Formation of Polymorphic Cluster Phases for Purely Repulsive Soft Spheres

Bianca M. Mladek,1 Dieter Gottwald,1 Gerhard Kahl,1 Martin Neumann,2 and Christos N. Likos3

1Center for Computational Materials Science and Institut für Theoretische Physik, Technische Universität Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
2Institut für Experimentalphysik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria
3Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany

(Dated: October 3, 2018)

We present results from density functional theory and computer simulations that unambiguously predict the occurrence of first-order freezing transitions for a large class of ultrasoft model systems into cluster crystals. The clusters consist of fully overlapping particles and arise without the existence of attractive forces. The number of particles participating in a cluster scales linearly with density, therefore the crystals feature density-independent lattice constants. Clustering is accompanied by polymorphic bcc-fcc transitions, with fcc being the stable phase at high densities.

PACS numbers: 64.70.Dv, 82.30.Nr, 61.20.Ja, 82.70.Dd

The distinguishing feature of soft matter systems is the vast separation of length and time scales characterizing the extent and motion of their constituent entities. Whereas soft matter mixtures are typically solutions in a microscopic solvent, the solute particles are complex macromolecular aggregates of mesoscopic spatial dimensions [1]. The ability to control the architecture and chemical nature of these macromolecules, combined with the flexibility in influencing the solvent properties and the composition of the system, gives rise to an unprecedented freedom in tuning the effective interactions between the particles and opens up the possibility to steer the macroscopic properties of the system [1, 2]. The richness of spontaneously forming complexes in soft matter encompasses length scales that exceed the dimensions of the individual macromolecules. Indeed, the latter can self-organize in a variety of ways, giving rise to so-called hypermolecular structures [3] that encompass a large number of mesoscopically-sized entities. Characteristic examples are the complex phases encountered in ternary mixtures of oil, water, and amphiphilic surfactants or in block copolymer blends, as well as the emergence of cluster formation between colloidal particles, which has attracted a great deal of attention recently [4, 5, 6, 7, 8, 9, 10, 11, 12]. The underlying physical mechanism that drives the emergence of hypermolecular structures is widely believed to rest on the existence of competing interactions among the mesoscopic solute constituents. For example, the dominant mechanism that guarantees the stability of finite clusters in colloidal [5, 6, 8] or biological [7] systems stems from the presence of short-range attractions and long-range repulsions in their effective interaction potential. Whereas the former provide the driving force for unlimited cluster growth, the latter act as a barrier against it. The efficiency of the barrier grows fast with increasing cluster population, therefore further accumulation of colloids into the clusters is brought to an end when a specific, optimal cluster occupancy is reached [8, 7]. Cluster formation is a highly topical issue in current soft matter research, due to the large variety of cluster morphologies that form [5, 6, 11] and to the relevance of these structures in influencing vitrification and gelation [5, 4, 12].

In this Letter, we report on a different mechanism that gives rise to a distinct type of cluster formation, and which does not rest on the explicit existence of competing interactions. Contrary to the cases in Refs. [5, 6, 7, 8], the constituent particles we consider are allowed to overlap and are purely repulsive. Both conditions are readily fulfilled for various types of polymeric macromolecules, e.g., polymer chains [13], polyelectrolytes [14], or dendrimers [15]. Under certain, general conditions on the properties of the Fourier transform $\Phi(q)$ of the interparticle potential $\Phi(r)$, we demonstrate that the particles form aggregates that further organize into regular cluster crystals with multiple site occupancy. We explicitly confirm the theoretical results by performing extensive computer simulations on a specific system that represents the entire class of effective interactions [10].

