no difference was found between the Regional and Widespread Aβ group regarding Aβ accumulation over time in any of the 7 early regions of interest (e-Table 3).

In HABS, 222 participants with a follow-up period up to 4 years were included in the analysis (median follow-up time of 2 [IQR: 1,4] years). The Widespread group accumulated greater Aβ compare to Negative group in 6 of the 7 regions of interests (e-Table 3). The Regional group had greater Aβ accumulation compare to Negative group in the Rostral Anterior Cingulate (β [SE], 0.03 [0.01]; p<0.05), Precuneus (β [SE], 0.03 [0.01]; p<0.05), Medial orbitofrontal (β [SE], 0.03 [0.02]; p<0.05) and in Rostral Middle Frontal (β [SE], 0.04 [0.01]; p<0.05). Widespread group accumulated greater Aβ only in Rostral Anterior Cingulate (β [SE], 0.05 [0.02]; p<0.01) and Precuneus (β [SE], 0.04 [0.02]; p<0.05) compare to Regional Aβ group.

e. **Cross-sectional and Longitudinal Tau Trajectories**

In PREVENT-AD, the Widespread Aβ group had elevated Tau-PET signal when compared with Negative and Regional Aβ groups across the five regions investigated (Entorhinal, Amygdala, Fusiform, Inferior Temporal, and Parahippocampal) (Table 2). The Regional Aβ group had elevated tau-PET binding only in the Entorhinal cortex (F (2, 128) = 19.21, p<0.05) and Middle Temporal gyrus (F (2.128) = 14.06, p<0.05) compared with the Negative Aβ group. In both ADNI and HABS, the Widespread Aβ group had elevated Tau-PET signal compared with Negative and Regional Aβ groups across all regions investigated (Table 2) (Figure 2).

The longitudinal analysis showed that in ADNI (median follow-up time of 2 [interquartile range (IQR): 1, 4] years), there is a main effect of Aβ groups on tau accumulation in Amygdala [X² (1) = 10.52, p < 0.05], Fusiform [X² (1) = 12.59, p < 0.05], Inferior Temporal [X² (1) = 12.80, p < 0.05] and Middle Temporal [X² (1) = 16.10, p < 0.01]. The Widespread group accumulated greater tau compare to Negative group in Fusiform (β [SE], 0.02 [0.007]; p < 0.01), Inferior Temporal (β [SE], 0.02 [0.008]; p < 0.01) and Middle Temporal (β [SE], 0.02 [0.008]; p < 0.001). The Widespread group accumulated greater tau compare to Regional group only in Middle Temporal (β [SE], -0.02 [0.008]; p < 0.05). In the HABS cohort (median follow-up time of 2 [interquartile range (IQR): 1, 3] years), there is a main effect of Aβ groups on tau accumulation in the 7 early tau regions of interest (Figure 5). However, only in Amygdala, Fusiform,
Inferior Temporal and Parahippocampal, the Widespread group accumulated greater tau compared to both the Negative Aβ group and the Regional Aβ group (Figure 5). In addition, in the Middle temporal, the Widespread group accumulated greater tau only compared to Negative group (β [SE], 0.01 [0.004]; p < 0.05). The Regional group did not show any difference from Negative Aβ regarding tau accumulation over time both in ADNI and HABS.

Discussion

Most Alzheimer's drugs are targeting single disease pathways. Removing Aβ when tau has already disease progression even if administer in preclinical individuals. One way to identify individuals with Aβ that do not yet have tau or cognitive decline could be to assess Aβ spatial extent severity. The hypothesis would be that individuals that have Aβ-PET binding restricted to few brain regions might not yet have tau and related cognitive decline and therefore be optimal candidates for anti-Aβ therapies.

We investigated the biological and clinical relevance of Aβ spatial extent severity on AD biomarkers in three independent cohorts of cognitively normal older adults. We focused on seven regions hypothesized to be early Aβ accumulating regions and classified participants into Widespread (7 regions with significant Aβ-PET binding), Regional (1-6 regions with Aβ-PET binding) and Negative groups. Our results suggest that when Aβ is spread out throughout the cortex, which in most cases equal being Aβ positive on classical whole brain measures, tau is also already spread and cognitive decline is prevalent. Individuals with regional binding however do not yet have significant tau or cognitive impairment and are probably ideal candidates for anti-Aβ clinical trials.

We found that individuals with Regional Aβ-PET binding have a higher proportion of APOE ε4 carriers when compared to individuals with no Aβ-PET binding in two cohorts out of three. This proportion of APOE ε4 carriers reached 64% in the PREVENT-AD cohort, a cohort of cognitively normal individuals with a first-degree family history of AD dementia and therefore with a higher risk to develop the disease themselves. In PREVENT-AD and ADNI, we found a grading effect of (quasi-continuous) Aβ1-42 levels such that participants in the Widespread and Regional groups had decreased CSF Aβ1-42 levels when compared to the Negative group, and the Widespread group had decreased CSF Aβ1-42 levels compared to the Regional group (this information was not available in the HABS cohorts). Furthermore, in ADNI and HABS, the Regional group had greater amount of Aβ-PET accumulation when compared to the Negative group (information that was not available in the PREVENT-AD cohort). Of interest, however, the Regional groups showed no or very little tau-PET binding and no baseline cognitive impairment. While these findings suggest that the regional Aβ PET-binding signal is biologically relevant, they also suggest that widespread Aβ is necessary to detect tau-PET signals outside of the entorhinal cortex and significant cognitive impairment.

