الرياضية على اختلاف انواعها وشدة

"التحليل البيوميكانيكي كأساس لتأهيل آلام أسفل الظهر لسباحي الفراشة"
أم.د/ محي الدين مصطفى الليثي
"م/ اليس الفي على رزق"
*** الباحث / أحمد حسنين عبد الباسط"

المقدمة ومشكلة البحث :

السباحة هي رياضة فريدة من نوعها تجمع بين تمارين قوة الأطراف العلوية والسفلية مع تدريب القلب والأوعية الدموية في بيئة خالية من الوزن. يتم التعرف على أربع انواع في السباحة التنافسية: السباحة الحرة، سباحة الفراشة، وسباحة الظهر، وسباحة الصدر. بغض النظر عن أشكال الضربات التي يتم إجراؤها في المنافسة، يقضي السباحون قدرًا كبيرًا من وقت تدريبهم في السباحة الحرة. يمكن للحركة المتكررة للغاية التي تحدث في السكتة الدماغية العادية أن تجعل سباحي النخبة مؤهلين لإصابات العضلات والعظام في الأطراف العلوية والركبة والعمود الفقري.

(2013)

ويفيد محمد حسن صالح حسن (9002م) أنه مع زيادة شعبية الرياضة التنافسية وارتفاع مستوى الأداء الرياضي، تزداد احتمالية حدوث الإصابات الرياضية على اختلاف انواعها وشدة درجاتها للرياضي وخاصة مع ارتفاع حدة التنافس والاحمال التدريبية، ولوجد ضغط مستمر أثناء المنافسة الرياضية (6:50).

ذكرت سمية خليل محمد (2010م) أن التطورات في المجال الرياضي والتكتيكات في نظريات وأساليب علم التدريب الرياضي وتنامي أحمام وشدة الأحمال التدريبية وفترات طويلة مع غياب الثقنيн الصحيح للحمل بشكل يتوافق والحالة الوظيفية مما يعرض الجسم إلى متطلبات مترامية ويرفع خطورة عوامل الإصابة، إذا أن زيادة متطلبات التدريب حجماً وشدة وكثافة يلقي عباً كبيراً على وظائف أجهزة الجسم (10:7).

يجب أن يشكل البرنامج الشامل لتدريبات الإطارات والتقنيات والتحمل، بالإضافة إلى تعليم ميكانيكا الضربات المحددة، الأساس لنظام تدريب سباحين النخبة. عند ما تنتج الإصابات العضلية الهيكليّة في هذه الفئة من السباحين عن الصدمات المتراكمة والمترّكزة. إن المراقبة الدقيقة

استاذ مساعد بقسم علوم الصحة الرياضية أ. عميد التربية الرياضية جامعات الوادي الجديد
** المدرس بقسم علوم الصحة الرياضية أ. عميد التربية الرياضية جامعات الوادي الجديد
*** باحث بقسم علوم الصحة الرياضية أ. عميد التربية الرياضية، جامعة الوادي الجديد
لحجم التدريب وشدته ومدته من قبل المدربين والأطباء سبقل من إصابات الإفرات في التدريب
ويحدد الرياضيين المعرضين للخطر (١٣ :١٩)

وأخرون (٢٠٠٧) أن السباحون معرضون Kaneoka K, Shimizu K
لإصابات الأسد؛ وتصنف معظم إصابات السباحة على أنها إصابات ناتجة عن الإفرات في
العمل وتتعلق بالميكانيكا الحيوية الخاطئة، وأكثر مناطق إصابات السباحة شيوعًا هي الكتف والرقبة
وأسفل الظهر والركبة.(١١ : ٢)

يشير " عدي جاسب حسن" (٢٠٠٢م) إلى أنه كانت الحركة تلاحظ من خلال مشاهدتها لوقوف على نقاط الضعف والقوة في مسارها ، ظهرت الحاجة إلى
استخدام الأجهزة العلمية المتقدرة للتشخيص العلمي لكل مراحل الحركة ، وذلك من خلال تجزئة الهوارة إلى أجزاء مترابطة لكي يتم فهم طبيعة هذه الأجزاء وإيجاد العلاقة
فيما بينها ، مع الأخذ في الحسبان أن تجزئة الهوارة ليس هدفًا في حد ذاته ، وإنما
وسيلة لوصول إلى الإدراك الشامل للظاهرة ككل ، وهذا ما يسمى بالتحليل الحركي
الذي بعد مفتاحًا لتعرف سلوك حركة الإنسان أو مساره ، فهو يعمل على فرز وتتبيب
المعلومات الكثيرة لعناصرها الرئيسية ثم معالجتها منطقية أو إحصائياً.(٢)

