Effect of osmotic pressure on spermatozoa characteristics of cryopreserved buffalo bull (Bubalus bubalis) semen

Dawar Hameed Mughal, Ahmad Ijaz, Muhammad Shahbaz Yousef, Fazal Wadood, Umer Farooq, Syed Aamer Mahmood and Amjad Riaz

2. Materials and methods

2.1. Animal housing and management

Nili-Ravi buffalo bulls (n = 4), housed at the Semen Production Unit, Qadirabad, Pakistan, under uniform management and feeding conditions were used in this study. These bulls were...
provided seasonal fodder at 10% of the body weight and 2–3 kg concentrate daily.

2.2. Extender preparation

Extender composition of Ramakrishnan and Ariff (1994) was modified to attain desired osmotic pressures. Briefly, 70.0 g of tris (Hydroxymethyl) aminomethane, (BDH Laboratory Supplies, England), 33.40 g of citric acid monohydrate (Merck, Germany) and 25.0 g of D (−) Fructose (BDH Laboratory Supplies, England) were mixed in bi-distilled water to obtain a final volume of 2000 ml. The osmotic pressure of the solution was measured and its pH was adjusted to 7.0 by adding 1 N HCl. Afterwards, the solution was divided into three equal parts and osmotic pressure of each part was adjusted to 295, 275 and 255 mOsm/kg with bi-distilled water. Each of these solutions was further sub-divided into 10 parts for extender preparation and stored at −40°C. At the time of extender preparation, solutions were thawed at 37°C for 30 min.

Tris egg yolk extenders (TEYE; n = 3) using solution of each osmotic pressure were prepared by adding benzyl penicillin (1000 IU/ml) and streptomycin sulphate (1000 μg/ml), egg yolk (20% vol/vol) and glycerol (7% vol/vol). These extenders were stored overnight in a refrigerator and maintained at 37°C before semen dilution.

2.3. Semen collection and processing

Two ejaculates from each bull were collected at weekly intervals for 10 weeks (November to January), using artificial vagina (Andrabi et al. 2008). Immediately after collection, semen was incubated in a water bath at 37°C for 15 min and thereafter subjected to gross and microscopic evaluation. Ejaculates with ≥70% spermatozoa motility were selected for further processing. Equal volume of ejaculate from each bull was pooled at each collection to get enough semen for experimentation and to remove individual bull variation. The pooled semen was evaluated for sperm concentration, extended with TEYE of different osmotic pressures and filled in 0.5 ml straws, each containing 20 × 10^6 spermatozoa. After sealing the open ends, straws were cooled from 37°C to 4°C in a cold cabinet and equilibrated for 4 hours (Andrabi et al., 2006). During deep freezing, straws were placed horizontally on the freezing grill for 20 min in a freezing tank at 4 cm higher on liquid nitrogen (LN) and then dipped and stored in LN at −196°C for one week before evaluation.

2.4. Post-thaw evaluation of semen

Thawing of frozen semen was done at 37°C for 30 s in a water bath and subjected to post-thaw evaluation in terms of sperm motility, viability, acrosomal integrity, plasma membrane integrity and lipid per-oxidation. Five semen straws of each osmotic pressure of each collection were evaluated. Spermatozoa motility was assessed by using a phase contrast microscope (Ijaz et al. 2009), whereas viability was assessed through vital staining (Khan & Ijaz 2008). For the assessment of spermatozoa acrosomal integrity, each thawed semen sample was mixed with 1% formaldehyde citrate. At least 200 spermatozoa were examined under a phase contrast microscope and a percentage of spermatozoa with normal acrosome was recorded. Plasma membrane integrity of spermatozoa was assessed by hypo-osmotic swelling test. Hypo-osmotic solution was prepared by mixing 0.735 g of tri-sodium citrate dihydrate (Merck, 64271 Darmstadt, Germany) and 1.351 g D (−) fructose in bi-distilled water to make a final volume of 100 ml and its osmotic pressure was reduced to 75 mOsm/kg by adding bi-distilled water. For assessing plasma membrane integrity, thawed semen samples were mixed with hypotonic solution, incubated at 37°C for 45 min and examined under phase contrast microscope (Adeel et al. 2009).

