NUMERICAL ADJUNCTION FORMULAS FOR WEIGHTED PROJECTIVE PLANES AND LATTICE POINTS COUNTING

JOS´E IGNACIO COGOLLUDO-AGUST´IN, JORGE MART´IN-MORALES, AND JORGE ORTIGAS-GALINDO

Abstract. This paper gives an explicit formula for the Ehrhart quasi-polynomial of certain 2-dimensional polyhedra in terms of invariants of surface quotient singularities. Also, a formula for the dimension of the space of quasi-homogeneous polynomials of a given degree is derived. This admits an interpretation as a Numerical Adjunction Formula for singular curves on the weighted projective plane.

1. Introduction

This paper deals with the general problem of counting lattice points in a polyhedron with rational vertices and its connection with both singularity theory of surfaces and Adjunction Formulas for curves in the weighted projective plane. In addition, we focus on rational polyhedra (whose vertices are rational points) as opposed to lattice polyhedra (whose vertices are integers). Our approach exploits the connexion between Dedekind sums (as originated from the work of Hirzebruch-Zagier [17]) and the geometry of cyclic quotient singularities, which has been proposed by several authors (see e.g. [22, 7, 10, 27, 11, 4, 5]).

According to Ehrhart [16], the number of integer points of a lattice (resp. rational) polygon P and its dilations $dP = \{ dp \mid p \in P \}$ is a polynomial (resp. quasi-polynomial) in d of degree $\dim P$ referred to as the Ehrhart (quasi)-polynomial of P (cf. [12]). In this paper we focus on the Ehrhart quasi-polynomial of polygons of type

$$D_w := \{(x,y,z) \in \mathbb{R}^3 \mid x,y,z \geq 0, w_0x + w_1y + w_2z = 1\}$$

is a rational polygon. In Theorem 1.1 we give an explicit formula for the Ehrhart quasi-polynomial of D_w, which in Theorem 1.2 is shown to be an invariant of the quotient singularities of the weighted projective plane \mathbb{P}^2_w.

Throughout this paper w_0, w_1, w_2 are assumed to be pairwise coprime integers. Denote by $w = (w_0, w_1, w_2)$, $\bar{w} = w_0w_1w_2$, and $|w| = w_0 + w_1 + w_2$. Finally, the key ingredients to connect the arithmetical problem referred to above with the geometry of weighted projective planes come from the observation that

$$L_w(d) := #(D_{w,d} \cap \mathbb{Z}^3) = h^0(\mathbb{P}^2_w; \mathcal{O}(d)),$$

2010 Mathematics Subject Classification. 32S05, 32S25, 52B20, 11F20.

Key words and phrases. Quotient surface singularity, invariants of curve singularities, Ehrhart polynomial, rational polytope.

All authors are partially supported by the Spanish Ministry of Education MTM2013-45710-C2-1-P and E15 Grupo Consolidado Geometría from the Gobierno de Aragón. The second author is also supported by FQM-333 from Junta de Andalucía.
that is, the dimension of the vector space of weighted homogeneous polynomials of degree \(d\), and from a Numerical Adjunction Formula relating \(h^0(P^2_w;\mathcal{O}(d))\) with the genus of a curve in \(\mathbb{P}^2_w\).

To explain what we mean by Numerical Adjunction Formulas, assume a quasi-smooth curve \(C \subset \mathbb{P}^2_w\) of degree \(d\) exists. In that case, according to the classical Adjunction Formula one has the following equality relating canonical divisors on \(C\) and \(\mathbb{P}^2_w\):

\[
K_C = (K_{\mathbb{P}^2_w} + C)|_C.
\]

Equating degrees on both sides of (4) and using the Weighted Bézout’s Theorem, one has

\[
2g(C) - 2 = \deg(K_{\mathbb{P}^2_w} + C)|_C = \frac{\deg(C)\deg(K_{\mathbb{P}^2_w} + C)}{w} = \frac{d(d - |w|)}{w}.
\]

Notice that the generic curve of degree \(k\bar{w}\) is smooth (see \cite[Lemma 5.4]{CogolludoMartınOrtigas}). In that case, one has (c.f. \cite{CogolludoMartínOrtigas})

\[
h^0(P^2_w;\mathcal{O}(k\bar{w} - |w|)) = L_w(k\bar{w} - |w|) = g_{w,k\bar{w}},
\]

where \(g_{w,t} := \frac{t(t - |w|)}{2\bar{w}} + 1\).

However, for a general \(d\) the generic curve of degree \(d\) in \(\mathbb{P}^2_w\) is not necessarily quasi-smooth (see \cite[Lemma 5.4]{CogolludoMartínOrtigas}). The final goal of this paper is to revisit (5) in the general (singular) case.

Let us present the main results of this work. The first main statement shows an explicit formula for the Ehrhart quasi-polynomial \(L_{w,d}(d)\) of degree two of \(D_{w,d}\) in terms of \(d\).

Theorem 1.1. The Ehrhart quasi-polynomial \(L_{w,d}(d)\) for the polygon \(D_{w,d}\) in (2) satisfies

\[
L_{w,d}(d) = g_{w,d+|w|} - \sum_{P \in \text{Sing}(\mathbb{P}^2_w)} \Delta P(d + |w|).
\]

The quadratic polynomial \(g_{w,k} = \frac{k(k - |w|)}{2\bar{w}} + 1\) in \(k\) is called the virtual genus (see \cite[Definition 5.1]{CogolludoMartínOrtigas}) and \(\Delta P(k)\) is a periodic function of period \(\bar{w}\) which is an invariant associated to the singularity \(P \in \text{Sing}(\mathbb{P}^2_w)\) (see Definition \ref{def:virtual-genus}).

The proof of Theorem \ref{thm:main-result} relies heavily on computations with Dedekind sums.

The next result aims to show that the previous combinatorial number \(\Delta P(k)\) has a geometric interpretation and can be computed via invariants of curve singularities on a singular surface. In order to do so we recall the recently defined invariant \(\delta_P(f)\) of a curve \(\{f = 0\}, P\) on a surface with quotient singularity (see \cite[Section 4.2]{CogolludoMartínOrtigas}) and we define a new invariant \(\kappa_P(f)\) in \cite{CogolludoMartínOrtigas}.

Theorem 1.2. Let \((f,P)\) be a reduced curve germ at \(P \in X\) a surface cyclic quotient singularity. Then

\[
\Delta P(k) = \delta_P(f) - \kappa_P(f)
\]

for any reduced germ \(f \in \mathcal{O}_{X,P}(k)\).

The module \(\mathcal{O}_{X,P}(k)\) of \(k\)-invariant germs of \(X\) at \(P\) can be found in Definition \ref{def:module-invariants}.

As an immediate consequence of Theorems \ref{thm:main-result} and \ref{thm:main-result2} one has a method to compute \(L_{w,d}(d)\) by means of appropriate curve germs \(\{f = 0\}, P\) on surface quotient singularities. In an upcoming paper we will study the \(\Delta P(k)\)-invariant by means of singularity theory and intersection theory on surface quotient singularities in order to give a closed effective formula for the Ehrhart quasi-polynomial \(L_{w,d}(d)\). In fact,
Theorem 1.1 can also be seen as a version of [7], where an explicit interpretation of the correction term is given in Theorem 1.2.

Finally, we generalize the Numerical Adjunction Formula for a general singular curve C on P_w relating $h^0(P^2, O_{P^2}(d - |w|))$, its genus $g(C)$, and the newly defined invariant κ_P.

