Multidisciplinary Standards of Care and Recent Progress in Pancreatic Ductal Adenocarcinoma

Aaron J. Grossberg, MD, PhD 1,2,3; Linda C. Chu, MD5; Christopher R. Deig, MD1; Eliot K. Fishman, MD4; William L. Hwang, MD, PhD5,6,7; Anirban Maitra, MD, PhD11; Daniel L. Marks, MD, PhD7,10; Arnav Mehta, MD, PhD6,7; Nima Nabavizadeh, MD 1; Diane M. Simeone, MD12,13; Colin D. Weekes, MD, PhD14; Charles R. Thomas, Jr, MD1

Abstract: Despite tremendous gains in the molecular understanding of exocrine pancreatic cancer, the prognosis for this disease remains very poor, largely because of delayed disease detection and limited effectiveness of systemic therapies. Both incidence rates and mortality rates for pancreatic cancer have increased during the past decade, in contrast to most other solid tumor types. Recent improvements in multimodality care have substantially improved overall survival, local control, and metastasis-free survival for patients who have localized tumors that are amenable to surgical resection. The widening gap in prognosis between patients with resectable and unresectable or metastatic disease reinforces the importance of detecting pancreatic cancer sooner to improve outcomes. Furthermore, the developing use of therapies that target tumor-specific molecular vulnerabilities may offer improved disease control for patients with advanced disease. Finally, the substantial morbidity associated with pancreatic cancer, including wasting, fatigue, and pain, remains an under-addressed component of this disease, which powerfully affects quality of life and limits tolerance to aggressive therapies. In this article, the authors review the current multidisciplinary standards of care in pancreatic cancer with a focus on emerging concepts in pancreatic cancer detection, precision therapy, and survivorship.

Keywords: cachexia, epidemiology, health outcomes, pancreatic neoplasms, screening and early detection

Background and Epidemiology

Pancreatic cancer has the poorest prognosis of any common solid malignancy, with a 5-year overall survival (OS) rate of approximately 10%.1 Although this represents a modest improvement in survival, the absolute number of individuals who die of this disease continues to rise. In 2020, it is estimated that 57,600 people will be diagnosed with and 47,050 deaths will be attributed to pancreatic cancer in the United States, recently eclipsing breast cancer as the third leading cause of overall cancer death.2 The median age at diagnosis of pancreatic cancer is 70 years.1,3 Incidence rates during 2013 through 2017 were higher among males than females (14.9 and 11.6 cases annually per 100,000 persons, respectively), as were mortality rates (12.7 and 9.6 deaths annually per 100,000 persons, respectively).1,3 Incidence and mortality rates during this period were highest for blacks (15.3 cases and 13.3 deaths annually per 100,000 persons, respectively), followed by non–Hispanic whites (13.1 cases and 10.9 deaths annually per 100,000 persons, respectively), with lower rates among Hispanics, and especially among Asian/Pacific Islanders and American Indian/Alaska Natives.1 Lost earnings from person-years of life lost from pancreatic cancer in 2015 are estimated to be over $6 billion.4 Both incidence rates and mortality rates increased by an average of 0.3% per year during the past decade.1 Underlying these trends is a combination of an aging population, longer expected lifespan, and the public health pandemics of obesity and diabetes.
Approximately 95% of pancreatic cancers are exocrine cell tumors, most commonly pancreatic ductal adenocarcinomas (PDAC). Endocrine pancreatic cancers are generally more indolent tumors with a more favorable prognosis, as reviewed elsewhere. There are 4 fundamental challenges that underlie the high mortality of PDAC. First, the pancreas is situated deep within the upper abdomen, seated behind the stomach and between the aorta and its major upper abdominal branches. Not only does this shield growing tumors from detection but, because the cancer often grows around and encases these vessels, only 15% to 20% can undergo surgical resection, which is the foundation of curative treatment. Second, PDAC exhibits an aggressive biology characterized by early metastasis. Greater than 50% of patients have distant metastatic disease on presentation, and the majority of patients who undergo resection will develop metastases within 4 years of surgery, suggesting the de facto presence of micrometastases in patients with apparently localized tumors. Third, the physiologic effects of PDAC can dramatically weaken patients, limiting their ability to withstand aggressive treatment. The wasting syndrome of cachexia is present in up to 80% of patients with PDAC at diagnosis, and this may be further complicated by exocrine and endocrine pancreatic dysfunction. Cachectic patients exhibit poor treatment tolerance, as evidenced by decreased survival after pancreatectomy or chemotherapy. Finally, PDAC exhibits resistance to many antineoplastic therapies, with rapid progression and low rates of pathologic complete response even with the most effective systemic agents and radiotherapy. Indeed, fewer than 3% of patients who present with metastatic disease are alive after 5 years, whereas this number jumps to over 70% in patients with localized, stage IA disease. The impact of these challenges is reflected in the prognostic factors predicting poorer survival: advanced tumor (T) classification, the presence of nodal metastasis or distant metastasis, the presence of macroscopic or microscopic residual disease after resection, high histologic grade, invasion of major blood vessels, and poor performance status.

Presentation

Although most patients are symptomatic at presentation, symptoms of PDAC are often nonspecific, leading to a median delay between presentation and diagnosis of >2 months. The most commonly reported symptoms are fatigue (86%), weight loss (85%), anorexia (83%), jaundice (56%), nausea (51%), abdominal pain (79%), diarrhea (44%), pruritis (32%), and steatorrhea (25%). Clinical signs of PDAC, including jaundice (55%), hepatomegaly (29%), cachexia (13%), epigastric mass (9%), or ascites (5%), are much less common. This can make it difficult for primary care and front-line physicians to know when it is appropriate to escalate a workup, as there is no specified diagnostic algorithm for PDAC. The development of any of these symptoms in the context of newly diagnosed diabetes, a family history of PDAC, or a history of recurrent or chronic pancreatitis should alert the managing physician to strongly consider PDAC in the differential diagnosis.

Risk Factors and Early Detection

Despite the poor prognosis of PDAC overall, data from the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) program underscore the impact of earlier detection on outcomes. For example, an analysis of SEER data between 2010 and 2016 shows that, although only 2.9% of patients with PDAC who had distant metastases survived ≥5 years, approximately 39.4% of patients who had localized disease survived for that duration. Patients with PDAC <1 cm who were diagnosed by endoscopic ultrasound (EUS) had even higher 5-year survival rates (reaching approximately 70%) for patients with no obstructive symptoms or detectable mass on computed tomography (CT), whereas a more recent study from the United States of individuals at high risk for PDAC undergoing longitudinal surveillance has demonstrated that resecting advanced preneoplastic lesions is essentially curative. These findings reiterate the importance of earlier detection of PDAC, possibly even at the stage of carcinoma in situ (aka pancreatic intraepithelial neoplasia 3 [PanIN-3]).

Nonetheless, the US Preventive Services Task Force (USPSTF), an expert body charged with making recommendations for screening and other clinical preventive services for the nation, has recently reaffirmed its longstanding recommendation of discouraging screening for PDAC in the general population, concluding, with moderate or high certainty, that such a screening service has no net benefits or
that the benefits are outweighed by the harms, thus giving the service a failing “D” grade.29 On one hand, the USPSTF guidelines sound counterintuitive in light of the aforementioned impact of earlier detection of PDAC on stage-specific survival. On the other hand, there is compelling rationale against screening the general population for PDAC. At an incidence rate of approximately 13 cases per 100,000 adults,3 PDAC is still relatively uncommon. In contrast, the incidence rates of 2 cancers for which general population screening is recommended by the USPSTF—breast cancer and colorectal cancer—are approximately 69 and 38 cases per 100,000 adults, respectively.30-33 This suggests that even a “perfect” PDAC biomarker with a sensitivity of 100% (ie, not a single cancer being missed) and a specificity of 99% (1 false-positive of 100 abnormal tests), would only have a positive predictive value close to 1%,34,35 leading to a large number of individuals undergoing unnecessary imaging tests or potentially harmful procedures and adding greatly to health care costs and patient morbidity. To circumvent this pitfall, the USPSTF has excluded defined cohorts that are at average risk for PDAC from its screening recommendation. In the following paragraphs, we discuss some of these high-risk cohorts and other emerging paradigms in early detection.

Approximately 10% of patients with PDAC harbor a pathogenic germline mutation in a cancer-predisposing gene, of which BRCA2 and ATM are the 2 most common candidates, followed by BRCA1, PALB2, CDKN2A/p16, and LKB1/STK11; the mismatch repair genes (hMLH1, hMSH2, and hPMS2); and other rarer variants (Table 1).36-46 Of note, only one-half of patients with a deleterious germline mutation report an overt family history of PDAC, in light of which the American Society of Clinical Oncology (ASCO) and the National Comprehensive Cancer Network (NCCN) recently updated their guidelines to recommend universal germline mutation testing for all patients diagnosed with PDAC (instead of only those with a suspicious family history).46,47 This has the added benefit of identifying patients with BRCA1/BRCA2 mutations who might benefit from poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitor therapy (see below).48 The first-degree relatives of positive index cases can then be approached for testing done of the pathogenic mutation of interest (a process known as cascade testing), and the ready availability of relatively inexpensive blood-based and saliva-based multigene panels has greatly simplified the process.49 Asymptomatic germline mutation carriers represent a rich pool of high-risk individuals for cancer interception, and, in fact, this subset has been explicitly excluded from the USPSTF recommendations against screening in the general population at average risk.29 There is currently no broad consensus on how to conduct longitudinal surveillance of germline mutation carriers, including the optimal imaging modalities to use in this population, although a recent international consortium has suggested some overall guidelines that can be pursued within an academic research setting.17 Nonetheless, retrospective data from 2 of the largest familial PDAC registries have shown the impact of longitudinal surveillance on outcomes, with the majority (75%-90%) of incident cancer cases being diagnosed at a resectable stage, which, in turn, translated into disease-specific survival >3 years.17,30

A separate subgroup of patients, those with pancreatic cysts, may benefit from early detection efforts as well. Pancreatic cysts are categorized as inflammatory (including pancreatic pseudocysts) and noninflammatory (including mucinous and nonmucinous lesions).51 Mucinous cysts of the pancreas are comprised of 2 distinct entities—intraductal papillary mucinous neoplasms and mucinous cystic neoplasms—and both are considered bona fide precursor lesions of PDAC.52 In contrast to microscopic PanINs, which are the most common (approximately 90%) precursor subtype associated with an invasive adenocarcinoma,53 the macroscopic (cystic) precursors can be readily imaged using CT or magnetic resonance imaging (MRI) scans and thus are amenable to longitudinal surveillance for progression to cancer. Notably, retrospective studies on imaging data have shown

SYNDROME	GENE	RELATIVE RISK	REFERENCES
Familial atypical multiple mole	CDKN2A	13-Fold to 39-fold	Hu 2018,27
melanoma (FAMMM)			Potjer 2015,30
			Goldstein 200446
Familial breast and ovarian	BRCA1 and BRCA2	2-Fold and 3-9 fold	Hu 2018,27
			Iqbal 201240
Fanconi anemia, breast cancer	PALB2	Unknown	Petersen 201641
Familial adenomatous polyposis	APC	5-Fold	Giardiello 199342
Lynch syndrome	MLH1, MSH6, MSH2, PMS2, EPCAM	9-Fold to 11-fold	Hu 2018,43
			Kastanios 200943
Peutz-Jeghers syndrome	STK11/LKB1	132-Fold	Giardiello 200044
Hereditary pancreatitis	PRSS1	53-Fold	Lowervels 199745
Li-Fraumeni syndrome	TP53	7-Fold	Hu 201847
Ataxia-telangiectasia	ATM	~3-Fold	Hu 201847

Table 1. Pancreatic Cancer Susceptibility Genes and Estimated Risk
that as much as 2% to 3% of the general population might harbor asymptomatic pancreatic cysts, and this number rises to >10-fold higher in elderly individuals. This man-made epidemic in pancreatic cysts can be attributed to the tens of millions of abdominal scans that are conducted each year in the United States for unrelated causes. Given that no more than 5% to 10% of PDACs annually arise in the backdrop of a cystic lesion, the vast majority of these asymptomatic pancreatic cysts are essentially benign and can be followed with conservative surveillance. The importance of early detection in patients who have cysts is underscored by data indicating that patients with noninvasive cystic lesions are usually cured upon surgical resection, whereas those with an invasive component can see their 5-year survival drop by ≥50%. Therefore, identifying the minor subset of mucinous cysts that have progressed to either high-grade dysplasia or PDAC, or that harbor an intrinsic biological potential for progression during the patient’s lifetime, is of paramount importance. However, based on SEER data, a cyst detected incidentally on MRI has a 17 in 100,000 chance of being a ductal cancer, indicating a very elevated number needed to surveil to prevent one premature death. Despite this, several international societies have published largely overlapping recommendations on cyst surveillance. The evidence driving these recommendations is derived from case series and retrospective reports, and graded as “very low quality”; thus it is unclear that the benefits of imaging surveillance outweigh potential harms. A compendium of clinical and imaging-based criteria has been suggested by various expert bodies (reviewed by van Huijgevoort and colleagues) that can support the clinician in their management decision making, but all have various shades of imperfections, resulting in some cases of both overtreatment and missed cancer diagnoses. Recently, molecular testing of endoscopically aspirated pancreatic cyst fluid for molecular biomarkers of mucinous cysts, as well as progression to cancer, have been implemented in the clinical domain and have resulted in improved performance over the clinical/imaging criteria alone.

The application of machine-learning algorithms toward designing an integrated approach to cyst classification will result in further accuracy in predicting underlying biology and improved management.

A third high-risk subset for PDAC are patients with chronic pancreatitis, most commonly secondary to chronic alcohol dependence, smoking, hypertriglyceridemia, diabetes, or renal failure. Approximately 5% of patients with chronic pancreatitis of 20 years’ duration will progress to PDAC, and concomitant smoking enhances the risk of neoplastic progression. Patients with sporadic chronic pancreatitis are currently not recommended to undergo PDAC surveillance under the USPSTF screening guidelines. However, the USPSTF recommendation against screening does not apply to a rare subset of patients with so-called hereditary pancreatitis secondary to germline mutations in the PRSS1 gene, which encodes for cationic trypsinogen.

The mutation renders trypsin resistant to inactivation, resulting in recurrent episodes of acute pancreatitis beginning in childhood. These patients have an approximately 50-fold higher lifetime risk of PDAC, again demonstrating the intimate link between inflammation and cancer.

