Solid State Fermentation: Comprehensive Tool for Utilization of Lignocellulosic through Biotechnology

Rina D Koyani and Kishore S Rajput*
Department of Botany, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India

Abstract

Lignocellulosics are widely available natural products which are the tremendous source for the production of enzymes being used for the numerous applications in food, feed, paper, textile and agro-biotechnological industries, ethanol production, bioremediation processes and many more. Enzyme productions from microorganisms are stimulated aggressively through solid state fermentation which meets the demand of getting rid of agro-industrial waste and strengthen the consumption of renewable resources through biotechnology. Though well-developed techniques for enzyme production by submerged fermentation has been found very successful at the industrial sectors; solid state fermentation helps to overcome to the issues of production cost and high yield. Additionally the availability of the substrate with very much economical rate can compensate the overall economic expenses which promote the application of solid state fermentation at industrial level. However several reports regarding fermentation techniques and their pre-treatments are available, the present review will discuss about utilization of lignocellulosics through solid state fermentation for production of enzymes and their enhanced applications in different sectors in recent years.

Keywords: Solid state fermentation; Lignocellulosics; Enzymes

Introduction

Our biosphere is under the constant threat due to intense consumption of natural resources and selfish interest of mankind, which is consequently leading towards depletion of the environment. The continuous exploitation of nature to meet the demands of increasing population and greed is the major reason for the rapid industrialization. These developments are directly linked to the environmental issues global. In the developing countries where there is a race to become fully developed and economically stronger, constantly utilizing the natural resources and disposing various pollutants directly or indirectly in the atmosphere. The major challenge of maintaining the nature and persisting against the shortage of necessary resources made it obligatory to look for the possible solutions/alternatives to non-renewable resources and harmful chemicals being used widely to save the environment. One of such proposed, realistic and extensively developed alternative is the biological approach for consumption of renewable resources like lignocellulosic and its utilization through biotechnology.

Ligno-cellulosic biomass is widely available as the residue from the agricultural, forestry and alimentary industries whose elimination is always an issue. The ultimate solution adopted by most of the farmers/foresters is to get rid of the wastes by burning them in the field itself. If this carbohydrate rich biomass is utilized as a resource for displacing some of the non-renewable resources and hazardous chemicals, it will assure the economic and environmental issues in addition to the waste management concerns. Ligno-cellulosic substrates are generally composed of three different polymers i.e., lignin, cellulose and hemicellullose. Cellulose is the major constituent of the plant materials and it forms about half to one-third of plant tissues [1] and present in the plants as crystalline and amorphous structure [2]. It is available as D-glucose subunits linked together by β-1,4-glucosidic bonds [3] whereas hemicelluloses are heteropolysaccharides and hence contain many different sugar monomers. However, xylan and glucomannan are the dominant components of hardwood/agricultural waste and softwood respectively [3,4]. Like cellulose, the most hemicelluloses function as supporting materials in the cell walls and relatively easily hydrolysed by acids [5]. In contrast, lignin is one of the most complex and widely distributed renewable aromatic polymers on the terrestrial earth. After cellulose and hemicellulose, lignin is the second most abundant biopolymeric material synthesized every year by the plants in the nature. It acts as a binding agent and holds the cellulose together and fills the space in the cell wall among cellulose, hemicellulose and pectin components. It is one of the major structural components of wood tissue, which binds the wood fibres together and imparts the desired strength, rigidity and elasticity to the secondary xylem and provides resistance against microbial attack and under stress conditions.

Ligno-cellulosic material is widely used as a supportive substrate during the solid state fermentation and is a very commonly used technique for the production of different microbial enzymes. These enzymes contribute to the inclusive applications in the paper pulping industries, biofuel production, for animal feedstock, degradation of xenobiotic compounds and many other commercially important inputs [6-10].

Few reviews on the solid state fermentation have been reported [2,11,12] which were based on the general aspects of fermentation or pre-treatment to the ligno-cellulosic for solid state fermentation. However the present article represents the application of solid state fermentation for utilization of ligno-cellulosics through biotechnology in different sectors.

Solid State Fermentation (SSF)

Solid State Fermentation (SSF) is the fermentation process taking place in the absence of the free flowing water where any solid material...
is the substrate/support [13]. SSF is a notable technique used in Asian continent from the ancient time (approximately 2600 BC) [14]. Though, it was discontinued because of its disadvantages to control the process parameters and higher impurities at the end product, development of technologies met the solution of these problems too. Additionally, some reports of transformation studies using SSF gave kick to this arena and helped SSF to attain another landmark. With continuous extension, it has been widely accepted and gained attention of the researchers for different applications over other fermentation techniques because of abundant availability of waste material, its cost effective availability and management issues.

There are several essential factors which reflect immense impact on the triumph of solid state fermentation such as the substrate, optimum process parameters and acting agent being used for the manufacturing particular product. Looking to the suitable habitat for the growth, SSF is proved to be the most appropriate inoculation media for fungi and yeast because of the presence of anonymous natural base which are utilized very widely for the production of extracellular enzymes and bioethanol from lignocellulosic wastes. In contrast, it is considered incongruous for bacteria due to theoretical concept of water activity [15]. Production of chemicals, enzymes, value added products, secondary metabolites, organic acids and pharmaceuticals etc. through SSF is very promising and preferred choice in the recent years. SSF is also demonstrated as an active alternative to the other techniques for the production of metabolites with importance to the food industry [16]. Some of such examples for the production of the various compounds by SSF are shown in Table 1.

Beside production of traditional bulk of chemicals, food, fuel and feed, it has attracted an attention in areas such as solid waste management, biomass energy conservation and its exploitation in production of highly valued products such as biologically active secondary metabolites [17]. As biomass is the only foreseeable energy source, bio-refineries have added more value to SSF to meet the demand and needs of the future generation, which adds to the significance of agro-residual waste [18,19].

Submerged Fermentation vs. Solid State Fermentation

Submerged fermentation is the technique where microorganisms are grown in the liquid media which is vigorously aerated and mostly agitated in contrast to the use of solid media. This technique received overnight fame with the invention of marvel drug Penicillin through the same, and dominated the world of fermentation. Perhaps Solid State Fermentation was continued and had enormous significance in Asia because of the largest agricultural producing countries. Though, both fermentation techniques have advantages and disadvantages over each other, SSF is widely accepted because it mimics natural living conditions and it reproduces the processes similar to the composting and ensiling. Exploitation of agro-industrial waste provides favourable environment that is similar to the natural habitat of fungi and offers the opportunity of recycling and managing the agro-industrial waste successfully. Additionally, it includes simplicity of the fermentation media, with fewer requirements of complex machinery, equipment and control systems, greater product yield; reduced energy demand, lower capital and low recurring expenditures in industrial operation [20]. The major drawback of SSF is its complexity in product recovery and their purification. However, abundant and easily available substrates, low production cost and high yield can compensate the overall economic expenses. Castilho et al. [21] estimated detailed economic analysis for the production of lipase in both SSF and SmF (Submerged fermentation), it is found that the capital investment for SSF was 78% lower than that of SmF and there is about 47% of the profit on the product cost which directly indicates the advantages of using cheaper substrates.

Application of Solid State Fermentation

Solid state fermentation has always found elevated applications in the production of antibiotics, surfactants, and other value added products like enzymes, secondary metabolites, biopesticides, aroma compounds etc. at industrial and commercial level. The latter, due to its role in enzyme production by fungi attended as special attraction. Although, numbers of studies on enzyme production have been carried out using different fermentation methods, SSF has incredible potentials in the production of enzymes due to resemblance to the natural habitat of microorganisms. Therefore, it is an ideal choice for microbes to grow and produce value-added products cost effectively. It can be of exceptional interest in processes where crude fermented products are used directly as enzyme sources. However, the lignin present in the lignocellulosics wastes cannot be easily degraded by microbial flora because of its intricate composition. Since white rot fungi is the only organisms acknowledged for possessing the potential of lignin degradation [22,23] due to their unique extracellular enzymatic system. On the other hand, non-ligninolytic fungi are also credited for the extraction of very essential commercially important enzymes with wide applications in industrial segments like detergents, food, feed, pharmaceutical, and biofuels. Fungi would be more capable of producing certain enzymes with high productivity during SSF as compared to SmF [24]. Additionally, some bacteria are also known for the enzyme production through SSF. The production of biologically active secondary metabolites in SSF represents another incredible aspect in the recent years. Several studies carried out since many decades also emphasize the importance of working in solid state condition [25-30].

