LibSignal: An Open Library for Traffic Signal Control

Hao Mei∗†, Xiaoliang Lei∗‡, Longchao Da†, Bin Shi‡, Hua Wei§††

†New Jersey Institute of Technology, ‡Xi’an Jiaotong University
hm467@njit.edu, shawlenleo@stu.xjtu.edu.cn, ld49@njit.edu,
shibin@xjtu.edu.cn, hua.wei@njit.edu

Abstract

This paper introduces a library for cross-simulator comparison of reinforcement learning models in traffic signal control tasks. This library is developed to implement recent state-of-the-art reinforcement learning models with extensible interfaces and unified cross-simulator evaluation metrics. It supports commonly-used simulators in traffic signal control tasks, including Simulation of Urban MOBility (SUMO) and CityFlow, and multiple benchmark datasets for fair comparisons. We conducted experiments to validate our implementation of the models and to calibrate the simulators so that the experiments from one simulator could be referential to the other. Based on the validated models and calibrated environments, this paper compares and reports the performance of current state-of-the-art RL algorithms across different datasets and simulators. This is the first time that these methods have been compared fairly under the same datasets with different simulators.

1 Introduction

Traffic signals coordinate the traffic movements at the intersection, and a smart traffic signal control algorithm is the key to transportation efficiency. Traffic signal control remains an active research topic because of the high complexity of the problem. The traffic situations are highly dynamic and thus require traffic signal plans to adjust to different situations. People have recently started investigating reinforcement learning (RL) techniques for traffic signal control. Several studies have shown the superior performance of RL techniques over traditional transportation approaches [23, 19, 26, 11, 10]. The biggest advantage of RL is that it directly learns how to take the next actions by observing the feedback from the environment after previous actions.

In literature, a number of traffic signal control methods have been proposed [27, 21], and it has attracted much attention to facilitate the implementation or use of these proposed methods. However, as shown in Table 1, current methods are distributed among different simulators and datasets. As we will show later in this paper, datasets, simulators, and even evaluation metrics vary the performance for the same algorithm. In addition, reinforcement learning is also sensitive to hyper-parameters. All these make it difficult for new traffic signal control methods to ensure effective and uniform improvement. Therefore, there is an urgent need for a cross-platform, unified process with extensible code base that supports multiple models.

This paper presents a unified, flexible, and comprehensive traffic signal control library named LibSignal. Our library is implemented based on PyTorch and includes all the necessary steps or components related to traffic signal control into a systematic pipeline. We consider two mainstream simulators, SUMO and CityFlow, and provide various datasets, models, and utilities to support data

Riarxv:2211.10649v2 [cs.LG] 29 Nov 2023

Reinforcement Learning for Real Life (RL4RealLife) Workshop in the 36th Conference on Neural Information Processing Systems (NeurIPS 2022).
Table 1: Summary of the state-of-the-art models (a partial list), sorted by citations from Google Scholar by 2022/06/08. Full list can be found in https://darl-libsignal.github.io/

Method	Venue	Code	Simulator	Dataset (* means open accessed)	Main Metrics
LibSignal					
IntellihLight	KDD 2018	321	SUMO	Jinan 1x1	Travel Time, speed, queue length, approximated delay
IPQN	arXiv 2019	53	SUMO	LA 1x3*, Jinan 1x1, Hangzhou 1x1	Travel Time
MAPF	HTS 2019	308	SUMO	Grid 4x4, Monaco	Approximated delay, queue length
CoLight	CBM 2019	116	CityFlow	Hangzhou 4x4*, Jinan 3x4*,	Travel Time
MLP Light	AAAI 2020	98	CityFlow	Grid 4x4, Manhattan	Time, throughput
ProLight	KDD 2019	93	CityFlow	Jinan 1x1, State College*,	Time, throughput
PRO Light	AAAI 2019	67	CityFlow	Hangzhou 1x1*, Beijing 1x1*,	Time, throughput
MetaLight	AAAI 2020	43	CityFlow	Hangzhou 1x1*, Atlanta 1x5*,	Time, throughput
DemoLight	CBM 2019	22	CityFlow	Hangzhou 1x1*, Hangzhou 4x4*	Time, throughput
FMA Light	AAMAS 2020	16	SUMO	4x4 Grid, Monaco	Queue length, throughput, delay
TPG	KDD 2019	15	SUMO	Roundabout	Queue length, waiting time, throughput, speed
AttentLight	NeurIPS 2020	12	CityFlow	Hangzhou 4x4*, Atlanta 1x5*	Travel time
HiLight	AAAI 2021	12	CityFlow	Hangzhou 4x4*, Jinan 3x4*,	Travel time, throughput
IC3	HTS 2021	11	SUMO	Manhattan	Approximated delay
ExplainPC	ITSC 2019	11	SUMO	Roundabout	Waiting time, throughput
RANC	HTS 2021	6	SUMO	Monaco*	Waiting time, queue length
GeneralLight	CBM 2020	4	CityFlow	Hangzhou 1x1*, Atlanta 1x5*,	Time, throughput
OP-Tree	ITSC 2020	4	SUMO	synthetics	Delay
DPC	ITSC 2021	2	SUMO	synthetics	Waiting time
DynSoT	CBM 2021	0	CityFlow	Hangzhou 4x4*, Jinan 3x4*, Grid 4x4*	Travel time, throughput
EMV	HTS 2022	0	SUMO	Hangzhou 4x4*	Waiting time, queue length

Contributions: To the best of our knowledge, **LibSignal** is the first open-source library that provides benchmarking results for traffic signal control methods across various datasets and simulators. The main features of **LibSignal** can be summarized in three aspects:

- **Unified:** **LibSignal** builds a systematic pipeline to implement, use and evaluate traffic signal control models in a unified platform. We design cross-simulator data configuration, unified model instantiation interfaces, and standardized evaluation procedures.

