Search for jet extinction in the inclusive jet-p_T spectrum from proton-proton collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

Abstract

The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale.

Published in Physical Review D as doi:10.1103/PhysRevD.90.032005.
1 Introduction

The scattering of high-energy particles in theories of quantum gravity is fundamentally different from that expected by the local quantum field theories of the standard model (SM) [1]. The Planck scale, the threshold at which quantum gravity becomes strong, is therefore a fundamental boundary beyond which some modification to the SM is required. The Planck scale differs from the electroweak scale by 16 orders of magnitude, creating what is commonly known as the hierarchy problem. There are many models that propose a mechanism by which these two scales are related to one another through the hypothesized existence of extra spatial dimensions. Propagation of gravitons through these extra dimensions could explain the relative weakness of gravity compared to the strong and electroweak interactions. Depending on the model, a variety of striking signatures of physics beyond the SM may be observed. As a result, models that predict terascale gravity have been the subject of numerous searches at the CERN LHC [2–11]. Some of these searches are designed to look for effects such as resonant production and decay of new states, e.g. Randall–Sundrum gravitons [12], as well as for continuum enhancements to SM processes from both virtual and direct graviton production [13]. Direct searches for production of microscopic black holes consider events with high transverse momentum (p_T) and multiple objects from the decay of possible high-entropy intermediate states [1, 14, 15].

As of yet, no signal indicative of terascale gravity has been found. Nevertheless, it has been suggested that evidence of terascale gravity could also be found through more subtle effects on the jet-p_T spectrum manifesting themselves as a deviation from the predictions of quantum chromodynamics (QCD) [1, 14, 16, 17]. While the production of black holes or particles indicative of non-perturbative quantum gravity can have a rapidly increasing total cross section beyond some energy scale, their decay to isolated jets or other low-multiplicity final states could be suppressed, leading to a full suppression of high-p_T SM scattering processes (jet extinction). Because jet production is the leading SM process at high p_T, such effects would be initially noticeable as a jet extinction signature [17]. In this sense, the search for jet extinction is complementary to searches for black holes in high-multiplicity final states. These final states arise in the asymptotic limit, where black holes are expected to behave classically [15]. The extinction search explores an intermediate regime, where a high-multiplicity signature may not be readily observable.

There are several models that include extinction phenomena [16, 17]. In this, the first search for extinction effects at the LHC, we consider a model with a large-width Veneziano form factor modification of QCD processes with an extinction mass scale M equivalent to the modified Planck scale [17]. This form factor is discussed in greater detail in Section 3. Beyond the scale M, the predominance of intermediate high-entropy string states will suppress high-p_T SM jet production. This search exploits techniques developed for the measurement of the differential jet production cross section as a function of p_T at the CMS [18] experiment to search for a modification of the jet-p_T spectrum consistent with extinction phenomena, in which there are fewer high-p_T jets than expected from the SM. This analysis is especially sensitive to the correlations of the systematic uncertainties between bins in jet-p_T, so a detailed evaluation of the systematic uncertainties associated with the jet energy scale (JES) and the parton distribution functions (PDFs) is performed.
2 The CMS detector

The central feature of the CMS detector [19] is a superconducting solenoid of 6 m internal diameter, providing a field of 3.8 T. Within the field volume are silicon pixel and strip trackers, a lead-tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL). Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke.

The CMS experiment uses a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the center of the LHC ring, the y axis pointing up (perpendicular to the plane of the LHC ring), and the z axis along the counterclockwise-beam direction. The polar angle, θ, is measured from the positive z axis and the azimuthal angle, φ, is measured in the xy plane. The pseudorapidity is defined as \(\eta = -\ln(\tan(\theta/2)) \).

The first level of the CMS trigger system is composed of customized hardware and uses information from the calorimeters and muon detectors to select events of interest within a 4 µs interval following each beam crossing. The high-level trigger (HLT) processor farm further decreases the event rate from about 100 kHz to about 400 Hz before the data are recorded for analysis.

3 Modeling of the SM and extinction hypotheses

The SM prediction for the jet-\(p_T \) spectrum is calculated at next-to-leading order (NLO) with the NLOJET++ program within the FASTNLO framework [21–23]. The CT10 PDF set [24] is used in this calculation. The renormalization and factorization scales, \(\mu_R \) and \(\mu_F \), are set equal to the jet-\(p_T \). The NLO jet spectra do not include non-perturbative (NP) effects or any modeling of the detector response. The NP effects, which account for hadronization and multi-parton interactions, are incorporated as corrections determined from the PYTHIA 6.424 [25] Monte Carlo (MC) generator. The generator is used to simulate QCD events with and without NP effects. The corrections are derived from the ratio of the resulting \(p_T \) spectra. The NP correction decreases monotonically as a function of jet-\(p_T \), from 1.03 at 592 GeV to 1.01 at 2500 GeV. This process is repeated using the HERWIG 2.4.2 [26] generator. The difference between the corrections derived from these generators is found to be negligible in the phase space of this analysis.

