The efficacy of pancreatic juice cytology with liquid-based cytology for evaluating malignancy in patients with intraductal papillary mucinous neoplasm

CURRENT STATUS: UNDER REVIEW

Kazuya Miyamoto
Okayama Daigaku

Kazuyuki Matsumoto
Okayama Daigaku

matsumotokazuyuki0227@yahoo.co.jp

Corresponding Author

ORCiD: https://orcid.org/0000-0002-5102-7452

Hironari Kato
Okayama Daigaku

Ryuichi Yoshida
Okayama Daigaku

Yuzo Umeda
Okayama Daigaku

Akihiro Matsumi
Okayama Daigaku

Yosuke Saragai
Okayama Daigaku

Yuki Fujii
Okayama Daigaku

Tatsuhiro Yamazaki
Okayama Daigaku

Daisuke Uchida
Okayama Daigaku

Takeshi Tomoda
Okayama Daigaku
Abstract

Background
Pancreatic juice cytology (PJC) is a tool for diagnosing malignant intraductal papillary mucinous neoplasm (IPMN); however, the accuracy is insufficient using the conventional method. Liquid-based cytology (LBC) improves the cell recovery rate, and almost all cells can be evaluated. We evaluated the efficacy of PJC with LBC for malignant IPMN.

Methods
We retrospectively analyzed 90 patients with suspected malignant IPMN who underwent PJC before pancreatectomy. PJC with smear and LBC methods was conducted in 52 patients (between June 2003 to December 2011) and 38 patients (between January 2012 to December 2018). Based on the imaging studies, all of the patients were classified according to the international consensus guidelines for IPMN revised in 2017.

Results
Of the 90 patients, 43 (48%) had malignant IPMN (high-grade dysplasia or invasive carcinoma), and the remaining patients had non-malignant IPMN (intermediate- or low-grade dysplasia). LBC increased the accuracy of PJC for the diagnosis of malignant IPMN (smear method: 56% [29/52] vs. LBC method: 76% [29/38]; \(P = 0.044 \)). In a multivariate analysis, LBC was a significant factor influencing the accurate diagnosis of PJC (odds ratio: 3.52; \(P = 0.021 \)). Furthermore, LBC increased the accuracy of PJC for malignant IPMN in patients with worrisome features (smear method: 66% [19/29] vs. LBC method: 93% [14/15]; \(P = 0.043 \)).

Conclusions
LBC increases the accuracy of PJC for diagnosing malignant IPMN compared with the conventional smear method.

Background
The increased detection of pancreatic cysts due to improvements in imaging studies has led to a surge in interest in intraductal papillary mucinous neoplasm (IPMN). Most IPMNs are benign, but some can progress to malignant IPMNs. However, it remains difficult to distinguish malignant IPMN from benign IPMN.

According to the international consensus guidelines for IPMN revised in 2017,\(^1\) high-risk stigmata
(HRS) were considered a recommended indicator for resection, and worrisome features (WF) were considered a recommended indicator for further examinations. However, the rate of malignant IPMN in patients with HRS and WF were reported to be 49%-57% and 16%-27%, respectively.2,3 Although the presence of mural nodules (MN) on endoscopic ultrasonography (EUS) has been shown to be a good predictor of malignant branch duct IPMN (BD-IPMN),4-10 about 10% of malignant BD-IPMNs have been reported in patients without MN.8,11,12 As mentioned above, the diagnostic ability of the imaging studies for malignant IPMN is limited.

Pancreatic juice cytology (PJC) under endoscopic retrograde cholangiopancreatography (ERCP) is an examination for IPMNs, and suspicion of malignancy or positive malignancy by PJC is an absolute indication for resection. However, the sensitivity of PJC for malignant IPMN was found to be only 35% in a meta-analysis,13 and the accuracy was also unsatisfactory (33%-64%).2,14-15 Furthermore, the incidence of post-ERCP pancreatitis (PEP) was also reported to be about 8%-25%.2,14-16 These are challenges that must be considered when performing PJC for the diagnosis of malignant IPMN.

Liquid-based cytology (LBC), developed in 1991,17 was originally used in cervical cytology and has since been widely applied to various organs. LBC has the following benefits: (1) it allows for the efficient transfer of cells from the collecting device, and almost all cells can be analyzed; (2) by using separation reagents, it is possible to selectively reduce red blood cells, inflammatory cells and mucus—in this way, the cells collected are mainly those required for the diagnosis, and unsatisfactory smears can be reduced; (3) the cellular materials are distributed evenly in one spot, leading to a reduction in screening time; and (4) using residual cellular materials, immunostaining or genetic tests can be conducted.18 The effectiveness of LBC has been reported for some diseases;19-21 however, no studies have described the application of LBC in IPMN patients. Considering the benefits of LBC, it may be useful for the diagnosis of malignant IPMN with PJC. In the present study, we retrospectively investigated the efficacy of PJC using LBC for a malignant IPMN diagnosis.

