INTRODUCTION
Le diabète est une affection métabolique caractérisée par la présence d’une hyperglycémie chronique résultant d’une déficience de sécrétion d’insuline, d’anomalies de son action sur les tissus cibles, ou de l’association des deux. Le diagnostic du diabète repose sur la mesure de la glycémie réalisée soit à jeun, soit 2 heures après ingestion de 75 g de glucose. Avant d’être retenu, le diagnostic de diabète, doit être confirmé par une seconde mesure. Selon l’American Diabetic Association (ADA, 1997) et l’Agence nationale d’accréditation et d’évaluation en santé (ANAES, 1998), est considéré comme diabétique, un sujet présentant à deux reprises une glycémie à jeun (au moins 8 heures de jeûne) > 7 mmol/l (> 1,26 g/l).

Le diabète peut être classé en : diabète de type 1 anciennement appelé diabète insulinodépendant ou diabète juvénile, débute habituellement avant 30 ans, et le diabète de type 2 anciennement dénommé diabète non insulinodépendant ou diabète de la maturité. La population à risque de diabète de type 2 correspond essentiellement à la population des obèses. Si le diabète de type 1 est habituellement reconnu devant des symptômes (amaigrissement, polyurie, polydypsie), le diabète de type 2 est le plus souvent asymptomatique et diagnostiqué fortuitement, à l’occasion d’une prise de sang lors d’un bilan systématique en particulier avant un acte chirurgical. À ces deux classes on peut ajouter le diabète de type 3 (gestationnel ou autre), il est rare et peut être causé par des pancréatites chroniques, certaines réactions défavorables à des médicaments ou à un défaut familial typique de certains récepteurs responsables de l’efficacité de l’insuline.

Selon les chiffres de l’Organisation Mondiale de la Santé (OMS), il y a plus de 180 millions de diabétiques dans le monde et qu’il y en aura plus du
3

double en 2030. D’après les mêmes chiffres, 1,1 million de personnes sont mortes du diabète en 2005 dont près de 80 % se produisent dans les pays à revenu faible ou moyen. L’OMS prévoit que les décès dus au diabète vont augmenter de plus de 50 % au cours des dix prochaines années si l’on ne prend pas des mesures urgentes. Surtout, ils risquent d’augmenter de plus de 80 % dans les pays à revenu moyen de la tranche supérieure entre 2006 et 2015. Au Maroc et selon le ministère de la santé, près de 8% de la population est atteinte de la maladie (près de 6,6% ont moins de 20 ans). La difficulté d’accès aux soins accroît la vulnérabilité des malades.

Aussi bien dans les types I et III et dans le cas d’insuffisance du traitement oral dans le second type, le recours à l’insuline et à ses analogues constitue un ultime recours.

L’insuline humaine est une molécule relativement simple constituée de deux chaînes d’acides aminés (A et B) reliées entre elles par deux ponts disulfures. La création d’analogues de l’insuline utilise en général des techniques d’ingénierie des protéines visant à modifier la séquence des acides aminés. Brange et al., ont été les premiers à publier de telles manipulations de la séquence de l’insuline [1]. Ils ont ainsi créé divers analogues de l’insuline qui, modifiées sur différents acides aminés, ont pour propriété commune une capacité d’auto-agrégation diminuée. Bien que ces modifications de la séquence primaire de la molécule aient pour seul objectif de modifier le profil pharmacocinétique de l’insuline, elles sont à même d’affecter la structure tridimensionnelle de la protéine, avec pour corollaire une altération possible des propriétés biologiques de l’analogue. De ce fait, une étude minutieuse de chaque analogue est indispensable afin de vérifier que la modification de la séquence
primaire n’induit aucune propriété pharmacodynamique préjudiciable. C’est le cas notamment de l’impact possible d’une modification structurale de la protéine sur l’affinité de l’analogue pour les récepteurs de l’IGF-1 (insulin-like growth factor-1) et sur sa vitesse de dissociation des récepteurs de l’insuline. Sur le nombre important d’analogues initialement étudiés, cinq seulement ont passé avec succès des tests rigoureux et sont aujourd’hui commercialisés.

Ces analogues de l’insuline ont été développés afin d’améliorer les profils pharmacocinétiques obtenus lorsque l’insuline est injectée par voie sous-cutanée. La cinétique de ces profils résulte de l’agrégation autour d’un atome de zinc de l’insuline humaine en hexamères lorsque sa concentration est élevée, un phénomène qui pourrait à l’origine avoir été prévu pour faciliter son stockage dans les vésicules des cellules β du pancréas. Les hexamères (et les dimères) d’insuline pénétrant moins bien dans la paroi capillaire que le monomère biologiquement actif, l’absorption d’insuline à partir du dépôt est en partie retardée et prolongée, d’une manière qui est de plus soumise à une importante variabilité inter- comme intra-individuelle [2, 3].

Ce retard dans l’absorption d’insuline humaine exogène n’est, pour diverses raisons, pas idéal pour un traitement du type basal-bolus. Tout d’abord, les injections d’insuline doivent intervenir environ 30 minutes avant les repas si l’on veut obtenir des concentrations d’insuline permettant de limiter la concentration postprandiale de glucose. Ce manque de souplesse est un inconvénient majeur pour beaucoup de sujets diabétiques et les délais d’injection se retrouvent en conséquence, rarement respectés. De fait, certaines études indiquent que 75 % des patients n’attendent pas 30 minutes après l’injection pour manger [4]. Par ailleurs, même si l’insuline est injectée dans un délai
correct avant le repas, les concentrations sanguines en insuline restent élevées jusqu’à 8 heures après l’injection, ce qui augmente le risque de survenue d’hypoglycémie postprandiale et nécessite fréquemment un apport alimentaire 3 à 4 heures après le repas, avec pour conséquence le risque d’un gain pondéral indésirable.

A partir des études de DCCT [5] (diabetes control and complications trial) et de UKPDS[6] (UK prospective diabetes study) sur l’importance du contrôle de la glycémie postprandiale l’insulinothérapie classique est devenue plus intensive. Il s’agit en particulier de reproduire au mieux les profils insuliniques quotidiens des sujets sains, et non plus seulement de diminuer les valeurs d’HbA1c. Dans cet objectif, une insulinothérapie selon un schéma basal-bolus est devenue la règle. Ce schéma consiste à associer à une injection d’une insuline à action prolongée (insuline retard), une ou deux fois par jour, à une injection préprandiale d’insuline rapide. L’arrivée des analogues d’insuline a permis d’optimiser ce schéma qui est proche de la physiologie des sujets non diabétiques.

Dans la présente thèse, nous allons décrire les caractéristiques de chaque analogue (rapides et à action prolongée) et montrer leurs apports par rapport aux insulines conventionnelles à partir des résultats de plusieurs études. Ainsi, on s’intéressera en premier à l’insuline et l’insulinotérapie, aux analogues rapides (Lispro, Aspart et Glulisine) et à ceux à action prolongée (Glargin et Détémir). On présentera, pour chaque analogue, sa description, ses propriétés pharmacologiques, les études qui le concernent, la sécurité et tolérabilité quant à son utilisation et son impact sur la qualité de vie.
1. **INSULINE**

1.1. **HISTORIQUE [7, 8, 10, 11,12]**

Le diabète était déjà connu des Egyptiens. Les remèdes qui ont été préconisés se basaient sur l'opium pour soulager les douleurs et des régimes alimentaires stricts pour réguler le taux de glucose. Malgré cela, les diabétiques ne survivaient pas plus qu'une année. Ces traitements subsistèrent jusqu'au début du 20\(^{ème}\) siècle. La recherche sur le diabète datait de 1880, moment où l'on pratiquait l'ablation du pancréas sur des chiens. Des recherches ont montré que l'origine de la maladie se situe au niveau des îlots de Langerhans. En 1910, un physiologiste anglais suggéra qu'il ne manquait qu'un composant chimique qu'on appela *"l'insuline".*

En 1921, Frédéric Grant Banting et Charles Herbert Best ont réussi à isoler et à mettre au point une méthode de préparation des extraits pancréatiques aux effets hypoglycémiants à partir du pancréas du chien et d'isoler l’insuline. La première utilisation thérapeutique de l’insuline fut le 11 janvier 1922. Elle a été prescrite par Léonard Thomson pour un garçon de 14 ans atteint du diabète au stade coma. Elle lui sauva la vie. Depuis lors plusieurs avancées ont couronné le travail sur cette molécule et que nous pourrons résumer en :

1935 : Hagedorn réalise une insuline neutre par adjonction de Protamine d'où son nom NPH (neutre Hagedorn protamine). En 1936 : Scott et Fisher créent la première insuline lente en combinant l’insuline Protamine au Zinc = Insuline Protamine – Zinc (IPZ). Puis en 1955, Frédéric Sanger avait décrit la structure chimique de l’insuline. Elle est particulière à l’espèce. Cette découverte lui a valut le prix Nobel en 1958.
A partir de 1960, apparaît l’insuline-Zinc (amorphe ou cristallisée). En 1965, Kastsoyanis aux Etats Unis, Zahn et Mainhofer en Allemagne et Niu Du Wang en Chine, travaillant indépendamment, ont réussi à synthétiser chimiquement l’insuline.

A partir de 1975, l’élimination des impuretés donne des insulines purifiées, appelées Monopic ou Monocomposées grâce à des méthodes chromatographiques. Elles concernent les insulines d’origine animales disparues actuellement du marché.

Dans les années 1980, la production industrielle d’insuline «humaine» biosynthétique est possible par génie génétique par insertion des gènes de l’insuline dans l’ADN de plasmides de levures ou de bactéries.

A partir de 1990, la modification de la composition de l’insuline (changement d’un acide aminé par un autre, adjonction de radicaux) peut en modifier la vitesse et la durée d’action. Ces insulines modifiées ou « analogues de l’insuline » sont produites par biosynthèse. Ils peuvent être rapides : à début d’action plus rapide et durée d’action plus courte que l’insuline humaine, comme ils peuvent être d’action prolongée : intermédiaires ou lents. Depuis lors plusieurs analogues ont été mis sur le marché. Le premier, Humalog ®, date de 1996. Le dernier commercialisé en 2006 et désigné Apidra ®.

1.2. STRUCTURE [7,8,13]

L’insuline est une hormone protéique composée, après élimination du peptide C, de deux chaînes d’acides aminés. La chaîne A en comporte 21, et la chaîne B en est constituée de 30. Ces deux fragments protéiques sont liés entre eux par des ponts désulfures stables au niveau des cystéines. Il y a six cystéines
toutes liées par des ponts désulfures, un dans la chaîne A, les deux autres entre les deux chaînes. La structure des deux chaînes de l'insuline comprend les acides aminés indiqués selon le code à 3 lettres, tous liés par des liaisons peptidiques. Elle est sécrétée par les cellules β des îlots de Langerhans du pancréas et exerce un effet hypoglycémiant. Elle fait partie du groupe des peptides appelés IGF (insuline like growth factors) ou somatomédines.
1.3. BIOSYNTHESE:[8, 10, 14,15]

La biosynthèse de l'insuline dans les îlots de langerhans du pancréas humain commence dans le noyau des cellules B, à partir de l'information contenue dans le code génétique, située sur le chromosome 11. Son parcours intracellulaire se poursuit dans le réticulum endoplasmique rugueux après la transcription en ARN du gène codant en une grosse molécule précurseur : la pré-pro-insuline constituée d’une seule chaîne polypeptidique et ayant une durée de vie courte. Le segment "pré" est coupé par des enzymes, synthétisés par d'autres ribosomes, la molécule de pré-pro-insuline est alors transformée en pro-insuline (86 acides aminés et dont le poids moléculaire est 9000). Cette dernière comporte les chaînes d'acides aminés qui donneront l'insuline (51 acides aminés, poids moléculaire = 6000), plus un segment, le peptide de connexion ou peptide-C (31 acides aminés, poids moléculaire = 3000) qui relie la fin de la chaîne A au début de la chaîne B. Dans le réticulum, les molécules de pro-insuline s’associent en hexamères, ceci nécessitant la présence de zinc.

La séquence de la molécule d'insuline varie très peu d'une espèce à l'autre contrairement à celle du peptide intermédiaire qu’il l’est beaucoup plus.

De ce fait, le peptide C confère des propriétés antigéniques importantes à la pro-insuline. La transformation de la pro-insuline en insuline se fait dans le réticulum endoplasmique. L'insuline est stockée dans des granules à l’intérieur des cellules B, on estime à 10 mg (250 U) la quantité stockée dans le pancréas humain (Figure 3).

Sous l'effet d’une stimulation adéquate, la sécrétion se fait par exocytose. Le peptide C et de la pro-insuline sont également sécrétés.
1.4. **MODE DE SECRETION DE L’INSULINE :[8,14,16]**

L’insuline et le peptide C sont libérés par exocytose dans la veine pancréatico-duodénale qui la conduit directement au foie, lequel en conserve ou détruit près de 50%. Le reste étant distribué dans l'ensemble de l'organisme.
La sécrétion de l’insuline se fait selon deux modes :

- De base ou continue, en dehors de tout stimulus exogène. Elle permet de maintenir un taux basal d’insuline circulaire (5-15 µU/ml).

- En réponse aux stimuli, la sécrétion est biphasique : d’abord une élévation en moins d’une minute représentant l’insuline stockée dans le compartiment immédiatement mobilisable, puis, après une diminution, une deuxième sécrétion plus lente (30 à 50 min post prandiale) correspondant à la libération de l’insuline nouvellement synthétisée. Les stimuli influençant la sécrétion d’insuline peuvent être de diverses origines :

 - Des métabolites : le glucose, la plupart des acides aminés (plus particulièrement l’arginine), les acides gras et les corps cétoniques dans une moindre mesure stimulent la sécrétion.

 - Les autres sucres (fructose, mannose) stimulent également mais dans une moindre mesure la cellule B. quant aux sucres non métabolisés (galactose, ribose, xylose), ils ne stimulent pas la cellule B.

 - Des hormones : gastro-intestinales (gastrine, sécrétine, glucagon), hGH, glucocorticoïdes, oestrogènes, progestérone stimulent la sécrétion.

 - Des neuromédiateurs : les agents cholinergiques stimulent la sécrétion et les catécholamines l’inhibent.
1.5. **MECANISME CONTROLANT LA SECRÉTION DE L’INSULINE** [8, 14, 15, 17, 18, 19]

La libération de l’insuline synthétisée dans les granules du cytoplasme de la cellule β est un processus complexe. Les granules migrent vers la membrane cellulaire, s’y accolent, puis s’ouvrent dans l’espace extracellulaire.

Après la pénétration du glucose dans la cellule β, pénétration par les transporteurs Glut2, le mécanisme de sécrétion de cette hormone lorsque la glycémie s’élève fait schématiquement intervenir une augmentation de l’utilisation de glucose par la cellule β -pancréatique, une production accrue d’ATP et une diminution du rapport ADP/ATP conduisant à la fermeture de canaux K+ ATP-dépendants (Figure 4). Cela entraîne une dépolarisation cellulaire qui permet l’ouverture de canaux Ca2+ dépendant du voltage. L’entrée du calcium provoque l’activation de phospholipases A2 et C et la libération d’insuline.

La Sécrétion physiologique d’insuline s’élève à 0.6 U/kg/j, soit l’équivalent de 40 U pour un sujet de 70 kg. Le profil nycthéméral comporte (Figure 5) 40 à 50% : sécrétion basale, 50 à 60% : sécrétion prandiale.
Figure 4. Représentation schématique des mécanismes de stimulation de la sécrétion de l'insuline par le glucose[19]

Figure 5. Profil nycthéméral de la sécrétion d’insuline[17]
1.6. **RÉCEPTEUR A L’INSULINE** [14, 20, 21, 22]

Le récepteur de l'insuline est un hétérotétramère glycoprotéique composé de deux sous-unités alpha de 135 kDa et de deux sous-unités bêta de 95 kDa identiques deux à deux. Les sous-unités alpha sont extracellulaires et contiennent le site de liaison pour l'insuline. Elles sont reliées entre elles et aux sous-unités bêta par des ponts disulfures. Les sous-unités bêta sont constituées d'une portion extracellulaire (reliée aux sous-unités alpha), d'un domaine court transmembranaire et d'une longue portion intracytoplasmique. La partie cytoplasmique de la sous-unité bêta est subdivisée en plusieurs domaines fonctionnels : le domaine juxtamembranaire qui est impliqué dans l'internalisation du récepteur, le domaine kinase qui contient le site de liaison à l'adénosine triphosphate (ATP) et les sites majeurs d'autophosphorylation, et, dans la partie C-terminale, des sites d'autophosphorylation qui seraient des sites régulateurs de la réponse cellulaire à l'insuline (Voir figure 6)

![Figure 6. Structure moléculaire du récepteur de l'insuline [20]](image)
1.7. **EFFETS BIOLOGIQUES DE L’INSULINE [8, 14,19]**

L’insuline agit sur le métabolisme des glucides, des protides, des lipides et du potassium, elle un effet anabolique et catabolique sur la plupart des tissus de l’organisme.

1.7.1. **Métabolisme des hydrates de carbones**

Au niveau des cellules hépatiques, l’insuline stimule la glycogénèse c'est-à-dire le stockage du glucose sous forme de glycogène dont elle inhibe la dégradation par stimulation de l’activité glycogène synthase.

L’insuline stimule l'utilisation du glucose par la glycolyse ou son oxydation par la voie des pentoses-phosphate et s'oppose à la fabrication de glucose à partir d'acides aminés glucoformateurs (néoglucogenèse) et à la sortie du glucose du foie. Cette hormone inhibe la production du glucose en diminuant la glycogénolyse par inhibition de la glycogène phosphorylase.

Dans les cellules musculaires, l’insuline favorise le transport membranaire et la conversion du glucose en glycogène par activation de la glucose 1 phosphate uridyltransférase, de la voie des pentoses et du cycle de Krebs. La stimulation de la sécrétion d’insuline est sous le contrôle principal des enzymes glucokinase (GK) et glucose 1,6 di phosphatase métabolisant les hexoses. Les oses non métabolisées par son entremise comme le galactose, le ribose ou le xylose sont sans effets sur la cellule B. Les acides aminés lysine et alanine constituent également deux puissants sécrétagogues insuliniques. Il faut ajouter à cette liste une stimulation nerveuse, vagale (que l’on peut bloquer par l’atropine) et par le glucagon son antagoniste.
1.7.2. **Métabolisme des lipides**

L’insuline exerce une action anti-lipolytique en diminuant la libération des acides gras libres et du glycérol du tissu adipeux. Ce tissu se révèle particulièrement sensible à l’action de cette hormone, qui y exerce ces effets avec des concentrations plasmatiques de 7 à 10 fois inférieures à celles nécessaires à ses autres actions.

Dans les adipocytes, l’insuline favorise la captation des triglycérides en augmentant l’activité de la lipoprotéine lipase et augmente la synthèse de ces derniers à partir du glucose ou de l’acétate. L’entrée des lipoprotéines sériques dans ces cellules est également stimulée par l’insuline.

Au niveau hépatique, elle favorise, la synthèse des acides gras libres et l’estérification des triglycérides. Enfin, elle agit comme régulateur de la concentration des corps cétoniques circulant en diminuant leur libération par le tissu adipeux et l’oxydation des acides gras libres et de l’acétyl-CoA et en augmentant la consommation des corps cétoniques au niveau musculaire.

1.7.3. **Métabolisme des protéines**

L’insuline est responsable du maintien de la balance azotée. Elle exerce son action anabolique au niveau musculaire et hépatique selon deux voies :

- Stimulaion de la synthèse protéique à partir d’acides aminés plasmatiques (effets dépendant de l’AMP cyclique) ;

- Inhibition du catabolisme protéique (diminution de la synthèse d’urée) et de la gluconéogenèse à partir d’acides aminés glucoformateurs.
1.7.4. **Effets sur la croissance**

En plus de ses effets anaboliques, l’insuline est un facteur de croissance. En effet, elle stimule la prolifération des cellules épithéliales de la bordure en brosse de l’intestin humain (jéjunum et colon) au cours de l’embryogenèse. Pendant la croissance, l’insuline agit en stimulant la formation de somatomédines, polypeptides de faible poids moléculaire, médiateurs de l’effet de l’hormone de croissance. Certaines de ces somatomédines stimulent la prise de sulfate par le cartilage et possèdent en plus un effet insulinoïde sur le tissu adipeux et le muscle. Elles ont été nommées IGF 1 et 2 (Insulin Growth Factor). Elles sont suspectées être causale de certains cancers du colon.

1.8. **MÉCANISME D’ACTION DE L’INSULINE [14,21]**

Après la résorption, l’insuline se lie son récepteur spécifique situé sur la membrane plasmique des cellules cibles. Ce récepteur est présent sur presque toutes les cellules, à des concentrations allant jusqu’à 20 000 par cellule. La cascade biochimique aboutissant aux effets de l’insuline est incomplètement connue. L’insuline se fixe à son récepteur et augmente ainsi l’activité tyrosine kinase. Ceci provoque une déphosphorylation conduisant à la stimulation du glycogène synthétase (pour la glycogénèse), car sa forme active est la forme déphosphorylée. La déphosphorylation conduit à l’inhibition des deux enzymes de la glycogénolyse dont les formes actives sont phosphorylées. Cette phosphorylation est suivie par d’autres événements endocellulaires complexes.

1.9. **PHARMACOCINÉTIQUE DE L’INSULINE [8,9]**

L’insuline sécrétée par le pancréas circule sous deux formes ; soit liée aux globulines ou bien sous forme libre.
Avec des techniques de dosage spécifique les concentrations plasmatiques de l'insuline (10-15 µU/ml) ont été mesurées chez des sujets adultes non diabétiques et en dehors des repas. Après injection intraveineuse, la demi-vie de l'insuline dans le plasma est d'environ six minutes chez le sujet normal et chez le diabétique. Son volume de distribution est égal au volume du liquide extracellulaire, soit environ 20% du poids corporel. C'est essentiellement la forme monomère de l'insuline qui diffuse dans les tissus. L'insuline peut traverser la barrière hémato-encéphalique grâce à des transporteurs.

L'insuline est inactivée par des biotransformations enzymatiques : hydrolyse par des métalloprotéinases et réduction, c'est-à-dire rupture des liaisons S - S. Cette inactivation se fait surtout au niveau du foie et concerne 20 à 50% de l'insuline circulaire. L'élimination rénale d'insuline est faible car, après filtration, elle est réabsorbée par le tubule.

La pharmacocinétique de l’insuline dépend étroitement de la voie de son administration.

1.10. L’INSULINORESISTANCE [32,33]

L’insulinorésistance est définie comme une diminution de la sensibilité de l’organisme à l’insuline qui, de ce fait, perd de son efficacité. Elle est essentiellement rencontrée chez les diabétiques de type 2. Ces derniers présentent une insuffisance de sécrétion d’insuline et une insulinorésistance. Cette dernière survient sur un terrain génétique. En effet, on la retrouve chez les enfants issus de deux parents diabétiques non insulinodépendants et ayant une tolérance glucidique strictement normale. Toutefois, on ne connaît pas encore les gènes impliqués. Sur le plan métabolique, l’insulinorésistance est secondaire à l’excès de graisses au niveau des muscles et du tissu adipeux viscéral. Bien que
le stockage et l'utilisation du glucose soient diminués au niveau musculaire, au niveau hépatique une stimulation de la néoglucogenèse est observée. Ceci aboutit à augmenter la glycémie.

Les principaux facteurs cliniques d'insulinorésistance sont :

- L'obésité, appréciée par l'indice de masse corporelle IMC (poids en kilos sur carré de la taille en mètre). L'obésité est définie par un IMC supérieur à 30.
- La répartition abdominale, sous-cutanée et plus encore viscérale des graisses.
- La sédentarité, multiplie le risque de diabète par 2.
- Un facteur génétique : l'insulinorésistance pourrait s'expliquer par une augmentation des fibres musculaires à contraction rapide plus insulinorésistantes que les fibres à contraction lente.
- L'âge : le sujet âgé cumule plusieurs facteurs d'insulinorésistance.
- L'hypertension artérielle essentielle, l'augmentation des triglycérides et la baisse du HDL cholestérol, apparaissent comme des conséquences de l'insulinorésistance, ce qui rendrait compte de la fréquence de leur association avec le diabète de type 2.
2. INSULINOTHERAPIE

2.1. TYPES D’INSULINE [27, 28, 36,37]

Plusieurs classifications peuvent différencier les différents types d’insuline. Si on se base sur la structure, on distingue l’insuline humaine et analogue d’insuline. Si on se base sur la durée d’action on rencontrera quatre catégories.

Deux grands types d'insuline peuvent donc être décrits :

- **L'insuline humaine**, ainsi appelée parce qu'elle possède la même structure que l'insuline produite par un pancréas humain.

- **L'insuline analogue**, ainsi appelée lorsque l'on a modifié sa structure afin de changer sa vitesse et sa durée d'action.

Il y’a quatre catégories principales d’insulines qui se diffèrentent entre elles par leur durée d’action :

- **L'insuline Ultra Rapide.** Elle agit très rapidement, environ 5 à 10 minutes après son injection et atteint son pic d'action environ 1H à 1H30 après son injection. Cette insuline doit être injectée au plus près du moment du repas voire même juste après le repas. Dans le cas contraire, lorsqu’elle est injectée trop tôt avant le repas, elle risque d'engendrer une hypoglycémie. Sa durée d'action est d'environ 5 heures.
L'insuline rapide. Elle doit être administrée 30 minutes avant les repas et son entrée en action se situe environ 30 minutes après son injection. Son pic d'action se situe environ 2H après le repas. Sa durée d'action est plus longue que l'insuline précédente et avoisine généralement 6H à 8H. Ce sont des insulines humaines non modifiées.

L'insuline intermédiaire ou insuline lente. Appelée également NPH. Elle a un aspect laiteux contrairement aux deux premières qui sont parfaitement limpides. Elle entre en action entre 1H et 3H après son injection. Son pic d'action se situe entre la 6ème heure et la 12ème heure. Elle agit durant 24 heures environ avec une forte décroissance d'action dans les 4 dernières heures. Elle
peut avoir des actions différentes : soit elle agit de façon prolongée et équilibrée pendant toute sa durée d’action, soit elle agit de façon plus importante pendant les 6 premières heures que pendant les heures suivantes.

Tableau 3. Les insulines humaines intermédiaires [24,36,37]

Nom commercial	Laboratoire	Début	Pic	Durée
INSULATARD NPH ® (M)	Novo Nordisk	1h30 min	4-12 h	Jusqu’à 24 h
INSUMAN BASAL ®	Aventis	1 h	3-4 h	11-20h
UMULINE NPH ® (M)	Lilly	1 h	2-8 h	18-20h

Tableau 4. Les analogues Lents [27,36]

Nom commercial	Molécule	Laboratoire	Délai	Pic	Durée
LANTUS ® (M)	Glargine	Aventis	2-4 h	-	20-24 h
LEVEMIR ®	Détemir	Novo Nordisk	2-4 h	-	12-24h dose dépendant

(M) : Disponible sur le marché marocain

- **L'insuline Ultra Lente** entre en action approximativement 4H après son injection. Elle agit durant une vingtaine d'heures environ avec un pic d'action nettement moins élevé que l'insuline NPH. Ces insulines ne sont plus commercialisées.

A ces catégories d'insulines, nous pouvons ajouter les insulines à action biphasique, aussi appelées insulines mixtes. Ces insulines sont un mélange d'insuline rapide et d'insuline lente. Le diabétique peut effectuer lui même le mélange, ou il utilise des mélanges prêts à l'emploi selon des proportions différentes (10/90, 20/80, 30/70, 40/60 et 50/50 %).

Ces mélanges sont toujours faits avec de l'insuline NPH et de l'insuline rapide ou un analogue rapide, et ont une durée d'action d'une douzaine d'heures.
Tableau 5. Les mélanges d’insulines [27,36]

Nom commercial	Laboratoire	Début	Pic	Durée
Les mélanges fixes d'insuline humaine				
MIXTARD ® (M)	Novo Nordisk	30 min	2-8 h	Jusqu’à 24 h
UMULINE PROFIL 30 ® (M)	Lilly	30 min	1-8 h	18-20 h
INSUMAN COMB 15, 25 ®	Aventis	30 min à 1 h	2-4 h	12-19 h
INSUMAN COMB 50 ®	Aventis	30 min	1h30 à 4 h	12-16 h
Les analogues mélanges fixes				
NOVOMIX 30 ® (M)	Novo Nordisk	10-20 min	1-4 h	Jusqu’à 24 h
HUMALOG MIX 25 ®	Lilly	15 min	30-70 min	15 h
HUMALOG MIX 50 ®	Lilly	15 min	30-70 min	15 h

(M) : Disponible sur le marché marocain

Les insulines Insuman Comb 15, Insuman Comb 25, Insuman Comb 50, Umuline Profil 30, Mixtard 10, Mixtard 20, Mixtard 30, Mixtard 40, Mixtard 50 sont des mélanges d'insuline rapide et d'insuline NPH. Le chiffre indiqué correspond au pourcentage d'insuline rapide.

Les insulines Humalog Mix25, Humalog Mix50, NovoMix 30 et NovoMix 50 sont des mélanges d’un analogue rapide et d'insuline de type NPH. Le chiffre indiqué correspond au pourcentage d’analogue rapide.
2.2. ADMINISTRATION DE L’INSULINE [8, 13, 24, 25, 26]

2.2.1. Les voies d’administration

2.2.1.1. La voie sous cutanée (SC)

C’est la principale voie de l’administration de l’insuline, l’avantage de cette voie c’est que les patients peuvent s'administre eux-mêmes leur insuline.

2.2.1.2. La voie intraveineuse

C’est une voie d’urgence utilisée en cas de coma hyperglycémique. Elle a pour avantage la disponibilité et l’efficacité immédiate de l’insuline perfusée. Ceci permet le l’obtention d’un profil cinétique proche de la physiologie de l’insuline.

2.2.1.3. La voie nasale

L’administration de l'insuline par voie nasale est possible. Plusieurs firmes pharmaceutiques travaillent sur cette éventualité. La voie nasale est attractive en raison de son côté pratique. Les recherches en la matière n’ont hélas pas rencontré de succès, les études montrant que l’administration par voie nasale ne permettait que faiblement d’améliorer la glycémie postprandiale. Cet échec à développer un dispositif efficace a été attribué à différentes raisons. La faible surface de la muqueuse nasale, notamment, limite l’absorption. De plus, la biodisponibilité de l’insuline est soumise est à une variabilité intra- et interindividuelle considérable, probablement en raison des quantités de mucus produites. Pour ces différentes raisons, les dispositifs d’administration de l’insuline par voie nasale ne sont plus en développement. Les problèmes les plus délicats sont ceux de la régularité de l'absorption et la possibilité d'allergies
locales. Bien que des progrès soient en cours, le risque d'irritation nasale n'est pas encore résolu.

2.2.1.4. La voie orale

Cette voie constitue l’alternative la plus tentante non seulement par son côté pratique, mais aussi parce que l’insuline ingérée doit passer directement par le foie, ce qui devrait la rendre plus «physiologique » (physiologiquement, l’insuline est sécrétée dans la veine porte). Comme l’hormone est détruite dans le tube digestif par les enzymes protéolytiques et les obstacles que rencontre son passage à travers la muqueuse intestinale, certains auteurs ont proposé de protéger l’insuline des sucs gastriques en l’encapsulant dans des liposomes ou en l’associant à un surfactant dans une capsule de gélatine entourée d’un polymère acrylique. On a essayé de trouver des formes galéniques - des enveloppes de pilules ou de gélules - qui protégeraient l’insuline de cette destruction jusqu’au moment où elle pourrait être absorbée. La biodisponibilité de l’insuline ainsi administrée reste faible (1 à 4%).

Une insuline sous forme de nébulisateur, destinée à être absorbée à travers la muqueuse buccale, pourrait être prometteuse, mais seulement si l’on utilise des agents facilitants tels que la lécithine de soja et le propanediol.

2.2.1.5. La voie pulmonaire

Il s’agit d’inhalateur comportant L’insuline en poudre présentée sous plaquette thermoformée. Le patient doit inhaler par la bouche dans les poumons. L’utilisation de ce procédé doit être accompagné d’explications par un médecin ou une infirmière afin de garantir son efficacité, de de minimiser les risques et de s’assurer que le patient profite au mieux de son traitement. Le médecin
déterminera pour chaque patient les doses initiales et les heures d'administration, ainsi que le programme d’ajustement de la dose. Ce programme dépend de la réponse et des besoins du patient (par exemple alimentation, activité physique et mode de vie). Exubera constitue un exemple basé sur cette voie (1 mg d'insuline inhalée correspond approximativement à 3 UI d'insuline d'action rapide injectée par voie sous-cutanée elle n’est donc pas adapté aux cas où de petits ajustements d’insuline). Elle est commercialisée actuellement aux USA. Toutefois, elle présente des effets indiséérables se manifestant par des toux sèche ainsi qu’une importante disponibilité de l’insuline particulièrement chez les fumeurs [32].

2.2.2. **Les moyens d'injection de l'insuline** [13, 27,28]

- **Les Stylos à Insuline** offrent le très net avantage d'injecter l'insuline d'une façon discrète. Quelques stylos utilisent des cartouches d'insuline remplaçables, d'autres modèles sont jetables.

- **Les seringues** sont généralement utilisées par les personnes traitant leur diabète avec des mélanges d'insuline.

- **Les pompes à insulines**. En alternative aux injections discontinues sous-cutanées d’insuline humaine ou d’analogues de l’insuline, la possibilité de perfuser l’insuline en continu et en sous-cutané (CSII, continuous subcutaneous insulin infusion) existe depuis quelques années et commence à rencontrer une popularité croissante. Les dispositifs pour la CSII comportent actuellement un réservoir-pompe externe et une interface de contrôle informatisée connectée à un appareil de perfusion appliqué directement sur le corps du patient (par exemple au niveau de l’abdomen). Le dispositif de perfusion délivre en continu une faible quantité d’insuline humaine en sous-cutané par l’intermédiaire d’un cathéter ou d’une aiguille, selon un schéma programmé par l’utilisateur. Théoriquement,
l’insuline aspart comme l’insuline lispro (analogues rapides) sont particulièremen
t concernées par ces dispositifs de CSII, dans la mesure où tout changement de débit de la pompe devrait se traduire par une modification de la concentration plasmatique d’insuline en un temps minimal [13].

2.3. SCHEMAS D’INSULINOTHERAPIE [17, 27, 28, 29, 30]

Le type d’insuline et le nombre d’injections sont un compromis qui dépend de l’acceptation du diabétique, de ses possibilités d’auto surveillance glycémique, de son âge, de son poids, de son activité professionnelle, de ses horaires de travail, de ses activités sportives, de ses habitudes alimentaires, de l’ancienneté et de la stabilité du diabète, de l’existence de complications, et bien sûr de la qualité du contrôle glycémique apporté par le schéma insulinique en cours.

Les schémas classiquement utilisés en diabétologie varient de 1 à 5 injections par jour (sans compter bien sûr les injections de correction en cas d’hyperglycémie). Parmi, ces différents schémas on peut présenter :

Modèle à une injection / jour

Une seule injection le matin d’insuline à durée prolongée, ou d’un mélange d’insuline rapide et d’insuline à durée prolongée :

![Schéma à une seule injection](image)

Figure 7. Schéma à une seule injection (matin d’insuline à durée prolongée, ou d’un mélange d’insuline rapide et d’insuline à durée prolongée)[27]
L’avantage de ce schéma reste une seule injection par jour ce qui permet de s’habituer petit à petit aux injections.

Il est utilisé la plupart du temps en complément des antidiabétiques oraux qui ne sont plus assez efficace seuls.

Modèle à deux injections / jour

Il reste le plus utilisé. Deux injections d'insuline intermédiaire, faites avant le petit déjeuner et avant le dîner, le plus souvent associées à de l'insuline rapide matin et soir. L’utilisation d'un mélange préétabli (insuline bi phasique) prive le patient d'une adaptation indépendante des doses d'insuline rapide et intermédiaire, en particulier en cas d'hyperglycémie inhabituelle.

Ce schéma à deux injections peut entraîner une couverture insuffisante de la nuit, avec hyperglycémie au réveil : la solution est dans l'utilisation d'une insuline intermédiaire d'action plus longue, ou de décaler l'injection d'insuline intermédiaire du soir vers 22 heures (=passage à trois injections).

De même, il peut apparaître une hyperglycémie prolongée après le déjeuner, imposant une troisième injection d'insuline ordinaire avant le déjeuner, et une difficulté d’obtenir un équilibre (sauf pour les diabétiques de type 2 et les jeunes enfants diabétiques de type 1).

