Methionine antagonizes para-aminosalicylic acid activity via affecting folate precursor biosynthesis pathway in *Mycobacterium tuberculosis*

Michael D. Howe¹, Shannon L. Kordus¹, Malcolm S. Cole², Allison A. Bauman¹, Courtney C. Aldrich², Anthony D. Baughn¹*, Yusuke Minato¹*

¹Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
²Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA.

*Correspondence:* Correspondence and requests for materials should be addressed to YM (email: yminato@umn.edu) or ADB (email: abaughn@umn.edu)

Keywords: *Mycobacterium tuberculosis*, anti-folate drug, para-aminosalicylic acid, methionine, para-aminobenzoic acid, biotin, antagonism, metabolism, methionine transport

Abstract

para-Aminosalicylic acid (PAS) is a second-line anti-tubercular drug that is used for the treatment of drug-resistant tuberculosis (TB). PAS efficacy in the treatment of TB is limited by its lower potency against *Mycobacterium tuberculosis* relative to many other drugs in the TB treatment arsenal. It is known that intrinsic metabolites, such as para-aminobenzoic acid (PABA) and methionine, antagonize PAS and structurally related anti-folate drugs. While the basis for PABA-mediated antagonism of anti-folates is understood, the mechanism for methionine-based antagonism remains undefined. In the present study, we used both targeted and untargeted approaches to identify factors associated with methionine-mediated antagonism of PAS activity. We found that synthesis of folate precursors as well as a putative amino acid transporter play crucial roles in this process. We also discovered that intracellular biotin confers intrinsic PAS resistance in a methionine-independent manner. Collectively, our results demonstrate that methionine-mediated antagonism of anti-folate drugs occurs through sustained production of folate precursors.

Introduction

*Mycobacterium tuberculosis* is responsible for approximately 10.4 million new cases of active tuberculosis (TB) and 1.3 million deaths annually (WHO, 2017). While TB chemotherapeutic intervention is highly successful in curing drug-susceptible TB infections, therapy is challenging, in part, because it requires a minimum of 6 months of treatment with drugs associated with adverse reactions. In addition, the emergence of drug-resistant strains of *M. tuberculosis* has dramatically increased the complexity and cost of TB treatment (Gandhi et al. 2006, Gehre et al. 2016). Therefore, the development of more efficacious TB chemotherapy regimens is imperative to improve treatment outcomes.

para-Aminosalicylic acid (PAS) was the second drug to be developed exclusively for TB chemotherapy (Lehmann 1946). Although PAS was a cornerstone agent of early multidrug TB...
therapies, the introduction of more potent anti-tubercular agents into TB treatment regimens greatly diminished its usage (Minato et al. 2015). Emergence of *M. tuberculosis* strains with resistance to first-line anti-tubercular agents led to the resurgence of PAS as an second-line drug to treat infections that failed to respond to standard short-course therapy (Donald and Diacon 2015). However, compared to many other anti-tubercular drugs, PAS is less potent and is associated with a high rate of gastrointestinal distress which limits its use to the treatment of multi-drug resistant TB for which there are few other treatment options (Zumla et al. 2013). Thus, it is important to develop novel strategies to enhance PAS potency, limit adverse reactions and improve treatment success rates.

Until recently, little was known regarding the mode of action of PAS. PAS is a selective antimetabolite of the *M. tuberculosis* folate metabolic pathway acting as a structural analog of the folate precursor *para*-aminobenzoic acid (PABA) (*Figure 1*) (Chakraborty et al. 2013, Minato, Thiede, Kordus, McKlveen, Turman and Baughn 2015). PAS is sequentially converted to 2’-hydroxy-7,8-dihydropterate and 2’-hydroxy-7,8-dihydrofolate by enzymes in the *M. tuberculosis* folate metabolic pathway (*Figure 1*). 2’-hydroxy-7,8-dihydrofolate has been shown to potently inhibit *M. tuberculosis* dihydrofolate reductase (DHFR), the final step in synthesis of tetrahydrofolate (Dawadi et al. 2017, Minato, Thiede, Kordus, McKlveen, Turman and Baughn 2015, Zhao et al. 2014, Zheng et al. 2013). Since PAS and PABA are comparable substrates for the folate biosynthetic pathway, supplementation of *M. tuberculosis* cultures with PABA antagonizes the inhibitory activity of PAS by outcompeting for ligation to 6-pyrophosphomethyl-7,8-dihydropterin (DHPPP) by dihydropteroate synthase (DHPS) (Youmans et al. 1947). We previously reported that intracellular PABA mediates intrinsic resistance to PAS in *M. tuberculosis*, and disruption of this critical node in folate biosynthesis can potentiate antifolate action, including that of sulfa drugs (Thiede et al. 2016).

Methionine is a potent antagonist of PAS in *M. tuberculosis* (Hedgecock 1956), yet, the basis for this antagonism remains poorly understood. Because disruption of the folate pathway in *M. tuberculosis* results in depletion of metabolites within multiple essential folate-dependent pathways (Chakraborty, Gruber, Barry, Boshoff and Rhee 2013, Nixon et al. 2014), supplementation with methionine alone is not expected to recover loss of folate pathway integrity. A recent study showed that PAS can be converted to *N*-methyl and *N*,*N*-dimethyl PAS species within *M. tuberculosis* cells (*Figure 1*) (Chakraborty, Gruber, Barry, Boshoff and Rhee 2013). *N*-methyl-PAS retains activity against *M. tuberculosis*, while *N*,*N*-dimethyl-PAS shows no anti-tubercular activity since the resulting tertiary amine is incapable of nucleophilically reacting with DHPPP during the first step of PAS bioactivation (*Figure 1*). Since addition of methionine can potentially enhance the ability of *M. tuberculosis* to methylate PAS by increasing *S*-adenosylmethionine (SAM) abundance, it is possible that methionine promotes inactivation of PAS through *N*,*N*-dimethylation by an unidentified methyltransferase.

