Supporting Information

Silyl Formates for the Transfer Hydrosilylation of Ketones

R. Martín Romero, Neethu Thyagarajan, Nora Hellou, Clément Chauvier, Timothé Godou, Lucile Anthore-Dalion and Thibault Cantat*

Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette Cedex (France).

E-mail: thibault.cantat@cea.fr
Table of contents

1) General considerations ... S1
2) Optimization of the reaction conditions .. S2
3) Screening of silyl formates ... S3
4) General procedures ... S4
5) Characterization of isolated and new silyl ethers (scaled up reactions) S5
6) Evidence for the crucial role of the N-H function S9
7) Study of the selectivity between aldehyde and ketone S10
8) TESOCDO synthesis ... S11
9) Deuterium labelling experiment .. S14
10) Experimental evidence of ruthenium monohydride species S15
11) Competition reactions ... S16
12) NMR spectra of isolated compounds ... S17
13) References .. S31
1. General considerations

Unless otherwise stated, all reactions were performed in a recirculating *mBraun LabMaster DP* inert atmosphere (Ar) drybox and vacuum Schlenk lines. Glassware were dried overnight at 120 °C. NMR spectra were recorded in a *Bruker Avance Nea 400 MHz* spectrometer. Chemical shifts were reported as ppm downfield from residual solvent peaks. The following calibrations were used: CDCl$_3$ d = 7.26 and 77.16 ppm, THF-d$_8$ δ = 3.58, 1.72 and 67.21, 25.31 ppm, C$_6$D$_6$ δ = 7.16 and 128.06 ppm, CD$_2$Cl$_2$ δ = 5.32 and 53.84 ppm. HRMS experiments were performed on a Bruker maXis within the service centre at Institute of Organic and Analytic Chemistry, University of Orléans. 4Å molecular sieves (Aldrich) were dried under dynamic vacuum at 250 °C for 48 h prior to use. Deuterated solvents were dried and stored under molecular sieves. Toluene was dried with sodium benzophenone, distilled and stored under molecular sieves. [Ru(κ1-OAc)(κ2-OAc)(κ3-triphos)] (1), fac-[Ru(κ1-OAc)(κ2-OAc)(κ3-PNHPh)] (2) [1], fac-[Ru(κ1-OAc)(κ2-OAc)(κ3-PNMePh)] (2-Me)[2], silyl formates[3] were synthesized according to literature procedures. Ketones were purchased and used without any further purification.
2. Optimization of the reaction conditions

In a glovebox, a J. Young NMR Tube was charged with the catalyst (x mol%), C₆D₆ (0.4 mL), acetophenone 4a (0.1 mmol, 1.0 equiv.), mesitylene (10 μL) and the triethylsilylformate (1.4 equiv.). The tube was sealed, brought out of the glovebox and heated. The reaction progress was monitored by ¹H NMR spectroscopy. Yields were determined by ¹H NMR integration versus mesitylene as an internal standard.

Table S1. Screening of conditions. 0.1 mmol scale

Entry	Catalyst (mol%)	Solvent	T (°C)	t (h)	Yield (%)
1	1 (3)	CD₃CN	90	24	0
2	2 (3)	CD₃CN	90	11	78
3	2 (3)	d8-THF	90	2.5	99
4	2 (3)	CD₂Cl₂	90	22	0
5	2 (3)	d8-Toluene	90	2.5	92
6	2 (3)	C₆D₆	90	1.5	99
7	2 (3)	EtOAc	90	3	97
8	2 (3)	Anisole	90	9	77
9	2 (1.5)	C₆D₆	90	37	79
10	2 (3)	C₆D₆	70	4	99
11	2 (3)	C₆D₆	50	36	99
3. Screening of silyl formates

