Haemodialysis

EDITORIAL COMMENT

Haemodialysate: long neglected, difficult to optimize, may modify hard outcomes

Maria Vanessa Perez-Gomez1, Emilio Gonzalez-Parra1 and Alberto Ortiz1,2

1IIS-Fundacion Jimenez Diaz, School of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRISIN and REDINREN, Madrid, Spain, and 2Department of Nephrology, Fundación Jiménez Díaz, Madrid, Spain

Correspondence to: Alberto Ortiz; E-mail: aortiz@fjd.es

Abstract

In two recent CKJ reviews, experts (Basile and Lomonte and Locatelli et al.) have reviewed haemodialysate composition. A long-neglected issue, observational studies have associated the composition of haemodialysate to adverse outcomes. However, the scarcity of clinical trial-derived information results in limited guideline recommendations on the issue. Indeed, guidelines have more frequently indicated what not to do rather than what to do. In this setting, expert opinion becomes invaluable. In designing haemodialysate composition, a balance should be struck between the need to correct within a time frame of around 4 hours the electrolyte and water imbalances that take 48 to 72 h to build, with the need for gradual correction of these imbalances. The issue is complicated further by the impact of individual variability in dietary habits, medications and comorbidities. In this regard, a personalized medicine approach to individualization of haemodialysate composition offers the best chance of improving patient outcomes. But how can haemodialysate individualization be achieved, and what clinical trial design will best test the impact of such approaches on patient outcomes?

Key words: CKD-MBD, end-stage kidney disease, outcomes, renal replacement therapy, sudden death

Chronic kidney disease (CKD) is one of the top fastest growing causes of death worldwide [1]. This is an awkward position when end-stage renal failure is treatable by dialysis or transplantation [2]. Lack of access of millions of persons to renal replacement therapy is a major contributor to mortality [3]. However, current dialysis techniques may be optimized in order to increase patient survival and quality of life. In this regard, there is a current debate on the timing of dialysis initiation, especially for the elderly, which is reflected in widely differing practices throughout Europe and which may also be impacted by optimization of dialysis [4]. Indeed, renal replacement therapy complications were the primary cause of death in 2.1% of patients in the 2000s [5]. Furthermore, observational studies have associated haemodialysate composition with mortality [2]. Thus, high haemodialysate bicarbonate and low haemodialysate potassium have been associated with increased mortality [6, 7]. However, there is very little information derived from clinical trials. This may be one of the reasons for the striking absence of recommendations on haemodialysate composition from most recent guidelines on haemodialysis prescription and adequacy. In this regard, there are no recent suggestions for haemodialysate potassium concentration and the only recent guideline to mention haemodialysate bicarbonate advocates increasing the bicarbonate concentration to 40 mmol/L as a means of achieving the target pre-dialysis serum bicarbonate concentration (Table 1) [8, 9, 10]. Other guidelines explicitly indicate what concentrations to avoid, but do not recommend the actual concentrations to use [11–13]. At this relatively early stage of understanding the optimal haemodialysate composition, expert opinion becomes invaluable, not only to provide guidance for current practice, but also and above
Table 1. Optimal or recommended haemodialysate composition

Molecule	Basile and Lomonte [8]	Locatelli et al. [9]	Guidelines [10–13]
Sodium	138–140 mmol/L	Individualize to attain zero balance for the interdialytic and dialysis periods. Use a conductive kinetic model	Do not routinely use sodium profiling with supraphysiological dialysate sodium concentrations and high (144 mmol/L) sodium dialysate concentration (2007) [13]
Potassiuma	Individualize to avoid pre-dialysis plasma potassium >6 mmol/L or post-dialysis relative hypokalaemia or very rapid decrease in plasma potassium	Avoid <2 mmol/L	NA
Calcium	Ionized calcium 1.25 (nominally 1.5) mmol/L	Around 0.5 mmol/L (1 mg/dL)	1.25–1.50; 1.50 mmol/L if haemodynamic instability (2007, 2009, 2010) [11–13]
Magnesium	Individualize to normalize plasma magnesium	Around 0.5 mmol/L (1 mg/dL)	Avoid low (0.25 mmol/L) concentration if haemodynamic instability (2007) [13]
Bicarbonatea	Individualize to correct acidosis and to avoid symptoms of transient metabolic alkalosis	Avoid >35 mmol/L	40 mmol/L (if venous pre-dialysis bicarbonate persistently <20 mmol/l) (2007) [10]
Glucose	NA 100 mg/dL	Individualize for pre-dialysis plasma bicarbonate 24 and post-dialysis 28 mmol/L	Avoid glucose-free in diabetics (2007) [13]

a Consider using oral medication to achieve pre-dialysis targets.

