Dual Antiplatelet Therapy vs. Single Antiplatelet Therapy After Transcatheter Aortic Valve Replacement: An Updated Systematic Review and Meta-Analysis

Yipeng Zhang1,2†, Lan Shen1,2†, Wentao Yang1,2 and Ben He1,2*

1 Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China, 2 Shanghai Jiao Tong University School of Medicine, Shanghai, China

Background: Although mainstream guidelines recommend dual antiplatelet therapy (DAPT) with aspirin and clopidogrel in patients following transcatheter aortic valve replacement (TAVR), it is not evidence-based. We aim to investigate the safety and efficacy of DAPT vs. single antiplatelet therapy (SAPT) after TAVR, and review updated evidence.

Methods: We systematically searched PubMed, Embase, and Cochrane for studies comparing DAPT to SAPT after TAVR from inception to November 30, 2020. The primary outcome was major adverse cardiac and cerebrovascular events, including all-cause mortality, cardiovascular death, myocardial infarction (MI), stroke, and major or life-threatening bleeding (LTB). Subgroup analysis was performed according to study type (randomized control trials vs. observational studies) using a fixed-effects model. The quality of evidence was assessed by two scoring systems and GRADE (Grading of Recommendations Assessment, Development, and Evaluation).

Results: Twelve studies of 20,766 patients were included in our meta-analysis. Compared with SAPT, DAPT was associated with an increased risk for combined life-threatening and major bleeding [OR 1.73 (1.19–2.51), p = 0.004] after TAVR. Such a difference was largely driven by major bleeding [OR 2.29 (1.68–3.11), p < 0.001]. There were no significant differences on major adverse cardiovascular events (MACE) [OR 1.19 (0.99–1.44), p = 0.07], cardiovascular mortality [OR 1.46 (0.93–2.30), p = 0.10], and stroke [OR 0.97 (0.80–1.16), p = 0.71].

Conclusions: Compared with SAPT, post-TAVR DAPT was associated with increased risks of major or life-threatening bleeding without additional benefits of reducing thrombotic events. Future guidelines for post-TAVR antiplatelet strategy are expected to be updated as new high-quality evidence emerges.

Systematic Review Registration: PROSPERO, Identifier: CRD42021230075.

Keywords: transcatheter aortic valve replacement, dual antiplatelet therapy, single antiplatelet therapy, bleeding, mortality, myocardial infarction, stroke, meta-analysis
INTRODUCTION

Transcatheter aortic valve replacement (TAVR) has emerged as an effective and alternative therapeutic strategy for patients with severe symptomatic aortic valve stenosis, especially for those with intermediate or high surgical risk of surgical aortic valve replacement (SAVR) (1, 2). Despite its high procedure success rate and non-inferiority efficacy to SAVR, TAVR has been associated with severe major adverse cardiac and cerebrovascular complications such as mortality, myocardial infarction (MI), major stroke, life-threatening bleeding (LTB), and major vascular complication (3–5).

To reduce the risk of embolization events, the American College of Cardiology (ACC)/American Heart Association (AHA) 2020 guidelines recommend the use of dual antiplatelet therapy (DAPT) with clopidogrel and aspirin for the first 3–6 months after TAVR in patients who are at low risk of bleeding (1). Although intensive antiplatelet therapy with DAPT theoretically decreases the potential risk of thrombotic events, there comes a substantially increased risk of bleeding compared with single antiplatelet therapy (SAPT). The optimal antiplatelet regimen remains unclear. Considering the controversial findings in existing meta-analyses and availability of the latest randomized clinical trials (RCTs), we conducted an updated meta-analysis of RCT and observational studies to review the risk and benefit of the two post-TAVR antiplatelet therapies.

METHODS

Search Strategy and Selection Criteria

This meta-analysis is reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement (6) and was registered at the International Prospective Register of Systematic Reviews (number CRD42021230075).

We selected randomized control trials and observational studies published from inception to November 30, 2020, by searching Embase, PubMed, Cochrane, Web of Knowledge, and ClinicalTrials.gov. No language restrictions were applied. We used the following terms relating to TAVR (transcatheter aortic valve replacement, transcatheter aortic valve implantation, TAVI, TAVR) and intervention (DAPT, SAPT, dual antiplatelet therapy, single antiplatelet therapy, antithrombotic, antiplatelet, aspirin, clopidogrel) as keywords and mesh terms. The related articles and reference lists of studies were also screened manually to identify additional relevant publications.

Study Selection and Data Extraction

Studies were eligible for inclusion if they met the following criteria: (1) RCTs or observational studies; (2) patients with aortic stenosis or regurgitation undergoing TAVR; (3) comparative study of different antithrombotic strategies post-TAVR including DAPT, SAPT; (4) reported at least one adverse event (such as death, myocardial infarction, stroke, and bleeding); and (5) articles published in English.