Enzyme Production

Enzymes are among the essential microbial products utilized by human beings. Beside bacteria, fungi are considered to be the best sources for the same. The plentiful applications of enzymes in industrial and non-industrial sectors demand for different enzymes being employed to the different segments. The rapidly growing world enzyme market which was $5.1 billion in 2009 [31] is forecasted to climb the height of $6.9 billion by 2017 [32] which reflects its necessity to meet the demands of the recent world. The main reason behind this trend stimulation is its significant cost reduction and broad range of applications. The implementation of this biotechnological process in the industrial sector is very successful and reported to reduce 9-90% of the production cost [33,34]. The enzymes are produced at large scales using microbial resources or many of them are commercially available and employed to different industries like food, feed, paper, textile, pharma etc. Necessity of the sustainable and energy saving production of the enzymes requires better fermentation techniques, where SSF is emerged as the pollution free and clean system for the same.

SSF is considered as the most appropriate method for the cultivation of fungi to scale up the production of enzymes i.e., laccase, manganese independent peroxidase and manganese peroxidase, xylanase, cellulase, amylase etc. using inexpensive and easily available lignocellulosic substrates such as natural, agricultural and agro-industrial wastes [10,35-41]. Lignocellulosics biomass promotes the excellent growth of fungi and boosts the enzyme activity by means of providing the nutrients to the fungi. Ligno-cellulosic material may contain specific compounds which stimulate the ligninolytic enzyme synthesis, for instance; the presence of extractive substances, derived from straw was
essentially for the production of manganese peroxidase by *Phanerochaete chrysosporium* [42]. It was also demonstrated by Elisashvili et al. [43], that the presence of lignocellulosic substrate is mandatory for manganese peroxidase production by *Pleurotus dryinus* IBB 903, since there was no enzyme production when the fungus was grown in the synthetic medium with different carbon sources. Not only the organism but the medium composition or supporting substrate is also crucial factors for the growth of the organism and production of particular enzyme or isoenzymes, otherwise they behave differently in presence of different compounds. There are few compounds which can stimulate while many can suppress the growth and enzyme production. Production of manganese peroxidase and lignin peroxidase by *Phanerochaete chrysosporium* is strongly affected by medium composition [44] and encourages the production of peroxidases if ligno-cellulosic are used as substrate [42]. Survey of literature reveals that much of the evaluations are carried out on the production of ligninolytic enzymes using SSF system and few of recent ones are mentioned in Table 2. Over the years, productions of industrially important non-ligninolytic enzymes such as xylanase, pectinase, cellulase, insulinase, amylase, lipase, phytase etc. have also been published and employed at commercial level (Table 3).

Another notifying advantage of using SSF is its unique possibility of processing by products and even farmers can produce their own without any investment. Moreover, it also solves the problems of the agricultural wastes disposal and even farmers can produce their own without any investment. Recently coir pith from coconut husk treated with *Aspergillus niger* through solid state fermentation is reported to be a carrier material for this technique is the most suitable when we concern about demand of enzymes, energy, environment and availability of raw materials.

Agrobiotechnological Process

Production of bio-fertilizers, bioprocessing of crops and crop residues, soil detoxification, feed production, fibre processing etc. are the processes widely assisted by SSF. The fertilizers containing living organisms are generally referred as bio-fertilizers and their activities are expected to influence the soil ecosystem and to produce supplementary substances for plant growth [45]. Market for the production of these agro-waste based bio-fertilizers and their utilization is expanding rapidly since last two decades because of cheap and easily available substrate. Moreover, it also solves the problems of the agricultural wastes disposal and even farmers can produce their own without any investment. Recently coir pith from coconut husk treated with *Aspergillus niger* through solid state fermentation is reported to be a carrier material for preparation of bio-fertilizer [46]. Chen et al. [47] reported that agro-industrial wastes of cattle dung; residues after vinegar-production and rice straw were solid-state fermented with *Trichoderma harzianum* which is used as bio-fertilizers to control the *Fusarium* wilt of cucumber in a continuously cropped soil. Available literature indicates that bio-fertilizers are also prepared from the agricultural waste using thermo tolerant and thermophilic organism to enhance the rate of maturity and improve the quality of the resulting biofertilizer [48]. Bio-fertilizers produced from agro-waste using SSF are found to be more economical in its production and most potent in improving the soil quality and significantly enhance the crop yield. Different wastes from the fruits like, banana, watermelon, papaya, pineapple, citrus orange

Product	Substrate	Organism	Reference
Rifamycin SV	Ragi bran	*Amycolatopsis mediterranei*	[77]
Rifamycin B	Coconut oil cake and ground nut shell	*Amycolatopsis Mediterranean*	[78]
	Corn husk	*Amycolatopsis sp.*	[79]
Cephalosporin C	Wheat rawa	*Acrocnorium chagosporum*	[80]
	Barley	*Cephalosporium armonium*	[81]
Cyclosporine A	Wheat bran	*Trichophyton inflatum*	[82]
Iturin A	Rice bran, Wheat bran	*Bacillus subtilis*	[83]
Neomycin	Wheat rawa	*Streptomyces marinensis*	[84]
Oxalic acid	Wheat kernels	*Aspergillus oryzae*	[85]
Gluconic acid	Tea waste and Sugarcane molasses	*Aspergillus niger*	[86]
Aroma compounds	Cassava bagasse, Giant palm bran, Apple pomace,	*Kluiveromyces marxianus*	[87]
(esters)	Sugarcane bagasse, Sunflower seeds		
Biopesticides	Coffee husk and Sugarcane bagasse	*Beauveria bassiana*	[88]
Xanthan	Potato peels	*Xanthomonas citri*	[89]
Methylketones	Coconut fat	*Aspergillus niger*	[90,91]
Acetaldehyde	Rice koji	*Aspergillus oryzae*	[92]
Methionine	Beef pulp and cereal bran	*Pycnoporus cinnabarinus*	[93]
Gallic acid	Cashew husk	*Aspergillus oryzae*	[94]
Phenolic compounds	Rice bran	*Rizopus oryzae*	[95]
Peclinsase	Lemon peel pomace	*Aspergillus niger*	[96]
Ferulic acid	Agro industrial waste	*Streptomyces setonii*	[97]
Tannin acyl hydrolase	Coffee huk	*Lactobacillus rham*	[98]
Chitosan	Soybean meal and hulls	*Mucor rouxii*	[99]
Docosahexaenoic acid (DHA)	Rapeseed meal and Waste molasses	*Cryptococcus cohnii*	[100]
Antioxidant protein hydrolysates	*Acanthogubius hista* processing by products	*Aspergillus oryzae*	[101]
Bioactive metabolites	Coffee huk, Sugar cane bagasse and Mango seeds	*Monascus purpureus*	[102]
Biosurfactants	Sunflower seed shell	*Pleurotus ostreatus*	[103]
Natural pigment	Corn meal	*Monascus purpureus*	[104]
Pigments and Monacolin Kp	Sorghum	*Monascus purpureus*	[105]

Table 1: Products produced through solid state fermentation.
can be very good substrates for the production of biofertilizer, which are applied to the vegetable plantation [45]. Health consciousness in human beings navigated them towards organic agricultural products and this rapid expansion demanded for inexpensive phosphate source which imposed farmers to apply insoluble rock phosphate, the direct source of soil pollution and eutrophication. Instead some of the fungi have been accepted as excellent phosphate solubilizers [49] which are better substitute for the rock phosphate processing [50]. Vassilev et al. [51] developed the biotechnological technique for solubilizing rock phosphate by fungi grown on agro-industrial waste and the resultant fermented products employed to the plants demonstrated significantly enhanced growth, higher level of mycorrhization and increased soil enzyme activity [52-54]. Therefore, further techniques can be formulated and sustainable agriculture can be inextricably linked to the SSF. Formulation of such techniques will not only save from excessive application of synthetic fertilisers and soil pollution but will also make farmers independent from the issues related with black marketing of fertilizers due to demand vs. supply and more profit to farmers.