Methods
Patients
A total of 104 patients with IPMNs who underwent PJC before pancreatectomy between June 2003 and December 2018 at Okayama University Hospital were retrospectively analyzed. PJC was basically performed for the patients with suspected malignant IPMN due to HRS or WF. PJC with the smear method was conducted between June 2003 and December 2011, while PJC with LBC was conducted between January 2012 and December 2018.

Figure 1 shows the study flow chart. Of the 104 patients with PJC, 5 lacked assessable specimens (smear method: 4, LBC method: 1). Another five patients who could not undergo contrast computed tomography (CT) because of a contrast agent allergy and four who did not satisfy the HRS or WF criteria were excluded from this study. Ultimately, 90 patients (52 patients with the smear method, 38 patients with LBC) were analyzed. Before endoscopic retrograde cholangiopancreatography (ERCP), informed consent was obtained from all patients.

The study was approved by the Okayama University School of Medicine Clinical Ethics Committee on Human Experiments in accordance with the Declaration of Helsinki (Approved number:1904-028).

Methods
The imaging diagnosis
For the imaging studies, all patients underwent EUS and either or both magnetic resonance cholangiopancreatography (MRCP) or enhanced CT. The cystic size and diameter of the main pancreatic duct were evaluated by MRCP or enhanced CT, while the presence and height of mural nodules were evaluated by EUS or enhanced CT. The height of mural nodules was defined as the vertical distance from the septum to the top of the mural nodule. Based on the imaging studies, all of the patients were classified as HRS or WF according to the international consensus guidelines for IPMN revised in 2017.

ERCP procedures and collecting pancreatic juice
ERCP was performed for the patients in a prone or semi-prone position under conscious sedation using intravenous diazepam and pethidine hydrochloride with CO₂ insufflation. Pancreatography was carried out using a duodenoscope (JF260v; Olympus, Tokyo, Japan), and pancreatic duct cannulation was performed using a long, tapered catheter (PR-220Q; Olympus) with a 0.025-inch guidewire.
(VisiGlide2; Olympus). After cannulation, the cannula was changed to a sampling catheter with a side hole (PR-130Q; Olympus) or a 6-Fr uneven double-lumen catheter (UDC; Piolax, Kanagawa, Japan) with saline washing. Sampling of the pancreatic juice was carried out with negative pressure using a 10 mL syringe for about 5 minutes. The diagnosis of PEP and the severity of PEP were judged according to the Cotton criteria.23

Preparation of the LBC sample
To process LBC samples, a BD SurePath (Nippon Becton Dickinson Company, Tokyo, Japan) was used. Pancreatic juice was centrifuged, and the supernatant fluid was discarded. The material was suspended in fixative (CytoRich RED; Nippon Becton Dickinson Company, Tokyo, Japan), and a cell suspension was prepared. The suspension was centrifuged, and the supernatant was discarded. The material was then resuspended in distilled water, and the cell suspension was poured into a precoat slide equipped with a settling chamber. The cell surface was negatively charged while the precoated slide was positively charged, and the cells became attached to the slide glass using the charge and gravity. Figure 2 shows the typical findings of the smear and LBC methods.

Pathological diagnosis
All PJC specimens and the resected specimens were evaluated by two pathologists. The definition of malignancy with PJC was class IV-V according to the Papanicolaou classification system.24 For the resected specimens, low- to intermediate-grade dysplasia (L-IGD) was determined to be benign, and high-grade dysplasia (HGD) and invasive carcinoma (IC) were determined to be malignant according to the 2010 WHO classification.25

Evaluating the endpoints
The primary endpoints were the comparison of the diagnostic ability of PJC for malignant IPMNs using LBC and conventional smear methods. The secondary endpoints were the evaluation of the factors contributing to the accuracy of a malignant IPMN diagnosis and post-ERCP adverse events.

Statistical analyses
All statistical analyses were evaluated using the JMP Pro software program, version 14 (SAS Institute, Cary, NC, USA). Pearson’s \(\chi^2 \) test was used for the categorical variables, whereas the Mann-Whitney \(U \) test was used for continuous data. A multivariate analysis was performed using logistic regression in
order to extract significant factors contributing to the accuracy of a malignant IPMN diagnosis. Significant variables in the univariate analysis ($P < 0.2$) were selected for inclusion in the multivariate model. The significance level was set at $P < 0.05$.

Results

Patient characteristics

The median age was 70 years old (interquartile range [IQR]: 65-74 years old). The types of IPMN were as follows: BD-IPMN, 33 (37%) patients; mixed IPMN, 43 (48%) patients; and main duct (MD)-IPMN, 14 (16%) patients. Twelve (13%) patients underwent a serial pancreatic juice aspiration cytological examination (SPACE). A SPACE was performed more frequently in the LBC group than in the smear method group (Table 1).

