Role of pharmacist during COVID-19 pandemic: A retrospective study focused on critically ill COVID-19 patients

Abdulrahman Alwhaibia,⇑, Abdulmohsin Alrwaishedb, Shoug Majed Binobydaanc, Sawsan Alawwadd, Syed Wajid, Salmeen Bablghaitha, Sultan Alghadeere, Mohammed N Al Arifi

A. Alwhaibi (✉)
Pharmacy Department, Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia
a

B. Alrwaished
Pharmacy Department, Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia
b

C. Binobydaan
Department of Sales, SAJA Pharmaceutical Company, Riyadh, Saudi Arabia
c

D. Alawwad
Pharmacy Department, King Fahad Medical City, Riyadh, Saudi Arabia
d

E. Alghadeer
Research center, Department of Basic Sciences, Prince Sultan Bin Abdulaziz College for Emergency Medical Services, King Saud University, Riyadh, Saudi Arabia

d

1. Introduction

Declaring Coronavirus 2019 (COVID-19) pandemic by the World Health Organization on March 11, 2020 (Tang et al., 2020; World Health Organization), imposed a significant challenge on the global healthcare services and resources. During this crisis, there has been a huge demand for medications and unprecedented utilization of intensive care unit (ICU) services that subsequently and profoundly impacted the quality of medical care provided to COVID-19 patients. This study aimed to shed light on the role of pharmacists on the health care provided to critically ill COVID-19 patients.

Methods: A retrospective study, was conducted in Diriyah hospital in Riyadh, Saudi Arabia on all COVID-19 patients admitted to the ICU between June 27th and August 15th, 2020 until patients were transferred to the medical ward, discharged, or deceased. All medication related interventions performed by pharmacists have been documented electronically, collected and subsequently categorized and analyzed.

Results: The mean age of patients was 58.8 years (±12.98 SD), with age of >64 years in approximately 37%. Four hundred and seventy interventions (470) were made by pharmacists of which 32%, 11.7%, 4%, 2.6%, 2.1% were due to error in dosing regimens, drug duplication, missing drug information, drugs requiring prior authorization, and missing critical information, respectively; while 40.6% were due to medication shortage of which 40.3% were substituted with alternative medications. Based on the analysis of drugs involved in interventions, medication groups that were mainly associated with interventions included antibiotics (16.8%), electrolytes/minerals (11.7%) and vitamins (9.4%).

Conclusion: During health crises such as COVID-19 pandemic, the role of pharmacists in the ICU services becomes extremely crucial for providing better patients’ outcomes. Further studies should be conducted to follow up these findings in the context of COVID-19 pandemic.
become more complex that consequently made the critically ill COVID-19 patients more vulnerable to MEs and ADEs.

Medication errors (MEs) represent a major concern globally. Early studies have estimated that MEs account for 7000 deaths annually in the United States (Phillips et al., 1998, 2001). Whereas recent reports have shown that the number is underestimated as MEs may account for up to 251,000 deaths a year in the U.S. (Makary and Daniel, 2016; Anderson and Abrahamson, 2017). Drug related mortality and morbidities have a major economic burden on the American health care system, as their cost was estimated to exceed $177 billion annually (Ernst and Grizzle, 2001). This underlines the significant role that pharmacists can play to provide the most economically saving therapies and more importantly ensure patients’ safety during the treatment process.

Pharmacists have a crucial role in emergency medical services (EMS), including the ICU, through participation in planning pharmacotherapies and decisions related to clinical parameters evaluation and drug monitoring (Kane et al., 2003). Their interventions represent the first line defense that prevents MEs and ADEs from occurring in the first place, ultimately improving the medication safety. Beyond this, their presence in the ICU and consultation with ICU physicians have shown to reduce the consumed quantities of drugs, which was correlated with a reduction in the cost of drug therapy (Albouri et al., 2013; Montazeri and Cook, 1994), and prevent inappropriate drug use or ADEs, thus avoiding their attributable cost (MacLaren et al., 2021; MacLaren and Devlin, 2019). More details regarding contribution of pharmacists in the ICU is discussed elsewhere (Preslaski et al., 2013).

