Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Multifaceted roles of plant derived small molecule inhibitors on replication cycle of SARS-CoV-2

B. Uma Reddy a,.*, 1, Nanda Kishore Routhu b, Anuj Kumar c,1,***

a Department of Studies in Botany, Vijayanagara Sri Krishnadevaraya University, Ballari, 583105, India
b Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
c Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRS UMR 5286, Lyon, 69008, France

ARTICLE INFO

Keywords:
SARS-CoV-2
COVID-19
Viral replication cycle
Plants
Small molecule inhibitors
Antiviral therapeutics

ABSTRACT

Introduction: Coronavirus disease 2019 (COVID-19) is an illness caused by the new coronavirus severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). It has affected public health and the economy globally. Currently approved vaccines and other drug candidates could be associated with several drawbacks which urges developing alternative therapeutic approaches.

Aim: To provide a comprehensive review of anti-SARS-CoV-2 activities of plants and their bioactive compounds.

Methods: Information was gathered from diverse bibliographic platforms such as PubMed, Google Scholar, and ClinicalTrials.gov registry.

Results: The present review highlights the potential roles of crude extracts of plants as well as plant-derived small molecules in inhibiting SARS-CoV-2 infection by targeting viral or host factors essential for viral entry, polyprotein processing, replication, assembly and release. Their anti-inflammatory and antioxidant properties as well as plant-based therapies that are under development in the clinical trial phases-1 to 3 are also covered.

Conclusion: This knowledge could further help understanding SARS-CoV-2 infection and anti-viral mechanisms of plant-based therapeutics.

1. Introduction

A newly emerged pandemic of COVID-19, caused by an infectious coronavirus SARS-CoV-2, has severely affected the entire world and remains a health threat. The emergence of new strains that evade immune responses generated by the vaccines suggests an urgent need for developing alternative therapeutic approaches to cut down the COVID-19 infection rate and related morbidity and mortalities.

COVID-19 is currently being treated with several plausible drugs including antimalarial drugs [28], antiviral drugs [83], certain immunosuppressors [70], and convalescent plasma therapy. However, these kinds of treatments are associated with several concerns, especially in patients with severe disease conditions [90]. For example, severe adverse effects such as renal impairment and hypotension were observed in critically ill patients receiving remdesivir therapy [30]. Additionally, several case studies have reported that these standard drugs exhibit drug-drug or nutrition-drug interactions into the severely infected COVID-19 patients resulting in the unrecognized source of medication errors and negative effects [2]. Therefore, it is essential to use an alternative and safer approach, such as plant-derived compounds.

Numerous scientific reports have documented the ability of plants and their secondary metabolites against SARS-CoV [91]. Despite being new virus, there are multiple in-silico studies suggesting anti-SARS-CoV-2 capability of plant-based small compounds. Additionally, in-vitro, cell culture and in-vivo clinical trials further validate and strengthen their COVID-19 suppressing potential.

2. Scope of the review

This review article aims to collect data on anti-SARS-CoV-2 activity and therapeutic potential of natural plant extracts and phytocompounds primarily based on in-silico (molecular docking and molecular dynamics) studies. An attempt has also been made to highlight in-vitro, cell culture, in-vivo and clinical trial (phase 1 to 3) studies. Several bibliographic platforms such as PubMed, Science-Direct, Google Scholar, and
Fig. 1. **Structure of the SARS-CoV-2 virus**: Spike (S) is the surface glycoprotein that mediates the interaction of SARS-CoV-2 with the cell surface receptor angiotensin-converting enzyme 2 (ACE2). The membrane glycoprotein (M) and envelope (E) are embedded in the host cell-derived lipid membrane which encapsulates the viral nucleocapsid.

Fig. 2. **Genome organization of SARS-CoV-2**. Approximately 30 kb long viral genome comprises 10 open reading frames (ORFs) encoding 27 viral proteins. The ORF1ab encompasses about 67% of the total viral genome and encodes 16 non-structural proteins (nsp5). Whereas the accessory and structural proteins are encoded by the remaining ORFs (adapted from Kim et al., 2020[116] with some modifications).
ClinicalTrials.gov registry were used to gather research findings and to summarize them methodically as a review.

3. Fundamentals of SARS-CoV-2 genome organization and life cycle

SARS-CoV-2 infects human lung epithelial cells by binding to the cell surface located angiotensin-converting enzyme 2 (ACE2) receptor with the help of the receptor-binding domain (RBD) of spike protein (S protein). The transmembrane serine protease 2 (TMPRSS2) is required for the priming/activation of the S-protein [35]. A high expression of ACE2 and TMPRSS2 in the gastrointestinal tract has been reported to be associated with gastrointestinal symptoms seen in COVID-19 patients. There are also a few studies describing changes in the gut microbiome of these patients compared to healthy persons [32].

More recently, it has been found that the cleavage of a multibasic site present between two subunits (S1 and S2) of S protein by furin protease is also involved in S-protein mediated efficient membrane fusion, viral entry and the transmission of SARS-CoV-2 [36,65]. The virus is internalized via directly through RBD-ACE2 interaction or membrane fusion which requires TMPRSS2 proteolytic activity [9]. It is followed by uncoating of its genome and release into the host cell cytoplasm, which undergoes translation to produce viral proteins. Non-structural proteins (NSPs) 2–16 contain RNA synthesis, proof reading, cofactor and host immune evasion activities [76,88]. A negative-sense RNA intermediate is generated for the synthesis of positive-sense strand genomic RNA (gRNA) as well as a set of shorter sub-genomic RNAs (sgRNAs). sgRNA translation results in both structural proteins and accessory proteins (ORF3a, ORF6, ORF7a, ORF7b, ORF8, and other ORFs) [9,59,68,74]. (Figs. 1–3).

4. Virus-host interactions: Potential antiviral targets

The virus-host interactions during the virus entry, replication, and pathogenesis play a crucial role in the virus life cycle. Several viral and cellular factors facilitate this process in a coordinated manner. In SARS-CoV-2 infection, the viral spike protein interaction with host ACE2, TMPRSS2, and furin facilitate virus entry, which are the potential drug

Fig. 3. The life cycle of SARS-CoV-2 and potential targets of plant-derived small molecule inhibitors (A–B) SARS-CoV-2 spike protein binding to ACE2 followed by internalization of the virus (C) uncoating of the viral genome and its release into the cytoplasm (D–E) translation of replicase proteins (ORF1a/ab) followed by proteolysis (F–K) Replication/transcription of the viral genome. Incoming positive-strand genome generates full-length negative-strand RNA and sub-genomic RNA (sgRNAs). sgRNA translation results in both structural proteins and accessory proteins. (L–P) Structural proteins S (spike), M (membrane), E (envelope), and viral nucleocapsid complex get inserted into the ER-Golgi intermediate compartment (ERGIC) for virion assembly and release. Plant-based inhibitors (highlighted in yellow boxes) can target the majority of these steps as marked in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) (adapted from de Vries 2020 [117] with some modifications)

Fig. 4. Spike, ACE2, TMPRSS2 and Furin are the targets of viral entry inhibition. Plant-based inhibitors utilize several mechanisms to block SARS-CoV-2 entry.

B. Uma Reddy et al. Microbial Pathogenesis 168 (2022) 105512
targets for developing SARS-CoV-2 antivirals (Figure-4) and are discussed below in detail.

4.1. Spike (S) protein

Spike is a trimeric glycoprotein that mediates the binding of the virus to host cell surface-specific receptors and virus-cell membrane fusion [122]. It plays a vital role in determining host tropism and the diversity of coronaviruses (CoVs). SARS-CoV-2 is more contagious than SARS-CoV to host cell surface-specific receptors and virus-cell membrane fusion.

4.2. Angiotensin-Converting Enzyme 2 (ACE2)

ACE2 is a single-pass type-1 transmembrane protein of 805 amino acids with an extracellular N-terminal peptidase domain and an intracellular C-terminus collectrin-like domain (CLD) [23]. The N-terminus has a zinc metallopeptidase binding motif (374-378 amino acids, HEMGH) essential for the interaction with SARS-CoV-2 S-protein (Figure-6). Histochemical and single-cell RNA sequencing techniques revealed that ACE2 is primarily expressed in type-II lung alveolar epithelial cells [33,95].

A recent study, using bioinformatics, cheminformatics, and molecular docking, has demonstrated that tea flavonoids (epigallocatechin gallate, EGCG, and theaflavin gallate) have higher atomic contact energy value, dissociation constant (Ki)-value, surface area, ligand efficiency, and higher number of amino acid interactions with spike protein than synthetic hydroxychloroquine [53]. Another study showed that daturaoaline, gallotannins, taraxerol, tinosporide, withanolide-A, deoxytubulosine, withametelin form strong hydrogen and non-bonding interactions with the amino acids of spike protein (between Arg 403 to Tyr 505) and have drug-likeness properties based on Lipinski’s rule of five. Moreover, these bioactive compounds have lower toxic effects and better gastrointestinal absorption than standards [56].

A simulation study using the crystal structure of SARS-CoV-2 S protein demonstrated that saikosaponin-U and saikosaponin-V, oleanane derivatives found in Chinese medicinal plants, can also interact with the spike glycoprotein via their octadecahydropicene and oxane rings [75]. Using molecular docking and conceptual density functional theory approaches, Kulkarni et al. showed that components of essential oils (monoterpenes, terpenoid phenols and phenyl propanoids) have the potential to interact with the RBD [47]. The phytocompounds punica galin and punicalin (from Pomegranate), tenufolin, cinnamtannin-B1, proanthocyanidin-A2 and Kaempferol-3-alpha-pavetannin-C1, 6-glucopyranosyl procyanidin B1, procyanidin-B7, and are dis

Fig. 6. Molecular organization of host ACE-2 monomer showing the interaction sites of different classes of phytocompounds (quinones, alkaloids, flavonoids, tannins, terpenoids, and organosulphur compounds) on the HEMGH/SARS CoV-2 spike protein binding domain and the collectrin domain (adapted from Bian and Li, 2021[118]).
4.3. Transmembrane Serine Protease-2

Human TMPRSS2 is a 492 amino acid type-II transmembrane protein that belongs to the serine protease family. The N-terminal half consists of a predicted transmembrane domain (84–106 amino acids), a low-density lipoprotein receptor class A domain (LDLRA, 113–148 amino acids), and a scavenger receptor cysteine-rich domain (SRCR, 149–242 amino acids), whereas the C-terminus half contains a serine protease domain (255–492 amino acids) [63] (Figure-7). For priming of the viral spike protein, TMPRSS2 cleaves off the spike protein at two sites, Arg-685/Ser-686 and Arg-815/Ser-816. The catalytic site of TMPRSS2 consists of amino acid residues Ser-441, His-296, and Asp-345, whereas the substrate-binding sites include Asp-435, Ser-460, and Gly-462 [34]. Molecular docking studies showed that the bioactive constituents of different plants enlisted under the TMPRSS2 section in Table-1 and presented in Figure-7 display significant interactions with the amino acid residues of the serine protease domain (255–492), particularly with the amino acids of catalytic and substrate binding sites.

