Unknowns after the SNO Charged-Current Measurement

V. Barger\(^1\), D. Marfatia\(^1\) and K. Whisnant\(^2\)

\(^1\)Department of Physics, University of Wisconsin–Madison, WI 53706, USA
\(^2\)Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

We perform a model-independent analysis of solar neutrino flux rates including the recent charged-current measurement at the Sudbury Neutrino Observatory (SNO). We derive a universal sum rule involving SNO and SuperKamiokande rates, and show that the SNO neutral-current measurement can not fix the fraction of solar \(\nu_e\) oscillating to sterile neutrinos. The large uncertainty in the SSM \(^8\)B flux impedes a determination of the sterile neutrino fraction.

26.65.+t, 14.60.Pq

The Solar Neutrino Problem (SNP) is the discrepancy between the neutrino flux measured by solar neutrino experiments \([1-3]\) and the predictions of the Standard Solar Model (SSM) \([6]\). The SNP has defied non-particle physics explanations \([8]\). The best-motivated solution is that the flux-suppression of solar neutrinos is of particle physics origin, since it can be definitively established that the solution provides large mixing between the mass eigenstates \([9]\). Very recently, the SNO collaboration presented initial results of their charged-current (CC) measurement from about one year of operation, which again confirm the flux-suppression \([6]\). The combination of SNO and SK data definitively establishes that the flux-suppression of solar neutrinos is of particle physics origin, since it can be inferred that \(\nu_{\mu,\tau}\) come from the sun \([6]\). It is commonly believed that measurements of the neutral-current (NC) flux in the SNO experiment will decide whether oscillations to sterile neutrinos (that do not possess the SM weak-interaction) occur \([9]\).

A motivating reason to postulate the existence of sterile neutrinos comes from the LSND accelerator experiment \([14]\) which finds a \(\nu_\mu \rightarrow \nu_e\) appearance probability of about 0.25\%. To explain the solar and atmospheric \([10]\) anomalies and the LSND data simultaneously, three distinct frequencies of oscillations are required. Since with the three known neutrinos there are only two independent oscillation frequencies, a fourth neutrino must be invoked. However, the invisible width of the Z-boson places a constraint on the number of weakly interacting neutrinos to be very close to three \([13]\). The only way to evade this constraint is to require that the fourth neutrino be sterile. A recent combined analysis of solar and atmospheric data found that the active-sterile admixture can take any value between 0 and 1 at 99\% C.L. for the preferred LMA (Large Mixing Angle) solution to the SNP \([14]\). The SNO CC data are inconsistent with maximal mixing to sterile neutrinos at the 3.1\(\sigma\) level \([1]\). However, SNO did not address arbitrary active-sterile admixtures.

In this Letter we perform a neutrino oscillation parameter-independent analysis of the solar neutrino rates in the \(^{37}\)Cl, \(^{71}\)Ga and SK experiments, and the recent CC measurement at SNO. The \(^8\)B neutrinos represent a large fraction of the neutrinos incident at the SNO, SK and \(^{37}\)Cl experiments, as can be seen from Table I. Thus, the \(^8\)B flux plays a crucial role in the interpretation of the results from these experiments. Unfortunately, the predicted value of the \(^8\)B flux normalization is quite uncertain mainly due to poorly known nuclear cross-sections at low energies \([14]\). We find that if the fraction of solar \(\nu_e\) that oscillate to sterile neutrinos is specified, the data determines the normalization of the \(^8\)B solar neutrino flux. Alternatively, if the \(^8\)B flux normalization is assumed to be that of the SSM, the range of the sterile neutrino fraction is determined. However, the existing solar neutrino rate data and the forthcoming SNO NC measurement are not sufficient to determine the sterile neutrino content. We discuss the additional measurements that are needed to determine, in a model-independent way, the oscillation probabilities and the fraction of solar \(\nu_e\) that may be oscillating to sterile neutrinos.