FIGURE 1 | Study flow chart of the search strategy and selection process for inclusion.
Study	Ussia et al. (8)	Stabile et al. (9)	Rodés-Cabau et al. (10)	Brouwer et al. (11)	Poliacikova et al. (12)	Durand et al. (13)
Type	RCT	RCT	RCT	RCT	Prospective observational study	Prospective observational study
Enrolment date	May 2009–August 2010	April 2010–April 2011	March 2012–February 2017	February 2014–2018	December 2007–June 2012	January 2010–December 2011
Inclusion criteria	1. Severe symptomatic AS with AVA < 1 cm²	2. Refused for standard AV replacement	1. Severe AS: echocardiographically derived AVA < 0.8 cm² (or AVA index < 0.5 cm²/m²) and mean AVG > 40 mm Hg or peak jet velocity > 4.0 m/s	2. Cardiac symptoms: NYHA functional class II, syncope	1. TAVI population consisting of both high-risk surgical and inoperable patients	1. Patients with symptomatic severe AS who were not candidates for surgical AV replacement because of coexisting illness
	2. Refused for standard AV replacement		3. High surgical risk: predicted operative mortality 15% or STS score 10%	3. NYHA functional class II, III, or IV	2. AVA < 0.8 cm², mean aortic gradient ≥ 40 mm Hg or a peak aortic jet velocity ≥ 4.0 m/s	3. NYHA functional class II, III, or IV
Exclusion criteria	1. Vascular disease that precluded access	2. Severe deformation of the chest	3. Intracardiac thrombus	4. Unprotected stenosis of the left main coronary artery not amenable to PCI	5. MI within 7 days	1. Aortic annular diameter on echocardiography < 18 or > 25 mm
	2. Aortic dissection, or iliac-femoral dimensions or disease precluding safe sheath insertion	4. Untreated coronary artery disease requiring revascularization		5. Untreated coronary artery disease requiring revascularization	6. Prosthetic heart valve	2. Aortic annular diameter on echocardiography < 19 or > 24 mm
	3. Active infection	4. Severe aortic regurgitation or mitral regurgitation (> 3+):J, or prosthetic valve		5. Acute myocardial infarction within 1 month	7. Active infection	3. Aortic annular diameter on echocardiography < 19 or > 24 mm
	4. Leukopenia	5. Upper gastrointestinal bleeding within 3 months		6. Upper gastrointestinal bleeding within 3 months	8. Leukopenia	4. Aortic annular diameter on echocardiography < 19 or > 24 mm
	5. Coagulopathy	7. Cerebrovascular accident or transient ischemic attack within 6 months		8. Aorta could not be fully dilated with a 23-mm aortic valvuloplasty balloon	9. Coagulopathy	5. Aortic annular diameter on echocardiography < 19 or > 24 mm
	6. Active bleeding	9. Liver cirrhosis		10. Liver cirrhosis	10. Active bleeding	6. Liver cirrhosis
	11. Acute anemia (Hb < 9 mg/dL)	11. Liver cirrhosis		12. Porcelain aorta	11. Acute anemia (Hb < 9 mg/dL)	12. Porcelain aorta
	12. Aorta could not be fully dilated with a 23-mm aortic valvuloplasty balloon	13. Aortic annulus size < 19 or > 24 mm		13. Porcelain aorta	13. Aortic annulus size < 19 or > 24 mm	13. Porcelain aorta
	13. Aortic annulus size < 19 or > 24 mm	14. Liver cirrhosis		14. Porcelain aorta	14. Liver cirrhosis	14. Porcelain aorta
	14. Liver cirrhosis	15. Porcelain aorta		15. Respiratory failure	15. Recurrent pulmonary embolism	15. Porcelain aorta
	15. Recurrent pulmonary embolism	16. Porcelain aorta		16. Respiratory failure	16. Porcelain aorta	16. Respiratory failure
	16. Porcelain aorta	17. Respiratory failure		17. Respiratory failure	17. Respiratory failure	17. Respiratory failure

(Continued)
Study	Ussia et al. (8) (N = 79)	Stabile et al. (9) (N = 120)	Rodés-Cabau et al. (10) (N = 222)	Brouwer et al. (11) (N = 665)	Poliacikova et al. (12) (N = 114)	Durand et al. (13) (N = 182)
18.	History of radiotherapy	8. Any cardiac procedure,	18. History of radiotherapy			
	to mediastinum	other than balloon	to mediastinum			
19.	Severe connective	9. Indication for oral	19. Severe connective			
	tissue disease	anticoagulation therapy	tissue disease			
20.	Previous PCI or MI	(i.e., atrial fibrillation)	20. Previous PCI or MI			
	requiring DAPT		requiring DAPT			
21.	Need for oral	10. Aspirin	21. Need for oral			
	anticoagulation therapy	intolerance/allergy	anticoagulation therapy			
22.	Allergy or intolerance	11. Thienopyridine	22. Allergy or intolerance			
	to study drugs	intolerance/allergy	to study drugs			
Medication DAPT group	1. Aspirin 10.0 mg/day	1. Aspirin or acetylsalicylic acid (80–100 mg/day) for at least 6 months	Aspirin at a dose of 80 to 100 mg daily plus clopidogrel at a dose of 75 mg daily for 3 months	1. Aspirin 75 mg/day	1. Aspirin 75 mg/day	
	2. Clopidogrel 300 mg	2. Clopidogrel 75 mg/day for 3 months	2. Clopidogrel (75 mg/day) for 3 months	2. Clopidogrel 300 mg loading then clopidogrel 75 mg/day for 6 months	2. Clopidogrel 300 mg loading then clopidogrel 75 mg/day; duration 1–6 months	
	loading then 75 mg/day		Aspirin 80–100 mg/d for 3 months	Aspirin 100 mg/day for 3 months	Aspirin 75 mg/day or clopidogrel 75 mg/day (without clopidogrel loading dose) for 1–6 months	
	for 3 months		Aspirin at a daily dose of 75 mg for 3 months			
Medication SAPT group	Aspirin 100 mg/day;	Aspirin 75–160 mg/day for 6 months	Aspirin 80–100 mg/day for 3 months	Aspirin 100 mg/day for 3 months	Aspirin 75 mg/day or clopidogrel 75 mg/day (without clopidogrel loading dose) for 1–6 months	
	duration 3 months					
Follow-up included	6 months	30 days, 6 months	1, 2, 3 months, 1 year	30 days	30 days	
			Rate of death, MI, ischemic stroke or TIA, all-cause mortality, major, and lethal bleeding	MACE (combined endpoint of all-cause mortality, ACS or stroke) and NACE (combined endpoint of all-cause mortality, ACS, stroke, or major bleeding)	Combination of mortality, major stroke, LTB, MI, and major vascular complications at 30 days	
Primary endpoint	Composite of death from	Composite of major event, acute coronary event, all-cause mortality, major, and lethal bleeding	all bleeding (including minor, major, and life-threatening or disabling bleeding) and non-procedure-related bleeding over a period of 12 months	all bleeding (including minor, major, and life-threatening or disabling bleeding) and non-procedure-related bleeding over a period of 12 months	all bleeding (including minor, major, and life-threatening or disabling bleeding) and non-procedure-related bleeding over a period of 12 months	
TAVR device	CoreValve	SAPIEN XT or SAPIEN 3	NA	CoreValve	SAPIEN, or CoreValve	
Study	Czerwińska-Jelonkiewicz et al. (14) (N = 476)	D’Ascenzo et al. (15) (N = 1,210)	Ichibori et al. (16) (N = 88)	Mangieri et al. (17) (N = 439)	Sherwood et al. (18) (N = 16,694)	Munoz-Garcia et al. (19) (N = 477)
Type	Retrospective	Retrospective	Retrospective	Retrospective	Retrospective	Observational study
	observational study	observational study	observational study	observational study	observational study	(Conference abstract)
	April 2013–2014	January 2007–December 2012	October 2009–January 2015	January 2009–May 2015	October 2011–June 2016	April 2008–December 201

