In vitro antiplasmodial activity of crude extracts of Tetrapleura tetraptera and Copaifera religiosa

Jean Bernard Lekana-Douki1,3,4*, Sandrine Lydie Oyegue Liabagui1,3†, Jean Bernard Bongui2, Rafika Zatra1, Jacques Lebibi2 and Fousseyni S Toure-Ndouo1

Abstract

Background: Malaria remains a major public health problem, especially in tropical and subtropical regions because of the emergence and widespread of antimalarial drug resistance. Traditional medicine represents one potential source of new treatments. Here, we investigated the in vitro antiplasmodial activity of bark extracts from two Fabaceae species (Tetrapleura tetraptera and Copaifera religiosa) traditionally used to treat malaria symptoms in Haut-Ogooué province, Gabon.

Findings: The antiplasmodial activity of dichloromethane and methanolic extracts was tested on P. falciparum strains FCB (chloroquine-resistant) and 3D7 (chloroquine-sensitive) and on fresh clinical isolates, using the DELI method. Host cell toxicity was analyzed on MRC-5 human diploid embryonic lung cells using the MTT test. The dichloromethane extracts of the two plants had interesting activity (IC50 between 8.5 ± 4.7 and 13.4 ± 3.6 μg/ml). The methanolic extract of Tetrapleura tetraptera was less active (IC50 around 30 μg/ml) and the methanolic extract of Copaifera religiosa was inactive. The selectivity index (toxicity/antiplasmodial activity) of the dichloromethane extract of Tetrapleura tetraptera was high (around 7), while the dichloromethane extract of Copaifera religiosa had the lowest selectivity (0.6). The mean IC50 values for field isolates were less than 1.5 μg/ml for dichloromethane extracts of both plants, while methanolic extracts of Tetrapleura tetraptera showed interesting activity (IC50 = 13.1 μg/ml). The methanolic extract of Copaifera religiosa was also inactive on field isolates.

Conclusions: Dichloromethane extracts of Tetrapleura tetraptera and Copaifera religiosa, two plants used to treat malaria in Gabon, had interesting antiplasmodial activity in vitro. These data provide a scientific rationale for the traditional use of these plants against malaria symptoms. Bioactivity-guided phytochemical analyses are underway to identify the active compounds.

Keywords: Plant extracts, Fabaceae, antiplasmodial activity, cytotoxicity, Plasmodium falciparum

Findings

Malaria still kills nearly a million people worldwide each year, and most malarial deaths are due to Plasmodium falciparum (WHO 2009 http://www.who.int/features/factfiles/malaria/malaria_facts/fr/index.html). A major obstacle to malaria control is the rapid emergence and spread of antimalarial drug resistance, and new antimalarial compounds are urgently needed. Plants have been used medicinally throughout history, and the two best conventional antimalarial drugs, artemisinin and quinine, are both derived from traditional medicines.

Gabon is a country of about 1.7 million people where malaria transmission is hyperendemic and perennial. Forest occupies 80% of the country and represents a potentially rich source of natural therapeutic molecules. Traditional medicine is a significant part of the Gabonese cultural heritage and is still relied on by a large majority of villagers. Medicinal plants used in the north and south of the country have been listed [1,2].

During an ethno-botanical survey in Haut-Ogooué province, south-east Gabon, we identified firstly nine plants with antimalarial activity [3]. Furthermore, traditional healers informed us that two Fabaceae species

* Correspondence: lekana_jb@yahoo.fr
† Contributed equally
1 Unité de Parasitologie Médicale (UPARAM), Centre International de Recherches Médicales de Franceville (CIRMF) B.P. 769 Franceville, Gabon
Full list of author information is available at the end of the article

© 2011 Lekana-Douki et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
(Copaifera religiosa and Tetrapleura tetraptera) were used for this purpose. Tetrapleura tetraptera and Copaifera religiosa are perennial trees widely distributed in Gabon. Their bark is used to treat various diseases in Haut-Ogooué. Several members of the Fabaceae family are reported to have antimalarial activity [4-7].