Model-independent analysis. Following the approach of Refs. [16] and [17] (in which we made the unique prediction \(R_{\nu_e}^{\text{SNO}} = 0.35^{+0.16}_{-0.09}\) for purely active oscillations with

\[\begin{array}{|c|c|c|c|}
\hline
\text{Unknown} & \text{Cl} & \text{Ga} & \text{SK} \\
\hline
\text{High} \quad \nu_e \rightarrow \text{sterile} & 0.764 & 0.096 & 1.000 \quad 18.0\% \quad \text{Norm. Uncertainty} \\
\hline
\text{Inter.} \quad \nu_e \rightarrow \nu_e & 0.236 & 0.359 & 0.000 \quad 11.6\% \\
\hline
\text{Low} \quad \nu_e \rightarrow \nu_e & 0.000 & 0.545 & 0.000 \quad 1.0\% \\
\hline
\end{array}\]
the SSM 8B flux constraint), we divide the solar neutrino spectrum into three parts: high energy (consisting of 8B and 13B neutrinos), intermediate energy (7Be, 13B, 15O, and 13N), and low energy (3He). For each class of solar neutrino experiment the fractional contribution from each part of the unoscillated neutrino spectrum to the expected SSM rate can be calculated (see Table I). We define P_H, P_I, and P_L as the average oscillation probabilities for the high, intermediate, and low energy solar neutrinos, respectively. We assume that the high-energy solar neutrino flux has absolute normalization β_H relative to the SSM calculation. If R is the measured rate divided by the SSM prediction for a given experiment, then with oscillations

\begin{align}
R_{\text{Cl}} &= 0.764 \beta_H P_H + 0.236 P_I, \\
R_{\text{Ga}} &= 0.096 \beta_H P_H + 0.359 P_I + 0.545 P_L, \\
R_{\text{SK}} &= \beta_H P_H + \rho \beta_H \sin^2 \alpha (1 - P_H), \\
R_{\text{SNO}}^{CC} &= \beta_H P_H + \rho \beta_H \sin^2 \alpha (1 - P_H),
\end{align}

where $\rho \equiv a_{\nu_e,\nu_x}/\sigma_{\nu_e}$ is the ratio of the $\nu_{\mu,\tau}$ to ν_e elastic scattering cross sections on electrons. Here $\sin^2 \alpha$ is the fraction of ν_e that oscillate to active neutrinos, where α is a mixing angle in the four-neutrino mixing matrix that describes the linear combination of sterile and active neutrinos that participate in the solar neutrino oscillations. In the scheme of Eqs. (1)–(3), we are implicitly neglecting any small differences in the energy-dependent effects associated with the passage of active and sterile neutrinos through matter. We do not assign a normalization factor to the low-energy neutrinos because their flux uncertainty, which is constrained by the solar luminosity, is only 1% (see Table I). We also do not assign a normalization factor to the intermediate-energy neutrinos because it is likely that the uncertainties in this flux are well understood [17].

The solar neutrino data are summarized in Table I. We note that before the recent SNO CC result, the P_j were determined only if particular assumptions are made about the flux normalizations and sterile neutrino content [17]. With the addition of the SNO CC data, however, the quantities $\beta_H P_H$, P_I, and P_L can now be determined by R_{Cl}, R_{Ga}, and R_{SNO}^{CC}. We note that if the flux normalization β_H were known, the P_j would now be completely determined, regardless of the sterile content. This is because the 37Cl, 71Ga, and SNO CC measurements do not depend on whether the solar ν_e oscillate to active or sterile neutrinos. The SK data may be used to further constrain the parameters β_H, P_H, and $\sin^2 \alpha$, but without some assumption about either the 8B flux normalization or sterile neutrino content there will still be one unconstrained degree of freedom. Thus there exists a family of solutions that fit the data exactly (with $\chi^2 = 0$), described by the relation

$$\sin^2 \alpha = (R_{\text{SK}} - R_{\text{SNO}}^{CC})/[r(\beta_H - R_{\text{SNO}}^{CC})],$$

where R_{SNO}^{CC} is data/SSM, including the experimental uncertainties. The 71Ga number combines the results of the GALLEX, SAGE, and GNO experiments.

Table II. Solar neutrino data expressed as the ratio $R = \text{data}/\text{SSM}$, including the experimental uncertainties.

