Synthesis and Molecular Structure of a Copper Octaiodocorrole

Ivar K. Thomassen, Laura J. McCormick, and Abhik Ghosh

INTRODUCTION

Compared to β-octabrominated porphyrins and corroles, which serve as starting materials for a variety of other β-octasubstituted macrocycles, polyiodoporphyrinoids remain relatively little explored. Some progress, however, has taken place recently. Thus, we have recently reported a number of β-octaiodocorrole derivatives. Oxidative condensation of 3,4-diiodopyrrole and aromatic aldehydes failed to yield free-base octaiodocorroles. Treatment of copper meso-tris(p-cyanophenyl)corrole with N-iodosuccinimide and trifluoroacetic acid over several hours, however, yielded the desired β-octaiodinated product in ~22% yield. Single-crystal X-ray structure determination of the product revealed a strongly saddled corrole macrocycle with metrical parameters very close to those of analogous Cu octabromocorrole complexes. The compound was also found to exhibit an exceptionally red-shifted Soret maximum (464 nm in dichloromethane), underscoring the remarkable electronic effect of β-octaiodo substitution.

RESULTS AND DISCUSSION

Attempts at oxidative condensation of 3,4-diiodopyrrole with aromatic aldehydes via a variety of methods frequently afforded low yields of β-octaiodoporphyrins but at best only traces of corroles. Accordingly, we turned our attention to the iodination of copper tris(para-X-phenyl)corrole complexes, Cu[TpXPC], where X = OMe, Me, CF3, and CN. Periodic acid/iodine (H1I2O4/LI) which we previously used to iodinate N-trisopropylsalicylpyrrole, proved too harsh, resulting in destruction of the Cu corrole. Attempts at metal–halogen exchange on the Cu β-octabromocorroles with n-BuLi or Rieke magnesium, followed by exposure to an iodinating agent, such as N-iodosuccinimide (NIS), proved similarly futile. Interaction with NIS in the presence of trifluoroacetic acid (TFA) led to complete destruction of the corrole, for X = OMe and Me. In contrast, for X = CF3 and CN, mass spectrometric analysis indicated the formation of the desired octaiodocorrole product, Cu[I8TpXPC] (X = CF3 and CN). Unfortunately, for X = CF3, isolation of the octaiodo product was frustrated by the presence of large quantities of inseparable impurities. For X = CN, on the other hand, stirring with NIS/TFA at room temperature for several hours led to modest (~20%) yields of the desired product, Cu[I8TpCNPC]. The same product was also obtained with 1,3-diiodo-5,5-dimethylhydantoin. Initially, the octaiodo product was contaminated with varying amounts of the I3 and other deiodinated compounds. Varying the amount of iodinating agent (10–100 equiv) and the solvents (acetonitrile, dichloromethane, toluene, and mixtures thereof) ultimately led to a protocol affording a 22% yield of Cu[I8TpCNPC] with no more than 2–3% of the I3 contaminant (Scheme 1).

Full characterization of Cu[I8TpCNPC] was hampered by the poor solubility of the compound in common solvents, presumably reflecting aggregation of the molecule. Thus, 1H NMR spectra proved unobtainable in essentially all solvents (CDCl3, CD3CN, 1,2-dichlorobenzene, DMSO, acetone-d6, and pyridine-d5) except tetrahydrofuran (THF)-d8, in which a spectrum was obtained consisting of three doublets of equal intensity, suggesting that the ortho and meta protons of the 10-aryl group are accidentally isochronous. Unfortunately, the weak signals frustrated our attempts to carry out a detailed two-dimensional NMR analysis. The poor solubility of the compound also hindered our efforts to obtain X-ray quality crystals. In a stroke of luck, diffusion of heptane vapor into a 1,2-dichlorobenzene solution of a ~70:30 mixture of Cu[I8TpCNPC]/Cu[I7TpCNPC] (the product of an earlier, less

