Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation

Michal Eisenberg-Bord,1 Muriel Mari,3 Uri Weill,1 Eden Rosenfeld-Gur,2 Ofer Moldavski,1 Inês G. Castro,1 Krishnakant G. Soni,4 Nofar Harpaz,1 Tim P. Levine,5 Anthony H. Futerman,2 Fulvio Reggiori,3 Vytas A. Bankaitis,4 Maya Schuldiner,1 and Maria Bohnert1

1Department of Molecular Genetics and 2Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
2Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
3Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX
4Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
5UCL Institute of Ophthalmology, London, England, UK

Correspondence to Maria Bohnert: maria.bohnert@weizmann.ac.il; Maya Schuldiner: maya.schuldiner@weizmann.ac.il

THE JOURNAL OF CELL BIOLOGY

Article

Published Online: 29 November, 2017 | Supp Info: http://doi.org/10.1083/jcb.201704122
Downloaded from jcb.rupress.org on May 1, 2019

Identification of seipin-linked factors that act as determinants of a lipid droplet subpopulation

Introduction

Lipid droplets (LDs) are evolutionarily conserved lipid storage organelles (Gross and Silver, 2014). As such, they need to dynamically balance deposition and mobilization of diverse lipid species to sustain crucial cellular functions, including metabolic homeostasis and biosynthesis of membrane lipids (Farese and Walther, 2009; Welte, 2015; Schuldiner and Bohnert, 2017). Accordingly, LD dysfunction is connected to various pathologic conditions, including obesity, diabetes, steatohepatitis, and lipodystrophy (Greenberg et al., 2011; Walther and Farese, 2012). LDs consist of a central core of neutral storage lipids (mainly triacylglycerols and sterol esters) shielded from the aqueous cytosol by a phospholipid monolayer that accommodates numerous surface proteins (Thiam et al., 2013). Most LD surface proteins are enzymes involved in lipid metabolism, but the function of several LD proteins is still unknown (Athenstaedt et al., 1999; Binns et al., 2006; Grillitsch et al., 2011; Currie et al., 2014; Ohsaki et al., 2014). Intriguingly, in recent years, several cases have been reported in which specific LD surface proteins were found enriched or even exclusively localized on a fraction of LDs (Wolins et al., 2005, 2006; Krahmer et al., 2011; Hsieh et al., 2012; Wilfling et al., 2013; Ren et al., 2014; Moldavski et al., 2015; Zhang et al., 2016; Thiam and Bel ler, 2017). Similarly, various lipids have been found distributed unevenly among LDs (Rinia et al., 2008; Hsieh et al., 2012). These findings demonstrate that the LD pool within a single cell consists of distinct LD subpopulations and suggest that a functional differentiation of LDs might contribute to cellular lipid homeostasis. However, the molecular mechanisms that establish and maintain LD heterogeneity are currently unknown.

In Saccharomyces cerevisiae (from here on termed ‘yeast’), one protein that localizes preferentially to a subpopulation of LDs is the phosphatidylinositol transfer protein Pdr16 (Ren et al., 2014; Moldavski et al., 2015). In this study, we used systematic screening approaches to characterize the Pdr16-rich LD subpopulation and identified six additional proteins enriched on the same LDs. We show that two of those subpopulation residents, which we term Ldo45 (Ymr147w + Ymr148w/OSW5/LDO16) and Ldo16 (Ymr148w/OSW5), are the product of a unique splicing event of two adjacent genes (YMR147W and YMR148W/OSW5/LDO16). We show that Ldo proteins cooperate with the LD biogenesis component seipin and establish LD identity by defining positioning and surface-protein composition. Our studies suggest a mechanism to establish functional differentiation of organelles, opening the door to better understanding of metabolic decisions in cells.
A unique LD subpopulation resides proximal to the NVJ

We have previously shown that the LD protein Pdr16 is strongly enriched on just a fraction of cellular LDs in exponentially growing yeast cells (Moldavski et al., 2015). Typically, Pdr16 can be found on one LD per cell or alternatively on few LDs that are often close to each other (Fig. 1 A). Pdr16 is part of the family of Sec14-like phosphatidyl inositol transfer proteins (Li et al., 2000; Schnabl et al., 2003; Ren et al., 2014). This class of proteins has previously been suggested to preferentially localize to organellar contact sites (Šimová et al., 2013; Moldavski et al., 2015; Selitrennik and Lev, 2016), which are specific cellular subdomains where the surfaces of two organelles are actively positioned directly adjacent to each other by tether proteins (Eisenberg-Bord et al., 2016). We therefore sought to determine whether the Pdr16-rich LDs are in close proximity to any other cellular membrane. To this end, we expressed GFP-labeled Pdr16 (Pdr16-GFP) in cells with the different cellular membranes labeled with RFP or Cherry (Fig. S1 A). Although we could not detect any specific spatial relationship between Pdr16-rich LDs and the plasma membrane, peroxisomes or mitochondria, we found that LDs marked by Pdr16 were closely associated with both vacuolar and ER/perinuclear membranes.

To visualize both organelles at the same time, we labeled vacuoles with the blue vacuole luminal dye 7-amino-4-chloromethylcoumarin (CMAC) in cells expressing Pdr16-GFP and the ER marker Sec63-RFP (Fig. 1 B). We found that indeed, Pdr16-rich LDs were often found adjacent to the area where the nucleus and the vacuole were in close proximity to each other, a contact site termed the NVJ (Pan et al., 2000). To test whether Pdr16-rich LDs have a defined spatial relationship to this structure, we genomically tagged the NVJ marker protein Nvj1 with Cherry and found that Pdr16-rich LDs were preferentially located adjacent to the NVJ, whereas Pdr16-poor LDs (labeled by the neutral lipid dye monodansylpentane [MDH]) were dispersed throughout the cell (Fig. 1 C and Fig. S1 B). We conclude that Pdr16-rich LDs are spatially confined to a specific cellular location next to the NVJ.

