Off-equilibrium fluctuation-dissipation relations in the 3d Ising Spin Glass in a magnetic field.

A. Cruz, L. A. Fernández, S. Jiménez, J. J. Ruiz-Lorenzo and A. Tarancón

1 Depto. de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain.
2 Instituto de Biocomputación (BIFI), Universidad de Zaragoza.
3 Depto. de Física Teórica, Facultad de CC. Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
4 Depto. de Física, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
(Dated: March 5, 2003)

We study the fluctuation-dissipation relations for a three dimensional Ising spin glass in a magnetic field both in the high temperature phase as well as in the low temperature one. In the region of times simulated we have found that our results support a picture of the low temperature phase with broken replica symmetry, but a droplet behavior can not be completely excluded.

PACS numbers: 75.50.Lk,05.50.+q,64.60.Cn,02.50.Nq,02.60.Cb

I. INTRODUCTION

The understanding of the behavior of a spin glass in a magnetic field is a challenging issue from both experimental and theoretical sides.

In the theoretical side, there are two competing theories. In the droplet model the spin glass phase is unstable (for any amount of magnetic field) and so there is no phase transition: there is only a pure state describing all the Ising spin glass in a magnetic field. On the other side, Mean Field (MF) predicts a phase transition between two phases. The first one is characterized by one pure state, and the low temperature phase is described by a countable number of pure states. In the Mean Field approximation a third order phase transition has been found between those two phases separated by the de Almeida-Thouless line. See references for a description and for a critic of the RSB picture.

Hence, those two competing theories have opposite predictions about the overall behavior of a spin glass in the presence of a magnetic field. However, to perform experimental or numerical tests of the previous analytical predictions has proved very difficult despite the clear theoretical predictions (phase transition or not!).

A further step in Mean Field computations is to take into account the effect of fluctuations. This can be done, for instance, using Field Theoretic methods and has been done in the past. Working with a projected theory (by taking only the replicon sector which contains the most divergent terms of the initial Hamiltonian) no fixed points have been found in the model. It is important to mention that the existence or not of a transition in magnetic field affects the existence or not of a phase with replica symmetry breaking (RSB) at zero magnetic field. In particular the absence of a fixed point for the Ising spin glass in a magnetic field supports the droplet picture against the Mean Field one.

A recent and detailed analysis reaches the same conclusions of Ref. and so three possibilities are opened: i) no phase transition at all, ii) first order phase transition driven by fluctuations and finally iii) second order phase transition dominated by a fixed point outside the accessible perturbative region (i.e. region of small parameters). However, a fourth possibility has been recently opened by Temesvári and De Dominics who have extended the field theoretic analysis further. They analyze a field theory in which the replicon and anomalous sectors are both critical going beyond the old analysis where only the replicon sector was taken critical. The main result of this analysis is the existence of a new critical point (which appears at eight dimensions) taking the control of the phase transition at six dimensions. The authors also pointed out that this new fixed point provides a phase transition which has different features to that of Mean Field.

On the numerical side the situation is a bit clearer (but not enough!). Looking at the off equilibrium numerical simulations, the difference between the mean overlap and the minimum overlap has been computed. In four dimensions and not for too low temperatures there is a clear difference between these two measurements, which is a clear signature for Replica Symmetry Breaking. Another off equilibrium approach is to compute the violation of the fluctuation dissipation theorem out of equilibrium. This has been done using a slightly modified version of the four dimensional Gaussian spin glass and it was found that the violation is well understood in terms of a non trivial low temperature phase. In this paper we will follow this approach but working in three dimensions and simulating the Edwards-Anderson model. It is important to notice, that the same kind of studies on the violation of the fluctuation-dissipation out of equilibrium can be done in real experiments. In fact, in a recent paper, the violation of the fluctuation-dissipation relations in an Ising spin glass (in zero magnetic field) has been reported, and the experiment can be explained in terms of Replica Symmetry Breaking.

Another numerical method is to use exact ground state techniques in order to understand the qualitative features
of the low temperature phase. This has been done in three dimensions and a RSB behavior has been found between zero and a magnetic threshold (for the Gaussian Ising spin glass in 3d, this threshold is near 0.65), however this work cannot exclude completely a droplet behavior. A recent study points out that there is no phase transition at all (at finite temperature) but they cannot exclude a critical field below 0.4.

We can cite different numerical studies working at equilibrium. Those studies have been mainly done in four dimensions in order to avoid the proximity to the lower critical dimension (which is between two and three, at least in the Ising spin glass without magnetic field). Those studies are not fully conclusive, but the existence of a finite temperature phase transition emerge as the most likely explanation of the numerical data.

