Hypervalent iodine reagents for heterocycle synthesis and functionalization

Jiyun Sun1
Daisy Zhang-Negrerie2
Yunfei Du1
Kang Zhao1

1Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 2Concordia International School Shanghai, Shanghai, People’s Republic of China

Abstract: Hypervalent iodine reagents have been vastly applied in many significant oxidative reactions. This surging interest in iodine reagents is mainly due to the very useful oxidizing properties, combined with their benign environmental character and commercial availability. In this review, we focus on the representative transformations that used the common hypervalent iodine reagents as oxidants in heterocycle synthesis and functionalizations, based on the type of the hypervalent iodine reagents.

Keywords: hypervalent iodine reagent, heterocycle synthesis, heterocycle functionalization, oxidative reaction

Introduction

The 1990s witnessed rapid development of hypervalent iodine chemistry. The intense interest is mainly due to the remarkable oxidizing properties of hypervalent iodine reagents and their attractive features such as easy to handle, low toxicity, availability of supply, and environmental benignity.1–20 Two of their most important synthetic applications are in the constructions of heterocyclic skeletons and functionalization of heterocycles, such as three- to seven-membered rings and spiro compounds, under metal-free reaction conditions. Some representative transformations have been shown in Figure 1. In this review, we summarize, with representative examples, the reactions involving various hypervalent iodine (III) and (IV) reagents used as oxidants for the syntheses and functionalization of heterocyclic compounds. The organization of the presentation is based on the type of the hypervalent iodine reagents.

Hypervalent iodine (III) reagents

The common classification of hypervalent iodine (III) reagents is according to the type of ligands attached to the iodine atom, as shown in Figure 2.10,16 These broadly applied hypervalent iodine (III) reagents, namely, iodosylarenes 1, (dichloroiodo)arenes 2a and (difluoroiodo)arenes 2b, [bis(acyloxy)iodo]arenes 3, [hydroxy(tosyloxy)iodo]benzene 4 (Koser’s reagent), iodonium salts 5, iodonium ylides and iodonium imides, and the benziodoxole-based hypervalent iodine reagents 6 and 7 (Togni’s reagents), have been found to be powerful and effective oxidants for the synthesis of heterocycles and for facilitating functionalization of heterocyclic compounds via atom transfer reactions.
Iodosylarenes

An important synthetic application of iodosobenzene (PhIO) is promoting oxidative annihilation during the construction of heterocyclic framework. For example, Ueno et al.21 reported a direct preparation of heteroaromatic compounds of imidazoles 9a, thiazoles 9b, and imidazo\textsubscript{[1,2-a]}pyridines 10 through reactions of alcohol substrates 8 with PhIO catalyzed by p-toluenesulfonic acid monohydrate and followed by further reactions with thioamide, benzamidine, and 2-aminopyridine, respectively, under basic conditions (Figure 3).

In 2010, Fan et al.22 described a PhIO-mediated synthesis of the three-membered N-benzoyl aziridines 12 and the five-membered oxazolines 13 through an intramolecular oxidative cyclization of substrates 11 in the presence of catalytic amount of tetra-butylammonium iodide (Figure 4A-a). Similar conditions were applied to the synthesis of the four-membered oxetanes 15 and azetidines 17 from substrates 14 and 16, respectively (Figure 4A-b and -c).23,24 The proposed mechanism has been shown in Figure 4B.

In addition, PhIO can also be used as an efficient oxidant for the functionalization of heterocycles. For example, five- or six-membered lactams 19 could be obtained in moderate yields through the oxidation of cyclic amines 18 with PhIO using H\textsubscript{2}O as solvent (Figure 5).25

Moriarty et al.26 reported the oxidation of trimethylsilyl ketene acetalts of lactones 20 in methanol, mediated by PhIO, to afford the corresponding α-methoxylated carbonyl compounds 21 in good yields (Figure 6). They also found that reaction of dihydropyran 22 with PhIO in H\textsubscript{2}O could afford tetrahydro-2-furaldehyde 23 via carbo-cationic ring contraction (Figure 7). Under the same conditions, cyclohexene and styrene were converted into the corresponding aldehyde products through rearrangement oxidations.27
In the presence of PhIO and I₂, N- or O-centered radicals could be generated, respectively, from amides or alcohols. In 2000, Francisco et al reported the synthesis of homochiral 7-oxa-2-azabicyclo[2.2.1]heptane ring system 28 from specifically protected phosphoramidate derivatives of carbohydrates 24 under the conditions mentioned earlier. Mechanistic studies demonstrated a reaction path involving a hemolytic fragmentation of a hypothetical iodoamide intermediate 26 (Figure 8).

It is worth noting that the applications of PhIO can be significantly restricted in nonpolar solvents due to low
solubility. Therefore, the majority of the known reactions occurs in polar solvents and are catalyzed by a Lewis acid or a transition metal catalyst, with only a few cases reported to be in a nonpolar solvent or without the involvement of a catalyst. One of the rare examples is the formation of lactams 30 in CHCl₃ from the cyclic amino acids 29 via initial imine formation followed by oxidative decarboxylation (Figure 9).³¹

(Difluoriodio)arenes
As fluorinating reagents, (difluoriodio)arenes (ArIF₂) have found many synthetic applications for the syntheses of biologically and pharmaceutically interesting F-containing heterocyclic compounds.³²,³³ In 1991, Caddick et al.³² reported the reaction of 1-(aryltio)glycosides 31 with TolIF₂, which afforded various 1-fluoroglycosides 32 in moderate-to-good yields (Figure 10).

Upon treating the iodoaldyl substituted four-, five-, and six-membered cyclic ethers 33–35 with TolIF₂, the five-, six-, and seven-membered cyclic ethers 36–38 were stereoselectively synthesized in moderate-to-good yields (Figure 11).³⁴

Figure 5 PhIO-mediated functionalization of cyclic amines.
Abbreviations: PhIO, iodosobenzene; rt, room temperature; h, hours.

Figure 6 PhIO-mediated oxidation affording α-methoxylated carbonyl compounds.
Abbreviation: PhIO, iodosobenzene.

Figure 7 PhIO-mediated oxidation of dihydropyran.
Abbreviation: PhIO, iodosobenzene.

Figure 8 Synthesis of the homochiral 7-oxa-2-azabicyclo[2.2.1]heptane ring system.
Abbreviations: PhIO, iodosobenzene; IHA, intramolecular hydrogen abstraction reaction.

