Prevalence and mortality of cancer among people living with HIV and AIDS patients: a large cohort study in Turkey

Ozlem Altuntas Aydin; Alper Gunduz; Fatma Sargin; Bilgül Mete; Hayat Kumbasar Karaosmanoglu; Dilek Yildiz Sevgi; Mucahit Yemisen; Bulent Durdu; Ilyas Dokmetas; Fenhi Tabak; ACTHIV-IST (Action Against HIV in Istanbul) Study Group

1 University of Health Sciences, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Department of Infectious Diseases and Clinical Microbiology, Istanbul, Turkey. 2 University of Health Sciences, Sisli Etfal Hamidiye Training and Research Hospital, Department of Infectious Diseases and Clinical Microbiology, Istanbul, Turkey. 3 Istanbul Medeniyet University, Goztepe Training and Research Hospital, Department of Infectious Diseases and Clinical Microbiology, Istanbul, Turkey. 4 Istanbul University, Cerrahpasa Medical School, Department of Infectious Diseases and Clinical Microbiology, Istanbul, Turkey. 5 Medistate Hospital, Department of Infectious Diseases and Clinical Microbiology, Istanbul, Turkey. 6 Bezmialem Vakif University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Istanbul, Turkey. (Correspondence to: Ozlem Altuntas Aydin: ozlemaa@gmail.com).

Abstract

Background: Cancer is responsible for elevated human immunodeficiency virus (HIV)-related mortality but there are insufficient data about cancer in HIV-positive patients in Turkey.

Aims: We aimed to investigate the prevalence and mortality of cancer among people living with HIV/AIDS patients in Istanbul, Turkey.

Methods: Between January 1998 and December 2016, people living with HIV and AIDS patients were enrolled in this study by the ACTHIV-IST Study Group, which consists of 5 centres to follow-up HIV-positive patients in Istanbul. The cancer diagnoses included AIDS-defining cancers (ADCs) and non-AIDS-defining cancers (NADCs).

Results: Among 1872 patients, 37 (1.9%) were diagnosed with concurrent cancer. Eleven patients were diagnosed during follow-up; the prevalence of cancer among people living with HIV and AIDS patients was 2.6%. Among 48 cancer patients, 35 patients had ADCs, and 32 of them were diagnosed at their first hospital admission. There were 1007 late presenters and 39 of them had cancer (29 were ADCs). The most prevalent NADCs were gastrointestinal, genitourinary, and pulmonary cancers. NADCs were mostly diagnosed during follow-up of patients. The mortality of this group was significantly higher than that of patients with ADCs (53.9% vs. 22.9%).

Conclusions: These results indicate the importance of cancer screening at diagnosis and during follow-up of HIV infection. A detailed physical examination contributes to diagnosis of the most prevalent ADCs (Kaposi's sarcoma and non-Hodgkin's lymphoma), especially in late presenters. For NADCs, individual risk factors should be considered.

Keywords: human immunodeficiency virus, AIDS, cancer, prevalence, mortality

Citation: Aydin OA; Gunduz A; Sargin F; Mete B; Karaosmanoglu HK; Sevgi DY; et al. Prevalence and mortality of cancer among HIV/AIDS patients: a large-scale cohort study in Turkey. East Mediterr Health J. 2020;26(3):273–279. https://doi.org/10.26719/emhj.19.030

Received: 04/10/17; accepted: 14/06/18

Copyright © World Health Organization (WHO) 2020. Open Access. Some rights reserved. This work is available under the CC BY-NC-SA 3.0 IGO license (https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

Introduction

Patients with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) are at increased risk of developing cancer (1). This link was observed first when Kaposi’s sarcoma (KS) was reported in young, homosexual men with severe immunosuppression, which was thereafter referred to as AIDS. The higher risk is mainly attributed to the impaired immune system. HIV-induced immunosuppression is responsible for the higher rates of KS and non-Hodgkin’s lymphoma (NHL) and the risk increases steadily as CD4+ cell count decreases. Antiretroviral therapy reduces the increased risk of these cancers (2,3). However, non-AIDS-defining cancers (NADCs) do increase and cancer remains a significant cause of mortality in HIV/AIDS patients. Although long lifespan provides time for cancer to develop, the increased cancer risk compared to that in the matched general population demonstrates the role of other factors (4). Coinfection with other viruses, alcohol consumption, tobacco smoking and advanced age in HIV/AIDS patients also increase the risk of cancer (5). People with HIV/AIDS have higher rates of tobacco smoking, hepatitis B and C coinfection, and human papillomavirus infection (6,7).