On the experimental side the situation is not clear. There is strong experimental evidence about an irreversibility line (where the zero field cooled (ZFC) and the field cooled (FC) magnetization start to be different), but unfortunately, that line depends on the time, and so, we have only off equilibrium information about what happens in the presence of a magnetic field. In the literature, one can find some attempts to analyze the scaling behavior of the freezing temperatures and the conclusion is that no phase transition exists.

However, recent experimental studies based in the fluctuation-dissipation relations point out the existence of a phase transition in the presence of magnetic field. Moreover, a phase transition has been reported in a Heisenberg spin glass (AuFe) in three dimensions in the presence of a magnetic field against the droplet prediction (we recall that the droplet model predicts no phase transition independently of the number of components of the spin).

We will study the three dimensional Ising spin glass using an off-equilibrium approach based on the computation of the fluctuation-dissipation relations. This method has provided and important tool to investigate the low temperature properties of disordered systems (and it has been very useful in the study of non disordered systems such as glasses).

II. THEORETICAL BASIS

We have focused this paper on the study of the fluctuation dissipation relations in the off-equilibrium regime. To do this we need to define the spin-spin autocorrelation function and the response of the magnetization to a small change of the magnetic field of the system. In order to make the paper self-contained and to fix the notation, we shall recall some important results about the off equilibrium fluctuation-dissipation relations. We have simulated the binary Ising spin glass in three dimensions on a cubic lattice of volume $V = L^3$ with helical boundary conditions. The Hamiltonian of the system is given by

$$\mathcal{H} = - \sum_{<ij>} \sigma_i J_{ij} \sigma_j - h \sum_i \sigma_i .$$ \hspace{1cm} (1)

By $<ij>$ we denote the sum over nearest neighbor pairs. The J_{ij} are chosen from $\{+1, -1\}$ randomly and h is the external magnetic field. We have studied systems with magnetic field $h = 0.2$ and lattice sizes $L = 20$, $L = 30$ and $L = 60$.

We have used the SUE parallel computer. SUE is a dedicated machine with an overall performance of 0.22 ns per spin flip. See references for a detailed description of this computer.

Given a quantity $A(t)$ that depends on the local variables of our original Hamiltonian (\mathcal{H}), we can define the following autocorrelation function

$$C(t_1,t_2) = \langle A(t_1) A(t_2) \rangle ,$$ \hspace{1cm} (2)

and the response function

$$R(t_1,t_2) = \frac{\delta \langle A(t_1) \rangle}{\delta \Delta h(t_2)} \bigg|_{\Delta h = 0} ,$$ \hspace{1cm} (3)

where we have assumed that the original Hamiltonian has been perturbed to

$$\mathcal{H}' = \mathcal{H} + \int \Delta h(t) A(t) \, dt .$$ \hspace{1cm} (4)

The brackets $\langle \cdots \rangle$ in eq. (2) and eq. (3) imply here a double average, one over the dynamical process and one over the disorder.

As usual one could choose $A(t) = \sigma_i(t)$ and the response function should be

$$R(t_1,t_2) = \left. \frac{\delta m(t_1)}{\delta \Delta h(t_2)} \right|_{\Delta h = 0} = \left. \frac{\delta \langle \sigma_i(t_1) \rangle}{\delta \Delta h(t_2)} \right|_{\Delta h = 0} ,$$ \hspace{1cm} (5)

where $m(t) = \langle \sigma_i(t) \rangle$.

However, to improve the signal of the autocorrelation we have used in the present paper:

$$C(t_1,t_2) = \frac{1}{V} \sum_{i=1}^V \langle \sigma_i(t_1) \sigma_i(t_2) \rangle ,$$ \hspace{1cm} (6)

and $m(t) = \frac{1}{V} \sum_i \langle \sigma_i(t) \rangle$. We remark that we are interested in global fluctuation dissipation relations. Recently work has been done in local microscopic fluctuation dissipation relations but we will not study them in this paper.

In the dynamical framework, assuming time translational invariance, it is possible to derive the fluctuation-dissipation theorem (FDT), that reads

$$R(t_1,t_2) = \beta \theta(t_1 - t_2) \frac{\partial C(t_1,t_2)}{\partial t_2} ,$$ \hspace{1cm} (7)
where the inverse temperature is $\beta = 1/T$.