| Product Substrate Organism Reference |
|--------------------------------------|----------------------------------|
| Manganese Peroxidase and Laccase | Wheat bran | Agaricus bisporus |
| | Wheat straw | Pleurotus ostreatus |
| | | [106] |
| | | [107] |
| | Wheat straw and Rice straw | Ganoderma sp. |
| | Agricultural residue | Pleurotus florid |
| | Tamarind shell | Ganoderma lucidum |
| | Rice husk | P. sajor-caju |
| | Wheat straw | Pleurotus eryngii |
| | Wheat straw and sugarcane bagasse | Pleurotus ostreatus |
| | Sugarcane bagasse | Schizophyllum sp., Polyergus sp., |
| | Black gram husk (BGH) and Green gram husk | Pleurotus ostreatus-IE8 |
| | Wheat bran | Coriolopsis caperata |
| | Sugarcane bagasse | Pleurotus ostreatus |
| | Orange waste | Pleurotus ostreatus |
| | Vegetable leaf and Rice straw | P. chrysosporium |
| | Rice straw | P. chrysosporium, Fusarium moniliforme |
| | Wheat straw | Irpex lacteus |
| | | [108] |
| | | [109] |
| | | [110] |
| | | [111] |
| | | [112] |
| | | [113] |
| | | [114] |
| | | [115] |
| | | [116] |
| | | [117] |
| | | [118] |
| | | [119] |
| | | [120] |
| | | [121] |
| | | [122] |

Similar approach has also been adapted for the production of better feed for pet animals such as cattle, pigs, goat and poultry feed. For over 20 years, feed enzymes have been available for their use in poultry to improve performance and production efficiency [55]. Agriculture products that are used as a cattle feed is also a good source of substrate for SSF to grow fungi which excrete the extracellular enzymes on the substrates in order to modify the cell wall structure and enhance the nutrition value of the substrate as a feed. Fermentation of sweet sorghum stalk using Candida tropicalis and Lactobacillus rhamnosus has been successfully applied in China by which around 200 tons of the feed was produced from two tons of dry sweet sorghum stalk, which is of high quality and low price [56]. Two forage grasses, Napiergrass and pangolagrass used as cow feed were treated with cellulolytic microbes to enrich protein content and improve in vitro digestibility of herbage using SSF technique for chicken feed [57]. Utilization of apple pomace for the value added production and animal feed through SSF can become model for developing the technology from laboratory to the pilot scale [58]. SSF residue of whole rice crop can also be used
Manganese Peroxidase, Lignin Peroxidase, Laccase	Wheat straw	Trametes versicolor, Bjerkandera adusta, Ganoderma applanatum and Phlebia rufa	[123]
Wheat straw and oak saw dust	Trametes pubescens and Trametes multicolar		[124]
Sugarcane bagasse	Pleurotus florida, Coriolopsis caperata RCK 2011 and Ganoderma sp. rckk-02		[125]
Rice straw	Fusarium moniliforme, Phanerochaete chrysosporium		[121]
Grape waste	Pleurotus eryngii		[126]
Pineapple leaf	Ganoderma lucidum		[127]
Banana stalk	Schizophyllum commune		[128]
Wheat stalk	Pleurotus ostreatus		[129]

Lignin Peroxidase	Wheat straw	Irpex lacteus	[130]
Corn cob	Ganoderma lucidum		[131]
Wheat straw			[132]

Manganese Peroxidase	Wheat straw	P. chrysosporium	[10,133]
Pine sawdust and Rice straw	Fomitopsis pinicola BEOFB 600 and L. betulinus		[112]
Sugarcane bagasse	Schizophyllum sp. F17		[134]
Arecaanut husk	Trametes villosa		[135]
Eucalyptus residue	Phanerochaete chrysosporium		[136]
Pine sawdust, Rice straw, and Soybean powder	Lentinula edodes		[137]
	Irpex lacteus		[138]

| Polyphenol Oxidase (PPO) and Manganese Peroxidase | Sugarcane bagasse | Phanerochaete chrysosporium PC2, Lentinula edode LE16 and Pleurotus ostreatus | [139] |

Table 2: Ligninolytic enzyme production using different substrates by solid state fermentation technique (Recent reports).
as the cattle feed [34] while soybean fermented with three different fungi demonstrated as having potential for nonruminant feed improvement [59]. Enzyme productions by SSF provide the great benefit of producing different enzyme combinations with alteration of the substrates being used while addition of promoters helps to encourage the enhanced secretion of particular enzymes, to be used as a target protein.

Exploitation of agricultural waste as the biomass for SSF is a successful tool for the enzyme production commercially. According to the estimation of Royal Dutch/Shell group renewable resources could supply 30% of the worldwide chemical and fuel needs, resulting in a biomass market of $150 billion by the year 2050 [60,61].

Product	Substrate	Organism	Reference
β-Glucosidase	Rice straw and compost, Corn cob	Talaromyces Pinophilus, Aspergillus aculeatus	[140]
	Corn cob/Pineapple peel powder	Trichoderma koningi	[142]
Xylanase	Wheat straw and Rice straw	Bacillus pumilus	[108]
	Wheat straw	Bacillus sp.	[143]
Cellulase	Wheat straw and Rice straw	Fomitopsis sp	[108]
	Pangolagrass	Digitaria decumbens	[60]
	Banana	Bacterial consortia	[114]
Xylanase and Cellulase	Mustard stalk and straw	Termitomyces clypeatus	[144]
	Soybean	Aspergillus oryzae, Trichoderma reesei, and Phanerochaete chrysosporium	[145]
	Sugarcane bagasse	Pleurotus ostreatus-IE8	[146]
Lipase	Rice hulls	Colletotrichum gloeosporioides	[147]
	Cassava peel	Aspergillus niger	[148]
	Groundnut oil cake	Pseudomonas sp.	[149]
	Jatropha Seed Cake	Bacillus subtilis	[150]
	Agroindustrial residue	Pseudomonas aeruginosa	[151]
	Sugarcane bagasse, Wheat bran, Corn meal, Barely bran	Yarrowia lipolytica	[152]
	Soybean meal and Sugarcane bagasse	Rhizopus oryzae	[153]

