Let λ, μ be dominant integral weights of a semisimple Lie algebra \mathfrak{g} and let l be a positive integer larger than the dual Coxeter number of \mathfrak{g}. Using these data and certain parabolic Kazhdan-Lusztig polynomials for affine Weyl groups, one can define polynomials $n_{\lambda,\mu}$ in $\mathbb{Z}[v]$. It has been shown recently that these polynomials can be used to compute the character of indecomposable tilting modules of quantum groups at a root of unity (see [S1,2]). For Lie type A, these polynomials also describe the structure of the finite Hecke algebras of type A for q a primitive l-th root of unity. This was derived by a different method (see [A], [G], [LLT]), motivated by Kashiwara’s crystal bases; the coincidence of these polynomials was shown in [GW2] and [VV]. The main result of our paper is an algorithm for computing the polynomials $n_{\lambda,\mu}$ using piecewise linear paths, for all Lie types. This was, in part, inspired by the algorithm of Lascoux, Leclerc, and Thibon [LLT], which was used in the Hecke algebra setting. So our algorithm can be viewed as a generalization of the LLT algorithm to arbitrary weight lattices. However, the method of proof here relies heavily on Kazhdan-Lusztig theory.

One of the motivations for this work was to study in more detail the behaviour of the polynomials $n_{\lambda,\mu}$ with λ, μ near the boundary of the Weyl chamber. As already explained in our previous paper [GW2] for type A, the algorithm is considerably faster than previous algorithms; this allows a more extensive empirical investigation of the polynomials $n_{\lambda,\mu}$. Moreover, our algorithm shows some similarities with Littelmann’s path algorithm which describes the decomposition of tensor products of Kac-Moody algebras. Indeed, at least in some special cases, our algorithm can be used to compute the decomposition of the tensor product of tilting modules into a direct sum of indecomposable tilting modules. This could be used to compute the dimensions of simple modules of the finite Hecke algebras of type A, using the q-analogue of Schur-Weyl duality. Moreover, for Lie type A, the path operators can be identified with operators appearing in the Fock space representation of $U_q\widehat{sl}_l$. It would be interesting if one could find a similar interpretation of these operators also for other Lie types. This, as well as the connection to tilting modules and Hecke algebras are discussed at the end of section 3.

Our paper is organized as follows. In section 1 we first review basic facts of affine Hecke algebras and their Kazhdan-Lusztig polynomials. We
then study the multiplication of parabolic Kazhdan-Lusztig elements by Kazhdan-Lusztig elements C_P corresponding to the longest element of an arbitrary parabolic subgroup P. In Section 2, we define a geometric procedure which roughly corresponds to such multiplications. In Section 3 we describe the already mentioned algorithm and discuss various other (potential) applications.

Acknowledgement. Part of the work was done while both authors participated at the workshop on representation theory of algebraic groups and quantum groups in Aarhus. It is a pleasure to thank the organizers, Henning Hahr Andersen and Jens Carsten Jantzen for hospitality and support.

1. Affine Hecke algebras

We review basic facts of Kazhdan Lusztig polynomials for affine Hecke algebras, following Soergel [S1].

1.1. Let Δ be a root system of a simple Lie algebra, Y its root lattice and X its weight lattice. Moreover, let $V = X \otimes \mathbb{R}$. The highest root is denoted by θ. We fix a bilinear form \cdot on the \mathbb{Z} span of Δ uniquely determined by $\alpha \cdot \alpha = 2$ for all short roots α (see [Lu, 1.1]). We obtain an embedding of the root lattice into the weight lattice via this bilinear form.

Define for each positive root α the hyperplane $E_\alpha = \{ x \in V, x \cdot \alpha = 0 \}$. More generally, we define for any integer r and any positive root α the affine hyperplane $E_{\alpha,r} = \{ x \in V, x \cdot \alpha = r \}$.

Let W be the affine reflection group generated by the finite Weyl group W corresponding to Δ and the affine reflection in the hyperplane $E_0 = E_{\theta,1}$ where θ is the highest root in Δ. The image of the defining action of an element $w \in W$ on $x \in V$ is denoted by $w(x)$. Let ρ be half the sum of all positive roots in Δ. Then we define the dot action of W by the formula $w.x = w(x + \rho) - \rho$.

It can be shown that the collection $E = \{ E_{\alpha,m}, \alpha \in \Delta_+, m \in \mathbb{Z} \}$ partitions V into a disjoint collection of fundamental domains, called alcoves, with respect to W. The hyperplane $E_\alpha = E_{\alpha,0}$ divides V into two (open) halfspaces $E_\alpha^+ = \{ x \in V, (x, \alpha) > 0 \}$ and E_α^-, the other half space. The half spaces $E_{\alpha,m}^+$ and $E_{\alpha,m}^-$ are the images of E_α^+ resp E_α^- under a translation which maps E_α to $E_{\alpha,m}$. The dominant Weyl chamber C is equal to the intersection of E_α^+, with α a simple root. We say that a hyperplane $E \in E$ contains a lower wall of the alcove A if A is on the positive side of E, i.e. $A \subset E^+$ and the intersection of E with the closure of A has codimension 1; similarly, we say that E contains an upper wall of A if $A \subset E^-$ and the intersection of E with the closure of A has codimension 1.

