A Fast Branching Algorithm for Cluster Vertex Deletion

Anudhyan Boral1 Marek Cygan2
Tomasz Kociumaka2 Marcin Pilipczuk3

1Harvard University, USA
2University of Warsaw, Poland
3University of Bergen, Norway

CSR 2014
Moscow, Russia
June 10, 2014
Parameterized complexity and kernelization

Definition

An FPT-algorithm for a parameterized problem runs in $O(f(k)n^c)$-time, where c is a constant (independent of k).
A kernel of size \(g(k) \) is a polynomial-time algorithm, which reduces an instance of a parameterized problem to an equivalent instance of size at most \(g(k) \).
Problem (Cluster Vertex Deletion, CVD)

Input: an undirected graph \(G = (V, E) \), a positive integer \(k \).

Output: a set \(S \subseteq V \) such that \(|S| \leq k \) and \(G \setminus S \) is a cluster graph (disjoint union of cliques).
Problem (Cluster Vertex Deletion, CVD)

Input: an undirected graph $G = (V, E)$, a positive integer k.

Output: a set $S \subseteq V$ such that $|S| \leq k$ and $G \setminus S$ is a cluster graph (disjoint union of cliques).
Problem (Cluster Editing, CVD)

Input: an undirected graph $G = (V, E)$, a positive integer k.

Output: a set $S \subseteq \binom{V}{2}$ such that $|S| \leq k$ and $(V, E \triangle S)$ is a cluster graph (here \triangle is a symmetric difference).
Problem (Cluster Editing, CVD)

Input: an undirected graph \(G = (V, E) \), a positive integer \(k \).
Output: a set \(S \subseteq \binom{V}{2} \) such that \(|S| \leq k \) and \((V, E \triangle S) \) is a cluster graph (here \(\triangle \) is a symmetric difference).
Motivation

Clustering objects based on pairwise similarities:

- computational biology,
- machine learning.
Clustering objects based on pairwise similarities:
- computational biology,
- machine learning.

Cluster Vertex Deletion vs Cluster Editing:
- more instances are tractable for CVD (more powerful operation),
- errors in the similarity relation are likely to affect few vertices (contaminated samples etc.).
Clustering objects based on pairwise similarities:

- computational biology,
- machine learning.

Cluster Vertex Deletion vs Cluster Editing:

- more instances are tractable for CVD (more powerful operation),
- errors in the similarity relation are likely to affect few vertices (contaminated samples etc.).

Theoretical motivation:

- deletion problem for a natural graph class.
Results

Previous results: (here $n = |V|$, $m = |E|$)

- simple $\mathcal{O}(3^k(n + m))$-time branching algorithm,
- an $\mathcal{O}(2^k k^9 + nm)$-time algorithm iterative compression (Hüffner et al., 2008)
Results

Previous results: (here $n = |V|$, $m = |E|$)
- simple $O(3^k(n + m))$-time branching algorithm,
- an $O(2^k k^9 + nm)$-time algorithm
 iterative compression (Hüffner et al., 2008)

Results for a more general 3-HITTING SET problem:
- $O(2.18^k + n^3)$ algorithm (Fernau, 2010)
- $O(k^4)$-size kernel (Abu-Khzam, 2010; preserves CVD)
Results

Previous results: (here $n = |V|$, $m = |E|$)
- simple $O(3^k(n + m))$-time branching algorithm,
- an $O(2^k k^9 + nm)$-time algorithm iterative compression (Hüffner et al., 2008)

Results for a more general 3-HITTING SET problem:
- $O(2.18^k + n^3)$ algorithm (Fernau, 2010)
- $O(k^4)$-size kernel (Abu-Khzam, 2010; preserves CVD)

Our results:
- an $O(1.9102^k(n + m))$-time branching algorithm,
- $O(1.9102^k k^4 + nm)$ time if combined with the kernel.
A graph is a cluster graph if and only if it does not have P_3, the 3-vertex path, as an induced subgraph.
Observation

A graph is a cluster graph if and only if it does not have P_3, the 3-vertex path, as an induced subgraph.
Observation

A graph is a cluster graph if and only if it does not have P_3, the 3-vertex path, as an induced subgraph.
Observation

A graph is a cluster graph if and only if it does not have P_3, the 3-vertex path, as an induced subgraph.
Observation

A graph is a cluster graph if and only if it does not have P_3, the 3-vertex path, as an induced subgraph.
Corollary

X is a solution iff $X \cap P \neq \emptyset$ for any P such that $G[P]$ is isomorphic to P_3. (X must hit all P_3’s).
Simple $O(3^k(n + m))$-time branching algorithm

Corollary

X is a solution iff $X \cap P \neq \emptyset$ for any P such that $G[P]$ is isomorphic to P_3. (X must hit all P_3’s).

