Efficient Removal of Cr(VI) Ions by a Novel Magnetic 4-Vinyl Pyridine Grafted Ni₃Si₂O₅(OH)₄ Multiwalled Nanotube

Chunmei Xiao* and Jianming Lin

ABSTRACT: The contamination of water systems by heavy metals greatly threatens human health and ecological safety. An efficient adsorbent is critical for the removal of these contaminants. In this work, magnetic Ni₃Si₂O₅(OH)₄ nanotubes (NTs) have been synthesized via in situ hydrothermal reduction and further functionalized by grafting poly(4-vinyl pyridine) (P4VP) brushes on its surface via atom transfer radical polymerization. Characterizations by Fourier transform infrared, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, and X-ray photoelectron spectroscopy proved that P4VP was successfully grafted on the surface of magnetic Ni₃Si₂O₅(OH)₄ NTs. The resultant Ni₃Si₂O₅(OH)₄-g-P4VP NTs are efficient nanosorbents for removing Cr(VI) anions from water. The Cr(VI) adsorption capacity of Ni₃Si₂O₅(OH)₄-g-P4VP NTs reaches 1.49 mmol/g at a pH of 3. The pseudo-second-order kinetic model and the Freundlich isothermal model are suitable to describe the adsorption process. The analysis using Weber−Morris and Boyd models indicates that both intraparticle diffusion and external film diffusion affect the Cr(VI) adsorption process. The adsorption enthalpy is estimated to be 18.37 kJ/mol. More than 90% of the Cr(VI) adsorption capacity of the Ni₃Si₂O₅(OH)₄-g-P4VP NTs remains after eight adsorption and desorption cycles.

1. INTRODUCTION

Chromium has been widely used in many industries, such as plating, ore smelting, leather, wood preserving, paper production, printing, and dyeing industries, which results in a large amount of chromium-contaminated effluents. Chromium exists in trivalent (Cr(III)) and hexavalent (Cr(VI)) states in aqueous solution. Excessive intake of chromium can cause various severe diseases, although chromium(III) is one of the essential microelements in the human body. Chromium(VI) is highly toxic due to its mutagenic and carcinogenic activity. The allowable maximum content of total chromium in drinking water has been limited to 100 and 50 μg/L by the United States Environmental Protection Agency and the World Health Organization, respectively. It is critical to reduce the discharge of chromium species into the water environment for environmental safety.

Chemical precipitation, ion exchange, membrane separation, and adsorption have been studied extensively for the removal of chromium contaminants. Adsorption of chromium species has been considered as one of the most promising and feasible methods due to its availability and efficiency. An efficient adsorbent is the primary factor for a successful adsorption process. An ideal adsorbent for wastewater treatment should satisfy the following criteria: (1) environmentally benign, (2) a high sorption capacity and high selectivity to contaminants particularly in extremely low concentration, (3) easy regeneration and recycling, (4) easy separation, and (5) rich and cheap in resources. Various adsorbents including synthetic polymers, biomass/biocomposites, waste tires, hydrogels/hydrogel composites, graphene oxide, and nanomaterials have been investigated in Cr(VI) removal. Each of them has its own advantages, for example, microgels are eco-friendly, biocompatible, and environmental stimuli-responsive; biomaterials derived from agricultural waste are abundant and of low-cost. However, few adsorbents were found meeting all criteria. Therefore, the development of an efficient Cr(VI) adsorbent with low cost is still a great challenge. Inorganic nanomaterials such as porous hematite nanoparticles, mesoporous MnFe₂O₄, carbon beads, and hydroxyapatite nanopowders have shown excellent adsorption performance to remove Cr(VI) and Pb(II) contaminants from water. However, the selectivity and capacity of these materials are limited by the availability of the adsorption sites. Furthermore, the separation of the nanophase...
adsorbents from water is also challenging. Functional modification is a promising way to improve the adsorption performance of the porous substrates. Polythiophene–Al2O3-based nanosorbent for Pb(II), Cd(II), and Zn(II) ions, silica nanopowders/alginate composite for Pb(II) ions, functionalized single-walled carbon nanotube (NT) for Cd(II), Cu(II), Pb(II), and Hg(II) ions, nano Uio-66-NH2 MOFs for Cr(VI) ions, and PAMPS-grafted-Ni3Si2O5(OH)4 NTs for the removal of Pb(II) ions are all excellent examples.

Chromium(VI) mainly exists in the form of anions. The one lone pair of electrons on the nitrogen atom of 4-vinylpyridine (4-VP) can either coordinate with heavy metal cations or be protonated to adsorb the oxygenated anions of the heavy metals. Grafting of 4-VP onto the polyethylene terephthalate fiber, divinylbenzene copolymer, and vinyltriethoxysilane-cellulose has been found to enhance the removal of Cr(VI) and U(VI). As to the difficulty in the separation of those nano-adsorbents from the treated water, introducing magnetism to the adsorbents or substrates has been proved to facilitate the separation process. Silicates, such as magnesium silicate, aluminum silicate, nickel silicate, and so forth, are promising adsorbent substrates due to large surface area and richness in surface hydroxyl groups. Introducing nickel, a known ferromagnetic metal, to the Ni3Si2O5(OH)4 NTs substrate by controlled reduction would endow the substrate with magnetism.

This work focuses on the preparation and evaluation of 4-vinylpyridine (4-VP)-modified magnetic Ni3Si2O5(OH)4 NTs for the efficient removal of Cr(VI). Various characterizations were employed to reveal the structure and properties of Ni3Si2O5(OH)4-g-4VP NTs. In Cr(VI) removal, batch experiments were conducted to investigate the dependent adsorption behavior including solution pH, contact time, and temperature on Cr(VI) removal efficiency. Furthermore, the adsorption kinetics, isotherms, and mechanisms were evaluated.