A high-content screen uncovers modulators of Pdr16 localization

An LD subpopulation that has both a defined local and a unique surface protein must have a molecular mechanism in place to determine its identity. To identify molecular determinants of this LD subpopulation, we used an unbiased systematic screen for factors involved in Pdr16 localization. We generated a genome-wide collection of ∼6,000 yeast strains expressing Pdr16-Cherry in the background of loss of function mutations (deletions for nonessential genes and decreased abundance by mRNA perturbation alleles for essential genes; Tong et al., 2001; Giaever et al., 2002; Tong and Boone, 2006; Breslow et al., 2008; Cohen and Schuldiner, 2011). All strains were imaged by automated microscopy, followed by manual inspection (Breker et al., 2013) to identify mutants with altered Pdr16 localization (Fig. 2 A). We identified 22 mutants that failed to target Pdr16 efficiently to LDs (Fig. 2 B) as well as 30 mutants with an increased number of Pdr16-positive foci compared with the control (Table S1).

Any one of the mutants that failed to properly target Pdr16 could be a direct determinant of LD identity or an indirect effector. To uncover the direct effectors, we performed two follow-up screens. First, we reasoned that a component involved in Pdr16 targeting should be found in proximity to Pdr16 and, thus, used a whole-genome, split dihydrofolate reductase (DHFR) complementation screen (Tarassov et al., 2008). In that screen, Pdr16 was tagged with one half of the DHFR enzyme in the background of loss of function mutations (deletions for nonessential genes and decreased abundance by mRNA perturbation alleles for essential genes; Tong et al., 2001; Giaever et al., 2002; Tong and Boone, 2006; Breslow et al., 2008; Cohen and Schuldiner, 2011). All strains were imaged by automated microscopy, followed by manual inspection (Breker et al., 2013) to identify mutants with altered Pdr16 localization (Fig. 2 A). We identified 22 mutants that failed to target Pdr16 efficiently to LDs (Fig. 2 B) as well as 30 mutants with an increased number of Pdr16-positive foci compared with the control (Table S1).
that factors required for Pdr16 targeting should be enriched on the Pdr16-rich subpopulation. To address that point, we assembled a collection of strains expressing all known LD proteins fused to either a C-terminal GFP moiety from the genome-wide C-terminal GFP library (Huh et al., 2003), or an N-terminal GFP tag under the control of a NOP1 promoter from the SWAT
GFP library (Yofe et al., 2016). We used an automated mating approach to cross each GFP-tagged strain with either a strain expressing Erg6-Cherry, which marks all LDs in the cell, or Pdr16-Cherry as a marker of our LD subpopulation. All strains were then imaged by automated microscopy and inspected manually. We identified five additional proteins that were enriched on the Pdr16-rich LD subpopulation (Fig. 2 D, Fig. S1 C, and Table S1): the lipid metabolism enzymes Erg2, Tgl4, and Srt1; and Ymr148w/Osw5 and Bsc2, two proteins of unknown function. We concluded that the Pdr16-rich LD subpopulation has both a unique cellular distribution and is equipped with a special set of proteins.

When cross-comparing the hits from all three screens (the primary Pdr16 targeting screen, the split DHFR screen, and the colocalization screen), we found that only one gene, YMR148W/Osw5, encoding a protein of unknown function, was identified by all three approaches. Ymr148w is thus enriched on Pdr16-rich LDs, can be found in close proximity to the Pdr16 protein, and in its absence, Pdr16 is no longer targeted to LDs. We, therefore, considered Ymr148w a highly promising candidate for a direct determinant of Pdr16 targeting.

Interestingly, YMIR147W, the gene just upstream of YMR148W, was also a hit in the Pdr16-targeting screen. Manual recreation of the strains Pdr16-Cherry Δymr147w and Pdr16-Cherry Δymr147w showed that, although LDs were still present in both mutants, as confirmed by labeling with the neutral lipid dye boron-dipyrromethene (BODIPY 493/503, both deletion of YMR148W and YMIR147W led to a complete loss of Pdr16 targeting to LDs (Fig. 2 E).

A unique splicing isoform is required for Pdr16 targeting to LDs

YMIR148W was our main candidate for a factor involved in Pdr16 targeting, and we wondered whether the genomic manipulation of the neighboring gene YMIR147W was, in fact, affecting the expression of YMIR148W. To determine which of the two genes was responsible for the Pdr16-targeting phenotype, we created a Pdr16-Cherry strain expressing YMIR148W under the control of the inducible/repressible GAL1 promoter (GAL1p), as well as a strain expressing YMIR147W under that same promoter. In the presence of glucose (i.e., GAL1p repression), we observed complete loss of Pdr16 targeting to LDs in both strains (Fig. 3 A, left). Surprisingly, induction of YMIR148W expression by addition of galactose failed to restore Pdr16 localization (Fig. 3 A, right), whereas Pdr16 was targeted in loss of Pdr16-Cherry targeting, both under induction and repression conditions (Fig. 3 A). In contrast, galactose induction of the GAL1p-YMIR147W strain, which leads to synthesis of Ldo45 (Fig. 3 B), resulted in rescue of Pdr16-Cherry targeting (Fig. 3 A).