The spermatozoa DNA integrity was estimated by using acridine orange staining technique, as described by Farooq et al. (2015) and examining under fluorescent microscope (Labomed Lx 400, USA). The spermatozoa heads showing green fluorescence were considered as having intact DNA, while heads of spermatozoa with red fluorescence or yellow-orange to red were taken as having damaged DNA. Thio-barbituric acid assay, as described by Wadood et al. (2015), was used to determine lipid per-oxidation. The absorbance of organic layer was taken at 532 nm and results were expressed as nanomole of malondialdehyde.

2.5. Statistical analysis

The data were analysed through Statistical Package for Social Science (Version 13, SPSS Inc., USA), using one-way analysis of variance (ANOVA). In case of significant differences among groups, Duncan’s Multiple Range Test was applied. Results have been presented as mean ± S.E.

3. Results

The results regarding post-thaw seminal attributes as affected by varying osmotic pressure of extender are given in Table 1. The spermatozoa motility, acrosomal integrity and DNA integrity were significantly (P < 0.05) affected by different osmotic pressures, whereas other spermatozoa characteristics remained unaffected. Post-thaw sperm motility, acrosomal integrity and DNA integrity were higher (P < 0.05) at 295 and 275 mOsm/kg compared to 255 mOsm/kg. However, differences in these parameters between osmotic pressures of 295 and 275 were non-significant.

4. Discussion

Conventional extenders are being used for buffalo bull semen cryopreservation. The osmolality of the solution used in extender preparation influences post-thaw sperm characteristics. Results of the current study demonstrated that spermatozoa motility reduced significantly (P < 0.05) with decline in osmotic pressure below 275 mOsm/kg, which may signify iso-osmolality of semen extender. The spermatozoa motility at 295 and 275 mOsm/kg was higher (11.33% and 7.66%, respectively) compared to 255 mOsm/kg. The effects of changes in osmotic pressure of the current study are in agreement with the findings
of Mughal et al. (2013), who used citrate egg yolk extender (CEYE). Similar findings of decreasing trend in motility of cattle spermatozoa with variation in osmotic pressure from 300 mOsm/kg using T EYE have also been reported by Liu and Foote (1998). A comparison of the results of sperm motility in the present study using T EYE and the one conducted by Mughal et al. (2013) reveals that T EYE presented a better motility (8.0%, 13.96% and 6.03% at an osmotic pressure of 255, 275 and 295 mOsm/kg, respectively) as compared to CEYE. Since, the reported osmotic pressure for buffalo bull semen by Mughal et al. (2013) is 289.4 mOsm/kg, the motilities at 295 mOsm/kg were significantly higher as compared to other two osmotic pressures. It was interesting to note that similar acrosomal integrity rate was recorded between 295 and 275 mOsm/kg. The acrosomal integrity rates at these osmotic pressures are in agreement with a previous study of Mughal et al. (2013) using CEYE.

The spermatozoa motility and viability are not affected by damaged acrosomes; however their ability to fertilize the ovum is severely disturbed (Graham 2001). The change in osmotic pressure from 295 to 255 mOsm/kg significantly disturbed acrosomal integrity (12.2%) and a pronounced decline was recorded at 255 mOsm/kg compared to other two osmotic pressures. It was interesting to note that similar acrosomal integrity rate was recorded between 295 and 275 mOsm/kg. The acrosomal integrity rates at these osmotic pressures are similar to the findings of Rasul et al. (2000) using tri-sodium citrate dihydrate extender of 301 mOsm/kg.

