Clinical Presentation and Management of Endometriosis-Related Hemorrhagic Ascites: A Case Report and Systematic Review of the Literature

Mareesol Chan-Tiopianco 1, 2, Wei-Ting Chao 3, Patrick R. Ching 4, Ling-Yu Jiang 5, 5, Peng-Hui Wang 3, 5, Yi-Jen Chen 3, 5

1. Division of Obstetrics and Gynecology, San Lazaro Hospital, Manila, PHL. 2. Department of Obstetrics and Gynecology, Manila Med – Medical Center Manila, Manila, PHL. 3. Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, TWN. 4. Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, USA. 5. Institute of Clinical Medicine, National Yang-Ming University, Taipei, TWN

Corresponding author: Yi-Jen Chen, chenyj@vghtpe.gov.tw

Abstract

This study aims to analyze the patient profile and presentation of endometriosis-related hemorrhagic ascites and review its management to raise awareness among gynecologists and improve treatment strategies. We present a case report and engage in a systematic review involving human cases of histologically proven endometriosis with hemorrhagic ascites. Keywords were searched in PubMed/MEDLINE, Cochrane Library, EMBASE, and Ovid Discovery databases from inception until December 2018. Studies that did not include a description of ascites or histopathologic results confirming endometriosis or those that involved patients with other conditions that may contribute to ascites were excluded.

The review yielded 73 articles describing 84 premenopausal women with histologically proven endometriosis-related hemorrhagic ascites. Of note, 83% (65/78) of the patients were nulliparous and 69.35% (45/62) were of African descent. The most common chief complaint was abdominal enlargement (58.33%, 49/84) but a host of other symptoms were also reported. Pleural effusion was reported in 32.14% (27/84), and elevated CA-125 was seen in 74.42% (32/43). The majority (64.29%, 54/84) of the patients underwent laparotomy, and an increasing trend of minimally invasive surgical approaches (p<0.001) and fertility-sparing techniques (p<0.001) was observed.

Introduction

Hemorrhagic ascites is a rare complication of endometriosis. The first description of endometriosis-related ascites has been attributed to Brews in 1954 [1]; however, it was not until 1957 that Charles first chronicled a case of blood-stained ascites in association with endometriosis [2]. Since then, fewer than 100 reports of hemorrhagic ascites related to endometriosis have been published in the literature.

Endometriosis-related hemorrhagic ascites may manifest with varying symptoms. Recognizing it may be difficult as it may present with similar disease processes such as malignancy, infection, cirrhosis, or trauma [3-6]. In light of this, we conducted this study to examine and elucidate the patient profiles and presentation of the disease to raise clinical awareness among gynecologists regarding the diagnosis of hemorrhagic ascites associated with endometriosis.

Case Presentation

A 34-year-old Taiwanese nulligravida woman presented to the outpatient department with a one-year history of irregular dysmenorrhea that was 5/10 in severity. She had no other associated complaints such as...
weight loss, anorexia, dyspareunia, urinary changes, or heavy menstrual bleeding. On further probing, the patient revealed having mild bloating that did not cause discomfort. Her menstruation occurred at regular monthly intervals. On physical examination, she had clear breath sounds and mildly distended flanks. Pelvic examination showed a corpus enlarged to 8-10 weeks’ size without adnexal masses or tenderness. Fullness at the cul-de-sac was palpated. Pelvic ultrasound revealed multiple small leiomyomas with massive ascites and a heterogeneous right ovarian tumor. A CT scan showed a multicystic right ovary with soft tissue seeding to bilateral paracolic gutters, omentum, and recto-uterine pouch, with massive ascites (Figures 1, 2). CA-125 was elevated (819.1 U/mL). With the working diagnosis of a possible malignant ovarian tumor, laparotomy was performed with staging surgery in mind.

Intraoperatively, 2 liters of dark-red ascitic fluid was drained (Figure 3a). Both adnexa were plastered to the posterior uterine wall. An ovarian tumor could not be identified. Friable soft tissue lesions were found on the uterine surface (Figure 3b). The cul-de-sac was obliterated. Multiple gray soft tissue nodules were scattered about the contracted omentum, mesentery, and the appendix (Figures 3c, 3d). Minimal manipulation of the pelvic organs provoked bleeding. The frozen section and final histopathological report of the implants were

FIGURE 1: Abdominal CT scan – sagittal view showing massive ascites (asterisk)

CT: computed tomography

FIGURE 2: Abdominal CT scan – axial view showing massive ascites (asterisk), right adnexal mass (arrow), and soft tissue seeding

CT: computed tomography
consistent with endometriosis. A diagnosis of stage IV endometriosis was made.

The patient had an uncomplicated postoperative course and was started on leuprolelin injections once a month for six months. After two months, a repeat ultrasound showed mild ascites (~100 mL). The patient remained otherwise asymptomatic on her monthly follow-up visits.

FIGURE 3: Operative findings

a. Hemorrhagic fluid. b. Friable soft tissue lesions on the uterine surface. c. Granular lesions on intestines, soft tissue nodules at the base of the appendix. d. Contracted omentum with numerous gray soft tissue nodules

Discussion

Methods

Literature Search Strategy

An extensive literature search of all case reports, case series, and letters to the editor was performed. PubMed/MEDLINE, Cochrane Library, EMBASE, and Ovid Discovery were searched with the keywords, "endometriosis" OR "endometriotic "OR "endometrioma" AND "ascites" OR "bloody ascites" OR "hemorrhagic ascites" OR "serosanguinous" OR "chocolate" OR "brown fluid" OR "chocolate ascites" OR "brown ascites" OR "serosanguinous ascites". Human studies involving women with biopsy-proven endometriosis published in any language were included, from inception until December 2018.
Eligibility Criteria

Studies with no available full-texts, non-histologically proven cases of endometriosis, non-hemorrhagic ascites, or those without a description of ascites were excluded. Patients with conditions that may cause ascites or hemorrhage (current tuberculosis, malignancy, other infections, ovulation induction, end-stage renal disease, HIV), history of trauma, pregnancy, were likewise excluded.

Screening and Data Extraction

Two independent reviewers (MCT and WTC) reviewed all titles and abstracts of articles obtained through the online database search. The full-text articles of abstracts that were deemed relevant were retrieved online or by manual searching. Reviewed articles were entered into a standardized data collection matrix. Information on authors, country/continent of origin, year of publication, patient characteristics such as age, parity, and ethnicity were entered into the data matrix. Chief complaint, character and volume of the ascites, interventions, intraoperative findings, severity of endometriosis, and outcomes were likewise recorded. In cases where the exact volume of ascites was not stated in a study, ascites was quantified based on the definitions from the existing literature and consensus reports [7-9]. The severity of endometriosis was recorded in each case or assessed based on intraoperative descriptions vis-a-vis the revised American Society for Reproductive Medicine (ASRM) classification of endometriosis [10].