2. RESULTS AND DISCUSSION

2.1. Characterization of Ni3Si2O5(OH)4-g-4VP NTs.

The characterization results revealed the structure of the adsorbents, which indicates the successful preparation of Ni3Si2O5(OH)4-g-4VP NTs. Comparing the X-ray diffraction (XRD) patterns of Ni3Si2O5(OH)4 NTs before and after reduction, it is found that the reduced Ni3Si2O5(OH)4 NTs (Figure 1) show a new diffraction peak of nickel crystal phase. Transmission electron microscopy (TEM) images reveal that the NTs are well encapsulated inside the poly(4-vinyl pyridine) (P4VP) layers, and the thickness of P4VP brushes that grafted on the silicate NTs are circa 5 nm (Figure 2).

The FTIR peak at 1262 cm\(^{-1}\) (Figure 3b) observed on the salinized magnetic Ni3Si2O5(OH)4-g-4VP NTs is corresponding to the antisymmetric stretching vibration of –CH2Cl on (p-chloromethyl) phenyltrichlorosilane (CTS). The X-ray photoelectron spectroscopy (XPS) spectrum (Figure 4a) shows two peaks at about 197 eV and 230 eV corresponding to Cl 2p and Cl 2s, respectively. The ratio of [C]/[Cl] estimated from the peak areas of C 1s and Cl 2p is about 7.0:1.05, close to the theoretical value of CTS 7:1. The split peaks of C 1s at 284.6 and 286.2 eV (Figure 4b) are corresponding to C–C/C–H and C–Cl, respectively. The peaks at 200 and 202 eV corresponding to Cl 2p (Figure 4c) are due to the spin orbit splitting doublet of Cl 2p\(_{1/2}\) and Cl 2p\(_{3/2}\) in the benzyl chloride part of the silanization reagent. These characterizations prove the formation of CTS-salinized Ni3Si2O5(OH)4 NTs which provided an alkyl chlorine-terminated atom transfer radical polymerization (ATRP) initiator.
New peaks at 1601, 1556, 1418, and 1221 cm\(^{-1}\) (Figure 3c) corresponding to the stretching vibration of C=C and C=N in pyridine ring are observed on Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)-g-P4VP NTs. This indicates that the P4VP polymer brushes are successfully bound to the surface of magnetic Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\) NTs. The peak at 825 cm\(^{-1}\) is corresponding to the in-plane bending.
vibration of C−H in the polymer chain. The presence of nitrogen atoms, particularly the pyridine functional group in the samples, is evidenced by the N 1s peak at about 398.4 eV in XPS spectra (Figure 5). The peaks at 284.13 and 285.6 eV (Figure 5b) prove the presence of both the C−C chain and C−N groups in the sample. The decomposition temperature of magnetic Ni3Si2O5(OH)4-P4VP NTs (Figure 6d) is about 350 °C, which is coincident with the decomposition temperature of P4VP. The above characterizations illustrate the successful grafting of 4VP to magnetic Ni3Si2O5(OH)4 NTs which leads to the formation of Ni3Si2O5(OH)4-g-P4VP NTs. The reduced Ni3Si2O5(OH)4-g-P4VP NTs exhibit ferromagnetic behavior with a hysteresis loop. The value of the saturate magnetization (M) reaches circa 5.3823 emu·g−1 (Figure 7). The resultant reduced Ni3Si2O5(OH)4-g-P4VP NTs can be separated from water by applying an external magnetic field.

2.2. Effect of P4VP and the pH of Water on Cr(VI) Removal. Figure 8 compares the Cr(VI) capacity of both Ni3Si2O5(OH)4 NTs and Ni3Si2O5(OH)4-g-P4VP NTs. It clearly shows that P4VP greatly enhances adsorption of the Cr(VI) in a wide pH range. The pH of waste water from different sources could vary from one case to another, which somehow determines both the surface charge of the adsorbent and the form of chromium ions. The pH of water could control the chromium adsorption in turn. Figure 8 shows that the adsorption capacity of Ni3Si2O5(OH)4-g-P4VP NTs increases as the pH of the solution increases from 1 to 3 and reaches the maximum at the pH of 3. Without P4VP, the adsorption capacity of Ni3Si2O5(OH)4 NTs decreases monotonously with the increasing pH values. The equilibrium adsorption capacity of Cr(VI) on Ni3Si2O5(OH)4-g-P4VP NTs is 1.49 mmol/g, which is about 16 times higher than that of the magnetic Ni3Si2O5(OH)4 without P4VP. The grafting of 4-VP on magnetic Ni3Si2O5(OH)4 significantly improves the adsorption performance of the original substrate.

The equilibrium between the four forms of Cr(VI) in aqueous solution, H2CrO4, CrO42−, HCrO4−, and Cr2O72−, was examined at various pH values. The four existing forms are highly related to the pH value and Cr(VI) ion concentration of the solution, and the interconversion between these four forms are shown by eqs 1−3. Figure 9 shows the equilibrium concentration of these chrome ions at various pH values. Chromic acid (H2CrO4) dominates at a pH of less than 1; however, the dissociation of H2CrO4 increases significantly as the pH increases from 1 to 3. HCrO4− and CrO42− prevail in a pH of 3 to 5, while Cr2O72− dominates at pH above 7.

\[
\begin{align*}
H_2CrO_4 & \rightleftharpoons H^+ + HCrO_4^- \\
HCrO_4^- & \rightleftharpoons H^+ + CrO_4^{2-}
\end{align*}
\]

Figure 8. Effect of initial pH on adsorption of Cr(VI) by the magnetic Ni3Si2O5(OH)4 and the Ni3Si2O5(OH)4-g-P4VP NTs.

