TEQUILA: Temporal Question Answering over Knowledge Bases

Zhen Jia
Southwest Jiaotong University, China
zjia@swjtu.edu.cn

Abdalghani Abujabal
MPI for Informatics, Germany
abujabal@mpi-inf.mpg.de

Rishiraj Saha Roy
MPI for Informatics, Germany
rishiraj@mpi-inf.mpg.de

Jannik Strötgen
Bosch Center for AI, Germany
jannik.stroetgen@de.bosch.com

Gerhard Weikum
MPI for Informatics, Germany
weikum@mpi-inf.mpg.de

ABSTRACT

Question answering over knowledge bases (KB-QA) poses challenges in handling complex questions that need to be decomposed into sub-questions. An important case, addressed here, is that of temporal questions, where cues for temporal relations need to be discovered and handled. We present TEQUILA, an enabler method for temporal QA that can run on top of any KB-QA engine. TEQUILA has four stages. It detects if a question has temporal intent. It decomposes and rewrites the question into non-temporal sub-questions and temporal constraints. Answers to sub-questions are then retrieved from the underlying KB-QA engine. Finally, TEQUILA uses constraint reasoning on temporal intervals to compute final answers to the full question. Comparisons against state-of-the-art baselines show the viability of our method.

ACM Reference Format:
Zhen Jia, Abdelghani Abujabal, Rishiraj Saha Roy, Jannik Strötgen, and Gerhard Weikum. 2019. TEQUILA: Temporal Question Answering over Knowledge Bases. In Proceedings of ACM Conference (Conference'17). ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/nmnnnn.nmnnnn

1 INTRODUCTION

Motivation and Problem. Knowledge-based question answering (KB-QA) aims to answer questions over large knowledge bases (e.g., DBpedia, Wikidata, Yago, etc.) or other structured data. KB-QA systems take as input questions such as:

Q1: “Which teams did Neymar play for?”

and translate them into structured queries, in a formal language like SPARQL or SQL, and execute the queries to retrieve answers from the KB. In doing so, KB-QA methods need to address the vocabulary mismatch between phrases in the input question and entities, types, and predicates in the KB: mapping ‘Neymar’ to the uniquely identified entity, ‘teams’ to the KB type footballClub and ‘played for’ to the KB predicate memberOf. State-of-the-art KB-QA (see surveys [9, 18]) can handle simple questions like the above example very well, but struggle with complex questions that involve multiple conditions on different entities and need to join the results from corresponding sub-questions. For example, the question:

Q2: “After whom did Neymar’s sister choose her last name?”

would require a three-way join that connects Neymar, his sister Rafaella Beckran, and David Beckham.

An important case of complex questions are temporal information needs. Search often comes with explicit or implicit conditions about time [17]. Consider the two examples:

Q3: “Which teams did Neymar play for before joining PSG?”

Q4: “Under which coaches did Neymar play in Barcelona?”

In Q3, no explicit date (e.g., August 2017) is mentioned, so a challenge is to detect its temporal nature. The phrase ‘joining PSG’ refers to an event (Neymar’s transfer to that team). We could detect this, but have to properly disambiguate it to a normalized date. The temporal preposition ‘before’ is a strong cue as well, but words like ‘before’, ‘after’, etc. are also used in non-temporal contexts; Q2 is an example for this. Q4 does not seem to be time-dependent at all, when looking at its surface form. However, it is crucial for correct answers that only coaches are selected whose job periods at FC Barcelona overlap with that of Neymar. Here, detecting the temporal nature is a big challenge. A second challenge is how to decompose such questions and ensure that the execution contains an overlap test for the respective time periods.

