The Analysis of Outcomes of Intracranial Germ Cell Tumors: A Single-institute Study

Kyeong-O Go
Gyeongsang National University Hospital
https://orcid.org/0000-0003-3515-3771

Kihwan Hwang
Seoul National University Bundang Hospital

Jung Ho Han
Seoul National University Bundang Hospital

Hyoung Soo Choi
Seoul National University Bundang Hospital

Yu Jung Kim
Seoul National University Bundang Hospital

Byung Se Choi
Seoul National University Bundang Hospital

In Ah Kim
Seoul National University Bundang Hospital

Gheeyoung Choe
Seoul National University Bundang Hospital

Byung-Kyu Cho
Armed Forces Capital Hospital

Chae-Yong Kim (chaeyong@snu.ac.kr)
Seoul National University Bundang Hospital
https://orcid.org/0000-0001-9773-5553

Research Article

Keywords: Treatment Outcome, Germ Cell Tumor, Chemotherapy, Radiotherapy

DOI: https://doi.org/10.21203/rs.3.rs-206787/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Purpose: For analyzing the epidemiology and treatment according to the KSPNO protocol results of germ cell tumor patients at our institution.

Methods: From 2004 to 2019, of 6494 patients with intracranial neoplasms, 61 (0.9%) patients with iGCTs were enrolled. Pediatric patients underwent chemotherapy and radiotherapy according to the Korean Society for Pediatric Neuro-Oncology (KSPNO) protocol, and adult patients were treated with bleomycin, etoposide, and cisplatin (BEP) regimens. Survival rates, recurrence rates, and posttreatment morbidity were analyzed to identify risk factors.

Results: The median age was 20.0 years (range: 1-42), and the follow-up duration was 77.7 months (range: 10.0-203.4 months). The tumors developed most frequently in the pineal gland (49.2%). There were no significant differences in outcomes between protocols, but the KSPNO protocol group had lower tumor recurrence (14.8% vs. 17.6%, p=0.524) and mortality rates (0% vs. 5.9%, p=0.307) than the other groups. According to the pathological subtype, the outcomes were significantly different between the germinoma and nongerminomatous germ cell tumor (NGGCT) groups. The 10-year progression-free survival rates were 93.2% and 67.1% in the germinoma and NGGCT groups, respectively (p = 0.009). The NGGCT pathological type (p=0.021) was a significant recurrence-associated factor in the multivariate analysis. Significant adverse occurred in 14 patients (7 patients in each group).

Conclusions: Pure germinomas have a higher survival and lower recurrence rate than NGGCTs. A multidisciplinary approach is needed to select appropriate iGCT treatments, and reducing the radiation dose could minimize posttreatment morbidity.

Clinical trial registration

Not applicable

Introduction

Intracranial germ cell tumors (iGCTs) are sensitive to chemotherapy and radiation therapy (RT). For germinomas and central nervous system (CNS) germinomas, the 10-year overall survival (OS) is reported to be approximately 90% [1]. Prior to the era of chemotherapy and radiation combination therapy, treatment at the primary site alone was a common practice, and the applied radiation dose frequently exceeded 50 Gy. [2,3]. However, following long-term follow-up, radiotherapy-induced secondary brain tumors and malignancies were reported, although rarely [4-7].

Radiation-induced complications after treatment may be inevitable, but many investigators have attempted to reduce the radiation dose and increase the role of chemotherapy to minimize these complications [1,8-11]. Since the Korean Society for Pediatric Neuro-Oncology (KSPNO) G-081/G-082 clinical trial was introduced in 2009, our institute has applied this protocol to patients with iGCT. The aim
of the KSPNO is to reduce the radiation dose while maximizing the cure rate to improve the quality of life of survivors.

This study aims to analyze the epidemiology of iGCTs, including OS, and progression-free survival (PFS), based on the experiences of our institution and to analyze the factors affecting them. Therefore, we discuss the effectiveness and safety of the new protocol.