ABSTRACT: Although rather delicate on account of their propensity to undergo deiodination, β-octaiodoporphyrinoids are of considerable interest as potential precursors to novel β-octasubstituted macrocycles. Presented herein are early results of our efforts to synthesize β-octaiodocorrole derivatives. Oxidative condensation of 3,4-diiodopyrrole and aromatic aldehydes failed to yield free-base octaiodocorroles. Treatment of copper meso-tris(p-cyanophenyl)corrole with N-iodosuccinimide and trifluoroacetic acid over several hours, however, yielded the desired β-octaiodinated product in ~22% yield. Single-crystal X-ray structure determination of the product revealed a strongly saddled corrole macrocycle with metrical parameters very close to those of analogous Cu octabromocorrole complexes. The compound was also found to exhibit an exceptionally red-shifted Soret maximum (464 nm in dichloromethane), underscoring the remarkable electronic effect of β-octaiodo substitution.
optimized synthetic protocol) afforded crystals, which proved amenable to single-crystal X-ray structure determination (Figure 2 and Table 1).

As expected for a sterically hindered Cu corrole, the X-ray structure revealed a strongly but not exceptionally saddled macrocycle geometry. Table 2 provides a comparison of key metrical parameters of Cu[I₈TpCNPC] and of other, pertinent Cu corroles. Thus, despite the significantly higher van der Waals radius of I (2.15 Å) relative to Br (1.95 Å), the Cu–N distances and saddling dihedrals for Cu[I₈TpCNPC] (see Figure 2) were found to be nearly identical to those of Cu β-octabromo-meso-triarylcorroles, suggesting that peripheral I–I interactions may not be as repulsive as implied by iodine’s van der Waals radius. We may further note that the present structure is somewhat more saddled than a Cu undecaarylcorrole but distinctly less so.

Figure 1. High-resolution electrospray ionization (ESI) mass spectrum of Cu[I₈TpCNPC] in negative mode. Inset: ¹H NMR spectrum in THF-đ₈.
The UV–vis spectrum of Cu[I\text{7.64TPCNPC}] in CH₂Cl₂ exhibits a dramatically red-shifted Soret maximum (464 nm), relative to Cu[TPC] (413 nm), Cu[Br₂TPC] (439 nm), and even Cu[(CF₃)₄TPC] (459 nm) (Figure 3).²⁷ Given that Cu[I\text{7.64TPCNPC}] is in all likelihood no more saddled than Cu[Br₂TPC], the strongly red-shifted Soret maximum of the former provides a nice illustration of the unique electronic effect of the β-octaiodo substitution. Interestingly, the Soret maximum of Cu[I\text{7.64TPCNPC}] exhibits a mild redshift in pyridine (λ\text{max} = 468 nm), potentially indicating halogen bonding interactions with that solvent.

CONCLUSIONS

β-Octaiodoporphyrinoids are fragile molecules that readily undergo deiodination. Careful choice of starting materials and mild reaction conditions has allowed the synthesis and subsequently single-crystal X-ray structure determination of the first β-octaiodocorrole derivative, viz., copper 5,10,15-tris(4-cyanophenyl)corrole. Pyrrole (Sigma-Aldrich) was purified by passing through a pad of basic aluminum oxide 60 (activity I, 0.050–0.150 mm particle size, Merck Millipore) and neutral aluminum oxide (activity I, 0.050–0.150 mm particle size, Sigma) were used as purchased. Ultraviolet–visible spectra were recorded on an HP 8453 spectrophotometer at room temperature in CH₂Cl₂. ¹H NMR spectra were recorded at room temperature on a Mercury Plus Varian spectrometer (400 MHz), and high-resolution electrospray ionization (ESI) mass spectra were recorded on an LTQ Orbitrap XL spectrometer.

EXPERIMENTAL SECTION

Materials and Instrumentation

4-Cyanobenzaldehyde, N-iodosuccinimide, and trifluoroacetic acid (HPLC-grade, ≥99.0%) were purchased from Sigma-Aldrich and used without further purification. Pyrrole (Sigma-Aldrich) was purified by passing through a pad of basic aluminum oxide 60 (activity I, 0.063–0.200 mm particle size, Merck Millipore). Copper 5,10,15-tris(4-cyanophenyl)corrole was prepared via a one-pot protocol derived by modification of a previously reported procedure (for which the purification steps did not work well in our hands).²⁸ Silica gel 150 (35–70 μm particle size, Davisil) and neutral aluminum oxide (activity I, 0.050–0.150 mm particle size, Sigma) were used as purchased. Ultraviolet–visible spectra were recorded on an HP 8453 spectrophotometer at room temperature in CH₂Cl₂. ¹H NMR spectra were recorded at room temperature on a Mercury Plus Varian spectrometer (400 MHz), and high-resolution electrospray ionization (ESI) mass spectra were recorded on an LTQ Orbitrap XL spectrometer.

