Rapid, modular secondary sphere assembly for enhanced Fe-catalyzed C(sp3)–H oxidation

Sabari Ghosh¹, Phuong Nguyen Tran¹, Dan McElheny¹, Juan J. Perez³, Andy I. Nguyen¹*
¹Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States

ABSTRACT: The inert nature of C(sp3)–H bonds makes their oxidative cleavage a difficult task. While metalloenzymes employ an array of non-covalent interactions to facilitate C(sp3)–H oxidation, this strategy is underexplored in abiotic catalysts due to time-consuming and low-yielding ligand syntheses, which impedes iterative design. To surmount these obstacles, we, herein, have developed a highly modular and rapid synthetic strategy that capitalizes on the efficiency of solid-phase peptide synthesis, which enables the generation of a ligand platform displaying at least four unique residues of varying electronics and steric in the secondary coordination sphere of a C–H oxidizing Fe catalyst. Modulating the non-covalent interactions in seven variants significantly influences cyclohexane oxidation catalysis, with one variant that boosts the catalytic activity by more than two-fold. To better understand the catalytic trends, we have determined the catalysts’ solution-state structures by 2D NMR spectroscopy, which suggests that peptide conformation can control substrate access and binding. This work demonstrates that (1) tunable, diverse, and complex active sites can be made readily, and (2) these active sites can be optimized to significantly increase catalytic activity.

The recalcitrant nature of the C(sp3)–H bond presents a major obstacle for converting abundant hydrocarbon resources into value-added products and opening novel routes for organic synthesis. An important example concerns the wasteful flaring of methane during oil production, which could be eliminated by oxidation into methanol, a useful chemical and easily-transportable liquid fuel. Though there are a handful of synthetic catalysts that can oxidize C(sp3)–H bonds to alcohol or carbonyl groups, current systems still demonstrate low activity, in contrast to efficient C–H oxidizing metalloenzymes – such as soluble methane monoxygenase (sMMO), particulate methane monoxygenase (pMMO), and cytochrome P450 (Figure 1A). Abiotic catalysts are more advantageous compared to enzymes in that their function and structure are not limited to what is biologically available, but the architecture of current catalysts have few options to engineer a secondary coordination sphere that could assist in substrate binding or reactive species generation. Some notable examples of catalysts have explored the use of non-covalent interactions in the secondary sphere to improve C–H oxidation (Figure 1B), but the drawbacks of these aforementioned catalysts are their lengthy syntheses and low modularity, which limits designability and optimization.

We hypothesize that synthetic peptides, which possess enormous structural diversity and are quickly assembled with robust, low-cost, and high-yielding chemistry, would overcome previous synthetic bottlenecks associated with secondary sphere synthesis. While many laboratories have explored peptides to tune the primary coordination sphere, fewer have targeted the secondary sphere, and to our knowledge, there are no metallopeptides that utilize the secondary sphere to optimize C(sp3)–H oxidation. Herein, we report a modular peptidic platform that display four unique residues in secondary sphere and can enhance the activity of a Fe-based C(sp3)–H oxidation catalyst.

Our catalyst design (Figure 1C) incorporates the following: (1) precise covalent attachment of a known catalytic inorganic complex, (2) a well-structured macromolecular peptide positioned above the cofactor to display various functionalities, and (3) a minimalist design to facilitate understanding of structure-function relationships. We targeted the Fe complexes of tris-(2-pyridylmethyl)amine (TPA) first described by Que and coworkers, which catalyze the oxidation of cyclohexane to cyclohexanol and cyclohexanone using the atom economical oxidant H$_2$O$_2$ via a well-established mechanism. Recent reports have shown that TPA and similar ligands can be covalently attached to the N-terminus of a helical peptide such that the metal center is proximal to several sidechains. Based on this previous work, we postulated that a metal-containing active site pocket can be readily constructed by dimerization of the peptide scaffolds, such as by disulfide bond formation via an incorporated cysteine residue. Our general sequence design comprises mostly the non-canonical amino acid 2-aminoisobutyric acid (Aib, one letter code = B), which reliably folds peptides into a 3α-helical secondary structure (Table 1). In this sequence, a 3α helix places residue 7 distal from, but positioned directly above the TPA cofactor, and thus was chosen to be cysteine to allow for dimerization via disulfide bond formation. Residues 3 and 4 are in close proximity to the TPA cofactor, and combinations of glutamine and alanine in those positions were synthesized to probe the effects of hydrogen bonding and steric around the metal. Peptides were synthesized by solid-phase peptide synthesis (SPPS), and importantly, purified peptide can be obtained with straightforward protocols in ~3 days with high yields. All peptides in this report fold well into a 3α helix (in 1:9 H$_2$O:MeCN) as exhibited by similar features in circular dichroism (CD) spectrum: a negative band at ~208 nm with a broad shoulder at ~222 nm and some positive intensity at 195 nm (Figure S8).
Table 1. Peptide sequences in this report