Continuous variables are often dichotomized in the clinic to provide a straightforward diagnosis or identify patients that would benefit from treatment. They are also used in research to simplify the interpretation of results and provide empirical evidence for clinical practice. The most common approach
to analyzing Aβ-PET is to classify individuals into two groups, Aβ-negative and Aβ-positive. This approach is not always optimal to detect individuals with early Aβ levels, mainly if Aβ has accumulated regionally but is not yet globally widespread32,47. There is a growing body of literature documenting the earliest topographical distribution of Aβ-PET binding in individuals with and without cognitive impairment15,18,49. We took advantage of this literature to identify seven regions with early detectable Aβ-PET binding, and instead of classifying our participants on a “global” Aβ index, we dichotomized Aβ positivity/negativity within each of these regions and counted the number of regions with positive Aβ-PET binding. While PREVENT-AD, most of the participants with regional binding (79%) would have been classified as negative using a “global” Aβ index, all the Regional Aβ group participants in HABS would have been classified as negative. This number was slightly lower in ADNI (57%), which can probably be explained by the fact that their global threshold is slightly lower than what was used in the PREVENT-AD (centiloid 26.7 vs 18.5) and HABS (centiloid 23.9 vs 18.5).

Anti-Aβ therapeutic trials have failed to improve or slow down cognitive symptoms8,50,51. The association of cognition and neuronal loss is stronger with the tau-PET signal compared to Aβ52. The failure of these trials could be partly due to the inclusion of individuals who already have elevated tau-PET signals. Our results showed that cognitively normal individuals with widespread Aβ, which would most have been considered Aβ-positive using a classical global threshold, have detectable tau-PET signals in several temporal brain regions. Interestingly, elevated tau PET-binding was absent (ADNI and HABS) or restricted to the entorhinal and the middle temporal cortices (PREVENT-AD) in individuals showing regional Aβ-PET. Binding in the entorhinal cortex is common with advanced age53. Furthermore, the Widespread Aβ groups in ADNI and HABS accumulated greater amount of tau compared to the Negative and Regional group over longitudinal follow-ups. The CSF data corroborate these findings in ADNI and PREVENT-AD cohorts, with CSF p-tau being higher in the Widespread group compared to the two other groups, with an absence of significant differences between the Regional and the Negative groups. Previous studies have shown that when Aβ pathology reaches “widespread” spatial distribution, tau-PET uptake increases faster compared to the individuals with lower Aβ54, and the rate of tau-PET change is associated with cognitive decline55. In line with these results, baseline cognitive impairment was only found in the Widespread groups, and cognitive decline was also mainly restricted to the Widespread groups. The ADNI regional group also showed a cognitive decline when compared to the Negative group after a decade of follow-up, by which time most Regional individuals probably developed Widespread Aβ binding14.

Furthermore, our findings highlight the biological relevance of the Regional Aβ group. Our result showed that the Regional Aβ groups had intermediate CSF Aβ\textsubscript{1-42} levels between the Widespread (lower Aβ\textsubscript{1-42}) and Negative (higher Aβ\textsubscript{1-42}) Aβ groups, showing signs of incipient cerebral accumulation of Aβ56. Even though Aβ increases with older age, Regional Aβ group participants were in the same age range as the Negative Aβ group, which was younger than the Widespread Aβ group in all cohorts. Furthermore, the Regional Aβ groups in ADNI and HABS accumulated greater amount of Aβ compared to the Negative group. Another crucial difference between groups was marked by \textit{APOE} ε4 carrier status; compared to the Negative Aβ group, both Regional and Widespread Aβ groups had higher percentages of \textit{APOE} ε4 carriers.
in two cohorts, which places them at increased risk for developing the disease. There is an increasing interest in the biological relevance of regional Aβ and the assessment of regional patterns. Recent studies have shown decreased CSF Aβ_1-42 levels in participants with regional Aβ, as well as higher proportions of APOE ε4 carriers, compared to Aβ negative participants, as well as higher proportions of APOE ε4 carriers, compared to Aβ negative participants. Even in individuals categorized as Aβ negative, subthreshold Aβ predicted a slight memory decline and the development of tau pathology over five years. APOE ε4 carriership has also been associated with increased Aβ load compared to non-carriers across all clinical diagnostic groups. Taken together, our findings highlight the biological relevance of the Regional Aβ group, for which tau and cognitive impairments are still minimal. Therefore, most individuals with regional Aβ binding are at the earliest stage of the AD continuum and only a few years away from when cognitive decline is about to start.

There are several limitations to take into account. An important factor that may have impacted the current study results is the Aβ groups' disproportion due to the small sample size of the Widespread and Regional groups in PREVENT-AD. More than 63% of the cohort were in the Negative Aβ group, which led to the Regional and Widespread groups consisting of less than 30 individuals each. To address this limitation and to validate the results, the ADNI cohort with 400 participants and the HABS cohort with 288 participants were included in the study. ADNI, however, used the Florbetapir tracer, for which it might be more difficult to establish clear dichotomized values given the high variability related to white matter signal. In addition, previous studies also reported that this tracer had shown a low correlation between tracer-specific regional rankings compared to four other tracers. Despite the differences in the study designs, it is nevertheless important to mention that most of the results across cohorts were comparable.