Here we investigated the antimalarial activity and cytotoxicity of dichloromethane and methanolic extracts of Copaifera religiosa and Tetrapleura tetraptera.

Plant material and extraction
Plant extracts were prepared by macerating 100 g of dried and powdered bark at room temperature for about 24 h. The material was extracted sequentially with dichloromethane and then methanol. The quantity of solvent used for each extraction was at least 10 times the quantity of plant material. Thus, two extracts were obtained for each plant. The filtrates were evaporated to dryness under reduced pressure with a rotary evaporator (Rotavapor®) at 30°C.

Parasite culture
P. falciparum strains 3D7 (chloroquine-sensitive) and FCB (chloroquine-resistant) obtained from MR4® (Malaria Research and Reference Reagent Resource Center) were cultured in standard conditions[8]. For some experiments the parasites were synchronized by repeated freeze-thaw cycles. The range of extract concentrations was 1000 μg/ml, 500 μg/ml, 250 μg/ml, 125 μg/ml, 62.5 μg/ml, 31.25 μg/ml, 15.62 μg/ml, 7.81 μg/ml, 3.90 μg/ml, 1.95 μg/ml, 0.98 μg/ml, 0.49 μg/ml, 0.24 μg/ml, 0.12 μg/ml and 0.06 μg/ml. Two hundred (200) microliters of synchronised trophozoite suspension containing different concentrations of the plant extracts (1.5% final hematocrit in RPMI 1640 medium + 0.5% Alumix®) were incubated in 96-well flat-bottom plates (NUNC, VW International, Strasbourg, France) at 37°C for 42 h, as previously described [9]. Parasite growth was stopped by freezing at -20°C.

Field isolates
Field isolates were collected with the patients’ or guardians’ informed consent. Ethical clearance and national endorsement were received from the Gabonese Ministry of Health. Three to five milliliters (3-5 ml) of blood was collected in an EDTA tube, and malaria was diagnosed with the Lambaréné blood smear method [10] with a cutoff of 1000 parasites/μL. The sensitivity of field isolates to dihydroartemisinin (DHA) and chloroquine (CQ) was tested.

Antiplasmodial activity
Antiplasmodial activity was analyzed with the DELI method (double-site enzyme-linked lactate dehydrogenase immunodetection assay) a pLDH measurement with an ELISA method as previously described [11]. Briefly, frozen parasites were thawed at room temperature for 1 hour. Then 100 μL of lysing buffer and an appropriate volume of sample were added to MAb 17E4 precoated wells before incubation with shaking at 37°C for 1 h. The plate was washed five times and 100 μL of biotinylated MAb 19G7 was added to each well at 37°C for 30 min. The plate was washed and 100 μL of peroxidase-labeled streptavidin was added at 37°C for 15 min. The plate was washed and 100 μL of a mixture (v/v) of a peroxidase substrate solution (3,3’,5,5’-tetramethylbenzidine and 0.02% H2O2) (Kirkegaard and Perry, Gaithersburg, MD) was added and incubated in the dark for 15 min at 37°C. The reaction was stopped with sulfuric acid, and absorbance was read with a microplate spectrophotometer (LP400; Bio-Rad, France) at 450 nm with a reference wavelength of 620 nm. All experiments were performed at least in duplicate. The IC50 (drug concentration that reduced parasitemia by 50%) was calculated as the mean of 3 independent experiments in different times.

Cytotoxicity assay
The cytotoxicity of the extracts was evaluated on MRC-5 human diploid embryonic lung cells, by using the MTT tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (Sigma®, Germany)) colorimetric method based on cleavage of the reagent by mitochondrial dehydrogenase in viable cells [12]. Cytotoxicity was scored as the percentage reduction in absorbance at 570 nm in treated cultures versus control cultures (contained culture medium only). All experiments were performed at least in duplicate. The 50% cytotoxic concentration (CC50, the drug concentration that reduced the number of viable cells by 50%) was calculated as the mean of 3 independent experiments in different times.