Diagnostic ability of PJC for malignant IPMNs

Table 2 shows the diagnostic ability of PJC for malignant IPMNs in 90 patients. For all patients, the sensitivity, specificity and accuracy were 28%, 98% and 64%, respectively. Compared to the smear method, the LBC showed an increased sensitivity and accuracy (sensitivity: 21% to 40%, accuracy: 56% to 76%). Furthermore, the accuracy with LBC was significantly greater than with the smear method ($P = 0.044$).

Evaluating the factors contributing to the accuracy of a malignant IPMN diagnosis

Table 3 summarizes the results of the univariate and multivariate analyses for factors contributing to the accuracy of a malignant IPMN diagnosis. In the univariate analysis, LBC ($P = 0.044$), SPACE ($P = 0.142$), enhancing MN > 5 mm ($P = 0.168$), diameter of dilated branch duct \geq 3 cm ($P = 0.043$), lymphadenopathy ($P = 0.092$) and an increased serum level of CA19-9 ($P = 0.002$) all had $P < 0.2$. In the multivariate analysis, LBC (odds ratio [OR]: 4.25; 95% CI, 1.24-14.54; $P = 0.021$), enhancing MN > 5 mm (OR: 0.23; 95% CI, 0.07-0.73; $P = 0.013$), diameter of dilated branch duct \geq 3 cm (OR: 4.41; 95% CI, 1.45-13.35; $P = 0.009$) and increasing serum level of CA19-9 (OR: 0.24; 95% CI, 0.07-0.79; $P = 0.019$) were concluded to be significant factors contributing to the accuracy of a malignant IPMN.
diagnosis.

The evaluation for HRS and WF patients

Figure 3 shows the flowchart of HRS and WF patients. Forty-six patients with HRS were evaluated separately before and after LBC introduction (smear method: 23, LBC: 23). Forty-four patients with WF were also evaluated separately (smear method: 29, LBC: 15).

Tables 4 and 5 summarize the clinicopathologic features of the 46 patients with HRS and the 44 patients with WF, respectively. Among the HRS patients, the median age was 71 years old (IQR: 66-75 years old). Six (13%) patients had obstructive jaundice. An MPD diameter ≥ 10 mm was found in 23 (50%) patients. Enhancing MN > 5 mm was found in 31 (72%) patients. Six (13%) patients underwent SPACE. There were no patients who underwent a SPACE in the smear method group, and a SPACE was performed significantly more frequently in the LBC group than in the smear method group.

Among the WF patients, the median age was 69 years old (IQR: 63-74 years old). A dilated branch duct diameter ≥ 3 cm was found in 20 (45%) patients. Twenty-four (55%) patients had detectable MN, and the median height of MN was 3.9 mm (IQR: 3.0-4.8 mm). Six (14%) patients underwent a SPACE. There were significant differences between the two groups in terms of the proportions of patients with a dilated branch duct diameter ≥ 3 cm, the median height of MN, and the proportion undergoing a SPACE.

Diagnostic ability of PJC for malignant IPMNs in HRS and WF patients

Table 6 shows the diagnostic ability of PJC. For all patients, the sensitivity, specificity and accuracy were 33%, 94% and 54% in patients with HRS and 15%, 100% and 75% in patients with WF, respectively. In HRS patients, LBC showed a tendency toward an improvement in accuracy compared with smear method (smear method: 43% vs. LBC: 65%; $P = 0.139$). Furthermore, LBC significantly improved the accuracy compared with smear method in WF patients (smear method: 66% vs. LBC: 93%; $P = 0.043$).
Post-ERCP adverse events

Among the 104 patients who underwent ERCP for PJC, PEP developed in 13 (12.5%), and pneumonia developed in 1 (1.0%). The degree of severity of PEP was mild in 7 (6.7%) and moderate in 6 (5.8%); no severe cases of PEP occurred. All of the patients were treated with conservatism therapy and improved.

Discussion

This study is the first to evaluate the efficacy of PJC using LBC with a large number of surgically resected IPMN cases. In our study, LBC increased the accuracy of PJC for a malignant IPMN diagnosis (smear method: 56% vs. LBC: 76%; \(P = 0.044 \)) and proved to be a significant factor influencing an accurate diagnosis in the multivariate analysis (odds ratio [OR]: 3.52; \(P = 0.021 \)). Second, LBC increased the accuracy of PJC particularly for diagnosing malignant IPMN in WF patients (smear method: 66% vs. LBC: 93%; \(P = 0.043 \)).