The corrected NLO jet spectra are convolved with a function that models the jet energy resolution (JER) in the CMS detector [27]. These smeared spectra can be compared directly to the observed spectrum. The smeared NLO jet spectrum is referred to as \(d\sigma_{\text{QCD}}/dp_{T,NLO} \). The predicted spectrum does not include weak radiative corrections [28], but the impact of these corrections on our sensitivity to an extinction signature is evaluated during the limit-setting procedure.

The effects of extinction at LO are also modeled using the PYTHIA MC generator. The matrix elements of each color channel are modified by Veneziano-type form factors [17, 29], which affect all 2 \(\to \) 2 scattering amplitudes. The input parameters for these form factors are the extinction mass scale \(M \) and a dimensionless width parameter related to the strength of the string coupling. For small values of the width parameter, these form factors are similar to those that describe string resonances [29, 30]. This is referred to as the weak-coupling limit. The regime where the width parameter is close to unity is known as the strong-coupling limit. In this limit, extinction physics rapidly overwhelms LO SM processes as well as any resonant string production. Beyond the scale \(M \), scattering processes are dominated by a continuum of high-entropy intermediate states, which results in suppression of SM jet production [17].
This search assumes a width parameter of one, the absolute strong-coupling limit of the string model. Values of the width above one represent a very different phenomenology where the form factors no longer monotonically decrease as a function of jet momentum. This range of the width parameter has not been studied in this analysis.

The effects of extinction are predominantly found in $2 \rightarrow 2$ scattering processes. Such processes are dominated by the LO calculation at a given p_T scale. The signal is approximated with a LO generator. The extinction process is assumed to have a very weak effect on higher-order interactions. A sigmoid function provides a good functional fit of the effect of the Veneziano form factors on the LO jet-p_T spectrum [17]:

$$F(p_T, M) = \frac{1}{1 + \exp \frac{p_T - p_{T,1/2}(M)}{p_{T,0}(M)}}.$$ \(1\)

Here, $p_{T,1/2}$ describes the p_T threshold at which LO jet production is reduced to half the SM expectation, while $p_{T,0}$ indicates how quickly the LO cross section exponentially falls relative to the SM prediction. This relation yields the following equation for the jet-p_T spectrum assuming extinction at LO, where σ^{Ext} is the jet production cross section assuming extinction:

$$\frac{d\sigma^{\text{Ext}}}{dp_{T,LO}} = \frac{d\sigma^{\text{QCD}}}{dp_{T,LO}} F(p_T, M)$$ \(2\)

and at NLO:

$$\frac{d\sigma^{\text{Ext}}}{dp_{T,NLO}} = \frac{d\sigma^{\text{QCD}}}{dp_{T,NLO}} - \frac{d\sigma^{\text{QCD}}}{dp_{T,LO}} + \frac{d\sigma^{\text{Ext}}}{dp_{T,LO}}.$$ \(3\)

Several simulations of LO jet production are performed, assuming values of M between 2 and 5 TeV in increments of 500 GeV. The jet-p_T spectrum is produced at NLO for each sample using NP corrections and resolution smearing as described above. The values of $p_{T,1/2}(M)$ and $p_{T,0}(M)$ are extracted from a fit of $F(p_T, M)$ to the expected p_T distribution for each value of M. The intermediate values of $p_{T,1/2}(M)$ and $p_{T,0}(M)$ are interpolated between these fitted points. The fitted value of $p_{T,0}(M)$ is nearly independent of M and ranges between 260 and 330 GeV, while $p_{T,1/2}(M)$ is about half of M. The systematic uncertainty associated with the choice of fit is negligible.

For finite values of M, the predicted jet-p_T spectrum is suppressed in systems with an invariant mass above M. At very large values of M, the SM and extinction spectra become identical.

4 Event reconstruction and selection

A particle-flow algorithm [31, 32] is used to reconstruct the events. Jets are formed by clustering the reconstructed particle-flow objects using the anti-k_T algorithm [33] with a distance parameter R of 0.7. This value is larger than the usual distance parameter of 0.5 used in most CMS analyses. The larger cluster size reduces the likelihood that jets will be lost because of detector effects. The jet transverse momentum resolution is typically 15% at $p_T = 10$ GeV, 8% at 100 GeV, and 4% at 1 TeV. Jet energy corrections are derived from simulation and are confirmed with measurements of energy balance in recorded dijet and photon+jet events. The combined corrections are approximately 5–10%, depending on the pseudorapidity and p_T of the jet. To
Event reconstruction and selection

suppress spurious signals from detector noise [34], jets are required to satisfy stringent selection criteria [35]. Specifically, each jet must contain at least two particles, one of which is a charged hadron. Additionally, each of the jet energy fractions carried by neutral hadrons, photons, electrons, and muons must be less than 90%. This analysis is conducted in a regime where the purity and acceptance of the jets in data are both close to unity, and therefore no systematic uncertainty is attributed to the selection criteria.

