Transient energy excitation in shortcuts to adiabaticity for the time dependent harmonic oscillator

Xi Chen1,2 and J. G. Muga1,3

1 Departamento de Química-Física, UPV-EHU, Apartado 644, 48080 Bilbao, Spain
2 Department of Physics, Shanghai University, 200444 Shanghai, P. R. China and
3 Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany

There is recently a surge of interest to cut down the time it takes to change the state of a quantum system adiabatically. We study for the time-dependent harmonic oscillator the transient energy excitation in speed-up processes designed to reproduce the initial populations at some predetermined final frequency and time, providing lower bounds and examples. Implications for the limits imposed to the process times and for the principle of unattainability of the absolute zero, in a single expansion or in quantum refrigerator cycles, are drawn.

PACS numbers: 37.10.De, 03.65.-w, 42.50.-p

I. INTRODUCTION

Adiabatic processes in quantum systems are frequently useful to drive or prepare states in a robust and controllable manner, and have also been proposed to solve complicated computational problems, but they are, by definition, slow. (The definition of “adiabatic process” here is the usual one in quantum mechanics, namely, a slow change of Hamiltonian parameters keeping the populations of the instantaneous eigenstates constant all along.) Thus a natural objective is to cut down the time to arrive at the same final state, possibly up to phase factors, in other words, to find “shortcuts to adiabaticity”, by designing optimal adiabatic pathways, or by admitting that the populations may not be preserved at intermediate times. Several works have recently proposed different ways to achieve this goal for general or specific cases [1–10]. One of the early applications considered has been particle transport without vibrational heating [1, 2, 5, 7, 10]. Another important case is frictionless harmonic trap compressions or expansions for state preparation [4–8, 11], which were first addressed with “bang-bang” (piecewise constant frequency) methods [11]; other route is to design by inverse engineering techniques a time dependent frequency for which the expanding modes associated with Lewis-Riesenfeld invariants [12] take the state from the initial to the final potential configuration without transitions [6, 7]; this has been extended to the Gross-Pitaevskii equation with a variational ansatz [4], and has been also implemented experimentally to decompress 87Rb cold atoms in a harmonic magnetic trap [13].

In this paper we shall examine the energy “cost” of such processes; more precisely, their transient excitation energies. Our central study case is the expansion (or compression) of a harmonic oscillator, a basic model for many operations in any cold atoms laboratory [7]. Intuitively, one expects the transient system energy and the time of the process to be “conjugate”, i.e., an increase of the former when decreasing the later, but the details of this relation, and the role played by other parameters defining the process (such as initial and final frequencies) have to be clarified both for fundamental reasons and for the applications. In particular, the energy excitation will set limits to the possible speed-up. In a trap which is harmonic near the ground state but not for higher energies, large transient energies will imply perturbing effects of anharmonicities and thus undesired excitations of the final state, or even atom loss. The transient excitation energy has also implications for quantifying the principle of unattainability of zero temperature, first enunciated by Nernst [17]. Fowler and Guggenheim [18] formulate it as follows: “It is impossible by any procedure no matter how idealized to reduce the temperature of any system to the absolute zero in a finite number of operations.” They identify it with the third law of thermodynamics although this is sometimes disputed. More recently, Kosloff and coworkers [11, 19, 20] have restated the unattainability principle as the vanishing of the cooling rate in quantum refrigerators when the temperature of the cold bath approaches zero, and quantify it by the scaling law relating cooling rate and cold bath temperature. We shall examine the consequences of the transient energy excitation on...
the unattainability principle at two levels, namely, for a single, isolated expansion, and considering the expansion as one of the branches of a quantum refrigerator cycle.

When describing these cycles and indeed in many intersection areas between quantum mechanics and thermodynamics one finds the need to use the word “adiabatic” in two different ways: the thermodynamical one (meaning that there is no heat transfer between system and environment) and the quantum one. Many authors have pointed out this duality as an unfortunate source of confusion. It may prove useful to distinguish them and avoid ambiguities and the hassle of detailed explanations with a shorthand notation. Following the example of Dirac’s q-number versus c-number distinction, we propose to refer to a process as “t-adiabatic” if it is thermodynamically adiabatic, and as “q-adiabatic” if it is a quantum mechanically adiabatic (i.e. slow) process.

