Quasinormal Modes and Stability Criterion of Dilatonic Black Hole in $1+1$ and $4+1$ Dimensions

Ramón Becar1, Samuel Lepe2 and Joel Saavedra2

1Departamento de Física, Universidad de Concepción, Casilla 160 C, Concepción, Chile and
2Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso.

We study the stability of black holes that are solutions of the dilaton gravity derived from string-theoretical models in two and five dimensions against scalar field perturbations, using the Quasinormal Modes (QNMs) approach. In order to find the QNMs corresponding to a black hole geometry, we consider perturbations described by a massive scalar field non-minimally coupled to gravity. We find that the QNM’s frequencies turn out to be pure imaginary leading to purely damped modes, that is in agreement with the literature of dilatonic black holes. Our result exhibits the unstable behavior of the considered geometry against the scalar perturbations. We consider both the minimal coupling case, i.e., for which the coupling parameter ζ vanishes, and the case $\zeta = \frac{1}{4}$.

PACS numbers: 04.60.Kz, 04.70.-s, 04.70.Bw
Keywords: two-dimensional gravity, dilatonic black hole, quasinormal modes

I. INTRODUCTION

Two-dimensional theories of gravity have recently attracted much attention\cite{1,2,3} as simple toy models that possess many features of gravities in higher dimensions. They also have black hole solutions which play important role in revealing various aspects of spacetime geometry and quantization of gravity, and are also related to string theory\cite{4,5}.

On the other hand, there is also a growing interest in five-dimensional dilatonic black holes in the last few years, since it is believed that these black holes can shed some light to the solution of the fundamental problem of the microscopic origin of the Bekenstein-Hawking entropy. The area-entropy relation $S_{BH} = A/4$ was obtained for a class of five-dimensional extremal black holes in Type II string theory using D-brane techniques\cite{6}, while in Ref.\cite{4} the U-duality that exists between the five-dimensional black hole and the two-dimensional charged black hole was exploited\cite{7} to microscopically compute the entropy of the latter. For that reason, it is important to understand the dynamics of matter fields and the metric perturbations in such black hole backgrounds in order to find stable solutions. One of the key issues worth of studying are so-called quasinormal modes (QNMs), known as the “ringing” of black holes, that play an essential role in the analysis of classical aspects of black holes physics.

In this work we are interested in the stability of the 1+1-dilatonic black hole using the QNMs’ approach, quasinormal modes associated with perturbations of different fields were considered in different works\cite{8}, and for AdS and dS space\cite{9,10,11,12,13,14,15}. Similar situation occurs in 2+1 dimension\cite{16,17,18}, and the acoustic black holes\cite{19,20,21}. Quasinormal modes of dilatonic black holes in 3+1 dimensions can be see in Refs.\cite{22,23,24}.

Determination of QNMs for a specific geometry implies solving the field equations for different types of perturbations (scalar, fermionic, vectorial, etc.), with suitable boundary conditions that reflect the fact that this geometry describes a black hole. Quasinormal modes for a scalar classical perturbation of black holes are defined as the solutions of the Klein-Gordon equation characterized by purely ingoing waves at the horizon, $\Phi \sim e^{-i\omega(t+r)}$, since at least a classically outgoing flux is not allowed at the horizon. In addition, one has to impose boundary conditions on the solutions in the asymptotic region (infinity), and for that it is crucial to use the asymptotic geometry of the spacetime under study. In the case of an asymptotically flat spacetime, the condition we need to impose over the wave function is to have a purely outgoing waves $\Phi \sim e^{-i\omega(t-r)}$ at the infinity\cite{5}. In general, the QNMs are given by $\omega_{QNM} = \omega_R + i\omega_I$, where ω_R and ω_I are the real and imaginary parts of the frequency ω_{QNM}, respectively. Therefore, the study of QNMs can be implemented as one simple test for studying the stability of the system. In this sense, any imaginary frequency with the wrong sign would mean an exponentially growing mode, rather than a damping of it.

