The Atacama Cosmology Telescope: Constraints on Pre-Recombination Early Dark Energy

J. Colin Hill, Erminia Calabrese, Simone Aiola, Nicholas Battaglia, Boris Bolliet, Steve K. Choi, Mark J. Devlin, Adriaan J. Duivenvoorden, Jo Dunkley, Simone Ferraro, Patricio A. Gallardo, Vera Gluscevic, Matthew Hassellfield, Matt Hilton, Adam D. Hincks, Renée Hložek, Brian J. Koopman, Arthur Kosowsky, Adrien La Posta, Thibault Louis, Mathew S. Madhavacheril, Jeff McMahon, Kavilan Moodley, Sigurd Naess, Umberto Natale, Federico Natali, Laura Newburgh, Michael D. Niemack, Lyman A. Page, Bruce Partridge, Frank J. Qu, Maria Salatino, Alessandro Schillaci, Noellima Sehgal, Blake D. Sherwin, Cristóbal Sifón, David N. Spergel, Suzanne T. Staggs, Emilie R. Storer, Alexander van Engelen, Eve M. Vavagiakis, Edward J. Wollack, and Zhilei Xu

1 Department of Physics, Columbia University, New York, NY 10027, USA
2 Center for Computational Astrophysics, Flatiron Institute, New York, NY 10010, USA
3 School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales CF24 3AA, UK
4 Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
5 Department of Physics, Cornell University, Ithaca, NY 14853, USA
6 Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104, USA
7 Department of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544, USA
8 Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
9 Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
10 Berkeley Center for Cosmological Physics, UC Berkeley, CA 94720, USA
11 Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
12 Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90007, USA
13 Astrophysics Research Centre, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa
14 School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa
15 David A. Dunlap Department of Astronomy & Astrophysics, University of Toronto, 50 St. George St., Toronto, ON M5S 3H4, Canada
16 Dunlap Institute of Astronomy & Astrophysics, 50 St. George St., Toronto, ON M5S 3H4, Canada
17 Department of Physics, Yale University, New Haven, CT 06520, USA
18 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
19 Université Paris-Saclay, CNRS/IN2P3, LILab, 91405 Orsay, France
20 Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo ON N2L 2Y5, Canada
21 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
22 Department of Physics, University of Chicago, Chicago, IL 60637, USA
23 Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA
24 Department of Physics, University of Milano-Bicocca, Piazza della Scienza 3, 20126 Milano (MI), Italy
25 Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
26 Department of Astronomy, Haverford College, Haverford, PA 19041, USA
27 DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 OWA, UK
28 Stanford University, Stanford, CA 94305, USA
29 Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305, USA
30 Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
31 Physics and Astronomy Department, Stony Brook University, Stony Brook, NY 11794, USA
32 Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
33 Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso, Chile
34 School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
35 NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD 20771, USA
36 Kavli Institute for Astrophysics and Space Research, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA

(Dated: June 28, 2022)

The early dark energy (EDE) scenario aims to increase the value of the Hubble constant (H_0) inferred from cosmic microwave background (CMB) data over that found in the standard cosmological model (ΛCDM), via the introduction of a new form of energy density in the early universe. The EDE component briefly accelerates cosmic expansion just prior to recombination, which reduces the physical size of the sound horizon imprinted in the CMB. Previous work has found that non-zero...
EDE is not preferred by Planck CMB power spectrum data alone, which yield a 95% confidence level (CL) upper limit $f_{\text{EDE}} < 0.087$ on the maximal fractional contribution of the EDE field to the cosmic energy budget. In this paper, we fit the EDE model to CMB data from the Atacama Cosmology Telescope (ACT) Data Release 4. We find that a combination of ACT, large-scale Planck TT (similar to WMAP), Planck CMB lensing, and BAO data prefers the existence of EDE at $>99.7\%$ CL: $f_{\text{EDE}} = 0.091^{+0.026}_{-0.036}$, with $H_0 = 70.9^{+1.0}_{-2.0}$ km/s/Mpc (both 68% CL). From a model-selection standpoint, we find that EDE is favored over ΛCDM by these data at roughly 3σ significance. In contrast, a joint analysis of the full Planck and ACT data yields no evidence for EDE, as previously found for Planck alone. We show that the preference for EDE in ACT alone is driven by its TE and EE power spectrum data. The tight constraint on EDE from Planck alone is driven by its high-ℓ TT power spectrum data. Understanding whether these differing constraints are physical in nature, due to systematics, or simply a rare statistical fluctuation is of high priority. The best-fit EDE models to ACT and Planck exhibit coherent differences across a wide range of multipoles in TE and EE, indicating that a powerful test of this scenario is anticipated with near-future data from ACT and other ground-based experiments.

I. INTRODUCTION

The Hubble constant, H_0, is a fundamental quantity in cosmology, which parameterizes the current expansion rate and hence sets the overall scale of the universe. Its value can be determined using multiple observational probes, including both “indirect” probes that depend on the assumption of a cosmological model and local, “direct” probes that do not. Probes in the former category include the cosmic microwave background (CMB) temperature and polarization anisotropy power spectra, as measured by Planck [1], WMAP [2], the Atacama Cosmology Telescope (ACT) [3], the South Pole Telescope (SPT) [4], and other experiments, as well as various large-scale structure (LSS) data sets (e.g., [5–8]). Probes in the latter category include the classical distance ladder using Type Ia supernovae (SNIa) calibrated by various means (e.g., Cepheids [9,10] or the tip of the red giant branch (TRGB) [11,12]) or strong gravitational lensing time delay distances [13,14].

Some of the direct probes have inferred values of H_0 that are higher than the value predicted by the best-fit Λ cold dark matter (ΛCDM) model to CMB data [3,15] or to other indirect cosmological data (e.g., Big Bang nucleosynthesis in combination with baryon acoustic oscillation and gravitational lensing data [10]). Perhaps most well-known is the discrepancy between the most statistically precise probes in each category, the Planck CMB data [15] (indirect) and Cepheid-calibrated SNIa distances from SH0ES [10] (direct), which is significant at $\approx 4\sigma$. However, other direct probes have inferred values of H_0 that agree with the ΛCDM-predicted value from the CMB and LSS, including TRGB-calibrated SNIa [12] and the latest strong lensing time delay data [13]. Nevertheless, the error bars are sufficiently large that these measurements are also consistent with the higher H_0 value from SH0ES. We refer the reader to Refs. [12,17–19] for a selection of reviews with various perspectives on the observational situation. In this work, we focus entirely on indirect, cosmological probes of H_0, with the goal of assessing the extent to which our inference of this parameter from these data can be changed by the assumption of a different cosmological model. We do not try to assess the global concordance of any particular model.

Attempts to increase the value of H_0 inferred from indirect probes have led to the development of numerous new theoretical scenarios beyond ΛCDM [18–19]. Amongst the hypotheses to date are strongly interacting neutrinos [20,21], primordial magnetic fields [22,23], and varying fundamental constants [24,25]. A thread unifying many of these approaches is a decrease in the sound horizon at recombination as compared to its ΛCDM-inferred value; to maintain agreement with the observed angular size of the sound horizon, a higher H_0 value is subsequently inferred when fitting CMB data to such models [18,26]. While this approach may not suffice to dramatically increase the inferred value of H_0 when other observational constraints are folded into the analysis (particularly on the matter density at low redshifts) [27], it has nevertheless spurred much of the theoretical exploration in this area.

In this paper, we focus specifically on the “early dark energy” (EDE) proposal for increasing the CMB-inferred value of H_0 [28,31], which falls into the general class of sound-horizon-decreasing scenarios. In the EDE scenario, a new field is introduced that acts to briefly accelerate cosmic expansion (relative to its ΛCDM behavior) just prior to recombination, e.g., around matter-radiation equality. This increase in $H(z)$ leads to a decrease in the sound horizon at recombination, r_s, which subsequently yields a higher H_0 in fits to CMB data.

This qualitative picture suffices to explain the EDE scenario at the background level. However, the detailed predictions of the scenario depend on the behavior of perturbations, which are significantly more model-dependent. A variety of detailed mechanisms have been proposed to implement the basic EDE idea (e.g., [28,31,37,46], with varying levels of phenomenological suc-

1 Note that other classes of early dark energy scenarios have been investigated over the past two decades (e.g., [32,40] and references therein).
cess in matching the full range of high-precision cosmological data available today. Here we focus on the model studied in Refs. [28–31], which is amongst the more successful in fitting data, although its theoretical construction is somewhat ad hoc, requiring non-negligible fine-tuning. In this model, the EDE is the potential energy of a new (pseudo)-scalar field, \(\phi \), which is extremely light (\(m \sim 10^{-37} \) eV) and thus initially frozen on its potential due to Hubble friction (i.e., frozen at a single value of \(\phi \)), with an effective equation of state \(w_\phi = -1 \). When \(H \sim m \), which occurs at \(z \sim z_{\text{eq}} \) for such light masses, the field begins to roll and eventually oscillate around the minimum of its potential, at which point its contribution to the cosmic energy budget redshifts away. The rate at which its energy density redshifts while the field oscillates around its minimum is crucial to the success of the model: it must redshift away faster than matter (i.e., faster than \(a^{-3} \)) so as to avoid spoiling late-time cosmology. This puts constraints on the form of the potential, as discussed in Sec. [11] satisfying these requires some level of fine-tuning. In addition, accounting properly for the behavior of perturbations in the EDE field \(\phi \), which are generated as soon as the field starts to roll and \(w_\phi \) deviates from \(-1\), is essential for the model to fit CMB data.

It was first shown in Ref. [28] that this EDE model could potentially increase the value of \(H_0 \) inferred in fits to cosmological data, to values as high as \(H_0 \approx 71 \) km/s/Mpc. However, Ref. [17] pointed out that \(\textit{Planck} \) data alone do not prefer the existence of an EDE component, and that the inferred value of \(H_0 \) when fitting the model to \(\textit{Planck} \) still disagrees with that measured by SH0ES at \(> 3 \sigma \). In addition, Refs. [17,18,60] demonstrated that as a consequence of raising \(H_0 \) via the EDE model fit to CMB data, the value of the physical cold dark matter (CDM) density (\(\Omega_c h^2 \)) also increases substantially, which leads to an increased difference between CMB and large-scale structure (LSS) measurements of the low-redshift amplitude of fluctuations, \(\sigma_8 \) (and its closely related counterpart \(S_8 \equiv \sigma_8 (\Omega_m/0.3)^{0.5} \)). The reason for the increase in \(\Omega_c h^2 \) in the CMB fit is straightforward, as elucidated in detail in Ref. [19]: the presence of the EDE leads to an enhanced early integrated Sachs-Wolfe (ISW) effect, which suppresses the growth of perturbations; this suppression is counteracted by an increase in the CDM density and a somewhat smaller increase in the scalar spectral index \(n_s \). The outcome is that the combination of \(\textit{Planck} \) CMB data and a variety of LSS data put tight constraints on the EDE model, and effectively restrict its ability to significantly increase the inferred value of \(H_0 \) (see, however, Refs. [51, 52]). This result was recently further verified in the context of a broader class of EDE scenarios in Ref. [33]. Ref. [51] also pointed out that EDE models yielding a significant increase in \(H_0 \) predict a best-fit age of the Universe that is in tension with (i.e., younger than) the ages of individual stars, stellar clusters, and ultra-faint dwarf galaxies.

In nearly all EDE analyses thus far, the only CMB data set considered has been that from \(\textit{Planck} \). It is worthwhile to investigate whether current conclusions regarding the EDE model are robust to the use of alternative CMB data. This question motivates the analysis undertaken in this paper. In particular, we consider the CMB power spectrum measurements in \(\textit{Planck} \) Data Release 4 (DR4) [3] as an alternative to \(\textit{Planck} \). While not quite as statistically powerful as the full \(\textit{Planck} \) data set, the ACT DR4 data are nevertheless able to tightly constrain all \(\Lambda \text{CDM} \) parameters (apart from the optical depth \(\tau \), which requires very large-scale EE power spectrum measurements). The combination of ACT DR4 with \(\textit{WMAP} \) data, the latter of which primarily probe \(\ell \lesssim 650 \) (and primarily TT), forms a joint data set with statistical power approaching that of \(\textit{Planck} \), with completely independent systematics. A key result of Ref. [8] was the demonstration that a blind analysis of ACT DR4 and \(\textit{WMAP} \) data yields \(\Lambda \text{CDM} \) cosmological parameters in excellent agreement with those of \(\textit{Planck} \) (see Appendix [A] below for a minor update to the ACT DR4 \(\Lambda \text{CDM} \) results). For example, within the \(\Lambda \text{CDM} \) model, the combination of ACT DR4 and \(\textit{WMAP} \) (TT,TE,EE + \(\tau \) prior) yields \(H_0 = 67.9 \pm 1.1 \) km/s/Mpc (see Table [X] in Appendix [A]), while \(\textit{Planck} \) yields \(H_0 = 67.27 \pm 0.60 \) km/s/Mpc (TT,TE,EE + lowE) [15].

However, consistency of \(\Lambda \text{CDM} \) parameters does not necessarily guarantee consistency of parameters in the context of other cosmological models. Indeed, we find in this work that ACT DR4 prefers moderately different parameters in the EDE model than those preferred by \(\textit{Planck} \). This preference strengthens with the inclusion of large-scale (\(\ell_{\text{max}} = 650 \)) \(\textit{Planck} \) TT data, which are used here as a proxy for \(\textit{WMAP} \) (for reasons of convenience described in Sec. [III]). Further including BAO data and \(\textit{Planck} \) CMB lensing data weakens the preference somewhat, in line with general arguments regarding sound-horizon-reduction scenarios [27], but nevertheless a non-zero amount of EDE with an accordingly higher value of \(H_0 \) is preferred. This preference stands in contrast to the EDE results from \(\textit{Planck} \) data [47]. As we show below, the different EDE parameter preferences from ACT and \(\textit{Planck} \) are driven by the ACT DR4 TE and EE power spectrum data. Understanding whether these differences are physical or driven by uncharacterized systematic effects in the ACT data is of crucial importance.

We emphasize that our goal in this paper is not to
assess the global concordance of the EDE model with respect to all current cosmological data sets. Instead, we focus solely on assessing the robustness of current EDE constraints to our choice of CMB data. We use only a limited set of external data with very well-understood systematics in order to break parameter degeneracies and tighten constraints. In particular, we do not include local measurements of H_0 or low-redshift LSS measurements of S_8, e.g., from galaxy weak lensing or full-shape galaxy power spectrum data. An important reason to perform such an analysis without using local H_0 or low-redshift S_8 data is that one should first assess whether a new cosmological model fit to CMB data naturally yields significant parameter shifts compared to ΛCDM, or at least much broader parameter error bars. For example, such a model should naturally yield a higher value of H_0 than that obtained when fitting ΛCDM to CMB data, without requiring a high H_0 from a local distance ladder probe to artificially increase the inferred H_0 in a joint analysis (see Refs. [47,49] for discussions of this point). Put simply, if artificially increasing the inferred value of H_0 one cannot subsequently compare the joint analysis with that obtained when fitting ΛCDM to CMB data, without requiring a high H_0 from a local distance ladder probe to artificially increase the inferred H_0 in a joint analysis (see Refs. [47,49] for discussions of this point). Put simply, if one uses a local probe with a “high” value of H_0 in a joint data analysis, then one cannot subsequently compare the jointly-inferred H_0 to that probe on its own, as the inferences are clearly not independent. Similar statements apply to S_8.

The remainder of this paper is organized as follows. Sec. II briefly reviews the theory underlying the EDE scenario. Sec. III describes the data sets that are used in this analysis. Sec. IV presents constraints on cosmological parameters in the EDE and ΛCDM models derived from these data sets. Sec. V summarizes our findings and prospects for upcoming data. Appendix A collects results related to the numerical accuracy of our theoretical calculations, including a minor update to the ACT DR4 ΛCDM parameter constraints, while Appendix B contains additional posterior and residual plots. For the busy reader, a concise summary of our main results is given in Sec. IV A.

II. THEORY

The basic physics of the EDE scenario has been described in detail in several previous works (e.g., [28, 31, 37, 47, 50]), and thus we present only a brief overview in the following. This scenario posits the existence of a new fundamental field that slightly accelerates the cosmic expansion rate just prior to recombination, contributing $\approx 10\%$ of the total energy density near matter-radiation equality. This burst of acceleration acts to decrease the physical size of the sound horizon imprinted in the CMB (compared to its value in ΛCDM), thereby increasing the inferred value of H_0 from CMB power spectrum data. In order to avoid phenomenological disruption to the late-time universe, the EDE field’s energy density must rapidly redshift away after recombination. This scenario can be realized by taking the EDE field to be a light scalar, which is initially frozen on its potential while $H \gg m$, where m is the mass of the field.\(^4\) When $H \approx m$ (see, e.g., Eq. (7) of Ref. [29] for a more precise criterion), the field begins to roll and eventually it oscillates around the minimum of its potential, the shape of which determines how rapidly the field’s energy density redshifts away.

For such a field to significantly decrease the physical size of the sound horizon, we must have $H \approx m$ in the decade of scale factor evolution just prior to $z_r = 1100$ (the redshift of recombination), which implies $m \approx 10^{-27} - 10^{-28}$ eV. Thus the field must be many orders of magnitude lighter than any in the Standard Model. From a particle physics perspective, the only known example of such an extremely light field is the axion [57,59]. However, the standard axion potential does not suffice for the EDE scenario, as its energy density redshifts as matter, and thus its presence would lead to conflicts with late-time cosmology. This situation thus motivates the consideration of axion-like potentials of the form (e.g., [60]),

\[
V(\phi) = m^2 f^2 (1 - \cos(\phi/f))^n,
\]

where f is the so-called axion decay constant and n is a power-law index. The standard axion potential corresponds to $n = 1$; in the EDE scenario the value of n is not specified \textit{a priori}, but phenomenological considerations require $n \geq 2$ (see discussion below). The field evolves according to the Klein-Gordon equation:

\[
\ddot{\phi} + 3H \dot{\phi} + \frac{dV}{d\phi} = 0,
\]

where dots denote derivatives with respect to cosmic time. From Eq. (2), it is clear that when $H \gg m$ (i.e., at early times), the Hubble friction term dominates and the oscillations of ϕ yield an effective contribution to dark energy. At late times, when ϕ is near the minimum of the potential, we have $V \sim \phi^{2n}$ and the oscillations of ϕ yield an effective contribution of state $w_\phi = (n - 1)/(n + 1)$ [61]. Thus the EDE energy density decays away like radiation ($\propto a^{-4}$) for $n = 2$, while for $n \to \infty$ it decays away like kinetic energy ($\propto a^{-6}$).