(Continued)
TABLE 1 | Continued

Study	Czerwińska-Jelonkiewicz et al. (14) \((N = 476)\)	D’Ascenzo et al. (15) \((N = 1,210)\)	Ichibori et al. (16) \((N = 88)\)	Mangieri et al. (17) \((N = 439)\)	Sherwood et al. (18) \((N = 16,694)\)	Munoz-Garcia et al. (19) \((N = 477)\)
Inclusion criteria	All patients who underwent TAVI in the participating centers between 2013 and 2014 were included	All patients undergoing balloon expandable TAVR who are not on oral anticoagulant therapy with vitamin K antagonists	Patients who underwent TAVR using balloon expandable aortic valves because of severe aortic valve stenosis	All patients with severe aortic stenosis underwent intervention through transfemoral approach	Patients without pre-operative atrial fibrillation from STS/ACC TVT registry	NA
Exclusion criteria	NA	Patients on oral anticoagulant therapy with vitamin K antagonists	Patients who had indications for oral anticoagulant therapy before TAVI	1. Patients on anticoagulant therapy (either as monotherapy or with an antiplatelet agent)	1. Patients with atrial fibrillation	NA
				2. Patients who died during index hospitalization	2. Patients with non-transfemoral access	NA
				3. Patients who underwent TAVR discharged without any antiplatelet/anticoagulant therapy because of a prohibitive risk of bleeding	3. Patients who had in-hospital death and those with missing data on discharge medications and procedural complications	NA
				4. TAVR procedure not performed through a transfemoral route	4. Patients discharged without any antiplatelet therapy	NA
Medication DAPT group	Aspirin and clopidogrel	1. Aspirin	1. Lifelong low-dose aspirin 100 mg daily for 6 months.	Aspirin (75/100/150 mg/day) clopidogrel (75 mg/day) within 3–6 months	Aspirin and clopidogrel	NA
		2. Clopidogrel for at least 6 months	2. Ticlopidine 200 mg or clopidogrel 75 mg daily for 6 months			NA
Medication SAPT group	Aspirin	Aspirin for at least 6 months	Lifelong low-dose aspirin 100 mg daily for 6 months.	Either ASA or clopidogrel for 3–6 months	NA	NA
Follow-up included	In-hospital duration	30 days	1 year	1 year	1 year	NA
		Prosthetic heart valve dysfunction at follow-up (defined as diagnosis of aortic valve <1.2 cm², an increase of medium gradient of more than 20 mmHg and a peak velocity of more than 3 m/s, excluding aortic valve regurgitation)	All-cause death, non-fatal myocardial infarction, non-fatal stroke, and major or life-threatening bleeding complications	Composite of all-cause mortality, myocardial infarction, cerebrovascular events, major bleeding requiring hospitalization, and valve thrombosis	Composite of stroke, all 1 year of cause mortality and major bleeding	NA
TAVR device	Sapien/Sapien XT or CoreValve	Sapien and Sapien XT	SAPIEN or SAPIEN XT	SAPIEN XT or SAPIEN 3	All available	NA

AS, aortic stenosis; AVA, aortic valve area; AV, aortic valve; PCI, percutaneous coronary intervention; TIA, transient ischemic attacks; MACE, major adverse cardiovascular and cerebrovascular events.
TABLE 2 | Baseline characteristics of the included patients and procedure.

