Immune Response (Serum Globulin) in BALB/c Mice after Hookworm Egg Protein Immunization as the Initial Stage of Developing Laboratory Diagnostics: An In Vivo Approach

Budi Santosa1*, Arista Kurnia Budi Fristiani2, Edi Dharmana3, Fitriani Nur Damayanti4, Heru Santoso Wahito Nugroho5

1Department of Medical and Clinical Laboratory Science, Universitas Muhammadiyah Semarang, Semarang, Central Java, Indonesia; 2Department of Laboratory Technology, Universitas Muhammadiyah Semarang, Semarang, Indonesia; 3Department of Immunology, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia; 4Department of Midwifery, Faculty of Nursing and Health Science, Universitas Muhammadiyah Semarang, Semarang, Indonesia; 5Department of Health, Poltekkes Kemenkes Surabaya, Surabaya, Indonesia

Abstract

BACKGROUND: Hookworm infestation is still high and requires practical laboratory diagnosis with high sensitivity and specificity. Meanwhile, there are several limitations associated with the existing method; hence, a new method is essentially needed. Furthermore, the principle of immunological reactions needs to be developed by identifying the extent of hookworm eggs suspension immune responses. The BALB/c mouse is among the most widely used inbred models used in biomedical research and is particularly utilized in immunology and infectious disease research.

AIM: This study aims to determine whether the protein concentration of hookworm eggs stimulates antibodies formation (proteins) in the serum of BALB/c mice.

METHODS: This is an experimental study with a post-test only control design approach. Egg protein was isolated by removing the contents using a mini drill to immunize BALB/c mice, while the antibody response was observed by spectrophotometer and agglutination methods.

RESULTS: The Chi-square and Post hoc statistical tests showed a significance p ≤ 0.001 indicating a relationship between hookworm egg protein and agglutination results. The higher the antibody level, the more visible the agglutination.

CONCLUSION: These results are expected to form a basis for developing more practical and efficient diagnostic methods based on antigen-antibody reactions.

Introduction

Worm infestation is one of the most common diseases that spread and infect people worldwide. In 2015, the World Health Organization (WHO) stated that 24% of the world’s population suffers from worms. Sub-Saharan Africa, America, China, and East Asia have the largest incidence rates. Meanwhile, one of the causes of high worm infestation is the low quality of environmental sanitation [1], which leads to malnutrition, physical, mental, cognitive growth, and intellectual decline in children, as well as decreased immunity, disability, and death [2], [3].

Soil-transmitted helminth (STH) is a group of soil-borne worms which consist of four species, namely Ascaris lumbricoides, Trichuris trichiura, and hookworms (Necator americanus and Ancylostoma duodenale) [4]. The prevalence of this STH group is still high ranging from 45–65% in Indonesia. The most prevalent is hookworm with an incidence of 32% in 1000 population [5], [6].

Helminthiasis diagnosis is established by laboratory examinations using conventional methods, including direct, indirect, and microscopic [7]. In the direct method, reagents such as eosin, Lugol, and NaCl are used to observe the worm eggs clearly and properly. Meanwhile, in the indirect method, the duration of flotation and sedimentation is often used as a variable to obtain a false positive/negative result. Moreover, expertise is required in identifying worm eggs by laboratory personnel. The limitations are minimized using an easy examination method with high sensitivity, specificity, as well as positive and negative predictive value [8].

Method development needs to be carried out using the principle of antigen and antibody reactions. This method requires antibodies as reagents at an early stage to establish a diagnosis. Meanwhile, hookworm eggs contain immunogenic proteins with similar structures at all stages. Antibodies are obtained by immunizing worm...
Materials and Methods

This is an experimental study with post-test only controls design approach, consisting of 4 groups, namely, 1 negative control and 3 test groups (P1, P2, and P3) each using five experimental animals. The outputs examined include hookworm egg protein and globulin levels from the BALB/c mice serum.