![Figure 8. Schéma à deux injections par jour (Matin et Soir : Mélange d'une insuline intermédiaire et d'une insuline rapide ou ultra-rapide)][27]
Modèle à plusieurs injections / jour

Une injection d'une insuline à durée intermédiaire ou à durée prolongée le soir pour assurer le besoin de base dans l'intervalle des repas, et une injection d'insuline rapide le matin, à midi et le soir pour s'occuper des repas, de façon à reproduire au mieux ce qui se passe chez les personnes non diabétiques. Ces schémas insuliniques sont également appelés «basal-bolus» (bolus étant un mot latin signifiant action de jeter, coup de dé, coup de filet...): Une injection d'insuline d'action intermédiaire ou prolongée au coucher (schéma à 4 injections) de type LANTUS ce qui permet une flexibilité des horaires (possibilité de grâce matinée ...) et flexibilité dans la composition des repas (insulinothérapie fonctionnelle) mais reste comme inconvénient le nombre et l'heure fixe des injections. Ou parfois avant le dîner en même temps que l'injection d'insuline rapide (éventuellement sous forme d'une seule piqûre d'insuline pré-mélangée (schéma à 3 injections) dans ce cas plusieurs schémas sont possibles (figure 9 et 10).

![Figure 9. Schéma à trois injections par jour : (Matin et Midi : insuline rapide ou ultra-rapide ; Soir : mélange d'une insuline intermédiaire ou lente et d'une insuline rapide ou ultra-rapide) [27]](image-url)
3.0 Figure 10. Schéma à trois injections par jour (Matin et Soir : mélange d’une insuline intermédiaire et d’une insuline rapide ou ultra-rapide ; Midi : insuline rapide ou ultra-rapide) [27]

On peut aussi suivre un schéma à 5 injections (5 injections dont 2 à heure fixe) : Insuline intermédiaire matin et soir (de type detemir ou NPH), insuline rapide ou ultra-rapide à chaque repas.

Comme à 4 injection, ce schéma permet aussi une flexibilité des horaires et dans la composition des repas (insulinothérapie fonctionnelle), mais le nombre des injections avec les heures fixes reste le seul inconvénient.

Ces schémas de traitement visent à reproduire au mieux la courbe de sécrétion d'insuline de la personne non diabétique.

2.4. INTERACTIONS MEDICAMENTEUSES DE L’INSULINE [19,35]

De nombreux médicaments peuvent contribuer à perturber la glycémie, comme les Bêtabloquants. Ces derniers peuvent masquer certains symptômes de l’hypoglycémie : palpitations ou tachycardie. Ainsi la plupart des bêtabloquants non cardiosélécifs peuvent augmenter l’incidence et la sévérité de l’hypoglycémie. Ce qui exige lors de la prise de ces médicaments de prévenir le patient et de renforcer l’auto-surveillance de la glycémie.

L’utilisation des inhibiteurs de l’enzyme de conversion (captopril, enalapril), peut entraîner une majoration de l’effet hypoglycémiant chez le
diabétique traité par l’insuline. La survenue de malaises semble exceptionnelle avec une amélioration de la tolérance et par conséquence une réduction en besoin en insuline. Certains analogues de somatostatine comme l’octréotide diminuent la sécrétion du glucagon endogène ce qui nécessite une adaptation des doses en insuline pendant le traitement par l’octréotide.

Les anti-inflammatoires surtout les salicylées, et les corticoïdes peuvent aussi majorer l’effet hypoglycémiant de l’insuline.

L’alcool a pour conséquence d’augmenter la réaction hypoglycémiant (inhibition des réactions de compensation) facilitant ainsi la survenue de coma hypoglycémique.

2.5. EFFETS INDESIRABLES [8,34,35]

2.5.1. L’hypoglycémie [8,34,35]

Il s’agit de l’effet secondaire le plus fréquent de l’insulinothérapie, il est souvent causé par un saut de repas, par l’alcool pris en dehors des repas, ou par un exercice physique non programmé ou sans adaptation de doses.

Les symptômes d'hypoglycémies sont : syndrome neurovégétatif (adrénergiques et cholinergiques) survenant à un seuil glycémique aux environs de 0.60 g/l (sueurs froides, palpitations, tremblement, faim) puis symptômes neuroglucopéniques survenant à un seuil glycémique inférieur à 0.50 g/l (troubles de concentration, de la parole, de la coordination motrice et pseudo-ébriété). Chez les patients diabétiques traités à l’insuline, la répétition de malaises hypoglycémiques trop fréquents peut faire disparaître ou retarder les symptômes neurovégétatifs perdant leur valeur d'alerte pour ne laisser persister que des symptômes neuroglucopéniques.
Les autres symptômes qu’on peut rencontrer sont : pâleur du visage, céphalée, somnolence, diplopie, paresthésies péri-buccales. De nuit, les symptômes suivant peuvent survenir : insomnie, sueur, cauchemars ou cris, fatigue, irritabilité et confusion au réveil.

Ces symptômes peuvent différer d’une personne à l’autre et peuvent être aggravés en un coma hypoglycémique.

Lors de l’hypoglycémie, le Corps réagit en secrétant des hormones (adrénaline, glucagon, GH, cortisol). Ces derniers, en mobilisant des ressources de glycogène hépatique, visent la restauration d’une glycémie normale. Ils stimulent la production du glucose néoformé et réduisent la sensibilité périphérique à l’insuline.

Le traitement médical dépend de la gravité de l’hypoglycémie. Si le sujet est conscient, on lui fait ingérer 15 g du sucre rapidement assimilable. Si la glycémie reste basse après 20 à 30 min on refait la même opération (resucée à nouveau).

Si le sujet est inconscient ou il y’a danger de fausses routes, il faut immédiatement injecter du glucagon : 1 mg par voie IM ou du glucose à 30% par toutes les voies possibles. Il est important que l’entourage du diabétique soit informé des signes d’hypoglycémie pour pouvoir intervenir et injecter le glucagon IM en cas de besoin.

2.5.2. **Allergies à l’insuline** [8,34,35]

L’allergie à l’insuline est un effet indésirable de plus en plus rare à la suite de l’utilisation de l’insuline hautement purifiée. Deux types d’allergies peuvent être décrits :
Allergie locale : au niveau du site d’injection, urticaire qui peut être parfois due au désinfectant contenu dans l’insuline (crésol, phénol ...)

Allergie généralisée : souvent observée lorsqu’on utilise un traitement intermittent à l’insuline. Toutefois, elle reste exceptionnelle.

2.5.3. Lipodystrophie [8,34,35]
Les lipodystrophies sont essentiellement de deux types:

lipohypertrophies se manifestant par prolifération du tissus adipeux sous cutanée. Elles sont dues aux injections répétées d’insuline au même endroit.

Lipoatrophies se présentant sous la forme d’une réduction du tissu adipeux sous-cutanée. Elles sont de nature immunologique et se manifestent par de petites dépressions cutanées au niveau du site d’injection. Ces dernières deviennent de plus en plus rares suite l’utilisation de l’insuline hautement purifiée.

La vascularisation anormale liée à l’hypo dystrophie peut engendrer une diffusion trop rapide ou trop lente de l’insuline.

2.5.4. Résistances à l’insuline [8,34,35]
On la rencontre surtout chez les obèses à cause des récepteurs insuliniques ou chez quelques malades associée à la formation des anticorps anti-insulines. Ainsi, on parle de résistance quand les doses nécessaires deviennent extrêmement élevées 150 à 200 U/jour.
ANALOGUES RAPIDES
3. LISPRO (HUMALOG ©)

3.1. DESCRIPTION [38,39]

Il s’agit du premier analogue qui a été commercialisé dès 1996. L’insuline lispro a comme formule chimique : [28B-L-lysine-29B-L-proline] insuline humaine. Elle est obtenue en substituant en position 28 la proline par la lysine et en position 29 la lysine par la proline sur la chaîne B de l’insuline (Figure 11) avec pour conséquence une élimination du contact existant entre les monomères au niveau des acides aminés B28 et B23, contact important pour la formation de dimères. Cette modification réduit également la force des deux liaisons hydrogènes entre les feuillets β, qui influence la stabilisation des dimères au sein des hexamères d’insuline. Elle est synthétisée par génie génétique en utilisant comme bactérie Escherichia coli, modifiée génétiquement par l’ajout du gène de l’insuline lispro.

3.2. PROPRIETES PHARMACODYNAMIQUES [13,39,40]

L’insuline lispro (Humalog) possède un délai d'action rapide (environ 15 minutes) permettant ainsi son administration peu de temps avant les repas (dans les 15 minutes précédant le repas) par rapport à l'insuline rapide (administration 30 à 45 minutes avant les repas). L’insuline lispro possède une durée d'action plus courte (2 à 5 heures) que l’insuline rapide. Comme pour toutes les préparations d’insuline, l'évolution dans le temps de l'action de l'insuline lispro peut varier d'un sujet à l'autre ou à différents moments chez un même sujet et dépend du site d'injection, de la vascularisation, de la température et de l'activité physique. Pour une dose moyenne (inférieure à 10 unités) et injectée dans
l’abdomen, l’action sur la glycémie semble se terminer deux heures avant celle d’une insuline rapide conventionnelle.

![Structure moléculaire de l'analogue rapide Lispro](image)

Figure 11. Structure moléculaire de l'analogue rapide Lispro[155]

Paramètres pharmacocinétiques	Lispro (Humalog)	Insuline rapide
Début d’action (min)	15-30	30-45
Pic insulinémique (min)	60	90
Maximum d’action atteint après (min)	40	70
Échappement glycémiques possible après (h)	3	4
3.3. PHARMACOCINETIQUE[13,36,37,40,41]

3.3.1. Absorption et biodisponibilité

L’Humalog a une biodisponibilité comparable avec celle de l'insuline humaine régulière, sa biodisponibilité absolue variant entre 55% à 77% avec des doses entre 0,1 et 0,2 U / kg, des études faites chez des volontaires sains et des patients diabétiques type 1, ont démontré que l’Humalog est absorbé plus rapidement que l'insuline ordinaire (100U). Chez les volontaires sains les doses injectées par voie sous-cutanée de l’Humalog allant de 0,1 à 0,4 U/kg, ont montré que le pic des concentrations sérique ont été observées 30 à 90 minutes après l'administration. Des doses équivalentes de l'insuline humaine ordinaire ont été administrées chez des volontaires sains, les pics d'insuline se sont produites entre 50 et 120 minutes après l'administration. Des résultats similaires ont été observés chez des patients diabétiques type 1. Les profils pharmacocinétiques de l'Humalog et de l'insuline ordinaire sont aussi comparables lorsqu'elles sont administrées à des volontaires par la voie intraveineuse. L’Humalog est absorbé à un rythme toujours plus rapide que
l'insuline humaine régulière chez ces volontaires en bonne santé à une dose de 0,2 U / kg d'insuline humaine ordinaire ou de l’Humalog, et ceci au niveau des trois sites souvent utilisés par les patients diabétiques l'abdomen, deltoïde ou la cuisse). Après l'administration de l’Humalog au niveau de l'abdomen, les taux sériques se sont observés plus élevés et la durée d'action est légèrement plus courte par rapport à celle observée à la cuisse ou deltoïde. L’Humalog a une variabilité inter et intra-individuelle légèrement inférieure à celle observée avec l’insuline humaine régulière. (CV de 9,9% à 15,2% contre 23,8% à 24,4% Respectivement, en fonction des variables et des conditions).

Figure 13. Pharmacocinétique de l’insuline Lispro (Humalog©) et de l’insuline humaine ordinaire injectées immédiatement avant un repas riche en glucides à une dose de (0,2 U / kg) chez 10 patients atteints du diabète type 1,[17]
3.3.2. Distribution

Le volume de distribution de l’Humalog est identique à celui de l’insuline humaine régulière, avec une fourchette de 0,26 à 0,36 L/kg.

3.3.3. Métabolisme

Les études sur le métabolisme humain n’ont pas été réalisées. Cependant, les études chez l’animal indiquent que le métabolisme de l’Humalog est identique à celui de l’insuline humaine ordinaire.

3.3.3.1. Élimination

Quand l’Humalog est administrée par voie sous-cutanée, sa demi-vie est plus courte que celle de l’insuline humaine ordinaire (1 contre 1,5 heures). Lorsqu’elle est administrée par voie intraveineuse, l’Humalog ou l’insuline humaine ordinaire, l’élimination est identique et dose-dépendante, la demi-vie est de 26 et 52 minutes, respectivement à 0,1 U/kg et 0,2 U/kg.

3.4. ÉTUDES CLINIQUES

3.4.1. Diabétiques type 1 [42, 43,44]

Une étude menée en cross-over pendant 6 mois auprès de 200 patients environ présentant un diabète de type 1 montre que le pourcentage d’HbA1c n’a pas été modifié, mais que les épisodes sévères d’hypoglycémie sont moins nombreuses sous traitement par l’insuline lispro que sous insuline humaine (36 contre 58, p < 0,05) [42]. De plus, il a été suggéré que cet impact de l’insuline lispro pourrait être encore plus marqué pour les épisodes nocturnes d’hypoglycémie [43]. Une comparaison en cross-over de 135 patients ayant un diabète de type 1 montre une fréquence plus faible d’épisodes symptomatiques d’hypoglycémie avec l’insuline lispro qu’avec l’insuline humaine (775 contre 1
156, p < 0,05). De plus, les épisodes nocturnes sont jusqu’à trois fois moins fréquents dans le groupe lispro (52 contre 181, p < 0,001). Dans l’étude de Heinemann et al. [44], 10 patients diabétiques de type 1 ont absorbé un repas contenant 140 g de glucides au total le matin à jeun. L’injection d’insuline sous-cutanée, faite immédiatement avant le repas, était soit de l’insuline rapide ordinaire soit de l’insuline lispro (en moyenne 15,4 ± 3,5 U de l’une ou l’autre insuline). L’aire sous la courbe de la glycémie durant les 4 heures suivant le repas était réduit de 22 % avec l’insuline lispro comparée à l’insuline ordinaire et le pic glycémique postprandial était inférieur de 2 mmol/l en moyenne avec l’insuline lispro.

Une autre comparaison a été faite ente l’insuline lispro et l’insuline rapide en termes d’efficacité et de fréquence des hypoglycémies chez des diabétiques de type 1 souhaitant jeûner pendant le mois de Ramadan.[45]

Dans cette étude, l’insuline lispro ou l’insuline rapide a été associée à la NPH, deux fois par jour avant les repas du matin et du soir, pendant 2 semaines en cross-over, et a inclus 64 patients. L’auto- surveillance a été réalisée sur la glycémie du matin à jeun et du soir, et 1 h et 2 h après le repas suivant le coucher du soleil pendant 3 jours consécutifs à la fin de chaque période thérapeutique. Les résultats ont montré que l’abaissement glycémique 2 h après le repas suivant le coucher du soleil était significativement (p = 0,026) plus basse sous lispro (2,50 ± 0,46 mmol/l) que sous insuline rapide (3,47 ± 0,49 mmol/l). Les doses quotidiennes d’insuline n’étaient pas différentes mais la compliance vis-à-vis de l’heure recommandée d’injection était meilleure avec la lispro.
L’incidence des hypoglycémies (insuline lispro, 15 (23,4 %) patients ; insuline rapide, 31 (48,4 %) patients ; p = 0,004) et la fréquence (insuline lispro, 0,70 ± 0,19 ; insuline rapide 2,25 ± 0,36 épisodes/patient/30 jours ; p < 0,001) étaient plus basses sous lispro. Cinq (22,7 %) des épisodes sous lispro sont survenus pendant la période nocturne contre 27 (36,5 %) des épisodes sous insuline rapide. Ainsi et sous l’insuline lispro, le contrôle glycémique, surtout de la glycémie postprandiale, s’est avéré s’améliorer et que l’hypoglycémie est significativement réduite sous insuline lispro par rapport à l’insuline ordinaire. Chose qui pourrait être fort profitable pour les diabétiques de type 1 désirant jeûner pendant le Ramadan.

Tableau 7 . Résumé des études cliniques effectuées sur l’insuline lispro en comparaison avec l’insuline humaine chez les diabétiques type 1.[46]

Études	Nombre de sujet	Durée d'étude	HbA1C	HYPOGLYCEMIE	Glycémie postprandiale (90min ou 2h après repas) ILisp-IH
Pfutzner et al.[47]	107	2×3 mois	NS	Episodes/patient-mois: ILis 8,57, IH 9,61 (p = 0,008)	2,0 mmol/L inférieur (p < 0,001)
Anderson et al.[48]	1008	2×3 mois	NS	(episodes/patient/30 Jours) 12% inférieur (p < 0,001)	2,0 mmol/L inférieur (p < 0,001)
Anderson et al. [49]	336	12 mois	-0,2% (p< 0,05)	NS	64% inférieur (p = 0,007)
Holleman et al.[50]	199	2×12 semaines	NS	Pas d’episodes severes, ILis 36, IH 58 (p = 0,037)	1,9 mmol/L inférieur (p < 0,001)
Heller et al.[51]	135	2×4 mois	NS	Total d'episodes nocturnes, ILis 52, IH 181 (p = 0,001)	0,75–1,0 mmol/L (petit dejeuner et diner)
Holcombe et al.[52]	481 (age) 9–18 years	2×4 mois	NS	Episodes/patient-mois: ILis 4,027, IH 3,47 (p = 0,023), nocturnes: ILis 1,0, IH 1,7 (p = 0,001)	(p≤0,003)
Valle et al.[53]	1184	3 MOIS	NS	Episodes/patient-mois severe, ILis 13,8, IH 18,7 (p < 0,001)	0,6–1,3 mmol/L inférieure (p < 0,001)

Les groupes de ces études recevaient également de l’insuline basale. IH :insuline humaine, ILisp : insuline lispro ,NS : non significatif.
3.4.2. **Jeunes diabétiques type 1** [54]

Une étude a comparé entre l’efficacité de l'insuline lispro donné avant ou après les repas, avec l'insuline humaine régulière donnée avant le repas chez 61 enfants diabétiques type 1 pré-pubères (âgés de 2,9 à 11,4 ans). Les enfants ont été répartis de façon aléatoire pour recevoir 30 unités, de l'insuline humaine 45 minutes avant les repas, et de l'insuline lispro en 15 minutes avant ou immédiatement après les repas, combinée avec l’insuline basale. Chaque traitement a duré 3 mois. Le traitement par l'insuline lispro avant le petit déjeuner a entraîné une diminution de la glycémie postprandiale (2 heures après repas) par rapport à l'insuline humaine régulière (11,7± 4,4 mmol/L contre 15,0± 5,4 mmol/L). De même, l'insuline lispro, donnée avant le dîner, a entraîné une réduction de la glycémie postprandiale (2 heures après repas) ; (8,8 ±5,0 mmol/L contre 10,8± 5,4 mmol/L) qu’avec l'insuline humaine régulière. Lorsque l'insuline lispro a été administrée 2 heures après les repas, la glycémie était similaires à celle observée avec l'insuline lispro ou l'insuline humaine régulière données avant les repas. La moyenne d'HbA1c ne différait pas entre les 3 thérapies (insuline lispro avant le repas 8,40% 1,1%, l'insuline humaine régulière avant le repas 8,43% 1,0%, l’insuline lispro après le repas 8,54% 1,0%, P =NS). Aucune corrélation n'a été observée entre HbA1c et l'âge.

3.4.3. **Diabétiques type 2** [55]

Dans une étude visant la détermination des effets d’une injection sous-cutanée préprandiale d’insuline Lispro ou d’insuline régulière sur le métabolisme du glucose chez des diabétiques obèses de type 2, les patients ont été étudiés en deux occasions pendant 4 heures après une charge orale en glucose. En une occasion, ils recevaient une injection d’insuline Lispro 5
minutes avant le repas. En une autre occasion, ils recevaient une injection d’insuline régulière 20 minutes avant le repas. La production et l’utilisation du glucose ont été mesurées grâce à une méthode bi-isotopique.

Cette étude a montré aussi que l’insulinémie a augmenté plus rapidement après l’injection sous-cutanée de Lispro, pour atteindre un pic à 60 min (90 min pour l’insuline ordinaire) après administration orale de glucose. Les concentrations de l’insulinémie étaient plus élevées après Lispro qu’après insuline ordinaire (30 et 150 min). L’aire sous la courbe calculée au cours des 4 h de l’étude, était de 25% plus élevé après Lispro qu’après l’insuline régulière (73,3 ± 12,8 vs 58,6 ± 8,9 nmol.min / l, p <0,05) Dans les deux protocoles, les concentrations plasmatiques de glucose ont augmenté après la charge en glucose, atteignant un pic après 90 min, puis a diminué progressivement. Toutefois, L’aire sous la courbe de la glycémie a été réduite de 29% dans le protocole Lispro comparé au protocole avec l’insuline ordinaire.

Chez les diabétiques de type II, lispro a permis un meilleur contrôle glycémique par rapport à l’insuline humaine.

3.4.4. **EFFETS DU LISPRO SUR LA GLYCÉMIE POST-PRANDIALE**

Les études cliniques réalisées avec l’insuline lispro sont en accord avec ses propriétés pharmacocinétiques et montrent que, chez les patients diabétiques de type 1 ou 2, l’analogue réduit les oscillations de la glycémie postprandiale par rapport à l’insuline humaine. Par exemple, dans une étude réalisée pendant 6 mois, l’insuline lispro et l’insuline humaine ont été comparé dans le cadre d’un traitement basal-bolus: l’augmentation de la glycémie une heure après le repas était inférieure de 30% lors d’une injection d’insuline lispro juste avant le repas
qu’après injection d’insuline humaine 30 minutes avant le repas (2,6 mM contre 3,7 mM, p < 0,001). Cette différence se retrouvait lorsque d’autres mesures étaient effectuées en postprandial (augmentation de la glycémie postprandiale inférieure de 53% dans le groupe lispro [p < 0,001] 2 heures après le repas [56]. En dépit de cette diminution de la glycémie postprandiale, la simple substitution de l’insuline humaine par la forme lispro dans le traitement basal-bolus a peu d’effet sur le pourcentage d’HbA1c. Cela est probablement dû au fait que durée d’action plus longue de l’insuline humaine compense la baisse des concentrations basales d’insuline (insuline interprandiale). Sans cette compensation, on observerait des concentrations plus élevées en glucose se reflétant au pourcentage d’HbA1c. À l’inverse, on a pu montrer une diminution significative du pourcentage d’HbA1c quand les concentrations basales d’insuline sont optimisées, par exemple lors de l’utilisation d’une perfusion continue d’insuline lispro en sous-cutané ou via une modification des doses ou du schéma d’injection d’insuline basale. Ainsi, pour des patients chez lesquels les bolus sont effectués avec de l’insuline lispro, le pourcentage d’HbA1c est diminué de 0,8% (p < 0,001) si l’insuline basale est également ajustée. Il faut cependant noter qu’une augmentation de la quantité d’insuline basale (de 43%) intervient probablement elle-même dans la diminution d’HbA1c.

Des résultats similaires (réduction de l’aire sous la courbe de la glycémie post-prandiale en moyenne de 30 % et du pic de glycémie postprandiale de 2 mmol/l) ont été rapportés par Feinglos et al. [57] Dans un groupe de 25 patients diabétiques de type 2 traités pendant 4 mois par une injection de lispro avant chaque repas contre sulfamides seuls à posologie maximale.
La méta-analyse de Davey et al.[57] (analyse de quatre études multicentriques où des diabétiques de type 1 ont remplacé leur insuline rapide par de la lispro) rapporte également une réduction de la glycémie postprandiale (à 1 heure et à 2 heures) avec la lispro comparée à l’insuline rapide. Néanmoins, malgré un meilleur contrôle de la glycémie post-prandiale obtenu par la lispro, l’HbA1c est restée inchangée (les études duraient en moyenne 6 mois) et contrairement à ce qui était espéré, le nombre d’épisodes hypoglycémiques n’a pas été réduit dans cette méta-analyse par l’introduction de l’insuline lispro. Par contre, Feinglos et al. [58](étude concernant des patients diabétiques de type 2), décrit une réduction de 1,8 % de l’HbA1c dans le groupe de diabétiques de type 2 traités par insuline lispro comparé au groupe sulfamides au terme de 4 mois de traitement (9,0 vs 7,1 %, p <0,001). Curieusement, dans aucune de ces études n’est parfaitement décrite la glycémie précédant le dîner. Or, on sait que dans les pays méditerranéens, l’intervalle de temps séparant le déjeuner du dîner est plus important que dans les pays du nord de l’Europe. Le contrôle optimal de la glycémie de fin d’après-midi peut donc être difficile à obtenir si l’insuline lispro est utilisée seule ce qui a conduit à concevoir des mélanges insuline lispro+ insuline intermédiaire [40].

3.4.5. LES MÉLANGES INSULINE LISPRO-INSULINE NPL

L’insuline intermédiaire associée à l’insuline lispro est dénommée insuline NPL (neutral protamine lispro). Elle correspond à l’insuline lispro associée à de la protamine. En effet, le mélange NPH-lispro était instable après contact prolongé altérant ainsi la pharmacocinétique originale de la lispro. Ces mélanges fixes à base d’insuline lispro sont commercialisés selon un ratio 25/75, 50/50 et 75/25. L’efficacité du mélange Humalog Mix25 (25 % lispro 75 %
NPL) a été rapportée chez 22 [59] patients diabétiques de type 2 dans une étude en double aveugle comparant le mélange 25 % insuline lispro-75 % NPL (Humalog Mix25), le mélange 30 % insuline rapide-70 % NPH (mélange 30/70) et la NPH seule après un repas test (500 kcal, 60 % d’hydrates de carbone, 20 % de graisses et 20 % de protéines [40]. L’étude a montré que l’excursion glycémique pendant les 4 heures qui suivent le repas test dans le groupe Humalog Mix25 est réduite de 36 % par rapport au mélange 30/70 et de 56 % par rapport au groupe NPH seule et que le pic insulinémique post-prandial est supérieur dans le groupe Humalog Mix25 d’environ 20 mUI/L par rapport aux autres groupes (Figure 14). Roach et al.[60] ont étudié le profil glycémique journalier chez 89 patients diabétiques de type 2 répartis en deux groupes : traitement par mélange 25 % insuline lispro75 % insuline NPL ou par le mélange 30 % insuline rapide-70 % NPH matin et soir. La durée de l’étude était de 6 mois. Les résultats montrent dans le groupe Humalog Mix25, une réduction des glycémies post-prandiales de 2 mmol/l en moyenne par rapport au groupe 30/70 est observée. L’HbA1c à la fin de l’étude était réduite mais non significativement dans le groupe Humalog Mix25 (7,8 vs 8,1). Par contre, il n’y avait pas de différence dans le nombre d’épisodes hypoglycémiques et dans les glycémies pré-prandiales dans chacun des groupes. Des résultats similaires tant sur l’équilibre glycémique que sur les épisodes hypoglycémiques ont été publiés par Vignati et al.[61](portant sur 707 patients diabétiques de type 1 et 2 traités par un mélange extemporané insuline lispro+NPH 2 fois 1 jour). Toutefois, ces résultats diffèrent de ceux d’une autre étude où ont été comparés pendant 3 mois chez 63 patients diabétiques de type 2 et 37 patients diabétiques de type 1, les effets d’une injection de Humalog Mix50 avant le petit déjeuner (vs un mélange 50 % insuline rapide-50 % NPH) et d’une injection de Humalog Mix25 avant le
dîner (vs un mélange 30 % insuline rapide-70 % NPH). Quel que soit le type de diabète, les glycémies post-prandiales étaient plus basses de 1,6 mmol/l en moyenne dans le groupe traité par mélange insuline lispro-NPL alors que les glycémies pré-prandiales et l’HbA1c étaient similaires dans les deux groupes.

Une autre étude [62] randomisée en double aveugle et en cross-over, testant la capacité de l'insuline humaine 70/30, les mélange de l'insuline lispro 75/25 (75% lispro protamine neutre [NPL], 25% d'insuline lispro), et 50/50 (50% NPL, 50% d'insuline lispro) dans le contrôle de la glycémie post-prandiale chez des patients diabétiques de type 2. Les réponses de la glycémie ont été comparées avec celles des sujets sains, non traités et ayant reçu le même repas. Un total de 33 patients ont été inscrits. Comparativement aux sujets sains, les valeurs de la glycémie postprandiale pour les 4 heures après le repas pour les patients diabétiques type 2 étaient 6,4 fois plus élevés avec de l'insuline humaine 70/30, 4,6 fois plus élevée avec Insuline lispro 75/25, et 3,0 fois plus élevée avec de l'insuline lispro 50/50. Les moyenne (écart type) de la glycémie postprandiale 2 heures après repas (mg/dl) ont été moins élevées avec des mélages contenant de l'insuline lispro qu'avec l'insuline humaine 70/30 (l'insuline humaine 70/30 : 212,6 (47,0); insuline lispro 75/25 : 198,0 (67,5), et l'insuline lispro 50/50 : 158,8 (52,3)).

Il en ressort que les mélanges contenant de l'insuline lispro ont été associés à une plus grande diminution de la glycémie post-prandiale comparativement à l'insuline humaine 70/30. En outre un meilleur contrôle de glycémie post-prandiale a été observé avec une le mélange qui contient plus de lispro. Toutes les études citées précédemment signalent l’avantage, pour le patient, de l’injection juste avant le repas des mélanges insuline lispro-NPL.
comparativement aux mélanges conventionnels pour lesquels un délai entre l’injection et le repas est de rigueur.

Figure 14. Excursion glycemique moyenne chez les patients diabetiques de type 2 après un repas [40]

Tableau 8. Résumé des proprietes pharmacodynamiques des differents produits d’insulines.[67]

Insulines	Dose U/Kg	Profil d’activité après administration (heure)	Pourcentage d’activité après les 4 premières heures.
Humalog	0.3	2.4 (0.8-4.3)	70% (49-89%)
Humuline R	0.32 (0.26-0.37)	4.4 (4-5.5)	54% (38-65%)
Humalog 75/25	0.3	2.6 (1.0-6.5)	35% (21-56%)
Humulin 70/30	0.3	4.4 (1.5-1.6)	32% (14-60%)
Humalog Mix 50/50	0.3	23.3 (0.8-4.8)	45% (27-69%)
Humulin50/50	0.3	3.3 (2.0-5.5)	44% (21-60%)
NPH	0.32 (0.27-0.40)	5.5 (3.5-9.5)	14% (3.1-48%)
NPL	0.3	5.8 (1.3-18.3)	22% (6.6-40%)

Les informations ont été tirées des 3 études distinctes avec la technique du clamp euglycémique chez des sujets sains non diabétiques. Les valeurs sont représentées avec les moyennes, avec des intervalles prévues entre parenthèses.
3.5. SECURITE ET TOLERABILITE

3.5.1. Mitogènecité [63]

D’un point de vue biochimique, on observe un léger accroissement de la liaison de l’insuline lispro au récepteur de l’IGF-1, mais aucune modification dans la durée de sa dissociation des récepteurs de l’insuline. L’effet mitogène d’une insuline dépend de son affinité pour les récepteurs de l’insuline et de l’IGF1. L’Humalog a une affinité égale pour le premier et seulement 1,5 fois plus forte pour le second par comparaison à l’insuline rapide.

Malgré cette augmentation de la liaison de l’analogue au récepteur de l’IGF-1, aucune conséquence clinique néfaste n’a été rapportée, et il est probable que les caractéristiques pharmacodynamiques de l’analogue diffèrent suffisamment peu de celles de l’insuline humaine pour qu’il y ait des conséquences en termes d’activité mitogénique.

3.5.2. Immunogénicité [64]

L’immunogénicité de cet analogue n’est pas significativement différente de celle de l’insuline humaine administrée par voie sous-cutanée. Certains patients développent des anticorps de réactivité croisée sans modification des anticorps spécifiques (anti-insuline ou anti-lispro). Ces anticorps diminuent au fil du temps et n’ont pas de conséquence clinique. L’allergénicité et l’immunogénicité de l’insuline Humalog ne semblent pas différentes de l’insuline conventionnelle même si certains auteurs ont rapporté de façon sporadique un effet bénéfique chez des patients allergiques à l’insuline ou avec insulinorésistance sous-cutanée.
3.6. POPULATION SPECIALE

3.6.1. Femme enceinte ou allaitante [65,66]

Des études sur la reproduction ont été effectuées chez les rats et les lapins. Les résultats n'ont révélé aucun signe d'altération de la fertilité ou de dommage pour le fœtus en utilisant l'Humalog ®.

Dans une étude multicentriques, randomisée et dont le but était de comparer l'efficacité et l'innocuité de l'administration préprandiale de lispro avec l'insuline rapide ordinaire chez des femmes enceintes atteintes de diabète de type 1. Les femmes ont été traitées avec de multiples injections d'insuline, d'insuline lispro (n=16) et d'insuline ordinaire (n=17). La glycémie a été déterminée six fois par jour, et l’ HbA1c toutes les 4 semaines. Les profils de la glycémie diurnes ont été analysés lors de la 14ème semaine de grossesse et pendant la période à l'étude aux semaines 21, 28 et 34.les résultats ont montré que la glycémie était significativement plus faible (P <0,01) après le petit-déjeuner dans la groupe lispro, bien qu'il n'y avait pas de différences significatives chez le même groupe en ce qui concerne le contrôle de la glycémie au cours du reste de la journée. Les valeurs de HbA1c ont diminué au cours de la période à l'étude et étaient similaires dans les deux groupes. Il n'y a pas eu de mortalité périnatale. Une seule patiente dans le groupe de l’insuline ordinaire a développé une rétinopathie proliférative.

Une étude pour déterminer une éventuelle association entre l'utilisation de l'insuline lispro au cours de la grossesse et le développement ou la progression de la rétinopathie diabétique, a concerné les femmes diabétiques de type 1 (n = 12) qui ont été traités par l'insuline lispro pendant la grossesse en comparaison avec d’autres (n = 42) traitées par l'insuline régulière. Aucune des patientes dans...
le groupe insuline lispro n’a montré de changement dans le statut de la rétinopathie, 6 patients dans le groupe insuline ordinaire (14%) ont présenté l'évolution de la rétinopathie. Ces résultats préliminaires ne fournissent pas de preuve que le traitement avec l'insuline lispro pendant la grossesse est associé avec le développement ou la progression de la rétinopathie diabétique.

Une étude prospective ouverte de 69 femmes enceintes atteintes de diabète type 1 a été réalisée, 36 de ces femmes ont été traités avec l'insuline lispro et 33 ont été traités avec l'insuline ordinaire. Le niveau de la rétinopathie a été estimée par la photographie de fond d'œil chaque trimestre de la grossesse et du post. Le contrôle de la glycémie au cours de la grossesse, d'hypoglycémie (taux de glycémie <3 mmol / l) à 24 h, la pression artérielle, et une protéinurie ont été enregistrées. Les valeurs HbA1c au début de l’étude étaient similaires dans le premier trimestre, mais par la suite ont été moins élevées dans le groupe lispro que dans le groupe insuline régulière tout au long de la grossesse (P = 0,022). Le nombre d'épisodes d'hypoglycémie ne différerait pas entre les groupes de traitement.

Bien que les complications sur le fœtus que cause l’hyperglycémie maternelle ont été bien documentées, de toxicité fœtale a également été rapportés avec l'hypoglycémie maternelle. Les besoins en insuline baissent habituellement au cours du premier trimestre et augmentent au cours des deuxième et troisième trimestres. Une surveillance étroite du patient est nécessaire tout au long de la grossesse. Au cours de la période périnatale, une surveillance attentive des bébés nés de mères atteintes de diabète est bien justifiée. Les résultats des études présentés montrent que l’insuline lispro améliore le contrôle de la glycémie au cours de la grossesse diabétique par
rapport à l'insuline régulière, et il est sans impact négatif sur la progression de la rétinopathie diabétique.

3.6.2. **Enfants diabétiques [67]**

Dans une étude de 9 mois, en cross-over chez 60 enfants, âgés de 3 à 11 ans, les résultats de la glycémie mesurée et de HbA1c ont été obtenus indépendamment chez les groupe traités soit avec l'insuline humaine ordinaire 30 minutes avant les repas 8,4%, ou bien avec l'Humalog immédiatement avant les repas 8,4%, et Humalog immédiatement après le repas de 8,5%. Dans, une autre étude durant 8 mois en cross-over chez des adolescents (n= 463), âgés de 9 à 19 ans, le contrôle de la glycémie mesurée par HbA1c a montré des résultats comparables obtenu indépendamment chez les groupes de l’étude, l'insuline humaine ordinaire de 30 à 45 minutes avant les repas ; 8,7% et pour l’Humalog immédiatement avant les repas 8,7%. L'incidence de l'hypoglycémie était similaire chez tous les groupes traités.

