Restless Legs Syndrome-associated intronic common variant in Meis1 alters enhancer function in the developing telencephalon

Derek Spieler,1,25 Maria Kaffe,1,25 Franziska Knauf,1,25 José Bessa,3 Juan J. Tena,3 Florian Giesert,4 Barbara Schormair,1,2 Erik Tilch,1,2 Heekyoung Lee,5,6,7,8 Marion Horsch,9 Darina Czamara,10 Nazanin Karbalai,10 Christine von Toerne,11 Melanie Waldenberger,12 Christian Gieger,12 Peter Lichtner,1 Melina Claussnitzer,5,6,7,8,24 Ronald Naumann,13 Bertram Müller-Myhsok,10,14,15 Miguel Torres,16 Lillian Garrett,17 Jan Rozman,9,7,18 Martin Klingenspor,5,6,9,18 Valérie Gailus-Durner,9 Helmut Fuchs,9 Martin Hrabě de Angelis,9,7,19 Johannes Beckers,7,9,19 Sabine M. Höltér,17 Thomas Meitingter,1,2,14 Stefanie M. Hauck,7,11 Helmut Laumen,5,6,7,8,9 Wolfgang Wurst,4,10,14,17,20,21 Fernando Casares,3 Jose Luis Gómez-Skarmeta,3 and Juliane Winkelmann1,14,22,23,26

1–23 [Author affiliations appear at the end of the paper.]

Genome-wide association studies (GWAS) identified the MEIS1 locus for Restless Legs Syndrome (RLS), but causal single nucleotide polymorphisms (SNPs) and their functional relevance remain unknown. This locus contains a large number of highly conserved noncoding regions (HCNRs) potentially functioning as cis-regulatory modules. We analyzed these HCNRs for allele-dependent enhancer activity in zebrafish and mice and found that the risk allele of the lead SNP rs12469063 reduces enhancer activity in the Meis1 expression domain of the murine embryonic ganglionic eminences (GE).

CREB1 binds this enhancer and rs12469063 affects its binding in vitro. In addition, MEIS1 target genes suggest a role in the specification of neuronal progenitors in the GE, and heterozygous Meis1-deficient mice exhibit hyperactivity, resembling the RLS phenotype. Thus, in vivo and in vitro analysis of a common SNP with small effect size showed allele-dependent function in the prospective basal ganglia representing the first neurodevelopmental region implicated in RLS.

With an age-dependent prevalence of up to 10% in western societies, RLS is a sensorimotor neurological disorder characterized by an urge to move the legs and uncomfortable sensations in the lower limbs. These symptoms occur exclusively during rest, in the evening, or at night, and improve only with movement (Szentkirályi et al. 2011). Therefore, patients are forced to stand up and walk, sometimes calling themselves “nightwalkers.” Consequences are severe sleep disturbances, depression, anxiety, and increased cardiovascular risk (Winkelmann et al. 2008). Severely affected patients require medication, with dopaminergic compounds being the first line treatment, but side effects such as augmentation limit their long-term use (Hornyak et al. 2012). So far, very little is known about the underlying neurobiology of this disorder.

RLS has a heritability of ~50% and is a complex genetic disorder. GWAS identified common genetic variants within six risk loci (Winkelmann et al. 2007, 2011; Schormair et al. 2008). These convey only small effects on the phenotype; and generally, the molecular mechanism and function behind low-effect-size common genetic variants identified in complex genetic diseases provide a formidable challenge. The strongest RLS association signal identified delineates a 32-kb linkage disequilibrium (LD) block in intron 8 of MEIS1 (2p14). A common haplotype completely tagged by a pair of highly correlated intronic SNPs, rs12469063 and rs2300478 (LD $r^2 = 0.97$), and rs6710341 in this block was shown to confer a significantly increased risk for RLS (odds ratio [OR] of 2.8) (Winkelmann et al. 2007). MEIS1 belongs to the TALE family of homeobox transcription factors and is involved in the development and homeostasis of numerous organs and diseases such as leukemia or neuroblastoma (Azcoitia et al. 2005). In the nervous system, multiple expression domains suggest essential roles for MEIS1 (Toresson et al. 2000); however, its spatial, temporal, and functional involvement in RLS pathogenesis has remained unknown. The MEIS1 locus comprises a cluster of HCNRs, and it has been shown that these indicate potential cis-regulatory elements...
for genes implicated in transcriptional regulation and development (Woolfe et al. 2005). Since disease-associated variants identified by means of GWAS are more likely located in regulatory DNA (Maurano et al. 2012), we aim to study the causal role of MEIS1 in RLS by analyzing the allele-dependent cis-regulatory function of the common intronic RLS-associated DNA variants of MEIS1 and differential binding of upstream factors as well as RLS-related behavioral consequences of altered Meis1 function.

Results

Identification of common candidate causal variants in the MEIS1 GWAS locus

To capture common variation found in the MEIS1 GWAS locus, we screened the entire intronic 32-kb LD block associated with RLS in 188 RLS patients for variants using high-resolution melting curve analysis (Herrmann et al. 2006). Our discovery sample consisted of carriers of the known risk haplotype in order to enrich candidate causal variants residing on this haplotype. We focused our analysis on common variants with a minor allele frequency (MAF) $\geq 0.05$ due to our small sample size limiting the power for rare and low frequency variants. Of 136 variants identified, 54 were common SNPs in our data set (MAF $\geq 0.05$) (Supplemental Table S1). To account for sampling bias in our discovery sample, we also included five variants reported as common in the general population (dbSNP Build 130), but with lower frequency in our data set, yielding a total of 59 variants. We genotyped these in independent 735 cases and 735 age-, sex-, and ethnicity-matched population-based controls (KORA cohort) (Wichmann et al. 2005). Based on strong LD, a total of 16 variants were assayed using tagging SNPs. We then imputed missing genotypes in additional samples, leading to a final set of high-quality genotypes of 38 variants for statistical analysis in 1302 cases and 1259 controls. Logistic regression followed by permutation-based adjustment for multiple testing revealed 27 associated SNPs ($P_{corr} < 0.05$) (Supplemental Table S2). To account for sampling bias in our discovery sample, we also included five variants reported as common in the general population (dbSNP Build 130), but with lower frequency in our data set, yielding a total of 59 variants. We genotyped these in independent 735 cases and 735 age-, sex-, and ethnicity-matched population-based controls (KORA cohort) (Wichmann et al. 2005). Based on strong LD, a total of 16 variants were assayed using tagging SNPs. We then imputed missing genotypes in additional samples, leading to a final set of high-quality genotypes of 38 variants for statistical analysis in 1302 cases and 1259 controls. Logistic regression followed by permutation-based adjustment for multiple testing revealed 27 associated SNPs ($P_{corr} < 0.05$) (Supplemental Table S2). The two strongest signals were the known highly correlated rs12469063 ($P_{nom} = 7.7 \times 10^{-18}$; OR = 1.7) and rs2300478 ($P_{nom} = 4.2 \times 10^{-18}$; OR = 1.7) (Fig. 1B). Conditional analysis with either rs12469063 or rs2300478 as covariate did not reveal additional independ-
dent association signals within the 32-kb block after permutation-based adjustment but confirmed the known risk haplotype configuration rs12469063/rs6710341. This haplotype showed an increased effect size with an OR of 2.33 compared to all other haplotypes with a frequency $\geq 1\%$ in our data set combined (95% confidence interval: 1.85–2.94 with an overall frequency [$f$] of 0.138 defined by rs6710341 – allele A [$f$ = 0.857] and rs12469063 – allele G [$f$ = 0.282]). Taken together, the common DNA variants rs12469063 and rs2300478 remained the lead SNP pair within the 32-kb block with the increased haplotype risk being compatible with additional small effect contributors not detectable by our approach.