Theorem 1.3 (Numerical Adjunction Formula). Consider $C = \{ f = 0 \} \subset P^2_w$ an irreducible curve of degree d, then

$$h^0(P^2_w, O_{P^2}(d - |w|)) = g(C) + \sum_{P \in \text{Sing}(C)} \kappa_P(f).$$

This paper is organized as follows. In §2 some basic definitions and preliminary results on surface quotient singularities, logarithmic forms, and Dedekind sums are given. In §3, after defining the three local invariants mentioned above, a proof of Theorem 1.2 is given. An introductory example is treated in §4 and finally, the main results Theorem 1.1 and Theorem 1.3 are proven in §5.

2. Definitions and Preliminaries

In this section some needed definitions and results are provided.

2.1. V-manifolds and Quotient Singularities

We start giving some basic definitions and properties of V-manifolds, weighted projective spaces, embedded Q-resolutions, and weighted blow-ups (for a detailed exposition see for instance [15, 2, 3, 19, 21]). Let us fix the notation and introduce several tools to calculate a special kind of embedded resolutions, called embedded Q-resolutions (see Definition 2.4), for which the ambient space is allowed to contain abelian quotient singularities. To do this, we study weighted blow-ups at points.

Definition 2.1. A V-manifold of dimension n is a complex analytic space which admits an open covering $\{ U_i \}$ such that U_i is analytically isomorphic to B_i / G_i where $B_i \subset \mathbb{C}^n$ is an open ball and G_i is a finite subgroup of $\text{GL}(n, \mathbb{C})$.

We are interested in V-surfaces where the quotient spaces B_i / G_i are given by (finite) abelian groups.

Let $G_d \subset \mathbb{C}^*$ be the cyclic group of d-th roots of unity generated by ξ_d. Consider a vector of weights $(a, b) \in \mathbb{Z}^2$ and the action

$$G_d \times \mathbb{C}^2 \xrightarrow{\rho} \mathbb{C}^2,$$

$$(\xi_d, (x, y)) \mapsto (\xi_d^a x, \xi_d^b y).$$

The set of all orbits \mathbb{C}^2 / G_d is called a cyclic quotient space of type $(d; a, b)$ and it is denoted by $X(d; a, b)$.

The type $(d; a, b)$ is normalized if and only if $\text{gcd}(d, a) = \text{gcd}(d, b) = 1$. If this is not the case, one uses the isomorphism (assuming $\text{gcd}(d, a, b) = 1$)

$$X(d; a, b) \xrightarrow{\text{isom}} X \left(\frac{d}{\text{gcd}(d, a, b)}; \frac{a}{\text{gcd}(d, a, b)}, \frac{b}{\text{gcd}(d, a, b)} \right),$$

$$[x, y] \xrightarrow{\text{isom}} \left[\left(x^{(d, a, b)}, y^{(d, a, b)} \right) \right]$$

to normalize it.

We present different properties of some important sheaves associated to a V-surface (see [8, §4] and [15]).

Proposition 2.2 ([8]). Let \mathcal{O}_X be the structure sheaf of a V-surface X then,

- If P is not a singular point of X then $\mathcal{O}_{X, P}$ is isomorphic to the ring of convergent power series $\mathbb{C}[x, y]$.
• If P is a singular point of X then $O_{X,P}$ is isomorphic to the ring of G_d-
-invariant convergent power series $\mathbb{C}\{x,y\}^{G_d}$.

If no ambiguity seems likely to arise we simply write O_P for the corresponding
local ring or just O in the case $P = 0$.

Definition 2.3. Let G_d be an arbitrary finite cyclic group, a vector of weights
$(a,b) \in \mathbb{Z}^2$ and the action given in $[6]$. Associated with $X(d;a,b)$ one has the following $O_{X,P}$-module:

$$O_{X,P}(k) := \{ h \in \mathbb{C}\{x,y\} | h(\xi_2^a x, \xi_2^b y) = \xi_2^d h(x,y) \},$$

also known as the module of k-invariant germs in $X(d;a,b)$.

Remark 2.1. Note that

$$\mathbb{C}\{x,y\} = \bigoplus_{k=0}^{d-1} O_{X,P}(k)$$

Remark 2.2 ([8]). Let $l, k \in \mathbb{Z}$. Using the notation above one clearly has the following properties:

- $O_{X,P}(k) = O_{X,P}(d + k)$,
- $O_{X,P}(l) \otimes O_{X,P}(k) \subset O_{X,P}(l + k)$.

These modules produce the corresponding sheaves $O_X(k)$ on a V-surface X also
called orbisheaves.

One of the main examples of V-surfaces is the so-called weighted projective plane
(e.g. [15]). Let $w := (w_0, w_1, w_2) \in \mathbb{Z}_{\geq 0}^3$ be a weight vector, that is, a triple of
pairwise coprime positive integers. There is a natural action of the multiplicative
group \mathbb{C}^* on $\mathbb{C}^3 \setminus \{0\}$ given by

$$(x_0, x_1, x_2) \mapsto (t^{w_0} x_0, t^{w_1} x_1, t^{w_2} x_2).$$

The universal geometric quotient of $\mathbb{C}^3 \setminus \{0\}$ under this action is denoted by \mathbb{P}_w^2 and it is called the weighted projective plane of type w.

Let us recall the adapted concept of resolution in this category.

Definition 2.4 ([19]). An embedded \mathbb{Q}-resolution of a hypersurface $(H, 0) \subset (M, 0)$
in an abelian quotient space is a proper analytic map $\pi : X \to (M, 0)$ such that:

1. X is a V-manifold with abelian quotient singularities,
2. π is an isomorphism over $X \setminus \pi^{-1}(\text{Sing}(H))$,
3. $\pi^{-1}(H)$ is a \mathbb{Q}-normal crossing hypersurface on X (see [25] Definition 1.16).

Embedded \mathbb{Q}-resolutions are a natural generalization of the usual embedded resolutions, for which some invariants, such as δ can be effectively calculated ([14]).

As a key tool to construct embedded \mathbb{Q}-resolutions of abelian quotient surface
singularities we will recall toric transformations or weighted blow-ups in this context
(see [20] as a general reference), which can be interpreted as blow-ups of m-primary ideals.

Let X be an analytic surface with abelian quotient singularities. Let us define the
weighted blow-up $\pi : \hat{X} \to X$ at a point $P \in X$ with respect to $w = (p,q)$.
Since it will be used throughout the paper, we briefly describe the local equations
of a weighted blow-up at a point P of type $(d; a, b)$ (see [19] Chapter 1) for further
details).

The birational morphism $\pi = \pi_{(d,a,b),w} : X(d; a,b)_w \to X(d; a,b)$ can be described as usual by covering $X(d; a,b)_w$ into two charts $\hat{U}_1 \cup \hat{U}_2$, where for instance \hat{U}_1 is of type $X \left(\frac{pd}{e}; 1, -q + a' pb \right)$, with $a'a = bb \equiv 1 \mod (d)$ and $e = \gcd(d, pb - qa)$. The first chart is given by
we use the standard definition of logarithmic sheaf for V. The sheaf
Definition 2.5.

The sheaves
Proposition 2.6.

Remark
are known and no ambiguity is likely to arise.

and a Q-resolution of the singularities of D so that the reduced Q-divisor $D = \pi^*(D)_{\text{red}}$ is a union of smooth Q-divisors on Y with Q-normal crossings.

Using the results in [25] we can generalize Definition 2.7 in [13] for a non-normal crossing Q-divisor in X.

Definition 2.5. The sheaf $\pi_*(\Omega_Y(\log(D)))$ is called the sheaf of log-resolution logarithmic forms on X with respect to D.

Remark 2.3. Note that the space Y in the previous definition is not smooth and we use the standard definition of logarithmic sheaf for V-manifolds and V-normal crossing divisors \overline{D} due to Steenbrink [25].