3.6.3. **Sujets âgés [67]**

Sur le nombre total de sujets (n = 2834) dans huit études cliniques sur lispro, 12% (n = 338) avaient 65 ans ou plus. La majorité de ces patients sont diabétiques de type 2. Les valeurs d’HbA1c et les taux d'hypoglycémie ne différaient pas selon l'âge.

3.7. **QUALITE DE VIE**

En raison de la nature chronique de la maladie diabétique, la mesure de la qualité de vie des patients fait partie intégrante de l’évaluation de l’efficacité des différents types de traitements par l’insuline. Une adhésion au traitement, et donc un meilleur contrôle de la glycémie, seront ainsi plus facilement obtenus si
les patients perçoivent les bénéfices de leur traitement, en particulier chez les diabétiques de type 2. L’amélioration de leur qualité de vie en raison d’une plus grande souplesse dans l’administration du traitement est un des bénéfices les plus fréquemment rapportés par les patients sous insuline lispro [39, 40].

Dans une étude portant sur 110 patients diabétiques de type 1 déjà sous insulinothérapie intensive avec de l’insuline rapide depuis plusieurs années et qui ont été suivis pendant un an après l’instauration d’une insulinothérapie fonctionnelle (FIT) comportant lispro. L’évaluation de l’équilibre glycémique, basée sur la comparaison de la moyenne des 3 dernières HbA1c avant et après la mise en place de la FIT, et le nombre d’hypoglycémies sévères/patient/année ont été noté l’année qui précède ou qui suit la mise en place de la FIT [68].

Les résultats ont montré que la moyenne d’HbA1c a diminué de 0,7% (p = 0,0001) et le nombre d’hypoglycémies sévères de 75% (p < 0,05). Le questionnaire de satisfaction à la fin de cette étude a montré aussi que 84% patients ont répondu satisfaits, 22% ont déclaré que leurs repas a varié de plus qu’au paravant et 82% trouvent qu’il est plus facile de gérer les repas "spéciales" (restaurants, invitations à d'autres maisons, sandwiches, ...etc.). Globalement, 81% ont conclu que l'application de cette nouvelle stratégie thérapeutique a amélioré leur qualité de vie, en outre, 59% des répondants ont noté une réduction du nombre d'épisodes d'hypoglycémie modérée après qu'ils ont commencé avec FIT lispro, tandis que 41% n’ont noté aucun changement.
4. ASPART (NOVORAPID ®)

4.1. DESCRIPTION [13, 36, 37]

L’insuline aspart est produite par la technique de l’ADN recombinant sur *Saccharomyces cerevisiae*, en remplaçant sur la chaîne B de l’insuline, l’acide aminé proline en position 28 par l’acide aspartique. Cette modification a deux effets : le premier, comme pour l’insuline lispro, est d’éliminer toute interaction entre les monomères au niveau des acides aminés B23 et B28; le second est d’introduire un nouveau groupement carboxyle dans la chaîne, et donc une charge négative dans les conditions physiologiques, ce qui réduit encore la formation d’agrégats.

![Figure 15. Modification structurale utilisées dans le développement de l’insuline aspart[13]](image_url)
4.2. PROPRIETES PHARMACOLOGIQUES[13,36,70]

4.2.1. Propriétés pharmacodynamiques

L’aspart possède un délai d’action plus rapide que l’insuline humaine soluble, de plus la glycémie se maintient à des valeurs plus basses dans les quatre heures qui suivent le repas. Après injection sous-cutanée, la durée d’action de l’aspart est inférieure à celle de l’insuline humaine soluble. Elle commence à agir dans les 10 à 20 minutes qui suivent son injection. Son effet maximum apparaît de 1 à 3 heures après l’injection. Sa durée d’action est de 3 à 5 heures.

Des études comparatives entre l’insuline lispro et l’insuline aspart montrent des profils pharmacocinétiques et pharmacodynamiques très similaires chez les patients adultes diabétiques de type 1. D’autres études ont montré des différences mineures entre ces deux analogues.

Les études utilisant la technique du clamp euglycémique montrent que l’activité de l’insuline aspart apparaît plus rapidement que celle de l’insuline humaine, avec un pic au cours de la première heure suivant l’injection sous-cutanée et une concentration maximale pendant environ 1 heure (Figure 16). La diminution d’activité de l’insuline aspart est également plus rapide que celle de l’insuline humaine, avec un retour aux valeurs de base environ 6 heures après l’injection, contre 8 heures pour l’insuline humaine.
Figure 16. L’insuline aspart injectée reproduit mieux que l’insuline humaine injectée en sous-cutané le profil de l’insuline endogène après la prise d’un repas [13]

Le profil d’insuline obtenu après l’injection d’insuline aspart présente des caractéristiques similaires à celui de l’insuline endogène. En particulier, l’action de l’insuline aspart apparaît plus rapidement, le pic d’activité est plus grand et la durée d’action est plus courte qu’avec l’insuline humaine injectée en sous-cutané.

Chez des patients diabétiques de type 1, des essais cliniques ont montré que la glycémie postprandiale était inférieure à celle obtenue avec l’insuline humaine soluble (Figure 17). Lors de deux essais ouverts à long terme réalisés chez des patients diabétiques de type 1 incluant respectivement 1070 et 884 patients, l’aspart a réduit les concentrations d’hémoglobine glycosylée de 0,12 % [95 % I.C. 0,03 ; 0,22] et de 0,15 % [95 % I.C. 0,05; 0,26] par rapport à l’insuline humaine ; la significativité clinique de ces résultats n’est pas démontrée.
4.2.2. Propriétés pharmacocinétiques

La substitution de l’acide aminé proline par de l’acide aspartique en position B28 réalisée sur l’aspart réduit la tendance à la formation d’hexamères observée avec l’insuline humaine soluble. L’aspart est donc absorbé plus rapidement que l’insuline humaine soluble à partir du tissu sous-cutané. En moyenne, le temps d’apparition de la concentration maximale est inférieur de moitié à celui de l’insuline humaine soluble. Chez des patients atteints de diabète de type 1, une concentration plasmatique maximale moyenne de 492 ± 256 pmol/l a été observée 40 minutes (écart interquartile : 30–40) après injection sous-cutanée d’une dose de 0,15 U/kg de poids corporel. Le retour aux concentrations d’insuline de départ se fait en 4 à 6 heures environ après l’injection. Une vitesse d’absorption légèrement plus lente a été observée chez les patients atteints de diabète de type 2, se traduisant par une Cmax inférieure
L'insuline aspart a été absorbée rapidement dans les deux groupes, avec un tmax équivalent à celui de l’adulte. Cependant, une variation de Cmax a été observée en fonction de l’âge, ce qui souligne l’importance du dosage individuel de aspart.

4.3. **ASPART BIPHASIQUE (NOVOMIX 30 ®)**

4.3.1. **Propriétés Pharmacodynamiques**

L’insuline aspart est commercialisée sous une autre forme en suspension biphasique qui contient 30% d’insuline aspart soluble. Grâce à son délai d’action rapide, on peut l’administrer plus près des repas (de 0 à 10 minutes avant/après le repas) que l’insuline humaine soluble. La phase cristalline est constituée de 70% d’insuline aspart protamine, dont le profil d’activité est similaire à celui de l’insuline humaine NPH (Figure19). Administré par voie sous-cutanée, NovoMix 30 commence à agir dans les 10 à 20 minutes qui suivent l’injection.
Son effet maximum apparaît 1 à 4 heures après l’injection. Sa durée d’action peut atteindre 24 heures [69, 70].

4.3.2. Propriétés pharmacocinétiques

L’insuline aspart de la phase soluble de NovoMix 30 représente 30% de l’insuline totale ; elle est absorbée plus rapidement à partir du tissu sous-cutané que la fraction soluble de l’insuline humaine biphasique. Les 70% restants sont constitués d’insuline aspart protamine sous forme de cristaux, dont le profil d’absorption prolongée est similaire à celui de l’insuline humaine NPH.

Avec NovoMix 30, la concentration maximale d’insuline sérique est en moyenne supérieure de 50% à celle observée avec l’insuline humaine biphasique 30. En moyenne, le temps d’apparition de la concentration maximale est inférieur de moitié à celui de l’insuline humaine biphasique 30. Chez des volontaires sains, une concentration sérique maximale moyenne de 140 ± 32 pmol/l a été atteinte 60 minutes environ après injection sous-cutanée d’une dose de 0,20 U/kg de poids corporel. La demi vie moyenne (t½) de NovoMix 30, qui reflète la vitesse d’absorption de la fraction liée à la protamine, était de 8 à 9 heures environ. Le retour aux concentrations sériques de départ s’est fait en 15 à 18 heures après injection sous-cutanée de la dose. Chez les patients diabétiques de type 2, la concentration maximale a été atteinte 95 minutes environ après injection de la dose et des concentrations bien supérieures à zéro ont été mesurées 14 heures au moins après l’administration [69, 70].

Les propriétés pharmacocinétiques de NovoMix 30 n’ont pas été étudiées chez les personnes âgées, les enfants ou les patients atteints de troubles rénaux ou hépatiques.
4.4. ETUDES CLINIQUES

4.4.1. Diabétiques type 1 [13]

En accord avec le profil pharmacodynamique de l’insuline aspart, les données cliniques disponibles montrent que son injection immédiatement avant le repas réduit significativement les oscillations de la glycémie postprandiale, de façon plus importante que l’injection d’insuline 30 minutes avant le repas. Une comparaison directe de la capacité des formes aspart et lispro à contrôler la glycémie chez des patients diabétiques de type 1 a montré que les deux analogues entraînent une diminution de la glycémie postprandiale (rapport aspart/lispro des Cmax pour les oscillations de la glycémie postprandiale = 1,01) [70].

Deux études réalisées à grande échelle ont également montré une diminution faible, mais statistiquement significative, du pourcentage d’HbA1c (environ 0,15% d’HbA1c) après traitement par l’insuline aspart, par rapport à
l’insuline humaine. Les concentrations basales d’insuline étaient optimisées dans cette étude: Cependant, l’effet sur la proportion d’HbA1c reste significatif quand on tient compte des augmentations des concentrations basales d’insuline, ce qui suggère que la diminution d’HbA1c ne provient pas seulement de la variation des concentrations basales d’insuline [71,72].

Il a également été montré que l’utilisation d’insuline aspart au lieu d’insuline humaine soluble réduit le risque d’hypoglycémie : la fréquence globale d’épisodes hypoglycémiques est ainsi diminuée sous traitement par l’insuline aspart dans une étude menée pendant 4 semaines auprès de 90 hommes ayant un diabète de type 1 (20 épisodes contre 44 avec l’insuline humaine) [73].

Une autre étude, menée en double aveugle et en cross-over auprès de 155 patients présentant un diabète de type 1, ne montre aucune différence, en termes d’épisodes hypoglycémiques majeurs ou de pourcentage d’HbA1c, que le traitement basal-bolus s’effectue avec de l’insuline aspart ou de l’insuline humaine, mais enregistre une baisse de 72% du nombre d’événements hypoglycémiques nocturnes majeurs (0,017 contre 0,056 événements par mois, p < 0,005). De plus, une diminution significative de la fréquence des épisodes mineurs d’hypoglycémie a également été rapportée lors d’un traitement par l’insuline aspart (2,98 contre 3,19 événements par mois, p < 0,05) [74].

Les résultats d’essais faits sur l’aspart, utilisé dans la thérapie basal-bolus, sont résumés dans le Tableau 9. Par rapport à l’insuline humaine, la réduction de l’HbA1c était davantage pour l’insuline aspart avec dans la plupart des essais, avec une différence moyenne maximale de 0,16% en faveur de l’aspart, vus chez 753 sujets dans plus de 30 mois, des réductions dans les épisodes majeures
hypoglycémies nocturnes ont été signalés pour l’aspart. Par rapport à l’insuline humaine, l’action de l’aspart a eu un impact plus important sur la glycémie postprandiale dans toutes les études, qui a examiné ce que d’un point limite (Tableau 9), avec des valeurs entre 0,6 et 2mmol/L plus faible observées avec l’aspart par rapport à l’insuline humain [46].

Tableau 9. Résumé des essais faits avec l’insuline aspart chez des patients diabétiques type 1 [46]

Études	sujet	Durée d’étude	HbA1C Asp–IH	HYPOGLYCEMIE	GLYCEMIE post prandiale après 90min ou 2heures
Home et al.[73]	1065	6 mois	-0.12% Hb (p < 0.02)	Incidence des épisodes majeurs nocturnes Asp 1.3%, IH 3.4% (p < 0.05)	0.6–1.2 mmol/L inférieur (p < 0.01), 1.15 mmol/L (p < 0.0001)
Home et al.[76]	753	Extension de l’étude ci-dessus à 30 mois	-0.16% Hb (p = 0.035)	RR Asp contre. IH: 1.24 (p = 0.024)	-
Raskin et al.[72]	882	6 MOIS	-0.15% Hb (p = 0.005)	Incidence des épisodes majeurs nocturnes Asp 4%, IH 8% (p = 0.013)	Infirmier (p < 0.05)
Raskin et al.[72]	714	Extension de l’étude ci-dessus à 30 mois	-0.13% Hb (p = 0.046)	NS	infirmier (p < 0.05) sauf après le diner.
Heller et al.[77]	155	2-6 SEMAINES	NS	RR Asp contre IH: mineure 0.93 (p = 0.048), majeur nocturnes : 0.28 (p = 0.001)	-

Dans toutes ces études, les deux groupes ont également reçu de l’insuline basale. IH : insuline humaine (-)
Non indiqué, NS : non significatif, RR : risque relatif.

Dans une étude randomisée multicentrique pendant 16 semaines, ayant comparé entre l’insuline ordinaire, l’aspart et lispro administrées par perfusion continue sous-cutanée (l’insuline ordinaire a été administrée 30 minutes avant les repas alors que les l’aspart et lispro ont été utilisés immédiatement avant les
repas) chez 446 patients diabetique type 1. Les résultats ne montraient pas de
différence significative de HbA1c, la fréquence des épisodes d’hypoglycémie
par patient (glycémie<50mg/dl) était similaires chez les trois groupes traités
(3.7 : aspart, 4.8 pour insuline ordinaire, et 4.4 pour lispro) par mois. L’insuline
aspart, utilisé en perfusion sous-cutanée continue avec des pompes externes,
était aussi efficace et bien tolérée que l’insuline ordinaire et lispro [78].

4.4.2. Diabétiques type 2

Une étude a été réalisée pour comparer l’efficacité et l’innocuité de
L’insuline aspart préprandiale avec l’insuline humaine soluble (IH) et l’insuline
humaine prémélangée (prémix) (30% de l’insuline ordinaire/70% NPH). Dans
cette étude 231 patients diabétiques type 2 ont été inclus, ils ont été répartis en
trois groupes : le premier traité par l’insuline aspart (n=75), le second par IH
(n=80), et le dernier par prémix (n=76). Le traitement a duré trois mois.
L’aspart et l’insuline humaine ont été administrés avec ou sans NPH. Les
résultats à la fin de cette étude ont montré une réduction de HbA1c 0.91±1.00
pour l’aspart, 0.73±0.87 pour IH, et 0.65± 1.10 pour prémix avec un intervalle
de confiance : aspart/ IH (-0.21 à 0.57, P =0.025), aspart /prémix (-0.17 à 0.69,
P=0.092), et IH-prémix (-0.33 à 0.48, P=0.006). Il a été également montré une
diminution de la glycémie postprandiale chez le groupe traité par l’insuline
aspart 0.44 mmol/l à >1.67 mmol/l comparé avec IH et 1.1 mmol/l à >1.67
mmol/l comparé avec prémix. Les événements hypoglycémiques observés par
mois étaient IH ; 0.56, aspart ; 0.40, et prémix ; 0.19. Dans cette étude, L’aspart
a entraîné une amélioration de HbA1c et de la glycémie postprandiale, elle a été
efficace et bien tolérée [79].
Dans une étude randomisée de 34 semaines chez des diabétiques type 2 portant sur l’efficacité et l’innocuité de l’insuline aspart biphasique (Asp 30% à action rapide et 70% d’aspart à action intermédiaire sous forme de cristaux de protamine) ajouté à un traitement optimisé avec des antidiabétiques oraux (metformine+ pioglitazone). Les résultats ont montré que les sujets traités avec l’aspart biphasique + (met/pio) (n=90) avaient une réduction significative de HbA1c par rapport aux patients traités seulement aux met/pio (n =88) ; (1.5% ± 1.1 contre 0.2% ± 0.9, p < 0.0001). Le profil glycémiques des 8 points du traitement du jour étaient inférieur chez le groupe traité avec aspart biphasique et l’hypoglycémie mineure (définie pour glycémie < 3.1 mmol/l) était plus fréquente (8.3 contre 0.1 événements/an, p < 0.001) comparée avec le groupe traité par met/pio. Un gain de poids a été observé chez les deux groupes (BIAsp 30+met/pio, 4.6 ±4.3 kg; met/pio, 0.8 ± 3.2 kg; p < 0.001). L’addition de l’aspart biphasique est un moyen qui semble efficace pour améliorer le contrôle glycémique chez les diabétiques type 2 qui n’atteignent pas les cibles du bon contrôle glycémique avec un traitement utilisant seulement avec les antidiabétiques oraux. (American Association of Clinical Endocrinologists and European Association for the Study of Diabetes/American Diabetes Association) [80].

Le Tableau 10 présente un résumé des études qui ont comparé entre les prémélange de l’insuline aspart et de l’insuline humaine. Par rapport à l’insuline humaine biphasique, les prémix de l’insuline asparte ont montré des résultats similaires de HbA1c et même des taux d'hypoglycémie. Dans certains essais (par exemple, Boehm et al.), il y a eu une tendance à une réduction des événements d'hypoglycémie avec l'aspart, mais si les taux des événements étaient trop bas
pour montrer des différences statistiques, sauf dans l’étude de Mc Nally et al, où l'hypoglycémie nocturne était observé inférieur pour les prémélange d’aspart. Comme le montre le tableau, une reduction de significative de la glycémie postprandiale a été observé avec l'insuline asparte prémélange par rapport à l’insuline humaine prémélangee [46].

Tableau 10. Ensemble d’études comparant l'insuline asparte pré mélangée contre l'insuline humaine pré mélangées chez les patients atteints de diabète type 2 [46]

Etudes	Groupes de traitement	Nombre de sujet	Durée d’étude	HbA1c Asp –IH	HYPOGLYCEMIE	GLYCEMIE post prandiale après 90min ou 2heures
Boehm et al.*[81]	Asp B 30 2fois/J contre IHB 302fois/J	187	12 semaines	NS	NS	0.29 mmol/L inférieur avec AspB (NS)
Boehm et al.[82]	Extension de l’étude au dessus	125	24 mois	NS	NS	-
McNally et al.[83]	Asp B 30 2fois/J contre IHB 302fois/J	160	16 semaines	NS	RR pour AspB contre IHB: nocturne: 0.74 (p = 0.020)	-
Iwamoto et al.[84]	Asp B 30 2fois/J contre IHB 302fois/J	428	48 semaines	NS	NS	IHB 13.8 Asp B13.0 (p < 0.05)

Dans toutes ces études les patients ont déjà reçu de l’insuline, les antidiabétiques oraux sont soient exclus ou non mentionnés. *Diabétiques type 1et2. AspB : Aspart biphasique. IHB : insuline humaine biphasique. NS : non significatif. RR : risque relatif. (-) : non rapporté.

L’intérêt de l’insuline aspart biphasique Novo-Mix® 30 chez les diabétiques type 2 (DT2) a fait l’objet d’une revue [85]. D’après S. Halimi et al., la mise sous insuline des patients DT2 doit se faire selon deux critères essentiels : la simplicité de l’instauration de l’insulinothérapie et la facilité de son intensification lorsqu’il s’avère nécessaire de renforcer l’insulinothérapie.
Plusieurs schémas d’instauration sont possibles : une insuline biphasique au dîner, une insuline biphasique au lever et au dîner ou un analogue de longue durée d’action au coucher. Cette dernière modalité peut évoluer vers une grande complexité, avec des bolus d’analogue rapide nécessitant d’utiliser un second stylo à insuline et un nouveau processus éducatif. L’utilisation d’une insuline biphasique apparaît donc mieux répondre aux objectifs et critères essentiels précédemment énoncés.

L’essai randomisé [86] de 28 semaines chez 209 DT2, a comparé un schéma d’instauration par deux injections (avant le petit déjeuner et avant le dîner) de 5-6 unités (U) d’insuline aspart biphasique à une injection de 10-12 U d’insuline glargine au coucher. La réduction du taux d’HbA1c était supérieure (P < 0,01) avec l’insuline aspart biphasique, tout comme la proportion de DT2 atteignant l’objectif d’HbA1c < 7 % (P < 0,001). La prise pondérale était supérieure avec aspart biphasique qu’avec la glargine (5.4 ± 4.8 vs. 3.5 ± 4.5 kg, P < 0,01)

L’étude 1-2-3 [87], est une proposition de stratégie d’instauration chez les DT2, visant à optimiser le contrôle glycémique par le patient sur la base de sa glycémie à jeun du matin, avec un schéma initial d’insuline aspart biphasique avant le dîner, à dose adaptée tous les 3-4 jours sur la glycémie du réveil, puis après 16 semaines si nécessaire une seconde injection avant le petit-déjeuner, et 16 semaines plus tard si nécessaire une troisième injection avant le déjeuner. Cette stratégie permettant de contrôler un grand nombre de DT2 en échec avec les antidiabétiques oraux (ADO) apparaît intéressante, car associant simplicité d’emploi et progression réaliste et adaptée de la complexité de l’insulinothérapie selon le contrôle métabolique, incluant les glycémies postprandiales [88].
4.5. SECURITE ET TOLERANCE

4.5.1. Chez enfants et adolescents

Le profil pharmacodynamique de l’insuline aspart était similaire chez les enfants et les adultes. Chez ces patients, les essais cliniques ont montré que le risque d’hypoglycémie nocturne était moins important avec l’insuline aspart qu’avec l’insuline humaine soluble. Le risque d’hypoglycémie diurne n’augmente pas de façon significative.

Une étude [89]a été réalisée pour suivre le contrôle de la glycémie avec les injections préprandiale Versus des injections postprandiales de l’aspart chez les enfants et les adolescents diabétiques de type 1. Quarante-deux enfants (de 6-12 ans) et 34 adolescents (13-17 ans) ont été randomisés pour l’injection préprandiale (immédiatement avant le repas) et postprandiale (immédiatement après un repas ou un maximum de 30 min après le début de repas) (au moins trois fois par jour) dans le cadre d'un régime basal-bolus. L’étude était multicentrique ouverte et la période de deux cross-over était (6 semaines). Les résultats ont montré que Le contrôle de la glycémie par le traitement postprandiale n’était pas pire que le traitement préprandiale tels qu'évalués par fructosamine avant le traitement et 6 semaines après (préprandiale 367± 74 vs 378± 90 µmol / l; postprandiale 383± 83 vs 385± 77 mol / l) et HbA1c (préprandiale 7,9± 1,3 vs 8,0 ±1,5%; postprandiale 8,0± 1,4 vs 8,3± 1,5%, P =0,14). La seule différence significative a été observée après 120 min après le petit déjeuner et a été marqué par une réduction de la glycémie postprandiale (-2.08 ±0.74 mmol/l, P =0.016). Le risque relatif d’hypoglycémie était similaire et aucune différence n’a été observée [89]. Bien que l’administration préprandiale de l’insuline aspart est généralement préférable, cette étude montre que les
enfants et les adolescents, peuvent avoir une alternative sûre et efficace de l’administration postprandiale de l'insuline aspart.

4.5.2. **Au cour de la Grossesse.**

Des études cherchant l’effet tératogène réalisées avec l'insuline Aspart chez le rat et le lapin ont indiqué que, comme l'insuline humaine régulière, l'insuline aspart à des doses de 3 à 200 fois plus supérieure que la dose normale sous-cutanées provoque des anomalies fœtales ceci s’explique probablement par les effets secondaires liés à l'hypoglycémie maternelle causée par des doses plus élevées [90].

Un essai clinique comparant la tolérance et l’efficacité de l’insuline aspart versus l’insuline humaine dans le traitement du diabète de type 1 chez la femme enceinte (322 femmes enceintes exposées (insuline aspart : 157 ; insuline humaine : 165)) n’a pas montré d’effets délétères de l’insuline aspart sur la grossesse ou sur la santé du fœtus/nouveau-né. Dans le groupe de l’aspart et IH il y’avait respectivement 137 et 131 naissances et 14 vs 21 avortements. La mortalité périnatale était de 14 et 22/1000 naissances; nombre de malformations congénitales étaient 6 et 9 et un accouchement prématuré s’est produit dans 20,3% (Asp) et 30,6% (IH) de grossesses (P =053). Le résultat de l’aspart était comparable avec (IH) avec une tendance de moins d’avortements et d’accouchements avant terme pour l’aspart [91].

Pettitt et al. [92] ont réalisée la première étude clinique pour comparer à court terme, l'efficacité de l'insuline aspart, avec celle de l’insuline régulière, et aussi en absence d’insuline chez les patientes atteintes de diabète gestationnel. Quinze femmes ont été incluses dans cette étude ayant reçu sur 3 jours consécutifs un repas test après l'administration de l'insuline ordinaire ou de
l'insuline aspart. Cet essai a montré que La glycémie postprandiale était significativement améliorée par l'insuline aspart par rapport à non administration de l’insuline exogène alors que l'insuline ordinaire n'a montré aucune différence significative. Par ailleurs, un essai clinique comparant l’insuline aspart et l’insuline humaine mené chez 27 femmes présentant un diabète gestationnel (insuline aspart : 14 ; insuline humaine : 13) a montré des profils de tolérance similaires entre les traitements, et que les poids du nouveau-né à la naissance étaient similaires dans les deux groupes, et aucun cas de macrosomie n'a été signalé. Cette étude démontre que la sécurité globale et l'efficacité de l'insuline aspart a été comparable à l'insuline humaine régulière chez les femmes enceintes avec diabète gestationnel. L’aspart était plus efficace que l'insuline humaine ordinaire dans Le contrôle de la glycémie postprandiale chez ces femmes enceintes avec diabète gestationnel.

Cette constatation a été confirmé par une grande étude multinationale multicentrique (dans 17 pays à 90 centres) ayant randomisé 330 femmes enceinte diabétiques de type 1 Cette étude a suivi l'inocuité et l'efficacité de l'insuline Aspart en comparaison avec l’insuline humaine. Les résultats ont montré qu’il n’y a pas eu de complications maternelles ou fœtales associées à l'insuline et aucune preuve que l’insuline Aspart est tératogène [93].

4.5.3. **Potentiel mitogénique** [13, 36,37]

Lors des essais *in vitro* évaluant à la fois la liaison aux récepteurs de l’insuline et de l’IGF-1 et les effets sur la croissance cellulaire, l’insuline aspart, a offert un profil très similaire à celui de l’insuline humaine en ce qui concerne son affinité pour les récepteurs de l’IGF-1 ces études ont également montré que
la dissociation de la liaison sur le récepteur à l'insuline était identique à celle de l’insuline humaine.

L’affinité de l’insuline aspart pour le récepteur de l’insuline est légèrement supérieure à celle de l’insuline lispro, tandis que son affinité pour le récepteur de l’IGF-1 comme son temps de dissociation du récepteur de l’insuline sont légèrement inférieurs. Ce profil n’indique donc aucune tendance à un accroissement du potentiel mitogénique de cet analogue par rapport à celui de l’insuline humaine.

Tableau 11. Affinité pour les récepteurs de l’insuline et de l’IGF-1 et pouvoir mitogène [36]

Type d’insuline	Affinité Recepteur-insuline (%)	Dissociation Recepteur-insuline (%)	Affinité Recepteur-IGF-1 (%)	Pouvoir Mitogénique (%)
Insuline humaine	100	100	100	100
Aspart	92 ± 6	81 ± 8	81 ± 9	58 ± 22
Lispro	84 ± 6	100 ± 11	156 ± 16	66 ± 10
Glargine	86 ± 3	152 ± 13	641 ± 51	783 ± 132
Detemir	46 ± 5	204 ± 9	16 ± 1	=11

4.5.4. Immunogénicité [36, 94,95]

Dans quatre études cliniques multinationales, menées en Europe et en Amérique du Nord, avec un total de 1534 personnes atteintes de diabète traités avec l’insuline aspart et 886 personnes traités avec l'insuline humaine avant les repas pendant une période de 6-12 mois, La réponse immunitaire de l'insuline aspart a été comparée à celle de l’insuline humaine chez les diabétiques type 1 et type 2 traités jusqu'à 1 an avec injections préprandiales sous-cutanées de
l’asparte ou de l’insuline humaines. Les résultats ont montré que le traitement avec l’aspart peut être associé à une augmentation des réactions immunitaires croisées et à l’apparition d’anticorps anti-insulines qui retournent au normal après une période maximale de 3 mois. Aucun effet sur l'efficacité et l’innocuité n’a pu être identifié.

D’autres études ont montré aussi que l’immunogénicité de l’aspart est proche de celle de l’insuline ordinaire. Un pic transitoire d’anticorps anti-insuline est observé et aucune conséquence clinique n’a été rapportée.

4.6. QUALITE DE VIE [13,94]

L’ensemble de ces résultats montre que l’utilisation d’insuline aspart au cours d’un traitement basal-bolus permet d’observer sur le plan clinique une diminution des épisodes d’hypoglycémie tout en réduisant l’hyperglycémie postprandiale, ainsi qu’un contrôle de la glycémie au moins équivalent à celui obtenu avec l’insuline humaine. L’évaluation de la qualité de vie des patients sous insuline aspart donne également des résultats très positifs. Les résultats au questionnaire de l’OMS DTSQ (diabètes treatment satisfaction questionnaire) révèlent une plus grande satisfaction des patients traités par l’insuline aspart que par l’insuline humaine (p < 0,00001), les différences les plus importantes étant la commodité du traitement et sa flexibilité. L’aspart peut même être injectée immédiatement après un repas, ce qui est très pratique surtout chez les jeunes enfants dont on ignore l’appétit.
5. GLULISINE (APIDRA ®)

5.1. DESCRIPTION

L’insuline glulisine est produite par la technique de l’ADN recombinant sur Escherichia coli. Elle est obtenue par modification de la séquence à l’extrémité C terminale de la chaîne B, la lysine en position 29 étant remplacée par un acide glutamique. À l’autre extrémité de la même chaîne, une lysine substitue une asparagine en position 3(B3 Lys, B29 Glu). Ces modifications permettent l’obtention d’une insuline dont le comportement dans le tissu sous-cutané limitait la polymérisation, sans modifier de façon significative la liaison au récepteur de l’insuline. Elle a comme formule chimique C258H384N64O78S6 [36, 46, 96, 97]. Cette insuline est commercialisée aux USA depuis 2007. Elle n’est pas encore disponible sur le marché français.

Figure 19. Structure de la glulisine [100]
5.2. PROPRIETES PHARMACOLOGIQUES

5.2.1. Propriétés pharmacodynamiques [36, 95, 98, 101]

Les études chez les volontaires sains et chez les patients diabétiques ont démontré que l’insuline glulisine a un début d’action plus précoce et une durée d’action plus courte que l’insuline rapide humaine lorsqu’elle est administrée par voie sous-cutanée. Après injection sous-cutanée d’insuline glulisine, l’activité hypoglycémiant débute dans les 10-20 minutes. Avec un délai d’action de 5 à 15 minutes, le pic est atteint entre 30 à 90 minutes et son activité dure entre 4 à 5 heures après injection.

Dans une étude sur 18 sujets masculins diabétiques de type 1 âgés de 21 à 50 ans, l’effet hypoglycémiant de l’insuline glulisine a été proportionnel à la dose dans l’intervalle de doses thérapeutiques allant de 0,075 à 0,15 U/kg. A partir de doses de 0,3 U/kg, comme avec l’insuline humaine, l’effet hypoglycémiant observé a été moindre que celui qui aurait été attendu si l’effet avait été proportionnel à la dose. L’effet de l’insuline glulisine est environ deux fois plus rapide que l’insuline rapide humaine et se termine deux heures plus tôt que l’insuline rapide humaine.

Une étude de phase I chez des patients diabétiques de type 1 a évalué les profils hypoglycémiants de l’insuline glulisine et de l’insuline rapide humaine administrées par voie sous-cutanée à la dose de 0,15 U/kg, à différents temps par rapport à un repas standard de 15 minutes. Les résultats ont montré que l’insuline glulisine administrée 2 minutes avant le repas assure un contrôle glycémique postprandial comparable à l’insuline rapide humaine administrée 30 minutes avant le repas.
Administrée 2 minutes avant le repas, l’insuline glulisine assure un meilleur contrôle postprandial que l’insuline rapide humaine administrée 2 minutes avant le repas. L’insuline glulisine administrée 15 minutes après le début du repas entraîne un contrôle glycémique comparable à l’insuline rapide humaine administrée 2 minutes avant le repas (figure 20, 21, 22) [98].

Figure 20. Effet hypoglycémiant moyen sur 6 heures chez 20 patients diabétiques de type 1. Insuline glulisine administrée 2 minutes (GLULISINE pré) avant le début d’un repas comparée à l’insuline rapide humaine administrée 30 minutes (RAPIDE 30 min) avant le début du repas [100].
Figure 21. Effet hypoglycémiant moyen sur 6 heures chez 20 patients diabétiques de type 1. Insuline glulisine administrée 2 minutes (GLULISINE pré) avant le début d’un repas comparée à l’insuline rapide humaine administrée 2 minutes (RAPIDE pré) avant un repas [100]

Figure 22. Effet hypoglycémiant moyen sur 6 heures chez 20 patients diabétiques de type 1. Insuline glulisine administrée 15 minutes (GLULISINE post) après le début d’un repas comparée à l’insuline rapide humaine administrée 2 minutes (RAPIDE pré) avant le début d’un repas comparée à l’insuline rapide humaine administrée 2 minutes (RAPIDE pré) avant un repas [100]
Une étude de phase I réalisée avec l’insuline glulisine, l’insuline lispro et l’insuline rapide humaine dans une population de 18 obèses non diabétiques (IMC=34.7 kg · m\(^{-2}\)) a démontré que l’insuline glulisine conserve ses propriétés d’action rapide.

Dans cette étude, le temps nécessaire pour atteindre 20 % de l’ASC [aire sous la courbe] totale et l’ASC (0-2h) représentant l’activité hypoglycémiant précoce ont été respectivement de 114 minutes et 427 mg.kg\(^{-1}\) pour l’insuline glulisine, 121 minutes et 354 mg/kg\(^{-1}\) pour l’insuline lispro, 150 minutes et 197 mg/kg pour l’insuline rapide humaine (Figure 23) [99].

Figure 23. Utilisation du glucose après injection sous-cutanée de 0,3 U/kg d’insuline glulisine (GLULISINE) ou d’insuline lispro (LISPRO) ou d’insuline rapide humaine (RAPIDE) dans une population obèse [100]

Une autre étude de phase I réalisée avec l’insuline glulisine et l’insuline lispro dans une population non diabétique (80 sujets) avec un large intervalle d’IMC (18-46 kg/m\(^{2}\)) a démontré que la rapidité d’action est généralement maintenue dans ce large intervalle d’IMC, même si l’effet hypoglycémiant total diminue avec l’augmentation de l’obésité [100].
L’ASC (Aire Sous Courbe) moyenne totale (entre 0-1 heure) de la vitesse de perfusion du glucose était respectivement de 102±75 mg/kg et 158±100 mg/kg avec 0,2 et 0,4 U/kg d’insuline glulisine, et respectivement de 83,1±72,8 mg/kg et 112,3±70,8 mg/kg avec 0,2 et 0,4 U/kg d’insuline lispro.

Une étude de phase I chez 18 patients obèses diabétiques de type 2 (IMC compris entre 35 et 40 kg/m²) avec l’insuline glulisine et l’insuline lispro [IC 90%:0,81-0,95 (p=<0,01)] a montré que l’insuline glulisine contrôle efficacement les excursions glycémiques postprandiales diurnes [102].

5.2.2. Propriétés pharmacocinétiques [101,103]

La substitution de l’acide aspartique en position B3 de l’insuline humaine par la lysine, et de la lysine en position B29 par l’acide glutamique favorise l’absorption plus rapide de l’insuline glulisine.

Dans une étude avec 18 sujets masculins diabétiques de type 1 âgés de 21 à 50 ans, l’effet de l’insuline glulisine (exposition précoce, maximale et totale) a été proportionnel à la dose dans l’intervalle de doses allant de 0,075 à 0,4 U/kg.

