フェライト系ステンレス鋼の熱間圧延時に
鋼板に生じる肌荒れの発生機構

松原 行宏1*・木村 幸雄1・宇都宮 裕2

Sticking in Hot Rolled Sheet of Ferritic Stainless Steel
Yukihiro Matsubara, Yukio Kimura and Hiroshi Utsunomiya

Synopsis : In hot rolling of ferritic stainless steel, prevention of sticking is very important from the viewpoint of productivity. However, the formation mechanism of sticking has not been clarified sufficiently. Therefore, in this work, rolling experiments were carried out using a tribo-simulator. The results clarified the following points: Sticking occurs more easily on ferritic stainless steel than on high strength steel. On ferritic stainless steel, the work roll sticks with the hot-rolled sheet at the entrance of roll-bite, and the work roll then moves forward on the hot-rolled sheet. Therefore, it is thought that the surface layer of the hot-rolled sheet is fractured by large shear strain, and the work roll stuck with the fractured layer advances further on the sheet, forming a defect with an accumulated fractured surface layer on the hot-rolled sheet. Applying a lubricant oil is effective for prevention of sticking between the work roll and hot-rolled sheet.

Key words: hot rolling; sticking; lubrication; ferritic stainless steel.

1. 緒言

ステンレス鋼の熱間圧延においては、肌荒れや焼き付きと呼ばれる表面欠陥が発生しやすく、特にクロムを多量に含有するフェライト系ステンレス鋼で顕著に発生することが知られている1,2). このような欠陥が発生すると、ワークロールの原単位が悪化するとともに、次の脱スケール工程で欠陥を除去する負荷が大きくなり、生産性の低下や鋼板歩留りの悪化を招く。このため、フェライト系ステンレス鋼熱間圧延時の肌荒れや焼き付きの発生機構解明や防止技術に対する要望は大きい。

Katoら3,4) は、アムラー型のところがりすぺリ式の高温摩耗試験機を用い、ステンレス鋼熱間圧延時のワークロールへの焼き付き現象の研究を行い、ロール摩擦によりステンレス鋼試料が破断して生じるミクロオーダーの薄片状粒子がロール表面に移着し、この繰り返しによって同様の粒子が層状に積み重なるように移着して、肉眼で観察される焼き付きに成長する。さらに、焼き付きに伴い生じた層状の移着物が生成と脱落を繰り返して、ワークロールの肌荒れが生じると報告している。また、焼き付きの抑制には、黒鉛の添加量を増加したワークロールが有効であると報告している。一方、Toriumi and Azushima5) は、すべり式の熱間圧延油滑被試験装置6) を用いて、焼き付きに及ぼす潤滑油の効果を評価し、硫黄添加剤の添加が有効であると報告している。

近年、省資源の観点からオーステナイト系ステンレス鋼の代替として、高クロムフェライト系ステンレス鋼のニーズが益々高く、熱間圧延時の表面欠陥防止を防止し、製造コストを削減して安定して生産することが重要視されている。ワークロールに生じる肌荒れに関して発生原因とメカニズムが報告されているが、鋼板表面に生じる焼き付きや肌荒れ欠陥に関しては一切報告されていない。これは、後述するように、ロール肌荒れが主に仕上げ圧延の前段スタンドで発生するが、鋼板を観察できるのは最終スタンドまで圧延された後の鋼板であり、肌荒れの発生するスタンドで圧延された直後の鋼板を観察することができないことが大きな要因である。また、鋼板に生じる肌荒れを再現する圧延シミュレータを開発していない。

鋼板に生じる肌荒れ欠陥は、脱スケール能率を大幅に低下させ、生産能率や製造コストに大きく影響することから、その発生メカニズムの解明と防止策の提案は非常に重要である。そこで本研究では、生産ラインで圧延された熱延鋼板に生じる肌荒れ欠陥を観察するとともに、すべり式の熱間圧延油滑被試験装置を用いて鋼板に生じる肌荒れ欠陥の再現を試み、鋼板の肌荒れ発生メカニズムを検討した。
2. 肌荒れの実態調査