In the sequel, a log-resolution logarithmic form with respect to a Q-divisor D and a Q-resolution π will be referred to as simply a logarithmic form, if D and π are known and no ambiguity is likely to arise.

Remark 2.4. Let h be an analytic germ on $X(d; a, b)$ where the type is normalized. Notice that $\omega = h \frac{dx \wedge dy}{xy}$ automatically defines a logarithmic form with poles along xy, whereas expressions of the form $\omega = h \frac{dx \wedge dy}{x}$ might not even define a 2-form unless h is so that ω is invariant under G_d.

Also note that $\pi_*\Omega_Y(\log(D))$ depends, in principle, on the given resolution π. The following results shows that this is not the case.

Proposition 2.6. The sheaves $\pi_*\Omega_Y(\log(D))$ of logarithmic forms on X with respect to the Q-divisor D do not depend on the chosen Q-resolution.

Proof. Let Y and Y' be two Q-resolutions of (X, D). After resolving (Y, \bar{D}) and $(Y', \bar{D'})$ and applying the strong factorization theorem for smooth surfaces, there exists a smooth surface \bar{Y} obtained as a finite number of blow-ups of both Y and Y' which is a common resolution of (Y, \bar{D}) and $(Y', \bar{D'})$. Since

$$\Omega_Y^*(\log(D)) = \rho_*\Omega_Y^*(\log(\bar{D})) \quad \text{and} \quad \Omega_Y^*(\log(D')) = \rho'_*\Omega_{Y'}^*(\log(\bar{D}))$$

(see [25, p. 351]) where $\overline{D}, \overline{D'}$, and \bar{D} are the corresponding total preimages and ρ, ρ' are the corresponding resolutions. The result follows, since

$$\pi_*\Omega_Y^*(\log(D)) = \pi_*\rho_*\Omega_Y^*(\log(\bar{D})) = \pi'_*\rho'_*\Omega_{Y'}^*(\log(\bar{D})) = \pi'_*\Omega_{Y'}^*(\log(D'))$$

due to the commutativity of the diagram $\pi\rho = \pi'\rho'$.

\[\square\]

Notation 2.7. In the future, we will refer to such sheaves as logarithmic sheaves on D and they will be denoted simply as $\Omega^*_X(\text{LR}(D))$.

\[\text{(8)}\]
2.3. Dedekind Sums. Let a, b, c, t be positive integers with $\gcd(a, b) = \gcd(a, c) = \gcd(b, c) = 1$. The aim of this part (see [23] for further details) is to give a way to compute the cardinal of the following two sets:

$$\Delta_1 := \{(x, y) \in \mathbb{Z}_2^2 \mid ax + by \leq t\},$$

$$\Delta_2 := \{(x, y, z) \in \mathbb{Z}_3^3 \mid ax + by + cz = t\}.$$

Note that $\#\Delta_1$ cannot be computed by means of Pick’s Theorem unless t is divisible by a and b.

Denote by $L_{\Delta_i}(t)$ the cardinal of Δ_i. Let us consider the following notation.

Notation 2.8. If we denote by $\xi_a := e^{\frac{2i\pi}{a}}$, consider

$$p_{a,b,c}(t) := \text{poly}_{a,b,c}(t) + \frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{(1 - \xi_a^k)(1 - \xi_a^k)\xi_a^t} + \frac{1}{b} \sum_{k=1}^{b-1} \frac{1}{(1 - \xi_b^k)(1 - \xi_b^k)\xi_b^t} + \frac{1}{c} \sum_{k=1}^{c-1} \frac{1}{(1 - \xi_c^k)(1 - \xi_c^k)\xi_c^t},$$

with

$$\text{poly}_{a,b,c}(t) := \frac{t^2}{2abc} + t \left(\frac{1}{ab} + \frac{1}{ac} + \frac{1}{bc} \right) + \frac{3(ab + ac + bc) + a^2 + b^2 + c^2}{12abc}. $$

Remark 2.5. Notice that in particular, one has

$$p_{a,b,1}(t) = \text{poly}_{a,b,1}(t) + \frac{1}{a} \sum_{k=1}^{a-1} \frac{1}{(1 - \xi_a^k)(1 - \xi_a^k)\xi_a^t} + \frac{1}{b} \sum_{k=1}^{b-1} \frac{1}{(1 - \xi_b^k)(1 - \xi_b^k)\xi_b^t},$$

with

$$\text{poly}_{a,b,1}(t) = \frac{t^2}{2ab} + t \left(\frac{1}{ab} + \frac{1}{a} + \frac{1}{b} \right) + \frac{3(ab + a + b) + a^2 + b^2 + 1}{12ab}.$$

Theorem 2.9 ([23]). One has the following result,

$$L_{\Delta_1}(t) = p_{a,b,1}(t) \text{ and } L_{\Delta_2}(t) = p_{a,b,c}(t).$$

Now we are going to define the Dedekind sums giving some properties which will be particularly useful for future results. See [23] and [6] for a more detailed exposition.

Definition 2.10 ([23]). Let a, b be integers, $\gcd(a, b) = 1, b \geq 1$. The Dedekind sum $s(a, b)$ is defined as follows

$$s(a, b) := \sum_{j=1}^{b-1} \left(\left\lfloor \frac{ja}{b} \right\rfloor - \frac{1}{2} \right) \left(\left\lfloor \frac{j}{b} \right\rfloor \right),$$

where the symbol $\left\lfloor \frac{x}{y} \right\rfloor$ denotes

$$\left\lfloor \frac{x}{y} \right\rfloor = \begin{cases} x - \lfloor x \rfloor - \frac{1}{2} & \text{if } x \text{ is not an integer,} \\ 0 & \text{if } x \text{ is an integer,} \end{cases}$$

with $\lfloor x \rfloor$ the greatest integer not exceeding x.

The following result, referred to as a Reciprocity Theorem (see [6] Corollary 8.5] or [23] Theorem 2.1] for further details) will be key in what follows.

Theorem 2.11 (Reciprocity Theorem, [6, 23]). Let a and b be two coprime integers. Then

$$s(a, b) + s(b, a) = -\frac{1}{4} + \frac{1 + a^2 + b^2}{12ab}.$$
Let us express the sum (11) in terms of α-th roots of the unity (see for instance [6, Example 8.1] or [23, Chapter 2, (18b)] for further details).

Proposition 2.12 ([6, 23]). Let a, b be integers, $\gcd(a, b) = 1$, $b \geq 1$, denote by ξ_b a primitive bth-root of the unity. The Dedekind sum $s(a, b)$ can be written as follows:

$$s(a, b) = \frac{b-1}{4b} \sum_{k=1}^{b-1} \frac{1}{b} \frac{1}{(1 - \xi_b^{ka})(1 - \xi_b^k)}.$$

Let us exhibit some useful properties of the Dedekind sum $s(a, b)$.

Since $((-x)) = -((x))$ it is clear that

$$s(-a, b) = -s(a, b)$$

and also

$$s(a, -b) = s(a, b).$$

If we define a' by $a' a \equiv 1 \mod b$ then

$$s(a', b) = s(a, b).$$

Proposition 2.13 ([6, 23]). Let a, b, c be integers with $\gcd(a, b) = \gcd(a, c) = \gcd(b, c) = 1$. Define a' by $a' a \equiv 1 \mod b$, b' by $b' b \equiv 1 \mod c$ and c' by $c' c \equiv 1 \mod a$. Then

$$s(b c', a) + s(c a', b) + s(a b', c) = -\frac{1}{4} + \frac{a^2 + b^2 + c^2}{12abc}.$$

Definition 2.14 ([6]). Let $a_1, \ldots, a_m, n \in \mathbb{Z}$, $b \in \mathbb{Z}_{>0}$, then the Fourier-Dedekind sum is defined as follows:

$$s_n(a_1, \ldots, a_m; b) := \frac{1}{b} \sum_{k=1}^{b-1} \frac{\zeta_{kn}^{a_1} \cdots \zeta_{kn}^{a_m}}{(1 - \xi_b^{ka_1})(1 - \xi_b^{ka_2}) \cdots (1 - \xi_b^{ka_m})}.$$

Let us see some interesting properties of these sums.

