Qualitative Detection of Some Adulterants in Milk Samples Supplied in the Twin Cities of Secunderabad and Hyderabad, Telangana

Authors
Karukonda Raju, Shobham, Aishwarya Ramanujam, Sukumaran. M.K*
Department of Biochemistry, Bhavan’s Vivekananda College, Sainikpuri, Secunderabad, Telangana, India
*Corresponding Author
Sukumaran. M.K
Department of Biochemistry, Bhavan’s Vivekananda College, Sainikpuri, Secunderabad, Telangana, India

Abstract
This study was conducted keeping in view the ever increasing reports on adulteration of natural milk with various illegal substances to increase the quantity and make more profit. Qualitative analyses for the detection of adulterants in milk samples was carried out with a standard milk adulteration kit manufactured by Himedia Laboratories, Mumbai, India. Among the different milk samples tested none of the samples were positive for cellulose (0%), benzoic acid (0%) and soap (0%). However, majority of these milk samples tested positive for maltodextrin / maltose (30%), proteins (40%), ammonium sulphate (37%), boric acid (33%) vegetable oil (43%) and pond water (nitrate-nitrogen) (50 %) respectively.

Keywords: Milk adulteration; Qualitative analysis of milk, maltodextrin/maltose, proteins, vegetable oil and pond water (Nitrate-Nitrogen).

Introduction
Milk is consumed by all age groups of human (e.g., growing children’s, young, old people and expectant mothers) because it supplies good quality proteins, fat, carbohydrates (Afzal et al., 2011) (Table 1), vitamins and minerals (i.e., provides special nutritive value) in good proportions.

Therefore, milk for human consumption should be free of any adulterant (e.g., if the product contains (i) inferior or cheaper substances in it; (ii) constituent of a product is subtracted; (iii) prepared or packed and stored under unhygienic conditions; (iv) consists of filthy, rotten, decomposed or diseased animal or vegetable or is infested with insects; (v) contains any poisonous ingredient that is prohibited or contains excessive preservatives and finally (vi) quality nor purity of the article conform to the legal standards prescribed by the Food Safety and Standards Authority of India (FSSAI). Despite the efforts of Government organizations (safety agencies) to prevent adulteration of food, fraudsters are resorting to newer ways to mimic an

Table I: (Kandpal et al., 2012)

Constituent	Buffalo Milk (%)	Cow Milk (%)
Water	84.2	86.6
Fat	6.6	4.6
Protein	3.9	3.4
Lactose	5.2	4.9
original product that can be sold at a cheaper price and at the time the adulterant can go un detected.

Objective of Adulteration

Adulteration of milk may be either intentional (e.g., addition of extraneous water, nondairy proteins, melamine, urea, animal fat, reconstituted milk, synthetic milk) or unintentionally by natural means (e.g., natural entry of antibiotics from cattle treated for mastitis, or dust particles or other extraneous objects that might have entered into the milk during processing and lack of proper hygienic conditions.