We asked whether Ldo45 was dispensable for Pdr16 targeting or whether both Ldo16/45 splice variants were required. Because deletion of the YMIR148W gene resulted in the absence of both Ldo16 and Ldo45, we constructed a cDNA plasmid encoding only GFP-Ldo45 under control of a constitutive TEF2 promoter that would allow for individual expression of Ldo45. Importantly, the LDO45 sequence included both the complete LDO16 coding sequence and part of the LDO16 promoter (Fig. 3 B). Therefore, we deleted the three bases corresponding to the start codon of LDO16 to abolish expression of LDO16 from the plasmid, resulting in a plasmid that expressed only LDO45 (pGFP-LDO45Δ; Fig. 3 D). As a control, we constructed an analogous plasmid pGFP-LDO16. When we
Figure 3. Ldo45, the product of an intergenic splicing event, is required for Pdr16 targeting to LDs. (A) A GAL1 promoter was genomically integrated 5' to YMR147W or YMR148W and targeting of Pdr16-Cherry to LDs, visualized with BODIPY, was assessed by fluorescence microscopy. Pdr16-Cherry targeting was abolished in the presence of glucose (repression) in both strains but rescued by incubation with galactose (induction) for 4 h only in GAL1p-YMR147W cells. Bar, 5 µm. (B) Schematic representation of the YMR147W (blue) and YMR148W (green) loci. A splicing reaction gives rise to a YMR147W-YMR148W fusion transcript (Miura et al., 2006) encoding Ldo45. That transcript corresponds to most of the YMR147W sequence (dark blue) excluding the last 90 nucleotides (light blue), 210 nucleotides of the annotated YMR148W promoter (dark gray), and the full YMR148W sequence (green). Ldo16 is the translation product of YMR148W. (C) Proteins from indicated cells were extracted and subjected to SDS-PAGE and Western blotting using anti–GFP antibodies. C-terminal GFP-tagging of YMR148W resulted in two bands corresponding to Ldo16-GFP and Ldo45-GFP. N-terminal tagging of YMR148W or YMR147W gives rise to only one tagged protein (GFP-Ldo16 or GFP-Ldo45, respectively). Simultaneous tagging of YMR147W with Cherry and YMR148W with GFP gives rise to a Cherry-Ldo45-GFP protein migrating ~30 kD higher than GFP-Ldo45. Promoters used included an endogenous promoter, lanes 2 and 3; NOP1p, lane 4; and TEF2p, lanes 6 and 7. (D) cDNA plasmids encoding GFP-Ldo16 or GFP-Ldo45* (asterisk marking deletion of the YMR148W start codon) under control of a strong constitutive TEF2 promoter or empty vector (e.v.) were transformed into cells with a genomic ymr148w deletion (lacking both Ldo16 and Ldo45) and targeting of Pdr16-Cherry to LDs, visualized with MDH, was assessed by fluorescence microscopy. Ldo16 is dispensable for Pdr16 localization, but overexpression of both Ldo isoforms induces alterations of LD morphology. Bar, 5 µm.
transformed these plasmids into Δymr148 cells, we found that pGFP-LDO45*, but not pGFP-LDO16, fully rescued the targeting of Pdr16-Cherry, showing that Ldo45 is essential for recruiting Pdr16 to LDs, whereas Ldo16 is dispensable (Fig. 3D; Teixeira et al., 2018).

Overexpression of Ldo proteins results in LD clustering at the NVJ
Knowing that Ldo45, but not Ldo16, is required for targeting of Pdr16 to the LD subpopulation, we were curious to determine the function of Ldo16. Intriguingly, we consistently observed that overexpression of either Ldo variant led to alterations in LD morphology, with numerous cells displaying a large, multilobed, neutral lipid-dye–positive structure located in the center of the cell (Fig. 3, A and D). We, therefore, asked whether, next to its function in Pdr16 targeting, Ldo16/45 could have an additional role in determining the specific subcellular localization of the Pdr16-rich LD subpopulation, close to the NVJ.

To assess a possible effect of Ldo16 or Ldo45 overexpression on the association of LDs with the NVJ, we integrated a TEF2 promoter for constitutive overexpression of either GFP-Ldo16 or GFP-Ldo45 into an Nvj1-Cherry strain and stained the cells with the LD dye MDH. Similar to the phenotype observed upon acute induction of GAL1p-YMR148W and GAL1p-YMR147W (Fig. 3 A), constitutive overexpression of either Ldo isoform resulted in dramatic alterations of LD morphology with frequent appearance of a single, large, multilobed MDH-positive structure per cell, as opposed to approximately five small LDs per focal plane in control cells with unaltered Ldo16/45 levels (Fig. 4 A). Approximately 75% of the large MDH-positive structures in cells overexpressing Ldo proteins are clusters of several, tightly packed LDs, with Ldo45 overexpression resulting in larger LD clusters than Ldo16.
produced. These LD clusters frequently appeared embraced from all sides by the nuclear and vacuolar membranes (Fig. 4 B). These results indicate synthetic overexpression of either Ldo protein is sufficient to relocate LDs to the NVJ.