rs12469063 impairs enhancer activity in zebrafish

Given that cis-regulatory function is often found in HCNRs of developmental genes (Woolfe et al. 2005), we focused on variants found within these elements. Thus, we systematically examined all HCNRs in the associated LD block (Figs. 1, 2) in a zebrafish transgenic EGFP-reporter assay (i.e., 24/48 h post-fertilization [hpf]). Altogether, eight HCNRs showed high conservation in mouse, chicken, and frog, five of which were conserved also in the Fugu genome (HCNR 602, 606, 617, 628, and 629). Since one HCNR did not contain any common variants, we subjected the remaining seven HCNRs to further analysis (HCNR 602, 606, 612, 617, 622, 629, and 631) (Fig. 2). None of the examined HCNRs contained any rare variants. While SNP rs12469063 resided in one of the HCNRs (617), rs2300478 was located in a nonconserved stretch and therefore was not further examined (Fig. 1B).

Of all HCNRs assayed, solely HCNR 617 exhibited both a reproducible neural expression pattern and a genotype-specific expression comparing the protective and risk allele reporter constructs (Fig. 2; Supplemental Fig. S1). With the protective allele, an enhancer signal was detected in the retina, the fore-, mid-, and hindbrain, and the spinal cord. In contrast, zebrafish embryos carrying the risk allele showed highly reduced enhancer activity (Fig. 2B,C). Together, these findings indicate that rs12469063 lies within a region of high interspecies conservation with neural enhancer activity and has an allele-specific functional impact.

rs12469063 alters enhancer activity in the murine embryonic ganglionic eminences

Next, HCNR 617 was analyzed in a transgenic mouse beta-galactosidase (lacZ) enhancer assay (Pennacchio et al. 2006). We found a reproducible lacZ gene expression pattern for both alleles in the forebrain of all embryos (E12.5) within the ganglionic eminences (Fig. 3A,D; Supplemental Fig. S2), giving rise to the basal ganglia of the adult brain, in addition to parts of the amygdala and several interneuron populations (Medina and Abellán 2012). Notably, lacZ reporter activity matched the endogenous Meis1 telencephalic expression domain (Fig. 3D). In addition, transcripts of all further RLS-associated loci, Btb9, Ptnrd, Map2k5, and Tia3 (Winkelmann et al. 2011) were expressed in this telencephalic area (Fig. 3E). Given the allele-specific impaired EGFP expression in zebrafish, we looked for allele-specific differences of lacZ activity, relying on the assumption that both constructs have the same bias for copy number as suggested by the small variance of both groups. Transgenic embryos of Thelier stages 19 and 20 (Theiler 1989) were included in the evaluation of beta-galactosidase signal intensity and spatial expression measured according to Cavalieri ($n = 4$ for both the protective and risk allele) (Fig. 3A,B, Supplemental Figs. S2, S3). For risk allele carriers, analyses showed a significant reduction of 65% in signal intensity ($P = 0.029$) and of 76% in the stereological analysis ($P = 0.029$) (Fig. 3A,B).

Direct evidence for an allele-specific function of rs12469063 was further provided by electrophoretic mobility shift assays (EMSA). Incubation with nuclear protein extracts from forebrain of E12.5 mice showed differential allele-specific gel shifts (Fig. 3C). The gel shifts were specific, as competition with the unlabeled allele in excess attenuated the differential bands. Combined with the results of the transgenic animal models, where the risk allele reduces enhancer function, this implies an enhanced binding of an activator protein complex to the protective allele or a repressor protein complex to the risk allele. The lead SNP rs12469063 was the only DNA sequence variation between the two oligonucleotides examined with EMSA, and thus held responsible for the differential DNA–protein complex formation (Fig. 3C).

Since binding of the enhancer-associated epigenomic marker EP300 allows the prediction of tissue-specific enhancer activity (Visel et al. 2009), we assessed the 32-kb LD block for EP300 binding in ChIP-seq data of murine brain (E11.5). The only EP300 peak corresponding to HCNR 617 was detected in forebrain tissue.