In this work we analytically compute the QNMs of 1+1-dilatonic black hole, in order to test stability of the system. The organization of this article is as follows: In Sec.II we specify the 1+1-dilatonic black hole. In Sec.III we determine the QNMs and we establish a criterion for the stability of the system. In Sec.IV we study the problem of QNMs for the five-dimensional dilatonic black hole. Finally, we finish with the conclusions in Sec.V.
II. 1 + 1-DILATONIC BLACK HOLE

In order to have a gravity theory with dynamical degrees of freedom in two-dimensional spacetime, we consider the gravity coupled to a dilatonic field described by the action

\[S_g = \frac{1}{2\pi} \int d^2x \sqrt{-g} e^{-2\phi} (R + 4(\nabla \phi)^2 + 4\lambda^2). \]

(1)

It is worthwhile noting that the two-dimensional critical string theory \cite{23} has been an inspiration of many articles, since it is a simple toy model possessing black hole solutions which can be a starting point to solve the problems of Hawking radiation and the information loss inside black holes \cite{24 27 28 29}.

It was also proved some time ago, that the dilatonic black hole is a solution of an exact conformal field theory, namely the WZW model with gauge group SL(2,R)/U(1). This solution can be derived by solving the two-dimensional beta function equations of the string theory, that is effectively a two-dimensional graviton-dilaton system. The equations of motion for the graviton and dilaton are given by

\[\beta^G_{\mu\nu} = R_{\mu\nu} + 2\nabla_\mu \nabla_\nu \phi = 0, \]

(2)

\[\beta^\phi = \Box \phi - 2(\nabla \phi)^2 + 2\lambda^2 = 0. \]

(3)

A general static metric describing a black hole in this theory can be written as

\[ds^2 = -f(r)dt^2 + \frac{dr^2}{f(r)}, \]

(4)

where \(f(r) = 1 - e^{-\phi} \) and \(\phi = (r - r_0)/r_0 \). If we change the coordinate as \(x = \frac{r - r_0}{r_0} \), then the function \(f(r(x)) = f(x) \) becomes \(f(x) = 1 - e^{-x} \) and the horizon of the black hole is located at \(x = 0 \). This solution represents a well-known string-theoretic black hole \cite{4 5 25 30}.

III. QUASINORMAL MODES

In order to study the QNMs, we consider a scalar field with no-minimal coupling to gravity, propagating in the background of the dilatonic black hole. This system is described by the action \cite{30}

\[S[\varphi] = -\frac{1}{2} \int d^2x \sqrt{-g} \left((\nabla \varphi)^2 + (\mu^2 + \zeta R) \varphi^2\right), \]

(5)

where \(\zeta \) is a parameter from the no-minimal coupling. The field equations read

\[(\Box - \mu^2 - \zeta R) \varphi = 0, \]

(6)

where \(\mu = r_0 m \). In terms of the coordinate \(x \) and assuming a solution in the form \(\varphi = e^{-i\omega t} R(x) \), the radial equation \cite{30} can be written as

\[f\partial_x^2 R(x) + e^{-x} \partial_x R(x) - \left(\frac{\omega^2}{f} - \mu^2 - \zeta e^{-x}\right) R(x) = 0. \]

(7)

Next, we define a new variable, \(z = 1 - e^{-x} \), so that the radial equation adopts the form

\[z(1 - z) \partial_z (z(1 - z) \partial_z R(z)) + (\omega^2 - z\mu^2 - \zeta^\prime z(1 - z)) R(z) = 0, \]

(8)

where \(\zeta^\prime = \zeta / r_0^2 \) is a new parameter. With the change \(R(z) = z^\alpha (1 - z)^\beta F(z) \), the last equation reduces to the hypergeometric differential equation for the function \(F(z) \), that is,

\[z(1 - z) F''(z) + (c - (a + b + 1)z) F'(z) - ab F(z) = 0. \]

(9)