Despite the wealth of literature with the role of ICU pharmacists in general, there is a paucity of research on the role of pharmacists on the ICU admitted COVID-19 patients. This study aimed to explore the role of pharmacists in the ICU services provided to critically ill COVID-19 patients. The overall goal of the study was to highlight the major types of pharmacists’ interventions and MEs that pharmacists experience during caring for critically ill COVID-19 patients to draw the practitioners’ attention to areas they need to be more vigilant to warrant patients’ safety during this pandemic.

2. Method

This retrospective study was conducted in Diriyah hospital in Riyadh, Saudi Arabia on all COVID-19 patients admitted to the ICU between June 27th and August 15th, 2020. Patients who were admitted before June 27th and after August 15th were excluded from the study. All patients’ cases had been followed between June 27th and August 15th, until patients were transferred out of the ICU, i.e. transferred to the medical ward, discharged, or died. Baseline characteristics including demographic data, medical and disease history as well as pharmacists’ interventions were collected by two on-duty pharmacists and two volunteering pharmacists with no need to informed consent from patients as the study was performed retrospectively. Ten out of twelve on-duty pharmacists provided therapeutic interventions during the study period. Pharmacist intervention in our study is defined as any action taken by the pharmacist on medications ordered to these patients that might have potential measurable impact on the quality of care provided to them during their stay in the ICU (Alderman and Farmer, 2001; Dooley et al., 2004; Mongaret et al., 2018). Following their collection, they were counted and classified according to the predefined types of interventions built into the utilized software at the hospital. Medication groups or classes corresponded to these interventions were determined. A designed collection sheet was utilized to gather all required information. Data related to pharmacists’ interventions and medications would be reviewed by one junior and 2 senior pharmacists, to ensure interventions align with the type or class provided by the software. Data were analyzed using Microsoft Excel 2019.

3. Results:

3.1. Baseline characteristics

During the study period, one hundred and nine patients were considered, of which thirty were excluded [9 admitted to the medical ward; 16 with inaccessible files since their transfer to Diriyah hospital was cancelled; 3 with inaccessible clinical notes; 2 patients with missing medication lists] that resulted in 79 patients to be included in the study. The mean age of patients was 58.8 years (±12.98 SD), with age of >64 years in approximately 37%, as shown in Table 1. Male patients represented 84.8% and all were non-Saudis. Diabetes and hypertension were the most prevalent comorbidities which were diagnosed in 59.5% and 58% of the

Table 1
Clinical baseline characteristics of participants (N = 79).

Characteristic	Number (%)
Age [28 to 86; years]	
< 55	34 (43.0)
55-64	16 (20.3)
> 64	29 (36.7)
Gender	
Male	67 (84.8)
Female	11 (13.9)
Nationality	
Saudi	0
Non-Saudi	79 (100)
BMI	
Underweight (< 18.5)	0
Normal (18.5 ≤ to < 25)	15 (19)
Overweight (25 ≤ to < 30)	23 (29.1)
Obese	30 (38)
Class I (30 ≤ to < 35)	17 (26.7)
Class II (35 ≤ to < 40)	8 (12.7)
Class III (> 40)	5 (16.6)
Medical history	
Yes	47 (60)
No	29 (37)
NA	3
Diabetes	
Yes	46 (58)
No	12 (14)
Anemia	
Yes	12 (14)
No	41 (52)
CHD	
Yes	8 (10)
No	46 (58)
A-fib	
Yes	3 (3.8)
No	52 (65)
CHF	
Yes	1 (1.3)
No	51 (64)
Dyslipidemia	
Yes	5 (6.3)
No	47 (57)
Chronic kidney failure (CKD)	
Yes	5 (6.3)
No	72 (90)
Asthma	
Yes	2 (2.5)
No	36 (46)
COPD	
Yes	2 (2.5)
No	37 (47)
Lung mass (Cancer or TB)	
Yes	1 (1.3)
No	78 (98)
Peptic ulcer	
Yes	1 (1.3)
No	12 (15)
Schizophrenia	
Yes	1 (1.3)
No	78 (98)
Inflammatory bowel syndrome	
Yes	1 (1.3)
No	59 (74)
Hypothyroidism	
Yes	2 (2.5)
No	77 (95)
Pulmonary embolism	
Yes	1 (1.3)
No	77 (98)
stroke	
Yes	1 (1.3)
No	78 (98)
Acute renal failure	
Yes	2 (2.5)
No	77 (98)
Hyperthyroidism	
Yes	1 (1.3)
No	78 (98)
Mechanical ventilation	
Yes	71 (90.9)
No	7 (8.8)
NA	1 (1.3)
Sedation	
Yes	69 (87.3)
No	9 (11.4)
NA	1 (1.3)

NA: data is not available for this number of patients.