The phytocompounds withaferin-A, withanolide-N, punicalin, punicalagin, ellagic acid and gallic acid could interact well with the important amino acid residues of TMPRSS2 [49,79]. Withanolide-N not only showed stronger interactions compared to withaferin-A, but it could also downregulate the expression of TMPRSS2 mRNA in human breast cancer cell line. This observation led authors to predict its dual role in inhibiting SARS-CoV-2 entry. The disruption of substrate binding was most likely due to interactions of withanolide-N with the Ser-441 [49].

4.4. Furin

Furin is a subtilisin-like proprotein convertase located in the trans-Golgi network. It cleaves a precursor protein with a specific amino acid pattern (Arg-X-X-Arg). The furin-like cleavage site, a 12-nt insertion at S1/S2 junction in the spike coding sequence, is absent in other members of the same clade [13,19]. Furin cleavage site enhances receptor affinity and facilitates membrane fusion. The cleavage of this site occurs via priming of S protein which could provide a gain-of-function benefit to the SARS-CoV-2 for an efficient human to human transmission compared to other members of beta coronaviruses [13,19,54]. In-silico analyses suggested that punicalagin, punicalin, ellagic acid and gallic acid from pomegranate could interact with the active site residues and other crucial amino acid residues of furin (Table-1) and form more stable complexes than sulconazole (control) [80].

5. SARS CoV-2 replication inhibitors

The replication and transcription of the SARS-CoV-2 RNA genome (~30 kb) is catalyzed by an RNA-dependent RNA polymerase (RdRp) domain located at the C-terminus of non-structural protein 12 (nsp12) in association with other non-structural proteins such as nsp3 (papain-like protease), nsp5 (3-chymotrypsin-like protease), nsp15 (endoribonuclease) and nsp16 (2′-O′ MTase).
Table 1
Interactions of plant-based small molecules with targeted SARS-CoV-2 or host proteins.

Spike Glycoprotein (viral protein)

Class	Small molecule inhibitors	Interacting amino acids with different classes of phytocompounds	References
Tannins	Punicalin (3-IR and -7.406 BE), punicalagin (6-IR and -7.312 BE), Pedunculagin (4-HB, 6 NBI and -7.7 BE), puniglucin (7-HB, 5- NBI and -7.9 BE), cebulagic acid (5-HB, 5-NBI and -7.5 BE), cebulenic acid (5-HB, 7-NBI and -6.5 BE), cinnamannin-B1 (3-HB, 5-HP and -10.2 BE), 6-Glucopyranosyl prenylnanin-B1 (8-HB, 1-EI and -9.9 BE), Prenyl derivatives (2-HB, 3-HP, 2-EI and -9.6 BE), proanthocyanidin-A2 (5-Hb, 1-HP, 2-EI and -9.4 BE), ellagic acid (3 IR and -6.114 BE), gallic acid (2 IR and -4.808 BE), gallicotannins (6-HB, 7-NBI and -7.4 BE).	Ser44, Leu48, Ala292,Cys301, Leu303, Ile312, Tyr313, Thr315, Asn317, Phe318, Arg319, His345, Thr347, Asa434,	[12,47,56,57,25,66]
Terpenoids	Geraniol (2-HB and 5-1.0 BE), L-4-terpeniol (2-HB and 5.1 BE), carvacrol (1-HB and -5.2 BE), limone (12-HPI and -5.1 BE), thymol (5.4 BE), tinosporide (2HB, 6-NBI and -6.4 BE), taxaritol (7-NBI and -7.9 BE), daturaine (8 NBI and -7.5 BE), glycyrrhizin (7-HB, 3-NBI, -7.1 BE), friedelin (1-HB, 2-IR and -7.3 BE), tenuifolin (4-HB, 2-HP and -8.7 BE), Y-typine (-4.9 BE), o-typine (-5.0 BE), camphene (2-HP and -5.2 BE), camphor (2-HPI and -4.8 BE).	Leu73, Arg350, Thr385, Phe390, Arg403, Arg405, Glu406, Arg408, Glu409, Gly416, Ile417, Ile449, Ile452, Tyr453, Leu455, Phe456, Ile458, Ser459, Leu461, Ille468, Thr470, Ille472, Glu484, Tyr489, Phe490, Pro491, Leu492, Glu493, Ser494, Tyr495, Gly496, Arg501, Tyr505, Asp509, Arg514, Tyr515, Lys562, Lys564, Pro565	[47,56,66]
Flavonoids	Paveatannin-C1 (9-HB, 4-HP, 1-EI and -11.1 BE), hesperidin (5 IR and -8.99), chrysin (9 IR and -8.79), quercetin (3 O, 5-3 arabinofuranoside (5-HB, 6-NBI and -7.9 BE), kaempferol 3-alpha-L-arabinofuranose 7-hamnoside (7-HB, 2-HPI and -8.7 BE), catechin gallate (5 HB, 3 H and -6.1 BE), cinnamaldehyde (2 HB and -5.0 BE), Anthranol (1 HB, 2 H and -9.08 BE), Apigenin (5 HB and -10.09 BE), Derrisin (2 HB, 2 HP and -11.04 BE), Ile468, Thr470, Ile472, Glu484, Tyr489, Phe490, Pro491, Leu492, Glu493, Ser494, Tyr495, Gly496, Arg501, Tyr505, Asp509, Arg514, Tyr515, Lys562, Lys564, Pro565	Ser44, Leu48, Ala292,Cys301, Leu303, Ile312, Tyr313, Thr315, Asn317, Phe318, Arg319, His345, Thr347, Asa434,	[12,47,56,57,25,66]

References

1. [56,66,79]
2. [79]
3. [16]
| Class | Small molecule inhibitors | Interacting residues with different classes of phytocompounds | References |
|----------------|---|---|------------|
| Flavonoid | Hesperidin (4 IR and –1.167 BE), chrysins (3 IR and –7.146 BE), rutin (6 IR and –3.41 BE), | Th2r, Lys31, His34, Glu35, Glu37, Asp38, Glu42, Asn63, Thr125, Ile126, Thr129, Asn137, Pro138, Gly139, Lys353 | [12,100] |
| | vitexin (7 IR and –5.71 BE), apigenin (5 IR and –3.75 BE), quercetin (5 IR and –4.11 BE) | | |
| Quinone | Emodin (3 IR and –9.83 BE), Rhein (-7.423 BE) | | |
| Terpenoid | Thymol and isothymol (1 H-donor and –4.74 BE), m-eugenol (4 IR and –2.53 BE), carvacrol (7 | | [1,87,100] |
| | IR and –2.75 BE), (7 IR and –3.31 BE), cinnamaldehyde (4 IR and –4.0 BE), cinnamoyl (5 IR | | |
| | and –3.06 BE), bharangin (4 IR and –4.36 BE), andrographolide (6 IR and –4.53 BE), | | |
| | beta-pinene (5 IR and –5.22 BE), pathulenol (6 IR and –4.96 BE), vetiverol (6 IR and | | |
| | –5.36 BE), alpha-bisabolol (7 IR and –5.69 BE), 6-shogaol (6 IR and –3.33 BE), 6-gingerol | | |
| | (6 IR and –3.49 BE), beta-sitosterol (7 IR and –4.88 BE), linoic acid (6 IR and –2.07 BE), | | |
| | p-coumaric acid (4 HB, 2 Pi-Alkyl, 1 CHB, 7 VDW and –8.0 BE), 5-hydroxy-2,4-dimethyl-| | |
| | 3,7-dimethoxy-3H-pyrrole (4 HB; 11 HP and –10.86 BE), caffeic acid (5 HB, 11 CHB, 6 | | |
| | VDW and –7.72 BE), ursofolic acid (3 HB, 1 Pi-Alkyl, 6 VDW and –8.0 BE), ellagic acid (4 | | |
| | HB, 3 Alkyl/Pi-Alkyl, 1 Pi-Sigma, 1 CHB, 7 VDW and –7.3 BE), 8-vinyl-2H-chromen-2-one (2 | | |
| | Alkyl/Pi-Alkyl, 1 Pi-Sigma, 2 VDW and –8.0 BE), 5,7-dimethoxypiperonal (5 IR and –5.08 BE), | | |
| | and 5-hydroxy-6-methyl-2H-chromen-2-one (5 IR and –3.44 BE) | | |
| Standards | Asp30, Lys31, Asn33, His34, Glu35, Glu37, Asp38, Phe40, Asp350, Lys353, Pro389, Phe390, | His34, Glu37, Thr276, Asn290, Ile291, Met366, Asp367, Leu370, Glu388, Pro389, Asp393, Lys403, Gly406, Ser409, | [100] |
| | Arg393, Arg405, Val490, Trp495, Tyr495, Gly496, Tyr565 | Leu410, Ala413, Lys441, Thr445, Ser494, Tyr495, Gly496, Tyr565 | |
| Alkaloids | Pettitorine (5 IR and –3.4 BE), vacinine (5 IR and –6.21 BE), piperidine (9 IR and –4.31 BE), | | |
| | piperine (5 IR and –4.1 BE) | | [10,79] |
| Standards | Minapin (9 IR and –7.5 BE), umifinovir (7 IR and –6.5 BE), 5-hydroxy-2H-chromen-2-one (10 | | |
| | IR and –7.1 BE) | | |
| TMRPSS2 (host protease) | | | |
| Class | Small molecule inhibitors | Interacting residues with different classes of phytocompounds | References |
| Tannins | Punicalin (5 IR and –8.168 BE), punicalagin (6 IR and –7.358 BE), ellagic acid (2 IR and | Arg87, Ala88, Arg91, Asp90, Arg259, Asp395, Lys399, Arg405, Gly408 | [79] |
| Steroidal lactone | Withanifer-1 (2 HB, 19 IR and –5.60 BE), Withanone (1 HB; 18 HP and –4.30 BE) | His296, Glu299, Tyr327, Lys342, Glu389, Asp435, Ser436, Cys347, Gln338, Asp440, Ser441, Arg393, Arg405, Val490, | [49] |
| Caffeate ester | Caffeic acid phenethyl ester (2 HB; 17 HP and –6.20 BE) | Gln389, Asp440, Ser441, Ser442, Gln347, Gly348, Gln389, Asp440, Ser441, Thr445, Val370, Gly462, Val473, Gly464, | [49] |
| Standards | Camostat (5 IR and –7.069 BE), Camostat mesylate (1 HB and 20 HPI and –5.95 BE) | Gln347, Gly348, Gln389, Asp440, Ser441, Thr445, Val370, Gly462, Val473, Gly464, Val473, Gly465, Gly466, | [49] |
| Furin (host protein) | | Gln389, Asp440, Ser441, Thr445, Val370, Gly462, Val473, Gly464, Val473, Gly465, Gly466, | [49] |
| Class | Small molecule inhibitors | Interacting residues with different classes of phytocompounds | References |
| Tannins | Punicalin (7 IR and –9.725 BE), punicalagin (4 IR and –9.385 BE), ellagic acid (5 IR and | His100, Glu255, Pro256, Pro256, Glu257, Asp258, Asp259, Thr262, Arg298, Cys303, Asp306, Gly307, Ser311, Gly366, | [79] |
| Standards | (5 IR and –7.801 BE) | Ser368, Thr365, Arg490, Trp531, Ala532, Val263, Phe528, Trp531, Ala532 | |
| Papain-like protease/ns3 (viral protease) | | | [55] |
| Class | Small molecule inhibitors | Interacting residues with different classes of phytocompounds | References |
| Terpenoid, Flavonoid | Oleesinolic acid (4 IR and –10 BE), ursofolic acid (5 IR and –9.7 BE), 3p- | His89, Thr106, Ala107, Asp108, Asn109, Val159, Gly160, Gu161, Leu162, Pro248, Tyr264 | [20,57,66,67,73,109] |
| Flavonoid | Epigallocatechin (6 IR and –7.0 BE), gallolatechin (6 IR and –7.1 BE), catechin (6 IR and | Lys5, Thr24, Thr25, Thr26, Leu27, His41, Cys44, Thr45, Ser46, Met49, Tyr53, Tyr54, Pro108, Lys137, Phe410, Leu41, | |
| | –7.1 BE), epicatechin (6 IR and –7.2 BE), catechin gallate (6 IR and –7.2 BE), epigallocatechin | Arg345, Asp404, Ser441, Arg393, Arg405, Val490, Trp495, Tyr495, Gly496, Tyr565, Arg490, Trp531, Ala532, Val263, | |
| | gallate (9 IR and –7.6 BE), epicatechin gallate (10 IR and –8.2 BE), gallolatechin (3-| Arg298, Cys303, Asp306, Gly307, Ser311, Gly366, Ser368, Thr365, Arg490, Trp531, Ala532, Val263, Phe528, Trp531, Ala532 | |
| | gallate (9 IR and –9.0 BE), kaempferol (4 HB, 6 HPI and –8.58 BE), querectin (8 IR and | (continued on next page) | |
Table 1 (continued)