\textit{In contrast, if $n = 1$ (the usual axion potential), then $w_\phi = 0$ near the potential minimum, i.e., the EDE energy density redshifts like that of matter; clearly this is not phenomenologically viable, and thus sets the restriction that $n \geq 2$ (for integer n). We compute the evolution of the field ϕ at the background level by solving the Klein-Gordon equation. We compute the evolution of the field ϕ at the background level by solving the perturbed Klein-Gordon equation, without adopting an effective fluid approximation (such approximations have been argued to impact the numerical accuracy of such calculations [60]).}

4 We adopt natural units with $c = \hbar = k_B = 1$ when discussing the theoretical background here.
The potential in Eq. (1) involves significant fine-tuning: for integer \(n \), one must fine-tune \(n \) terms in the instanton expansion that generates the EDE potential to be very small (see discussion in Ref. [47]). For arbitrary real-valued \(n \), an infinite number of terms must be fine-tuned. Motivated by this, and by previous data analyses, we restrict our analysis to integer values of \(n \) — primarily \(n = 3 \), which has been shown to match current data [29]. Although constraints on this parameter are weak, values \(n > 5 \) are disfavored [29], thereby leaving \(n = 2, 3, \) or 4 as reasonable integer values to analyze. Thus, we also consider \(n = 2 \) rather than \(n = 3 \) as a test, and verify that our results are not sensitive to this choice.

We choose to parametrize the model in terms of “effective” parameters, rather than the physical parameters appearing in the scalar field potential \((m, f)\). These effective parameters are defined by the redshift \(z_c \) at which the EDE makes its largest fractional contribution \(f_{\text{EDE}} \) to the total cosmic energy budget, \(f_{\text{EDE}}(z_c) = 8\pi G \rho_{\text{EDE}}(z_c)/(3H^2(z_c)) \). For brevity, we will generally denote \(f_{\text{EDE}}(z_c) \equiv f_{\text{EDE}} \). As shown in Ref. [47], due to the highly nonlinear relation between \((m, f)\) and \((z_c, f_{\text{EDE}})\), sampling the model using uniform priors on the physical scalar field parameters (or their logarithms) can yield noticeably different results than using uniform priors on the effective parameters. In fact, a uniform prior on \(f_{\text{EDE}} \) corresponds to a prior on the decay constant \(f \) that peaks at \(f \approx 0.6M_{\text{Pl}} \) and asserts the existence of super-Planckian decay constants \(f > M_{\text{Pl}} \) [47]. Nevertheless, as the closer connection of \((z_c, f_{\text{EDE}})\) to observables leads to more efficient convergence of the posterior sampling, and for consistency with previous works, we adopt the effective parametrization. The final parameter that completes the EDE scenario is the initial field displacement \(\theta_i \equiv \phi_i/f \). Thus the model contains three additional free parameters beyond those in ΛCDM.

We do not consider any extensions of ΛCDM beyond the EDE parameters, although it is worth keeping in mind that some well-motivated extensions (e.g., massive neutrinos) lead to physical effects that are partially degenerate with those of EDE in the CMB and LSS observables. Following the Planck convention [15], we set the sum of the neutrino masses \(\sum m_\nu = 0.06 \) eV, with one massive eigenstate and two massless eigenstates. We set the effective number of relativistic species \(N_{\text{eff}} = 3.046 \). The primordial helium fraction is determined via Big Bang nucleosynthesis. Nonlinear corrections to the linear matter power spectrum are computed via the Halofit prescription [62, 64], although this has very little impact on our results, as the observables that we consider are all dominated by linear modes.

III. DATA SETS

We primarily focus on CMB data in this analysis, but also consider a limited collection of additional cosmological data sets, as detailed below.

ACT DR4 CMB: Our primary data set, used in all analyses presented here, is comprised of the ACT DR4 CMB power spectra [54]. We consider the multifrequency TT, TE, and EE power spectra from both the “wide” and “deep” patches analyzed in ACT DR4, which are derived from ACT data collected through 2016. We use the actpollite_dr4 likelihood implemented in pyactlike, which also uses data from the ACT MBAC DR2 data set [64]. In this likelihood, the contributions to the ACT power spectra from non-CMB foregrounds have already been marginalized over following the procedure described in [54], yielding a set of CMB-only bandpowers whose covariance includes the effects of noise, foregrounds, beam uncertainty, and calibration uncertainty. The likelihood for the ACT DR4 data thus depends only on the cosmological parameters (six for ΛCDM or nine for EDE) and one nuisance parameter, the overall polarization efficiency, \(y_p \). Unless stated otherwise, we use the full multipole range for ACT DR4 given in [54] for \(600 \leq \ell \leq 4125 \) (TT) and \(350 \leq \ell \leq 4125 \) (TE/EE).

Due to atmospheric and other 1/f noise, the ACT data do not probe the largest angular scales on the sky; thus, the optical depth \(\tau \) is not independently constrained well by the ACT data, as it is primarily determined by the low-\(\ell \) EE power spectrum. In all analyses, we thus impose a Gaussian prior \(\tau = 0.065 \pm 0.015 \), identical to that used in Ref. [3].

Planck 2018 CMB: To complement the ACT power spectra, we consider the Planck PR3 (2018) multifrequency TT, TE, and EE power spectra [1] [15] [55]. The Planck data cover a wider sky area than ACT, while also possessing lower large-scale noise due to observing from space rather than through Earth’s atmosphere, both of which yield more precise low-\(\ell \) data for Planck compared to ACT. However, the white noise levels and angular resolution of Planck are worse than those of ACT. Thus, the ACT data can probe the TT power spectrum at higher \(\ell \) than Planck, and also probe the TE and EE power spectra with better precision over a wide range of scales owing to ACT’s lower noise level. The two data sets are thus highly complementary. When combining ACT DR4 with the full Planck data set, we restrict the \(\ell \) range of the ACT data so as to ensure that information is not double-counted, following the method developed in Ref. [3]. In particular, for this combination, we set \(\ell_{\text{min}} = 1800 \) for the minimum multipole used in the ACT TT likelihood; no minimum multipole cut is imposed in the ACT TE or EE likelihoods. These multipole cuts were explicitly validated in Ref. [3].

Note that we do not include low-\(\ell \) EE data from Planck, choosing instead to constrain the optical depth \(\tau \) via a Gaussian prior following [5], as described above.

[5] https://github.com/ACTCollaboration/pyactlike/

[6] Planck is cosmic-variance (CV)-limited in the TT power spectrum at roughly \(\ell \lesssim 1600 \).
The Planck likelihoods used here thus comprise the Plik_JM high-l likelihood, which spans $30 \leq \ell \leq 2508$ (TT) and $30 \leq \ell \leq 1996$ (TE/EE), and the Commander low-l TT likelihood, which covers $2 \leq \ell \leq 29$. To allow straightforward extraction of various l-range subsets of the data (see below), we use the full Plik likelihood, rather than the “Plik_lite” version.

We extract a WMAP-like subset of the Planck data for use in some combined analyses with ACT. This combination allows the use of the full ACT DR4 data set, with no minimum multipole cuts in TT, TE, or EE (analogous to the combined ACT+WMAP analyses in [3]). We define this subset of the Planck data by considering only the TT power spectrum, and including data up to a maximum multipole such that the derived ΛCDM parameters have error bars matching those for the WMAP likelihood used in [3]. (The τ prior mentioned above is used in all analyses.) We find that $\ell_{\text{max}} = 650$ satisfies this requirement, and also yields central values of the ΛCDM parameters very close to those from WMAP, as previously found elsewhere [69]. Indeed, it has been shown that the Planck and WMAP data agree very closely over this multipole range at the level of the CMB power spectrum data points themselves (see Fig. 48 of Ref. [67]). For brevity, we will sometimes refer to this Planck data subset as “PlanckTT650”.

Planck 2018 CMB Lensing: In addition to the Planck primary CMB power spectra, we consider the Planck reconstructed CMB lensing potential power spectrum [68]. The CMB lensing power spectrum probes structure over a broad range of redshifts, peaking at $z \approx 1$–2. The scale cuts used in the Planck lensing potential power spectrum likelihood include modes with $8 \leq L \leq 400$, for which non-linear corrections are negligible [69]. The lensed CMB TT/TE/EE power spectra also carry some lensing-related information, but the reconstructed lensing potential power spectrum is a more sensitive probe, with the Planck detection significance reaching 40σ [68].

BAO: As a probe of the (relative) cosmic expansion history at low redshifts, we consider baryon acoustic oscillation (BAO) data from the SDSS DR7 main galaxy sample [70] at $z = 0.15$, the 6df galaxy redshift survey [71] at $z = 0.106$, and from the SDSS BOSS DR12 [72] LOWZ and CMASS galaxy samples at $z = 0.38$, 0.51, and 0.61. These BAO data do not provide absolute distances to these redshifts, but rather relative distances normalized to the sound horizon at the end of the baryon drag epoch. To be conservative, we do not consider redshift-space distortion or full-shape galaxy power spectrum data in this work.

Local H_0 Data: We do not include any local measurements of H_0 in the data sets analyzed here, as our goal is to focus on the inference of H_0 from indirect probes within non-standard cosmological models. For visualization purposes only, we display in some plots the most recent constraint on H_0 inferred via the TRGB-calibrated SNIa distance ladder, $H_0 = 69.8 \pm 0.6$ (stat.) ± 1.6 (syst.) km/s/Mpc [12], and the most recent constraint inferred via the Cepheid-calibrated SNIa distance ladder from SH0ES, $H_0 = 73.2 \pm 1.3$ km/s/Mpc [10].

S_8 Data: To be conservative and concentrate our focus on the CMB, we do not consider low-redshift galaxy lensing or full-shape galaxy power spectrum data in this work; the CMB lensing power spectrum is the only direct probe of the low-redshift amplitude of structure (S_8) considered here. For visualization purposes only, we display in some plots the most recent constraint on $S_8 = \sigma_8(\Omega_m/0.3)^{0.5}$ inferred from the DES-Y3 “3x2pt” analysis (galaxy clustering + galaxy-galaxy lensing + cosmic shear), $S_8 = 0.776 \pm 0.017$ [73].

We consider four primary data set combinations: (i) ACT DR4 alone; (ii) ACT DR4 + Planck 2018 TT ($\ell_{\text{max}} = 650$); (iii) ACT DR4 + Planck 2018 TT ($\ell_{\text{max}} = 650$) + Planck 2018 CMB lensing + BAO; (iv) ACT DR4 + Planck 2018 TT+TE+EE. The motivation for considering ACT DR4 alone is to provide an independent test of the EDE constraints derived from Planck primary CMB power spectra in Ref. [47]. However, since ACT does not measure large-scale TT modes due to atmospheric noise, and since the constraining power of ACT is not as strong as that of Planck, it is useful to add a complementary data set. Thus we combine ACT with the large-scale Planck TT data ($\ell < 650$), with the latter acting as a WMAP-like data set that is independent of ACT and fills in missing modes in the power spectra. The same strategy was used in Ref. [3] to motivate the combination of ACT and WMAP as a joint data set with constraining power similar to that of Planck. To further break parameter degeneracies while sticking to well-understood, linear probes, we then add Planck CMB lensing data and BAO measurements to the joint data set. Finally, we consider the full Planck primary CMB data alone (using results from Ref. [17]) and the combination of these data with ACT DR4, with associated multipole cuts to ensure that no power spectrum modes are double-counted. This combination is largely driven by, and consistent with, Planck alone.

IV. ANALYSIS

We perform cosmological parameter inference by sampling from the parameter posterior distributions using Markov chain Monte Carlo (MCMC) methods. We use the publicly available MCMC code Cobaya [74],8 which implements the Metropolis-Hastings algorithm [75][77].
We assess convergence of the MCMC chains using the Gelman-Rubin [78] criterion, requiring \(R - 1 < 0.03\). To obtain the best-fit parameter values, we apply the “BOBYQA” likelihood maximization method using the maximum a posteriori point of the converged MCMC chains as a starting point, as implemented in Cobaya [79–81]. We obtain parameter confidence intervals from the MCMC chains using GetDist [82]. Our MCMC chains and Cobaya input files are publicly available.10

The parameter posteriors in most EDE model fits are non-Gaussian. To determine 68% marginalized confidence intervals from the asymmetric posteriors, we compute the interval between two points with the highest equal marginalized probability density (the “credible interval”); this is the default method in GetDist. One can also compute an interval such that each tail of the associated two-tail limit contains 16% of the samples (the “equal-tail interval”). For Gaussian posteriors, these methods produce identical results, but for non-Gaussian (namely, skewed) posteriors the results can differ. Previous EDE analyses have considered both approaches [5, 17], due to the skewed EDE parameter posteriors. Here, we adopt solely the first approach. We quote the posterior mean as the central value of credible intervals. For upper limits, we quote the one-sided 95% confidence level (CL), the point where the cumulative probability distribution function reaches 0.95.

We compute theoretical predictions for the \(\Lambda\)CDM and EDE models using CLASS_EDE [17], a modified version of the Einstein-Boltzmann code CLASS [83, 84].12 We find that the standard precision settings for CLASS do not yield sufficiently accurate theoretical predictions for the CMB TT, TE, and EE power spectra in the ACT DR4 likelihood. This is to be expected, as the default CLASS precision settings are calibrated to yield sufficient accuracy for the analysis of Planck data, which extends only to \(\ell = 2500\), as compared to \(\ell = 4325\) for ACT.13 Thus, we run CLASS with all CMB-relevant precision parameters set to increased levels, and evaluate the theoretical spectra to multipoles well beyond our actual \(\ell_{\text{max}}\) cut, a choice that is necessary to obtain precise results for the effect of lensing on the CMB power spectra.14 We verify the accuracy of our \(\Lambda\)CDM TT/TE/EE power spectrum calculations by comparing to results from CAMB [85].15

Note that ACT measures secondary anisotropies out to much higher multipoles, but the CMB power spectrum information rapidly falls off above \(\ell \approx 4500\).14 In detail, we set all CMB-relevant CLASS precision parameters to their values in the file cl_ref.pre that is distributed with CLASS, and also set \(l_{\text{max}}\)scalars = 11000.

10 The chains are available at https://lambda.gsfc.nasa.gov/product/act/actpol_prod_table.html or https://users. flatironinstitute.org/~chill/H21_data/
11 https://github.com/mwt5345/class_ede
12 http://class-code.net
13 Note that ACT measures secondary anisotropies out to much higher multipoles, but the CMB power spectrum information rapidly falls off above \(\ell \approx 4500\).
14 In detail, we set all CMB-relevant CLASS precision parameters to their values in the file cl_ref.pre that is distributed with CLASS, and also set \(l_{\text{max}}\)scalars = 11000.
15 http://camb.info

obtained when running this code with all CMB- and lensing-related precision settings set to substantially increased values. We find that the two codes agree extremely well (\(\ll 1\%\) difference) at all \(\ell < 4500\) when run in these high-precision configurations, which serves to validate the accuracy of our theoretical calculations. Our \(\Lambda\)CDM results reproduce those of Ref. [55] to within \(< 0.1\sigma\) when adopting the same Boltzmann precision settings. Appendix A presents further investigation related to the theoretical precision issue for ACT DR4, including updated \(\Lambda\)CDM results. Ref. [86] investigates implications for upcoming CMB experiments if this precision issue (amongst other lensing-related effects) is not treated properly.

We sample the parameter space spanned by \(\{f_{\text{EDE}}, \log_{10}(z_c), \theta_i, \ln(10^{10} A_s), n_s, 100\theta_s, \Omega_m h^2, \Omega_b h^2, \tau, y_p\}\). We use broad, uninformative priors on the standard \(\Lambda\)CDM parameters: the physical baryon density (\(\Omega_b h^2\)), the physical CDM density (\(\Omega_m h^2\)), the angular size of the sound horizon (100\(\theta_s\)), the logarithm of the amplitude of the power spectrum of scalar perturbations (\(\ln(10^{10} A_s)\)), the spectral index of the power spectrum of scalar perturbations (\(n_s\)), and the Thomson-scattering optical depth (\(\tau\)). For the ACT polarization efficiency, we use a prior range \(y_p \in [0.9, 1.1]\), which is much broader than the data-determined constraint on this parameter [3, 55]. When including Planck data, we also sample over the full set of nuisance parameters included in the Planck likelihoods [55]. For the EDE parameters, we adopt the following uniform priors: \(f_{\text{EDE}} \in [0.001, 0.5]\), \(\log_{10}(z_c) \in [3, 4.3]\), \(\theta_i \in [0.1, 3.1]\). Note that the choice of the prior range for \(\log_{10}(z_c)\) is important; if this is extended to arbitrarily high redshifts, then a vast region of parameter space is opened up in which \(f_{\text{EDE}}\) can take on large values while having no impact on the CMB or other observables, as the EDE energy density has already decayed away long before recombination. In addition, the small difference between the physical range for \(\theta_i\) (0 \(\leq \theta_i \leq \pi\)) and the prior range used here is due to numerical challenges that arise for \(\theta_i\) values near the boundaries. The small restriction has negligible impact on our results, and matches the same choice made in many previous works studying this model [28, 29, 47, 50].

