ON THE VOLUME BOUND IN THE DVORETZKY–ROGERS LEMMA

FERENC FODOR, MÁRTON NASZÓDI, AND TAMÁS ZARNÓCZ

Abstract. The classical Dvoretzky–Rogers lemma provides a deterministic algorithm by which, from any set of isotropic vectors in Euclidean d-space, one can select a subset of d vectors whose determinant is not too small. Pivovarov (2010), on the other hand, determined the expectation of the square of the volume of parallelotopes spanned by d independent random vectors in \mathbb{R}^d, each one chosen according to an isotropic measure.

We improve the lower bound on the maximal volume of such parallelotopes, with the help of an extension of Pivovarov’s result to a class of more general probability measures. Our improvement is significant in the case when the support of the isotropic measure is small. By John’s theorem, this case is relevant in the study of polytopes with few facets.

1. Introduction

Given a set of isotropic vectors in Euclidean d-space \mathbb{R}^d (see definition below), the Dvoretzky–Rogers lemma states that one may select a subset of d “well spread out” vectors. As a consequence, the determinant of these d vectors is at least $\sqrt{d!/d^d}$. This selection is deterministic: we start with an arbitrary element of the set, and then select more vectors one-by-one in a certain greedy manner.

Pivovarov [7, Lemma 3, p. 49], on the other hand, chooses d vectors randomly and then computes the expectation of the square of the resulting determinant. In this note, we extend Pivovarov’s result to a wider class of measures, and apply this extension to obtain an improved lower bound on the maximum of the volume of parallelotopes spanned by d vectors from the support of the measure; thus, we improve the volume bound in the Dvoretzky–Rogers lemma.

We denote the Euclidean scalar product by $\langle \cdot, \cdot \rangle$, the induced norm by $|\cdot|$. We use the usual notation B^d for the unit ball of \mathbb{R}^d centered at the origin o, and S^{d-1} for its boundary ∂B^d. We call a compact convex set $K \subset \mathbb{R}^d$ with non-empty interior a convex body. For detailed information on the properties of convex bodies, we refer to the books by Gruber [4] and Schneider [8].

Let Id_d be the identity map on \mathbb{R}^d. For $u, v \in \mathbb{R}^d$, let $u \otimes v : \mathbb{R}^d \to \mathbb{R}^d$ denote the tensor product of u and v, that is, $(u \otimes v)(x) = \langle v, x \rangle u$ for any $x \in \mathbb{R}^d$. Note that when $u \in S^{d-1}$ is a unit vector, $u \otimes u$ is the orthogonal projection onto the linear subspace spanned by u.

For two functions $f(n), g(n)$, we use the notation $f(n) \sim g(n)$ (as $n \to \infty$) if $\lim_{n \to \infty} f(n)/g(n) = 1$.

An isotropic measure is a probability measure μ on \mathbb{R}^d with the following two properties.

\begin{equation}
\int_{\mathbb{R}^d} x \otimes x \, d\mu(x) = \text{Id}_d,
\end{equation}

and the center of mass of μ is at the origin, that is,

\begin{equation}
\int_{\mathbb{R}^d} x \, d\mu(x) = 0.
\end{equation}

Pivovarov [7] proved the following statement about the expectation of the volume of random parallelotopes spanned by d independent vectors selected according to isotropic measures.

Lemma 1 (Pivovarov [7, Lemma 3]). Let x_1, \ldots, x_d be independent random vectors distributed according to the isotropic measures μ_1, \ldots, μ_d in \mathbb{R}^d. Assume that x_1, \ldots, x_d are linearly independent with probability 1. Then

\begin{equation}
\mathbb{E}([\det(x_1, \ldots, x_d)]^2) = d!.
\end{equation}
We extend Lemma 1 in the following way, which allows us to apply it in the context of discrete isotropic measures.

Lemma 2. Let x_1, \ldots, x_d be independent random vectors distributed according to the measures μ_1, \ldots, μ_d in \mathbb{R}^d satisfying [1]. Assume that $\mu_i(\{0\}) = 0$ for $i = 1, \ldots, d$. Then [3] holds.