In a glovebox, a J. Young NMR Tube was charged with \(\text{fac-[Ru}(\kappa^1\text{-OAc})(\kappa^2\text{-OAc})(\kappa^3\text{-PN}^{\text{HPh}})\text{]}\) (2) (3 mol%), \(\text{C}_6\text{D}_6\) (0.4 mL), acetophenone 4a (0.1 mmol, 1.0 equiv.), mesitylene (10 \(\mu\)L) and the trialkylsilylformate (1.4 equiv.). The tube was sealed, brought out of the glovebox and heated. The reaction progress was monitored by \(^1\text{H NMR spectroscopy}. Yields were determined by \(^1\text{H NMR integration versus mesitylene as an internal standard.}

Table S2. Screening of silylformates. 0.1 mmol scale

Entry	\(R'\)	\(R\)	Yield (%)
1	Et	Et	99
2	Me	Me	93
3	Ph	Me	98
4	Me	Ph	71
5	\(tBu\)	Me	0
6	\(iPr\)	\(iPr\)	0
7	OEt	OEt	38
4. General procedures

4.1. General Procedure for NMR Scale reactions (GP1)

In a glovebox, a J. Young NMR Tube was charged with $\text{fac-}[\text{Ru}((\kappa^1-OAc)(\kappa^2-OAc)(\kappa^3-PN^\text{HPh})]\ (2) \ (3 \text{ mol\%}), \text{C}_6\text{D}_6 \ (0.4 \text{ mL}), \text{ketone} \ (0.1 \text{ mmol, 1.0 equiv.}), \text{mesitylene} \ (10 \mu\text{L}) \text{ and the appropriate silyl formate} \ (1.4 \text{ – 2.0 equiv.).}$ The tube was sealed, brought out of the glovebox and heated at 90 °C. The reaction progress was monitored by $^1\text{H NMR}$ spectroscopy. Yields of silylethers were determined by $^1\text{H NMR}$ integration versus mesitylene as an internal standard ($\delta_H = 6.71$ and 2.15 ppm in C$_6$D$_6$).

Representative NMR spectra for the transfer hydrosilylation of acetophenone (3a) with Et$_3$SiOCHO (5a) is given in Figures S1.

![Diagram of reaction](image-url)
Figure S1. Representative 1H NMR spectra obtained in C$_6$D$_6$ for the transfer hydrosilylation of acetophenone (3a) (0.1 mmol) with Et$_3$SiCHO (5a). a) Crude reaction mixture before heating; t = 0. b) Crude mixture after heating 1.5 h at 90 °C.

The formation of known silyl ethers 4c,4 4d,5 4g,6 4i,7 4j,8 4la,9 4lb,10 4m,7 4n,7 4t,7 4u,7 4v,11 was confirmed by 1H NMR and/or 13C NMR analysis, with spectroscopic data in accordance with literature.

4.2. General Procedure for preparative scale up reactions (GP2)

In a flamed and dried Schlenk tube, fac-[Ru($^\kappa^3$-OAc)($^\kappa^2$-OAc)($^\kappa^3$-PN$_H$P$_Ph$)] (2) (3 mol%), Toluene (2 mL), ketone (0.5 mmol, 1.0 equiv.) and the appropriate silyl formate (1.4 – 2.0 equiv.) were added. The Schlenk tube was sealed, and heated at 90 °C. After reaction completion, the solvent was removed under reduced pressure. The final crude product was purified by chromatography (silica-gel, cyclohexane/ethyl acetate or petroleum ether/Ethyl acetate mixtures).

5. Characterization of isolated and new silyl ethers (scaled up reactions)

(1-(p-Tolyl)ethoxy)triethylsilane (4b)

![Structure](image)

Isolated as a colorless oil in 90% yield (procedure GP2). Spectroscopic data in accordance with literature.5

1H NMR (200 MHz, d_8-THF): $\delta = 7.21$ (d, $J = 7.9$ Hz, 2H), 7.07 (d, $J = 7.9$ Hz, 2H), 4.86 (q, $J = 6.3$ Hz, 1H), 2.28 (s, 3H), 1.36 (d, $J = 6.3$ Hz, 3H), 0.91 (t, $J = 7.8$ Hz, 9H), 0.63-0.48 (m, 6H).

