ON EXISTENCE OF PI-EXPONENTS OF CODIMENSION GROWTH

MIKHAIL ZAICEV

(Communicated by Alexander Olshanskii)

Abstract. We construct a family of examples of non-associative algebras \(\{ R_\alpha \mid 1 < \alpha \in \mathbb{R} \} \) such that \(\exp(R_\alpha) = 1, \exp(R_\alpha) = \alpha \). In particular, it follows that for any \(R_\alpha \), an ordinary PI-exponent of codimension growth does not exist.

1. Introduction

We consider algebras over a field \(F \) of characteristic zero. Given an algebra \(A \) over \(F \), one can associate the sequence of non-negative integers \(\{ c_n(A) \} \), \(n = 1, 2, ... \), which is an important numerical characteristic of polynomial identities of \(A \). Study of asymptotic behavior of \(\{ c_n(A) \} \) for associative algebras was started in the beginning of 70’s (see, for example, [23], [15], [16]) and was continued during the subsequent decades (see, for example, [14], [6], [10], [3], [4], [5], [24] and also the bibliography in [11]). Later, similar numerical characteristics were considered for Lie algebras [17], [25], [18] and other non-associative algebras: Lie superalgebras [28] and their generalizations [22], Leibniz algebras [21], Jordan and alternative algebras [12], [9], Poisson and Novikov algebras [20], [8], etc.

For a wide class of algebras, the sequence \(\{ c_n(A) \} \) is bounded by exponential functions \(a^n \). This class contains all associative PI-algebras [23], all finite dimensional algebras [2], Kac-Moody algebras [26], infinite dimensional simple Lie algebras of Cartan type [18], and many others. Clearly, the inequality \(c_n(A) \leq a^n \) implies an existence of upper and lower limits

\[
\limsup_{n \to \infty} \sqrt[n]{c_n(A)} = \exp(A), \quad \liminf_{n \to \infty} \sqrt[n]{c_n(A)} = \underline{\exp(A)}
\]

called upper and lower PI-exponents of \(A \), respectively. If an ordinary limit of \(\sqrt[n]{c_n(A)} \) exists, that is, if \(\exp(A) = \underline{\exp(A)} \), it is called (an ordinary) PI-exponent of \(A \).

One of the main problems of the theory of numerical invariants of polynomial identities is the problem of existence of PI-exponent. At the end of 80’s Amitsur
conjectured that for any associative algebra with a non-trivial polynomial identity PI-exponent exists and it is a non-negative integer. Amitsur’s conjecture was confirmed in [10].

In Lie case existence and integrality of PI-exponent were proved for all finite dimensional algebras [27] and for some classes of infinite dimensional algebras (see, for example, [19]).

Up to now there was no example of an algebra A with $\exp(A) \neq \exp(A)$. The main result of our paper is the following theorem.

Theorem 1.1. For any real number $\alpha > 1$ there exists an algebra A such that $\exp(A) = 1$ while $\exp(A) = \alpha$.

All details about polynomial identities and their numerical characteristics one can find in [1], [7], [11].

2. Main definitions and constructions

Let F be a field of characteristic zero and let A be an algebra over F. Denote by $F\{X\}$ the absolutely free algebra over F with the countable set of generators $X = \{x_1, x_2, \ldots\}$. The set $Id(A)$ of all identities of A forms an ideal of $F\{X\}$. Consider the subspace $P_n \subset F\{X\}$ of all multilinear polynomials on x_1, \ldots, x_n. Then $P_n \cap Id(A)$ consists of all multilinear identities of A of degree n. It is well-known that the family of subspaces $P_n \cap Id(A)$, $n = 1, 2, \ldots$, completely define all ideal $Id(A)$ in the case $\text{char } F = 0$.

Denote by

$$c_n(A) = \dim \frac{P_n}{P_n \cap Id(A)}.$$

The non-negative integer $c_n(A)$ is called n^{th} codimension of A. The sequence $\{c_n(A)\}$ is one of the most important numerical characteristics of polynomial identities of A.