Materials And Methods

We retrospectively reviewed the electronic medical records (EMRs) of consecutively enrolled patients with histologically and clinically diagnosed germ cell tumors from 2004 to 2019 in our institute. Patients who were diagnosed with and treated for iGCTs for more than six months were included. Of the 65 patients diagnosed with iGCTs in our institution, two patients had insufficient medical records and two patients had incomplete or were lost to follow-up; Finally, 61 patients were included in the study. The primary outcome was OS, defined as the period from the date of surgery or tissue biopsy to the time of death or the last follow-up of the patient. The secondary outcome, PFS, was defined as the period from the date of surgery or biopsy to the date of disease progression confirmed by a follow-up magnetic resonance imaging (MRI) scan. In the absence of evidence of progression, the OS and intervals were considered equal. Significant adverse events occurring during chemotherapy were defined as grade 3 or higher based on the common terminology criteria for adverse events (CTCAE) version 5.0. Statistical analyses were performed using logistic regression and Kaplan-Meier survival analysis. Additionally, these analyses were conducted using SPSS version 21 (IBM Corp., Armonk, NY, USA).

Pure germinoma diagnosed since 2009 was treated with the KSPNO G-081 protocol, and NGGCT was treated with the KSPNO G-082 protocol. Treatment response was evaluated at 3-4 weeks after the last cycle of chemotherapy and three months after completion of radiation therapy with MRI. 1) Complete remission: All lesions are not visible on MRI and positive cytology becomes negative (β-HCG (if > 10) declines to <2 μU/ml). 2) Partial response (PR): Tumor volume decrease ≥ 50 % of pretreatment volume. 3) Stable disease (SD): Neither sufficient decrease in tumor volume for PR, nor sufficient increase in tumor volume for PD. 4) Progressive disease (PD): Tumor volume increase ≥ 25 % of pretreatment volume.

Solitary germinomas were treated with chemotherapy and radiation, and local RT was performed without craniospinal irradiation (CSI) if there was a CR. For multiple or disseminated germinomas, CSI was applied in all cases, and the lowest dose was applied until CR. In the NGGCT group, chemotherapy and radiotherapy were applied for both localized and disseminated tumors; radiotherapy was applied at 36 Gy for localized lesions and 39 Gy for disseminated lesions according to the KSPNO-G082 protocol. Bleomycin, etoposide, and cisplatin (BEP) regimens were administered to middle-aged adults or pediatric patients before the KSPNO protocol. This study protocol was approved by the institutional review of the board (IRB No. 2021-01-016), and the need for informed consent was waived.
Results

Between 2004 and 2019, 65 (1.05%) of the 6394 patients diagnosed and treated with intracranial tumors in SNUBH were diagnosed with iGCTs. Four patients with insufficient EMRs or less than six months of follow-up were excluded. The general characteristics of the patients are summarized in Table 1. Finally, 61 patients were enrolled. The median follow-up period was 77.7 months (range, 10-203.4 months). Males were dominant (M:F = 4.08:1), and the mean age was 20 years (range: 1-42 years). The tumor developed most frequently in the pineal area (n = 30, 49.2%). Pathologically, 39 (63.9%) patients were diagnosed with germinoma, and 22 (36.1%) patients were diagnosed with NGGCT. Fifty-three of the 61 patients (86.9%) received adjuvant radiation treatment. The median CSI dose was 29.4 Gy (range: 13-39), and the local boost dose was 19.8 Gy (range: 10.8-54 Gy). The median dose of whole-brain or ventricle radiation was 30.0 Gy (range: 5.4-50.4 Gy) and that of in the KSPNO group were 23.4 Gy which was lower dose than those in the other protocol groups (median: 30.4 Gy) (p = 0.016).

Twenty-seven out of 61 (44.3%) patients were treated according to the KSPNO protocol. Two patients discontinued treatment; one was achieved with 1A and 1B cycles and dropped, and the other was identified as having progressive disease during the 1A cycle, so chemotherapy was discontinued. Twenty-three adults (germinoma = 15, NGGCT = 8) and 12 children (germinoma = 6, NGGCT = 6) were diagnosed before the KSPNO protocol.

The Kaplan-Meier survival curves of PFS and OS are illustrated in Figs. 1 and 2. The mean PFS was 169.7 months (range: 1.2-203.4 months), and the mean OS was 196.6 months (range: 10-203.4 months). Ten patients (16.4%) relapsed after treatment. According to the treatment protocol, the KSPNO protocol group showed a lower recurrence rate than the other groups, but this difference was not statistically significant (11.5% vs. 20.0%, p = 0.494). According to the pathological type, the germinoma group showed better PFS than the NGGCT group, and this difference was statistically significant (10-year PFS, 93.2% vs. 67.8%, p = 0.011). The total number of survivors was 59 (96.7%) during the follow-up period.