- **Comprehensive:** 10 models covering two traffic simulators have been reproduced to form a comprehensive model warehouse. Meanwhile, **LibSignal** collects 9 commonly used datasets from different sources, makes them compatible for both simulators, and implements a series of commonly used evaluation metrics and strategies for performance evaluation.

- **Extensible:** **LibSignal** enables a modular design of different components, allowing users to flexibly insert customized components into the library. It also has an OpenAI Gym interface which allows easy deployment of standard RL algorithms.

What LibSignal isn’t: Despite the ability to train and test across different simulators, **LibSignal** does not claim the performances of the same model on different simulators are identical. There are some differences of internal mechanisms between different simulators, for example, vehicle’s maneuver behaviors, and our emphasis is on the relative performance of compatible policies we provide. This makes **LibSignal** a possible testbed for Sim-to-Real transfer, which is not covered by this paper.

2 Background

2.1 Reinforcement Learning for Traffic Signal Control

Problem formulation We now introduce the general setting of the RL-based traffic signal control problem, in which the traffic signals are controlled by an RL agent or several RL agents. The environment is the traffic conditions on the roads, and the agents control the traffic signals’ phases. At each time step \(t \), a description of the environment (e.g., signal phase, waiting time of cars, queue length of cars, and positions of cars) will be generated as the state \(s^t \). The agents will predict the next actions \(a^t \) to take that maximize the expected return, where the action of a single intersection could be changing to a certain phase. The actions \(a^t \) will be executed in the environment, and a reward \(r^t \) will be generated, where the reward could be defined on the traffic conditions of the intersections.
Basic components of RL-based traffic signal control A key question for RL is how to formulate the RL setting, i.e., the reward, state and action definition. For more discussions on the reward, state, and actions, we refer interested readers to [27][14][22]. There are three main components to formulate the problem under the framework of RL:

• Reward design. As RL is learning to maximize a numerical reward, the choice of reward determines the direction of learning. A typical reward definition for traffic signal control is one factor or a weighted linear combination of several components such as queue length, waiting time and delay.
• State design. State captures the situation on the road and converts it to values. Thus the choice of states should sufficiently describe the environment. The state features queue length, the number of cars, waiting time, and the current traffic signal phase. Images of vehicles’ positions on the roads can also be considered into the state.
• Selection of action scheme. Different action schemes also have influences on the performance of traffic signal control strategies. For example, if the action of an agent is acyclic, i.e., “which phase to change to”, the traffic signal will be more flexible than a cyclic action, i.e., “keep current phase or change to the next phase in a cycle”.

2.2 Difficulties in Evaluation

In practice, the evaluation of traffic signal control methods could be largely influenced by simulation settings, including the evaluation metrics and simulation environments.

Evaluation metrics Various measures have been proposed to quantify the efficiency of the intersection from different perspectives, including the average delay of vehicles, the average queue length in the road network, the average travel time of all vehicles, and the throughput of the road network. Signal induced delay is another widely used metric, and previous work suggested real-time approximation as the difference between the vehicle’s current speed and the maximum speed limit over all vehicles. But as we will show in Section 4.2, this approximated delay is not reflecting the actual delay. Queue length is another mostly used metrics [23], while different definitions of a “queuing” state of a vehicle could largely influence the performance of the same method. In comparison, travel time and throughput are more robust to ad-hoc definitions and approximations. As we will show later, with the same experimental setting, the performance of the same method could be different under different metric, and we aim to provide as comprehensive and flexible metrics as possible in this paper to benchmark methods with a comprehensive view.

Simulation environments Since deploying and testing traffic signal control strategies in the real world involve high cost and intensive labor, simulation is a useful alternative before actual implementation. Different choices of simulator could lead to different evaluation performances.

Currently, there are two representative open-source microscopic simulators: Simulation of Urban MOBility (SUMO) [9] and CityFlow [30]. SUMO is widely accepted in the transportation community and is a reasonable testbed choice. Compared with SUMO, CityFlow is a simulator optimized for reinforcement learning with faster simulation, while it is not widely used by the transportation field yet.

Because of these different simulation environments, methods adopted by different simulators in their original papers are hard to evaluate. As we will show later, methods perform differently under different well-calibrated simulators, and the efficiency of the training process is also different under different simulators. This paper, for the first time, compares the performances of the same model under the same traffic datasets under different simulators.

2.3 Existing Libraries and Tools

[1] is an open-source library that provides a bunch of RL-based traffic signal control methods with traffic datasets only on CityFlow [30]. Flow [8] and RESCO [2] are reinforcement learning frameworks that can support the design and experimentation of traffic signal control methods only on SUMO [9]. TSLib [17] is another library that could work under both SUMO and CityFlow, yet it has limited extensibility: (1) it is difficult to deploy standard RL algorithms since it does not have an OpenAI Gym interface; (2) there are no benchmarking datasets that work across both simulators, which makes it challenging to help determine which algorithm results in state-of-the-art performance.

1http://sumo.sourceforge.net
2https://cityflow-project.github.io/
3 \textit{LibSignal} Toolkit

We propose \textit{LibSignal} library integrating different influential traffic flow simulators and denote it as a standard RL traffic control testbed. The primary purposes of this standard testbed are:

1. Provide a converter to transform configurations including road networks and traffic flow files across different simulators, enabling comparisons between different algorithms originally conducted in different simulators.
2. A standardized implementation of state-of-the-art RL-based and traditional traffic control algorithms.
3. A cross-simulator environment provides highly unified functions to interact with different baselines or user-defined models and supports performance comparisons among them.

