Catalysts for change: the cellular neurobiology of psychedelics

Matthew I. Banksa,b,*, Zarmeen Zahidb, Nathan T. Jonesc, Ziyad W. Sultanb, and Cody J. Wenthurbc,d
aDepartment of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706; bNeuroscience Training Program and cMolecular and Cellular Pharmacology Training Program, University of Wisconsin–Madison, Madison, WI 53706; dSchool of Pharmacy, University of Wisconsin–Madison, Madison, WI 53705

ABSTRACT The resurgence of interest in the therapeutic potential of psychedelics for treating psychiatric disorders has rekindled efforts to elucidate their mechanism of action. In this Perspective, we focus on the ability of psychedelics to promote neural plasticity, postulated to be central to their therapeutic activity. We begin with a brief overview of the history and behavioral effects of the classical psychedelics. We then summarize our current understanding of the cellular and subcellular mechanisms underlying these drugs’ behavioral effects, their effects on neural plasticity, and the roles of stress and inflammation in the acute and long-term effects of psychedelics. The signaling pathways activated by psychedelics couple to numerous potential mechanisms for producing long-term structural changes in the brain, a complexity that has barely begun to be disentangled. This complexity is mirrored by that of the neural mechanisms underlying psychiatric disorders and the transformations of consciousness, mood, and behavior that psychedelics promote in health and disease. Thus, beyond changes in the brain, psychedelics catalyze changes in our understanding of the neural basis of psychiatric disorders, as well as consciousness and human behavior.

INTRODUCTION

Human use of psychedelic drugs traces a remarkable historical arc, extending from the prehistoric realm of myth to the laboratories and clinical treatment rooms of the modern day, where these compounds’ mysteries are finally yielding to concerted inquiry. And yet our purpose and that of our ancestors are one and the same: to harness the potential of these compounds for insight and healing.

Evidence for human consumption of psychedelics in traditional medicine and religious ceremonies stretches back into prehistory (Sayin, 2014; Guerra-Doce, 2015; Froese et al., 2016). These naturally occurring psychedelics include ayahuasca, a brew of several plants indigenous to South America containing N,N-dimethyltryptamine (DMT); 5-MeO-DMT, found in a variety of plant species as well as in the toxic secretions of the Sonoran Desert toad; and psilocybin, found in a myriad of fungus species, mostly of the genus Psilocybe. By contrast, lysergic acid diethylamide (LSD), an alkaloid derivative of the fungus ergot, was first synthesized in 1938 and marketed as an adjunct to psychotherapy that could enhance introspection and self-awareness. Indeed, until psychedelics were listed by the U.S. Drug Enforcement Agency as Schedule I drugs in 1970, thousands of studies were published on the therapeutic potential of psychedelics for psychiatric disorders and on their research potential for understanding psychosis (Nichols and Walter, 2020).

Over the past two decades, as human subject research on psychedelics has begun to revive, several small clinical trials have shown the remarkable potential of psychedelics to treat psychiatric disorders (Goldberg et al., 2020; Reiff et al., 2020). A parallel research effort has explored the neural mechanisms of psychedelics for both their profound acute effects on perception and cognition and post–acute effects underlying long-term changes in mental health. In this Perspective, we lay out the case for psychedelics as catalysts of...
change, linking the experience induced by psychedelics and their effects on neural plasticity. We focus on the current understanding of the cellular and subcellular mechanisms underlying these drugs’ actions. But first, to provide context, we discuss the profound effects these drugs have on the human mind and body.

BEHAVIORAL AND PHYSIOLOGICAL EFFECTS OF PSYCHEDELICS IN HUMAN SUBJECTS
The acute behavioral effects of psychedelics (i.e., the “psychedelic experience”) constitute a profound alteration in consciousness with both pleasant and challenging components (Carbonaro et al., 2016; Roseman et al., 2017). These challenging aspects are mirrored by an acute physiological stress response shortly after drug administration, as indicated by increases in plasma corticosteroid levels, heart rate, and blood pressure (Hasler et al., 2004; Strafjar et al., 2016). Although there are concerns of negative long-term consequences with drugs that produce such powerful effects, there is no evidence for increased incidence of suicidality or psychiatric illnesses in the months following psychedelic experiences; in fact, studies show the opposite (Hendricks et al., 2015; Johansen and Krebs, 2015). Similarly, in spite of widespread recreational use and characterization of psychedelics as “drugs of abuse,” psychedelics present low addictive potential (Garcia-Romeu et al., 2016). Several studies have also demonstrated the safety of psychedelics when administered in controlled settings (Brown et al., 2017).

Multiple clinical trials over the past 20 years have demonstrated the potential of these agents for treating psychiatric disorders (Reiff et al., 2020), including depression and anxiety (Muttoni et al., 2011; Nicholas et al., 2020), substance use (Johnson et al., 2014; Bogen schutz et al., 2015), and obsessive-compulsive disorders (Moreno et al., 2006), with the degree of therapeutic benefit correlating with the intensity of the patient’s psychedelic experience (Roseman et al., 2017). Remarkably, one or two administered doses of psilocybin result in rapid and prolonged changes in mood and outlook, with symptomatic relief lasting at least 3–12 months (Carhart-Harris et al., 2016a; Griffiths et al., 2016; Ross et al., 2016; Johnson et al., 2017). In healthy subjects, psilocybin promotes long-lasting increases in well-being and positive perspective on life experiences (Griffiths et al., 2011; Nicholas et al., 2018). Thus, psychedelics facilitate long-lasting behavioral changes, presumably mediated by long-lasting structural changes in the brain. To understand how that might happen requires a finer-grained exploration of their actions in the brain.

PHARMACOLOGY AND 5-HT₂A RECEPTOR SIGNALING
Psychedelics have a chemical structure similar to serotonin (5-HT), and are divided into two broad categories that differ in their receptor subtype specificity. The indolealkylamines (e.g., LSD, psilocybin, DMT, 5-MeO-DMT) include tryptamine- and lysergic acid derivatives and β-carbolines and exhibit comparatively less specificity for the 5-HT type 2A receptor (5-HT₂A-R); in particular, they show significant agonism at 5-HT₂A-R as well as adrenergic and dopaminergic receptors (Halberstadt and Geyer, 2011; Rickli et al., 2016). The phenylalkylamines (e.g., mescaline, DOM, DOI) bind more specifically to 5-HT₂A-Rs as well as 5-HT₂A Rs. DOI in particular is commonly used in animal studies, but there are no published studies on its effects in human subjects.