The stages are as follows:

The making of hookworm egg protein

Fecal samples that were only positive for hookworm egg protein were screened using the microscopic method (Tables 1 and 2). Meanwhile, worm eggs isolation was carried out by modified flotation and sedimentation methods. Positive samples were separated using the saturated salt flotation method, because the number of samples required was large. This process was carried out using a separating funnel to easily remove dirt deposits. The supernatant was collected for repeated centrifugation with physiological NaCl solution and deposit. The supernatant was collected for repeated centrifugation with physiological NaCl solution and deposit. The supernatant was collected for repeated centrifugation with physiological NaCl solution and deposit. The supernatant was collected for repeated centrifugation with physiological NaCl solution and deposit. The supernatant was collected for repeated centrifugation with physiological NaCl solution and deposit.

The examination of hookworm egg protein levels

Hookworm egg protein suspensions were prepared in concentrations of 5%, 10%, and 15%, while the protein content was measured using the spectrophotometer method by making a standard curve from a protein standard solution, measuring the absorbance of samples at each concentration, as well as a negative control of the stool suspension, and input data on a standard curve. The X-axis was protein concentration while Y-axis was the absorbance; hence, the formula for the equation of the line was obtained, while the protein content was measured by entering the absorbance value.

Selection of experimental animals

The experimental animals selected were female BALB/c mice aged 6–8 weeks weighing about 18–20 g, because BALB/c mice have a very good response to immunization, BALB strain mice are more able to survive twice as strong as the CBA/CBA2 strain and C3H/HeJ. The immune status of the immunized individual can also determine the outcome of the immunization procedure. The age of mice used by young adults is good for the production of polyclonal antibodies (pAb). Conventionally, female animals have been used most often in pAb production. Females are generally more docile for handling purposes, and less aggressive in social interactions, and can therefore be grouped more successfully. While there is some evidence that androgens can slightly dampen antibody responses, there is no major scientific reason not to use male animals.

The protein immunization in experimental animals

BALB/C mice were injected with hookworm egg protein in treatments 1st (P1), 2nd (P2), and 3rd (P3) with concentrations of P1 (5%), P2 (10%), and (15%). Meanwhile, the control was injected with negative stool samples. Boosters were carried out on the 7th, 14th, and 21st, while, on the 30th day, blood harvest was carried out. Furthermore, this study used variations in the concentration of injection based on the recommended dose for mice which content with a spectrophotometer to determine the absorbance and protein concentration (Figure 1).
are 5 ug per 100 ul injection. However, because the antigen used is in liquid form, the concentration was made directly into 5% and an additional variation of 10% and 15%.

Blood collection

Mice blood samples were obtained from the conjunctiva after 35 days using a capillary tube. It was drawn with minimum stress for mice, that is, by administering anesthesia before sampling to reduce stress and pain, by veterinary staff. Furthermore, blood collection was carried out under warm conditions to ensure smooth blood flow, no sudden noise which might trigger stress, and the sampling site was kept clean to avoid blood contamination. To obtain the antibody, the sample was placed in a plain vacutainer tube, frozen, and then centrifuged at 10,000 rpm for 5 min. The supernatant formed was collected and placed into a sterile tube and then stored at −20°C.

The spectrophotometric test

The protein globulin level was obtained by calculating the difference between total protein and serum albumin which was read by the photometer method. Globulins make up 40% of the total protein, the remainder consisting of 60% albumin.

Globulin formula (g/dl): Total protein − Albumin

Each solution mixture was homogenized and then incubated at 37° for 10 min, the sample absorbance was read to the blank at a wavelength of 546 nm.

Agglutination test

Mice serum from the control, as well as treatments 1, 2, and 3, were used as samples to check for the presence of antibody which is formed by the principle of agglutination. An antigen in this test is the hookworm egg protein concentration, meanwhile, the volume of each stage is 20 ul of both mice serum and antigen. Agglutination appeared in the form of grains on the slide and was observed for 2 min.