The data used in this analysis were collected from an HLT trigger that accepted events containing at least one jet with \(p_T > 320 \text{ GeV} \). An offset is applied to trigger-selected jets to subtract the energy deposited as a result of additional interactions per beam crossing (pileup); this offset does not affect the trigger efficiency. Events with objects originating from an interaction within an LHC beam crossing are selected by requiring the presence of at least one primary vertex within 24 cm of the detector center along the \(z \) axis. The primary event vertex is chosen from all reconstructed vertices by selecting the one with the largest sum of the \(p_T^2 \) of all associated tracks. For the purpose of additional noise suppression, the missing transverse energy, defined as the magnitude of the vector sum \(p_T \) of all reconstructed particle-flow objects, must be less than 30% of the total transverse energy deposited in the detector. All jets in each event that pass the selection criteria are binned as a function of jet-\(p_T \), following a convention adopted by other inclusive-jet analyses in CMS. The bin widths are variable, increasing with jet-\(p_T \) and corresponding approximately to the jet-\(p_T \) resolution [18]. Jets are required to have \(p_T > 592 \text{ GeV} \) and pseudorapidity \(|\eta| < 1.5 \) to ensure that the trigger is at least 99% efficient in all \(p_T \) bins used. This search is performed in 18 \(p_T \) bins between 592 and 2500 GeV.

![Figure 1: Inclusive jet-\(p_T \) spectrum (points) for \(|\eta| < 1.5 \), as observed in data. The SM NLO simulation with non-perturbative corrections, convolved with the detector response and normalized to the total number of jets observed in data, is shown by the solid line. The spectra predicted by the extinction model are defined relative to the SM prediction as described by Eq. 3 for the values of \(M = 2, 3, \) and 4 TeV and shown by the dashed lines. The colored band shows the magnitude of the sources of systematic uncertainty added in quadrature. These sources include the JES, JER, PDFs, and scale variations. An additional source of systematic uncertainty is attributed to the integrated luminosity during all formal comparisons between the data and models, but has little impact on the sensitivity to an extinction signature. The renormalization scale (\(\mu_R \)) and factorization scale (\(\mu_F \)) are set to the \(p_T \) of the hard-scattered parton.

A comparison between the observed inclusive jet-\(p_T \) spectrum and the spectrum predicted at
5 Statistical method and systematic uncertainties

To distinguish between SM NLO jet production and the alternative hypothesis (jet extinction), a profile-likelihood ratio test statistic \(\beta \equiv M^{-2} \) is constructed as a function of a signal strength parameter, \(\beta \equiv M^{-2} \). The variable \(\beta \) is chosen so that as \(\beta \to 0 \) the extinction model approaches the SM prediction.
We set limits using the modified-frequentist criterion CL_s [37, 38]. All sources of systematic uncertainty are treated as nuisance parameters with log-normal prior constraints and are constructed in the likelihood to have the same value across all jet-p_T bins. This construction implicitly assumes that the systematic uncertainties are completely correlated in jet p_T.

To account for correlations in the JES and PDF uncertainties between p_T bins, the uncertainties are subdivided into their underlying components. These individual components are strongly correlated across all p_T bins and tend to be dominant at different values of jet-p_T. As an example, uncertainties in the gluon PDF will be dominant at low p_T compared to uncertainties in the quark PDFs. The JES uncertainty is decomposed into each of its orthogonal sources. For the PDF uncertainty, the contributions from each of the eigenvectors in the CT10 [24] PDF set are evaluated separately. As a crosscheck, the search is repeated with respect to the MSTW2008 [39] PDF set. Among the PDF sets in common use, the CT10 set predicts the highest inclusive jet cross section at high p_T, while the MSTW2008 set gives one of the lowest. The results derived with respect to these two PDF sets serve as bounds on the result expected when using other sets, including those which are used in comparison to dedicated measurements of the inclusive jet production cross section [18], such as NNPDF [40], HERA [41], or ABKM [42].

The CT10 PDF set comprises a central prediction and 26 eigenvectors. The central prediction assumes all PDF input parameters are set to their central values. Each eigenvector pair corresponds to the upward and downward uncertainty in one of those input parameters. The difference between the predictions of each eigenvector pair and the central prediction is taken as a source of systematic uncertainty at $\pm 1\sigma$. A source of systematic uncertainty is defined as non-trivial if, at one standard deviation in either direction, it produces a shift in any p_T bin greater than 1% of the occupancy given by the central prediction. Under this definition, 15 of the 26 CT10 eigenvectors are found to be non-trivial.

The relative uncertainty described by the combined variation of these eigenvector sets in quadrature and the scale variations are shown in Fig. 3 as a function of jet-p_T. The uncertainties associated with the renormalization and factorization scales are computed by varying the scales coherently up and down by a factor of 2. As the effect of extinction on the jet-p_T spectrum is expressed relative to the SM prediction, by construction the PDF variations do not affect any of the extinction parameters.

Given the exponentially falling nature of the inclusive jet-p_T spectrum, the JES is one of the dominant sources of systematic uncertainty. The JES uncertainty is composed of 19 orthogonal sources. Of these, seven are found to be non-trivial according to the criterion defined above: the absolute p_T scale; the single pion response in the ECAL; the single pion response in the HCAL; the flavor composition correction; the time dependence; the pileup p_T scale; and the extrapolation of the absolute scale into the high-p_T regime [27]. The effects of JER are also included as nuisance parameters. The uncertainty in luminosity is taken as a constant scale factor with a 2.6% relative uncertainty [43]. The relative uncertainty of all non-trivial detector-related sources of systematic uncertainty (JES, JER, and integrated luminosity) is shown in Fig. 4 as a function of jet-p_T.