وإن المعلومات التكنولوجية عن أي مهارة تعني فهم كيفية الأداء في ضوء مجموعة من
المعلومات التي تساعد على تحديد الإجراءات الحركية المطلوبة لإنجاز هذا الأداء بأعلى كفاءة
ممكّنة وأقل جهد ، وقد نشأ التحليل البيوميكانيكي للحركة الأنسانية كوسيلة للوصول إلى المعارف
والمعلومات المتعلقة بقواعد وأسس الأداء بالنسبة لهذه الحركات الرياضية. (٤ : ١)

و تعد سباحة الدبلومين نوعاً من أنواع السباحة الذي أظهر تقدمًا ملحوظًا في المسابقات
العالمية والإماراتية ، حيث أنها تأتي في المقام الثاني من حيث السرعة في الإدراك وتتحقيق الأرقام
قياسية. بعد سباحة الزحف على البطن ، ولذلك يسعى الخبراء والمدربين إلى تطوير المستوى
الرقمي للسباحة بشكل عام ذو سباحة الدبلومين بصفة خاصة ، ويشبه وضع الجسم في سباحة
الدبلومين مع وضع الجسم في السباحة الحرة ، ولكن سباحة الدبلومين يكون هناك حركة من المذع
والحوض أثناء إدراك ضربات الرجلين ، فهي تؤدي رأسيا لاعلى وأسفل وكذلك حركة الرأس أيضا
تكون لأعلى وأسفل ، ولكن يفضل الا تعلو عن سطح الماء كثيرا بحيث يكون الذين على مستوى
سطح الماء (٥ : ٢٧٨)

2
مع إنتشار الإصابات التي تسبب ألام أسفل الظهر لدى السباحين مع عدم وجود تمارين تأهيلية وظيفية مفيدة وهذا قد يؤدي إلى عدم الشفاء التام ومع عدم استكمال واهمال التمارين التأهيلية الورعية بعد حدوث الإصابة مما ينتج عنه عودة الإصابة لما كانت عليه أو تتحول إلى إصابة مزمنة يصعب التخلص منها حيث تتعرض العضلات والأربطة المحيطة بالفترات القطنية للاجهاد الذي يؤدي إلى إصابة أخرى وامتداد فترة العلاج وقد تؤدى إلى اعتزال بعض اللاعبين بسبب هذه الإصابة وتمكن أيضا في الاختفاء الميكانيكي في الحركة فإن تلك الإصابة بشكل خاص يتفح في الغالب نتيجة تلك الاخطاء الميكانيكية ، وقد أنتج الباحثين لعمل التحليل البيوميكانيكي لسباحة الفراشة بهدف التعرف على الحدود التشريحيَّة بالمنطقة القطنية التي من خلالها يمكن وضع تمارين ضمن تلك الحدود لداء سباحة الفراشة كملء لبناء البرامج التأهيلية الوقائية لاتصابات أسفل الظهر كخطوة للتعرف البيوميكانيكي لشكل الداء حيث اجتهد طرق التأهيل والوقاية من الإصابات الحديثة إلى التشخيص الدقيق للداء وذلك لمعرفة كيفية حدوث الإصابات والوقاية منها وكذلك وضع نسب التمارين في حالة حدوث الإصابة.

أهمية البحث والحاجة إليه:

بعد هذا البحث اتدى المحاولات العملية للتعرف على المتغيرات الحركية في الأداء (كمي ووصف) من خلال استخدام التحليل الحركي حيث تمكنت الاحترافية في أن التحليل البيوميكانيكي يوفر بيانات شديدة الدقة عن أشكال الاداءات الحركية المختلفة فنستطيع من خلاله فهم الحركة بطريقة ممكننا من بناء البرامج التأهيلية والوقائية من الإصابات بما يناسب طبيعة الأداء الحركي المفترد لكل لاعب دون الأخطار بالشكل الفي للاعب وذلك من خلال:

- محاولة تبسيط الضوء أكثر على استخدام التحليل البيوميكانيكي كمرجع لبناء البرامج التأهيلية

هدف البحث:

استخراج بعض المتغيرات البيوميكانيكية كأساس لوضع البرامج التأهيلية لسباحة الفراشة.