For proving our main result, we need some intermediate constructions and results. First, given an integer $T \geq 2$, we define an algebra B_T by its basis

$$\{a, b_i, z_i^1, \ldots, z_i^T | i = 1, 2, \ldots\} \quad (2.1)$$

and by the multiplication table

$$z_i^1 a = z_i^2, z_i^2 a = z_i^3, \ldots, z_i^{T-1} a = z_i^T, z_i^T b_i = z_i^{T+1}, \quad i = 1, 2, \ldots.$$

We suppose that all other products of basis element are equal to zero. It is easy to see that B_T is left nilpotent of step 2 algebra, that is, $x_1(x_2x_3) \equiv 0$ (2.2) is an identity of B_T. From (2.2), it follows that only left-normed products of basis elements may be non-zero. Therefore we will omit brackets in left-normed products of elements of B_T. That is we will write $y_1y_2y_3 = (y_1y_2)y_3$ and $y_1 \cdots y_ky_{k+1} = (y_1 \cdots y_k)y_{k+1}$ if $k \geq 3$.

First, we estimate codimension growth of B_T.

Lemma 2.1. Let $n \leq T$. Then $c_n(B_T) \leq 2n^3$.

Proof. Let $f = f(x_1, \ldots, x_n)$ be a multilinear polynomial on x_1, \ldots, x_n. Consider the following evaluations of the set of indeterminates X in B_T:

Since the total number of elements (2.5) is equal to k modulo the ideal \mathcal{I}_d where S and, for example, α prove of lemma is completed.

Consider monomials

Proof.

Any multilinear identity Lemma 2.3. B algebra

Hence (2.3) and (2.4) imply the inequality

Note that $\varphi^k_{ij}(f) = 0$ if and only if $\varphi^k_{ij}(f) = 0$, that is, the kernels of all φ^k_{ij}, $i = 1, 2, \ldots$, coincide.

Since $\varphi^k_{ij}(x_{i_1} \cdots x_{i_n}) = z_{i_1+n-1}^1$ as soon as $i_1 = k, j + n - 1 \leq T$ while $\varphi^k_{ij}(x_{i_1} \cdots x_{i_n}) = 0$ in all other cases, then

$$\dim \text{Im} \varphi^k_{ij} = \text{codim}_n \ker \varphi^k_{ij} \leq 1. \quad (2.3)$$

Similarly, $\ker \varphi^k_{ij} = \ker \varphi^k_{ij}$ for all $j, k, r \geq 1$ and

$$\text{Im} \varphi^k_{ij} = \text{span} \left\{ \frac{z_1^1 a \cdots a b_1 a \cdots a}{p} \mid p + q = n - 2, j = p = T \right\}$$

$$\text{Im} = \text{span}(z_{q+1}^2).$$

Hence

$$\dim \text{Im} \varphi^k_{ij} = \text{codim}_n \ker \varphi^k_{ij} \leq 1. \quad (2.4)$$

Note that $f \in \text{Id}(B_T)$ if and only if $f \in K_1 \cap K_2$, where

$$K_1 = \bigcap_{j, k} \ker \varphi^k_{ij}, \quad K_2 = \bigcap_{j, k, r} \ker \varphi^{kr}_{ij}.$$

Note also that

$$\ker \varphi^k_{1,1} = \ker \varphi^k_{1,2} = \cdots = \ker \varphi^k_{1,T-n+1}.$$

Hence (2.3) and (2.4) imply the inequality

$$c_n(B_T) = \text{codim}_n K_1 \cap K_2 \leq n^3 + n^2 \leq 2n^3$$

provided that $n \leq T$, and we complete the proof. \qed

Lemma 2.2. Let $n = kT + 1$. Then $c_n(B_T) \geq k! = \frac{n!}{T!}!$.

Proof. Consider monomials

$$f_\sigma = x_0 x_1 \cdots x_{T-1} y_{\sigma(1)} x_T \cdots x_{2T-2} y_{\sigma(2)} \cdots y_{\sigma(k)}, \quad \sigma \in S_k,$$

where S_k is the permutation group, and prove that they are linearly independent modulo the ideal $\text{Id}(B_T)$ of identities of B_T. Suppose that

$$h = \sum_{\sigma \in S_k} \alpha_{\sigma} f_\sigma \in \text{Id}(B_T) \quad (2.6)$$

and, for example, $\alpha_e \neq 0$, where e is the unit of S_k. Then the evaluation

$$\varphi(x_0) = z_1^1, \varphi(y_1) = b_1, \ldots, \varphi(y_k) = b_k, \varphi(x_q) = a, \quad q = 1, \ldots, k(T - 1),$$

maps f_σ to z_{k+1}^1 while $\varphi(f_\sigma) = 0$ for all $\sigma \neq e$. Hence $\varphi(h) = 0$, a contradiction. This means that $\alpha_e = 0$ in (2.6). Similarly, all other α_{σ} in (2.6) are equal to zero. Since the total number of elements (2.5) is equal to $k!$ and all f_σ lie in P_{kT+1}, the proof of lemma is completed. \qed

Now we compare identities of small degree of algebras B_T with distinct T.