Ldo16 is a critical determinant for LD distribution during entry into stationary phase

We went ahead and searched for physiologic conditions under which LDs accumulate at the NVJ. In our standard experimental condition of exponentially growing culture, we usually find LDs dispersed throughout the cytosol; however, LDs have previously been found to accumulate at the NVJ once cells enter the stationary growth phase (Wang et al., 2014b; Barbosa et al., 2015; Fig. 5, A and B). Strikingly, we found that although 87% of WT LDs are in close proximity to the NVJ in stationary phase, only 43% of LDs in cells with a genomic deletion of LDO16 were next to the NVJ under the same conditions (Fig. 5 A). This is virtually identical to the basal LD-NVJ colocalization determined in control cells in the exponential phase (45%; Fig. 4 A), indicating that, in Δldo16 cells, LD accumulation at the NVJ during the diauxic shift was completely abolished. We found that deletion of YMR147W, which results in the absence of Ldo45, but normal expression of Ldo16, did not negatively affect LD accumulation at the NVJ (Fig. 5 B), indicating that, under physiologic conditions, Ldo16 is required for correct LD distribution, a function that can be fulfilled in the absence of Ldo45.

A link between Ldo proteins and the LD biogenesis factor seipin

We asked by which means Ldo16 and Ldo45 proteins exert their roles in defining LD identity. Because we could not detect significant alterations of the phospholipid composition between LD-enriched fractions from control, Δldo16/45, and Ldo16/45-overexpressing cells (Fig. S2 A), we reasoned that the Ldos might work through a proteinaceous machinery and thus searched for Ldo partner proteins. In a first approach, we performed a high-content screen for components required for the phenotype observed upon overexpression of Ldo45. We introduced a pTEF2-GFP-LDO45 allele into the genome-wide deletion/decreased abundance by mRNA perturbation library and analyzed all strains by automated microscopy (Fig. 6 A). We identified several phenotypic classes (Fig. 6 B). (1) Strains that lost the LD clustering phenotype typical for Ldo45-overexpressing cells, resulting in reversion to a WT phenotype with LDs being dispersed throughout the cytosol; among these were components associated with splicing, the cytoskeleton, and nuclear and, especially, vacuolar membrane structure and dynamics; we speculate that in the splicing mutants, Ldo45 is not formed in sufficient amounts. (2) Several strains that had supersized LDs, all carrying mutations previously reported to induce supersized LDs by affecting phospholipid biosynthesis (Guo et al., 2008; Fei et al., 2011b). (3) Mutants with enhanced GFP signal, including genes involved in gene expression control. (4) Mutants displaying a weaker GFP-Ldo45 signal, comprising components required for splicing as well as the seipin component SEI1 (Fig. 6 B).

In a second approach, we performed coimmunoprecipitation of a Ymr148w-GFP strain (expressing both Ldo16-GFP and Ldo45-GFP; Fig. 3 B), followed by mass spectrometry (MS; Fig. 6 C). The top Ldo interactor was Ldb16, an ER protein that, alongside its partner protein Sei1, forms the seipin complex. In contrast, Ldb16 was not copurified from a strain expressing the highly abundant LD protein Erg6-GFP.

Figure 5. Ldo16 is necessary for LD accumulation at the NVJ during entry into stationary-growth phase. (A) Top: During entry into the stationary phase, LDs (labeled with BODIPY) accumulate at the NVJ (marked by Nvj1-Cherry) in control cells. This accumulation is marked reduced in Δldo16 cells, as quantified by counting the number of LDs labeled by BODIPY that were close to the NVJ (black) and LDs that were far from the NVJ (gray; bottom). n = 200 LDs. Bar, 5 µm. (B) Experiment performed as described in A using Δldo45 cells shows that Ldo45 is dispensable for accumulation of LDs at the NVJ. Δldo16 (A) and Δldo45 (B) strains were generated in different background strains, resulting in a small difference in colocalization in the controls. n = 200 LDs. Bar, 5 µm.
In support of a link of seipin and LDO machineries, Ymr147w was previously identified by MS in coimmunoprecipitations using a GFP-tagged variant of Sei1, the second seipin component, as bait (Pagac et al., 2016). Furthermore, SEI1 was also a hit in our visual screen for Ldo partner proteins, with SEI1 deletion resulting in strongly reduced GFP-Ldo45 signal (Fig. 6B). This phenotype is consistent with Sei1 being an Ldo interaction partner because loss of a physically interacting component often results in subsequent destabilization of the remaining partner protein. We confirmed the MS data by Western blotting and found that both Ldb16 and Sei1 were efficiently coisolated with GFP-tagged Ldo16 (Fig. 6D, lane 4) as well as with Ldo45 (not depicted). Collectively, these results indicate that both Ldo16 and Ldo45 are linked to seipin (Teixeira et al., 2018).

Antagonistic roles of seipin and LDO machineries

Seipin is crucial for regular LD biogenesis and has been found mutated in patients suffering from Berardinelli-Seip congenital lipodystrophy (Magré et al., 2001). This disease has an intriguing combination of symptoms, presenting with virtually complete absence of subcutaneous adipose tissue, but with ectopic fat accumulation and a metabolic syndrome associated with high prevalence of diabetes (Agarwal and Garg, 2004). Despite the obvious importance of seipin in cellular biology and in human health, its exact molecular role is currently unclear. Two leading concepts suggest either a structural role of seipin in LD biogenesis or a role in regulation of phospholipid metabolism (Szymanski et al., 2007; Fei et al., 2008, 2011a; Cartwright and Goodman, 2012). Across species, seipin mutants generally display morphological alterations of LDs (Szymanski et al., 2007; Fei et al., 2008; Boutet et al., 2009). Yeast cells with deletions of SEI1 or LDB16 typically have aggregated LDs, similar to the morphology phenotype we observe upon overexpression of LDO16 or LDO45 (Fig. 4, A and B), suggesting that Ldo proteins could function in an antagonistic manner to seipin. To explore the idea of opposing phenotypes between the seipin complex and the LDO machinery, we turned to inositol-depletion conditions that lead to formation of supersized LDs in seipin mutants (Wang et al., 2014a). We tested whether that was also the case for Ldo overexpression and found that,
indeed, overexpression of either Ldo protein resulted in formation of supersized LDs in inositol-depleted medium (Fig. 7 A).