Table II: Adulteration in Milk and its Harmful Effects

Adulterant	Purpose	Harmful Effects
Water	To increase the volume of milk	Water polluted with feces, microorganisms and harmful chemicals may have deleterious effects on human health (Eman, M. S et al., 2015). In addition, there is a potential risk of waterborne diseases (Campos Motta et al. 2014 & Singuluri and Sukumaran 2014). Acute malnutrition (severe cases of malnutrition have resulted in death) (BBC NEWS., 2004; Naandi Foundation. 2011; FAO. 2013; Barham GS, et al 2014 & Soomro AA, et al 2014).
Cellulose	To increase total solids and hence the quantity of the products (Technews., 2009)	
Maltodextrin / Maltose	Maltodextrine are used in dairy foods to add flavor and reduce the cost of the products (Harding, F., (ed.), 1999). To increase solids but not fat content	
Proteins	Low priced non-milk proteins such as soy, pea and soluble wheat proteins (SWP) (Haasnoot, W., et al., 2006; Destaillats, F., et al., 2006; Lopez-Tapia, J et al., 1999 & Dziuba, J, et al., 2004 are added to compensate for protein loss when water is added to milk	
Ammonium sulphate	A chemical fertilizer, which is added to milk to raise the density of watered milk (Jivraj Makadiya and Astha Pandey., 2015).	Nausea, Vomiting, Diarrhea, Adverse effects on the gastrointestinal, respiratory system, and Skin and Sensory disturbances (Ayub et al., 2007; Barham GS, et al 2014 & Singh P, Gandhi N. 2015).
Boric acid	Used as a stable preservative	Cause nausea, vomiting, diarrhea, kidney damage, acute failure of the circulatory system and even death (Beall and Scofield, 1995; Mota et al., 2003; Haasnoot et al., 2004; Saad et al., 2005; Ayub et al., 2007; Rideout et al., 2008; Gwin et al., 2009; Li et al., 2009 and See et al., 2010).
Benzoic Acid and Sodium Benzoate	Used as a common preservatives	Cause nausea, headache, asthma, urticaria, pseudoallergy, hyperactivity and behavioral disorders in children (Mota et al., 2003; Qi P et al., 2009; Barham, G. S., et al., 2014) & Singh P, Gandhi N. 2015).
Soap/ Detergents	Added to emulsify and dissolve the oil in water to give foamy appearance and	Gastrointestinal, complications, vomiting, Hypotension, respiratory irritation and cancers (Afzal A, et al 2011;
characteristic white color of milk. (Centre for Science and Environment, 2006).

Vegetable oil
Milk fat is the natural source of variable variety of fatty acids diversified in nature. It is separated to make the cream and sold at high prices. People separate the cream from the milk and add vegetable fat into the milk and then sell it after homogenization.

Pond water
Sodium and potassium nitrates are oxidizing agents and hence act as preservative. Pond water also contains appreciable quantities of nitrates and such water is usually admixed with milk by rural milk producers or vendors. (Ashok Kumar Maurya et.al May 2013).

Materials and Methods
A standard milk adulteration kit manufactured by HIMEDIA laboratories, Mumbai, India was used. The tests for adulteration were carried out on milk samples supplied in the twin cities of Secunderabad and Hyderabad, Telangana. Samples were collected in clean, dry and sterilized glass bottles. The milk samples were tested for the following adulterants – cellulose, maltodextrin / maltose, proteins, ammonium sulphate, boric acid, benzoic acid, soap, vegetable oil and pond water (Nitrate-Nitrogen).

Results and Discussion
A total of 30 milk samples were tested in duplicates. All tests were carried out at room temperature (29°C). For convenience, the adulterants are categorized into III groups. Adulterants in group I are, cellulose, maltodextrin/ maltose and proteins; group II includes, ammonium sulphate, boric acid and benzoic acid; while group III is classified as other compounds where soap, vegetable oil and pond water (Nitrate-Nitrogen) are included.

Determination of the Extent of Different Adulteration in Milk Samples
The percent of different adulterant varied significantly for each of the adulterant tested. The results of group I adulterants are shown in table. III. and figure.1. As evident from the table I and figure 1 all the samples tested negative for cellulose (Figure 2). In comparison, the extent of adulteration of milk sample with maltodextrin/maltose (Figure 3) and proteins were 30% and 40% respectively. Presence of maltodextrine indicates that it might have been used either to add flavor to the milk or reduce the cost of the products. Generally in watered milk, milk powder and other dairy products are often adulterated by low priced non-milk proteins such as soy, pea and soluble wheat proteins (SWP).

| Table III: Adulteration of Milk Samples (Group I adulterants) |
|-------------------------|-------------------------|-------------------------|
| | Cellulose | Maltodextrin / Maltose | Proteins |
| | Positive | Negative | Positive | Negative | Positive | Negative |
| % | 0 | 100 | 30 | 70 | 40 | 60 |
Figure.1: Adulteration of Milk Samples (Group I adulterants)

Adulterant	Positive	Negative	Positive	Negative	Positive	Negative
Cellulose						
Maltodextrin / Maltose						
Proteins						

Extent of group II adulterants is summarized in table IV and depicted in figure 4. In these milk samples the extent of adulteration with ammonium sulfate and boric acid were 37% (Figure 5) and 33% (Figure 6) respectively. In contrast, all the samples tested negative for benzoic acid. Ammonium sulfate is added to milk to raise the density of watered milk. Boric acid and benzoic acid are used as preservatives which increase the shelf life of fresh milk. All these samples tested negative for benzoic acid (Figure 4).