Our primary, geometric motivation in studying isotropic measures is the following celebrated theorem of John [6], which we state in the refined form obtained by Ball [1] (see also [2]).

Theorem 1. Let K be a convex body in \mathbb{R}^d. Then there exists a unique ellipsoid of maximal volume contained in K. Moreover, this maximal volume ellipsoid is the d-dimensional unit ball B^d if and only if there exist vectors $u_1, \ldots, u_m \in \partial K \cap S^{d-1}$ and (positive) real numbers $c_1, \ldots, c_m > 0$ such that

$$
\sum_{i=1}^m c_i u_i \otimes u_i = \text{Id}_d,
$$

and

$$
\sum_{i=1}^m c_i u_i = 0.
$$

Note that taking the trace in [4] yields $\sum_{i=1}^m c_i = d$. Thus, the Borel measure μ_K on $\sqrt{d}S^{d-1}$ with support $K = \{\sqrt{d}u_1, \ldots, \sqrt{d}u_k\}$ and $\mu_K(\{\sqrt{d}u_i\}) = c_i/d$ $(i = 1, \ldots, m)$ is a discrete isotropic measure.

If a finite system of unit vectors u_1, \ldots, u_m in \mathbb{R}^d, together with a set of positive weights c_1, \ldots, c_m satisfies [4] and [5], then we say that it forms a John decomposition of the identity. For each convex body K, there exists an affine image K' of K for which the maximal volume ellipsoid contained in K' is B^d, and K' is unique up to orthogonal transformations of \mathbb{R}^d.

The classical lemma of Dvoretzky and Rogers [3] states that in a John decomposition of the identity, one can always find d vectors such that the selected vectors are not too far from an orthonormal system.

Lemma 3 (Dvoretzky–Rogers lemma [3]). Let $u_1, \ldots, u_m \in S^{d-1}$ and $c_1, \ldots, c_m > 0$ such that [4] holds. Then there exists an orthonormal basis b_1, \ldots, b_d of \mathbb{R}^d and a subset $\{x_1, \ldots, x_d\} \subset \{u_1, \ldots, u_m\}$ with $x_j \in \text{lin}\{b_1, \ldots, b_j\}$ and

$$
\sqrt{\frac{d-j-1}{d}} \leq \langle x_j, b_j \rangle \leq 1
$$

for $j = 1, \ldots, d$.

Consider the parallelootope P spanned by the selected d vectors x_1, \ldots, x_d. The volume of P is bounded from below by

$$
(\text{Vol}(P))^2 = [\det(x_1, \ldots, x_d)]^2 \geq \frac{d!}{d^d}.
$$

Our study of (7) is motivated in part by the recent proof [9] of a conjecture of Bárány, Katchalski and Pach, where this bound is heavily relied on.

The main result of this paper is the following theorem in which we improve (7) with the help of Lemma 2 [7] in the following way.

Theorem 2. Let $u_1, \ldots, u_m \in S^{d-1}$ be unit vectors satisfying (4) with some $c_1, \ldots, c_m > 0$. Then there is a subset $\{x_1, \ldots, x_d\} \subset \{u_1, \ldots, u_m\}$ with

$$
[\det(x_1, \ldots, x_d)]^2 \geq \gamma(d, m) \cdot \frac{d!}{d^d},
$$

where $\gamma(d, m) = \frac{m^d}{d^d} \left(\frac{m}{d}\right)^{-1}$, and $m = \min\{m, d(d+1)/2\}$.

Moreover, for $\gamma(d, m)$, we have

(i) $\gamma(d, m) \geq \gamma(d, d(d+1)/2) \geq 3/2$ for any $d \geq 2$ and $m \geq d$. And $\gamma(d, d(d+1)/2)$ is monotonically increasing, and $\lim_{d \to \infty} \gamma(d, d(d+1)/2) = e$.