Compounds	X-ray Localization
Organosulfur	
Allyl disulfide (6 IR and −15.32 BE), allyl trisulfide (4 IR and −15.02 BE), allyl (E)-1-propenyl disulfide (2 IR and −13.25 BE), allyl methyl trisulfide (4 IR and −14.36 BE), diallyl tetrasulfide (4 IR and −14.47 BE), 1,2-dithiolo (6H-ACE2) (2 IR and −13.21 BE), allyl (Z)-1-propenyl disulfide (2 IR and −12.60 BE), 2-vinyl-4H-1,3-dithiine (4 IR and −14.04 BE), 3-vinyl-1,2-dithiacyclohex-4-ene (3 IR and −13.83 BE), carvone (1 IR and −13.26 BE), trisulfide, 2-propanol propyl (5 IR and −14.36 BE), methyl allyl disulfide (3 IR and −13.56 BE), diacetoalkol (2 IR and −13.26 BE); trisulfide, (E)-1-propenyl 2-propenyl (2 IR and −12.00 BE); (1Z)-1-propenyl 2-propenyl (1 IR and −11.68 BE);	
Terpenoids	
Glyceryl acid (4 H, 3 CH3, 12 DVA and −8.7 BE), 6-oxoisoquercetin (5 IR and −9.1 BE), daturaolone (10 NBI and −7.3 BE), glyceryl acid (7 H, 7 NBI and −8.2 BE), calenduloside B (16 IR and −8.2 BE), calenduloside B (15 IR and −7.9), tenuifolin (6 H, HP-2 and 8.8 BE), 7-Deacetyl-7-benzoylgedunin L (1 CHB, 2 H, 10 DVA, 1 PiPi T shaped, 1 allyl, 1 Pi-allyl, −9.1), glyceryl acid (4 H, 3 CHB, 12 DVA, −8.7), isinomin: 3 H, 1 pi-donor, 1 CHB, 4 DVA, −8.7), Obacunone (3 H, 1 pi-donor, 1 pi-allyl, 5 DVA, −7.5), Dihydrooartemisinin (2 H, 2A, 1 Pi and −7.0 BE)	
Sesquiterpene	
Bdeakimacetin (2 H, 5 HBP and −8.6 BE), Samarcandin (3 H, 2 HP and −8.5 BE)	
3-Deacetyl-7-benzoylgedunin L (1 CHB, 2 H, 10 DVA, 1 PiPi T shaped, 1 allyl, 1 Pi-allyl, −9.1), glyceryl acid (4 H, 3 CHB, 12 DVA, −8.7), isinomin: 3 H, 1 pi-donor, 1 CHB, 4 DVA, −8.7), Obacunone (3 H, 1 pi-donor, 1 pi-allyl, 5 DVA, −7.5), Dihydrooartemisinin (2 H, 2A, 1 Pi and −7.0 BE)	
Leu141, Asl142, Gly143, Ser144, Cys145, His163, Met165, Glu166	[82]
Leu141, Asl142, Gly143, Ser144, Cys145, His163, Met165, Glu166, Leu167, Pro168, His172, Asp187, Arg186, Glu189, Thr190, Ala191, Tyr239, Leu275, Leu286, Leu287	[21,31,51,56,87]
Furano coumarin	
Bergapten (5-methoxyxaraalen) (2 IR and −5.98 BE)	
Anthocyanins	
Delphinidin 3-Sambubioside-5-Glucoside (27 IR and −12.37 BE);	
Delphinidin 3,3′-Di-Glucoside (5-0-Coumarilglycoside) (28 IR	
and −11.59 BE), 2-(3,4,5-Trihydroxyphenyl)-3-[6-(3-H-Dihydroxy	
phenyl) beta-galactopyranosyl-5,7-dihydroxy-1-	
Zingerol (5 H and −5.40 BE) and gerrinol (5 IR and −5.38 BE)	
Met49, His163, Met165, Glu166, Pro168, Asp187, Arg188, Glu189, Thr190	[43]
Phenol40, Gly138, Ser139, Phe40, Leu41, Ser44, Cys45, His163, Met165, Glu166, Leu167, Pro168, Gly170, His172, Val186, Asp187, Arg188, Glu189, Thr190, Ala191, Glu192	[73]
Iridoid glycoside	
Harpagoside (3 H, 3 HP and −6.1 BE)	
Beta-diketone	
demethoxycurcumin (1 IR and −7.02 BE), curcumin (2 IR and −6.04 BE), bisdemethoxycurcumin (5 IR and −7.3 BE)	
Met49, His163, Met165, Glu166, Pro168, Asp187, Arg188, Glu189, Thr190	[43]
Beta-hydroxy ketone	
Zingerol (5 H and −5.40 BE) and gerrinol (5 IR and −5.38 BE)	
Phe40, His163	[73]
Iridoid glycoside	
Harpagoside (3 H, 3 HP and −6.1 BE)	
Beta-diketone	
demethoxycurcumin (1 IR and −7.02 BE), curcumin (2 IR and −6.04 BE), bisdemethoxycurcumin (5 IR and −7.3 BE)	
Met49, His163, Met165, Glu166, Pro168, Asp187, Arg188, Glu189, Thr190	[43]
Furano coumarin	
Bergapten (5-methoxyxaraalen) (2 IR and −5.98 BE)	
Anthocyanins	
Delphinidin 3-Sambubioside-5-Glucoside (27 IR and −12.37 BE);	
Delphinidin 3,3′-Di-Glucoside (5-0-Coumarilglycoside) (28 IR	
and −11.59 BE), 2-(3,4,5-Trihydroxyphenyl)-3-[6-(3-H-Dihydroxy	
phenyl) beta-galactopyranosyl-5,7-dihydroxy-1-	
Zingerol (5 H and −5.40 BE) and gerrinol (5 IR and −5.38 BE)	
Met49, His163, Met165, Glu166, Pro168, Asp187, Arg188, Glu189, Thr190	[43]
Phenol40, Gly138, Ser139, Phe40, Leu41, Ser44, Cys45, His163, Met165, Glu166, Leu167, Pro168, Gly170, His172, Val186, Asp187, Arg188, Glu189, Thr190, Ala191, Glu192	[73]
Iridoid glycoside	
Harpagoside (3 H, 3 HP and −6.1 BE)	
Beta-diketone	
demethoxycurcumin (1 IR and −7.02 BE), curcumin (2 IR and −6.04 BE), bisdemethoxycurcumin (5 IR and −7.3 BE)	
Met49, His163, Met165, Glu166, Pro168, Asp187, Arg188, Glu189, Thr190	[43]
Phenol40, Gly138, Ser139, Phe40, Leu41, Ser44, Cys45, His163, Met165, Glu166, Leu167, Pro168, Gly170, His172, Val186, Asp187, Arg188, Glu189, Thr190, Ala191, Glu192	[73]
Table 1 (continued)