生産ラインにおけるワークロールと鋼板の肌荒れの実態を調査した。フェライト系ステンレス鋼の熱間圧延において、肌荒れの発生レベルにはパラツキが大きいが、顕著な肌荒れが発生した場合について、Fig.1に示した前段スタン
ドのワークロール外観、Fig.2にロール凹凸をレプリカに転写させてプロフィールを測定した結果を示す（レプリカ測
定値の正負を反転して表示しており、正がロールの凹みを
意味する。）。Katoらの報告7と同様であり、ロール凹凸は
1〜2 mm程度の幅で周方向に伸びた筋状の欠陥であり、20
〜30 μm程度の深さでロール素地が脱落していることが分
かる。最終スタンまで圧延され、さらに酸洗された鋼板
表面の外観をFig.3に示す。ワークロールの肌荒れ相態に
対応した長手に伸びた筋状の欠陥である。Fig.4に表面欠陥
部の断面観察結果、Fig.5に欠陥部のEPMA分析結果を示
す。押し込まれた異物は鋼板と同一の成分であり、鋼板表
面の酸化被膜（スケール）と鋼板そのものが鋼板に押し込
まれた欠陥と言える。ワークロールの肌荒れは仕上げ前段
スタンドで発生することから、中段スタンド以下で5〜10
倍に延ばされた欠陥と考えられるが、深さ30 μmを超える
欠陥である。以上のように、フェライト系ステンレス鋼熱
延鋼板に生じた線状の肌荒れ欠陥は、酸化被膜と鋼板その
ものが鋼板に押し込まれた欠陥であることを初めて明らか
にした。

3. 実験方法

鋼板に生じる肌荒れ欠陥を再現し、発生メカニズムと防
止策を議論するためには、肌荒れの発生するスタンドにお
いて、圧延された直接の鋼板を観察することが重要と考え
る。Katoら3の研究はこうがり滑り試験機を用いている
ため、ロール肌荒れを再現できているが、鋼板を圧延する
ことができず、鋼板に生じる肌荒れ欠陥を再現できていな
い。そこで、本研究では、Azushimaら8の開発した熱間圧
延機動試験機を用いて、滑り圧延を行い、鋼板に生じる
肌荒れ欠陥の再現を試みた。この試験機は、ワークロー
ルと鋼板の相対すべり速度差を仕上げ圧延の前段スタンド
と同程度に大きくすることができるため、ワークロールと
鋼板間に生じる厳しい変形状態を再現できると考えた。

Fig.6に試験機外観を示す。①主スタンダードワークロール
直径100 mm、最高速度107 m/min。耐荷重200 kN、許容ト
ルク800 N・mであり、上ワークロールのみ駆動方式であ
る。②サブスタンダード下サスタンド駆動式であり、材
料を8〜32 m/minで搬送する。主スタンダードとサブスタンダ
のロール速度は、無段変速機によって速度比率を6.3〜24

Fig. 1. Photograph of work roll surface after hot rolling of
ferritic stainless strip.

Fig. 2. Profile of work roll replica.

Fig. 3. Photograph of ferritic stainless strip surface after hot
rolling and pickling.

Fig. 4. Photograph of cross section of surface defect.
の間に設定できる。主スタンドとサブスタンド間の距離は1400 mmである。③加熱炉は安定48 kWの赤外線イメージ炉であり、1373 Kまで加熱可能である。④出側張力付与装置はエアリングにより最大3.5 kNの張力を付加できる。また、主スタンド上ワークロールのトルク、圧延荷重を測定できる。

供試材には、フェライト系ステンレス鋼として、19.4 mass%のクロム、1.8 mass%のモリブデン、0.4 mass%のニオブを含有するSUS444鋼、また、比較のため、0.2 mass%のケイ素、1.8 mass%のマンガンを含有する90 MPa級高張力鋼（HSS）の2種を用意した。寸法は、板厚9 mm、幅22 mm、板長さ3000 mmである。いずれも、真空溶解にて所定の成分に溶接したインゴットを熱間圧延により薄く延ばし、レーザ切断と表面研削により、供試材を作製した。ワークロールには、表面粗さを0.2 μmRa程度に管理した高速度鋼を用いた。

