Updating the taxonomy of *Aspergillus* in South Africa

C.M. Visagie1,2*, and J. Houbraken3

1Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa; 2Biosystematics Division, Agricultural Research Council – Plant Health and Protection, Private Bag X134, Queenswood, Pretoria, 0121, South Africa; 3Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, CT, 3584, Netherlands

*Correspondence: C.M. Visagie, cobus.visagie@fabi.up.ac.za

Abstract: The taxonomy and nomenclature of the genus *Aspergillus* and its associated sexual (teleomorphic) genera have been greatly stabilised over the last decade. This was in large thanks to the accepted species list published in 2014 and associated metadata such as DNA reference sequences released at the time. It had a great impact on the community and it has never been easier to identify, publish and describe the missing *Aspergillus* diversity. To further stabilise its taxonomy, it is crucial to not only discover and publish new species but also to capture infraspecies variation in the form of DNA sequences. This data will help to better characterise and distinguish existing species and make future identifications more robust. South Africa has diverse fungal communities but remains largely unexplored in terms of *Aspergillus* with very few sequences available for local strains. In this paper, we re-identify *Aspergillus* previously accessioned in the PPRI and MRC culture collections using modern taxonomic approaches. In the process, we re-identify strains to 63 species, describe seven new species and release a large number of new DNA reference sequences.

Key words: Beta-tubulin, DNA barcoding, Calmodulin, GCPSR, Multigene phylogenies, RPB2, Secondary identification markers.

Taxonomic novelties: New species: *Aspergillus eisenburgensis* Visagie, S.M. Romero & Houbraken, *Aspergillus heldiiae* Visagie, *Aspergillus krugerii* Visagie, *Aspergillus magallasburgensis* Visagie, *Aspergillus purpureocrustaceus* Visagie, *Aspergillus seifertii* Visagie & N. Yilmaz, *Aspergillus siguross* Visagie.

Available online 13 March 2020; https://doi.org/10.1016/j.simyco.2020.02.003.

INTRODUCTION

Aspergillus is cosmopolitan fungi occurring on a wide range of substrates. Here they fulfill many different functions and have a wide-ranging influence on human and animal life. Even though most species occur as saprophytes living on dead organic material, various species have an (economic) impact on humans (Raper & Fennell 1965).

Human infections caused by *Aspergillus* are some of the most widely reported for all filamentous fungi (Gianni & Romano 2004, Balajee et al. 2007). *Aspergillus fumigatus*, *A. flavus* and *A. terreus* attract special interest as human pathogens causing widespread aspergillosis (fungus ball) or bad allergies (Raper & Fennell 1965, Steinbach et al. 2004, Sugui et al. 2012, de Hoog et al. 2014, Frisvad & Larsen 2015b), while a much broader spectrum of species is known to cause less invasive and/or superficial infections (Kaur et al. 2000, Zotti & Corte 2002, Hubka et al. 2012, de Hoog et al. 2014). *Aspergillus* causes widespread losses for agriculture where they spoil food or grow in agricultural produce, leading to mycotoxin contamination (Perrone et al. 2007, Pitt & Hocking 2009, Samson et al. 2010, Frisvad & Larsen 2015a). *Aspergillus* isolates produce three of the five agriculturally important mycotoxins, including aflatoxins, ochratoxins and fumonisins (Miller 1995, Frisvad & Larsen 2015a). The global cost of aflatoxin alone is huge and represents a major problem in developing countries where stuntling in children is of major concern (Wu et al. 2008, Pitt et al. 2012, Wu 2015). Aflatoxin is most commonly produced by *A. flavus* and *A. parasiticus*, but many other *Aspergillus* can produce this devastating mycotoxin. Ochratoxins are commonly produced by *Aspergillus* species classified in sections *Circumdati* and *Nigri* (Frisvad et al. 2004, Frisvad et al. 2011, Davolos et al. 2012, Visage et al. 2014b), while some sect *Nigri* species can also produce fumonisins (Frisvad et al. 2011, Frisvad & Larsen 2015a). On a more positive note, species have industrial applications as producers of enzymes, drugs, organic acids or are used in food fermentations. For example, *A. oryzae* (the domesticated form of *A. flavus*) is used in a koji fermentation important for the production of a wide variety of oriental foods (Raper & Fennell 1965, Varga et al. 2000, Samson et al. 2010, Hong et al. 2013, Kim et al. 2014).

The taxonomy of *Aspergillus* and its nine associated sexual (or teleomorphic) genera has been greatly stabilised over the last decade. Based on a multigene phylogenetic study, Kocsube et al. (2016) confirmed that *Aspergillus* is monophyletic and sister to *Penicillium* as originally shown by Houbraken & Samson (2011). Furthermore, they showed that the genus can be subdivided into six subgenera and several sections, which to a large degree corresponds to sexual states. The nomenclatural review and “accepted species list” published by Samson et al. (2014) played a significant role in stabilizing the taxonomy of *Aspergillus*. It created an “open access” model in the sense that all metadata associated with species names, such as ex-type culture collection accession numbers, sectional classifications, MycoBank numbers and GenBank accession numbers to reference sequences generated from ex-type cultures, were released in the public domain. Calmodulin was proposed as a secondary identification marker to the formal, but rather conserved, ITS DNA barcode (Schoch et al. 2012). All the released data resulted in more reliable species identifications, and new species discovery and its subsequent description are...
Table 1. Strains sequenced during the course of this project.

Species	Strains¹	Section	Location collected / isolated, year	Host	GenBank nr			
Aspergillus chevalieri	PPRi13427 = CMV011F5	Aspergillus	South Africa, KwaZulu-Natal, Pinetown, 2013	Soil	–	–	MK451336	–
A. chevalieri	PPRi26000 = CMV003I3	Aspergillus	South Africa, 2017	Animal feed	–	MK450979	MK451332	–
A. chevalieri	PPRi26033 = CMV012H5	Aspergillus	South Africa, Gauteng, Pretoria, 2018	Dog food	–	–	MK451338	–
A. chevalieri	PPRi26034 = CMV012H6	Aspergillus	South Africa, Gauteng, Pretoria, 2018	Dog food	–	–	MK451339	–
A. chevalieri	PPRi26348 = CMV016E5	Aspergillus	South Africa, Gauteng, Pretoria, 2019	Dog food	–	–	MN031422	–
A. chevalieri	PPRi26554 = CMV016D7	Aspergillus	South Africa, Gauteng, Pretoria, 2019	Dog food	–	–	MK951911	–
A. chevalieri	PPRi3791 = CMV011B6	Aspergillus	South Africa, 1986	–	–	MK451333	–	
A. chevalieri	PPRi4908 = CMV011B7	Aspergillus	South Africa, KwaZulu Natal, 1993	Maize kernels (Zea mays)	–	–	MK451334	–
A. chevalieri	PPRi5410 = CMV012B1	Aspergillus	South Africa, Western Cape, Clanwilliam, 1994	Rooibos tea (Aspalathus linearis)	–	–	MK451337	–
A. chevalieri	PPRi6331 = CMV011B9	Aspergillus	South Africa, Gauteng, Pretoria, 1996	Dried sausage	–	–	MK451335	–
A. montevidensis	CMV012H4	Aspergillus	South Africa, Gauteng, Pretoria, 2018	Dog food	–	–	MK451446	–
A. montevidensis	MRC1250 = CMV017A6	Aspergillus	South Africa, Western Cape, Ceres, 1975	Apple juice concentrate	–	–	MK951923	–
A. montevidensis	PPRi26035 = CMV012H7	Aspergillus	South Africa, Gauteng, Pretoria, 2018	Dog food	–	–	MK451447	–
A. montevidensis	PPRi4851 = CMV011G2	Aspergillus	South Africa, Gauteng, Johannesburg, 1993	Air sample	–	–	MK451445	–
A. montevidensis	PPRi6330 = CMV011B8	Aspergillus	South Africa, Gauteng, Pretoria, 1996	Dried sausage	–	–	MK451443	–
A. montevidensis	PPRi8674 = CMV011C2	Aspergillus	South Africa, Gauteng, Johannesburg, 2007	Wheat (Triticum sp)	–	–	MK451444	–
A. porosus	PPRi3419a = CMV012A8 = CSIR980	Aspergillus	South Africa, 1988	–	–	MK451494	–	
A. porosus	PPRi3419b = CMV012A9 = CSIR980	Aspergillus	South Africa, 1988	–	–	MK451495	–	
A. proliferans	PPRi86735 = CMV011C1	Aspergillus	South Africa, Mpumalanga, Piet Retief, 1988	Bee larvae (Apis mellifera)	–	–	MK451496	–
A. pseudoglaucus	MRC1231 = CMV017A3	Aspergillus	South Africa, Western Cape, Elgin, 1975	Apple	–	–	MK951920	–
A. pseudoglaucus	MRC455 = CMV017E9	Aspergillus	South Africa, unknown	–	–	MN031425	–	
A. pseudoglaucus	MRC462 = CMV017A1	Aspergillus	South Africa, Pretoria, unknown	–	–	MK951918	–	

¹ Strains sequenced during the project.
Species	Strains	Section	Location collected / isolated, year	Host	GenBank nr
					ITS
A. pseudoglaucus	PPRI26346 = CMV016D9	Aspergillus	South Africa, Gauteng, Pretoria, 2019	Dog food	–
A. zutongqii	PPRI3429 = CMV011F7	Aspergillus	South Africa, Gauteng, Pretoria, 1988	Lab contaminant	–
A. species	PPRI6060 = CMV004E8	Candidi	South Africa, Free State, Bloemfontein, 1995	Dung	MK450633
A. tritici	MRC3080 = CMV017B1	Candidi	South Africa, Mpumalanga, 1982	Maize (Zea mays)	MK951927
A. tritici	MRC418 = CMV016I7	Candidi	South Africa, North West Province, 1971	Sorghum malt	MK951916
A. ochraceus	PPRI26013 = CMV006D9	Circumdati	South Africa, Western Cape, 2018	Wheat (Triticum sp)	–
A. ochraceus	PPRI6335 = CMV007B6	Circumdati	South Africa, Mpumalanga, 1999	Cochecille insects	–
A. ochraceus	PPRI6816 = CMV007B5	Circumdati	South Africa, North West Province, 1999	Cowpea (Vigna unguiculata)	–
A. pallidofulvus	CMV012D2	Circumdati	South Africa, Limpopo, Groblersdal, 2018	Soil	MK451477
A. sclerotiorum	PPRI8357 = CMV007B4	Circumdati	South Africa, 2006	Rat food	–
A. westerdijiae	PPRI5061 = CMV007B2	Circumdati	South Africa, Limpopo, Vaalwater, 1993	Chrysomelid beetle	–
A. westerdijiae	PPRI8700 = CMV007B7	Circumdati	South Africa, Limpopo, Kruger National Park, 2005	Mopane twigs and leaves (Colophospermum mopane)	–
A. clavatus	PPRI13831 = CMV008F4	Clavati	South Africa, Gauteng, Bapsfontein, 2014	Barley seedling (Hordeum vulgare)	–
A. clavatus	PPRI13832 = CMV005I8	Clavati	South Africa, Gauteng, Bapsfontein, 2014	Barley seedling (Hordeum vulgare)	–
A. clavatus	PPRI14650 = CMV005I9	Clavati	South Africa, North West, Potchefstroom, 2014	Animal feed	–
A. clavatus	PPRI17069 = CMV001F9	Clavati	South Africa, Gauteng, Near Delmas, 2014	Animal feed, maize kernels	–
A. clavatus	PPRI21896 = CMV006A1	Clavati	South Africa, Western Cape, Malmsbury, 2016	Barley sprouted seed (Hordeum vulgare)	–
A. clavatus	PPRI26042 = CMV013A3	Clavati	South Africa, 2018	Dragon fruit plant	–
A. clavatus	PPRI26045 = CMV013B4	Clavati	Swaziland, 2018	Pig feed	–
A. clavatus	PPRI26493 = CMV013A9	Clavati	Swaziland, 2018	Pig feed	–
A. clavatus	PPRI26495 = CMV013B2	Clavati	Swaziland, 2018	Pig feed	–
Species	Strains	Location collected / isolated, year	Host	GenBank nr	
---------------	---------	------------------------------------	---------------------------	------------	
A. clavatus	PPRI4976 = CMV010D7	South Africa, Gauteng, Magaliesburg, 1994	Soil	MK451348–MK451349	
A. clavatus	PPRI8552 = CMV005I6	South Africa, Mpumalanga, Lydenburg, 2007	Sunflower seed *(Helianthus annuus)*	MK451342–MK451343	
A. clavatus	PPRI8618	South Africa, Free State, 2008	Sunflower soil	MK451343	
A. giganteus	MRC453 = CMV018I9	South Africa, Pretoria, unknown	–		
A. giganteus	PPRI26019 = CMV008C9	South Africa, Limpopo, 2018	Chicken feed	MK450637–MK451147	
A. seifertii	PPRI26025 = CMV011E3	South Africa, Free State, Golden Gate, unknown	Soil	MK450648–MK451418	
A. seifertii	PPRI3211 = CMV006F5 (ex-type)	South Africa, Free State, Golden Gate, 1988	Grassroots	MK450647–MK451509	
A. dimorphicus	CMV012C9	South Africa, Limpopo, Groblersdal, 2018	Soil	MK450634–MK451357	
A. dimorphicus	PPRI26031 = CMV012G4	South Africa, Limpopo, Groblersdal, 2018	Soil	MK450646–MK451508	
A. wentii	PPRI25999 = CMV00312	South Africa, 2017	Animal feed	MK451507–MK451569	
A. wentii	PPRI26048 = CMV013F6	South Africa, Mpumalanga, Barberton, 2016	Wood in mine	MK451914	
A. wentii	PPRI26349 = CMV016E7	South Africa, Mpumalanga, Barberton, 2018	Wood in mine	MK451914	
A. alliaceus	PPRI6826 = CMV007B1	South Africa, Eastern Cape, Port Elizabeth, 1999	Moth larvae *(Cryptophlebia leucotreta)*	MK451307	
A. flavus	CMV015C6 = 2019-M44	South Africa, 2019	Wood pallet	MK451894	
A. flavus	CMV015C7 = 2019-M44	South Africa, 2019	Wood pallet	MK451895	
A. flavus	CMV015C9 = 2019-M44	South Africa, 2019	Wood pallet	MK451896	
A. flavus	MRC1317 = CMV017A2	South Africa, Western Cape, Somerset West, 1977	Lemon *(Citrus limon)*	MK451919	
A. flavus	MRC1366 = CMV017A7	South Africa, Western Cape, Ceres, 1978	Maize *(Zea mays)*, pathotoxicity to sheep	MK451924	
A. flavus	MRC1745 = CMV017A8	South Africa, North West Province, Potchefstroom, 1979	Sorghum malt	MK451925	
A. flavus	MRC2526 = CMV017A9	South Africa, unknown	Biltong	MK451926	
A. flavus	MRC3732 = CMV017B3	South Africa, Western Cape, Ceres, 1984	Apple	MK451929	
A. flavus	MRC6979 = CMV017B5	South Africa, Mpumalanga, Kruger National Park, unknown	Soil	MK451931	
A. flavus	PPRI13141 = CMV002B4	South Africa, KwaZulu Natal, Pietermaritzburg, unknown	Maize *(Zea mays)*	MK451376	
Table 1. (Continued).