The smear method has been used generally due to its convenience and low cost. However, issues associated with this method include the fact that the amount of cells placed on the slide glass varies depending on the skill of the operator, and dry denaturation causes poor cell preservation. Previous studies have reported that these issues accounted for two-thirds of cytological false negatives.\(^{26-28}\)

With LBC, because all collected cells are placed into the fixative at the same time and then smeared uniformly onto a glass slide, almost all cells can be efficiently analyzed. Furthermore, the cells required to make a diagnosis are mainly collected using separation reagents.\(^{18}\) For the diagnosis of malignant IPMN, PJC has low sensitivity due to inadequate cellularity in most cases.\(^{29}\) Using LBC, an increased sensitivity (21–40%) and negative predictive value (NPV) (51–72%) contributed to the increased accuracy of PJC.

Both the BD SurePath (Nippon Becton Dickinson Company, Tokyo, Japan) and ThinPrep (Hologic Japan, Tokyo, Japan) are commonly used LBC technologies in cervical cytology. These technologies differ by their methods of producing thin-layer slides. The BD SurePath uses no filters and employs a proprietary cell enrichment process that separates and reduces mucus, blood and inflammatory cells. The unnecessary debris is then trapped in a gradient density material that is removed. In contrast,
the ThinPrep uses a membrane that controls the collection and transfer of diagnostic cells. Kenyon et al. reported that the addition of mucus did not reduce the cellularity with the BD SurePath; however, the cellularity was significantly reduced with ThinPrep. They showed that direct obstruction of the filtration membrane of the ThinPrep due to excess mucus caused a reduction in the number of diagnostic cells. We therefore considered that the BD SurePath might be suitable for the diagnosis of malignant IPMN with rich mucus.

In patients with HRS, LBC showed a tendency toward an improved accuracy, although not to a significant degree (smear method: 43% vs. LBC: 65%; $P = 0.139$). The median diameter of the MPD was larger in HRS patients than in WF patients (10.0 mm vs. 5.0 mm; $P < 0.001$). Because MPD dilatation without obstruction in IPMN has been generally considered to be the result of mucus hypersecretion, HRS patients are expected to have more mucus than WF patients. Even using LBC with the BD SurePath, the improving effect of LBC was inadequate in cases rich in mucus, such as in HRS patients. However, in the clinical setting, it is important to detect malignant IPMNs in WF patients.

Enhancing MN > 5 mm negatively contributed to the accuracy of PJC (OR 0.23; $P = 0.013$). Of the 31 and 59 patients with and without enhancing MN > 5 mm, an accurate diagnosis was obtained in 17 (55%) and 41 (69%), respectively. The pathological diagnoses were as follows: L-IGD, 12; HGD, 5; and IC, 14 in patients with MN > 5 mm, and L-IGD, 35; HGD, 10; and IC, 14 in patients without MN > 5 mm. The proportion of malignant IPMN (HGD or IC) was larger in patients with enhancing MN > 5 mm than in those without enhancing MN > 5 mm (61% vs. 41%; $P = 0.063$). There was a bias between populations, and the sensitivity of PJC was low (28%) while the NPV was relatively high (60%). The accuracy was thus decreased in the patients with enhancing MN > 5 mm. However, enhancing MN > 5 mm itself is associated with malignant IPMN, so surgery should be recommended for patients with HRS, regardless of the results of PJC.

An elevated serum level of CA19-9 contributed to the accuracy of PJC (OR 0.24; $P = 0.019$). Of the 22 patients with an elevated level of CA19-9, an accurate diagnosis was obtained in 8 (36%). In contrast,
of the 68 patients with normal levels of CA19-9, an accurate diagnosis was obtained in 50 (74%).
Among the patients with elevated levels of CA19-9, 18 had malignant IPMN (HGD: 3 [14%], IC: 15 [68%]). In contrast, among the patients with normal levels of CA19-9, 25 had malignant IPMN (HGD: 12 [18%], IC: 13 [19%]). The proportion of IC was significantly larger in the patients with elevated levels of CA19-9 than in those with normal levels of CA19-9 ($P < 0.0001$). The sensitivity of PJC was low, but the NPV was high. Because of the bias between populations, the accuracy was decreased in the group with elevated levels of CA19-9. However, in the 22 patients with elevated levels of CA19-9, LBC improved the accuracy, although not to a significant degree (29–50%; $P = 0.315$). CA19-9 itself was also a useful marker for detecting IC derived from IPMN.
Yamakawa et al. reported that the sensitivity and accuracy of PJC for a malignant IPMN diagnosis were increased by a SPACE in IPMN patients.15 Our study similarly showed that the sensitivity and accuracy of PJC were increased by a SPACE, although not to a significant degree (sensitivity: 26–50%; $P = 0.301$, accuracy: 62–83%; $P = 0.142$). Only 12 patients (13%) underwent a SPACE. Statistically significant differences might have been obtained if more patients had undergone a SPACE.
Furthermore, of the 12 patients who underwent a SPACE, 11 were diagnosed by LBC, so it is necessary to consider the possibility of confounding by LBC.
This study has several limitations. First, this was a retrospective study. Second, this study had a selection bias, as the indications of PJC depended in part on the discretion of the attending physician. Third, there were relatively few patients with LBC among the WF patients.