There were no significant differences in OS between treatment protocols (p = 0.257); however, according to pathological type, there was a marginal difference (10-year OS of germinoma vs. NGGCT: 100% vs. 90%, p = 0.056). Two patients in the NGGCT group were diagnosed with mature teratoma and choriocarcinoma (Table 2). Mature teratoma patients died of cholecystitis and septic shock after cholecystectomy, and choriocarcinoma patients died of complications associated with disease progression. The morbidity persisted after treatment in 35 (57.4%) patients. The most common symptoms in patients were hormonal disturbances (n = 16, 26.2%) requiring hormonal replacement, visual disturbance (n = 10, 16.4%), cognitive dysfunction (n = 7, 11.5%), and hydrocephalus (n = 6, 9.8%). Of the 54 patients treated with chemotherapy, 14 patients (25.9%) had CTCAE grade 3 or higher (Table 3). The most common adverse events, related to the blood and lymphatic systems, occurred in 13 patients, most of whom had neutropenic fever. There was no difference in toxicity between the two groups according to the treatment protocol (p = 0.528). The only significant factor in the univariate (p = 0.032)
and multivariate (p = 0.027) analyses was pathological type. The odds ratio of the NGGCT group was 5.82 (95% CI, 1.221-25.512), indicating this factor was related to relapse.

Discussion

CNS GCTs are prevalent in children and adolescents in eastern Asia but are generally rare tumors that account for 2-3% of all primary intracranial tumors [12-16]. These tumors are radiosensitive and curable with radiotherapy alone, with a cure rate of 72-100% [17-22]. These tumors may require neurosurgical interventions, such as debulking or pathological confirmation, and cause tumor-related hydrocephalus. These treatment options offer a multidisciplinary approach to CNS GCT treatment. However, for this reason, patients admitted to institutions that do not practice an active multidisciplinary approach may be treated with different treatment protocols depending on the department they are admitted to.

The KSPNO released the KSPNO-G081/G082 protocols in 2009. Since then, the authors have applied this protocol to patients at the SNUBH. The results of a relatively homogenous group of patients who underwent the KSPNO protocol was used to diagnose a consecutive patient, and the patient’s multidisciplinary treatment process was shared among departments through outpatient clinics and institutional conferences. In this study, the authors compared and analyzed the KSPNO protocol group and other protocol groups. All of the patients’ clinical information was shared among departments through outpatient clinics and institutional conferences, with a multidisciplinary approach. This study is meaningful for verifying the effectiveness and safety of the KSPNO protocol.

In recent decades, radiation doses applied to primary sites exceeded 50 Gy [2,3]. However, the histological identity between CNS germinoma, seminoma of the testis, and dysgerminoma of the ovary suggest the possibility of application at a dose of 25-30 Gy, the therapeutic dose used in these tumors, for CNS germinoma [20]. In addition, Aydin et al. reported CR at autopsy after treatment of CNS pure germinoma with only 16 Gy of radiation[23]. Some studies have suggested that doses can be reduced to less than 36 Gy in whole-ventricular irradiation without preirradiation chemotherapy [24,25].

There was a report that radiotherapy alone was associated with the risk of new CNS germinoma relapse [26]. In addition, CNS germinoma is reported to have a 10-year OS rate of 90% [1]. Radiation-induced secondary brain tumors and subsequent malignant neoplasms caused by RT are rare, but there are some reported cases [4-7]. In addition, the cumulative risk of brain tumors obtained after 15 years of cranial irradiation has been reported to be 2.7% [5].

CNS germinoma is known to be susceptible to radiation as well as chemotherapy, and platinum-based chemotherapy reduces late complications associated with RT, and allows a reduction in therapeutic radiation doses to 24-30 Gy without reducing the therapeutic effect [1,8-11]. However, some studies have reported treatment failure due to limited irradiation fields for localized germinoma compared to those for the whole ventricle [27-29].
The KSPNO protocol uses neoadjuvant chemotherapy to maintain a curative effect while applying a reduced radiation dose. Recent consensus suggests that at least the whole ventricle should be treated and irradiated to reduce the risk of local relapse of germinoma [1]. As described above, there have been reports on applying chemotherapy and combination therapy to determine whether CSI is necessary according to the treatment response, reduce the final radiation dose and reduce complications related to radiation in the long term [30-34].