The fundamental alcove A_+ is defined to be the intersection of C with $E_{\theta,1}$, where θ is the highest root. The fundamental box Π is the set of points $x \in C$ which satisfy $0 < x \cdot \alpha \leq l$ for all simple roots α. The set of alcoves in the dominant Weyl chamber is denoted by A_+.
A facet F is a nonempty connected subset of V such that for any root α either F is between two neighboring hyperplanes in E which are parallel to E_α (with empty intersection with both of those hyperplanes), or it is contained in $E_{\alpha, ml}$ for some $m \in \mathbb{Z}$. For a facet F we define $A_+(F)$ to be the alcove which contains F in its boundary and which is on the positive side of each hyperplane which contains F. The alcove $A_-(F)$ is defined similarly.

1.2. **Affine Hecke algebras.** The affine Hecke algebra $\mathcal{H} = \mathcal{H}(W, S)$ is the associative algebra with identity element 1 over the ring of Laurent polynomials $\mathbb{Z}[v, v^{-1}]$ with generators $\{T_s : s \in S\}$ satisfying the braid relations and the quadratic relation $T_s^2 = v^{-2}1 + (v^{-2} - 1)T_s$, for $s \in S$. Using the generators $H_s = vT_s$, one has instead the quadratic relations $H_s^2 = 1 + (v^{-1} - v)H_s$. The Hecke algebra has a basis $\{H_x : x \in W\}$ satisfying $H_xH_y = H_yH_x$ in case $\ell(xy) = \ell(x) + \ell(y)$, and $H_xH_y = H_yH_x + (v^{-1} - v)H_x$ in case $\ell(xy) = \ell(x) - 1$, for $x \in W$ and $s \in S$; here ℓ denotes the usual length function on a Coxeter group with respect to the generating set S. The Hecke algebra has an involution $d : a \mapsto \bar{a}$ defined by $\bar{v} = v^{-1}$ and $(H_x)^- = (H_{x^{-1}})^{-1}$. An element fixed by this involution is called self-dual. We denote the self-dual part of $\mathbb{Z}[v, v^{-1}]$ by $\mathbb{Z}[v, v^{-1}]_0$. Fundamental self-dual elements are the $C_s = H_s + v$ for $s \in S$. Let P be the parabolic subgroup generated by a subset S_P of S. We will assume here that S_P is a proper subset of S, which implies that P is finite. We shall denote by C_P the Kazhdan-Lusztig element in the Hecke algebra $\mathcal{H}(P, S_P)$ corresponding to the longest element w_0 of P. It is well-known that in our notations C_P is given by the formula

$$
C_P = \sum_{w \in P} v^{\ell_P - \ell(w)}H_w,
$$

where $\ell_P = \ell(w_0)$. It is also well-known and easy to derive that for any $w \in P$ we have $H_wC_P = v^{-\ell(w)}C_P$. The v-order $[P]_v$ of P is defined by

$$
[P]_v = v^{-\ell_P} \sum_{w \in P} v^{2\ell(w)} = v^{\ell_P} \sum_{w \in P} v^{-2\ell(w)}.
$$

If $Q \subset P$ is a parabolic subgroup of P, and the element C_Q is defined accordingly, we can easily derive from the formulas mentioned before that

$$
C_PC_Q = [Q]_vC_P = C_QC_P.
$$

1.3. **Parabolic module.** Let $S_0 \subseteq S$ be the set of simple reflections fixing the origin. The finite Weyl group W is the Coxeter subgroup of W with generating set S_0. Let $\mathcal{H}_f = \mathcal{H}(W, S_0) \subseteq \mathcal{H}$ denote its Hecke algebra. Consider the sign representation of $\mathcal{H}_f \rightarrow \mathbb{Z}[v, v^{-1}]$ which takes each H_s to $-v^{-1}$. Let \mathcal{N} denote the induced right \mathcal{H}-module

$$
\mathcal{N} = \mathbb{Z}[v, v^{-1}] \otimes_{\mathcal{H}_f} \mathcal{H}.
$$
Let $\mathcal{W}^f \subset \mathcal{W}$ be the coset representatives of minimal length of the right cosets of \mathcal{W} in \mathcal{W}. Then \mathcal{N} has a basis $N_x = \mathcal{T}_x$ for $x \in \mathcal{W}^f$, and the operation of the C_s for $s \in \mathcal{S}$ on this basis has the following form:

\begin{equation}
N_x C_s = \begin{cases}
N_{xs} + vN_x & \text{if } xs \in \mathcal{W}^f \text{ and } xs > x \\
N_{xs} + v^{-1}N_x & \text{if } xs \in \mathcal{W}^f \text{ and } xs < x \\
0 & \text{if } xs \not\in \mathcal{W}^f,
\end{cases}
\end{equation}

where the inequality signs refer to the Bruhat order on \mathcal{W}. The involution on \mathcal{H} induces an involution on \mathcal{N} defined by $a \otimes b \mapsto \bar{a} \otimes \bar{b}$.

The following result is discussed in [S1], following [D1], [D2].

Theorem 1.1. \mathcal{N} has a unique basis $\{N_x : x \in \mathcal{W}^f\}$ satisfying

1. $N_x \in N_x + \sum_{y<x} v\mathbb{Z}[v]N_y$,
2. \mathcal{N} is self-dual.