In the present study we screened approximately 10,000 independent *Mycobacterium bovis* BCG transposon insertion mutants (BCG::himar1) to identify genetic determinants associated with methionine-mediated PAS antagonism. In parallel to analysis of BCG::himar1 mutants, we characterized factors that affect PAS susceptibility in *M. tuberculosis* for their involvement in methionine-mediated PAS antagonism. Our findings reveal the importance of folate precursor biosynthesis and methionine transport in methionine-mediated PAS antagonism.

### Materials and Methods

### Chemical Reagents
All chemical reagents except for 2’-hydroxy-pterotate (pterin-PAS) were purchased from Sigma-Aldrich. Pterin-PAS was synthesized by Drs. Richard Lee and Ying Zhao at St Jude Children’s Research Hospital by using a similar synthesis method reported elsewhere (Zhao et al. 2016).

**Bacterial Strains and Growth Conditions**

Bacterial strains utilized in this study are described in Table 1. Unless otherwise indicated, Mycobacterial strains were grown in Middlebrook 7H9 liquid medium supplemented with tyloxapol (0.05% vol/vol) or on Middlebrook 7H10 agar plates. For *M. bovis* BCG and *M. tuberculosis* H37Ra, oleate-albumin-dextrose-catalase (OADC; Becton Dickinson 10% vol/vol) and glycerol (0.2% vol/vol) were supplemented to Middlebrook 7H9 and Middlebrook 7H10. For *Mycobacterium smegmatis* mc²155, Middlebrook 7H9 and Middlebrook 7H10 was amended with dextrose (0.2% vol/vol). *Escherichia coli* DH5α λpir was grown in LB broth or on LB agar plate. When necessary, kanamycin or hygromycin were added to media at 50 µg/ml and 150 µg/ml respectively for selection of mycobacterial and *E. coli* strains.

For sulfur utilization studies, a modified sulfate-free Sautons medium (Allen 1998) was prepared with all inorganic sulfate salts (MgSO₄ and ZnSO₄) replaced with inorganic chloride salts (MgCl₂ and ZnCl₂) keeping the concentrations of Mg²⁺ and Zn²⁺ ions the same. For the characterizations of the biotin auxotroph mutant, biotin-free 7H9 medium was prepared. The biotin-auxotrophic strain, *M. bovis* BCG *::himar1*, was maintained in the biotin-free 7H9 medium supplemented with 0.5 µg/ml biotin. For the characterizations of the PABA auxotroph mutant, 7H9 medium was prepared in glassware that was baked at 300°C for one hour to remove residual PABA before use. The PABA-auxotrophic strain H37Ra ΔpabB was maintained in PABA-free 7H9 medium supplemented with PABA (10 ng/ml).

**Construction and Screening *M. bovis* BCG::himar1 Mutant Library**

The phAE180 mycobacteriophage containing a *mariner* transposable element, *himar1*, with a kanamycin resistance cassette was used to transduce *M. bovis* BCG creating a library of *BCG::himar1* mutants as described previously (Kriakov et al. 2003, Rubin et al. 1999). Transduced cells were plated onto 7H10 agar containing kanamycin and 10 µg/ml methionine. Approximately 10,000 mutant strains were screened by picking and patching onto 7H10 agar supplemented with methionine (Met plates) and onto 7H10 agar plates additionally amended with 5 µg/ml PAS (Met-PAS plates). Mutant strains that grew on the Met plates, but were inhibited for growth the Met-PAS plates, were selected for secondary screening following the same protocol. PAS susceptibility was assessed for strains that passed the secondary screen. *himar1* insertion sites were determined as previously described (Rubin, Akerley, Novik, Lampe, Husson and Mekalanos 1999). Briefly, extracted genomic DNA was digested with *Bss*HII and self-ligated to produce circular DNAs. The circularized DNAs that contained ori6K from a part of *himar1* transposon were used to transform *E. coli* DH5α λpir. Plasmids were purified from the transformants. Sequences of genomic DNA adjacent to the 3’ end of the *himar1* transposon insertion site were determined by Sanger sequencing (performed by Eurofins) using the KanSeq_Rev (5’-GCATCGCCTTCTATCGCCTTC-3’) primer (Baughn et al. 2010). Insertion site locations were determined by aligning the resulting sequence files with the *M. bovis* BCG Pasteur genome sequence (GenBank accession number NC_008796).

