INTRODUCTION

The major drawbacks in the treatment of microbial infections are microbial resistance and the adverse effects of old antibiotics (1). In recent times, the excessive increase in microbial resistance, especially among Gram-positive bacteria, has increased the need for new compounds that have a large antimicrobial effect (2). Therefore, a new class of antimicrobial compounds is needed to combat the antimicrobial resistance. These new agents can be extracted from plant sources (3) or synthesized in vitro (4).

Nitrofurans are chemical compounds that contain the 5-nitrofuran ring in their molecular structure (5). This group acts as a bacteriostatic agent against a wide range of Gram-positive and Gram-negative bacteria and has bactericidal activity at higher doses. They create superoxide and toxic oxygen radicals under reducing conditions, which oxidize the vital components of the cell and disrupt the normal functioning of the bacteria, fungi, and protozoa (5). Moreover, nitrofurans are used as pharmacophores to achieve more effective compounds, and because of their excretion in the urine, these compounds are a good choice for the treatment of urinary tract infections (6). Nitroimidazoles are imidazole derivatives with a nitro group that are effective against anaerobic bacteria and parasitic infections such as Trichomonas vaginalis and Entamoeba histolytica (7). These reducing agents cause the breakdown of DNA, which depends on the A and T content, and also inhibit the repairing of the DNA damages (8). In addition, the 1,3,4-thiadiazole acts as the cornerstone in the development of pharmacological substances. According to previous research, this ring has antibacterial antifungal, antihistaminic, anticholinergic, and anti-inflammatory effects (9).

In the present study, the antibacterial effects of the 1,3,4-thiadiazole ring of the 5-nitrofurazone and 5-nitroimidazole derivatives against eight most common bacterial
species were evaluated. The implementation of modern mathematical techniques helps in the selection of important informative indicators and in aggregating the information about a worker’s psychophysiological state to correctly evaluate the efficiency in their professional activity and risks (6). A new technology of video survey was developed to determine the quality of performance of the occupational duties (7). To analyze the most valuable psychological and behavioral characteristics of a worker, some authors build factor models that are useful in selecting staff (8). The external assessments of the workers’ technique proved to be productive for analyzing the efficiency of their professional activity and its connection with psychophysiological characteristics (9). The framework “modular approach” serves to increase the effectiveness of a worker’s professional suitability evaluation (10). This technique is based on splitting the initial data into key components; then, the received “modular” information is considered separately with respect to the differences between the data in the selected subgroups. This approach allows to develop some deeper understanding of the role of the individual components underlying the selection procedure and to show their possible interconnection. Some indicators that have an impact on the ability to provide the occupational activities are identified based on factor analysis. Important psychophysiological factors are cognitive abilities, communication and computer skills, physical abilities, interpersonal communication skills, ability to provide security, independence, ability to adapt to the structure of a particular activity, and more specific abilities that are related to the problem performance (11). However, the key factors that cause stress and pressure on the workers of different occupations are different. In the electric power engineering industry, information loading is too important (12). The determination of disabilities emphasizes the importance of psychophysiological selection for the prevention of traffic safety but unfortunately do not provide any solution to get an occupational risk evaluation (13). The quantitative results of such an investigation only affirm that the frequency of errors by female operators is 2.16 times higher than by men. Regardless of some success in the investigation, we observed a lack of clear quantitative results concerning the risk of loss or depletion in the efficiency of occupational duties during the work life. Furthermore, because of the incomplete investigation of these issues, there are still no approaches for the evaluation of the efficiency in reducing the risk factor in occupational psychophysiological selection. Thus, we need a methodology to evaluate the risks by using a certain number of psychophysiological characteristics. The aim of our investigation is to develop an approach for the quantitative evaluation of the efficiency of risk reduction in a worker’s occupational activity, probability of health, and safety depletion during the entire life period of work.

MATERIALS AND METHODS

Thioglycolate media, dimethyl sulfoxide (DMSO), Mueller-Hinton broth (MHB) and Mueller-Hinton agar (MHA), nutrient agar, soybean casein digest agar (SCDA) and soybean casein digest broth (SCDB), bromine monochloride (BrCl), and sulfuric acid (H2SO4) were purchased from Merck (Germany). All other chemical compounds were of analytical grade and were available commercially. Evaluated bacterial strains included the Gram-positive bacteria Staphylococcus epidermidis (PTCC1114), Bacillius subtilis (PTCC1023), Streptococcus pyogenes (PTCC1447), and Micrococcus luteus (PTCC1110) and Gram-negative bacteria Escherichia coli (PTCC1330), Pseudomonas aeruginosa (PTCC1074), Klebsiella pneumonia (PTCC1053), and Serratia marcescens (PTCC1621).