Experiment	$R_{\text{data}}/\text{SSM}$
37Cl	0.337 ± 0.030
71Ga	0.584 ± 0.039
Super–K	0.459 ± 0.017
SNO CC	0.347 ± 0.028

These can be used to make statements about particular models of neutrino oscillations. For example, the LMA solution has the ordering $P_H < P_I < P_L$, while for the Small Mixing Angle (SMA) solution P_I is significantly suppressed below both P_H and P_L. For $\beta_H \gtrsim 1.14$ the probability hierarchy of the LMA solution can be satisfied. Furthermore, the measured SNO spectrum appears to be undistorted compared to the SSM, which favors the LMA solution. The LOW solution has $P_H = P_I = P_L$, and thus is disfavored. At 2σ, the lowest allowed value of β_H is 0.47, which occurs for pure active mixing ($\sin^2 \alpha = 1$). The vacuum solution with $\delta m^2 \sim 5.5 \times 10^{-12}$ eV2 and large mixing is therefore barely acceptable at the 2σ level since the best-fit β_H for this solution is 0.47 (with very small uncertainties) [19].

In the near future SNO will also measure the NC reaction, which is related to the parameters by

$$R_{\text{SNO}}^{NC} = \beta_H P_H + \beta_H \sin^2 \alpha (1 - P_H).$$

Equations (1), (2), and (3) show that R_{SNO}^{NC} does not provide independent information. There is in fact a universal sum rule:

$$R_{\text{SNO}}^{NC} = [R_{\text{SK}} - (1 - r)R_{\text{SNO}}^{CC}] / r = 5.85 R_{\text{SK}} - 4.85 R_{\text{SNO}}^{CC},$$

shown in Fig. 1 by the solid curve. The amount of sterile content is not a priori known; in principle any value of $\sin^2 \alpha$ between zero and unity is still possible.
that holds for any value of \(\sin^2 \alpha \) (this equation was known \cite{17,19} for the case \(\sin^2 \alpha = 1 \)). The SK and SNO data predict \(R_{\text{SNO}}^{\text{NC}} = 1.00 \pm 0.24 \). Although the SNO NC measurement will not provide a new constraint because the SK data already supplies NC information, the SNO NC data could provide the more accurate measurement (since the \(\nu_{\mu,\tau} \) NC cross sections are the same as that for \(\nu_e \), unlike in SK where they are much less). If we replace \(R_{\text{SK}} \) by \(R_{\text{SNO}}^{\text{NC}} = 1 \pm 0.05 \) (in anticipation of a measurement accurate to 5-10\% \cite{20}), we find \(\sin^2 \alpha > 0.33 \) at the 1\(\sigma \) level for \(\beta_H \leq 2 \). Another way to see why the SNO NC rate will not determine \(\sin^2 \alpha \) is to consider the ratio

\[
R_{\text{SNO}}^{\text{NC}}/R_{\text{SNO}}^{\text{CC}} = 1 + \sin^2 \alpha (1/P_H - 1). \tag{9}
\]

Since \(P_H \) always appears in Eqs. \cite{2,3,4} in the combination \(\beta_H P_H \), \(\sin^2 \alpha \) can not be extracted.

Can Borexino/KamLAND break the \(\beta_H, \alpha \) degeneracy?

How then can the last degree of freedom (\(\beta_H \) or \(\sin^2 \alpha \)) be eliminated? To make a model-independent determination of both \(\beta_H \) and \(\sin^2 \alpha \) (and hence also \(P_H \)), a different measurement that provides an independent constraint on the parameters must be used. For example, a measurement of the intermediate-energy solar neutrinos that involves a NC contribution such as in the Borexino \cite{21} experiment or in the solar neutrino component of the KamLAND \cite{22} experiment, would allow a separate determination of \(\sin^2 \alpha \).\cite{23} The resulting constraint would have the form \(R_{B,K} = P_I + r \sin^2 \alpha (1 - P_I) \), in analogy to Eq. \cite{3}, and would determine \(\sin^2 \alpha \). Values of \(\sin^2 \alpha \) and \(\beta_H \) (from Eqs. \cite{1}, \cite{3} and \cite{4}) are shown versus \(R_{B,K} \) in Fig. \ref{fig:2}. The value of \(\beta_H \) does not extend below about 1 because \(\sin^2 \alpha \) becomes greater than unity there. It is difficult for Borexino or KamLAND to determine \(\sin^2 \alpha \) and \(\beta_H \) because like SK, there is limited sensitivity to the NC component of the detected flux; the resulting uncertainty in \(\sin^2 \alpha \) would be \(\delta \sin^2 \alpha = \delta R_{B,K}/|r(1 - P_I)| \approx 8 \delta R_{B,K} \).