Class	Small molecule inhibitors	Interacting residues with different classes of phytochemicals	References
Flavonoid	Theaflavin (8 HB, 2 PA and -9.1 BE), quercetin-3-O- (rutina) (9 HB, 1 PA and -8.5 BE), quercetin-7-O-glucuronide (6 HB, 1 PA and -8.2 BE), quercetin-3′-O-glucuronide (5 HB; 1 Pam; -8.2 BE), quercetin-3-O-glucuronide (6 HB; 2 PA; 1 Pal; -8.0 BE), quercetin-7-O-sulfate (6 HB; 1 PC, 1 Pal and -8.0 BE), quercetin-3′-O-sulfate (2 HB, 2 PA and -7.1 BE), quercetin-3′-O-sulfate (6 HB, 1 PC, 1 Pal and -8.1 BE), quercetin (3 HB, 2 Pal and -7.4 BE), kaempferol-3′-O-rutinoside (4 HB, 2 PA and -9.2 BE), kaempferol-4′-O-galloylglucoside (6 HB, 1 PC and -8.3 BE), kaempferol-3′-O-glucuronide (6 HB, 2 PA and -7.9 BE), kaempferol-7′-O-glucuronide (6 HB, 1 PC and -7.9 BE), kaempferol-7′-O-sulfate (6 HB, 2 PA and -7.3 BE), kaempferol-4′-O-sulfate (1 HB, 2 PA and -6.7 BE), kaempferol-3-0-sulfate (1 HB, 2 PA and -6.7 BE), kaempferol (2 HB, 2 Pal and -7.2 BE)	Asp452, Lys545, Arg553, Ala554, Arg555, Thr556, Met615, Trp617, Asp618, Tyr619, Lys622, Asp623, Arg624, Thr677, Asn691, Ser759, Asp760, Asp761, Ser778, Ile779, Glu796, Lys798, Cys799, Thr800, Thr801, Glu811, Cys813, Ser814	[20]
Terpenoids	Glycyrrhizic acid (7 HB, 1 CH3, 1 pi-alyl, 16 VDW and -9.9 BE), limonin (2 HB, 2 pi-alyl, 1 pi-pi T shaped, 10 VDW and -8.2 BE), 7-deacetyl-7-benzoylgedunin (1 HB, 1 Alky1-pi-alyl, 2 CH1, 1 pi-anion, 3 pi-cation, 6 VDW and -8.2 BE), limonin glucoside (3 HB, 1 CH4, 4 Alky1-Pi-Alky1, 9 VDW and -8.2 BE), 7-deacetylgedunin (1 HB, 2 CH1, 1 Pi-Alky1, 1 Pi-sigma, 1 Pi-anion, 5 VDW and -8.1 BE), abacunone (2 HB, 1 Alky1, 1 Pi-Anion, 8 VDW and -7.8 BE)	Asp452, Lys545, Arg553, Ala554, Arg555, Thr556, Met615, Trp617, Asp618, Tyr619, Lys622, Asp623, Arg624, Thr677, Asn691, Ser759, Asp760, Asp761, Ser778, Ile779, Glu796, Lys798, Cys799, Thr800, Thr801, Glu811, Cys813, Ser814	[87]
Standard	Remdesivir (3 IR and -6.3 BE), favipiravir (3 IR and -3.6 BE)	Lys551, Arg553, Arg555, Asp623, Ser682	[41]
Helicase/nsp13 (viral protein)	Small molecule inhibitors	Interacting residues with different classes of phytochemicals	References
Flavonoids		Asp452, Lys545, Arg553, Ala554, Arg555, Thr556, Met615, Trp617, Asp618, Tyr619, Lys622, Asp623, Arg624, Thr677, Asn691, Ser759, Asp760, Asp761, Ser778, Ile779, Glu796, Lys798, Cys799, Thr800, Thr801, Glu811, Cys813, Ser814	[46]

(continued on next page)
Figure-8 proteolytic activity. PLpro can also perform deISGylation of host pro-5.1. Papain-like protease (PLpro)/nsp3 interactions, CHB: BE - binding energy, HB - hydrogen bond, HP/HPI - hydrophobic interactions, NBI - binding interaction.

Standards	Interacting residues with different classes of phytochemicals	References
Nelfinavir (6 IR and –6.2 BE), remdesivir (8 IR and –6.8 BE), prulifloxacin (7 IR and –8.1 BE)	Val6, Asn9, Arg21, Arg22, Pro23, Phe24, Glu128, Arg129, Leu132, Phe133, Glu136, Arg178, Asn179, Pro234, Pro238, Ser310, Pro406, Ala407, Pro408, Asp534, Arg560	[46]

Endonuclease/nsp15 (viral protein)	Class	Small molecule inhibitors	Interacting residues with different classes of phytochemicals	References
Flavonoid	Naringin (5 IR and –7.9 BE), taxifolin (6 IR and –7.2 BE), luteolin (5 IR and –7.2 BE), apigenin (4 IR and –7.2 BE), myricetin (4 IR and –7.0 BE), wogonin (3 IR and –6.9 BE), epigallocatechin (3 IR and –6.8 BE), chlorogenic acid (6 IR and –6.8 BE), afromosin (4 IR and –6.7 BE), rutin (5 IR and –7.8 BE), silymarin (IR and –8.0 BE).	Hic235, ASp240, GIn245, Gly248, Hic250, Lys290, Val292, Ser294, Val339, GIn340, Thr341, Tyr343, Pro344, Leu346	[106]	
Beta-diketone	Demethoxycurcumin (5 IR and –7.51 BE), quercetin (4 IR and –6.49 BE), bisdemethoxycurcumin (1 IR and –6.56 BE), curcumin (1 IR and –6.48 BE), myricetin (4 IR and –6.52 BE), bergapten (4 IR and –5.92 BE), scutellarin (4 IR and –6.97 BE), isoflavone (2 IR and –5.47 BE).	Hic235, GIn340, Thr341, Hic250, Lys290, Ser294, GIn348, Gly248	[73]	
Terpenoid	Saikosaponin-V (8 HB, 9 HP and –8.35 BE), saikosaponin-U (8 HB, 8 HP and –7.27 BE), saikosaponin-C (6 HB, 9 HP and –9.6 BE), saikosaponin-18 (4 HB, 8 HP and –6.36 BE), alpha-amyrin (1 IR and –8.1 BE), pomolic acid (2 IR and –7.9 BE), carnosol (2 IR and –7.8 BE), arjunalic acid (1 IR and –7.6), asiatic acid (5 IR and –7.4 BE), betulonic acid (1 IR and –7.3 BE), platanic acid (5 IR and –7.3 BE), alpinol acid (1 IR and –7.2), asiatic acid (5 IR and –7.4), ursolic acid (5 IR and –8.4 BE).	GIn230, Ala232, Gln234, Hip235, Asp240, GIn345, Leu346, GIn247, Gly248, Hic250, Asn278, Lys290, Cys293, Val292, Cys293, Met331, Ala232, Trp333, Val339, GIn340, Thr341, Tyr343, Pro344, Leu346	[75,106]	
Coumarin	Beta sototol (1 IR and –8.1 BE), glitoxin (3 IR and –6.7 BE), psoralen (5 IR and –6.7 BE), carpinine (4 IR and –6.6 BE), rhinacanthin (5 IR and –6.5 BE), cinnamic acid (4 IR and –6.3 BE), coriandrin (5 IR and –6.2 BE), scopeolitin (5 IR and –6.1 BE), cordycepin (4 IR and –5.6 BE), ricinoleic acid (3 IR and –5.0 BE), alpha asarone (1 IR and –4.9 BE), valproic acid (4 HB and –4.5 BE).	Hic235, GIn348, Hic250, Lys290, Val292, Ser294, Thr341, Thr343, Gly248, Hic250,	[106]	
Organsulfin	Allin (3 IR and –3.8 BE)	Hic235, Thr341, Hic250, Gly248, Hic250, Lys290, GIn346	[106]	
Alkaloid	Taspine (4 IR and –7.3 BE), ajmalicine (5 IR and –8.1 BE), reserpine (4 IR and –7.4).	Hic235, Thr341, Gly248, Hic250, Lys290, GIn346	[106]	
Steroids	Asposasodi-C (5 HB and –7.16 BE), asposasodi-F (7 HB and –6.6 BE), asposasodi-D (6 HB and –6.4 BE), rutin (5 HB), racemose-A (4 HB and –5.99).	Gly230, Ala232, Gln234, Hip235, Asn240, Hic243, Hic245, Hic250, Asn278, Val292, GIn340, Thr341, Leu346	[16]	
Standards	Hydroxycithorouglione (4 IR and –5.8 BE), Nelfinavir (4 IR and –7.3 BE), ribavirin (9 IR and –5.84).	Thr26, Hic235, Hic250, Gly248, Lys290, Val292, Ser294, Thr341, Tyr343, Pro344, Gly248, Lys290, Val292, Ser294, Thr341, Tyr343, Pro344, Leu346	[73,106]	

2′-O- methyltransferase/nsp16 (viral protein)	Class	Small molecule inhibitors	Interacting residues with different classes of phytochemicals	References
Flavonoids, Alkaloids, others	Eryvin-M (9 IR and –8.6 BE), silydianin (9 IR and –8.5), osajin (6 IR and –8.2 BE), raddeanine (8 IR and –8.2 BE)	Asp6873, Asn699, Asp6897, Amet6929, Leu6989, Asn6841, Lys6844, Cys913, Lys6968, Phe947, Lys6944, Asn6899, Asp6928, Cys913, Gly911, Leu6989, Met929, Asp6979, Asp6928, Met929, Cys913, Leu6898, Gly6869, Cys6898, Asp6928, Asp6928, Asp6928, Cys913, Leu6891, Leu6898, Asp6897, Gly6871, Asn6811, Met929, Phe6947.	[46]	
Standards	Nelfinavir (9 IR and –8.2 BE), remdesivir (9 IR and –7.0 BE), prulifloxacin (12 IR and –7.6 BE)	Leu6898, Tyr6930, Gly6871, Pro952, Leu6968, Lys6944, Lys6911, Met929, Gly6969, Pro952, Leu6968, Lys6944, Leu6989, Leu6996, Lys7001, Lys6844, Lys6944, Lys6968, Leu6928, Met929, Cys913, Asp6841, Gly6871, Leu6898, Phe947, Tyr6930, Asp6897, Asn6899, Pro952, Asp6931	[46]	

| Table 1 (continued) | 5.1. Papain-like protease (PLpro)/nsp3 |

Papain-like protease (PLpro)/nsp3 is a multidomain transmembrane protein with an active site containing catalytic triad residues (Cys-111, His-272 and Asp-286) in between thumb and palm protein domains (Figure-8). This protein is autocleaved from nsp3 protein via its intrinsic proteolytic activity. PLpro can also perform deSylation of host proteins which could lead to inhibition of host innate immune response [18, 40]. Due to its key role in viral replication and disease pathogenesis, it represents a promising drug target [52]. The docking score and the prediction of the molecular interactions showed that phytochemicals oleanolic acid, 3β-acetoxyolean-12-en-27-ol, and isovitexin could efficiently interact with the PLpro mainly by hydrogen bond [55]. Another study showed that catechins from green tea can interact to the S1 ubiquitin-binding site of PLpro which might lead to inhibition of its protease enzymatic function as well as abrogation of SARS-CoV-2 inhibitory role on interferon-stimulated gene system [18] (Table 1).
These hits include myricitrin, 5,7,3′-SARS-CoV-2 3CLpro function and viral RNA replication were selected. The phytochemicals were screened, and the top hits that could inhibit binding affinities with 3-CLpro than the N3 and lopinavir (standards). In another study, a database of medicinal plants consisting of more than 30,000 potential anti-viral compounds like melitric acid-A, salvianolic acid-A, withanoside-V, and a few bioactive compounds from Calendula officinalis showed higher binding affinities with 3-CLpro than the N3 and lopinavir (standards). Also, they could have important interactions with the amino acid residues that are crucial in interacting with the nsp7/8 complex. In-silico screening followed by molecular docking analyses suggested that the phytochemicals bisdemethoxycurcumin, scutellarin, desmethoxycurcumin, quercetin, myricetin, luteolin and mundulinol could potentially inhibit 3-CLpro as these compounds exhibit low binding energy [25,73].