(ii) Fix a $c > 1$, and consider the case when $m \leq cd$ with $c \geq 1 + 1/d$. Then
\[
\gamma(d, m) \geq \gamma(d, \lfloor cd \rfloor) \sim \sqrt{\frac{c - 1}{c}} \left(\frac{c - 1}{c}\right)^{(c - 1)d} e^d, \quad \text{as } d \to \infty.
\]

(iii) Fix an integer $k \geq 1$, and consider the case when $m \leq d + k$. Then
\[
\gamma(d, m) \geq \gamma(d, d + k) \sim \frac{k!e^k}{\sqrt{2\pi}} (d + k)^{k + 1/2}, \quad \text{as } d \to \infty.
\]

We note that in (ii) and (iii), the improvements are exponentially large in d as d tends to infinity.

The geometric interpretation of Theorem 2 is the following. If K is a convex polytope with n facets, and B^d is the maximal volume ellipsoid in K, then the number of contact points u_1, \ldots, u_m in John’s theorem is at most $m \leq n$. Thus, Theorem 2 yields a simplex in K of not too small volume, with one vertex at the origin.

In particular, consider $k = 1$ in Theorem 2 (iii), that is, when K is the regular simplex whose inscribed ball is B^d. Then the John decomposition of the identity determined by K consists of $d + 1$ unit vectors that determine the vertices of a regular d-simplex inscribed in B^d, which we denote by Δ_d, and note that $\text{Vol}(\Delta_d) = (d + 1)\frac{\pi^d}{d^d!}/(d^d/2d!)$. Clearly, in this John decomposition of the identity, the volume of the simplex determined by any d of the vectors $u_1, \ldots, u_{d + 1}$ is
\[
\text{Vol}(\Delta_d)/(d + 1) = \frac{(d + 1)^{d - 1}}{d^{d/2}d!}.
\]

By Theorem 2, we obtain that
\[
\max\{\det(u_1, \ldots, u_d)\}^2 \geq \frac{(d + 1)^{d - 1}}{d!} \cdot \frac{d!}{d^d} = \frac{(d + 1)^{d - 1}}{d^d},
\]
which yields the same bound for the largest volume simplex as the right-hand-side of (8). Thus, Theorem 2 is sharp in this case.

We will use the following result of Gruber and Schuster [5].

Theorem 3 (Gruber, Schuster [5]). If a set of unit vectors satisfies (4) (resp., (4) and (5)) with some positive scalars c_i, then a subset of m elements also satisfies (4) (resp., (4) and (5)) with some positive scalars c_i, where
\[
d + 1 \leq m \leq d(d + 1)/2
\]
(resp., $d + 1 \leq m \leq d(d + 3)/2$).

In Section 4, we outline a proof of Theorem 3 for two reasons. First, we will use the part when only (4) is assumed, which is only implicitly present in [5]. Second, in [5], the result is described in terms of the contact points of a convex body with its maximal volume ellipsoid, that is, in the context of John’s theorem. We, on the other hand, would like to give a presentation where the linear algebraic fact and its use in convex geometry are separated. Nevertheless, our proof is very close to the one given in [5].

2. Proof of Lemma 2

The idea of the proof is to slightly rotate each distribution so that the probability that the d vectors are linearly independent is 1. Then we may apply Pivovarov’s lemma, and use a limit argument as the d rotations each tend to the identity.

Let A_1, \ldots, A_d be matrices in $SO(d)$ chosen independently of each other and of the x_is according to the unique Haar probability measure on $SO(d)$. Fix an arbitrary non-zero unit vector e in \mathbb{R}^d. Note that $A_1x_1/|x_1|$ and A_1e have the same distribution: both are uniformly chosen points of the unit sphere according to the uniform probability distribution on $S^{d - 1}$. A bit more is true: the joint distribution of $A_1x_1/|x_1|, \ldots, A_dx_d/|x_d|$ and the joint distribution of A_1e, \ldots, A_de are the same: they are independently chosen, uniformly distributed points on the unit sphere. It follows that
\[
P(A_1x_1, \ldots, A_dx_d \text{ are lin. indep.}) = P(A_1e, \ldots, A_de \text{ are lin. indep.}) = 1.
\]
Denote the Haar measure on \(Z := SO(d)^d \) by \(\nu \). Thus, we have