13C NMR (50 MHz, d_8-THF): $\delta = 144.8, 136.6, 129.2, 125.7, 71.2, 27.7, 21.0, 7.0, 5.4.$

(1-(p-Iodophenyl)ethoxy)triethylsilane (4e)

![Structure](image)

Isolated as a colorless oil in 86% yield (procedure GP2).

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.63$ (d, $J = 8.4$ Hz, 2H), 7.09 (d, $J = 8.2$ Hz, 2H), 4.80 (q, $J = 6.3$ Hz, 1H), 1.38 (d, $J = 6.3$ Hz, 3H), 0.91 (t, $J = 7.9$ Hz, 9H), 0.61-0.52 (m, 6H).

13C NMR (100 MHz, CDCl$_3$): $\delta = 146.8, 137.3, 127.4, 92.1, 70.2, 27.3, 6.9, 4.9.$

HRMS (ESI+) (m/z): [M - H]$^+$ calcd. for C$_{14}$H$_{22}$IOSi, 361.0479; found: 361.0481

Methyl 4-(1-((triethylsilyl)oxy)ethyl)benzoate (4f)
Isolated as a colorless oil in 85% yield (procedure GP2).

1H NMR (400 MHz, CDCl$_3$): δ = 7.99 (d, J = 8.3 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 4.90 (q, J = 6.4 Hz, 1H), 3.90 (s, 3H), 1.42 (d, J = 6.3Hz, 3H), 0.91 (t, J = 8.0 Hz, 9H), 0.62-0.51 (m, 6H).

13C NMR (100 MHz, CDCl$_3$): δ = 167.3, 152.3, 129.7, 128.8, 125.3, 70.4, 52.1, 27.2, 6.9, 4.9.

HRMS (ESI+) (m/z): [M + H]+ calcd. for C$_{16}$H$_{27}$O$_3$Si, 295.1724; found: 295.1725.

(1-p-Nitrophenylethoxy)triethylsilane (4h)

Isolated as a colorless oil in 95% yield (procedure GP2). Spectroscopic data in accordance with literature.$^{[12]}$

1H NMR (200 MHz, d$_8$-THF): δ = 8.18 (d, J = 8.8 Hz, 2H), 7.60 (d, J = 8.8 Hz, 2H), 5.06 (q, J = 6.3 Hz, 1H), 1.42 (d, J = 6.4 Hz, 3H), 0.94 (t, J = 7.8 Hz, 9H), 0.70-0.52 (m, 6H).

13C NMR (50 MHz, d$_8$-THF): δ = 155.1, 147.9, 126.8, 124.0, 70.6, 27.2, 6.9, 5.2.

(1-Phenyl)butoxy)triethylsilane (4k)

Isolated as a colorless oil in 95% yield (procedure GP2).

1H NMR (200 MHz, C$_6$D$_6$): δ = 7.36-7.28 (m, 2H), 7.24-7.06 (m, 3H), 4.63 (dd, J = 7.2, 5.1 Hz, 1H), 1.90-1.20 (m, 4H), 1.01-0.79 (m, 12H), 0.65-0.48 (m, 6H).

13C NMR (50 MHz, C$_6$D$_6$): δ = 146.3, 128.4, 127.3, 126.3, 75.3, 43.7, 19.3, 14.3, 7.1, 5.3.

HRMS (ESI+) m/z: [M - H]+ calcd. for C$_{16}$H$_{27}$O,2Si, 263.1826; found: 263.1827 (Data of the oxidized product).

(di-p-Tolylmethoxy)triethylsilane (4ma)

Isolated as a white solid in 80% yield (procedure GP2).

1H NMR (200 MHz, d$_8$-THF) δ = 7.23 (d, J = 7.6 Hz, 4H), 7.04 (d, J = 7.6 Hz, 4H), 5.75 (s, 1H), 2.26 (s, 6H), 0.89z (t, J = 7.5 Hz, 9H), 0.70 – 0.43 (m, 6H).

13C NMR (50 MHz, d$_8$-THF) δ = 143.5, 136.7, 129.2, 126.8, 76.9, 20.9, 7.0, 5.4.