5.3. RNA dependent RNA polymerase/nsp12

With the help of accessory subunits nsp7 and nsp8, the catalytic subunit nsp12 of RdRp plays a crucial role in the transcription cycle of SARS-CoV-2 [88]. Its structure is highly similar to SARS-CoV. The nucleotide triphosphate (NTP) entry channel comprises positively charged amino acid residues Lys-545, Arg-553, and Arg-555. The right-hand-like structure of the RdRp domain is further divided into a finger-domain (398–581 and 628–687 amino acids), a palm-domain (582–627 amino acids and 688–815 amino acids), and a thumb-domain (816–919 amino acids). Two Zn ions are also required to stabilize three-dimensional structure of the RdRp [3,45] (Figure-10). Terpenoids (6-Oxoisoiguesterin and 7-O-(6′-lallyl) isoflavone, methyl rosmarinate, (2S)-eriodictyol-D-glucopyranoside, licoleafol, amaranthine, colistin, nelfinavir, and prulifloxacin [67]. Terpenoids (6-Oxoisooquesterin and 22-hydroxyhopan-3-one) and some anthocyanin derivatives could stably interact with catalytic dyad and other crucial residues via hydrogen and hydrophobic interactions [27,31]. Epigallocatechin, gallatechin, and epicatechin from green tea also showed the potential to restrict the activity of 3-CL pro (Ghosh et al., 2020[101]). Similarly, several phytochemicals bind firmly at the catalytic dyad (Cys-145 and His-41) and other crucial amino acid residues (Phe-140, Leu-141, Asn-142, Gly-143, Ser-144, Glu-166, His-163, His-164, Met-165, Leu-167, Pro-168, His-172, Asp-187, Arg-188) of 3-CL pro via making hydrogen bonds, hydrophobic bonds and other interactions (like Pi-alkyl and Pi-Pi T-shaped, van der Waals etc). Phytocompounds extracted from Avinennia officinalis and Iranian medicinal plants have also been proposed as inhibitors of 3-CLpro [51,57]. Tanshinones, a class of natural phytochemicals have been found to inhibit 3-CLpro activity of SARS-CoV _in-vitro_ enzymatic assay studies (Park et al., 2012[115]). Likewise, as listed in Table-1 and shown in Figure-9, several phytocompounds have ability to block 3-CLpro preferentially by interacting with its domain-1 and domain-2.
Table 2

Effect of phytocompounds on targeted SARS-CoV-2 proteins/replication/infection in cell-free and cell-based studies.

Sl no	Crude extract/compound	Virus/RNA/enzyme inhibition/cytotoxicity	Inhibitory assay	Dosage (IC₅₀/EC₅₀/CC₅₀)	References	
01	Baicalein 3CLpro -	in vitro	IC₅₀	0.39 ± 0.11 μM	[50]	
02	Baicalin 3CLpro	in vitro	IC₅₀	83.4 ± 0.9 μM	[50]	
03	Scutellarein 3CLpro	in vitro	IC₅₀	5.80 ± 0.22 μM	[50]	
05	Quercetagetin 3CLpro	in vitro	IC₅₀	1.24 ± 0.14 μM	[50]	
06	Myricetin 3CLpro	in vitro	IC₅₀	2.86 ± 0.23 μM	[50]	
07	Baicalin 3CLpro (FRET)	in vitro	IC₅₀	6.41 ± 0.95 μM	[78]	
08	Baicalein 3CLpro (FRET)	in vitro	IC₅₀	0.94 ± 0.20 μM	[78]	
09	Theaflavin 3CLpro (FRET)	in vitro	IC₅₀	8.44 μg/mL	[39]	
10	Myricetin 3CLpro (FRET)	in vitro	IC₅₀	0.2 μM	[107]	
11	Baicalin 3CLpro (FRET)	in vitro	IC₅₀	34.71 μM	[103]	
12	Herbacetin 3CLpro (FRET)	in vitro	IC₅₀	53.90 μM	[103]	
13	Pectolinarin 3CLpro (FRET)	in vitro	IC₅₀	51.64 μM	[103]	
14	Glycyrrhizin (triterpenoid saponin)	3CLpro	in vitro	IC₅₀	30 μM (0.024 mg/mL)	[86]
15	Δ9-Tetrahydrocannabinol	Antiviral activity	EC₅₀	13.17 μM	[97]	
16	Δ2 -THC	Antiviral activity	EC₅₀	10.25 μM	[97]	
17	CBN	Antiviral activity	EC₅₀	25.79 μM	[97]	
18	CBD	Antiviral activity	EC₅₀	11.07 μM	[97]	
19	CBDA	Antiviral activity	EC₅₀	19.9 μM	[97]	
20	Andrographolide	SARS-CoV2 infection in-vitro	IC₅₀	50 μM (0.024 mg/mL)	[86]	
21	Andrographolide	Plaque reduction	EC₅₀	4.72 μM	[13]	
22	Arteether (sesquiterpene lactone)	SARS-CoV2 infection	Vero cells	31.86 ± 4.72 μM	[14]	
23	Artemether (sesquiterpene lactone)	SARS-CoV2 infection	Vero cells	73.80 ± 26.91 μM	[14]	
24	Artemisic acid (sesquiterpene lactone)	SARS-CoV2 infection	Vero cells	4.72 μM	[14]	
25	Artemisinin (sesquiterpene lactone)	SARS-CoV2 infection	Vero cells	4.72 μM	[14]	
26	Artemione (sesquiterpene lactone)	SARS-CoV2 infection	Vero cells	4.72 μM	[14]	
27	Dihydrartemisinin (sesquiterpene lactone)	SARS-CoV2 infection	Vero cells	4.72 μM	[14]	
28	Artesunate (sesquiterpene lactone)	SARS-CoV2 infection	Vero cells	4.72 μM	[14]	
29	Artemannuin (sesquiterpene lactone)	SARS-CoV2 infection	Vero cells	4.72 μM	[14]	
30	Cannabidiol	SARS-CoV2 infection	IC₅₀	1.25 μM (SARS CoV2γ)	[61]	
31	Punicalin (ELISA)	RBD-AE2 binding assay	IC₅₀	0.14 mg/mL	[80]	
32	Corilagin	SARS-CoV2 inhibition	EC₅₀	0.13 μmol/L	[106]	
33	Corilagin (ELISA)	RBD-AE2 binding assay	IC₅₀	24.9 μM	[93]	
34	Corilagin (RAI-S-37)	HEK293 cell	CC₅₀	>100	[93]	
35	Corilagin (RAI-S-37)	Lyo2 cells	CC₅₀	>100	[93]	

(continued on next page)
Sl no	Crude extract/compound	Virus/RNA/enzyme inhibition/cytotoxicity	Inhibitory assay	Dosage (IC₅₀/EC₅₀/CC₅₀)	References
36	Remdesivir	Cytotoxicity	in-vitro	IC₅₀ 7.58 μg/mL	[30]
37	Corilagin (RAI-S-37)	Cytotoxicity	HEK293T	IC₅₀ 2.8 μM	[30]
38	Corilagin (RAI-S-37)	SARS-CoV-2 RdRp inhibition	Vero cells	EC₅₀ 1.53 ± 0.06 μmol/L	[108]
	Corilagin (RAI-S-37)	SARS-CoV-2 RdRp inhibition	Vero cells	EC₅₀ 1.35 ± 0.56 μmol/L	[108]
	Corilagin (RAI-S-37)	SARS-CoV-2 RdRp inhibition	Vero cells	EC₅₀ 1.98 ± 0.27 μmol/L	[108]
	Corilagin (RAI-S-37)	SARS-CoV-2 RdRp inhibition	Vero cells	EC₅₀ 0.13 μmol/L	[108]
39	EGCG	3CLpro (FRET)	Vero cells	IC₅₀ 7.58 μg/mL	[30]
				C₅₀ >40 μg/mL	
40	Cepharanthine (alkaloid)	SARS-CoV-2 virus reduction	Vero cells	EC₅₀ 0.46 μg/ml	[111]
41	Emetine (alkaloid)	Cytotoxicity	Vero cells	EC₅₀ 1.5625 M	[111]
42	6-Gingerol (beta-hydroxy ketone)	SARS-CoV-2 infection	Vero cells	EC₅₀ 1.471 μM	[111]
43	Panduratin A (Diarylheptanoid)	SARS-CoV-2 post infection	Vero cells	EC₅₀ 1.471 μM	[111]
				C₅₀ 5.30 μg/ml	[113]
				C₅₀ 43.47 μM	[113]
44	Emetine hydrochloride (alkaloid)	SARS-CoV-2 virus reduction	Vero cells	EC₅₀ 0.46 M	[111]
		Cytotoxicity	Vero cells	EC₅₀ 1.5625 μg/ml	[111]
45	Phillyrin (KD-1) Lignan	Anti-HCoV-229E	Vero cells	EC₅₀ 64.53 μg/ml	[113]
		Cytotoxic effect	Vero cells	EC₅₀ 63.90 μg/ml	[113]
		Cytotoxicity	Vero cells	EC₅₀ 1959 μg/ml	[113]
		Plaque reduction	Calu3	IC₅₀ 1034 μg/ml	[113]
				C₅₀ 2.04 μg/ml	[113]
				C₅₀ 43.92 μM	[113]
46	Cepharanthine (bisdemethoxyquinooline alkaloid)	SARS-CoV-2 RNA	Vero6/TMPRSS2	IC₅₀ 0.35 μM	[114]
47	Lycorine (alkaloid)	SARS-CoV-2 infection	Vero cells	EC₅₀ 0.878 μM	[112]
48	Digoxin (cardiotonic glycoside)	SARS-CoV-2 infection	Vero cells	EC₅₀ 0.043 μM	[110]
49	Osabain (Cardiac glycoside similar to digitoxin)	SARS-CoV-2 infection	Vero cells	EC₅₀ 0.024 μM	[110]
		Cytotoxicity	Vero cells	EC₅₀ 0.024 μM	[110]
			Vero cells	EC₅₀ >10 μM	[110]
50	Herbacetin	3CLpro (FRET)	Vero6/TMPRSS2	EC₅₀ 52.75 μg/ml	[110]
51	Pectolinarin	3CLpro (FRET)	in-vitro	IC₅₀ 33.16 μM	[71]
52	Rhoifolin	3CLpro (FRET)	in-vitro	IC₅₀ 27.45 μM	[71]
				IC₅₀ 37.78 μM	
53	Andrographis paniculata extract	SARS-CoV2 infection	Vero E6	IC₅₀ 68.06 μg/ml	[42]
54	Andrographis paniculata extract	Cytotoxicity	Calu-3 cells	EC₅₀ 1.006 μg/ml	[72]
55	Zingiber officinalis rhizome extract	Inhibition of SARS-CoV2 infection	Vero E6	EC₅₀ 29.19 μg/ml	[42]
		Cytotoxicity	Vero cells	EC₅₀ 52.75 μg/ml	[110]
			Vero cells	EC₅₀ 1.45 μg/ml	[110]
56	Boesenbergia rotunda (extract)	SARS-CoV2 infection	Vero cells	EC₅₀ 3.62 μg/ml	[42]
57	Scutellaria baicalensis extract	3CLpro assay	Vero cells	IC₅₀ 8.52 ± 0.54 μg/ml	[50]
58	Pomegranate peel extract	SARS-CoV2 RNA replication	Vero cells	IC₅₀ 0.74 ± 0.36 μg/ml	[50]
		Cytotoxicity	Vero cells	IC₅₀ >500 μg/ml	[50]
			Vero cells	IC₅₀ 0.06 mg/ml	[80]
and theaflavin 3,3′-digallate (TF3) have the ability to form stable bound conformations with the RdRp protein and could interact with the catalytic site indicating their potential to serve as inhibitors [81]. Several alkaloids from *Argemone mexicana* and *Clerodendrum* spp. could be a potential inhibitory candidates against the SARS-CoV-2 RdRp protein [41,62] (Table-1).