Figure 2. In vivo allele-specific enhancer function of HCNR 617 in zebrafish. (A) Results of the zebrafish enhancer screen with the expression domains for the protective and risk allele in orange and purple, respectively. (B) Representative embryos of the F1 generation with the protective (A) adenine) and the risk allele (G = guanine) construct of HCNR 617 showed an allele-specific difference in reporter EGFP expression in the neural tube. The protective allele of HCNR 617 drove EGFP expression in the retina, fore-, mid-, and hindbrain and spinal cord. The risk allele significantly reduced the expression almost to background levels (bar represents 250 $\mu$m). (C) Boxplot (left) The risk allele reduced the fluorescence intensity to 70% compared to the protective allele (100%) (Wilcoxon rank sum test, $P = 0.08$; EGFP-brain signal measured, $\mu_{\text{protective}} = 5, \mu_{\text{risk}} = 5$). The bar chart (right) represents the percentage of all EGFP-positive founders in the respective area ($y$-axis) with respect to the protective (orange) and risk (purple) allele of HCNR 617. The risk allele leads either to a significant reduction or a complete loss of the EGFP signal.
Figure 3. In vivo and in vitro identification of allele-specific HCNR 617 enhancer function in the ganglionic eminences of the mouse. (A) Representative transgenic mouse embryos after pronucleus injection of HCNR 617 protective (left) and risk allele constructs (right) at stage E12.5. Blue color indicates regions expressing the reporter gene beta-galactosidase (lacZ). Arrowhead indicates the reproducible telencephalic signal (bar represents 2.5 mm). (B) Analysis of the signal intensity in Theiler-staged embryos (stages 19 and 20; n_{protective} = 4, n_{risk} = 4) showed a reduction down to 35% (Wilcoxon rank sum test, P = 0.029). Stereological volume estimation according to Cavalieri revealed a significant volume reduction down to 24% for the risk allele (Wilcoxon rank sum test, P = 0.029). (C) Electrophoretic mobility shift assay using oligonucleotides encompassing rs12469063 showed allele-specific differences of DNA-protein complex formation using E12.5 forebrain nuclear extract (lanes 3 and 4, arrow and arrowhead). Specificity is proven by competition with unlabeled risk and protective oligonucleotide in excess (lanes 6–18). CTRL, control (no protein). (D) Frontal sections through the forebrain reveal lacZ reporter activity in the mantle zone (mz) of the ganglionic eminences, in the same region as Meis1 transcript and MEIS1 protein (arrowheads; bar represents 500 μm); no transcripts are visible in the ventricular (vz) and subventricular (svz) zones. (E) Transcripts of all additional GWAS-RLS risk loci map to the embryonic ganglionic eminences. mRNA of Ptprd, Btbd9, and Map2k5 was detected in the mantle zone (mz) of the LGE and MGE. Tox3 was expressed in the adjacent ventricular (vz) and subventricular (svz) zone (arrowheads; bar represents 500 μm).
specific gel shift (Fig. 4E). Combined, these data sets identified CREB1 binds more strongly to the risk allele. Finally, disruption of higher to the risk allele (Supplemental Table S3), we suggest that and mass spectrometry results showed that CREB1 binds 3.2-fold specific antibody attenuated the gel shift (Fig. 4E). As the super-

SNPInspector). Furthermore, supershift experiments with a CREB-

tation factor interaction based on in silico analysis (Genomatix,

Moreover, rs12469063 influenced the predicted CREB1 transcrip-

tion profiles clearly cluster according to the respective sex

genes in male and 161 in female embryos (mean fold change $> 1.5$; (Supplemental Table S3). With

Therefore, we might have missed functional effects of SNPs mediated through other mechanisms such as microRNA regulation, coding sequence conservation has been shown to be capable of

noncoding regions assuming subsequent alteration in gene expres-

sion contributing to complex disease (Maurano et al. 2012). Non-

coding sequence conservation has been shown to be capable of identifying human cis-regulatory elements (Prabhakar et al. 2006). Therefore, we might have missed functional effects of SNPs mediated through other mechanisms such as microRNA regulation, coding SNPs as well as noncoding regulatory elements lacking conservation.

**Motor restlessness/hyperactivity in heterozygous Meis1$^{pmlMtor}$ mice**

Given the reduced reporter gene activity in the endogenous Meis1 telencephalic expression domain, we also aimed to model the functional effect of reduced Meis1 expression on behavior and analyzed adult heterozygous Meis1$^{pmlMtor}$ mice (Azcoitia et al. 2005). In the open field test measured over 20 min, we found a significantly increased total distance traveled and average speed of forward locomotion in heterozygous compared to wild-type mice ($P = 0.003$ and $P = 0.004$) (Fig. 6A,B). No changes were ob-

erved with respect to anxiety-related behavior (Supplemental Fig.

S4). Moreover, we found a consistent trend of elevated average distance traveled measured over a period of 21 h (up to 16.3%, $P = 0.06$) (Fig. 6D) with corresponding enhanced energy metabolism in the mutants measured by indirect calorimetry (Fig. 6C; Supple-

mental Table S5). The oxygen consumption adjusted to the body mass differences was significantly increased in the mutants (adjusted mean $O_2$: males plus 8.5%, females plus 5.5%, $P_{\text{genotype}} = 0.007$; adjusted minimum $O_2$: males plus 7.8%, females plus 4.3%, $P_{\text{genotype}} = 0.04$; adjusted maximum $O_2$: males plus 6.5%, females plus 10.7%, $P_{\text{genotype}} = 0.003$) (Fig. 6C). Taken together, we consider these findings as an in vivo demonstration that reduced expression of Meis1 is leading to an alteration of the behavior toward hyperactive locomotion.

**Discussion**

In the present study, we demonstrated the allele-specific impairment of an intronic cis-regulatory element by the common, RLS-associated SNP rs12469063 in two independent in vivo experimental systems. In mice, the risk allele led to a significant reduction of the enhancer activity in the LGE and MGE, suggesting this brain area as RLS-relevant. We concentrated on genetic variation in highly conserved noncoding regions, which is essential for the proper development of cholinergic interneurons in the striatum (Chen et al. 2010), was found to be

recessive (Table 1). In addition, the occurrence of the “cardiovascular disease” category was in agreement with the reported function of Meis1 during vasculogenesis (Azcoitia et al. 2005). Of note, no transcripts of the currently known RLS-associated risk loci, Bdbd9, Ptprcd, Map2k5, and Toc3, were regulated, although transcripts belonging to homologous genes, such as Ptprv, Ptprc, and Map3k12, were differ-

centrimers at both transcript and protein levels (Fig. 4C,D). Moreover, rs12469063 influenced the predicted CREB1 transcription factor interaction based on in silico analysis (Genomatix, SNPInspector). Furthermore, supershift experiments with a CREB-

The oxygen consumption adjusted to the body mass differences was significantly increased in the mutants (adjusted mean $O_2$: males plus 8.5%, females plus 5.5%, $P_{\text{genotype}} = 0.007$; adjusted minimum $O_2$: males plus 7.8%, females plus 4.3%, $P_{\text{genotype}} = 0.04$; adjusted maximum $O_2$: males plus 6.5%, females plus 10.7%, $P_{\text{genotype}} = 0.003$) (Fig. 6C). Taken together, we consider these findings as an in vivo demonstration that reduced expression of Meis1 is leading to an alteration of the behavior toward hyperactive locomotion.