Approach and Contributions. The key idea of this paper is to judiciously decompose such temporal questions and rewrite the resulting sub-questions so that they can be separately evaluated by a standard KB-QA system. The answers for the full questions are then computed by combining and reasoning on the sub-question results. For example, Q3 should be decomposed and rewritten into Q3.1: “Which teams did Neymar play for?” and Q3.2: “When did Neymar join PSG?”. For the results of Q3.1, we could then retrieve time scopes from the KB, and compare them with the date returned by Q3.2, using a BEFORE operator. Analogously, Q4 would require an OVERLAP comparison as a final step. With the exception of the work by [4], to which we experimentally compare our method, we are not aware of any KB-QA system for such composite questions.

Our solution, called TEQUILA, is built on a rule-based framework that encompasses four stages of processing: (i) detecting temporal questions, (ii) decomposing questions and rewriting sub-questions, (iii) retrieving candidate answers for sub-questions, and (iv) temporal reasoning to combine and reconcile the results of the previous stage into final answers. For stage (iii), we leverage existing KB-QA systems (state-of-the-art systems QUINT [2] and AQQU [6] used in experiments), that are geared for answering simple questions.
To the best of our knowledge, this is the first paper that presents a complete pipeline specific to temporal KB-QA. Novel contributions also include: (i) a method for decomposing complex questions, and (ii) the time-constraint-based reasoning for combining sub-question results into overall answers. All data and code are public at https://qa.mp-mpi.mpg.de/tequila/tequila.zip, and a demo is available at https://gate.d5.mpi-inf.mpg.de/tequila/.

2 CONCEPTS

In NLP, the markup language TimeML (www.time.ml.org) is widely used for annotating temporal information in text documents. Our definition of temporal questions is based on two of its concepts (tags for temporal expressions and temporal signals).

Temporal expressions. TIMEX3 tags demarcate four types of temporal expressions. Dates and times refer to points in time of different granularities (e.g., 'May 1, 2010' and '9 pm', respectively). They occur in fully- or under-specified forms (e.g., 'May 1, 2010' vs. 'last year'). Durations refer to intervals (e.g., 'two years'), and set to periodic events (e.g., 'every Monday'). Going beyond TimeML, implicit expressions (e.g., 'the Champions League final') are used to capture events and their time scopes [14]. Expressions can be normalized into standard format (e.g., 'May 2nd, 2016' into 2016-05-02).

Temporal signals. SIGNAL tags mark textual elements that denote explicit temporal relations between two TIMEX3 entities (i.e., events or temporal expressions), such as 'before' or 'during'. We extend the TimeML definition to also include cues when an event is mentioned only implicitly, such as 'joining PSG'. In addition, we consider ordinals like 'first', 'last', etc. These are frequent in questions when entities can be chronologically ordered, such as 'last' in 'Neymar’s last club before joining PSG'.

Temporal questions. Based on these considerations, we can now define a temporal question as any question that contains a temporal expression or a temporal signal, or whose answer type is temporal.

Temporal relations. Allen [3] introduced 13 temporal relations between time intervals for temporal reasoning: EQUIAL, BEFORE, MEETS, OVERLAPS, DURING, STARTS, FINISHES, and their inverses for all but EQUIAL. However, for an input temporal question, it is not always straightforward to infer the proper relation. For example, in Q3 the relation should be BEFORE; but if we slightly vary

Q5: "Which team did Neymar play for before joining PSG?",

the singular form 'team' suggests that we are interested in the MEETS relation, that is, only the last team before the transfer. Frequent trigger words suggesting such relations are, for instance, the signals before, prior to (for BEFORE or MEETS), after, following (for AFTER), and during, while, when, in (for OVERLAP).