Dichloroiodoarene
(Dichloroiodo)arenes (ArICl₂) have been used as chlorinating reagents to carry out modification of various heterocyclic compounds. For example, reaction of N-protected pyrrolidine 39 with 4-nitrobenzenediazidochloride afforded α-hydroxy-β,β-dichloropyrrolidine 40 as the main product via a complicated ionic mechanism involving a C(sp³)–H bond activation process (Figure 12). This oxidation gave an α,β,β-oxidation pattern relative to the nitrogen of the heterocycle.³⁵

An effective system consisting of a combination of PhICl₂ and Pb(SCN)₂ was developed by Prakash et al.³⁶ for convenient thioacylation of various enol silyl ethers 41 (Figure 13).

Recently, Hepples et al.³⁷ reported a Lewis base-catalyzed chlorination method for the diazocarbonyl compound 43a and isatin-3-hydrazone 43b by using PhICl₂, both of which led to the same product 44 (Figure 14).

The common feature of these reactions is the transfer of the two chlorine ligands from PhICl₂ in a germinal fashion rather than vicinal.³⁷,³⁸

In 2014, He et al.³⁹ reported a method for the direct synthesis of oxazolidin-2-ones 46 and imidazolidin-2-ones 48 from 1,3-diols 45 and 3-amino alcohols 47 using combined PhICl₂ and NaN₃ (Figure 15).

[Bis(acyloxy)iodo]arenes
[Bis(acyloxy)iodo]arenes (ArI(OCOR)₂), notably the easily prepared and commercially available phenyliodine diacetate (PIDA) and phenyliodine bis(trifluoroacetate) (PIFA), have been widely used as oxidizing reagents in various syntheses of heterocycles. In this review, the applications of PIDA and PIFA are presented based on the type of heterocycles obtained.
Hypervalent iodine reagents

Figure 10 Synthesis of various 1-fluoroglycosides with TolIF$_2$.
Abbreviations: rt, room temperature; DCM, dichloromethane.

Figure 11 Ring-expansion reactions induced by TolIF$_2$.
Abbreviations: eq., equivalent; rt, room temperature; h, hour; DCM, dichloromethane.

Figure 12 Synthesis of α-hydroxy-β,β-dichloropyrrolidine with 4-NO$_2$PhICl$_2$.
Abbreviation: eq., equivalent.

Figure 13 PhICl$_2$/Pb(SCN)$_2$-mediated thiocyanation of enol silyl ethers leading to lactone 42.
Abbreviations: rt, room temperature; DCM, dichloromethane.

Figure 14 Lewis base-catalyzed chlorination facilitated by PhICl$_2$.
Abbreviations: eq., equivalent; rt, room temperature; min, minutes; DCM, dichloromethane.

Figure 15 (A) Direct synthesis of oxazolidin-2-ones and imidazolidin-2-ones using PhICl$_2$ and NaN$_3$ (B) Proposed mechanism.
Abbreviations: eq., equivalent; h, hours.
Three-membered heterocyclic products

In 2009, our group reported the synthesis of the smallest unsaturated N-containing heterocycle, namely, $2H$-azirine 50, via PIDA-mediated intramolecular oxidative azirination of the substituted enamine derivatives 49 under mild conditions (Figure 16).40 A similar strategy was later applied to the one-pot synthesis of isoxazoles from enaminoles.41

Five-membered heterocyclic compounds

Pyrrole

Mediated by PIFA, the synthesis of polysubstituted pyrroles 52 was achieved via a tandem dimerization/cyclocondensation of enaminoles 51 (Figure 17).42 Asymmetrical polysubstituted pyrroles were obtained from enamine esters or ketones mediated by PIDA in the presence of BF$_3$·Et$_2$O.43

Indole

In 2006, the syntheses of N-arylated and N-alkylated indoles 54 from enamine derivatives 53 were realized through a PIFA-mediated intramolecular oxidative $\text{C}(sp^2)$–N bond formation (Figure 18A).44 The same strategy was also applied to the synthesis of carbazolones via PIFA-mediated intramolecular cyclization of 2-aryl enaminoles.45 In 2009, a variety of functionalized indoles 56 were synthesized from N-aryl enaminoles 55 via PIDA-mediated oxidative $\text{C}(sp^2)$–$\text{C}(sp^2)$ involving no transition metals (Figure 18B).46

Azole

In 2007, Das et al.47 reported the condensation of α-hydroxy ketones 57 with aldehydes and ammonium acetate by using PIDA as the sole oxidant. The reaction furnished the cyclized imidazole product 58 through an oxidative $\text{C}(sp^2)$–N bond formation (Figure 19). Various 2-arylbenzimidazoles and benzimidazoles were later synthesized adopting the same methodology.48

In 1996, Kotali49 realized the synthesis of aminoindazole derivatives 60 from the o-aminoaryl ketone acylhydrazones 59 via PIDA-mediated N–N bond formation (Figure 20). In 2012, intramolecular oxidative C–O coupling of N-(4-alkoxy-phenyl) and N-(4-acetamido-phenyl) benzamides was found to afford the benzoxazole products in high yields under metal-free conditions by using PIFA as an oxidant and TMSOTf as a catalyst (Figure 21).50

Three-membered heterocyclic products

In 2009, our group reported the synthesis of the smallest unsaturated N-containing heterocycle, namely, $2H$-azirine 50, via PIDA-mediated intramolecular oxidative azirination of the substituted enamine derivatives 49 under mild conditions (Figure 16).40 A similar strategy was later applied to the one-pot synthesis of isoxazoles from enaminoles.41

Five-membered heterocyclic compounds

Pyrrole

Mediated by PIFA, the synthesis of polysubstituted pyrroles 52 was achieved via a tandem dimerization/cyclocondensation of enaminoles 51 (Figure 17).42 Asymmetrical polysubstituted pyrroles were obtained from enamine esters or ketones mediated by PIDA in the presence of BF$_3$·Et$_2$O.43

Indole

In 2006, the syntheses of N-arylated and N-alkylated indoles 54 from enamine derivatives 53 were realized through a PIFA-mediated intramolecular oxidative $\text{C}(sp^2)$–N bond formation (Figure 18A).44 The same strategy was also applied to the synthesis of carbazolones via PIFA-mediated intramolecular cyclization of 2-aryl enaminoles.45 In 2009, a variety of functionalized indoles 56 were synthesized from N-aryl enaminoles 55 via PIDA-mediated oxidative $\text{C}(sp^2)$–$\text{C}(sp^2)$ involving no transition metals (Figure 18B).46