Study	Ussia et al. (8)	Stabile et al. (9)	Rodès-Cabau et al. (10)	Brouwer et al. (11)	Poliacikova et al. (12)	Durand et al. (13)						
	DAPT (40)	SAPT (39)	DAPT (60)	SAPT (60)	DAPT (111)	SAPT (111)	DAPT (334)	SAPT (331)	DAPT (58)	SAPT (91)	DAPT (128)	SAPT (164)
Age (y)	80 ± 6	81 ± 4	80.2 ± 6	81.1 ± 4.8	79.9 ± 9	79.5 ± 6.4	80.4 ± 6.2	81.6 ± 6.3	82 ± 6.9	84.6 ± 5.8	82.7 ± 6.3	
Female	20 (50.0)	23 (59.0)	44 (73.3)	36 (60.0)	41 (36.9)	52 (46.8)	NA	26 (44.8)	42 (46.2)	78 (60.9)	74 (45.1)	
Hypertension	35 (87.5%)	31 (79.5%)	57 (95.0%)	57 (95.0%)	86 (77.3%)	243 (73.4%)	NA	NA	90 (70.3%)	116 (70.7%)		
Diabetes	13 (32.5%)	8 (20.5%)	15 (25.0%)	17 (28.3%)	41 (26.9%)	36 (23.6%)	78 (23.6%)	16 (27.6%)	16 (17.6%)	30 (23.4%)	40 (24.4%)	
CKD	NA	NA	NA	NA	NA	NA	NA	3 (5.2%)	5 (5.5%)	11 (8.6%)	12 (7.3%)	
Stroke	2 (5.0%)	4 (10.3%)	NA	NA	12 (3.6%)	18 (5.4%)	NA	NA	12 (9.4%)	13 (7.9%)		
Atrial fibrillation	4 (10.0%)	6 (15.4%)	NA	NA	NA	NA	16 (3.6%)	18 (5.4%)	NA	12 (7.9%)		
NYHA III, IV	26 (65.0%)	23 (59.0%)	54 (90.0%)	53 (88.3%)	NA	NA	NA	NA	99 (77.3%)	131 (79.9%)		
EF (%)	51 ± 12	54 ± 8	52.4 ± 14.4	51.3 ± 11.0	55 ± 12	54 ± 13	NA	NA	NA	60.5 ± 14.0	54.4 ± 13.6	
CAD	NA	NA	NA	NA	NA	138 (41.3%)	134 (40.5%)	NA	37 (63.8%)	50 (54.9%)	39 (30.5%)	82 (50.0%)
MI	7 (17.5%)	4 (10.3%)	26 (23.4%)	20 (31.6%)	31 (28.5%)	28 (9.5%)	NA	NA	16 (27.6%)	20 (22.0%)	11 (8.6%)	12 (7.3%)
PCI	12 (30.0%)	9 (23.1%)	NA	NA	NA	NA	NA	16 (27.6%)	20 (22.0%)	NA	NA	
CABG	2 (5.0%)	4 (10.3%)	39 (35.1%)	42 (65.1%)	61 (18.4%)	17 (29.3%)	19 (20.9%)	10 (7.8%)	30 (18.3%)			
AV surgery	24 (60.0%)	18 (46.2%)	NA	NA	20 (6.0%)	23 (6.9%)	NA	NA	10 (7.3%)	18 (11.0%)		
Pacemaker	4 (10.0%)	1 (2.6%)	NA	NA	NA	NA	NA	NA	10 (7.3%)	18 (11.0%)		
AV area (cm²)	0.6 ± 0.2	0.6 ± 0.3	0.42 ± 0.13	0.4 ± 0.11	NA	NA	0.67 ± 0.17	0.71 ± 0.22	0.63 ± 0.14	0.61 ± 0.16		
AV mean gradient (mmHg)	52 ± 6	57 ± 18	59.4 ± 15.4	63.6 ± 16	43 ± 15	NA	NA	48.3 ± 19.5	50.1 ± 15.2			
STS (%)	8 ± 5	7 ± 3	9.7 ± 5.1	10.4	6.2 ± 4.4	6.4 ± 4.6	NA	NA	6.9 ± 4	7.4 ± 6.1		
EuroScore (%)	23 ± 15	21 ± 16	23 ± 16	81.1	NA	NA	NA	20.2 ± 11.6	20 ± 12.4			
Transfemoral	38 (95.0%)	39 (100.0%)	NA	80 (72.1%)	73 (50.4%)	NA	NA	98 (76.6%)	138 (84.1%)			
CoreValve	40 (100.0%)	39 (100.0%)	0	0	0	0	NA	0	54 (32.9%)			
SAPRIEN	0	0	60 (100.0%)	60 (100.0%)	111 (100.0%)	111 (100.0%)	NA	NA	128 (100.0%)	110 (67.1%)		

(Continued)
Study titles and abstracts were reviewed for eligibility by two independent investigators (YZ and WY), and studies that satisfied the inclusion criteria were retrieved for full-text assessment. Two investigators (YZ and WY) carried out data extraction independently, with disagreements resolved by a third investigator (BH). We extracted the following data from each selected study: (1) basic information of the study including first author, year of publication, duration of follow-up, study type, and inclusion and exclusion criteria; (2) baseline data of enrolled patients; (3) detailed cardiovascular clinical outcome. Data from the propensity score-matched cohort were preferentially abstracted if available.

Outcomes
The main outcomes were major adverse cardiac and cerebrovascular events, including all-cause mortality, cardiovascular death, myocardial infarction, stroke, and major or life-threatening bleeding. MACE was defined as a composite of all-cause mortality, major stroke, and MI. All clinical events were defined according to the Valve Academic Research Consortium-2 (VARC-2) (7). Both in-hospital and discharge follow-up endpoint events were accounted for in the analysis. The longest reported follow-up duration was used to analyze the main endpoints when multiple follow-up durations existed. Subgroup analysis was performed according to study type (RCTs vs. observational studies).