Table 1: Total protein procedure

Blank	Standard	Sample
Aquadest	20 ul	-
Lar Standard	20 ul	-
Sample	-	20 ul
Monoreagent (4R1:1R2)	1000 ul	1000 ul

Table 2: Albumin procedure

Blank	Standard	Sample
Aquadest	10 ul	-
Lar standard	10 ul	-
Sample	-	10 ul
Reagent	1000 ul	1000 ul

Ethical clearance

This study was conducted after obtaining ethical clearance from the ethics committee of FKM UNIMUS Semarang No.423/KEPK-FKM/UNIMUS/2020. The Head of the Clinical Pathology Laboratory, Muhammadiyah Semarang University, approved this study after receiving notification of ethical clearance result.

Results

Analysis of worm egg protein levels

The pure fecal suspension samples were examined for the number of hookworm eggs to predict the density. In each 20 µl, there were 3–4 eggs/field of view with a magnification of 100 times. This produced an image indicating that each milliliter of the pure sample contains 1000 hookworm eggs.

Examination of hookworm egg protein levels using the spectrophotometer method obtained the following data (Table 3):

Table 3: Hookworm egg protein level based on the concentration (%)

Hookworm egg protein concentration	Protein content (µg/µl)
Negative stool suspension	0.420
5%	39.305
10%	58.694
15%	72.679

The protein content of hookworm eggs is directly proportional to the concentration, hence, the higher the concentration, the higher the protein content. In the negative stool suspension, almost no protein content was found.

Analysis of serum globulin protein levels in mice

The examination of globulin protein levels using a spectrophotometric device on five mice serum per each treatment group after 35 days of immunization using worm egg protein produced the following results (Figure 2):

Based on Figure 3, the highest and lowest globulin protein content were found in the 15%
hookworm egg protein suspension. The protein concentration is directly proportional to globulin protein levels in the serum of BALB/C mice.

The antibody concentration in ug/ul based on the injection of antigen (hookworm egg protein content) is illustrated in the following Table 4:

Based on Table 4, the higher the dose given, the higher the antibody expression produced.

The antibody concentration in ug/ul based on the injection of antigen (hookworm egg protein content) is illustrated in the following Table 4:

Based on Table 4, the higher the dose given, the higher the antibody expression produced.

Table 4: Antibody concentration of egg serum BALB/c mice after immunization of antigen variation by spectrophotometric method

Stool Suspension Concentration	Hookworm egg protein content/Antigen (ug/ul)	Serum Protein Levels in BALB/c mice after immunization/antibodies (ug/ul)
5%	39.305	43.167
10%	58.694	68.802
15%	72.679	110.713
50%	100.086	-
100%	167.090	-

Information: Agl: The amount of agglutination, Agl: The amount of agglutination does not occur.

Antigen and antibody which reacted with the same concentration all formed agglutination. The serum of Balb/C mice was also reacted with antigen concentrations of 50% and 100%. The result showed that when the antigen concentration was lower than the antigen, agglutination was faint, negative, or totally absent (Table 5).

Based on the Chi-square statistical test, $p \leq 0.001$ was obtained, which indicates that there was a significant difference in the agglutination results of mice serum with 5%, 10%, and 15% fecal suspension (Table 6). To determine the differences, the Post hoc test was carried out as follows in Table 7.

Based on the Post hoc test, p-value between each group was below 0.05, this indicates that there were significant differences in concentrations of 5%, 10%, and 15% with serum antibody levels in BALB/c mice.

The results showed that hookworm egg suspension contains numerous proteins and the levels increase according to the percentage of the suspension. Hookworm egg suspension immunized in BALB/c mice also indicated an increase in globulin levels. This was further supported by the agglutination result which showed that there were significant differences in concentrations of 5%, 10%, and 15% with serum antibody levels in BALB/c mice.