Can adiabatic constraints break the \(\beta_H, \alpha \) degeneracy?

If a particular model is assumed, then it can provide the additional constraint to determine the parameters from current data. For example, if in the LMA solution all of the high energy neutrinos and a fraction \(f \) of the intermediate energy neutrinos are created above resonance, and a fraction \(1 - f \) of the intermediate energy neutrinos and all of the low energy neutrinos are created below resonance, then since the neutrinos propagate adiabatically (i.e. the probability of jumping across the Landau-Zener-type level crossing from one adiabatic state to another is small) in the Sun we have approximately

\[
P_H = \sin^2 \theta, \quad P_L = 1 - \frac{1}{2} \sin^2 2\theta, \tag{10}
\]

\[
P_I = f \sin^2 \theta + (1 - f)(1 - \frac{1}{2} \sin^2 2\theta), \tag{11}
\]

where \(\theta \) is the vacuum mixing angle and \(f \) can be directly related to the solar \(\delta m^2 \) (for a more detailed discussion, see Ref. \cite{17}). Note that Eqs. \cite{10} and \cite{11} imply \(P_H \leq P_I \leq P_L \) (for \(\sin^2 \theta \leq 1/2 \)). Now there are only four parameters (\(\beta_H, \sin^2 \alpha, f, \) and \(\theta \)) and all can be determined from the present data. Constraining \(\beta_H \leq 2 \), we find the best-fit point to be

\[
\beta_H = 2.0, \quad \sin^2 \alpha = 0.42, \quad \sin^2 \theta = 0.17, \quad f = 0.6, \tag{12}
\]

with \(\chi^2 = 0.51 \). (There is a unique solution with zero \(\chi^2 \), but has \(\beta_H = 3.26 \), which is unreasonably high \cite{24}). The 1\(\sigma \) and 2\(\sigma \) allowed regions from a four-parameter fit are shown in Fig. \ref{fig:3}. Note the similarity of the regions of Figs. \ref{fig:3} and \ref{fig:4}; adiabatic constraints do not greatly help reduce the allowed region.

Including the SSM constraint on the \(^8\text{B} \) flux. To include the \(^8\text{B} \) flux normalization as calculated in the SSM \cite{4}, we perform \(\chi^2 \) analyses with \(\beta_H = 1 \pm 0.18 \). The results are shown in Fig. \ref{fig:5}. The model-independent analysis yields a unique point with \(\chi^2 = 0 \) at \((\beta_H, \sin^2 \alpha) = (1.0, 1.0) \). The left panel of Fig. \ref{fig:5} shows that the \(\sin^2 \alpha \) range is not improved. However, as shown in the right panel of Fig. \ref{fig:5}, imposition of the \(^8\text{B} \) flux constraint in addition to
neutrinos are created above resonance and the critical χ with R^K replaced by $R^{NC}_{SNO} = 1 \pm 0.05$, the best-fit shifts slightly to the circle and the hatched region is the 1σ allowed region. The dashed lines show the 3σ range allowed by the SSM.

FIG. 3. $\sin^2 \alpha$ versus β_H with adiabatic constraints imposed. The cross marks the best-fit point ($\beta_H, \sin^2 \alpha) = (2.0, 0.42$) for $\beta_H \leq 2$; the 1σ and 2σ allowed regions are shaded. With R^K_{SK} replaced by $R^{NC}_{SNO} = 1 \pm 0.05$, the best-fit shifts slightly to the circle and the hatched region is the 1σ allowed region. The crosses mark the best-fit points; the 1σ and 2σ allowed regions are shaded. The hatched areas are the 1σ allowed regions if we replace R^K_{SK} by $R^{NC}_{SNO} = 1 \pm 0.05$; the circles mark the corresponding best-fit points.

adiabatic constraints, does lead to a smaller $\sin^2 \alpha$ range. In this case, the best-fit parameters are

$$\beta_H = 1.1, \sin^2 \alpha = 1.0, \sin^2 2\theta = 0.83, f = 0.15, \quad (13)$$

with $\chi^2 = 3.1$. Thus, for this solution mainly high energy neutrinos are created above resonance and the critical energy [7] lies close to the pep line at 1.44 MeV, which translates to $\delta m^2 = 4.8 \times 10^{-5}$ eV2.