Adverse events in the KSPNO protocol group were not significantly different from those in the other protocol groups. In addition, mortality was 0% in the KSPNO protocol group and 5.7% in the remaining subgroups (p = 0.503). These results show that the KSPNO protocol is acceptable in comparison with conventional treatment.

A significant number of germinomas occur in the pineal, sellar, and suprasellar areas. Therefore, it is crucial to reduce nephrotoxicity because patients often experience diabetes insipidus (DI) before treatment. Cisplatin, which was used in the traditional regimen, was replaced with carboplatin in the KSPNO protocol, which may reduce urotoxicity compared to traditional therapy. However, cyclophosphamide also has urotoxic properties, so mesna (sodium 2-mercaptoethanol sulfonate) should be added [31,35]. The results of the current study revealed that this goal was achieved. The adverse events that occurred in the patients in the KSPNO protocol group were mostly blood and lymphatic system problems, and there were no patients with signs and symptoms of urotoxicity. Moreover, there was one patient in a different protocol group with CTCAE grade 3 urotoxicity. A similar result to that in the current study was reported in another study using the KSPNO protocol [31].

Single chemotherapy regimens for NGGCTs, such as radiotherapy alone, show modest or even inferior effectiveness [36,37]. However, combined chemotherapy and RT may provide comparable germinoma control at lower radiation doses and field volumes than those applied in RT alone [38-42]. In addition, one of the critical benefits of chemotherapy for NGGCTs is that it reduces tumor size and vascularity before surgery [1].

The therapeutic effect of CSI is controversial. The benefit of CSI in patients diagnosed with germinoma is reported to be approximately 15% [43]. Relapses along the neuraxis outside the radiation field are rare, and the improvement in the outcomes with CSI was not significantly different [44]. In our study, the mean PFS was longer in the germinoma group (169.68 months) than in the other group (188.54 months) (p = 0.215). In NGGCT, however, the opposite trend (149.0 vs. 107.8 months, p = 0.831) showed that there was no significant difference according to whether CSI was applied.

Our study has some limitations, and this requires cautious interpretation of the results. Since the introduction of the KSPNO-G081/G082 protocols in 2009, 26 pediatric patients have undergone the KSPNO protocol and were included in our study. The KSPNO protocol group (23.4 Gy; range, 5.4-30.6 Gy) was treated with lower doses of whole-ventricle irradiation than the other treatment protocol groups (33.3 Gy; range, 19.8-50.4 Gy), but there were no significant differences in outcomes such as OS and PFS. However, the patients in the KSPNO protocol group were significantly younger than those in the other
protocol groups. Moreover, because of the rarity of the disease, the group size may not be enough to elucidate statistical significance. These limitations should be complemented by long-term follow-up studies with larger sample sizes.

Conclusions

Pathologic type is a significant prognostic factor of outcomes in CNS germ cell tumor patients. For these tumors, surgical removal is considered to be practical and meaningful for histological diagnosis, and the KSPNO protocol with prophylactic neoadjuvant chemotherapy and a reduced radiation dose seems to be a viable treatment option. For appropriate treatment of iGCTs, a multidisciplinary approach may be needed.

Declarations

Acknowledgments

Not applicable

Declarations

Authors have no conflict of interest.

Funding

No funding was received for this research.

Conflicts of interest

The authors declare that they have no conflict of interest

Consent to participate

The authors have read and approved the manuscript.

Consent to publish

Authors agreed to be published in this manuscript.

Availability of data and material

Code availability

Not applicable

Authors' contributions
CYK designed the study; KOG, KH, JHH, and CYK created the data; CYK, KH, and KOG analyzed the data and wrote the draft; HSC, YJK, BSC, IAK, GC, BKC, CYK reviewed the manuscript and edited; KOG administrated the project.