The modulating effect of worm infection on the immune system occurs due to changes in the balance of T-helper 1/T-helper 2 (Th1/Th2) to Th2 cells (Th2 polarized) [24]. Acute infection with intestinal worms stimulates the host immune response known as Th2 response [25]. This immune response polarization is characterized by an increase in Th2-specific cytokines such as interleukin-4 (IL-4), interleukin-5 (IL-5), interleukin-13 (IL-13), as well as immunoglobulin E (IgE) [26], [27], [28] as demonstrated in the levels of Th2 response.
the gamma globulin fraction in the total protein globulin. The results showed that the higher the concentration of hookworm egg protein, the higher the globulin response.

High levels of globulins are used as material to develop immune response reactions for a more practical and efficient serological-based hookworm egg examination method.

The presence of hookworm egg protein is an early indication used as the most potent immunogen component in the macromolecular proteins form, such as polysaccharides, or other synthetic polymers including polyvinylpyrrolidone (PVP). Meanwhile, the configuration of the antigen-antibody molecule only produces antibodies that are specific to one type of antigen [29], [30]. The greater the immunogenic protein the better, meanwhile, protein increases in an organism as one of the dominant components in antibodies [31].

Agglutination test is one of the methods used to prove the presence of antigen and antibody reactions. One of the methods used is direct agglutination [32], which requires that the antigen and antibody react directly, with the antigen in the form of a particle or cell, hence, when it reacts with a specific antibody, clumps are formed [33].

Conclusion

The statistical tests showed that variations in the protein concentration of hookworm eggs produced antibodies indicated by the increase in serum protein of BALB/c mice, the occurrence of agglutination reactions, and the difference in agglutination results. These results are applicable as a reference for further studies to develop a new simple method for detecting hookworm using serological methods.

References

1. Oswald WE, Stewart AE, Kramer MR, Endeshaw T, Zerihun M, Melak B, et al. Association of community sanitation usage with soil-transmitted helminth infections among school-aged children in Amhara Region, Ethiopia. Parasit Vectors. 2017;10(1):91. https://doi.org/10.1186/s13071-017-2020-0

2. Bharti B, Bharti S, Khurana S. Worm infestation: Diagnosis, treatment, and prevention. Indian J Pediatr. 2018;85(11):1017-24. https://doi.org/10.1007/s12098-017-2505-z

3. Kabore A, Ibikounle M, Tougoue JJ, Mupoyi S, Ndombe M, Shannon S, et al. Initiating NTD programs targeting schistosomiasis and soil-transmitted helminthiasis in two provinces of the democratic republic of the Congo: Establishment of baseline prevalence for mass drug administration. Acta Trop. 2017;166:177-85. https://doi.org/10.1016/j.actatropica.2016.11.023

4. da Luz RI, Linsuке S, Lutmaba P, Hasker E, Boelaert M. Association of community sanitation usage with soil-transmitted helminthiasis and baseline prevalence for mass drug administration. Acta Trop. 2017;166:177-85. https://doi.org/10.1016/j.actatropica.2016.11.023

5. Dunn JC, Turner HC, Tun A, Anderson RM. Epidemiological surveys of, and research on, soil-transmitted helminths in Southeast Asia: A systematic review. Parasit Vectors. 2016;9(1):1-13. https://doi.org/10.1186/s13071-016-1310-2

6. Rusjid SR. Tinjauan pustaka infeksi cacing dan alergi. J Kesehat Andalas. 2015;4(1):322-5.

7. Khurana S, Sethi S. Laboratory diagnosis of soil-transmitted helminthiasis. Trop Parasitol. 2017;17(2):86-91. https://doi.org/10.4103/tp.TP_29_17

8. Ngwese MM, Manouana GP, Moure PA, Ramharter M, Esen M, Adégnik AA. Diagnostic techniques of soil-transmitted helminths: Impact on control measures. Trop Med Infect Dis. 2020;5(2):93. https://doi.org/10.3390/tropicalmed5020093

9. Kato M, Yan H, Tsuji NM, Chiba T, Hanyu Y. A method for inducing antigen-specific IgG production by in vitro immunization. J Immunol Methods. 2012;386(1-2):60-9. https://doi.org/10.1016/j.jim.2012.08.019

10. Tang S, Liu Z, Lir R, Chen Y, Zhao L, Shen H, et al. Preparation and identification of the polyclonal antibody against ATRX-C 2193-2492. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2017;33(4):536-9.

