Cancer chemoprevention through dietary flavonoids: what’s limiting?
Haneen Amawi1, Charles R. Ashby Jr.2 and Amit K. Tiwari1,3*

Abstract
Flavonoids are polyphenols that are found in numerous edible plant species. Data obtained from preclinical and clinical studies suggest that specific flavonoids are chemopreventive and cytotoxic against various cancers via a multitude of mechanisms. However, the clinical use of flavonoids is limited due to challenges associated with their effective use, including (1) the isolation and purification of flavonoids from their natural resources; (2) demonstration of the effects of flavonoids in reducing the risk of certain cancer, in tandem with the cost and time needed for epidemiological studies, and (3) numerous pharmacokinetic challenges (e.g., bioavailability, drug–drug interactions, and metabolic instability). Currently, numerous approaches are being used to surmount some of these challenges, thereby increasing the likelihood of flavonoids being used as chemopreventive drugs in the clinic. In this review, we summarize the most important challenges and efforts that are being made to surmount these challenges.

Keywords: Flavonoids, Chemoprevention, Silybin, Silymarin, Natural product drug development, Pharmacokinetic challenges

Background
Dietary flavonoids are the most common polyphenols found in fruits, vegetables, flowers, chocolate, tea, wine, and other plant sources [1–3]. With more than 9000 members in this family, flavonoids can be divided into several subfamilies, including flavones, flavonols, isoflavones, flavanones, and flavanones that differ in their ring substituents and extent of saturation [4, 5]. However, all compounds in this family share the basic chemical structure consisting of two benzene rings connected by a 3-carbon bridge, forming a heterocycle (C6-C3-C6) [6] (Fig. 1). Flavonoids have been reported to have an excellent safety profile (no toxicity at up to 140 g/day), with no known significant adverse effects [7]. The pharmacological effects of flavonoids include antioxidant, anti-inflammatory, cardioprotective, hepatoprotective, antimicrobial, and anticancer [8, 9]. However, there are significant challenges associated with flavonoids related to their isolation, purification, and pharmacokinetic/pharmacodynamic (PK/PD) properties, which have limited their development into efficacious clinical drugs. Here, we discuss the challenges associated with the development of flavonoids for cancer chemoprevention and efforts to surmount these challenges.

Flavonoids in cancer chemoprevention
Increasing evidence from both epidemiological and laboratory studies suggests that the dietary intake of flavonoids reduces the risk of developing certain types of cancers [10]. Several types of flavonoids have been identified as having antiproliferative efficacy in various cancers, including silymarin, genistein, quercetin, daidzein, luteolin, kaempferol, apigenin, and epigallocatechin 3-gallate [11, 12]. These aforementioned compounds have been reported to have anticancer and preventive effects against prostate [13], colorectal [14], breast [15], thyroid [16], lung [17], and ovarian [18] cancers, among others [19–21]. Their chemopreventive efficacy is mediated by (1) inhibiting the development of new cancer cells; (2) preventing carcinogens from reaching their activation sites; and (3) decreasing the toxicity of certain compounds by inhibiting their metabolism [22–24]. The molecular mechanisms by which flavonoids produce
their anticancer and preventive effects include (1) induction of apoptosis [14, 25, 26]; (2) cell cycle arrest at G₁ or G₂/M phase by inhibiting key cell cycle regulators such as cyclin-dependent kinases (CDKs) [27, 28]; (3) inhibition of metabolizing enzymes (notably cytochromes P450 [CYPs]), which inhibits the activation of numerous carcinogenic compounds [29]; (4) inhibition of reactive oxygen species formation primarily by activation of phase II metabolizing enzymes [26, 30, 31]; and (5) inhibition of vascular endothelial growth factor (VEGF)- and basic fibroblast growth factor (bFGF)-mediated angiogenesis [32–34]. In addition, some flavonoids have been shown to significantly inhibit multidrug resistance, which is responsible for cancer relapse and chemotherapy failure [35, 36]. However, some flavonoids have specific mechanisms of action that are not characteristic of the flavonoid family. For example, the isoflavones genistein and diadzein have been shown to significantly inhibit cancer growth and proliferation [37–39]. Due to their structural similarity with estrogen, genistein and diadzein have been reported to have significant preventive efficacy against breast cancer [40, 41]. Another interesting flavonoid is silybin, which has antioxidant and hepatoprotective efficacy [42–44]. However, in vitro and in vivo preclinical studies in the last decade indicate that silybin also has antiproliferative efficacy and, as a result, subsequent phase I and II clinical studies have been conducted [45–47]. Silybin has a number of pharmacological properties that may explain its anticancer efficacy, such as inhibition of (1) tumor necrosis factor (TNF)-induced activation of nuclear factor kappa B (NF-κB) where it inhibits the phosphorylation and proteolytic degradation of nuclear factor of kappa light polypeptide gene enhancer in B cell inhibitor, alpha (IκBα) to NF-κB (active form) [48]; (2) tyrosine kinases [49]; (3) androgen receptors [50]; and (4) the epithelial-to-mesenchymal transition embryonic pathways [51–54]. Another flavonoid, quercetin, is a potent antioxidant that is present in

---

**Fig. 1** Subfamilies of flavonoids. Flavonoids include the following subfamilies: flavones, flavanols, isoflavones, flavonols, flavanones, and flavanonols, which differ in their ring substituents and extent of saturation.
natural sources such as berries, onions, apples, and red wine [3, 55]. Quercetin's anticancer efficacy in colon cancer and neurogliomas results from activating the novel cell death pathway, autophagy (type II programmed cell death), and mitogen-activated protein kinases (MAPK or extracellular signal-related kinase [ERK]) signaling pathways [56–58]. Accordingly, several studies on flavonoids support the potential role of flavonoids in both cancer treatment and prevention [1]. Currently, a variety of flavonoid formulations are present in dietary supplements such as milk thistle and red clover extracts [59]. However, none of the above mentioned flavonoids have been approved for clinical use.

**Challenges in flavonoids in cancer chemoprevention development**

Despite preclinical evidence suggesting that flavonoids have anticancer and preventive efficacy, there are numerous problems that have impeded the development of dietary flavonoids as approved drugs for clinical use. There are challenges associated with demonstrating the effect of flavonoids in reducing the risk of certain cancer, e.g., the cost and time needed for epidemiological studies, the isolation and purification of flavonoids from their natural sources, and PK issues, among others. These challenges are discussed below, and a summary of these issues is also presented in Fig. 2.

**Isolation and purification challenges**

One of the major challenges in the extraction of flavonoids from their original plant sources resides in the fact that these compounds are present at very low levels (from micrograms to milligrams per kg of plant masses). Indeed, the continuous extraction of these compounds could result in the extinction of the plant source (assuming extraction is faster than replenishing new plants), disrupting whole plant communities [60, 61].