Although the aforementioned risk factors cumulatively affect approximately 15% to 20% of patients diagnosed with PDAC annually, the majority still fall under the category of what would be considered as sporadic cancer (Table 2). How do we enable early detection in individuals with no apparent clinical risk factor such as cysts or family history? One can certainly implement public health approaches such as smoking avoidance and cessation and maintaining a healthy body mass index, because both of these modestly affect approximately 15% to 20% of patients diagnosed with PDAC, thereby raising the lifetime risk of PDAC. The use of genome-wide association studies, in which thousands of polymorphisms across the genome are compared in cases versus controls, has enabled the identification of multiple susceptibility alleles in PDAC, such as alleles within the ABO blood group genes and the gene-encoding telomerase reverse transcriptase (TERT). In contrast to the deleterious germline mutations described above (BRCA1/BRCA2, ATM, etc), these variant alleles individually only have a very modest effect on lifetime risk, but their cumulative risk could become appreciable. The incorporation of predisposing allelic information into a so-called polygenic risk score could then identify individuals at the highest quartile of lifetime risk who could be enrolled into longitudinal surveillance programs. In the past decade, the emergence of new-onset hyperglycemia or frank diabetes has been identified as the presenting symptom of an otherwise asymptomatic PDAC in up to one-half of all patients. The deregulation in glucose homeostasis is a paraneoplastic syndrome caused by the underlying PDAC, which can

Table 2. Risk Factors for the Development of Pancreatic Cancer

FACTOR	RELATIVE RISK	REFERENCES
Tobacco smoking	1.7-Fold to 2.6-fold	Iodice 2008, Lynch 2009, Whitmore 1985
Obesity	1.1-Fold to 1.5-fold	Anslan 2020, Renehan 2008
Diabetes	1.5-Fold to 2-fold	Andersen 2017
Family history	1.7-Fold to 2.3-fold	Amundadottir 2004, Hemminki & Li 2003, Jacobs 2009
Chronic pancreatitis	13.3-Fold	Raimondi 2010

Smoking appears to increase the risk of pancreatic ductal adenocarcinoma in women more than in men (see Andersson 2016 and Muscat 1977).
start to appear as early as 36 months before clinical diagnosis and is accompanied by changes in subcutaneous adipose tissue. Circulating factors, including antigen and microRNA panels, show promise in discriminating patients with early PDAC from controls or individuals with benign pancreatic conditions, offering the promise of liquid biopsy approaches toward the early detection of PDAC. In addition, recent data have established that alterations in the gut and pancreatic microbiome directly promote pancreatic oncogenesis and influence survival, indicating that changes in fecal microbial composition may also help identify disease development. In a cancer interception paradigm of the future, one can envision a pipeline wherein asymptomatic individuals are identified at higher than average lifetime risk for PDAC based on a combination of polygenic risk score, family history, smoking history, and body mass index, and are enrolled into a risk-reduction program for PDAC (which includes guidance on lifestyle modification) and a surveillance program for individuals for whom benefit is anticipated to exceed harm. The onset of hyperglycemia or frank diabetes, as well as a catalog of longitudinally structured data readily available from the electronic medical record would then trigger additional workup, such as imaging studies, in these high-risk individuals, eventually leading to earlier diagnosis of PDAC at a resectable stage and improved long-term survival.

Diagnosis and Imaging

Diagnostic Workup

The diagnosis of PDAC cannot be made based on symptoms and signs alone. Patients presenting with jaundice or epigastric pain should be evaluated with complete blood count, blood chemistry panel, and liver function tests, including serum aminotransferases, alkaline phosphatase, and bilirubin. These values can help assess the extent of cholestasis (bilirubin), liver metastasis (alkaline phosphatase), hepatitis (aminotransferases), and nutritional status (albumin, prealbumin). Those with epigastric pain should also have serum lipase measured to evaluate for acute pancreatitis. The tumor marker sialylated Lewis’ blood group antigen CA 19-9 is frequently used in the workup for PDAC. In symptomatic patients, the sensitivity and specificity of CA 19-9 range from 70% to 90%, but the positive predictive value of elevated CA 19-9 in asymptomatic patients was only 0.9%, making it inadequate as a diagnostic in this population. Its limited utility is based on elevations in benign pancreaticobiliary diseases, cancers other than PDAC, and the fact that 5% to 10% of the population do not express Lewis antigens. Emerging data suggest that the combination of serum CA 19-9 with additional biomarkers, such as MUC5AC or thrombospondin-2, improves the specificity of serum testing, offering potential for a future blood-based diagnostic approach. Serum CA 19-9 levels are closely related to tumor size, and the degree of elevation in CA 19-9 is associated with prognosis. In a study of patients with apparently localized disease, values >130 units/mL predicted occult, unresectable disease and were prognostic for survival among >1500 patients with resectable cancers. Although patients with apparently localized PDAC and high levels of CA 19-9 are commonly recommended for staging laparoscopy and neoadjuvant therapy, ASCO guidelines do not specify a cutoff value of CA 19-9 to be used in this manner. Because elevations in serum CA 19-9 can be induced by either tumor production or cholestasis, CA 19-9 should be remeasured after stent placement in patients with biliary obstruction to estimate true tumor burden, accounting for its 4-day to 8-day half-life. Serial monitoring of CA 19-9 is commonly used to track response to therapy in patients who present with elevated CA 19-9. A failure in CA 19-9 normalization after surgery is associated with poor survival and is thought to represent occult metastatic disease. Similarly, declining CA 19-9 during systemic therapy correlates with improved patient survival, although it is unclear what magnitude of decline is most prognostic. Rises in CA 19-9 after a nadir can represent treatment failure and often precede imaging evidence of recurrent or progressive cancer. Serum CA 19-9 changes are not considered to be a substitute for imaging evidence of treatment response or recurrence. In some tumors, additional cancer-specific biomarkers, such as carcinoembryonic antigen or CA 125, are elevated and can also be used to track response to therapy and recurrence. Because these markers are elevated in only a subset of patients with PDAC, their utility in diagnosis is limited.

Imaging Techniques

CT is the first-line imaging modality for the initial evaluation of suspected PDAC and is preferred over MRI because of its lower cost and widespread availability. Both CT and MRI have comparable sensitivity in the detection of PDAC, ranging from 76% to 96% for CT and from 83% to 94% for MRI. MRI is usually reserved as a second-line imaging modality in patients with contraindications to CT (e.g., severe iodinated contrast allergy or renal insufficiency). MRI is also used as a problem-solving tool in cases with equivocal CT features and for the characterization of indeterminate liver lesions. Position emission tomography/CT has been shown to detect extrapancreatic metastatic disease that was not detected based on traditional staging examination. Although not recommended as part of routine staging, position emission tomography/CT may be considered in patients at high-risk of extrapancreatic metastases. The primary role of EUS is to guide needle biopsies to confirm the diagnosis of PDAC. In select cases, EUS may be helpful in...
detecting a small pancreatic mass that may be difficult to observe on CT or MRI and thus is the preferred imaging modality in some early detection surveillance programs.28,105,106 The reported accuracy in determining tumor resectability ranges from 73\% to 87\% for CT and from 70\% to 79\% for MRI.103 CT offers superior spatial resolution and is less susceptible to respiratory motion artifacts than MRI, which is essential in demonstrating the critical relationship between the tumor and adjacent vasculature. The accuracy of PDAC detection and staging critically depends on the appropriate imaging protocol, postprocessing technique, and experience of radiologists.

The pancreatic cancer CT protocol, endorsed by both the Society of Abdominal Radiology and the American Pancreatic Association, states that CT examination should be performed with intravenous contrast (>300 mg iodine per mL) at an injection rate of 3 to 5 mL/second with scans obtained at pancreatic parenchymal phase (40-50 seconds) and portal venous phase (65-70 seconds). A neutral or low-Hounsfield-unit oral agent should be administered. The data set should be obtained with submillimeter slice thickness, reconstructed into 0.75-mm to 3-mm axial slices, with multiplanar reconstruction, and 3-dimensional (3D) reconstruction to allow for full assessment of vascular involvement.107 Cinematic rendering is a recently described 3D rendering technique that can provide photorealistic detail, and has the potential to improve visualization of tumor-vessel relationships (Figs. 1 and 2).108

Staging Systems

The American Joint Committee on Cancer (AJCC) stages PDAC based on a TNM staging system. The revised eighth edition of the AJCC manual addressed some of the criticisms of earlier versions with changes to the T and lymph node (N) categories.109 T categories are mostly based on tumor size. T4 is defined as tumor with arterial involvement regardless of size. N categories are further classified in the eighth edition based on the absence of lymph node involvement (N0) and the number of regional lymph nodes involved (1-3 for N1 and \geq4 for N2), rather than only the
absence (N0) or presence (N1) of lymph nodes. The primary goal of the AJCC system is to provide prognostic information, rather than guiding management. Several organizations have issued management guidelines. NCCN guidelines classify the resectability of localized PDAC based on preoperative imaging findings into resectable, borderline resectable, and locally advanced disease and are summarized in Table 3. Arterial abutment (<180 degrees) is considered borderline resectable, whereas arterial encasement (≥180 degrees) is usually considered locally advanced (exception noted below) (Fig. 2). Venous abutment, encasement, or thrombosis are considered borderline resectable, as long as the venous segment is reconstructable. Unreconstructable venous involvement is considered locally advanced (Fig. 3). However, in other guidelines, the presence of celiac artery encasement is considered unresectable.

Principles of Multidisciplinary Treatment

Metastatic Disease Therapy: An Evolving Treatment Paradigm

Metastatic disease represents the most common clinical presentation of PDAC. Historically, gemcitabine was the standard of care for the first-line treatment of metastatic disease based on a 5.65-month improvement in median OS compared with 5-fluorouracil (5-FU). Major studies establishing standard-of-care first-line therapy for PDAC are listed in Table 5. In 2011, the phase 3 PRODIGE 4/ACCORD 11 trial (Research Partnership in Digestive Oncology [PRODIGE] 4/Concerted Actions in Colorectal and Digestive Cancers 11 Combination Chemotherapy as First-Line Therapy in Treating Patients With Metastatic Pancreatic Cancer [fluorouracil, leucovorin, irinotecan, and oxaliplatin versus gemcitabine for metastatic pancreatic cancer]; ClinicalTrials.gov identifier NCT00714631) showed a survival benefit of combination chemotherapy over gemcitabine, with a 10-month improvement in median OS compared with gemcitabine (5-FU). Therefore, the first-line treatment of metastatic PDAC has evolved to combination chemotherapy, which is now considered the standard of care. Combination regimens involve the use of at least two agents from different classes of drugs, including fluoropyrimidines, platinum agents, and targeted therapies such as EGFR inhibitors and PD-1/PD-L1 blockers.

Table 3. National Comprehensive Cancer Network Criteria for Defining Resectability of Pancreatic Ductal Adenocarcinoma at Diagnosis

Resectability Status	Arterial Involvement	Venous Involvement		
	Celiac Artery	SMA	Common Hepatic Artery	Portal Vein/SMV
Resectable	None	None	None	None
Borderline Resectable	≤ 180°	≤ 180°	Solid tumor contact without extension into CA or hepatic artery bifurcation	≤ 180° contact without contour irregularity
Locally Advanced	> 180° (head/uncinate)	> 180°	None	> 180°

Abbreviations: CA, celiac artery; GDA, gastroduodenal artery; IVC, inferior vena cava; PV, portal vein; SMA, superior mesenteric artery; SMV, superior mesenteric vein.

Table 4. Comparison of Resectability Criteria Among Organizations

VESSEL INVOLVEMENT	NCCN 2019	MDACC	ACTO	AHPBA/SSAT/SSO
CA abutment (≤180 degrees)	Borderline	Borderline	Borderline	Borderline
CA encasement (>180 degrees)	Borderline (head/uncinate); locally advanced	Borderline (body/tail); locally advanced	Unresectable	Unresectable
SMA abutment (≤180 degrees)	Borderline	Borderline	Borderline	Unresectable
SMA encasement (>180 degrees)	Locally Advanced	Unresectable	Borderline	Borderline
CHA abutment or encasement	Borderline	Borderline	Borderline	Borderline
PV/SMV encasement (>180 degrees) or abutment (≤180 degrees) with contour abnormality	Borderline	Borderline	Borderline	Borderline

Abbreviations: ACTO, Alliance for Clinical Trials in Oncology; AHPBA, American Hepato-Pancreato-Biliary Association; CA, celiac artery; CHA, common hepatic artery; MDACC, The University of Texas MD Anderson Cancer Center; NCCN, National Comprehensive Cancer Network; PV, portal vein; SMA, superior mesenteric artery; SMV, superior mesenteric vein; SSAT, Society for Surgery of the Alimentary Tract; SSO, Society for Surgical Oncology.
NCT00112658) demonstrated an improved median OS and median progression-free survival (PFS) in patients who received FOLFIRINOX (5-FU, leucovorin, irinotecan, and oxaliplatin) compared with those who received gemcitabine as first-line therapy for metastatic PDAC (median OS: 11.1 months vs 6.8 months [hazard ratio (HR), 0.57; \(P < .001 \)]; median PFS: 6.4 months vs 3.3 months [HR, 0.47; \(P < .001 \)]).\(^{122}\) FOLFIRINOX now embodies standard first-line therapy for fit patients. The combination of gemcitabine plus nanoparticle albumin-bound (nab)-paclitaxel represents another first-line therapy for the disease. The phase 3 MPACT trial (A Randomized Phase III Study of Weekly ABI-007 Plus Gemcitabine Versus Gemcitabine Alone in Patients With Metastatic Pancreatic Cancer [ClinicalTrials.gov identifier NCT00075684]; ±, with or without; MS, median survival; NS, not significant.)

TABLE 5. Trials Evaluating Chemotherapy for Metastatic Pancreatic Cancer

TRIAL	NO.	CHEMOTHERAPY	MS	\(P \)
Cullinan 1985\(^{114}\)	144	5-FU vs 5-FU + Dox vs 5-FU + Dox + mitomycin	5.5 mo vs 5.5 mo vs 4.5 mo	NS
Burris 1997\(^{113}\)	126	5-FU vs Gem	4.4 mo vs 5.6 mo	.0025
Tempero 2003\(^{115}\)	92	Gem vs Gem (fixed rate)	5 mo vs 8 mo	.013
Heinemann 2006\(^{116}\)	195	Gem ± cisplatin	6.0 mo vs 7.5 mo	.015
NCIC-CTG PA.3 (Moore 2007\(^{117}\))	569	Gem ± erlotinib	5.9 mo vs 6.2 mo	.038
Cunningham 2009\(^{118}\)	533	Gem ± capecitabine	6.2 mo vs 7.1 mo	.08
CALGB 80303 (Kindler 2010\(^{119}\))	602	Gem ± bevacizumab	5.9 mo vs 5.8 mo	.95
SWOG S0205 (Philip 2010\(^{120}\))	745	Gem ± cetuximab	5.9 mo vs 6.3 mo	.23
PRODIGE 4/ACCORD 11 (Conroy 2011\(^{121}\))	342	Gem vs FOLFIRINOX	6.8 mo vs 11.1 mo	.0001
MPACT (Von Hoff 2013\(^{122}\))	861	Gem ± nab-paclitaxel	6.7 mo vs 8.5 mo	.001

Abbreviations: 5-FU, 5-fluorouracil; Dox, doxorubicin; FOLFIRINOX, 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin; Gem, gemcitabine; nab-paclitaxel, nanoparticle albumin-bound paclitaxel; CALGB 80303, phase 3 trial of the Cancer and Leukemia Group B Trial 80303 (gemcitabine plus bevacizumab vs gemcitabine vs placebo in patients with advanced pancreatic cancer); MPACT, A Randomized Phase III Study of Weekly ABI-007 Plus Gemcitabine Versus Gemcitabine Alone in Patients With Metastatic Adenocarcinoma of the Pancreas (ClinicalTrials.gov identifier NCT00844649); NCIC-CTG PA.3, a phase 3 trial of the National Cancer Institute of Canada Clinical Trials Group (erlotinib plus gemcitabine alone in advanced pancreatic cancer); PRODIGE 4/ACCORD 11, Research Partnership in Digestive Oncology 4/Concerted Actions in Colorectal and Digestive Cancers 11 (Combination Chemotherapy as First-Line Therapy in Treating Patients With Metastatic Pancreatic Cancer [fluorouracil, leucovorin, irinotecan, and oxaliplatin versus gemcitabine for metastatic pancreatic cancer]; ClinicalTrials.gov identifier NCT00112658); SWOG S0205, Southwest Oncology Group Trial S0205 (A Phase III Randomized Open-Label Study Comparing Gemcitabine Plus Cetuximab [IMC-C225] Versus Gemcitabine as First-Line Therapy of Patients With Advanced Pancreas Cancer; ClinicalTrials.gov identifier NCT00075684); ±, with or without; MS, median survival; NS, not significant.
considered the more challenging, but perhaps more effective, regimen.

Second-line therapy primarily consists of doublet therapy using the alternative pyrimidine backbone to what was used in the first-line setting. Patients receiving FOLFIRINOX for first-line therapy are commonly transitioned to gemcitabine plus nab-paclitaxel as second-line therapy based on findings of the MPACT study.\(^{123,124}\) In contrast, patient receiving gemcitabine plus nab-paclitaxel in the first-line setting generally are treated with FOLFIRINOX, FOLFOX (5-FU and oxaliplatin), or 5-FU plus nanoliposomal irinotecan.\(^{121,124-126}\)

These additional options are important for patients with impaired performance status or those who exhibit dose-limiting toxicities precluding FOLFIRINOX treatment. FOLFOX has been evaluated in several trials demonstrating a median PFS of approximately 3.5 months.\(^{124,125}\) However, the randomized phase 3 PANCREOX study (Randomized Study With Oxaliplatin in Second Line Pancreatic cancer; ClinicalTrials.gov identifier NCT01121848), which compared second-line FOLFOX versus infusional 5-FU/leucovorin found that FOLFOX was associated with similar PFS but worse OS and toxicity than the comparison arm, calling into question the advantage of adding oxaliplatin in this setting.\(^{125}\)

The randomized phase 3 NAPOLI-1 trial (Study of MM-398 With or Without 5FU/LV, Versus 5FU/LV in Patients With Metastatic Pancreatic Cancer; ClinicalTrials.gov identifier NCT01494506) demonstrated an improved OS of 6.1 months associated with nanoliposomal irinotecan treatment compared with 4.2 months for 5-FU (HR for death, 0.67; \(P = .012\)). The use of 5-FU as the control versus FOLFOX is a common criticism of this study, which may be unwarranted given the PANCREOX results.\(^{126}\)

The addition of new combinations of cytotoxic chemotherapies is being evaluated as an optimization strategy. The results of a phase 1b/2 study of gemcitabine, nab-paclitaxel, and cisplatin as first-line therapy demonstrated the safety of the regimen while providing early evidence of potential clinical benefit, with a remarkable PFS of 10.1 months.\(^{127}\) Although these results suggest increased efficacy with the addition of platinum, these data should be interpreted with caution in the absence of phase 3 data.

Maintenance Therapy

The improved outcomes associated with multimodality chemotherapy have led to prolonged exposure of patients to chemotherapy-related toxicities. The PANOPTIMOX-PRODIGE 35 trial (First-Line Metastatic Pancreatic Cancer: FOLFIRINOX ± LV5FU2 in Maintenance Versus Firgem [PANOPTIMOX]-PRODIGE 35; ClinicalTrials.gov identifier NCT02352337) phase 2 study was designed to evaluate the role of using a strategy of abbreviated FOLFIRINOX plus maintenance 5-FU or sequential gemcitabine and FOLFIRI3 (5-FU, folinic acid, and irinotecan) versus continuous FOLFIRINOX until disease progression to mitigate oxaliplatin-induced neuropathy.\(^{128}\) Treatment with alternating gemcitabine and FOLFIRI3 demonstrated inferior clinical outcomes compared with the FOLFIRINOX regimens. Patients treated with FOLFIRINOX were randomly assigned to continuous treatment for 6 months or 4 months followed by 5-FU maintenance with reintroduction of FOLFIRINOX at disease progression. The primary endpoint of the study was 6-month PFS. Treatment with the FOLFIRINOX regimens resulted in equivalent 6-month PFS and OS. Patients treated with maintenance 5-FU therapy experienced increased grade 3 and 4 neurotoxicity, which may be reflective of a higher cumulative oxaliplatin dose in these patients. Retrospective single-institution data out of Germany report 11-month PFS in patients receiving maintenance FOLFIRI, delivered after 4 months of FOLFIRINOX.\(^{129}\) Importantly, these studies demonstrate that maintenance therapy is a viable treatment strategy that is not associated with inferior clinical outcomes compared with continued therapy until disease progression.

The POLO study (Olaparib in BRCA Mutated Pancreatic Cancer Whose Disease Has Not Progressed on First Line Platinum-Based Chemotherapy; ClinicalTrials.gov identifier NCT02184195) was a phase 3 study that addressed the role of maintenance targeted therapy in a biomarker-selected patient population. Patients with metastatic PDAC harboring deleterious germline BRCA1 or BRCA2 mutations who had not progressed on first-line platinum-based chemotherapy were randomized to receive either the PARP inhibitor olaparib or placebo as maintenance therapy.\(^{48}\) Olaparib maintenance therapy produced a median PFS of 7.4 months versus 3.8 months in the placebo group (HR, 0.53; \(P = .004\)) but did not improve the median OS.\(^{48}\) Although this represents the first trial supporting molecular-guided therapy for PDAC, interpretation of this study was limited both by low patient numbers and by comparison against a no-treatment control arm, which is not standard of care. However, the POLO trial has led to US Food and Drug Administration approval of olaparib for maintenance therapy in patients with germ-line BRCA-mutant disease.

Precision Oncologic Approaches to Pancreatic Cancer

With the increased analysis of the genomic signatures of PDAC, PDAC has been reliably classified into 2 distinct molecular subtypes: basal/quasimesenchymal or classical. The classical subtype is characterized by an epithelioid phenotype, whereas the basal/quasimesenchymal subtype
has a mesenchymal phenotype that has a propensity to metastasize.30-112 The COMPASS trial (Study of Changes and Characteristics of Genes in Patients With Pancreatic Cancer for Better Treatment Selection; ClinicalTrials.gov identifier NCT02750657) demonstrated that patients with the classical subtype demarcated by high levels of GATA6 expression by RNA sequencing or RNA in situ hybridization in baseline tumor specimens have a higher response rate to FOLFIRINOX therapy, leading to an improved median PFS.133 Consistent with these findings, acquired resistance to FOLFIRINOX was associated with the development of basal phenotype upon FOLFIRINOX exposure.134,135 Prospective studies are now required to confirm these observations. If these observations hold true, the choice of chemotherapy may be determined by the predominant molecular phenotype of the tumor.

Patients with either germline or somatic deleterious mutations resulting in homologous DNA repair deficiency (HRD) represent another important subset of patients who are likely to require specific therapies. Patients who have HRD comprise >15% to 20% of patients with metastatic PDAC.36,136 As outlined previously, these patients may be specifically sensitive to PARP inhibition. The PARP inhibitor rucaparib has demonstrated clinical activity as a single agent in patients who have advanced, metastatic PDAC with both germline and somatic mutations in BRCA1/BRCA2.137 In addition, there are several small-molecular inhibitors in development targeting various aspects of the homologous DNA repair pathway. Combination strategies incorporating multiple agents targeting the HRD pathway in combinations with PARP inhibition are in development.138 In addition to these effects, PARP inhibition possesses radiosensitizing properties.139 Platinum drugs induce double-strand DNA breaks, resulting in increased sensitivity of HRD pancreatic tumors to this class of chemotherapy. Consistent with this observation, a randomized phase 2 study of gemcitabine plus cisplatin with or without veliparib as first-line therapy in patients with HRD demonstrated response rates of 74% and 65%, respectively, and a median OS of 16 months and 15 months, respectively.140

PDAC harboring microsatellite instability represents approximately 1% of patients afflicted with the disease.141 However, it is important for all patients to be tested for microsatellite instability because 40% of patients who have microsatellite instability respond to immune checkpoint inhibition and derive improved survival from this therapy.142,143 This paradigm of tailoring therapeutic approaches to the molecular vulnerabilities of each cancer is known as precision medicine. For PDAC, in which so few agents demonstrate clinically meaningful activity, precision medicine approaches hold substantial promise. In support of precision medicine in PDAC, a recent publication on the Know Your Tumor program found that patients with actionable molecular alterations who received matched molecular therapies had significantly longer median OS than patients who received unmatched therapies (2.58 years vs 1.51 years; HR, 0.42 $[P = .0004]\)144 Furthermore, that study demonstrated the feasibility of molecular assessment on biopsy samples in real time. As capacity for molecular testing improves, such precision approaches may become the standard for the subset of patients with actionable molecular drivers.

Investigational Therapeutic Approaches

Treatments Targeting the Tumor Microenvironment

The PDAC tumor microenvironment consists of a complex network of cells, including cancer-associated fibroblasts, immune cells, and endothelial cells, plus a dense extracellular matrix.145-148 The inhibitory immune checkpoint programmed death ligand–1 (PD-L1) is expressed on myeloid cells within the tumor microenvironment and on tumor cells.149 High expression of PD-L1 expression in PDAC predicts a poor prognosis, yet immune checkpoint blockade (ICB) has been a largely ineffective therapeutic strategy. Anti–CTLA4 inhibition with ipilimumab or tremelimumab, either as a single agent or in combination with gemcitabine and anti–PD-L1 (BMS-936559 or durvalumab), demonstrated no evidence of clinical activity.150-153 Combined CXCR4 and ICB is currently under investigation as an approach to overcome immune exclusion of effector T cells based on preclinical data linking CXCR4 blockade to tumor infiltration of effector T cells.154,155 CD40 agonism represents another promising approach of ICB. CD40 is a component the costimulatory cascade resulting in upregulation of MHC class I and costimulatory molecules and skewing of myeloid cells to a tumoricidal phenotype.156-159 A phase 1 study of the CD40 agonist APX005M in combination with gemcitabine and nab-paclitaxel with or without nivolumab demonstrated early evidence of clinical benefit with a partial response rate of 58%.160 Finally, ionizing radiation can induce immune priming through the production of toxic nucleotide adducts, enhancing intratumoral antigen presentation by dendritic cells.161-162 An initial evaluation of this hypothesis has been conducted in 25 patients with metastatic PDAC by combining radiotherapy plus nivolumab and ipilimumab, with overall response rate of 14% and a median PFS of 2.5 months on interim analysis.163 The value of this approach will be further tested in future studies.

The extracellular matrix, comprised of a collagenous matrix and glycosaminoglycans such as hyaluronic acid (HA), is not inert—specifically, HA promotes metastasis and
PDAC initiation. Recombinant human pegylated hyaluronidase (peg-PH20) was developed as an extracellular matrix-targeted strategy. Phase 2 or 3 studies evaluating peg-PH20 in combination with both FOLFIRINOX and gemcitabine plus nab-paclitaxel in patients with metastatic PDAC expressing high HA levels by immunohistochemistry failed to demonstrate the benefit of adding peg-PH20 to either chemotherapy backbone. In fact, the combination of peg-PH20 with FOLFIRINOX led to excessive toxicity. Stroma modification remains a challenging therapeutic approach; however, recent work evaluating angiotensin receptor blockade using losartan in patients with locally advanced pancreatic cancer shows therapeutic promise (see below).

Treatments Targeting Metabolism and Autophagy

PDAC arising from PanIN is characterized by activating mutations in KRAS. The ensuing mitogen-activated protein kinase (MAPK) activation results in a hypermetabolic state characterized by increased glycolysis as well as increased metabolic plasticity through altered glutamine metabolism, dependence on oxidative phosphorylation, and metabolite scavenging through the process of macropinocytosis. Autophagy is a cellular process designed to allow cells to use cellular components as an alternative fuel source in response to cellular stress. Autophagy is integral for PDAC oncogenesis and proliferative capacity. Recently, 2 independent research teams demonstrated that MAPK activation regulates PDAC dependency on autophagy. Therefore, phase 1 clinical trials are now ongoing or in development to evaluate combining either MEK or ERK inhibitors with the autophagy inhibitor hydroxychloroquine (ClinicalTrials.gov identifiers NCT04132505 and NCT03825289).

Resectable Pancreatic Cancer Surgery

Surgical resection is currently the only means to achieve long-term survival in patients with PDAC. Although only 15% to 20% of patients present with resectable disease, the increasing use of neoadjuvant therapies and advances in surgical techniques have broadened the pool of patients who are eligible for surgical resection. The goals of care for patients with resectable PDAC are increasing the likelihood of margin-negative (R0) resection, decreasing procedural morbidity and mortality, preventing metastatic spread, and improving the patient’s quality of life (QOL). As surgical quality, perioperative care, and systemic therapies have improved, the ultimate goal is to determine the optimal timing and sequencing of high-quality surgery in the appropriate patient as part of a multimodality treatment plan.

A step-by-step review of pancreatectomy is beyond the scope of this review, but key steps to emphasize include: 1) a thorough exploration of the abdomen to rule out metastatic disease; 2) biopsy and examination by frozen section of any suspicious lesions outside of the field of resection; and 3) careful management of the surgical margin to ensure adequate tumor clearance, with the uncinate or retroperitoneal margin the margin most at risk. Careful dissection along the periadvential plane of the superior mesenteric artery mitigates the risk of a positive margin at this location during a pancreaticoduodenectomy (Fig. 4).

Although mortality rates from pancreatectomy have fallen significantly and are below 2% in numerous high-volume centers worldwide, elevated morbidity remains common and still affects the delivery of adjuvant therapy in up to 40% of patients. It is recommended that patients seek out high-volume centers with multidisciplinary expertise to optimize their treatment plan and increase opportunities for clinical trial participation. The use of minimally invasive pancreatic resection has been expanding in the last decade. Excellent outcomes in some studies have been reported; however, others cite safety concerns, particularly for the use of minimally invasive pancreaticoduodenectomy. In all cases, it is clear that implementation of rigorous dedicated training programs and experience with open pancreatic surgical techniques are needed to ensure the safe use of these techniques in clinical practice and to determine whether they will improve longer term oncologic outcomes.

Pathology

Rigorous pathologic assessment is essential for accurate prognosis as well as for determining the appropriate adjuvant treatment plan. Despite guidelines from the College of American Pathologists and the NCCN on standard protocols for the pathologic analysis of PDAC surgical specimens, this practice remains inconsistent because of both vagueness in the protocols and variable degrees of adherence across institutions. Protocols for specimen orientation and inking should be well established between the surgeon and pathologist to ensure clear definition of key margins, generally using different colored inks (specific recommendations can be found in the reports by Tempero et al and the College of American Pathologists). The definition of involved margins are variable across institutions, with most centers in the United States defining a positive margin as tumor-on-ink, whereas in Europe margins are called positive if tumor cells fall within 1 mm of the inked margin. Such inconsistency may help to explain the broad variation in reported R0 resection rates across studies. This distinction is significant for determining prognosis because resection margin distance correlates closely with locoregional failure and survival. The pathology report should also include maximal tumor diameter (for staging), histologic subtype, tumor grade, and the presence of lymphovascular or perineural invasion. For those patients who have undergone neoadjuvant therapy, there are multiple histopathologic systems to evaluate treatment response. Unlike other solid tumor types, the
relation between neoadjuvant treatment effect and prognosis is less clear in PDAC, possibly owing to the lack of standardization in this practice (as reviewed by Kang et al193). The most important prognostic factors for patients who have undergone curative-intent resection are the presence of lymph node metastasis and the ratio of positive lymph nodes to total lymph nodes.194,195 Because the number of negative lymph nodes and the total lymph node count influence stage-based survival prediction, the College of American Pathologists recommends microscopic evaluation of at least 12 lymph nodes for pancreatectomy specimens.185,196,197 Some groups advocate for reporting the involvement of specific lymph node groups, such as the hepatic artery lymph nodes; however, the prognostic value of this practice remains controversial in light of contradictory data from retrospective studies.198-200

Adjuvant Chemotherapy

The median OS of patients with localized PDAC who are treated with surgery alone is from 11 to 20 months.7,8,201 Currently, both the NCCN and ASCO recommend 6 months of adjuvant systemic chemotherapy for all patients who undergo pancreatectomy.102 Multiple randomized studies demonstrated consistent improvement in median OS and disease-free survival (DFS) using a variety of fluoropyrimidine-based chemotherapies. In general, the selection of chemotherapeutic agents has closely followed those found to be superior in the metastatic setting. The evolution of adjuvant chemotherapy regimens is outlined in Table 6.7,8,175,201-204 More recently the PRODIGE 24 trial (Phase III Trial of Adjuvant mFOLFIRINOX vs Gemcitabine in Patients With Resected Pancreatic Ductal Adenocarcinoma) demonstrated an improved DFS for modified FOLFIRINOX (mFOLFIRINOX) treatment of nearly 9 months compared with gemcitabine (HR, 0.58; 95% CI, 0.46-0.73 [P < .001]), establishing it as a standard of care in fit patients.7 Unfortunately, the combination of gemcitabine with nab-paclitaxel failed to meet its primary endpoint of improved DFS in the APACT trial (Nab-Paclitaxel and Gemcitabine vs Gemcitabine Alone as Adjuvant Therapy for Patients With Resected Pancreatic Cancer; ClinicalTrials.gov identifier NCT01964430).204 Tolerance of adjuvant therapy remains a limitation, with patients commonly receiving <50% of the planned dose.7,8,203,204 This observation is a reflection of exposure to significant chemotherapy-related toxicity in patients experiencing substantial postpancreatectomy morbidity. This has led many centers to move toward a total neoadjuvant approach to systemic therapy, as discussed below.

Radiation

Although the role of systemic therapy in the adjuvant setting for resected PDAC has been well validated, the value

FIGURE 4. The Whipple Procedure (Pancreatectoduodenectomy) for Resectable Pancreatic Ductal Adenocarcinoma in the Head of the Pancreas. (A) The normal anatomic relationship of the pancreas and surrounding structures. (B) A diagram of a pancreatic head mass (white) surrounding the pancreatic and bile ducts (shown in green). (C) Standard resection for pancreatectoduodenectomy, to include the head of the pancreas, duodenum, distal common bile duct, distal stomach, and gallbladder. (D) Reconstruction to reconnect the pancreas, common bile duct, and stomach to the gastrointestinal tract.
Another report was presented as an abstract.
with maximum prescription doses constrained entirely by the tolerance of radiosensitive endoluminal organs (stomach, duodenum, and jejunum). An example of the dose distribution in the adjuvant setting is shown in Figure 5. As a result, standard radiation prescriptions in the adjuvant setting consist of daily treatments over the course of 5 or 6 weeks to a total dose of 50 to 54 gray (Gy). Given this and other factors, neoadjuvant regimens consisting of targeted pancreatic tumor delivery of radiation while maximizing normal tissue avoidance are attractive. These approaches are discussed in more detail below.

Total Neoadjuvant Therapy

Patients undergoing upfront surgical resection plus adjuvant chemotherapy experience 5-year OS rates of 25% to 50% because of high rates of systemic relapse. On the basis of this premise, neoadjuvant approaches have been tested in resectable PDAC with the following possible advantages: upfront treatment of occult micrometastases, avoiding unnecessary resection for rapidly progressing tumors, improved likelihood of margin-negative resection, and improved chemotherapy delivery compared with postresection adjuvant therapy. In the absence of clear guidelines, current clinical criteria for considering neoadjuvant therapy in resectable PDAC are large primary tumors, high CA 19-9 levels (＞1000 U/mL), and peripancreatic lymph node involvement or equivocal radiographic features suggestive of more advanced disease. Several randomized clinical trials are underway to more comprehensively define the role of neoadjuvant compared with adjuvant therapies in resectable patients, with an ultimate goal to most effectively target micrometastatic disease.

Results from the randomized phase 3 PREOPANC-1 trial (Preoperative Radiochemotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Study Protocol for a Multicentre Randomized Controlled Trial; the Netherlands National Trial Register identifier NTR3709) in patients with resectable and borderline resectable PDAC suggest that patients had longer survival if gemcitabine-based therapy was given in the neoadjuvant versus the adjuvant setting. In that study, 246 patients were randomized to immediate surgery and then 6 cycles of adjuvant gemcitabine (arm A) versus preoperative chemoradiotherapy, consisting of 3 courses of gemcitabine (the second course combined with radiotherapy to 36 Gy in 15 fractions), followed by surgery and 4 cycles of adjuvant gemcitabine (arm B). Among patients who underwent resection, the study demonstrated an OS benefit from arm A at a median of 35.2 months versus 19.8 months for arm B (P = .029), although the intention-to-treat analysis revealed only a trend toward improved survival. These results are supported by a propensity score–matched analysis of adult patients with resected stage I or II PDAC from the National Cancer Database (2006–2012). Neoadjuvant therapy followed by resection had a significant survival benefit compared with upfront resection (median survival, 26 months vs 21 months [P < .01]), further supporting the consideration of offering neoadjuvant therapy to resectable patients. As in the adjuvant setting, the role of radiation in the neoadjuvant approach to resectable disease remains controversial in the absence of phase 3 trials directly comparing neoadjuvant treatment approaches with or without radiation. A randomized clinical trial (The [Cost]-Effectiveness of Neoadjuvant FOLFIRINOX Versus Neoadjuvant Gemcitabine Based Chemoradiotherapy and Adjuvant Gemcitabine For (Borderline) Resectable Pancreatic Cancer [PREOPANC-2]; The Netherlands National Trial Register identifier NTR7292) is underway investigating whether neoadjuvant chemotherapy with FOLFIRINOX improves survival compared with neoadjuvant gemcitabine-based chemoradiotherapy with borderline resectable PDAC. By using a different approach of neoadjuvant systemic therapy, a randomized prospective trial (Southwest Oncology Group Trial S1505 [SWOG]; Combination Chemotherapy or Gemcitabine Hydrochloride and Paclitaxel Albumin-Stabilized Nanoparticle Formulation Before Surgery in Treating Patients With Pancreatic Cancer That Can Be Removed by Surgery; ClinicalTrials.gov identifier NCT02562716) was conducted evaluating perioper-
neoadjuvant mFOLFIRINOX versus gemcitabine/nab-paclitaxel (12 weeks presurgery and 12 weeks postsurgery in both arms) in patients with resectable PDAC. The trial has completed accrual, and results should be forthcoming in the near future. The added value of this study will be a direct comparison of the performance of these 2 regimens and perhaps some interpretable data regarding genomic signatures that may help predict therapeutic responses.

Borderline Resectable Treatment Paradigm

Patients with borderline resectable pancreatic cancer (BRPC) have no evidence of metastatic disease but are less likely to undergo resection with negative margins because of close proximity to or direct involvement of venous and/or arterial structures. The goal of the treatment approach is to maximize the chance at a margin-negative resection. Although no randomized studies have provided specific guidance regarding the optimal treatment paradigm, several prospective phase 2 studies have demonstrated the feasibility and efficacy of a total neoadjuvant approach consisting of neoadjuvant chemotherapy followed by radiation or chemoradiation. Patients who do not show distant progression or local invasion precluding surgery then undergo surgical exploration and resection.

The single-arm Alliance for Clinical Trials in Oncology (Alliance) A021101 trial (Chemotherapy and Radiation Therapy Before Surgery Followed by Gemcitabine in Treating Patients With Pancreatic Cancer; ClinicalTrials.gov identifier NCT01821612) enrolled 23 patients with BRPC who underwent treatment with neoadjuvant mFOLFIRINOX and neoadjuvant chemoradiotherapy (50.4 Gy in 28 fractions) before definitive surgical resection. Fifteen of 23 patients (68%) underwent resection with an impressive 93% R0 resection rate, and neoadjuvant treatment was not found to preclude resection. Investigators at Massachusetts General Hospital conducted a phase 2 trial evaluating the R0 resection rates in patients who received 8 cycles of FOLFIRINOX plus short-course or long-course neoadjuvant chemoradiation with capecitabine. R0 resection rates for patients who underwent resection was 97%, with a median PFS of 48.6 months and 2-year OS rate of 72%, far surpassing previously published historical outcomes. Furthermore, several retrospective studies have shown high R0 resection rates (88%-96.7%) with low toxicity, and one study in particular showed improvement in local control and OS with the integration of neoadjuvant chemoradiation compared with neoadjuvant chemotherapy alone. In a modern cohort of patients with BRPC at The University of Texas MD Anderson Cancer Center who underwent either neoadjuvant chemotherapy (31 patients) or neoadjuvant chemoradiation (227 patients), patients who received neoadjuvant chemoradiation had significantly improved R0 resection rates (91% vs 79%), histologically lymph node–positive resection rates (3% vs 23%), and locoregional recurrence rates (16% vs 33%), with a nonsignificant OS difference (33.6 months vs 26.4 months). Although early data suggest the importance of integrating both neoadjuvant chemotherapy and chemoradiation into the treatment paradigm for PDAC, large prospective trial data are lacking.

Chemotherapy

The selection of chemotherapeutic agents in BRPC follows the same rationale used in the resectable and metastatic settings. Typically, patients receive ≥2 to 6 months of neoadjuvant chemotherapy before proceeding to radiation, chemoradiation, or directly to surgery, if there is no evidence of distant metastasis. If the full 6 months of chemotherapy are not delivered preoperatively, the balance is commonly offered after surgery. The goals of therapy are to improve resectability by downstaging the primary tumor, reduce micrometastasis, and avoid surgery in patients with aggressive metastatic biology. The only randomized data supporting this approach come from the PREOPANC-1 study discussed above, which enrolled both resectable and borderline resectable patients and demonstrated improved OS and DFS when gemcitabine and chemoradiation were delivered before surgery compared with upfront resection. NCCN guidelines now recommend neoadjuvant chemotherapy for all patients with borderline resectable PDAC. The ongoing SWOG-S1505 and Alliance A021501 trials are evaluating 3 or 4 months of upfront chemotherapy, whereas a completed phase 2 study out of Massachusetts General Hospital used a total neoadjuvant approach in patients who did not progress after 4 months of systemic therapy. The overall treatment goals and approach are similar among most centers that use neoadjuvant therapy for these patients, although, in the absence of level 1 data, there is little consensus regarding optimal timing and sequencing of treatment.

Radiation

The goal of neoadjuvant radiation or chemoradiation in patients with BRPC is to increase the number of patients who can receive R0 resections and improve durable locoregional control. Most commonly, standard fractions of 1.8 to 2 Gy daily are delivered for 5 or 6 weeks to the tumor, the tumor-vessel interface, and the regional lymph node basins. For patients with BRPC, targeted dose escalation of regions of the tumor abutting the vessel has been shown to be feasible and safe and may improve surgical resection rates and survival. Because there is a definable tumor volume, radiotherapy in the neoadjuvant setting may also allow for the safe delivery of hypofractionated regimens consisting of larger daily radiation doses in fewer treatments and a more convenient and less costly treatment consisting of...
5 to 15 fractions. This approach was used in the aforementioned PREOPANC-1 study, which included patients with BRPC. The effectiveness of hypofractionation in PDAC has not been compared against that of conventional fractionation in a randomized fashion.

The use of stereotactic body radiotherapy (SBRT), in which a smaller tumor and tumor-vessel interface volume is treated in ≤5 fractions, is increasing nationally. Because of small margins and rapid dose fall-off, SBRT requires added measures to ensure target delineation, motion management, and daily imaging to verify that the treatment can be delivered safely and effectively (Fig. 6). Initial single-institution studies of SBRT in locally advanced disease indicated survival that approximated standard-of-care treatment and very few grade >3 toxicities. Neoadjuvant SBRT was included as an arm in the ongoing prospective Alliance trial A021501, which is evaluating neoadjuvant FOLFIRINOX for patients with BRPC. The American Society for Radiation Oncology clinical practice guidelines provide a conditional recommendation to treat patients who have borderline resectable pancreatic cancer with either conventional or hypofractionated radiotherapy as part of a neoadjuvant treatment regimen including chemotherapy, generally limiting the use of SBRT to patients who have smaller tumors located ≥1 cm from a gastrointestinal mucosal margin and with no evidence of nodal involvement.

Surgery

The challenge to achieve a margin-negative resection at pancreatectomy in increased when the tumor is adherent to or invading critical blood vessels. The addition of vascular resection and reconstruction adds to the technical complexity of the procedure. The most critical aspects of vascular resection and reconstruction in this setting are having high-quality preoperative imaging to develop an operative game plan and to have a surgeon or surgical team experienced in both pancreatic and vascular surgery. Given the increased risk of perioperative complications and the complex nature of these operations, they should be performed only in high-volume pancreatic centers and by surgeons with the appropriate level of expertise to deal with the added complexity and morbidity that may accompany these types of cases. The relative value of superior mesenteric vein/portal vein resection and/or reconstruction has been clearly shown. Because of increased surgical experience, venous resection and reconstruction are now safe and standardly performed in high-volume centers. In 2 meta-analyses comparing survival for patients who underwent pancreaticoduodenectomy with or without vein resection, no differences in survival were observed. Furthermore, across several studies, patients who undergo pancreatectomy with vein resection are reported to have increased survival compared with those who do not undergo resection or have a R2 resection performed. Generally, margin status is a predictor of survival.

Locally Advanced Pancreatic Cancer Treatment Paradigm

Locally advanced pancreatic cancer (LAPC) accounts for 30% of newly diagnosed cases and is considered surgically unresectable because of local involvement of adjacent critical blood vessels. Current guidelines for LAPC recommend enrollment in clinical trials where available or, in the absence of clinical trials, nonoperative treatment through a multidisciplinary approach. Currently, because this disease is generally considered incurable, the standard of care is very similar to that for patients who have metastatic disease, based around at least 6 months of chemotherapy. At this time, there are no randomized data supporting the inclusion of local therapy in these patients, but more studies are re-evaluating this question for patients who complete chemotherapy with no evidence of distant metastatic disease. We review these approaches below.

Chemotherapy

Chemotherapy forms the backbone of the therapeutic approach to LAPC because many patients will never convert to resectability, and the risk of distant progression is very high.
in this population. The goals of therapy are to control disease progression, reduce symptoms, and maintain QOL. For a subset of patients, chemotherapy may assist in shrinking the local tumor and converting unresectable to resectable disease. First-line therapy, similar to in the metastatic and resectable settings, has shifted toward the use of FOLFIRINOX or gemcitabine plus nab-paclitaxel, despite the absence of randomized data in the locally advanced setting. The recommendation to use these regimens are based on retrospective data or extrapolated from the MPACT and PRODIGE 4/ACCORD 11 studies discussed above. A recent meta-analysis suggested a potential survival benefit of FOLFIRINOX in patients with LAPC. Furthermore, results from the phase 2 SCALOP study (A Multi-Centre Randomized Study of Induction Chemotherapy Followed by Capecitabine /Nelfinavir/ With High or Standard Dose Radiotherapy For Locally Advanced Non-Metastatic Pancreatic Cancer) and the phase 3 LAP07 study (A Randomised Multicentre Phase III Study in Patients With Locally Advanced Adenocarcinoma of the Pancreas; Gemcitabine With or Without Chemoradiotherapy and With or Without Erlotinib), each of which investigated single-agent chemotherapy, reported progression in the majority of patients, reinforcing the importance of more aggressive combination chemotherapy. Therefore, all patients with LAPC should be strongly considered for upfront combination chemotherapy unless it is precluded by performance status or toxicity. In these patients, dose adjustments or less toxic chemotherapy regimens may be considered.

Radiation
Although LAPC represents an ideal opportunity to achieve local tumor control using radiotherapy, its role in unresectable pancreatic cancer is controversial because, historically, technological limitations and organ tolerance prevented ablative dose delivery to a central abdominal organ. The LAP07 trial randomized 450 patients initially to gemcitabine alone versus gemcitabine plus erlotinib followed by randomization, if there was no progression, to the same chemotherapy or chemoradiotherapy. Chemoradiotherapy was delivered at 54 Gy in 30 fractions to the pancreas and peripancreatic nodal basins with concurrent capecitabine using basic 3D-conformal radiotherapy and revealed no improvement in OS despite decreased rates of local progression (32% vs 46%), thereby removing radiotherapy from the treatment algorithm. Perhaps these results should not be surprising because the delivered dose was inadequate for tumor ablation. Despite the equivocal results of LAP07, current ASCO guidelines include a strong recommendation to follow chemotherapy with localized chemoradiation or SBRT in patients who have stable disease after 6 months of chemotherapy or those who cannot tolerate further chemotherapy because of toxicities.

Multiple technological advancements, including 4D-motion management, improved image guidance, and the implementation of intensity-modulated radiotherapy and proton therapy, have allowed for minimizing unwanted dose in normal tissues (ie, liver, small bowel, stomach). Early studies of ablative (biologically effective dose (BED) >100) SBRT reported excellent tumor control but evidence of increased acute and late gastrointestinal toxicities. Using either high-dose conventional fractionation or a hypofractionated approach (15 fractions) to a BED from 77.2 to 97.9 Gy has resulted in published 3-year and 5-year OS rates of 35% and 18%, far exceeding historical controls. Furthermore, using MRI-guided radiotherapy, treating to a BED >70 Gy significantly improved OS in a small cohort (median OS, 8.8 months in the conventional-dose group vs not reached in the high-dose cohort). Fractionation should be selected based on the safe delivery of an ablative dose to maximal tumor volume; tumors that closely appose the bowel may require increased fractionation, whereas those with more clearance may be amenable to shorter courses. Ablative doses of 75 Gy in 25 fractions, 67.5 Gy in 15 fractions, and 50 Gy in 5 fractions each allow for the delivery of a BED of approximately 100 Gy and show evidence of efficacy in appropriately selected populations (Fig. 7). Ongoing prospective trials, such as panCRS (Phase III FOLFIRINOX [mFFX] ± SBRT in Locally Advanced Pancreatic Cancer; ClinicalTrials.gov identifier NCT01926197) and a phase 1/2 dose-escalation trial for pancreatic SBRT with the radioprotector GC4419 (Dose Escalation Trial of Stereotactic Body Radiation Therapy [SBRT] in Combination With GC4419 in Pancreatic Cancer; ClinicalTrials.gov identifier NCT03340974) are further evaluating the efficacy and safety of pancreatic SBRT in patients with locally advanced disease. Importantly, these approaches should only be used at centers with technology for and experience in delivering ablative therapy under image guidance.

Alternatively, radiation may play an important role in converting unresectable patients into surgical candidates, as with BRPC. In a recent phase 2 single-arm study out of Massachusetts General Hospital, optimizing neoadjuvant treatment response with neoadjuvant FOLFIRINOX, l-o-sartan, and chemoradiotherapy (conventional fractionation with 5-FU or capecitabine for the majority of patients) resulted in an unprecedented 69% R0 resection rate and a median OS of 33 months in those who underwent resection (42 patients). A key determinant in the selection of radiation approaches will be the likelihood of resectability because those patients with persistent extensive vascular involvement after neoadjuvant chemotherapy may be more likely to benefit from an ablative rather than neoadjuvant dose and fractionation. In the absence of high-quality evidence supporting the use of radiation to downstage or
definitively treat locally advanced disease, current American Society for Radiation Oncology clinical guidelines provide conditional recommendation for each of these practices.

Surgery

As surgical outcomes of pancreatectomy performed in combination with vascular reconstruction have improved, and as neoadjuvant combination regimens have become more effective, there has been increased interest in defining patients with LAPC who may benefit from a more aggressive surgical approach. After neoadjuvant therapy, it may be difficult to accurately assess treatment response, with studies showing resection rates ranging from 12% to 60%. Although some of these patients (approximately 10%-25%) may demonstrate downstaging to a borderline resectable or resectable category after neoadjuvant treatment, it has been increasingly appreciated that imaging may not be reflective of surgical candidacy because of the presence of fibrotic changes that persist after effective treatment. As such, there has been considerable development and use of more advanced surgical approaches to increase the number of patients with LAPC who may be considered surgical candidates. In general, these operations are longer in duration and are associated with increased blood loss and higher morbidity and mortality, in particular when resection of the celiac artery or the superior mesenteric artery, either alone or in combination with venous reconstruction, is performed (Fig. 8). In several recent single-center series, it has been shown that some of these patients can successfully undergo R0 resection, and patients in this subgroup may experience improved survival compared with those who receive nonsurgical treatment.

The definition of resectability for LAPC varies among surgeons and at different centers, depending on the level of expertise and willingness to undertake these complex procedures. Given the morbidity and mortality associated with pancreaticoduodenectomy and complex vascular reconstruction, careful patient selection is warranted, and these cases should be managed in the setting of significant clinical expertise. In the absence of clear guidelines, the administration of 4 to 6 months of neoadjuvant therapy and documentation of the absence of disease progression, stable or improving CA 19-9 levels, and good Eastern Cooperative Oncology Group performance status (≤1) should occur before considering surgical resection.

Posttreatment Surveillance

According to NCCN guidelines, after completing both local and systemic therapy, patients are followed every 3 to 6 months for the first 2 years and every 6 to 12 months thereafter. Patients should be evaluated with a history and physical examination focused on symptoms, specifically weight loss, anorexia, fatigue, and pain. Laboratory tests may be ordered as clinically indicated, although most physicians will follow complete blood count, blood chemistries, and liver function tests because these can indicate long-term sequelae of therapy or new metastatic disease. Imaging surveillance includes chest CT and CT or MRI studies of the abdomen and pelvis with contrast to identify recurrence or metastasis. As described above, in appropriate patients, CA 19-9 can be used to track therapy response and recurrence, although this is considered a category 2B recommendation. Patients exhibiting recurrence with good performance status should be considered for clinical trials, if available, or the next appropriate line of systemic therapy. If not already engaged, supportive (or palliative) care should be introduced at this time, given the poor prognosis and high disease-related and treatment-related morbidities associated with recurrence.

Survivorship and Patient Resilience

Although cure remains the top priority for research and practice, the high mortality of PDAC calls for the increased use of supportive care in the management of this disease.
As one example, venous thromboembolism (VTE), including deep vein thrombosis and pulmonary embolism, is highly prevalent in patients with PDAC and contributes to both morbidity and mortality. Two large randomized studies, the FRAGEM trial (A Phase II Study of Chemo-Anticoagulation [Gemcitabine-Dalteparin] Versus Chemotherapy Alone [Gemcitabine] for Locally Advanced and Metastatic Pancreatic Adenocarcinoma; ClinicalTrials.gov identifier NCT00462852) and CONKO-004 (Oncology Charity Trial 004: Pilot Study of Intensified Chemotherapy and Simultaneous Treatment With Heparin in Out-patients With Pancreatic Cancer; ClinicalTrials.gov identifier NCT01945879), randomized unselected patients with unresectable or metastatic PDAC to chemotherapy with or without the addition of a low-molecular-weight heparin anticoagulant at higher than standard prophylactic dosing—FRAGEM used dalteparin at a dose of 200 IU/kg daily for 4 weeks before reducing to 150 IU/kg daily for a further 8 weeks, whereas CONKO-004 used enoxaparin at a dose of 1 mg/kg daily. Both studies reported concomitant reductions in VTE risk and mortality without a significant increase in bleeding events. ASCO guidelines recommend VTE prophylaxis with low-molecular-weight heparin or, based on recent reports demonstrating effectiveness and safety with factor Xa inhibitors, apixaban or rivaroxaban for patients with a Khorana score ≥2, which includes all patients with PDAC.

Regardless of cancer stage and patient prognosis, early introduction to expert supportive care improves the social, psychological, and physical well-being of patients; decreases the intensity of medical interventions at the end of life; and ultimately improves survival. Indeed, whereas systemic therapies have a modest impact on final survival outcomes, modern chemotherapy combinations do significantly improve symptoms such as pain, sleep disturbance, appetite, gastrointestinal distress, and emotional functioning. Collectively, the many dimensions of the patient experience and perception of health during PDAC treatment is captured in patient-related outcome measures within the broader concept of health-related QOL (HRQOL), and measurement of this index is an important part of research and clinical care in this patient population.

As described in previous sections, the initial presenting symptoms of PDAC are vague and inconsistent. Some symptoms are primarily caused by local invasion and distortion of normal anatomy (eg, abdominal pain, jaundice), but many are because of a conserved systemic response to illness. This sickness response consists of several stereotypical behaviors and metabolic adaptations that serve to protect the host from acute survival challenges such as infection and trauma. Lethargy, anorexia, fever, and catabolism of muscle are beneficial to the host in the short term but, in the setting of chronic disease, become maladaptive. In particular, a constellation of
Fatigue is a common symptom in patients with cancer, and numerous etiologies are proposed (for a recent review, see Thong et al.285). However, specific data in the PDAC population are rare, with most studies reporting high levels of fatigue both at presentation and throughout treatment.285 Various interventions for cancer-related fatigue have been proposed, ranging from counseling-based therapy to pharmacotherapy (e.g., corticosteroids, methylphenidate), but none have produced a definitive benefit in this patient population. Some evidence suggests that mindfulness techniques and exercise may benefit patients, but available data indicate that benefits are modest and inconsistent.286

Although the association between mood disorders, fatigue, and cognitive decline and PDAC has been extensively documented, it was often assumed that these were secondary to both the psychological impact of the diagnosis itself and the overall toxicity of PDAC treatment. However, it is now apparent that these are often presenting symptoms with this diagnosis, demonstrating that the cancer has independent detrimental effects on the brain.287-289 Furthermore, these symptoms are collectively the most significant drivers of declines in HRQOL and are independently predictive of survival in patients with PDAC.290,291 Although the true prevalence of mood disorders in patients with PDAC is controversial, it is likely far higher than in the healthy population, with rates ranging from one-third to one-half of patients being reported in some studies.292,293 Clinicians should be sensitive to these comorbidities and routinely implement screening for and, if present, treatment for depression.294

Emerging technologies such as electronic patient-reported outcomes hold promise as more efficient and standardized ways to assess HRQOL and deliver supportive care. Future clinical care and research will also benefit from the advent of modern methods for recording patient-reported symptoms in real time, particularly when combined with more objective measures of daily activity (e.g., actigraphy devices). Several studies have demonstrated the efficacy of these electronic methods to improve patient symptoms, reduce health care costs, and improve OS in other cancer types, suggesting that these technologies will also benefit the population of patients with PDAC.295-297

Conclusions
As we enter the third decade of the 21st century, the story of PDAC is 1 of 2 competing narratives. On one hand, the progress in PDAC outcomes continues to lag far behind the survival gains made in other solid tumors. Despite being relatively uncommon, PDAC is expected to become the second leading cause of cancer death by the end of the decade.298 The vast majority of patients diagnosed with PDAC in 2020 will die of the disease. On the other hand, 5-year survival among all patients has eclipsed double digits for the first time. Led by improvements in the effectiveness of systemic therapy, an increase in the proportion of patients with early-stage disease, and stage-specific treatment paradigms, a true separation in expected survival is widening between patients with resectable cancer and those with locally advanced or metastatic disease. Moving forward, efforts are focusing on surveillance approaches and imaging innovations to improve the early detection of PDAC, thereby increasing the proportion of patients...
diagnosed with curable, localized disease. Simultaneously, advances in systemic therapy led by the implementation of precision oncology and an increasing focus on QOL outcomes promise to improve both lifespan and health span in patients with both localized and metastatic disease. Together, fueled by these innovations, we may be on the cusp on meaningfully changing outcomes in PDAC.

Acknowledgments: We thank Dr. Theodore Braun for his assistance with proofreading and editing the final article.

References

1. Howlader N, Noone A, Kroshko M, et al. SEER Cancer Statistics Review (CSR) 1975-2017. National Cancer Institute; based on November 2019 SEER data submission, posted to the SEER website, April, 2020. Accessed May 4, 2020. seer.cancer.gov/csr/1975_2017/

2. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7-30.

3. National Cancer Institute; Surveillance, Epidemiology, and End Results (SEER) Program. Cancer Stat Facts: pancreatic cancer. Accessed May 4, 2020. seer.cancer.gov/statfacts/html/pancreas.html

4. Islami F, Miller KD, Siegel RL, et al. Influence of body mass index and albumin on perioperative morbidity and clinical outcomes in resected pancreatic adenocarcinoma. PLoS One. 2016;11:e0152172.

5. Raptis DA, Fessas C, Belassey-Smith P, Kurzawinski TR. Clinical presentation and waiting time targets do not affect prognosis in patients with pancreatic cancer. Surgeon. 2010;8:239-246.

6. Pata M, Fabregat X, Malats N, et al. Exocrine pancreatic cancer: symptoms at presentation and their relation to tumour site and stage. Clin Transl Oncol. 2005;7:189-197.

7. Chari ST, Leibson CL, Rabe KG, Ransom J, de Andrade M, Petersen GM. Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology. 2005;129:504-511.

8. Whitcomb DC, Pogue-Geile K. Pancreatitis as a risk for pancreatic cancer. Gastroenterol Clin North Am. 2002;31:663-678.

9. Sah RP, Sharma A, Nagpal S, et al. Phases of metabolic and soft tissue changes in months preceding a diagnosis of pancreatic ductal adenocarcinoma. Gastroenterology. 2019;156:1742-1752.

10. Meyers JR, Wu C, Clish CB, et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat Med. 2014;20:1193-1198.

11. Canto MI, Almario JA, Schulick RD, et al. Risk of neoplastic progression in individuals at high risk for pancreatic cancer undergoing long-term surveillance. Gastroenterology. 2018;155:740-751.e42.

12. US Preventive Services Task Force; Owens DK, Davidson KW, et al. Screening for colorectal cancer: updated recommendation statement. CA Cancer J Clin. 2018;68:7-17.

13. Ishikawa O, Ohigashi H, Imaoka S, et al. Minute carcinoma of the pancreas measuring 1 cm or less in diameter—collective review of Japanese case reports. Hepatogastroenterology. 1999;46:8-15.

14. Tummers WS, Groen JV, Sibinga Mulder GA, et al. Pancreaticoduodenectomy for pancreatic cancer: updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut. 2020;69:7-17.

15. Danai LV, Korc M, Petersen GM, et al. Diabetes, pancreaticogenic diabetes, and pancreatic cancer. Diabetes. 2017;66:1103-1110.

16. Hendi AR, Osirov A, Khanuja J, et al. Influence of body mass index and albumin on perioperative morbidity and clinical outcomes in resected pancreatic adenocarcinoma. PLoS One. 2016;11:e0152172.

17. Ballet A, Rosenthal MH, Bamlert WR, et al. Prognostic loss of skeletal muscle, but not adipose tissue, is associated with shorter survival of patients with advanced pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 2019;28:2062-2069.

18. He J, Blair AB, Groot VP, et al. Is a pathological complete response following neoadjuvant chemoradiation associated with prolonged survival in patients with pancreatic cancer? Ann Surg. 2018;268:1-8.

19. Canto MI, Almario JA, Schulick RD, et al. Risk of neoplastic progression in individuals at high risk for pancreatic cancer undergoing long-term surveillance. Gastroenterology. 2018;155:740-751.e42.

20. US Preventive Services Task Force; Owens DK, Davidson KW, et al. Screening for colorectal cancer: US Preventive Services Task Force reaffirmation recommendation statement. JAMA. 2019;322:438-444.

21. National Cancer Institute; Surveillance, Epidemiology, and End Results (SEER) Program. Cancer Stat Facts: colorectal cancer. Accessed May 4, 2020. seer.cancer.gov/statfacts/html/colorect.html

22. National Cancer Institute; Surveillance, Epidemiology, and End Results (SEER) Program. Cancer Stat Facts: female breast cancer. Accessed May 4, 2020. seer.cancer.gov/statfacts/html/breast.html

23. US Preventive Services Task Force; Bibbins-Domingo K, Grossman DC, et al. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. JAMA. 2016;315:2564-2575.
33. Siu AL. Screening for breast cancer: US Preventive Services Task Force recommendation statement. Ann Intern Med. 2016;164:279-296.

34. Chang CY, Huang SP, Chiu HM, Lee YC, Chen MF, Lin JT. Low efficacy of serum levels of CA 19-9 in prediction of malignant diseases in asymptomatic population in Taiwan. Hepatogastroenterology. 2006;53:1-4.

35. Kim JE, Lee KT, Lee JK, Paik SW, Rhee JC, Choi KW. Clinical usefulness of carbohydrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. J Gastroenterol Hepatol. 2004;19:182-186.

36. Yurgelun MB, Chittenden AB, Morales-Oyarvide V, et al. Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. Genet Med. 2019;21:213-222.

37. Hu C, Hart SN, Polley EC, et al. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA. 2018;319:2401-2409.

38. Potjer TP, Kranenburg HE, Bergman W, et al. Very high risk of cancer in families with Lynch syndrome. J Clin Oncol. 2016;34:2010-2019.

39. Chen JC, Beal EW, Pawlik TM, Cloyd JW, Dillhoff ME. Molecular diagnosis of cystic neoplasms of the pancreas: a review. J Gastrointest Surg. 2020;24:1201-1214.