Figure 9. Distribution profiles of various Cr(VI) ions at different pH.
2HCrO$_4^-$ \rightleftharpoons H$_2$O + Cr$_2$O$_7^{2-}$

On the other hand, the surface charge of the adsorbents was examined by zeta potential measurement (Figure 10). Figure 10 shows that the surface of Ni$_3$Si$_2$O$_5$(OH)$_4$-g-P4VP NTs is positively charged at pH less than 3.8, while the surface of Ni$_3$Si$_2$O$_5$(OH)$_4$ NTs is positively charged only at pH less than 2.8. The presence of pyridine groups in P4VP provides the protonation sites for the adsorbent surface, which facilitates the adsorption of HCrO$_4^-$ and Cr$_2$O$_7^{2-}$ at higher pH. The drastic decrease of the Cr(VI) adsorption capacity at pH above 4 suggests that the electrostatic attraction between the protonated pyridine group and the Cr(VI) anions is responsible for the high Cr(VI) adsorption capacity of Ni$_3$Si$_2$O$_5$(OH)$_4$-g-P4VP NTs. The behavior of Ni$_3$Si$_2$O$_5$(OH)$_4$ NTs under low pH is similar to that of other silicates, such as clay and bentonite. The dissolution of Ni$_3$Si$_2$O$_5$(OH)$_4$ NTs at pH less than 4 was observed. However, no nickel leaching of Ni$_3$Si$_2$O$_5$(OH)$_4$-g-P4VP NTs was detected by inductively coupled plasma-atomic emission spectroscopy after being treated with an acidic solution at pH of 1 for 3 h, which suggests that the P4VP polymer also acts as a protection coating for Ni$_3$Si$_2$O$_5$(OH)$_4$ NTs and prevents it from acid leaching.

2.3. Adsorption Kinetics. Adsorption kinetics has an important significance in the practical application of adsorbents, since it can help in determining the operation conditions of the adsorption process. The adsorption curve of Cr(VI) ions by the Ni$_3$Si$_2$O$_5$(OH)$_4$-g-P4VP NTs with time is illustrated in Figure 11. The Cr(VI) adsorbed on the Ni$_3$Si$_2$O$_5$(OH)$_4$-g-P4VP NTs increased rapidly in the initial 30 min, which accounts for about 75% of the equilibrium adsorption amount and then it slowly approaches an adsorption equilibrium. This is due to the large number of available adsorption sites on the surface of the adsorbent and the high solute concentration at the initial adsorption stage. As the adsorption progresses, more adsorption sites are occupied by Cr(VI) ions, and less adsorption vacancies and even lower Cr(VI) ion concentration in the solution lead to lower adsorption rate of the residual Cr(VI).

Typical kinetic models, the pseudo-first-order (PFO) model and pseudo-second-order (PSO) model, are represented by eqs 4 and 5, respectively. They are applied to analyze the adsorption kinetics data.

$$q_t = q_e (1 - e^{-kt})$$

(4)

$$q_t = rac{q_e^2 k_2 t}{1 + q_e k_2 t}$$

(5)

where k_1 (min$^{-1}$) and k_2 (g mmol$^{-1}$ min$^{-1}$) are the rate constants for PFO and PSO, respectively, while q_e (mmol g$^{-1}$) and q_t (mmol g$^{-1}$) are the amount of Cr(VI) removed by Ni$_3$Si$_2$O$_5$(OH)$_4$-g-P4VP NTs at time t and equilibrium, respectively.

The kinetic model simulation results for the adsorption of Cr(VI) on the Ni$_3$Si$_2$O$_5$(OH)$_4$-g-P4VP NTs are shown in Figure 11. The adsorption kinetics constants, determination coefficient values (R^2), and chi-square (χ^2) are given in Table 1. The values of R^2 for the PSO model are higher than those of the PFO model (Table 1). Furthermore, the values from theoretical calculation (q_{cal}) of the PSO kinetics model are found to be consistent with the experimental ones (q_{exp}). It suggests that the PSO kinetics model is more suitable to represent the Cr(VI) adsorption kinetics on the Ni$_3$Si$_2$O$_5$(OH)$_4$-g-P4VP NTs.

2.4. Adsorption Isotherms. The isothermal adsorption was employed to determine the capacity, strength, and state of the adsorbent in the adsorption process, which is helpful to further understand the adsorption mechanism. The adsorption curves of Cr(VI) ions by the Ni$_3$Si$_2$O$_5$(OH)$_4$-g-P4VP NTs at various temperatures are illustrated in Figure 12. It clearly shows that increasing both the equilibrium concentration and temperature favors the adsorption of Cr(VI) ions.

Two most important adsorption isotherm models, the Langmuir and Freundlich isotherm models as shown in eqs 6 and 7, respectively, are employed to analyze the adsorption of Cr(VI) ions on the magnetic Ni$_3$Si$_2$O$_5$(OH)$_4$-g-P4VP NTs.
experimental data better. The values of the Freundlich isotherm model is about 4.5 (Table 2), which takes place on heterogeneous surfaces. The exponent \(n \) of the empirical equation assuming that the adsorption process is better for this adsorption process. The Freundlich isotherm is closer to the experimental values, while the Langmuir isotherm somehow diverges at higher equilibrium concentrations. This also suggests that the Freundlich model is the maximum adsorption loading against the pollutants, \(q_{\text{max}} \), which is the ideal adsorption capacity toward Cr(VI). Compared with other magnetic nano-adsorption materials (Table 3), the preparation process of the Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)g-P4VP NTs is simpler, and the magnetic property can be achieved via in situ hydrothermal reduction without introducing additional magnet species.

2.5. Sorption Thermodynamics

The Cr(VI) adsorption capacity is found decreasing with the increase of temperature (Table 4). The thermodynamic analysis shows the exothermic nature of the Cr(VI) adsorption process.\(^7\) The Gibb’s free-energy change (\(\Delta G^0 \)) can be evaluated from eq 8. The Gibbs free-energy change is also related to enthalpy change (\(\Delta H^0 \)) and entropy change (\(\Delta S^0 \)) at constant temperature by eq 9.

\[
\Delta G^0 = -RT \ln K_L
\]

\[
\ln K_L = -\frac{\Delta H^0}{RT} + \frac{\Delta S^0}{R}
\]

where \(K_L \) (L·mmol\(^{-1}\)) and \(K_F \) (mmol\(^{-1/\alpha}\)·L\(^{1/n}\)·g\(^{-1}\)) represent the Langmuir and Freundlich constants, respectively. \(q_e \) (mmol·g\(^{-1}\)) is the amount of Cr(VI) loaded on Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)g-P4VP NTs at equilibrium, \(q_{\text{max}} \) (mmol·g\(^{-1}\)) is the maximum adsorption loading against the pollutants, \(C_e \) (mmol·L\(^{-1}\)) is the residual Cr(VI) concentration, and \(n \) is the Freundlich heterogeneity factor.