**Determination of Minimum Inhibitory Concentrations**

The minimum inhibitory concentrations (MIC) of anti-tubercular compounds were determined as previously described (Dillon et al. 2014). Briefly, for determination of the MIC in liquid culture, 2-
fold dilution series of drugs in 7H9 medium were prepared. Logarithmically growing Mycobacterium strains were inoculated into the drug-containing 7H9 medium in 30-ml square bottles (Nalgene) to an optical density (OD_{600}) of 0.01. OD_{600} were measured after shaking (100 rpm) at 37°C for 14 days. The liquid MIC_{90} was defined as the minimum concentration of drug required to inhibit at least 90% of growth relative to growth in the no-drug control cultures. For determination of the agar plate MIC, logarithmically growing *M. bovis* BCG strains were serially-diluted and inoculated onto 7H10 agar plates containing drug in 2-fold dilution series. The agar plate MIC was determined by visually inspecting growth relative to growth on the no-drug control plates after grown at 37°C for 21 days. All anti-tubercular compounds employed in this study were dissolved in DMSO. The highest concentration of DMSO in the growth media was 2.5%.

**Analysis of Growth Kinetics**

Logarithmically growing Mycobacterium strains were washed twice in an equal volume of fresh medium. Cells were diluted to an OD_{600} of 0.01 in 30-ml square bottles (Nalgene) and supplements with or without drug were added at the described concentrations. Cultures were shaken (100 rpm) and OD_{600} were measured at various time points over a 14-day time-course.

**Methionine Utilization Experiments**

*M. bovis* BCG strains were grown to mid-log phase in 7H9 broth and washed twice with sulfate-free Sautons medium. Resuspended cells were diluted to an OD_{600} of 0.01 in sulfate-free Sautons medium. Cultures were then incubated for 5 days to exhaust remaining sulfur. Exhausted cells were aliquoted into 30-ml square bottles (Nalgene) and sulfur-containing metabolites were added at the given concentrations. Cultures were incubated at 37°C and shaken (100 rpm). The fold-change in OD_{600} (as a ratio of the final OD_{600}/initial OD_{600}) was assessed following 1 week of incubation after the addition of metabolites.

**Results**

**Identification of *M. bovis* BCG genes involved in methionine-mediated antagonism of PAS**

A library of *M. bovis* BCG transposon insertion mutant strains was constructed using the phAE180 mycobacteriophage containing a *mariner*-family transposable element. To identify genes associated with methionine-mediated PAS antagonism, approximately 10,000 BCG::himar1 mutants were screened following the approach outlined in Figure 2. Determination of the PAS MIC on 7H10 agar plates confirmed that 0.25 µg/ml was sufficient to fully inhibit growth of the *M. bovis* BCG parental strain. Screening was then undertaken on 7H10 agar plates containing 10 µg/ml methionine and 5 µg/ml PAS (Met-PAS plate). Growth of *M. bovis* BCG on Met-PAS plates was identical to growth seen on control 7H10 plates, which confirmed methionine-mediated PAS antagonism.

BCG::himar1 insertion mutants which exhibited observable growth inhibition on the Met-PAS plates in comparison to the growth on 7H10 agar plates containing 10 µg/ml methionine (Met plate) were isolated. We then identified the himar1 insertion sites within the 35 BCG::himar1 mutants that had reproducible growth defects on Met-PAS plates compared to the growth on Met plates (Figure 2 and Table 2). Among these mutants, one strain with a himar1 insertion located within *BCG_3282c*, encoding a putative amino acid/polyamine/organocation (APC) superfamily transporter (Elbourne et al. 2017, Jack et al. 2000), showed the most severe growth defect on Met-PAS plates suggesting *BCG_3282c* plays a major role in methionine-mediated antagonism of PAS. We also assessed the susceptibility of each mutant strain to PAS by measuring PAS MICs on 7H10 agar plates (Table 2).
We observed the BCG_3282c mutant possessed wild-type PAS susceptibility suggesting this mutation is associated exclusively with methionine-mediated PAS antagonism.

Although most mutant strains that were analyzed showed a similar level of PAS tolerance as the parent M. bovis BCG, four mutants (with transposon insertions in bioB, ftsH, metB, and BCG_1906c) were found to be more susceptible to PAS in the absence of methionine, indicating that the disrupted genes may be involved in intrinsic resistance to PAS (Table 2).

**BCG_3282c is essential for methionine-mediated antagonism of PAS in M. bovis BCG.**

Based upon the observation that methionine failed to antagonize PAS activity in the BCG_3282c mutant, we further characterized the function of this gene. The himar1 insertion was located near the 5' end of the coding region for BCG_3282c resulting in a 401 residue truncation of the 495 residue coding sequence, suggesting functional gene disruption by himar1 insertion. Similar to the majority of transporters within the APC superfamily, BCG_3282c is predicted to possess 12 transmembrane α-helical spanners (Elbourne, Tetu, Hassan and Paulsen 2017). BCG_3282c is also highly conserved in the Mycobacterium genus, sharing 100% sequence identity with numerous M. tuberculosis complex organisms including Rv3253c, an ortholog from the standard virulent reference strain H37Rv. However, no close orthologs of BCG_3282c have been structurally or functionally characterized thus far.

To confirm whether BCG_3282c disruption altered methionine antagonism, PAS susceptibility testing was conducted in liquid medium (Figure 3A). Growth of both wild type M. bovis BCG and the BCG_3282c::himar1 strain was severely inhibited by 5 µg/ml PAS. Addition of methionine restored growth during PAS treatment of wild-type M. bovis BCG in a dose-dependent manner. In contrast, growth of the BCG_3282c::himar1 strain was inhibited by PAS even in the presence of 10 µg/ml methionine. PABA, another PAS antagonist, reversed PAS-mediated growth inhibition in both the wild type M. bovis BCG and the BCG_3282c::himar1 strain, validating that the BCG_3282c::himar1 strain is specifically impaired for methionine-mediated PAS antagonism.