References

1. Kamoshima Y, Sawamura Y (2010) Update on current standard treatments in central nervous system germ cell tumors. Curr Opin Neurol 23 (6):571-575. doi:10.1097/WCO.0b013e32833ff522
2. Huh SJ, Shin KH, Kim IH, Ahn YC, Ha SW, Park CI (1996) Radiotherapy of intracranial germinomas. Radiother Oncol 38 (1):19-23. doi:10.1016/0167-8140(95)01649-x
3. Abay EO, Laws ER, Grado GL, Bruckman JE, Forbes GS, Gomez MR, Scott M (1981) Pineal tumors in children and adolescents. Treatment by CSF shunting and radiotherapy. J Neurosurg 55 (6):889-895. doi:10.3171/jns.1981.55.6.0889
4. Hwang K, Lee KS, Choe G, Cho BG, Kim CY (2018) Secondary glioblastoma after treatment of intracranial germinoma - would radiation-only therapy still be safe? Case report. BMC Cancer 18 (1):1119. doi:10.1186/s12885-018-5073-3
5. Acharya S, DeWees T, Shinohara ET, Perkins SM (2015) Long-term outcomes and late effects for childhood and young adulthood intracranial germinomas. Neuro Oncol 17 (5):741-746. doi:10.1093/neuonc/nou311
6. Nishio S, Morioka T, Inamura T, Takeshita I, Fukui M, Sasaki M, Nakamura K, Wakisaka S (1998) Radiation-induced brain tumours: potential late complications of radiation therapy for brain tumours. Acta Neurochir (Wien) 140 (8):763-770. doi:10.1007/s007010050177
7. You SH, Lyu CJ, Kim DS, Suh CO (2013) Second primary brain tumors following cranial irradiation for pediatric solid brain tumors. Childs Nerv Syst 29 (10):1865-1870. doi:10.1007/s00381-013-2098-4
8. Sawamura Y, de Tribolet N, Ishii N, Abe H (1997) Management of primary intracranial germinomas: diagnostic surgery or radical resection? J Neurosurg 87 (2):262-266. doi:10.3171/jns.1997.87.2.0262
9. Fouladi M, Grant R, Baruchel S, Chan H, Malkin D, Weitzman S, Greenberg ML (1998) Comparison of survival outcomes in patients with intracranial germinomas treated with radiation alone versus reduced-dose radiation and chemotherapy. Childs Nerv Syst 14 (10):596-601. doi:10.1007/s003810050279
10. Sawamura Y, Shirato H, Ikeda J, Tada M, Ishii N, Kato T, Abe H, Fujieda K (1998) Induction chemotherapy followed by reduced-volume radiation therapy for newly diagnosed central nervous system germinoma. J Neurosurg 88 (1):66-72. doi:10.3171/jns.1998.88.1.0066
11. Aoyama H, Shirato H, Ikeda J, Fujieda K, Miyasaka K, Sawamura Y (2002) Induction chemotherapy followed by low-dose involved-field radiotherapy for intracranial germ cell tumors. J Clin Oncol 20 (3):857-865. doi:10.1200/JCO.2002.20.3.857
12. Brain Tumor Registry of Japan (2005-2008) (2017). Neurol Med Chir (Tokyo) 57 (Suppl 1):9-102. doi:10.2176/nmc.sup.2017-0001
13. Ho DM, Liu HC (1992) Primary intracranial germ cell tumor. Pathologic study of 51 patients. Cancer 70 (6):1577-1584. doi:10.1002/1097-0142(19920915)70:6<1577::aid-cncr2820700622>3.0.co;2-x

14. Dho YS, Jung KW, Ha J, Seo Y, Park CK, Won YJ, Yoo H (2017) An Updated Nationwide Epidemiology of Primary Brain Tumors in Republic of Korea, 2013. Brain Tumor Res Treat 5 (1):16-23. doi:10.14791/brtr.2017.5.1.16

15. Matsutani M, Sano K, Takakura K, Fujimaki T, Nakamura O, Funata N, Seto T (1997) Primary intracranial germ cell tumors: a clinical analysis of 153 histologically verified cases. J Neurosurg 86 (3):446-455. doi:10.3171/jns.1997.86.3.0446

16. Suh YL, Koo H, Kim TS, Chi JG, Park SH, Khang SK, Choe G, Lee MC, Hong EK, Sohn YK, Chae YS, Kim DS, Huh GY, Lee SS, Lee YS, Neuropathology Study Group of the Korean Society of Pathologists (2002) Tumors of the central nervous system in Korea: a multicenter study of 3221 cases. J Neurooncol 56 (3):251-259. doi:10.1023/a:1015092501279