Table IV: Adulteration of Milk Samples (Group II adulterants)

Adulterant	Ammonium sulphate	Boric acid	Benzoic acid			
	Positive	Negative	Positive	Negative	Positive	Negative
%	37	63	33	67	0	100
Figure 4: Adulteration of Milk Samples (Group II adulterants)

Adulterant	Positive %	Negative %
Ammonium sulphate	37	63
Boric acid	33	67
Benzoic acid	0	100

Results of group III adulterants are presented in table V and figure 7. In this group, 43% of milk samples were positive for vegetable oil. Similarly, 50% of milk samples were positive for pond water (Nitrate-Nitrogen). However, none of the samples tested positive for soap (Figure 8).

Table V: Adulteration of Milk Samples (Group III adulterants)

Milk sample	Soap	Vegetable oil	Pond water (Nitrate-Nitrogen)			
	Positive	Negative	Positive	Negative	Positive	Negative
%	0	100	43	57	50	50

Figure 7: Adulteration of Milk Samples (Group III adulterants)
Review of Literature

Extent of different adulterant present in milk samples

1. Asrat Ayza and Zelalem Yilma., 2014.
 Among the extraneous substances added into milk and milk products; vegetable oil accounted for 80.8%.

2. Ananya Debnath., et al 2015.
 Ammonium sulphate was present in 61.29%, while skim milk powder in 45.16% of the fresh milk samples.
 Benzoic acid was present in 17.65% and 9.68% of pasteurized milk and fresh milk, respectively.
 Vanaspati was found 83.87% of the fresh milk samples studied.

3. Jivraj Makadiya., and Astha Pandey., 2015.
 Ammonium sulphate was found to an extent of 96.66, in the milk samples studied. In contrast, none of the samples were positive for benzoic acid, detergent and vanaspati.
 The extent of adulteration varied significantly with highest for ammonium sulphate (96%).
 Nitrates (pond water) (0%); Boric acid (0%) and Cellulose (0%)

4. Singh, J., et al.
 Maltose was present in all the collected samples (open as well as branded).

5. Geeta Kumari Wasupalli., et al 2015.
 Cellulose 0%; Maltose 33.3%; Ammonium sulphate 0%; Proteins 100;

Boric acid 0% and Nitrates (pond water) 53.3%.

6. Nida Shaikh, et al 2016.
 Boric acid 0%.

7. Ruqyia Shehzadi1., et al 2016.
 Boric acid was not found in any sample.

8. Rajesh Pavan, A., et al 2016.
 None of the milk samples were adulterated with, pulverized soap, ammonium sulphate and nitrates.
 It is apparent from the findings in literature that the adulteration of milk is not confined to a particular region within a state, among different states in a country and among different countries in the World. Thus adulteration is a global issue and it is not confined to a particular region, state or country. In addition, the extent of these adulterants varied among the different milk samples.

Conclusion

It is evident from the analyses that a large number of milk samples did not conform to the legal standards prescribed by the Food Safety and Standards Authority of India (FSSAI). Among the different milk samples tested, none of the samples were positive for cellulose (0%), Benzoic acid (0%) and Soap (0%). However, majority of these milk samples tested positive for maltodextrin/maltose (30%), proteins (40%), ammonium sulphate (37%), boric acid (33%) vegetable oil (43%) and pond water (nitrate-nitrogen) (50 %) respectively.
Conflict of interest statement: Author declares that there is no conflict of interest.