Because methionine antagonism is selectively perturbed in the BCG_3282c::himar1 mutant, we hypothesized that BCG_3282c may be the methionine transporter. M. tuberculosis is known to utilize reverse transsulfuration to assimilate sulfur from methionine which can serve as the sole source of sulfur for this bacterium (Wheeler et al. 2005). Therefore, we tested whether disruption of BCG_3282c would affect the ability of the bacilli to assimilate sulfur derived from methionine. When M. bovis BCG and the BCG_3282c::himar1 disruption strain were grown in sulfate-free Sautons medium, growth of both strains was limited (maximum OD600 = 0.3). Upon addition of sodium sulfate to the medium, both strains resumed growth and achieved typical growth yields confirming these strains were previously starved for sulfur (Figure 3B). When methionine was added to sulfur starved M. bovis BCG, growth also resumed in a dose-dependent manner producing similar growth yields as compared to the addition of sulfate alone. In contrast, growth of the BCG_3282c::himar1 disruption strain could not be restored in the presence of methionine as the sole source of sulfur, indicating that methionine is a transport substrate of BCG_3282c. These findings indicate antagonism requires methionine import across the cell membrane via BCG_3282c.

**PABA biosynthesis is indispensable for methionine-mediated PAS antagonism in M. tuberculosis.**

Our large-scale screening failed to identify genes directly involved in methionine-mediated PAS antagonism. Thus, it is possible that genes involved in this process are redundant or are essential for
M. bovis BCG survival in vitro. Because addition of methionine can increase SAM levels and many M. tuberculosis SAM-dependent methyltransferase genes are essential, we investigated whether the ability to methylate PAS plays a role in methionine-mediated PAS antagonism. To test this, we evaluated whether methionine can antagonize the activated PAS species, 2'-hydroxy-pterate (pterin-PAS), in M. bovis BCG. It is known that N,N-dimethyl-PAS has no anti-tubercular activity, presumably because N,N-dimethyl-PAS cannot react with DHPPP during the first step of PAS bioactivation (Figure 1). Thus, once PAS is activated to pterin-PAS, N-methylation should not affect its anti-tubercular activity. We confirmed pterin-PAS was active against wild-type M. bovis BCG at a comparable molar concentration to PAS (Table 3). Surprisingly, pterin-PAS was still potently antagonized by methionine suggesting methionine-mediated PAS antagonism does not occur by methylation of PAS to inhibit PAS bioactivation.

It is also known that intracellular PABA levels affect PAS susceptibility in M. tuberculosis (Thiede, Kordus, Turman, Buonomo, Aldrich, Minato and Baughn 2016). Since PABA biosynthesis is essential for Mycobacterium survival in vitro, we hypothesized that methionine may affect PAS activity. PabB, aminodeoxychorismate synthase, is one of the essential enzymes required to convert chorismate to PABA in M. tuberculosis (Figure 4A). Consequently, a M. tuberculosis H37Ra pabB deletion strain is a PABA auxotroph and relies upon exogenous sources of PABA for growth (Figure 4B). The folate precursor dihydropteroate is produced from PABA and DHPPP (Figure 4A). We found that pteroic acid, an oxidized form of dihydropteroate can also support the growth of the M. tuberculosis H37Ra pabB deletion strain (Figure 4B). As expected, unlike PABA and pteroic acid, methionine did not support the growth of the M. tuberculosis H37Ra pabB deletion strain indicating that methionine alone is insufficient to fulfill cellular folate requirements in PABA starved M. tuberculosis cells. Using the M. tuberculosis H37Ra ΔpabB deletion strain, we tested the requirement of PABA biosynthesis on methionine-mediated PAS antagonism. We observed that methionine potently antagonized PAS susceptibility in wild type M. tuberculosis H37Ra. In contrast, PAS susceptibility of the M. tuberculosis H37Ra ΔpabB deletion strain was not antagonized by the addition of methionine (Table 3). Taken together, these data demonstrated that a functional PABA biosynthetic pathway is essential for methionine to antagonize PAS in M. tuberculosis.

Biotin cofactor biosynthesis is essential for intrinsic resistance to PAS and other anti-tubercular drugs

Our screening also identified several mutations that conferred increased susceptibility to PAS even in the absence of methionine. One strain, harboring a himar1 insertion within bioB, encoding biotin synthase, showed increased susceptibility to PAS both in the presence and absence of methionine (Table 2). BioB is a radical SAM-dependent enzyme required for the final step in the synthesis of biotin. We confirmed the bioB::himar1 strain exhibited biotin auxotrophy, which could be chemically complemented by a minimum of 0.05 µg/ml biotin supplementation for restoration of growth (Figure 5A). We speculated that susceptibility of the bioB::himar1 strain to PAS was dependent upon intracellular concentrations of biotin. Thus, we examined the PAS susceptibility of the bioB::himar1 strain using media containing minimal (0.05 µg/ml) or excess (5 µg/ml) concentrations of biotin (Figure 5B). We observed the bioB::himar1 strain was far more susceptible to PAS (8-fold decrease in MIC90) in minimal biotin medium, and that excess biotin medium was sufficient to restore susceptibility back to near wild-type levels. Interestingly, the bioB::himar1 strain was also more susceptible to sulfamethoxazole (SMX) and rifampicin (RIF), but maintained wild-type susceptibility to isoniazid, indicating that alterations in susceptibility profiles are drug-specific (Figure 5B).

