Biological noise and positional effects influence cell stemness

Walter Blum\textsuperscript{1}, Thomas Henzi\textsuperscript{1}, Beat Schwaller\textsuperscript{*\textdagger}, László Pecze\textsuperscript{\ast}\textsuperscript{*}

\textsuperscript{1}Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700 Fribourg, Switzerland

Running title: \textit{Positional stem cell model}

\textsuperscript{*Laszlo Pecze, Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland, Tel: ++41 26 300 85 11, Fax: ++41 26 300 97 33, E-mail: laszlo.pecze@unifr.ch}

\textsuperscript{*Beat Schwaller, Anatomy, Department of Medicine, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland, Tel: ++41 26 300 85 08, Fax: ++41 26 300 97 33, E-mail: beat.schwaller@unifr.ch}

Keywords: cancer stem cells, Markov chain, malignant mesothelioma, POU class 2 homeobox 2, SRY-box 2, stemness, dedifferentiation, positional effect

ABSTRACT

Biological (or cellular) noise is the random quantitative variability of proteins and other molecules in individual, genetically identical cells. As the result of biological noise in the levels of some transcription factors that determine a cell’s differentiation status, differentiated cells may dedifferentiate to a stem cell state given a sufficiently long time period. Here, to provide direct evidence supporting this hypothesis, we used a live-cell monitoring system based on eGFP expression to continuously assess the “stemness” of individual human and murine malignant mesothelioma (MM) cells over a period of up to 3 months. Re-expression of the transcription factors, the top hierarchical stemness markers SRY-box 2 (Sox2) and octamer-binding transcription factor (Oct4), monitored as cells’ eGFP expression was observed in a subpopulation of differentiated eGFP(-) MM cells. However, we found that this transition was extremely rare. Of note, when it did occur, neighboring cells that were not direct descendants of a newly emerged eGFP(+) stem cell were more likely than non-neighboring cells to also become an eGFP(+) stem cell. This observation suggested a positional effect and led to a clustered “mosaic” reappearance of eGFP(+) stem cells. Moreover, stem cells reappeared even in cell cultures derived from one single differentiated eGFP(-) cell. On the basis of our experimental \textit{in vitro} and \textit{in vivo} findings, we developed a tumor growth model to predict the clustered localization of cancer stem cells within a tumor mass.

Regarding the heterogeneity with respect to differentiation, cancer cell populations consist of cancer stem cells (CSC) and a majority of non-CSC or ‘bulk’ cancer cells. It is hypothesized that essentially the CSC subpopulation possesses the capability of tumor initiation and has the capacity for self-renewal (1,2). Two main theories were initially developed to explain the distribution of CSC within a tumor: the hierarchical and the stochastic model (1). The hierarchical model suggests that the pool of CSC can only be maintained by cells that have CSC characteristics and by definition, the ability to give rise to progeny with unlimited proliferative capacity. Thus, tumors contain: I) proliferating CSC that
allow for tumor growth, II) transit amplifying cells that divide a certain number of times, then differentiate (or 'mature') and III) specialized tumor cells (bulk cells) that don’t show mitogenic activity and thus don’t contribute to tumor growth. According to this model, cells in a tumor are organized in a strictly hierarchical, assumingly one-directional system with CSC at the top of the hierarchy, giving rise to all other cancer cell types. The stochastic model of cancer growth relies on a different concept for tumor growth. This model predicts that all cancer cells eventually have the same potential to grow and divide, but cells stochastically fluctuate between different states, i.e. between self-renewal and differentiation states. The cells in such a tumor do not operate in a deterministic, “well-organized” system – any cell has the same intrinsic potential to contribute to tumor growth. Unlike in the hierarchical model, the stochastic model predicts that CSC are not necessarily and exclusively derived from the CSC cell population. Currently, there is no definitive proof in favor of either model of tumor growth. The development of different cancer types may be explained in different ways; leukemia are thought to mostly follow the hierarchical model (3), while breast cancers likely develop according to the stochastic approach (4).

Malignant mesotheliomas (MM) are tumors originating from the serosal cells covering the pleural, peritoneal or pericardial cavities. MM are highly aggressive neoplasms most often associated with asbestos exposure (5). One of the main major clinical issues with MM is that although initial tumor growth can be rather efficiently inhibited by first line chemotherapy (cis-platinum and pemetrexed), the few surviving cells lead to a rapid recurrence of the tumor. This subpopulation of tumor cells bearing increased chemotherapeutic resistance and augmented expression of stemness factors including Sox2, Oct4, Nanog, Klf4 and c-Myc are termed CSC (6). In a recent study we identified and characterized MM cell subpopulations (CSC and non-CSC) in vitro based on their endogenous expression of Sox2 and Oct4 transcription factors (7) previously identified as stem cell markers (8). Sox2, Oct4 and Nanog, are considered as transcriptional regulators of the core circuitry in the control of the stem cell state (9). In comparison to non-CSC we have shown before that MM CSC possess different properties with respect to several clinically relevant parameters including chemoresistance in vitro and tumor initiating capacities in vivo (7). The Sox2/Oct4-reporter system, initially developed for the convenient identification of induced pluripotent cells (10), has been successfully applied to visualize early stages of cellular reprogramming (11) and in our case in MM cell lines to identify, isolate and visualize CSC by the expression of eGFP (7). Similar approaches were used in breast cancer cells with reporter systems for Sox2 and Oct4 (12), as well as for Nanog (13). These eGFP-based reporter systems allow to isolating, visualizing and observing in real-time the dynamics of CSC in vitro and in vivo.