Definition 1.2. The affine Kazhdan-Lusztig polynomials $n_{y,x}$ are defined by

$$N_x = N_x + \sum_{y<x} n_{y,x}N_y$$

The affine Weyl group \mathcal{W} acts freely and transitively on alcoves, so there is a bijection $\mathcal{W} \to \mathcal{A}$ given by $w \mapsto wA_+$, where A_+ is the unique alcove in \mathcal{A}_+ containing 0 in its closure. Under this bijection, the elements of \mathcal{W}^f correspond to alcoves contained in the positive Weyl chamber. One also has an action of \mathcal{W} on the right on \mathcal{A} given by $(wA_+)x = wxA_+$.

Using the bijection between \mathcal{W}^f and \mathcal{A}_+, one can rename the distinguished elements of the right \mathcal{H} module \mathcal{N} using alcoves $A \in \mathcal{A}_+$ rather than coset representatives $x \in \mathcal{W}^f$. Thus if $x, y \in \mathcal{W}^f$ correspond to $A, B \in \mathcal{A}_+$, then we write N_A for N_x, $\overline{N_A}$ for $\overline{N_x}$, and $n_{A,B}$ for $n_{x,y}$. The right action of \mathcal{H} is then given by

\begin{equation}
N_A C_s = \begin{cases}
N_{As} + vN_A & \text{if } As \in \mathcal{A}_+ \text{ and } As > A \\
N_{As} + v^{-1}N_x & \text{if } As \in \mathcal{A}_+ \text{ and } As < A \\
0 & \text{if } As \not\in \mathcal{A}_+,
\end{cases}
\end{equation}

where now the inequalities have a geometric interpretation: $As > A$ if As is on the positive side of the hyperplane separating the two alcoves. The elements $\overline{N_A}$ are computed by a recursive scheme as follows: One has $\overline{N_{A+}} = N_{A+}$. Given $A \neq A_+$, one can choose $s \in \mathcal{S}$ such that $As \in \mathcal{A}_+$ and $As < A$. The element $\overline{N_A}$ is then computed by

$$\overline{N_A} = \overline{N_{As}}C_s - \sum_{B < A} f_{B,A}(0)\overline{N_B},$$

where $f_{B,A}$ is the coefficient of B in $\overline{N_{As}}C_s$.
Let F be a facet. The left-stabilizer \tilde{P} of F is generated by the reflections in the hyperplanes containing F. Let A_F be the set of all alcoves A such that F is in the boundary of A. Then it is well-known (see e.g. [Ja, 6.11]) that there exists a 1-1 correspondence between the elements of \tilde{P} and the elements of the set A_F; it can be defined by the map $w \in \tilde{P} \mapsto w(A_+(F))$.

In particular, \tilde{P} is a finite reflection group, which is generated by a subset of reflections in the hyperplanes containing a lower wall of $A_+(F)$.

Let $w_F \in W$ be the element such that $A_F = w_F(A_+(F))$. Then we define the right-stabilizer of F to be the subgroup $P = w_F^{-1}Pw_F$; one checks easily that it does indeed coincide with all the elements $w \in W$ such that $A_Fw = A_F$, and hence $Fw = F$. It is generated by a subset $S_F = S_P \subset S$ of simple reflections. Then it follows from the definition of right action and the discussion above that the map

$$w \in P \mapsto A_-(F)w$$

defines a 1-1 correspondence between the elements of P and the elements of the set A_F. Moreover, if all the alcoves of A_F are contained in \mathcal{C}, this correspondence is order preserving between the Bruhat order of P and the order \prec on A_F.

Let F_0 be a facet which contains F in its closure. We define the quantities $a_F(F_0)$ and $b_F(F_0)$ to be the number of hyperplanes containing F which are ‘above’ respectively ‘below’ F_0; a hyperplane H is said to be above F_0 if F_0 is on the negative side of H, with a similar definition for ‘below’. We get the following formulas which immediately follow from the definitions:

$$b_F(F_0) = b_F(A_-(F_0)) \quad \text{and} \quad a_F(F_0) = a_F(A_+(F_0)).$$

Also observe that if $w \in P$ and $A = A_-(F)w$, then

$$b_F(A) = \ell(w) \quad \text{and} \quad a_F(A) = \ell_P - \ell(w).$$

We now consider the action of the Hecke algebra $\mathcal{H}(W, S)$ on the module \mathcal{N}. Let $\mathcal{H}(P, S_P)$ be the Hecke algebra corresponding to the right stabilizer P of the facet F. If all the alcoves of A_F are in \mathcal{C}, it follows from equation 1.5 and the text below it that the map

$$H_w \in \mathcal{H}(P, S_P) \mapsto N_{A_-(F)}w \in A_F$$

defines an isomorphism of $\mathcal{H}(P, S_P)$ right modules. The definition of the Kazhdan-Lusztig element C_P, see 1.1, also suggests defining the element

$$N_F = \sum_{A \in A_F} v^{a_F(A)}N_A = N_{A_-(F)}C_P,$$
where the last equality follows from 1.7 and 1.8. For a given facet F, we define a partial order \prec on the set $\{N_{w(F)}, w \in W \text{ such that } w(F) \subset C\}$ by
\begin{equation}
F_1 \prec F_2 \iff A_+(F_1) \prec A_+(F_2).
\end{equation}

Finally, let F_0 be a facet which contains F in its boundary, and let $Q \subset P$ be its stabilizer. Recall that $[Q]_w = v^{-\ell_Q} \sum_{w \in Q} v^{2\ell(w)}$. It follows from the definitions of N_F and N_{F_0} that
\begin{equation}
N_F = \sum_{F_0} v^{b_F(F_0)} N_{F_0}
\end{equation}
where the summation goes over the facets of the form $F_0 w$ with $w \in P$. The following elementary lemma is probably well-known to experts in Kazhdan-Lusztig theory.