Discussion
Methionine is the only folate-dependent metabolite known to antagonize certain anti-folate drugs in *M. tuberculosis* and other bacterial species. Interestingly, anti-folate drugs antagonized by methionine are also antagonized by PABA, a folate precursor. Although the molecular mechanism of PABA-mediated anti-folate antagonism is well understood, how methionine antagonizes anti-folate drugs has yet to be elucidated. Our findings revealed that methionine-mediated PAS antagonism is linked to synthesis of folate precursors.

One strain isolated from our screen harboring a *himar1* disruption within the predicted amino acid permease *BCG_3282c* fully sensitized *M. bovis* BCG to PAS in the presence of normally antagonistic concentrations of methionine. In addition, the *himar1* disruption within *BCG_3282c* prevented *M. bovis* BCG from assimilating sulfur derived from methionine. *BCG_3282c* belongs to the APC superfamily of transporters and our data suggested that *BCG_3282c* is likely responsible for uptake of methionine *in vitro*. The most well-studied methionine transport system in bacteria is the MetD ABC transporter system of the methionine uptake transporter family found in numerous organisms including *E. coli* and even the closely related non-tubercular Mycobacterium, *Mycobacterium abscessus* (Gál et al. 2002). In *E. coli*, the MetD ABC transporter is encoded by the *metNIQ* gene cluster (Merlin et al. 2002). The *M. tuberculosis* complex has no known orthologs of this system, despite the known bioavailability of methionine in human and mouse serum (Lewis et al. 1980, Rivera et al. 1987). To our knowledge, this study represents the first characterization of a methionine transporter in the *M. tuberculosis* complex. Orthologues of *BCG_3282c* with high amino acid sequence similarities are found from *Gordonia sputi*, *Bacillus subtilis* and *Lactococcus lactis* and an orthologue from *L. lactis* has been shown to transport branched-chain amino acids, along with methionine (den Hengst et al. 2006). Existence of a conserved methionine transporter within the mycobacterium complex would be intriguing given that methionine/SAM biosynthesis is indispensable for survival of *M. tuberculosis* in murine and macrophage models of infection (Berney et al. 2015).

We also found that methionine-mediated PAS antagonism does not appear to occur through *N,N*-dimethylation by SAM-dependent methyltransferase(s). We addressed this possibility because *N,N*-dimethyl PAS, an inactive metabolite of PAS, was previously identified in metabolite extracts from PAS treated *M. tuberculosis* (Chakraborty, Gruber, Barry, Boshoff and Rhee 2013). In addition, a SAM-dependent methyltransferase (*Rv0560c*) is induced by salicylate and salicylate analogs, including PAS (Schuessler and Parish 2012). However, a recent report described that an unmarked in-frame deletion of *Rv0560c* in *M. tuberculosis* conferred no alteration in susceptibility to PAS, or other antimicrobials *in vitro* (Kokoczka et al. 2017). Consistent with this finding, our screen did not identify *Rv0560c::himar1* mutants. Together with our observation that pterin-PAS is also antagonized by methionine, we concluded that methionine-mediated PAS antagonism is not likely via PAS inactivation by *N,N*-dimethylation.

Importantly, methionine was unable to antagonize PAS in a *pabB* deletion mutant strain indicating that methionine-mediated PAS antagonism is dependent upon a functional PABA biosynthesis pathway. This finding is consistent with past and recent reports that methionine only antagonizes the anti-folate drugs that are also antagonized by PABA (Huang et al. 1997, Nixon, Saionz, Koo, Szymonifka, Jung, Roberts, Nandakumar, Kumar, Liao, Rustad, Sacchettini, Rhee, Freundlich and Sherman 2014, Zhao, Shadrick, Wallace, Wu, Griffith, Qi, Yun, White and Lee 2016, Zheng, Rubin, Bifani, Mathys, Lim, Au, Jang, Nam, Dick, Walker, Pethe and Camacho 2013). While the metabolic connections linking methionine to folate precursor biosynthesis remain to be determined, the DHPPP pathway has been shown to modulate susceptibility of *E. coli*, *Salmonella enterica* and *Burkholderia pseudomallei* to sulfamethoxazole (Li et al. 2017, Podnecky et al. 2017, Minato et al. 2018), which is...
predicted to be metabolically linked with methionine-mediated antagonism (Minato and Baughn 2017). Further, we recently demonstrated that the biosynthetic pathway to DHPPP is essential for methionine-mediated antagonism of sulfonamide action in *E. coli* (Minato et al. 2018).