Algorithm:

1. if G is a cluster graph, return $X = \emptyset$.
2. if $k = 0$, return NO.
3. find (v_1, v_2, v_3) inducing P_3.
4. for $i = 1, 2, 3$ recurse on $(G - v_i, k - 1)$ (adding v_i to X).

$O(3^k)$ calls in total, a single call can be implemented in $O(n + m)$ time.
General framework for deletion problems:

- in each step find a constant number of sets \((A_1, \ldots, A_\ell)\) such that there is a solution containing \(A_i\) for some \(i\),
- recurse on \((G \setminus A_i, k - |A_i|)\) for each \(i\).
Branching algorithms

General framework for deletion problems:

- in each step find a constant number of sets \((A_1, \ldots, A_\ell)\) such that there is a solution containing \(A_i\) for some \(i\),
- recurse on \((G \setminus A_i, k - |A_i|)\) for each \(i\).
General framework for deletion problems:

- in each step find a constant number of sets \((A_1, \ldots, A_\ell)\) such that there is a solution containing \(A_i\) for some \(i\),
- recurse on \((G \setminus A_i, k - |A_i|)\) for each \(i\).

Complexity analysis:

- any possible \((|A_1|, \ldots, |A_\ell|)\) is called a branching vector,
- number of recursive calls: \(O(c^k)\) for \(c\) such that \(c^k \geq \sum_i c^{k-a_i}\) for any branching vector,
- the optimal choice of \(c\): the largest positive root of \(1 = \sum_i x^{-a_i}\) equations over all branching vectors,
- total time: \(O(c^kT(n))\), where \(T(n)\) is the time needed for a single recursive call.
Improving the simple algorithm

Simple branching algorithm for \((v, u, w)\) inducing \(P_3\):
- remove one of the three vertices and recurse,
- possibly more than one of these vertices is ultimately deleted
 - single solution might be explored multiple times.

Different approach:
- choose a vertex \(v\) lying on some \(P_3\)
- consider two branches:
 - remove \(v\) (and recurse),
 - decide to leave \(v\), and while \(v\) lies on \(P_3\), branch on removing one of the other two vertices of the \(P_3\).
If we decide to leave v, we still need to hit P_3’s containing v.

Definition

Conflict graph H_v: $uw \in E(H_v)$ iff u, v and w induce P_3.

![Graph Diagram](image)
If we decide to leave v, we still need to hit P_3’s containing v.

Definition

Conflict graph H_v: $uw \in E(H_v)$ iff u, v and w induce P_3.
If we decide to leave v, we still need to hit P_3’s containing v.

Definition

Conflict graph H_v: $uw \in E(H_v)$ iff u, v and w induce P_3.
If we decide to leave v, we still need to hit P_3’s containing v.

Definition

Conflict graph H_v: $uw \in E(H_v)$ iff u, v and w induce P_3.
Conflict graph H_v

If we decide to leave v, we still need to hit P_3’s containing v.

Definition

Conflict graph H_v: $uw \in E(H_v)$ iff u, v and w induce P_3.

$\begin{align*}
N_1 & \quad N_2 \\
v & \\
\end{align*}$
Vertex covers in H_v

A vertex cover of a graph G is a set $X \subseteq V(G)$ such that $G \setminus X$ has no edges.

- any solution leaving v contains a vertex cover of H_v,
- after removing a vertex cover of H_v, the component of H_v is a clique.
A vertex cover of a graph G is a set $X \subseteq V(G)$ such that $G \setminus X$ has no edges.

- any solution leaving v contains a vertex cover of H_v,
- after removing a vertex cover of H_v, the component of H_v is a clique.
A vertex cover of a graph G is a set $X \subseteq V(G)$ such that $G \setminus X$ has no edges.