17. Ogawa K, Shikama N, Toita T, Nakamura K, Uno T, Onishi H, Itami J, Kakinohana Y, Kinjo T, Yoshii Y, Ito H, Murayama S (2004) Long-term results of radiotherapy for intracranial germinoma: a multi-institutional retrospective review of 126 patients. Int J Radiat Oncol Biol Phys 58 (3):705-713. doi:10.1016/j.ijrobp.2003.07.001

18. Shibamoto Y, Sasai K, Oya N, Hiraoka M (2001) Intracranial germinoma: radiation therapy with tumor volume-based dose selection. Radiology 218 (2):452-456. doi:10.1148/radiology.218.2.r01ja08452

19. Yen SH, Chen YW, Huang PI, Wong TT, Ho DM, Chang KP, Liang ML, Chiou SH, Lee YY, Chen HH (2010) Optimal treatment for intracranial germinoma: can we lower radiation dose without chemotherapy? Int J Radiat Oncol Biol Phys 77 (4):980-987. doi:10.1016/j.ijrobp.2009.06.035

20. Wara WM, Jenkin RD, Evans A, Ertel I, Hittle R, Ortega J, Wilson CB, Hammond D (1979) Tumors of the pineal and suprasellar region: Childrens Cancer Study Group treatment results 1960–1975: a report from Childrens Cancer Study Group. Cancer 43 (2):698-701. doi:10.1002/1097-0142(197902)43:2<698::aid-cncr2820430243>3.0.co;2-y

21. Rich TA, Cassady JR, Strand RD, Winston KR (1985) Radiation therapy for pineal and suprasellar germ cell tumors. Cancer 55 (5):932-940. doi:10.1002/1097-0142(19850301)55:5<932::aid-cncr2820550504>3.0.co;2-h

22. Wara WM, Fellows CF, Sheline GE, Wilson CB, Townsend JJ (1977) Radiation therapy for pineal tumors and suprasellar germinomas. Radiology 124 (1):221-223. doi:10.1148/124.1.221

23. Aydin F, Ghatak NR, Radie-Keane K, Kinard J, Land SD (1992) The short-term effect of low-dose radiation on intracranial germinoma. A pathologic study. Cancer 69 (9):2322-2326. doi:10.1002/1097-0142(19920501)69:9<2322::aid-cncr2820690920>3.0.co;2-8

24. Chen YW, Huang PI, Ho DM, Hu YW, Chang KP, Chiou SH, Guo WY, Chang FC, Liang ML, Lee YY, Chen HH, Hsu TR, Lin SC, Wong TT, Yen SH (2012) Change in treatment strategy for intracranial germinoma: long-term follow-up experience at a single institute. Cancer 118 (10):2752-2762. doi:10.1002/cncr.26564
25. Lavey RS, Olch AJ (2010) Optimal treatment for intracranial germinoma: can we lower, radiation dose without chemotherapy? In regard to Yen S-H et al. (Int J Radiat Oncol Biol Phys Epub October 27, 2009). Int J Radiat Oncol Biol Phys 77 (2):638-639; author reply 639. doi:10.1016/j.ijrobp.2010.01.036

26. Aoyama H, Shirato H, Kakuto Y, Inakoshi H, Nishio M, Yoshida H, Hareyama M, Yanagisawa T, Watarai J, Miyasaka K (1998) Pathologically-proven intracranial germinoma treated with radiation therapy. Radiother Oncol 47 (2):201-205. doi:10.1016/s0167-8140(98)00017-6

27. Nguyen QN, Chang EL, Allen PK, Maor MH, Ater JL, Mahajan A, Wolff JE, Weinberg JS, Woo SY (2006) Focal and craniospinal irradiation for patients with intracranial germinoma and patterns of failure. Cancer 107 (9):2228-2236. doi:10.1002/cncr.22246

28. Douglas JG, Rockhill JK, Olson JM, Ellenbogen RG, Geyer JR (2006) Cisplatin-based chemotherapy followed by focal, reduced-dose irradiation for pediatric primary central nervous system germinomas. J Pediatr Hematol Oncol 28 (1):36-39

29. Shim KW, Kim TG, Suh CO, Cho JH, Yoo CJ, Choi JU, Kim JH, Kim DS (2007) Treatment failure in intracranial primary germinomas. Childs Nerv Syst 23 (10):1155-1161. doi:10.1007/s00381-007-0394-6