One PAS-sensitive mutant strain with a disruption in biotin synthase (*bioB*) was found to be auxotrophic for the cofactor biotin. Characterization of this mutant confirmed that disruption of biotin biosynthesis could enhance susceptibility to PAS and rifampicin in biotin-limited conditions. In *M. tuberculosis*, biotin is a cofactor required for acyl-CoA-carboxylase (ACC) enzymes participating in key metabolic processes in lipid biosynthesis (Gago et al. 2011, Salaemae et al. 2011, Takayama et al. 2005, Woong Park et al. 2011). Biotin biosynthesis and protein biotinylation process have been targeted for novel drug development (Duckworth et al. 2011, Shi et al. 2013, Tiwari et al. 2018). On the basis of our *in vitro* findings, targeting biotin synthesis may promote accumulation of antituberculosis drugs by disrupting cell envelope integrity, which could revitalize drug therapies that are unable to overcome the relatively impermeable cell envelope of *M. tuberculosis* at clinically relevant dosages. Indeed, it was recently reported that disruption of protein biotinylation potentiates rifampicin activity against *M. tuberculosis* (Tiwari, Park, Essawy, Dawadi, Mason, Nandakumar, Zimmerman, Mina, Ho, Engelhart, Ioerger, Sacchettini, Rhee, Ehrt, Aldrich, Dartois and Schnappinger 2018). It was previously reported that biotin has a vital role in methionine-mediated, PAS antagonism, such that supplementation with exogenous biotin was required to observe antagonism by methionine (Hedgecock 1956). However, our study found that biotin supplementation was non-essential for methionine to antagonize PAS in *M. bovis* BCG suggesting that the effect of biotin on PAS susceptibility is independent of the precise mechanism of antagonism, and the initial observations in *M. tuberculosis* by Hedgecock may be a strain specific phenotype.

In summary, the mechanistic basis of methionine-mediated PAS antagonism was examined. Over 30 novel modulators of PAS susceptibility were identified by Himar1 transposon mutagenesis. However, with exception of the putative amino acid permease BCG_3282c, none of the functions identified were found to be directly involved in antagonism. Upon closer examination, *de novo* biosynthesis of PABA was determined as essential for methionine-mediated antagonism, revealing a previously unappreciated relationship between methionine and folate precursor synthesis. Further studies are needed to reveal the precise mechanism of this process. The results presented here also identified tractable drug targets within *M. tuberculosis* that could be exploited to enhance antitubercular drug action.

**Author Contributions**

MDH, SLK, MSC, and AAB performed experiments. ADB, CCA and YM conceived the work. MDH, ADB and YM wrote the manuscript. All authors contributed to analyzing data and editing of the manuscript.

**Funding**

This work was supported by a grant from the University of Minnesota Academic Health Center Faculty Research Development Program to ADB and CCA and by startup funds from the University of Minnesota to ADB.

**Conflict of Interest Statement**

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Acknowledgements

We thank Nicholas D. Peterson for assistance in construction of a library of *M. bovis* BCG transposon insertion mutants. We thank Drs. Richard Lee and Ying Zhao of St Jude Children’s Research Hospital for the providing pterin-PAS.

References

Allen BW. 1998. Mycobacteria. General culture methodology and safety considerations. Methods Mol Biol.101:15-30.

Baughn AD, Deng J, Vilchèze C, Riestra A, Welch JT, Jacobs WR, Zimhony O. 2010. Mutually exclusive genotypes for pyrazinamide and 5-chloropyrazinamide resistance reveal a potential resistance-proofing strategy. Antimicrob Agents Chemother. Dec;54:5323-5328. Epub 2010/09/27.

Berney M, Berney-Meyer L, Wong KW, Chen B, Chen M, Kim J, Wang J, Harris D, Parkhill J, Chan J, et al. 2015. Essential roles of methionine and S-adenosylmethionine in the autarkic lifestyle of *Mycobacterium tuberculosis*. Proc Natl Acad Sci U S A. Aug;112:10008-10013. Epub 2015/07/28.

Brosch R, Gordon SV, Garnier T, Eiglmeier K, Frigui W, Valenti P, Dos Santos S, Duthoy S, Lacroix C, Garcia-Pelayo C, et al. 2007. Genome plasticity of BCG and impact on vaccine efficacy. Proc Natl Acad Sci U S A. Mar;104:5596-5601. Epub 2007/03/19.

Chakraborty S, Gruber T, Barry CE, Boshoff HI, Rhee KY. 2013. Para-aminosalicylic acid acts as an alternative substrate of folate metabolism in *Mycobacterium tuberculosis*. Science. Jan;339:88-91.

Dawadi S, Kordus SL, Baughn AD, Aldrich CC. 2017. Synthesis and Analysis of Bacterial Folate Metabolism Intermediates and Antifolates. Org Lett. Oct;19:5220-5223. Epub 2017/09/19.

den Hengst CD, Groeneveld M, Kuipers OP, Kok J. 2006. Identification and functional characterization of the *Lactococcus lactis* CodY-regulated branched-chain amino acid permease BcaP (Cra). J Bacteriol. May;188:3280-3289.

Dillon NA, Peterson ND, Rosen BC, Baughn AD. 2014. Pantothenate and pantetheine antagonize the antitubercular activity of pyrazinamide. Antimicrob Agents Chemother. Dec;58:7258-7263.

Donald PR, Diacon AH. 2015. *para*-Aminosalicylic acid: the return of an old friend. Lancet Infect Dis. Sep;15:1091-1099. Epub 2015/08/12.

Duckworth BP, Geders TW, Tiwari D, Boshoff HI, Sibbald PA, Barry CE, Schnappinger D, Finzel BC, Aldrich CC. 2011. Bisubstrate adenylation inhibitors of biotin protein ligase from *Mycobacterium tuberculosis*. Chem Biol. Nov;18:1432-1441.

Elbourne LD, Tetu SG, Hassan KA, Paulsen IT. 2017. TransportDB 2.0: a database for exploring membrane transporters in sequenced genomes from all domains of life. Nucleic Acids Res. Jan;45:D320-D324. Epub 2016/11/28.

Gago G, Diacovich L, Arabolaza A, Tsai SC, Gramajo H. 2011. Fatty acid biosynthesis in actinomycetes. FEMS Microbiol Rev. May;35:475-497. Epub 2011/01/19.