The fluctuation-dissipation theorem holds in the equilibrium regime, but in the early times of the dynamics we expect a breakdown of its validity. Mean Field studies suggest the following modification of the FDT:

$$R(t_1, t_2) = \beta X(t_1, t_2) \theta(t_1 - t_2) \frac{\partial C(t_1, t_2)}{\partial t_2} .$$ \hspace{1cm} (8)

It has also been suggested that the function $X(t, t')$ is only a function of the autocorrelation: $X(t, t') = X(C(t, t'))$.

We can then write the following generalization of FDT, which should hold in early times of the dynamics, the off-equilibrium fluctuation-dissipation relation (OFDR), that reads

$$R(t_1, t_2) = \beta X(C(t_1, t_2)) \theta(t_1 - t_2) \frac{\partial C(t_1, t_2)}{\partial t_2} .$$ \hspace{1cm} (9)

We can use the previous formula, eq. (9), to relate the observable quantities defined in eq. (2) and eq. (3). Using the functional Taylor expansion we can write

$$m[h + \Delta h](t) = m[h](t) + \int_{-\infty}^t dt' \frac{\delta m[h'](t)}{\delta h'(t')} \Delta h(t') + O(\Delta h^2),$$ \hspace{1cm} (10)

and so,

$$\Delta m[h, \Delta h](t) = \int_{-\infty}^t dt' R(t, t') \Delta h(t') + O(\Delta h^2) .$$ \hspace{1cm} (11)

where we have defined $\Delta m[h, \Delta h](t) \equiv m[h + \Delta h](t) - m[h](t)$. Eq. (11) is just the linear-response theorem neglecting higher orders in Δh. By applying the OFDR we obtain the dependence of the magnetization with time in a generic time-dependent magnetic field (with a small strength), $\Delta h(t)$,

$$\Delta m[h, \Delta h](t) \simeq \beta \int_{-\infty}^t dt' X[C(t, t')] \frac{\partial C(t, t')}{\partial t'} \Delta h(t') .$$ \hspace{1cm} (12)

Next we let the system evolves with the unperturbed Hamiltonian of eq. (11) from $t = 0$ to $t = t_w$, the so called waiting time, and then we turn on the perturbing magnetic field Δh (hence, the system feels a magnetic field $h + \Delta h$). Finally, with this choice of the magnetic field, we can write (ignoring in our notation the fact that Δm also depends on t_w)

$$\Delta m[h, \Delta h](t) \simeq \Delta h \beta \int_{t_w}^t dt' X[C(t, t')] \frac{\partial C(t, t')}{\partial t'} \Delta h(t') .$$ \hspace{1cm} (13)

and by performing the change of variables $u = C(t, t')$, eq. (13) reads

$$\Delta m[h, \Delta h](t) \simeq \Delta h \beta \int_{C(t, t_w)}^1 du X[u] ,$$ \hspace{1cm} (14)

where we have used the fact that $C(t, t) \equiv 1$ (always true for Ising spins). In the equilibrium regime ($X = 1$ as the fluctuation-dissipation theorem holds) we must obtain

$$\Delta m[h, \Delta h](t) \simeq \Delta h \beta (1 - C(t, t_w)) ,$$ \hspace{1cm} (15)

i.e. $\Delta m[h, \Delta h](t) / \Delta h$ is a linear function of $C(t, t_w)$ with slope -1. We remark that we can use this formula to obtain q_{max} as the point where the curve $\Delta m[h, \Delta h](t)$ against $C(t, t_w)$ leaves the line with slope $-\beta h$.

In the limit $t, t_w \to \infty$ with $C(t, t_w) = q$, one has that $X(C) \to x(q)$, where $x(q)$ is given by

$$x(q) = \int_{q_{\text{min}}}^q dq' P(q') ,$$ \hspace{1cm} (16)

where $P(q)$ is the equilibrium probability distribution of the overlap. Obviously $x(q)$ is equal to 1 for all $q > q_{\text{max}}$, and we recover FDT for $C(t, t_w) > q_{\text{max}}$. This link between the dynamical function $X(C)$ and the static one $x(q)$ has been already verified for finite dimensional spin glasses. The link has been analytically proved for systems with the property of stochastic stability.