Selectivity index
The selectivity index (SI), corresponding to the ratio between cytotoxic and antiparasitic activities, was calculated as follows:

\[SI_{\text{Plasmodium}} = \left(\frac{\text{CC}_{50}\text{ Human}}{\text{IC}_{50}\text{ Plasmodium}}\right) \]

Results and Discussion
Several members of the Fabaceae family exhibit antimalarial activity, both in vitro and in animal models, and some compounds with antimalarial activity have been isolated from them [4,6,13-21]. Here, we sought a scientific rationale for traditional use of two Fabaceae species
(**Copaifera religiosa** and **Tetrapleura tetraptera**, voucher numbers D. N. 584 and J.J. WIE 6388 respectively from the Gabonese national herbarium) traditionally used to treat malarial symptoms. From 100 g of dried and powdered bark, the extraction yields in dichloromethane were 3.75% and 4.58% for **Tetrapleura tetraptera** and **Copaifera religiosa**, respectively. The yields in methanol, a more polar solvent, were 19.33% and 16.85% for **Tetrapleura tetraptera** and **Copaifera religiosa**, respectively.

The antiplasmodial activities and cytotoxicity of the dichloromethane and methanolic extracts were analysed (Table 1).

Based on WHO guidelines and previous data [22] antiplasmodial activity was classified as follows: high (IC$_{50} < 5$ μg/ml), promising (5<IC$_{50} < 15$ μg/ml), moderate (15<IC$_{50} < 50$ μg/ml) and inactive (IC$_{50} > 50$ μg/ml).

The dichloromethanolic extracts of both plants showed promising activity, indicating that they contained the main active compounds.

The dichloromethanolic extract of **Tetrapleura tetraptera** had IC$_{50}$ values of 10.1 ± 3.2 μg/ml and 13.0 ± 3.1 μg/ml for strains FCB and 3D7, respectively. Cytotoxicity on MRC-5 human foetal cells was weak (CC$_{50} = 79.9 ± 24.3$ μg/ml), giving good selectivity indexes (7.91 and 6.15 for strain FCB and 3D7 respectively). The methanolic extract of **Tetrapleura tetraptera** had moderate antiplasmodial activity (IC$_{50}$ 34.6 ± 4.7 μg/ml and 29.6 ± 6.9 μg/ml on FCB and 3D7, respectively), but also weak cytotoxicity on MRC-5 cells (CC$_{50}$ 89.4 ± 10.8 μg/ml), giving selectivity indexes of 2.58 and 3.02 respectively. Chloroquine, tested as a control, had IC$_{50}$ values of 324.8 ± 16.8 nM for FCB and 7.9 ± 2.3 nM for 3D7.

Tetrapleura tetraptera is widely used in Nigeria, and its fruits have been reported to have nutritional, antiparasitic, antiabetic, analgesic and antiinflammatory properties [23-25]. People living in Haut-Ogooué use a decoction of **Tetrapleura tetraptera** bark to treat tummy-ache and vomiting, as well as fever and headache. It is also used as a deworming and purgative agent at low doses. People also use this plant around food crops to protect them against pests. The selective antiplasmodial activity of **Tetrapleura tetraptera** bark observed here is consistent with the reported antiplasmodial activity of **Tetrapleura tetraptera** fruit in experimental mice [26]. These fruits contain many compounds with antiplasmodial activity, including triterpenoids and flavonoids [27,28]. The bark may contain triterpenes and other compounds with antiplasmodial properties [29]. The exact mechanism of antimalarial action of flavonoids is unclear, but some flavonoids have been shown to inhibit the influx of L-glutamine and myoinositol into P. falciparum-infected erythrocytes [30]. Other flavonoids such as a flavone glycoside from *Phlomis brunnegoalea* and iridoid from *Scrophularia lepidota* have been reported to inhibit the Fabl enzyme of *P. falciparum* [31,32]. Triterpenoids such as Iridal extracted from *Iris germanica* L. are suspected to act against the reinvasion step rather than the maturation step of *P. falciparum*, and has cumulative inhibitory effect on the main metabolic pathways of the parasite [33].