Ultrasoft effective interactions [3, 17] hide many surprises in the topology of their phase diagrams and the types of crystal phases that arise, even for purely isotropic pair potentials $\Phi(r)$ [15, 19, 20]. For the case in which the $\Phi(r)$ is non-negative and bounded, a general criterion determining the topology (but not the crystal structures) of the phase diagram has been put forward [16]. If the Fourier transform $\Phi(q)$ is non-negative (termed Q$^+$-class), then the system displays re-entrant melting with an upper freezing temperature. If, on the other hand, $\Phi(q)$ oscillates around zero (termed Q$^\pm$-class), then a transition into an ordered cluster phase will take place at arbitrary temperatures. This corresponds exactly to the ordered ‘clump phase’ described in [21]. The argument put forward in Ref. [16] rests on the fact that, except at small densities and temperatures, the fluid state of the systems at hand is extremely well described by the mean-field approximation (MFA) $c(r) = -\beta \Phi(r)$, where $c(r)$ is the direct correlation function and $\beta = (k_B T)^{-1}$, with Boltzmann’s constant k_B and the absolute temperature T. Consequently, the fluid
structure factor $S(q)$ is given by $S(q) = (1 + \beta \rho \Phi(q))^{-1}$, where ρ denotes the number density. Consider now the Q1-class and let q_* be the wavevector for which $\Phi(q)$ attains its minimum, negative value. Then, $S(q)$ develops a real pole at q_* along the so-called λ-line \cite{10,22,23,24}, which signals an instability of the uniform phase. Evidently, the λ-line has the shape $k_B T \lambda = |\Phi(q_*)|/\rho \lambda$, i.e., it persists at all temperatures. Since q_* is set solely by the interaction, the crystal lattice constant $a \propto q_*^{-1}$ should be density-independent, at least on the freezing line. Thus, the number of particles in the elementary cell should change accordingly, a requirement that can be fulfilled by the formation of multi-particle aggregates (clusters).

Although the re-entrant melting scenario has been confirmed \cite{20,24,25,26}, the clustering scenario has received considerably less attention up to now. In this work, we explicitly demonstrate its validity. We perform a detailed investigation of the generalized exponential model of index n (GEM-n), $\Phi(r) = \varepsilon \exp[-(r/\sigma)^n]$, with $n = 4$. It can be shown that $\Phi(r)$ belongs to the Q1-class for $n \leq 2$ and to the Q2-class for $n > 2$. For $n = 2$, the Gaussian core model (GCM) of Stillinger \cite{27} is recovered. The GEM-4 is treated here as a representative of the Q2-class. Suitably tailored dendrimers that have been assembled in a computer simulation show evidence for a GEM-n-type of effective interaction with $n > 2$, hence this model reflects the behavior of realistic systems \cite{31}.

We define $\rho^* \equiv \rho \sigma^3$ and $T^* \equiv k_B T / \varepsilon$. Our investigations consist of a combination of sophisticated minimization algorithms, density functional theory (DFT), and advanced Monte Carlo (MC) simulations. We started with a calculation at $T = 0$, allowing for the formation of clusters in which n_c particles sit on top of each other, and minimized the lattice sum with respect to the crystal structure and n_c. Since the periodic lattice that the clusters form is a priori unknown, we took advantage of an unbiased search strategy based on genetic algorithms \cite{31}. Only fcc- and bcc-crystals were predicted, which were used as candidates at finite temperatures. For this purpose, we employed DFT with the highly accurate MFA-excess free energy \cite{23,24,28,29} $F_{\text{ex}}[\rho] = (1/2) \int \rho_1 (1 - \rho_2) \rho_2 \rho \Phi(|\mathbf{r}_1 - \mathbf{r}_2|)$. For the one-particle density, $\rho(r)$, we made the Gaussian ansatz: $\rho(r) = \sum_i \rho_i \delta(|\mathbf{r} - \mathbf{R}_i|) = n_c (\alpha/\pi)^{3/2} \sum_i e^{-\alpha(|\mathbf{r} - \mathbf{R}_i|)^2}$, where $\alpha \rho_i^2$ is the cluster density profile and the vectors \mathbf{R}_i form a Bravais lattice. The total free energy is $F[\rho] = F_{\text{id}}[\rho] + F_{\text{ex}}[\rho]$, with the ideal part $F_{\text{id}}[\rho] = k_B T \int \rho \log(\rho/\rho_0) - 1$, A being the thermal de Broglie wavelength. For $\alpha \sigma^2 > 20$, F_{id} can be approximated analytically and the variational free energy per particle, $F/N \equiv f(n_c, \alpha)$, takes the form:

$$
\begin{align*}
f(n_c, \alpha) &= k_B T \left[\ln n_c + 3 \ln(\sqrt{\alpha \sigma^2/\pi})\right] + n_c \sqrt{\frac{\pi}{8 \varepsilon}} \sum_i \int_0^\infty dr \frac{1}{r} \left[e^{-\alpha (r - R_i)^2} - e^{-\alpha (r + R_i)^2} / 2 \right] \Phi(r) \\
&\quad + (n_c - 1) \sqrt{\frac{\alpha \sigma^2}{8 \pi}} \int_0^\infty dr r e^{-\alpha r^2 / 2} \Phi(r),
\end{align*}
$$