For future convenience, we define

$$S(C) \equiv \int_C^1 dq \, x(q) ,$$ \hspace{1cm} (17)

or equivalently

$$P(q) = - \left. \frac{d^2 S(C)}{dC^2} \right|_{C=q} .$$ \hspace{1cm} (18)

In the limit where $X \to x$ we can write eq. (13) as

$$\frac{\Delta m[h, \Delta h](t)}{\Delta h} \simeq S(C(t, t_w)) .$$ \hspace{1cm} (19)

Looking at the relation between the correlation function and the integrated response function for large t_w we can thus obtain q_{max}, the maximum overlap with non-zero $P(q)$, as the point where the function $S(C)$ becomes different from the function $1 - C$.

From the function $S(C)$ we can get information on the overlap distribution function $P(q)$, through eq. (18). Let us recall which is the prediction for the $S(C)$ assuming the validity of each one of the competing theories described in the introduction. The droplet model predicts $P(q) = \delta(q - \hat{q})$ and consequently

$$S(C) = \begin{cases} 1 - \hat{q} & \text{for } C \leq \hat{q} , \\ 1 - C & \text{for } C > \hat{q} . \end{cases}$$ \hspace{1cm} (20)

In models with only one state, as the droplet model predicts for this model, the equilibrium time is finite irrespective of the value of the volume of the system, hence, we can always thermalize any volume, and so the asymptotic behavior, for waiting times larger than the equilibration time, is composed only for the straight line $1 - C$. There is no horizontal part.
On the other hand the MF like prediction for the overlap distribution $P(q) = (1 - x_M)q(q - q_{\text{max}}) + x_Mq(q - q_{\text{min}}) + \hat{p}(q)$ (where the support of $\hat{p}(q)$ belongs to the interval $[q_{\text{min}}, q_{\text{max}}]$), $q_{\text{min}} \propto h^{4/3}$ and q_{max} mainly depends on the temperature), implies that

$$S(C) = \begin{cases} S(0) & \text{for } C \leq q_{\text{min}}, \\ \hat{s}(C) & \text{for } q_{\text{min}} < C \leq q_{\text{max}}, \\ 1 - C & \text{for } C > q_{\text{max}}, \end{cases} \quad (21)$$

where $\hat{s}(C)$ is a quite smooth and monotonically decreasing function such that

$$\hat{p}(q) = -\frac{d^2\hat{s}(C)}{dC^2} \bigg|_{C=q} \quad (22)$$

To finish this section we will recall an approximate scaling property of the probability distribution of the overlap that was introduced by Parisi and Thouless (hereafter PaT)32 In particular in Mean field the PaT hypothesis implies

$$S(C) = \begin{cases} 1 - C & \text{for } C \geq q_{\text{max}}, \\ T \sqrt{1 - C} & \text{for } q_{\text{min}} \leq C \leq q_{\text{max}}. \end{cases} \quad (23)$$

The result for $C \geq q_{\text{max}}$ is general (and true for finite dimension) and for $q_{\text{min}} \leq C \leq q_{\text{max}}$ we make the following Ansatz: $S(C) = AT(1 - C)^B$ (in Mean Field $A = 1$ and $B = 1/2$). If we substitute this Ansatz in eq. (19) we obtain the following scaling equation

$$\frac{mT}{h} T^{-\phi} = f \left((1 - C) T^{-\phi} \right), \quad (24)$$

where f is a scaling function and $\phi = 1/(1 - B)$ (in Mean Field $\phi = 2$). In order to be consistent the scaling function should be composed by a linear part (x) and by a power law part (Ax^B).

We have only measured the autocorrelation function (see eq. (18)) and the response function (see eq. (19)).

III. NUMERICAL RESULTS

A. On the critical temperature

Assuming the existence of a phase transition in magnetic field, we can estimate the shift of the critical temperature when a small magnetic field is turned on using the Mean Field approximation. The main formula is

$$\frac{T_c(h) - T_c(0)}{T_c(0)} = \left(\frac{3}{4} \right)^{1/3} \left(\frac{h}{J} \right)^{2/3}, \quad (25)$$

where J is defined (in Mean Field) as $J_{ij}^2 = J^2/N$, N being the volume of the system (or the coordination number in the Mean Field approximation), J_{ij} being the random couplings between the spins, $T_c(0)$ being the critical temperature in absence of magnetic field and finally $T_c(h)$ being the critical temperature in the presence of a magnetic field h. That is the formula that fixes the AT instability in infinite dimensional spin glasses.