HRMS (ESI+) (m/z): [M + Na]+ calcd. for C$_{21}$H$_{30}$NaO,2Si, 349.1958; found: 349.1962.
(di-p-Tolylmethoxy)triethylsilane (4mb)

\[
\begin{align*}
\text{O} & \quad \text{SiMe}_3 \\
4mb &
\end{align*}
\]

Isolated as a colorless oil in 70% yield (procedure GP2).

\[^1H \text{NMR (200 MHz, CD}_2\text{Cl}_2) \delta = 7.20 \text{ (d, } J = 7.7 \text{ Hz, 4H), 7.10 \text{ (d, } J = 7.7 \text{ Hz, 4H), 5.71 \text{ (s, 1H), 2.30 \text{ (s, 6H), 0.07 \text{ (s, 9H)}}. \]

\[^13C \text{NMR (50 MHz, CD}_2\text{Cl}_2) \delta = 142.7, 137.0, 129.1, 126.6, 76.4, 21.1, 0.1. \]

HRMS (ESI+) (m/z): [M + Na]^+ calcd. for C_{18}H_{24}NaOSi, 307.1489; found: 307.1491.

[(p-Nitrophenyl)(Phenyl)methoxy]triethylsilane (4oa)

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{SiEt}_3 \\
4oa &
\end{align*}
\]

Isolated as a colorless oil in 95% yield (procedure GP2).

\[^1H \text{NMR (200 MHz, d}_8\text{-THF) } \delta = 8.15 \text{ (d, } J = 8.9 \text{ Hz, 2H), 7.65 \text{ (d, } J = 8.9 \text{ Hz, 2H), 7.47-7.36 \text{ (m, 2H), 7.34-7.17 \text{ (m, 3H), 5.96 \text{ (s, 1H), 0.89 \text{ (t, } J = 7.7 \text{ Hz, 9H}, 0.71-0.53 \text{ (m, 6H).}}. \]

\[^13C \text{NMR (50 MHz, d}_8\text{-THF) } \delta = 153.4, 147.9, 144.9, 129.0, 128.1, 127.5, 127.0, 124.0, 76.4, 6.9, 5.2. \]

HRMS (ESI+) (m/z): [M + H]^+ calcd. for C_{19}H_{26}NO_3Si, 344.1676; found: 344.1675.

Dimethyl[(4-nitrophenyl)(phenyl)methoxy](phenyl)silane (4oc)

\[
\begin{align*}
\text{O}_2\text{N} & \quad \text{SiMe}_2\text{Ph} \\
4oc &
\end{align*}
\]

Isolated as a white solid in 63% yield (procedure GP2 with Anisole as solvent).

\[^1H \text{NMR (400 MHz, CDCl}_3) \delta = 8.16 \text{ (d, } J = 8.8 \text{ Hz, 2H), 7.57 - 7.48 \text{ (m, 4H), 7.47 - 7.40 \text{ (m, 1H), 7.40 - 7.24 \text{ (m, 7H), 5.80 \text{ (s, 1H), 0.35 \text{ (d, } J = 5.0 \text{ Hz, 6H).}}. \]

\[^13C \text{NMR (101 MHz, CDCl}_3) \delta = 152.0, 147.0, 143.2, 136.9, 133.5, 129.9, 128.6, 127.9, 127.8, 127.0, 126.6, 123.6, 76.2, -1.1, -1.4. \]

[1-Methyl-3-phenyl-(E)-allyloxy]triethylsilane (4q)

\[
\begin{align*}
\text{O} & \quad \text{SiEt}_3 \\
4q &
\end{align*}
\]

Isolated as a colorless oil in 78% yield (procedure GP2). Spectroscopic data in accordance with literature.\(^{[12]}\)

\[^1H \text{NMR (400 MHz, CDCl}_3): \delta = 7.39-7.35 \text{ (m, 2H), 7.28-7.34 \text{ (m, 2H), 7.25-7.17 \text{ (m, 1H), 6.51 \text{ (d, } J = 15.9 \text{ Hz, 1H), 6.22 \text{ (ddd, } J = 15.9, 5.9, 1.0 \text{ Hz, 1H), 4.47 \text{ (p, } J = 6.3 \text{ Hz, 1H), 1.32 \text{ (d, } J = 6.3 \text{ Hz, 3H), 0.98 \text{ (t, } J = 7.9 \text{ Hz, 9H), 0.67-0.60 \text{ (m, 6H).}}. \]

S7
13C NMR (100 MHz, CDCl$_3$): $\delta = 137.3, 134.6, 128.7, 128.2, 127.4, 126.5, 69.3, 24.9, 7.0, 5.0.