The spermatozoa are surrounded by the plasma membrane that holds various organelles and intracellular components and maintains chemical gradient of ions and soluble components. Transportation of ions or components also takes place through specific proteins located at the plasma membrane (Schurmann et al. 2002). Any change in its integrity may lead to spermatozoa death or renders them unable to fertilize the ovum. Results of the current study depicted non-significant effect of decreased osmotic pressure (295–255 mOsm/kg) on spermatozoa plasma membrane integrity. These findings are also allied to previous work of Mughal et al. (2013). It was noticed that plasma membrane integrity was non-significantly improved (4.29%) by lowering the osmotic pressure from 295 to 255 mOsm/kg.

The reproductive potential of the animals also relies on the status of the DNA located at the head region of spermatozoa. Any change in its foundation and integrity affects fertility rate. The spermatozoa DNA integrity was significantly affected (P < .05) by change in osmotic pressures. The mechanism responsible for this high DNA damage is not clearly understood. However, it is believed that inappropriate antioxidants in extended semen and high unsaturated fatty acids found in plasma membrane of spermatozoa may contribute towards this DNA damage (Aitken & Krausz 2001). It is assumed that at 255 mOsm/kg, this shield might be compromised. In buffalo bull semen, the presence of lesser amount of natural antioxidants and more unsaturated fatty acids compared with cattle makes spermatozoa highly susceptible to oxidative stress and lipid per-oxidation (Nair et al. 2006). In the current study, however, no difference in lipid per-oxidation was observed when osmotic pressure was lowered from 295 to 255 mOsm/kg.

5. Conclusion

The findings of the current study indicate that buffalo bull spermatozoa are sensitive to osmotic pressure of the solution used in extender preparation. Spermatozoa motility, acrosomal and DNA integrity were affected when the osmotic pressure was reduced to 255 mOsm/kg. Consideration of osmotic pressure may be useful in improving the quality of cryopreserved buffalo bull semen and optimum results can be achieved using iso-osmotic extenders. A pronounced change in osmolality may disturb spermatozoa characteristics and fertility rate.

Acknowledgements

The authors are grateful to all the staff of the Semen Production Unit for their technical advice and support throughout the study.

Funding

This work was supported by the Higher Education Commission of Pakistan [grant numbers: 20-1333/R & D/09/4530).

References

Adeel M, Ijaz A, Aleem M, Rehman H, Yousaf MS, Jabbar MA. 2009. Improvement of liquid and frozen-thawed semen quality of Nili-Ravi buffalo bulls (Bubalus bubalis) through supplementation of fat. Theriogenology. 71:1220–1225.

Agca Y, Gilmore J, Byers M, Woods EJ, Liu J, Critser JK. 2002. Osmotic characteristics of mouse spermatozoa in the presence of extenders and sugars. Biol Reprod. 67:1493–1501.