We synthesized 7 new derivatives of (5-nitro-2-furyl)- and (5-nitro-2-imidazolyl)-1,3,4-thiadiazole in the Pharmacochemistry lab of Tehran University. The molecular weight, formula, chemical name, and chemical structure of the synthesized compounds are presented in Table 1 and Figure 1, respectively.

Code	Molecular weight	Chemical formula	Chemical name
1	285.34	C₉H₄N₂O₂S₂	2-(5-nitro-2-furyl)-5-(n-buthylthio)-1,3,4-thiadiazole
2	299.37	C₁₀H₈N₂O₂S₂	2-(5-nitro-2-furyl)-5-(n-pentylthio)-1,3,4-thiadiazole
3	315.37	C₁₀H₈N₂O₂S₂	2-(5-nitro-2-furyl)-5-(n-pentylsulfinyl)-1,3,4-thiadiazole
4	317.34	C₁₀H₈N₂O₂S₂	2-(5-nitro-2-furyl)-5-(n-butylsulfinyl)-1,3,4-thiadiazole
5	331.37	C₁₁H₉N₂O₂S₂	2-(5-nitro-2-furyl)-5-(n-pentylsulfinyl)-1,3,4-thiadiazole
6	299.37	C₁₁H₉N₂O₂S₂	2-(1-methyl-5-nitro-H1-imidazole-2-yl)-5-(n-butylthio)-1,3,4-thiadiazole
7	329.40	C₁₁H₉N₂O₂S₂	2-(1-methyl-5-nitro-H1-imidazole-2-yl)-5-(n-pentylsulfinyl)-1,3,4-thiadiazole
RESULTS

The results of the MIC analysis of the different derivatives are presented in Table 2. As demonstrated, the 2-(5-nitro-2-furyl)-5-(n-buthylthio)-1,3,4-thiadiazole showed no antibacterial effects against Gram-negative bacteria (MIC > 64 μg/ml), but completely inhibited the growth of S. epidermidis and B. subtilis (MIC < 0.5 μg/ml). This derivative had a MIC of 8-16 μg/ml against M. luteus and 0.5-1 μg/ml against S. pyogenes. The 2-(5-nitro-2-furyl)-5-(n-penthylthio)-1,3,4-thiadiazole also showed no antibacterial effects against Gram-negative bacteria (MIC > 64 μg/ml), but completely inhibited the growth of S. epidermidis, B. subtilis, and S. pyogenes (MIC < 0.5 μg/ml). This derivative had a MIC of 0.5-1 μg/ml against M. luteus.

The 2-(5-nitro-2-furyl)-5-(n-pentylsulfinyl)-1,3,4-thiadiazole showed no antibacterial effects against Gram-negative bacteria and S. epidermidis (MIC > 64 μg/ml). This derivative had a MIC of 16-32 μg/ml against M. luteus, B. subtilis, and S. pyogenes. The 2-(5-nitro-2-furyl)-5-(n-buthylsulfanyl)-1,3,4-thiadiazole also showed no antibacterial effects against Gram-negative bacteria (MIC > 64 μg/ml), but completely inhibited the growth of S. epidermidis, B. subtilis, and S. pyogenes (MIC < 0.5 μg/ml). This derivative had a MIC of 4-8 μg/ml against M. luteus, 16-32 μg/ml against B. subtilis, and 32-64 μg/ml against S. pyogenes.

The 2-(1-methyl-5-nitro-H1-imidazole-2-yl)-5-(n-buthylthio)-1,3,4-thiadiazole showed no antibacterial effects against Gram-negative bacteria (MIC > 64 μg/ml), but completely inhibited the growth of S. epidermidis and B. subtilis, and 0.5-1 μg/ml against S. pyogenes. The 2-(1-methyl-5-nitro-H1-imidazole-2-yl)-5-(n-pentylsulfanyl)-1,3,4-thiadiazole showed no antibacterial effects against Gram-negative bacteria (MIC > 64 μg/ml), but completely inhibited the growth of S. epidermidis and B. subtilis, and 0.5-1 μg/ml against S. pyogenes. Finally, the derivative 2-(1-methyl-5-nitro-H1-imidazole-2-yl)-5-(n-pentylsulfanyl)-1,3,4-thiadiazole showed no antibacterial effects against Gram-negative bacteria (MIC > 64 μg/ml), but completely inhibited the growth of S. epidermidis and B. subtilis, and 0.5-1 μg/ml against S. pyogenes.