3 METHOD

Given an input question, TEQUILA works in four stages: (i) detect if the question is temporal, (ii) decompose the question into simpler sub-questions with some form of rewriting, (iii) obtain candidate answers and dates for temporal constraints from a KB-QA system, and (iv) apply constraint-based reasoning on the candidates to produce final answers. Our method builds on ideas from the literature on question decomposition for general QA [2, 5, 20]. Standard NLP tasks like POS tagging, NER, and coreference resolution, are performed on the input question before passing it on to TEQUILA.

| Table 1: Decomposition and rewriting of questions. The constraint is the fragment after the SIGNAL word. wh* is the question word (e.g., who), and wj are tokens in the question. |
| Expected input: wh*vj . . . wn SIGNAL wj+1 . . . wp |
| Case 1: Constraint has both an entity and a relation |
| Sub-question 1 pattern: wh*vj . . . wn |
| Sub-question 2 pattern: when wj+1 . . . wp |
| E.g.: "where did neymar play before he joined barcelona?" |
| Sub-question 1: "where did neymar play?" |
| Sub-question 2: "when neymar joined barcelona?" |
| Case 2: Constraint has no entity but a relation |
| Sub-question 1 pattern: wh*vj . . . wn |
| Sub-question 2 pattern: when wj+1 . . . wp |
| E.g.: "where did neymar play?" |
| Sub-question 1: "where did neymar live?" |
| Sub-question 2: "when neymar playing for clubs?" |
| Case 3: Constraint has no relation but an entity |
| Sub-question 1 pattern: wh*vj . . . wn |
| Sub-question 2 pattern: when wj+1 . . . wp |
| E.g.: "where did neymar live?" |
| Sub-question 1: "where did neymar live?" |
| Sub-question 2: "when neymar was the brazil team captain?" |
| Case 4: Constraint is an event name |
| Sub-question 1 pattern: wh*vj . . . wn |
| Sub-question 2 pattern: when wj+1 . . . wp |
| E.g.: "where did neymar play during south africa world cup?" |
| Sub-question 1: "where did neymar play?" |
| Sub-question 2: "when south africa world cup happen?" |

3.1 Detecting temporal questions

A question is identified as temporal if it contains any of the following: (a) explicit or implicit temporal expressions (dates, times, events), (b) temporal signals (i.e., cue words for temporal relations), (c) ordinal words (e.g., first), (d) an indication that the answer type is temporal (e.g., the question starts with 'When'). We use HeidelTime [23] to tag TIMEX3 expressions in questions. Named events are identified using a dictionary curated from Freebase. SIGNAL words and ordinal words are detected using a small dictionary as per suggestions from Setzer [22], and a list of temporal prepositions. To spot questions whose answers are temporal, we use a small set of patterns like when, what date, in what year, and which century.

3.2 Decomposing and rewriting questions

TEQUILA decomposes a composite temporal question into one or more non-temporal sub-questions (returning candidate answers), and one or more temporal sub-questions (returning temporal constraints). Results of sub-questions are combined by intersecting their answers. The constraints are applied to time scopes associated with results of the non-temporal sub-questions. For brevity, the following explanation focuses on the case with one non-temporal sub-question, and one temporal sub-question. We use a set of lexicosyntactic rules (Table 1) designed from first principles to decompose and rewrite a question into its components. Basic intuitions driving these rules are as follows:

- The signal word separates the non-temporal and temporal sub-questions, acting as a pivot for decomposition;
Table 2: Temporal reasoning over Knowledge Bases

Relation	Signal word(s)	Constraint
BEFORE	‘before’, ‘prior to’	\[end_ans \leq \text{begin_cons}\]
AFTER	‘after’	\[\text{begin_ans} \geq \text{end_cons}\]
OVERLAP	‘during’, ‘while’, ‘when’	\[\text{begin_ans} \leq \text{end_cons} \leq \text{end_ans}\]
	\[\text{begin_cons} \leq \text{begin_ans} \leq \text{end_cons}\]	
	\[\text{begin_cons} \leq \text{begin_ans} \leq \text{end_ans}\]	

- Each sub-question needs to have an entity and a relation (generally represented using verbs) to enable the underlying KB-QA systems to handle sub-questions;
- If the second sub-question lacks the entity or the relation, it is borrowed from the first sub-question;
- KB-QA systems are robust to ungrammatical constructs, thus precluding the need for linguistically correct sub-questions.