Quality Assessment of Case Reports

MCT and WTC independently assessed the quality of individual studies based on the checklist for case reports and case series from the Joanna Briggs Institute Critical Appraisal tools for systematic reviews [11].

PRISMA Flow Diagram

The literature search strategy was summarized in a flow diagram based on the protocol laid out by the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) Statement [12] (Figure 4).

FIGURE 4: PRISMA flow diagram

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analyses
Descriptive statistics were used to report study and patient characteristics, including symptoms and peritoneal involvement. Spearman rank correlation was used. Analyses were done using the Stata software version 16.0 (StataCorp, College Station, TX).

Results

The literature search initially yielded 1,341 citations for review. After a screening based on the inclusion and exclusion criteria, 73 case reports involving 84 women of endometriosis-related hemorrhagic ascites were included in the final analysis. These were published from 1957 to 2018. The patient demographics, clinical presentation, and management as described in these reports are summarized in Table 1.

Study	Patient age (years)	Race	Parity	Chief complaint	CA-125 (U/mL)	Ascites volume (mL)	Ascites color	Pleural effusion	Surgery	Main procedure	Medical management	Recurrence	
1	31	B	0	Pain	<35	3500	H	No	Laparotomy	Biopsy	GnRH	No	
2	31	AFR	0	Diaphragm	190	8500	H	No	Laparoscopy	Biopsy, excision of peritoneum	GnRH, then COC	Yes	
3	25	C	0	Diaphragm	≥1000	H	Yes	Laparoscopy	Biopsy	GnRH, then desogestrel	No		
4	37	AFR	0	Diaphragm	5700	H	No	Laparoscopy	Biopsy	GnRH, for 3 months, then desogestrel	No		
5	33	A	0	Distension	250	6000	SS	Yes	Laparoscopy	Biopsy	GnRH, then denogestrel	Yes	
6	31	AFR	0	Distension	5300	H	Yes	Laparoscopy	Cystectomy	Biopsy	GnRH	No	
7	28	AFR	0	Weight loss	300-6	8000	H	No	Laparoscopy	Biopsy	GnRH for 6 months	Yes	
8	44	AFR	0	Meas	95.8	2900	B	No	Laparoscopy	Partial cystectomy	None	No	
9	21	A	0	Distension	4900	H	No	Laparoscopy	Biopsy	Monophasic COC	Yes		
10	21	AFR	0	Distension	600	6000	H	No	Laparoscopy	Biopsy	GnRH, then COC	No	
11	21	A	0	Distension	36.3	3500	H	No	Laparoscopy	Cystectomy	GnRH	No	
12	26	AFR	0	Distension	7800	H	No	Laparoscopy	Biopsy, peritoneal stripping	None	Yes		
13	24	1	0	Distension	<35	4500	SS	No	Laparoscopy	TAHBSO	GnRH 250mg/day for 6 weeks	Yes	
14	26	C	0	Dysemen	106	3500	H	No	Laparoscopy	Biopsy	COC	Yes	
15	36	AFR	0	Pain	1123	3500	H	No	Laparoscopy	Biopsy	GnRH + ibalona	Yes	
16	36	A	0	Dysemen	184	4300	B	No	Laparoscopy	Biopsy, excision of all lesions	None	Yes	
17	32	0	0	Distension	≥58	5500	H	Yes	Laparoscopy	Biopsy	GnRH for 6 months, then denogestrel	Yes	
18	44	0	0	Pain	>10000	≥2000	B	No	Laparoscopy	Biopsy	USG, cystectomy	NR	No
19	35	A	0	Dysemen	22	5300	H	No	Laparoscopy	Biopsy	GnRH, then denogestrel 2 mg PO OD	Yes	
20	34	AFR	0	Distension	4900	H	No	Laparoscopy	Biopsy	GnRH for 6 months	No		
21	36	A	0	Distension	2066	3500	H	No	Laparoscopy	Bilateral cystectomy	GnRH	No	
22	22	AFR	0	Dysemen	61	2700	B	Yes	Pancaresectomy	Biopsy	GnRH, then DMFA	No	

Ovarian mass
22	Akhila et al., 2012 [32]	26	AFR	0	Cough	72.5	<1500	H	Yes	Laparotomy excision	GnRH 3.6 mg	No
24	Akramradeh et al., 2012 [24]	22	AFR	0	Distension	5900	H	No	Laparotomy Biopsy	Danazol	Yes	
25	Queiroz et al., 2011 [35]	36	C	0	Infertility	73	1500	H	No	Laparoscopy Cystectomy	COC	
26	Queiroz et al., 2011 [35]	30	AFR	0	Infertility	192	13000	B	Yes	Laparoscopy Biopsy	GnRH, then GnRH + COC	
27	Shabani et al., 2012 [26]	40	4	Distension	<35	3000	B	No	Laparoscopy Biopsy	GnRH for 6 months	Yes	
28	Shabani et al., 2012 [26]	30	2	Distension	96	<1500	B	No	Laparotomy SubTAH + BSO	None	No	
29	Shabani et al., 2012 [26]	28	0	Distension	<80	H	No	Laparotomy TAHBISO	None	Yes		
30	Ferreira and Remorgida, 2011 [37]	36	Distension	88.4	4800	H	No	Laparoscopy Biopsy, excision of nodules	Norethindrone acetate 3.5 mg PO OD	No		
31	Cordeiro-Freitas et al., 2011 [26]	28	AFR	0	Distension	<35	9400	H	No	Laparoscopy Biopsy	GnRH for 3 months, then COC	No
32	Souchella et al., 2010 [38]	36	1	Ascites	<5000	8300	COC	No	Laparoscopy TAHBISO	None	No	
33	Ignacio et al., 2010 [41]	36	AFR	0	Distension	30	7500	B	Yes	Laparoscopy Cystectomy	GnRH + add-back therapy	No
34	Day et al., 2008 [41]	24	0	Pain	2500	H	No	Laparoscopy Biopsy	GnRH	Yes		
35	Park et al., 2009 [42]	34	0	Pain	548.1	2900	B	No	Laparoscopy USD	GnRH + tibolone add-back therapy for 6 months	No	
36	Lohda et al., 2009 [43]	30	AFR	0	Distension	4900	H	No	Laparoscopy Biopsy	COC	No	
37	Uzula et al., 2008 [44]	23	C	0	Dysm	1500	H	Yes	Laparoscopy Biopsy	GnRH + intermittent steroids	Yes	
38	Uzula et al., 2008 [44]	26	C	0	Pain	2900	H	No	Laparoscopy USD	GnRH	Yes	
39	Sait, 2006 [45]	26	AFR	0	Distension	2140	5900	H	No	Laparoscopy Bilateral cystectomy	GnRH for 6 months, then COC	No
40	Santos et al., 2007 [46]	40	C	0	Pain	≤2500	SS	No	Laparotomy Biopsy	None, mortality	No	
41	Palayekar et al., 2007 [47]	46	AFR	1	Distension	35.6	4900-6000	H	No	Laparoscopy TAHBISO	None	No
42	Goumenou et al., 2004 [2]	46	C	0	Dysm	1504	4800	H	Yes	Laparoscopy TAHBISO	None	No
43	Rayal et al., 2005 [40]	30	0	Distension	2540	<1000	B	No	Laparoscopy USO	NR	No	
44	Elouali et al., 2005 [41]	28	AFR	0	Infertility	19000	H	No	Laparoscopy Biopsy	GnRH	Yes	
45	Furtar et al., 2005 [33]	33	AFR	0	Infertility	207	4900	SS	Yes	Laparoscopy Cystectomy	GnRH	Yes
46	Zeppa et al., 2004 [51]	34	0	Pain	530	H	No	Paracentesis	Paracentesis	NR	No	
47	Francis et al., 2002 [52]	2	Dysm	<35	≤2000	B	Yes	Laparotomy TAHBISO	None	No		
48	Cheong and Lim, 2003 [53]	40	A	1	Distension	<35	5800	H	Yes	Laparotomy Biopsy	NR	No
49	Murthi and Mitchell, 2002 [34]	37	AFR	0	Dysm	<35	≤2000	B	Yes	Laparoscopy TAHBISO	GnRH	Yes
50	Dias et al., 2000 [55]	41	AFR	0	Distension	19000	B	No	Laparoscopy USO	GnRH for 6 months	Yes	
51	Bhopawala et al., 2000 [32]	34	AFR	0	Distension	8900	B	Yes	Laparoscopy TAHBISO	None	No	
52	El Khalf et al., 1999 [37]	36	Distension	8900	H	No	Laparoscopy Biopsy	COC	Yes			
53	Samore-Meta and Feste, 1998 [36]	43	C	3	Pain	2900	B	No	Laparoscopy TAHBISO	None	No	
54	Fletcher et al., 1998 [36]	27	AFR	1	Distension	8900	B	No	Laparoscopy Biopsy	GnRH monthly for 6 months	No	