\textit{LibSignal} is open source and free to use/modify under the GNU General Public License 3. The code is built on top of GeneraLight \cite{31} and is available on Github at \url{https://darl-libsignal.github.io/}. The embedded traffic datasets are distributed with their own licenses from \cite{1} and \cite{2}, whose licenses are under the GNU General Public License 3. SUMO is licensed under the EPL 2.0, and CityFlow is under Apache 2.0. The overall framework of \textit{LibSignal} is presented in Figure 1, and the implementation details will be introduced in the following sections.

![Figure 1: Overall framework of LibSignal](image)

3.1 Data Preparation

To enable fair comparison, \textit{LibSignal} preprocesses comprehensive datasets making it runnable under different simulators. Users can easily choose to specify datasets and simulators for their experiments.

\textbf{Comprehensive datasets} By surveying the recent literatures on traffic prediction, we selected 225 representative or survey papers (more details can be found in Table 1). We collected all the open datasets used by these papers and kept 9 datasets according to the factors of popularity, which can cover 65% papers of our reproduced model list and all the two simulators \textit{LibSignal} supports. To directly use these datasets in \textit{LibSignal}, we have converted all the 9 datasets into the format of atomic files, and provided the conversion tools for new datasets. Please refer to our GitHub page for dataset statistics, preprocessed copies, and conversion tools at \url{https://darl-libsignal.github.io/}.

\textbf{Cross-simulator atomic files} To make the experimental configuration adaptive across different simulators, we consider two basic units called “atomic files” that can map to the different simulation environments. 1) \textit{Road network file} stores the basic structure of a traffic network consisting of road, lane, and traffic light information. The atomic file under the SUMO environment is in the format of \texttt{.net.xml} while in CityFlow it’s \texttt{.json}. 2) \textit{Traffic flow file} stores the vehicles information and is in \texttt{.rou.xml} and \texttt{.json} format in SUMO and CityFlow respectively. To make experiments comparable among different simulators, we also provide a \texttt{converter.py} tool to convert basic atomic files between different simulators. For example, it takes in \textit{Road network file} and \textit{Traffic flow file} from the source simulator and generates new files in the target simulator’s formation, which could later be used in experiments. Figure 3 shows the converted network between different simulators.
3.2 Traffic Signal Control Environment

Once the necessary parameters have been set up for simulation and agents, we can start a traffic light control task experiment. The World environment is highly homogeneous across different simulators and could provide unified interfaces to communicate with different agents.

Homogeneous world In LibSignal, World module provides the basic information from different simulators in unified interfaces compatible with OpenAI Gym [3], which could later be utilized for interacting between different simulators and Agent. In the World class, we provide an info functions object inside to help retrieve information from different simulator environments and update information after each simulator performs a step. The info functions contain state information including lane_count, lane_waiting_count, lane_waiting_time_count, pressure, phase, and metrics including throughput, average_travel_time, lane_delay, lane_vehicles. These info functions will later be called by Generator class and pass information into Agent. step() function is another common function shared between different World classes. It takes in actions returned from Agent class and passes them into the simulator for next step execution. And action is either sampled from action space for exploration or calculated from the model after optimization. Generally, the action space contains eight phases. However, in highly heterogeneous traffic structures, the action space may differ and is provided by the simulators whose action parameters are taken from configuration files.

Unified interfaces LibSignal provides unified interfaces to process common information with Generator module and Metrics module. For lane level information, including state, reward, phase, and other lane level metrics, we provide Generator module, which could interact with different World classes and then sort and pass information to different Agent classes. The state, reward, and phase information will later be utilized by Agent module to train their models or decide next step actions and feedback to World module. At the same time, the other lane level metrics, including queue length and lane delay, will be passed to Metrics module for model evaluation. LibSignal currently supports four metrics: the average delay of vehicles (delay), the average queue length in the road network (queue), the average travel time of all vehicles (travel time), and the throughput of the road network (throughput). Their detailed calculation can be found in Appendix.

3.3 Comprehensive Models

LibSignal implements three baseline controllers and seven RL-based controllers covering Q-learning and Actor-Critic methods, as is shown in Table 2. These methods can also be integrated with existing RL implementation packages and customized on their state, action, and reward design.

Table 2: Detailed design of implemented models in LibSignal.

Agent	State	Action	Reward	Method	Description
FixedTime	-	Cyclic	-	Non-RL	This agent gives a predefined time duration and phase order.
SOTL	-	Acyclic	-	Non-RL	This agent selects the phase among all to maximize the pressure calculated from the upstream and downstream queue length.
MaxPressure	-	Acyclic	-	Non-RL	This agent determines next phase by considering competitive phases.
IDQN	lane vehicle count, phase	Acyclic	lane waiting vehicle count	Q-Learning	This agent determines each intersection’s action with its own intersection information.
CoLight	lane vehicle count, phase	Acyclic	lane waiting vehicle count	Q-Learning	This agent considers neighbor intersections cooperation through graph attention networks.
PressLight	lane vehicle count, phase	Acyclic	pressure	Q-Learning	This agent coordinates traffic signals by learning MaxPressure.
IPPO	lane vehicle count, phase	Acyclic	lane vehicle waiting time count	Actor-Critic	This agent optimizes agent control policy with multi-agent policy gradient method.
MAPG	lane vehicle count	Acyclic	lane waiting vehicle count	Actor-Critic	This agent captures the phase competition relation between traffic movements through a modified network structure.
FRAP	lane vehicle count, phase	Acyclic	lane waiting vehicle count	Q-Learning	This agent is based on pfrl and integrates pressure into state and reward design.
MPLight	pressure, phase	Acyclic	pressure	Q-Learning	This agent is based on FRAP and integrates pressure into state and reward design.