Here, the coefficients \(a, b \) and \(c \) are given through the relations

\[c = 2\alpha + 1, \]

\[a + b = 2(\alpha + \beta) + 1, \]

\[ab = (\alpha + \beta)(\alpha + \beta + 1) - \zeta^\prime, \]

(10)
from where we obtain the expressions for the coefficients,

$$a = \frac{1}{2} \left(1 + 2\alpha + 2\beta - \sqrt{1 - 4\xi^2}\right),$$ \hspace{1cm} (11)

$$b = \frac{1}{2} \left(1 + 2\alpha + 2\beta + \sqrt{1 - 4\xi^2}\right),$$ \hspace{1cm} (12)

and for the exponents α and β,

$$\alpha = \pm i\omega,$$ \hspace{1cm} (13)

$$\beta = \pm \sqrt{\omega^2 - \mu^2}.$$ \hspace{1cm} (14)

Without loss of generality, above we choose the negative signs. It is well-known that the hypergeometric equation has three regular singular points, at $z = 0$, $z = 1$ and $z = \infty$, and it has two independent solutions in the neighborhood of each point \[31\]. The solutions of the radial equation reads as follows,

$$F(z) = C_1 F_1(a,b,c; z) + C_2 z^{1-\xi} F_1(a-c+1, b-c+1, 2-c; z),$$ \hspace{1cm} (15)

where $F_1(a,b,c; z)$ is the hypergeometric function and C_1, C_2 are constants. The solution for $R(z)$ is then

$$R(z) = C_1 z^{-i\omega}(1-z)^{-i\sqrt{\omega^2 - \mu^2}} F_1(a,b,c; z) + C_2 z^{i\omega}(1-z)^{-i\sqrt{\omega^2 - \mu^2}} F_1(a-c+1, b-c+1, 2-c; z).$$ \hspace{1cm} (16)

Note that, when $c = 1$, two solutions become linearly dependent and the general solution represents a bound state. This point was discussed in Ref. \[30\].

In the neighborhood of the horizon ($z = 0$), the function $R(z)$ behaves as

$$R(z) = C_1 e^{-i\omega \ln z} + C_2 e^{i\omega \ln z},$$ \hspace{1cm} (17)

and the scalar field φ can be written in the following way,

$$\varphi \sim C_1 e^{-i\omega(t+\ln z)} + C_2 e^{-i\omega(t-\ln z)}.$$ \hspace{1cm} (18)

From the above expression it is easy to see that the first term corresponds to an ingoing wave, while the second one represents an outgoing wave in the black hole. For computing the QNMs, we have to impose that there exist only ingoing waves at the horizon so that, in order to satisfy this condition, we set $C_2 = 0$. Then the radial solution at the horizon is given by

$$R(z) = C_1 z^{-i\omega}(1-z)^{-i\sqrt{\omega^2 - \mu^2}} F_1(a,b,c; z).$$ \hspace{1cm} (19)

In order to implement the boundary conditions at the infinity ($z = 1$), we use the linear transformation $z \rightarrow 1 - z$, and then we apply the Kummer’s formula \[31\] for the hypergeometric function. We obtain

$$R(z) = C_1 z^{-i\omega}(1-z)^{-i\sqrt{\omega^2 - \mu^2}} \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} F_1(a,b,a+b-c+1; 1-z) +
 + C_1 z^{i\omega}(1-z)^{i\sqrt{\omega^2 - \mu^2}} \frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)} F_1(c-a,c-b,c-a-b+1; 1-z).$$ \hspace{1cm} (20)

The above solution near the infinity ($z = 1$) takes on the form

$$R(z) = C_1 (1-z)^{-i\sqrt{\omega^2 - \mu^2}} \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} + C_1 (1-z)^{i\sqrt{\omega^2 - \mu^2}} \frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)},$$ \hspace{1cm} (21)

while the solution for the scalar field near the infinity behaves as

$$\varphi \sim C_1 e^{-i\sqrt{\omega^2 - \mu^2}(t+\ln(1-z))} \frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)} + C_1 e^{-i\sqrt{\omega^2 - \mu^2}(t-\ln(1-z))} \frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}.$$ \hspace{1cm} (22)