Conclusions
In conclusion, LBC improved the accuracy of PJC for malignant IPMN. Furthermore, in WF patients in particular, LBC proved useful for the accurate diagnosis.

Abbreviations
PJC
pancreatic juice cytology
IPMN
intraductal papillary mucinous neoplasm
LBC
liquid-based cytology
HGD
high-grade dysplasia

IC
invasive carcinoma

WF
worrisome features

HRS
high-risk stigmata

MN
mural nodules

BD-IPMN
branch duct IPMN

ERCP
endoscopic retrograde cholangiopancreatography

PEP
post-ERCP pancreatitis

CT
computed tomography

EUS
endoscopic ultrasonography

MRCP
magnetic resonance cholangiopancreatography

L-IGD
low- to intermediate-grade dysplasia

IQR
interquartile range

MD-IPMN
main duct IPMN

SPACE
serial pancreatic juice aspiration cytological examination

MPD
main pancreatic duct

CA19-9
carbohydrate antigen 19–9
OR
odds ratio
NPV
negative predictive value

Declarations

Ethics approval and consent to participate

This retrospective study was approved by the Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences and Okayama University Hospital, Ethics Committee review board for human research (Approved number: 1904-028). Only medical record was analyzed in this study. Instead of written or verbal informed consent to participate, this study guaranteed the opportunity of participation refusal by disclose information about this study on our institution homepage (opt-out methods). The opt-out method of consent was approved by the Ethics Committee in our hospital.

Consent for publication

Not applicable

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no conflicts of interests.

Funding

None

Authors’ Contributions
KM, KM, and HK: conception and design of the research and writing the paper. RY, YU, AM, YS, YF, TY, DU, TT, SH, and TY: critical revision of the article for important intellectual content. HO: final approval of the article. All authors read and approved the final manuscript.

Acknowledgements

None

References

1. Tanaka M, Fernández-Del Castillo C, Kamisawa T, et al. Revisions of international consensus Fukuoka guidelines for the management of IPMN of the pancreas. Pancreatology. 2017;17:738-53.

2. Yoshioka T, Shigekawa M, Yamai T, et al. The safety and benefit of pancreatic juice cytology under ERCP in IPMN patients. Pancreatology. 2016;16:1020–7.

3. Roch AM, Ceppa EP, DeWitt JM, et al. International Consensus Guidelines parameters for the prediction of malignancy in intraductal papillary mucinous neoplasm are not properly weighted and are not cumulative. HPB. 2014;16:929–35.

4. Hirono S, Tani M, Kawai M, Okada K, Miyazawa M, Shimizu A, Kitahata Y, Yamaue H. The carcinoembryonic antigen level in pancreatic juice and mural nodule size are predictors of malignancy for branch duct type intraductal papillary mucinous neoplasms of the pancreas. Ann Surg. 2012;255:517–22.

5. Kawada N, Uehara H, Nagata S, et al. Mural nodule of 10 mm or larger as predictor of malignancy for intraductal papillary mucinous neoplasm of the pancreas: Pathological and radiological evaluations. Pancreatology. 2016;16:441-8.

6. Uehara H, Ishikawa O, Katayama K, Kawada N, Ikezawa K, Fukutake N, Takakura R, et al. Size of mural nodule as an indicator of surgery for branch duct intraductal papillary mucinous neoplasm of the pancreas during follow-up. J Gastroenterol. 2011;46:657–63.
7. Kobayashi N, Sugimori K, Shimamura T, et al. Endoscopic ultrasonographic findings predict the risk of carcinoma in branch duct intraductal papillary mucinous neoplasms of the pancreas. Pancreatology. 2012;12:141-5.

8. Shimizu Y, Yamaue H, Maguchi H, Yamao K, Hirono S, Osanai M, Hijioka S, et al. Predictors of malignancy in intraductal papillary mucinous neoplasm of the pancreas. Analysis of 310 pancreatic resection patients at multiple high-volume centers. Pancreas. 2013;42:883-8.

9. Kobayashi G, Fujita N, Maguchi H, et al. Natural history of branch duct intraductal papillary mucinous neoplasm with mural nodules: a Japan pancreas society multicenter study. Pancreas. 2014;43:532-8.

10. Suzuki Y, et al. Development and potential utility of a new scoring formula for prediction of malignant intraductal papillary mucinous neoplasm of the pancreas. Pancreas. 2016;45:1227–32.

11. Sadakari Y, Ienaga J, Kobayashi K, et al. Cyst size indicates malignant transformation in branch duct intraductal papillary mucinous neoplasm of the pancreas without mural nodules. Pancreas. 2010;39:232–6.