Extensible design LibSignal provides a flexible interface to help users customize their own RL model and RL design (state, reward, and action). Users can define their model through Agent module by completing abstract methods predefined in BaseAgent class. Existing RL libraries like pfrl can also be integrated into Agent class. LibSignal also provide different state and reward functions.
by instantiating Generator with subscribed function names in info_functions to retrieve queue length, pressure, average lane speed, etc. Users could also customize their own reward or state functions by constructing a key-value mapping between new defined functions and info_functions, which could be carried to Agent later by Generator class.

4 Experiment

In this section, we first present our result and verify that our implementation is consistent with previous publications. In the second part, we compare different algorithms’ performance with different datasets in both SUMO and CityFlow. Finally, we test the feasibility of LibSignal to verify it can properly run on large-scale and complex road net. Further, we also adapt algorithms from widely used RL library to testify our Agent module is flexible and easy to manipulate. Along the experiments, we will discuss the answers to several questions that motivate LibSignal: Which simulator should I conduct experiments on? Which evaluation metrics should I use? Which RL method should I choose? Is LibSignal suitable for my research?

4.1 Validation and Calibration

For testifying our PyTorch benchmark algorithms implementation, we compare the learning curves and final performances of the RL algorithms originally implemented in TensorFlow library. The simulator setting and observed traffic information are chosen to be similar to those used in previous publications.

TensorFlow to PyTorch validation To validate the model’s performance under the framework, LibSignal re-implemented some of the previous models from TensorFlow with PyTorch. For example, IDQN [34] and CoLight [20] are originally implemented in TensorFlow, we reproduce the experiments of these models and compare their performance in CityFlow simulator. Figure 2 presents the learning curves and final performance of the original TensorFlow and our PyTorch implementation. On CityFlow1x1, the average travel time (in seconds) of our IDQN implementation converges to 116.28 which is also close to the original’s 127.07 from [34]. Our CoLight implementation converges to 344.41 on average travel time metric, which is close to TensorFlow’s 344.49 from [20].

Figure 2: Convergence curve of models implemented in their original form (Tensorflow) and in LibSignal (PyTorch). Y-axis are the testing results w.r.t. average travel time (in seconds). Validation for more models can be found in Appendix.

SUMO and CityFlow calibration. To validate the algorithms performances are consistent in both SUMO and CityFlow, we calibrate under three road networks Grid4x4, Cologne1x1 and HangZhou4x4. Their road network is shown in Figure 3. In addition, we compare MaxPressure, SOTL and FixedTime algorithms performance since these three algorithms are deterministic given fixed network and traffic flow files. Table 3 shows the overall performance before and after calibration. We have the following observations:

- Under grid-like networks (Grid4x4, HangZhou4x4), SUMO and CityFlow could achieve similar performance. Different agents’ performance is not identical across simulators, but their rank within the same simulator is relatively consistent.
- The discrepancy appears under more complex networks like Cologne1x1 before calibration. Before calibration, we can see that FixedTime and SOTL perform worse than MaxPressure. After calibration,
Figure 3: Road networks in different simulators for calibration. The pictures with a gray background are the visualization of networks in the SUMO simulator, and the ones with the white background are in CityFlow. These are the outlines of traffic structures transferred between each other (More networks can be found in Appendix).

Table 3: Performance comparison of agents w.r.t. average travel time (in seconds) before and after calibration

Calibration	Before	After	Before	After	Before	After	Before	After			
	Grid4x4	Cologne1x1	HangZhou4x4	Grid4x4	Cologne1x1	HangZhou4x4	Grid4x4	Cologne1x1	HangZhou4x4		
Avg. Travel Time	CityFlow	SUMO									
MaxPressure	361.2878	143.8296	51.7875	58.9908	185.0034	255.0352	122.5275	143.8296	58.9908	365.0634	320.4125
FixedTime	290.9525	194.6542	156.6599	257.4194	689.0221	300.6685	179.6606	194.6542	206.4620	689.0221	535.0060
SOTL	185.8846	208.3936	1356.6037	49.9770	354.1250	389.7881	187.8568	208.3936	50.5813	354.1250	386.7881

the same agent’s performance is close and within an acceptable discrepancy between SUMO and CityFlow. Moreover, the ranking of the performances for different agents is consistent across different simulators after calibration. To double check our calibration is correct, IDQN algorithms are also trained under cologne1x1 with different simulators. In CityFlow and SUMO simulator, the results are 50.581 and 49.977 in cologne1x1 w.r.t average travel time (in seconds), which further proved our calibration is correct.

We modified some default settings in SUMO to compare the algorithms’ performance under different simulators as comprehensively and fairly as possible, e.g., disabled the feature of dynamic routing and set teleport to be -1. But it is worth noting that there are still some discrepancies that our current calibration cannot address. For example, SUMO has pedestrian traffic signals that CityFlow does not support, where vehicles will decelerate when they encounter the pedestrian traffic signals in SUMO and in CityFlow the vehicles will pass the intersection at normal speed. In addition, the vehicles in SUMO will also randomly decelerate when approaching a traffic signal even though the traffic signal is located further away; In comparison, the vehicles in CityFlow will not have such randomness.

4.2 Overall Performance

For comparative purposes, all benchmark RL models and traditional traffic control algorithms were compared under different simulator environments. All observations and rewards are set to be the same if not specifically mentioned, and all the hyperparameters are set according to the original implementations. We represent the final results truncated at 200 training iterations for a fair comparison, since most algorithms could converge within this period. While IPPO and MAPG are noticeable for their high demand for training time, we provide the full converge curve in the Appendix. The results are summarized in Table 4. We have the following observations:

• Under the same dataset and simulator, the performance of the same model varies w.r.t. current four metrics. Travel time and queue length are consistent with each other in most cases. Throughput sometimes is hard to differentiate the identical results under certain datasets. For example, in Grid4x4, all the methods served the same number of vehicles. Delay sometime aligns with queue length and travel time, but can be different from all the other three metrics in some cases, e.g., Cologne1x3 under CityFlow and Grid4x4 under SUMO. This is because the delay is approximated from the average speed proposed by [2] and is not the actual delay calculated by vehicles’ total travel time and desired travel time under maximum speed.