Constraints on the EDE model considered here derived from primary CMB anisotropy data alone were first presented in Ref. [47], which we briefly summarize. Their analysis reported no evidence for the existence of EDE in the Planck 2018 TT, TE, and EE power spectra, leading to an upper limit \(f_{\text{EDE}} < 0.087\) (95% CL). This limit is below the values generally required to raise the CMB-inferred \(H_0\) to a level consistent with the direct SH0ES measurement, roughly \(f_{\text{EDE}} \approx 0.10 - 0.12\) for \(z_c \sim z_{eq}\) (e.g., [28, 29, 47, 50]). The central value of \(H_0\) in the fit to Planck data increased by 1.5\(\sigma\) in EDE as compared to \(\Lambda\)CDM, along with a large increase in the error bar: \(H_0^{\text{EDE}} = 68.29^{+0.73}_{-1.20}\) km/s/Mpc vs. \(H_0^{\Lambda\text{CDM}} = 67.29 \pm 0.59\) km/s/Mpc. Nevertheless, the difference between the Planck-inferred and SH0ES-
Constraints on EDE (n = 3)

Parameter	ACT DR4 TT+TE+EE, τ	ACT DR4 TT+TE+EE, Planck 2018 TT ($\ell_{\text{max}} = 650$), τ	ACT DR4 TT+TE+EE, Planck 2018 TT ($\ell_{\text{max}} = 650$), Planck 2018 lensing, BAO, τ	Planck 2018 TT+TE+EE (from Ref. [47])	ACT DR4 TT+TE+EE, Planck 2018 TT+TE+EE (no low-ℓ EE), τ
f_{EDE}	0.142$^{+0.039}_{-0.072}$	0.129$^{+0.028}_{-0.052}$	0.091$^{+0.026}_{-0.036}$	< 0.087	< 0.124
log$_{10}$(z_c)	< 3.70	< 3.43	< 3.36	3.66$^{+0.24}_{-0.28}$	3.54$^{+0.28}_{-0.29}$
θ_1	> 0.24	< 2.89	< 2.82	> 0.36	> 0.51
$\Omega_c h^2$	0.1307$^{+0.0051}_{-0.0120}$	0.1291$^{+0.0051}_{-0.0098}$	0.1289$^{+0.0027}_{-0.0053}$	0.1234$^{+0.0019}_{-0.0038}$	0.1244$^{+0.0025}_{-0.0051}$
H_0 [km/s/Mpc]	74.5$^{+4.4}_{-3.9}$	74.4$^{+3.4}_{-3.9}$	70.9$^{+1.9}_{-2.0}$	68.29$^{+0.92}_{-1.20}$	69.17$^{+0.92}_{-1.70}$
Ω_m	0.276$^{+0.020}_{-0.023}$	0.274$^{+0.017}_{-0.017}$	0.3000$^{+0.0072}_{-0.0072}$	0.3145$^{+0.0086}_{-0.0086}$	0.3084$^{+0.0084}_{-0.0084}$
σ_8	0.831$^{+0.027}_{-0.043}$	0.827$^{+0.029}_{-0.035}$	0.829$^{+0.013}_{-0.021}$	0.824$^{+0.009}_{-0.013}$	0.838$^{+0.013}_{-0.013}$
S_8	0.796$^{+0.049}_{-0.046}$	0.791$^{+0.049}_{-0.046}$	0.828$^{+0.015}_{-0.018}$	0.839$^{+0.018}_{-0.018}$	0.850$^{+0.017}_{-0.017}$

TABLE I: Marginalized constraints on key cosmological parameters in the EDE model (with power-law index $n = 3$ held fixed in Eq. (1)) from ACT DR4 primary CMB data (TT+TE+EE), Planck 2018 primary CMB data (TT+TE+EE), including a WMAP-like subset restricted to only the large-scale ($\ell_{\text{max}} = 650$) TT data; Planck 2018 CMB lensing data; and BAO data from 6dF, SDSS DR7, and SDSS DR12 (BOSS). Sampled parameters are shown in bold. Upper and lower limits are given at 95% CL. The best-fit parameter values for these analyses are given in Sec. IV. A Gaussian prior on τ is applied in all analyses, apart from the Planck-only results, which are taken from Ref. [47].

Inferred H_0 values persisted at 3.3σ significance (using the latest SH0ES value [10]). In addition, to counteract the EDE-induced early ISW effect in the CMB, the physical CDM density $\Omega_c h^2$ increased substantially in the EDE fit to Planck, as compared to ΛCDM. This led to a slight increase in S_8, heightening the moderate discrepancy with low-redshift structure measurements. For a detailed discussion of the Planck-only constraints and parameter posterior plots, see Ref. [47]. We use the MCMC chains from Ref. [47] when presenting Planck-only results in the analysis below.

Despite the non-preference for EDE in Planck primary CMB data, it is of interest to assess the robustness of this conclusion to the choice of CMB data set. It has been shown that ACT DR4 and Planck primary CMB constraints agree for the ΛCDM parameters, formally consistent at 2.5σ (see Appendix A for this analysis, updated slightly from Ref. [9]). The ACT DR4 and WMAP constraints also agree for ΛCDM, formally consistent at 2.4σ (see Appendix A). In this work, we investigate whether the same holds true for the EDE parameters.

A. Summary of Main Results

We consider the following data set combinations in this work:

- **Sec. [IVB]** ACT DR4 TT+TE+EE
- **Sec. [IVC]** ACT DR4 TT+TE+EE + Planck 2018 TT ($\ell_{\text{max}} = 650$)
- **Sec. [IVD]** ACT DR4 TT+TE+EE + Planck 2018 TT ($\ell_{\text{max}} = 650$) + Planck 2018 CMB lensing + BAO
- **Sec. [IVF]** ACT DR4 TT+TE+EE + Planck 2018 TT+TE+EE (no low-ℓ EE)

In all analyses, we impose a Gaussian prior on the optical depth ($\tau = 0.065 \pm 0.015$) following Ref. [3], as described in Sec. III. For comparison, we also include results obtained for Planck 2018 TT+TE+EE data alone, which are taken from Ref. [47].

The main results of this work are summarized in Table I and Figs. 1 and 2, which present the marginalized posteriors and best-fit values for the EDE parameters and a subset of other parameters of interest, including H_0 and S_8. Numerical results for other parameters in these analyses are presented in Tables II, IV, VI, and VIII in the subsections below, while additional posterior plots are presented in Appendix B. The χ^2 values for the best-fit EDE and ΛCDM models to each combination of data sets are collected in Tables [III], [V], [VI], and [IX] which we use to assess which model the data prefer.

We summarize the main takeaways from our analysis in the following. The ACT DR4 data alone (red contours in Figs. 1 and 2) allow a non-negligible amount of EDE, but the uncertainties are too large to yield a clear preference:

$$f_{\text{EDE}} = 0.142^{+0.039}_{-0.072} \pm 0.015 \ (68\%/95\% \ CL)$$

16 The chains are publicly available at http://users.flatironinstitute.org/~chill/H20_data/.

17 Note that the results from Ref. [47] use the Planck low-ℓ CMB data to constrain τ, rather than imposing the Gaussian prior used here. However, this has negligible impact on the EDE parameters, as we verify in Sec. [IVF].
FIG. 1: Marginalized posteriors for the EDE parameters and a subset of other parameters of interest in fits to ACT DR4 TT+TE+EE data (red), ACT DR4 combined with large-scale ($\ell_{\text{max}} = 650$) Planck 2018 TT data (blue), these same data with Planck 2018 CMB lensing and BAO data included (orange), and the full Planck 2018 TT+TE+EE data on their own (green, from Ref. [47]). All analyses, apart from Planck-alone in green, impose a Gaussian prior on τ, as discussed in Sec. III. The EDE potential power-law index $n = 3$ in Eq. (1) is held fixed. The vertical grey and magenta bands in the H_0 panel show the latest SH0ES [10] and TRGB [12] constraints, respectively. The vertical grey band in the S_8 panel shows the DES-Y3 constraint [73].

The inferred value of H_0 increases compared to that in ΛCDM (see Table I), but the error bars increase by a factor of 2−3 as well, thus rendering comparisons to other data sets generally uninformative: $H_0 = 74.5^{+2.5}_{-2.4}$ km/s/Mpc. The EDE model yields a slightly better fit to the ACT DR4 data than ΛCDM, with $\Delta\chi^2 = -8.7$. Accounting for the additional parameters in the EDE scenario, this corresponds to a 2.1σ preference, which is not significant. This preference, albeit weak, is driven entirely by residuals in the lowest seven multipole bins of...
FIG. 2: Marginalized posteriors for the EDE parameters and a subset of other parameters of interest in fits to various data sets. The red, blue, and green contours show the same data set combinations as in Fig. 1, while the orange contours show the full Planck 2018 TT+TE+EE data combined with ACT DR4 TT+TE+EE. The low-\(\ell\) Planck EE data are excluded in lieu of the \(\tau\) prior used elsewhere, for consistency. The EDE potential power-law index \(n = 3\) in Eq. (1) is held fixed. The vertical grey and magenta bands in the \(H_0\) panel show the latest SH0ES \cite{10} and TRGB \cite{12} constraints, respectively. The vertical grey band in the \(S_8\) panel shows the DES-Y3 constraint \cite{73}.

the ACT wide-patch EE data (see Figs. 3 and 21).

Including large-scale \((\ell_{\text{max}} = 650)\) Planck TT data in the analysis (blue contours in Figs. 1 and 2) does not significantly change the central values of the ACT-only results, but tightens error bars by breaking some parameter degeneracies, particularly involving \(n_s\) and \(\Omega_b h^2\). In contrast to the EDE analysis of the full Planck data alone \cite{47}, a non-zero amount of EDE is preferred in this fit:

\[
 f_{\text{EDE}} = 0.129^{+0.028}_{-0.055} +0.099_{-0.076}^{+0.14} (68\%/95\%/99.7\% \text{ CL})
\]
The inferred H_0 and S_8 values in the EDE fit to ACT DR4 + large-scale Planck TT data are consistent with measurements from TRGB or SH0ES and DES-Y3, respectively, albeit with large error bars: $H_0 = 74.4_{-3.0}^{+3.2}$ km/s/Mpc and $S_8 = 0.791_{-0.040}^{+0.040}$. In contrast to the EDE fit to Planck, the fit here does not yield a large value of S_8 despite the anticipated increase in $\Omega_m h^2$ to counteract the EDE-induced early ISW effect, because the shift in H_0 is large enough that Ω_m does not have to increase (in fact it decreases compared to its value in the ΛCDM fit). The EDE model yields a better fit to the ACT DR4 + large-scale Planck TT data than ΛCDM, with $\Delta \chi^2 = -15.4$. Accounting for the additional parameters in the EDE scenario, this corresponds to a 3.2σ preference, which is non-negligible. The preference is driven by a residual difference in the ACT TE power spectrum that is coherent across a wide multipole range, as well as the same residuals in the lowest several EE multipole bins seen in the ACT-only analysis, both of which the EDE model can accommodate (see Fig. 4).

Including Planck CMB lensing and BAO data has a noticeable impact (orange contours in Fig. 1). These data require higher Ω_m than the value preferred in the EDE fits described thus far [68], which forces H_0 to decrease, f_{EDE} to decrease, and S_8 to increase. However, the parameter uncertainties also decrease significantly, and non-zero EDE remains preferred:

$$f_{\text{EDE}} = 0.091^{+0.020}_{-0.036} +0.069 +0.11$$

(68%/95%/99.7% CL)

The inferred H_0 value in the EDE fit decreases due to the inclusion of the CMB lensing and BAO data as described above, but is nevertheless still higher than found in ΛCDM:

$$H_0 = 70.9_{-2.0}^{+1.0}$$

(68% CL)

The inferred S_8 value in the EDE fit is forced higher by the CMB lensing and BAO data, returning near its ΛCDM-inferred value, which is roughly 2σ higher than the DES-Y3 result. Even with the inclusion of the CMB lensing and BAO data, the EDE model remains a better fit to the combined data set than ΛCDM, with $\Delta \chi^2 = -12.7$. Accounting for the additional parameters in the EDE scenario, this corresponds to a 2.8σ preference, which is not significant, although not completely negligible. The preference is primarily driven by the residual difference in the ACT TE data across a wide range of multipoles, with the EE residuals now playing a much smaller role than in the previous analyses.

Perhaps intriguingly, this data set combination, which is the most constraining we consider without including the full Planck data set, prefers values of $z_c < z_{eq}$, close to the recombination epoch. The same preference is seen in the ACT + large-scale Planck TT fit, but at weaker significance. The initial field value θ_i is essentially unconstrained in these fits, but interestingly it is consistent with low values, in contrast to results seen with Planck [20] (see Sec. V for further discussion of this point).

Finally, we consider a joint analysis of the full Planck 2018 TT+TE+EE data with the ACT DR4 data (orange contours in Fig. 2). The statistical weight of Planck is sufficiently large compared to that of ACT that the joint results are qualitatively similar to those found for Planck alone [17] (green contours in Figs. 1 and 2). However, the ACT preference for EDE leads to a weaker upper bound on f_{EDE} (and a slight upward shift and larger error bar on H_0) from the joint fit than that found from Planck alone. Notably, the overall fit improvement in this case is not significant, with $\Delta \chi^2 = -6.8$, corresponding to no model-selection preference for EDE over ΛCDM (1.8σ).

We conclude that the full Planck data set provides a different outlook on the EDE scenario than that obtained in the ΛCDM-fits here, apart from the results when ACT is combined with the full Planck data. However, we cannot easily compute overall consistency in the full EDE parameter space with a simple metric (as done in Ref. 2 and in Appendix A for ΛCDM) because of the strong non-Gaussianity of the posteriors. It may be possible to use a different consistency statistic (e.g., the “suspiciousness” S_7 [88]), but this would incur significant computational expense due to the much slower Boltzmann code evaluation for EDE compared to ΛCDM. We thus primarily rely on χ^2-based criteria to assess consistency.

The significant constraining power of the $\ell > 650$ Planck TT data plays a crucial role in the Planck vs. ACT differences seen in the EDE fits here. In particular, we observe that the best-fit EDE model to the full Planck data predicts TE and EE power spectra that are not in perfect agreement with the ACT DR4 data; conversely, the best-fit EDE model to the ACT data set combinations considered in Sec. V B predicts a TT power spectrum that does not precisely match the high-ℓ Planck data (see Sec. V for a quantification of the latter statement). Uncovering the origin of these differences – and whether they may be related to systematic effects in the ACT data – is clearly of high priority. We briefly discuss a few potentially relevant effects in the next subsection.

B. Constraints from ACT DR4 Alone

We begin our analysis by fitting the ΛCDM and EDE ($n = 3$) models to the ACT DR4 TT+TE+EE data, in combination with the τ prior discussed in Sec. [1]. The marginalized constraints are presented in Table [IV] while the posteriors are shown in Fig. [I] (EDE parameters) and in Fig. [13] (standard ΛCDM parameters). Note that the ΛCDM parameter results differ slightly from those in Ref. 3 due to our use of higher numerical precision in the Boltzmann code – see Appendix A.

18 Recall that the Planck fit to ΛCDM yields $z_{eq} = 3387 \pm 21$ (TT,TE,EE+lowE+lensing+BAO) [25], i.e., $\log_{10}(z_{eq}) \approx 3.53$. This is much smaller than that found in the previous analyses.
Constraints on ΛCDM and EDE ($n = 3$) from ACT DR4 TT+TE+EE $+ \tau$ prior

Parameter	ΛCDM Best-Fit	ΛCDM Marg.	EDE ($n = 3$) Best-Fit	EDE ($n = 3$) Marg.
$\log(10^{10} A_s)$	3.043	3.046 \pm 0.030	3.083	3.067 \pm 0.034
n_s	1.013	1.011 \pm 0.015	1.064	0.987 \pm 0.027
$1000 \Omega_b h^2$	1.04356	1.04345 \pm 0.00070	1.04279	1.04247 \pm 0.00079
$\Omega_m h^2$	0.02149	0.02152 \pm 0.00034	0.02214	0.02141 \pm 0.00044
τ_{reio}	0.1170	0.1167 \pm 0.0037	0.1425	0.1307 \pm 0.0054
y_p	0.063	0.064 \pm 0.014	0.061	0.065 \pm 0.015
f_{EDE}	1.0009	1.0007 \pm 0.0048	0.9951	1.0037 \pm 0.0070
$\log_{10}(z_c)$	$-$	$-$	3.72	$<$ 3.70
θ_i	$-$	$-$	2.97	$>$ 0.24

$H_0 [\text{km/s/Mpc}]$	Ω_m	σ_8	S_8	$\log_{10}(f/eV)$	$\log_{10}(m/eV)$
ACT DR4 TT	98.8	98.9	$-$	$-$	$-$
ACT DR4 TE	72.8	76.3	$-$	$-$	$-$
ACT DR4 EE	100.9	89.7	$-$	$-$	$-$
ACT DR4 TT+TE+EE	282.5	273.8	$-$	$-$	$-$

TABLE II: Best-fit and marginalized 68% CL constraints on cosmological parameters in the ΛCDM and EDE ($n = 3$) models, inferred from ACT DR4 primary CMB data (TT+TE+EE) in combination with a Gaussian prior on the optical depth τ. Upper and lower bounds are quoted at 95% CL. Sampled parameters are shown in bold (and in subsequent tables). The associated posteriors are shown in Fig. 3 (EDE parameters) and in Fig. 13 in Appendix B (standard ΛCDM parameters).

TABLE III: χ^2 values for the best-fit ΛCDM and EDE models to the ACT DR4 TT+TE+EE data. Note that the joint χ^2 for TT+TE+EE is not equal to the sum of the individual χ^2 due to non-negligible off-diagonal blocks in the covariance matrix. The decrease in χ^2 is 8.7 for the three-parameter EDE extension of ΛCDM.

for detailed discussion of this point, and validation with independent Boltzmann and MCMC implementations.

The best-fit parameters (e.g., H_0) shift noticeably between ΛCDM and EDE when fit to ACT data, in contrast to what is observed with Planck data, for which the parameter shifts are small [47]. However, the statistical constraining power of ACT DR4 is weaker than that of Planck; thus ACT cannot tightly constrain the EDE parameters on its own. The relatively large uncertainties in the ACT EDE fit render the evidence for non-zero f_{EDE} marginal: the 95% CL constraint on the EDE fraction is $f_{EDE} = 0.142^{+0.039}_{-0.072}$ and $H_0 = 74.5^{+2.5}_{-4.4}$ km/s/Mpc, respectively.

