MUSE Reveals Extended Circumnuclear Outflows in the Seyfert 1 NGC 7469

A. C. Robleto-Orús1, J. P. Torres-Papaqui1, A. L. Longinotti2,3, R. A. Ortega-Minakata4, S. F. Sánchez5, Y. Ascasibar5, E. Bellocci6, L. Galbany2, M. Chow-Martínez1,8, J. J. Trejo-Alonso9, E. Bellocchi6, A. L. Longinotti2,3, and F. J. Romero-Cruz1,10

1 Departamento de Astronomía, Universidad de Guanajuato, Apdo. 144, C.P. 36000 Guanajuato, Gto., Mexico; ac.robletoorus@ugto.mx
2 Instituto Nacional de Astrofísica, Óptica y Electrónica, C.P. 72840, Tonantzintla, Puebla, Mexico
3 Instituto de Astronomía, Universidad Nacional Autónoma de México, C.P. 04510, CDMX, Mexico
4 Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, C.P. 58089, Morelia, Mich., Mexico
5 Centro de Astrobiología (CAB, CSIC-INTA), ESAC, Urb. Villafranca del Castillo, E-28692 Villanueva de la Cañada, Madrid, Spain
6 Instituto de Geología y Geofísica IGG-CIGEO, Universidad Nacional Autónoma de Nicaragua, C.P. 663, Managua, Nicaragua
7 Departamento de Física Teórica y del Cosmos, Universidad de Granada, C.P. E-18071, Granada, Andalucía, Spain
8 Departamento de Física Teórica, Universidad Nacional Autónoma de Querétaro, C.P. 76010, Santiago de Querétaro, Qro., Mexico
9 Facultad de Ingeniería, Universidad Autónoma de Querétaro, C. P. 36262, Guanajuato, Gto. Mexico

Received 2020 July 26; revised 2020 December 12; accepted 2020 December 14; published 2021 January 11

Abstract

NGC 7469 is a well-known luminous infrared galaxy, with a circumnuclear star formation ring (~830 pc radius) surrounding a Seyfert 1 active galactic nucleus (AGN). Nuclear unresolved winds were previously detected in X-rays and ultraviolet, as well as an extended biconical outflow in infrared coronal lines. We search for extended outflows by measuring the kinematics of the Hβ and [O III] λ5007 optical emission lines, in data of the Very Large Telescope/Multi-unit Spectroscopic Explorer integral field spectograph. We find evidence of two outflow kinematic regimes: one slower regime extending across most of the star formation (SF) ring—possibly driven by the massive SF—and a faster regime (with a maximum velocity of ~715 km s⁻¹), only observed in [O III], in the western region between the AGN and the massive star-forming regions of the ring, likely AGN-driven. This work shows a case where combined AGN/SF feedback can be effectively spatially resolved, opening up a promising path toward a deeper understanding of feedback processes in the central kiloparsec of AGN.

Unified Astronomy Thesaurus concepts: Active galactic nuclei (16); Galactic winds (572)

1. Introduction

Studies over large samples of galaxies have revealed ionized gas outflows associated both with star formation (SF; e.g., Ho et al. 2014; Roche et al. 2015; López-Cobá et al. 2017b, 2019) and with active galactic nuclei (AGNs; e.g., Greene & Ho 2005; Woo et al. 2016; Perna et al. 2017; Wylezalek et al. 2020), significantly improving our understanding of the role of AGNs and SF in feedback processes.

Optical emission lines can trace the warm-ionized phase (T ~ 10⁴–10⁵ K) of outflows, reaching line-of-sight velocities (LoSVs) of 10⁵–10⁶ km s⁻¹, and spatial scales up to ~10³ pc (Cicone et al. 2018, and references therein). The collisionally excited [O III]λ5007 emission line—weakly affected by blending with nearby lines, and usually presenting high signal-to-noise ratio (S/N) in AGNs—is a popular tracer of outflows, used to study possible connections with winds in other spectral bands (e.g., Mullaney et al. 2013; Perna et al. 2017; Venturi et al. 2018).

Woo et al. (2016) studied outflow kinematics with [O III]λ5007 and Hα for a large sample of type 2 AGNs at z ≤ 0.3, finding that higher outflow velocities correspond to higher velocity dispersions and luminosities. The gas velocity and velocity dispersion were more extreme for [O III]λ5007 than for Hα, suggesting that Hα traces the nebulosity emission from SF regions—with their motion dominated by the host galaxy gravitational potential—and that [O III]λ5007 traces mainly the AGN-driven outflow.