12. Sahora K, Mino-Kenudson M, Brugge W. et al: Branch duct intraductal papillary mucinous neoplasms: does cyst size change the tip of the scale? A critical analysis of the revised international consensus guidelines in a large single-institutional series. Ann Surg. 2013;258:466–75.

13. Suzuki R, Thosani N, Annangi S, et al. Diagnostic yield of endoscopic retrograde cholangiopancreatography-based cytology for distinguishing malignant and benign intraductal papillary mucinous neoplasm: systematic review and meta-analysis. Dig Endosc. 2014;26:586-93.

14. Tag-Adeen M, Ozawa E, Ogihara K, et al. The role of pancreatic juice cytology in the
diagnosis of pancreatic intraductal papillary mucinous neoplasm. Rev Esp Enferm Dig. 2018;110:775–81.

15. Yamakawa K, Masuda A, Nakagawa T, et al. Evaluation of efficacy of pancreatic juice cytology for risk classification according to international consensus guidelines in patients with intraductal papillary mucinous neoplasm; a retrospective study. Pancreatology. 2019;19:424–8.

16. Koshita S, Noda Y, Ito K, et al. Pancreatic juice cytology with immunohistochemistry to detect malignancy and histologic subtypes in patients with branch duct type intraductal papillary mucinous neoplasms of the pancreas. GIE. 2017;85:1036–46.

17. Yeon MH, Jeong HS, Lee HS, et al. Comparison of liquid-based cytology (CellPrepPlus) and conventional smears in pancreaticobiliary disease. Korean J Intern Med. 2018;33:883–92.

18. Singh VB, Gupta N, Nijhawan R, et al. Liquid-based cytology versus conventional cytology for evaluation of cervical Pap smears: experience from the first 1000 split samples. Indian J Pathol Microbiol. 2015;58:17–21.

19. Koh JS, Cho SY, Ha HJ, et al. Cytologic evaluation of CellPrep(R) liquid-based cytology in cervicovaginal, body fluid, and urine specimens: comparison with ThinPrep(R). Korean J Cytopathol. 2007;18:29–35.

20. Lee Y. Liquid-based cytology in gynecologic cytology. Korean J Pathol. 2009;43:291–300.

21. Koo JH, Lee SY, Lee HC, et al. CellprepPlus(R) liquid-based smear in sono-guided thyroid fine needle aspiration: a comparison of conventional method and CellprepPlus(R) liquid-based cytology. Korean J Pathol. 2011;45:182–7.

22. Koshita S, Fujita N, Noda Y, et al. Invasive carcinoma derived from “flat type” branch duct intraductal papillary mucinous neoplasms of the pancreas: impact of
classification according to the height of mural nodule on endoscopic ultrasonography. J Hepatobiliary Pancreat Sci. 2015;22:301-9.

23. Cotton PB, Lehman G, Vennes J, et al. Endoscopic sphincterotomy complications and their management: an attempt at consensus. Gastrointest Endosc. 1991;37:383-93.

24. Suen KC, Abdul-Karim FW, Kaminsky DB, et al. Guidelines of the Papanicolaou Society of Cytopathology for fine-needle aspiration procedure and reporting: The Papanicolaou Society of Cytology Task Force on Standards of Practice. Diagn Cytopathol. 1997;17:239-47.

25. Adsay NV, Fukushima N, Furukawa T, et al. Intraductal neoplasms of the pancreas. In: Bosman FT, Carneiro F, Hruban RH et al, editors. WHO classification of tumors of the digestive system. Lyon: IARC Press; 2010. pp. 304-13.

26. Gay JD, Donaldson LD, Goellner JR, et al. False-Negative Results in Cervical Cytologic Studies. Acta Cytol. 1985;29:1043–6.

27. Joseph MG, Cragg F, Wright VC, et al. Cyto-Histological Correlates in a Colposcopic Clinic: A 1-Year Prospective Study. Diagnostic Cytolopathology. 1991;7:477-81.

28. Linder J, Zahniser D. Thin Prep Papanicolaou testing to reduce false negative cervical cytology. Arch Pathol Lab Med. 1998;122:139–44.

29. Basar O, Brugge WR. Do molecular tests really differentiate malignant IPMNS from benign? Endosc Int Open. 2016;4:1236–7.

30. Kenyon S, Sweeney BJ, Happel J, et al. Comparison of BD SurePath and ThinPrep Pap systems in the processing of mucus-rich specimens. Cancer Cytopathol. 2010;25:244-9.