Seipin has been detected at contact sites between LDs and the ER and has been suggested to have a direct or indirect role in protein sorting between those two organelles. A conserved feature from yeast to mammals seems to be that LDs are continuous with the ER membrane, likely via a phospholipid bridge (Jacquier et al., 2011; Wilfling et al., 2013). Many LD proteins, in particular those anchored to LDs via hydrophobic helical hairpins, are first inserted into the ER membrane and reach LDs via passage through such phospholipid bridges. It has recently been reported that, upon deletion of the seipin components Sei1 or Ldb16 (exemplified in Fig. 7 C and Fig. 7 S2 B; full list of all 15 proteins affected is in Table S1; Teixeira et al., 2018). These mistargeted proteins likely contain helical hairpins and are thus expected to be targeted to LDs from the ER. These findings support the hypothesis that Ldo45 and seipin functions are antagonistic.
Discussion

We report on the identification of a specialized LD subpopulation with a unique protein composition that is positioned next to the NVJ. Both characteristics are determined by the subpopulation residents Ldo16 and Ldo45, two proteins derived from overlapping genes with the latter formed by an unique, intergenic splicing event. Although Ldo45 is crucial for correct targeting of the subpopulation resident Pdr16, Ldo16 is involved in recruiting LDs to the NVJ.

Formation of subpopulations within the cellular LD pool might offer an expansion of the functional capacity of this organelle and/or enhance its flexibility in responding to environmental cues. How such heterogeneity of the cellular LD pool is established and maintained, however, is unknown. The morphology phenotype of Ldo16/45 overexpression strains as determined by fluorescence and immunoelectron microscopy shows that Ldo proteins induce clustering of LDs on vacuolar and ER membranes. Indeed, tethering to distinct partner organelles might be a simple and efficient way to induce LD heterogeneity by permanently locking them in specialized environments with unique features. At the same time, binding to a membrane surface generates a unique subdomain on the tethered LD that might attract specific proteins and/or lipids, the functions of which could further propagate into imprinting permanent molecular LD identity. Pdr16 is a lipid-transfer protein that has previously been suggested to function in the context of organelle contact sites and potentially can act as a tethering molecule (Simová et al., 2013; Moldavský et al., 2015; Selitrennik and Lev, 2016). In addition, Pdr16 has been shown to inhibit fat mobilization from LDs via a phosphatidylinositol-4-phosphate–dependent mechanism (Ren et al., 2014), which is consistent with Pdr16 potentially acting as a rheostat on lipid exchange between the vacuole and LDs. Thus, we hypothesize that confinement to distinct cellular landmarks by tethering might be a general mechanism for imprinting LD identity and function. It is currently unclear whether Ldo16/45 directly act as molecular LD tethers or whether Ldo proteins promote formation of LD contact sites indirectly via down-stream effectors. Candidates for downstream factors acting on LD recruitment to membrane surfaces are other proteins enriched in this unique LD subpopulation (Table S1) and components identified in our genome-wide screen for mutants affecting the LD clustering phenotype upon Ldo45 overexpression (Fig. 6 B).

One effector identified in this screen is seipin, an LD biogenesis component located at contact sites between LDs and the ER. Seipin has previously been reported to prevent equilibration of LD and ER surface components, thus affecting general LD identity as compared with the ER (Grippa et al., 2015). The interplay we find between Ldo45 and (to a lesser extent) Ldo16 is consistent with seipin being a component of a unique LD subpopulation and the mechanisms governing it, especially uncharacterized proteins. Our results suggest a conserved mechanism for imprinting identity into organelles that underlies our bodies’ ability to maintain energy homeostasis.

Materials and methods

Strains and plasmids
Saccharomyces cerevisiae strains used in this study are described in Table S2. Plasmids Sec63-RFP-Ura and P4636-RFP-PTS1-URA were provided by J. Gerst (Weizmann Institute of Science, Rehovot, Israel). Plasmid pBS35-mCherry-hydromycin was provided by N. Barkai (Weizmann Institute of Science, Rehovot, Israel). Plasmid MTS-RFP-Ura was provided by J. Nunnari (University of California, Davis, Davis, CA). Yeast strains were constructed from the laboratory strain BY4741 (Brachmann et al., 1998). Cells were genetically manipulated using a transformation method that includes the usage of Li-acetate, polyethylene glycol, and single-stranded DNA (Longtine et al., 1998; Janke et al., 2004; Gietz and Woods, 2006).

Primers for manipulations and validation were designed using Primers-4-Yeast (Yofe and Schuldiner, 2014).

Yeast culturing and microscopy
Yeast cells were cultured overnight in synthetic minimal medium (0.67% [wt/vol] yeast nitrogen base with ammonium sulfate, 2% [wt/vol] glucose, amino acid supplements) at 30°C. Subsequently, cells were diluted and grown until reaching midlogarithmic phase. For experiments performed in the stationary phase, samples were kept undiluted. Cells were moved to glass-bottom, 384-well microscope plates (Matrical Bioscience) coated with Concanavalin A (Sigma-Aldrich). After 20 min, wells were washed twice with medium or with PBS to remove nonadherent cells. Different dyes were used for labeling organelles: For vacuolar lumen staining, CellTracker Blue CMAC Dye (10 µM; Invitrogen).