*History of PRBCs transfusion in 8 patients (6 NA; 2 Yes).
patients, respectively. Obesity existed in 38% of the patients, while 29% of patients were classified as overweight. Most of the patients were sedated and mechanically ventilated (87% and 90%, respectively). Further details on baseline characteristics are provided in Table 1.

3.2. Classification of pharmacists’ interventions based on their types

Four hundred and seventy interventions were made by pharmacists, as shown in Table 2. Of these interventions and based on the predefined types built into the software, 11.7%, 4%, 32%, 2.1% and 2.6% were due to drug duplication, drug information, error in dosing regimen, missing critical information about the patients and absence of prescriber’s privilege, respectively. In addition, 40.6% of the interventions were related to medication shortage as they were out of stock or being nonformulary drugs, of which pharmacists suggested alternatives for 40%, while 60% were left without suggestions due absence of alternative medications, yet they were requested and supplied by the Saudi Ministry of Health (MOH) or other governmental hospitals falling under MOH umbrella. Interventions related to drug order rejection represented only 2%. Further analysis of the interventions under error in dosing

Table 2 Classification of pharmacists’ interventions during ICU admission of COVID-19 patients.
Interventions
Drug class duplicate
Drug information
Error in dosing regimen
Dose adjustment
Frequency adjustment
Duration adjustment
Infusion rate adjustment
Albumin 20%: 100 ml was prescribed to infuse over 30 mins but adjusted by pharmacist to be over 4 hrs.
Route of administration adjustment
Dose and frequency adjustment
Dose and infusion rate adjustment
Infusion rate adjustment and missing diluents
Missing dose
Missing frequency
Missing infusion rate
Missing dose and infusion rate
Missing route of administration
Medication is Not available either out of stock or not in Formulary with no alternative suggestion
Medication is Not Available either out of stock or not in Formulary but alternative suggested
Other: missing date, Time ... etc
Missing patient data, lab values
Reject drug order
Reject drug order with justification
Reject drug order without justification
Re-Order Requested
System error
Order entered by other-registered person
Non-privileged prescriber
None
Intervention description not entered
No intervention done during ICU stay
regimens type revealed that 53% and 21% were associated to dose and frequency adjustments, respectively. Additional information related the types of interventions, corresponding number of recipients and example for each intervention are provided in Table 2.

3.3. Classification of pharmacists’ intervention based on the pharmacological category of involved medications and their numbers

Many pharmacological groups were associated with the interventions. However, antibiotics (16.8%), electrolytes/minerals (11.7%) and vitamins (9.4%) are considered the most involved categories. Further details are provided in Table 3.

Regarding the number of interventions per patient, it ranged between none in 3 patients to 22 interventions in 1 patient, while many had 3 to 4 interventions, as shown in Table 4.

3.4. Health complications in COVID-19 patients during ICU stay and patients’ survival

Cardiovascular and respiratory complications were found the most common in this cohort (25.5% and 26%, respectively), as shown in Table 5.