Lemma 1.3. Let F_0, F, Q and P be as just defined, with F in the closure of the dominant Weyl chamber C, and let $A \in A_F$. Then we have
\begin{equation}
N_{AC_F} = \begin{cases}
0 & \text{if } F \not\subseteq C, \\
v^{-b_F(A)} N_F & \text{otherwise,}
\end{cases}
\end{equation}
and
\begin{equation}
N_{F_0C_F} = \begin{cases}
0 & \text{if } F \not\subseteq C, \\
\lbrack Q \rbrack_v v^{-b_F(F_0)} N_F & \text{otherwise,}
\end{cases}
\end{equation}

Proof. Let F be a facet in the boundary of C such that $F \not\subseteq C$, and let A be an alcove in A_F. We claim that $N_{AC_F} = 0$. There exists an alcove $B \in A_F$, $B \subset C$ which has a wall in a boundary hyperplane of C. Let s be the simple reflection corresponding to such a wall. Then $N_{BC_s} = 0$ (see e.g. [S1], or Section 1.3); but then also $(v + v^{-1}) N_{B FC_F} = N_{BC_s C_F} = 0$, which shows the claim for $A = B$. The claim will follow inductively if we can prove it for any alcove $A \in A_F$ which shares a wall with an alcove $B \in A_F$ for which it has already been established. Let s be the simple reflection corresponding to such a wall, and observe that $s \in P$. Then $N_A = N_{BC_s} - v^{\pm 1} N_B$, from which one easily deduces the claim for A.

Assume now that $F \subset C$. Then necessarily any alcove $A \in A_F$ has to be in C. If $A = A_+(F)$, we get $N_{A_+(F)} C_F = N_F$ from 1.8 and the definitions of N_F and of C_P, see 1.9 and 1.1. If $A = A_-(F) w$ for some $w \in P$, then
\[N_A C_F = N_{A_-(F)} H_w C_F = v^{-\ell(w)} N_{A_-(F)} C_P = v^{-b_F(A)} N_F, \]
using 1.7 and 1.8. To prove the second claim, observe that because of $Q \subset P$ we get
\[N_{F_0 C_F} = N_{A_-(F_0)} C_P = [Q]_v N_{A_-(F_0)} C_P = [Q]_v v^{-b_F(F_0)} N_F, \]
where the first equality follows from the definition of N_{F_0} (formula 1.9), the second equality from formula 1.2, and the last equality from the formulas 1.12 for N_{AC_F} and 1.6 for $b_F(F_0)$. \hfill \Box
1.6. We define the self-dual element \(N_F\) by \(N_F = N_{A_+(F)}\). Observe that for two facets \(F, \tilde{F}\), not necessarily of same dimension we have \(N_F = N_{\tilde{F}}\) iff \(A_+(F) = A_+(\tilde{F})\).

Lemma 1.4. Let \(F\) be a facet with right stabilizer \(P\), and let \(F_0\) be a facet with right stabilizer \(Q \subseteq P\), such that \(F_0\) contains the facet \(F\) in its boundary. Write \(N_{F_0} = \sum_D r_D N_D\), with \(D \in A_+\). Then

(a) For any \(A \in A_F\), \(N_A C_P\) is a \(\mathbb{Z}[v, v^{-1}]_0\) linear combination of elements of the form \(N_B\) with \(B \succ A_+(F)\) (or equal),

(b) \(N_{F_0} = \sum_{F_0' \in W(F_0)} r_{F_0'} N_{F_0'},\) with \(r_{F_0'} = r_{A_+(F_0')}\),

(c) \(N_{F_0} C_P = [Q]_v \sum_{F_0' \in W(F_0)} r_{F_0'} v^{-b_{F_0'}(F_0')} N_{F_0'},\) where \(F_0'\) denotes, for each \(F_0' \in W(F_0)\), the unique facet conjugate to \(F\) which is contained in the closure of \(F_0'\).

(d) Let \(F_1\) be any facet such that \(F_1\) contains \(F\) in its boundary. Then

\[N_{F_0} C_P = [Q]_v \sum_{F_0' \in W(F_0)} \sum_{F_1' \succ F_0'} r_{F_0'} v^{-b_{F_0'}(F_1')} N_{F_1'},\]

where \(F'\) is related to \(F_0\) as in part (c), and \(F_1'\) ranges over all facets in \(W(F_0)\) which contain \(F'\) in their closure.

Proof. To prove part (a), observe that \(C_P\) is equal to the Kazhdan-Lusztig element \(C_{w_0}\) of the longest element \(w_0\) in \(P\). In particular, it is self-dual and hence so is \(N_A C_P\). Hence this product can be written as a \(\mathbb{Z}[v, v^{-1}]_0\) linear combination of self-dual elements \(N_B\); in fact the same statement is true for \(N_A C_w\) for any \(w \in P\). We will show the second statement of the claim more generally for \(N_A C_w\) for any \(w \in P\) by induction on the length \(\ell(w)\) of \(w\). If \(\ell(w) = 1\), \(w = s\) is a simple reflection of \(P\). In this case the claim follows from the original proof by Kazhdan and Lusztig: in fact, \(N_A C_P\) is a linear combination of \(N_B\) with \(B\) majorized by the larger of \(A\) or \(AS\). Either of those elements contains \(F\) in its boundary, and hence is majorized by \(A_+(F)\). For the induction step, let \(w = w's\), with \(\ell(w') < \ell(w)\) and \(s \in S_P\). Then the claim follows by applying the induction assumption twice for \(N_A C_w = N_A C_{w's}\).

