Korchagin’s third conjecture

Séverine Fiedler-Le Touzé

November 24, 2016

Abstract

We consider the M-curve of degree nine with three nests $1\langle \alpha_i \rangle, i = 1, 2, 3$ in $\mathbb{R}P^2$. After systematic constructions, Korchagin conjectured that at least two of the α_i must be odd. It was later proved that there is always one odd α_i. We say that the curve has a jump in a non-empty oval O if there exist four ovals A, B, C, D, with A interior to some other non-empty oval O', D exterior, B, C interior to O, such that B and C are separated inside of O by any line passing through A and D. In this paper, we prove the conjecture for the curves without jump, and we find restrictions on the complex orientations and rigid isotopy types admissible for the curves even, even, odd with jump.

1 Admissible complex types for the ninth degree M-curves with three nests

1.1 Introduction

In [8]-[9], Korchagin stated three conjectures about ninth degree M-curves, two of them are completely proved (or partly disproved), see [1], [3], [14]. The third one is still open. Let C_9 be a ninth degree M-curve with three nests, its real scheme is: $\langle J \Pi 1\langle \alpha_1 \rangle \Pi 1\langle \alpha_2 \rangle \Pi 1\langle \alpha_3 \rangle \Pi \beta \rangle$, with $\alpha_1 + \alpha_2 + \alpha_3 + \beta = 25$.

Conjecture At least two of the α_i are odd.

It is already known that at least one of the α_i is odd, see [2]. We say that the curve has a jump in a non-empty oval O if there exist four ovals A, B, C, D, with A interior to some other non-empty oval O', D exterior, B, C interior to
O, such that B and C are separated inside of O by any line passing through A and D, see Figure 1. The main result of the present paper is the following:

Theorem 1 Let C_9 be an M-curve of degree 9 with three nests and no jump. Then at least two of the α_i are odd.

In this section, we determine as much information as possible about the complex orientations and rigid isotopy types realizable by the ninth degree M-curves with three nests (Proposition 1 and Tables 1-16). To this purpose, we apply lemmas and propositions stated in [2], in particular Lemmas 19 and 20, which are handy reformulations, for the specific case of the ninth degree M-curves with three nests, of Orevkov’s complex orientation formulas from [15]. Let us first describe these curves, using the results from [2]. For the reader’s convenience, we repeat here some definitions and notations introduced in that paper. For each empty oval P of C_9, we choose a point lying in it, denoted also by P, it will be clear from the context whether we speak of the point or of the oval. Let O_1, O_2, O_3 be the three non-empty ovals. For any pair of ovals A_i, A_j, interior to O_i and O_j respectively, one denotes by $[A_i, A_j]$ and calls affine segment the segment of the line $A_i A_j$ that doesn’t cut \mathcal{J}, see Figure 2. Let $[A_i A_j]'$ be the other segment. Any pencil \mathcal{F}_A, based in an oval A interior to O_j or O_k and sweeping out O_i from the first oval interior to O_i to the last one, meets the same sequence (Fiedler chain) of empty ovals, each of them being either interior to O_i or exterior. The occurrence of exterior ovals means that O_i has some jump. If O_i has no jump, the sequence is called chain of O_i. If α_i is odd, the chain of O_i is positive or negative, depending on whether it contributes by $+1$ or -1 to $\Lambda_+ - \Lambda_-$. The word chain, when used without further precision, has a very restrictive meaning. A pencil of lines
(conics) sweeping out a curve of degree \(m \) is \textit{maximal} if it has alternatively \(m \) \((2m)\) and \(m - 2 \) \((2m - 2)\) real intersection points with the curve. A \textit{chain} is a Fiedler chain of ovals arising from a maximal pencil, in such a way that the consecutive ovals are connected by vanishing cycles. In the pseudoholomorphic setting, the curve may be perturbed so as to replace these cycles by real crossings. It was proved in [2] that at most one non-empty oval may have a jump, by convention it is \(O_3 \). Moreover the sequence of \(O_3 \) (or jump sequence) splits into exactly three \textit{jump subsequences} \(\text{(int, ext, int)} \), we say that there is only one jump. If these subsequences have parities \(\text{(odd, odd, odd)} \), we speak of an \textit{odd jump}. The two inner subsequences are the \textit{chains of} \(O_3 \). Let \(O_i \) be any one of the non-empty ovals, the lines passing through pairs of ovals interior to \(O_i \) cut either all of the affine segments \([A_j,A_k] \) or all of the non-affine segments \([A_j,A_k]' \), where \(A_j \) \((A_k)\) ranges over all of the ovals interior to \(O_j \) \((O_k)\). In the first case, we say that \(O_i \) is \textit{separating}, otherwise \(O_i \) is \textit{non-separating}. Let \(B,D,C \) be three ovals distributed in the three successive jump subsequences. Up to a swap of \(B \) and \(C \), the ovals \(A_1, A_2, C, D, B \) lie in convex position in \(\mathbb{RP}^2 \setminus \mathcal{J} \) for any choice of \(A_1, A_2 \), see [1] and [2]. Let \(O_3 \) have a jump and \(D \) be an exterior oval of the jump sequence. Then \(O_3 \) cuts all of the segments \([AD] \) or all of the segments \([AD]' \), when \(A \) ranges over all ovals interior to \(O_1 \) and \(O_2 \). In the first case, we say that \(D \) is \textit{front}, in the second case, \(D \) is \textit{back}, see Figure 3. If each exterior oval \(D \) in the exterior jump subsequence is front (back), we say that \(O_3 \) is \textit{crossing} \((\text{non-crossing})\), the exterior subsequence is a chain, the three jump subsequences will be called \textit{jump chains}. Note that there may exist both front and back ovals, in this case, the exterior subsequence splits into two chains formed respectively by front and back ovals, see Proposition 3 in [2].

Let \(A_1, A_2, A_3 \) be three chosen ovals, distributed inside of the three non-empty ovals \(O_1, O_2, O_3 \). The six ovals \(O_i, A_i \) will be called the \textit{principal ovals} of \(C_9 \). The three lines \(A_1A_2, A_1A_3, A_2A_3 \), and \(\mathcal{J} \) divide the plane in four quadrangles and three triangles. The contributions of the ovals in \(T_0, Q_1, Q_2, Q_3, T_1, T_2, T_3 \) to \(\Lambda_+ - \Lambda_- \) are denoted by \(\lambda_i, i = 0 \ldots 6 \), see Figure 2. Let \(A_i \) be extremity of the chain of \(O_i \) if \(O_i \) has no jump; if \(O_3 \) has a jump, \(A_3 \) is extremity of the jump sequence. The interior of \(O_i \) is divided in four parts by the lines \(A_iA_j, A_iA_k \) \((\text{two in quadrangles, two in triangles})\), if \(O_i \) has no jump, the chain of \(O_i \) lies entirely in one of these four parts, if \(O_3 \) has a jump, the two chains of \(O_3 \) lie in the same part, contained in a quadrangles \(Q_1 \) or \(Q_2 \) \(\text{(by convention, we choose} \ A_3 \text{such that the quadrangle is} \ Q_1 \text{). If} \)
Figure 2: M-curve of degree 9 with three nests

Figure 3: Jump in O_3, D front, D back
O_i is separating, the chain of O_i lies in T_i or in T_0. Let O_i be separating and even. We say that O_i is up if, when A_i is chosen negative (positive), the chain is in T_i (T_0), otherwise O_i is down, see Figure 4.

![Figure 4: O_1 up, O_1 down](image)

Let us assign to each nest a code that gives the sign of the outer oval O_i, and the number $\alpha_i^+ - \alpha_i^- \in \{0, \pm 1, \pm 2\}$. Note that the values ± 2 correspond to the nests with odd jump. The codes are defined as explained in the example hereafter: $+$ stands for an even nest (without odd jump) with positive outer oval, $(+, -)$ stands for an odd nest with positive outer oval and negative inner chain, $(+, -, -)$ stands for a nest with odd jump, such that the outer oval O_3 is positive and the two chains of O_3 are negative. The code (\pm, \mp) stands for a nest that is either $(+, -)$ or $(-, +)$. The short complex scheme of C_9 is the set of three codes realized by the three nests. The complex type of C_9 is the short complex scheme, enhanced with the information for the odd nests, whether they are separating or non-separating; for the even nests, whether they are non-separating, up or down: $(+, -, n)$ and $(+, -, s)$ correspond respectively to a non-separating and a separating odd nest with positive outer oval O_i and negative interior chain; $(+, n), (+, u)$, $(+, d)$ correspond respectively to a non-separating, up, and down even nest with positive outer oval O_i.

In the next subsection, we will prove:
Proposition 1 The admissible complex types for C_9 with at least one even
nest are: listed in Table 6 (even, even, odd without jump); listed in Table 10
(even, even, odd with jump); listed in Table 16 (even, odd, odd without jump);
(\pm, \mp, n), (\pm, \mp, n), ($+, -, -$) and (\pm, \mp, n), (\pm, \mp, n), ($-, +, +$) (even, odd,
odd with jump).

The admissible short complex schemes for C_9 with three odd nests are
listed in Table 18.

The admissible complex types contradicting the conjecture are listed in
Table 6 (case without jump), and Table 10 (case with jump). Theorem 1 is
proved in section 2.

Let O_1 be even and non-separating. We say that O_1 is left (right) if,
when A_1 was chosen with orientation opposite to that of O_1, the chain of O_1
lies in Q_2 (Q_3). In section 3, we will prove:

Theorem 2 Let C_9 be a ninth degree M-curve even, even, odd with jump.
Then C_9 is as shown in Figure 5 or Figure 6. The curve C_9 has complex type
($+, u$), ($\pm, +, -$), with O_3 crossing and $\lambda_0 = 0$ or 1 (Figure 5); or C_9
has complex type ($+, n$), (\pm, \mp, n), ($-, +, +$) with O_3 non-crossing, O_1
right and $\lambda_0 = 0$ (Figure 6).

Let us add a word of explanation to the Figures. The principal ovals,
the base lines and J divide the plane in zones. We have indicated the
contributions of the non-principal ovals to $\Lambda_+ - \Lambda_-$ in each zone (a single
positive oval means $+1$). In a zone left blank, the contribution is 0, the zones
that we know to be empty are hatched.

1.2 Proof of Proposition 1

All along the proof, we refer to Lemmas and Propositions from [2]. For the
reader’s convenience, we give here a quick summary of the main results. If
O_3 is crossing, T_3 is empty; if O_3 is non-crossing, $T_0 \cup T_1 \cup T_2$ is empty; if
the exterior jump sequence has both front and back ovals, $T_0 \cup T_1 \cup T_2 \cup T_3$
is empty (Lemma 9). Let $\Lambda = \lambda_0 - \lambda_4 - \lambda_5 - \lambda_6$. One has $\Lambda = \Pi_+ - \Pi_- - 4$
(Lemma 10). Let C_9 have a jump, then $\Pi_+ - \Pi_- = 3$ or 4. If $\Pi_+ - \Pi_- = 4$
then C_9 is even, odd, odd with odd jump. If $\Pi_+ - \Pi_- = 3$, then O_3 is either
crossing and positive, or non-crossing and negative (Lemma 18). Note that
if $\Pi_+ - \Pi_- = 3$, the curve C_9 may be even, even, odd with odd jump, or odd,
Figure 5: C_9 with complex type $(+, u), (\pm, \mp), (+, -, -), \lambda_0 = 0$ or 1

Figure 6: C_9 with complex type $(+, n), (\pm, \mp, n), (-, +, +)$
Lemma 20). If T_i contains some exterior ovals, then $E_i = 0$ (Lemma 19). If O_i is separating, then $F_i - G_j - G_k = 0$ (Lemma 20). If $T_0 \cup T_1 \cup T_2 \cup T_3$ is empty, then the short complex scheme of C_9 is $(\pm, \mp), (\pm, \mp), (+, -, -)$ or $(\pm, \mp), (\pm, \mp), (-, +, +)$ (Lemma 21). Finally, let us mention two propositions from [2]: If T_i contains some exterior ovals, then $|\lambda_{i+3}| \leq 3$; if $|\lambda_{i+3}| = 3$, then $\lambda_{i+3} = 3$ and $\Lambda = -2$ (Proposition 1). If T_0 contains only exterior ovals, then $|\lambda_0| \leq 2$ (Proposition 2).