Including systematic uncertainties, the best-fit value of β is (0.008 ± 0.033) TeV$^{-2}$, which is consistent with the SM expectation.

The dependence of CL_s on the parameter β is shown in Fig. 5. The observed upper limit on β is 0.090 TeV$^{-2}$ at 95% confidence level (CL), translating to an observed lower limit on M of 3.3 TeV. The expected upper limit on β is 0.088 TeV$^{-2}$ at 95% CL, corresponding to an expected lower limit on M of 3.4 TeV. These relatively close expected and observed values reflect good
Figure 3: Uncertainty at ±1 standard deviation described by the combined variations of all CT10 PDF eigenvectors added in quadrature (solid lines), as well as the scale variations (dotted lines). The uncertainty is expressed as a fraction of the central occupancy of each p_T bin. For the fit of the model to data and the limit setting procedure, the PDF uncertainty is subdivided into individual sources for each eigenvector pair.

Figure 4: Systematic uncertainty from all experimental sources at ±1 standard deviation, expressed as a fraction of the central occupancy of each p_T bin. The luminosity uncertainty is constant in jet-p_T, while the JES and JER uncertainties are modelled as transfer matrices between all p_T bins. The seven non-trivial sources of JES uncertainty are shown (out of 19 total).
Figure 5: The results of a CLs scan in the extinction mass scale, $\beta = M^{-2}$. The observed dependence of CLs on β is shown by the solid line. The observed upper limit on β is 0.090 TeV$^{-2}$ at 95% CL (indicated by the horizontal dotted line), corresponding to a lower limit of 3.3 TeV on the extinction mass scale M. The dashed line indicates the expected median of results for the SM hypothesis, while the green (dark) and yellow (light) bands indicate the quantiles, which contain 68% and 95% of the expected results, respectively.

agreement between the observed data and the null hypothesis.

As an additional check, the limit setting procedure is repeated using the MSTW2008 PDF set [39] to derive the SM hypothesis. The limits obtained using the CT10 and MSTW2008 PDFs agree to within 10%. As the MSTW2008 PDFs predict a lower cross section at very high jet-p_T compared to CT10, the limit produced in this check is less conservative.

Finally, the limits have been calculated including weak radiative corrections to the SM prediction, with a decrease of less than 100 GeV to the exclusion region.

6 Summary

The first search for the extinction of jet production has been performed at the LHC using proton-proton collision data at $\sqrt{s} = 8$ TeV collected by the CMS detector and corresponding to an integrated luminosity of 10.7 fb$^{-1}$. The extinction model studied in this analysis is motivated by the search for signatures of terascale gravity at the LHC and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts suppression of high-p_T jet production beyond an extinction mass scale M. A detailed comparison between the measured p_T spectrum and the theoretical prediction is conducted. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale M.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully
acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); and the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF.

References

[1] T. Banks and W. Fischler, “A Model for High Energy Scattering in Quantum Gravity”, (1999). [arXiv:hep-th/9906038]

[2] CMS Collaboration, “Search for microscopic black holes in pp collisions at $\sqrt{s} = 7$ TeV”, JHEP 04 (2012) 061, doi:10.1007/JHEP04(2012)061, arXiv:1202.6396

[3] CMS Collaboration, “Search for microscopic black holes in pp collisions at $\sqrt{s} = 8$ TeV”, JHEP 07 (2013) 178, doi:10.1007/JHEP07(2013)178, arXiv:1303.5338

[4] CMS Collaboration, “Search for Signatures of Extra Dimensions in the Diphoton Mass Spectrum at the Large Hadron Collider”, Phys. Rev. Lett. 108 (2012) 111801, doi:10.1103/PhysRevLett.108.111801, arXiv:1112.0688

[5] CMS Collaboration, “Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS”, Phys. Lett. B 704 (2011) 123, doi:10.1016/j.physletb.2011.09.015, arXiv:1107.4771

[6] CMS Collaboration, “Search for resonances in the dilepton mass distribution in pp collisions at $\sqrt{s} = 7$ TeV”, JHEP 05 (2011) 093, doi:10.1007/JHEP05(2011)093, arXiv:1103.0981
References

[7] ATLAS Collaboration, “Search for strong gravity signatures in same-sign dimuon final states using the ATLAS detector at the LHC”, *Phys. Lett. B* **709** (2012) 322, doi:10.1016/j.physletb.2012.02.049, arXiv:1111.0080.

[8] ATLAS Collaboration, “Search for extra dimensions using diphoton events in 7 TeV proton-proton collisions with the ATLAS detector”, *Phys. Lett. B* **710** (2012) 538, doi:10.1016/j.physletb.2012.03.022, arXiv:1112.2194.

[9] ATLAS Collaboration, “Search for new particles decaying to ZZ using final states with leptons and jets with the ATLAS detector in $\sqrt{s} = 7$ TeV proton-proton collisions”, *Phys. Lett. B* **712** (2012) 331, doi:10.1016/j.physletb.2012.05.020, arXiv:1203.0718.

[10] CMS Collaboration, “Search for dark matter and large extra dimensions in monojet events in pp collisions at $\sqrt{s} = 7$ TeV”, *JHEP* **09** (2012) 094, doi:10.1007/JHEP09(2012)094, arXiv:1206.5663.

[11] CMS Collaboration, “Search for Dark Matter and Large Extra Dimensions in pp Collisions Yielding a Photon and Missing Transverse Energy”, *Phys. Rev. Lett.* **108** (2012) 261803, doi:10.1103/PhysRevLett.108.261803, arXiv:1204.0821.

[12] L. Randall and R. Sundrum, “A large mass hierarchy from a small extra dimension”, *Phys. Rev. Lett.* **83** (1999) 3370, doi:10.1103/PhysRevLett.83.3370, arXiv:hep-ph/9905221.

[13] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity”, *Phys. Rev. D* **59** (1999) 086004, doi:10.1103/PhysRevD.59.086004, arXiv:hep-ph/9807344.

[14] S. B. Giddings and S. D. Thomas, “High energy colliders as black hole factories: The end of short distance physics”, *Phys. Rev. D* **65** (2002) 056010, doi:10.1103/PhysRevD.65.056010, arXiv:hep-ph/0106219.

[15] S. Dimopoulos and G. Landsberg, “Black Holes at the LHC”, *Phys. Rev. Lett.* **87** (2001) 161602, doi:10.1103/PhysRevLett.87.161602, arXiv:hep-ph/0106295.

[16] P. Meade and L. Randall, “Black holes and quantum gravity at the LHC”, *JHEP* **05** (2008) 003, doi:10.1088/1126-6708/2008/05/003, arXiv:0708.3017.

[17] C. Kilic, A. Lath, K. Rose, and S. Thomas, “Jet extinction from non-perturbative quantum gravity effects”, *Phys. Rev. D* **89** (2014) 016003, doi:10.1103/PhysRevD.89.016003, arXiv:1207.3525.

[18] CMS Collaboration, “Measurement of the Inclusive Jet Cross Section in pp Collisions at $\sqrt{s} = 7$ TeV”, *Phys. Rev. Lett.* **107** (2011) 132001, doi:10.1103/PhysRevLett.107.132001, arXiv:1106.0208.

[19] CMS Collaboration, “The CMS experiment at the CERN LHC”, *J. Instrum.* **3** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[20] CMS Collaboration, “The CMS high level trigger”, *Eur. Phys. J. C* **46** (2006) 605, doi:10.1140/epjc/s2006-02495-8, arXiv:hep-ex/0512077.
[21] Z. Nagy, “Three-jet cross sections in hadron hadron collisions at next-to-leading order”, Phys. Rev. Lett. 88 (2002) 122003, \texttt{doi:10.1103/PhysRevLett.88.122003}, \texttt{arXiv:hep-ph/0110315}.

[22] Z. Nagy, “Next-to-leading order calculation of three-jet observables in hadron-hadron collision”, Phys. Rev. D 68 (2003) 094002, \texttt{doi:10.1103/PhysRevD.68.094002}, \texttt{arXiv:hep-ph/0307268}.

[23] D. Britzger, K. Rabbertz, F. Stober, and M. Wobisch, “New features in version 2 of the fastNLO project”, (2012). \texttt{arXiv:1208.3641}.

[24] P. M. Nadolsky et al., “Implications of CTEQ global analysis for collider observables”, Phys. Rev. D 78 (2008) 013004, \texttt{doi:10.1103/PhysRevD.78.013004}, \texttt{arXiv:0802.0007}.

[25] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05 (2006) 026, \texttt{doi:10.1088/1126-6708/2006/05/026}, \texttt{arXiv:hep-ph/0603175}.

[26] M. Bahr et al., “Herwig++ physics and manual”, Eur. Phys. J. C 58 (2008) 639, \texttt{doi:10.1140/epjc/s10052-008-0798-9}, \texttt{arXiv:0803.0883}.

[27] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, J. Instrum. 6 (2011) P11002, \texttt{doi:10.1088/1748-0221/6/11/P11002}, \texttt{arXiv:1107.4277}.

[28] S. Dittmaier, A. Huss, and C. Speckner, “Weak radiative corrections to dijet production at hadron colliders”, JHEP 11 (2012) 095, \texttt{doi:10.1007/JHEP11(2012)095}, \texttt{arXiv:1210.0438}.

[29] D. Lust, S. Stieberger, and T. R. Taylor, “The LHC string Hunter’s companion“, Nucl. Phys. B 808 (2009) 1, \texttt{doi:10.1016/j.nuclphysb.2008.09.012}, \texttt{arXiv:0807.3333}.

[30] E. A. Mirabelli, M. Perelstein, and M. E. Peskin, “Collider signatures of new large space dimensions”, Phys. Rev. Lett. 82 (1999) 2236, \texttt{doi:10.1103/PhysRevLett.82.2236}, \texttt{arXiv:hep-ph/9811337}.

[31] CMS Collaboration, “Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and MET”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009.

[32] CMS Collaboration, “Commissioning of the Particle-flow Event Reconstruction with the First LHC Collisions Recorded in the CMS Detector”, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010.