Remark 2.6 ([6]). Let $a, b, c \in \mathbb{Z}$ then

1. For all $n \in \mathbb{Z}$, $s_n(a, b; 1) = 0$.
2. For all $n \in \mathbb{Z}$, $s_n(a, b; c) = s_n(b, a; c)$.
3. One has $s_0(a, 1; b) = -s(a, b) + \frac{b-1}{12}$.
4. If we denote by a' the inverse of a modulo c, then $s_0(a, b; c) = -s(a'b, c) + \frac{c-1}{12}$.

With this notation we can express (9) and (10) as follows

$$p_{(a, b, 1)}(t) = \text{poly}_{(a, 1, b)}(t) + s_{-t}(a, 1; b) + s_{-t}(1, b; a).$$

(13)

$$p_{(a, b, c)}(t) = \text{poly}_{(a, b, c)}(t) + s_{-t}(a, b; c) + s_{-t}(b, c; a) + s_{-t}(a, c; b).$$

As a consequence of Zagier reciprocity in dimension 3 (see [6, Theorem 8.4]) one has the following result.

Corollary 2.15 (Rademacher’s Reciprocity Law, [6]). Substituting $t = 0$ in the previous expression one gets

$$1 - \text{poly}_{(a, b, c)}(0) = s_0(a, b; c) + s_0(c, b; a) + s_0(a, c; b) = -\frac{1}{4} + \frac{a^2 + b^2 + c^2}{12abc}.$$
3. Local algebraic invariants on quotient singularities

In this section we study two local invariants of a curve in a V-surface, the delta invariant $\delta_P(C)$ and the dimension $\kappa_P(C)$ (see Definitions 3.2 and 3.5) and a local invariant of the surface, $\Delta_P(k)$ (see Definition 3.8), as well as the relation among them (see Theorem 1.2), so as to understand the right-hand side of the formula in Theorem 1.1.

In [14, 21] we started extending the concept of Milnor fiber and Milnor number of a curve singularity allowing the ambient space to be a quotient surface singularity. A generalization of the local δ-invariant is also defined and described in terms of a Q-resolution of the curve singularity. All these tools allow for an explicit description of the genus formula of a curve defined on a weighted projective plane in terms of its degree and the local type of its singularities.

Definition 3.1 ([14]). Let $C = \{f = 0\} \subset X(d; a, b)$ be a curve germ. The Milnor fiber f_t^w of $(C, [0])$ is defined as follows,

$$f_t^w := \{f = t\}/G_d.$$

The Milnor number μ^w of (C, P) is defined as follows,

$$\mu^w := 1 - \chi_{\text{orb}}(f_t^w).$$

We recall that $\chi_{\text{orb}}(O) := \frac{1}{|G|} \sum_{\Delta} (-1)^{\dim \Delta} |G_{\Delta}|$ for an orbifold O with a finite CW-complex structure given by the cells Δ and the finite group G acting on it, where G_{Δ} denotes the stabilizer of Δ.

Note that alternative generalizations of Milnor numbers can be found, for instance, in [11, 9, 26, 24]. The one proposed here seems more natural for quotient singularities, but more importantly, it allows for the existence of an explicit formula relating Milnor number, δ-invariant, and genus of a curve on a singular surface.

We define the local invariant δ for curve singularities on $X(d; a, b)$.

Definition 3.2 ([14]). Let C be a reduced curve germ at $[0] \in X(d; a, b)$, then we define δ (or $\delta_0(C)$) as the number verifying

$$\chi_{\text{orb}}(f_t^w) = r^w - 2\delta,$$

where r^w is the number of irreducible branches of C at $[0]$.

Remark 3.1. Note that the δ-invariant of a reduced curve (i.e. a reduced Q-divisor) on a surface with quotient singularity is not an integer number in general, but rather a rational number (see [14, Example 4.6]). However, in the case when C is in fact Cartier, $\delta_0(C)$ is an integer number that has an interpretation as the dimension of the quotient R/R where R is the coordinate ring of C and \bar{R} its normalization (see [14, Theorem 4.14]). An alternative definition of $\delta_0(C)$ on normal surfaces in terms of a resolution can be found in [7].

Also note that r^w can also be seen as the number of irreducible k-invariant factors of the defining equation f. For instance, the germ defined by $f = (x^2 - y^4)$ in C^2 is not irreducible since $(x^2 - y^4) = (x - y)(x + y)^2$. However, $f = 0$ also defines a set of zeroes in $X(2; 1, 1)$, which is irreducible (and hence $r^w = 1$), since $(x - y)$ and $(x + y)$ are not k-invariant for any k (recall Definition 2.3).

A recurrent formula for δ based on a Q-resolution of the singularity is provided in Theorem 3.3.

Assume $(f, 0) \subset X(d; a, b)$ and consider a (p, q)-blow-up π at the origin. Denote by $\nu_0(f)$ the (p, q)-multiplicity of f at 0 and $e := \gcd(d, pb - qa)$. As an interpretation of $\nu = \nu_0(f)$, we recall that $\pi^*(C) = \tilde{C} + \frac{\nu}{e}E$, where $\pi^*(C)$ is the total transform of C, \tilde{C} is its strict transform and E is the exceptional divisor.
We will use the following notation:

\[\delta_{0,\pi}(f) = \frac{\nu_0(f)}{2dpq} (\nu_0(f) - p - q + e), \]

Theorem 3.3 ([14]). Let \((C, [0])\) be a curve germ on an abelian quotient surface singularity. Then

\[\delta(C) = \sum_{Q < [0]} \delta_{Q,\pi_{(p,q)}}(f) \]

where \(Q\) runs over all the infinitely near points of a \(Q\)-resolution of \((C, [0])\) and \(\pi_{(p,q)}\) is a \((p,q)\)-blow-up of \(Q\), the origin of \(X(d; a, b)\).

3.1. Logarithmic Modules.

For a given \(k \geq 0\), one has the module \(O_P(k)\) of \(k\)-invariant germs (see Definition 2.3),

\[O_P(k) := \{ h \in \mathbb{C}[x, y] | h(\xi^a x, \xi^b y) = \xi^k h(x, y) \}. \]

Let \(\{ f = 0 \}\) be a germ in \(X(d; a, b)\). Note that if \(f \in O_P(k)\), then one has the following \(O_P\)-module

\[O_P(k - a - b) = \{ h \in \mathbb{C}[x, y] | h \frac{dx \wedge dy}{f} \text{ is } G_d\text{-invariant} \}. \]

Definition 3.4. Let \(D = \{ f = 0 \}\) be a germ in \(P \in X(d; a, b)\), where \(f \in O_P(k)\).

1. Let \(M_{LR}^D\) denote the submodule of \(O_P(k - a - b)\) consisting of all \(h \in O_P(k - a - b)\) such that the 2-form

\[\omega = h \frac{dx \wedge dy}{f} \in \Omega^2_X(LR(D)) \]

(recall Notation 2.7).

2. Let \(M^{\text{null}}_D\) denote the submodule of \(M_{LR}^D\) consisting of all \(h \in M_{LR}^D\) such that the 2-form

\[\omega = h \frac{dx \wedge dy}{f} \in \Omega^2_X(LR(D)) \]

admits a holomorphic extension outside the strict transform \(\hat{f}\).

