Birationally rigid Fano threefold hypersurfaces

Ivan Cheltsov and Jihun Park

Abstract. We prove that every quasi-smooth weighted Fano threefold hypersurface in the 95 families of Fletcher and Reid is birationally rigid.

Keywords: Fano hypersurface; weighted projective space; birationally rigid; birational involution.

Mathematics Subject Classification (2010): 14E07, 14E08, 14J30, 14J45., 14J70.

Contents

1 Introduction ... 2
 1.1 Introduction ... 2
 1.2 Set-up ... 5
 1.3 Notations .. 6

2 Excluding smooth points and curves 7
 2.1 Smooth points ... 7
 2.2 Curves .. 12

3 Excluding singular points 14
 3.1 Methods .. 14

4 Proof I 17
 4.1 How to read the tables I 17
 4.2 Super-rigid families ... 19

5 Untwisting singular points 38
 5.1 Untwisting .. 38
 5.2 Quadratic involution 39
 5.3 Elliptic involution ... 41
 5.4 Invisible elliptic involution 52

6 Proof II 60
 6.1 How to read the tables II 60
 6.2 Non-super-rigid families 61

7 Epilogue 87
 7.1 Open problems ... 87
 7.2 General vs. special .. 88
 7.3 Calabi problem ... 91
 7.4 Arithmetics .. 92
1 Introduction

1.1 Introduction

Let \(V \) be a smooth projective variety. If its canonical class \(K_V \) is pseudo-effective, then Minimal model program produces a birational model \(W \) of the variety \(V \), so-called \textit{minimal model}, which has mild singularities (terminal and \(\mathbb{Q} \)-factorial) and the canonical class \(K_W \) is nef. This has been verified in dimension 3 and in any dimension for varieties of general type (see [2, Theorem 1.1]). Meanwhile, if the canonical class \(K_V \) is not pseudo-effective, then Minimal model program yields a birational model \(U \) of \(V \), so-called \textit{Mori fibred space}. It also has terminal and \(\mathbb{Q} \)-factorial singularities and it admits a fiber structure \(\pi: U \to Z \) of relative Picard rank 1 such that the divisor \(-K_U\) is ample on fibers. This has been proved in all dimensions (see [2, Corollary 1.3.3]).

Mori fibred spaces, alongside the minimal models, represent the terminal objects in Minimal model program. If the canonical class is pseudo-effective and its minimal models exist, then they are unique up to flops. However, this is not the case when the canonical class is not pseudo-effective, since Mori fibred spaces are usually not unique terminal objects in Minimal model program. Nevertheless, some Mori fibred spaces behave very much the same as minimal models. To distinguish them, Corti introduced

\textbf{Definition 1.1.1} ([22, Definition 1.3]). Let \(\pi: U \to Z \) be a Mori fibred space. It is called \textit{birationally rigid} if, for a birational map \(\xi: U \dasharrow U' \) to a Mori fibred space \(\pi': U' \to Z' \), there exist a birational automorphism \(\tau: U \dasharrow U \) and a birational map \(\sigma: Z \dasharrow Z' \) such that the birational map \(\xi \circ \tau \) induces an isomorphism between the generic fibers of the Mori fibrations \(\pi: U \to Z \) and \(\pi': U' \to Z' \) and the diagram

\[
\begin{array}{c}
U \xrightarrow{-\tau} U \xrightarrow{-\xi} U' \\
\pi \\
Z \xrightarrow{-\sigma} Z' \\
\end{array}
\]

commutes.

Fano varieties of Picard rank one with at most terminal \(\mathbb{Q} \)-factorial singularities are the basic examples of Mori fibred spaces. For them, Definition 1.1.1 can be simplified as follows:

\textbf{Definition 1.1.2.} Let \(V \) be a Fano variety of Picard rank 1 with at most terminal \(\mathbb{Q} \)-factorial singularities. Then the Fano variety \(V \) is called \textit{birationally rigid} if the following property holds.

- If there is a birational map \(\xi: V \dasharrow U \) to a Mori fibred space \(U \to Z \), then the Fano variety \(V \) is biregular to \(U \) (and hence \(Z \) must be a point).

If, in addition, the birational automorphism group of \(V \) coincides with its biregular automorphism group, then \(V \) is called \textit{birationally super-rigid}.

Birationally rigid Fano varieties behave very much like \textit{canonical models}. Their birational geometry is very simple. In particular, they are non-rational. The first example of a birationally rigid Fano variety is due to Iskovskikh and Manin. In 1971, they proved
Theorem 1.1.3 ([30]). *A smooth quartic hypersurface in \(\mathbb{P}^4 \) is birationally super-rigid.*

In fact, Iskovskikh and Manin only proved that smooth quartic hypersurfaces in \(\mathbb{P}^4 \) do not admit non-biregular birational automorphisms and, therefore, are non-rational. In late nineties, Corti observed in [21] that their proof implies Theorem 1.1.3. Inspired by this observation, Pukhlikov generalized Theorem 1.1.3 as

Theorem 1.1.4 ([38]). *A general hypersurface of degree \(n \geq 4 \) in \(\mathbb{P}^n \) is birationally super-rigid.*

Shortly after Theorem 1.1.4 was proved, Reid suggested to Corti and Pukhlikov to generalize Theorem 1.1.3 for singular threefolds. Together they proved

Theorem 1.1.5 ([23]). *Let \(X \) be a quasi-smooth hypersurface of degree \(d \) with only terminal singularities in weighted projective space \(\mathbb{P}(1, a_1, a_2, a_3, a_4) \), where \(d = \sum a_i \). Suppose that \(X \) is a general hypersurface in this family. Then \(X \) is birationally rigid.*

The singular threefolds in Theorem 1.1.5 have a long history. In 1979 Reid discovered the 95 families of \(K3 \) surfaces in three dimensional weighted projective spaces (see [39]). After this, Fletcher, who was a Ph.D. student of Reid, discovered the 95 families of weighted Fano threefold hypersurfaces in his Ph.D. dissertation in 1988. These are quasi-smooth hypersurfaces of degrees \(d \) with only terminal singularities in weighted projective spaces \(\mathbb{P}(1, a_1, a_2, a_3, a_4) \), where \(d = \sum a_i \). The 95 families are determined by the quadruples of non-decreasing positive integers \((a_1, a_2, a_3, a_4) \). All Reid’s 95 families of \(K3 \) surfaces arises as anticanonical divisors in Fletcher’s 95 families of Fano threefolds. Because of this, the latter 95 families are often called the 95 families of Fletcher and Reid.

Quite often we need to know the non-rationality of an explicitly given Fano variety (which does not follow from the non-rationality of a general member in its family).

Example 1.1.6. Recently Prokhorov classified all finite simple subgroups in the birational automorphism group \(\text{Bir}(\mathbb{P}^3) \) of the three-dimensional projective space. Up to isomorphism, \(A_5, \text{PSL}_2(\mathbb{F}_7), A_6, A_7, \text{PSL}_2(\mathbb{F}_8) \) and \(\text{PSU}_4(\mathbb{F}_2) \) are all non-abelian finite simple subgroups in \(\text{Bir}(\mathbb{P}^3) \) ([37, Theorem 1.3]). Prokhorov’s proof implies more. Up to conjugation, the group \(\text{Bir}(\mathbb{P}^3) \) contains a unique subgroup isomorphic to \(\text{PSL}_2(\mathbb{F}_8) \) and exactly two subgroups isomorphic to \(\text{PSU}_4(\mathbb{F}_2) \). For the alternating group \(A_7 \), he proved that \(\text{Bir}(\mathbb{P}^3) \) contains exactly one such subgroup provided that the threefold

\[
\sum_{i=0}^{6} x_i = \sum_{i=0}^{6} x_i^2 = \sum_{i=0}^{6} x_i^3 = 0 \subset \text{Proj}(\mathbb{C}[x_0, \ldots, x_6]) \cong \mathbb{P}^6
\]

(1.1.7)

is not rational. This threefold is the unique complete intersection of a quadric and a cubic hypersurfaces in \(\mathbb{P}^5 \) that admits a faithful action of \(A_7 \). Back in nineties Iskovskikh and Pukhlikov proved that a general threefold in this family is birationally rigid (see [31]). The threefold (1.1.7) is smooth. However, it does not satisfy the generality assumptions imposed in [31]. Only last year Beauville proved in [1] that the threefold (1.1.7) is not rational. It is still unknown whether it is birationally rigid or not.

It took more than ten years to prove Theorem 1.1.4 for every smooth hypersurface in \(\mathbb{P}^n \) of degree \(n \geq 4 \), which was conjectured in [38]. This was done by de Fernex who proved
Theorem 1.1.8 ([25]). Every smooth hypersurface of degree \(n \geq 4 \) in \(\mathbb{P}^n \) is birationally super-rigid.

The goal of this paper is to prove Theorem 1.1.5 for all quasi-smooth hypersurfaces in each of the 95 families of Fletcher and Reid, which was conjectured in [23]. To be precise, we prove

Theorem 1.1.9. Let \(X \) be a quasi-smooth hypersurface of degree \(d \) with only terminal singularities in the weighted projective space \(\mathbb{P}(1,a_1,a_2,a_3,a_4) \), where \(d = \sum a_i \). Then \(X \) is birationally rigid.

Corollary 1.1.10. Let \(X \) be a quasi-smooth hypersurface of degree \(d \) with only terminal singularities in the weighted projective space \(\mathbb{P}(1,a_1,a_2,a_3,a_4) \), where \(d = \sum a_i \). Then \(X \) is not rational.

As an intermediate step in the proof of Theorem 1.1.9, we prove

Theorem 1.1.11. Every quasi-smooth hypersurface in the families of the 95 families of Fletcher and Reid whose general members are birationally super-rigid is birationally super-rigid.

The families corresponding to Theorem 1.1.11 are those in the list of Fletcher and Reid with entry numbers No. 1, 3, 10, 11, 14, 19, 21, 22, 28, 29, 34, 35, 37, 39, 49, 50, 51, 52, 53, 55, 57, 59, 62, 63, 64, 66, 67, 70, 71, 72, 73, 75, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94 and 95.

The 95 families of Fletcher and Reid contain the family (No. 1) of quartic hypersurfaces in \(\mathbb{P}^4 \) and the family (No. 3) of hypersurfaces of degree 6 in \(\mathbb{P}(1,1,1,1,3) \), i.e., double covers of \(\mathbb{P}^3 \) ramified along sextic surfaces. However, we do not consider these two families in the present paper since every smooth quartic threefold and every smooth double covers of \(\mathbb{P}^3 \) ramified along sextic surfaces (see [28]) are already proved to be birationally super-rigid.

Acknowledgements. This work was motivated by the authors’ conversations over several dinners at a kitchen of Max Planck Institut für Mathematik, Bonn, Germany and initiated during the second author’s participating in Mini-Workshop: Higher Dimensional Elliptic Fibrations held at Mathematisches Forschungsinstitut Oberwolfach, Germany from October 3rd to October 9th in 2010. It was carried out during authors’ stays at Max Planck Institut für Mathematik, Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France, International Centre for Mathematical Sciences, Edinburgh, UK, and the Centro Internazionale per la Ricerca Matematica, Trento, Italy in the period 2010-2011. Both the authors appreciate their excellent environments and supports for research. The second author would like to thank Professor Shigefumi Mori for his hospitality at Research Institute for Mathematical Sciences, Kyoto, Japan during the second author’s visit from August 15th to August 30th in 2011. This work was finalized during the authors’ second stay at the Centro Internazionale per la Ricerca Matematica, Trento, Italy from July 2nd to July 31st in 2013. They thank Professor Marco Andreatta for his hospitality at the Centro Internazionale per la Ricerca Matematica.

The first author is partially supported by AG Laboratory GU-HSE, RF government grant, ag. 11 11.G34.31.0023. The second author has been supported by Institute for Basic Science (IBS) in Korea.
1.2 Set-up

In this section we present the synopsis of our proof of the main theorem. Before we proceed, we introduce a terminology that is frequently used in birational geometry as well as in the present paper.

Definition 1.2.1. Let U be a normal \mathbb{Q}-factorial variety and \mathcal{M}_U a mobile linear system on U. Let a be a non-negative rational number. An irreducible subvariety Z of U is called a center of non-canonical singularities (or simply non-canonical center) of the log pair $(U, a\mathcal{M}_U)$ if there is a birational morphism $h: W \to U$ and an h-exceptional divisor $E_1 \subset W$ such that

$$K_W + ah^{-1}(\mathcal{M}_U) = h^*(K_U + a\mathcal{M}_U) + \sum_{i=1}^{m} c_i E_i,$$

where E_i is an h-exceptional divisor, $c_1 < 0$ and $h(E_1) = Z$.

The following result is known as the classical Noether–Fano inequality.

Theorem 1.2.2 ([21, Theorem 4.2]). Let X be a terminal \mathbb{Q}-factorial Fano variety with $\text{Pic}(X) \cong \mathbb{Z}$.

- If the log pair $(X, \frac{1}{n}\mathcal{M})$ has canonical singularities for every positive integer n and every mobile linear subsystem $\mathcal{M} \subset |-nK_X|$, then X is birationally super-rigid.

- If for every positive integer n and every mobile linear system $\mathcal{M} \subset |-nK_X|$ there exists a birational automorphism τ of X such that the log pair $(X, \frac{1}{n_\tau} \tau(\mathcal{M}))$ has canonical singularities, where n_τ is the positive integer such that $\tau(\mathcal{M}) \subset |-n_\tau K_X|$, then X is birationally rigid.

The Noether-Fano inequality will be the main key to the proof of the main theorem.

To prove the main theorem, we suppose that a given hypersurface X in one of the families has a mobile linear system $\mathcal{M} \subset |-nK_X|$ for some positive integer n such that the log pair $(X, \frac{1}{n}\mathcal{M})$ is not canonical. Then we must have a center of non-canonical singularities of the pair $(X, \frac{1}{n}\mathcal{M})$.

A center of non-canonical singularities of the log pair $(X, \frac{1}{n}\mathcal{M})$ can be, a priori, a smooth point, an irreducible curve, or a singular point of the Fano threefold X.

In Section 2.1 we show that a smooth point of X cannot be a center. In Section 2.2 we show that a curve contained in the smooth locus of X cannot be a center. Then Theorem 2.2.1 implies that a singular point of X must be a center.

Now Theorem 1.1.11 can be proved by excluding all the singular points of X as a center. Fifty families out of the 95 families are those considered in Theorem 1.1.11. In Section 4.2 we verify that a singular point of X cannot be a center if the hypersurface X belongs to one of the families considered in Theorem 1.1.11.

To prove Theorem 1.1.9 we have only to consider the 45 families that are not considered in Theorem 1.1.11 since birational super-rigidity implies birational rigidity. For a given singular point of a hypersurface X in one of the 45 families we show that either it cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n}\mathcal{M})$ or there exists a birational automorphism τ of X such that $\tau(\mathcal{M}) \subset |-n_\tau K_X|$ for some positive integer $n_\tau < n$. It then follows from Theorem 1.2.2 that the given hypersurface X is birationally rigid.
1.3 Notations

Let us describe the notations we will use in the rest of the present paper. Unless otherwise mentioned, these notations are fixed from now until the end of the paper.

- In the weighted projective space $\mathbb{P}(1, a_1, a_2, a_3, a_4)$, we assume that $a_1 \leq a_2 \leq a_3 \leq a_4$. For weighted homogeneous coordinates, we always use x, y, z, t and w with $\text{wt}(x) = 1$, $\text{wt}(y) = a_1$, $\text{wt}(z) = a_2$, $\text{wt}(t) = a_3$ and $\text{wt}(w) = a_4$.

- In each family, we always let X be a quasi-smooth hypersurface of degree d in the weighted projective space $\mathbb{P}(1, a_1, a_2, a_3, a_4)$ with only terminal singularities, where $d = \sum_{i=1}^{4} a_i$.

- On the threefold X, a given mobile linear system is denoted by \mathcal{M}.

- For a given mobile linear system \mathcal{M}, we always assume that $\mathcal{M} \sim_{\mathbb{Q}} -nK_X$.

- S_x is the surface on the hypersurface X cut by the equation $x = 0$.

- S_y is the surface on the hypersurface X cut by the equation $y = 0$.

- S_z is the surface on the hypersurface X cut by the equation $z = 0$.

- S_t is the surface on the hypersurface X cut by the equation $t = 0$.

- S_w is the surface on the hypersurface X cut by the equation $w = 0$.

- L_{tw} is the one-dimensional stratum on $\mathbb{P}(1, a_1, a_2, a_3, a_4)$ defined by $x = y = z = 0$, and the other one-dimensional strata are labelled similarly.

- $O_y := [0 : 1 : 0 : 0 : 0]$.

- $O_z := [0 : 0 : 1 : 0 : 0]$.

- $O_t := [0 : 0 : 0 : 1 : 0]$.

- $O_w := [0 : 0 : 0 : 0 : 1]$.

- When we consider a singular point of type $\frac{1}{7}(1, a, r - a)$ on X, the weighted blow up of X at the singular point with weights $(1, a, r - a)$ will be denoted by $f: Y \to X$ unless otherwise stated. When we have a curve C on X, its proper transform on Y will be always denoted by \tilde{C}. For instance, \tilde{L}_{tw} is the proper transform of the curve L_{tw} on X (if it is contained in X) by the weighted blow up f.

- The entry number of each family of Fletcher and Reid is given in the Big Table of their paper. Indeed, it is given in the lexicographic order of (d, a_1, a_2, a_3, a_4).
2 Excluding smooth points and curves

2.1 Smooth points

In this section we show that smooth points of X cannot be centers of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$.

Let $X \subset \mathbb{P}(1, a_1, a_2, a_3, a_4)$ be a quasi-smooth weighted hypersurface of degree $d = \sum a_i$ with terminal singularities. Suppose that a smooth point p on X is a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$. Then we obtain

$$\text{mult}_p(M^2) > 4n^2$$

by [22, Corollary 3.4].

Let s be an integer not greater than $\frac{4}{K_X^3}$. Suppose that we have a divisor H in $|−sK_X|$ such that

- it passes through the point p,
- it contains no 1-dimensional component of the base locus of the linear system M that passes through the point p.

Then we can obtain the following contradictory inequality:

$$-sn^2K_X^3 = H \cdot M^2 \geq \text{mult}_p(H) \cdot \text{mult}_p(M^2) > 4n^2.$$

In order to show that a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$ cannot be a smooth point, we mainly try to find such a divisor.

Before we proceed, set $\tilde{a}_2 = \text{lcm}\{a_1, a_3, a_4\}$, $\tilde{a}_3 = \text{lcm}\{a_1, a_2, a_4\}$ and $\tilde{a}_4 = \text{lcm}\{a_1, a_2, a_3\}$.

Lemma 2.1.1. Suppose that the hypersurface X satisfies one of the following:

- X does not pass through the point O_w and $d \cdot \tilde{a}_4 \leq 4a_1a_2a_3a_4$;
- X does not pass through the point O_t and $d \cdot \tilde{a}_3 \leq 4a_1a_2a_3a_4$;
- X does not pass through the point O_z and $d \cdot \tilde{a}_2 \leq 4a_1a_2a_3a_4$.

Then a smooth point of X cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$.

Proof. For simplicity we suppose that the hypersurface X satisfies the first condition. The proofs for the other cases are the same.

Let $\pi_4 : X \to \mathbb{P}(1, a_1, a_2, a_3)$ be the regular projection centered at the point O_w. The linear system $|\mathcal{O}_{\mathbb{P}(1, a_1, a_2, a_3)}(\tilde{a}_4)|$ is base point free. Choose a general member in the linear $|\mathcal{O}_{\mathbb{P}(1, a_1, a_2, a_3)}(\tilde{a}_4)|$ that passes through the point $\pi_4(p)$. Then its pull-back by the finite morphism π_4 can play the role of the divisor H in the explanation at the beginning. □

The condition above is satisfied by all the families except the families

No. 2, 5, 12, 13, 20, 23, 25, 33, 40, 58, 61, 76.
Lemma 2.1.2. Suppose that the threefold X satisfies the following conditions:

- the points O_w and O_t are singular points of X;
- X passes through the point O_w and $d \cdot \alpha_4 \leq 4a_1a_2a_3a_4$;
- X passes through the point O_t and $d \cdot \alpha_3 \leq 4a_1a_2a_3a_4$.

In addition, we suppose that the curve L_{tw} is not contained in the hypersurface X. Then a smooth point of X cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n} M)$.

Proof. Let $\pi_4 : X \longrightarrow \mathbb{P}(1, a_1, a_2, a_3)$ be the projection centered at the point O_w and $\pi_3 : X \longrightarrow \mathbb{P}(1, a_1, a_2, a_4)$ the projection centered at the point O_t. The linear systems $|O_{\mathbb{P}(1, a_1, a_2, a_3)}(\alpha_4)|$ and $|O_{\mathbb{P}(1, a_1, a_2, a_4)}(\alpha_3)|$ are base point free. Choose a general member in the linear $|O_{\mathbb{P}(1, a_1, a_2, a_3)}(\alpha_4)|$ that passes through the point $\pi_4(p)$ and a general member in the linear $|O_{\mathbb{P}(1, a_1, a_2, a_4)}(\alpha_3)|$ that passes through the point $\pi_3(p)$. Then either the pull-back of the former divisor by the projection π_4 or the pull-back of the latter divisor by the projection π_3 can play the role of the divisor H in the explanation at the beginning.

The conditions above are satisfied by the families No. 23, 40, 61, 76.

The family No. 2 and special members of the families No. 5, 12, 13, 20, 25, 33, 58 remain.

We first consider the special members of the families No. 5, 12, 13, 20, 25. These members must contain the curve L_{tw}, i.e., the defining polynomials of X do not contain the monomial t^2w.

Lemma 2.1.3. Suppose that the hypersurface X satisfies the following conditions:

- the points O_w and O_t are singular points of X;
- X passes through the point O_w and $d \cdot \alpha_4 \leq 4a_1a_2a_3a_4$;
- X passes through the point O_t and $d \cdot \alpha_3 \leq 4a_1a_2a_3a_4$.

Suppose that the curve L_{tw} is contained in the hypersurface X. If a smooth point of X is a center of non-canonical singularities of the log pair $(X, \frac{1}{n} M)$, then the point lies on the curve L_{tw}.

Proof. The proof of Lemma 2.1.2 immediately shows the statement.

Lemma 2.1.4. Suppose that the curve L_{tw} is contained in the hypersurface X. In addition, we suppose that $(a_3, a_4) = 1$, $a_3a_4 > d$, and there are non-negative integers m_1 and m_2 such that $m_1a_1 + m_2a_2 = a_3a_4$. Then any smooth point on L_{tw} of X cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n} M)$ if $-a_3a_4K_X^3 \leq 4$.

Proof. Suppose that the hypersurface X is defined by $F(x, y, z, t, w) = 0$. Let p be a smooth point on the curve L_{tw}. Then there are non-zero constants λ and μ such that the surface cut by $\lambda x^{a_4} + \mu w^{a_3} = 0$ contains the point p. We then consider the linear system \mathcal{H} on X generated by $x^{a_3a_4}$, $y^{m_1}z^{m_2}$, and $\lambda x^{a_4} + \mu w^{a_3}$. The base locus of this linear system consists of
the locus cut by $x = yz = \lambda t^4 + \mu w^3 = 0$. Since the polynomial $\lambda t^4 + \mu w^3$ is irreducible and $d < a_3 a_4$, neither $F(0, 0, z, t, w)$ nor $F(0, y, 0, t, w)$ can divide $\lambda t^4 + \mu w^3$. Therefore, the base locus of the linear system \mathcal{H} is of dimension at most 0. Then a general member of this linear system is able to play the role of the divisor H in the explanation at the beginning. \qed

Combining Lemmas 2.1.3 and 2.1.4 we can show that any smooth point cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n} M)$ for the families No. 33 and 58.

For the special cases of families No. 5, 12, 13, 20, 25, we may assume that the polynomial is given by

$$w^2 z + w(t g_{a_3} + g_{2a_3}) + t^3 y + t^2 h_{a_1+a_3} + t h_{a_1+2a_3} + h_{a_1+3a_3} = 0$$

for the families No. 12, 20,

$$w^2 y + w(t g_{a_3} + g_{2a_3}) + t^3 y + t^2 h_{a_2+a_3} + t h_{a_2+2a_3} + h_{a_2+3a_3} = 0$$

for the families No. 5, 13, 25, where g_m and h_k are quasi-homogeneous polynomials of degrees m and k respectively in variables x, y, z.

Lemma 2.1.5. For the families No. 13, 25, a smooth point of X cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n} M)$.

Proof. The following method works for both the families exactly in the same way. For this reason, we demonstrate the method only for the family No. 25.

Suppose that the log pair $(X, \frac{1}{n} M)$ is not canonical at some smooth point p. Then Lemma 2.1.3 shows that the point p must lie on the curve L_{tw}.

Consider the pencil $| - K_X |$. Its base locus consists of two reduced and irreducible curves. One is the curve L_{tw} and the other is the curve C defined by the equations $x = y = t^3 - cz^4 = 0$, where c is a non-zero constant. Note that the curve L_{tw} is quasi-smooth everywhere and C is quasi-smooth outside the point O_w. They intersect only at the point O_w. Choose a general member H in the pencil $| - K_X |$. Note that H is a $K3$ surface with A_3 and A_6 singularities at the points O_t and O_w, respectively. Then the log pair $(X, H + \frac{1}{n} M)$ is not log canonical at the point p. By Inversion of adjunction (34, Theorem 17.7)), we see that the log pair $(H, \frac{1}{n} M|_H)$ is not log canonical at the point p. Let D_y be the divisor on H defined by the equation $y = 0$. Then $D_y = L_{tw} + C$.

We have the following intersection numbers on the surface H:

$$L_{tw}^2 = \frac{-11}{28}, \quad C^2 = \frac{-2}{7}, \quad C \cdot L_{tw} = \frac{3}{7}, \quad D_y \cdot L_{tw} = \frac{1}{28}, \quad D_y \cdot C = \frac{1}{7}.$$

Let M be a general member in the mobile linear system \mathcal{M} and then put

$$M_H := \frac{1}{n} M|_H = a L_{tw} + b C + \Delta,$$

where a and b are non-negative rational numbers and Δ is an effective divisor whose support contains neither L_{tw} nor C. We then obtain

$$\frac{1}{7} = C \cdot M_H = a L_{tw} \cdot C + b C^2 + \Delta \cdot C \geq \frac{3a}{7} - \frac{2b}{7}.$$

On the other hand, we obtain

$$\frac{5}{28} = M_H^2 = a L_{tw} \cdot D_y + b C \cdot D_y + \Delta \cdot D_y \geq \frac{a}{28} + \frac{b}{7}.$$
Combining these two inequalities we see that $a \leq 1$. Therefore, the log pair $(H, L_{tw} + bC + \Delta)$ is not log canonical at the point p, and hence the log pair $(L_{tw}, (bC + \Delta)|_{L_{tw}})$ is not log canonical at the point p. Consequently, we see that

$$\text{mult}_p((bC + \Delta)|_{L_{tw}}) > 1.$$

However,

$$(bC + \Delta) \cdot L_{tw} = (M_H - aL_{tw}) \cdot L_{tw} = \frac{1}{28} + \frac{11a}{28} \leq \frac{3}{7}.$$

This completes the proof.

Lemma 2.1.6. For the families No. 12, 20, any smooth point of X cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$.

Proof. The following method works for both the families exactly in the same way. Even the method is the same as that of Lemma 2.1.5 with some slight difference. For this reason, we demonstrate the method only for the family No. 20.

Suppose that the log pair $(X, \frac{1}{n}M)$ is not canonical at some smooth point p. Then, as before, the point p must lie on the curve L_{tw}.

Consider the pencil $|-K_X|$. Its base locus consists of two reduced and irreducible curves. One is the curve L_{tw} and the other is the curve C defined by the equations $x = y = u^2 - czt = 0$, where c is a non-zero constant. Note that the curves L_{tw} and C are quasi-smooth everywhere. They intersect only at the point O_t.

Choose a general member H in the pencil $|-K_X|$. Then the surface H is a $K3$ surface with A_2, A_3 and A_4 singularities at the points O_z, O_t and O_w, respectively. It also contains the curve L_{tw}. Then the log pair $(X, H + \frac{1}{n}M)$ is not log canonical at the point p. By Inversion of adjunction ([33, Theorem 17.7]), we see that the log pair $(H, \frac{1}{n}M|_H)$ is not log canonical at the point p. Let D_y be the divisor on H defined by the equation $y = 0$. Then $D_y = L_{tw} + C$.

We have the following intersection numbers on the surface H:

$$L_{tw}^2 = -\frac{9}{20}, \quad C^2 = -\frac{1}{3}, \quad C \cdot L_{tw} = \frac{1}{2}, \quad D_y \cdot L_{tw} = \frac{1}{20}, \quad D_y \cdot C = \frac{1}{6}.$$

As in the previous lemma, let M be a general member of the mobile linear system M and then put

$$M_H := \frac{1}{n}M|_H = aL_{tw} + bC + \Delta,$$

where a and b are non-negative rational numbers and Δ is an effective divisor whose support contains neither L_{tw} nor C. We then obtain

$$\frac{1}{6} = C \cdot M_H = aL_{tw} \cdot C + bC^2 + \Delta \cdot C \geq \frac{a}{2} - \frac{b}{3}.$$

On the other hand, we obtain

$$\frac{13}{60} = M_H^2 = aL_{tw} \cdot D_y + bC \cdot D_y + \Delta \cdot D_y \geq \frac{a}{20} + \frac{b}{6}.$$

Combining these two inequalities we see that $a \leq 1$. Therefore, the log pair $(H, L_{tw} + bC + \Delta)$ is not log canonical at the point p, and hence the log pair $(L_{tw}, (bC + \Delta)|_{L_{tw}})$ is not log canonical at the point p. Consequently, we see that

$$\text{mult}_p((bC + \Delta)|_{L_{tw}}) > 1.$$
However,\[(bC + \Delta) \cdot L_{tw} = (M_H - aL_{tw}) \cdot L_{tw} = \frac{1}{20} + \frac{9a}{20} \leq \frac{1}{2} . \]
This completes the proof. \hfill \Box

Lemma 2.1.7. For the family No. 5, a smooth point of \(X_7 \) cannot be a center of non-canonical singularities of the log pair \((X_7, \frac{1}{n}M)\).

Proof. By suitable coordinate change we may assume that the hypersurface \(X_7 \) in \(\mathbb{P}(1,1,1,2,3) \) is given by\[w^2y + w(tg_2 + g_4) + t^3z + t^2h_5 + th_5 + h_7 = 0, \]
where \(g_m \) and \(h_k \) are quasi-homogeneous polynomials of degrees \(m \) and \(k \) respectively in variables \(x, y, \) and \(z \).

Suppose that the log pair \((X_7, \frac{1}{n}M)\) is not canonical at some smooth point \(p \). Then Lemma 2.1.3 shows that the point \(p \) must lie on the curve \(L_{tw} \).

Consider the 2-dimensional linear system \(| - K_{X_7}|\). Its base locus consists of the reduced and irreducible curve \(L_{tw} \). The curve \(L_{tw} \) is a quasi-smooth curve passing through the singular points \(O_t \) and \(O_w \).

Let \(H \) be the surface cut by the equation \(z = \lambda x + \mu y \) with general complex numbers \(\lambda \) and \(\mu \). It is a K3 surface with \(A_1 \) and \(A_2 \) singularities at the points \(O_t \) and \(O_w \), respectively. It also contains the rational curve \(L_{tw} \). The self-intersection number of \(L_{tw} \) on \(H \) is \(-\frac{5}{6} \). Let \(D_y \) be the divisor on \(H \) defined by the equation \(y = 0 \). Then we can easily see that \(D_y = L_{tw} + R \), where \(R \) is the curve defined by the equations \(y = z - \lambda x = \lambda t^3 + xh_5(x,t,w) = 0 \), where \(h_5 \) is a quasi-homogeneous polynomial of degree 5. The two curves \(L_{tw} \) and \(R \) meet only at the point \(O_w \).

Let \(M \) be a general member of the linear system \(M \) and then write\[M_H := \frac{1}{n}M|_H = aL_{tw} + \Delta, \]
where \(a \) is a non-negative rational number and \(\Delta \) is an effective divisor whose support does not contain the curve \(L_{tw} \). The log pair \((X_7, H + \frac{1}{n}M)\) is not log canonical at the point \(p \). By Inversion of adjunction \((\mathbb{F}, \text{Theorem 17.7})\), we see that the log pair \((H, \frac{1}{n}M|_H)\) is not log canonical at the point \(p \). We then obtain\[1 = R \cdot M_H = aL_{tw} \cdot R + \Delta \cdot R \geq a. \]
Therefore, the log pair \((H, L_{tw} + \Delta)\) is not log canonical at the point \(p \), and hence the log pair \((L_{tw}, \Delta|_{L_{tw}})\) is not log canonical at the point \(p \). Consequently, we see that\[\text{mult}_p(\Delta|_{L_{tw}}) > 1. \]
However,\[\Delta \cdot L_{tw} = (M_H - aL_{tw}) \cdot L_{tw} = \frac{1}{6} + \frac{5a}{6} \leq 1. \]
This completes the proof. \hfill \Box

Lemma 2.1.8. For the family No. 2, a smooth point of \(X_5 \) cannot be a center of non-canonical singularities of the log pair \((X_5, \frac{1}{n}M)\).
Proof. This case has been resolved completely in [23]. For authors’ convenience we reproduce the proof from p.211 in [23].

By suitable coordinate change we may assume that the hypersurface X_5 in $\mathbb{P}(1,1,1,1,2)$ is given by

$$w^2x + w f_3 + f_5 = 0,$$

where f_m is a quasi-homogeneous polynomial of degree m in variables x, y, z and t.

Suppose that the log pair $(X_5, \frac{1}{n}\mathcal{M})$ is not canonical at some smooth point p. Then the point p must lie on the curve L contracted by the projection $\pi_4 : X_5 \rightarrow \mathbb{P}^3$ centered at the point O_w. By an additional coordinate change, we may assume that the curve L is defined by the equations $x = y = z = 0$, i.e., $L = L_{tw}$.

Let H be a general element in $| - K_{X_5}|$ containing the curve L_{tw}. Then the surface H is a $K3$ surface with an A_1 singularity at the point O_w. The self-intersection number of L_{tw} on H is $-\frac{3}{2}$.

We write

$$\mathcal{M}_H := \frac{1}{n}\mathcal{M}|_H = aL_{tw} + \mathcal{L},$$

where a is a non-negative rational number and \mathcal{L} is a mobile linear system on H whose base locus does not contain the curve L_{tw}.

Choose another curve R that is contacted by the projection π_4. Note that such a curve is given by a point on the zero set in \mathbb{P}^3 defined by $x = f_3 = f_6 = 0$. Then we see that the intersection number L_{tw} and R is $\frac{1}{2}$. We then obtain

$$\frac{1}{2} = R \cdot \mathcal{M}_H = aL_{tw} \cdot R + \mathcal{L} \cdot R \geq \frac{a}{2},$$

and hence $a \leq 1$.

The log pair $(X_5, H + \frac{1}{n}\mathcal{M})$ is not log canonical at the point p. By Inversion of adjunction ([33, Theorem 17.7]), we see that the log pair (H, \mathcal{M}_H) is not log canonical at the point p. We then obtain from [22, Theorem 3.1]

$$4(1 - a) < L^2 = (\mathcal{M}_H - aL_{tw})^2 = \mathcal{M}_H^2 - 2a\mathcal{M}_H \cdot L_{tw} + a^2L_{tw}^2 = \frac{5}{2} - a - \frac{3a^2}{2}.$$

However, this inequality cannot be satisfied with any value of a. This completes the proof. \square

2.2 Curves

In this section we show that an irreducible curve on X can not be a center of non-canonical singularities of the log pair $(X, \frac{1}{n}\mathcal{M})$ provided that no point on this curve is a center of non-canonical singularities of the log pair $(X, \frac{1}{n}\mathcal{M})$. Indeed, the proof comes from [23, pp. 206-207] and it is based on the following local result of Kawamata:

Theorem 2.2.1 ([32, Lemma 7]). Let (U, p) be a germ of a threefold terminal quotient singularity of type $\frac{1}{r}(1, a, r - a)$, where $r \geq 2$ and a is coprime to r and let \mathcal{M}_U be a mobile linear system on U. Suppose that $(U, \lambda\mathcal{M}_U)$ is not canonical at p for a positive rational number λ. Let $f : W \rightarrow U$ be the weighted blowup at the point p with weights $(1, a, r - a)$. Then

$$\mathcal{M}_W = f^*(\mathcal{M}_U) - mE$$
for some positive rational number $m > \frac{1}{r_X}$, where E is the exceptional divisor of f and \mathcal{M}_W is the proper transform of \mathcal{M}_U. In particular,

$$K_W + \lambda \mathcal{M}_W = f^*(K_U + \lambda \mathcal{M}_U) + \left(\frac{1}{r} - \lambda m\right)E,$$

where $\frac{1}{r} - \lambda m < 0$, and hence the point p is a center of non-canonical singularities of the log pair $(U, \lambda \mathcal{M}_U)$.

Theorem 2.2.1 and the mobility of the linear system \mathcal{M} imply the following global properties.

Corollary 2.2.2 ([23 Lemma 5.2.1]). Let Λ be a center of non-canonical singularities of the log pair $(X, \frac{1}{n}\mathcal{M})$. In case when Λ is a singular point of type $\frac{1}{r}(1, a, r - a)$, let $f: Y \to X$ be the weighted blow up at Λ with weights $(1, a, r - a)$. In case when Λ is a smooth curve contained in the smooth locus of X, let $f: Y \to X$ be the blow up along Λ. Then the 1-cycle $(-K_Y)^2 \in N_1(Y)$ lies in the interior of the Mori cone of Y:

$$(-K_Y)^2 \in \text{Int}(\text{NE}(Y)).$$

Corollary 2.2.3 ([23 Corollary 5.2.3]). Under the same notations as in Corollary 2.2.2, we have $H \cdot (-K_Y)^2 > 0$ for a non-zero nef divisor H on Y.

Let L be an irreducible curve on X. Suppose that L is a center of non-canonical singularities of the log pair $(X, \frac{1}{n}\mathcal{M})$. Then it follows from Theorem 2.2.1 that every singular point of X contained in L (if any) must be a center of non-canonical singularities of the log pair $(X, \frac{1}{n}\mathcal{M})$. Later we will show that for a given singular point of X either it cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n}\mathcal{M})$ or it can be untwisted by a birational involution (see Definition 5.1.1). Moreover, it will be done regardless of the fact that the log pair $(X, \frac{1}{n}\mathcal{M})$ is canonical outside of this singular point. Therefore it is enough to exclude only irreducible curves contained in the smooth locus of X.

Suppose that L is contained in the smooth locus of X. Pick two general members H_1 and H_2 in the mobile linear system \mathcal{M}. Then we obtain

$$-n^2K_X^3 = -K_X \cdot H_1 \cdot H_2 \geq (\text{mult}_L(\mathcal{M}))^2(-K_X \cdot L) > -n^2K_X \cdot L,$$

since we have $\text{mult}_L(\mathcal{M}) > n$. Therefore, $-K_X \cdot L < -K_X^3$.

Since the curve L is contained in the smooth locus of X, we have $-K_X \cdot L \geq 1$. Therefore the curve L can exists only on the hypersurface X with $-K_X^3 > 1$ as a curve of degree less than $-K_X^3$. Such conditions can be satisfied only in the following cases:

- quasi-smooth hypersurface of degree 5 in $\mathbb{P}(1, 1, 1, 1, 2)$ with a curve L of degree 1 or 2;
- quasi-smooth hypersurface of degree 6 in $\mathbb{P}(1, 1, 1, 2, 2)$ with a curve L of degree 1;
- quasi-smooth hypersurface of degree 7 in $\mathbb{P}(1, 1, 1, 2, 3)$ with a curve L of degree 1.

Let $f: Y \to X$ be the blow up of the ideal sheaf of the curve L. Then Y is smooth whenever the curve L is smooth. As explained in [23 page 207] (it is independent of generality), in each of the three cases listed above, there exists a non-zero nef divisor M on Y such that $M \cdot K_Y^2 \leq 0$. Corollary 2.2.3 therefore shows that the curve L must be singular. Consequently,
the curve L must be an irreducible curve of degree 2 in a quasi-smooth hypersurface of degree 5 in $\mathbb{P}(1,1,1,1,2)$. More precisely, the curve L has either an ordinary double point (which implies that Y has an ordinary double point on the exceptional divisor E) or L has a cusp (which implies that Y has an isolated double point that is locally given by $x^2 + y^2 + z^2 + t^3 = 0$ in \mathbb{C}^4). In both the cases, we can proceed exactly as explained in [23, page 207] (the very end of the proof of [23, Theorem 5.1.1]) to obtain a contradiction.

We are therefore able to draw a conclusion that the hypersurface X has a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$ at a singular point of X.

3 Excluding singular points

3.1 Methods

In this section we provide the methods we use when we exclude the singular points as centers of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$.

Let p be a singular point of type $\frac{1}{r}(1,a,r-a)$ on X, where r and a are relatively prime positive integers. From now on, the weighted blow up of X at the point p with weights $(1,a,r-a)$ will be denoted by $f: Y \to X$. Its exceptional divisor and its anticanonical divisor will be denoted by E and B, respectively. We denote by \mathcal{M}_Y the proper transform of the linear system \mathcal{M} via the weighted blow up f. The pull-back of $-K_X$ will be denoted by A. The surface S is the proper transform of the surface on X cut by the equation $x = 0$. Since the Picard group of X is generated by $-K_X$, the surface S is always irreducible. The surface S may be assumed to be \mathbb{Q}-linearly equivalent to B if one of the following conditions holds:

- $a_1 = 1$;
- $d - 1$ is not divisible by r.

If $a_1 > 1$ and $d - 1$ is divisible by r, then we see that it is always \mathbb{Q}-linearly equivalent to either B or $B - E$.

Before we explain how to show that p is not a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$, let us prove the following statement slightly modified from Corollary 2.2.2.