Figure 1. Chemical structure of the synthesized compounds. Compounds were numbered based on Table 1.
Table 2. Growth of different Gram-positive and Gram-negative bacteria in different concentration of the derivatives, ciprofloxacin, positive and negative controls

Agents	Concentration	EC	PA	SM	KP	SE	ML	BS	SP
2-(5-nitro-2-furyl)-5-(n-buthylthio)-1,3,4-thiadiazole	64	+	+	+	+	-	-	-	-
	32	+	+	+	+	-	-	-	-
	16	+	+	+	+	-	-	-	-
	8	+	+	+	+	-	+	-	-
	4	+	+	+	+	-	+	-	-
	2	+	+	+	+	-	-	-	-
	1	+	+	+	+	-	-	-	-
	0.5	+	+	+	+	-	+	-	+
2-(5-nitro-2-furyl)-5-(n-penthylthio)-1,3,4-thiadiazole0	64	+	+	+	+	+	-	-	-
	32	+	+	+	+	-	-	-	-
	16	+	+	+	+	+	-	-	-
	8	+	+	+	+	-	+	-	-
	4	+	+	+	+	-	+	-	-
	2	+	+	+	+	-	-	-	-
	1	+	+	+	+	-	-	-	-
	0.5	+	+	+	+	-	+	-	+
2-(5-nitro-2-furyl)-5-(n-pentylsulfinyl)-1,3,4-thiadiazole	64	+	+	+	+	+	-	-	-
	32	+	+	+	+	+	-	-	-
	16	+	+	+	+	+	-	+	+
	8	+	+	+	+	+	+	+	+
	4	+	+	+	+	+	+	+	+
	2	+	+	+	+	+	+	+	+
	1	+	+	+	+	+	+	+	+
	0.5	+	+	+	+	+	+	+	+
Antibacterial Activities of Thiadiazole

Compound	Concentration (μg/mL)	
2-(5-nitro-2-furyl)-5-(n-pentylsulfinyl)-1,3,4-thiadiazole	64	
	+ + + + - - - - +	
	32	+ + + + - - - - +
	16	+ + + + + + - - +
	8	+ + + + + + + + +
	4	+ + + + + + + + +
	2	+ + + + + + + + +
	1	+ + + + + + + + +
	0.5	+ + + + + + + + +
2-(1-methyl-5-nitro-H1-imidazole-2-yl)-5-(n-butylthio)-1,3,4-thiadiazole	64	+ + + + + - - - - -
	32	+ + + + + - - - - -
	16	+ + + + + - - - - -
	8	+ + + + + - - - - -
	4	+ + + + + - - - - -
	2	+ + + + + - - - - -
	1	+ + + + + - - - - -
	0.5	+ + + + + - - - - -
2-(1-methyl-5-nitro-H1-imidazole-2-yl)-5-(n-pentylsulfinyl)-1,3,4-thiadiazole	64	+ + + + + + - - - - -
	32	+ + + + + + + - - +
	16	+ + + + + + + - - +
	8	+ + + + + + + - - +
	4	+ + + + + + + - - +
	2	+ + + + + + + + + +
	1	+ + + + + + + + + +
	0.5	+ + + + + + + + + +
Ciprofloxacin	64	- - - - - - - + -
	32	- - - - - - - + -
	16	- - - - - - - - + -
	8	- - - - - - - - - +
	4	- - - - - - - - - +
	2	- - - - - - - - - +
	1	+ - - - - + + - +
	0.5	+ + - - - + + + +
	0.25	+ + - - - + + + +
antibacterial effects against Gram-negative bacteria and S. epidermidis (MIC > 64 μg/ml), but had a MIC of 32-64 μg/ml against M. luteus, 2-4 μg/ml against B. subtilis, and 32-64 μg/ml against S. pyogenes.