Species	Strains 1	Section	Location collected / isolated, year	Host	GenBank nr			
A. flavus	PPR18143 = CMV001I2	Flavi	South Africa, 2015	Rooibos (Aspalathus linearis)	–	–	MK451365	–
A. flavus	PPR18144 = CMV001I8	Flavi	South Africa, 2015	Rooibos (Aspalathus linearis)	–	–	MK451370	–
A. flavus	PPR18161 = CMV002B3	Flavi	South Africa, Free State, Bethlehem, 2015	Wheat (Triticum sp)	–	–	MK451375	–
A. flavus	PPR18711 = CMV001I4	Flavi	South Africa, Northwest, Sanneshof, 2015	Frass of moth (Busseola fusca) feeding inside maize stems	–	–	MK451367	–
A. flavus	PPR18712 = CMV001I5	Flavi	South Africa, Northwest, Sanneshof, 2015	Frass of moth (Busseola fusca) feeding inside maize stems	–	–	MK451368	–
A. flavus	PPR18713 = CMV001I9	Flavi	South Africa, Northwest, Coligny, 2015	Frass of moth (Busseola fusca) feeding inside maize stems	–	–	MK451371	–
A. flavus	PPR18714 = CMV001I1	Flavi	South Africa, Northwest, Coligny, 2015	Frass of moth (Busseola fusca) feeding inside maize stems	–	–	MK451364	–
A. flavus	PPR18715 = CMV001I6	Flavi	South Africa, Northwest, Coligny, 2015	Frass of moth (Busseola fusca) feeding inside maize stems	–	–	MK451369	–
A. flavus	PPR20581 = CMV002B1	Flavi	South Africa, Western Cape, Grabouw, 2015	Insect	–	–	MK451374	–
A. flavus	PPR22482 = CMV001I3	Flavi	South Africa, Limpopo, Atlanta, 2016	Soya beans (Glycine max)	–	–	MK451366	–
A. flavus	PPR23389 = CMV002A1	Flavi	South Africa, Western Cape, Stellenbosch, 2016	Animal feed	–	–	MK451372	–
A. flavus	PPR25992 = CMV003A4	Flavi	South Africa, Western Cape, Knysna, 2017	Hominy chop animal feed	–	–	MK451379	–
A. flavus	PPR26001 = CMV003I5	Flavi	South Africa, 2017	Animal feed	–	–	MK451380	–
A. flavus	PPR26002 = CMV003I6	Flavi	South Africa, 2017	Animal feed	–	–	MK451381	–
A. flavus	PPR26003 = CMV003I7	Flavi	South Africa, 2017	Animal feed	–	–	MK451382	–
A. flavus	PPR26004 = CMV003I8	Flavi	South Africa, 2017	Animal feed	–	–	MK451383	–
A. flavus	PPR26007 = CMV005E1	Flavi	South Africa, Gauteng, Sunninghill, 2017	Groundnut	–	–	MK451384	–
A. flavus	PPR26022 = CMV008E3	Flavi	South Africa, Limpopo, 2018	Chicken feed	–	–	MK451385	–
A. flavus	PPR26032 = CMV012H1	Flavi	South Africa, Gauteng, Pretoria, 2018	Dog food	–	–	MK451387	–
A. flavus	PPR26036 = CMV012H8	Flavi	South Africa, Gauteng, Pretoria, 2018	Dog food	–	–	MK451388	–
A. flavus	PPR26044 = CMV013B3	Flavi	Swaziland, 2018	Pig feed	–	–	MK451389	–
A. flavus	PPR26345 = CMV016D6	Flavi	South Africa, Gauteng, Pretoria, 2019	Dog food	–	–	MK951910	–

(continued on next page)
Species	Strains	Section	Location collected / isolated, year	Host	GenBank nr
A. flavus	PPR026347 = CMV016E4	Flavi	South Africa, Gauteng, Pretoria, 2019	Dog food	– MK951913 –
A. flavus	PPR026486 = CMV010D4	Flavi	South Africa, Limpopo, Groblersdal, 2015	Soil	– MK451386 –
A. flavus	PPR3274 = CMV002A5	Flavi	South Africa, Gauteng, Pretoria, 1988	–	– MK451373 –
A. flavus	PPR07977 = CMV002B5	Flavi	South Africa, 2005	–	– MK451377 –
A. flavus	PPR8551 = CMV002B7	Flavi	South Africa, Mpumalanga, Lydenburg, 2007	Maize (Zea mays)	– MK451378 –
A. krugeri	PPR8986 = CMV006G4 (ex-type)	Flavi	South Africa, Limpopo, Kruger National Park, 2005	Mopane debris (Colophospermum mopane)	MK450655 MK451098 MK451517 MK450808
A. krugeri	PPR9280 = CMV002C8	Flavi	South Africa, Limpopo, Kruger National Park, 2005	Mopane debris (Colophospermum mopane)	MK450654 MK450928 MK451516 MK450807
A. magaliesburgensis	PPR8165 = CMV007A3 (ex-type)	Flavi	South Africa, Gauteng, Magaliesburg, 1996	Antlion (Myrmecolitidae)	MK450649 MK451116 MK451511 MK450802
A. nomius	PPR3753 = CMV002B2	Flavi	South Africa, Gauteng, Rietondale, 1989	Termites dead colony	– MK450926 MK451473 –
A. parasiticus	PPR14636 = CMV001H8	Flavi	South Africa, Gauteng, Bapsfontein, 2014	Spawnrun on grass	– MK451478 –
A. parasiticus	PPR14642 = CMV001H9	Flavi	South Africa, Gauteng, Bapsfontein, 2014	Spawnrun on grass	– MK451479 –
A. parasiticus	PPR23021 = CMV002C7	Flavi	South Africa, Dinaka game reserve, 2016	Animal feed	– MK451483 –
A. parasiticus	PPR26046 = CMV013B6	Flavi	Zambia, Mpangwe, Mpangwe, 2018	Wheat (Triticum sp)	– MK451489 –
A. parasiticus	PPR2885 = CMV007A7	Flavi	South Africa, 1990	Seed (Watsonin marginata)	– MK451487 –
A. parasiticus	PPR3754 = CMV007A5	Flavi	South Africa, Gauteng, Pretoria, 1989	Termites	– MK451485 –
A. parasiticus	PPR5183 = CMV002C1	Flavi	South Africa, Western Cape, Clanwilliam, 1993	Rooibos tea (Aspalathus linearis)	– MK451486 –
A. parasiticus	PPR7978 = CMV010B6	Flavi	South Africa, 2005	–	MK451488 –
A. parasiticus	PPR9511 = CMV002B8	Flavi	South Africa, North West, 2008	Soil	– MK451480 –
A. parasiticus	PPR9513 = CMV002C1	Flavi	South Africa, North West, 2008	Soil	– MK451484 –
A. parasiticus	PPR9532 = CMV002C2	Flavi	South Africa, North West, 2008	Soil	– MK451481 –
A. parasiticus	PPR9534 = CMV002C3	Flavi	South Africa, North West, 2008	Soil	– MK451482 –
A. pseudonomius	PPR5063 = CMV002B6	Flavi	South Africa, Limpopo, Vaalwater, 1992	Chrysoselid beetle	– MK451505 –
Species	Strains\(^1\)	Section	Location collected / isolated, year	Host	GenBank nr
----------------	----------------------	---------	-------------------------------------	-------------------------	-------------------
					ITS
					BenA
					CaM
					RPB2
A. tamarii	PPR126008 = CMV005E2	Flavi	South Africa, Gauteng, Sunninghill, 2017	Groundnut	–
A. tamarii	PPR126010 = CMV005E4	Flavi	South Africa, 2017	Soil	–
A. tamarii	PPR126003 = CMV008E4	Flavi	South Africa, Limpopo, 2018	Chicken feed	–
A. tamarii	PPR28212 = CMV003E1	Flavi	South Africa, 1991	Soyabeans (Glycine max)	–
A. tamarii	PPR17392 = CMV007B3	Flavi	South Africa, 2004		–
A. transmontanensis	PPR114275 = CMV011A5	Flavi	Zambia, 2013	Soil	MK450657
A. izukae	PPR14965 = CMV007B8	Flavipes	South Africa, Gauteng, Pretoria, 1993	Chrysomelid beetle	–
A. acrocladii	PPR7491 = CMV003C4	Fumigati	South Africa, 2004		–
A. acrocladii	PPR7514 = CMV003C3	Fumigati	South Africa, 2004		–
A. aureolus	PPR11297 = CMV008A9	Fumigati	South Africa, Kwazulu Natal, Pinetown, 2011	Air sample	–
A. aureolus	PPR33451 = CMV011F8	Fumigati	South Africa, 1988		–
A. elsenburgensis	DTO015G7	Fumigati	Argentina, La Pampa Province, Chacharramendi	Soil	MT110301
A. elsenburgensis	DTO380H5	Fumigati	Argentina, Catamarca Province	Soil	MT108411
A. elsenburgensis	DTO381D3	Fumigati	Argentina, Catamarca Province	Soil	MT108414
A. elsenburgensis	DTO381D8	Fumigati	Argentina	Soil	MT110302
A. elsenburgensis	PPR12994 = CMV011G4	Fumigati	South Africa, Western Cape, Elsenburg, 1986	Soil	MK450651
A. fischeri	PPR026026 = CMV011H6	Fumigati	South Africa, Gauteng, Pretoria, 2016	Lab contaminant	–
A. fischeri	PPR34318 = CMV012A7	Fumigati	South Africa, 1988		–
A. fischeri	PPR34328 = CMV011I5	Fumigati	South Africa, 1988		–
A. fischeri	PPR34348 = CMV012A6	Fumigati	South Africa, 1988		–
A. fischeri	PPR14507 = CMV011I4	Fumigati	South Africa, Eastern Cape, Butterworth, 1986	Soil	–
A. fumigatafis	PPR113089 = CMV001G1	Fumigati	South Africa, Succulent karoo area, unknown	Soil	MK450636
A. fumigatafis	PPR113090 = CMV010I7	Fumigati	South Africa, Succulent karoo area, unknown	Soil	–
A. fumigatafis	PPR03210 = CMV004C3	Fumigati	South Africa, Western Cape, Beaufort West, 1988	Grass	–
A. fumigatus	CMV015C1 = 2019-M44	Fumigati	South Africa, 2019	Wood pallet	–