Patients were also categorized based on their survival. Unfortunately, 74.7% (59 patients) died, while only 20.3% (16 patients) survived at the end of the study. Interestingly, when BMI was compared between patients who survived and discharge (12 patients) vs. those who died (51 patients), no significant difference was observed (mean BMI 30.30 kg/m² vs. 31.2 kg/m², respectively), as provided in Fig. 1. It is worth to mention that a total of 16 patients from the cohort were excluded from this analysis because of missing BMI and/or survival data (4 patients), missing BMI data only (10 patients) or being transferred to another hospital where survival data could not be obtained (2 patients).
critically ill COVID-19 patients. This study sheds light on the services provided by pharmacists to the critically ill COVID-19 patients in Riyadh, Saudi Arabia. Since the beginning of this pandemic, researchers all over the world started searching different aspects of this novel disease. As the available peer reviewed literature regarding the services of pharmacists provided to COVID-19 patients in the ICU setting has been scarce, it has become of our interest to assess that during the pandemic, understanding how pharmacists have contributed to the services to critically ill COVID-19 patients would highlight their achievements and more importantly expose any gap in their practice giving ample opportunity for future improvements. Only one study conducted on 22 ICU-admitted COVID-19 patients in China investigating this topic and was published recently by Wang et al. (2021), Wang et al. (2021) have shown that drug discontinuation was the most common recommendation (31.5%; 35 out of 111) while dose adjustment accounted for 15.3%. Despite the slight difference in type of interventions at drug level compared to our study, most of the recommendation based on their observation were related antibiotics (57.7%) which aligns with the current reported results (16.8%; 79 of 470) in spite of the lower rate. As studies discussing this matter are rarely reported (Wang et al., 2021), it becomes challenging to compare our findings to additional studies. Nevertheless, a quick glance on types of interventions made by pharmacists on the critically ill COVID-19 patients revealed some similarities with their interventions at different critical care units. For instance, a study focused on the impact of pharmacists’ interventions with respect to drug-related problems (DRPs) in the ICU has shown 28.9% and 14.3% were related to wrong dosing regimen and no indication for drug use, respectively (Al-Jazairi et al., 2008). Additional study assessing the role of clinical pharmacy services in the oncology ward showed that 26.6%, 21.5% and 10.3% of pharmacist’s interventions were related to drug discontinuation, drug dosing adjustments, and therapeutic drug monitoring (Delpeuch et al., 2015). Further findings from the oncology ward revealed 27.1%, 20.0%, 6.2%, 5.1% of the pharmacist interventions were secondary to drug dosing modifications, therapy discontinuations, recall of the treatment, and replacement of a drug with another one, respectively (Moukafih et al., 2021). Another study conducted by Faqeer and colleagues on identifying DRPs in the oncology ward, showed that addition of medications (38.7%), then discontinuation of medications (25%) were the most common types of interventions followed by dose adjustment secondary to wrong dose (3.7%) (Faqeer et al., 2021). In the internal medical ward, Abunahlah and colleagues showed that inappropriate drug use (44.79%), inappropriate dose (27.61%), and inappropriate medication treatment procedures (21.47%) were the most common interventions identified by the clinical pharmacists (Abunahlah et al., 2018). Although Molino and colleagues’ study was conducted in the outpatients’ setting, they reported similar rate of our interventions related to drug duplication (11.29%), and lower rate of those associated to dose adjustment (20.05%) (Molino Cde et al., 2014).

Comparing with the current literature, our results are in agreement with the type of ICU pharmacists’ interventions seen in the current pharmacy practice in hospitals, reiterating the notion that more attention should be directed towards errors in the prescribed regimens that are mainly attributed to wrong dose and/or frequencies. Our results also showed approximately 60% of the interventions associated to medication shortage were left with no alternative suggestions (117 of 191). Despite that, these medications were requested and supplied by MOH, either directly or via other MOH-operated hospitals. Our results showed that antibiotics (16.8%) were the most common drug classes associated with interventions, which goes hand on hand with previous studies (Wang et al., 2021; Faqeer et al., 2021; Babelghaith et al., 2020; Hajjar et al., 2021). This was followed by electrolytes/minerals (11.7%) and vitamins (9.4%). By looking at the complications that COVID-19 patients developed during ICU admission, respiratory complications were found to be the most prominent (26%) among which pneumonia, tachypnea, ARDS, hypoxia, and metabolic acidosis which were more frequent, followed by the cardiovascular complications (25.5%), which were mainly hypotension, septic shock and bradycardia/tachycardia. These results are in agreement with Hajjar et al study that was focused on the intensive care management of COVID-19 patients (Hajjar et al., 2021). Finally, and unexpectedly, when BMI was compared between the survived and deceased patients, there was no significant difference between the two groups.