In order to compute the QNMs, we also need to impose the boundary conditions on the solution of the radial equation at infinity, meaning that only purely outgoing waves are allowed there. Therefore, the second term in the above expression should be zero, what is fulfilled only at the poles of $\Gamma(a)$ or $\Gamma(b)$. Since the gamma function $\Gamma(x)$ has
the poles at \(x = -n \) for \(n = 0, 1, 2, \ldots \), the wave function satisfies the considered boundary condition only upon the following additional restriction,

\[
a = -n, \tag{23}
\]

or

\[
b = -n, \tag{24}
\]

where \(n = 0, 1, 2, \ldots \). These conditions determine the form of the quasinormal modes, that is, from Eqs.\((12)\) and \((12)\), we find

\[
\omega = -\frac{i}{4} \left(1 - \sqrt{1 - 4\zeta'} - \frac{(1 + \sqrt{1 - 4\zeta'})\mu^2}{n + n^2 + \zeta'} + n \left(2 - \frac{2\mu^2}{n + n^2 + \zeta'} \right) \right), \tag{25}
\]

The expression \((25)\) for frequencies shows a possible instability of the black hole under scalar perturbations, that could imply an exponentially growing mode if the wrong sign of the pure imaginary frequency had been chosen (positive). This issue is clarified in Figs.\((1)\) and \((2)\). Fig.\((1)\) shows the instability arising in the fundamental modes for scalar perturbations that excite these modes, in the range \(0 \leq \zeta' \leq 1/4 \). Note that in this range of the no-minimal coupling parameter the quasinormal modes are purely imaginary, as in the 2+1-dilatonic case \([32]\). The plot in the figure corresponds to the mass \(\mu = 1 \). If we consider an arbitrary mass for the scalar field, then the instability it is also present, and depends on the values of \(\mu \) with respect to \(n \). This fact can be explicitly shown for \(\zeta' = 0 \) (minimal coupling), when we obtain for the frequency

\[
\omega = -i \frac{(n^2 - \mu^2)}{2n}. \tag{26}
\]

We see that the overtones \(n < \mu \) guarantee the instability under scalar perturbations in particular the fundamental mode as is show in Fig. \((1)\). A similar situation occurs in the conformal case \(\zeta' = 1/4 \), where

\[
\omega = -i \frac{(1 + 2n)^2 - 4\mu^2}{4 + 8n}, \tag{27}
\]

FIG. 1: The imaginary part of the QNM’s frequency of the fundamental mode as a function of the no-minimal coupling parameter. This plot shows an unstable behavior of a scalar perturbation that excites the fundamental mode. We have taken \(\mu = 1 \).
if \(n < \mu - 1/2 \). In summary, the two-dimensional dilatonic black hole shows an unstable behavior against scalar perturbations; this result was shown in Ref. [33], where the instability of 1+1 dilatonic black holes has been shown using metric perturbations. In the range of parameters \(\zeta' > 1/4 \), the frequency of QNMs acquires a real part,

\[
\omega = - \sqrt{4\zeta' - 1} \left(\frac{\mu^2}{n + n^2 + \zeta'} \right) - \frac{i}{4} \left(1 - \frac{\mu^2}{n + n^2 + \zeta'} n \left(2 - \frac{2\mu^2}{n + n^2 + \zeta'} \right) \right). \tag{28}
\]

Figure (3) shows the behavior of both the real and imaginary parts of QNMs. In this range, we observe that the black hole is stable for all QNMs for \(\zeta' > 1 \).

Finally, note that the real part of the QNMs, in the limit of highly damped modes (i.e., QNMs with a large imaginary part), tends to a constant, that is in agreement with Refs. [34] and [35]. This result satisfies the Hod’s conjecture [36].