**Discussion**

In the present study, we demonstrated the allele-specific impairment of an intronic cis-regulatory element by the common, RLS-associated SNP rs12469063 in two independent in vivo experimental systems. In mice, the risk allele led to a significant reduction of the enhancer activity in the LGE and MGE, suggesting this brain area as RLS-relevant. We concentrated on genetic variation in highly conserved noncoding regions, assuming subsequent alteration in gene expression contributing to complex disease (Maurano et al. 2012). Noncoding sequence conservation has been shown to be capable of identifying human cis-regulatory elements (Prabhakar et al. 2006). Therefore, we might have missed functional effects of SNPs mediated through other mechanisms such as microRNA regulation, coding SNPs as well as noncoding regulatory elements lacking conservation.

**Meis1 expression corresponding to the region of lacZ reporter activity strongly points to Meis1 being regulated by the identified enhancer. Moreover, a bioinformatic approach for delineating
enhancer–gene interactions (“PreSTIGE”) (Corradin et al. 2014) and Poll II ChIA-PET and Hi-C experiments in two human cell lines (MCF7 and IMR-90) (Dixon et al. 2012; Li et al. 2012) demonstrated an exclusive interaction of the RLS-associated intronic region with the regulatory landscape of MEIS1 (Supplemental Table S6; Supplemental Fig. S5; Supplemental Methods).

**Figure 4.** rs12469063 alters a CREB1 transcription factor binding site. (A) Principle work flow for the identification of upstream binding factors by affinity chromatography and mass spectrometry. (B) CREB consensus sequence compared to the human sequence spanning rs12469063. (C,D) Creb/CREB and Meis1/MEIS1 were both detected in the mantle zone of the ganglionic eminences and show colocalization (bar in C represents 500 μm; bar in D represents 250 μm). (D) Magnification of rectangle in C. (E) Supershift EMSA assay with a specific antibody against CREB showed significant reduction of DNA-protein complex formation compared to unspecific IgG antibody (control) for overexpressed CREB1 in 293T nuclear cell lysate (lanes 1–6) and E12.5 forebrain nuclear extract (lanes 7–12, arrowhead). Complete abolishment of specific binding with an oligonucleotide, in which the entire CREB motif is deleted (lane 13). CREB consensus oligonucleotide shows specific binding, being absent with the mutated CREB consensus oligonucleotide (lanes 14, 15). Arrow indicates additional allele-specific band.
The LGE/MGE give rise to the prospective basal ganglia, i.e., pallidum and striatum with several projection neuron and interneuron populations, selected parts of the amygdala, cortical, and olfactory interneurons (Medina and Abellán 2012). Concerning RLS, numerous neuroanatomical regions have been suggested to be involved (Dauvilliers and Winkelmann 2013). The functional relevance of the RLS-SNP rs12469063 in the LGE/MGE suggests that RLS can be regarded as a “basal ganglia disorder,” although further neural structures and pathways might be involved.

The activity of the enhancer during development, indicated by the loss of DNase I hypersensitivity signal in HCNR 617 in adult brain, argues for a role restricted to embryonic development. Our data emphasizes a new focus for RLS research and suggests that the pathophysiology of RLS includes aspects of a neurodevelopmental disorder. As aging is the strongest risk factor for RLS, it is possible that early neurodevelopmental alterations in the LGE/MGE might not be compensated later in life (Somel et al. 2010). The reduced Meis1 expression might lead to altered neuronal pathway formation, including either striatal projections or interneurons, as suggested by down-regulation of Gbx2 in heterozygous Meis1tm1Mtor mice. Gbx2 is required for the development of cholinergic interneurons in the striatum (Chen et al. 2010). Transcriptome profiling identified further MEIS1 downstream targets involved in specification of progenitor cells in the ganglionic eminences (Tucker et al. 2008), as well as protein tyrosine phosphatases (Ptpy, Ptprc), which might have redundant functions next to the RLS-associated PTPRD on 9p23–24 (Schormair et al. 2008).

By affinity chromatography and mass spectrometry, we identified the transcription factor CREB1 as a potential upstream factor, binding stronger to the risk allele of rs12469063 in vitro assays. Since sensitivity of mass spectrometry-based detection of differentially binding proteins is limited due to low protein abundances, it is possible that our analysis did not cover all differential binding proteins. Along this line, an additional specific gel shift in the EMSA (Fig. 5E) provides evidence for a further protein complex with increased binding to the protective allele. CREB1 either activates or inactivates the transcription of downstream target genes (Bartsch et al. 1998). Here, we observed an enrichment of CREB1 binding and a reduction of the enhancer’s activity for the risk allele, implying a function of CREB1 as a transcriptional repressor affecting rs12469063.

Based on the zebrafish reporter screen, EP300 ChIP-seq, DNase I hypersensitivity data, and the association study, we focused on HCNR 617. Both animal models showed allele-dependent altered enhancer function, but the domain in the teleost central nervous system covered additional caudal structures such as the spinal cord. It has been shown that orthologous sequences with a high evolutionary distance do not necessarily retain the same activity in their respective species (Schmidt et al. 2010). Besides HCNR 617, additional cis-regulatory elements might be involved in the regulation of MEIS1 in relation to RLS. Thus, our HCNR zebrafish screen identified two additional transcriptionally active enhancers (HCNR 629 and 631) showing neural allele-dependent, but spatially not reproducible reporter activity, previously referred to as booster activity (Fig. 2; Supplemental Fig. S1; Royo et al. 2012), as well as one HCNR with general, yet allele-independent booster activity (HCNR 602). Moreover, the DNase I hypersensitivity data provided evidence for potential cis-regulatory activity of further HCNRs (HCNR 602, 606, and 622), two of which comprise RLS-associated variants (HCNR 602 and 622). It has been shown that genetic variants in strong LD map to clusters of enhancers, which cooperatively affect gene expression and thus confer concerted susceptibility to disease (Corradin et al. 2014). Given our results, such modular organization with multiple enhancers next to the identified enhancer HCNR 617 might play a role in the pathophysiology of RLS. This concept is in line with the identified higher-risk haplotype for RLS, defined by rs12469063 and rs6710341. For all associated common SNPs in all seven HCNRs, this haplotype carries the respective risk alleles, suggesting a possible functional role of these variants next to rs12469063 within the MEIS1 locus.

Setting the focus of our study on common variants within HCNRs increased its power but also entailed some limitations. We focused strictly on the 32-kb block of strong LD identified in the initial RLS GWAS (Winkelmann et al. 2007), which is embedded in a larger 64-kb block of weaker LD, and consequently have not considered variants in long-distance LD with the lead SNPs. In addition, rare and low-frequency variants as well as other types of genetic variation have not been analyzed. However, our functional zebrafish screen clearly identified HCNR 617 containing the RLS-associated SNP rs12469063 as the only allele-dependent enhancer, highlighting its functional importance in RLS.