RESULTS

Steady-state equilibrium between eGFP(+) and eGFP(-) cells - For the initial identification of cells with stem cell-like properties in MM and in primary mesothelial cells (prMC), we made use of a tool initially developed for stem cell biology. In this lentivirus-based approach, mesothelioma cell lines of human (ZL55) and mouse origin (RN5), as well as normal mouse prMC were infected with a construct as described in Hotta et al (10,16) that contains Sox2- and Oct4-binding sites in the promoter region followed by an expression cassette coding for the enhanced green fluorescent protein (eGFP) and an IRES connecting to a puromycin resistance cassette that allows for the puromycin selection of Sox2- and Oct4-expressing (SO) cells (Fig. 1A). However, we did not make use of the puromycin selection possibility in this study. The general infection efficacy in the used cells was determined by using another reporter construct: SORE6-mCMVp-dsCopGFP-PURO (12). In this plasmid the puromycin resistance is not under the regulation
of the Sox2/Oct4 promoter as is the expression of eGFP. After infection, cells were selected with puromycin for 24h. In the puro-resistant cell population we observed around 4% of eGFP(+) cells for ZL55 and around 8% eGFP(+) cells for RN5 cells. These values are almost identical to the ones previously observed after transduction with the Hotta construct (10,16), i.e. 4.8% and 7.1%, respectively (7). Sufficiently high expression levels of endogenous Sox2 and Oct4 drive eGFP expression, which allowed to identify CSC. ZL55 and RN5 MM cells, as well as prMC cells infected with the stemness-reporter lentivirus at a multiplicity of infection (MOI) of 10 were called ZL55-SO, RN5-SO and prMC-SO cells. After repetitive passaging and maintenance of ZL55 cells in culture for more than 1.5 months, the fraction of eGFP(+) cells within the entire cell population remained remarkably stable, i.e. around 5%. Quantitative analyses by FACS revealed 4.8%±0.6 of eGFP(+) ZL55-SO cells (Fig. 1B); a similar consistent fraction of eGFP(+) cells (7.1±1.5%) was observed over a period of 2 months in the population of murine MM RN5-SO cells. In long-term MM cell cultures (>2 months) the proportion of eGFP(+) cells varied to some extent, which we attributed to “biological noise”; however no time-dependent trends towards either higher or lower proportion of eGFP(+) cells was observed (data not shown). After 2 weeks in culture part of ZL55-SO and RN5-SO were sorted as described above and resulted in ZL55-SO\textsuperscript{low}, ZL55-SO\textsuperscript{high}, RN5-SO\textsuperscript{low} and RN5-SO\textsuperscript{high} cell populations, characterized by either complete absence of eGFP (\textsuperscript{low}; eGFP(-)) or essentially 100% of eGFP(+) (\textsuperscript{high}) cells, respectively as reported before (7). In the population of ZL55-SO\textsuperscript{high} and RN5-SO\textsuperscript{high} cells, mRNA expression levels of the stem cell markers Sox2 and Oct4, as well as other markers (Aldh1, Klf4, Nanog and c-Myc) were elevated as demonstrated after 8 weeks. Tumor-derived cells were cultivated \textit{in vitro} and revealed that a fraction of NLS-mCherry(+) cells had lost eGFP expression. RN5-SO\textsuperscript{high/NLS-mCherry} cells were maintained in culture \textit{in vitro} for 57 days and analyzed by FACS for green (eGFP) and red (NLS-mCherry) fluorescence. While the fraction of NLS-mCherry(+) cells only marginally decreased from 99.8% to 99.0%, the fraction of eGFP(+) cells decreased from 99.6% to 77.8% (for details, see (7)). Here we carried out a similar experiment with ZL55-SO\textsuperscript{high} and additionally RN5-SO\textsuperscript{high} cells that had been maintained in culture for 2 months resulting in the appearance of eGFP(-) cells in both cell lines. These cells were re-infected with a lentivirus encoding all four Yamanaka factors (SOX2, OCT4, KLF4, NANOG) (18). This resulted in an increase in eGFP expression in the previously eGFP(-) cells; results are shown for ZL55-SO\textsuperscript{high} cells (Supplementary Fig. 2).

A final series of experiments was carried out with the population of -SO\textsuperscript{low} cells. After prolonged cultivation (>10 passages) and moreover with a very low probability, we were able to observe the appearance of eGFP(+) cells from the subpopulation of sorted initially 100% eGFP(-) cells. The population of selected ZL55-SO\textsuperscript{low} and RN5-SO\textsuperscript{low} cells was monitored continuously for 15 weeks and the results are
shown in Fig. 1E, F. After a lag phase of 1-1.5 months, both in cultured ZL55-SO-low and RN5-SO-low cells, eGFP(+) cells started to appear. Moreover, in close proximity of the eGFP(+) cells, new eGFP(+) non-daughter cells appeared; more details are described below. The proportion of eGFP(+) cells then reached a value closely approaching the initial proportional rate of the unsorted -SO cells. The same held true for the proportion of the initially 100% eGFP(-) -SO-high cells (Fig. 1E, F). We presume that the fraction of eGFP(+) cells is an intrinsic property for a given MM cell line and that this property (information) is inherent for both, -SO-low as well as -SO-high cells.

Emerging of an eGFP(+) stem cell population from one single bulk cell - In order to determine whether a stem cell population may emerge from one single ZL55-SO-low cell, clones originating from one single ZL55-SO-low cell were grown in culture. By single-cell cloning, several subpopulations of eGFP(-) cells were maintained for several passages (10-15 requiring approximately 2.5 months); all cells within one well (clone) were initially 100% eGFP(-) (data not shown). The fate of the cell cultures was followed in vitro. At regular intervals (once per week), cells were passaged and the percentage of eGFP(+) cells was determined by FACS analyses. After 10 weeks in culture, we observed the appearance of the first eGFP(+) cells. In one case, the newly formed eGFP(+) cell divided; one daughter cell showed eGFP expression, while the other one was again eGFP(-) (Suppl. Movie 1).

After this initial event and further growing and passaging of the cell clone, the fraction of eGFP(+) cells reached a value of approximately 5%, closely resembling the ratio observed in the parental (non-sorted) ZL55-SO cell population (4.86%; Fig. 2A). Thus, it appears that the spontaneous change from an eGFP(-) to a CSC-like eGFP(+) cell is determined by “rules” that will eventually lead to the initial (apparently intrinsic) steady-state ratio as is observed in the non-selected -SO cells. ZL55-SO cells derived from a single cell (low eGFP clone) were sorted again after 20 weeks in culture based on their eGFP expression resulting in ZL55-SOclone-low (yellow color) and a ZL55-SOclone-high (pink color) cell population (Fig. 2C). Note that eGFP expression histograms of low and high eGFP clones showed a Gaussian curve in these populations, characteristics of biological noise (19). Also when ZL55-SOclone cells were immunostained for eGFP and the fluorescent intensities were normalized to DAPI staining (Fig. 2D), the histogram showed a lognormal distribution. In comparison to ZL55-SOclone-low cells, ZL55-SOclone-high cells revealed higher mRNA expression levels of typical pluripotency stem cell markers including POU5F1, SOX2 and ALDH1A1 indicative of increased stemness potential acquired by the initially eGFP(-) cells (suppl. Table 1A).

Clustered re-appearance of eGFP(+) cells - A closer inspection with respect to the re-appearance of eGFP(+) cells revealed this process not to be of stochastic nature. Not only daughter cells of newly formed eGFP(+) cells, but also initially eGFP(-) cells in close vicinity of eGFP(+) cells showed a clearly higher propensity to become eGFP(+) cells (Fig. 3A). In ZL55-SO-low cultures we managed to record 8 cases of newly generated eGFP(+) cells. A clustering behavior was observed in 4 out of 8 cases, where the spontaneous appearance of an eGFP(+) from -SO-low cells was detected (Supplementary Movie 2, 3). In the other 4 cases only one cell became green and not the neighbors. The appearance of an eGFP(+) cell from a -SO-low cell occurred on average once every 7.2 weeks of observation. Considering that approximately 1.5 x10⁶ cells were generated during one week (one passage), the probability of a single cell to spontaneously convert to an eGFP(+) cell is estimated to be extremely low, in the order of 1 : 1.1 x 10⁸. Thus, spontaneous cell dedifferentiation is almost as likely as winning the lottery. The chance that two or three independent spontaneous cell transitions occur at the same time in the same area is equivalent to the probability of the event that two-three neighbors in the same week win the lottery. Since it is very unlikely, we assume an interaction during the stochastic processes, to explain the experimentally observed phenomena.