As expected, the physical CDM density increases substantially in the EDE fit as compared to ΛCDM, in order to counteract the early ISW effect associated with the EDE field [47, 50]. $\Omega_c h^2 = 0.1307^{+0.0054}_{-0.0043}$ (EDE) vs. $\Omega_c h^2 = 0.1167 \pm 0.0037$ (ACDM). The posterior for this parameter is very non-Gaussian in the EDE case, which is reflected by the significant difference between the posterior mean and the best-fit value of $\Omega_c h^2 = 0.1425$. This increase in the physical CDM density produces an increase in the low-redshift amplitude of structure σ_8, along with a significant broadening of the error bars on this parameter. Interestingly, the parameter S_8 actually decreases in the EDE fit to ACT alone are sufficiently large that it is difficult to draw strong conclusions about agreement or disagreement with other data sets.

Given the parameter shifts observed between ΛCDM and EDE fits to ACT data, it is interesting to assess the associated difference in χ^2 and determine the origin of any improvement that is seen. Table III presents χ^2 values for the best-fit ΛCDM and EDE models to ACT DR4. The χ^2 are further broken down into contributions from the TT, TE, and EE power spectra, but the overall TT+TE+EE χ^2 is not equal to the sum of these contributions due to the non-negligible off-diagonal blocks in the joint covariance matrix.

Both the ΛCDM and EDE models provide a good fit to the ACT power spectra. The best-fit ΛCDM model
has $\chi^2 = 282.5$ for 254 degrees of freedom (260 band-powers minus six free parameters), corresponding to a probability-to-exceed (PTE) = 0.106.19 The best-fit EDE model has $\chi^2 = 273.8$ for 251 degrees of freedom, corresponding to PTE = 0.154. Thus, in terms of the overall goodness-of-fit, both models are acceptable.

We find that the best-fit EDE model yields an improvement of $\Delta \chi^2 = -8.7$ over the best-fit ΛCDM model. Interestingly, the improvement is entirely driven by the EE power spectrum ($\Delta \chi^2_{EE} = -11.2$); the EDE model actually fits the TT and TE power spectra worse than ΛCDM does, despite having three additional free parameters. We further investigate the origin of the improvement in the EE fit below.

As the value of $\Delta \chi^2$ is expected to follow a χ^2 distribution with three degrees of freedom here (because the EDE model contains three additional parameters beyond the ΛCDM model), we can compute the associated CL at which the EDE model is preferred over ΛCDM. We find that $\Delta \chi^2 = -8.7$ corresponds to a preference for EDE over ΛCDM at the 96.6% CL, or 2.1σ, which is not significant.

To further assess the robustness of the overall χ^2 improvement seen for the ACT data, given the three additional free parameters in the EDE model, we use the Akaike information criterion (AIC) 89:

$$AIC \equiv -2 \ln L_{\text{max}} + 2N_{\text{param}},$$

where L_{max} is the maximum likelihood value and N_{param} is the number of free parameters in the model. We thus find $\Delta AIC = -2.7$ for the improvement of the EDE fit to the ACT DR4 data over ΛCDM, which is not significant.

To investigate the origin of the improved χ^2 for EDE relative to ΛCDM, we plot the residuals of the ACT DR4 TT, TE, and EE power spectra with respect to the best-fit ΛCDM and EDE models in Fig. 3. The only noticeable improvement in the residuals for EDE compared to ΛCDM is in the lowest seven multipole bins in the EE power spectrum. In fact, we can sub-divide the data further to see whether the “wide” patch or “deep” patch ACT DR4 data dominate these residuals (see Ref. 55 for definition of the deep and wide data subsets). Residual plots for the wide and deep patches are shown in Figs. 21 and 22 respectively, in Appendix B. By eye, it is clear that the EDE improvement in the residuals is dominated by the wide patch EE data, in particular the lowest seven multipole bins in that spectrum (this is also borne out in detail numerically). This can also be seen by breaking the χ^2 down further into contributions from the wide and deep patches. For simplicity, we compute diagonal χ^2 values here (i.e., the off-diagonal entries in the covariance matrix are not included — only for this brief investigation), as these exactly match the intuition one would obtain from “χ-by-eye” investigation of Figs. 21 and 22. We find an improvement of $\Delta \chi^2_{EE,\text{wide},\text{diag}} = 11.9$, whereas $\Delta \chi^2_{EE,\text{deep},\text{diag}} = -0.4$.

Thus, we conclude that the EDE improvement in χ^2 over ΛCDM is localized to the lowest seven multipole bins in the wide patch EE data, while worsening the fit to the TT and TE data, and negligibly improving the fit to the EE-deep data. This localization may hint at the presence of a low-significance systematic in the wide patch EE data, e.g., related to ground pickup or the transfer function calibration, both of which most strongly affect the lowest-ℓ data points in the power spectrum. We emphasize that a vast number of systematics tests were performed in Ref. 55 to search for such issues, with no significant failures seen. In particular, null tests comparing the power spectra from the wide and deep regions were passed successfully.20 Another issue to keep in mind at low-to-moderate ℓ in polarization is Galactic dust contamination, which is constrained in ACT DR4 using Planck 353 GHz data 55. However, given their footprints on the sky, one would expect the wide patch to be more dust-contaminated than the deep patch, and thus the results here may suggest further robustness checks of the dust modeling. Alternatively, it may instead be that we are first seeing evidence of the EDE model in the wide patch data because it is more constraining than the deep patch. Indeed, the lowest several multipole bins in the EE-deep spectrum have sufficiently large error bars that they are consistent with both the best-fit ΛCDM model and with the residuals in the EE-wide spectrum that drive the EDE preference (see Figs. 21 and 22). Further investigation will be needed to solidify this interpretation. We are carrying out complementary ongoing work to understand the ACT transfer function (particularly for TT at $\ell < 600$, though this multipole range is not used in any of our analyses presently), as well as other systematics studies on the ACT data in preparation for even more sensitive CMB maps in upcoming data releases.

As a final check on the robustness of the EDE parameter constraints from ACT DR4, we perform an exercise motivated by the observation in Ref. 13 that dividing the ACT TE data by a factor of 1.05 moves the inferred cosmological parameters in ΛCDM into better agreement with those obtained independently from WMAP or Planck, particularly in the $\Omega_b h^2 - n_s$ plane. While the TE data do not appear to drive the EDE results in the analysis here, this test is nevertheless of interest due to the non-zero correlation between f_{EDE} and n_s as a result of the early ISW effect described earlier. We thus divide the ACT TE data by 1.05 and rerun the EDE MCMC analysis described in this subsection. The results are presented in Figs. 18 and 19 in Appendix B.

Several changes are seen in the posteriors in this ex-

19 Note that this value differs slightly from that found in Ref. 35 due to the use of higher-precision Boltzmann calculations here; see Appendix A for details.

20 Note that the wide patch includes scans at lower elevation, and thus could potentially be more affected by ground pickup.
exercise. As expected, $\Omega_b h^2$ shifts upward into closer agreement with Planck, but interestingly n_s does not shift downward, as seen when performing this exercise in ΛCDM (see Fig. 14 of Ref. [3]). In fact, n_s increases, as does S_8. It thus appears that the early-ISW-compensation signatures of the EDE model are seen more strongly in this exercise (the results thus resemble Planck more closely now in this regard). The f_{EDE} posterior broadens noticeably, but the central value hardly changes: the marginalized constraint is now $f_{\text{EDE}} = 0.146^{+0.064}_{-0.090}$ at 68% CL, and at 95% CL the posterior is consistent with zero, yielding an upper limit $f_{\text{EDE}} <$...
Constraints on ΛCDM and EDE ($n = 3$) from ACT DR4 TT+TE+EE + Planck 2018 TT ($\ell_{\text{max}} = 650$) + τ prior

Parameter	ΛCDM Best-Fit	ΛCDM Marg.	EDE ($n = 3$) Best-Fit	EDE ($n = 3$) Marg.	
$\log(10^{10} A_s)$	3.064	3.063 ± 0.026	3.048	3.064 ± 0.032	
n_s	0.9774	0.9775 ± 0.0064	0.977	0.985±0.011	
$1000\Omega_b h^2$	1.04318	1.04311 ± 0.00061	1.04223	1.04238 ± 0.00066	
$\Omega_C h^2$	0.22322	0.2236 ± 0.00019	0.2124	0.2162 ± 0.00044	
τ_{reio}	0.1187	0.1188 ± 0.0027	0.1265	0.129±0.0098	
y_P	1.0019	1.0027 ± 0.0040	1.0058	1.003±0.0055	
f_{EDE}	--	--	--	0.113	0.129±0.028
$\log_{10}(z_e)$	--	--	--	3.18	< 3.43
H_0	68.2	68.2 ± 1.1	74.0	74.1±2.4	
Ω_{m0}	0.304	0.305 ± 0.015	0.271	0.274±0.017	
σ_8	0.820	0.819 ± 0.013	0.813	0.827±0.029	
S_8	0.825	0.825 ± 0.031	0.773	0.79±0.040	
$\log_{10}(f/\text{eV})$	--	--	--	28.09	27.22±0.28
$\log_{10}(m/\text{eV})$	--	--	--	−26.30	−27.54±0.63

TABLE IV: Best-fit and marginalized 68% CL constraints on cosmological parameters in the ΛCDM and EDE ($n = 3$) models, inferred from ACT DR4 TT+TE+EE and Planck 2018 TT ($\ell_{\text{max}} = 650$) data, in combination with a Gaussian prior on the optical depth τ. Upper and lower bounds are quoted at 95% CL. The associated posteriors are shown in Fig. [1] (EDE parameters) and in Fig. [14] in Appendix B (standard ΛCDM parameters).

C. Constraints from ACT DR4 + Planck 2018 TT ($\ell_{\text{max}} = 650$)

We next extend our analysis to include the large-scale ($\ell_{\text{max}} = 650$) Planck 2018 TT power spectrum data, which serve as a WMAP-like complement to the ACT data, filling in large-scale modes that are not easily accessible from the ground (e.g., due to atmospheric noise or ground pickup). We fit the ΛCDM and EDE ($n = 3$) models to the ACT DR4 TT+TE+EE data in combination with this subset of the Planck 2018 TT data and the τ prior discussed in Sec. [III. The marginalized parameter constraints are presented in Table [IV] while the posteriors are shown in Fig. [1] (EDE parameters) and in Fig. [14] in Appendix B (standard ΛCDM parameters). The ΛCDM parameter results for this data combination are very similar to those found for ACT DR4 combined with WMAP – see Table [X] in Appendix A which gives slightly updated results for ACT+WMAP ΛCDM parameters using Boltzmann calculations with higher numerical accuracy than in Ref. [3].

As in the ACT-only analysis presented in Sec. [IV.B (see Table [1]), the best-fit parameters shift noticeably between ΛCDM and EDE when fit to these data, in contrast to what is observed with the full Planck data set on its own, for which the parameter shifts are small [17]. Moreover, with the large-scale Planck data included here in addition to ACT, the statistical constraining power is sufficiently high to yield moderately significant evidence for non-zero f_{EDE}: the 95% CL constraint on the EDE fraction is $f_{\text{EDE}} = 0.129^{+0.099}$ −0.076 while at 99.7% CL we obtain $f_{\text{EDE}} = 0.129^{+0.14}$ −0.084. Note that the 68% CL constraint is $f_{\text{EDE}} = 0.129^{+0.028}$ −0.055; comparing this with the 95% and 99.7% CL bounds illustrates the skewed nature of the posterior.}

0.285. The H_0 posterior is remarkably stable to this modification of the ACT TE data: we find $H_0 = 74.5^{+3.2}_{-1.5}$ km/s/Mpc, i.e., with unchanged central value and a moderate increase in the error bars. Intriguingly, z_e shifts to higher values closer to z_q, and a bimodality emerges in the posterior. A moderate preference for large θ_i is also seen. However, given the weaker evidence for non-zero f_{EDE} itself here, the z_e and θ_i changes should be taken with a grain of salt. Overall, we conclude that rescaling the ACT TE data does not fully erase the EDE-driven shifts seen in ΛCDM parameters in our analysis above, although the preference for non-zero EDE is weakened.
of the marginalized posterior.21

Interestingly, even with the improved constraining power afforded by the inclusion of the large-scale \textit{Planck} TT data, the EDE model is still able to accommodate residuals in the ACT data – while jointly fitting both data sets – that ΛCDM cannot. The best-fit value for the maximal EDE fraction is $f_{\text{EDE}} = 0.113$ with $\log_{10}(z_c) = 3.18$, yielding $H_0 = 74.0$ km/s/Mpc. As in the ACT-only analysis, the posteriors are somewhat non-Gaussian, albeit less so. For example, most of the best-fit parameter values are now fairly close to the posterior means in Table \ref{table:best_fit} e.g., the marginalized constraint on the Hubble constant is $H_0 = 74.4^{+2.3}_{-2.0}$ km/s/Mpc.

As in the ACT-only analysis, the physical CDM density increases substantially in the EDE fit as compared to ΛCDM, so as to counteract the early ISW effect driven by the EDE field \cite{47, 50}: $\Omega_c h^2 = 0.1291^{+0.0051}_{-0.0099}$ (EDE) vs. $\Omega_c h^2 = 0.1188^{+0.0027}_{-0.0030}$ (ΛCDM). Also as seen before, the posterior for this parameter is quite non-Gaussian in the EDE case (albeit slightly less than for ACT-alone). However, in an intriguing difference, the best-fit value of σ_8 decreases in the EDE fit to these data as compared to ΛCDM, despite the increase in the CDM density. Note, though, that the posterior mean value of σ_8 increases, and the error bars on σ_8 roughly triple in the EDE case over those in ΛCDM. The best-fit and posterior mean S_8 values decrease substantially in the EDE fit as compared to ΛCDM, as the increase in H_0 is sufficiently large that Ω_m decreases despite the increase in $\Omega_c h^2$. Thus, in contrast to what is seen in EDE fits to \textit{Planck} and other cosmological data \cite{47, 48, 50}, the “S8 tension” is not worsened in the EDE fit to ACT DR4 TT+TE+EE and large-scale \textit{Planck} TT data – in fact it is essentially eliminated here. However, even with the inclusion of the large-scale \textit{Planck} data, the parameter error bars in the EDE fit here are sufficiently large that it is difficult to draw strong conclusions about agreement or disagreement with other data sets. Also, the exclusion of BAO and CMB lensing data impacts these conclusions, as will be seen in the next subsection. Nevertheless, higher-precision small-scale CMB data, as well as careful understanding of systematics, will be needed to ascertain whether the shifts seen here are statistical fluctuations or preliminary indications of a preference for a different cosmological model than ΛCDM.

The robustness of the preference for EDE over ΛCDM in this analysis can be investigated by assessing the difference in the best-fit χ^2 values. Table \ref{table:best_fit} presents χ^2 values for the best-fit ΛCDM and EDE models to ACT DR4 and \textit{Planck} TT ($\ell_{\text{max}} = 650$). The χ^2 are further broken down into contributions from the TT, TE, and EE power spectra.

As in the ACT-only analysis in Sec. \ref{sec:act_only} both the ΛCDM and EDE models provide a good fit to the ACT power spectra within the joint ACT + \textit{Planck} TT ($\ell_{\text{max}} = 650$) analysis. The best-fit ΛCDM model has $\chi^2_{\text{ACT}} = 291.1$ for 254 degrees of freedom, corresponding to PTE = 0.055. The best-fit EDE model has $\chi^2_{\text{ACT}} = 275.0$ for 251 degrees of freedom, corresponding to PTE = 0.143. Thus, both models are acceptable fits to the ACT data here.

The best-fit EDE model yields an improvement of $\Delta \chi^2 = -15.4$ over the best-fit ΛCDM model. The improvement is driven entirely by the ACT data; the fit to the large-scale \textit{Planck} TT data is essentially unchanged (slightly worsened). Unlike in the ACT-only analysis in Sec. \ref{sec:act_only} the improvement here does not come entirely from the EE power spectrum. Here, the largest contribution to $\Delta \chi^2$ comes from the EE power spectrum, but moderate improvements are also seen in the TT and EE power spectra. Thus, the EDE preference cannot be as easily localized as in the ACT-only case. Nevertheless, we further investigate the origin of the improvements in the fit below.

As before, we use the value of $\Delta \chi^2$ (assumed to be χ^2-distributed with three degrees of freedom) and the AIC to assess the robustness of the overall preference for EDE over ΛCDM, given that the EDE model has three additional free parameters. We find that $\Delta \chi^2 = -15.4$ corresponds to a preference for EDE over ΛCDM at the 99.8% CL, or 3.2σ, which is weakly significant. We find $\Delta \text{AIC} = -9.4$ for the improvement of the EDE fit over ΛCDM, which is moderately significant.

Where in the data does the improvement in χ^2 come from? We plot the residuals of the ACT DR4 TT, TE, and EE power spectra with respect to the best-fit ΛCDM and EDE models (to the joint data set) in Fig. \ref{fig:residuals}. The main improvement that is visible by eye is in the TE power spectrum, which exhibits a difference between the best-fit models that is coherent across a wide range of multipoles (roughly $700 \lesssim \ell \lesssim 2500$). However, the TT and EE power spectra also make non-negligible contributions to the improvement in fit. As the χ^2 improvement is distributed relatively broadly across the observable channels, it is difficult to ascertain whether a systematic effect could be responsible. However, we do note that the EE improvement is again dominated by the lowest ℓ bins in the wide-patch data (see below), as in the ACT-only analysis in Sec. \ref{sec:act_only}. The ACT TE χ^2 improvement may be associated with an overall amplitude offset in this power spectrum as compared to that predicted by the best-fit ΛCDM model to ACT + WMAP or ACT + \textit{Planck} 2018 TT ($\ell_{\text{max}} = 650$).3 Extensive investigation has not yielded evidence of a systematic effect that could cause this amplitude shift, it has been shown that dividing the ACT TE data by a factor of 1.05 moves the inferred cosmological parameters in ΛCDM into better agreement with those obtained independently from WMAP or \textit{Planck}. We investigate this issue in detail below.