Lemma 3.1.1. Suppose that p is a center of non-canonical singularities of the pair $(X, \frac{1}{n}M)$. Then the 1-cycle $B \cdot S \in N_1(Y)$ lies in the interior of the Mori cone of Y:

$$B \cdot S \in \text{Int}(\text{NE}(Y)).$$

Proof. It follows from Theorem 2.2.1 that

$$\mathcal{M}_Y \sim_{\mathbb{Q}} nB - \epsilon E$$

for some positive rational number ϵ. Since

$$S \cdot \mathcal{M}_Y = S \cdot (nB - \epsilon E)$$

is an effective 1-cycle, the 1-cycle $B \cdot S$ must lie in the interior of the Mori cone of Y because the 1-cycles $S \cdot E$ and $S \cdot B$ are not proportional in $N_1(Y)$ and the 1-cycle $S \cdot E$ generates the extremal ray contracted by f.

\qed
We have started with the assumption that the log pair \((X, \frac{1}{n}M)\) is not canonical. What we have proved so far shows that one of the singular points of \(X\) must be a center of non-canonical singularities of the log pair \((X, \frac{1}{n}M)\).

We have two kinds of singular points on \(X\). The singular points with \(B^3 \leq 0\) are one kind and the singular points with \(B^3 > 0\) are the other kind. Those with \(B^3 \leq 0\) will be excluded as centers of non-canonical singularities of the log pair \((X, \frac{1}{n}M)\). Meanwhile, those with \(B^3 > 0\) will be either excluded or untwisted.

To exclude singular points with \(B^3 \leq 0\), we mainly apply the following lemma. It is a slightly modified version of [23, Lemma 5.4.3].

Lemma 3.1.2. Suppose that \(B^3 \leq 0\) and there is an index \(i\) such that

1. there is a surface \(T\) on \(Y\) such that \(T \sim Q a_i A - \frac{m}{r} E\) with \(a_i \geq m > 0\);
2. the intersection \(\Gamma = S \cap T\) consists of irreducible curves that are numerically proportional each other;
3. \(T \cdot \Gamma \leq 0\).

Then the point \(p\) is not a center of non-canonical singularities of the log pair \((X, \frac{1}{n}M)\).

Proof. Let \(\Gamma = \sum e_i \hat{C}_i\), where \(e_i > 0\) and \(\hat{C}_i\)'s are distinct irreducible and reduced curves. Let \(\hat{R}\) be the extremal ray of the Mori cone \(\text{NE}(Y)\) of \(Y\) contracted by \(f : Y \to X\).

Since the curves \(\hat{C}_i\) are numerically proportional each other, each irreducible curve \(\hat{C}_i\) defines the same ray in the Mori cone of \(Y\). We first claim that the ray \(Q\) defined by \(\Gamma\) is the other extremal ray of \(\text{NE}(Y)\), so that the Mori cone \(\text{NE}(Y)\) is spanned by \(\hat{R}\) and \(Q\). Since \(\hat{C}_i \not\subset E\) for each \(i\), we have \(E \cdot \hat{C}_i \geq 0\). Therefore, we have the inequalities

\[
a_i B \cdot \Gamma \leq T \cdot \Gamma \leq 0,
\]

If the surface \(T\) is nef, then \(T \cdot \Gamma = 0\) and hence \(\Gamma\) is in the boundary of \(\text{NE}(Y)\). If the surface \(T\) is not nef, then there is a curve \(\hat{C}\) with \(T \cdot \hat{C} < 0\). The curve \(\hat{C}\) is not contained in the exceptional divisor \(E\) since

\[
T \cdot \hat{R} = \left(a_i B + \frac{a_i - m}{r} E \right) \cdot \hat{R} = (mB + (a_i - m)A) \cdot \hat{R} = mB \cdot \hat{R} \geq 0.
\]

Then

\[
S \cdot \hat{C} \leq B \cdot \hat{C} = \frac{1}{a_i} \left(T - \frac{a_i - m}{r} E \right) \cdot \hat{C} < 0,
\]

and hence \(\hat{C} \subset S \cap T\). Therefore, the curve \(\hat{C}\) must be one of the component of \(\Gamma\) and hence \(\Gamma\) defines the other boundary ray of \(\text{NE}(Y)\).

If \(B \cdot S \in \text{Int}(\text{NE}(Y))\), then the ray

\[
Q = \mathbb{R}_+ \left[S \cdot \left(a_i B + \frac{a_i - m}{r} E \right) \right]
\]

cannot be a boundary of \(\text{NE}(Y)\). Therefore, Lemma 3.1.1 implies that the point \(p\) cannot be a center of non-canonical singularities of the log pair \((X, \frac{1}{n}M)\).
Remark 3.1.3. The condition $T \cdot \Gamma \leq 0$ is equivalent to the inequality $ra(r - a)a^2A^3 \leq km^2$, where $k = 1$ if $S \sim_Q B$; $k = r + 1$ otherwise.

We have singular points with $B^3 \leq 0$ to which we cannot apply Lemma 3.1.2 in a simple way. The paper [23] has dealt with such singular points in a special way. However, we are dealing with every quasi-smooth hypersurface, not only a general one and the method of [23] is too complicated for us to analyze the irreducible components of the intersections Γ, which is inevitable for our purpose. We here present another method that enables us to avoid such difficulty.

Lemma 3.1.4. Suppose that there is a nef divisor T on Y with $T \cdot S \cdot B \leq 0$. Then the point p cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$.

Proof. Suppose that p is a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$. Then it follows from Theorem 2.2.1 that

$$M_Y = f^*(M) - n\mu E$$

with some rational number $\mu > \frac{1}{r}$, where M_Y is the proper transform of the mobile linear system M by the morphism f. The intersection of the surface S and a general surface M_Y in the mobile linear system M_Y gives us an effective 1-cycle. However,

$$T \cdot S \cdot M_Y = nT \cdot S \cdot (A - \mu E) < nT \cdot S \cdot (A - \frac{1}{r}E) = nT \cdot S \cdot B \leq 0.$$

This contradicts the condition that T is nef. \square

Remark 3.1.5. For the divisor T equivalent to $cA - \frac{m}{r}E = cB + \frac{c - m}{r}E$ for some positive integers c and m, the condition $T \cdot S \cdot B \leq 0$ is equivalent to the inequality $ra(r - a)cA^3 \leq km$, where $k = 1$ if $S \sim_Q B$; $k = r + 1$ otherwise.

To apply Lemma 3.1.4, we construct a nef divisor T in $|cB + bE|$ for some integers $c \geq 0$ and $b \leq \frac{c}{r}$. To construct a nef divisor T the following will be useful.

Lemma 3.1.6. Let L_X be a mobile linear subsystem in $|-cK_X|$ for some positive integer c. Denote the proper transforms of the base curves of the linear system L_X on Y by $\tilde{C}_1, \ldots, \tilde{C}_s$ (if any). Let T be the proper transform of a general surface in L_X.

- The divisor T belongs to $|cB + bE|$ for some integer b not greater than $\frac{c}{r}$.
- The divisor T is nef if $T \cdot \tilde{C}_i \geq 0$ for every i. In particular, it is nef if the base locus of L_X contains no curves.

Proof. Let H be a general surface in L_X. Since $f^*(H) \sim_Q cA - \frac{m}{r}E$ for some non-negative integer m and $B \sim_Q A - \frac{1}{r}E$, we obtain $T \sim_Q cB + \frac{c - m}{r}E$. The number $b := \frac{c - m}{r}$ must be an integer because the divisor class group of Y is generated by B and E.

Suppose that T is not nef. Then there exists a curve $\tilde{C} \subset Y$ such that $T \cdot \tilde{C} < 0$, which implies that the curve \tilde{C} is contained in the base locus of the proper transform of the linear system L_X. Since $b \leq \frac{c}{r}$, the divisor $T|_E$ is nef, and hence $\tilde{C} \not\subset E$. We then draw an absurd conclusion that \tilde{C} is one of the curves $\tilde{C}_1, \ldots, \tilde{C}_s$. \square
The singular points with the special care by [23] are exactly the points for which our method works. However, in spite of our new methods, we encounter special cases that cannot be excluded by the methods proposed so far. To deal with these special cases, we apply the following two lemmas.

Lemma 3.1.7. Suppose that the surface \(S \) is \(\mathbb{Q} \)-linearly equivalent to \(B \) and there is a normal surface \(T \) on \(Y \) such that the support of the 1-cycle \(S|_T \) consists of curves on \(T \) whose intersection form is negative-definite. Then the singular point \(p \) cannot be a center of non-canonical singularities of the pair \((X, 1/nM) \).

Proof. Put \(S|_T = \sum c_i \tilde{C}_i \) where \(c_i \)'s are positive numbers and \(\tilde{C}_i \)'s are distinct irreducible and reduced curves on the normal surface \(T \). Suppose that the point \(p \) is a center of non-canonical singularities of the log pair \((X, 1/nM) \). Then we have

\[
K_Y + \frac{1}{n} M_Y + cE = f^*(K_X + \frac{1}{n} M) \sim_{\mathbb{Q}} 0,
\]

where \(c \) is a positive constant and \(M_Y \) is the proper transform of the mobile linear system \(M \). Therefore, we obtain \(M_Y + ncE \sim_{\mathbb{Q}} nS \), and hence

\[
(M_Y + ncE)|_T \sim_{\mathbb{Q}} n \sum c_i \tilde{C}_i.
\]

However, this cannot be true since the divisor \(\sum c_i \tilde{C}_i \) is negative-definite and \(nc > 0 \).

Lemma 3.1.8. Suppose that there is a one-dimensional family of irreducible curves \(\tilde{C}_\lambda \) on \(Y \) with \(E \cdot \tilde{C}_\lambda > 0 \) and \(-K_Y \cdot \tilde{C}_\lambda \leq 0 \). Then the singular point \(p \) cannot be a center of non-canonical singularities of the log pair \((X, 1/nM) \).

Proof. We have

\[
K_Y + \frac{1}{n} M_Y = f^*(K_X + \frac{1}{n} M) + cE
\]

with a negative number \(c \), where \(M_Y \) is the proper transform of the mobile linear system \(M \). Suppose that there is a one-dimensional family of curves \(\tilde{C}_\lambda \) on \(Y \) with \(E \cdot \tilde{C}_\lambda > 0 \) and \(-K_Y \cdot \tilde{C}_\lambda \leq 0 \). Then for each member \(\tilde{C}_\lambda \), we have

\[
M_Y \cdot \tilde{C}_\lambda = -nK_Y \cdot \tilde{C}_\lambda + cnE \cdot \tilde{C}_\lambda \leq cnE \cdot \tilde{C}_\lambda < 0,
\]

and hence the curve \(\tilde{C}_\lambda \) is contained in the base locus of the linear system \(M_Y \). This is a contradiction since the linear system \(M_Y \) is mobile.

Notice that Lemmas 3.1.4, 3.1.7 and 3.1.8 do not require \(B^3 \) to be non-positive. Therefore, these lemmas can be applied to exclude the singular points with \(B^3 > 0 \).

4 Proof I

4.1 How to read the tables I

In this section we exclude singular points of the hypersurfaces in the families corresponding to Theorem 1.1.11. Before we proceed, we introduce a lemma that follows from Lemma 3.1.8.
Lemma 4.1.1. Suppose that the hypersurface X is given by a quasi-homogeneous equation

$$w^2 + x_i t^k + w f_{d-a_4}(x, x_i, x_j, t) + f_d(x, x_i, x_j, t) = 0$$

of degree d, where one of the variables x_i and x_j is y and the other is z. Let a_i and a_j be the weights of the variables x_i and x_j, respectively. If $2a_4 = 3a_3 + a_i$, then the singular point O_t cannot be a center of non-canonical singularities of the log pair (X, \mathcal{M}).

Proof. The singular point O_t is of type $1^a_3(1, a_j, a_4-a_3)$. Let T be the proper transform of the surface S_{x_i} on X cut by the equation $x_i = 0$. Due to the monomial w^2, we see that the surface S_{x_i} has multiplicity $2(a_4-a_3)/a_3$ at the point O_t. Therefore, the surface T belongs to $|a_iB - E|$ since $2a_4 = 3a_3 + a_i$.

Let C_λ be the curve on the surface S_{x_i} defined by

$$\begin{cases}
x_i = 0, \\
x_j = \lambda x^{a_j}
\end{cases}$$

for a sufficiently general complex number λ. Then the curve C_λ is a curve of degree d in $\mathbb{P}(1, a_3, a_4)$ defined by the equation

$$w^2 + w f_{d-a_4}(x, 0, \lambda x^{a_j}, t) + f_d(x, 0, \lambda x^{a_j}, t) = 0.$$

Then

$$-K_Y \cdot \tilde{C}_\lambda = a_jB^2 \cdot (a_iB - E) = a_1 a_2 A^3 - \frac{2a_j(a_4-a_3)}{a_3} E^3 = \frac{2}{a_3} - \frac{2}{a_3} = 0.$$

If the curve \tilde{C}_λ is reducible, it consists of two irreducible components that are numerically equivalent since the two components of the curve C_λ are symmetric with respect to the biregular quadratic involution of X. Then each component of \tilde{C}_λ intersects $-K_Y$ trivially. Consequently, Lemma 3.1.8 implies the statement.

In fact, this lemma excludes all the singular points with $B^3 > 0$ that appear in Theorem 1.1.11.

In what follows, we exclude all the singular points on quasi-smooth hypersurfaces in the families that appear in Theorem 1.1.11.

For each family we present a table that has information on a defining equation of the hypersurface X, its singularities, the sign of B^3, the linear system containing a surface T, the defining equation for the surface $f(T)$ and a term that determines the vanishing order of the surface $f(T)$ at the given singular point.

Also, each table shows which method is applied to each of the singular points by the symbols $\circled{6}$, $\circled{6}$, $\circled{7}$, $\circled{8}$ and $\circled{9}$. The following explain the method corresponding to each of the symbols.

$\circled{6}$: Apply Lemma 3.1.2

The condition $T \cdot \Gamma \leq 0$ can be easily checked by the items on the table (see Remark 3.1.3). The condition on the 1-cycle Γ can be immediately checked. This can be done on the hypersurface X even though the cycle lies on the threefold Y. Indeed, in the cases where this method is applied, the surface T is given in such a way that the 1-cycle Γ has no component on the exceptional divisor E.

Birationally rigid Fano threefold hypersurfaces

\[T \] : Apply Lemma 3.1.4.

Using Lemma 3.1.6 we check that the given divisor \(T \) is nef. The non-positivity of \(T \cdot S \cdot B \) can be immediately verified from the items on the table (see Remark 3.1.5).

\[S \] : Apply Lemma 3.1.7.

We take a general member \(H \) in the linear system generated by the polynomials given in the slot for the item \(T \) in the table. We can easily show that the surface \(H \) is normal by checking that it has only isolated singularities. The surface \(T \) is given as the proper transform of the surface \(H \) by the morphism \(f \). The divisor on \(T \) cut out by the surface \(S \) is a reducible curve. We check that this reducible curve forms a negative-definite divisor on the normal surface \(T \).

\[F \] : Apply Lemma 3.1.8.

We find a 1-dimensional family of irreducible curves \(\tilde{C}_\lambda \) on the given surface \(T \) such that \(-K_Y \cdot \tilde{C}_\lambda \leq 0 \). The surface \(T \) can be given as the proper transform of a general member of the linear system generated by the polynomial(s) given in the slot for the item \(T \) of the table.

\[P \] : Apply Lemma 4.1.1.

In this section, this method excludes all the singular points with \(B^3 > 0 \). Lemma 4.1.1 shows that for such singular points, we can always find a 1-dimensional family of irreducible curves \(\tilde{C}_\lambda \) on the given surface \(T \) such that \(-K_Y \cdot \tilde{C}_\lambda \leq 0 \).

In each table, we present a defining equation of the hypersurface in the family. For this we use the following notations and conventions.

- The Roman alphabets \(a, b, c, d, e \) with numeric subscripts or without subscripts are constants.
- The Greek alphabets \(\alpha, \beta \) with numeric subscripts or without subscripts are constants.
- The same Roman alphabets with distinct numeric subscripts, e.g., \(a_1, a_2, a_3 \), in an equation are constants one of which is not zero.
- The same Greek alphabets with distinct numeric subscripts, e.g., \(\alpha_1, \alpha_2, \alpha_3 \), in an equation are distinct constants.
- \(f_m(x_{i_1}, \ldots, x_{i_k}), g_m(x_{i_1}, \ldots, x_{i_k}) \) and \(h_m(x_{i_1}, \ldots, x_{i_k}) \) are quasi-homogeneous polynomials of degree \(m \) in variables \(x_{i_1}, \ldots, x_{i_k} \) in the given weighted projective space \(\mathbb{P}(1, a_1, a_2, a_3, a_4) \).
- If a monomial appears individually in the equation, then the monomial is assumed not to be contained in any other terms. For example, in the equation \(w^2 + t^3 + w f_0(x, y, z, t) + f_{12}(x, y, z, t) \), the polynomial \(f_{12} \) does not contain the monomial \(t^3 \).
- The singularity types are often given as a form \(\frac{1}{r}(w_{x_{i_1}}, w_{x_{i_2}}, w_{x_{i_3}}) \), where the subscript \(x_{i_k} \) is the homogeneous coordinate function which induces a local parameter corresponding to the weight \(w^i \).

4.2 Super-rigid families
No. 10: $X_{10} \subset \mathbb{P}(1,1,1,3,5)$ $\ A^3 = 2/3$

\[w^2 + zt^3 + wf_5(x, y, z, t) + f_{10}(x, y, z, t) \]

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{1}{5}(1_x, 1_y, 2_z)$	$+\$	$B - E$	z	w^2	

No. 11: $X_{10} \subset \mathbb{P}(1,1,2,2,5)$ $\ A^3 = 1/2$

\[w^2 + \prod_{i=1}^{5} (t - \alpha_i z) + wf_5(x, y, z, t) + f_{10}(x, y, z, t) \]

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_tO_t = 5 \times \frac{1}{7}(1_x, 1_y, 1_z)$	0	B	y	y	

The curve defined by $x = y = 0$ is irreducible since the defining polynomial of X_{10} contains the monomial w^2 and a reduced polynomial $\prod_{i=1}^{5} (t - \alpha_i z)$ of degree 10. Therefore, the 1-cycle Γ is irreducible.

No. 14: $X_{12} \subset \mathbb{P}(1,1,1,4,6)$ $\ A^3 = 1/2$

\[w^2 + t^3 + wf_6(x, y, z, t) + f_{12}(x, y, z, t) \]

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_tO_w = \frac{1}{x}(1_x, 1_y, 1_z)$	0	B	y	y	

The curve defined by $x = y = 0$ is irreducible because we have the monomials w^2 and t^3 in the quasi-homogenous polynomial defining X_{12}. Therefore, the 1-cycle Γ is irreducible.

No. 19: $X_{12} \subset \mathbb{P}(1,2,3,3,4)$ $\ A^3 = 1/6$

\[(w - \alpha_1 y^2)(w - \alpha_2 y^2)(w - \alpha_3 y^2) + (z - \beta_1 t)(z - \beta_2 t)(z - \beta_3 t) + x f_{11}(x, y, z, t, w) + y f_{10}(y, z, t, w) \]

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_yO_w = 3 \times \frac{1}{x}(1_x, 1_z, 1_t)$	$-$	$3B + E$	t	t	
$O_zO_t = 4 \times \frac{1}{x}(1_x, 2_y, 1_w)$	0	$2B$	t	t	

The divisor T for each singular point of type $\frac{1}{5}(1,1,1)$ is nef since the linear system generated by xyz, z has no base curve.

The 1-cycle Γ for each singular point of type $\frac{1}{5}(1,2,1)$ is irreducible since the curve cut by $x = y = 0$ is irreducible.

No. 21: $X_{14} \subset \mathbb{P}(1,1,2,4,7)$ $\ A^3 = 1/4$

\[w^2 + z(t - \alpha_1 z^2)(t - \alpha_2 z^2)(t - \alpha_3 z^2) + wf_7(x, y, z, t) + f_{14}(x, y, z, t) \]

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
Birationally rigid Fano threefold hypersurfaces

\[O_t = \frac{1}{4}(1_x, 1_y, 3_w) \oplus \quad + \quad 2B - E \quad z \quad w^2 \]
\[O_yO_t = 3 \times \frac{1}{4}(1_x, 1_y, 1_w) \oplus \quad - \quad B \quad y \quad y \]

The curve defined by \(x = y = 0 \) is irreducible, and hence the 1-cycle \(\Gamma \) for the singularities of type \(\frac{1}{2}(1, 1, 1) \) is irreducible.

No. 22: \(X_{14} \subset \mathbb{P}(1, 2, 2, 3, 7) \)

\[w^2 + zt^4 + h_{14}(y, z) + w f_7(x, y, z, t) + t^3 g_5(x, y, z) + t^2 g_8(x, y, z) + t g_{11}(x, y, z) + x g_{13}(x, y, z) \]

Singularity	**B^3**	**Linear system**	**Surface T**	**Vanishing order**	**Condition**
\(O_t = \frac{1}{4}(1_x, 2_y, 1_w) \oplus \) | 0 | \(2B \) | \(y \) | \(y \) |
\(O_yO_x = 7 \times \frac{1}{4}(1_x, 1_t, 1_w) \oplus \) | - | \(2B \) | \(y - \alpha_i z \) | \(w^2 \) |

Note that the homogenous polynomial \(h_{14} \) cannot be divisible by \(z \) since the hypersurface \(X_{14} \) is quasi-smooth. Therefore, we may write

\[h_{14}(y, z) = \prod_{i=1}^{7}(y - \alpha_i z). \]

The curve defined by \(x = y = 0 \) is irreducible because we have the monomials \(w^2 \) and \(t^4z \) in the quasi-homogeneous polynomial defining \(X_{14} \). The curves defined by \(x = y - \alpha_i z = 0 \) are also irreducible for the same reason. Therefore, the 1-cycle \(\Gamma \) for each singular point is irreducible.

No. 28: \(X_{15} \subset \mathbb{P}(1, 3, 3, 4, 5) \)

\[w^3 + zt^3 + h_{15}(y, z) + w^2 f_5(x, y, z, t) + w f_{10}(x, y, z, t) + t^2 g_7(x, y, z) + t g_{11}(x, y, z) + x g_{13}(x, y, z) \]

Singularity	**B^3**	**Linear system**	**Surface T**	**Vanishing order**	**Condition**
\(O_t = 1 \times \frac{1}{4}(1_x, 3_y, 1_w) \oplus \) | 0 | \(3B \) | \(y \) | \(y \) |
\(O_yO_x = 5 \times \frac{1}{4}(1_x, 1_t, 2_w) \oplus \) | - | \(3B \) | \(y - \alpha_i z \) | \(t^3z \) |

Note that the homogenous polynomial \(h_{15} \) cannot be divisible by \(z \) since the hypersurface \(X_{15} \) is quasi-smooth. Therefore, we may write

\[h_{15}(y, z) = \prod_{i=1}^{5}(y - \alpha_i z). \]

The curve defined by \(x = y = 0 \) is irreducible because we have the monomials \(w^3 \) and \(zt^3 \) in the quasi-homogeneous polynomial defining \(X_{15} \). The curves defined by \(x = y - \alpha_i z = 0 \) are also irreducible for the same reason. Therefore, the 1-cycle \(\Gamma \) for each singular point is irreducible.
No. 29: $X_{16} \subset \mathbb{P}(1, 1, 2, 5, 8)$

\[
(w - \alpha_1 z^4)(w - \alpha_2 z^4) + y t^3 + az^3 t^2 + w f_8(x, y, z, t) + t^2 f_6(x, y, z) + t f_{11}(x, y, z) + f_{16}(x, y, z)
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Singularity} & \text{B}^3 & \text{Linear} & \text{Surface T} & \text{Vanishing} \\
\hline
O_t = \frac{1}{3}(1, 2, 3, 2) & + & B - E & y & w^2 \\
O_x O_w = 2 \times \frac{1}{3}(1, 1, 1) & - & B & y & a \neq 0 \\
O_z O_w = 2 \times \frac{1}{3}(1, 1, 1) & - & B & x, y & a = 0 \\
\hline
\end{array}
\]

If the constant a is non-zero, then the 1-cycle Γ for each singular point of type $\frac{1}{2}(1, 1, 1)$ is irreducible.

Suppose that $a = 0$. We have only to consider one of the singular points of type $\frac{1}{2}(1, 1, 1)$. The other singular point can be excluded in the same way. Moreover, we may assume that the singular point is located at the point O_2, i.e., $\alpha_1 = 0$, by a suitable coordinate change.

We take a general surface H from the pencil $| - K_{X_{16}} |$ and then let T be the proper transform of the surface. It is a K3 surface only with du Val singularities. The intersection of T with the surface S gives us a divisor consisting of two irreducible curves on the normal surface T. One is the proper transform \hat{L}_{zt}. The other is the proper transform \hat{C} of the curve C defined by $x = y = w - \alpha_2 z^4 = 0$.

From the intersection numbers

\[
(\hat{L}_{zt} + \hat{C}) \cdot \hat{L}_{zt} = -K_Y \cdot \hat{L}_{zt} = -\frac{2}{5}, \quad (\hat{L}_{zt} + \hat{C})^2 = B^3 = -\frac{3}{10}
\]

on the surface T, we obtain

\[
\hat{L}_{zt}^2 = -\frac{2}{5} - \hat{L}_{zt} \cdot \hat{C}, \quad \hat{C}^2 = \frac{1}{10} - \hat{L}_{zt} \cdot \hat{C}
\]

With these intersection numbers we see that the matrix

\[
\begin{pmatrix}
\hat{L}_{zt}^2 & \hat{L}_{zt} \cdot \hat{C} \\
\hat{L}_{zt} \cdot \hat{C} & \hat{C}^2
\end{pmatrix} =
\begin{pmatrix}
-\frac{2}{5} - \hat{L}_{zt} \cdot \hat{C} & \frac{1}{10} - \hat{L}_{zt} \cdot \hat{C} \\
\hat{L}_{zt} \cdot \hat{C} & \hat{C}^2
\end{pmatrix}
\]

is negative-definite since $\hat{L}_{yw} \cdot \hat{C} = \frac{4}{5}$.

No. 34: $X_{18} \subset \mathbb{P}(1, 1, 2, 6, 9)$

\[
w^2 + t^3 + z^9 + w f_8(x, y, z, t) + f_{18}(x, y, z, t)
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Singularity} & \text{B}^3 & \text{Linear} & \text{Surface T} & \text{Vanishing} \\
\hline
O_t O_w = 1 \times \frac{1}{3}(1, 1, 1) & 0 & B & y & y \\
O_x O_t = 3 \times \frac{1}{3}(1, 1, 1) & 0 & B & y & y \\
\hline
\end{array}
\]

The curve defined by $x = y = 0$ is irreducible always since we have the monomials w^2 and t^3. Therefore, the 1-cycle Γ for each singular point is irreducible.
No. 35: \(X_{18} \subset \mathbb{P}(1, 1, 3, 5, 9) \) \(A^3 = 2/15 \)

\[w^2 + z^3 + w f_9(x, y, z, t) + f_{18}(x, y, z, t) \]

Singularity	\(B^3 \)	Linear system	Surface \(T \)	Vanishing order	Condition
\(O_t = 1/(1, 1, 1, 1, 1) \)	\(1 \)	3B – E	\(z \)	\(w^2 \)	
\(O_x O_w = 2 \times 1/(1, 1, 1, 1) \)	\(1 \)	3B – E	\(z \)	\(w^2 \)	

The 1-cycle \(\Gamma \) for the singular points of type \(1/2(1, 1, 1) \) is irreducible since we have \(w^2 \) and \(t^3z \).

No. 37: \(X_{18} \subset \mathbb{P}(1, 2, 3, 4, 9) \) \(A^3 = 1/12 \)

\[(w - \beta_1 z^3)(w - \beta_2 z^3) + y \prod_{i=1}^4 (t - \alpha_i y^2) + \alpha t^3 z^2 + w f_9(x, y, z, t) + t^3 f_{10}(x, y, z) + f_{18}(x, y, z) \]

For the singular point \(O_t \), the 1-cycle \(\Gamma \) can be reducible. In case, we see that \(\Gamma \) consists of the proper transforms of the curves defined by \(x = y = w - \beta_1 z^3 = 0 \) and \(x = y = w - \beta_2 z^3 = 0 \). These two irreducible components are symmetric with respect to the biregular involution of \(X_{18} \). In addition, the point \(O_t \) is the intersection point of these two curves. Consequently, the components of \(\Gamma \) are numerically equivalent to each other.

For each singular point of type \(1/3(1, 2, 1) \), the 1-cycle \(\Gamma \) is irreducible if the constant \(a \) is not zero. Suppose that the constant \(a \) is zero. We have only to consider one of the singular points of type \(1/3(1, 2, 1) \). The other singular point can be excluded in the same way. To this purpose, we may put \(\beta_1 = 0 \) and consider the singular point \(O_x \). We may also assume that the defining equation of \(X_{18} \) contains neither \(xz^3 t^2 \) nor \(x^2 z^4 t \) by changing the coordinate \(w \).

We take a general surface \(H \) from the pencil \(-2K_{X_{18}} \) and then let \(T \) be the proper transform of the surface. Note that the surface \(H \) is normal. However, it is not quasi-smooth at the point \(O_t \). The intersection of \(T \) with the surface \(S \) gives us a divisor consisting of two irreducible curves on the normal surface \(T \). They are the proper transforms \(\tilde{L}_{zt} \) and \(\tilde{C} \) of the curves \(L_{zt} \) and the curve \(C \) defined by \(x = y = w - \beta_2 z^3 = 0 \), respectively. From the intersection numbers

\[(\tilde{L}_{zt} + \tilde{C}) \cdot \tilde{L}_{zt} = -K_Y \cdot \tilde{L}_{zt} = -\frac{1}{4}, \quad (\tilde{L}_{zt} + \tilde{C})^2 = 2B^3 = -\frac{1}{6} \]

on the surface \(T \), we obtain

\[\tilde{L}_{zt}^2 = -\frac{1}{4} - \tilde{L}_{zt} \cdot \tilde{C}, \quad \tilde{C}^2 = \frac{1}{12} - \tilde{L}_{zt} \cdot \tilde{C}. \]

To compute the intersection number \(\tilde{L}_{zt} \cdot \tilde{C} \), we consider the divisor \(D_w \) on \(H \) cut by the equation \(w = 0 \). We easily see that \(D_w = 2L_{zt} + R \), where \(R \) is a curve whose support does not
contain \(L_{zt}\). The curve \(R\) and \(L_{zt}\) intersects at the point \(O_z\). Let \(\tilde{R}\) be the proper transform of \(R\). Then we have \(\tilde{L}_{zt} \cdot \tilde{R} = 0\) since they are disconnected on \(T\). From the intersection

\[
(2\tilde{L}_{zt} + \tilde{R}) \cdot \tilde{L}_{zt} = (9B + E) \cdot \tilde{L}_{zt} = -\frac{5}{4}
\]

we obtain \(\tilde{L}_{zt}^2 = -\frac{5}{8}\). With these intersection numbers we see that the matrix

\[
\begin{pmatrix}
\tilde{L}_{zt}^2 & \tilde{L}_{zt} \cdot \tilde{C} \\
\tilde{L}_{zt} \cdot \tilde{C} & \tilde{C}^2
\end{pmatrix} = \begin{pmatrix}
-\frac{1}{4} - \tilde{L}_{zt} \cdot \tilde{C} & \tilde{L}_{zt} \cdot \tilde{C} \\
\tilde{L}_{zt} \cdot \tilde{C} & \frac{1}{4} - \tilde{L}_{zt} \cdot \tilde{C}
\end{pmatrix}
\]

is negative-definite since \(\tilde{L}_{zt} \cdot \tilde{C} = \frac{3}{8}\).

For each singular point of type \(\frac{1}{2}(1, 1, 1)\), the 1-cycle \(\Gamma\) may be reducible. In case, it consists of the proper transforms of the curves defined by \(x = t - \alpha_iy^2 = w + by^3z + cz^3 = 0\) and \(x = t - \alpha_iy^2 = w + dy^3z + ez^3 = 0\), where \(b, c, d, e\) are constants. These two irreducible components are also symmetric with respect to the biregular involution of \(X_{18}\). In addition, the singular point is the intersection point of these two curves. Therefore, the components of \(\Gamma\) are numerically equivalent.

No.	\(X_{18} \subset \mathbb{P}(1, 3, 4, 5, 6)\)	\(A^3 = 1/20\)
	\((w - \alpha_1y^2)(w - \alpha_2y^2)(w - \alpha_3y^2) + yt^3 + z^3w + at^2z^2 + by^2z^3 + w^2f_0(x, y, z, t) + w^2f_1(x, y, z) + t^2f_8(x, y, z) + tf_9(x, y, z) + f_18(x, y, z)\)	

For the singular point \(O_t\), the 1-cycle \(\Gamma\) may be reducible. However, in case, it consists of two irreducible components. One is the proper transform \(\tilde{L}_{zt}\) of the curve \(L_{zt}\) and the other is the proper transform \(\tilde{C}\) of the curve defined by \(x = y = w^2 + z^3 = 0\). We can easy check that

\[
E \cdot \tilde{C} = 2E \cdot \tilde{L}_{zt} = \frac{1}{2}, \quad B \cdot \tilde{C} = 2B \cdot \tilde{L}_{zt} = 0.
\]

Therefore, the irreducible curves \(\tilde{L}_{zt}\) and \(\tilde{C}\) are numerically proportional on \(Y\).

The 1-cycle \(\Gamma\) for the singular point \(O_x\) with \(a \neq 0\) is irreducible due to \(w^3\) and \(t^2z^2\).

For the singular point \(O_z\) with \(a = 0\) we may assume that the defining equation of \(X_{18}\) contains neither \(xz^4t\) nor \(x^2z^4t\) by changing the coordinate \(w\).

We take a general surface \(H\) from the pencil \(|-3K_{X_{18}}|\) and then let \(T\) be the proper transform of the surface. Note that the surface \(H\) is normal. However, it is not quasi-smooth at the point \(O_t\). The intersection of \(T\) with the surface \(S\) gives us a divisor consisting of two irreducible curves \(\tilde{L}_{zt}\) and \(\tilde{C}\) on the normal surface \(T\). The curve \(\tilde{C}\) is the proper transform
of the curve C defined by $x = y = w^2 + z^3 = 0$. From the intersection numbers

$$(L_{zt} + \tilde{C}) \cdot \tilde{L}_{zt} = -K_Y \cdot \tilde{L}_{zt} = -\frac{1}{5}, \quad (\tilde{L}_{zt} + \tilde{C})^2 = 3B^3 = \frac{1}{10}$$

on the surface T, we obtain

$$\tilde{L}_{zt}^2 = -\frac{1}{5} - \tilde{L}_{zt} \cdot \tilde{C}, \quad \tilde{C}^2 = \frac{1}{10} - \tilde{L}_{zt} \cdot \tilde{C}.$$

To compute the intersection number $\tilde{L}_{zt} \cdot \tilde{C}$, we consider the divisor D_w on H cut by the equation $w = 0$. We easily see that $D_w = 3L_{zt} + R$, where R is a curve whose support does not contain L_{zt}. The curve R and L_{zt} intersects at the point O_z. Let \tilde{R} be the proper transform of R. Then we have $\tilde{L}_{zt} \cdot \tilde{R} = 0$ since they are disconnected on T. From the intersection

$$(3\tilde{L}_{zt} + \tilde{R}) \cdot \tilde{L}_{zt} = -6K_Y \cdot \tilde{L}_{zt} = -\frac{6}{5}$$

we obtain $\tilde{L}_{zt}^2 = -\frac{2}{5}$. With these intersection numbers we see that the matrix

$$
\begin{pmatrix}
\tilde{L}_{zt}^2 & \tilde{L}_{zt} \cdot \tilde{C} \\
\tilde{L}_{zt} \cdot \tilde{C} & \tilde{C}^2
\end{pmatrix}
=
\begin{pmatrix}
-\frac{1}{5} - \tilde{L}_{zt} \cdot \tilde{C} & \tilde{L}_{zt} \cdot \tilde{C} \\
\tilde{L}_{zt} \cdot \tilde{C} & \frac{1}{10} - \tilde{L}_{zt} \cdot \tilde{C}
\end{pmatrix}
$$

is negative-definite since $\tilde{L}_{zt} \cdot \tilde{C} = \frac{1}{5}$.

For the singular point of type $\frac{1}{2}(1,1,1)$ we consider the linear system generated by x^{15}, y^5 and t^3 on the hypersurface X_{18}. Its base locus is cut out by $x = y = t = 0$. Since we have the monomial z^3w, the base locus does not contain curves. Therefore the proper transform of a general member in the linear system is nef by Lemma 3.1.6 and it belongs to $|15B + 6E|$. Consequently, the surface T is nef since $3T \sim Q 15B + 6E$.

For the singular points of type $\frac{1}{5}(1,1,2)$ we may assume that $\alpha_1 = 0$ and consider the singular point O_y. The other points can be dealt with in the same way.

Since $\alpha_1 = 0$, the defining equation of X_{18} does not contain the monomial y^6. We may also assume that it does not contain the monomials x^6y^4, x^3y^5, x^2y^4z and $xy^4 t$ by changing the coordinate w.

For the singular point O_y with $b \neq 0$ we consider the linear system generated by x^{30}, t^5 and w^6 on the hypersurface X_{18}. Its base locus is cut out by $x = t = w = 0$. Since $b \neq 0$, its base locus does not contain curves. Therefore the proper transform of a general member in the linear system is nef by Lemma 3.1.6. It belongs to $|30B + 6E|$. Consequently, the surface T is nef since $6T \sim Q 30B + 6E$.

For the singular point O_y with $b = 0$ we take a general surface H from the linear system generated by x^5, xz and t. Then H is normal. Moreover, the surface H is smooth at the point $x = t = w = z^3 + \alpha_1 \alpha_2 y^4 = 0$. Indeed, the defining equation of X_{18} must contain at least one of the monomials xz^2y^3, ty^3z; otherwise X_{18} would be singular at the point $x = t = w = z^3 + \alpha_1 \alpha_2 y^4 = 0$. Plugging in $t = \lambda x z + \mu x^5$ with general complex numbers λ and μ into the defining equation of X_{18}, we obtain the defining equation of H in $\mathbb{P}(1,3,4,6)$. It must contain the monomial xz^2y^3. Therefore, the surface H is smooth at the point $x = t = w = z^3 + \alpha_1 \alpha_2 y^4 = 0$.

Let T be the proper transform of the surface H. The intersection of T with the surface S gives us a divisor consisting of two irreducible curves \tilde{L}_{yz} and \tilde{C} on the normal surface T. The curve \tilde{C} is the proper transform of the curve C defined by

$$x = t = z^3 + (w - \alpha_2 y^2)(w - \alpha_3 y^2) = 0.$$

The curves L_{yz} and C intersect at the point defined by $x = t = w = z^3 + \alpha_1 \alpha_2 y^4 = 0$. From the intersection numbers

$$(\tilde{L}_{yz} + \tilde{C}) \cdot \tilde{L}_{yz} = -K_Y \cdot \tilde{L}_{yz} = -\frac{1}{4}, \quad (\tilde{L}_{yz} + \tilde{C})^2 = B^2 \cdot (5B + E) = -\frac{1}{12}$$

on the surface T, we obtain

$$\tilde{L}_{yz}^2 = -\frac{1}{4} - \tilde{L}_{yz} \cdot \tilde{C}, \quad \tilde{C}^2 = \frac{1}{6} - \tilde{L}_{yz} \cdot \tilde{C}$$

With these intersection numbers we see that the matrix

$$
\begin{pmatrix}
\tilde{L}_{yz}^2 & \tilde{L}_{yz} \cdot \tilde{C} \\
\tilde{L}_{yz} \cdot \tilde{C} & \tilde{C}^2
\end{pmatrix}
=
\begin{pmatrix}
-\frac{1}{4} - \tilde{L}_{yz} \cdot \tilde{C} & \tilde{L}_{yz} \cdot \tilde{C} \\
\tilde{L}_{yz} \cdot \tilde{C} & \frac{1}{6} - \tilde{L}_{yz} \cdot \tilde{C}
\end{pmatrix}
$$

is negative-definite since \tilde{L}_{yz} and \tilde{C} intersects at a smooth point of the surface T.

No. 49: $X_{21} \subset \mathbb{P}(1, 3, 5, 6, 7)$

$A^3 = 1/30$

$w^3 + yt^3 + z^3(a_1 t + a_2 x z) + w^2 f_7(x, y, z, t) + w f_{14}(x, y, z, t) + + f_{21}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{1}{4}(1_x, 5_z, 1_w)$ ⊗	0	$3B$	y	w^3	
$O_z = \frac{1}{4}(1_x, 3_y, 2_w)$ ⊗	0	$3B$	y	y	$a_1 \neq 0$
$O_z = \frac{1}{4}(3_y, 1_t, 2_w)$ ⊗	0	$3B$	y	y	$a_1 = 0$
$O_y O_t = 3 \times \frac{1}{4}(1_x, 2_z, 1_w)$ ⊗	$-5B + E$	z	z		

For the singular points of types $\frac{1}{6}(1, 5, 1)$ and $\frac{1}{6}(1, 3, 2)$, the 1-cycle Γ is the proper transform of the curve defined by $x = y = w^3 + a_1 z^3 t = 0$. It is irreducible even though it can be non-reduced.

For the singular points of type $\frac{1}{4}(1, 2, 1)$, consider the linear system on X_{21} generated by $x^2 y$ and z. Its base curves are defined by $x = z = 0$ and $y = z = 0$. The curve defined by $x = z = 0$ is irreducible because of the monomials w^3 and yt^3. For its proper transform \tilde{C}, we have $T \cdot \tilde{C} = \frac{1}{6}$. Therefore, the divisor T is nef since the curve defined by $y = z = 0$ does not pass through any singular point of type $\frac{1}{4}(1, 2, 1)$.

No. 50: $X_{22} \subset \mathbb{P}(1, 1, 3, 7, 11)$

$A^3 = 2/21$

$w^2 + yt^3 + z^3(a_1 t + a_2 x z^2 + a_3 y z^2) + w f_{11}(x, y, z, t) + f_{22}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{1}{4}(1_x, 3_z, 4_w)$ ⊗	$+$	$B - E$	y	w^2	
If $a_1 = 0$, then $a_2 \neq 0$: otherwise the hypersurface X_{22} would be singular at the point defined by $x = y = w = 0$ and $t^3 + a_3 z^7 = 0$.

If $a_1 \neq 0$, the 1-cycle Γ for the singular point O_z is irreducible because of the monomials w^2 and $z^5 t$. If $a_1 = 0$, the 1-cycle Γ for the singular point O_z is still irreducible even though it is not reduced.

No. 51: $X_{22} \subset \mathbb{P}(1,1,4,6,11)$
$A^3 = 1/12$

$w^2 + z t^3 + z^4 t + w f_{11}(x, y, z, t) + f_{22}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{1}{7}(1, x, 1, y, 5, w)$	\oplus	$4 B - E$	z	w^2	z
$O_z = \frac{1}{7}(1, x, 1, 4, 3, w)$	\oplus	B	y	y	y
$O_z O_t = 1 \times \frac{1}{7}(1, x, 1, y, 1, w)$	\oplus	B	y	y	y

For the singular point O_z, we can easily see that the surface T is nef since the base locus of the linear system $|-K_{X_{22}}|$ is the irreducible curve cut by $x = y = 0$ and $B^3 = 0$.

For the singular point of type $\frac{1}{7}(1,1,1)$, the intersection Γ is irreducible since we have the monomials w^2 and $t^3 z$.

No. 52: $X_{22} \subset \mathbb{P}(1,2,4,5,11)$
$A^3 = 1/20$

$w^2 + y t^4 + y \prod_{i=1}^5 (z - \alpha_i y^2) + w f_{11}(x, y, z, t) + f_{22}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{1}{7}(1, 4, x, 1, w)$	\oplus	$4 B$	z	z	z
$O_z = \frac{1}{7}(1, x, 1, 4, 3, w)$	\oplus	$5 B + E$	t	t	t
$O_z O_t = 5 \times \frac{1}{7}(1, x, 1, t, 1, w)$	\oplus	$4 B + E$	$z - \alpha_i y^2$	w^2	w^2

For the singular points of types $\frac{1}{7}(1,4,1)$ and $\frac{1}{7}(1,1,1)$, the 1-cycle Γ is always irreducible because the defining polynomial of X_{22} contains the monomials w^2, $y t^4$ and $y z^5$.

For the singularity O_z, consider the linear system on X_{22} generated by $x z$ and t. Its base curves are defined by $x = t = 0$ and $z = t = 0$. The curve defined by $x = t = 0$ is irreducible because of the monomials w^2 and $y z^5$. Its proper transform intersects the divisor T positively. Therefore, the divisor T is nef since the curve defined by $z = t = 0$ does not pass through the singular point O_z.

No. 53: $X_{24} \subset \mathbb{P}(1,1,3,8,12)$
$A^3 = 1/12$

$w^2 + t^3 + z^8 + w f_{12}(x, y, z, t) + f_{24}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t O_w = 1 \times \frac{1}{7}(1, x, 1, y, 3, 2, z)$	\oplus	B	y	y	y
$O_z O_w = 2 \times \frac{1}{7}(1, x, 1, y, 2, t)$	\oplus	B	y	y	y
The 1-cycle Γ for each singular point is irreducible because of the monomials w^2, z^8 and t^3.

No. 55: $X_{24} \subset \mathbb{P}(1, 2, 3, 7, 12)$

$$(w - \alpha_1 y^6)(w - \alpha_2 y^6) + z t^3 + w f_{12}(x, y, z, t) + f_{24}(x, y, z, t)$$

$$A^3 = 1/21$$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{x}{4}(1_x, 2_y, 5_w) \oplus$	+	$3B - E$	z	w^2	
$O_w O_w = 2 \times \frac{x}{4}(1_x, 2_y) \oplus$	$2B$	y	y		
$O_y O_w = 2 \times \frac{x}{4}(1_x, 1_z, 1_t) \oplus$	$7B + 3E$	t	t		

The 1-cycle Γ for each singular point of type $\frac{1}{2}(1, 1, 1)$ is irreducible because of the monomials w^3 and $z t^3$.

For each singular point of type $\frac{1}{2}(1, 1, 1)$, the divisor T is nef. Indeed, the base curve of the linear system on X_{24} generated by $xy^3, y^2 z$ and t is cut out by $y = t = 0$. It does not pass through any singular point of type $\frac{1}{3}(1, 1, 1)$. Therefore, the surface T must be nef.

No. 57: $X_{24} \subset \mathbb{P}(1, 3, 4, 5, 12)$

$$(w - \alpha_1 y^4)(w - \alpha_2 y^4) + z t^4 + z^6 + w f_{12}(x, y, z, t) + f_{24}(x, y, z, t)$$

$$A^3 = 1/30$$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{x}{4}(1_x, 3_y, 2_w) \oplus$	0	$3B$	y	y	
$O_w O_w = 2 \times \frac{x}{4}(1_x, 3_y, 1_t) \oplus$	$3B$	y	y		
$O_y O_w = 2 \times \frac{x}{4}(1_x, 1_z, 1_t) \oplus$	$4B + E$	z	z		

The cycles Γ for the singular points of types $\frac{1}{3}(1, 3, 2)$ and $\frac{1}{3}(1, 3, 1)$ are irreducible because of the monomials w^2 and $z t^3$.

For each singular point of type $\frac{1}{3}(1, 1, 2)$ we consider the linear system generated by x^{20}, z^5 and t^4 on the hypersurface X_{24}. Its base locus is cut out by $x = z = t = 0$. Since the defining equation of X_{24} contains the monomial wy^4, its base locus does not contain curves. Therefore the proper transform of a general member in the linear system is nef by Lemma 3.1.6. The proper transform belongs to $|20B + 5E|$. Consequently, the surface T is nef since $5T \sim Q 20B + 5E$.

No. 59: $X_{24} \subset \mathbb{P}(1, 3, 6, 7, 8)$

$$w^3 + y t^3 + \prod_{i=1}^{4}(z - \alpha_i y^2) + w^2 f_{8}(x, y, z, t) + w f_{16}(x, y, z, t) + f_{24}(x, y, z, t)$$

$$A^3 = 1/42$$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{x}{4}(1_x, 6_z, 1_w) \oplus$	0	$3B$	y	w^3	
$O_w O_w = 1 \times \frac{x}{4}(1_x, 1_y, 1_t) \oplus$	$3B + E$	y	y		
$O_y O_w = 4 \times \frac{x}{4}(1_x, 1_t, 2_w) \oplus$	$6B + E$	$z - \alpha_i y^2$	yt^3		

The 1-cycle Γ for each singular point is irreducible due to the monomials w^3, z^4 and yt^3.

No. 62: $X_{26} \subset \mathbb{P}(1, 1, 5, 7, 13)$

$$A^3 = 2/35$$
\[w^2 + z^3 + yz^3 + w f_{13}(x, y, z, t) + f_{26}(x, y, z, t) \]

Singularity	\(B^3 \)	Linear system	Surface \(T \)	Vanishing order	Condition		
\(O_t = \frac{1}{3}(1, 1, 6w) \)	+ \(5B - E \)	\(z \)	\(w^2 \)	\(O_z = \frac{1}{3}(1, 2, 3w) \)	+ \(B - E \)	\(y \)	\(w^2 \)

For the singular point \(O_z \), let \(C_\lambda \) be the curve on the surface \(S_y \) defined by

\[
\begin{align*}
y &= 0, \\
t &= \lambda x^7
\end{align*}
\]

for a sufficiently general complex number \(\lambda \). Then

\[-K_Y \cdot \tilde{C}_\lambda = (B - E)(7B + E)B = 0.\]

If the curve \(\tilde{C}_\lambda \) is reducible, it consists of two irreducible components that are numerically equivalent since the two components of the curve \(C_\lambda \) are symmetric with respect to the biregular quadratic involution of \(X_{26} \). Then each component of \(\tilde{C}_\lambda \) intersects \(-K_Y\) trivially.

No. 63: \(X_{26} \subset \mathbb{P}(1, 2, 3, 8, 13) \)

\(A^3 = 1/24 \)

\[w^2 + y(t - \alpha_1 y^4)(t - \alpha_2 y^4)(t - \alpha_3 y^4) + z^6(a_1 t + a_2 y z^2) + w f_{13}(x, y, z, t) + f_{26}(x, y, z, t) \]

Singularity	\(B^3 \)	Linear system	Surface \(T \)	Vanishing order	Condition		
\(O_t = \frac{1}{3}(1, 3, 5w) \)	+ \(2B - E \)	\(y \)	\(w^2 \)	\(O_z = \frac{1}{3}(1, 2, 1w) \)	- \(2B \)	\(y \)	\(a_1 \neq 0 \)
\(O_z = \frac{2}{3}(1, 2, 1w) \)	- \(2B \)	\(y \)	\(w^2 \)	\(O_y O_t = 3 \times \frac{1}{3}(1, 1, 1w) \)	- \(3B + E \)	\(z \)	\(z \)

For each of the singular points of types \(\frac{1}{3}(1, 2, 1) \) and \(\frac{1}{3}(1, 1, 1) \), the 1-cycle \(\Gamma \) is always irreducible because of the monomials \(w^2 \), \(yt^3 \) and \(z^6t \) even though it is possibly non-reduced.

No. 64: \(X_{26} \subset \mathbb{P}(1, 2, 5, 6, 13) \)

\(A^3 = 1/30 \)

\[w^2 + y \prod_{i=1}^{4} (t - \alpha_i y^3) + z^4(a_1 t + a_2 x) + y f_{24}(y, z, t, w) + x g_{25}(x, y, z, t, w) \]

Singularity	\(B^3 \)	Linear system	Surface \(T \)	Vanishing order	Condition		
\(O_t = \frac{1}{3}(1, 5, 1w) \)	0 \(2B \)	\(y \)	\(w^2 \)	\(O_z = \frac{1}{3}(1, 2, 3w) \)	0 \(2B \)	\(y \)	\(a_1 \neq 0 \)
\(O_z = \frac{2}{3}(1, 2, 1w) \)	0 \(2B \)	\(y \)	\(a_1 = 0 \)	\(O_y O_t = 4 \times \frac{1}{3}(1, 1, 1w) \)	- \(6B + 2E \)	\(t - \alpha_3 y^2 \)	\(w^2 \)

For each of the singular points the 1-cycle \(\Gamma \) is irreducible due to the monomials \(w^2 \) and \(z^4t \).

No. 66: \(X_{27} \subset \mathbb{P}(1, 5, 6, 7, 9) \)

\(A^3 = 1/70 \)

\[w^3 + z t^3 + z^3 w + y^4 t + a y^2 z^2 + w^2 f_9(x, y, z, t) + w f_{18}(x, y, z, t) + f_{27}(x, y, z, t) \]
Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{1}{7}(1, 5, 2w)$	0	$5B$	y	y	
$O_z = \frac{1}{7}(1, 5, 1_t)$	$-$	$5B$	y	y	
$O_y = \frac{1}{7}(1, 1, 4w)$	$-$	$7B + E$	t	y^3z^2	$a \neq 0$
$O_y = \frac{1}{7}(1, 1, 4w)$	$-$	$7B$	x^5, t	x^7, wz^3	$a = 0$
$O_yO_w = 1 \times \frac{1}{7}(1, 2, 1_t)$	$-$	$5B + E$	y	y	

We may assume that the polynomial f_{27} contains neither xy^4z nor x^2y^5 by changing the coordinate t in an appropriate way.

For the singular points except the point O_y, the 1-cycles Γ are always irreducible because of the monomials w^3, zt^3 and z^3w.

For the singular point O_y with $a \neq 0$, we consider the linear system generated by x^2y, xz and t. Its base curve C is cut out by $x = t = 0$. It is irreducible because of the monomials w^3 and y^3z^2. Since we have $T \cdot \tilde{C} = (7B + E)^2 \cdot B = \frac{1}{2}$, the divisor T is nef.

For the singular point O_y with $a = 0$, we take a general member H in the linear system generated by x^7 and t. Then it is a normal surface of degree 27 in $\mathbb{P}(1, 5, 6, 9)$. Let T be the proper transform of the surface H. The intersection of T with the surface S gives us a divisor consisting of two irreducible curves \tilde{L}_{yz} and \tilde{C} on the normal surface T. The curve \tilde{C} is the proper transform of the curve C defined by $x = t = w^2 + z^3 = 0$. From the intersection numbers

$$(\tilde{L}_{yz} + \tilde{C}) \cdot \tilde{L}_{yz} = -K_T \cdot \tilde{L}_{yz} = -\frac{1}{6}, \quad (\tilde{L}_{yz} + \tilde{C})^2 = 7B^3 = -\frac{1}{4}$$

on the surface T, we obtain

$$\tilde{L}_{yz}^2 = -\frac{1}{6} - \tilde{L}_{yz} \cdot \tilde{C}, \quad \tilde{C}^2 = -\frac{1}{12} - \tilde{L}_{yz} \cdot \tilde{C}.$$

With these intersection numbers we see that the matrix

$$(\begin{pmatrix} \tilde{L}_{yz}^2 & \tilde{L}_{yz} \cdot \tilde{C} \\ \tilde{L}_{yz} \cdot \tilde{C} & \tilde{C}^2 \end{pmatrix}) = \begin{pmatrix} -\frac{1}{6} - \tilde{L}_{yz} \cdot \tilde{C} & \frac{1}{12} - \tilde{L}_{yz} \cdot \tilde{C} \\ \frac{1}{12} - \tilde{L}_{yz} \cdot \tilde{C} & -\frac{1}{12} - \tilde{L}_{yz} \cdot \tilde{C} \end{pmatrix}$$

is negative-definite since $\tilde{L}_{yz} \cdot \tilde{C}$ is non-negative.

No. 67: $X_{28} \subset \mathbb{P}(1, 1, 4, 9, 14)$

$w^2 + y^3 + z^7 + wf_{14}(x, y, z, t) + f_{28}(x, y, z, t)$

$A^4 = 1/18$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{1}{7}(1, 4, 5w)$	+	$B - E$	y	w^2	
$O_yO_w = 1 \times \frac{1}{7}(1, 1, 1_t)$	$-$	B	y	y	

The 1-cycle Γ for the singular point of type $\frac{1}{7}(1, 1, 1)$ is irreducible since we have the monomials w^2 and z^7.

No. 70: $X_{30} \subset \mathbb{P}(1, 1, 4, 10, 15)$

$A^4 = 1/20$
$w^2 + t^3 + z^5t + wf_{15}(x, y, z, t) + f_{30}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_x = \frac{1}{2}(1, 1, 1, 3w)$	\mathfrak{B}	B	y	y	
$O_yO_w = 1 \times \frac{1}{2}(1, 1, 1, 4z)$	\mathfrak{B}	B	y	y	
$O_xO_t = 1 \times \frac{1}{2}(1, 1, 1, 1w)$	\mathfrak{B}	B	y	y	

For each singular point the 1-cycle Γ is irreducible due to the monomials w^2 and t^3.

No. 71: $X_{30} \subset \mathbb{P}(1, 1, 6, 8, 15)$
$A^3 = 1/24$

$w^2 + t^3 + wf_{15}(x, y, z, t) + f_{30}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{1}{2}(1, 1, 1, 3w)$	\mathfrak{B}	$6B - E$	z	w^2	
$O_yO_w = 1 \times \frac{1}{2}(1, 1, 2z)$	\mathfrak{B}	B	y	y	
$O_xO_t = 1 \times \frac{1}{2}(1, 1, 1w)$	\mathfrak{B}	B	y	y	

For the singular points of types $\frac{1}{2}(1, 1, 1)$ and $\frac{1}{3}(1, 1, 2)$, the 1-cycles Γ are irreducible because of w^2 and t^3.

No. 72: $X_{30} \subset \mathbb{P}(1, 2, 3, 10, 15)$
$A^3 = 1/30$

$w^2 + t^3 + z^{10} + y^{15} + wf_{15}(x, y, z, t) + f_{30}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_tO_w = 1 \times \frac{1}{2}(1, 1, 2, 3z)$	\mathfrak{B}	B	y	y	
$O_xO_w = 2 \times \frac{1}{2}(1, 2, 1t)$	\mathfrak{B}	B	y	y	
$O_yO_t = 3 \times \frac{1}{2}(1, 1, 1w)$	\mathfrak{B}	B	y	y	

For each singular point the 1-cycle Γ is irreducible due to the monomials w^2 and t^3.

No. 73: $X_{30} \subset \mathbb{P}(1, 2, 6, 7, 15)$
$A^3 = 1/42$

$w^2 + yt^4 + \prod_{i=1}^{5} (z - \alpha_i y^3) + wf_{15}(x, y, z, t) + f_{30}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{1}{2}(1, 6, 1w)$	\mathfrak{B}	B	y	w^2	
$O_xO_w = 1 \times \frac{1}{2}(1, 2, 1t)$	\mathfrak{B}	B	y	y	
$O_yO_z = 5 \times \frac{1}{2}(1, 1, 1w)$	\mathfrak{B}	B	y	w^2	

For each singular point the 1-cycle Γ is irreducible due to the monomials w^2, z^5 and yt^4.

No. 75: $X_{30} \subset \mathbb{P}(1, 4, 5, 6, 15)$
$A^3 = 1/60$

$w^2 + t^5 + z^6 + y^6t + wf_{15}(x, y, z, t) + f_{30}(x, y, z, t)$
For the singular point O_y, consider the linear system generated by xy and z. Its base curves are defined by $x = z = 0$ and $y = z = 0$. The curve defined by $y = z = 0$ does not pass through the point O_y. The curve defined by $x = z = 0$ is irreducible. Moreover, its proper transform is the 1-cycle defined by $(5B + E) \cdot B$. Consequently, the divisor T is nef since $(5B + E)^2 \cdot B > 0$.

For the other singular points we immediately see that the 1-cycles Γ are irreducible due to the monomials w^2 and t^5.

No. 77: $X_{32} \subset \mathbb{P}(1, 2, 5, 9, 16)$

$A^4 = 1/45$

\[w^2 + x^3 + yz^6 + w_{f_{16}}(x, y, z, t) + f_{32}(x, y, z, t) \]

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{1}{3}(1, 2, 7)$	$+$	$5B - E$	z	w^2	w^2
$O_z = \frac{1}{3}(1, 4, 1)$	$-$	$2B$	y	w^2	w^2
$O_yO_w = 2 \times \frac{1}{3}(1, 1, 1, 1)$	$-$	$9B + 4E$	t	t	t

For the singular point O_z, the 1-cycle Γ is irreducible due to the monomials w^2 and t^5z.

For the singular points of type $\frac{1}{2}(1, 1, 1)$, we consider the linear system generated by xy^4, y^2z and t on X_{32}. Its base curve is defined by $y = t = 0$. The curve defined by $y = t = 0$ passes though no singular point of type $\frac{1}{2}(1, 1, 1)$. Consequently, the divisor T is nef.

No. 78: $X_{32} \subset \mathbb{P}(1, 4, 5, 7, 16)$

$A^5 = 1/70$

\[w^2 + yt^4 + z^5t + w_{f_{16}}(x, y, z, t) + f_{32}(x, y, z, t) \]

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{1}{4}(1, 5, 2)$	0	$4B$	y	w^2	w^2
$O_z = \frac{1}{4}(1, 4, 1)$	$-$	$4B$	y	y	y
$O_yO_w = 2 \times \frac{1}{4}(1, 1, 3)$	$-$	$5B + E$	z	z	z

For the singular points other than those of type $\frac{1}{4}(1, 1, 3)$, the 1-cycles Γ are always irreducible due to the monomials w^2 and z^5t.

For the singular points of type $\frac{1}{4}(1, 1, 3)$, we consider the linear system generated by xy and z on X_{32}. Its base curves are defined by $x = z = 0$ and $y = z = 0$. The curve defined by $y = z = 0$ passes though no singular point of type $\frac{1}{4}(1, 1, 3)$. The curve defined by $x = z = 0$ is irreducible because of the monomials w^2 and yt^4. Moreover, its proper transform is the 1-cycle defined by $(5B + E) \cdot B$. Therefore, the divisor T is nef since $(5B + E)^2 \cdot B > 0$.

No. 80: $X_{34} \subset \mathbb{P}(1, 3, 4, 10, 17)$

$A^4 = 1/60$
\[w^2 + zt^3 + z^6t + y^8(a_1t + a_2y^2z + a_3xy^4) + w f_{17}(x, y, z, t) + f_{34}(x, y, z, t) \]

Singularity	\(B^3\)	Linear system	Surface \(T\)	Vanishing order	Condition
\(O_t = \frac{1}{7} (1_x, 3_y, 7_w) \oplus\)	+	\(4B - E\)	\(z\)	\(w^2\)	\(\)
\(O_z = \frac{1}{7} (1_x, 3_y, 1_w) \oplus\)	-	\(3B\)	\(y\)	\(y\)	\(\)
\(O_y = \frac{1}{7} (1_x, 1_z, 2_w) \oplus\)	-	\(4B + E\)	\(z\)	\(z\)	\(a_1 \not= 0\)
\(O_y = \frac{1}{7} (1_x, 1_z, 2_w) \oplus\)	-	\(4B\)	\(z\)	\(w^2\)	\(a_1 = 0, a_2 \not= 0\)
\(O_y O_t = 1 \times \frac{1}{7} (1_x, 1_y, 1_w) \oplus\)	-	\(3B + E\)	\(y\)	\(y\)	\(\)

We may assume that the monomial \(xyt^3\) is not contained in the polynomial \(f_{34}\) by changing the coordinate \(z\) in a suitable way.

For each of the singular points, the 1-cycle \(\Gamma\) is always irreducible even though it is possibly non-reduced.

For the singular point \(O_y\) with \(a_1 \neq 0\), we consider the linear system generated by \(xy\) and \(z\) on \(X_{34}\). Its base curves are defined by \(x = z = 0\) and \(y = z = 0\). The curve defined by \(y = z = 0\) does not pass through the point \(O_y\). The curve defined by \(x = z = 0\) is irreducible because of the monomials \(w^2\) and \(y^8 t\). Moreover, its proper transform is the 1-cycle defined by \(4B + E \cdot B\). Consequently, the divisor \(T\) is nef since \((4B + E)^2 \cdot B > 0\).

No. 81: \(X_{34} \subset \mathbb{P}(1, 4, 6, 7, 17)\) \(A^3 = 1/84\)

\[w^2 + zt^4 + yz^5 + y^7 z + w f_{17}(x, y, z, t) + f_{34}(x, y, z, t) \]

Singularity	\(B^3\)	Linear system	Surface \(T\)	Vanishing order	Condition
\(O_t = \frac{1}{7} (1_x, 4_y, 3_w) \oplus\)	0	\(6B\)	\(z\)	\(w^2\)	\(\)
\(O_z = \frac{1}{7} (1_x, 1_t, 5_w) \oplus\)	-	\(4B\)	\(y\)	\(zt^4\)	\(\)
\(O_y = \frac{1}{7} (1_x, 3_t, 1_w) \oplus\)	-	\(7B + E\)	\(t\)	\(t\)	\(\)
\(O_y O_z = 2 \times \frac{1}{7} (1_x, 1_t, 1_w) \oplus\)	-	\(7B + 3E\)	\(t\)	\(t\)	\(\)

The 1-cycle \(\Gamma\) for the singular point \(O_t\) is irreducible due to the monomials \(w^2\) and \(y^5 t^2\) even though it can be non-reduced.

For the singular point \(O_z\), the 1-cycle \(\Gamma\) is irreducible due to the monomials \(w^2\) and \(zt^4\).

For the singular point \(O_y\), the 1-cycle \(\Gamma\) is irreducible due to the monomials \(w^2, yz^5\) and \(y^7 z\).

For the singular points of type \(\frac{1}{7}(1, 1, 1)\), we consider the linear system generated by \(xz\) and \(t\) on \(X_{34}\). Its base curves are defined by \(x = t = 0\) and \(z = t = 0\). The curve defined by \(z = t = 0\) passes though no singular point of type \(\frac{1}{7}(1, 1, 1)\). The curve defined by \(x = t = 0\) is irreducible due to the monomials \(w^2, yz^5\) and \(y^7 z\). Moreover, its proper transform is equivalent to the 1-cycle defined by \((7B + 3E) \cdot B\). Consequently, the divisor \(T\) is nef since \((7B + 3E)^2 \cdot B > 0\).

No. 82: \(X_{36} \subset \mathbb{P}(1, 1, 5, 12, 18)\) \(A^3 = 1/30\)

\[w^2 + t^3 + yz^7 + w f_{18}(x, y, z, t) + f_{36}(x, y, z, t) \]

Singularity	\(B^3\)	Linear system	Surface \(T\)	Vanishing order	Condition
\(O_z = \frac{1}{7} (1_x, 2_t, 3_w) \oplus\)	0	\(B - E\)	\(y\)	\(w^2\)	\(\)
If the curve \tilde{C}_λ for a sufficiently general complex number λ is reducible, it consists of two irreducible components that are numerically equivalent since the two components of the curve C_λ are symmetric with respect to the biregular quadratic involution of X_{36}. Then each component of \tilde{C}_λ intersects $-K_Y$ trivially.

For the singular point of type $\frac{1}{2}(1,1,5)$, the 1-cycle Γ is irreducible due to w^2 and t^3.

For each of the singular points, the 1-cycle Γ is irreducible since we have the monomials w^2, yt^3, and z^9.

For each singular point the 1-cycle Γ is always irreducible because of the monomials w^3 and t^4. In particular, the intersection Γ for the singular point O_y with $a_1 = 0$ is irreducible even though it is non-reduced.
For the singular point O_z, the 1-cycle Γ is irreducible because of the monomials w^2 and zt^3.

For the singular point O_y, the 1-cycle Γ is irreducible because of the monomials w^2 and y^9t. Note that in case when $a_1 = 0$ the 1-cycle Γ is still irreducible but non-reduced.

For the singular points except the point O_y, the 1-cycles Γ are always irreducible because of the monomials w^2, zt^4 and z^5t.

For the singularity O_y, we consider the linear system generated by xy and z on X_{38}. Its base curves are defined by $x = z = 0$ and $y = z = 0$. The curve defined by $y = z = 0$ does not pass though the singular point O_y. The curve defined by $x = z = 0$ is irreducible because of the monomials w^2 and y^9t. Moreover, its proper transform is equivalent to the 1-cycle defined by $(6B + E) \cdot B$. Consequently, the divisor T is nef since $(6B + E)^2 \cdot B > 0$.

The irreducibility of the 1-cycle Γ can be immediately checked for each singular point since we have the monomials w^2 and t^5.

For the singular points of type $\frac{1}{5}(1, 2, 3)$, we consider the linear system generated by x^2y and z on X_{40}. Its base curves are defined by $x = z = 0$ and $y = z = 0$. The curve defined by $y = z = 0$ passes though no singular points of type $\frac{1}{5}(1, 2, 3)$. The curve defined by $x = z = 0$ is irreducible because of the monomials w^2 and t^5. Its proper transform is equivalent to the 1-cycle defined by $(7B + E) \cdot B$. Consequently, the divisor T is nef since $(7B + E)^2 \cdot B > 0$.

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{1}{5}(1, 3, 5, 8, w) \oplus$	+	$5B - E$	z	w^2	
$O_z = \frac{1}{5}(1, 1, 4, w) \oplus$	−	$3B$	y	zt^3	
$O_y = \frac{1}{5}(1, 2, 4, w) \oplus$	−	$5B + E$	z	z	$a_1 \neq 0$
$O_y = \frac{1}{5}(1, 2, 1, w) \oplus$	−	$5B + E$	z	w^2	$a_1 = 0$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t = \frac{1}{5}(1, 3, 5, 3, w) \oplus$	0	$5B$	y	y	
$O_z = \frac{1}{5}(1, 5, 4, 1, w) \oplus$	−	$5B$	y	y	
$O_y = \frac{1}{5}(1, 1, 4, 3, w) \oplus$	−	$6B + E$	z	z	
$O_tO_t = 1 \times \frac{1}{5}(1, 1, 1, 1, 1, w) \oplus$	−	$5B + 2E$	y	y	
For each singular point the 1-cycle Γ is irreducible due to the monomials w^2, t^3, and z^7.

For each singular point the 1-cycle Γ is irreducible because of the monomials w^2 and t^3.

For the singular points other than those of type $\frac{1}{3}(1,1,2)$, the 1-cycle Γ is irreducible since we have monomials w^2, t^3, and z^7.

For the singular points of type $\frac{1}{3}(1,1,2)$, consider the linear system generated by xy and z on X_{42}. Its base curves are defined by $x = z = 0$ and $y = z = 0$. The curve defined by $y = z = 0$ passes through no singular points of type $\frac{1}{3}(1,1,2)$. The curve defined by $x = z = 0$ is irreducible because of the monomials w^2 and t^3. Its proper transform is equivalent to the 1-cycle defined by $(4B + E) \cdot B$. Therefore, the divisor T is nef since $(4B + E)^2 \cdot B > 0$.

For the singular points other than those of type $\frac{1}{3}(1,1,2)$, the 1-cycle Γ is irreducible since we have monomials w^2, t^3, and z^7.
\[O_y O_w = 1 \times \frac{1}{2}(1_x, 1_z, 1_t) \bigcirc - 5B + 2E \quad z \quad z \]

For each singular point the 1-cycle \(\Gamma \) is irreducible due to the monomials \(w^2 \), \(y^{11} \), and \(zt^3 \).

No. 92: \(X_{48} \subset \mathbb{P}(1, 3, 5, 16, 24) \)	\(A^3 = 1/120 \)
\(w^2 + t^3 + yz^9 + y^{16} + w_f^{24}(x, y, z, t) + f_{48}(x, y, z, t) \)	
Singularity	\(B^3 \)
---------------	--------
\(O_z = \frac{1}{2}(1_x, 1_t, 4w) \bigcirc \)	-
\(O_y O_w = 1 \times \frac{1}{2}(1_x, 3y, 5z) \bigcirc \)	0
\(O_y O_w = 2 \times \frac{1}{2}(1_x, 2z, 1_t) \bigcirc \)	-

For each singular point the 1-cycle \(\Gamma \) is irreducible due to the monomials \(w^2 \) and \(t^3 \).

No. 93: \(X_{50} \subset \mathbb{P}(1, 7, 8, 10, 25) \)	\(A^3 = 1/280 \)
\(w^2 + t^5 + z^2t + y^6(a_1z + a_2xy) + w_f^{25}(x, y, z, t) + f_{50}(x, y, z, t) \)	
Singularity	\(B^3 \)
---------------	--------
\(O_z = \frac{1}{2}(1_x, 7y, 1_w) \bigcirc \)	-
\(O_y = \frac{1}{2}(1_x, 3, 4w) \bigcirc \)	-
\(O_y = \frac{1}{2}(1_x, 3z, 4w) \bigcirc \)	-
\(O_y O_w = 1 \times \frac{1}{2}(1_x, 2y, 3z) \bigcirc \)	-
\(O_z O_t = 1 \times \frac{1}{2}(1_x, 1_y, 1_w) \bigcirc \)	-

For each singular point the 1-cycle \(\Gamma \) is always irreducible because of the monomials \(w^2 \) and \(t^5 \). In particular, the 1-cycle \(\Gamma \) for the singular point \(O_y \) with \(a_1 = 0 \) is irreducible even though it is non-reduced.

No. 94: \(X_{54} \subset \mathbb{P}(1, 4, 5, 18, 27) \)	\(A^3 = 1/180 \)
\(w^2 + t^3 + yz^{10} + y^{12}(a_1z + a_2xy) + w_f^{27}(x, y, z, t) + f_{54}(x, y, z, t) \)	
Singularity	\(B^3 \)
---------------	--------
\(O_z = \frac{1}{2}(1_x, 3t, 2w) \bigcirc \)	-
\(O_y = \frac{1}{2}(1_x, 3z, 2w) \bigcirc \)	-
\(O_y O_w = 1 \times \frac{1}{2}(1_x, 4y, 5z) \bigcirc \)	0
\(O_y O_t = 1 \times \frac{1}{2}(1_x, 1_z, 1_w) \bigcirc \)	-

For each singular point the 1-cycle \(\Gamma \) is irreducible due to the monomials \(w^2 \), \(t^3 \) and \(yz^{10} \).

No. 95: \(X_{66} \subset \mathbb{P}(1, 5, 6, 22, 33) \)	\(A^3 = 1/330 \)
\(w^2 + t^3 + z^{11} + y^{10}(a_1z + a_2xy) + w_f^{33}(x, y, z, t) + f_{66}(x, y, z, t) \)	
The 1-cycle Γ for each singular point is irreducible because of the monomials w^2, z^{11} and t^3.

5 Untwisting singular points

5.1 Untwisting

Note that we use the same notations as before (see Section 3.1).

Now we encounter singular points of X that require some treatments by birational automorphisms of X. In the remaining families, for a given singular point, either it should be excluded as a center of non-canonical singularities of the log pair $(X, \frac{1}{n} M)$ or it should be untwisted as a center of non-canonical singularities of the log pair $(X, \frac{1}{n} M)$. Untwisting is defined as follows:

Definition 5.1.1. Let τ be a birational automorphism of X. Suppose that a singular point p of X is a center of non-canonical singularities of the log pair $(X, \frac{1}{n} M)$. We say that the birational automorphism τ untwists the point p (as a center of non-canonical singularities of the log pair $(X, \frac{1}{n} M)$) if

- the birational automorphism τ is not biregular;
- there exists a biregular in codimension one birational automorphism τ_Y of Y such that it fits the commutative diagram

\[
\begin{array}{ccc}
Y & \xrightarrow{\gamma} & Y \\
f \downarrow & & \downarrow f \\
X & \xrightarrow{\tau} & X.
\end{array}
\]

In fact, this is a special case of a Sarkisov link of Type II (cf. [23] Definition 3.1.4]). The reason why such a birational automorphism is said to untwist a singular point is that it improves the singularities of the log pair $(X, \frac{1}{n} M)$. This improvement results from the following property of such a birational automorphism.

Lemma 5.1.2. Suppose that a singular point p of X is a center of non-canonical singularities of the log pair $(X, \frac{1}{n} M)$ and that there exists a birational automorphism τ of X that untwists the point p as a center of non-canonical singularities of the log pair $(X, \frac{1}{n} M)$. Then $\tau(M) \subset |-n_\tau K_X|$ for some positive integer $n_\tau < n$.

Proof. Put $\gamma = f^{-1} \circ \tau \circ f$. Then γ is birational in codimension one and γ is not biregular. In particular, γ acts on the Picard group $\text{Pic}(Y)$. Then $\gamma(B) = B$ since $B = -K_Y$. However, $\gamma(E) \neq E$ since γ is birational in codimension one. Indeed, if $\gamma(E) = E$, then τ is also
birationally rigid in codimension one. Then [21, Proposition 3.5] implies that \(\tau \) is biregular since \(\text{Pic}(X) \cong \mathbb{Z} \).

On the other hand, we have

\[f^*(\mathcal{M}) = \mathcal{M}_Y + mE, \]

for some positive rational number \(m \). Furthermore, \(m > \frac{2}{r} \) by Theorem 2.2.1. Since \(\tau_Y \) acts on Pic(\(Y \)), there are rational numbers \(a, b, c, d \) such that

\[
\begin{cases}
\tau_Y(A) = aA - bE, \\
\tau_Y(E) = cA - dE.
\end{cases}
\]

Since \(\tau_Y(B) = B \), we obtain

\[
A - \frac{1}{r} E = \tau_Y(A - \frac{1}{r} E) = \tau_Y(A) - \frac{1}{r} \tau_Y(E) = (a - \frac{c}{r})A - (b - \frac{d}{r})E,
\]

and hence \(a - \frac{c}{r} = 1 \). We then see

\[
\tau_Y(\mathcal{M}_Y) = \tau_Y(nA - mE) = n\tau_Y(A) - m\tau_Y(E) = (na - mc)A - (nb - md)E.
\]

Since \(na - mc = na - m(ar - r) = na - mr(a - 1) < na - n(a - 1) = n \), we obtain \(\tau(\mathcal{M}) \subset |-n\tau K_X| \) with \(n\tau < n \). This proves the statement.

Thus, to complete the proof of Theorem 1.1.9 it is enough to show that every singular point of \(X \) either is not a center of non-canonical singularities of the log pair \((X^n, \mathcal{M}) \) or can be untwisted by some appropriate birational automorphism of \(X \). This follows from Theorem 1.2.2 and Lemma 5.1.2 with induction on \(n \).

As in [23], in the case when a singular point of \(X \) is untwisted by some birational automorphism, it can be untwisted by a very explicit birational involution. Since \(X \) has only finitely many singular points, there are finitely many such involutions for a given \(X \). These birational automorphisms generate a subgroup, denoted by \(\Gamma_X \), in the birational automorphism group \(\text{Bir}(X) \). Using [21, Theorem 4.2] instead of Theorem 1.2.2, we prove

Theorem 5.1.3. Let \(X \) be a quasi-smooth hypersurface of degrees \(d \) with only terminal singularities in the weighted projective space \(\mathbb{P}(1, a_1, a_2, a_3, a_4) \), where \(d = \sum a_i \). Then the birational automorphism group of \(X \) is generated by the subgroup \(\Gamma_X \) and the biregular automorphism group of \(X \).

In the case when \(X \) is a general hypersurface in its family, Theorem 5.1.3 is proved in [23] (see [23, Remark 1.4]).

5.2 Quadratic involution

In many cases, explicit birational automorphisms arise from generically 2-to-1 rational maps of \(X \) onto appropriate 3-dimensional weighted projective spaces.

Lemma 5.2.1 ([23, Theorem 4.9]). Suppose that the hypersurface \(X \) is given by

\[
x_{i_3}x_{i_4}^2 + f_cx_{i_4} + g_d = 0,
\]

in the weighted projective space \(\mathbb{P}(1, a_1, a_2, a_3, a_4) \). Then there exists a birational involution \(\tau \) of \(X \) that is given by

\[
\begin{cases}
\tau(x_{i_3}) = x_{i_3}, \\
\tau(x_{i_4}) = -x_{i_4}, \\
\tau(f_c) = -f_c, \\
\tau(g_d) = g_d.
\end{cases}
\]
where \(x_{i_4}, x_{i_3}\) are two of the coordinates and \(f_e, g_d\) are quasi-homogeneous polynomials of degrees \(e\) and \(d\) not involving \(x_{i_4}\). In addition, suppose that the polynomial \(f_e\) is not divisible by \(x_{i_3}\). Then interchanging the roots of the equation defines a birational involution \(\tau_{O_{x_{i_4}}}\) of \(X\). If the polynomial \(f_e\) is non-zero, then the involution \(\tau_{O_{x_{i_4}}}\) untwists the point \(O_{x_{i_4}}\) as a center of non-canonical singularities of the log pair \((X, \frac{1}{n}M)\).

Lemma 5.2.2. Suppose that the hypersurface \(X\) is given by

\[
x_{i_3}x_{i_4}^2 + x_{i_3}g_e(x, x_{i_1}, x_{i_2}, x_{i_3}) + h_d(x, x_{i_1}, x_{i_2}) = 0,
\]

where \(x_{i_k}\)'s are the coordinates of \(\mathbb{P}(1, a_1, a_2, a_3, a_4)\) different from \(x\). If the weights of \(x_{i_1}, x_{i_2}\) are less than the weight of \(x_{i_3}\), then the singular points \(O_{x_{i_4}}\) cannot be a center of non-canonical singularities of the log pair \((X, \frac{1}{n}M)\).

Proof. Note that the quasi-homogeneous polynomial \(h_d\) must be irreducible: otherwise the hypersurface \(X\) would not be quasi-smooth. The singular point \(O_{x_{i_4}}\) is of type \(\frac{1}{a_{i_4}}(1, a_{i_1}, a_{i_2})\).

Suppose that it is a center of non-canonical singularities of the log pair \((X, \frac{1}{n}M)\).

Let \(T\) be the proper transform of the surface \(S_{x_{i_3}}\) cut by \(x_{i_3} = 0\). Since the polynomial \(h_d\) cannot be zero, the surface cut by \(x_{i_3} = 0\) vanishes along \(E\) with multiplicity \(\frac{d}{a_{i_4}}\). Therefore, the surface \(T\) belongs to \(|a_{i_3}B - 2E|\) since \(a_{i_3} + 2a_{i_4} = d\).

Let \(C_\lambda\) be the curve on the surface \(S_{x_{i_3}}\) defined by

\[
\begin{align*}
x_{i_3} &= 0, \\
x_{i_2} &= \lambda x^{a_{i_2}}
\end{align*}
\]

for a sufficiently general complex number \(\lambda\). Then the curve \(C_\lambda\) is a curve of degree \(d\) in \(\mathbb{P}(1, a_{i_1}, a_{i_4})\) defined by equation

\[
h_d(x, x_{i_1}, \lambda x^{a_{i_2}}) = 0.
\]

Instead of proving that \(C_\lambda\) is irreducible, we claim that every curve on \(T\) intersects \(B\) non-negatively. To this end, we consider the linear system \(\mathcal{L}\) on \(X\) given by the monomials \(x^{a_{i_1}+a_{i_2}}, x_{i_1}x_{i_2}, x^{a_{i_1}+a_{i_2}}x_{i_3}, x^{2a_{i_2}}x_{i_4}\). The proper transform of a surface in \(\mathcal{L}\) is equivalent to \((a_{i_1} + a_{i_2})B\). The base locus of the proper transform of the linear system \(\mathcal{L}\) consists of the proper transform of the curve cut by \(x = x_{i_4} = 0\) and the proper transform of the curve cut by \(x = x_{i_2} = 0\).

Suppose that we have a curve \(R\) on \(T\) such that \(B \cdot R < 0\). Then we can conclude from the linear system \(\mathcal{L}\) that the curve \(R\) should be either the proper transform \(\tilde{L}_{24}\) of the curve \(L_{24}\) defined by \(x = x_{i_3} = x_{i_1} = 0\) or the proper transform \(\tilde{L}_{14}\) of the curve \(L_{14}\) defined by \(x = x_{i_3} = x_{i_2} = 0\). However, since \(E \cdot \tilde{L}_{24} = \frac{1}{a_{i_2}}\) and \(E \cdot \tilde{L}_{14} = \frac{1}{a_{i_1}}\), we obtain

\[
B \cdot \tilde{L}_{24} = (A - \frac{1}{a_{i_4}}E) \cdot \tilde{L}_{24} = \frac{1}{a_{i_2}a_{i_4}} - \frac{1}{a_{i_1}a_{i_2}} = 0;
\]

\[
B \cdot \tilde{L}_{14} = (A - \frac{1}{a_{i_4}}E) \cdot \tilde{L}_{14} = \frac{1}{a_{i_1}a_{i_4}} - \frac{1}{a_{i_1}a_{i_1}} = 0.
\]

This verifies the claim.

Then the equation

\[
-K_Y \cdot \tilde{C}_\lambda = a_{i_2}B^2 \cdot (a_{i_4}B - 2E) = 0
\]

contradicts Lemma 3.1.8.

\(\square\)
Theorem 5.2.3. Suppose that the weights \(a_3, a_4\) are relatively prime and \(2a_3 + a_4 = d\). In addition, the equation of the hypersurface \(X\) does not involve the monomial \(wt^2\). Then the singular point \(O_t\) cannot be a center of non-canonical singularities of the log pair \((X, \frac{1}{n}M)\).

Proof. We first note that the singular point \(O_t\) of the hypersurface \(X\) is of type \(\frac{1}{n}(1, a_1, a_2)\). The hypersurface \(X\) may be assumed to be defined by the equation

\[
x_i^3 + t^2 g_{a_1}(x, y, z) + twg_{a_3}(x, y, z) + tg_{a_3+a_4}(x, y, z) +
+w^2g_{d-2a_4}(x, y, z) + wg_{a_3}(x, y, z) + g_d(x, y, z) = 0,
\]

where \(x_i\) is either \(y\) or \(z\). Note that the polynomial \(f_d\) contains either the monomial \(yw^2\) or the monomial \(zw^2\). We let \(x_j\) be \(z\) if \(x_i\) is \(y\) and vice versa.

Suppose that the singular point \(O_t\) is a center of non-canonical singularities of the log pair \((X, \frac{1}{n}M)\). Consider the linear system \(L\) on \(X\) generated by \(x^e\) and \(x_j\), where \(e\) is the weight of \(x_j\). The proper transform of each member of \(L\) is linearly equivalent to \(eB\). The base locus of the linear system \(L\) consists of the curve cut by \(x = x_j = 0\). It consists of the curve \(L_{tw}\) and its residual curve \(R\). Note that the residual curve \(R\) cannot pass through the point \(O_t\) since we have the monomial \(x_i t^3\). The proper transform of the curve \(R\) intersects \(B\) positively. Therefore,

\[
B \cdot L_{tw} = eB^3 + K_X \cdot R = \frac{2ea_3 + ea_4}{a_1a_2a_3a_4} - \frac{e}{a_1a_2a_3} - \frac{3ea_3}{a_1a_2a_3a_4} = -\frac{e}{a_1a_2a_4} < 0.
\]

Let \(T\) be the proper transform of the surface on \(X\) cut by the equation \(x_i\). In addition, let \(S_\lambda\) be the proper transform of the surface on \(X\) cut by the equation \(x_j - \lambda x^e = 0\) for a constant \(\lambda\). We then see that

\[
T \cdot S_\lambda = (2a_3 - a_4)\tilde{L}_{tw} + \tilde{R}_\lambda,
\]

where \(\tilde{R}_\lambda\) is the residual curve. Note that the surface \(T\) is equivalent to \(e' B - E\), where \(e'\) is the weight of \(x_i\). Then

\[
B \cdot \tilde{R}_\lambda = eB^2 \cdot T - (2a_3 - a_4)B \cdot \tilde{L}_{tw} = \frac{a_1a_2 + ea_3 - ea_4}{a_1a_2a_4} = 0
\]

since \(a_4 = e' + a_3\) and \(ee' = a_1a_2\). We then obtain a contradiction from Lemma 3.1.8. \(\square\)

5.3 Elliptic involution

Before we proceed, we put a remark here. We consider the family No. 7, a quasi-smooth hypersurface \(X_8\) of degree 8 in \(\mathbb{P}(1, 1, 2, 3)\). It has four singular points of type \(\frac{1}{2}(1, 1, 1)\) along the curve \(L_{zt}\). Let \(p\) be one of the singular points. By a coordinate change, we may assume that \(p\) is the point \(O_t\). Then the hypersurface \(X\) may be assumed to be defined by an equation of one of the following forms

Type I:
\[
tw^6 + wg_5(x, y, z) - zt^3 - t^2 g_4(x, y, z) - tg_6(x, y, z) + g_8(x, y, z) = 0;
\]

Type II:
\[
(z + f_2(x, y))w^2 + w f_5(x, y, z) - zt^3 - t^2 f_4(x, y, z) - tf_6(x, y, z) + f_8(x, y, z) = 0.
\]
In the latter equation, the quasi-homogeneous polynomial f_3 must contain either xt^2 or yt^2: otherwise it would not be quasi-smooth at the point $[0 : 0 : 1 : 1]$. The hypersurface defined by the equation of Type II may have an involution that untwists the singular point O_l. Since its construction is quite complicated, we explain the method in a separate section.

First, we consider the following six families and their singular point O_l.

- No. 7 (Type I), $X_8 \subset \mathbb{P}(1,1,2,2,3);$
- No. 23, $X_{14} \subset \mathbb{P}(1,2,3,4,5);$
- No. 40, $X_{19} \subset \mathbb{P}(1,3,4,5,7);$
- No. 44, $X_{20} \subset \mathbb{P}(1,2,5,6,7);$
- No. 61, $X_{25} \subset \mathbb{P}(1,4,5,7,9);$
- No. 76, $X_{30} \subset \mathbb{P}(1,5,6,8,11).$

For these six families, we may assume that the hypersurface X is defined by the equation

$$tw^2 + wg_{d-a4}(x, y, z) - x_it^3 - t^2g_{d-2a3}(x, y, z) - tg_{d-a3}(x, y, z) + g_d(x, y, z) = 0, \quad (5.3.2)$$

where x_i is either y or z.

Put $y = \lambda_1x^{a_1}$ and $z = \lambda_2x^{a_2}$. We then consider the curve C_{λ_1, λ_2} defined by

$$tw^2 + wg_{d-a4}(x, \lambda_1x^{a_1}, \lambda_2x^{a_2}) - \lambda_ix^{a_1}t^3$$

$$- t^2g_{d-2a3}(x, \lambda_1x^{a_1}, \lambda_2x^{a_2}) - tg_{d-a3}(x, \lambda_1x^{a_1}, \lambda_2x^{a_2}) + g_d(x, \lambda_1x^{a_1}, \lambda_2x^{a_2}) = 0, \quad (5.3.3)$$

where $i = 1$ if $x_i = y$; $i = 2$ if $x_i = z$, in $\mathbb{P}(1, a_3, a_4)$. From now let x_j be the variable such that $\{x_i, x_j\} = \{y, z\}$. If $x_i = y$, then put $a_i = a_1$ and $\lambda_i = \lambda_1$. If $x_i = z$, then put $a_i = a_2$ and $\lambda_i = \lambda_2$. Also we define a_j and λ_j in the same manner.

Lemma 5.3.4. For a general complex number λ_j the curve C_{λ_1, λ_2} is irreducible for every complex number λ_j if and only if the polynomial $g_{d-a3}(x, y, z)$ is not identically zero. In case when C_{λ_1, λ_2} is reducible, it has two irreducible curves. One is defined by the equation $t = 0$ and the other by $w^2 - \lambda_1x^{a_1}t^2 - tg_{d-2a3}(x, \lambda_1x^{a_1}, \lambda_2x^{a_2}) - g_{d-a3}(x, \lambda_1x^{a_1}, \lambda_2x^{a_2}) = 0$ in $\mathbb{P}(1, a_3, a_4)$.

Proof. The quasi-smoothness of the hypersurface X implies that the polynomial $g_d(x, y, z)$ involves all the variables x, y and z. The statement immediately follows from this simple observation. \hfill \Box

Theorem 5.3.5. The singular point O_l is untwisted by a birational involution if $g_{d-a4}(x, y, z)$ is not identically zero. It cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n}\mathcal{M})$ if $g_{d-a4}(x, y, z)$ is identically zero.

Proof. Let $\pi: X \rightarrow \mathbb{P}(1, a_1, a_2)$ be the rational map induced by $[x : y : z : t : w] \mapsto [x : y : z]$. It is a morphism outside of the point O_l and the point O_w. Moreover, the map is dominant. Its general fiber is an irreducible curve birational to an elliptic curve. To see this, on the hypersurface X, consider the surface cut by $y = \lambda_1x^{a_1}$ and the surface cut by $z = \lambda_2x^{a_2}$, where λ_1 and λ_2 are sufficiently general complex numbers. Then the intersection of these two
surfaces is the curve \(C_{\lambda_1, \lambda_2} \) defined by (5.3.3). From the equation we can easily see that the curve \(C_{\lambda_1, \lambda_2} \) is irreducible and reduced. Furthermore, plugging \(x = 1 \) into Equation (5.3.3), we see that the curve is birational to an elliptic curve. The curve \(C_{\lambda_1, \lambda_2} \) is a general fiber of the map \(\pi \).

Let \(\mathcal{H} \) be the linear subsystem of \(| - a_2 K_X | \) generated by the monomials of degree \(a_2 \) in variables \(x, y, z \). Its proper transform \(\mathcal{H}_Y \) on \(Y \) coincides with \(| - a_2 K_Y | \).

Suppose that \(g_{d - a_4}(x, y, z) \) is identically zero. By Lemma 5.3.4 for a general complex number \(\lambda_i \) there is a complex number \(\lambda_j \) such that the curve \(C_{\lambda_i, \lambda_j} \) is reducible. Therefore there is a one-dimensional family of reducible curves \(C_{\lambda_1, \lambda_2} \) with general \(\lambda_i \) and some \(\lambda_j \) depending on \(\lambda_i \). Denote the general curve in this one-dimensional family by \(C \). By Lemma 5.3.4 it consists of two irreducible and reduced curves. One is the curve \(C_1 \) defined by \(y - \lambda_1 x^{a_1} = z - \lambda_2 x^{a_2} = t = 0 \). The other is the curve \(C_2 \) defined by \(y - \lambda_1 x^{a_1} = w - \lambda_2 x^{a_2} = w^2 - \lambda_1 x^{a_1} t^2 - t g_{d - a_3}(x, \lambda_1 x^{a_1}, \lambda_2 x^{a_2}) - g_{d - a_3}(x, \lambda_1 x^{a_1}, \lambda_2 x^{a_2}) = 0 \). Note that \(C_2 \) passes through the point \(O_t \) but the curve \(C_1 \) does not. Noticing that \(a_4 + 3a_3 = 2a_4 + a_3 \), we obtain

\[
-K_Y \cdot \tilde{C}_2 = -K_Y \cdot (\tilde{C}_1 + \tilde{C}_2) - (-K_Y) \cdot \tilde{C}_1 \\
= a_1 a_2 B^3 - (-K_X) \cdot C_1 \\
= a_1 a_2 \left(\frac{A^3}{a_3 a_1 (a_4 - a_3)} - \frac{1}{a_4} \right) - \frac{2}{a_4} - \frac{2}{a_4 a_3} = 0
\]

and \(\tilde{C}_2 \cdot E > 0 \). By Lemma 3.1.8 the point \(O_t \) cannot be a center of non-canonical singularities of the log pair \((X, \frac{1}{n} \mathcal{M}) \).

Suppose that \(g_{d - a_4}(x, y, z) \) is not identically zero. Let \(g: W \rightarrow Y \) be the weighted blow up at the point over \(O_w \) with weight \((1, a_1, a_2) \) and let \(F \) be its exceptional divisor. Let \(\hat{E} \) be the proper transform of the exceptional divisor \(E \) by the morphism \(g \). Let \(\mathcal{H}_W \) be the proper transform of the linear system \(\mathcal{H} \) by the morphism \(f \circ g \). We then see that \(\mathcal{H}_W = | - a_2 K_W | \). We also see that \(-K^3_W = 0 \).

We first claim that the divisor class \(-K_W \) is nef. Indeed, the base curve of the linear system \(| - a_2 K_W | \) is given by the proper transform of the curve \(C \) cut by the equation \(x = z = 0 \) on \(X \). If the curve is reducible then its proper transform \(\hat{C} \) on \(W \) intersects \(-K_W \) trivially since \(-K^3_W = 0 \). Suppose that the curve \(C \) is reducible. It then consists of two irreducible components. Moreover, one of the components must be \(L_{yw} \). Note that it passes through the point \(O_{yw} \). Its proper transform \(\hat{L}_{yw} \) on \(W \) passes through the singular point of index \(a_1 \) on the exceptional divisor \(F \). We then obtain

\[
-K_W \cdot \hat{L}_{yw} = -K_X \cdot L_{yw} - \frac{1}{a_4} F \cdot \hat{L}_{yw} = \frac{1}{a_1 a_4} - \frac{1}{a_4 a_1} = 0.
\]

Since \(-K_W \cdot \hat{C} = 0 \), the proper transform of the other component of \(C \) intersects \(-K_W \) trivially. Therefore, the divisor class \(-K_W \) is nef.

The linear system \(| - m K_W | \) is free for sufficiently large \(m \). Hence, it induces an elliptic fibration \(\eta: W \rightarrow \mathbb{P}(1, a_1, a_2) \). Moreover, we have proved the existence of a commutative
where \(\delta \) points diagram 44

I. Cheltsov and J. Park

Equation 53.33 shows that the divisor \(F \) is a section of the elliptic fibration \(\eta \) and the divisor \(\bar{E} \) is a multi-section of the elliptic fibration \(\eta \). Let \(\tau_W \) be the birational involution of the threefold \(W \) that is induced by the reflection of the general fiber of \(\eta \) with respect to the section \(F \). Then \(\tau_W \) is biregular in codimension one because \(K_W \) is \(\eta \)-nef by our construction. Put \(\tau_Y = g \circ \tau_W \circ g^{-1} \) and \(\tau = f \circ \tau_Y \circ f^{-1} \).

We have \(\tau_W(F) = F \) by our construction. Therefore, \(\tau_Y \) is biregular in codimension one. We claim that the involution \(\tau \) is not biregular. To see this, let us prove a stronger claim that the restriction of \(\tau \) to a general surface in \(| - a_iK_X | \) is not biregular.

Let \(S_{\lambda_i} \) be the surface on the hypersurface \(X \) cut by the equation \(x_i = \lambda_i x^a_i \). It is a normal surface. However, it is not quasi-smooth possibly at the point \(O_t \) and the point \(O_{x_j} \). The surface \(S_{\lambda_i} \) is \(\tau \)-invariant by our construction. Let \(\tau_{\lambda_i} \) be the restriction of \(\tau \) to the surface \(S_{\lambda_i} \). It is a birational involution of the surface \(S_{\lambda_i} \) since the surface is \(\tau \)-invariant.

We claim that the birational involution \(\tau_{\lambda_i} \) is not biregular. To verify this claim, we suppose that it is biregular and then we seek for a contradiction.

The projection \(\pi: X \to \mathbb{P}(1, a_1, a_2) \) induces a rational map \(\pi_{\lambda_i}: S_{\lambda_i} \to \mathbb{P}(1, a_j) \cong \mathbb{P}^1 \). The rational map \(\pi_{\lambda_i}: S_{\lambda_i} \to \mathbb{P}^1 \) is given by the pencil \(\mathcal{P} \) of the curves on the surface \(S_{\lambda_i} \subset \mathbb{P}(1, a_j, a_3, a_4) \) cut by the equations

\[
\delta x^a_j = \epsilon x_j,
\]

where \([\delta : \epsilon] \in \mathbb{P}^1\). Its base locus is cut out on \(S_{\lambda_i} \) by \(x = x_j = 0 \), which implies that the base locus of the pencil \(\mathcal{P} \) consists of two points \(O_t \) and \(O_w \). The map \(\pi_{\lambda_i} \) is defined outside of the points \(O_w \) and \(O_t \).

Resolving the indeterminacy of the rational map \(\pi_{\lambda_i} \), we obtain an elliptic fibration \(\bar{\pi}_{\lambda_i}: \bar{S}_{\lambda_i} \to \mathbb{P}^1 \). Thus, we have a commutative diagram

\[
\begin{array}{ccc}
S_{\lambda_i} & \xrightarrow{\pi_{\lambda_i}} & \mathbb{P}^1 \\
\sigma \downarrow & & \downarrow \bar{\pi}_{\lambda_i} \\
\bar{S}_{\lambda_i} & \xrightarrow{\bar{\pi}_{\lambda_i}} & \mathbb{P}^1,
\end{array}
\]

where \(\sigma \) is a birational map. Note that there exist exactly two \(\sigma \)-exceptional prime divisors that do not lie in the fibers of \(\bar{\pi}_{\lambda_i} \). One of the divisors is over the point \(O_t \) and the other is over the point \(O_w \). Let \(E_{\lambda_i} \) and \(F_{\lambda_i} \) be these two exceptional divisors, respectively. The curve \(E_{\lambda_i} \) is a section of the elliptic fibration \(\bar{\pi}_{\lambda_i} \) and the curve \(F_{\lambda_i} \) is a multi-section. Denote other \(\sigma \)-exceptional curves (if any) by \(G_1, \ldots, G_r \).

Recall that we have assumed that the involution \(\tau_{\lambda_i} \) is biregular. Put \(\bar{\tau}_{\lambda_i} = \sigma^{-1} \circ \tau_{\lambda_i} \circ \sigma \). Then \(\bar{\tau}_{\lambda_i} \) may not be biregular if \(\sigma^{-1} \) is not \(\tau_{\lambda_i} \)-equivariant. However, we have freedom in choosing \(\sigma \). So we may assume that \(\sigma^{-1} \) is \(\tau_{\lambda_i} \)-equivariant, which implies that \(\bar{\tau}_{\lambda_i} \) is biregular as well.
Let C_{λ_i} be a general fiber of the map π_{λ_i}. Let \bar{C}_{λ_i} be the proper transform of the curve C_{λ_i} on \bar{S}_{λ_i}. The curve \bar{C}_{λ_i} is $\bar{\tau}_{\lambda_i}$-invariant. Furthermore, $\bar{\tau}_{\lambda_i}|_{\bar{C}_{\lambda_i}}$ is given by the reflection with respect to the point $\bar{F}_{\lambda_i} \cap \bar{C}_{\lambda_i}$. On the other hand, the divisor \bar{E}_{λ_i} must be $\bar{\tau}_{\lambda_i}$-invariant since τ_{λ_i} is biregular. This means, in particular, that the divisor

$\left. \left(\bar{E}_{\lambda_i} - a_i \bar{F}_{\lambda_i} \right) \right|_{\bar{C}_{\lambda_i}} \in \text{Pic}^0(\bar{C}_{\lambda_i})$

is torsion. Therefore, the divisor $\bar{E}_{\lambda_i} - a_i \bar{F}_{\lambda_i}$ must be numerically equivalent to a linear combinations of curves on \bar{S}_{λ_i} that lie in the fibers of $\bar{\tau}_{\lambda_i}$ (This method originates from \cite{3}).

Let C_x be the curve on S_{λ_i} cut by the equation $x = 0$. It is defined by the equation $tw^2 + wh_d - a_1(x_j) + h_d(x_j, t) = 0$ in $\mathbb{P}(a_j, a_3, a_4)$. It can be reducible. We write $C_x = \sum_{k=1}^\ell C_k$, where C_k's are the irreducible components of C_x.

Let \bar{C}_k be the proper transform of C_k by σ. Then all the curves \bar{C}_k lie in the same fiber of the elliptic fibration $\bar{\tau}_{\lambda_i}$. Moreover, we claim that every other fiber of $\bar{\tau}_{\lambda_i}$ contains exactly one irreducible and reduced curve that is not σ-exceptional. Indeed, this follows from the fact that for a general complex number λ_i, the curve C_{λ_1, λ_2} is always irreducible and reduced for every value of λ_j. Since all fibers of $\bar{\tau}_{\lambda_i}$ (with scheme structure) are numerically equivalent and the divisor $\bar{E}_{\lambda_i} - a_i \bar{F}_{\lambda_i}$ is numerically equivalent to a linear combinations of curves that lie in the fibers of $\bar{\tau}_{\lambda_i}$, we obtain

$\bar{E}_{\lambda_i} - a_i \bar{F}_{\lambda_i} \sim_{\mathbb{Q}} \sum_{k=1}^\ell \bar{c}_k \bar{C}_k + \sum_{k=1}^r c_k G_k$

for some rational numbers $\bar{c}_1, \ldots, \bar{c}_\ell, c_1, \ldots, c_r$. The intersection form of the curves $\bar{E}_{\lambda_i}, \bar{F}_{\lambda_i}, G_1, \ldots, G_r$ is negative-definite since these curves are σ-exceptional. Therefore, $\bar{c}_k \neq 0$ for some k. On the other hand, we have

$\sum_{k=1}^\ell \bar{c}_k C_k \sim_{\mathbb{Q}} 0$

on the surface S_{λ_i}. In particular, the intersection form of the curve(s) C_k's is degenerate on the surface S_{λ_i}. This however contradicts Lemma \ref{lem:main-lemma}.

The obtained contradiction shows that τ_{λ_i} is not biregular. In particular, the involution τ is not biregular. Since the involution γ_Y is biregular in codimension one, the involution τ meets the conditions in Definition \ref{def:birationally-rigid}. Therefore, the birational involution τ untwists the singular point O_1.

\begin{lemma}
Let S_{λ_i} be the surface on X cut by the equation $x_i = \lambda_i x_1^a$ for a general complex number λ_i. Let $C_x = \sum_{k=1}^\ell m_k C_k$ be the divisor on S_{λ_i} cut by the equation x. Then the intersection form of the curves C_k's on the surface S_{λ_i} is non-degenerate.
\end{lemma}

\begin{proof}
Suppose that it is not a case. This immediately implies that $\ell \geq 2$. It cannot happen in the families No. 44, 61 and 76 since the polynomial g_d must contain a power of x_j, i.e., the curve C_x is irreducible.

The curve C_x is defined by

- $tw^2 + ay^5w + y^4(bt^2 + cy^2t + dy^4) = 0$ in $\mathbb{P}(1, 2, 3)$ for the family No. 7 (Type I);
\[\begin{align*}
&\bullet \ tw^2 + az^3w + bz^2t^2 = 0 \text{ in } \mathbb{P}(3, 4, 5) \text{ for the family No. } 23;
&\bullet \ tw^2 + ay^4w + by^3t^2 = 0 \text{ in } \mathbb{P}(3, 5, 7) \text{ for the family No. } 40.
\end{align*} \]

The curve \(C_x \) must consist of two irreducible components \(C_1 \) and \(C_2 \), i.e., \(\ell = 2 \), except the case when \(a = b = d = 0 \) and \(c \neq 0 \) in the family No. 7 (Type I). This exceptional case will be considered separately at the end.

By our assumption, the intersection matrix of \(C_1 \) and \(C_2 \) on the surface \(S_{\lambda_i} \) is singular. Suppose that the curve \(C_x \) is reduced. Then

\[
\begin{pmatrix}
C_1^2 \\
C_2^2
\end{pmatrix}
= \begin{pmatrix}
C_x \cdot C_1 - C_1 \cdot C_2 \\
C_1 \cdot C_2 - C_x \cdot C_2
\end{pmatrix},
\]

and hence we have

\[
C_1 \cdot C_2 = \frac{(C_x \cdot C_1)(C_x \cdot C_2)}{C_x^2} = \frac{2}{a_j d} \quad (\text{resp. } \frac{a_3 + a_4}{a_j a_3 d})
\]

if \(a = 0, b \neq 0 \) (resp. \(a \neq 0, b = 0 \)). Note that the intersection numbers by the curve \(C_x \) can be obtained easily because it is in \(|O_{S_{\lambda_i}(1)}| \).

Meanwhile, since the surface \(S_{\lambda_i} \) is not quasi-smooth at the point \(O_t \) and possibly at the point \(O_{x_j} \), we have some difficulty to find the numbers \(C_1 \cdot C_2 \) without assuming that the matrix is singular. In order to compute the intersection number \(C_1 \cdot C_2 \) on the surface \(S_{\lambda_i} \) directly, we consider the divisor \(C_t \) (resp. \(C_w \)) cut by the equation \(t = 0 \) (resp. \(w = 0 \)) on the surface \(S_{\lambda_i} \) in case when \(a = 0 \) (resp. \(a \neq 0 \)).

Consider the case when \(a = 0, b \neq 0 \). We may assume that the curve \(C_1 \) is defined by the equation \(x = t = 0 \) in \(\mathbb{P}(1, a_j, a_3, a_4) \). Since the divisor \(C_t \) contains the curve \(C_1 \), we can write \(C_t = mC_1 + R \), where \(R \) is a curve whose support does not contain the curve \(C_1 \). From the intersection numbers

\[
(C_1 + C_2) \cdot C_1 = C_x \cdot C_1 = \frac{1}{a_j a_4}, \quad (mC_1 + R) \cdot C_1 = C_1 \cdot C_1 = \frac{a_3}{a_j a_4}
\]

we obtain

\[
C_1 \cdot C_2 = \frac{1}{a_j a_4} - C_1^2 = \frac{m - a_3}{ma_j a_4} + \frac{1}{m} R \cdot C_1 \geq \frac{m - a_3}{ma_j a_4} + \frac{1}{m} (R \cdot C_1)_{O_w},
\]

where \((R \cdot C_1)_{O_w}\) is the local intersection number of the curves \(C_1 \) and \(R \) at the point \(O_w \).

Note that the curves \(C_1 \) and \(R \) always meet at the point \(O_w \) at which the surface \(S_{\lambda_i} \) is quasi-smooth. They may also intersect at the point \(O_{x_j} \). However, we do not care about the intersection at the point \(O_{x_j} \). The local intersection at the point \(O_w \) will be enough for our purpose.

For the family No. 7 (Type I), we are considering the case when \(a = d = 0 \) and \(b \neq 0 \). In such a case, if \(c \neq 0 \), then the curves \(C_1 \) and \(C_2 \) intersect at a smooth point of \(S_{\lambda_i} \) and hence \(C_1 \cdot C_2 \geq 1 \). If \(c = 0 \), then the conditions imply that the defining equation of \(X_8 \) must contain either \(xy^7 \) or \(y^6 \). Therefore, we can conclude that \(m = 1 \) or \(2 \), depending on the existence of the monomials \(xy^7 \), \(xy^4w \) in the defining equation of \(X_8 \), and that the local intersection number \((R \cdot C_1)_{O_w}\) is at least \(\frac{1}{3} \).

For the family No. 23, we see that \(m = 2 \) and \(C_1 \cdot R = \frac{2}{5} \). For the family No. 40, we can easily see that \(m \) can be 1, 3, or 4, depending on the existence of
the monomials xy^6 and wy^3x^3 in the defining equation, and that the local intersection number $(R \cdot C_1)_{O_x}$ is at least $\frac{3}{7}$. In all the cases, we see $C_1 \cdot C_2 > \frac{2}{a_j a_3}$. It is a contradiction.

Consider the case when $a \neq 0$, $b = 0$. We may assume that the curve C_1 is defined by the equation $x = w = 0$ in $\mathbb{P}(1, a_j, a_3, a_4)$. Since we have the monomial of the form x^2w in each defining equation, the surface S_{λ_j} is quasi-smooth at the point O_{x_j}. Furthermore, we may assume that we have neither xy^b nor x^2y^4t for the family No. 40 and that we have neither x^2z^4 nor x^2t^3 for the family No. 23 by changing the coordinate function w. For the family No. 7 (Type I), we may assume that none of the monomials xy^7, ty^6, xy^5t appear in the defining equation of X_8.

Since the divisor C_w contains the curve C_1, we can write $C_w = mC_1 + R$, where R is a curve whose support does not contain the curve C_1. From the intersection numbers

$$(C_1 + C_2) \cdot C_1 = C_x \cdot C_1 = \frac{1}{a_j a_3}, \quad (mC_1 + R) \cdot C_1 = C_w \cdot C_1 = \frac{a_4}{a_j a_3},$$

we obtain

$$C_1 \cdot C_2 = \frac{1}{a_j a_3} - C_2 = \frac{m - a_4}{ma_j a_3} + \frac{1}{m} R \cdot C_1 \geq \frac{m - a_4}{ma_j a_3} + \frac{1}{m} (R \cdot C_1)_{O_{x_j}},$$

where $(R \cdot C_1)_{O_{x_j}}$ is the local intersection number of the curves C_1 and R at the point O_{x_j}. Similarly as in the previous case, they may also intersect at the point O_t. We do not care about the intersection at the point O_t either. As before, the local intersection at the point O_{x_j} will be big enough.

For the family No. 7 (Type I), we have $b = c = d = 0$ and $a \neq 0$. Note that the point O_y is a smooth point of the surface S_{λ_j}. We see that m can be 1 or 2, depending on the existence of the monomial xy^3t^2 in the defining equation, and that the local intersection number $(R \cdot C_1)_{O_y}$ is at least 2. For the family No. 23, we see that $m = 2$ and $C_1 \cdot R = 1$. For the family No. 40, we see that m can be 3 or 4, depending on the existence of the monomial $x^3y^2t^2$ in the defining equation, and that the local intersection number $(R \cdot C_1)_{O_y}$ is at least $\frac{2}{3}$. In all the cases, we see $C_1 \cdot C_2 > \frac{a_4 + 4a_4}{a_j a_3 a_4}$. Again we have obtained a contradiction.

Suppose that the curve C_x is not reduced. Then $C_x = C_1 + 2C_2$, where C_1 is defined by $x = t = 0$ and C_2 is defined by $x = w = 0$. We then have

$$
\begin{pmatrix}
C_1^2 & C_1 \cdot C_2 \\
C_1 \cdot C_2 & C_2^2
\end{pmatrix}
=
\begin{pmatrix}
C_x \cdot C_1 - 2C_1 \cdot C_2 & C_1 \cdot C_2 \\
C_1 \cdot C_2 & C_x \cdot C_2 - \frac{1}{2} C_1 \cdot C_2
\end{pmatrix},
$$

and hence we have

$$C_1 \cdot C_2 = \frac{2(C_x \cdot C_1)(C_x \cdot C_2)}{C_x \cdot (C_1 + 4C_2)} = \frac{2}{a_j(a_3 + 4a_4)}.$$

In this case, the curves C_1 and C_2 intersect at the point O_{x_j}. We may assume that the surface S_{λ_j} is not quasi-smooth at the point O_{x_j}, i.e., the defining equation of X contains the monomial of the form x^3x_1. If it is quasi-smooth there, then we can directly compute $C_1 \cdot C_2 = \frac{1}{a_j}$. Note that we do not have the monomial of the form x_j^3w. Furthermore, we may assume that we do not have xy^6 (resp. xy^7) for the family No. 40 (resp. No. 7) by changing the coordinate function z.

Since the divisor C_t contains the curve C_1, we can write $C_t = mC_1 + R$, where R is a curve whose support does not contain the curve C_1. From the intersection numbers

$$(C_1 + 2C_2) \cdot C_1 = C_x \cdot C_1 = \frac{1}{a_j a_4}, \quad (mC_1 + R) \cdot C_1 = C_t \cdot C_1 = \frac{a_3}{a_j a_4}$$

we obtain

$$C_1 \cdot C_2 = \frac{1}{2} \left(\frac{1}{a_j a_4} - C_1^2 \right) = \frac{1}{2} \left(\frac{m - a_3}{ma_j a_4} + \frac{1}{m} R \cdot C_1 \right) \geq \frac{1}{2} \left(\frac{m - a_3}{ma_j a_4} + \frac{1}{m} (R \cdot C_1)_{O_w} \right),$$

where $(R \cdot C_1)_{O_w}$ is the local intersection number of the curves C_1 and R at the point O_w.

As in the first case, $m = 1$ or 2, depending on the existence of the monomials xy^7, xy^4w in the defining equation of X_8, and $(R \cdot C_1)_{O_w} \geq \frac{4}{3}$ for the family No. 7 (Type I). We also obtain $m = 2$ and $C_1 \cdot R = \frac{3}{4}$ for the family No. 23. For the family No. 40, we obtain $m = 3$ or 4, depending on the existence of the monomial wy^3x^3 in the defining equation, and $(R \cdot C_1)_{O_w} \geq \frac{5}{7}$. In all the cases, we see $C_1 \cdot C_2 > \frac{2}{a_j (a_3 + 4a_4)}$. It is a contradiction again.

We now consider the exceptional case $a = b = d = 0$ and $c \neq 0$ in the family No. 7 (Type I). The curve C_x is defined by

$$t(w - \alpha_1 y^3)(w - \alpha_2 y^3) = 0$$

in $\mathbb{P}(1, 2, 3)$. It consists of three irreducible components L, C_1 and C_2. The curve L is defined by $x = t = 0$ in $\mathbb{P}(1, 1, 2, 3)$ and the curve C_k by $x = w - \alpha_k y^3 = 0$ in $\mathbb{P}(1, 1, 2, 3)$. The curves L and C_k intersect at the point defined by $x = t = w - \alpha_k y^3 = 0$. At this point the surface S_{λ_i} is smooth. We then have

$$(L + C_1 + C_2) \cdot L = \frac{1}{3}, \quad (L + C_1 + C_2) \cdot C_1 = (L + C_1 + C_2) \cdot C_2 = \frac{1}{2}, \quad L \cdot C_1 = L \cdot C_2 = 1.$$

The intersection matrix of the curves L, C_1 and C_2 on the surface S_{λ_i}

$$\begin{pmatrix}
\frac{5}{3} & 1 & 1 \\
1 & -\frac{1}{2} - C_1 \cdot C_2 & C_1 \cdot C_2 \\
1 & C_1 \cdot C_2 & -\frac{1}{2} - C_1 \cdot C_2
\end{pmatrix}$$

is non-singular regardless of the value of $C_1 \cdot C_2$. This completes the proof.

Now, we consider the following two families and their singular point O_2.

- No. 20, $X_{13} \subset \mathbb{P}(1, 1, 3, 4, 5);
- No. 36, $X_{18} \subset \mathbb{P}(1, 1, 4, 6, 7).$

Before we proceed, we put a remark here. The proof of Theorem 5.3 in [23] works verbatim to treat these two cases. Indeed, we are able to obtain elliptic fibrations right after taking weighted blow ups at the point O_2 and at the point O_w with the corresponding weights. We however follow another way that has evolved from [23] Section 4.10], instead of applying the same method. This can enhance our understanding the involutions described in this section with various points of view.

Now we first suppose that the defining equation of X_{13} contains the monomial $t z^3$. Note that the defining equation of X_{18} always contains the monomial $t z^3$.

We may then assume that the hypersurface X is defined by the equation

$$zw^2 + wf_{d-a_4}(x, y, t) - tz^3 - z^2f_{d-2a_2}(x, y, t) - zf_{d-a_2}(x, y, t) + f_d(x, y, t) = 0.$$

We can define an involution τ_z of X as follows:

$$[x : y : z : t : w] \mapsto \left[x : y : \frac{f_{d-a_4}^2(u + f_{d-a_2}) - f_d^2}{f_{d-a_4}uw + f_{d-a_4}zt + fd} : t : \frac{-f_{d-a_4}u(u + f_{d-a_2}) - f_d(uw + f_{d-a_4}zt)}{f_{d-a_4}uw + f_{d-a_4}zt + fd} \right], \quad (5.3.7)$$

where $u = w^2 - tz^2 - zf_{d-2a_2} - f_{d-a_2}$. Indeed, the involution is obtained by the following way. We have a birational map ϕ from X to a hypersurface Z of degree $6a_4$ in $\mathbb{P}(1, a_1, 2a_4, a_3, 3a_4)$ defined by $[x : y : z : t : w] \mapsto [x : y : u : t : v]$, where $v = uw + fd_{-a_4}zt + fd_{-a_4}fd_{-2a_2}$. Note that we have

$$\left(\begin{array}{c} f_{d-a_4} \\ f_d \\ u \\ v \\ w \\ z \end{array} \right) = -\left(\begin{array}{c} f_d \\ f_{d-a_4}(u + f_{d-a_2}) \end{array} \right).$$

The hypersurface Z is defined by the equation

$$v^2 - fd_{-a_4}fd_{-2a_2}v = u^3 + u^2fd_{-a_2} - (fd_{-2a_2}fd_{-2a_2})u + (-f_{d-a_4}fd_{-a_2} + fd_3^2)t.$$

Therefore the hypersurface Z has a biregular involution ι defined by $[x : y : u : t : v] \mapsto [x : y : u : t : fd_{-a_4}fd_{-2a_2} - v]$. The birational involution of X is obtained by

$$\tau_z = \phi^{-1} \circ \iota \circ \phi.$$

To see that it is a birational involution in detail, refer to [23, Section 4.10]. However, it can be a biregular automorphism under a certain condition. For example, if the polynomial f_{d-a_4} is identically zero, then the involution becomes the biregular involution $[x : y : z : t : w] \mapsto [x : y : z : t : -w]$.

Proposition 5.3.8. The involution τ_z is biregular if and only if the polynomial f_{d-a_4} is identically zero.

Proof. It is easy to see that it is biregular if f_{d-a_4} is identically zero. Suppose that f_{d-a_4} is not a zero polynomial. Consider the surface cut by the equation $u = 0$. It is easy to check that on this surface the involution becomes the map

$$[x : y : z : t : w] \mapsto \left[x : y : -z - \frac{f_{d-2a_2}}{t} : t : w \right].$$

Therefore, unless the polynomial f_{d-2a_2} is either identically zero or divisible by t, the involution τ_z cannot be biregular.

If the polynomial f_{d-2a_2} is identically zero, then on the surface cut by $z = 0$, the involution becomes the map

$$[x : y : z : t : w] \mapsto \left[x : y : -\frac{2f_d}{u} : t : -w \right],$$

and hence the involution τ_z cannot be biregular.
Finally, suppose that the polynomial $f_{d-2a_2}(x, y, t)$ is divisible by t. In this case, we consider the surface cut by the equation $t = 0$. On this surface the involution τ_2 becomes

$$[x : y : z : t : w] \mapsto [x : y : -z - \frac{2f_d}{u} : t : -w].$$

It shows that the involution τ_2 cannot be biregular. \qed

Theorem 5.3.9 ([23, Theorem 4.13]). Suppose f_{d-a_4} is not identically zero. Then the involution τ_z untwists the singular point O_z as a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$.

Theorem 5.3.10. If f_{d-a_4} is identically zero, then the singular point O_z cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$.

Proof. Suppose that f_{d-a_4} is identically zero. Then the polynomial f_d cannot be the zero polynomial since X is quasi-smooth. Moreover, it is irreducible.

Suppose that the singular point O_z is a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$. Set

$$u = w^2 - tz^2 - z f_{d-2a_2} - f_{d-a_2}$$

and then let T be the proper transform of the surface given by the equation $u = 0$. We can immediately check that the surface T belongs to the linear system $[2a_4B]$.

Choose a general point $[1 : \mu_1 : \mu_2]$ on the curve defined by the equation $f_d = 0$ in $\mathbb{P}(1, a_1, a_3)$. Then let C_{μ_1, μ_2} be the curve defined by the equations $u = y - \mu_1 x^{a_1} = t - \mu_2 x^{a_3} = 0$ in $\mathbb{P}(1, a_1, a_2, a_3, a_4)$. This curve lies on the hypersurface X by our construction. Moreover, it is irreducible due to the monomials w^2 and $t z^2$. We have

$$B \cdot \tilde{C}_{\mu_1, \mu_2} = (A - \frac{1}{a_2}E) \cdot \tilde{C}_{\mu_1, \mu_2} = \frac{2}{a_2} - \frac{1}{a_2} E \cdot \tilde{C}_{\mu_1, \mu_2} \leq 0$$

since $E \cdot \tilde{C}_{\mu_1, \mu_2} \geq 2$. We then obtain a contradiction from Lemma 3.1.8 \qed

Now we suppose that the defining equation of X_{13} does not contain the monomial $t z^3$.

Theorem 5.3.11. Let X be a quasi-smooth hypersurface of degree 13 in $\mathbb{P}(1, 1, 3, 4, 5)$. Suppose that the hypersurface X is defined by the equation

$$zw^2 + w(f_b(x, y, t) + at^2) - yz^4 - z^2 f_4(x, y) - z^2 f_7(x, y, t) - z f_1(x, y, t) + f_{13}(x, y, t) = 0,$$

where a is a constant. Then the singular point O_z cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$.

Proof. Note that the polynomial f_{13} must contain the monomial xt^3; otherwise X would not be quasi-smooth.

Suppose that the singular point O_z is a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$.

Let S_y be the proper transform of the surface S_y. Let L be the linear system on X generated by x^5, xt and w.
First we consider the case where $a = 0$. The base locus of the linear system $| - K_X|$ consists of the curve cut by $x = y = 0$. The curve has two irreducible components. One is the curve L_{zt} and the other is the curve L_{tw}. We see that
\[S \cdot \tilde{S}_y = \tilde{L}_{tw} + 2\tilde{L}_{zt}. \]
Note that the curve \tilde{L}_{tw} does not pass through the point O_z. We obtain
\[B \cdot \tilde{L}_{zt} = \frac{1}{2} B \cdot S \cdot \tilde{S}_y - \frac{1}{2} A \cdot \tilde{L}_{tw} = \frac{1}{2} A^3 - \frac{4}{54} E^3 - \frac{1}{40} = -\frac{1}{4}. \]
For the proper transform $\tilde{S}_{\lambda, \mu}$ of a general member in \mathcal{L}, we have
\[\tilde{S}_y \cdot \tilde{S}_{\lambda, \mu} = \tilde{L}_{zt} + \tilde{R}_{\lambda, \mu}, \]
where $\tilde{R}_{\lambda, \mu}$ is the residual curve and it sweeps the surface \tilde{S}_y. Meanwhile, we obtain
\[B \cdot \tilde{R}_{\lambda, \mu} = B \cdot \tilde{S}_y \cdot \tilde{S}_{\lambda, \mu} - B \cdot \tilde{L}_{zt} = 5 A^3 - \frac{8}{27} E^3 + \frac{1}{4} = 0. \]
This contradicts Lemma 3.1.8.

Now we consider the case where $a \neq 0$. By a coordinate change we may assume that $a = 1$. The base locus of the linear system $| - K_X|$ consists of the curve cut by $x = y = 0$. The curve has two irreducible components. One is L_{zt} and the other is the curve L defined by $x = y = zw + t^2 = 0$. The curves L and L_{zt} intersect the exceptional divisor E at a smooth point. We have $S \cdot \tilde{S}_y = \tilde{L}_{zt} + \tilde{L}$ and
\[B \cdot \tilde{L}_{zt} = A \cdot \tilde{L}_{zt} - \frac{1}{3} E \cdot \tilde{L}_{zt} = -\frac{1}{4}, \quad B \cdot \tilde{L} = A \cdot \tilde{L} - \frac{1}{3} E \cdot \tilde{L} = \frac{2}{15} - \frac{1}{3} = -\frac{1}{5}. \]
For the proper transform $\tilde{S}_{\lambda, \mu}$ of a general member in \mathcal{L}, we have
\[\tilde{S}_y \cdot \tilde{S}_{\lambda, \mu} = \tilde{L}_{zt} + \tilde{R}_{\lambda, \mu}, \]
where $\tilde{R}_{\lambda, \mu}$ is the residual curve and it sweeps the surface \tilde{S}_y. Note that the curve $\tilde{R}_{\lambda, \mu}$ does not contain the curve \tilde{L}_{zt} since the defining polynomial of X contains either xt^3 or wt^2.

Meanwhile, we obtain
\[B \cdot \tilde{R}_{\lambda, \mu} = B \cdot \tilde{S}_y \cdot \tilde{S}_{\lambda, \mu} - B \cdot \tilde{L}_{zt} = 5 A^3 - \frac{8}{27} E^3 + \frac{1}{4} = 0. \]
We then obtain a contradiction from Lemma 3.1.8.

Remark 5.3.12. Note that Theorem 5.3.5 can be proved in the same way that we apply to Theorems 5.3.9 and 5.3.10. The involution of X for the singular point O_t is defined as follows:
\[[x : y : z : t : w] \mapsto \left[x : y : z : \frac{g_{d-a_4}^2(v + g_{d-a_3}) - g_d^2}{g_{d-a_4}vw + g_{d-a_4} x_t + g_d v} : \frac{-g_{d-a_4}v(v + g_{d-a_3}) - g_d(vw + g_{d-a_4}x_t)}{g_{d-a_4}vw + g_{d-a_4} x_t + g_d v} \right], \]
where $v = w^2 - x_t t^2 - tg_{d-2a_3} - g_{d-a_3}$. This birational involution is also extracted from [23, Section 4.10]. We are immediately able to check that it is biregular if and only if the polynomial g_{d-a_4} is identically zero.
5.4 Invisible elliptic involution

In this section we consider a special case for the family No. 23 and a special case (Type II) for the family No. 7. The method we use here is almost the same as the one for Theorem 5.3.5. In the proof of Theorem 5.3.5 only with the weighted blow ups at the point O_t and the point O_w we can obtain an elliptic fibration with a section. However, in the special cases for the families No. 7 and 23, after these two weighted blow-ups, our elliptic fibrations still remain invisible. When we reach a threefold W with $-K_W^3 = 0$, instead of elliptic fibrations, we see several curves that intersect $-K_W$ negatively. Eventually, log-flips along these curves reveal the elliptic fibrations with sections.

Theorem 5.4.1. Suppose that the hypersurface X_{14} of degree 14 in $\mathbb{P}(1,2,3,4,5)$ is defined by the equation

$$(t + by^2)w^2 + yt(t - \alpha y^2)(t - \alpha_2 y^2) + z^4y + xtz^3 + xf_{13}(x, y, z, t, w) + yg_{12}(y, z, t, w) = 0.$$

Then it has a birational involution that untwists the singular point O_z.

Proof. The polynomial $yz + xt$ vanishes at the point O_z with multiplicity $\frac{5}{3}$. Let \mathcal{H} be the linear subsystem of $| - 5K_{X_{14}} |$ generated by x^5, xy^2, x^3y and $yz + xt$. Let $\pi : X_{14} \dasharrow \mathbb{P}(1,2,5)$ be the rational map induced by $[x : y : z : t : w] \mapsto [x : y : yz + xt]$. Then π is a morphism outside of the curves L_{zt} and L_{zw}. Moreover, the map π is dominant, which implies, in particular, that \mathcal{H} is not composed from a pencil. Furthermore, its general fiber is an irreducible curve that is birational to an elliptic curve. To see this, we put $y = \lambda x^2$ and $yz + xt = \mu x^5$ with sufficiently general complex numbers λ and μ. On the hypersurface X_{14}, we take the intersection of the surface defined by $y = \lambda x^2$ and the surface defined by $yz + xt = \mu x^5$. This intersection is the same as the intersection of the surface defined by $y = \lambda x^2$ and the reducible surface defined by $x(\lambda xz + t - \mu x^4) = 0$. Therefore, the intersection is the 1-cycle

$$(L_{zw} + 2L_{zt}) + (L_{zw} + C_{\lambda, \mu}) = 2L_{zw} + 2L_{zt} + C_{\lambda, \mu},$$

where the curve $C_{\lambda, \mu}$ is defined by the equation

$$(\mu x^3 - \lambda z + b\lambda^2 x^3)w^2 + \lambda x^4(\mu x^3 - \lambda z)(\mu x^3 - \alpha_1 \lambda^2 x^3 - \lambda z)(\mu x^3 - \alpha_2 \lambda^3 x^3 - \lambda z) +$$

$$+ \mu x^4 z^3 + f_{13}(x, \lambda x^2, z, \mu x^4 - \lambda xz, w) + \lambda x g_{12}(\lambda x^2, z, \mu x^4 - \lambda xz, w) = 0 \quad (5.4.2)$$

in $\mathbb{P}(1,3,5)$. The curve $C_{\lambda, \mu}$ is a general fiber of the map π. Setting $x = 1$ in Equation (5.4.2), we consider the curve defined by

$$(\mu + b\lambda^2 - \lambda z)w^2 + \lambda(\mu - \lambda z)(\mu - \alpha_1 \lambda^2 - \lambda z)(\mu - \alpha_2 \lambda^2 - \lambda z) +$$

$$+ \mu z^3 + f_{13}(1, \lambda, z, \mu - \lambda z, w) + \lambda g_{12}(\lambda, z, \mu - \lambda z, w) = 0 \quad (5.4.3)$$

in \mathbb{C}^2. It is a smooth affine plane cubic curve. Moreover, for a general complex number λ, the curve $C_{\lambda, \mu}$ is always irreducible and reduced for every value of μ. Indeed, when either $b \neq 0$ or $\mu \neq 0$, it is easy to check. When $b = 0$ and $\mu = 0$ it follows from the fact that at least one monomial in variables x, y, w must be contained in either f_{13} or g_{12}.

Let \mathcal{H}_Y be the proper transform of the linear system \mathcal{H} by the weighted blow up f. It is the linear system $| - 5K_Y |$. Let $g : W \rightarrow Y$ be the weighted blow up at the point over O_w with
weight \((1,2,3)\) and \(\mathcal{H}_W\) the proper transform of \(\mathcal{H}_Y\) by the morphism \(g\). Let \(\hat{E}\) be the proper transform of \(E\) by the weighted blow up \(g\) and \(G\) be the exceptional divisor of \(g\).

The linear system \(\mathcal{H}_W\) coincides with the linear system \(|-5K_W|\).

The base locus of the linear system \(\mathcal{H}\) is given by the equation \(x = yz + xt = 0\). Therefore, it consists of \(L_{zw}, L_{zt}\) and the curve \(C\) cut by the equation \(x = z = 0\). The curve \(C\) may not be irreducible. Indeed, \(C\) is irreducible if and only if \(b \neq 0\). If \(b = 0\), then \(C\) consists of two irreducible curves \(L_{yw}\) and \(R\), where \(R\) is an irreducible curve passing through neither the point \(O_z\) nor the point \(O_w\). Let \(\hat{L}_{zw}, \hat{L}_{zt}, \hat{L}_{yw}, \hat{R}\) and \(\hat{C}\) be the proper transforms of the curves \(L_{zw}, L_{zt}, L_{yw}, R\) and \(C\), respectively, by the morphism \(f \circ g\). We have

\[
\begin{align*}
- K_W \cdot \hat{L}_{zw} &= A \cdot L_{zw} - \frac{1}{3} \hat{E} \cdot \hat{L}_{zw} - \frac{1}{5} G \cdot \hat{L}_{zw} = -\frac{1}{6}; \\
- K_W \cdot \hat{L}_{zt} &= A \cdot L_{zt} - \frac{1}{3} \hat{E} \cdot \hat{L}_{zt} = -\frac{1}{4}; \\
- K_W \cdot \hat{L}_{yw} &= A \cdot L_{yw} - \frac{1}{5} G \cdot \hat{L}_{yw} = \frac{1}{30}; \\
- K_W \cdot \hat{R} &= A \cdot R > 0; \quad -K_W \cdot \hat{C} = A \cdot C > 0.
\end{align*}
\]

Therefore, the curves \(\hat{L}_{zw}\) and \(\hat{L}_{zt}\) are the only curves that intersect \(-K_W\) negatively. The log pair \((W, \frac{1}{5} \mathcal{H}_W)\) is canonical, and hence the log pair \((W, (\frac{1}{5} + \epsilon) \mathcal{H}_W)\) is Kawamata log terminal for sufficiently small \(\epsilon > 0\). Since the curves \(\hat{L}_{zw}\) and \(\hat{L}_{zt}\) are the only curves that intersect \(K_W + (\frac{1}{5} + \epsilon) \mathcal{H}_W \sim_{\mathbb{Q}} -\epsilon K_W\) negatively, there is a log flip \(\chi : W \dashrightarrow U\) along the curves \(\hat{L}_{zw}\) and \(\hat{L}_{zt}\) \([\text{I}0]\)). Let \(\hat{E}\) and \(\hat{G}\) be the proper transforms of the divisors \(E\) and \(G\), respectively, by \(\chi\). The anticanonical divisor \(K_U + (\frac{1}{5} + \epsilon) \mathcal{H}_U\) is nef, where \(\mathcal{H}_U\) is the proper transform of \(\mathcal{H}_W\) by the isomorphism \(\chi\) in codimension one.

By the Log abundance \([33]\), the linear system \(|-mK_U|\) is free for sufficiently large \(m\). Hence, it induces a dominant morphism \(\eta : U \rightarrow \Sigma\) with connected fibers, where \(\Sigma\) is a normal variety. We claim that \(\Sigma\) is a surface and \(\eta\) is an elliptic fibration. For this claim, let \(\hat{C}_{\lambda,\mu}\) be the proper transform of a general fiber \(C_{\lambda,\mu}\) of the map \(\pi\) on the threefold \(W\) and let \(\hat{C}_{\lambda,\mu}\) be its proper transform on \(U\). Then

\[
-K_W \cdot \hat{C}_{\lambda,\mu} = -10K_W^3 - 2(-K_W) \cdot (\hat{L}_{zw} + \hat{L}_{zt}) = 0.
\]

In particular, the curve \(\hat{C}_{\lambda,\mu}\) is disjoint from the curves \(\hat{L}_{zt}\) and \(\hat{L}_{zw}\) because the base locus of the linear system \(|-5K_W|\) contains the curves \(\hat{L}_{zt}\) and \(\hat{L}_{zw}\). Therefore,

\[
-K_U \cdot \hat{C}_{\lambda,\mu} = 0.
\]

It implies that \(\eta\) contracts \(\hat{C}_{\lambda,\mu}\). Since we already proved that \(C_{\lambda,\mu}\) is birational to an elliptic curve and \(\mathcal{H}\) is not composed from a pencil, we can see that \(\eta\) is an elliptic fibration. Moreover,
we have proved the existence of a commutative diagram

\[
\begin{array}{ccc}
W & \xrightarrow{\chi} & U \\
\downarrow g & & \downarrow \\
Y & \xrightarrow{f} & X_{14} \\
\downarrow \pi & & \downarrow \\
P(1,2,5) \xrightarrow{\theta} & & \Sigma
\end{array}
\]

where \(\theta\) is a birational map.

Equation (5.4.2) shows that the divisor \(\tilde{G}\) is a section of the elliptic fibration \(\eta\) and \(\tilde{E}\) is a 2-section of \(\eta\). Let \(\tau_U\) be the birational involution of the threefold \(U\) that is induced by the reflection of the general fiber of \(\eta\) with respect to the section \(G\). Then \(\tau_U\) is biregular in codimension one because \(K_U\) is \(\eta\)-nef by our constructions. Put \(\tau_W = \chi^{-1} \circ \tau_U \circ \chi\), \(\tau_Y = g \circ \tau_W \circ g^{-1}\) and \(\tau = f \circ \tau_Y \circ f^{-1}\). Then \(\tau_W\) is also biregular in codimension one since \(\chi\) is a log flip. Moreover, we have \(\tau_W(G) = G\) since \(\tau_U(\tilde{G}) = \tilde{G}\) by construction. This implies that \(\tau_Y\) is biregular in codimension one.

We claim that the involution \(\tau\) is not biregular. To see this, as before, let us prove a stronger claim that the restriction of \(\tau\) to a general surface in \(|-2K_{X_{14}}|\) is not biregular.

Let \(S_\lambda\) be the surface on the hypersurface \(X_{14}\) cut by the equation \(y = \lambda x^2\). It follows from the defining equation of the surface \(S_\lambda\) that the surface is normal. Moreover, the surface \(S_\lambda\) is \(\tau\)-invariant by our construction. Let \(\tau_\lambda\) be the restriction of \(\tau\) to the surface \(S_\lambda\). It is a birational involution of the surface \(S_\lambda\) since the surface is \(\tau\)-invariant.

We claim that the birational involution \(\tau_\lambda\) is not biregular. To verify the claim, we suppose that it is biregular.

We have a rational map \(\pi_\lambda: S_\lambda \dashrightarrow \mathbb{P}(1,5) \cong \mathbb{P}^1\) induced by the rational map \(\pi: X_{14} \dashrightarrow \mathbb{P}(1,2,5)\). Note that the curves \(L_x\) and \(L_w\) are contained in \(S_\lambda\). The rational map \(\pi_\lambda: S_\lambda \dashrightarrow \mathbb{P}^1\) is given by the pencil \(\mathcal{P}\) of the curves on the surface \(S_\lambda \subset \mathbb{P}(1,3,4,5)\) cut by the equations

\[\delta x^4 = \epsilon(\lambda x z + t),\]

where \([\delta : \epsilon] \in \mathbb{P}^1\). Its base locus is cut out on \(S_\lambda\) by \(x = t = 0\), which implies that the base locus of the pencil \(\mathcal{P}\) is the curve \(L_w\).

The map \(\pi_\lambda\) is not defined only at the points \(O_w\) and \(O_z\). To see this, plug in \(t = \frac{\delta}{\epsilon} x^4 - \lambda x z\) into the defining equation of the surface \(S_\lambda\) (with general \([\delta : \epsilon] \in \mathbb{P}^1\)), divide the resulting equation by \(x\) (removing the base curve \(L_w\)), and put \(x = 0\) into the resulting equation in \(x, z\), and \(w\) (we know that the base locus of \(\mathcal{P}\) is \(L_w\)). This gives the system of equations

\[zw^2 = x = t = 0,\]

which means that the map \(\pi_\lambda\) is not defined only at the points \(O_w\) and \(O_z\).

Let \(C_\lambda\) be a general fiber of the map \(\pi_\lambda\). Then \(C_\lambda\) is given by Equation (5.4.3) with a general complex number \(\mu\). As shown in the beginning, the fiber \(C_\lambda\) is an irreducible curve birational to a smooth elliptic curve. Let \(\nu: \tilde{C}_\lambda \rightarrow C_\lambda\) be the normalization of the curve \(C_\lambda\). It follows from (5.4.3) that \(\nu^{-1}(O_w)\) consists of a single point and \(\nu^{-1}(O_z)\) consists of two distinct points. Note that we can consider the curves \(C_\lambda\) and \(\tilde{C}_\lambda\) (and the map \(\nu\)) to be defined over
the function field $\mathbb{C}(\mu)$. In this case, $\nu^{-1}(O_z)$ consists of a single point of degree 2, i.e., a point splitting into two points over the algebraic closure of $\mathbb{C}(\mu)$.

Resolving the indeterminacy of the rational map π_λ, we obtain an elliptic fibration $\tilde{\pi}_\lambda : \tilde{S}_\lambda \rightarrow \mathbb{P}^1$. Thus, we have a commutative diagram

$$
\begin{array}{ccc}
\tilde{S}_\lambda & \xrightarrow{\tilde{\pi}_\lambda} & \mathbb{P}^1 \\
\sigma \downarrow & & \downarrow \pi_\lambda \\
S_\lambda & \xrightarrow{\pi_\lambda} & \mathbb{P}^1,
\end{array}
$$

where σ is a birational map. Note that there exist exactly two σ-exceptional prime divisors that do not lie in the fibers of $\tilde{\pi}_\lambda$. One of the divisors is over the point O_z and the other is over the point O_{μ}. Let E_λ and G_λ be these two exceptional divisors, respectively. Then G_λ is a section of $\tilde{\pi}_\lambda$ and E_λ is a 2-section of $\tilde{\pi}_\lambda$. Denote the other σ-exceptional curves (if any) by F_1, \ldots, F_r.

Put $\tilde{\tau}_\lambda = \sigma^{-1} \circ \tau_\lambda \circ \sigma$. Recall that we assumed that the involution τ_λ is biregular. Thus, we may assume that $\tilde{\tau}_\lambda$ is biregular as well. Let C_λ be the proper transform of the curve C_λ on \tilde{S}_λ. Then $\tilde{C}_\lambda \cong \tilde{C}_\lambda$, since \tilde{C}_λ is smooth. Moreover, the curve \tilde{C}_λ is $\tilde{\tau}_\lambda$-invariant. Furthermore, $\tilde{\tau}_\lambda|C_\lambda$ is given by the reflection with respect to the point $\tilde{G}_\lambda \cap \tilde{C}_\lambda$. On the other hand, the divisor \tilde{E}_λ must be $\tilde{\tau}_\lambda$-invariant since τ_λ is biregular. This means, in particular, that the divisor $$(\tilde{E}_\lambda - 2\tilde{G}_\lambda)|_{\tilde{C}_\lambda} \in \text{Pic}^0(\tilde{C}_\lambda)$$
is torsion (in fact, this means that this divisor is 2-torsion). Therefore, the divisor $\tilde{E}_\lambda - 2\tilde{G}_\lambda$ must be numerically equivalent to a linear combinations of curves on \tilde{S}_λ that lie in the fibers of $\tilde{\pi}_\lambda$.

Let \tilde{L}_{zt} and \tilde{L}_{zw} be the proper transforms of the curves L_{zt} and L_{zw} by σ, respectively. Then \tilde{L}_{zt} and \tilde{L}_{zw} lies in the same fiber of the elliptic fibration $\tilde{\pi}_\lambda$. Moreover, we claim that every other fiber of $\tilde{\pi}_\lambda$ contains exactly one irreducible reduced curve that is not σ-exceptional. Indeed, this follows from the fact (mentioned earlier) that for a general complex number λ, the curve 45.4.3 is always irreducible and reduced for every value of μ. Since all fibers of $\tilde{\pi}_\lambda$ (with scheme structure) are numerically equivalent and the divisor $\tilde{E}_\lambda - 2\tilde{G}_\lambda$ is numerically equivalent to a linear combinations of curves that lie in the fibers of $\tilde{\pi}_\lambda$, we obtain

$$
\tilde{E}_\lambda - 2\tilde{G}_\lambda \sim_{\mathbb{Q}} c_{zt}\tilde{L}_{zt} + c_{zw}\tilde{L}_{zw} + \sum_{i=1}^r c_i F_i
$$

for some rational numbers $c_{zt}, c_{zw}, c_1, \ldots, c_r$. The intersection form of the curves \tilde{E}_λ, \tilde{G}_λ, F_1, \ldots, F_r is negative-definite since these curves are σ-exceptional. Therefore, $(c_{zt}, c_{zw}) \neq (0, 0)$. On the other hand, we have

$$
0 \sim_{\mathbb{Q}} c_{zt}\tilde{L}_{zt} + c_{zw}\tilde{L}_{zw}
$$
on the surface S_λ. In particular, the intersection form of the curves L_{zw} and L_{zt} is degenerate on the surface S_λ.

Meanwhile, from the intersection numbers

$$(2L_{zt} + L_{zw}) \cdot L_{zw} = \frac{1}{15}, \quad (2L_{zt} + L_{zw}) \cdot L_{zt} = \frac{1}{12}$$

on the surface \(S_\lambda \), we obtain
\[
\begin{pmatrix}
L_{zw}^2 & L_{zw} \cdot L_{zt} \\
L_{zw} \cdot L_{zt} & L_{zt}^2
\end{pmatrix}
= \begin{pmatrix}
\frac{1}{15} - 2L_{zw} \cdot L_{zt} & L_{zw} \cdot L_{zt} \\
L_{zw} \cdot L_{zt} & \frac{1}{24} - \frac{1}{2}L_{zw} \cdot L_{zt}
\end{pmatrix}.
\]

The curves \(L_{zw} \) and \(L_{zt} \) intersect only at the point \(O_z \). However, the surface \(S_\lambda \) is not quasi-smooth at the point \(O_z \). To get the intersection number \(L_{zw} \cdot L_{zt} \), we consider the divisor \(D_t \) on the surface \(S_\lambda \) cut by the equation \(t = 0 \). We can immediately see that \(D_t = 2L_{zw} + R \), where \(R \) is the residual curve. The curves \(L_{zw} \) and \(R \) intersect only at the point \(O_w \), at which the surface \(S_\lambda \) is quasi-smooth. Then we obtain \(L_{zw}^2 = -\frac{1}{15} \) from the intersection numbers
\[
(2L_{zw} + R) \cdot L_{zw} = \frac{4}{15}, \quad R \cdot L_{zw} = \frac{4}{5}.
\]

Therefore, \(L_{zw} \cdot L_{zt} = \frac{1}{6} \) and hence the intersection matrix is non-singular. This is a contradiction.

The obtained contradiction shows that \(\tau_\lambda \) is not biregular. In particular, the involution \(\tau \) is not biregular. Since the involution \(\tau_\gamma \) is biregular in codimension one, the involution \(\tau \) meets the conditions in Definition 5.1.1. Consequently, the birational involution \(\tau \) untwists the singular point \(O_z \).

Now we go back to the hypersurfaces in the family No. 7 described in the previous section. The hypersurface \(X_8 \) of Type II is defined by the equation of the type
\[
(z + f_2(x,y))w^2 + wf_5(x,y,z,t) - zt^2 = t^2 f_4(x,y,z) - tf_6(x,y,z) + f_8(x,y,z) = 0.
\]

Since \(f_5 \) must contain either \(xt^2 \) or \(yt^2 \), we write \(f_5(x,y,z,t) = g_5(x,y,z,t) + a_1 xt^2 + a_2 yt^2 \), where \(g_5 \) contains neither \(xt^2 \) nor \(yt^2 \).

On the hypersurface \(X_8 \), consider the surface cut by \(y = \lambda x \) and the surface cut by \(z = \mu x^2 \), where \(\lambda \) and \(\mu \) are constants. Then the intersection of these two surfaces is the 1-cycle \(L_{tw} + C_{\lambda,\mu} \), where the curve \(C_{\lambda,\mu} \) is defined by the equation
\[
(\mu + f_2(1,\lambda))xw^2 + (a_1 + a_2\lambda)wt^2 - \mu xt^3 +
\frac{wg_5(x,\lambda x,\mu x^2, t) - t^2 f_4(x, \lambda x, \mu x^2) - tf_6(x, \lambda x, \mu x^2) + f_8(x, \lambda x, \mu x^2)}{x} = 0
\]
in \(\mathbb{P}(1,2,3) \). For sufficiently general complex numbers \(\lambda \) and \(\mu \) the curve \(C_{\lambda,\mu} \) is birational to an elliptic curve. To figure this out, we plug in \(x = 1 \) into Equation (5.4.4) so that we could see that the curve is birational to a double cover of \(\mathbb{C} \) ramified at four distinct points.

Theorem 5.4.5. Suppose that the hypersurface \(X_8 \) in the family No. 7 is defined by the equation (5.4.4) of Type II. If the singular point \(O_t \) is a center of non-canonical singularities of the log pair \((X_8, \frac{1}{n}\mathcal{M})\), then there is a birational involution that untwists the singular point \(O_t \).

Proof. Let \(\mathcal{H} \) be the linear subsystem of \(|-2K_{X_8}| \) generated by \(x^2, xy, y^2 \) and \(z \). Let \(\pi: X \to \mathbb{P}(1,1,2) \) be the rational map induced by \([x : y : z : t : w] \mapsto [x : y : z] \). It is a morphism outside of the curve \(L_{tw} \). Moreover, the map is dominant. The curve \(C_{\lambda,\mu} \) is a fiber of the map \(\pi \). Its general fiber is an irreducible curve birational to an elliptic curve since the curve \(C_{\lambda,\mu} \) with sufficiently general complex numbers \(\lambda \) and \(\mu \) is birational to an elliptic curve.
For a general complex number λ, the curve $C_{\lambda,\mu}$ is always reduced for every value of μ. Moreover, for a general complex number λ, the curve L_{tw} cannot be irreducible component of the curve $C_{\lambda,\mu}$ for every value of μ. Unfortunately, we failed to prove that for a general complex number λ, the curve $C_{\lambda,\mu}$ is always irreducible for every value of μ. If this is not true, we will prove that the singular point O_t cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$. If this is true, we will construct a birational involution that untwists the singular point O_t.

Suppose that for general λ there is always μ such that the curve $C_{\lambda,\mu}$ is reducible. Since the base locus of \mathcal{H} consists of the curve L_{tw}, there is a one-dimensional family of reducible curves $C_{\lambda,\mu}$ given by (5.4.4) with a general complex number λ and a complex number μ depending on λ. Denote a general curve in this one-dimensional family by C. From (5.4.4) we can immediately notice that the curve C consists of two reduced and irreducible curves. One is the curve C_1 defined by $y - \lambda x = z - \mu x^2 = w - h_3(x, t) = 0$ for some polynomial h_3. The other is the curve C_2 defined by $y - \lambda x = z - \mu x^2 = t^2 - h_4(x, t, w) = 0$ for some polynomial h_4. Note that C_1 passes through the point O_t. Then $-K_Y \cdot C_1 = 0$ and $C_1 \cdot E > 0$. By Lemma 3.1.8, the point O_t cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$. Therefore our condition implies that for a general complex number λ, the curve $C_{\lambda,\mu}$ is always irreducible for every value of μ.

Let $g: Z \to Y$ be the weighted blow up at the point over O_w with weight $(1,1,2)$ and let F be its exceptional divisor. The divisor F contains a singular point of Z that is of type $\frac{1}{2}(1,1,1)$. Let $h : W \to Z$ be the blow up at this singular point with the exceptional divisor G. Let \hat{L}_{tw} and \hat{L}_w be the proper transforms of the curve L_{tw} by the morphism $f \circ g \circ h$ and by the morphism $f \circ g$, respectively. Also, let \hat{E} and \hat{F} be the proper transforms of the exceptional divisors E and F by the morphism $g \circ h$ and by the morphism h, respectively.

Let \mathcal{H}_Y and \mathcal{H}_W be the proper transforms of the linear system \mathcal{H} by the morphism f and by the morphism $f \circ g \circ h$, respectively. We then see that $\mathcal{H}_Y = | -2K_Y |$ and $\mathcal{H}_W = | -2K_W |$. The base locus of the linear system \mathcal{H} consists of the single curve L_{tw}. We have

$$-K_W \cdot \hat{L}_{tw} = A \cdot L_{tw} - \frac{1}{2} \hat{E} \cdot \hat{L}_{tw} - \frac{1}{3} F \cdot \hat{L}_{tw} - \frac{1}{2} G \cdot \hat{L}_{tw} = -1.$$

Therefore, the curve \hat{L}_{tw} is the only curve that intersects $-K_W$ negatively.

The log pair $(W, \frac{1}{2}H_W)$ is canonical, and hence the log pair $(W, (\frac{1}{2} + \epsilon)H_W)$ is Kawamata log terminal for sufficiently small $\epsilon > 0$. Since the curve \hat{L}_{tw} is the only curve that intersects $K_W + (\frac{1}{2} + \epsilon)H_W \sim_{\mathbb{Q}} -\epsilon K_W$ negatively, there exists a log flip $\chi : W \dashrightarrow U$ along the curve \hat{L}_{tw} (10). Let \hat{E}, \hat{F} and \hat{G} be the proper transforms of the divisors \hat{E}, \hat{F} and \hat{G}, respectively, by χ. The anticanonical divisor $K_U + (\frac{1}{2} + \epsilon)H_U$ is nef, where H_U is the proper transform of H_W by the isomorphism χ in codimension one.

By the Log abundance (33), the linear system $| -mK_U |$ is free for sufficiently large m. Hence, it induces a dominant morphism $\eta: U \to \Sigma$ with connected fibers, where Σ is a normal variety. We claim that Σ is a surface and η is an elliptic fibration. For this claim, let $\hat{C}_{\lambda,\mu}$ be the proper transform of a general fiber $C_{\lambda,\mu}$ of the map π on the threefold W and let $\hat{C}_{\lambda,\mu}$ be its proper transform on U. Then

$$-K_W \cdot \hat{C}_{\lambda,\mu} = -2K_W^3 - (-K_W) \cdot \hat{L}_{tw} = 0.$$

In particular, the curve $\hat{C}_{\lambda,\mu}$ is disjoint from the curve \hat{L}_{tw} because the base locus of the linear system $| -2K_W |$ contains the curves \hat{L}_{tw}. Therefore, $-K_U \cdot \hat{C}_{\lambda,\mu} = 0$. It implies that η
contracts $\mathcal{C}_{\lambda, \mu}$. Since $\mathcal{C}_{\lambda, \mu}$ is an elliptic curve and \mathcal{H} is not composed from a pencil, we can see that η is an elliptic fibration. Moreover, we have the following commutative diagram:

$$
\begin{array}{ccc}
W & \xrightarrow{\chi} & U \\
\downarrow h & & \downarrow \eta \\
Z & \xrightarrow{g} & Y \\
\downarrow f & & \downarrow \tau \\
X & \xrightarrow{\pi} & \mathbb{P}(1, 1, 2) \\
& \theta & \Sigma
\end{array}
$$

where θ is a birational map.

Equation (5.4.4) shows that the divisors \tilde{E} and \tilde{G} are sections of the elliptic fibration η. Let τ_U be the birational involution of the threefold U that is induced by the reflection of the general fiber of η with respect to the section \tilde{G}. Then τ_U is birational in codimension one because K_U is η-nef by our construction. Put $\tau_W = \chi^{-1} \circ \tau_U \circ \chi$, $\tau_Y = (g \circ h) \circ \tau_W \circ (g \circ h)^{-1}$ and $\tau = f \circ \tau_Y \circ f^{-1}$. Then τ_W is also birational in codimension one since χ is a log flip. Moreover, we have $\tau_W(G) = G$ since $\tau_U(\tilde{G}) = \tilde{G}$ by our construction. The divisor \tilde{F} lies on the fibers of the elliptic fibration η. Therefore, $\tau_U(\tilde{F}) = \tilde{F}$, and hence $\tau_W(\tilde{F}) = \tilde{F}$. Consequently, τ_Y is birational in codimension one.

We claim that the involution τ is not birational. To verify this, we prove a stronger claim that the restriction of τ to a general surface in $| - K_{X_S}|$ is not birational.

Let S_λ be the surface on the hypersurface X_S cut by the equation $y = \lambda x$ with a general complex number λ. It is a $K3$ surface with only cyclic du Val singularities. The point O_t is a A_1 singular point of S_λ and the point O_w is a A_2 singular point of S_λ.

The surface S_λ is τ-invariant by our construction. Let τ_λ be the restriction of τ to the surface S_λ. It is a birational involution of the surface S_λ since the surface is τ-invariant.

We claim that the birational involution τ_λ is not birational. To verify this claim, we suppose that it is birational and we seek for a contradiction.

The projection $\pi: X_S \rightarrow \mathbb{P}(1, 1, 2)$ induces a rational map $\pi_\lambda: S_\lambda \rightarrow \mathbb{P}(1, 2) \cong \mathbb{P}^1$. Note that the curve L_{tw} is contained in S_λ. The rational map $\pi_\lambda: S_\lambda \rightarrow \mathbb{P}^1$ is given by the pencil \mathcal{P} of the curves on the surface $S_\lambda \subset \mathbb{P}(1, 2, 2, 3)$ cut by the equations

$$
\delta x^2 = \epsilon z,
$$

where $[\delta : \epsilon] \in \mathbb{P}^1$. Its base locus is cut out on S_λ by $x = z = 0$, which implies that the base locus of the pencil \mathcal{P} is the curve L_{tw}. We can easily see from Equation (5.4.4) that the map π_λ is not defined only at the points O_w and O_t.

Resolving the indeterminacy of the rational map π_λ, we obtain an elliptic fibration $\tilde{\pi}_\lambda: \tilde{S}_\lambda \rightarrow$
Thus, we have a commutative diagram

\[
\begin{array}{ccc}
\tilde{S}_\lambda & \xrightarrow{\sigma} & \tilde{S}_\lambda \\
\pi_\lambda \downarrow & & \downarrow \pi_\lambda \\
\mathbb{P}^1 & \xrightarrow{\pi} & \mathbb{P}^1
\end{array}
\]

where \(\sigma\) is a birational map. Note that there exist exactly two \(\sigma\)-exceptional prime divisors that do not lie in the fibers of \(\tilde{\pi}_\lambda\). One of the divisors is over the point \(O_t\) and the other is over the point \(O_w\). Let \(\tilde{E}_\lambda\) and \(\tilde{G}_\lambda\) be these two exceptional divisors, respectively. Then \(\tilde{E}_\lambda\) and \(\tilde{G}_\lambda\) are sections of \(\tilde{\pi}_\lambda\). Denote the other \(\sigma\)-exceptional curves (if any) by \(F_1, \ldots, F_r\).

Recall that we assumed that the involution \(\tau_\lambda\) is biregular. Put \(\tilde{\tau}_\lambda = \sigma^{-1} \circ \tau_\lambda \circ \sigma\). Then \(\tilde{\tau}_\lambda\) may not be biregular if \(\sigma^{-1}\) is not \(\tau_\lambda\)-equivariant. However, we have freedom in choosing \(\sigma\). So we may assume that \(\sigma^{-1}\) is \(\tau_\lambda\)-equivariant, which implies that \(\tilde{\tau}_\lambda\) is biregular as well.

Let \(C_\lambda\) be a general fiber of the map \(\pi_\lambda\). Let \(\bar{C}_\lambda\) be the proper transform of the curve \(C_\lambda\) on \(\tilde{S}_\lambda\). The curve \(\bar{C}_\lambda\) is \(\tilde{\tau}_\lambda\)-invariant. Furthermore, \(\tilde{\tau}_\lambda|_{\bar{C}_\lambda}\) is given by the reflection with respect to the point \(\bar{G}_\lambda \cap \bar{C}_\lambda\). On the other hand, the divisor \(\tilde{E}_\lambda\) must be \(\tilde{\tau}_\lambda\)-invariant since \(\tau_\lambda\) is biregular. This means, in particular, that the divisor

\[
\left(\tilde{E}_\lambda - \tilde{G}_\lambda \right) \bigg|_{\bar{C}_\lambda} \in \text{Pic}^0(\bar{C}_\lambda)
\]

is torsion. Therefore, the divisor \(\tilde{E}_\lambda - \tilde{G}_\lambda\) must be numerically equivalent to a linear combinations of curves on \(\tilde{S}_\lambda\) that lie in the fibers of \(\tilde{\pi}_\lambda\).

Note that the equation \(x = 0\) cuts out \(S_\lambda\) into a curve that splits as a union \(L_{tw} + C_x\), where \(C_x\) is the curve defined by equations \(x = w^2 - t^3 + azt^2 + bz^2t + cz^3 = 0\) for some constants \(a, b, c\) in \(\mathbb{P}(1, 2, 2, 3)\). The curve \(C_x\) is irreducible and reduced.

Let \(L_{tw}\) and \(C_x\) be the proper transforms of the curves \(L_{tw}\) and \(C_x\) by \(\sigma\), respectively. Then \(L_{tw}\) and \(C_x\) lies in the same fiber of the elliptic fibration \(\tilde{\pi}_\lambda\). Moreover, we claim that every other fiber of \(\tilde{\pi}_\lambda\) contains exactly one irreducible and reduced curve that is not \(\sigma\)-exceptional. Indeed, this follows from the fact that for a general complex number \(\lambda\), the curve \(C_{\lambda, \mu}\) is always irreducible and reduced for every value of \(\mu\). Since all the fibers of \(\tilde{\pi}_\lambda\) (with scheme structure) are numerically equivalent and the divisor \(\tilde{E}_\lambda - \tilde{G}_\lambda\) is numerically equivalent to a linear combinations of curves that lie in the fibers of \(\tilde{\pi}_\lambda\), we obtain

\[
\tilde{E}_\lambda - \tilde{G}_\lambda \sim_Q c_{tw} L_{tw} + c_x C_x + \sum_{i=1}^r c_i F_i
\]

for some rational numbers \(c_{tw}, c_x, c_1, \ldots, c_r\). The intersection form of the curves \(\tilde{E}_\lambda, \tilde{G}_\lambda, F_1, \ldots, F_r\) is negative-definite since these curves are \(\sigma\)-exceptional. Therefore, \((c_{tw}, c_x) \neq (0, 0)\).

On the other hand, we have

\[
0 \sim_Q c_{tw} L_{tw} + c_x C_x
\]

on the surface \(S_\lambda\). In particular, the intersection form of the curves \(L_{tw}\) and \(C_x\) is degenerate on the surface \(S_\lambda\).

Meanwhile, from the intersection numbers

\[
(L_{tw} + C_x) \cdot L_{tw} = \frac{1}{6}, \quad (L_{tw} + C_x)^2 = 2, \quad L_{tw} \cdot C_x = 1
\]
on the surface S_λ, we obtain
\[
\left(\begin{array}{cc}
L_{tw}^2 & L_{tw} \cdot C_x \\
L_{tw} \cdot C_x & C_x^2
\end{array} \right) = \left(\begin{array}{cc}
\frac{5}{6} & 1 \\
1 & -\frac{1}{2}
\end{array} \right).
\]
This is a contradiction.

The obtained contradiction verifies that τ_λ is not biregular. In particular, the involution τ is not biregular. Since the involution τ_Y is biregular in codimension one, the involution τ meets the conditions in Definition 5.1.1 and hence it untwists the singular point O_t.

\section{Proof II}

\subsection{How to read the tables II}

The table can be read in the same way as before. However, every family considered in this section may have singular points to be untwisted. We use the symbols below in order to explain how to untwist or exclude the corresponding singular point.

\begin{itemize}
\item[\(\tau\):] Apply Lemma 5.2.1 and Lemma 5.2.2
The given monomial in the table is the monomial $x_{i_3}x_{i_4}^2$ in Lemma 5.2.1 and Lemma 5.2.2 that plays a central role in defining the involution. If the hypersurface X is defined by the equation as in Lemma 5.2.1, the involution given by the quadratic equation is birational and untwists the given singular point. If the hypersurface X is defined by the equation as in Lemma 5.2.2, the involution given by the quadratic equation is biregular. In such a case, Lemma 5.2.2 excludes the corresponding singular point. Note that both the cases can always happen.

\item[\(\tau_1\):] Apply Lemma 5.2.1, Lemma 5.2.2 and Theorem 5.2.3
This method is basically the same as the method \(\tau\). The difference is that we may have no $x_{i_3}x_{i_4}^2$ in the defining equation. Such cases occur only when the corresponding singular point is O_t and $x_{i_3}x_{i_4}^2 = wt^2$. In cases, Theorem 5.2.3 excludes the singular point O_t. These three cases can always occur, i.e., the case when the defining equation has the monomial wt^2 with $f_e \neq 0$, the case when the defining equation has the monomial wt^2 with $f_e = 0$ and the case when the defining equation does not have the monomial wt^2.

\item[\(\epsilon\):] Apply Theorem 5.3.5
This is for the singular point O_t of hypersurfaces in the families No. 7 (Type I), 23, 40, 44, 61 and 76. The given polynomial consisting of two monomials in the table is the monomial $tw^2 - xt^3$ in Equation 5.3.2 that plays a central role in defining the involution. If Equation 5.3.2 for X has $g_{d-a_4} \neq 0$, then the singular point O_t is untwisted by a birational involution. If Equation 5.3.2 for X has $g_{d-a_4} = 0$, the singular point O_t cannot be a center of non-canonical singularities of the log pair $(X, \frac{1}{n}M)$. Note that both the cases can always happen.

\item[\(\epsilon_1\):] Apply Theorem 5.3.9 and Theorem 5.3.10
This is for the singular point O_ϵ of hypersurfaces in the family No. 36.
Apply Theorem 5.3.9, Theorem 5.3.10 and Theorem 5.3.11
This is for the singular point O_2 of hypersurfaces in the family No. 20.

Apply Theorem 5.4.5
This is for the singular points of type $\frac{1}{2}(1,1,1)$ on quasi-smooth hypersurfaces of Type II in the family No. 7.

Apply Theorem 5.4.1
This is for the singular point O_w of a special hypersurface in the family No. 23.

6.2 Non-super-rigid families

No. 2: $X_5 \subset \mathbb{P}(1,1,1,2)$	$A^3 = \frac{5}{2}$				
$tw^2 + w f_3(x, y, z, t) + f_5(x, y, z, t)$	$O_w = \frac{1}{\tau}(1,1,1)$				
Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{\tau}(1,1,1)$	tw^2				

No. 4: $X_6 \subset \mathbb{P}(1,1,1,2,2)$	$A^4 = \frac{3}{2}$				
$(t - \alpha_1 w)(t - \alpha_2 w)(t - \alpha_3 w) + w f_4(x, y, z, t) + f_6(x, y, z, t)$	$O_t O_w = 3 \times \frac{1}{\tau}(1,1,1)$				
Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t O_w = 3 \times \frac{1}{\tau}(1,1,1)$	tw^2				

We may assume that $\alpha_1 = 0$. To see how to treat the singular points of type $\frac{1}{2}(1,1,1)$, we have only to consider the singular point O_w. The other points can be dealt with in the same way.

No. 5: $X_7 \subset \mathbb{P}(1,1,1,2,3)$	$A^4 = \frac{7}{6}$				
$zw^2 + w f_4(x, y, z, t) + f_7(x, y, z, t)$	$O_w = \frac{1}{\tau}(1,1,2)$				
Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{\tau}(1,1,2)$	zw^2				
$O_t = \frac{1}{\tau_1}(1,1,1)$	wt^2				

No. 6: $X_8 \subset \mathbb{P}(1,1,1,2,4)$	$A^4 = 1$				
$(w - \alpha_1 t^2)(w - \alpha_2 t^2) + t f_6(x, y, z, w) + w f_4(x, y, z) + f_8(x, y, z) = 0$	$O_t O_w = 2 \times \frac{1}{\tau}(1,1,1)$				
Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t O_w = 2 \times \frac{1}{\tau}(1,1,1)$	wt^2				
We may assume that \(\alpha_1 = 0 \). To see how to treat the singular points of type \(\frac{1}{2}(1,1,1) \), we have only to consider the singular point \(O_t \). The other point can be dealt with in the same way.

No. 7: \(X_8 \subset \mathbb{P}(1,1,2,2,3) \)	\(A^3 = 2/3 \)
Type I : \(tw^2 + wg_5(x,y,z) - zt^3 - t^2g_4(x,y,z) - tg_6(x,y,z) + g_8(x,y,z) \)	
Type II : \((z + f_2(x,y))w^2 + wf_5(x,y,z,t) - zt^3 - t^2f_4(x,y,z) - tf_6(x,y,z) + f_8(x,y,z) \)	
Singularity	\(B^3 \)
---	---
\(O_w = \frac{1}{7}(1,1,2) \)	\(\tau \)
\(O_2O_t = 4 \times \frac{1}{7}(1,1,1) \)	\(\tau \)

For the singular points of type \(\frac{1}{2}(1,1,1) \) we have only to consider one of them. The others can be untwisted in the same way. The singular point to be considered here may be assumed to be the point \(O_t \) by a suitable coordinate change.

No. 8: \(X_9 \subset \mathbb{P}(1,1,1,3,4) \)	\(A^3 = 3/4 \)
\(zw^2 + wf_5(x,y,z,t) + f_9(x,y,z,t) \)	
Singularity	\(B^3 \)
---	---
\(O_w = \frac{1}{7}(1,1,3) \)	\(\tau \)

No. 9: \(X_9 \subset \mathbb{P}(1,1,2,3,3) \)	\(A^3 = 1/2 \)
\((w - \alpha_1t)(w - \alpha_2t)(w - \alpha_3t) + z^3(\alpha_1t + a_2yz) + w^2f_3(x,y,z) + wf_6(x,y,z,t) + f_9(x,y,z,t) \)	
Singularity	\(B^3 \)
---	---
\(O_z = \frac{1}{7}(1_x,1_y,1_t) \)	\(\tau \)
\(O_tO_w = 3 \times \frac{1}{7}(1,1,2) \)	\(\tau \)

We may assume that neither \(z^3w \) nor \(xz^4 \) appears in the defining equation of \(X_9 \). If \(a_1 \neq 0 \), then the 1-cycle \(\Gamma \) for the singular point \(O_z \) is irreducible.

Suppose that \(a_1 = 0 \). Then \(a_2 \neq 0 \). Then the 1-cycle \(\Gamma \) consists of three irreducible curves \(\tilde{C}_i \), \(i = 1,2,3 \), each of which is the proper transform of the curve defined by \(x = y = w - \alpha_i t = 0 \). One can easily check that

\[
B \cdot \tilde{C}_i = -\frac{1}{3}, \quad E \cdot \tilde{C}_i = 1
\]

for each \(i \). Therefore, these three curves are numerically equivalent each other.

For the singular points of type \(\frac{1}{7}(1,1,2) \) we may assume that \(a_3 = 0 \) and we have only to consider the singular point \(O_t \). The others can be untwisted in the same way. Note that if
\(\alpha_3 = 0 \) then we may assume that \(wt^2 \) is the only monomial in the defining equation of \(X_9 \) divisible by \(t^2 \).

No. 12: \(X_{10} \subset \mathbb{P}(1, 1, 2, 3, 4) \)

\[
z(w - \alpha_1 z^2)(w - \alpha_2 z^2) + t^2(a_1 w + a_2 y t) + cz^2 t^2 + w f_6(x, y, z, t) + f_{10}(x, y, z, t)
\]

Singularity	\(B^3 \)	Linear system	Surface \(T \)	Vanishing order	Condition
\(O_w = \frac{1}{7}(1, 1, 3) \)	\(\tau_7 \)	\(zw^2 \)	\(\tau_7 \)	\(\tau_7 \)	\(\tau_7 \)
\(O_t = \frac{1}{7}(1, 1, 2) \)	\(\tau_7 \)	\(wt^2 \)	\(\tau_7 \)	\(\tau_7 \)	\(\tau_7 \)
\(O_2 O_w = 2 \times \frac{1}{7}(1, 1, 1, 1) \)	\(\tau_7 \)	\(B \)	\(y \)	\(y \)	\(c \neq 0, a_1 \neq 0 \)
\(O_2 O_w = 2 \times \frac{1}{7}(1, 1, 1, 1) \)	\(\tau_7 \)	\(B \)	\(x, y \)	\(x, y \)	\(c \neq 0, a_1 = 0 \)
\(O_2 O_w = 2 \times \frac{1}{7}(1, 1, 1, 1) \)	\(\tau_7 \)	\(B \)	\(x, y \)	\(x, y \)	\(c = 0 \)

By a coordinate change we assume that \(\alpha_1 = 0 \). Furthermore we may assume that the monomials \(z^3 x t, z^3 y t, z^4 x y, z^4 y^2 \) do not appear in the defining equation by changing the coordinate \(w \) in an appropriate way. We may also assume that \(xt^3 \) is not contained in \(f_{10} \).

For the singular points of type \(\frac{1}{7}(1, 1, 1) \) with \(c \neq 0 \) and \(a_1 \neq 0 \) the 1-cycle \(\Gamma \) is irreducible due to the monomials \(zw^2, t^2 w \) and \(z^2 t^2 \).

For the singular points of type \(\frac{1}{7}(1, 1, 1) \) with \(c \neq 0 \) and \(a_1 = 0 \) choose a general surface \(H \) in \(|-K_{X_{10}}| \) and then let \(T \) be the proper transform of the surface \(H \). It is a K3 surface only with du Val singularities. The intersection of \(T \) with the surface \(S \) gives us a divisor consisting of two irreducible curves on the normal surface \(T \). One is the proper transform of the curve \(L_{tw} \). The other is the proper transform of the curve \(C \) defined by \(x = y = w^2 - \alpha_2 z^2 w + cz t^2 = 0 \) in \(\mathbb{P}(1, 1, 2, 3, 4) \). Since we have

\[
\hat{L}_{tw}^2 = -\frac{7}{12}, \quad \hat{L}_{tw} \cdot \hat{C} = \frac{2}{3}, \quad \hat{C}^2 = -\frac{5}{6}
\]

the curves \(\hat{L}_{tw} \) and \(\hat{C} \) are negative-definite.

We remark here that the surface obtained from \(T \) by contracting the two curves \(\hat{L}_{tw} \) and \(\hat{C} \) is a K3 surface only with one \(E_8 \) singular point. Indeed, the surface \(T \) has one \(A_1 \) singular point on \(\hat{C} \), one \(A_3 \) singular point on \(L_{tw} \) and the curves \(\hat{C}, \hat{L}_{tw} \) intersect at one \(A_2 \) singular point tangentially on an orbifold chart. Therefore, on the minimal resolution of the surface \(T \), the proper transforms of the curves \(\hat{C}, \hat{L}_{tw} \) with the exceptional curves over three du Val points form the configuration of the \(-2 \)-curves for an \(E_8 \) singular point.

For the singular points of type \(\frac{1}{7}(1, 1, 1) \) with \(c = 0 \) we may assume that \(\alpha_1 = 0 \) and we have only to consider the point \(O_x \). The other singular point can be treated in the same way by a suitable coordinate change. The quasi-smoothness implies that \(a_1 = 0 \) and \(a_2 \neq 0 \). Let \(Z_{\lambda, \mu} \) be the curve on \(X_{10} \) cut out by

\[
\begin{aligned}
y &= \lambda x, \\
w &= \mu x^4
\end{aligned}
\]

for some sufficiently general complex numbers \(\lambda \) and \(\mu \). Then \(Z_{\lambda, \mu} = L_{zt} + C_{\lambda, \mu} \), where \(C_{\lambda, \mu} \) is an irreducible and reduced curve whose normalisation is an elliptic curve. Indeed, the curve \(C_{\lambda, \mu} \) is defined by \(y = \lambda x = w - \mu x^4 = \mu^2 x^7 z - \alpha_2 \mu x^3 z^3 + \lambda a_2 t^3 + \mu x^3 f_6(x, \lambda x, z, t) + \ldots \)
\(f_{10}(x, \lambda x, z, t) = 0 \). Then

\[
\begin{align*}
- K_Y \cdot (\tilde{L}_{zt} + \tilde{C}_{\lambda,\mu}) &= 4B^3 = -\frac{1}{3}, \\
- K_Y \cdot \tilde{L}_{zt} &= -K_X \cdot L_{zt} - \frac{1}{2} E \cdot \tilde{L}_{zt} = -\frac{1}{3},
\end{align*}
\]

and hence \(-K_Y \cdot \tilde{C}_{\lambda,\mu} = 0\).

\textbf{No. 13:} \(X_{11} \subset \mathbb{P}(1, 1, 2, 3, 5) \)
\(A^3 = 11/30 \)

\[
yw^2 + t^2(a_1w + a_2zt) + z^3(b_1w + b_2zt + b_3xz^2 + b_4yz^2) + xf_{10}(x, y, z, t, w) +
\]

\[
yg_{10}(y, z, t, w)
\]

Singularity	\(B^3 \)	Linear system	Surface \(T \)	Vanishing order	Condition
\(O_w \) = \(\frac{1}{3}(1, 2, 3) \)	\(\tau \)	\(yw^2 \)	-	-	-
\(O_t \) = \(\frac{1}{3}(1, 1, 2) \)	\(\tau_1 \)	\(wt^2 \)	-	-	-
\(O_x \) = \(\frac{1}{3}(1, 1, 1) \)	\(\tau_5 \)	\(B \)	\(y \)	\(y \)	\(a_1 \neq 0, b_1 \neq 0 \) \(a_1 b_2 - a_2 b_1 \neq 0 \)
\(O_x \) = \(\frac{1}{3}(1, 1, 1) \)	\(\tau_5 \)	\(B \)	\(x, y \)	\(x, y \)	\(a_1 \neq 0, b_1 \neq 0 \) \(a_1 b_2 - a_2 b_1 = 0 \)
\(O_x \) = \(\frac{1}{3}(1, 1, 1) \)	\(\tau_1 \)	\(B \)	\(x, y \)	\(x, y \)	\(a_1 \neq 0 \) \(b_1 = 0, b_2 \neq 0 \)
\(O_x \) = \(\frac{1}{3}(1, 1, 1) \)	\(\tau_5 \)	\(B \)	\(x, y \)	\(x, y \)	\(a_1 = 0 \) \(b_1 \neq 0 \)
\(O_x \) = \(\frac{1}{3}(1, 1, 1) \)	\(\tau_1 \)	\(B \)	\(x, y \)	\(x, y \)	\(a_1 = 0 \) \(b_1 = 0, b_2 \neq 0 \)
\(O_x \) = \(\frac{1}{3}(1, 1, 1) \)	\(\tau_5 \)	\(B \)	\(y \)	\(y \)	\(a_1 \neq 0 \) \(b_1 = 0, b_2 \neq 0 \)

To exclude the singular point \(O_x \) we first suppose that \(a_1 \neq 0 \). We may then assume that \(a_1 = 1 \) and \(a_2 = 0 \).

The conditions \(b_1 \neq 0 \) and \(a_1 b_2 - a_2 b_1 \neq 0 \) imply that both \(b_1 \) and \(b_2 \) are non-zero. In such a case the 1-cycle \(\Gamma \) is irreducible since we have the monomials \(t^2w, z^3w \) and \(z^4t \).

The conditions \(b_1 \neq 0 \) and \(a_1 b_2 - a_2 b_1 = 0 \) imply that \(b_1 \neq 0 \) and \(b_2 = 0 \). In such a case we take a general surface \(H \) from the pencil \(| - K_{X_{11}} | \) and then let \(T \) be the proper transform of the surface. It is a K3 surface only with du Val singularities. The intersection of \(T \) with the surface \(S \) gives us a divisor consisting of two irreducible curves on the normal surface \(T \). One is the proper transform of the curve \(L_{zt} \) on \(H \). The other is the proper transform of the curve \(C \) defined by \(x = y = t^2 + b_1z^3 = 0 \) in \(\mathbb{P}(1, 1, 2, 3, 5) \). Since

\[
\tilde{L}_{zt}^2 = -\frac{4}{3}, \quad \tilde{L}_{zt} \cdot \tilde{C} = 1, \quad \tilde{C}^2 = -\frac{4}{5}
\]

the curves \(\tilde{L}_{zt} \) and \(\tilde{C} \) on the normal surface \(T \) are negative-definite.
In the case when \(b_1 = 0 \) and \(b_2 \neq 0 \) we may assume that \(b_2 = 1 \), \(b_3 = b_4 = 0 \) by a suitable coordinate change. Let \(Z_{\lambda,\mu} \) be the curve on \(X_{11} \) cut out by

\[
\begin{cases}
y = \lambda x, \\
t = \mu x^3
\end{cases}
\]

for some sufficiently general complex numbers \(\lambda \) and \(\mu \). Then \(Z_{\lambda,\mu} = L_{zw} + C_{\lambda,\mu} \), where \(C_{\lambda,\mu} \) is an irreducible and reduced curve whose normalisation is an elliptic curve. Then

\[
\begin{align*}
- K_Y \cdot (\tilde{L}_{zw} + \tilde{C}_{\lambda,\mu}) &= 3B^3 = -\frac{2}{5}, \\
- K_Y \cdot \tilde{L}_{zw} &= -K_X \cdot L_{zw} - \frac{1}{2} E \cdot \tilde{L}_{zw} = -\frac{2}{5},
\end{align*}
\]

and hence \(-K_Y \cdot \tilde{C}_{\lambda,\mu} = 0\).

In the case when \(b_1 = b_2 = 0 \), we must have \(b_3 \neq 0 \) due to the quasi-smoothness of \(X_{11} \). We may assume that \(b_3 = 1 \) and \(b_4 = 0 \) by a suitable coordinate change. Let \(Z_{\lambda} \) be the curve on the surface \(S_x \) defined by

\[
\begin{cases}
x = 0, \\
t = \lambda y^3
\end{cases}
\]

for a sufficiently general complex number \(\lambda \). Then \(Z_{\lambda} = L_{zw} + C_{\lambda} \), where \(C_{\lambda} \) is an irreducible and reduced curve. Then

\[
\begin{align*}
- K_Y \cdot (\tilde{L}_{zw} + \tilde{C}_{\lambda}) &= (B - E)(3B + E)B = -\frac{2}{5}; \\
- K_Y \cdot \tilde{L}_{zw} &= -K_X \cdot L_{zw} - \frac{1}{2} E \cdot \tilde{L}_{zw} = -\frac{2}{5},
\end{align*}
\]

and hence \(-K_Y \cdot \tilde{C}_{\lambda} = 0\).

Now we suppose that \(a_1 = 0 \). Then \(a_2 \neq 0 \), so that we may assume that \(a_2 = 1 \).

Suppose that \(b_1 \neq 0 \). Then by a suitable coordinate change we may assume that \(b_1 = 1 \) and \(b_2 = 0 \). We take a general surface \(H \) from the pencil \(|-K_{X_{11}}| \) and then let \(T \) be the proper transform of the surface. It is a K3 surface only with du Val singularities. The intersection of \(T \) with the surface \(S \) gives us a divisor consisting of two irreducible curves on the normal surface \(T \). One is the proper transform of the curve \(L_{tw} \) on \(H \). The other is the proper transform of the curve \(C \) defined by \(x = y = t^3 + z^2w = 0 \) in \(\mathbb{P}(1,1,2,3,5) \). Since

\[
\tilde{L}_{tw}^2 = -\frac{8}{15}, \quad \tilde{L}_{tw} \cdot \tilde{C} = \frac{3}{5}, \quad \tilde{C}^2 = -\frac{4}{5}
\]

the curves \(\tilde{L}_{tw} \) and \(\tilde{C} \) are negative-definite on the normal surface \(T \).

We suppose that \(b_1 = 0 \) and \(b_2 \neq 0 \). We then let \(Z_{\lambda,\mu} \) be the curve on \(X_{11} \) cut out by

\[
\begin{cases}
y = \lambda x, \\
t = \mu x^3
\end{cases}
\]

for some sufficiently general complex numbers \(\lambda \) and \(\mu \). Then \(Z_{\lambda,\mu} = L_{zw} + C_{\lambda,\mu} \), where \(C_{\lambda,\mu} \) is an irreducible and reduced curve whose normalisation is an elliptic curve. We have

\[
\begin{align*}
- K_Y \cdot (\tilde{L}_{zw} + \tilde{C}_{\lambda,\mu}) &= 3B^3 = -\frac{2}{5}, \\
- K_Y \cdot \tilde{L}_{zw} &= -K_X \cdot L_{zw} - \frac{1}{2} E \cdot \tilde{L}_{zw} = -\frac{2}{5},
\end{align*}
\]
and hence $-K_Y \cdot \hat{C}_{\lambda, \mu} = 0$.

Finally, we suppose that $b_1 = 0$ and $b_2 = 0$. Then b_3 must be non-zero due to the quasi-smoothness of X_{11}. We may assume that $b_3 = 1$ and $b_4 = 0$ by a suitable coordinate change. Let Z_λ be the curve on the surface S defined by

$$
\begin{cases}
 x = 0, \\
 t = \lambda y^3
\end{cases}
$$

for a sufficiently general complex number λ. Then $Z_\lambda = L_{zw} + C_\lambda$, where C_λ is an irreducible and reduced curve. We have

$$
\begin{align*}
- K_Y \cdot (\hat{L}_{zw} + \hat{C}_\lambda) &= (B-E)(3B+E)B = -\frac{2}{5}, \\
- K_Y \cdot \hat{L}_{zw} &= -K_X \cdot L_{zw} - \frac{1}{2}E \cdot \hat{L}_{zw} = -\frac{2}{5},
\end{align*}
$$

and hence $-K_Y \cdot \hat{C}_\lambda = 0$.

No. 15: $X_{12} \subset \mathbb{P}(1, 1, 2, 3, 6)$ \hspace{1cm} $A^3 = 1/3$

$w(w - z^3) + t^2w + az^3t^2 + wf_6(x, y, z, t) + f_{12}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition	
$O_2O_w = 2 \times \frac{1}{7}(1, 1, 2)$	$-\frac{1}{7}$	wt^2	B	y	y	$a \neq 0$
$O_2O_w = 2 \times \frac{1}{7}(1x, 1y, 1t)$	-	B	x, y	x, y	$a = 0$	
$O_2O_w = 2 \times \frac{1}{7}(1x, 1y, 1t)$	-	B	x, y	x, y	$a = 0$	

By changing the coordinate w we may assume that t^4 is not in the polynomial f_{12}. To see how to deal with the singular points of type $\frac{1}{7}(1, 1, 2)$ we have only to consider the singular point O_1. The other point can be treated in the same way.

The 1-cycle Γ for each singular point of type $\frac{1}{7}(1, 1, 1)$ with $a \neq 0$ is irreducible due to the monomials w^2 and z^3t^2.

For the singular points of type $\frac{1}{7}(1, 1, 1)$ with $a = 0$ we take a general surface H from the pencil $| - K_{X_{12}} |$ and then let T be the proper transform of the surface. It is a K3 surface only with du Val singularities. The intersection of T with the surface S defines a divisor consisting of two irreducible curves on the normal surface T. One is the proper transform of the curve L_{zt} on H. The other is the proper transform of the curve C defined by $x = y = w - z^3 + t^2 = 0$ in $\mathbb{P}(1, 1, 2, 3, 6)$. From the intersection numbers

$$
(\hat{L}_{zt} + \hat{C}) \cdot \hat{L}_{zt} = -K_Y \cdot \hat{L}_{zt} = -\frac{1}{3}, \quad (\hat{L}_{zt} + \hat{C})^2 = B^3 = -\frac{1}{6}
$$

on the surface T, we obtain

$$
\hat{L}_{zt}^2 = -\frac{1}{3} - \hat{L}_{zt} \cdot \hat{C}, \quad \hat{C}^2 = \frac{1}{6} - \hat{L}_{zt} \cdot \hat{C}
$$

With these intersection numbers we see that the matrix

$$
\begin{pmatrix}
 \hat{L}_{zt}^2 & \hat{L}_{zt} \cdot \hat{C} \\
 \hat{L}_{zt} \cdot \hat{C} & \hat{C}^2
\end{pmatrix}
=
\begin{pmatrix}
 -\frac{1}{3} - \hat{L}_{zt} \cdot \hat{C} & \hat{L}_{zt} \cdot \hat{C} \\
 \hat{L}_{zt} \cdot \hat{C} & \frac{1}{6} - \hat{L}_{zt} \cdot \hat{C}
\end{pmatrix}
$$
is negative-definite since $L_{zt} \cdot C = 1$.

No. 16: $X_{12} \subset \mathbb{P}(1,1,2,4,5)$

$A^4 = 3/10$

$zw^2 + (t - \alpha_1 z^2)(t - \alpha_2 z^2)(t - \alpha_3 z^2) + w f_7(x, y, z, t) + f_{12}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{5}(1,1,4)$	\mathbb{T}	zw^2	$-B$	y	y

The 1-cycle Γ for each singular point of type $\frac{1}{2}(1,1,1)$ is irreducible due to zw^2 and t^3.

No. 17: $X_{12} \subset \mathbb{P}(1,1,3,4,4)$

$t - \alpha w)(t - \alpha_2 w)(t - \alpha_3 w) + z^4 + w f_8(x, y, z, t) + f_{12}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t O_w = 3 \times \frac{1}{13}(1,1,3)$	T	tw^2	$-2B$	$y - \alpha_1 z$	zw^2

To see how to deal with the singular points of type $\frac{1}{2}(1,1,3)$ we may assume that $\alpha_1 = 0$ and we have only to consider the singular point O_w. The other points can be treated in the same way.

No. 18: $X_{12} \subset \mathbb{P}(1,2,2,3,5)$

$y^2 + t^4 + \prod_{i=1}^6 (y - \alpha_i z) + w f_7(x, y, z, t) + f_{12}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{5}(1,2,3)$	\mathbb{T}	yw^2	$-2B$	$y - \alpha_1 z$	zw^2

The 1-cycle Γ for each singular point of type $\frac{1}{2}(1,1,1)$ is irreducible due to yw^2 and t^4.

No. 20: $X_{13} \subset \mathbb{P}(1,1,3,4,5)$

$A^3 = 13/60$

$zw^2 + t^2(a_1 w + a_2 yt) - z^3(b_1 t + b_2 yz + b_3 xz) + w f_8(x, y, z, t) + f_{13}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{5}(1,1,4)$	\mathbb{T}	zw^2	$-B$	y	$-B$
$O_t = \frac{1}{3}(1,1,3)$	\mathbb{C}	wt^2	$-y$	y	$zw^2 - tz^3$

No. 23: $X_{14} \subset \mathbb{P}(1,2,3,4,5)$

$A^3 = 7/60$

$(t + by^2)w^2 + y(t - \alpha_1 y^2)(t - \alpha_2 y^2)(t - \alpha_3 y^2) + z^3(a_1 w + a_2 yz) + cz^2 t^2 + x f_{13}(x, y, z, t, w) + yg_{12}(y, z, t, w)$
\begin{tabular}{|c|c|c|c|c|}
\hline
Singularity & B^3 & Linear system & Surface T & Vanishing order & Condition \\
\hline
$O_w = \frac{1}{5}(1, 2, 3)$ & tw^2 & tw^2 & x & $c
eq 0$, $a_1
eq 0$ \\
$O_t = \frac{1}{5}(1, 3, 1)$ & yt^3 & $2B + y$ & y & $c = 0$, $a_1
eq 0$ \\
$O_z = \frac{1}{5}(1, 2y, 1t)$ & yt^3 & $2B + x^2$ & x^2, y & $c
eq 0$, $a_1 = 0$ \\
$O_z = \frac{1}{5}(1, t, 2w)$ & yt^3 & $2B + y$ & y & $c = 0$, $a_1
eq 0$ \\
$O_z = \frac{1}{5}(1, 2w, 1t)$ & yt^3 & $2B + x^2$ & x^2, y & $c
eq 0$, $a_1 = 0$ \\
$O_z = \frac{1}{5}(1, w, 2t)$ & yt^3 & $2B + x^2$ & x^2, y & $c = 0$, $a_1
eq 0$ \\
$O_yO_t = 3 \times \frac{1}{5}(1, 1z, 1w)$ & yt^3 & $3B + E$ & z & $b
eq 0$ \\
$O_yO_t = 3 \times \frac{1}{5}(1, 1z, 1w)$ & yt^3 & $3B + E$ & x^3, xy, z & $b = 0$ \\
\hline
\end{tabular}

For the singular point O_z with $c
eq 0$ and $a_1
eq 0$ the 1-cycle Γ is irreducible due to the monomials tw^2, z^3w and z^2t^2.

For the singular point O_z with $c
eq 0$ and $a_1 = 0$ we may assume that $a_2 = 1$ and $c = 1$. We take a general surface H from the pencil $| - 2K_{X_{13}} |$ and then let T be the proper transform of the surface. Note that the surface H is normal. However, it is not quasi-smooth at the points O_z and O_t. The intersection of T with the surface S defines a divisor consisting of two irreducible curves on the normal surface T. One is the proper transform of the curve L_{zw} on H. The other is the proper transform of the curve C defined by $x = y = w^2 + z^2t = 0$ in $\mathbb{P}(1, 2, 3, 4, 5)$. From the intersection numbers

\[(\tilde{L}_{zw} + \tilde{C}) \cdot \tilde{L}_{zw} = -K_T \cdot \tilde{L}_{zw} = -\frac{1}{10}, \quad (\tilde{L}_{zw} + \tilde{C})^2 = 2B^3 = -\frac{1}{10}\]

on the surface T, we obtain

\[\tilde{L}_{zw}^2 = -\frac{1}{10} - \tilde{L}_{zw} \cdot \tilde{C}, \quad \tilde{C}^2 = -\tilde{L}_{zw} \cdot \tilde{C}\]

With these intersection numbers we see that the matrix

\[
\begin{pmatrix}
\tilde{L}_{zw}^2 & \tilde{L}_{zw} \cdot \tilde{C} \\
\tilde{L}_{zw} \cdot \tilde{C} & \tilde{C}^2
\end{pmatrix} = \begin{pmatrix}
-\frac{1}{10} & -\tilde{L}_{zw} \cdot \tilde{C} \\
\tilde{L}_{zw} \cdot \tilde{C} & -\tilde{L}_{zw} \cdot \tilde{C}
\end{pmatrix}
\]

is negative-definite since $\tilde{L}_{zw} \cdot \tilde{C}$ is positive.

For the singular point O_z with $c = 0$ and $a_1
eq 0$ we may assume that $a_1 = 1$ and $a_2 = 0$. Furthermore, we may also assume that the quasi-homogeneous polynomial f_{13} does not contain the monomial t^3 by changing the coordinate w in a suitable way. We then consider the surface S_w cut by the equation $w = 0$. Let Z_λ be the curve on the surface S_w defined by

\[
\begin{cases}
w = 0 \\
y = \lambda x^2
\end{cases}
\]

for a sufficiently general complex number λ. Then $Z_\lambda = 2L_{zt} + C_\lambda$, where C_λ is an irreducible and reduced curve. We have

\[
\begin{cases}
-K_Y \cdot (2\tilde{L}_{zt} + \tilde{C}_\lambda) = 10B^3 = -\frac{1}{2}, \\
-K_Y \cdot \tilde{L}_{zt} = -K_X \cdot L_{zt} - \frac{1}{3} E \cdot \tilde{L}_{zt} = -\frac{1}{4}.
\end{cases}
\]
and hence $-K_Y \cdot \tilde{C}_\lambda = 0$.

For the singular point O_z with $c = 0$ and $a_1 = 0$ we observe that the quasi-homogeneous polynomial f_{13} must contain the monomial z^3t. We may assume that $a_2 = 1$ and that the coefficient of z^3t in f_{13} is 1. Then Theorem 5.4.1 untwists the singular point O_z.

For the singular points of type $\frac{1}{2}(1,1,1)$ we may assume that $\alpha_3 = 0$ and we have only to consider the singular point O_y. The other singular points can be treated in the same way after suitable coordinate changes.

For the singular point O_y with $b \neq 0$ consider the linear system generated by xy and z on X_{14}. Its base curves are defined by $x = z = 0$ and $y = z = 0$. The curve defined by $y = z = 0$ does not pass through the singular point O_y. The curve defined by $x = z = 0$ is irreducible. Indeed, the curve is defined by $x = z = (t + by^2)w^2 + yt(t - \alpha_1y^2)(t - \alpha_2y^2) = 0$. Moreover, its proper transform is equivalent to the 1-cycle defined by $(3B + E) \cdot B$. Therefore, the divisor T is nef since $(3B + E)^2 \cdot B > 0$.

For the singular point O_y with $b = 0$ we take a general member H in the linear system generated by x^3, xy and z. Note that the defining equation of X_{14} must contain either y^2zw or xy^4w. The surface H is a normal surface of degree 14 in $\mathbb{P}(1,2,4,5)$ such that is smooth at the point $x = t = w^2 + \alpha_1\alpha_2y^5 = 0$. Let T be the proper transform of the surface H. The intersection of T with the surface S gives us a divisor consisting of two irreducible curves on the normal surface T. One is the proper transform of the curve L_{yw} and the other is the proper transform of the curve C defined by $x = z = w^2 + y(t - \alpha_1y^2)(t - \alpha_2y^2) = 0$. From the intersection numbers

$$(\tilde{L}_{yw} + \tilde{C}) \cdot \tilde{L}_{yw} = -K_Y \cdot \tilde{L}_{yw} = -\frac{2}{5}, \quad (\tilde{L}_{yw} + \tilde{C})^2 = B^2 \cdot (3B + E) = -\frac{3}{20}$$

on the surface T, we obtain

$$\tilde{L}_{yw}^2 = -\frac{2}{5} - \tilde{L}_{yw} \cdot \tilde{C}, \quad \tilde{C}^2 = \frac{1}{4} - \tilde{L}_{yw} \cdot \tilde{C}$$

With these intersection numbers we see that the matrix

$$
\begin{pmatrix}
\tilde{L}_{yw}^2 & \tilde{L}_{yw} \cdot \tilde{C} \\
\tilde{L}_{yw} \cdot \tilde{C} & \tilde{C}^2
\end{pmatrix}
=
\begin{pmatrix}
-\frac{2}{5} - \tilde{L}_{yw} \cdot \tilde{C} & \tilde{L}_{yw} \cdot \tilde{C} \\
\tilde{L}_{yw} \cdot \tilde{C} & \frac{1}{4} - \tilde{L}_{yw} \cdot \tilde{C}
\end{pmatrix}
$$

is negative-definite since the curves L_{yw} and the curve C intersect at the smooth point of H defined by $x = z = t = w^2 + \alpha_1\alpha_2y^5 = 0$.

No.	$X_{15} \subset \mathbb{P}(1,1,2,5,7)$	$A^3 = 3/14$
$yw^2 + t^3 + z^3(a_1w + a_2zt + a_3xz^3 + a_4yz^3) + wf_8(x,y,z,t) + f_{15}(x,y,z,t)$		

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{7}(1,2,5)$	\square	yw^2	yw^2	yw^2	$a_1 \neq 0$
$O_z = \frac{1}{3}(1,1,1)$	\circ	B	y	y	$a_1 = 0, a_2 = 0$
$O_z = \frac{1}{3}(1,1,1)$	\circ	B	x, y	x, y	$a_1 = 0, a_2 \neq 0$

Since X_{15} is quasi-smooth, one of the constants a_1, a_2, a_3 must be non-zero.
The 1-cycle Γ for the singular point O_2 with $a_1 \neq 0$ is irreducible since we have t^3 and z^4w. The 1-cycle Γ for the singular point O_2 with $a_1 = a_2 = 0$ is also irreducible even though it is not reduced.

For the singular point O_2 with $a_1 = 0$ and $a_2 \neq 0$ we may assume that $a_2 = 1$ and $a_3 = a_4 = 0$. Choose a general member H in the linear system $| -K_{T_2}|$ and then let T be the proper transform of the surface. It is a K3 surface only with du Val singularities. The intersection of T with the surface S gives us a divisor consisting of two irreducible curves on the normal surface T. One is the proper transform of the curve L_{zw} on H. The other is the proper transform of the curve C defined by $x = y = t^2 + z^5 = 0$ in $\mathbb{P}(1, 1, 2, 5, 7)$. The curves L_{zw} and C intersect at the point O_w. From the intersection numbers

$$(L_{zw} + C) \cdot L_{zw} = -K_Y \cdot L_{zw} = -\frac{3}{t}, \quad (L_{zw} + C)^2 = B^3 = -\frac{2}{t}$$

on the surface T, we obtain

$$\overline{L}_{zw}^2 = \frac{3}{t} - \overline{L}_{zw} \cdot \overline{C}, \quad \overline{C}^2 = \frac{1}{t} - \overline{L}_{zw} \cdot \overline{C}$$

With these intersection numbers we see that the matrix

$$
\begin{pmatrix}
\overline{L}_{zw}^2 & \overline{L}_{zw} \cdot \overline{C} \\
\overline{L}_{zw} \cdot \overline{C} & \overline{C}^2
\end{pmatrix} =
\begin{pmatrix}
-\frac{3}{t} - \overline{L}_{zw} \cdot \overline{C} & \overline{L}_{zw} \cdot \overline{C} \\
\overline{L}_{zw} \cdot \overline{C} & \frac{1}{t} - \overline{L}_{zw} \cdot \overline{C}
\end{pmatrix}
$$

is negative-definite since $\overline{L}_{zw} \cdot \overline{C} = \frac{5}{t}$.

No. 25: $X_{15} \subset \mathbb{P}(1, 1, 3, 4, 7)$

$y^2w^2 + t^2(a_1w + a_2zt) + z^5 + wf_8(x, y, z, t) + f_{15}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
O_w	$\frac{1}{7}(1, 3, 4)$	τ	yw^2	3	$A^3 = 5/28$
O_t	$\frac{1}{7}(1, 1, 3)$	τ_1	wt^2	2	$A^3 = 1/6$

No. 26: $X_{15} \subset \mathbb{P}(1, 1, 3, 5, 6)$

$zw^2 + t^3 + z^5 + wf_9(x, y, z, t) + f_{15}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
O_w	$\frac{1}{7}(1, 1, 5)$	τ	zw^2	0	$A^3 = 1/6$
O_wO_w	$2 \times \frac{1}{7}(1, 1, 2, 3)$	δ	z^w	y	y

The 1-cycle Γ for each singular point of type $\frac{1}{7}(1, 1, 2)$ is irreducible since we have the monomials zw^2 and t^3.

No. 27: $X_{15} \subset \mathbb{P}(1, 2, 3, 5, 5)$

$(w - \alpha_1t)(w - \alpha_2t)(w - \alpha_3t) + y^5(a_1w + a_2yz + a_3xy^2) + w^2f_5(x, y, z, t) + wf_9(x, y, z, t) + f_{15}(x, y, z, t)$

$A^3 = 1/10$
Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t O_w = 3 \times \frac{1}{3}(1,2,3)$					
$O_y = \frac{1}{3}(1,1,1)$					
$O_t O_w = 2 \times \frac{1}{3}(1,1,3)$					
$O_z = \frac{1}{3}(1,1,2)$					
$O_z = \frac{1}{3}(1,1,2)$					

We may assume that $\alpha_3 = 0$, i.e., the hypersurface X_{15} has a singular point of type $\frac{1}{3}(1,2,3)$ at the point O_t. To see how to treat the singular points of type $\frac{1}{3}(1,2,3)$ we have only to consider the singular point O_t. The others can be dealt with in the same way.

For the singular point O_y we consider the linear system $| -5K_{X_{15}} |$. Every member in the linear system passes through the point O_y. It has no base curve. Since the proper transform of a general member in $| -5K_{X_{15}} |$ belongs to the linear system $| 5B + 2E |$, the divisor T is nef.

No. 30: $X_{16} \subset \mathbb{P}(1,1,3,4,8)$

$z(w - \alpha_1 t^2)(w - \alpha_2 t^2) + z^4(a_1 t + a_2 yz) + w f_8(x, y, z, t) + f_{16}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_t O_w = 2 \times \frac{1}{3}(1,1,3)$					
$O_z = \frac{1}{3}(1,1,2)$					
$O_z = \frac{1}{3}(1,1,2)$					

We may assume that $\alpha_1 = 0$. To see how to treat the singular points of type $\frac{1}{3}(1,1,3)$, we have only to consider the singular point O_t. The other point can be treated in the same way.

The 1-cycle Γ for the singular point O_z with $a_1 \neq 0$ is irreducible due to w^2 and $z^4 t$.

The 1-cycle Γ for the singular point O_z with $a_1 = 0$ consists of the proper transforms of the curves defined by $x = y = w - \alpha_1 t^2 = 0$ and $x = y = w - \alpha_2 t^2 = 0$. These two irreducible components are symmetric with respect to the biregular involution of X_{16}. Consequently, the components of Γ are numerically equivalent to each other.

No. 31: $X_{16} \subset \mathbb{P}(1,1,4,5,6)$

$z w^2 + t^2(a_1 w + a_2 y t) + z^4 + w f_{10}(x, y, z, t) + f_{16}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{3}(1,1,5)$					
$O_t = \frac{1}{3}(1,1,4)$					
$O_z O_w = 1 \times \frac{1}{3}(1,1,1)$					
$O_z O_w = 1 \times \frac{1}{3}(1,1,1)$					

If $a_1 \neq 0$, the 1-cycle Γ for the singular point of type $\frac{1}{3}(1,1,1)$ is irreducible due to the monomials z^3 and $t^2 w$.

Suppose $a_1 = 0$. Choose a general member H in the linear system $| -K_{X} |$. Then it is a normal K3 surface of degree 16 in $\mathbb{P}(1,4,5,6)$. Let T be the proper transform of the surface H. The intersection of T with the surface S defines a divisor consisting of two irreducible curves \tilde{L}_{tw} and \tilde{C} on the normal surface T. The curve \tilde{C} is the proper transform of the curve
C defined by \(x = y = w^2 + z^3 = 0 \). On the surface \(T \), we have
\[
\tilde{L}_{tw} \cdot \tilde{C} = L_{tw} \cdot C = \frac{2}{5}.
\]

From the intersections
\[
(\tilde{L}_{tw} + \tilde{C}) \cdot \tilde{L}_{tw} = -K_Y \cdot \tilde{L}_{tw} = \frac{1}{30}, \quad (\tilde{L}_{tw} + \tilde{C})^2 = B^3 = -\frac{11}{30}
\]
on the surface \(T \), we obtain
\[
\tilde{L}_{tw}^2 = -\frac{11}{30}, \quad \tilde{C}^2 = -\frac{4}{5}.
\]
The intersection matrix
\[
\begin{pmatrix}
\tilde{L}_{tw}^2 & \tilde{L}_{tw} \cdot \tilde{C} \\
\tilde{L}_{tw} \cdot \tilde{C} & \tilde{C}^2
\end{pmatrix} = \begin{pmatrix}
\frac{-11}{30} & \frac{2}{5} \\
\frac{2}{5} & -\frac{4}{5}
\end{pmatrix}
\]
is negative-definite.

\[\text{No. 32: } X_{16} \subset \mathbb{P}(1, 2, 3, 4, 7) \quad A^3 = 2/21\]
\[yw^2 + \prod_{i=1}^{4} (t - \alpha_i y^2) + z^3(a_1 w + a_2 t z + a_3 x z^2) + w f_9(x, y, z, t) + f_{16}(x, y, z, t)\]

Singularity	\(B^3 \)	Linear system	Surface \(T \)	Vanishing order	Condition
\(O_w \) = \(\frac{1}{4}(1, 3, 4) \)	\(\Box \)	\(yw^2 \)	\(yw^2 \)	\(yw^2 \)	\(a_1 \neq 0 \)
\(O_z \) = \(\frac{1}{4}(1, 2, 1, 1t) \)	\(\Box \)	\(-2B \)	\(y \)	\(y \)	\(a_1 \neq 0 \)
\(O_z \) = \(\frac{1}{4}(1, 2, 1, 1w) \)	\(\Box \)	\(-2B \)	\(x^2, y \)	\(x^2, y \)	\(a_1 = 0, a_2 \neq 0 \)
\(O_z \) = \(\frac{1}{4}(2, 1, 1t, 1w) \)	\(\Box \)	\(-2B \)	\(y \)	\(y \)	\(a_1 = a_2 = 0 \)
\(O_y O_t = 4 \times \frac{1}{4}(1, 1, 1, 1w) \)	\(\Box \)	\(-3B + E \)	\(z \)	\(z \)	\(a_1 = a_2 = 0 \)

The 1-cycle \(\Gamma \) for the singular point \(O_z \) with \(a_1 \neq 0 \) is irreducible due to \(t^4 \) and \(z^3 w \).

For the singular point \(O_z \) with \(a_1 = 0 \) and \(a_2 \neq 0 \) we may assume that \(a_3 = 0 \). The curve \(L_{zw} \) is contained in \(X_{16} \) because \(a_1 = 0 \). Let \(Z_{\lambda, \mu} \) be the curve on \(X_{16} \) cut out by
\[
\begin{align*}
y &= \lambda x^2 \\
t &= \mu x^4,
\end{align*}
\]
for some sufficiently general complex numbers \(\lambda \) and \(\mu \). Then \(Z_{\lambda, \mu} = 2L_{zw} + C_{\lambda, \mu} \), where \(C_{\lambda, \mu} \) is an irreducible and reduced curve whose normalization is an elliptic curve. We have
\[
\begin{align*}
- K_Y \cdot (2\tilde{L}_{zw} + \tilde{C}_{\lambda, \mu}) &= 8B^3 = -\frac{4}{7}, \\
- K_Y \cdot \tilde{L}_{zw} &= -K_X \cdot L_{zw} - \frac{1}{3} E \cdot \tilde{L}_{zw} = -\frac{2}{7},
\end{align*}
\]
and hence \(-K_Y \cdot \tilde{C}_{\lambda, \mu} = 0 \).

The 1-cycle \(\Gamma \) for the singular point \(O_z \) with \(a_1 = a_2 = 0 \) is irreducible even though it is non-reduced.
For the singular points of type $\frac{1}{2}(1, 1, 1)$, consider the linear system generated by xy and z. Its base curves are defined by $x = z = 0$ and $y = z = 0$. The curve defined by $y = z = 0$ does not pass through any singular point of type $\frac{1}{2}(1, 1, 1)$. The curve defined by $x = z = 0$ is irreducible because of the monomial yw^2 and t^4. Since its proper transform is the 1-cycle defined by $(3B + E) \cdot B$ and $(3B + E)^2 \cdot B > 0$, the divisor T is nef.