Gál J, Szvetnik A, Schnell R, Kálmán M. 2002. The metD D-methionine transporter locus of *Escherichia coli* is an ABC transporter gene cluster. J Bacteriol. Sep;184:4930-4932.
Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Laloo U, Zeller K, Andrews J, Friedland G. 2006. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet. Nov;368:1575-1580.

Gehre F, Otu J, Kendall L, Forson A, Kwara A, Kudawu S, Kehinde AO, Adebiyi O, Salako K, Baldeh I, et al. 2016. The emerging threat of pre-extensively drug-resistant tuberculosis in West Africa: preparing for large-scale tuberculosis research and drug resistance surveillance. BMC Med. Nov;14:160. Epub 2016/11/03.

Hedgecock LW. 1956. Antagonism of the inhibitory action of aminosalicylic acid on Mycobacterium tuberculosis by methionine, biotin and certain fatty acids, amino acids, and purines. J Bacteriol. Dec;72:839-846.

Huang EY, Mohler AM, Rohlman CE. 1997. Protein expression in response to folate stress in Escherichia coli. J Bacteriol. Sep;179:5648-5653.

Jack DL, Paulsen IT, Saier MH. 2000. The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology. Aug;146 ( Pt 8):1797-1814.

Kokoczka R, Schuessler DL, Early JV, Parish T. 2017. Mycobacterium tuberculosis Rv0560c is not essential for growth in vitro or in macrophages. Tuberculosis (Edinb). 01;102:3-7. Epub 2016/11/05.

Kriakov J, Lee S, Jacobs WR. 2003. Identification of a regulated alkaline phosphatase, a cell surface-associated lipoprotein, in Mycobacterium smegmatis. J Bacteriol. Aug;185:4983-4991.

Lehmann J. 1946. para-Aminosalicylic acid in the treatment of tuberculosis. Lancet. Jan;247:15-16.

Lewis AM, Waterhouse C, Jacobs LS. 1980. Whole-blood and plasma amino acid analysis: gas-liquid and cation-exchange chromatography compared. Clin Chem. Feb;26:271-276.

Li K, Li T, Yang SS, Wang XD, Gao LX, Wang RQ, Gu J, Zhang XE, Deng JY. 2017. Deletion of nudB Causes Increased Susceptibility to Antifolates in Escherichia coli and Salmonella enterica. Antimicrob Agents Chemother. Apr;24:e02378-16.

Merlin C, Gardiner G, Durand S, Masters M. 2002. The Escherichia coli metD locus encodes an ABC transporter which includes Abc (MetN), YaeE (MetI), and YaeC (MetQ). J Bacteriol. Oct;184:5513-5517.

Minato Y, Baughn AD. 2017. Subversion of Metabolic Wasting as the Mechanism for folM-Linked Sulfamethoxazole Resistance. mBio. Nov;8:e01769-17.

Minato Y, Dawadi S, Kordus SL, Sivanandam A, Aldrich CC, Baughn AD. 2018. Mutual potentiation drives synergy between trimethoprim and sulfamethoxazole. Nature Communications. Mar;9:1003.

Minato Y, Thiede JM, Kordus SL, McKIveen EJ, Turman BJ, Baughn AD. 2015. Mycobacterium tuberculosis Folate Metabolism and the Mechanistic Basis for para-Aminosalicylic Acid Susceptibility and Resistance. Antimicrob Agents Chemother. Sep;59:5097-5106.

Nixon MR, Saionz KW, Koo MS, Szymonifka MJ, Jung H, Roberts JP, Nandakumar M, Kumar A, Liao R, Rustad T, et al. 2014. Folate pathway disruption leads to critical disruption of methionine derivatives in Mycobacterium tuberculosis. Chem Biol. Jun;21:819-830.

Podnecky NL, Rhodes KA, Mima T, Drew HR, Chirakul S, Wuthiekanun V, Schupp JM, Sarovich DS, Currie BJ, Kiem P, Schweizer HP. Mechanisms of Resistance to Folate Pathway Inhibitors in Burkholderia pseudomallei: Deviation from the Norm. mBio. Sep;8:e01357-17.
Rivera S, López-Soriano FJ, Azcón-Bieto J, Argilés JM. 1987. Blood amino acid compartmentation in mice bearing Lewis lung carcinoma. Cancer Res. Nov;47:5644-5646.

Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A. Feb;96:1645-1650.

Salaemae W, Azhar A, Booker GW, Polyak SW. 2011. Biotin biosynthesis in *Mycobacterium tuberculosis*: physiology, biochemistry and molecular intervention. Protein Cell. Sep;2:691-695.

Schuessler DL, Parish T. 2012. The promoter of Rv0560c is induced by salicylate and structurally-related compounds in *Mycobacterium tuberculosis*. PLoS One.7:e34471. Epub 2012/04/02.

Shi C, Tiwari D, Wilson DJ, Seiler CL, Schnappinger D, Aldrich CC. 2013. Bisubstrate Inhibitors of Biotin Protein Ligase. ACS Med Chem Lett. Dec;4.

Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR. 1990. Isolation and characterization of efficient plasmid transformation mutants of *Mycobacterium smegmatis*. Mol Microbiol. Nov;4:1911-1919.

Steenken W. 1935. Lysis of Tubercle Bacilli in Vitro. In: Experimental Biology and Medicine p. 253-255.