Name	Sequence
A3Q4	TPA-BAQBBCBL-NH2
Q3Q4	TPA-QQBBCBL-NH2
A3A4	TPA-BAABBBCBL-NH2
Q3A4	TPA-BQAABBBCBL-NH2
A3A4F8	TPA-BAABBBCFL-NH2
A3E4	TPA-BAEBBCBL-NH2
A3A4-OH	TPA-BAABBBCBL-OH

The peptides are homodimers, but only the sequence of one chain is shown.

Metalation with Fe(OTf)₂ afforded bright yellow complexes consistent with previously reported Fe(TPA)₂ complexes (SI). CD spectra confirmed that the helical structures were maintained after metalation. The NMR spectra of the Fe₄ complexes exhibited very broad resonances indicating a significant population of paramagnetic, high-spin Fe³⁺, preventing structural determination by NMR spectroscopy. In order to obtain representative NMR structures, 2D spectra were collected on diamagnetic Zn⁴⁺ analogs (Figure 2).

The ¹H NMR spectra of all Zn⁴⁺ complexes show only one set of peaks indicating symmetrically-related helices, and a pattern of NOE cross peaks defining a 3₁₀ helix (SI). In Q₃Q₄ and A₃Q₄, the ε-NH₂ protons of Q₄ are noticeably broader (FWHM of 35 Hz and 56 Hz, respectively) than other amide protons suggesting faster exchange with H₂O, consistent with binding of the amide carbonyl oxygen to the Lewis acidic Zn²⁺ center (SI). More importantly, there are several NOE cross peaks between residues distant in the sequence that are not possible within a single chain, revealing that the helices are antiparallel with respect to each other. The NMR-derived distance constraints were used to solve the structures of Zn-peptides. Complexes of X₃Q₄ (X = A or Q) show coordination of Q₄ to the metal allowing the ε-NH₂ group to act as a secondary sphere H-bond donor, while the opposing helix is pushed away by the steric of Q₄. Moreover, in Q₃Q₄, H-bonding between Q₃ and L₉’s carboxamide pulls the helix further away from TPA than in A₃Q₄. Mutation of X₃Q₄ to X₃A₄ (X = A or Q) allows the opposing helix to swing closer to TPA, with the identity of residue 3 controlling the level of helical movement. In Q₃A₄, a H-bond between L₉ and Q₃ allows the two helices to create a hydrophobic cavity above the metal center lined with Ala or Aib residues. In A₃A₄, the absence of interchain H-bonding coupled with small size of residue A₄, allows the C-terminus to approach even closer to the metal center, ~4 Å between the carboxamide and the metal center. Thus, the side chains control precise placement of functional groups in the secondary sphere of the TPA site.

Indeed, the catalytic oxidation of cyclohexane by H₂O₂ (in MeCN) mediated by the Fe-peptide complexes clearly reveals the effect of secondary coordination sphere when compared to the cofactor analog, Fe(5-MeO₅C-TPA)(OTf)₂ (Figure 3). The overall oxidation yield with Fe₄(Q₃Q₄) is 27% higher than that of the pure cofactor, Fe(5-MeO₅C-TPA) (vide infra), with increased cyclohexanone production accounting for higher yield. Mutation to Fe₄(A₃Q₄) greatly increases the turnover of the catalyst (82% higher than cofactor), which is surprising since there is only a subtle variation between the helix orientation compared to Fe₄(Q₃Q₄) (vide infra). This observation showcases that catalysis is highly sensitive to even minor changes in the secondary coordination sphere. The catalytic activity is further improved upon mutation to Fe₄(X₃A₄) (X = A or Q). The slight differences at the helical interface between Q₃A₄ and A₃A₄ (vide infra) manifests in small, but significant differences in activity (116% and 103% higher than cofactor for Q₃A₄ and A₃A₄, respectively). The Q₄A mutation removes the coordination of Q₄ from the metal center, but it is important to note that the elevated activity is not solely attributable to the increase in metal coordination sites since these mutants exhibit similar primary coordination as Fe(5-MeO₅C-TPA). These observations suggest that the peptidic secondary sphere plays an essential role, either by enhancing the formation of catalyst-substrate complex or disfavoring the nonproductive disproportionation of H₂O₂. The higher proportion of ketone...
produced by all peptide catalysts in comparison to Fe(5-MeO$_2$C-TPA) may also be explained by a stronger retention of cyclohexanol by the peptide scaffold, favoring a second oxidation event.