We can modify that formula (eq. (25)) for a finite coordination number. Let z be the coordination number of our lattice. We recall that our J_{ij} have unit variance and so $J = \sqrt{z}$. Hence we can write

$$\frac{T_c(h) - T_c(0)}{T_c(0)} = \left(\frac{3}{4} \right)^{1/3} \left(\frac{h}{\sqrt{z}} \right)^{2/3}, \quad (26)$$

In our case $z = 6$, $T_c(0) \approx 1.14$, and so $T(h = 0.2) \approx 0.945$ ($h = 0.2$ is the magnetic field simulated in the present work). Notice that near zero magnetic field the phase transition line has vertical slope $(dT(h)/dh \approx 1/h^{1/3})$.

In order to check the existence or not of a phase transition (using the OFDR as a tool) we have simulated at very high temperature ($T = 2.5$) and a lower temperature (which is below our previous estimate of the critical one, $T = 0.714$).

B. OFDR in the high temperature region

We have simulated the system at temperature $T = 2.5$ in a magnetic field $h = 0.2$ and with perturbing fields $\Delta h = 0.01$ and $\Delta h = 0.03$ (in order to check linear response) and different waiting times: 409600 and 819200. The number of samples simulated was about 6400 samples for each waiting time.

We show in figure 4 the plot for $t_w = 819200$ and $L = 30$.

For the largest value of the waiting time simulated all the data stay on the equilibrium line $1 - C$ (i.e. this waiting time is greater than the equilibrium time for this lattice size).

In the paramagnetic phase, droplet and RSB agree: for a “finite” volume and very large times (greater than the equilibration time) all the points should lie on the straight line $\Delta m(t)T/\Delta h = 1 - C$ with $C \in [0, q_{\text{EA}}]$ (equilibrium situation). For intermediate situations (i.e. not so large waiting times) the curves lie below the straight line (see figure 4) and the final straight line, is built from below (i.e. curves with lower waiting times lie below those with higher ones). This behavior is similar to that found in the two dimensional Ising spin glass in a magnetic field for a finite temperature (the system is paramagnetic)34. See also figure 5 of reference34 for an example of a FDT plot in a paramagnetic phase in the four dimensional Ising spin glass.

C. OFDR in the low temperature region

The situation at a lower temperature is dramatically different.
We start showing the numerical results for one of the lowest temperature simulated, \(T = 0.714 \). All the simulations reported in this subsection have been done at \(h = 0.2 \) as the external magnetic field.

In figure 3 we show \(\Delta mT/\Delta h \) against \(C(t, t_w) \) for different waiting times \(t_w \) and perturbing magnetic field \(\Delta h = 0.03 \) for the \(L = 30 \) lattice.

The first check we have performed is to control that we are in the linear response regime. To do this we have computed the OFDR for different perturbing magnetic fields \(\Delta h = 0.01 \) and 0.03. We have found that the results are independent of these two values of \(\Delta h \). In the following we show the results obtained with \(\Delta h = 0.03 \).

The second check has been to verify that our results are lattice size independent. In figure 4 we can see the results for \(L = 30 \) and \(L = 60 \), with perturbing field \(\Delta h = 0.03 \). For \(L = 20 \), the perturbing field \(\Delta h = 0.03 \) has proved too noisy, and we have used \(\Delta h = 0.06 \). It can be seen that the behavior of \(L = 30 \) is asymptotic in this kind of simulations (i.e. for the time scales that we have simulated): the \(L = 20 \) points are still a bit noisy but \(L = 30 \) and \(L = 60 \) coincide. Using this information we will focus on the \(L = 30 \) lattice in the rest of the paper. We can state that we have simulated 512 samples for \(t_w = 81920 \), 416 samples for \(t_w = 163840 \) and 3232 for \(t_w = 327680 \) and 1638400 in the \(L = 30 \) lattice. In addition 6200 samples in the \(L = 20 \) lattice and 412 in the largest lattice that we have simulated (\(L = 60 \)).

The third goal is to study the dependence on the waiting times of the OFDR curves. We have simulated \(t_w = 81920 \), 163840, 327680 and 1638400 and from figure 3 it is possible to see that the curves rise as the waiting time is larger. Moreover, the curves for the larger waiting times are just compatible within our error bars. In this sense we are confident that the curve corresponding to \(t_w = 1638400 \) represent very well the overall behavior of the system (very large volumes and times or equivalently infinite volume and waiting times). This behavior is very important because our final curve (i.e. \(t_w = 1638400 \)) has a clear curvature which should be absent if the droplet model holds (see eqs. (20) for droplet and (21) for RSB predictions).