من خلال التعرف على:

- ميكانيكي أداء سباحة الفراشة والمتغيرات الخطية والزاوية لها.

توصيات البحث

1- ما هي التغييرات الكمية لداء المنطقة القطنية لسباحي الفراشة؟
2- ما هو التوصيف الكيفي لداء المنطقة القطنية لسباحي الفراشة؟
بعض المصطلحات المستخدمة في البحث:

1. التحليل الكيفي:

يقصد بالتحليل الكيفي للمهارة هنا هو تحديد اتجاه المسار الحركي للمهارة ومعرفة سرعتها وقوتها.

خلال تنفيذها لهذا المسار (2:30).

2. التحليل الكمي:

يعرف التحليل الكمي للمهارة هو (عدد أو نسبة ما ينفذ جزء الجسم في مهارة ما) والذي يختلف عن ما يقصده علم الحركة من تحليل كمية الحركة. (2:31)

3. السرعة الزاوية:

يمكن تعريف السرعة الزاوية بأنها النسبة بين الزاوية التي ينتقلها الجسم في حركة معينة إلى الزمن المستغرق. (2:10)

Angular velocity :

4. الحركة الزاوية:

تحدث عندما يتحرك الجسم ككل أو جزء في دائرة أو جزء من دائرة (قوس) حول محور ثابت.

Angular Motion :

5. الحركة الخطية:

هي تهتم بوصف الحركة الخطية بالسُوال عن السرعة, المسافة, الاتجاه وكل ما يتعلق عن الحركة الخطية (2:138).

الدراسات المرتبطة:

1- دراسة محمد خادل القضاة وزين العابدين بن هاني (7/02015م) بنوان "أثر التمارينات العلاجية للمصابين بالفق الغضروفي المزمن" ودفعت الدراسة إلى التعرف على أثر برنامج من التمارين العلاجية في تأهيل الفتق الغضروفي المزمن، حيث أجريت تلك الدراسة على (14) مريضاً يعانون من الفتق الغضروفي المزمن، تم تحويلهم إلى وحدة العلاج الطبيعي في مستشفى الكرك الحكومي بموجب تحويل خاص من الطبيب المعالج، ووافق على المشاركة في هذه الدراسة، حيث تم تقسيم المرضى إلى مجموعتين، الأولى ضابطة تم علاجهم باستخدام وسائل كهربائية وحرارية لمدة أربعة أسابيع (المجموعة التقليدية)، والثانية التجريبية تم علاجهم ببرنامج مقترح من التمارينات لمدة أربعة أسابيع، ولمعرفة أثر البرنامج المقترح، تم قياس درجة حرارة أصابع الظهر للجهة اليمنى واليسرى، مرنية العضود الفقرى للأمام والخلف، المدى الحركي المحوري للمنطقة القطنية للليمين واليسار، درجة الام, درجة القدرة على القيام بالأعمال اليومية، وقوة عضلات أصابع الظهر قبل وبعد تنفيذ البرنامج للعينين الضابطة والتجريبية ومن ثم مقارنة
النتائج، وقد تم استخدام اختبار وليكولسون للتعرف إلى الفروقات بين الفرقات بين المجموعتين وكلاً على حدي، وتم استخدام اختبار مان وتي للتعرف إلى الفرقات بين المجموعتين؛ وقد أظهرت النتائج وجود فرق دالة إحصائياً في المتغيرات قبل الدراسة لدئ كلتا المجموعتين، وأشارت النتائج إلى وجود فرق ذات دالة إحصائية بين متوسطات القوائم البعدية بين المجموعتين ولصالح المجموعة التجريبية بعد مرور (4) اسابيع. وقد استنتج الباحثون أن البرنامج العلاجي المفترض أثر إيجابياً دالة إحصائياً على مرضى الفتق الغضروفي القطبي الم زمن في كل المتغيرات قبل الدراسة - بشكل أفضل من البرنامج العلاجي التقليدي المستخدم في وحدات العلاج الطبيعي، وأوصى الباحثون بإستخدام البرنامج المقترح في مراكز العلاج الطبيعي، بالإضافة إلى ضرورة إجراء دراسات مشابهة بالطريقة التنبيهية.