Consider first the case even, even, odd. The twelve admissible complex schemes without jump are displayed in Table 1, along with: the numbers E_i, the indices j of the zones T_j that may contain some exterior ovals (row Z), and Λ. Note that by Lemma 21, the first five complex schemes of Table 1 cannot be realized with all of the O_i non-separating. Adding to this the informations in Tables 2-4 allows to get the list of admissible complex types in Table 3. In the tables, each row with $n = 0, 1, 2, 3$ nests (\pm, \mp) corresponds actually to $n + 1$ complex schemes or types. Choose for any separating even nest O_i the base oval A_i in such a way that (A_i, O_i) form a positive pair, and A_i is extremal in the chain of inner ovals. The complex types in Table 3 are such that $\Lambda = \Pi_+ - \Pi_- - 4 = -3$ if O_3 is (\pm, \mp), and -5 if O_3 is $(+, +)$ or $(-, -)$. This, combined with the data of Z, allows to find out the admissible values for the triangular parameters $\lambda_i, i = 0, 4, 5, 6$. The six types with $Z = (1)$ (first four rows of Table 3) are such that the triangle T_1 contains only exterior ovals, as O_1 is either non-separating or $(+, d)$. For these types, $\lambda_4 = 3, 4, 5, 6$, this contradicts Proposition 1 (from [2]). The type with $Z = (3)$ is such that the triangle T_3 contains only exterior ovals. But $\lambda_6 = 5$, this contradicts also Proposition 1. The types with $Z = (0)$ are such that the triangle T_0 contains only exterior ovals. But $\lambda_0 \leq -5$, this contradicts Proposition 2. The types $(-, d), (\pm, d)$ verify $\lambda_0 - \lambda_6 = -5$. For O_3 non-separating, both T_0 and T_3 contain only exterior ovals, so that one may apply Propositions 1 and 2. One must have $|\lambda_6| \leq 2, |\lambda_0| \leq 2$, this is a contradiction. When O_3 is separating, one may choose the oval A_3 so that T_4 contains only exterior ovals, to apply Proposition 1. Then, one chooses the other extremal oval A_3', so that T_0' contains only exterior ovals, to apply Proposition 2. The values of the λ_i are the same for both choices, so one gets the same contradiction as for a non-
separating O_3. In the sequel, keep in mind that we only need to take care of the even nests to achieve the hypothesis needed for Proposition 1 or 2. The types left are gathered in Table 6, note that each of the three rows corresponds actually to four types, depending on whether the nest O_3 is $(+, -)$ or $(-, +)$, separating or non-separating. We get the admissible values of λ_0 and λ_6 applying Propositions 1 and 2. As T_0 contains only exterior ovals, $|\lambda_0| \leq 2$. If the even ovals are both non-separating, $|\lambda_6| = |\lambda_0 + 3| \leq 2$, hence $\lambda_0 = -1$ or -2; if O_1 is separating, $|\lambda_6| = |\lambda_0 + 4| \leq 2$, hence $\lambda_0 = -2$.

The M-curves with odd jump are either even, even, odd or even, odd, odd with $\Pi_+ - \Pi_- = 3$ (Lemma 18). The list of admissible short complex schemes with odd jump is shown in Table 7. Consider the case even, even, odd. If O_3 is non-crossing, the ovals O_1 and O_2 are non-separating (by Lemma 9). If moreover O_1 is negative, then there are no exterior triangular ovals. This is a contradiction as one should have $\lambda_6 = -\Lambda = 1$. Adding this to the informations in Tables 8-9 allows to get the list of admissible complex types even, even, odd with jump displayed in Table 10, and to see that the ovals O_1, O_2 of the even, odd curves with jump must be non-separating. In Table 10 we have also indicated the parameters λ_1, λ_2, λ_3, they are obtained from the identities $\lambda_0 + \lambda_1 - \lambda_4 = 0$, $\lambda_0 + \lambda_2 - \lambda_5 = 0$, $\lambda_0 + \lambda_3 - \lambda_6 = 0$. (These identities follow from Fiedler’s theorem applied with the pencils of lines \mathcal{F}_A_i sweeping out $T_0 \cup Q_i \cup T_i$, see first part of Lemma 10).

Table 11 shows the admissible short complex schemes even, odd, odd without jump. As there is at most one separating even nest, the contribution of the interior ovals to Λ is 0, $+1$ or -1. If O_1 is separating, choose the base oval A_1 so as to realize each time the required hypothesis to apply Propositions 1 or 2. We get thus: if $Z = \emptyset$, then $|\Lambda| \leq 1$; if $Z = (0)$, then $|\lambda_0| \leq 2$ hence $|\Lambda| \leq 3$; if $Z = (i), i = 1, 2, 3$, then $|\lambda_{i+3}| \leq 2$ hence $|\Lambda| \leq 3$, or $\lambda_{i+3} = 3$ and $\Lambda = -2$. Using the informations from Tables 12-15, we get the list of admissible complex types even, odd, odd without jump in Table 16.

Table 17 shows the admissible short complex schemes odd, odd, odd. By Propositions 1 and 2: $|\lambda_0| \leq 2$ and $|\lambda_{i+3}| \leq 2$. The only admissible schemes left are shown in Table 18. For $O_1 = (\pm, \mp, s)$, one has $F_1 - G_2 - G_3 = 0$ for both choices of O_3, there is no contradiction (see Lemma 20). For $O_3 = (-, -, s)$, one has $F_3 - G_1 - G_2 = -1$, contradiction. Any one of the nests (\pm, \mp) may be separating, whereas the nest $(-, -)$ must be non-separating. The curve may have a jump only if all three nests are (\pm, \mp) (Lemma 18).
Table 1: Admissible short complex schemes even, even, odd, without jump

	O₁	O₂	O₃	E₀	E₁	E₂	E₃	Z	Λ
+	+	(+,+)	−4	−3	−3	−2	⌀	−5	
+	+	(+,−)	−2	−1	−1	−2	⌀	−3	
+	−	(−,+)	−2	−1	−1	−2	⌀	−3	
+	+	(−,−)	−2	−1	−1	−4	⌀	−5	
+	−	(+,+)	−3	−2	−4	−1	⌀	−5	
+	−	(+,−)	−1	0	−2	−1	(1)	−3	
+	−	(−,+)	−1	0	−2	−1	(1)	−3	
−	−	(+,+)	−2	−3	−3	0	(3)	−5	
−	−	(+,−)	0	−1	−1	0	(0,3)	−3	
−	−	(−,+)	0	−1	−1	−2	(0)	−5	

Table 2: Even, even, odd, without jump $O₁$ separating

	O₁	O₂	O₃	$F₁ - G₂ - G₃$
(+,u)	+	(+,+)	−4	
(+,d)	+	(+,+)	−3	
(+,u)	+	(±,>)	−2	
(+,d)	+	(±,>)	−1	
(+,u)	+	(−,−)	−2	
(+,d)	+	(−,−)	−1	
(+,u)	+	(−,+)	−3	
(+,d)	+	(−,+)	−2	
(+,u)	+	(±,>)	−1	
(+,d)	+	(±,>)	0	
(+,u)	+	(−,−)	−1	
(+,d)	+	(−,−)	0	
(−,u)	+	(−,+)	−3	
(−,d)	+	(−,+)	−2	
(−,u)	+	(±,>)	−1	
(−,d)	+	(±,>)	0	
(−,u)	+	(−,−)	−1	
(−,d)	+	(−,−)	0	
\[
\begin{array}{ccccc}
O_1 & O_2 & O_3 & F_2 - G_1 - G_3 \\
+ & (-, u) & (+, +) & -4 \\
+ & (-, d) & (+, +) & -3 \\
+ & (-, u) & (\pm, \mp) & -2 \\
+ & (-, d) & (\pm, \mp) & -1 \\
+ & (-, u) & (-, -) & -2 \\
+ & (-, d) & (-, -) & -1 \\
\end{array}
\]

Table 3: Even, even, odd, without jump, \(O_2\) separating

\[
\begin{array}{cccc}
O_1 & O_2 & O_3 & F_3 - G_1 - G_2 \\
+ & + & (+, +, s) & -3 \\
+ & + & (\pm, \mp, s) & -2 \\
+ & + & (-, -, s) & -3 \\
+ & - & (+, +, s) & -2 \\
+ & - & (\pm, \mp, s) & -1 \\
+ & - & (-, -, s) & -2 \\
- & - & (+, +, s) & -1 \\
- & - & (\pm, \mp, s) & 0 \\
- & - & (-, -, s) & -1 \\
\end{array}
\]

Table 4: Even, even, odd, without jump, \(O_3\) separating
\[
\begin{array}{cccccccc}
O_1 & O_2 & O_3 & Z & \lambda_0 & \lambda_1 & \lambda_4 & \lambda_5 & \lambda_6 \\
(+, n) & (-, n) & (\pm, \mp, n) & (1) & 0 & 3 & 0 & 0 & 0 \\
(+, d) & (-, n) & (\pm, \mp, n) & (1) & 1 & 4 & 0 & 0 & 0 \\
(+, n) & (-, n) & (-, -, n) & (1) & 0 & 5 & 0 & 0 & 0 \\
(+, d) & (-, n) & (-, -, n) & (1) & 1 & 6 & 0 & 0 & 0 \\
(-, n) & (-, n) & (+, +, n) & (3) & 0 & 0 & 0 & 0 & 5 \\
(-, n) & (-, n) & (\pm, \mp, n) & (0, 3) & \lambda_0 & 0 & 0 & \lambda_0 + 3 & \\
(-, d) & (-, n) & (\pm, \mp, n) & (0, 3) & \lambda_0 & -1 & 0 & \lambda_0 + 4 & \\
(-, n) & (-, n) & (\pm, \mp, s) & (0, 3) & \lambda_0 & 0 & 0 & \lambda_0 + 3 & \\
(-, d) & (-, n) & (\pm, \mp, s) & (0, 3) & \lambda_0 & -1 & 0 & \lambda_0 + 4 & \\
(-, d) & (-, d) & (\pm, \mp, n) & (0, 3) & \lambda_0 & -1 & -1 & \lambda_0 + 5 & \\
(-, d) & (-, d) & (\pm, \mp, s) & (0, 3) & \lambda_0 & -1 & -1 & \lambda_0 + 5 & \\
(-, n) & (-, n) & (-, -, n) & (0) & -5 & 0 & 0 & 0 & 0 \\
(-, d) & (-, n) & (-, -, n) & (0) & -6 & -1 & 0 & 0 & 0 \\
(-, d) & (-, d) & (-, -, n) & (0) & -7 & -1 & -1 & 0 & 0 \\
\end{array}
\]

Table 5: Admissible complex types even, even, odd without jump

\[
\begin{array}{cccccccc}
O_1 & O_2 & O_3 & \lambda_0 & \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 & \lambda_5 & \lambda_6 \\
(-, n) & (-, n) & (\pm, \mp, n) & -1 & 1 & 1 & 3 & 0 & 0 & 2 \\
(-, n) & (-, n) & (\pm, \mp, n) & -2 & 2 & 2 & 3 & 0 & 0 & 1 \\
(-, d) & (-, n) & (\pm, \mp, n) & -2 & 1 & 2 & 4 & -1 & 0 & 2 \\
\end{array}
\]

Table 6: Even, even, odd, without jump, last cases left
Table 7: Admissible short complex schemes with odd jump

O_1	O_2	O_3	E_0	E_1	E_2	E_3	Z	Λ
+	(+, −)	(+, −, −)	0	1	0	−1	(0, 2)	−1
−	(+, −)	(+, −, −)	1	0	1	0	(1)	−1
+	(−, +)	(+, −, −)	0	1	0	−1	(0, 2)	−1
−	(−, +)	(+, −, −)	1	0	1	0	(1)	−1
(+, −)	(+, −)	(+, −, −)	1	1	1	0	(3)	0
(+, −)	(−, +)	(+, −, −)	1	1	1	0	(3)	0
(−, +)	(−, +)	(+, −, −)	1	1	1	0	(3)	0
+	(+, −)	(−, +, +)	−1	0	−1	0	(3)	0
−	(+, −)	(−, +, +)	0	−1	0	1	\emptyset	−1
+	(−, +)	(−, +, +)	−1	0	−1	0	(3)	−1
−	(−, +)	(−, +, +)	0	−1	0	1	\emptyset	−1
(+, −)	(+, −)	(−, +, +)	0	0	0	1	(0, 1, 2)	0
(+, −)	(−, +)	(−, +, +)	0	0	0	1	(0, 1, 2)	0
(−, +)	(−, +)	(−, +, +)	0	0	0	1	(0, 1, 2)	0

Table 8: Odd jump, O_1 separating

O_1	O_2	O_3	$F_1 - G_2 - G_3$
(+, u)	(\pm, \mp)	(+, −, −)	0
(+, d)	(\pm, \mp)	(+, −, −)	1
(−, u)	(\pm, \mp)	(+, −, −)	0
(−, d)	(\pm, \mp)	(+, −, −)	1
(\pm, \mp, s)	(\pm, \mp)	(+, −, −)	1

Table 9: Odd jump, O_2 separating

O_1	O_2	O_3	$F_2 - G_1 - G_3$
+	(\pm, \mp, s)	(+, −, −)	0
−	(\pm, \mp, s)	(+, −, −)	1

