Supplemental Material

Genetic and biochemical characterization of halogenation and drug-transportation genes encoded in the albofungin biosynthetic gene cluster

Zhe-Chong Wanga†, I-Wen Loa†, Kuan-Hung Lina, An Ning Chenga, Saeid Malek Zadeha, Yen-Hua Huangb, Tsung-Lin Lia,c,#

a Genomics Research Center, Academia Sinica, Taipei 115, Taiwan

b Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan

c Biotechnology Center, National Chung Hsing University, Taichung City 402, Taiwan

KEYWORDS: albofungin, chloroalbofungin, bromoalbofungin, halogenase, biosynthetic gene cluster, FAD-dependent flavoenzyme, transporter

\#Address correspondence to Tsung-Lin Li, \texttt{tlli@gate.sinica.edu.tw}

† These two authors contributed equally to this work. Zhe-Chong Wang and I-Wen Lo implemented respectively the genetic and biochemical portions of the work.
Table S1. Strains and plasmids used in this study.

Bacterial strains and plasmids	Properties	Source or reference	
E. coli DH5a	Competent cells for routine cloning	Thermo Fisher	
E. coli BL21(DE3)	Competent cells for routine cloning	Thermo Fisher	
10GBC	Construction of high molecular weight BAC	Lucigen	
E. coli ET12567	DNA methylation deficient strain	(1)	
E. coli ET12567[pUZ8002]	Conjugal transfer of DNA	(1)	
S. tumenacerans JCM5050	Albofungin producing strain	JCM Resources	
S. albus J1074::erm*-crpA	Heterologous expression host	(2)	
pET28a (+)	T7 vector for E. coli BL21(DE3)	Novagen	
pBelOBAC11	Single-copy E. coli plasmid vector used for constructing E. coli-Streptomyces shuttle BAC	New England Biolabs (NEB)	
pGUSRolRPA3	Promoter probe vector containing the gusA gene under the control of PA3-rolO promoter	(4)	
pLUS970	E. coli–Streptomyces shuttle vector for the expression of genes	(1)	
pNX24	Plasmid containing the promoter of xysA gene for expression in Streptomycetes	(5)	
pMKBAC02	BAC for carrying truncated abf BGC segment	This study	
pMKBAC02-tnsR	Modified BAC for capturing abf BGC	This study	
pMKBAC02-tnsR-H	BAC for capturing abf BGC	This study	
pMKBAC07	BAC for carrying truncated abf BGC segment	This study	
pmk01	BAC carrying abf BGC segment orfX–abf61	This study	
pSL01	BAC carrying abf BGC segment abf5–abf61	This study	
pSL02	BAC carrying abf BGC segment abf5–abf58	This study	
		BAC carrying \(\text{abf} \) BGC segment \(\text{abf5-} \text{abf56} \)	This study
---	---	---	---
pN1		BAC carrying \(\text{abf} \) BGC segment \(\text{abf2-} \text{abf4} \)	This study
pN2		BAC carrying \(\text{abf} \) BGC segment \(\text{orfB-} \text{abf4} \)	This study
pN3		BAC carrying \(\text{abf} \) BGC segment \(\text{orfI-} \text{abf4} \)	This study
pN4		BAC carrying \(\text{abf} \) BGC segment \(\text{orfO-} \text{abf4} \)	This study
pN5		BAC carrying \(\text{abf} \) BGC segment \(\text{orfL-} \text{abf4} \)	This study
pN6		BAC carrying \(\text{abf} \) BGC segment \(\text{orfK-} \text{abf4} \)	This study
pC9-DA		Construction of \(\text{orfA} \)-deficient mutant	This study
pGM1202		Vector for gene expression in \textit{Streptomyces}	Addgene\# 69615
pGM1202-\(\text{orfA} \)		For His\(6\)-tagged OrfA expression	This study
pGM1202-\(\text{orfA}_{\text{K144A}} \)		For His\(6\)-tagged OrfA\(_{\text{K144A}} \) expression	This study
wzc-\(\text{orfL} \)		Plasmid for expressing \(\text{orfL} \) in \textit{Streptomyces}	This study
wzc-\(\text{orfA} \)		Plasmid for expressing \(\text{orfA} \) in \textit{Streptomyces}	This study
wzc -\(\text{orfA}_{\text{K144A}} \)		K144A mutant of wzc-\(\text{orfA} \)	This study
pET28a-\(\text{Fre} \)		For His\(6\)-tagged Fre expression	This study
pET28a-\(\text{TGase} \)		For His\(6\)-tagged TGase expression	This study