\[
1 = \mathbb{P}(A_1 x_1, \ldots, A_d x_d \text{ are lin. indep.}) = \\
\int_Z \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \cdots \int_{\mathbb{R}^d} \mathbb{1}_{(A_1 x_1, \ldots, A_d x_d \text{ are lin. indep.})}(x_1, \ldots, x_d, A_1, \ldots, A_d) \\
d\mu_1(x_1) \cdots d\mu_d(x_d) d\nu(A_1, \ldots, A_d)
\]

\[
= \int_Z \mathbb{P}(A_1 x_1, \ldots, A_d x_d \text{ are lin. indep.} | A_1, \ldots, A_d) d\nu(A_1, \ldots, A_d),
\]

where \(\mathbb{1} \) denotes the indicator function.

Thus,

\[
\tag{10} 1 = \mathbb{P}\left[\mathbb{P}(A_1 x_1, \ldots, A_d x_d \text{ are lin. indep.} | A_1, \ldots, A_d) = 1 \right].
\]

We call a \(d \)-tuple \((A_1, \ldots, A_d) \in Z \) ‘good’ if \(A_1 x_1, \ldots, A_d x_d \) are linearly independent with probability 1. In \(\tag{10} \), we obtained that the set of not good elements of \(Z \) is of measure zero.

Thus, we may choose a sequence \((A_1^{(j)}, A_2^{(j)}, \ldots, A_d^{(j)})_j \), \(j = 1, 2, \ldots \) in \(Z \), such that \(\|A_i^{(j)} - \operatorname{Id}_d\| < 1/j \) for all \(i \) and \(j \), and \((A_1^{(j)}, \ldots, A_d^{(j)}) \) is good for each \(j \).

Note that for any \(j \),

\[
\left[\det \left(A_1^{(j)} x_1, \ldots, A_d^{(j)} x_d \right) \right]^2 \leq |A_1^{(j)} x_1|^2 |A_2^{(j)} x_2|^2 \cdots |A_d^{(j)} x_d|^2,
\]

and

\[
\tag{11} \mathbb{E} \left[|A_1^{(j)} x_1|^2 |A_2^{(j)} x_2|^2 \cdots |A_d^{(j)} x_d|^2 \right] = d^d.
\]

We conclude that

\[
\mathbb{E} \left([\det (x_1, \ldots, x_d)]^2 \right) = \\
\mathbb{E} \left(\left[\det \lim_{j \to \infty} \left(A_1^{(j)} x_1, \ldots, A_d^{(j)} x_d \right) \right]^2 \right) \xrightarrow{(a)} \\
\mathbb{E} \left(\left[\lim_{j \to \infty} \det \left(A_1^{(j)} x_1, \ldots, A_d^{(j)} x_d \right) \right]^2 \right) \xrightarrow{(b)} \\
\lim_{j \to \infty} \mathbb{E} \left([\det \left(A_1^{(j)} x_1, \ldots, A_d^{(j)} x_d \right)]^2 \right),
\]

where, in (a), we use that the determinant is continuous. In (b), Lebesgue’s Dominated Convergence Theorem may be applied by \(\tag{11} \) and \(\tag{12} \).

Fix \(j \) and let \(y_1 = A_1^{(j)} x_1, \ldots, y_d = A_d^{(j)} x_d \). In order to emphasize that the assumption \(\tag{2} \) is not needed, and also for completeness, we repeat Pivovarov’s argument. For \(k = 1, \ldots, d-1 \), let \(P_k \) denote the orthogonal projection of \(\mathbb{R}^d \) onto the linear subspace \(\operatorname{span}\{y_1, \ldots, y_k\} ^\perp \). Thus,

\[
\tag{13} |\det(y_1, \ldots, y_d)| = |y_1||P_1 y_2| \cdots |P_{d-1} y_d|.
\]

Note that with probability 1, \(\text{rank} P_k = d - k \). It follows from \(\tag{11} \) that \(\mathbb{E}|P_k y_{k+1}| = d - k \). Fubini’s Theorem applied to \(\tag{13} \) completes the proof of Lemma \(\tag{2} \).
3. Proof of Theorem 2

Let \(u_1, \ldots, u_m \in S^{d-1} \) be a set of vectors satisfying (1) with some positive weights \(c_1, \ldots, c_m \). We set the probability of each vector \(u_i, i = 1, \ldots, m \) as \(p_i = c_i/d \), and obtain a discrete probability distribution.