Behavioral consequences of reduced Meis1 expression showed hyperactivity and increased energy expenditure in mutant mice. Assessing however, a murine phenotype for alterations of Meis1 in relation to RLS is challenging. Here, the observed behavior of mutant mice correlates well with the human phenotype hallmarking by an enhanced activity and motor restlessness. We cannot exclude that additional factors modify the observed phenotype as MEIS1 is a pleiotropic protein and also expressed in other movement-related CNS regions. Yet, our findings support a loss-of-function model as a disease mechanism. This is in line with loss-of-function models in mouse and Drosophila for the RLS-associated locus BTBD9, also demonstrating hyperactive behavior (DeAndrade et al. 2012; Freeman et al. 2012).
RLS-associated SNP alters telencephalic enhancer

Table 1. MEIS1 target genes in the ganglionic eminences of male and female E12.5 heterozygous Meis1tm1Mtor mice

| GO biological process          | Subcategory                        | P-value    | Genes                                                                 |
|--------------------------------|------------------------------------|------------|-----------------------------------------------------------------------|
| Male                           | Progressive motor neuropathy       | 4.72 × 10^-3 | Mapt, Nrnx1, Ptprc, Rbfox1, Slc1a1, Slc24a3, Sv2a, Tce1               |
| Schizophrenia                  |                                    | 6.68 × 10^-3 | Aldh3b1, Chnb3, Nrnx1, Rbfox1, Riz2, Slc1a1, Slc25a27, Stmn2, Vsnl   |
| Amyotrophic lateral sclerosis  |                                    | 9.93 × 10^-3 | Nrnx1, Rbfox1, Slc1a1, Tce1                                         |
| Neurological signs             |                                    | 1.19 × 10^-2 | Chnb3, Fbxw7, Map3k12, Mapt, Pde4dip, Ptprc, Rbfox1, Slc1a1, Sv2a, Vsnl |
| Multiple sclerosis             |                                    | 1.74 × 10^-2 | Mapt, Ptprc, Slc24a3, Sv2a                                         |
| Neurodegeneration              |                                    | 1.84 × 10^-2 | Idua, Mapt, Slc1a1, Ube3a                                          |
| Seizure disorder               |                                    | 2.52 × 10^-2 | Mapt, Nrnx1, Pde4dip, Ptprc, Rbfox1, Sv2a, Ube3a                   |
| Dyskinesia                     |                                    | 2.64 × 10^-2 | Chnb3, Fbxw7, Map3k12, Pde4dip, Ptprc, Rbfox1, Slc1a1, Sv2a, Vsnl   |
| Rett Syndrome                  |                                    | 2.88 × 10^-2 | Pde4dip, Ube3a, Zfp361                                              |
| Movement disorders             |                                    | 2.92 × 10^-2 | Chnb3, Fbxw7, Hctr1, Idua, Map3k12, Mapt, Pde4dip, Ptprc, Rbfox1, Slc1a1, Sv2a, Vsnl |
| Neuromuscular disease          |                                    | 3.10 × 10^-2 | Idua, Mapt, Slc1a1, Ube3a                                          |
| Nervous system development     | Synaptic transmission              | 1.50 × 10^-3 | Chnb3, Hctr1, Mapt, Nrnx1, Riz2, Slc1a1, Sv2a                       |
| Long-term potentiation         |                                    | 3.46 × 10^-2 | Idap, Mapt, Slc1a1, Ube3a                                          |
| Morphology of cerebellum       |                                    | 4.38 × 10^-2 | Gbx2, Idua, Ube3a                                                   |
| Morphology of central nervous system |                              | 4.62 × 10^-2 | Gbx2, Idua, Inx6, Map3k12, Mapt, Ptprc, Ube3a                      |
| Cardiovascular disease         | Vascular disease                   | 3.39 × 10^-4 | Chd13, Chnb3, Gbx2, Gp5, Mapt, Mmp13, Mpl, Pcsk2, Rbfox1, Stmn2, Sv2a, Tpsi, Tnfs4, Vsnl |
| Stroke                         |                                    | 6.12 × 10^-3 | Chnb3, Mapt, Sv2a, Vsnl                                           |
| Thrombosis                     |                                    | 8.06 × 10^-3 | Gp5, Mpl, Stmn2, Tpsi                                            |
| Occlusion of blood vessel      |                                    | 2.59 × 10^-2 | Chd13, Gp5, Mapt, Mmp13, Pcsk2, Rbfox1, Tnfs4                     |
| Infarction                     |                                    | 2.64 × 10^-2 | Hpgds, Mapt, Slc1a7, Tpsi, Tnfs4                                   |
| Female                         | Encephalitis                       | 3.73 × 10^-3 | Abcc2, Cbfb, Esr1, Hpa5, Ncf1, Ppp3ca, Rorc                        |
| Nervous system development     | Abnormal morphology of vertebrae   | 1.27 × 10^-2 | Esr1, Hells, Hoxa3, Plag1                                         |
| Behavior                       |                                    |             |                                                                       |
| Maternal nurturing             |                                    | 2.68 × 10^-3 | Esr1, Foxb1, Npas3                                                |
| Memory                         |                                    | 1.35 × 10^-2 | Esr1, Foxb1, Npf, Npas3, Ppp3ca                                   |
| Cardiovascular system and disease |                                  | 1.17 × 10^-2 | Esr1, Kir3, PLAG1, Ppp3ca                                         |
| Mass of heart                  |                                    | 1.17 × 10^-2 | Esr1, Ilggb2, Masp2, Ppp3ca                                       |
| Myocardial infarction          |                                    | 3.70 × 10^-2 | Ada, Bmx, Esr1, Fth1, Ilggb2, Kir3, Ltbp1, Slc9a3v2, Tiparp, Wars2 |
| Vasculogenesis                 |                                    | 3.94 × 10^-2 |                                                                       |

Significantly overrepresented functional annotations among regulated genes of heterozygous mutant embryos are listed for male and female mice. Analysis was done using the Ingenuity pathway analysis tool.

Recently, thousands of common variants have been identified for common traits causing a big debate about the underlying biology of common genetic variants conveying only small effect sizes. The greatest challenge in the “post-GWAS” era is to understand the functional consequences of these loci. Here, we showed a SNP-dependent enhancer impairment, suggesting RLS-relevant differences in the regulation of downstream target genes in the embryonic ganglionic eminences, the prospective basal ganglia. This supports the concept of RLS having elements of a neuro-developmental disorder. Now, for the first time, we are getting closer to a better understanding of the neuronal pathways involved in RLS, enabling us to explore new drugs and treatment strategies in the future.