5.2.2.1. Absorption et biodisponibilité

Les profils pharmacocinétiques chez les volontaires sains et des patients diabétiques (type 1 ou 2) ont démontré que l’absorption de l’insuline glulisine était environ deux fois plus rapide avec un pic de concentration approximativement deux fois plus élevé comparativement à l’insuline rapide humaine.

Dans une étude chez des patients diabétiques de type 1 après administration sous-cutanée de 0,15 U/kg, pour l’insuline glulisine le Tmax était de 55 minutes et la Cmax de 82 ± 1,3 μU/ml versus un Tmax de 82 minutes et une Cmax de 46
± 1,3 μU/ml pour l’insuline rapide humaine. Le temps moyen de résidence de l’insuline glulisine était plus court (98 minutes) que pour l’insuline rapide humaine (161 minutes) (Figure 24) [98].

![Figure 24. Profil pharmacocinétique de l’insuline glulisine et de l’insuline rapide humaine chez des patients diabétiques de type 1 après une dose de 0,15 U/kg [98]](image)

5.2.2.2. Distribution et élimination [100, 101, 104]

Après administration intraveineuse, la distribution et l’élimination de l’insuline glulisine et de l’insuline rapide humaine sont comparables avec respectivement des volumes de distribution de 13 l et 22 l et des demi-vies de 13 et 18 minutes.

Après administration sous-cutanée, l’insuline glulisine est éliminée plus rapidement que l’insuline rapide humaine avec une demi-vie apparente de 42 minutes versus 86 minutes. La demi-vie apparente de l’insuline glulisine était comprise entre 37 et 75 minutes (intervalle interquartile) dans une analyse transversale d’études conduites chez des sujets sains et chez des patients diabétiques de type 1 ou de type 2.

L’insuline glulisine montre une faible liaison aux protéines plasmatiques, similaire à l’insuline humaine.
Tableau 12. Comparaison entre les paramètres pharmacologiques de la glulisine, lispro et de l’insuline humaine [100, 104]

Variables	Glulisine (0.3 IU/kg)	Lispro (0.3 IU/kg)	Insuline humaine rapide (0.3 IU/kg)
Pharmacodynamiques			
Maximum GIR (mg/min/kg)	12.5	13.1	11.7
tmax (min)	90.0	87.6	195.3
ASC (0-2 h) (mg/kg)	1,026.0	976.3	674.8
ASC (0-clamp end) (mg/kg)	2,839.6	2,942.6	3,234.7
Durée d’action	318	329	385
Pharmacocinétiques			
Cmax (µU/mL)	196	156	84
Tmax (min)	56	50	99
ASC (0-clamp end) (µU•min•m/L)	29,302	22,116	21,673
MRT (min)	105	117	182

MRT : mean residence time ou temps moyen de séjour.

5.3. **ETUDES CLINIQUE**

5.3.1. **Diabète de type 1**

Dans une étude clinique de phase II et III sur 26 semaines comparant entre l’efficacité et l’innocuité de l’insuline glulisine (339) et de l’insuline lispro(333) toutes deux injectées par voie sous-cutanée peu avant un repas (0-15 minutes) chez des patients diabétiques de type 1 utilisant l’insuline glargine comme insuline basale, l’insuline glulisine s’est avérée comparable à l’insuline lispro pour le contrôle glycémique, comme démontré par les variations de l’hémoglobine glyquée (exprimée en équivalent HbA1c) entre le début et la fin de l’étude. Des valeurs comparables d’auto-surveillance glycémique ont été
observées. Aucune augmentation de la dose d’insuline basale n’a été nécessaire avec l’insuline glulisine, contrairement à l’insuline lispro [104].

Une étude clinique de phase III sur 12 semaines réalisée chez des 860 patients diabétiques de type 1 recevant de l’insuline glargine comme insuline basale indique que l’administration postprandiale immédiate d’insuline glulisine assure une efficacité comparable à l’insuline glulisine préprandiale immédiate (0-15 minutes) ou à l’insuline rapide (30-45 minutes). Glycémie postprandiale (1.11–1.27 mmol/L chez le groupe glulisine administré avant repas (p = 0.0001) et 0.65–0.74 mmol/L chez le groupe glulisine après repas (p = 0.0137).

La réduction de l’hémoglobine glyquée a été observée significativement plus importante dans le groupe glulisine préprandiale que dans le groupe insuline rapide (-0.13% ; p = 0.02) [105].

Selon une étude en cross-over réalisée sur 20 patients diabétiques type 1 comparant ’efficacité de l’insuline glulisine administré en pré et post repas sur la glycémie postprandiale (15 min avant ou après repas). L’excursion glycémique après 2 heures était inférieure avec la glulisine qu’avec l’insuline ordinaire (279 vs. 334 mgh/dl, Cmax de l’insuline glulisine était presque le double de celui de l’insuline ordinaire (180 vs. 209 mg/dl), Tmax était plus inférieure avec la glulisine qu’avec l’insuline humaine ordinaire (48 vs. 70 min). En revanche, l’insuline glulisine (15 min après repas) a montré des résultats comparables à ceux constatés avec l’insuline humaine (immédiatement avant repas), l’insuline humaine (30 minutes après repas) et l’insuline glulisine (immédiatement avant repas). Cette étude a montré encore une fois que l’insuline glulisine offre une meilleure glycémie postprandiale proche de la physiologie et une administration appropriée même après repas [103].
5.3.2. **Diabète de type 2**

Dans le diabète de type 2, dans le cadre d’un schéma basal-bolus, la glulisine améliore significativement le contrôle glycémique (HbA1c) par rapport à l’insuline rapide humaine conventionnelle.

Une étude clinique de phase III sur 26 semaines, prolongée d’une étude de la tolérance sur 26 semaines, a été réalisée pour comparer l’insuline glulisine (0-15 minutes avant un repas) à l’insuline rapide humaine (30-45 minutes avant un repas) injectées par voie sous-cutanée chez des sujets diabétiques de type 2 utilisant aussi une insuline NPH comme insuline basale. L’indice de masse corporelle (IMC) des patients était de 34,55 kg/m2. L’insuline glulisine s’est avérée comparable à l’insuline rapide humaine en termes de variations de l’hémoglobine glyquée (exprimée en équivalent HbA1c) entre le début de l’étude et à 6 mois (-0,46 % pour l’insuline glulisine et -0,30 % pour l’insuline rapide humaine, p=0,0029) et entre le début de l’étude et à 12 mois (-0,23% pour l’insuline glulisine et -0,13% pour l’insuline rapide humaine, sans différence significative). Dans cette étude, la majorité des patients (79%) mélangeait leur insuline d’action rapide à l’insuline NPH immédiatement avant l’injection et 58 % des sujets utilisaient des hypoglycémiants oraux à l’inclusion et avaient pour consigne de les poursuivre à la même dose [106].

Des résultats similaires ont été observés dans une autre étude chez des diabétiques type 2 (>18ans) entre la glulisine (15 min avant petit déjeuner et dîner, n= 448) et l’insuline humaine (30-45 min avant petit déjeuner et dîner, n=442). La glulisine a montré un meilleur contrôle glycémique exprimé par la réduction de HbA1c (glulisine: -0.32%; insuline ordinaire: -0.35%; p = 0.5726), (0.03%; 95% CI: -0.07, 0.13). La glycémie postprandiale était plus réduite avec
la glulisine qu’avec l’insuline ordinaire après 2 heures (14.14 mmol/L versus 15.28 mmol/L; p = 0.0025) et l’excursion glycémique après 1 heure était de (3.99 versus 4.59; p = 0.0151) et après 2 heures (4.87 versus 6.03; p = 0.0002) la fréquence des épisodes d’hypoglycémie nocturne a été moindre avec la glulisine qu’avec l’insuline ordinaire RHI (9.1% versus14.5%; p = 0.029). La glulisine a montré donc une comparable efficacité à l’insuline humaine ordinaire sur le contrôle glycémique. Toutefois, la glulisine s’est montré meilleure quant à la glycémie post prandiale avec moins d’hypoglycémie nocturne [107].

Dans une comparaison de l’efficacité de glulisine et de lispro chez 18 obèses diabétiques type 2 (IMC: Hommes, 36.7 [33.2–43.8] kg/m²; femmes, 40.0 [35.7–46.5] kg/m²) recevaient une dose, en sous-cutanée, similaire (0.15 U/kg) de glulisine ou lispro les résultats ont montré que le taux d'absorption était plus rapide avec la glulisine versus lispro dans les 30 premières minutes après le repas (estimée -0.48 µU / min, p <0.0001). L’excursion glycémique était plus significative avec glulisine qu’avec lispro (12%; p < 0.01) [108].

5.3.3. **Enfants et adolescents**

Les propriétés pharmacocinétiques et pharmacodynamiques de l’insuline glulisine ont été étudiées chez les enfants (5-11 ans) et les adolescents (12-16 ans) diabétiques de type 1. L’insuline glulisine était rapidement absorbée dans les deux groupes d’âge avec des Tmax (54 vs 66 min), le temps Moyen de séjour (88 vs 137 min, P< 0,05) était plus court avec l’insuline glulisine qu’avec l’insuline humaine ordinaire et Cmax (58 vs. 33µU/ml, P< 0.05) était comparable à celui observé avec l’insuline humaine. Comme chez l’adulte, l’insuline glulisine, administrée juste avant le repas, permettait un meilleur contrôle postprandial que l’insuline rapide humaine. L’insulinémie initiale (ASC
0-2 h) était plus élevée pour l’insuline glulisine que pour l’insuline humaine, de l’ordre de 5,232 µU/min/ml pour l’insuline glulisine et de 2,994 µU/min/ml pour l’insuline rapide humaine (P < 0.05). L’excursion glycémique ASC0–6 h 2T était plus importante avec l’insuline glulisine qu’avec insuline humaine ordinaire (641 vs. 801 mg/h/dl, P < 0.05). Le profil pharmacocinétique de l’insuline glulisine était similaire chez les enfants et les adolescents, alors que le profil pharmacocinétique de l’insuline humaine a démontré une concentration plus élevée de 64% chez les adolescents. Comme chez l’adulte, l’insuline glulisine était donc efficace et bien tolérée chez cette population de patients [109].

5.3.4. **Femme enceinte et allaitante**

Il n’existe pas de données suffisantes concernant l’utilisation de l’insuline glulisine chez la femme enceinte. En cas de diabète préexistant ou de diabète gestationnel, il faut impérativement maintenir un bon contrôle métabolique durant toute la grossesse. Les besoins en insulin peuvent diminuer durant le premier trimestre et augmentent généralement durant le second et le troisième trimestre. Immédiatement après l’accouchement, les besoins en insuline diminuent rapidement.

Des études de toxicité sur le développement de l’embryon et du foetus et sur la reproduction ont été menées chez des rats et des lapins. Les rats ont reçu des doses de 1, 3, 15, 8 ou 10 U/kg masse corporelle (mc) par jour, et les lapins, des doses de 0,25, 0,5 et 1,5 U/kg mc par jour. L’insuline humaine était le produit de comparaison. On a constaté une mortalité et des signes cliniques d’hypoglycémie liés au traitement à la dose la plus élevée chez les deux espèces. Aucun des traitements par l’insuline glulisine ou l’insuline de comparaison n’a eu
de répercussion sur la fécondité, la performance reproductrice ou la croissance et le développement postnataux de la progéniture des deux espèces. On a noté la chute d'un plus grand nombre d'embryons implantés chez les lapines recevant 0,5 et 1,5 U d'insuline glulisine. L'examen morphologique des foetus de rat a révélé une légère augmentation de l'occurrence de saignements dans la cavité abdominale chez le groupe recevant de l'insuline glulisine à raison de 10 U/kg mc par jour. Chez les foetus de lapin, la fréquence de malformations de la colonne vertébrale et des côtes était légèrement plus élevée à la dose de 1,5 U/kg mc par jour. Toutefois, ces faits ont été observés à des doses qui étaient manifestement toxiques pour la mère, et la toxicité s'est manifestée de la même façon chez les sujets ayant reçu l'insuline de comparaison. On a considéré que ces résultats étaient surtout causés par l'hypoglycémie provoquée par les produits étudiés et non par le traitement lui-même. Les résultats tirés de ces études ont permis de conclure que l'insuline glulisine et l'insuline humaine ont des effets similaires sur le développement et la reproduction. L'insuline glulisine impose donc les mêmes précautions d'emploi chez la femme enceinte que l'insuline humaine [100, 110,111].

5.4. SECURITÉ ET TOLERABILITÉ

Globalement, les études cliniques comparant l'insuline glulisine avec les insulines à action brève n'ont pas démontré des différences dans la fréquence des événements indésirables. Les événements indésirables souvent associés à la thérapie de l'insuline humaine sont des réactions allergiques, réaction au site d'injection, la lipodystrophie, prurit et urticaire. Le taux et l'incidence des symptômes d'hypoglycémie sévère, définie comme une hypoglycémie
nécessitant l'intervention, étaient comparables pour tous les régimes de traitement.

5.4.1. **Immunogenicité** [100,104]

Dans une étude chez des patients diabétiques de type 1 (n=333), les concentrations d'anticorps anti-insuline qui réagissent à la fois avec l'insuline humaine et l'insuline glulisine (cross-reactive anticorps anti-insuline) est resté inchangeable par rapport aux valeurs de départ durant les 6 premiers mois de l'étude chez les patients traités avec glulisine. Une diminution de la concentration d'anticorps a été observée au cours des 6 mois de l'étude. Dans une étude chez des patients atteints de diabète de type 2 (n = 411), une augmentation de concentration similaire des anticorps anti-insuline a été observé chez les patients traités par glulisine et chez les patients traités par l'insuline humaine au cours des 9 premiers mois de l'étude. Par la suite, la diminution de la concentration d'anticorps chez les patients traités par la glulisine et est resté stable chez les traités par l'insuline humaine. Il n'y avait pas de corrélation entre l’apparition des anticorps anti-insuline et les valeurs de l'HbA1c, les doses d'insuline, ou l'incidence de l'hypoglycémie.

Dans les essais cliniques contrôlés jusqu'à 12 mois, le potentiel de réactions allergiques systémiques ont été signalés dans 79 des 1833 patients (4,3%) qui ont reçu glulisine et 58 des 1524 patients (3,8%) qui ont reçu autre insuline rapide. Au cours de ces essais le traitement avec l’insuline glulisine a été définitivement arrêté chez un seul patient de 1833 patients en raison d'un risque systémique.
5.4.2. **Potentiel mitogénique** [110, 112, 113, 114]

Les tests qui ont été effectués pour évaluer le pouvoir mitogénique de la glulisine ont montré que cet analogue a moins d’affinité pour les récepteurs l'IGF (insulin-like growth factor) si on le compare avec l’insuline humaine: La culture cellulaire de la glulisine dans des cellules du muscle squelettique, en comparaisons avec l'insuline humaine et l’IGF, a montré que l'affinité de la glulisine au récepteur de l'IGF est associée à la charge positive de la lysine à B29 et que l'introduction de la charge négative de l’acide glutamique à cette position de la molécule a fait donc diminuer son affinité à ce récepteur [113]. De même, d'autres études in vitro et in vivo n’ont montré aucune différence significative du potentiel mitogénique de la glulisine comparé à l’insuline humaine [114].

Chez l’animal, un ensemble d'études de mutagénicité a donné des résultats négatifs, et des études de mitogénicité ont montré que l'insuline glulisine était moins mitogène que l'insuline humaine. Dans des études de 6 mois et de 12 mois chez le rat, on n’a relevé aucun signe d’oncogénicité liée au traitement (changements pré-néoplasiques ou néoplasiques). En outre, les mesures de la Ki-67 (une protéine associée à la prolifération cellulaire) effectuées par immunohistochimie dans les tissus mammaires ont été négatives en ce qui concerne une probable activité proliférative. Ces résultats ont amené à conclure qu’il n'y avait pas de raison à craindre un éventuel pouvoir cancérogène de l'insuline glulisine.
5.4.3. Tox*icité [100, 101, 111],

5.4.3.1. Études sur la toxicité aiguë

La DL50 aiguë de l'insuline glulisine, administrée par injection sous-cutanée ou intraveineuse (IV) à des rats Sprague Dawley ou par injection sous-cutanée à des souris CD-1, est supérieure à 1 000 U/kg mc (dose la plus forte utilisée pendant l'étude). Les sujets n'ont montré aucun signe clinique exceptionnel de toxicité. Après une injection sous-cutanée à des chiens beagle, la dose létale était d'environ 40 U/kg mc. On n'a observé de signes cliniques généraux de toxicité chez aucun des animaux.

5.4.3.2. Études de toxicité à doses multiples

Des tests de toxicité sous-chronique et/ou chronique ont été réalisés sur des rats Sprague Dawley et des chiens beagle. Les rats ont reçu de l'insuline glulisine par injection sous-cutanée à raison de 0, 50, 150 ou 500 U/kg mc par jour pendant 4 semaines. Les doses ont été bien tolérées dans la plupart des cas. La mortalité liée au traitement observée à 150 et à 500 U/kg mc par jour et les signes cliniques de toxicose observés uniquement à 500 U/kg mc par jour ont été mis sur le compte de l'hypoglycémie provoquée par le produit à l'étude.

Dans des études de 1 mois et de 6 mois sur la toxicité, des chiens beagle ont reçu des doses de 1,0, 3,0 et 10,0 U/kg mc par jour et de 0,5, 1,0 et 2,0 U/kg mc par jour, respectivement. Ces doses ont été dans la plupart des cas bien tolérées. On a observé une baisse de la glycémie liée à la dose à toutes les doses, effet qui persistait jusqu'à 24 heures chez les sujets de l'étude de 1 mois et jusqu'à 6 heures chez les sujets de l'étude de 6 mois. Aux doses de 2,0 U/kg mc par jour et plus, des convulsions tonico-cloniques et des signes aigus
d'hypoglycémie ont été observés et ont été attribués à l'action pharmacologique du produit à l'étude. Au bout d'un mois de traitement, chez les sujets recevant 3,0 et 10,0 U/kg mc par jour, on a noté une élévation du dépôt de cellules germinales détachées au niveau des épididymes. Bien que la cause puisse en être attribuée à l'hypoglycémie, les changements étaient minimes et les taux d'incidence étaient comparables entre le groupe témoin et le groupe de traitement. Comme des faits semblables n'ont pas été observés dans l'étude de 6 mois, à quelque dose que ce soit, ces résultats n'ont pas été considérés comme toxicologiquement significatifs.

5.5. QUALITE DE VIE

Comme toutes les analogues rapides, d’après les études précédentes, l’insuline glulisine offre un usage qui n’améliore pas nécessairement les taux d’HbA1c mais améliore le confort de vie en diminuant la fréquence des hypoglycémies, en permettant de pratiquer les injections justes avant le repas, et une plus grande souplesse dans les horaires de celles-ci [36].
ANALOGUES LENTS
6. GLARGINE (LANTUS ®)

6.1. DESCRIPTION [13,115,116]

Glargine, approuvée par la FDA (Food and Drug Administration) et l’EMEA (European agency for the evaluation of medical products) en 2000, provient de la modification de la séquence primaire de l’insuline : l’asparagine en position 21 sur la chaîne A est remplacée par la glycine, et deux molécules d’arginine sont ajoutées sur la partie c-terminale de la chaîne B. (Figure 25). L’insuline glargine est un analogue d’insuline produit par la technique d’ADN recombinant en utilisant le plasmide de la souche (souches K 12) d’Escherchia coli.

Chimiquement, cet analogue peut être désigné comme le [21A-glycine] 30aB-L-arginine-30bB-L-arginine-insuline humaine : C_{267}H_{404}N_{72}O_{78}S_{6}. Il possède un poids moléculaire de 6063. Sa formule est présentée à la figure 10. Ces modifications induisent un décalage du point isoélectrique de la molécule, qui passe de 5,5 à 6,7. L’insuline glargine est injectée en solution claire transparente acide (pH 4,0) en sous-cutané, dans cet environnement à pH neutre elle forme des microcristaux, ce qui aboutit à une absorption retardée à partir du dépôt de ces micro-précipités au point d’injection sous-cutané. L’ajout de petites quantités du Zinc (30 pg/ml) dans la formulation commercialisée stabilise la molécule et permet de ralentir son temps d’absorption. En outre, La substitution de l’asparagine par la glycine à la position 21 dans la chaîne A modifie les propriétés de cette insuline, ce qui rend sa structure sous forme d’hexamères plus stable, retardant ainsi sa dissociation et son passage dans la circulation systémique.
6.2. PHARMACOLOGIE CLINIQUE [13,115,117,118,119]

L’insuline Glargine est légèrement acide et d’un aspect transparent (ce qui est différent des insulines retard conventionnelles). Suite à son injection sous-cutanée, l’insuline Glargine est neutralisée et forme des micro-précipités qui se dissocient très lentement et de manière très régulière et prédictible. Le profil d’activité de l’insuline Glargine en fonction du temps a été évalué chez des sujets sains ou atteints de diabète de type 1, avec la technique du clamp euglycémique et l’utilisation d’insuline Glargine radiomarquée. Les résultats montrent un profil d’insuline glargine pratiquement dénué de pic, avec une activité relativement longue en comparaison avec celle de l’insuline NPH. Les études utilisant la technique du clamp euglycémique montrent que le délai d’apparition de l’insuline glargine est de 90 minutes à 3 heures, et que son activité, pleinement atteinte en 6 heures environ, dure au moins 24 heures. À l’opposé, l’insuline NPH présente classiquement un pic d’activité entre 3 à 6 heures suivi d’une diminution progressive de l’activité, qui disparaît finalement 16 heures environ après l’injection. Ces résultats concordent avec ceux d’études...
de mesure de l’absorption de l’insuline utilisant des préparations radiomarquées : 3 heures environ sont nécessaires à la disparition de 25% de l’insuline NPH du dépôt sous-cutané, alors qu’il faudrait environ 9 heures avec l’insuline glargine. Ceci démontre que l’absorption de l’insuline glargine est significativement plus lente que celle de la forme NPH.

6.2.1. **Sujets sains non diabétiques** : [115,120,121]

Dans une étude randomisée, et en simple aveugle, visant la comparaison des taux d’absorption de deux formules de la glargine, les auteurs ont procédé à l’administration en injection sous-cutanée d’une dose unique à un groupe de personnes sains composé (12 sujets âgés de 18 à 36 ans). La comparaison a porté sur deux formules radioactives de l’insuline Glargine marquées par I125 (15 ou 80 µg/ml de zinc), de l’insuline NPH, et du placebo. L’étude a mesuré T75% par rapport à l’injection sous-cutanée et la radioactivité résiduelle après 24 heures de l’injection. Les résultats ont montré que l’insuline NPH présente une vitesse d’absorption plus rapide par rapport aux deux formules utilisées de l’insuline Glargine.

Une importante différence a été observée pour la moyenne (écart-type) T75% entre l’insuline NPH (3,2 heures) et les 2 formules de l’insuline Glargine (15 µg/ml de zinc, 8,8 [3,90] heures; 80 µg/ml de zinc, de 11 [4,21] heures; P <0,001). Toutefois, l’insuline Glargine avec la formule à 15 µg/ml de zinc a eu un taux d’absorption plus rapide qu’avec la formule à 80 µg/ml de zinc (moyenne de la différence de traitement, -2,26; IC 95%, -4,39 à -0,12, P <0,03). Après 24 heures, la radioactivité résiduelle moyenne est nettement plus faible pour l’insuline NPH comparativement à l’insuline Glargine pour les deux formules ; les résultats étaient respectivement 21,9% [9,85], 43,8% [15,04], et
52,2% [15,84] (P<0,001). Le profil de l’insuline plasmatique montre un pic de 3 à 5 heures pour l’insuline NPH après l’injection sous-cutanée, alors que celui de l'insuline Glargine était plus lent et relativement constant et sans pic. La valeur de la concentration pondérale moyenne de l’insuline dans le plasma entre 0 à 6 heures après l'injection était de 6,69 (4,34) mU/L pour l’insuline NPH, comparativement à 3,14 (1,91) et 2,95 (2,59) mU/L pour l’insuline Glargine, respectivement, avec 15 et 80 µg/ml de zinc. La concentration pondérale moyenne entre 6 à 24 heures était de 4,39 (1,78) mU/L pour l’insuline NPH, comparativement à 3,52 (1,97) et 4,03 (1,99) mU/L, respectivement, pour les deux formules de l'insuline Glargine. Le même groupe de chercheurs a réalisé une étude chez 12 hommes sains âgés de 23 à 44 ans, afin d'évaluer la différence du taux d'absorption à trois sites communs d’injection. La moyenne (ecart-type) T75% 24 heures après l'injection était respectivement 11,9 (6,2), 15,3 (6,2) et 13,2 (4,6) heures au niveau du bras, des jambes et de l'abdomen. Les concentrations plasmatiques d'insuline et de la glycémie n'ont pas été différentes eu égard au site d'injection. Egalement, aucune différence significative dans la cinétique de l'absorption de l'insuline Glargine n’a été observée. Une autre étude[120] en double aveugle, et avec la technique du clamp euglycémique, chez 15 volontaires sains les auteurs ont procédés à l’administration, à l'ordre de 3 journées d'étude, d’une seule injection sous-cutanée de l'insuline Glargine, de l’insuline NPH, et du placebo. Les valeurs moyennes (écart-type) de l'aire sous la courbe (ASC) a été nettement plus faible dans les 4 premières heures pour l'insuline Glargine en comparaison à l’insuline NPH (1,02 [0,34] contre 1,48 [0,34] g / kg, P <0,01). L'ASC par rapport au total de 30 heures d'étude a aussi été nettement plus faible pour l'insuline Glargine par rapport à l'insuline NPH (7,93 [1,2] contre 9,24 [1,29] g/kg, P <0,05). Des résultats comparables [116] ont
été obtenus dans une étude de conception identique réalisée sur 15 japonais sains volontaires. L'absence d'un pic prononcé à l'insuline Glargine a été constaté par la baisse de la consommation du glucose dans les 4 premières heures après l'injection comparativement aux sujets injectés par l'insuline NPH (ASC (AUC) entre 0-4 h 0,19 ± 0,35 contre 0,69 ± 0,42 g / kg, p <0,01). Bien que les effets métaboliques mesurés sur 30 heures ont tendance à être plus faible avec l'insuline Glargine par rapport à l'insuline NPH, la différence n'était pas significative (AUC 0-30 h 2,82 ± 1,61 vs 3,63 ± 1,41 g / kg, p = 0,09).

6.2.2. **Sujets atteints du diabète de type 1 (34, 121,122)**

Une étude a été menée par Lepore et coll. en double aveugle, croisée randomisée, avec la technique du clamp euglycémique et pour une durée de 24 heures. Ils ont comparé la pharmacocinétique et la pharmacodynamie de l'insuline Glargine, insuline NPH, l'insuline Ultralente, et l'insuline Lispro en perfusion continue sous cutanée chez 20 patients atteints de diabète de type 1 (Âge moyen, 32 [2] ans; HbA1c moyenne= 6,9% [0,1]. Les concentrations plasmatiques de glucose, les taux de perfusion intraveineuse d'insuline, et les concentrations plasmatiques d'insuline ont été mesurés à 4 occasions séparées. Les valeurs moyennes du début d'action des préparations d'insuline, dans l'ordre ascendant, étaient les suivantes : l'insuline Lispro 0,5 (0,1) heure, l'insuline NPH 0,8 (0,2) heure, insulin Ultralente 1,0 (0,2) heure, et la Glargine 1,5 (0,3) heures (P<0,05 pour insuline Glargine contre les autres préparations).

Les pics maximaux des concentrations plasmatiques d'insuline ont pu atteindre respectivement 4,5 (0,5) et 10,1 (1) heures après l'injection sous-cutanée de l'insuline NPH et de l’insuline ultralente, suivis d'une baisse constante. Les concentrations plasmatiques d'insuline après l'injection de
l'insuline Lispro et de l'insuline Glargine atteignent un plateau de 3 à 4 heures après l'injection et se sont maintenues à des niveaux comparables pour une période allant jusqu'à 24 heures, et aucun pic n'a été observé. Les durées moyennes d'action de l'insuline, dans l'ordre ascendant, ont été 13,2 (2,8) heures pour l'insuline NPH, 19,0 (5,8) heures pour Ultralente, 20,5 (3,7) heures pour l'insuline Glargine, et 23,5 (0) heures pour l'insuline Lispro. Le temps moyen à la fin de l'action (défini comme le moment où le glucose plasmatique a augmenté à plus de 150 mg par dl) était de 14 (3) heures pour l'insuline NPH, 20 (6) heures pour l’insuline Ultralente, 22 (4) heures pour l'insuline Glargine, et 24 (0) heures pour l'insuline Lispro en perfusion continue sous-cutanée CSII. Ainsi, la pharmacocinétique de l'insuline Glargine ressemblait plus étroitement à Celle de l'insuline Lispro CSII que celle de l'insuline NPH ou à l’insuline Ultralente.

Dans cette étude, la variabilité interindividuelle calculée a montré que les différences de l’écart type de la concentration plasmatique d’insuline était comparable à celle de la NPH et CSII, et moins que pour l’insuline ultralente, mais une fois évaluée comme différences dans l’écart type de GIR (taux du glucose perfusé) plus de 24 heures (24 points pendant l'étude), la variabilité interindividuelle était inférieure pour la Glargine (et comparable à CSII) que pour la NPH et l'ultralente. Globalement, dans cette étude, la glargine a eu une variabilité interindividuelle inférieure que NPH et était semblable à celle de la CSII (Tableau 13).
Tableau 13. Étude comparative de la pharmacodynamie de l'injection sous-cutanée d'insuline glargine, NPH et ultralente (0,3 U / kg), et de l'insuline lispro utilisée en perfusion continue sous-cutanée [CSII] (0,3U/kg/24h) chez 20 patients diabétiques type 1 étudiés à quatre reprises au cours d'un clamp euglycémique 24-heures,[41]

Paramètres	Glargine	NPH	CSII	Ultralente
Début d’action (h)	1,5 ± 0,3	0,8 ± 0,2*	0,5 ± 0,1*	1,0± 0,2*
Fin d’action¹ (h)	22 ± 4	14 ± 3*	24 ± 0*	20±6
Durée d’action (h)	20,5 ±3,7	13,2 ± 2,8*	23,5 ± 0*	19,0 ±5,8*
Variabilité interindividuelle:				
Concentration de l’insuline plasmatique (Ecart-type) (μU/ml)	NR (−4,2)	NR(−4,8/5,0)	4,1±0,24**	8,3±0,28
TGP(Ecart-type) (mg /kg/min1)	0,64±0,05*	1,05±0,18	0,65±0,04*	1,5 ± 0,2

¹Définie comme une augmentation de glycémie > 150 mg par dL. NR: valeur exacte non rapportée, valeur moyenne estimée à partir des graphiques. Pharmacodynamique d'action: *p<0,05 (contre glargine). Variabilité inter-individuelle: * p <0,05 (glargine contre NPH ou CSII contre ultralente); ** p <0,001 (CSII contre ultralente). TGP : taux du glucose perfusé.

La Figure 6 montre les résultats d’une étude faite chez des patients de diabète type 1 pour un maximum de 24 heures après l'injection. Le délai moyen entre l'injection et la fin de l'effet pharmacologique a été de 14,5 heures (intervalle: 9,5 à 19,3 heures) chez les patients traités par l'insuline humaine NPH, et de 24 heures (fourchette: 10,8 à> 24,0 heures) (24 heures était la période de la fin d'observation) de l'insuline glargine.
Figure 26. Profil d'action de l'insuline glargine chez les patients atteints de diabète de Type 1 *

*entrée pour la quantité du glucose perfusée pour maintenir une glycémie constante (valeurs moyennes horaires) [121].

6.2.3. Sujets atteints du diabète de type2 [122]

Une étude pharmacocinétique a comparé les caractéristiques d'absorption sous-cutanée de l'insuline Glargine et de l'insuline NPH chez 14 patients atteints de diabète de type 2 (Moyenne d'âge 56,3 [9,4] ans; HbA1c moyenne= 7,6% [1,7]). Après l'arrêt de tout traitement utilisant des hypoglycémiants oraux et une nuit de jeûne, tous les patients ont fait l'objet d'une administration d’insuline radiomarquée à deux reprises et en une semaine d'intervalle. La moyenne T 75% était de 15 heures pour l'insuline Glargine et de 6,5 heures pour l'insuline NPH. La moyenne de la radioactivité résiduelle après 24 heures était respectivement de 54,4% et 27,9%. La moyenne du temps de glucose (ASC) de zéro à 24 heures a été légèrement plus élevé après l'administration de l'insuline Glargine qu’avec l'insuline NPH (respectivement 144,4 contre 129,2 mmol.h/L.). Il en ressort que
l’absorption sous-cutanée de l'insuline Glargine était considérablement plus lente que celle de l'insuline NPH chez les patients atteints de diabète type 2.

6.2.4. **Métabolisme (115)**

Le carboxyl terminal de la chaîne B de l'insuline Glargine est partiellement métabolisé au niveau du dépôt sous-cutané pour donner deux métabolites actifs ayant, in vitro, une activité similaire à l’insuline. Les deux métabolites M1 (21A- Gly insuline) et M2 (21 A- Gly-des-30B Thr insuline) ont une activité sur la baisse de la glycémie similaire à celle de l'insuline humaine et ces produits de dégradation sont également présents inchangés dans la circulation sanguine.

6.3. **ÉTUDES CLINIQUES**

6.3.1. **Patients atteints du diabète de type 1 [46]**

Le tableau 14 présente un ensemble d’études qui se sont faites sur l’insuline Glargine en utilisant la thérapie basale-bolus, toutes ces épreuves ont titré la dose basale d’insuline afin de réaliser des cibles glycémiques fixées au préalable . Il n'est pas étonnant, par conséquent, de ne pas observer de différences de réduction de HbA1c entre les groupes traités par NPH ou l'analogue de l’insuline. Le profil de l’analogue basale, comparativement avec celui de l'insuline NPH, devrait être plus plat, avec des valeurs inférieurs d’hypoglycémie. Des réductions d'hypoglycémie, en particulier, hypoglycémie nocturne, ont été observées dans la plupart des essais de la phase III de l’insuline glargine (IGlarg) (Figure). Les études de IGlarg montrent une variabilité réduite entre les individus. Bien que le gain de poids est un problème commun associé à l’insulinothérapie intensive, une seule étude a montré qu’il y’a moins de gain de poids avec la glargine qu’avec l’insuline humaine NPH (tableau 14). Une
différence de la glycémie à jeûn (fasting blood glucose FBG) ne peut être prévue dans les essais de la phase III de l’insuline glargine, étant donné que des cibles identiques de la glycémie à jeûn (FBG) ont été fixées au début des études pour pouvoir comparer entre les groupes étudiés. Néanmoins, les études d’une durée maximale de 6 mois ont montré d’une façon générale une plus grande diminution de FBG avec l’analogue basale qu’avec l’insuline NPH.