As with other plant products, flavonoids are usually present in plants as a complex with other compounds that produce their effects in concert. In addition, other secondary metabolites, minerals, vitamins, and fibers are also complexed with flavonoids from the same source [59]. Therefore, the sum of the constituents in the plant may be responsible for the observed anticancer efficacy, as opposed to more than one flavonoid alone [62]. This complexation of flavonoids makes it difficult to isolate and identify the exact molecule that is producing specific pharmacological effects. Also, following the identification of the active flavonoid, its subsequent isolation and purification from other compounds, using analytical methods, is a multistage procedure. A combination of several technologies can be used for isolation of specific compounds, including solvent extraction, column chromatography, medium-pressure liquid chromatography, vacuum column chromatography, and preparative high performance liquid chromatography (HPLC) [63, 64]. The application of such procedures is a time-consuming process that can be associated with high costs [65]. Additionally, even with the application of such complex techniques, the yield of extracted compounds is typically very low as several kilograms of the plant produce less than 1 g of the isolated compounds in some cases [66]. An important factor that limits the extraction yield is the complex nature of biosynthetic pathways for flavonoids in plants. These pathways are considered to be one of the most complex biosynthetic pathways and result in variable flavonoid composition at different growth stages of the plant and under different environmental conditions [67, 68]. The variation in flavonoid composition decreases the predictability of flavonoid yields during extraction and results in inconsistent data after each extraction [69]. Another limitation in the extraction of flavonoids is that these compounds are usually labile, subjecting them to a high level of degradation or alteration in their chemical structures and subsequent loss of activity during purification [70]. Therefore, harvesting flavonoids from their plant natural sources, using the current applied methodologies, can be time-consuming, highly expensive, associated with very low yields and wasteful.

**Epidemiological challenges**

The potential therapeutic effects (as chemopreventive compounds) of natural products such as flavonoids can be ascertained to some extent from epidemiological studies, including retrospective meta-analysis [71], prospective observational studies [72], and/or prospective interventional studies [73, 74]. The data from epidemiological studies depend on the population of individuals that have ingested the specific compound. Thus, for this review, the population of interest would consist of those individuals that have taken dietary flavonoids to prevent cancer. It is time-consuming to collect the data and have it categorized, analyzed, and associated with the presence or absence of flavonoids. The data is often skewed due to lack of adherence data in the population using specific flavonoids. Also, the length of exposure is very long, where some changes in the amount and type of exposure can occur rapidly in the population, making the conclusions of the study invalid. Another important limitation is that the population is usually exposed to many heterogeneous factors that can significantly affect health outcomes, including the development of cancer. Such factors can result in conflicting data and decrease the certainty of conclusions about the effect of flavonoids in cancer chemoprevention. For example, the data from epidemiological studies that were used to determine...
the correlation between the intake of dietary flavonoids and the risk of developing colorectal cancer (CRC) were controversial and inconsistent [75, 76]. Some studies suggested that flavonoid consumption was significantly correlated with a low CRC risk [77–79], whereas other studies did not report a significant correlation between the intake of flavonoids and CRC risk [80–82]. Therefore, the type of dietary flavonoid that is ingested, the size and heterogeneity of population, and the design of the study can affect the interpretation of results from studies assessing the effectiveness of flavonoids in preventing cancer. The validation of the conclusions derived from appropriately designed epidemiological studies requires conducting expensive studies using large populations, which further limits the development of flavonoids as drugs.

**PK challenges**

Flavonoids typically have an unsuitable PK profile [83, 84] (i.e., absorption, distribution, metabolism, excretion, and toxicity [ADMET]), characterized by low solubility, poor oral absorption, and extensive hepatic metabolism.
by phase I and II enzymes [85–87]. Flavonoids are usually ingested with other foods components, resulting in the complexation or precipitation of flavonoid compounds, thus limiting their absorption and bioavailability [88, 89]. Furthermore, flavonoids can undergo significant metabolism via de-glycosylation prior to their absorption in the small intestine epithelial cells [90, 91]. In vivo, flavonoids are substrates for glucuronidation, sulfation, and O-methylation [92], resulting in inert, polar complexes that are rapidly excreted in urine [85]. Furthermore, the unabsorbed form can reach the colon and undergo degradation by the intestinal microflora by ring fission [93–95], reduction [96], or hydrolysis [97]. For example, only 20%–30% of an oral dose of quercetin is bioavailable [98]. The incubation of quercetin under normal physiological conditions (Hanks’ Balanced Salt solution, pH 7.4) results in its degradation within 6 h [99]. The anticancer effect of the flavonoid silybin is limited by its extensive metabolism and low oral absorption [100, 101]. Flavan-3-ols have been shown to be completely degraded after 8 h of exposure to simulated intestinal secretions [102]. These aforementioned PK liabilities represent significant barriers for the clinical development of flavonoids, as the required in vivo levels cannot be achieved even with high oral doses [103, 104]. In addition, the ingestion of higher doses of flavonoids for more effective antiproliferative effect may produce proliferative and inflammatory responses [105, 106]. Finally, flavonoids are known to affect the bioavailability and efficacy of many drugs due to their multiple in vivo interactions. For example, certain flavonoids can affect CYPs [107] and conjugation enzymes [108], other enzymes (α-amylase [109] and α-glucosidases [110]), bovine hemoglobin [111], multidrug resistance transporters [112], colonic microflora [113], and plasma proteins [114, 115].

ATP-binding cassette drug transporter interactions

The ATP-binding cassette (ABC) transporter superfamily consists of important members that mediate not only PK alterations (i.e., ADMET), but also multidrug resistance (MDR) to numerous antineoplastic drugs, including flavonoids, that are substrates for these transporters, resulting in chemotherapeutic failure [116–119]. Important members include P-glycoprotein (P-gp or multidrug resistance protein family 1 [MDR1]), breast cancer-resistant protein (BCRP or ATP-binding cassette sub-family G member 2 [ABCG2]), and multidrug resistance protein family C member 1 (ABCC1 or multidrug resistance-associated protein 1 [MRP1]) [120]. The transporters are located on the cell membrane with two transmembrane domains that can recognize different compounds and form channels within the membrane to efflux these compounds [121]. The efflux of the compounds requires the hydrolysis of ATP which provides the energy required for efflux of substrates [122]. ABC transporters have a ubiquitous distribution throughout the body, although they are present in high densities in tissues that have a barrier function, such as the gastrointestinal tract, reproductive organs, kidney, liver, and blood–brain barrier [123]. It is well established that ABC transporters play a critical role in regulating drug absorption, distribution, and excretion, which can decrease their bioavailability and thus their efficacy [124, 125].

Several reports investigated the possible interaction of flavonoids with ABC transporters. Flavonoids, such as flavones (e.g., apigenin and chrysin), isoflavones (e.g., biochanin A and genistein), flavonols (kaempferol), and flavanones (naringenin) have been reported to inhibit the efflux function of ABC transporters, such as ATP-binding cassette subfamily B member 1 (ABCB1) and ABCG2 [112, 126, 127]. The inhibition of ABC transporters by certain flavonoids can have advantages and disadvantages. The inhibition of ABC transporters can increase the bioavailability of some poorly available drugs, thereby potentially augmenting the absorption, distribution, bioavailability, and efficacy of certain drugs, including antineoplastics. Such inhibition can be used to overcome multidrug resistance and chemotherapy failure [126]. For example, the isoflavonoids medicarpin and millepurpan significantly induce apoptosis in multidrug-resistant P388 leukemia cells and overcome the resistance mechanisms [128]. Epigallocatechin-3-gallate, at a dose of 10 mg/kg bodyweight by intragastric gavage as a suspension in 0.2% agar, once a day for 10 days, significantly decreased the expression of P-gp, which increased the plasma levels of atorvastatin and verapamil in male Wistar rats, potentiating their pharmacological actions [129].