3.3 Answering sub-questions

Sub-questions are passed on to the underlying KB-QA system, which translates them into SPARQL queries and executes them on the KB. This produces a result set for each sub-question. Results from the non-temporal sub-question(s) are entities of the same type (e.g., football teams). These are candidate answers for the full question. With multiple sub-questions, the candidate sets are intersected. The temporal sub-questions, on the other hand, return temporal constraints such as dates, which act as constraints to filter the non-temporal candidate set. Candidate answers need to be associated with time scopes, so that we can evaluate the temporal constraints.

Retrieving time scopes. To obtain time scopes, we introduce additional KB lookups; details depend on the specifics of the underlying KB. Freebase, for example, often associates SPO triples with time scopes by means of compound value types (CVTs); other KBs may use n-tuples (n > 3) to attach spatio-temporal attributes to facts. For example, the Freebase predicate marriage is a CVT with attributes including marriage.spouse and marriage.date. When the predicate marriage.spouse is used to retrieve answers, the time scope is retrieved by looking up marriage.date in the KB. On the other hand, playing for a football club could be captured in a predicate like team.players without temporal information attached, and the job periods are represented as events in predicates like footballPlayer.team.joinedOnDate and footballPlayer.team.leftOnDate). In such cases, TELEQUILA considers all kinds of temporal predicates for the candidate entity, and chooses one based on a similarity measure between the non-temporal predicate (team.players) and potentially relevant temporal predicates (footballPlayer.team.joinedOnDate, footballPlayer.award.date). The similarity measure is implemented by selecting tokens in predicate names (footballPlayer, team, etc.), contextualizing the tokens by computing word2vec embeddings for them, averaging per-token vectors to get a resultant vector for each predicate \([25]\), and comparing the cosine distance between two predicate vectors. The best-matching temporal predicate is chosen for use. When time periods are needed (e.g., for a temporal constraint using OVERLAP), a pair of begin/end predicates is selected (e.g., footballPlayer.team.joinedOnDate and leftOnDate).

3.4 Reasoning on temporal intervals

For temporal sub-questions, the results are time points, time intervals, or sets of dates (e.g., a set of consecutive years during which someone played for a football team). We cast all these into intervals with start point begin_cons and end point end_cons. These form the temporal constraints against which we test the time scopes of the non-temporal candidate answers, also cast into intervals \([\text{begin_ans}, \text{end_ans}]\). The test itself depends on the temporal operator derived from the input question (e.g., BEFORE, OVERLAP, etc.) (Table 2). For questions with ordinal constraints (e.g., last), we sort the (possibly open) intervals to select the appropriate answer.

4 EXPERIMENTS

4.1 Setup

We evaluate TELEQUILA on the TempQuestions benchmark [13], which contains 1,271 temporal questions labeled as questions with explicit, implicit, and ordinal constraints, and those with temporal answers. Questions are paired with their answers over Freebase. We use three state-of-the-art KB-QA systems as baselines: AQQU [6], QUINT [2] (code from authors for both), and Bao et al. [4] (detailed results from authors). The first two are geared for simple questions, while Bao et al. handle complex questions, including temporal ones. We use TELEQUILA as a plug-in for the first two, and directly evaluate against the system of Bao et al. on 341 temporal questions from the ComplexQuestions test set [4]. For evaluating baselines, the full question was fed directly to the underlying system. We report precision, recall, and F1 scores of the retrieved answer sets w.r.t. the gold answer sets, and average them over all test questions.

4.2 Results and insights

Results on TempQuestions and the 341 temporal questions in ComplexQuestions are shown in Table 3. AQQU + TELEQUILA and QUINT + TELEQUILA refer to the TELEQUILA-enabled versions of the respective baseline systems. We make the following observations.