• Traditional transportation methods like MaxPressure can achieve consistent satisfactory performance though it is not the best. IDQN performs the best in single intersection scenarios. With more complicated road networks like Cologne1x1 and Cologne1x3, PressLight achieves better performance.
and second best performance highlighted.

We also conducted experiments for different network scalability and complexity, and the results can be found in the Appendix.

4.3 Discussion

Which simulator should I conduct experiments on? From the running time comparison in Table 4 between SUMO and CityFlow simulator, we find that CityFlow and SUMO (with Libsumo)'s time cost is around ten times less than SUMO (with TraCI) which indicates its higher running efficiency. Different from CityFlow, SUMO provides a more accurate depiction of vehicles’ state and more complex traffic operations, including changing lanes and 'U-turn'. Also, SUMO provides users with more realistic settings, including pedestrians, driver imperfection, collisions, and dynamic routing. Thus, it is more powerful on complex networks and reflecting real-world scenarios.

Which evaluation metrics should I use? Average travel time is generally a good metric to evaluate algorithms’ performance on traffic control tasks. But for settings with dynamic routing, the travel time would not be a good metric as the average travel time of a vehicle can change with dynamic routing. In *LibSignal*, the simulation under SUMO disabled the feature of dynamic routing so the travel time would be good on the current settings. From Table 4, we can see that lane delay and throughput are generally the best metrics to evaluate the performance of different algorithms.
Table 5: Performance comparison w.r.t. the running time (in seconds) of different methods under two simulators.

Running Time	Simulator	FixedTime	MaxPressure	SOTL	IDQN	IPPO	PressLight
CityFlow1x1	CityFlow	5.7593	9.5857	6.0272	2461.7496	2450.7397	1960.7932
	SUMO(Libsumo)	6.0006	4.2174	4.2988	3691.8403	2833.0521	3619.1282
	SUMO(Traci)	7.56791	46.5121	31.4888	3027.9201	5/3662.9677	27097.9588
Cologne1x1	CityFlow	3.3049	2.7601	4.6512	1641.6128	3148.0649	3066.7189
	SUMO(Libsumo)	4.3649	5.1414	5.2771	2649.0341	2581.8182	28653.9256
	SUMO(Traci)	133.6334	24.9327	11.7865	11233.2917	31431.1760	11555.0851

throughput are not always consistent between different simulators and even in the same simulator environment. Sometimes they often show contradictory performances in different datasets. Therefore, we suggest researcher report travel time as a necessity, and other metrics of their interest in their papers.

Which RL method should I choose? From our experiments in Table 4, we can see that Actor-Critic based RL algorithms need a long time to converge. In Cologne1x1, MAPG and IPPO algorithms still perform badly after 200 iterations. IDQN and other Q-learning-based algorithms are generally good choices in all five datasets. We can see that they outperform traditional non-RL algorithms all the time. Comparing results in CityFlow1x1 and Cologne1x3, we find FRAP and MPLight could bring improvement compared to IDQN algorithm.

When should I use LibSignal? Since LibSignal provides a highly unified interface to help users choose or define their functions and extract information from the simulator’s environment, it is a powerful platform for users to investigate the best combination of state and reward functions for current state-of-the-art or their implemented models. Also, users could compare their algorithms with our implemented baseline model using the evaluation metrics we provided. In addition, since LibSignal supports multiple simulation environments, users could also conduct experiments in the different simulation environments to validate that their algorithms are robust and achieve generally good performance under different settings.

When shouldn’t I use LibSignal? Currently, LibSignal only supports SUMO and CityFlow, thus users currently cannot run their experiments with other simulation engines in our library unless implementing an world like LibSignal did for SUMO and CityFlow. Also, users might need to spend extensive labor to compare their experiment results across simulators if they use their datasets because of dataset calibration. Furthermore, if users plan to use algorithms with extra information like FRAP [33], they might need to define competitive phases, and the implementation of their agents under complex or large-scale network which should be rather complicated.

5 Conclusion

In this paper, we introduced LibSignal, a highly unified, extensible, and comprehensive library for traffic light control tasks. We collected and filtered nine commonly used datasets and implemented ten different baseline models across two influential traffic simulators, including SUMO and CityFlow. We both conducted experiments to prove our PyTorch implementation could achieve the same level of performance as the original TensorFlow official code and calibrated simulators to improve the reliability of our cross-simulator environment. Moreover, the performance of all implemented algorithms was compared under various datasets and simulators. We further provided the discussion for researchers interested in this topic with our benchmarking results. In the future, we will implement more state-of-the-art RL-based algorithms and continually support more simulator environments. Further calibration efforts will be made to help different algorithms’ performance comparisons across different simulators.
References

[1] Reinforcement learning for traffic signal control. https://traffic-signal-control.github.io/ Accessed: 2022-05-22.

[2] James Ault and Guni Sharon. Reinforcement learning benchmarks for traffic signal control. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1)*, 2021.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[4] Miaoia Cao, Victor OK Li, and Qi Qi Shuai. A gain with no pain: Exploring intelligent traffic signal control for emergency vehicles. *IEEE Transactions on Intelligent Transportation Systems*, 2022.

[5] Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, Yuanhao Xiong, Kai Xu, and Zhenhui Li. Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pages 3414–3421, 2020.

[6] Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. Multi-agent deep reinforcement learning for large-scale traffic signal control. *IEEE Transactions on Intelligent Transportation Systems*, 21(3):1086–1095, 2019.