[33] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_t jet clustering algorithm”, JHEP 04 (2008) 063, \texttt{doi:10.1088/1126-6708/2008/04/063}, \texttt{arXiv:0802.1189}.

[34] CMS Collaboration, “Identification and filtering of uncharacteristic noise in the CMS hadron calorimeter”, J. Instrum. 5 (2010) T03014, \texttt{doi:10.1088/1748-0221/5/03/T03014}, \texttt{arXiv:0911.4881}.

[35] CMS Collaboration, “Calorimeter Jet Quality Criteria for the First CMS Collision Data”, CMS Physics Analysis Summary CMS-PAS-JME-09-008, 2010.
[36] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Euro. Phys. J. C 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727.

[37] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[38] A. L. Read, “Presentation of search results: The CL s technique”, J. Phys. G 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313.

[39] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Parton distributions for the LHC”, Eur. Phys. J. C 63 (2009) 189, doi:10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002.

[40] NNPDF Collaboration, “A first unbiased global NLO determination of parton distributions and their uncertainties”, Nucl. Phys. B 838 (2010) 136, doi:10.1016/j.nuclphysb.2010.05.008, arXiv:1002.4407.

[41] H1 and ZEUS Collaboration, “Combined measurement and QCD analysis of the inclusive $e^\pm p$ scattering cross sections at HERA”, JHEP 01 (2010) 109, doi:10.1007/JHEP01(2010)109, arXiv:0911.0884.

[42] S. Alekhin, J. Blümlein, S. Klein, and S. Moch, “3-, 4-, and 5-flavor next-to-next-to-leading order parton distribution functions from deep-inelastic-scattering data and at hadron colliders”, Phys. Rev. D 81 (2010) 014032, doi:10.1103/PhysRevD.81.014032, arXiv:0908.2768.

[43] CMS Collaboration, “CMS Luminosity Based on Pixel Cluster Counting - Summer 2013 Update”, CMS Physics Analysis Summary CMS-PAS-LUM-13-001, 2012.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan1, M. Friedl, R. Frühwirth1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler1, W. Kiesenhofer, V. Knünz, M. Krammer1, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady2, B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, S. Ochesanu, B. Roland, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, N. Daci, N. Heracleous, A. Kalogeropoulos, J. Keaveney, T.J. Kim, S. Lowette, M. Maes, A. Olibrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, L. Favart, A.P.R. Gay, A. Grebenyuk, A. Lénard, A. Mohammadi, L. Pernié2, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Cruyckshyn, S. Dildick, A. Fagot, G. Garcia, B. Klein, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi3, G. Bruno, R. Castello, A. Caudron, L. Ceara, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Gimmanco4, J. Hollar, P. Jez, M. Komm, V. Lemaître, J. Liao, C. Nuttens, D. Pagano, A. Pin, K. Piotrzkowski, A. Popov5, L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Beliy, T. Caebegs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, T. Dos Reis Martins, M.E. Pol

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, J. Chinellato6, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote6, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardesb, F.A. Diasa,7, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev2, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, R. Du, C.H. Jiang, D. Liang, S. Liang, R. Plestina8, J. Tao, X. Wang, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran9, S. Elgamal10, M.A. Mahmoud11, A. Radi10,12

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Coudenc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, A. Nayak, J. Rander, A. Rosowsky, M. Titov
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, C. Charlot, T. Dahms, M. Dalchenko, L. Dobrzynski, N. Filipovic, A. Florent, R. Granier de Cassagnac, L. Mastrolorenzo, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, R. Salerno, J.B. Sauvan, Y. Sirois, C. Veelken, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte, J.-C. Fontaine, D. Gelé, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaufour, G. Boudoul, S. Brochet, C.A. Carrillo Montoya, J. Chasserat, R. Chierici, D. Contardo, P. Degasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, M. Lethuillier, L. Mirabito, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, M. Bontenackels, B. Calpas, M. Edelhoff, L. Feld, O. Hindrichs, K. Klein, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, D. Sprenger, H. Weber, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, J. Caudron, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, K. Klingsbiehl, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, M. Olschewski, K. Padeken, P. Papacz, H. Reithard, S.A. Schmitz, L. Sonnenschein, D. Teysyier, S. Thuler, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kess, Y. Kuessel, J. Lingemann, A. Nowack, I.M. Nugent, L. Perchall, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, A.J. Bell, M. Bergholz, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Dietz Pardos, S. Doldor, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, J. Garay Garcia, A. Geiser, P. Gunnellini, J. Hauk, G. Hellwig, M. Hempel, D. Horton, H. Jung, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, D. Krücker, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann, B. Lutz, R. Mankel, I. Marfin, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussigler, S. Naumann-Emme, O. Novgorodova, F. Nowak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, E. Ron, M.O. Sahin, J. Salfeld-Nebgen, P. Saxena, R. Schmidt, T. Schoerner-Sadenius, M. Schröder, S. Spannagel, A.D.R. Vargas Trevino, R. Walsh, C. Wissing
University of Hamburg, Hamburg, Germany
M. Aldaya Martin, V. Blobel, M. Centis Vignali, J. Erfle, E. Garutti, K. Goebel, M. Görner, M. Gosselink, J. Haller, R.S. Höing, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, T. Lapsien, T. Lenz, I. Marchesini, J. Ott, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, J. Sibille, V. Sola, H. Stadie, G. Steinbrück, D. Troendle, E. Usai, L. Vanelderen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, F. Hartmann, T. Hauth, U. Husemann, I. Katkov, A. Kornmayer, E. Kuznetsova, P. Lobelle Pardo, M.U. Mozer, Th. Müller, A. Nürnberg, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulos, A. Kyriakis, D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece
L. Gouskos, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, A.K. Kalsi, M. Kaur, M. Mittal, N. Nishu, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, India
T. Aziz, S. Banerjee, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh,
M. Guchait, A. Gurtu, G. Kole, S. Kumar, M. Maity, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