In conclusion, assessing the spatial Aβ burden could be a powerful way to identify the best candidates for preventive clinical trials. Assessing the presence of Aβ-PET binding in early accumulating regions can help identify individuals with biologically relevant signals that would have been classified as being negative using more established whole-brain thresholds for Aβ positivity. While these individuals accumulate Aβ over time, they do not yet have significant tau or cognitive decline. In individuals with widespread Aβ (most of whom would have been included in current clinical trials), tau pathology might be too advanced to stop the cognitive decline or disease progression after the removal of the Aβ plaques from the brain. Our results suggest that anti-Aβ trials should be performed in individuals with regional binding at the latest since even individuals classified as being Negative showed Aβ-PET binding accumulation over time.

Declarations

Acknowledgements

Data used in the preparation of this article were obtained from the Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease (PREVENT-AD) program data release 5.0 (November 30, 2017). PREVENT-AD was launched in 2011 as a $13.5 million, 7-year public-private partnership using
funds provided by McGill University, the Fonds de Recherche du Québec – Santé (FRQ-S), an unrestricted research grant from Pfizer Canada, the Levesque Foundation, the Douglas Hospital Research Centre and Foundation, the Government of Canada, and the Canada Fund for Innovation. Private sector contributions are facilitated by the Development Office of the McGill University Faculty of Medicine and by the Douglas Hospital Research Centre Foundation (http://www.douglas.qc.ca/). The primary goal of PREVENT-AD is to test whether a serial determination of multi-modal biomarkers of Alzheimer's disease may be measured and used in pre-symptomatic persons at high risk of subsequent AD dementia to trace the progression of the disease process and to measure effects of any potentially preventive treatment interventions. This work is intended to provide preliminary data regarding the probable efficacy and safety of potential new treatments for the prevention of AD dementia. The Founders of the program were John C. S. Breitner, MD, MPH, Judes Poirier, Ph.D. and Pierre Etienne, MD, Douglas Hospital Research Centre and Faculty of Medicine, McGill University, Montréal, QC, Canada. Program Current Director is Judes Poirier, Ph.D., the Co-Director is Sylvia Villeneuve, Ph.D. and the Study Coordinator is Jennifer Tremblay-Mercier, MSc. PREVENT-AD is the result of the efforts of many other co-investigators from a range of academic institutions and private corporations, as well as an extraordinarily dedicated and talented clinical and technical assistance staff, students, and post-doctoral fellows. Subjects are recruited from the greater Montréal area and more distant locations in Québec. For up-to-date information, see https://douglas.research.mcgill.ca/stop-ad-centre.

Data collection and sharing for this project were funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Author Contributions

Hazal Ozlen: study concept and design, analysis, and interpretation of data, drafting and revision of the manuscript.
Alexa Pichet-Binette: study concept and design, analysis and interpretation of data, revision of the manuscript.

Theresa Köbe: data analysis, revision of the manuscript.

Pierre Francois Meyer: data analysis, revision of the manuscript.

John Breitner: data acquisition, protocol concept and design.

Judes Poirier: data acquisition, protocol concept and design, revision of the manuscript.

Sylvia Villeneuve: data acquisition, study concept and design, interpretation of data, revision of the manuscript.

Ethics declarations

Competing Interests

The authors declare no competing interests.

References

1. Braak, H., & Braak, E. Neuropathological stageing of Alzheimer-related changes. *Acta Neuropathol* **82**, 239-259, doi:10.1007/BF00308809 (1991).

2. Thal, D. R., Rüb, U., Orantes, M., & Braak, H. Phases of Abeta-deposition in the human brain and its relevance for the development of AD. *Neurology* **58**, 1791-1800, doi:10.1212/WNL.58.12.1791 (2002).

3. Braak, H. & Del Tredici, K. The pathological process underlying Alzheimer's disease in individuals under thirty. *Acta neuropathologica* **121**, 171-181 (2011).

4. Hardy, J. & Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease. *Trends in pharmacological sciences* **12**, 383-388 (1991).

5. Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. *science* **297**, 353-356 (2002).

6. Herrup, K. The case for rejecting the amyloid cascade hypothesis. *Nature Neuroscience* **18**, 794-799, doi:10.1038/nn.4017 (2015).

7. Selkoe, D. J. Toward a comprehensive theory for Alzheimer's disease. Hypothesis: Alzheimer's disease is caused by the cerebral accumulation and cytotoxicity of amyloid β-protein. *Annals of the New York Academy of Sciences* **924**, 17-25 (2000).
Huang, Y. M., Shen, J., Zhao, H.-L. . Major Clinical Trials Failed the Amyloid Hypothesis of Alzheimer’s Disease. *J Am Geriatr Soc* 67, 841-844, doi:https://doi.org/10.1111/jgs.15830 (2019).

Uddin, M. S., Kabir, M. T., Rahman, M. S., Behl, T., Jeandet, P., Ashraf, G. M., Najda, A., Bin-Jumah, M. N., El-Seedi, H. R., & Abdel-Daim, M. M. Revisiting the Amyloid Cascade Hypothesis: From Anti-AB Therapeutics to Auspicious New Ways for Alzheimer’s Disease. *International journal of molecular sciences* 21, 5858, doi:https://doi.org/10.3390/ijms21165858 (2020).