We have plotted in figure 4 two additional straight lines. The first line, horizontal, corresponds to the asymptotic value of \(\Delta m(t)/\Delta h \). To obtain this value, we have performed a simulation reaching times much longer than the ones used in the OFDR curves, but using a smaller number of samples. In figure 5 we can see the evolution of \(m(t) \). The horizontal lines are the error band related to the asymptotic value of \(\Delta m(t) = 0.1286(15) \). For this value we do not need to do any kind of extrapolation since we have reached the thermodynamic value of \(\Delta m(t)/\Delta h \) in this long simulation (\(O(10^8) \) Monte Carlo steps).

If the droplet model holds, the final (asymptotic) curve should be composed by the \(1 - C \) straight line \((C \in [q_{EA}, 1]) \) as explained above. This implies that we can estimate the “droplet” prediction for the order parameter as \(q_{EA} \approx 0.694(4) \). We have marked this value with a vertical line in figure 3.

We would remark at the end of this section the following points:

- We have obtained a \(t_w \)-independent final curve (and \(L \)-independent), at least within our statistical precision. We believe that this curve represents with high accuracy the behavior for large volumes and times of an Ising spin-glass at \(T = 0.714 \) and \(h = 0.2 \). In this scenario we can estimate that \(q_{EA} \approx 0.76(2) \) (the points in which the points leave the straight line) which differs from the droplet value 0.694(4).

- We cannot avoid a dependence on the waiting times beyond our numerical precision, and so we can not exclude completely a droplet phase with \(q_{EA} = 1 - \Delta m(\infty)/\Delta h \approx 0.694(4) \).
As we have cited in the section devoted to high temperature, the final curve is built from below. At low temperature, in the droplet scenario, we should expect the same behavior as at high temperature and so the final curve should build from below. The point is whether the curves for large waiting times stop or not before they reach the droplet prediction. Our numerical data suggest that the curves stop before the droplet final curve, and that the asymptotic curve shows the characteristic curvature of a phase with RSB.

We end this section showing a figure corresponding to the crossover region. In the following discussion we will restrict ourselves to a qualitative level. In figure 6 we have shown the OFDR for the three values of temperature ($T = 1.25, 1.11$ and 1.0) and $t_w = 327680$. It is clear that the largest temperatures shows a clear signature of a paramagnetic phase (i.e. small curvature and almost a straight line). You can compare these curves with a clear paramagnetic one, see figure 2 which also shows a small curvature at the end of the curve. We remark that the critical temperature of the model with no magnetic field is about 1.14, and so we are (qualitatively) exploring the region near the vertical of this point. On the basis of mean field we should expect that the line of transitions emerges from the point at zero magnetic field with vertical slope. Hence, this plot and a transition temperature near 1.1 is compatible with this scenario. The prediction using eq. (26) was 0.95. Obviously, in order to see a clear paramagnetic curve with no violations, we refer to figure 1. We remark that this methods based in the violation of fluctuation-dissipation is not so powerful to determine with precision transition points; is a good method to decide if one point (T, h) (well inside the phase in order to avoid the crossover region) behaves in a way or not.

D. OFDR in the high magnetic field region

In this section we study the properties of OFDR at a fixed low temperature when the magnetic field grows. The goal of this section is to find when the behavior of the OFDR relations change from a non trivial one (as found for $T = 0.714$ and $h = 0.2$) to a trivial one (droplet) as far the magnetic field becomes larger. Notice that this temperature ($T = 0.714$) is far away of the critical temperature of the model with no magnetic field ($T = 1.138$), avoiding so, crossover effects between the phase transition at zero field.
We show in figures 7 and 8 the results obtained at $T = 0.714$ and $h = 0.4$ and $h = 0.6$ respectively.

We start discussing the $h = 0.4$ plot (figure 7). If we compute, as above, q_{EA} as the minimum value of the correlation (starting from $C = 1$) for which the points do not lie (using one standard deviation as criteria) on the straight line, we obtain that this value of the field is still not statistically compatible with the droplet value. If we relax the one standard deviation criteria to two or three standard deviations, the behavior can be described as droplet. Obviously for larger magnetic field we can show analytically that the behavior is droplet (the magnetic contribution in the Hamiltonian becomes dominant and we can drop the spin glass term).

For a larger magnetic field, $h = 0.6$, the situation is clearer (figure 8). Practically all the points are on the straight line (slightly below but always at a distance less than a one-two standard deviations). We have a horizontal part (the system has reached its asymptotic magnetization) since our largest waiting time is still smaller than the equilibration time for this magnetic field (in the droplet, this time is finite).