[7] François-Xavier Devailly, Denis Larocque, and Laurent Charlin. Ig-rl: Inductive graph reinforcement learning for massive-scale traffic signal control. *IEEE Transactions on Intelligent Transportation Systems*, 2021.

[8] Nishant Kheterpal, Kanaad Parvate, Cathy Wu, Aboudy Kreidieh, Eugene Vinitsky, and Alexandre Bayen. Flow: Deep reinforcement learning for control in sumo. *EPiC Series in Engineering*, 2:134–151, 2018.

[9] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flötteröd, Robert Hilbrich, Leonhard Lück, Johannes Rummel, Peter Wagner, and Evamarie Wießner. Microscopic traffic simulation using sumo. In *2018 21st international conference on intelligent transportation systems (ITSC)*, pages 2575–2582. IEEE, 2018.

[10] Jinming Ma and Feng Wu. Feudal multi-agent deep reinforcement learning for traffic signal control. In *Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems (AAMAS)*, pages 816–824, 2020.

[11] Afshin Oroojlooy, Mohammadreza Nazari, Davood Hajinezhad, and Jorge Silva. Attendlight: Universal attention-based reinforcement learning model for traffic signal control. *Advances in Neural Information Processing Systems*, 33:4079–4090, 2020.

[12] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real transfer of robotic control with dynamics randomization. In *2018 IEEE international conference on robotics and automation (ICRA)*, pages 3803–3810. IEEE, 2018.

[13] Majid Raeis and Alberto Leon-Garcia. A deep reinforcement learning approach for fair traffic signal control. In *2021 IEEE International Intelligent Transportation Systems Conference (ITSC)*, pages 2512–2518. IEEE, 2021.

[14] Toan V. Tran, Thanh-Nam Doan, and Mina Sartipi. Tslib: A unified traffic signal control framework using deep reinforcement learning and benchmarking. In *2021 IEEE International Conference on Big Data (Big Data)*, pages 1739–1747, 2021.
[18] Min Wang, Libing Wu, Jianxin Li, and Liu He. Traffic signal control with reinforcement learning based on region-aware cooperative strategy. *IEEE Transactions on Intelligent Transportation Systems*, 2021.

[19] Hua Wei, Chacha Chen, Guanjie Zheng, Kan Wu, Vikash Gayah, Kai Xu, and Zhenhui Li. Presslight: Learning max pressure control to coordinate traffic signals in arterial network. In *Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pages 1290–1298, 2019.

[20] Hua Wei, Nan Xu, Huichu Zhang, Guanjie Zheng, Xinshi Zang, Chacha Chen, Weinan Zhang, Yanmin Zhu, Kai Xu, and Zhenhui Li. Colight: Learning network-level cooperation for traffic signal control. In *Proceedings of the 28th ACM International Conference on Information and Knowledge Management*, pages 1913–1922, 2019.

[21] Hua Wei, Guanjie Zheng, Vikash Gayah, and Zhenhui Li. A survey on traffic signal control methods. *arXiv preprint arXiv:1904.08117*, 2019.

[22] Hua Wei, Guanjie Zheng, Vikash Gayah, and Zhenhui Li. Recent advances in reinforcement learning for traffic signal control: A survey of models and evaluation. *ACM SIGKDD Explorations Newsletter*, 22(2):12–18, 2021.

[23] Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. Intellilight: A reinforcement learning approach for intelligent traffic light control. In *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pages 2496–2505, 2018.

[24] Libing Wu, Min Wang, Dan Wu, and Jia Wu. Dynstgat: Dynamic spatial-temporal graph attention network for traffic signal control. In *Proceedings of the 30th ACM International Conference on Information & Knowledge Management*, pages 2150–2159, 2021.

[25] Yuanhao Xiong, Guanjie Zheng, Kai Xu, and Zhenhui Li. Learning traffic signal control from demonstrations. In *Proceedings of the 28th ACM International Conference on Information and Knowledge Management*, pages 2289–2292, 2019.

[26] Bingyu Xu, Yaowei Wang, Zhaozhi Wang, Huizhu Jia, and Zongqing Lu. Hierarchically and cooperatively learning traffic signal control. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pages 669–677, 2021.

[27] Kok-Lim Alvin Yau, Junaid Qadir, Hooi Ling Khoo, Mee Hong Ling, and Peter Komisarczuk. A survey on reinforcement learning models and algorithms for traffic signal control. *ACM Computing Surveys (CSUR)*, 50(3):1–38, 2017.

[28] Chia-Cheng Yen, Dipak Ghosal, Michael Zhang, and Chen-Nee Chuah. A deep on-policy learning agent for traffic signal control of multiple intersections. In 2020 *IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)*, pages 1–6. IEEE, 2020.

[29] Xinshi Zang, Huaxiu Yao, Guanjie Zheng, Nan Xu, Kai Xu, and Zhenhui Li. Metalight: Value-based meta-reinforcement learning for traffic signal control. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pages 1153–1160, 2020.

[30] Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan Zhang, Yong Yu, Haiming Jin, and Zhenhui Li. Cityflow: A multi-agent reinforcement learning environment for large scale city traffic scenario. In *The world wide web conference*, pages 3620–3624, 2019.

[31] Huichu Zhang, Chang Liu, Weinan Zhang, Guanjie Zheng, and Yong Yu. Generalight: Improving environment generalization of traffic signal control via meta reinforcement learning. In *Proceedings of the 29th ACM International Conference on Information & Knowledge Management*, pages 1783–1792, 2020.

[32] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. Sim-to-real transfer in deep reinforcement learning for robotics: a survey. In 2020 *IEEE Symposium Series on Computational Intelligence (SSCI)*, pages 737–744. IEEE, 2020.

