Recent advances in gastric cancer treatment

Shekhar Gogna, Priya Goyal, Annie Sodhi

ABSTRACT

Abstract is not required for Editorial
Recent advances in gastric cancer treatment

Shekhar Gogna, Priya Goyal, Annie Sodhi

INTRODUCTION

Gastric cancer is the fifth most common cancer in the world and it is the third most common cause of cancer related death [1]. Many studies on comparing different interventions including type of surgical resection, perioperative chemotherapy regimen, radiation protocols and imaging protocols have been conducted to improve the quality of life and extend the survival rates of patients. Promising developments have been made in recent years. This editorial presents the innovations discussed in recent studies.

Developments in the TNM staging for gastric cancer

There are two major staging systems for gastric cancer. The first system is Japanese Gastric Carcinoma Classification (JGCC). This is based on the location of the metastatic lymph node [2]. Second is the Union Internationale Contre le Cancer/American Joint Committee Cancer (UICC/AJCC) TNM staging system, it is based on the number of metastatic lymph node [3]. The TNM classification system was merged with JGCC in 2009 in the 7th edition [4].

The 8th edition AJCC gastric cancer staging manual was refined using Japanese and Korean data from the International Gastric Cancer Association (IGCA). This 8th edition differed in that T1–T3 disease was upstaged with N3b, T4aN3a was down staged from IIIC to IIIB, and T4bN0 and T4aN2 were down staged from IIIB to IIIA [5]. Many studies have compared the survival in patients based on AJCC 7th and 8th edition. Important message conveyed by these studies is that ‘personalized medicine’ is the key for good oncological outcomes.

Endoscopic interventions for early gastric cancer

Surgical resection is the primary treatment for gastric cancers. Endoscopic treatment is less invasive, do not have any negative impact on oncologic outcomes, preserve physiological functions, and improve the quality of life in carefully chosen patients. Endoscopic resection (ER) techniques can be divided into two main categories: endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD). Major gastric cancer treatment guidelines such as National Comprehensive Cancer Network (NCCN), the European Society for Medical Oncology (ESMO), the European Society of Surgical Oncology (ESSO) and the European Society of Radiotherapy and Oncology (ESTRO) have suggested that obtaining negative horizontal and vertical margins with endoscopic resection is adequate protocols for the treatment of gastric cancers that are < 2 cm, are well/moderately differentiated, have no lymphovascular invasion and are not located under the submucosa [6].

Minimally invasive surgery for gastric cancer

Minimally invasive surgery for gastric cancer includes laparoscopic surgery, reduced port surgery (RPS) and robotic surgery [7]. Laparoscopic surgery for gastric cancer (LAG) offers better pain control and a shorter postoperative hospital stay as it is less invasive. Importantly, because of better magnification lymph node dissection is better so oncological outcomes can be enhanced as compared with open gastrectomy. Reduced port surgery (RPS) involves fewer ports than standard
laparoscopic surgery and can allow for narrower ports by involving single-incision laparoscopic surgery (SILS). The SILS is performed from a single incision at the umbilicus and is considered the ultimate reduced-port technique. Reduced port surgery has been developed to reduce the invasiveness of laparoscopic surgery. So far, there have been a few reports on reduced port surgery reduced port surgery for gastrectomy for gastric cancer [8]. However, it has remained unclear that reduced port surgery has the advantages compared with LAG, and further randomized controlled trials are awaited. Robotic assisted gastrectomy (RAG) has technical advantages of three-dimensional image and allowing for precise movement. In a meta-analysis by Xiong et al., laparoscopic gastrectomy and robotic assisted gastrectomy were compared; robotic assisted gastrectomy group had less intraoperative blood loss with comparable mortality and morbidity rates. As expected the operation time in robotic assisted gastrectomy was significantly longer than laparoscopic gastrectomy and open gastrectomy [9].

Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy

Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) were developed as a combined treatment modality from the results of experimental and clinical studies on ovarian malignancy. Complete cytoreduction must be performed before HIPEC is administered. Hyperthermia increases the antitumor activity and penetration of chemotherapeutics [10]. Prominent centers have reported that the median survival time ranged between 11 and 16 months in patients who underwent HIPEC with partial or complete cytoreduction [11]. Desmoplastic stroma and poor vascularization impeding drug delivery especially in diffuse form of gastric cancer provides a reasonable rationale for this intervention [12]. Currently, there is limited data and literature defining a role for CRS and HIPEC in the management of patients with advanced gastric cancer, and further clinical research on this approach is still needed [13].