\(^1\) Table 1. (Continued).
Species	Strains	Section	Location collected / isolated, year	Host	GenBank nr			
A. fumigatus	CMV015C2 = 2019-M44	Fumigati	South Africa, 2019	Wood pallet	–	–	MK951891	–
A. fumigatus	CMV015C3 = 2019-M44	Fumigati	South Africa, 2019	Wood pallet	–	–	MK951892	–
A. fumigatus	CMV015S5 = 2019-M44	Fumigati	South Africa, 2019	Wood pallet	–	–	MK951893	–
A. fumigatus	CMV015D8 = 2019-M44	Fumigati	South Africa, 2019	Wood pallet	–	–	MK951904	–
A. fumigatus	CMV015D9 = 2019-M44	Fumigati	South Africa, 2019	Wood pallet	–	–	MK951905	–
A. fumigatus	MRC435 = CMV016I8	Fumigati	South Africa, Port Health, 1971	Rice	–	–	MK951917	–
A. fumigatus	PPRI10161 = CMV002G6	Fumigati	South Africa, Eastern Cape, 2009	Silage	–	–	MK451396	–
A. fumigatus	PPRI10162 = CMV002G2	Fumigati	South Africa, Eastern Cape, 2009	Silage	–	–	MK451393	–
A. fumigatus	PPRI10498 = CMV003D5	Fumigati	South Africa, Eastern Cape, Port Elizabeth, 2010	Maize silage (Zea mays)	–	–	MK451406	–
A. fumigatus	PPRI10499 = CMV002G5	Fumigati	South Africa, Eastern Cape, Port Elizabeth, 2010	Maize silage (Zea mays)	–	–	MK451395	–
A. fumigatus	PPRI12665 = CMV002G3	Fumigati	South Africa, Free State, Luchhof, 2012	Rye seed (Secale cereale)	–	–	MK451394	–
A. fumigatus	PPRI13084 = CMV002G7	Fumigati	South Africa, Gauteng, Pretoria, 2013	Pear	–	–	MK451397	–
A. fumigatus	PPRI13252 = CMV003D6	Fumigati	South Africa, 2013	–	–	MK451407	–	
A. fumigatus	PPRI20934 = CMV008B7	Fumigati	South Africa, 2016	–	M451398	–		
A. fumigatus	PPRI25993 = CMV003A5	Fumigati	South Africa, Western Cape, Knysna, 2017	Hominy chop animal feed	–	–	MK451412	–
A. fumigatus	PPRI25998 = CMV003H8	Fumigati	South Africa, 2017	Animal feed	–	–	MK451409	–
A. fumigatus	PPRI26006 = CMV005D8	Fumigati	South Africa, Gauteng, Bedfordview, 2018	Potting soil	–	–	MK451411	–
A. fumigatus	PPRI3283 = CMV003C6	Fumigati	South Africa, North West, Pella, 1993	Soil	–	–	MK451399	–
A. fumigatus	PPRI3478 = CMV004C2	Fumigati	South Africa, Gauteng, Bapsfontein, 1988	Straw	–	–	MK451410	–
A. fumigatus	PPRI3479 = CMV003C7	Fumigati	South Africa, Gauteng, Johannesburg, 1988	Compost	–	–	MK451400	–
A. fumigatus	PPRI3505 = CMV010B9	Fumigati	South Africa, Gauteng, Denneboom, 1987	Pine	–	M451153	MK451416	–
A. fumigatus	PPRI4975 = CMV003C8	Fumigati	South Africa, Mpumalanga, Malelane, 1993	Bagasse	–	–	MK451401	–
A. fumigatus	PPRI5090 = CMV003H1	Fumigati	South Africa, Mpumalanga, Malelane, 1993	Decayed mineola	–	M450976	MK451408	–
Species	Strains \(^1\)	Section	Location collected / isolated, year	Host	GenBank nr			
----------------	------------------------------	---------	--	--	------------			
					ITS	BenA	CaM	RPB2
A. fumigatus	PPRi7394 = CMV003C9	Fumigati	South Africa, 2004	Chickens (Gallus domesticus)	–	–	–	MK451402
A. fumigatus	PPRi8522 = CMV003D1	Fumigati	South Africa, Mpumalanga, Vlakfontein, 2006	Chickens (Gallus domesticus)	–	–	–	MK451403
A. fumigatus	PPRi8523 = CMV003D2	Fumigati	South Africa, Mpumalanga, Vlakfontein, 2006	Chickens (Gallus domesticus)	–	–	–	MK451404
A. fumigatus	PPRi8525 = CMV008F9	Fumigati	South Africa, Mpumalanga, Vlakfontein, 2006	Chickens (Gallus domesticus)	–	–	–	MK451414
A. fumigatus	PPRi8527 = CMV008G1	Fumigati	South Africa, 2007	Chickens (Gallus domesticus)	–	–	–	MK451415
A. fumigatus	PPRi8558 = CMV003D3	Fumigati	South Africa, 2007	Chickens (Gallus domesticus)	–	–	–	MK451405
A. fumigatus	PPRi8560 = CMV008F8	Fumigati	South Africa, 2007	Chickens (Gallus domesticus)	–	–	–	MK451413
A. hiratsukae	PPRi3260 = CMV012G1 = CSIR1064	Fumigati	South Africa, 1988	Soil	–	–	–	MK451421
A. hiratsukae	PPRi9172 = CMV008F5	Fumigati	South Africa, Limpopo, Kruger National Park, 2005	Soil	–	–	–	MK451420
A. hiratsukae	PPRi9185 = CMV004E7	Fumigati	South Africa, Limpopo, Kruger National Park, 2005	Mopane twigs and leaves (Colophospermum mopane)	–	–	–	MK451419
A. laciniosus	PPRi3197 = CMV011I6 = CSIR1050	Fumigati	South Africa, 1988	Maize kernels (Zea mays)	–	–	–	MK451410
A. laciniosus	PPRi3247 = CMV011G5	Fumigati	South Africa, North West, Pella, 1988	Maize kernels (Zea mays)	–	–	–	MK451422
A. laciniosus	PPRi3417 = CMV010F8 = CSIR638	Fumigati	South Africa, 1988	Sand	–	–	–	MK451430
A. lentinus	PPRi3847 = CMV011F6	Fumigati	South Africa, KwaZulu Natal, Greytown, 1985	Mealy bug on Citrus	–	–	–	MK451440
A. lentulus	PPRi86170 = CMV007I3	Fumigati	South Africa, Northern Cape, Loffaredraai, 1996	Mealy bug on Citrus	–	–	–	MK451442
A. lentulus	PPRi7532 = CMV003C5	Fumigati	South Africa, 2004	Mealy bug on Citrus	–	–	–	MK451441
A. udagawae	PPRi11324 = CMV010I9	Fumigati	South Africa, Eastern Cape, Port Elizabeth, 2011	Mealy bug on Citrus	–	–	–	MK451543
A. udagawae	PPRi26030 = CMV012F7	Fumigati	South Africa, Limpopo, Groblersdal, 2018	Mealy bug on Citrus	–	–	–	MK451259
A. wyomingensis	PPRi5178 = CMV007I4	Fumigati	South Africa, Western Cape, Clanwilliam, 1993	Mealy bug on Citrus	–	–	–	MK451574
A. wyomingensis	PPRi5573 = CMV007I2	Fumigati	South Africa, Western Cape, Clanwilliam, 1993	Mealy bug on Citrus	–	–	–	MK451573
A. amoenus	PPRi26021 = CMV008E2	Nidulantes	South Africa, Limpopo, 2018	Chicken feed	–	–	–	MK451308
A. amoenus	PPRi26047 = CMV013F4	Nidulantes	South Africa, Limpopo, 2018	Chicken feed	–	–	–	MK451309

(continued on next page)
Species	Strains	Section	Location collected / isolated, year	Host	GenBank nr
					ITS
A. creber	PPR13168 = CMV002A9	Nidulantes	South Africa, Mpumalanga, Barberton, 2018	Chicken house bedding	–
	PPR3737 = CMV002G9	Nidulantes	South Africa, North West, Mafikeng, 2013	Orange (Citrus sinensis)	–
	PPR3869 = CMV011F9	Nidulantes	South Africa, Free State, Bloemfontein, 1990	Honey flower seed (Melianthus comosus)	–
	PPR5081 = CMV002H1	Nidulantes	South Africa, Mpumalanga, Hazyview, 1993	Lemon (Citrus limon)	–
	PPR9900 = CMV008C2	Nidulantes	South Africa, Kwazulu Natal, Pinetown, 2008	Environmental sample	–
	PPR13238 = CMV001F7	Nidulantes	South Africa, KwaZulu-Natal, Pinetown, 2013	Environmental sample	–
	PPR2806 = CMV011G1	Nidulantes	South Africa, 1991	–	–
	PPR5384 = CMV007A9	Nidulantes	South Africa, 1993	Flower (Gladiolus coms)	–
	PPR6329 = CMV003H2	Nidulantes	South Africa, Kwazulu Natal, 1996	Contaminant bioprodut	–
	PPR20935 = CMV010I1	Nidulantes	South Africa, 2016	–	–
	PPR26350 = CMV016F8	Nidulantes	South Africa, Mpumalanga, Barberton, 2018	Wood in mine	–
	PPR5575 = CMV008B2	Nidulantes	South Africa, 1994	Diesel fuel filters	–
	PPR3840 = CMV008B3 (ex-type)	Nidulantes	South Africa, Limpopo, 1990	Plant debris	MK450653 MK451138 MK451515 MK450806
	PPR5548 = CMV008B1	Nidulantes	South Africa, Western Cape, Cape Town, 1994	Spider (Palystes castaneus)	MK450652 MK451137 MK451514 MK450805
	PPR26342 = CMV015B3	Nidulantes	South Africa, Mpumalanga, Marble Hall, 1999	–	–
	PPR3165 = CMV010C4	Nidulantes	South Africa, 1988	–	MK451506 MK451507
	MRC3329 = CMV017B2	Nidulantes	South Africa, Free State, Clocolan, 1983	Oats	–
	CMV/008E1 = 2018-M76/352	Nidulantes	South Africa, Limpopo, 2018	Chicken feed	–
	CMV/015B9 = 2019-M44	Nidulantes	South Africa, 2019	Wood pallet	–
	PPR12668 = CMV008C6	Nidulantes	South Africa, KwaZulu-Natal, Pinetown, 2012	Environmental sample	–
	PPR13067 = CMV008B4	Nidulantes	South Africa, KwaZulu-Natal, Pinetown, 2012	Environmental sample	–
	PPR13241 = CMV001D6	Nidulantes	South Africa, KwaZulu-Natal, Pinetown, 2013	Environmental sample	–
Species	Strains 1	Section	Location collected / isolated, year	Host	GenBank nr
-------------	-----------	---------	-------------------------------------	---	------------
					ITS
A. sydowii	PPR3810 = CMV008F1	Nidulantes	South Africa, Free State, Bloemfontein, 1990	Honey flower seed (Melianthus comosus)	– – MK451525 –
A. sydowii	PPR3839 = CMV008F2	Nidulantes	South Africa, 1990	Watsonia marginata	– – MK451526 –
A. sydowii	PPR6542 = CMV008C5	Nidulantes	South Africa, Kwazulu Natal, Pinetown, 1997	Lab shelf	– – MK451522 –
A. alabamensis	PPR25994 = CMV003A6	Terrei	South Africa, Western Cape, Knysna, 2017	Hominy chop animal feed	– MK450947 MK451300 MK450758
A. alabamensis	PPR25996 = CMV003A9	Terrei	South Africa, Western Cape, Knysna, 2017	Hominy chop animal feed	– MK450948 MK451301 MK450759
A. alabamensis	PPR26028 = CMV012E2	Terrei	South Africa, Limpopo, Groblersdal, 2018	Soil	– – MK451299 –
A. aureoterreus	PPR13096 = CMV010F6	Terrei	South Africa, Succulent karoo area, unknown	Soil	– – MK451161 MK451323 MK450772
A. carneus	PPR13094 = CMV010F7	Terrei	South Africa, Succulent karoo area, unknown	Soil	– – MK451162 MK451331 MK450778
A. cf alabamensis	PPR7492 = CMV004A7	Terrei	South Africa, 2004	–	– MK450983 MK451312 MK450765
A. cf alabamensis	PPR8696 = CMV004D7	Terrei	South Africa, Limpopo, Kruger National Park, 2005	Soil	– MK450993 MK451318 MK450770
A. cf alabamensis	PPR8741 = CMV004C9	Terrei	South Africa, Limpopo, Kruger National Park, 2005	Soil	– MK450990 MK451315 MK450768
A. cf alabamensis	PPR8747 = CMV004D2	Terrei	South Africa, Limpopo, Kruger National Park, 2005	Soil	– MK450991 MK451316 MK450769
A. cf alabamensis	PPR8979 = CMV004D5	Terrei	South Africa, Limpopo, Kruger National Park, 2005	Soil	– MK450992 MK451317 –
A. cf alabamensis	PPR9150 = CMV004C8	Terrei	South Africa, Limpopo, Kruger National Park, 2005	Mopane debris (Colophospermum mopane)	– MK450989 MK451314 MK450767
A. cf alabamensis	PPR9184 = CMV004C7	Terrei	South Africa, Limpopo, Kruger National Park, 2005	Soil	– MK450988 MK451313 MK450766
A. cf alabamensis	PPR9189 = CMV004E1	Terrei	South Africa, Limpopo, Kruger National Park, 2005	Mopane twigs and leaves (Colophospermum mopane)	– MK450995 MK451320 –
A. cf alabamensis	PPR9206 = CMV004D9	Terrei	South Africa, Limpopo, Kruger National Park, 2005	Mopane twigs and leaves (Colophospermum mopane)	– MK450994 MK451319 MK450771
A. cf allahabadi	PPR5574 = CMV004C1	Terrei	South Africa, Western Cape, Clanwilliam, 1994	Rooibos tea (Aspalathus linearis)	– MK450987 MK451302 MK450760
A. cf allahabadi	PPR7534 = CMV004E6	Terrei	South Africa, Limpopo, Kruger National Park, 2003	Soil	– MK450999 MK451306 MK450764
A. cf allahabadi	PPR8751 = CMV004E3	Terrei	South Africa, Limpopo, Kruger National Park, 2005	Soil	MK450629 MK450997 MK451304 MK450762