II. BANG-BANG METHODS

The Hamiltonian for a particle with mass m in a time-dependent harmonic oscillator is given by

$$H = \frac{p^2}{2m} + m\omega^2 (t) \hat{q}^2 / 2.$$

(1)

Let us assume an expansion (compressions are treated similarly) with initial angular frequency $\omega_0 \equiv \omega(0)$ at time $t = 0$ and final frequency $\omega_f \equiv \omega(t_f) < \omega(0)$ at time t_f.

In the “bang-bang” approach the frequency is shaped as a stepwise constant function of time, choosing the step values and durations so as to preserve the initial state populations in the final configuration. For real trap intermediate frequencies this requires a minimal total expansion time \[11]\n
$$t_f > \frac{\sqrt{1 - \omega_f/\omega_0}}{\sqrt{\omega_f/\omega_0}}.$$

(2)

The limit can be realized by only three jumps, i.e., two real intermediate frequencies (it cannot be improved by using more intermediate frequencies), but one of the intermediate frequencies should be infinite.

Up to a constant factor the main dependence in the bound (2) already appears in a simpler process that reproduces for (ω_f, t_f) the initial populations with just one intermediate frequency, the geometric average $\omega_1 = (\omega_0 \omega_f)^{1/2}$, and a total time

$$t_f = \frac{\pi}{2\sqrt{\omega_0 \omega_f}},$$

(3)

which is a quarter of the corresponding period \[21\]. For an initial n-th state of the oscillator the instantaneous mean energy during the transient period becomes the arithmetic mean of the initial and final energies,

$$\langle H \rangle = \hbar \left(n + \frac{1}{2}\right) \frac{\omega_0 + \omega_f}{2}.$$

(4)

Eq. (3) and the bound (2) are relevant because the t-adiabatic expansion is actually the speed bottleneck in quantum Otto refrigerator cycles which use particles in a harmonic oscillator as the “working medium” \[11, 20\]. The cooling rate R as the cold bath temperature T_c approaches zero is dominated by the expansion time and scales as $R \propto \omega_f/t_f$. Since $\omega_f \propto T_c$ as $T_c \rightarrow 0$, the dependence of t_f on ω_f quantifies the unattainability principle. In particular, q-adiabatic expansions lead to $R \propto T_c^{-3/2}$ scalings, in contrast with the $R \propto T_c^{-3}$ scaling achieved with the times in Eqs. (2) or (3) \[11, 20\].

In \[7\] it was demonstrated, however, that the minimal time in Eq. (2) can be beaten with bang-bang methods and inverse engineering methods, see also the next section, by allowing for imaginary intermediate frequencies, i.e., transients in which the harmonic oscillator becomes a parabolic repeller. It was pointed out \[7\], that this new freedom leads to the absence, at least in principle, of a lower bound for the expansion time, which could obviously affect the optimal scaling of cooling rates. We shall analyze the impact of these ultra-fast expansions on the third law in the following sections.

III. ENERGY BOUNDS FOR INVERSE-ENGINEERED TIME-DEPENDENT HARMONIC OSCILLATORS

A. Bound for time-averaged energy

In this subsection, we will set a lower bound for the time-averaged energy in the transitionless expansions and compressions of the time-dependent harmonic oscillator. A shortcut to adiabaticity taking the n-th state of the initial trap to the final n-th state of the final trap up to phase factors is achieved \[7\] by designing the frequency from the Ermakov equation

$$\dot{\hat{b}} + \omega^2(t)\hat{b} = \frac{\omega_0^2}{\hat{b}^3},$$

(5)

where \hat{b} is an engineered scaling function which satisfies the following boundary conditions at $t = 0$ and t_f,

$$b(0) = 1, \quad \dot{b}(0) = 0, \quad \ddot{b}(0) = 0,$$

$$b(t_f) = \gamma, \quad \dot{b}(t_f) = 0, \quad \ddot{b}(t_f) = 0.$$

(6)