Danazol 600 mg PO daily for 6
Page	Author(s)	Study Type	Follow-up	Treatment	Primary Outcome	Comments						
53	Muneyyirci-Delale et al., 1986 [42]	25	AFR	Pain	6-12	Laparotomy	Bilateral cystectomy	3 months, then norethindrone acetate	Yes			
54	Muneyyirci-Delale et al., 1986 [42]	31	AFR	Shortness of breath	10000	B	Yes	Laparotomy	TAHBSO	None	Yes	
55	Muneyyirci-Delale et al., 1986 [42]	32	AFR	Distension	4900	H	No	Laparotomy	Ovarian wedge resection	Gr-RH	No	
56	Muneyyirci-Delale et al., 1986 [42]	35	AFR	Dyse	366	3000	H	No	Laparotomy	Adrenal mass reaction	Gr-RH for 6 months, then norethindrone acetate	No
57	Mejia et al., 1987 [41]	44	AFR	Distension	25	10000	H	No	Laparotomy	TAHBSO	None	Yes
58	Flanagan and Barnes, 1986 [42]	30	AFR	Distension	49	2000	B	Yes	Laparotomy	USO, ovarian wedge resection	Gr-RH	Yes
59	el-Hawsh, 1985 [52]	32	AFR	Distension	118	4500	B	Yes	Laparotomy	TAHBSO	Gr-RH 4 monthly for 6 months	No
60	Schlueter and McClennan, 1994 [54]	20	AFR	Distension	5900	H	No	Laparotomy	Biopsy	Gr-RH monthly	No	
61	Jose et al., 1984 [52]	20	A	Distension	5900	B	Yes	Laparotomy	USO	Descemet 300 mg TID	No	
62	London and Parham, 1986 [42]	29	AFR	Distension	3000	B	No	Laparotomy	TAHBSO	None	No	
63	Chen et al., 1990 [57]	20	A	Distension	46	5800	B	Yes	Laparotomy	USO	Danazol 400 mg PO daily + Duphaston 10 mg PO OD for 6 months	No
64	Toviere et al., 1990 [64]	31	Pain	8000	B	No	Laparotomy	USO	NR	No		
65	Yu and Grimes, 1981 [54]	26	A	Pain	3000	H	Yes	Laparotomy	USO	Gr-RH for 6 months	No	
66	Hattori et al., 1993 [70]	50	A	Distension	36	3800	B	No	Laparotomy	TAHBSO	MPA	Yes
67	Taub et al., 1989 [3]	32	AFR	Distension	2400	H	Yes	Laparotomy	BSO	DMPA	No	
68	Olubuyide et al., 1988 [71]	19	AFR	Distension	4900	H	No	Laparotomy	Biopsy	Norethisterone acetate 5 mg PO TID for 1 week, then 10 mg BID	No	
69	Chicharzon and Wettaveakklasert, 1989 [72]	31	E	Distension	1800	H	No	Laparotomy	TAHBSO	DMPA	Yes	
70	Iwaseka et al., 1988 [72]	35	A	Distension	17	2500	B	No	Laparotomy	TAHBSO	None	No
71	Iwaseka et al., 1988 [72]	25	A	Pain	150	H	No	Laparotomy	USO, Ovarian wedge resection	Descemet 400 mg PO daily for 3 months	No	
72	Mehnemboo et al., 1985 [74]	24	AFR	Distension	6800	H	No	Laparotomy	Biopsy	DMPA IM q2 weeks for 5 months	No	
73	Halme et al., 1985 [73]	23	AFR	Distension	7300	SS	No	Laparotomy	Biopsy	Descemet 400 mg PO BID	No	
74	Jenks et al., 1984 [74]	23	AFR	Distension	5200	H	No	Laparotomy	TAHBSO	None	No	
75	Gauker et al., 1983 [77]	22	AFR	Pain	≥2050	B	Yes	Laparotomy	Ovarian resection	Descemet	No	
76	Chehrevar et al., 1981 [74]	20	E	Distension	1500	B	No	Laparotomy	BSO	None	No	
77	Chehrevar et al., 1981 [74]	26	AFR	Distension	4900	B	No	Laparotomy	BSO	Descemet 400 mg daily for 10 months	No	
78	Iwanit et al., 1974 [74]	32	AFR	Distension	2500	H	Yes	Laparotomy	TAHBSO	None	No	
79	Collier et al., 1983 [83]	34	EFR	Distension	4900	B	No	Laparotomy	TAHBSO	None	Yes	
80	Bennetson et al., 1986 [81]	29	AFR	Distension	3900	B	No	Laparotomy	TAHBSO	None	No	
TABLE 1: Case reports of endometriosis-related hemorrhagic ascites