11. Malaei F, Rasaei MJ, Paknejad M, Latif AM, Rahbarizadeh F. Production and characterization of monocolonal and polyclonal antibodies against truncated recombinant dickkopf-1 as a candidate biomarker. MonoclonAntib Immunodiag Immunother. 2016;37(6):257-64. https://doi.org/10.1089/mab.2018.0029

12. Francis JN, Thaburet JF, Bonnet D, Sizer PJ, Brown CB, Georges B. Increasing cellular immunogenicity to peptide-based...
vaccine candidates using a fluorocarbon antigen delivery system. Vaccine. 2015;33(8):1071-6. https://doi.org/10.1016/j.vaccine.2014.12.061

PMid:25573036

13. Da Rocha MC, Barés ME, Braga MC. Quantification of viable helminth eggs in samples of sewage sludge. Water Res. 2016;103:245-55. https://doi.org/10.1016/j.watres.2016.07.039

PMid:27470467

14. Roche AM, Richard AL, Rahkola JT, Janoff EN, Weiser JN. Antibody blocks the acquisition of bacterial colonization through agglutination. Mucosal Immunol. 2015;8(1):176-85. https://doi.org/10.1038/mi.2014.55

PMid:24962092

15. Wu D, Piszczek G. Rapid determination of antibody-antigen affinity by mass photometry. J Vis Exp. 2021;168:61784. https://doi.org/10.3791/61784

PMid:33616097

16. McCormack PL. Immune globulin (human) 10% liquid: A review of its use in primary immunodeficiency disorders. BioDrugs. 2013;27(4):393-400. https://doi.org/10.1007/s40259-013-0044-3

PMid:23703447

17. Vaillant AA, Jamal Z, Ramphul K. In: StatPearls. Immunoglobulin. Treasure Island (FL): StatPearls Publishing; 2021. PMid:30035936

18. Jolles S, Borrell R, Zouwail S, Heaps A, Moody M, et al. Calculated globulin (CG) as a screening test for antibody deficiency. Clin Exp Immunol. 2014;177(3):671-6. https://doi.org/10.1111/cei.12369

PMid:24784320

19. He J, Pan H, Liang W, Xiao D, Chen X, Guo M, et al. Prognostic effect of albumin-to-globulin ratio in patients with solid tumors: A systematic review and meta-analysis. J Cancerer. 2017;8(19):4002-10. https://doi.org/10.7150/jca.21141

PMid:29187875

20. Kwong PD. What are the most powerful immunogen design vaccine strategies? A structural biologist’s perspective. Cold Spring Harb Perspect Biol. 2017;9(11):1-7.

PMid:28791259

21. Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on Type-2 immunity. Cytokine. 2015;75(1):25-37. https://doi.org/10.1016/j.cytok.2015.05.008

PMid:26073683

22. Henry EK, Inclan-rico JM, Siracusa MC, State R. Type 2 cytokine responses: Regulating immunity to helminth parasites and allergic inflammation. Curr Pharmacol Rep. 2017;3(6):346-59. https://doi.org/10.1007/s40495-017-0114-1

PMid:29399438

23. Armstrong B. Antigen-antibody reactions. In: ISBT Science Series. 2nd ed., Vol. 3. 2020. p. 68-80. https://doi.org/10.1111/voxs.12590

24. Cepon-Robins TJ, Liebert MA, Urlacher SS, Schrock JM, Harrington CJ, Madimenos FC, et al. Market integration and soil-transmitted Helminth infection among the Shuar of Amazonian ecuador. PLoS One. 2020;15(7):1-24. https://doi.org/10.1371/journal.pone.0236924