Bioremediation

The pilling up of the complex xenobiotic compounds introduced to the nature worsening the ecosystem at an alarming rate and its dispersion back to the nature is challenging for the environmental scientists. The fungal enzymes having prowess of degrading the most complex and highly recalcitrant lignin would have definite potential to mineralize intricate chemical structures, gave rise to the new era for biodegradation. Ligninolytic enzymes have been paid particular attentions because of their endowed environmental friendly technologies of remediating xenobiotic compounds. Utilization of enzymes produced through SSF in remediation of chemicals as pollutants is linked directly to the energy consumption when employed at industrial level. Aromatic compounds containing different groups and links make them stronger...
Amylase	Groundnut oil cake	Aspergillus niger	[155]
	Mustard Oil seed cake	Bacillus sp	[156]
	Millet	Bacillus sp	[157]
	Tapioca	Aspergillus niger	[158]
	Wheat bran	Candida parapsilosis, Rhodotorula mucilaginosa, Candida glabrata	[159]
	Rice straw	Bacillus subtilis	[161]
Pectinase	Orange peel powder	Aspergillus niger	[162]
	Wheat bran, Orange and Lemon peel		[163]
	Wheat bran		[164]
	Apple pomace		[165]
	Wheat bran and Sugarcane bagasse		[166]
	Pine apple peel	Aspergillus flavus	[167]
Proteases	Wheat bran	Aspergillus oryzae	[168]
	Coffee by products		[169]
	Canola cake		[170]
	Rice bran		[171]
	Soybean meal	Bacillus subtilis	[172]
	Lentil husk	Aspergillus niger	[173]
	Punica granatum peel	Fusarium oxysporum	[174]
	Rice bran	Bacillus mojavensis	[175]
	Chickpea (CF) and Faba bean		[176]
Endoglucanase	Sugarcane bagasse (SCB) and Wheat bran	Myceliophthora thermophila l-1	[177]
Phytase and Protease	Wheat bran and Soybean bran	Aspergillus niger and Aspergillus oryzae	[178]
α-L-Arabinofuranosidase	Maize stover	Aspergillus niger	[179]
Polygalacturonases	Cashew apple bagasse	Aspergillus niger	[180]
Compound	Enzyme	Organism	Reference
----------------------------------	-------------------------------	---------------------------------	-----------
Textile dyes	Manganese peroxidase	Phanerochaete chrysosporium	[10,133]
Dye effluent	Manganese peroxidase	Musa acuminata	[187]
Azo dyes	Manganese peroxidase	Pleurotus ostreatus	[188]
Textile effluent	Laccase	Curvularia lunata	[189]
Polymeric model dye Poly-R-478	Manganese peroxidase	Irpex lacteus	[141]
Nonylphenol	Laccase	P. ostreatus	[190]
2,4-dinitrophenol	Laccase	T. versicolor	[191]
Phenol	Laccase	P. simplicissimum	[192]
Naphthalene, Anthracene and Benzo[j]anthracene	Laccase	Lentinula edodes	[193]
Fluorene	Laccase	Coprinus plicatilis	[194]
Malachite green	Laccase	Bacillus thuringiensis	[195]
Bisphenol A	Laccase	Funalia trogii	[196]
Anthroquinone	Laccase	Lentinus sp	[197]
Salicylic acid, Naproxen, Ibuprofen, Gemfibrozil, Diclofenac and Triclosan	Laccase	Trametes versicolor	[198]
Bisphenol A and Diclofenac	Laccase	Aspergillus oryzae	[199]
Endocrine Disrupters	Laccase	Cerrena unicolor	[200]
Textile effluent	Laccase	Pleurotus ostreatus IBL-02 and Coriolus versicolor	[201]
Dyes	Peroxidase	P. ostreatus	[202]
Olive Mill Wastewater	Laccase, Manganese peroxidase, Manganese Independent peroxidase	Hapalopilus croceus, Irpex lacteus, Phanerochaete chrysosporium	[203]
Olive Mill Wastewater	Peoxidases	Agrocybe cylindraceae, Inonotus andersonii, Pleurotus ostreatus and Trametes versicolor	[204]
Atrazine	Ligninolytic enzymes	Pleurotus ostreatus	[205]
2,4 Dichlorophenol	Ligninolytic enzymes	Phanerochaete chrysosporium	[206]
Bentazon	Laccase and Manganese peroxidase	Ganoderma lucidum	[207]
Heptaclor	Ligninolytic enzymes	Phlebia acanthocystis, P. brevispora, Phlebia lindneri and Phlebia aurea	[208]
Methylene blue	Manganese peroxidase	Phanerochaete chrysosporium	[209]
Versatile peroxidase and laccase		Pleurotus ostreatus	[210]
coracryl brilliant blue,	Ligninolytic enzymes	Phanerochaete chrysosporium, Phlebia brevispora and Phlebia floridensis	[211]
graphene	Lignin peroxidase	White rot fungi	[212]
to disassociation of each group and make the compound resist for long or sometimes almost as undegradable compound. Though, the application of enzymes to waste treatment was proposed in 1930s [62], was first illustrated in the late 1970s through degradation of parathion using enzyme [63]. Followed by hundreds of studies have been reported for the transformation of pollutants using enzymes replacing traditional conventional chemical treatments. However, enzyme production through SSF is the key driving force for the development of eco-friendly enzyme technology. Lignin modifying enzymes like copper containing laccase and heme containing peroxidases belonging to oxidoreductases group are investigated widely for their involvement in bioremediation and well represented in Table 4. Oxidoreductases catalyse the electron transfer through oxidation and reduction of the substrate. It is more convenient than using chemicals for the removal of other harmful chemicals which may yield other unhealthy products. Engineering inputs for the modification of the catalytic properties also pave the way of using these enzymes at the harsh industrial conditions, which are being systematically explored.

Pulp and Paper Industry

Cellulosic fibres, directly from the wood or any other cellulose rich resources are converted to pulp and used to produce different quality of papers. While using wood as a source of paper making, lignin the main hampering compound must be separated from cellulous which requires strong acids and other harsh chemicals that generate heavy soil and water pollution. Biopulping of the wood chips by SSF using white rot fungi for the delignification process is substantiated economical and environment friendly alternative. The demonstration by Scott et al. [64] using the large scale biopulping experiment proved its potential for improving paper quality, brightness and low energy consumption. Michel Boudet in 2011 also noticed 30% of energy savings in the studies. Akhtar [65] reported about 37% saving of energy within four weeks of incubation with *Ceriporiopsis subvermispora*. Initially, application of fungal enzymes in biopulping was not much appreciated due to time required for the delignification by fungal enzymes is much more than mechanical or chemical biopulping. However, further researches not only enhanced the process of biopulping but also resulted in patents [66-69], which indicates widely acceptance of delignification of wood chips through SSF technique by using white rot fungi. Application of ligninolytic enzymes to the paper industry for the preferential delignification of the substrate is very important for such benefits. Furthermore they can also be applicable for the elimination of heavy metals flushing out through recycling paper mills. Falling amount of lignin in the substrate using ligninolytic enzymes and replacing the bleaching agents to enzymes like xylanase supports reduced production of aromatic by products throughout the paper making process. Use of the xylanase in the bleaching and processing can eliminate the main pollution cause created by the chlorine implementation to the major part of the process and also helps in managing the cost. Production of the xylanase through solid state fermentation process and its efficient utilization to the paper industry is contributing widely to the green revolution in industrial sector. Other xylan-debranching enzymes like acetyxyylan esterase and feruloyl esterase may encourage the lignin-carbohydrate solubilisation process through linkage removal from polymers during pulping process [70]. Feruloyl esterase is also known for synthesis of organic solvents and value added products through bioconversion of ligno-cellulosic wastes [71].

Huge amount of residual solid wastes of the paper pulp called the sludge is produced every year and their disposal through landfill cause severe financial burden and enhances the overall cost worryingly. However, the commercial application of technology for transforming high carbohydrate content of the sludge into the value added products through SSF can support to meet the environmental and economic concerns. Using the sludge which generally contains low lignin content has been proven to be extremely proficient for its bioconversion into ethanol [72,73]. Moreover, it was also found quite successful for the ethanol production at commercial scale as they get the sludge as a waste free of cost since the sludge have no market value, pre-treatment can be eliminated and simultaneously the issue of the sludge disposal is also being compromised with no cost.

Substrate	Organism	Reference
Carob pod, Wheat bran	Zymomonas mobilis	[213]
Sweet Sorghum Bagasse	Neurospora crassa, Saccharomyces cerevisiae	[214,215]
Sweet Sorghum stalks	Trichoderma reesei, Saccharomyces cerevisiae	[216,217]
Sugarcane stalks	Saccharomyces cerevisiae	[218]
Lignocellulosic biomass	Aspergillus aculeatus, Trichoderma reesei	[219,220]
Sugarcane bagasse	Saccharomyces cerevisiae and Zymomonas mobilis	[221]
Soybean meal	Saccharomyces cerevisiae	[222-224]
Sweet Sorghum stalks	Issatchenkia orientalis	[225]
Sweet Sorghum juice	Saccharomyces cerevisiae	[226]
Paddy straw	Trichoderma reesei	[227]
Sugarcane bagasse	Trichodermaand Penicillium Saccharomyces cerevisiae	[228]
Ulva fasciata	Cladosporium sphaerospermum	[229]
Food waste	Myceliophthora thermophila Saccharomyces cerevisiae	[230]
Ziziphus jujuba	Saccharomyces bayanus	

Table 5: Ethanol production through Solid state fermentation.
Bioethanol Production

High consumption of non-renewable resources such as petrol, diesel and coal, leading to unavoidable increase in prices of fossil fuels, diminishing fossil fuel reservoir and emission of CO₂, that contributed to the high global warming effects and consequently strengthened the thought for the alternative fuel and promoted the sustainable production of biofuels. Biomass hydrolysis with well adopted microorganisms converts cellulose and hemicellulose into sugars and ultimately leads to the biofuel production. Therefore, the demand of cellulase production by SSF using agro-industrial residues is enhancing rapidly. To make the bioethanol production and other sugar based fermentation economically viable, the US Department of Energy awarded $32 million to Genencor and Novozymes to reduce the price of cellulase by a factor of ten [34,74]. Promoting the consumption of renewable resources as the source of biofuel production, US government approved the Energy Independence and Security Act of 2007 (EISA) which mandates the production of 21 billion gallons of advanced biofuels by 2022, of which 16 billion gallons must derive from lignocellulosics feedstock’s [75]. Different sources of biomass i.e., crop and crop residues, woody biomass, grasses, agro-industrial wastes etc. have been reported to be fermented using well known fermentation pathways and modified techniques. Substrates like molasses, maize starch, sugarcane, sugar beet, tapioca etc. are commonly being used for the Industrial alcohol production but traditional technologies for use of grains (e.g., from corn and wheat) and some sugar (e.g., cane and beet sugar) are considered to be responsible for immediate expansion of ethanol production [76]. Recently Horita et al. [59] also reported the production of ethanol from SSF of whole crop forage rice and demonstrated on-site ethanol production system. Several reports for the ethanol production through SSF have been listed in Table 5.