3. Any \(O_P\)-module \(M \subseteq M_{LR}^D\) will be called logarithmic module.

Definition 3.5. Let \(D = \{ f = 0 \}\) be a germ in \(P \in X(d; a, b)\). Let us define the following dimension,

\[\kappa_P(D) = \kappa_P(f) := \dim_{\mathbb{C}} \frac{O_P(s)}{M_{D}^{\text{null}}}, \]

for \(s = \deg f - a - b\).

Remark 3.2. From the discussion in §2.2 note that \(\kappa_P(f)\) turns out to be a finite number independent on the chosen \(Q\)-resolution. Intuitively, the number \(\kappa_P(f)\) provides the minimal number of conditions required for a generic germ \(h \in O_P(s)\) so that \(h \in M_{D}^{\text{null}}\).

Remark 3.3. It is known (see [13, Chapter 2]) that if \(f\) is a holomorphic germ in \((\mathbb{C}^2, 0)\), then

\[\kappa_0(f) = \delta_0(f). \]
3.2. The δ invariant in the general case of local germs.

Let us start with the following constructive result which allows one to see any singularity on the quotient $X(d; a, b)$ as the strict transform of some $\{g = 0\} \subset \mathbb{C}^2$ after performing a certain weighted blow-up.

Remark 3.4. The Weierstrass division theorem states that given $f, g \in \mathbb{C}\{x, y\}$ with f y-general of order k, there exist $q \in \mathbb{C}\{x, y\}$ and $r \in \mathbb{C}\{x\}\{y\}$ of degree in y less than or equal to $k - 1$, both uniquely determined by f and g, such that $g = qf + r$. The uniqueness and the linearity of the action ensure that the division can be performed equivariantly for the action of G_d on $\mathbb{C}\{x, y\}$ (see [1]), i.e. if $f, g \in \mathcal{O}(l)$, then so are q and r. In other words, the Weierstrass preparation theorem still holds for zero sets in $\mathbb{C}\{x, y\}^{G_d}$.

Let $\{f = 0\} \subset (X(d; a, b), 0)$ be a reduced analytic germ. Assume $(d; a, b)$ is a normalized type. After a suitable change of coordinates of the form $X \to X(d; a, b)$, the following combinatorial number which generalizes f can be written in the form

\[
\tag{16} f(x, y) = y^r + \sum_{i>0, j<r} a_{ij} x^i y^j \in \mathbb{C}\{x\}\{y\} \cap \mathcal{O}(k).
\]

For technical reasons, in the following results the space $X(d; a, b)$ will be considered to be of type $X(p; -1, q)$. Note that this is always possible.

Lemma 3.6. Let $f \in \mathcal{O}(k)$ define an analytic germ on $X(p; -1, q)$, $\gcd(p, q) = 1$, such that $x \nmid f$. Then there exist $g \in \mathbb{C}\{x, y\}$ with $x \nmid g$ such that $g(x^p, x^q y) = x^0 f(x, y)$. Moreover, f is reduced (resp. irreducible) if and only if g is.

Proof. By the discussion after Remark 3.4, one can assume $f \in \mathbb{C}\{x\}\{y\}$ as in (16). We have $-i + qj \equiv qr \equiv k \mod p$ for all i, j so $p|((i + q(r - j))$ and $i + q(r - j) > 0$. Consider

\[
g(x, y) = y^r + \sum_{i>0, j<r} a_{ij} x^{i+q(r-1)} y^j \in \mathbb{C}\{x\}\{y\},
\]

\[
g(x^p, x^q y) = x^{qr} y^r + \sum_{i>0, j<r} a_{ij} x^{i+qr} y^j = x^{qr} \left(y^r + \sum_{i>0, j<r} a_{ij} x^i y^j \right).
\]

Note that the strict transform passes only through the origin of the first chart. \qed

The following Proposition 3.7 will be useful to give a generalization of Remark 5.3.

Before we state the result we need some notation. Given $r, p, q \in \mathbb{Z}_{>0}$ we define the following combinatorial number which generalizes $\binom{d}{2}$:

\[
\delta_{r}^{(p, q)} := \frac{r(qr - p - q + 1)}{2p}.
\]

Note that $\binom{d}{2} = \delta_{d}^{(1, 1)}$.

Proposition 3.7. Let be $p, q, a, r \in \mathbb{Z}_{>0}$ with $\gcd(p, q) = 1$ and $r_1 = r + pa$. Consider the following cardinal,

\[
\Lambda_{r}^{(p, q)} := \# \{(i, j) \in \mathbb{Z}^2| pi + qj \leq qr; \ i, j \geq 1\}.
\]

Then,

1) If $r = pa$, one has $\delta_{r}^{(p, q)} = \Lambda_{r}^{(p, q)}$.

2) The following equalities hold:

\[\delta_{r_1}^{(p,q)} - \delta_{r}^{(p,q)} = \delta_{r_1-r}^{(p,q)} + aqr, \]

\[A_{r_1}^{(p,q)} - A_{r}^{(p,q)} = A_{r_1-r}^{(p,q)} + aqr. \]

3) The difference \(A_{r_1}^{(p,q)} - \delta_{r}^{(p,q)} \) only depends on \(r \) modulo \(p \).

\[A_{r_1}^{(p,q)} = \begin{cases} \# \{(i,j) \in \mathbb{Z}^2 : pi + qj \leq qr; i, j \geq 1 \} \\ \# \{(i,j) \in \mathbb{Z}^2 : pi + qj \leq qr + apq - apq; i, j \geq 1 \} \\ \# \{(i,j) \in \mathbb{Z}^2 : p(i + aq) + qj \leq qr_1; i \geq 1, j \geq 1 \} \\ \# \{(i,j) \in \mathbb{Z}^2 : pi + qj \leq qr_1; i \geq aq + 1, j \geq 1 \} \end{cases} \]

\[A_{r_1-r}^{(p,q)} = \begin{cases} \# \{(i,j) \in \mathbb{Z}^2 : pi + qj \leq qr_1 - qr; i, j \geq 1 \} \\ \# \{(i,j) \in \mathbb{Z}^2 : pi + q(j + r) \leq qr_1; i, j \geq 1 \} \\ \# \{(i,j) \in \mathbb{Z}^2 : p + qj \leq qr_1; i \geq 1, j \geq r + 1 \} \end{cases} \]
Definition 3.8. Let \(k \geq 0 \) and \(P \in X(p,-1,q) = X \). The \(\Delta_p(k) \)-invariant of \(X \) is defined as follows
\[
\Delta_p(k) := A_{p,q}^k - \delta_{p,q}^k,
\]
where \(r = q^{-1}k \mod p \).

As a result of Proposition 3.7, one has the following result.

Theorem 3.9. Let \(f_1, f_2 \in \mathcal{O}(k) \) be two germs at \([0]\) \(\in X(d; a, b) \). Then,
\[
\kappa_0(f_1) - \kappa_0(f_2) = \delta_0(f_1) - \delta_0(f_2).
\]

Proof. By Remark 3.4 and the discussion after it, we can assume that
\[
f_t(x, y) = y^r + \sum_{i+0<j<r_t} a_{ij}x^i y^j \in \mathbb{C}[x][y].
\]
in \(X(p, -1, q) \) \((p = d, q \equiv -ba^{-1} \mod d) \). Consider \(g_1 \in \mathbb{C}[x, y] \) the reduced germ obtained after applying Lemma 3.6 to \(f_1 \). Denote by \(\pi_{p,q} \) the blowing-up at the origin. Note that \(\nu_{p,q}(g_1) = qr_1 \) and thus \(\delta_{r_1}^{p,q} \equiv \delta_{\pi(p,q)}(g_1) \) \(\big(\text{see (17) and (14)} \big) \).