Lemma 2.3. Any multilinear identity $f = f(x_1, \ldots, x_n)$ of degree $n \leq T$ of the algebra B_T is an identity of B_{T+1}.
Proof. Let \(n \leq T \). It is sufficient to prove that if \(f = f(x_1, \ldots, x_n) \in P_n \) is not an identity of \(B_{T+1} \) then \(f \) is not an identity of \(B_T \). Let

\[
h = \sum_{\sigma \in S_n} \alpha_{\sigma} x_{\sigma(1)} \cdots x_{\sigma(n)}
\]

and let \(\varphi : X \to B_{T+1} \) be an evaluation such that \(\varphi(x_1), \ldots, \varphi(x_n) \) are basis elements of \(B_{T+1} \) and \(\varphi(f) \neq 0 \). Then exactly one of \(x_1, \ldots, x_n \) should be replaced by some \(z_j^i \) while all remaining \(x_k \) should be replaced by \(a \) or \(b_m, m \geq 1 \). We may assume that \(\varphi(x_1) = z_j^i \).

First let \(\varphi(x_2) = \cdots = \varphi(x_n) = a \). Then

\[
\varphi(f) = f(z_j^i, a, \ldots, a) = \lambda z_{j+n-1}^i,
\]

where

\[
\lambda = \sum_{\sigma \in S_n \atop \sigma(1) = 1} \alpha_{\sigma}.
\]

Since \(\varphi(f) \neq 0 \) then \(\lambda \neq 0 \) and \(j + n - 1 \leq T + 1 \). If \(j + n - 1 \leq T \) then \(\varphi(f) = \lambda z_{j+n-1}^i \neq 0 \) in \(B_T \) for similar evaluation \(\varphi : X \to B_T \). If \(j + n - 1 = T + 1 \) then \(j \geq 2 \) since \(n \leq T \). Then

\[
f(z_{j-1}^i, a, \ldots, a) = \lambda z_{j+n-2}^i \neq 0
\]
in \(B_T \).

Now let \(f(z_j^i, a, \ldots, a) = 0 \) in \(B_{T+1} \). Then there exists an evaluation \(\varphi : X \to B_{T+1} \) such that \(\varphi(x_1) = z_j^i, \varphi(x_k) = b_i \) for some \(2 \leq k \leq n \), \(\varphi(x_r) = a \) if \(r \neq 1, k \) and \(\varphi(f) \neq 0 \). As before, we can assume that \(k = 2 \). Then

\[
\varphi(f) = f(z_j^i, b_i, a, \ldots, a) = \left(\sum_{\sigma \in S_n \atop \sigma(1) = 1 \atop \sigma(j+p+1) = 2} \alpha_{\sigma} \right) z_j^i a \cdots b_i a \cdots a = \lambda z_{q+1}^{i+1}
\]
in \(B_{T+1} \) where

\[
\lambda = \left(\sum_{\sigma \in S_n \atop \sigma(1) = 1 \atop \sigma(j+p+1) = 2} \alpha_{\sigma} \right) \neq 0.
\]

Moreover,

\[
p + q = n - 2 \quad \text{and} \quad j + p = T + 1. \tag{2.7}
\]

From (2.7), it follows that \(j \geq 2 \) and \(q + 1 \leq T \). Hence

\[
f(z_{j-1}^i, b_i, a, \ldots, a) = \lambda z_{q+1}^{i+1}
\]
in \(B_T \) and \(f \) is not an identity of \(B_T \).

\[\square\]

3. Main result

Now we are ready to prove Theorem 1.1.

Proof. Fix a real number \(\alpha > 1 \). Denote by \(R_N \) the quotient algebra

\[
R_N = F[Y]_0/(Y^{N+1}),
\]

where \(Y \) is a non-commuting variable.
where $F[Y]_0$ is the ring of polynomials without free term and (Y^{N+1}) is its ideal generated by Y^{N+1}. Then $R_N^N \neq 0, R_N^{N+1} = 0$. Denote also $B(T, N) = B_T \otimes R_N$. We will construct an algebra A with $\exp(A) = 1, \exp(A) = \alpha$ as a direct sum

$$A = B(T_1, N_1) \oplus B(T_2, N_2) \oplus \cdots. \tag{3.1}$$

The sequence $T_1 < N_1 < T_2 < N_2 < \ldots$ we will choose during the proof.