Methods

Mutational screening, SNP discovery panel

One hundred eighty-eight unrelated RLS-affected individuals (72.8% female, mean age 60.0 ± 11.2 yr) were screened for variants; 94 patients were homozygote for the risk allele of rs12469063 (G/G), and 94 patients were heterozygote (G/A). We used high-resolution melting curve analysis with LightScanner (IDAHO Technology, Inc.). The targeted region was the 32-kb LD block (hg18; chr2: 66,601,989–66,635,212) as defined by the fine-mapping of the original GWAS signal using tagging-SNPs of the MEIS1 gene and ± 10 kb 5p’ and 3’ of sequence in 903 cases and 891 controls of European ancestry (Winkelmann et al. 2007). Oligonucleotide sequences for 145 amplicons are available in Supplemental Table S7. DNA was analyzed in doubllets to prevent false-positive signals. Samples with aberrant melting patterns were Sanger sequenced.

Association study: case/control population, imputation, and statistical analysis

Genotyping was performed in 735 unrelated RLS-affected individuals (70.8% female, mean age 61.5 ± 14.2 yr) from Germany, and 735 age-, sex-, and ethnicity-matched population-based controls of the KORA cohort (74.5% female, mean age 59.8 ± 11.3 yr) using the MassARRAY system and Sequenom iPLEX Gold technology (Sequenom, Inc.). Oligonucleotide sequences are available in Supplemental Table S8. A total of 59 variants were selected for genotyping (Supplemental Table S1; Supplemental Methods).
SNPs were imputed in a larger RLS case/control (1302/1259) set using MACH 1.0 (http://www.sph.umich.edu/csg/abecasis/MACH/index.html) and standard settings. Post-imputation quality control exclusion criterion was an Rsq score < 0.3. Statistical analysis was performed as logistic regression with disease status as the dependent and allele dosage as the independent variable using gender as a covariate. All calculations were done using R 3.0.1. For the conditional analysis, either rs2300478 or rs12469063 together with rs6710341 was entered as an additional covariate. Westfall-Young minimal-P method was used to correct for multiple testing with n = 10,000 permutations, and the significance level was set at 0.05 (Westfall and Young 1993). The plot for Figure 1 was generated using the UCSC Genome Browser (http://genome.ucsc.edu/), LocusZoom v1.1 (Prinj et al. 2010), and Haploview 4.2 based on HapMap data (CEU) (The International HapMap Consortium 2003). Haplotype analysis was performed in the genotyped data set only, using both Haploview 4.2 (Barrett et al. 2005) (http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haplovie/haploview) and UNPHASED 3.1.7 (Dudbridge 2008) (https://sites.google.com/site/fdubridge/software/unphased-3-1). Haploview 4.2 using the method by Gabriel et al. (2002) showed that there was one risk haplotype significantly enriched (or depleted) (assessed at a 5% level after 20,000 permutations) in these cases. This haplotype was perfectly tagged by rs2300478/ rs12469063 and rs6710341. For statistical testing and estimation of ORs, we used UNPHASED 3.1.7 including gender as a covariate.

Figure 6. Motor restlessness/hyperactivity in adult heterozygous Meis1tm1Mtor mice. Heterozygous Meis1tm1Mtor (het) traveled a higher total distance (P = 0.003, two-tailed t-tests, n = 29) (A) and moved with a higher speed on average (P = 0.004, two-tailed t-tests, n = 30) (B) in a 20-min open field test for spontaneous locomotor activity in a novel environment. (C) Oxygen consumption (ml/h) plotted versus body mass (g). Scatter-plot with regression lines split by sex and genotype to adjust for body mass variation. The shift in regression lines indicates higher energy turnover in heterozygous Meis1tm1Mtor mice (linear regression model, P = 0.0065). (D) Mean distance traveled (cm/20 min) monitored by infrared light beams during the indirect calorimetry trial. Heterozygous Meis1tm1Mtor mice tended to show increased locomotor activity under home cage conditions (two-way ANOVA, P = 0.06).

Genomatin software
MatInspector and SNPInspector software (Cartharius et al. 2005) were employed to predict putative transcription factor binding sites and to analyze in silico SNP dependent differences, respectively. GeneRanker software (Berriz et al. 2003) was used for characterization of large sets of genes using annotation data from various sources, such as Gene Ontology or Genomatin proprietary annotation.

EP300 ChIP-seq and DNase I hypersensitivity profile
EP300 ChIP-seq data for forebrain of E11.5 murine embryos was mapped to all HCNRs of the LD block examined (Visel et al. 2009). We used the ENCODE/University of Washington “UW DNase I HS track,” available online in the UCSC Genome Browser (http://genome.ucsc.edu/) (Sabo et al. 2006).

HCNR selection and cloning of HCNR reporter vectors
For determination of HCNRs, we used the VISTA Genome Browser v2.0 (http://pipeline.lbl.gov/cgi-bin/gateway2) (Dubchak et al. 2000). HCNR selection settings are given in the Supplemental Methods. HCNRs were amplified from human DNA. For each HCNR, two constructs with the protective and risk alleles of the associated SNPs were cloned. For common SNPs located in HCNRs, but not genotyped successfully, the respective construct included either the allele enriched in the discovery sample (rs11385154, allele T) or the allele correlated with the risk allele of a tagging SNP (rs11897119, allele T) as risk allele. All vectors were Sanger sequenced and did not include any additional rare variants. Primer sequences and vectors are detailed in the Supplemental Methods.

Generation and analysis of transgenic animals
In zebrafish, microinjections and screening was performed as previously reported (Royo et al. 2011). Transgenic mouse lines (C57BL/6, Harlan) were generated by pronuclear injection of linearized vectors. Primer sequences used for genotyping are detailed in the Supplemental Methods. Intensity of beta-galactosidase staining was measured using ImageJ software (http://rsweb.nih.gov/ij/index.html) on pictures of entire embryos (P = 0.06). High-precision design-based stereology was used to quantify the volume of the stained area of the ganglionic eminences (nprotective = 4; nrisk = 4). Volume was determined on 5-μm sections on a stereology workstation (Stereo Investigator, MicroBrightField). On every fourth section, the area of interest was counted using the Cavalieri estimator probe (scan grid size = 20 μm; height of the unbiased virtual counting spaces = 12 μm).