HRMS (ESI+) (m/z): [M - H]$^+$ calcd. for C$_{16}$H$_{25}$OSi, 261.1669; found: 261.1669.

[[(1-Methyl-3-phenyl-2propynyl)oxy]triethylsilane (4r)

Isolated as a colorless oil in 55% yield (procedure GP2). Spectroscopic data in accordance with literature.$^{[12]}$

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.43-7.39$ (m, 2H), 7.32-7.28 (m, 3H), 4.74 (q, $J = 6.5$ Hz, 1H), 1.52 (d, $J = 6.5$ Hz, 3H), 1.01 (t, $J = 7.9$ Hz, 9H), 0.73-0.65 (m, 6H).

13C NMR (100 MHz, CDCl$_3$): $\delta = 131.7, 128.4, 128.2, 123.3, 91.9, 83.3, 59.2, 25.6, 6.9, 5.0.$

HRMS (ESI+) (m/z): [M - H]$^+$ calcd. for C$_{16}$H$_{23}$OSi, 259.1513; found: 259.1516.

[(4-phenylbut-1-en-3-yn)oxy]triethylsilane

Isolated as a colorless oil in 36% yield (procedure GP2).

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.47-7.44$ (m, 2H), 7.35-7.31 (m, 3H), 4.78 (d, $J = 6.3$ Hz, 2H), 1.04 (t, $J = 7.9$ Hz, 9H), 0.72-0.74 (m, 6H).

13C NMR (100 MHz, CDCl$_3$): $\delta = 139.6, 131.7, 128.7, 128.5, 122.6, 102.9, 87.2, 86.9, 6.8, 5.1.$

HRMS (ESI+) (m/z): [M - H]$^+$ calcd. for C$_{16}$H$_{21}$OSi, 257.1356; found: 257.1362.

[(Cyclohex-2-en-1-yloxy]triethylsilane (4s)

Isolated as a colorless oil in 73% yield (procedure GP2).

1H NMR (200 MHz, C$_6$D$_6$)$\delta = 5.88-5.74$ (m, 1H), 5.73-5.52 (m, 1H), 4.22 (m, 1H), 1.89-1.57 (m, 5H), 1.51-1.25 (m, 1H), 1.03 (t, $J = 7.8$ Hz, 9H), 0.75-0.51 (m, 6H).

13C NMR (50 MHz, C$_6$D$_6$)$\delta = 131.8, 128.8, 66.6, 33.1, 25.3, 19.9, 7.2, 5.5.$

HRMS (ESI+) (m/z): [M - H]$^+$ calcd. for C$_{12}$H$_{23}$OSi, 211.1513; found: 211.1510.

(Cyclohexyloxy]triethylsilane (4w)
Isolated as a colorless oil in 95% yield (procedure GP2). Spectroscopic data in accordance with literature.[13]

\[^1H \text{NMR (200 MHz, C}_6\text{D}_6) \delta = 3.74-3.49 \text{ (m, 1H), } 1.89-1.58 \text{ (m, 4H), } 1.53-1.30 \text{ (m, 3H), } 1.29-1.10 \text{ (m, 3H), } 1.04 \text{ (t, } J = 7.9 \text{ Hz, 9H), } 0.73-0.53 \text{ (m, 6H).} \]

\[^{13}C \text{NMR (50 MHz, C}_6\text{D}_6) \delta = 70.7, 36.5, 26.0, 24.4, 7.3, 5.5. \]

6. Evidence for the crucial role of the N-H function

In order to prove the importance of the role of the ligand N-H group in the hydrosilylation of ketones, the reaction was performed on aldehydes and ketones with catalysts \textit{fac}-[Ru(κ1-OAc)(κ2-OAc)(κ3-PN\textsubscript{H}P\textsubscript{Ph})] \textit{(2)} and \textit{fac}-[Ru(κ1-OAc)(κ2-OAc)(κ3-PNMeP\textsubscript{Ph})] \textit{(2-Me)} following the general procedure for NMR scale reactions (GP1).