However, the inhibition of ABC transporters by specific flavonoids can potentiate the toxicity of certain ABC substrates and elicit unexpected adverse or toxic effects of these substrates such as antimicrobials [130, 131], immunosuppressants [132], cardiovascular [133–135], and chemotherapeutic drugs [136, 137]. A recent report indicated that some flavonoids (e.g., genistein and glyceollin) also interact with other ABC transporters such as ABC2 (MRP2) [138]. In addition, certain flavonoids are substrates for ABC transporters, thereby limiting their absorption from the gastrointestinal tract, distribution to body tissues and organs, and, ultimately, their bioavailability [139]. Polymorphisms in the ABC transporter genes can directly affect the PK profile of flavonoids. For example, a recent study showed that the ABCB1 C3435T polymorphism significantly altered the bioavailability and plasma levels of silybin. Patients with CC or CT polymorphisms in the ABCB1 gene have twice the plasma
levels of silybin compared to patients with the TT polymorphism [140]. Detailed interactions of flavonoids with CYPs are reviewed elsewhere [108, 137].

**CYP interactions**

CYPs play a significant role in the biotransformation of xenobiotic and endogenous compounds [141]. It is well established that CYPs play a crucial role in phase I metabolism, typically bio-transforming molecules to more polar entities and increasing the likelihood they will be substrates for phase II metabolism. Flavonoids have been reported to significantly inhibit the activities of CYPs [109]. This inhibition is mediated by either a reduction in the level of CYPs or direct binding of flavonoids to their active sites [110]. CYP 3A4 is one of the most important CYP isoforms and is involved in the metabolism of many clinically used drugs [142]. Several types of flavonoids, such as quercetin, kaempferol, naringenin, and apigenin have been shown to have inhibitory effects on the activities of CYPs, primarily CYP 3A4 (both in vivo and in vitro) [143, 144]. This inhibition increases the half-lives and the plasma concentrations of many drugs that are substrates for CYPs, which can potentiate their adverse effects and/or toxicity. For example, the adverse effects of certain calcium channel blockers, statins, antihistamines, protease inhibitors, and immunosuppressants can be significantly potentiated by specific flavonoids [145]. In addition to the inhibition of CYP 3A4, flavonoids were reported to inhibit other CYP isoforms, such as CYP subfamily 1 isoforms (CYP 1A1, CYP 1A2, and CYP 1B1), which are significantly involved in carcinogenesis [146]. The two isoflavones, formononetin and biochanin A, significantly inhibit CYP 1A2 in both human and rat liver microsomes in vitro. Formononetin also significantly inhibits CYP 2D6, and biochanin A also inhibits human CYP 2C9 [147]. CYP 1B1 is inhibited by flavone [148], chrysin [148], apigenin [148], genistein [148], luteolin [149], quercetin [149], galangin [149], myricetin [150], and many others. CYP 1A1 is irreversibly inhibited by the binding of two flavones (3-flavone propargyl ether and 7-Hydroxy flavone) [151]. Finally, CYP gene expression was inhibited by the flavonoids, apigenin [152], tangeretin [153], diadzein [154], silybin [155], and others. Detailed interactions of flavonoids with CYPs are reviewed elsewhere [156].

**Intestinal microflora interactions**

Following the oral administration of flavonoids, it is possible that a significant percentage can reach the colon and be subjected to degradation by microflora, as well as enterohepatic circulation, depending on the compound [157]. The colonic microflora is the most abundant and diverse part of the microbiome in humans [158]. These microorganisms have been shown to biotransform certain drugs to metabolites, thereby altering their efficacies and toxicities [159–161]. They also act as a protection barrier involved in the defense against pathogens and toxic xenobiotics. The colonic microflora also reduces cholesterol absorption and increases mucus secretion in the gut [162, 163]. The role of the colonic microflora on the absorption, metabolism, and bioavailability of flavonoids remains to be delineated [164]. It has been reported that unabsorbed flavonoids can be biotransformed to small phenolic compounds that have similar effects, but improved bioavailability, compared to the parent compound [165]. In contrast, the colonic microflora can extensively metabolize (via cleaving the heterocycle break) flavonoids via the enzymes glucuronidase and sulphotase, producing metabolites that are primarily inert polar compounds that are rapidly excreted [164, 166–168]. Some flavonoids (e.g., apigenin, genistein, naringenin, and kaempferol) are more likely to undergo microflora degradation compared with others, resulting in lower bioavailability [169]. Recent reports indicated that certain flavonoids can inhibit intestinal microflora and their associated fermentation processes [170]. Both bacterial β-glucosidase and α,β-galactosidase were inhibited by ellagitannins and flavan-3-ols from raspberry extracts [171].

Furthermore, the use of antibiotics should be monitored when using along with flavonoids as they can alter the composition of the gut microflora, which ultimately affects the bioavailability of specific flavonoids [172]. Thus, the huge diversity in the structures of flavonoids, as well as the microbial composition of gastrointestinal tract, can lower the predictability of the types of interactions that occur, as well as the effect of the resultant compounds and their permeability.

**Other PK challenges**

The poor chemical stability of flavonoids has been shown to adversely affect PK and limit their utility. Several factors, such as oxygen exposure, temperature, light, ultraviolet radiation, and pH, were shown to reduce flavonoid stability and result in its subsequent degradation [173]. Indeed, increased oxidation due to the presence of oxygen significantly alters cranberry flavonoid stability [174]. Temperature is another factor that needs to be optimized upon the extraction, purification, and storage of flavonoids. For example, the highest yield of phenolic flavonoids from the pericarp of litchi fruit extraction was achieved at 45 °C–60 °C, whereas other temperatures resulted in significantly lower yields and substantial degradation of flavonoids [175]. Light exposure can also alter flavonoid biosynthesis and its biological activities. The optimum antioxidant activity of total flavonoids in the
plant *Halia bara* was at a light wavelength of 310 μmol/m² s¹. Other tested wavelengths reduced the biosynthesis and antioxidant activity of the total flavonoids [176]. Additionally, different pH values can result in distinct yields and activities of flavonoids. A pH range of 3–4 produced the highest yield and bioactivity in phenolics from litchi fruit pericarp [175]. The chemical structure itself and the type of substitution on the flavonoid rings can also alter the chemical stability. For example, the degradation of flavonols when exposed to long wavelength ultraviolet A radiation was increased with more ring substitutions [177].

The interaction of dietary flavonoids with fiber is another issue, which may significantly affect the absorption and bioavailability of flavonoids [178, 179]. Fibers can delay the absorption of flavonoids from the intestine by two major mechanisms. First, dietary fiber forms complexes with flavonoids, trapping flavonoids in their matrix; second, the fiber can significantly enhance gastric fluid viscosity, which restricts the gastric mixing process, thereby further decreasing the absorption of flavonoids [179, 180].

**Approaches to surmount flavonoid PK/PD and other barriers**

There are a number of approaches that are being investigated to improve and surmount the challenges associated with clinical use of dietary flavonoids (Fig. 2).