Fig.7を用いて、すべり圧延の実験方法について述べる[10]。まず供試材を主スタンドとサブスタンドの間にセットし、サブスタンドの下のワークロールで供試材を圧下し、さらに、供試材先端を出側張力付与装置に取り付け、実験開始時に供試材を一定速度で送り出し、安定して圧延できる状態とする。続いて、赤外線イメージ炉にて供試材を1073 Kまで加熱して7 min間保持した。この後、前方張力を加えながらサブスタンドを速度Vで回転させて、供試材均熱部分を主スタンドに移動させる。この際、主スタンドの上ワークロールを速度Uで回転させておき、供試材均熱部が主スタンドの下に到達した際、ワークロールを所定の荷重になるように圧下すると、供試材の搬送速度Vに対し、ロール回転速度Uのすべり圧延状態となる。主スタンドの下ワークロールは従動回転している。このようにして、一定の圧延条件で一定距離をすべり圧延することができ、主スタンドの圧延荷重Pと上ワークロールのトルクGから、主スタンドのワークロール半径Rを用いて、(1)式より、摩擦係数μを算出することができる。

\[\mu = \frac{G}{PR} \] \hspace{1cm} (1)

本実験では、サブスタンド速度Vを2 m/min。主スタンド速度Uを12, 24 m/minで設定し、速度比率γを6, 12と変化させた。圧下量を0.3 mmとした。ロールと鋼板間には、冷却水を供給しながらすべり圧延を行った。各条件で、摩擦係数μを評価するとともに、圧延後の供試材の断面観察を行った。

Fig.5. Element mapping of surface defect by EPMA.

Fig.6. Photograph of the tribo-simulator.
4. すべり圧延実験と肌荒れ発生メカニズムの推定

4・1 すべり圧延実験

フェライト系ステンレス鋼を，$V = 2 \text{ m/min.}$，$U = 24 \text{ m/min.}$（γ = 12）の条件ですべり圧延を行い，比較のため高張力鋼のすべり圧延も行った。Fig.8にすべり圧延時のチャートを示す。フェライト系ステンレス鋼では，圧延中，大きな異音が生じ，摩擦係数は1を超え，正常に圧延することができなかった。高張力鋼では，摩擦係数0.5程度であった。Fig.9に断面観察結果を，Fig.10にフェライト系ステンレス鋼圧延後の外観を示す。フェライト系ステンレス鋼では，凹凸が大きく顕著な焼き付きが発生した。このように，フェライト系ステンレス鋼は高強度鋼に比べて著しく焼き付きが生じやすい。

この原因として，従来，フェライト系ステンレス鋼では潤滑効果のある酸化被膜が非常に薄いこと，さらに，Cr₃O₃はコーラム型の塑性変形能に乏しい酸化被膜であること，ワークロールと鋼板の“ともがね”効果により，凝着が生じやすいことなどが推定される。

フェライト系ステンレス鋼の焼き付き発生部に関し，Fig.11に長手方向断面の拡大写真，Fig.12にEPMAによる元素マッピングの結果を示す。鋼板表層の厚さ80 μm程度の層が母材から剥離し，その前で折れ重なるように剥れ込んでいる様子が分かる。この表層の剥離は，粒界ではなく粒内で破壊しているようである。EPMA分析結果から，折れ重なっている部分はワークロール成分ではなく，供試材と同じ成分が検出された。

4・2 肌荒れ発生メカニズムの推定

以上の観察結果から，酸化被膜が押し込まれた欠陥形成の推定メカニズムを，Fig.13に示す模式図を用いて説明する。ロールパイト内での高面圧によりワークロールと供試材間で凝着が生じる。その後，ワークロールが鋼板よりもFig.8. Comparison of experimental results. (a) HSS, (b) SUS444 (Online version in color.)