(continued on next page)
Species	Strains	Section	Location collected / isolated, year	Host	GenBank nr			
					ITS	BenA	CaM	RPB2
A. cf allahabadi	PPRI8987 = CMV004E2	Terrei	South Africa, Limpopo, Kruger National Park, 2005	Mopane debris (Colophospermum mopane)	MK450628	MK450996	MK451303	MK450761
A. cf allahabadi	PPRI9194 = CMV004E5	Terrei	South Africa, Limpopo, Kruger National Park, 2005	Mopane debris (Colophospermum mopane)	--	MK450998	MK451305	MK450763
A. citrinoterreus	PPRI7464 = CMV004A6	Terrei	South Africa, North West, Welwitschia, 2004	--	--	MK451340	--	
A. heldtiae	PPRI4229 = CMV004A2 (ex-type)	Terrei	South Africa, 1991	Millet seed	MK450656	MK450981	MK451518	MK450809
A. hortai	PPRI25995 = CMV003A8	Terrei	South Africa, Western Cape, Knysna, 2017	Hominy chop animal feed	--	--	MK451423	--
A. hortai	PPRI5864 = CMV004A5	Terrei	South Africa, Gauteng, Pretoria, 1995	Animal tissue	--	--	MK451424	--
A. hortai	PPRI7533 = CMV004A9	Terrei	South Africa, Limpopo, Kruger National Park, 2003	Soil	MK450985	MK451425	--	
A. hortai	PPRI88707 = CMV004C5	Terrei	South Africa, Limpopo, Kruger National Park, 2005	Mopane (Colophospermum mopane)	--	--	MK451427	--
A. hortai	PPRI9902 = CMV004B1	Terrei	South Africa, Limpopo, Pretoria, 2008	Industrial food colourant	--	--	MK451426	--
A. species CBS142751	PPRI9903 = CMV004A8	Terrei	South Africa, Gauteng, Pretoria, 2008	Industrial food colourant	MK450635	MK450984	MK451358	--
A. terreus	PPRI10373 = CMV007A8	Terrei	South Africa, Eastern Cape, Port Elizabeth, 2010	Maize silage (Zea mays)	--	--	MK451535	--
A. terreus	PPRI13086 = CMV011A4	Terrei	South Africa, Succulent karoo area, unknown	Soil	--	--	MK451537	--
A. terreus	PPRI20932 = CMV004B3	Terrei	South Africa, 2016	--	--	MK451533	--	
A. terreus	PPRI25997 = CMV003H4	Terrei	South Africa, 2017	Animal feed	--	--	MK451532	--
A. terreus	PPRI26027 = CMV012E1	Terrei	South Africa, Limpopo, Groblersdal, 2018	Soil	--	--	MK451538	--
A. terreus	PPRI26029 = CMV012E3	Terrei	South Africa, Limpopo, Groblersdal, 2018	Soil	--	--	MK451539	--
A. terreus	PPRI8282 = CMV010F9	Terrei	South Africa, 2006	--	--	MK451536	--	
A. terreus	PPRI8672 = CMV004B9	Terrei	South Africa, 2007	Kenaf (Hibiscus cannabinus)	--	--	MK451534	--
A. calidoustus	PPRI15353 = CMV006B3	Usti	South Africa, KwaZulu-Natal, Pinetown, 2014	Direct scraping off Castle wall	--	--	MK951930	--
A. insuetus	MRC5597 = CMV017B4	Usti	South Africa, Western Cape, Cape Town, unknown	Grass	--	--	MK451429	--
A. pseudodefluctus	PPRI3456 = CMV006F8	Usti	South Africa, 1988	--	--	MK451503	--	
Species	Strains	Section	Location collected / isolated, year	Host	GenBank nr			
-------------------------	------------------	---------	-------------------------------------	--	------------			
A. pseudodefectus	PPRI5177b = CMV010G3	Usti	South Africa, Western Cape, Clanwilliam, 1993	Rooibos tea (Aspalathus linearis)				
	PPRI8971 = CMV005H9	Usti	South Africa, Limpopo, Kruger National Park, 2005	Mopane debris (Colophospermum mopane)	MK450642 MK451064 MK451498			
	PPRI8976 = CMV005I1	Usti	South Africa, Limpopo, Kruger National Park, 2005	Soil	– – MK451499 –			
	PPRI9168 = CMV006A6	Usti	South Africa, Limpopo, Kruger National Park, 2008	Mopane twigs and leaves (Colophospermum mopane)	– – MK451502 –			
A. pseudodefectus	PPRI9203 = CMV005I2	Usti	South Africa, Limpopo, Kruger National Park, 2005	Mopane twigs and leaves (Colophospermum mopane)	MK450643 MK451065 MK451500 –			
A. pseudodefectus	PPRI9404 = CMV005I3	Usti	South Africa, Limpopo, Kruger National Park, 2005	Soil	– – MK451501 –			
A. pseudoustus	MRC1233 = CMV017A5	Usti	South Africa, Western Cape, Drakenstein, 1975	Apple juice concentrate	– – MK951922 –			
A. pseudoustus	MRC1234 = CMV017A4	Usti	South Africa, Western Cape, Drakenstein, 1975	Apple juice concentrate	– – MK951921 –			
A. siguroos	PPRI15889 = CMV005I4 (ex-type)	Usti	South Africa, KwaZulu-Natal, Pinetown, 2014	Environmental sample	MK450650 MK451066 MK451512 MK450803			

1 Acronyms of culture collections: PPRI, culture collection of the National Collections of Fungi, housed at the Agricultural Research Council - Plant Health and Protection (ARC), Roodeplaat, South Africa; MRC, culture collection of the Medical Research Council housed at PPRI; CSIR, culture collection of the Council for Scientific and Industrial Research; CMV, working collection housed at the PPRI; DTO, working collection of the Applied and Industrial Mycology group housed the Westerdijk Institute, Utrecht, the Netherlands.
Fig. 1. Multigene phylogeny of Aspergillus sect Aspergillus and Cernei based on a combined ITS, BenA, CaM and RPB2 dataset. Strains identified during this study are shown in black text and reference strains in grey text. GenBank accession numbers for ITS (green), BenA (blue), CaM (maroon) and RPB2 (purple) are given behind strain numbers. Branch support in nodes higher than 80 % bs and/ or 0.95 pp are indicated above thickened branches (* = ex-type; * = 100 % bs or 1.00 pp; - = support lower than 80 % bs and/or 0.95 pp).
South Africa has great fungal diversity and makes significant contributions to international understanding of a wide range of fungi. Aspergillus is very commonly isolated across South Africa and unlike Penicillium (Schütte 1992), local mycologists were not afraid to attempt identifications down to species level (Cohen 1950, Swart 1959, Eicker 1969, 1970a, b, 1972, 1973, 1974, 1976, 1980, van der Merwe et al. 1979, Rabie & Lübben 1984, Allsop et al. 1987, Watson et al. 1990, Schütte 1994, Roux & van Wamel 1997). These identifications were all based on morphology, meaning that diversity could easily be misidentified due to the known complexities in distinguishing between closely related species without DNA sequence data. Considering the modern methods required to identify species (Samson et al. 2014), we consider Aspergillus to be grossly understudied in South Africa. To our knowledge, the only modern studies reported 33 species isolated from house dust (Visagie et al. 2014a) and seven species from abalone feed collected in the Western Cape (Greiff-Laubscher et al. 2018). The PPRI culture collection housed at the Agricultural Research Council – Plant Health and Protection, Roodeplaat, Pretoria is the biggest repository of Aspergillus in South Africa with close to 500

Fig. 2. Multigene phylogeny of Aspergillus sect Circumdati and Candidati based on a combined ITS, BenA, CaM and RPB2 dataset. Strains identified during this study are shown in black text and reference strains in grey text. GenBank accession numbers for ITS (green), BenA (blue), CaM (maroon) and RPB2 (purple) are given behind strain numbers. Branch support in nodes higher than 80 % bs and/or 0.95 pp are indicated above thickened branches (↑ = ex-type; * = 100 % bs or 1.00 pp; × = support lower than 80 % bs and/or 0.95 pp).
Fig. 3. Multigene phylogeny of Aspergillus sect Flavi based on a combined ITS, BenA, CalM and RPBI dataset. Strains from new species are shown in orange text, strains identified during this study in black text and reference strains in grey text. GenBank accession numbers for ITS (green), BenA (blue), CalM (maroon) and RPBI (purple) are given behind strain numbers. Branch support in nodes higher than 80% bs and/or 0.95 pp are indicated above thickened branches (* = ex-type; * = 100 % bs or 1.00 pp; - = support lower than 80% bs and/or 0.95 pp).
accessioned strains. The PPRI also houses the old MRC (Medical Research Council) culture collection that contains several Aspergillus. Strains from these collections mostly originate from agricultural sources, but plenty was sourced from environmental collection trips across the country. The aim of this project was to recover as many strains as possible and re-identify them using modern DNA sequencing approaches in order to obtain a baseline knowledge on the diversity of Aspergillus in the country. In this paper, we report on the diversity discovered, formally introduce seven new species and release a large number of valuable DNA reference sequences in the NCBI nucleotide sequence database (GenBank).

MATERIALS & METHODS

Strains

Strains were recovered from the South African National Collection of Fungi (PPRI) and the Medical Research Council (MRC) collection, both housed at the Agricultural Research Council (ARC; Plant Health and Protection, Rooielsplaat). New isolates were obtained during routine identification services provided at PPRI. These originate from a wide range of sources across the country and were deposited into a working collection (CMV) and PPRI. Isolations were made using potato dextrose agar (PDA) or dichloran 18 % glycerol agar (DG18; Oxoid CM0729). Strains and its collection data are summarised in Table 1.