Despite their expansive binding profile, the effects of psychedelics in humans strongly correlate with 5-HT₂A-R occupancy in the central nervous system (CNS) and are almost entirely blocked by 5-HT₂A antagonists (Vollenweider et al., 1998; Vallee et al., 2016; Madsen et al., 2019; Preller et al., 2020), thus motivating focus on the 5-HT₂A-R. Indeed, psychedelics are typically defined as psychoactive agonists of the serotonin 5-HT₂A receptor (5-HT₂A-R). It is important to note, however, that 5-HT₂A-R antagonists are not perfectly selective either, and there is some evidence suggesting the involvement of other receptors in the neurophysiological effects of psychedelics (Halberstadt and Geyer, 2011; Pokorny et al., 2016). Thus, the involvement of other receptors in the behavioral and therapeutic effects in humans should not be entirely excluded.

Expression of 5-HT₂A-R mRNA and protein in the brain is widespread. It is most prevalent in excitatory neurons in the neocortex but is also expressed in inhibitory interneurons (Jakab and Goldman-Rakic, 1998; Weber and Andrade, 2010). Importantly, depression and other mood disorders are associated with increased 5-HT₂A-R density in the brain, especially in the prefrontal cortex (PFC) (Meyer et al., 2003; Bhagwagar et al., 2006), and antidepressant treatments are associated with decreased density (Yatham et al., 1999; Meyer et al., 2001), as is the administration of psychedelics (Buckholtz et al., 1988).

The 5-HT₂A receptor is a Class A, rhodopsin-like, G-protein-coupled receptor (Lopez-Gimenez and Gonzalez-Maeso, 2018) for which 5-HT, the endogenous ligand, is a full agonist with a Kᵦ of just over 1 nM (Sleight et al., 1996). Canonically, 5-HT₂A-Rs couple with the G-protein Gₛ (Figure 1), catalyzing the production of phospholipase C and inositol trisphosphate to mobilize intracellular calcium, activate calcineurin, and inhibit type 1.2 voltage-gated calcium channels (Hoyer et al., 1994; Day et al., 2002). In addition, 5-HT₂A-R signaling through G-proteins from the Gₛ family and subsequent inhibition of cAMP formation have also been observed (Garnovskaya et al., 1995). Either of these pathways can contribute to neural plasticity (Tedford and Zamponi, 2006; Betke et al., 2012).

BIASED AGONISM MODEL FOR PSYCHEDELIC ACTIONS
Psychedelic agonists of 5-HT₂A-R are associated with profound changes in perception and cognition, whereas other ligands such as 5-HT are not. The basis for this difference is commonly explained using the ternary complex model of receptor activity, which suggests that drug molecules act to shift the equilibrium between a receptor’s different conformational states. As each of these receptor states has a different affinity for various downstream binding partners, this can result in a drug exhibiting “bias,” such as preference for activating G-protein–dependent versus β-arrestin–dependent signaling (Kenakin, 2012). Long-standing evidence indicates that 5-HT₂A-R signaling efficacy is ligand-dependent and prone to biased agonism across these pathways (Roth et al., 1997; Berg et al., 1998; Fitzgerald et al., 1999; Egan et al., 2000; Cussac et al., 2008; Lopez-Gimenez and Gonzalez-Maeso, 2018). Molecular modeling, site-directed mutagenesis, and x-ray crystallography have identified the distinct psychedelic and nonpsychedelic ligand binding sites that ultimately lead to these differential functional signaling consequences (Wang et al., 1993; Shapiro et al., 2000; Kanaarajadurai et al., 2009).

In the case of Gₛ-dependent signaling, both psychedelic (DOI) and nonpsychedelic (lisuride) agonists of 5-HT₂A-R activate several shared downstream pathways, including pPLC, pPKC, pERK, and pCREB; however, the magnitude of these Gₛ-mediated responses is greater for psychedelic ligands (Figure 1) (Banerjee and Vaidya, 2020). Non-Gₛ pathways likely contribute to psychedelic effects as well. For example, in mice lacking Gₛ expression, the response to DOI is blunted but not eliminated (Garcia et al., 2007). Furthermore, psychedelic-dependent phosphoproteomic and transcriptomic signatures are pertussis toxin–sensitive (Gonzalez-Maeso et al., 2007; Karaki et al., 2014), suggesting the involvement of Gₛᵢ/o signaling. Notably, Gₛᵢ/o-dependent outcomes may depend on
participation of additional signaling partners, as 5-HT$_{2A}$Rs do not appear to participate directly in functional coupling with G$_{i/o}$ (Kim et al., 2020).

Beyond G-protein–coupled pathways, agonism at 5-HT$_{2A}$Rs can also engage in β-arrestin signaling (Pottie et al., 2020) via PI3K, SRC, and AKT (Figure 1), although the relevance of such...
\(\beta\)-arrestin–dependent signaling for promoting psychedelic effects is still unclear. For example, while LSD's ability to promote a \(\beta\)-arrestin–biased conformation at 5-HT2A Rs supports its psychedelic effects (Wacker et al., 2017; Kim et al., 2020), other psychedelics are functionally insensitive to \(\beta\)-arrestin knockout in mice (Schmid et al., 2008; Schmid and Bohn, 2010). Close attention to differences in off-target binding profile (Halberstadt and Geyer, 2011; Rickli et al., 2016) and time-dependent evolution in signaling (Wacker et al., 2017) is needed for future studies to yield a more comprehensive picture of \(\beta\)-arrestin–induced effects across the full spectrum of psychedelic ligands.

INTERACTION BETWEEN 5-HT2A R AND GLUTAMATE RECEPTOR SIGNALING

Glutamate signaling deficits are a prominent feature of schizophrenia (Iwata et al., 2015) and major depressive disorder (Wise et al., 2018) and can be ameliorated by antidepressant administration (Gonzalez-Burgos and Lewis, 2012; Sanacora et al., 2012). Interestingly, psychedelics cause an increase in extracellular glutamate in the PFC (Scruiggs et al., 2003; Muschamp et al., 2004), resulting in the release of neurotrophic factors that promote neural plasticity (de Almeida et al., 2019; Holze et al., 2021; Hutton et al., 2021), as well as the activation of ionotropic glutamate receptors, which also contribute to neural plasticity (Lisman et al., 2012). Glutamate release also activates metabotropic glutamate receptors (mGlUR), which regulate neural plasticity (Mukherjee and Manahan-Vaughan, 2013) and modulate the effects of psychedelic agonism at 5-HT2A Rs. The agonists for two subtypes, mGlUR2 and mGlUR3, suppress the response to psychedelics, reducing their effects on neural activity and cellular signaling and the behavioral manifestations of psychedelics, as does (paradoxically) knocking out mGlUR2 (Zhai et al., 2003; Gonzalez-Maeso et al., 2008; Moreno et al., 2011; Benvenenga et al., 2018).