Synthetic Methods

Copper 5,10,15-Tris(4-cyanophenyl)-corrole. 4-Cyanobenzaldehyde (520 mg, 4 mmol) was dissolved in pyrrole (400 mg, 6 mmol) and to the stirred mixture was added a solution (40 μL) of 10% trifluoroacetic acid in dichloromethane at room temperature. After 10 min, the solution was diluted with dichloromethane (10 mL) and a solution of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (1 g, 4.8 mmol) in 1:1 toluene/THF (4 mL) was added. After 5 min of stirring, the mixture was further diluted with dichloromethane (40 mL) and extracted twice with a saturated solution of sodium bicarbonate (50 mL each time) and twice with distilled water (50 mL each time). The organic phase was dried with
anhydrous sodium sulfate and filtered. The filtrate was evaporated to dryness and the residue, whose crude weight was noted, was redissolved in pyridine (50 mL). Copper (II) acetate hydrate (1.1 equiv relative to the crude product) was added, and the solution was left to stir for 30 min. Upon removal of the solvent in vacuo, the solid residue was dissolved in a minimum volume of dichloromethane and chromatographed on silica gel column (with initially CH₂Cl₂ and then in a minimum volume of dichloromethane and chromatographed on a neutral alumina column with 4:1 dichloromethane/ethyl acetate as an olive-green solid (3.3 mg, 21.8%). UV–vis (CH₂Cl₂) λ_{max} [nm, ε × 10^{-4} (M⁻¹ cm⁻¹)]: 464 (7.85), 567 (1.06), 668 (0.69).¹ H NMR (400 MHz, THF-d₈, δ): 7.58 (d, 4H, J_{HH} = 8.2 Hz), 7.75 (d, 4H, J_{HH} = 8.2 Hz), 7.80 (d, 4H, J_{HH} = 8.3 Hz). High-resolution mass spectrometry (ESI in methanol): [M]⁺ = 1668.2812 (expt), 1668.2813 (calc for Cu_{64}H₂₁₁N₇I₈). Crystals suitable for X-ray analysis were obtained by vapor diffusion of heptane into a concentrated 1,2-dichlorobenzene solution.

X-ray Structure Determination. X-ray data for Cu-[I₈TpCNPC] were collected on beamline 12.2.1 at the Advanced Light Source, Lawrence Berkeley National Laboratory. The crystal, an orange lath (0.080 mm × 0.010 mm × 0.010 mm), was mounted on a MiTeGen kapton loop and placed in a 100(2) K nitrogen cold stream provided by an Oxford Cryostream 800 Plus low-temperature apparatus on the goniometer head of a Bruker D8 diffractometer equipped with a PHOTON II CPAD detector operating in shutterless mode. Diffraction data were collected using synchrotron radiation monochromated using silicon (111) to a wavelength of 0.7288(1) Å. An approximate full-sphere of data was collected using a combination of ω, ϕ and ω−ϕ scans with a scan speed of 0.5 s per 4° for the ω scans and 0.5 and 1 s per degree for the ω scans at 2θ = 0 and −20, respectively. Absorption corrections were applied using SADABS.²⁹ The structure was solved by intrinsic phasing (SHELXT)³⁰ and refined by full-matrix least squares on F² (SHEXL-2014)³¹ using the ShelXle GUI.³² Appropriate scattering factors were applied using the XDIP program within the WinGX suite.³³ All nonhydrogen atoms were refined anisotropically. Hydrogen atoms were geometrically calculated and refined as riding atoms. Electron density holes near the iodine atoms at the C7 and C13 positions indicated that these atoms do not have 100% occupancy, and the occupancies of iodine atoms at C7 and C13 (I₁ and I₂ in the cif) were allowed to freely refine. The relative occupancies of these atoms refined to approximately 85 and 80%, consistent with a ~35% contamination of the crystal by the I₁ species. A small amount of positional disorder was found for the iodine atoms bound to C8 and C12. Accordingly, the two atoms were each modeled over two sites with complementary occupancies.