A: Asian; AFR: of African descent; B: brown/dark brown/brownish/chocolate-colored; BS: bilateral salpingo-oophorectomy; BSO: bilateral salpingo-oophorectomy; C: Caucasian; COC: combined oral contraceptive pills; coffee: coffee-colored; distension: abdominal distension; DMPA: depot medroxyprogesterone acetate; Dysm: dysmenorrhea; GnRH: gonadotropin-releasing hormone agonists; H: hemorrhagic/bloody; mass: abdominal mass; MPA: medroxyprogesterone acetate; pain: abdominal pain; SS: serosanguinous/blood-stained/haemoserous; TAHBSO: total abdominal hysterectomy with bilateral salpingo-oophorectomy; USO: unilateral salpingo-oophorectomy; RSO: right salpingo-oophorectomy

Patient characteristics are shown in Table 2. The mean age of the patients at diagnosis was 31.16 years (SD: 6.57; range: 19-50). There was no relationship between the year of publication/presentation and age (p=0.193) or age distribution (p=0.600).

TABLE 2: Endometriosis-related hemorrhagic ascites – patient characteristics

SD: standard deviation

Characteristics	Values
Age, years, mean (SD)	31.16 (6.57)
Age range, years	19-50
Age distribution, number (%), N=82	
<20 years	1 (1.22)
20-29 years	31 (37.80)
30-39 years	40 (48.78)
40-49 years	9 (10.98)
≥50 years	1 (1.22)
Parity, number (%), N=78	
Nulliparous	65 (83.33)
Parous	13 (16.67)
Race distribution, number (%), n=62	
African	43 (69.35)
Asian	10 (16.13)
Caucasian	9 (14.52)
Ascitic fluid volume, mL, mean (SD)	4228.27 (2625.66)

The most common presenting symptom was abdominal distension (Table 1). Other initial complaints reported by patients are presented in Table 3. The majority (91.67%, 77/84) of the symptoms were gradual in onset. Pleural effusion was reported in 32.14% (27/84) of cases. The ascitic fluid was predominantly massive with a mean volume of 4228.27 mL (SD: 2625.66; range: 100-10000). CA-125 was elevated in 52 out of 45 patients, with a median value of 86 U/mL (range: 17-10000 U/mL).
Symptom	Number (%)
Abdominal distension	66 (78.57)
Dysmenorrhea	47 (55.95)
Abdominal pain	28 (33.33)
Weight loss	18 (21.43)
Primary infertility	17 (20.24)
Nausea and/or vomiting	13 (15.48)
Anorexia	11 (13.10)
Dyspnea	9 (10.71)
Deep dyspareunia	6 (7.14)
Fatigue/malaise	6 (7.14)
Chronic pelvic pain	5 (5.95)
Constipation	5 (5.95)
Shortness of breath	4 (4.76)
Early satiety	4 (4.76)
Cough	3 (4.57)
Dyschezia	3 (3.57)
Menorrhagia	3 (3.57)
Right-sided chest discomfort	3 (3.57)
Weight gain	2 (2.38)
Loose stools	2 (2.38)
Dysuria	2 (2.38)
Orthopnea	1 (1.19)
Abdominal mass	1 (1.19)
Thoracic pain	1 (1.19)

TABLE 3: Symptoms of hemorrhagic ascites associated with endometriosis (N=84)

Moderate to severe endometriosis (ASRM stage III to IV) was seen in 97.44% (76/78) of the cases, and adhesions were described in 78.05% (64/82). In 43.90% (36/82) of the cases, an ovarian cyst was identified; 11.11% (4/36) of the cases were ruptured. Peritoneal implants scattered about the abdominopelvic cavity in 42.68% (35/82), while peritoneal nodules were seen in 20/82 (24.39%). Other abdominopelvic areas involved are shown in Table 4.
At the time of presentation, 64.29% (54/84) underwent laparotomy, and laparoscopy was performed in 33.33% (28/84). Two cases (2/84) had paracentesis. Almost half (44.05%, 37/84) of the cases had repeat abdominal surgeries, while 76.19% (64/84) required multiple procedures that included repeat abdominal surgeries (laparoscopy and/or laparotomy), paracentesis, thoracostomy, or thoracotomy. On the other hand, less invasive surgical approaches (p<0.001) and fertility-sparing procedures (p<0.001) are observed to be increasingly favored in recent years.

A cure was reported in 95.45% (21/22) who went through definitive surgery via hysterectomy with bilateral salpingo-oophorectomy. Medical treatment was not given to 68.18% (15/22) after surgery. Four patients tolerated stripping or excision of the peritoneum of all endometriotic implants with no recurrence. Two of these received no additional medical therapy.

Patients who were offered medical therapy post-surgery received gonadotropin-releasing hormone (GnRH) agonists (63.79%, 37/58), either alone, with add-back therapy, or as a preliminary treatment that was eventually transitioned to either a progestogen or a combined oral contraceptive (COC) pill. In 86.49% (32/37) who received GnRH agonists, no recurrences were observed. Other therapies included danazol (13.79%, 8/58), progestogens alone (10.34%, 6/58), or COC alone (10.34%, 6/58). The cure rate with danazol was 100% (eight out of eight), while COC and progestogens were equally effective, each with an 83.33% (five out of six) cure rate.

The recurrence rate observed at the time of presentation or after initial management was 36.90% (31/84), while that after definitive surgery and/or ovarian function suppression was 8.33% (7/84). Five of these cases reported significant ascites upon the cessation of GnRH therapy [35,49,50,62] or upon shifting from GnRH to progestogen therapy [15]. The other two had reaccumulating minimal ascites while on oral COC [35] or oral progestogen [70]. Of note, 71.42% (five out of seven) of recurrences had undergone ovary-preserving procedures (oophorocystectomy or biopsy) prior to medical therapy. Mortality was reported in one case. The Median follow-up period was eight months.

Analysis

Very little is known about the pathogenesis of endometriosis-related hemorrhagic ascites. One putative mechanism is peritoneal irritation from the rupture of ovarian cysts. The endometrial cells from this spillage propagate the spread of implants in the pelvic cavity and cause inflammation, which in turn leads to adhesions and ascites [81]. This theory assumes the presence of ovarian cysts. However, in this review, less than half of the study population were found to have ovarian endometriotic cysts, and only four out of 36 of these cysts were ruptured. Alternative hypotheses such as alterations in vascular permeability, lymphatic channel obstruction, as well as individual variations in susceptibility to the disease may be explored [44,49,83,84].