\textbf{Table S3.} Reduction of ketones and aldehydes with catalysts 2 or 2-Me. (0.1 mmol scale)

Entry	R	Cat	Yield (%)
1	Me	2	99
2	H	2	99
3	Me	2-Me	0
4	H	2-Me	99
7. Study of the selectivity between aldehydes and ketones

\[
\text{3x} \quad \xrightarrow{\text{5a (1 equiv.)}} \quad \text{4x}
\]

In a glovebox, a J. Young NMR Tube was charged with \(\text{fac-}[\text{Ru(κ³-\text{OAc})(κ²-\text{OAc})(κ¹-\text{PNHpPh})}]\) (1) (3 mol%), \(\text{C}_6\text{D}_6\) (0.4 mL), 4-acetylbenzaldehyde (3x) (0.1 mmol, 1 equiv.), mesitylene (10 \(\mu\text{L}\)) and triethylsilyl formate (5a) (1.0 equiv.). The tube was sealed, brought out of the glovebox and heated at 90 °C. The reaction progress was monitored by \(^1\text{H NMR spectroscopy versus mesitylene as an internal standard. After 2 h at 90 °C, the aldehyde is fully hydrosilylated whereas the ketone remains unchanged.}

NMR spectra for the transfer hydrosilylation of 4-acetylbenzaldehyde (3x) with Et\textsubscript{3}SiOCHO (5a) is given in Figure S2. Spectroscopic data is in accordance with literature.[14]

Figure S2. \(^1\text{H NMR spectra obtained in C}_6\text{D}_6\) for the transfer hydrosilylation of 4-acetylbenzaldehyde (3x) with Et\textsubscript{3}SiCHO (5a). Crude mixture after heating 2 h at 90 °C.
8. TESOCDO synthesis

\[
\begin{align*}
\text{Deuterated silylformate } & \quad 5a-d_1 \\
\text{was synthesized according to literature.}^{[3]} \\
\text{An oven-dried flask equipped with a J-Young valve was charged with deuterated sodium formate (1.2 equiv.), diethylether (11 mL) and triethylsilylchloride (10.9 mmol) under inert atmosphere. The final mixture was stirred at 90 °C overnight. Once the reaction is complete, the reaction was cold down and filtered in the glovebox through a plug of Celite. The liquid phase was collected and concentrated under vacuum at 0 °C for 2h to yield the pure product as a colourless liquid in 83% yield.}
\end{align*}
\]

\(^{1}H\) NMR (400 MHz, \(C_6D_6\)): \(\delta = 0.91\) (t, \(J = 7.8\) Hz, 9H), 0.72-0.64 (m, 6H).

\(^{13}C\) NMR (100 MHz, \(C_6D_6\)): \(\delta = 160.2\) (t, \(J = 33.6\) Hz), 6.6, 4.8.

\(^{29}Si\) NMR (79 MHz, \(C_6D_6\)): \(\delta = 26.5\).

\(^{2}H\)-NMR (61 MHz, Toluene): 7.76.

Figure S3. \(^{1}H\) NMR of TESCODO in \(C_6D_6\).
Figure S4. 13C NMR of TESCDO in C$_6$D$_6$.