Consistent results were reported by Karouzos et al. (2016), studying the spatially resolved kinematics of outflows in six type 2 AGN (z ~ 0.05–0.1), using integral field spectroscopy (IFS) with the Gemini Multi-Object Spectrograph (GMOS)/Gemini. They confirmed that Hα follows the kinematics of stellar absorption lines, while [O III]λ5007 has independent and more extreme kinematics. High spatial and spectral resolution IFS has boosted knowledge of geometry and physics of galaxy-scale AGN-driven outflows in nearby galaxies (i.e., López-Cobá et al. 2017a; Mingozzi et al. 2019; López-Cobá et al. 2020).

1.1. NGC 7469: Starburst and AGN

NGC 7469 is a nearby galaxy hosting a Seyfert type 1 AGN with a supermassive black hole with mass log₁₀(MBH) = 7.32±0.09 M☉ and bolometric luminosity Lbol = ~10⁷⁷ erg s⁻¹ (Ponti et al. 2012). It is classified as a luminous infrared galaxy (LIRG) due to the starburst concentrated in its circumnuclear ring, triggered by interaction with the IC 5283 galaxy. The ring outer radius is 2.5" (~830 pc) and the inner radius 0.7" (~232 pc), with bright knots at ~1.5" (~500 pc); Genzel et al. 1995). This ring contains young (1–20 Myr) massive stars (Diaz-Santos et al. 2007).

Davies et al. (2004) and Izumi et al. (2015) found molecular gas structures in the central region using millimeter observations, including a circumnuclear disk (~300 pc) that Izumi et al. (2020) revealed to be an X-ray dominated region produced by the AGN.

Blustin et al. (2007) reported X-ray spatially unresolved nuclear winds (warm absorbers) with LoSVs of ~580 to ~2300 km s⁻¹, later confirmed by Behar et al. (2017) and Mehdipour et al. (2018) at LoSVs of ~400 to ~1800 km s⁻¹ within a distance of 2–80 pc from the black hole. All these authors reported ultraviolet (UV) counterparts of the X-ray winds.
2. Methodology

2.1. Observations and Data Reduction

NGC 7469 was observed in 2014 August 19, during the science verification run of the Multi-unit Spectroscopic Explorer (MUSE; Bacon et al. 2004) IFS instrument at the VLT of the European Southern Observatory (ESO; Chile). The pilot study of the All-weather MUSE Supernova Integral-field of Nearby Galaxies survey (AMUSING; Gallbáy et al. 2016) and the AMUSING++ compilation12 (López-Cobá et al. 2020) include these data. MUSE covers a field of view of 1 arcmin2 with a spatial sampling of 0.2′′ per spaxel (top-left panel, Figure 1). For NGC 7469 each spaxel presents a scale of 66.44 pc (332.2 pc arcsec−1). The seeing had a FWHM = 1′′23 (≈409 pc). Data reduction followed the standard procedures, using the REFLEX (Freudling et al. 2013) package and the MUSE pipeline (Weilbacher et al. 2014). We corrected for systemic velocity using the value by Keel (1996) (4898 ± 5 km s−1), obtained by a combination of emission-line methods due to the absence of absorption lines in the central region.

2.2. AGN/Host Galaxy Deblending

Beam smearing—the scattering of light from the spatially unresolved broad-line region (BLR) and inner narrow-line region (NLR) due to seeing—can lead to overestimation of the size of the extended narrow-line region (ENLR) and of the velocity of associated outflows in type I AGN (Husemann et al. 2016). This effect was corrected through the QDEBLEND3D software described in Husemann et al. (2012, 2014, 2016). We assume a surface brightness model for the host galaxy, fixing brightness, effective radius, Sérsic index, and axis ratio, with values from Bentz et al. (2009). QDEBLEND3D produces two data cubes (Figure 1): one contains the AGN continuum and emission from the BLR and the NLR (hereafter “AGN data cube”); the other contains the host galaxy stellar continuum, SF regions, and the ENLR (hereafter “Host data cube”).