where the primed sum is carried over all lattice vectors excluding $\mathbf{R} = 0$, $R_i = |\mathbf{R}_i|$, and the irrelevant term $3k_B T \ln(\Lambda/\alpha)$ has been dropped. The function $f(n_c, \alpha)$ is then minimized at any state point with respect to n_c and α. For a given crystal (fcc or bcc) and density ρ^*, the cluster population n_c and the lattice vector lengths R_i are coupled to one another, $R_i/\sigma \propto l_i (n_c/\rho^*)^{1/3}$, where l_i are lattice-specific numerical coefficients. At the minimum of $f(n_c, \alpha)$, which corresponds to a mechanically stable crystal, the particular property $n_c \propto \rho^*$ is fulfilled, so that the lattice constants of both the bcc- and the fcc-lattices remain fixed at all ρ^*-values. In particular, the nearest neighbor distances for bcc and fcc have the values $d_{bcc} = 1.368 \sigma$ and $d_{fcc} = 1.414 \sigma$ respectively.

In order to check also the thermodynamic stability of the crystals, we calculated the free energy of the uniform fluid employing the MFA, $c(r) = -\Phi(r)$, as a closure to the Ornstein-Zernike relation and following the energy route to thermodynamics. With the free energies of the uniform and crystalline phases readily available, the phase diagram can be drawn, which is shown in Fig. 1. At low densities, the system is fluid. Upon compression, a first-order clustering transition occurs, leading at sufficiently high densities to the fcc-structure. Above the triple temperature, $T^*_t \approx 0.4$, a wedge-shaped cluster bcc-region intervenes between the fluid and the cluster fcc. Thus, the system also shows polymorphic transitions between cluster solids. The bcc-fcc density gap is very narrow, contrary to the fluid-crystal gap. In agreement with the arguments in Ref. \cite{16}, the freezing and melting curves are almost straight lines and they precede the occurrence of the λ-line in the phase diagram.

To put the theoretical predictions in a stringent test, we also carried out MC simulations in the NVT-ensemble. Typically we used systems with approximately 5000 particles and extended the computer experiments to 150 000 MC-sweeps. Considerable speedup of the simulations was achieved by using a discretized simulation technique \cite{32}. The symmetry of the resulting regular structures was an-
FIG. 2: Three simulation snapshots of a GEM-4 system for \(T^* = 0.4 \) and \(\rho^* = 2.5, 3.5, \) and 7 (from left to right). Particle diameters are not drawn to scale but are chosen to optimize the visibility of the structures.

FIG. 3: Modified free energy density \(\beta \tilde{F} \rho^*/N \equiv \beta F \rho^*/N + K_1 \rho^* \) of the GEM-4 system against \(\rho^* \) at \(T^* = 1 \), as obtained by DFT and MC-simulations. A thermodynamically irrelevant term \(K_1 \rho^* \) has been added for clarity of presentation. Inset: a close-up on the region of stability of the cluster bcc-lattice. Here, a different linear term \(K_2 \rho^* \) has been added.

FIG. 4: Cluster size, \(n_c \), and localization parameter, \(\alpha \sigma^2 \), for the GEM-4 system at \(T^* = 1 \), plotted against the density \(\rho^* \). Lines: DFT-results; points: MC-simulations. There are small discontinuities at the density of the bcc-fcc transition. The inset shows DFT-results that corroborate the \(n_c \propto \rho^* \)-relation. The dashed part of the line is an extrapolation to low densities, for which the crystal is unstable.

FIG. 5: Cluster density profile, \(\rho_{cl}(r) \), of the GEM-4 system at \(T^* = 0.1 \) and \(\rho^* = 9 \). Inset: Semi-logarithmic plot of \(\rho_{cl}(r) \) against \(r^2 \), demonstrating the Gaussian shape of the former.

In the simulations, we found evidence of spontaneous clustering and crystallization, which is demonstrated by the snapshots in Fig. 2 for all \(T^* = 0.4 \). Whereas in the left panel (\(\rho^* = 2.5 \)) the system is obviously in the fluid phase, formed by isolated particles as well as clusters, at a higher density (\(\rho^* = 3.5 \), middle panel), aggregates of particles have formed upon compression. These are still 'loose' and are located on a slightly distorted fcc lattice. At a still higher density (\(\rho^* = 7.0 \), right panel), the particles are tightly bound in clusters whose crystalline arrangement is evident.