In the case of RN5 cells we managed to record only once the re-appearance of an eGFP(+) cell from an eGFP(-) cell culture. In order to test whether such clustering was an intrinsic property of transformed cells, i.e. MM CSC, we also transduced prMC with the eGFP reporter construct. The first observation was the lower percentage (0.9 ± 0.4%) of eGFP(+) cells in prMC cultures maintained in vitro for 1 month (Fig. 1B). But more importantly, we also observed the appearance of eGFP(+) cells from eGFP(-) prMC. In these cells we also found a clustered appearance of eGFP(+) cells in 2 out of 4 cases (Fig. 3B) (Supplementary Movie 4, 5). From these results, we conclude that the transition
from a non-green to a green cell with stem cell properties is not linked to the transformation from normal to cancer cells, but is also a property of normal untransformed primary cells.

**Diffusing factors implicated in stem cell state determination** - ZL55-SO cells were maintained either in fresh medium or conditioned medium from ZL55-SO\textsuperscript{high} cells and the population of green cells was estimated by FACS analysis in these two conditions. In contrary to our initial expectation, the number of eGFP(+) cells was significantly lower in cells maintained in ZL55-SO\textsuperscript{high} medium (two-tailed paired t-test, mean ± S.D. of differences in green-cell percentage of total: 1.24±0.56%, t(4)=4.8, p<0.01). Nonetheless it indicated the presence of soluble factors produced by ZL55-SO\textsuperscript{high} cells affecting the stem cell state determination of the ZL55-SO cell population; possible mechanisms are discussed below.

Besides elevated levels of stemness factors in ZL55-SO\textsuperscript{clone-high} cells, we also found evidence for elevated levels of GLI1, a gene encoding a transcription factor that is directly modulated by the transcription factor Sonic Hedgehog implicated in morphogenesis (Suppl. Table 1B).

**Numerical model for the locally interacting Markov-chain process** - The features of the locally interacting Markov-chain are described in the first model (Fig. 4A-C). In this initial model, it is not necessary for cells either to divide or undergo apoptosis. As a feature of finite-state stochastic processes, the Markov chain will converge to equilibrium at a certain point of time independently of the initial condition. In our case, it did not matter whether the proportion of stem cells in the entire cell population was initially 0 or 100% (or any value in between). After a certain number of passages, the distribution always reached a certain steady-state proportion defined by the transition probabilities. Of note, the spatial distribution of cells in the S state (green) and NS state (brown) is entirely random (Fig. 4C and Supplementary Movie 5).

The essential feature of the Markov chain processes to reach equilibrium remains, even if we assume local interactions between cells (Fig. 4D-F). If an interaction is defined as a positive interaction, i.e. the state of a cell (S or NS) increases the probability of a neighboring cell to take up the same state, then the spatial distribution of cells with a given state will not be completely random. This in turn, will lead to cell clusters in a given (S or NS) state (Fig. 4F and Supplementary Movie 6, 7). The other feature derived from the model, assuming a restricted (low) number of cells and moreover, a very low probability of transition from one state to the other, predicts that the curve on the state proportion/state sequence plot would show an initial lag phase, best seen for the cells in the S state (Fig. 4E). This is in line with our in vitro results with ZL55-SO\textsuperscript{low} cells (Fig. 2). The appearance of eGFP(+) cells was observed only after a lag time of several weeks. However, after the appearance of such a low-probability event, the population of eGFP(+) and eGFP(-) cells reached the initial equilibria rather quickly. Of note, the proportion of S state cells is rather similar, whether using the simple Markov chain model (Fig. 4A) or the one with positive interactions (Fig. 4D). On the other hand, in the model allowing for interactions, the Nearest Neighbor Index was clearly decreased and the spatial patterns showed significant cluster formation (p<0.05) (Fig. 4H). Also worth mentioning is the higher variability of the proportions of S state (green) cells in the numerous simulations, when applying the model with the positive interactions (Fig. 4G and 4H).

**Numerical model for tumor growth and in vivo testing** - In the more realistic tumor growth model, we also took into account that cells divide and may undergo apoptosis. The experimentally determined spontaneous apoptosis rate, both in SO\textsuperscript{low} and in SO\textsuperscript{high} populations was found to be very low (less than 1% evidenced by Annexin V-Cy3 staining), but they divided with different rates (Fig. 1D). Taking into account this information obtained in the in vitro model in the tumor growth model, we found that a tumor may be formed in silico from one single stem cell (S) or from one single bulk cell (NS) (Fig. 5A and 5B, respectively). In both cases, the S state cells/total cells ratio tended towards steady-state equilibria (Fig. 5C). Another prediction derived from the model was the uneven distribution of S cells within the tumor mass. When starting from a single green S state cell (Fig. 5A and Supplementary Movie 8) or from a single non-green (NS state) cell (Fig. 5B and Supplementary Movie 9), the model predicted that S state cells will be preferentially localized in the center of the tumors and moreover organized in clusters.

To test these model predictions, ZL55-SO\textsuperscript{high} cells were injected i.p. into NSG mice. The identity of ZL55 tumor cells was assessed by staining for the MM marker calretinin (Fig. 5D). The staining showed the typical mosaic-like pattern as reported before in human breast cancer samples (12). Staining for eGFP revealed those
cells to accumulate mainly in the center of the tumor mass and furthermore to form eGFP(+) cell clusters (Fig. 5E). Namely, the average maximum diameter of clusters was estimated as 62 ± 32 µm, the distance between the neighboring clusters was calculated as 271± 163 µm and the closest distance between one cluster and the edge of the tumor was estimated as 168 ± 52 µm. Of note, since there is no straight border between eGFP-stained and unstained populations, the abovementioned values are only subjective estimations.

**DISCUSSION**

The original hierarchical, unidirectional CSC model predicts that tumor cells lacking stem cell properties would not be able to initiate self-propagating tumors and thus curative therapy should be targeted to fully eliminate the CSC population. This is expected to lead to complete tumor regression, even if all bulk non-CSC would initially remain (2). However, the stochastic appearance of CSC in populations of apparently “pure” bulk tumor cells (for technical considerations on the difficulties for identification and isolation of “pure” CSC and non-CSC populations, see also (20)) strongly indicates that targeting of non-CSC bulk cells is equally important for tumor regression and cancer treatment. Most recently, the concept of bi-directional inter-conversion between CSC and non-CSC has gained wider acceptance (20), e.g. in the field of breast cancer (21).

We have reported previously on the successful approach to identify, characterize and visualize a subpopulation of CSC-enriched MM cells by the Sox2/Oct4 reporter approach (7). eGFP(+) MM cells derived from ZL55 and RN5 cells were shown to display augmented stemness features including higher SOX2, POU5F1, KLF4, c-MYC and ALDH1 mRNA expression levels. The eGFP(-+) MM cells have also a higher tumor-initiating capacity in vivo, as well as an increased resistance to cisplatin treatment in vitro. They show a higher tumorsphere- and colony-forming capacity and moreover the ability to convert (differentiate) into bulk cancer cells (7).

In this study we found that the proportion of eGFP(+) cells –in the case of MM previously characterized stem cell-enriched cells (7)– within the entire cell population was clearly higher in tumor-derived (ZL55 and RN5) MM cells than in normal prMC (5-7% vs. 0.9%, respectively). However the precise identity of eGFP(+) prMC cells is currently unknown. Based on the elevated Sox2/Oct4 levels necessary to drive eGFP expression, the eGFP(+) prMC might be cautiously assumed to also represent a cell population with stem cell properties. Previously it was shown that mouse prMC may be cultured for more than 25-30 passages, until the symptoms of senescence become visible (22). Importantly, during this time period a subset of cells were shown to express stem cell markers such as Sox9, Sox2, CD34, Bmi1 and these cells showed adipogenic and osteogenic differentiation potential in vitro (22). This strongly indicates the presence of a prMC subpopulation with stem cell properties. To what extent the previously identified stem cell population and the eGFP(+) prMC reported here overlap needs to be addressed in further studies.