25. Anuradha R, Munisankar S, Dolla C, Kumaran P, Nutman TB, Babu S. Parasite antigen-specific regulation of Th1, Th2, and Th17 responses in strongyloides stercoralis infection. J Immunol. 2015;195(8):2241-50. https://doi.org/10.4049/jimmunol.1500745

PMid:26202988

26. Ahmed N, French T, Rausch S, Kühl A, Hemminger K, Duany IR, et al. Toxoplasma co-infection prevents Th2 differentiation and leads to a helminth-specific Th1 response. Front Cell Infect Microbiol. 2017;7:341. https://doi.org/10.3389/fcimb.2017.00341

27. Armstrong B. Antigen-antibody reactions. In: ISBT Science Series. 2nd ed., Vol. 3. 2020. p. 68-80. https://doi.org/10.1111/voxs.12590

28. Henry EK, Inclan-rico JM, Siracusa MC, State R. Type 2 cytokine responses: Regulating immunity to helminth parasites and allergic inflammation. Curr Pharmacol Rep. 2017;3(6):346-59. https://doi.org/10.1007/s40495-017-0114-1

PMid:29399438

29. Armstrong B. Antigen-antibody reactions. In: ISBT Science Series. 2nd ed., Vol. 3. 2020. p. 68-80. https://doi.org/10.1111/voxs.12590

30. Cepon-Robins TJ, Liebert MA, Urlacher SS, Schrock JM, Harrington CJ, Madimenos FC, et al. Market integration and soil-transmitted Helminth infection among the Shuar of Amazonian ecuador. PLoS One. 2020;15(7):1-24. https://doi.org/10.1371/journal.pone.0236924

31. Anuradha R, Munisankar S, Dolla C, Kumaran P, Nutman TB, Babu S. Parasite antigen-specific regulation of Th1, Th2, and Th17 responses in strongyloides stercoralis infection. J Immunol. 2015;195(8):2241-50. https://doi.org/10.4049/jimmunol.1500745

PMid:26202988

32. Ahmed N, French T, Rausch S, Kühl A, Hemminger K, Duany IR, et al. Toxoplasma co-infection prevents Th2 differentiation and leads to a helminth-specific Th1 response. Front Cell Infect Microbiol. 2017;7:341. https://doi.org/10.3389/fcimb.2017.00341

PMid:28791259

33. Ermakova EG, Mohandes N, Bhat NK, Kataria V. Type 2 cytokines: A new trend of immunotherapy? Biomed Res Int. 2014;2014:507291. https://doi.org/10.1155/2014/507291

PMid:25573036

34. Arur S, Schedi T. Generation and purification of highly-specific antibodies for detecting post-translationally modified proteins in vivo. Nat Protoc. 2014;9(2):375-95. https://doi.org/10.1038/nprot.2014.017

PMid:24457330

35. Ermakova EG, Mohandes N, Bhat NK, Kataria V. Type 2 cytokines: A new trend of immunotherapy? Biomed Res Int. 2014;2014:507291. https://doi.org/10.1155/2014/507291

PMid:25573036

36. Ermakova EG, Mohandes N, Bhat NK, Kataria V. Type 2 cytokines: A new trend of immunotherapy? Biomed Res Int. 2014;2014:507291. https://doi.org/10.1155/2014/507291

PMid:25573036

37. Ermakova EG, Mohandes N, Bhat NK, Kataria V. Type 2 cytokines: A new trend of immunotherapy? Biomed Res Int. 2014;2014:507291. https://doi.org/10.1155/2014/507291

PMid:25573036

38. Ermakova EG, Mohandes N, Bhat NK, Kataria V. Type 2 cytokines: A new trend of immunotherapy? Biomed Res Int. 2014;2014:507291. https://doi.org/10.1155/2014/507291

PMid:25573036