13
\(O_1 \)	\(O_2 \)	\(O_3 \)	\(Z \)	\(\lambda_0 \)	\(\lambda_4 \)	\(\lambda_5 \)	\(\lambda_6 \)	\(\lambda_1 \)	\(\lambda_2 \)	\(\lambda_3 \)
(+, n)	(±, ⊤, n)	(+, −, −)	(0, 2)	\(\lambda_0 \)	0	\(\lambda_0 + 1 \)	0	−\(\lambda_0 \)	1	−\(\lambda_0 \)
(+, u)	(±, ⊤, n)	(+, −, −)	(0, 2)	\(\lambda_0 \)	1	\(\lambda_0 \)	0	1 − \(\lambda_0 \)	0	−\(\lambda_0 \)
(+, n)	(±, ⊤, s)	(+, −, −)	(0, 2)	\(\lambda_0 \)	0	\(\lambda_0 + 1 \)	0	−\(\lambda_0 \)	1	−\(\lambda_0 \)
(+, u)	(±, ⊤, s)	(+, −, −)	(0, 2)	\(\lambda_0 \)	1	\(\lambda_0 \)	0	1 − \(\lambda_0 \)	0	−\(\lambda_0 \)
(−, n)	(±, ⊤, n)	(+, −, −)	(1)	−1	0	0	0	1	1	1
(−, u)	(±, ⊤, n)	(+, −, −)	(1)	−1	0	0	0	1	1	1
(+, n)	(±, ⊤, n)	(−, +, +)	(3)	0	0	0	1	0	0	1

Table 10: Admissible complex types even, even, odd with jump

\(O_1 \)	\(O_2 \)	\(O_3 \)	\(E_0 \)	\(E_1 \)	\(E_2 \)	\(E_3 \)	\(Z \)	\(\Lambda \)
+ (±, ⊤)	(+, +)	−3	−2	−3	−1	\(\emptyset \)	−4	
+ (±, ⊤)	(±, ⊤)	−1	0	−1	−1	(1)	−2	
+ (±, ⊤)	(−, −)	−1	0	−1	−3	(1)	−4	
+ (+, +)	(+, +)	−5	−4	−3	−3	\(\emptyset \)	−6	
+ (+, +)	(−, −)	−3	−2	−1	−5	\(\emptyset \)	−6	
+ (−, −)	(−, −)	−1	0	−3	−3	(1)	−6	
− (±, ⊤)	(+, +)	−2	−3	−2	0	(3)	−4	
− (±, ⊤)	(±, ⊤)	0	−1	0	0	(0.2, 3)	−2	
− (±, ⊤)	(−, −)	0	−1	0	−2	(0.2)	−4	
− (+, +)	(+, +)	−4	−5	−2	−2	\(\emptyset \)	−6	
− (+, +)	(−, −)	−2	−3	0	−4	(2)	−6	
− (−, −)	(−, −)	0	−1	−2	−2	(0)	−6	

Table 11: Admissible short complex schemes even, odd, odd without jump
Table 12: Even, odd, odd, O_3 separating

O_1	O_2	O_3	$F_3 - G_1 - G_2$
+	(±, ±)	(+, +, s)	-2
+	(±, ±)	(±, ±, s)	-1
+	(±, ±)	(−, −, s)	-2
+	(+, +)	(+, +, s)	-4
+	(+, +)	(−, −, s)	-4
+	(−, −)	(−, −, s)	-2
−	(±, ±)	(+, +, s)	-1
−	(±, ±)	(±, ±, s)	0
−	(±, ±)	(−, −, s)	-1
−	(+, +)	(+, +, s)	-3
−	(+, +)	(−, −, s)	-3
−	(−, −)	(−, −, s)	-1

Table 13: Even, odd, odd, O_2 separating

O_1	O_2	O_3	$F_2 - G_1 - G_3$
+	(±, ±)	(+, +)	-3
+	(±, ±)	(−, −)	-1
+	(±, ±)	(−, −)	-2
−	(±, ±)	(+, +)	-2
+	(±, ±)	(−, −)	-1
−	(±, ±)	(−, −)	-1
−	(±, ±)	(−, −)	0

Table 13: Even, odd, odd, O_2 separating
O_1	O_2	O_3	$F_1 - G_2 - G_3$
($+$, u)	(\pm, \mp)	($+$, $+$)	-3
($+$, u)	(\pm, \mp)	(\pm, \mp)	-1
($+$, u)	(\pm, \mp)	($-$, $-$)	-1
($+$, u)	($+$, $+$)	($+$, $+$)	-5
($+$, u)	($+$, $+$)	($-$, $-$)	-3
($+$, u)	($-$, $-$)	($-$, $-$)	-1
($-$, u)	(\pm, \mp)	($+$, $+$)	-3
($-$, u)	(\pm, \mp)	(\pm, \mp)	-1
($-$, u)	(\pm, \mp)	($-$, $-$)	-1
($-$, u)	($+$, $+$)	($+$, $+$)	-5
($-$, u)	($+$, $+$)	($-$, $-$)	-3
($-$, u)	($-$, $-$)	($-$, $-$)	-1

Table 14: Even, odd, odd, O_1 up

O_1	O_2	O_3	$F_1 - G_2 - G_3$
($+$, d)	(\pm, \mp)	($+$, $+$)	-2
($+$, d)	(\pm, \mp)	(\pm, \mp)	0
($+$, d)	(\pm, \mp)	($-$, $-$)	0
($+$, d)	($+$, $+$)	($+$, $+$)	-4
($+$, d)	($+$, $+$)	($-$, $-$)	-2
($+$, d)	($-$, $-$)	($-$, $-$)	0
($-$, d)	(\pm, \mp)	($+$, $+$)	-2
($-$, d)	(\pm, \mp)	(\pm, \mp)	0
($-$, d)	(\pm, \mp)	($-$, $-$)	0
($-$, d)	($+$, $+$)	($+$, $+$)	-4
($-$, d)	($+$, $+$)	($-$, $-$)	-2
($-$, d)	($-$, $-$)	($-$, $-$)	0

Table 15: Even, odd, odd, O_1 down
Table 16: Admissible complex types even, odd, odd without jump

O_1	O_2	O_3	\mathcal{Z}	Λ
(+, n)	(±, \mp, n)	(±, \mp, n)	(1)	−2
(+, d)	(±, \mp, n)	(±, \mp, n)	(1)	−2
(−, n)	(±, \mp, n)	(±, \mp, n)	(0, 2, 3)	−2
(−, n)	(±, \mp, n)	(±, \mp, s)	(0, 2, 3)	−2
(−, n)	(±, \mp, n)	(±, \mp, n)	(0, 2, 3)	−2
(−, d)	(±, \mp, n)	(±, \mp, s)	(0, 2, 3)	−2
(−, d)	(±, \mp, n)	(±, \mp, n)	(0, 2)	−4
(−, d)	(±, \mp, n)	(−, −, n)	(0, 2)	−4
(−, d)	(±, \mp, n)	(−, −, n)	(0, 2)	−4
(−, d)	(±, \mp, s)	(−, −, n)	(0, 2)	−4

Table 17: Admissible short complex schemes odd, odd, odd

O_1	O_2	O_3	E_0	E_1	E_2	E_3	\mathcal{Z}	Λ
(+, +)	(+, +)	(+, +)	−6	−4	−4	−4	\emptyset	−7
(+, +)	(+, +)	(±, \mp)	−4	−2	−2	−4	\emptyset	−5
(+, +)	(+, +)	(−, −)	−4	−2	−2	−6	\emptyset	−7
(+, +)	(±, \mp)	(±, \mp)	−2	0	−2	−2	(1)	−3
(+, +)	(±, \mp)	(−, −)	−2	0	−2	−4	(1)	−5
(+, +)	(−, −)	(−, −)	−2	0	−4	−4	(1)	−7
(±, \mp)	(±, \mp)	(±, \mp)	0	0	0	0	(0, 1, 2, 3)	−1
(±, \mp)	(±, \mp)	(−, −)	0	0	0	−2	(0, 1, 2)	−3
(±, \mp)	(−, −)	(−, −)	0	0	−2	−2	(0, 1)	−5
(−, −)	(−, −)	(−, −)	0	−2	−2	−2	(0)	−7

Table 18: Short complex schemes odd, odd, odd, cases left

O_1	O_2	O_3	E_0	E_1	E_2	E_3	\mathcal{Z}	Λ
(±, \mp)	(±, \mp)	(±, \mp)	0	0	0	0	(0, 1, 2, 3)	−1
(±, \mp)	(±, \mp)	(−, −)	0	0	0	−2	(0, 1, 2)	−3

Table 18: Short complex schemes odd, odd, odd, cases left
2 Proof of the conjecture in the case without jump

2.1 Definitions and first steps

Assume there exists C_9 contradicting the conjecture, C_9 realizes one of the three complex types in Table 6. We will find a contradiction using Bezout’s theorem with auxiliary rational quartics. The first step consists in studying a pencil of conics based at A_1, A_2, A_3 and a fourth point D, chosen in a quadrangular oval. It turns out that this pencil has a “double jump”: it sweeps out successively five ovals A, E, B, F, C, such that A, B, C are triangular, E, F are quadrangular (see Lemma 3 ahead).

For $i = 1, 2, 3$, let A_i be the positive extreme oval in the chain of O_i, and let A_3 be any one of the extreme ovals in the chain of O_3, the pair of ovals A_3, O_3 have opposite orientations. In Figure 7, we show all admissible distributions of ovals for C_9. The base lines, J and the ovals $O_i, i = 1, 2, 3$ divide the plane in zones. The ovals that are not represented are distributed in such a way that the difference number of positive minus number of negative ones is 0 in each zone. Let O_1 be non-separating (C_9 has the first or the second type), we say that O_1 is left if the chain of O_1 is in Q_2, right if the chain of O_1 is in Q_3. The oval O_2 is non-separating for all three types, we say that O_2 is left if the chain of O_2 is in Q_3, right if the chain of O_2 is in Q_1. Perform the Cremona transformation cr based at the points A_1, A_2, A_3. The respective images of the lines $A_1 A_2, A_2 A_3, A_3 A_1$ will be denoted by $A_3 A_1, A_2$ (note that after cr, the new base lines $A_1 A_2, A_2 A_3, A_3 A_1$ divide the plane in four triangles $cr(T_0), cr(T_i \cup Q_i), i = 1, 2, 3$). For the points lying inside of non-principal ovals, we use the same notation as before cr. The curve C_9 is mapped onto a curve C_{18} with ordinary 9-fold singularities at the points $A_i, i = 1, 2, 3$, see Figure 8. An oval of C_9 is interior if it lies inside of one of the three nests, otherwise it is exterior. An oval of C_9 is triangular (quadrangular) if it lies in $T_0 \cup T_1 \cup T_2 \cup T_3 (Q_1 \cup Q_2 \cup Q_3)$. An oval of C_{18} is interior (exterior, triangular, quadrangular) if its preimage is. The triangular ovals of C_{18} are the ovals lying inside of $\mathcal{O} = cr(J)$. The main part of C_{18} is the union of \mathcal{O} and the images of the six principal ovals. A conic through A_1, A_2, A_3 and two further points is mapped by cr onto the line passing through the images of the two points. A rational quartic with nodes at A_1, A_2, A_3 and passing through five further points is mapped onto the conic passing through
the images of these five points. We shall always choose the two (or the five) points inside of non-principal ovals. Our goal is to find configurations of five ovals of C_9 leading to a contradiction: after cr, a conic passing through the images of these five ovals intersects the curve C_{18} at 38 points. Its preimage would be a rational quartic intersecting: each of the ovals $A_i, O_i, i = 1, 2, 3$ at four points, each of the other five ovals at two points, and J at four points.

A pencil of lines (conics) sweeping out a curve of degree m is maximal if it has alternatively $m (2m)$ and $m − 2 (2m − 2)$ real intersection points with the curve. It is totally real if it has only real intersections with the curve. The main part of C_{18} divides the plane in 25 zones. The six zones corresponding to the interiors of the ovals A_1, A_2, A_3 contain no ovals. For $i = 1, 2, 3$, at most one of the four zones corresponding to the interior of O_i may contain some ovals. After cr, we will call chain a maximal Fiedler chain of ovals lying in the same zone, swept out by some maximal pencil of lines. The consecutive ovals are connected by vanishing cycles.

Consider two non-principal ovals: G exterior in Q_1 and D in Q_2, either exterior or extremal negative in the chain of O_1 (in the latter case, O_1 is left). Note that such ovals exist, see Figure [7]. After cr, denote by F_D the pencil of lines based at D sweeping out O from the first triangular oval to the last one, and meeting successively A_1, A_2, A_3, this pencil is maximal. We will say that an oval is interior to $cr(O_i)$ if its preimage is interior to O_i. If F_D sweeps out some oval interior to $cr(O_i)$, then it sweeps out all of the ovals interior to $cr(O_i)$, consecutively; the ordering of these ovals given by F_D corresponds to the ordering of their preimages in the chain of O_i. The ovals interior to $cr(O_i)$ (other than D) build a chain, formed by the images of the non-principal ovals interior to O_i (other than D). This follows from Bezout’s theorem, along with the fact that, in the pseudo-holomorphic setting, one may deform the curve, replacing the vanishing cycles connecting consecutive ovals in the chains by real double points, [10]-[16].

The triangular ovals forming positive (negative) pairs with O will be called plus-ovals (minus-ovals). The plus-ovals (minus-ovals) are thus the negative (positive) ovals in $cr(T_0)$ and the positive (negative) ovals in $cr(T_1) \cup cr(T_2) \cup cr(T_3)$. For all three complex types of Table [6], $cr(T_2)$ is empty; for the first two complex types, $cr(T_1)$ is also empty.

Lemma 1 There cannot exist a configuration of three ovals P, H, Q met successively by F_D, with P in $cr(T_0)$, Q in $cr(T_3)$ and H quadrangular.

Proof: The lines PG, PQ and QG divide the sector DP, DQ containing
Figure 7: Admissible distributions of ovals for the curves even, even, odd without jump
Figure 8: The main part of C_{18} and the base lines

H in four triangles, one of them is entirely contained in O, see Figure 9. The point H may be chosen in any one of the other three triangles, denote by H_1, H_2 and H_3 the three admissible choices of H, the conic through D, P, Q, G, H is DPH_1QG, $DPGQH_2$ or DH_3PGQ. For each of the six lines determined by two of the points D, P, Q, G, consider the three intersection points with the base lines, we have thus five particular points on each line. The ordering of these five points on the line is known only for DP, DQ and PQ. In the upper part of Figure 9, the position of the base lines with respect to the other three lines DG, PG, QG has been chosen arbitrarily among all admissible positions. In the lower part, we have drawn in bold the boundaries of the zones containing each of the three base lines, each of these zones is a Möbius band bounded by segments of lines: for A_3A_2, it is bounded by DQ, DG, QG, P lies outside; for A_1A_3, it is bounded by DP, PG, DG, Q lies outside; for A_1A_2, it is bounded by PQ, PG, QG, D lies outside. (In the three pictures, the positions of H are indicated only with the indices 1, 2, 3.) The X assigned to a pair (conic, base line A_iA_j) means that the conic cuts A_iA_j (twice) and each of the objects $cr(O_k)$, $cr(A_k)$ at four points. We say that the
conic is maximal with respect to the base line A_iA_j. (We may say similarly that an arc of conic is maximal with respect to some base line.) The three conics are all maximal with respect to the three base lines, and have each four intersection points with \mathcal{O}. They cut C_{18} at 38 points, this is a contradiction. □

Lemma 2 There cannot exist a configuration of four ovals P, Q, R, S, with P,R in $\text{cr}(T_3)$, Q,S in $\text{cr}(T_0)$ and Q not in $\text{cr}(O_3)$, such that \mathcal{F}_D meets successively P, Q, R, S or S, P, Q, R.

Proof: Assume there exist four such ovals, note that they are either all exterior or one unique oval among P, R, S is interior to $\text{cr}(O_3)$. Consider the pencil of conics \mathcal{F}_{DPQR}, all of its conics have in total eight intersection points with the set of base ovals. The pencil is divided in three portions by the double lines, in two of these portions, the conics cut \mathcal{O} four times and are maximal with respect to the three base lines. These portions are totally real, see Figure 10, where the X assigned to a pair (portion, base line) means that the portion is maximal with respect to the base line. The remaining empty ovals are swept out by the third portion $PQ \cup DR \rightarrow DP \cup QR$. Depending on whether \mathcal{F}_D sweeps out P, Q, R, S or S, P, Q, R, the conic of \mathcal{F}_{DPQR} passing through S is $DPQRS$ or $DSPQR$. Taking account of the positions of the points in the various zones, and of the positions of the base lines given in the lower part of Figure 10, we get the following arguments. In the first case, the arc RSD cuts A_3A_2 (once), and doesn’t cut A_1A_2. So it must cut A_1A_3 twice, in such a way that it is maximal with respect to this line. In the second case, the arc DSP cuts A_3A_2 (once), and doesn’t cut A_1A_2. So it must cut A_1A_3 twice, in such a way that it is maximal with respect to this line. In both cases, the conic is maximal with respect to the three base lines, and cuts \mathcal{O} four times, this is a contradiction. □

For the first two complex types, the ovals swept out by \mathcal{F}_D are of three kinds: quadrangular, triangular in $\text{cr}(T_0)$, triangular in $\text{cr}(T_3)$. For the third complex type, we have the same three kinds, plus supplementarily a chain of ovals in $\text{cr}(T_1)$, interior to $\text{cr}(O_1)$. A triangular oval is exterior or interior to $\text{cr}(O_3)$. Let us call sequence a maximal Fiedler chain of ovals of the same kind, swept out consecutively by \mathcal{F}_D. Each sequence is formed of one or several chains. A pair of odd chains of the same kind is inessential if the pencil sweeps out only even sequences between them.
Lemma 3

1. There exist three exterior triangular plus-ovals A, B, C, swept out successively by F_D, each of them extremity of an odd chain, such that: for the first and third type, A, B are in $cr(T_3)$, C is in $cr(T_0)$; for the second type, A is in $cr(T_3)$, B, C are in $cr(T_0)$. For any choice of A, B, C, there exist two quadrangular ovals E, F, each of them extremity of an odd chain, such that F_D sweeps out successively A, E, B, F, C with alternating orientations.

2. Let C_9 realize the third complex type, there exist five ovals A, B, P, Q, R, swept out successively by F_D, extremities of odd chains, such that: A, B are plus-ovals in $cr(T_3)$, two of the ovals P, Q, R are plus-ovals in $cr(T_0)$, the third one is a minus-oval in $cr(T_1)$, interior to $cr(O_1)$. If the minus-oval is Q or R, let $C = P$, if the minus-oval is P, let $C = R$, see Figure 11. For any choice of A, B, P, Q, R, there exist furthermore two quadrangular ovals E, F, each of them extremity of an odd chain, such that the pencil sweeps out successively: A, E, B, F, P or $A, E, B, P, Q, F, R = C$ with alternating orientations.

3. Let C_9 realize the first type or the third type with $P = C$, one may choose B and C such that the ovals in each zone $cr(T_0)$ and $cr(T_3)$ swept out between B and C are distributed in even chains and disjoint pairs of inessential odd chains.

Proof: Note for the third type that 2. implies 1. Let us "delete" all of the even sequences, and systematically disjoint inessential pairs of odd chains (there are several ways to do that.) In each odd sequence, delete all of the even chains, and then all of the ovals left but one extremity. Now, the pencil F_D meets successively single ovals, such that any two consecutive ones are of different kinds, and each of them was originally extremity of an odd chain. Note that the deletion procedure has preserved the triangular parameters λ_i, $i = 0, 4, 5, 6$. Assume that F_D meets successively M in $cr(T_0)$ and N in $cr(T_3)$. (Note that for the third type, the ovals in $cr(T_1)$ will be swept out after N.) By Lemma 1, $F_D : M \rightarrow N$ meets no quadrangular ovals. So, this pencil must sweep out alternatively ovals in $cr(T_3)$ and $cr(T_0)$ (the first one being in $cr(T_3)$). By Lemma 2, there are no ovals at all between M and N. With the non-zero data λ_0, λ_0 (and λ_4 for the third type), we deduce immediately the following property. For the first (second) type, there exist three plus-oval A, B, C swept out successively, such that A, B are in $cr(T_3)$, C is in $cr(T_0)$ (A is in $cr(T_3)$, B, C are in $cr(T_0)$). One gets also the
existence of P, Q, R for the third type. The existence of ovals E and F as required is also clear by Fiedler’s theorem, we need yet to prove that they are quadrangular.

After the deletion procedure, the following obvious property holds: Consider two ovals M, N in the same zone $cr(T_i)$ ($i = 0$ or 3), such that F_D meets no oval between them in $cr(T_{3-i})$. Then M and N have the same orientation and there is an odd number of ovals between them, alternatively quadrangular and in $cr(T_i)$ (the first and the last are quadrangular). Let C_9 realize the first complex type, see upper part of Figure 12 (the quadrangular ovals have been placed arbitrarily in $cr(Q_3)$). By Lemma 2, there is no oval in $cr(T_0)$ between A and B, hence E is quadrangular. If F is in $cr(T_3)$, then Lemma 2 implies that there is no oval in $cr(T_0)$ between B and F, contradiction. If F is in $cr(T_0)$, then Lemma 2 implies that there is no oval in $cr(T_3)$ between F and C, contradiction again. So, F is quadrangular, point 1. is proved. One may choose B and C such that B is the last plus-ovals before F in $cr(T_3)$ and C is the first plus-oval after F in $cr(T_0)$. We have already proved that there is no minus-oval between B and C in $cr(T_0) \cup cr(T_3)$. Consider now again the whole set of ovals. The pencil F_D meets between B and C in $cr(T_0) \cup cr(T_3)$ only even chains and disjoint pairs of inessential odd chains, point 3. is proved.

Caution: the argument doesn’t work if, instead of deleting ovals, we had chosen B extremity of the last odd plus-chain in $cr(T_3)$ and C extremity of the first odd plus-chain in $cr(T_0)$. The pencil F_D could sweep out for example: B, an even chain in $cr(Q_3)$, an odd chain in $cr(T_3)$ starting with a minus-oval B' and C (the odd chains containing B and B' form an inessential pair). In this case, we cannot find F quadrangular as required.

Let C_9 have the second type, see lower part of Figure 12. By Lemma 2, there is no oval in $cr(T_3)$ between B and C, so F is quadrangular. If E is in $cr(T_3)$, Lemma 2 implies that there is no oval in $cr(T_0)$ between A and E, contradiction. If E is in $cr(T_0)$, Lemma 2 implies that there is no oval in $cr(T_3)$ between E and B, contradiction again. Hence, E is quadrangular. Let C_9 have the third type. For $R = C$, there must be some oval F between Q and R by Fiedler’s theorem, and F can be only quadrangular. Apart from that, the same arguments as for the first type apply to prove that E and F are quadrangular. For $P = C$, the same arguments as for the first type apply to prove point 3. □
Figure 9: P in $cr(T_0)$, Q in $cr(T_3)$

DPH_Q X
$DPGQH_2$ X
DH_PGQ X
Figure 10: Q in $cr(T_0)$ exterior to $cr(O_3)$, P, R in $cr(T_3)$
2.2 The first and the third complex type

In the next Lemmas 4-7, D and \mathcal{F}_D are as in the previous section, A, E, B, F, C are five ovals swept out successively by \mathcal{F}_D, such that A, B are exterior in $\text{cr}(T_3)$, C is exterior in $\text{cr}(T_0)$, E, F are quadrangular. (These conditions are weaker than those in Lemma 3.) Denote by \mathcal{S} the sector swept out by the piece of pencil $\mathcal{F}_D : B \rightarrow F \rightarrow C$. Let $[DC]$ be the segment of line DC that does not cut A_1A_3, and $[DC]'$ be the other segment. We shall study the admissible distributions of the ovals in the various zones. Keep in mind that an oval in $\text{cr}(Q_i)$ may be exterior, interior to $\text{cr}(O_j)$ or interior to $\text{cr}(O_k)$. If O_1 is left (right), the ovals interior to $\text{cr}(O_1)$ are in $\text{cr}(Q_2)$ ($\text{cr}(Q_3)$). If O_1 is separating, the ovals interior to $\text{cr}(O_1)$ are in $\text{cr}(T_1)$.

Lemma 4 The intersection point $AB \cap DC$ lies on $[DC]$.

Proof: Assume that $AB \cap DC$ lies on $[DC]'$. The lines AC, AB and BC divide the sector DA, DB containing E in four triangles, one of these triangles is entirely contained in \mathcal{O}, see Figure 13. Denote by E_1, E_2, E_3 the three choices of E. The conic through D, A, B, C, E is $DBCAE_1$, DE_2BCA or DAE_3BC, they cut all \mathcal{O} four times, and the first two are maximal with
Figure 12: Quadrangular ovals E, F
respect to the three base lines. Hence, $E = E_3$, the conic is $DAEBC$. Note that if A_1A_3 doesn’t cut the triangle containing E, then this triangle lies in $cr(T_3 \cup Q_3)$, otherwise, A_3A_1 divides this triangle in two pieces, one is in $cr(T_3 \cup Q_3)$, the other in $cr(Q_1)$. As $DAEBC$ cannot be maximal with respect to A_3A_1, the oval E is in $cr(Q_3)$, or interior to $cr(O_2)$ in $cr(Q_1)$. The lines AB, AC, BC, divide the sector DB, DC containing F in four triangles, one of them is entirely contained in O, another is divided in two subtriangles by the line BE. Denote by F_1, F_2, F_3, F_4 the four admissible choices of F, corresponding to $ABDF_4C$, ABF_2DC, ABF_1CD, $i = 3, 4$, $ACEBF_3$, $AEBF_4C$. All of these conics cut O four times. The conics $ABDF_1C$, ABF_2DC and $ACEBF_3$ are maximal with respect to all three base lines, and the configuration of six points A, E, B, F_4, C, D contradicts Lemma 15 from [2], see Figure 14. □

Lemma 5 The oval E lies on a conic $DAEBC$ and is in $cr(Q_3)$ (interior to $cr(O_1)$ or exterior), or interior to $cr(O_1)$ in $cr(Q_2)$ (in this latter case, O_1 is left).

Proof: The lines AC, AB and BC divide the sector DA, DB containing E in four triangles, one of these triangles is entirely contained in O, see Figure 15. The point E may be chosen in any one of the other three triangles, denote by E_1, E_2, E_3 the three admissible choices of E, the conic through D, A, B, C, E is correspondingly DAE_1BC, $DACBE_2$ or DE_3ACB, they cut all O four times and the last two are maximal with respect to the three base lines. The conic is $DAEBC$, E lies in a triangle bounded by the lines AD, BC, AB. Note that $cr(O_2)$ cuts twice each of the segment $[DA]$, $[DB]$ with non-empty intersection with the Möbius band corresponding to A_1A_3. Bezout’s theorem between C_9 and the lines DA, DB implies thus that the triangle containing E doesn’t intersect the interior of $cr(O_2)$. Note also that if this triangle is not cut by A_3A_2, it lies entirely in $cr(T_3 \cup Q_3)$. If the triangle is cut by A_3A_2, one of the pieces obtained is in $cr(T_3 \cup Q_3)$, the other is in $cr(Q_2)$. Assume E is in $cr(Q_2)$, as $DAEBC$ cannot be maximal with respect to A_2A_3, E is interior to $cr(O_1)$. □

Lemma 6 The oval F lies on a conic $AEBCF$.

Proof: The six lines determined by A, B, C, E divide the sector DB, DC containing F in seven zones, two of them lie entirely inside of O. Denote
Figure 13: $AB \cap DC$ on $[DC]'$, position of E and F, conics
Figure 14: A, E, B, F, C, D lie in convex position, contradiction

Figure 15: Position of E, conics
by F_1, \ldots, F_5 the remaining five admissible positions of F. Each of them is characterized by the conic through A, B, C, E, F, plus (cases 4, 5) the position of D inside ($<$) or outside ($>$) of this conic, see Figure 16 where F lies in the hatched zones and the position of the base lines with respect to the dotted lines has been chosen arbitrarily among all possible positions. All of the conics intersect \mathcal{O} at four points. The zones containing the base lines are M{"o}bius bands bounded by segments of lines, they are shown in Figure 17 along with all five admissible positions of F (indicated with help of the indices 1, \ldots, 5). The conics $ACEBF_1$ and $AECBF_3$ are maximal with respect to all three base lines, contradiction. The configuration of six points A, E, B, F_2, C, D contradicts Lemma 15 from [2], see second picture in Figure 16. □

If an oval K swept out between B and C is such that $D < AEBCK$ ($D > AEBCK$), we say that K is in the zone F_4 (F_5), see the last two pictures in Figure 16. Note that the zone F_4 is a triangle bounded by the lines DB, DC, AE. In the case $K = F$, we write shortly $F = F_4$ ($F = F_5$). From now on, we assume that if O_1 is left, then the oval D of C_9 is the negative extremity of the chain of O_1.

Lemma 7

1. Let O_1 be left. The images by cr of the non-extreme ovals interior to O_1 are all together either in the zone F_4, or outside of the sector \mathcal{S}. The zone F_4 contains only these ovals, or is empty. If $F = F_5$, then F may be: exterior or interior to $cr(O_3)$ in $cr(Q_2)$; interior to $cr(O_3)$ in $cr(Q_1)$.

2. Let O_1 be separating. $F = F_4$ may be: exterior or interior to $cr(O_3)$ in $cr(Q_2)$; interior to $cr(O_3)$ in $cr(Q_1)$. $F = F_5$ may be: exterior or interior to $cr(O_3)$ in $cr(Q_2)$; interior to $cr(O_3)$ in $cr(Q_1)$.

3. Let O_1 be right. The admissible positions of F are the same as for separating O_1, plus one: $F = F_4$ interior to $cr(O_1)$ in $cr(Q_3)$

Proof: Let $F = F_4$ and denote by $[FD]$ the segment FD contained in the zone F_4. $[FD]$ doesn’t cut A_1A_3, and is interior to both conics $AEBDF$ and $ABFDC$. Each of these conics cuts \mathcal{O} four times, and is maximal with respect to two base lines, see Figure 17. If F is in $cr(Q_3)$, the segment $[FD]$ cuts A_3A_2. If moreover F is exterior to $cr(O_1)$, the conic $AEBDF$ is maximal with respect to A_3A_2. But this conic is also maximal with respect to the other two base lines, contradiction. If F is in $cr(Q_1)$, the segment
[FD] cuts A_1A_2. If moreover F is exterior to $cr(O_3)$, the conic $ABFDC$ is maximal with respect to A_1A_2. But this conic is also maximal with respect to the other two base lines, contradiction. Hence, F is in $cr(Q_2)$; interior to $cr(O_3)$ in $cr(Q_1)$; or interior to $cr(O_1)$ in $cr(Q_3)$.

Let $F = F_5$, the conic $ABDFC$ cuts O four times and is maximal with respect to A_3A_2 and A_1A_3. The arc DFC doesn’t cut A_3A_2, and cuts A_1A_3 once, see Figure 17. If F is in $cr(Q_3)$ or in $cr(Q_1)$ exterior to $cr(O_3)$, then DFC is maximal with respect to A_1A_2, contradiction. Hence F is in $cr(Q_2)$; or interior to $cr(O_3)$ in $cr(Q_1)$.

Note that if D is exterior to $cr(O_1)$ (O_1 is right or separating), then the zone F_5 doesn’t intersect the interior of $cr(O_1)$. Points 2. and 3. follow immediately. To get 1., note that by Bezout’s theorem with $cr(O_1)$, the line DC meets successively: D, A_1A_3, C, A_1A_2, A_2A_3. The zone F_4 splits in two parts, one in $cr(Q_3)$, the other interior to $cr(O_1)$ in $cr(Q_2)$, see Figure 18 where the boundary of the zone F_4 is drawn in bold, and the vanishing cycles connecting the images of the ovals interior to O_1 have been replaced by real double points. □

Lemma 8 Consider five ovals A, E, B, F, C satisfying with D the conditions of Lemma 3.

1. Let O_1 be left. Then $F = F_5$, F is positive exterior in $cr(Q_2)$.

2. Let O_1 be separating or right. If $F = F_4$, then F is negative exterior in $cr(Q_2)$. If $F = F_5$, then F is positive exterior in $cr(Q_2)$.

Proof: Consider the intersections of the sector S with the images of the quadrangles. We see that $S \cap cr(Q_2)$ has two connected components, $S \cap cr(Q_1)$ and $S \cap cr(Q_3)$ have each at most two connected components, see Figure 19 where we have represented the set of objects under consideration in the upper part, and their preimages in the lower part. If F is in $cr(Q_1)$ or $cr(Q_2)$, it is positive $(F(1), F(2))$ or negative $(F'(1), F'(2))$ depending on whether it lies in one connected component or in the other. If F is in $cr(Q_3)$, it is positive for both choices $(F(3), F'(3))$ of its position. The case $F = F_4$ corresponds to the three positions $F(1)$, $F(3)$, $F'(2)$, so if F is in $cr(Q_1) \cup cr(Q_3)$, F is positive, if F is in $cr(Q_2)$, F is negative. The case $F = F_5$ corresponds to the other three positions $F'(1)$, $F(2)$, $F'(3)$, so if F is in $cr(Q_2) \cup cr(Q_3)$, F is positive, if F is in $cr(Q_1)$, F is negative. The ovals interior to $cr(O_3)$ form an even chain with respect to D, so F is not interior.
to \(cr(O_3) \). The ovals interior to \(O_i, i = 1 \) or 2 bring a contribution of 0 or \(-1\) to \(\lambda_3 \). So, if \(F \) is in \(cr(Q_3) \) or \(F \) is in \(cr(Q_2) \) with the position \(F(2) \), then \(F \) is exterior. \(\square \)

Lemma 9 Let \(O_1 \) be right or separating. There exist a base oval \(D \) and five ovals \(A, E, B, F, C \) (seven ovals \(A, E, B, F, P, Q, R \) for the third type) satisfying the conditions of Lemma 3, such that the zone \(F_4 \) is empty or contains only the even chain interior to \(cr(O_3) \) (so, \(F = F_5 \)).

Proof: Start with a set of five (seven) ovals satisfying the conditions of Lemma 3. Assume there exists \(D' \) exterior in \(cr(Q_2) \), lying in the zone \(F_4 \). Let \(F_{D'} \) be the pencil based at \(D' \) and sweeping out \(O \) from the first triangular oval to the last one, in such a way that it meets successively \(A_1, A_2, A_3 \). The pencil \(F_{D'} \) meets successively \(A, E, B, \{D, F\}, C \). Replacing the vanishing cycles in the chains by double real points, we see that \(F_D \) and \(F_{D'} \) give rise to the same sets of triangular chains, and of quadrangular chains that do not contain \(D \) nor \(D' \). Using conics, we can get more information. Let \(M \) and \(N \) be two triangular oval such that \(F_D \) meets successively \(M, D', N \), then \(F_{D'} \) meets successively \(M, D, N \). The pencil of conics \(F_{DD'MN} \) has only one non-totally real portion, see Figure 20. Any supplementary oval \(S \) lies on a conic: \(MSD'DN, SM'DDN, MD'SDN, MD'DSN \). The pencils \(F_D \) and \(F_{D'} \) sweep out the set of three ovals \(\{M, N, S\} \) with the same ordering. Let \(M_0 \) and \(N_0 \) be the first and the last (triangular) oval met by \(F_D \), they are also the first and the last oval met by \(F_{D'} \). The two pencils sweep out the same set of ovals. Let \(X, Y \) be two ovals met successively by \(F_D \), one of them triangular, then \(X, Y \) are met successively by \(F_{D'} \) (if \(X \) is triangular, make \((M, S, N) = (X, Y, N_0)\), if \(Y \) is triangular, make \((M, S, N) = (M_0, X, Y)\)). In particular, the orderings with which the triangular chains are swept out by \(F_D \) and \(F_{D'} \) coincide. Let \(c_1, c_2 \) be two such chains, \(F_D \) and \(F_{D'} \) sweep out the same set of quadrangular ovals between \(c_1 \) and \(c_2 \).

We rename the ovals so that \(D' \) is now called \(D \), the new zone \(F_4 \) is contained in the old one. Repeat the procedure as many times as necessary, in the end we have a new base oval \(D \) such that \(A, E, B, C \ (A, E, B, P, Q, R) \) are swept out successively by \(F_D \), these ovals are extremities of odd chains. The ovals in \(cr(Q_2) \) swept out between \(B \) and \(C \) are all in the new zone \(F_5 \). Finally, the pencil meets between \(B \) and \(C \) in \(cr(T_0) \cup cr(T_3) \) only even chains and disjoint pairs of inessential odd chains. We may choose now a new oval \(F \) to fulfill the conditions of Lemma 3. The pencil of conics \(F_{DFCB} \) is shown in Figure 21.
Let us consider now the ovals lying in the new zone F_4. By Lemma 7, an oval K in this zone may be: exterior or interior to $cr(O_3)$ in $cr(Q_2)$, interior to $cr(O_3)$ in $cr(Q_1)$ or interior to $cr(O_1)$ in $cr(Q_3)$ (in this latter case, O_1 is right). Assume there exists K interior to $cr(O_1)$ in $cr(Q_3)$, then F_4 contains the whole of the odd (negative) chain interior to $cr(O_1)$. Let K be extremity of this chain. Consider the pencil of conics F_{DBKC}, the portion $BD \cup CK \rightarrow CD \cup BK$ is totally real, see Figure 22. Let T be an oval swept out between B and K. If T is quadrangular, it must be in the zone F_5, hence it is on a conic $DTBCK$. But this conic is in the totally real portion, contradiction. If T is in $cr(T_0)$, T lies on a conic $DTBCK$ or $DCBTK$, in both cases, the conic is maximal with respect to all three base lines and cuts O at four points, contradiction. Hence, T is in $cr(T_3)$. All of the ovals swept out between B and K are in $cr(T_3)$. The orientations of B and K coincide, hence there should be an odd number of ovals between them. This is a contradiction, as B is by hypothesis extremity of an odd chain. □

Let us recap the new conditions on our set of ovals. If O_1 is right or separating, the ovals D,A,E,B,F,C (D, A, E, B, F, P, Q, R) are as in Lemma 9. If O_1 is left, D is the image of the negative extreme oval in the chain of O_1, and D,A,E,B,F,C satisfy the conditions of Lemma 3. In all cases, the zone F_4 contains no exterior ovals.

Lemma 10 Let C_9 have the third complex type. Then, $P = C$.

Proof: Recall that the third complex type may realize the three cases shown in Figure 11. One has $P = C$ in the first two cases, and $R = C$ in the third case. Assume that $R = C$, F may be chosen in such a way that it is swept out after Q by F_D (see proof of Lemma 3). The pencil of conics F_{FBCD} is divided in three portions by the double lines, in two of these portions, the conics have all 36 intersection points with the main part of C_{18} and the four base ovals, these portions are totally real, see Figure 21. The remaining ovals are swept out by the third portion $FD \cup BC \rightarrow FC \cup BD$. As Q is swept out between B and F by F_D, it is on a conic $DFCBQ$. The arc CB cuts O twice, each of the arcs QD and DF cuts O once, hence BQ must be entirely inside of O. The line A_1A_2 separates B from Q in O, as moreover B,Q are not in $cr(O_3)$, the conic $DFCBQ$ is maximal with respect to A_1A_2, contradiction. □.

Lemma 11 D is negative.
Figure 16: The five admissible positions of F
Proof: For O_1 left, this is already known. Let O_1 be right or separating. By Lemma 8, $F(= F_5)$ is positive exterior in $cr(Q_2)$, it contributes $+1$ to λ_2. Let K be a quadrangular oval belonging to an odd chain, swept out between B and C by F_D. By Lemma 9, K is in the zone F_5. The pencil of conics F_{FBCD} has only one non totally real portion, see Figure 21. Thus, K is on a conic $DKFCB$ or $DFKCB$. Let us choose F to be the last quadrangular oval belonging to an odd chain that is met by F_D before C, the conic is $DKFCB$. Let us call Z_F the triangular zone, bounded by the lines DF, FC, BD containing K, this zone lies in $cr(Q_2) \cup cr(Q_1)$ (see positions of the base lines given in Figure 21). The zone Z_F contains either only exterior ovals in $cr(Q_2)$, or both exterior ovals in $cr(Q_2)$ and the even chain interior to $cr(O_3)$. In the latter case, the chain interior to $cr(O_3)$ lies either in $cr(Q_1)$ or in $cr(Q_2)$. The pencil $F_D : B \to F$ sweeps out the ovals of Z_F, plus (only if O_1 is left) an even chain interior to $cr(O_1)$ (formed by the images of the non-extreme ovals interior to O_1), Fiedler’s theorem with $F_D : B \to F$ implies thus that the ovals in $Z_F \cap cr(Q_2)$ (F included, D not) contribute $+1$ to λ_2. The contribution of the ovals in Z_F (D now included) to λ_2 is 0 or $+2$. Consider now the maximal pencil $F_B : D \to F$ sweeping out Z_F. Any oval K met by this pencil is on a conic $DKFCB$, so K is in Z_F. The ovals

Figure 17: Position of the base lines and of F, conics

	$A_3 A_2$	$A_4 A_3$	$A_4 A_2$
$ACEBF_j$	X	X	X
$AEBF_2 C$	X	X	X
$AECBF_i$	X	X	X
$AEBCF_4$	X	X	X
$AEBDF_4$	X	X	X
$AB_5 D C$	X	X	X
$ABD_5 C$	X	X	X
Figure 18: O_1 left, two positions of the chain in $cr(O_1)$: exterior to S and in the zone F_4
Figure 19: $F(1), F(2), F(3), F'(3)$ are positive, $F'(1), F'(2)$ are negative

Figure 20: The pencil of conics $\mathcal{F}_{DD'MN}$
D and F are connected via this pencil by an even number of ovals, their orientations are opposite. □

Lemma 12 There exists an oval J exterior positive in $cr(Q_2)$, lying on conics $DFCJA, DFCJB, ABDCJ$.

Proof: The ovals of $cr(Q_2)$ in Z_F (including now D and F) bring a contribution 0 to λ_2. As $\lambda_2 = 1$ (first complex type) or 2 (third complex type), there must be some supplementary positive oval J extremity of an odd chain in $cr(Q_2)$, that is not swept out by the pencil $\mathcal{F}_D : B \rightarrow C$, the conic through D, B, C, F, J is thus $DFCJB$. For O_1 left, the ovals interior to $cr(O_1)$ other than D form an even chain, so we may assume that J is not interior to $cr(O_1)$. The conic through D, A, C, F, B is $DFCAB$, see Figure 17 with $F = F_5$. In Figure 21 one may replace B by A. The conic through D, A, C, F, J is $DFCJA$ or $DFCAJ$. In the latter case, J is swept out between A and B by \mathcal{F}_D, hence J must verify the conditions required for E, see Lemma 5. As J is in $cr(Q_2)$, it should be in $cr(O_1)$, contradiction. So J is on a conic $DFCJA$. Using the conics $DFCJA, DFCJB, DFCAB$, we get the orderings $C : D, J, A, B$ and $D : C, J, A, B$ for the pencils of lines based at C and D respectively, hence the conic through A, B, C, D, J is either $ABDCJ$ or $ABCDJ$. If the conic is $ABCDJ$, its arc DJA cuts A_1A_2 and A_1A_3 (see pencil \mathcal{F}_{ABCD} in Figure 15), as D, J are in $cr(Q_2)$ and A is in $cr(Q_3)$, the arc JA cuts A_1A_2 and A_1A_3. The arc JA of $DFCJA$ is homotopic with fixed extremities to the arc JA of $ABCDJ$. The conic
DFCJA is maximal with respect to all three base lines and cuts \mathcal{O} four times, contradiction. Thus, the conic through A, B, C, D, J is $ABDCJ$, see Figure 23. □

Lemma 13 Let G be an exterior oval in $cr(Q_1)$. Then, G lies on a conic $DGAEB$.

Proof: Consider the pencil of conics \mathcal{F}_{DAEB}, all of the conics in it cut \mathcal{O} four times, and two of the three portions determined by the double lines are totally real, see Figure 24. In this figure, we have indicated the positions of the base lines, distinguishing for A_3A_2 the two cases E in $cr(Q_3)$ and E in $cr(Q_2)$, interior to $cr(O_1)$. Any remaining oval H will be swept out by the third portion $AD \cup BE \rightarrow AE \cup BD$. Assume that the conic through H is $DAHEB$ or $DAEHB$, it cannot be maximal with respect to A_2A_3 hence H is in $cr(Q_3)$, or in $cr(Q_2)$ and interior to $cr(O_1)$. Let G be an exterior oval in $cr(Q_1)$ and consider the conic of the pencil \mathcal{F}_{DAEB} passing through G, it is $DGAEB$ or $DAEBG$. In the lower part of the Figure, we have drawn the conic and indicated on it the two admissible positions G_1 (conic DG_1AEB) and G_2 (conic $DAEBG_2$) of G. We have also indicated two positions of the second base point: A_2 corresponding to the case E in $cr(Q_3)$ and A'_2 corresponding to the case E in $cr(Q_2)$, interior to $cr(O_1)$. The conic through A, B, D, E, G is either $DAEBG$ or $DGAEB$. The conic through C, D, F, B, G is in the portion $FD \cup CD \rightarrow FD \cup BC$ of the pencil \mathcal{F}_{DCFB}, it is $DFCGB$ (otherwise, G would be swept out by $\mathcal{F}_D : B \rightarrow C$, but the exterior quadrangular ovals met by this pencil lie all in $cr(Q_2)$, see proof of Lemma 11) Similarly, we obtain the conic $DFCGA$. If G lies on a conic $DAEBG$, then the pencil of lines based at D sweeps out successively: $A, E, B, G, A_1, A_2, A_3$ ($cr(T_0)$, hence C is swept out in the portion $A_1 \rightarrow A_2 \rightarrow A_3$). We have thus the ordering $D : A, E, B, \{G, F\}, C$, contradiction with the conic $DFCGB$. So, G lies on a conic $DGAEB$. □

We will now find a contradiction using the configuration of eight ovals D, A, E, B, F, C, J, G. With help of the conics $DGAEB$, $DFCJA$, $DFCAB$, $DAEBC$ and $ABDCJ$, we find the ordering for the pencil of lines based at $A : D, F, C, J, B, E, G$. The conic through A, G, C, J, B can be $ABJCG$, $AGBJC$, $ABGCJ$ or $AJBGC$. With help of $DGAEB$, $DFCJB$, $DFCAB$, $DCJAB$, $DAEBC$, we find the ordering for the pencil based at $B : D, F, C, J, E, A, G$. This rules out $AGBJC$ and $AJBGC$. The conic is $ABGCJ$ or $ABJCG$. Consider the pencil \mathcal{F}_{ABJC}, see Figure 25 where we considered
only the two relevant portions. If the conic is $ABJCG$, the arc CGA doesn’t cut A_1A_3, and cuts A_1A_2 (once), as moreover, G is exterior in $cr(Q_1)$, this arc must be maximal with respect to A_2A_3, contradiction. If the conic is $ABGCJ$, the arc BGC cuts both A_1A_3 and A_2A_3 (once each), and must be maximal with respect to A_1A_2, contradiction.

The first and third complex type are not realizable.

The first and third complex type are not realizable.

2.3 The second complex type

Let now C_9 realize the second complex type. Let $[DC]$ be the segment of the line DC that doesn’t cut A_1A_3, and $[DC]'$ be the other segment. We distinguish two cases, depending on whether the intersection $AB \cap DC$ lies on $[DC]$ or on $[DC]'$, see Figure 26. The oval F is swept out between B and C by F_D, the sector containing F is divided in four triangles by the lines AB, AC, BC, one of them is entirely interior to O so F is in one of the other three. In both cases, the conic through A, B, C, D, F is $ABFDC, ABFCD$ or $ABDFC$. Consider the pencil of conics F_{ABCD}. In both cases,
the portion $AB \cup CD \rightarrow BD \cup AC$ is totally real, hence the conic must be $ABFCD$, it is in the portion $AB \cup CD \rightarrow AD \cup BC$. The conics of this portion are maximal with respect to: A_1A_3 and A_1A_2 in the first case, A_1A_2, A_3A_2 in the second case. In the first case, the triangle containing F is divided in two pieces by A_2A_3, one in $cr(T_0)$, the other in $cr(T_1) \cup cr(Q_1)$. As F is quadrangular, F is in $cr(Q_1)$, the arc BFC of $ABFCD$ is maximal with respect to A_2A_3, and $ABFCD$ cuts \mathcal{O} four times, contradiction. In the second case, the triangle containing F is divided in two pieces by A_1A_3, one in $cr(T_0)$, the other in $cr(T_2) \cup cr(Q_2)$. As F is quadrangular, F is in $cr(Q_2)$, the arc BFC of $ABFCD$ is maximal with respect to A_1A_3, and $ABFCD$ cuts \mathcal{O} four times, contradiction. The second complex type is not realizable. This finishes the proof of Theorem 1. □

3 M-curves even, even, odd with jump

3.1 Cremona transformation again

Assume there exists an M-curve C_9 even, even, odd with jump, it realizes one of the complex types listed in Table 10. Recall that if O_3 is positive (negative), O_3 is crossing (non-crossing), see section 1.2. Let $\epsilon_3 = +1 (-1)$ if O_3 is positive (negative). The six principal ovals, the base lines, and \mathcal{J} divide the plane in zones. The contributions of the non-principal ovals to $\Lambda_+ - \Lambda_-$ in each zone are indicated in Figures 27-29.

Let us perform again the Cremona transformation cr based at A_1, A_2, A_3,
Figure 24: Pencil of conics $\mathcal{F}_{\text{ADBE}}$, position of G
Figure 25: Pencil of conics \mathcal{F}_{ABCJ}

C_9 is mapped onto a curve C_{18} with three 9-fold singularities. We use the same conventions as in the case without jump, see section 2.1. Let us choose two ovals C and D of C_9 such that (A_3, D, C) are extremities of the three successive jump chains. In Figure 30 we have represented the image \mathcal{O} of J, plus the images of O_3, C and D, the upper part corresponds to O_3 crossing, the lower part to O_3 non-crossing. The pencil of conics $\mathcal{F}_{A_1A_2A_3C}$ sweeping out C_9 is mapped by cr onto a pencil of lines \mathcal{F}_C. Let P, P' be the tangency points of \mathcal{F}_C with $\text{cr}(O_3)$ and let Q, Q' be the points of tangency of \mathcal{F}_C with \mathcal{O}.