Consider the form \(\omega := \phi dx^\pi dy_x g_1, \phi \in \mathbb{C}[x, y] \) and let us calculate the local equations for the pull-back of \(\omega \) after blowing-up the origin on \(\mathbb{C}^2 \),
\[
\phi \frac{dx}{g_1} \frac{dy}{x} \pi_{p,q} x^{\nu_{p,q}+p+q-1-qr_1} h \frac{dx}{f_1} \frac{dy}{y}.
\]
Using the definitions of \(M_{g_1}^\text{mul} \) and \(M_{f_1}^\text{mul} \) \(\big(\text{see Definition 3.4} \big) \) this implies that
\[
\phi \in M_{g_1}^\text{mul} \Leftrightarrow h \in M_{f_1}^\text{mul} \text{ and } \nu_{p,q} + p - q - 1 - qr_1 \geq 0.
\]
Therefore \(\phi(x, y) \mapsto \phi(x^p, x^q y) \) induces an isomorphism
\[
M_{g_1}^\text{mul} \cong M_{f_1}^\text{mul} \bigcap M_{f_1}^\text{hol},
\]
where \(A_{p,q}^k := \{ h \in \mathbb{C}[x, y] \mid \text{ord}_h + p + q - 1 - qr_1 \geq 0 \} \) and \(\text{ord}_h \) is the \((p, q)\)-order of \(h \). Since \(\dim \mathbb{C}[x, y] = A_{p,q}^1 \), one obtains
\[
k_0(g_1) = A_{1,q}^p + k_0(f_1)
\]
On the other hand (see Remark 3.3 and Theorem 3.3),
\[
k_0(g_1) = \delta_0(g_1) = \delta_{\pi(p,q)}(f) + \delta_0(f_1) = \delta_{r_1}^{p,q} + \delta_0(f_1).
\]
Therefore, from (21) and (22),
\[
k_0(f_1) = \delta_0(f_1) + \delta_{r_1}^{p,q} - A_{r_1}^{p,q}.
\]
Following a similar procedure we get,
\[
k_0(f_2) = \delta_0(f_2) + \delta_{r_2}^{p,q} - A_{r_2}^{p,q}.
\]
Notice that \(k \equiv qr_1 \equiv qr_2 \mod p \), which implies \(r_1 \equiv r_2 \mod p \) since \(p \) and \(q \) are coprime. Therefore by Proposition 3.7
\[
A_{r_1}^{p,q} - \delta_{r_1}^{p,q} = A_{r_2}^{p,q} - \delta_{r_2}^{p,q},
\]
and finally from (23) and (24), it can be concluded that
\[
k_0(f_1) - k_0(f_2) = \delta_0(f_1) - \delta_0(f_2). \tag{\text{QED}}
\]

Proof of Theorem 1.2. The result follows directly from equation (23).

Remark 3.5. If \((f, [0])\) is a function germ on \(X = X(d; a, b) \), from Proposition 3.7 and Theorem 1.2, one has
\[
\kappa_p(f) = \delta_p(f).
\]
In particular if \(P \) is a smooth point of \(X \), this generalizes Remark 3.3.
4. An introductory example

Let us start this section with one basic illustrative example. Let us compute the number of solutions \((a, b, c) \in \mathbb{Z}_+^3 \geq 0\) of the equation

\[aw_0 + bw_1 + cw_2 = k\bar{w}\]

with \(w_0, w_1, w_2 \in \mathbb{Z}_+\) and \(k \in \mathbb{Z}_+\) fixed, or equivalently, the number of monomials in \(O_{P_{w}}\) of quasi-homogeneous degree \(k\bar{w}\). This number will be denoted by \(L_{w}(k\bar{w})\) (recall (3)). Notice that this is equivalent to computing the number of non-negative integer solutions \((a, b, c)\) to

\[aw_0 + bw_1 = (kw_{10} - c)w_2\]

with \(w_{ij} := w_iw_j\), which can be achieved by considering the following sets:

\[\tilde{A} := \left\{ (a, b) \in \mathbb{Z}_{>0}^2 \mid aw_0 + bw_1 = \alpha w_2, \; \alpha = 0, \ldots, kw_{10} \right\},\]

\[\tilde{B} := \left\{ (a, 0) \in \mathbb{Z}_{>0}^2 \mid aw_0 = \alpha w_2, \; \alpha = 0, \ldots, kw_{10} \right\} \cup \left\{ (0, b) \in \mathbb{Z}_{>0}^2 \mid bw_1 = \alpha w_2, \; \alpha = 0, \ldots, kw_{10} \right\}.\]

If we denote by \(A = \#\tilde{A}\) and \(B = \#\tilde{B}\), one has \(L_{w}(k\bar{w}) = A + B + 1\). To compute \(A\) take two integers \(n_0, n_1\) such that \(n_0w_0 + n_1w_1 = 1\) with \(n_1 > 0\) and \(n_0 \leq 0\) (this can always be done since the weights are pairwise coprime). There exists a positive integer \(\lambda\) satisfying \(a = n_0\alpha w_2 + \lambda w_1\) and \(-\frac{n_0\alpha w_2}{w_1} < \lambda < \frac{n_1\alpha w_2}{w_0}\). This justifies the following definition: (see Figure 2)

\[A_{\alpha} := \# \left\{ \lambda \in \mathbb{Z}_{>0} \mid -\frac{n_0\alpha w_2}{w_1} < \lambda < \frac{n_1\alpha w_2}{w_0} \right\}.\]

Note that by virtue of Pick’s theorem the area of the triangle is equal to the number of natural points in its interior \(I\) plus one half the number of points in the
It is easy to check that
\[\frac{k^2 \bar{\omega}}{2} = I + \frac{k|w|}{2} - 1, \]
which implies
\[A = I + (k \omega_2 - 1) = \left(\frac{k^2 \bar{\omega}}{2} - \frac{k|w|}{2} + 1 \right) + (k \omega_2 - 1) = \frac{1}{2} (k^2 \bar{\omega} - k|w|) + k \omega_2. \]
It is easy to check that \(B = k \omega_0 + k \omega_1 \), then we have
\[L_w(k \bar{\omega}) = \frac{1}{2} k (k \bar{\omega} + |w|) + 1. \]

It is known that the genus of a smooth curve on \(\mathbb{P}^2_w \) of degree \(d \) transversal w.r.t. the axes is
\[g_{w,d} = \frac{d(d - |w|)}{2 \bar{\omega}} + 1. \]
We want to find \(d \) such that \(L_w(k \bar{\omega}) = g_{w,d} \). To do that it is enough to solve the equation
\[\frac{1}{2} k (k \bar{\omega} + |w|) + 1 = \frac{d(d - |w|)}{2 \bar{\omega}} + 1. \]
One finally gets that
\[L_w(k \bar{\omega}) = g_{w,|w| + k \bar{\omega}}. \]
The rest of this paper deals with the extension of this example when \(d \) is not necessarily a multiple of \(\bar{\omega} \).