H. Bakhshiansohi, H. Behnamian, S.M. Etesami, A. Fahim, R. Goldouzian, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland

M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy

M. Abbrescia, L. Barbone, C. Calabria, S.S. Chhibra, A. Colaleo, D. Creanza, N. De Filippis, M. De Palma, L. Fiore, G. Iaselli, G. Maggi, M. Maggi, S. My, C. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, G. Selvaggi, L. Silvestris, G. Singh, R. Venditti, P. Verwilligen, G. Zito

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy

G. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, G. Codispoti, M. Cuffiani, G.M. Dallavalle, A. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, F. Primavera, A.M. Rossi, T. Rovelli, G.P. Siroti, N. Tosi, R. Travaglini

INFN Sezione di Catania, Università di Catania, CSFNSM, Catania, Italy

S. Albergo, G. Cappello, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy

G. Barbagli, V. Ciulli, C. Civinini, R. D’Alessandre, E. Focardi, E. Gallo, S. Gonzi, V. Gori, P. Lenzi, M. Meschini, S. Paoletti, G. Sguazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova, Università di Genova, Genova, Italy

F. Ferro, M. Lo Vetere, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy

M.E. Dinarde, S. Fiorendi, S. Gennai, R. Gerosa, A. Ghezzi, P. Govoni, M.T. Lucchini, S. Malvezzi, R.A. Manzoni, A. Martelli, B. Marzocchi, D. Menasce, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, T. Tabarelli de Fatis

INFN Sezione di Napoli, Università di Napoli ’Federico II’, Università della Basilicata (Potenza), Università G. Marconi (Roma), Napoli, Italy

S. Buontempo, N. Cavallo, S. Di Guida, F. Fabozzi, A.O.M. Iorio, L. Lista, S. Meola, M. Merola, P. Paolucci

INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy

P. Azzi, N. Bachetta, D. Bisello, A. Branca, R. Carlin, M. Dall’Osso, T. Dorigo, M. Galanti, F. Gasparini, P. Giubilato, A. Gozzelino, K. Kanishchev, S. Lacaprara, M. Margoni, A.T. Meneguzzo, F. Montecassiano, M. Passaseo, J. Pazzini, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi, S. Vanini, P. Zotto, A. Zucchetta, G. Zumerle
Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, M.A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, W. Wolszczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golotvin, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Trosnin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Dordevic, M. Ekmedzic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Dominguez Vazquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernandez Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, E. Navarro De Martino, A. Perez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Tocóniz, M. Missiroli

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodriquez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, C. Bernet, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, S. Colafranceschi, M. D’Alfonso, D. d’Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, M. Giffels, D. Gigi, K. Gill, D. Giordano, M. Giron, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, L. Masetti, F. Meijsers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, P. Musella, L. Orsini, L. Pape, E. Perez, L. Perrozzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, P. Pimai, D. Piparo, M. Plagge, A. Racz, G. Rolandi, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, S. Sekmen, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Spica, D. Spiga, J. Stegeman, B. Stieger, M. Stoye, D. Treille, A. Tsiourou, G.I. Veres, J.R. Vlimant, N. Wardle, H.K. Wöhri, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe
Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, W. Lastermann, B. Mangano, A.C. Marini, P. Martinez Ruiz del Arbol, D. Meister, N. Mohr, C. Nägeli, P. Nef, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, M. Peruzzi, M. Quittnat, L. Rebane, F.J. Ronga, M. Rossini, A. Starodumov, M. Takahashi, K. Theofilatos, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland
C. Amsler, M.F. Canelli, V. Chiochia, A. De Cosa, A. Hinzmann, T. Hreus, M. Ivova Rikova, B. Kilminster, B. Millan Mejias, J. Ngadiuba, P. Robmann, H. Snoek, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, K.Y. Kao, Y.J. Lei, Y.F. Liu, R.-S. Lu, D. Majumder, E. Petrakou, X. Shi, Y.M. Tzeng, R. Wilken

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, K. Sogut, D. Sunar Cerci, B. Tali, H. Topakli, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, B. Bilin, S. Bilmis, H. Gamsizkan, G. Karapinar, K. Ocalan, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak, M. Kaya, O. Kaya

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar, E. Barlas, K. Cankocak, F.I. Vardarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold, S. Paramesvaran, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, W. Ferguson, J. Fulcher, D. Fuyian, A. Gilbert,
The CMS Collaboration