30. Jensen AW, Laack NN, Buckner JC, Schomberg PJ, Wetmore CJ, Brown PD (2010) Long-term follow-up of dose-adapted and reduced-field radiotherapy with or without chemotherapy for central nervous system germinoma. Int J Radiat Oncol Biol Phys 77 (5):1449-1456. doi:10.1016/j.ijrobp.2009.06.077

31. Lee DS, Lim DH, Kim IH, Kim JY, Han JW, Yoo KH, Park KD, Park HJ, Chung NG, Suh CO, Kim DS (2019) Upfront chemotherapy followed by response adaptive radiotherapy for intracranial germinoma: Prospective multicenter cohort study. Radiother Oncol 138:180-186. doi:10.1016/j.radonc.2019.06.002

32. Finlay J, da Silva NS, Lavey R, Bouffet E, Kellie SJ, Shaw E, Saran F, Matsutani M (2008) The management of patients with primary central nervous system (CNS) germinoma: current controversies requiring resolution. Pediatr Blood Cancer 51 (2):313-316. doi:10.1002/pbc.21555

33. Raggi E, Mosleh-Shirazi MA, Saran FH (2008) An evaluation of conformal and intensity-modulated radiotherapy in whole ventricular radiotherapy for localised primary intracranial germinomas. Clin Oncol (R Coll Radiol) 20 (3):253-260. doi:10.1016/j.clon.2007.12.011

34. Rogers SJ, Mosleh-Shirazi MA, Saran FH (2005) Radiotherapy of localised intracranial germinoma: time to sever historical ties? Lancet Oncol 6 (7):509-519. doi:10.1016/S1470-2045(05)70245-X

35. Shim KW, Park EK, Lee YH, Suh CO, Cho J, Choi JU, Kim DS (2013) Treatment strategy for intracranial primary pure germinoma. Childs Nerv Syst 29 (2):239-248. doi:10.1007/s00381-012-1902-x

36. Kellie SJ, Boyce H, Dunkel IJ, Diez B, Rosenblum M, Brualdi L, Finlay JL (2004) Primary chemotherapy for intracranial nongerminomatous germ cell tumors: results of the second international CNS germ cell study group protocol. J Clin Oncol 22 (5):846-853. doi:10.1200/JCO.2004.07.006
37. Jennings MT, Gelman R, Hochberg F (1985) Intracranial germ-cell tumors: natural history and pathogenesis. J Neurosurg 63 (2):155-167. doi:10.3171/jns.1985.63.2.0155
38. Sawamura Y, Ikeda J, Shirato H, Tada M, Abe H (1998) Germ cell tumours of the central nervous system: treatment consideration based on 111 cases and their long-term clinical outcomes. Eur J Cancer 34 (1):104-110. doi:10.1016/s0959-8049(97)10045-4
39. Millard NE, Dunkel IJ (2014) Advances in the management of central nervous system germ cell tumors. Curr Oncol Rep 16 (7):393. doi:10.1007/s11912-014-0393-1
40. Matsutani M, Japanese Pediatric Brain Tumor Study Group (2001) Combined chemotherapy and radiation therapy for CNS germ cell tumors--the Japanese experience. J Neurooncol 54 (3):311-316. doi:10.1023/a:1012743707883
41. Lee D, Suh YL (2010) Histologically confirmed intracranial germ cell tumors; an analysis of 62 patients in a single institute. Virchows Arch 457 (3):347-357. doi:10.1007/s00428-010-0951-3
42. Kanamori M, Kumabe T, Saito R, Yamashita Y, Sonoda Y, Ariga H, Takai Y, Tominaga T (2009) Optimal treatment strategy for intracranial germ cell tumors: a single institution analysis. J Neurosurg Pediatr 4 (6):506-514. doi:10.3171/2009.7.PEDS08288
43. Linstadt D, Wara WM, Edwards MS, Hudgins RJ, Sheline GE (1988) Radiotherapy of primary intracranial germinomas: the case against routine craniospinal irradiation. Int J Radiat Oncol Biol Phys 15 (2):291-297. doi:10.1016/s0360-3016(98)90007-4
44. Fuller BG, Kapp DS, Cox R (1994) Radiation therapy of pineal region tumors: 25 new cases and a review of 208 previously reported cases. Int J Radiat Oncol Biol Phys 28 (1):229-245. doi:10.1016/0360-3016(94)90162-7