Azole

In 2007, Das et al.47 reported the condensation of α-hydroxy ketones 57 with aldehydes and ammonium acetate by using PIDA as the sole oxidant. The reaction furnished the cyclized imidazole product 58 through an oxidative $\text{C}(sp^2)$–N bond formation (Figure 19). Various 2-arylbenzimidazoles and benzimidazoles were later synthesized adopting the same methodology.48

In 1996, Kotali49 realized the synthesis of aminoindazole derivatives 60 from the o-aminoaryl ketone acylhydrazones 59 via PIDA-mediated N–N bond formation (Figure 20). In 2012, intramolecular oxidative C–O coupling of N-(4-alkoxy-phenyl) and N-(4-acetamido-phenyl) benzamides was found to afford the benzoxazole products in high yields under metal-free conditions by using PIFA as an oxidant and TMSOTf as a catalyst (Figure 21).50
Upon treating β-monosubstituted enamines 63 with PIFA, an intermolecular cross-coupling occurred and was succeeded by condensation to provide the 4,5-disubstituted 2-(trifluoromethyl)oxazoles 64 (Figure 22). In this approach, the trifluoromethyl moiety in one of the PIFA ligands was incorporated into the final products at the C2 position.

In 2010, Saito et al. reported the oxidative cycloisomerization of propargylamide derivatives 65, mediated by PIDA in AcOH or AcOH-HFIP and affording the corresponding 2,5-disubstituted oxazoles 66 (Figure 23). Treating anthranilamides 67a or salicylamides 67b with PIFA in the presence of potassium hydroxide, the 2-benzimidazolones 68a and 2-benzoxazolones 68b were, respectively, obtained in good yields (Figure 24). The postulated mechanistic pathway suggested an initial Hofmann-type rearrangement followed by a sequential intramolecular cyclization of the intermediate isocyanate.

In 2008, PIFA-mediated intramolecular cyclization of the thiobenzamides 69 resulting in the benzothiazoles 70 via reactive intermediates of aryl radical cations was described (Figure 25A). Later on, Kumar et al. applied the polymer-supported PIDA to construct the benzothiazoles 73 from the corresponding o-amino benzenethiol components 71 and aldehydes 72 (Figure 25B).

Lactone

In 2007, Dohi et al. developed a direct construction of the biologically important aryl lactone 76 from carboxylic acid 74 using combined PIDA and KBr (Figure 26). The aryl group in the substrate was understood to be indispensable due to the benzyl radical intermediate 75 as suggested by the mechanism. The aryl lactone product 76 was achieved via hydrogen abstraction and then cyclization.

Spiro heterocycles and bisindolines

In 2012, Wang et al. reported a PIFA-mediated synthesis of spirooxindoles 78 from anilide derivatives 77 bearing an appropriate α-arylaminocarbonyl group (Figure 27). These processes feature a metal-free oxidative C(sp²)–C(sp³) bond formation, followed by oxidative spirocyclization.
oxidant and a halide as an additive, leading to the synthesis of a variety of bisindolines 82 (Figure 29).

Six- and seven-membered heterocycles

A PIFA-mediated oxidative C(sp²)–C(sp²) bond formation between two aryl rings was reported by Kita et al. Later, this oxidative coupling strategy was widely applied to the conversion of various biaryl substrates tethered by a relatively labile linker attached to the heterocycles, such as a silaketale, sulfide, sulfoxide, sulfone, or dibenzylether. For example, Moreno et al described an efficient synthesis of benzo[c] phenanthridine 84 and phenanthridinone 86 from properly substituted benzylphenylamine 83 and naphthylbenzamide 85, respectively, through a PIFA-mediated intramolecular oxidative C–C bond formation between the two electron-rich phenyl rings (Figure 30).

Recently, Zhang et al reported a PIFA-mediated cascade annulation of internal alkyne, affording the spiro heterocycle 80 (Figure 28). This process encompasses not only two sequential C–N/C–O bond formations but also the insertion of a carbonyl oxygen, all in one pot.

In 2014, Kim et al realized a cascade intramolecular oxidative dimation of olefins 81 by using PIFA as an oxidant. The reactions involved an exclusive 1,2-aryl migration along with a metal-free oxidative C–C bond formation, mediated by PIFA in the presence of a Lewis acid (Figure 31).

In 2001, Arisawa et al reported a PIFA-mediated direct intramolecular cyclization of α-(aryl)alkyl-β-dicarbonyl compounds 89 leading to the spirobenzannulated products 90. Both meta- and para-substituted phenol ether derivatives containing cyclic or acyclic 1,3-dicarbonyl moieties on the side chain underwent the annulation in a facile manner (Figure 32). In 1990, Kikugawa and Kawase reported an intramolecular oxidative C(sp²)–N bond formation in substrates 91, which contained a methoxyamide side chain on the aromatic ring, to give the N-aryl-N-methoxyamides 92 (Figure 33) via a nitrenium ion intermediate. This oxidative amidation protocol was later applied in many explorations of novel means to construct heterocyclic frameworks.

Starting from N-methoxybenzamide 93 and alkyne 94, Misu and Togo developed a straightforward synthesis of isoquinolones 95 using PIDA generated in situ through an intermolecular organocatalytic annulation (Figure 34). The indenocarboxamides 96 could be converted to the fused indeno-1,4-diazepinones 97 through intramolecular oxidative C–N bond formations mediated by PIFA (Figure 35).

In 2014, Zhao and Du described a PIDA-mediated oxidative coupling of the two aryl groups in either 2-acylamino-N-phenylbenzamides 98 or 2-hydroxy-N-phenylbenzamides...
Hypervalent iodine reagents

Figure 27 (A) Metal-free synthesis of spirooxindoles via PIFA-mediated cascade oxidation. (B) Proposed mechanism.

Abbreviations: PIFA, phenyliodine bis(trifluoroacetate); rt, room temperature; TFE, 2,2,2-Trifluoroethanol.