Now let \(A\) denote \(A_+(F_0)\). Let \(S_Q\) be the set of simple reflections \(s \in Q\). By definition of \(A = A_+(F_0)\) and \(Q\), we have \(As < A\) for \(s \in S_Q\). But then \(N_A C_s = (v + v^{-1}) N_A\) and \(N_A H_s = v^{-1} N_A\) for all \(s \in S_Q\), using basic properties of Kazhdan-Lusztig elements (see [KL]). But then also \(N_A H_w = v^{-\ell(w)} N_A\) for all \(w \in Q\) from which one easily concludes \(N_A C_Q = [Q]_v N_A\).

Let \(D\) be an alcove, and let \(F_0'\) be the facet in the boundary of \(D\) which is conjugate to \(F_0\). Then it follows from Lemma 1.3 that \(N_D C_Q\) is equal to a multiple of \(N_{F_0'}\), and hence also \(N_{F_0} C_Q\) is a linear combination of \(N_{F_0'}\)'s. On the other hand, we have \(N_{F_0} C_Q = [Q]_v N_{F_0}\) by the previous paragraph of this proof. Hence already \(N_{F_0}\) itself is a linear combination of \(N_{F_0'}\)'s. From
this follows claim (b), as the coefficient of N_{F_0} is equal to $r_{A_+}(F_0)$. Using (b) and Lemma 1.3(b), we get

$$N_{F_0}C_P = \sum_{F_0'} r_{F_0'}N_{F_0'}C_P = [Q]v \sum_{F_0'} r_{F_0'}v^{-b_{F_0'}(F_0)}N_{F_0'},$$

where F' is the unique facet conjugate to F which is contained in the closure of F_0. This proves part (c), and part (d) follows from $N_{F_0} = \sum_{F_1} v\lambda_{F_1} N_{F_1}$ (see 1.11).

In our application of part (d) of this lemma, F_1 will be related to F_0 as follows: F_1 will be the facet “on the other side of F from F_0”; to be more precise, it is the facet reached if one extends a line connecting a point in F_0 with a point in F a little beyond F. Observe that F_1 then lies in the affine subspace spanned by F_0 and has the same dimension as F_0.

2. Path operators

2.1. We now define Kazhdan-Lusztig polynomials $n_{\lambda \mu}$ for arbitrary points λ, μ in the dominant Weyl chamber C of g as follows: Let μ be a point in C, and let F be the facet containing $\mu + \rho$. If $\mu + \rho$ does not lie on any facet, we define both F and $A_+(\mu)$ to be the alcove containing $\mu + \rho$; otherwise, we define $A_+(\mu)$ to be equal to $A_+(F)$. Then the polynomials $n_{\lambda \mu}$ are defined by

$$n_{\lambda \mu} = \begin{cases} n_{A_+(\lambda), A_+(\mu)} & \text{if } \lambda + \rho \in W(\mu + \rho), \\ 0 & \text{otherwise}. \end{cases}$$

(2.1)

The elements N_μ are defined in the free $\mathbb{Z}[v, v^{-1}]$ module \mathcal{M} with basis $\{N_\lambda, \lambda \in C\}$ by

$$N_\mu = \sum_\lambda n_{\lambda \mu}N_\lambda.$$

(2.2)

By definition, the polynomials $n_{w,\mu,\mu}$ do not change if we vary μ within its facet, and keep $w \in W$ fixed. If we denote by $F(\lambda + \rho)$ the facet containing $\lambda + \rho$, and if $\mu + \rho$ is on the facet F_0, we get

$$N_{F_0} = N_{A_+(F_0)} = \sum_\lambda n_{\lambda \mu}N_{F(\lambda + \rho)}.$$

(2.3)

An element M in \mathcal{M} is said to be self-dual if it can be rewritten as a linear combination of elements of the form N_μ with coefficients in $\mathbb{Z}[v, v^{-1}]_0$. If $M = \sum_\lambda m_\lambda N_\lambda$, it follows that M is self-dual if and only if the element $\sum_\lambda m_\lambda N_{F(\lambda + \rho)}$ is self-dual.
2.2. We describe a geometric procedure which will be useful for describing the behaviour of Kazhdan-Lusztig elements \overline{N}_μ under multiplication by C_P. Let F_0 be the facet containing $\mu + \rho$, and let F be a facet in the boundary of F_0. Let Λ be a vector such that the line segment between $\mu + \rho$ and $\mu + \rho + \Lambda$ is contained in $F_0 \cup F \cup F_1$, with F_1 the facet containing $\mu + \rho + \Lambda$. In applications we will also encounter the degenerate cases with $\mu + \rho \in F$ (i.e. we have a path going from a facet F of smaller dimension to a facet F_1 which contains F in its boundary), and the case with $\mu + \rho + \Lambda \in F$ (i.e. we have a path going from the facet F_0 to a facet in its boundary). Obviously, the general case described first can be obtained as a combination of the two degenerate cases. In the following we will only deal with the general case; the degenerate cases can be treated similarly.