The conclusion of this section is that $h = 0.4$ the situation is still not clear but $h = 0.6$ is droplet. We have observed a clear change in the behavior of OFDR in the region $h \approx 0.4 - 0.6$. Assuming a phase transition (between RSB and droplet) this implies that $h_c(T = 0.714) \sim 0.6$.

This figure compares very well with that obtained at zero temperature in a related model (which uses Gaussian coupling). It has been obtained a critical magnetic field at zero temperature of 0.6^{14} or 0.4 if we use reference 15.

FIG. 6: We show OFDR for three temperatures, for $t_w = 327680$ and $L = 30$.

FIG. 7: Off equilibrium fluctuation-dissipation relations for $T = 0.714$, $L = 30$ and $h = 0.4$. We have marked the equilibrium straight line $1 - C$. We plot $\Delta mT/h$ against $C(t, t_w)$ for three different waiting times. We have also plotted the error band for the asymptotic value of $\Delta mT/h$.

FIG. 8: Off equilibrium fluctuation-dissipation relations for $T = 0.714$, $L = 30$ and $h = 0.6$. We have marked the equilibrium straight line $1 - C$. We plot $\Delta mT/h$ against $C(t, t_w)$ for two different waiting times. We have also plotted the error band for the asymptotic value of $\Delta mT/h$.

E. Scaling properties of OFDR in the low temperature region

In this section we will study the scaling properties of the t_w and L-independent fluctuation dissipation curves obtained for different temperatures. The main goal of this section is to study the degree of accuracy of the approximate PaT Ansatz in the three dimensional Ising spin glass in a magnetic field. That Ansatz has been found very adequate to describe the low temperature fluctuation-dissipation curves both in three and four dimensions in the presence of a magnetic field. Moreover this scaling Ansatz has been checked in experiments find-
are 1 in previous plots, hence the slopes of the equilibrium lines $T = 0$. We show only the data computed with the largest waiting time $t_w = 327680$.

FIG. 9: Off equilibrium fluctuation-dissipation relations for five different temperatures. We have marked the equilibrium straight lines. Notice that we plot $\Delta m/h$ instead $\Delta mT/h$ as in previous plots, hence the slopes of the equilibrium lines are $1/T$. We show only the data computed with the largest waiting time $t_w = 327680$.

We have tried in figure 11 this kind of Ansatz and the scaling is very good and so we are confident that the PaT scaling describes with great accuracy the behavior of the fluctuation dissipation curves in a large temperature window.

Notice that the PaT scaling works for our $L-$ and t_w-independent curves. We have found a good scaling for values of $\phi \in (1.2,1.4)$. In figure 11 we use central value for $\phi = 1.3$. Two clear and distinctive regimes can be seen in that figure. The first one correspond to the quasi-equilibrium regime: in that part of the figure the behavior is linear and so it matches with the quasi-equilibrium regime $\Delta mT/h = 1 - C$. The second one corresponds to the aging regime: that part of the plot can be parametrized with a power law with the B exponent introduced above in the paper. We have obtained $B = 0.27(3)$ which provides $\phi = 1.37(6)$, which is a compatible value with the ϕ value used in the scaling plot (this is a check of consistency of the scaling law!). For completeness we report the value of A (we remark that the aging region follows a law $A x^B$, where x is the scaling variable $T^{\phi}(1-C)$): $A = 0.52(1)$.

We can compare the values obtained for A and B with previous results published in the literature. In the 3d Ising spin glass with no magnetic field $A = 0.7$ and $B =$...
We can see that in absence of magnetic field the \(B \) value is close to the Mean Field value (0.5) whereas the magnetic field value in three dimensions is clearly far from the MF value.

Following reference 23 this kind of scaling it is not enough to detect a RSB phase (they found in the two dimensional Ising model —with no phase transition at finite temperature—a PaT scaling for their OFDR). Nevertheless, in the PaT scaling only works for points with the same waiting time, instead, in our plot we have points computed with different waiting times. In effect, we remark again, our scaling is \(t_\text{w}-\text{independent} \) (at least in our numerical precision) which is a behavior completely different from the two dimensional spin glass (paramagnetic phase). For a paramagnetic phase and very long waiting time (i.e. all the points lie in the \(1-C \) straight line, see for example our figure 1 we have equilibrated the system) the PaT scaling plot should consist in points over the linear part (quasi-equilibrium regime), and no one in the power law part (aging regime).

We finally remark that this scaling in addition with the analysis of the OFDR (see above) provides us with a picture that could be explained assuming a low temperature phase with RSB.

IV. DISCUSSION AND CONCLUSIONS

We have studied how the fluctuation dissipation relations work off equilibrium in the three dimensional Ising spin glass with a magnetic field.

We have shown numerical data that has been obtained simulating very large lattices \((L=20,30\) and \(60)\) and for extremely large times for the three dimensional Ising spin glass. In order to achieve these lattice sizes and time we have used a dedicated machine (SUE).

We have identified with this tool a paramagnetic phase in the high temperature region (as expected) and a phase where we have found strong violations of fluctuation-dissipation. We can describe very well (within our statistical precision) these violations assuming a RSB scenario, yet we can not exclude completely a droplet scenario.

Moreover we have shown the crossover, both moving in temperature as well as moving in magnetic field, between a spin glass behavior and a paramagnetic one. We have a picture of the phase diagram composed by three points (using the notation \((T,h)\)): \((1.138,0),(\sim 1.1,0.2)\) and \((0.714,\sim 0.6)\) (with the symbol \(\sim\) we denote that the figure that follows is only indicative). In addition we know that for the Gaussian model there is a critical point at \((0,0.6)\), but this critical magnetic field should be modified to take into account that we are using binary couplings.

Finally we have checked that the overlap probability distribution of our model, \(P(q) \), (obtained via the static-dynamics link: \(X(C) \to x(q) \)), which is not trivial (at least within our numerical precision, see section II.), satisfies the PaT Ansatz.

V. ACKNOWLEDGMENTS

We thank partial financial support from CICyT (AE079-1680, FPA2000-0956, FPA2001-1813 and PB98-0842) and DGA (P46/97). We also want to acknowledge the contribution of Prof. Domingo González to the development of spanish Physics, and in particular his help to our group, which has been essential to build our dedicated computers. We finally thank Giorgio Parisi for interesting comments. S. Jimenez is a DGA fellow.
E. Marinari, G. Parisi and J. J. Ruiz-Lorenzo. “Numerical Simulations of Spin Glass Systems” in “Spin Glasses and Random Fields”, edited by P. Young. World Scientific (Singapore 1997). cond-mat/9701016.

P. Norblad and P. Svendlish, “Experiments on Spin Glasses” in “Spin Glasses and Random Fields”, edited by P. Young. Word Scientific (Singapore 1997).

V. S. Zotev, R. Orbach, cond-mat/0112489; cond-mat/0201226.

D. Petit, L. Fruchter and I. A. Campbell, Phys. Rev. Lett. 83, 5130 (1999).

S. Franz and H. Rieger, J. Stat. Phys. 79 749 (1995).

E. Marinari, G. Parisi, F. Ricci-Tersenghi and J. J. Ruiz-Lorenzo, J. Phys. A: Math. Gen. 31, 2611 (1998).

G. Parisi, F. Ricci-Tersenghi and J. J. Ruiz-Lorenzo, Eur. Phys. J. B. 10, 317 (1999).

G. Parisi, Phys. Rev. Lett. 79, 3660 (1997).

A. Cruz, J. Pech, A. Tarancón, P. Téllez, C. L. Ulld and C. Ungil, Computer Physics Communications, 133 (2-3) 165 (2001).

H.G. Ballesteros, A. Cruz, L.A. Fernández, V. Martín-Mayor, J. Pech, J.J. Ruiz-Lorenzo, A. Tarancón, P. Tellez, C.L. Ulld and C. Ungil Phys. Rev. B62, 14237 (2000).

H. Castillo et al., Phys. Rev. Lett 88, 237201(2002). A. Monatanari and F. Ricci-Tersenghi, cond-mat/0207416. G. Parisi, cond-mat/0208070.

L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71, 173 (1993); Philosophical Magazine 71, 501 (1995); J. Phys. A: Math. Gen. 27, 5749 (1994).

S. Franz and M. Mézard, Europhys. Lett. 26, 209 (1994).

A. Baldassarri, L. F. Cugliandolo, J. Kurchan and G. Parisi, J. Phys. A: Math. Gen. 28, 1831 (1995).

S. Franz, M. Mezard, G. Parisi, L. Peliti, Phys. Rev. Lett. 81, 1758 (1998); J. Stat. Phys. 97, 459 (1999).

G. Parisi and D. J. Thouless. J. Physique Lett. 41, L361 (1980).

A. Barrat and L. Berthier, Phys. Rev. Lett. 87, 87204 (2001)

E. Marinari, G. Parisi, F. Ricci-Tersenghi, J. Phys. A 33, 2373 (2000).