5. Proof of the main results

Proof of Theorem 1.1. We will prove the equivalent formula
\[L_w(d - |w|) = g_{w,d} = \sum_{p \in \text{Sing} (\mathbb{P}^2_w)} \Delta_p (d). \]
From the definitions note that
\[L_w(d - |w|) = p_{(w,w_1,w_2)} (d - |w|) = p_{(w)} (d - |w|). \]
Fix a point \(P \in \text{Sing} (\mathbb{P}^2_w) \) and describe for simplicity the local singularity as \(X(w_1; w_{i+1}, w_i) = X(w_i; -1, q_i) \), where \(q_i := -w_i^{-1} w_{i+2} \) mod \(w_i \), for \(i = 0, 1, 2 \) (indices are considered modulo 3). Define \(r_i := w_i^{x+1} d \) mod \(w_i \), then
\[A_{r_i, q_i} = p_{(w_i,q_i)} (q_i r_i - w_i q_i). \]
On the one hand from (13) and a direct computation one obtains
\[L_w(d - |w|) - g_{w,d} = -1 + \text{poly} (w)(0) + \sum_{i=0}^2 s_{w_i - d} (w_i, w_{i+1}; w_{i+2}). \]
By Definition 2.14 and Corollary 2.15 one obtains
\[\text{(25)} \quad L_w(d - |w|) - g_{w,d} = \sum_{i=0}^2 \left(s_{|w| - d} (w_{i+1}; w_{i+2}; w_i) - s_0 (w_{i+1}; w_{i+2}; w_i) \right). \]
On the other hand, from (12), and straightforward computations one obtains
\[\delta_{r_i, q_i} (w_i, q_i) = \frac{w_i + q_i}{2w_i q_i} - \text{poly}_{(w_i, q_i)} (0) \]
\[- (s_{w_i q_i - q_i r_i} (w_i, 1; q_i) + s_{w_i q_i - q_i r_i} (q_i, 1; w_i)), \]
with
\[s_{w_i + q_i - q_i r_i} (q_i, 1; w_i) = \frac{1}{w_i} \sum_{k=1}^{w_i - 1} \frac{1}{(1 - \xi_k w_i)(1 - \xi_{kw_i}) \xi_k (q_i r_i - w_i q_i)}. \]
Combining these equalities into (30) one obtains the result.

which, by Remark 2.6(3) and (27) becomes

For the right-hand side, using Corollary 2.15 and (27) we have,

Thus

Since by hypothesis \(q_i = -w_{i+1}^{-1}w_{i+2} \) mod \(w_i \) and \(r_i = w_{i+2}^{-1}d \) mod \(w_i \), one obtains

Thus

for \(i = 0, 1, 2 \).

Using (25), (26), and (29), it only remains to show

For the left-hand side we use Remark 2.6(4) and obtain

For the right-hand side, using Corollary 2.15 and (27) we have,

poly_{\(w_i, q_i \)}(0) + s_{w_i+q_i,-q_ir_i}(w_i, 1; q_i) = 1 - s_{0}(q_i, 1; w_i) - s_{0}(w_i, 1; q_i) + s_{w_i}(w_i, 1; q_i),

which, by Remark 2.6(3) and (27) becomes

Combining these equalities into (30) one obtains the result. \(\square \)
Proof of Theorem 1.3. It is enough to apply [14, Theorem 5.7], Theorem 1.1 and recall the characterization of $\kappa_P(f)$ in the proof of Theorem 3.9 (see (23)).

$$g(\mathcal{C}) = g_{w,d} = \sum_{P \in \text{Sing}(\mathcal{C})} \delta_P(f)$$

$$= g_{w,d} + \sum_{i=0}^{2} \left(\left(\sum_{P \in \text{Sing}(\mathcal{C})} \delta_P(f) + \sum_{i=0}^{2} \left(\sum_{P \in \text{Sing}(\mathcal{C})} \kappa_P(f) \right) \right) - \left(\sum_{P \in \text{Sing}(\mathcal{C})} \delta_P(f) + \sum_{i=0}^{2} \left(\sum_{P \in \text{Sing}(\mathcal{C})} \kappa_P(f) \right) \right) \right).$$

Remark 5.1. The second equality in the previous identity always holds and therefore if one considers $\mathcal{C} \subset \mathbb{P}^3_w$, a reduced curve of degree d, then (recall Theorem 1.2)

$$L_w(d-|w|) = g_{w,d} - \sum_{P \in \text{Sing}(\mathcal{C})} \delta_P(f) + \sum_{P \in \text{Sing}(\mathcal{C})} \kappa_P(f).$$

Let us see an example of the previous result.

Example 5.1. Consider the polygon $D_w := \{(x,y,z) \in \mathbb{R}^3 \mid w_0x + w_1y + w_2z = 1\}$, for $w = (w_0, w_1, w_2) = (2, 3, 7)$. As an example, we want to obtain the Ehrhart quasi-polynomial $L_w(d)$ for D_w. Note that, according to Theorem 1.1

$$L_w(d) = \frac{1}{84} d^2 + \frac{1}{7} d + a_0(d),$$

where $a_0(d)$ is a rational periodic number of period $\bar{w} = 42$. Moreover, $a_0(d) = 1 - \left(\sum_{i=0}^{2} \Delta_i(d+12) \right)$, where Δ_i has period w_i and depends only on the singular point $P_i = \{x_i = x_k = 0\}$ ($\{i, j, k\} = \{0, 1, 2\}$) in the weighted projective plane \mathbb{P}^2_w.

In order to describe $\Delta_i(d)$ we will introduce some notation. Given a list of rational numbers q_0, \ldots, q_{r-1} we denote by $[q_0, \ldots, q_{r-1}]$ the periodic function $f : \mathbb{Z} \to \mathbb{Q}$ whose period is r and such that $f(i) = [q_0, \ldots, q_{r-1}]i = q_i$. Using this notation it is easy to check that

$$\Delta_0(d) = \left[0, \frac{1}{4} \right]_d \quad \text{and} \quad \Delta_1(d) = \left[0, \frac{1}{3} : \frac{1}{3} \right]_d.$$

Finally, in order to obtain $\Delta_2(d)$, one needs to compute both δ and K-invariants for the singular point $P_2 \in X = X(7; 2, 3)$. The following table can be obtained directly:

d	0	1	2	3	4	5	6
Δ_P	0	2/7	3/7	3/7	2/7	0	4/7
δ_P	0	9/7	3/7	3/7	9/7	1	4/7
κ_P	0	1	0	0	1	1	0
Branches	0	2	1	1	2	2	1
Equation	$x(x^3 + y^2)$	x	y	$x(x+y^3)$	xy	$x^3 + y^2$	

The typical way to obtain the first row is by applying Theorem 1.3 to a generic germ f_d in $O_X(d)$. This is how the second and third rows in the previous table were obtained. The last two rows indicate the local equations and the number of branches of such a generic germ $f_d \in O_X(d)$.
Let us detail the computations for the third column in Table 1 (case $d = 1$). One can write the generic germ f_1 in $\mathcal{O}_X(1)$ as $x(x^3 + y^2)$. On the one hand, a $(2, 3)$-blow-up serves as a \mathbb{Q}-resolution of X, and thus, using Theorem 3.5,

$$
\delta_P(f_1) = \frac{8(8 - 2 - 3 + 7)}{2 \cdot 7 \cdot 2 \cdot 3} + \frac{3 - 1}{2 \cdot 3} = \frac{9}{7}.
$$

For a computation of κ_P one needs to study the quotient $\mathcal{O}_X(3)/\mathcal{M}_{f_1}^{\text{null}}$. Notice that in the present case $\mathcal{O}_X = \mathbb{C}[x, y]^{G_7} = \mathbb{C}[x^7, y^7, x^2y]$ and $\mathcal{O}_X(3)$ is the \mathcal{O}_X-module generated by y and x^3. In order to study $\mathcal{M}_{f_1}^{\text{null}}$, consider a generic form

$$(ay + bx^5) \frac{dx \wedge dy}{f_1} \in \Omega^2_X(\text{LR}(f_1)),$$

where $a, b \in \mathcal{O}_X$ and its pull-back by a resolution of the singularity $X(7; 2, 3)$. One obtains the following:

$$(ay + bx^5) \frac{dx \wedge dy}{x(x^3 - y^2)} \quad \frac{x = u_1 \varepsilon_1^7}{y = v_1 \varepsilon_1^7}, \quad v_1 = \varepsilon_1^7 \quad \frac{v_1^4 (\bar{a} + \bar{b} u_1^3 v_1^1)}{v_1^3 u_1 u_1^3 (u_1^3 - 1)} = \frac{3}{7} \frac{d u_1 \wedge d v_1}{v_1 u_1 (u_1^3 - 1)}.
$$