4. Discussion

Many studies have been conducted investigating the essential services delivered by pharmacists during COVID-19 pandemic. Pharmacists had the likely to show a superior role during this pandemic in multiple aspects, such as providing drug information for healthcare providers (Dhahri et al., 2020; Louiselle et al., 2020), patients counseling (Meng et al., 2020), suggestion alternative therapy (Ong et al., 2020), therapeutic drug monitoring (Mongaret et al., 2018), drug supply administration (Ong et al., 2020; Tan et al., 2020) and safety measures for infection control (Ong et al., 2020; Zuckerman et al., 2020). This study sheds light on the services provided by pharmacists to the critically ill COVID-19 patients in Riyadh, Saudi Arabia. Since the beginning of this pandemic, researchers all over the world started searching different aspects of this novel disease. As the available peer reviewed literature regarding the services of pharmacists provided to COVID-19 patients in the ICU setting has been scarce, it has become of our interest to assess that during the pandemic, understanding how pharmacists have contributed to the services to critically ill COVID-19 patients would highlight their achievements and more importantly expose any gap in their practice giving ample opportunity for future improvements. Only one study conducted on 22 ICU-admitted COVID-19 patients in China investigating this topic and was published recently by Wang et al. (2021), Wang et al. (2021) have shown that drug discontinuation was the most common recommendation (31.5%; 35 out of 111) while dose adjustment accounted for 15.3%. Despite the slight difference in type of interventions at drug level compared to our study, most of the recommendation based on their observation were related antibiotics (57.7%) which aligns with the current reported results (16.8%; 79 of 470) in spite of the lower rate. As studies discussing this matter are rarely reported (Wang et al., 2021), it becomes challenging to compare our findings to additional studies. Nevertheless, a quick glance on types of interventions made by pharmacists on the critically ill COVID-19 patients revealed some similarities with their interventions at different critical care units. For instance, a study focused on the impact of pharmacists’ interventions with respect to drug-related problems (DRPs) in the ICU has shown 28.9% and 14.3% were related to wrong dosing regimen and no indication for drug use, respectively (Al-Jazairi et al., 2008). Additional study assessing the role of clinical pharmacy services in the oncology ward showed that 26.6%, 21.5% and 10.3% of pharmacist’s interventions were related to drug discontinuation, drug dosing adjustments, and therapeutic drug monitoring (Delpeuch et al., 2015). Further findings from the oncology ward revealed 27.1%, 20.0%, 6.2%, 5.1% of the pharmacist interventions were secondary to drug dosing modifications, therapy discontinuations, recall of the treatment, and replacement of a drug with another one, respectively (Moukafih et al., 2021). Another study conducted by Faqeer and colleagues on identifying DRPs in the oncology ward, showed that addition of medications (38.7%), then discontinuation of medications (25%) were the most common types of interventions followed by dose adjustment secondary to wrong dose (3.7%) (Faqeer et al., 2021). In the internal medical ward, Abunahlah and colleagues showed that inappropriate drug use (44.79%), inappropriate dose (27.61%), and inappropriate medication treatment procedures (21.47%) were the most common interventions identified by the clinical pharmacists (Abunahlah et al., 2018). Although Molino and colleagues’ study was conducted in the outpatients’ setting, they reported similar rate of our interventions related to drug duplication (11.29%), and lower rate of those associated to dose adjustment (20.05%) (Molino Cde et al., 2014).

Comparing with the current literature, our results are in agreement with the type of ICU pharmacists’ interventions seen in the current pharmacy practice in hospitals, reiterating the notion that more attention should be directed towards errors in the prescribed regimens that are mainly attributed to wrong dose and/or frequencies. Our results also showed approximately 60% of the interventions associated to medication shortage were left with no alternative suggestions (117 of 191). Despite that, these medications were requested and supplied by MOH, either directly or via other MOH-operated hospitals. Our results showed that antibiotics (16.8%) were the most common drug classes associated with interventions, which goes hand on hand with previous studies (Wang et al., 2021; Faqeer et al., 2021; Babelghaith et al., 2020; Hajjar et al., 2021). This was followed by electrolytes/minerals (11.7%) and vitamins (9.4%). By looking at the complications that COVID-19 patients developed during ICU admission, respiratory complications were found to be the most prominent (26%) among which pneumonia, tachypnea, ARDS, hypoxia, and metabolic acidosis which were more frequent, followed by the cardiovascular complications (25.5%), which were mainly hypotension, septic shock and bradycardia/tachycardia. These results are in agreement with Hajjar et al study that was focused on the intensive care management of COVID-19 patients (Hajjar et al., 2021). Finally, and unexpectedly, when BMI was compared between the survived and deceased patients, there was no significant difference between the two groups.