First note that if $T_1 < n \leq N_1$ then multilinear identities of A of degree n coincide with identities of

$$B(T_1, N_1) \oplus B(T_{i+1}, N_{i+1})$$

by Lemma 2.3. In particular,

$$c_n(B_{T_1}) + c_n(B_{T_{i+1}}) \geq c_n(B_{T_1}) \tag{3.2}$$

since $n \leq N_i$. In the case $N_i < n \leq T_{i+1}$, we have

$$P_n \cap \text{Id}(A) = P_n \cap \text{Id}(B(T_{i+1}, N_{i+1})) = P_n \cap \text{Id}(B_{T_{i+1}})$$

and

$$c_n(A) \leq 2n^3 \tag{3.3}$$

by Lemma 2.1.

First, we choose T_1 such that the inequality

$$2m^3 < \alpha^m \tag{3.4}$$

holds for all $m \geq T_1$. By Lemma 2.2, codimension growth of B_{T_1} is overexponential. Hence, one can find $N_1 > T_1$ such that

$$c_n(B_{T_1}) < \alpha^n \text{ for all } n \leq N_1 - 1 \text{ and } c_{N_1}(B_{T_1}) \geq \alpha^{N_1}. \tag{3.5}$$

Now we take $T_2 = 2N_1$. Then by (3.3) and (3.4) we have

$$c_{N_1+1}(A) \leq 2(N_1 + 1)^3 < \alpha^{N_1+1} \tag{3.6}$$

and

$$c_n(A) \leq c_n(B_{T_1}) + c_n(B_{T_2}) < \alpha^n + 2n^3 < 2\alpha^n \tag{3.7}$$

for all $T_1 < n \leq N_1 - 1$ as follows from (3.2), (3.4), (3.5), and from Lemma 2.1.

On the next step we choose $N_2 > T_2$ satisfying the relations similar to (3.5), (3.6), and (3.7). Continuing this procedure we obtain an infinite sequence $T_1 < N_1 < T_2 < N_2 < \ldots$ such that

$$c_n(A) < 2\alpha^n \text{ if } N_i-1 < n \leq N_i - 1, \quad c_n(A) \geq \alpha^{N_i}, \quad c_{N_i+1}(A) \leq 2(N_i + 1)^3 \tag{3.8}$$

for all $i = 2, 3, \ldots$.

From (2.2), it follows that $c_n(A) \leq nc_{n-1}(A)$ for all $n \geq 2$. Hence (3.8) implies

$$\alpha^{N_i} \leq c_{N_i}(A) \leq 2N_i \alpha^{N_i-1}.$$

Therefore

$$\lim_{i \to \infty} (c_{N_i}(A))^{\frac{1}{N_i}} = \alpha.$$

On the other hand, by the choice of N_1, N_2, \ldots, we have

$$c_n(A) < 2\alpha^n$$

for all $n \neq N_1, N_2, \ldots$. It follows that

$$\exp(A) = \limsup_{n \to \infty} \sqrt[n]{c_n(A)} = \alpha.$$
Finally, the last inequality in (3.8) shows that
\[
\lim_{i \to \infty} \sqrt[i]{c_{m_i}(A)} \leq 1,
\]
where \(m_i = N_i + 1 \). Since \(c_n(A) \neq 0 \) for all \(n \geq 1 \), we have
\[
\exp(A) = \lim_{n \to \infty} \sqrt[n]{c_n(A)} = 1
\]
and the proof is completed. □