Neoadjuvant chemotherapy and immunotherapy for gastric cancer

Medical Research Council Adjuvant Gastric Infusion Chemotherapy (MAGIC) study established the role of preoperative chemotherapy in treatment protocol for curable gastric cancers. In this study, perioperative chemotherapy with epirubicin, cisplatin and 5-FU (ECF), significantly increased overall and cancer free survival compared to the surgery group alone (HR: 0.75, 95% CI: 0.60–0.93, p = 0.009) [14]. A practice changing perioperative chemotherapy trial, FLOT4 trial compared perioperative chemotherapy with standard ECF [epirubicin, cisplatinum, and 5-fluorouracil (5-FU)] versus FLOT (combination of preoperative infusional 5-fluorouracil, leucovorin, oxaliplatin, and docetaxel) in 716 patients with esophagogastric junction (56%) or gastric cancer (44%). Patients treated with FLOT had a higher rate of curative resection versus ECF (84 versus 77%, p = 0.011) an overall survival (50 versus 35 months, hazard ratio 0.77, p = 0.012) [15].

Immunotherapy

Currently, numerous targeted therapies belonging to different classes of drugs have been investigated as therapeutics in gastric cancer, starting with preclinical studies and continuing into clinical trials. Table 1 depicts the immunotherapeutic agent and phase of development.

Molecular target	Histology in which molecular target is more prevalent	Mechanism of action	Targeted agent	Phase of development
HER2	Proximal nondiffuse	HER2 monoclonal antibody	Trastuzumab	III
		HER2 dimerization inhibitor	Pertuzumab	II
		HER2, EGFR TKI	Lapatinib	III
		Pan-HER TKI	PF 00299804	II
EGFR	Proximal nondiffuse	EGFR monoclonal antibody	Cetuximab, Panitumumab	III
MET	Proximal nondiffuse	MET TKI	Foretinib, crizotinib	I–II
VEGF	Distal nondiffuse	VEGF monoclonal antibody	Bevacizumab	III
VEGFR	Distal nondiffuse	VEGFR2 monoclonal antibody	Ramucirumab	III
FGFR	Diffuse	MTI	Sunitinib, sorafenib	II
mTOR	Diffuse	MTI	AZD2171, dovitinib	II
MMP	Diffuse	mTOR inhibitor	Everolimus	III
		MMP inhibitor	Marimastat, prinostat	III
Trastuzumab for gastric cancer deserves a special mention. It is a monoclonal antibody that interacts with human epidermal growth factor (HER) 2 and is related to gastric carcinoma [16]. Trastuzumab for gastric cancer (ToGA) phase III International multicenter randomized controlled trial compared the clinical effect and safety of trastuzumab with that of standard chemotherapy (capecitabine or intravenous 5-fluorouracil and cisplatin). Survival after treatment with trastuzumab was significantly longer than that with only standard chemotherapy (13.8 mo vs 11.1 mo, respectively, p = 0.0046) [17]. Treatment with trastuzumab is standard for the HER2 (+) patients (IHC score +3 and/or FISH) in the USA and Japan. Trastuzumab is recommended for patients with an IHC score of 2+/positive FISH or an IHC score of 3+ with high HER2 protein expression, according to the ToGA study in Europe. The evaluation of HER2 is essential for trastuzumab treatment.

CONCLUSION

Gastric cancer remains a major global health problem; therefore, efficient treatments are needed to achieve improved prognosis. Although promising developments have been made in recent years, the obtained results have limited reliability and benefits. We believe that significant improvements in the treatment of gastric cancer will be developed according to the long-term results of ongoing randomized clinical trials.

Keywords: Endoscopic resection, Gastric cancer, Gastric carcinoma, Surgical resection, Treatment

How to cite this article

Gogna S, Goyal P, Sodhi A. Recent advances in gastric cancer treatment. Int J Case Rep Images 2018;9(1):5–8.

Article ID: Z01201801ED10014SG

doi: 10.5348/ijcri-201802-ED-10014

Author Contributions

Shekhar Gogna – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Priya Goyal – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Annie Sodhi – Substantial contributions to conception and design, Acquisition of data, Analysis and interpretation of data, Drafting the article, Revising it critically for important intellectual content, Final approval of the version to be published

Guarantor of Submission
The corresponding author is the guarantor of submission.

Source of Support
None

Conflict of Interest
Authors declare no conflict of interest.

Copyright
© 2018 Shekhar Gogna et al. This article is distributed under the terms of Creative Commons Attribution License which permits unrestricted use, distribution and reproduction in any medium provided the original author(s) and original publisher are properly credited. Please see the copyright policy on the journal website for more information.

REFERENCES

1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015 Mar 1;136(5):E359–86.
2. Japanese gastric cancer association, editor. Japanese gastric cancer treatment guidelines, Ver. 4. Tokyo: Kanehara & Co., Ltd.; 2014.
3. Sobin LH, Gospodarowicz MK. International Union Against Cancer(UICC) TNM Classification of Malignant Tumours. 7ed. Oxford: Wiley-Blackwell; 2009. p. 73–7.
4. Mihmanli M, Ilhan E, Idiz UO, Alemdar A, Demir U. Recent developments and innovations in gastric cancer. World J Gastroenterol 2016 May 7;22(17):4307–20.
5. In H, Solsky I, Palis B, Langdon-Embry M, Ajani J, Sano T. Validation of the 8th edition of the AJCC TNM staging system for gastric cancer using the national cancer database. Ann Surg Oncol 2017 Nov;24(12):3683–91.
6. Ajani JA, Bentrem DJ, Besh S, et al. Gastric cancer, version 2.2013: Featured updates to the NCCN guidelines. J Natl Compr Canc Netw 2013 May 1;11(5):531–46.
7. Nunobe S, Kumagai K, Ida S, Ohashi M, Hiki N. Minimally invasive surgery for stomach cancer. Jpn J Clin Oncol 2016 May;46(5):395–8.
8. Ahn SH, Park DJ, Son SY, Lee CM, Kim HH. Single-incision laparoscopic total gastrectomy with D1+beta...
lymph node dissection for proximal early gastric cancer. Gastric Cancer 2014 Apr;17(2):392–6.