Mintun, M. A. *et al.* Donanemab in Early Alzheimer’s Disease. *New England Journal of Medicine* 384, 1691-1704, doi:10.1056/NEJMoa2100708 (2021).

Honig, L. S. *et al.* Trial of Solanezumab for Mild Dementia Due to Alzheimer’s Disease. *N Engl J Med* 378, 321-330, doi:10.1056/NEJMoa1705971 (2018).

Sperling, R. A., Jack, C. R., Jr. & Aisen, P. S. Testing the right target and right drug at the right stage. *Sci Transl Med* 3, 111cm133, doi:10.1126/scitranslmed.3002609 (2011).

Bloom, G. S. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. *JAMA neurology* 71, 505-508 (2014).

Jagust, W. J., Landau, S. M. & Initiative, A. s. D. N. Temporal Dynamics of Beta-amyloid Accumulation in Aging and Alzheimer’s Disease. *Neurology* (2021).

Mattsson, N., Palmqvist, S., Stomrud, E., Vogel, J., & Hansson, O. . Staging ß-Amyloid PAtiology with Amyloid Positron Emission Tomography. *JAMA Neurol.* 76, 1319-1329, doi:10.1001/jamaneurol.2019.2214 (2019).

Palmqvist, S., Schöll, M., Strandberg, O., Mattsson, N., Stomrud, E., Zetterberg, H., Blennow, K., Landau, S., Jagust, W., & Hansson, O. . Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. *Nature Communications* 8, doi:https://doi.org/10.1038/s41467-017-01150-x (2017).

Whittington, A., Sharp, D. J., Gunn, R. N., & Alzheimer’s Disease Neuroimaging Initiative. Spatiotemporal Distribution of β-Amyloid in Alzheimer Disease Is the Result of Heterogeneous Regional Carrying Capacities. *The Journal of Nuclear Medicine* 59, 822-827, doi:10.2967/jnumed.117.194720 (2018).

Grothe, M. J., Barthel, H., Sepulcre, J., Dyrba, M., Sabri, O., Teipel, S. J., & Alzheimer’s Disease Neuroimaging Initiative In vivo staging of regional amyloid deposition. *Neurology* 89, 2031-2038, doi:https://doi.org/10.1212/WNL.0000000000004643 (2017).

Teipel, S. J., Dyrba, M., Chiesa, P. A., Sakr, F., Jelistratova, I., Lista, S., Vergallo, A., Lemercier, P., Cavedo, E., Habert, M. O., Dubois, B., Hampel, H., Grothe, M. J., & INSIGHT-preAD study group and for the Alzheimer’s Disease Neuroimaging Initiative. In-vivo staging of regional amyloid deposition predicts
functional conversion in the preclinical and prodromal phases of Alzheimer's disease. *Neurobiology of Aging** **93**, 98-108, doi:https://doi.org/10.1016/j.neurobiolaging.2020.03.011 (2020).

20 Tremblay-Mercier, J. *et al.* Open ScienceDatasets from PREVENT-AD, a Longitudinal Cohort of Presymptomatic Alzheimer's Disease. *bioRxiv*, 2020.03.2004.976670, doi:10.1101/2020.03.04.976670 (2020).

21 Breitner, J., Poirier, J., Etienne, P. E., & Leoutsakos, J. M. . Rationale and structure for a new center for studies on prevention of Alzheimer's disease (STOP-AD). *J Prev Alzheimers Dis* **3**, 36–42 (2016).

22 Dagley, A. *et al.* Harvard Aging Brain Study: Dataset and accessibility. *Neuroimage* **144**, 255-258, doi:10.1016/j.neuroimage.2015.03.069 (2017).

23 Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. . The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS): Preliminary clinical validity. *J Clin Exp Neuropsychol* **20**, 310-319 (1998).

24 Crane, P. K., Carle, A., Gibbons, L. E., Insel, P., Mackin, R. S., Gross, A., Jones, R. N., Mukherjee, S., Curtis, S. M., Harvey, D., Weiner, M., Mungas, D., & Alzheimer's Disease Neuroimaging Initiative. Development and assessment of a composite score for memory in the Alzheimer's Disease Neuroimaging Initiative (ADNI). *Brain Imaging Behav* (2012).

25 Gibbons, L. E., Carle, A.C., Macking, R.S., Harvey, D., Mukherjee, S., Insel, P., Curtis, S.M., Gross, A., Jones, R.N., Mungas, D., Weiner, M., & Crane, P.K., for Alzheimer's Disease Neuroimaging Initiative. Composite measures of executive function and memory: ADNI_EF and ADNI_Mem. (2020).

26 Papp, K. V., Rentz, D. M., Orlovsky, I., Sperling, R. A. & Mormino, E. C. Optimizing the preclinical Alzheimer's cognitive composite with semantic processing: The PACC5. *Alzheimer's & Dementia: Translational Research & Clinical Interventions* **3**, 668-677, doi:https://doi.org/10.1016/j.trci.2017.10.004 (2017).

27 Miron, J. *et al.* Association of TLR4 with Alzheimer's disease risk and presymptomatic biomarkers of inflammation. *Alzheimers Dement* **15**, 951-960, doi:10.1016/j.jalz.2019.03.012 (2019).

