Supplementary table 1. Survey items and measurement

Section 1. Background

Sex	Male; Female; Self identify
Age	20-29; 30-39; 40-49; 50-59; 60-60; 70+
Healthcare profession	Pharmacist; Physician; Scientist; Psychiatrist; Nurse practitioner; Other__
Speciality	Geriatrics; Cardiology; Transplant medicine; Mental health; Oncology or Haematology; Other
Years practicing	Less than 5; 5-9; 10-19; More than 20
Prior instruction in PGx	Yes; No
If yes, settings where you have received training in PGx	Undergraduate curriculum; Postgraduate coursework; Residency training; Continuing medical education; Self-instruction; Seminar/workshop; Grand rounds; Other

Section 2: Knowledge, use and confidence

Rate current level of knowledge of…	1. Poor; 2. Fair; 3. Good; 4. Very good; 5. Excellent
Basic genetics principles (e.g. inheritance patterns, somatic vs germline mutation)	
Pharmacogenomic testing and availability	
The role of drug metabolism phenotypes (e.g. a poor metaboliser)	
Drug transporters and genes associated with toxicity (e.g., HLA/TPMT)	
Drugs that should be accompanied by pharmacogenomics testing	

Confidence in ability to…	1. Strongly disagree; 2. Disagree; 3. Neutral; 4. Agree; 5. Strongly agree
Identify clinical situations in which pharmacogenomics testing is indicated	
Order pharmacogenomic tests	
Inform patients of the risks and benefits of testing	
Apply pharmacogenomic information to manage my patients' drug therapy	
---	---
Make appropriate adjustments to a patient's drug therapy based on their test results	
Relevance of PGx	Not at all relevant; Somewhat relevant; Relevant; Unsure
Features predominately use to inform drug dosing (choose up to 4)	Indication; Body weight; Body height; Body surface; Renal function; Liver function; Age; Sex; Drug monitoring; Pharmacogenomics; Biomarkers; Co-morbidities; Co-medication; Other___
CPIC Guidelines (2019) list the following gene-drug pairs with Level A evidence (2019) you have 1. Ordered/recommended in the last 12 months; 2. Intend to order/recommend in the next 12 months	CFTR and Ivacaftor; CYP2B6 and efavirenz; CYP2C19 and Clopidogrel; CYP2C19 and Voriconazole; CYP2C9, HLA-B and Phenytoin; CYP2C9, VKORC1, CYP4F2 and Warfarin; CYP2D6 and Atomoxetine; CYP2D6 and Codeine; CYP2D6 and Ondansetron and Tropisetron; CYP2D6 and Tamoxifen; CYP2D6, CYP2C19 and SSRIs CYP2D6, CYP2C19 and Tricyclic Antidepressants; CYP3A5 and Tacrolimus; DPYD and Fluoropyrimidines; G6PD and Rasburicase; HLA-A, HLA-B and Carbamazepine and Oxcarbazepine; HLA-B and Abacavir; HLA-B and Allopurinol; IFNL3 and Peginterferon-alpha-based Regimens; SLCO1B1 and Simvastatin; TPMT, NUDT15 and Thiopurines; UGT1A1 and Atazanavir; RYR1, CACNA1S and Volatile anaesthetic agents and Succinylcholine
Important to maximise the likelihood that you would order/recommend a pharmacogenomic test?	1. Not at all important; 2. Not very important; 3. Undecided; 4. Important; 5. Very important
Regulatory approval from the Therapeutic Goods Administration (TGA)
Clinical practice guidelines recognised and standardised for my speciality
Relevant Clinical Pharmacogenomics Implementation Consortium (CPIC) guidelines
Systematic review of peer-reviewed literature
Original research article in peer-reviewed literature
Recommendation or experience of thought leaders or respected colleagues
Guidance from your local institution
Information included on drug label
Guidance from third-party pharmacogenomic testing laboratory

Section 3. Benefits and barriers to implementation
Indicate the extent to which you agree or disagree with the perceived benefits of pharmacogenomic testing
Provide additional information to decide the best treatment for patients
Be useful to determine a patient’s optimum dose of medication
Improve drug effectiveness
Be useful to identify medication intolerance and reduce drug toxicity
Help determine whether a patient is at high or low risk of serious side effects
Help to decrease the time it takes to find the optimal dose of medication
Reduce the number of consultations with patients
1. Strongly disagree; 2. Disagree; 3. Neutral; 4. Agree; 5. Strongly agree
Improve patients’ adherence to therapy
Facilitate exchanges of inter-professional information about patients’ care
Reduce overall costs for patients
Affect willingness to implement pharmacogenomics into practice
Lack of evidence-based information about pharmacogenomics
No clear clinical practice guidelines for the use
Uncertain value in pharmacogenomic testing
Results may not be accurate
Long delays between prescribing a test and receiving the results impacts on their usefulness
It is difficult to ensure that patients’ tests results will remain confidential
Testing is too expensive for most patients
Few pharmacogenomic tests are covered by Medicare
Testing could affect a patient’s insurance
Patients are resistant to testing
Pharmacogenomic testing could cause a patient psychological distress
Testing services are not readily available
I don’t have enough personal knowledge about pharmacogenomic testing
It is time consuming to keep up-to-date on the latest advances in the field
It is time consuming to order and/or explain results to patients
Pharmacogenomic testing may add additional liability
I am not familiar with the legal issues and regulations of testing

Patients should seek counselling about the risks, benefits and consequences of testing before they undertake testing
Health professionals that should be involved in PGx testing
Operational/system changes needed to implement PGx testing
Further comments