Here $\gamma = \sqrt{\omega_0/\omega_f}$, and the single and double dots denote first and second derivatives with respect to time. The simplest choice for interpolating $b(t)$ between 0 and t_f is a polynomial form, $b(t) = 6(\gamma - 1)s^5 - 15(\gamma - 1)s^4 + 10(\gamma - 1)s^3 + 1$, where $s = t/t_f$. In this manner the n-th stationary state of the initial oscillator will evolve according to the “expanding mode”

$$\Psi_n(t, x) = \left(\frac{m\omega_0}{\pi \hbar}\right)^{1/4} e^{-i(n+1/2)\int_0^t dt' \frac{\omega_0}{\omega(t')}^2} \left(\frac{2^n n! b^{1/2}}{\hbar}\right) \times e^{i\frac{b}{\hbar} \left(\frac{n+1/2}{b}\right)^2} \hbar_n \left(\frac{m\omega_0}{\hbar}\right)^{1/2} \frac{x}{b},$$

(7)
where \mathcal{H}_n is a Hermite polynomial, and will become eventually, up to a phase, the n-th eigenstate of the final trap at t_f. At intermediate times $|\Psi_n\rangle$ does not coincide in general with the instantaneous eigenvectors $|n\rangle$ of $H(t)$, $H(t)|n(t)\rangle = \epsilon_n(t)|n(t)\rangle$.

For the n-th expanding mode, the instantaneous average energy $E_n(t) = \langle \Psi_n|H(t)|\Psi_n\rangle$ is

$$E_n(t) = \frac{(2n+1)\hbar}{4\omega_0}\left[b^2 + \omega_n^2(t)b^2 + \frac{\omega_0^2}{b^2}\right],$$

which is in general different, except at initial and final times, from ϵ_n. The time average of E_n is defined by

$$\overline{E}_n = \frac{1}{t_f} \int_0^{t_f} E_n(t) \, dt. \quad (9)$$

To find a lower bound for \overline{E}_n we substitute Eq. (8) into \overline{E}_n and integrate by parts, making use of the boundary conditions (6),

$$\overline{E}_n = \frac{(2n+1)\hbar}{2\omega_0 t_f} \int_0^{t_f} \left(b^2 + \frac{\omega_0^2}{b^2}\right) \, dt. \quad (10)$$

The integrand has the form of the Lagrangian of a particle in an attractive inverse square potential, but the minimization problem, i.e., finding an optimal function $b(t)$ subjected to the boundary conditions (6), cannot be solved with an ordinary Euler-Lagrange equation since there are too many boundary conditions which affect not only b but also \dot{b} and b at the edges of the time interval. We can nevertheless find easily, using the Euler-Lagrange equation, the quasi-optimal “trajectory” $b(t)$ that minimizes the integral subjected only to the boundary values of b, that is, $b(0) = 1$ and $b(t_f) = \gamma$. Since these two conditions define a broader set of functions than the ones satisfying (6), the quasi-optimal b provides at least a lower bound for the time-averaged energy. For the function

$$f(t, b, \dot{b}) = b^2 + \omega_0^2/b^2,$$

the Euler-Lagrange differential equation $\frac{d}{dt}f_b = \frac{df}{db} \frac{db}{dt}$, where $f_b = -\omega_0^2/b^2$. The solution satisfying $b(0) = 1$ and $b(t_f) = \gamma$ is

$$b(t) = \sqrt{(B^2 - \omega_0^2 t_f^2) s^2 + 2Bs + 1}, \quad (12)$$

where $B = -1 + \sqrt{\gamma^2 + \omega_0^2 t_f^2}$ and the positive root should be taken. Substituting Eq. (12) into the integral (10), we finally obtain a lower bound for the time-averaged energy,

$$B_n = \frac{(2n+1)\hbar}{2\omega_0 t_f^2} \left\{ (B^2 - \omega_0^2 t_f^2) - 2\omega_0 t_f \times \left[\arctanh \left(\frac{B + \omega_0 t_f}{\omega_0 t_f} \right) \right. \right. \right.$$

$$- \left. \left. \arctanh \left(\frac{B}{\omega_0 t_f} \right) \right\}, \quad (14)$$

such that $\overline{E}_n \geq B_n$. When the final frequency ω_f is small enough to satisfy $t_f \ll 1/\sqrt{\omega_0 \omega_f}$, and $\gamma \gg 1$, the lower bound has the following simple asymptotic form,

$$B_n \approx \frac{(2n+1)\hbar}{2\omega_0 t_f^2}. \quad (15)$$

Incidentally, B_n sets also a lower bound for the maximum of the instantaneous energy $E_n(t)$.