By Lemma 17 from [2], the ovals in \mathcal{O} are all met consecutively by \mathcal{F}_C, they form a Fiedler chain: triangular ovals \rightarrow P' (O_3 crossing) or $P \rightarrow$ triangular ovals (O_3 non-crossing). For O_3 crossing, one has $\Lambda = \lambda_0 - \lambda_4 - \lambda_5 = -1$. Denote by E the first oval of the triangular Fiedler chain, in the Figure, E has been placed arbitrarily in $\text{cr}(T_2)$, it could be as well in $\text{cr}(T_1)$ or $\text{cr}(T_0)$. For O_3 non-crossing, one has $\Lambda = -\lambda_6 = -1$. Denote by F the last oval of the triangular chain. Applying Fiedler’s theorem with the pencil \mathcal{F}_C, we get the

Lemma 14 Let $\mu = \lambda_1 + \lambda_2 - \lambda_3$, one has $\mu = \epsilon_3$. For O_3 crossing, the quadrangular ovals are swept out by \mathcal{F}_C between Q and E. Between Q and D, there is one single Fiedler chain, whose contribution to μ is 1, between D and E, there are two Fiedler chains, starting at $\{D, P\}$ and ending at $\{Q', E\}$, they contribute 0 to μ. For O_3 non-crossing, the quadrangular ovals are swept out by \mathcal{F}_C between F and Q'. Between F and D, there are two Fiedler chains starting at $\{F, Q\}$ and ending at $\{P', D\}$, they contribute 0 to μ, between D and Q' there is one single Fiedler chain whose contribution to
Figure 26: The second complex type
Figure 27: Crossing jump, no exterior ovals in T_1 (O_1 right, left, up)
Figure 28: Crossing jump, no exterior ovals in $T_0 \cup T_2$ (O_1 right, left, up)

Figure 29: Non-crossing jump (O_1 right, left)
\(\mu \) is \(-1\).

(In all these Fiedler chains, the contributions of \(D, E \) and \(F \) are not included by convention. As \(D \) and \(C \) have opposite orientations, they contribute together 0 to \(\mu \).) The identity \(\mu = \epsilon_3 \) may actually be obtained directly from Table 10. For \(O_3 \) crossing, there exists an oval \(G \), swept out between \(Q \) and \(D \), that is positive in \(cr(Q_1) \cup cr(Q_2) \) or negative in \(cr(Q_3) \), we denote by \(G_1, G_2, G_3 \) the three admissible choices of \(G \). For \(O_3 \) non-crossing, there exists an oval \(G \) swept out between \(D \) and \(Q' \), that is negative in \(cr(Q_1) \cup cr(Q_2) \) or positive in \(cr(Q_3) \), we denote by \(G_1, G_2, G_3 \) the three admissible choices of \(G \). See Figure 30.

3.2 Proof of Theorem 2

The piece of pencil \(\mathcal{F}_C \) sweeping out the quadrangular ovals is divided in two portions by the line \(CD \), the contribution of each portion to \(\mu = \lambda_1 + \lambda_2 - \lambda_3 \) is given by Lemma 14. In the next Lemmas, we will find pencils of conics based at \(C, D \) and two other ovals, having only one non-totally real portion. This allows to study the distribution of the quadrangular ovals between the two parts of \(\mathcal{F}_C \) and sometimes to find a contradiction. To this purpose, we may ignore the even chains and treat each odd chain as if it consisted of a single oval. So we may assume without loss of generality that \(O_2 \) contains only the one oval \(A_2 \), and that each of the three jump chains consists of a single oval (\(A_3, D, C \)).

Lemma 15 If \(C_9 \) has complex type \((+, n), (\pm, \mp), (-, +, +)\), then \(O_1 \) is right.

Proof: Let \(C_9 \) have this complex type, it has non-crossing jump, see Figure 29. Let \(H \) be the positive extremal oval in the chain of \(O_1 \). If \(O_1 \) is right, \(H = H_3 \) is in \(Q_3 \), if \(O_1 \) is left, \(H = H_2 \) is in \(Q_2 \). After \(cr \), consider the pencil of conics \(\mathcal{F}_{CDFH} \). Two portions are maximal with respect to the three base lines, see Figures 31. All conics of the pencil have supplementarily two intersection points with \(cr(O_3) \) and two intersection points with \(O \). So \(\mathcal{F}_{CDFH} \) has only one non-totally real portion, \(CD \cup FH \rightarrow CH \cup DF \), that sweeps out any empty non-principal oval \(I \) of \(C_9 \) other than \(C, D, F, H \), see Figures 31, 32. In Figure 32 we have represented a conic of this portion for either case \(O_1 \) right and \(O_1 \) left. Let \(I \) be a quadrangular oval. If \(I \) is in \(cr(Q_1) \) or \(I \) is exterior to \(cr(O_1) \) in \(cr(Q_3) \), \(I \) is on the arc \(FC \) of the conic,
Figure 30: Curve C_{18} and pencil \mathcal{F}_C, O_3 crossing and O_3 non-crossing
hence I is swept out between F and D by \mathcal{F}_C. If I is in $cr(Q_2)$ or interior to $cr(O_1)$ in $cr(Q_3)$, I is on the arc DHF of the conic, hence I is swept out between D and Q'. For O_1 left, one should have $\lambda_3 - \lambda_1 = 0$ and $\lambda_2 = -1$ (by Lemma 14). But actually $\lambda_1 = \lambda_2 = 0$ and $\lambda_3 = 1$, contradiction. Let λ_3^{ext} and λ_3^{int} be the respective contributions to λ_3 of the exterior ovals and of the ovals interior to O_1. For O_1 right, one must have $\lambda_3^{ext} - \lambda_1 = 0$ and $\lambda_3^{int} - \lambda_2 = 1$, there is no contradiction. □

Figure 31: Non-crossing jump, pencil of conics \mathcal{F}_{CDFH}

Let now O_3 be crossing. We will say that a quadrangular oval is $Q \rightarrow D$ ($D \rightarrow E$) if it is swept out between Q and D (D and E) by the pencil of lines \mathcal{F}_C.

Lemma 16 The complex type $(-, n), (\pm, \mp, n), (+, -, -)$ is not realizable, and the complex type $(-, u), (\pm, \mp, n), (+, -, -)$ is such that T_1 contains no exterior ovals.

Proof: Let C_9 realize one of these complex types, O_1 may be non-separating, right or left, see Figure 28. Assume there is an exterior oval H in $cr(T_1)$ (this

51
Figure 32: Non-crossing jump, conic through C, D, F, H and a supplementary oval I (non-represented), O_1 right and O_1 left
is true for \(O_1 \) non-separating). Assume there exists an (exterior) oval \(K \) that is \(Q \to D \) in \(cr(Q_1) \), see Figure 33. Consider the pencil of conics \(F_{CDHK} \). The three base lines are in the Möbius band obtained cutting away the affine (in the plane of the figure) triangle \(DHK \) from \(\mathbb{R}P^2 \). All conics of the pencil are maximal with respect to each base line. Moreover, the conics cut \(O \) twice, and \(cr(O_3) \) at two supplementary line points, hence the pencil is totally real, contradiction. The pencil of lines \(F_C \) meets no oval in \(cr(Q_1) \) between \(Q \) and \(D \), hence there exists a positive oval \(G = G_2 \) or a negative oval \(G = G_3 \) that is \(Q \to D \) in \(cr(Q_2) \cup cr(Q_3) \), see Figure 33. Consider now the pencil of conics \(F_{CDGH} \). This pencil has only one non totally real portion: \(CD \cup GH \to \mathcal{C}H \cup DG \), see Figure 34. (If \(G_3 \) is not interior to \(cr(O_1) \), this portion is maximal also with respect to the line \(A_2A_3 \).) Let \(I \) be a quadrangular oval. If \(I \) is in \(cr(Q_2) \cup cr(Q_3) \), \(I \) is on the arc \(HGD \) of the conic, hence \(I \) is \(Q \to D \). If \(I \) is in \(cr(Q_1) \), \(I \) is on the arc \(CH \) of the conic, hence \(I \) is swept out between \(D \) and \(H \) by \(F_C \). One must have thus \(\lambda_2 - \lambda_3 = 1 \) (Lemma 14). But for all three cases \(O_1 \) left, right and up, \(\lambda_2 - \lambda_3 = 0 \), contradiction. \(\square \)

Lemma 17 The complex type \((-\, u), (\pm, \mp, n), (+, -, -)\) is not realizable.

Proof: For this complex type, \(\lambda_1 = \lambda_2 = \lambda_3 = 1 \), see lower part of Figure 28. The triangular ovals are all interior to \(cr(O_1) \) in \(cr(T_0) \). Let \(H = H_2 \) be \(Q \to D \) in \(cr(Q_2) \), see Figure 35. The pencil \(F_{CDEH} \) has only one non-totally real portion: \(CD \cup EH \to CE \cup DH \), see Figure 36. Let \(I \) be a quadrangular oval. If \(I \) is in \(cr(Q_2) \cup cr(Q_3) \), \(I \) is on the arc \(EHD \) of the conic, hence \(I \) is \(Q \to D \). If \(I \) is in \(cr(Q_1) \), \(I \) is on the arc \(CE \), hence \(I \) is \(D \to E \). One should have thus: \(\lambda_2 - \lambda_3 = 1 \) and \(\lambda_1 = 0 \), contradiction. Let \(H = H_1 \) be \(Q \to D \) in \(cr(Q_1) \). The pencil \(F_{CDEH} \) has only one non-totally real portion: \(CD \cup EH \to CH \cup ED \). If \(I \) is in \(cr(Q_1) \cup cr(Q_3) \), \(I \) is on the arc \(EHC \) of the conic, hence \(I \) is \(Q \to D \). If \(I \) is in \(cr(Q_2) \), \(I \) is on the arc \(DE \), hence \(I \) is \(D \to E \). One should have thus: \(\lambda_1 - \lambda_3 = 1 \) and \(\lambda_2 = 0 \), contradiction. See Figures 35-36. All of the ovals between \(Q \) and \(D \) are in \(cr(Q_3) \), they contribute \(-1\) to \(\lambda_3 \), between \(D \) and \(E \), we find the ovals of \(cr(Q_2) \cup cr(Q_1) \), and the remaining ovals of \(cr(Q_3) \), whose contribution to \(\lambda_3 \) is \(+2\). Let \(H_3 \) be an oval \(D \to E \) in \(cr(Q_3) \). The pencil of conics \(F_{CDEH_3} \) has only one non-totally real portion: \(CD \cup EH_3 \to CH_3 \cup DE \). If \(I \) is in \(cr(Q_3) \), \(I \) is on the arc \(CH_3E \) of the conic, hence \(I \) is \(D \to E \). There are no ovals in \(cr(Q_3) \) between \(Q \) and \(D \), contradiction. \(\square \)
Figure 33: Crossing jump, O_1 negative, oval H exterior in $cr(T_1)$

Figure 34: Crossing jump, O_1 negative, pencil of conics \mathcal{F}_{CDGH}
Figure 35: Crossing jump, O_1 negative, up, three positions for the oval H

Lemma 18 The complex type $(+,n), (\pm, \mp), (+, -, -)$ is not realizable. For $(+, u), (\pm, \mp), (+, -, -)$, the ovals in $cr(Q_2)$ are $D \rightarrow E$, the ovals in $cr(Q_1) \cup cr(Q_3)$ are $Q \rightarrow D$. Moreover, $\lambda_0 = 0$ or 1.

Proof: Hereafter, I and H stand for quadrangular ovals, let us write $H = H_i$ if H is in $cr(Q_i)$. Assume there exists an oval $G = G_0$ that is exterior in $cr(T_0)$ or $G = G_1$ interior to $cr(O_1)$ in $cr(T_1)$. (Note that if $\lambda_0 \neq 0$ there exists $G = G_0$, and there exists $G = G_1$ if and only if O_1 is up).

If all of the ovals in $cr(Q_i)$ are $Q \rightarrow D$, we say shortly that $cr(Q_i)$ is $Q \rightarrow D$.

Assume there exists $H = H_1 : Q \rightarrow D$, the pencil of conics F_{CDGH_1} has only one non-totally real portion: $CD \cup GH_1 \rightarrow CH_1 \cup GD$, see upper part of Figure 37 and Figure 38. Consider a conic of this portion, passing through a quadrangular oval I. If I is in $cr(Q_1) \cup cr(Q_3)$, then I is on the arc $GH_1 C$ of the conic, hence I is $Q \rightarrow D$. If I is in $cr(Q_2)$, then I is on the arc DG, hence I is $D \rightarrow E$. One has thus $\lambda_1 - \lambda_3 = 1$ and $\lambda_2 = 0$. But for O_1 non-separating, $\lambda_1 = \lambda_3 = -\lambda_0$ and $\lambda_2 = 1$, contradiction. For O_1 up, $\lambda_1 = 1 - \lambda_0$, $\lambda_2 = 0$, $\lambda_3 = -\lambda_0$, there is no contradiction. In summary:

1. (O_1 non-separating and $\exists G_0$) \Rightarrow ($cr(Q_1) : D \rightarrow E$).
2. (O_1 up and $\exists H_1 : Q \rightarrow D$) \Rightarrow ($cr(Q_1), cr(Q_3) : Q \rightarrow D$), $cr(Q_2) : D \rightarrow E$.