The parameters of Langmuir and Freundlich isotherm models for Cr(VI) adsorption onto the Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)g-P4VP NTs at various temperatures are summarized in Table 2. The Cr(VI) adsorption on the adsorbents is spontaneous and favorable in the whole considered temperature range.\(^7\) The Cr(VI) adsorption entropy is 86.51 J·mol\(^{-1}\)·K\(^{-1}\), which indicates that the randomness of Cr(VI) at the solid/solution interface increased during the adsorption process.\(^77,78\) The negative values of the free-energy changes (\(\Delta G \)) confirm that the adsorption of Cr(VI) on the adsorbents is spontaneous and favorable in the whole considered temperature range.\(^7\) The Cr(VI) adsorption is more favorable at higher temperature since the free-energy change at higher temperature is more negative.\(^80\) The positive value of \(\Delta H \) indicates that Cr(VI) adsorption is endothermic and the Cr(VI) uptake increases with increasing temperature of the solution. This is consistent with the experimental findings. Similar results have been also observed using other adsorbents in Cr(VI) adsorption.\(^73,81\)

2.6. Regeneration and Recycling

The regeneration efficiency of the adsorbent is one of the key factors that affects industrial application. The magnetic Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)g-P4VP NTs possess abundant imine groups which exhibit electrostatic interaction with Cr(VI). The spent adsorbents are expected to be regenerated by ion exchange with OH\(^-\) in the base solution.
Morris model (eq 10) and Boyd model (eq 11) are employed to evaluate the rate-determining step in the adsorption process

\[q_t = K_{id}t^{0.5} + C \]

...(10)

\[-\ln\left(1 - \frac{q_t}{q_e}\right) = K_{id}t \]

...(11)

where \(q_t \) and \(q_e \) (mmol/g) are the amount of adsorbate adsorbed at time \(t \) (min) and at equilibrium, respectively, \(K_{id} \) is the diffusion rate constant, and \(C \) indicates the thickness of the boundary layer.

According to the Weber–Morris model, if \(q_t \) versus \(t^{1/2} \) is a straight line passing through the origin, the rate of the sorption process can be considered as an intraparticle diffusion-limiting process.\(^{63,85}\) However, if the plots are multilinear, then the sorption process is controlled by two or more steps. Figure 15 shows that \(q_t \) versus \(t^{1/2} \) has two distinct regions which suggests that the adsorption process includes two stages. The first steep portion of the curve is the external surface adsorption or instantaneous adsorption stage. The second portion is the gradual adsorption stage, where the intraparticle diffusion is the rate-limiting step. As can be seen from Table 5, the model coefficient \(K_{id1} \) (= 0.187) is greater than the model coefficient \(K_{id2} \) (= 0.043), which indicates that the diffusion speed in liquid film is faster than that in the particle.

The Boyd model assumes that the adsorption resistances are all concentrated at the boundary of adsorbent particles, that is,
the external diffusion is the rate-limiting step. Accordingly, the plot will yield a straight line passing through the origin if the adsorption is governed by intraparticle diffusion. Otherwise, the process is controlled by film diffusion.86,87 As can be seen from Figure 16, the Boyd plot of \(\ln(1 - q_t/q_e) \) versus \(t \) does not pass through the origin. Moreover, the correlation coefficients are not satisfactory for the Boyd model fitting of Cr(VI) ions adsorbed on the Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)\(_-\)P4VP NTs (Table 6), which indicates that the boundary layer diffusion is not the sole rate-controlling step. Therefore, both intraparticle diffusion and external film diffusion affect the adsorption of Cr(VI) ions on the Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)\(_-\)P4VP NTs.

3. CONCLUSIONS

A magnetic Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)\(_-\)P4VP NT adsorbent has been successfully prepared by partial reduction and ATRP. The Cr(VI) adsorption capacity of the resultant Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)\(_-\)P4VP NTs is up to 104.26 mg/g which is about 16 times higher than that of Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\) NTs. The reduction and grafting of P4VP does not change the bulk structure of Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\) NTs. The presence of a P4VP polymer brush grafting of P4VP does not change the bulk structure of Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\) NTs. Both the intraparticle and liquid film diffusion affects the adsorption of Cr(VI) NTs better for the Cr(VI) adsorption on magnetic Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)\(_-\)P4VP. (Table 5). The deionized water used in the following experiments was purified using an ultrapure reverse osmosis system (Chengdu Ultrapure Technology Co. China).

4. MATERIALS AND METHODS

4.1. Materials. Triethylamine, K\(_2\)Cr\(_2\)O\(_7\), NaBH\(_4\), methylbenzene, and ethanol were analytical grade and purchased from Kelong Co., Ltd. (Chengdu, China). CuCl, CuCl\(_2\), CTS (99%), and 4VP (>98%) were purchased from Aladdin Industrial Co. (Shanghai, China). Tris(2-dimethylaminooethyl) amine (Me6TREN, 99%) was purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA). Other reagents used were analytical grade. All chemical reagents and solvents are used without further purification. The deionized water used in the following experiments was purified using an ultrapure reverse osmosis system (Chengdu Ultrapure Technology Co. China).

4.2. Synthesis of Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)\(_-\)P4VP NTs. Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)\(_-\)P4VP NTs were prepared in four steps (Figure 17). First, Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\) NTs were prepared by a hydrothermal method according to the literature.88 Second, Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\) NTs were partially reduced by hydrothermal treatment with aqueous sodium borohydride to endow magnetism. Approximately 0.4 g of Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\) NTs were dispersed in a mixture of 100 mL of deionized water and 3.0 g of sodium borohydride, and then the mixture was sealed in a PPL-sealed autoclave for hydrothermal treatment at 180 °C for 10 h. The partially reduced Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\) NTs were rinsed several times with ethanol and deionized water alternately and dried for 24 h at 60 °C in a vacuum oven. Third, surface silylanization of the Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\) NTs with CTS was performed. Approximately 0.2 g of Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\) NTs was dispersed in a mixture of 15 mL of methylbenzene, 0.3 mL of TEA, and 0.1 mL of CTS, and the mixture was refluxed for 24 h at 25 °C. The Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)Cl NTs were rinsed several times with ethanol and deionized water alternately and dried for 12 h at 40 °C in a vacuum oven.