G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, S. Malik, J. Marrouche, B. Mathias, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp, A. Tapper, M. Vazquez Acosta, T. Virdee

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, C. Richardson, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA
J. Alimena, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, T. Miceli, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, M. Searle, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
J. Babb, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, P. Jandir, E. Kennedy, F. Lacroix, H. Liu, O.R. Long, A. Luthra, M. Malberti, H. Nguyen, A. Shrinivas, J. Sturdy, S. Sumowidagdo, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, D. Evans, A. Holzner, R. Kelley, M. Lebourgeois, J. Letts, I. Macneill, D. Olivito, S. Padhi, C. Palmer, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, J. Incandela, C. Justus, N. Mccoll, J. Richman, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, A. Mott, H.B. Newman, C. Pena, C. Rogan, M. Spiropulu, V. Timciuc, R. Wilkinson, S. Xie, R.Y. Zhu
Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, J. Chu, S. Dittmer, N. Eggert, W. Hopkins, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, L. Skinnari, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burket, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, S. Kwan, J. Linacre, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Carver, T. Cheng, D. Curry, S. Das, M. De Gruttola, G.P. Di Giovanni, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaultney, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, V.E. Bazterra, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, P. Kurt, D.H. Moon, C. O’Brien, C. Silkworth, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA
E.A. Albayrak, B. Bilki, W. Clara, K. Dilsiz, F. Duru, M. Haytmiradov, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Öğul, Y. Onel, F. Ozok, A. Penzo, R. Rahmat, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi
Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic, C. Martin, M. Swartz

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, C. Bruner, J. Gray, R.P. Kenny III, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA
A.F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, G. Bauer, W. Busza, I.A. Cali, M. Chan, L. Di Matteo, V. Dutta, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, T. Ma, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephens, F. Stöckli, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch, M. Yang, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. De Benedetti, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Luo, S. Lynch, N. Marinelli, T. Pearson, M. Planer, R. Ruchti, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, C. Vuosalo, B.L. Winer, H. Wolfe, H.W. Wulsin
Princeton University, Princeton, USA
E. Berry, O. Driga, P. Elmer, P. Hebda, A. Hunt, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland, C. Tully, J.S. Werner, S.C. Zenz, A. Zuranski

University of Puerto Rico, Mayaguez, USA
E. Brownson, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
E. Alagoz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, A. Everett, Z. Hu, M.K. Jha, M. Jones, K. Jung, M. Kress, N. Leonardo, D. Lopes Pegna, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, B.C. Radburn-Smith, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, H.D. Yoo, J. Zablocki, Y. Zheng

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, A. Khukhunaishvili, D.C. Miner, G. Petrillo, D. Vishnevskiy

The Rockefeller University, New York, USA
R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, V. Rekovic, S. Salur, S. Schnetzer, C. Seitz, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA
O. Bouhali, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Khotilovich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Rose, A. Safonov, T. Sakuma, I. Suarez, A. Tatarinov

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, J. Wood
Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane

University of Wisconsin, Madison, USA
D.A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, S. Duric, E. Friis, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W.H. Smith, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at California Institute of Technology, Pasadena, USA
8: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Suez University, Suez, Egypt
10: Also at British University in Egypt, Cairo, Egypt
11: Also at Fayoum University, El-Fayoum, Egypt
12: Now at Ain Shams University, Cairo, Egypt
13: Also at Université de Haute Alsace, Mulhouse, France
14: Also at Joint Institute for Nuclear Research, Dubna, Russia
15: Also at Brandenburg University of Technology, Cottbus, Germany
16: Also at The University of Kansas, Lawrence, USA
17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
18: Also at Eötvös Loránd University, Budapest, Hungary
19: Also at University of Debrecen, Debrecen, Hungary
20: Now at King Abdulaziz University, Jeddah, Saudi Arabia
21: Also at University of Visva-Bharati, Santiniketan, India
22: Also at University of Ruhuna, Matara, Sri Lanka
23: Also at Isfahan University of Technology, Isfahan, Iran
24: Also at Sharif University of Technology, Tehran, Iran
25: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
26: Also at Università degli Studi di Siena, Siena, Italy
27: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
28: Also at Purdue University, West Lafayette, USA
29: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
30: Also at Institute for Nuclear Research, Moscow, Russia
31: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
32: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
33: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
34: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
35: Also at University of Athens, Athens, Greece
36: Also at Paul Scherrer Institut, Villigen, Switzerland
37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
38: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
39: Also at Gaziosmanpasa University, Tokat, Turkey
40: Also at Adiyaman University, Adiyaman, Turkey
41: Also at Cag University, Mersin, Turkey
42: Also at Mersin University, Mersin, Turkey
43: Also at Izmir Institute of Technology, Izmir, Turkey
44: Also at Ozyegin University, Istanbul, Turkey
45: Also at Kafkas University, Kars, Turkey
46: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
47: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
48: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
49: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
50: Also at Argonne National Laboratory, Argonne, USA
51: Also at Erzincan University, Erzincan, Turkey
52: Also at Yildiz Technical University, Istanbul, Turkey
53: Also at Texas A&M University at Qatar, Doha, Qatar
54: Also at Kyungpook National University, Daegu, Korea