Arithmetic on Moran sets

Xiaomin Ren, Li Tian, Jiali Zhu and Kan Jiang∗

Abstract

Let \((\mathcal{M}, c_k, n_k)\) be a class of Moran sets. We assume that the convex hull of any \(E \in (\mathcal{M}, c_k, n_k)\) is \([0, 1]\). Let \(A, B\) be two non-empty sets in \(\mathbb{R}\). Suppose that \(f\) is a continuous function defined on an open set \(U \subset \mathbb{R}^2\). Denote the continuous image of \(f\) by
\[
 f_U(A, B) = \{ f(x, y) : (x, y) \in (A \times B) \cap U \}.
\]
In this paper, we prove the following result. Let \(E_1, E_2 \in (\mathcal{M}, c_k, n_k)\). If there exists some \((x_0, y_0)\) \(\in (E_1 \times E_2) \cap U\) such that
\[
 \sup_{k \geq 1} \{ 1 - c_k n_k \} \times \frac{\partial_y f(x_0, y_0)}{\partial_x f(x_0, y_0)} < \inf_{k \geq 1} \left\{ \frac{c_k}{1 - n_k c_k} \right\}.
\]
Then \(f_U(E_1, E_2)\) contains an interior.

1 Introduction

Given two non-empty sets \(A, B \subset \mathbb{R}\). Define \(A * B = \{ x * y : x \in A, y \in B \}\), where \(*\) is \(+\), \(-\), \(\times\) or \(\div\) (when \(*\) = \(\div\), \(y \neq 0\)). We call \(A * B\) the arithmetic on \(A\) and \(B\). Generally, we may define the arithmetic on \(A\) and \(B\) in terms of some functions. Suppose that \(f\) is a continuous function defined on an open set \(U \subset \mathbb{R}^2\). Denote the continuous image of \(f\) by
\[
 f_U(A, B) = \{ f(x, y) : (x, y) \in (A \times B) \cap U \}.
\]
For simplicity, we still call \(f_U(A, B)\) the arithmetic on \(A\) and \(B\). Arithmetic on the fractal sets has strong connections with many different problems in geometry measure theory and dynamical systems \([30, 26]\). For instance, in geometry measure theory, the visible problem is related to the division on the fractals \([6, 11, 18]\). The main reason is due to the following observation. Let \(K \subset [0, 1]\) be a fractal set. Given \(\alpha \geq 0\), we say the line \(y = \alpha x\) is visible through \(K \times K\) if
\[
 \{(x, \alpha x) : x \in \mathbb{R} \setminus \{0\}\} \cap (K \times K) = \emptyset.
\]
It is easy to verify that the line \(y = \alpha x\) is visible through \(K \times K\) if and only if
\[
 \alpha \notin \frac{K}{K} := \left\{ \frac{x}{y} : x, y \in K, y \neq 0 \right\}.
\]

∗Kan Jiang is the corresponding author
The arithmetic sum of two Cantor sets was studied by many scholars. There are many results concerning with this topic, see [2] [3] [4] [8] [12] [15] [20] and references therein. It is an important problem in homoclinic bifurcations [19]. Palis [19] posed the following problem: whether it is true (at least generically) that the arithmetic sum of dynamically defined Cantor sets either has measure zero or contains an interval. This conjecture was solved in [2]. Motivated by Palis’ conjecture, it is natural to investigate when the sum of two Cantor sets contains some interiors. Newhouse [27] proved the following thickness theorem. Given any two Cantor sets C_1 and C_2, if $\tau(C_1)\tau(C_2) > 1$, where $\tau(C_i), i = 1, 2$ denotes the thickness of $C_i, i = 1, 2$, then $C_1 + C_2$ contains some interiors. However, Newhouse thickness theorem cannot handle a general function f, i.e. whether $f(C_1, C_2)$ contains an interior or not.