Figure S5. 29Si NMR of TESCDO in C$_6$D$_6$.
Figure S6. 2H NMR of TESCOD in toluene.
9. Deuterium labelling experiment

Acetophenone hydrosilylation was carried out according to general procedure for NMR scale reactions and 5a-d$_1$ as silylformate source. The final product 4a-d$_1$ was obtained in 99% NMR yield with complete selectivity. Spectroscopic data is in accordance with literature.5

Figure S7. 1H NMR spectra obtained in C$_6$D$_6$ for the transfer hydrosilylation of acetophenone (3a) with Et$_3$SiCDO (5a-d$_1$). Crude mixture after heating 4 h at 90 ºC.
10. Experimental evidence of ruthenium monohydride species.

In a glovebox, a J. Young NMR Tube was charged with \(\text{fac-}[\text{Ru}(\kappa^1\text{-OAc})(\kappa^2\text{-OAc})(\kappa^3\text{-PN}^{\text{H}}\text{Ph})] (2) \) (3 mol%), \(\text{C}_6\text{D}_6 \) (0.4 mL), ketone (0.1 mmol, 1.0 equiv.), mesitylene (10 \(\mu \)L) and triethylsilyl formate (5a) (1.4 equiv.). The tube was sealed, brought out of the glovebox and heated at 90 \(^\circ \)C. The reaction was monitored by \(^1\)H NMR spectroscopy after 1.5 minutes of reaction.

Figure S8. \(^1\)H NMR spectra obtained in \(\text{C}_6\text{D}_6 \) for the transfer hydrosilylation of acetophenone (3a) with Et\(_3\)SiCHO (5a). Crude mixture after heating 1.5 min at 90 \(^\circ \)C showing the presence of a Ru-H signal.

Figure S9. \(^{31}\)P NMR spectra obtained in \(\text{C}_6\text{D}_6 \) for the transfer hydrosilylation of acetophenone (3a) with Et\(_3\)SiCHO (5a). Crude mixture after heating 1.5 min at 90 \(^\circ \)C showing the presence of a Ru-H signal.
11. Competition reactions

In order to test the compatibility of the reaction with free alcohols, amines, amides and carboxylic acids, the benchmark reaction was performed in presence of additives 8 containing these functional groups (benzamide (8a), benzyl alcohol (8b), morpholine (8c), and benzoic acid (8d), Table S4). Knowing that alcohols and carboxylic acids are silylated in presence of silyl formate 5[15], we envisaged that the same will occur with free amides and amines, which is why an excess of silyl formate was used in those reactions (2.4 – 3 equiv).

Compared to the benchmark reaction (Table S4, entry 1), the presence of additives slowed the reaction: 4.5 – 20 h were necessary to observe full conversion in contrast to 1.5 h in the benchmark reaction (Table S4). In presence of benzamide (8a), the reaction was completed within 6.5 h with a yield of 82% (entry 1). Benzyl alcohol (8b), morpholine (8c), and benzoic acid (8d) showed a detrimental effect on the reaction, the yield of 4a being lowered to 24 – 58%, due to the presence of numerous side-products (entries 3-5). Silylation of alcohol 8b and carboxylic acid 8d was observed, whereas in the case of benzamide (8a) and morpholine (8c) derivatives, it was not possible to identify the products resulting from their reactions with silylformate 5a.

Table S4. Reduction of ketone 3a in presence of additives 8 with silyl formate 5a. (0.1 mmol scale)

Entry	Additive	5 (equiv.)	t(h)	Yield (%)
1	-	2.4	1.5	99
2	8a	2.4	6.5	82
3	8b	2.4	4.5 (20)	21 (45)
4	8c	2.4	4.5	24
5	8d	3	4.5	58
NMR spectra of isolated compounds

Figure S10. 1H NMR spectra obtained in d_8-THF for 4b.

Figure S11. 13C NMR spectra obtained in d_8-THF for 4b.
Figure S12. 1H NMR spectra obtained in CDCl$_3$ for 4e.

Figure S13. 13C NMR spectra obtained in CDCl$_3$ for 4e.
Figure S14. 1H NMR spectra obtained in CDCl$_3$ for 4f.

Figure S15. 13C NMR spectra obtained in CDCl$_3$ for 4f.
Figure S16. 1H NMR spectra obtained in d_8-THF for 4h.