(31)

Therefore $(ay + bx^5) \notin \mathcal{M}_{f_1}^{\text{null}}$ iff the function $a \in \mathcal{O}_X$ is a unit. Hence, by Definition 3.5

$$
\kappa_P(f_1) = \dim_{\mathbb{C}} \frac{\mathcal{O}_X(3)}{\mathcal{M}_{f_1}^{\text{null}}} = \dim_{\mathbb{C}} < y >_{\mathbb{C}} = 1.
$$

Finally,

$$
\Delta_P(1) = \delta_P(f_1) - \kappa_P(f_1) = \frac{2}{7}.
$$

The rest of values in Table 1 can be computed analogously. Hence one obtains:

$$
\Delta_Z(d) := \left[0, \frac{2}{7}, \frac{3}{7}, \frac{2}{7}, \frac{0}{7}, \frac{4}{7}\right]_d,
$$

and thus

$$
L_w(d) = \frac{1}{84} d^2 + \frac{1}{7} d + \left(1 - \left[0, \frac{1}{4}\right]_d - \left[0, \frac{1}{7}, \frac{1}{7}\right]_d - \left[0, \frac{4}{7}, \frac{0}{7}, \frac{2}{7}, \frac{3}{7}, \frac{2}{7}\right]_d\right).
$$

For instance, if one wants to obtain $L_w(54)$, note that $[0, \frac{1}{4}]_{54} = [0, \frac{1}{2}] = 0$, $[0, \frac{1}{7}, \frac{1}{7}]_{54} = [0, \frac{1}{4}, \frac{1}{4}] = 0$, and $[0, \frac{4}{7}, \frac{0}{7}, \frac{2}{7}, \frac{3}{7}, \frac{2}{7}]_{54} = [0, \frac{4}{7}, \frac{0}{7}, \frac{2}{7}, \frac{3}{7}, \frac{2}{7}] = \frac{4}{7}$.

Thus

$$
L_w(54) = \frac{1}{84} 54^2 + \frac{1}{7} 54 + \left(1 - \frac{3}{7}\right) = 43.
$$

REFERENCES

[1] E. Artal Bartolo, J. Fernández de Bobadilla, I. Luengo, and A. Melle-Hernández. Milnor number of weighted-Lê-Yomdin singularities. Int. Math. Res. Not. IMRN, (22):4301–4318, 2010.
[2] E. Artal Bartolo, J. Martín-Morales, and J. Ortigas-Galindo, Cartier and Weil divisors on varieties with quotient singularities. Internat. J. Math. 25 (2014), no. 11, 1450100 (20 pages).
[3] ———, Intersection theory on abelian-quotient V-surfaces and \mathbb{Q}-resolutions. J. Singul. 8 (2014), 11–30.
[4] T. Ashikaga, Toric modifications of cyclic orbifolds and an extended Zaiger reciprocity for Dedekind sums, http://www.mathsoc.jp/section/algebra/algsympt-algsympt12_files/Ashikaga.pdf.
[5] T. Ashikaga and M. Ishizaka, Another form of the reciprocity law of Dedekind sum, http://eprints3.math.sci.hokudai.ac.jp/1849/1/pre908.pdf
[6] M. Beck and S. Robins. *Computing the continuous discretely*. Undergraduate Texts in Mathematics. Springer, New York, 2007. Integer-point enumeration in polyhedra.

[7] R. Blache. Riemann-Roch theorem for normal surfaces and applications. *Abh. Math. Sem. Univ. Hamburg*, 65:307–340, 1995.

[8] C.P. Boyer and K. Galicki. *Sasakian geometry*. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2008.

[9] J-P. Brasselet, D. Lehmann, J. Seade, and T. Suwa. Milnor classes of local complete intersections. *Trans. Amer. Math. Soc.*, 354(4):1351–1371 (electronic), 2002.

[10] M. Brion. Points entiers dans les polytopes convexes. *Astérisque*, (227):Exp. No. 780, 4, 145–169, 1995. Séminaire Bourbaki, Vol. 1993/94.

[11] A. Buckley, M. Reid, and S. Zhou, *Ice cream and orbifold Riemann-Roch*, Izv. Ross. Akad. Nauk Ser. Mat. **77** (2013), no. 3, 29–54.

[12] Sheng Chen, Nan Li, and Steven V. Sam. Generalized Ehrhart polynomials. *Trans. Amer. Math. Soc.*, 364(1):551–569, 2012.

[13] J.I. Cogolludo-Agustín. Topological invariants of the complement to arrangements of rational plane curves. *Mem. Amer. Math. Soc.*, 159(756):xiii+75, 2002.

[14] J.I. Cogolludo-Agustín, J. Ortigas-Galindo, and J. Martín-Morales, *Local invariants on quotient singularities and a genus formula for weighted plane curves*, Int. Math. Res. Not. (2014), no. 13, 3559–3581.

[15] I. Dolgachev. Weighted projective varieties. In *Group actions and vector fields (Vancouver, B.C., 1981)*, volume 956 of *Lecture Notes in Math.*, pages 34–71. Springer, Berlin, 1982.

[16] E. Ehrhart. *Polynômes arithmétiques et méthode des polyèdres en combinatoire*. Birkhäuser Verlag, Basel, 1977. International Series of Numerical Mathematics, Vol. 35.

[17] F. Hirzebruch and D. Zagier, *The Atiyah-Singer theorem and elementary number theory*, Publish or Perish, Inc., Boston, Mass., 1974, Mathematics Lecture Series, No. 3.

[18] R. Laterveer. Weighted complete intersections and lattice points. *Math. Z.*, 218(2):213–218, 1995.

[19] J. Martín-Morales. *Embedded Q-Resolutions and Yomdin-Lê Surface Singularities*. PhD thesis, 2011. http://zaguan.unizar.es/record/6870.

[20] M. Oka, *Non-degenerate complete intersection singularity*, Actualités Mathématiques. [Current Mathematical Topics], Hermann, Paris, 1997.

[21] J. Ortigas-Galindo, *Algebraic and Topological Invariants of Curves and Surfaces with Quotient Singularities*. PhD thesis, 2013. https://zaguan.unizar.es/record/11738.

[22] J.E. Pommersheim. Toric varieties, lattice points and Dedekind sums. *Math. Ann.*, 295(1):1–24, 1993.

[23] H. Rademacher and E. Grosswald. *Dedekind sums*. The Mathematical Association of America, Washington, D.C., 1972. The Carus Mathematical Monographs, No. 16.

[24] J. Seade, M. Tibar, and A. Verjovsky. Milnor numbers and Euler obstruction. *Bull. Braz. Math. Soc. (N.S.)*, 36(2):275–283, 2005.

[25] J.H.M. Steenbrink. Mixed Hodge structure on the vanishing cohomology. In *Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976)*, pages 525–563. Sijthoff and Noordhoff, Alphen aan den Rijn, 1977.

[26] Lê D. Tráng. Some remarks on relative monodromy. In *Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976)*, pages 397–403. Sijthoff and Noordhoff, Alphen aan den Rijn, 1977.

[27] G. Urzúa, *Arrangements of curves and algebraic surfaces*, J. Algebraic Geom. **19** (2010), no. 2, 335–365.