2- بحث "مروة مصطفى محمد (2019) (9) بعنوان "تأثير برنامج تمرينات تأهيلية وظيفية للعضلات العاملة على مفصل الكتف المصاب بالالتهاب المزق لدى سباهي المسافات القصيرة"، استخدم البحث للتنبؤ على تأثير برنامج تمرينات تأهيلية وظيفية للعضلات العاملة على مفصل الكتف المصاب بالتمزق لدى سباهي المسافات القصيرة. استخدمت الباحثة المنهج التجريبى باستخدام تصميم التجربة لمقياسين الفيزيائي والبعدي، وبلغ عدد عينة البحث (8/اعبين) من لاعبي السباحة لمسافات قصيرة. ومن أهم النتائج البرنامج المقترح أدى إلى تخفيف حدة الألم الناتجة عن الإصابة المصاحبة للأداء، زيادة مدى الحركة لمفصل الكتف، تخشي مستوى عناصر اللياقة البدنية لمفصل الكتف.

3- دراسة محمود فاروق صبره (2003) (8) بعنوان "تأثير برنامج تمرينات تأهيلى على بعض حالات الاسترخاء الغضروفي القطبي"، ودفعت الدراسة إلى التعرف على تصميم برنامج تمرينات تأهيلية لتعزيز بعض حالات الاسترخاء الغضروفي الجزئي لمفصل الكتف، واستخدام الباحثون المنهج التجريبى باستخدام مجموعتين إحداهما تجريبية والأخرى ضابطة وتطبيق القوائم الفيزيائية والبعدي لمناسبته لمراقبة البحث، واستمتعت عينة البحث على 30 مرضى لكل مجموعة. وكانت النتائج كالتالي: التنمية المتوازنة للقوة العضلية ومروننة المفاصل واستطالة العضلات لها تأثيراً هاماً في زيادة الكفاءة الحركية للفقرات بالمنطقة الحركية أيضاً مفصل الفخذ، التوقيع في استخدام المرونة والإطالة العضلية وتمرينات قوة العضلات كان لها أثر إيجابي على تحسن الأداء الوظيفي للعمود الفقري ومفصل الفخذ، تمرينات البرنامج التأهيلي أدت إلى تحسن المجموعة التجريبية أكثر من المجموعة الضابطة في القوائم البعدية لجميع متغيرات البحث (قوة العضلات العاملة على العمود الفقري ومفصل الفخذ - المدى الحركي لكل من العمود الفقري
Desde el tiempo – تخفيف حدة الألم الناتج من الضغط الواقع على الغضاريف المصابة بين الفترات.

خطة وإجراءات البحث :

منهج البحث:

استخدم الباحثون النهج الوصفي (دراسات تحليلية) وذلك لملائمته لطبيعة وأهداف البحث التي تناسب أداء سباح 50 متر فراشة.

مجتمع البحث:

اشتمل مجتمع البحث على لاعبي المنتخب المصري للسباحة للعام 2002/2003.

عينة البحث:

تم اختيار عينة البحث بالطريقة العمدية من سباحي الفراشة في من بين لاعبي المنتخب المنضمين للمنتخب المصري للسباحة للعام 2002/2003.

شروط اختيار العينة :

1- أن يكون السباح مسجل في الاتحاد المصري للسباحة.
2- أن يكون السباح متخصص بساحة (50) متر فراشة.
3- أن يكون السباح سليم ولا يشترط الإصابة.

خطوات البحث:

1- مسح مرجعي للمراجع والدراسات السابقة.
2- تحديد مهارات سباحة الفراشة.
3- تحليل المهارات المحددة كمياً وكيماً.
4- عرض التمارين التأهيلية المشابهة للآداء في صورة مبديئة علي الخبراء للحذف أو تعديل أو إضافة مايركون مناسباً من محتوى البرنامج من التمارين.
5- جمع البيانات وتصنيفها وجدولتها ثم معالجتها آonomicاً.
6- وضع الاستنتاجات والنصوص الخاصة بالتمارين.