FIG. 1: (Color online) Lower bound for time-averaged energy (in units of $E_0(0) = \hbar \omega_0/2$) as a function of t_f and ω_f, where $\omega_0 = 2\pi \times 250$ Hz.

In Fig. 1 we plot B_0 as a function of t_f and ω_f for $\omega_0 = 2\pi \times 250$ Hz, which will be also the initial frequency in the following examples. The important point is that the transient energy increases not only with decreasing final time t_f but also with decreasing final frequency ω_f.

Figure 2 shows the exponents of the scaling for the bound (14), its asymptotic form (15), and the time-averaged energy for a polynomial b. In all cases \overline{E}_n, or $B_0 \propto 1/\omega_f t_f^2$ asymptotically.

A consequence of Eq. (12) is

$$t_f \geq \sqrt{\frac{(2n+1)\hbar}{2\omega_0 \overline{E}_n}}. \quad (16)$$

The interest of Eq. (16) compared to Eq. (2) is that in principle, for fixed ω_0, it is possible to beat the bang-bang minimal time, but the price is an increase in the transient energy. In practice this energy cannot be arbitrarily large, if only because there are no perfect harmonic oscillators. In particular, if we consider in Eq. (10) that \overline{E}_n is limited by some maximal value, because of anharmonicities or a finite trap depth, the obtained scaling is fundamentally the same as for bang-bang methods, and leads to a cooling rate $R \propto T_c^{5/2}$ in an inverse quantum Otto cycle, although an opportunity is offered to improve the proportionality factor by increasing the allowed \overline{E}_n.

B. Minimization of time-averaged energy

In order to minimize the time-average energy and approach the lower bound, we can use the quasi-optimal $b(t)$, Eq. (13), in a central time segment $[\tau, 1 - \tau]$, and match it at the extremes with two “cap polynomials”, each of them satisfying three of the boundary conditions at Eq. (6) (at $t = 0$ or t_f), plus three boundary conditions for b, \dot{b} and \ddot{b} at the matching point. The idea is illustrated in Fig. 3.

FIG. 3: Example of hybrid b combining the quasi-optimal trajectory in the central segment $[\tau, 1 - \tau]$ and “cap polynomials” with the right boundary conditions, where $\omega_0 = 2\pi \times 250$ Hz, $\omega_f = 2\pi \times 0.25$ Hz, $t_f = 2$ ms, $\tau = 0.4$ (solid red line), quasi-optimal square-root b of Eq. (13) (dotted black line), and polynomial trajectory (blue dashed line).

The resulting hybrid b takes the form

$$b = \begin{cases}
\sum_{j=0}^{5} c_{j}s^{j} & (0 \leq s \leq \tau) \\
\sqrt{(B^{2} - \omega_0^{2})s^{2} + 2Bs + 1} - B & (\tau \leq s \leq 1 - \tau) \\
\sum_{j=0}^{5} d_{j}s^{j} & (1 - \tau \leq s \leq 1)
\end{cases}$$

where the coefficients $\{c_{j}\}$ and $\{d_{j}\}$ have lengthy expressions but are easily obtained from the matching conditions so we omit their explicit forms here.

Figure 4 demonstrates that this hybrid b can indeed minimize the time-average energy by making τ smaller and smaller, approaching the lower energy bound as $\tau \to 0$. A detailed calculation shows that the contribution from the caps does not vanish as $\tau \to 0$, so the value of the time-average bound is reached at the price of a singular instantaneous energy, see Fig. 4.