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{2}(1, 2, 5)$	τ	zw^2	x^2, y	x^2, y	$a_1 \neq 0, b_1 \neq 0$
$O_t = \frac{1}{2}(1, 2, 3) \cdot \tau_1$		wt^2	x^2, y	x^2, y	$a_1 = 0, b_1 \neq 0$
$O_z = \frac{1}{2}(1, 2, 4, 1, w)$	\oplus	$2B$	$2B$	$2B$	$b_1 = 0$
$O_z = \frac{1}{2}(1, 2, 4, 1, w)$	\oplus	$2B$	$2B$	$2B$	$b_1 = 0$
$O_y = \frac{1}{2}(1, 2, 1, w)$	\oplus	$5B + 2E$	$5B + 2E$	$5B + 2E$	$c_1 = 0, c_2 = 0$
$O_y = \frac{1}{2}(1, 1, 1, w)$	\oplus	$7B + 3E$	$7B + 3E$	$7B + 3E$	$c_1 = c_2 = c_3 = 0$

The 1-cycle Γ for the singular point O_z with $a_1 \neq 0$ and $b_1 \neq 0$ is irreducible since we have the monomials t^2w, z^3t and zw^2.

For the singular point O_z with $a_1b_1 = 0$ choose a general member H in the linear system $| - 2K_{X_17}|$. Then it is a normal surface of degree 17 in $\mathbb{P}(1, 3, 5, 7)$. Let T be the proper transform of the divisor H. Then T is also normal. Furthermore, the curve \tilde{D} on T cut out by the surface S is the proper transform of the curve cut by the equations $x = y = 0$.

Suppose that $b_1 \neq 0$ and $a_1 = 0$. Then $a_2 \neq 0$. The curve \tilde{D} then consists of two irreducible curves \tilde{L}_{tw} and \tilde{C}_1. The curve \tilde{C}_1 is the proper transform of the curve C_1 defined by $x = y = w^2 + b_1z^2t = 0$. Note that the curve L_{tw} and C_1 intersect at the point O_t. The surface H is not quasi-smooth at the point O_t. We also consider the divisor D_z on H cut by the equation $z = 0$. We easily see that $D_z = 2L_{tw} + R$, where R is a curve whose support does not contain L_{tw}. The curve R and L_{tw} intersects at the point O_w. The surface H is quasi-smooth at the point O_w. Then we have $\tilde{L}_{tw} \cdot \tilde{R} = \frac{3}{35}$. From the intersection

$$(2\tilde{L}_{tw} + \tilde{R}) \cdot \tilde{L}_{tw} = 3A \cdot \tilde{L}_{tw} = \frac{3}{35},$$

we obtain $\tilde{L}_{tw} = -\frac{6}{35}$. From the intersections

$$(\tilde{L}_{tw} + \tilde{C}_1) \cdot \tilde{L}_{tw} = -K_Y \cdot \tilde{L}_{tw} = \frac{1}{35}, \quad (\tilde{L}_{tw} + \tilde{C}_1)^2 = 2B^3 = \frac{6}{35},$$

on the surface T, we obtain

$\tilde{L}_{tw}^2 = -\frac{6}{35}, \quad \tilde{L}_{tw} \cdot \tilde{C}_1 = \frac{1}{5}, \quad \tilde{C}_1^2 = -\frac{2}{5}.$
The intersection matrix
\[
\begin{pmatrix}
L_{tw}^2 & L_{tw} \cdot \tilde{C}_1 \\
L_{tw} \cdot \tilde{C}_1 & \tilde{C}_1^2
\end{pmatrix}
= \begin{pmatrix}
-\frac{6}{35} & \frac{1}{5} \\
\frac{1}{5} & -\frac{2}{5}
\end{pmatrix}
\]
is negative-definite.

Suppose that \(b_1 = 0\) and \(a_1 \neq 0\). Then \(b_2 \neq 0\). The curve \(\tilde{D}\) consists of two irreducible curves \(\tilde{L}_{zt}\) and \(\tilde{C}_2\). The curve \(\tilde{C}_2\) is the proper transform of the curve \(C_2\) defined by \(x = y = zw + a_1t^2 = 0\). From the intersections
\[
(L_{zt} + \tilde{C}_2) \cdot \tilde{L}_{zt} = -K_Y \cdot \tilde{L}_{zt} = -\frac{1}{10}, \quad (\tilde{L}_{zt} + \tilde{C}_2)^2 = 2B^3 = -\frac{6}{35}
\]
on the surface \(T\), we obtain
\[
\tilde{L}_{zt}^2 = -\frac{1}{10} - \tilde{L}_{zt} \cdot \tilde{C}_2, \quad \tilde{C}_2^2 = -\frac{1}{14} - \tilde{L}_{zt} \cdot \tilde{C}_2.
\]

With these intersection numbers we see that the matrix
\[
\begin{pmatrix}
\tilde{L}_{zt}^2 & \tilde{L}_{zt} \cdot \tilde{C}_2 \\
\tilde{L}_{zt} \cdot \tilde{C}_2 & \tilde{C}_2^2
\end{pmatrix}
= \begin{pmatrix}
-\frac{1}{10} & -\tilde{L}_{zt} \cdot \tilde{C}_2 \\
-\tilde{L}_{zt} \cdot \tilde{C}_2 & -\frac{1}{14} - \tilde{L}_{zt} \cdot \tilde{C}_2
\end{pmatrix}
\]
is negative-definite since \(\tilde{L}_{zt} \cdot \tilde{C}_2\) is non-negative.

Suppose that \(b_1 = 0\) and \(a_1 = 0\). We then have \(b_2 \neq 0\) and \(a_2 \neq 0\). Furthermore, the defining equation of \(X_{17}\) must contain \(xz^2t\); otherwise \(X_{17}\) would not be quasi-smooth at the point \(x = y = w = a_2t^3 + b_2z^3 = 0\). Note that the presence of \(xz^2t\) implies the normality of the surfaces \(H\) and \(T\). The curve \(\tilde{D}\) consists of two irreducible curves \(\tilde{L}_{tw}\) and \(\tilde{L}_{zt}\). Indeed, \(\tilde{D} = \tilde{L}_{tw} + 2\tilde{L}_{zt}\). Note that the curve \(\tilde{L}_{tw}\) and \(\tilde{L}_{zt}\) intersect at the point \(O_1\). The surface \(H\) is not quasi-smooth at the point \(O_1\). We consider the divisor \(D_z\) on \(H\) cut by the equation \(z = 0\). We easily see that \(D_z = 2L_{tw} + R\), where \(R\) is a curve whose support does not contain \(L_{tw}\). The curve \(R\) and \(L_{tw}\) intersects at the point \(O_w\). The surface \(H\) is quasi-smooth at the point \(O_w\). Then we have
\[
2L_{tw} \cdot \tilde{R} = \frac{3}{7}. \quad \text{From the intersection}
\]
we obtain
\[
2L_{tw} + \tilde{R} \cdot L_{tw} = 3A \cdot L_{tw} = \frac{3}{35}
\]
From the intersections
\[
(L_{tw} + 2L_{zt}) \cdot L_{tw} = -K_Y \cdot L_{tw} = \frac{1}{35}, \quad (L_{tw} + 2L_{zt})^2 = 2B^3 = -\frac{6}{35}
\]
on the surface \(T\), we obtain
\[
\tilde{L}_{tw}^2 = -\frac{6}{35}, \quad \tilde{L}_{tw} \cdot \tilde{L}_{zt} = \frac{1}{10}, \quad \tilde{L}_{zt}^2 = -\frac{1}{10}.
\]

The intersection matrix
\[
\begin{pmatrix}
\tilde{L}_{tw}^2 & \tilde{L}_{tw} \cdot \tilde{L}_{zt} \\
\tilde{L}_{tw} \cdot \tilde{L}_{zt} & \tilde{L}_{zt}^2
\end{pmatrix}
= \begin{pmatrix}
-\frac{6}{35} & \frac{1}{10} \\
\frac{1}{10} & -\frac{1}{10}
\end{pmatrix}
\]
is negative-definite.

For the singular point O_y with $c_1 \neq 0$ we consider the linear system $| - 5K_{X_{15}} |$. Every member in the linear system passes through the point O_y. The base locus of $| - 5K_{X_{15}} |$ is the union of the loci defined by $x = t = y = 0$ and $x = t = z = 0$. It is a 0-dimensional locus. Since the proper transform of a general member in $| - 5K_{X_{15}} |$ belongs to the linear system $| 5B + 2E |$, the divisor T is nef.

For the singular point O_y with $c_1 = 0$ and $c_2 \neq 0$ we may assume that $c_2 = 1$ and $c_3 = c_4 = 0$ by a coordinate change. Choose a general member H in the linear system generated by x^5 and t. Then it is a normal surface of degree 17 in $\mathbb{P}(1,2,3,7)$. Let T be the proper transform of the surface H. The intersection of T with the surface S gives us a divisor consisting of two curves \tilde{L}_{yw} and \tilde{C}. The curve \tilde{C} is the proper transform of the curve C defined by $x = t = w^2 + b_2yz^4 + awy^2z + by^4z^2 = 0$, where a and b are constants.

Suppose that $b_2 \neq 0$. Then the curve \tilde{C} is irreducible. From the intersection numbers

$$ (\tilde{L}_{yw} + \tilde{C}) \cdot \tilde{L}_{yw} = -K_Y \cdot \tilde{L}_{yw} = -\frac{3}{7}, $$

$$ (\tilde{L}_{yw} + \tilde{C})^2 = B^2 \cdot (5B + E) = -\frac{23}{21} $$

on the surface T, we obtain

$$ \tilde{L}_{yw}^2 = -\frac{3}{7} - \tilde{L}_{yw} \cdot \tilde{C}, \quad \tilde{C}^2 = -\frac{2}{3} - \tilde{L}_{yw} \cdot \tilde{C} $$

With these intersection numbers we see that the matrix

$$ \begin{pmatrix} \tilde{L}_{yw}^2 & \tilde{L}_{yw} \cdot \tilde{C} \\ \tilde{L}_{yw} \cdot \tilde{C} & \tilde{C}^2 \end{pmatrix} = \begin{pmatrix} -\frac{3}{7} - \tilde{L}_{yw} \cdot \tilde{C} & \tilde{L}_{yw} \cdot \tilde{C} \\ -\frac{2}{3} - \tilde{L}_{yw} \cdot \tilde{C} & \tilde{C}^2 \end{pmatrix} $$

is negative-definite since $\tilde{L}_{yw} \cdot \tilde{C}$ is non-negative.

Suppose that $b_2 = 0$. The curve C then consists of two irreducible curves C_1 and C_2 defined by $x = t = w - \alpha_1y^2z = 0$ and $x = t = w - \alpha_2y^2z = 0$, respectively. Therefore, the curve \tilde{C} consists of their proper transforms \tilde{C}_1 and \tilde{C}_2. From the intersections

$$ (\tilde{L}_{yw} + \tilde{C}_1 + \tilde{C}_2) \cdot \tilde{L}_{yw} = -K_Y \cdot \tilde{L}_{yw} = -\frac{3}{7}, $$

$$ (\tilde{L}_{yw} + \tilde{C}_1 + \tilde{C}_2) \cdot \tilde{C}_1 = -K_Y \cdot \tilde{C}_1 = -\frac{1}{3}, \quad (\tilde{L}_{yw} + \tilde{C}_1 + \tilde{C}_2) \cdot \tilde{C}_2 = -K_Y \cdot \tilde{C}_2 = -\frac{1}{3} $$

on the surface T, we obtain the intersection matrix of the curves \tilde{L}_{yw}, \tilde{C}_1 and \tilde{C}_2

$$ \begin{pmatrix} -\frac{3}{7} - \tilde{L}_{yw} \cdot \tilde{C}_1 - \tilde{L}_{yw} \cdot \tilde{C}_2 & \tilde{L}_{yw} \cdot \tilde{C}_1 \\ \tilde{L}_{yw} \cdot \tilde{C}_1 & -\frac{1}{3} - \tilde{L}_{yw} \cdot \tilde{C}_1 - \tilde{C}_1 \cdot \tilde{C}_2 \\ \tilde{L}_{yw} \cdot \tilde{C}_2 & \tilde{C}_1 \cdot \tilde{C}_2 & -\frac{1}{3} - \tilde{L}_{yw} \cdot \tilde{C}_2 - \tilde{C}_1 \cdot \tilde{C}_2 \end{pmatrix}. $$

It is easy to check that it is negative-definite since $\tilde{L}_{yw} \cdot \tilde{C}_1$, $\tilde{L}_{yw} \cdot \tilde{C}_2$ and $\tilde{C}_1 \cdot \tilde{C}_2$ are non-negative.

For the singular point O_y with $c_1 = c_2 = 0$ and $c_3 \neq 0$ we may assume that $c_3 = 1$ and $c_4 = 0$ by a coordinate change. Note that in such a case, we must have the monomial
We also have xyw^2, i.e., $e \neq 0$: otherwise the hypersurface X_{17} is not quasi-smooth at the point defined by $x = z = w^2 + y^7 = 0$.

Choose a general member H in the linear system generated by x^3 and z. Then it is a normal surface of degree 17 in $\mathbb{P}(1, 2, 5, 7)$. Let D be the curve on H cut out by the equation $x = 0$. Let T be the proper transform of the surface H. Then T is normal and the curve D is cut out by the surface S.

Suppose that $a_1 \neq 0$. We may then assume that $a_1 = 1$ and $a_2 = 0$ by a coordinate change. The curve D then consists of two irreducible curves L_{yw} and L_{yt}. From the intersection numbers

$$(2\tilde{L}_{yw} + \tilde{L}_{yt}) \cdot \tilde{L}_{yw} = -K_Y \cdot \tilde{L}_{yw} = -\frac{3}{7}, \quad (2\tilde{L}_{yw} + \tilde{L}_{yt})^2 = 3B^3 = -\frac{44}{35}$$

on the surface T, we obtain

$$\tilde{L}_{yw}^2 = -3\frac{14}{1} - \frac{1}{2} \tilde{L}_{yw} \cdot \tilde{L}_{yt}, \quad \tilde{L}_{yt}^2 = -2 \frac{5}{2} - 2 \tilde{L}_{yw} \cdot \tilde{L}_{yt}$$

With these intersection numbers we see that the matrix

$$
\begin{pmatrix}
\tilde{L}_{yw}^2 & \tilde{L}_{yw} \cdot \tilde{L}_{yt} \\
\tilde{L}_{yw} \cdot \tilde{L}_{yt} & \tilde{L}_{yt}^2
\end{pmatrix}
=
\begin{pmatrix}
-3 \frac{14}{7} & -\frac{1}{2} \tilde{L}_{yw} \cdot \tilde{L}_{yt} \\
-\frac{1}{2} \tilde{L}_{yw} \cdot \tilde{L}_{yt} & -2 \frac{5}{2} - 2 \tilde{L}_{yw} \cdot \tilde{L}_{yt}
\end{pmatrix}
$$

is negative-definite since $\tilde{L}_{yw} \cdot \tilde{L}_{yt}$ is non-negative.

Suppose that $a_1 = 0$. By changing the coordinate y, we may assume that the defining equation of X_{17} does not contain the monomial x^2t^3. The curve D consists of two irreducible curves L_{yw} and L_{tw}. In fact, we have $D = 3\tilde{L}_{yw} + \tilde{L}_{tw}$. Since the curve L_{yw} passes through the point O_y but the curve L_{tw} does not, we have

$$L_{yw} \cdot L_{tw} = \tilde{L}_{yw} \cdot \tilde{L}_{tw}, \quad L_{tw}^2 = \tilde{L}_{tw}^2.$$

We also have

$$(3\tilde{L}_{yw} + \tilde{L}_{tw}) \cdot \tilde{L}_{yw} = -K_Y \cdot \tilde{L}_{yw} = -\frac{3}{7}, \quad (3L_{yw} + L_{tw}) \cdot L_{tw} = -K_{X_{17}} \cdot L_{tw} = -\frac{1}{35}.$$

To compute $L_{yw} \cdot L_{tw}$, we consider the divisor D_y on H given by the equation $y = 0$. Since the defining equation of X_{17} does not contain the monomial x^2t^3, we have $D_y = 3L_{tw} + R$, where R is a curve whose support does not contain the curve L_{tw}. Note that R meets L_{tw} only at the point O_t. Moreover, we can easily see that $L_{tw} \cdot R = \frac{2}{7}$ since H is quasi-smooth at the point O_t. Then the intersection

$$(3L_{tw} + R) \cdot L_{tw} = -2K_{X_{17}} \cdot L_{tw} = -\frac{2}{35}$$

implies that $L_{tw}^2 = -\frac{4}{35}$. This gives

$$
\begin{pmatrix}
\tilde{L}_{yw}^2 & \tilde{L}_{yw} \cdot \tilde{L}_{tw} \\
\tilde{L}_{yw} \cdot \tilde{L}_{tw} & \tilde{L}_{tw}^2
\end{pmatrix}
=
\begin{pmatrix}
-\frac{10}{35} & \frac{1}{35} \\
\frac{1}{35} & -\frac{4}{35}
\end{pmatrix}
$$

which is negative-definite.
For the singular point O_y with $c_1 = c_2 = c_3 = 0$, we consider linear system $|−7K_{X_{17}}|$. Every member in the linear system passes through the point O_y. The proper transform of a general member in $|−7K_{X_{17}}|$ belongs to the linear system $|7B + 3E|$. The base locus of the linear system $|−7K_{X_{17}}|$ possibly contains only the curve L_{yz} and the curve L_{zt}. If they are contained in X_{17}, we see $(7B + 3E) · L_{yz} = −7K_{X_{17}} · L_{yz} = 7$ and $(7B + 3E) · L_{zt} = −7K_{X_{17}} · L_{zt} = 7$. Therefore, T is nef.

No. 36: $X_{18} ⊂ \mathbb{P}(1, 1, 4, 6, 7)$

A\(^3\) = 3/28

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{7}(1, 1, 6)$	$τ$	zw^2	$−3t + w_1f_{11}(x, y, z, t) + f_{18}(x, y, z, t)$	y	y
$O_z = \frac{1}{7}(1, 1, 3)$	$τ$	$zw^2 − z^3t$	$−3t + w_1f_{11}(x, y, z, t) + f_{18}(x, y, z, t)$	y	y
$O_zO_t = 1 × \frac{1}{7}(1, 1, 1, 1, 1, 1)$	$τ$	zw^2	$−3t + w_1f_{11}(x, y, z, t) + f_{18}(x, y, z, t)$	y	y

The 1-cycle $Γ$ for the singular point of type $\frac{1}{7}(1, 1, 1)$ is irreducible because of the monomials zw^2 and t^3.

No. 38: $X_{18} ⊂ \mathbb{P}(1, 2, 3, 5, 8)$

A\(^3\) = 3/40

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{7}(1, 3, 5)$	$τ$	yw^2	$−3t + w_1f_{11}(x, y, z, t) + f_{18}(x, y, z, t)$	y	y
$O_t = \frac{1}{7}(1, 2, 3)$	$τ$	wt^2	$−3t + w_1f_{11}(x, y, z, t) + f_{18}(x, y, z, t)$	y	y
$O_yO_w = 2 × \frac{1}{7}(1, 1, 1, 1, 1, 1)$	$τ$	zw^2	$−3t + w_1f_{11}(x, y, z, t) + f_{18}(x, y, z, t)$	y	y

For the singular points of type $\frac{1}{7}(1, 1, 1)$ we consider the linear system $|−5K_{X_{18}}|$. Every member of the linear system passes through the singular points of type $\frac{1}{7}(1, 1, 1)$ and the base locus of the linear system contains no curves. Since the proper transform of a general member in $|−5K_{X_{18}}|$ belongs to the linear system $|5B + 2E|$, the divisor T is nef.

No. 40: $X_{19} ⊂ \mathbb{P}(1, 3, 4, 5, 7)$

A\(^4\) = 19/420

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{7}(1, 3, 4)$	$τ$	tw^2	$−3t + w_1f_{11}(x, y, z, t) + f_{18}(x, y, z, t)$	y	y
$O_t = \frac{1}{7}(1, 3, 2)$	$τ$	$tw^2 − z^3t$	$−3t + w_1f_{11}(x, y, z, t) + f_{18}(x, y, z, t)$	y	y
$O_z = \frac{1}{7}(1, 3, 3, 3, 3)$	$τ$	tw^2	$−3t + w_1f_{11}(x, y, z, t) + f_{18}(x, y, z, t)$	y	y
$O_z = \frac{1}{7}(1, 1, 1, 1, 1, 1)$	$τ$	$zw^2 − z^3t$	$−3t + w_1f_{11}(x, y, z, t) + f_{18}(x, y, z, t)$	y	y
$O_yO_w = 2 × \frac{1}{7}(1, 1, 1, 1, 1, 1)$	$τ$	zw^2	$−3t + w_1f_{11}(x, y, z, t) + f_{18}(x, y, z, t)$	y	y

For the singular points of type $\frac{1}{7}(1, 1, 1)$ we consider the linear system $|−5K_{X_{18}}|$. Every member of the linear system passes through the singular points of type $\frac{1}{7}(1, 1, 1)$ and the base locus of the linear system contains no curves. Since the proper transform of a general member in $|−5K_{X_{18}}|$ belongs to the linear system $|5B + 2E|$, the divisor T is nef.
\[O_y = \frac{1}{7}(1,1,2,t) \oplus \]

\[O_y = \frac{1}{7}(1,1,2,t) \oplus \]

\[O_y = \frac{1}{7}(1,2,1,t) \oplus \]

\[O_y = \frac{1}{7}(1,2,1,t) \oplus \]

\(O_y = \frac{1}{7}(1,1,2,t) \oplus \)	\(-\)	\(7B + E\)	\(w\)	\(z^4y\)	\(b_1 \neq 0, b = 0\)	\(a_2 \neq 0\)
\(O_y = \frac{1}{7}(1,1,2,t) \oplus \)	\(-\)	\(7B\)	\(w\)	\(zt^3\)	\(b_1 \neq 0, b = 0\)	\(a_2 = 0\)
\(O_y = \frac{1}{7}(1,2,1,t) \oplus \)	\(-\)	\(4B\)	\(x^4, z\)	\(x^4, tw^2\)	\(b_1 = 0, b_2 \neq 0\)	
\(O_y = \frac{1}{7}(1,2,1,t) \oplus \)	\(-\)	\(7B + 2E\)	\(w\)	\(w\)	\(b_1 = 0, b_2 = 0\)	

The 1-cycle \(\Gamma\) for the singular point \(O_z\) with \(a_1 \neq 0\) is irreducible due to the monomials \(tw^2, zt^3\) and \(z^3w\).

For the singular point \(O_z\) with \(a_1 = 0\) we choose a general member \(H\) in the linear system \(| - 3K_{X_{19}}|\). Then it is a normal surface of degree 19 in \(\mathbb{P}(1,4,5,7)\). Let \(T\) be the proper transform of the divisor \(H\). The intersection of \(T\) with the surface \(S\) defines a divisor consisting of two irreducible curves \(\tilde{L}_{zw}\) and \(\tilde{C}\). The curve \(\tilde{C}\) is the proper transform of the curve \(C\) defined by \(x = y = w^2 - zt^2 = 0\). From the intersection

\[
(\tilde{L}_{zw} + \tilde{C}) \cdot \tilde{L}_{zw} = -K_Y \cdot \tilde{L}_{zw} = -\frac{1}{21}, \quad (\tilde{L}_{zw} + \tilde{C})^2 = 3B^3 = \frac{4}{33}
\]

on the surface \(T\), we obtain

\[
\tilde{L}_{zw}^2 = -\frac{1}{21} - \tilde{L}_{zw} \cdot \tilde{C}, \quad \tilde{C}^2 = -\frac{1}{15} - \tilde{L}_{zw} \cdot \tilde{C}.
\]

With these intersection numbers we see that the matrix

\[
\left(\begin{array}{cc}
\tilde{L}_{zw}^2 & \tilde{L}_{zw} \cdot \tilde{C} \\
\tilde{L}_{zw} \cdot \tilde{C} & \tilde{C}^2
\end{array} \right)
= \left(\begin{array}{cc}
-\frac{1}{21} - \tilde{L}_{zw} \cdot \tilde{C} & \tilde{L}_{zw} \cdot \tilde{C} \\
\tilde{L}_{zw} \cdot \tilde{C} & \frac{1}{15} - \tilde{L}_{zw} \cdot \tilde{C}
\end{array} \right)
\]

is negative-definite since \(\tilde{L}_{zw} \cdot \tilde{C}\) is non-negative number.

Consider the singular point \(O_y\) with \(b_1 \neq 0\). In this case, we may assume that \(b_1 = 1\) and \(b_2 = b_3 = 0\) by a suitable coordinate change.

For the singular point \(O_y\) with \(b_1 \neq 0, b \neq 0\) and \(a_2 \neq 0\) the 1-cycle \(\Gamma\) is irreducible because of the monomials \(zt^3, yz^4\) and \(y^3t^2\).

For the singular point \(O_y\) with \(b_1 \neq 0, b \neq 0\) and \(a_2 = 0\) we may assume that the monomial \(xy^3z^3\) does not appear in \(f_{19}\) by changing the coordinate \(w\) in a suitable way. We must then have \(a \neq 0\); otherwise the hypersurface would not be quasi-smooth at the point defined by \(x = t = w = a_1z^3 + y^4 = 0\).

Take a general member \(H\) in the linear system generated by \(x^7\) and \(w\). Then it is a normal surface of degree 19 in \(\mathbb{P}(1,3,4,5)\). Let \(T\) be the proper transform of the divisor \(H\). The intersection of \(T\) with the surface \(S\) gives us a divisor consisting of two irreducible curves \(\tilde{L}_{yz}\) and \(\tilde{C}_1\). The curve \(\tilde{C}_1\) is the proper transform of the curve \(C_1\) defined by \(x = w = -zt^2 + ay^2z^2 + by^3t = 0\).

From the intersection

\[
(\tilde{L}_{yz} + \tilde{C}_1) \cdot \tilde{L}_{yz} = -K_Y \cdot \tilde{L}_{yz} = -\frac{1}{4}, \quad (\tilde{L}_{yz} + \tilde{C}_1)^2 = B^2 \cdot (7B + E) = -\frac{7}{20}
\]

on the surface \(T\), we obtain

\[
\tilde{L}_{yz}^2 = -\frac{1}{4} - \tilde{L}_{yz} \cdot \tilde{C}_1, \quad \tilde{C}_1^2 = -\frac{1}{10} - \tilde{L}_{yz} \cdot \tilde{C}_1.
\]
With these intersection numbers we see that the matrix
\[
\begin{pmatrix}
\tilde{L}_{yz}^2 & \tilde{L}_{yz} \cdot \tilde{C}_1 \\
\tilde{L}_{yz} \cdot \tilde{C}_1 & \tilde{C}_1^2
\end{pmatrix}
= \begin{pmatrix}
-\frac{1}{4} - \tilde{L}_{yz} \cdot \tilde{C}_1 & -\tilde{L}_{yz} \cdot \tilde{C}_1 \\
\tilde{L}_{yz} \cdot \tilde{C}_1 & -\frac{1}{10} - \tilde{L}_{yz} \cdot \tilde{C}_1
\end{pmatrix}
\]
is negative-definite since \(\tilde{L}_{yz} \cdot \tilde{C}_1\) is non-negative number.

For the singular point \(O_y\) with \(b_1 \neq 0, b = 0\) and \(a_2 \neq 0\) we take a general member \(H\) in the linear system generated by \(x^7\) and \(w\). Then it is a normal surface of degree 19 in \(\mathbb{P}(1, 3, 4, 5)\). Let \(T\) be the proper transform of the divisor \(H\). The intersection of \(T\) with the surface \(S\) gives us a divisor consisting of two irreducible curves \(\tilde{L}_{yt}\) and \(\tilde{C}_2\). The curve \(\tilde{C}_2\) is the proper transform of the curve \(C_2\) defined by \(x = w = -t^3 + a_2yz^3 + ay^2zt = 0\). From the intersections
\[
(\tilde{L}_{yt} + \tilde{C}_2) \cdot \tilde{L}_{yt} = -K_Y \cdot \tilde{L}_{yt} = -\frac{1}{10}, \quad (\tilde{L}_{yt} + \tilde{C}_2)^2 = B^2 \cdot (7B + E) = -\frac{7}{20}
\]
on the surface \(T\), we obtain
\[
\tilde{L}_{yt}^2 = -\frac{1}{10} - \tilde{L}_{yt} \cdot \tilde{C}_2, \quad \tilde{C}_2^2 = -\frac{1}{4} - \tilde{L}_{yt} \cdot \tilde{C}_2.
\]

With these intersection numbers we see that the matrix
\[
\begin{pmatrix}
\tilde{L}_{yt}^2 & \tilde{L}_{yt} \cdot \tilde{C}_2 \\
\tilde{L}_{yt} \cdot \tilde{C}_2 & \tilde{C}_2^2
\end{pmatrix}
= \begin{pmatrix}
-\frac{1}{10} - \tilde{L}_{yt} \cdot \tilde{C}_2 & -\tilde{L}_{yt} \cdot \tilde{C}_2 \\
\tilde{L}_{yt} \cdot \tilde{C}_2 & -\frac{1}{4} - \tilde{L}_{yt} \cdot \tilde{C}_2
\end{pmatrix}
\]
is negative-definite since \(\tilde{L}_{yt} \cdot \tilde{C}_2\) is a non-negative number.

For the singular point \(O_y\) with \(b_1 \neq 0, b = 0\) and \(a_2 = 0\) we may assume that the monomial \(xy^2z^3\) does not appear in \(f_{19}\) by changing the coordinate \(w \) in a suitable way. We must then have \(a \neq 0\); otherwise the hypersurface would not be quasi-smooth at the point defined by \(x = t = w = a_1z^3 + y^4 = 0\).

Take a general member \(H\) in the linear system generated by \(x^7\) and \(w\). Then it is a normal surface of degree 19 in \(\mathbb{P}(1, 3, 4, 5)\). Let \(T\) be the proper transform of the divisor \(H\). The intersection of \(T\) with the surface \(S\) gives us a divisor consisting of three irreducible curves \(\tilde{L}_{yz}, \tilde{L}_{yt}\) and \(\tilde{C}_3\). The curve \(\tilde{C}_3\) is the proper transform of the curve \(C_3\) defined by \(x = w = -t^2 + ay^2z = 0\). From the intersections
\[
(\tilde{L}_{yz} + \tilde{L}_{yt} + \tilde{C}_3) \cdot \tilde{L}_{yz} = -K_Y \cdot \tilde{L}_{yz} = -\frac{1}{4},
\]
\[
(\tilde{L}_{yz} + \tilde{L}_{yt} + \tilde{C}_3) \cdot \tilde{L}_{yt} = -K_Y \cdot \tilde{L}_{yt} = -\frac{1}{10},
\]
\[
(\tilde{L}_{yz} + \tilde{L}_{yt} + \tilde{C}_3) \cdot \tilde{C}_3 = -K_Y \cdot \tilde{C}_3 = -\frac{1}{6}.
\]
on the surface \(T\), we obtain the intersection matrix of the curves \(\tilde{L}_{yz}, \tilde{L}_{yt}\) and \(\tilde{C}_3\)
\[
\begin{pmatrix}
-\frac{1}{4} - \tilde{L}_{yz} \cdot \tilde{L}_{yt} - \tilde{L}_{yz} \cdot \tilde{C}_3 & -\tilde{L}_{yz} \cdot \tilde{L}_{yt} & \tilde{L}_{yz} \cdot \tilde{C}_3 \\
\tilde{L}_{yz} \cdot \tilde{L}_{yt} & -\frac{1}{10} - \tilde{L}_{yz} \cdot \tilde{L}_{yt} - \tilde{L}_{yt} \cdot \tilde{C}_3 & \tilde{L}_{yt} \cdot \tilde{C}_3 \\
\tilde{L}_{yz} \cdot \tilde{C}_3 & \tilde{L}_{yt} \cdot \tilde{C}_3 & -\frac{1}{6} - \tilde{L}_{yz} \cdot \tilde{C}_3 - \tilde{L}_{yt} \cdot \tilde{C}_3
\end{pmatrix}
\]
It is easy to check that it is negative-definite since \(\tilde{L}_{yz} \cdot \tilde{L}_{yt}, \tilde{L}_{yz} \cdot \tilde{C}_3\) and \(\tilde{L}_{yt} \cdot \tilde{C}_3\) are non-negative numbers.
For the singular point \(O_y \) with \(b_1 = 0 \) and \(b_2 \neq 0 \) we may put \(b_2 = 1 \) by a coordinate change. Choose a general member \(H \) in the pencil on \(X_{19} \) generated by \(x^4 \) and \(z \). Then it is a normal surface of degree 19 in \(\mathbb{P}(1, 3, 5, 7) \). Let \(T \) be the proper transform of the divisor \(H \). The surface \(S \) cuts out the surface \(T \) into a divisor \(\tilde{D} \).

We suppose that \(b \neq 0 \). The divisor \(\tilde{D} \) then consists of two irreducible curves \(\tilde{L}_{yw} \) and \(\tilde{C} \). The curve \(\tilde{C} \) is the proper transform of the curve \(C \) defined by \(x = z = w^2 + by^3t = 0 \). From the intersection

\[
(\tilde{L}_{yw} + \tilde{C}) \cdot \tilde{L}_{yw} = -K_Y \cdot \tilde{L}_{yw} = -\frac{2}{7}, \quad (\tilde{L}_{yw} + \tilde{C})^2 = 4B^3 = -\frac{17}{35}
\]
on the surface \(T \), we obtain

\[
\tilde{L}_{yw}^2 = -\frac{2}{7} - \tilde{L}_{yw} \cdot \tilde{C}, \quad \tilde{C}^2 = -\frac{1}{5} - \tilde{L}_{yw} \cdot \tilde{C}.
\]

With these intersection numbers we see that the matrix

\[
\begin{pmatrix}
\tilde{L}_{yw}^2 & \tilde{L}_{yw} \cdot \tilde{C} \\
\tilde{L}_{yw} \cdot \tilde{C} & \tilde{C}^2
\end{pmatrix}
= \begin{pmatrix}
-\frac{2}{7} - \tilde{L}_{yw} \cdot \tilde{C} & \tilde{L}_{yw} \cdot \tilde{C} \\
\tilde{L}_{yw} \cdot \tilde{C} & -\frac{1}{5} - \tilde{L}_{yw} \cdot \tilde{C}
\end{pmatrix}
\]
is negative-definite since \(\tilde{L}_{yw} \cdot \tilde{C} \) is non-negative number.

We now suppose that \(b = 0 \). The divisor \(\tilde{D} \) then consists of two irreducible curves \(\tilde{L}_{yw} \) and \(\tilde{L}_{yt} \). From the intersection

\[
(\tilde{L}_{yw} + 2\tilde{L}_{yt}) \cdot \tilde{L}_{yw} = -K_Y \cdot \tilde{L}_{yw} = -\frac{2}{7}, \quad (\tilde{L}_{yw} + 2\tilde{L}_{yt})^2 = 4B^3 = -\frac{17}{35}
\]
on the surface \(T \), we obtain

\[
\tilde{L}_{yw}^2 = -\frac{2}{7} - 2\tilde{L}_{yw} \cdot \tilde{L}_{yt} , \quad \tilde{L}_{yt}^2 = -\frac{1}{20} - \frac{1}{2}\tilde{L}_{yw} \cdot \tilde{L}_{yt}.
\]

With these intersection numbers we see that the matrix

\[
\begin{pmatrix}
\tilde{L}_{yw}^2 & \tilde{L}_{yw} \cdot \tilde{L}_{yt} \\
\tilde{L}_{yw} \cdot \tilde{L}_{yt} & \tilde{L}_{yt}^2
\end{pmatrix}
= \begin{pmatrix}
-\frac{3}{7} - 2\tilde{L}_{yw} \cdot \tilde{L}_{yt} & \tilde{L}_{yw} \cdot \tilde{L}_{yt} \\
\tilde{L}_{yw} \cdot \tilde{L}_{yt} & -\frac{1}{20} - \frac{1}{2}\tilde{L}_{yw} \cdot \tilde{L}_{yt}
\end{pmatrix}
\]
is negative-definite since \(\tilde{L}_{yw} \cdot \tilde{L}_{yt} \) is non-negative number.

For the singular point \(O_y \) with \(b_1 = b_2 = 0 \) we consider the linear system generated by \(z^{35} \), \(t^{28} \) and \(w^{20} \) on the hypersurface \(X_{19} \). Its base locus is cut out by \(z = t = w = 0 \). Since we have the monomial \(xy^6 \), the base locus does not contain curves. Therefore the proper transform of a general member in the linear system is nef by Lemma 3.1.6. It belongs to \([140B + 40E]\). Consequently, the surface \(T \) is nef since \(20T \sim 140B + 40E \).

No. 41: \(X_{20} \subset \mathbb{P}(1, 1, 4, 5, 10) \)	\(A^4 = 1/10 \)
\((w - \alpha_1 t^2)(w - \alpha_2 t^2) + z^5 + w f_{10}(x, y, z, t) + f_{20}(x, y, z, t)\)	\(w^t t^2\)

Singularity	\(B^3 \)	Linear system	Surface \(T \)	Vanishing order	Condition
\(O_1O_w = 2 \times \frac{1}{5}(1, 1, 4)\)	\(\oplus\)	\(\oplus\)	\(\oplus\)	\(\oplus\)	\(\oplus\)
\(O_2O_w = 1 \times \frac{1}{5}(1, 1, 1, 1)\)	\(\oplus\)	\(\oplus\)	\(\oplus\)	\(\oplus\)	\(\oplus\)
We may assume that $\alpha_1 = 0$. To see how to treat the singular points of type $\frac{1}{2}(1, 1, 4)$, we have only to consider the singular point O_t. The other point can be dealt with in the same way.

The 1-cycle Γ for the singular point of type $\frac{1}{2}(1, 1, 1)$ is irreducible because of the monomial w^2 and z^5.

No. 42: $X_{20} \subset \mathbb{P}(1, 2, 3, 5, 10)\quad A^3 = 1/15$

$$(w - \alpha_2 y^5)(w - \alpha_2 y^5) + wt^2 + z^5(a_1 t + a_2 y z) + w f_{10}(x, y, z, t) + f_{20}(x, y, z, t)$$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{2}(1, 2, 4, 1, 3)$	\oplus	$2B$	y	y	$a_1 \neq 0$
$O_z = \frac{1}{2}(1, 2, 4, 1, 3)$	\oplus	$2B$	y	w^2	$a_1 = 0$
$O_t O_w = 2 \times \frac{1}{2}(1, 2, 3)$	τ	wt^2	t	t	
$O_t O_w = 2 \times \frac{1}{2}(1, 1, 1)$	\oplus	$5B + 2E$	t	t	

The 1-cycle Γ for the singular point O_z with $a_1 \neq 0$ is irreducible due to w^2 and $z^5 t$.

The 1-cycle Γ for the singular point O_z with $a_1 = 0$ consists of the proper transforms of the curve L_{zt} and the curve defined by $x = y = w + t^2 = 0$. These two irreducible components are symmetric with respect to the biregular involution of X_{20}. Consequently the components of Γ are numerically equivalent to each other.

By changing the coordinate w we may assume that t^4 is not in the polynomial f_{20}. To see how to untwist or exclude the singular points of type $\frac{1}{2}(1, 2, 3)$ we have only to consider the singular point O_t. The other point can be treated in the same way.

For the singular points of type $\frac{1}{2}(1, 1, 1)$, we consider the linear system $| - 5K_{X_{20}} |$. Every member of the linear system passes through the singular points of type $\frac{1}{2}(1, 1, 1)$ and the base locus of the linear system contains no curves. Since the proper transform of a general member in $| - 5K_{X_{20}} |$ belongs to the linear system $|5B + 2E|$, the divisor T is nef.

No. 43: $X_{20} \subset \mathbb{P}(1, 2, 4, 5, 9)\quad A^3 = 1/18$

$$yw^2 + t^4 + \prod_{i=1}^5 (z - \alpha_i y^2) + w f_{11}(x, y, z, t) + f_{20}(x, y, z, t)$$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{2}(1, 4, 5)$	τ	yw^2	$z - \alpha_i y^2$	yw^2	
$O_y O_z = 5 \times \frac{1}{2}(1, 1, 1)$	\oplus	$4B + E$	$z - \alpha_i y^2$	yw^2	

The 1-cycles Γ for the singular points of type $\frac{1}{2}(1, 1, 1)$ are irreducible due to the monomials yw^2 and t^4.

No. 44: $X_{20} \subset \mathbb{P}(1, 2, 5, 6, 7)\quad A^3 = 1/21$

$$tw^2 + y(t - \alpha_1 y^3)(t - \alpha_2 y^3)(t - \alpha_3 y^3) + z^4 + w f_{14}(x, y, z, t) + f_{20}(x, y, z, t)$$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{2}(1, 2, 5)$	τ	tw^2	$tw^2 - yt^3$	tw^2	
$O_t = \frac{1}{3}(1, 5, 1)$	τ	tw^2	$tw^2 - yt^3$	tw^2	
\[O_y O_t = 3 \times \frac{1}{2} (1, 1, 1, w) \oplus - 6B + 2E \quad t - \alpha_i y^3 \quad tw^2 \]

The 1-cycles \(\Gamma \) for the singular points of type \(\frac{1}{2} (1, 1, 1) \) are irreducible because of the monomials \(tw^2 \) and \(z^4 \).

No. 45: \(X_{20} \subset \mathbb{P}(1, 3, 4, 5, 8) \)

\[z(w - \alpha_1 z^2)(w - \alpha_2 z^2) + t^4 + y^4(a_1 w + a_2 y t) + w f_{12}(x, y, z, t) + f_{20}(x, y, z, t) \]

Singularity	\(B^3 \)	Linear system	Surface \(T \)	Vanishing order	Condition
\(O_w = \frac{1}{5} (1, 3, 5) \)	-	\(zw^2 \)	\(4B + E \)	\(z \)	\(z \)
\(O_y = \frac{1}{7} (1, 1, 2, t) \)	-	\(3B \)	\(y \)	\(y \)	\(y \)
\(O_z O_w = 2 \times \frac{1}{9} (1, 3, 3, 1, t) \)	-	\(8B \)	\(8E \)	Time	\(1 \)

For the singular point \(O_y \) we consider the linear system generated by \(x^{10}, z^{10}, t^8 \) and \(w^5 \) on the hypersurface \(X_{20} \). Its base locus does not contain curves. Therefore the proper transform of a general member in the linear system is nef by Lemma 3.1.6. The proper transform belongs to \(|40B + 10E| \). Consequently, the surface \(T \) is nef since \(10T \sim Q \cdot 40B + 10E \).

The 1-cycles \(\Gamma \) for the singular points of type \(\frac{1}{4} (1, 3, 1) \) are irreducible due to the monomials \(zw^2 \) and \(t^4 \).

No. 46: \(X_{21} \subset \mathbb{P}(1, 1, 3, 7, 10) \)

\[y w^2 + t^3 + z^7 + w f_{11}(x, y, z, t) + f_{21}(x, y, z, t) \]

Singularity	\(B^3 \)	Linear system	Surface \(T \)	Vanishing order	Condition
\(O_w = \frac{1}{10} (1, 3, 7) \)	-	\(yw^2 \)	\(yw^2 \)	\(yw^2 \)	\(yw^2 \)

No. 47: \(X_{21} \subset \mathbb{P}(1, 1, 5, 7, 8) \)

\[zw^2 + t^3 + y^4 z + w f_{13}(x, y, z, t) + f_{21}(x, y, z, t) \]

Singularity	\(B^3 \)	Linear system	Surface \(T \)	Vanishing order	Condition
\(O_w = \frac{1}{7} (1, 1, 7) \)	-	\(zw^2 \)	\(zw^2 \)	\(zw^2 \)	\(zw^2 \)
\(O_z = \frac{1}{7} (1, 2, 3, 3, t) \)	+	\(B - E \)	\(y \)	\(y \)	\(y \)

For the singular point \(O_z \), let \(C_\lambda \) be the curve on the surface \(S_y \) defined by

\[
\begin{aligned}
y &= 0, \\
w &= \lambda x^8
\end{aligned}
\]

for a sufficiently general complex number \(\lambda \). We then have

\[-K_Y \cdot \tilde{C}_\lambda = (B - E) \cdot (8B + E) \cdot B = 0.\]

Consider the linear system generated by \(x^{11}, y^9 t^3 \) and \(y^8 w^8 \). Its base curve is defined by \(x = y = 0 \). It is an irreducible curve because we have the monomials \(zw^2 \) and \(t^3 \). The proper
transform of a general member of the linear system is equivalent to $72B$. The only curve that intersects the divisor B negatively is the proper transform of the irreducible curve defined by $x = y = 0$. It is furthermore not on the surface T. Therefore, if the curve \tilde{C}_λ is reducible, each component of the curve \tilde{C}_λ intersects B trivially.

No. 48: $X_{21} \subset \mathbb{P}(1, 2, 3, 7, 9) \quad A^3 = 1/18$

$zw^2 + t^3 + z^7 + y^6(a_1w + a_2yt + a_3y^3z + a_4xy^4) + wf_{12}(x, y, z, t) + f_{21}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{7}(1, 2, 7)$	7	--	zw^2	--	--
$O_y = \frac{1}{7}(1, 1, 1)$	7	$9B + 4E$	$w + yt$	w or yt	--
$O_zO_w = 2\times\frac{1}{7}(1, 2, 1)$	7	$2B$	y	y	--

For the singular point O_y we consider the linear system $| - 9K_{X_{24}} |$. Every member of the linear system passes through the singular point O_y and its base locus contains no curves. Since the proper transform of a general member in $| - 9K_{X_{24}} |$ belongs to the linear system $| 9B + 4E |$, the divisor T is nef.

The 1-cycles Γ for the singular points of type $\frac{1}{3}(1, 2, 1)$ are irreducible because of the monomials zw^2 and t^3.

No. 54: $X_{24} \subset \mathbb{P}(1, 1, 6, 8, 9) \quad A^3 = 1/18$

$zw^2 + t^3 + z^7 + wf_{15}(x, y, z, t) + f_{24}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{7}(1, 1, 8)$	7	--	zw^2	--	--
$O_zO_w = 1\times\frac{1}{7}(1, 1, 2)$	7	B	y	y	--
$O_zO_t = 1\times\frac{1}{7}(1, 1, 1)$	7	B	y	--	--

The 1-cycles Γ for the singular points of types $\frac{1}{3}(1, 1, 2)$ and $\frac{1}{2}(1, 1, 1)$ are irreducible since we have the monomials z^4 and t^3.

No. 56: $X_{24} \subset \mathbb{P}(1, 2, 3, 8, 11) \quad A^3 = 1/22$

$yw^2 + t^3 + z^8 + y^{12} + wf_{13}(x, y, z, t) + f_{24}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{11}(1, 3, 8)$	11	yw^2	$3B + E$	z	--
$O_yO_t = 3\times\frac{1}{11}(1, 1, 1)$	11	--	z	--	--

The 1-cycle Γ for each singular point of type $\frac{1}{2}(1, 1, 1)$ is irreducible due to the monomials yw^2 and t^3.

No. 58: $X_{24} \subset \mathbb{P}(1, 3, 4, 7, 10) \quad A^3 = 1/35$

$zw^2 + t^2(a_1w + a_2yt) + z^6 + y^8 + wf_{14}(x, y, z, t) + f_{24}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{10}(1, 3, 4)$	10	--	zw^2	--	--
$O_yO_t = 3\times\frac{1}{10}(1, 1, 1)$	10	$3B + E$	z	z	--
For the singular point of type $\frac{1}{7}(1,1,1)$, we consider the linear system $|−7K_{X_{24}}|$. Every member of the linear system passes through the singular point of type $\frac{1}{7}(1,1,1)$ and its base locus contains no curves. Since the proper transform of a general member in $|−7K_{X_{24}}|$ belongs to the linear system $|7B + 3E|$, the divisor T is nef.

No. 60: $X_{24} \subset \mathbb{P}(1,4,5,6,9)$

$tw^2 + (t^2 - \alpha_1y^3)(t^2 - \alpha_2y^3) + z^3(a_1w + a_2yz) + w_{15}(x, y, z, t) + f_{24}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{10}(1,4,5)$	τ	tw^2	τ		
$O_t = \frac{1}{7}(1,3,4)$	τ	t_2w	τ		
$O_2O_w = 1 \times \tau(1/4,1/y,1/t)$	τ	$7B + 3E$	t	t	

The 1-cycle Γ for the singular point O_z with $a_1 \neq 0$ is irreducible due to the monomials t^4 and z^3w.

The 1-cycle Γ for the singular point O_z with $a_1 = 0$ has two irreducible components. One is the proper transform \tilde{L}_zw of the curve L_zw and the other is the proper transform \tilde{C} of the curve defined by $x = y = w^2 + t^3 = 0$. Then we see that

$$E \cdot \tilde{C} = 3E \cdot \tilde{L}_zw, \quad B \cdot \tilde{C} = 3B \cdot \tilde{L}_zw.$$

Therefore these two components are numerically proportional on Y.

The 1-cycle Γ for the singular point of type $\frac{1}{2}(1,1,2)$ is irreducible since we have terms tw^2 and $(t^2 - \alpha_1y^3)(t^2 - \alpha_2y^3)$. Note that the constants α_i’s cannot be zero.

For the singular points of type $\frac{1}{2}(1,1,1)$, we consider the linear system generated by xy and z on X_{24}. Its base curves are defined by $x = z = 0$ and $y = z = 0$. The curve defined by $y = z = 0$ passes though no singular point of type $\frac{1}{2}(1,1,1)$. The curve defined by $x = z = 0$ is irreducible. Moreover, its proper transform is the 1-cycle defined by $(5B + 2E) \cdot B$. Consequently, the divisor T is nef since $(5B + 2E)^2 \cdot B > 0$.

No. 61: $X_{25} \subset \mathbb{P}(1,4,5,7,9)$

$tw^2 - yt^3 + z^5 + y^4(a_1w + a_2yz + a_3xy^2) + w_{16}(x, y, z, t) + f_{25}(x, y, z, t)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{7}(1,4,5)$	τ	tw^2	τ		
$O_t = \frac{1}{7}(1,5,2)$	τ	$t^2 - yt^3$	τ		
If $a_1 \neq 0$, the 1-cycle Γ for the singular point O_y is irreducible due to the monomials yt^3 and z^5.

If $a_1 = a_2 = 0$, the 1-cycle Γ for the singular point O_y is irreducible even though it is not reduced. Indeed, the support of Γ is the locus defined by $x = z = t = 0$.

Now we suppose that $a_1 = 0$ and $a_2 \neq 0$. Then we may assume that $a_2 = 1$ and $a_3 = 0$. We take a surface H cut by an equation $z = \lambda x^5$ with a general complex number λ and then let T be the proper transform of the surface. Note that the surface H is normal. However, it is not quasi-smooth at the point O_y.

The intersection of T with the surface S gives us a divisor consisting of two irreducible curves on the normal surface T. One is the proper transform of the curve L_{yw} on H. The other is the proper transform of the curve C defined by $x = z = w^2 - yt^2 = 0$ in $\mathbb{P}(1, 4, 5, 7, 9)$. From the intersection numbers

$$ (\tilde{L}_{yw} + \tilde{C}) \cdot \tilde{L}_{yw} = -K_Y \cdot \tilde{L}_{yw} = 2 \cdot \frac{2}{9}, \quad (\tilde{L}_{yw} + \tilde{C})^2 = 5B^3 = -\frac{20}{63} $$

on the surface T, we obtain

$$ \tilde{L}_{yw}^2 = 2 \cdot \frac{2}{9} - \tilde{L}_{yw} \cdot \tilde{C}, \quad \tilde{C}^2 = 2 \cdot \frac{2}{21} - \tilde{L}_{yw} \cdot \tilde{C} $$

With these intersection numbers we see that the matrix

$$ \left(\begin{array}{cc} \tilde{L}_{yw}^2 & \tilde{L}_{yw} \cdot \tilde{C} \\ \tilde{L}_{yw} \cdot \tilde{C} & \tilde{C}^2 \end{array} \right) = \left(\begin{array}{cc} \frac{2}{9} - \tilde{L}_{yw} \cdot \tilde{C} & \tilde{L}_{yw} \cdot \tilde{C} \\ \frac{2}{21} - \tilde{L}_{yw} \cdot \tilde{C} & \frac{2}{21} - \tilde{L}_{yw} \cdot \tilde{C} \end{array} \right) $$

is negative-definite since $\tilde{L}_{zw} \cdot \tilde{C}$ is positive.

No. 65: $X_{27} \subset \mathbb{P}(1, 2, 5, 9, 11)$

Singularity	B^3	Linear system	Surface T	Vanishing order	Condition
$O_w = \frac{1}{2}(1, 2, 9)$	z^{w^2}	z^{w^2}	z^{w^2}	z^{w^2}	z^{w^2}
$O_z = \frac{1}{2}(1, 4, 1)$	$2B$	y	z^{w^2}	z^{w^2}	z^{w^2}
$O_y = \frac{1}{2}(1, 1, 1)$	$11B + 5E$	$w + xy^5$	xy^5 or w	xy^5 or w	xy^5 or w

The 1-cycle Γ for the singular point O_z is irreducible because of the monomials zw^2 and t^3.

For the singular point O_y, we consider the linear system $| - 11K_{X_{27}} |$. Note that every member of the linear system passes through the point O_y and the base locus of the linear system contains no curves. Since the proper transform of a general member in $| - 11K_{X_{27}} |$ belongs to the linear system $|11B + 5E|$, the divisor T is nef.

No. 68: $X_{28} \subset \mathbb{P}(1, 3, 4, 7, 14)$

$A^3 = 1/42$
\[(w - \alpha_1 t^2)(w - \alpha_2 t^2) + z^7 + y^7(a_1 t + a_2 x y^2) + w f_{14}(x, y, z, t) + f_{28}(x, y, z, t)\]

Singularity	\(B^3\)	Linear system	Surface \(T\)	Vanishing order	Condition
\(O_y = \frac{1}{4}(1_x, 1_z, 2_w) \oplus\)	-	\(7B + E\)	\(t\)	\(w^2\)	\(a_1 \neq 0\)
\(O_y = \frac{1}{4}(1_z, 1_t, 2_w) \oplus\)	-	\(4B + E\)	\(z\)	\(z\)	\(a_1 = 0\)
\(O_t O_w = 2 \times \frac{1}{4}(1, 3, 4) \oplus\)	-	\(3B + E\)	\(y\)	\(y\)	
\(O_t O_w = 1 \times \frac{1}{4}(1_x, 1_y, 1_t) \oplus\)	-	\(z^7\)			

For the singular point \(O_y\) with \(a_1 \neq 0\) the 1-cycle \(\Gamma\) is irreducible because of the monomials \(w^2\) and \(z^7\).

The 1-cycle \(\Gamma\) for the singular point \(O_y\) with \(a_1 = 0\) consists of two irreducible curves. These are the proper transforms of the curves defined by \(x = z = w - \alpha_t t^2 = 0\). Since these two curves on \(X_{28}\) are interchanged by the automorphism defined by \([x, y, z, t, w] \mapsto [x, y, z, t, (\alpha_1 + \alpha_2)t^2 - f_{14} - w]\), their proper transforms are numerically equivalent on \(Y\).

To see how to deal with the singular points of type \(\frac{1}{4}(1, 3, 4)\) we may assume that \(\alpha_1 = 0\) and we have only to consider the singular point \(O_t\). The other point can be treated in the same way.

The 1-cycle \(\Gamma\) for the singular point of type \(\frac{1}{2}(1, 1, 1)\) is irreducible due to the monomials \(w^2\) and \(z^7\).

No. 69: \(X_{28} \subset \mathbb{P}(1, 4, 6, 7, 11)\)

\[zw^2 + t^4 + y(z^2 - \alpha_1 y^3)(z^2 - \alpha_2 y^3) + w f_{17}(x, y, z, t) + f_{28}(x, y, z, t)\]

Singularity	\(B^3\)	Linear system	Surface \(T\)	Vanishing order	Condition
\(O_w = \frac{1}{4}(1, 4, 7) \oplus\)	-	\(zw^2\)			
\(O_z = \frac{1}{4}(1_x, 1_y, 5_w) \oplus\)	-	\(4B\)	\(y\)	\(t^4\)	
\(O_y O_z = 2 \times \frac{1}{4}(1_x, 1_t, 1_w) \oplus\)	-	\(11B + 5E\)	\(w\)	\(w\)	

The 1-cycle \(\Gamma\) for the singular point \(O_z\) is irreducible due to the monomials \(zw^2\) and \(t^4\).

For the singular points of type \(\frac{1}{2}(1, 1, 1)\) consider the linear system generated by \(xyz, yt\) and \(w\). Since the base curves of the linear system pass through no singular points of type \(\frac{1}{2}(1, 1, 1)\) the divisor \(T\) is nef.

No. 74: \(X_{30} \subset \mathbb{P}(1, 3, 4, 10, 13)\)

\[zw^2 + t^3 + z^5 t + y^{10} + w f_{17}(x, y, z, t) + f_{30}(x, y, z, t)\]

Singularity	\(B^3\)	Linear system	Surface \(T\)	Vanishing order	Condition
\(O_w = \frac{1}{4}(1, 3, 7) \oplus\)	-	\(zw^2\)			
\(O_z = \frac{1}{4}(1_x, 3_y, 1_w) \oplus\)	-	\(3B\)	\(y\)	\(y\)	
\(O_y O_t = 1 \times \frac{1}{4}(1_x, 1_y, 1_w) \oplus\)	-	\(3B + E\)	\(y\)	\(y\)	

The 1-cycles \(\Gamma\) for the singular points of types \(\frac{1}{2}(1, 1, 1)\) and \(\frac{1}{4}(1, 3, 1)\) are irreducible because of the monomials \(zw^2\), \(t^3\) and \(z^5t\).
Birationally rigid Fano threefold hypersurfaces

No. 76: $X_{30} \subset \mathbb{P}(1, 5, 6, 8, 11)$

$t w^2 + z t^3 + z^5 + y^5 + w f_{19}(x, y, z, t) + f_{30}(x, y, z, t)$

$A^3 = 1/88$

Singularity	Linear system	Surface T	Vanishing order
$O_w = \frac{1}{7}(1, 5, 6)$	tw^2	tw^2	
$O_t = \frac{1}{3}(1, 5, 3)$	$tw^2 - zt^3$	$tw^2 - zt^3$	
$O_zO_t = 1 \times \frac{1}{5}(1_x, 1_y, 1_w)$	$5B + 2E$	y	

The 1-cycle Γ for the singular point of type $\frac{1}{7}(1, 1, 1)$ is irreducible because of the monomials tw^2 and z^5.

No. 79: $X_{33} \subset \mathbb{P}(1, 3, 5, 11, 14)$

$zw^2 + t^3 + y z^6 + y^{11} + w f_{19}(x, y, z, t) + f_{33}(x, y, z, t)$

$A^3 = 1/70$

Singularity	Linear system	Surface T	Vanishing order
$O_w = \frac{1}{7}(1, 3, 11)$	zw^2	zw^2	
$O_z = \frac{1}{9}(1_x, 1_t, 4_w)$	$3B$	t^3	

The 1-cycle Γ for the singular point O_z is irreducible because of the monomials zw^2 and t^3.

7 Epilogue

7.1 Open problems

Let X be a quasi-smooth hypersurface of degrees d with only terminal singularities in weighted projective space $\mathbb{P}(1, a_1, a_2, a_3, a_4)$, where $d = \sum a_i$. In Theorem 1.1.9 we prove that X is birationally rigid. In particular, X is non-rational. Moreover, the proof also explicitly describes the generators of the group of birational automorphisms $\text{Bir}(X)$ modulo subgroup of biregular automorphisms $\text{Aut}(X)$ (see Theorem 5.1.3). Furthermore, Theorem 1.1.11 says that $\text{Bir}(X) = \text{Aut}(X)$ for those families in the list of Fletcher and Reid with entry numbers No. 1, 3, 10, 11, 14, 19, 21, 22, 28, 29, 34, 35, 37, 39, 49, 50, 51, 52, 53, 55, 57, 59, 62, 63, 64, 66, 67, 70, 71, 72, 73, 75, 77, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94 and 95. Of course, some quasi-smooth threefolds in other families may also be birationally super-rigid.

Explicit birational involutions play a key role in the proof of Theorem 1.1.9. In many cases, they arise from generically 2-to-1 rational maps of X to suitable 3-dimensional weighted projective spaces (in [23] such involutions are called quadratic). However, in some cases they arise from rational maps of X to suitable 2-dimensional weighted projective spaces whose general fibers are birational to smooth elliptic curves (in [23] such involutions are called elliptic). Moreover, we often use such elliptic rational fibrations in order to exclude some singular points of X as centers of non-canonical singularities of any log pair $(X, \frac{1}{n}M)$, where M is a mobile linear subsystem in $| - nK_X|$. The latter is done using Corollary 2.2.2 or Lemma 3.1.8. A similar role in the proof of Theorem 1.1.9 is played by so-called Halphen pencils on X, i.e., pencils whose general member is an irreducible surface of Kodaira dimension zero. Implicitly Halphen pencils appear almost every time when we apply Lemmas 3.1.2 and 3.1.7. This leads us to three problems that are closely related to Theorem 1.1.9. They are
(1) to find relations between generators of the birational automorphism group Bir(X);

(2) to describe birational transformations of X into elliptic fibrations;

(3) to classify Halphen pencils on X.

While proving Theorem 1.1.9, we noticed many interesting Halphen pencils on X even though we did not mention them explicitly in the proofs. We also observed that their general members are K3 surfaces. This gives an evidence for

Conjecture 7.1.1. Every Halphen pencil on X is a pencil of K3 surfaces.

We do not know any deep reason why this conjecture should be true. When X is a general threefold in its family, Conjecture 7.1.1 was proved in [13].

The original proof of Theorem 1.1.3 given by Iskovskih and Manin in [30] holds in arbitrary characteristic. This also follows from [38]. The short proof of Theorem 1.1.3 given by Corti in [22] holds only in characteristic zero. For some families in the list of Fletcher and Reid, the proof of Theorem 1.1.9 requires vanishing type results and, thus, is valid only in characteristic zero. This suggests the birational rigidity problem of X and problems (1), (2) and (3) over an algebraically closed field of positive characteristic. For double covers of \mathbb{P}^3 ramified along smooth sextic surfaces, this was done in [12] and [14], which revealed special phenomenon of small characteristics (see [12] Example 1.5)].

7.2 General vs. special

The first three problems listed in the previous section are solved in the case when X is a general hypersurface in its family. This is done in [5], [6], [11] and [13]. In many cases, the same methods can be applied regardless of the assumption that X is general. For example, we proved in [11] that a general hypersurface in the families No. 3, 60, 75, 83, 87, 93 cannot have a birational transformation to an elliptic fibration. We are able to prove that it is also true for every quasi-smooth hypersurface in the families No. 3, 75, 83, 87, 93, using the methods given in this paper. However, in the family No. 60, it is no longer true for an arbitrary quasi-smooth hypersurface.

Example 7.2.1. Let X_{24} be a quasi-smooth hypersurface in the family No. 60. Suppose, in addition, that X_{24} contains the curve L_{zw}. We may then assume that it is defined by the equation

$$w^2 t + w(at^2 x^3 + t g_9(x, y, z) + g_{15}(x, y, z)) + t^4 + t^3 h_6(x, y, z) + t^2 h_{12}(x, y, z) + th_{18}(x, y, z) + h_{24}(x, y, z) = 0$$

in $\mathbb{P}(1, 4, 5, 6, 9)$. For the hypersurface X_{24} to be quasi-smooth at the point O_z, the polynomial h_{24} must contain the monomial yz^4. For the hypersurface X_{24} to contain the curve L_{zw}, the polynomial g_{15} does not contain the monomial z^3.

Consider the projection $\pi: X_{24} \rightarrow \mathbb{P}(1, 4, 6)$. Its general fiber is an irreducible curve birational to an elliptic curve. To see this, on the hypersurface X_{24}, consider the surface cut by $y = \lambda x^4$ and the surface cut by $t = \mu x^6$, where λ and μ are sufficiently general complex
Birationally rigid Fano threefold hypersurfaces

numbers. Then the intersection of these two surfaces is the 1-cycle $4L_w + C_{\lambda,\mu}$, where the curve $C_{\lambda,\mu}$ is a curve defined by the equation

$$\lambda w^2 x^2 + w \left(\mu^2 x^{11} g_0 + \mu x^2 g_9(x, \lambda x^4, z) + \frac{g_{15}(x, \lambda x^4, z)}{x^4} \right) +$$

$$\mu^4 x^{20} + \mu^3 x^{14} h_6(x, \lambda x^4, z) + \mu^2 x^8 h_{12}(x, \lambda x^4, z) + \mu x^2 h_{18}(x, \lambda x^4, z) + \frac{h_{24}(x, \lambda x^4, z)}{x^4} = 0$$

in $\mathbb{P}(1, 5, 9)$. Plugging $x = 1$ into the equation, we see that the curve $C_{\lambda,\mu}$ is birational to a double cover of \mathbb{C} ramified at four distinct points.

In some of the 95 families of Reid and Fletcher, special quasi-smooth hypersurfaces may have simpler geometry than their general representatives.

Example 7.2.2. Let X_5 be a quasi-smooth hypersurface in $\mathbb{P}(1,1,1,1,2)$ (family No. 2). The hypersurface X_5 can be given by

$$tw^2 + wf_3(x, y, z, t) + f_5(x, y, z, t) = 0.$$

The natural projection $X_5 \rightarrow \mathbb{P}^3$ is a generically double cover. Therefore, it induces a birational involution of X_5, denoted by τ. By Theorem 5.1.3, the birational automorphism group $\text{Bir}(X)$ is generated by the biregular automorphism group $\text{Aut}(X)$ and the involution τ. By Theorem 1.1.9, the hypersurface X_5 is birationally rigid. Moreover, if the hypersurface X_5 is general, then it is not birationally super-rigid, i.e., $\text{Bir}(X) \neq \text{Aut}(X)$. However, in a special case, the involution τ can be biregular, and hence the hypersurface X_5 is birationally super-rigid. To be precise, the involution τ is biregular if and only if the coefficient polynomial f_3 of w is a zero polynomial. Thus, the hypersurface X_5 is birationally super-rigid if and only if f_3 is a zero polynomial.

However, this is not always the case, i.e., special quasi-smooth hypersurfaces usually have more complicated geometry than their general representatives. Here we provide three illustrating examples.

Example 7.2.3. Let X_4 be a smooth quartic threefold in \mathbb{P}^4 (family No. 1). From Theorem 1.1.3 we know that every smooth quartic hypersurface in \mathbb{P}^4 admits no non-biregular birational automorphisms. Moreover, it was proved in [5] that every rational map $\rho: X_4 \rightarrow \mathbb{P}^2$ whose general fiber is birational to a smooth elliptic curve fits a commutative diagram

$$\begin{array}{ccc}
X_4 & \xrightarrow{\rho} & \mathbb{P}^2 \\
\downarrow{\pi} & & \downarrow{\sigma} \\
\mathbb{P}^2 & \cong & \mathbb{P}^2,
\end{array}$$

where π is a linear projection from a line and σ is a birational map. Furthermore, it was proved in [13] that every Halphen pencil on X_4 is contained in $|-K_{X_4}|$ provided that X_4 satisfies some generality assumptions. Earlier, Iskovskikh pointed out in [29] that this is no longer true for an arbitrary smooth quartic hypersurface in \mathbb{P}^4. Indeed, a special smooth quartic hypersurface in \mathbb{P}^4 may have a Halphen pencil contained in $|-2K_{X_4}|$. The complete classification of Halphen pencils on X_4 was obtained recently in [10].
Example 7.2.4 (For details see the proof of Theorem 5.4.1). Let X_{14} be a quasi-smooth hypersurface in $\mathbb{P}(1,2,3,4,5)$ (family No. 23). If X_{14} is a general such hypersurface, then there exists an exact sequence of groups

$$1 \longrightarrow \Gamma_{X_{14}} \longrightarrow \text{Bir}(X_{14}) \longrightarrow \text{Aut}(X_{14}) \longrightarrow 1,$$

where $\Gamma_{X_{14}}$ is a free product of two birational involutions constructed in Section 5.3. This follows from [11, Lemma 4.2] (cf. Theorem 5.1.3). Moreover, let $\rho: X_{14} \dasharrow \mathbb{P}^2$ be a rational map whose general fiber is birational to a smooth elliptic curve. If X_{14} is general, then there exists a commutative diagram

$$
\begin{array}{ccc}
X_{14} & \xrightarrow{\phi} & \mathbb{P}(1,2,3) \\
& \SEarrow & \SEarrow \\
& & \mathbb{P}^2
\end{array}
$$

where ϕ is the natural projection and σ is some birational map. Suppose now that X_{14} is defined by the equation

$$(t + by^2)w^2 + yt(t - \alpha_1y^2)(t - \alpha_2y^2) + z^4y + xtz^3 + xf_{13}(x,y,z,t,w) + yg_{12}(y,z,t,w) = 0.$$ Then none of these assertions are true. Indeed, let H be the linear subsystem of $| - 5K_{X_{14}}|$ generated by x^5, xy^2, x^3y and $yz + xt$. Let $\pi: X_{14} \dasharrow \mathbb{P}(1,2,5)$ be the rational map induced by $[x : y : z : t : w] \mapsto [x : y : yz + xt]$. Then π is dominant and its general fiber is birational to an elliptic curve. Let $f: Y \rightarrow X_{14}$ be the weighted blow up at the point O_2 with weight $(1,1,2)$. Denote by E its exceptional surface. Let $g: W \rightarrow Y$ be the weighted blow up at the point over O_w with weight $(1,2,3)$. Denote by G be its exceptional divisor. Denote by \hat{L}_{zw}, \hat{L}_{zt} and \hat{L}_{yw} the proper transforms of the curves L_{zw}, L_{zt} and L_{yw} by the morphism $f \circ g$. Then the curves \hat{L}_{zw} and \hat{L}_{zt} are the only curves that intersect $-K_W$ negatively. Moreover, there is an anti-flip $\chi: W \dasharrow U$ along the curves \hat{L}_{zw} and \hat{L}_{zt} (see the proof of Theorem 5.4.1). Let E and G be the proper transforms on U of the divisors E and G, respectively. For $m \gg 0$, the linear system $| - mK_U|$ is free and gives an elliptic fibration $\eta: U \rightarrow \Sigma$, where Σ is a normal surface. Furthermore, there exist a commutative diagram

$$
\begin{array}{ccc}
W & \xrightarrow{\chi} & U \\
\downarrow{g} & \SEarrow & \SEarrow \\
Y & \xrightarrow{f} & X_{14} \\
\downarrow{\pi} & \SEarrow & \SEarrow \\
\mathbb{P}(1,2,5) & \xrightarrow{\theta} & \Sigma
\end{array}
$$

where θ is a birational map. The divisor G is a section of the elliptic fibration η and \hat{E} is a 2-section of η. Let τ_U be a birational involution of the threefold U that is induced by the
reflection of the general fiber of \(\eta \) with respect to the section \(\mathcal{G} \). The involution \(\tau_U \) induces a birational involution of \(X_{14} \). This new involution is not biregular and not contained in the subgroup of the birational automorphism group \(\text{Bir}(X_{14}) \) generated by two birational involutions constructed in Section 5.3.

Example 7.2.5. Let \(X_{17} \) be a quasi-smooth hypersurface in \(\mathbb{P}(1,2,3,5,7) \) (family No. 33). Then it can be given by the quasi-homogenous polynomial equation

\[
(dx^3 + exy + z)w^2 + t^2(a_1w + a_2yt) + z^4(b_1t + b_2yz) +
\]

\[
y^5(c_1w + c_2yt + c_3y^2z + c_4y^3x) + w f_{10}(x, y, z, t) + f_{17}(x, y, z, t) = 0.
\]

The pencil \(| -2K_{X_{17}}| \) is a Halphen pencil. Moreover, if the defining equation of \(X_{17} \) is sufficiently general, then this is the only Halphen pencil on \(X_{17} \) (see [13, Corollary 1.1]). Suppose that \(c_1 = c_2 = 0 \) and \(c_3 \neq 0 \). Then we may assume that \(c_3 = 1 \) and \(c_4 = 0 \) by a coordinate change. Here we encounter an extra Halphen pencil. Indeed, the pencil on \(X_{17} \) cut out by \(\lambda x^3 + \mu z = 0 \), where \([\lambda : \mu] \in \mathbb{P}^1 \), is a Halphen pencil contained in \(| -3K_{X_{17}}| \) and different from the Halphen pencil \(| -2K_{X_{17}}| \).

7.3 Calabi problem

In many applications it is useful to measure how singular effective \(\mathbb{Q} \)-divisors \(D \) equivalent to \(-K_X\) can be. A possible measurement is given by the so-called \(\alpha \)-invariant of the Fano hypersurface \(X \). It is defined by the number

\[
\alpha(X) = \sup \left\{ \lambda \in \mathbb{Q} \mid \text{the log pair } (X, \lambda D) \text{ is Kawamata log terminal for every effective } \mathbb{Q} \text{-divisor } D \sim \mathbb{Q} - K_X \right\}.
\]

If \(X \) is a general hypersurface in its family, then \(\alpha(X) = 1 \) by [7, Theorem 1.3] and [8, Theorem 1.15] except the case when \(X \) belongs to the families No. 1, 2, 3, 4 or 5. If \(X \) is a general quartic threefold in \(\mathbb{P}^3 \) (family No. 1), we have \(\alpha(X) \geq \frac{7}{9} \) by [14, Theorem 1.1.6]. If \(X \) is a double cover of \(\mathbb{P}^3 \) ramified along smooth sextic surface (family No. 3), then all possible values of \(\alpha(X) \) are found in [15, Theorem 1.1.5]. For general threefolds in the families No. 2, 4 and 5, the bound \(\alpha(X) > \frac{4}{7} \) proved in [7] and [12]. In particular, we have

Corollary 7.3.1. Let \(X \) be a quasi-smooth hypersurface of degrees \(d \) with only terminal singularities in the weighted projective space \(\mathbb{P}(1,a_1,a_2,a_3,a_4) \), where \(d = \sum a_i \). Suppose that \(X \) is a general hypersurface in this family. Then \(\alpha(X) > \frac{3}{4} \).

Similarly, we can define the \(\alpha \)-invariant of any Fano variety with at most Kawamata log terminal singularities. This invariant has been studied intensively by many people who used different notations for it. The notation \(\alpha(X) \) is due to Tian who defined the \(\alpha \)-invariant in a different way (see [11]). However, his definition coincides with the one we just gave (see [16, Theorem A.3]).

Tian proved in [11] that a smooth Fano variety of dimension \(n \) whose \(\alpha \)-invariant is greater than \(\frac{n}{n+1} \) admits a Kähler–Einstein metric. This result was generalized for Fano varieties with quotient singularities by Demailly and Kollár (see [24, Criterion 6.4]). Thus, Corollary 7.3.1 implies
Theorem 7.3.2. Let X be a quasi-smooth hypersurface of degrees d with only terminal singularities in the weighted projective space $\mathbb{P}(a_1, a_2, a_3, a_4)$, where $d = \sum a_i$. Suppose that X is a general hypersurface in this family. Then X is admits an orbifold Kähler–Einstein metric.

Recently, Chen, Donaldson and Sun and independently Tian proved that smooth Fano variety admits a Kähler–Einstein metric if and only if it is K-stable (see [17], [18], [19], [20] and [42]). Earlier Odaka and Okada proved that birationally super-rigid smooth Fano varieties with base-point-free anticanonical linear systems must be slope-stable (see [36]). Furthermore, Odaka and Sano proved that Fano varieties of dimension n with at most log terminal singularities whose α-invariants are greater than $\frac{n}{n+1}$ must be K-stable (see [36]). These results suggest that every quasi-smooth hypersurface in the 95 families of Fletcher and Reid should admit an orbifold Kähler–Einstein metric.

Using methods we developed in the proof of Theorem 1.1.9, it is possible to explicitly describe all quasi-smooth hypersurfaces in the 95 families of Fletcher and Reid whose α-invariants are greater than $\frac{3}{4}$. All of them must admit orbifold Kähler–Einstein metrics by [24, Criterion 6.4].

The α-invariants can be applied to the non-rationality problem on products of Fano varieties. In particular, we can apply [7, Theorem 6.5] to quasi-smooth hypersurfaces in the 95 families of Fletcher and Reid whose α-invariants are 1.

7.4 Arithmetics

As it was pointed out by Pukhlikov and Tschinkel, the problem (1) is closely related to the problem of potential density of rational points on X in the case when X is defined over a number field. For example, if $\text{Bir}(X)$ is infinite, then we are able to show that X contains infinitely many rational surfaces. It implies the potential density of rational points on X.

The papers [3], [4], [27] use birational transformations into elliptic fibrations in order to prove the potential density on all smooth Fano threefolds possibly except double covers of \mathbb{P}^3 ramified along smooth sextic surfaces (the family No. 3 in the list of Fletcher and Reid).

If X is defined over a number field, it seems likely that the set of rational points on X is potentially dense. For every smooth quartic threefold in \mathbb{P}^4 (family No. 1), this was proved by Harris and Tschinkel in [27]. For general Fano hypersurfaces in the families No. 2, 4, 5, 6, 7, 9, 11, 12, 13, 15, 17, 19, 20, 23, 25, 27, 30, 31, 33, 36, 38, 40, 41, 42, 44, 58, 61, 68 and 76, this was proved in [11] and [14]. Despite many attempts, this problem is still open for double covers of \mathbb{P}^3 ramified along smooth sextic surfaces. These are smooth hypersurfaces in family No. 3.

The methods we use in the proof of Theorem 1.1.9 can be applied to prove the potential density of rational points on the quasi-smooth hypersurfaces in some families in the list of Fletcher and Reid. In fact, for some families we can use our methods to prove the density of rational points on X.

References

[1] A. Beauville, *Non-rationality of the symmetric sextic Fano threefold*, Geometry and arithmetic, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2012), 57–60.

[2] C. Birkar, P. Cascini, C. Hacon, J. McKernan, *Existence of minimal models for varieties of log general type*, J. Amer. Math. Soc. 23 (2010), 405–468.
[3] F. Bogomolov, Yu. Tschinkel, *On the density of rational points on elliptic fibrations*, J. Reine Angew. Math., 511 (1999), 87–93.

[4] F. Bogomolov, Yu. Tschinkel, *Density of rational points on elliptic K3 surfaces*, Asian J. Math. 4 (2000), 351–368.

[5] I. Cheltsov, *Log models of birationally rigid varieties*, J. Math. Sci. (New York) 102 (2000), 3843–3875.

[6] I. Cheltsov, *Elliptic structures on weighted three-dimensional Fano hypersurfaces*, Izv. Math., 511 (2007), 765–862.

[7] I. Cheltsov, *Fano varieties with many selfmaps*, Adv. Math. 217 (2008), 97–124.

[8] I. Cheltsov, *Log canonical thresholds of Fano threefold hypersurfaces*, Izv. Math., 73 (2009), 727–795.

[9] I. Cheltsov, *Extremal metrics on two Fano manifolds*, Sb. Math. 200 (2009), 95–132.

[10] I. Cheltsov, I. Karzhemanov, *Halphen pencils on quartic threefolds*, Adv. Math. 223 (2010), 594–618.

[11] I. Cheltsov, J. Park, *Weighted Fano threefold hypersurfaces*, J. Reine Angew. Math., 600 (2006), 81–116.

[12] I. Cheltsov, J. Park, *Two remarks on sextic double solids*, J. Number Theory 122 (2007), 1–12.

[13] I. Cheltsov, J. Park, *Halphen Pencils on weighted Fano threefold hypersurfaces*, Cent. Eur. J. of Math., 7 (2009), 1–45.

[14] I. Cheltsov, J. Park, *Sextic double solids*, Cohomological and geometric approaches to rationality problems, Progr. Math. 282, Birkhäuser Boston, Inc., Boston, MA (2010), 75–132.

[15] I. Cheltsov, J. Park, J. Won, *Log canonical thresholds of certain Fano hypersurfaces*, to appear in Math. Z.

[16] I. Cheltsov, C. Shramov, *Log canonical thresholds of smooth Fano threefolds* (with an appendix by Jean-Pierre Demailly), Russian Math. Surveys 63 (2008), 73–180.

[17] X.-X. Chen, S. Donaldson, S. Sun, *Kahler–Einstein metrics and stability*, preprint, arXiv:1210.7494 (2012).

[18] X.-X. Chen, S. Donaldson, S. Sun, *Kahler–Einstein metrics on Fano manifolds, I: approximation of metrics with cone singularities*, preprint, arXiv:1211.4566 (2012).

[19] X.-X. Chen, S. Donaldson, S. Sun, *Kahler–Einstein metrics on Fano manifolds, II: limits with cone angle less than 2π*, preprint, arXiv:1212.4714 (2012).

[20] X.-X. Chen, S. Donaldson, S. Sun, *Kahler–Einstein metrics on Fano manifolds, III: limits as cone angle approaches 2π and completion of the main proof*, preprint, arXiv:1302.0282 (2013).
[21] A. Corti, *Factorizing birational maps of threefolds after Sarkisov*, J. of Algebraic Geom. 4 (1995), 223–254.

[22] A. Corti, *Singularities of linear systems and 3-fold birational geometry*, L.M.S. Lecture Note Series 281 (2000), 259–312.

[23] A. Corti, A. Pukhlikov, M. Reid, *Fano 3-fold hypersurfaces*, L.M.S. Lecture Note Series 281 (2000), 175–258.

[24] J.-P. Demailly, J. Kollár, *Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds*, Ann. Sci. École Norm. Sup. 34 (2001), 525–556.

[25] T. de Fernex, *Birationally rigid hypersurfaces*, Invent. Math. 192 (2013), 533–566.

[26] A. Fletcher, *Working with weighted complete intersections*, L.M.S. Lecture Note Series 281 (2000), 101–173.

[27] J. Harris, Yu. Tschinkel, *Rational points on quartics*, Duke Math. J. 104 (2000), 477–500.

[28] V. Iskovskikh, *Birational automorphisms of three-dimensional algebraic varieties*, Current problems in mathematics 12, 159–236, VINITI, Moscow, 1979.

[29] V. Iskovskikh, *Birational rigidity of Fano hypersurfaces in the framework of Mori theory*, Russian Math. Surveys 56 (2001) 207–291.

[30] V. Iskovskikh, Yu. Manin, *Three-dimensional quartics and counterexamples to the Lüroth problem*, Mat. Sb. 86 (1971), 140–166.

[31] V. Iskovskikh, A. Pukhlikov, *Birational automorphisms of multidimensional algebraic manifolds*, J. Math. Sci. 82 (1996) 3528–3613.

[32] Y. Kawamata, *Divisorial contractions to 3-dimensional terminal quotient singularities*, Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin (1996), 241–246.

[33] S. Keel, K. Matsuki, J. McKernan, *Log abundance theorem for threefolds*, Duke Math. J. 75 (1994), 99–119.

[34] J. Kollár, *Adjunction and discrepancies* in Flips and Abundance for Algebraic Threefolds (Salt Lake City, 1991), Astérisque 211, Soc. Math. France, Paris, 1992, 183–192.

[35] Yu. Odaka, T. Okada, *Birational superrigidity and slope stability of Fano manifolds*, to appear in Math. Z.

[36] Yu. Odaka, Yu. Sano, *Alpha invariant and K-stability of ℚ-Fano varieties*, Adv. Math. 229 (2012), 2818–2834.

[37] Yu. Prokhorov, *Simple finite subgroups of the Cremona group of rank 3*, J. Algebraic Geom. 21 (2012), 563–600.

[38] A. Pukhlikov, *Birational automorphisms of Fano hypersurfaces*, Invent. Math. 134 (1998), no. 2, 401–426.
[39] M. Reid, *Canonical 3-folds*, Journées de Géometrie Algébrique d’Angers, Juillet 1979/Algebraic Geometry, Angers, 1979, pp. 273–310, Sijthoff & Noordhoff, Alphen aan den Rijn–Germantown, Md., 1980.

[40] V. Shokurov, *3-fold log flips*, Russian Acad. Sci. Izv. Math. 40 (1993), no. 1, 105–203.

[41] G. Tian, *On Kähler–Einstein metrics on certain Kähler manifolds with $c_1(M) > 0*, Invent. Math. 89 (1987), 225–246.

[42] G. Tian, *K-stability and Kähler–Einstein metrics*, preprint, [arXiv:1211.4669](https://arxiv.org/abs/1211.4669) (2012).

Ivan Cheltsov

School of Mathematics, The University of Edinburgh
Edinburgh, EH9 3JZ, UK
I.Cheltsov@ed.ac.uk

Jihun Park

Center for Geometry and Physics, Institute for Basic Science (IBS)
Pohang, Gyeongbuk, 790-784, Korea
Department of Mathematics, POSTECH
Pohang, Gyeongbuk, 790-784, Korea
wlog@postech.ac.kr