40. Matthaei H, Schulick RD, Hruban RH, Maitra A. Cystic precursors to invasive pancreatic cancer. Nat Rev Gastroenterol Hepatol. 2011;8:141-150.

41. Basturk O, Hong SM, Wood LD, et al. A revised classification system and recommendations from the Baltimore Consensus Meeting for Neoplastic Precursor Lesions in the Pancreas. Am J Surg Pathol. 2015;39:1730-1741.

42. Singh HI, Koay EJ, Chari ST, Maitra A. Early detection of pancreatic cancer: opportunities and challenges. Gastroenterology. 2019;156:2024-2040.

43. Vege SS, Ziring B, Jain R, et al. American Gastroenterological Association Institute guideline on the diagnosis and management of asymptomatic neoplastic pancreatic cysts. Gastroenterology. 2015;148:819-822.

44. van Huijgevoort NCM, Del Chiaro M, Wolfgang CL, van Hooft JE, Besselink MG. Diagnosis and management of pancreatic cystic neoplasms: current evidence and guidelines. Nat Rev Gastroenterol Hepatol. 2019;16:676-689.

45. Singh HI, McGrath K, Brand RE, et al. Preoperative next-generation sequencing of pancreatic cyst fluid is highly accurate in cyst classification and detection of advanced neoplasia. Gut. 2018;67:2131-2141.

46. Springer S, Wang Y, Dal Molin M, et al. A combination of molecular markers and clinical features improve the classification of pancreatic cysts. Gastroenterology. 2015;149:1501-1510.

47. Stoffel EM, McKernin SE, Brand R, et al. Evaluating susceptibility to pancreatic cancer: ASCO provisional clinical opinion. J Clin Oncol. 2019;37:153-164.

48. Golan T, Hammel P, Reni M, et al. Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer. N Engl J Med. 2019;381:317-327.

49. Stoffel EM, McKernin SE, Brand R, et al. Evaluating susceptibility to pancreatic cancer: ASCO provisional clinical opinion. J Clin Oncol. 2019;37:153-164.
early detection. Best Pract Res Clin Gastroenterol. 2010;24:349-358.

73. Andersson G, Wennersten C, Borgenquist S, Jirstom K. Pancreatic cancer risk in relation to sex, lifestyle factors, and pre-diagnostic anthropometry in the Malmo Diet and Cancer Study. Biol Sex Differ. 2016;7:66.

74. Muscat JE, Stellman SD, Hoffmann D, Wynder EL. Smoking and pancreatic cancer in men and women. Cancer Epidemiol Biomarkers Prev. 1997;6:15-19.

75. Naudin S, Viallon V, Hashim D, et al. Healthy lifestyle and the risk of pancreatic cancer in the EPIC study. Eur J Epidemiol. Published online September 28, 2019. doi:10.1007/s10659-019-00559-6

76. Wolpin BM, Kraft P, Gross M, et al. Pancreatic cancer risk and ABO blood group alleles: results from the Pancreatic Cancer Cohort Consortium. Cancer Res. 2010;70:1015-1023.

77. Wolpin BM, Rizzato C, Kraft P, et al. Genome-wide association study identifies multiple susceptibility loci for pancreatic cancer. Nat Genet. 2014;46:994-1000.

78. Lambert SA, Abraham G, Inouye M. Towards clinical utility of polygenic risk scores. Hum Mol Genet. 2019;28(R2):R133-R142.

79. Sah RP, Nagpal SJ, Mukhopadhyay D, Chari ST. New insights into pancreatic cancer-induced paraneoplastic diabetes. Nat Rev Gastroenterol Hepatol. 2013;10:423-433.

80. Schultz NA, Dehlerodf C, Jensen BV, et al. MicroRNA biomarkers in whole blood for detection of pancreatic cancer. JAMA. 2014;311:392-404.

81. Li A, Yu J, Kim H, et al. MicroRNA array analysis finds elevated serum miR-1290 accurately distinguishes patients with low-stage pancreatic cancer from healthy and disease controls. Clin Cancer Res. 2013;19:3600-3610.

82. Kim J, Bamllet WR, Oberg AL, et al. Detection of early pancreatic ductal adenocarcinoma with thrombospondin-2 and CA19-9 blood markers. Sci Transl Med. 2017;9:eaah5583.

83. Mellby LD, Nyberg AP, Johansen JS, et al. Serum biomarker signature-based liquid biopsy for diagnosis of early-stage pancreatic cancer. J Clin Oncol. 2018;36:2887-2894.

84. Riquelme E, Zhang Y, Zhang L, et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell. 2019;178:795-806.e12.

85. Aykut B, Pushalkar S, Chen R, et al. The fungal mycobionte promotes pancreatic oncogenesis via activation of MBL. Nature. 2019;574:264-267.

86. Goonetilleke KS, Sirewardena AK. Systematic review of carbohydrate antigen (CA 19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur J Surg Oncol. 2007;33:266-270.

87. Steinberg W. The clinical utility of the CA 19-9 tumor-associated antigen. Am J Gastroenterol. 1990;85:350-355.

88. Kaur S, Smith LM, Patel A, et al. A combination of MUC5AC and CA19-9 improves the diagnosis of pancreatic cancer: a multicenter study. Am J Gastroenterol. 2017;112:172-183.

89. DiMaego EP, Reber HA, Tempero MA. AGA technical review on the epidemiology, diagnosis, and treatment of pancreatic ductal adenocarcinoma. American Gastroenterological Association. Gastroenterology. 1999;117:1464-1484.

90. Hartwig W, Strobel O, Hinz U, et al. CA19-9 in potentially resectable pancreatic cancer: perspective to adjust surgical and perioperative therapy. Ann Surg Oncol. 2013;20:2188-2196.

91. Maitahel SK, Maloney S, Winston C, et al. Preoperative CA 19-9 and the yield of staging laparoscopy in patients with radiographically resectable pancreatic adenocarcinoma. Ann Surg Oncol. 2008;15:3512-3520.

92. Khorana AA, Mangu PB, Berlin J, et al. Potentially curable pancreatic cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2016;34:2541-2556.

93. Marrelli D, Caruso S, Pedrazzani C, et al. CA19-9 serum levels in obstructive jaundice: clinical value in benign and malignant conditions. Am J Surg. 2009;198:333-339.

94. Berger AC, Garcia M Jr, Hoffman JP, et al. Postresection CA 19-9 predicts overall survival in patients with pancreatic cancer treated with adjuvant chemoradiation: a prospective validation by RTOG 9704. J Clin Oncol. 2008;26:5918-5922.

95. Abdel-Misih SR, Hatrzasas I, Schmidt C, et al. Failure of normalization of CA19-9 following resection for pancreatic cancer is tantamount to metastatic disease. Ann Surg Oncol. 2011;18:1116-1121.

96. Kondo N, Murakami Y, Uemura K, et al. Prognostic impact of perioperative serum CA 19-9 levels in patients with resectable pancreatic cancer. Ann Surg Oncol. 2010;17:2321-2329.

97. Ishii H, Okada S, Sato T, et al. CA 19-9 in evaluating the response to chemotherapy in advanced pancreatic cancer. Hepatogastroenterology. 1997;44:279-283.

98. Maisery NR, Norman AR, Hill A, Massey A, Oates J, Cunningham D. CA19-9 as a prognostic factor in inoperable pancreatic cancer: the implication for clinical trials. Br J Cancer. 2005;93:740-743.

99. Azizian A, Ruhlmann F, Krause T, et al. CA19-9 for detecting recurrence of pancreatic cancer. Sci Rep. 2010;10:1332.

100. Locker GY, Hamilton S, Harris J, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24:5313-5327.

101. Ruckert F, Pilarsky C, Gruitzmann R. Serum tumor markers in pancreatic cancer—recent discoveries. Cancers (Basel). 2010;2:1107-1124.

102. Temporo MA, Malapa MF, Al-Hawary M, et al. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines)—pancreatic adenocarcinoma. Accessed January 22, 2020. nccn.org/professionals/physician_gls/pdf/pancreatic.pdf

103. Chu LC, Goggins MG, Fishman EK. Diagnosis and detection of pancreatic cancer. Cancer J. 2017;23:333-342.

104. Gambhir SS, Czernin J, Schimmer J, Silverman DH, Coleman RE, Phelps ME. A tabulated summary of the FDG PET literature. J Nucl Med. 2001;42(5 suppl):1S-93S.

105. Krishna SG, Rao BB, Ugarugba E, et al. Diagnostic performance of endoscopic ultrasound for detection of pancreatic malignancy following an indeterminate multidetector CT scan: a systemic review and meta-analysis. Surg Endosc. 2017;31:4558-4567.

106. Harinck F, Konings IC, Kluijt I, et al. A multicentre comparative prospective blinded analysis of EUS and MRI for screening of pancreatic cancer in high-risk individuals. Gut. 2016;65:1505-1513.

107. Al-Hawary MM, Francis IR, Chari ST, et al. Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the Society of Abdominal Radiology and the American Pancreatic Association. Radiology. 2014;270:248-260.

108. Chu LC, Johnson PT, Fishman EK. Cinematic rendering of pancreatic neoplasms: preliminary observations and opportunities. Abdom Imaging. 2016;43:3009-3015.

109. Amin MB, Edge SB, eds. AJCC Cancer Staging Manual. Springer; 2017.

110. Varadachary GR, Tamm EP, Abbruzzese JL, et al. Borderline resectable pancreatic cancer: definitions, management, and
role of preoperative therapy. *Ann Surg Oncol.* 2006;13:1035-1046.

111. Katz MH, Marsh R, Herman JM, et al. Borderline resectable pancreatic cancer: need for standardization and methods for optimal clinical trial design. *Ann Surg Oncol.* 2013;20:2787-2795.

112. Callery MP, Chang KJ, Fishman EK, Talamonti MS, William Traverso L, Linehan DC. Pretreatment assessment of resectable and borderline resectable pancreatic cancer: expert consensus statement. *Ann Surg Oncol.* 2009;16:1727-1733.

113. Burris HA 3rd, Moore MJ, Andersen J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreatic cancer: a randomized trial. *J Clin Oncol.* 1997;15:2403-2413.

114. Cullinan SA, Moertel CG, Fleming TR, et al. A comparison of three chemotherapeutic regimens in the treatment of advanced pancreatic and gastric carcinoma. Fluorouracil vs fluorouracil and doxorubicin vs fluorouracil, doxorubicin, and mitomycin. *JAMA.* 1985;253:2061-2067.

115. Tempo M, Plunkett W, Ruiz Van Haperen V, et al. Randomized phase II comparison of dose-intense gemcitabine: thirty-minute infusion and fixed dose rate infusion in patients with pancreatic adenocarcinoma. *J Clin Oncol.* 2003;21:3402-3408.

116. Heinemann V, Quietzsch D, Gieseler F, et al. Randomized phase III trial of gemcitabine plus cisplatin compared with gemcitabine alone in advanced pancreatic cancer. *J Clin Oncol.* 2006;24:3946-3952.

117. Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. *J Clin Oncol.* 2007;25:1960-1966.

118. Cunningham D, Chau I, Stocken DD, et al. Phase III randomized comparison of gemcitabine versus gemcitabine plus capcitabine in patients with advanced pancreatic cancer. *J Clin Oncol.* 2009;27:5513-5518.

119. Kindler HL, Niedzwiecki D, Hollis D, et al. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). *J Clin Oncol.* 2010;28:3617-3622.

120. Philip PA, Benedetti J, Corless CL, et al. Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-Directed Intergroup Trial S0205. *J Clin Oncol.* 2010;28:3605-3610.

121. Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. *N Engl J Med.* 2011;364:1817-1825.

122. Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. *N Engl J Med.* 2013;369:1691-1703.

123. Portal A, Pernot S, Tougeron D, et al. Nab-paclitaxel plus gemcitabine for metastatic pancreatic adenocarcinoma after Folfirinox failure: an AGEO prospective multicentre cohort. *Br J Cancer.* 2015;113:989-995.

124. Zaanan A, Trouilloud I, Markoutsaki T, et al. FOLFOX as second-line chemotherapy in patients with pretreated metastatic pancreatic cancer from the FIRGEM study. *BMC Cancer.* 2014;14:441.

125. Gill S, Ko YJ, Cripps C, et al. PANCREOX: a randomized phase III trial of fluoruracil and leucovorin with or without oxaliplatin for second-line advanced pancreatic cancer in patients who have received gemcitabine-based chemotherapy. *J Clin Oncol.* 2016;34:3914-3920.

126. Wang-Gillam A, Malicot KL, Malicot KL, et al. Randomized phase II comparison of gemcitabine and FOLFIRI.2 for first-line treatment of metastatic pancreatic cancer: a global, randomised, open-label, phase 3 trial. *Lancet.* 2016;387:545-557.

127. Jameson GS, Borazanci E, Babiker HM, et al. Response rate following albumin-bound paclitaxel plus gemcitabine plus cisplatin treatment among patients with advanced pancreatic cancer: a phase 1b/2 pilot clinical trial. *JAMA Oncol.* 2019;6:125-132.

128. Dahan L, Phelip JM, Al-Awadi A, et al. FOLFIRINOX versus gemcitabine plus oxaliplatin for second-line advanced pancreatic cancer in the Sunset trial. *JAMA Oncol.* 2016;2:1196-1203.

129. Dahan L, Phelip JM, Al-Awadi A, et al. FOLFIRINOX versus gemcitabine plus oxaliplatin for second-line advanced pancreatic cancer in the Sunset trial. *JAMA Oncol.* 2016;2:1196-1203.

130. Bailey P, Chang DK, Nones K, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. *Nature.* 2016;531:47-52.

131. Collisson EA, Sadanandam A, Olson P, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. *Nat Med.* 2011;17:500-503.

132. Moffitt RA, Marayati R, Flate EL, et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. *Nat Genet.* 2015;47:1168-1178.

133. Aung KL, Fischer SE, Denroche RE, et al. Genomics-driven precision medicine for advanced pancreatic cancer: early results from the COMPASS trial. *Clin Cancer Res.* 2018;24:1344-1354.

134. Porter RL, Magnus NKC, Thapar V, et al. Epithelial to mesenchymal plasticity and differential response to therapies in pancreatic ductal adenocarcinoma. *Proc Natl Acad Sci U S A.* 2019;116:26835-26845.

135. Litjens M, Dietrich O, Malagon-Lopez J, et al. Stromal microenvironment shapes the intratumoral architecture of pancreatic cancer. *Cell.* 2019;178:160-175.e27.

136. Aung KL, Fischer SE, Denroche RE, et al. Real-time genomic characterization of advanced pancreatic cancer to enable precision medicine. *Cancer Discov.* 2018;8:1096-1111.

137. Shroff RT, Hendifar A, McWilliams RR, et al. Rucaparib monotherapy in patients with pancreatic cancer and a known deleterious BRCA mutation. *JCO Precis Oncol.* 2018;2018. doi:10.1200/PDC.18.00081.

138. Cao X, Xie J, Wang J, et al. Targeted therapy for advanced pancreatic cancer: a phase II trial of olaparib and gemcitabine. *Nat Commun.* 2018;9:9913.

139. Maffei M, Mitraglia F, Zecchin D, et al. Randomized, multicenter, phase III trial of gemcitabine plus nab-paclitaxel versus gemcitabine plus cisplatin among patients with advanced metastatic pancreatic cancer. *J Clin Oncol.* 2017;35:1751-1759.

140. O’Reilly EM, Lee JW, Zalupski M, et al. Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreatic adenocarcinoma and a known deleterious BRCA mutation. *JCO Precis Oncol.* 2018;2018. doi:10.1200/PDC.18.00081.

141. Shroff RT, Hendifar A, McWilliams RR, et al. Rucaparib monotherapy in patients with pancreatic cancer and a known deleterious BRCA mutation. *JCO Precis Oncol.* 2018;2018. doi:10.1200/PDC.18.00081.