Acknowledgment
Authors are thankful to Management and Principal Prof. Y. Ashok, Bhavan's Vivekananda College for providing necessary facilities and constant encouragement.

References
1. Afzal, Ali, M.S. Mahmood, Iftikhar Hussain and Masood Akhtar. "Adulteration and Microbiological Quality of Milk (A Review)." Pakistan Journal of Nutrition, 10. 12 (2011): 1195-1202.
2. Ali, N., John, A., and Rehman, F., 2005. Corpse preservatives being used in unpacked milk. Daily Times, 4th Dec.
3. Ananya Debnath., Somdutta Banerjee., Chandan Rai., & Arindam Roy., 2015. Qualitative Detection of Adulterants in Milk Samples from Kolkata and its Suburban Areas, International Journal of Research in Applied, Natural and Social Sciences, Vol. 3, Issue 8, 81-88.
4. Ashok Kumar Maurya et.al., 2013. Trends in ambient loads of DDT and HCH residues in animal’s and mother’s milk of Paliakalan Kheeri, Uttar Pradesh-India, International Journal of Scientific and Research Publications. Vol- 3
5. Asrat Ayza and Zelalem Yilma., 2014. Patterns of milk and milk products adulteration in Boditti town and its surrounding, South Ethiopia, Scholarly Journal of Agricultural Science Vol. 4(10), pp. 512-516.
6. Awan A, Naseer M, Iqbal A, Ali M, Iqbal R, et al. (2014) A study on chemical composition and detection of chemical adulteration in tetra pack milk samples commercially available in Multan. Pak J Pharm Sci 27:183-186.
7. Ayub, M., Q. Ahmed, M. Abbas, I. M. Qazi and I. A. Hattak. 2007. Composition and adulteration analysis of milk samples. Sarhad Journal of Agriculture, 23 (4), 1127-1130.
8. Barham GS, Khaskheli M, Soomro AH, NizamaniZA. 2014. Extent of extraneous water and detection of various adulterants in market milk at Mirpurkhas, Pakistan. J Agric Vet Sci 7(3):83–9.
9. BBC NEWS. 22nd April 2004. China ‘fake milk’ scandal deepens. Available from: http://news.bbc.co.uk/1/hi/world/asia-pacific/3648583.stm. Accessed November 11, 2014.
10. Beall, DP., Scofield RH., 1995. Milk-alkali syndrome associated with calcium carbonate consumption. Reports of seven patients with parathyroid hormone levels and an estimate of prevalence among patients hospitalized with hypocalcaemia. Medicine 74: 89-96.
11. Campos Motta TM, Hoff RB, Barreto F, Andrade RBS, Lorenzini DM, Meneghini LZ, Pizzolato TM (2014) Detection and confirmation of milk adulteration with cheese whey using proteomic-like sample preparation and liquid chromatography–electrospray–tandem mass spectrometry analysis. Talanta 120:498–505.
12. Centre for Science and Environment (online) 2006. FSSAI Watch, Available from www.cseindia.org/category/thesaurus/national-survey-milk-adulteration, 2011.
13. Destaillats, F., de Wispelaere, M., Joffre, F., Golay, P.A., Hug, B., Gjufrida, F., Fauconnot, L., and Dionisi, F., 2006. J Chromatogr. A 1131, 227.
14. Dziuba, J., Nalecz, D., Piotr Minkiewicz, B. D., and Bartlomiej., 2004. Anal. Chim. Acta 521, 17.
15. Eman, M. S., Abd-alla, A. A., and Elaref, M. Y., 2015. Detection of raw buffalo's milk adulteration in Sohag governorate, Assiut Vet. Med. J. Vol. 61(144), 38-45.
16. FAO. 2013. Milk and dairy products in human nutrition. Rome: Food and Agriculture Organization of the United Nations. p 1–376. Available from: http://www.fao.org/docrep/018/i3396e/i3396e.pdf. Accessed September 30, 2014.
17. Fourie, C. J., der Westhuyzen, P. J. V., and Niekerk, P. C. V., 2007. Proceedings of the AFRICON, Windhoek Namibia, p. 1.
18. Geeta Kumari Wasupalli, SaiKiran C, Surjit Kaur., 2015. Detection of Adulterants and Mastitis in Milk Samples and Major Milk Fatty Acid Composition Estimation using Gas Chromatography, International Journal of Pharma Sciences and Scientific Research Volume 1 Issue 1.
19. Gwin, MC., Lienert, G., Kennedy, J., 2009. Formaldehyde exposure and asthma in children. A systematic review. Environ Health Perspect 118: 313–317.
20. Haasnoot, W., N. G. Smits, A.E.K. Voncken and M. G. Bremer. 2004. Fast biosensor immunoassays for the detection of cows’ milk in the milk of ewes and goats. Journal of Dairy Research, (71), 322-329.
21. Harding, F., (ed.), Adulteration of Milk, Chapmann and Hall, New York (1999).
22. http://dairy-technology.blogspot.in/2014/11/neutralizers.html
23. Kandpal, S.D., A.K. Srivastava and K.S. Negi. "Estimation of quality of raw milk (open & branded) by milk adulteration testing kit." Indian Journal of Community Health, 24. 3 (2012): 188-192.
24. Jivraj Makadiya and Astha Pandey., 2015. Quality Assessment and Detection of Adulteration in Buffalo Milk Collected From Different Areas of Gandhinagar by Physico-Chemical Method, International Journal of PharmTech Research, Vol.8, No.4, pp 602-607,
35. Rajesh Pavan, A., Hindustan Abdul Ahad, Sreekeerthi, P., Jyoshna, P., Alekhya, M., and Arun Kumar, T., 2016. A comparative study on the physicochemical properties, composition and extent of adulterants present in raw milk IJPNM, 4(1): 10–14.