DNA extraction, sequencing, and phylogenetic analysis

DNA was extracted from 7 d old colonies grown on Blakeslee’s (1915) malt extract agar (MEEbI) using the Quick-DNA™ Fungal/Bacterial Miniprep Kit (Zymo Research, CA, USA). The 5.8S rDNA internal transcribed spacer regions (ITS), beta-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) genes were amplified in a 25 μl PCR master mix containing 12.5 μl OneTaq® 2X Master Mix with GC Buffer (New England BiolabsInc, MA, USA), 0.5 μl for each primer (10 μM), 10.5 μl milliQ H2O, and 1 μl template DNA. PCR conditions and primers were used as suggested by Samson et al. (2014). Automated sequencing was done at Inqaba Biotechnical Industries (Pty) Ltd (Pretoria, South Africa) using the same primers used for PCR amplification. For RPB2, additional sequencing reactions were performed with internal sequencing primers RPB2-527R (Peterson 2008), RPB2-388F (Peterson 2008), RPB2-F311 (Houbraken & Samson 2011) and RPB2-R310 (Houbraken & Samson 2011).

Contigs were assembled and edited in Geneious Prime v. 2019.2.1 (BioMatters Ltd., Auckland, New Zealand), and new sequences deposited to GenBank (www.ncbi.nlm.nih.gov/genbank/). Accession numbers are listed in Table 1. Sequences were compared to a locally curated reference sequence dataset based on the ex-type sequences published in Samson et al. (2014). Preliminary identifications were made using this dataset in a local BLAST search tool in Geneious. Subsequent reference sequences were selected (Supplementary Table 1) based on these results, with GenBank accession numbers also shown on phylogenetic trees.

All datasets were aligned in MAFFT v. 7.427 (Katoh & Standley 2013) selecting the G-INS-I option, with alignments manually trimmed, adjusted and concatenated in Geneious where needed or appropriate. Aligned datasets were analysed using Maximum Likelihood (ML) and Bayesian tree Inference (BI). For concatenated phylogenies, each gene was treated as separate partitions. ML was performed using IQtree v. 1.6.11 (Nguyen et al. 2015). For each dataset or partition, the most suitable model was calculated using ModelFinder (Kalyaanamoorthy et al. 2017) and ultrafast bootstrapping approximation done using UFBoot2 (Hoang et al. 2018), both...
Fig. 4. Multigene phylogeny of Aspergillus sect Fumigati and Clavati based on a combined ITS, BenA, CaM and RPB2 dataset. Strains from new species are shown in orange text, strains identified during this study in black text and reference strains in grey text. GenBank accession numbers for ITS (green), BenA (blue), CaM (maroon) and RPB2 (purple) are given behind strain numbers. Branch support in nodes higher than 80 % bs and/or 0.95 pp is indicated above thickened branches (* = ex-type; */* = 100 % bs or 1.00 pp; = support lower than 80 % bs and/or 0.95 pp).
integrated into IQtree. BI was performed using MrBayes v. 3.2.7 (Ronquist et al. 2012). The most suitable model for each dataset or partition was selected based on the Akaike information criterion (Akaike 1974) using MrModeltest v. 2.4 (Nylander 2004). Analyses were performed with three sets of four chains (1 cold and three heated) and were stopped at an average standard deviation for split frequencies of 0.01 using the stoprule. Trees were visualised in Figtree v. 1.4.4 (https://github.com/rambut/AfTree/releases) and visually prepared for publication in Studies in Mycology.

Several phylogenetic analyses were prepared. Firstly, a total phylogeny based on ITS, BenA, CaM and RPB2 sequence data was calculated which covered all sections detected in this study. Secondly, smaller datasets were prepared based on observed relationships, which allowed for more reliable alignments and more presentable trees. Thirdly, single gene trees were calculated in the case of putative new species to apply the genealogical concordance phylogenetic species recognition concept (GCPSR) (Taylor et al. 2000).

Morphology

Morphological characterisation and species descriptions were made using standardised protocols published in Samson et al. (2014). Colony characters were captured on Czapek yeast autolysate agar (CYA), CYA with 5% NaCl (CYAS), DG18, MEAbI (Oxoid LP0039 malt extract, Oxoid LP0034 peptone), MEA (Samson et al. 2010), oatmeal agar (OA), yeast extract sucrose agar (YES) and creatine sucrose agar (CREA). Strains were three-point inoculated on these media in 90 mm Petri dishes. Plates were incubated in darkness for 7 d at 25 °C, with
additional CYA plates incubated at 30 and 37 °C. Colour names and codes used in descriptions follow Kornerup & Wanscher (1967). Microscopic observations were made using a Zeiss AXIO Imager.M2 compound and Zeiss AXIO Zoom.V16 microscopes equipped with AxioCam MRC5 and 512 cameras driven by Zen Blue v. 2.3 software (Carl Zeiss CMP GmbH, Göttingen, Germany). Colonies were captured with a Sony NEX-5N camera. Extended Depth of Field analysis and stacking of colony texture micrographs were performed in Helicon Focus v. 7.5.4 (HeliconSoft, Kharkiv, Ukraine). Plates were prepared in Affinity Photo v. 1.7.1 (Serif (Europe) Ltd, Nottingham, UK). For aesthetic purposes, micrographs were adjusted using the "inpainting brush tool" without altering areas of scientific significance.

RESULTS

Strains

Of the ±320 PPRI strains selected for this study, ±250 were viable with 218 selected for sequencing. Eighteen MRC strains were sequenced. New isolations resulted in 65 strains, of which 51 were deposited in PPRI. DNA reference sequences (350 total: 24 ITS, 52 BenA, 250 CaM, 28 RPB2) were generated and submitted to GenBank during this study. Identified strains belonged to 63 species, representing 11 sections of *Aspergillus*. Seven of the species were found to be novel species and are described below in the *Taxonomy* section.

Phylogeny

For a general overview of results, a total phylogeny was calculated including all sequences generated during this study and reference sequences summarised in Supplementary Table 1. Results were summarised as a circular tree (Supplementary Fig. 1) and subsequently used as a baseline to calculate more focused phylogenies used to confirm final identifications and show relationships of the novel species.

Sections *Aspergillus* and *Cremei* (Fig. 1) — We identified six section *Aspergillus* species including *A. chevalieri*, *A. montevidonis*, *A. porosus*, *A. proliferans*, *A. pseudoglaucus* and *A. zuntogii*. This section was reviewed recently and two recently described species *A. porosus* and *A. zuntogii* are detected here (Chen et al. 2017). From section *Cremei*, we identified *A. wentii* and *A. dimorphicus* and *A. sepulchris* are phylogenetically identical. Since *A. dimorphicus* (Mehrotra & Prasad 1969) is the older name, *A. sepulcris* (Tuthill & Christensen 1986) is synonymised with the former.

Sections *Candidi* and *Circumdati* (Fig. 2) — In section *Candidi*, only two species were identified. One strain represented *A. tritici*, while PPRI6060 resolved in a unique clade closely related to *A. subalbidus*, which represents a new species that will be described in a different paper. Section *Circumdati* typically contains ochratoxin A producing species (Visagie et al. 2014b, Frisvad & Larsen 2015a). Our study respectively identified strains as *A. ochraceus*, *A. pallidofulvus*, *A. sclerotiorum* and *A. westerdijkiae*.

Section *Flavi* (Fig. 3) — Among strains identified during this study, section *Flavi* was well represented. Seven known (*A. alliaceus*, *A. flavus*, *A. nomius*, *A. parasiticus*, *A. pseudo-nomius*, *A. tamarii* and *A. transmontanensis*) and two new species were detected. PPRI14275 consistently grouped basal to the *A. transmontanensis* clade. This single strain was morphologically identical to latter and we, therefore, identified it as *A. transmontanensis*. PPRI8986 and PPRI9280 formed a well-supported clade basal to the *A. parasiticus* clade and is described below as *A. krugeri*. PPRI6165 represented a unique lineage in the *A. vandermerweii*, *A. lanosus*, *A. alliaceus* and *A. neoaallaceus* clade, and is described as *A. magaliesburgensis* below.

Sections *Fumigati* and *Clavati* (Fig. 4) — Section *Fumigati* was well represented among strains identified during this study. Strains were identified into 11 known (*A. arcoverdensis*, *A. aureolus*, *A. fischeri*, *A. fumigatafinsis*, *A. fumigatus*, *A. hiratsukae*, *A. laciniosus*, *A. lentulus*, *A. udagawae* and *A. wyomingensis*) and one new species described below as *A. eisenburgensis*. The multigene phylogeny resolved this strain as sister species to *A. australensis*. Strains previously identified as *A. laciniosus* resolved in two distinct clades. One clade containing the ex-type (CBS 117721) for *A. laciniosus* and the other the ex-type (CBM-FA884) for *A. takakii*. Three species were identified in section *Clavati*, including *A. clavatus*, *A. giganteus* and a new species described below as *A. seiferti*.

Section *Nidulantes* (Fig. 5) — Ten section *Nidulantes* species were identified during this study: *A. amoenus*, *A. creber*, *A. jenseni*, *A. nidulans*, *A. protuberus*, *A. quadolinates*, *A. recurvatus*, *A. rugulosus*, *A. sydowii*, and one new species described below as *A. purpureocrustaceus*. The new species resolved as a close relative of *A. tumidus*.

Sections *Terrei* and *Flavipes* (Fig. 6) — Ten section *Terrei* species were identified during this study: *A. alabamensis*, *A. aureoterreus*, *A. carneus*, *A. citrinoterreus*, *A. hortai*, *A. terreus* and four new species. One of these new species is described below as *A. heldtiae*, which consistently resolved as a sister species to *A. pseudoterreus*. The remaining three species or clades were temporarily named *A. cf. alabamensis*, *A. cf. alla-habadii* and *Aspergillus* sp. CBS 142751 as they will be described in a separate paper. *Aspergillus iizukae* was the only species identified from section *Flavipes*.

Section *Usti* (Fig. 7) — Five section *Usti* species were identified during this study and included *A. calidoustus*, *A. insuelus*, *A. pseudodefectus* and *A. pseudostusus*, while one new species is described below as *A. siguros*. The new species resolved in a clade with *A. carlsbadensis* and *A. contaminans*. Based on phylogenetic results, the more recently described *A. fuscicans* (Romero et al. 2018) should be considered a synonym of the older *A. pseudodefectus* (Samson & Mouchacca 1975).

Section *Nigri* — The PPRI collection contained a large number of black *Aspergillus* strains classified in section *Nigri*. Full results will be published elsewhere. Strains were identified into nine species as *A. aculeatus*, *A. brasiliensis*, *A. ochraceus*, *A. palidofulvus*, *A. sclerotiorum* and *A. westerdijkiae*.
Fig. 6. Multigene phylogeny of Aspergillus sect Terrei and Flavipes based on a combined ITS, BenA, CaM and RPB2 dataset. Strains from new species are shown in orange text, strains identified during this study in black text and reference strains in grey text. GenBank accession numbers for ITS (green), BenA (blue), CaM (maroon) and RPB2 (purple) are given behind strain numbers. Branch support in nodes higher than 80 % bs and/or 0.95 pp are indicated above thickened branches (* = ex-type; ** = 100 % bs or 1.00 pp; - = support lower than 80 % bs and/or 0.95 pp).
brunneoviolaceus, A. japonicus, A. neoniger, A. niger, A. piperis, A. tubingensis and A. welwitschiae.

Morphology

We introduce seven new species in the **Taxonomy** section below. These species belong to sections **Clavati**, **Flavi**, **Fumigati**, **Nidulantes**, **Terrei** and **Usti** based on the phylogenetic analyses. Strains conformed to the general morphological characters previously observed for species accepted in these sections. All of the new species were compared with respective close relatives, with notes provided on distinguishing characters after each species description in the **Taxonomy** section.

TAXONOMY

Aspergillus elseburgensis Visagie, S.M. Romero & Houbraken, *sp. nov*. MycoBank MB834199. Fig. 14.

Etymology: Latin, *elsenburgensis*, named after Elseburg, the town the ex-type was collected from.

Classification: Eurotiomycetes, Eurotiales, Aspergillaceae, Aspergillus section Fumigati.

Diagnosis: Colonies showing faster growth at 37 °C than at 25 °C, white and floccose, ascomata produced in aerial hyphae after prolonged incubation, white to cream colored, sporation very sparse, conidiophores with short stipes (10–70 μm) and small globose conidia (1.5–2 μm).

Typus: South Africa, Western Cape, Elseburg, soil, June 1986. (holotype PREM 62313, culture ex-type PPRI 2994 = CMV 01114G = CSIR1013).

ITS Barcode: MK450651 (alternative identification markers: BenA = MK451215; CaM = MK451513; RPB2 = MK450804).

Colony diam (7 d, in mm): CYA 35–40; CYA 30 °C 50–53; CYA 37 °C 50–60; CYAS 8–12; MEA 55–60; MEA 40–45; DG18 20–25; YES 45–50; OA 45–50; CREA 35–36.
80% bs and/or 0.95 pp).

Single gene phylogenies of Aspergillus sect Fumigati based on ITS, BenA, CaM and RPB2. Strains from new species are shown in orange text and reference strains in grey text. Branch support in nodes higher than 80% bs and/or 0.95 pp are indicated above thickened branches (* = ex-type; ** = 100% bs or 1.00 pp; = support lower than 80% bs and/or 0.95 pp).

Fig. 8. Single gene phylogenies of Aspergillus sect Fumigati based on ITS, BenA, CaM and RPB2. Strains from new species are shown in orange text and reference strains in grey text. Branch support in nodes higher than 80% bs and/or 0.95 pp are indicated above thickened branches (* = ex-type; ** = 100% bs or 1.00 pp; = support lower than 80% bs and/or 0.95 pp).

Colony characters (25°C, 7 d): CYA colonies surface floccose, mycelial areas white, ascomata present after prolonged incubation, produced in aerial hyphae, sparse sporulation present after >2 wk incubation, greenish, soluble pigment absent, exudate clear, reverse pigmentation yellowish white to pale yellow (3A2–3A3). MEAb1 colonies surface floccose, mycelial areas white, ascomata present after prolonged incubation, produced in aerial hyphae, sporulation absent, sparse sporulation present after >2 wk incubation, greenish, soluble pigment absent, exudate clear, reverse pigmentation yellowish white to pale yellow (3A2–3A3). YES colonies surface floccose, mycelial areas white, sporulation absent, soluble pigment absent, exudate clear, reverse pigmentation yellowish white to pale yellow (3A2–3A3). DG18 colonies surface floccose, mycelial areas white, sporulation sparse, white but becomes greenish with age, soluble pigment absent, exudate clear, reverse pigmentation yellowish white to pale yellow (3A2–3A3). CREA colonies weak growth, acid not produced.

Micromorphology: Conidial heads radiate. Conidiophores uniseriate. Stipes hyaline, smooth, 10–70 × 2.5–4(-4.5) μm. Vesicles subclavate, phialides cover 50% of head, 5–8 μm wide. Phialides ampulliform, 4.5–6 × 2–3 μm. Conidia globose, smooth, 1.5–2.5 × 1.5–2.5 μm, (2.06 ± 0.15 × 2 ± 0.16, n = 56) μm, length/width 1.03 ± 0.05. Ascomata neoascharoid-like, white to cream, abundant on OA, 70–270 μm. Ascl 8-spored, 9–15 μm. Ascospores smooth, with 2 prominent equatorial furrow, globose to subglobose from the top, 4–5 × 3.5–5 μm (4.5 ± 0.2 × 4.2 ± 0.3, n = 43) μm, length/width 1.08 ± 0.07.

Notes: The multigene phylogeny resolves A. elsenburgensis as a close relative of A. australensis and A. galapagensis in section Fumigati (Figs 4, 8). The new species grows faster on MEAb1 and have somewhat longer stipes than A. australensis (55–60 vs 40–45 mm; up to 70 μm vs up to 30 μm) (Samson et al. 2007). Compared to A. galapagensis, A. elsenburgensis shows slightly faster growth on most media, while it also produces smaller conidia (1.5–2 vs 2.5–3 μm) (Samson et al. 2007).

Aspergillus heldtiae Visagie, sp. nov. MycoBank MB834200. Fig. 15.

Etymology: Latin, heldtiae, named after Margaret Vinci Heldt, the creator of the beehive hairstyle that was popular during the 1960s and famously Marge Simpson’s choice of hairstyle. This species resembles the beehive when observed through a dissection microscope.

Classification: Eurotiomycetes, Eurotiales, Aspergillaceae, Aspergillus section Terrei.

Diagnosis: Colonies showing rapid growth, bright yellow mycelial areas, cinnamon sporulation, conidiophores biseriate, vesicle

276
17–28 μm, stipes hyaline with a small proportion darkened, conidia smooth, globose to subglobose, 2–2.5 μm.

Typus: South Africa, unknown, Millet seed, June 1991, (holotype PREM 50864, culture ex-type PPRI 4229 = CMV 0042A).

ITS Barcode: MK450656 (alternative identification markers: BenA = MK450981; CaM = MK451518; RBP2 = MK450809).

Colony diam (7 d, in mm): CYA 54–58; CYA 30 °C 53–56; CYA 37 °C 60–65; CYAS 50–55; MEAbl 55–60; MEA 36–38; DG18 55–65; YES > 70; OA 33–35; CREA 30–32.

Colony characters (25 °C, 7 d): CYA colonies surface floccose, mycelial areas greenish yellow (1AB), sporulation sparse, cinnamon colored, soluble pigment absent, exudate absent, reverse pigmentation olive brown (4BB), light yellow (3A5). YES colonies surface floccose, mycelial areas greenish yellow (1AB), sporulation sparse, cinnamon colored, soluble pigment absent, exudate absent, reverse pigmentation olive brown (4BB), light yellow (3A5). DG18 colonies surface floccose, mycelial areas greenish yellow (1AB), sporulation sparse, cinnamon colored, soluble pigment absent, exudate absent, reverse pigmentation olive brown (4BB), light yellow (3A5). CREA colonies strong growth, weak acid production.

Micromorphology: Conidial heads columnar. Conidiophores biseriate. Stipes hyaline, small proportion darkened, smooth, 140–330 × 5–8 μm. Vesicles globose, metulae cover 100 % of head, 17–28 μm wide. Metulae 6.5–8.5 × 3–4 μm. **Phialides** ampliform, 5.5–7.5 × 2–2.5 μm. **Conidia** globose to subglobose, smooth, 2–2.5 × 2–2.5 μm, (2.4 ± 0.1 x 2.1 ± 0.1, n = 52) μm, length/width 1.15 ± 0.07. Ascomata not observed.
Fig. 10. Phyllogeny of Aspergillus sect Flavi based on ITS, BenA, CaM and RP2B. Strains from new species are shown in orange text, strains identified during this study in black text and reference strains in grey text. Branch support in nodes higher than 80% bs and/or 0.95 pp are indicated above thickened branches (* = ex-type; ** = 100% bs or 1.00 pp; - = support lower than 80% bs and/or 0.95 pp).
Notes: Phylogenies resolve Aspergillus heldtiae as a close relative of Aspergillus pseudoterreus in section Terrei (Figs 6, 9). Both species produce bright yellow colonies with cinnamon colored sporulation. However, Aspergillus pseudoterreus produce conidiophores in distinctive loosely bundled synnema (Samson et al. 2011a), which is absent in the new species. Aspergillus heldtiae produces a minor proportion of darkened stipes, which are not reported for Aspergillus pseudoterreus.

Aspergillus krugeri Visagie, sp. nov. MycoBank MB834203. Fig. 16.

Etymology: Latin, krugeri, named after the Kruger National Park, the National Park where the ex-type was collected from.

Classification: Eurotiomycetes, Eurotiales, Aspergillaceae, Aspergillus section Flavi.

Diagnosis: Colonies on CYA showing rapid growth at 25 °C and moderate growth at 37 °C, dense sporulation, greyish to dark green, dark brown sclerotia abundant, conidial heads radiate, splitting into 3 or more columns, conidiophores uni- to biseriate, stipes rough, vesicle 40–80 μm wide, conidia broadly ellipsoidal, rough, 4–7 × 3.5–6.5 μm.

Typus: South Africa, Kruger National Park, Mopane tree debris (Colophosphum mopane), October 2005, collected by E.J. vd Linde (holotype PREM 62309, culture ex-type PPRI 8986 = CMV 006G4).

ITS Barcode. MK450655 (alternative identification markers: BenA = MK451098; CaM = MK451517; RB2 = MK450808).

Colonial diameter (7 d, in mm): CYA 60–70; CYA 30 °C 65–70; CYA 37 °C 40–47; CYA 35–58; MEA > 70; MEA > 70; DGI > 70; YES > 70; OA 52–56; CEA 33–38.

Colonial color (25 °C, 7 d): CYA colonies surface granular and velutinous, mycelial areas white, sporulation moderately dense to dense, greyish green to dark green (29E7–F7) colored, sclerotia abundant, white when young becoming brown to almost purplish, soluble pigment absent, exudate...
Fig. 12. Single gene phylogenies of *Aspergillus* sect. Terrei based on ITS, BenA, CaM and RPB2. Strains from new species are shown in orange text, strains identified during this study in black text and reference strains in grey text. Branch support in nodes higher than 80 % bs and/or 0.95 pp are indicated above thickened branches (* = ex-type; * = 100 % bs or 1.00 pp; - = support lower than 80 % bs and/or 0.95 pp).

Fig. 13. Single gene phylogenies of *Aspergillus* sect. Utii based on ITS, BenA, CaM and RPB2. Strains from new species are shown in orange text, strains identified during this study in black text and reference strains in grey text. Branch support in nodes higher than 80 % bs and/or 0.95 pp are indicated above thickened branches (* = ex-type; * = 100 % bs or 1.00 pp; - = support lower than 80 % bs and/or 0.95 pp).
Fig. 14. Aspergillus elsenburgensis. A. Colonies, from left to right, CYA, MEAbl, DG18. B–E. Close-up of colonies on DG18 (B, C), CYA (D) and OA (E). F. Ascoma. G, H. Asci and ascospores. I–L. Conidiophores. M. Conidia. Scale bars: B, D, E = 1 mm; C = 0.2 mm; F, G = 20 μm; H–M = 10 μm.
Fig. 15. Aspergillus heldtiae. A. Colonies, from left to right, CYA, MEAb1, DG18. B–F. Close-up of colonies on CYA (B), DG18 (C, D) and MEAb1 (E, F). G–L. Conidiophores. M. Conidia. Scale bars: B–C = 2 mm; D, E = 0.5 mm; F = 0.2 mm; G–I = 20 μm; J–M = 10 μm.
Fig. 16. Aspergillus krugeri. A. Colonies, from left to right, CYA, MEAbl, DG18. B–D. Close-up of colonies on MEAbl (B), DG18 (C) and CYA (D). E–I. Conidiophores. J. Conidia. Scale bars: B, D = 2 mm; C = 0.5 mm; F, G = 20 μm; H–M = 10 μm.
Fig. 17. *Aspergillus magaliesburgensis*. **A.** Colonies, from left to right, CYA, MEAbl, DG18. **B–E.** Close-up of colonies after prolonged incubation on CYA (B–D) and MEAbl (E). **F–J.** Conidiophores. **K.** Conidia. Scale bars: B, E = 2 mm; C = 0.2 mm; D = 0.5 mm; F–L = 20 μm; J, K = 10 μm.
clear, reverse pigmentation pale yellow to dull yellow (3A3–B3), olive brown (4D4) below sclerotia. MEAbl colonies surface granular and velutinous, mycelial areas white, sporulation moderately dense to dense, greyish green to dark green (29E7–F7) colored, sclerotia abundant, white when young becoming brown to almost purplish, soluble pigment absent, exudate clear, reverse pigmentation pale yellow to dull yellow (3A3–B3). YES colonies surface velutinous, granular and floccose, mycelial areas white, sporulation dense, greyish green (29E7–30E7) colored, covering white to brown to almost purplish sclerotia, soluble pigment absent, exudate clear, reverse pigmentation greyish yellow (4B5), pale yellow to light yellow (4A3–5). DG18 colonies surface velutinous, mycelial areas white, sporulation dense, greyish green (29E7–30E7) colored, covering white to brown sclerotia, soluble pigment absent, exudate absent, reverse pigmentation pale yellow to dull yellow (3A3–B3). CREA colonies weak growth, weak acid production.

Mcormorphology: Conidial heads radiate, splitting into 3 or more columns. Conidiophores uniseriate to biseriate with an equal ratio. Stipes hyaline, rough, 350–1000–(1300) × 10–18–(21) μm. Vesicles globose to spathulate, metulae/phialides cover 100 % of head, 40–80 μm wide. Metulae 11–22 × 5–10 μm. Phialides ampulliform, 10–15 × 4.5–7 μm. Conidia broadly ellipsoidal, rough, 4–7 × 3.5–6.5 μm, (5.5 ± 0.7 × 5.1 ± 0.6, n = 72) μm, length/width 1.08 ± 0.04. Ascomata not observed. Sclerotia white when young, becoming brown with age, 370–850 μm.

Notes: Aspergillus krugeri belongs to the A. flavus-clade (Frisvad et al. 2019) and is closely related to A. arachidicola, A. parasiticus, A. novoparasticus, A. sergii and A. transmontanensis (Figs 3, 10). These species are morphologically similar, but colony growth rates can distinguish between them. Aspergillus krugeri grows faster than A. parasiticus (40–60 mm), A. sergii (<55 mm) and A. transmontanensis (55–57 mm) on CYA (Soares et al. 2012). On CYA at 37 °C, Aspergillus krugeri grows more restricted than A. arachidicola (60–70 mm), A. novoparasticus (58–63 mm), A. sergii (<60 mm) and A. transmontanensis (55–57 mm) (Pildain et al. 2008, Gonçalves et al. 2012).

Aspergillus magaliesburgensis Visagie, sp. nov. MycoBank MB834204, Fig. 17.

Etymology: Latin, magaliesburgensis, named after Magaliesburg, the town the ex-type was collected from.

Classification: Eurotiomycetes, Eurotiales, Aspergilliaceae, Aspergillus section Flavi.

Diagnosis: Colonies pale, sparse intense yellow sporulation becoming cinnamon with age. Stipes yellow, conidia smooth, globose to subglobose, 2.5–3.5 × 2.5–3.5 μm. Sclerotia present.

Typus: South Africa, Gauteng, Magaliesburg, from an Antlion (Myrmeleontidae), April 1996, collected by J. Pieterson (holotype PREM 62314, culture ex-type PPII 6165 = CMV 007A3).

ITS Barcode: MK450649 (alternative identification markers: BenA = MK451116; CaM = MK451511; RPB2 = MK450802).

Colony diam (7 d, in mm): CYA 65–70; CYA 30 °C 60–65; CYA 37 °C 50–55; CYAS 65–70; MEAbl > 70; MEA 53–56; DG18 > 70; YES > 70; OA 55–60; CREA 55–60.

Aspergillus purpureocrustaceus Visagie, sp. nov. MycoBank MB834205, Fig. 18.

Etymology: Latin, named purpureocrustaceus, meaning purple and crust, in reference to the colonies on CYA and MEAbl that turn purple and crust-like with age.

Classification: Eurotiomycetes, Eurotiales, Aspergilliaceae, Aspergillus section Nidulantes.

Diagnosis: Colonies crust-like and very hard due to abundant Hülle cells produced on surface, having a reddish brown to purple color, sporulation sparse to absent, conidiophores biseriate, stipes 130–310 μm, conidia globose to subglobose, rough, 3.5–4.5(–5) × 3–4.5 μm.

Typus: South Africa, Limpopo, plant debris, January 1990, (holotype PREM 62264, culture ex-type PPII 3840 = CMV 008B3).

Notes: Phylogenies resolve A. magaliesburgensis in section Flavi in the A. alliaceus clade (Frisvad et al. 2019), containing A. alliaceus, A. lanosus, A. neoalliaceus and A. vandermerwei (Fig. 3, 10). BenA, CaM and RPB2 can be used to identify the new species. Aspergillus magaliesburgensis produces sclerotia, and these structures are absent in A. vandermerwei, while A. lanosus typically produces bright yellow colonies. The new species is distinct from A. neoalliaceus based on the subglobose to ellipsoid conidia of the latter. Morphologically, A. magaliesburgensis and A. alliaceus could not be distinguished from each other. We do note that “faintly yellow conidiophores” were previously observed for A. alliaceus (Raper & Fennell 1965), while A. magaliesburgensis produce conidiophores with distinctly yellow stipes.

Additional material examined: South Africa, Western Cape, Cape Town, Hunterman spider (Palytes castaneus), January 1994, collected by N. Larsen & H. Robertson PPII 5548 = CMV 008B1.
Fig. 18. Aspergillus purpureocrustaceus. A. Colonies, from left to right, CYA, MEAob, DG18. B–E. Close-up of colonies on MEAob (B), DG18 (C, E) and CYA (D). F. Hüle cells. G. Potential immature asci. H–K. Conidiophores. L. Conidia. Scale bars: B, C, D = 2 mm; E = 0.5 mm; F = 20 μm; G–K = 10 μm.
Aspergillus seifertii

A. Colonies, from left to right, CYA, MEAbl, DG18. B–E. Close-up of colonies on DG18 (B) and CYA (C–E). F–H. I. Conidiophores. I. Conidia.

Scale bars: B–D = 0.5 mm; E = 2 mm; F, G = 20 μm; H–I = 10 μm.
Fig. 20. *Aspergillus sigurros*. **A.** Colonies, from left to right, CYA, MEAbl, DG18. **B–E.** Close-up of colonies on CYA (B), DG18 (C, D) and MEAbl (E). **F.** Hüle cells. **G–K.** Conidiophores. **I.** Conidia. Scale bars: B, C, E = 2 mm; D = 0.5 mm; F–H = 20 μm; I–K = 10 μm.
ITS Barcode: MK450653 (alternative identification markers: BenA = MK451138; CaM = MK451515; RPB2 = MK450806).

Colony diam (7 d, in mm): CYA 40–41 (25–26); CYA 30 C 10–15; CYA 37 °C no growth; CYAS 25–28; MEAb 45–47 (33–35); MEA 38–41; DG18 35–40; YES 53–60; OA 25–30; CREA 27–30.

Colony characters (25 °C, 7 d): CYA colonies surface floccose, mycelial areas yellow to grey, sporulation absent, Hülle cells abundant, reddish brown, becoming purple and crust-like with age, soluble pigment absent, exude reddish brown and clear, reverse pigmentation dark brown (6F8), yellowish brown (5D4–5). MEAb colonies surface floccose, mycelial areas yellow to grey, sporulation absent, Hülle cells abundant, reddish brown, becoming purple and crust-like with age, soluble pigment absent, exude reddish brown and clear, reverse pigmentation dark brown (6F8), yellowish brown (5D4–5). YES colonies surface floccose, mycelial areas yellow to grey, sporulation absent, Hülle cells abundant, reddish brown, soluble pigment absent, exude reddish brown and clear, reverse pigmentation dark brown (6F8), yellowish brown (5D4–5). YES colonies surface floccose, mycelial areas yellow to grey, sporulation absent, Hülle cells abundant, reddish brown, soluble pigment absent, exude reddish brown and clear, reverse pigmentation dark brown (6F8), yellowish brown (5D4–5). CREA colonies weak growth, acid not produced.

Micromorphology: Conidial heads radiate. Conidiophores biseriate. Stipes hyaline, smooth, 130–310 × 5–7.5 μm. Vesicles subclavate, metulae cover 75–100 % of head, 10–20 μm wide. Metulae 6–11.5 × 3–5.5 μm. Phialides ampulliform, 7–10 × 3–4 μm. Conidia globose, rough, 3.5–4.5–(5) × 3–4.5 μm, (4.1 ± 0.4 × 3.9 ± 0.4, n = 28 μm), length/width 1.05 ± 0.04. Hülle cells globose to subglobose, occurring in hard crusts with reddish purple color, 13–25 μm. Ascomata not observed.

Notes: Phylogenies resolve A. purpureocrustaceus in a clade of section Nidulantes with A. multicolor, A. mulundensis, A. pluriseminatus and A. tupidus (Figs 5, 11). This group of species typically produce abundant Hülle cells, often giving the colony a reddish to purple color with age (Roy et al. 1987, Stchigel & Guarro 1997, Chen et al. 2016, Crous et al. 2018). Comparing these species, only A. multicolor and A. mulundensis are capable of growth on CYA at 37 °C. Aspergillus pluriseminatus can be distinguished from the other species in this clade by the presence of a sexual state and absence of asexual state. Compared to the new species, A. tupidus grows more restricted on MEA (38–41 vs 22–23 mm), grows more rapidly on CYA at 30 °C (10–15 vs 32–34 mm), with its colony appearance dominated by good sporulation.

Aspergillus seiftii Visagie & N. Yilmaz, *sp. nov.* MycoBank MB834206. Fig. 19.

Etymology: Latin, seiftii, named after Dr. Keith A. Seifert, a prominent Canadian mycologist specialised on mycotoxigenic genera and other hyphomycetes.

Classification – Eurotiomycetes, Eurotales, Aspergillaceae, Aspergillus section Clavati.

Diagnosis — Colonies greyish to dark green, producing large conidiophores with clavate heads, stipes up to 6 mm long, vesicles 26–60 μm wide, up to 210 μm long.

Typus: South Africa, Free State, Golden Gate National Park, Grassroots, January 1988, collected by R. Anelich (holotype PREM 49066, culture ex-type PPRI 3211 = CMV 006F5).

Additional material examined: South Africa, Free State, Golden Gate National Park, Soil, 2018, collected by R. Jacobs, PPRI 26255 = CMV 011E3; CMV 011E4.

ITS Barcode: MK450647 (alternative identification markers: BenA = MK451093; CaM = MK451509; RPB2 = MK450800).

Colony diam (7 d, in mm): CYA 33–35; CYA 30 °C 35–38; CYA 37 °C 2–3; CYAS 10–12; MEAb 40–45; MEA 38–40; DG18 25–28; YES 45–50; OA 28–35; CREA 20–25.

Colony characters (25 °C, 7 d): CYA colonies surface floccose, mycelial areas white, sporulation moderately dense, greyish green to dark green (25D–F5), soluble pigment absent, exude clear, reverse pigmentation pale green to pale yellow (30A–1A3–2A3). MEAb colonies surface floccose, mycelial areas white, sporulation sparse, greyish green (28D6), Hülle cells abundant, reddish brown, soluble pigment absent, exude reddish brown and clear, reverse pigmentation dark brown (6F8), yellowish brown (5D4–5). YES colonies surface floccose, mycelial areas yellow to grey, sporulation absent, Hülle cells abundant, reddish brown, soluble pigment absent, exude reddish brown and clear, reverse pigmentation dark brown (6F8), yellowish brown (5D4–5). CREA colonies weak growth, acid not produced.

Micromorphology: Conidial heads clavate, with age splitting into 3–4 divergent columns. Conidiophores uniseriate. Stipes hyaline, smooth, up to 6 mm × 17–24 μm. Vesicles clavate, phialides cover 100 % of head, 3.4 ± 0.2 × 3.3 ± 0.19, n = 59 μm, length/width 1.03 ± 0.05. Ascomata not observed.

Notes: Phylogenies resolves Aspergillus seiftii as a unique lineage in section Clavati (Figs 4, 12). Generally, species from this section produce blue-green conidia and clavate conidiophores (except for A. posadasensis for which only a sexual reproductive state was reported (Marin-Felix et al. 2014)). The stipe and vesicle length are generally good characters to distinguish between these species (Varga et al. 2007). Aspergillus clavatus and A. seiftii produce conidiophores with stipes of up to 3 and 6 mm, respectively, while A. giganteus and A. longivesica can grow several cm in length. The remaining section Clavati species have stipes shorter than 1 mm. Vesicle length is also a useful character. Aspergillus clavatus, A. seiftii, A. giganteus and A. longivesica have vesicles up to 200, 210, 600 and 3200 μm, respectively.

Aspergillus sigurros Visagie, *sp. nov.* MycoBank MB834207. Fig. 20.
Etymology: Latin, *siguros*, named after Sigurrós, one of Keith A. Seifert’s favourite music groups.

Classification: *Eurotiomycetes, Eurotiales, Aspergillaceae, Aspergillus section Ustil.*

Diagnosis: Colonies with grey to brownish moderately dense sporulation, growth on CYA at 30 °C 10–14 mm; conidiophores with brown stipes, vesicles 11–25 μm wide, conidia spiny, globose 3–4 × 3–4 μm.

Typus: South Africa, Kwazulu-Natal, Pinetown, unknown environmental sample, April 2014, collected by M. Truter (holotype PREM 62308, culture ex-type PPRI 15889 = CMV 005I4 = 2014–M62/147).