IV. ENERGY VARIANCE AND ANANDAN-AHARONOV RELATION

We shall now discuss the impact of the shortcuts to adiabaticity on the standard deviation of the energy $\Delta H \equiv \langle (H^{2}) \rangle - \langle H \rangle^{2} \rangle^{1/2}$. This is important because, a small averaged energy could in principle be spoiled by...
a large standard deviation. Anandan and Aharonov found a relation between the time average of the standard deviation of the energy and the time of a process connecting two given states, irrespective of the Hamiltonian used to connect them. The so-called “Anandan-Aharonov” (AA) relation provides a lower bound for the average uncertainty of the energy, which is extensively used to minimize the time \(t_f \) required for the evolution between two orthogonal quantum states. Based on the Fubini-Study metric, the following distance may be defined,

\[
S = 2 \int_0^{t_f} \frac{\Delta H(t)}{\hbar} dt \geq S_0, \tag{18}
\]

where the minimal value \(S_0 = 2 \arccos(\langle \Psi(t = 0) | \Psi(t = t_f) \rangle) \) corresponds to the “geodesic” \(^{22}\). For orthogonal states \(S_0 = \pi \), and

\[
\Delta H t_f \geq \frac{\hbar}{4}, \tag{19}
\]

where

\[
\Delta H = \int_0^{t_f} \frac{\Delta H(t) dt}{t_f}, \tag{20}
\]

but more generally, for arbitrary (possibly non-orthogonal) initial and final states, the AA relation is

\[
\Delta H t_f \geq \frac{\hbar S_0}{4\pi}. \tag{21}
\]

This may be applied to the harmonic oscillator and in particular to any process taking an \(n \)-th initial eigenstate to an \(n \)-th final eigenstate, up to phase factors. For the ground state we find, see \(^{17}\),

\[
\cos^2 \left(\frac{S_0}{2} \right) = |\langle \Psi_0(0) | \Psi_0(t_f) \rangle|^2 = \frac{2 \sqrt{\omega_0 \omega_f}}{\omega_0 + \omega_f}, \tag{22}
\]

and the relation

\[
\Delta H_0 t_f \geq \hbar \arccos \left(\frac{\sqrt{2(\omega_0\omega_f)^{1/4}}}{(\omega_0 + \omega_f)^{1/2}} \right). \tag{23}
\]

In the \(\omega_f \to 0 \) limit one finds again the time-energy uncertainty relation for two orthogonal states, that is, \(\Delta H_0 \geq \hbar/(4t_f) \), independent of \(\omega_f \). This bound, although certainly correct, is not tight and does not capture the actual dependences found for time averaged standard deviations, which in fact scale on \(\omega_f \) and \(t_f \) in the same way as the corresponding time averaged energies of the previous section. Similar to Fig. 2, Fig. 5 makes the exponents explicit. We have used the standard deviation \(\Delta H_n(t) \equiv |\langle \Psi_n | H^2(t) | \Psi_n \rangle - E_n^2|/2 \) for the \(n \)-th expanding mode, which takes the form

\[
\Delta H_n(t) = \frac{\sqrt{2(n^2 + n + 1)^{1/2}} \hbar}{4\omega_0} \times \left[\left(\frac{\hbar^2 + \omega^2(t) b^2 + \frac{\omega_0^2}{b^2}}{\omega_0} \right)^2 + \frac{4\omega_0^2 b^2}{b^2} \right]^{1/2}, \tag{24}
\]
and its time average
\[
\Delta H_n = \frac{1}{t_f} \int_0^{t_f} \Delta H_n(t) dt.
\] (25)

The dependence of \(\Delta H_0\) on \(t_f\) and \(\omega_f\) as they approach zero independently is summarized by the scaling exponents. In the limit of \(t_f \to 0\), \(\Delta H_0 \propto t_f^\delta\). Figure 5 shows that \(\delta = -2\) for the calculated standard deviation, whereas AA provides \(\delta = -1\). Similarly, as \(\omega_f \to 0\), \(\Delta H_0 \propto \omega_f^\delta\). We find \(\delta = -1\) in the calculated standard deviation versus \(\delta = 0\) from the AA relation.