Figure 27. Une réduction du risque de l’hypoglycémie nocturne dans les études de phase III avec un analogue de l’insuline basale : la glargine (IGlarg) par rapport à l’insuline NPH [46]

Du fait de sa pharmaco-cinétique très favorable, l’usage de l’insuline glargine au coucher, comparée à l’usage de l’insuline NPH, s’accompagne de moins d’hypoglycémies nocturnes et de l’obtention d’une meilleure glycémie au lever.
Tableau 14. Ensemble des études comparant l'insuline glargine avec l'insuline humaine NPH chez des patients diabétiques type 1[46]

Etudes	Groupes de traitement	Nombre de sujet	Durée d'étude	HbA1C analogue–insuline humaine	HYPOGLYCEMIE	GLYCEMIE à Jeûn	Poids gagné analogue-NPH
Raskin et al.[123]	IGlarg une fois /j ou NPH une fois / jcontre deux fois par jour	619	16 semaines	NS	NS	Change en SM BG (mmol/L): Glarg-2.33, NPH-0.69 (p=0.0001), la variabilité interindividuelle est inférieure (0.0124)	-0.44 kg (p=0.03)
Ratner et al.[124]	IGlarg au coucher ou NPH 1fois/jour contre 2 fois par jour	534	Plus de 28 semaines	NS	Symptomatique et glycemie < 2 mmol/L: IGlarg 39.9%, NPH 49.2% (p = 0.0219), nocturne, IGlarg 18.2%, NPH 21.7% (p = 0.0116)	Changement moyen de glycemie à jeûn glar-1.67, NPH-0.33 (p=0.0145)	-
Porcellati et al.[125]	IGlarg au dinner Contre NPH 4 fois/jour	121	1 an	0.4% Hb (p< 0.05)	Episodes/patient-mois, IGlarg 7.2, NPH 13.2 (p < 0.05), diurne, IGlarg 6.0 +/- 0.6, NPH 10.0 +/- 0.8 (p < 0.05), nocturne, IGlarg 1.2 +/-0.2,NPH 3.2 +/-0.3 (p < 0.05)	Moyenne quotidienne de la glycemie inférieure (p < 0.05), NS la variabilité interindividuelle sauf à 15 h (p < 0.05)	-
Schober et al.[126]	IGlarg au dinner vs. NPH 1 ou 2fois/jour	341 (age 5–16 ans)	6 mois	NS	NS	La moyenne de la glycemie à jeun est inférieure (p=0.02)	-
Fulcher et al.[127]	IGlarg contre. NPH au coucher	125	30 semaines	-0.53% Hb (p= 0.009)	NS	difference entre IGlarg–NPH = -1.12 mmol/L (p < 0.05), la variation intra-individuelle dans SM BG (S.D.): IGlarg 2.8, NPH 3.3 (NS)	NS
Home et al.[128]	IGlarg au coucher contre NPH 1 ou 2 fois/jour	585	28 semaines	NS	NS	NS	-
Chez les diabétiques de type 1, l’insuline glargine améliorait considérablement l’équilibre entre le contrôle de la glycémie (évaluée par la glycémie à jeun) et l’incidence d’épisodes nocturnes d’hypoglycémie. Par exemple, dans une étude réalisée pendant 28 semaines, les patients recevaient soit de l’insuline glargine au moment du coucher, soit la forme NPH une ou deux fois par jour, La glycémie à jeun moyenne était significativement diminuée dans le groupe glargine (de 1,3 mM, p < 0,05), tandis qu’aucun effet sur le pourcentage d’HbA1c n’a été observé. Le nombre de patients ayant ressenti des épisodes d’hypoglycémie était également inférieur dans le groupe glargine, que ce soit globalement (39,9% contre 49,2% pour la forme NPH, p < 0,05) ou plus spécifiquement la nuit (18,2% contre 27,1 %, p < 0,05).

Cette étude a montré que la glargine est légèrement supérieure à la NPH chez l’adulte pour améliorer l’HbA1c et la glycémie à jeun pendant un traitement intensif (3 injections d’humalog avant les repas) et surtout entraîne moins d’hypoglycémies nocturnes sévères [124]. L’étude réalisée par Fulcher et al. [127] a montré une différence significative entre la glargine et l’insuline humaine NPH. Les deux groupes de traitement ont présenté une amélioration statistiquement significative en ce qui concerne le changement d’HbA1c (Glargine: 9,2 à 8,3% (-0,89%) contre NPH: 9,7 à 9,1% (-0,67%), P <0,05). Une légère diminution a été observée chez le groupe glargine. Une plus grande diminution de HbA1c chez le groupe de glargine (-1,04%) en comparaison avec celle du groupe NPH soit de -0,51%. Elle a entraîné une importante différence entre les deux traitements en faveur de la glargine (glargine - NPH: 0,53% (95% CI: -0,93 à -0,13), P=0,009). Les valeurs de la glycémie à jeûn ont significativement diminué à partir des valeurs de référence jusqu’aux valeurs
finale pour les deux groupes (glargine: -3,4 ± 4,0 mmol/L, contre NPH: -2,4 ± 4,5 mmol/L, P<0,05). Changement de référence a été -3,46 mmol/L, dans le groupe de la glargine et -2,34 mmol/L, dans le groupe NPH. Les résultats de différence de traitement étaient de 1,12 mmol/L, (95% CI: -2,15 à -0,09) et en faveur de glargine et significatifs (P = 0,032).

Pendant la phase de traitement, tous les patients traités par la glargine et les 59 patients traités par NPH ont éprouvé moins d’épisodes symptomatique d'hypoglycémie (glargine: 2320 épisodes; NPH: 2053 épisodes). Le risque relatif (RR) pour donner un épisode symptomatique d'hypoglycémie de toute gravité chez les sujets du groupe glargine par rapport aux sujets du groupe de la NPH était 0,99 (95% CI: 0,93, 1.05). Pendant toute la période du traitement, une proportion similaire de patients dans chaque groupe a présenté au moins une épisode symptomatique de l'hypoglycémie nocturne (glargine: 81%; NPH: 86%). De plus, le taux d'éprouver des épisodes symptomatiques d’hypoglycémie nocturne étaient similaires dans les deux groupes (4,49/100 patiente par jours et 4,73/100 patiente par jour respectivement pour la glargine et NPH groupes). Le RR de vivre un épisode de l’hypoglycémie nocturne sévère du groupe de la glargine par rapport à la NPH était 0,95 (95% CI: 0,84, 1,07). Le taux de cas bénins d’hypoglycémie nocturne était plus élevé dans le groupe de glargine que dans celui du NPH et le rapport de risque était de 1,19 (95% CI: 1,01, 1,42) (Figure 28). Cependant, les taux des épisodes modérées d’hypoglycémie nocturne étaient nettement inférieurs dans le groupe de la glargine par rapport au groupe de la NPH, avec un RR de 0,815 (95% IC: 0,65, 0,94) en faveur de la glargine. Dans le groupe glargine, il y’avait 28 épisodes d'hypoglycémie sévère nocturne Comparativement à 41 dans le groupe de la NPH.
Les taux d'événement étaient 0,22 contre 0,37/100 patiente par jour (P=0,02). Cela correspondait à un RR de 0,6 (95% CI: 0,38, 0,98) en faveur de glargine (Figure 28).

Figure 28. Taux de l’hypoglycémie symptomatique nocturne pendant la période de l’étude (Événements pour 100 malades par jours)[127]

Les valeurs du poids étaient similaires au départ et une augmentation à un degré plus élevé a été observée chez le groupe traité par NPH par rapport à celui traité par la glargine (changement de référence, glargine: +1,97 Kg, NPH: +2,34 kg, P <0,05), mais il n'y avait pas de différence significative entre les deux groupes.

Pour clarifier les avantages potentiels de l’analogue d’insuline basale, des études ont comparé entre les schémas utilisant l’insuline glargine avec ceux utilisant l’insuline humaine. L’ajout de cet analogue basale peut être primordiale. En effet, il contrôle mieux la glycémie à jeûne et peut apporter une plus grande contribution surtout chez les patients dont HbA1c est élevé. D’autre part, chez les patients ayant un faible HbA1c, la contribution de l’analogue
basale à des niveaux de glycémie post prandiale et à l'hyperglycémie peut être plus importante qu’à la glycémie à jeun.

Les épisodes d’hypoglycémie nocturnes ont été plus faibles avec IGlarg/ILis qu'avec NPH / insuline humaine, les régimes à analogues ont montré que la glycémie post prandiale était plus réduite par rapport aux régimes utilisant l’insuline humaine. Avec IGlarg/ILis, les valeurs obtenus par autosurveillance de la glycémie des 24heurs ont été diminué par rapport à celles observées avec les schémas de NPH /insuline humaine. Par exemple l’étude de Ashwell et al.[129] faite chez prés de 56 patients atteints de diabète de type 1 pour une durée de 32 semaines, a montré une différence de - 0.5% (p<0.001), les épisodes nocturnes par mois étaient plus faibles avec IGlarg/ILis(0.66) que celles par NPH/insuline humaine (1.18) (p<0.001), la glycémie post prandiale était plus faible avec l’analoge d’insuline qu’avec l’insuline humaine : (75 contre 88 mmol/l.h) (p = 0.002), l’auto surveillance de la glycémie durant 24 heures a donné comme résultats : 1.9 mmol/L, des valeurs inférieures avec IGlarg (p=0.001), une baisse de la glycémie avant le déjeuner (p=0.005), et après le déjeuner (p<0.001)
Figure 29. Profils de glucose plasmatique (moyenne et écart type en mmol/l) pendant 24 heures d’hospitalisation chez des diabétiques de type 1 traités avec l’insuline glargine + Insuline lispro ® ou de l’insuline NPH + l’insuline humaine non modifiée [129]

Figure 30. HbA1c [moyenne et écart-type(%)] chez des patients diabétiques type 1 traités avec insuline Glargine + insuline Lispro ®, ou avec NPH +insuline humaine non modifiée après 16 semaines d’étude [129]
6.3.2. **Enfants et adolescents**

La plupart des essais ont portés sur des études pédiatriques, multicentriques, ouvertes dans lesquelles l'insuline glargine, semble aussi efficace et tolérée pour parvenir à un contrôle glycémique si elle est administrée une fois ou deux fois par jour. En comparaison avec l’insuline NPH, la glargine produit des taux de glycémie à jeun nettement inférieurs (P=0,02) et des épisodes asymptomatiques d’hypoglycémie nocturne moins nombreuses.

Schober et al (Tableau 14), ont mené une étude multicentrique, randomisée et contrôlée, durant 28 semaines d'essai impliquant 349 patients atteints du diabète de type 1 (moyenne d'âge [écart-type], 11,7 [2,41] ans; tranche d'âge, 5-15 ans; moyenne ajustée [SE] HbA1c, 8,48% [0,11] pour insuline glargine et 8,81% [0,11] pour l’ insuline NPH (P=0,04); FBG, 193 [4,5] mg/dL [10,7 (0,25) mmol/L]). Les patients ont été randomisés pour recevoir l'insuline glargine une fois par jour au coucher ou de l'insuline NPH une fois ou deux fois par jour avec un régime basale-bolus où l'insuline humaine ordinaire a été utilisée avant chaque repas. Les doses d'insuline au coucher ont été titrées pour maintenir un niveau de FBG entre 80 et 158 mg/dL (4.4-8.8 mmol/L). Le critère principal d’évaluation de l’efficacité est la variation de moyenne de base de HbA1c; sur l’évaluation des niveaux des mesures de la glycémie à jeûn, et de l’incidence des épisodes d’hypoglycémie. Les résultats ont révélés qu’il n'y avait pas de différence dans les valeurs moyennes ajustées (SE) d’HbA1c entre l'insuline glargine et la NPH (pour les deux , -0,28% [0,09]). Toutefois, les valeurs moyennes des niveaux de la glycémie à jeûn ont diminué sensiblement passant d'un point de référence à des valeurs à la fin de l'étude respectivement les valeurs trouvées sont (23,2 [3,42] mg/dl [1,29 (0,19) mmol/L.,] pour l'insuline
glargine contre 12,2 [3,6] mg/dL [0,68(0,20) mmol/L] pour l’insuline humaine NPH (P = 0,02). Au point final de l’étude, une proportion plus élevée du groupe traité par l’insuline glargine a atteint la fourchette cible de la glycémie à jeûn par rapport au groupe traité par l’insuline NPH (44% contre 39%). L’incidence d’avoir plus d’une épisode symptomatique d’hypoglycémie était similaire entre l’insuline glargine et l’insuline NPH (79,3% et 78,9%). Peu de patients traités par l’insuline glargine par rapport à ceux traités par l’insuline NPH ont montré des épisodes d’hypoglycémie sévères (23,0% contre 28,6%) et 12,6% contre 17,7% d’épisodes d’hypoglycémie sévères nocturnes. Ces différences ne sont pas statistiquement significatives, donc les deux traitements ont été bien tolérés.

L’étude de Murphy et al.[130] réalisée sur 28 adolescents dont l’âge varie entre 12 et 18 ans pendant une période de 32 semaines chez deux groupes de patients atteints du diabète de type 1, a consisté en l’administration de la glargine en une seule injection par jour avec l’analogue rapide insuline lispro avant les repas et de l’insuline NPH une fois par jour avec l’insuline humaine rapide avant repas. Les valeurs de l’HbA1c étaient similaires pour les deux groupes traités. Les hypoglycémies nocturnes étaient inférieures chez le groupe traité par IGlarg/ILis qu’avec le groupe traité par NPH/insuline humaine (32% contre 56%, p<0.05), Les glycémies post prandiales (après petit déjeûneer et après déjeûner) étaient inférieures avec IGlarg/ILis (les valeurs trouvées : 1.5-2.6mmol/L, p<0.002). Les niveaux de glycémie à jeûne étaient également plus faible avec IGlarg/ILis qu’avec NPH/insuline humaine (les chiffres obtenus : 1.2 mmol/L, p<0.0001). Pour le gain de poids, l’étude n’avait rien signalé. Pendant 3 mois d’étude clinique pédiatrique rétrospective sur 140 patientes, il a été
révélé que le traitement optimal de l'insuline glargine peut exiger un régime intensifié de l'insuline à plus de 4 injections par jour [115].

6.3.3. **Adultes atteints du diabète Type 2**

L'efficacité clinique et la tolérabilité de l'insuline glargine ont été évaluées en 7 essais multicentriques, randomisés, en groupes parallèles chez les adultes atteints de diabète type 2 (Tableau 15).
Tableau 15. Résumé des essais cliniques comparant les changements observés dans les taux d’hémoglobine glycosylée (HbA1c) et de la glycémie à jeûne (GAJ) entre l’insuline glargine et neutral protamine Hagedorn (NPH) chez les patients atteints de diabète type 2 [115]

Études	Valeurs initiales	glargine	NPH	P (glargine contre NPH)
Rosenstock et al (N=518,28 semaines)[131]	HbAc1% 8.6	-0.41	-0.59	NS
	GAJmg/dl 166	NR	NR	NS
Matthews et Pfeiffer* (N=204,4 semaines)[132]	HbAc1% >7.0	-0.80	-0.80	NS
	GAJmg/dl NR	NR	NR	NS
Yki-Jarvinen etal (N= 426,52 semaines)[133]	HbAc1% 9.0	-0.76	-0.66	NS
	GAJmg/dl NR	NR	NR	NS
Raskin et al [134] (N=157,4 semaines)	HbAc1% >7	NR	NR	NS
	GAJmg/dl 211	-49	-42	NS
Fonseka et al (N=100,28 semaines)[135]	HbAc1% 8.4	-0.35	-0.44	NR
	GAJmg/dl 167	-17.1	-20.3	NR
Fristche et al[136] (N=695,24 semaines)	HbAc1% NR	-1.23*	-0.83	<0.001#
	GAJmg/dl NR	NR	NR	NR
Riddle et al[137] (N=756,24 semaines)	HbAc1% 8.6	-1.64	-1.63	NS
	GAJmg/dl NR	117	120#	NS

Toutes ces études étaient multicentriques, randomisées; ouvertes chez des groupes parallèles. NR = non signalé, NS = Non significatif. Ces essais ont utilisé 2 formulations de l’insuline glargine (avec 30 et 80 pg/mL zinc), les données sur l’insuline glargine sont mises en commun. Dans l’étude de Raskin les patients ont arrêté toutes thérapies avec antidiabétiques oraux et ont commencé par l’insuline basale glargine ou l’insuline NPH à l’heure du coucher. *Insulin glargine administrée dans la matinée. # L’insuline glargine administrée dans la matinée contre L’insuline NPH utilisée au coucher.
Plusieurs larges études comparatives ont été conduites chez des diabétiques de type 2 insuffisamment contrôlés aux doses maximales d’antidiabétiques oraux et chez lesquels ces traitement ont été arrêtés et remplacés par une insulinothérapie "bed-time ", soit par glargine, soit par NPH. Dans l’étude conduite aux Etats-Unis chez 157 patients avec une HbA1c initiale >7% et après titration individuelle de l’insuline, les résultats observés après 4 semaines étaient en tous points identiques quelle que soit la formulation de glargine avec la NPH sur tous les critères considérés (HbA1c, glycémie à jeûne, fructosamine, fréquence des hypoglycémies) [134].

Une étude similaire de 4 semaines conduite en Europe chez 204 patients montrait une réduction comparable de la glycémie à jeûne et de l’HbA1c (0,8%) dans tous les groupes mais significativement moins d’épisodes hypoglycémiques nocturnes sous glargine (7,3%) que sous NPH (19,1%) [132].

Une large étude randomisée de 28 semaines conduite chez 518 diabétiques de type 2 a comparé insuline glargine "bed-time" vs NPH "bed-time" vs NPH matin et soir, en addition l’utilisation d’insuline rapide pré-prandiale était autorisée. Les principales conclusions de cette étude [131] ont été l’absence de modifications des doses de glargine alors que les doses de NPH ont augmenté significativement au cours de l’étude. Dans tous les groupes, la quantité d’insuline rapide nécessaire a légèrement augmenté au cours de l’étude. Les taux d’HbA1c ont diminué significativement dans tous les groupes (de l’ordre de 0,5%) alors que la baisse de la glycémie à jeûne était plus importante sous glargine (1,73 mmol/l) que sous NPH (1,08 mmol/l) [non significatif]. Significativement moins de patients (p<0,02) ont présenté des hypoglycémies nocturnes sous glargine (31,3%) que sous NPH (40,3%).
L’étude de YKI-JARVINEN et al. [133], sur 426 diabétiques de type 2 recevant leur traitement antidiabétique oral inchangé associé soit à l’insuline glargine "bed-time", soit à NPH "bed-time", a conduit à des résultats comparables en terme d’amélioration de HbA1c, toutefois insuffisants (8,2 – 8,3% en moyenne après 1 an) (Figure 31), même chez les patients atteignant l’objectif d’une glycémie matinale à jeûne < 6,7 mmol/l chez lesquels l’HbA1c demeurait à 7,6-7,7%. Les doses d’insuline et l’évolution pondérale étaient comparables, seules les glycémies après dîner étaient inférieures sous glargine (9,9±0,2 mmol/l) à celles sous NPH (10,7±0,3 mmol/l, p<0,02) (Figure 32). Le point le plus intéressant étant les hypoglycémies (principalement nocturnes) significativement moins fréquentes sous glargine que sous NPH. Dans le diabète de type 2, l’insuline glargine associée aux ADO est aussi efficace que la NPH pour atteindre une HbA1c de 7% mais entraîne moins d’hypoglycémies nocturnes chez 756 sujets traités 24 semaines. Dans cette utilisation (association à glimépiride), l’injection matinale chez 695 sujets traités pendant 28 semaines donne de meilleurs résultats qu’une injection le soir. Associée aux ADO, elle est capable d’améliorer le niveau d’HbA1c de 9,4% à 8,4% avec une bonne tolérance pendant 1 an, mais on voit que son utilisation tardive ne permet pas d’atteindre la cible d’HbA1c à 7%.
Figure 31. Effets sur le taux d'HbA1c après un an Comparaison schéma "bed-time" insulin glargine vs NPH (et antidiabétiques oraux) dans le diabète de type 2 [133]

Figure 32. Comparaison de la fréquence des épisodes hypoglycémiques entre "bed-time" insulin glargine et NPH (avec antidiabétiques oraux) chez des diabétiques de type 2 [133]

L'effet de l'insuline glargine sur le poids corporel n'a pas été évalué dans tous les essais cliniques chez les diabétiques type 1 ou type 2. Deux études cliniques chez des patients atteints du diabète type 2 ont comparé l’effet de la glargine contre celui du NPH sur le poids corporel : une étude de 28 semaines chez 518 patients a montré que la prise pondérale était plus importante sous NPH que sous glargine (1,4 kgs vs 0,4 kg, p<0,01) [131]. Une autre étude chez des diabétiques type 2 durant une période de 52 semaines a rapporté que le gain de poids était similaire chez les deux groupes de traitement ; glargine contre NPH (2,6 contre 2,3 kg) [133].
6.4. POPULATIONS SPECIALES

6.4.1. Grossesse et allaitement

L'insuline glargine est une drogue de catégorie C dans la grossesse. Son utilisation pendant la grossesse n’a été évaluée que chez les rats et les lapins qui ont respectivement reçu une dose 7 et 2 fois supérieure à celle initialement recommandée chez l'homme. Les effets de l'insuline glargine chez ces animaux ne diffèrent pas beaucoup de ceux de l'insuline humaine. Cinq fœtus lapins présentaient une dilatation des ventricules cérébraux, par contre toutes les autres caractéristiques de la reproduction, du fœtus et du développement post-natal semblaient être normales. Comme pour l'insuline humaine, l'insuline glargine est excrétée dans le lait maternel ce qui nécessite une utilisation avec prudence chez les femmes diabétiques et qui allaitent [138,139].

Un rapport [140] décrit l'utilisation de l'insuline glargine chez une femme enceinte atteinte de diabète de type 1 qui avait reçu un régime quotidien de multiples injections d'insulines (insuline humaine ordinaire avant le petit déjeûneer, l'insuline lispro avant midi et le repas du soir, l'insuline NPH au coucher). Au départ, son HbAc1 était estimée à 5,5%. La grossesse a été compliquée par de fréquentes épisodes d'hypoglycémie entre 13:00h et 15:00h en dépit de la réduction de la dose d'insuline NPH au coucher. L’insuline NPH au coucher a été substituée par l'insuline glargine au cours de la 14ème semaine de grossesse, après cette substitution, le contrôle glycémique était excellent et il n'y avait aucune autre épisode sévère d'hypoglycémie nécessitant une assistance. Après 36 semaines de grossesse La patiente a eu son bébé en bonne santé.

Dans les autres études l’insuline glargine administrée chez des femmes enceintes diabétiques type 1, le contrôle de la glycémie exprimé par HbA1c était
de 5,1 à 8,9%. Dans l’ensemble des études, le poids des bébés à la naissance variait de 2 000 à 4 800 gr et les résultats n’ont montré aucune malformation [141].

6.4.2. **Personnes âgées** [139]

Les essais cliniques de l’insuline glargine réalisés sur des patients âgés de plus de 65 ans (n=3890) dont 593 de plus de 80 ans, et au vu de la difficulté de l’identification des événements hypoglycémiques, ont souligné la nécessité d’une extrême conservation quant à l’initiation, l’augmentation, et l’entretien des doses de l’insuline glargine.

6.4.3. **Insuffisants rénaux et hépatiques**

Les patients ayant une insuffisance rénale ou hépatique n’ont pas été inclus dans les études cliniques de l’insuline glargine. Comme pour les autres insulines, l’exigence de l’insuline glargine peut être réduite en cas d'insuffisance rénale en raison d'une diminution du métabolisme de l'insuline. De même, une insuffisance hépatique peut diminuer le métabolisme de l'insuline glargine et réduire la capacité de la gluconéogenèse, qui ont, pour les deux, été observés avec d'autres préparations d’insuline. Après de multiples injections quotidiennes pendant une durée de 12 jours chez 15 patients présentant diabète type 1, il n’y avait aucune preuve de l'accumulation justifiant la réduction de la dose d’insuline glargine utilisée dans cette étude (première dose moyenne, 24 [6] UI / j) [139,142].

Une enquête rétrospective concernant 20 patients atteints de diabète (moyenne de base de HbAc1 7,7% [1,3]) et en phase terminale de l’insuffisance rénale pour laquelle ils ont été soumis à une Hémodialyse chronique [143]. Les patients ont reçu un traitement antidiabétique avec l’insuline glargine pour une
durée moyenne de 9,9 (4,8) mois. La dose de glargine n'a pas été réduite avant les sessions de dialyse. À la fin de la période de l'étude, il y avait une réduction significative de 0,9% des valeurs moyenne d’HbAc1 (de 7,7% [1,3] à 6,8% [0,7]; P =0,005). Il n'y a pas eu d'incident d'hypoglycémie sévère au cours de l'étude. Le poids corporel moyen (poids sec après dialyse) a augmenté de 1,5 kg avec la thérapie à l'insuline glargine, ces résultats laisse prévaloir que l'insuline glargine est efficace et bien tolérée chez les patients souffrant de diabète et qui sont sous hémodialyse chronique [144].

6.5. DOSAGE ET ADMINISTRATION [13, 119,124, 139,146]

L'insuline glargine est recommandée à l'administration par voie sous-cutanée une fois par jour au coucher afin de satisfaire les besoins en insuline basale. L'administration intraveineuse ou par perfusion continue, comme le cas de la pompe à insuline, est accompagnée de risques d'hypoglycémie sévère et n’est pas recommandée. Comme pour les autres insulines injectées, l'abdomen, les cuisses, et les régions deltoïdes sont des sites appropriés pour l'injection de la glargine, avec des taux similaires d'absorption sous-cutanée de chaque site. L’insuline glargine est disponible en 5 et 10ml dans des flacons, et 3ml dans des cartouches. Chaque millilitre contient 100 unités d'insuline glargine. Elle se présente sous forme d’une solution claire, légèrement acide (pH 4,0) qui ne nécessite pas d’être secoué pour la mettre en suspension avant de l'administrer (une des principales causes de la variabilité de l'absorption de l'insuline basale conventionnelle produits tels que l'insuline NPH), ce qui permet au patient une utilisation sans moindre souci.
La glargine ne doit pas être diluée ou mélangée avec d'autres insulines, car cela pourrait modifier sa pharmacodynamie ou son profil pharmacocinétique. En effet, comme elle est formulée dans un milieu acide avec un excès de zinc, elle ne peut pas être mélangée à l'insuline ordinaire ayant un pH neutre. Le mélange des deux formules entraînerait des modifications dans le profil du temps d'action des deux insuline dues à un changement immédiat dans le pH et dans la fixation du zinc.

Comme pour les autres préparations d'insuline, les flacons d'insuline glargine non ouverts doivent être entreposés dans un réfrigérateur dans une température allant de 2 à 8°C. Elle ne doit pas être déposé dans le congélateur. Si la réfrigération n'est pas possible, les flacons de 10 ml et les cartouches peuvent être conservés sans réfrigération pour un maximum de 28 jours. Les flacons de 5 ml peuvent être conservés sans réfrigération pour un maximum de 14 jours, mais la réfrigération prolongera leur durée de vie utile à un maximum de 28 jours. Aucune préparation d'insuline, ne devrait être exposée directement à la chaleur ou à la lumière. Le dosage de l'insuline glargine est déterminé individuellement selon les patients, les précédentes doses d'insuline et la glycémie. En s'appuyant sur les résultats d'essais cliniques, les patientes déjà traitées par l’insuline humaine NPH une fois par jour, peuvent passer à une dose équivalente de l'insuline glargine, tandis que ceux qui prenaient précédemment 2 injections quotidiennes de l'insuline NPH ont besoin d'un 10% à 20% moins que de la dose totale journalière de l'insuline glargine. Le fabricant recommande une réduction de -20% de la dose dans la première semaine du traitement pour diminuer le risque d'hypoglycémie lorsque les patients passent de deux fois par jour de l'insuline NPH à une fois par jour de l'insuline glargine. La posologie doit être
ensuite ajustée en fonction de la glycémie. Chez les patients diabétiques type 2 qui sont sous insuline naïve lors de l'utilisation de l'insuline glargine en combinaison à la thérapie orale, la dose journalière initiale recommandée est estimée à 10 unités administrées au coucher. Après le début du traitement, l’adaptation de la dose devrait être faite sur une base individuelle en fonction du degré de contrôle glycémique et le potentiel de l'hypoglycémie. La glycémie devrait être surveillée plus fréquemment dans les premières semaines de la thérapie par l'insuline glargine.

6.5.1. Cas d’administration de la glargine en dehors de l'heure du coucher [115]

Bien que l'insuline glargine est indicée pour l'administration sous-cutanée une fois par jour au coucher, pendant une durée de 24 semaines, un essai multicentrique, randomisé, en ouvert, en groupes parallèles a été fait chez 378 des patients souffrant de diabète type 1, l’insuline lispro était reçue au cas ou il y’avait des différences dans le contrôle glycémique alors que l'insuline glargine a été administrée avant le petit déjeûneer (6:00-9:00 du matin), avant le dîner (18:00-20:00 du soir), ou au coucher (21:00 du soir jusqu’à minuit). Chez ces patients, la moyenne (Ecart-type) d’âge était 40,9 (11,9) ans, et chez qui les valeurs de base de HbAc1 variaient de 6,5% à 9,8%. Les résultats obtenus ont montré que chez tous les patients une réduction similaire des valeurs moyennes ajustées d’HbAc1 de point de base à la fin (petit déjeûneer, de 7,6% à 7,4%; dîner de 7,6% à 7,5%; coucher, de 7,6% à 7,5%).

Les profils de la glycémie durant vingt-quatre heures après le temps d'injection étaient semblables entre groupes. Les symptômes d’hypoglycémie nocturne ne se sont produits que chez un nombre moindre de patients du groupe
traité par l'insuline glargine avant le petit déjeuner en comparaison à ceux prenant l'insuline glargine avant le dîner ou au coucher (60%, 72% et 78%, respectivement, P = 0,005). Toutefois, chez les patients du groupe recevant l'insuline glargine avant le petit déjeuner une augmentation non significative des épisodes d'hypoglycémie au cours de la journée a été observée. Dans cette étude, l'insuline glargine en association avec l'insuline lispro a été bien tolérée et efficace lorsqu'elle est administrée avant le petit déjeuner, avant le repas du soir, ou au coucher, et a été associée avec un taux qui était nettement plus faible de l'hypoglycémie nocturne avec l'administration au petit déjeuner. Dans une étude, multicentrique, pendant 24 semaines portant sur la comparaison de l'efficacité et la sécurité de la glimpiride utilisée une fois par jour combinée soit à l'insuline glargine le matin ou au coucher ou à l’insuline NPH au coucher chez 695 patients présentant un diabète de type 2 et qui recevaient des hypoglycémiques oraux. En termes de HbAc1, l’insuline glargine prise le matin a montré un meilleur contrôle glycémique en comparaison avec sa prise la soirée et avec l’administration de l’insuline NPH. Il a été observé de manière significative que plus de patients atteignent un HbAc1 <8,0% avec l’insuline glargine prise le matin (57,9%; P=0,002) et au coucher (53,8%, P=0,046) par rapport à l’insuline NPH prise au coucher (43,9%). La proportion de patients présentant une hypoglycémie nocturne était plus faible dans les groupes recevant au matin et au coucher l’insuline glargine (16,5% et 22,9%, respectivement) par rapport au groupe traité par l’insuline NPH (38,2%).

La différence de taux d'hypoglycémie nocturne le matin entre l'insuline glargine et de l'insuline NPH au coucher était statistiquement significative (P = 0,005) [145].
6.6. **SECURITE ET TOLERABILITE**

6.6.1. **Douleur au niveau du site d’injection** [13, 115, 133, 134]

Comme pour toute insulinothérapie, une lipodystrophie peut survenir au site d'injection d'insuline et de retarder l'absorption. Autres réactions au site d'injection avec l'insuline (y compris l'insuline glargine) ou à ses excipients peuvent, par exemple, être associées à des réactions cutanées généralisées (rougeur, douleur, prurit et urticaire), œdème de Quincke, bronchospasme, hypotension, ou d'un choc et peuvent menacer le pronostic vital. Le changement du site de l’injection peut aider à réduire ou à prévenir ces réactions. La plupart des réactions mineures aux insulines disparaissent généralement en quelques jours à quelques semaines. Un plus grand nombre de patients dans des essais cliniques, a rapporté des douleurs au site d'injection avec l'insuline glargine par rapport à l'insuline NPH,(2,7% insuline glargine versus 0,7% NPH). Ces rapports étaient généralement bénins et n'ont pas abouti à l'arrêt du traitement.

6.6.2. **Potentiel mitogénique** [13, 36,37,63,142,148]

Les études montrent que l’insuline glargine présente une affinité pour le récepteur de l’IGF-1 six fois plus importante que celle de l’insuline humaine et une augmentation d’un facteur 8 de la mitogénicité dans un modèle cellulaire d’ostéosarcome humain . Toutefois, aucun risque carcinogène n’a été rapporté chez l’homme ou chez l’animal traité par l’insuline glargine. Il est possible que cette absence de «carcinogénicité» soit due au fait, récemment suggéré, que l’augmentation de la «mitogénicité» serait davantage liée à la vitesse de dissociation du récepteur de l’insuline qu’à la fixation au récepteur de l’IGF-1 ; or l’insuline glargine présente un profil de dissociation similaire à celui de l’insuline humaine. Tout changement dans la structure de la molécule d’insuline
a la possibilité de modifier sa cinétique contraignant au niveau du récepteur de l'insuline, qui est structurellement homologue du récepteur d’Insulin-like growth factor 1 (IGF-1). Toute modification de la cinétique du récepteur de l’insuline ou du récepteur de l'IGF-1 peut augmenter le potentiel des risques de mitogénicité par le biais d'un taux réduit de dissociation du récepteur de l'insuline et/ou une augmentation de l'affinité pour le récepteur de l'IGF-1 est considérablement importante.

Les implications de ces résultats ne sont pas claires ; en effet, une majorité des études tant in vitro qu’in vivo ne semble pas démontrer d’effet délétère lié à l’usage de l’insuline glargine. Néanmoins, la plus grande affinité pour le récepteur IGF-1 pourrait théoriquement promouvoir le développement de la rétinopathie, de la néphropathie et de certaines tumeurs. Des études in vitro, ont montré une augmentation de l’affinité de l'insuline glargine pour le récepteur IGF-1, avec augmentation de l’activité de croissance de l'insuline glargine semblable à celle des insulines humaines.

Kurtzhals et al.[63] ont rapporté que l'insuline glargine a un potentiel de mitogenicité augmenté par rapport aux cellules humaines d’ostéosarcome en comparaison avec l'insuline humaine, bien que ce potentiel de mitogenicité est plus faible que celui de l’analogue de l’insuline Asp B1O. Les lignées cellulaires ayant une haute expression du récepteur IGF-1 incluent les cellules humaines ostéosarcome lignée Saos/B102 et les cellules épithéliales mammaires humaines. Une relative affinité pour le récepteur de l'IGF-1, a été constatée à forte corrélation avec le potentiel de stimuler la croissance des cellules épithéliales mammaires humaines et de la lignée cellulaire Saos/B1O d'ostéosarcome humain. In vivo, des données d'une étude sur 28 patients atteints...
de diabète type 1 ou de diabète type 2. Les patients qui recevaient l’insuline glargine ou NPH, ont été passés à l’alternative de l’insuline pendant 3 semaines. Les taux de IGF-1 dans le sérum et HbA1c ont été mesurés après 1 et 3 semaines au cours de la thérapie alternative.

La thérapie avec L’insuline glargine a modérément augmenté les niveaux IGF-1 en comparaison avec ceux de l’insuline NPH (122ng/mL contre 109ng/mL, respectivement). Chez les patients diabétiques type 1, il a été observé des niveaux plus élevés de IGF -1 que chez les patients atteints du diabète type 2. Aucun changement n’a été observé dans les valeurs HbA1c. Malgré son affinité prononcée in vitro au récepteur d’IGF-1 l’insuline glargine semblaient avoir peu ou pas d’activité intrinsèque in vivo, et des propriétés d’antagoniste partiel de IGF -1 sur l’axe hypothalamo-hypophysaire de l’hormone de croissance [145].

Une analyse [146] de l’insuline signalée dans des cellules fibroblastique chez le rat ont démontré que, en ce qui concerne l’association du récepteur à l’insuline et de dissociation de sa cinétique, l’autophosphorylation du récepteur de l’insuline, et l’incorporation de la thymidine, l’insuline glargine était équivalente à l’insuline humaine. D’autres études avaient pour but la détermination du potentiel cancérigène de l’insuline glargine en procédant par des études de cancérogénicité de vie chez les rongeurs (rats et souris). Ces études de toxicité ont été effectuées chez les souris/NMRI (3 mois) et les rats (rats Wistar en 3 et 6 mois et Sprague-Dawley rats pendant12 mois) afin de déterminer la dose optimale d’insuline glargine à long terme, et d’étudier la cancérogénicité sur des groupes de Sprague-Dawley / NMRI rat ou souris (50 males, 50 femelles). Ils ont reçu une dose journalière en injection sous-cutanée
de 2.5, ou 12,5 UI/kg d'insuline glargine (souris) ou 5UI/kg (rat) de l’insuline humaine (insuline NPH) et ce durant toute la vie de l’étude. Les animaux témoins et traités ont reçu respectivement la solution isotonique de chlorure de sodium (NaCl) ou la solution de la molécule véhicule, chez les souris, le taux de mortalité était comparable entre tous les groupes. Chez les rats, le taux de mortalité par rapport à la NaCl a significativement augmenté chez les groupes suivants : mâles traités avec la solution véhicule, tous les groupes traités par la NPH et l'insuline glargine, et chez les femelles traitées par la dose la plus élevée de l'insuline glargine et Insuline NPH. Il n'y avait pas de différence dans l'incidence de tumeurs mammaires signalées chez les deux groupes de souris et des rats lors de la comparaison du groupe de l'insuline glargine avec le groupe de NaCl, véhicule de contrôle, ou de l’Insuline NPH. Chez les rats et les souris, la distribution de histiocytoplasma fibreux malignes trouvée au point d'injection sous-cutané n’est pas dose dépendante. Ces lésions présentaient un événement spécifique chez les rongeurs et étaient liés à l’irritation et à l’inflammation chronique des tissus. Chez les rats, la nécrose neuronale du cerveau a été attribuée à la persistance des épisodes répétés de l'hypoglycémie induite par de fortes doses d'insuline. Dans ces études, il n'y avait pas des résultats néoplasiques pour indiquer que l'insuline glargine a un potentiel cancérogène systémique chez la souris ou les rats. [147]

6.6.3. **Immunogenicité [13,115]**

L’immunogénicité de l’insuline glargine ne paraît pas très différente de celle de l’insuline native. Cette immunogénicité se traduit par des réactions immunes humorales ou cellulaire dirigées contre l’insuline humaine.
Les essais cliniques ont évalué la formation des anticorps anti-insulines humaines n’ont trouvé aucun changement dans la réponse immunogène de l’insuline glargine comparé à l'insuline NPH. Dans une étude, il a été observé que peu de sujets dans le groupe (1 à 2%) ont montré des augmentations ≥20U dans les niveaux d'anticorps d'insuline glargine ou d'insuline humaine. Aucune réaction systémique d'hypersensibilité n'était évidente. La proportion de sujets avec des réactions émergentes au niveau du site d'injection était plus haute dans le groupe de glargine que dans le groupe d'insuline NPH (15.2 contre 10.4%, respectivement) principalement en raison d'un nombre plus élevé de sujets qui ont rapporté la douleur du site d'injection (10 contre 3, respectivement), mais ils n'ont exigé aucun arrêt de traitement.