142. Fok JHL, Ramos-Montoya A, Vazquez-Chantada M, et al. AZD7648 is a potent and selective DNA-PK inhibitor that enhances radiation, chemotherapy and olaparib activity. *Nat Commun.* 2019;10:5065.

143. Lohse I, Kumareswaran R, Cao P, et al. Effects of combined treatment with ionizing radiation and the PARP inhibitor olaparib in BRCA mutant and wild type patient-derived pancreatic cancer xenografts. *PloS One.* 2016;11:e0167272.

144. O’Reilly EM, Lee JW, Zalupski M, et al. Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreatic adenocarcinoma and a germline BRCA/PALB2 mutation. *J Clin Oncol.* 2020;38:1378-1388.

145. Hu ZL, Dhillon Y, Statler ZK, et al. Evaluating mismatch repair deficiency in pancreatic adenocarcinoma: challenges and recommendations. *Clin Cancer Res.* 2018;24:1326-1336.
142. Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. *Science*. 2017;357:409-413.

143. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. *N Engl J Med*. 2015;372:2509-2520.

144. Pishvaian MJ, Blais EM, Brody JR, et al. Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling: a retrospective analysis of the Know Your Tumor registry trial. *Lancet Oncol*. 2020;21:508-518.

145. Amedei A, Nicolai E, Prisco D. Pancreatic cancer: role of the immune system in cancer progression and vaccine-based immunotherapy. *Hum Vaccin Immunother*. 2014;10:3354-3368.

146. Apte MV, Wilson JS, Lugea A, Pandol SJ. A starring role for stellate cells in the pancreatic cancer microenvironment. *Gastroenterology*. 2013;144:1210-1219.

147. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH. Dynamics of the immune reaction to pancreatic cancer from inception to invasion. *Cancer Res*. 2007;67:9518-9527.

148. Erkan M, Hausmann S, Michalski CW, et al. The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. *Nat Rev Gastroenterol Hepatol*. 2012;9:454-467.

149. Yamaki S, Yanagimoto H, Tsuta K, Ryota H, Kon M. PD-L1 expression in pancreatic ductal adenocarcinoma is a poor prognostic factor in patients with high CD8(+)-tumor-infiltrating lymphocytes: highly sensitive detection using phosphor-integrated dot staining. *Int J Clin Oncol*. 2017;22:726-733.

150. Aglietta M, Barone C, Sawyer MB, et al. A phase I dose escalation trial of tremelimumab (CP-675,206) in combination with gemcitabine in chemotherapy-naive patients with metastatic pancreatic cancer. *Ann Oncol*. 2014;25:1750-1755.

151. Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. *N Engl J Med*. 2012;366:2455-2465.

152. Royal RE, Levy C, Turner K, et al. Phase 2 trial of single agent ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. *J Immunother*. 2010;33:828-833.

153. O’Reilly EM, Oh DY, Dhaní N, et al. Durvalumab with or without tremelimumab for patients with metastatic pancreatic ductal adenocarcinoma: a phase 2 randomized clinical trial. *JAMA Oncol*. 2019;5:1431-1438.

154. Feig C, Jones JO, Kraman M, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. *Proc Natl Acad Sci U S A*. 2013;110:20212-20217.

155. Seo YD, Jiang X, Sullivan KM, et al. Mobilization of CD8(+) T cells via CXCR4 blockade facilitates PD-1 checkpoint therapy in human pancreatic cancer. *Clin Cancer Res*. 2019;25:3934-3945.

156. Bennett SR, Carbone FR, Kramalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. *Nature*. 1998;393:478-480.

157. Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. *Nature*. 1998;393:474-478.

158. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. *Nature*. 1998;393:480-483.

159. Beatty GL, Chiorean EG, Fishman MP, et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. *Science*. 2011;331:1612-1616.

160. O’Hara MH, O’Reilly EM, Rosemarie M, et al. Abstract CT004: a phase Ib study of CD40 agonistic monoclonal antibody APX005M together with gemcitabine (Gem) and nab-paclitaxel (NP) with or without nivolumab (Nivo) in untreated metastatic ductal adenocarcinoma (PDAC) patients. *Cancer Res*. 2019;79(15 suppl):CT004.

161. Rodriguez-Ruiz ME, Vanpouille-Box C, Melero I, Formenti SC, Demaria S. Immunological mechanisms responsible for radiation-induced abscopal effect. *Trends Immunol*. 2018;39:644-655.

162. Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. *Nature*. 2015;520:373-377.

163. Parikh A, Wo JYL, Ryan DP, et al. A phase II study of ipilimumab and nivolumab with radiation in metastatic pancreatic adenocarcinoma [abstract]. *J Clin Oncol*. 2019;37(4 suppl):391.

164. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Hingorani SR. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. *Cancer Cell*. 2012;21:418-429.

165. Hingorani SR, Zheng L, Bullock AJ, et al. HALO 202: Randomized phase II study of PEGPH20 plus nab-paclitaxel/gemcitabine versus nab-paclitaxel/gemcitabine in patients with untreated, metastatic pancreatic ductal adenocarcinoma. *J Clin Oncol*. 2018;36:359-366.

166. Ramanathan RK, McDonough SL, Philip PA, et al. Phase Ib/II randomized study of FOLFIRINOX plus pegylated recombinant human hyaluronidase versus FOLFIRINOX alone in patients with metastatic pancreatic adenocarcinoma: SWOG S1313. *J Clin Oncol*. 2019;37:1062-1069.

167. Murphy JE, Wo JY, Ryan DP, et al. Total neoadjuvant therapy with FOLFIRINOX in combination with losartan followed by chemoradiotherapy for locally advanced pancreatic cancer: a phase 2 clinical trial. *JAMA Oncol*. 2019;5:1020-1027.

168. Liu H, Naxerova K, Pinter M, et al. Use of angiotensin system inhibitors is associated with immune activation and long survival in nonmetastatic pancreatic ductal adenocarcinoma. *Clin Cancer Res*. 2017;23:5959-5969.

169. Wilzent RE, Iacobuzio-Donahue CA, Argani P, et al. Loss of expression of DPC4 in pancreatic intraepithelial neoplasia: evidence that DPC4 inactivation occurs late in neoplastic progression. *Cancer Res*. 2000;60:2002-2006.

170. Santana-Codina N, Roeth AA, Zhang Y, et al. Oncogenic KRAS supports pancreatic cancer through regulation of nucleotide synthesis. *Nat Commun*. 2018;9:4945.

171. Ying H, Kimmelman AC, Lyssiotis CA, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. *Cell*. 2012;149:656-670.

172. Commissio C, Davidson SM, Soydaner-Azeloglu RG, et al. Macropinosysis of protein is an amino acid supply route in Ras-transformed cells. *Nature*. 2013;497:633-637.

173. Viale A, Pettazzoni P, Lyssiotis CA, et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. *Nature*. 2014;514:628-632.

174. Bryant KL, Mancias JD, Kimmelman AC, Der CJ. KRAS: feeding pancreatic cancer proliferation. *Trends Biochem Sci*. 2014;39:91-100.

175. Yang S, Wang X, Contino G, et al. Pancreatic cancers require autophagy for tumor growth. *Gines Dev*. 2011;25:717-729.

176. Yang A, Herter-Sprie G, Zhang H, et al. Autophagy sustains pancreatic cancer growth through both cell-autonomous
and nonautonomous mechanisms. *Cancer Discov*. 2018;8:276-287.

177. Bryant KL, Stalnecker CA, Zeitouni D, et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. *Nat Med*. 2019;25:628-640.

178. Lee CS, Lee LC, Yuan TL, et al. MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival. *Proc Natl Acad Sci U S A*. 2019;116:4508-4517.

179. Kagedan DJ, Goyert N, Li Q, et al. The impact of increasing hospital volume on 90-day postoperative outcomes following pancreaticoduodenectomy. *J Gastrointest Surg*. 2017;21:506-515.

180. Pugalenthi A, Protic M, Gonen M, et al. Postoperative complications and overall survival after pancreaticoduodenectomy for pancreatic ductal adenocarcinoma. *J Surg Oncol*. 2016;113:188-193.

181. de Rooij T, van Hilst J, de Rooij T, et al. Minimally invasive versus open distal pancreatectomy (LEOPARD): a multicenter patient-blinded randomized controlled trial. *Ann Surg*. 2019;269:2-9.

182. Kutlu OC, Lee JE, Katz MH, et al. Open pancreaticoduodenectomy case volume predicts outcome of laparoscopic approach: a population-based analysis. *Ann Surg*. 2018;267:552-560.

183. van Hilst J, de Rooij T, Bosscha K, et al. Laparoscopic versus open pancreaticoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): a multicentre, patient-blinded, randomised controlled phase 2/3 trial. *Lancet Gastroenterol Hepatol*. 2019;4:199-207.

184. Katz MHG, Merchant NB, Brower S, et al. Standardization of surgical and pathological variables is needed in multicenter trials of adjuvant therapy for pancreatic cancer: results from the ACOSOG Z5031 trial. *Ann Surg Oncol*. 2011;18:337-344.

185. College of American Pathologists. Protocol for the Examination of Specimens From Patients With Carcinoma of the Pancreas. Accessed May 21, 2020. documents.cap.org/protocols/cp-gihepatobiliary-pancreasexocrine-20-4100.pdf

186. Raut CP, Tseng JF, Sun CC, et al. Impact of resection status on pattern of failure and survival after pancreaticoduodenectomy for pancreatic adenocarcinoma. *Ann Surg*. 2007;246:52-60.

187. Verbeke CS. Resection margins and R1 rates in pancreatic cancer—are we there yet? *Histopathology*. 2008;52:787-796.

188. Osipov A, Nissen N, Rutgers J, et al. Redefining the positive margin in pancreatic cancer: impact on patterns of failure, long-term survival and adjuvant therapy. *Ann Surg Oncol*. 2017;24:3674-3682.

189. Kim KS, Kwon J, Kim K, Chie EK. Impact of resection margin distance on survival of pancreatic cancer: a systematic review and meta-analysis. *Cancer Res Treat*. 2017;49:824-833.

190. White RR, Xie HB, Gottfried MR, et al. Significance of histological approach to preoperative chemoradiotherapy for pancreatic cancer. *Ann Surg Oncol*. 2005;12:214-221.

191. Evans DB, Rich TA, Byrd DR, et al. Preoperative chemoradiation and pancreaticoduodenectomy for adenocarcinoma of the pancreas. *Arch Surg*. 1992;127:1335-1339.

192. Ishikawa O, Ohigashi H, Teshima T, et al. Clinical and histopathological appraisal of preoperative irradiation for adenocarcinoma of the pancreaticoduodenal region. *J Surg Oncol*. 1989;40:143-151.

193. Kang CM, Hwang HK, Choi SH, Lee WJ. Controversial issues of neoadjuvant treatment in borderline resectable pancreatic cancer. *Surg Oncol*. 2013;22:123-131.

194. Brennan MF, Kattan MW, Klimstra D, et al. Minimally invasive versus open distal pancreatectomy for pancreatic adenocarcinoma of the pancreas. *Ann Surg*. 2008;52:787-796.

195. Evans DB, Rich TA, Byrd DR, et al. Preoperative chemoradiation and pancreaticoduodenectomy for adenocarcinoma of the pancreas. *Ann Surg*. 1992;127:1335-1339.

196. Schwarz RE, Smith DD. Extent of lymph node metastases in pancreatic head adenocarcinoma. *Br J Surg*. 1967;54:751-754; discussion 753-754.

197. Scoggins C, McMasters KM, Martin RC. The role of hepatic artery lymph node metastases during pancreaticoduodenectomy for pancreatic head adenocarcinoma. *Ann Surg Oncol*. 2007;14:2330-2336.

198. Phillips P, Dunki-Jacobs E, Agle SC, Scoffins C, McMasters KM, Martin RC. The impact of adjuvant chemotherapy on survival after pancreaticoduodenectomy for pancreatic adenocarcinoma: prognostic factor or a selection criterion for surgery. *HPB (Oxford)*. 2014;16:1051-1055.

199. Cordera F, Arciero CA, Li T, Watson JC, Hoffman JP. Significance of common hepatic artery lymph node metastases during pancreaticoduodenectomy for pancreatic head adenocarcinoma. *Ann Surg Oncol*. 2007;14:2330-2336.

200. Connor S, Bosonnet L, Ghaneh P, et al. Survival of patients with periampullary carcinoma is predicted by lymph node 8a but not by lymph node 16b1 status. *Br J Surg*. 2004;91:1592-1599.

201. Oettle H, Neuhaus P, Hochhaus A, et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer: the CONKO-001 randomized trial. *JAMA*. 2013;310:1473-1481.

202. Neoptolemos JP, Moore MJ, Cox TF, et al. Effect of adjuvant chemotherapy with fluorouracil plus folinic acid or gemcitabine vs observation on survival in patients with resected periampullary adenocarcinoma: the ESPAC-3 periampullary cancer randomized trial. *JAMA*. 2012;308:147-156.

203. Neoptolemos JP, Palmer DH, Ghaneh P, et al. Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. *Lancet*. 2017;389:1011-1024.

204. Temmerr MA, Reni M, Riess H, et al. APACT: phase III, multicenter, international, open-label, randomized trial of adjuvant nab-paclitaxel plus gemcitabine (nab-P/G) vs gemcitabine (G) for surgically resected pancreatic adenocarcinoma [abstract]. *J Clin Oncol*. 2019;37(15 suppl):4000.

205. Kalzer MH, Ellenberger SS. Pancreatic cancer. Adjuvant combined radiation and chemotherapy following curative resection. *Arch Surg*. 1985;120:899-903.

206. Klinkenbijl JH, Jeekeel J, Sahmoud T, et al. Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and periampullary region: phase III trial of the EORTC Gastrointestinal Tract Cancer Cooperative Group. *Ann Surg*. 1999;230:776-782; discussion 772-784.

207. Abrams RA, Winter KA, Safran H, et al. Results of the NRG Oncology/ RTOG 0848 adjuvant chemotherapy question—erlotinib + gemcitabine for resected cancer of the pancreatic head: a phase II randomized clinical trial. *Am J Clin Oncol*. 2020;43:173-179.

208. Hazard L, Tward JD, Szabo A, Shrieve DC. Radiation therapy is associated with improved survival in patients with pancreatic adenocarcinoma: results of a study from the Surveillance, Epidemiology, and End Results (SEER) registry data. *Cancer*. 2007;110:2191-2201.

209. Kooby DA, Gillespie BW, Liu Y, et al. Impact of adjuvant radiotherapy on survival after pancreatic cancer resection: an appraisal of data from the national cancer data base. *Ann Surg Oncol*. 2013;20:3634-3642.
Addition of radiotherapy to adjuvant chemotherapy is associated with improved overall survival in resected pancreatic adenocarcinoma: a meta-analysis of the National Cancer Data Base. Cancer. 2015;121:4141-4149.

Torgeson A, Tao R, Garrido-Laguna I, Willen B, Dunsteler A, Lloyd S. Large database utilization in health outcomes research in pancreatic cancer: an update. J Gastrointest Oncol. 2018;9:996-1004.

Goodman KA, Regine WF, Dawson LA, et al. Radiation Therapy Oncology Group consensus panel guidelines for the delineation of the clinical target volume in the postoperative treatment of pancreatic head cancer. Int J Radiat Oncol Biol Phys. 2012;83:901-908.

Heestand GM, Murphy JD, Lowy AM. Approach to patients with pancreatic cancer without detectable metastases. J Clin Oncol. 2015;33:1770-1778.

Versteijne E, Suker M, Groothuis K, et al. Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer: results of the Dutch randomized phase III PREOPANC trial. J Clin Oncol. 2020;38:1763-1773.

Mokdad AA, Minter RM, Zhu H, et al. Neoadjuvant therapy followed by resection versus upfront resection for resectable pancreatic cancer: a propensity score matched analysis. J Clin Oncol. 2017;35:515-522.

Sohal D, McDonough S, Ahmad SA, et al. SWOG S1505: initial findings on eligibility and neoadjuvant chemoradiotherapy experience with mofitinib versus gemcitabine/nab-paclitaxel for resectable pancreatic adenocarcinoma. J Clin Oncol. 2019;37:414.