The rubor of ascites may be due to increased angiogenesis seen in endometriosis. Erosions from affected friable soft tissue, serosal, peritoneal surfaces, and implants cause micro-bleeding or frank bleeding, leading to the hemorrhagic character of ascites [49,84]. Pleural effusions associated with the hemorrhagic ascites may be due to several mechanisms. However, based on the presentation of massive ascites in the majority of cases, the most plausible cause is anatomic defects in the diaphragm that allow for the passage of hemorrhagic fluid into the pleural space [85,86].
Endometriosis-related hemorrhagic ascites may affect any woman of reproductive age but is more common in women in their twenties and thirties, without any significant increase or decrease with respect to the age of onset. This finding differs from what was previously described [44]. Many patients may seek a consult for abdominal distension or symptoms secondary to abdominal distension such as pain or pulmonary discomfort in the background of dysmenorrhea or worsening dysmenorrhea. Dysmenorrhea accounted for only 5.9% (5/84) of the chief complaints in this review but is most commonly elicited on history as an accompanying symptom. Massive ascites usually predominate in clinical evaluation.

The utility of CA-125 in the diagnosis of this condition is arguable due to its non-specificity. While the majority presented with CA-125 >35 U/mL, similarly increased levels have been described in various benign gynecologic diseases [87]. Mesothelial cells that line the peritoneum secrete CA-125. Since mesothelial hyperplasia and hypertrophy are associated with endometriosis, CA-125 release is greater, and hence elevated in this condition. However, the same holds true for other diseases of the peritoneum such as malignancy and tuberculosis [84,88,89]. Its clinical use, therefore, is limited to determining whether a patient has peritoneal disease in general.

Management of the condition relies critically on establishing a histologic diagnosis. Surgery is thus warranted, although several studies have achieved cytological confirmation through paracentesis [52,51]. With the case presented, a clinically presumptive diagnosis of ovarian cancer was made, which led to the decision to perform a laparotomy. This is supported by studies on ovarian cancer [90]. However, with the availability of minimally invasive techniques and increasing technical confidence among surgeons, there is a growing trend favoring their use in the management of potentially malignant ovarian tumors [90,91]. The current recommendation for laparoscopy in suspected ovarian tumors is to establish a histologic diagnosis through a frozen section and, if tumors are found malignant, to assess their resectability [91-93]. Since it is difficult to differentiate it from a malignant etiology, surgical management of endometriosis-related hemorrhagic ascites may follow this approach.

Moderate to severe (ASRM stage III to IV) endometriosis almost always presents intraoperatively and with adhesions and implants in the abdominopelvic cavity. Peritoneal involvement can be related to small implants, nodules, or varying degrees of adhesions. Thus, the presence of hemorrhagic ascites, as seen in 97.44% of cases and in the index case, may correlate with the severity of endometriosis.

Since the ascites in this review was found mostly in moderate to severe endometriosis, it seems logical to follow the principles of endometriosis treatment. Termination or suppression of ovarian function is the cornerstone of management. The importance of this cannot be overemphasized as many women undergo multiple surgeries for recurrence or for the treatment of an existing endometriosis. Surgical sterility via hysterectomy with removal of bilateral ovaries is the definitive form of management [19,36,59,61,63,68]. However, fertility-sparing surgeries are currently performed in patients who wish to realize their reproductive potential.

Medical therapy consists of GnRH agonists, which have been used with success in achieving ovarian suppression. Danazol, progestogens, and COC pills are likewise given as primary treatment or upon completion of GnRH agonist therapy for long-term control of the disease. Danazol, an antigonadotropic, anti-estrogenic synthetic steroid, is effective in suppressing ovarian function. However, its various androgenic effects preclude its use [94,95]. In the majority of cases and especially in more recent studies, GnRH agonists have been used more frequently. These are effective in achieving ovarian suppression and increasing fertility rates but their side effect profile limits their long-term use [94,95]. Progestogens and COC pills were effective as medical treatments in this review, but current evidence has failed to demonstrate any benefit of COC in managing pelvic pain in endometriosis [96]. On the other hand, oral medroxyprogesterone acetate has been shown to be effective in decreasing chronic pelvic pain [97]. Other medications of interest are the levonorgestrel-releasing intrauterine system and mifepristone, which were not used in the studies included in this review. Nonetheless, their clinical utility may be explored as these have been shown to be effective in suppressing the menstrual cycles and relieving pain associated with endometriosis [98,99].

Conclusions

Hemorrhagic ascites is a rare manifestation of endometriosis that can present in any premenopausal woman. The most common initial complaint is abdominal distension, but a host of other symptoms may also be associated with the condition. Diagnosis can be challenging because it mimics several disease entities that cause ascites, thus warranting a heightened clinical suspicion. Minimally invasive techniques may be employed to establish a histologic diagnosis. Recognition of hemorrhagic ascites as a manifestation of severe endometriosis is essential for recurrence prevention, which should prompt therapies directed at suppressing ovarian function. Ovary-preserving surgeries are preferred because affected women are of childbearing age. Recurrence is low after appropriate surgical and medical interventions.

Additional Information

Disclosures
Acknowledgements

Access to databases and procurement of journal article copies were made possible through the Taipei Veterans General Hospital Medical Library, the University of Maryland Medical Center Midtown Campus Medical Staff Library, and Dr. Howard H. Lee. Assistance for the translation of foreign articles was provided by Mr. Andre Anton A. Altea and Dr. Maria Patricia Medina-Kiziler. Many thanks to the various authors of the included studies and to those whose correspondences proved valuable in the creation of this paper.

