Detection of undiagnosed and inadequately treated high blood pressure in dentistry by screening

ABSTRACT

Background: Worldwide, hypertension is considered as an important health issue due to its unbearable complication of cardiovascular, renal, and nervous system diseases.

Aims and Objective: The aim was to find the prevalence and inadequately treated undiagnosed hypertension in the general population attending the Outpatient Department (OPD) of the Department of Oral and Maxillofacial Surgery, King George's Medical University, Lucknow.

Materials and Methods: A total of 2500 patients were enrolled in the study within the age group of 20–60 years, attending dental clinics. For every patient, blood pressure (BP) was taken three times, and all the readings were grouped into four categories including normal, prehypertensive stage, Stage 1, and Stage 2 of hypertension. In the dental clinic, the BP assessment was done considering parameters such as sex, smoking and alcohol, the effect of local anesthesia, gutkha chewing, age group, and regular exercise.

Results: About 24.39% of undiagnosed hypertensive patients were found among all who attended the OPD of the department of oral and maxillofacial surgery. It was observed that the rise in BP was 16.71% and 2.35% in Stage 1 and Stage 2, respectively, after giving the local anesthesia.

Conclusion: This study reveals that early diagnosis of undiagnosed and inadequately treated hypertension among general people notified by dentists is an important role, and this should be promoted and emphasized to restrict fatal life complications.

Keywords: Complications, dentistry, general population, hypertension

INTRODUCTION

Hypertension – or raised blood pressure (BP) – is a serious health issue that significantly elevates the risks of heart, brain, kidney, and other diseases. Worldwide, 1.13 billion people estimated to have elevated BP and most of them (two-thirds) are living in low- and middle-income nations. In 2015, 1 in 4 men and 1 in 5 women were found to have hypertension. Fewer than 1 in 5 hypertensives have control over their hypertension. It is also a major cause of premature death (death before the average age) of hypertensive individuals in the world. The global reach point for noncommunicable diseases is to decrease the prevalence of hypertension up to the level of 25% by 2025 (baseline 2010).[1,2]

The prevalence of hypertension is different across different countries of the world. African Region of the World Health Organization has the maximum prevalence (27%), whereas the America had declared it a minimum prevalence (18%). In a review of the present scenario, the number of hypertensive adults increased from 594 million in 1975 to 1.13 billion in 2015, and this was mainly in low- and middle-income nations due to an increase in risk factors of hypertension within
individuals.[2] Hypertension is known as “silent killer.” Most people are unaware of their hypertension because there may be an absence of warning signs or symptoms. This is the reason that BP should be measured periodically. An alarming increase in elevated BP in the Indian subcontinent was observed by the Global Burden of Hypertension 2005 study which concluded that 20.6% of Indian men and 20.9% of Indian women had hypertension, resulting in 57% of all stroke expiries and 24% of all coronary heart diseases.[3]

The American Society of Anesthesiologists has declared that at the time of routine dentistry, the chances of cardiovascular complications in a hypertensive individual should be anticipated. Many undiagnosed hypertensive patients seek dental therapy on a regular interval, and many (73%) of these have been opining for a family physician by the dental doctors.[4]

Aims and objectives

The main objective of this study was to find the prevalence of undiagnosed elevated BP along with uncontrolled hypertension in the general people who attended tooth extraction at King George’s Medical College, Lucknow.

MATERIALS AND METHODS

This study was conducted in a total of 2500 patients who attended the department of oral and maxillofacial surgery for dental therapy from September 2019 to February 2020.

Inclusion criteria

Patients within the age range of 20–60 years, all known hypertensive patients taking antihypertensive drugs, and patients with Stage 1 and Stage 2 hypertension in the first reading were included in the study, and all were questioned for hypertension, diabetes, the habit of smoking, and alcohol consumption while taking history.

Exclusion criteria

Pregnant and breastfeeding/lactating mothers, patients aged below 20 years or above 60 years, and patients requiring surgical extraction were excluded from the study. Those patients who were having obstructive sleep apnea, hyperaldosteronism, diabetes mellitus, chronic kidney disease, Cushing syndrome, and other causes of endocrine abnormalities were also excluded from the study.