Mutations of residues far from TPA in the sequence can also appreciably influence catalysis through the geometry imparted by the antiparallel helices. The B8F mutation in A3A4 (A3A4F8) drastically reduces the catalytic activity (12% less than the cofactor). Examination of the NMR structure of A3A4F8 provides a likely explanation, which is that the position of F8 over the TPA cofactor may obstruct substrate access.

Addition of excess acetic acid has been known to greatly increase the yield of C–H oxidation by Fe catalysts, and this effect has been hypothesized to operate via an FeIII-HOAc intermediate that facilitates conversion of FeIII-OOH to the active FeIV=O species.53,54 This mechanistic proposal inspired us to mutate Q4 to an isostructural glutamic acid and examine its effect on cyclohexane oxidation. Fe$_2$(A3E4) has very similar spectroscopic features to Fe$_2$(A3Q4) (NOESY features in Zn analogs are also comparable), suggesting an analogous structure; however, the catalytic activity is mostly unchanged, demonstrating that the Fe-bound carboxylic acid does not play a major role in catalysis, at least in this coordination mode. As noted in previous studies, the exact role of acetic acid in Fe-catalyzed C–H oxidation remains ambiguous.53,54 and our findings suggest that simple coordination of a carboxylic acid may not be enough to increase activity. We further tested another site for introducing a carboxylic acid at the C-terminus of A3A4, which is in close proximity to the cofactor due to the antiparallel orientation of the helices. This mutant, Fe$_2$(A3A4-OH), however, shows much less activity than Fe$_2$(A3A4), which further illustrates that the function of carboxylic acids may be more complicated than in what has been previously proposed.54,56

Figure 2. (A) NMR solution structures of Zn$^{2+}$-metalated peptides in 1:9 H$_2$O:CD$_3$CN. Ensembles of the ten lowest-energy structures are shown, with the most stable structure shown in ribbon and stick representation. Zinc atoms are represented by yellow spheres. (B) Close-up of the active site in the lowest-energy structure. The relevant residues in the secondary sphere are highlighted in magenta.

Figure 3. Catalytic oxidation of cyclohexane by iron complexes (Fe:H$_2$O$_2$:cyclohexane is 1:10:100). Yields are averaged from three runs and calculated with respect to the limiting reagent, H$_2$O$_2$. Error bars correspond to the total yield. Cofactor is Fe(5-MeO$_2$C-TPA)(OTf)$_2$.

Due to the abundance of C–H bonds in the scaffold, we investigated the fate of the peptides after catalysis. Liquid chromatography–mass spectrometry of the post-catalytic solutions revealed major species consistent with disulfide bond cleavage and addition of three oxygen atoms (Figure S61–S67). To locate the oxygenated residue(s), the peptides were sequenced by MS/MS, and surprisingly, while no C−H bonds were identified to be hydroxylated, C7 was completely oxidized to cysteic acid in all cases (Figure S61–S67). Usually, oxidation of disulfides to cysteic acid requires harsh conditions, such as concentrated performic acid. Cysteic acid formation likely deactivates catalysis by neutralizing the catalytically relevant FeIII–OH moiety, as evidenced by the fact that additional equivalents of H2O2 do not further increase yield of cyclohexane oxidation (Table S22). This observation pinpoints the disulfide motif as a weak link and will guide the evolution of future design towards other peptide dimerization techniques. 54–60

The strategy presented in this work – the combination of non-canonical residues to control secondary structure, dimerization of helices to generate active site, and conjugation of a catalytic unit – provides a practical and versatile route for secondary sphere ligand design. The ability of this ligand platform to improve upon the highly challenging catalytic oxidation of C(sp3)−H bonds attests to the influential role of non-covalent interactions in the active site microenvironment. We anticipate that the modularity and expandability of the scaffold will enable nearly endless permutations for engineering this microenvironment for regio- and stereoselectivity. Though the structure-space of peptides is vast, the ease and speed of making these ligands is expected to allow for high-throughput synthesis and directed evolution approaches to uncover highly active variants. Lastly, the synthetic and design approach in this work should be widely adaptable to a number of other catalysis.

