When Outliers Are Different

J. I. Katz,1⋆

1Department of Physics and McDonnell Center for the Space Sciences, Washington University, St. Louis, Mo. 63130 USA

2 September 2021

ABSTRACT

When does the presence of an outlier in some measured property indicate that the outlying object differs qualitatively, rather than quantitatively, from other members of its apparent class? Historical astronomical examples include the many types of supernovæ and short vs. long Gamma Ray Bursts. A qualitative difference implies that some parameter has a characteristic scale, and hence its distribution cannot be a power law (that can have no such scale). If the distribution is a power law the objects differ only quantitatively. The applicability of a power law to an empirical distribution may be tested by comparing the most extreme member to its next-most extreme. The probability distribution of their ratio is calculated, and compared to data for stars, radio and X-ray sources, and the fluxes, fluences and rotation measures of Fast Radio Bursts (FRB). It is found with high statistical significance that the giant outburst of soft gamma repeater SGR 1806-20 differed qualitatively from its lesser outbursts and FRB 200428 differed qualitatively from other FRB (by location in the Galaxy), but that in some supernova remnant models of rotation measure FRB 121102 is not, statistically significantly, an outlier.

Key words: radio continuum, transients: fast radio bursts, methods: statistical

1 INTRODUCTION

A question often asked in astronomy is whether a group of objects, similar in some ways, may be subdivided into qualitatively distinct subclasses. For example, novæ, originally considered a single class of events, were first subdivided into Galactic novæ and supernovæ (not observed in our Galaxy since 1604, but recognized in the Andromeda Galaxy in 1885). Subsequently, supernovæ have been divided into an ever-multiplying botanic garden of types and subtypes. Gamma-Ray Bursts (GRB) were divided into (Galactic and Magellanic Cloud) Soft Gamma Repeaters and (extragalactic) GRB, and then GRB into short and long GRB (Kouveliotou et al. 1993) that were found to differ not only in duration but in physical origin. Qualitative divisions have been essential to understanding these phenomena, because no physical models have explained them all as single classes of events differing only quantitatively.

Similar questions have arisen with regard to Fast Radio Bursts (FRB). If they are all manifestations of the same processes, then any proposed mechanism must be consistent with every FRB observed (allowing for quantitative differences in parameters and viewing geometry), while if there are two or more qualitatively different mechanisms or source objects producing FRB this constraint is relaxed. An apparent excess of bright bursts over the power law distribution of sources uniformly but randomly distributed in space (the familiar \(N \propto S^{-3/2} \) relation of extragalactic radio astronomy, where \(N \) is the cumulative number with flux greater than \(S \)) has been used (Katz 2017) to challenge the assumption of a statistically uniform spatial distribution, but this has been disputed (Macquart & Ekers 2018) on the grounds of possible discovery bias of the very bright FRB 010724.

More recently, the fluxes and fluences of many additional FRB, including homogeneous data sets from Parkes, UT-MOST, ASKAP and CHIME/FRB, have been measured and the rotation measures (RM) of a number of FRB have also been obtained. Some of these datasets include outliers, and again raise the question of whether the outliers indicate the presence of two (or more) qualitatively different events classified as FRB, or of two qualitatively different environments of FRB (possibly, but not necessarily, related to different models of the FRB themselves).

In the simplest possible case, which arises in many extant data sets, there is a single outlier. When can we infer that it represents a different class of object or event? When there is only one outlier, cluster analysis is inapplicable.

The distribution of brightnesses of astronomical objects is a convolution of their intrinsic luminosities or energies with their spatial distribution, which is usually distributed over a very large range of distances. As a result, objects of distinct luminosity do not form distinct clusters of apparent brightness. For example, there are bright nearby dwarf stars and dim distant giant stars; even if stars were clustered in luminosity they would not be clustered in apparent brightness.

Each interval of intrinsic luminosity has a \(N \propto S^{-3/2} \) distribution of observed flux or fluence \(S \), as must the integral over their luminosity distribution. This only breaks down when a characteristic scale enters, such as the characteristic distance to the nearest member of the population (the
by chance may be calculated as a function of the power law slope of the other elements of the class and of the degree to which the outlier is beyond the extrapolation of the observed distribution of the other objects. This is most simply quantified by comparing the value of the observed parameter of the most extreme (outlying) element to that of the second-most extreme. If there are multiple outliers it will generally be evident that there are two distinct subclasses of objects, that can be separated by cluster analysis, but in some cases of interest there is only one outlier.