To date, there are not so many results concerning with the arithmetic on the fractal sets [11] [23] [24]. The first result of this direction, to the best of our knowledge, is due to Steinhaus [23] who proved the following interesting result: $C - C = [-1, 1]$, where C is the middle-third Cantor set. Equivalently, Steinhaus proved that for any $x \in [-1, 1]$, there are some $x_1, x_2 \in C$ such that $x = x_1 - x_2$. Recently, Athreya, Reznick and Tyson [11] considered the multiplication on the middle-third Cantor set. They proved that $17/21 \leq L(C \cdot C) \leq 8/9$, where L denotes the Lebesgue measure. Jiang and Xi [13] proved that $C \cdot C$ indeed contains infinitely many intervals. In [14], Jiang and Xi considered the representations of real numbers in $C - C$, i.e. let $x \in [-1, 1]$, define

$$S_x = \{(y_1, y_2) : y_1 - y_2 = x, (y_1, y_2) \in C \times C\}.$$

and

$$U_r = \{x : z(S_x) = r\}, r \in \mathbb{N}^+.$$

They proved that $\dim_H(U_r) = \frac{\log 2}{\log 3}$ if $r = 2^k$ for some $k \in \mathbb{N}$. Moreover,

$$0 < \mathcal{H}^s(U_1) < \infty, \mathcal{H}^s(U_{2^k}) = \infty, k \in \mathbb{N}^+,$$

where $s = \frac{\log 2}{\log 3}$, $U_{32^k} \cdot U_{32^k}$ is an infinitely countable set for any $k \geq 1$, where \dim_H and \mathcal{H}^s denote the Hausdorff dimension and Hausdorff measure, respectively. For more results, see [14]. In [25], Tian et al. defined a class of overlapping self-similar sets as follows: let K be the attractor of the IFS

$$\{f_1(x) = \lambda x, f_2(x) = \lambda x + c - \lambda, f_3(x) = \lambda x + 1 - \lambda\},$$

where $f_1(I) \cap f_2(I) \neq \emptyset, (f_1(I) \cup f_2(I)) \cap f_3(I) = \emptyset$, and $I = [0, 1]$ is the convex hull of K. This class of self-similar set was investigated by many scholars, see [7] [9] [16] [17] [28] [29] [30]. Tian et al. $K \cdot K = [0, 1]$ if and only if $(1 - \lambda)^2 \leq c$. Equivalently, they gave a necessary and sufficient condition such that for any $x \in [0, 1]$ there exist some $y, z \in K$ such that $x = yz$. Moreover, Ren, Zhu, Tian and Jiang [21] proved that

$$\sqrt{K} + \sqrt{K} = [0, 2]$$

if and only if

$$\sqrt{c} + 1 \geq 2\sqrt{1 - \lambda},$$

where $\sqrt{K} + \sqrt{K} = \{\sqrt{x} + \sqrt{y} : x, y \in K\}$. If $c \geq (1 - \lambda)^2$, then

$$\frac{K}{K} = \left\{\frac{x}{y} : x, y \in K, y \neq 0\right\} = [0, \infty).$$
As a consequence, they proved that the following conditions are equivalent:

1. For any $u \in [0, 1]$, there are some $x, y \in K$ such that $u = x \cdot y$;
2. For any $u \in [0, 1]$, there are some $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10} \in K$ such that
 \[u = x_1 + x_2 = x_3 - x_4 = x_5 \cdot x_6 = x_7 \div x_8 = \sqrt{x_9} + \sqrt{x_{10}}; \]
3. $c \geq (1 - \lambda)^2$.

In this paper, we shall consider similar problems on the Moran sets. The Moran sets are, in certain sense, random. Nevertheless, any self-similar set with the open set condition is a Moran set \cite{10}. Now we give the definition of a class of Moran set. Let $\{n_k\} \subset \mathbb{N}^+$ be a sequence (we assume that $n_k \geq 2$). For any $k \in \mathbb{N}^+$, write

\[D_k = \{(\sigma_1, \cdots, \sigma_k) : \sigma_j \in \mathbb{N}^+, 1 \leq \sigma_j \leq n_j, 1 \leq j \leq k \}. \]

Define

\[D = \bigcup_{k \geq 0} D_k. \]

We call $\sigma \in D$ a word. For simplicity, we let $D_0 = \emptyset$. If $\sigma = (\sigma_1, \cdots, \sigma_k) \in D_k$, $\tau = (\tau_1, \cdots, \tau_m) \in D_m$, then we define the concatenation $\sigma \ast \tau = (\sigma_1, \cdots, \sigma_k, \tau_1, \cdots, \tau_m) \in D_{k+m}$. Let $T = [0, 1]$ and $\{c_k\}$ be a positive real sequence with $c_k n_k < 1$, $k \in \mathbb{N}^+$, we say the class

\[\mathcal{F} = \{T_\sigma \subset T : \sigma \in D\} \]

has the Moran structure if the following conditions are satisfied:

1. for any $\sigma \in D$, T_σ is similar to T, i.e. there exists a similitude $S_\sigma : \mathbb{R} \rightarrow \mathbb{R}$ such that $S_\sigma(T) = T_\sigma$;
2. for any $k \geq 0$ and $\sigma \in D_k$, $T_{\sigma_1}, T_{\sigma_2}, \cdots, T_{\sigma n_k+1}$ is a subset of T_σ and
 \[\text{int}(T_{\sigma i}) \cap \text{int}(T_{\sigma j}) = \emptyset, i \neq j, \]
 where $\text{int}(A)$ denotes the interior of A, for simplicity, we denote by $\tilde{T_\sigma} = \bigcup_{i=1}^{n_k+1} T_{\sigma i}$;
3. for any $k \geq 1$ and $\sigma \in D_{k-1}$, $\frac{|T_{\sigma i}|}{|T_\sigma|} = c_k$, and the convex hull of $T_{\sigma i}$ and T_σ coincide for any $1 \leq i \leq n_k$, where $|A|$ denotes the diameter of A.

Suppose $\mathcal{F} = \{T_\sigma \subset T : \sigma \in D\}$ has the Moran structure, then we call

\[E = \bigcap_{k \geq 1} \bigcup_{\sigma \in D_k} T_\sigma \]

a Moran set. We denote by (\mathcal{M}, c_k, n_k) all the Moran sets generated by the Moran structure \mathcal{F}. By the third condition, it is easy to see that the convex hull of any E from (\mathcal{M}, c_k, n_k) is $[0, 1]$.

Now we are ready to state the main result of this paper.
Theorem 1.1. Let \(E_1, E_2 \in (\mathcal{M}, c_k, n_k) \). If there exists some \((x_0, y_0) \in (E_1 \times E_2) \cap U\) such that
\[
\sup_k \{1 - c_k n_k\} < \frac{|\partial_y f|_{(x_0, y_0)}}{|\partial_x f|_{(x_0, y_0)}} < \inf_k \left\{ \frac{c_k}{1 - n_k c_k} \right\},
\]
Then \(f_U(E_1, E_2) \) contains an interior.

The paper is arranged as follows. In section 2, we prove two basic lemmas and give a proof of Theorem 1.1. In section 3, we give some remarks.

2 Proof of Theorem 1.1

In this section, we shall prove Theorem 1.1. First, we give some definitions and prove two useful lemmas.

For any \(k \geq 1 \), denote by \(E_k \) the union of basic intervals when we construct a Moran set \(E \), i.e.
\[
E_k = \bigcup_{\sigma \in D_k} T_\sigma, \quad E = \cap_{k=1}^{\infty} E_k,
\]
where \(T_\sigma \) is called a basic interval with rank \(k \). It is easy to check that the length of any basic interval with rank \(k \) is \(c_1 c_2 \cdots c_k \). Let \([A, B] \subset [0, 1]\), where \(A \) and \(B \) are the left and right endpoints of some basic intervals in \(E_k \) for some \(k \geq 1 \), respectively. \(A \) and \(B \) may not in the same basic interval. In the following lemma, we choose \(A \) and \(B \) in this way. Let \(F_k \) be the collection of all the basic intervals in \([A, B]\) with length \(c_1 c_2 \cdots c_k, k \geq k_0 \) for some \(k_0 \in \mathbb{N}^+ \), i.e. the union of all the elements of \(F_k \) is denoted by \(G_k = \bigcup_{t=1}^{k} I_{k,i} \), where \(t_k \in \mathbb{N}^+ \), \(I_{k,i} \subset E_k \cap [A, B] \). Clearly, by the definition of \(G_n \), it follows that \(G_{n+1} \subset G_n \) for any \(n \geq k_0 \).