To further examine the best-fit models in this case,

21 If one instead adopts the equal-tail confidence interval approach, the 68% CL constraint is $f_{\text{EDE}} = 0.129^{+0.045}_{-0.043}$.3
we sub-divide the data again into the “wide” patch and “deep” patch ACT DR4 subsets. Residual plots for the wide and deep patches are shown in Figs. 23 and 24 respectively, in Appendix B. In contrast to the ACT-only analysis, the χ² improvements are not strongly dominated by the wide or deep data individually, although this turns out to be a coincidence, as the TE-deep improvement dominates over TE-wide, while the EE-wide dominates over EE-deep. The single largest contribution to the improvement in χ² comes from the deep-patch
TE data, while the next largest comes from the wide-patch EE data. Computing diagonal χ^2 values again for simplicity (i.e., the off-diagonal entries in the covariance matrix are not included), as these exactly match the intuition one would obtain from “χ-by-eye” investigation of Figs. 23 and 24, we find an improvement of $\Delta\chi^2_{\text{TE,wide,diag}} = -1.2$, whereas $\Delta\chi^2_{\text{TE,deep,diag}} = -5.8$.

Interestingly, the χ^2 improvement in the TE-deep data is not localized in ℓ, but is rather spread evenly in small amounts across a broad range of multipole bins (see Fig. 24). The EE data exhibit the opposite behavior, with the wide patch contributing a larger improvement than the deep patch: $\Delta\chi^2_{\text{EE,wide,diag}} = -4.2$, while $\Delta\chi^2_{\text{EE,deep,diag}} = -0.7$. As in Sec. IV B, the lowest seven multipole bins in the wide-EE data are responsible for the improvement.

Thus, as in the ACT-only analysis, the wide-patch EE data play an important role in the EDE preference, but here the TE data (particularly from the deep patch) have an even more significant impact than EE. The TT wide and deep data exhibit smaller (and relatively similar) improvements to one another in the EDE fit compared to ΛCDM. We conclude that the same TE feature seen in Ref. [3] may drive the moderate EDE preference seen in this analysis. Further work, and higher-precision data, will be needed to ascertain whether this is a real feature of the CMB sky.

As a cross-check on the stability of the EDE results presented in this subsection, we rerun our MCMC analysis for a model with power-law index $n = 2$ in Eq. (1). We obtain very small shifts ($\lesssim 0.5\sigma$) in f_{EDE}, log10(z_c), and the standard cosmological parameters, as compared to those found in the $n = 3$ analysis. The main change is a preference for somewhat smaller values of the initial field displacement θ_i, which is nevertheless not tightly constrained in the $n = 3$ analysis anyhow. This shift arises due to the partial degeneracy between n and θ_i (see Ref. [20] for a detailed discussion of the role played by θ_i). We conclude that although current data do not constrain n precisely, our results are robust to the choice of reasonable values for this parameter.

Finally, to assess the robustness of the EDE parameter constraints in this analysis, we perform the same TE-rescaling exercise done at the end of Sec. IV B. We divide the ACT TE data by a factor of 1.05 and rerun the EDE MCMC analysis. The results are presented in Figs. 18 and 20 in Appendix B.

In general, the posterior changes seen in this exercise are relatively similar to those seen in the ACT-only analysis in the previous subsection: $\Omega_b h^2$ shifts upward into closer agreement with Planck, while n_s and S_8 increase, exhibiting more noticeable compensation effects for the EDE-induced early ISW effect. The f_{EDE} posterior broadens, but the central value is very stable: the marginalized constraint is now $f_{\text{EDE}} = 0.128^{+0.050-0.032}$ (68%/95% CL), while at 99.7% CL it is consistent with zero. The H_0 constraint remains remarkably stable: we find $H_0 = 74.1^{+2.5-2.0}$ km/s/Mpc, very similar to the result in Table VI. The critical redshift z_c shifts upward toward z_{eq}, but the bimodality seen in this exercise for the ACT-only analysis is no longer present. In addition, θ_i is essentially unconstrained. Qualitatively, the results are more similar to those from Planck alone [17] than found without the TE rescaling, but the persistence of the high value of H_0 is intriguing. As in the ACT-only case, we conclude that rescaling the ACT TE data does not fully erase the EDE-driven shifts seen in ΛCDM parameters in our analysis above, although the preference for non-zero EDE is weakened. Given the important role played by the TE data in the EDE preference in this joint analysis, these results motivate careful scrutiny to ascertain whether a physical or systematic explanation for such a rescaling of the TE data exists.

D. Constraints from ACT DR4 + Planck 2018 TT ($ell_{\text{max}} = 650$) + Planck 2018 CMB Lensing + BAO

We now extend our analysis to include the Planck 2018 CMB lensing power spectrum data [88], which primarily constrain σ_8 and Ω_m, and the compilation of BAO data described in Sec. III, which primarily constrain Ω_m via the distance-redshift relation. These additional data sets thus break degeneracies in the CMB-only data analyses presented thus far, particularly the so-called “geometric degeneracy” between Ω_m and H_0 (e.g., [90]). We fit the ΛCDM and EDE ($n = 3$) models to the ACT DR4 TT+TE+EE data, the large-scale ($ell_{\text{max}} = 650$) Planck TT data, the Planck 2018 CMB lensing data, and the BAO data in combination with the τ prior discussed in Sec. III. The marginalized parameter constraints are presented in Table VI while the posteriors are shown in Fig. 1 (EDE parameters) and in Fig. 10 in Appendix B (standard ΛCDM parameters).

As in the ACT-only and ACT + Planck 2018 TT ($ell_{\text{max}} = 650$) analyses presented in Tables III and IV, respectively, the best-fit parameters shift between ΛCDM and EDE when fit to these data, although not as significantly as in those analyses, due to the influence of the CMB lensing and BAO data here. The latter serve in particular to constrain S_8 and Ω_m independently of the other cosmological parameters, which breaks degeneracies in the CMB data and thereby prevents shifts in H_0 as large as those seen in Tables III and IV. However, non-negligible f_{EDE} is allowed by the data considered here, and the statistical constraining power is sufficiently high to yield moderately significant evidence for non-zero f_{EDE}: the 95% CL constraint on the EDE fraction is $f_{\text{EDE}} = 0.091^{+0.069-0.056}$, while the 99.7% CL constraint is $f_{\text{EDE}} = 0.091^{+0.11-0.063}$.

22 Briefly, with all other parameters held fixed, θ_i sets the frequency of oscillations of the EDE field ϕ at the background level, which subsequently determines the effective perturbation sound speed.
Constraints on ΛCDM and EDE ($n = 3$) from ACT DR4 TT+TE+EE + Planck 2018 TT ($\ell_{\text{max}} = 650$) + Planck 2018 CMB Lensing + BAO + τ prior

Parameter	ΛCDM Best-Fit	ΛCDM Marg.	EDE ($n = 3$) Best-Fit	EDE ($n = 3$) Marg.
log(1010 A_s)	3.060	3.058 ± 0.021	3.050	3.060 ± 0.021
n_s	0.9785	0.9775 ± 0.0046	0.9684	0.9728 ± 0.0073
1000$\Omega_m h^2$	1.04328	1.04310 ± 0.00057	1.04246	1.04228 ± 0.00062
$\Omega_b h^2$	0.02239	0.02236 ± 0.00017	0.02120	0.0215 ± 0.00035
$\Omega_c h^2$	0.1185	0.1187 ± 0.0012	0.1289	0.1286 ± 0.0027
τ_{reio}	0.060	0.059 ± 0.011	0.055	0.059 ± 0.013
y_p	1.0028	1.0028 ± 0.0041	1.0037	1.0051 ± 0.0051
log$_{10} (z_c)$	–	–	3.16	< 3.36
θ_i	–	–	0.72	< 2.82
H_0	68.40	68.25 ± 0.51	70.9	70.9$^{+1.9}_{-2.0}$
Ω_m	0.3025	0.3042 ± 0.0068	0.3003	0.3000 ± 0.0072
σ_8	0.8175	0.8171 ± 0.0080	0.825	0.829$^{+0.013}_{-0.012}$
S_8	0.821	0.823 ± 0.012	0.825	0.828$^{+0.018}_{-0.017}$
log$_{10}(f/\sigma_8)$	–	–	27.47	27.19$^{+0.32}_{-0.33}$
log$_{10}(m/\mu eV)$	–	–	-27.42	-27.60$^{+0.15}_{-0.17}$

TABLE VI: Best-fit and marginalized 68% CL constraints on cosmological parameters in the ΛCDM and EDE ($n = 3$) models, inferred from ACT DR4 TT+TE+EE, Planck 2018 TT ($\ell_{\text{max}} = 650$), Planck 2018 CMB lensing, and BAO data, in combination with a Gaussian prior on the optical depth τ. Upper and lower bounds are quoted at 95% CL. The associated posteriors are shown in Fig. 1(EDE parameters) and in Fig. 16 in Appendix B (standard ΛCDM parameters).

Data set	ΛCDM	EDE ($n = 3$)
ACT DR4 TT	100.8	97.3
ACT DR4 TE	81.6	71.8
ACT DR4 EE	100.0	96.5
ACT DR4 TT + TE + EE	292.1	276.1
Planck 2018 low-ℓ TT	251.1	251.3
Planck 2018 TT ($\ell_{\text{max}} = 650$)	251.1	251.3
Planck 2018 CMB Lensing	8.7	8.9
BAO (6dF)	0.007	0.03
BAO (DR7 MGS)	2.0	2.3
BAO (DR12 BOSS)	3.3	3.4
Total χ^2	578.7	566.0
$\Delta \chi^2$	–12.7	–

TABLE VII: χ^2 values for the best-fit ΛCDM and EDE models to the ACT DR4 TT+TE+EE, Planck 2018 TT ($\ell_{\text{max}} = 650$), Planck 2018 CMB lensing, and BAO data. Note that the joint χ^2 for ACT DR4 TT+TE+EE is not equal to the sum of the individual χ^2 due to non-negligible off-diagonal blocks in the covariance matrix. The decrease in χ^2 is 12.7 for the three-parameter EDE extension of ΛCDM.

The inclusion of the BAO and CMB lensing data thus reduces error bars, but does not prevent the EDE model from still providing an improved fit to the ACT DR4 data over ΛCDM, as seen in the previous subsections. The best-fit value for the maximal EDE fraction is $f_{\text{EDE}} = 0.091$, somewhat lower than seen in the ACT + large-scale Planck TT analysis in the previous subsection, with log$_{10}(z_c) = 3.16$, yielding $H_0 = 70.9$ km/s/Mpc. The posteriors are generally more Gaussian than those in the ACT-only and ACT + large-scale Planck TT analyses, as seen in the agreement of the best-fit values with the posterior means (e.g., the marginalized constraint on the Hubble constant is $H_0 = 70.9^{+1.0}_{-2.0}$ km/s/Mpc). There are a few exceptions: θ_i is essentially unconstrained and $\Omega_b h^2$ is still noticeably skewed, with a tail extending to high values. Perhaps intriguingly from a model-building perspective, this data set combination (which is the most constraining we consider without including the full Planck data set) prefers values of $z_c < z_{\text{eq}}$, close to the recombination epoch. Formally, the best-fit $z_c = 1450$, very close to recombination at $z_s = 1100$.

While non-zero values of f_{EDE} remain moderately preferred as in the previous two subsections, the downward shift in H_0 after folding in the BAO and CMB lensing data is notable. This shift occurs because the BAO + CMB lensing combination favors $\Omega_m \approx 0.3$ thereby forbidding the decrease in Ω_m seen in Tables I and IV. The upward shift in $\Omega_c h^2$ required to counteract the EDE-induced early ISW effect thus cannot simultaneously accommodate a very high H_0 value, as it would drive Ω_m too low to match the BAO and CMB lensing data. This result is in accord with the general argument presented by Ref. [27], who showed that models that attempt to increase the CMB-inferred H_0 solely by reducing the sound horizon cannot simultaneously accommodate BAO data and an H_0 value larger than roughly 70 km/s/Mpc.

23 Hints that $z_c \approx z_{\text{eq}}$ may suggest that the “coincidence problem” in the EDE scenario could be resolved by linking the dynamics to relevant physics at matter-radiation equality. The fit here suggests that this model-building clue may have been spurious.

24 Formally, $\Omega_m = 0.303_{-0.015}^{+0.015}$ from Planck 2018 CMB lensing and BAO data, within ΛCDM [65].
km/s/Mpc.

The impact of the BAO and CMB lensing data is also seen in S_8. In the ACT-only and ACT + large-scale Planck TT analyses, S_8 was able to take quite low values in the EDE fits. The shift in Ω_m discussed above now forbids this, and S_8 takes on a noticeably higher value, $S_8 = 0.828^{+0.015}_{-0.018}$. Even more strikingly, the error bar on S_8 in Table IV decreases by a factor of nearly three relative to that in Table IV This reflects the extremely important role played by LSS in constraining models that aim to increase the value of H_0 inferred from indirect, cosmological probes [5, 47, 48]. With the inclusion of the BAO and CMB lensing data, the apparent resolution of the “S_8 tension” seen in the previous two subsections is now no longer present. However, even with these additional data sets included, the error bars remain sufficiently large in the EDE fit that strong conclusions cannot be drawn.

As in the previous subsections, we assess the preference for EDE over ΛCDM in this analysis via the difference in the best-fit χ^2 values. Table VII presents χ^2 values for the best-fit ΛCDM and EDE models to the ACT DR4, Planck TT ($\ell_{\text{max}} = 650$), Planck 2018 CMB lensing, and BAO data. The ACT χ^2 are further broken down into contributions from the TT, TE, and EE power spectra.

As in Sec. IV B and IV C, both the ΛCDM and EDE models remain a good fit to the ACT power spectra within the joint ACT + Planck TT ($\ell_{\text{max}} = 650$) + CMB lensing + BAO analysis. The best-fit ΛCDM model has $\chi^2_{\text{ACT}} = 292.1$ for 254 degrees of freedom, corresponding to PTE = 0.050. The best-fit EDE model has $\chi^2_{\text{ACT}} = 276.1$ for 251 degrees of freedom, corresponding to PTE = 0.133. Thus, both models provide acceptable fits to the ACT data.

The best-fit EDE model yields an improvement of $\Delta\chi^2 = -12.7$ over the best-fit ΛCDM model. As in Table IV, the improvement in χ^2 is driven entirely by the ACT data here; the fit to every other data set is worsened (albeit most only by a negligible amount). Again as in the previous subsection (see Sec. IV C) the improvement here does not come solely from a single observable channel, with the ACT TT, TE, and EE data all contributing. However, again the largest contribution to $\Delta\chi^2$ comes from the ACT TE power spectrum with $\Delta\chi^2_{\text{TE}} = -9.8$. The EDE preference is not as highly localized as in the ACT-only case (where the lowest several multipole bins in EE dominated), but it does appear to be driven by the same features in the TE data that partially drove the results in the ACT + Planck TT ($\ell_{\text{max}} = 650$) analysis.

However, the EE residuals play less of a role here than in Sec. IV B and IV C. In particular, computing a diagonal-only $\Delta\chi^2$ as in the previous subsections, we find for the EE data that $\Delta\chi^2_{\text{EE,diag}} = -1.6$ and $\Delta\chi^2_{\text{EE,deep,diag}} = -1.6$. In other words, the prominent role played by the lowest seven EE-wide multipole bins is no longer seen. This is likely due to the restrictions placed on the model by the matter density constraints from the BAO and CMB lensing data, which do not allow the EE residuals to be accommodated. For comparison, for the TE data we find $\Delta\chi^2_{\text{TE,diag}} = -3.4$ and $\Delta\chi^2_{\text{TE,deep,diag}} = -5.6$, indicating that the TE-deep data again have the most significant impact in the overall EDE preference, although the TE-wide data also exhibit more noticeable improvement than in Sec. IV C. In general, the residuals to the best-fit model here are sufficiently similar to those in Fig. 4 that we refrain from plotting them.

Finally, we use the value of $\Delta\chi^2$ (assumed to be χ^2-distributed with three degrees of freedom) and the AIC to assess the robustness of the overall improvement in fit seen here, given that the EDE model has three additional free parameters beyond ΛCDM. We find that $\Delta\chi^2$ = -12.7 corresponds to a preference for EDE over ΛCDM at the 99.5% CL, or 2.8σ, which is not significant, albeit not completely negligible. We find $\Delta\text{AIC} = -6.7$ for the improvement of the EDE fit over ΛCDM, which is not significant.

E. Constraints from ACT DR4 + Planck 2018

As a final analysis, we consider the combination of the ACT DR4 data with the full Planck 2018 TT, TE, and EE data. The parameter error bars are sufficiently large in the ACT-only analysis (see Sec. IV B) that it is statistically acceptable to combine the ACT data with the full Planck data set, despite their somewhat different preferred regions in the EDE parameter space. The statistical weight of the full Planck data set is sufficiently large compared to ACT DR4 that it dominates the combined posteriors, as seen below. To avoid double-counting information contained in both data sets, we restrict the ℓ range of the ACT TT likelihood here such that $\ell_{\text{min}} = 1800$.

We fit the ΛCDM and EDE ($n = 3$) models to the ACT and Planck data in combination with the τ prior discussed in Sec. III The marginalized parameter constraints are presented in Table VIII while the posteriors are shown in Fig. 2 (EDE parameters) and in Fig. 17 in Appendix B (standard ΛCDM parameters). Note that Fig. 2 also shows posteriors from the Planck-only analysis presented in Ref. [47]. For consistency with the analyses presented elsewhere in this paper, we exclude the Planck low-ℓ EE likelihood ($\ell < 30$) and instead use the Gaussian prior on τ discussed in Sec. III As a cross-check, we perform the analyses described in this subsection using the low-ℓ EE likelihood instead of the τ prior, and find negligible changes in all results, apart from a 1σ shift in A_s, due to the slightly lower central value of τ preferred by the Planck low-ℓ EE likelihood [15] as compared to our τ prior.