V. ADDING TERMS TO THE HAMILTONIAN

Motivated by recent experimental realizations [13], we have considered up to now simple processes in which the only external manipulation consists in shaping \(\omega(t)\). Other possibilities exist in which the Hamiltonian is complemented with additional terms [3, 9]. We shall analyze here the energy excitations for a Hamiltonian that results from the transitionless inverse engineering algorithm proposed by Berry [3] (The application to the time dependent oscillator was worked out in [9].) We assume here that \(\omega(t)\) remains positive,

\[
\tilde{H} = H + H_1, \quad H = \hbar \omega(t) (a_1^\dagger a_1 + 1/2), \quad H_1 = i\hbar \frac{\dot{\omega}}{4\omega} (a_1^2 - a_1^{\dagger 2}).
\] (26, 27, 28)

\(\tilde{H}\) would drive the system without transitions along the states of the instantaneous basis of the time-dependent harmonic oscillator \(H\). In particular for the \(n\)-th state,

\[
|\phi_n(t)\rangle = e^{-\frac{i}{\hbar} \int_0^t \epsilon_n(t') dt'} |n(t)\rangle
\] (29)
is an exact solution of the time-dependent Schrödinger equation with \(\tilde{H}\).

The subscript \(t\) in the Schrödinger-picture creation and annihilation operators above denotes their fundamental time dependence, because of the changing frequency and eigenstates, not to be confused with the time-dependence of Heisenberg picture operators. \(H_1\) is related to the squeezing operator [9], and may also be written as \(H_1 = -\frac{\dot{\omega}}{2} (\hat{q}\hat{p} + \hat{p}\hat{q})\), so that \(\tilde{H}\) is still a generalized harmonic oscillator quadratic in positions and momenta. The expectation values of \(\tilde{H}\) and \(\tilde{H}^2\) for the \(n\)-th state are easily calculated,

\[
\langle \phi_n | \tilde{H} | \phi_n \rangle = \epsilon_n = (n + 1/2)\hbar \omega, \quad \langle \phi_n | \tilde{H}^2 | \phi_n \rangle = \frac{\hbar^2 \omega^2}{8\omega^2} (n^2 + n + 1) + \epsilon_n^2.
\] (30, 31)

from which we deduce

\[
\Delta \tilde{H}_n = \left(\langle \phi_n | \tilde{H}^2 | \phi_n \rangle - \epsilon_n^2 \right)^{1/2} = \frac{\hbar}{4\omega} |2(n^2 + n + 1)|^{1/2},
\] (32)

and the time averages

\[
\bar{\epsilon}_n = \frac{\hbar(n + 1/2)}{t_f} \int_0^{t_f} \omega(t) dt, \quad \bar{\Delta \tilde{H}}_n = \frac{\hbar}{4t_f} \left[2(n^2 + n + 1)\right]^{1/2} \int_0^{t_f} \frac{|\omega|}{\omega} dt.
\] (33, 34)

We shall first show with some specific examples that it is easy to find scalings which are in principle more favourable for implementing a fast transitionless process than the ones in the previous sections. For example, for a linear frequency ramp expansion \(\omega = \omega_0 + (\omega_f - \omega_0) t/t_f\),

\[
\bar{\epsilon}_n = \frac{\hbar(n + 1/2)}{2} \left(\frac{\omega_0 + \omega_f}{2}\right),
\] (35)

which is independent of \(t_f\), and

\[
\bar{\Delta \tilde{H}}_n = \frac{\hbar}{4t_f} \left[2(n^2 + n + 1)\right]^{1/2} \ln \left(\frac{\omega_f}{\omega_0}\right),
\] (36)

(in fact a general result for \(\dot{\omega} < 0\) so, for a fixed \(\Delta \tilde{H}_n\), \(t_f\) grows only logarithmically as \(\omega_f \to 0\).)

Note that some of the difficulties with high transient energies in the approaches which only control the time dependent frequency, due to the particle exploration of regions far away from the trap center, disappear here since the system evolves at all times along the instantaneous eigenstates without transitions. Clearly \(\langle \phi_n | H | \phi_n \rangle = \epsilon_n\) and \(\langle \phi_n | H^2 | \phi_n \rangle - \langle \phi_n | H | \phi_n \rangle^2 = 0\), so that the standard deviation [36] is entirely due to the complementary Hamiltonian \(H_1\).

The main, and so far important difficulty with this approach is that it is not clear how to implement \(\tilde{H}\) in practice [9]. \(H_1\) involves a non-local interaction and the attempts to provide a quantum-optical realization have not yet succeeded.

