Abstract

MicroRNAs (miRNAs) are small (21–24 nucleotides), non-coding, riboregulators that regulate gene expression in eukaryotes. Pentacyclic triterpenoid saponins and sapogenins known as centellosides of the plant *Centella asiatica* (L.) Urb. are known for their broad spectrum medicinal properties. Two *C. asiatica* accessions viz., CA301 and CA308 were selected for the miRNAome profiling. Total RNA isolated from fresh young leaves of both accessions along with their replicas was used for library construction. Illumina® sequencing of the four small RNA libraries generated a total of 59,234,923; 58,487,817; 59,520,376; 64,093,228 raw reads. The raw reads were quality filtered and used for the prediction of conserved and novel miRNAs. A total of 227 conserved and 109 novel microRNAs were identified from the libraries. Target gene prediction done using psRNAtarget and PANTHER®GO helped in localization of predicted targets. KEGG (Kyoto Encyclopedia for Genes and Genomes) was used for pathway prediction of the targets of predicted miRNAs. The present study provides first elaborated glimpse of miRNA pool of *C. asiatica*. The outcome of this research could help understand miRNA dependent regulation of centelloside biosynthesis and to design further metabolic engineering experiments to enhance their content in this important medicinal plant.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Specifications Table

Subject	Agricultural and Biological Sciences
Specific subject area	Plant Science
Type of data	Text (FASTQ sequence files), table
How data were acquired	High-throughput RNA sequencing using Illumina HiSeq 2500 Sequencing System
Data format	Raw data in FASTQ file
Parameters for data	Total RNA isolation from leaves of Centella asiatica (L.) Urb.
collection	Small RNA sequencing using Illumina HiSeq 2500 Sequencing platform
Description of data	Freshly collected tender leaves were used for RNA isolation, Small RNA seq libraries representing two accessions of Centella along with their replicas were sequenced for discovering known and novel miRNAs
collection	
Data source location	1) CA301
	Leaf
	Palode, Thiruvnanthapuram, Kerala
	N8°45’10”
	E77°01’41”
	2) CA308
	Leaf
	Bonaccord, Thiruvnanthapuram, Kerala
	N08°41’15”
	E77°10’52”
	30-12-2015
Data accessibility	Repository name: NCBI SRA
Data identification number	PRJNA553029
Direct URL to data	https://www.ncbi.nlm.nih.gov/sra/PRJNA553029

Value of the Data

- The data represents profiling of microRNAs of the plant Centella asiatica where a correlation between miRNA and secondary metabolism of the high valued medicinal plant was analyzed.
- The identified miRNAs were used to predict their potential roles in regulating genes involved in centelloside biosynthetic pathway specifically.
- The findings could advance our understanding of the regulatory mechanism of miRNAs in centelloside biosynthesis which could facilitate a miRNA-based biotechnology for manipulating centelloside production in both in vitro and in vivo systems.
- Expression profiles are available in the form of raw sequencing reads that can be further processed by researchers using their own bioinformatic pipeline.

1. Data Description

The dataset contains raw sequencing data obtained through the small RNA sequencing of leaf tissue of two accessions CA301 and CA308 of the medicinal plant Centella asiatica with their duplicates. The data files (reads in FASTQ format) were deposited at NCBI SRA database under project accession PRJNA553029. The summary of the processed data and assembly statistics are shown in Table 1 and the details of gene ontology classification of the predicted targets of all miRNAs discovered from the dataset are presented in Table 2.

2. Experimental Design, Materials, and Methods

2.1. Plant material

Total RNA was isolated from the fresh young leaves of two C. asiatica accessions viz., CA301 and CA308, collected from natural populations located at JNTBGRI and Bonaccord, Thiruvanan-
thapuram, India. The tissues were immediately frozen and stored in liquid nitrogen, until processing.

2.2. Total RNA isolation and small RNA sequencing

Total RNA was isolated from the young leaves of both accessions along with their replicas using a modified miRNeasy Mini Kit + Trizol method. Quantity and quality analysis of the samples were done using 4200 TapeStation System (Agilent Technologies). Four sets of total RNA enriched with miRNAs were purified and cDNA library was constructed using Illumina® TruSeq® Small RNA Library Prep Kit according to manufacturer’s instructions. The purified libraries were subjected to small RNA sequencing using Illumina® HiSeq 2500 sequencer.

2.3. Identification of conserved and novel miRNAs

miRNA identification and target prediction were done according to earlier report [1]. The raw reads were preprocessed to remove adapter sequences, rRNAs, tRNAs, other small RNAs and sequences below 17 and 25 nt. The identical sequences were collapsed using FASTQ/A Collapser tool available in the FASTX-Toolkit and the known miRNAs were identified by performing blastn search against plant mature miRNAs from miRBase database. The remaining reads were mapped onto the transcriptome sequence of *C. asiatica* for the identification of novel miRNAs as the whole genome of *C. asiatica* was not available. The aligned reads were used as input for predicting the novel miRNAs using miRDeep-P software [2]. Gene ontology enrichment was done using PANTHER gene ontology classification tool [3].

2.4. Target prediction and pathway annotation

In silico target gene prediction of known and novel miRNAs was done using plant miRNA target gene prediction software psRNATarget [4] with default parameters. *Arabidopsis thaliana* (transcripts, removed miRNA gene, TAIR (The Arabidopsis Information Resource) version 10, released
on 2010_12_14) was selected from the input list of cDNA library in the psRNATarget tool as the reference source. KEGG databases were utilized to find targets that were putatively involved in terpenoid backbone, mono-, sesqui- and tri- terpene biosynthesis pathways [5].

CRediT Statement

Kallevettankuzhy Krishnannair Sabu: Conceptualization, Supervision, Reviewing and Editing. Gouri Priya Ranjith: Methodology, Data curation and Writing- Original draft preparation. Jisha Satheesan: Visualization, Investigation.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors thank the Director, Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI) for providing the necessary facilities to carry out this research work. Thanks are also due to the Kerala State Council for Science, Technology and Environment (KSCSTE) for granting Research Fellowship to GPR (Order No.989/2015/KSCSTE) to conduct this study. Thanks are due to Shafeek S, Athira V, Jinu Thomas, Anjali N, Nadiya F for their assistance rendered for the study. The authors are grateful to the staffs of AgriGenome Labs, Ernakulam, India for performing high-throughput sequencing.

References

[1] N. Anjali, F. Nadiya, J. Thomas, K.K. Sabu, Discovery of microRNAs in cardamom (Elettaria cardamomum Maton) under drought stress, Dataset Papers in Science. Article ID 9507485 (2017) doi:10.1155/2017/9507485.
[2] X. Yang, L. Li, miRDeep-P : a computational tool for analyzing the microRNA transcriptome in plants, Bioinformatics 27 (2011) 2614–2615. doi:10.1093/bioinformatics/btr430.
[3] H. Mi, A. Muruganujan, D. Ebert, X. Huang, D. Thomas, PANTHER version 14 : more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools, Nucleic Acids Research 47 (2019) 419–426. doi:10.1093/nar/gky1038.
[4] X. Dai, Z. Zhuang, P.X. Zhao, psRNATarget : a plant small RNA target analysis server (2017 release), Nucleic Acids Research 46 (2018) 7–10. doi:10.1093/nar/gky316.
[5] S. Okuda, T. Yamada, M. Hamajima, M. Itoh, P. Bork, S. Goto, M. Kanehisa, KEGG Atlas mapping for global analysis of metabolic pathways, Nucleic Acids Research 36 (2008) 423–426. doi:10.1093/nar/gkn282.