- any solution leaving v contains a vertex cover of H_v,
- after removing a vertex cover of H_v, the component of H_v is a clique.
Greedy choices

Let X, X' be vertex covers of H_v. We say that X dominates X' if $|X| \leq |X'|$ and $X \cap N_2 \supseteq X' \cap N_2$.

If X dominates X', then we can replace X' with X in any solution containing X but not v.
Greedy choices

Let X, X' be vertex covers of H_v. We say that X dominates X' if $|X| \leq |X'|$ and $X \cap N_2 \supseteq X' \cap N_2$.

If X dominates X', then we can replace X' with X in any solution containing X but not v.

$$G \setminus (X \cup N_1 \cup \{v\})$$
Greedy choices

Let X, X' be vertex covers of H_v. We say that X dominates X' if $|X| \leq |X'|$ and $X \cap N_2 \supseteq X' \cap N_2$.

If X dominates X', then we can replace X' with X in any solution containing X but not v.
Let X, X' be vertex covers of H_v. We say that X dominates X' if $|X| \leq |X'|$ and $X \cap N_2 \supseteq X' \cap N_2$.

If X dominates X', then we can replace X' with X in any solution containing X but not v.
Greedy choices

- Let X, X' be vertex covers of H_v. We say that X dominates X' if $|X| \leq |X'|$ and $X \cap N_2 \supseteq X' \cap N_2$.
- If X dominates X', then we can replace X' with X in any solution containing X but not v.
Branching on H_v

Summary of the “leave v” branch.

- Compute H_v.
- Generate several vertex covers of H_v, which in total dominate all vertex covers.
- Interpret steps of the (branching) algorithm generating covers as recursive calls for CVD.
- Branching vectors $(1, 2)$ ($c < 1.62$) and better.

Issue: With the “remove v” branch, the initial step may have branching vector $(1, 1, 2)$ ($c = 1 + \sqrt{2}$).

Intuitive solution: If H_v has small vertex cover, there is structure to exploit. Otherwise the subsequent steps “pay off” the poor initial one.
Branching on H_v

Summary of the “leave v” branch.

- Compute H_v.
- Generate several vertex covers of H_v, which in total dominate all vertex covers.
- Interpret steps of the (branching) algorithm generating covers as recursive calls for CVD.
- Branching vectors $(1, 2)$ ($c < 1.62$) and better.

Issue:
With the “remove v” branch, the initial step may have branching vector $(1, 1, 2)$ (with $c = 1 + \sqrt{2}$).
Branching on H_v

Summary of the “leave v” branch.

- Compute H_v.
- Generate several vertex covers of H_v, which in total dominate all vertex covers.
- Interpret steps of the (branching) algorithm generating covers as recursive calls for CVD.
- Branching vectors $(1, 2)$ ($c < 1.62$) and better.

Issue:
With the “remove v” branch, the initial step may have branching vector $(1, 1, 2)$ (with $c = 1 + \sqrt{2}$).

Intuitive solution:
If H_v has small vertex cover, there is structure to exploit. Otherwise the subsequent steps “pay off” the poor initial one,
Try to avoid the worst \((1, 2)\) branching and describe the structure of the \(H_v\) when it cannot be avoided.

- Treat several initial recursive steps as a single ‘virtual’ one
 - removing \(a_i\) nodes can decrease vertex cover only by \(a_i\).

- Many possible combinations of branching rules
 - automated case-analysis to check all possibilities.
Try to avoid the worst \((1, 2)\) branching and describe the structure of the \(H_v\) when it cannot be avoided.

Treat several initial recursive steps as a single ‘virtual’ one

- removing \(a_i\) nodes can decrease vertex cover only by \(a_i\).

Many possible combinations of branching rules

- automated case-analysis to check all possibilities.
Formalizing the idea

- Try to avoid the worst \((1, 2)\) branching and describe the structure of the \(H_v\) when it cannot be avoided.
- Treat several initial recursive steps as a single ‘virtual’ one
 - removing \(a_i\) nodes can decrease vertex cover only by \(a_i\).
- Many possible combinations of branching rules
 - automated case-analysis to check all possibilities.
More greedy choices

Are “leave v” and “remove v” branches always necessary?

Observation

Let C be a connected component of v. If $C - v$ is a cluster graph, one can greedily remove v.

A. Boral, M. Cygan, T. Kociumaka, M. Pilipczuk

A Fast Branching Algorithm for Cluster Vertex Deletion
More greedy choices

Are “leave v” and “remove v” branches always necessary?