This interplay between mGlUR2 and 5-HT2A R signaling may arise from physical (transmembrane) interactions between the receptors (Gonzalez-Maeso et al., 2008), which are expressed within close molecular proximity (Marek et al., 2000; Hanks and Gonzalez-Maeso, 2013). Further, several studies indicate that 5-HT2A R and mGlUR2 form heterodimeric complexes, integrating glutamatergic and serotonergic signaling and modulating subsequent G-protein coupling and downstream effects (Zhai et al., 2003; Gonzalez-Maeso et al., 2008; Moreno et al., 2016). For example, when cells coexpressing mGlUR2 and 5-HT2A R receptors are treated with mGlUR2/3 agonists, signaling is propagated through G\(_{\text{q/11}}\), rather than the G\(_{\text{i/o}}\) pathway usually activated by mGlUR2. This effect is reduced in 5-HT2A R knockout mice (Moreno et al., 2016), suggesting that 5-HT2A Rs and mGlUR2 and mGlUR3 can form heterocomplexes that have a distinct signaling profile. Importantly, signaling through this complex may facilitate the rapid antidepressant effects observed with psychedelics, as mGlUR2 and mGlUR3 have been implicated in the regulation of neural plasticity in the PFC, amygdala, and hippocampus, brain regions implicated in mood disorders, along with fear- and stress-associated learning (Walker et al., 2015).

CELLULAR AND NETWORK-LEVEL ELECTROPHYSIOLOGICAL EFFECTS OF PSYCHEDELICS

The signaling pathways activated by psychedelic agonism at the 5-HT2A R provide a basis for structural changes in the brain following the psychedelic experience (Figure 1). How these long-term changes relate to the acute effects of psychedelics is a critical but unresolved question. Psychedelics acutely modulate neural activity and connectivity, and these changes correlate with the phenomenology of the psychedelic experience (de Araujo et al., 2012; Carhart-Harris et al., 2016b; Valle et al., 2016). Effects on neural activity are broadly consistent with an increase in excitability (Muthukumaraswamy et al., 2013; Kometer et al., 2015; Valle et al., 2016; Timmermann et al., 2019) and a switch from externally driven to internally driven neural activity in sensory areas of the brain (Bravermanova et al., 2018; Timmermann et al., 2018; Michael et al., 2019). Psychedelics increase brain signal complexity (an indirect measure of signal diversity and information content), and these changes also correlate with specific aspects of the psychedelic experience (Schartner et al., 2017). These changes in complexity likely reflect increased information flow along pathways that are not typically engaged in the absence of the drug. Similarly, synesthesia, in which sensory stimuli in one modality trigger sensations in another, is a common element of the psychedelic experience (Studerus et al., 2010; Schmid et al., 2015), thought to rely on existing but dormant connections between areas of the brain that typically process distinct sensations, for example, vision or audition (Maurer et al., 2020).

Experiments confirm that psychedelics alter connectivity in the brain (Tagliazucchi et al., 2016; Preller et al., 2018, 2019), and this form of neural plasticity may underlie their therapeutic activity. For example, excessive amygdala reactivity and decreased connectivity between the amygdala and other brain regions, especially the PFC, are linked to psychiatric disorders (Quirk and Gehlert, 2003; Negron-Oyarzo et al., 2016). Psychedelics alter connectivity between the amygdala and key brain regions during emotional stimulus processing, effects that may contribute to altered behavioral and neural responses to these stimuli characteristic of mood disorders (Rocha et al., 2019; Barrett et al., 2020a). Psychedelics acutely reduce connectivity within the default mode network (Carhart-Harris et al., 2012; Palhano-Fontes et al., 2015), a set of brain regions whose activity and connectivity correlate with self-referential mental activity in healthy subjects (Davey et al., 2016) and rumination and depression symptoms in patients (Sheeline et al., 2009; Berman et al., 2011). More broadly, psychedelics administered to healthy volunteers alter connectivity in multiple higher-order brain regions (Roseman et al., 2014; Tagliazucchi et al., 2016; Sampedro et al., 2017; Preller et al., 2018, 2020; Barrett et al., 2020b). Thus, psychedelics induce acute changes in connectivity in brain regions that are implicated in multiple psychiatric disorders, but the mechanisms of these changes and whether these changes persist postacutely remain areas of active inquiry (Barrett et al., 2020a).

NEURAL AND BEHAVIORAL PLASTICITY

The psychedelic-induced changes in neural activity and connectivity in human subjects described above are manifestations of acute effects on neural plasticity. These acute effects have also been studied in animal models, where DOI acts on both pre- and postsynaptic 5-HT2A Rs to modulate glutamate signaling (Barre et al., 2016; Berthoux et al., 2019). Rodent models have also revealed long-term structural changes induced by psychedelics. Many of these changes manifest in structural changes at synapses, such as the growth of neurites, the cellular processes that connect neurons, and changes in dendritic spines, the specialized postsynaptic structures found most commonly at excitatory synapses on excitatory neurons (Holtmaat and Svoboda, 2009). Studies of cultured cortical neurons indicate that DOI acts on 5-HT2A Rs to increase dendritic spine diameter (Jones et al., 2009). Furthermore, psychedelics enhance de novo neurite and dendritic spine formation through the TrkB, mTOR, and 5-HT2A pathway (Ly et al., 2018), all implicated in promoting neuroplastic changes in the PFC (Meunier et al., 2017). Finally, psychedelics induce neurogenesis in the rodent hippocampus.
These long-term effects of psychedelics are likely mediated at least in part by changes in gene expression (Martin and Nichols, 2018). A single administered dose of psilocybin induces changes in neural plasticity–related gene expression in the hippocampus and PFC (Jefsen et al., 2020), and 5-MeO-DMT induces large-scale changes in protein expression in cultured human brain tissue (Dakic et al., 2017). Psychodelics interact particularly with signaling by the neural plasticity–associated protein brain-derived neurotrophic factor (BDNF). DOI acts on 5-HT2ARs to modulate the level of BDNF mRNA in the neocortex and hippocampus, likely via an activity-dependent mechanism and CREB signaling (Vaidya et al., 1997; Musazzi et al., 2014; Jaggar and Vaidya, 2018). DOI increases expression of mRNA for the neuroplasticity-associated protein Arc (Korb and Finkbeiner, 2011) via a pathway that depends on glutamate and BDNF signaling (Pei et al., 2000, 2004; Benekareddy et al., 2013). Psychodelics trigger increases in plasma levels of BDNF in human subjects (de Almeida et al., 2019; Holze et al., 2021; Huttten et al., 2021). Thus, psychodelics are able to mobilize multiple signaling pathways to promote neuroplastic changes in the brain. Given the importance in clinical trials of post–acute psychotherapy sessions, and the extended time course of some of the signaling cascades mentioned here, it seems likely that the pro-neuroplastic effects of psychodelics extend beyond the dosing session, that is, that psychodelics open a window of neural plasticity that lasts for days or weeks. However, this idea has not yet been tested experimentally.