However in both transformed, as well as non-transformed cells we observed the emergence of stem cell-like eGFP(+) cells from an isolated “pure” bulk eGFP(-) cell population, a finding that could be well explained by the stochastic model. In line with the hypothesis of increased “stemness” of the eGFP(+) population derived from a eGFP(-) ZL-55-SOlow clone, the stemness markers SOX2, POU5F1 and ALDH1 were all increased, excluding that the appearance of green cells was unrelated to increased stemness. The stochastic nature of the system might be the consequence of biological noise. Cell-to-cell variability or “noise” arises from the stochastic nature of biochemical processes within cells, in particular at the level of gene transcription (23) and translation (24).

Besides our observation and modeling of bi-directional conversion between S (stem) and NS (bulk) states, the description of the “positional effect” is a principally novel concept in cancer stem cell biology. Although cell-cell adhesion and communication between CSC, bulk (non-CSC) and stromal cells has been investigated in some detail (reviewed in (25)), our finding that CSC cells usually appear in clusters indicates that the cell-fate transition also depends on the localization of a cell, more precisely on the prevailing status of its neighboring cancer cells. Either diffusing factors or direct cell-cell interactions may serve as information transfer mechanism(s); for simplicity, our model is based on a direct cell-cell contact factor. While more complex models might incorporate diffusing factor(s) that then might act on somewhat longer distances, the basic consequences of such interactions on the tumor cell state would remain...
Positional stem cell model

essentially the same. Activating and long-range inhibitory diffusing factors can even generate Turing-patterns (26) with regularly spaced stem cell clusters. Our experiments with conditioned medium from eGFP(+) ZL55-SO\textsuperscript{high} cells, which resulted in a lower number of eGFP(+) cells in the non-sorted ZL55-SO cells is indicative of such a long-range inhibitory diffusing factor secreted by the CSC population. Apparently when applied in a bulk fashion, such an inhibitory diffusing factor predominated against a short-range activating diffusing factor, likely to exist based on the observation of the positive positional effect observed in the newly appearing eGFP(+) cells. Currently nothing is known about the molecular identity of factors influencing the cell state fate, neither in normal mesothelial cells nor in MM cells. However we have found that expression levels of GLI1 in ZL55-SO\textsuperscript{clone-high} cells were elevated compared to ZL55-SO\textsuperscript{clone-low} cells. Gl1 is a protein of the Sonic Hedgehog signaling pathway known to be involved in morphogenic processes, but also related to carcinogenesis (27). In glioblastoma cells, bone morphogenic proteins (BMP) are highly expressed and promote CSC differentiation, while the BMP antagonist Gremlin1 is secreted by CSC and prevents BMP-induced differentiation (28). Our model is taking into account that the differentiation state (S or NS) of a cell at the next time point is determined by its present state and the prevailing state of its neighbors and not on the past state of a given cell. This then leads to S state clusters (spatial regulation), while in simple stochastic models (4) the spatial regulation is not considered. A spatially organized localization of stem cells and differentiated cells has been previously observed in the case of human induced pluripotent stem cells (29). The authors concluded that stem cells might interact with and moreover “sense” the cellular composition (state) of their immediate neighbors and adjust their differentiation state accordingly. The same phenomenon was observed experimentally in our study, both in normal mesothelial cells, as well as in MM cells indicating that the “positional effect” is very likely a general mechanism influencing the cell state fate. Factors influencing the stem cell proportion were shown to be also extrinsic, e.g. originating from another cell type. Germline stem cells from C. elegans are maintained by signaling from a niche formed by the distal tip cell: repositioning of the niche induces germline stem cells at a new position (30). Moreover, many tissues and organs contain a small number of adult stem cells that help maintain them. Adult stem cells are thought to live in a specific niche of each tissue, where they are dividing and creating new cells only when the body needs more cells. For instance: intestinal stem cells reside at the crypt base and give rise to all cell types found within the crypt (31). These findings raise the possibility that the niche itself determines the cell stemness state and not an initially coded cell fate: the ability of cells to go through numerous cycles of cell division while maintaining the undifferentiated state (self-renewal) is only the consequence of their localization in the “stem cell niche”, i.e. here within a cluster, see Fig. 6.

We hypothesize that positional effect might represent a universal model for various cell types and might be of relevance also during physiological development. First, cells with stem cell properties have higher probabilities but not exclusivity to become a progenitor of an organ or tumor. Second, there are no strict stem cell or bulk cell lineages; these phenomena are the consequence of the low probability of the cell-fate transition (20). Finally, asymmetric cell division, i.e. a stem cell giving rise to one stem cell and one bulk cell, is only a spatial and/or stochastic effect, mostly based on where the daughter cells will be positioned. Thus, a stem cell might divide into two stem cells, one stem cell and one bulk cell or two bulk cells, as it was experimentally proven (32,33). This is fully consistent with our results obtained with ZL55-SO\textsuperscript{high} eGFP(+) cells that gave rise to zero, one or two eGFP(+) daughter cells in vitro.

Another important consequence of the positional effect is the initial lag phase in the increase of S state cells, when starting from a bulk (NS) cell as shown in Fig. 4E simulation. In line with our model, experimentally we found that within the population of -SO\textsuperscript{low} cells, it took several weeks before an eGFP(+) cell appeared. Yet as soon as one eGFP(+) state cell appeared, the proportion of eGFP(+) cells increased quite rapidly (Fig. 2A).

Whether cell-fate transitions are connected with the cell cycle remains an open question. The hierarchical model states that cells may change their differentiation state only during mitosis. The simple stochastic models postulate that the differentiation state may be changed independently of the cell cycle, even during the resting state (G\textsubscript{0} phase). Theoretically, a cell might change the differentiation state several times during one cell cycle; however since cell
fate transitions are very rare events, the probability of multiple transitions are tending towards zero. In our models we allowed for changes in the differentiation state during the cell cycle, but not, if cells were in the resting G0 phase. We reckon that recently developed methods for single-molecule imaging of transcription factors binding to DNA (34) might provide data, by which one may address the abovementioned questions and select or modify the appropriate model(s). Our tumor growth model considering the “positional effect” predicted that S state cells are located preferentially in the center of the tumor mass and moreover organized in clusters. This is in line with our in vivo data with tumors derived from ZL55-SO

\textit{high} eGFP(+) cells. In general, tumor growth/proliferation is highest in the tumor periphery (35), while in the tumor center cell proliferation is restricted by the lack of space.

In conclusion, effective therapies should equally target S and NS state tumor cells in order to completely eradicate the transformed cells. Our important observation is that cell state is spatially determined. The factors influencing the spatial organization will need to be identified by further studies.