Table 1 In vitro antiplasmodial activity, cytotoxicity, and selectivity index of the plant extracts

Plants species	Voucher number	Extract	Antiplasmodial activity (IC$_{50}$, μg/ml)a	Cytotoxicity MRC-5 (CC$_{50}$, μg/ml)b	Selectivity Indexc	
Copaifera religiosa	D. N. 584	CH$_3$Cl	13.4 ± 3.6	487 ± 0.5	0.37	0.61
		CH$_3$OH	500.7 ± 164	480.9 ± 34.2	NT	ND
Tetrapleura tetraptera	J.J. WIE 6388	CH$_3$Cl	10.1 ± 3.2	799.9 ± 24.3	7.9	6.15
		CH$_3$OH	34.6 ± 4.7	894 ± 10.8	2.58	3.02
Chloroquine			324.8 ± 168 nM	7.9 ± 2.3 nM	ND	ND

a: IC$_{50}$ (Inhibition concentration 50%) is the drug concentration that reduced parasitemia by 50%

b: CC$_{50}$ (Cytotoxic concentration drug 50%) is the drug concentration that reduced the number of viable MRC-5 cells by 50%

c: Selectivity index = Ratio CC$_{50}$/IC$_{50}$

NT: Not Tested

ND: Not Determined

http://www.biomedcentral.com/1756-0500/4/506

Page 3 of 5

Lekana-Douki et al. BMC Research Notes 2011; 4:506
concentrates more compounds than dichloromethane extracts. Certain compounds present in these mixtures might neutralise toxic components, as might metabolic processes after ingestion. Studies using animal models are needed to determine in vivo toxicity. As reflected in its name, *Copaifera religiosa* is used by people in southern Gabon during spiritual ceremonies, as an ingredient of facial make-up. Traditional hunters use it as a lucky charm.

As shown in Table 2 the dichloromethanic extracts were also highly active on field isolates of *P. falciparum*: the median IC$_{50}$ values of *Tetrapleura tetraptera* and *Copaifera religiosa* were 0.9 (0.5-5.0) µg/ml and 1.5 (30.3-0.8) µg/ml, respectively. The methanolic extract of *Tetrapleura tetraptera* also showed promising activity, with a median IC$_{50}$ of 13.1 (75.4-9.3) µg/ml whereas the methanolic extract of *Copaifera religiosa* was inactive (IC$_{50}$ of 227.8 (20-697.6) µg/ml). Mainly for the most isolates, the activity of the extracts did not correlate with parasite sensitivity to CQ or DHA, suggesting that the mechanisms of action of compounds in the plants extracts are different from those of CQ and DHA. Half (50%) the field isolates were chloroquine-resistant (IC$_{50}$ ≥ 100 nM), and one had diminished susceptibility to DHA (IC$_{50}$ = 11.1 nM).

This preliminary analysis of *Copaifera religiosa* and *Tetrapleura tetraptera* shows that both Fabaceae have promising antiplasmodial activity. Although the mechanisms of action of these plants have not yet been identified, some plants are known to exert their antiplasmodial action by increasing red blood cell oxidative stress [34] or by inhibiting protein synthesis [35]. Our data provide a rationale for the use of these plants in traditional medicine to treat malaria symptoms in Haut-Ogooué province. We are currently attempting to isolate active compounds for testing in animal models of malaria.

Table 2 In vitro antiplasmodial activity (IC$_{50}$) of Fabaceae extracts on field isolates of *P. falciparum*