Table 5. Correlation Coefficients of Multi-Segment Linear Fitting Curve of Weber–Morris

Parameter	intraparticle diffusion (1)	intraparticle diffusion (2)
\(K_{sl} \) (mmol·g\(^{-1}\)·min\(^{-1/2}\))	0.187	0.043
\(C_1 \) (mg·g\(^{-1}\))	0.058	0.697
\(R^2 \)	0.957	0.811

Table 6. Boyd Model Fitting Parameters of Cr(VI) Adsorption on Magnetic Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)\(_-\)P4VP

Parameter	\(K_0 \) (min\(^{-1}\))	\(C \) (mmol·g\(^{-1}\))	\(R^2 \)
\(K_0 \) (min\(^{-1}\))	0.017	0.508	0.950

Figure 15. Weber–Morris model fitting Cr(VI) adsorption curve of the magnetic Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)\(_-\)P4VP.

Figure 16. Boyd model fitting Cr(VI) adsorption curve on magnetic Ni\(_3\)Si\(_2\)O\(_5\)(OH)\(_4\)\(_-\)P4VP.
Fourth, the immobilization of P4VP on the formed Ni3Si2O5(OH)4-Cl NTs was achieved through the surface initiated-ATRP described in our previous study. Briefly, 0.2 g of Ni3Si2O5(OH)4-Cl NTs was dispersed in 4 mL of 4VP solution of isopropanol under N2 atmosphere; then CuCl2, Me6TREN, and CuCl were added in turn (n[4VP]/n[Me6TREN]/n[CuCl]/n[CuCl2] = 50:1.0:1.0:0.1) and reacted at 50 °C for 24 h. Finally, the obtained products were rinsed several times with ethanol and deionized water alternately to remove the oligomers and residual copper, and then dried at 40 °C for 12 h.

4.3. Characterization of the Ni3Si2O5(OH)4-g-P4VP NTs. The morphologies of the resultant Ni3Si2O5(OH)4-g-P4VP NTs were observed under a Tecnai G2 F20 S-TWIN field emission TEM (FEI, USA) equipped with an energy dispersive X-ray (JEOL, Japan). The FTIR spectra were recorded in a Frontier FTIR spectrometer (PerkinElmer, USA) with KBr disks in the wave number range of 600–4000 cm⁻¹. The XPS measurements were conducted on a Kratos AXIS Ultra DLD spectrometer (Kratos Analytical, UK) under monochromatized Al Kα X-ray radiation (1486.6 eV). The organic loading in Ni3Si2O5(OH)4-g-P4VP NTs was measured by thermogravimetric analysis (TGA) performed with a TGA/DSC2 thermogravimetric analyzer (Mettler Toledo, Switzerland) at a heating rate of 20 °C/min from 30 to 700 °C under nitrogen atmosphere. The paramagnetic properties of the magnetic particles were verified by the magnetization curve measured by vibrating sample magnetometry. The content of chromium was determined by atomic absorption spectrometer (Varian AA 320, Varian Inc. Palo Alto, CA).

4.4. Batch Adsorption Experiments. 4.4.1. Effect of Solution pH. The effect of pH on Cr(VI) adsorption was studied after adding 50 mg of Ni3Si2O5(OH)4-g-P4VP NTs into 100 mL of Cr(VI) solution (0.96 mmol·L⁻¹) at a pH range of 1.0–8.0. These flasks were shaken in a thermostatic shaker at 298 K and 150 rpm for 240 min. The Cr(VI) concentrations of each sample before and after adsorption were determined by an atomic absorption spectrophotometer (Varian AA 320, Varian Inc. Palo Alto, CA).

\[q_e = \frac{(c_0 - c_e) \times V}{m} \]

where \(q_e \) (mg·g⁻¹) is the amount of Cr(VI) adsorbed per gram of Ni3Si2O5(OH)4-g-P4VP NTs at equilibrium, \(c_0 \) is the initial Cr(VI) concentration (mg·L⁻¹), \(c_e \) is the residual Cr(VI) concentration (mg·L⁻¹), \(V \) stands for the volume of the solution (L), and \(m \) is the mass of the adsorbent (g).

4.4.2. Adsorption Kinetics. The kinetics adsorption experiments were carried out in 100 mL of 0.96 mmol·L⁻¹ Cr(VI) solution with 50 mg of Ni3Si2O5(OH)4-g-P4VP NTs. The pH of the solutions was adjusted to 3.0, and the adsorption process was conducted at 298 K and 150 rpm. The Cr(VI) solution was sampled at a regular interval during the adsorption process and analyzed by atomic absorption spectrometer.

4.4.3. Adsorption Isotherms. Isotherm adsorption experiments were conducted in 100 mL of the Cr(VI) solution, where the initial concentrations of Cr(VI) ranged from 0.96 to 2.31 mmol·L⁻¹, and the dose of Ni3Si2O5(OH)4-g-P4VP NTs was 50 mg. The pH of the solutions was adjusted to 3.0, and the adsorption process was kept at 298 K and 150 rpm successively for 240 min. The adsorption capacity at equilibrium was calculated according to eq 13.

\[q_e = \frac{(c_0 - c_e) \times V}{m} \]

4.4.4. Regeneration of the Ni3Si2O5(OH)4-g-P4VP NTs. For the examination of the adsorbent’s desorption properties, 50 mg of Ni3Si2O5(OH)4-g-P4VP NTs was added into 100 mL of the Cr(VI) solution with initial concentration and pH of 0.96 mmol·L⁻¹ and 3.0, respectively. The mixtures were then placed in a shaking bath at 298 K and 150 rpm for 240 min. The adsorbent was separated from the solution under the action of an external magnetic field, washed with distilled water, and used in the desorption tests. For the regeneration tests, the saturated adsorbent was stirred in 40 mL of KOH solution (0.1 mol·L⁻¹) at 298 K and 150 rpm for 60 min. Then, the adsorbents were washed with distilled water and dried in an oven before the re-adsorption tests.