المعالجات الاحصائية :

وقد قام الباحثون باستخدام الأساليب الاحصائية التالية:

1- معامل الالتواء
2- علاقة الارتباط
3- نسبة المساهمة
عرض النتائج ومناقشتها
أولاً: عرض نتائج التحليل البيوميكانيكي:

جدول (١) التوزيع الزمني لمراحل الأداء الفنى - في سباحة الفراشة

المرحلة	الصور	الزمن	نسبة المساهمة (%)
المسكن والشد والدفع (١-٠٠)	0.٧٢	39%	
العودة والدخول والزحف (١١-٢٤)	١.١٢	٦١%	
المجموع	١.٨٤	١٠٠%	

ب) نسب مساهمة مراحل الحركة - في سباحة الفراشة

يتضح من الجدول (١) والإشارة (١) أن زمن أداء مهارة سباحة الفراشة قد بلغت (٠.٨٤) حيث كان تقسيم المراحل في الحركات المتكررة متمثل في مرحلتين (المسكن والشد والدفع)، (العودة والدخول والزحف) وقد بلغ زمن أداء كل مرحلة (٠.٧٢) على الترتيب على الترتيب، من هذا نلاحظ أن مرحلة العودة والدخول والزحف حازت على الزمن الأكبر عن مثيلها تحت الماء الشد والدفع.
جدول (٢) المسافة الأفقية والرأسية لحركة
(الرأس - مشت من الفراشة - مركز التقل - المشت اليد) - في سباحة الفراشة

Time	Frame	مشت اليد	مشت التقل	الرأس	
		X	Y	Y	X
٠١	١	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	
٠٢	٢	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	
٠٣	٣	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	
٠٤	٤	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	
٠٥	٥	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	
٠٦	٦	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	
٠٧	٧	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	
٠٨	٨	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	
٠٩	٩	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	٠٠٠٠٠٠٠٠٠٠٠٠٠	

جامعة الوادي الجديد لعلوم الرياضة

٨
شكل (٢) المسار الحركي لحركة (الرأس – مشط اليدين – مركز الثقل – مشط القدم) في سبحة الفراشة
جدول (3) مستخلص

المسافة الأفقية والرأسية لأجزاء الجسم - في سباحة الفراشة

الرأس	مسافة النزول	مسافة الرأسية الأفقية	مسافة الرأسية الرأسية الأفقية	مسافة الدوران	مسافة النزول	مسافة الرأسية	مسافة الرأسية الرأسية الأفقية
أقرب قيمة	0.24	0.36	0.38	0.44	0.05	0.28	0.36
أقل قيمة	0.12	0.24	0.28	0.34	0.02	0.21	0.28
المدى	0.12	0.24	0.28	0.34	0.02	0.21	0.28

يتضمن الجدول (3) أن المدى الحركي الرأسى الذي يتحرك فيه كل من (الرأس)، (مصطفح اليد)، (مركز الثقل) (مصطفح القدم) قد بلغ (0.72)، (0.83)، (0.30)، (0.25) متراً على الترتيب، بينما المدى الحركي الأفقى الذي يتحرك فيه نصف الأجزاء قد بلغ (1.67)، (2.48)، (1.04)، (1.27) متراً على الترتيب.

نلاحظ أن الجهود الأ فهو الأكبر الواقع على اللعاب خلال أداء سباحة الفراشة تمثل في حركة مصطفح اليد، بينما باقي الأجزاء المشاركة فيها تحركت نفس المسافة تقريباً.

كما نلاحظ أن الجهود الرأسى الأفها الأكبر الواقع على اللعاب خلال أداء سباحة الفراشة تمثل في حركة مصطفح اليد أيضاً وأقل جهد رأسى تمثل في حركة مركز الثقل، مما يدل على أنه كلما قل المدى الرأسى لمركز الثقل دل على إنسيبالية الأداء داخل الماء. فكان الترتيب التنافلي للمدى الحركي الرأسى تصدروه (مصطفح اليد) ثم (الرأس) ثم (مصطفح القدم) ثم (مركز الثقل).

ويمتضح من الجدول (3) طول الشدة ممكن معرفتها من خلال المسافة الأفقية التي تحركها مركز الثقل من بداية الشد وحتى العودة والزحف حيث بلغت (0.72 متراً) أي ما تعادل طول اللعاب تقريباً.
جدول (٤) السرعة الزاوية لحركة
(الرأس والجذع - الذراع – الرجل) - في سياحة الفراشة