References

1. Brews A: Endometriosis including endometriosis of the diaphragm and Meigs' syndrome. Prog R Soc Med. 1954, 47:461.
2. Charles D: Endometriosis and hemorrhagic pleural effusion. Obstet Gynecol. 1957, 10:509-12.
3. Goumenous A, Matalliotakis I, Mahutte N, Koumantakis E: Endometriosis mimicking advanced ovarian cancer. Fertil Steril. 2006, 86:219. 10.1016/j.fertnstert.2005.12.044
4. Myers TJ, Arena B, Granai CO: Pelvic endometriosis mimicking advanced ovarian cancer: presentation with pleural effusion, ascites, and elevated serum CA 125 level. Am J Obstet Gynecol. 1995, 173:566-7. 10.1016/0002-9378(95)90581-x
5. Urrumaga NH, Singal AG, Cuthbert JA, Rockey DC: Hemorrhagic asciites. Clinical presentation and outcomes in patients with cirrhosis. J Hepatol. 2015, 58:1113-8. 10.1002/hep.27961
6. Taub WH, Rosado S, Kalaycigolu M, Booher D, Barnes DS: Hemorrhagic ascites secondary to endometriosis. J Clin Gastroenterol. 1989, 11:458-60. 10.1097/0002-9378(1989)11<458::AID-JCG320110602>3.0.CO;2-4
7. Goldberg BB, Goodman GA, Clearfield HR: Evaluation of ascites by ultrasound. Radiology. 1970, 96:15-22. 10.1148/96.1.15
8. Moore KP, Wong F, Gines P, et al.: The management of ascites in cirrhosis: report on the consensus conference of the International Ascites Club. Hepatology. 2003, 38:258-66. 10.1001/jhep.2003.50315
9. Moore CM, Van Thiel DH: Cirrhotic ascites review: pathophysiology, diagnosis and management. World J Hepatol. 2015, 3:251-63. 10.4245/wjh.v5.i5.251
10. No authors listed: Revised American Society for Reproductive Medicine classification of endometriosis. 1996. Fertil Steril. 1997, 67:817-21. 10.1016/S0015-0282(97)81391-X
11. Moola S, Munn Z, Tulanaru C, et al.: Systematic reviews of etiology and risk. JBI Manual for Evidence Synthesis. Aromataris E, Munn Z (ed); The Joanna Briggs Institute, Adelaide, Australia; 2016: 5:20-30. 10.46658/JBIMES-20-08
12. Page MJ, McKenzie JE, Bossuyt PM, et al.: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021, 372:n71. 10.1136/bmj.n71
13. Soymaz Z, Bacanagil BH, Kaya S, et al.: An uncommon presentation of endometriosis a case report. J Reprod Med. 2018, 63:517-8.
14. Mendes S, Carvalho C, Rodrigues G, Barata S, Calbax-Jorge C, Onório F: Successful treatment of endometriosis-related hemorrhagic ascites: a report of three cases. Surg Technol Int. 2018, 34:150-5.
15. Walker PJ, Johnson NP: Benign endometriosis masquerading as an intra-abdominal malignancy: one of the most extreme cases reported and a review of the literature. J Endometr Pelvic Pain Disord. 2018, 10:174-7. 10.1177/2284026518780820
16. O’yandjo AM, Bosenge NJD, Kadima NJ: Umbilical nodeule and hemorrhagic ascites of endometriosis origin: a clinical case report. Gynecol Obstet Case Rep. 2018, 4:62. 10.21767/2471-8165.1000062
17. Magálaháes TF, Augusto KL, Mota LP, Costa ARD, Punter RA, Bezerra LRPS: Ascites and encapsulating peritoneitis in endometriosis: a systematic review with a case report. Rev Bras Ginecol Obstet. 2018, 40:147-55. 10.15955/s-0038-1626700
18. Petrozzellini C, Abdalla S, Oke T: The many guises of endometriosis: giant abdominal wall endometriosis masquerading as an incisional hernia. Int J Fertil Steril. 2018, 11:321-5. 10.20274/ijfs.2018.5126
19. Pereira N, Gunalna V, Palermo GD, Elias RT: Laparoscopic management of severe endometriosis-related hemorrhagic ascites. J Minim Invasive Gynecol. 2018, 25:8-9. 10.1016/j.mini.2017.05.010
20. N’Guesso E, Kouame N, Dia JM, Gbili F, Guié P, Anongba S: Endometriosis revealed by recurrent hemorrhagic ascites. Open J Obstet Gynecol. 2017, 7:1160-5. 10.4236/ojog.2017.712117
21. Varun N, Tanwar RT: A rare presentation of endometriosis with massive haemorrhagic ascites: a case report. Gynecol Obstet Case Rep. 2016, 3:1. 10.21767/2471-8165.1000047
22. Dun EC, Wong S, Lakhi NA, Nehzat CH: Recurrent massive ascites due to mocc endometriosis. Fertil Steril. 2016, 106:e14. 10.1016/j.fertnstert.2016.07.1119
23. Hinduja L, Kapadia K, Udawadia F, Bilawadikar R, Adhe A, Zaveri K: Unusual presentation of endometriosis with haemorrhagic ascites - a case report. J Obstet Gynaecol India. 2016, 66:135-4. 10.3109/004445516.2015.1053605
24. Setubal A, Sidropoulou Z, Soares S, Barbosa C: Endometriosis and ascites: a strategy to achieve pregnancy. J Minim Invasive Gynecol. 2015, 22:1104-8. 10.1016/j.jmig.2015.05.015
25. Bignall I, Arambage K, Vinuplia S: Endometriosis: a rare and interesting cause of recurrent haemorrhagic...
ascites. BMJ Case Rep. 2014, 2014:bcr2014010052. 10.1136/bcr-2013-010052
26. Cosma S, Ceccaroni M, Benedetto C: A pseudoneoplastic finding of deep endometriosis: laparoscopic triple segmental bowel resection. Videochir Imne Tech Maloinwazyne. 2014, 9:465-7. 10.5114/vitm.2014.41617
27. Apudemis PS, Ijeb N, Ozoakiri HT, Kara E, Govereal T: Endometriosis associated with relapsing ascites and pleural effusions. J Obstet Gynaecol. 2015, 35:419. 10.3109/01443615.2014.94825
28. Park CM, Kim SY: Rupture of an endometrioma with extremely high serum CA-125 level (> 10,000 IU/ml) and ascites resembling ovarian cancer. Eur J Gynaecol Oncol. 2014, 35:469-72.
29. Asano R, Nakazawa T, Hirahara H, Sakakihara H: Dimogest was effective in treating hemorrhagic ascites caused by endometriosis: a case report. J Minim Invasive Gynecol. 2014, 21:1110-2. 10.1016/j.jmig.2014.03.014
30. Appleby R, Saroya H, Postgate A, Meert Z: A young woman with abdominal distension. BMJ Case Rep. 2014, 2014:bcr2014203726. 10.1136/bcr-2014-203726
31. Mumtahana F, Jiao I, Cui B: A rare presentation of endometriosis with recurrent massive hemorrhagic ascites which can mislead. Int J Women's Health Repro Sci. 2014, 2:50-4. 10.15296/iwjhr.2014.05