To determine the chemical potential \(\mu \) we used Widom’s particle insertion \([34] \) supplemented by the overlapping distribution method \([30, 33] \), and the free energies \(F_{bcc} \) and \(F_{fcc} \) were obtained via the Gibbs-Duhem relation. A compilation of DFT- and MC-results for the free energies of all phases at \(T^* = 1 \) is shown in Fig. 3. It can be seen that the DFT-results are in excellent agreement with simulations, a result that amply confirms the accuracy of the former and of the phase diagram in Fig. 1. In the inset of Fig. 3 we show a close-up of the three-phase region, to demonstrate that the cluster bcc-crystal is not preempted by a transition between fluid and cluster fcc.

The quantitative accuracy of DFT is not limited to thermodynamic quantities; it also holds for more detailed, structural ones. In particular, we have measured in the simulations the mean occupancy \(\bar{n}_c \) of the clusters in the solid phases and compared it with \(n_c \) obtained from DFT. Representative results for \(T^* = 1 \) are shown in Fig. 4, where the excellent agreement between the two can be seen. In particular, the linear dependence of \(n_c \) on \(\rho^* \) is fully confirmed. There is only a tiny difference in the population of the bcc- and fcc-clusters, see Fig. 4. This leads to to a ratio \(d_{bcc}/d_{fcc} = 1.034 \), very close to the value \(\sqrt{2}/\sqrt{3} \approx 1.029 \) obtained when \(n_c \) is identical for both lattices. At fixed \(\rho^* \), \(n_c \) is also practically \(T^* \)-independent, so that a given crystal features a single lattice constant in the whole range of its stability.

In addition, the clusters become more compact with increasing density: this is reflected in a corresponding increase of the \(\alpha \)-values in the DFT approach. Indeed, as can be seen in Fig. 4, the Gaussian density profile that was taken as an ansatz in the DFT approach is in excellent agreement with the one measured in MC. This allows for an extraction of a localization parameter \(\alpha \) from the simulation results, which can be compared to the one from DFT. The comparison is excellent at low temperatures and worsens somewhat as \(T^* \) increases, however the discrepancies between the two remain below 10% at \(T^* = 1.0 \), as can be seen in Fig. 4. It appears that \(\alpha \) also has a linear dependence on \(\rho^* \), a
feature unknown for crystals formed by harshly-repulsive particles. This property is intricately related to cluster formation and can be understood as follows. Let us fix all particles but one on their lattice sites and consider the potential \(V(r) \) they exert on this test particle, which performs small oscillations around a site at \(r = 0 \). Taking only the \(m \) nearest neighbor sites into account we have \(V(r) = (n_c - 1)\Phi(r) + n_c \sum \Phi(r-R_m) \), where the sum runs over all nearest neighbor clusters, located at the vectors \(R_m \) of length \(d \). For small \(r \), \(V(r) \) can be expanded as \(V(r) \approx V(0) + (1/2)mn_c\Phi''(d)r^2 \), since \(\Phi'(0) = 0 \)

Thus, the test particle is a thermal oscillator and the density profile \(\rho(r) \propto \exp[-\beta mn_c\Phi''(d)r^2/2] \) results. The Gaussian shape is seen to arise from the local harmonic character of the site potential and the localization parameter \(\alpha \) can be identified as \(\alpha = \beta mn_c\Phi''(d)/2 \). Since \(n_c \propto \rho^* \), the linear dependence of \(\alpha \) on \(\rho^* \) follows.

All salient properties of the GEM-4-model that drive cluster formation are common to the entire \(Q^\pm \)-class, thus the phenomena presented here should be general. The spontaneous formation of clusters appears counterintuitive at first sight as, indeed, it occurs at the complete absence of competing interactions at the level of the pair potential. The underlying reason is rather the emergence of competing trends in the free energy, as can be seen in Eq. (1). The entropy loss due to particle aggregation and the ‘self-interaction’ within the cluster (the \(k_B T \ln n_c \)-term and the last term on the rhs of Eq. (1), respectively) disfavor the growth of \(n_c \). However, increasing \(n_c \) also entails the gain in avoiding close contacts with the nearest neighbors, due to the concomitant increase of the lengths \(R_1 \) in the second term on the rhs of Eq. (1). At the same time, excessive growth of \(n_c \) is also unfavorable, because it drives the inter-neighbor interaction term to zero, as the \(R_i \)'s then lie outside the range of \(\Phi(r) \): the entropic and self-interaction terms overtake as \(n_c \to \infty \) and stop further aggregation. Interactions with the neighbors are also indispensable for the mechanical stability of the crystals, providing the required restoring forces for particle oscillations around the lattice sites. The stability of the clusters against both decomposition to \(n_c = 1 \) and unlimited growth towards \(n_c \to \infty \) is therefore seen to arise from a competition between \textit{intra}-cluster interaction and entropy, on the one hand, and \textit{inter}-cluster interaction, on the other. The necessary requirements for this scenario are that \(\Phi(r) \) is bounded (to allow full overlaps) and that it falls rapidly enough to zero for \(r \to \infty \), so that \(\Phi(q) \) develops oscillations.