The increase in the number of NADCs is a challenge to the management of HIV/AIDS patients. The tumours are generally more aggressive and diagnosed at a younger age. HIV-infected patients with Hodgkin’s lymphoma are more likely to present with unfavourable histological type and with higher rate of bone marrow involvement (8). The antineoplastic agents have a high likelihood of interaction with antivirals since protease inhibitors, non-nucleoside reverse transcriptase inhibitors and many antineoplastic drugs are metabolized by the cytochrome P450 system. Coadministration of these antivirals and antineoplastic agents could result in greater adverse effects and decreased efficacy (9,10). Additionally, the risk of death in cancer patients with AIDS is significantly higher than in cancer patients without AIDS for almost all cancer types (10).
After nearly 2 decades of the availability of highly active antiretroviral therapy (HAART), the size of the HIV/AIDS population is growing. As well as late presenting cases, patients receiving HAART regimens have a prolonged, mild immunosuppressive state. Especially in the setting of known risk factors for cancer, the increased incidence of cancer in HIV/AIDS patients represents a significant cause of mortality. There are insufficient data in the current literature about cancer in Turkish HIV-infected patients. In the present study, we aimed to investigate the prevalence and mortality of cancer among HIV/AIDS patients in Istanbul, Turkey.

Methods

Between January 1998 and December 2016, 1872 HIV-infected patients were enrolled by the ACTHIV-IST (Action Against HIV in Istanbul) Study Group, which consists of 5 centres, to follow-up HIV-positive patients in Istanbul. All newly diagnosed HIV/AIDS patients had a confirmatory diagnosis using a western blotting verification test (HIV BLOT 2.2; MP Biomedicals Asia Pacific, Singapore). The CD4+ cell counts were obtained by standard flow cytometry (FACScalibur; Becton Dickinson, Franklin Lakes, NJ, USA), and HIV viral load was measured by polymerase chain reaction (COBAS Amplicore/COBAS TaqMan HIV-1 Test; Roche Molecular Systems, Pleasanton, CA, USA). Demographic data including age, sex, transmission routes, education level, marital status, history of imprisonment, CD4+ cell counts, and HIV RNA were collected from medical records and transferred to an HIV database system.

All the patients at all 5 sites received standardized care and diagnosis services. Diagnosis of cancer was established by clinical (detailed history taking and thorough physical examination), radiological and pathological/histological characteristics. Each cancer was reviewed using a standardized protocol to confirm the diagnosis and collect detailed information regarding cancer type, histology, grade, stage, and treatment from the medical records. Each site in the study used the same protocol for cancer evaluation and data collection. Cancer types were classified according to location (i.e., mucocutaneous, oral, breast, cervix, anus and lung) and/or histopathological reports (i.e., lymphoma and leukaemia). Details of histology, grade, and tumour node metastasis (TNM) staging were obtained from pathology reports and imaging studies. The cancer diagnoses included ADCs (Kaposi’s sarcoma, non-Hodgkin’s lymphoma, thyroid cancer, and cervical cancer) and NADCs.

Survival probability was calculated as the proportion of patients that survived beyond a specified time, and mean survival was the average length of time passed from the date of HIV/AIDS diagnosis. Categorical variables were compared by χ² (or Fisher’s exact) test and continuous variables (age) were compared by Mann–Whitney U test. P < 0.05 was accepted as significant. This study was accepted by the Ethical Committee of Cerrahpasa Medical Faculty (83045809-604.01.02), Istanbul, Turkey.

Results

Among 1907 patients with HIV infection, 35 (1.8%) were lost to follow-up (The remaining 1872 (98.2%) patients were followed up for a total of 146,922 patient-months. Thirty-seven (2.0%) patients were diagnosed with cancer. Additionally, 11 (0.6%) patients were diagnosed during follow-up. The prevalence of cancer among our HIV/AIDS patients was 2.6%. Among the 48 cancer patients, 4 were female and mean age was 41.3 years. Thirty-five (72.9%) patients had ADCs, and 32 (91.4%) were diagnosed at their first hospital admission. Eight (22.8%) of 35 ADC patients and 7 (53.8%) of 13 NADC patients died during the study period. The mortality was 1.75% (32 of 1824) in non-cancer patients.

The 35 ADCs comprised 23 Kaposi’s sarcomas and 12 NHLs. Among the 13 patients with NADCs, 5 had gastrointestinal cancer (3 colon, 1 esophageal and 1 liver), 3 urogenital cancer (1 kidney, 1 prostate and 1 testicular), 3 lung cancer, and 1 each laryngeal and spinal cord cancer.

The patients with NADCs were older than those with ADCs (mean age 53 vs 45 years) (Table 1). The patients with NADCs had a higher rate of HBV infection (15.4% vs 5.7%). Most importantly, the mortality rate was higher among patients with NADCs than ADCs, 53.8% vs 22.8% respectively. Moreover, while 91.4% of ADCs were diagnosed with HIV concurrently, this ratio among NADCs was 38.4%.

The survival probability of HIV-infected cancer patients was significantly lower than that of HIV-infected cancer-free patients (31.3% vs 1.7%) (Table 2). Low CD4 count was more frequent in cancer patients; cancer patients (both those diagnosed on admission and those who developed cancer during follow-up) were more likely late presenters, whose CD4 count was below 350 cells/mm³ at the moment of presentation at a healthcare facility or presenting with an AIDS-defining condition. Considering all cancer patients (diagnosed at any time), CD4 count < 350/mm³ was 38/48 (79%) compared with 968/1824 (53%) among patients without cancer (P < 0.001) (Table 2).

The survival rate between patients diagnosed with cancer on admission and those diagnosed during follow-up were comparable: 18.9 and 12.2 months, respectively (P > 0.48) (Table 3). Similarly, mortality did not differ significantly between the 2 groups. The cancers were more frequently ADCs in patients diagnosed on admission compared to those diagnosed during follow-up (87% vs 27%, P = 0.0004).

Thirty-five patients did not come to follow-up visits. Admission from one HIV/AIDS centre to another is frequent among patients in Turkey. However, this was not confirmed since the patients were not reached.

Causes of death other than cancer were: infection (tuberculosis, toxoplasmosis, cryptococcosis, Pneumocystis jirovecii pneumonia and sepsis; n = 12), wasting (n = 7), myocardial infarction (n = 2), suicide, cerebrovascular accident, progressive multifocal leukoencephalopathy, gastrointestinal bleeding, illicit drug use/intoxication,
renal failure, HIV encephalopathy, alcohol intoxication, traffic accident, liver failure and undetermined (all n = 1).

Discussion

In this study, there were 32 ADCs and 5 NADCs on admission; however, on follow-up, 3 ADCs and 8 NADCs developed additionally. In other words, most of the HIV-infected patients with concurrent cancer had ADCs. NADCs were mostly diagnosed during follow-up of patients. The mortality of patients with NADCs was significantly higher than that in patients with ADCs. These findings highlight the importance of promoting cancer screening during initial diagnosis of HIV infection as well as during follow-up.

Before HAART, cancer was responsible for a minority (around 10%) of deaths in HIV-infected individuals (11). Despite the substantial decrease in ADCs in patients with HAART, cancer is responsible for approximately one third of deaths in this population (10,12). This increased role of cancer may be explained by the longer survival expectancy afforded by HAART (13), probable oncogenic role of HIV (12), effect of other viruses (mainly hepatitis B, hepatitis C, human herpesvirus and human papillomavirus), advancing age, and higher prevalence of risky behaviours (e.g., alcohol consumption and tobacco smoking) (5). In the United States of America, from 1991 to 2005, the estimated number of ADCs decreased by >3-fold whereas NADCs increased by ~3-fold (anal, liver, prostate and lung cancers, and Hodgkin’s lymphoma). The increase in NADC was mainly attributed to growth and ageing of the AIDS population (14). The risk of cancer mortality is higher in patients with than without AIDS for many cancer types (10).

Late presentation with AIDS-defining disorders, including cancer, severely affects HIV management and is associated with high morbidity and mortality (15,16). Late presentation means missed opportunities for prevention and early diagnosis in most cases (17). A multicentre European study in 2013 including 30 454 patients from 34 countries reported that 48.7% were late presenters (18). This figure is even higher in Asian (19) and African (20) cohorts, reaching up to 72% and 85.6%,

Table 1 Characteristics of HIV-infected patients with cancer

Characteristic	Patients with cancer	
	ADCs n = 35 (%)	NADCs n = 13 (%)
Sex		
Female	3 (8.6)	1 (7.7)
Male	32 (91.4)	12 (92.3)
Mean age (years)	45 ± 11	53 ± 13
Age groups, n (%)		
20–30 years	7 (20)	0 (0)
31–40 years	16 (45.7)	3 (23.1)
41–50 years	5 (14.3)	3 (23.1)
51–60 years	5 (14.3)	4 (30.7)
> 61 years	2 (5.7)	3 (23.1)
CD4 count on diagnosis, n (%)		
0–200/mm³	27 (77.1)	4 (30.7)
201–350/mm³	2 (5.7)	5 (38.5)
351–500/mm³	4 (11.4)	1 (7.7)
> 500/mm³	2 (5.7)	3 (23.1)
Transmission route n (%)		
Heterosexual	15 (42.9)	11 (84.6)
MSM	20 (57.1)	2 (15.4)
IVDU	0	0
Blood transfusion	0	0
HBV coinfection, n (%)	2 (5.7)	2 (15.4)
HCV coinfection, n (%)	0	0
Patients died, n (%)	8 (22.9)	7 (53.8)
Cancer on HIV diagnosis, n (%)	32 (91.4)	5 (38.4)
Cancer during follow-up, n (%)	3 (8.6)	8 (61.5)

ADC = AIDS-defining cancer; IVDU = intravenous drug use; MSM = men who have sex with men; NADC = non-AIDS-defining cancer.

Table 2 Characteristics of HIV-infected patients with or without cancer

Characteristic	No cancer n = 1824	All cancers n = 48	P
Sex			
Female	248	4	> 0.05
Male	1576	44	
Mean age (years)	37 ± 9	42 ± 13	0.02
Age groups, n (%)			
20–30 years	639 (35)	7 (4.5)	0.03
31–40 years	581 (31.9)	19 (39.6)	> 0.05
41–50 years	371 (20.3)	8 (16.7)	> 0.05
51–60 years	167 (9.2)	9 (18.8)	0.049
> 61 years	66 (3.6)	5 (10.4)	0.03
CD4 count on diagnosis, n (%)			
0–200/mm³	445 (24.4)	31 (64.6)	< 0.001
201–350/mm³	523 (28.7)	8 (16.7)	> 0.05
351–500/mm³	386 (21.1)	4 (8.3)	0.03
> 500/mm³	470 (25.8)	5 (10.4)	0.017
Transmission route, n (%)			
Heterosexual	987 (54.1)	26 (54.2)	> 0.05
MSM	821 (45.8)	22 (45.8)	> 0.05
IVDU	3 (0.2)	0	> 0.05
Blood transfusion	13 (0.7)	0	> 0.05
HBV coinfection, n (%)	104 (5.7)	4 (8.3)	> 0.05
HCV coinfection, n (%)	16 (0.9)	0 (0)	> 0.05
Patients died, n (%)	32 (1.7)	15 (31.3)	< 0.001
Cancer on HIV diagnosis, n (%)	37 (77)	–	
Cancer during follow-up, n (%)	11 (2.2)	–	

ADC = AIDS-defining cancer; IVDU = intravenous drug use; MSM = men who have sex with men; NADC = non-AIDS-defining cancer.
Méthodes

Objectifs

Contexte

Prévalence et mortalité du cancer chez les personnes vivant avec le VIH et les patients atteints de sida : étude de cohorte à grande échelle en Turquie

Résumé

Contexte : Le cancer est responsable d’une mortalité élevée liée au virus de l’immunodéficience humaine (VIH), mais les données relatives au cancer chez les personnes séropositives en Turquie sont insuffisantes.

Objectifs : Étudier la prévalence et la mortalité du cancer chez les personnes vivant avec le VIH et les patients atteints de sida à Istanbul (Turquie).

Méthodes : Entre janvier 1998 et décembre 2016, des personnes séropositives ont été recrutées comme sujets pour la présente étude par le groupe d’étude ACTHIV-IST, qui se compose de cinq centres de suivi des personnes séropositives pour le VIH à Istanbul. Les diagnostics de cancer incluaient les cancers classant sida et les cancers non classant sida.
Résultats : Sur 1 872 malades, 37 (1,9 %) ont reçu un diagnostic de cancer concomitant. La prévalence du cancer chez les personnes vivant avec le VIH et les patients atteints de sida était de 2,6 %. Sur 48 patients cancéreux, 35 avaient un cancer classant sida, parmi lesquels 32 avaient été diagnostiqués lors de leur première hospitalisation ; 1 007 personnes se présentaient à un stade avancé de l’infection, et 39 d’entre elles avaient un cancer (29 avaient un cancer classant sida). Les cancers non classant sida et les plus prévalents étaient les cancers gastro-intestinal, uro-génital et pulmonaire. Ces cancers avaient principalement été diagnostiqués chez les patients en phase de suivi post-thérapeutique. Dans ce groupe, la mortalité était considérablement plus élevée que celle des patients de cancers classant sida (53,9 % contre 22,9 %).

Conclusions : Ces résultats soulignent l’importance du dépistage du cancer lors du diagnostic et du suivi post-thérapeutique des infections à VIH. Un examen clinique détaillé contribue au diagnostic des cancers classant sida les plus prévalents (sarcome de Kaposi et lymphome non hodgkinien), en particulier chez les patients se présentant à un stade avancé. Concernant les cancers non classant sida, les facteurs de risque individuels devraient être pris en compte.

References
1. Biggar RJ, Chaturvedi AK, Goedert JJ, Engels EA. AIDS-related cancer and severity of immunosuppression in persons with AIDS. J Natl Cancer Inst. 2007 Jun 20;99(12):962–72. http://dx.doi.org/10.1093/jnci/djm010 PMID:17565153
2. Clifford GM, Polesel J, Rickenbach M, Dal Maso L, Keiser O, Koffler A, et al. Swiss HIV Cohort. Cancer risk in the Swiss HIV Cohort Study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst. 2005 Mar 16;97(6):425–32. http://dx.doi.org/10.1093/jnci/dji072 PMID:15770006
3. Mbulaiteye SM, Biggar RJ, Goedert JJ, Engels EA. Immune deficiency and risk for malignancy among persons with AIDS. J Acquir Immune Defic Syndr. 2003 Apr 15;32(5):527–33. PMID:12679705
4. Vajdic CM, van Leeuwen MT. What types of cancers are associated with immune suppression in HIV? Lessons from solid organ transplant recipients. Curr Opin HIV AIDS. 2009 Jan;(4):35–41. PMID:19343829
5. Pinzone MR, Fiorica F, Di Rosa M, Malaguarnera G, Malaguarnera L, Cacopardo B, et al. Non-AIDS-defining cancers among HIV-infected people. Eur Rev Med Pharmacol Sci. 2012 Oct;16(10):3377–88. PMID:23104654

6. Frisch M, Biggar RJ, Goedert JJ. Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J Natl Cancer Inst. 2000 Sep 20;92(18):1500–10. http://dx.doi.org/10.1093/jnci/92.18.1500 PMID:10995805

7. Engels EA, Goedert JJ. Human immunodeficiency virus/acquired immunodeficiency syndrome and cancer: past, present, and future. J Natl Cancer Inst. 2005 Mar 16;97(6):407–9. http://dx.doi.org/10.1093/jnci/dji085 PMID:15769998

8. Vaccher E, Spina M, Tirelli U. Clinical aspects and management of Hodgkin’s disease and other tumours in HIV-infected individuals. Eur J Cancer. 2001 Jul;37(10):1306–15. http://dx.doi.org/10.1016/S0959-8049(01)00122-8 PMID:11423262

9. Antoniou T, Tseng AL. Interactions between antiretrovirals and antineoplastic drug therapy. Clin Pharmacokinet. 2005;44(2):111–45. http://dx.doi.org/10.2165/00003495-200544020-00001 PMID:15656694

10. Spano JP, Costagliola D, Katlama C, Mounier N, Oksenenheder E, Hiyat D. AIDS-related malignancies: state of the art and therapeutic challenges. J Clin Oncol. 2008 Oct 10;26(29):4834–42. https://ascopubs.org/doi/full/10.1200/JCO.2008.16.8252

11. Bower M, Palmieri C, Dhillon T. AIDS-related malignancies: changing epidemiology and the impact of highly active antiretroviral therapy. Curr Opin Infect Dis. 2008 Feb;21(1):14–9. PMID:18374212

12. Bonnet F, Lewden C, May T, Heripret L, Jouglé E, Bevilacqua S, et al. Malignancy-related causes of death in human immunodeficiency virus-infected patients in the era of highly active antiretroviral therapy. Cancer. 2004 Jul 15;101(2):317–24. http://dx.doi.org/10.1002/cncr.20354 PMID:15241829

13. Silverberg MJ, Chao C, Leyden WA, Xu L, Tang B, Horber MA, et al. HIV infection and the risk of cancers with and without a known infectious cause. AIDS. 2009 Nov 15;23(17):2337–45. http://dx.doi.org/10.1097/QAD.0b013e3283318177 PMID:19741477

14. Shiels MS, Pfeiffer RM, Gail MH, Hall HI, Li J, Chaturvedi AK, et al. Cancer burden in the HIV-infected population in the United States. J Natl Cancer Inst. 2011 May 10;103(9):753–62. http://dx.doi.org/10.1093/jnci/djr076 PMID:21481021

15. Jensen-Fang S, Pedersen L, Pedersen C, Larsen CS, Tauris P, Møller A, et al. Low mortality in HIV-infected patients starting highly active antiretroviral therapy: a comparison with the general population. AIDS. 2004 Jan 21;18(1):89–97. http://dx.doi.org/10.1097/00002030-200401020-00001 PMID:15090834

16. Ormaasen V, Sandvik L, Dumdug SG, Bruun JN. HIV related and non-HIV related mortality before and after the introduction of highly active antiretroviral therapy (HAART) in Norway compared to the general population. Scand J Infect Dis. 2007;39(1):51–7. http://dx.doi.org/10.1080/036551806011736603

17. Tominski D, Katchanov J, Driesch D, Daley MB, Liedtke A, Schneider A, et al. The late-presenting HIV-infected patient 30 years after the introduction of HIV testing: spectrum of opportunistic diseases and missed opportunities for early diagnosis. HIV Med. 2017 Feb;8(2):125–32. http://dx.doi.org/10.1111/hiv.12403 PMID:27478058

18. Mocroft A, Lundgren J, Antinori A, Monforte AD, Brännström J, Bonnet F, et al. Late presenters working group in COHERE in Europe. Late presentation for HIV care across Europe: update from the Collaboration of Observational HIV Epidemiological Research (COHERE) study, 2010 to 2013. Euro Surveill. 2015;20(47). http://dx.doi.org/10.2877/1560-7917.EUS.2015.20.47.30070. PMID:26624933

19. Jeong SJ, Italiano C, Chaiwarith R, Ng OT, Vanar S, Jiamsakul A, et al. Patients who present late to HIV care and associated risk factors in Nigeria. HIV Med. 2014 Aug;15(7):396–405. http://dx.doi.org/10.1111/hiv.12125 PMID:24580742

20. Agaba PA, Meloni ST, Sule HM, Agbaji OO, Ekeh PN, Job GC, et al. Patients who present late to HIV care and associated risk factors in Nigeria. HIV Med. 2014 Aug;15(7):396–405. http://dx.doi.org/10.1111/hiv.12125 PMID:24580742

21. Aoyama M, Kawamura M, Iida K, Kato M, Saito K, Ishii S, et al. Epidemiological profile of naive HIV-1/AIDS patients in Istanbul: the largest case series from Turkey. Curr HIV Res. 2014;12(1):60–4. PMID:24725060

22. Tominski D, Katchanov J, Driesch D, Daley MB, Liedtke A, Schneider A, et al. The late-presenting HIV-infected patient 30 years after the introduction of HIV testing: spectrum of opportunistic diseases and missed opportunities for early diagnosis. HIV Med. 2017 Feb;8(2):125–32. http://dx.doi.org/10.1111/hiv.12403 PMID:27478058

23. Tominski D, Katchanov J, Driesch D, Daley MB, Liedtke A, Schneider A, et al. The late-presenting HIV-infected patient 30 years after the introduction of HIV testing: spectrum of opportunistic diseases and missed opportunities for early diagnosis. HIV Med. 2017 Feb;8(2):125–32. http://dx.doi.org/10.1111/hiv.12403 PMID:27478058