Consistent with these effects on neural plasticity at the cellular level, there is considerable evidence that psychodelics modify learning and memory in vivo (Zhang and Stackman, 2015; Healy, 2021). This is likely a consequence of the role in cognitive function of 5-HT2ARs, whose activation enhances various types of learning and memory (Williams et al., 2002; Harvey, 2003). For example, psychodelics enhance both the acquisition and extinction of fear conditioning in rodents (Catlow et al., 2013; Zhang et al., 2013). These studies are important in two regards: First, they suggest that psychodelics can promote long-term changes in behavior in the absence of pre-conceived notions about their potential therapeutic benefit, an emerging concern in clinical trials (Noorani, 2020). Second, they demonstrate that psychodelics have the potential to support learning of new behaviors, while also facilitating extinction of older learned behaviors. This suggests a window for enhanced but non-specific neural plasticity that can be exploited for therapeutic benefit in partnership with mental health professionals.

STRESS AND INFLAMMATION

The intersection between psychiatric disorders, stress, and psychodelics is an emerging area of interest (Murnane, 2019; Brouwer and Carhart-Harris, 2020). Chronic stress is a major precipitating factor in the etiology of many psychiatric disorders that psychodelics have shown clinical efficacy in treating (McEwen, 2004). Animal models have shown that chronic stress induces behavioral and neural changes that can be reversed by antidepressants (Campos et al., 2013; Moda-Sava et al., 2019; Planchez et al., 2019). Thus, it is both surprising and intriguing that acute stress may play a role in promoting the neuroplastic effects of psychodelics in the context of treating these same disorders. Like psychodelics, acute stress is pro-neuroplastic (Huang et al., 2005; Cadle and Zoladz, 2015), and signaling at the 5-HT2AR plays a role in this neural plasticity (Murnane, 2019). Along with this convergence on neuroplastic mechanisms to modify behavior, psychodelics trigger an acute biochemical stress response consisting of catecholamine and glucocorticoid release (Hemrick-Luecke and Evans, 2002; Hasler et al., 2004; Galvão et al., 2018), and it has been postulated that this stress response is critical for the transformative nature of the psychodelic experience (Brouwer and Carhart-Harris, 2020).

The mechanism underlying this stress response is unclear, but there are two obvious (and not necessarily mutually exclusive) possibilities. First, psychodelics may act directly at 5-HT2ARs in the hypothalamus to induce expression and/or release of corticotrophin-releasing hormone, elevating plasma concentrations of stress-associated glucocorticoids (Van de Kar et al., 2001; Jorgensen et al., 2002). This possibility is consistent with the established regulatory role of 5-HT in the hypothalamic–pituitary–adrenal axis, the primary system involved in stress regulation (Contesse et al., 2000). Alternatively, the psychodelic-induced altered state of consciousness itself may trigger the acute stress response, as such states frequently include components that are challenging (e.g., fear- or anxiety-provoking). This raises the possibility that the pro-neuroplastic effects of psychodelics depend in part on the acute stress response that they induce, but whether the stressful components of the psychodelic experience are hindrances to or foundational for therapeutic benefit is in dispute (Carbonaro et al., 2016; Roseman et al., 2017; Wolff et al., 2020).

The therapeutic and pro-neuroplastic effects of psychodelics may also be linked to their anti-inflammatory action (Inserra et al., 2021). Inflammation and immune system alterations are commonly associated with psychiatric disorders (Beurel et al., 2020; Thompson and Szabo, 2020), and 5-HT plays a key role immune system function (Herr et al., 2017). Recent work shows that psychodelics have potent inhibitory effects on cytokines, which are immune signaling molecules that directly modulate synaptic function and neural plasticity (Wang et al., 2012; Vezzani and Viviani, 2015). 5-MeO-DMT acutely reduces levels of proinflammatory cytokines in humans (Uthaug et al., 2020), and DOI has been shown to inhibit peripheral cytokine cascades through 5-HT2AR activation (Yu et al., 2008; Nau et al., 2013). These data suggest that psychodelics may be useful in treating inflammatory diseases generally, but there may be more direct effects on inflammation in the brain as well. Microglia, the resident immune cells in the brain, express several 5-HT receptor subtypes (Krabbe et al., 2012; Glebov et al., 2015) and respond directly to DOI treatment (Krabbe et al., 2012). This raises the possibility that systemically administered psychodelics could directly modulate microglial function, which becomes aberrant in mood disorders (Haroon et al., 2017) as well as in neurodegenerative disorders (Perry and Holmes, 2014). The therapeutic potential for the anti-inflammatory effects of psychodelics is just beginning to be explored, including a phase 1 clinical trial in healthy older volunteers with the goal of using LSD to treat Alzheimer’s disease (Family et al., 2020).

CONCLUSIONS

As psychodelic science emerges from the shadows and attracts new resources, further research will deepen our understanding and advance the responsible therapeutic use of these compounds. Psychodelics induce acute effects on gene expression, neurotransmitter and neuroendocrine release, neural activity, connectivity, and perception and cognition, ultimately leading to profound long-term effects on mood and behavior (Figure 1). Elucidating the mechanisms that connect the acute effects of psychodelics to these long-term changes is critical but is complicated by our limited mechanistic understanding of the psychiatric disorders that these drugs are effective at treating. Thus, understanding how these drugs work in clinical settings may also provide needed insight into the neurobiological
Which signaling pathways are essential for facilitating neural plasticity in human psychiatric disorders? How long does the window last? If so, is this effect nonspecific or focused in regions of the brain that undergo changes in brain structure that relate to therapeutic activity, which is recognized into regions with specific functions including sensation, speech and language production, planning, and reason.

Neural plasticity (adj. neuroplastic) refers to changes in connectivity between neurons, including the amount of neurotransmitter released or the magnitude of response to the neurotransmitter. Prenoneuroplastic effects refer to increases in neural plasticity. Neurogenesis is the process of creating new neurons in the brain. In humans, neurogenesis is generally limited following the completion of embryonic brain development.

Prefrontal cortex (PFC) is a region in the neocortex that is highly developed in primates and especially humans. It contributes to attention, executive control, regulation of mood and emotion, and monitoring the current state of the body.

Psychedelic experience refers to the acute effects of psychedelics while the drug is present in the CNS. This experience can include distorted perception of time, altered sensory perception, heightened emotional response to music, hallucinations, altered sense of self, ego dissolution, and a sense of connection to a larger truth or absolute reality not typically glimpsed in everyday life (the so-called “mystical experience”). Challenging aspects of the psychedelic experience include anxiety, fear, and confusion.