Compared to the analyses presented in the previous subsections (see Tables III and VI), the best-fit parameters shift much less between ΛCDM and EDE when fit to these data, due to the strong statistical weight carried by the full Planck data set, which does not prefer the existence of EDE [47]. However, as ACT alone weakly
Constraints on ΛCDM and EDE ($n = 3$) from ACT DR4 TT+TE+EE + Planck 2018 TT+TE+EE (full ℓ range, but no low-ℓ EE) + τ prior.

Parameter	ΛCDM Best-Fit	ΛCDM Marg.	EDE ($n = 3$) Best-Fit	EDE ($n = 3$) Marg.
$\log(10^{10}A_s)$	3.089	3.082 ± 0.024	3.086	3.091 ± 0.025
n_s	0.9727	0.9697 ± 0.0039	0.9838	0.977_{-0.0099}^{+0.0099}
$100\theta_s$	1.04218	1.04205 ± 0.00026	1.04164	1.0418_{-0.00031}^{+0.00037}
$\Omega_c h^2$	0.02242	0.02238 ± 0.00013	0.02242	0.02247 ± 0.00018
$\Omega_b h^2$	0.1188	0.1195 ± 0.0012	0.1283	0.1244_{-0.0051}^{+0.0025}
τ_{reio}	0.076	0.070 ± 0.012	0.065	0.070 ± 0.012
y_p	1.0003	1.0017 ± 0.0046	1.0000	1.0015 ± 0.0047
f_{EDE}	–	–	–	–
$\log_{10}(c_s)$	–	–	3.52	< 0.124
θ_1	–	–	2.83	> 0.51
H_0	67.94	67.64 ± 0.54	70.63	69.1_{-1.70}^{+0.83}
Ω_m	0.3074	0.3115 ± 0.0074	0.3034	0.3084 ± 0.0084
σ_8	0.8278	0.8261 ± 0.0097	0.843	0.838_{-0.0013}^{+0.0013}
S_N	0.838	0.842 ± 0.015	0.848	0.850 ± 0.017
$\log_{10}(f_{\nu}/eV)$	–	–	26.53	26.5_{-0.29}^{+0.22}
$\log_{10}(m_{\nu}/eV)$	–	–	-27.37	-27.22_{-0.39}^{+0.38}

Table VIII: Best-fit and marginalized 68% CL constraints on cosmological parameters in the ΛCDM and EDE ($n = 3$) models, inferred from ACT DR4 TT+TE+EE and Planck 2018 TT+TE+EE (full ℓ range, but no low-ℓ EE data to be consistent with the other analyses in this paper), in combination with a Gaussian prior on the optical depth τ. Upper and lower bounds are quoted at 95% CL. The associated posteriors are shown in Fig. 2 (EDE parameters) and in Fig. 17 in Appendix B (standard ΛCDM parameters).

Data set	ΛCDM	EDE ($n = 3$)
ACT DR4 TT	53.8	52.3
ACT DR4 TE	90.3	85.6
ACT DR4 EE	97.5	95.7
ACT DR4 TT+TE+EE	244.6	238.5
Planck 2018 low-ℓ TT	22.6	21.7
Planck 2018 TT+TE+EE	2343.3	2343.3
Total χ^2	2610.3	2603.5

Table IX: χ^2 values for the best-fit ΛCDM and EDE models to the ACT DR4 TT+TE+EE and Planck 2018 TT+TE+EE (full ℓ range) data. The low-ℓ EE data from Planck are excluded for consistency with the other analyses presented in this paper (in lieu of the τ prior used throughout), although we verify that this choice has negligible impact on these results. Note that the joint χ^2 for ACT DR4 TT+TE+EE is not equal to the sum of the individual χ^2 due to non-negligible off-diagonal blocks in the covariance matrix. Also, the ACT χ^2 values in this table cannot be directly compared to those in Tables III [V] or VII as the ℓ range used here for the ACT TT data is reduced in order to avoid double-counting information in combination with Planck [IV] [IV]. The decrease in χ^2 is 6.8 for the three-parameter EDE extension of ΛCDM, driven primarily in this case by the ACT TE data.

The small change in parameter posteriors compared to those found from Planck data alone is also reflected in a much smaller χ^2 improvement in the EDE fit over ΛCDM for the ACT + Planck analysis here, as compared to those seen in the previous subsections. Table IX presents χ^2 values for the best-fit ΛCDM and EDE models to the ACT DR4 and Planck primary CMB data. The ACT χ^2 values are further broken down into contributions from the TT, TE, and EE power spectra. The best-fit EDE model yields an improvement of $\Delta\chi^2 = -6.8$ over the best-fit ΛCDM model. As in Tables IV and VII, the improvement in χ^2 - albeit moderate here – is driven primarily by the ACT data; the fit to Planck is essentially unchanged ($\Delta\chi^2_{Planck} = -0.7$). Also as seen in Sec. IV C and IV D the largest contribution to $\Delta\chi^2$ comes from the ACT TE power spectrum, with $\Delta\chi^2_{TE} = -4.7$. This suggests that the EDE model attempts to fit similar residuals to those that drive the fits in the previous two subsections, but is prevented from fully doing so by the highly constraining Planck TT data. In fact, even the Planck EE error bars are smaller than those from ACT at $\ell < 800$, and this acts to prevent the ACT-wide EE residual in the lowest several multipole bins from driving the fit toward EDE.

prefers non-zero f_{EDE} (see Table II), the upper limit on this parameter weakens in the joint ACT + Planck analysis here ($f_{EDE} < 0.124$ at 95% CL), as compared to the limit obtained from Planck alone ($f_{EDE} < 0.087$ at 95% CL) [47]. The impact of the inclusion of ACT DR4 data on other parameters of interest is relatively minimal, e.g., we find $H_0 = 69.17_{-1.70}^{+1.75}$ km/s/Mpc (ACT+Planck) vs. $H_0 = 68.29_{-1.20}^{+0.73}$ km/s/Mpc (Planck alone) [47]. Similarly, we find $S_8 = 0.850 \pm 0.017$ (ACT+Planck) vs. $S_8 = 0.839 \pm 0.017$ (Planck alone) [47]. The inclusion of ACT data does lead to somewhat more skewness in the posteriors, however, as reflected in differences between the best-fit and posterior mean values. For example, the best-fit $H_0 = 70.63$ km/s/Mpc and the best-fit $f_{EDE} = 0.990$, which is relatively close to the 95% CL bound quoted above.
Differences between the best-fit EDE models to ACT, ACT + large-scale Planck TT, and Planck alone are further investigated in Sec. [V] below.

As a brief additional investigation, we compute diagonal-only $\Delta \chi^2$ for the wide and deep patches separately, as in the previous subsections. We find $\Delta \chi^2_{\text{TE, wide, diag}} = -2.0$ and $\Delta \chi^2_{\text{TE, deep, diag}} = -2.0$, indicating that both regions contribute roughly equally; in particular, the TE-deep data do not dominate, as had been seen earlier in Sec. [IV C]. We find $\Delta \chi^2_{\text{EE, wide, diag}} = -2.5$ and $\Delta \chi^2_{\text{EE, deep, diag}} = -0.6$, indicating that the EE-wide data still play a larger role in the EDE preference than the EE-deep data, but far less overall than seen in the ACT-only analysis in Sec. [IV B].

Finally, we use the value of $\Delta \chi^2$ (assumed to be χ^2-distributed with three degrees of freedom) and the AIC to assess the robustness of the overall improvement in fit seen here, given that the EDE model has three additional free parameters beyond ΛCDM. We find that $\Delta \chi^2 = -6.8$ corresponds to a preference for EDE over ΛCDM at the 92.2% CL, or 1.8σ, which is not significant. We find $\Delta \text{AIC} = -0.8$ for the improvement of the EDE fit over ΛCDM, corresponding to no preference. This result is very similar to that found in the Planck-only case, with $\Delta \chi^2 = -4.1$ and $\Delta \text{AIC} = +1.9$ [47].

V. DISCUSSION AND OUTLOOK

A summary of the main results of this work is provided in Sec. [IV A]. The main qualitative takeaway is that current conclusions about the EDE scenario do not appear to be fully robust to the choice of CMB data set. The full Planck data set and the ACT data in combination with large-scale TT data from Planck (or from WMAP [40]) yield different conclusions as to the viability of EDE for significantly increasing the value of H_0 inferred from CMB data, with the latter preferring EDE over ΛCDM at roughly 3σ significance (as assessed via $\Delta \chi^2$). However, we emphasize that the full Planck data set carries significantly more statistical weight than ACT DR4 (or ACT + large-scale Planck TT).

Fig. [5] presents a compact summary of the implications for the inference of H_0 from the CMB, BAO, and CMB lensing data analyzed in this work. We show the marginalized posterior for H_0 inferred within the ΛCDM and EDE models, inferred from the Planck primary CMB data alone [47], and inferred from the ACT DR4 primary CMB data alone or in combination with other probes (Sec. [IV B][IV D]). We do not plot the posteriors derived from the combination of ACT with the full Planck data (Sec. [IV E]), as they are similar to the Planck-only results. The ACT-only and ACT + large-scale Planck TT analyses exhibit significant increases in the inferred value of H_0 between ΛCDM and EDE, whereas Planck does not. In both cases, the H_0 error bar increases as well, although more substantially in the ACT-based analyses. The inclusion of BAO and CMB lensing data with ACT +

large-scale Planck TT somewhat moderates the increase in H_0, but a long tail out to high H_0 values is nevertheless still seen in the posterior. For visual comparison, the plot also displays the latest direct H_0 measurements from TRGB [12] (magenta) and SH0ES [10] (grey) are also shown, with the shaded bands denoting the 68% and 95% CL constraints.

![FIG. 5: Summary of marginalized H_0 posteriors in the ΛCDM (solid) and EDE (dashed) models, as inferred from the data set combinations listed in the legend. Results for Planck alone (red) are from Ref. [47]. Results for the other data set combinations are from Sec. [IV B][IV D]. For visual comparison, the latest direct H_0 measurements from TRGB [12] (magenta) and SH0ES [10] (grey) are also shown, with the shaded bands denoting the 68% and 95% CL constraints.](image)

25 The preference arises from the need to maximize the number of modes within the horizon at z_c that have a low effective EDE perturbation sound speed; see Ref. [29] for details.
in EDE as a function of redshift, $f_{\text{EDE}}(z)$, for the best-fit EDE models to ACT DR4 (solid blue), ACT DR4 + Planck TT ($\ell_{\text{max}} = 650$) (dashed green), and ACT DR4 + Planck TT ($\ell_{\text{max}} = 650$) + CMB lensing + BAO (dot-dashed orange). The redshifts of recombination (z_c) and matter-radiation equality (z_{eq}) are indicated by the solid vertical lines. Results for data set combinations including the full Planck primary CMB data are not shown, as these data do not prefer non-zero f_{EDE}.

($\ell_{\text{max}} = 650$), and ACT DR4 + Planck TT ($\ell_{\text{max}} = 650$) + CMB lensing + BAO. The redshifts of recombination and matter-radiation equality are also illustrated as solid vertical lines. The ACT-only results, with high $f_{\text{EDE}}(z_c)$, should be taken with a grain of salt, as the parameters of the EDE model are only weakly constrained by ACT data alone. In the other cases shown, which correspond to more constraining data set combinations, it is evident that the EDE field starts at small θ_i, as no oscillations in the EDE energy density can be seen by eye in the green or orange curves. In addition, the relatively low best-fit values of z_c in these fits are apparent: we find $z_c \approx z_*$, rather than near z_{eq} as suggested in previous analyses [28,29,47]. If similar results are found at higher significance in upcoming data, there are numerous consequences for theoretical model-building. An immediate implication is that power-law potentials may serve as reasonable candidate EDE models in the context of the ACT-driven analyses considered here, since the potential in Eq. (1) is well-approximated by a power-law near $\phi = 0$. From a theoretical standpoint, this would bring significant advantages, as a successful model could be constructed with less fine-tuning in the potential. We also note that the analysis in this work could be extended in a more model-independent approach: although we have focused here on a specific EDE model, more generally the shape of the CMB power spectrum can be used in an analogous way to detect deviations from a fiducial expansion history out to high redshift due to the effect of expansion on the growth of perturbations. We leave such an investigation to future work.

Another interesting theoretical implication of our results is the preference for models in which the decay constant f in the EDE potential is near or even above the Planck scale. For example, the best-fit EDE model to ACT DR4 + Planck 2018 TT ($\ell_{\text{max}} = 650$) in Table IV has $f = 1.23 \times 10^{28}$ eV, well above the Planck scale, $M_{\text{Pl}} = 2.435 \times 10^{27}$ eV. Similarly, the best-fit EDE model in the analysis of these data sets supplemented with Planck CMB lensing and BAO data in Table VII has $f = 2.97 \times 10^{27}$ eV. Taken at face value, these super-Planckian decay constants represent a theoretical challenge to the EDE scenario [91,92]. Alternatively, one may choose to impose a prior $f < M_{\text{Pl}}$ in the data analysis, an approach that was pursued in Ref. [47]. In that work, this prior cut did not have a significant impact, as the use of the full Planck data set pulled f_{EDE} toward zero and hence f toward sub-Planckian values. Here, the preference for non-negligible f_{EDE} seen in ACT leads to significant posterior support for super-Planckian f values, and thus it is likely that imposing a cut $f < M_{\text{Pl}}$ would have a more noticeable impact. We leave such theoretical interpretation to future work, focusing instead on the data-driven differences seen between ACT and Planck in the context of the EDE scenario.

To further understand the origin of these differences between ACT and Planck, in Fig. 7 we plot the best-fit EDE models to all of the data set combinations considered in this paper, as well as to the full Planck 2018 data set on its own (from [47]). We also show the residuals of the best-fit EDE model to ACT DR4 alone with respect to the best-fit EDE model to Planck alone, and analogous residuals for the best-fit EDE model to ACT DR4 + Planck 2018 TT ($\ell_{\text{max}} = 650$). These residuals are shown in units of the CV-limited error bar at each multipole:

$$\sigma_{\ell}^{TT} = \sqrt{\frac{2}{2\ell+1}C_{\ell}^{TT}}$$

$$\sigma_{\ell}^{TE} = \sqrt{\frac{1}{2\ell+1}C_{\ell}^{TT}C_{\ell}^{EE} + \left(C_{\ell}^{TE}\right)^2}$$

$$\sigma_{\ell}^{EE} = \sqrt{\frac{2}{2\ell+1}C_{\ell}^{EE}}$$

The residuals in Fig. 7 clearly illustrate the data trends that drive the fits in Sec. IVE. IVD. The best-fit EDE model to ACT DR4 alone exhibits noticeable residuals in the EE power spectrum, particularly over $700 \lesssim \ell \lesssim 2500$. This matches the behavior noted in Fig. 3, which is driven by the wide-patch EE data shown in Fig. 21 in Appendix B. The best-fit EDE model to ACT and Planck TT ($\ell_{\text{max}} = 650$) exhibits clear residuals in the TE power spectrum, deviating at the $-2\sigma_{\text{CV}}$ level from the best-fit Planck EDE model in several places, and generally lying below the Planck model over $1000 \lesssim \ell \lesssim 4500$. The EE residuals are less pronounced in this case, apart from a
FIG. 7: Comparison of TT (top), TE (middle), and EE power spectra in the best-fit EDE models to the data set combinations considered in Sec. IV and the best-fit EDE model to Planck data alone (the latter from Ref. [47]). The smaller panels show differences with respect to the Planck best-fit EDE model in units of the CV-limited error bar at each ℓ, with the $\pm 2\sigma$ range demarcated by the thin grey lines. The blue curve shows residuals for the best-fit EDE model to ACT DR4 alone (Table II) and the orange curve shows residuals for the best-fit EDE model to ACT + large-scale Planck TT data (Table IV). Fig. 25 in Appendix B shows analogous residuals to the best-fit ΛCDM model to Planck alone, which are similar to those shown here.

noticeable feature below the multipole range of the ACT EE data, but there is a trend in TT that is non-negligible (and also seen in the ACT-only case).

To quantify the discrepancy between the best-fit ACT EDE model and the Planck data, we compute χ^2 values using the Plik_lite high-ℓ likelihood for Planck TT+TE+EE, in which the effects of foregrounds have already been marginalized over, thus allowing comparison of CMB-only theory spectra [65]. This likelihood has only one free parameter, the overall calibration, which
we hold fixed to unity ($A_{\text{plank}} = 1$) for these calculations. We emphasize that the full Planck likelihood (not the “lite” likelihood) is used in our primary analysis, and thus the χ^2 values here should not be compared to those in Sec. IV. We use the “lite” likelihood here to compare theory power spectra directly to the Planck data, without needing to re-fit foreground parameters. We obtain plik_lite χ^2 values for the following best-fit theory models:

- Best-fit ΛCDM model to Planck TT+TE+EE + τ prior (from Ref. 3): $\chi^2_{\text{plik_lite}} = 581$
- Best-fit ΛCDM model to ACT DR4 TT+TE+EE + Planck TT ($\ell_{\text{max}} = 650$) + τ prior (see Table IV): $\chi^2_{\text{plik_lite}} = 662$
- Best-fit EDE model to ACT DR4 TT+TE+EE + Planck TT ($\ell_{\text{max}} = 650$) + τ prior (see Table IV): $\chi^2_{\text{plik_lite}} = 807$

Thus, the best-fit EDE model from Sec. IV.C is a significantly worse fit to Planck than the best-fit ΛCDM model (note that there are 613 multipole bins in the plik_lite likelihood, although these are partially correlated due to the effects of foreground marginalization). However, we emphasize that this exercise is a frequentist point estimate, which does not propagate uncertainties on the parameters, as is required for a careful assessment of consistency (as done for ΛCDM in Appendix A). Nevertheless, it provides an intuitive assessment of the level of differences in the best-fit models to these data.