MATERIALS AND METHODS

\textit{Lentiviral constructs, vector production and lentivirus isolation} - The plasmid pL-SIN-EOS-S(4+)-EiP was obtained from Addgene (plasmid #21314) and was described before (10,16). The SORE reporter construct pSORE6-mCMVp-dsCopGFP-PURO was a kind gift from Dr. Wakefield (12). The lentiviral plasmid pFUW-OSKM expressing mouse Oct4, Sox2, Klf4 and cMyc used for iPS cell generation (Addgene plasmid #20328) was a kind gift from Rudolf Jaenisch (18). In order to generate a lentivirus encoding a nuclear-targeted red fluorescent protein, the GFP cassette in pLVTHM (Addgene plasmid #12247) was replaced with a mCherry-NLS fragment. Briefly, the plasmid mCherry-NLS (gift from Martin Offterdinger (Addgene plasmid # 39319)) was digested with 

\textit{Agel}, filled with Klenow enzyme, and then digested with 

\textit{XbaI}. The insert was ligated into pLVTHM using the compatible 

\textit{Pmel} and 

\textit{SpeI} sites. Lentiviruses were produced as described previously (36).

\textit{Cell culture and monitoring} - The human mesothelioma cell line ZL55, as well as the murine mesothelioma cell line RN5 were maintained in RPMI1640 (Gibco, Basel, Switzerland) supplemented with 10% fetal bovine serum (FBS; Gibco), 100 U/ml penicillin and 100 µg/ml streptomycin (1% PS). ZL55 was established from previously untreated patients as described before (37), while RN5 was established in our lab (38). Primary mouse mesothelial cells (pMC) were isolated from 4-6 months old C57Bl/6J mice using a previously described protocol (39). pMC were grown in modified Connell’s medium composed of: DMEM/F12+GlutaMax (Gibco), 15% fetal calf serum (FCS), 0.4 µg/ml hydrocortisone, 10 ng/ml epidermal growth factor, 1% ITS (insulin, transferrin, selenium), 1 mM sodium pyruvate, 0.1 mM beta-mercaptoethanol, 1% non-essential amino acids, 1% Penicillin-Streptomycin and 2% Mycokill (PAA)(40). Cells were transduced with lentivirus containing the stemness indicator construct pL-SIN-EOS-S(4+)-EiP. Transduced ZL55 and RN5 cell lines containing the stemness reporter are hereafter named as “cell line name-

SO”. They consist of two populations: an eGFP(+) population and an eGFP(-) population. The eGFP(+) population consists of cells in which expression levels of the stemness indicators Sox2 and Oct4 is sufficiently high to drive the expression of the reporter eGFP, while non-fluorescent cells comprise cells with low/absent levels of Sox2 and Oct4, as well as a small fraction of non-transduced cells. By the lentiviral transduction method, an almost 100% transduction efficacy was achieved as evidenced with the nuclear-targeted RFP construct.

Cultured cells were trypsinized and cell pellets were washed three times with PBS and re-suspended in PBS. FACS analysis was performed on a BD Accuri C6 (BD Biosciences) to quantify eGFP-expressing cells and data were analyzed with the FlowJo software (Tree star). The sorting of eGFP(+) cells (called SO\textsuperscript{high}) was performed on a BD FACS ARIA (BD Biosciences) cell sorter (100 µm nozzle, 20 psi) for cell culture in vitro. Cells showing no eGFP fluorescence were isolated, cultured and are termed (-SO\textsuperscript{low}).

Cells were continuously monitored using the 

\textit{Incucyte live-cell imaging system} (EssenBioscience, Ann Arbor, MI) as described previously (41). Cells were plated in 6-well plates (9 cm\textsuperscript{2}) and images were collected from 49 consecutive zones every 2 h. The size of each zone is approximately 0.5 mm\textsuperscript{2}. Merged images (fluorescence + phase contrast) were visually analyzed. Recordings showing relevant changes in the proportion of eGFP(+) and eGFP(-) cells were further evaluated by ImageJ software.
Selection of eGFP(-) clones - Clonal selection of ZL55-SO\textsuperscript{low} cells was performed as described before (38). Clones derived from a single cell were grown and monitored in the Incucyte Live Cell Imaging system. Clones were quantified regularly by flow cytometry for the presence of eGFP(+) cells until 120 days post-selection.

In vivo localization of eGFP(+) cancer stem cells - ZL55-SO\textsuperscript{low} and ZL55-SO\textsuperscript{high} cells were sorted as described above and 100,000 cells were injected s.c. into NOD/SCID gamma mice and tumor formation was analyzed 36 days post-injection (4-5 mice per group). Tumor samples were excised and fixed with 4% PFA and embedded in paraffin. Paraffin sections (3 μm) were used for IHC as described before (38). Briefly, sections were de-paraffinized and permeabilized with 1% Triton X-100 and blocked with PBS-containing 10% of donkey serum. Sections were incubated with primary antibodies overnight at 4°C (rabbit anti-eGFP (Sigma – Aldrich) 1:500, and biotinylated anti-rabbit secondary antibody (Sigma –Aldrich) 1:10,000. Sections were incubated with ABC reagent (Vectastain, Vector Laboratories, Burlingame, CA) and stained with diaminobenzidine (DAB), a sensitive colorimetric substrate to reveal the eGFP(+) cells. All experiments were performed with permission of the local animal care committee (Canton of Fribourg, Switzerland) and according to the present Swiss law and the European Communities Council Directive of 24 November 1986 (86/609/EEC).

Determination of mRNA expression levels of stemness genes by RT-qPCR - Total RNA extracted from 80% confluent cell cultures (peqGOLD, TriFast\textsuperscript{TM}) of sorted ZL55-SO cells (ZL55-SO\textsuperscript{high} and ZL55-SO\textsuperscript{low}) was used for RT-qPCR following the manufacturer’s instructions (QIAGEN). Primer sequences are listed in the Supplemental Material. Changes were determined by the -ΔΔC\textsubscript{i} method. Graph Pad Prism version 6 software was used to perform rank Spearman tests for correlation analysis.

Mathematical modeling - We used stochastic cellular automata also known as locally interacting Markov chains model (42) to assess the stem cell localization in a 2D model. Cellular automata are often used to simulate solid tumor growth and cancer stem cell dynamics (43-45). The basic features of the positive interactions in the stochastic cellular automata were examined in a two-dimensional grid of size 25 x 25 cells. The non-interacting Markov chain is characterized by the probability distribution of the next state depending only on the current state and not on the sequence of events that preceded it. If we suppose spatial interaction, then the next state not only depends on the current state, but also on the current spatial position, i.e. the state of the neighbors. We used the following rules to determine the next state of the pattern in the grid. The letter S stands for the stem cell state and the letter NS for the non-stem cell state. 1.) No interaction: P(NS→S)=0.001 and P(S→NS)=0.009. 2.) Positive interaction (i.e. when the state of one cell increases the chance of their neighbors to take up the same state at the next time point): P(NS→S)=0.00012, if there is no S nearest neighbor; P(NS→S)=0.004, when at least one nearest neighbor is present in the S state, P(S→NS)=0.008, if there is no NS nearest neighbor, and P(S→NS)=0.01, if at least one nearest neighbor is present in the NS state.