NA, not applicable.
The optimal way to individualize haemodialysate bicarbonate concentration is a topic of ongoing debate. However, clinical trials are needed that provide insights into the post-dialysis serum bicarbonate in their patients. Typically, clinicians currently assess serum bicarbonate pre-dialysis and even less have observed those with magnesium within the normal range [17]. Considering higher and lower magnesium concentrations, including those with mild hypermagnesemia, as opposed to those with higher and lower magnesium concentrations, including those with magnesium within the normal range [17].

Both Basile and Lomonte and Locatelli et al. concur with the need to individualize haemodialysate bicarbonate concentration [8, 9]. This is a key concept, since many dialysis units do not routinely assess serum bicarbonate pre-dialysis and even less have an idea of the post-dialysis serum bicarbonate in their patients. However, clinical trials are needed that provide insights into the optimal way to individualize haemodialysate bicarbonate concentration and what serum bicarbonate targets and haemodialysate bicarbonate concentrations improve outcomes.

Bicarbonate-based haemodialysate contains small amounts of acetate. An issue not discussed in the CKJ reviews is the possibility to replace this acetate with citrate (acetate-free haemodialysate). Limited clinical experience suggests that the short-term (months) use of such citrate-enhanced haemodialysate is safe and decreases haemodialysis-induced hypotension and malaise, the intra-dialytic shift in pH and base excess and post-dialysis plasma ionized calcium levels, increasing post-dialysis PTH levels, as compared with conventional haemodialysate, without affecting pre-dialysis values, and also caused an intra-dialytic increase in activated partial thromboplastin time [18–20].

Locatelli et al. further discuss haemodialysate composition in special situations, including long nocturnal haemodialysis, daily short haemodialysis, less frequent haemodialysis, on-line haemodiafiltration, as well as haemodialysate glucose concentration and the possibility to enhance the haemodialysate with additional phosphate or iron, such as ferric pyrophosphate citrate, in specific patient populations [9, 21, 22].

In conclusion, haemodialysate composition has been neglected for too long in an environment dominated by a restrictive concept of dialysis adequacy focused on the clearance of uraemic toxins as categorized by the Kt/Vurea. However, there is accumulating evidence that adequacy should be more broadly defined, encompassing not only the dose of urea clearance, but also the dose of each individual component of the haemodialysate. Observational data suggest that some currently used haemodialysate concentrations of potassium and bicarbonate are associated with increased mortality. Now, two updated and in-depth reviews by experts provide guidance for routine prescription of haemodialysate composition and identify key issues that should be addressed preferentially through well-designed clinical trials that embrace the complexity of end-stage kidney disease patients and the interplay between different haemodialysate components (Table 2) [8, 9]. Individualization is proposed for several haemodialysate components. However, routine, technical or knowledge limitations, or lack of monitoring of plasma parameters may preclude the widespread use of individualized haemodialysate.

| Table 2. Unsolved issues related to haemodialysate composition [8, 9, 14] |
|-----------------------------|---------------------------------|
| **Sodium** | Benefits and harm of fixed (either low or high) haemodialysate sodium prescription |
| | Impact on mortality of fixed, individualized or real-time-modelled haemodialysate sodium |
| **Potassium** | Role of potassium profiling to prevent arrhythmia in the first 2 h of haemodialysis (Related: role of new oral potassium binders to allow a lower plasma-haemodialysate potassium gradient) |
| **Calcium** | How to assess and monitor calcium balance as a tool to guide haemodialysate calcium concentration |
| | What haemodialysate calcium concentration maintains each individual patient in overall neutral calcium balance without promoting CKD-mineral bone disorder? |
| | What is the role of calcium profiling? |
| **Magnesium** | What is the optimal target serum magnesium concentration? |
| **Bicarbonate** | Bicarbonate Randomized trial to assess the impact of different haemodialysate bicarbonate concentrations on mortality |
| **Other haemodialysate components** | What is the role of haemodialysate containing ferric pyrophosphate citrate in the management of iron deficiency? |
| | Should acetate or citrate accompany bicarbonate in haemodialysate? |

Grant support: ISCIII and FEDER funds PI13/00047, Sociedad Española de Nefrología, ISCIII-RETIC REDinREN/RD12/0021.

Acknowledgements
Comunidad de Madrid CIFRA S2010/BMD-2378. Salary support: Programa Intensificación Actividad Investigadora (ISCIII/Agencia Lain-Entralgo/CM) to A.O.