ASSOCIATED CONTENT

Supporting Information

Synthesis and characterization details (NMR spectroscopy, mass spectrometry, LC-MS, CD spectroscopy, UV-vis spectroscopy) are provided in the Supporting Information. The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION

Corresponding Author

* andyn@uic.edu

Author Contributions

A.I.N. and S.G. formulated the project. S.G., P.N.T., and J.J.P carried out the experiments. D.M. developed the workflow for solving the NMR structures.

Funding Sources

This research was supported by the University of Illinois at Chicago. We thank the NIH grant 1S10RR025105-01 for supporting the high-field NMR instruments used for structural characterization.

ACKNOWLEDGMENT

We thank Prof. Stephanie Cologna and K.P. Chandimal Pathmasiri for assistance with the collection and analysis of mass spectrometry data.

REFERENCES

(1) Periana, R. A.; Bhalla, G.; Tenn, W. J.; Young, K. J. H.; Liu, X. Y.; Mironov, O.; Jones, C.; Ziatdinov, V. R. Perspectives on Some Challenges and Approaches for Developing the next Generation of Selective, Low Temperature, Oxidation Catalysts for Alkane Hydroxylation Based on the CH Activation Reaction. J. Mol. Catal. Chem. 2004, 220 (1), 7–25. https://doi.org/10.1016/j.molcatal.2004.05.036.
(2) Tang, X.; Jia, X.; Huang, Z. Challenges and Opportunities for Alkane Functionalisation Using Molecular Catalysts. Chem. Sci. 2018, 9 (2), 288–299. https://doi.org/10.1039/C7SC03610H.
(3) Goldberg, K. I.; Goldman, A. S. Large-Scale Selective Functionalization of Alkanes. Acc. Chem. Res. 2017, 50 (3), 620–626. https://doi.org/10.1021/acs.accounts.6b00621.
(4) Schwarz, H. Chemistry with Methane: Concepts Rather than Recipes. Angew. Chem. Int. Ed. 2011, 50 (43), 10996–11015. https://doi.org/10.1002/anie.201006424.
(5) Olah, G. A. Beyond Oil and Gas: The Methanol Economy. Angew. Chem. Int. Ed. 2005, 44 (18), 2636–2639. https://doi.org/10.1002/anie.200462121.
(6) Chen, K.; Que, L. Stereosepecific Alkane Hydroxylation by Non-Heme Iron Catalysts: Mechanistic Evidence for an Fe IV O Active Species. J. Am. Chem. Soc. 2001, 123 (26), 6327–6337. https://doi.org/10.1021/ja010310x.
(7) White, M. C.; Zhao, J. Aliphatic C–H Oxidations for Late-Stage Functionalization. J. Am. Chem. Soc. 2018, 140 (43), 13988–14009. https://doi.org/10.1021/jacs.8b03195.
(8) Chen, M. S.; White, M. C. A Predictably Selective Aliphatic C H Oxidation Reaction for Complex Molecule Synthesis. Science 2007, 318 (5851), 783–787. https://doi.org/10.1126/science.1148597.
(9) Olivo, G.; Farinelli, G.; Barbieri, A.; Lanzalunga, O.; Di Stefano, S.; Costas, M. Supramolecular Recognition Allows Remote, Site-Selective Oxidation of Methylenic Sites in Linear Amines. Angew. Chem. 2017, 129 (51), 16565–16569. https://doi.org/10.1002/ange.201709280.
(10) Schlichting, I. The Catalytic Pathway of Cytochrome P450cam at Atomic Resolution. Science 2000, 287 (5458), 1615–1622. https://doi.org/10.1126/science.287.5458.1615.
(11) Ortiz de Montellano, P. R. Hydrocarbon Hydroxylation by Cytochrome P450 Enzymes. Chem. Rev. 2010, 110 (2), 932–948. https://doi.org/10.1021/cr9002193.
(12) MacBeth, C. E.; Golombek, A. P.; Young, V. G.; Yang, C.; Kuczera, K.; Hendrich, M. P.; Borovik, A. S. O2 Activation by Nonheme Iron Complexes: A Monomeric Fe(III)-Oxo Complex Derived From O2. Science 2000, 289 (5481), 938–941. https://doi.org/10.1126/science.289.5481.938.
(13) Shook, R. L.; Borovik, A. S. Role of the Secondary Coordination Sphere in Metal-Mediated Dioxygen Activation. Inorg. Chem. 2010, 49 (8), 3646–3660. https://doi.org/10.1021/ic901530k.
(14) Breslow, R.; Zhang, X.; Huang, Y. Selective Catalytic Hydroxylation of a Steroid by an Artificial Cytochrome P-450 Enzyme. J. Am. Chem. Soc. 1997, 119 (19), 4535–4536. https://doi.org/10.1021/ja9704951.
(15) Olivo, G.; Capocasa, G.; Lanzalunga, O.; Di Stefano, S.; Costas, M. Enzyme-like Substrate-Selectivity in C–H Oxidation Enabled by Recognition. Chem. Commun. 2019, 55 (7), 917–920. https://doi.org/10.1039/C8CC03928H.
(16) Das, S. Molecular Recognition in the Selective Oxygenation of Saturated C-H Bonds by a Dimanganese Catalyst. Science 2006, 312 (5782), 1941–1943. https://doi.org/10.1126/science.1127899.
(17) Vidal, D.; Costas, M.; Lledó, A. Deep Cavitand Receptor Functionalized with Fe(II) and Mn(II) Aminopyridine Complexes for Bioinspired Oxidation Catalysis. ACS Catal. 2018, 8 (4), 3667–3672. https://doi.org/10.1021/acscatal.7b04426.
(18) Groves, J. T.; Neumann, R. Enzymic Regioselectivity in the Hydroxylation of Cholesterol Catalyzed by a Membrane-Spanning Metalloporphyrin. J. Org. Chem. 1988, 53 (16), 3891–3893. https://doi.org/10.1021/jo00251a054.
Fujita, M.; Que, L. In Situ Formation of Peracetic Acid in Iron-Catalyzed Epoxidations by Hydrogen Peroxide in the Presence of Acetic Acid. *Adv. Synth. Catal.* **2004**, *346* (2–3), 190–194. https://doi.org/10.1002/adsc.200303204.