**Improving purification and isolation yields**

As mentioned earlier, the current traditional isolation and purification techniques usually result in low extraction yield of flavonoids that does not justify the high extraction cost. However, optimization of the conditions in these traditional extraction methods may increase the extraction yield of flavonoids. Response surface methodology (RSM) was applied to optimize flavonoid extraction using ethanol from herbal medicines like *Citrus aurantium* L. var. amara Engl [181] and Chinese Huangqi [182]. RSM is a mathematical and statistical method for designing experiments [183]. RSM significantly increased the yield of flavonoids from Chinese Huangqi when the extraction parameters were optimized as follows: ethanol concentration, 52.98%; extraction time, 2.12 h; extraction temperature, 62.46 °C; and a liquid–solid ratio of 35.23 [182]. However, such optimization is required for each plant source of flavonoids and can be time-consuming. Therefore, several novel technologies can be applied to reduce the cost and the loss of extracted flavonoids from their natural sources. One of these is the use of high-speed, counter-current chromatography that has been reported to be of lower cost and produce higher yields compared with other technologies [63]. Another technology that has recently emerged is nano-harvesting, where nanoparticles are used to harvest flavonoids from their sources [184]. The nanoparticles enter the plant structures and are released to bind to the targeted compounds and carry them outside the cells without harming the plants. This technique eliminates the use of organic solvents, allows for continuous production of flavonoids, and has opened a new era in natural product extraction methodologies [185]. The ultrasound-assisted extraction method has been purported to increase extraction efficiency and reduce the required time for extraction [181, 186, 187].

As mentioned in the challenges section, the extraction of certain compounds from the plant source can significantly harm plant communities. Therefore, the microbial production of plant natural products, such as flavonoids, at an industrial scale, is currently an attractive alternative approach [61, 188]. This approach has the potential to preserve the environmental resources and use economical stocks associated with less energy use and waste emission. Currently used microorganisms include *Escherichia coli* [189, 190] and *Saccharomyces cerevisiae* [191, 192]. The engineering and synthetic biology of microorganisms encourage the return to natural compounds as promising anticancer agents [61, 193].

**Overcoming PK challenges**

There are a number of approaches or strategies that can be used to surmount factors that lower the bioavailability of flavonoids. For example, the formulation of flavonoids as certain types of glycosides can result in enhanced bioavailability compared with the flavonoid alone or other types of glycosides [194]. These glycosidic derivatives are substrates for certain intestinal epithelial transporters, which would increase their absorption [195]. The administration of quercetin-4′-O-glucoside resulted in a plasma level that was 5 times higher than of quercetin-3-O-rutinoside. Therefore, the conversion of quercetin glycosides into glucosides can be considered an approach to improve flavonoid bioavailability [194]. Another strategy involves adding piperine to the flavonoid formulations. The use of bioenhancers, such as piperine, which is an amide alkaloid from the plants of the *Piperaceae* family, is another approach [196]. Piperine significantly inhibits the conjugation of various flavonoid compounds such as quercetin [197] and epigallocatechin-3-gallate [198] by certain UDP-glucuronosyltransferase phase II enzymes, decreasing their metabolism and increasing bioavailability [197–199]. The use of more specific novel ABC transporter blockers such as lapatinib, nilotinib, or specific small interfering RNA is another option, provided that they do not produce intolerable adverse effects, for flavonoids whose bioavailability is limited by certain ABC
transporters [200]. In addition, the efficiency of modulators of the intestinal microflora can be considered to improve the flavonoid bioavailability. Such modulation could be achieved by the use of antibiotics or other formulation products that can bypass the gut microbiome [201].

One of the most important strategies to optimize the PK/PD parameters is the modification of the flavonoid structure to produce novel derivatives. These compounds would contain the basic pharmacophore of the parent compound to retain their desired effects. Methyl- and hydro-silybin derivatives have been reported to be 10-fold more potent than the parent compound, silybin [202–205]. The introduction of hydrophilic functional groups (e.g., ethyl substitution) on the hydroxyl (OH) groups in quercetin significantly enhances its stability by preventing oxidative degradation of the hydroxyl groups [206]. Furthermore, the hydrophobic substitutions increase lipophilicity (quercetin’s clogP = 2, hydrophobic derivatives clogP = 3–12), which increases penetrability through biological membranes (bioavailability was increased from 10.7% for quercetin to 18.8% for one of its derivatives) [206]. It has also been shown that blocking some groups (e.g., C3 hydroxyl and C7 hydroxyl groups) in quercetin by the introduction of the hydrophilic moiety pivaloxymethyl (POM) enhances its solubility, decreases its metabolism, enhances stability (half-life increased from 10 h for quercetin to >72 h for its quercetin-POM conjugates at pH 7.4), and increases its effectiveness by preventing chemical and metabolic hydrolysis [207]. An epoxypropoxy flavonoid derivative (MHY336), by inhibiting the enzyme topoisomerase II enzyme, exhibited significant potency against the prostate cancer cell lines LNCaP, PC-3, and DU145 [208].

An area that has shown significant growth is the development and use of micro- and nanodelivery systems to maximize the bioavailability of flavonoids [209–212]. One of these approaches involves the use of kinetically stable nanoemulsion technology, where the lipophilic flavonoids can be prepared as emulsions consisting of extremely small particle size (<200 nm). The emulsified flavonoids are released slowly over time, allowing for a higher surface area for absorption, ultimately improving their absorption and bioavailability after oral administration [213]. Another approach is the advanced delivery system with nano-crystal, self-stabilized pickering emulsions that has been reported to increase the delivery of some flavonoids including silybin [214]. Formulating flavonoids as a povidone-mixed, micelle-based microparticle has been shown to significantly enhance their release and PK profile [215]. The encapsulation of the flavonoid quercetin in Zein nanoparticles increases effectiveness in a mouse model of endotoxemia [216].

Flavonoid complexing with protein has been shown to increase flavonoid stability in vitro [217, 218]. Several studies suggest that this characteristic of flavonoids can be used to enhance their chemical stability [219–221]. The overall stability of the grape skin-derived anthocyanine extracts was enhanced when complexed with the proteins α- and β-casein [221]. Furthermore, studies indicate that other milk-derived proteins (e.g., whey proteins and β-lactoglobulin), when used as carriers, also enhance the chemical stability of anthocyanin extracts and allow for their incorporation as food formulations [219]. The complexation of flavonoids with phospholipids has been reported to enhance their bioavailability [222]. The amphiphilic nature of phospholipids helps in enhancing the passage of compounds across the membranes [223]. Indeed, the complexing of the flavonoid quercetin with phospholipid (phosphatidylcholine) to form a quercetin-phospholipid complex significantly improved the PK parameters (maximum serum concentration that a drug achieves and area under the curve) of quercetin in rats compared with quercetin alone [224].

**Conclusions**

The preclinical anticancer effect of certain flavonoids suggests that the flavonoids may prevent certain types of cancer. However, the development of flavonoids is limited by their poor extraction yield, complicated extraction methods, the cost and difficulties of epidemiological studies, and their unfavorable PK characteristics. Versatile strategies are being applied to overcome such limitations. Future studies are required to determine whether these strategies can be applied economically and safely. The modulation of phase II metabolism and intestinal microflora can affect the metabolism, bioavailability, and toxicity of other drugs. It also can modulate the availability of dietary minerals and vitamins, thereby having potential impacts on health. Consequently, it may be more preferable to conduct research directed towards new delivery systems, such as nano-emulsions and nanoparticles. These delivery systems should be expected to have enhanced target specificity and safety. However, the cost of developing natural products and applying these strategies should be considered in the light of the cost of currently available synthetic compounds.

**Authors’ contributions**

HA, CRA, and AKT conceptualized the idea. HA and AKT wrote the paper. AKT and CRA proofed and revised the paper. All authors read and approved the final manuscript.

**Author details**

1. Department of Pharmacology and Systems Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43660, USA. 2. Pharmaceutical Sciences, College of Pharmacy, St. John’s University, Queens, NY 11432, USA. 3. Department of Pharmacology and Experimental Medicine.
Competing interests

We thank Ms. Charisse Montgomery, University of Toledo for critical reading of this manuscript. This work was supported by seed-fund to AKT from Department of Pharmacology and Experimental Therapeutics at UT.