Conclusion and Future Perspectives

Application of the submerged fermentation was taken over by SSF before decades yet is more successful only with fungal cultivation. However production of bacterial enzymes and metabolites with submerged fermentation is more frequently preferred technique. Though perusal of literature reveals SSF as an advantageous process for the production of enzymes, secondary metabolites and other value added products, grater optimization, standardization and automation of SSF process is mandatory for enhancement of its industrial exploitation. However application of bioengineered microorganisms, biotechnologically modified enzymes, development of bioreactors and potentials of synthetic biology increase the possibilities of its practical application in many sectors which are to be encouraged essentially SSF in a whole represents environmental, industrial and economical feasibility for utilization of lignocelluloses through biotechnology and therefore, would be promoted for their optimum exploitation in an eco-friendly way without any conflicts to the nature.

References

1. Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74: 69-80.
2. Hendriks AT, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100: 10-18.
3. Fengel D, Wegener G (1984) Wood: chemistry, ultra-structure and Reactions. De Gruyter, Berlin.
4. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30: 279-291.
5. Mohebb B (2003) Biological attack of acetylated wood; Ph.D. Thesis, Göttingen University, Göttingen, pp: 165.
6. Sandrima VC, Rizzatti ACS, Terenzii HF, Jorgea JB, Milages AMF, et al. (2005) Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochem 40: 1823-1828.
7. Widsten P, Kandelbauer A (2008) Adhesion improvement of lignocellulosic products by enzymatic pre-treatment. Biotechnol Adv 26: 379-386.
8. Gusakov AV (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29: 419-425.
9. Salvachúa D, Prieto A, López-Abelairas M, Lu-Chau T, Martínez AT, et al. (2011) Fungal pretreatment: An alternative in second-generation ethanol from wheat straw. Bioresour Technol 102: 7500-7506.
10. Koyani RD, Sanghvi GV, Sharma RK, Rajput KS (2013) Contribution of lignin degrading enzymes in decolourisation and degradation of reactive textile dyes. Int Biodeterior Biodegrad 77: 1-9.
11. Höcker U, Höller M, Lenz J (2004) Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. Appl Microbiol Biotechnol 64: 175-186.
12. Couto SR, Sarcomán MA (2005) Application of solid state fermentation to ligninolytic enzyme production. Biochem Engineer J 22: 211-219.
13. Pandey A, Soccol CR, Mitchell D (2000b) New developments in Solid State fermentation. I. Bioprocesses and products. Process Biochem 35: 1153-1169.
14. Pandey A, Selvakumar P, Soccol CR, Nigam P (1992) Solid state fermentation for the production of industrial enzymes. Curr Sci 77: 149-162.
15. Singhania RR, Patel A, Soccol CR, Pandey A (2009) Recent advances in solid state fermentation. Biochem Eng J 44: 13-18.
16. Pandey M (2014) Recent advances in solid-state fermentation applications for the food industry. Curr Biochem Eng 1: 1-8.
17. Pandey A, Soccol CR, Larroche C (2007) Current developments in solid state fermentation. Asianet Publishers Inc., New Delhi, India, pp: 517.
18. Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases-production, applications and challenges. J Sci Ind Res 64: 832-844.
19. Singhania RR, Sukumaran RK, Pandey A (2007) Improved cellulase production by Trichoderma reesei/RUT C30 under SSF through process optimization. Appl Biochem Biotechnol 142: 60-70.
20. Pandey A (1992) Recent process developments in solid state fermentations. Process biochem 27: 109-117.
21. Castilho LR, Potolo CMS, Baruque EA, Sant’Anna Jr GL, Freire DMG (2000) Economic analysis of lipase production by Penicillium restrictum in solid state and submerged fermentations. Biochem Eng J 4: 239-247.
22. Kirk TK, Farrell RL (1987) Enzymatic "combustion": the microbial degradation of lignin. Annu Rev Microbiol 41: 465-495.
23. Eriksson KE, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer-Verlag, Berlin, Heidelberg, New York, pp: 397.
24. Usha KY, Praveen K, Reddy BR (2014) Enhanced Production of Ligninolytic Enzymes by a Mushroom Streurea ostrea. Biotechnol Res Int 2014: 815495.
25. Kerem Z, Friesem D, Hadar Y (1992) Lignocellulosic degradation during solid state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl Environ Microbiol 58: 1121-1127.
26. Kerem Z, Hadar Y (1995) Effect of manganese on preferential degradation of lignin by Pleurotus ostreatus during solid-state fermentation. Appl Environ Microbiol 61: 3057-3062.
27. Gupte A (1996) Bioconversion of lignocellulose waste by co cultivation of Aspergillus eflujpticus and Aspergillus fumigatus under solid state fermentation. PhD Thesis, SP University, India.
28. Gupte A, Huttermann A, Majcherczyck A, Madamvar D (1998) Advances in biotechnology. In Pandey A. (ed.) Educational publisher and distributors. New Delhi, India, pp, 41-49.
29. Arora DS, Mukesh C, Paramjit KG (2002) Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolyis of wheat straw. Int Biodeterior Biodegrad 50: 115-120.
30. Shrivastava B, Thakur S, Khasa YP, Gupte A, Puniya AK, et al. (2011) White- rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22: 823-831.
31. Sanchez S, Demain AL (2010) Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org Proc Res Devel 15: 224-230.

32. Freedonia (2014) World Enzymes Market. Report buyer; market research from top publishers. London.

33. Primer SA (2001) The Application of Biotechnology to Industrial Sustainability. OECD, Paris, France.

34. van Beilen JB, Li Z (2002) Enzyme technology: an overview. Curr Opin Biotechnol 13: 338-344.

35. Orth AB, Royse DJ, Tien M (1993) Ubiquity of ligin-degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol 59: 4017-4023.

36. Laura L, Claudia H, Victor L (2008) Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem Eng J 39: 207-214.

37. Pant D, Adhoyele A (2007) Enhanced production of liginolytic enzymes and decortication of molasses distillery wastewater by fungi under solid state fermentation. Biodegradation 18: 647-659.

38. Gupte A, Gupke S, Patel H (2007) Ligninolytic enzyme production under solid state fermentation by white rot fungi. J Sci Ind Res 66: 611-614.

39. Patel H, Gupke A, Gupke S (2009) Biodegradation of fluoranthenes by basidiomycetes fungal isolate Pleurotus ostreatus HP-1. Appl Biochem Biotechnol 157: 367-376.

40. Sanghvi GV, Koyani RD, Rajput KS (2010) Thermostable xylanase production and partial purification by solid state fermentation using agricultural waste straw. Mycology: J Fungal Biotechnol 1: 106-112.

41. Sanghvi GV, Koyani R, Rajput KS (2011) Isolation, optimization, and partial purification of amylase from Chrysoseporium asperatum by submerged fermentation. J Microbiol Biotechnol 21: 470-476.

42. Kapich AN, Prior BA, Botha A, Galkin S, Lundell T, et al. (2004) Effect of lignocellulosic-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME-446. Enz Microb Technol 34: 187-195.

43. Elashvili V, Penninckx M, Kachlishvili E, Asatiani M, Kvesitadze G (2006) Use of Pleurotus dryinus for lignocellulolytic enzymes production in submerged fermentation of mandarin peels and tree leaves. Enz Microb Technol 38: 998-1004.

44. Cullen D (1997) Recent advances on the molecular genetics of liginolytic fungi. J Biotechnol 53: 273-289.

45. Lim S, Matu SU (2015) Utilization of agro-wastes to produce biofertilizer. Int J Energy Environ Eng 6: 31-65.

46. Jabasingsh SA, Varma S, Gareec P (2014) Production and purification of cellulase from Aspergillus nidulans AJ5004 under solid-state fermentation using coir pith. Chem. Biochem Eng J 28: 143-151.