Conflict of interest statement
None declared.

(See related articles by Basile and Lomonte. A neglected issue in dialysis practice: haemodialysate. Clin Kidney J (2015) 8: 393–399 and by Locatelli et al. Optimizing haemodialysate composition. Clin Kidney J (2015) 8: 580–589.)

References
1. Ortiz A, Covic A, Fliser D et al. Epidemiology, contributors to, and clinical trials of mortality risk in chronic kidney failure. Lancet 2014; 383: 1831–1843
2. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385: 117–171
3. Anand S, Bitton A, Gaziano T. The gap between estimated incidence of end-stage renal disease and use of therapy. PLoS One 2013; 8: e72860
4. Gonzalez-Espinoza L, Ortiz A. 2012 ERA-EDTA Registry Annual Report: cautious optimism on outcomes, concern about persistent inequalities and data black-outs. Clin Kidney J 2015; 8: 243–247
5. Bray BD, Metcalfe W. Improving patient safety in haemodialysis. Clin Kidney J 2015; 8: 262–264
6. Tentori F, Karboyas A, Robinson BM et al. Association of dialysate bicarbonate concentration with mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 2013; 62: 738–746
7. Jadoul M, Thumma J, Fuller DS et al. Modifiable practices associated with sudden death among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Clin J Am Soc Nephrol 2012; 7: 765–774
8. Basile C, Lomonte C. A neglected issue in dialysis practice: haemodialysate. Clin Kidney J 2015; 8: 393–399
9. Locatelli F, La Milia V, Violo L et al. Optimizing hemodialysate composition. Clin Kidney J 2015; 8: 580–589
10. Fouque D, Vennegoor M, ter Wee P et al. EBPG guideline on nutrition. Nephrol Dial Transplant 2007; 22 (Suppl 2): ii45–ii87
11. Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MDB Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD–MBD). Kidney Int 2009; 76 (Suppl 113): S1–S130
12. Goldsmith DJ, Covic A, Fouque D et al. Endorsement of the Kidney Disease Improving Global Outcomes (KDIGO) Chronic Disease-Mineral and Bone Disorder (CKD–MBD) Guidelines: a European Renal Best Practice (ERBP) commentary statement. Nephrol Dial Transplant 2010; 25: 3823–3831
13. Kooman J, Basci A, Pizzarello F et al. EBPG guideline on haemodynamic instability. Nephrol Dial Transplant 2007; 22 (Suppl 2): ii22–ii44
14. Basile C, Pisano A, Lisi P et al. High versus low dialysate sodium concentration in chronic haemodialysis patients: a systematic review of 23 studies. Nephrol Dial Transplant 2015; doi:10.1093/ndt/gfv084
15. Gonzalez-Parra E, Martin-Cleary C, Martin J et al. Calcific uraemic arteriolopathy while on cinacalcet. J Postgrad Med 2011; 57: 51–52
16. Gonzalez-Parra E, Gonzalez-Casaus ML, Arenas MD et al. Individualization of dialysate calcium concentration according to baseline pre-dialysis serum calcium. Blood Purif 2014; 38:224–233
17. Sakaguchi Y, Fujii N, Shoji T et al. Hypomagnesemia is a significant predictor of cardiovascular and non-cardiovascular mortality in patients undergoing hemodialysis. Kidney Int 2014; 85: 174–181
18. Daimon S, Dan K, Kawano M. Comparison of acetate-free citrate hemodialysis and bicarbonate hemodialysis regarding the effect of intra-dialysis hypotension and post-dialysis malaise. Ther Apher Dial 2011; 15: 460–465
19. Grundström G, Christensson A, Alquist M et al. Replacement of acetate with citrate in dialysis fluid: a randomized clinical trial of short term safety and fluid biocompatibility. BMC Nephrol 2013; 14: 216
20. de Sequera Ortiz P, Albalate Ramón M, Pérez-García R et al. Acute effect of citrate baths on post-dialysis alkalemia. Nefrología 2015; 35: 164–171
21. Gupta A, Lin V, Guss C et al. Ferric pyrophosphate citrate administered via dialysate reduces erythropoiesis-stimulating agent use and maintains hemoglobin in hemodialysis patients. Kidney Int 2015; doi: 10.1038/ki.2015.203
22. Fishbane SN, Singh AK, Cournoyer SH et al. Ferric pyrophosphate citrate (Triferic™) administration via the dialysate maintains hemoglobin and iron balance in chronic hemodialysis patients. Nephrol Dial Transplant 2015; doi: 10.1093/ndt/gfv277