Statistical analysis
This meta-analysis was performed with RevMan 5.3 (Review Manager [RevMan] Version 5.3. Copenhagen: The Nordic Cochrane Center, The Cochrane Collaboration; 2014). The pooled odds ratios (OR) were calculated by combining individual studies using a fixed-effects model when the heterogeneity was not evident. Total ORs were calculated and reported with 95% confidence intervals (CI). Heterogeneity was tested by the Chi-squared test and the I²-test. Heterogeneity was identified when the $P < 0.1$ or $I^2 > 50\%$. Funnel plots were constructed to assess publication bias. Sensitivity analysis was performed by excluding a single study at a time.

RESULTS
Search Results
A detailed study selection process is shown in Figure 1. In short, 979 articles were collected based on our search strategy, of which 328 were duplicated articles. Further, 624 were excluded after screening the titles and abstracts. The full text was reviewed for the remaining 27 articles, and of those, 6 were studies comparing anticoagulant strategy, 8 were registration websites, 10 were irrelevant articles, and 1 was a meta-analysis. Finally, 12 studies with 20,766 patients were enrolled for our meta-analysis (8–19).

Characteristics of Included Studies
Of the 12 included studies, four were RCTs (8–11), and eight were observational studies (12–19). Three observational studies applied propensity score-matched analyses (13, 15, 16). All except three studies were small sample studies. Only three studies
had more than 500 patients (11, 15, 18), and especially one incorporating 16,694 patients had a large weight and substantial impact on the meta-analysis (18). As for the longest follow-up time with detailed outcomes available, one study had only in-hospital outcomes (14), three studies had 30 day outcomes (9, 12, 13), one study had 3 month outcomes (10), two studies had 6 month outcomes (8, 9), four studies had 1-year outcomes (11, 16–18). Five of the included studies used SAPIEN series devices with a large percentage (9, 10, 14–16). One study had only detailed bleeding outcomes available (14). Two studies had unusual endpoints with bleeding and prosthetic valve dysfunction, respectively (11, 15). Detailed characteristics of the eligible studies are outlined in Table 1.

Patient and Procedure Characteristics

Patient baseline data and procedure characteristics are shown in Table 2. Patients included in the two groups were similarly elderly (83.78 y) and tended to have multiple comorbidities, including hypertension (79.1%), DM (26.6%), and CKD (10.1%). The DAPT group was more likely to undergo previous PCI, MI, and coronary artery disease compared with SAPT mainly due to selection bias in observational studies. Patients included had a mean EuroSCORE of 21.83% and a mean Society of Thoracic Surgeons (STS) score of 6.00%, with a mean aortic valve area of 0.58 cm² and a mean aortic gradient of 50.48 mmHg.

Quality Assessment

The quality of RCTs was assessed by the Cochrane Collaboration Risk of Bias Tool, as illustrated in detail in Figure 2. Observational studies were assessed by the Newcastle-Ottawa Quality Assessment Scale, as shown in Table 3. All the RCTs and seven of the observational studies were considered to be high quality (8–18).

Outcomes

Nine studies (N = 3,119) reported MACE data, a composite of cardiovascular death, MI, and stroke. Pooling the data of these studies showed that there was no significant difference but a trend toward higher MACE with DAPT when comparing with SAPT [OR 1.19 (0.99, 1.44), p = 0.07] (Figure 3) was evident. Neither stratified by type of study (four RCTs vs. five observational studies) nor sensitivity analysis by removing each individualized study showed a difference in MACE between the two groups.

For all-cause mortality in ten studies (N = 19,116), a pooled analysis of all studies showed that there was a reduction in the DAPT vs. SAPT group [OR 0.85 (0.76, 0.94), p = 0.003] (Figure 4), which was mainly driven by the large weight study of Sherwood et al. (N = 16,694). Sensitivity analysis demonstrated a non-statistically significant difference in RCTs or observational studies when removing Sherwood et al. (18). Of note, one study by D’Ascenzo et al. (15) (N = 1,210) showed a significant reduction in all-cause mortality in the SAPT group, unlike most other studies.

There was no difference in cardiovascular mortality by pooling the data of six studies (N = 2,601) [OR 1.46 (0.93, 2.30), p = 0.10; Figure 5]. When stratified by type of study, there was a significant trend in the SAPT group toward cardiovascular mortality in three observational studies [OR 2.01 (1.09, 3.69), p = 0.03], which was not shown in three RCTs. Sensitivity analysis showed that the trend of SAPT was largely driven by D’Ascenzo et al. (15) (N = 1,210), and no statistical difference existed when removing it.

As for thromboembolism outcomes, including MI and stroke, MI varied significantly between three RCTs and seven observational studies (N = 19,204) (Figure 6). There were no differences between groups in the occurrence of MI events in RCTs [OR 2.10 (0.75, 5.84), p = 0.16], but a pooled analysis of observational studies showed a higher risk of MI in the DAPT group [OR 1.44 (1.14, 1.83), p = 0.002], which was mainly driven by two studies (15, 18). Interestingly, intensive antiplatelet therapy of DAPT should reduce the incidence of the embolic event of myocardial infarction, whereas the selection bias of the observational study may partly explain the contradictory result. No difference was found in stroke events between the two groups (N = 20,290) [OR 0.97 (0.80, 1.16), p = 0.71; Figure 7], and the result was of great stability in both subgroup analysis or sensitivity analysis.
Combined major and life-threatening bleeding was significantly higher in the DAPT group in both RCTs and observational studies (N = 20,766) [OR 1.73 (1.19, 2.51), p = 0.004; Figure 8]. The benefits of major vascular complications in the SAPT group were mainly driven by a substantial reduction of major bleeding events [OR 2.75 (1.45, 5.21), p = 0.002; Figure 9]. Notably, there were no differences of LTB between the two groups when stratified by type of study, but an increased incidence of LTB was seen when pooling all studies together [OR 1.27 (1.04, 1.55), p = 0.02; Figure 10].