TELEQUILA enables KB-QA systems to answer composite questions with temporal conditions. Overall and category-wise F1-scores show that TELEQUILA-enabled systems significantly outperform the baselines. Note that these systems neither have capabilities for handling compositional syntax nor specific support for temporal questions. Our decomposition and rewrite methods are crucial for compositionality, and constraint-based reasoning on answers is decisive for the temporal dimension. The improvement in F1-scores stems from a systematic boost in precision, across most categories.

TELEQUILA outperforms state-of-the-art baselines. Bao et al. [4] represents the state-of-the-art in KB-QA, with a generic mechanism for handling constraints in questions. TELEQUILA-enabled systems outperform Bao et al. on the temporal slice of ComplexQuestions, showing that a tailored method for temporal information needs is worthwhile. TELEQUILA enabled QUINT and AQQU to answer questions like: “who is the first husband of julia roberts?”, “when did francesco sabatini start working on the puerta de san vicente?”, and “who was governor of oregon when shanghai noon was released?”.

Error analysis. Analyzing cases when TELEQUILA fails yields insights towards future work: (i) Decomposition and rewriting were incorrect (for example, in “where did the pilgrims come from before landing in america?”, “landing” is incorrectly labeled as a noun, triggering case 3 instead of case 1 in Table 1); (ii) The correct temporal predicate was not found due to limitations of the similarity
function; and (iii) The temporal constraint or the time scope to use during reasoning was wrongly identified.

5 RELATED WORK

QA has a long tradition in IR and NLP, including benchmarking tasks in TREC, CLEF, and SemEval. This has predominantly focused on retrieving answers from textual sources. The recent TREC CAR (complex answer retrieval) resource [10], explores multi-faceted passage answers, but information needs are still simple. In IBM Watson [12], structured data played a role, but text was the main source for answers. Question decomposition was leveraged, for example, in [12, 20, 29] for QA over text. However, re-composition and reasoning over answers works very differently for textual sources [20], and are not directly applicable for KB-QA. Compositional semantics of natural language sentences has been addressed by [16] from a general linguistic perspective. Although applicable to QA, existing systems support only specific cases of composite questions.

KB-QA is a more recent trend, starting with [7, 8, 11, 24, 27]. Most methods have focused on simple questions, whose SPARQL translations contain only a single variable (and a few triple patterns for a single set of qualifying entities). For popular benchmarks like WebQuestions [7], the best performing systems use templates and grammars [1, 2, 6, 19, 29], leverage additional text [21, 26], or learn end-to-end with extensive training data [15, 26, 28]. These methods do not cope well with complex questions. Bao et al. [4] combined rules with deep learning to address a variety of complex questions.

6 CONCLUSION

Understanding the compositional semantics of complex questions is an open challenge in QA. We focused on temporal question answering over KBs, as a major step for coping with an important slice of information needs. Our method showed boosted performance on a recent benchmark, and outperformed a state-of-the-art baseline on general complex questions. Our work underlines the value of building reusable modules that improve several KB-QA systems.

REFERENCES

[1] A. Abujabal, R. Saha Roy, M. Yahya, and G. Weikum. 2018. Never-Ending Learning for Open-Domain Question Answering over Knowledge Bases. In WWW.

[2] A. Abujabal, M. Yahya, M. Riedewald, and G. Weikum. 2017. Automated template generation for question answering over knowledge graphs. In WWW.

[3] J. F. Allen. 1990. Maintaining knowledge about temporal intervals. In Readings in qualitative reasoning about physical systems. Elsevier.

[4] J. Bao, N. Duan, Z. Yan, M. Zhou, and T. Zhao. 2016. Constraint-based question answering with knowledge graph. In COLING.

[5] J. Bao, N. Duan, M. Zhou, and T. Zhao. 2014. Knowledge-based question answering as machine translation. In ACL.

[6] H. Bart and E. Hausmann. 2015. More Accurate Question Answering on Freebase. In CIKM.