GLOSSARY
Amygdala is a region of the brain involved in regulation and expression of emotions, as well as memory and decision making. It is tightly coupled to the hippocampus and prefrontal cortex.

Connectivity refers to the connection strength between neurons, groups of neurons, or regions of the brain. Dendritic spines are protrusions from the dendrites of some types of neurons (usually excitatory cells) that are the loci of excitatory synaptic terminals. Changes in spine size are indicative of changes in synaptic strength.

Glutamate signaling refers to communication between neurons via the neurotransmitter glutamate. Glutamate receptors are ionotropic, that is, ligand-gated ion channels, or metabotropic, that is, G-protein–coupled receptors. Glutamate signaling is commonly modified by neural plasticity.

G-protein–coupled receptors are proteins that span the plasma membrane of cells (e.g., neurons) that induce intracellular signaling changes in response to extracellular chemical signals.

Hippocampus is a region of the brain located near the amygdala that is involved in memory formation and retrieval. It is tightly coupled to the amygdala and prefrontal cortex.

Neocortex is a mammal-specific part of the brain that is organized into regions with specific functions including sensation, speech and language production, planning, and reason.

Neural plasticity (adj. neuroplastic) refers to changes in connectivity between neurons, including the amount of neurotransmitter released or the magnitude of response to the neurotransmitter. Prenoneuroplastic effects refer to increases in neural plasticity.

Neurogenesis is the process of creating new neurons in the brain. In humans, neurogenesis is generally limited following the completion of embryonic brain development.

Prefrontal cortex (PFC) is a region in the neocortex that is highly developed in primates and especially humans. It contributes to attention, executive control, regulation of mood and emotion, and monitoring the current state of the body.

Psychedelic experience refers to the acute effects of psychedelics while the drug is present in the CNS. This experience can include distorted perception of time, altered sensory perception, heightened emotional response to music, hallucinations, altered sense of self, ego dissolution, and a sense of connection to a larger truth or absolute reality not typically glimpsed in everyday life (the so-called “mystical experience”). Challenging aspects of the psychedelic experience include anxiety, fear, and confusion.

basis for psychiatric illnesses. Within the context of psychedelics as change agents, an important next step is to identify long-term changes in brain structure that relate to therapeutic activity, which will require support from both clinical and preclinical research programs.

Studies should focus on neural plasticity, both its locus and acute and long-term mechanisms. Critical unresolved questions include the following. Do psychedelics open a window of neural plasticity? If so, is this effect nonspecific or focused in regions of the brain that are particularly relevant to behavioral phenotypes associated with human psychiatric disorders? How long does the window last? Which signaling pathways are essential for facilitating neural plastic-
García-Romeu A, Kersgaard B, Addy PH (2016). Clinical applications of hallucinogens in treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry 3, 619–627.

Carhart-Harris RL, Bolstridge M, Rucker J, Day CM, Ertzede D, Kaelen M, Bloomfield M, Rickard JA, Forbes B, Feilding A, et al. (2021a). Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Proc Natl Acad Sci USA 109, 2138–2143.

Carhart-Harris RL, Muthukumaraswamy S, Roseman L, Kaelen M, Droogmans G, Lewis DA (2012). NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophren Bull 38, 950–957.

García-Maeso J, Ang RL, Yuan T, Chan P, Weisstaub NV, Lopez-Gimenez JF, Zhou M, Okaya Y, Callado LF, Milligan G, et al. (2008). Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452, 93–97.

García-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, Lira A, Bradley-Moore M, Ge Y, Zhou Q, et al. (2007). Hallucinogens recruit specific cortical 5-HT(2A) receptor-mediated signaling pathways to affect behavior. Neuro 53, 439–452.

Griffiths RR, Johnson WM, Carducci MA, Ummicht A, Richards WA, Richards BD, Cosimano MP, Klinedinst MA (2016). Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatening cancer: a randomized double-blind trial. J Psychopharmacol 30, 1181–1197.

Griffiths RR, Johnson WM, Richards WA, Richards BD, McCann U, Jesse R (2011). Psilocybin occasioned mystical-type experiences: immediate and persisting dose-related effects. Psychopharmacology (Berl) 218, 649–665.

Guevara-Duce E (2015). Psychoactive substances in prehistoric times: examining the archaeological evidence. Time Mind 8, 91–112.

Halberstadt AL, Geyer MA (2011). Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens. Neuropharmacology 61, 364–381.

Hanks JB, González-Maeso J (2013). Animal models of serotonergic psychi- cals. ACS Chem Neurosci 4, 33–42.

Haroon E, Miller AH, Sanacora G (2017). Inflammation, glutamate, and gli- a: A trio of trouble in mood disorders. Neuropsychopharmacology 42, 193–215.

Harvey JA (2003). Role of the serotonin 5-HT(2A) receptor in learning. Learn Mem 10, 355–362.

Hasler F, Grimbarg U, Benz MA, Huber T, Vollenweider FX (2004). Acute physiological and psychological effects of psilocybin in healthy humans: a double-blind, placebo-controlled dose-effect study. Psychopharmacol ogy (Berl) 172, 157–203.

Healy CJ (2021). The acute effects of classic psychedelics on memory in humans. Psychopharmacology (Berl) 238, 639–653.

Hemmick-Luecke SK, Evans DC (2002). Comparison of the potency of M DL 100,907 and SB 242084 in blocking the serotonin (5-HT(2)) receptor subtypes induced increases in rat serum corticosterone concentrations: evidence for 5-HT(2A) receptor mediation of the HPA axis. Neuropharmacology 42, 162–169.

Hendricks PS, Thorne CB, Clark CB, Coombs DW, Johnson MW (2015). Classic psychedelic use is associated with reduced psychological distress and suicidality in the United States adult population. J Psychopharmacol 29, 280–288.

Herr N, Bode C, Duerschmied D (2017). The effects of psilocybin in immune cells. Front Cardiovasc Med 4, 48.

Holmaat A, Svoboda K (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10, 647–658.

Holze F, Vizeli P, Ley L, Muller F, Dolder PC, Varghese N, Eckert A, Borgwardt S, Liechti ME (2021). Acute dose-dependent effects of lysergic acid diethylamide (LSD) and 5-HT(2C) receptors. Synapse 35, 159–159.

Hott N, Bode C, Duerschmied D (2017). The effects of psilocybin in immune cells. Front Cardiovasc Med 4, 48.

Hutten NRPW, Mason NL, Dolder PC, Theunissen EL, Holze F, Vizeli P, Ley L, Muller F, Dolder PC, Stocker M, Duthaler U, Varghese N, Eckert A, Borgwardt S, Liechti ME (2021). Acute dose-dependent effects of lysergic acid diethylamide (LSD) and 5-HT(2C) receptors. Synapse 35, 144–150.