Acknowledgements

The authors declare that they have no competing interests.

References

1. Chahar MK, Sharma N, Dobhal MP, et al. Flavonoids: a versatile source of anticancer drugs [J]. Pharmacogn Rev. 2011;5(9):1–12.
2. Katyal P, Bhardwaj N, Khajuria R. Flavonoids and their therapeutic potential as anticancer agents; biosynthesis, metabolism and regulation [J]. World J Pharm Sci. 2014;3(6):1888–218.
3. Harris Z, Donovan MG, Branco GM, Limesand KH, Burd R. Quercetin as an emerging anti-melanoma agent: a four-focus area therapeutic development strategy. Front Nutr. 2016;3:48.
4. Si HY, Li DP, Wang TM, et al. Improving the anti-tumor effect of genistein with a biocompatible superparamagnetic drug delivery system [J]. J Nanosci Nanotechnol. 2010;10(4):2325–31.
5. Nema R, Jain P, Khare S, Pradhan A. Flavonoid and cancer prevention—mini review. Res Pharm. 2015;2(2):46–50.
6. Hodek P, Trefl P, Stiborova M. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes p450 [J]. Chem Biol Interact. 2002;159(1):1–21.
7. Hertog MGL, Hoffmann CH, van de Putte B. Content of potentially anticarcinogenic flavonoids of tea infusions, wines, and fruit juices [J]. J Agric Food Chem. 1993;41(8):1242–6.
8. Gontijo VS, Dos Santos MH, Viegas C Jr. Biological and chemical aspects of natural biflavonoids from plants: a brief review. Mini Rev Med Chem. 2010;10(4):135–53.
9. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview [J]. Sci World J. 2013;2013:162750.
10. Neuhouser ML. Dietary flavonoids and cancer risk: evidence from human population studies [J]. Nutr Cancer. 2004;50(1):1–7.
11. Ohga N, Hida K, Hida Y, et al. Inhibitory effects of epigallocatechin-3 gallate, a polyphenol in green tea, on tumor-associated endothelial cells and endothelial progenitor cells [J]. Cancer Sci. 2009;100(10):1963–70.
12. Bermudez-Soto MJ, Larrosa M, Garcia-Cantalejo J, et al. Transcriptionally changes in human caco-2 colon cancer cells following exposure to a recurrent non-toxic dose of polyphenol-rich chokeberry juice [J]. Genes Nutr. 2007;2(1):111–3.
13. Vue B, Zhang S, Chen QH. Flavonoids with therapeutic potential in prostate cancer [J]. Anticancer Agents Med Chem. 2016;16(10):1205–29.
14. Wenzel U, Kuntz S, Brendel MD, et al. Dietary flavone is a potent apoptosis inducer in human colon carcinoma cells [J]. Cancer Res. 2000;60(14):3823–31.
15. Da-Ho H, Hirofumi T, Yamada K. Inhibition of environmental estrogen-induced proliferation of human breast carcinoma mcf-7 cells by flavonoids [J]. Vitro Cell Dev Biol Anim. 2001;37(5):275–82.
16. Yin F, Giuliano AE, Van Herle AJ. Signal pathways involved in apigenin inhibition of growth and induction of apoptosis of human anaplastic thyroid cancer cells (aro) [J]. Anticancer Res. 1999;19(5b):4297–303.
17. Woo H-H, Jeong BR, Hawes MC. Flavonoids from cell cycle regulation to biotechnology [J]. Biotech Lett. 2005;27(6):365.
18. Cho HJ, Suh DS, Moon SH, et al. Silibinin inhibits tumor growth through downregulation of extracellular signal-regulated kinase and akt in vitro and in vivo in human ovarian cancer cells [J]. J Agric Food Chem. 2013;61(17):4089–96.
19. Petrick JL, Steck SE, Bradshaw PT, et al. Dietary intake of flavonoids and oesophageal and gastric cancer: incidence and survival in the united states of america (USA) [J]. Br J Cancer. 2015;112(7):1291–300.
20. Cibin TR, Devi DG, Abraham A. Chemoprevention of skin cancer by the flavonoid fraction of saraca asoka [J]. Phytother Res. 2010;24(5):666–72.
21. Rossi M, Rosato V, Bosetti C, et al. Flavonoids, proanthocyanidins, and the risk of stomach cancer [J]. Cancer Causes Control. 2010;21(10):1597–604.
22. Suri YJ. Cancer chemoprevention with dietary phytochemicals [J]. Nat Rev Cancer. 2003;3(10):768–80.
23. Tsyrlov IB, Mikhailenko VM, Gelboin HV. Isozyme- and species-specific susceptibility of cdna-expressed cytp1a p-450s to different flavonoids [J]. Biochim Biophys Acta. 1994;1205(2):325–35.
24. Manthey JA, Grohmann K, Guthrie N. Biological properties of citrus flavonoids pertaining to cancer and inflammation [J]. Curr Med Chem. 2001;8(2):135–53.
25. Ishii N, Tattersall D, Watanabe N, et al. Flavonoids inhibit cell growth and induce apoptosis in b16 melanoma 4a4s cells [J]. Biosci Biotechnol Biochem. 2000;64(9):1813–20.
26. Lee WR, Shen SC, Lin HY, et al. Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and ca(2+)-dependent endonuclease [J]. Biochem Pharmacol. 2002;63(2):225–36.
27. Konig A, Schwarz K, Mohammam RM, et al. The novel cyclin-depend-ent kinase inhibitor flavopiridol downregulates bcl-2 and induces growth arrest and apoptosis in chronic b-cell leukemia lines [J]. Blood. 1997;90(11):4307–12.
28. Wang HK. The therapeutic potential of flavonoids [J]. Expert Opin Investig Drugs. 2000;9(9):2103–19.
29. Le Marchand L, Murphy SP, Hankin JH, et al. Intake of flavonoids and lung cancer [J]. J Natl Cancer Inst. 2000;92(2):154–60.
30. Sun XY, Plouzek CA, Henry JP, et al. Increased urid-glucuronosyltransferase activity and decreased prostate specific antigen production by biochanin a in prostate cancer cells [J]. Cancer Res. 2000;59(11):3579–84.
31. Bu-Abbas A, Clifford MN, Walker R, et al. Contribution of caffeine and flavonols in the induction of hepatic phase ii activities by green tea [J]. Food Chem Toxicol. 1996;34(6):617–21.
32. Fotis T, Pepper MS, Akta E, et al. Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis [J]. Cancer Res. 1997;57(14):2916–21.
33. Kim MH. Flavonoids inhibit vepg/bfgf-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases [J]. J Cell Biochem. 2003;89(3):529–38.
34. Schindler R, Mentein R. Flavonoids and vitamin e reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells [J]. J Nutr. 2006;136(6):1477–82.
35. Kioka N, Hosokawa N, Komano T, et al. Quercetin, a bioflavonoid, inhibits the increase of human multidrug resistance gene (mdr1) expression caused by ariene [J]. FEBS Lett. 1992;303(1):307–9.
36. Shapiro AB, Ling V. Effect of quercetin on hoechst 33342 transport by purified and reconstituted p-glycoprotein [J]. Biochem Pharmacol. 1997;53(4):587–96.
37. Lee JY, Kim HS, Song YS. Genistein as a potential anticancer agent against ovarian cancer [J]. J Tradit Complement Med. 2012;2(2):96–104.
38. Adjaky M, Ngolo M, Bouteux JP, et al. Genistein and daidzein: different molecular effects on prostate cancer [J]. Anticancer Res. 2013;33(1):39–44.
39. Hwang KA, Choi KC. Anticarcinogenic effects of dietary phytoestrogens and their chemopreventive mechanisms [J]. Nutr Cancer. 2015;67(5):796–803.
40. Martin PM, Horwitz KB, Ryan DS, et al. Phytoestrogen interaction with estrogen receptors in human breast cancer cells [J]. Endocrinology. 1978;103(5):1860–7.
41. Peterson GS, Barnes S. Genistein inhibits both estrogen and growth factor-stimulated proliferation of human breast cancer cells [J]. Cell Growth Differ. 1996;7(10):1345–51.
42. Biedermann D, Vavrivova E, Czak L, et al. Chemistry of silybin [J]. Nat Prod Rep. 2014;31(9):1138–57.
Zarrelli A, Romanucci V, De Napoli L, et al. Synthesis of new silybin derivatives and evaluation of their antioxidant properties [J]. Helv Chim Acta. 2015;98(3):399–409.