At present, we are not aware of a known systematic effect in ACT (or in Planck) that could easily explain the differences seen here. However, it was shown in Ref. 3 that dividing the ACT TE power spectrum data by a factor of 1.05 yielded ΛCDM parameters in closer agreement with those from WMAP and Planck. We emphasize that the factor of 1.05 has no obvious origin; see Ref. 3 for further discussion. Here, we find that this rescaling of the TE data leads to a broadened posterior on f_{sky} that is more consistent with zero (see Sec. IV.B and IV.C). However, the relatively high value of H_0 inferred in the analysis persists. Understanding whether this rescaling is associated with a real effect is a critical question.

Ref. 55 also found that multiple null tests between ACT TE power spectra and ACT \times Planck cross-TE power spectra failed, in both the D56 and BOSS-N regions (see Table 17 in that work). 27 It was suggested that these null test failures could be related to the mild differences in ΛCDM parameters preferred between ACT and Planck. It seems natural to speculate that this issue could be connected to the parameter differences seen in the EDE model here as well. Elucidating the origin of these differences – and whether they may be related to systematic effects in ACT – is of utmost importance and is the focus of ongoing work.

An additional test that will be useful in future analyses will be restricting the ACT power spectra to $\ell > 1000$ (or considering other multipole cuts). With the ACT DR4 data, this would non-negligibly weaken the overall constraining power, but for future data releases the statistical weight will be sufficiently large to allow precise tests from such data subsets.

Looking ahead in an optimistic light, the differences in Fig. 7 provide clear targets for upcoming CMB measurements, including those from ACT 93, SPT-3G 94, Simons Observatory 95, and CMB-S4 96. To quantify this outlook, we compute the $\Delta \chi^2$ at which the models shown in Fig. 7 could be distinguished in upcoming analyses. We assume an observed sky fraction $f_{\text{sky}} = 0.3$ (which rescales the CV errors as $\sqrt{f_{\text{sky}}}$) and CV-limited data on the following multipole ranges: $2 \leq \ell \leq 2500$ (TT); $350 \leq \ell \leq 1800$ (TE); $350 \leq \ell \leq 1000$ (EE). 28 We find that the best-fit ACT EDE model in this work can be distinguished from the best-fit Planck EDE model at $\Delta \chi^2 = 550$ in such an analysis, corresponding to a 23σ preference for one model or the other. Similarly, we find that the best-fit EDE model to ACT and large-scale Planck TT data in this work can be distinguished from the best-fit Planck EDE model at $\Delta \chi^2 = 470$, corresponding to a 22σ preference. Thus, near-future CMB data will clearly distinguish between ΛCDM (or an ΛCDM-like EDE model) and an EDE model capable of yielding a significant increase in the value of H_0 inferred from the CMB.

As a cross-check, Fig. 25 in Appendix B shows analogous residual difference plots when comparing the ACT or ACT + large-scale Planck TT best-fit EDE models to the best-fit ΛCDM model to Planck 2018 data (rather than best-fit EDE model as in Fig. 7). As expected, the residuals are similar in the two plots, as the best-fit ΛCDM and EDE models to Planck yield nearly identical power spectra ($\Delta \chi^2 = -4.1$ 17). However, minor differences can be seen: the TE residuals in Fig. 25 are somewhat smaller than those in Fig. 7 while the EE residuals at high multipoles are larger. Nevertheless, it is clear that the differences between the best-fit EDE model to ACT (or ACT + large-scale Planck TT) and either the Planck best-fit EDE or ΛCDM models are sufficiently large to be distinguishable in upcoming CMB data. This sets a clear target for near-future measurements.

26 Note that we do not consider the ACT-only best-fit models from Sec. IV.B here because of their anomalously low prediction for the first TT acoustic peak (see the top panel of Fig. 5), which is not measured by ACT, and thus leads to misleading χ^2 results when compared to Planck.

27 Note that the failed TE null tests from Ref. 55 were preliminary, in the sense that all relevant effects for the ACT vs. Planck comparison were not included (e.g., Planck temperature-to-polarization leakage beams). Robust comparisons between the data sets are the subject of ongoing work.

28 In TT, we assume that WMAP or large-scale Planck data are used to reach $\ell = 2$.
As a final illustration of the moderate parameter differences uncovered in the EDE analyses in this work, Fig. 15 in Appendix A shows the marginalized posteriors for the standard ΛCDM parameters within the EDE model fit to ACT, ACT + Planck TT (ℓ_{max} = 650), and the full Planck data on their own. While the agreement is reasonable in most of the 2D posterior plots, there are nevertheless multiple 2D posteriors for which the Planck and ACT contours do not overlap, even at 95% CL. Uncovering the origin of the preferences for these different regions of EDE parameter space is necessary to re-establish the robustness of cosmological constraints on this scenario.

We conclude by noting that in most CMB analyses to date, it has sufficed to establish consistency across data sets by comparing ΛCDM parameter constraints. With this work, we have demonstrated that current CMB data are now sufficiently powerful that this is no longer the case: ACT and Planck are in agreement within ΛCDM, but in some disagreement within EDE. Understanding this disagreement will be a crucial focus of upcoming work.

Acknowledgments

We are grateful to Evan McDonough and Michael Toomey for their contributions to the development of CLASS_EDE and for useful conversations, and we thank the Scientific Computing Core staff at the Flatiron Institute for computational support. The Flatiron Institute is supported by the Simons Foundation. EC acknowledges support from the STFC Ernest Rutherford Fellowship ST/M004856/2 and STFC Consolidated Grant ST/S00033X/1. EC and UN acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant agreement No. 849169). JD and ES acknowledge support from the National Science Foundation (NSF) contract number AST-1814971. NS acknowledges support from NSF grant number AST-1907657. MHi and KM acknowledge support from the National Research Foundation of South Africa. VG acknowledges support from NSF grant number AST-1907657. MHi and KM acknowledge support from the National Research Foundation of South Africa. VG is supported by the National Science Foundation under Grant No. PHY-2013951. ZX is supported by the Gordon and Betty Moore Foundation. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Industry Canada and by the Province of Ontario through the Ministry of Colleges and Universities. ADH acknowledges support from the Sutton Family Chair in Science, Christianity and Cultures and from the Faculty of Arts and Science, University of Toronto. SKC acknowledges support from NSF award AST-2001866. EV acknowledges support from the NSF Graduate Research Fellowship (GRFP) via Grant No. DGE-1650441. CS acknowledges support from the Agencia Nacional de Investigación y Desarrollo (ANID) under FONDECYT grant no. 11191125. This work was completed at the Aspen Center for Physics, which is supported by the National Science Foundation grant PHY-1607611.

Support for ACT was through the U.S. National Science Foundation through awards AST-0408698, AST-0965625, and AST-1440226 for the ACT project, as well as awards PHY-0355328, PHY-0855887 and PHY-1214379. Funding was also provided by Princeton University, the University of Pennsylvania, and a Canada Foundation for Innovation (CFI) award to UBC. ACT operates in the Parque Astronómico Atacama in northern Chile under the auspices of the Agencia Nacional de Investigación y Desarrollo (ANID). The development of multichroic detectors and lenses was supported by NASA grants NNX13AE56G and NNX14AB58G. Detector research at NIST was supported by the NIST Innovations in Measurement Science program.

We acknowledge use of the matplotlib [87], numpy [88], GetDist [82], Cobaya [74], and CosmoMC [75] packages and use of the Boltzmann codes CAMB [83] and CLASS [84].

Appendix A: High-accuracy CMB lensing calculations and ACT DR4 cosmology

In this appendix, we investigate the accuracy settings used in standard Einstein-Boltzmann codes for theoretical calculations of the primary CMB power spectra. We show that the accuracy settings in calculations used for the analysis of the Planck CMB data are not high enough for analysis of current and future high-resolution, low-noise CMB observations. We show that this already has a small, but notable, effect on the ΛCDM cosmological parameter constraints from the ACT DR4 release. For future experiments (e.g., SO [95] and CMB-S4 [96]), biases in parameter inference due to the use of Planck-level accuracy settings in Einstein-Boltzmann codes can be many times larger than the statistical error bars [80].

1. Introduction

Ref. [3], hereafter A20, presented cosmological parameter constraints inferred from ACT DR4. Cosmological parameters were derived from the ACT TT, TE, and EE CMB-only (foreground-marginalized) power spectra [52] alone or in combination with WMAP [91] or Planck [63].

The parameter estimation pipeline in A20 made use of the Fortran-90 version of the CAMB/CosmoMC package [75, 82]20 and theory predictions were computed to a maximum multipole ℓ_{max} = 6000, well beyond the maximum CMB multipole retained in the ACT DR4 cosmological analyses, ℓ_{max, data} = 4500. Other settings in the

20 In A20 we used the January 2017 versions of these codes, but later releases lead to minimal, negligible changes.
theory calculations were left to the standard CAMB high-accuracy defaults, which are set to give a target accuracy of 0.1% in the lensing power spectrum for multipoles $500 < \ell < 2000$ (optimal for Planck cosmology). In particular, in A20, the parameter $k_{\eta, \text{max scalar}}$, the maximum of the product of the wavenumber of scalar perturbations and the curvature perturbation variable, was internally computed from the ℓ_{max} value as $2\ell_{\text{max}}$. Subsequent investigations and in particular, comparisons between CAMB and CLASS, determined that the use of higher accuracy settings changes the theoretical predictions for the lensed CMB power spectra at a level that is marginally non-negligible for the ACT DR4 data. For upcoming CMB data sets, the use of higher accuracy settings is evidently required.

In this appendix, we show how the use of high-accuracy settings impacts the baseline ACT DR4 cosmology results and make recommendations for theory predictions used for analyzing these data and future low-noise, high-resolution CMB observations.

2. High-accuracy lensing

At CMB multipoles $\ell > 3000$, the CMB damping-tail predictions depend on the CMB lensing potential power spectrum at scales $L > 2000$. Achieving high accuracy in the theory calculations on those lensing scales requires setting a number of parameters in the CAMB and CLASS initialization (“ini”) files. To identify settings providing accuracy high enough for the analysis of high-precision small-scale CMB data, we fine-tune a number of parameters that enter the damping calculations, similarly to what was done for the Planck analyses. This includes exploration of the parameters $\text{lens_potential_accuracy}$, lens_margin, AccuracyBoost, lSampleBoost, lAccuracyBoost, and $\text{DoLateRadTruncation}$ in the Python-CAMB package, as well as using increased values of ℓ_{max}.

As a way to identify suitable settings, we explore convergence in the ACT DR4 χ^2 for a ΛCDM cosmology, i.e., monitoring changes in the ACT likelihood in response to changes in the theoretical predictions while holding the cosmological parameters fixed to the ACT+WMAP solutions in A20 but increasing the accuracy parameters. We verify that the following accuracy parameters suffice for ACT DR4:

- $\text{lens_{potential_accuracy}} = 8$
- $\text{lens_{margin}} = 1050$
- $\text{AccuracyBoost} = 2.0$
- $\text{lSampleBoost} = 2.0$
- $\text{lAccuracyBoost} = 2.0$
- $\text{DoLateRadTruncation} = \text{False}$

in CLASS. In both codes, the requested maximum multipole for the lensed CMB power spectra, ℓ_{max}, should be set well above $\ell_{\text{max, data}}$, e.g., $\ell_{\text{max}} = 10000$ is (more than) sufficient for ACT DR4.

However, note that we do not explore how low the accuracy settings can be set such that one still obtains converged χ^2 for the ACT DR4 data. Lowering the parameters to the point that they are just above the necessary tolerance level would be needed to optimize the overall computation efficiency in an MCMC analysis, but we find that this is not required for the ACT cosmological parameter runs, as the theory predictions are still sufficiently fast.

Fig. 8 shows the impact of the default high-accuracy settings and the higher-accuracy ones presented above for the CMB lensing power spectrum prediction. The higher-accuracy and default-accuracy calculations differ by 15% at $L = 2000$, 43% at $L = 3000$, and 97% at $L = 4000$. We obtain excellent agreement between CAMB and CLASS for the higher-accuracy runs.

This change in the lensing power spectrum corresponds to a change in the tails of the TT, TE, and EE power spectra, as seen in Fig. 8, which shows the fractional change in these quantities when computed with the higher-accuracy versus default-accuracy settings. In particular, fractional differences greater than 1% are seen in the TT tail at $\ell > 3000$. At $\ell = 3000, 3500$, and 4000, the fractional differences in TT are 1.2%, 4.4%, and 12%, respectively. At a given ℓ value in the damping tail, the
fractional contribution from lensing to the total power is larger in TT than in EE because of the larger gradient in the primary CMB temperature field, which is why the effects seen here are larger in TT. This coherent increase in amplitude of the signal predicted in the TT tail will be evident at the \(\chi^2 \) level (since the ACT DR4 error bars are larger in EE than TT, the same trend seen in EE will have a much smaller impact).

To match these accuracy settings with the parameters in the \textsc{CAMB}/\textsc{CosmoMC} runs one needs to explicitly define the maximum \(k_\eta \) and set it to \(k_\eta \text{max scalar}=144000 \). This specific value converts the \texttt{pycamb} higher-accuracy settings (in particular, \texttt{lens_potential_accuracy}) to the Fortran-CAMB settings.\(^{33}\)

It is important to note that on these small scales, the lensing calculation itself is subject to uncertainty due to nonlinear evolution and baryonic effects. Here we adopt a fixed nonlinear model, the Halofit fitting function \(^{63}\), and simply explore the effect of increasing the numerical accuracy settings in \textsc{CAMB} and \textsc{CLASS}. For a detailed assessment of the impact of nonlinear and baryonic uncertainties on high-\(\ell \) CMB theory predictions for upcoming experiments, see Ref. \(^{56}\).

\(^{33}\) Antony Lewis, priv. comm.

FIG. 8: CMB lensing potential power spectrum, \([L(L + 1)^2C_\ell^\phi\phi/(2\pi)]\), obtained with the \textsc{CAMB} default high-accuracy settings (solid orange), and with the higher-accuracy settings presented here from \textsc{CAMB} (solid blue) or \textsc{CLASS} (dashed purple). All curves are computed with identical cosmological parameters (column 4 of Table 4 in A20).

3. Updated ACT DR4 cosmology

The amplitude of this effect compared to the sensitivity of the ACT DR4 data is shown in Fig. 10. The figure shows the difference between the LCDM best-fit model to the ACT data as determined with the default or with the higher-accuracy calculations. These best-fits are obtained by re-running the \textsc{CosmoMC} minimizer as in A20. We note that in this figure an adjustment in the best-fit cosmological parameters absorbs and changes some of the differences seen in Fig. 9 where the cosmology was kept fixed. Although small, we note the presence of a coherent trend in the TT tail as well as features at other scales.

We re-run the ACT DR4 cosmological parameter constraints with these higher-accuracy settings in \textsc{CosmoMC}. We show and quantify differences compared to A20 in Figs. 11 and 12 and Table X. The main differences are summarized below:
The most notable impact is a change in the best-fit χ^2. For the ACT-alone best-fit, we find $\Delta \chi^2_{\Lambda CDM} = 3.7$, i.e., the best-fit ΛCDM model to the ACT data has a worse χ^2 here than found in A20. This corresponds to a decrease in the PTE from 0.13 (A20) to 0.10 (here). For the ACT+WMAP best-fit, we find $\Delta \chi^2_{\Lambda CDM} = 4.0$, i.e., again the best-fit ΛCDM model to the ACT+WMAP data has a worse χ^2 here than found in A20.

- Small differences appear in the $\Omega_m h^2$ and n_s distributions, with small changes in the mean and width (0.2 – 0.3σ for the ACT-only analysis and 0.2σ for ACT+WMAP). Changes in the derived parameters σ_8 and H_0 are also at the level of 0.2 – 0.3σ.

- Within ΛCDM, the ACT DR4 parameters are consistent with WMAP at 2.4σ (unchanged from A20), while the ACT DR4 consistency with Planck improves to 2.5σ (here) from 2.7σ (A20).

- No impact is seen in the marginalized constraints on beyond-ΛCDM parameters, e.g., N_{eff} and A_L runs yield the same results for these parameters as in A20. The stability of A_L, which may seem surprising, is explained by the fact that this parameter is defined as the ratio of the measured amount of lensing compared to that predicted by a given set of ΛCDM parameters; thus the change in the ΛCDM parameters described above absorbs the effect, and A_L is unchanged.

4. Outlook

We recommend the use of the higher-accuracy settings defined here for ACT DR4 and future releases, and for other high-resolution CMB data.

Appendix B: Additional Posterior and Residual Plots

This appendix contains additional parameter posterior plots and power spectrum residual plots associated with the analyses presented in Sec. IV and V. Relevant details are provided in the figure captions.
FIG. 11: ΛCDM and derived parameters from A20 ACT-alone (light blue) compared with results from higher-accuracy settings (dark blue).

[1] PLANCK collaboration, N. Aghanim et al., Planck 2018 results. I. Overview and the cosmological legacy of Planck, Astron. Astrophys. 641 (2020) A1

[2] G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, [ApJS 208 (2013) 19]
FIG. 12: ΛCDM and derived parameters from A20 ACT+WMAP (orange) compared with results from higher-accuracy settings (teal).

[3] S. Aiola, E. Calabrese, L. Maurin, S. Naess, B. L. Schmitt, M. H. Abitbol et al., The Atacama Cosmology Telescope: DR4 maps and cosmological parameters, JCAP 2020 (2020) 047 [2007.07288].

[4] SPT-3G collaboration, D. Dutcher et al., Measurements of the E-mode polarization and temperature-E-mode correlation of the CMB from SPT-3G 2018 data, Phys. Rev. D 104 (2021) 022003 [2101.01684].

[5] M. M. Ivanov, M. Simonović and M. Zaldarriaga, Cosmological Parameters and Neutrino Masses from the Final Planck and Full-Shape BOSS Data, Phys. Rev. D 101 (2020) 083504 [1912.08208].
FIG. 13: Marginalized posteriors for the standard cosmological parameters in the ΛCDM (red) and EDE (blue) models fit to ACT DR4 TT+TE+EE data in combination with a Gaussian prior on τ, as presented in Sec. IV B. The vertical grey and magenta bands in the H_0 panel show the latest SH0ES [10] and TRGB [12] constraints, respectively. The vertical grey band in the S_8 panel shows the DES-Y3 constraint [76].