100 to afford the dibenzodihydro-1,3-diazepin-2-ones 99 and dibenzo[d,f][1,3]oxazepin-6(7H)-ones 101, respectively (Figure 36). The reaction sequence involves an oxidative C(sp²)–C(sp²) aryl–aryl bond formation, C(sp²)–C/O bond cleavage, and an intramolecular lactamization/lactonization. The unique feature of this conversion is the concomitant insertion of the ortho-substituted N or O atom into the tether, realized for the first time.76

A variety of systems involving PIDA/PIFA have been developed to realize functionalization of heterocyclic compounds. Some representative examples are discussed later.

Iodination

By using a combination of PIFA and I₂, Benhida et al77 developed an iodination method suitable for electron-deficient heterocyclic compounds including substituted indoles 102 (Figure 37) and coumarins. Moreover, the methodologies offered reaction conditions mild enough to ensure the survival of sensitive protecting groups such as acetyl and tert-butylimethylsilyl. The methods were also applied to the iodination of substituted pyrazoles in providing the corresponding 4-iodopyrazole derivatives.78

Likewise, PIFA-mediated direct cyanations of various heterocyclic compounds including pyrroles, thiophenes, and indoles were realized using trimethylsilyl cyanide as a source of CN.79 For example, cyanation of N-tosylpyrroles 104 at the C2 position was achieved by using trimethylsilyl cyanide along with PIFA with moderate-to-excellent selectivity (Figure 38).

Bifunctionalization of glycals 106, including homogeneous azidization and selenylation, has been realized by
Figure 28 (A) PIFA-mediated conversion of internal alkynes to spiro heterocycles via cascade annulation. (B) Proposed mechanism.

Abbreviations: PIFA, phenyliodine bis(trifluoroacetate); rt, room temperature; h, hours; DCM, dichloromethane.
Hypervalent iodine reagents

Figure 29
(A) PIDA-mediated synthesis of bisindolines via cascade intramolecular oxidative deamination. (B) Proposed mechanism.

Abbreviations: PIDA, phenyliodine diacetate; rt, room temperature; h, hours; DMF, N,N-dimethylformamide.

Figure 30
PIFA-mediated synthesis of benzo[c]phenanthidine and phenanthridinone.

Abbreviation: PIFA, phenyliodine bis(trifluoroacetate); DCM, dichloromethane.

Figure 31
PIFA-mediated synthesis of 3-arylquinolin-2-ones from N-methyl-N-phenylcinnamamides through oxidative C–C bond formation/1,2-aryl migration.

Abbreviations: PIFA, phenyliodine bis(trifluoroacetate); TFA, trifluoroacetic acid; DCE, 1,2-dichloroethane.

Mironov et al.80 through the reaction of glycals with PIDA in the presence of TMSN₃ and Ph₂Se₂ (Figure 39).

[Hydroxy-(organosulfonyloxy)iodo]arenes

Recently, Kawai et al.81 described a new method for the synthesis of biologically significant trifluoromethyl-2-isoxazoline N-oxides.111 This conversion is realized through the intramolecular oxidative N–O coupling in β-trifluoromethyl-β-hydroxy ketoximes, generated from trifluoromethyl-β-keto alcohols, and mediated by [hydroxy(tosyloxy)iodo]benzene (Figure 40).81

Treatment of 2H-chromene with [hydroxy(tosyloxy)iodo]benzene in methanol could introduce a methoxyl group at the C4 position to afford 4-methoxy-2H-chromene (Figure 41).82

Benziodoxole-based hypervalent iodine reagents

During the last decade, studies on the development of the λ³ iodine benziodoxolone reagents and their applications in facilitating organic transformations have attracted the attention of many synthetic chemists. Some representative examples are presented in this section.

In 2006, Eisenberger et al.83 reported the first use of benziodoxole-derived reagents 5a and 6b for CF₃ transfer.

Figure 32
PIFA-mediated direct intramolecular cyclization of α-(aryl)alkyl-β-dicarbonyl compounds.

Abbreviations: PIFA, phenyliodine bis(trifluoroacetate); TFE, 2,2,2-Trifluoroethanol.

Figure 33
PIFA-mediated synthesis of N-aryl-N-methoxyamides via an intramolecular oxidative C–N bond formation.

Abbreviation: PIFA, phenyliodine bis(trifluoroacetate).

Figure 34
Synthesis of isoquinolones from N-methoxybenzamide and diphenyl acetylene mediated by PIDA generated in situ.

Abbreviations: PIDA, phenyliodine diacetate; rt, room temperature.
Later on, many practical applications of this class of hypervalent iodine (III) were developed.84,85

In 2014, Wang et al86 described an intramolecular carbotrifluoromethylation of alkynes 114 by using Togni’s reagent in the presence of Cu(I). A variety of trifluoromethylated heterocycles, such as 2H-chromene derivatives 115 and 117, 1,2-dihydroquinoline derivative 116, and the 2H-chromene five-membered cyclic product 118, were synthesized with great substituent tolerance and high selectivity (Figure 42).

Due to the multiple reactive sites in indoles, trifluoromethylation of indole derivatives presents a challenge in synthetic chemistry. Shimizu et al87 developed a direct C2-selective trifluoromethylation of indole derivatives 119 with 2-trifluoromethyl indole 120 as the product by using Togni’s reagent (Figure 43). Later on, a method for the
trifluoromethylation of indole compounds to afford the fused tricyclic indoles was established.88

In 2014, Zhang and Studer89 reported a method for the synthesis of the biologically important 1-trifluoromethylated isoquinolines 122. This transformation starts from the β-aryl-α-isocyano-acrylates and uses Togni’s reagent as the CF3 radical precursor to afford the products in moderate-to-excellent yield, in the absence of any transition metal (Figure 44).