3 SINGLE OUTLIERS AND FIRST/SECOND RATIO

All power law distributions must have at least one cutoff or break in order that the total number of objects be finite. When the independent variable is flux, fluence, luminosity, or an analogous energetic parameter, the break must be sharp (between two power laws, their exponents must differ by >1) in order that both the number of objects and their integrated radiated power or energy be finite. The question is not whether the power law is broken but whether the break occurs within the observed range of the independent variable. If it does, then the break divides the observed objects into two qualitatively different classes. If not, then all the observed objects may be qualitatively similar, though quantitatively differing. Even so, they are not necessarily qualitatively similar, as shown by the examples of dwarf and giant stars, or main sequence and white dwarf stars, all of whose flux distributions are described by a $N \propto S^{-3/2}$ law because they are homogeneously distributed in a Euclidean space (up to cutoffs at the thickness of the Galactic disc and the distance of nearest neighbors).

If there are many outliers, by definition of “outlier” a break divides them from the remainder of the objects. It will generally be evident that they form a distinct distribution, often with other evidence of their difference (for example, supernovæ and novæ have very different spectra and temporal behavior, while long and short GRB differ in duration).

The problem addressed here is that of a single outlier. When we can say that there must be a break in the distribution between it and the object with the second-most extreme value of the independent variable, that observation of the outlier is inconsistent with a power law that describes the distribution of the independent variable over less extreme objects?

Suppose a power law differential number distribution as a function of an independent variable x

$$
\frac{dN}{dx} = Cx^{-\gamma}.
$$

By definition, there is one object with $x > x_2$, where x_2 is the second-highest value of x. Then

$$
1 = \int_{x_2}^{\infty} \frac{dN}{dx} dx = \frac{C}{\gamma - 1} x_2^{\gamma - 1 + 1}
$$

and

$$
C = (\gamma - 1)x_2^{1-\gamma}.
$$

This requirement that the total number of objects be finite, integrating as $x \to \infty$ implies $\gamma > 1$. If x represents an energy-like quantity (flux, fluence, luminosity, etc.), finiteness of the integral implies $\gamma > 2$. In homogeneously filled three
dimensional Euclidean space in the limit \(x \to \infty \gamma = 5/2 \).

The divergence

\[
\int S \, dN = \int S \frac{dN}{dS} \, dS \propto \int S^{-3/2} \, dS \propto S^{-1/2}
\]

(4)
as \(S \to 0 \) describes Olber’s Paradox, resolved by a cutoff at large distance (Hubble radius, or size of the Galaxy) and small \(S \). In two dimensional space, such as the Galactic disc, \(\gamma = 2 \). In practice, \(\gamma \) is found by fitting to the observed distribution for \(x < x_2 \).

The probability that the highest value of \(x \) is as large or larger than the extreme outlier \(x_1 \) is

\[
P(x \geq x_1) = \int_{x_1}^{\infty} \frac{dN}{dx} \, dx = \left(\frac{x_1}{x_2} \right)^{1-\gamma}.
\]

(5)

An observed \(x_1 \) is inconsistent with an extrapolation of the power law at a confidence level \(1 - P \) if

\[
\frac{x_1}{x_2} > P^{1/(1-\gamma)}.
\]

(6)

If \(\gamma \) is known, inverting this expression shows the minimum value of \(x_1/x_2 \) required to reject, at a confidence level \(1 - P \), the hypothesis that the power law is unbroken between \(x_2 \) and \(x_1 \). Rejection implies that the outlier differs qualitatively from the remainder of the objects. If, as is often the case, \(\gamma \) is not accurately determined, an observed value of \(x_1/x_2 \) sets a coupled constraint on the value of \(\gamma \) and the confidence with which an unbroken power law can be rejected.

Fig. 1 shows \(P \) as a function of \(x_1/x_2 \) for several values of \(\gamma \). Fig. 2 shows \(\gamma \) as a function of \(x_1/x_2 \) for several values of statistical significance \(1 - P \).