5. Conclusion

Our findings highlight that pharmacist’s attention should be amplified towards errors in dosing regimens and drug duplications throughout caring of critically ill COVID-19 patients. In addition, with medication shortage that potentially occur during the pandemic, pharmacist as a medication expert should be proactive in providing information about drugs and their alternatives, if necessary, for healthcare providers. Studies focused on significance of pharmacists’ interventions on health outcomes of critically ill COVID-19 patients and their acceptance by physicians should be conducted to follow up these findings.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgment

The authors extend their appreciation to the Deputyship for Research & Innovation, "Ministry of Education" in Saudi Arabia for funding this research work through the project no. (IFKSURG-2020-148).

Funding

This study was funded by Deputyship for Research & Innovation, "Ministry of Education" in Saudi Arabia through the project no. (IFKSURG-2020-148).

Authors' contributions

Conception and design: AW, AR, SO, and SA; Data collection, analysis, and interpretation: AW, AR, SO, SA, SW and SB. All authors reviewed the manuscript.

References

Abunahlah, N., Elwaisi, A., Velibeyoglu, F.M., Sancar, M. 2018. Drug related problems identified by clinical pharmacist at the Internal Medicine Ward in Turkey. Int. J. Clin. Pharm. 40 (2), 360–367. https://doi.org/10.1007/s40258-017-0585-5. Epub 2018 Jan 29 PMID: 29820326.

Alderman, C.P., Farmer, C. 2001. A brief analysis of clinical pharmacy interventions undertaken in an Australian teaching hospital. J. Quality Clin. Practice 21 (4), 193–199.

Al-Jazairi, A.S., Al-Arif, A.A., Asiri, A.A., Al-Kholi, T.A., Akhras, N.B., Horanieh, B.K., 2015. Impact of clinical pharmacist on cost of drug therapy in the ICU. Saudi Pharm. J. 21 (4), 371–374.

Anderson, T.G., Abrahamson, K. 2017. Your Health Care May Kill You: Medical Errors. IntJCTH 2017 Jan 1, pp. 13-17.

Babelghaith, S.D., Wajid, S., Alrabiah, Z., Othiq, M.A.M., Alghadeer, S., Alhossan, A., Al-Arifi, M., Attafi, I.M., 2020. Drug-related problems and pharmacist intervention at a general hospital in the Azad Region, Saudi Arabia. Risk Manag. Healthc. Policy 6 (13), 373–378. https://doi.org/10.2147/RMHP.S247686.

Cullen, D.J., Sweitzer, B.J., Bates, D.W., Burdick, E., Edmondson, A., Leape, L.L., 1997. From natural disaster to pandemic: a health-system pharmacy rises to the challenge. Am. J. Health Syst. Pharm. 77 (23), 1986–1993. https://doi.org/10.1093/ajhp/zxaa180. Epub ahead of print. PMID: 32417873; PMCID: PMC7239216.

Dooley, M.J., Allen, K.M., Doecke, C.J., Galbraith, K.J., Taylor, G.R., Bright, J., Carey, D. 2004. A prospective multicentre study of pharmacist initiated changes to drug therapy and patient management in acute care government funded hospitals. British J. Clin. Pharmacol. 57 (4), 513–521.

Ernst, F.R., Grizzle, A.J., 2001. Drug-related morbidity and mortality: updating the cost-of-illness model. J. Am. Pharm. Assoc. 41 (2), 192–199.

Fakhry, N., Mustafa, N., Abd Alajil, N., Qurban, T., 2021. Impact of clinical pharmacists in an inpatient medical oncology service: A prospective study at a comprehensive cancer center in Jordan. J. Oncol. Pharm. Pract. https://doi.org/10.1017/jopp.2021.15. Epub ahead of print. PMID: 32782480; PMCID: PMC8038103.

Hajjar, L.A., Costa, I.B.S.D.S., Rizk, S.I., Biselli, G., Gomes, B.R., Bittar, C.S., De Oliveira, G.Q., De Almeida, J.P., De Oliveira Bello, M.V., Ganzillo, C., Leme, A.C., Elena, M., Val, F., De Almeida Lopes, M., Lacerda, M.V.G., Ramires, J.A.F., Karlil Filho, R., Teboul, J.L., Landoni, G., 2021. Intensive care management of patients with COVID-19: a practical approach. Ann. Intensive Care 11 (1), 36. https://doi.org/10.1186/s13613-021-00820-w. PMID: 33604671; PMCID: PMC7891474.