References

[1] Yu. A. Bahturin, Identical Relations in Lie Algebras, Translated from the Russian by Bahturin, VNU Science Press, b.v., Utrecht, 1987. MR 886063
[2] Yu. Bahturin and V. Drensky, Graded polynomial identities of matrices, Linear Algebra Appl., 357 (2002), 15–34. MR 1935223
[3] F. Benanti and I. Sviridova, Asymptotics for Amitsur’s Capelli-type polynomials and verbally prime PI-algebras, Israel J. Math., 156 (2006), 73–91. MR 2282369
[4] A. Berele, Properties of hook Schur functions with applications to p.i. algebras, Adv. in Appl. Math., 41 (2008), 52–75. MR 2419763
[5] A. Berele, An example concerning the constant in the asymptotics of codimension sequences, Comm. Algebra, 38 (2010), 3506–3510. MR 2724235
[6] A. Berele and A. Regev, Codimensions of products and of intersections of verbally prime T-ideals, Israel J. Math., 103 (1998), 17–28. MR 1613536
[7] V. Drensky, Free Algebras and PI-Algebras, Graduate Course in Algebra, Springer-Verlag Singapore, 2000. MR 1712064
[8] A. S. Dzhumadil’daev, Codimension growth and non-Koszulity of Novikov operad, Comm. Algebra, 39 (2011), 2943–2952. MR 2834140
[9] A. Giambruno and M. Zaicev, Finite-dimensional non-associative algebras and codimension growth, Adv. in Appl. Math., 47 (2011), 125–139. MR 2799615
[10] A. Giambruno and M. Zaicev, Exponential codimension growth of PI algebras: An exact estimate, Adv. Math., 142 (1999), 221–243. MR 1680198
[11] A. Giambruno and M. Zaicev, Polynomials Is Lie algebras and Asymptotic Methods, Mathematical Surveys and Monographs, 122, American Mathematical Society, Providence, RI, 2005. MR 2176105
[12] A. Giambruno and M. Zaicev, Codimension growth of special simple Jordan algebras, Trans. Amer. Math. Soc., 362 (2010), 3107–3123. MR 2592498
[13] A. Giambruno and M. Zaicev, On codimension growth of finite-dimensional Lie superalgebras, J. Lond. Math. Soc. (2), 85 (2012), 534–548. MR 2901077
[14] A. R. Kemer, The Spechtian nature of T-ideals whose condimensions have power growth, (Russian) Sibirsk. Mat. Ž., 19 (1978), 54–69, 237. MR 0466190
[15] D. Krakowski and A. Regev, The polynomial identities of the Grassmann algebra, Trans. Amer. Math. Soc., 181 (1973), 429–438. MR 0325658
[16] V. N. Latyshev, On Regev’s theorem on identities in a tensor product of PI-algebras, (Russian) Uspehi Mat. Nauk, 27 (1972), 213–214. MR 0393114
[17] S. P. Mishchenko, Varieties of Lie algebras with weak growth of the sequence of codimensions, (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh., 1982, 63–66. MR 679484
[18] S. P. Mishchenko, Growth of varieties of Lie algebras, (Russian) Uspekhi Mat. Nauk, 45 (1990), 25–45, 189; translation in Russian Math. Surveys, 45 (1990), 27–52. MR 1101331
[19] S. P. Mishchenko, V. M. Petrogradsky, Exponents of varieties of Lie algebras with a nilpotent commutator subalgebra, Comm. Algebra, 27 (1999), 2223–2230. MR 1683862
[20] S. P. Mishchenko, V. M. Petrogradsky and A. Regev, Poisson PI algebras, Trans. Amer. Math. Soc., 359 (2007), 4669–4694. MR 2320646
[21] S. Mishchenko and A. Valenti, A Leibniz variety with almost polynomial growth, J. Pure Appl. Algebra, 202 (2005), 82–101. MR 2163402
[22] D. Pagon, D. Repovš and M. Zaicev, On the codimension growth of simple color Lie superalgebras, J. Lie Theory, 22 (2012), 465–479. MR 2976927
[23] A. Regev, Existence of identities in \(A \otimes B \), Israel J. Math., 11 (1972), 131–152. MR 0314893
[24] A. Regev, Codimensions and trace codimensions of matrices are asymptotically equal, *Israel J. Math.*, 47 (1984), 246–250. MR 738172

[25] I. B. Volichenko, Varieties of Lie algebras with identity $[[x_1, x_2, x_3], [x_4, x_5, x_6]] = 0$ over a field of characteristic zero, (Russian) *Sibirsk. Mat. Zh.*, 25 (1984), 40–54. MR 746940

[26] M. V. Zaicev, Varieties and identities of affine Kac-Moody algebras, in *Methods in Ring Theory* (Levico Terme, 1997), Lecture Notes in Pure and Appl. Math., 198, Dekker, New York, 1998, 303–314. MR 1767987

[27] M. V. Zaicev, Integrality of exponents of growth of identities of finite-dimensional Lie algebras, (Russian) *Izv. Ross. Akad. Nauk Ser. Mat.*, 66 (2002), 23–48; translation in *Izv. Math.*, 66 (2002), 63–487. MR 1921808

[28] M. V. Zaicev and S. P. Mishchenko, The growth of some varieties of Lie superalgebras, (Russian) *Izv. Ross. Akad. Nauk Ser. Mat.*, 71 (2007), 3–18; translation in *Izv. Math.*, 71 (2007), 657–672. MR 2360005

Department of Algebra, Faculty of Mathematics and Mechanics, Moscow State University, Moscow, 119992, Russia

E-mail address: zaicev@msu.ru