In order to measure the spatial distribution of the developed patterns and to see, whether it is regularly dispersed, randomly dispersed, or clustered, we used the Nearest Neighbor Index calculation:

\[
R_n = \frac{\bar{D}_O}{\bar{D}_E} = \frac{\sum_{i=1}^{n} d_i}{n} \cdot \frac{0.5 \times \sqrt{A}}{\sqrt{n}}
\]

where \(R_n\) is the nearest neighbor index, \(\bar{D}_O\) is the observed mean distance between each stem cell, \(\bar{D}_E\) is the expected mean distance according to a random pattern, \(d_i\) equals the distance between stem cell \(i\) and its nearest neighboring stem cell, \(n\) is the total number of stem cells, \(b\) is the number of stem cells located on the border (their distance to its neighbors were not taken into account - border correction), \(A\) is the surface of the domain (25x25). The nearest neighbor formula produces a result with values between 0 and 2.15. If the index is less than 1, the pattern exhibits clustering. If the index is greater than 1, the trend is towards regular dispersion. If the index is close to 1, a random pattern is considered. The average nearest neighbor z-score for the statistic is calculated as:

\[
z = \frac{\bar{D}_O - \bar{D}_E}{SE} = \frac{\bar{D}_O - \bar{D}_E}{0.26136} \times \frac{\sqrt{n^2}}{\sqrt{A}}
\]

where \(SE\) is the standard error. We rejected the null hypothesis (pattern is a random pattern), if the absolute z score was greater than or equal to
Next, we simulated the tumor growth initiated from one single cell. In the tumor growth model we assigned that a given cell has three options during the next time period; it can I) divide (undergo mitosis), II) remain silent or III) undergo apoptosis with the probabilities (P\text{d}, P\text{r} and P\text{a}, respectively), such as P\text{d}+ P\text{r} + P\text{a} = 1. S and NS cells have different probabilities to undergo mitosis or apoptosis. In the model we used the following values for NS cells: P\text{d}=0.15, P\text{r}=0.848, P\text{a}=0.002 and for the S cells: P\text{d}=0.07, P\text{r}=0.929, P\text{a}=0.001. If a cell divides, then the first daughter cell occupies the original space of the parental cell, while the second one will randomly occupy one of the available places around the parent cell. If there is no “empty” space around a cell, then this cell can’t divide. If a cell is completely surrounded by their neighbors for a certain period of time, then we consider that this cell is now in a non-dividing (resting) G\text{0} state. In a non-dividing (resting) G\text{0} state a cell cannot change its stem cell status. However, this cell can still undergo apoptosis. If as the result of cell death free space becomes available, a cell in the G\text{0} state can re-enter the cell cycle and undergo mitosis. In our model the cell fate transition is not linked to cell division, but when a cell is out of the cell cycle (defined as G\text{0} phase), then this cell is unable to change its differentiation status. Different probabilities are assigned to the different processes in order to simulate the differentiation and de-differentiation processes considering the status of the neighboring cells (“positional effect”). The following probabilities were used in the model: p(\text{NS}→\text{S})=0.0018, if there is no S nearest neighbor; p(\text{NS}→\text{S})=0.06, if at least one nearest neighbor is present in the S state, p(\text{S}→\text{NS})=0.03, if there is no NS nearest neighbor, while p(\text{S}→\text{NS})=0.06, if at least one nearest neighbor is present in the NS state. A flowchart of the simulation process and the decisions at the cell level are shown in Supplementary Fig. 1. The simulations were performed in the MATLAB environment (MathWorks Inc., MA). The MATLAB codes are provided in the Supplementary material.
Acknowledgements - The authors are grateful to Simone Eichenberger and Valérie Salicio for excellent technical assistance, as well as to Michael Dougoud, Dept. of Mathematics, University of Fribourg, for verifying the MATLAB codes. The authors would like to thank Prof. Lukas Sommer, University of Zurich for the careful reading of the manuscript and the constructive comments.

Conflicts of interest - The authors declare that they have no conflicts of interest with the contents of this article.

Authors’ contributions – WB, LP and BS conceived the study, WB, TH, and LP performed experiments, LP created the model and mathematical analysis; WB and BS secured funding. WB, BS and LP analyzed data and wrote the paper.

References
1. Nguyen, L. V., Vanner, R., Dirks, P., and Eaves, C. J. (2012) Cancer stem cells: an evolving concept. Nature reviews. Cancer 12, 133-143
2. Tan, B. T., Park, C. Y., Ailles, L. E., and Weissman, I. L. (2006) The cancer stem cell hypothesis: a work in progress. Laboratory investigation; a journal of technical methods and pathology 86, 1203-1207
3. Bonnet, D., and Dick, J. E. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature medicine 3, 730-737
4. Gupta, P. B., Fillmore, C. M., Jiang, G., Shapiro, S. D., Tao, K., Kuperwasser, C., and Lander, E. S. (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633-644
5. Pasetto, R., Comba, P., and Marconi, A. (2005) Mesothelioma associated with environmental exposures. La Medicina del lavoro 96, 330-337
6. Reya, T., Morrison, S. J., Clarke, M. F., and Weissman, I. L. (2001) Stem cells, cancer, and cancer stem cells. Nature 414, 105-111
7. Blum, W., Pecze, L., Felley-Bosco, E., Wu, L., de Perrot, M., and Schwaller, B. (2017) Stem Cell Factors-Based Identification and Functional Properties of In Vitro-Selected Subpopulations of Malignant Mesothelioma Cells. Stem cell reports
8. Munoz, J. R., Stoutenger, B. R., Robinson, A. P., Spees, J. L., and Prockop, D. J. (2005) Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proceedings of the National Academy of Sciences of the United States of America 102, 18171-18176
9. Young, R. A. (2011) Control of the embryonic stem cell state. Cell 144, 940-954
10. Hotta, A., Cheung, A. Y., Farra, N., Vijayaragavan, K., Seguin, C. A., Draper, J. S., Pasceri, P., Maksakova, I. A., Mager, D. L., Rossant, J., Bhatia, M., and Ellis, J. (2009) Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nature methods 6, 370-376
11. Warlich, E., Kuehle, J., Cantz, T., Brugman, M. H., Maetzig, T., Galla, M., Filipczyk, A. A., Halle, S., Klump, H., Scholer, H. R., Baum, C., Schroder, T., and Schambach, A. (2011) Lentiviral vector design and imaging approaches to visualize the early stages of cellular reprogramming. Molecular therapy : the journal of the American Society of Gene Therapy 19, 782-789
12. Tang, B., Raviv, A., Esposito, D., Flanders, K. C., Daniel, C., Nghiem, B. T., Garfield, S., Lim, L., Mannan, P., Robles, A. I., Smith, W. I., Jr., Zimmerman, J., Ravin, R., and Wakefield, L. M. (2015) A flexible reporter system for direct observation and isolation of cancer stem cells. Stem cell reports 4, 157-169
13. Thiagarajan, P. S., Hitomi, M., Hale, J. S., Alvarado, A. G., Otvos, B., Sinyuk, M., Stoltz, K., Wiechert, A., Mulkearns-Hubert, E., Jarrar, A. M., Zheng, Q., Thomas, D., Egelhoff, T. T., Rich,
J. N., Liu, H., Lathia, J. D., and Reizes, O. (2015) Development of a Fluorescent Reporter System to Delineate Cancer Stem Cells in Triple-Negative Breast Cancer. *Stem Cells (Dayton, Ohio)* **33**, 2114-2125

14. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell* **126**, 663-676

15. Marusyk, A., and Polyak, K. (2010) Tumor heterogeneity: causes and consequences. *Biochimica et biophysica acta* **1805**, 105-117

16. Hotta, A., Cheung, A. Y., Farra, N., Garcia, K., Chang, W. Y., Pasceri, P., Stanford, W. L., and Ellis, J. (2009) EOS lentiviral vector selection system for human induced pluripotent stem cells. *Nature protocols* **4**, 1828-1844

17. Moore, N., and Lyle, S. (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. *Journal of oncology* **2011**

18. Carey, B. W., Markoulati, S., Hanna, J., Saha, K., Gao, Q., Mitalipova, M., and Jaenisch, R. (2009) Reprogramming of murine and human somatic cells using a single polycistronic vector. *Proceedings of the National Academy of Sciences* **106**, 157-162

19. Tsimring, L. S. (2014) Noise in biology. *Reports on Progress in Physics* **77**, 026601

20. van Neerven, S. M., Tieken, M., Vermeulen, L., and Bijlsma, M. F. (2016) Bidirectional interconversion of stem and non-stem cancer cell populations: A reassessment of theoretical models for tumor heterogeneity. *Molecular & cellular oncology* **3**, e1098791

21. Akrap, N., Andersson, D., Bom, E., Gregersson, P., Stahlberg, A., and Landberg, G. (2016) Identification of Distinct Breast Cancer Stem Cell Populations Based on Single-Cell Analyses of Functionally Enriched Stem and Progenitor Pools. *Stem cell reports* **6**, 121-136

22. Dauleh, S., Santeramo, I., Fielding, C., Ward, K., Herrmann, A., Murray, P., and Wilm, B. (2016) Characterisation of Cultured Mesothelial Cells Derived from the Murine Adult Omentum. *PloS one* **11**, e0158997

23. Eldar, A., and Elowitz, M. B. (2010) Functional roles for noise in genetic circuits. *Nature* **467**, 167-173

24. Raj, A., Rifkin, S. A., Andersen, E., and van Oudenaarden, A. (2010) Variability in gene expression underlies incomplete penetrance. *Nature* **463**, 913-918

25. Hale, J. S., Li, M., and Lathia, J. D. (2012) The malignant social network: cell-cell adhesion and communication in cancer stem cells. *Cell adhesion & migration* **6**, 346-355

26. Kim, H. W. (2009) [Development of the pregnancy nutrition knowledge scale and its relationship with eating habits in pregnant women visiting community health center]. *Journal of Korean Academy of Nursing* **39**, 33-43

27. Palle, K., Mani, C., Tripathi, K., and Athar, M. (2015) Aberrant GLI1 Activation in DNA Damage Response, Carcinogenesis and Chemoresistance. *Cancers* **7**, 2330-2351

28. Yan, K., Wu, Q., Yan, D. H., Lee, C. H., Rahim, N., Tritschler, I., DeVecchio, J., Kalady, M. F., Hjelmeland, A. B., and Rich, J. N. (2014) Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. *Genes & development* **28**, 1085-1100

29. Smith, Q., Stukalin, E., Kusuma, S., Gerecht, S., and Sun, S. X. (2015) Stochasticity and Spatial Interaction Govern Stem Cell Differentiation Dynamics. *Scientific reports* **5**, 12617

30. Kimble, J. E., and White, J. G. (1981) On the control of germ cell development in Caenorhabditis elegans. *Developmental biology* **81**, 208-219

31. Bartfeld, S., and Koo, B. K. (2017) Adult gastric stem cells and their niches. *Wiley interdisciplinary reviews. Developmental biology*

32. Mckenzie, J. L., Gan, O. I., Doedens, M., Wang, J. C. Y., and Dick, J. E. (2006) Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. *Nat Immunol* **7**, 1225-1233

33. Yatabe, Y., Tavaré, S., and Shibata, D. (2001) Investigating stem cells in human colon by using methylation patterns. *Proceedings of the National Academy of Sciences* **98**, 10839-10844
34. Gebhardt, J. C., Suter, D. M., Roy, R., Zhao, Z. W., Chapman, A. R., Basu, S., Maniatis, T., and Xie, X. S. (2013) Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. *Nature methods* **10**, 421-426

35. Waclaw, B., Bozic, I., Pittman, M. E., Hruban, R. H., Vogelstein, B., and Nowak, M. A. (2015) A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. *Nature* **525**, 261-264

36. Blum, W., and Schwaller, B. (2013) Calretinin is essential for mesothelioma cell growth/survival in vitro: a potential new target for malignant mesothelioma therapy. *International journal of cancer. Journal international du cancer* **133**, 2077-2088

37. Schmitter, D., Lauber, B., Fagg, B., and Stahel, R. A. (1992) Hematopoietic growth factors secreted by seven human pleural mesothelioma cell lines: interleukin-6 production as a common feature. *International journal of cancer. Journal international du cancer* **51**, 296-301

38. Blum, W., Pecze, L., Felley-Bosco, E., Worthmuller-Rodriguez, J., Wu, L., Vrugt, B., de Perrot, M., and Schwaller, B. (2015) Establishment of immortalized murine mesothelial cells and a novel mesothelioma cell line. *In vitro cellular & developmental biology. Animal*

39. Pecze, L., and Schwaller, B. (2015) Characterization and modeling of Ca(2+) oscillations in mouse primary mesothelial cells. *Biochimica et biophysica acta* **1854**, 632-645

40. Connell, N. D., and Rheinwald, J. G. (1983) Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. *Cell* **34**, 245-253

41. Blum, W., Pecze, L., Felley-Bosco, E., and Schwaller, B. (2015) Overexpression or absence of calretinin in mouse primary mesothelial cells inversely affects proliferation and cell migration. *Respiratory research* **16**, 153

42. Toom, A. L. (1978) *Locally interacting systems and their application in biology*, Springer-Verlag, Berlin

43. Poleszczuk, J., and Enderling, H. (2016) Cancer Stem Cell Plasticity as Tumor Growth Promoter and Catalyst of Population Collapse. *Stem cells international* **2016**, 3923527

44. Enderling, H., Hlatky, L., and Hahnfeldt, P. (2013) Cancer Stem Cells: A Minor Cancer Subpopulation that Redefines Global Cancer Features. *Frontiers in oncology* **3**, 76

45. Altrock, P. M., Liu, L. L., and Michor, F. (2015) The mathematics of cancer: integrating quantitative models. *Nature reviews. Cancer* **15**, 730-745

46. David, E. (1985) Statistics in geography. Oxford: Basil Blackwell, Ltd

**FOOTNOTES**

_Funding_ - The work was supported by grants from the Swiss National Science Foundation (#130680 to B.S. and #168449 to W.B.) and from the “Forschungspool der Universität Fribourg” to B.S.