Primers	Sequence 5'→3'		
---------	----------------		
P80	TCCCTTCGTTGGACGGTGCTGAACA		
P81	ATTATTATGCTAGCCGGACGGCCGCCC		
P82	ATTATTATAATAGGCATTCGCCCTGGCAGACTGA		
P83	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P84	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P85	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P86	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P87	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P88	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P89	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P129	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P130	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P175	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P176	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P325	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P326	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P327	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P328	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P517	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P518	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P498	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P499	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P574	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P577	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P329	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P330	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P380	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P386	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P389	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P413	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P414	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P571	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P572	ATTATTATTTTTTATCCCACTACCCGCTTCGACCTGA		
P863 ATTATTATTTCTAGAGAAGATCCTTTGATCTTTTCTACGGGGTCTGA			
P864 ATTATTATTTCTAGACTAGCGATTCCAGACGTCCCGAAGG			
P877 ACGCCCGAAGCCCGAAGAAGGA			
P878 AAACCTCTTCTCGGGCTGGTG			
P901 ATTATTATTATTAATATGGACCACAAGGTACTGAACACGGGC			
P902 ATTATTATTCTCGAGCCACATCCCCATCCGCGCGCC			
P905 ATTATTATTCTAGATACTGGTAGGTGGTGCCGATATTTCCTCCTT			
P906 ATGACGCTCCTCCTCACGACTACCTGCTGCTGGCCAGCA			
P907 AGCAGGTAGTCGATGAAAGAGCGTCATGTACGTCACGGT			
P908 ATATTAATATCTAGCTCTCCTCGTGTAATGGTTCGTGAGTAGTTCT			
P909 TTCAGCATGTCCGTACGAAAGGGTT			
P910 TGGAAGCTGGGCATCGGTTGACT			
proteins (aa)	Putative product	Homologs	Identities
--------------	------------------	----------	------------
OrfL (501)	proton-dependent oligopeptide transporter	WP_206505980.1	484/501(97%)
OrfK (107)	antibiotic biosynthesis monoxygenase	WP_031001543.1	107/107(100%)
OrfJ (236)	putative transcriptional regulator	WP_206505981.1	151/168(90%)
OrfI (227)	short-chain dehydrogenase	WP_206505983.1	214/227(94%)
OrfH (126)	hypothetical protein	WP_050510192.1	118/126(94%)
OrfG (460)	FAD-linked oxidase	WP_206505984.1	435/460(95%)
OrfF (369)	L-lysine 6-monooxygenase	WP_206505985.1	340/369(92%)
OrfE (457)	methionyl-tRNA synthetase	WP_206505986.1	426/457(93%)
OrfD (116)	cupin	WP_206505987.1	110/116(95%)
OrfC (171)	isochorismatase	WP_206505988.1	149/159(94%)
OrfB (518)	hypothetical protein	WP_206505989.1	454/518(88%)
OrfA (583)	tryptophan halogenase	WP_206505990.1	543/582(93%)
Abf1 (452)	glutamate-ammonia ligase	WP_206505991.1	437/452(97%)
Abf2 (614)	asparagine synthase	WP_206505992.1	608/621(98%)
Abf3 (232)	putative transcriptional regulator	WP_206505993.1	214/232(92%)
Abf4 (527)	2,4-dichlorophenol 6-monooxygenase	WP_206505994.1	511/527(97%)
Abf5 (337)	methyltransferase	WP_206505995.1	328/337(97%)
Abf6 (508)	lysine N6-hydroxylase	WP_206505996.1	422/442(95%)
Abf7 (217)	acetoacetyl-CoA reductase	WP_206505997.1	209/216(97%)
Abf8 (404)	monoxygenase	WP_206506268.1	376/404(93%)
Abf9 (284)	putative F420-dependent reductase	WP_206505998.1	276/284(97%)
Abf10 (31)	transposase-like protein	WP_096624216.1	31/31(100%)
Abf11 (80)	transposase IS4 family protein	WP_238545538.1	62/102(61%)
Abf12 (260)	methyltransferase	MBO082939.1	134/257(52%)
Abf13 (313)	sugar kinase	KOT91395.1	196/296(66%)
Abf14 (33)	hypothetical protein	WP_211275163.1	22/33(67%)
Abf15 (175)	glycosyltransferase	WP_206505999.1	163/175(93%)
Abf16 (226)	UDP-glucuronosyltransferase	WP_206505999.1	214/226(95%)
Abf17 (287)	3-hydroxyisobutyrate dehydrogenase	WP_206506000.1	272/287(95%)
Abf18 (108)	heme-degrading monoxygenase	WP_031001509.1	98/103(95%)
Abf19 (107)	antibiotic biosynthesis monoxygenase	WP_031001507.1	101/107(94%)
Abf20 (250)	short-chain dehydrogenase	WP_206506001.1	237/250(95%)
Abf21 (151)	putative monoxygenase	WP_206506002.1	134/139(96%)
Abf22 (153)	polyketide cyclase	WP_031001503.1	144/153(94%)
Abf23 (410)	Minimal PKS chain-length factor	WP_206506003.1	387/410(94%)
Abf24 (194)	type II PKS ketosynthase alpha subunit	WP_206506004.1	184/194(95%)
------------	-------------------------------------	----------------	--------------
Abf25 (274)	3-oxoacyl-(Acyl-carrier-protein) synthase	WP_206506004.1	225/227(99%)
Abf26 (144)	putative (Acyl-carrier-protein) synthase	WP_206506005.1	139/144(97%)
Abf27 (111)	polyketide synthase	WP_031001497.1	104/111(94%)
Abf28 (132)	SchA/CurD	WP_031001496.1	124/131(95%)
Abf29 (141)	putative membrane protein	WP_031001495.1	110/115(96%)
Abf30 (129)	SchA/CurD	WP_031001493.1	126/129(98%)
Abf31 (237)	short-chain dehydrogenase	WP_206506006.1	232/237(98%)
Abf32 (89)	phosphopantetheine-binding protein	WP_031001489.1	88/89(99%)
Abf33 (274)	AfsR family transcriptional regulator	WP_206506007.1	269/274(98%)
Abf34 (253)	thioesterase	WP_206506269.1	203/225(90%)
Abf35 (285)	4'-phosphopantetheinyl transferase	WP_206506270.1	255/270(94%)
Abf36 (87)	type I polyketide synthase	WP_206506008.1	81/87(93%)
Abf37 (514)	type I polyketide synthase component	WP_206506008.1	371/418(89%)
Abf38 (72)	hypothetical protein	WP_206506009.1	66/72(92%)
Abf39 (196)	hypothetical protein	WP_206506010.1	187/224(83%)
Abf40 (71)	Acyl-CoA carboxylase subunit epsilon	WP_206506111.1	58/71(82%)
Abf41 (579)	polyketide synthase	WP_206506012.1	565/579(98%)
Abf42 (413)	hypothetical protein	WP_206506013.1	375/413(91%)
Abf43 (204)	DNA-binding response regulator	WP_206506014.1	201/204(99%)
Abf44 (323)	histidine kinase	WP_206506015.1	308/322(96%)
Abf45 (264)	regulatory protein	WP_206506016.1	256/264(97%)
Abf46 (529)	methylmalonyl-CoA carboxyltransferase	WP_206506017.1	504/529(95%)
Abf47 (260)	hydroxyneurosporene-O-methyltransferase	WP_206506018.1	249/260(96%)
Abf48 (48)	hypothetical protein	WP_206506018.1	23/28(82%)
Abf49 (336)	carminomycin 4-O-methyltransferase	WP_206506019.1	315/336(94%)
Abf50 (399)	cytochrome P450	WP_206506020.1	389/402(97%)
Abf51 (80)	ferredoxin	WP_050510183.1	77/80(96%)
Abf52 (102)	transcriptional regulator	WP_238783843.1	101/102(99%)
Abf53 (65)	transcriptional regulator, MarR family	WP_063759224.1	36/37(97%)
Abf54 (54)	hypothetical protein	WP_206506021.1	41/44(93%)
Abf55 (126)	MarR family transcriptional regulator	WP_206506021.1	123/126(98%)
Abf56 (254)	NAD(P)-dependent dehydrogenase	WP_031001458.1	245/254(96%)
Abf57 (109)	FAD-binding monooxygenase	WP_206506022.1	75/77(97%)
Abf58 (350)	FAD-binding monooxygenase	WP_206506022.1	337/350(96%)
Table S4. 1H-NMR (600 MHz) spectroscopic data of albofungins 1–3.

No.	1 δ_H (mult, J in Hz)	2 δ_H (mult, J in Hz)	3 δ_H (mult, J in Hz)
10	4.82 (br t, 6.0)	4.83 (br dd, 7.7, 3.8)	4.83 (br dd, 7.9, 3.7)
11	1.81 (ddd, 13.8, 7.8, 3.5)	1.81 (m)	1.82 (m)
	1.71 (m, overlapping)	1.73 (m)	1.74 (m)
12	2.05 (dd, overlapping)	2.05 (m)	2.07 (overlapping)
	2.05 (dd, overlapping)	2.05 (m)	2.07 (overlapping)
13	4.43 (dd, 8.7, 6.8)	4.43 (br d, 6.8)	4.45 (dd, 8.6, 7.0)
14			
15			
16			
17			
18			
19	4.96 (dd, 13.0, 4.6)	4.99 (dd, 13.1, 4.7)	5.00 (dd, 13.1, 4.7)
20	3.22 (dd, 13.0, 4.6)	3.37 (dd, 13.1, 4.7)	3.38 (overlapping)
	2.75 (t, 13.0)	2.82 (t, 13.1)	2.82 (t, 13.1)
21			
22	7.01 (s)	7.33 (s)	7.32 (s)
23			
24	6.61 (s)		
25			
26	2.44 (s)	2.66 (s)	2.74 (s)
27	3.55 (s)	3.56 (s)	3.57 (s)
28	5.60 (d, 5.9)	5.62 (d, 5.9)	5.63 (d, 5.9)
	5.42 (d, 5.9)	5.43 (d, 5.9)	5.44 (d, 5.9)
3-OH	13.57 (s)	13.76 (s)	13.82 (s)
6-OH	12.94 (s)	13.00 (s)	13.00 (s)
10-OH	5.14 (br s)	5.15 (d, 4.7)	5.15 (d, 4.6)
N-NH$_2$	5.90 (br s)	6.01 (s)	6.04 (s)

Coupling constants (J) in Hz were given in parentheses. The assignments were determined by 1H, 13C, COSY, HMQC, and HMBC NMR spectra.
Table S5. 13C-NMR (150 MHz) spectroscopic data of albofungins 1–3.a

No.	1 δ_{c} (type)	2	3
1	163.3 (C)	162.7 (C)	162.2 (C)
2	109.2 (C)	108.7 (C)	108.8 (C)
3	156.8 (C)	157.1 (C)	158.0 (C)
4	112.8 (C)	114.6 (C)	114.4 (C)
5	109.8 (C)	109.1 (C)	109.8 (C)
6	149.5 (C)	149.8 (C)	149.7 (C)
7	111.6 (C)	111.0 (C)	111.2 (C)
8	182.1 (C)	182.1 (C)	182.1 (C)
9	120.3 (C)	120.4 (C)	120.5 (C)
10	58.7 (CH)	58.8 (CH)	58.8 (CH)
11	27.9 (CH$_2$)	27.9 (CH$_2$)	27.9 (CH$_2$)
12	22.8 (CH$_2$)	22.8 (CH$_2$)	22.8 (CH$_2$)
13	74.7 (CH)	74.3 (CH)	74.5 (CH)
14	165.2 (C)	165.3 (C)	165.3 (C)
16	142.7 (C)	143.0 (C)	143.0 (C)
17	130.3 (C)	130.4 (C)	130.5 (C)
18	130.1 (C)	130.1 (C)	130.2 (C)
19	72.1 (CH)	71.9 (CH)	72.4 (CH)
20	35.9 (CH$_2$)	36.0 (CH$_2$)	36.4 (CH$_2$)
21	140.4 (C)	141.7 (C)	141.6 (C)
22	113.8 (CH)	111.5 (CH)	114.2 (CH)
23	136.3 (C)	133.6 (C)	134.6 (C)
24	105.2 (CH)	109.9 (C)	100.2 (C)
25	141.7 (C)	139.8 (C)	141.2 (C)
26	19.0 (CH$_3$)	16.3 (CH$_3$)	20.3 (CH$_3$)
27	57.8 (CH$_3$)	57.9 (CH$_3$)	57.9 (CH$_3$)
28	90.6 (CH$_2$)	90.7 (CH$_2$)	90.7 (CH$_2$)

a Carbon type were given in parentheses. The assignments were determined by 1H, 13C, COSY, HMQC, and HMBC NMR spectra.
Table S6. Recovery screening of immobilized TGase from *S. aureus* ATCC 29213^a

Compound	Concentration (µM)	Recovery Concentration (nmol)
1	2.0	0.1176
	0.8	0.1176
	0.4	0.0588
	0.2	0.0294
	0.1	0.0147
	0.05	<0.0147
2	2.0	0.1176
	0.8	0.1176
	0.4	0.0588
	0.2	0.0588
	0.1	0.0147
	0.05	<0.0147
3	2.0	0.1176
	0.8	0.1176
	0.4	0.0588
	0.2	0.0588
	0.1	0.0147
	0.05	<0.0147

^aTGase: 0.4 (nmol)
FIG S1. Construction of His₆-tagged OrfA. (A) Agarose gel of orfA amplicons and restriction enzyme digested pET28a vectors. (B) SDS-PAGE of His₆-tagged OrfA by E. coli BL21(DE3)-chaperone (groES/groEL) system. BI, protein expression before IPTG induction; AI-S, the supernatant of protein expression after IPTG induction. (C) FPLC (left) of His₆-tagged OrfA from the E. coli BL21(DE3) chaperone co-expression (groES/groEL) system and SDS-PAGE (right) of fractions 42–50. (D) SDS-PAGE (left) and FPLC (right) of the His₆-tagged OrfA from S. lividans TK64 [pGM1202-orfA]. (E) SDS-PAGE (left) and FPLC (right) of the His₆-tagged OrfA_{K144A} (an inactive OrfA) from S. lividans TK64 [pGM1202-orfA_{K144A}]. (F) SDS-PAGE of the His₆-tagged TGase of S. aureus ATCC 29213 from E. coli BL21(DE3). (G) SDS-PAGE of the His₆-tagged Fre protein from E. coli BL21(DE3). DNA
ladder: GeneRuler 1kb (Thermo Scientific); Protein ladder: Precision Plus Protein™ Dual Color standards (Bio-Rad).
FIG S2. Construction of pMK01ΔorfA mutant strains used in this study. (A) Scheme for the construction of orfA-deficient mutants using pC9-DA plasmids via in vivo CRISPR-Cas9 genome editing and homology directed repairing. P905/P908/P909/P910 are primers used for verifying the mutants. (B) Amplifying DNA fragments from the genome of S. albus J1074::erm*-crpsc integrated with pMK01 or pMK01ΔorfA BAC and analyzing the amplicons with 1% agarose gel. Amplicons of 3.8 and 2.7 kb were produced from the heterologous host carrying pMK01 and pMK01ΔorfA BAC using primer sets P905/P908, respectively. 1.2-kb PCR fragments and no specific amplicons were produced from pMK01 and mutant strain individually using primer sets P909/P910.
FIG S3. Chemical data of albofungins 1–3. (A) Chemical information of compounds 1–3, including the assignment numbering, structure formulas, and molecular weights. (B) COSY and HMBC correlations of compounds 1–3. COSY correlations, the bold blue lines; HMBC correlations, the red arrows. (C) NOESY correlations of compounds 1–2. NOESY correlations, pink double-head dashed arrows.
FIG S4. Bioinformatic analysis of OrfA and nine selected FAD-dependent halogenases (FDHs), MibH, PyrH, PrnA, RebH, ThaI, PltA, CndH, XanH, and LlpH. (A) The evolutionary relationship of OrfA with nine selected FDHs shown in phylogenetic tree. (B) Overall multi-sequence alignment of OrfA and nine selected FDHs. The red stars indicate catalytic residues K144 and E397 in OrfA.
FIG S5. LC-MS spectra of crude extracts from NaCl-feeding fermentations of *S. tumemacerans* JCM5050. (A) LC traces of broth extracts at a given NaCl concentration, 0.02%, 0.20%, or 0.25%. (B) MS of albofungin (1). (C) MS of chloroalbofungin (2).
FIG S6. LC-MS spectra of crude extracts from NaBr-feeding fermentations of *S. tumenacerans* JCM5050. (A) LC traces of broth extracts at a given NaBr concentration, 0.02%, 0.20%, or 0.25%. (B) MS of albofungin (1). (C) MS of bromoalbofungin (3).
FIG S7. LC-MS spectra of crude extracts from KI-feeding fermentations of *S. tumenceras* JCM5050. (A) LC traces of broth extracts at a given KI concentration, 0.02%, 0.20%, or 0.25%. (B) MS of albofungin (1). (C) MS of iodoalbofungin (4). The mass intensity ratio of halide albofungins CI/I = 10:1 in the 0.25% KI condition, suggesting the iodination is low.
FIG S8. Kinetics of OrfA with varying concentrations of albofungin (1).
TC-BLAST RESULTS

Query	>Ort.
Query Length	542
# of TMSs in Query (HMMTOP)	14

Version: blastp

Reference:
Atschul, Stephen F., Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Yeebo Miller, and David J. Lipman (1997). "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs." *Nucleic Acids Res.* 25:3389-3402.

Perform PSI-BLAST with iterations

![Graph showing TC-BLAST results with various iterations and hits]
FIG S9. The TCDB-BLAST result of OrfL. The BLAST result indicates that OrfL is a homologous enzyme of the nitrate/chloride transporter family.
FIG S10. The multi-sequence alignment of the TGase-domains from different TGases, including S. aureus MtgA, S. aureus PBP2, Aquifex aeolicus PBP1a, and E. coli PBP1b.
FIG S11. AutoDock simulation of PBP1b and albofungins 1–3. (A) The H-bonds between PBP1b and albofungin (1) are observed from the NH$_2$ and C=NH$_2^+$ on the guanidine of Arg$_{94}$ to 10-OH within 2.2 (3.9) and 3.0 (4.7) Å; the NH on indole of Trp$_{100}$ to 10-OH within 4.4 Å; the δ-C=O of Glu$_{211}$...
the 6-OH within 4.1 Å; the δ-OH of Glu211 to the 6-OH and O atom of C-8 ketone within 3.1 and 3.1 Å; the C=NH₂⁺ on the guanidine of Arg213 to the O atoms of C-8 ketone within 3.8 (4.2) Å; the C=O of Asn275 to the 3-OH, 6-OH, and 10-OH within 3.6, 3.3, and 2.8 Å; the γ-NH₂ of Asn275 to the O atom of C-1 ketone, 3-OH, 6-OH, and N-NH₂ within 2.3 (2.5), 2.5 (3.7), 4.4, and 3.9 (4.7) Å; the C=O of Leu276 to 10-OH within 2.5 Å; the α-NH of Ser280 to the O atom of (C-19)-O-(C-28) ether within 4.6 Å; the δ-C=O of Glu313 to 6-OH within 3.7 Å; the δ-OH of Glu313 to 10-OH within 4.5 Å; the C=O of Tyr315 to the N-NH₂ within 4.5 Å; the α-NH₂ of Tyr315 to the N-NH₂ and C-1 ketone within 4.3 and 3.5 Å; the NH₂ on the guanidine of Arg325 to the O atom of C-1 ketone, 3-OH, 6-OH, and C-8 ketone within 2.7 (3.3), 2.0 (3.6), 2.7 (4.2), and 4.5 Å; the C=NH₂⁺ on the guanidine of Arg325 to the O atoms of C-1 ketone, 3-OH, 6-OH, and C-8 ketone within 4.2, 3.2, 2.1 (3.5), and 3.9 (4.5) Å, respectively; the α-NH₂ of Ala357 to the N-NH₂ within 4.8 Å. (B) The H-bonds between PBPⅠb and chloroalbofungin (2) are observed from the NH₂ and C=NH₂⁺ on the guanidine of Arg94 to 10-OH within 3.1 (4.3) and 4.7 Å; the NH on indole of Trp100 to 10-OH within 3.4 Å; the δ-C=O of Glu211 to the 10-OH within 4.7 Å; the δ-OH of Glu211 to the 6-OH and O atom of C-8 ketone within 4.4 and 3.1 Å; the C=NH₂⁺ on the guanidine of Arg213 to the O atoms of C-8 ketone and 10-OH within 4.0 (4.1) and 3.3 (3.35) Å; the C=O of Asn275 to the 3-OH, 6-OH, and 10-OH within 4.3, 4.7, and 2.2 Å; the γ-NH₂ of Asn275 to the O atom of C-1 ketone, 3-OH, 6-OH, C-8 ketone, and N-NH₂ within 2.3 (3.1), 2.8 (3.2), 3.2 (4.6), 4.3, and 4.5 Å; the C=O of Leu276 to 10-OH within 4.1 Å; the α-NH of Ser280 to the O atom of (C-19)-O-(C-28) ether within 4.2 Å; the δ-C=O of Glu313 to 6-OH and 10-OH within 4.8 and 3.1 Å; the δ-OH of Glu313 to 10-OH within 3.1 Å; the α-NH₂ of Tyr315 to the O atom of C-1 ketone within 4.6 Å; the NH₂ on the guanidine of Arg325 to the O atom of C-1 ketone, 3-OH, 6-OH, and C-8 ketone within 4.2 (4.8), 3.5 (4.7), 2.1 (3.8), and 2.8 (3.7) Å; the C=NH₂⁺ on the guanidine of Arg325 to the O atoms of 3-OH, 6-OH, and C-8 ketone within 4.9, 2.5 (4.3), and 2.7 (4.5) Å, the δ-NH of Arg325 to the O atom of C-8 ketone within 4.6 Å; the C=O of Val354 to N-NH₂ within 4.6 (4.9) Å; the C=O of Lys355 to N-NH₂ within 4.0 Å; the α-NH₂ of Ala357 to the N-NH₂ within 4.6 Å. (C) The H-bonds between PBPⅠb and chloroalbofungin (2) are observed from the NH₂ and C=NH₂⁺ on the guanidine of Arg94 to 10-OH within 2.1 (3.7) and 2.9 (4.6) Å; the NH on indole of Trp100 to 10-OH within 4.4 Å; the δ-C=O of Glu211 to the 10-OH within 4.4 Å; the δ-OH of Glu211 to the 6-OH and O atom of C-8 ketone within 3.2 and 3.3 Å; the C=NH₂⁺ on the guanidine of Arg213 to the O atoms of C-8 ketone within 3.8 (4.2) Å; the C=O of Asn275 to the 6-OH and 10-OH within 4.6 and 3.4 Å; the γ-NH₂ of Asn275 to the O atom of C-1 ketone, 3-OH, 6-OH, and N-NH₂ within 2.3 (2.6), 2.6 (3.8), 4.4, and 2.9 (4.3) Å; the C=O of Leu276 to 10-OH within 3.7 Å; the α-NH of Ser280 to the O atom of (C-19)-O-(C-28) ether within 4.7 Å; the δ-C=O of Glu313 to 6-OH within 4.9 Å; the δ-OH of Glu313 to 10-OH within 4.2 Å; the C=O of Tyr315 to the N-NH₂ within 4.4 Å; the α-NH₂ of Tyr315 to the N-NH₂ and C-1 ketone within 4.4 and 3.7 Å; the NH₂ on the guanidine of Arg325 to the O atom of C-1 ketone, 3-OH, 6-OH, and C-8 ketone within 2.6 (3.4), 2.1 (3.7), 2.8 (4.3), and 4.6 Å; the C=NH₂⁺ on the guanidine of Arg325 to the O atoms of C-1 ketone, 3-OH, 6-OH, and C-8 ketone within 4.1, 3.2, 2.2 (3.6), and 4.0 (4.6) Å, respectively.
FIG S12. 1H NMR spectrum (600 MHz) of albofungin (1) in DMSO-d_6.

1H NMR of JCM5050F2-12 (albofungin) in D6
FIG S13. 13C NMR spectrum (150 MHz) of albofungin (1) in DMSO-d_6.
FIG S14. 1H-1H COSY spectrum of albofungin (1) in DMSO-$_6$.
FIG S15. HSQC spectrum of albofungin (1) in DMSO-\textit{d}_6.
FIG S16. HMBC spectrum of albofungin (1) in DMSO-d_6.
FIG S17. NOESY spectrum of albofungin (1) in DMSO-d_6.
FIG S18. 1H NMR spectrum (600 MHz) of chloroalbofungin (2) in DMSO-d_6.
FIG S19. 13C NMR spectrum (150 MHz) of chloroalbofungin (2) in DMSO-d_6.
FIG S20. 1H-1H COSY spectrum of chloroalbofungin (2) in DMSO-d_6.
FIG S21. HSQC spectrum of chloroalbofungin (2) in DMSO-d_6.
FIG S22. HMBC spectrum of chloroalbofungin (2) in DMSO-d_6.
FIG S23. NOESY spectrum of chloroalbofungin (2) in DMSO-d$_6$.
FIG S24. 1H NMR spectrum (600 MHz) of bromoalbofungin (3) in DMSO-d_6.

![NMR Spectrum](image_url)
FIG S25. 13C NMR spectrum (150 MHz) of bromoalbofungin (3) in DMSO-d_6.
FIG S26. 1H-1H COSY spectrum of bromoalbofungin (3) in DMSO-d_6.
FIG S27. HSQC spectrum of bromoalbofungin (3) in DMSO-d_6.
FIG S28. HMBC spectrum of bromoalbofungin (3) in DMSO-\textit{d}_6.
FIG S29. NOESY spectrum of bromoalbofungin (3) in DMSO-d$_6$.

REFERENCES

1. Huang CH, Chen CY, Tsai HH, Chen C, LinYS, Chen CW. 2003. Linear plasmid SLP2 of Streptomyces lividans is a composite replicon. Mol Microbiol 47:1563-76.

2. Kallifidas D, Jiang G, Ding Y, Luesch H. 2018. Rational engineering of Streptomyces albus J1074 for the overexpression of secondary metabolite gene clusters. Microb Cell Fact 17:25.

3. Wu KM, Li LH, Yan JJ, Tsao N, Liao TL, Tsai HC, Fung CP, Chen HJ, Liu YM, Wang JT, Fang CT, Chang SC, Shu HY, Liu TT, Chen YT, Shiau YR, Lauderdale TL, Su IJ, Kirby R, Tsai SF. 2009. Genome Sequencing and Comparative Analysis of Klebsiella pneumoniae NTUH-K2044, a Strain Causing Liver Abscess and Meningitis. Journal of Bacteriology 191:4492-4501.

4. Horbal L, Fedorenko V, Luzhetskyy A. 2014. Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Appl Microbiol Biotechnol 98:8641-55.

5. Sevillano L, Vijgenboom E, van Wezel GP, Diaz M, Santamaria RI. 2016. New approaches to achieve high level enzyme production in Streptomyces lividans. Microb Cell Fact 15:28.