DISCUSSION

In the present meta-analysis, we pooled all eligible studies to compare the safety and efficacy of DAPT vs. SAPT after the TAVR procedure. Our results showed that DAPT post-TAVR was associated with a significantly increased risk of major or life-threatening bleeding and was non-superior to SAPT in terms of ischemic events of MI and stroke. Furthermore, there was no significant difference in MACE, all-cause mortality, and cardiovascular mortality between the two groups. Thus, these data lend support to SAPT as an optimal antithrombotic strategy following TAVR, which can improve the prognosis of patients.

The pooling data of all studies indicate that there existed no significant difference in MACE, all-cause death, and cardiovascular death comparing DAPT with SAPT after TAVR. However, further subgroup analysis and sensitivity analysis often showed inconsistent results, mostly due to high-weight observational studies. The retrospective nature of observational study developed its inevitable bias. Physicians tend to make antiplatelet strategies based on empirical assessment of patients’ bleeding and ischemic risk profile. For instance, patients were more likely to be assigned to the DAPT group because of MI or PCI history and the SAPT group because of relative higher bleeding risk. Hence, great baseline heterogeneity between the two study groups in the observational studies leads to controversial results, as previous meta-analyses have revealed (20, 21). Take all-cause death for example, DAPT showed no difference compared with SAPT in RCTs but had favorable effects in observational studies. However, these benefits disappeared when the large powered study by Sherwood et al. (18) was removed from sensitivity analysis. When analyzing reasons for inconsistent results of all-cause death among studies, we noted that a substantial proportion of the all-cause deaths were non-cardiovascular deaths due to malignant diseases and comorbid chronic conditions, which were irrelevant to antiplatelet strategies. For cardiovascular death, the SAPT group showed lower mortality than DAPT in observational studies and no difference in RCTs. That is, despite contradictory results in these events, SAPT was always safe and non-inferior to DAPT.

The current guideline recommends DAPT treatment for the first 3–6 months after TAVI, a temporary intensified antiplatelet regimen is considered to mitigate thromboembolization risk mediated by prosthetic valve before the valve endothelialization has been completed. Nevertheless, our results showed that DAPT was not associated with reducing myocardial infarction and
stroke events. Especially for stroke, both subgroup analysis and sensitivity analysis showed constant differences between the two groups. For myocardial infarction events, SAPT even showed superior results in observational studies, although such a difference disappeared when the large weight studies were removed (15). Periprocedural ischemic complications were usually caused by embolization of acute device-related thrombus, atheroma, calcium, or connective tissue debris developed with mechanical manipulation and new-onset atrial fibrillation (22). Hemodynamic instability and hypoperfusion during rapid ventricular pacing in TAVR may also lead to stroke. The turbulence caused by malposition and mismatching of the anatomical structure and the bioprosthetic valve may increase thrombotic risks, partially explaining the inconsistent results of embolism risk in subgroup analysis between the two groups. Post-TAVR ischemic events mostly occurred during the hospital stay, ∼50% within 24 h of the procedure (23). Therefore, an intense antithrombotic strategy with DAPT has faint benefits on embolism events; prolonged DAPT for 3–6 months after discharge appears unnecessary. An individualized antithrombotic strategy that comprehensively integrates the characteristics of aortic valvular diseases, devices, procedures, and post-TAVR flow dynamics may have a more important role. Regarding the prosthetic valve's endothelialization for integration into the aortic wall, studies have found that SAPT can also promote the completion of endothelialization without prolonging the duration of antiplatelet therapy (24). Subclinical valve thrombosis considered with increased risk of stroke, though rare, can be detected with 4-dimensional computed tomography, according to which physicians could develop an individualized antithrombotic strategy of transition to a more aggressive antiplatelet strategy during follow-up (25).

Intensifying the antiplatelet regimen with DAPT comes at the cost of increased major and LTB events, largely driven by major bleeding events. In terms of LTB events alone, there was no difference between the two groups in each subgroup analysis, but the pooling data of all eligible studies suggested an increased risk of LTB. For the primary driver of benefit in bleeding events, high-quality RCTs found that DAPT significantly increased the risk of major bleeding, and there were still consistent differences in the pooled analysis. The bleeding events did not reach a statistical difference in the observational studies because of the inherent limitation of observational design, in which the SAPT group was mostly the population with high bleed risk, while the DAPT group had lower bleeding incidence. The recommended DAPT treatment after TAVR was based on expert consensus, though purely empirical, and was developed from abundant practical experience on antithrombotic strategies after PCI, with consideration of the prosthesis endothelialization and requirement of reducing thromboembolism. However, with the increasing number of TAVR procedures, the current incidence of stroke events after TAVR is far less than that of bleeding events (26). Therefore, more attention has been paid to searching for an optimal antiplatelet strategy.
FIGURE 4 | Forest plot for all-cause mortality with subgroup analysis stratified by study type at longest follow-up.

FIGURE 5 | Forest plot for cardiovascular mortality with subgroup analysis stratified by study type at longest follow-up.
FIGURE 6 | Forest plot for myocardial infarction with subgroup analysis stratified by study type at longest follow-up.

FIGURE 7 | Forest plot for stroke with subgroup analysis stratified by study type at longest follow-up.
FIGURE 8 | Forest plot for major or life-threatening bleeding (LTB) with subgroup analysis stratified by study type at longest follow-up.

FIGURE 9 | Forest plot for major bleeding with subgroup analysis stratified by study type at longest follow-up.
strategy to reduce bleeding on the premise of no increased thromboembolism. For example, bleeding has served as the primary endpoint in the POPular-TAVI trial (11). Increased bleeding risk in the DAPT group was mainly attributed to the fact that TAVR candidates were usually elderly with a high-risk profile of bleeding and tended to have multiple comorbid illnesses with a bleeding tendency such as chronic kidney disease, anemia, and gastrointestinal disease. Acute postoperative bleeding of TAVR was mostly attributed to the procedure itself rather than the antiplatelet regimen, commonly seen at the location of vascular access. Such bleeding was associated with large-bore catheters, frail vessels due to peripheral vascular diseases, inappropriate anticoagulation during the procedure, and transapical access (27). Major bleeding occurring after TAVR increases within 24 h, peaks at 7 days, mostly within 1 month postoperatively, and sometimes evolves into LTB because of no timely detection. Thus, efforts to reduce bleeding events after TAVR require integrated management, comprised of an optimal antiplatelet strategy, novel advanced devices, more skilled operators (28), meticulous postoperative monitoring, and nursing, together ultimately improving the prognosis in patients undergoing TAVR.

CONCLUSION

As an updated meta-analysis pooling maximum studies of eligibility up to now, our results demonstrate that, compared with SAPT, post-TAVR DAPT is associated with a significantly increased incidence of major or life-threatening bleeding without additional benefits in preventing thrombotic events such as MI and stroke. Although further studies are warranted to establish the optimal antithrombotic regimen, SAPT is promising to serve as the first recommended antiplatelet strategy in patients undergoing TAVR without indication for anticoagulants when guidelines are updated in the next version.

DATA AVAILABILITY STATEMENT

The original contributions generated for the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

BH and YZ proposed the idea for the study and finished the study design. YZ and WY retrieved studies, collected and extracted data with disagreements resolved by LS and BH. YZ performed the meta-analysis and drafted the manuscript with a complete review by LS and BH. All authors read and approved the final manuscript.

FUNDING

This work was supported by grants from the Clinical Research Plan of Shanghai Hospital Development Center (SHDC2020CR1039B), the National Natural Science Foundation of China (Grant No. 81830010), and the Science and Technology Commission of Shanghai Municipality (Grant No. 18411950400).
REFERENCES

1. Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP III, Gentile F, et al. ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation. (2021) 143:e72–227. doi: 10.1161/CIR.0000000000000923

2. Leon MB, Smith CR, Mack MJ, Makkar RR, Svensson LG, Kodali SK, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. (2016) 374:1690–20. doi: 10.1056/NEJMoa1514616

3. Siontis GC, Praz F, Pilgrim T, Masvidis D, Verma S, Salanti G, et al. Transcatheter aortic valve implantation vs. surgical aortic valve replacement for treatment of severe aortic stenosis: a meta-analysis of randomized trials. Eur Heart J. (2016) 37:5503–12. doi: 10.1093/eurheartj/ehw225

4. van Baal JWP, Roszek B, van Elk M, Geertsema RE. Transcatheter aortic valve replacement: clinical safety and performance data. Expert Rev Med Dev. (2019) 16:899–911. doi: 10.1080/17434440.2019.1674138

5. Kappetein AP, Head SJ, Généreux P, Piazza N, van Mieghem NM, Blackstone EH, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation (VARC-2). Eur J Cardiothorac Surg. (2012) 42:545–60. doi: 10.1093/ejcts/ezs533

6. Sattar Y, Rauf H, Bareeqa SB, Ullah W, Myla M. Transcatheter aortic valve replacement vs. surgical aortic valve replacement: a review of aortic stenosis management. Cureus. (2019) 11:e6431. doi: 10.7759/cureus.6431

7. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. (2010) 8:336–41. doi: 10.1016/j.ijssu.2010.02.007

8. Kappetein AP, Head SJ, Généreux P, Piazza N, van Mieghem NM, Blackstone EH, et al. Updated standardized endpoint definitions for transcatheter aortic valve implantation. Int J Cardiol. (2014) 174:624–7. doi: 10.1016/j.ijcard.2014.04.170

9. Rodes-Cabau J, Masson JB, Walsh RC, Garcia Del Blanco B, Pelletier M, Webb JG, et al. Aspirin vs. aspirin plus clopidogrel as antiplatelet treatment following transcatheter aortic valve replacement with a balloon-expandable valve: the ARTE (aspirin vs. aspirin + clopidogrel following transcatheter aortic valve implantation) randomized clinical trial. JACC Cardiovasc Interv. (2017) 10:1357–65. doi: 10.1016/j.jcin.2017.04.014

10. Brower J, Nijenhuis VJ, Delevi R, Hermanides RS, Holvoet W, Dubois CLF, et al. Aspirin with or without clopidogrel after transcatheter aortic valve implantation. N Engl J Med. (2020) 383:1447–57. doi: 10.1056/NEJMoa2017815

11. Polaiciukova P, Cockburn J, de Belder A, Trivedi U, Hildick-Smith D, et al. Antiplatelet and antithrombotic treatment after transcatheter aortic valve implantation–comparison of regimes. J Invasive Cardiol. (2013) 25:54–8.

