Supporting Information for “Highly-Robust Reentrant Superconductivity in CsV$_3$Sb$_5$ under Pressure”

Xu Chen(陈旭)1†, Xinhui Zhan(战鑫慧)2†, Xiaojun Wang(王晓郡)2, Jun Deng(邓俊)1, Xiao-Bing Liu(刘晓兵)2*, Xin Chen(陈欣)2, Jian-Gang Guo(郭建刚)1,3*, and Xiaolong Chen(陈小龙)1,3*

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
2Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, P. R. China
3Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China

†These authors contributed equally to this work.
*Corresponding authors.
Email: xiaobing.phy@qfnu.edu.cn; jgguo@iphy.ac.cn; chenx29@iphy.ac.cn
Table S1. Change of crystallographic parameters for CsV₃Sb₅ with respect to pressure in the range of 0-100 GPa.

Phase	Pressure (GPa)	Lattice parameters (Å, °)	Wuckoff position (fractional)			
			Atoms	x	y	z
P6/mmm	0	a = b = 5.49220	Cs(1a)	0.0000	0.0000	0.0000
		c = 9.88870	V(3g)	0.5000	0.5000	0.5000
		α = γ = 90.00	Sb(1b)	0.0000	0.0000	0.5000
		β = 120.00	Sb(4h)	0.6667	0.3333	0.7292
		a = b = 5.42020	Cs(1a)	0.0000	0.0000	0.0000
		c = 8.58070	V(3g)	0.5000	0.5000	0.5000
		α = γ = 90.00	Sb(1b)	0.0000	0.0000	0.5000
		β = 120.00	Sb(4h)	0.6667	0.3333	0.7612
		a = b = 5.3598	Cs(1a)	0.0000	0.0000	0.0000
		c = 8.11750	V(3g)	0.5000	0.5000	0.5000
		α = γ = 90.00	Sb(1b)	0.0000	0.0000	0.5000
		β = 120.00	Sb(4h)	0.6667	0.3333	0.7734
		a = b = 5.25530	Cs(1a)	0.0000	0.0000	0.0000
		c = 7.68210	V(3g)	0.5000	0.5000	0.5000
		α = γ = 90.00	Sb(1b)	0.0000	0.0000	0.5000
		β = 120.00	Sb(4h)	0.6667	0.3333	0.7840
		a = b = 5.10680	Cs(1a)	0.0000	0.0000	0.0000
		c = 7.19870	V(3g)	0.5000	0.5000	0.5000
		α = γ = 90.00	Sb(1b)	0.0000	0.0000	0.5000
		β = 120.00	Sb(4h)	0.6667	0.3333	0.7940
		a = b = 5.01490	Cs(1a)	0.0000	0.0000	0.0000
		c = 6.84900	V(3g)	0.5000	0.5000	0.5000
		α = γ = 90.00	Sb(1b)	0.0000	0.0000	0.5000
		β = 120.00	Sb(4h)	0.6667	0.3333	0.8000
		a = b = 4.85330	Cs(1a)	0.0000	0.0000	0.0000
		c = 6.52460	V(3g)	0.5000	0.5000	0.5000
		α = γ = 90.00	Sb(1b)	0.0000	0.0000	0.5000
		β = 120.00	Sb(4h)	0.6667	0.3333	0.8041
Figure S1. Optical photograph of CsV$_3$Sb$_5$ single crystals.

Figure S2. Temperature-dependent resistance of CsV$_3$Sb$_5$ at various pressures of 57.1-1.5 GPa,
Figure S3. Pressure dependences of the upper critical field $\mu_0 H_{c2}(0)$ obtained from the linear fitting.

Figure S4. Calculated phonon dispersions and phonon density of states (PHDOS) of CsV$_3$Sb$_5$ at 0 GPa.
Figure S5. Calculated phonon dispersions and phonon density of states (PHDOS) of CsV$_3$Sb$_5$ at (a) 10 GPa, (b) 20 GPa, (c) 40 GPa, and (d) 60 GPa, respectively.

Figure S6. Pressure versus Raman frequency of CsV$_3$Sb$_5$ from phonon dispersions at 10 GPa, 20 GPa, 40 GPa and 60 GPa, respectively.
Figure S7. Pressure-induced Raman changes of CsV$_3$Sb$_5$ in the range of 1-53 GPa.

Figure S8. Pressure versus Raman frequency of CsV$_3$Sb$_5$ in the range of 1-53 GPa.
Figure S9. Calculated total density of states (DOS) for CsV$_3$Sb$_5$ at selected pressures.

Figure S10. The change of lattice parameters (a) and bond lengths (b) with respect to pressure in the range of 0-100 GPa.
Figure S11. Projected crystal orbital Hamiltonian Population (pCOHP) of CsV₃Sb₅ at (a) 0 GPa, (b) 5 GPa, (c) 20 GPa and (d) 40 GPa, respectively. The values of pCOHP > 0 signify bonding states and the values of pCOHP < 0 signify antibonding states. The Fermi level is set to zero.

Figure S12. The integrated COHP (ICOHP) for V-V, V-Sb1 and V-Sb2 bonds of CsV₃Sb₅ at the range from 0 to 40 GPa.