6.6.4. Rétinopathie [115,149]

Le facteur IGF-1 a été impliqué dans la régulation de croissance de l'endothélium vasculaire de la rétine ; facteur dépendant de la neovascularisation. Une augmentation des taux d'IGF-1 a donc été associée à une progression de la rétinopathie diabétique. Forjanic-Klapproth et Home, de centres de recherche en Allemagne et au Royaume-Uni, ont mené des études sur la progression de la rétinopathie que peut provoquer la glargine avec un groupe d'experts composé de 4 ophtalmologistes qui ont examiné les résultats de 4 études de la phase 3 de 1104 patients traités par l'insuline glargine et 1103 traités avec NPH. Environ la moitié de tous les patients dans les 4 essais avaient le diabète de type 1. Sur 2 études il y avait des patients atteints de diabète de type 2.

Dans ces quatre essais cliniques randomisés de 28 à 52 semaines comparant l'insuline glargine et l’insuline NPH en ce qui concerne le contrôle de la
glycémie et la fréquence des hypoglycémies, des examens ophtalmologiques et du fond d’œil (fundus photographs) ont été inclues afin d'évaluer la fréquence de début de l'aggravation de la rétinopathie ou d'autres effets oculaires indésirables précoces. des taux de la progression de la rétinopathie après 28 semaines ont été 7-12% par examen clinique et de 3-8% par classement photographique; les taux correspondants de l'œdème maculaire cliniquement significative (corresponding rates of clinically significant macular edema (CSME)) sont respectivement 1-8% et 1-4%. (Insuline glargine : 16/213, 7,5%; insuline NPH: 6 / 220, 2,7%, p = 0,028) après 52 semaines les taux de CSME étaient respectivement (26/233, 14/214 et 11,2%, 6,5%, P=0,098). D’après ces études nous concluons qu'il est peu probable que l'insuline glargine présente des risques plus élevés de l'insuline NPH. Ces essais ont eu tendance à exclure un grand début des effets indésirables, mais ne peut pas évaluer les effets à long terme, un essai randomisé de l'insuline glargine versus l'insuline NPH a été initié pour une période de 5 ans [149].

6.7. QUALITE DE VIE

La plupart des études montrent que l’insuline glargine est bien tolérée, même si quelques patients rapportent une irritation cutanée, peut-être due à la forme acide de la préparation injectable. Les explorations cliniques montrent que l’insuline glargine influence de façon positive la qualité de vie des patients. Ces études montrent globalement une amélioration de la satisfaction liée au traitement par l’insuline glargine, en l’absence même d’une diminution démontrée de l’HbA1c. Il existe également quelques preuves de la capacité de l’insuline glargine à réduire l’incidence des épisodes d’hypoglycémie perçus par les patients, le profil pharmacocinétique moyen de l’insuline glargine représente
une avancée significative dans l’amélioration de l’apport exogène d’insuline basale, et les essais cliniques menés en comparaison de la forme NPH de l’insuline montrent que cette avancée se traduit également en terme d’amélioration clinique.

Des études multicentriques, randomisées qui ont été faites pour chercher la satisfaction et le bien-être psychologique chez les patients qui ont le diabète de type 1 et de type 2 qui recevaient l’insuline glargine ou l’insuline NPH.

Après deux ou trois mois du traitement, ces études ont montré une amélioration et une satisfaction en association avec l’insuline glargine. Par exemple une étude qui a duré 28 semaines chez 517 patients diabétique type1, le questionnaire a montré que la satisfaction du traitement était améliorée avec l’insuline glargine, à tous moments, y compris le point final, mais légèrement dégradée avec NPH. Ces différences étaient significatives tout au long de l’étude (changement de base au point final: +1,27 contre -0,56, p = 0,0001). Les résultats ont été meilleurs avec l’insuline glargine, l’incidence de l’hyperglycémie et de l'hypoglycémie perçue, avec des différences statistiquement significatives à la 28ème semaine (p=0,0373 et 0,0379) et à la 20ème semaine l’incidence d’hypoglycémie était (p=0,0024). Il n'y avait pas de différence dans le bien-être psychologique entre les groupes de traitement [150].

Les résultats de l'étude canadienne INSIGHT(Implementing New Strategies with Insulin Glargine for Hyperglycemia Therapy/Implantation de nouvelles stratégies pour le traitement de l'hyperglycémie avec l'insuline glargine révèlent que les patients diabétiques de type 2 (étude menée chez 405 sujets diabétiques type2) peuvent atteindre en toute sécurité des valeurs glycémiques cibles plus rapidement et plus fréquemment lorsque l'insuline glargine est administrée 1
seule fois par jour, et est utilisée pour leur traitement par rapport à un traitement composé uniquement d'hypoglycémiants oraux.

En plus d'une meilleure maîtrise glycémique, l'étude INSIGHT a démontré que les patients recevant de l'insuline glargine ont bénéficié d'une meilleure qualité de vie et se sont déclarés très satisfaits de leur traitement. Les patients présentaient un taux d'HbA1c supérieur au taux cible de 7% ou moins fixé par l'Association canadienne du diabète en 2003 dans ses lignes directrices de pratique clinique pour la prévention et le traitement du diabète au Canada.

L'ajout d'insuline glargine à leur schéma thérapeutique a permis aux patients de l'étude INSIGHT d'atteindre des taux glycémiques plus bas et plus constants, plus souvent et plus rapidement qu'avec les hypoglycémiants oraux. L'étude INSIGHT a également démontré les nombreux bienfaits associés à l'ajout précoce d'insuline glargine au traitement, dont une maîtrise soutenue de la glycémie plus rapide et plus fréquente, une satisfaction accrue à l'égard du traitement et une amélioration générale de la qualité de vie. En outre, ces résultats ont été obtenus sans accroître les risques d'hypoglycémie par rapport aux hypoglycémiants oraux [151].
7. DETEMIR (LEVEMIR®)

7.1. DESCRIPTION [152,153]

Le Detmir est un analogue de l’insuline humaine à action prolongée. Il est produit par la technologie de l’ADN recombinant. Par rapport à l’insuline native, le detemir est une insuline modifiée en ajoutant en position B29 de la chaîne B un acide gras (acide myristique ; C14) et en supprimant en position B30 la thréonine. L’action prolongée de l’insuline detemir s’explique par sa forte auto-association au site d’injection et, plus originellement par sa liaison réversible, grâce à l’acide myristique, à l’albumine présente dans le tissu interstitiel et dans le plasma. (figure 33)

Figure 33 modifications structurelles utilisées dans le développement de l’insuline detemir [13]
7.2. PHARMACOLOGIE CLINIQUE [13, 36, 37, 154,155]

7.2.1. Mécanisme d’action

A l’inverse de l’insuline glargine, l’action prolongée de l’insuline detemir n’est pas due à une cristallisation; après l’injection elle se présente sous une forme soluble conservée. L’augmentation du temps d’absorption est obtenue grâce aux chaînes d’acide gras qui augmentent la stabilité de l’hexamère, permettent la formation de di-hexamères et interfèrent avec la fixation réversible des molécules à l’albumine au niveau du tissu sous-cutané. L’ensemble de ces propriétés aboutit à un temps de demi-vie d’absorption d’environ 10 heures. Une fois dans la circulation sanguine, les monomères d’insuline detemir se fixent à nouveau de façon réversible à l’albumine (plus de 98% de fixation), ce qui prolonge encore l’action de l’insuline detemir, de façon toutefois moins importante que l’absorption lente. Heureusement, l’insuline detemir aux doses utilisées en thérapeutique n’occupe qu’une fraction des sites de fixation sur l’albumine, ce qui écarte tout danger d’interactions médicamenteuses.

7.2.2. Durée d’action

L’insuline detemir est soluble, c’est un analogue de l’insuline basale humaine qui possède une longue durée d’action avec un profil d'action qui est relativement plat. La durée moyenne de l'action de l'insuline detemir variait de 5,7 heures à la plus faible dose et de 23,2 heures à la dose la plus élevée (période d'échantillonnage 24 heures : Figure 34). Il s’agit d’une durée moyenne qui peut subir de larges variations d’un individu à l’autre et chez la même personne en fonction du lieu d’injection, de la température, …etc.[156].
Figure 34. Durée d’action de l’insuline detemir. [156]

Paramètres pharmacodynamiques de Levemir et NPH
Levemir
0,2 U/kg
Durée d’action (h)
Vitesse de perfusion du glucose (mg/kg/min)
NPH
0,3 U/kg

* Valeurs estimées

Figure 35. Profils d’activité du detémir chez les patients souffrant du diabète Type 1 [158]
7.3. PHARMACOCINETIQUE [13,36,158,162]

7.3.1. Absorption

L’absorption de l’insuline detemir ne dépend ni de qualité de la remise en suspension avant injection ni d’une dissolution des cristaux dans le tissu sous-cutanée comme c’est le cas de l’insuline NPH, ni de la formation ou la dissolution des microprécipités comme c’est le cas de l’insuline glargine.

Après injection sous-cutanée de l’insuline detemir chez les sujets sains et chez les patients souffrant de diabète, les concentrations sériques de l’insuline detemir indiquent que ce dernier a un rythme plus lent et que par rapport à l’insuline humaine NPH, l’absorption est plus prolongée pendant 24 heures. La concentration sérique maximale (Cmax) est atteinte entre 6 et 8 heures après l'administration. La biodisponibilité absolue de l’insuline detemir est d'environ 60%.

7.3.2. Distribution et élimination

Après absorption, la detemir se fixe à 98-99 % sur l’albumine, ce qui retarde son action et la stabilise8-10. L’étude de Heise et al[159] montre que l’action du detemir est significativement plus reproductible que celle de la glargine qui elle-même a un meilleur coefficient de variation pharmacocinétique que l’insuline humaine à action retardée. En effet, la variabilité de la résorption intra-individuelle, sur une durée de 24 h, qui est de 68 % pour la NPH, descend à 48 % pour la glargine et à 27 % pour la detemir. L’activité de la detemir est donc deux fois plus stable que celle de la glargine et trois fois plus que celle de la NPH. Par ailleurs, la pharmacocinétique de la detemir est plus linéaire (et prévisible) que celle de la glargine et de la NPH. L’insulinothérapie en ≥ 4
injections, avec des insulines humaines, provoque une prise de poids, par rapport à une insulinothérapie à 2 injections quotidiennes, aussi bien chez les adolescents[160] que chez les adultes.

L’usage de la detemir diminue ce risque, sans doute pour 2 raisons : une action métabolique sur la lipogenèse moindre que celle de la NPH et une diminution de la consommation de sucre par réduction des hypoglycémies. La demi-vie terminale est comprise entre 5 et 7 heures en fonction de la dose.

7.4. ETUDES COMPARATIVES

Les réponses pharmacocinétique et pharmacodynamique ont été étudiées chez 12 personnes souffrant du diabète de type 1. Les patients ont fait objet d’une seule injection sous-cutanée de l’insuline detemir avec une fourchette de doses allant de 0,1 à 1,6 U / kg. Les relations dose-réponse étaient linéaires et dose-dépendantes pour les deux mesures pharmacocinétique et pharmacodynamique. La durée moyenne de l'action était de 12 h pour une dose administrée à 0,2 U/kg, 20 h à la dose de 0,4U/kg (pour une dose thérapeutique typique), et a dépassé 24 h à la plus forte dose de 1,6U/kg [160]. Cela permet de penser que de nombreux patients seront en mesure d’utiliser l’insuline detemir une fois par jour en fonction de la dose nécessaire.

Trois études au clamp euglycémique ont été menées chez des patients atteints de diabète de type 1, toutes ces études ont montré que l’insuline Detemir fournit un effet cohérent, prévisible et prolongé sur la glycémie avec une faible variabilité intra individuelle comparé à l’insuline NPH ou à la glargine [161].

La plus grande étude de Heise et al [159] a concerné 51 diabétiques de type1. Chaque sujet a reçu par voie sous-cutanée quatre simples doses de 0.4
unité/Kg de : l’insuline detemir (N=18), l’insuline Glargine (N=16) ou de l’insuline humaine NPH (N=17). Les propriétés pharmacodynamiques et pharmacocinétiques de l’insuline basale étaient évaluées sous les conditions d’un clamp euglycémiques (avec une cible de glycémie égale à 5.5 mmol/l). Les résultats ont montré que l’insuline detemir était associée avec moins de variabilité intraindividuelle en comparaison à l’insuline NPH et à l’insuline glargine, tel qu’il a été évalué par les coefficients de variations pour les points limites de la pharmacodynamie (les taux de glucose perfusés pendant 12 et 24 heures après l’injection de l’insuline).

Tableau 16. Reproductibilité des paramètres pharmacodynamiques et pharmacocinétiques des trois groupes : insuline detemir, insuline NPH, et insuline glargine² [161]

	Detemir	NPH	Glargine	Detemir	NPH	Glargine
Pharmacodynamie						
GIR-AUC(0-2h)(mg/Kg)	1.130±312	1.280±559	886±325	27*	59*	46*
GIR MAX (mg/Kg/min)	2.3+/-0.5	2.7±1.1	1.8±0.6	23	46*	36*
Pharmacocinétique						
Cmax (pmol/l)	2.865±626	147±40	99±33	18	24	34

*GIR-AUC et GIR max : taux du glucose perfusé-aire sous la courbe pour 12h et le niveau maximal après l’injection de l’insuline. Cmax : pic de la concentration plasmatique de l’insuline. * : p<0.001 contre l’insuline detemir, CVs : coefficients de la variation. ² Les données sont obtenues par une étude menée par clamp euglycémique (cible de la glycémie=5.5mmol/l) pendant quatre identiques jours d’étude respectivement chez des patients atteints du diabète de type 1. (18, 16, et 17).
7.5. ÉTUDES CLINÍQUES

7.5.1. Adultes atteints du diabète type 1

Plusieurs études ont comparé l’insuline detemir et l’insuline humaine NPH. Pendant 6 mois, une étude [164] multinationale ouverte chez des groupe parallèle, menée à 46 centres dans cinq pays. 448 patients atteints du diabète de type 1 ont été randomisés. Ils ont été injectés par l’insuline detemir ou bien l’insuline NPH deux fois par jour (avant le petit déjeuner et au coucher). L’insuline Aspart a été également administrée avant chaque repas principal. Durant deux semaines, les doses ont été adaptées aux besoins. Au terme de l'étude, les chercheurs n’ont pas constaté de différences notables quant à la concentration d'HbA1c entre les groupes de l'insuline detemir et de l'insuline NPH (respectivement 7,60 % et 7,64 %) [différence=0,04 (IC de 95 % : -0,218 à 0,128; p=0,61)]. La glycémie à jeun (GJ) est également du même ordre dans les deux groupes au sixième mois [différence= -0,76 (IC de 95 % : -1,65 à 0,14; p=0,09)] sous l'angle de la population évaluable. Les fluctuations de la glycémie (mesurée par le participant à l'aide d'un glucomètre) sont beaucoup moindres dans le groupe de l'insuline detemir que dans le groupe de l'insuline NPH (3,37 contre 3,78 ; p<0,001). Dans le groupe de l'insuline detemir, les chercheurs notent une perte de poids moyenne de 0,6 kg, alors qu'ils constatent une hausse de poids moyenne de 0,6 kg dans le groupe de l'insuline NPH au terme de l'étude (p<0,001). En conclusion, l'insuline detemir s'accompagne d'une réduction de 22 % du risque relatif d'incidents hypoglycémiques quels qu'ils soient par personne par mois comparativement à l'insuline NPH, y compris l'hypoglycémie majeure, mineure, symptomatique ou nocturne. Aucune différence remarquable sur le plan des incidents majeurs n'a été rapportée.
Dans une autre étude de 18 semaines [165] ayant pour objet la comparaison de l’efficacité et la tolérabilité de deux types d’insuline en utilisant thérapie basale-bolus : l’insuline detemir en association avec l’aspart avant chaque repas, ou l’insuline NPH avec l’insuline humaine régulière au moment des repas. L’épreuve est randomisée et ouverte, et portait sur des groupes parallèles comptant 595 patients diabétiques de type 1. Les résultats ont montré que le profil de la variation intra-individuelle du glucose plasmatique durant quatre jours de la dernière semaine du traitement, étaient significativement plus faible avec l’insuline detemir qu’avec l’insuline NPH (CVs :36.9% contre 39.6%.p<0.001). La survenue des épisodes d’hypoglycémie par personne durant l’année était moindre sous l’insuline detemir par rapport à l’insuline NPH, le risque de l’hypoglycémie était 21% plus faible avec le detemir (p=0.036).

Dans l’essai clinique ouvert de 16 semaines de Home et al. [166] portant sur 408 personnes atteintes de diabète de type 1, les patients ont été randomisés en trois groupes : l’insuline detemir avant le déjeuner et au coucher, l’insuline detemir aux 12 heures et l’insuline NPH avant le déjeuner et au coucher. La concentration d’HbA1c moyenne diminue de 0.82 % dans le groupe de l’insuline detemir avant le déjeuner et au coucher, de 0.85 % dans le groupe de l’insuline detemir aux 12 heures et de 0.65 % dans le groupe de l’insuline NPH. Les chercheurs n’ont pas constaté de différences remarquables entre les trois groupes. Par contre, une diminution notable d’HbA1c des deux groupes de l’insuline detemir comparés au groupe de l’insuline NPH (p=0,027). Enfin, les auteurs rapportent un écart important entre la GJ mesurée en clinique et la GJ mesurée par le patient lui-même dans les trois groupes (p<0,001 et p=0,005).
Tableau 17. Ensemble des études cliniques comparant l’insuline detemir contre l’insuline humaine NPH [186]

Études	RR de GAJ (écart-type)	HbA1c (%) Det-NPH	Reduction du risque de l’hypoglycémie nocturne	Variation du poids corporel Kg
¶Standlet al 12mois, 288 patients, Det contre NPH 2fois/jour[167]	NS	NS	29%	-0.3+1.4 (p=0.002)
¶⁺Vague et al 6mois, 447 patients Det contre NPH 2fois/jour (Asp) [164]	11% (p<0.001)	NS	34%	~0.2+0.7 (p<0.001)
¶⁺De Leeuw et al 12mois, 315 patients Det contre NPH 2fois/jour[168]	NR	NS	32%(p=0.016)	-0.1+1.2 (p<0.001)
¶⁺Home et al 4mois, 408 patients Det contre NPH 2fois/jour[166]	16%(p<0.001)	NS	16% NS	+0.1+0.7 (p<0.04)
¶Hermansen et al 3mois, 595 patients Det 1fois/jour contre NPH 2fois/jour[165]	15%(P<0.0001)	7.88 contre 8.11(p<0.05)	55%(p<0.001)	-1.0+0.1 (p<0.001)
¶Russell-Jons et al 6mois, 747 patients Det et NPH au coucher [169]	22% (p<0.0001)	NS	26%(p<0.003)	-0.5+0.1 (p<0.007)
**⁺Raslova et al 5mois, 394 patients Det 1fois/jour contre NPH 2fois/jour[170]	20%(p<0.001)	NS	NS	+0.5+1.1
**⁺Haak et al 6mois 505 patients Det contre NPH 1fois/jour et 2fois/jour[171]	6.4%(p=0.02)	NS	NS	+0.4+0.3(p=0.017)

*Aspart est utilisée avant chaque repas ; **études faites chez des patients atteints du diabète type 2. ¶ études faites chez des patients diabétiques type 1. NR : non rapportés, NS : non signalé, RR : réduction relative.
7.5.2. **Jeunes diabétiques type 1**

Dans une étude clinique contrôlée, randomisée, et non à l’aveugle, chez 347 patients, des patients pédiatriques atteints du diabète de type 1 et dont l’âge est compris entre 6 à 17 ans ont été traités pendant 26 semaines avec un régime basal-bolus. Le detemir et l’insuline humaine NPH ont été administrés une fois ou deux fois par jour (matin et au coucher ou seulement au coucher) ce procès posologique est choisi en fonction de chaque patient. L’insuline aspart était administrée avant chaque repas. Les patients traités par le detemir avaient une diminution de HbA1C similaires à ceux traités par l’insuline humaine NPH (-0.72% contre -0.80%) et la variabilité de la glycémie à jeun était plus faible pour l’insuline detemir contre le NPH (151.92 contre 172.44 et la différence -45 contre -19.98 (en mg/dL) [172].

7.5.3. **Adultes diabétiques type 2**

La variabilité de la réponse de la glycémie a été aussi examinée dans des études multicentriques et multinationales chez des patients atteints du diabète de type 2. Dans des études ouvertes et chez des groupes parallèles ayant inclus 394 patients, pendant 22 semaines de traitement avec le detemir+aspart, ou avec l’insuline humaine NPH+ l’insuline humaine à action rapide avant chaque repas. La valeur de HbA1C était similaire chez les deux groupes (respectivement -0.65, et -0.58%). A la fin de cette étude la moyenne de la glycémie à jeun était également similaire (7.3 mmol/l pour les deux groupes). La variabilité de la glycémie à jeun était significativement plus faible, jour après jour, chez le groupe traité par le detemir que chez le groupe traité par NPH (valeurs d’écart type 1.2 contre 1.5 ; p<0.001) [170].
D’autres études ont été faites chez 505 diabétiques de type 2 pendant 6 mois. Les patients ont été injecté par le detemir ou NPH une ou deux fois par jour plus de l’insuline aspart aux repas. Après le traitement, il a été constaté que chez les patients traités par le detemir ou bien par NPH les résultats mesurés pour la glycémie à jeun et HbA1c étaient moindre que sous insuline NPH, et ce compte tenu de la variation individuelle et du poids du patient (+0.4 contre +1.3 Kg, p=0.017). La GJ et l'hypoglycémie sont semblables [171].

Afin d’améliorer la prise en charge du diabète de type 2 mal équilibré par les antidiabétiques oraux (ADO), l’initiation d’une insulinothérapie en complément au traitement oral est actuellement recommandée. Une étude[173] ouverte randomisée multicentrique de 20 semaines, a comparé trois protocoles d’insulinothérapies sur une population de plus de 500 patients mal contrôlés par ADO (HbA1c moyenne d’environ 9%), n’ayant jamais reçu d’insulinothérapie. Les 3 insulinothérapies évaluées étaient detemir, 1 injection le matin (n=168), detemir 1 injection le soir (n=170) et insuline NPH 1 injection le soir (n=166). Le traitement par ADO était par ailleurs maintenu pour tous les groupes. L’objectif de cette étude était double : i) comparer l’efficacité et la tolérance de detemir et de l’insuline NPH, et ii) entre le temps d’injection du detemir : matin ou soir. Les résultats montrent une réduction équivalente de l'HbA1c par rapport aux valeurs initiales dans les 3 groupes (detemir le matin : -1,58% ; detemir le soir : -1,48% ; insuline NPH : -1,74%) sans différence significative entre les 3 groupes de traitement. Il en est de même pour la glycémie à jeun et le profil glycémique à 9 points d’automesure à la 20ème semaine. En revanche, le risque relatif (RR) d’hypoglycémie majeure est significativement réduit dans le groupe traité par detemir administré le soir versus insuline NPH (RR de 0,47, P=0,019,
soit une réduction du risque de 53%). Pour les hypoglycémies nocturnes, le RR avec detemir administré le soir est de 0,35 (P<0,031) versus insuline NPH et de 0,13 avec detemir administré le matin. En ce qui concerne le poids, il existe une différence statistiquement significative en faveur du detemir injecté le soir (gain moyen de poids de 0,7 kg) par rapport au traitement par insuline NPH (gain de poids de 1,6 kg, P=0,05). En conclusion, cette étude confirme une efficacité comparable, sur le contrôle glycémique, des insulines detemir et NPH. On notera que cette efficacité est équivalente pour le detemir qu’il soit administré le matin ou le soir. Egalement, le detemir apporte un bénéfice significatif en réduisant le risque d’hypoglycémies totales, en particulier nocturnes, et en limitant la prise de poids.

7.6. **POPULATIONS SPECIALES** [158]

Les propriétés pharmacocinétiques de l’insuline detemir ont été étudiées chez des enfants (de 6 à 12 ans) et des adolescents (de 13 à 17 ans), puis comparées à celles d'adultes diabétiques de type 1. Aucune différence cliniquement significative dans les propriétés pharmacocinétiques n'a été mise en évidence aussi bien à l’intérieur de groupes qu’entre les deux sexes..

- **Insuffisance rénale** : des essais cliniques ont montré qu’il y’avait pas de différence dans les paramètres pharmacocinétiques chez des personnes ayant une insuffisance rénale en les comparant avec des volontaires sains. Bien que des rapports dans la littérature de l’insuline humaine ont montré que la clairance est diminuée chez les insuffisants rénaux, aucune différence dans les paramètres n’a été observée chez les personnes ayant une insuffisance rénale. Toutefois, une surveillance attentive et régulière de la glycémie et un ajustement de la dose d'insuline, y compris detemir, sont nécessaires chez ces patients.
- **Insuffisance hépatique** : chez des personnes souffrant d’une insuffisance hépatique sévère et non diabétiques, les aires sous la courbe AUCs sont basses par rapport à celles des volontaires sains. Une surveillance attentive et régulière de la glycémie et un ajustement de la dose d'insuline, de Levemir ® sont nécessaires chez les patients atteints d'insuffisance hépatique.

7.7. INDICATIONS

Le detemir peut être indiqué une fois ou deux fois par jour en injection sous-cutanée pour le traitement des enfants et les adultes atteints de diabète sucré ou pour les patients adultes atteints de diabète de type 2 nécessitant une insuline basale (à action prolongée) pour le contrôle de l'hyperglycémie.

De nombreuses études ont été publiées sur l'intérêt des analogues à action retardée, detemir, dans l'insulinothérapie basale-prandiale à 4 injections par jour. Il est clair qu'il n'améliore pas nécessairement les taux d'HbA1c, mais il le peut parfois. En revanche, il est indubitable qu'il réduit le risque d'hypoglycémies nocturnes et d'hyperglycémies au lever chez les patients qui y sont sujets avec les insulines de types 2 ou 3 [163].

La Figure 36 montre une page d'un carnet de traitement d'un adolescent de 18 ans avec un système basal-prandial en 4 injections : de l'Actrapid® (A) ou de la Novorapid® (N) le matin s'il se lève tôt ou tard ; de l'Actrapid® à midi ; de la Novorapid® au souper, car il ne va pas dormir très tard ; de l'Insulatard® au coucher. On note une hyperglycémie constante au lever à plus de 200 voire 300 mg/dl. Or les glycémies nocturnes, inscrites dans la colonne des observations, sont bonnes. Le patient ne peut donc pas augmenter la dose de l'Insulatard® du coucher pour juguler l'hyperglycémie du lever sans risquer une hypoglycémie pendant la nuit.
La Figure 37 illustre le remplacement de l'Insulatard® par la Levemir® (le nom scientifique est Detemir = D). L'HbA1c vaut 7,7%. Avec la Levemir®, les glycémies du lever baissent du jour au lendemain.

La Figure 38 donne la situation 2 mois plus tard. Les glycémies du lever restent excellentes, la moyenne étant 136 mg/dl. En plus, l'HbA1c est passée de 7,7% à 6,8%. Il est à remarquer que le patient change constamment ses doses d'insuline (ultra) rapide d'après ce qu'il va manger.
Figure 36. Carnet de traitement d’un adolescent au système basal-prandial avec une injection d’Insulatard® au coucher qui provoque de l’hyperglycémie au lever alors que les glycémies nocturnes sont bonnes.
Figure 37. Carnet de traitement d’un adolescent au système basal-prandial avec une injection du Levemir® montrant une réduction de la glycémie au lever

Date	MATINÉE	APRES-MIDI	SOIREE	NUIT	OBSERVATIONS, HYPOGLYCEMIE ET RECHERCHE EVENTUELLE D’ACÉTONE				
	Test matinée	Test midi	Test après-midi	Test souper	Test soirée	Test coucher	Test lever	Dose coucher	Test lever continuer
DI	27/10	A121	A19	N164	A12	263	163	I5	211
LU	28/10	A14	A5	26	A10	54	I2	321	
MA	29/10	A41	A4	99	N12	142	D2	192	
ME	30/10	A53	A6	188	N14	116	D1	111	
JE	1/11	A81	A12	158	N12	272	D17	277	
VE	2/11	A198	A29	161	N13	123	D17	123	
SA	3/11	A114	A10	114	N11	72	17	15	
DI	4/11	A15	A15	67	N11	190	D17	190	
LU	5/11	A85	A7	85	N10	150	D17	150	
MA	6/11	A52	A10	207	N13	148	D17	148	
ME	7/11	A56	A12	221	N16	190	D17	190	
JE	8/11	A75	A12	75	N17	90	D17	90	
VE	9/11	A13	A13	257	N20	187	D17	187	
SA	10/11	A52	A13	184	N15	168	D17	168	

Moyennes (138)
Figure 38. Carnet de traitement d'un adolescent au système basal-prandial avec une injection de Levenir®. Après 2 mois, l'HbA1c baisse de 0.9 % (c) [163]
7.8. POSOLOGIE ET ADMINISTRATION [41, 157, 158, 163]

Le detemir doit être administré par voie sous-cutanée, par injection dans la cuisse, la paroi abdominale ou le haut du bras. Comme pour les insulines humaines, la vitesse et la durée d'absorption du detemir peuvent être supérieures lorsqu’il est administré en sous-cutané dans la paroi abdominale ou la région deltoïde plutôt que dans la cuisse. Les sites d'injection devront être alternés au sein d'une même région.

L’insuline detemir dans le diabète de type 1 (et de type 2) trouve sa place dans le cadre d’un schéma basal-prandial, et dans le diabète de type 2, dans le contexte d’un schéma insulinique bedtime en association aux hypoglycémiants oraux.

L’insuline detemir est disponible en cartouche Penfill ® pour utilisation dans le NovoPen reconnu pour sa facilité d’emploi. Elle est administrée au coucher et associée à une injection d’analogue rapide à chacun des repas. La dose d’insuline basale est habituellement de l’ordre d’au moins 50 % de la dose totale quotidienne d’insuline.

Le passage de l’insuline basale prescrite en une injection/jour à detemir se fait «dose pour dose». Si l’insuline basale est administrée en deux injections (par exemple de l’insuline NPH), elle peut être remplacée par une injection unique de detemir en réduisant d’environ 20% la dose totale d’insuline basale. La posologie de l’insuline detemir devra être régulièrement - et individuellement-titrée en fonction de l’analyse des glycémies à jeun, avec l’objectif d’une valeur inférieure à 120mg/dl. Il est raisonnable de diviser la dose de l’insuline detemir en deux (injection au matin et au soir) si une valeur glycémique correcte avant le
souper n’est pas obtenue malgré l’ajustement de l’insuline (ultra)rapide de midi ou l’ajout éventuel d’un bolus d’analogue rapide au goûter.

Comme pour toutes les insulines, la surveillance de la glycémie doit être étroite pendant la période de transition et dans les premières semaines qui la suivent.

7.9. **SECURITE ET TOLERABILITE**

7.9.1. **Site d'injection et réactions allergiques** [158]

Comme avec toute insulinothérapie, certaines réactions au site d'injection peuvent se manifester entre autres la lipodystrophie, rougeur, douleurs, prurit, urticaire, gonflement et l’inflammation. Le changement du site d’injection peut aider à réduire ou prévenir ces réactions. Ces dernières disparaissent en quelques jours à quelques semaines. Dans de rares occasions, elles peuvent nécessiter l'arrêt du traitement.

Dans certains cas, les réactions allergiques peuvent être liées à des facteurs autres que l'insuline, tels que les irritants dans un agent nettoyant de la peau ou de mauvaises techniques d'injection.

L’allergie systémique est moins fréquente mais potentiellement plus grave. Elle peut provoquer des éruptions cutanées, prurit, qui se manifestent sur tout le corps, de l’essoufflement avec une respiration sifflante, réduction de tension artérielle, des pouls rapides et de la transpiration. Les cas graves de cette allergie généralisée, choc anaphylactiques, peuvent être parfois mortelles.

7.9.2. **Fertilité cancérognicité, mutagénicité** [13,36]

Les études de cancérognicité chez l'animal n'ont pas été réalisées. Les études de genotoxicité de detemir étaient potentiellement négatives in vitro et ce
relativement à la mutation inverse dans les bactéries, les lymphocytes du sang humain, et aux aberrations chromosomiques, ainsi qu’in vivo sur des essais du micronoyau chez la souris.

Le rapport d'affinité pour les récepteurs de l'insuline detemir/récepteur IGF-1 est similaire à celui de l'insuline humaine et le rapport de l’effet métabolique/effet mitogènes est favorable comparativement à l’insuline humaine.

7.9.3. **Grossesse et effet tératogène [158]**

Dans une étude sur le développement embryonnaire et la fécondité, l'insuline detemir a été administré à des rats femelles avant l'accouplement, pendant l'accouplement et durant la grossesse à des doses allant jusqu'à 300nmol/kg/jour (soit 3 fois la dose humaine recommandée, basées sur l’Aire Sous la courbe). Des doses de 150 et de 300 nmol/kg/jour produisent de petites anomalies viscérales. Des doses allant jusqu’à 900 nmol/kg/jour (environ 135 fois la dose humaine recommandée) ont été données à des lapins au cours de l'organogenèse. A cette dose la relation dose-drogue augmente l’incidence de l’apparition des petites anomalies viscérales chez le fœtus ainsi que des petites anomalies bifurquées et qui disparaissent au niveau de la vessie, ont été observées à cette même dose.

Les études embryofœtales et de développement chez le rat et le lapin ont montré des effets semblables en ce qui concerne embryotoxicité et tératogénicité.
147

7.10. EFFETS SUR L’HYPERGLYCEMIE

Chez les diabétiques de type 1 et 2, l’insuline detemir amène un profil glycémique amélioré par rapport à l’insuline NPH. Plusieurs travaux mettent en relief une glycémie à jeun significativement plus basse sous insuline detemir que sous insuline NPH. La variabilité intra-individuelle de la glycémie à jeun est aussi réduite avec l’insuline detemir qu’avec l’insuline NPH, comme l’impliquait d’ailleurs leurs pharmaco-cinétiques. Cliniquement, le detemir offre une meilleure prédicibilité de la glycémie le matin à jeun, comme démontré par plusieurs auteurs dont Hermansen et al. et Russell-Jones et al.. Le bénéfice de detemir en termes de prédicibilité glycémique concerne également les variations de glycémie nycthémérales, comme indiqué par Hermansen et al. qui montrent chez des diabétiques de type 1 sous detemir par rapport à l’insuline NPH, une réduction significative de l’écart type des glycémies moyennes de 3,12 à 2,88 mmol/l (p < 0,001). Une moindre variabilité des glycémies de 24h a aussi été observée sous detemir vs insuline NPH par Russell-Jones. Les taux d’HbA1c sous insulines detemir et NPH sont généralement comparables, en particulier dans le diabète de type 1 [164, 175]. Deux études ont cependant démontré une amélioration statistiquement significative de l’HbA1c sous insuline detemir : celle de Home et al. en associant les insulines detemir et aspart vs NPH et aspart (-0,18 %), et celle d’Hermansen et al. qui ont constaté, dans le cadre d’un schéma basal-prandial associant l’insuline detemir et l’insuline asparte vs l’insuline NPH et l’insuline humaine soluble, une réduction de l’HbA1c de 8,11 à 7,88 % (p < 0,01) [166,174].
7.11. EFFETS SUR L’HYPOGLYCEMIE

7.11.1. Hypoglycémie

C’est en terme d’hypoglycémie que le detemir est avantageux par rapport aux insulines traditionnelles. Dans le diabète de type 1, l’étude de Vague et al. est la première qui met en évidence une diminution significative de 22 % des hypoglycémies sous insuline detemir par rapport à l’insuline NPH. Le travail de Kølendorf et al. [176] confirme cette diminution du risque et identifie en plus une réduction des hypoglycémies nocturnes de 50 %. Ceci est corroboré par plusieurs autres études et particulièrement par celle de Robertson et al.[177] chez une cohorte d’enfants et d’adolescents présentant un diabète de type 1.

En fait, cette réduction des hypoglycémies nocturnes a été observée dans la majorité des études cliniques de phase III comparant l’insuline detemir et l’insuline NPH. Heller et al. ont rapporté une parfaite corrélation entre la fréquence des hypoglycémies et la variabilité intra-individuelle de la glycémie à jeun. Dans le diabète de type 2, on observe également une tendance (moins marquée) à la réduction des hypoglycémies y compris nocturnes. L’étude de Hermansen et al.[165] montre cependant une réduction significative de 47 % du nombre total d’hypoglycémies et de 55 % des hypoglycémies nocturnes sous detemir contre insuline NPH, à contrôle glycémique identique. Une observation assez comparable avait été rapportée pour l’insuline glargine vs l’insuline NPH par Riddle et al.[178], à nouveau pour une même qualité de contrôle glycémique. Dans l’étude de Pieber et al.[179], les auteurs montrent que le nombre total d’hypoglycémies est comparable mais que la fréquence des hypoglycémies sévères et nocturnes est réduite respectivement de 72 et 32 % sous detemir pour un même contrôle glycémique que sous glargine.
7.11.2. Effets sur l’hypoglycémie nocturne

Le profil de la glycémie nocturne a été examiné en enregistrant les valeurs de la glycémie entre 23h00 et 7h00 à la fin d'une épreuve mentionnée ci-dessus. Les auteurs ont comparé le detemir avec l'insuline de NPH, injectée avant petit déjeuner et au coucher, chez des patients atteints du diabète type 1. Pendant les 8 heures les profils de glycémie étaient sensiblement différents entre les deux groupes de traitement (p=0.05), et un profil plat et plus stable a été observé avec le detemir (Figure 39). L'effet du detemir peut durer plus longtemps que celui de l'insuline NPH et il était encore évident à 07h00. Quant aux concentrations de la glycémie chez les patients traités par le detemir, elles étaient significativement inférieures (7.6 vs. 9.5 mmol/l, \(P < 0.05 \)). En outre, le risque d'épisodes hypoglycémiques nocturnes était réduit de 34% chez le groupe de detemir [164].

Russell-Russell-Jones et al. [169] ont examiné des profils de la glycémie pendant 24-h obtenus à partir du suivi continu de la glycémie surveillant, après 5 mois de traitement avec le detemir (n=99) ou l'insuline NPH (n=39) injectés au coucher. Les formes globales du profil moyen de glucose étaient différentes, et ont montré un pic en avant aux niveaux moyens de glucose avec l'insuline de NPH de 22h00 jusqu’à 2h00. En outre, l'action du detemir a semblé persistier plus longtemps que celle de l'insuline de NPH.
7.11.3. **Le contrôle de la glycémie et la dose d'insuline**

La moyenne d’HbA1c était nettement plus faible chez les diabétiques type 1 et type 2 en comparaison avec les valeurs de base (les réductions de 0,5% et 0,9% respectivement, p <0,0001 pour les deux). Les réductions observées après autosurveillance du glucose à jeun se sont estimées à 1,7 et 2,6 mol/l (p <0,0001 pour les deux groupes), la variabilité intra-individuelle de la glycémie à jeun (0,7 et 0,5 mmol/l, p <0,0001 pour les deux) ont également été observés chez les patients de type 1 et de type 2 après la thérapie par l’insuline detemir. La dose journalière moyenne totale de l'insuline était de 0,70 UI/kg à la base contre 0,72 UI/kg pour les traités de type 1 et 0,70 UI/kg contre 0,79 UI/kg chez diabétiques de type 2. La dose de base est passée de 0,33 à 0,35 UI/kg pour les patients de type 1 et de 0,33 UI/kg au départ à 0,38 UI/kg pour les patientes de type 2 [179].

Dans toutes les études, tant dans le diabète de type 1 que de type 2, la prise pondérale sous detemir est significativement moindre qu'avec l’insuline NPH. Dans 10 études multicentriques, randomisées, en groupe parallèle, dans ces essais contrôlés, l’insuline detemir a été comparée à l’insuline humaine NPH (Tableau 18). Dans sept essais impliquant des patients diabétiques type 1 (16-52
semaines), il y a eu soit une faible perte de poids [164,165] ou un gain pondéral moyen <0,25 kg [181,166]. Dans trois autres essais impliquant des patients atteints de diabète type 2 (22-26 semaines), la prise de poids moyenne était 1,2 kg. Ces résultats ont été élargis dans deux études impliquant des patients atteints de diabète de type 2, elles ont indiqué que la perte du poids avec l'insuline detemir est non seulement maintenue, mais a aussi été plus marquée chez des patients obèses. Dans une étude [184] randomisée chez deux groupes parallèles dans deux essais de 22 et 24 semaines, portant sur 900 patients précédemment traités par l'insuline et ayant fait objet d’une intensification de leur traitement par la thérapie basal-bolus, les sujets ont reçu une fois ou deux fois par jour l'insuline detemir ou NPH, soit en association avec l'insuline Aspart ou à l'insuline humaine avant chaque repas. Les résultats ont indiqué que les patients traités par l'insuline detemir avaient un moindre de gain de poids (<1 kg), indépendamment de l'IMC, alors que pour les patients traités par NPH, ceux dont l’IMC est plus important (> 35 kg/m2) ont le plus grand gain pondéral (environ 2,4 kg). En revanche, les patients ayant un IMC> 35 kg/m2 et utilisant l'insuline detemir ont perdu du poids (en moyenne d'environ 0,5 kg).

Des résultats similaires ont été observés dans une étude comparant le detemir à l'insuline NPH [183]. Comme le montre la Figure 40, l’avantage du detemir en termes du gain du poids apparaît dès le début de l’essai. En outre, cet avantage de poids était relativement plus accentué chez les patients avec IMC plus élevé, avec une nette tendance au plus grand IMC et associée à une réduction du gain pondéral avec l'insuline detemir (gain de poids = 5,366- 0,146 IMC, p=0.01). Cette relation n'a pas été trouvée pour l'insuline NPH (Différence de traitement 1,58 kg, p <0,001). Il semble également que l'insuline detemir
réduit le gain de poids chez les personnes âgées, les adultes et les jeunes patients.

Dans une analyse de la phase III, la comparaison du detemir avec NPH, a montré que le poids corporel a augmenté moins avec l'insuline detemir pour les personnes âgées (n = 239, ≥ 65 ans) que pour les jeunes adultes (n = 480, < 65 ans). La différence, étant fonction de leur poids, -1,0 kg [95% IC : -1,63, -0,44] pour les patients âgés et de 1,2 kg (95% IC : -1,64, -0,75) pour les jeunes adultes [182].

![Graphique](image)

Figure 40. Dans un régal par rapport à l'objectif de 475 patients atteints de diabète de type 2, Une différence dans le changement de poids entre l'insuline detemir et NPH ont apparu au début (a) et par 24 semaines, Était le plus bas pour les patients atteints dont l’IMC était plus élevé. [173]
Tableau 18. Études publiées (multinationales randomisées et ouvertes indiquant le changement de poids corporel avec l’insuline detemir et de l’insuline NPH. [172]

Étude	patients	Durée d’étude (semaine)	Detemir (Kg)	NPH (Kg)	Différence du poids (Kg)	p
Vague et al. [164]	448 type1	24	-0.2	-0.7	-0.9	<0.001
De Leeuw, et al [167]	316 type1	52	-0.1	+1.2	-1.3	<0.001
Standl et al. [168]	288 type1	24	-0.3	+1.4	-1.7	0.002
Russell-Jones et al. [161]	747 type1	24	-0.23	+0.31	-0.5	0.024
Home et al. [166]	408 type1	16	+0.02(matin et au diner) +0.24(matin et au coucher)	+0.86	-0.80	0.006
Pieber et al. [185]	400 type1	16	-0.6(matin et au diner) +0.1(matin et au coucher)	+0.7	-1.3	<0.001
Hermansen et al. [165]	595 type1	18	-0.95	+0.7	-1.02	<0.001
Haak et al. [176]	505 type2	26	+1.0	+1.8	-0.8	0.017
Raslova et al. [177]	395 type2	22	+0.5	+1.3	-0.63	<0.038
Hermansen et al. [183]	475 type2	24	+1.2	+2.8	-1.6	<0.001

¶ ces études ont inclus deux groupes traités par le detemir.

dans ces études aspart était utilisée avec le detemir et insuline régulière avec NPH.
CONCLUSION
Durant les 80 dernières années, la structure et la formulation de l’insuline comme son mode d’administration ont considérablement été améliorés, permettant d’obtenir un meilleur contrôle de la glycémie chez les patients diabétiques. Le développement d’analogues rapides de l’insuline, mais aussi d’analogues de l’insuline basale, a notamment permis de diversifier l’arsenal thérapeutique disponible pour les diabétologues.

L’utilisation des analogues rapides permet un meilleur contrôle glycémique, une réduction de l’hypoglycémie postprandiale et une diminution de la fréquence des hypoglycémies. Quant aux horaires de traitement, ils offrent une plus grande flexibilité et surtout chez les enfants et les adolescents et permettent d’avoir des profils insulinémiques proches de ceux physiologique. Toutefois, on leur reproche des risques d’hyperglycémie tardive en cas de couverture insuffisante en insuline lent, de cétoacidose plus rapide en cas de panne de pompe, d’une méconnaissance des risques de teratogénicite et d’innocuité à long terme, ainsi qu’un coût très élevé. Comme pour les autres insulines des cas d’allergie ou lipodystrophie peuvent être associés à leur utilisation.

Les analogues lents ne nécessitent pas d’agitation pour la remise en suspension limitant ainsi le temps éducatif et le risque d’erreur. Ils présentent une pharmacologie proche de l’action physiologique de l’insuline endogène. Ils permettent une amélioration discrète du contrôle glycémique avec surtout une diminution des hypoglycémies nocturnes et d’hyperglycémie au lever. Ils réduisent les prises de poids et présentent une moindre variabilité intra individuelle et une absence de pouvoir mitogène. Toutefois, on leur reproche une maniabilité limitée en cas d’efforts physiques, une faible aptitude au
mélange avec d’autres insulines, ainsi que des résultats contradictoires quant au pouvoir mitogène de la glargine.

Les analogues de l’insuline sont actuellement utilisés dans des schémas thérapeutiques qui reproduisent de façon plus fidèle et proche la physiologie et les profils dynamiques de l’insuline endogène et offrent une bonne qualité de vie. Des recherches complémentaires sur ces analogues, ainsi que sur leur utilisation, devraient aboutir à affiner encore ces profils et continuer d’améliorer l’insulinothérapie, avec pour résultat final une diminution des risques liés au diabète et une augmentation du nombre de patients qui maintiennent une HbA1c à 6,5-7%.

Ces avancées sur les analogues de l’insuline ont été complétées par le développement de nouveaux dispositifs d’administration sous-cutanée tels que les stylos à insuline et pompe portable CSII (continuous subcutaneous insulin infusion), bien qu’il y a d’autres voie alternatives en particulier la voie par inhalation, déjà commercialisée aux États-Unis. Même si ces dispositifs nécessitent encore d’être perfectionnés, ils devraient offrir aux patients une alternative à l’administration par voie sous-cutanée dans les prochaines années.
RESUME
RESUME

Durant ces quatre-vingt dernières années, la formulation de l’insuline comme son mode d’administration ont considérablement été améliorés, permettant d’obtenir un meilleur contrôle de la glycémie chez les patients diabétiques. Cette dernière décennie notamment, l’arsenal thérapeutique disponible pour les diabétologues s’est enrichi d’analogues de l’insuline humaine, molécules proche de l’insuline humaine mais dont la séquence a été modifiée au niveau de quelques acides aminés. Ceci leur confère certaines propriétés pharmacocinétiques intéressantes : soit une action plus rapide (analogues rapides) soit une action prolongée (analogues lents), avec moindre risques d’hypoglycémie et de prise de poids.

Le but du traitement insulinique chez le patient diabétique est d’obtenir la normalisation du profil glycémique tout au long de la journée. Grâce à ces nouvelles insulines, les objectifs métaboliques du traitement du diabète deviennent de plus en plus exigeants, notamment en ce qui concerne le taux d’hémoglobine glyquée (HbA1c) et les glycémies à jeun et post-prandiales, afin de prévenir les complications chroniques liées au diabète.

Les analogues sont actuellement utilisés dans des schémas thérapeutiques reproduisant de façon de plus en plus fidèle le profil cinétique de l’insulinosécrétion physiologique.

Des recherches complémentaires sur ces analogues, ainsi que sur leur utilisation, devraient aboutir à affiner encore ces profils et à continuer d’améliorer l’insulinothérapie.
ملخص

خلال الثمانين سنة الأخيرة، عرفت تركيبة الأنسولين كما هو الشأن بالنسبة لكيفية استعماله تحسنا ملحوظا مما يمنح مراقبة جيدة لنسبة السكر في الدم (تحليل الدم) عند مرضى السكري.

في هذا العقد الأخير أصبح الحقل العلاجي غنيا بواسطة مماثلات الأنسولين من أصل إنساني، وهي عبارة عن جزيئات شبيهة بالأنسولين ذات الأصل الإنساني مع إختلاف في تسلسل الأحماض الأمينية مما يمنحها بعض الخصائص الهامة في منحنى حركيتها؛ فتكون إما سريعة المفعول (مماثلات سريعة المفعول) أو مماثلات ذات مفعول طويل الأمد (مماثلات بطيئة المفعول)؛ و دون التعرض لانخفاض نسبة السكر في الدم أو الزيادة في الوزن.

الهدف من العلاج بالأنسولين هو تعديل منحنى نسبة السكر في الدم خلال اليوم، ففضل هذه الأنسولينات الجديدة أصبحت الأهداف الأخرى للأدوية أكثر تطبيقا خاصة فيما يخص معدل خصابة الدم الغликائي (HbA1c) و معدل السكر في الدم عند عدم الأكل أو بعد الوجبات مما يدخل من المضاعفات المزمنة المتعلقة بداء السكري.

أصبحت هذه المماثلات الآن تستعمل في طرق علاجية تسمح بتقليد أكثر إخلاصا لحركة الأنسولين المفرز فيزيولوجيا. أبحاث تكميلية لهذه المماثلات و استعمالها يجب أن تؤدي إلى تحسين حركيتها بهدف الحصول على علاج أفضل بالأنسولين.
BIBLIOGRAPHIE
[1] Brange J, Ribel U, Hansen JF, et al. Monomeric insulins obtained by protein engineering and their medical implications. *Nature* 1988; 333: 679-82

[2] Lauritzen T, Faber OK, Binder L. Variation in insulin absorption and blood glucose concentrations. *Diabetologia* 1979; 17: 291-5.

[3] Heinemann L. Variability of insulin absorption and insulin action. *Diab Technol Ther* 2002; pp.: 673-82

[4] Overmann H, Heinemann L. Injection-meal interval: recommendations of diabetologists and how patients handle it. *Diab Res Clin Pract* 1999; 43: 137-42.

[5] Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. *N Engl J Med* 1993; 329: 977-86

[6] UK Prospective Diabetes Study (UKPDS) Group: Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type II diabetes (UKPDS 33). Lancet 1998; 352: 837-53

[7] Sir George Alberti. Les leçons de l'histoire de l'insuline. *Diabetes Voice* : volume 46, décembre numéro 4/2001

[8] Assal J-P.H, Régulation de la glycémie : insuline ,pharmacologie des concepts fondamentaux aux applications thérapeutiques,2ème édition , chap33.p :485-492

[9] SAPIN R, BUCKLE JE, GASSER F. Insuline et médicament hypoglycémiants .pharmacologie clinique : Bases de la thérapeutique 2ème édition 1988,pages 2288-2291

[10] Belkadir J. Dépistage et classification du diabète Bulletin de la société marocaine de sciences médicaments (SMSM) ,n° 4,1991,p :1-5

[11] Scheen A.J.,LeFebvre P.J Insulin man Diabete and metabolism ,1996 ,p :105-110

[12] Buysschaert M. le diabete insulin-dependant.le diabete sucré : de l’approche Clinique à la thérapie ,p:17-22.

[13] Danilo Verge. Insulinothérapie Nouvelles molécules et voies d’administration M/S n° 11, vol. 20, novembre 2004

[14] J.L. Ader ,F.Carré ,A.T.Dinh-Xuan, M.Duclos ,N.Kubis ,J.Mercier ,F.Mion, C.Préfaut,S.Roman Abregés de physiologie 2ème édition chap :physiologie endocrinienne. (Pancréas endocrine).
[15] Menard D, Corriveau L, Beaulieu JF. Insulin modulates cellular proliferation in developing human jejunum and colon. Biol Neonate. 1999 Mar; 75 (3): 143-51.

[16] Aro A., Pelkinen. Glucose and insulin responses to meals containing milk, lactose, glucose or fructose. Diabetes end metabolism, 1987, n°13, p:603-606

[17] P.Y. BENHAMOU. L’insulinothérapie (233e) Novembre 2002 (Mise à jour Février 2005)

[18] Pascal Ferré action et secretion de l’insuline M/S n° 8-9, vol. 21, août-septembre 2005

[19] P. Allain. Insuline sur pharmacorama .com Extrait de "Les médicaments" 3ème édition - P. Allain avec mise à jour Avril 2005

[20] Shafrir E, Ziv E : Cellular mechanism of nutritionally induced insulin resistance: the desert rodent Psammomys obesus and other animals in which insulin resistance leads to detrimental outcome. J Basic Clin Physiol Pharmacol. 1998; 9 (2-4): 347-85

[21] P. D E MEYTS. LE RÉCEPTEUR Á L’INSULINE : Structure et fonction Rev Med Liege 2005; 60 : 5-6 : 286-290

[22] J. P. Bastard, B. Hainque. Mécanismes d’action cellulaire de l’insuline et insulinorésistance périphérique ; Sang Thrombose Vaisseaux STV Volume 7, Numéro 6, Juin - Juillet 1995.

[23] A.O Kuhlic. Insulin receptor binding to monocytes anderythrocytes in gestational diabetes. diabetes and metabolism ;1987 ;n°13 ;p :607-612

[24] AL S. Omara. Usual local cutaneous to insulin: a case report. Saudi Med J, 1998;p:199-201

[25] Heinemann L, Pfützner A, Heise T. Alternative routes of administration as an approach to improve insulin therapy: update on dermal, oral, nasal and pulmonary insulin delivery. Curr Pharm Design 2001; 7: 1327-51.

[26] Xu HB, Huang KX, Zhu YS, et al. Hypoglycaemic effect of a novel insulin buccal formulation on rabbits. Pharmacol Res 2002; 46: 459-67.

[27] A. Sola, E. Larger, J. M’Bemba, F. Elgrably, G. Slama. Les nouvelles insulines : intérêts et inconvénients Réanimation 15 (2006) 454–460

[28] J.C. PHILIPS, R.P. RADERMECKER. L’insulinothérapie dans le diabète de type 1 Rev Med Liege 2005; 60 : 5-6 : 322-328
[29] Boileau P et al. Traitement du diabète de l’enfant et de l’adolescent EMC-pédiatrie 2 (2005) p :163-178

[30] Berger W, Grimm JJ. Insulinothérapie. Comment gérer au quotidien les variations physiologiques des besoins en insuline. Paris : Masson, 1999.

[31] H Hanaire-Broutin. Insulinothérapie et autosurveillance glycémique : schéma thérapeutique et recommandations Diabetes & Metabolism Vol 29 - N° 2-C2 - Avril 2003 p. 21 – 25

[32] E MEA. Rapport européen public d’évaluation (EPAR) : EXubera. European Medicine Agency. 2006.

[33] G Slama, S Picard. Syndrome d'insulinorésistance : observer ou agir? Diabetes & Metabolism Vol 29 - N° 2-C3 - Avril 2003 p. 5 – 10

[34] A. Hartemann-Heurtier, A. Grimaldi. Devant une hypoglycémie chez l’adulte non diabétique Medicine Thérapeutiques /Endocrinologie et reproduction vol.1, n°2, p:158-64 octo.1999

[35] Najib Kettani. Chapitre Métabolisme et diabète (Insulinothérapie) MEDIKA 3ème édition p :1294-1301

[36] F. Moreau, A.Agin, N. Jeandidier. Les analogues de l’insuline : mise au point Sang Thrombose Vaisseaux 2007 ;19, n° 5 : 240-7 Mini-revue

[37] G. Krzentowski. Les nouvelles insulines Rev Med Brux – 2005 S241-245

[38] S. RISTIC. Actualités de l’humalog et des humalog mixdans le traitement du diabète de type 2. Diabetes & Metabolism (Paris) 2000, 26, 52-56

[39] Anuradha L. Puttagunta, MB, BS; Ellen L. Toth, MD Insulin lispro (Humalog), the first marketed insulin analogue: indications, contraindications and need for further study 1998 Canadian Medical Association JAMC • 24 FÉVR. 1998; 158 (4)

[40] J.L. SELAM, G. SLAMA. L’insuline lispro (humalog) en pratique. Diabetes & Metabolism (Paris) Vol. 24, n° 3, 1998, 272-275

[41] B Guerci, JP Sauvanet. Subcutaneous insulin: pharmacokinetic variability and glycemic variability Diabetes Metab 2005, 31, 4S7-4S24
[42] Holleman F, Schmitt H, Rottiers R, et al. Reduced frequency of severe hypoglycaemia and coma in well-controlled IDDM patients treated with insulin lispro. The Benelux-UK Insulin Lispro study group. *Diabetes Care* 1997; 20: 1827-32.

[43] Heller SR, Amiel SA, Mansell P. Effect of fast-acting insulin analog lispro on the risk of nocturnal hypoglycaemia during intensified insulin therapy. *Diabetes Care* 1999; 22: 1607-11.

[44] Heinemann L, Heise T, Wahl LC, et al. Prandial glycaemia after a carbohydrate-rich meal in type 1 diabetic patients using the rapid acting insulin analogue [Lys(B28), Pro(B29)]-human insulin. *Diabet Med*, 1996, 13, 625-629.

[45] A. KADIRI, A. AL-NAKH, S. EL-GHAZALI, A. JABBAR, M. AL AROUJ, J. AKRAM, J. WYATT, A. ASSEM, S. RISTIC. TREATMENT OF TYPE 1 DIABETES WITH INSULIN LISPRO DURING RAMADAN *Diabetes Metab (Paris)* 2001, 27, 482-486

[46] Stephen C.L. Gough A review of human and analogue insulin trials S.C.L. Gough / Diabetes Research and Clinical Practice 77 (2007) 1–15

[47] A. Pfutzner, E. Kustner, T. Forst, Intensive insulin therapy with insulin lispro in patients with type 1 diabetes reduces the frequency of hypoglycemic episodes, Exp. Clin. Endocrinol. Diabetes 104 (1996) 25–30.

[48] J.H. Anderson, R.L. Brunelle, V.A. Koivisto, A. Pfutzner, M.E. Trautmann, L. Vignati, et al., Reduction of postprandial hyperglycaemia and frequency of hypoglycaemia in IDDM patients on insulin-analog treatment, Diabetes 46 (1997) 265–270.

[49] J.H. Anderson, R.L. Brunelle, V.A. Koivisto, M.E. Trautmann, L. Vignati, R. DiMarchi, Improved mealtime treatment of diabetes mellitus using an insulin analogue, Clin. Ther. 19 (1997) 62–72.

[50] F. Holleman, H. Schmitt, R. Rottiers, A. Rees, S. Symanowski, J.H. Anderson, Reduced frequency of severe hypoglycemia and coma in well-controlled IDDM patients treated with insulin lispro. The Benelux-UK Insulin Lispro Study Group, *Diabetes Care* 20 (1997) 1827–1832.
[51] S.R. Heller, S.A. Amiel, P. Mansell, Effect of the fast-acting insulin analog lispro on the risk of nocturnal hypoglycemia during intensified insulin therapy. U.K. Lispro Study Group, Diabetes Care 22 (1999) 1607–1611.

[52] J.H. Holcombe, S. Zalani, V.K. Arora, C.J. Mast, Lispro in Adolescents Study Group, Comparison of insulin lispro with regular human insulin for the treatment of type 1 diabetes in adolescents, Clin. Ther. 24 (2002) 629–638.

[53] D. Valle, D. Santoro, P. Bates, L. Scarpa, Italian Multicentre Lispro Study Group, Italian multicentre study of intensive therapy with insulin lispro in 1184 patients with Type 1 diabetes, Diabetes Nutr. Metab. 14 (2001) 126–132.

[54] Larry C. Deeb, MD; John H. Holcombe, MD; Rocco Brunelle, MS; Sunita Zalani, PhD; Stuart Brink, MD; Morris Jenner, MD; Hilary Kitson, MD; Kusiel Perlman, MD; and Martha Spencer, MD Insulin Lispro Lowers Postprandial Glucose in Prepubertal Children With Diabetes PEDIATRICS Vol. 108 No. 5 November 2001

[55] Paquot N, Roulin D et al. Effects of regular insulin or insulin LISPRO on glucose metabolism after an oral glucose load in patients with type 2 diabetes mellitus. Diabetes & Metabolism 1998, 24, 523-528.)

[56] Pampanelli S, Tortone E, Ialli C, et al. Improved postprandial metabolic control after subcutaneous injection of a short-acting insulin analog in IDDM of short duration with residual pancreatic beta-cell function. Diabetes Care 1995;18: 1452-9.

[57] Davey P, Grainger D, McMillan J, Rajan N, Aristides M, Gliksman M. Clinical outcomes with insulin Lispro compared with human regular insulin : A meta-analysis. Clin Therap. 1997, 19, 656-674.

[58] Feinglos MN, Thacker CH, English J, Bethel MA, Lane JD. Modification of postprandial hyperglycemia with insulin lispro improves glucose control in patients with type 2 diabetes. Diabetes Care, 1997, 20, 1539-1542

[59] Koivisto VA, Tuominen JA, Ebeling P. Lispro Mix25 insulin as premeal therapy in type 2 diabetic patients. Diabetes Care, 1999, 22, 459-462.

[60] Roach P, Yue L, Arora V. Improved postprandial glycemic control during treatment with Humalog Mix25, a novel protamine-based insulin lispro formulation. Humalog Mix25 Study Group. Diabetes Care, 1999, 22, 1258-1261.
[61] Vignati L, Anderson JH, Iversen PW. Efficacy of insulin Lispro in combination with NPH human regular twice per day in patients with insulin dependent or non-insulin dependent diabetes mellitus. Clin Therap, 1997, 6, 1408-1421.

[62] SCHWARTZ Sherwyn; ZAGAR Anthony J.; ALTHOUSE Sandra K.; PINAIRE Jane A.; HOLCOMBE John H A single-center, randomized, double-blind, three-way crossover study examining postchallenge glucose responses to human insulin 70/30 and insulin lispro fixed mixtures 75/25 and 50/50 in patients with type 2 diabetes mellitus Clinical therapeutics 2006, vol. 28, n°10, pp. 1649-1657

[63] Kurtzhals P, Schaffer L, Sorensen A, et al. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 2000; 49: 999-1005.

[64] Finebery NS, Finebery E, Anderson JH et al. Immunologic effects of insulin Lispro in IDDM and NIDDM patients previously treated with insulin. Diabetes 1996; 45 : 1750-54.

[65] Sirpa Loukovaara, Ilkka Immonen, Kari Atle Teramo, and Risto Kaaja. Progression of Retinopathy During Pregnancy in Type 1 Diabetic Women Treated With Insulin Lispro Diabetes Care 26:1193-1198, 2003

[66] Swahn ML, Hjerberg R, Hanson U, Nord E, Nordlander E, Hansson LO Insulin lispro therapy in pregnancies complicated by type 1 diabetes mellitus. Persson B . Diabetes Res Clin Pract. 2002 Nov;58(2):115-21

[67] EMA. Résumé des caractéristiques du produit humalog insulin lispro injection, usp (rdna origin) 100 units/ml (u-100). September 6, 2007 Eli Lilly and Company.

[68] HARTEMANN-HEURTIER A., SACHON C:, MASSEBOEUF N., CORSET E., GRIMALDI A. Functional intensified insulin therapy with short-acting insulin analog: effects on HbA[1c] and frequency of severe hypoglycemia an observational cohort study. Diabetes & metabolism 2003, vol. 29, n°1, pp. 53-57

[69] Nature Reviews Drug Discovery 1; 529-540 (2002); doi:10.1038/nrd836 NEW HORIZONS — ALTERNATIVE ROUTES FOR INSULIN THERAPY
[70] Home PD, Barriocanal L, Lindholm A. Comparative pharmacokinetics and pharmacodynamics of the novel rapid-acting insulin analog, insulin aspart, in healthy volunteers. *Eur J Clin Pharmacol* 1999; 55: 199-203.

[71] Plank J, Witter A, Brunner G, et al. A direct comparison of insulin aspart and insulin lispro in patients with type 1 diabetes. *Diabetes Care* 2002; 25: 2053-7.

[72] Raskin P, Guthrie RA, Leiter L, et al. Use of insulin aspart, a fast-acting analog, as the mealtime insulin in the management of patients with type 1 diabetes. *Diabetes Care* 2000; 23: 583-8.

[73] Home PD, Lindholm A, Riis A, et al. Insulin aspart *versus* human insulin in the management of long-term blood glucose control in type 1 diabetes mellitus: a randomised controlled trial. *Diab Med* 2000; 17: 762-70.

[74] Home PD, Lindholm A, Hylleberg B, Round P. Improved glycaemic control with insulin aspart: a multicenter randomised double-blind crossover trial in type 1 diabetic patients. *Diabetes Care* 1998; 21: 1904-9.

[75] Colagiuri S, Heller S, Vaaler S, et al. Insulin aspart reduces the frequency of nocturnal hypoglycaemia in patients with type 1 diabetes. *Diabetologia* 2001; 44 (suppl 1): A210.

[76] P.D. Home, P. Hallgren, K.H. Usadel, T. Sane, J. Faber, V. Grill, et al., Pre-meal insulin aspart compared with pre-meal soluble human insulin in type 1 diabetes, Diabetes Res. Clin. Pract. 71 (2006) 131–139.

[77] S.R. Heller, S. Colagiuri, S. Vaaler, B.H. Wolffentbuttel, K. Koelendorf, H.H. Friberg, et al., Hypoglycaemia with insulin aspart: a double-blind, randomized, crossover trial in subjects with type 1 diabetes, Diabet. Med. 21 (2004) 769–775.

[78] BRUCE BODE et al. Comparison of Insulin Aspart With Buffered Regular Insulin and Insulin Lispro in Continuous Subcutaneous Insulin Infusion A randomized study in type 1 diabetes; *DIABETES CARE, VOLUME 25, NUMBER 3, MARCH 2002*

[79] R. G. BRETZEL, S. ARNOLDS, J. MEDDING, T. LINN, A Direct Efficacy and Safety Comparison of Insulin Aspart, Human Soluble Insulin, and Human Premix Insulin (70/30) in Patients With Type 2 Diabetes *Diabetes Care* 27:1023–1027, 2004
[80] P. Raskin, G. Matfin, S. L. Schwartz, L. Chaykin, P.-L. Chu, R. Braceras, A. Wynne. Addition of biphasic insulin aspart 30 to optimized metformin and pioglitazone treatment of type 2 diabetes mellitus: The ACTION Study (Achieving Control Through Insulin plus Oral age Nts) Diabetes, Obesity and Metabolism, 2007, pp1463-1326

[81] B.O. Boehm, P.D. Home, C. Behrend, N.M. Kamp, A. Lindholm. Premixed insulin aspart 30 vs. premixed human insulin 30/70 twice daily: a randomized trial in Type 1 and Type 2 diabetic patients, Diabet. Med. 19 (2002) 393–399.

[82] B.O. Boehm, J.A. Vaz, L. Brønstedt, P.D. Home. Long-term efficacy and safety of biphasic insulin aspart in patients with type 2 diabetes, Eur. J. Intern. Med. 15 (2004) 496–502.

[83] P. McNally, M. Fitch, G. Nelson. Patients with type 2 diabetes mellitus have lower rates of nocturnal hypoglycaemia on biphasic insulin aspart (BIAsp 30) than on biphasic human insulin-30 (BHI30): data from the REACH study, Diabetologia 47 (Suppl.1) (2004)

[84] Y. Iwamoto. A randomised, multicentre trial of biphasic insulin aspart versus biphasic human insulin in type 2 diabetes, Diabetologia 46 (Suppl. 2)

[85] Halimi et al. Efficacy of biphasic insulin aspart in patients with type 2 diabetes. Clin Ther. 2005;27 Suppl 2:S57-74

[86] Raskin P, Allen E, Hollander P, Lewin A, Gabby RA, Hu P, Bode B, Garber A, the INITIATE Study Group: Initiating insulin therapy in type 2 diabetes: a comparison of biphasic and basal insulin analogs. Diabetes Care 28:260–265, 2005

[87] Garber AJ et al. Attainment of glycaemic goals in type 2 diabetes with once-, twice-, or thrice-daily dosing with biphasic insulin aspart 70/30 (The 1-2-3 study). Diabetes, Obesity and Metabolism 2006;8(1):58-66) abstract .

[88] Dr J.-P. Sauvanet (Paris) D’après les présentations des Professeurs André Grimaldi et Serge Halimi 7-11 mars 2006, Paris, France organisé par le laboratoire Novo-Nordisk dans le cadre du congrès annuel de l’ALFEDIAM « Diabète 2006 ». Diabetes Metab 2006; vol.32 p:197-200

[89] THOMAS DANNE, et al. A Comparison of Postprandial and Preprandial Administration of Insulin Aspart in Children and Adolescents WithType 1 Diabetes Diabetes Care 26:2359–2364, 2003
[90] L. JOVANOVIC, D. J. PETTITT, Treatment With Insulin and Its Analogs in Pregnancies Complicated by Diabetes. DIABETES CARE, VOLUME 30, SUPPLEMENT 2, p:S220-S224, JULY 2007.

[91] Hod M, Damm P, Kaaja R, et al. Fetal and perinatal outcomes in type 1 diabetes pregnancy: a randomized study comparing insulin aspart with human insulin in 322 subjects. Am J Obstet Gynecol 2007 p: 1.e1-1.e7

[92] Jovanovic L, Howard C, Pettitt D, Zisser H, Ospina P: Insulin aspart vs. regular human insulin in basal/bolus therapy for patients with gestational diabetes mellitus: safety and efficacy. Diabetologia 48 (Suppl. 1):A317–A318, 20

[93] Hod M. for the Novorapid Insulin Trial of the Safety and Efficacy of Insulin Aspart for the Treatment of Type 1 Diabetic Women during Pregnancy: Study design. Presented at the European Association for the Study of Diabetes, 2005

[94] A. LINDHOLM, L. JENSEN, P. D. HOME, P. RASKIN, B. O. BOEHM, J. RÅSTAM, Immune Responses to Insulin Aspart and Biphasic Insulin Aspart in People With Type 1 and Type 2 Diabetes Diabetes Care 25:876–882, 2002

[95] J-W Chen, J Frystyk, T Lauritzen and J S Christiansen Impact of insulin antibodies on insulin aspart pharmacokinetics and pharmacodynamics after 12-week treatment with multiple daily injections of biphasic insulin aspart 30 in patients with type 1 diabetes European Journal of Endocrinology 153 907–913

[96] Gerich JE. Clinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch Int Med 2003;163:1306-1316.

[97] DeWitt DE, Hirsch IB. Outpatient insulin therapy in type 1 and type 2 diabetes mellitus: scientific review. JAMA 2003; 289:2254-2264

[98] Becker RH ET Frick AD, Clinical pharmacokinetics and pharmacodynamics of insulin glulisine CLIN Pharmacucikinet 2008; 47(1):7-20.