Yeast cells were imaged at room temperature using a VisiScope Confocal Cell Explorer system composed of a Zeiss Yokogawa spinning disk scanning unit (CSU-W1) coupled with an inverted IX83 microscope (Olympus). Single–focal-plane images were acquired with a 60x oil lens (NA 1.4) and were captured using a PCO-Edge sCMOS camera, controlled by VisiView software (GFP [488 nm], RFP [561 nm], or BFP [405 nm]). Images were reviewed using ImageJ.
harvested, washed in distilled water, and resuspended in lysis buffer.

Cells expressing GFP-tagged proteins and untagged control cells were harvested by centrifugation, and proteins were extracted by NaOH or TCA extraction. Diploid cells were then moved to plates containing methotrexate, which inhibits the endogenous DHFR, whereas the mutated enzyme remains functional (Tarassov et al., 2008). Large colonies form if the tagged proteins are close to each other, allowing the formation of the mutated enzyme, whereas residual colonies remain if the tagged proteins are far apart. Colony size was analyzed using the Balony software (Young and Loewen, 2013).

Preparation of whole cell extracts and Western blot
Cells expressing GFP-tagged proteins and control cells were harvested by centrifugation, and proteins were extracted by NaOH or TCA extraction (Kushnirov, 2000; Ast et al., 2013). Samples were analyzed by SDS-PAGE and Western blotting using an anti–GFP antibody (ChIP grade ab290; Abcam), and antibodies directed against Sei1, Ldb16 (both provided by P. Carvalho, University of Oxford, Oxford, England, UK), and histone H3 (ChIP grade ab1791; Abcam).

For analysis by MS, samples were subjected to in-solution, on-bead, tryptic digestion. 8 M urea in 0.1 M Tris, pH 7.9, was added onto PBS-washed beads and incubated for 15 min at room temperature. Proteins were reduced by incubation with dithiothreitol (5 mM; Sigma-Aldrich) for 60 min at room temperature, and alkylated with 10 mM iodoacetamide (Sigma-Aldrich) in the dark for 30 min at room temperature. Urea was diluted to 2 M with 50 mM ammonium bicarbonate. 250 ng trypsin (Promega) was added and incubated overnight at 37°C, followed by addition of 100 ng trypsin for 4 h at 37°C. Digestions were stopped by addition of trifluoroacetic acid (1% final concentration). After digestion, peptides were desalted using Oasis HLB μllution format (Waters), vacuum-dried, and stored at −80°C until further analysis. Ultra-liquid chromatography/MS-grade solvents were used for all chromatographic steps. Each sample was loaded using splitless nano-ultraperformance liquid chromatography (10 kpsi nanoAcquity; Waters). The mobile phase was a) H₂O + 0.1% formic acid, and b) acetonitrile + 0.1% formic acid. Desalting of the samples was performed online using a reversed-phase Symmetry C18 trapping column (180 μm internal diameter, 20 mm length, 5 μm particle size; Waters). The peptides were then separated using a T3 high-strength silica nanocolumn (75 μm internal diameter, 250 mm length, 1.8 μm particle size; Waters) at 0.35 μl/min. Peptides were eluted from the column into the mass spectrometer using the following gradient: 4–20% b in 55 min, 20–90% b in 5 min, maintained at 90% for 5 min, and then back to initial conditions. The nano-ultraperformance liquid chromatography was coupled online through a nano-electrospray ionization emitter (10 μm tip; New Objective) to a quadrupole orbitrap mass spectrometer (Q Exactive HF; Thermo Scientific) using a FlexIon nanospray apparatus (Proxeon). Data were acquired in data-dependent acquisition mode, using a top-20 method. MS1 resolution was set to 120,000 (at 400 m/z), mass range of 300–1650 m/z, automatic gain control of 3e6, and maximum injection time was set to 20 msec. MS2 resolution was set to 30,000, quadrupole isolation 1.7 m/z, automatic gain control of 1e6, dynamic exclusion of 60 s, and maximum injection time of 60 ms. Raw data were imported into the Expressionist software version 10.5 (Genedata) and processed as described (Shalit et al., 2015). The software was used for retention-time alignment and peak detection of precursor peptides. A master peak list was generated from all MS/MS events and sent for database searching using Mascot v2.5.1 (Matrix Sciences). Data were searched against the S. cerevisiae sequences UniprotKB appended with common laboratory-contaminant proteins. Fixed modification was set to carbamidomethylation of cysteines, and variable modifications were set to oxidation of methionines and deamidation of N or Q. Search results were then filtered using the PeptideProphet algorithm (Keller et al., 2002) to achieve a maximum false-discovery rate of 1% at the protein level. Peptide identifications were imported back to Expressionist.
to annotate identified peaks. Quantification of proteins from the peptide data was performed using an in-house script (Shalit et al., 2015). Data were normalized based on the total ion current. Protein abundance was obtained by summing the three most-intense, unique peptides per protein. A two-sided Student’s t test, after logarithmic transformation, was used to identify significant differences across the biological replica. Fold changes were calculated based on the ratio of arithmetic means of the case versus control samples.