Histological methods
Embryos were immersion-fixed in 4% parafomaldehyde/PBS. Radioactive in situ hybridization was performed on 8-μm paraffin sections as previously described (Giesert et al. 2013). Immunohistochemistry on paraffin sections was performed according to standard procedures. Templates for in vitro transcription of riboprobes and antibodies used are detailed in the Supplemental Methods.

Electrophoretic mobility shift assay (EMSA) and overexpression of CREB1 in 293T cells
For EMSA experiments, forebrain nuclear extracts of E12.5 mouse embryos and CREB1 protein overexpressed in 293T cells were used.
Experimental details and 5'-Cy5-labeled oligonucleotides are given in the Supplemental Methods.

**Affinity chromatography and mass spectrometry**

Nuclear protein extracts from forebrain of E12.5 mouse embryos were incubated with double-stranded biotinylated oligonucleotide probes. The sequence of the double-stranded biotin-labeled oligomers used was the same as in EMSA, replacing Cy5 with biotin labeling. Proteins were eluted with an ascending salt concentration (200–1250 mM NaCl). The affinity chromatography was performed three times, and the differential elution fractions were analyzed with mass spectrometry. Proteins were proteolysed by trypsin, and LC-MS/MS analysis was performed with an HPLC system (Ultimate3000, Dionex), directly coupled to an LTQ Orbitrap XL (ThermoFisher Scientific) as described previously (Merl et al. 2012). For quantitative analyses, spectra were loaded into the Progenesis LC-MS software (version 4.0, Nonlinear) and analyzed as previously described (Hauck et al. 2010). Peptide identifications were performed using Mascot (Matrix Science, version 2.3) and the Ensembl mouse database (Release 62; 54,576 sequences) with one allowed variable modification: oxidation of methionine and asparagine or glutamine deamidations were allowed as variable modifications. A Mascot-integrated decoy database search calculated an average peptide FDR of < 2%. Peptide assignments were reimported into Progenesis LC-MS. Normalized abundances of all unique peptides were summed up and allocated to the respective protein, comparing the protective (NR) with the risk (R) condition.

**RNA isolation and transcriptome analysis**

Total mRNA was extracted from forebrains of E12.5 mouse embryos (wild-type and Meis1^{tm1Mtor} mice), and transcriptomes were analyzed using MouseRef-8v2 Expression BeadChips (Illumina). Details of statistical, cluster, and pathway analyses are given in the Supplemental Methods.

**Behavioral and metabolic phenotyping of Meis1^{tm1Mtor}/- mice**

Previously described Meis1^{tm1Mtor} mice were phenotyped at the German Mouse Clinic (Azcoitia et al. 2005; Gailus-Durner et al. 2009). Experimental settings of reported findings are detailed in the Supplemental Methods.

**Ethics**

The KORA study was reviewed and approved by the local ethical committee (Bayerische Landesärztekammer). All animal work was performed in accordance with the German Animal Welfare Act and the Spanish Ethical Committee for Animal Research from Consejo Superior de Investigaciones (CSIC). Approval for the generation of the transgenic mice was obtained from the Landesdirektion Freising-Weihenstephan, Germany; 8German Mouse Clinic/Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuhberg, Germany; 9German Mouse Clinic/Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuhberg, Germany; 10Max Plank Institute of Psychiatry, 80804 Munich, Germany; 11Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuhberg, Germany; 12Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuhberg, Germany; 13Transgenic Core Facility, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; 14Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany; 15University of Liverpool, Institute of Translational Medicine, Liverpool, L69 3GA, United Kingdom; 16Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; 17German Mouse Clinic/Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuhberg, Germany; 18Molecular Nutritional Medicine, Technische Universität München Center of Life and Food Sciences, 85354 Weihenstephan, Germany; 19Technische Universität München, Experimental Genetics, 85354 Freising, Germany; 20Technische Universität München, Developmental Genetics, 85764 Neuhberg, Germany; 21Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 80336 Munich, Germany; 22Department of Neurology, Technische Universität München, 81675 Munich, Germany; 23Department of Neurology and Neurosciences, Stanford Center for Sleep Medicine and Sciences, Stanford University, Palo Alto, California 94304, USA.

**List of affiliations**

1Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuhberg, Germany; 2Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany; 3Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Seville, Spain; 4Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuhberg, Germany; 5Else Kroener-Fresenius-Centre for Nutritional Medicine, Technische Universität München, 85350 Freising-Weihenstephan, Germany; 6ZIEL-Research Centre for Nutrition and Food Sciences, Technische Universität München, 85350 Freising-Weihenstephan, Germany; 7German Center for Diabetes Research (DZD), 85764 Neuhberg, Germany; 8Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München und Technische Universität München, 85350 Freising-Weihenstephan, Germany; 9German Mouse Clinic/Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuhberg, Germany; 10Max Plank Institute of Psychiatry, 80804 Munich, Germany; 11Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuhberg, Germany; 12Research Unit Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuhberg, Germany; 13Transgenic Core Facility, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; 14Munich Cluster for Systems Neurology (SyNergy), 80336 Munich, Germany; 15University of Liverpool, Institute of Translational Medicine, Liverpool, L69 3GA, United Kingdom; 16Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; 17German Mouse Clinic/Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuhberg, Germany; 18Molecular Nutritional Medicine, Technische Universität München Center of Life and Food Sciences, 85354 Weihenstephan, Germany; 19Technische Universität München, Experimental Genetics, 85354 Freising, Germany; 20Technische Universität München, Developmental Genetics, 85764 Neuhberg, Germany; 21Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 80336 Munich, Germany; 22Department of Neurology, Technische Universität München, 81675 Munich, Germany; 23Department of Neurology and Neurosciences, Stanford Center for Sleep Medicine and Sciences, Stanford University, Palo Alto, California 94304, USA.

**Acknowledgments**

We thank Len A. Pennacchio for the Hsp68-lacZ-plasmid and Irmgard Zaus, Jelena Golic, Silvia Narango, Rocio Morales, Xabier Ruiz, Bettina Sperling, Jan Einicke, Ann-Elisabeth Schwarz, Anke Bettenbrock, and the TCF Dresden team for technical assistance. The project was supported by Fritz-Thyssen-Stiftung, Cologne, Germany (10.09.2.146; 10.12.2.183), KKF-TUM (8766156), DAAD (0811963), and COST ("HOX and TALE homeoproteins in Development and Disease"). B.S. was partially supported by DFG grants (WI 1820/4-1; WI 1820/5-1) and a TUM-Excellence stipend. The KORA study was financed by the Helmholtz Zentrum München, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. KORA research was supported within the Munich Center of Health Sciences (MC Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ. J.L.G.-S. and F.C. acknowledge funding of the Spanish and the Andalusian Governments and the Feder program for grants.
Duchak I, Brudno M, Loots GG, Pachter L, Mayor C, Rubin EM, Frazer KA. 2000. Active conservation of noncoding sequences revealed by three-way species comparisons. *Genome Res* **10**: 1304–1306.