_Abbreviations_ – MM malignant mesothelioma; CSC cancer stem cells; prMC primary mesothelial cells; S stem cell state in the mathematical model; NS differentiated (non-stem cell) state in the mathematical model
FIGURE LEGENDS

Fig. 1 Properties of stem cell-enriched cell populations of mesothelial origin. A) Schematic representation of the pL-SIN-EOS-S(4+)-EiP lentiviral construct with Oct4 (blue) and Sox2 (orange) binding sites. Upon Oct4 and Sox2 binding, expression of eGFP and PuroR (driving puromycin-N-acetyl transferase) is induced. B) Percentage of eGFP(+) cells typically observed after lentiviral transduction with the pL-SIN-EOS-S(4+)-EiP construct in human ZL55 MM cells, mouse RN5 MM cells and mouse prMC. Lines represent mean ± S.D.; n=3 independent measurements. C-D) Representative growth curves of sorted eGFP(-) and eGFP(+) cells derived from ZL55 (C) and RN5 (D) cells. Each point represents mean ± S.D.; n=10. E) Kinetics of disappearance of eGFP(+) ZL55 cells initially consisting of 100% (freshly sorted) eGFP(+) ZL55-SO(4high) cells (green dots) and appearance of eGFP(+) ZL55 cells from initially 100% (freshly sorted) eGFP(-) ZL55-SO(low) cells (blue dots). After 13 weeks in vitro, the two curves are approaching the percentage of eGFP(+) cells observed in non-sorted ZL55-SO cells, i.e. approximately 4.8% (dotted line), as shown in B). F) Identical experiment with sorted RN5 cells; both populations approached the equilibrium of 7.8% observed in unsorted RN5-SO cells (dotted line).

Fig. 2 Appearance of eGFP(+) (stem) cells in a ZL55-SO(low) clone derived from a single, sorted eGFP(-) cell. A) A representative clone was monitored for over 18 weeks and at weekly intervals, FACS measurement revealed a constant increase in the percentage of eGFP(+) cells. From week 16 on, the percentage of eGFP(+) cells remained around 4%, close to the value (4.8%) observed in unsorted ZL55-SO cells. B) Time-lapse series of a cultured clone (ZL55-SO(low)clone) derived from ZL55-SO(low) cells. At t=12 h, an eGFP(+) cell (yellow-marked) appears among the eGFP(-) cells that divides during the next 6 h. The two daughter cells divide once more (between 42 and 48 h) yielding 4 eGFP(+) cells. C) ZL55-SO(low) cells were sorted again based on their eGFP expression resulting in a ZL55-SO(low) clone (yellow color) and a ZL55-SOlow clone-high (pink color) population. Of note that eGFP expression forms a Gaussian curve in this population. D) ZL55-SOclone cells were immunostained against GFP and the fluorescent intensity was normalized to DAPI staining. E) The histogram of the fluorescence ratio eGFP/DAPI in sorted ZL55-SOclone-high cells showed a lognormal distribution.

Fig. 3 Clustered appearance of eGFP(+) stem cells. A) After the spontaneous appearance of an eGFP(+) cell, likely a cancer stem cell derived from a ZL55-SO(low) population (red-marked), the cell divided within the next 12 h to give rise to two green eGFP(+) cells. Shortly afterwards, in close vicinity of the red-marked cells, additional eGFP(+) cells (marked in yellow and blue) appeared, which are not daughter cells of the initial red-marked cells. Scale bar: 400 µm. B) Appearance of eGFP(+), likely mesothelial stem cells in cultures of mouse prMC cells (marked in red and yellow). Also in cultures of prMC, in the vicinity of the eGFP(+) cells, additional eGFP(+) cells appeared (blue) that are not derived from the red- and yellow-marked colonies. Scale bar: 400 µm. Time interval between all images: 6 h.

Fig. 4 Features of spatially interacting Markov chain processes. A-C) Model without interactions between cells. A) Markov graph of transition probabilities between bulk (NS, in brown color) and stem cell (S, in green color) states. B) State-sequence plot of 625 cells composed of either 100% N or 100% NS state cells. Each color represents one run. After approximately 1000 steps the two populations reach a steady-state equilibrium C) Spatial pattern at steady-state equilibrium. Approximately 25% S state cells have a direct contact with another S state cell. D-F) Model with positive cell-cell interactions D) Markov graph of transition probabilities between bulk (NS) and stem cell (S) states. The outer colored lines represent the probabilities of changing states, if a cell in the opposite state is present in one of the nearest neighbor positions. E) State-sequence plot of 625 cells, if cells are either 100% in the N or 100% in the NS state. Each color represents one run. Of note, both curves (most notably for the ones in the NS state) have lag phases. F) Spatial pattern at steady-state equilibrium. Most S cells are organized in clusters. G) In both models (not-interacting vs. interacting), at equilibrium, the fraction of S state cells is essentially the same. Note the higher variability in the positive interaction model. H) The statistics on NN1 index (z score) shows significant cluster formation in the interacting model.

Fig. 5 Tumor growth model and localization of MM cancer cells in a xenograft tumor in vivo. Modeling of tumor growth starting from a single stem S cell (S, in green color; A) or a single bulk cell (NS, in brown color) (B) and applying the “positional” concept. C) State-sequence plot when starting
from an S cell (green dots, 3 runs) or when starting from an NS cell (brown dots, 3 runs). At each time point the percentage of S cells within the growing tumors are shown. D) Injection of ZL55-SO<sup>High</sup> cells (i.p.) in NSG mice resulted in the formation of several tumors most often localized to the parietal pleura; staining of a representative tumor for the MM marker calretinin (CR). The lower image was taken at higher magnification (Scale bars in the upper and lower image: 1 mm and 100 µm, respectively). E) Staining of a parallel section for eGFP showed clustering of eGFP(+) cells often in the center of the tumor mass, in line with the predictions from the model (B). (Scale bars in the upper and lower image: 1 mm and 100 µm, respectively).

**Fig. 6 The new general positional stem cell model.** In contrary to the existing stochastic or hierarchical model, the positional model produces spatial heterogeneities. In this model the localization and differentiation state of daughter cells has a huge impact on the differentiation state of a given cell. The stem cell niches, where the daughter cells have higher probabilities to remain in an undifferentiated state are determined by cell-cell interactions, most probably by diffusing factors. Numbers in the scheme indicate the following processes: 1) symmetrical division of a stem cell producing two stem cells 2) asymmetric division of a stem cell producing one bulk and one stem cell 3) symmetric division of a stem cell producing two differentiated bulk cells. 4) A differentiated bulk cell entering the stem cell niche has a higher probability to dedifferentiate to a stem cell and 5) a bulk cell outside of the stem cell niche has an extremely low probability to become a stem cell. The red dashed line represents the border of the stem cell niche. Of note, here the niche consists only of one cell type, unlike in a physiological situation, where niches are generally made up of various cell types.
Figures

Fig. 1
Fig. 2

(A) Positional stem cell model

(B) Images showing time points: 0 h, 6 h, 12 h, 18 h, 24 h, 30 h, 36 h, 42 h, 48 h, 54 h

(C) Graph showing eGFP+ total events (%) over weeks

(D) Comparison without primary antibodies and with anti-GFP antibodies

(E) Bar graph showing log10 of P(E-GFP/P(I-GFP)) with number of values
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Biological noise and positional effects influence cell stemness
Walter Blum, Thomas Henzi, Beat Schwaller and László Pecze

J. Biol. Chem. published online February 12, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA117.001643

Alerts:
  • When this article is cited
  • When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts