Methods. A patient was admitted on 3/21/21 from a group home. He developed abdominal pain, diarrhea and vomiting on 4/15, with elevated liver function tests (LFT). He was transferred to Medicine on 4/17 and HAV IgM and IgG resulted positive on 4/18. Visitation to the unit has been halted for over a year, and no outside food has been allowed. The patient has not been observed to have any sexual exposure to others. Exposure to MRSA (see table).

Results. 32 inpatients screened. One patient was positive for HAV IgM, but was asymptomatic with normal LFTs. On investigation, patient had acute hepatitis in February 2021. Patients with no immunity were vaccinated. Two immunocompromised patients were also given HAV immunoglobulin. On chart review, 6 out of 29 discharged patients had evidence of immunity. 133 staff were screened and 54 referred to Occupational Health Services (OHS). Other Measures: The unit was terminally cleaned and daily enhanced cleaning with bleach ensued. Daily assessment of patients and staff for symptoms. Admissions were held for 2 days until all the patients were tested and given vaccine. Pneumocystis jirovecii pneumonia was screened for HAV.

Conclusion. As evident with numerous COVID outbreaks in inpatient Psychiatry units, communicable diseases are difficult to control. Patients are in an interactive communal setting and participate in group sessions. For better care and safety of patients and staff, our unit will screen and offer HAV vaccine to new admissions. Discussions. Gregory Weston, MD MSCR, Allergan (Grant/Research Support), Nothing to disclose

922. The Impact of Clinically Significant CMV Infections on Other Viral Infections in the Era of Letermovir Primary Prophylaxis

Amy Spallone, MD1; Krithika Srinivasan, MD2; Joseph Sasseine, MD2; Terri Lynn Shigle, PharmD3; Victoria Handy, PharmD2; Jeremy Ramdial, MD2; Faried Khaajwa, MBBS4; Elza Ariza Heredia, MD5; Roy E Chemaly, MD6, MPH, FACPR, FIDSA6, Pharmacology, Medicine, Houston, Texas; 1University of Texas MD Anderson Cancer Center, Houston, Texas; 2The University of Texas MD Anderson Cancer Center, Houston, TX

Session: P-53. Infections in Immunocompromised Individuals

Background. Cytomegalovirus (CMV) is a frequent complication after hematopoietic cell transplant (HCT) and may increase the risk of other viral infections through its immunomodulatory effects. Letermovir, a novel antiviral targeting the viral terminase complex, was approved for primary prophylaxis in CMV-seropositive adult recipients after allogeneic HCT (allo-HCT). Because of its efficacy and safety, lettermovir has become the standard of care for primary prophylaxis against CMV during atropoietic cell transplant (HCT) and may increase the risk of other viral infections (Herpesviridae).

Results. In our 2:1 matched cohort analysis, 50 patients received lertemovir for primary prophylaxis during the first 100 days post-HCT, and 100 did not. In a univariate analysis with CS-CMV as the outcome, there was a statistically significant difference in NRM at 24 and 48 weeks. Our data indicated a trend towards a decrease in other viral infections for those without CS-CMV (Table 2). However, in a multivariate analysis accounting for primary prophylaxis with letermovir as an effect modulator, CS-CMV did not demonstrate a significant impact on the frequency of other viral infections but was associated with NRM at week 24 and 48 (Table 3). Interestingly, having ALL and donor CMV seropositivity were protective factors against other viral infections (Herpesviridae).