28 Meyer, P. F. *et al.* Bi-directional Association of Cerebrospinal Fluid Immune Markers with Stage of Alzheimer's Disease Pathogenesis. *J Alzheimers Dis* **63**, 577-590, doi:10.3233/jad-170887 (2018).

29 Bittner, T., Zetterberg, H., Teunissen, C. E., Ostlund, R. E., Jr, Militello, M., Andreasson, U., Hubeek, I., Gibson, D., Chu, D. C., Eichenlaub, U., Heiss, P, Kobold, U., Leinenbach, A., Madin, K., Manuilova, E., Rabe, C., & Blennow, K. Technical performance of a novel, fully automated electrochemiluminescence immunoassay for the quantitation of β-amyloid (1-42) in human cerebrospinal fluid. *Alzheimer's & dementia : the journal of the Alzheimer's Association* **12**, 517–526, doi:https://doi.org/10.1016/j.jalz.2015.09.009 (2016).
30. Johnson, K. A. *et al.* Tau positron emission tomographic imaging in aging and early Alzheimer disease. *Ann Neurol* **79**, 110-119, doi:10.1002/ana.24546 (2016).

31. Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. *et al.* An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. *Neuroimage* **31**, 968-980, doi:10.1016/j.neuroimage.2006.01.021 (2006).

32. Villeneuve, S., Rabinovici, G. D., Cohn-Sheehy, B. I., Madison, C., Ayakta, N., Ghosh, P. M., La Joie, R., Arthur-Bentil, S. K., Vogel, J. W., Marks, S. M., Lehmann, M., Rosen, H. J., Reed, B., Olichney, J., Boxer, A. L., Miller, B. L., Borys, E., Jin, L. W., Huang, E. J., Grinberg, L. T., *et al.* Existing Pittsburgh Compound-B positron emission tomography thresholds are too high: statistical and pathological evaluation. *Brain* **138**, 2020-2033, doi:10.1093/brain/awv112 (2015).

33. Baker, S. L., Maass, A., & Jagust, W. J. *et al.* Considerations and code for partial volume correcting [18F]-AV-1451 tau PET data. *Data Brief.* **15**, 648-657, doi:10.1016/j.dib.2017.10.024 (2017).

34. Clark, C. M., Schneider, J. A., Bedell, B. J., Beach, T. G., Bilker, W. B., Mintun, M. A., Pontecorvo, M. J., Hefti, F., Carpenter, A. P., Flitter, M. L., Krautkramer, M. J., Kung, H. F., Coleman, R. E., Doraiswamy, P. M., Fleisher, A. S., Sabbagh, M. N., Sadowsky, C. H., Reiman, E. P., Zehntner, S. P., Skovronsky, D. M., *et al.* AV45-A07 Study Group. Use of flortaucipir-PET for imaging beta-amyloid pathology. *JAMA* **305**, 275-283, doi:10.1001/jama.2010.2008 (2011).

35. McSweeney, M., Pichet Binette, A., Meyer, P. F., Gonneaud, J., Bedetti, C., Ozlen, H., Labonté, A., Rosa-Neto, P., Breitner, J., Poirier, J., Villeneuve, S., *et al.* Intermediate flortaucipir uptake is associated with Aβ-PET and CSF tau in asymptomatic adults. *Neurology* **94**, e1190-e1200, doi:https://doi.org/10.1212/WNL.0000000000008905 (2020).

36. Lee, C. M., Jacobs, H., Marquié, M., Becker, J. A., Andrea, N. V., Jin, D. S., Schultz, A. P., Frosch, M. P., Gómez-Isla, T., Sperling, R. A., & Johnson, K. A. 18F-flortaucipir binding in choroid plexus: related to race and hippocampus signal. *Journal of Alzheimer's disease* **62**, 1691-1702 (2018).

37. Lemoine, L., Leuzy, A., Chiotis, K., Rodriguez-Vieitez, E., & Nordberg, A. Tau positron emission tomography imaging in tauopathies: the added hurdle of off-target binding. *Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring* **10**, 232-236 (2018).

38. Jagust, W. J. *et al.* The Alzheimer's Disease Neuroimaging Initiative 2 PET Core: 2015. *Alzheimers Dement* **11**, 757-771, doi:10.1016/j.jalz.2015.05.001 (2015).

39. Schreiber, S. *et al.* Comparison of Visual and Quantitative Florbetapir F 18 Positron Emission Tomography Analysis in Predicting Mild Cognitive Impairment Outcomes. *JAMA Neurology* **72**, 1183-1190, doi:10.1001/jamaneurol.2015.1633 (2015).
40 Buckley, R. F. et al. Using subjective cognitive decline to identify high global amyloid in community-based samples: A cross-cohort study. *Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring* **11**, 670-678, doi:https://doi.org/10.1016/j.dadm.2019.08.004 (2019).

41 Farrell, M. E. et al. Defining the Lowest Threshold for Amyloid-PET to Predict Future Cognitive Decline and Amyloid Accumulation. *Neurology* **96**, e619-e631, doi:10.1212/wnl.0000000000011214 (2021).