Author Information

Corresponding Author

Chunmei Xiao — College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China; College of Chemical Engineering and Materials, Quanzhou Normal University, Quanzhou 362002, China; orcid.org/0000-0002-9716-5893; Email: chmxiao@qztc.edu.cn

Author

Jianming Lin — College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.0c02874

Notes

The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The authors gratefully acknowledge professor Shaojun Yuan (Sichuan University) for his guidance and support.

REFERENCES
(1) Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N. K.; Dumat, C.; Rashid, M. I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 2017, 178, 513–533.
(2) Gad, S. C. Acute and chronic systemic chromium toxicity. Sci. Total Environ. 1989, 86, 149–157.
(3) Dupont, L.; Guillen, E. Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environ. Sci. Technol. 2003, 37, 4325–4324.
(4) Wise, S. S.; Holmes, A. L.; Lioi, L.; Adam, R. M.; Wise, J. P., Sr. Hexavalent chromium induces chromosome instability in human urothelial cells. Toxicol. Appl. Pharmacol. 2016, 296, 54–60.
(5) Liu, H.; Chaspoul, F.; Botta, C.; De Meeo, M.; Gallice, P. Bioenergetics and DNA alteration of normal human fibroblasts by hexavalent chromium. Environ. Toxicol. Pharmacol. 2010, 29, 58–63.
(6) Jiang, W.; Cai, Q.; Xu, W.; Yang, M.; Cai, Y.; Dionysiou, D. D.; O’Connor, K. E. Cr(VI) adsorption and reduction by humic acid coated on magnetite. Environ. Sci. Technol. 2014, 48, 8078–8085.
(7) Minas, F.; Chandravanshi, B. S.; Leta, S. Chemical precipitation method for chromium removal and its recovery from tannery wastewater in Ethiopia. Chem. Int. J. 2017, 3, 291–305.
(8) Bezzina, J. P.; Ruder, L. R.; Dawson, R.; Ogden, M. D. Ion exchange removal of Cu(II), Fe(II), Pb(II) and Zn(II) from acid extracted sewage sludge-resin screening in weak acid media. Water Res. 2019, 158, 257–267.
(9) Choudhury, P. R.; Majumdar, S.; Sahoo, G. C.; Saha, S.; Mondal, P. High pressure ultratitration CuO/hydroxyethyl cellulose composites ceramic membrane for separation of Cr (VI) and Pb (II) from contaminated water. Chem. Eng. J. 2018, 336, 570–578.
(10) Cao, Y.; Xiao, W.; Shen, G.; Ji, G.; Zhang, Y.; Gao, C.; Han, L. Carbonization and ball milling on the enhancement of Pb(II) adsorption by wheat straw: Competitive effects of ion exchange and precipitation. Bioresour. Technol. 2019, 273, 70–76.
(11) Shwetharani, R.; Poojashree, A.; Geetha, R. B.; Jyothi, M. S. La activated high surface area titania float for the adsorption of Pb(ii) from aqueous media. New J. Chem. 2018, 42, 1067–1077.
(12) Yuan, S.; Zhang, J.; Yang, Z.; Tang, S.; Liang, B.; Pelksonen, S. O. Click functionalization of poly(glycidyl methacrylate) microspheres with triazole-4-carboxylic acid for the effective adsorption of Pb(ii) ions. New J. Chem. 2017, 41, 6475–6488.
(13) Pakade, V. E.; Tavengwa, N. T.; Madikizela, L. M. Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv. 2019, 9, 26142–26164.
(14) Nchoe, O. B.; Blinks, M. J.; Mtnunzi, F. M.; Pakade, V. E. Synthesis, characterization, and application of β-cyclodextrin-based ion-imprinted polymer for selective sequestration of Cr(VI) ions from aqueous media: Kinetics and isotherm studies. J. Mol. Liq. 2020, 298, 119991.
(15) Akram, M.; Bhatti, H. N.; Iqbal, M.; Noreen, S.; Sadaf, S. Biocomposite efficiency for Cr(III) adsorption: Kinetic, equilibrium and thermodynamics studies. Int. J. Chem. Envir. Eng. 2017, 8, 400–411.
(16) Pakade, V. E.; Ntuli, T. D.; Ofomaja, A. E. Biosorption of hexavalent chromium from aqueous solutions by macadamia nutshell powder. Appl. Water Sci. 2017, 7, 3015.
(17) Ntuli, T. D.; Pakade, V. E. Hexavalent chromium removal by polyaacrylic acid-grafted Macadamia nutshell powder through adsorption-reduction mechanism: Adsorption isotherms, kinetics and thermodynamics. Chem. Eng. Commun. 2020, 207, 279–294.
(18) Bhatti, I. A.; Ahmad, N.; Iqbal, N.; Zahid, M.; Iqbal, M. Chromium adsorption using waste tire and conditions optimization by response surface methodology. Int. J. Chem. Envir. Eng. 2017, 8, 2740–2751.
1. Vinyltriethoxysilane-cellulose ion imprinted polymer. Int. J. Chem. Environ. Eng. 2015, 3, 1267–1276.

2. Asgharinezhad, A. A.; Ebrahimzadeh, H.; Rezvani, M.; Shekari, N.; Loni, M. A novel 4-(2-pyridylazo) resorcinol functionalised magnetic nanosorbent for selective extraction of Cu(II) and Pb(II) ions from food and water samples. Food Addit. Contam. 2014, 31, 1195–1204.

3. Ravishankar, H.; Wang, J.; Shu, L.; Jategheesam, V. Removal of Pb(II) ions using polymer based graphene oxide magnetic nanosorbent. Process Saf. Environ. Prot. 2016, 104, 472–480.

4. Tural, S.; Ece, M. Ş.; Tural, B. Synthesis of novel magnetic nano-sorbent functionalized with N-methyl-D-glucamine by click chemistry and removal of boron with magnetic separation method. Ecotoxicol. Environ. Saf. 2018, 162, 245–252.