Isolates	Tetrapleura tetraptera (µg/ml)	Copaifera religiosa (µg/ml)	DHA (nM)	CQ (nM)		
	CH$_2$Cl$_2$ MeOH	CH$_2$Cl$_2$ MeOH				
21431	0.6 ± 0.7	11.0 ± 0.6	1.1 ± 0.4	200 ± 10.6		
21439	0.5 ± 0.2	12.6 ± 0.9	0.9 ± 0.5	75 ± 48		
21489	0.8 ± 0.3	10.2 ± 2.3	1.6 ± 0.8	20 ± 3.5		
21542	1.2 ± 0.5	14.7 ± 1.5	3.6 ± 1.3	25.6 ± 2.1		
21552	5.0 ± 1.1	754.8 ± 86	30.3 ± 1.3	400 ± 23.4		
21657	0.9 ± 0.4	238 ± 94	9.1 ± 1.6	236 ± 9.7		
21660	1.2 ± 0.2	135.7 ± 8	0.9 ± 0.3	88 ± 10.2		
21676	1.0 ± 0.5	9.3 ± 0.9	2.4 ± 1.7	45.2 ± 18		
21679	2.1 ± 0.5	11.2 ± 2.6	1.1 ± 0.3	320.7 ± 93		
21681	0.7 ± 0.6	125 ± 3.4	0.9 ± 0.6	264.6 ± 84		
21683	1.7 ± 0.4	138 ± 14	1.5 ± 0.2	321.3 ± 31		
21700	2.6 ± 1.0	149 ± 0.7	2.7 ± 0.6	200.1 ± 60		
21706	0.8 ± 0.3	117 ± 1.6	3.6 ± 1.5	697.6 ± 82		
21721	0.7 ± 0.3	9.9 ± 0.8	1.3 ± 0.5	345.7 ± 136		
21743	1.8 ± 1.4	142 ± 3.7	2.6 ± 0.6	294.3 ± 73		
21782	0.7 ± 0.3	159 ± 0.9	0.8 ± 0.6	219.6 ± 20.3		
Median (Min-Max)*	0.9 (0.5-5.0)	13.1 (93-75.4)	1.5 (0.8-30.8)	227.8 (20-697.6)	1.45 (0.1-11.1)	85.3 (3.4-375.2)

Median (Min-Max)*: median of IC$_{50}$ with minimum and maximum. DHA: dihydroartemisinin. CQ: chloroquine.

List of abbreviations

CQ: Chloroquine; DHA: Dihydroartemisinin; DELI: Double-site enzyme-linked lactate dehydrogenase immunodetection assay; IC$_{50}$: inhibition concentration 50%, dose which inhibits parasite growth by 50%; CC$_{50}$: cytotoxic concentration 50%, dose which inhibits cell growth by 50%.

Acknowledgements and funding

We thank Professor HP Bourouf for plant descriptions, and R. Niangadouma and F. Lekoulou for technical assistance. We also thank the medical staff of Centre Hospitalier Regional Amri et Bongo and l’Hôpital de l’amitié Sino-Gabonaise de Franceville. This work was supported by CIRMF, the Gabonese Government, Total, and the French Foreign Ministry.

Author details

1Unité de Parasitologie Médicale (UPARAM), Centre International de Recherches Médecines de Franceville (CIRMF) B.P. 769 Franceville, Gabon.
2Unité de Recherches en chimie, Faculté des Sciences, Université des Sciences et Techniques de Masuku. B.P. 943 Franceville, Gabon.
3Département de Parasitologie-Mycologie Médecine Tropicale, Faculté de Médecine, Université des Sciences de la Santé, B.P. 4009 Libreville, Gabon.
4Unité de Parasitologie Médicale Centre International de Recherches Médicales de Franceville (CIRMF), Département de Parasitologie-Mycologie Médecine Tropicale, Faculté de Médecine Université des Sciences de la Santé. B.P. 769 Franceville, Gabon.
Authors’ contributions
All authors read and approved the final manuscript. JBLD is senior lecturer at USS and CIRMF. He conceived this work, conducted the study and wrote the article. SLOL was PhD student; she measured antimalarial activity. JBB is senior lecturer at USTM; he conceived this work, conducted the chemical part of the study and wrote the article. RZ is a research engineer; she conducted the study and wrote the paper. JL is head of a chemistry research unit; he coordinated the ethnobotanical survey and the chemical part of the study, and wrote the paper. FSTN was head of UPARAM; he coordinated the study and wrote the paper.

Competing interests
The authors declare that they have no competing interests.