Katz MH, Shi Q, Ahmad SA, et al. Preoperative modified FOLFIRINOX treatment followed by capcitabine-based chemoradiation for borderline resectable pancreatic cancer: Alliance for Clinical Trials in Oncology Trial A021101. JAMA Surg. 2016;151:e16137.

Murphy JE, Wo JY, Ryan DP, et al. Total neoadjuvant therapy with FOLFIRINOX followed by individualized chemoradiotherapy for borderline resectable pancreatic adenocarcinoma: a phase 2 clinical trial. JAMA Oncol. 2018;4:963-969.

Cho IR, Chung MJ, Bang S, et al. Gemcitabine based neoadjuvant chemo-radiotherapy therapy in patients with borderline resectable pancreatic cancer. Pancreatology. 2013;13:539-543.

Stokes JB, Nolan NJ, Stelow EB, et al. Preoperative capcitabine and concurrent radiation for borderline resectable pancreatic cancer. Ann Surg Oncol. 2011;18:619-627.

Cloyd JM, Chen HC, Wang X, et al. Chemotherapy versus chemoradiation as preoperative therapy for resectable pancreatic ductal adenocarcinoma: a propensity score adjusted analysis. Pancreas. 2019;48:216-222.

Katz MHG, Ou FS, Herman JM, et al. Alliance for Clinical Trials in Oncology (ALLIANCE) trial A021501: preoperative extended chemotheraphy vs chemotherapy plus hypofractionated radiation therapy for borderline resectable adenocarcinoma of the head of the pancreas. BMC Cancer. 2017;17:505.

Wang LS, Shaikh T, Handorf EA, Hoffman JP, Cohen SJ, Meyer JE. Dose escalation with a vessel boost in pancreatic adenocarcinoma treated with neoadjuvant chemoradiation. Pract Radiat Oncol. 2015;5:e457-e463.

Krishnan S, Chadha AS, Suh Y, et al. Focal radiation therapy dose escalation improves overall survival in locally advanced pancreatic cancer patients receiving induction chemotherapy and consolidative chemoradiation. Int J Radiat Oncol Biol Phys. 2016;94:755-765.

Morganti AG, Cellini F, Buwenge M, et al. Adjuvant chemoradiation in pancreatic cancer: impact of radiotherapy dose on survival. BMC Cancer. 2019;19:569.

Bernard V, Herman JM. Pancreas SBRT: who, what, when, where, and how… Pract Radiat Oncol. 2010;10:183-185.

Herman JM, Chang DT, Goodman KA, et al. Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer. 2015;121:1128-1137.

Palta M, Godfrey D, Goodman KA, et al. Radiation therapy for pancreatic cancer: executive summary of an ASTRO clinical practice guideline. Pract Radiat Oncol. 2019;9:322-332.

Yu ZX, Li J, Fu DL, et al. Benefit from synchronous portal-superior mesenteric vein resection during pancreaticoduodenectomy for cancer: a meta-analysis. Eur J Surg Oncol. 2014;40:371-378.

Zhou Y, Zhang Z, Liu Y, Li B, Xu D. Pancreatectomy combined with superior mesenteric vein-portal vein resection for pancreatic cancer: a meta-analysis. World J Surg. 2012;36:884-891.

Ghanem P, Kleeff J, Halloran CM, et al. The impact of positive resection margins on survival and recurrence following resection and adjuvant chemotherapy for pancreatic ductal adenocarcinoma. Ann Surg. 2019;269:520-529.

Tucker ON, Rela M. Controversies in the management of borderline resectable proximal pancreatic adenocarcinoma with vascular involvement. HPB Surg. 2008;2008:839503.

Balahan EP, Mangu PB, Khorana AA, et al. Locally advanced, unresectable pancreatic cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2016;34:2654-2668.

Suker M, Beumer BR, Sadot E, et al. FOLFIRINOX for locally advanced pancreatic cancer: a systematic review and patient-level meta-analysis. Lancet Oncol. 2016;17:801-810.

Mukherjee S, Hurt CN, Bridgewater J, et al. Gemcitabine-based or capecitabine-based chemoradiotherapy for locally advanced pancreatic cancer (SCALOP): a multicentre, randomised, phase 2 trial. Lancet Oncol. 2013;14:317-326.

Hammel P, Huguet F, van Laethem JL, et al. Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib: The LAP07 randomized clinical trial. JAMA. 2016;315:1844-1853.

Hoyer M, Roed H, Sengelov L, et al. Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother Oncol. 2005;76:48-53.

Schellenberg D, Goodman KA, Lee F, et al. Gemcitabine chemotherapy and single-fraction stereotactic body radiotherapy for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2008;72:678-686.

Reynold M, O’Reilly E, Zinovov M, et al. Ablative RT results in excellent local control and survival in localized pancreatic cancer. Int J Radiat Oncol Biol Phys. 2019;105(suppl):S206.

Rudra S, Jiang N, Rosenberg SA, et al. High dose adaptive MRI guided radiation therapy improves overall survival of inoperable pancreatic cancer. Int J Radiat Oncol Biol Phys. 2017;99(suppl):E184.

Koay EJ, Hanania AN, Hall WA, et al. Dose-escalated radiation therapy for pancreatic cancer: a simultaneous integrated boost approach. Pract Radiat Oncol. Published online February 13, 2020. doi:10.1016/j.prro.2020.01.012

Ferrone CR, Marchegiani G, Hong TS, et al. Radiological and surgical implications of neoadjuvant treatment with FOLFIRINOX for locally advanced and
borderline resectable pancreatic cancer. Ann Surg. 2015;261:12-17.

Gemenetzi G, Groot VP, Blair AB, et al. Survival in locally advanced pancreatic cancer after neoadjuvant therapy and surgical resection. Ann Surg. 2019;270:340-347.

Truty MJ, Kendrick ML, Nagorney DM, et al. Factors predicting response, perioperative outcomes, and survival following total neoadjuvant therapy for borderline/locally advanced pancreatic cancer. Ann Surg. Published online April 5, 2019. doi:10.1097/SLA.0000000000003284

Gong H, Ma R, Gong J, Cai C, Song Z, Xu B. Distal pancreatectomy with en bloc celiac axis resection for locally advanced pancreatic cancer: a systematic review and meta-analysis. Medicine (Baltimore). 2016;95:e3061.

Mollberg N, Rahbari NN, Koch M, et al. Arterial resection during pancreatectomy for pancreatic cancer: a systematic review and meta-analysis. Ann Surg. 2011;254:882-893.

Khorana AA, Francis CW, Culakova E, Lyman GH. Risk factors for chemotherapy-associated venous thromboembolism in a prospective observational study. Cancer. 2005;104:2822-2829.

Chew HK, Wun T, Harvey D, Zhou H, White RH. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med. 2006;166:458-464.

Maravayas A, Waters J, Roy R, et al. Gemcitabine versus gemcitabine plus dalfopristin thrombophrophylaxis in pancreatic cancer. Eur J Cancer. 2012;48:1283-1292.

Pelzer U, Opitz B, Deutschinoff G, et al. Efficacy of prophylactic low-molecular weight heparin for ambulatory patients with advanced pancreatic cancer: outcomes from the CONKO-004 trial. J Clin Oncol. 2015;33:2028-2034.

Khorana AA, Sofi GA, Kakkar AK, et al. Rivaroxaban for thromboprophylaxis in high-risk ambulatory patients with cancer. N Engl J Med. 2019;380:720-728.

Carrier M, Abou-Nassar K, Mallick R, et al. Apixaban to prevent venous thromboembolism in patients with cancer. N Engl J Med. 2019;380:711-719.

Key NS, Khorana AA, Kuderer NM, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol. 2020;38:496-520.

Laitinen I, Sand J, Peromaa P, Nordback I, Laukkarinen J. Quality of life in patients with pancreatic ductal adenocarcinoma undergoing pancreaticoduodenectomy. J Clin Oncol. 2017;35:445-450.

Lapacketheide G, Calsina-Berna A, Carmona-Bayonas A, Jimenez-Fonseca P, Peiro I, Carrato A. Supportive care in pancreatic ductal adenocarcinoma. Clin Transl Oncol. 2017;19:1293-1302.

Moffat GT, Epstein AS, O’Reilly EM. Pancreatic cancer—a disease in need: optimizing and integrating supportive care. Cancer. 2019;125:3927-3935.

Gourgou-Bourgade S, Bascoul-Mollevi C, Desseigne F, et al. Impact of FOLFIRINOX compared with gemcitabine on quality of life in patients with metastatic pancreatic cancer: results from the PRODIGE 4/ACCORD 11 randomized trial. J Clin Oncol. 2013;31:23-29.

Fitzsimmons D, Johnson CD, George S, et al. Development of a disease specific quality of life (QoL) questionnaire module to supplement the EORTC core cancer Qol questionnaire, the QLQ-C30 in patients with pancreatic cancer. EORTC Study Group on Quality of Life. Eur J Cancer. 1999;35:939-941.

Karimi M, Brazier J. Health, health-related quality of life, and quality of life: what is the difference? Pharmacoeconomics. 2016;34:645-649.

Macarulla T, Hendifar AE, Li CP, et al. Landscape of health-related quality of life in patients with early-stage pancreatic cancer receiving adjuvant or neoadjuvant chemotherapy: a systematic literature review. Pancreas. 2020;49:393-407.

Walter FM, Mills K, Mendonca SC, et al. Symptoms and patient factors associated with diagnostic intervals for pancreatic cancer (SYMPTOM pancreatic study): a prospective cohort study. Lancet Gastroenterol Hepatol. 2016;1:298-306.

Dantzer R, O’Connor JC, Freund GG, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46-56.

Mcclusker RH, Kelley KW. Immune-neural connections: how the immune system’s response to infectious agents influences behavior. J Exp Biol. 2013;216:84-98.

Argiles JM, Busquets S, Stemmler B, Lopez-Soriano FJ. Cancer cachexia: understanding the molecular basis. Nat Rev Cancer. 2014;14:754-762.

von Haehling S, Anker SD. Cachexia as a major underestimated and unmet medical need: facts and numbers. J Cachexia Sarcopenia Muscle. 2010;1:1-5.

Baracos VE, Martin L, Korc M, Guttridge DC, Fearon KCH. Cancer-associated cachexia. Nat Rev Dis Primers. 2018;4:1705.

Takayama K, Katakami N, Yokoyama T, et al. Anamorelin (ONO-7643) in Japanese patients with non-small cell lung cancer and cachexia: results of a randomized phase 2 trial. Support Care Cancer. 2016;24:3495-3505.

Temel JS, Abernethy AP, Currow DC, et al. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 2016;17:519-531.

Ruiz Garcia V, Lopez-Briz E, Carbonell Sanchis R, Gonzalez Perales JL, Bort-Marti S. Megestrol acetate for treatment of anorexia-cachexia syndrome. Cochrane Database Syst Rev. 2013;3:CD004310.

Christensen JF, Simonsen C, Hojman P. Exercise training in cancer control and treatment. Compr Physiol. 2018;9:165-205.

Kamarajah SK, Bundred J, Weblin J, Tan BHL. Critical appraisal on the impact of preoperative rehabilitation and outcomes after major abdominal and cardiothoracic surgery: a systematic review and meta-analysis. Surgery. 2020;167:540-549.

Cangemi DJ, Kuo B. Practical perspectives in the treatment of nausea and vomiting. J Clin Gastroenterol. 2015;53:170-178.

Mortimer TL, Mabin T, Engelbrecht AM. Cannabinoids: the lows and the highs of chemotherapy-induced nausea and vomiting. Future Oncol. 2019;15:1035-1049.

Mak RH, Cheung W, Cone RD, Marks DL. Mechanisms of disease: cytokine and adipokine signalling in uremic cachexia. Nat Clin Pract Nephrol. 2006;2:527-534.

Marks DL, Cone RD. Central melanocortins and the regulation of weight during acute and chronic disease. Recent Prog Horm Res. 2001;56:359-375.

Brennan GT, Saif MW. Pancreatic enzyme replacement therapy: a concise review. JOP. 2019;20:121-125.

Davidson W, Ash S, Capra S, Bauer J, P. Exercise training in cancer control and treatment. Compr Physiol. 2014;4:239-247.

Gooden HM, White KJ. Pancreatic cancer and supportive care—pancreatic exocrine insufficiency negatively impacts on quality of life. Support Care Cancer. 2013;21:1835-1841.
279. Aadam AA, Liu K. Endoscopic palliation of biliary obstruction. J Surg Oncol. 2019;120:57-64.

280. van den Bosch RP, van der Schelling GP, Klinkenbijl JH, Mulder PG, van Blankensteijn M, Jeekel J. Guidelines for the application of surgery and endoprostheses in the palliation of obstructive jaundice in advanced cancer of the pancreas. Ann Surg. 1994;219:18-24.

281. Barkay O, Mosler P, Schmitt CM, et al. Effect of endoscopic stenting of malignant bile duct obstruction on quality of life. J Clin Gastroenterol. 2013;47:526-531.

282. Salgado SM, Gaidhane M, Kahaleh M. Endoscopic palliation of malignant biliary strictures. World J Gastrointest Oncol. 2016;8:240-247.

283. Mitchell T, Clarke L, Goldberg A, Bishop KS. Pancreatic cancer cachexia: the role of nutritional interventions. Healthcare (Basel). 2019;7:89.

284. Thong MSY, van Noorden CJF, Steindorf K, Arndt V. Cancer-related fatigue: causes and current treatment options. Curr Treat Options Oncol. 2020;21:17.

285. Diouf M, Filleron T, Pointet AL, et al. Prognostic value of health-related quality of life in patients with metastatic pancreatic adenocarcinoma: a random forest methodology. Qual Life Res. 2016;25:1713-1723.

286. Campbell KL, Zadra vec K, Bland KA, Chesley E, Wolf F, Janel ins MC. The effect of exercise on cancer-related cognitive impairment and applications for physical therapy: systematic review of randomized controlled trials. Phys Ther. 2020;100:523-542.

287. Fras I, Litin EM. Comparison of psychiatric manifestations in carcinoma of the pancreas, retroperitoneal malignant lymphoma, and lymphoma in other locations. Psychosomatics. 1967;8:275-277.

288. Olson B, Marks DL. Pretreatment cancer-related cognitive impairment—mechanisms and outlook. Cancers (Basel). 2019;11:687.

289. Tang CC, Von Ah D, Fulton JS. The symptom experience of patients with advanced pancreatic cancer: an integrative review. Cancer Nurs. 2018;41:33-44.

290. Lewis AR, Pihlak R, McNamara MG. The importance of quality-of-life management in patients with advanced pancreatic ductal adenocarcinoma. Curr Probl Cancer. 2018;42:26-39.

291. Robinson DW Jr, Eisenberg DF, Cella D, Zhao N, de Boer C, DeWitte M. The prognostic significance of patient-reported outcomes in pancreatic cancer cachexia. J Support Oncol. 2008;6:283-290.

292. Massie MJ. Prevalence of depression in patients with cancer. J Natl Cancer Inst Monogr. 2004;32:57-71.

293. Parker G, Brotchie H. Pancreatic cancer and depression: a narrative review. J Nerv Ment Dis. 2017;205:487-490.

294. Mayr M, Schmid RM. Pancreatic cancer and depression: myth and truth. BMC Cancer. 2010;10:569.

295. Basch E, Deal AM, Dueck AC, et al. Overall survival results of a trial assessing patient-reported outcomes for symptom monitoring during routine cancer treatment. JAMA. 2017;318:197-198.

296. Basch E, Deal AM, Kris MG, et al. Symptom monitoring with patient-reported outcomes during routine cancer treatment: a randomized controlled trial. J Clin Oncol. 2016;34:557-565.

297. Currow DC, Allingham S, Yates P, Johnson C, Clark K, Eagar K. Improving national hospice/palliative care service symptom outcomes systematically through point-of-care data collection, structured feedback and benchmarking. Support Care Cancer. 2015;23:307-315.

298. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913-2921.