[33] Guanjie Zheng, Yuanhao Xiong, Xinshi Zang, Jie Feng, Hua Wei, Huichu Zhang, Yong Li, Kai Xu, and Zhenhui Li. Learning phase competition for traffic signal control. In *Proceedings of the 28th ACM International Conference on Information and Knowledge Management*, pages 1963–1972, 2019.

[34] Guanjie Zheng, Xinshi Zang, Nan Xu, Hua Wei, Zhengyao Yu, Vikash Gayah, Kai Xu, and Zhenhui Li. Diagnosing reinforcement learning for traffic signal control, 2019.
A Appendix

A.1 Documentation and License

LibSignal is open source and free to use/modify under the GNU General Public License 3. The code and documents are available on Github at https://darl-libsignal.github.io/ The embedded traffic datasets are distributed with their own licenses from [1] and [2], whose licenses are under the GNU General Public License 3. SUMO is licensed under the EPL 2.0 and CityFlow is under Apache 2.0. All experiments can be reproduced from the source code, which includes all hyper-parameters and configuration. The authors will bear all responsibility in case of violation of rights, etc., ensure access to the data and provide the necessary maintenance.

A.2 Metrics Definition

Average travel time (travel time): The average time that each vehicle spent on traveling within the network, including waiting time and actual travel time. A smaller travel time means the better performance.

Queue length (queue): The average queue length over time, where the queue length at time t is the sum of the number of vehicles waiting on lanes. A smaller queue length means the better performance.

Approximated delay (delay): Averaged difference between the current speed of vehicle and the maximum speed limit of this lane over all vehicles, calculated from $1 - \frac{\sum_{i=1}^{n} v_i}{nv_{max}}$ [2], where n is the number of vehicles on the lane, v_i is the speed of vehicle i and v_{max} is the maximum allowed speed. A smaller delay means the better performance.

Real delay (real delay): Real delay of a vehicle is defined as the time a vehicle has traveled within the environment minus the expected travel time. A smaller delay means better performance.

Throughput: Number of vehicles that have finished their trips until current simulation step. A larger throughput means the better performance.

A.3 Validation

To validate our PyTorch re-implementations performance, we compare the performance of four algorithms which originally implemented in TensorFlow. Fig 4 shows the converge curve of MAPG, PressLight, IDQN, and CoLight in both the train and test phase, which are not provided in Section 4.1. The final performance in Table 6 shows that all four new implementations are consistent with their original TensorFlow implementations.

Table 6: Best episode performance w.r.t. average travel time (in seconds). The performance of models are consistent under TensorFlow and PyTorch.

library	TensorFlow	PyTorch
MAPG on CityFlow1x1	125.786	180.608
IDQN on CityFlow1x1	131.8	116.28
PressLight on HangZhou4x4	342.361	344.75
CoLight on HangZhou4x4	344.49	341.41

A.4 Network Conversion

Current *LibSignal* includes 9 datasets which are converted and calibrated. Their road networks are shown in Figure 5. Other configuration of CityFlow1x1 datasets are similar to CityFlow1x1 appeared in full paper in road network structure, which will not be shown here.

A.5 Calibration Steps

To validate the performance of the algorithms are consistent in both SUMO and CityFlow, we calibrate the simulators in the following aspects:
Figure 4: Convergence curve of models implemented in their original form (TensorFlow) and in LibSignal (PyTorch). Y-axis are the testing results w.r.t. average travel time (in seconds).

Figure 5: Road networks in different simulators for calibration

- **Calibration from SUMO to CityFlow**: To make the conversion of complex networks from SUMO compatible with CityFlow, we redesign the original convert files from [30] with the following: (1) For those .rou files in SUMO that only specify source and destination intersections and ignore roads that would be passing, the router command line in SUMO should be applied to generate full routes before converting it into CityFlow’s .json traffic flow file. (2) We treat all the intersections without traffic signals in SUMO as “virtual” nodes in CityFlow’s .json road network file. (3) We keep the time interval the same for red and yellow signals in SUMO and CityFlow. (4) SUMO has a feature of the dynamic routing of vehicles that CityFlow does not have, currently all the simulation under SUMO in LibSignal disables the dynamic routing.

- **Calibration from CityFlow to SUMO**: The vehicles in CityFlow’s traffic flow file need to be sorted according to their departure time because the SUMO traffic file defaults to the depart time of the preceding vehicle earlier than the following vehicle.

A.6 Supplementary Results

We conduct experiments on all nine datasets and also provide results of the best episode, full converge curves and standard deviations of the performance on the four datasets in full paper.
Table 7: Performance of agents in CityFlow and SUMO on additional datasets that are not shown in Section 4.2 with best and second best performance highlighted.

Network	CityFlow	SUMO						
Simulator	Metric	CityFlow	SUMO	Metric	CityFlow	SUMO		
FixedTime(t_fixed=10)	Travel Time	Queue	Delay	Throughput	Travel Time	Queue	Delay	Throughput
MaxPressure	81.4353	11.3808	4.3774	1388	85.7407	8.7333	4.1472	1377
SOTL	91.2635	20.0139	3.6794	1381	96.8388	13.2667	3.1959	1371
IDQN	79.6013	7.9086	0.4254	1390	78.0851	5.8111	0.3640	1379
MAPG	80.7183	13.8358	0.0647	1437	125.8813	61.9204	0.3482	935
IPPO	73.3724	13.0769	0.0693	748	90.9229	10.64	0.4447	1375
PressLight	84.7316	9.2889	0.4345	1385	85.783	8.9639	0.3418	1278

