A Spread Model of COVID-19 With Some Strict Anti-epidemic Measures

Bo Yang
Xi’an Jiaotong University

Zhenhua Yu
Xi’an University of Science and Technology

Yuanli Cai
Xi’an Jiaotong University
https://orcid.org/0000-0001-7364-3101

Research Article

Keywords: COVID-19, Spread model, Basic regenerative number, Stability of equilibriums, Parameter estimation, Sensitivity analysis

Posted Date: March 1st, 2021

DOI: https://doi.org/10.21203/rs.3.rs-263858/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
[Read Full License](#)

Version of Record: A version of this preprint was published at Nonlinear Dynamics on March 7th, 2022. See the published version at https://doi.org/10.1007/s11071-022-07244-6.
Abstract

In the absence of specific drugs and vaccines, the best way to control the spread of COVID-19 is to adopt and diligently implement effective and strict anti-epidemic measures. In this paper, a mathematical spread model is proposed based on strict epidemic prevention measures and the known spreading characteristics of COVID-19. The equilibriums and the basic regenerative number of the model are widely analyzed. As a validation, the model is used to simulate the spread of COVID-19 in Hubei Province of China for a period of time. The model parameters are estimated and the model is validated by the actual data related to COVID-19 in Hubei. Simulation results show that the model can accurately describe the spread dynamics of COVID-19. Sensitivity analysis of the parameters is also done to provide the basis for formulating prevention and control measures.

Full Text

This preprint is available for download as a PDF.

Figures

Figure 1

The state transformation process of individuals.
Figure 2

Fitting of $\theta(t)$ and $\mu(t)$.

(a) Relative cure rate per day.

(b) Relative case fatality rate per day.
Figure 3

Currently confirmed cases

(a) cumulative number of confirmed cases

(b) cumulative number of cured cases

(c) cumulative number of dead cases

Figure 4

Simulation and verification. The points are the real reported data, and the curves are the solutions of differential equations (9) associated with system (1).
Figure 5

Change trends of state.