5.4. RNA helicase (nsp13)

It is a multi-functional magnesium ion-dependent protein that belongs to the helicase superfamily-1 (SF-1) and has 5′ to 3′ based RNA and DNA unwinding activities [12]. Compounds such as tomentidiploacne-B, sesiquiterpene glycoside, rhoaminetin, osajin, and silydianin have been shown to exhibit better docking results than those of remdesivir, nelfinavir, and prulifloxacin (standards) [46] (Table-1).

5.5. Endoribonuclease/nsp15

Endoribonuclease/nsp15 cleaves RNA genome into multiple sub-genomic RNAs (sgRNAs). Based on the docking score, phytocompounds asparagine- C, asparaginase-D, asparaginase-F, racemose-A, and rutin (from *Asparagus racemosus*) were found to be effective against nsp15 endoribonuclease [16]. The 100 nano-second based molecular dynamic simulation study and molecular mechanics-generalized born solvent accessibility calculations demonstrated that some phytoconstituents such as withanolide-N, ashwagandanolide, withanoside-X, and dihydrowithaferin-A from *Withania somnifera* could potentially suppress the nsp15 endoribonuclease activity of SARS-CoV-2 [17]. Another study revealed the binding capacity of silymarin, sarsasapogenin, ursonic acid, rosmarinic acid, curcumin, ajmalicine, novobiocin, aranotin, gingerol, and alpha terpiny acetate to nsp15 protein [106].

5.6. 2′-O-methyltransferase (2′-OMTase)/nsp16

This is a highly conserved protein of coronaviruses. It is known to play an essential role in viral replication and evasion of host cell innate immunity [64]. Phytocompounds like eryvarin-M, osajin, raddeanine, and silydianin have been found to exhibit the best docking results [46] (Table-1).

6. SARS-CoV-2 assembly inhibitors

Structural proteins, membrane, envelope and nucleocapsid, play essential roles in the assembly and formation of the infectious virion particles. Therefore, targeting these proteins could be a promising approach to inhibit virus multiplication and transmission.

6.1. Envelope protein

E protein (8–12 kDa) is involved in host cell binding, penetration, virion assembly, and budding. It is a transmembrane ion channel protein with an N-terminal ectodomain and an endodomain at C-terminus. Structural insights revealed that compounds from *Withania somnifera* could block the ion channel activity of E protein by binding to the pore region [5].

6.2. Nucleocapsid protein

N protein is a 419 amino acid protein with conserved N-terminal domain (NTD), Serine/Arginine rich motif (SR) domain, central linker region, and a C-terminal domain (CTD). It plays an essential role in viral genome packaging and efficient replication. The N protein is highly immunogenic and is produced in high amounts during infection [22,96].

An *in-silico* screening study revealed emodin, anthrarufin, alizarine, aloe-emodin, and dantron as phytocompounds with good binding affinity with the N-terminal domain of N protein. ADMET prediction revealed that anthrarufin, emodin, aloe-emodin, alizarine, and dantron could be potential candidate drugs to treat COVID-19 [69].

7. *In vitro* and *in vivo* anti-SARS-CoV-2 activities of plant-derived compounds

Plant-based polyphenols (such as phenolic acids, anthocyanins, lignans, flavonoids, and stilbenes) and carotenoids (such as xanthophylls and carotenes) are being used to generate antivirals against various coronaviruses. Recent data on plant-derived compounds showed their potent and significant SARS-CoV-2 inhibition activity *in-vitro* and *in-vivo*. A comprehensive study, conducted by Jia-Tsrong Jan et al., screened 190 supplements as well as traditional medicines from Chinese herbs to identify the SARS-CoV-2 infection inhibitors *in-vitro* in Vero-E6 cells. *In-vitro* enzymatic assays were coupled with *in-silico* modelling to confirm the antiviral activity against SARS-CoV-2 protease and RNA-dependent-RNA-polymerase (Jan et al., 2021). Further, the efficacy of these promising compounds was tested in a hamster challenge model. This study identified the anti-SARS-CoV-2 activity in nelfinavir, *Perilla frutescens*, meliloquine, and Mentha haplocalyx [38]. This observation is very encouraging and warrants an urgent need for testing several other potent phytocompounds in small animal models to speed up the process of developing COVID-19 therapeutics.

A wide range of natural compounds has been proposed to be used in treating COVID-19(either alone or in combination with FDA-approved drugs) including ginkgolic acid, shiraiachrome A, resveratrol, and bai-calein. Moreover, ginkgolic acid is a specific covalent inhibitor of SARS-CoV-2 cysteine proteases, targeting PRpro and 3-CLpro *in-vitro* [93]; and [15] (please refer Table 2 and 3 for antiviral and immunomodulatory functions of small molecule inhibitors).

In another study, 122 Thai natural products for anti-SARS-CoV-2 activity were screened using fluorescence-based nucleoprotein detection combined with viral plaque reduction assay. This work showed that the extract of *Boesenbergia rotunda* and its phychochemical compound, panduratin A reduce SARS-CoV-2 infectivity in Vero E6 cells at pre-entry and post-infection phases [42]. Artemisinin B, an antimalarial drug derived from Chinese herbs, also showed anti-SARS-CoV-2 in these cells by blocking SARS-CoV-2 at the post-entry level [14]. Anti-SARS-CoV-2 activity evaluation of *Andrographis paniculata* extract and Andrographolide in human lung epithelial-carcinoma cell-line (Calu-3) using a high-content imaging platform in combination with plaque reduction assay showed potent inhibition of SARS-CoV-2 infection with minimal cytotoxicity [72]).

In another study, Glycyrrhizin showed potential antiviral activity against SARS-CoV-2 by inhibiting the viral 3-CL pro that is essential for viral replication [86]. Similarly, several other plant-derived compounds including tea polyphenols EGCG, theaflavin, baikaline, and shuan-ghuanglian inhibit 3-CLpro activity and the viral replication in Vero E6 cell line [39,50,78]. Overall, the potent antiviral and anti-inflammatory activities of plant-derived compounds further warrants need of developing phytochemical-based SARS-CoV-2 treatment options.
Table 3

Sl no	Compound/plant	Properties	Biological/immune-action	Studies in in-vivo models	References
01	Quercetin	Impacts on ACE2 and Furin	a) Gene silencing		
b) Expression studies					
c) Tranogenic mouse models	Quercetin affected ACE2 expression. In addition, it was found that it could alter the expression of 98 of 332 (30%) genes which encode human proteins that serve as target for the SARS-CoV-2	[29]			
02	citral and lemon grass	anti-inflammatory action	Inhibits IL-6, IL-10, TNF-α, IL-4, IFN-γ and IL-1β, either release or production and NLRP3 inflammasome activation via blocking activities of proteins, NF-kB,p65, ATP-induced caspase-1 inflammasome activation via blocking activities of proteins, NF-kB,p65, ATP-induced caspase-1	In macrophages challenges with LPS-induced mouse ASLN model	[98, 104]
03	Ginsenoside	anti-inflammatory action	Down regulates IL-6, TNF-α, mRNA expression via blocking the activation of NF-κB	IL-κB induced lung injury in vivo	[102]
04	Withaferin-A	Immunosuppressant	Affect the release of TNF-α, IL-1β, IL-1α, IL-6, IL-8, IP-10, CCL2, MCP-1, SDF-1α, MIP-1β, MIP-1α and GM-CSF.	ATP-stimulated monocyte-derived THP-1 cells. Also mouse and human islet cells – in vitro.	[77, 99]
05	Kaempferol	anti-inflammatory action	TNF-α, IL-1β, IL-6, IL-8 via inhibiting the activation of PKCθ	human mast cells	[105]
06	EGCG	Regulation of cytokine driven signaling pathways	Downregulating the IL-6 and IL-6 driven JAK-STAT pathway		
Similarly by affecting IL-1 driven MAPK pathway					
Reduced the protein levels of the receptors including CD11a, CXCR3, and CCR2 in human T-lymphocyte cells	Primary human melanocytes, human T cells or purified CD8+ T cells from PBMC	[18, 60]			
07	Cannabidiol	anti-inflammatory and immunosuppressive	Prevents the cytokine storm and mucous hypersecretion in COVID-19		
These effects are mediated by inhibition of pro-inflammatory cytokine release (e.g. tumor necrosis factor-a, Interferon-gamma, IL-1β, IL-6, and IL-17) and stimulation of several anti-inflammatory cytokine production (e.g. IL-4, IL-5, IL-10, and IL-13).	COVID 19 Patients	[81]			
08	F3HC	Only low anti-inflammatory activity	showed reduction of IL-6 and IL-8 secretion levels from lung epithelial cells with an IC50 values of 3.45 and 3.49 µg/mL respectively.	Epithelial cancer cell lines (A549)	[6]
09	FCRD	Only low anti-inflammatory activity		Epithelial cancer cell lines (A549)	[6]

7.1. Clinical evaluation of plant-based therapeutics

In-depth systemic randomized and non-randomized ongoing clinical trials of single plant species (Tinospora cordifolia, Nigella sativa, Boswellia serrata, Acai Palm Berry, Caesalpinia spinosa, Cinchona/Stevia, Cannabis sp, Brazilian Green Propolis), plant-based bioactive compounds (EGCG, quercetin, silymarin, hesperidin, escin, colchicine, resveratrol, cannabidiol, melatonin etc.), as well as poly-herbal formulations (ArtemiC, Drug – ADAPT-232, Dietary supplement: Inflammation-I, Inflammation-II, Inflammation-III, Tomeka, Shanshamani Vati Plus, Dietary Supplement: QuadraMune (TM), Ayurvedic formulation, Dietary Supplement: Cretan IAMA, Individualized-Chinese herbal medicine) showed their potential to interfere with COVID-19 pathogenesis via inhibiting virus replication, virus-mediated pneumonia as well as immune dysregulation such as cytokine storming (Supplementary Table). Certain anti-inflammatory herbal medicines from Andrographis paniculata, Citrus spp, and Cuminum cyminum can relieve fever and cough in COVID-19 patients [37]. Few other medicinal plants such as Glycyrrhiza glabra, Thymus vulgaris, Allium sativum, Althea officinalis, Panax ginseng and constituents of Camellia sinensis may modulate the immune system and provide supportive therapy against COVID-19 via upregulating levels of interleukins (IL-1α, IL-1β), monocytes, and lymphocytes in patients [4, 37]. Apart from these, green tea polyphenols can prevent airway blockage by reducing mucin hypersecretion, a phenomenon seen in COVID-19 patients [81]. Moreover, several plant species act as good source of expectorants as they can elevate the water contents of respiratory mucus or diluent of mucus and thus also contributing towards prohibiting airway blockage [26, 44].