Isolation of an LD-enriched fraction and phospholipid analysis by thin-layer chromatography

Cells were grown on minimal medium at 30°C overnight, back-diluted, and left to grow until they reached mid-logarithmic phase. Harvested cells were resuspended in DTT buffer (100 mM Tris-HCl, pH 9.4, and 10 mM DTT) and incubated for 20 min (30°C). Cells were collected by centrifugation and washed with Zymolyase buffer without enzyme (20 mM potassium-phosphate buffer, pH 7.4, and 1.2 M sorbitol). Subsequently, cells were resuspended in Zymolyase buffer and incubated in the presence of Zymolyase for 30 min. The enzyme was removed with a washing step using Zymolyase buffer without enzymes, and cells were resuspended in breaking buffer (10 mM Tris-HCl, pH 6.9, 0.2 mM EDTA, and 12% Ficoll 400) supplemented with 2 mM phenylmethylsulfonyl fluoride (Sigma-Aldrich). Cells were broken using a dounce homogenizer, and the resulting homogenate was subjected to a clarifying spin. Supernatants were adjusted to a volume of 6.7 ml using breaking buffer and transferred to ultra centrifugation tubes (331372; Beckman Coulter). Samples were overlaid with the same volume of breaking buffer and subjected to ultra-centrifugation in an SW41 swing-out rotor (28,000 rpm). The resulting white, floating bands were identified using phospholipid standards (Avanti Polar Lipids; Sigma-Aldrich).

Online supplemental material

Fig. S1 characterizes the LD subpopulation located adjacent to the NVJ. Fig. S2 shows mechanistic aspects of LDO machinery function. Table S1 provides a list of hits from all screens performed in this study. In Table S2, all strains used in this study are described. Table S3 shows all plasmids used in this study.

Acknowledgments

We thank Chaim Kahana for helpful discussions; Pedro Carvalho for the SeI1 and Ldb16 antibodies; Jouki Nunnari, Naama Barkai, and Jeffrey Gerst for plasmids; Yoav Peleg from the Dana and Yossie Hollander Center for Structural Proteomics for generation of the LDO plasmids; Nir Cohen for help with analysis of microscopy data; and Meital Kuppervaser for help with proteomic data analysis. Mass spectrometry was performed by the de Botton Institute for Protein Profiling, G-INC PM, Weizmann Institute of Science.

Work in the Schuldiner Laboratory was supported by the Deutsche Forschungsgemeinschaft grant SFB 1190 and a grant from the Volkswagen Foundation (93091). M. Schuldiner is an incumbent of the Dr. Gilbert Omenn and Martha Darling Professorial Chair in Molecular Genetics. M. Eisenberg-Bord was supported by the Azrieli Foundation with an Azrieli Fellowship. F. Reggiori was supported by Swiss National Science Foundation Sinergia (CRSII3_154421) and ZonMw VICI [016.130.606] grants. K.G. Soni and V.A. Bankaitis were supported by the National Institutes of Health grant RO1 GM44530 and the Welch Foundation grant BE-0017. T.P. Levine was funded by the UK Biotechnology and Biological Sciences Research Council, project BB/M011801/1. M. Bohnert was supported by the European Commission Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant 705853.

The authors declare no competing financial interests.

Author contributions: Conceptualization was performed by M. Eisenberg-Bord, M. Schuldiner, and M. Bohnert; the investigation was performed by M. Eisenberg-Bord, M. Mari, U. Weill, E. Rosenfeld-Gur, O. Moldavski, J.G. Castro, K.G. Soni, N. Harpaz, T.P. Levine, and M. Bohnert; visualization was by M. Eisenberg-Bord, M. Mari, T.P. Levine, and M. Bohnert; the paper was written by M. Schuldiner and M. Bohnert and was reviewed and edited by M. Eisenberg-Bord, M. Mari, U. Weill, O. Moldavski, I.G. Castro, T.P. Levine, F. Reggiori, V.A. Bankaitis, M. Schuldiner, and M. Bohnert; supervision was provided by A.H. Futerman, F. Reggiori, V.A. Bankaitis, M. Schuldiner, and M. Bohnert; and funding acquisition was by T.P. Levine, A.H. Futerman, F. Reggiori, V.A. Bankaitis, and M. Schuldiner.

Submitted: 18 April 2017
Revised: 21 September 2017
Accepted: 23 October 2017

References

Agarwal, A.K., and A. Garg. 2004. Seipin: a mysterious protein. Trends Mol. Med. 10:440–444. https://doi.org/10.1016/j.molmed.2004.07.007

Ast, T., G. Cohen, and M. Schuldiner. 2013: A network of cytosolic factors targets SRP-independent proteins to the endoplasmic reticulum. Cell. 152:1134–1145. https://doi.org/10.1016/j.cell.2013.02.003

Athenstaedt, K., D. Zweyck, A. Jandrositz, S.D. Kohlwein, and G. Daum. 1999. Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J. Bacteriol. 181:6441–6448.

Barbosa, A.D., H. Sembongi, W.M. Su, S. Abreu, F. Reggiori, G.M. Carman, and S. Simioissoglou. 2015. Lipid partitioning at the nuclear envelope controls membrane biogenesis. Mol. Biol. Cell. 26:3641–3657. https://doi.org/10.1091/mbc.E15-03-0173

Benns, D., T. Januszewski, Y. Chen, J. Hill, V.S. Markin, Y. Zhao, C. Gilpin, K.D. Chapman, R.G. Anderson, and J.M. Goodman. 2006. An intimate collaboration between peroxisomes and lipid bodies. J. Cell Biol. 173:719–731. https://doi.org/10.1083/jcb.200511125

Boutet, E., H. El Mourabit, M. Prot, M. Neman, E. Khallouf, O. Colard, M. Maurice, A.M. Durand-Schneider, Y. Chretien, S. Sgres, et al. 2009. Seipin deficiency alters fatty acid Delta9 desaturation and lipid droplet formation in Berardinelli-Seip congenital lipodystrophy. Biochimie. 91:796–803. https://doi.org/10.1016/j.biochi.2008.11.011