32. Packard LK, Adamson GD: Endometriosis presenting with massive ascites and pleural effusion: a case report. J Endomet Pelvic Pain Disord. 2013, 5:125-5. 10.5301/je.500162
33. Akinola RA, Akinola OA, Alakija A, Wright KO: Widespread endometriosis mimicking ovarian malignancy: a case report. Niger Postgrad Med J. 2012, 19:46-9.
34. Akintonmide AO, Basssey DB, Ekamene EI, Omotosho AI: Omental endometriosis: a rare site and an unusual association with ovarian fibroma and haemorrhagic ascites. A case report and review of the imaging techniques. IOSR JDMS. 2012, 2:22-6. 10.9790/0853-021226
35. Queirós A, Correia L, Pinto G, Rosa D, Silva G, Simões T: Endometriosis with hemorrhagic ascites: two cases report (Article in Portuguese). Rev Iberoma Fert Rep Hum. 2011, 28:141-5.
36. Shabeerali TU, Rajan R, Runurilla AP, et al.: Hemorrhagic ascites: are we missing endometriosis?. Indian J Gastroenterol. 2012, 31:195-7. 10.4103/0114-6577.94752
37. Ferrero S, Remorgida V: Endometriosis presenting with hemorrhagic ascites. Arch Gynecol Obstet. 2011, 283:1429-30. 10.1007/s00404-010-1796-5
38. Cordeiro Fernandes LF, Podgaec S, Castro Cotti GC, Abrams MS: Severe endometriosis may be considered in the differential diagnosis in young women presenting massive hemorrhagic ascites. Gynecol Surg. 2011, 8:459. 10.1007/s10397-011-0690-8
39. Suchetha S, Bema P, Mathew AP, Sebastian P: Endometriosis with massive hemorrhagic ascites. Indian J Cancer. 2010, 47:224-5. 10.4103/0019-509X.63004
40. Igancio MM, Joseph N, Helder F, Mamourou K, Arnaud W: Massive ascites, pleural effusion, and diaphragmatic implants in a patient with endometriosis. Eur J Obstet Gynecol Reprod Biol. 2010, 149:117-8. 10.1016/j.ejogrb.2009.10.017
41. Day T, Hui K, Perkins S, Pelletier P: Ascites and ileus due to endometriosis. J Pelvic Med Surg. 2009, 15:471-5. 10.1097/SPV.0b013e318181c6e0b
42. Park BJ, Kim TE, Kim YW: Massive peritoneal fluid and markedly elevated serum CA125 and CA19-9 levels associated with an ovarian endometrioma. J Obstet Gynaecol Res. 2009, 35:955-9. 10.1111/j.1447-0756.2009.01122.x
43. Lodha A, Klein T, Elish D, Tarkovsky R: Endometriosis: a rare presentation as hemorrhagic ascites. Pract Gastroenterol. 2008, 52:48-9.
44. Ussia A, Betsas G, Corona R, De Circo C, Koninckx PR: Pathophysiology of cyclic hemorrhagic ascites and endometriosis. J Minim Invasive Gynecol. 2008, 15:677-81. 10.1016/j.jmig.2008.08.012
45. Sait KH: Massive ascites as a presentation in a young woman with endometriosis: a case report . Fertil Steril. 2008, 90:2015. 10.1016/j.fertnstert.2008.07.021
46. Santos VM, Barbosa ER Jr, Lima SH, Porto AS: Abdominal cocoon associated with endometriosis. Singapore Med J. 2007, 48:e240-2.
47. Palayekar M, Jenci J, Carlson JA Jr: Recurrent hemorrhagic ascites: a rare presentation of endometriosis. Obstet Gynecol. 2007, 110:521-2. 10.1097/01.AOG.0000668283.95115.58
48. Baykal C, Arioglu P, Kalayci M, Ozkan F, Cetinkaya N, Ficicioglu C: Giant endometrioma mimicking ovarian carcinoma: case report. Turk J Obstet Gynecol. 2006, 5:536-8.
49. Ekoukou D, Guillerme R, Desligneres S, Rotten D: Endometriosis with massive hemorrhagic ascites: a case report and review of the literature (Article in French). J Gynecol Obstet Biol Reprod. 2005, 34:531-9. 10.1016/s0366-2355(05)82841-8
50. Fortier D, Dedeker F, Gabriele M, Graesslin O, Baraza G: Endometriosis with ascites and pleural effusion: a case report (Article in French). Gynecol Obstet Fertil. 2005, 33:508-10. 10.1016/j.gyobfe.2005.05.014
51. Zeppa P, Vettraini A, Cozzolino L, Palombini L: Endometrial glands in ascites secondary to endometriosis. Diagn Cytopathol. 2004, 50:151-2. 10.1002/dc.10590
52. Francis M, Badero OO, Diagon J, Lee YC, Abulafia O: Pericardial effusion, right-sided pleural effusion and ascites associated with stage IV endometriosis. A case report. J Reprod Med. 2005, 48:463-5.
53. Cheong EC, Lim DT: Massive ascites–an uncommon presentation of endometriosis . Singapore Med J. 2003, 44:98-100.
54. Moffatt SD, Mitchell ID: Massive pleural endometriosis. Eur J Cardiothorac Surg. 2002, 22:231-3. 10.1016/s1010-7940(02)00277-4
55. Dias CC, Andrade JM, Ferriani RA, Villanova MG, Meirelles RS: Hemorrhagic ascites associated with endometriosis. A case report. J Reprod Med. 2000, 45:688-90.
56. Bhosjwalla J, Heller DS, Cracchiolo B, Sama J: Endometriosis presenting as bloody pleural effusion and ascites-report of a case and review of the literature. Arch Gynecol Obstet. 2000, 264:39-41. 10.1007/s00007-0848
57. El Khalili T, Mourad FH, Barada K, Uthman S: Massive hemorrhagic ascites secondary to endometriosis. J Clin Gastroenterol. 1999, 29:544-5. 10.1097/00004836-199909000-00010
58. Samora-Mata J, Feste JR: Endometriosis ascites: a case report . JNFLS. 1999, 3:229-31.
59. Fletcher H, McFarlane M, Shirley SE, Clarke WF, Lyon K: Massive ascites secondary to severe endometriosis.
West Indian Med J. 1999, 48:158-9.
60. Muneyyirici-Delale O, Neil G, Serur E, Gordon D, Maiman M, Sedlis A: Endometriosis with massive ascites. Gynecol Oncol. 1998, 69:42-6. 10.1006/gyno.1998.4953
61. Meija EM, Alvarez OA, Lee M: Endometriosis with massive bloody ascites. J Am Board Fam Pract. 1997, 10:59-61.
62. Flanagan KL, Barnes NC: Pleural fluid accumulation due to intra-abdominal endometriosis: a case report and review of the literature. Thorax. 1996, 51:1062-3. 10.1136/thx.51.10.1062
63. el-Newhi MI, Antaki JP, Rajan S, Reynolds TD: Large bloody ascites in association with pelvic endometriosis: case report and literature review. Am J Gastroenterol. 1995, 90:632-4.
64. Schlüeter PJ, McClenahan BL: Massive ascites and pleural effusions associated with endometriosis. Abdom Imaging. 1994, 19:472-6. 10.1007/BF02069495