We have presented a detailed analysis of the phase behavior of a particular soft-interaction-system representative of a broad class of effective interaction potentials that are realistic for ultrasoft, polymeric colloids. A novel mechanism for the development of cluster phases has been demonstrated to be at work, which gives rise to polymorphic crystals with unusual structural properties. The system is accurately described by a mean-field density functional, as confirmed by comparison with computer simulations. Work along the lines of tailoring dendrimers that show \(Q^\pm \)-interactions is under way. Future directions include the investigation of anomalous diffusion, gelation, and vitrification of such systems.

We thank H. Fragner, D. Frenkel, and J. C. Pámies for helpful discussions. This work was supported by the Österreichische Forschungsfond, Project Nos. P15758 and P17823, by the DFG within the SFB-TR6 and by the HPC-EUROPA project (RII3-CT-2003-506079).

[1] W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal Dispersions (Cambridge, 1990).
[2] C. N. Likos, Phys. Rep. 348, 267 (2001).
[3] D. Frenkel, see link http://www.bell-labs.com/jc-cond-mat/june/jccm_june04_03.html
[4] P. N. Segrè et al., Phys. Rev. Lett. 86, 6042 (2001).
[5] F. Sciortino et al., Phys. Rev. Lett. 93, 055701 (2004).
[6] A. Stradner et al., Nature 432, 492 (2004).
[7] S. Mossa et al., Langmuir 20, 10756 (2004).
[8] A. I. Campbell et al., Phys. Rev. Lett. 94, 208301 (2005).
[9] R. Sanchez and P. Bartlett, J. Phys.: Condens. Matter 17, S3551 (2005).
[10] E. Stikakakis et al., Europhys. Lett. (in press).
[11] F. Sciortino et al. J. Phys. Chem. B (in press).
[12] F. Sciortino and P. Tartaglia, Adv. Phys. (in press).
[13] A. A. Louis et al., Phys. Rev. Lett. 85, 2522 (2000).
[14] M. Konieczny et al., J. Chem. Phys. 121, 4913 (2004).
[15] I. O. Götze et al., J. Chem. Phys. 120, 7761 (2004).
[16] C. N. Likos et al., Phys. Rev. E 63, 031206 (2001).
[17] S. H. L. Klapp et al., J. Phys.: Condens. Matter 16, 7331 (2004).
[18] M. Watzlawek et al., Phys. Rev. Lett. 82, 5289 (1999).
[19] P. Zihel and R. Kamien, Phys. Rev. Lett. 85, 3528 (2000).
[20] D. Gottwald et al., Phys. Rev. Lett. 92, 068301 (2004).
[21] W. Klein et al., Physica A 205, 738 (1994).
[22] R. Finken, et al., J. Phys. A: Math. Gen. 37, 577 (2004).
[23] A. J. Archer et al., J. Phys.: Condens. Matter 16, L297 (2004).
[24] F. H. Stillinger and D. K. Stillinger, Physica A 244, 358 (1997).
[25] A. Lang et al., J. Phys.: Condens. Matter 12, 5087 (2000).
[26] S. Prestipino et al., Phys. Rev. E 71, 50102 (2005).
[27] F. H. Stillinger, J. Chem. Phys. 65, 3968 (1976).
[28] A. A. Louis et al., Phys. Rev. E 62, 7961 (2000).
[29] L. Acedo and A. Santos, Phys. Lett. A 323, 427 (2004).
[30] B. M. Mladek et al., unpublished.
[31] D. Gottwald et al., J. Chem. Phys. 122, 204503 (2005).
[32] A. Z. Panagiotopoulos, J. Chem. Phys. 112, 7132 (2000).
[33] P. J. Steinhardt et al., Phys. Rev. B 28, 784 (1983).
[34] D. Frenkel and B. Smit, Understanding Molecular Simulation, (Academic Press, London, 2002), 2nd edition.
[35] Valid for the \(Q^\pm \)-members of the GEM-\(n \)-family, \(n > 2 \). For \(n \leq 2 \), the term \((n_c - 1)\Phi''(0)\) renders \(V'(0) < 0 \) for \(n_c > 1 \), hence clustering does not lead to stable crystals.

\[V(r) = (n_c - 1)\Phi(r) + n_c \sum \Phi(r-R_m), \]