47. Chen L, Yang X, Raza W, Luo J, Zhang F, et al. (2011) Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil. Biosourc Technol 102: 3900-3910.

48. Chen KS, Lin YS, Yang SS (2007) Application of thermostolerant microorganisms for biofertilizer preparation. J Microbiol Immunol Infect 40: 462-473.

49. Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69: 99-151.

50. Goldstein AH (2000) Bioprocessing of Rock Phosphate Ore: Essential Technical Considerations for the Development of a Commercial Technology. Proceedings of 4th International Association for Technical Conference, pp. 220-242.

51. Vassilev N, Baca MT, Vassilev M, Franco I, Azcon R (1995) Rock phosphate solubilization by Aspergillus niger grown on sugar-beet waste medium. Appl Microbiol Biotechnol 44: 546-549.

52. Vassilieva M, Vassilev N, Azcon R (1998) Rock phosphate solubilization by Aspergillus niger on olive cake-based medium and its further application in a soil-plant system. World J Microb Biotechnol 14: 281-284.

53. Fausto Cerci C, Rossini F, Federici F, Quarantino D, Vassilev N, et al. (2004) Reuse of microbially treated olive mill wastewater as fertiliser for wheat (Triticum durum Desf.). Biosourc Technol 91: 135-140.

54. Medina A, Vassileva M, Caraeva F, Roldan A, Azcon R (2004) Improvement of soil characteristics and growth of Dorycnium pentaphyllum by amendment with agrowastes and inoculation with AM fungi and/or the yeast Yarrowia lipolytica. Chemosphere 56: 449-456.

55. Purser M (2007) Producing enzymes on feed ingredients: the solid state fermentation story. Gaining the edge in pork and poultry production. Wageninngen Academic publisher, The Netherlands, pp. 155-166.

56. Hong zhang C, Yumei W, Shuhua D (2012) Production of protein feed from sweet sorghum stalk by the two-step solid state fermentation. J Biorefti Bioposci 3: 112.

57. Hsu PK, Liu CP, Liu LY, Chang CH, Yang SS (2013) Protein enrichment and digestion improvement of napiergrass and pangolagrass with solid-state fermentation. J Microbiol Immunol Infect 46: 171-179.

58. Joshi VK, Abri D (2006) Solid state fermentation of apple pomace for the production of value added products. Nat Prod Radiance 5: 289-296.

59. Horita M, Kitamoto H, Kawaide T, Tachibana Y, Shinozaki Y (2015) On-farm solid state simultaneous saccharification and fermentation of whole crop forage rice in wrapped round bale for ethanol production. Biotechnol Biofuels 8: 9.

60. Lio J, Wang T (2012) Solid-state fermentation of soybean and corn processing coproducts for potential feed improvement. J Agric Food Chem 60: 7702-7709.

61. OECD (1998) Biotechnology for Clean Industrial Products and Processes. Paris, France.

62. Aitken MD (1993) Waste treatment applications of enzymes: opportunities and obstacles. Chem Eng J 52: 849-858.

63. Munnecke DM (1976) Enzymatic hydrolysis of organophosphate insecticides, a possible pesticide disposal method. Appl Environ Microbiol 32: 7-13.

64. Scott GM, Akhtar M, Lentz MJ, Swaney RE (1998) Engineering, scale-up, and economic aspects of fungal pretreatment of wood chips. In: Environmentally Friendly Technologies for the Pulp and Paper Industry (eds Young RA and Akhtar M), John Wiley & Sons, Inc. New York, pp. 341-383.

65. Akhtar M (1994) Biomechanical pulping of aspen wood chips with three strains of Ceriporiopsis subvermispora. Holzforschung 48: 199-202.

66. Chang HM, Joyce TW, Kirk TK (1987) Process of treating effluent from a pulp or paper making operation. US 4669926 A.

67. Blanchette RA, Leatham GF, Attridge M (1991) Biochemical pulping with C. subvermispora. US Patent 5095159 A.

68. Akhtar M (1997) Method of enhancing biopulping efficiency. US Patent 5620564 A.

69. Akhtar M, Horn EG, Lentz MJ, Swaney RE (2006) Eucalyptus biomechanical pulping process. US Patent 7008505 B2.

70. Hasper AA, Visser J, de Graaff LH (2000) The Aspergillus niger transcriptional activator KtnA, which is involved in the degradation of the polysaccharides xylan and cellulose, also regulates D-xylene reductase gene expression. Mol Microbiol 36: 193-200.

71. Garcia-Conesa MT, Crepin VF, Goldson AJ, Williamson G, Cummings NJ, et al. (2004) The feruloyl esterase system of Talaromyces stipitatus: production of three discrete feruloyl esterases, including a novel enzyme, TsFaeC, with a broad substrate specificity. J Biotechnol 108: 227-241.

72. Lark N, Xia Y, Qin CG, Gong CS, Tsao GT (1997) Production of ethanol from recycled paper sludge using cellulase and yeast Kluyveromyces marxianus. Biomass Bioenergy 12: 135-143.

73. Kang L, Wang W, Lee YY (2010) Bioconversion of kraft paper mill sludges to ethanol by SSF and SSCF. Appl Biochem Biotechnol 161: 53-66.

74. Russo E (2007) Turning trash into treasure. Can organic waste become the nation’s next big power source? The Scientist 200, 15, 1-4. Energy Independence and Security Act of 2007. In Title II Edited by Washington, DC; HR 6.

75. da Costa Sousa L, Chandawat SP, Balan V, Dale BE (2009) ‘Cradle-to-grave’ assessment of existing lignocellulosic pretreatment technologies. Curr Opin Biotechnol 20: 338-347.

76. Yu J, Zhang X, Tan T (2008) Ethanol production by solid state fermentation of sweet sorghum using thermostolerant yeast strain. Fuel Process Technol 89: 1056-1059.
77. Nagavalli M, Ponamgi SP, Girijashankar V, Venkateswar Rao L (2015) Solid state fermentation and production of rifamycin SV using Amycolatopsis mediterranei. Lett Appl Microbiol 60: 44-51.

78. Vastrad M, Neelagund (2012) Optimization of process parameters for rifamycin B production under solid state fermentation from Amycolatopsis mediterranei mtcc 14. Int J Curr Pharma Res 4: 101-108.

79. Mahalaxmi V, Sathish T, Subba Rao CH, Prakasham RS (2010) Corn husk as a novel substrate for the production of rifamycin B by isolated Amycolatopsis sp. RSP 3 under SSF. Process Biochem 45: 47-53.

80. Adinarayana K, Prabhakar T, Srinivasulu V, Rao AM, Jhansi Lakshmi P, et al. (2003) Optimization of process parameters for cephalosporin C production under solid state fermentation from Acremonium chrysogenum. Process Biochem 39: 171-177.

81. Balakrishnan K, Pandey A (1996) Production of biologically active secondary metabolites in solid state fermentation. J Sci Ind Res 55: 365-372.

82. Murthy MVR, Mohan Evans, Sadhukhan AK (1999) Cyclosporin A production by Tolypocladium inflatum using solid state fermentation. Process Biochem 34: 269-280.

83. Shih I, Kuo C, Hsieh F, Kao S, Hsieh C (2008) Use of surface response methodology to optimize culture conditions for Iturin A production by Bacillus subtilis in solid-state fermentation. J Chinese Inst Chem Eng 39: 635-643.

84. Ellaiah P, Srinivasulu B, Adinarayana K (2004) Optimisation studies on neomycin production by a mutant strain Streptomyces marinensis in solid state fermentation. Process Biochem 39: 529-534.

85. Is Eisebeke R, Ruijter G, Rahardjo YS, Hoogschagen MJ, Heerikhuisen M, te Biesebeke R, et al. (2003) Optimization of process parameters for cephalosporin C production in solid-state fermentation and production of rifamycin SV using ARNU-4 employing tea waste as the novel solid support. Bioresour Technol 99: 3444-3450.

86. Medeiros AB, Pandey A, Freitas RJS, Christen P, Soccol R (2000) Optimization of the production of aroma compounds by Kluyveromyces marxianus in solid-state fermentation using factorial design and response surface methodology. Biochem Eng J 6: 33-39.