Received: 16 August 2011 Accepted: 23 November 2011

References
1. Akendengue B, Lous AM. Medicinal plants used by the Masango people in Gabon. J Ethnopharmacol 1994, 41(3):193-200.
2. Akendengue B. Medicinal plants used by the Fang traditional healers in Equatorial Guinea. J Ethnopharmacol 1992, 37(2):165-175.
3. Lekana-Douki JB, Bongui JB, Oyegue Liabagui SL, Zang Edou SE, Zatra R, Bivigou U, Druilhe P, Lebibi J, Toure Ndouo FS, Kombila M. In vitro antimalarial activity and cytotoxicity of nine plants traditionally used in Gabon. J Ethnopharmacol 2010, 133(3):1103-1108.
4. Innocent E, Moshiri DJ, Masirima PJ, Mbavambo ZH, Kamuhaba A. Screening of traditionally used plants for in vivo antimalarial activity in mice. Afr J Tradit Complement Altern Med 2009, 6(2):163-167.
5. Okonkwo JO, Ata BN, Udopokh AE. Antimalarial activity of Cyclocidus gabunensis. J Ethnopharmacol 2006, 107(2):175-178.
6. Esmaeili S, Naghibi F, Mosaddegh M, Sahranavard S, Ghafari S, Abdullah NR. Antimalarial activity of crude extracts from nine African medicinal plants. J Ethnopharmacol 2008, 116(1):74-83.
7. Trager W, Jensen JB. Human malaria parasites in continuous culture. Science 1976, 193(4254):673-675.
8. Kaddouch H, Nakauche S, Houze S, Mentre F, Le Bras J. Assessment of the drug susceptibility of Plasmodium falciparum clinical isolates from Africa using a Plasmodium lactate dehydrogenase immunodetection assay and an inhibitory maximum effect model for precise measurement of the 50-percent inhibitory concentration. Antimicrob Agents Chemother 2006, 50(10):3343-3349.
9. Planche T, Krishna S, Houze M, Engel K, Faucher JF, Ngou-Milama E, Kremsner PG. Comparison of methods for the rapid laboratory assessment of children with malaria. Am J Trop Med Hyg 2003, 65(5):599-602.
10. Druilhe P, Moreno A, Blanc C, Brassee PH, Jacquier P. A colorimetric in vitro drug sensitivity assay for Plasmodium falciparum based on a highly sensitive double-site lactate dehydrogenase antigen-capture enzyme-linked immunosorbent assay. Am J Trop Med Hyg 2001, 64(3-4):235-241.
11. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983, 65(1-2):55-63.
12. Mueller I, Li X, Dunbar DC, Elslohy MA, Khan IA. Antimalarial (+) -trans-3-hexahydrodibenzopyran derivatives from Macaerium multiflorum. J Nat Prod 2001, 64(10):1322-1325.
13. Adzu B, Ababb J, Vongtau H, Gaminale K. Studies on the use of Cassia singeauna in malaria ethnopharmacy. J Ethnopharmacol 2003, 88(2-3):261-267.
14. Kraft C, Jenett-Siems K, Gelsen K, Solis PN, Gupta MP, Bionzo U, Eich E. Antimalarial activity of isoflavones from Andira inermis. J Ethnopharmacol 2003, 73(1-2):131-135.
15. Abatan MO, Makinde MJ. Screening Azadiracta indica and Pismum sativum for possible antimalarial activities. J Ethnopharmacol 1986, 17(1):85-93.
16. Dhoooge L, Maregesi S, Mincheva I, Ferreira D, Marais JP, Lemiere F, Mathieuksen A, Cos P, Maes L, Vliekink A, et al. Antiplasmodial activity of I-3, II-3-biflavonoids and other constituents from Omoparmacum kirkii. Phytochemistry 1971(7):785-791.
17. Kraft C, Jenett-Siems K, Gelsen K, Solis PN, Gupta MP, Bionzo U, Eich E. Antimalarial activity of Andinermals A-C, antimalarial constituents from Andira inermis. Phytochemistry 2001, 58(5):769-774.