42 Fantoni, E., Collij, L., Lopes Alves, I., Buckley, C., Farrar, G., & AMYPAD consortium The spatial-temporal ordering of amyloid pathology and opportunities for PET imaging. *The Journal of Nuclear Medicine* **61**, 166-171, doi:10.2967/jnumed.119.235879 (2019).

43 Buckley, R. F. et al. Associations between baseline amyloid, sex, and APOE on subsequent tau accumulation in cerebrospinal fluid. *Neurobiol Aging* **78**, 178-185, doi:10.1016/j.neurobiolaging.2019.02.019 (2019).

44 Mormino, E. C. et al. Amyloid and APOE ε4 interact to influence short-term decline in preclinical Alzheimer disease. *Neurology* **82**, 1760-1767, doi:10.1212/wnl.0000000000000431 (2014).

45 Team, R. C. R: A language and environment for statistical computing. (2013).

46 Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. *arXiv preprint arXiv:1406.5823* (2014).

47 Farrell, M. E., Chen, X., Rundle, M. M., Chan, M. Y., Wig, G. S., & Park, D. C. Regional amyloid accumulation and cognitive decline in initially amyloid-negative adults. *Neurology* **91**, e1809-e1821, doi:10.1212/WNL.0000000000006469 (2018).

48 Altman, D. G., & Royston, P. The cost of dichotomising continuous variables. *BMJ* **332**, 1080, doi:10.1136/bmj.332.7549.1080 (2006).

49 Jelistratova, I., Teipel, S. J., & Grothe, M. J. Longitudinal validity of PET-based staging of onal amyloid deposition. *Human Brain Mapping*, 1-13, doi:DOI: 10.1002/hbm.25121 (2020).

50 Holmes, C., Boche, D., Wilkinson, D., Yadegarfar, G., Hopkins, V., Bayer, A., Jones, R. W., Bullock, R., Love, S., Neal, J. W., Zotova, E., Nicoll, J. A. Long-term effects of Abeta42 immunisation in Alzheimer's disease: follow-up of a randomised, placebo-controlled phase I trial. *Lancet* **372**, 216-223, doi:10.1016/s0140-6736(08)61075-2 (2008).

51 Yiannopoulou, K. G., Anastasiou, A. I., Zachariou, V., Pelidou, S. H. Reasons for Failed Trials of Disease-Modifying Treatments for Alzheimer Disease and Their Contribution in Recent Research. *Biomedicines* **7**, doi:10.3390/biomedicines7040097 (2019).
52 Huber, C. M., Yee, C., May, T., Dhanala, A., Mitchell, C. S. Cognitive Decline in Preclinical Alzheimer's Disease: Amyloid-Beta versus Tauopathy. *J Alzheimers Dis* **61**, 265-281, doi:10.3233/jad-170490 (2018).

53 Chen, X. *et al.* Regional Tau Effects on Prospective Cognitive Change in Cognitively Normal Older Adults. *J Neurosci* **41**, 366-375, doi:10.1523/jneurosci.2111-20.2020 (2021).

54 Knopman, D. S. *et al.* Entorhinal cortex tau, amyloid-β, cortical thickness and memory performance in non-demented subjects. *Brain* **142**, 1148-1160, doi:10.1093/brain/awz025 (2019).

55 Hanseeuw, B. J. *et al.* Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease: A Longitudinal Study. *JAMA Neurology* **76**, 915-924, doi:10.1001/jamaneurol.2019.1424 (2019).

56 Palmqvist, S., Mattsson, N. & Hansson, O. Cerebrospinal fluid analysis detects cerebral amyloid-β accumulation earlier than positron emission tomography. *Brain* **139**, 1226-1236, doi:10.1093/brain/aww015 (2016).

57 Mattsson, N. *et al.* Prevalence of the apolipoprotein E ε4 allele in amyloid β positive subjects across the spectrum of Alzheimer's disease. *Alzheimers Dement* **14**, 913-924, doi:10.1016/j.jalz.2018.02.009 (2018).

58 Collilj, L. E., Heeman, F., Salvador, G., Ingala, S., Altmare, D., de Wilde, A., Konijnenberg, E., van Buchem, M., Yaqub, M., Markiewicz, P., Golla, S., Wottschel, V., Wink, A. M., Visser, P. J., Teunissen, C. E., Lammertsma, A. A., Scheltens, P., van der Flier, W. M., Boellaard, R., van Berckel, B., … AMYPAD Consortium. Multitracer model for staging cortical amyloid deposition using PET imaging. *Neurology* **95**, e1538-e1553, doi:10.1212/WNL.00000000000010256 (2020).

59 Sakr, F. A., Grothe, M. J., Cavedo, E., Jelistratova, I., Habert, M. O., Dyrba, M., Gonzalez-Escamilla, G., Bertin, H., Locatelli, M., Lehericy, S., Teipel, S., Dubois, B., Hampel, H., INSIGHT-preAD study group, & Alzheimer Precision Medicine Initiative (APMI) Applicability of in vivo staging of regional amyloid burden in a cognitively normal cohort with subjective memory complaints: the INSIGHT-preAD study. *Alzheimer's Research & Therapy* **11**, doi:https://doi.org/10.1186/s13195-019-0466-3 (2019).

60 Leal, S. L., Lockhart, S. N., Maass, A., Bell, R. K., & Jagust, W. J. Subthreshold Amyloid Predicts Tau Deposition in Aging. *The Journal of Neuroscience* **38**, 4482-4489 (2018).