9. Xiong B, Ma L, Zhang C. Robotic versus laparoscopic gastrectomy for gastric cancer: A meta-analysis of short outcomes. Surg Oncol 2012 Dec;21(4):274–80.

10. Yonemura Y, Canbay E, Endou Y, et al. Peritoneal cancer treatment. Expert Opin Pharmacother 2014 Apr;15(5):623–36.

11. Fujimoto S, Takahashi M, Mutou T, Kobayashi K, Toyosawa T. Successful intraperitoneal hyperthermic chemoperfusion for the prevention of postoperative peritoneal recurrence in patients with advanced gastric carcinoma. Cancer 1999 Feb 1;85(3):529–34.

12. Feingold PL, Kwong ML, Sabesan A, Sorber R, Rudloff U. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for gastric cancer and other less common disease histologies: Is it time? J Gastrointest Oncol 2016 Feb;7(1):87–98.

13. Yan TD, Black D, Sugarbaker PH, et al. A systematic review and meta-analysis of the randomized controlled trials on adjuvant intraperitoneal chemotherapy for resectable gastric cancer. Ann Surg Oncol 2007 Oct;14(10):2702–13.

14. Cunningham D, Allum WH, Stenning SP, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med 2006 Jul 6;355(1):11–20.

15. Al-Batran S, Homann N, Schmaling H, et al. Perioperative chemotherapy with docetaxel, oxaliplatin, and fluorouracil/leucovorin (FLOT) versus epirubicin, cisplatin, and fluorouracil or capecitabine (ECF/ECX) for resectable gastric or gastroesophageal junction (GEJ) adenocarcinoma (FLOT4-AIO): A multicenter, randomized phase 3 trial. J Clin Oncol 2017;35 Suppl 15:4004.

16. Cuello M, Ettenberg SA, Clark AS, et al. Downregulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res 2001 Jun 15;61(12):4892–900.

17. Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010 Aug 28;376(9742):687–97.
Edorium Journals: An introduction

About Edorium Journals
Edorium Journals is a publisher of international, high-quality, open access, scholarly journals covering subjects in basic sciences and clinical specialties and subspecialties.

Invitation for article submission
We sincerely invite you to submit your valuable research for publication to Edorium Journals.

Why should you publish with Edorium Journals?
In less than 10 words: “We give you what no one does”.

Vision of being the best
We have the vision of making our journals the best and the most authoritative journals in their respective specialties. We are working towards this goal every day.

Exceptional services
We care for you, your work and your time. Our efficient, personalized and courteous services are a testament to this.

Editorial review
All manuscripts submitted to Edorium Journals undergo pre-processing review followed by multiple rounds of stringent editorial reviews.

Peer review
All manuscripts submitted to Edorium Journals undergo anonymous, double-blind, external peer review.

Early view version
Early View version of your manuscript will be published in the journal within 72 hours of final acceptance.

Manuscript status
From submission to publication of your article you will get regular updates about status of your manuscripts.

Our Commitment

Six weeks
We give you our commitment that you will get first decision on your manuscript within six weeks (42 days) of submission. If we fail to honor this commitment by even one day, we will give you a 75% Discount Voucher for your next manuscript.

Four weeks
We give you our commitment that after we receive your page proofs, your manuscript will be published in the journal within 14 days (2 weeks). If we fail to honor this commitment by even one day, we will give you a 75% Discount Voucher for your next manuscript.

Favored author program
One email is all it takes to become our favored author. You will not only get 15% off on all manuscript but also get information and insights about scholarly publishing.

Institutional membership program
Join our Institutional Memberships program and help scholars from your institute make their research accessible to all and save thousands of dollars in publication fees.

Our presence
We have high quality, attractive and easy to read publication format. Our websites are very user friendly and enable you to use the services easily with no hassle.

Something more...
We request you to have a look at our website to know more about us and our services. Please visit: www.edoriumjournals.com

We welcome you to interact with us, share with us, join us and of course publish with us.

We invite you to submit your valuable research for publication to Edorium Journals.

Our six-week decision time and four-week publication time commitment.

Favored author program for a 15% discount.

Institutional membership program for a 75% discount.

Editorial review, peer review, early view and manuscript status updates.

Our high-quality, user-friendly website.

This page is not a part of the published article. This page is an introduction to Edorium Journals.