VI. DISCUSSION AND CONCLUSION

We have studied the transient energy excitation in time dependent quantum harmonic oscillators engineered so that the level populations at a final time are the same as the initial populations. We have considered first simple processes in which the only external manipulation consists in shaping \(\omega(t)\). The populations of the instantaneous levels at intermediate times are, however, not preserved, so the transient excitation should be understood and possibly controlled. We have obtained bounds, shown examples, and determined the dominant dependences, which are different from the ones in the Anandan-Aharonov relation [22].

In a realistic application the oscillator will not be perfectly harmonic and it is natural to set some maximum value to the allowed excitation. Then the minimal time
required for a fast expansion scales with the final frequency as $t_f \propto \omega_f^{-1/2}$. As the velocity determining step in quantum refrigerator Otto cycles this implies a dependence $R \propto T_c^{3/2}$ of the cooling rate, which had been previously conjectured to be a universal dependence characterizing the unattainability principle for any cooling cycle [20]. The present results provide strong support for the validity of this conjecture within the set of processes defined exclusively by time-dependent frequencies (without added terms in the Hamiltonian), and call for further testing and study.

In Sect. V we have seen that, at least at a formal level, one could design even faster processes by adding terms to the harmonic oscillator Hamiltonian, but their physical implementation remains challenging.

Acknowledgments

We thank M. Berry, R. Kosloff, A. Ruschhaupt, D. Guéry-Odelin, and E. Torrontegui for discussions. Funding by the Basque Government (Grant IT472-10), the Ministerio de Ciencia e Innovación (FIS2009-12773-C02-01), the National Natural Science Foundation of China (No. 60806041), the Shanghai Rising-Star Program (No. 08QA14030), the Shanghai Leading Academic Discipline (No. S30105), and Juan de la Cierva Programme is acknowledged.

[1] R. Reichle et al., Fortschr. Phys. 54, 666 (2006).
[2] A. Couvert, T. Kawalec, G. Reinaudi, and D. Guéry-Odelin, EPL 83, 13001 (2008).
[3] M. V. Berry, J. Phys. A 42, 365303 (2009).
[4] J. G. Muga, X. Chen, A. Ruschhaupt, D. Guéry-Odelin, J. Phys. B 42, 241001 (2009).
[5] S. Masuda and K. Nakamura, Proc. R. Soc. A 466, 1135 (2010).
[6] J. G. Muga, X. Chen, S. Ibáñez, I. Lizuain, and A. Ruschhaupt, J. Phys. B 43, 085509 (2010).
[7] X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, Phys. Rev. Lett. 104, 063002 (2010).
[8] X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Phys. Rev. Lett. 105, 123003 (2010).
[9] M. Murphy, L. Jiang, N. Khaneja, and T. Calarco, Phys. Rev. A 79, 020301(R) (2009).
[10] S. Masuda and K. Nakamura, arXiv 1004.4108
[11] P. Salamon, K. H. Hoffmann, Y. Rezek, and R. Kosloff, Phys. Chem. Chem. Phys. 11, 1027 (2009).
[12] H. R. Lewis and W. B. Riesenfeld, J. Math. Phys. 10, 1458 (1969).
[13] J. F. Schaff, X.-L. Song, P. Vignolo, and G. Labeyrie, Phys. Rev. A 82, 033430 (2010).
[14] S. Masuda and K. Nakamura, Phys. Rev. A 78, 062108 (2008).
[15] A. Bulatov, B. Vugmeister, A. Burin, and H. Rabitz, Phys. Rev. A 58, 1346 (1998).
[16] W. Wang, S. C. Hou, and X. X. Yi, arXiv:0910.5859.
[17] W. Nernst, Sitzungsber. Preuss. Akad. Wiss. 14, 134 (1912).
[18] R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics, Cambridge University Press, 1940, p. 224.
[19] R. Kosloff, E. Geva and J. M. Gordon, J. Appl. Phys. 87, 8093 (2000).
[20] Y. Rezek, P. Salamon, K. H. Hoffmann, and R. Kosloff, EPL 85, 30008 (2009).
[21] J. M. Vogels, private communication
[22] J. Anandan and Y. Aharonov, Phys. Rev. Lett. 65, 1697 (1990).
[23] A. K. Pati, Phys. Lett. A 262, 296 (1999).