2.3. Continuum Subtraction

We subtract a synthetic stellar continuum template from each spectrum in the Host data cube, to obtain “pure emission” spectra.
2.6. Uncertainties

We estimate uncertainties through Monte Carlo simulations, following Lenz & Ayres (1992), iterating 1000 times. For the non-parametric approach, the mean uncertainties across the studied field are ~3.9, ~6.7, and $\sim6.6\ \text{km s}^{-1}$ for Δv, W_{80} and the FWHM of [O III], respectively. For Hβ the corresponding values are ~2.9, ~6.5, and $\sim6.6\ \text{km s}^{-1}$.

For the two-Gaussian components approach, the mean uncertainties in LoSV and σ are, respectively, ~60 and $\sim32\ \text{km s}^{-1}$ for the [O III] blueshifted component and ~30 and $\sim6.6\ \text{km s}^{-1}$ for the central component.

3. Results

3.1. Non-parametric Approach

Figure 3 shows the maps of Δv, W_{80} and W_{80}/FWHM for [O III] and Hβ. As a reference for the position of the AGN and the massive SF regions of the ring, the maps are overlapped to...
the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) F330W near-UV image.14 Projections of the edges of the [Si vi]λ1.96 μm outflow by Müller-Sánchez et al. (2011) are shown, with the blueshifted cone pointing west and the redshifted cone pointing east.

The [O III] results reveal the existence of two outflow kinematic regimes, located in different regions. In Figure 3(a), in a region labeled as “A,” a strong [O III] blueshifted asymmetry (Δν up to −310 km s\(^{-1}\), reaching ~531 pc (~1?6) to the north) extends northwest of the center, in between the AGN and the massive SF regions of the ring. Approximately half of it extends within the limits of the projected west [Si vi]λ1.96 μm cone, while the rest lies outside to the north.

14 HSTScI public archive through the MAST web tool.

This region also presents a broadening of \(W_{80} > 600\) km s\(^{-1}\) and \(W_{80}/\text{FWHM} > 3\) (Figures 3(b) and (c)). This high asymmetry and broadening are strong kinematic evidence of the presence of an outflow in the “A” region.

The existence of a second kinematic regime in the rest of the ring and the inner regions is disclosed by less prominent asymmetry (\(-200 \leq Δν \leq -100\) km s\(^{-1}\)) and broadening (\(250 < W_{80} < 500\) km s\(^{-1}\) and \(1.5 < W_{80}/\text{FWHM} < 3\)). We ignore here the outer regions of the field due to their lower S/N.

The Hβ maps show only one outflow regime, similar to the slowest one observed in [O III]. The Δν, \(W_{80}\), and \(W_{80}/\text{FWHM}\) maps are shown in Figures 3(d), (e), and (f), respectively. Outside the “A” region, Hβ has similar but less pronounced Δν than [O III], with most spaxels having Δν > −200 km s\(^{-1}\).

Low \(W_{80}/\text{FWHM} < 2\) ratios dominate the field except for the western SF ring. Despite reaching \(W_{80} > 300\) km s\(^{-1}\) (with a maximum of ~640 km s\(^{-1}\)), they keep \(W_{80}/\text{FWHM} < 3\). High FWHM values keep low \(W_{80}/\text{FWHM}\) ratios, possibly due to the presence of turbulence or shocks, not only in the wind but also in the bulk of the gas, affecting the whole line profiles.

3.2. Two-Gaussian Approach

Figure 4(a) shows the LoSV map of the [O III] blueshifted component. The two outflow regimes found in Section 3.1 are confirmed, with different LoSV ranges of the blueshifted component: high velocities (LoSV < −400 km s\(^{-1}\)) are found in the “A” region; lower velocities (LoSV > −400 km s\(^{-1}\)) are found around the rest of the field. The high LoSV spaxels in Figure 4(a), cover a smaller area than that of the high Δν spaxels in Figure 3(a). The fastest blueshifted component (shown at Figure 2(b)) reaches LoSV = −715 km s\(^{-1}\), at ~240 pc (~0”) northwest of the center. Velocity dispersion values of \(σ > 300\) km s\(^{-1}\) do appear in the the “A” region (Figure 4(b)), similar to \(W_{80}\), but they extend further over the western massive SF regions.

The velocity–velocity dispersion (VVD) diagram (Karouzos et al. 2016; Woo et al. 2016) provides a straightforward visualization of the different kinematic regimes (Figure 4(c)). Once the central and blueshifted components are plotted in the VVD, the former is clearly is separated from the latter in the parameter space. Following the interpretation of Woo et al. (2016) and Karouzos et al. (2016), the more extreme kinematics of the blueshifted component could be evidence of outflows (not dominated by the gravitational potential of the host galaxy), while the positive and negative LoSV values of the central component suggest motion in a galactic disk.