Hvass P, Egelund P, Fonnum F (2003). comparison of the potency of MDL 100,907 and SB 242084 in blocking the serotonin (5-HT(2)) receptor subtypes induced increases in rat serum corticosterone concentrations: evidence for 5-HT(2A) receptor mediation of the HPA axis. Neuropharmacology 42, 162–169.

Hendricks PS, Thorne CB, Clark CB, Coombs DW, Johnson MW (2015). Classic psychedelic use is associated with reduced psychological distress and suicidality in the United States adult population. J Psychopharmacol 29, 280–288.

Herr N, Bode C, Duerschmied D (2017). The effects of psilocybin in immune cells. Front Cardiovasc Med 4, 48.

Holmaat A, Svoboda K (2009). Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10, 647–658.

Holze F, Vizeli P, Ley L, Muller F, Dolder PC, Theunissen EL, Holze F, Liechti ME, Varghese N, Eckert A, Borgwardt S, Liechti ME (2021). Acute dose-dependent effects of lysergic acid diethylamide in a double-blind placebo-controlled study in healthy subjects. Neuropsychopharmacology 46, 537–544.

Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Myelchanare EJ, Saxena PR, Humphrey PP (1994). International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46, 157–203.

Huang CC, Yang CH, Hsu KS (2005). Do stress and long-term potentiation share the same molecular mechanisms? Mol Neurobiol 32, 223–235.

Hutten NRPW, Mason NL, Dolder PC, Theunissen EL, Holze F, Liechti ME, Varghese N, Eckert A, Feilding A, Ramaekers JG, Kuypers KPC (2021). Low doses of LSD acutely increase BDNF blood plasma levels in healthy volunteers. ACS Pharmacol Transl Sci 4, 461–466.

Inserra A, De Gregorio D, Gobbi G (2021). Psychedelics in psychiatry: neuroplastic, immunomodulatory, and neurotransmitter mechanisms. Pharmacol Rev 73, 2721–2751.

Iwata Y, Nakajima S, Suzuki T, Keeve RS, Pitman L, Chung JK, Caravaggio F, Mimura M, Graff-Guerrero A, Uchida H (2015). Effects of glutamate
positive modulators on cognitive deficits in schizophrenia: a systemic review and meta-analysis of double-blind randomized controlled trials. Mol Psychiatry 20, 1151–1160.

Jaggar M, Vaidya V (2018). 5-HT2A receptors and BDNF regulation: implications for psychopathology. In: 5-HT2A Receptors in the Central Nervous System. The Receptors, vol. 32, ed B. Giard and G. Di Giovanni, Cham, Switzerland: Humana Press, 395–438.

Jakab RL, Goldman-Rakic PS (1999). 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci USA 95, 735–740.

Jefsen OH, Elfving B, Wegener G, Müller HK (2020). Transcriptional regulation in the rat prefrontal cortex and hippocampus after a single administration of psilocybin. J Psychopharmacol, 0269881120999614.

Johansen P, Krebs TS (2015). Psychedelics not linked to mental health problems or suicidal behavior: a population study. J Psychopharmacol 29, 270–279.

Johnson MW, Garcia-Romeu A, Cosimano MP, Griffiths RR (2014). Pilot study of the 5-HT2A agonist psilocybin in the treatment of tobacco dependence. J Psychoactive Drugs 46, 38–41.

Johnson MW, Garcia-Romeu A, Griffiths RR (2017). Long-term follow-up of psilocybin-facilitated smoking cessation. Am J Drug Alcohol Abuse 43, 55–60.

Jones KA, Srivastava DP, Allen JA, Strachan RT, Roth BL, Penzes P (2009). Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc Natl Acad Sci USA 106, 19755–19758.

Jorgensen H, Knigge U, Kjaer A, Moller M, Warberg J (2002). Serotonergic stimulation of corticotropin-releasing hormone and pro-opiomelanocortin gene expression. J Neuroendocrinol 14, 788–795.

Karaki S, Becamel C, Murat S, Becamil M, Maurier C, Millan MJ, Prêtreau L, Bockeart J, Marin P, Vandermeore F (2014). Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists. Mol Cell Proteomics 13, 1273–1285.

Kanagarajadurai K, Malini M, Bhattacharya A, Panicker MM, Sowdhamini R (2009). Molecular modeling and docking studies of human 5-hydroxytryptamine 2A (5-HT2A) receptor for the identification of hotspots for ligand binding. Mol Biosyst 5, 1877–1888.

Karaki S, Becamel C, Murat S, Becamil M, Maurier C, Millan MJ, Prêtreau L, Bockeart J, Marin P, Vandermeore F (2014). Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists. Mol Cell Proteomics 13, 1273–1285.

Kenakin TP (2012). Biased signalling and allosteric machines: new vistas and challenges for drug discovery. Br J Pharmacol 165, 1659–1669.

Kim K, Che T, Panova O, DiBerto JF, Lyu J, Krumm BE, Wacker D, Robertson MJ, Seven AB, Nichols CD, et al. (2020). Structure of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor. Cell 182, 1574–1588.e1519.

Kometter M, Pokorny T, Seifritz E, Volleweider FX (2015). Psilocybin-induced spiritual experiences and insightfulness are associated with synchronized neuronal oscillations. Psychopharmacology (Berl) 232, 3663–3676.

Korb E, Finkbeiner S (2011). Arc in synaptic plasticity: from gene to behavior. The Receptors, vol. 32, ed B. Guiard and G. Di Giovanni, Cham, Switzerland: Humana Press, 283–292.

Jaggar M, Vaidya V (2018). 5-HT2A receptors in persistent forms of hippocampal plasticity and learning. Neuropsychopharmacology 44, 1328–1334.

Marez GJ, Wright RA, Schoepf DD, Monta JA, Aghajanian GK (2000). Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. J Pharmacol Exp Ther 292, 76–87.

Martin DA, Nichols CD (2018). The effects of hallucinogens on gene expression. Curr Top Behav Neurosci 36, 137–158.

Maurer D, Ghioum JK, Gibson LC, Watson MR, Chen LM, Akins K, Enns JT, Hensch TK, Werker JF (2020). Reduced perceptual narrowing in synesthesia. Proc Natl Acad Sci USA 117, 10089–10096.

McEwen BS (2004). Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann NY Acad Sci 1032, 1–7.

Meunier CN, Chameau P, Fossier PM (2017). Modulation of synaptic plasticity in the cortex needs to understand all the players. Front Synaptic Neurosci 9, 2.