Let $a_F(\lambda) = a_F(F_0)$, where F_0 is the facet containing $\lambda + \rho$ (see 1.6), with the definition of $b_F(\lambda)$ similar. Then we define

$$
F_\Lambda N_\mu = \begin{cases}
0 & \text{if } F \not\subset C, \\
\sum_{\gamma: \gamma + \rho \in (\lambda + \rho + \Lambda)P} \gamma^{a_F(\gamma) - b_F(\lambda)} N_\gamma & \text{if } F \subset C.
\end{cases}
$$

We extend the definition of F_Λ to the elements N_μ, in the following nontrivial way: Observe that N_μ is a linear combination of elements N_λ with $\lambda \in W_\mu$. By assumption on Λ, the line segment between $\mu + \rho$ and $\mu + \rho + \Lambda$ is in the affine subspace spanned by F_0. Hence if $w.\mu = \lambda$, we obtain a well-defined line segment from $w(\mu + \rho)$ to $w(\mu + \rho + \Lambda)$, independent of the choice of w. We denote the vector given by it by $\tilde{w}(\Lambda)$, where \tilde{w} is the image of w in the quotient $W/T \cong W$, with T being the normal subgroup of translations in W. If $N_\mu = \sum_{\lambda \in W_\mu} n_\lambda \mu N_\lambda$, we define

$$
F_\Lambda N_\mu = \sum_{\lambda = w.\mu} n_\lambda \mu F_{\tilde{w}(\Lambda)} N_\lambda.
$$

Lemma 2.1. The element $F_\Lambda N_\mu = \sum_{\gamma} u_\gamma N_\gamma$ is self-dual. Moreover, if Q is the stabilizer of the facet $F(\mu + \rho)$ containing $\mu + \rho$, then u_γ equals the coefficient of $N_{F(\gamma + \rho)}$ in the expansion of $[Q]^{-1} N_{F(\mu + \rho)} C_P$ as in Lemma 1.4(d).

Proof. Let $\lambda = w.\mu$, and let F'_0, F' and F'_1 be the facets obtained by applying w to F_0, F and F_1. Observe that $\lambda + \rho \in F'_0$ and that the line segment from $\lambda + \rho$ to $\lambda + \rho + \tilde{w}(\Lambda)$ is contained in $F'_0 \cup F' \cup F'_1$. Moreover F'_0 and F' have right stabilizers Q and P respectively. It follows from Lemma 1.4(c) that

$$
N_{F_0} C_P = [Q]^{w - b_{F'(F'_0)}} N_{F'} = [Q]^{w \sum_{F'_1} v^{a_{F'(F'_1)} - b_{F'(F'_0)}}} N_{F'_1},
$$

where the summation goes over all facets F_1' conjugate to F_1 which contain F' in their boundary. Using the 1-1 correspondence between the facets F'_1 in the sum above, and the points $\gamma + \rho$ in the orbit of $\lambda + \rho + \Lambda$ under the
right action of P, we obtain similarly
\[F_\beta(\lambda) N_\gamma = \sum_{\gamma} v^{a_\beta(\gamma) - b_\beta(\gamma)} N_\gamma = \sum_{\gamma + \rho \in F_\beta} v^{a_\beta(\gamma) - b_\beta(\gamma)} N_\gamma. \]

The claim about the coefficient of $N_\beta(\gamma + \rho) = N_\gamma$ follows from the last two equations, and the definition of F_β, see 2.4 and 2.5. As C_P is self-dual, so is $N_\beta(\gamma + \rho) C_P$. From this follows that $F_\beta N_\gamma$ is self-dual, by the last two equations and the definition of duality on the module \mathcal{M} (see end of section 2.1).

2.3. In order to compute the N_β explicitly, we define a ‘positivity’ operator P on self-dual linear combinations $R = \sum_{\lambda \leq \mu} a_\lambda N_\lambda$, with $a_\lambda \in \mathbb{Z}[v, v^{-1}]$ and $a_\mu = 1$ as follows: Let i_0 be the smallest exponent of v occurring in any of the coefficients a_λ with $\lambda < \mu$. If $i_0 > 0$ we define $P R = R$. If $i_0 \leq 0$, we get rid of the lowest exponent by the operation $R \rightarrow R - \sum_{\lambda < \mu} (v^{i_0} + v^{-i_0})[(v^{-i_0} a_\lambda)(0)] N_\lambda$;

if $i_0 = 0$ we subtract from R the expression $\sum_{\lambda < \mu} a_\lambda(0) N_\lambda$. Iterating this operation, as long as the lowest exponent is nonpositive, we finally obtain a linear combination $PR = \sum_\lambda b_\lambda N_\lambda$ with $b_\lambda \in v\mathbb{Z}[v]$ for all $\lambda < \mu$, i.e. we obtain (cf. Theorem 1.1)

\[P(R) = N_\mu. \]

Theorem 2.2. $N_{\mu + \lambda} = PF_\lambda N_\mu$ if λ is in \mathcal{C} satisfying the conditions at the beginning of Section 2.2.

Proof. It was shown in Lemma 2.1 that $F_\lambda N_\mu$ is a $\mathbb{Z}[v, v^{-1}]$-linear combination of N_γs. Moreover, using the fact that Λ is in \mathcal{C}, we check easily that $N_{\mu + \Lambda}$ has coefficient 1 in $F_\lambda N_\mu$. The claim follows from this and 2.6. \[\square \]

3. A fast algorithm

3.1. We now outline how our path version of the Kazhdan-Lusztig algorithm can be used to compute the coefficients $n_{\lambda \mu}$ in an efficient way. Here, the strategy is to stay at points with stabilizer as large as possible as long as possible.