87. Santa HSD, Santa ORD, Brand D, Vandenbergher LPS, Soccol CR (2005) Spore production of Beauveria bassiana from agroindustrial residues. Braz Arch Biol Technol 48: 51-60.

88. Vidyahalakshmi R, Vallinaiyachi C, Radhika R (2012) Production of Xanthan from agro-industrial waste. J Adv Sci Res 3: 56-59.

89. Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49: 1-8.

90. Vandamme EJ, Soetaert W (2002) Bioflavours and fragrances via fermentation and biocatalysis. J Chem Technol Biotechnol 77: 1323-1332.

91. Ito K, Yoshida K, Ishikawa T, Kobayashi S (1990) Volatile compounds produced by Azotobacter vinelandii. J Ferment Bioeng 69: 169-172.

92. Mathew S, Abraham TE (2005) Studies on the production of feruloyl esterase from cereal brans and sugar cane bagasse by microbial fermentation. Enzyme Microb Technol 36: 565-570.

93. Lokeswar N, Ramreddy S (2011) Production of 3,4,5-trihydroxybenzoic acid by solid-state fermentation using Aspergillus oryzae. Biotechnol Bioinf Bioeng 1: 245-250.

94. Schmidt CG, Goncalves LM, Phetlo L, Hackbart HS, Furlong EB (2014) Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizopus oryzae. Food Chem 146: 371-377.

95. Ruiz H, Rodríguez-Jasso RM, Rodrígue R, Contreras-Esquive JC, Aguilar CN (2012) Pectinase from lemon peel pomace as support and carbon source in solid-state fermentation column-tray bioreactor. Biochem Eng J 65: 90-95.

96. Natarajan K, Rajendran A (2012) Evaluation and optimization of food-grade tannin acryl hydroxide production by a probiotic Lactobacillus plantarum strain in submerged and solid state fermentation. Food Bioprod Process 90: 780-792.

97. Mondala A, Al-Mubarak R, Atkinson J, Shields S, Young B, et al. (2015) Direct solid-state fermentation of soybean processing residues for the production of fungal chitosan by Mucor rouxii. J Material Sci Chem Eng 3: 11-21.

98. Gong Y, Liu J, Jiang M, Liang Z, Jin H, et al. (2015) Improvement of Omega-3 Docosahexaenoic Acid Production by Marine Dinoflagellate Cryptothecidium cohnii Using Rapeseed Meal Hydrolysate and Waste Molasses as Feedstock. PLoS One 10: e0125368.

99. Fang Y, Wang S, Liu S, Lu M, Jiao Y, et al. (2015) Solid-state fermentation of Acanthophybus haizei processing by-products for the production of antioxidant protein hydrosylates with Aspergillus oryzae. Braz arch biol technol 58: 343-352.

100. Kalionarasan M, Kumar A, Srikanta V, Govindaswamy V (2014) Solid-State Fermentation of agricultural by-products by Monascus purpureus for bioactive metabolites with antioxidant properties. J Bioprocess Eng Biorefinery 3: 150-159.

101. Veloglu Z, Oztürk ürek R (2015) Biosurfactant production by Pleurotus ostreatus in submerged and solid-state fermentation systems. Turkish J Biol 39: 160-166.

102. Nimnoi P, Pongsilp N, Lumbongs (2015) Utilization of agro-industrial products for increasing red pigment production of Monascus purpureus AHK12. Chiang Mai J Sci 42: 331-338.

103. Srianta I, Harjiono A (2015) Monascus-fected sorghum: pigments and monacolin K produced by Monascus purpureus on whole grain, dehulled grain and bran substrates. Int Food Res J 22: 377-382.

104. Hildén K, Mäkelä MR, Lankinen P, Lundell T (2013) Agaricus bisporus and related Agaricus species on lignocellulose: production of manganese peroxidase and multicopper oxidases. Fungal Genet Biol 55: 32-41.

105. Carabajal M, Levin L, Albertó E, Lechner B (2012) Effect of co-cultivation of two Pleurotus species on lignocellulolytic enzyme production and mushroom fructification. Int Biotechnol Biodegrad 66: 71-76.

106. Deswal D, Sharma A, Gupta R, Kuhad RC (2012) Application of lignocellulolytic enzymes produced under solid state cultivation conditions. Biotechnol Innov 115: 249-254.

107. Sathishkumar P, Palvanann T, Murugesan K, Kamala-Kannan S (2013) Detoxification of malachite green by Pleurotus floridanus laccase produced under solid-state fermentation using agricultural residues. Environ Technol 34: 139-147.

108. Manavalan T, Manavalan A, Thangavelu KP, Heesed K (2013) Characterization of optimized production, purification and application of laccase from Ganoderma lucidum. Biochem Eng J 70: 106-114.

109. Teck NA, Ngoc GH, Chua AS (2013) Development of a novel inoculum preparation method for solid-state fermentation-Cellobane Film Culture (CFC) technique. Ind Crop Prod 43: 774-777.

110. Karp SG, Faraco V, Amore A, Letti LA, Thomaz Soccol V, et al. (2015) Laccase production by Agaricus bisporus on the chemical composition of sugarcane bagasse. Life Sci J 12: 37-41.

111. Paulino S, Marcos MM, Nicolás TS (2015) Production of lignocellulolytic enzymes with Pleurotus ostreatus-IE6 by Solid Fermentation and its effect on the chemical composition of sugarcane bagasse. Life Sci J 12: 37-41.

112. Potu VC, Thadikamala S, Moses RP (2014) Harmonizing various culture conditions and inducers for hyper laccase production by Pleurotus ostreatus PVRCSR-7 in Solid State Fermentation. J Pharma Res 8: 526.

113. Nandan P, Ravella SR, Kuhad RC (2013) Laccase production by Coriolopsis caperata RCK2011: optimization under solid state fermentation by Taguchi DOE methodology. Sci Rep 3: 1386.

114. El-Batal AI, ElKenawy NM, Yassin AS, Amin MA (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol Reports 5: 31-39.

115. Karp SG, Faraco V, Amore A, Letti LA, Thomaz Soccol V, et al. (2015) Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in Solid-State Fermentation. Biomed Res Int 2015: 181204.
119. Inacio FD, Ferreira RO, Vaz de Arauo CA, Peralta RM, Marques de Souza CG (2015) Production of enzymes and biotransformation of orange waste by oyster mushroom, Pleurotus pulmonarius (Fr.) Quél. Adv Microbiol 5: 1-8.

120. Zhao M, Zeng Z, Zenga G, Huanga D, Fenga C, et al. (2012) Effects of ratio of manganese peroxidase to lignin peroxidase on transfer of ligninolytic enzymes in different composting substrates. Biochem Eng J 67: 132-139.

121. Chang AJ, Fan J, Wen X (2012) Screening of fungi capable of highly selective degradation of lignin in rice straw. Int Biodeterior Biodegrad 72: 25-30.

122. Salvachúa D, Prieto A, Vaquero ME, Martínez AT, Martínez MJ (2013) Sugar recoveries from wheat straw following treatments with the fungus Ipex lacticus. Bioresour Technol 131: 218-225.

123. Dinis MJ, Bezerra RM, Nunes F, Dias AA, Guedes CV, et al. (2009) Optimization of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresour Technol 100: 4829-4835.

124. Knezevic A, Mitovanovic I, Stajic M, Vukojevic J (2013) Potential of Trametes species to degrade lignin. Int Biodeterior Biodegrad 85: 52-56.

125. Deswal D, Gupta R, Nandal P, Kuhad RC (2014) Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydr Polym 99: 264-269.

126. Akpinar M, Urek RO (2012) Production of ligninolytic enzymes by solid-state fermentation using Pleurotus eryngii. Prep Biochem Biotechnol 42: 582-597.

127. Harirhan S, Nambsan P (2013) Optimization of Lignin peroxidase, Manganese peroxidase and Lac production from Ganoderma lucidum under solid state fermentation of Pineapple leaf. Bioresources 8: 250-271.

128. Irshad M, Asgher M (2013) Production and optimization of ligninolytic enzymes by white rot fungus Schizophyllum commune IBL-06 in solid state medium banana stalks. African J Biotechnol 10: 18234-18242.

129. Aslam S, Asgher M (2011) Partial purification and characterization of ligninolytic enzymes produced by Pleurotus ostreatus during solid state fermentation. African J Biotechnol 10: 17875-17883.