Recently, by using Togni’s reagent and a simple catalyst Cul, Wang et al90 reported an elegant method for the aryltrifluoromethylation of N-phenylcinnamamides 123, where a series of CF3-containing 3,4-dihydroquinolin-2(1H)-ones 124 were obtained regioselectively and diastereoselectively (Figure 45). The same conversion from N-arylaminamides to CF3-containing dihydroquinolin-2(1H)-ones was also realized under visible light conditions.91

Another widely applied benziodoxole reagent is the [triisopropylsilyl]ethynyl]benziodoxolone (TIPS-EBX) for its role in introducing alkyne groups. Although TIPS-EBX had been prepared in 1996,92 the first significant application was not reported until 2009 by Brand et al.93 Direct alkylation of indole and pyrrole heterocycles was achieved with good functional group tolerance by using TIPS-EBX in the presence of tertiary amines, a Cu-mediated arylation of N-containing heterocycles by using diaryliodonium salts while providing novel indoles 147 (Figure 52).100

A significant amount of efforts have been devoted to the arylation of N-containing heterocycles by using diaryliodonium salts and metal catalysts. For example, a Pd-mediated arylation of benzotriazol 148 and a Cu-mediated N-arylation of indole 150, cyclohexylamine 152, and the four-membered lactam 154 were realized. Selected examples are presented in Figure 53.101–105

In 2013, Wang et al106 realized a Cu(OTf)2-catalyzed regioselective synthesis of polysubstituted quinolines from three components including the diaryliodonium salt 156, the nitrile 157, and the alkyne 158 (Figure 54). It is worth noting that the aryl group of the diaryliodonium serves as a C2 building block in this reaction.
Figure 42 Intramolecular carbotrifluoromethylation of alkynes with Togni’s reagent and Cu(I).
Abbreviations: h, hours; DCM, dichloromethane.

Figure 43 Trifluoromethylation of indole derivatives with Togni’s reagent.
Abbreviations: rt, room temperature; h, hours.

Figure 44 (A) Synthesis of biologically important 1-trifluoromethylated isoquinolines with Togni’s reagent. (B) Proposed mechanism.
Abbreviation: h, hours.
Hypervalent iodine (V) reagents
Among the iodine (V) compounds, Dess–Martin periodinane (DMP) and 2-iodoxybenzoic acid (IBX) are the two most practical and therefore most widely applied oxidants for their mild characteristics. A large range of syntheses and functionalization of heterocyclic compounds have been achieved in recent years through the applications of iodine (V) reagents.

Figure 45 Aryltrifluoromethylation of N-phenylcinnamamides by using Togni’s reagent and copper catalyst.
Abbreviation: h, hours.

Dess–Martin periodinane
DMP was first introduced in 1984. The most special property of it is its ability to realize selective oxidation of primary and secondary alcohols to their respective aldehydes and ketones. Some applications have been formulated based on this property. For example, when treated with DMP in a hydrocarbon solvent, cleavage of the glycol C–C bond in 1,2-diols takes place, leading to the formation of a more complex molecule (Figure 55).110

Another example is the synthesis of the 2-substituted benzothiazoles in high yields, which is facilitated by DMP through an intramolecular oxidative cyclization of the thioformanilides in CH2Cl2. The mild reaction environment plays a key role as the reaction proceeds via a thiol radical intermediate (Figure 56).111

Figure 46 Direct alkynylation of indole and pyrrole heterocycles by using TIPS-EBX.
Abbreviation: TIPS-EBX, [(triisopropylsilyl)ethynyl]benziodoxolone.

Figure 47 Selective cobalt(III)-catalyzed alkynylation of indoles using hypervalent iodine-alkyne reagents.
Abbreviations: TFE, 2,2,2-Trifluoroethanol; h, hours; Cp*, cyclopentadienyl.

Figure 48 Metal-free alkynylation of various heterocyclic compounds with TMS-EBX.
Figure 49 (A) Cycloaddition of ortho-silyl aryltriflates and iodonium ylides. (B) Proposed mechanism.
Abbreviation: rt, room temperature.

Figure 50 Ru-catalyzed nitrogen atom transfer.
Abbreviations: h, hours; DCM, dichloromethane.

Figure 51 Diaryliodonium salts-mediated arylation of indoles at C2.
Abbreviations: rt, room temperature; h, hours.

Figure 52 Cu-catalyzed tandem C–H/N–H arylation of indoles with diaryliodonium salts.
Abbreviations: eq., equivalent; DMEDA, N,N'-Dimethyl-1,2-ethanediamine.
Iodoxybenzoic acid

Certain heterocyclic compounds such as isoxazolines, [1,2]oxazinanes, and 3,5-disubstituted isoxazolines could be synthesized through radical cyclization by using IBX as a single-electron transfer (SET) oxidant. The cyclizations brought about with this protocol could occur in an intramolecular as well as intermolecular manner.

In 2005, Janza and Studer described the generation of alkoxyamidyl radicals initiated by IBX as an SET oxidant from the acylated alkoxyamines. The stereoselective 5-exo and 6-exo reactions with these N-heteroatom-centered radicals led to the isoxazolines and the [1,2]oxazinanes in good-to-excellent yields (Figure 57).

In 2004, Das et al. reported the preparation of the 3,5-disubstituted isoxazolines, achieved via an SET reaction consisting of multiple components using IBX as an oxidant (Figure 58). The reaction proceeded through a substituted aldoxime intermediate followed by a 1,3-dipolar addition of an alkene.

Recently, Bredenkamp et al. reported a new example of IBX-promoted direct functionalization of the indoles to the isatins. The reagent mixture (NaI/IBX-SO₃K containing a substituted sulfonyl of IBX) was employed to trigger this oxidative process (Figure 59).

Conclusion

During the past several decades, hypervalent iodine reagents have been widely used in the syntheses and functionalization of heterocycles. The low production cost has made many of them commercially available, and the low toxicity, being transition metal-free, renders them environmentally friendly. But most importantly, it is their powerful oxidizing properties under mild reaction conditions along with high chemoselectivity that have driven hypervalent iodine chemistry to expand its territory in the field of synthetic chemistry.

Acknowledgments

We acknowledge the National Natural Science Foundation of China (#21472136), Tianjin Research Program of Application Foundation and Advanced Technology (#15JCZDJC32900), and the National Basic Research Project (2014CB932201) for financial support.
Figure 57 IBX-mediated stereoselective 5-exo and 6-exo formations of isoxazolines and 1,2-oxazines.
Abbreviations: IBX, 2-iodoxybenzoic acid; DMSO, dimethyl sulfoxide; min, minutes.

Figure 58 IBX-mediated SET synthesis of isoxazolines involving multiple components.
Abbreviations: IBX, 2-iodoxybenzoic acid; SET, single-electron transfer; DCM, dichloromethane.

Figure 59 Direct functionalization of indoles to isatins by NaI/IBX-SO$_3$K.
Abbreviation: DMSO, dimethyl sulfoxide.

Author contributions
All authors contributed toward data analysis, drafting and critically revising the paper and agree to be accountable for all aspects of the work. All authors read and approved the final version of the manuscript.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Stang PJ, Zhdankin VV. Organic polyvalent iodine compounds. Chem Rev. 1996;96(3):1123–1178.
2. Moriarty RM, Prakash OM. Synthesis of heterocyclic compounds using organohypervalent iodine reagents. Adv Heterocycl Chem. 1997; 69:1–87.
3. Togo H, Katohgi M. Synthetic uses of organohypervalent iodine compounds through radical pathways. Synlett. 2001;5:5065–5081.
4. Zhdankin VV, Stang PJ. Recent developments in the chemistry of polyvalent iodine. Chem Rev. 2002;102(7):2523–2584.
5. Moreno I, Tellitu I, Herrero MT, SanMartin R, Dominguez E. New perspectives for iodine(III) reagents in (hetero)biaryl coupling reactions. Curr Org Chem. 2002;6:1433–1452.
6. Wirth T. Hypervalent iodine synthesis in synthesis: scope and new directions. Angew Chem Int Ed Eng. 2005;44(24):3656–3665.
7. Zhdankin VV. Benzoiodoxole-based hypervalent iodine reagents in organic synthesis. Curr Org Synth. 2005;2(1):121–145.
8. Moriarty RM. Organohypervalent iodine: development, applications, and future directions. J Org Chem. 2005;70(8):2893–2903.
9. Richardson RD, Wirth T. Hypervalent iodine goes catalytic. Angew Chem Int Ed. 2006;45(27):4402–4404.
10. Zhdankin VV, Stang PJ. Chemistry of polyvalent iodine. Chem Rev. 2008;108(12):5299–5358.
11. Merritt EA, Olofsson B. Diaryliodonium salts: a journey from obscurity to fame. Angew Chem Int Ed Engl. 2009;48(48):9052–9070.
12. Zhdankin VV. Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC. 2009:i–i–62.
13. Dusche A, Kirsch SF. 2-iodoxybenzoic acid—a simple oxidant with a dazzling array of potential applications. Angew Chem Int Ed. 2011;50(7):1524–1552.
14. Brand JP, Gonzalez DF, Nicolai S, Waser J. Benziodoxole-based hypervalent iodine reagents for atom-transfer reactions. Chem Commun (Camb). 2011;47(1):102–115.
15. Brown M, Farid U, Wirth T. Hypervalent iodine reagents as powerful electrophiles. Synlett. 2013;24:0424–0431.
16. Parra A, Reboredo S. Chiral hypervalent iodine reagents: synthesis and reactivity. Chemistry. 2013;19(51):17244–17260.
17. Zheng Z, Zhang-Nergerie D, Du Y, Zhao K. The applications of hypervalent iodine(III) reagents in the constructions of heterocyclic compounds through oxidative coupling reactions. Sci China Chem. 2014;57(2):189–214.
18. Narayan R, Manna S, Antonchick AP. Hypervalent iodine(III) in direct carbon–hydrogen bond functionalization. Synlett. 2015:26:1785–1803.
19. Narayan R, Matcha K, Antonchick AP. Metal-free oxidative C–C bond formation through C–H bond functionalization. Chemistry. 2015;21(42):14678–14693.
20. Charpentier J, Fruh N, Togni A. Electrophilic trifluoromethylation by use of hypervalent iodine reagents. Chem Rev. 2015;115(2):650–682.
21. Ueno M, Nabana T, Togo H. Novel oxidative α-toslyoxolation of alcohols with iodosylbenzene and p-toluensulfonic acid and its synthetic use for direct preparation of heteroaromatics. J Org Chem. 2003;68(16):6424–6426.
22. Fan R, Wang H, Ye Y, Yan G. Phl0/Bu4N mediated oxidative cyclization of amidooalkylation adducts for the synthesis of N-benzoyl aziridines and oxazolines. Tetrahedron Lett. 2010;51:453–456.
23. Ye Y, Zheng C, Fan R. Solvent-controlled oxidative cyclization for divergent synthesis of highly functionalized oxetanes and cyclopropanes. Org Lett. 2009;11(14):3156–3159.
24. Ye Y, Wang H, Fan R. Stereoselective construction of highly functionalized azetidines via a [2 + 2] cycloaddition. Org Lett. 2010;12(12): 2802–2805.
25. Moriarty RM, Vaid RK, Duncan MP. Hypervalent iodine oxidation of amines using iodosobenzene: synthesis of nitriles, ketones and lactams. Tetrahedron Lett. 1998;39(52):6913–6916.
26. Moriarty RM, Rani N, Condeiu C, Duncan MP, Prakash O. Hypervalent iodine oxidation of trimethylsilyl ketene acetal: a convenient route to α-methoxylation of esters and lactones. Synth Commun. 1997;27(18):3273–3277.
27. Moriarty RM, Prakash O, Duncan MP, Vaid RK, Rani N. Oxidation of some olefinic compounds using iodosobenzene. J Chem Res Synop. 1996;9:432–433.
28. Francisco CG, Herrera AJ, Suarez E. Intramolecular hydrogen abstraction reaction in carbohydrate chemistry. Synthesis of chiral 2,7-dioxabicyclo[2.2.1]heptane and 6,8-dioxabicyclo[3.2.1]octane ring systems. Tetrahedron Lett. 2000;41:7869–7873.
29. Francisco CG, Freire R, González CC, León EI, Riesco-Fagundo C, Suárez E. Fragmentation of carbohydrate anomic alkylox radicals. Synthesis of polyhydroxy piperidines and pyrrolidines related to carbohydrate. J Org Chem. 2001;66(5):1861–1866.
30. Francisco CG, Herrera AJ, Suarez E. Intramolecular hydrogen abstraction promoted by N-radicals: synthesis of chiral 7-oxa-2-azabicyclo[2.2.1]heptane and 8-oxa-6-azabicyclo[3.2.1]octane ring systems. Tetrahedron. 2000;11:3879–3882.
31. Ochiai M, Inenaga M, Nagao Y. Oxidative decarboxylation of cyclic amino acids and dehydrogenation of cyclic secondary amines with iodosobenzene. Tetrahedron Lett. 1988;29(52):6917–6920.
32. Caddick S, Motherwell WB, Wilkinson JA. A concise method for the preparation of glycosyl fluorides via displacement reactions of 1-arylthioglycosides with 4-methyl(di/trifluoro)iodobenzene. J Chem Soc Chem Commun. 1991;674–675.

33. Caddick S, Gazzard L, Motherwell WB, Wilkinson JA. Preparation of 1-fluoroglycosides from 1-arylthio and 1-aryl diselenoglycosides using 4-methyl(di/trifluoro)iodobenzene. Tetrahedron. 1996;52:149–156.

34. Inagaki T, Nakamura Y, Sawaguchi M, Yoneda N, Ayaba S, Haru S. Fluorinating ring-expansion of cyclic ethers using P-iodotoluene difluoride. Stereoselective synthesis of fluoro cyclic ethers. Tetrahedron Lett. 2003;44:4117–4119.

35. Salamant W, Hulme C. Unique one step, multicomponent α,β-oxidations of carbamates with Willgerodt-like hypervalent iodine reagents — an example of triple C–H bond activation. Tetrahedron Lett. 2006;47:605–609.

36. Prakash O, Kaur H, Batra H, Nani N, Singh SP, Moriarty RM. α-thiocyanation of carbonyl and β-dicarbonyl compounds using (dichloroiodo)benzene-lead(II) thiocyanate. J Org Chem. 2001;66(6):2019–2023.

37. Hepples C, Murphy GK. Synthesis of 3,3-dichloro-2-oxindoles from isatin-3-hydrazones and (dichloroiodo)benzene. Tetrahedron Lett. 2015;56:9791–9794.

38. Coffey KE, Moreira R, Abbas FZ, Murphy GK. Synthesis of 3,3-dichloroindolin-2-ones from isatin-3-hydrazones and (dichloroiodo)benzene. Org Biomol Chem. 2015;13(3):682–685.

39. He T, Gao WC, Wang WK, Zhang C. Synthesis of oxazolidin-2-ones and imidazolidin-2-ones directly from 1,3-diols or 3-amino alcohols using iodobenzene dichloride and sodium azide. Adv Synth Catal. 2014;356:1113–1118.

40. Li X, Du Y, Liang Z, Li X, Pan Y, Zhao K. Simple conversion of enamines to 2H-azirines and their rearrangements under thermal conditions. Org Lett. 2009;11(12):2643–2646.

41. Zheng Y, Yang C, Zhang-Negrerie D, Du Y, Zhao K. Hypervalent iodine-mediated oxidative coupling of enamine esters and ketones. J Chem Res Synop. 2012;35:913–918.

42. Inagaki T, Nakamura Y, Sawaguchi M, Yoneda N, Ayaba S, Haru S. Hypervalent iodine reagents - novel syntheses of benz[a]phenanthridines and benzof[c]phenanthridinones. Tetrahedron. 2001;57:5403–5411.

43. Liu L, Yu H, Wang H, et al. Pd(OCOCF3)-mediated oxidative C–C bond formation concomitant with a 1,2-aryl shift in a metal-free synthesis of 3-arylquinolin-2-ones. Org Lett. 2013;15(12):2906–2909.

44. Arisawa S, Nakajima M, Tohma H, Kita Y. Hypervalent iodine(III) reagents. J Org Chem. 2009;74(6):2256–2264.

45. Romero AG, Darlington WH, Jacobsen EJ, Mickelson JW. Oxidative cyclization of acyclic ureas with bis(trifluoroacetoxy)iodobenzene to generate N-substituted 2-benzimidazolines. Tetrahedron Lett. 1996;37(14):2461–2464.

46. Herrero MT, Tellitu I, Dominguez E, Moreno I, San Martin R. A novel, efficient oxidative biaryl coupling reaction of phenol ether derivatives using phenyliodine(III) bis(trifluoroacetate). Tetrahedron Lett. 2012;54(6):1617–1620.

47. Kikugawa Y, Kawase M. An electrophilic aromatic substitution by using hypervalent iodine(III) reagents. Chem Lett. 2012;41(6):1424–1427.

48. Correa A, Tellitu I, Dominguez E, Moreno I, San Martin R. Hypervalent iodine(III)-mediated oxidative biaryl coupling reaction of phenol ether derivatives using phenyliodine(III) reagents. J Org Chem. 2009;74(6):2256–2264.

49. Herrero MT, Tellitu I, Dominguez E, Moreno I, San Martin R. A novel, efficient oxidative biaryl coupling reaction of phenol ether derivatives using phenyliodine(III) reagents. Tetrahedron. 2001;57:345–352.

50. Kita Y, Gyo M, Ohtsubo M, Tohma H, Kita T. Non-phenolic oxidative coupling of phenol ether derivatives using phenyliodine(III) bis(trifluoroacetate). Chem Commun. 1998:1481–1482.

51. Taylor SR, Ung AT, Pyne SG, Skelton BW, White AH. Intramolecular versus intermolecular oxidative couplings of ester tethered di-aryl ethers. Tetrahedron. 2007;63:11377–11385.

52. Saito A, Matsumoto A, Hanawa Y. PIDA-mediated synthesis of oxazoles through oxidative cyclosomerization of propargylamides. Tetrahedron Lett. 2010;51:2247–2250.

53. Prakash O, Batra H, Kaur H, et al. Hypervalent iodine oxidative rearrangement of anthranilamides, salicylamides and some β-substituted amides: a new and convenient synthesis of 2-benzimidazolones, 2-benzoxazolones and related compounds. Synthesis. 2001;4:541–543.
72. Malamidou-Xenikaki E, Spyroudis S, Tzanakopoulou M, Hadjipavlou-Litina D. A convenient approach to fused indeno-1,4-diazepinones through hypervalent iodine chemistry. J Org Chem. 2009;74(19):7315–7321.

73. Serna S, Tellitu I, Dominguez E, Moreno I, SanMartin R. Iodine(III)-mediated aromatic amidation vs olefin amidohydroxylation. The amide N-substituent makes the difference. Tetrahedron. 2004;60:6533–6539.

74. Correa A, Tellitu I, Dominguez E, SanMartin R. A metal-free approach to the synthesis of indoline derivatives by a phenyliodine(III) bis(trifluoroacetate)-mediated amidohydroxylation reaction. J Org Chem. 2006;71(21):8316–8319.

75. Zhu J, Xie H, Chen Z, Li S, Wu Y. Synthesis of N-substituted 2-fluoromethylbenzimidazoles via bis(trifluoroacetoxycatio)iodobenzenes-mediated intramolecular cyclization of N,N‘-disubstituted fluoroanilidamides. Synlett. 2009;20:3299–3302.