5. Sahiner, N.; Demirci, S.; Sahiner, M.; Yilmaz, S. Application of superporous magnetic cationic cypogens for persistent chromate (toxic chromate and dichromate) uptake from aqueous environments. J. Appl. Polym. Sci. 2016, 133, 43438.

6. Sun, Z.; Srivivasakannan, C.; Liang, J.; Duan, X. Preparation of hierarchical magnesium silicate with excellent adsorption capacity. Ceram. Int. 2019, 45, 4590–4595.

7. Sun, Z.; Duan, X.; Srivivasakannan, C.; Liang, J. Preparation of magnesium silicate/carbon composite for adsorption of rhodamine B. ACS Adv. 2018, 8, 7873–7882.

8. Covaliu, C.; Parashig, G.; Stoian, O.; Buzatu, B.; Mircea, C.; Cristea, C. Halloysite nanotube applications for heavy metals removal from wastewater. EWS Sef Conf. 2019, 112, 04100.

9. Hu, F.; Neoh, K. G.; Cen, L.; Kang, E. T. Cellulose responsive to magnetic nanoparticles “PEGylated” via surface-initiated atom transfer radical polymerization. Biomacromolecules 2006, 7, 809–816.

10. Yuan, S. J.; Xu, F. J.; Pehkonen, S. O.; Ting, Y. P.; Neoh, K. G.; Kang, E. T. Grafting of antibacterial polymers on stainless steel via surface-initiated atom transfer radical polymerization for inhibiting biocorrosion by desulfovibrio desulfuricans. Biotechnol. Bioeng. 2009, 103, 268–281.

11. Chen, Y.; Zhao, W.; Zhang, J. Preparation of 4-vinylpyridine (4vp) resin and its adsorption performance for heavy metal ions. RSC Adv. 2017, 7, 4226–4236.

12. Sahiner, N.; Yasar, A. O. The generation of desired functional groups on poly(4-vinyl pyridine) particles by post-modification technique for antimicrobial and environmental applications. J. Colloid Interface Sci. 2013, 402, 327–333.

13. Xu, F. J.; Yuan, S. J.; Pehkonen, S. O.; Kang, E. T.; Neoh, K. G. Antimicrobial surfaces of viologen-quantenized poly(2-dimethyl amino)ethyl methacrylate)-Si(100) hybrids from surface-initiated atom transfer radical polymerization. Nanobiotechnology 2006, 2, 123–134.

14. Jin, Y.; Liu, Zh.; Guo, W.; Li, Sh.; Zeng, H. Synthesis and characterization of poly(4-vinylpyridine). China Elastomers 2004, 14, 29–33.

15. Rafiae, S.; Samani, M. R.; Toghrat, D. Removal of hexavalent chromium from aqueous media using pomegranate peels modified by polymeric coatings: Effects of various composite synthesis parameters. Synth. Met. 2020, 265, 116416.

16. Kousalya, G. N.; Gandhi, M. R.; Meenakshi, S. Removal of toxic Cr(VI) ions from aqueous solution using nano-hydroxyapatite-based chitin and chitosan hybrid composites. Adsorp. Sci. Technol. 2010, 28, 49–64.

17. Pholosi, A.; Naidoo, E. B.; Ofomaja, A. E. Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: A comparative kinetic and diffusion study. S Afr. J. Chem. Eng. 2020, 32, 39–55.

18. Luo, P.; Zhang, J.-s.; Zhang, B.; Wang, J.-h.; Zhao, Y.-f.; Liu, J.-d. Preparation and Characterization of Silane Coupling Agent Modified Halloysite for Cr(VI) Removal. Ind. Eng. Chem. Res. 2011, 50, 10246–10252.

19. Cengeloglu, Y.; Tor, A.; Kir, E.; Eroz, M. Transport of hexavalent chromium through anion exchange membranes. Desalination 2003, 154, 239–246.

20. Miretzky, P.; Cirelli, A. F. Cr(VI) and Cr(III) removal from aqueous solution by low and modified lignocellulosic materials: A review. J. Hazard. Mater. 2010, 180, 1–19.

21. Barrera-Diaz, C. E.; Lugo-Lugo, V.; Bilyeu, B. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard. Mater. 2012, 223–224, 1–12.

22. Sakulthaw, C.; Chokejaroenrat, C.; Poopalathop, A.; Satapananjaru, T.; Poopalathop, S. Hexavalent chromium adsorption from aqueous solution using carbon nano-ones (cnos). Chemosphere 2017, 184, 1168–1174.

23. Benabdajj, K. I.; Mansri, A. Chromium removal using poly(4-vinylpyridinium)-modified treated clay salts. Desalin. Water Treat. 2014, 52, 5931–5941.

24. Mansri, A.; Benabdajj, K. I.; Deshières, J.; François, J. Chromium removal using modified poly(4-vinylpyridinium) bentonite salts. Desalination 2009, 245, 95–107.

25. Leudjo Taka, A.; Pillay, K.; Yangkou Mbianda, X. Nanosponge cyclodextrin polyurethanes and their modification with nanomaterials for the removal of pollutants from waste water: a review. Carbohydr. Polym. 2017, 159, 94–107.

26. Manzoor, K.; Ahmad, M.; Ahmad, S.; Ikram, S. Removal of Pb(ii) and Cd(ii) from wastewater using arginine cross-linked chitosan-carboxymethyl cellulose beads as green adsorbent. RSC Adv. 2019, 9, 7890–7902.

27. Kataria, N.; Garg, V. K.; Jain, M.; Kadirvelu, K. Preparation, characterization and potential use of flower shaped zinc oxide nanoparticles (ZON) for the adsorption of Victoria Blue B dye from aqueous solution. Adv. Powder Technol. 2016, 27, 1180–1188.

28. Trevithy, E. R. Mass-Transfer Operations, 3rd ed.; McGraw-Hill: New York, 1981; pp 315–316.

29. Li, X.; Ai, L.; Jiang, J. Nanoscale zerovalent iron decorated on graphene nanosheets for Cr(VI) removal from aqueous solution: Surface corrosion retard induced the enhanced performance. Chem. Eng. J. 2016, 288, 789–797.