Ciprofloxacin as a routine antibiotic was also evaluated, and all the microorganisms except B. subtilis were sensitive to it. The MIC of ciprofloxacin was 1-2 μg/ml, 0.05-1 μg/ml, 0.5-1 μg/ml, <0.25 μg/ml, <0.25 μg/ml, 1-2 μg/ml, and 8-16 μg/ml against E. coli, P. aeruginosa, S. pyogenes, K. pneumonia, S. marcescens, S. epidermidis, and M. luteus, respectively.

DISCUSSION

In the present study, the antibacterial effects of the newly synthesized derivatives of (5-nitro-2-furyl) and (5-nitro-2-imidazolyl)-1,3,4-thiadiazole against some important Gram-positive and Gram-negative bacterial strains were evaluated. A wide range of derivatives were prepared using an effective anti-Gram-positive and negative nitrofuran ring and a nitroimidazole group, which has anti-anaerobic and anti-parasitic function, and added to the 1,3,4 thiadiazole core. However, our synthesized compounds had lower antibacterial activities compared to ciprofloxacin. All the bacteria were grown in the presence of these compounds, and only mild antibacterial effects against Gram-positive bacteria were detected.

After comparing the antibacterial effects of the compounds based on their chemical structure, we found that the carbon chain elongation had no effects on the Gram-negative bacterial strains. Moreover, the conversion of the thio-group to sulfynil-group decreased the antibacterial effects against S. epidermidis. In addition, increase in the length of the hydrocarbon chain from 4 to 5 and the conversion of thio-group to sulfynil-group increased the antibacterial effect against M. luteus. Substitution of nitrofuran by nitroimidazole increased the antibacterial effects against B. subtilis. Finally, the conversion of the thio-group to sulfynil-group and increasing the length of the hydrocarbon chain decreased the antibacterial effects against S. pyogenes, which was consistent with the results of a few studies (15, 16). The most effective compounds were 2-(5-nitro-2-furyl)-5-(n-buthylthio)-1,3,4-thiadiazole, 2-(5-nitro-2-furyl)-5-(n-pentylthio)-1,3,4-thiadiazole, and 2-(1-methyl-5-nitro-H1-imidazole-2-yl)-5-(n-butylthio)-1,3,4-thiadiazole.

Due to the dramatic increase in the number of antibiotic-resistant pathogens, the discovery or the synthesis of new antimicrobial agents has increased (17). However, there is less number of studies about the antibacterial effects of nitrofuran and nitroimidazole derivatives of the thiadiazole core. Basically, 1,3,4-thiadiazole has a good activity against various microbial strains, and scientists have focused on the synthesis of new potent antibacterial and antifungal agents by the substitution of different groups (9). Foroumadi et al. evaluated the MIC of a series of 2-(1-methyl-5-nitro-2-imidazolyl-1,3,4-thiadiazole-5-alkylsulfides, alkylsulfoxides, and alkylsulfones as antibacterial agents. They found that compounds with a primary alkylthio substitution showed good anti-tuberculosis activity (18). In another study, a series of 2-(5-nitro-2-furyl)-1,3,4-thiadiazole-2-sulfide, sulfoxide, and sulfone compounds were found that had a good antibacterial activity (19). In addition, appropriate antibacterial and antifungal properties of the different derivatives of 1,3,4-thiadiazole were reported previously (20-23). However, the antibacterial activities of these compounds are very low than the routine antibiotics, such as chloramphenicol and rifampicin (24). Our findings are also parallel with the previous studies about the antibacterial effects of derivatives of 1,3,4-thiadiazole (25, 26). Some studies have also reported that certain derivatives of 1,3,4-thiadiazole exhibited higher antibacterial activity against some bacterial strains compared to the standard antibiotics (27). In the study, by Serban et al., the results showed that 1,3,4-thiadiazole derivatives are studied more because of their broad spectrum of pharmacological activities among the various isomers of thiadiazole as well as the substitution at thiadiazole ring for obtaining an improved agent regarding potency and low toxicity is challenging (28). Foroumadi et al. revealed that the MIC of a series of 2-(1-methyl-5-nitro-2-imidazolyl-1,3,4-thiadiazole-5-alkylsulfides, alkylsulfoxides, and alkylsulfones reported previously as antifungal agents, were determined using the radiometric BACTEC 460-TB methodology. They screened active compounds by serial dilutions to determine the toxicity in a VERO cell line, and the results showed that the compounds with primary alkylthio substitution had appropriate anti-tuberculosis activity. Moreover, oxidation of sulfone attenuated the anti-tuberculosis activity of methyl and propyl derivatives (29).
CONCLUSION

The derivatives had low antibacterial effects and the conversion of the thio-group to sulfanyl-group could not increase their effects. However, it seems that the C5 in the 1,3,4-thiadiazole is crucial for the antibacterial effects. Based on the in vitro nature of this research and local effects of the derivatives, further in vivo research in local and systemic diseases are highly suggested.