Brachmann, C.B., A. Davies, G.J. Cost, E. Caputo, J. Li, P. Hieter, and J.D. Boeke. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 14:115–132. https://doi.org/10.1002/(SICI)1097-0061(19980130)14:1<115::AID-YE204>3.0.CO;2-0

Breker, M., M. Gymrek, and M. Schuldiner. 2013. A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J. Cell Biol. 200:839–850. (published erratum appears in J. Cell Biol. 201:355) https://doi.org/10.1083/jcb.20130120

Breslow, D.K., D.M. Cameron, S.R. Collins, M. Schuldiner, J. Stewart-Ornest, H.W. Newman, S. Braun, H.D. Madhani, N.J. Krogan, and J.S. Weissman. 2008. A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat. Methods. 5:711–718. https://doi.org/10.1038/nmeth.1234

Cartwright, B.R., and J.M. Goodman. 2012. Seipin: from human disease to mammalian mechanism. J. Lipid Res. 53:1042–1055. https://doi.org/10.1194/jlr.R023754

Cohen, Y., and M. Schuldiner. 2011. Advanced methods for high-throughput microscopy screening of genetically modified yeast libraries. Methods Mol. Biol. 781:127–159. https://doi.org/10.1007/978-1-61779-276-2_8

Currie, E., X. Guo, R. Christiano, C. Chitraju, N. Kory, K. Harrison, J. Haas, T.C. Walther, and R.V. Farese Jr. 2014. High confidence proteomic analysis of yeast LDs identifies additional droplet proteins and reveals connections to dolichol synthesis and sterol acetylation. J. Lipid Res. 55:1465–1477. https://doi.org/10.1194/jlr.M050229
Lipid droplet identity • Eisenberg-Bord et al. 281
Tarassov, K., V. Messier, C.R. Landry, S. Radinovic, M.M. Serna Molina, I. Shames, Y. Malinskaya, J. Vogel, H. Bussey, and S-W. Michnick. 2008. An in vivo map of the yeast protein interactome. Science. 320:1465–1470. https://doi.org/10.1126/science.1153878

Teixeira, V., L. Johnsen, F. Martínez-Montañés, A. Grippa, L. Buxo, F. Idrissi, C.S. Ejsing, and P. Carvalho. 2018. Regulation of lipid droplets by metabolically controlled Ldo isoforms. J. Cell Biol. https://doi.org/10.1023/jcb.201704115

Thiam, A.R., and M. Beller. 2017. The why, when and how of lipid droplet diversity. J. Cell Sci. 130:315–324. https://doi.org/10.1242/jcs.192021

Thiam, A.R., R.V. Farese Jr., and T.C. Walther. 2013. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 14:775–786. https://doi.org/10.1038/nrm3699

Tong, A.H., and C. Boone. 2006. Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol. Biol. 313:171–192.

Tong, A.H., M. Evangelista, A.B. Parsons, H. Xu, G.D. Bader, N. Pagé, M. Robinson, S. Raghibizadeh, C.W. Hogue, H. Bussey, et al. 2001. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science. 294:2364–2368. https://doi.org/10.1126/science.1065810

Thibault, T.C., and R.V. Farese Jr. 2012. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81:687–714. https://doi.org/10.1146/annurev-biochem-061009-102430

Walther, T.C., and R.V. Farese Jr. 2012. Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81:687–714. https://doi.org/10.1146/annurev-biochem-061009-102430

Wilfling, F., H. Wang, J.T. Haas, N. Krahmer, T.J. Gould, A. Uchida, J.X. Cheng, M. Graham, R. Christianso, F. Frohlich, et al. 2013. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell. 24:384–399. https://doi.org/10.1016/j.devcel.2013.01.013

Wolsins, N.E., B.K. Quaynor, J.R. Skinner, M.J. Schoenfish, A. Tzekov, and P.E. Bickel. 2005. S3-12, Adipophilin, and TIP47 package lipid in adipocytes. J. Biol. Chem. 280:19146–19155. https://doi.org/10.1074/jbc.M500978200

Wolins, N.E., D.L. Brasaemle, and P.E. Bickel. 2006. A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett. 580:5484–5491. https://doi.org/10.1016/j.febslet.2006.08.040

Yofe, I., and M. Schuldiner. 2014. Primers-4-Yeast: a comprehensive web tool for planning primers for Saccharomyces cerevisiae. Yeast. 31:77–80. https://doi.org/10.1002/yea.2998

Yofe, I., U. Weill, M. Meurer, S. Chuartzman, E. Zalckvar, O. Goldman, S. Ben-Dor, C. Schütze, N. Wiedemann, M. Knop, et al. 2016. One library to make them all: streamlining the creation of yeast libraries via a SWAp-Tag strategy. Nat. Methods. 13:371–378. https://doi.org/10.1038/nmeth.3795

Young, B.P., and C.J. Loewen. 2013. Balony: a software package for analysis of data generated by synthetic genetic array experiments. BMC Bioinformatics. 14:354. https://doi.org/10.1186/1471-2105-14-354

Yu, S., N. Viswakarma, S.K. Batra, M. Sambasiva Rao, and J.K. Reddy. 2004. Identification of promethin and PGLP as two novel up-regulated genes in PPARγ-induced adipogenic mouse liver. Biochimie. 86:743–761. https://doi.org/10.1016/j.biochim.2004.09.015

Zhang, S., Y. Wang, L. Cui, Y. Deng, S. Xu, J. Yu, S. Cichello, G. Serrero, Y. Ying, and P. Liu. 2016. Morphologically and Functionally Distinct Lipid Droplet Subpopulations. Sci. Rep. 6:29539. https://doi.org/10.1038/srep29539