8. Conclusions

Since December 2019, SARS-CoV-2 infection and transmission have been a huge concern worldwide. Currently available therapies inhibit SARS-CoV-2, however, they could be associated with severe side effects as well as drug-nutrition interactions which could be harmful to severely infected patients.

On other hand, the complementary approach including plant-derived compounds could be used in controlling COVID-19 in the future. Our review herein presented a compilation of in-silico, in-vitro, cell culture, and in-vivo studies on numerous plants, plant formulations,
and their bioactive constituents that may block the life cycle of SARS-CoV-2 in all possible ways. Beyond the antiviral functions, plant-derived therapeutic drugs show diverse pharmacological actions (such as anti-inflammatory, antioxidant, anti-fibrotic activities), the remarkable tolerance, stability in the systemic circulation which could offer a greater advantage in reducing the risk of COVID-19 induced pathological consequences without much of side effects (Fig. 11). As a proof of concept, certain plant-based therapeutics are under different phases of clinical trials. Taken together, this review article provides a summary of diverse mechanisms of action of plant-based therapeutics to mitigate COVID-19. The knowledge obtained here could be applied to further understand the COVID-19 replication cycle and related antiviral mechanisms.

Declaration of competing interest

The authors declare that there is no conflict of interest.

Funding

No funding was involved in the creation of the manuscript.

Ethical approval statement

As this is a review article, ethical approval is not applicable here.

CRediT authorship contribution statement

B. Uma Reddy: Conceptualization, Methodology, Supervision, Validation, Writing – original draft, Writing – review & editing. Nanda Kishore Routhu: Writing – review & editing, Writing – original draft. Anuj Kumar: Conceptualization, Data curation, Methodology, Writing – original draft, Writing – review & editing.

Data availability

Data derived from public domain resources. No new data was used for the research described in this article.

Acknowledgements

We thank Mayra Segura for proofreading and language editing.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.micpath.2022.105512.

References

[1] I. Abdelli, F. Hassan, S.B. Brikci, S. Ghalem, In-silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammonioides verruculosa. Nature 39 (2021) 3263–3276, https://doi.org/10.1080/09391102.2020.1763199.

[2] D. Agagündüz, M.N. Çelik, M.E.C. Dazıroglu, R. Capasso, Emergent drug and nutrition interactions in COVID-19: a comprehensive narrative review, Nutrients 13 (2021) 1550, https://doi.org/10.3390/nu13051550.

[3] J. Ahmad, S. Ikram, F. Ahmad, I.U. Rehman, M. Mushtaq, SARS-CoV-2 RNA Dependent RNA polymerase (RdRp) - a drug repurposing study, Heliyon 6 (7) (2020), e04502, https://doi.org/10.1016/j.heliyon.2020.e04502.

[4] S. Alam, M. Sarker, S. Afrin, F.T. Richi, C. Zhao, J.R. Zhou, I.N. Mohamed, Traditional herbal medicines, bioactive metabolites, and plant products against COVID-19: update on clinical trials and mechanism of actions, Front. Pharmacol. 12 (2021) 671498, https://doi.org/10.3389/fphar.2021.671498.

[5] R.A. Alharbi, Structure insights of SARS-CoV-2 open state envelope protein and inhibiting through active phytochemicals of ayurvedic medicinal plants from Withania somnifera, Saudi J. Biol. Sci. 28 (6) (2021) 3594–3601, https://doi.org/10.1016/j.sjbs.2021.03.036.

[6] S.M. Anil, N. Shalev, A.C. Vinayaka, S. Nadarajan, D. Nadarajan, E. Belausov, I. Shoval, K.A. Mani, G. Mecheva, H. Koltai, Cannabis compounds exhibit anti-inflammatory activity in vitro in COVID-19 related inflammation in lung epithelial cells and proinflammatory activity in macrophages, Sci. Rep. 11 (1) (2021) 1462, https://doi.org/10.1038/s41598-021-81409-2.

[7] S. Arakavyar, A. Stalin, B.S. Kannan, H. Shin, Geraniol herb as a Potential Inhibitor of SARS-CoV-2 main 3CLpro, spike RBD, and regulation of unfolded protein response: an in-silico approach, Antibiotics (Basel) 9 (12) (2020) 863, https://doi.org/10.3390/antibiotics9120863.PMID.33287311.

[8] V. Armijos-Jaramillo, J. Yeager, C. Muslin, Y. Perez-Castillo, SARS-CoV-2, an emergent drug and nutrition interactions in COVID-19: a comprehensive review, Viruses 12 (10) (2020) 1092, https://doi.org/10.3390/v12101092.

[9] M. Azamz, O. Motwalli, Molecular basis for drug repurposing to study the interface of the S protein in SARS-CoV-2 and human ACE2 through docking, characterization, and molecular dynamics for natural drug candidates, J. Mol. Model. 26 (12) (2020) 338, https://doi.org/10.1007/s00894-020-04599-8.

[10] R. Alexopanidou, J.F. De Mesquita, S.K. Pandian, A.V. Ravi, Quinolines-based SARS-CoV-2 3CLpro and RdRp inhibitors and spike-RBD-ACE2 inhibitor for drug repurposing against COVID-19: an in-silico analysis, Front. Microbiol. 11 (2020) 1796, https://doi.org/10.3389/fmicb.2020.01796.

[11] B. Basu, A. Sarkar, U. Maulik, Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2, Sci. Rep. 10 (1) (2020) 17699, https://doi.org/10.1038/s41598-020-74715-4.

[12] D. Bestle, M.R. Heinl, H. Limburg, T.V.L. Van, O. Pilgram, H. Moulton, D. Steinmetzer, E. Böttcher-Friebertshauer, TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells, Life Sci. Alliance 3 (9) (2020), e20000786, https://doi.org/10.26508/lis.202000786.

[13] R. Cao, H. Hu, Y. Li, X. Wang, M. Xu, J. Liu, H. Zhang, Y. Yan, L. Zhao, W. Li, T. Zhang, D. Xiao, X. Guo, Y. Li, J. Yang, Z. Hu, M. Wang, W. Zhong, Anti-SARS-CoV-2 potential of artemisinins in-vitro, ACS Infect. Dis. 6 (9) (2020) 2524–2531, https://doi.org/10.1021/acsinfecdis.0c00522.

[14] Z. Chen, Q. Cui, L. Cooper, F. Zhang, H. Lee, Z. Chen, Y. Wang, X. Liu, L. Rong, R. Du, Gingkoic acid and anacardic acid are specific covalent inhibitors of SARS-CoV-2 protease. Cells 9 (2020), 2178, https://doi.org/10.3390/10912178.

[15] R.V. Chikhale, S.K. Sinha, R.B. Patil, S.K. Prasad, A. Shakya, N. Gurav, R. Prasad, S.R. Bhaskar, M. Wanjari, S.S. Gurav, In-silico investigation of
phychotochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19, J. Biomed. Struct. Dyn. (2020) 1–15, https://doi.org/10.1080/14756366.2020.1918370.

R.V. Chikhale, S.S. Gurav, R.B. Patil, S.K. Sinha, S.K. Prasad, A. Shakya, S. K. Shrivastava, N.S. Gurav, R.S. Prasad, Sars-cov-2 host entry and replication inhibitors from Indian gingers: an in-silico approach, J. Biomed. Struct. Dyn. (2020) 1–12, https://doi.org/10.1080/14756366.2020.1784289.

M. Chourasia, P.R. Koppula, A. Battu, M.M. Ouseph, A.K. Singh, EGCG, a green flavonoid based phytochemical constituents of Calendula officinalis, J. Biomol. Struct. Dyn. 19 (2020) 1–19, https://doi.org/10.1080/07391102.2018.1170075.

B. Ding, Y. Qin, M. Chen, Nucleocapsid proteins: roles beyond viral RNA cleavage site and the plans of their cleavage, Brief. 168 (2022) 1–18, https://doi.org/10.1056/NEJMoa2007016.

M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. M. Hussain, N. Jabeen, A. Amanullah, A.A. Baig, B. Aziz, S. Shabbir, F. Raza, J. Gao, Z. Tian, Yang X. Breakthrough, Chloroquine phosphate has shown promising results in early phase clinical trials with patients infected with COVID-19, J. Pathol. 203 (2004) 631–637, https://doi.org/10.1002/ijcp.1570.

M. Husnain, N. Jabeen, A. Anumanllah, A.A. Baig, B. Aziz, S. Shabbir, F. Raza, N. Uddin, Molecular docking between human TMPRSS2 and SARS-CoV-2 spike protein, Cytokine and molecular interactions, AIMS Microbiol. 6 (3) (2020) 350–360, https://doi.org/10.3934/microbiol2020021.

M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. Schiergens, G. Herberger, H.H. Wu, A. Nitsche, M. Schiemann, S. Schiergens, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 (2) (2020) 271–280, https://doi.org/10.1016/j.cell.2020.02.052.

M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. Schiergens, G. Herberger, H.H. Wu, A. Nitsche, M. Schiemann, S. Schiergens, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 (2) (2020) 271–280, https://doi.org/10.1016/j.cell.2020.02.052.

M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. Schiergens, G. Herberger, H.H. Wu, A. Nitsche, M. Schiemann, S. Schiergens, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 (2) (2020) 271–280, https://doi.org/10.1016/j.cell.2020.02.052.

M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. Schiergens, G. Herberger, H.H. Wu, A. Nitsche, M. Schiemann, S. Schiergens, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 (2) (2020) 271–280, https://doi.org/10.1016/j.cell.2020.02.052.

M Hoffmann, H Kleine-Weber, S Schroeder, N Krüger, T Herrler, S Erichsen, T Schiergens, G Herberger, H-H Wu, A Nitsche, M Schiemann, S Schiergens, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 (2) (2020) 271–280, https://doi.org/10.1016/j.cell.2020.02.052.