Let Λ be a vector in \mathcal{C}. Then we define the operator $T_\Lambda : \mathcal{M} \rightarrow \mathcal{M}$ by $T_\Lambda N_\mu = N_{\mu + \Lambda}$. If for given μ the vector Λ is small enough that the line segment between $\mu + \rho$ and $\mu + \Lambda + \rho$ satisfies the conditions in Section 2.2, $T_\Lambda N_\mu = PF_\lambda N_\mu$, by Theorem 2.2. For the general case, we choose a piecewise linear path with vertices $\mu_0 + \rho = \mu + \rho, \mu_1 + \rho, \ldots, \mu_N + \rho = \mu + \Lambda + \rho$ such that each directed line segment from $\mu_i + \rho$ to $\mu_{i+1} + \rho$ lies in \mathcal{C} and satisfies the conditions at the beginning of section 2.2. This can always be achieved if $\lambda \in \mathcal{C}$; in this case we can write Λ as a linear combination of the fundamental weights with non-negative scalars. So it suffices to choose as
line segments small enough multiples of the fundamental weights. Theorem 2.2 then implies

Corollary 3.1. $T_{\Lambda}N_{\mu} = (PF_{\mu_N - \mu_{N-1}})(PF_{\mu_{N-1} - \mu_{N-2}}) \ldots (PF_{\mu_1 - \mu_0})N_{\mu}$, independent of the choice of the piecewise linear path.

3.2. A dominant weight μ is called **critical** if $(\mu + \rho) \cdot \alpha$ is divisible by l for all roots α of g. In the simply-laced case, the smallest critical weight is the Steinberg weight $(l - 1)\rho$; in the nonsimply-laced case the smallest critical weight is a multiple of ρ or $\tilde{\rho}$ (half the sum of the co-roots) depending on whether l is divisible by the ratio of the square lengths of a long and a short root. In the following, we shall assume g to be simply-laced in order to avoid having to deal with various cases. We call a dominant integral weight μ **interior** if $\mu \cdot \alpha_i \geq l$ for all simple roots α_i. The fundamental box Π is the set

$$\{ \sum_{i=1}^{k-1} t_i \Lambda_i : 0 < t_i \leq l \}.$$

The dominant Weyl chamber is tiled by translates of the fundamental box Π of the form $\Pi + \mu_c + \rho$, where μ_c is a critical weight in \mathcal{C}. In particular, for each interior weight μ, there is a unique critical weight $\mu_c \in \mathcal{C}$ such that $\mu + \rho \in \Pi + \mu_c + \rho$, or, equivalently, with $\mu \in \mu_c + \Pi$.

Case 1: Interior weights Assume that the critical point μ_c of $\mu + \rho$ is in the interior. Then it is known that $N_{\mu_c} = N_{\mu_c}$ (see [S1], [D1]). We can compute $N_{\mu} = T_{\mu - c_{\mu}}N_{\mu_c}$, with $T_{\mu - c_{\mu}}$ realized by a suitable piecewise linear path (see subsection 3.1).

Case 2: Noninterior weights If μ is a non-interior weight, then $\mu + \rho = \sum_i a_i \Lambda_i$, with the a_i non-negative integers with at least one of them $< l$. We define scalars b_i and c_i as follows: If $a_i < l$, then $b_i = c_i = a_i$; otherwise we set $c_i = l[|a_i|/l]$ and $b_i = l$, where for the purpose of this definition $[x]$ means the integer part of the real number x. We then define dominant weights μ_0 and μ_1 by

$$\mu_0 + \rho = \sum_i b_i \Lambda_i \quad \text{and} \quad \mu_1 + \rho = \sum_i c_i \Lambda_i;$$

observe that μ_0 is in the fundamental box, while μ_1 is close to μ, playing the role of the critical weight μ_c in case 1. The computation of N_{μ} now goes in three steps:

(i) Compute N_{μ_0} directly via a suitable piecewise linear path from ρ to $\mu_0 + \rho$.

(ii) Compute N_{μ_1} via a suitable piecewise linear path from $\mu_0 + \rho$ to $\mu_1 + \rho$; suitable here means that the path only goes through facets whose dimensions are at most one higher than the dimension of the facet containing $\mu_1 + \rho$.

(iii) Compute N_{μ} via a path from $\mu_1 + \rho$ to $\mu + \rho$.

3.3. The main savings of this algorithm over the usual algorithms comes from step (ii) in the case of noninterior weights, for two reasons: Firstly,
working with facets requires much less memory than having to work with all the alcoves surrounding it separately, and hence also less operations for computing a new Kazhdan-Lusztig element. Secondly, going through a facet of large codimension requires less wall-crossings than having to go around via simple wall-crossings. Indeed, computer experiments for type A show that this algorithm produces enormous improvements in efficiency over the original LLT algorithm, or the Soergel algorithm (see [GW2] for details).

3.4. Let λ be a Young diagram with $< k$ rows. We identify it with a weight of \mathfrak{sl}_k as usual. Taking for Λ a weight of the generating k-dimensional representation V of \mathfrak{sl}_k, it is not hard to check that the action of the operator F_Λ on N_{λ} corresponds to the action of one of the operators f_i on λ, where the f_i’s describe the action of a Borel algebra of $U_q\mathfrak{sl}_l$ on the Fock space consisting of all Young diagrams, see [MM]. Indeed, this action served as motivation for work by [LLT], [Ar] and also for this paper. It would be interesting to find out whether one can find similar interpretations for suitably chosen path operators, as defined in this paper, for other weight lattices.