Kane, S.L., Weber, R.J., Dasta, J.F., 2003. May the impact of critical care pharmacists on enhancing patient outcomes. Intensive Care Med. 29 (5), 691–698. https://doi.org/10.1007/s00134-003-1705-3. Epub 2003 Mar 29 PMID: 12665569; PMCID: PMC7871438.

Klopotowska, J.E., Kuiper, R., van Kan, H.J., de Pont, A.C., Dijkgraaf, M.G., Lie-A-Huen, L., Vroom, M., Smoorenburg, S.M., 2010. On-ward participation of a hospital pharmacist in a Dutch intensive care unit reduces prescribing errors and related patient harm: an intervention study. Critical Care 14 (5).https://doi.org/10.1186/cc9371. Epub 2010 Sep 21 PMID: 20705180; PMCID: PMC2913128.

Louisselle, K., Elson, E.C., Ohsman, A., Duemhleimer, S., 2020. Impact of COVID-19 pandemic on pharmacy learners and preceptors. Am. J. Health-System Pharm. 77 (14), 1097–1099.

MacLaren, R., Devlin, J.W., 2019. The bedside critical care pharmacist: a mandatory ICU team member essential for patient care. Critical Care Med. 47 (9), 1276–1278.

MacLaren, R., Roberts, R.J., Dzierza, A.L., Buckley, M., Lat, I., Lam, S.W., 2021. Characterizing critical care pharmacy services across the United States. Critical Care Explor. 3 (1).

Makary, M.A., Daniel, M., 2016. Medical error—the third leading cause of death in the US. BMJ 353, i631.

Meng, L., Qiu, F., Sun, S., 2020. Effect of pharmacy services at cabin hospitals at the coronavirus epicenter in China. Int. J. Clin. Pharm. 42 (2), 305–308. https://doi.org/10.1007/s11096-020-01020-5. Epub 2020 Apr 2. PMID: 32240484; PMCID: PMC7113541.

Montazerizadeh, M., Alghadeer, S., Alhossan, A., Khan, M.M., Hafeez, G., 2017. Impact of a clinical pharmacist in a multidisciplinary ICU team. Critical Care Med. 22 (6), 1044–1048.

Ong, S.W., Tan, Y.K., Chia, P.Y., Lee, T.H., Ng, O.T., Wong, M.S., Marimuthu, K., 2020. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. Jama 323 (16), 1610–1612.

Phillips, J., Beams, S., Brinker, A., Holquist, C., Honig, P., Lee, L.Y., Pamer, C., 2021. Retrospective analysis of mortalities associated with medication errors. Am. J. Health Syst. Pharm. 78 (19), 1835–1841.

Phillips, D.P., Christenfeld, N., Glynn, L.M., 1998. Increase in US medication-error deaths between 1983 and 1993. The Lancet. 351 (9103), 643–644.

Preslaski, C.R., Lat, I., MacLaren, R., Poston, J., 2013. Pharmacist contributions as members of the multidisciplinary ICU team. Chest 144 (5), 1687–1695.

Tang, B., Bragazzi, N.L., Li, Q., Tang, S., Xiao, Y., Wu, J., 2020. An updated estimation of COVID-19: a practical approach. Ann. Intensive Care 11 (1), 36.https://doi.org/10.1007/s13613-021-00820-w. PMID: 33604671; PMCID: PMC7891474.

Teboul, J.L., Landoni, G., 2021. Intensive care management of patients with COVID-19. Intensive Care Med. 47 (9), 1276–1278.

WHO. 2020. Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020. Available at https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020 (last accessed on May 10, 2020).

Zuckerman, A.D., Patel, P.C., Sullivan, M., Potts, A., Knostman, M., Humphreys, E., O’Neal, M., Bryant, A., Torr, D.K., Lobo, B., Peek, G., Kelley, T., Manfred, J., 2021. Developing a framework for the COVID-19 challenge. Am. J. Health Syst. Pharm. 77 (23), 1986–1993. https://doi.org/10.1093/ajhp/zxaa180. Epub ahead of print. PMID: 32417873; PMCID: PMC7239216.