ACKNOWLEDGMENTS (Funding source)

NONE

AUTHOR CONTRIBUTIONS

All the authors have contributed towards conducting the experiments and preparation of the manuscript and have approved the latest version of the article.

CONFLICT OF INTERESTS

The authors declare no conflicts of interest.

REFERENCES

1. Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40(4):277-83.
2. Marston HD, Dixon DM, Knisely JM, Palmore TN, Fauci AS. Antimicrobial resistance. JAMA. 2016;316(11):1193-204.
3. Mardani M, Afra SM, Tanideh N, Andisheh Tadbir A, Modarresi F, Koohi-Hosseinabadi O, et al. Hydroalcoholic extract of Carum carvi L. in oral mucositis: a clinical trial in male golden hamsters. Oral Dis. 2016;22(1):39-45.
4. Moshafi MH, Doostishoar F, Jahanian A, Abasadeh M. Antimicrobial effects of new designed 2-amino-tetrahydro-4H-chromene-3-carbonitrile derivatives against some pathogenic microbial strains. Comp Clin Path. 2016;25(6):1197-200.
5. Rusen E, Diacon A, Mocanu A, Rizea F, Bucur B, Bucur MP, et al. Synthesis and retention properties of molecularly imprinted polymers for antibiotics containing a 5-nitrofuran ring. RSC Adv. 2017;7(80):50844-52.
6. Guay DR. An update on the role of nitrofurans in the management of urinary tract infections. Drugs. 2001;61(3):353-64.
7. Muller M. Reductive activation of nitroimidazoles in anaerobic microorganisms. Bioreduction in the Activation of Drugs: Proceedings of the Second Biochemical Pharmacology Symposium, Oxford, UK, 25-26 July 1985;35(1):37-41 (2013; Elsevier).
8. Edwards DI. Reduction of nitroimidazoles in vitro and DNA damage. Bioreduction in the Activation of Drugs: Proceedings of the Second Biochemical Pharmacology Symposium, Oxford, UK, 25-26 July 1985;35(1):53-86 (2013 Elsevier).
24. Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev. 2003;23(2):146-89.
25. Abdel-Wahab BF, Abdel-Aziz HA, Ahmed EM. Synthesis and antimicrobial evaluation of some 1, 3-thiazole, 1, 3, 4-thiadiazole, 1, 2, 4-triazole, and 1, 2, 4-triazolo [3, 4-b][1, 3, 4]-thiadiazine derivatives including a 5-(benzofuran-2-yl)-1-phenylpyrazole moiety. Monatsh Chem. 2009;140(6):601-5.
26. Padmavathi V, Reddy GD, Reddy SN, Mahesh K. Synthesis and biological activity of 2-(bis ((1, 3, 4-oxadiazolyl/1, 3, 4-thiadiazolyl) methylthio) methylene) malononitriles. Euro J Med Chem. 2011;46(4):1367-73.
27. Kadi AA, Al-Abdullah ES, Shehata IA, Habib EE, Ibrahim TM, El-Emam AA. Synthesis, antimicrobial and anti-inflammatory activities of novel 5-(1-adamantyl)-1, 3, 4-thiadiazole derivatives. Eur J Med Chem. 2010;45(11):5006-11.
28. Serban G, Stanasel O, Serban E, Bota S. 2-Amino-1, 3, 4-thiadiazole as a potential scaffold for promising antimicrobial agents. Drug Des Devel Ther. 2018;12:1545-66.
29. Foroumadi A, Mirzaei M, Shafiee A. Antituberculosis agents II. Evaluation of in vitro antituberculosis activity and cytotoxicity of some 2-(1-methyl-5-nitro-2-imidazolyl)-1, 3, 4-thiadiazole derivatives. Farmaco. 2001;56(8):621-3.