18. Kohler I, Jenett-Siems K, Siems K, Hernandez MA, Ibarra RA, Berendsohn WG, Bionzo U, Eich E. In vitro antimalarial investigation of medicinal plants from El Salvador. Z Naturforsch C 2002, 57(3-4):277-281.
19. Kanokmedhakul S, Kanokmedhakul K, Nambuddee K. Kongsaree P. New bioactive prenyllavonoids and dibenzocyloclophene derivatives from roots of Dendrolium lanceolatum. J Nat Prod 2004, 67(6):968-972.
20. Ndjakou Lenta B, Voonthon-Senecheau C, Fongang Soh R, Tantangmo F, Ngouela S, Kaiser M, Tsamo E, Anton T, Weniger B. In vitro antimalarial activities and cytotoxicity of some selected Cameroon medicinal plants. J Ethnopharmacol 2007, 111(3):18-12.
21. Jonville MC, Kodja H, Humeau P, Fournel J, De Mol P, Cao M, Angenot L, Frederich M. Screening of medicinal plants from Reunion Island for antimalarial and cytotoxic activity. J Ethnopharmacol 2008, 120(3):382-386.
22. Ojewole JA. Analgesic and anticonvulsant properties of Tetrapleura tetraptera (Taub) (Fabaceae) fruit aqueous extract in mice. Phytother Res 2005, 19(12):1029-1029.
23. Ojewole JA, Adeyewumi CO. Anti-inflammatory and hypoglycaemic effects of Tetrapleura tetraptera (Taub) (Fabaceae) fruit aqueous extract in rats. J Ethnopharmacol 2004, 95(2-3):177-182.
24. Essen EU, Izhwane BC, Aremu CY, Eka OU. Significance for humans of the nutrient contents of the dry fruit of Tetrapleura tetraptera. Plant Foods Hum Nutr 1994, 45(1):47-51.
25. Okonkwo JO, Udopokh AE. Antimalarial activity of ethanolic extract of Tetrapleura tetraptera fruit. J Ethnopharmacol 2007, 111(3):537-540.
26. Adeyewumi CO, Marquis VO. Laboratory evaluation of the molluscidial properties of aradain, an extract from Tetrapleura tetraptera (Mimosaceae) in Bulinus globosus. Journal of Parasitology 1981, 67:713-716.
27. Adeyewumi CO, Sofowora EA. Preliminary screening of some plants extracts for molluscidial activity. Plant Medica 1980, 39:57-65.
28. Note OP, Mitaine-Offer AC, Miyamoto T, Paululat D, Pegnymbre DE, Lalacille-Dubois MA. Tetraplerosides A and B, two newoleanane-type saponins from Tetrapleura tetraptera. Magn Reson Chem 2009, 47(3):277-282.
29. Ellord BC. L-Glutamine influx in malaria-infected erythrocytes: a target for antimalarials? Parasitol Today 1986, 2(11):309-312.
30. Kirimzibekmez H, Calis I, Perezou R, Brun R, Donmez AA, Linden A, Ruedi P, Tasdemir D. Inhibiting activities of the secondary metabolites of Phlomis bruneoalegata against parasitic protozoa and plasmodial enolyl-ACP Reductase, a crucial enzyme in fatty acid biosynthesis. Planta Med 2004, 70(8):711-717.
31. Tasdemir D, Guner ND, Perezou R, Brun R, Donmez AA, Calis I, Ruedi P. Anti-protozoal and plasmodial Fabl enzyme inhibiting metabolites of Scorphyra leptidota roots. Phytochemistry 2005, 66(3):355-362.
32. Benoit-Vical F, Imbert C, Bonfils JP, Sauvaire Y. Antiplasmodial and antifungal activities of iridal, a plant triterpenoid. J Ethnopharmacol 2003, 62(5):747-751.
33. Ekim NL. Antimalarial plants used by Hausa in northern Nigeria. Trop Doct 1997, 27(5Supp1):12-16.
34. Kirby GC, O'Neil MJ, Phillipson JD, Warhurst DC. In vitro studies on the mode of action of quinooxazidines with activity for chloroquine-resistant Plasmodium falciparum. Biochem Pharmacol 1989, 38(24):4367-4374.

Cite this article as: Lekana-Douki et al: In vitro antimalarial activity of crude extracts of Tetrapleura tetraptera and Copaifera religiosa. BMC Research Notes 2011 4:506.