30. Leles, P. G.; Nascimento, M. A.; Cruz, J. C.; Sousa, P. V. P.; Lopes, R. P. Study of the chromium(VI) removal from aqueous systems by cobalt nanoparticles. Quim. Nova 2019, 42, 497–504.

31. Araghi, S. H.; Entezari, M. H.; Chamsaz, M. Modification of mesoporous silica magnetite nanoparticles by 3-aminopropyltriethoxysilane for the removal of Cr(VI) from aqueous solution. Microporous Mesoporous Mater. 2015, 218, 101–111.

32. Albadarin, A. B.; Mangwandi, C.; Al-Muhtaseb, A. a. H.; Walker, G. M.; Allen, S. J.; Ahmad, M. N. M. Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem. Eng. J. 2012, 179, 193–202.

33. Sarkar, A.; Ranjan, A.; Paul, B. Synthesis, characterization and application of surface-modified biochar synthesized from rice husk, an agro-industrial waste for the removal of hexavalent chromium from drinking water at near-neutral pH. Clean Technol. Environ. Policy 2019, 21, 447–462.

34. Taghizadeh, M.; Hassanpour, S. Selective adsorption of Cr(VI) ions from aqueous solutions using a Cr(VI)-imprinted polymer supported by magnetic multiwall carbon nanotubes. Polymer 2017, 132, 1–11.

35. Aigbe, U. O.; Das, R.; Ho, W. H.; Srinivasu, V.; Maity, A. A novel method for removal of Cr(VI) using polypyrrole magnetic nanocomposite in the presence of unsteady magnetic fields. Sep. Purif. Technol. 2018, 194, 377–387.

36. Yang, J.; Yu, M.; Chen, W. Adsorption of hexavalent chromium from aqueous solution by activated carbon prepared from longan seed: Kinetics, equilibrium and thermodynamics. J. Ind. Eng. Chem. 2015, 21, 414–422.

37. Li, L.; Zhong, D.; Xu, Y.; Zhong, N. A novel superparamagnetic micro-nano-bio-adsorbent PDA/Fe3O4@BC for removal of hexavalent chromium ions from simulated and electropolishing wastewater. Environ. Sci. Pollut. Res. 2019, 26, 23981–23993.

38. Samuel, M. S.; Bhattacharya, J.; Raj, S.; Santhanam, N.; Singh, H.; Pradeep Singh, N. D. Efficient removal of Chromium(VI) from...
aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. *Int. J. Biol. Macromol.* **2019**, *121*, 285–292.

(76) Ali, I. H.; Al Mesfer, M. K.; Khan, M. I.; Danish, M.; Alghamdi, M. M. Exploring adsorption process of lead (II) and chromium (VI) ions from aqueous solutions on acid activated carbon prepared from juniperus procera leaves. *Processes* **2019**, *7*, 217.

(77) Agarwal, S.; Tyagi, I.; Gupta, V. K.; Ghasemi, N.; Shahivand, M.; Ghasemi, M. Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride. *J. Mol. Liq.* **2016**, *218*, 208–218.

(78) Acharya, J.; Sahu, J. N.; Sahoo, B. K.; Mohanty, C. R.; Meikap, B. C. Removal of chromium(VI) from wastewater by activated carbon developed from Tamarind wood activated with zinc chloride. *Chem. Eng. J.* **2009**, *150*, 25–39.

(79) Triwahyono, S.; Salamun, N.; Julli, A. A.; Izan, S. M.; Setiabudi, H. D.; Prasetyoko, D. Zirconium-loaded mesostructured silica nanoparticles adsorbent for removal of hexavalent chromium from aqueous solution. *Ind. Eng. Chem. Res.* **2019**, *58*, 704–712.

(80) Aslani, H.; Ebrahimi Kosari, T.; Naseri, S.; Nabizadeh, R.; Khazaee, M. Hexavalent chromium removal from aqueous solution using functionalized chitosan as a novel nano-adsorbent: modeling and optimization, kinetic, isotherm, and thermodynamic studies, and toxicity testing. *Environ. Sci. Pollut. Res.* **2018**, *25*, 20154–20168.

(81) Malkoc, E.; Nuhoglu, Y.; Dundar, M. Adsorption of chromium(VI) on pomace-An olive oil industry waste: Batch and column studies. *J. Hazard. Mater.* **2006**, *138*, 142–151.

(82) Lazaridis, N. K.; Asouhidou, D. D. Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg-Al-CO$_3$ hydrotalcite. *Water Res.* **2003**, *37*, 2875–2882.

(83) Weber, W. J.; Morris, J. C. Kinetics of adsorption on carbon from solution. *J. Sanit. Eng. Div. Proc. Am. Soc. Civ. Eng.* **1963**, *89*, 31–59.

(84) Boyd, G. E.; Adamson, A. W.; Myers, L. S., Jr. The exchange adsorption of ions from aqueous solutions by organic zeolites, II Kinetics. *J. Am. Chem. Soc.* **1947**, *69*, 2836–2848.

(85) Figaro, S.; Avril, J. P.; Brouers, F.; Ouensanga, A.; Gaspard, S. Adsorption studies of molasses’s wastewaters on activated carbon: Modelling with a new fractal kinetic equation and evaluation of kinetic models. *J. Hazard. Mater.* **2009**, *161*, 649–659.

(86) Banerjee, S.; Sharma, G. C.; Chattopadhyaya, M. C.; Sharma, Y. C. Kinetic and equilibrium modeling for the adsorptive removal of methylene blue from aqueous solutions on of activated fly ash (AFSH). *Int. J. Chem. Environ. Eng.* **2014**, *2*, 1870–1880.

(87) Kooob, M. R. R.; Dahri, M. K.; Lim, L. B. L. Removal of the methyl violet 2B dye from aqueous solution using sustainable adsorbent Artocarpus odoratissimus stem axis. *Appl. Water Sci.* **2017**, *7*, 3573–3581.

(88) Yang, Y.; Liang, Q.; Li, J.; Zhuang, Y.; He, Y.; Bai, B.; Wang, X. Ni$_3$Si$_2$O$_5$(OH)$_4$ multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. *Nano Res.* **2011**, *4*, 882–890.