[6] O. H. E. Philcox, M. M. Ivanov, M. Simonović and M. Zaldarriaga, Combining Full-Shape and BAO Analyses of Galaxy Power Spectra: A 1.6\% CMB-independent constraint on H_0, JCAP 05 (2020) 032 [2002.04035].

[7] eBOSS collaboration, S. Alam et al., Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory, Phys. Rev. D 103 (2021) 083533 [2007.08991].

[8] O. H. E. Philcox, B. D. Sherwin, G. S. Farren and E. J. Baxter, Determining the Hubble Constant without the Sound Horizon: Measurements from Galaxy Surveys, Phys. Rev. D 103 (2021) 023535 [2008.08084].

[9] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri and D. Scolnic, Large Magellanic Cloud Cepheid Standards
FIG. 14: Marginalized posteriors for the standard cosmological parameters in the ΛCDM (red) and EDE (blue) models fit to ACT DR4 TT+TE+EE and Planck 2018 TT (ℓ_max = 650) data in combination with a Gaussian prior on τ, as presented in Sec. IV C. The vertical grey and magenta bands in the H_0 panel show the latest SH0ES [10] and TRGB [12] constraints, respectively. The vertical grey band in the S_8 panel shows the DES-Y3 constraint [73].

Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM, *Astrophys. J.* **876** (2019) 85 [1903.07603].

[10] A. G. Riess, S. Casertano, W. Yuan, J. B. Bowers, L. Macri, J. C. Zinn et al., *Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM*, *Astrophys. J. Lett.* **908** (2021) L6 [2012.08534].

[11] W. L. Freedman, B. F. Madore, T. Hoyt, I. S. Jang, R. Beaton, M. G. Lee et al., *Calibration of the Tip of the Red Giant Branch*, *ApJ* **891** (2020) 57 [2002.01550].

[12] W. L. Freedman, *Measurements of the Hubble Constant: Tensions in Perspective*
FIG. 15: Marginalized posteriors for the standard cosmological parameters in the EDE model fit to ACT DR4 TT+TE+EE data (red), ACT DR4 and Planck 2018 TT ($\ell_{\text{max}} = 650$) data (blue), and Planck 2018 TT+TE+EE data (green, results from Ref. [47]). The vertical grey and magenta bands in the H_0 panel show the latest SH0ES [10] and TRGB [12] constraints, respectively. The vertical grey band in the S_8 panel shows the DES-Y3 constraint [73]. Within the EDE model, both ACT and ACT + large-scale Planck TT data appear to prefer somewhat different regions of parameter space than that preferred by the full Planck data set on its own, but the uncertainties in the ACT-based analyses are too large to draw strong conclusions at present.

[13] K. C. Wong et al., H0LiCOW – XIII. A 2.4 per cent measurement of H_0 from lensed quasars: 5.3σ tension between early- and late-Universe probes, Mon. Not. Roy. Astron. Soc. 498 (2020) 1420 [1907.04869].

[14] S. Birrer et al., TDCOSMO - IV. Hierarchical time-delay cosmography – joint inference of the Hubble constant and galaxy density profiles, Astron. Astrophys. 643 (2020) A165 [2007.02941].

[15] PLANCK collaboration, N. Aghanim et al., Planck 2018
FIG. 16: Marginalized posteriors for the standard cosmological parameters in the ΛCDM (red) and EDE (blue) models fit to ACT DR4 TT+TE+EE, Planck 2018 TT ($\ell_{\text{max}} = 650$), Planck 2018 CMB lensing, and BAO data in combination with a Gaussian prior on τ, as presented in Sec. [IV D]. The vertical grey and magenta bands in the H_0 panel show the latest SH0ES [10] and TRGB [12] constraints, respectively. The vertical grey band in the S_8 panel shows the DES-Y3 constraint [73].

results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [1807.06209].

[16] DES collaboration, T. M. C. Abbott et al., Dark Energy Survey Year 1 Results: A Precise H_0 Estimate from DES Y1, BAO, and D/H Data, Mon. Not. Roy. Astron. Soc. 480 (2018) 3879 [1711.00403].

[17] L. Verde, T. Treu and A. G. Riess, Tensions between the Early and the Late Universe, in Nature Astronomy 2019, 2019, 1907.10625 DOI.

[18] L. Knox and M. Millea, Hubble constant hunter’s guide, Phys. Rev. D101 (2020) 043533 [1908.03663].

[19] E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri et al., In the realm of the Hubble tension—a review of solutions, Class. Quant. Grav. 38 (2021) 153001 [2103.01183].

[20] C. D. Kreisch, F.-Y. Cyr-Racine and O. Doré,
Neutrino puzzle: Anomalies, interactions, and cosmological tensions, *Phys. Rev. D* **101** (2020) 123505 [1902.00534].

[21] T. Brinckmann, J. H. Chang and M. LoVerde, Self-interacting neutrinos, the Hubble parameter tension, and the cosmic microwave background, *Phys. Rev. D* **104** (2021) 063523 [2012.11830].

[22] K. Jedamzik and L. Pogosian, Relieving the Hubble tension with primordial magnetic fields, *Phys. Rev. Lett.* **125** (2020) 181302 [2004.09487].

[23] L. Thiele, Y. Guan, J. C. Hill, A. Kosowsky and D. N. Spergel, Can small-scale baryon inhomogeneities resolve the Hubble tension? An investigation with ACT DR4, *Phys. Rev. D* **104** (2021) 063535 [2105.03003].

[24] L. Hart and J. Chluba, Updated fundamental constant constraints from Planck 2018 data and possible
FIG. 18: Marginalized posteriors for the EDE parameters and a subset of other parameters of interest in fits to ACT DR4 TT+TE+EE (red) and ACT DR4 TT+TE+EE with Planck 2018 TT ($\ell_{\text{max}} = 650$) (blue). The green and orange contours show results for the same data set combinations, but with the ACT TE data divided by 1.05. These results are discussed in Sec. IV B and IV C. The vertical grey and magenta bands in the H_0 panel show the latest SH0ES [10] and TRGB [12] constraints, respectively. The vertical grey band in the S_8 panel shows the DES-Y3 constraint [73].

relations to the Hubble tension, *Mon. Not. Roy. Astron. Soc.* 493 (2020) 3255 [1912.03986].

[25] T. Sekiguchi and T. Takahashi, Early recombination as a solution to the H_0 tension, PhRvD 103 (2021) 083507 [2007.03381].

[26] K. Aylor, M. Joy, L. Knox, M. Millea, S. Raghunathan and W. L. K. Wu, Sounds Discordant: Classical Distance Ladder ΛCDM-based Determinations of the Cosmological Sound Horizon, *Astrophys. J.* 874 (2019) 1 [1811.00537].

[27] K. Jedamzik, L. Pogosian and G.-B. Zhao, Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension, *Communications Physics* 4 (2021) 123 [2010.04158].
FIG. 19: Marginalized posteriors for the standard cosmological parameters in the EDE model fit to ACT DR4 TT+TE+EE data in combination with a Gaussian prior on τ, as presented in Sec. IV B. The blue contours show the same ACT results presented in Fig. 13, while the red contours show results found after dividing the ACT TE data by 1.05. The vertical grey and magenta bands in the H_0 panel show the latest SH0ES [10] and TRGB [12] constraints, respectively. The vertical grey band in the S_8 panel shows the DES-Y3 constraint [73].

[28] V. Poulin, T. L. Smith, T. Karwal and M. Kamionkowski, Early Dark Energy Can Resolve The Hubble Tension, Phys. Rev. Lett. 122 (2019) 221301 [1811.04083].

[29] T. L. Smith, V. Poulin and M. A. Amin, Oscillating scalar fields and the Hubble tension: a resolution with novel signatures, Phys. Rev. D101 (2020) 063523.

[30] P. Agrawal, F.-Y. Cyr-Racine, D. Pinner and L. Randall, Rock ‘n’ Roll Solutions to the Hubble Tension, 1904.01016.

[31] M.-X. Lin, G. Benevento, W. Hu and M. Raveri, Acoustic Dark Energy: Potential Conversion of the Hubble Tension, Phys. Rev. D100 (2019) 063542.
FIG. 20: Marginalized posteriors for the standard cosmological parameters in the EDE model fit to ACT DR4 TT+TE+EE and Planck 2018 TT ($\ell_{\text{max}} = 650$) data in combination with a Gaussian prior on τ, as presented in Sec. IV C. The blue contours show the results presented previously in Fig. 14, while the red contours show results found after dividing the ACT TE data by 1.05. The vertical grey and magenta bands in the H_0 panel show the latest SH0ES [10] and TRGB [12] constraints, respectively. The vertical grey band in the S_8 panel shows the DES-Y3 constraint [73].

[32] I. Zlatev, L.-M. Wang and P. J. Steinhardt, Quintessence, cosmic coincidence, and the cosmological constant, Phys. Rev. Lett. 82 (1999) 896 astro-ph/9807002.

[33] P. G. Ferreira and M. Joyce, Cosmology with a primordial scaling field, Phys. Rev. D 58 (1998) 023508.

[34] M. Doran and G. Robbers, Early dark energy cosmologies, JCAP 06 (2006) 026 astro-ph/0601544.

[35] E. Calabrese, R. de Putter, D. Huterer, E. V. Linder and A. Melchiorri, Future cmb constraints on early, cold, or stressed dark energy, Phys. Rev. D 83 (2011) 023011.
FIG. 21: Best-fit ΛCDM and EDE \((n = 3)\) models to the ACT DR4 TT (top), TE (middle), and EE (bottom) power spectra, shown here in comparison to the wide-patch data. (The best-fit models are determined by the full data set shown in Fig. 3.) The smaller panels show the residuals of the best-fit models with respect to the wide-patch data, as well as the difference between the best-fit EDE and ΛCDM models. The overall EDE \(\chi^2\) improvement over ΛCDM (c.f. Table I) is driven entirely by the seven lowest multipole bins in the wide-patch EE power spectrum shown here.

[36] E. Calabrese, D. Huterer, E. V. Linder, A. Melchiorri and L. Pagano, *Limits on dark radiation, early dark energy, and relativistic degrees of freedom*, Phys. Rev. D 83 (2011) 123504.

[37] S. Alexander and E. McDonough, *Axion-Dilaton Destabilization and the Hubble Tension*, Phys. Lett. B797 (2019) 134830 \[1904.08912\].

[38] F. Niedermann and M. S. Sloth, *New early dark energy*, Phys. Rev. D 103 (2021) L041303 \[1910.10739\].

[39] J. Sakstein and M. Trodden, *Early Dark Energy from Massive Neutrinos as a Natural Resolution of the Hubble Tension*, Phys. Rev. Lett. 124 (2020) 161301 \[1911.11760\].

[40] M.-X. Lin, W. Hu and M. Raveri, *Testing \(H_0\) in
FIG. 22: Best-fit ΛCDM and EDE ($n = 3$) models to the ACT DR4 TT (top), TE (middle), and EE (bottom) power spectra, shown here in comparison to the deep-patch data. (The best-fit models are determined by the full data set shown in Fig. 3.) The smaller panels show the residuals of the best-fit models with respect to the deep-patch data, as well as the difference between the best-fit EDE and ΛCDM models. The EDE model provides negligible improvement over ΛCDM in the fit to the deep-patch data shown here.

Acoustic Dark Energy with Planck and ACT Polarization, *Phys. Rev. D* **102** (2020) 123523 [2009.08974].

[41] G. Ye and Y.-S. Piao, *Is the Hubble tension a hint of AdS phase around recombination?*, *Phys. Rev. D* **101** (2020) 083507 [2001.02451].

[42] M. Braglia, W. T. Emond, F. Finelli, A. E. Gumrukcuoglu and K. Koyama, *Unified framework for early dark energy from α-attractors*, *Phys. Rev. D* **102** (2020) 083513 [2005.14053].

[43] A. Gogoi, R. K. Sharma, P. Chanda and S. Das, *Early Mass-varying Neutrino Dark Energy: Nugget Formation and Hubble Anomaly*, *Astrophys. J.* **915** (2021) 132 [2005.11889].
FIG. 23: Best-fit ΛCDM and EDE \((n = 3)\) models to the ACT DR4 TT (top), TE (middle), and EE (bottom) power spectrum data, fit in combination with large-scale \((\ell_{\text{max}} = 650)\) Planck 2018 TT power spectrum data (yellow squares in top panel), shown here in comparison to the wide-patch ACT data. (The best-fit models are determined by the full data set shown in Fig. 4.) The smaller panels show the residuals of the best-fit models with respect to the wide-patch data, as well as the difference between the best-fit EDE and ΛCDM models. The most significant difference seen here is in the low-\(\ell\) EE data, similar to that in the ACT-only analysis in Fig. 21.

[44] I. J. Allali, M. P. Hertzberg and F. Rompineve, Dark sector to restore cosmological concordance, Phys. Rev. D 104 (2021) L081303 [2104.12798].

[45] T. Karwal, M. Raveri, B. Jain, J. Khoury and M. Trodden, Chameleon early dark energy and the Hubble tension, Phys. Rev. D 105 (2022) 063535.

[46] E. McDonough, M.-X. Lin, J. C. Hill, W. Hu and S. Zhou, The Early Dark Sector, the Hubble Tension, and the Swampland, 2112.09128.

[47] J. C. Hill, E. McDonough, M. W. Toomey and S. Alexander, Early dark energy does not restore
FIG. 24: Best-fit ΛCDM and EDE \((n = 3)\) models to the ACT DR4 TT (top), TE (middle), and EE (bottom) power spectrum data, fit in combination with large-scale \((\ell_{\text{max}} = 650)\) Planck 2018 TT power spectrum data (yellow squares in top panel), shown here in comparison to the deep-patch ACT data. (The best-fit models are determined by the full data set shown in Fig. 4.) The smaller panels show the residuals of the best-fit models with respect to the deep-patch data, as well as the difference between the best-fit EDE and ΛCDM models. The EDE \(\chi^2\) improvement over ΛCDM (c.f. Table V) receives its largest contribution from the ACT deep-patch TE power spectrum shown here, although moderate improvements in TT and EE are also seen. The EDE-ΛCDM residuals in TE are distributed very evenly in \(\ell\), with no individual bin differing by \(> 0.5\sigma\).
FIG. 25: Comparison of TT (top), TE (middle), and EE power spectra in the best-fit EDE models to the data set combinations considered in Sec. [IV] and the best-fit ΛCDM model to Planck data alone (the latter from Ref. [47], but in excellent agreement with Ref. [15]). The smaller panels show differences with respect to the Planck best-fit ΛCDM model in units of the CV-limited error bar at each ℓ, with the ±2σ range demarcated by the thin grey lines. The blue curve shows residuals for the best-fit EDE model to ACT DR4 alone (Table II) and the orange curve shows residuals for the best-fit EDE model to ACT + large-scale Planck TT data (Table IV). The residuals shown here are similar to those seen with respect to the best-fit EDE model to Planck alone, shown in Fig. 7.

[50] M. M. Ivanov, E. McDonough, J. C. Hill, M. Simonović, M. W. Toomey, S. Alexander et al., Constraining Early Dark Energy with Large-Scale Structure, Phys. Rev. D 102 (2020) 103502 [2006.11235].

[51] R. Murgia, G. F. Abellán and V. Poulin, Early dark energy resolution to the Hubble tension in light of weak lensing surveys and lensing anomalies, Phys. Rev. D 103 (2021) 063502 [2009.10733].

[52] T. L. Smith, V. Poulin, J. L. Bernal, K. K. Boddy,
[87] W. Handley and P. Lemos, Quantifying tensions in cosmological parameters: Interpreting the DES evidence ratio, Phys. Rev. D 100 (2019) 043504 [1902.04029].

[88] P. Lemos, F. Köhlinger, W. Handley, B. Joachimi, L. Whiteway and O. Lahav, Quantifying Suspiciousness Within Correlated Data Sets, Mon. Not. Roy. Astron. Soc. 496 (2020) 4647 [1910.07820].

[89] H. Akaike, Information Theory and an Extension of the Maximum Likelihood Principle, pp. 199–213. Springer New York, New York, NY, 1998. 10.1007/978-1-4612-1694-0_15.

[90] B. D. Sherwin, J. Dunkley, S. Das, J. W. Appel, J. R. Bond, C. S. Carvalho et al., Evidence for Dark Energy from the Cosmic Microwave Background Alone Using the Atacama Cosmology Telescope Lensing Measurements, PhRvL 107 (2011) 021302 [1105.0419].

[91] T. Banks, M. Dine, P. J. Fox and E. Gorbatov, On the possibility of large axion decay constants, JCAP 0306 (2003) 001 [hep-th/0303252].

[92] T. Rudelius, On the Possibility of Large Axion Moduli Spaces, JCAP 1504 (2015) 049 [1409.5793].

[93] S. W. Henderson et al., Advanced ACTPol Cryogenic Detector Arrays and Readout, J. Low Temp. Phys. 184 (2016) 772 [1510.02809].

[94] B. A. Benson, P. A. R. Ade, Z. Ahmed, S. W. Allen, K. Arnold, J. E. Austermann et al., SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope, in Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII (W. S. Holland and J. Zmuidzinas, eds.), vol. 9153 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, p. 91531P, July, 2014, [1407.2973]. DOI.

[95] Simons Observatory collaboration, P. Ade et al., The Simons Observatory: Science goals and forecasts, JCAP 1902 (2019) 056 [1808.07445].

[96] K. Abazajian, G. Addison, P. Adshead, Z. Ahmed, S. W. Allen, D. Alonso et al., CMB-S4 Science Case, Reference Design, and Project Plan, arXiv e-prints (2019) arXiv:1907.04473 [1907.04473].

[97] J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science and Engineering 9 (2007) 90

[98] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau et al., Array programming with NumPy, Nature 585 (2020) 357 [2006.10256].

[99] C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw, N. Odegard et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results, ApJS 208 (2013) 20 [1212.5225].

[100] J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) III: Comparison with CAMB for LambdaCDM, arXiv e-prints (2011) arXiv:1104.2934 [1104.2934].