3.5. Littelmann path algorithm. The path operators in this paper can be used to describe the decomposition of the tensor product of an indecomposable tilting module T_μ with highest weight μ (see [An]) with the fundamental representation V of $U_q\mathfrak{sl}_k$ (as in the previous subsection). Indeed, for given dominant integral weight μ, one can find a subset $\{\epsilon_i\}$ of the weights of V such that the application of the operator $\sum_i F_{\epsilon_i}$ results into adding all possible weights of V to $\mu + \rho$; e.g. if $\mu + \rho$ does not lie on any hyperplane, one would have to take as subset all weights of V. Writing $(\sum_i F_{\epsilon_i}) N_\mu = \sum_\nu m_\nu N_\nu$, with $m_\nu \in \mathbb{Z}[v, v^{-1}]_0$ (which is always possible), it follows that the multiplicity of the indecomposable tilting module T_ν with highest weight ν in $T_\mu \otimes V$ is equal to $m_\nu(1)$. This is an easy consequence of the Littelmann algorithm (see [Li]) in the generic case, and the fact that the multiplicity of an indecomposable tilting module in the tilting module T is completely determined by the character of T. Hence, in this case, our algorithm can be seen as an analog of the Littelmann path algorithm for tilting modules (in a rather trivial special case). The same reasoning will also work for other Lie types if one takes for V a minuscule representation. It would be interesting to see whether one could extend this observation to a description via paths of tensoring T_λ with an arbitrary tilting module T. Note, however, that even if T is a simple tilting module, one can not adapt Littelmann’s algorithm in a straightforward way in general.

Finally we would like to recall that one obtains the dimension of the simple module D^μ of a Hecke algebra of type A (see [DJ]) as the multiplicity of the tilting module T_μ in $V^\otimes n$. This is a direct consequence of the q-analogue of Schur duality between Hecke algebras of type A and $U_q\mathfrak{sl}_k$ (see [Do], [DPS]). So the procedure described in the previous paragraph is a method to compute such dimensions inductively. Inductive procedures of this type have already been obtained before by Kleshchev for symmetric
groups in positive characteristic and by Brundan ([Br]) for Hecke algebras by different methods.

REFERENCES

[An] H.H. Andersen, Tensor Products of Quantized Tilting Modules, Commun. Math. Phys. 149 (1992) 149-159.
[Ar] S. Ariki, On the decomposition number of the Hecke algebra of $G(m, 1, n)$, J. Math. Kyoto Univ. 36 (1996) 789-808.
[Br] J. Brundan, Modular branching rules and the Mullineux map for Hecke algebras of type A. Proc. London Math. Soc. (3) 77 (1998), no. 3, 551–581.
[D1] V.V. Deodhar, On some geometric aspects of Bruhat orderings II, the parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987) 483-506.
[D2] V.V. Deodhar, Duality in parabolic set up for questions in Kazhdan-Lusztig theory, J. Algebra 142 (1991) 201-209.
[DJ] R. Dipper, G. James, Repr. of Hecke algebras of the general linear group, Proc. London Math. Soc. 52 (1986) 20-52.
[Do] S. Donkin, The q-Schur Algebra, Cambridge University Press, 1998
[DPS] J. Du, B. Parshall, L. Scott, Quantum Weyl reciprocity and tilting modules Comm. Math. Phys. 195 (1998), 321–352.
[G] M. Geck, Representations of Hecke algebras at roots of unity, Sém. Bourbaki, 50ème année, 1997-1998, no. 836.
[GW1] F. Goodman, H. Wenzl, Iwahori-Hecke algebras at roots of unity, J. Algebra 215 (1999) 694-734
[GW2] F. Goodman, H. Wenzl, Crystal bases of quantum affine algebras and affine Kazhdan-Lusztig polynomials, Int. Math. Res. Notes, (1999) 251-275.
[Ja] J.C. Jantzen, Representations of Algebraic Groups, Pure and Applied Mathematics, v. 131, Academic Press, 1987.
[Ka] M. Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991) 465-516.
[KL] D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184.
[LLT] A. Lascoux, B. Leclerc, J-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Commun. Math. Phys. 181 (1996) 205-263.
[LL] B. Leclerc and J-Y. Thibon, Littlewood-Richardson coefficients and Kazhdan-Lusztig polynomials, preprint, QA9809122
[Li] P. Littelmann, Paths and root operators in representation theory. Ann. of Math. (2) 142 (1995), no. 3, 499–525.
[Lu] G. Lusztig, Introduction to quantum groups, Birkhäuser
[MM] K.C. Misra, T. Miwa, Crystal base for the basic representation of $U_q(sl_n)$, Comm. Math. Phys. 134 (1990) 79-88.
[S1] W. Soergel, Kazhdan-Lusztig Polynome und eine Kombinatorik für Kipp-Moduln, Representation Theory 1 (1997) 37-68.
[S2] W. Soergel, Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren, Representation Theory 1 (1997) 115-132.
[VV] M. Varagnolo, E. Vasserot, Canonical bases and Lusztig conjecture for quantized $SL(N)$ at roots of unity, preprint, 1998, q-alg 9803023.

Department of Mathematics, University of Iowa, Iowa City, Iowa
E-mail address: goodman@math.uiowa.edu
Department of Mathematics, University of California, San Diego, California

E-mail address: wenzl@brauer.ucsd.edu