Ethical clearance was taken from the Institutional Ethics Committee.

Methodology

Patients included in the study were well explained about the study along with their informed consent. The BP was measured on the left hand arm. The BP was measured by palpatory method, on the radial pulse, whereas by auscultatory method, using a sphygmomanometer and a stethoscope on the brachial pulse with the patient sitting in the chair in a comfortable position. The BP was taken thrice for every participant. After waiting for 10–15 min in the outpatient department, the first measurement of BP was done just after the patient was sitting in the chair (step 1). A preprepared standardized medical questionnaire form was filled after taking a full medical history by operating dentist [Figure 1]. Just after it, local anesthesia containing 2% lignocaine with 1:80,000 adrenaline administered. The next reading of BP was taken within 5 min after local anesthesia (step 2) and the third reading after the tooth extraction (step 3). The assessment of the patient’s anxiety was not done. All the readings were divided into the normal, prehypertensive stage, Stage 1, and Stage 2 of hypertension[5] [Table 1] according to the 8th Report of the Joint National Committee on the Management of High Blood Pressure in Adults, published hypertension guidelines in 2013.

Patients having raised BP (>140/90 mmHg) for the first measurement were deferred from tooth extraction and referred to their family physician for the management of hypertension. The BP was assessed for the gender, personal habits of gutkha chewing, smoking, and alcohol, medical conditions, regular exercise, age, and the effect of local anesthesia after the first reading of BP was taken.

Statistics

The data of all 2500 patients were fed into an Excel Spreadsheet. Data were statistically analyzed using SPSS 18 version software (SPSS Inc., Chicago, IL, USA) and Microsoft Excel. $P < 0.05$ was considered to be statistically significant.

RESULTS

This study was done in a total of 2500 patients (979 men and 1521 women). There were 439 patients in the age group of 20–30 years, 681 patients were in the age group of 31–40 years, 654 patients were in the age group of 41–50 years, and 648 patients were in the age group of 51–60 years.

In the present study, among the 2500 patients, a total of 610 new patients were diagnosed with hypertension, and they

Category	Systolic BP (mmHg)	Diastolic BP (mmHg)
Normal	<120	<80
Prehypertension	120-139	80-89
Hypertension stage 1	140-159	90-99
Hypertension stage 2	>160	>100

BP: Blood pressure
Kumar, et al.: Diagnosis of hypertension in dentistry

Figure 1: Medical history questionnaire
were unaware of their hypertensive condition (578 patients in Stage 1 hypertension [22.98%] and 32 patients in Stage 2 hypertension [1.20%]).

A total of 208 patients were taking antihypertensive treatment and of them, 119 patients had inadequately controlled BP, hence they deferred from tooth extraction (5.02%).

The correlation of BP with age was done and found Stage 1 hypertension in most of the older age patients (51–60 years), and these also had a significant rise in BP postextraction. The prehypertensive stage was found in maximum patients in both pre- and postextraction stages in the age group of 31–40 years [Tables 2 and 3]. Furthermore, many of the patients in the age group of 41–50 years were found in the prehypertensive stage, followed by Stage 1 postextraction [Tables 2-4].

Patients with multiple comorbidities taking therapy for the same, 51.97% of cases were prehypertensive and 36.87% of them were categorized under Stage 1 hypertension [Table 4b].

DISCUSSION

Hypertension is a highly prevalent and most important modifiable risk factor for cardiovascular, cerebrovascular, and renal diseases. Hence, worldwide, it is an important public health issue. In dentistry, the key part of any dental therapy is patient assessment. In most of the studies, it is concluded that dental care professionals are playing an important role in a patient’s complete health by measuring BP and diagnosing undiagnosed hypertension.

This study was done to investigate the prevalence of undiagnosed hypertension along with uncontrolled BP in the general population.

The prevalence of hypertension in the present study (22.98%) is similar to the finding of Ojehanon and Akhionbare[6] (19.7%), Fernández-Feijoo, et al.[6] (29.2%), and Tormo et al.[7] (34.3%) in their study.