الصور	الزمن	الذراع	الرجل	الذراع والجذع
١ - ٢	١٠٠٨	١٦٢.٩٤	١٤٤.٢١	
٢ - ٣	٦٤١	٤١.٤٤	٤٠.٩٥	
٣ - ٤	٢٤٤	٤.٣٣	١٦٠.٧٩	
٤ - ٥	٣٢٢	١.٥١	٠.٢٤	
٥ - ٦	٥٨٠	٠.٤	٥٨.٥٠	
٦ - ٧	٨٤	١٨.٤٦	١٨.٤٦	
٧ - ٨	٥٨٠	٤.٠٩	١٣٤.٣٨	
٨ - ٩	٣٣٢	٢٤٢	٢٤٢	
٩ - ١٠	٠.٧٢	٧٩٤	٧٩٤	
١٠ - ١١	٠.٨٨	٢٨٦	٢٨٦	
١١ - ١٢	٠.٨٨	٣٥٢	٣٥٢	
١٢ - ١٣	٠.٩٩	١٠٦	١٠٦	
١٣ - ١٤	١.٠٤	٧٤٨	٧٤٨	
١٤ - ١٥	١.١١	٢٧١	٢٧١	
١٥ - ١٦	١.٢	٢٣١	٢٣١	
تابع جدول (4) السرعة الزاوية لحركة
(الرأس والذراع - الرجَّل).
- لا بحث عن الفراشة

الصور	الزمن	الرجَّل	الذراع	الرأس والذراع
١٦ - ١٧	١.٢٨	٣٦.٨٤	٩٣.٤١	١١١.٨٣
١٧ - ١٨	١.٢٦	٢١٤.٧٢	١٧٥.٨٣	٢١٤.٠٠
١٨ - ١٩	١.٤٤	١١٠.٢٧	٣٩٠.٨٣	١٠٦.٨١
١٩ - ٢٠	١.٥٣	٥٧.٤٨	١٠٣.٤٩	٢١٧.٠٠
٢٠ - ٢١	١.٧٦	٢٨.٢٠	٩١.٧٤	١٠٣.٣٦
٢١ - ٢٢	١.٦٨	٩٦.٤٤	١٧٢.٨١	١٤٠.٧٦
٢٢ - ٢٣	١.٧٦	٥٧.٩٤	٨٧.١٤	٩٩.٣٥
٢٣ - ٢٤	١.٨٤	٣٨.١٧	١٢١.٨٨	١٨٧.٠٦

شكل (3) حركة أجزاء الجسم كاملة في التحليل لسباحة الفراشة
جدول (٥) مستخلص

السرعة الزاوية لأجزاء الجسم في سبحة الفراشة

الزمن	الرأس والجذع	الذراع والجذع	الرجل والجذع
Min	١٩٨٦.٩٨	٤.٦٣	١.٥١
Max	٢٧٧٧.٨٥	١٣٢١.٣٨	٢٩٠.٨٣
Ramg	٢٧٤٤.٨٧	١٣١٦.٦٠	٢٩٤.٣٢
يُضح من الجدول (٥) نَمَثَلَت السَرعة الزاوية لأجزاء الجسم في سِبَاعة الفَراشة أن أَعْلى
سرعة زاوية (الرأس والجذع حول الفخذ)، (الذراع حول مفصل الكتف)، (الرجل حول الفخذ)
قد بلغت (٢٩٠٨٣،٨٥٥،٤٧٨٠٥٣٩،١٣٢٨٠٧،٣٤٨١٣٦،٧٧)، درجة/ث على الترتيب، وأن أَقل سرعة زاوية
في لحظات الزحف لنفس الأجزاء قد بلغت (٠١،٤٨،٠٨،٨٣)، درجة/ث على الترتيب.
الأمر الذي يدلنا على أن الأداء الحركي بين الرأس والجذع والرجلين متقارب ومتماثل في السرعة
بينما السرعة الزاوية للذراع تمثل أربعة أضعاف الرجل.