Dudbridge F. 2008. Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. *Hum Hered* **66**: 87–98.

Freeman A, Pranski E, Miller RD, Radmard S, Bernhard D, Jinnh HA, Betarbet R, Rye DB, Sanyal S. 2012. Sleep fragmentation and motor restlessness in a Drosophila model of Restless Legs Syndrome. *Curr Biol* **22**: 1142–1148.

Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, et al. 2002. The structure of haplotype blocks in the human genome. *Science* **296**: 2223–2229.

Gailus-Durner V, Fuchs H, Adler T, Aguilar Pimentel A, Becker L, Bolle I, Calzada-Wack J, Dalce C, Ehrhardt N, Ferwerger B, et al. 2009. Systemic first-line phenotyping. *Methods Mol Biol* **530**: 463–509.

Giesert F, Hofmann A, Bürger A, Zerle J, Kloos K, Hafen U, Ernst I, Zhang J, Vogt-Weisenborn DM, Wurst W. 2013. Expression analysis of Lnk1, Lnk2 and Lnk2 splicing variants in mice. *PLoS ONE* **8**: e65778.

Hauck SM, Dietter J, Kramer BL, Hofmaier F, Zippelies JK, Amanu B, Feuchtinger A, Deeg CA, Ueffing M. 2010. Deciphering membrane-associated molecular processes in target tissue of autoimmune uveitis by label-free quantitative mass spectrometry. *Mol Cell Proteomics* **9**: 2292–2304.

Hermann MG, Durschi JD, Bromley LK, Wittwer CT, Voelkerding KV. 2006. AmpliDNA melanin analysis for mutation scanning and genotyping: cross-platform comparison of instruments and dyes. *Clin Chem* **52**: 494–503.

Hornykay M, Trenkwalder C, Kohnen R, Scholz H. 2012. Efficacy and safety of dopamine agonists in restless legs syndrome. *Sleep Med* **13**: 228–236.

The International HapMap Consortium. 2003. The International HapMap Project. *Nature* **426**: 799–804.

Li G, Ruan X, Auerbach RK, Sandhu KS, Zheng M, Wang P, Poh HM, Goh Y, Lim J, Zhang J, et al. 2012. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. *Cell* **148**: 84–98.

Laumen H, Lahme W, Frech K, Grote K, Haltmeier M, Klingenhoff A, Frisch M, Cartharius K, Frech K, Grote K, Haltmeier M, Klingenhoff A, Frisch M, Barret JC, Fry B, Maller J, Daly MJ. 2005. Haploview: analysis and visualization of LD and haplotype maps. *Bioinformatics* **21**: 263–265.

Bartsch D, Casadio A, Karl KA, Serodio P, Kandel ER. 1998. *Meis1* protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. *Dev Biol* **208**: 307–320.

Barrett JC, Fry B, Maller J, Daly MJ. 2005. Haploview: analysis and visualization of LD and haplotype maps. *Bioinformatics* **21**: 263–265.

Bartsch D, Casadio A, Karl KA, Serodio P, Kandel ER. 1998. *Meis1* protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. *Dev Biol* **208**: 307–320.

Berriz GF, King OD, Bryant B, Sander C, Roth FP. 2003. Characterizing gene function and signaling pathways through biological context networks. *Proc Natl Acad Sci USA* **100**: 1359–1364.

Berriz GF, King OD, Bryant B, Sander C, Roth FP. 2003. Characterizing gene function and signaling pathways through biological context networks. *Proc Natl Acad Sci USA* **100**: 1359–1364.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.

Botstein D, Couch F, Peto J. 1987. DNA sequencing: practical and theoretical considerations. *Nature* **328**: 652–658.
Somel M, Guo S, Fu N, Yan Z, Hu HY, Xu Y, Yuan Y, Ning Z, Hu Y, Menzel C, et al. 2010. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. *Genome Res* **20**:1207–1218.

Szentkiralyi A, Fendrich K, Hoffmann W, Happe S, Berger K. 2011. Incidence of restless legs syndrome in two population-based cohort studies in Germany. *Sleep Med* **12**: 815–820.

Theiler K. 1989. The house mouse, atlas of embryonic development. Springer, New York.

Toresson H, Parmar M, Campbell K. 2000. Expression of *Meis* and *Pbx* genes and their protein products in the developing telencephalon: implications for regional differentiation. *Mech Dev* **94**: 183–187.

Tucker ES, Segall S, Gopalakrishna D, Wu Y, Vernon M, Polleux F, Lamantia AS. 2008. Molecular specification and patterning of progenitor cells in the lateral and medial ganglionic eminences. *J Neurosci* **28**: 9504–9518.

Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, et al. 2009. ChIP-seq accurately predicts tissue-specific activity of enhancers. *Nature* **457**: 854–858.

Westfall PH, Young SS. 1993. *Resampling-based multiple testing: Examples and methods for p-value adjustment*. Wiley, New York.

Wichmann HE, Gieger C, Illig T, Group MKS. 2005. KORA-gen—resource for population genetics, controls and a broad spectrum of disease phenotypes. *Gesundheitswesen* (Suppl 1) **67**: S26–S30.

Winkelmann J, Schormair B, Lichtner P, Ripke S, Xiong L, Jalilzadeh S, Fulda S, Pütz B, Eckstein G, Hauck S, et al. 2007. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. *Nat Genet* **39**: 1000–1006.

Winkelmann JW, Shahar E, Sharief I, Gottlieb DJ. 2008. Association of restless legs syndrome and cardiovascular disease in the Sleep Heart Health Study. *Neurology* **70**: 35–42.

Winkelmann J, Czamara D, Schormair B, Knauf F, Schulte EC, Trenkwald C, Daunvilliers Y, Polo O, Högl B, Berger K, et al. 2011. Genome-wide association study identifies novel restless legs susceptibility loci on 2p14 and 16q12.1. *PLoS Genet* **7**: e1002171.

Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, Smith SE, North P, Callaway H, Kelly K, et al. 2005. Highly conserved non-coding sequences are associated with vertebrate development. *PLoS Biol* **3**: e7.

Received September 15, 2013; accepted in revised form February 5, 2014.