65. Jose R, George SS, Seshadri L: Massive ascites associated with endometriosis. Int J Gynaecol Obstet. 1994, 44:287-8. 10.1006/ijgo.1994.0085-6
66. London S, Parnell T: Endometriosis and ascites. South Med J. 1995, 88:1175-5. 10.1097/00007611-199510000-00022
67. Chen FF, Chow NH, Chou CY, Lin MF: Hemorrhagic ascites associated with endometriosis: a rare clinical presentation. J Gynecol Surg. 1992, 8:435-7. 10.1089/gyn.1992.8.43
68. Tulev IuV, Lishchuk VD, Kolosov AE: Ascites as a manifestation of generalized endometriosis (Article in Russian). Vestn Khir Im I I Grek. 1990, 145:48-50.
69. Yu J, Grimes DA: Ascites and pleural effusions associated with endometriosis. Obstet Gynecol. 1991, 78:533-4.
70. Hattori S, Tamakoshi K, Oguchi H, Kodama H: A case of endometriosis with massive ascites (Article in Japanese). Nihon Sanka Fujinka Gakkai Zasshi. 1990, 42:291-2.
71. Oladehioye IO, Adehain AO, Adefeyi JA, Solarke TF: Massive ascites associated with endometriosis in a Nigerian African. Int J Gynaecol Obstet. 1988, 27:459-41. 10.1016/0020-7292(88)90127-0
72. Chicharon SB, Watanakunknirun S: Endometriosis with ascites. Acta Obstet Scand. 1988, 67:187-7. 10.1080/0001634809014198
73. Iwasaka T, Okuma Y, Yoshimura T, Kidera Y, Sugimori H: Endometriosis associated with ascites. Obstet Gynecol. 1988, 66:725-5.
74. Narayansingh V, Raaj GC, Ratan P, Wong J: Massive ascites due to omental endometriosis. Postgrad Med J. 1985, 61:539-40. 10.1136/pgmj.61.716.539
75. Halme J, Chafe W, Currie JL: Massive ascites. Obstet Gynecol. 1985, 65:591-2.
76. Jenks JE, Artman LE, Hoskins WJ, Miremadi AK: Endometriosis with ascites. Obstet Gynecol. 1984, 63:755-7.
77. Gaulier A, Journot-Mourin A, Marsan C: Peritoneal endometriosis. Report of a case with cytologic, cytochemical and histopathologic study. Acta Cytol. 1985, 27:446-9.
78. Chervenak FA, Greenele RM, Leuenstein L, Toerv HM: Massive ascites associated with endometriosis. Obstet Gynecol. 1981, 57:397-81.
79. Irani S, Atkinson L, Cabanis C, Danovitch SH: Pleuroperitoneal endometriosis. Obstet Gynecol. 1976, 47:725-4.
80. Collier HA, Gonzales LL, Bossert LJ: Cyclic ascites as a manifestation of endometriosis. Report of a case. Obstet Gynecol. 1962, 19:681-3.
81. Bernstein JS, Perlow V, Brenner JJ: Massive ascites due to endometriosis. Am J Obstet Dis. 1961, 61:6-6. 10.1007/BF02359240
82. Ripstein CB, Robman M, Wallach JB: Endometriosis involving the pleura. J Thorac Surg. 1959, 37:464-71.
83. Koninckx PR, Renaer M, Broens IA: Origin of peritoneal fluid in women: an ovarian exudation product. Br J Obstet Gynaecol. 1980, 87:187-753. 10.1111/j.1471-0528.1980.tb04514.x
84. Koninckx PR, Kennedy SH, Barlow DE: Pathogenesis of endometriosis: the role of peritoneal fluid. Gynecol Obstet Invest. 1999, 48:99-103. 10.1159/000052856
85. Hwang SM, Lee CW, Lee BS, Park JH: Clinical features of thoracic endometriosis: a single center analysis. Obstet Gynecol Sci. 2015, 58:223-5. 10.5468/ogs.2015.58.3.223
86. Nwilo J: Diaphragmatic patch: a useful adjunct in surgical treatment of recurrent catamenial hemathorax. Rev Port Pneumol. 2011, 17:278-80. 10.1517/14740338.2011.60006
87. Daoud E, Bodor G: CA-125 concentrations in malignant and nonmalignant disease. Clin Chem. 1991, 37:1968-74.
88. Chen DX, Schwartz PE, Li XG, Yang Z: Evaluation of CA 125 levels in differentiating malignant from benign tumors in patients with pelvic masses. Obstet Gynecol. 1988, 72:23-7.
89. Opara R, McCluggage WG, Herrington CS: Peritoneal mesothelial hyperplasia associated with gynaecological disease: a potential diagnostic pitfall that is commonly associated with endometriosis. J Clin Pathol. 2011, 64:513-8. 10.1136/jcp.2010.080674
90. Rimbach S, Neis R, Solomayer E, Ulrich U, Wallwiener D: Current and future status of laparoscopy in gynecologic oncology. Geburtshilfe Frauenheilkd. 2014, 74:852-9. 10.1055/s-0034-1382075
91. Alegos MA, Martinez-Gomez G, Migliorell F, et al.: Novel surgical strategies in the treatment of gynecological malignancies. Curr Treat Options Oncol. 2018, 19:73-75. 10.1007/s11864-018-0582-5
92. Ratnavelu ND, Brown AP, Mallett S, et al.: Intraoperative frozen section analysis for the diagnosis of early stage ovarian cancer in suspicious pelvic masses. Cochrane Database Syst Rev. 2016, 3:CD010360. 10.1002/14651858.CD010360.pub2
93. Morton R, Anderson L, Carter J, Pather S, Saidi SA: Intraoperative frozen section of ovarian tumors: a 6-year review of performance and potential pitfalls in an Australian tertiary referral center. Int J Gynecol Cancer. 2017, 27:17-21. 10.1111/jgc.0000000000000851
94. Brown J, Farquhar C: Endometriosis: an overview of Cochrane Reviews. Cochrane Database Syst Rev. 2014, 4:CD009590. 10.1002/14651858.CD009590.pub2
95. Berlanda N, Somigliana E, Viganò P, Vercellini P: Safety of medical treatments for endometriosis. Expert Opin Drug Saf. 2016, 15:21-30. 10.1517/14740538.2016.1121991
96. Brown J, Crawford TJ, Datta S, Prentice A: Oral contraceptives for pain associated with endometriosis.
97. Brown J, Kives S, Akhtar M: Progestagens and anti-progestagens for pain associated with endometriosis. Cochrane Database Syst Rev. 2012, 2012:CD002122. 10.1002/14651858.CD002122.pub2

98. Fu J, Song H, Zhou M, Zhu H, Wang Y, Chen H, Huang W: Progesterone receptor modulators for endometriosis. Cochrane Database Syst Rev. 2017, 7:CD009881. 10.1002/14651858.CD009881.pub2

99. Abou-Setta AM, Houston B, Al-Inany HG, Farquhar C: Levonorgestrel-releasing intrauterine device (LNG-IUD) for symptomatic endometriosis following surgery. Cochrane Database Syst Rev. 2015, 1:CD005072. 10.1002/14651858.CD005072.pub5