76. Shang S, Zhang-Negrier D, Du Y, Zhao K. Intramolecular metal-free oxidative Aryl–Aryl coupling: an unusual hypervalent-iodine-mediated rearrangement of 2-substituted N-phenylbenzamides. Angew Chem Int Ed. 2014;53(24):6216–6219.

77. Benhiba R, Blanchard P, Fourrey J-L. A mild and effective iodination method using iodine in the presence of bis(trifluoroacetoxycatio)iodobenzen. Tetrahedron Lett. 1998;39:6848–6852.

78. Vasilevsky SF, Klyatskaya SV, Tret'yakov EV, Elguero J. Ethyl vinyl ether – an agent for protection of the pyrazole NH-fragment. A convenient method for the preparation of N-unsubstituted 4-Alkynylpyrazoles. Heterocycles. 2003;60(4):879–886.

79. Dohi T, Morimoto K, Takenaga N, et al. Direct cyation of heteroaromatic compounds mediated by hypervalent iodine(III) reagents: in situ generation of PhI(III)-CN species and their cyano transfer. J Org Chem. 2007;72(1):109–116.

80. Mironov YV, Sherman AA, Nifantiev NE. Homogeneous azidoethylselenylation of glycols using TMSN₃, Ph₂Se, Ph(OAc). Tetrahedron Lett. 2004;45:9107–9110.

81. Kawai H, Okusu T, Tokunaga E, Shibata N. Enantioselective synthesis of 5-trifluoromethyl-2-isoxazolines and their N-oxides by [Hydroxyl(sulfoxy)iodo]benzene-mediated oxidative N-O coupling. Eur J Org Chem. 2013:6506–6509.

82. Ahmad A, Silva LF Jr. Synthesis of chromanes and 4H-chromenes: exploring the oxidation of 2H-chromenes and dihydro-1-benzoxepines by hypervalent iodine(III). Synthesis. 2012;44(23):3671–3677.

83. Eisenberger P, Gisich S, Togni A. Novel 10-1-3 hypervalent iodine-based compounds for electrophilic trifluoromethylation. Chemistry. 2006;12(9):2579–2586.

84. Stanek C, Rother R, Togni A. Mild electrophilic trifluoromethylation of a 10-I-3 hypervalent iodine-based compound. Tetrahedron Lett. 2014;55:2061–2063.

85. Chang Z-Z, Liu B, Wang C-Y, Shi B-F, Cobalt(II)-catalyzed C2-selective C–H alkynylation of indoles. Org Lett. 2015;17(16):4094–4097.

86. Kamlar M, Cisařová I, Veselý J. Alkynylation of heterocyclic compounds using hypervalent iodine reagent. Org Biomol Chem. 2015;13(10):2884–2888.

87. Wang Y, Jiang M, Liu J-T. Copper-catalyzed intramolecular carbotrifluoromethylation of arynes with iodonium ylides: a mild and general route for the synthesis of benzoferon derivatives. Org Lett. 2008;10(8):1525–1528.

88. Jiang Y, Zhou G-C, He G-L, He L, Li J-L, Zheng S-L. Ruthenium(II)-porphyrin catalytic selective N-ination of aromatic nitrogen heterocycles. Synthesis. 2007;10:1459–1464.

89. Deprez NR, Kalyani D, Krause A, Sanford MS. Room temperature palladium-catalyzed 2-arylation of indoles. J Am Chem Soc. 2006;128(15):4972–4973.

90. Modha SG, Greaney MF. Atom-economical transformation of diaryliodonium salts: tandem C–H and N–H arylation of indoles. J Am Chem Soc. 2015;137(4):1416–1419.

91. Beletskaya IP, Davydov DV, Moreno-Manas M, Pd-cu-catalyzed selective arylation of benzotriazole by diaryliodonium salts in water. Tetrahedron Lett. 1998;39:5621–5622.

92. Beletskaya IP, Davydov DV, Gorovoy MS. Palladium- and copper-catalyzed selective arylation of 5-aryl tetrazoles by diaryliodonium salts. Tetrahedron Lett. 2002;43:6221–6223.

93. Davydov DV, Beletskaya IP, Semenov BB, Smushkevich YI. Regioselective arylation of N-tributylstannylated 5-substituted tetracos by diaryliodonium salts in the presence of Cu(OAc). Tetrahedron Lett. 2002;43:6217–6219.

94. Kang S-K, Lee S-H, Lee D. Copper-catalyzed N-arylarylation of amines with hypervalent iodonium salts. Synlett. 2006;7:1022–1024.

95. Zhou T, Chen Z-C. Hypervalent iodine in synthesis: 85: an efficient method for the synthesis of N-aryliodoniums by the copper-catalyzed N-arylation of benzoimidazoles with diaryliodonium salts. Heterochem. 2002;13(7):617–619.

96. Wang Y, Chen C, Peng J, Li M. Copper(I)-catalyzed three-component cascade annulation of diaryliodoniums, nitriles, and alkenes: a regioselective synthesis of multiply substituted quinolines. Angew Chem Int Ed. 2013;52(20):5323–5327.

97. Dess DB, Martin JC. Readily accessible 12-1-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones. J Org Chem. 1983;48:4156–4158.

98. Ladziata U, Zhdankin VV. Hypervalent iodine reagents in organic synthesis. Angew Chem Int Ed Engl. 2009;48(49):9346–9349.

99. Zhdankin VV, Kuehl CJ, Krasutsky AP, Bolz JT, Simonen AJ. 1-(Organo)fluorosilyl)trifluoromethylation of 1,2-benzoxazoles: preparation and reactions with allyltrimethylsilanes. J Org Chem. 1996;61(19):6547–6551.

100. Brand JP, Charpentier J, Waser J. Direct alkynylation of indole and pyrrole heterocycles. Angew Chem Int Ed Engl. 2009;48(49):9346–9349.

101. Kaschel J, Herd W. Ethynyl benzoxazoloxide (EBX): initiating alkynes the reversed way. Angew Chem Int Ed Engl. 2015;54(31):8876–8878.

102. Zhang Z-Z, Liu B, Wang C-Y, Shi B-F, Cobalt(II)-catalyzed C2-selective C–H alkynylation of indoles. Org Lett. 2015;17(16):4094–4097.

103. Brederkamp A, Mohr F, Kirsch SF. Synthesis of isatins through direct oxidation of indoles with IBX-S02-K/Nal. Synthesis. 2015;47:1937–1943.