Let \(u_{i_1}, \ldots, u_{i_d} \) be independent random vectors from the set \(u_1, \ldots, u_m \) chosen (with possible repetitions) according to the above probability distribution.

By Lemma 2, we have that

\[
\mathbb{E} \left((\det(u_{i_1}, \ldots, u_{i_d}))^2 \right) = \frac{d!}{d^d}.
\]

Since the probability that the random vectors \(u_{i_1}, \ldots, u_{i_d} \) are linearly dependent is positive,

\[
\max |\det(u_{i_1}, \ldots, u_{i_d})|^2 > \frac{d!}{d^d}.
\]

Our goal is to quantify this inequality by bounding from below the probability that the determinant is 0. Let

\[
M^2 := \max |\det(u_{i_1}, \ldots, u_{i_d})|^2.
\]

Note that if an element of \(\{u_1, \ldots, u_m\} \) is selected at least twice, then \(\det(u_{i_1}, \ldots, u_{i_d}) = 0 \). Thus,

\[
\mathbb{E} \left((\det(u_{i_1}, \ldots, u_{i_d}))^2 \right) \leq M^2 P_1,
\]

where \(P_1 \) denotes the probability that all indices are pairwise distinct. Therefore,

\[
M^2 \geq \frac{d!}{d^d} \cdot \frac{1}{P_1}.
\]

Note that \(P_1 \) is a degree \(d \) elementary symmetric function of the variables \(p_1, \ldots, p_m \). Furthermore, \(p_1 + \ldots + p_m = 1 \) and \(p_i \geq 0 \) for all \(i = 1, \ldots, m \). It can easily be seen (using Lagrange multipliers, or by induction on \(m \)) that for fixed \(m \) and \(d \), the maximum of \(P_1 \) is attained when \(p_1 = \ldots = p_m = 1/m \). Thus,

\[
P_1 \leq d! \left(\frac{m}{d} \right) \frac{1}{m^d}.
\]

In summary,

\[
M^2 \geq \frac{d!}{d^d} \cdot \frac{m^d}{d!} \left(\frac{m}{d} \right)^{-1}.
\]

First, we note that \(\gamma(d, m) := \frac{m^d}{d!} \left(\frac{m}{d} \right)^{-1} \) is decreasing in \(m \). Thus, by (9), we may assume that \(m \) is as large as possible, that is, \(m = \frac{d(d+1)}{2} \). Proving the first part of Theorem 2.

3.1. Proof of Theorem 2 (ii). Let \(\gamma(d) := \gamma(d, d(d+1)/2) \). We show that \(\gamma(d) \) is increasing in \(d \).

With the notation \(m := d(d+1)/2 \), we note that \((d+1)(d+2)/2 = m + d + 1 \). Thus,

\[
\frac{\gamma(d+1)}{\gamma(d)} = \frac{(m + d + 1)^{d+1} m \cdots (m - d + 1)}{m^d (m + d + 1) \cdots (m + 1)} = \frac{(m + d + 1)^d}{m^d} \cdot \frac{m \cdots (m - d + 1)}{(m + d) \cdots (m + 1)}
\]

Thus, we need to show that

\[
1 + \frac{d + 1}{m} > \sqrt[d]{\left(1 + \frac{d}{m}\right) \left(1 + \frac{d}{m-1}\right) \cdots \left(1 + \frac{d}{m - d + 1}\right)},
\]

which, by the AM/GM inequality follows, if

\[
1 + \frac{d + 1}{m} \geq 1 + d \frac{\frac{1}{m-1} + \frac{1}{m-2} + \ldots + \frac{1}{m - d + 1}}{d},
\]

which is equivalent to

\[
\frac{d}{m} \geq \frac{1}{m-1} + \frac{1}{m-2} + \ldots + \frac{1}{m - d + 1}.
\]

For this to hold, it is sufficient to show that for every integer or half of an integer \(1 \leq i \leq d/2 \), we have that
After substituting \(m = d(d+1)/2 \), it is easy to see that (14) holds.