IV. DILATONIC BLACK HOLE IN FIVE DIMENSIONS

There is a growing interest in five-dimensional dilatonic black holes in recent years, since it is believed that these black holes could shed some light on the fundamental problem of the microscopic origin of the Bekenstein-Hawking entropy. The area-entropy relation \(S_{BH} = A/4 \) was obtained for a class of five-dimensional extremal black holes in Type II string theory, using D-brane techniques [6]. Also, in Ref. [4], the U-duality that exists between the five-dimensional black hole and the two-dimensional charged black hole [5] was used to microscopically compute the entropy of the latter.
FIG. 3: The upper panel shows the real part of the QNM’s frequency as a function of the no-minimal coupling parameter for several overtones, in case of the two-dimensional black hole. Note that, for a high no-minimal parameter, the real part coalesce. The lower panel shows the imaginary part of the QNM’s frequency as a function of the no-minimal coupling parameter, for several overtones. It demonstrates a stable behavior of scalar perturbations for all overtones with $\zeta' > 1$. We have taken $\mu = 1$.

The metric of the five-dimensional dilatonic black hole can be written as [4]

$$ds^2 = \frac{1}{N^2} dt^2 + \frac{1}{N^{-2}} dx^2 + \frac{r_0^2}{r^2} d\Omega_3^2.$$ \hspace{1cm} (29)

This metric is the product of the two completely decoupled parts, namely, an asymptotically flat two-dimensional geometry which describes a two-dimensional charged dilatonic black hole and a three-sphere with constant radius. This statement can be directly show if we apply in the (t, r) sector the transformation defined by

$$e^\frac{2m_x}{r_0^2} = 2 \left(\frac{2r^2}{r_0^2} + \sinh^2 \alpha \right) (m^2 - q^2)^{1/2},$$ \hspace{1cm} (30)

where m and q are related to the mass and charge of the dilatonic black hole [5], then Eq. (29) read as follow