[7] J. Berant, A. Chou, R. Frostig, and P. Liang. 2013. Semantic Parsing on Freebase from Question-Answer Pairs. In EMNLP.

[8] Q. Cai and A. Yates. 2013. Large-scale Semantic Parsing via Schema Matching and Lexicon Extension. In ACL.

[9] D. Diefenbach, V. Lopez, K. Singh, and P. Maret. 2017. Core techniques of question answering systems over knowledge bases: A survey. In Knowledge and Information Systems.

[10] L. Dietz and B. Gamari. 2017. TREC CAR: A Data Set for Complex Answer Retrieval. In TREC.

[11] A. Fader, L. Zettlemoyer, and O. Etzioni. 2014. Open question answering over curated and extracted knowledge bases. In ADBIS.

[12] D. A. Ferrucci et al. 2012. This is Watson. In IBM Journal of R&D.

[13] Z. Jia, A. Abujabal, R. Saha Roy, J. Strötgen, and G. Weikum. 2018. Temp-Questions: A Benchmark for Temporal Question Answering. In IJCAI.

[14] E. F. Kuzey, V. Setty, J. Strötgen, and G. Weikum. 2016. As Time Goes By: Comprehensive Tagging of Temporal Phrases with Temporal Scopes. In WWW.

[15] H. Li, C. Xiong, and J. Callan. 2017. Natural Language Supported Relation Matching for Question Answering with Knowledge Graphs. In KG4IR@SIGIR.

[16] P. Liang, M. I. Jordan, and D. Klein. 2011. Learning Dependency-Based Compositional Semantics. In ACL.

[17] D. Metzler, R. Jones, F. Feng, and R. Zhang. 2009. Improving Search Relevance for Implicitly Temporal Queries. In SIGIR.

[18] A. Moschitti et al. 2017. Question Answering and Knowledge Graphs. In Exploiting Linked Data and Knowledge Graphs in Large Organizations.

[19] S. Reddy, M. Lapata, and M. Steedman. 2014. Large-scale semantic parsing without question-answer pairs. In TACL.

[20] E. Sasapute, J. L. Vicedo, P. Martinez-Barco, R. Muñoz, and H. Llorens. 2009. Enhancing QA Systems with Complex Temporal Question Processing Capabilities. J. Artif. Int. Res. (2009).

[21] D. Savenchuk and E. Agichtein. 2016. When a Knowledge Base Is Not Enough: Question Answering over Knowledge Bases with External Text Data. In SIGIR.

[22] A. Setzer. 2002. Temporal information in Newswire articles: An annotation scheme and corpus study. Ph.D. Dissertation. University of Sheffield.

[23] J. Strötgen and M. Gertz. 2010. HeidelTime: High Quality Rule-Based Extraction and Normalization of Temporal Expressions. In SemEval.

[24] C. Unger, L. Bühmann, J. Lehmann, A. N. Ngomo, D. Gerber, and P. Cinzano. 2012. Template-based question answering over RDF data. In WWW.

[25] J. Wieging, M. Bansal, K. Gimpel, and K. Livescu. 2016. Towards universal paraphrase sentence embeddings. (2016).

[26] K. Xu, S. Reddy, Y. Feng, S. Huang, and D. Zhao. 2016. Question answering on freebase via relation extraction and textual evidence. In ACL.

[27] M. Yahya, K. Berberich, S. Elbassuoni, M. Ramanath, V. Trapp, and G. Weikum. 2012. Natural language questions for the web of data. In EMNLP.
[28] W. Yih, M. Chang, X. He, and J. Gao. 2015. Semantic Parsing via Staged Query Graph Generation: Question Answering with Knowledge Base. In ACL.

[29] P. Yin, N. Duan, B. Kao, J. Bao, and M. Zhou. 2015. Answering Questions with Complex Semantic Constraints on Open Knowledge Bases. In CIKM.