The high LoSV spaxels in the “A” region of Figure 4(a) (with a median LoSV of ~581 km s\(^{-1}\) and median \(σ \sim 300\) km s\(^{-1}\)) are clearly separated from the bulk of the blueshifted components (with median LoSV and \(σ \sim 284\) and 188 km s\(^{-1}\), respectively), which is consistent with the existence of the two kinematic regimes in the blueshifted component.

Note that if the mean LoSV of the central component was assumed as systemic reference frame, the outflow velocity would be ~134 km s\(^{-1}\) slower. However, the existence of both outflow regimes would still hold solidly, with the slower gas mean LoSV ~ −150 km s\(^{-1}\). In fact, more than one Gaussian is needed to fit the line profiles, as shown by the non-parametric approach.
3.3. Baldwin, Phillips, and Telervich (BPT) Diagnostics of the Central Component

The BPT diagnostic diagram (Baldwin et al. 1981) informs on the excitation mechanisms, provided that only Gaussian components with similar kinematics, i.e., tracing the same bulk of gas, are considered. The blueshifted component kinematics of \([\text{O III}]\) and \(H\beta\) are inconsistent for many spaxels, and shall not be combined in the same diagram. Due to blending of the shifted components, we could unambiguously identify only the peaks of the central components in the \(H\alpha – [\text{N II}]\) complex and use them for BPT diagnostics.

Figure 5 shows the BPT-NII diagnostics—based on the \([\text{O III}]\lambda5007/H\beta\) and \([\text{N II}]\lambda6584/H\alpha\) line ratios—of the central component. The mean flux uncertainties (in \(10^{-17}\) erg cm\(^{-2}\) s\(^{-1}\) units) are \(\sim0.58\) for \([\text{O III}]\), \(\sim0.52\) for \(H\beta\), \(\sim0.76\) for \([\text{N II}]\)\(\lambda6584\), and \(\sim3.4\) for \(H\alpha\).

AGN excitation dominates the northeast quadrant up to \(\sim500\) pc from the center, while a combination of SF and transition-object-like (TO) excitation extends across the rest of the field (low ionization nuclear emission line region (LINER)-like excitation is scarce). The “A” region with the fastest \([\text{O III}]\) outflow is marked with a white “A” and a circle (radius and position are merely orientative).

4. Discussion

Both kinematic analyses indicate two \([\text{O III}]\) outflow regimes: the “A” region shows more extreme \([\text{O III}]\) outflow kinematics compared to the rest of the field (Figures 3(a), (b), (c), 4(a), (b)); this is reflected in the VVD diagram (Figure 4(c)).

\(H\beta\) and \([\text{O III}]\) winds behave similarly across the field, except for the “A” region, where the behavior of \([\text{O III}]\) is more extreme. The \(H\beta\) maps (Figures 3(d), (e), and (f)) show a slight...
increment in Δv and W_{80}/FWHM in the “A” region, but not as pronounced as with [O III]. Based purely on kinematic criteria, a stellar origin for the slow Hβ and [O III] outflows would be consistent with them extending across most of the SF ring. The AGN is probably driving the faster [O III] outflow regime: it presents more extreme kinematics, with similar LoSVs to those AGN-driven outflows reported by Woo et al. (2016) and Karouzos et al. (2016) in [O III] (projection effects on the LoSV should be considered).

The high σ values of the [O III] blueshifted component and the low Hβ W_{80}/FWHM ratios (but high W_{80} values) at the “A” region suggest the presence of shocks both in the wind and in the gravitationally bounded gas. Therefore, interaction between the AGN-driven and SF-driven winds in this region is a possibility.
As for the excitation mechanisms, the BPT-NII map of the central component (gas in the galactic disk) in Figure 5(b) shows that emission in most of region “A” and the northeast quadrant is consistent with a combination of AGN and SF excitation, while the rest of the field is consistent with SF excitation (although AGN contribution cannot be excluded).

The fast [O III] outflow partially overlaps with the blueshift cone of the AGN-driven outflow traced by [Si VI]λ1.96 μm. If both oxygen and silicon were photoionized by the AGN, the geometry of the AGN radiation field could determine the spatial distribution of their emission, with [Si VI]λ1.96 μm being detected where the density of high-energy photons was higher—Si+5 has a higher ionization potential than O++, (167 versus 35.1 eV).