$$ds^2 = -N^2 dt^2 + N^{-2} dx^2 + r_0^2 d\Omega_3^2,$$ \hspace{1cm} (31)
with
\[N^2 = 1 - 2me^{-Qx} + q^2 e^{-2Qx}. \]
Now we consider the uncharged dilatonic black hole metric, with \(q = 0 \),
\[ds^2 = -(1 - 2me^{-Qx})dt^2 + \frac{dx^2}{1 - 2me^{-Qx}}, \]
as the two dimensional sector of five dimensional dilatonic black hole that we are interested to compute the QNM's.
For complete this issue we need to solve the equation of motion associated to the action
\[S[\varphi] = -\frac{1}{2} \int d^5x \sqrt{-g} \left((\nabla \varphi)^2 + (m^2 + \zeta R) \varphi^2 \right), \]
where \(\zeta \) is a parameter from non-minimal coupling. The field equation reads as follows,
\[\(\Box - \mu^2 - \zeta'R + \nabla^2_{(S^3)} \) \varphi = 0, \]
where \(\mu = r_0 m, \zeta' = \frac{\zeta}{r_0} \) and \(\nabla^2_{(S^3)} \) is the Laplace-Beltrami operator in the \(S^3 \) sphere. We adopt the following ansatz,
\[\varphi \sim \Phi(t, x) Y(\chi, \theta, \phi), \]
where \(Y \) is a normalizable harmonic function on \(S^3 \), i.e., it satisfies the equation \(\nabla^2_{(S^3)} Y = \alpha Y \), that in terms of the coordinates in \(S^3 \) can be written as
\[\csc^2 \chi \left(\frac{\partial}{\partial \chi} \left(\sin^2 \chi \frac{\partial Y}{\partial \chi} \right) + \csc^2 \theta \left(\frac{\partial}{\partial \theta} \left(\sin^2 \theta \frac{\partial Y}{\partial \theta} \right) \right) \right) + \csc \theta \frac{\partial^2 Y}{\partial \phi^2} = \alpha Y^{(nlm)}, \]
and its solutions are given by
\[Y^{(nlm)}(\chi, \theta, \phi) = \left(\frac{2^{l+1} (n + 1)(n - l)! l^2}{\pi (n + l + 1)!} \right) \sin^l \chi C_n^{(l+1)}(c \cos \chi) Y^{(lm)}(\theta, \phi). \]
Here, \(C_n^{(l+1)}(c \cos \chi) \) are the Gegenbauer polynomials \([31, 37] \), \(Y^{(lm)}(\theta, \phi) \) are the \(S^3 \) scalar harmonics, and the coefficient is chosen to normalize the harmonics. The eigenvalues are
\[\alpha = -n(n + 2), \quad |m| \leq l \leq n = 0, 1, 2, \]
Therefore, in this ansatz, we can write Eq. (35) in the following form,
\[\(\Box - \mu^2 - \zeta'R + n(n + 2) \) \Phi(t, x) = 0, \]
that is identical to Eq. (6) where the term \(n(n + 2) \) is an additive constant. If we repeat the analysis made in the previous section, we find that the frequencies of the QNMs are given by
\[\omega_{5D} = -\frac{i}{4} \left(1 - \sqrt{1 - 4\zeta'} - \frac{(1 + \sqrt{1 - 4\zeta'}) \mu^2 - n(n + 2)}{n' + n'^2 + \zeta'} + n' \left(2 - \frac{2\mu^2 - 2n(n + 2)}{n' + n'^2 + \zeta'} \right) \right), \]
with \(n \) and \(n' \) integer numbers. The last expression shows a behavior similar to the one of the two-dimensional black hole in the range \(0 \leq \zeta' \leq 1/4 \), when \(n = 0 \). If \(n \neq 0 \), the situation is completely different due to the inclusion of transverse part that ensures the stability of the five-dimensional black hole over all QNMs. This result is shown in Fig.(4) for \(n = 1 \) and \(\mu = 1 \).
In the range \(\zeta' > 1/4 \), a behavior similar to the one of two-dimensional case is obtained, that is, the QNMs acquire the same real and imaginary parts, and the inclusion of the transverse term ensures the stability in this case, as well. Note that, in the limit of high damping, the real part tends to the same constant as in the two-dimensional case.
FIG. 4: The imaginary part of the QNM’s frequency as a function of the no-minimal coupling parameter is illustrated for several overtones. This plot shows the stable behavior of scalar perturbations for all overtones of the five-dimensional dilatonic black hole.

V. FINAL REMARKS

In this paper we computed the exact values of the quasinormal modes of dilatonic black holes in 1 + 1 and 4 + 1 dimensions and we showed that the QNMs are purely imaginary (this kind of QNMs was also reported in Refs. 21, 32, 33, 39, 40, 41) in the range 0 ≤ ζ' ≤ 1/4 for the no-minimal coupling parameter. For values of this parameter in the range ζ' > 1/4, we found that the QNMs acquire real parts in both two- and five-dimensional cases, and in the limit of higher damping they tend to the same constant. This result is in agreement with the Hod’s conjecture 36 and it also matches with the results obtained in Ref. 34 using the WKB approximation, and in Ref. 35 where the monodromy approach was adopted. Since the considered kind of black hole does not exhibit a real part in QNMs in the range 0 ≤ ζ' ≤ 1/4, it means that a verification of the Hod’s proposal depends on the values of the no-minimal coupling parameter. Thus, the Hod’s conjecture is no clear at present, and is fully applicable for a single horizon black hole obtained in pure Einstein gravity theory. Besides, we found that this geometry is unstable under scalar perturbations that excite the zero modes. On the other hand, the result shows the large stabilities of the dilatonic black hole for the perturbations that excite the overtones with n > µ in the minimal case, and n > µ − 1/2 in the conformal case, where all overtones are taken in the higher damping limit. Finally, we would like to emphasize that this result can also be applied to compute the QNMs in five-dimensional case 4, 5, where the metric is the product of a two-dimensional asymptotically flat geometry and a three-sphere with constant radius, where these two parts are completely decoupled from each other.
Acknowledgments