Meyer JH, Kapur S, Eifeldt B, Brown GM, Houle S, DaSilva J, Wilson AA, Rafi-Tari S, Mayberg HS, Kennedy SH (2001). The effect of paroxetine on S-5HT(2A) receptors in depression: an [18F]Fsetoperone PET imaging study. Am J Psychiatry 158, 78–85.

Meyer JH, McMain S, Kennedy SH, Korman L, Brown GM, DaSilva JN, Wilson AA, Blatt T, Eynan-Harvey R, Goulding VS, et al. (2003). Dysfunctional attitudes and 5-HT2 receptors during depression and self-harm. Am J Psychiatry 160, 90–99.

Michael AM, Parker PRL, Neill CM (2019). A hallucinogenic serotonin-2A receptor agonist reduces visual response gain and alters temporal dynamics in mouse V1. Cell Rep 26, 3475–3483.e3474.

Moda-Sava RN, Murdock MH, Parekh PK, Fethco RN, Huang BS, Huynh TN, Wittrum J, Shaver DC, Rosenthal DL, Alway EJ, et al. (2019). Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science 364, eaat8078.

Navales-Garcia JA, de la Fuente-Diego M, Alonso-Góis S, Rodríguez-Franco MI, Fielding A, Perez-Castillo A, Riba J (2017). The alkaloids of Banisteriopsis caapi, the plant source of the Amazonian hallucinogen ayahuasca, stimulate adult neurogenesis in vitro. Sci Rep 7, 5309.

Moreno FA, Wiegand CB, Taitano EK, Delgado PL (2006). Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J Clin Psychiatry 67, 1735–1740.

Moreno JL, Holloway T, Albizu L, Sealson SC, González-Maeso J (2011). Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett 493, 76–79.

Moreno JL, Miranda-Azpiazu P, Garcia-Bea A, Younkin J, Cui M, Koizlenkov A, Ben-Ezra A, Volodakias G, Fakira AK, Baki L, et al. (2016). Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia. Sci Signal 9, ra5.

Mukherjee S, Manahan-Vaughan D (2013). Role of metabotropic glutamate receptors in persistent forms of hippocampal plasticity and learning. Neuropsychopharmacology 66, 65–81.

Murnane KS (2019). Serotonin 2A receptors are a stress response system: implications for post-traumatic stress disorder. Behav Pharmacol 30, 151–162.

Musazzi L, Rimland JM, Jeraci A, Racagni G, Domenici E, Popoli M (2014). Pharmacological characterization of BDNF promoters I, II and IV reveals that serotonin and norepinephrine input is sufficient for transcription activation. Int J Neuropsychopharmacol 17, 779–791.

Muschamp JW, Regina MJ, Hull EM, Winter JC, Rabin RA (2004). Lysergic acid diethylamide and [-]2,5-dimethoxy-4-methylamphetamine increase extracellular glutamate in rat prefrontal cortex. Brain Res 1023, 419–428.

Lima da Cruz RV, Moulin TC, Petiz LL, Leao RN (2018). A single dose of 5-MeO-DMT stimulates cell proliferation, neuronal survivability, morphological and functional changes in adult mice ventral dentate gyrus. Front Mol Neurosci 11, 312.

Lisman J, Yasuda R, RagHAVACHARI S (2012). Mechanisms of CaMKII action in long-term potentiation. Nat Rev Neurosci 13, 169–182.

López-Gómez J, González-Maeso J (2018). Hallucinogens and serotonin 5-HT2A receptor-mediated signaling pathways. Curr Top Behav Neurosci 36, 45–73.

Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, Burbach KF, Soltanzadeh Zarandi S, Sood A, Paddy MR, et al. (2018). Psychedelics promote structural and functional neural plasticity. Cell Rep 23, 3170–3182.

Madsen MK, Fisher PM, Burmester D, Dyseagaard A, Stenbaek DS, Kristiansen S, Johansen SS, Lehel S, Linnet K, Svarer C, et al. (2019). Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology 44, 1328–1334.

Marez GJ, Wright RA, Schoepf DD, Monta JA, Aghajanian GK (2000). Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. J Pharmacol Exp Ther 292, 76–87.
Schartner MM, Pigorini A, Gibbs SA, Arnulfo G, Sarasso S, Barnett L, Nobili L, Massimini M, Seth AK, Barrett AB (2017). Local and global complexity of intracranial EEG decreases during NREM sleep. Neurosci Conscious 2017, nwi022.

Schmid CL, Bohn LM (2010). Serotonin, but not N-methyltryptamines, activates the serotonin 2A receptor via a β-arrestin/Src/Akt signaling complex in vivo. J Neurosci 30, 13513–13524.

Schmid CL, Raehl KM, Bohn LM (2008). Agonist-directed signaling of the serotonin 2A receptor depends on beta-arrestin-2 interactions in vivo. Proc Natl Acad Sci USA 105, 1079–1084.

Schmid Y, Enzler F, Gasser P, Grouzmann E, Preller KH, Vollenweider FX, Brenneisen R, Muller F, Bordwardt S, Liebti M (2015). Acute effects of lysergic acid diethylamide in healthy subjects. Biol Psychiatry 78, 544–553.

Scriggls JL, Schmidt D, Deutch AY (2003). The hallucinogenic 1-[2,5-dimethoxy-4-(iodophenyl)-2-amino]propane (DOI) increases cortical extracellular glutamate levels in rats. Neurosci Lett 346, 137–140.

Shaprio DA, Kristiansen K, Kroeez WK, Roth BL (2000). Differential modes of agonist binding to 5-hydroxytryptamine(2A) serotonin receptors revealed by mutation and molecular modeling of conserved residues in transmembrane region 5. Mol Pharmacol 58, 877–886.

Sheikh Y, Barch DM, Price JL, Rundle MM, Vashnavi SN, Snyder AZ, Mintun MA, Wang S, Coalson RS, Raichle ME (2009). The default mode network and self-referential processes in depression. Proc Natl Acad Sci USA 106, 1942–1947.

Sleight AJ, Stam NJ, Mutel V, Vanderheyden PM (1996). Radiolabelling of the human 5-HT2A receptor with an agonist, a partial agonist and an antagonist: effects on apparent agonist affinities. Biochem Pharmacol 51, 71–76.

Strahar P, Schmid Y, Liakoni E, Dolder PC, Rentsch KM, Kratschmar DV, Odermatt A, Liechti ME (2016). Acute effects of lysergic acid diethylamide on circulating steroid levels in healthy subjects. J Neuroendocrinol 28, 12374.

Studerus E, Gamma A, Vollenweider FX (2010). Psychometric evaluation of the altered states of consciousness rating scale (OAV). PLoS One 5, e12412.