Figure S17. 13C NMR spectra obtained in d_8-THF for 4h.
Figure S18. 1H NMR spectra obtained in C$_6$D$_6$ for 4k.

Figure S19. 13C NMR spectra obtained in C$_6$D$_6$ for 4k.
Figure S20. 1H NMR spectra obtained in d_8-THF for 4ma.

Figure S21. 13C NMR spectra obtained in d_8-THF for 4ma.
Figure S22. 1H NMR spectra obtained in CD$_2$Cl$_2$ for 4mb.

Figure S23. 13C NMR spectra obtained in CD$_2$Cl$_2$ for 4mb.
Figure S24. 1H NMR spectra obtained in d_8-THF for 4oa.

Figure S25. 13C NMR spectra obtained in d_8-THF for 4oa.
Figure S26. 1H NMR spectra obtained in CDCl$_3$ for 4oc.

Figure S27. 1H NMR spectra obtained in CDCl$_3$ for 4oc.
Figure S28. 1H NMR spectra obtained in CDCl$_3$ for 4q.

Figure S29. 13C NMR spectra obtained in CDCl$_3$ for 4q.
Figure S30. 1H NMR spectra obtained in CDCl$_3$ for 4r.

Figure S31. 13C NMR spectra obtained in CDCl$_3$ for 4r.
Figure S32. 1H NMR spectra obtained in CDCl$_3$ for enolether byproduct from $3r$.

Figure S33. 13C NMR spectra obtained in CDCl$_3$ for the enolether byproduct from $3r$.
Figure S34. 1H NMR spectra obtained in C$_6$D$_6$ for 4s.

Figure S35. 13C NMR spectra obtained in C$_6$D$_6$ for 4s.
Figure S36. 1H NMR spectra obtained in C$_6$D$_6$ for 4w.

Figure S37. 13C NMR spectra obtained in C$_6$D$_6$ for 4w.
13. References

[1] Chauvier, C., Thuéry, P., Cantat, C. Angew. Chem. Int. Ed. 2016, 55, 14096-14100.
[2] Chauvier, C., Imberdis, A., Thuéry, P., Cantat, T. Angew. Chem. Int. Ed. 2020, 59, 14019-14023.
[3] Godou, T., Chauvier, C., Thuéry, P., Cantat, T. Synlett 2017 28, 2473-2477.
[4] Rawat, S., Bhandari, M., Porwal, C. K., Singh, S. Inorg. Chem. 2020, 59, 7195-7203.
[5] Rubio, M., Campos, J., Carmona, E. Org. Lett. 2011, 13, 5236-5239.
[6] Pérez, M., Qu, Z.-W., Caputo, C. B., Podgorny, V., Hounjet, L. J., Hansen, A., Dobrovetsky, R., Grimme, S., Stephan, D. W. Chem. Eur. J. 2015, 21, 6491-6500.
[7] Diez-González, S., Kaur, H., Zinn, F. K., Stevens, E. D., Nolan, S. P. J. Org. Chem. 2005, 70, 4784-4796.
[8] Teci, M., Lentz, N., Brenner, E., Matt, D., Toupet, L. Dalton Trans. 2015, 44, 13991-13998.
[9] Egbert, J. D., Nolan, S. P. Chem. Commun. 2012, 48, 2794-2796.
[10] Kadam, S. T., Kim, S. S. J. Organomet. Chem. 2009, 694, 2562-2566.
[11] Ison, E. A., Trivedi, E. R., Corbin, R. A., Abu-Omar, M. M. J. Am. Chem. Soc. 2005, 127, 15374-15375.
[12] Du, G., Abu-Omar, M. M. Organometallics 2006, 25, 4920-4923.
[13] Tran, B. L., Pink, M., Mindiola, D.J. Organometallics 2009, 28, 2234-2243.
[14] Liberman-Martin, A. L., Bergman, R. G., Tilley, T. D. J. Am. Chem. Soc. 2015, 137, 5328-5331.
[15] C. Chauvier, T. Godou and T. Cantat, Chem. Commun. 2017, 11697.