Lemma 2.1. Let \(E_1, E_2 \in (\mathcal{M}, c_k, n_k) \), i.e.
\[
E_1 = \cap_{k=1}^{\infty} E_k^{(1)}, \quad E_2 = \cap_{k=1}^{\infty} E_k^{(2)}.
\]
Assume \(F : \mathbb{R}^2 \to \mathbb{R} \) is a continuous function. Suppose \(A \) and \(B \) (\(C \) and \(D \)) are the left and right endpoints of some basic intervals in \(E_k^{(1)}(E_k^{(2)}) \) for some \(k_0 \geq 1 \), respectively. Then \(E_1 \cap [A, B] = \cap_{n=k_0}^{\infty} G_n^{(1)}, E_2 \cap [C, D] = \cap_{n=k_0}^{\infty} G_n^{(2)} \). Moreover, if for any \(n \geq k_0 \) and any basic intervals \(I_1 \subset G_n^{(1)}, I_2 \subset G_n^{(2)} \), we have
\[
F(I_1, I_2) \subset F(I_1, I_2),
\]
then \(F(E_1 \cap [A, B], E_2 \cap [C, D]) = F(G_n^{(1)}, G_n^{(2)}) \).

Proof. We assume that \(G_n^{(i)} = \bigcup_{1 \leq j \leq n} I_{n,i} \), \(i = 1, 2 \). By the construction of \(G_n^{(i)}, i = 1, 2 \), it is clear that \(G_n^{(i)} \subset G_n^{(i)} \) for any \(n \geq 1 \). Therefore,
\[
E_1 \cap [A, B] = \cap_{n=k_0}^{\infty} G_n^{(1)}, E_2 \cap [C, D] = \cap_{n=k_0}^{\infty} G_n^{(2)}.
\]
In terms of the continuity of \(F \), we conclude that
\[
F(E_1 \cap [A, B], E_2 \cap [C, D]) = \cap_{n=k_0}^{\infty} F(G_n^{(1)}, G_n^{(2)}).
\]
Therefore,

\[
F(G_n^{(1)}, G_n^{(2)}) = \bigcup_{1 \leq i \leq n, 1 \leq j \leq n} F(I_{n,i}, J_{n,j})
\]

\[
= \bigcup_{1 \leq i \leq n, 1 \leq j \leq n} F(\tilde{I}_{n,i}, \tilde{J}_{n,j})
\]

\[
= F(\bigcup_{1 \leq i \leq n} \tilde{I}_{n,i}, \bigcup_{1 \leq j \leq n} \tilde{J}_{n,j})
\]

\[
= F(G_{n+1}^{(1)}, G_{n+1}^{(2)}).
\]

Consequently, \(F(E_1 \cap [A, B], E_2 \cap [C, D]) = F(G_{k_0}^{(1)}, G_{k_0}^{(2)})\) follows immediately from the identity (1) and \(F(G_n^{(1)}, G_n^{(2)}) = F(G_{n+1}^{(1)}, G_{n+1}^{(2)})\) for any \(n \geq k_0\). \(\square\)

Lemma 2.2. Let \(I = [a, a + t], J = [b, b + t]\) be two basic intervals in \(G_k^{(1)}\) and \(G_k^{(2)}\), respectively. If there exists some \((x_0, y_0) \in (E_1 \times E_2) \cap (I \times J) \cap U\) such that

\[
\sup_k \{1 - c_k n_k\} < \left| \frac{\partial_y f |_{(x_0, y_0)}}{\partial_x f |_{(x_0, y_0)}} \right| < \inf_k \left\{ \frac{c_k}{1 - n_k c_k} \right\}.
\]

Then \(f(I, J) = f(\tilde{I}, \tilde{J})\).

Proof. Without loss of generality, we assume that \(\partial_x f |_{(x_0, y_0)} > 0, \partial_y f |_{(x_0, y_0)} > 0\). For other cases, we may consider the new function \(F(x, y) = f(x, 1 - y)\) or \(-f(x, y)\). By the definition of \(\tilde{I}\) and \(\tilde{J}\), we have

\[
\tilde{I} = \bigcup_{i=1}^{n_k} I_i, \tilde{J} = \bigcup_{j=1}^{n_k} J_j.
\]

Moreover, \(t = |I| = |J| = c_1 \cdots c_{k-1}\), where \(|A|\) denotes the length of \(A\). Therefore, we have

\[
f(\tilde{I}, \tilde{J}) = \bigcup_{i=1}^{n_k} \bigcup_{j=1}^{n_k} f(I_i, J_j).
\]