Comelli MC, Mengs U, Schneider C, et al. Toward the definition of the mechanism of action of silymarin: activities related to cellular protection from toxic damage induced by chemotherapy [J]. Int J Cancer Ther. 2007;62(2):120–9.

Deep G, Agarwal R. Antimetastatic efficacy of silibinin: molecular mechanisms and therapeutic potential against cancer [J]. Cancer Metastasis Rev. 2010;29(3):447–63.

Hoh C, Boocock D, Marcyto T, et al. Pilot study of oral silybin, a putative chemopreventive agent, in colorectal cancer patients: silybin levels in plasma, colorectum, and liver and their pharmacodynamic consequences [J]. Clin Cancer Res. 2006;12(9):2944–50.

Flaig TW, Glode M, Gustafson D, et al. A study of high-dose oral silybin-phytosome followed by prostatectomy in patients with localized prostate cancer [J]. Prostate. 2010;70(8):848–55.

Manna SK, Mukhopadhyay A, Van NT, et al. Silymarin suppresses trnf-induced activation of nf-kappa b, jn-n terminal kinase, and apoptosis [S]. J Immunol. 1999;163(12):6800–9.

Ahmad N, Gali H, Javed S, et al. Skin cancer chemopreventive effects of a flavonoid antioxidant silymarin are mediated via impairment of receptor tyrosine kinase signaling and perturbation in cell cycle progression [J]. Biochim Biophys Res Commun. 1998;247(2):294–301.

Zhu W, Zhang JS, Young CY. Silymarin inhibits function of the androgen receptor tyrosine kinase signaling and perturbation in cell cycle progression [J]. Metastasis Rev. 2010;29(3):447–63.

Hoh C, Boocock D, Marczylo T, et al. Pilot study of oral silibinin, a putative chemopreventive agent, in colorectal cancer patients: silybin levels in plasma, colorectum, and liver and their pharmacodynamic consequences [J]. Clin Cancer Res. 2006;12(9):2944–50.

Flaig TW, Glode M, Gustafson D, et al. A study of high-dose oral silybin-phytosome followed by prostatectomy in patients with localized prostate cancer [J]. Prostate. 2010;70(8):848–55.

Manna SK, Mukhopadhyay A, Van NT, et al. Silymarin suppresses trnf-induced activation of nf-kappa b, jn-n terminal kinase, and apoptosis [S]. J Immunol. 1999;163(12):6800–9.
88. Gil-Izquierdo A, Gil MI, Ferreres F, et al. In vitro availability of flavonoids and other phenolics in orange juice [J]. J Agric Food Chem. 2001;49(2):1035–41.
89. Mandalari G, Tomarino A, Rich GT, et al. Polyphenol and nutrient release from skin of almonds during simulated human digestion [J]. Food Chem. 2010;122(4):1083–8.
90. King RA, Bursill DB. Plasma and urinary kinetics of the isoflavones daidzein and genistein after a single soy meal in humans [J]. Am J Clin Nutr. 1998;67(5):867–72.
91. Gee JM, DuPont MS, Day AJ, et al. Intestinal transport of quercetin 3-rutinoside and black tea phenols are extensively metabolized in humans [J]. J Nutr. 2003;133(6):1806–14.
92. Spencer JPE. Metabolism of tea flavonoids in the gastrointestinal tract [J]. J Nutr. 2003;133(10):2355S–61S.
93. Olthof MR, Hollman PC, Buijsman MN, et al. Chlorogenic acid, quercetin-3-gallate from green tea extract: a human study [J]. Phytother Res. 2013;27(9):1126–33.
94. Arita I, Hirobe K, Ikeda K, et al. Nutrition of anthocyanins by human gut microflora [J]. Eur J Nutr. 2005;44(3):133–42.
95. Winter J, Moore LH, Dowell VR Jr, et al. C-ring cleavage of flavonoids by human intestinal bacteria [J]. Appl Environ Microbiol. 1989;55(5):1203–8.
96. Gonthier MP, Werry MA, Besson C, et al. Chlorogenic acid bioavailability largely depends on its metabolism by the gut microflora in rats [J]. J Nutr. 2003; 133(6):1853–9.
97. Kim DH, Jung EA, Sohng IS, et al. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities [J]. Arch Pharm Res. 1998;21(1):17–23.
98. Lénö J, Nakano N, Hiro I. Metabolic fate of [14c] quercetin in the acute rat [J]. Jpn J Exp Med. 1983;53(1):41–50.
99. Boulton DW, Walle UK, Walle T. Fate of the flavonoid quercetin in human subjects: chemical instability and metabolism [J]. J Pharm Pharmacol. 1999;51(3):353–9.
100. Zhu H-J, Brinda BJ, Gupta P, et al. The modulation of abc transporter-mediated multidrug resistance in cancer: a review of the past decade [J]. Drug Resist Updates. 2015;18:1–17.
101. Klein I, Sarkadi B, Varadi A. An inventory of the human abc proteins [J]. Biochem Biophys Acta. 1999;1461(2):237–62.
102. Vasiliou V, Vasiliou K, Nebert DW. Human atp-binding cassette (abc) transporter family [J]. Hum Genom. 2009;3(3):281–90.
103. Rice AJ, Park A, Pinkert HW. Diversity in abc transporters: type i, ii and iii importers [J]. Crit Rev Biochem Mol. 2014;49(5):426–37.
104. Chen Z, Shi T, Zhang L, et al. Mammalian drug efflux transporters of the ATP binding cassette (abc) family in multidrug resistance: a review of the past decade [J]. Cancer Lett. 2016;370(1):153–64.
105. Klappe K, Hummel J, Hoekstra D, et al. Lipid dependence of abc transporter localization and function [J]. Chem Phys Lipid. 2009;161(2):57–64.
106. Murakami T, Takano M. Intestinal efflux transporters and drug absorption [J]. Expert Opin Drug Metab Toxicol. 2008;4(7):923–39.
107. Russell FG. Transporters: Importance in drug absorption, distribution, and removal [M]. Enzyme and transporter-based drug-drug interactions. Berlin: Springer; 2010. p. 27–49.
108. Alvarez AI, Real R, Pérez M, et al. Modulation of the activity of abc transporters (p-glycoprotein, mrp2, bcrp) by flavonoids and drug response [J]. J Pharm Pharmacol. 2009;61(12):1539–57.
109. Cermak R, Wolfbranch S. The potential of flavonoids to influence drug metabolism and pharmacokinetics by local gastrointestinal mechanisms [J]. Curr Drug Metab. 2006;7(7):729–44.
110. Gatoouiller G, Magid AA, Bertin E, et al. Medicarpin and millepurpan, two flavonoids isolated from medicago sativa, induce apoptosis and overcome multidrug resistance in leukemia p388 cells [J]. Phytomedicine. 2015;22(13):1186–94.
111. Dash RP, Ellendula B, Agarwal M, et al. Increased intestinal p-glycoprotein expression and activity with progression of diabetes and its modulation by epigallocatechin-3-gallate: Evidence from pharmacokinetic studies [J]. Eur J Pharmacol. 2013;767:67–76.
112. Wink M, Ashour ML, El-Readi MA. Secondary metabolites from plants inhibiting abc transporters and reversing resistance of cancer cells and microbes to cytotoxic and antimicrobial agents. Front Microbiol. 2012:1300.
food-borne toxic compounds and bioactive ingredients [J]. Biomed Pharmacother. 2006;60(9):508–19.