Tagliazucchi E, Roseman L, Kaelen M, Orban C, Muthukumaraswamy SD, Murphy K, Laufs H, Leech R, McGonigle J, Crossley N, et al. (2016). Increased global functional connectivity correlates with LSD-induced ego dissolving. Curr Biol 26, 1043–1050.

Tedford HW, Zamponi GW (2006). Direct G protein modulation of Cav2 calcium channels. Pharmacol Rev 58, 837–862.

Thompson C, Sauza A (2020). Psychedelics as a novel approach to treating autoimmune conditions. Immunol Lett 228, 45–54.

Timmermann C, Roseman L, Schartner R, Milliere M, Williams LTJ, Erritzoe D, Muthukumaraswamy S, Ashton M, Bendoria A, Kaur O, et al. (2019). Neural correlates of the DMT experience assessed with multivariate EEG. Sci Rep 9, 16322.

Timmermann C, Spriggs MJ, Kaelen M, Leech R, Nutt DJ, Moran R, Carhart-Harris RJ, Muthukumaraswamy SD (2018). 5-HT2A receptor-mediated connectivity changes in LSD-induced altered states of consciousness. Neuropharmacology 127, 331–341.

Uthaug MV, Lancelotta R, Saba A, Davis AK, Riba J, Ramaekers JG (2020). Prospective examination of synthetic 5-methoxy-N,N-dimethyltryptamine inhalation: effects on salivary IL-6, cortisol levels, affect, and judgment. Psychopharmacology (Berl) 237, 773–785.

Vaiyda VA, Marek GJ, Aghajanian GK, Duman RS (1997). 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci 17, 2785–2795.

Valle M, Maqueda AE, Rabella M, Rodriguez-Pujadas A, Antonioblanco RM, Romero S, Alonso JF, Mañanas M, Barker S, Friedlander P, et al. (2016). Inhibition of alpha oscillations through serotonin-2A receptor activation reduces the visual effects of ayahuasca in humans. Eur Neuropsychopharmacol 26, 1161–1175.

Van de Kar LD, Javed A, Zhang Y, Serres F, Raap DK, Gray TS (2001). Increased global functional connectivity correlates with LSD-induced ego dissolving. Curr Biol 26, 1043–1050.

Vaidya VA, Marek GJ, Aghajanian GK, Duman RS (1997). 5-HT2A receptor-mediated regulation of brain-derived neurotrophic factor mRNA in the hippocampus and the neocortex. J Neurosci 17, 2785–2795.

Valle M, Maqueda AE, Rabella M, Rodriguez-Pujadas A, Antoniojunio RM, Romero S, Alonso JF, Mañanas M, Barker S, Friedlander P, et al. (2016). Inhibition of alpha oscillations through serotonin-2A receptor activation reduces the visual effects of ayahuasca in humans. Eur Neuropsychopharmacol 26, 1161–1175.

Van de Kar LD, Javed A, Zhang Y, Serres F, Raap DK, Gray TS (2001). 5-HT2A receptor stimulation activates ACTH, corticosterone, oxytocin, renin, and prolactin release and activate hypothalamic CRF and oxytocin-expressing cells. J Neurosci 21, 3572–3579.

Veizellois A, Viviani B (2015). Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology 96, 70–82.

Vollenweider FX, Vollenweider-Scherpenhuyzen MF, Babler A, Vogel H, Hell D (1998). Lysergic acid diethylamide in healthy volunteers: effects on apparent agonist affinities. Biochem Pharmacol 51, 71–76.

Wacker D, Wang S, McCovy JD, Betz RM, Venkatakrishnan AJ, Levit Y, Lansu K, Schools ZL, Che T, Nicholas DE, et al. (2017). Crystal structure of an LSD-bound human serotonin receptor. Cell 168, 377–389.e312.
Walker AG, Wenthr CJ, Xiang Z, Rook JM, Emmite KA, Niswender CM, Lindsley CW, Conn PJ (2015). Metabotropic glutamate receptor 3 activation is required for long-term depression in medial prefrontal cortex and fear extinction. Proc Natl Acad Sci USA 112, 1196–1201.

Wang CD, Gallahe TK, Shih JC (1993). Site-directed mutagenesis of the serotonin 5-hydroxytryptamine 2 receptor: identification of amino acids necessary for ligand binding and receptor activation. Mol Pharmacol 43, 931–940.

Wang DS, Zurek AA, Lecker I, Yu J, Abramian AM, Avramescu S, Davies PA, Moss SJ, Lu WY, Orser BA (2012). Memory deficits induced by inflammation are regulated by α5-subunit-containing GABAA receptors. Cell Rep 2, 488–496.

Weber ET, Andrade R (2010). Htr2a gene and 5-HT2A receptor expression in the cerebral cortex studied using genetically modified mice. Front Neurosci 4, 36.

Williams GV, Rao SG, Goldman-Rakic PS (2002). The physiological role of 5-HT2A receptors in working memory. J Neurosci 22, 2843–2854.

Wise T, Taylor MJ, Herane-Vives A, Cappello F, Lythgoe DJ, Williams SC, Young AH, Cleare AJ, Arnone D (2018). Glutamatergic hypofunction in medication-free major depression: secondary effects of affective diagnosis and relationship to peripheral glutaminase. J Affect Disord 234, 214–219.

Wolff M, Evens R, Mertens LJ, Koslowski M, Betzler F, Grunder G, Jung- aberle H (2020). Learning to let go: a cognitive-behavioral model of how psychedelic therapy promotes acceptance. Front Psychiatry 11, 5.

Yatham LN, Liddle PF, Dennie J, Shah IS, Adam MJ, Lane CJ, Lam RW, Ruth TJ (1999). Decrease in brain serotonin 2 receptor binding in patients with major depression following desipramine treatment: a positron emission tomography study with fluorine-18-labeled setoperone. Arch Gen Psychiatry 56, 705–711.

Yu B, Becnel J, Zerfaoui M, Rohatgi R, Boulares AH, Nichols CD (2008). Serotonin 5-hydroxytryptamine(2A) receptor activation suppresses tumor necrosis factor-alpha-induced inflammation with extraordinary potency. J Pharmacol Exp Ther 327, 316–323.

Zhai Y, George CA, Zhai J, Nisenbaum ES, Johnson MP, Nisenbaum LK (2003). Group II metabotropic glutamate receptor modulation of DOI-induced c-fos mRNA and excitatory responses in the cerebral cortex. Neuropsychopharmacology 28, 45–52.

Zhang G, Asgeirsdottir HN, Cohen SJ, Munchow AH, Barrera MP, Stackman RW Jr (2013). Stimulation of serotonin 2A receptors facilitates consolidation and extinction of fear memory in C57BL/6J mice. Neuropharmacology 64, 403–413.

Zhang G, Stackman RW Jr (2015). The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol 6, 225.