61 Landau, S. M., Horng, A., Jagust, W. J., & Alzheimer's Disease Neuroimaging Initiative. Memory decline accompanies subthreshold amyloid accumulation. *Neurology* **90**, e1452-e1460, doi:https://doi.org/10.1212/WNL.0000000000005354 (2018).

62 Li, C., Loewenstein, D. A., Duara, R., Cabrerizo, M., Barker, W., Adajouadi, M., & Alzheimer's Disease Neuroimaging Initiative. The Relationship of Brain Amyloid Load and APOE Status to Regional Cortical Thinning and Cognition in the ADNI Cohort. *Journal of Alzheimer's disease : JAD* **59**, 1269–1282, doi:https://doi.org/10.3233/JAD-170286 (2017).
Su, Y. et al. Comparison of Pittsburgh compound B and florbetapir in cross-sectional and longitudinal studies. *Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring* **11**, 180-190, doi:https://doi.org/10.1016/j.dadm.2018.12.008 (2019).

Tables

Table 1. Biological and Clinical Characteristics of Aβ groups.

	PREVENT-AD Aβ Groups	ADNI Aβ Groups	HABS Aβ Groups									
	Negative (n = 81)	Regional (n = 28)	Widespread (n = 20)	p < 0.05	Negative (n = 202)	Regional (n = 108)	Widespread (n = 90)	p < 0.05	Negative (n = 139)	Regional (n = 78)	Widespread (n = 73)	p < 0.05
Age	63 (0.51)	63 (0.87)	66 (1.03)	b	73 (0.41)	73 (0.57)	76 (0.62)	b,c	73 (0.52)	74 (0.70)	75 (0.72)	b
Education	16 (0.36)	15 (0.61)	14 (0.72)	17 (0.19)	17 (0.26)	16 (0.28)	16 (0.26)	(0.35)	16 (0.55)	15 (0.35)	16 (0.35)	c
Sex, female (%)	60 (74%)	23 (82%)	13 (65%)	94 (47%)	61 (57%)	55 (61%)	(54%)	b	75 (54%)	55 (72%)	41 (56%)	a
Carriership (%)	22 (27%)	18 (64%)	13 (65%)	38 (19%)	34 (31%)	45 (50%)	(14%)	a,b,c	20 (14%)	18 (24%)	41 (56%)	b,c
CSF Aβ4*	1265 (37.78)	1043 (60.09)	718 (71.53)	a,b,c	1448 (30.13)	1158 (40.07)	882 (45.09)	a,b,c	n/a	n/a	n/a	
CSF pτau*	46 (3.14)	55 (4.89)	67 (6.15)	b	19 (0.72)	22 (0.96)	29 (1.10)	b,c	n/a	n/a	n/a	

The values are reported as Mean (SD) except for Sex, *APOE ε4*, and Subjective Cognitive Decline which are reported as the Number of participants (% of the group). BOLD text represents the groups between which there were significant differences: a = p<0.05 between Negative Aβ and Regional Aβ groups; b = p<0.05 between Negative Aβ and Widespread Aβ groups; c = p<0.05 between Regional Aβ and Widespread Aβ groups. *In PREVENT-AD, CSF samples were available for 46 Negative, 19 Regional, and 12 Widespread; in ADNI, CSF samples were available for 138 Negative, 78 Regional and 60 Widespread. *APOE ε4*: Apolipoproteinε4; Aβ: beta-amyloid; CSF: Cerebrospinal fluid.
Table 2. Tau-PET Uptake in Early Tau Regions

Using ANCOVA and multiple comparisons corrected for age and sex, we test whether Tau-PET uptake in early tau regions significantly differed between the Aβ groups in the (A) PREVENT-AD cohort, (B) ADNI cohort and (C) HABS cohort. For post-hoc analysis, Bonferroni correction was applied when comparing the pair of group means. BOLD text represents the significant between-group differences. a = p<0.05 between Negative Aβ and Regional Aβ Groups; b = p<0.05 between Negative Aβ and Widespread Aβ Groups; c = p<0.05 between Regional Aβ and Widespread Aβ Groups.