Tables

Table 1. Summary of the general characteristics of the subjects according to the treatment protocols.
Protocol	Total (n=61)	KSPNO (n=26)	Others (n=35)	p-value
Sex, M:F	49:12	22:4	27:8	0.302
Median age, month (range)	20 (1-42)	15 (6-24)	21 (1-42)	<0.001*
Tumor location (n, %)				0.416
Pineal gland	30 (49.2)	15 (57.7)	15 (42.9)	
Sellar and suprasellar	12 (19.7)	5 (19.2)	7 (20.0)	
Cerebrum	4 (6.6)	1 (3.8)	3 (8.6)	
Intraventricular	2 (3.3)	0	2 (5.7)	
Thalamostriate	2 (3.3)	2 (7.7)	0	
Disseminate	2 (3.3)	1 (3.8)	1 (2.9)	
Multifocal	7 (11.5)	2 (7.7)	5 (14.3)	
Others	2 (3.3)	0	2 (5.7)	
Pathological type (n, %)				0.450
Germinomatous	39 (63.9)	17 (65.4)	21 (61.8)	
NGGCT	22 (36.1)	9 (34.6)	13 (38.2)	
Chemotherapy, n (%)	56 (91.8)	26 (100)	30 (85.7)	
RT, n (%)	53 (86.9)	25 (96.2)	28 (80.0)	
aCSI	29.4 (13-39)	25.2 (13-39)	30.3 (19-36)	0.347
aWB or WV	30.0 (5.4-50.4)	23.4 (5.4-30.6)	33.3 (19.8-50.4)	0.006*
aLocal	19.8 (10.8-54)	18.9 (10.8-54)	19.8 (12.6-40)	0.608
Median follow-up duration (range, months)	77.7 (10.0-203.4)	68.9 (10.0-182.1)	92.0 (12.1-203.4)	0.109
Mean PFS	169.7	156.8	164.0	0.495
Mean OS	196.6	b_	192.3	0.257
Recurrence	10 (16.4%)	3 (11.5%)	7 (20.0%)	0.494
Mortality	2 (3.3%)	0	2 (5.7%)	0.503
Comorbidity	35 (57.4%)	14 (53.8%)	21 (60.0%)	0.413
Hormonal disturbance	16	6	10	
Visual disturbance	10	4	6	
Cognitive dysfunction 7 3 4
Hydrocephalus 6 2 4
Others 6 3 3

KSPNO The Korean Society for Pediatric Neuro-Oncology, NGGCT nongerminomatous germ cell tumor, CSI craniospinal irradiation, WB whole-brain radiotherapy, WV whole-ventricle radiotherapy

a Values as a radiotherapy dose in Gy, (range)

b All the patients in the KSPNO protocol group were alive at the last follow-up, so no statistics were calculated.

*p<0.05

Table 2. Tumor distributions according to pathological type.

	Total (%)	KSPNO	Others
Germinoma	39 (63.9%)	17 (65.4%)	22 (62.9%)
NGGCT	22 (36.1%)	9 (34.6%)	13 (37.1%)
Mature teratoma	7 (11.5%)	1 (3.8%)	6 (17.1%)
Mixed GCT	7 (11.5%)	4 (15.4%)	3 (8.6%)
Choriocarcinoma	3 (4.9%)	1 (3.8%)	2 (5.7%)
Immature teratoma	1 (1.6%)	1 (3.8%)	0
NOS	4 (6.6%)	2 (7.7%)	2 (5.7%)

KSPNO The Korean Society for Pediatric Neuro-Oncology, NGGCT nongerminomatous germ cell tumor, GCT germ cell tumor, NOS not otherwise specified

Table 3. Adverse events during treatment.
CTCAE (v5.0) grade ≥ 3	p-value		
	KSPNO (n=26)	Others (n=29)	Total
Blood and lymphatic system	6 4 13		
Musculocutaneous	a1 0 1		
Respiratory	1 0 1		
Renal and Urinary	0 1 b1		
Nervous system	0 2 2		
Total	7 (26.9%) 7 (24.1%) 14 (25.9%)	0.528	

CTCAE Common Terminology Criteria for Adverse Events, KSPNO The Korean Society for Pediatric Neuro-Oncology

a Overlap with blood and lymphatic system

b Overlap with nervous system