Aisen EG, Medina VH, Venturino A. 2002. Cryopreservation and post-thawed fertility of ram semen frozen in different trehalose concentrations. Theriogenology. 57:1801–1808.
Aitken RJ, Krausz C. 2001. Oxidative stress, DNA damage and the Y chromo-
some. Reproduction. 122:497–506.
Andrabi SMH, Siddique M, Ullah N, Khan LA. 2006. Effect of reducing sperm
numbers per insemination dose on fertility of cryopreserved buffalo bull
semen. Pak Vet J. 26:17–19.
Andrabi SMH, Ansari MS, Ullah N, Afzal M. 2008. Effect of non-enzymatic
antioxidants in extender on post-thaw quality of buffalo (Bubalus
bubalis) bull spermatozoa. Pak Vet J. 28:159–162.
Anzar M, Farooq U, Mirza MA, Shahab M, Ahmad N. 2003. Factors affecting
the efficiency of artificial insemination in cattle and buffalo in Punjab,
Pakistan. Pak Vet J. 23:106–113.
Chohan KR, Iqbal J, Asgar AA, Chaudhry MA. 1992. Fertility of liquid and
frozen semen in Nili Ravi buffaloes. Pak Vet J. 12:4–5.
Farooq U, Mahmood SA, Ijaz A, Ahmad N, Idris M, Abbas MT. 2015.
Evaluation of post thaw sperm parameters and fertility of Cholistani
service bulls. Turk J Vet Anim Sci. 39:472–479.
Graham JK. 2001. Assessment of sperm quality. In depth: reproduction – the
use of frozen semen. Proceedings of the Annual Convention of the AAEP.
47:302–305.
Guthrie HD, Liu J, Critser JK. 2002. Osmotic tolerance limits and effects of
cryoprotectants on motility of bovine spermatozoa. Biol Reprod.
67:1811–1816.
Iguer-ouada M, Verstegen JP. 2001. Long term preservation of chilled canine
semen: effect of commercial and laboratory prepared extenders.
Theriogenology. 55:671–684.
Ijaz A, Hussain A, Aleem M, Youssaf MS, Rehman H. 2009. Butylated hydroxy-
toluene inclusion in semen extender improves the post-thawed semen
quality of Nili-Ravi buffalo (Bubalus bubalis). Theriogenology. 71:1326–
1329.
Khan MR, Ijaz A. 2008. Effects of osmotic pressure on motility, plasma mem-
brane integrity and viability in fresh and frozen-thawed buffalo sperma-
tooza. Animal. 2:548–553.
Liu Z, Foote RH. 1998. Osmotic effects on volume and motility of bull sperm
exposed to membrane permeable and nonpermeable agents. Cryobiology.
37:207–218.
Mughal DH, Ijaz A, Youssaf MS, Rehman H, Aleem M, Zaneb H, Wadoof F.
2013. Assessment of optimal osmotic pressure of citrate egg yolk exten-
der for cryopreservation of buffalo bull (Bubalus bubalis) semen. J Anim
Plant Sci. 23:964–968.
Nair SJ, Brar AS, Ahuja CS, Sangha SPS, Chaudhary KC. 2006. A comparative
study on lipid peroxidation, activities of antioxidant enzymes and viabil-
ity of cattle and buffalo bull spermatozoa during storage at refrigeration
temperature. Anim Reprod Sci. 96:21–29.
Pandey AK, Dhaliwal GS, Ghuman SPS, Agarwal SK. 2011. Impact of pre-ovu-
latory follicle diameter on plasma estradiol, subsequent luteal profiles and
conception rate in buffalo (Bubalus bubalis). Anim Reprod Sci.
123:169–174.
Ramakrishnan P, Ariff MO. 1994. Effect of glycerol level and cooling rate on
post-thaw semen quality of Malaysian swamp buffalo. In: Vale WG,
Barnabe VH, de Mattos JCA. Proceedings of 4th World Buffalo Cong,
Sao Paulo, Brazil (Italy): International Buffalo Federation; p. 540–542.
Rasul Z, Anzar M, Jalali S, Ahmad N. 2000. Effect of buffering systems on
post-thaw motion characteristics, plasma membrane integrity and acrosome
morphology of buffalo spermatozoa. Anim Reprod Sci. 59:31–41.
Rasul Z, Ahmad N, Anzar M. 2001. Changes in motion characteristics, plasma
membrane integrity and acrosome morphology during cryopreservation of
buffalo spermatozoa. J Androl. 22:278–283.
Reddy NSS, Mohanarao GJ, Atreja SK. 2010. Effects of adding taurine and
trehalose to a tris-based egg yolk extender on buffalo (Bubalus
bubalis) sperm quality following cryopreservation. Anim Reprod Sci.
119:183–190.
Schurmann A, Axer H, Scheepers A, Døege H, Joost HG. 2002. The glucose
transport facilitator GLUT8 is predominantly associated with the acroso-
mal region of mature spermatozoa. Cell Tissue Res. 307:237–242.
Wadoof F, Aleem M, Ijaz A, Ahmad N, Youssaf MS, Mughal DH, Javid A,
Mahmood SA. 2015. Effect of L-cysteine on post thaw quality of Nili
Ravi buffalo (Bubalus bubalis) bull spermatozoa cryopreserved in tris
 citric acid extender. J Anim Plant Sci. 25:301–303.