130. Dinis MJ, Freitas GS, Marques GS, Sampaio A, Fraga IS, et al. (2010) Production of ligninolytic enzymes produced by Pleurotus eryngii under solid state fermentation using ground nut oil cakes as substrate. Curr Res J Biol Sci 2: 241-245.

131: 443-451.
162. Liu M, Rong-Fa G, Xian-Jun D, Lan-Fang B, Lin P (2012) Optimization of solid-state fermentation for acidophilic peptidase production by Aspergillus niger JI-15 using response surface methodology and oligogalacturonate preparation. Am J Food Technol 7: 656-667.

163. Khan A, Sahay S, Rai N (2012) Production and optimization of peptidase enzyme using Aspergillus niger strains in Solid State fermentation. Res Biotechnol 3: 19-25.

164. Akhter M, Moshred A, Uddin A, Begum F, Sultan T, et al. (2011) Production of Peptidase by Aspergillus niger Cultured in Solid State Media. Int J Biosci 1: 33-42.

165. Joshi VK, Parmar M, Rana N (2011) Purification and characterization of peptidase produced from apple pomace and evaluation of its efficacy in fruit juice extraction and clarification. Int J Nat Prod Res 2: 189-197.

166. Suresh B, Vinuthagir T (2010) Optimization and kinetics of peptidase enzyme using Aspergillus niger by solid-state fermentation. Indian J Sci Technol 3: 867-870.

167. Thangaratham T, Manimegalai G (2014) Optimization and Production of Peptidase using Agro Waste by Solid State and Submerged Fermentation. Int J Curr Microbiol App Sci 3: 357-365.

168. Sandhya C, Sumantha A, Szakacs G, Pandey A (2009) Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem 40: 2689-2694.

169. Murthy PS, Naidu MM (2010) Protease production by Aspergillus oryzae in Solid-State fermentation utilizing coffee by products. World App Sci J 8: 199-205.

170. Freitas AC, Castro RJS, Fontenele MA, Egito AS, Farinas CS, et al. (2013) Biodegradation of 2,4-dinitrophenol with laccase immobilized on non-porous silica beads. Iranian J Environ Health Sci Eng 10: 25.

171. Hsu CA, Wen TN, Su YC, Jiang ZB, Chen CW, et al. (2012) Biological detoxification of BPA: Involving laccase and its comparative enzymology suggest guaiacol-based laccase engineering for bioremediation. PLoS One 8: e66426.

172. Nguyen LN, Hai FI, Yang S, Sang J, Leusch FD, et al. (2014a) Removal of pharmaceuticals, steroid hormones, phytotoxins, UV-filters, industrial chemicals and pesticides by Trametes versicolor: role of biosorption and biodegradation. Biodesitol Biodegrad 88: 169-175.

173. Nguyen LN, Hai FI, Price WE, Leusch FD, Roddick F, et al. (2014) The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor. Bioresour Technol 167: 169-177.

174. Songulashvili G, Jimenéz-Tobón GA, Jaspers C, Penninckx MJ (2012) Biodegradation of endocrine disrupting compounds. Biomed Res Int 2012: 482937.

175. Erbe I, Elissavithi V, Asatiani MD, Janberga A, Andersene I, et al. (2014) Lignocellulolytic activity of Coniophora puteana and Trametes versicolor in fermentation of wheat bran and decay of hydrothermally modified hardwoods. Int Biodeterior Biodegrad 86: 71-78.

176. Mhdula S, Murugammal R (2011) Production of cellulose by Aspergillus niger under submerged and solid state fermentation using corn waste as a substrate. Braz J Microbiol 42: 1119-1127.

177. Mazutti M, Bender JP, Treichel H, Lucchi MD (2006) Optimization of inulinase production by solid-state Fermentation using sugarcane bagasse as substrate. Enz Microbial Techn 39: 56-59.
Pozdnyakova N, Nikiforova S, Turkovskaya O (2010) Influence of PAHs on ligninolytic enzymes of the fungus Pleurotus ostreatus D1. Open Life Sciences 5: 83-94.

Chander M, Kaur I (2015) An Industrial Dye Decolourisation by Phlebia sp. Int J Curr Microbiol App Sci 4: 217-226.

Laiwani G, Xing W, Sitharaman B (2014) Enzymatic Degradation of Oxidized and Reduced Graphene Nanoribbons by Lignin Peroxidase. J Mater Chem B Mater Biol Med 2: 6354-6362.

Mazaheri D, Shojaoasadadi SA, Mousavi SM, Hejazi P, Saharkhiz S (2012) Bioethanol production from carob pods by solid-state fermentation with Zymomonas mobilis. App Energy 99: 372-378.

Yu M, Li J, Chang S, Du R, Li S, et al. (2014) Optimization of Ethanol Production from NaOH-Pretreated Solid State Fermented Sweet Sorghum Bagasse. Energies 7: 4054-4067.

Dogaris I, Gkounta O, Mamma D, Kekos D (2012) Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa. Appl Microbiol Biotechnol 95: 541-550.

Han B, Wang L, Li S, Wang E, Zhang L, et al. (2010) Ethanol production from sweet sorghum stalks by advanced solid state fermentation (ASSF) technology. Sheng Wu Gong Cheng Xue Bao 26: 966-973.

Siwarasak P, Pajantagate P, Prasertterrat K (2012) Use of Trichoderma reesi RT-P1 crude enzyme powder for ethanol fermentation of sweet sorghum fresh stalks. Bioresour Technol 107: 200-204.

Wu L, Li Y, Arakane M, Ike M, Wada M, et al. (2011) Efficient conversion of sugarcane stalks into ethanol employing low temperature alkali pretreatment method. Bioresour Technol 102: 11183-11188.

Treebuphatasakul T, Shioya K, Nakazawa H, Kawaguchi T, Morikawa Y, et al. (2015) Utilization of recombinant Trichoderma reesi expressing Aspergillus aculeatus β-glucosidase I (JN11) for a more economical production of ethanol from lignocellulosic biomass. J Bioci Bioeng S1389-1723: 00182-00186.

Martins LH, Rabelo SC, da Costa AC (2015) Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulolytic fraction of sugarcane bagasse. Bioresour Technol 191: 312-321.

Luján-Rhenals DE, Morawicki RO, Gbur EE, Ricke SC, et al. (2015) Fermentation of Soybean Meal Hydrolyzates with Saccharomyces cerevisiae and Zymomonas mobilis for Ethanol Production. J Food Sci 80: E1512-1518.

Chen HZ, Liu ZH, Dai SH (2014) A novel solid state fermentation coupled with gas stripping enhancing the sweet sorghum stalk conversion performance for bioethanol. Biotechnol Biofuels 7: 53.

Du R, Yan J, Feng Q, Li P, Zhang L, et al. (2014) A novel wild-type Saccharomyces cerevisiae strain TSH1 in scaling-up of solid-state fermentation of ethanol from sweet sorghum stalks. PLoS One 9: e94480.

Kwon YJ, Wang F, Liu CZ (2011) Deep-bed solid state fermentation of sweet sorghum stalks to ethanol by thermotolerant Issatchenkia orientalis IPE 100. Bioresour Technol 102: 11262-11265.

Sasaki K, Tauge Y, Sasaki D, Kawaguchi H, Sazuka T, et al. (2015) Repeated ethanol production from sweet sorghum juice concentrated by membrane separation. Bioresour Technol 186: 351-355.

Suresh SV, Srujana R, Muratidharan A (2015) Production of bioethanol by solid state fermentation using paddy straw as a substrate. Int J Adv Res 3: 212-215.

Liu Y, Zhang Y, Xua J, Suna Y, Yuana Z, et al. (2015) Consolidated bioprocess for bioethanol production with alkali-prevented sugarcane bagasse. Appl Energy 157: 517-522.

Trivedi N, Reddy CRK, Radulovich R, Jha B (2015) Solid state fermentation (SSF)-derived cellulase for saccharification of the green seaweed Ulva for bioethanol production. Algal Res 9: 46-54.

Matsakas L, Christakopoulos P (2015) Ethanol production from enzymatically treated dried food waste using enzymes produced on-site. Sustainability 7: 1446-1459.

Li S, Mao Z, Wang P, Zhang Y, Sun P, et al. (2015) Brewing Jujube Brandy with Daqu and Yeast by Solid-State Fermentation. J Food Process Engineer.