Table 3. Baseline Cognition

Table 2. Tau-PET Uptake in Early Tau Regions	Table 3. Baseline Cognition
A. PREVENT-AD	**A. PREVENT-AD**
Negative Aβ (n = 81)	Negative Aβ (n = 81)
Regional Aβ (n = 28)	Regional Aβ (n = 28)
Widespread Aβ (n = 20)	Widespread Aβ (n = 20)
P<0.05	P<0.05
B. ADNI	**B. ADNI**
Negative Aβ (n = 91)	Negative Aβ (n = 91)
Regional Aβ (n = 54)	Regional Aβ (n = 54)
Widespread Aβ (n = 31)	Widespread Aβ (n = 31)
C. HABS	**C. HABS**
Negative Aβ (n = 59)	Negative Aβ (n = 59)
Regional Aβ (n = 49)	Regional Aβ (n = 49)
Widespread Aβ (n = 48)	Widespread Aβ (n = 48)
P=0.05	**P=0.05**
Immediate Memory Score	**Immediate Memory Score**
103.15 (1.26)	104.82 (2.14)
104.05 (2.54)	104.05 (2.54)
Delayed Memory Score	**Delayed Memory Score**
104.28 (1.02)	100.71 (1.73)
97.20 (2.05)	97.20 (2.05)
Total Index Score	**Total Index Score**
102.98 (1.06)	102.61 (1.81)
101.30 (2.15)	101.30 (2.15)
B. ADNI	**B. ADNI**
Memory Score (n = 202)	Memory Score (n = 202)
1.08 (0.04)	1.11 (0.05)
0.95 (0.06)	0.84 (0.08)
0.62 (0.08)	0.62 (0.08)
Executive Function Score	**Executive Function Score**
0.04 (0.06)	-0.09 (0.08)
0.01 (0.08)	0.01 (0.08)
C. HABS	**C. HABS**
PACC5 (n = 137)	PACC5 (n = 137)
0.04 (0.06)	-0.09 (0.08)
0.01 (0.08)	0.01 (0.08)
Cognitive test scores were compared at the baseline visit corrected for age and sex; test scores are reported as Mean (SD). (A) As part of the PREVENT-AD battery, all participants undergo annual cognitive testing using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). (B) In ADNI, participants received detailed cognitive assessments from which composite scores are derived. All the composite scores have a mean of 0, and a standard deviation of 1. (C) HABS participants undergo annual cognitive testing with PACC5 to derive a cognitive composite score including memory, executive function and semantic processing. BOLD text represents the significant between-group differences: a = p<0.05 between Negative Aβ and Regional Aβ groups; b = p<0.05 between Negative Aβ and Widespread Aβ groups; c = p<0.05 between Regional Aβ and Widespread Aβ groups.

Figures

Figure 1

Defining the Aβ Groups. Individuals were separated into three groups based on their Aβ status in seven cortical regions: rostral anterior cingulate, precuneus, medial orbitofrontal, rostral middle frontal, inferior parietal, superior frontal, and posterior cingulate. According to the region-specific positivity, individuals who were Aβ-positive in all 7 regions were classified as the “Widespread Aβ group”; those who were positive in at most 6 regions were included in the “Regional Aβ group”, while those negative in all the regions were considered as the “Negative Aβ group”.
Figure 2

Tau-PET Uptake Across the 3 Aβ groups. Six regions were chosen to represent areas of early tau-PET accumulation. Tau-PET scans were available for 129 PREVENT-AD participants and 176 ADNI participants. (A) In PREVENT-AD, the Widespread Aβ group had elevated Tau-PET signal when compared with Negative and Regional Aβ groups across six regions. The Regional Aβ group had elevated tau-PET binding only in the Entorhinal cortex and Middle Temporal gyrus when compared with the Negative Aβ group. (B; C) In both ADNI and HABS, the Widespread Aβ group had elevated Tau-PET signal compared with Negative and Regional Aβ groups across all regions. One PREVENT-AD Regional participant and one PREVENT-AD Widespread participant were considered influential cases based on their Cook's distance. Removing these participants did not influence the results. Analyses were corrected for age and sex. * p<0.05; ** p<0.01; ***p<0.001. SUVR: standardized uptake value ratio.
Figure 3

Change in Cognition Over Time Between the three Aβ Groups. Linear mixed-effect models were used to assess the main effect of Aβ groups on longitudinal cognition, corrected for age, sex and education. The analyses were anchored at the participants’ baseline visit date. Cognitive test scores (A) for PREVENT-AD; (B) for ADNI; and (C) for HABS were represented over time in the three different groups. The Widespread Aβ group showed a greater decline in their cognition scores when compared with the two other groups in all cohorts. In both ADNI and HABS, the Regional group showed a greater cognitive decline compared to the Negative group. * p<0.05; ** p<0.01; ***p<0.001
Figure 4
Change in Aβ Uptake Over Time Between the three Aβ Groups in ADNI and HABS. Linear mixed-effect models investigating the effect of the groups on Aβ accumulation rate over time in ADNI and HABS cohorts corrected for age and sex. Plotted is the association between Aβ groups based on (A) Precuneus SUVR score and (B) Medial orbitofrontal SUVR score over the years from their first scan. While both the Regional and Widespread Aβ groups accumulated Aβ at a faster rate compared to the Negative Aβ group.
in both cohorts; while only in HABS, the Widespread group accumulated Aβ at a faster rate compared to the Regional Aβ group in Precuneus. * p<0.05; ** p<0.01; ***p<0.001; etc. SUVR: standardized uptake value ratio.

A. ADNI

B. HABS

Figure 5

Change in TAU Uptake Over Time Between the three Aβ Groups in ADNI and HABS. Linear mixed-effect models investigating the effect of the groups on tau accumulation rate over time in ADNI and HABS cohorts corrected for age and sex. Plotted is the association between Aβ groups based on Fusiform, Inferior Temporal and Middle Temporal SUVR scores over the years from their first scan. In both cohorts, the Widespread group accumulated a greater amount of tau compare to the Negative group. However, only in Fusiform and Inferior Temporal (in HABS) and Middle Temporal (in ADNI) regions, compared to the Regional Aβ group, Widespread group accumulated a greater amount of tau. * p<0.05; ** p<0.01; ***p<0.001; etc. SUVR: standardized uptake value ratio.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryMaterials.pdf