Table 1. Characteristics of patients in the era of letermovir primary prophylaxis

Characteristic	NS-C MV group (n=55)	CS-C MV group (n=55)	p-value
Age, median (range)	55 (22-77)	55 (22-77)	0.86
Gender	Male	Female	0.28
Race	African American	White	0.06
Marital status	Single	Married	0.26
HPV status	Positive	Negative	0.15
HLA match	Exact match	Partial match	0.12

Table 2. Outcomes of patients in the era of letermovir primary prophylaxis

Table 3. Analysis of outcomes in the era of letermovir primary prophylaxis

Outcome	NS-C MV group (n=55)	CS-C MV group (n=55)	p-value
Non-CMV infections*	32 (59%)	23 (42%)	0.08
Non-CMV/no-RV infections**	27 (49%)	18 (33%)	0.07
Non-CMV/Herpesviridae infections***	19 (35%)	11 (20%)	0.09
Respiratory viral infection	28 (51%)	20 (36%)	0.25
VZV	9 (16%)	4 (7%)	0.03
HSV	11 (20%)	6 (11%)	0.20
RV	4 (7%)	4 (7%)	0.88
Non-respiratory mortality	13 (24%)	13 (24%)	0.60
Non-respiratory mortality by 68 weeks	8 (15%)	8 (15%)	0.60

Abbreviations: CS-CMV, Clinically significant cytomegalovirus infections; CMV, Cytomegalovirus; RV, Respiratory viral infections; HSV, Herpes simplex virus; VZV, Varicella zoster virus; HCMV, Human Herpesvirus type 1; RV, Gastroenteritis virus; ADZ, adenovirus (non-RV); RV, RV; HS, HSV.

*Non-CMV infections include RV, VZV, HSV, Adenovirus (non-RV), EBV, and KS.
**Non-CMV/no-RV infections include HTV, VZV, HSV, and Adenovirus (non-RV), EBV, and KS.
***Non-CMV/Herpesviridae infections include HSV, VZV, HSV, and Adenovirus (non-RV), EBV, and KS.
Methods. We retrospectively analyzed patients undergoing allogeneic HCT between 4/2008 and 9/2018. CMV surveillance was performed weekly and the presence of any CMV viremia or high level CMV viremia in the first 100 days post-HCT. We used Cox proportional hazards models to evaluate risk factors for development of latent viruses. We examined whether viral upper (URTI) or lower respiratory infection episodes were evaluated by multiplex respiratory viral PCR. We used Cox proportional hazards models to evaluate risk factors for development of any CMV viremia after allogeneic hematopoietic cell transplantation (HCT). We demonstrated that RSV and PIV infections are associated with an increased risk for development of CMV viremia after allogeneic HCT. This novel association provides the rationale to explore virus-specific inflammatory pathways that may trigger CMV reactivation. CMV viremia may also serve as an endpoint in clinical trials that assess new preventative or therapeutic interventions of RSV or PIV infection.

Disclosures. Alpana Waghmare, MD, AlloVir (Scientific Research Study Investigator) Ansun Biopharma (Scientific Research Study Investigator) Kyorin Pharmaceutical (Advisor or Review Panel member) Janet A. Englund, MD, AstraZeneca (Consultant, Grant/Research Support) GlaxoSmithKline (Research Grant or Support) Meissa Vaccines (Consultant) Pfizer (Research Grant or Support) Sanofi Pasteur (Consultant) Teva Pharmaceuticals (Consultant) Michael Boeckh, MD, PhD, AlloVir (Consultant) Ansun Biopharma (Grant/Research Support) Astellas (Grant/Research Support) EvryBio (Consultant, Other Financial or Material Support, Options to acquire equity, but have not exercised them) Janssen (Grant/Research Support) Kyrorin (Consultant, Grant/Research Support) Moderna (Consultant) Symbio (Consultant) Takeda (formerly known as Shire) (Consultant, Grant/Research Support) VirBio (Consultant, Grant/Research Support)

924. Cytomegalovirus (CMV) Retinitis during Maintenance Chemotherapy for Acute Lymphoblastic Leukemia

Leah H. Yoke, PA-C, MCHS; Michael Boeckh, MD PhD; Himanshu Banda, MD; Erik L. Kimble, MD; Christen Martino, ARNP; Byan Cassady, MD; Danniel Zamora, MD; University of Washington; Fred Hutch Cancer Center Research Center, Seattle, Washington; Fred Hutchinson Cancer Center, Seattle, Washington; Sound retina, Tacoma, Washington; University of