24. Ormaasen V, Sandvik L, Dudmug SG, Bruun JN. HIV related and non-HIV related mortality before and after the introduction of highly active antiretroviral therapy (HAART) in Norway compared to the general population. Scand J Infect Dis. 2007;39(1):51–7. http://dx.doi.org/10.1080/036551806011736603

25. Tominski D, Katchanov J, Driesch D, Daley MB, Liedtke A, Schneider A, et al. The late-presenting HIV-infected patient 30 years after the introduction of HIV testing: spectrum of opportunistic diseases and missed opportunities for early diagnosis. HIV Med. 2017 Feb;8(2):125–32. http://dx.doi.org/10.1111/hiv.12403 PMID:27478058

26. Jeong SJ, Italiano C, Chaiwarith R, Ng OT, Vanar S, Jiamsakul A, et al. Patients who present late to HIV care and associated risk factors in Asia: results of TAHD. AIDS Res Hum Retroviruses. 2016 Mar;32(3):255–61. http://dx.doi.org/10.1089/AID.2015.0058 PMID:26441045

27. Agaba PA, Meloni ST, Sule HM, Agbaji OO, Ekeh PN, Job GC, et al. Patients who present late to HIV care and associated risk factors in Nigeria. HIV Med. 2014 Aug;15(7):396–405. http://dx.doi.org/10.1111/1463-4440.12125 PMID:24580742

28. Aoyama M, Kawamura M, Iida K, Kato M, Saito K, Ishii S, et al. Epidemiological profile of naive HIV-1/AIDS patients in Istanbul: the largest case series from Turkey. Curr HIV Res. 2014;12(1):60–4. PMID:24725060

29. Altuntaş Aydin Ö, Kumbasar Karaosmanoğlu H, Korkusuz R, Özeren M, Özcan N. Mucocutaneous manifestations and the relationship to CD4 lymphocyte counts among Turkish HIV/AIDS patients in Istanbul, Turkey. Turk J Med Sci. 2015;45(1):89–92. PMID:25790535

30. Çerçi P, Inkaya AÇ, Alp Ş, Türker A, Ünal S. [Evaluation of 255 HIV/AIDS cases: Hacettepe cohort, Ankara, Turkey]. Mikrobiyol Bul. 2016 Jan;50(1):94–103 (in Turkish). PMID:27058333

31. Turkish Ministry of Health [website] (www.saglik.gov.tr, accessed 20 August 2019).

32. Uhrich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet. 2007 Jul 7;370(9581):59–67. http://dx.doi.org/10.1016/S0140-6736(07)61050-2 PMID:17617273
29. Shiels MS, Cole SR, Kirk GD, Poole C. A meta-analysis of the incidence of non-AIDS cancers in HIV-infected individuals. J Acquir Immune Defic Syndr. 2009 Dec;52(5):611–22. http://dx.doi.org/10.1097/QAI.0b013e3181b327ca PMID:19770804

30. Silverberg MJ, Abrams DI. AIDS-defining and non-AIDS-defining malignancies: cancer occurrence in the antiretroviral therapy era. Curr Opin Oncol. 2007 Sep;19(5):446–51. http://dx.doi.org/10.1097/CCO.0b013e3282c8c90d PMID:17762569

31. Detels R, Munoz A, McFarlane G, Kingsley LA, Margolick JB, Giorgi J, et al. Effectiveness of potent antiretroviral therapy on time to AIDS and death in men with known HIV infection duration. Multicenter AIDS Cohort Study Investigators. JAMA. 1998 Nov 4;280(17):1497–503. http://dx.doi.org/10.1001/jama.280.17.1497 PMID:9809730

32. Palella FJ Jr, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 1998 Mar 26;338(13):853–60. http://dx.doi.org/10.1056/NEJM199803263381301 PMID:9516219

33. Di Lorenzo G, Konstantinopoulos PA, Pantanowitz L, Di Tolo R, De Placido S, Dezube BJ. Management of AIDS-related Kaposi’s sarcoma. Lancet Oncol. 2007 Feb;8(2):167–76. http://dx.doi.org/10.1016/S1470-2045(07)70036-0 PMID:17267331