Observation

Let C be a connected component of v. If $C - v$ is a cluster graph, one can greedily remove v.

![Diagram showing examples of cluster graphs with vertices removed and connected components highlighted.]
More greedy choices

Are “leave \(v \)” and “remove \(v \)” branches always necessary?

Observation

Let \(C \) be a connected component of \(v \). If \(C - v \) is a cluster graph, one can greedily remove \(v \).
More greedy choices

Are “leave v” and “remove v” branches always necessary?

Observation

Let C be a connected component of v. If $C - v$ is a cluster graph, one can greedily remove v.

![Diagram showing connected components and cluster graphs.](image)
More greedy choices

Are “leave \(v \)” and “remove \(v \)” branches always necessary?

Observation

Let \(C \) be a connected component of \(v \). If \(C - v \) is a cluster graph, one can greedily remove \(v \).
More greedy choices

Are “leave v” and “remove v” branches always necessary?

Observation

Let C be a connected component of v. If $C - v$ is a cluster graph, one can greedily remove v.
More greedy choices

Lemma

Suppose X is a vertex cover of H_v. Then there is a minimum solution S such that $v \notin S$ or $|X \setminus S| \geq 2$.

- If $|X| = 1$, greedily leave v and proceed to H_v.
- If $|X| = 2$ in the “remove v” branch proceed to H_x for some $x \in X$
 - if $C - v$ is not a cluster graph, then X intersect a P_3 disjoint with v,
 - the first branching after removing v is no worse than $(1, 2)$.
Algorithm summary

- If $VC(H_v) = 1$, we greedily leave v proceed immediately to branching H_v (branching vectors $(1, 2)$ and better).
- If $VC(H_v) = 2$, the “remove v” branch starts with a $(1, 2)$ or better branching, i.e. contributes to $(2, 3)$ in the branching vector of the ‘virtual’ initial step. Analysis of branching on H_v gives vectors, combined with $(2, 3)$, values $c < 1.9448$.
- If $VC(H_v) \geq 3$, analysis of branching in H_v, combined with (1) corresponding to removing v, gives vectors of values $c < 1.9338$.
Algorithm summary

- If $VC(H_v) = 1$, we greedily leave v proceed immediately to branching H_v (branching vectors $(1, 2)$ and better).
- If $VC(H_v) = 2$, the “remove v” branch starts with a $(1, 2)$ or better branching, i.e. contributes to $(2, 3)$ in the branching vector of the ‘virtual’ initial step. Analysis of branching on H_v gives vectors, combined with $(2, 3)$, values $c < 1.9448$.
- If $VC(H_v) \geq 3$, analysis of branching in H_v, combined with (1) corresponding to removing v, gives vectors of values $c < 1.9338$.

In the worst cases (if initially only $(1, 2)$ branching can be applied in H_v), v we can also greedily leave v.

- ‘virtual’ initial steps have vectors of value $c < 1.9102$.
Conclusions & open problems

Our results:

- \(\mathcal{O}^*(1.9102^k) \)-time branching algorithm.
- Single step implemented in linear time given \(G \) or \(\tilde{G} \):
 - \(\mathcal{O}(1.9102^k(n + m)) \) time for \textsc{Cluster vertex deletion} and \textsc{Co-cluster vertex deletion}.

Open problems:

- Does \textsc{Cluster vertex deletion} admit a small kernel (for example with \(O(k) \) vertices)?
- \textsc{Cluster editing} has \(2^k \)-vertex kernel.
- Can the \(\mathcal{O}^*(1.9102^k) \) time be improved?
- More detailed analysis of the worst case could probably improve 1.9102 by a tiny amount.
- Weighted case (different prices for removing vertices).
Our results:

- $O^*(1.9102^k)$-time branching algorithm.
- Single step implemented in linear time given G or \overline{G}:
 - $O(1.9102^k(n + m))$ time for Cluster vertex deletion and Co-cluster vertex deletion.

Open problems:

- Does Cluster vertex deletion admit a small kernel (for example with $O(k)$ vertices)?
 - Cluster editing has $2k$-vertex kernel.
- Can the $O^*(1.9102^k)$ time be improved?
 - more detailed analysis of the worst case could probably improve 1.9102 by a tiny amount.
- Weighted case (different prices for removing vertices).
Thank you for your attention!