We first prove that for any \(1 \leq i \leq n_k, \bigcup_{j=1}^{n_k} f(I_i, J_j)\) is an interval. By the construction of Moran set, it suffices to prove that \(f(P_1) \geq f(P_2)\), see the second picture of Figure 1, that is, it remains to prove that there exists some \((\xi, \eta) \in E_1 \times E_2\) contained in the neighbour of \((x_0, y_0)\) such that

\[
(c_1 \cdots c_k) \partial_x f(\xi, \eta) \geq (c_1 c_2 \cdots c_{k-1} - n_k c_1 \cdots c_k) \partial_y f(\xi, \eta).
\]
However, this is clear due to the condition
\[
\frac{\partial_y f}{\partial_x f}(x_0, y_0) < \inf_k \left\{ \frac{c_k}{1 - n_k c_k} \right\},
\]
and the assumption \(\partial_x f, \partial_y f \) are continuous. Next, we prove that
\[
\bigcup_{i=1}^{n_k} \bigcup_{j=1}^{n_k} f(I_i, J_j)
\]
is an interval. Analogously, we need to show that \(f(P_3) \geq f(P_4) \), see the third picture of Figure 1. Indeed, it only remains to prove that there is some \((\xi_1, \eta_1) \in E_1 \times E_2\) which lies in the neighbour of \((x_0, y_0)\) such that
\[
(c_1 \cdots c_{k-1})\partial_y f(\xi_1, \eta_1) \geq (c_1 c_2 \cdots c_{k-1} - n_k c_1 \cdots c_k)\partial_x f(\xi_1, \eta_1).
\]
However, the above inequality follows from the condition
\[
\sup_k \{1 - c_k n_k\} < \frac{\partial_y f(x_0, y_0)}{\partial_x f(x_0, y_0)},
\]
and \(\partial_x f, \partial_y f \) are continuous. Therefore, we have proved that \(f(I, J) = f(\tilde{I}, \tilde{J}) \).

Proof of Theorem 1.1. Theorem 1.1 follows immediately from Lemmas 2.1 and 2.2.

3 Final remark

In Lemma 2.1, we note that if some basic intervals of \(E_k \) intersects, then similar result as Theorem 1.1 can be obtained. We leave it to the readers.

Acknowledgements

The work is supported by National Natural Science Foundation of China (Nos.11701302, 11671147). The work is also supported by K.C. Wong Magna Fund in Ningbo University.

References

[1] Jayadev S. Athreya, Bruce Reznick, and Jeremy T. Tyson. Cantor set arithmetic. *arXiv:1711.08791*, 2017.

[2] Carlos Gustavo T. de A. Moreira and Jean-Christophe Yoccoz. Stable intersections of regular Cantor sets with large Hausdorff dimensions. *Ann. of Math. (2)*, 154(1):45–96, 2001.

[3] Michel Dekking and Károly Simon. On the size of the algebraic difference of two random Cantor sets. *Random Structures Algorithms*, 32(2):205–222, 2008.
[4] Kemal Ilgar Eroğlu. On the arithmetic sums of Cantor sets. *Nonlinearity*, 20(5):1145–1161, 2007.

[5] K. J. Falconer. *The geometry of fractal sets*, volume 85 of *Cambridge Tracts in Mathematics*. Cambridge University Press, Cambridge, 1986.

[6] Kenneth J. Falconer and Jonathan M. Fraser. The visible part of plane self-similar sets. *Proc. Amer. Math. Soc.*, 141(1):269–278, 2013.

[7] De-Jun Feng and Ka-Sing Lau. Multifractal formalism for self-similar measures with weak separation condition. *J. Math. Pures Appl. (9)*, 92(4):407–428, 2009.

[8] M. Hochman and P. Shmerkin. Local entropy averages and projections of fractal measures. *Ann. of Math. (2)*, 175(3):1001–1059, 2012.

[9] Michael Hochman. On self-similar sets with overlaps and inverse theorems for entropy. *Ann. of Math. (2)*, 180(2):773–822, 2014.

[10] John E. Hutchinson. Fractals and self-similarity. *Indiana Univ. Math. J.*, 30(5):713–747, 1981.