Network	CityFlow	SUMO						
Simulator	Metric	CityFlow	SUMO	Metric	CityFlow	SUMO		
FixedTime(t_fixed=30)	Travel Time	Queue	Delay	Throughput	Travel Time	Queue	Delay	Throughput
MaxPressure	102.082	83.7351	4.4828	1290	204.320	31.7661	4.3938	1358
SOTL	136.5470	51.9063	5.1604	1556	98.9389	17.8441	4.015	1602
IDQN	158.4722	40.2611	4.3146	1562	113.0794	23.7389	3.7165	1587
MAPG	101.9282	18.7284	0.3685	1614	90.0737	12.8278	0.4912	1614
IPPO	83.3595	7.0881	0.1919	1779	137.0853	78.4028	0.6875	1130
PressLight	92.4011	15.2366	0.2651	1853	115.9068	22.6268	0.4760	1013
FixedTime(t_fixed=60)	Travel Time	Queue	Delay	Throughput	Travel Time	Queue	Delay	Throughput
MaxPressure	866.7469	96.7222	4.4863	925	469.5721	81.7778	4.0167	811
SOTL	702.082	83.7351	4.4828	1290	204.320	31.7661	4.3938	1358
IDQN	158.4722	40.2611	4.3146	1562	113.0794	23.7389	3.7165	1587
MAPG	101.9282	18.7284	0.3685	1614	90.0737	12.8278	0.4912	1614
IPPO	83.3595	7.0881	0.1919	1779	137.0853	78.4028	0.6875	1130
PressLight	92.4011	15.2366	0.2651	1853	115.9068	22.6268	0.4760	1013

A.6.1 Other comparison studies on datasets not shown in full paper

Table A.6.1 shows the result of performance on the other five datasets. It shows PressLight and IDQN are the most stable algorithms at the most of the times.

A.6.2 Converge curve of Table A.6.1

Fig A.6.2 shows the full converge curve of 2000 episodes for IPPO and MAPG agents. The result shows that comparing to Q-learning agents, Actor-Critic agents are hard to converge, on some large or complex datasets, converge time needed are more than ten times of Q-learning methods.
Figure 6: Full converge curve of Table 4

A.6.3 Result of best episode

Table 8 gives the episode number of all datasets. It supports the conclusion that PressLight, followed by IDQN, have the best sample efficiency compared with other algorithms.

A.6.4 Performance on benchmark with standard deviations

Table 9 shows the standard deviation of the performance on the four datasets in full paper.

A.7 Extension to Other Simulators

LibSignal is a cross-simulator library for traffic control tasks. Currently, we support the most commonly used CityFlow and SUMO simulators, and our library is open to other new simulation environments. CBEngine is a new simulator that served as the simulation environment in the KDD Cup 2021 City Brain Challenge[^1] and is designed for executing traffic control tasks on large traffic networks. We integrate this new simulator into our traffic control framework to extend LibSignal’s

[^1]: http://www.yunqiacademy.org/poster
Table 8: The episode of best results for different agents w.r.t. different methods

Network	Simulator	IDQN	MAPG	IPPO	PressLight
Cityflow1x1	CityFlow	193	1205	185	197
	SUMO	187	188	194	185
Cologne1x1	CityFlow	95	1870	172	101
	SUMO	189	1992	346	193
Cologne1x3	CityFlow	133	597	1977	159
	SUMO	177	30	195	164
Grid4x4	CityFlow	163	6*	172	172
	SUMO	186	2*	188	143

* Though MAPG and IPPO has the best results in the first few episodes, their performances are still worse than the other agents.

Table 9: The standard deviations of Table 4

Network	Simulator	CityFlow	SUMO	CityFlow	SUMO				
	Metric	Travel Time	Queue	Delay	Throughput	Travel Time	Queue	Delay	Throughput
IDQN	9.474	2.5995	0.0221	3.0496	2.507	0.6804	0.4424	0.0092	
MAPG	10.746	0.2149	1.7188	0.0152	14.182	0.6544	0.4391	0.0031	
IPPO	23.020	0.0011	1.9196	0.0055	12.179	0.0446	7.187	0.015	
PressLight	3.335	1.334	0.0127	2.5884	1.960	3.261	3.4475	0.0141	
FRAP	3.0118	1.4411	1.5028	0.0106	0.8933	0.3848	0.4273	0.0095	

Table 10: Performance on CBEngine simulator

Network	Simulator	FixedTime	MaxPressure	SOTL	IDQN
	Avg. Travel Time	654.4848	150.7677	96.0025	84.5404

usage in other simulation environments. We show the result of MaxPressure, SOTL, FixedTime, and IDQN’s performance under CBEngine in Table 10

A.8 Hyperparameters

Table 11 provides the parameters of each algorithm, training environment, and hardware parameters on the server.
FixedTime	Model Parameters	Server Parameters
L_fixed	buffer_size	mem total
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	17
	update_target_rate	CPU @ 2.50GHz
	test_model	200
	one_hot	Intel(R) Xeon(R)
	phase	Platinum 8163 CPU
	_episodes	1
L_min	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
SOFTL	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
IDQN	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
IPPO	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
PressLight	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
FRAP	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
MPLight	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
CoLight	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
	steps	2500
	train_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1

Table 11: Hyperparameters of models, servers and training

Model Parameters

FixedTime	Model Parameters	Server Parameters
	buffer_size	mem total
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
SOFTL	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
IDQN	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
IPPO	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
PressLight	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
FRAP	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
MPLight	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
CoLight	buffer_size	24
	learning_rate	251.54GB
	train_model	Intel(R) Xeon(R)
	save_rate	Platinum 8163 CPU
	update_model_rate	1
	update_target_rate	CPU @ 2.50GHz
	test_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1
	steps	2500
	train_model	Intel(R) Xeon(R)
	one_hot	Platinum 8163 CPU
	phase	1
	_episodes	1