Finally, \(\lim_{d \to \infty} \gamma(d) = e \) follows from Stirling’s formula.

3.2. Proof of Theorem 2 (ii) and (iii). Stirling’s formula yields both claims.

4. Proof of Theorem 3

First, observe that (14) holds with some positive scalars \(c_i \), if and only if, the matrix \(\text{Id}_d/d \) is in the convex hull of the set \(A = \{ v_i \otimes v_i : i = 1, \ldots, m \} \) in the real vector space of \(d \times d \) matrices. The set \(A \) is contained in the subspace of symmetric matrices with trace 1, which is of dimension \(d(d+1)/2 - 1 \). Carathéodory’s theorem [8, Theorem 1.1.4] now yields the desired upper bound on \(m \).

In the case when both (4) and (5) are assumed, we lift our vectors into \(\mathbb{R}^{d+1} \) as follows. Let \(\hat{v}_i = \sqrt{\frac{d}{d+1}} (v_i, 1/\sqrt{d}) \in \mathbb{R}^{d+1} \). It is easy to check that \(|\hat{v}_i| = 1 \), and that (4) holds for the vectors \(\hat{v}_i \) with some positive scalars \(\hat{c}_i \); if, and only if, (4) and (5) hold for the vectors \(v_i \) with scalars \(c_i = \frac{d}{d+1} \hat{c}_i \). Now, \(\hat{v}_i \otimes \hat{v}_i \), \(i = 1, \ldots, m \) are symmetric \((d+1) \times (d+1) \) matrices of trace one, and their \((d+1, d+1) \)th entry is \(1/(d+1) \). The dimension of this subspace of \(\mathbb{R}^{(d+1) \times (d+1)} \) is \(d(3d+1)/2 - 1 \), thus, again, by Carathéodory’s theorem, the proof is complete.

5. Acknowledgements

F. Fodor and T. Zarnócz are supported in part by Hungarian National Research, Development and Innovation Office NKFIH grant 116451.

M. Naszódi was partially supported by the National Research, Development and Innovation Office (NKFIH) grant NKFI-K119670 and by the ÚNKP-17-4 New National Excellence Program of the Ministry of Human Capacities.

References

[1] K. Ball, Ellipsoids of maximal volume in convex bodies, Geom. Dedicata 41 (1992), no. 2, 241–250.
[2] K. Ball, An elementary introduction to modern convex geometry, Flavors of geometry, Math. Sci. Res. Inst. Publ., vol. 31, Cambridge Univ. Press, Cambridge, 1997, pp. 1–58.
[3] A. Dvoretzky and C. A. Rogers, Absolute and unconditional convergence in normed linear spaces, Proc. Nat. Acad. Sci. U. S. A. 36 (1950), 192–197.
[4] P. M. Gruber, Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007.
[5] P. M. Gruber and F. E. Schuster, An arithmetic proof of John’s ellipsoid theorem, Arch. Math. (Basel) 85 (2005), no. 1, 82–88.
[6] F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, N. Y., 1948, pp. 187–204.
[7] P. Pivovarov, On determinants and the volume of random polytopes in isotropic convex bodies, Geom. Dedicata 149 (2010), 45–58.
[8] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014.
[9] M. Naszódi, Proof of a conjecture of Bárány, Katchalski and Pach, Discrete Comput. Geom. 55 (2016), no. 1, 243–248, DOI 10.1007/s00454-015-9753-3.

Department of Geometry, Bolyai Institute, University of Szeged, Aradi vétanuk tere 1, 6720 Szeged, Hungary
E-mail address: fodorf@math.u-szeged.hu

Department of Geometry, Eötvös University, Budapest, Hungary
E-mail address: marton.naszodi@math.elte.hu

Department of Geometry, Bolyai Institute, University of Szeged, Aradi vétanuk tere 1, 6720 Szeged, Hungary
E-mail address: tzarnocz@math.u-szeged.hu