This study reveals that a significant number of cases were unaware of elevated BP. These cases have more chances of prolonged heavy bleeding and having medical emergencies in the dentistry. This provokes the value of screening of hypertension in the dentistry. These cases were opined to a physician for the treatment of hypertension.

In the current study, higher age was significantly concerned with elevated BP [Tables 2-4a]. Elevation in BP with advancing age is mostly due to an increase in the hardening of the arterial and arteriolar wall. Moreover, other pathophysiological causes may be decreased baroreceptor sensitivity, increased responsiveness

Table 2: Relation of hypertension and age before local anesthesia

BP stages	20-30 years, n (%)	31-40 years, n (%)	41-50 years, n (%)	51-60 years, n (%)
NR	166 (59.75)	171 (32.98)	123 (32.94)	46 (8.01)
PH	110 (40.1)	302 (60.11)	187 (49.96)	273 (43.96)
S1	0	38 (17.01)	60 (15.89)	244 (48.02)
S2	0	0	0	0

NR: Normal, PH: Prehypertension, S1: Stage 1 hypertension, S2: Stage 2 hypertension, BP: Blood pressure

Table 3: Relation of hypertension and age after local anesthesia

BP stages	20-30 years, n (%)	31-40 years, n (%)	41-50 years, n (%)	51-60 years, n (%)
NR	106 (37.94)	108 (22.01)	42 (11.21)	37 (7.01)
PH	171 (62.05)	260 (49.98)	187 (51.21)	129 (20.98)
S1	0	142 (28.03)	142 (37.89)	404 (66.08)
S2	0	0	0	42 (7.03)

NR: Normal, PH: Prehypertension, S1: Stage 1 hypertension, S2: Stage 2 hypertension, BP: Blood pressure

Table 4: Percentage of patients in various stages of hypertension among variables

(a) Number of cases in different stages of hypertension after the second and third readings of BP

Age group	NR (%)	PH (%)	S1 (%)	S2 (%)
20-30	37.94	62.05	0	0
31-40	20.92	50.92	28.05	0
41-50	12.02	49.95	37.98	0
51-60	5.99	20.99	66.01	7.02

(b) Among the cases who were found to have various systemic disorders as mentioned in the questionnaire and were taking medications for that

| Medications (%) | 9.98 | 51.97 | 36.87 | 0.59 |

(c) The effect of gender on blood pressure

Gender (%)	Male (%)	58.10	22.94	2.940
	Female (%)	53.01	15.02	2.55

(d) Blood pressure of patients with different habits was compared to assess the relationship of the habit and hypertension

Habit (%)	Gutkha (%)	64.96	36.32	0
	Smoking (%)	71.93	13.03	0
	Alcoholic (%)	64.52	15.04	1.21

(e) Among the cases who exercised on a regularly

| Exercise (%) | 10.58 | 58.95 | 29.92 | 0.00 |

(f) About 45.5% of patients with body mass index >24.9 were having S2

| BMI >24.9 (%) | 27.33 | 28.98 | 30.02 | 45.45 |

(g) Number of patients of hypertension before and after giving local anesthesia

Before (n)	506	872	392	0
After (n)	293	747	688	42

NR: Normal, PH: Prehypertension, S1: Stage 1 hypertension, S2: Stage 2 hypertension, BP: Blood pressure, BMI: Body mass index
to sympathetic nervous system stimuli, altered renal sodium metabolism, and an altered renin–aldosterone relationship.[8] Furthermore, older people often have comorbidities, suggesting that age plus raised BP are the valuable medical risk factor for the cases attending the dental clinic.[9]

On comparing hypertension of male and female cases, it was observed that males were in higher numbers than females in Stage 1 and Stage 2 hypertension. The occurrence of prehypertension was higher in female patients [Table 4c]. This may be due to the higher number of female cases in the study sample, which is similar to the study outcomes of Lei et al.[10] Biological and behavioral factors (such as smoking, alcohol consumption, and exercise) are responsible for sex variation.[11] The biological factors are sex hormones, chromosomal differences, and other biological sex differences that are protective for raised BP in females.