31. Takano S, Fukasawa M, Maekawa S, et al. Deep sequencing of cancer-related genes revealed GNAS mutations to be associated with intraductal papillary mucinous neoplasms and its main pancreatic duct dilation. PLoS One. 2014;9:e98718.
Table 1. Clinicopathologic features of 90 patients with resected IPMNs

	All patients (n=90)	Smear method (n=52)	LBC (n=38)
Age (IQR), years	70 (65-74)	69 (64-73)	72 (67-76)
Sex (male/female)	59/31	37/15	22/16
Location of main lesion			
(Ph/Pbt)	50/40	30/22	20/18
Type of IPMN, n (%)			
BD	33 (37)	21 (40)	12 (32)
Mixed	43 (48)	20 (38)	23 (61)
MD	14 (16)	11 (21)	3 (8)
Pathological diagnosis, n (%)			
L-IGD	47 (52)	24 (46)	23 (61)
HGD	15 (17)	10 (19)	5 (13)
IC	28 (31)	18 (35)	10 (26)
Diameter of dilated			
branch duct (IQR), mm	27.0 (17.0-40.3)	30.0 (11.0-42.5)	26.0 (19.8-36.8)
≥30 mm, n (%)	41 (46)	27 (52)	14 (37)
Diameter of MPD (IQR), mm	6.0 (4.0-10.0)	6.0 (4.1-10.0)	6.4 (4.0-10.0)
≤9 mm, n (%)	35 (39)	20 (38)	15 (39)
≤10 mm, n (%)	23 (26)	14 (27)	9 (24)
Patients with MN, n (%)	67 (74)	39 (75)	28 (74)
Height of MN (IQR), mm			
≥5 mm, n (%)	31 (46)	15 (38)	16 (57)
SPACE, n (%)	12 (13)	1 (2)	11 (29)

IPMN, intraductal papillary mucinous neoplasm; *LBC*, liquid-based cytology; *IQR*, interquartile range; *Ph*, pancreatic head; body and tail; *BD*, branch duct; *MD*, main duct; *L-IGD*, low-to intermediate-grade dysplasia; *HGD*, high-grade dysplasia; *IC*, *MPD*, main pancreatic duct; *MN*, mural nodule; *SPACE*, serial pancreatic juice aspiration cytological examination.
Table 2. Diagnostic ability of PJC for malignant IPMNs

	Sensitivity, (%)	Specificity, (%)	PPV, (%)
Smear method (n=52)	21 (6/28)	96 (23/24)	86 (6/7)
LBC (n=38)	40 (6/15)	100 (23/23)	100 (6/6)
All patients (n=90)	28 (12/43)	98 (46/47)	92 (12/13)

PJC, pancreatic juice cytology; IPMN, intraductal papillary mucinous neoplasm; PPV, positive predictive value; NPV, negative cytology.
Table 3. Univariate and multivariate analyses for factors contributing to the accuracy of a malignant IPMN diagnosis

Factors	Univariate	Odds ratio
Age, ≥ 70 years	0.977	
Sex, male	0.992	
Location of main lesion, Ph	0.431	
MD or mixed-type, yes	0.212	
LBC, yes	0.044	4.25
SPACE, yes	0.142	2.04
Obstructive jaundice, yes	0.444	
Enhancing MN ≥ 5 mm, yes	0.168	0.23
Diameter of MPD ≥ 10 mm, yes	0.358	
Past history of pancreatitis, yes	0.697	
Diameter of dilated branch duct ≥ 3 cm, yes	0.043	4.41
Thickness and/or enhancing cyst walls, yes	0.276	
Abrupt change in caliber of pancreatic duct with distal pancreatic atrophy, yes	0.927	
Lyphadenopathy, yes	0.092	0.15
Increasing serum level of CA19-9, yes	0.002	0.24
Increasing size of cyst over 5 mm/2 years, yes	0.617	

IPMN, intraductal papillary mucinous neoplasm; CI, confidence interval; Ph, pancreatic head; MD, main duct; LBC, liquid-based examination; MN, mural nodule; MPD, main pancreatic duct; CA19-9, carbohydrate antigen 19-9.
Table 4. Clinicopathologic features of 46 patients with resected IPMNs (HRS patients)

	All patients (n=46)	Smear method (n=23)	LBC (n=23)
Age (IQR), years	71 (66-75)	70 (66-73)	71 (66-77)
Sex (male/female)	27/19	15/8	12/11
Location of main lesion	21/25	11/12	10/13
Type of IPMN, n (%)			
BD	9 (20)	4 (17)	5 (22)
Mixed	25 (54)	10 (43)	15 (65)
MD	12 (26)	9 (39)	3 (13)
Pathological diagnosis, n (%)			
L-IGD	16 (35)	6 (26)	10 (43)
HGD	10 (22)	5 (22)	5 (22)
IC	20 (43)	12 (52)	8 (35)
Obstructive jaundice, n (%)	6 (13)	3 (13)	3 (13)
Diameter of dilated branch duct (IQR), mm	25.5 (6.0-42.3)	17.0 (0-46.0)	28.0 (20.0-42.0)
>30 mm, n (%)	21 (46)	10 (44)	11 (48)
Diameter of MPD (IQR), mm	10.0 (5.0-12.0)	10.0 (6.0-13.0)	8.0 (5.0-12.0)
>10 mm, n (%)	23 (50)	14 (61)	9 (39)
Patients with MN, n (%)	43 (93)	22 (96)	21 (91)
Height of MN (IQR), mm	12.0 (7.0-18.0)	11.0 (7.0-17.3)	13.0 (7.5-19.5)
Enhancing MN > 5 mm, n (%)	31 (72)	15 (68)	16 (76)
SPACE, n (%)	6 (13)	0 (0)	6 (26)