We are grateful to G. Giribet and O. Miskovic for many useful discussions, helpful comments and criticism. The authors acknowledge the referee for useful suggestions in order to improve the presentation of the results of this paper. This work was supported by COMISION NACIONAL DE CIENCIAS Y TECNOLOGIA through FONDECYT Grant 1040229 (SL) and 11060515 (JS). This work was also partially supported by PUCV Grant No. 123.784/2006 (SL) and No. 123.785/2005 (JS); and by Proyecto SEMILLA UdeC-PUCV Ns 123.105 and 123.106. R. B. was supported by CONICYT Scholarship 2006.

[1] S. P. Robinson and F. Wilczek, “A relationship between Hawking radiation and gravitational anomalies,” Phys. Rev. Lett. 95, 011303 (2005).
[2] Y. S. Myung and H. W. Lee, “Schwarzschild Black Hole In The Dilatonic Domain Wall,” Phys. Rev. D 63, 064034 (2001)
[3] T. Torii and K. i. Maeda, “Stability of a dilatonic black hole with a Gauss-Bonnet term,” Phys. Rev. D 58, 084004 (1998).
[4] E. Teo, “Statistical entropy of charged two-dimensional black holes,” Phys. Lett. B 430, 57 (1998)
[5] M. D. McGuigan, C. R. Nappi and S. A. Yost, “charged black holes in two-dimensional string theory,” Nucl. Phys. B 375, 421 (1992).
[6] A. Strominger and C. Vafa, “Microscopic Origin of the Bekenstein-Hawking Entropy,” Phys. Lett. B 379, 99 (1996).
[7] K. D. Kokkotas and B. G. Schmidt, “Quasi-normal modes of stars and black holes,” Living Rev. Rel. 2, 2 (1999).
[8] G. T. Horowitz and V. E. Hubeny, “Quasinormal modes of AdS black holes and the approach to thermal equilibrium,” Phys. Rev. D 62, 024027 (2000).
[9] V. Cardoso and J. P. S. Lemos, “Quasi-normal modes of Schwarzschild anti-de Sitter black holes: Electromagnetic and gravitational perturbations,” Phys. Rev. D 64, 084017 (2001).
[10] V. Cardoso, R. Konoplya and J. P. S. Lemos, “Quasinormal frequencies of Schwarzschild black holes in anti-de Sitter spacetimes: A complete study on the asymptotic behavior,” Phys. Rev. D 68, 044024 (2003).
[11] J. Natario and R. Schiappa, “On the classification of asymptotic quasinormal frequencies for d-dimensional black holes and quantum gravity,” Adv. Theor. Math. Phys. 8, 1001 (2004).
[12] V. Cardoso, J. Natario and R. Schiappa, “Asymptotic quasinormal frequencies for black holes in non-asymptotically flat spacetimes,” J. Math. Phys. 45, 4698 (2004).
[13] J. S. F. Chan and R. B. Mann, “Scalar wave falloff in topological black hole backgrounds,” Phys. Rev. D 59, 064025 (1999).
[14] B. Wang, E. Abdalla and R. B. Mann, “Scalar wave propagation in topological black hole backgrounds,” Phys. Rev. D 65, 084006 (2002).
[15] R. A. Konoplya, “Gravitational quasinormal radiation of higher-dimensional black holes,” Phys. Rev. D 68, 124017 (2003).
[16] J. S. F. Chan and R. B. Mann, “Scalar wave falloff in asymptotically anti-de Sitter backgrounds,” Phys. Rev. D 55, 7546 (1997).
[17] V. Cardoso and J. P. S. Lemos, “Scalar, electromagnetic and Weyl perturbations of BTZ black holes: Quasi normal modes,” Phys. Rev. D 63, 124015 (2001).
[18] J. Crisostomo, S. Lepe and J. Saavedra, “Quasinormal modes of extremal BTZ black hole,” Class. Quant. Grav. 21, 2801 (2004).