Mas-Ballesté, R.; Que, L. Iron-Catalyzed Olefin Epoxidation in the Presence of Acetic Acid: Insights into the Nature of the Metal-Based Oxidant. *J. Am. Chem. Soc.* **2007**, *129* (51), 15964–15972. https://doi.org/10.1021/ja075115i.

Williams, B. J.; Kmiec, K. L.; Russell, W. K.; Russell, D. H. Effect of Cysteic Acid Position on the Negative Ion Fragmentation of Proteolytic Derived Peptides. *J. Am. Soc. Mass Spectrom.* **2011**, *22* (1), 31–37. https://doi.org/10.1007/s13361-010-0009-4.

Empting, M.; Avrutina, O.; Meusinger, R.; Fabritz, S.; Reinwarth, M.; Biesalski, M.; Voigt, S.; Buntkowsky, G.; Kolmar, H. “Triazole Bridge”: Disulfide-Bond Replacement by Ruthenium-Catalyzed Formation of 1,5-Disubstituted 1,2,3-Triazoles. *Angew. Chem. Int. Ed.* **2011**, *50* (22), 5207–5211. https://doi.org/10.1002/anie.201008142.

Knerr, P. J.; Tzekou, A.; Ricklin, D.; Qu, H.; Chen, H.; van der Donk, W. A.; Lambris, J. D. Synthesis and Activity of Thioether-Containing Analogues of the Complement Inhibitor Comstatin. *ACS Chem. Biol.* **2011**, *6* (7), 753–760. https://doi.org/10.1021/cb2000378.

Akondi, K. B.; Muttenhaler, M.; Dutertre, S.; Kaas, Q.; Craik, D. J.; Lewis, R. J.; Alewood, P. F. Discovery, Synthesis, and Structure–Activity Relationships of Conotoxins. *Chem. Rev.* **2014**, *114* (11), 5815–5847. https://doi.org/10.1021/cr400401e.