From the core to beyond the margin: a genomic picture of glioblastoma intratumor heterogeneity

Submitted by Anne Clavreul on Fri, 07/03/2015 - 11:09

Titre
From the core to beyond the margin: a genomic picture of glioblastoma intratumor heterogeneity

Type de publication
Article de revue

Auteur
Aubry, Marc [1], de Tayrac, Marie [2], Etcheverry, Amandine [3], Clavreul, Anne [4], Saikali, Stéphan [5], Menei, Philippe [6], Mosser, Jean [7]

Pays
Etats-Unis

Editeur
Impact Journals

Ville
Albany

Type
Article scientifique dans une revue à comité de lecture

Année
2015

Langue
Anglais

Date
Mai 2015

Numéro
14

Pagination
12094-12109

Volume
6

Titre de la revue
Oncotarget

ISSN
1949-2553

Mots-clés
Glioblastoma [8], integrative functional genomics [9], intratumor heterogeneity [10], Invasion [11]

Résumé en anglais
Glioblastoma (GB) is a highly invasive primary brain tumor that almost systematically recurs despite aggressive therapies. One of the most challenging problems in therapy of GB is its extremely complex and heterogeneous molecular biology. To explore this heterogeneity, we performed a genome-wide integrative screening of three molecular levels: genome, transcriptome, and methylome. We analyzed tumor biopsies obtained by neuro-navigation in four distinct areas for 10 GB patients (necrotic zone, tumor zone, interface, and peripheral brain zone). We classified samples and deciphered a key genes signature of intratumor heterogeneity by Principal Component Analysis and Weighted Gene Co-expression Network Analysis. At the genome level, we identified common GB copy number alterations and but a strong interindividual molecular heterogeneity. Transcriptome analysis highlighted a pronounced intratumor architecture reflecting the surgical sampling plan of the study and identified gene modules associated with hallmarks of cancer. We provide a signature of key cancer-heterogeneity genes highly associated with the intratumor spatial gradient and show that it is enriched in genes with correlation between methylation and expression levels. Our study confirms that GBs are molecularly highly diverse and that a single tumor can harbor different transcriptional GB subtypes depending on its spatial architecture.

URL de la notice
http://okina.univ-angers.fr/publications/ua13298 [12]
From the core to beyond the margin

PubMed 25940437 [14]