12. Durand E, Blanchard D, Chassagny S, Gilard M, Laskar M, Borz B, et al. Comparison of two antiplatelet therapy strategies in patients undergoing transcatheter aortic valve implantation. Am J Cardiol. (2014) 113:355–60. doi: 10.1016/j.amjcard.2013.09.033

13. Czerwińska-Jelonkiewicz K, Zembala M, Dabrowski M, Witkowski A, Ochała A, Kochman J, et al. Can TAVI patients receive aspirin monotherapy as patients after surgical aortic bioprosthesis implantation? Data from the polish registry–POL-TAVI. Int J Cardiol. (2017) 227:305–11. doi: 10.1016/j.ijcard.2016.11.095

14. D’Ascenzo F, Benedetto U, Bianco M, Conrotto F, Moretti C, D’Onofrio A, et al. Which is the best anti-aggregant or anticoagulant therapy after TAVI? A propensity-matched analysis from the ITER registry. The management of DAPT after TAVI. EuroIntervention. (2017) 13:e1392–400. doi: 10.2440/EIJ-D-17-00198

15. Ichibori Y, Mizote I, Maeda K, Onishi T, Ohtani T, Yamaguchi O, et al. Clinical outcomes and bioprosthetic valve function after transcatheter aortic valve implantation under dual antiplatelet therapy vs. aspirin alone. Circ J. (2017) 81:397–404. doi: 10.1253/circj.CJ-16-0903

16. Manzoli A, Jabbour RJ, Montalto C, Pagnesi M, Regazzoli D, Ancona MB, et al. Single-antiplatelet therapy in patients with contraindication to dual-antiplatelet therapy after transcatheter aortic valve implantation. Am J Cardiol. (2017) 119:1088–93. doi: 10.1016/j.amjcard.2016.11.065

17. Sherwood MW, Vemulapalli S, Harrison JK, Dai D, Vora AN, Mack MJ, et al. Variation in post-TAVR antiplatelet therapy utilization and associated outcomes: insights from the STS/ACC TVT Registry. Am Heart J. (2018) 204:9–16. doi: 10.1016/j.ahj.2018.06.006

18. Munoz-Garcia M, Munoz-Garcia E, Antonio Jesus Munoz Garcia AJ, Garcia-Pinilla JM, Morcillo-Hidalgo L, Robles Mezcu a A, et al. Management of antithrombotic/antiplatelet therapy in patients with aortic stenosis undergoing transcatheter aortic valve replacement. Eur J Heart Fail. (2019) 21:5–59. doi: 10.1002/ejhf.1488

19. Zuo W, Yang M, He Y, Hao C, Chen L, Ma G. Single or dual antiplatelet therapy after transcatheter aortic valve replacement: an updated systemic review and meta-analysis. J Thorac Dis. (2019) 11:959–68. doi: 10.21037/jtd.2019.01.87

20. Khalil C, Mosleh W, Megaly M, Gandhi S, Iskander FH, Iskander MH, et al. Mono versus Dual antiplatelet therapy after transcatheter aortic valve replacement: a systematic review and meta-analysis. Struct Heart. (2018) 2:248–62. doi: 10.1016/j.ijcard.2018.11.013

21. Ranasinghe MP, Peter K, McFadyen JD. Thromboembolic and bleeding complications in transcatheter aortic valve implantation: insights on mechanisms, prophylaxis and therapy. J Clin Med. (2019) 8:280. doi: 10.3390/jcm8020280

22. Kahler P, Al-Rashid F, Döttger P, Mori K, Plicht B, Wendt D, et al. Cerebral embolization during transcatheter aortic valve implantation: a transcranial Doppler study. Circulation. (2012) 126:1245–55. doi: 10.1161/CIRCULATIONAHA.112.092546

23. Thomas M, Schymik G, Walther T, Hibbert D, Lefèvre T, Treede H, et al. One-year outcomes of cohort 1 in the Edwards SAPIEN Aortic Bioprosthesis European Outcome (SOURCE) registry: the European registry of transcatheter aortic valve implantation using the Edwards SAPIEN valve. Circulation. (2011) 124:425–33. doi: 10.1161/CIRCULATIONAHA.110.001545

24. Ng ACT, Holmes DR, Mack MJ, Delgado V, Makkar R, Blanke P, et al. Leaflet immobility and thrombosis in transcatheter aortic valve replacement. Eur Heart J. (2020) 41:3184–97. doi: 10.1093/eurheartj/ehaa542

25. Mangieri A, Montaldo C, Poletti E, Sticchi A, Crimi G, Giannini F, et al. Thrombotic vs. bleeding risk after transcatheter aortic valve replacement: JACC Review topic of the week. J Am Coll Cardiol. (2019) 74:2088–101. doi: 10.1016/j.jacc.2019.08.1032

26. Redfors B, Watson BM, McAndrew T, Palisaitis E, Francese DP, Razavi M, et al. Mortality, length of stay, and cost implications of procedural bleeding after percutaneous interventions using large-bore catheters. JAMA Cardiol. (2017) 2:798–802. doi: 10.1001/jamacardio.2017.0265

27. Lareyre F, Raffort J. The role of the vascular surgeon to optimize the management of vascular complications during transcatheter aortic valve implantation. Vascular. (2020) 1:1708338120936815. doi: 10.1177/1708338120936815

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhang, Shen, Yang and He. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.