Assume there exists $H = H_2 : Q \rightarrow D$, the pencil of conics F_{CDGH_2} has only one non-totally real portion: $CD \cup GH_2 \rightarrow CG \cup DH_2$, see upper part
\[\begin{align*}
A_2A_2 & \quad A_2A_3 & \quad A_2A_2 \\
|CH_1 \cup ED | & |CD \cup EH_1| & |X| & |X| \\
|CE \cup DH_1 | & |CH_1 \cup ED| & |X| & |X| & |X| \\
|CD \cup EH_1 | & |CE \cup DH_1| & |X| & |X| \\
|CD \cup EH_2 | & |CE \cup DH_2| & |X| \\
|DE \cup CH_2 | & |CD \cup EH_2| & |X| & |X| & |X| \\
|CE \cup DH_2 | & |DE \cup CH_2| & |X| & |X| \\
|CD \cup EH_1 | & |CH_1 \cup ED| & |X| & |X| \\
|CH_3 \cup ED | & |CE \cup DH_3| & |X| & |X| \\
|CE \cup DH_3 | & |CH_3 \cup ED| & |X| & |X| \\
\end{align*}\]

Figure 36: Crossing jump, \(O_1 \) negative, up, pencil of conics \(\mathcal{F}_{CDEH} \)
of Figure 37 and Figure 38. Consider a conic of this portion, passing through a quadrangular oval I. If I is in $cr(Q_2)$, then I is on the arc GH_2D of the conic, hence I is $Q \to D$. If I is in $cr(Q_1)$, then I is on the arc CG of the conic, hence I is $D \to E$. Let now $G = G_0$. If I is in $cr(Q_3)$, then I is on the arc GH_2 of the conic, hence I is $Q \to D$. Therefore, $\lambda_2 - \lambda_3 = 1$ and $\lambda_1 = 0$. For O_1 non-separating, $\lambda_0 = 0$, and for O_1 up, $\lambda_0 = 1$.

(3) $(\exists H_2 : Q \to D$ and $\exists G_0) \Rightarrow (cr(Q_2), cr(Q_3) : Q \to D, cr(Q_1) : D \to E, \lambda_0 = 0$ for O_1 non-separating, $\lambda_0 = 1$ for O_1 up).

(4) $(\exists H_2 : Q \to D$ and O_1 is up) $\Rightarrow (cr(Q_2) : Q \to D, cr(Q_1) : D \to E)$.

Assume there exists $H = H_3 : D \to E$, the pencil of conics \mathcal{F}_{CDGH_3} has only one non-totally real portion: $CD \cup GH_3 \to CH_3 \cup GD$, see upper part of Figure 37 and Figure 38. Consider a conic of this portion, passing through a quadrangular oval I. If $G = G_0$, then I is on the arc CH_3G of the conic, hence I is $D \to E$. There are no quadrangular ovals $Q \to D$, contradiction. If $G = G_1$ and I is in $cr(Q_1) \cup cr(Q_3)$, then I is on the arc CH_3G of the conic, hence I is $D \to E$. The zones $cr(Q_1)$ and $cr(Q_3)$ are $D \to E$, hence there exists some oval $H_2 : Q \to D$, thus $cr(Q_2)$ is $Q \to D$. One has thus $\lambda_3 = 1$ and $\lambda_1 - \lambda_3 = 0$. But for O_1 up, $\lambda_1 = 1 - \lambda_0$, $\lambda_2 = 0$, $\lambda_3 = -\lambda_0$, contradiction.

(5) $(\exists G) \Rightarrow (cr(Q_3) : Q \to D)$.

(6) $(\exists G$ and $\exists H_2 : Q \to D) \Rightarrow (cr(Q_2), cr(Q_3) : Q \to D$ and $cr(Q_1) : D \to E, \lambda_0 = 0$ for O_1 non-separating, $\lambda_0 = 1$ for O_1 up).

Assume there exists an oval K in $cr(T_2)$. Let $H = H_1$ be $Q \to D$, the pencil of conics \mathcal{F}_{CDH_1K} has only one non-totally real portion: $CD \cup KH_1 \to CH_1 \cup KD$, see lower part of Figure 37 and Figure 39. Let I be in $cr(Q_1) \cup cr(Q_3)$, I is on the arc KH_1C of the conic, hence I is $Q \to D$. Let I be in $cr(Q_2)$, I is on the arc DK of the conic, hence I is $D \to E$. One has thus $\lambda_1 - \lambda_3 = 1$ and $\lambda_2 = 0$, contradiction for O_1 non-separating.

(7) $(\exists K$ and O_1 is non-separating) $\Rightarrow (cr(Q_1) : D \to E)$.

Let $H = H_2$ be $Q \to D$, the pencil of conics \mathcal{F}_{CDKH_2} is totally real, contradiction.
\[(8) \, (\exists K) \Rightarrow (\text{cr}(Q_2) : D \to E).\]

Let \(H = H_3 \) be \(Q \to D\), the pencil of conics \(\mathcal{F}_{CDH_3K}\) has only one non-totally real portion: \(CH_3 \cup DK \to CD \cup KH_3\). Let \(I\) be in \(\text{cr}(Q_1) \cup \text{cr}(Q_3)\), \(I\) is on the arc \(KH_3C\) of the conic, hence \(I\) is \(Q \to D\). Let \(I\) be in \(\text{cr}(Q_2)\), then \(I\) is on the arc \(DK\) of the conic, hence \(I\) is \(D \to E\). One has thus \(\lambda_1 - \lambda_3 = 1\) and \(\lambda_2 = 0\), contradiction for \(O_1\) non-separating.

\[(9) \, (\exists K \text{ and } \exists H_3 : Q \to D) \Rightarrow (\text{cr}(Q_1), \text{cr}(Q_3) : Q \to D, \text{cr}(Q_2) : D \to E, O_1 \text{ is up})\]

\[(10) \, (\exists K \text{ and } O_1 \text{ is non-separating}) \Rightarrow (\text{cr}(Q_1), \text{cr}(Q_2), \text{cr}(Q_3) : D \to E), \text{contradiction.}\]

For \(O_1\) non-separating, the zone \(\text{cr}(T_2)\) must be empty \((10)\). As \(\lambda_5 = 1 + \lambda_0\), one has \(\lambda_0 = -1\), so there exists \(G = G_0\) in \(\text{cr}(T_0)\). The ovals in \(\text{cr}(Q_1)\) are \(D \to E\) \((1)\). As \(\lambda_0 \neq 0\), the ovals in \(\text{cr}(Q_2)\) are also \(D \to E\) \((3)\). The ovals in \(\text{cr}(Q_3)\) are \(Q \to D\) \((5)\). One should have thus \(-\lambda_3 = \lambda_0 = 1\), this is a contradiction. The complex type with non-separating \(O_1\) is not realizable.

For \(O_1\) up, the ovals in \(\text{cr}(Q_1)\) are all \(Q \to D\) or \(D \to E\) \((2)\). Assume there exists \(H = H_2 : Q \to D\), then on one hand \(\lambda_0 = 1\) \((6)\), on the other hand, the zone \(\text{cr}(T_2)\) must be empty \((8)\). But \(\lambda_5 = \lambda_0\), contradiction. Therefore, \(\text{cr}(Q_2)\) is \(D \to E\). The zone \(\text{cr}(Q_3)\) is \(Q \to D\) \((5)\). If the ovals in \(\text{cr}(Q_1)\) are \(D \to E\), we have \(-\lambda_3 = \lambda_0 = \lambda_5 = 1\) hence there exist \(H_3\) in \(\text{cr}(Q_3)\) and \(K\) in \(\text{cr}(T_2)\). But the existence of two ovals \(H_3 : Q \to D\) and \(K\) implies that \(\text{cr}(Q_1)\) is \(Q \to D\) \((9)\).

\[(11) \, O_1 \text{ is up } \Rightarrow \text{cr}(Q_1), \text{cr}(Q_3) : Q \to D, \text{cr}(Q_2) : D \to E.\]

As \(\lambda_1 - \lambda_3 = 1\), there exists an oval \(H\) that is \(Q \to D\) in \(\text{cr}(Q_1)\) or in \(\text{cr}(Q_3)\). Let \(H = H_1\), recall that for any choice of \(G\) in \(\text{cr}(T_0) \cup \text{cr}(T_1)\), the pencil of conics \(\mathcal{F}_{CDGH_1}\) has only one non-totally real portion: \(CD \cup GH_1 \to GD \cup CH_1\). An oval \(K\) in \(\text{cr}(T_2)\) will be on the arc \(DG\) of its conic, see Figure 38. Let now \(H = H_3\) and \(K\) be in \(\text{cr}(T_2)\), recall that the pencil of conics \(\mathcal{F}_{CDKH_3}\) has only one non-totally real portion: \(CD \cup KH_3 \to KD \cup DH_3\). The oval \(G\) is on the arc \(KH_3\) of its conic, see Figure 39. In all cases, the pencil \(\mathcal{F}_C : D \to A_3 \to A_1 \to A_2\) meets the ovals in \(\text{cr}(T_2)\) before those in \(\text{cr}(T_0) \cup \text{cr}(T_1)\), the first oval met \((E)\) is positive, hence \(\lambda_5 = \lambda_0 = 0\) or +1. □

This finishes the proof of Theorem 2.
Figure 37: Crossing jump, O_1 positive, G in $cr(T_0)$ or $cr(T_1)$, K in $cr(T_2)$
Figure 38: Crossing jump, O_1 positive, pencil of conics \mathcal{F}_{CDGH}
Figure 39: Crossing jump, O_1 positive, pencil of conics \mathcal{F}_{CDHK}
References

[1] S. Fiedler-Le Touzé: *Cubics as tools to study the topology of M-curves of degree 9 in \(\mathbb{R}P^2 \).* J. London Math. Soc. (2) 66 (2002) 86-100.

[2] S. Fiedler-Le Touzé: *M-curves of degree 9 with three nests,* arXiv [math.AG] 0806.4446v2, Sept. 2010

[3] S. Fiedler-Le Touzé: *M-curves of degree 9 with deep nests.* J. London Math. Soc. 2009 79(3) 649-662

[4] A. Korchagin: *The M-curves of degree 9: nonrealizability of 12 types.* Methods of Qualitative Theory of Diff. Equ., Lobachevsky Univ., 1985, 72-76 (Russian)

[5] A. Korchagin: *M-curves of degree 9: new restrictions.* Math. Notes, 39 (1986).

[6] A. Korchagin: *The new M-curves of degrees 8 and 9.* Soviet. Math. Dokl., 39:3 (1989), 569-572.

[7] A. Korchagin: *Smoothing of 6-fold singular points and constructions of 9th degree M-curves.* Amer. Math. Soc. Transl. (1996) 173 (2), 141-155.

[8] A. Korchagin: *Construction of new M-curves of 9th degree.* Lect. Notes. Math., 1524 (1992), 296-307.

[9] A. Korchagin: *Hilbert’s 16th problem: history and main results.* Visiting Schol. Lect. Math. Series, 19 (1997), Texas Tech. Univ., 85-140.

[10] S. Orevkov: *Link theory and oval arrangements of real algebraic curves.* Topology Vol.38 No 4. (1999) 779-810.

[11] S. Orevkov: *Link theory and new restrictions for M-curves of degree 9.* Funct. Analysis and Appl. 34 (2000), 229-231.

[12] S. Orevkov: *Riemann existence theorem and construction of real algebraic curves.* Annales de la Faculté des Sciences de Toulouse, Mathématiques (6) 12 (2003) no 4, 517-531.

[13] S. Orevkov: *Plane algebraic curves of odd degree with a deep nest.* Journal of Knot Theory and Its Ramifications, Vol 14, No. 4 (2005), 497-522
[14] S. Orevkov, O Viro: *Congruence modulo 8 for real algebraic curves of degree 9*. Russian Math; Surveys 56 (2001), 770-771.

[15] S. Orevkov: *Complex orientation formulas for M-curves of degree 4d + 1 with 4 nests*. http://picard.ups-tlse.fr/~orevkov, Annales de la Faculté des Sciences de Toulouse, Mathématiques (6), 19 (2010), 13-26

[16] S. Orevkov: *Some examples of real algebraic and real pseudo-holomorphic curves* Perspectives in Analysis, Geometry and Topology, Progress in Math. 296, Birkhäuser Springer N.Y. 2012 p 355-387