M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Krüger, T. Herrler, S. Erichsen, T. Schiergens, G. Herberger, H.H. Wu, A. Nitsche, M. Schiemann, S. Schiergens, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 (2) (2020) 271–280, https://doi.org/10.1016/j.cell.2020.02.052.

M Hoffmann, H Kleine-Weber, S Schroeder, N Krüger, T Herrler, S Erichsen, T Schiergens, G Herberger, H-H Wu, A Nitsche, M Schiemann, S Schiergens, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 (2) (2020) 271–280, https://doi.org/10.1016/j.cell.2020.02.052.

M Hoffmann, H Kleine-Weber, S Schroeder, N Krüger, T Herrler, S Erichsen, T Schiergens, G Herberger, H-H Wu, A Nitsche, M Schiemann, S Schiergens, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell 181 (2) (2020) 271–280, https://doi.org/10.1016/j.cell.2020.02.052.
Molecular docking and simulation studies of natural compounds Vitez negundo L. against papain-like protease (PLP) of SARS-CoV-2 (coronavirus) to conquer the pandemic situation. J. Biomol. Struct. Dyn. (2020) 1–18, https://doi.org/10.1080/07391102.2020.1842246.

S. Mousavi, A. Karami, T.M. Haghighi, S.S. Mousavi, A. Karami, T.M. Haghighi, S.G. Tumilaar, Fatimawali, R. Idroes, P. Mondal, J. Natesh, A. Ajees, A. Salam, S. Thiyagarajan, S.M. Meeran, I.O. Rosas, N. Br, R. Rolta, R. Yadav, D. Salaria, S. Trivedi, M. Imran, A. Sourirajan, D.J. Baumler, N. Redondo, S. Zaldívar-López, D.S.N.B.K. Prasanth, M. Murahari, V. Chandramohan, S.P. Panda, L.R. Atmakuri, T.P. Peacock, D.H. Goldhill, J. Zhou, L. Baillon, R. Frise, O.C. Swann, against papain-like protease (PLP) derived antivirals against main protease, 3CL pro and endoribonuclease, NSP15 of SARS-CoV-2 (2021) 1261–1270, https://doi.org/10.1007/s10995-021-00832-w.

S. Hongeng, Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component Andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives, J Nat Prod 84 (4) (2021) 1261–1270, https://doi.org/10.1021/acs.jnatprod.0c00124.

K. Sa-ngammatumruks, S. Sukata, P. Pekwilang, P. Thongsr, Panjaniranjar, S. Manopwisedjaroen, S. Charoensutthivarakul, P. Wongtrakoongate, S. Pitporn, K. Hemawoot, S. Chuttongtahan, S. Borrwipinyo, A. Thithayanont, S. Hongeng, Anti-SARS-CoV-2 activity of Andrographis paniculata extract and its major component Andrographolide in human lung epithelial cells and cytotoxicity evaluation in major organ cell representatives, J Nat Prod 84 (4) (2021) 1261–1270, https://doi.org/10.1021/acs.jnatprod.0c00124.
discovery of potential drugs by computational methods, Acta Pharm. Sin. B 10 (5) (2020) 766–788, https://doi.org/10.1016/j.apsb.2020.02.008.

[93] L.-J. Yang, R.H. Chen, S. Hamdoun, P. Coghi, J.P.-L. Ng, D.W. Zhang, X. Guo, C. Xia, B.Y.K. Law, V.K.W. Wong, Corilagin prevents SARS-CoV-2 infection by targeting RBD-ACE2 binding, Phtymedicine 87 (2021) 153591, https://doi.org/10.1016/j.phymed.2021.153591.

[94] H. Yang, M. Yang, Y. Ding, Y. Liu, Z. Lou, Z. Zhou, L. Sun, L. Mo, S. Ye, H. Pang, G. F. Gao, K. Anand, M. Bartlam, R. Hilgenfeld, Z. Rao, The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor, Proc. Natl. Acad. Sci. U.S.A. 100 (23) (2003) 13190–13195, https://doi.org/10.1073/pnas.1835675100.

[95] P. Zhou, X.L. Yang, X.G. Wang, B. Hu, L. Zhang, W. Zhang, H.R. Si, Y. Zhu, B. Li, C.L. Huang, H.D. Chen, J. Chen, Y. Luo, H. Guo, R.D. Jiang, M.Q. Liu, Y. Chen, X. R. Shen, X. Wang, X.S. Zheng, K. Zhao, Q.J. Chen, F. Deng, L.L. Liu, B. Yan, F. X. Zhan, Y.Y. Wang, G.F. Xiao, Z.L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (7798) (2020), https://doi.org/10.1038/s41586-020-2177-9.

[96] R. Zhou, R. Zeng, A. B. Brum, J. Lei, Structural characterization of the C-terminal domain of SARS-CoV-2 nucleocapsid protein, Mol. Biomed. 1 (2020) 1–11, https://doi.org/10.3389/mmb.2020.005236.

[97] V. Raj, J.G. Park, K.H. Cho, P. Choi, T. Kim, J. Ham, J. Lee, Assessment of antiviral potencies of cannabinoids against SARS-CoV-2 using computational and in-vitro approaches, Int. J. Biol. Macromol. 168 (2021) 474–485, https://doi.org/10.1016/j.ijbiomac.2020.12.020.

[98] T.F. Bachiega, J.M. Sforcin, Lemongrass and citral effect on cytokines production by inhibiting the activation signal of NLRP3 inflammasome and enhancing Nrf2 activation, Arthritis Res. Ther. 17 (2015) 331, https://doi.org/10.1186/s13075-015-0844-6.

[99] C.L. Huang, H.D. Chen, J. Chen, Y. Luo, H. Guo, R.D. Jiang, M.Q. Liu, Y. Chen, X. R. Shen, X. Wang, X.S. Zheng, K. Zhao, Q.J. Chen, F. Deng, L.L. Liu, B. Yan, F. X. Zhan, Y.Y. Wang, G.F. Xiao, Z.L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (7798) (2020), https://doi.org/10.1038/s41586-020-2177-9.

[100] B. Ellinger, C. Claussen, G. Geisslinger, D. Iaconis, C. Talarico, C. Manelfi, D. Kempuraj, B. Madhappan, S. Christodoulou, W. Boucher, J. Cao, B. Uma Reddy et al., Target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication - an in-silico docking and molecular dynamics simulation study, J. Biomol. Struct. Dyn. 485 (2021), https://doi.org/10.1016/j.phymed.2021.153591.

[101] Q. Li, D. Yi, X. Lei, X. Lei, J. Zhao, Y. Zhang, X. Cui, X. Xiao, T. Jiao, X. Dong, I.S. Mahmoud, Y.B. Jarrar, Targeting the intestinal TMPRSS2 protease to prevent SARS-CoV-2 entry into enterocytes, Front. Pharmacol. 11 (2020), https://doi.org/10.3389/fphar.2020.01131.

[102] Y. Shi, J. Dai, K. Zheng, X. Li, M. Hui, L. Fu, Z. Yang, Philliyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-kB) signaling pathway, Phtymedicine 78 (2020) 153296, https://doi.org/10.1016/j.phymed.2020.153296.

[103] H. Ohashi, K. Watabshi, W. Saso, S. Ishinoya, S. Iwami, T. Hirokawa, T. Shiraiz, J.Y. Park, J.H. Kim, Y.M. Kim, H.J. Jeong, D.W. Kim, K.H. Park, H.J. Kwon, S. Kubota, Y. Koizumi, T. Tanaka, S. Araki, K. Kurnama, for South African lineages, P. Kaewpreedee, S.F. Sia, D. Chen, K.P.Y. Hui, D.K. Outbreaks, J. Phys Chem Lett (2020) 4430–4434, https://doi.org/10.1021/acs.jpclett.0c00718.

[104] Y.H. Jin, J.S. Min, S. Jeon, J. Lee, S. Kim, T. Park, D. Park, M.S. Jang, C.M. Park, J. H. Song, H.R. Kim, S. Kwon, Lycorine, a non-nucleoside RNA dependent RNA polymerase inhibitor, as potential treatment for emerging coronavirus infections, Phtymedicine 86 (2020) 153440, https://doi.org/10.1016/j.phymed.2020.153440.

[105] Q. Ma, R. Li, W. Pan, W. Huang, B. Liu, Y Xie, Z. Wang, C. Li, H. Jiang, J. Huang, Y. Shi, J. Dai, K. Zheng, X. Li, M. Hui, L. Fu, Z. Yang, Philliyrin (KD-1) exerts anti-viral and anti-inflammatory activities against novel coronavirus (SARS-CoV-2) and human coronavirus 229E (HCoV-229E) by suppressing the nuclear factor kappa B (NF-kB) signaling pathway, Phtymedicine 78 (2020) 153296, https://doi.org/10.1016/j.phymed.2020.153296.

[106] J.Y. Park, J.H. Kim, Y.M. Kim, H.J. Jeong, D.W. Kim, K.H. Park, H.J. Kwon, S. Park, W.S. Lee, Y.B. Ryu, Tanhinhones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases, Bioorg Med Chem Lett 30 (2020) 116789, https://doi.org/10.1016/j.bmcl.2020.116789.

[107] D. Kim, J.Y. Lee, J.-S. Yang, J.W. Kim, V.N. Kim, H. Chang, The architecture of SARS-CoV-2 transcriptome, bioXiv (2020), https://doi.org/10.1101/2020.03.12.988865.

[108] A.A.F. de Vries, SARS-CoV-2/ COVID-19: a primer for cardiologists, Neth Heart J. 28 (2020) 366–383, https://doi.org/10.1016/j.ijhj.2020.03.011.

[109] J. Bion, Z. Li, Angiotensin-convertinge enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator, Acta Pharmaceutica Sinica B 2 (2021) 1–12, https://doi.org/10.1007/s13309-020-00606-0.

[110] I.S. Mahmoud, Y.B. Jarrar, Targeting the transient TMPRSS2 protease to prevent SARS-CoV-2 entry into enterocytes: prospects and challenges, Molecular Biology Reports (2021) 4667–46756475, https://doi.org/10.1007/s11033-021-06390-1.

[111] W.-F. Zhang, P. Stephen, J.-F. Theriaul, R. Wang, S-X Lin, Novel Coronavirus Polymerase and Nucleotidyl-Transferase Structures: Potential to Target New Outbreaks, J. Phys Chem Lett (2020) 4430–4435, https://doi.org/10.1021/acs.jpclett.0c00571.

[112] M. Margaret E Fairman-Williams, Ulf-Peter Guenther, Eckhard Jankowsky, SF1 and SF2 helicases: family matters, Curr Opin Struct Biol (2010) 324, https://doi.org/10.1016/j.sbi.2010.03.011.

[113] Y.M. Bar-On, A. Flamholz, R. Phillips, R. Milo, SARS-CoV-2 (COVID-19) by the numbers, Elife 9 (2020), https://doi.org/10.7554/eLife.57309.