ITS Barcode: MK450650 (alternative identification markers: *BenA* = MK451066; *CaM* = MK451512; *RPB2* = MK450803).

Colony diam (7 d, in mm): CYA: 34–35; CYA 30 °C 10–15; CYA 37 °C no growth; CYAS 27–29; MEBal 29–31; MEA 28–30; DG18 28–32; YES 39–42; OA 32–35; CREA 25–26.

Colony characters (25 °C, 7 d): CYA colonies surface floccose, mycelial areas white, sporulation moderately dense, brownish grey to brown (5E2–5E5–2), soluble pigment absent, exudate clear, minute droplets, reverse pigmentation olive (2D4), yellowish white (3A2). *MEABl* colonies surface floccose, mycelial areas white, sporulation moderately dense, grey (5E1–6E1) to brown (6E6), soluble pigment absent, exudate absent, reverse pigmentation olive (2D4), yellowish white (3A2). *YES* colonies surface floccose, mycelial areas white, sporulation sparse to moderately dense, greyish brown (5D3–6D3), soluble pigment absent, exudate absent, reverse pigmentation brownish orange (5C5), yellowish white (3A2). *DG18* colonies surface floccose, mycelial areas white, sporulation moderately dense, brownish grey to brown (5E2–5E5–2), soluble pigment absent, exudate clear, minute droplets, reverse pigmentation brown (5E5), olive (2D4), yellowish white (3A2). *CREA* colonies strong growth, acid not produced.

Micromorphology: Conidial heads radiate. Conidiophores biseriate. Stipes brown, smooth, (85–)120–360 × 2.5–6.5 μm. Vesicles globose, metulae cover 50–75 % of head, 11–25 μm wide. Metulae 6–10 × 3–4 μm. Phialides ampulliform, 6.5–8.5 × 2.5–3.5 μm. Conidia globose, spiny to somewhat wart-like, some covered in sheath, 3–4 × 3–4 μm, (3.2 ± 0.2 × 3.2 ± 0.2, n = 53) μm, length/width 1.03 ± 0.04. Hüller cells irregularly elongated, in scattered groups, 22–60 × 11–20 μm. Ascomata not observed.

Notes: *Aspergillus siguros* resolves as a close relative of *P. carlsbadensis* and *P. contaminans* in section Ustil (Figs 7, 13). Compared to *A. carlsbadensis*, the new species produces conidiophores with broader vesicles (11–25 vs 10–14 μm), larger conidia (3–4 vs 2.5–3 μm) and grows more restricted on CYA at 30 °C (10–15 vs 28–32 mm) (Samson et al. 2011b). Microscopically *A. contaminans* and *A. siguros* are very similar. However, the new species grows faster on CYA at 30 °C (4–5 vs 10–14 mm) (Crous et al. 2017).

DISCUSSION

With this project, we aimed to re-identify strains previously lodged in the PPRI and MRC culture collections as *Aspergillus* or its old associated sexual state genera (*e.g. Eurotium, Emericella* etc.). Unfortunately, a large proportion of strains in PPRI were either badly contaminated or not viable (±35 %). As a result, only 250 strains were included in this particular study, with 354 new DNA reference sequences (ITS 24; *BenA* 52; *CaM* 250; *RPB2* 28) generated and published on GenBank. South African *Aspergillus* was found to be relatively diverse with 63 species identified belonging to 11 sections (sections *Aspergillus*, *Candidi*, *Circumdati*, *Clavati*, *Cremei*, *Flavi*, *Flavipedes*, *Fumigati*, *Nidulantes*, *Terrei* and *Ustil*). This does not include the 11 *Aspergillus* sect *Nigri* species that will be published elsewhere. Among the 63 species, seven were found to be new and are described in the *Taxonomy* section above. One problem experienced during this project was that for the new species, very few strains were available, e.g. four new species were represented by only one strain, while the remaining three new species had only two strains. This situation is frequent when sequencing smaller collections around the world. For *A. elsenburgensis* we were fortunate that CBS had several additional strains sequenced. Even though not ideal, comparisons based on morphology, multigene phylogenies and single gene trees applying genealogical concordance phylogenetic species recognition (*Taylor et al. 2000*), leaves little doubt about the novelty of the new species introduced here.

Sequence based identifications of PPRI and MRC strains was relatively straightforward thanks to the secondary identification marker *CaM* and associated database (Samson et al. 2014). Throughout the genus and between different sections, the primer pairs cmd5&cmd6 performed (Hong et al. 2005) well. For only a minor proportion of strains, additional ITS, *BenA* and/or *RPB2* sequences were needed to confirm the *CaM* based identifications. ITS and *BenA* posed no problems in terms of amplification using proposed methods of (Samson et al. 2014), but *RPB2* was difficult to amplify using either 5F&7CR (*Liu et al. 1999*) or 5FEur&7CREur (Houbraken et al. 2012). Both primer sets provided intermitted hits and misses, with the internal sequencing primers F310, R310, 388F and 527R (Houbraken & Samson 2011) at the end needed to obtain high quality sequences contigs.

Several *Aspergillus* strains belonging to sect *Terrei* were tentatively identified during this study. Both *A. allahabadi* and *A. alabamensis* appears to contain a large degree of infraspecies variation and potentially contain a large number of new species. Even though the multigene phylogeny (*Fig. 6*) appears to indicate that several new species may exist, we did not feel comfortable introducing new species in a difficult clade without having more data from other regions of the world. Similarly, PPRI 14275 potentially represents a new species closely related to *A. transmontanensis* from section *Flavi*. However, since no consistent morphological differences were observed in this strain, we decided to not introduce a phylogenetic species for this single strain.

One of the big challenges we face in *Aspergillus* is to discover the missing biodiversity. This can either be in the form of new species discovery and/or isolation of additional strains of already known species. Phylogenetic approaches and their incorporation into our species concepts resulted in rather aggressive approaches. It is not ideal to introduce new species based on one or two strains, but as is obvious from this study, often one is left with that as the only option. Monotypic species are frequent in *Aspergillus* with 118 of the 415 accepted species represented by a single strain (the ex-type), while 80 species are represented by
two strains. Within a modern taxonomy like that employed in Aspergillus, this creates problems on several levels, but most pressing is infraspecies variation for species that are often not captured. This is true from a morphological and DNA sequence perspective, but especially concerning the latter, it creates difficulties with identifications. It is not uncommon to find strains that show a few nucleotide differences from the ex-type sequence. Trying to identify such a sequence becomes very complicated amongst monotypic species as one will often not know if the strain belongs to a new species or if they found infraspecies variation within a known species. Studies that generate a lot of additional reference sequences are thus of great importance, not only to discover new species but also to discover infraspecies variation which ultimately makes future species delineations and thus identifications easier. For taxonomic revisions it is crucial to have as much data as possible available, as recently illustrated for the A. viridinatans species complex, where it was found that A. parafelis and A. pseudofelis should be considered synonyms of the genetically diverse A. felis (Hubka et al. 2018). Expanded efforts to isolate and identify fungi should thus remain a priority in important genera such as Aspergillus.

ACKNOWLEDGEMENTS

We dedicate this paper to Dr Keith A. Seifert on the occasion of his retirement from Agriculture and Agri-Food Canada (Ottawa Research and Development Centre). Apart from his valuable contributions to the international mycological community, he has been a role model, mentor, colleague and friend to the authors on this paper. We thank Stella Romero for providing additional strains and data used for the description of A. eisenburgensis. CMV would like to acknowledge the Foundational Biodiversity Information Programme (FBIP) of the National Research Foundation of South Africa for financial support provided under grant nr 110441 (reference FBIS170406226088). The authors would like to thank Konstanze Bensch and Shaun Pennycook who provided Latin assistance.

APPENDIX A. SUPPLEMENTARY DATA

Supplementary data to this article can be found online at https://doi.org/10.1016/j.simyco.2020.02.003.

REFERENCES

Akaike H (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990). Basic Local Alignment Search Tool. Journal of Molecular Biology 215: 403–410.
Blakeslee AF (1915). The occurrence and isolation of South African thermophilic fungi. Transactions of the British Mycological Society 5: 59–155.
Crous PW, Wingfield MJ, Burgess TL, et al. (2018). Fungal planet description sheets: 716–784. Persoonia 40: 239–392.
Davolos D, Persiani AM, Pietrafelici B, et al. (2012). Aspergillus aflatoxins sp. nov., a novel ochratoxin A-producing Aspergillus species (section Circumdati) isolated from decomposing leaves. International Journal of Systematic and Evolutionary Microbiology 62: 1007–1015.
de Hoog GS, Guaita AJ, Gene J, et al. (2014). Atlas of clinical fungi: 1126.
Eicker A (1969). Microfungi from surface soil of forest communities in Zululand. Transactions of the British Mycological Society 53: 381–392.
Eicker A (1970a). Ecological observations on soil fungi. South African Journal of Science 66: 327–334.
Eicker A (1970b). Vertical distribution of fungi in zululand soils. Transactions of the British Mycological Society 55: 45–57.
Eicker A (1972). The occurrence and isolation of South African thermophilic fungi. South African Journal of Science 68: 150–155.
Eicker A (1973). The mycoflora of Eucalyptus maculata leaf litter. Soil Biology and Biochemistry 5: 441–449.
Eicker A (1974). The mycoflora of an alkaline soil of the open-savannah of the Transvaal. Transactions of the British Mycological Society 63: 281–288.
Eicker A (1976). Non parasitic mycoflora of the phyloplane and litter of Panicus coloratum. Transactions of the British Mycological Society 67: 275–281.
Eicker A (1980). Metasporic fungi associated with cultivation of Agaricus brunneocarpyus. Transactions of the British Mycological Society 74: 465–470.
Frisvad JC, Frank JM, Jørgensen SM, et al. (2004). New ochratoxin A producing species of Aspergillus section Circumdati. Studies in Mycology 50: 23–43.
Frisvad JC, Hubka V, Ezekiel CN, et al. (2019). Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Studies in Mycology 93: 1–63.
Frisvad JC, Larsen TO (2011). Chemodiversity in the genus Aspergillus. Applied Microbiology and Biotechnology 99: 7859–7877.
Frisvad JC, Larsen TO (2015b). Extracellular enzymes of Aspergillus fumigatus and other pathogenic species in Aspergillus section Fumigati. Frontiers in Microbiology 6: e1485.
Frisvad JC, Larsen TO, Thrane U, et al. (2011). Fumonisins and ochratoxin production in industrial Aspergillus niger strains. Plos One 6: e23496–e23496.
Gianni C, Romano C (2004). Clinical and histological aspects of toenail onychomycosis caused by Aspergillus spp.: 34 cases treated with weekly intermittent terbinafine. Dermatology 209: 104–110.
Gonzalves SS, Stichig AM, Cano JF, et al. (2012). Aspergillus noverdaaricus: a new clinical species of the section Flavi. Medical Mycology 50: 152–160.
Greelf-Laubscher MR, Beukes I, Marais GJ, et al. (2018). The occurrence of mycotoxigenic fungi in abalone feed in South Africa. African Journal of Marine Science 40: 383–394.
Hoang DT, Chemomor O, von Haeseler A, et al. (2018). UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522.
Hong S, Go S, Shin H, et al. (2005). Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97: 1316–1329.
Hong S-B, Lee M, Kim D-H, et al. (2013). Aspergillus luchuensis, an industrially important black Aspergillus in East Asia. Plos One 8: e63789.
Houben J, Samson RA (2011). Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology 70: 1–51.
Houben J, Spierenberg H, Frisvad JC (2012). Rasamoniella, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. Antonie van Leeuwenhoek 101: 403–421.
Hubka V, Barrs V, Dvotálová Z, et al. (2018). Unravelling species boundaries in the Aspergillus viridinatans complex (section Fumigati): opportunistic human and animal pathogens capable of interspecific hybridization. Persoonia - Molecular Phylogeny and Evolution of Fungi 41: 142–174.
Hubka V, Kubálová A, Maláčová N, et al. (2012). Rare and new ectotrophic agents revealed among 178 clinical Aspergillus strains obtained from Czech patients and characterized by molecular sequencing. Medical Mycology 50: 601–610.
Kalyaanamoorthy S, Minh BC, Wong TKF, et al. (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589.
Katoh K, Standley DM (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 702–706.
Kauf R, Mittal N, Kakkar M, et al. (2000). Ototomycosis: a clinicomycologic study. Ear Nose Throat Journal 79: 606–609.