4 APPLICATIONS

The Table shows most extreme/second most extreme ratios for several astronomical datasets. Most of these objects are variable, so the values in the indicated catalogues are shown. This introduces uncertainty because there may be biases resulting from differences in observing methodology and the selection of catalogued values; for example, stronger variable sources may be observed more frequently and their greatest strengths recorded in the catalogue, biasing their catalogued strengths upward. Extreme examples of this are the maximum observed fluxes reported for transients. Some catalogues, such as those for specific FRB surveys, are likely homogeneous with minimal bias.

Objects distributed homogeneously in three dimensional space have \(\gamma = 5/2 \), while Galactic disc objects, such as most entries in X-ray catalogues, are expected to have \(\gamma = 2 \) because of the two dimensional geometry of a disc. These values of \(\gamma \) assume no cutoff resulting from the cosmological redshift and the finite extent of the Galactic disc; these assumptions are tested here, and shown to be likely invalid for the AGN and 3CR (extragalactic) catalogues, and (with somewhat less significance) for the 4U catalogue.

Direct comparisons of the flux and fluence of FRB 200428 to those of other FRB are not quantitative because FRB 200428 does not come from a homogeneous catalogue. It is included here to show how its extreme outlying position is explained by its location in the Galaxy, a mass concentration inconsistent with a homogeneous Universe. The cosmological \(\gamma = 5/2 \) cannot be extrapolated down to Galactic distances;

\(\gamma = 5/2 \) is excluded with very high confidence. This is not a new discovery(!), but illustrates the method. It also lends confidence to the assertion that the Parkes catalogue of FRB does not provide compelling evidence that the discovery FRB 010724 is an outlier inconsistent with a statistically homogeneous cosmological distribution.

The 3CR catalogue (Bennett 1962a,b) is a classic catalogue of radio sources observed at 178 MHz. It is used here because its sources have been identified as Galactic (Spinrad et al. 1985) or extragalactic. Many entries in the 4U X-ray source catalogue (Forman et al. 1978) have not been identified, but are assigned as Galactic if \(b < 20^\circ \). Fluences of SGR 1806–20 outbursts are from Hurley et al. (2005); Palmer et al. (2005); Golenetskii et al. (2007) with \(\gamma \) from Göğüş et al. (2000); Götz et al. (2006) (\(x_1 \) and \(x_2 \) are not from a homogeneous catalogue, introducing additional uncertainty). Crab pulsar Giant Pulses are from Bera & Chengalur (2019). FRB are from the homogeneous catalogues in HeRTA/FRBSTATS (2021) except for CHIME from CHIME/FRB Collaboration (2021) and FRB 200428 from Bochenek et al. (2020); CHIME/FRB Collaboration (2020). FRB rotation measures (RM) are from Petroff et al. (2016) and Hilmarsson et al. (2021); the value of \(\gamma \) is for the supernova remnant (SNR) model described in Sec. 5. FRB 121102 bursts are from a single homogeneous five hour sample with \(x_1/x_2 = 1.55 \), the average of the values of

\[\]
their classes. The extragalactic FRB distributions contain no
objects are fundamentally different from other members of
Galactic 2–6 keV X-ray source distribution. Perhaps these
distribution and Sco X-1 is a significant outlier in the 4U
significant outlier in the visible-light AGN population, Cyg A is
method finds the obvious.
unsurprising that the one Galactic FRB should be an outlier
centration. Because we are also located in the Galaxy, it is
greater than the mean density of the local Universe. The ex-
cence in the Galaxy whose density (of mass, and likely of what-
most extreme is FRB 200428. This is explained by its pres-
Table 1 shows a number of significant outliers, of which the
such outliers, attesting to the homogeneity of their popul-
ations; even the discovery FRB 010724 is not a significant out-
lier compared to the second-brightest Parkes FRB 110214.
It is no surprise that this analysis confirms that the giant
December 27, 2004 outburst of SGR 1806-20 (Hurley et al.
2005; Palmer et al. 2005) is a significant outlier, inconsistent
with extrapolation of its lesser flares. Such giant outbursts are
naturally explained as a global reordering of a magnetic field
much greater than those of radio pulsars, as suggested for the
March 5, 1979 outburst of SGR 0525-66 (Katz 1982) while
March 5, 2005; Palmer et al. 2005; Zhang
et al. (2017); Wang & Zhang (2019).