Table 2. Copper–Nitrogen Distances (Å) and Saddling Dihedrals (°) for Selected Cu Corroles

complex	Cu–N₁a	Cu–N₆a	X₁	X₆a	ref	
Cu[TPC]	1.891	1.891	27.5	53.4	48.7	17
Cu[pCF₅Ph]₂TPC]	1.902	1.897	40.9	60.1	66.0	22
CuBr₂TpMePC	1.916	1.916	44.7	65.9	57.3	20
Cu[I₈TpCNPC]	1.921	1.922	45.3	67.0	57.3	this work
Cu[(CF₃)₂TpCNPC]	1.921	1.925	57.2	86.4	84.5	24

aAverage of two values for each experimental structure.

Figure 3. Comparison of the UV–vis spectra (dichloromethane) of Cu[TPC] (red), Cu[Br₂TPC] (blue), Cu[(CF₃)₂TPC] (black), and Cu[I₈TpCNPC] (purple).
ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsomega.8b00616.

Crystallographic data (CIF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: abhik.ghosh@uit.no. Tel: +47 45476145.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by grants 231086 and 262229 of the Research Council of Norway and by the Advanced Light Source, Berkeley, California. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

(1) Dolphin, D.; Taylor, T. G.; Xie, L. Y. Polyhaloporphyrins: Unusual Ligands for Metals and Metal-Catalyzed Oxidations. Acc. Chem. Res. 1998, 27, 31−41.
(2) Ghosh, A.; Halvorsen, I.; Nilsen, H. J.; Steene, E.; Wondimagegn, T.; Lie, R.; van Caemelbecke, E.; Guo, N.; Ou, Z.; Kadish, K. M. Electrochemistry of Nickel and Copper β-Octalactogeno-meso-tetraarylporphyrins. Evidence for Important Role Played by Saddling-Induced Metal(d_{xy})-Porphyrin(a_{2u}) Orbital Interactions. J. Phys. Chem. B 2001, 105, 8120−8124.
(3) Wasbotten, I. H.; Wondimagegn, T.; Ghosh, A. Electronic Absorption, Resonance Raman, and Electrochemical Studies of Planar and Saddled Copper(III) Meso-Triarylcorroles. Highly Substituent-Sensitive Soret Bands as a Distinctive Feature of High-Valent Transition Metal Corroles. J. Am. Chem. Soc. 2002, 124, 8104−8116.
(4) Medforth, C. J.; Smith, K. M. The synthesis and solution conformation of dodecaporphyrin. Tetrahedron Lett. 1990, 31, 5583–5586.
(5) Liu, C.; Chen, Q. Y. Fluoroenalkylation of Porphyrins: A Facile Synthesis of Trifluoromethylated Porphyrins by a Palladium-Catalyzed Cross-Coupling Reaction. Eur. J. Org. Chem. 2005, 2005, 3680−3686.
(6) Thomassen, I. K.; Vazquez-Lima, H.; Gagnon, K. J.; Ghosh, A. Octaiodoporphyrin. Inorg. Chem. 2015, 54, 11493−11497.
(7) Vestfrid, J.; Botoshansky, M.; Palmer, J. H.; Durrell, A. C.; Gray, H. B.; Gross, Z. Ligated Aluminum(III) Corroles with Long-Lived Triplet Excited States. J. Am. Chem. Soc. 2011, 133, 12899−12901.
(8) Vestfrid, J.; Goldberg, I.; Gross, Z. Tuning the Photophysical and Redox Properties of Metallocorroles by Ligand. Inorg. Chem. 2014, 53, 10536−10542.
(9) Sudhakar, K.; Mahammed, A.; Friman, N.; Gross, Z. Ligated cobalt corroles. J. Porphyrins Phthalocyanines 2017, 21, 900−907.
(10) Soll, M.; Sudhakar, K.; Friman, N.; Müller, A.; Röder, B.; Gross, Z. One-Pot Conversion of Fluorophores to Phosphophores. Org. Lett. 2016, 18, 5840−5843.
(11) Orlowski, R.; Gryko, D.; Gryko, D. T. Synthesis of Corroles and Their Heteroanalogues. Chem. Rev. 2017, 117, 3102−3137.
(12) Barata, J. F. B.; Neves, M. G. P. M. S.; Faustino, A. F.; Tomé, A. C.; Cavaleiro, J. A. S. Strategies for Corrole Functionalization. Chem. Rev. 2017, 117, 3192−3253.