All this makes plausible the following scenario: the slow outflow could be driven by SF regions, while the fast outflow could be driven by the AGN. However, evidence is not conclusive. BPT diagnostics of the blueshifted component will test our proposed scenario by providing insights on the ionization mechanisms in the outflowing gas. We are working on that analysis; results will be presented in a future paper.

The beam-smearing correction, here applied for the first time to NGC 7469 (e.g., Cazzoli et al. 2020; López-Cobá et al. 2020), proved to be crucial to remove the AGN spectral contribution, allowing detection of the outflows.

Confirmation that these outflows were driven by the SF and the AGN, would make of NGC 7469—a galaxy close enough to spatially distinguish their sources—an outstanding case for studying combined feedback effects.

We thank the referee for the careful review of our paper and insightful comments that have improved the quality of our work. Support from CONACyT (Mexico) grant CB-2016-01-286316 is acknowledged. We are thankful to Bernd Husemann for helping with QDeBLEND3D installation. A.C.R.-O. thanks Vital Fernández for advice and discussions. J.P.T.P. acknowledges DAIP-UGto (Mexico) for granted support (0173/2019). Y.A. acknowledges support from project PID2019-107408GB-C42 (Ministerio de Ciencia e Innovación, Spain). S.F.S. thanks the support of CONACYT grants CB-285080 and FC-2016-01-1916, and funding from the PAPIIT-DGAPA-IN100519 (UNAM) project. L.G. was funded by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No. 830900. This work has been partially supported by the Spanish grant PGC2018-095317-B-C21 within the European Funds for Regional Development (FEDER). E.B. acknowledges the support from Comunidad de Madrid through the Atracción de Talento grant 2017-T/IFIC-5213. This research has been partially funded by the Spanish State Research Agency (AEI) Project MDM-2017-0737 Unidad de Excelencia “María de Maeztu”- Centro de Astrobiología (INTA-CSIC).

Software: REFLEX (Freudling et al. 2013), MUSE pipeline (Weilbacher et al. 2014), Starlight (Cid Fernandes et al. 2005), QDeblend3D (Husemann et al. 2012), MPFIT (Markwardt 2009).