Summary. After including the recent SNO CC results in a model independent analysis of solar neutrino flux rate data, there remains one free parameter. The locus of solutions may be represented by a curve in the plane of the the active neutrino fraction, $\sin^2 \alpha$, and the 8B neutrino flux normalization β_H. We have shown that the forthcoming SNO NC data will not fully constrain the last degree of freedom; in fact, there is a universal sum rule involving R^{NC}_{SNO}, R^{CC}_{SNO}, and R^K_{SK} that must be satisfied, independent of the sterile neutrino content of the solar neutrino flux. The adiabatic constraint for the LMA does not appreciably reduce the allowed region in $\sin^2 \alpha$. Even when we impose the SSM 8B flux constraint, the sterile neutrino fraction is not determined.

In principle, measurements of ν_e scattering for the intermediate-energy neutrinos in Borexino/KamLAND could break the degeneracy of allowed solutions, but because the NC sensitivity of these experiments is relatively weak, a very precise measurement would be required to determine $\sin^2 \alpha$ and β_H. What is needed is a measurement of neutrino-nucleon NC scattering for the intermediate-energy neutrinos.

Acknowledgments. This research was supported by the U.S. DOE under Grants No. DE-FG02-95ER40896 and No. DE-FG02-01ER41155 and by the WARF.

[1] B. Cleveland et al., Astropart. Phys. 496, 505 (1998).
[2] J. Abdurashitov et al., Phys. Rev. C60, 055801 (1999).
[3] W. Hampel et al., Phys. Lett. B447, 127 (1999).
[4] M. Altmann et al., Phys. Lett. B490, 16 (2000).
[5] S. Fukuda et al., hep-ex/0103032.
[6] Q. Ahmad et al., nucl-ex/0106013.
[7] J. Bahcall, M. Pisolinnquai and S. Basu, astro-ph/0010346.
[8] J. Bahcall and H. Bethe, Phys. Rev. D47, 1298 (1993); N. Hata, S. Bludman and P. Langacher, Phys. Rev. D49, 3622 (1994); K. Heeger and R. Robertson, Phys. Rev. Lett. 77, 3720 (1996).
[9] S. Fukuda et al., hep-ex/0103033.
[10] J. Bahcall, P. Krastev and A.Yu. Smirnov, Phys. Rev. D63, 053012 (2001); M. Gonzalez-Garcia and C. Penagur, ibid. D63, 073013 (2001); J. Bahcall, P. Krastev and A.Yu. Smirnov, ibid. D62, 093004 (2000); M. Maris and S. Petcov, ibid. D62, 093006 (2000); S. Bilenkii and C. Giunti, Z. Phys. C68, 495 (1995).
[11] A. Aguilar et al., hep-ex/0104045.
[12] Y. Fukuda et al., Phys. Lett. B467, 185 (1999); W. Allison et al., Phys. Lett. B449, 137 (1999); M. Ambrosio et al., hep-ex/0106049.
[13] D. Groom et al., Eur. Phys. J. C15, 1 (2000).
[14] M. Gonzalez-Garcia, M. Maltoni and C. Pena-Garay, astro-ph/0105269.
[15] J. Bahcall, Neutrino Astrophysics (Cambridge University Press, Cambridge, England, 1989).
[16] V. Barger, R. Phillips and K. Whisnant, Phys. Rev. D43, 1110 (1991).
[17] V. Barger, D. Marfatia and K. Whisnant, Phys. Lett. B509, 19 (2001).
[18] R. Raghavan, Science 267, 45 (1995); P. Krastev and S. Petcov, Phys. Rev. D53, 1665 (1996).
[19] J. Bahcall, P. Krastev and A. Yu. Smirnov, JHEP 0105, 015 (2001).
[20] A. McDonald and S. Oser; private communication.
[21] C. Arpesella et al., edited by G. Bellini et al. (University of Milano Press, Milano, 1992) Vols. 1 and 2.
[22] KamLAND proposal, Stanford-HEP-98-03.
[23] A. Gouvea and H. Murayama, JHEP 0008, 025 (2000); Phys. Rev. Lett. 82, 3392 (1999).
[24] P. Krastev, S. Petcov and L. Quyyu, Phys. Rev. D54, 7057 (1996).