(13) Ghosh, A. Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chem. Rev. 2017, 117, 3798−3881.
(14) Rieke, R. D. Preparation of Organometallic Compounds from Highly Reactive Metal Powders. Science 1989, 246, 1260−1264.
(15) Orazi, O. O.; Corral, A.; Bertorello, H. E. N-Lodohydantoinos. II. Indinations with 1,3-Diido-5,5-dimethylhydantoin. J. Org. Chem. 1965, 30, 1101−1104.
(16) Thomas, K. E.; Alemayehu, A. B.; Conradie, J.; Beavers, C. M.; Ghosh, A. The Structural Chemistry of Metallocorroles: Combined X-Ray Crystallography and Quantum Chemistry Studies Afford Unique Insights. Acc. Chem. Res. 2012, 45, 1203−1214.
(17) Brückner, C.; Briñás, R. P.; Bauer, J. A. K. X-ray Structure and Variable Temperature NMR Spectra of [meso-Triarylcopper]−(III). Inorg. Chem. 2003, 42, 4495−4497.
(18) Alemayehu, A. B.; Gonzalez, E.; Hansen, L. K.; Ghosh, A. Copper Corroles Are Inherently Saddled. Inorg. Chem. 2009, 48, 7794−7799.
(19) Alemayehu, A. B.; Hansen, L. K.; Ghosh, A. Nonplanar, Noninnocent, and Chiral: A Strongly Saddled Metallocorrole. Inorg. Chem. 2010, 49, 7608−7610.
(20) Thomas, K. E.; Vazquez-Lima, H.; Fang, Y.; Song, Y.; Gagnon, K. J.; Beavers, C. M.; Kadish, K. M.; Ghosh, A. Lindig Noninnocence in Coinage Metal Corroles: A Silver Knife-Edge. Chem. - Eur. J. 2015, 21, 16839−16847.
(21) Thomas, K. E.; McCormick, L. J.; Carrié, D.; Vazquez-Lima, H.; Simonneaux, G.; Ghosh, A. Halterman Corroles and Their Use as a Probe of the Conformational Dynamics of the Inherently Chiral Copper Corrole Chromophore. Inorg. Chem. 2018, 57, 4270.
(22) Berg, S.; Thomas, K. E.; Beavers, C. M.; Ghosh, A. Undecafluorophyrins. Inorg. Chem. 2012, 51, 9911−9916.
(23) Gao, D.; Canard, G.; Giorgi, M.; Balaban, S. Synthesis and Characterization of Copper Undecafluorocorroles and the First Undecafluorocorrole Free Base. Eur. J. Inorg. Chem. 2012, 2012, 5915−5920.
(24) Thomas, K. E.; Conradie, J.; Hansen, L. K.; Ghosh, A. A Metallocorrole with Orthogonal Pyrrole Rings. Eur. J. Inorg. Chem. 2011, 2011, 1865−1870.
(25) Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441−451.
(26) Rowland, R. S.; Taylor, R. Intermolecular Nonbonded Contact Distances in Organic Crystal Structures: Comparison with Distances Expected from van der Waals Radii. J. Phys. Chem. 1996, 100, 7384−7391.
(27) Thomas, K. E.; Wasbotten, I. H.; Ghosh, A. Copper β-Octakis(Trifluoromethyl)Corroles: New Paradigms for Ligand Substitution Effects in Transition Metal Complexes. Inorg. Chem. 2008, 47, 10469−10478.
(28) Gryko, D. T.; Koszarny, B. Refined methods for the synthesis of meso-substituted A2- and trans-A3B-corroles. Org. Biomol. Chem. 2003, 1, 350−357.
(29) Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 2015, 48, 3−10.
(30) Sheldrick, G. M. SHELXT - Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr., Sec. A: Found. Adv. 2015, 71, 3−8.
(31) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr., Sec. C: Struct. Chem. 2015, 71, 3−8.
(32) Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. ShExl: A Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281−1284.
(33) Kissel, L.; Pratt, R. H. Corrections to tabulated anomalous-scattering factors. Acta Crystallogr., Sec. A: Found. Adv. 1990, 46, 170−175.
(34) Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849−854.