Figure 2. The the minimum value of γ as a function of X for which $x_1/x_2 > X$ indicates that the outlier is inconsistent with an extrap-
of the power law, for the indicated levels of statistical confidence. $x_1/x_2 = 200$ is the first/second rati
of FRB Rotation Measure.

Gajjar et al. (2018) (1.75) and Zhang et al. (2018) (1.35), but with $\gamma = 1.7$ from Law et al. (2017); Wang & Zhang (2019).

5 DISCUSSION

Table 1 shows a number of significant outliers, of which the most extreme is FRB 200428. This is explained by its presence in the Galaxy whose density (of mass, and likely of whatever astronomical objects make FRB) is orders of magnitude greater than the mean density of the local Universe. The extragalactic $\gamma = 5/2$ does not allow for the Galactic density concentration. Because we are also located in the Galaxy, it is unsurprising that the one Galactic FRB should be an outlier in flux and fluence. This is not news, but confirms that the method finds the obvious.

More interesting are the facts that the AGN 3C273 is a significant outlier in the visible-light AGN population, Cyg A is a significant outlier in the 3CR extragalactic (radio galaxy) distribution and Sco X-1 is a significant outlier in the 4U Galactic 2–6 keV X-ray source distribution. Perhaps these objects are fundamentally different from other members of their classes. The extragalactic FRB distributions contain no

Parameter	N	x_1/x_2	γ	Significance
Stars (V-band)	1.94	5/2	63%	
AGN (V-band)	10	5/2	97%	
3CR (extragalactic)	298	8	5/2	96%
3CR (Galactic)	38	8	2	87%
4U (Galactic)	181	18	2	94%
4U (transients)	12	3.5	2	72%
SGR 1806–20 fluence	760	7×10^4	1.7	99.96%
Crab Giant Pulses	> 1100	1.25	2.8	33%
FRB Fluxes (Parkes)	31	4.3	5/2	89%
FRB Fluxes (UTMOST)	15	1.37	5/2	38%
FRB Fluxes (ASKAP)	42	1.15	5/2	19%
FRB Fluxes (CHIME)	536	1.33	2.4	33%
FRB Fluxes (Parkes)	31	1.1	5/2	17%
FRB Fluxes (UTMOST)	15	1.71	5/2	55%
FRB Fluxes (ASKAP)	42	2.1	5/2	67%
FRB Fluxes (CHIME)	536	1.0	2.4	0%
FRB 200428 Flux	1.7×10^4	5/2 >99.999%		
FRB 200428 Fluence	3.6×10^3	5/2 >99.999%		
FRB RM	19	200	5/4	73%
FRB 121102 Fluxes	93	1.55	1.7	26%

Table 1. Ratios of most extreme to second most-extreme members of various astronomical datasets. Where meaningful, N is the num-
ber of data. Fractional and integral γ are theoretical values; of the FRB catalogues, only CHIME contains enough data for a meaning-
ful empirical γ, which is shown and is close to the theoretical value of 5/2. The final column is the significance of any inconsist-
ency of x_1/x_2 with a single power law with an exponent known either theoretically or empirically from the distribution of less extreme
members; lower values imply consistency.
Table 1 shows that the homogeneous FRB catalogues are consistent with single power law distributions. The AGN and 3CR (extragalactic) catalogues are not, suggesting some natural scale of activity or bias. A possible source of bias in observations of these variable objects is more frequent observation of the brightest, so they are more likely to be observed in more extreme and luminous states. This is a cautionary tale.