	الحوض - الركبة - رسم القدم	الكتف - الزمن	الصورة	الزمن	الكتف	الحوض	الركبة	رسم القدم	
١	١٤٠٠١	١٧٤٨٣	١٧٧٥٨	١٧١٠٢	١	١٤	١٨٤	٩	١١
٢	١٥٠٤٧	١٦٧٢٤	١٦٣٢٧	١٦٨١٩	٢	١٩	١٨٤	٦	١٤
٣	١٤٤٥٤	١٦٢٠٠	١٦٠٦٢	١٦٥٠٥	٣	٣١	١٨٥	٦	١٠
٤	١٣٤٠٦	١٧٣٨٣	١٧٠٠٨	١٧٥٠٢	٤	٤٠	١٨٤	٦	١٠
٥	١٢٨٩١	١٨٥٠٩	١٨٥٠٩	١٩١٠١	٥	٥٠	١٨٥	٦	١٠
٦	١٤٥٠٦	١٧٥٠٥	١٧٣٢٧	١٧٨٠٧	٦	٦٠	١٨٤	٦	١٠
٧	١٤٠٠٦	١٧٣٢٧	١٧٠٠٨	١٧٥٠٢	٧	٧٠	١٨٤	٦	١٠
٨	١٤٥٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	٨	٨٠	١٨٤	٦	١٠
٩	١٤٠٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	٩	٩٠	١٨٤	٦	١٠
١٠	١٤٥٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	١٠	١٠٠	١٨٤	٦	١٠
١١	١٤٠٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	١١	١١٠	١٨٤	٦	١٠
١٢	١٤٥٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	١٢	١٢٠	١٨٤	٦	١٠
١٣	١٤٠٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	١٣	١٣٠	١٨٤	٦	١٠
١٤	١٤٥٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	١٤	١٤٠	١٨٤	٦	١٠
١٥	١٤٠٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	١٥	١٥٠	١٨٤	٦	١٠
١٦	١٤٥٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	١٦	١٦٠	١٨٤	٦	١٠
١٧	١٤٠٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	١٧	١٧٠	١٨٤	٦	١٠
١٨	١٤٥٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	١٨	١٨٠	١٨٤	٦	١٠
١٩	١٤٠٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	١٩	١٩٠	١٨٤	٦	١٠
٢٠	١٤٥٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	٢٠	٢٠٠	١٨٤	٦	١٠
٢١	١٤٠٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	٢١	٢١٠	١٨٤	٦	١٠
٢٢	١٤٥٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	٢٢	٢٢٠	١٨٤	٦	١٠
٢٣	١٤٠٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	٢٣	٢٣٠	١٨٤	٦	١٠
٢٤	١٤٥٠٦	١٧٥٠٨	١٧٣٢٧	١٧٨٠٧	٢٤	٢٤٠	١٨٤	٦	١٠
جدول (٧) مستخلص التغير الزاوي لمفصل (الكتف - الحوض - الركبة - رسم القدم) في ساحة الفراشة

	الحوض	الراكبة	الكتف	رسم القدم	Min	Max	Ramg
رسم القدم	١٦٠.٦٨	١٦٢.٢٦	١٦٢.٣٧	١٨٠.٥٩			
رسم الراكبة	١٦٨.٧٨	١٥٩.١٥	١٤٩.٨١	١٧٩.٩٩			
رسم الحوض	١٤٦.٤٣	١٥٩.٨٥	١٤٩.٩١	١٧٩.٦٤			
رسم الكتف	١٥٩.٨٢	١٤٩.٨٥	١٤٩.٩١	١٧٩.٦٤			

يتضح من جدول (٧) مستخلص التغير الزاوي لمفاصل الجسم - في ساحة الفراشة أن المدى الزاوي لمفصل (الكتف)، (الحوض)، (الركبة)، (رسم القدم) قد بلغ (٦٦.٧٦٢٦)، (٩٧.٠٨٦٩)، (٨٦.١٦٩٧) درجة على الترتيب.
الاستنتاجات والوصيات:

من الأسعار البيوميكانيكية التي توصل إليها الباحثون في تأهيل آلام أسفل الظهر لدى سباح الفراشة يوصى الباحثون بالآتي:

١- نسبة وحدات التأهيل لآلام أسفل الظهر في وحدة داخل الماء، ووحدة خارج الماء.
٢- المدى الحركي للحوض داخل الماء ما بين (١٤١ - ١٤٦ - ١٨١ درجة تقريباً).
٣- تدريبات البطن خارج الماء يتم بثني الرجليين على الجذع حتى زاوية ١٤٦ درجة فقط.
٤- ترتيب التدريب لأجزاء الجسم كالثاني (حركة الذراعين) ثم (حركة الرأس) ثم (الساق) ومشتقة القدم "المس" ثم (الحركة الدورانية للحوض).
٥- طول الشدة في سباحة الفراشة تمثل طول اللاعبة تقريباً (عدد الشدة = طول الحمام / طول اللاعب).

أولاً: التوصيات:

من خلال ماتوصل إليه الباحثون من استنتاجات ناتجة من التحليل البيوميكانيكي فيوصي الباحثون بالآتي:

١- توجيه وحدات التأهيل والوقاية للذراعين خارج الماء أكبر من التدريب داخل الماء.
٢- الاعتماد على تدريب المفاصل (الأقسام) في تسمي مرحلة الهدوء والدفع.
٣- الاعتماد على تدريب الرجليين داخل الماء.
٤- الاعتماد على تدريب الوسط من الجسم داخل الماء.
٥- حجم التدريب توزع إلى (الذراعين) ثم (الرأس) ثم (مشط القدم) ثم (الحركة الدلفينية للحوض).

٦- يجب أن تكون كفاءة حركة الذراعين في عمل عدد شدات في سباحة الفراشة تتمثل أربعة أضعاف الحركة الدلفينية للرجلين داخل الماء.

٧- التوازن الدينيكي لحركة الجسم داخل الماء يأتي من خلال تزامن حركة الرأس والجذع مع حركة الرجلين حول الحوض.

٨- تربية على حركة الرقبة بالقدمين والساق يتم من خلال تعامد الساق مع الركبة (hyper extension) لعدم الالتقاط (ألا يتعدى درجة واحدة فقط فوق الطبيعي).

٩- عند عمل مرونتان للمفاصل من خلال المد الزائد (hyper extension) لعدم الالتقاط (ألا يتعدى درجة واحدة فقط فوق الطبيعي).

١٠- عمل الابحاث العلمية للتأهل في مجالات التغيير الفترات والغضاريف للعمود الفقري للرياضيين.
المراجع

الأول: المراجع باللغة العربية:

1. أحمد مجدى عبد الرزاق على : المحاكاة البيوميكانيكية لسباحة الدوالي بين المستوى العالي والمحلى - رسالة ماجستير - كلية التربية الرياضية - جامعة بنها ، ٢٠٠٠ م.
2. عدي جاسب حسين : تحليل البيوميكانيكية للمهارات الرياضية - الإكاديمية الرياضية العراقية الإلكترونية -(2006-2) م.
3. رجب كامل أحمد : "التأهيل الوظيفى للرياضيين "، دار الفكر العربي ، ط ٨ ، ٢٠٠٢ م.
4. خيرية محمود السكري ، سليمان علي حسين : دليل التعليم والتدريب في مسابقات الرمي - دار المعارف - القاهرة (١٩٦٧) م.
5. محمد الحمامي ، أحمد سعيد : "الاعلام التربوي في مجالات الرياضة واستمرار أوقات الفراق - مركز الكتاب للنشر - ٢٠٠٦ م.
6. محمد حسن صالح حسن " تأهيل الاصابات تمزق عضلات البطن للرياضيين "، رسالة ماجستير ، كلية التربية الرياضية ، جامعة الإسكندرية ، ٢٠٠٩ م.
7. محمد خالد القضاء ، زين العابدين بن هاني : "أثر التمارين العلاجية للمصابين بالتمزق "، رسالة ماجستير ، جامعة السماوة ، معهد علوم وتقنيات النشاطات البدنية والرياضية ، ٢٠١٥ م.
8. محمود فاروق صبره : "عنوان تأثير برنامج تمرينات تأهيلية على بعض حالات الانزلاق الغضروفى القطني "، رسالة دكتوراه ، جامعة أسوان ، ٢٠٠٠ م.
9. مروة مصطفى محمد (٢٠٠٦ م) : "عنوان تأثير برنامج تمرينات تأهيلية وظيفية للعضلات العاملة على مفصل الكتف المصاب بالإصابة بالتمزق لدى سباحي المسافات القصيرة" ، ٢٠٠٦ م.
10. سمعية خليل محمد : "إصابات الرياضيين ووسائل العلاج والتأهيل "، الإكاديمية العراقية ، ٢٠٠٠ م.

ثاني: المراجع باللغة الإنجليزية:

Fuller cw walker : "Quantifying the functional rehabilitation injured players university of Leicester uk"(2009).

doi: 10.1177/1941738112442132.
Colin B. Harris, Jonathan Lee & Michael J. Jacob R. Ball, Lumbar Spine Injuries in Sports: Review of the Literature: Vives (2019) and Current Treatment Recommendations

Wanivenhaus F, Fox AJ, Chaudhury S, Rodeo SA. Epidemiology of injuries and prevention strategies in competitive swimmers. Sports health. 2012 May;4(3):246–51. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23016094 (last accessed 13.9.2019)