137. Li Y, Paxton JW. The effects of flavonoids on the abc transporters: con-
sequences for the pharmacokinetics of substrate drugs [J]. Expert Opin
Drug Metab Toxicol. 2013;9(3):267–85.

138. Schemnayder C, Stratford RE. Genistein and glyceollin effects on abcc2
and abcg2 [bcrp] in caco-2 cells [J]. Int J Environ Res Public
Health. 2015;13(1):17.

139. Bernardo J, Valentao P, Grosso C, et al. Flavonoids in neurodegenera-
tion: Limitations and strategies to cross cns barriers [J]. Curr Med Chem.
2016;23(4):1–74.

140. Tan ZR, Zhou YX, Liu J, et al. The influence of abcb1 polymorphism
on the pharmacokinetics of substrate drugs [J]. Expert Opin
Pharmacother. 2013;14(3):267–85.

141. Zanger UM, Schwab M. Cytochrome p450 enzymes in drug metabo-
lism: regulation of gene expression, enzyme activities, and impact of
genetic variation [J]. Pharmacol Rev. 2013;65(1):103–41.

142. Rendic S. Summary of information on human cyp enzymes: human
p450 metabolism data [J]. Drug Metab Rev. 2002;34(1–2):83–484.

143. Miniscalo A, Lundahl J, Regardh C, et al. Inhibition of dihydroxyphenyl-
alanine metabolism in rat and human liver microsomes by flavonoids found in
grapedfruit juice [J]. J Pharmacol Exp Ther. 1992;261(3):1195–9.

144. Schubert W, Eriksson U, Edgar B, et al. Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17β-estradiol [J]. Eur J Drug
Metab Pharmacokinet. 1995;20(3):219–24.

145. Bailey DG, Dresser G, Arnold JM. Grapefruit-medication interactions: for-
terbidden fruit or avoidable consequences? [J]. CMAJ. 2013;185(4):309–16.

146. Dong J, Zhang Q, Cui Q, et al. Flavonoids and naphthoflavonoids: wider
roles in the modulation of cytochrome p450 family 1 enzymes [J].
ChemMedChem. 2016;11(19):2102–18.

147. Arora S, Taneya I, Challagundla M, et al. In vivo prediction of cyp-mediated
metabolic interaction potential of formononetin and biochanin a using in vitro human and rat cyp450 inhibition data [J]. Toxicol Lett.
2015;239(1):1–8.

148. Shimada I, Tanaka K, Takenaka S, et al. Structure–function relationships of inhibition of human cytochromes p450 1a1, 1a2, 1b1, 2b1, 2c9, and 3a4 by 33 flavonoid derivatives [J]. Chem Res Toxicol. 2010;23(12):1921–35.

149. Takemura H, Itok T, Yamamoto K, et al. Selective inhibition of meth-oxyflavonoids on human cyp1b1 activity [J]. Biorg Med Chem.
2010;18(7):6310–1.

150. Androustopoulos VP, Papakriakou A, Vourloumis D, et al. Comparative
activity of cyp1a1 and cyp1b1 substrate and inhibitor profile of dietary flavonoids [J]. J Biomed. 2011;19(9):2842–9.

151. Srivath S, Ellis J, Dupart P, et al. Development of flavone propargyl ethers as potent and selective inhibitors of cytochrome p450 enzymes 1a1 and 1a2 [J]. Drug Metab Lett. 2012;6(4):275–84.

152. Dong H, Lin W, Wu J, et al. Flavonoids activate pregnane x receptor-mediated cyp3a4 gene expression by inhibiting cyclin-dependent kinases in hepg2 liver carcinoma cells [J]. BMC Biochem. 2010;11(1).

153. Tatsu H, Hiura Y, Mochizuki K, et al. Activation of pregnane x receptor and induction of mdr1 by dietary phytochemicals [J]. J Agric Food Chem. 2008;56(13):5366–73.

154. Li Y, Ross-Viola JS, Shay NF, et al. Human cyp3a4 and murine cyp3a11 are regulated by equal and genistein via the pregnane x receptor in a species-specific manner [J]. J Nutr. 2009;139(5):989–904.

155. Moomen KD, Maas-Bakker RF, Moret EE, et al. Milk thistle’s active com-
ponents silybin and isosilybin: novel inhibitors of pxx-mediated cyp3a4 induction [J]. Drug Metab Dispos. 2013;41(8):1494–504.

156. Khorobkova EA. Effect of natural polyphenols on cyp metabolism: impli-
cations for diseases [J]. J Chem Toxicol. 2015;28(7):1359–90.

157. Zeng M, Sun R, Basu S, et al. Disposition of flavonoids via recycling:
direct biliary excretion of enterically or extrarepationally derived flavo-
noid glucuronides [J]. Mol Nutr Food Res. 2016;60(5):1006–19.

158. Guinean CM, Cotter PD. Role of the gut microbiota in health and
chronic gastrointestinal disease: understanding a hidden metabolic
organ [J]. Ther Adv Gastroenterol. 2013;6(4):295–308.

159. Lu K, Mahbub R, Fox JG. Xenobiotics: interaction with the intestinal
microflora [J]. J Appl Microbiol. 2013;115(5):219–27.

160. Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic
interactions [J]. Science. 2012;336(6086):1262–7.
184. Arif Khan, SER, John ML and Barbara LK. 471914 nanoharvesting of polyphenolic flavonoids from solidago nemoralis hairy root cultures using functionalized mesoporous silica nanoparticles. 2016 AICHE annual meeting. 2016. San Francisco: American Institute of Chemical Engineers; 2016.

185. Kurepa J, Nakabayashi R, Paunesku T, et al. Direct isolation of flavonoids from plants using ultra-small anatase titania (2) nanoparticles (J). Plant J. 2014;77(3):443–53.

186. Wang J, Zhao Y-M, Guo C-Y, et al. Ultrasound-assisted extraction of total flavonoids from Inula helenium (J). Pharmacogn Mag. 2012;8(30):166.

187. Zheng L-L, Wang D, Li YY, et al. Ultrasound-assisted extraction of total flavonoids from Aconitum gymnandrum (J). Pharmacogn Mag. 2014;10(Suppl 1):S141.

188. Wu J, Du G, Zhou J, et al. Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds (J). J Biotechnol. 2014;188:72–80.