[11] Esa Järvenpää, Maarit Järvenpää, Paul MacManus, and Toby C. O’Neil. Visible parts and dimensions. *Nonlinearity*, 16(3):803–818, 2003.

[12] Kan Jiang. Hausdorff dimension of the arithmetic sum of self-similar sets. *Indag. Math. (N.S.)*, 27(3):684–701, 2016.

[13] Kan Jiang and Lifeng Xi. Interiors of continuous images of the middle-third cantor set. *arXiv:1809.01880*, 2018.

[14] Kan Jiang and Lifeng Xi. Arithmetic representations of real numbers in terms of self-similar sets. *Annales Academiae Scientiarum Fennicae Mathematica*, 43:1-19, 2019.

[15] Marshall Hall, Jr. On the sum and product of continued fractions. *Ann. of Math. (2)*, 48:966–993, 1947.

[16] Ziyu Li, Zhouyu Yu, and Lifeng Xi. Scale-free effect of substitution networks. *Phys. A*, 492:1449–1455, 2018.

[17] Yiming Li and Lifeng Xi. Manhattan property of geodesic paths on self-affine carpets. *Arch. Math. (Basel)*, 111(3):279–285, 2018.

[18] Toby C. O’Neil. The Hausdorff dimension of visible sets of planar continua. *Trans. Amer. Math. Soc.*, 359(11):5141–5170, 2007.

[19] Jacob Palis and Floris Takens. *Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations*, volume 35 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 1993. Fractal dimensions and infinitely many attractors.

[20] Yuval Peres and Pablo Shmerkin. Resonance between Cantor sets. *Ergodic Theory Dynam. Systems*, 29(1):201–221, 2009.
[21] Xiaomin Ren, Jiali Zhu, Li Tian and Kan Jiang. Multiple representations of real numbers on self-similar sets with overlaps. \textit{arXiv:1810.04930}, 2018.

[22] Nikita Sidorov. Expansions in non-integer bases: lower, middle and top orders. \textit{J. Number Theory}, 129(4):741–754, 2009.

[23] Hugo Steinhaus. Mowa Własność Mnogości Cantora. \textit{Wector}, 1-3. \textit{English translation in: STENIHAUS, H.D.} 1985.

[24] Yuki Takahashi. Products of two Cantor sets. \textit{Nonlinearity}, 30(5):2114–2137, 2017.

[25] Li Tian, Jiangwen Gu, Qianqian Ye, Li-Feng Xi, and Kan Jiang. Multiplication on self-similar sets with overlaps. \textit{arXiv:1807.05368}, 2018.

[26] Zhiying Wen, Lifeng Xi. On the dimensions of sections for the graph-directed sets, Annales Academiae Scientiarum Fennicae Mathematica, 35: 515–535, 2010.

[27] Nikita Sidorov. Expansions in non-integer bases: lower, middle and top orders. \textit{J. Number Theory}, 129(4):741–754, 2009.

[28] Tingting Li, Qianqian Ye and Lifeng Xi. Markov spectra of self-similar networks by substitution rule. \textit{Fractals}, 26(5):1850064, 2018.

[29] Songjing Wang, Zhouyu Yu, and Lifeng Xi. Average geodesic distance of Sierpinski gasket and Sierpinski networks. \textit{Fractals}, 25(5):1750044, 8, 2017.

[30] Lifeng Xi, Wen Wu, and Ying Xiong. Dimension of slices through fractals with initial cubic pattern. \textit{Chin. Ann. Math. Ser. B}, 38(5):1145–1178, 2017.

\textbf{Department of Mathematics, Ningbo University, Ningbo, Zhejiang, People’s Republic of China}

\textit{E-mail address: 283186364@qq.com}

\textbf{Department of Mathematics, Ningbo University, Ningbo, Zhejiang, People’s Republic of China}

\textit{E-mail address: 740464942@qq.com}

\textbf{Department of Mathematics, Ningbo University, Ningbo, Zhejiang, People’s Republic of China}

\textit{E-mail address: 2017084162@qq.com}

\textbf{Department of Mathematics, Ningbo University, Ningbo, Zhejiang, People’s Republic of China}

\textit{E-mail address: kanjiangbunnik@yahoo.com, jiangkan@nbu.edu.cn}