[19] E. Berti, V. Cardoso and J. P. S. Lemos, “Quasinormal modes and classical wave propagation in analogue black holes,” Phys. Rev. D 70, 124006 (2004).
[20] S. Lepe and J. Saavedra, “Quasinormal modes, superradiance and area spectrum for 2+1 acoustic black holes,” Phys. Lett. B 617, 174 (2005).
[21] J. Saavedra, “Quasinormal modes of Unruh’s acoustic black hole,” Mod. Phys. Lett. A 21, 1601 (2006).
[22] V. Ferrari, M. Pauri and F. Piazza, “Quasi-normal modes of charged, dilaton black holes,” Phys. Rev. D 63, 064009 (2001).
[23] S. Fernando and K. Arnold, “Scalar perturbations of charged dilaton black holes,” Gen. Rel. Grav. 36, 1805 (2004).
[24] A. Kudoh and A. Matsuura, “Decay of charged scalar field around a black hole: Quasinormal modes of R-N, R-N-AdS and dilaton black hole,” Phys. Rev. D 66, 084007 (2002).
[25] E. Witten, “On string theory and black holes,” Phys. Rev. D 44, 314 (1991).
[26] A. Rahaman, “Information loss paradox tested on chiral fermion coupled to a background dilatonic field,” arXiv:hep-th/0607173.
[27] S. T. Hong, “Thermodynamics of (1+1) dilatonic black holes in global flat embedding scheme,” Phys. Lett. B 623, 135 (2005).
[28] S. Nojiri, S. D. Odintsov and S. Zerbini, “Quantum (in)stability of dilatonic AdS backgrounds and holographic renormalization group with gravity,” Phys. Rev. D 62, 064006 (2000).
[29] A. Ghosh and P. Mitra, “Entropy in dilatonic black hole background,” Phys. Rev. Lett. 73, 2521 (1994).
[30] V. P. Frolov and A. Zelnikov, “Non-minimally coupled massive scalar field in a 2D black hole: Exactly solvable model,” Phys. Rev. D 63, 125026 (2001).
[31] M. Abramowitz and I. Stegun, Handbook of mathematical functions, (Dover Publications, New York, 1970).
[32] S. Fernando, “Quasinormal modes of charged dilaton black holes in 2+1 dimensions,” Gen. Rel. Grav. 36, 71 (2004).
[33] M. Azreg-Aïnou, “Instability of two-dimensional heterotic stringy black holes,” Class. Quant. Grav. 16, 245 (1999).
[34] H. Nomura and T. Tamaki, “The Asymptotic Quasinormal Modes Of Dilatonic Black Holes,” J. Phys. Conf. Ser. 24, 123 (2005).
[35] R. G. Daghigh and G. Kunstatter, “Highly damped quasinormal modes of generic single horizon black holes,” Class. Quant. Grav. 22, 4113 (2005).
[36] S. Hod, “Bohr’s correspondence principle and the area spectrum of quantum black holes,” Phys. Rev. Lett. 81, 4293 (1998).
[37] V. D. Sandberg, “Tensor spherical harmonics on S^2 ans S^3 as eigenvalue problems”, J. Math. Phys. 19, 2441 (1978).
[38] A. Lopez-Ortega, “Quasinormal modes of D-dimensional de Sitter spacetime,” [arXiv:gr-qc/0605027].
[39] A. Lopez-Ortega, “Absorption and quasinormal modes of classical fields propagating on 3D and 4D de Sitter spacetime,” Gen. Rel. Grav. 38, 743 (2006).
[40] A. Lopez-Ortega, “Hawking radiation and Dirac quasinormal modes of 3D EMD Lambda black holes,” Gen. Rel. Grav. 37, 167 (2005).
[41] E. Berti and K. D. Kokkotas, “Quasinormal modes of Reissner-Nordstroem-anti-de Sitter black holes:Scalar, electromagnetic and gravitational perturbations,” Phys. Rev. D 67, 064020 (2003).