189. Santos CN, Koffas M, Stephanopoulos G. Optimization of a heterologous pathway for the production of flavonoids from glucose (J). Metab Eng. 2011;13(4):392–400.

190. Wu J, Du G, Zhou J, et al. Metabolic engineering of Eschrichia coli for (2s)-pinocembrin production from glucose by a modular metabolic strategy (J). Metab Eng. 2013;16:48–53.

191. Vannelli T, Wei Qi W, Sweigard J, et al. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Eschrichia coli by expression of heterologous genes from plants and fungi (J). Metab Eng. 2007;9(2):142–51.

192. Koopman F, Beekwilder J, Crimi B, et al. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae (J). Microb Cell Fact. 2012;11:155.

193. Wang Y, Chen S, Yu O. Metabolic engineering of flavonoids in plants and microorganisms (J). Appl Microbiol Biotechnol. 2011;91(4):949–56.

194. Thilakarathna SH, Rupasinghe HPV. Flavonoid bioavailability and attempts for bioavailability enhancement (J). Nutrients. 2013;5(9):3567–87.

195. Olthof MR, Hollman PC, Vree TB, et al. Bioavailabilities of quercetin-3-glucoside and quercetin-4'-glucoside do not differ in humans (J). J Nutr. 2000;130(5):1200–3.

196. VTatiraju D, Bagade VB, JKarambelkar P, et al. Natural bioenhancers: an overview (J). J Pharm Pharmacol. 2013;2(3).

197. Rinwa P, Kumar A. Quercetin along with piperine prevents cognitive dysfunction, oxidative stress and neuro-inflammation associated with mouse model of chronic unpredictable stress. Arch Pharm Res. 2013. doi:10.1007/s12272-013-0205-4.

198. Lambert JD, Hong J, Kim DH, et al. Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice (J). J Nutr. 2004;134(8):1948–52.

199. Shoba G, Joy D, Joseph T, et al. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers (J). Planta Med. 1996;62(6):553–6.

200. Vaidyanathan JR, Walle T. Cellular uptake and efflux of the tea flavonoid (-)-epicatechin-3-gallate in the human intestinal cell line caco-2 (J). J Pharmacoexp Ther. 2003;372(5):745–52.

201. Gao S, Hu M. Bioavailability challenges associated with development of anti-cancer phenolics (J). Mini Rev Med Chem. 2010;10(6):550–67.

202. Veen B, Zhang S, Zhang X, et al. Silybin derivatives as anti-prostate cancer agents: synthesis and cell-based evaluations (J). Eur J Med Chem. 2016;109:36–46.

203. Sy-Cordero AA, Graf TN, Runyon SP, et al. Enhanced bioavailability of silybin b methyl ester products (J). Bioorg Med Chem. 2012;21(3):742–7.

204. Důbková P, Hajdúch M, Gažák R, et al. New derivatives of silybin and 2,3-dehydroxybin and their cytotoxic and p-glycoprotein modulatory activity (J). Bioorg Med Chem. 2006;14(11):3793–810.

205. Althagafy HS, Graf TN, Sy-Cordero AA, et al. Semisynthesis, cytotoxicity, antiviral activity, and drug interaction liability of 7-o-methylated analogues of flavonolignans from milk thistle (J). Bioorg Med Chem. 2013;21(13):3919–26.

206. Grande F, Parisi OL, Mordocco RA, et al. Quercetin derivatives as novel antihypertensive agents: synthesis and physiological characterization (J). Eur J Pharm Sci. 2016;82:161–70.

207. Kim MK, Park K-S, Lee C, et al. Enhanced stability and intracellular accumulation of quercetin by protection of the chemically or metabolically susceptible hydroxyl groups with a pivaloxymethyl (pom) moiety (J). J Med Chem. 2010;53(24):8597–607.

208. Patra N, De U, Kang J-A, et al. A novel epoxyprooxy flavonoid derivative and topoisomerase ii inhibitor, mhy336, induces apoptosis in prostate cancer cells (J). Eur J Pharmocol. 2011;658(2–3):198–107.

209. Kumar P, Sharma G, Kumar R, et al. Promises of a biocompatible nanocarrier in improved brain delivery of quercetin: biochemical, pharmacokinetic and biodistribution evidences (J). Int J Pharm. 2016;515(1–2):307–14.

210. Balakrishnan S, Bhat FA, Rajaj Singh P, et al. Gold nanoparticle-conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via egfr/verg-f2-mediated pathway in breast cancer (J). Cell Prolif. 2016;49:678–97.

211. Kumar RP, Abrahams A. Pvp- coated naringenin nanoparticles for biomedical applications-in vivo toxicological evaluations (J). Chem-Biol Interact. 2016;257:110–8.

212. Chen LC, Chen YC, Su CY, et al. Development and characterization of self-assembling lecithin-based mixed polymeric micelles containing quercetin in cancer treatment and an in vivo pharmacokinetic study (J). Int J Nanomed. 2016;11:1557–66.

213. Macedo AS, Queilhas S, Silva AM, et al. Nanoemulsions for delivery of flavonoids: formulation and in vitro release of rutin as model drug (J). Pharm Dev Technol. 2014;19(6):677–80.

214. Yi T, Liu C, Zhang J, et al. A new drug nanocrystal self-stabilized pickering emulsion for oral delivery of silybin (J). Eur J Pharm Sci. 2017;96:420–7.

215. Zhu Y, Wang M, Zhang Y, et al. In vitro release and bioavailability of silybin from micelle-templated porous calcium phosphate microparticles (J). AAPS PharmSciTech. 2016;17(5):1232–9.

216. Penalva R, Gonzalez-Navarro CJ, Gamazo C, et al. Zein nanoparticles for oral delivery of quercetin: pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia (J). Nanomed Nanotechnol Biol Med. 2016;13(1):103–10.

217. Filippi A, Petruzza E, Rajcicev U, et al. Flavonoid interaction with a chitinses from grape berry skin: protein identification and modulation of the enzymatic activity (J). Molecules (Basel, Switzerland). 2016;21(10):1300.

218. Li S, Li C, Zhang J, et al. Interaction of cyanidin-3-o-glucoside with three proteins (J). Food Chem. 2016;196:550–9.

219. Arroyo-May A, Campos-Teran J, Hernandez-Aran A, et al. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: binding of pelargonidin to dairy proteins (J). Food Chem. 2016;213:431–9.

220. Kanakis CD, Tarantillas PA, Polissiou MG, et al. Probing the binding sites of resveratrol, genistein, and curcumin with milk beta-lactoglobulin (J). J Biol Mol Struct Dyn. 2013;31(2):1455–66.

221. He Z, Xu M, Zeng M, et al. Interactions of milk alpha- and beta-casein with malvidin-3-o-glucoside and their effects on the stability of grape skin anthocyanin extracts (J). Food Chem. 2016;199:314–22.

222. Devendra S, Mohan SKR, Ajay S, et al. Quercetin-phospholipid complex: an amorphous pharmaceutical system in herbal drug delivery (J). Curr Drug Discov Technol. 2012;9(1):17–24.

223. Semalty A, Semalty M, Rawat BS, et al. Pharmacosomes: the lipid-based new drug delivery system (J). Expert Opin Drug Deliv. 2009;6(6):599–612.

224. Zhang K, Zhang M, Liu Z, et al. Development of quercetin-phospholipid complex to improve the bioavailability and protection effects against carbon tetrachloride-induced hepatotoxicity in sd rats (J). Fitoterapia. 2016;113:102–9.