References

Asari, N. V., Cid Fernandes, R., Stasińska, G., et al. 2007, MNRAS, 381, 263
Bacon, R., Bauer, S.-M., Bower, R., et al. 2004, Proc. SPIE, 5492, 1145
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5
Behar, E., Perez, U., Kris, G. A., et al. 2017, A&A, 601, A17
Bentz, M. C., Peterson, B. M., Netzer, H., Pogge, R. W., & Vestergaard, M. 2009, ApJ, 697, 160
Blustin, A. J., Kriss, G. A., Holczer, T., et al. 2007, A&A, 466, 107
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Cazzoli, S., Gil de Paz, A., Márquez, I., et al. 2020, MNRAS, 493, 3656
Chabrier, G. 2003, PASP, 115, 763
Cicone, C., Brusa, M., Ramos Almeida, C., et al. 2018, NatAs, 2, 176
Cid Fernandes, R., Mateus, A., Sodré, L., Stasińska, G., & Gomes, J. M. 2005, MNRAS, 358, 363
Davies, R. I., Tacconi, L. J., & Genzel, R. 2004, ApJ, 602, 148
Díaz-Santos, T., Alonso-Herrero, A., Colina, L., Ryder, S. D., & Knapen, J. H. 2007, ApJ, 661, 149
Fernandes, R. C., Stasińska, G., Schlickmann, M., et al. 2010, MNRAS, 403, 1036
Freudling, W., Romaniello, M., Bramich, D. M., et al. 2013, A&A, 559, A96
Galbany, L., Anderson, J. P., Rosales-Ortega, F. F., et al. 2016, MNRAS, 455, 4087
Genzel, R., Weitzen, L., Tacconi-Garman, L. E., et al. 1995, ApJ, 444, 129
Greene, J. E., & Ho, L. C. 2005, ApJ, 627, 721
Harrison, C., Alexander, D., Mullaney, J., & Swinbank, A. 2014, MNRAS, 441, 3306
Ho, I.-T., Kewley, L. J., Dopita, M. A., et al. 2014, MNRAS, 434, 3894
Husemann, B., Jahnke, K., Sánchez, S. F., et al. 2014, MNRAS, 443, 755
Husemann, B., Scharwächter, J., Bennett, V. N., et al. 2016, A&A, 594, A44
Huseman, B., Wisotzki, L., Sánchez, S. F., & Jahnke, K. 2012, A&A, 549, A43
Izumi, T., Kano, K., Aalto, S., et al. 2015, ApJ, 811, 39
Izumi, T., Nguyen, D. D., Imanishi, M., et al. 2020, ApJ, 898, 75
Karouzos, M., Woo, J.-H., & Bae, H.-J. 2016, ApJ, 819, 148
Kauffmann, G., Heckman, T. M., Tremonti, C., et al. 2003, MNRAS, 346, 1055
Keel, W. C. 1996, ApJS, 106, 27
Kewley, L. J., Dopita, M., Sutherland, R., Heisler, C., & Trevena, J. 2001, ApJ, 556, 121
Lenz, D. D., & Ayyes, T. R. 1992, PASP, 104, 1104
López-Cobá, C., Sánchez, S. F., Anderson, J. P., et al. 2020, AJ, 159, 167
López-Cobá, C., Sánchez, S. F., Bland-Hawthorn, J., et al. 2019, MNRAS, 482, 4032
López-Cobá, C., Sánchez, S. F., Cruz-González, I., et al. 2017a, ApJL, 850, L17
López-Cobá, C., Sánchez, S. F., Moiseev, A. V., et al. 2017b, MNRAS, 467, 4951
Markwardt, C. B. 2009, in ASP Conf. Ser. 411, Astronomical Data Analysis Software and Systems XVIII, ed. D. A. Bohleinder, D. Durand, & P. Dowler (San Francisco, CA: ASP), 251
Marqueard, D. W. 1963, Journal of the Society for Industrial and Applied Mathematics, 11, 431
Mehdipour, M., Kaastra, J. S., Costantino, E., et al. 2018, A&A, 615, A72
Mingozi, M., Cresci, G., Venturi, G., et al. 2019, A&A, 622, A146
A. L. Longinotti @ https://orcid.org/0000-0001-8825-3624
R. A. Ortega-Minakata @ https://orcid.org/0000-0002-8322-6333
S. F. Sánchez @ https://orcid.org/0000-0001-6444-9307
Y. Ascasibar @ https://orcid.org/0000-0003-1577-2479
E. Bellocchi @ https://orcid.org/0000-0001-9791-4228
L. Galbany @ https://orcid.org/0000-0002-1296-6887
M. Chow-Martínez @ https://orcid.org/0000-0001-6073-9956
J. J. Trejo-Alonso @ https://orcid.org/0000-0003-2293-1802
A. Morales-Vargas @ https://orcid.org/0000-0002-9137-861X
F. J. Romero-Cruz @ https://orcid.org/0000-0003-0962-8390

ORCID iDs

A. C. Robleto-Orús @ https://orcid.org/0000-0002-4216-7138
J. P. Torres-Papaqui @ https://orcid.org/0000-0002-8009-0637
Mullaney, J. R., Alexander, D. M., Fine, S., et al. 2013, MNRAS, 433, 622
Müller-Sánchez, F., Prieto, M. A., Hicks, E. K. S., et al. 2011, ApJ, 739, 69
Perna, M., Lanzuisi, G., Brusa, M., Mignoli, M., & Cresci, G. 2017, A&A, 603, A99
Ponti, G., Papadakis, I., Bianchi, S., et al. 2012, A&A, 542, A83
Roche, N., Humphrey, A., Gomes, J. M., et al. 2015, MNRAS, 453, 2349
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Venturi, G., Nardini, E., Marconi, A., et al. 2018, A&A, 619, A74
Weilbacher, P. M., Streicher, O., Urrutia, T., et al. 2014, in ASP Conf. Ser. 485, Astronomical Data Analysis Software and Systems XXIII, ed. N. Manset & P. Forshay (San Francisco, CA: ASP), 451
Woo, J.-H., Bae, H.-J., Son, D., & Karouzos, M. 2016, ApJ, 817, 108
Wright, E. L. 2006, PASP, 118, 1711
Wylezalek, D., Flores, A. M., Zakamska, N. L., Greene, J. E., & Riffel, R. A. 2020, MNRAS, 492, 4680