[99] R. H. A. Becker, A. D. Frick, F. Burger, J. H. Potgieter, H. Scholtz. Insulin glulisine, a new rapid-acting insulin analogue, displays a rapid time-action profile in obese non-diabetic subjects. Exp Clin Endocrinol Diabetes 2005 Sep;113(8):435-43

[100] Aventis Pharmaceuticals Inc. Product information: APIDRA™ (insulin glulisine [rDNA origin]), April 2004, Bridgewater Crossings, NJ
[101] REINHARD H.A. BECKER Insulin Glulisine Complementing Basal Insulins: A Review of Structure and Activity DIABETES TECHNOLOGY & THERAPEUTICS. Volume 9, Number 1, 2007 p : 109-121

[102] Heise T,Nesek L ,Spitezer H, HeinemannL,Niemoller E, Frick AD ,Becker RH .Insulin glulisine: a faster onset of action compared with insulin lispro diabete obes meta 2007 Sep;9(5):746-53.

[103] K. RAVE, O. KLEIN, M. D. FRICK, R. H.A. BECKER, Advantage of Premal-Injected Insulin Glulisine Compared With Regular Human Insulin in Subjects With Type 1 Diabetes DIABETES CARE, 98VOLUME 29, NUMBER 8, AUGUST 2006 p:1812–1817.

[104] Werner U, Gerlach M, Hofmann M, et al. Insulin glulisine is a novel, parenteral, human insulin analog with a rapid-acting time-action profile: a crossover, euglycemic clamp study in normoglycemic dogs. Diabetes 2003;52(Suppl 1):A138

[105] S.K. Garg, J. Rosenstock, K. Ways. Optimized Basal-bolus insulin regimens in type 1 diabetes: insulin glulisine versus regular human insulin in combination with Basal insulin glargine, Endocr. Pract. Jan-Feb 11 (2005) p :11–17.

[106] GEORGE DAILEY, JULIO ROSENSTOCK, ROBERT G. MOSES, KIRKWAYS, Insulin Glulisine Provides Improved Glycemic Control in Patients With Type 2 Diabetes. Diabetes Care 27:2363–2368, 2004

[107] G. Rayman, V. Profozic, M. Middle, G. Rayman et al. Imparts effective glycaemic control in patients with Type 2 diabetes / Diabetes Research and Clinical Practice 76 (2007) 304–312

[108] S. Luzio , R. Peter, G. J. Dunseath, L. Mustafa, D. R. Owens. A comparison of preprandial insulin glulisine versus insulin lispro in people with Type 2 diabetes over a 12-h period, Diabetes .Res. clin.pract. 2008 Feb;79(2):269-75

[109] T. DANNE, R. H. A. BECKER, T. HEISE, C. BITTNER , ANNKE D. FRICK KLAUS RAVE. Pharmacokinetics, Prandial Glucose Control, and Safety of Insulin Glulisine in Children and Adolescents With Type 1 Diabetes Diabetes Care 28:2100–2105, 2005

Sanofi-aventis Canada Inc. Sommaire des motifs de décision (SMD) APIDRAMD No de contrôle 087892 Insuline glulisine, 100 U/mL, solution Émis le : 2007/07/12

J-P Sauvanet (Paris) Communiqué de presse de Sanofi-Aventis du 3 mars 2006. Diabetes Metab 2006;32:197-200

Hennige AM, Lehmann R, Weigert C, Moeschel K, Schauble M, Metzinger E, Lammers R, Haring H. Insulin glulisine: insulin receptor signaling characteristics in vivo. Diabetes 2005;54:361–366.

Ciaraldi TP, Phillips SA, Carter L, Aroda V, Mudaliar S, Henry RR. Effects of the rapid-acting insulin analog glulisine on cultured human skeletal muscle cells: comparisons with insulin and insulin-like growth factor I. J Clin Endocrinol Metab 2005;90:5551–5558.

Stammberger I, Seipke G, Bartels T. Insulin glulisine– a comprehensive preclinical evaluation. Int J Toxicol 2006;25:25–33.

Fei Wang, Jana M. Carabino, and Cunegundo M. Vergara, MD, FACPJ Insulin Glargine: A Systematic Review of a Long-Acting Insulin Analogue clinical therapeutics vol. 25, n°6 2003, p:1541-1577

Heinemann L, Linkeschova R, Rave K, et al. Time-action profile of the long-acting insulin analog insulin glargine (HOE901) in comparison with those of NPH insulin and placebo. Diabetes Care. 2000; 23:644-649.

Bolli GB, Owens DR. Insulin glargine. Lancet 2000; 356: 443-5.

McKeage K, Goa KL. Insulin glargine: a review of its therapeutic use as a long acting agent for the management of type 1 and type 2 diabetes mellitus. Drugs 2001; 61: 1599-624.

Owens DR, Coates PA, Luzio SD, et al. Pharmacokinetics of 12*1-labeled insulin glargine (HOE 901) in healthy men: Comparison with NPH insulin and the influence of different subcutaneous injection sites. Diabetes Care. 2000;23:813-819.

K Rave, L Nosek, L Heinemann, A Frick, R Becker. Time-action profile of the long-acting insulin analogue insulin glargine in comparison to NPH insulin in Japanese volunteers Diabetes and metabolism Vol 29 - N° 4-C1 - Septembre 2003 p. 430 - 431
[121] Lepore M, Pampanelli S, Fanelli C, et al. Pharmacokinetics and pharmacodynamics of subcutaneous injection of long-acting human insulin analog glargine, NPH insulin, and ultralente human insulin and continuous subcutaneous infusion of insulin lispro. Diabetes 2000;49:2142-8.

[122] Luzio SD, Owens D, Evans M, et al. Comparison of the SC absorption of HOE901 and NPH human insulin type 2 diabetic subjects. Diabetes. 1999;48(Suppl 1):A11.

[123] P. Raskin, L. Klaff, R. Bergenstal, J.P. Halle, D. Donley, T. Mecca. 16-week comparison of the novel insulin analog insulin glargine (HOE 901) and NPH human insulin used with insulin lispro in patients with type 1 diabetes, Diabetes Care 23 (2000) 1666–1671.

[124] R.E. Ratner, I.B. Hirsch, J.L. Neifing, S.K. Garg, T.E. Mecca, C.A. Wilson. Less hypoglycaemia with IGlarg in intensive insulin therapy for type 1 diabetes, Diabetes Care 23 (2000) 639–643.

[125] F. Porcellati, P. Rossetti, S. Pampanelli, C.G. Fanelli, E. Torlone, L. Scionti, et al. Better long-term glycaemic control with the basal insulin glargine as compared with NPH in patients with type 1 diabetes mellitus given meal-time lispro insulin, Diabet. Med. 21 (2004) 1213–1220.

[126] E. Schober, E. Schoenle, J. Van Dyk, K. Wernicke-Panten. Pediatric Study Group of Insulin Glargine, Comparative trial between insulin glargine and NPH insulin in children and adolescents with type 1 diabetes, Diabetes Care 24 (2001) 2005–2006.

[127] G.R. Fulcher, R.E. Gilbert, D.K. Yue. Glargine is superior to neutral protamine Hagededorn for improving glycated haemoglobin and fasting blood glucose levels during intensive insulin therapy, Intern. Med. J. Sep. 35 (9) (2005) 536–542.

[128] P.D. Home, R. Rosskamp, J. Forjanic-Klapproth. A. Dressler, European Insulin Glargine Study Group, A randomized multicentre trial of insulin glargine compared with NPH insulin in people with type 1 diabetes, Diabetes Metab. Res. Rev. 21 (2005) 545–553.

[129] G. Ashwell, S. A. Amiel, R. W. Bilous, U. Dashora, S. R. Heller, D. A. Hepburn, S. D. Shutler, J. W. Stephens and P. D. Home.: Improved glycaemic control with insulin glargine plus insulin lispro: a multicentre, randomized, cross-over trial in people with Type 1 diabetes 2006 Diabetes UK.Diabetic Medicine23, 285–292S.
[130]. Murphy NP, et al. Randomized cross-over trial of insulin glargine plus lispro or NPH insulin plus regular human insulin in adolescents with type 1 diabetes on intensive insulin regimens. Diabetes Care 2003;26:799–804.

[131]. Rosenstock J, Schwartz SL, Clark CM Jr, et al. Basal insulin therapy in type 2 diabetes: 28-Week comparison of insulin glargine (HOE 901) and NPH insulin. Diabetes Care. 2001;24:631-636.

[132]. Matthews D.R, Pfeiffer C. Comparative clinical trial of a new long-acting insulin (HOE 901) vs protamine insulin demonstrates less nocturnal hypoglycemia. Diabetes, 1998, 47(suppl. 1) : A-100

[133]. Yki-Jarvinen H, Dressler A, Ziemen M. and the HOE 901/902 Study Group. Less nocturnal hypoglycemia and better post-dinner glucose control with bedtime insulin glargine compared with bedtime NPH insulin during insulin combination therapy in type 2 diabetes. Diabetes Care, 2000, 23 : 1130-1136

[134]Raskin P, Park G, Zimmerman J. The effects of HOE 901 on glycemic control in type 2 diabetes. Diabetes, 1998, 47 (suppl. 1) : A-103

[135] Fonseca V, Bell D, Mecca T. Less symptomatic hypoglycemia with bedtime insulin glargine (LANTUS) compared to bedtime NPH insulin in patients with type 2 diabetes. Diabetes. 2001;50(Suppl 2):A12

[136] Fritsche A, Schweitzer MA, Haring H. Improved glycemic control and reduced nocturnal hypoglycemia in patients with type 2 diabetes with morning administration of insulin glargine compared with NPH insulin. Diabetes. 2002;51(Suppl 2):A52.

[137] Riddle MC, Rosenstock J, for the HOE 901/4002 Study Group. Treatment to target study: Insulin glargine vs. NPH insulin added to oral therapy of type 2 diabetes. Successful control with less nocturnal hypoglycemia. Diabetes. 2002;51(Suppl 2):A113.

[138] Hofmann T, Horstmann G, Stammberger I. Evaluation of the reproductive toxicity and embryotoxicity of insulin glargine (LANTUS) in rats and rabbits. Int J Toxicol. 2002;21:181-189.

[139] Lantus. Prescribing information. Kansas City, MO: Aventis Pharmaceuticals Inc, 2001.

[140] Devlin JT, Hothersall L, Wilkis JL. Use of insulin glargine during pregnancy in a type 1 diabetic woman. Diabetes Care. 2002;25:1095-1096.
[141] L. JOVANOVIC, MD DAVID, J. PETTITT. Treatment With Insulin and Its Analogs in Pregnancies Complicated by Diabetes, DIABETES CARE, VOLUME 30, SUPPLEMENT 2, JULY 2007

[142] Heise T, Bott, Rave K, et al. No evidence for accumulation of insulin glargine (LANTUS): A multiple injection study in patients with type 1 diabetes. Diabet Med. 2002; 19: 490-494.

[143] Pscherer, Schreyer-Zell G, Gottsmann M. Experience with insulin glargine in patients with end-stage renal disease. Diabetes. 2002;51(Suppl 2):A53.

[144] Insulin glargine. AmJ Health Syst Pharm. 2000;57:1960-1961.

[145] A. Fritsche, M. A. Schweitzer, Hans-Ulrich Ha¨ring. Glimepiride Combined with Morning Insulin Glargine, Bedtime Neutral Protamine Hagedorn Insulin, or Bedtime Insulin Glargine in Patients with Type 2 Diabetes. 17 June 2003 Annals of Internal Medicine Volume 138 • Number 12p: 952-959

[147] Stammberger I, Bube A, Durchfeld-Meyer B, et al. Evaluation of the carcinogenic potential of insulin glargine (LANTUS) in rats and mice. Int J Toxicol. 2002;21:171-179.

[148] Slawik M, Petersen KG. Effects of basal insulin treatment on IGF-I: Glargine vs. NPHinsulin. Diabetes. 2002;51(Suppl 2):A296.

[146] Berti L, Kellnerer M, Bossenmaier B, Seffer E, Seipke G, Haring HU. 1998 The long acting human insulin analog HOE 901: characteristics of insulin signaling in comparison to Asp(B10) and regular insulin. Horm Metab Res 30:123–129

[149] M. D. Davis, R. W. Beck, P. D. Home, J. Sandow, F. L. Ferris Early. Retinopathy Progression in Four Randomized Trials Comparing Insulin Glargine and Nph Insulin Exp Clin Endocrinol Diabetes 2007; 115: 240-243

[150] Witthaus E, Stewart J and Bradley C. Treatment satisfaction and psychological well-being with insulin glargine compared with NPH in patients with Type 1 diabetes. Diabetic Medicine(2001), 18(8) 619-625.

[151] R. Houlden, S. Ross, S. Harris, J.F. Yale, L. Sauriol and Hertzel C. Gerstein Treatment satisfaction and quality of life using an early insulinization strategy with insulin glargine compared to an adjusted oral therapy in the management of Type 2
[152] Kurtzhals P et al. Effect of fatty acids and selected drugs on the albumin binding of a long-acting, acylated insulin analogue. *J Pharmaceutical Sciences*. 1997; 86 (12): 1365-1368.

[153] Kurtzhals P. Engineering predictability and protraction in a basal insulin analogue: the pharmacology of insulin detemir. *Intern J Obes*. 2004; 28 suppl.2: S23-S28

[154] Strange P, McGill J, Mazzeo M. Reduced pharmacokinetic variability of a novel, long-acting insulin analog. *Diabetes* 1999; 48 (suppl 1): A103.

[155] Selam JL, Skeie S, Vague P, et al. Promising results of 6 months treatment with insulin detemir in type 1 diabetic patients. *Diabetologia* 2001; 44 (suppl 1): A15.

[156] H. Dorchy. Utilisation rationnelle des nouveaux analogues de l’insuline dans le traitement du diabète de type 1 chez les enfants et adolescents : expérience personnelle Archives de pédiatrie 13 (2006) 1275–1282

[157] M. BUYSSCHAERT. L’insuline détémir (levemir®) 2005 ; 124, 8 : 340-344 UCL Louvain médical.

[158] EAEM. Levemir prescribing information. European Agency for the Evaluation of Medicinal Products .novonordisk.com

[159] Heise T et al. Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. *Diabetes* 2004; 53: 1614-1620

[160] Danne Th et al. Insulin detemir is characterized by a consistent pharmacokinetic profile across age-groups in children, adolescents, and adults with type 1 diabetes. *Diabetes Care*. 2003; 26 (11): 3087-3092

[161] P. Valensi, E. Cosson. Is insulin detemir able to favor a lower variability in the action of injected insulin in diabetic subjects? Diabetes Metab 2005,31,4S34-4S39.

[162] Pieber TR, Plank J, Görzer E, et al. Duration of action, pharmacodynamic profile and between-subject variability of insulin detemir in subjects with type 1 diabetes. Diabetologia 2002;45 (Suppl. 2):A257.
[163] H. Dorchy et J. Sternon. Les analogues de l’insuline : la place de la détémir (Levemir®). Rev Med Brux 2006 ; 27 : 89-94

[164] Vague Ph et al. Insulin detemir is associated with more predictable glycemic control and reduced risk of hypoglycemia than NPH insulin in patients with type 1 diabetes on a basalbolus regimen with premeal insulin aspart. Diabetes Care. 2003 ; 26 (3) : 590-596.

[165]. Hermansen K et al. Insulin analogues (insulin detemir and insulin aspart) versus traditional human insulins (NPH insulin and regular human insulin) in basal-bolus therapy for patients with type 1 diabetes. Diabetologia. 2004 ; 47 : 1-8.

[166] Home Ph et al. Insulin detemir offers improved glycemic control compared with NPH insulin in people with type 1 diabetes. A randomized clinical trial. Diabetes Care. 2004 ; 27 (5) :1081-1087.

[167] Standl E, Lang H, Roberts A. The 12-month efficacy and safety of insulin detemir and NPH insulin in basalbolus therapy for the treatment of type 1 diabetes. Diabetes Technol Ther 2004; 6: 579–588.

[168]. De Leeuw I et al. Insulin detemir used in basal-bolus therapy in people with type 1 diabetes is associated with a lower risk of nocturnal hypoglycaemia and less weight gain over 12 months in comparison to NPH insulin. Diabetes Obes Metab. 2005 ; 7 : 73-82.

[169]. Russell-Jones D et al. Effects of QD insulin detemir or neutral protamine hagedorn on blood glucose control in patients with type I diabetes mellitus using a basal-bolus regimen. Clin Ther. 2004 ; 26 : 724-736.

[170] Raslova K, Bogoev M, Raz I, Leth G, Gall MA, Hancu N. Insulin detemir and insulin aspart: a promising basal bolus regimen for type 2 diabetes. Diabetes Res Clin Pract 2004; 66: 193–201

[171] Haak T, Tiengo A, Draeger E, Suntum M, Waldhausl W. Lower within-subject variability of fasting blood glucose and reduced weight gain with insulin detemir compared to NPH insulin in patients with type 2 diabetes. Diab Obes Metab 2005; 7 : 56–64.
[172] K. Hermansen and M. Davies. Does insulin detemir have a role in reducing risk of insulin-associated weight gain? Diabetes, Obesity and Metabolism, 9, 2007, 209–217.

[173] Philis-Tsimikas. A. Efficacious basal insulin initiation and weight advantage with Levemir® once-daily use in T2DM. SYMPOSIUM NOVO NORDISK. EASD 2007.

[174] Hermansen K et al. Comparison of the soluble basal insulin analog insulin detemir with NPH insulin. A randomized open crossover trial in type 1 diabetic subjects on basal-bolus therapy. Diabetes Care. 2001; 24: 296-301.

[175] Russell-Jones D. Insulin detemir: improving the predictability of glycaemic control. Intern J Obes. 2004; 28 suppl.2 : S29-S34.

[176] Kølendorf K et al. Insulin detemir is associated with lower risk of hypoglycemia compared to NPH insulin in people with Type 1 Diabetes. Diabetes. 2004; 53 suppl. 2 : A130.

[177] Robertson K et al. Benefits of insulin detemir over NPH insulin in children and adolescents with type 1 diabetes : lower and more predictable fasting plasma glucose and lower risk of nocturnal hypoglycemia. Diabetes. 2004; 53 suppl. 2 : A144.

[178] Riddle M, Rosenstock J, Gerich J. The treat-to-target trial. Randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetes patients. Diabetes Care. 2003; 26: 3080-3086.

[179] A. Dornhorst, H-J Lu¨ ddeke, S. Sreenan, C. Koenen,J. B. Hansen, A. Tsur, L. Landstedt-Hallin, Safety and efficacy of insulin detemir in clinical practice: 14-week follow-up data from type 1 and type 2 diabetes patients in the PREDICTIVETM European cohort. Int J Clin Pract, March 2007, 61, 3, 523–528

[180] P Valensi, E Cosson. Is insulin detemir able to favor a lower variability in the action of injected insulin in diabetic subjects? Diabetes Metab 2005,31,4S34-4S39.

[181] Pieber T, Draeger W, Kristensen A, Grill V. Comparison of three multiple injection regimens for Type 1 diabetes: morning plus dinner or bedtime administration of insulin detemir vs. morning plus bedtime NPH insulin. Diabet Med 2005; 22: 850–857.
[182] Garber AJ, Kim H, Santiago OM. Lower risk of hypoglycemia with insulin detemir vs NPH insulin in elderly people with type 2 diabetes: a pooled analysis of phase 3 trials. Diabetes 2005; 54 (Suppl. 1): A118.

[183] Hermansen K, Davies M, Derezinski T, Martinez Ravn G, Clauson P, Home P. On behalf of the Levemir Treat-to-Target Study Group. A 26-week, randomized, parallel treat-to-target trial comparing insulin detemir with NPH insulin as add-on therapy to oral glucose lowering drugs in insulin-naïve people with type 2 diabetes. Diabetes Care 2006; 29: 1269–1274

[184] Raslova K, Tamer SC, Clauson P, Karl D. Insulin detemir is associated with less weight gain than NPH insulin, especially in the very obese, when used in basal bolus therapy for patients with type 2 diabetes. Diabetologia 2005; 48 (Suppl. 1): A306.

[185] Pieber T, Treichel H, Robertson L, Mordhorst L, Gall M. Insulin detemir plus insulin aspart is associated with less risk of major as well as nocturnal hypoglycaemia than the insulin glargine plus insulin aspart at comparable levels of glycaemic control in type 1 diabetes. Diabetologia. 2005 ; 48 suppl.1 :Abst. 242.

[186] P. KURTZHALS. How to achieve a predictable basal insulin? Diabetes metab 2005, 31,4S25-4S33
LISTE DES TABLEAUX
Tableau 1. Nouvelles insulines ultrarapides ... 21
Tableau 2. Les insulines rapides ... 21
Tableau 3. Les insulines humaines intermédiaires 22
Tableau 4. Les analogues Lents ... 22
Tableau 5. Les mélanges d’insulines ... 23
Tableau 6. Paramètres pharmacocinétiques de LISPRO et de l’insuline ordinaire rapide (dose moyenne ≤ 10 unités/injection, abdomen) 36
Tableau 7. résumé des études cliniques effectuées sur l’insuline lispro en comparaison avec l’insuline humaine chez les diabétiques type 1 41
Tableau 8. Résumé des propriétés pharmacodynamiques des différents produits d’insulines ... 48
Tableau 9. Résumé des essais faits avec l’insuline aspart chez des patients diabétiques type 1 ... 62
Tableau 10. Ensemble d’études comparant l’insuline asparte pré mélangée contre l’insuline humaine pré mélangées chez les patients atteints de diabète type 2 ... 65
Tableau 11. Affinité pour les récepteurs de l’insuline et de l’IGF-I et pouvoir mitogène .. 70
Tableau 12. Comparaison entre les paramètres pharmacologiques de la glulisine, lispro et de l’insuline humaine ... 79
Tableau 13. Etude comparative de la pharmacodynamie de l’injection sous-cutanée d’insuline glargine, NPH et ultralente (0,3 U / kg), et de l’insuline lispro utilisée en perfusion continue sous-cutanée [CSII] (0.3U/kg/24h) chez 20 patients diabétiques type 1 étudiés à quatre reprises au cours d’un clamp euglycémique 24-heures .. 96
Tableau 14. Ensemble des études comparant l’insuline glargine avec l’insuline humaine NPH chez des patients diabétiques type 1 100
Tableau 15. Résumé des essais cliniques comparant les changements observés dans les taux d’hémoglobine glycosylée (HbA1c) et de la glycémie à jeûne (GAJ) entre l’insuline glargine et neutral protamine Hagedorn (NPH) chez les patients atteints de diabète type 2 .. 109
Tableau 16. Reproductibilité des paramètres pharmacodynamiques et pharmacocinétiques des trois groupes : insuline detemir, insuline NPH, et insuline glargine .. 132
Tableau 17. Ensemble des études cliniques comparant l’insuline detemir contre l’insuline humaine NPH ... 135
Tableau 18. Études publiées (multinationales randomisées et ouvertes indiquant le changement de poids corporel avec l’insuline detemir et de l’insuline NPH). 153
LISTE DES FIGURES
Figure 1. Insuline, chaînes A et B réunies par deux ponts disulfure et le peptide C .. 8
Figure 2 : structure moléculaire de l’insuline humaine ... 8
Figure 3. Représentation schématique de la biosynthèse de l’insuline 10
Figure 4. Représentation schématique des mécanismes de stimulation de la sécrétion de l’insuline par le glucose ... 13
Figure 5. Profil nycthéméral de la sécrétion d’insuline ... 13
Figure 6. Structure moléculaire du récepteur de l’insuline .. 14
Figure 7. Schéma à une seule injection (matin d’insuline à durée prolongée, ou d’un mélange d’insuline rapide et d’insuline à durée prolongée).. 27
Figure 8. Schéma à deux injections par jour (Matin et Soir : Mélange d’une insuline intermédiaire et d’une insuline rapide ou ultra-rapide)... 28
Figure 9. Schéma à trois injections par jour ; (Matin et Midi : insuline rapide ou ultra-rapide ; Soir : mélange d’une insuline intermédiaire ou lente et d’une insuline rapide ou ultra-rapide) ... 29
Figure 10. Schéma à trois injections par jour (Matin et Soir : mélange d’une insuline intermédiaire et d’une insuline rapide ou ultra-rapide ; Midi : insuline rapide ou ultra-rapide) ... 30
Figure 11. Structure moléculaire de l’analoge rapide Lispro ... 36
Figure 12. Profil d’insulinémie de l’insuline Lispro ... 37
Figure 13. Pharmacocinétique de l’insuline Lispro (Humalog©) et de l’insuline humaine ordinaire injectées immédiatement avant un repas riche en glucides à une dose de (0,2 U / kg) chez 10 patients atteints du diabète type 1. 38
Figure 14. Excursion glycémique moyenne chez les patients diabétiques de type 2 après un repas .. 48
Figure 15. Modification structurale utilisées dans le développement de l’insuline aspart ... 54
Figure 16. L’insuline aspart injectée reproduit mieux que l’insuline humaine injectée en sous-cutané le profil de l’insuline endogène après la prise d’un repas .. 56
Figure 17. Glycémie après injection d’une dose de l’aspart immédiatement avant un repas (courbe pleine) ou d’insuline humaine soluble 30 minutes avant un repas (courbe en pointillés) chez des patients diabétiques de type 1 57
Figure 18. Profil d’activité de NovoMix 30 (clair) et de l’insuline humaine biphasique 30 (nuancé) chez des sujets sains ... 60
Figure 19. Structure de la glulisine ... 72
Figure 20. Effet hypoglycémiant moyen sur 6 heures chez 20 patients diabétiques de type 1. Insuline glulisine administrée 2 minutes (GLULISINE
pré) avant le début d’un repas comparée à l’insuline rapide humaine administrée 30 minutes (RAPIDE 30 min) avant le début du repas................................. 74
Figure 21. Effet hypoglycémiant moyen sur 6 heures chez 20 patients diabétiques de type 1. Insuline glulisine administrée 2 minutes (GLULISINE pré) avant le début d’un repas comparée à l’insuline rapide humaine administrée 2 minutes (RAPIDE pré) avant un repas.. 75
Figure 22. Effet hypoglycémiant moyen sur 6 heures chez 20 patients diabétiques de type 1. Insuline glulisine administrée 15 minutes (GLULISINE post) après le début d’un repas comparée à l’insuline rapide humaine administrée 2 minutes (RAPIDE pré) avant le début d’un repas comparée à l’insuline rapide humaine administrée 2 minutes (RAPIDE pré) avant un repas .. 75
Figure 23. Utilisation du glucose après injection sous-cutanée de 0,3 U/kg d’insuline glulisine (GLULISINE) ou d’insuline lispro (LISPRO) ou d’insuline rapide humaine (RAPIDE) dans une population obèse ... 76
Figure 24. Profil pharmacocinétique de l’insuline glulisine et de l’insuline rapide humaine chez des patients diabétiques de type 1 après une dose de 0,15 U/kg . 78
Figure25. Structure moléculaire de la glargine.. 91
Figure 26. Profil d’action de l’insuline glargine chez les patients atteints de diabète de Type 1 ... 97
Figure 27. Une réduction du risque de l’hypoglycémie nocturne dans les études de phase III avec un analogue de l’insuline basale ;la glargine(IGlarg) par rapport à l’insuline NPH .. 99
Figure 28. Taux de l’hypoglycémie symptomatique nocturne pendant la période de l’étude(Évènements pour 100 malades par jours)................................. 103
Figure 29. Profils de glucose plasmatique (moyenne et écart type en mmol/l) pendant 24 heures d'hospitalisation chez des diabétiques de type 1 traités avec l'insuline glargine + Insuline lispro ® ou de l'insuline NPH + l'insuline humaine non modifiée ... 105
Figure 30. HbA1c [moyenne et écart-type(%)] chez des patients diabétiques type 1 traités avec insuline Glargine + insuline Lispro ®, ou avec NPH +insuline humaine non modifiée après 16 semaines d’étude 105
Figure 31. Effets sur le taux d’HbA1c après un an Comparaison schéma " bed-time" insuline glargine vs NPH (et antidiabétiques oraux) dans le diabète de type 2 ... 112
Figure 32. Comparaison de la fréquence des épisodes hypoglycémiques entre "bed-time" insuline glargine et NPH (avec antidiabétiques oraux) chez des diabétiques de type 2... 112
Figure 33 modifications structurelles utilisées dans le développement de l'insuline detemir ... 127
Figure 34. Durée d’action de l’insuline detemir. 129
Figure 35. Profils d'activité du detemir chez les patients souffrant du diabète Type 1 ... 129
Figure 36. Carnet de traitement d'un adolescent au système basal-prandial avec une injection d'Insulatard® au coucher qui provoque de l'hyperglycémie au lever alors que les glycémies nocturnes sont bonnes... 141
Figure 37. Carnet de traitement d'un adolescent au système basal-prandial avec une injection du Levemir® montrant une réduction de la glycémie au lever... 142
Figure 38. Carnet de traitement d'un adolescent au système basal-prandial avec une injection de Levemir®. Après 2 mois, l'HbA1c baisse de 0,9 % (c) 143
Figure 39. Profil de la glycémie d'un traitement par le detemir ou par l'insuline NPH administrés 2 fois avant le petit déjeuner et au coucher pendant la nuit chez des diabétiques type 1 ... 150
Figure 40. Dans un régal par rapport à l'objectif de 475 patients atteints de diabète de type 2, Une différence dans le changement de poids entre l’insuline detemir et NPH ont apparu au début (a) et par 24 semaines, Était le plus bas pour les patients atteints dont l’IMC était plus élevé. ... 152
TABLE DE MATIERE
INTRODUCTION... 1

1. INSULINE .. 6
 1.1. HISTORIQUE ... 6
 1.2. STRUCTURE ... 7
 1.3. BIOSYNTHÈSE .. 9
 1.4. MODE DE SECRÉTION DE L’INSULINE .. 10
 1.5. MECANISME CONTROLANT LA SECRÉTION DE L’INSULINE ... 12
 1.6. RECEPTEUR À L’INSULINE ... 14
 1.7. EFFETS BIOLOGIQUES DE L’INSULINE ... 15
 1.7.1. Métabolisme des hydrates de carbones ... 15
 1.7.2. Métabolisme des lipides ... 16
 1.7.3. Métabolisme des protéines .. 16
 1.7.4. Effets sur la croissance ... 17
 1.8. MECANISME D’ACTION DE L’INSULINE .. 17
 1.9. PHARMACOCINETIQUE DE L’INSULINE ... 17
 1.10. L’INSULINORESISTANCE .. 18

2. INSULINOTHERAPIE ... 20
 2.1. TYPES D’INSULINE ... 20
 2.2. ADMINISTRATION DE L’INSULINE ... 24
 2.2.1. Les voies d’administration .. 24
 2.2.2. Les moyens d’injection de l’insuline ... 26
 2.3. SCHEMAS D’INSULINOTHERAPIE .. 27
 2.4. INTERACTIONS MEDICAMENTEUSES DE L’INSULINE .. 30
 2.5. EFFETS INDESIRABLES ... 31
 2.5.1. L’hypoglycémie .. 31
 2.5.2. Allergies à l’insuline ... 32
 2.5.3. Lipodystrophie .. 33
 2.5.4. Résistances à l’insuline ... 33

ANALOGUES RAPIDES ... 34

3. LISPRO (HUMALOG ©) ... 35
 3.1. DESCRIPTION ... 35
 3.2. PROPRIÉTÉS PHARMACODYNAMIQUES .. 35
 3.3. PHARMACOCINETIQUE .. 37
 3.3.1. Absorption et biodisponibilité .. 37
3.3.2. Distribution .. 39
3.3.3. Mètabolisme ... 39
3.4. ÉTUDES CLINIQUES ... 39
3.4.1. Diabétiques type 1 ... 39
3.4.2. Jeunes diabétiques type 1 ... 42
3.4.3. Diabétiques type 2 ... 42
3.4.4. Effets du lispro sur la glycémie post-prandiale .. 43
3.4.5. Les mélanges insuline lispro-insuline NPL .. 45
3.5. SECURITE ET TOLERABILITE ... 49
3.5.1. Mitogénicité ... 49
3.5.2. Immunogénicité ... 49
3.6. POPULATION SPECIALE ... 50
3.6.1. Femme enceinte ou allaitante ... 50
3.6.2. Enfants diabétiques ... 52
3.6.3. Sujets âgés ... 52
3.7. QUALITE DE VIE ... 52
4. ASPART (NOVORAPID ®) ... 54
4.1. DESCRIPTION .. 54
4.2. PROPRIETES PHARMACOLOGIQUES .. 55
4.2.1. Propriétés pharmacodynamiques ... 55
4.2.2. Propriétés pharmacocinétiques .. 57
4.3. ASPART BIPHASIC (NOVOMIX 30 ®) ... 58
4.3.1. Propriétés Pharmacodynamiques .. 58
4.3.2. Propriétés pharmacocinétiques .. 59
4.4. ÉTUDES CLINIQUES ... 60
4.4.1. Diabétiques type 1 ... 60
4.4.2. Diabétiques type 2 ... 63
4.5. SECURITE ET TOLERANCE ... 67
4.5.1. Chez enfants et adolescents .. 67
4.5.2. Au cours de la Grossesse ... 68
4.5.3. Potentiel mitogénique .. 69
4.5.4. Immunogénicité ... 70
4.6. QUALITE DE VIE ... 71
5. GLULISINE (APIDRA ®) .. 72
5.1. DESCRIPTION ... 72
5.2. PROPRIETES PHARMACOLOGIQUES ... 73
 5.2.1. Propriétés pharmacodynamiques .. 73
 5.2.2. Propriétés pharmacocinétiques ... 77
5.3. ETUDES CLINIQUE .. 79
 5.3.1. Diabète de type 1 ... 79
 5.3.2. Diabète de type 2 ... 81
 5.3.3. Enfants et adolescents ... 82
 5.3.4. Femme enceinte et allaitante ... 83
5.4. SECURITE ET TOLERABILITE ... 84
 5.4.1. Immunogenicité .. 85
 5.4.2. Potentiel mitogénique ... 86
 5.4.3. Toxicité .. 87
5.5. QUALITE DE VIE .. 88

ANALOGUES LENTS .. 89

6. GLARGINE (LANTUS ®) .. 90
 6.1. DESCRIPTION .. 90
 6.2. PHARMACOLOGIE CLINIQUE ... 91
 6.2.1. Sujets sains non diabétiques .. 92
 6.2.2. Sujets atteints du diabète de type 1 ... 94
 6.2.3. Sujets atteints du diabète de type 2 ... 97
 6.2.4. Métabolisme .. 98
6.3. ETUDES CLINIQUES .. 98
 6.3.1. Patients atteints du diabète de type 1 .. 98
 6.3.2. Enfants et adolescents ... 106
 6.3.3.Adultes atteints du diabète Type 2 ... 108
6.4. POPULATIONS SPECIALES ... 113
 6.4.1. Grossesse et allaitement ... 113
 6.4.2. Personnes âgées ... 114
 6.4.3. Insuffisants rénaux et hépatiques ... 114
6.5. DOSAGE ET ADMINISTRATION .. 115
 6.5.1. Cas d’administration de la glargine en dehors de l’heure du coucher .. 117
6.6. SECURITE ET TOLERABILITE ... 119
 6.6.1. Douleur au niveau du site d’injection .. 119
 6.6.2. Potentiel mitogénique ... 119
 6.6.3. Immunogenicité ... 122
7. DETEMIR (LEVEMIR®) .. 127

7.1. DESCRIPTION .. 127

7.2. PHARMACOLOGIE CLINIQUE ... 128

7.2.1. Mécanisme d’action .. 128

7.2.2. Durée d’action ... 128

7.3. PHARMACOCINETIQUE ... 130

7.3.1. Absorption .. 130

7.3.2. Distribution et élimination .. 130

7.4. ETUDES COMPARATIVES .. 131

7.5. ETUDES CLINIQUES ... 133

7.5.1. Adultes atteints du diabète type 1 133

7.5.2. Jeunes diabétiques type 1 .. 136

7.5.3. Adultes diabétiques type 2 .. 136

7.6. POPULATIONS SPECIALES .. 138

7.7. INDICATIONS ... 139

7.8. POSOLOGIE ET ADMINISTRATION 144

7.9. SECURITE ET TOLERABILITE .. 145

7.9.1. Site d’injection et réactions allergiques 145

7.9.2. Fertilité cancérogénicité, mutagénicité 145

7.9.3. Grossesse et effet tératogène ... 146

7.10. EFFETS SUR L’HYPERGLYCEMIE 147

7.11. EFFETS SUR L’HYPOGLYCEMIE ... 148

7.11.1. Hypoglycémie ... 148

7.11.2. Effets sur l’hypoglycémie nocturne 149

7.11.3. Le contrôle de la glycémie et la dose d’insuline 150

CONCLUSION.. 154

RESUME .. 157

BIBLIOGRAPHIE .. 160

LISTE DES TABLEAUX .. 179

LISTE DES FIGURES .. 181

TABLE DE MATIERE ... 185