36. Rideout, T. C., Q. Liu, P. Wood and M. Z. Fan. 2008. Nutrient utilization and intestinal fermentation are differentially affected by the consumption of resistant starch varieties and conventional fibers in pigs. British Journal of Nutrition, (99), 984-92.

37. Ruqyia Shehzadi, Tang Yu-Qing, Muhammad Ifnan Khan., 2016. Composition and Adulteration Analysis of Milk Samples from Ten Different Towns of Lahore, Food Science and Quality Management, Vol.47.

38. Saad, B., M. F. Bari, M. I. Saleh, K. Ahmad and M. K. M. Talib. 2005. Simultaneous determination of preservatives in food stuffs using HPLC. Journal of Chromatography Analysis, (1073), 2005, 393.

39. See, A. S., A. B. Salleh, F. A. Bakar, N. A. Yusof, A. S. Abdulamir and L.Y. Heng. 2010. Risk and health effect of boric acid. American Journal of Applied Sciences, 620-627.

40. Singh P, Gandhi N. 2015. Milk preservatives and adulterants: processing, regulatory and safety issues. Food Rev Intl 31(3):236–61.

41. Singh, J., Roy, B., Dayal, G., Sunsunwal, S., Yadav, B., Bhardwaj, C., and Teotia, A., Detection of common adulterants in milk from Delhi and NCR, DU Journal of Undergraduate Research and Innovation.

42. Singuluri H, Sukumaran MK (2014) Milk adulteration in Hyderabad, India—a comparative study on the levels of different adulterants present in milk. J Chromatogr Separat Tech 5:1–3.

43. Soomro AA, Khaskheli M, Memon MA, Barham GS, Haq IU, Fazlani SN, Khan IA, Lochi GM, Soomro RN. 2014. Study on adulteration and composition of milk sold at Badin. Intl J Res Appl Nat Social Sci 2(9):57–70.

44. Tay M, Fang G, Chia PL, Li SFY. 2013. Rapid screening for detection and differentiation of detergent powder adulteration in infant milk formula by LC–MS. Forensic Sci Intl 232(1–3): 32–9.

45. Yu, H., Wang, J., and Xu, Y., 2007. Sensors and Materials 19, 275.