Fig. 9. Comparison of cross section of work piece. (a) HSS, (b) SUS444

Fig. 10. Photograph of SUS444 surface after hot rolling. (Online version in color.)
先進するため、凝着部が母材よりも先進しようとして、鋼板表層部に破壊応力を超えるような非常に大きく断面応力が生じ、表層部分が母材から剥離して、鋼板前方に析れ重なった欠陥となる。この際、鋼板表層の酸化被膜も剥離部とともに巻き込まれて折れ込み欠陥となり、この部分は次スタンド以降の圧延で長手に延ばされるため、Fig.4に示したような酸化被膜が鋼板に押し込まれ、長手に伸びた欠陥が形成されると考えられる。なお、今回のすべり圧延の速度差10 mpmは、実生産ラインでも容易に生じる速度差である。

以上のように、フェライト系ステンレス鋼の熱間圧延において、実際の生産ラインで製造された鋼板で観察されたような、酸化被膜が押し込まれたような筋状の肌荒れ欠陥が鋼板に生じる様子を初めて再現し、その形成メカニズムを推定した。

5．鋼板に生じる肌荒れの抑制技術

上述したような鋼板の肌荒れ発生機構を考慮すると、肌荒れを抑制するためには、ワークロールと鋼板の速度差を小さくする、面圧を小さくするなどの対策が有効と考えられる。しかしながら、上記の対策は生産性を低下させるため、実現には限界がある。そこで、潤滑油を供給することにより、鋼板の肌荒れ抑制の効果を検証した。

潤滑剤には、Toriumi and Azushimaと同様に、硫黄添加剤を含有した潤滑油を用い、10%のエマルジョンとしてワークロールと鋼板間に供給した。フェライト系ステンレス鋼を対象に、$V = 2$ m/min., $U = 12$ m/min. ($\gamma = 6$) の条件にて、潤滑油供給の効果を比較した。Fig.14にチャートを示す。水潤滑の場合、大きな異音が生じるほどの焼き付きが発生するのに対し、潤滑油を供給することにより、安定

Fig. 11. Photograph of cross section of SUS444.

Fig. 12. Element mapping of SUS444 by EPMA.

Fig. 13. Schematic illustration of the stacking formation mechanism.
6. 結言

フェライト系ステンレス鋼の熱間圧延時に鋼板に生じる肌荒れ欠陥について調査し、以下のことを明らかにし、フェライト系ステンレス鋼の生産性率向上や歩留り向上に有益な知見を得た。

(1) 実生産ラインで製造された熱延鋼板の肌荒れ欠陥は、鋼板そのものが酸化被膜とともに鋼板表面に押し込まれ、長手に伸びた欠陥である。

(2) すべて圧延実験により、鋼板に生じる肌荒れ欠陥を再現することができた。ロールパイト内での高面圧によりワークロールとステンレス鋼間に凝着が生じ、その後、ワークロールが鋼板よりも先進するため、凝着部が母材よりも先進しようとし、鋼板表面近がせん断応力により母材から剥離して折れ重なった欠陥になると推定される。

(3) 硫黄添加剤を含有的潤滑剤を供給することにより、鋼板に生じる肌荒れ欠陥を抑制できる。

文 献

1) O.Katoh: Proc. 1988 Jpn. Spring Conf. Technol. Plast., (1988), 285.
2) W.Jin, J.Y.Choi and Y.Y.Lee: ISIJ Int., 40(2000), 789.
3) O.Kato and T.Kawanami: J. Jpn. Soc. Technol. Plast., 40(1987), 264.
4) O.Kato and T.Kawanami: J. Jpn. Soc. Technol. Plast., 30(1989), 103.
5) O.Kato, S.Uchida and T.Kimuma: Seitetsu Kenkyu, 335(1989), 35.
6) T.Toriumi and A.Azushima: Tetsu-to-Hagané, 97(2011), 388.
7) A.Azushima, W.D.Xue and Y.Yoshida: Ann. CIRP, 56(2007), 297.
8) A.Azushima, W.D.Xue and Y.Yoshida: Tetsu-to-Hagané, 93(2007), 681.