Smoking leads to disturbance of endothelial function, arterial stiffness, inflammation, lipid modification, as well as a change in antithrombotic and prothrombotic factors. Thus, it is an important cardiovascular risk factor. Cigarette smoking does the hypertensive role, primarily by the activation of the sympathetic nervous system.[12] This is the reason that smokers in this study have a high prevalence of hypertension [Table 4d].

Exercises lead to important autonomic and hemodynamic variations influencing the cardiovascular system and reduce the future chances of a rise in BP.[14] No statistically significant relationship was found in the present study between hypertension and exercise [Table 4e].

Body mass index (BMI) is mostly used to determine the obesity within a population. The positive correlation between BMI and BP has been observed in Asian peoples. In this study also, a similar finding was there.[13] About 45.45% of cases with BMI >24.9 were having Stage 2 hypertension [Table 4f].

A slight elevation in BP was found after giving local anesthesia [Table 4g]. It may be due to the sensitivity of alpha receptors to the epinephrine of blood vessels in the skeletal muscles. Anxiety and white coat hypertension may be other explanations.

Few types of research have demonstrated a decrease in systolic BP after local anesthesia,[14] which is against the current study. In controlled hypertensive patients, the BP and cardiac output may be falsely measured because of the interaction between the medication and epinephrine.

CONCLUSION

This study resulted in estimating the prevalence of undiagnosed and inadequately controlled hypertension in general people. It enhances the fact that all dentistry professionals be aware of monitoring BP of every case, mainly for those undergoing tooth extractions to prevent life-threatening complications of high BP. Patients also get aware of their BP earlier in age along with awareness of their inadequately controlled BP to help its control and decrease morbidity and mortality. Ignorance may cause prolonged bleeding and occurrence of a medical emergency in the dentistry.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: Analysis of worldwide data. Lancet 2005;365:217-23.
2. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2224-60.
3. Gupta R. Trends in hypertension epidemiology in India. J Hum Hypertens 2004;18:73-8.
4. Fernández-Feijoo J, Núñez-Oriales JL, Limeres-Posse J, Pérez-Serrano E, Tomás-Carmona I. Screening for hypertension in a primary care dental clinic. Med Oral Patol Oral Cir Bucal 2010;15:e467-72.
5. Hupp WS. Cardiovascular diseases. In: Patton LL, Glick KM, editors. The ADA Practical Guide to Patients with Medical Conditions. 2nd ed. New Jersey: John Wiley and Sons, Inc.; 2015. p. 26.
6. Ojehanon PI, Akhionbare O. Hypertension among dental patients attending tertiary health institution in Edo State, Nigeria. Niger J Clin Pract 2007;10:220-3.
7. Torno MJ, Navarro C, Chirlaque MD, Barber X. Validation of self diagnosis of high blood pressure in a sample of the Spanish EPIC cohort: Overall agreement and predictive values. EPIC group of Spain. J Epidemiol Community Health 2000;54:221-6.
8. Pinto E. Blood pressure and ageing. Postgrad Med J 2007;83:109-14.
9. Miyawaki T, Nishimura F, Kohjitanì A, Maeda S, Higuchi H, Kita F, et al. Prevalence of blood pressure levels and hypertension-related diseases in Japanese dental patients. Community Dent Health 2004;21:134-7.
10. Lei S, Yong-Yong X, Xiao-Han D, Chang-Sheng C. Geographical differences in blood pressure of male youth aged 17-21 years in China. Blood Press 2004;13:169-75.
11. Sandberg K, Ji H. Sex differences in primary hypertension. Biol Sex Differ 2012;3:7.
12. Virdis A, Giannarelli C, Neves MF, Taddei S, Ghiadoni L. Cigarette smoking and hypertension. Curr Pharm Des 2010;16:2518-25.
13. Dua S, Bhuker M, Sharma P, Dhall M, Kapoor S. Body mass index relates to blood pressure among adults. N Am J Med Sci 2014;6:89-95.
14. Chaudhry S, Iqbal HA, Izhaf F, Mirza KM, Khan NF, Yasmeen R, et al. Effect on blood pressure and pulse rate after administration of an epinephrine containing dental local anaesthetic in hypertensive patients. J Pak Med Assoc 2011;61:1088-91.