Antagonism of *Trichoderma* spp. against *Macrophomina phaseolina*: Evaluation of Coiling and Cell Wall Degrading Enzymatic Activities

Gajera HP*, Bambharolia RP, Patel SV, Khatrani TJ and Goalkiya BA

Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh-362 001, Gujarat, India

**Abstract**

In vitro potentialities of seven species of *Trichoderma* were evaluated against phytopathogen *Macrophomina phaseolina* by dual culture techniques. The maximum growth inhibition of test pathogen was observed by antagonist *T. koningi* MTCC 796 (T4) (74.3%) followed by *T. harzianum* NABII Th1 (T1) (61.4%) at 7 days after inoculation (DAI). Further, mycoparasitism of antagonists were observed upto 14 DAI. Pattern of growth inhibition of test fungus was continued with maximum 14.7% increases in T4 (85.2%) followed by 6.8% elevation in T1 (65.6%) antagonists during 7 to 14 DAI. Microscopic study showed that these two antagonists were capable of overgrowing and degrading *M. phaseolina* mycelia, coiling around the hyphae with appresoria and hook-like structures. At 14 DAI, *T. koningi* MTCC 796 completely destroyed the host and sporulated. The specific activities of cell wall degrading enzymes- chitinase, β-1, 3 glucanase, protease and cellulase were tested during different incubation period (24, 48, 72 and 96 h) when *Trichoderma* spp. grew in presence of pathogen cell wall in synthetic media. The antagonist *T. koningi* MTCC 796 induced higher chitinase and protease activity at 24 h incubation while β-1, 3 glucanase activities was elevated 1.18 fold during 72 to 96 h. Total phenol was produced significantly higher in culture supernatant of *T. koningi* MTCC 796 antagonist followed by *T. harzianum* NABII Th 1 at 48 h incubation. The growth inhibitions of pathogen during antagonism was positively correlated with coiling pattern of antagonists at 14 DAI, and induction of chitinase, β-1, 3 glucanase and total phenol content.

**Keywords**: *Trichoderma* spp.; *Macrophomina phaseolina*; Antagonism; Coiling pattern; Cell wall degrading enzymes

**Introduction**

*Trichoderma* spp. are effective biocontrol agents for several soil-borne fungal plant pathogens including *Macrophomina phaseolina* [1] and some species are also known for their abilities to enhance systemic resistance to plant diseases as well as overall plant growth [2]. The biocontrol exercised by *Trichoderma* can occur by means of several antagonistic mechanisms such as nutrient competition, antibiotic production, and mycoparasitism [3,4]. Mycoparasitism has been proposed as the major antagonistic mechanism displayed by *Trichoderma* spp. [5]. After host recognition, *Trichoderma* spp. attaches to the host hyphae via coiling, and penetrate the cell wall by secreting cell wall-degrading enzymes [6]. Mycoparasites produce cell wall degrading enzymes which allow them to bore holes into its fungi host and extract nutrients for their own growth. Most phytopathogenic fungi have cell wall that contain chitin as a structural backbone arranged in regularly ordered layers and β-1,3-glucan as a filling material arranged in an amorphic manner. Chitinases and β -1,3-glucanases have been found to be directly involved in the mycoparasitism interaction between *Trichoderma* spp. and its hosts [5].

A considerable amount of research has been aimed at elucidating the chitinase and β-1,3-glucanase systems of *Trichoderma* spp. during growth on different carbon sources. Major advances have been made in chitinase and β-1,3-glucanase expression by various *Trichoderma* spp. but little is known regarding factors affecting production of these enzymes and the nature of the inducers and repressors [5,7]. The *Trichoderma* mechanism of inducing chitinolytic and glucanolytic enzymes and their regulation is still a matter of speculation, despite many studies. During mycoparasitism, the synthesized cell wall degrading enzymes act synergistically. Thus, understanding the induction process from these enzymes is necessary in order to select the most efficient *Trichoderma* spp. for biocontrol.

The main objective of this study was to evaluate the interaction between the antagonists *Trichoderma* spp. and fungal pathogen *M. phaseolina*, and the possibility of mycoparasitism through (1) examination of the coiling pattern during antagonism using light microscopy, and (2) the efficiency of *Trichoderma* spp. for the induction of four cell-wall degrading enzymes using cell wall of *M. phaseolina* as carbon source.

**Materials and Methods**

**Sources of Trichoderma spp**

Slants of six species of *Trichoderma* (*T. harzianum* NABII Th 1; *T. viride* NABII Tv 23; *T. virens* NABII Tvs 12; *T. koningi* MTCC 796; *T. pseudokoningi* MTCC 2048; *T. hamaturn* NABII Tha 1-) were obtained either from IARI, New delhi or from MTCC, Chandigarh. One local isolate of *T. harzianum* was also collected from culture collection of Department of Plant Pathology, Junagadh Agricultural University, Junagadh.

**Isolation of phytopathogenic fungi**

*Macrophomina phaseolina* (Tassi) Goid was used as pathogen. The castor plants showing typical symptoms of root rot were collected...
from university fields. The fresh collected diseased plants of castor showing stem blight and shredded bark on the roots were thoroughly washed under running tap water to remove surface soil, dust and other contaminants. Infected root tissues were cut out from the leading edge of lesion, and placed in 1% sodium hypochlorite for five minutes, washed briefly in sterile distilled water and dried on sterile filter paper. The dried pieces were cut into smaller pieces, plated onto PDA and incubated at 28°C. The cultures were purified by hyphal tip method [8] and maintained on PDA by storing it under refrigeration (4°C). Phytopathogen isolated from infected castor root was sent for identification at Indian type culture collection (ITCC), Division of plant pathology, IARI, New Delhi and they identified the pathogen as *M. phaseolina* (identity number 8160.11) based on morphology and microscopy characters.

### Dual culture tests and light microscopy

Interactions between antagonistic fungi and pathogenic fungi were determined by the method described by Dennis and Webster [9]. A 5 mm diameter mycelial disc from the margin of the *Trichoderma* one week-old culture and the pathogen *M. phaseolina* were placed on the opposite of the plate at equal distance from the periphery. The experimental design used was a completely randomized with four petri dishes for each antagonist. In control plates (without *Trichoderma*), a sterile agar disc was placed at opposite side of the pathogen. The plates were incubated at 28 ± 2°C and observed after 7 and 14 days for growth of antagonist and test fungus. Index of antagonism as percent growth inhibition of *M. phaseolina* was determined by following the method of Watanabe [10]. Mycelial phaseolina from 5 mm diameter mycelial disc from the margin of the *Trichoderma*—pathogen hyphae) in dual-culture tests (14 days), were fixed on slide and observed under an inverted binocular light microscope (Laica brand, 40x) for the presence of coiling structures for wall disintegration.

### Plant pathogen cell wall preparations

Pathogen *M. phaseolina* were inoculated into 250 ml flasks with 50 ml of potato dextrose broth and incubated at 28 ± 2°C for 7 days. The mycelia were then collected by filtration. The mycelia were thoroughly washed with distilled autoclaved water and homogenized on ice, with a homogenizer, for 5 min at the highest speed. The mycelial suspension was centrifuged at 30,000×g for 20 min at 4°C. The pellet was resuspended in distilled water and sonicated on ice 4 times for 5 min using a sonicator (Equitron-4.2L100H) [11]. The suspension was centrifuged at 800×g for 10 min at 4°C. The pellet was collected and lyophilized. The dry cell wall of pathogen was used as substrate for the production of cell wall degrading enzymes.

### Cell wall degrading enzyme productions

*Trichoderma* spp. and *M. phaseolina* were cultured at 30°C on a Synthetic Medium (SM) containing (grams per liter of distilled water): glucose, 15; MgSO₄·7H₂O, 0.2; KH₂PO₄, 0.9; KCl, 0.2; NH₄NO₃, 1.0; Fe²⁺, 0.002; and Zn²⁺, 0.002. Flasks containing 50 ml of liquid SM were inoculated with a spore suspension (10⁷ spores.ml⁻¹) of both microbes. Suitable concentration of spore suspension was prepared using serial dilution technique. The glucose in the medium was substituted with pathogen cell wall preparations (2 mg. ml⁻¹) as a carbon source for *Trichoderma* spp. [11]. For enzyme induction in pathogen *M. Phaseolina* (Control), 1% of either chitin, laminarin, casein or carboxymethyl cellulose were added into liquid culture (SM) and pH adjusted to 5.5 [12]. Cultures were then incubated at 30°C in a rotary shaker at 120 rpm for 96 h. After 24, 48, 72 and 96 h time interval, 5 ml of mycelium was harvested and then centrifuged at 15,000×g at 4°C for 10 min. The supernatant was dialyzed against distilled water. The dialyze was used for enzymic activity of chitinase, β-1,3-glucanase, protease and cellulase and also for total phenol content. The method of Folin-Lowry [13] was used to estimate the protein content in culture supernatant and used for calculating specific activity of the enzyme.

### Enzyme and total phenol assays

Chitinase (EC 3.2.1.14) and β-1,3-glucanase (EC 3.2.1.39) activity were assayed by the colorimetric method using colloidal chitin and laminarin as substrates, respectively. The level of reducing sugar released was determined by the DNSA method, using N-acetylglucosamine and glucose as a standard [14]. Cellulase activity (EC 3.2.1.21) was determined by measuring the amount of glucose formed from carboxy methyl cellulose [15]. Reactions were conducted for 30 min at 55°C [16]. Specific activity of chitinase, β-1, 3 glucanase and cellulase were expressed as 1 μmol of reducing sugars released.h⁻¹.mg⁻¹ protein. Non enzymatic controls were also performed using boiled enzymes and were subtracted from the enzymatic values.

Protease activity (EC 3.4.21.4) was measured using casein as a substrate. The reaction was carried out according to Charney and Tomarelli [17]. Blank was treated as zero time incubation. The amount of released total free amino acids was estimated by Ninhydrin method [18]. Proteolytic activity was corresponded to the amount of enzyme required to cause an increase of μg free amino acids.h⁻¹.mg⁻¹ protein in culture supernatant. Total phenol content was estimated as method described by Malik and Singh [19] and calculated as μg.ml⁻¹ culture supernatant using pyrocatechol as a standard.

![Figure 1a: Antagonism between Trichoderma spp. and Macrophomina phaseolina at 7 and 14 DAI, and microscopy of interaction between them (Antagonists petri dish (T1 to T4) have Trichoderma spp. at the left and pathogen M. phaseolina at the right side). (Tₚ=T. harzianum MTCC 998; T₂=T. koningii MTCC 796; MP; T₃=Control; T₄=M. phaseolina).](image-url)
Antagonism between Trichoderma spp. and Macrophomina phaseolina at 7 and 14 DAI, followed by growth inhibition. Growth inhibition of its host, Macrophomina phaseolina, occurred within 2-3 days after inoculation (DAI), followed by growth inhibition. Growth inhibition of M. phaseolina (Tassi) Goid during in-vitro antagonism with Trichoderma spp. was differing patterns in cell wall degrading enzyme production by various cell wall degrading enzymes when grown in the synthetic media containing pathogen cell wall as the carbon source. There was differing patterns in cell wall degrading enzyme production by various Trichoderma spp. during mycoparasitism at 24, 48, 72 and 96 h incubation with pathogen cell wall.

The chitinolytic activity induced in some antagonists comprises growth of that species. Mean antagonists (T) differences on specific activity of chitinase found to be significant (Table 1). The significantly high activity of chitinase found to be significant (Table 1). The significantly high activity of chitinase found to be significant (Table 1).

Results

In vitro percent growth inhibition of pathogen - M. phaseolina

The first apparent physical contact between Trichoderma spp. and its host, M. phaseolina, occurred within 2-3 days after inoculation (DAI), followed by growth inhibition. Growth inhibition of M. phaseolina was higher in T4 (74.3%) antagonist followed by T1 (61.4%), T6 (60.8%), T2 (55.5%), and T3 (45.2%) at 7 DAI (Figure 2). Further, mycoparasitism of antagonists were observed up to 14 DAI (Figure 1A and 1B). Pattern of growth inhibition of test fungus was continued with maximum 14.7% increases in T4 (85.2%) followed by 6.8% elevation in T1 (65.6%) antagonists during 7 to 14 DAI. The antagonists T5 and T7 were recorded below 40% growth inhibition of test fungus at both intervals. Thus, it was observed that T4 antagonist (i.e. interaction between T. koningi MTCC 796 and pathogen M. phaseolina) has a better growth inhibition of test fungus followed by T1 (T. harzianum NABII Th 1×M. phaseolina) compared to other Trichoderma spp.

Evaluation of cell wall degrading enzymes

Seven Trichoderma spp., tested for antagonism with fungal pathogen, produced and secreted on induction substantial amounts of various cell wall degrading enzymes when grown in the synthetic media containing pathogen cell wall as the carbon source. There was differing patterns in cell wall degrading enzyme production by various Trichoderma spp. during mycoparasitism at 24, 48, 72 and 96 h incubation with pathogen cell wall.

The chitinolytic activity induced in some antagonists comprises growth of that species. Mean antagonists (T) differences on specific activity of chitinase found to be significant (Table 1). The significantly high activity of chitinase found to be significant (Table 1). The significantly high activity of chitinase found to be significant (Table 1).
highest chitinase activity was recorded by T. koningi MTCC 796 (38.00 U.mg⁻¹ protein) followed by T. harzianum NBAI Th 1 (38.84 U.mg⁻¹ protein) antagonist. Irrespective of antagonists, mean time interval (H) showed continuous rise in enzyme activity during 24 to 96 h when Trichoderma spp. grew in the presence of pathogen cell wall. The interaction effect of T×H was significantly differed for chitinase activity. The highest specific activity was recorded by T. harzianum NBAI Th 1 at 72 h and it was 1.93 fold higher than 24 h followed by significantly declined at 96 h. The antagonist T. koningi MTCC 796 induced higher chitinase activity at 24 h incubation and it was 25 fold higher than control (pathogen alone). Probably, early induction of chitinase by antagonist T. koningi MTCC 796 caused high coiling capacity during mycoparasitism at 14 DAI and greater percent growth inhibition of pathogen-M. phaseolina.

Mean antagonists (T) differences on specific activity of β-1, 3 glucanase was found to be significant (Table 2). The significantly highest β-1, 3 glucanase activity was recorded by T. koningi MTCC 796 (9.97 U.mg⁻¹ protein) followed by T. hamatum NBAI Tha 1 (9.67 U.mg⁻¹ protein) antagonist. Irrespective of antagonists, mean time interval (H) showed rise in enzyme activity during 24 to 72 h when Trichoderma spp. grew in the presence of pathogen cell wall. The interaction effect of T×H for β-1, 3 glucanase revealed significant differences. The highest specific activity was recorded by T. hamatum NBAI Tha 1 at 24 h incubation followed by significantly declined at 96 h. The antagonist T. koningi MTCC 796 elevated 1.18 fold specific activities during 24 to 96 h incubation which exceptionally did not inhibit the growth of pathogens in synergistic cooperation with chitinase.

When expressing specific activity of protease (Table 3), antagonist mean (T) activity was found highest in T. hamatum NBAI Tha 1 (48.17 U.mg⁻¹ protein). Protease activity during different time intervals (Mean H) showed about 3 fold rise in activity during 24 to 96 h incubation. Combined effect of T×H indicated that the specific activity of protease attained higher in T. koningi MTCC 796 at 24 h.

| Trichoderma spp. / Accession No. | β-1, 3- Glucanase (µmol glucose.h⁻¹.mg⁻¹ protein) | Protease (µg free amino acids.h⁻¹.mg⁻¹ protein) |
|----------------------------------|-----------------------------------------------|-----------------------------------------------|
|                                  | 24 h  | 48 h  | 72 h  | 96 h  | Mean (T) | 24 h  | 48 h  | 72 h  | 96 h  | Mean (T) |
| T. harzianum (NBAI Th 1)         | 4.93  | 6.09  | 11.39 | 9.95  | 8.09     | 3.75  | 19.26 | 46.08 | 71.25 | 35.09     |
| T. viride (NBAI Tv 23)           | 5.60  | 5.67  | 8.46  | 7.86  | 6.90     | 0.82  | 7.03  | 16.54 | 5.71  | 7.53      |
| T. virens (NBAI Tvs 12)         | 8.89  | 4.74  | 9.97  | 8.58  | 8.05     | 38.60 | 29.52 | 54.26 | 60.22 | 45.65     |
| T. koningi (MTCC 796)           | 6.35  | 6.51  | 13.14 | 13.67 | 9.97     | 39.94 | 20.15 | 38.84 | 25.86 | 31.20     |
| T. pseudokoningi (MTCC 2048)    | 6.44  | 4.74  | 7.73  | 5.38  | 6.07     | 1.86  | 13.96 | 72.86 | 87.82 | 44.13     |
| T. hamatum (NBAI Tha-1)         | 7.76  | 6.22  | 14.37 | 10.32 | 9.67     | 11.09 | 28.85 | 57.44 | 95.29 | 48.17     |
| T. hamatum (Local)              | 4.83  | 33.27 | 40.91 | 62.96 | 35.49     | 2.99  | 3.77  | 2.52  | 1.45  | 2.68      |

Values represent mean of three experiments, each performed in duplicate.

Mean antagonists (T) differences on specific activity of cellulase (Table 4), antagonist mean (T) activity was found highest in T. hamatum NBAI Tha 1 (49.51 µmol glucose.h⁻¹.mg⁻¹ protein) followed by T. hamatum NBAI Tha 1 (49.52 U.mg⁻¹ protein) antagonist. Total phenol was produced significantly higher during mean interval (H) showed continuous rise in enzyme activity during 24 to 96 h incubation. Interaction effect of T×H indicated 13 fold increase in the activity during 24 to 96 h incubation which exceptionally did not inhibit the growth of pathogen effectively. The enzyme activity was more or less correlated with the maximum growth inhibition of pathogen M. phaseolina by T. koningi MTCC 85.2% antagonist followed by T. hamatum NBAI Tha 1 (62.4%) at 14 DAI antagonism. It has been shown that β-1, 3 glucanase inhibited the growth of pathogens in synergistic cooperation with chitinase.

The highest specific activity was recorded in T. pseudokoningi MTCC 2048 at 96 h incubation which exceptionally did not inhibit the growth of pathogen effectively. The enzyme activity was more or less correlated with growth inhibition of test fungus except T. viride NBAI Tv 23 and T. pseudokoningi MTCC 2048 antagonists.

Considering mean antagonist (T) data, specific activity of cellulase was significantly higher in test fungi control (49.52 U.mg⁻¹ protein) followed by T. pseudokoningi MTCC 2048 antagonist (Table 4). The significantly minimum cellulase activity (14.64 U.mg⁻¹ protein) was found in culture medium of T. koningi MTCC 796. Mean time interval data (H) showed maximum 7.5 fold rise in activity during 24 to 48 h incubation. Interaction effect of T×H indicated 13 fold increase in the activity during 24 to 96 h incubation in control treatment (Pathogen-M. phaseolina). The activity in the culture medium was negatively correlated to the growth inhibition of pathogen during in vitro antagonism study. Total phenol was produced significantly higher in culture supernatant of T. koningi MTCC 796 antagonist followed by T. hamatum NBAI Tha 1 and T. harzianum NBAI Th 1 at 48 h incubation (Table 5). Total phenol content was raised at early duration of incubation (24 to 48 h) in the antagonists who inhibited growth of test fungus effectively.
Trichoderma spp. and Macroymomina phaseolina interaction during antagonism study on PDA media. Microscopic study also showed that T. koningi MTCC 796 started the parasitism earlier and was capable of overgrowing and degrading M. phaseolina mycelia, coiling around the hyphae with apressoria and hook-like structures. Percent growth inhibition of pathogen and production of cell wall degrading enzymes-chitinase and β-1,3 glucanase correlated positively suggesting that these enzymes were released during antagonism and inhibited the growth of fungal pathogen M. phaseolina. Thus, T. koningi MTCC 796 is most suitable strain to be used in biological control of plant pathogen M. phaseolina, causing charcoal rot disease in castor.

Discussion

Trichoderma spp. are widely used in agriculture as biocontrol agents because of their ability to reduce the incidence of disease caused by plant pathogenic fungi, particularly many common soil borne pathogens [21-29]. In present work, in vitro antagonism of 7 species of Trichoderma with M. phaseolina, causing charcoal rot in castor, were studied. The results of dual culture revealed the maximum (74.3%) growth inhibition of test pathogen with T. koningi MTCC 796 (T4) followed by T. harzianum NABII Th 1 (T1) (61.4%) at 7 DAI (Figure 2). Further, mycoparasitism of antagonists were observed upto 14 DAI (Figure 1A and 1B). Pattern of growth inhibition of test fungus was continued with maximum 14.7% increase in T4 (85.2%) followed by 6.8% elevation in T1 (65.6%) antagonists during 7 to 14 DAI.

These results was in confirmation with the finding of Melo and Faull [30], who reported that the T. koningi and T. harzianum were found to be effective in reducing the radial growth of R. solani, T. koningi strains produced toxic metabolites with strong activity against R. solani, inhibiting the mycelial growth. Ramezani [31] also documented that T. harzianum significantly inhibited the growth of M. phaseolina. T. viride and T. harzianum had a greater inhibition on M. phaseolina than T. harzianum. Our study showed T. koningi MTCC 796 and T. harzianum NABII Th 1 have a better growth inhibition of M. phaseolina compared to T. viride. Trichoderma spp. is known to act through several mechanisms such as hyperparasitism, inhibition and antibiotics. Shalini and Kotasthane [32] screened seventeen Trichoderma strains against R. solani in vitro. All strains including T. harzianum, T. viride and T. aureoviride were inhibited the growth of R. solani.

Mycoparasitism involves morphological changes, such as coiling and formation of appressorium- like structures, which serve to penetrate the host [33]. The first contact between Trichoderma spp. and pathogen M. phaseolina occurred after 2 to 3 days of inoculations, followed by growth inhibition. Differential antagonistic activity has even been observed for various Trichoderma spp. which demonstrates semi-specificity in the interaction of Trichoderma with its host [4]. Our results on light microscopic study revealed that T. koningi MTCC 796 and T. harzianum NABII Th 1 showed effectively coiling on pathogen M. phaseolina at 14DAL, and may start the parasitism earlier during antagonism compared to other Trichoderma spp. Similar results have been reported for T. harzianum against Crinipellis perniciosa [34], Sclerotium rolfsii [35] and Rhizoctonia cerealis [36].

Monteiro et al. [37] reported that T. harzianum ALL42 were capable of overgrowing and degrading Rhizoctonia solani and M. phaseolina mycelia, coiling around the hyphae with formation of apressoria and hook-like structures. The interaction between fifteen isolates of T. harzianum and the soil-borne plant pathogen, Rhizoctonia solani, was studied using light microscopy and Transmission Electron Microscopy (TEM) which showed efficient coiling process followed by a substantial production of hydrolytic enzymes [14]. Howell [1] examined Trichoderma that attaches to the pathogen with cell-wall carbohydrates that bind to pathogen lectins. Once Trichoderma is
the pathogen and forms the appresoria. The following step consisted of the production of pathogenesis related enzymes and peptaibols.

Many reports suggested the involvement of signal transduction pathways components such as G proteins, CAMP and MAP kinase, which control extracellular enzyme and coating around host hyphae [20,38]. In *Trichoderma*, there is a biochemical evidence for participation of G-a in coating since an increase in coating around nylon fibers was detected after addition of activators of G-protein [39].

The specific activities of the four enzymes of the *Trichoderma* spp. were tested using cell wall of the pathogen *M. phaseolina* as substrate during different incubation period ranged from 24 to 96 h (Tables 1-4). The species were cultured on cell walls of *M. phaseolina* as the sole carbon source. All tested species showed significant variation in chitinase, β-1, 3-glucanase and protease activities when grown in the *M. phaseolina* cell wall except cellulase. The release of chitinase and β-1, 3-glucanase was higher in *T. koningi* MTCC 796 followed by *T. harzianum* NABAI Th 1 and *T. hamatum* NABAI Tha 1 than other *Trichoderma* spp. The antagonist *T. koningi* MTCC 796 induced highest chitinase activity at 24 h incubation and it was 25 fold higher than control (pathogen alone). Early induction of chitinase by antagonist *T. koningi* MTCC 796 compared to other species caused high coating capacity during mycoparasitism at 14 DAI and greater percent growth inhibition of pathogen *M. phaseolina*.

It has been shown that *T. koningi* MTCC 796 elevated 1.18 fold specific activities of β-1, 3 glucanase during 72 to 96 h compared to 24 h incubation. It indicated that β-1, 3 glucanase inhibited the growth of pathogen in synergistic cooperation with chitinase [35,40]. Similar to present study, Marco et al. [12] noted that two isolates of *T. harzianum* (39.1 and 1051) produced and secreted on induction of substantial amounts of chitinolytic enzymes and it increased within 72 h, while β-1, 3 glucanase activity was found to be maximum during 72 to 120 h growth in presence of specific substrate.

The cell wall degrading enzymes-chitinase and β-1,3-glucanase were produced in the presence of phytopathogen cell walls as the carbon source, suggesting that these substrates can also act as inducers of lytic enzyme synthesis. This result is similar to that by reported Sivan and Chet [41] in which *T. harzianum* produced high levels of chitinase and glucanase when grown on *Rhizoctonia solani* mycelia. Considerable variation has been reported with respect to biocontrol activity among the *Trichoderma* spp. analyzed. The production of hydrolytic enzymes has been shown to be affected by culture conditions and by the host [4]. Some other studies also demonstrated that *T. harzianum* revealed chitinase and glucanase activity when their cultures were supplemented with cell walls from *Sclerotium rolfsii* [11], *Fusarium oxysporum*, *Rhizoctonia solani* [22] and *Botrytis cinerea* [4]. However, our earlier study [42] confirmed the relationship between the RAPD polymorphism showed by three species of twelve *Trichoderma* isolates and their hardness to *Aspergillus niger*, in terms of in *vitro* production of cell wall degrading enzymes–chitinase, β-1, 3 glucanase and protease during antagonism.

Correlation between antagonism study and release of cell wall degrading enzymes by *Trichoderma* spp. in the presence of pathogen cell wall indicated a highly significant positive correlation (r=0.01) between percent growth inhibition of pathogen *M. phaseolina*, chitinase and β-1, 3-glucanase enzymes which established a relationship to inhibit the growth of fungal pathogen by increasing the levels of these cell wall degrading enzymes during antagonism (Table 6). Protease showed positive but non significant correlation while cellulase confirmed negative correlation, among percent growth inhibition, chitinase and β-1,3-glucanase enzymes. Total phenol content was positively correlated (r=0.05) with β-1, 3 glucanase and percent inhibition of pathogen suggesting their role in growth inhibition of test fungus during antagonism.

There are several mechanisms involved in *Trichoderma* antagonism namely antibiosis whereby the antagonistic fungus shows production of antibiotics, competition for nutrients. In case of mycoparasitism, *Trichoderma* directly attacks the plant pathogen by excreting lytic enzymes such as chitinases, β-1,3 glucanases and proteases [43]. Because of the skeleton of pathogenic fungal cell walls contains chitin, glucan and proteins, enzymes that hydrolyze these components have to be present in a successful antagonist in order to play a significant role in cell wall lysis of the pathogen [44,45]. Filamentous fungal cell wall also contains lipids and proteins [46]. It therefore, was expected that antagonistic fungi synthesized proteases which may act on the host cell-wall [1].

Most of the bio-control agents are known to produce chitinase and β-1, 3-glucanases enzymes which could degrade the cell wall leading to the lysis of hyphae of the pathogen [47]. The pathogen cell-wall and chitin induce nag1 gene, but it is only triggered when there is contact with the pathogen [1,2,45]. Present findings showed higher specific activity of enzymes-chitinase and β-1, 3 glucanase in *Trichoderma* spp. incubated with pathogen cell wall. Activity of these enzymes varied with various *Trichoderma* species. This may be due to the expression of certain gene in *Trichoderma* spp. during incubation as *Chit33* is expressed only during the contact phase and not before overgrowing *R. solani* [48]. However, *cht35Y* does not need the direct contact of the pathogen to be expressed. *Chit33*, *cht42* and *cht36* have been over expressed in *Trichoderma* spp. in order to test the role of these chitinases in mycoparasitism, and the 42-kDa chitinase is believed to be a key enzyme [1]. The production of β-1, 3 glucanase was also reported as an important enzymatic activity in bio-control of pathogen because β-1, 3 glucan is a structural component of fungal cell walls. Many β-1, 3-glucanases have been isolated, but only a few genes have been cloned, e.g. *bgn13.1* [40].

References

1. Howell CR (2003) Mechanisms employed by *Trichoderma* species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87: 4–10.
2. Harman GE, Howell CR, Viltero A, Chet I, Lorito M (2004) *Trichoderma* species- opportunistic, avirulent plant symbionts. Nat Rev Microb 2: 43-56.
3. Ruiz-Herrera J (1992) Fungal cell wall structure: synthesis, synthesis, and composition. CRC Press, Boca Raton.
4. Schimbrock M, Lorito M, Wang, YL, Hayes CK, Arisan-atac I, et al. (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of *Trichoderma harzianum* against phytopathogenic fungi. Appl Environ Microb 60: 4364-4370.
5. Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) *Trichoderma*: from genes to biocontrol. J Plant Pathol 83: 1–24.
6. Viltero A, Ramot O, Chemin L, Chet I (2002) Significance of lytic enzymes from *Trichoderma* spp in the biocontrol of fungal plant pathogens. Antonie van Leeuwenhoek 81: 549-556.
7. Benitez T, Rincon AM, Limon MC, Codon AC (2004) Biocontrol mechanisms of *Trichoderma* strains. Int Microb 7: 249–260.
8. Sinclair JB, Dhingra OD (1985) Basic Plant Pathology Method. CRC Press, Inc. Corporate Blud, MW Boca Rotam, Florida.
9. Dennis C, Webster J (1971) Antagonistic properties of species groups of...
Trichoderma: III. Hyphal interaction. Transactions of British Mycological Society 57: 363-369.

10. Watanabe N (1984) Antagonism by various kind of Trichoderma fungi to soil born plant pathogen. Bulletin of Faculty of Agriculture, Mafii University, Japan.

11. Elad Y, Chet I, Henis Y (1982) Degradation of plant pathogenic fungi by Trichoderma harzianum. Can J Microbiol 28: 719-725.

12. Marco JD, Valadares-Inglis MC, Felix CR (2003) Production of hydrolytic enzymes by Trichoderma isolates with antagonistic activity against Crinipellis perniciosa the causal agent of witches broom of cocoa. Braz J Microbiol 34: 33-38.

13. Lowry OW, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurements with folin phenol reagent. J Biol Chem 193: 265-275.

14. Almeida FB, Cerqueira FM, Silva RN, Ulhoa CJ, Lima AL (2007) Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production. Biotechnol Lett 29: 1169-1193.

15. Sadasivam S, Manickam K (1992) Biochemical method for Agricultural sciences, Wiley Estern Limited, Coimbatore.

16. Coltner A, Reid JL, Mount MS (1988) Assay methods for pectic enzymes. Methods Enzymol 161: 329-335.

17. Charney MS, Tomarelli RM (1947) A colorimetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem 171: 501–505.

18. Lee YP, Takahashi T (1966) An improved colorimetric determination of amino acids with the use of ninhydrin. Anal Biochem 14: 71-77.

19. Malik CP, Singh SP (1980) Plant enzymology and histoenzymology. Kalyani Publishers, Pubdhiana.

20. Silva RN, Silva SP, Brandao RL, Ulhoa CJ (2004) Regulation of N-acetyl-beta-D-glucosaminidase produced by Trichoderma harzianum: evidence that cAMP controls its expression. Res Microbiol 155: 667–671.

21. Papavizas GC (1985) Trichoderma and Glucocladium: Biology, Ecology and potential for biocontrol. Annu Rev Phytopathol 23: 23-54.

22. Sivan A, Chet I (1986) Biological control of Fusarium spp in cotton, wheat and muskmelon by Trichoderma harzianum. Journal of Phytopathology 116: 39-47.

23. Calvet C, Pera J, Bera JM (1990) Interaction of Trichoderma spp with Glomus mosseae and two wilt pathogenic fungi. Agric Ecosyst Environ 9: 54-65.

24. Elad Y, Zimand G, Zaqqs Y, Zuriel S, Chet I (1993) Use of Trichoderma harzianum in combination or alternation with fungicides to control Cucumber grey mold (Botrytis cinerea) under commercial greenhouse condition. Plant Pathol 42: 324-332.

25. Spiegel Y, Chet I (1998) Evaluation of Trichoderma spp as biocontrol agent against soil borne fungi and plant parasitic nematodes in Israel. Integrated Pest Management Reviews 3: 169-175.

26. Elad Y (2000) Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot 19: 709-714.

27. Freeman S, Minz D, Kolesnik I, Barbul O, Zreibil A, et al. (2004) G proteins activators and cAMP promote mycoparasitic behavior in Trichoderma harzianum. Microsurgical Research 103: 1637-1642.

28. Benitez T, Delgado-Jarana J, Rincon AM, Rey M, Limon MC (1998) Biofungicides: Trichoderma as a biocontrol agent against phytopathogenic fungi. In: Recent research developments microbiology Pandalai SG (edn), Research Signpost, Trivandrum.

29. Sivan A, Chet I (1989) Degradation of fungal cell walls by lytic enzymes of Trichoderma harzianum. Microbiology 135: 675-682.

30. Gajera HP, Vakharia DN (2010) Molecular and biochemical characterization of Trichoderma isolates inhibiting a phytopathogenic fungi Aspergillus niger Van Teghheim. Physiol Mol Plant Pathol 74: 274-282.

31. Haran S, Schickler H, Chet I (1996) Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology 142: 2321-2331.

32. Lorito M, Hayes CK, Di Pietro A, Wuo SL, Harman GE (1994) Purification, characterization and synergistic activity of a glucon 1, 3-B-glucosidase and an N-acetylglucosaminidase from Tr. harzianum. Phytopathology 84: 398-405.

33. Carsolio C, Benhamou N, Haran S, Cortés C, Gutiérrez A, et al. (1999) Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl Environ Microbiol 65: 929-935.

34. Hunsley HD, Burnett JH (1970) The ultrastructural architecture of the walls of some hyphal fungi. Mycologa 20: 203-218.

35. Sangle UR, Bambawale OM (2004) New strains of Trichoderma spp Strongly antagonistic against Fusarium oxysporum f. sp. Sesamum. J Mycrol Plant Pathol 34: 1-4.

36. Dana MM, Limón MC, Mejías R, Mach RL, Benítez T, et al. (2001) Regulation of chitinase 33 (chil33) gene expression in Trichoderma harzianum. Curr Genet 38: 335-342.