The giant outburst of SGR 1806-20 is definitely inconsistent with an extrapolation of the brightness distribution of its lesser bursts; it is qualitatively different. This is not a new result, but now is quantified. The extraordinary nature of FRB 200428 is hardly a surprise; Galactic objects are much closer than extragalactic objects, and would be expected to be much brighter, an expectation confirmed with high confidence. There is also a less trivial conclusion: the Galaxy does not contain large numbers of micro-FRB, weaker sources of coherent radio radiation than FRB 200428, but still readily observable because of their proximity; FRB 200428 was orders of magnitude above the detection thresholds of the instruments (Bochenek et al. 2020; CHIME/FRB Collaboration 2020) that discovered it. See also the discussions of Lu, Kumar & Zhang (2020); Margalit et al. (2020). Finally, in at least one model, the extraordinary RM of FRB 121102 is not so extraordinary at all.

6 DATA AVAILABILITY

This theoretical study generated no new data.

REFERENCES

Batchelor, G. 1967 Introduction to Fluid Mechanics (Cambridge U. Press, Cambridge, UK).
Bera, A. & Chengalur, J. N. 2019 MNRAS 490, L12.
Bennett, A. S. 1962a Mem. RAS 68, 163 vizier.u-strasbg.fr/viz-bin/VizieR-4 accessed May 25, 2021.
Bennett, A. S. 1962b MNRAS 125, 75.
Bochenek, C. D., Ravi, V., Belov, K. V. et al. 2020 Nature 587, 59.
CHIME/FRB Collaboration 2020 Nature 587, 54.
CHIME/FRB Collaboration 2021 arXiv:2106.04352.
Forman, W., Jones, C., Cominsky, L. et al. 1978 ApJS 38, 357.
Frisch, U. 1995 Turbulence: The Legacy of A. N. Kolmogorov (Cambridge U. Press, Cambridge UK).
Gajjar, V., Siemion, A., Price, D. et al. 2018 ApJ 863, 2.
Gögüs, E., Woods, P. M., Kouveliotou, C. et al. 2000 ApJ 532, L121.
Golenetskii, S., Apetkar, R., Mazets, E. et al. 2007 GCN 6775.
Götz, D., Mereghetti, S., Molkov, S. et al. 2006 A&A 445, 313.
Herta/FRBSTATS 2021 https://ui.adsabs.harvard.edu/abs/2021ascl.soft06028S accessed May 25, 2021.
Hilmarsson, G. H., Michilli, D., Spitler, L. G. et al. 2021 ApJ 908, L10.
Hurley, K., Boggs, S. E., Smith, S. M. et al. 2005 Nature 434, 1098.
Katz, J. I. 1982 ApJ 260, 371.
Katz, J. I. 1986 J. Geophys. Res. 91, 10412.
Katz, J. I. 2017 MNRAS 472, L85.
Katz, J. I. 2020 MNRAS 499, 2319.
Kolmogorov, A. 1941 Doklady Akademia Nauk SSSR 30, 301.
Kouveliotou, C., Meegan, C. A., Fishman, G. J., Bhat, N. P., Briggs, M. S., Koshut, T. M., Paciesas, W. S. & Pendleton, G. N. 1993 ApJ 413, L101.
Law, C. J., Abruzzo, M. W., Bassa, C. G. et al. 2017 ApJ 850, 76.
Lu, W., Kumar, P. & Zhang, B. 2020 MNRAS 498, 1397.
Lu, W., Beniamini, P. & Kumar, P. 2021 ApJ in press arXiv:2107.04059.
Macquart, J.-P. & Ekers, R. D. 2018 MNRAS 474, 1900.
Margalit, B., Beniamini, P., Sridhar, N. & Metzger, B. D. 2020 ApJ 899, L27.
Palmer, D. M., Barthelmy, S., Gehrels, N. et al. 2005 Nature 434, 1107.
Petroff, E., Barr, E. D., Jameson, A. et al. 2016 Pub. Ast. Soc. Australia 33, 45 frbcat.org accessed May 31, 2021.
Spinrad, H., Djorgovski, S., Marr, J. & Aguilar, L. 1985 PASP 97, 932.
Tennekes, H. 1972 A First Course in Turbulence (MIT Press, Cambridge, Mass.).
Wang, F. Y. & Zhang, G. Q. 2019 ApJ 882, 108.
Wijers, R. A. M. J. & van Paradijs, J. 1991 A&A 241, L37.
Zhang, Y. G., Gajjar, V., Foster, G., Siemion, A., Cordes, J., Law, C. & Wang, Y. 2018 ApJ 866, 149.