IPMN, intraductal papillary mucinous neoplasm; HRS, high-risk stigmata; LBC, liquid-based cytology; IQR, interquartile range; MPD, main pancreatic duct; MN, mural nodule; SPACE, serial pancreatic juice aspiration examination.
Table 5. Clinicopathologic features of 44 patients with resected IPMNs (WF patients)

	All patients (n=44)	Smear method (n=29)	LBC (n=15)
Age (IQR), years	69 (63-74)	68 (61-72)	74 (68-76)
Sex (male/female)	32/12	22/7	10/5
Location of main lesion (Ph/Pbt)	29/15	19/10	10/5
Type of IPMN, n (%)			
BD	24 (55)	17 (59)	7 (47)
Mixed	18 (41)	10 (34)	8 (53)
MD	2 (5)	2 (7)	0 (0)
Pathological diagnosis, n (%)			
L-IGD	31 (70)	18 (62)	13 (87)
HGD	5 (11)	5 (17)	0 (0)
IC	8 (18)	6 (21)	2 (13)
Diameter of dilated branch duct (IQR), mm	28.0 (19.3-35.0)	30.0 (19.5-42.0)	23.0 (19.0-29.0)
≥30 mm, n (%)	20 (45)	17 (59)	3 (20)
Diameter of MPD (IQR), mm	5.0 (4.0-7.0)	5.0 (4.0-7.0)	5.0 (4.0-8.0)
≥5-9 mm, n (%)	22 (50)	14 (48)	8 (53)
Patients with MN, n (%)	24 (55)	17 (59)	7 (47)
Height of MN (IQR), mm	3.9 (3.0-4.8)	4.0 (3.0-6.0)	3.0 (1.0-4.0)
SPACE, n (%)	6 (14)	1 (3)	5 (33)

IPMN, intraductal papillary mucinous neoplasm; *WF*, worrisome features; *LBC*, liquid-based cytology; *IQR*, interquartile range; *Ph*, pancreatic head; *Pbt*, pancreatic body and tail; *BD*, branch duct; *MD*, main duct; *L-IGD*, low-to intermediate-grade dysplasia; *HGD*, high-grade dysplasia; *IC*, invasive cancer; *MPD*, main pancreatic duct; *MN*, mural nodule; *SPACE*, serial pancreatic juice aspiration cytological examination.
Table 6. Diagnostic ability of PJC for malignant IPMNs (HRS and WF patients)

	Sensitivity, (%)	Specificity, (%)	PPV, (%)	
HRS				
Smear method	(n=23)	29 (5/17)	83 (5/6)	83 (5/6)
LBC	(n=23)	38 (5/13)	100 (10/10)	100 (5/5)
All patients	(n=46)	33 (10/30)	94 (15/16)	91 (10/11)
WF				
Smear method	(n=29)	9 (1/11)	100 (18/18)	100 (1/1)
LBC	(n=15)	50 (1/2)	100 (13/13)	100 (1/1)
All patients	(n=44)	15 (2/13)	100 (31/31)	100 (2/2)

PJC, pancreatic juice cytology; IPMN, intraductal papillary mucinous neoplasm; HRS, high-risk stigmata; WF, worrisome features; Negative predictive value. LBC, liquid-based cytology.

Figures
Patients with IPMN who underwent PJC before surgery
\[n = 104 \]

The specimen was not assessable
\[n = 3 \]

\[n = 99 \]
Assessable rate of PJC: 95.2\% (99/104)
Contrast CT was not performed
\[n = 5 \]

Neither HRS nor WF
\[n = 4 \]

All patients
\[n = 90 \]

From June 2003 to December 2011

Smear method
\[n = 52 \]

From January 2012 to December 2018

LBC
\[n = 38 \]

Figure 1

Flowchart for all patients of this study. IPMN, intraductal papillary mucinous neoplasm; PJC, pancreatic juice cytology; CT, computed tomography; HRS, high-risk stigmata; WF, worrisome features; LBC, liquid-based cytology.
Figure 2

PJC in patients with malignant IPMN: (A) Smear method. (B) LBC. H&E, hematoxylin and eosin staining; pancreatic juice cytology; LBC, liquid-based cytology.

Figure 3

Flowchart for HRS and WF patients of this study. HRS, high-risk stigmata; WF, worrisome features; LBC, liquid-based cytology.