Takayama K, Wang C, Besra GS. 2005. Pathway to synthesis and processing of mycolic acids in *Mycobacterium tuberculosis*. Clin Microbiol Rev. Jan;18:81-101.

Taylor RG, Walker DC, McInnes RR. 1993. *E. coli* host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. Nucleic Acids Res. Apr;21:1677-1678.

Thiede JM, Kordus SL, Turman BJ, Buonomo JA, Aldrich CC, Minato Y, Baughn AD. 2016. Targeting intracellular p-aminobenzoic acid production potentiates the anti-tubercular action of antifolates. Sci Rep. Dec;6:38083. Epub 2016/12/01.

Tiwari D, Park SW, Essawy MM, Dawadi S, Mason A, Nandakumar M, Zimmerman M, Mina M, Ho HP, Engelhart CA, et al. 2018. Targeting protein biotinylation enhances tuberculosis chemotherapy. Sci Transl Med. Apr;10.

Wheeler PR, Coldham NG, Keating L, Gordon SV, Woff EE, Parish T, Hewinson RG. 2005. Functional demonstration of reverse transsulfuration in the *Mycobacterium tuberculosis* complex reveals that methionine is the preferred sulfur source for pathogenic Mycobacteria. J Biol Chem. Mar;280:8069-8078. Epub 2004/12/02.

Woong Park S, Klotzsche M, Wilson DJ, Boshoff HI, Eoh H, Manjunatha U, Blumenthal A, Rhee K, Barry CE, Aldrich CC, et al. 2011. Evaluating the sensitivity of *Mycobacterium tuberculosis* to biotin deprivation using regulated gene expression. PLoS Pathog. Sep;7:e1002264.

Youmans GP, Raleigh GW, Youmans AS. 1947. The Tuberculostatic Action of *para*-Aminosalicylic Acid. J Bacteriol. Oct;54:409-416.

Zhao F, Wang XD, Erber LN, Luo M, Guo AZ, Yang SS, Gu J, Turman BJ, Gao YR, Li DF, et al. 2014. Binding pocket alterations in dihydrofolate synthase confer resistance to *para*-aminosalicylic acid in clinical isolates of *Mycobacterium tuberculosis*. Antimicrob Agents Chemother.58:1479-1487.

Zhao Y, Shadrick WR, Wallace MJ, Wu Y, Griffith EC, Qi J, Yun MK, White SW, Lee RE. 2016. Pterin-sulfa conjugates as dihydropteroate synthase inhibitors and antibacterial agents. Bioorg Med Chem 08;26:3950-3954. Epub 2016/07/04.
Zheng J, Rubin EJ, Bifani P, Mathys V, Lim V, Au M, Jang J, Nam J, Dick T, Walker JR, et al. 2013. para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J Biol Chem. Aug;288:23447-23456.

Zumla A, Nahid P, Cole ST. 2013. Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov. May;12:388-404.
| Strain                  | Relevant features                                                                 | Source                                      |
|------------------------|-----------------------------------------------------------------------------------|---------------------------------------------|
| *M. bovis* BCG Pasteur | Pasteur strain of spontaneously attenuated variant of *M. bovis*                  | (Brosch et al. 2007)                        |
| *M. bovis* Pasteur *BCG_3282c::himar1* | Transposon insertion mutant with disruption in *BCG_3282c* | This work                                  |
| *M. bovis* BCG Pasteur *bioB::himar1* | Transposon insertion mutant with disruption in *bioB* | This work                                  |
| *M. tuberculosis* H37Ra | Spontaneously attenuated variant of *M. tuberculosis* strain H37                   | (Steenken 1935)                             |
| *M. tuberculosis* H37Ra *ΔpabB* | H37Ra strain with the *pabB* coding sequence replaced by a hygromycin resistance cassette | (Thiede, Kordus, Turman, Buonomo, Aldrich, Minato and Baughn 2016) |
| *M. smegmatis* mc²155 | Used for propagation of *himar1* mycobacteriophage                              | (Snapper et al. 1990)                      |
| *E. coli* DH5α*λ*pir | Utilized to replicate self-ligated *himar1* plasmids for determination of transposon insertion site | (Taylor et al. 1993)                       |

Table 1. List of bacterial strains used in this study
Table 2. Sequence-validated gene insertions that affect PAS susceptibility in the presence or absence of antagonistic concentrations of methionine

| Disrupted gene (M. tuberculosis H37Rv homolog) | Predicted function | Increased PAS susceptibility\(^a\) | Growth on PAS-Met\(^b\) |
|------------------------------------------------|-------------------|-------------------------------|------------------------|
| M. bovis BCG | Wild-type | no | +++ |
| BCG\(_{3282c}\) (Rv3253c) | Amino acid permease | no | - |
| fisH (ftsH) | Membrane-bound protease (insertion located near upstream folate biosynthesis operon) | yes | + |
| bioB (bioB) | Biotin synthase involved in biotin biosynthesis | yes | + |
| metB (metB) | Cystathionine gamma-synthase involved in methionine biosynthesis | yes | + |
| BCG\(_{1906c}\) (Rv1870c) | Unknown | yes | + |
| cysQ (cysQ) | Sulfate assimilation pathway regulator | no | + |
| accD2 (accD2) | Acetyl-CoA carboxylase involved in mycolic acid biosynthesis | no | + |
| BCG\(_{1988c}\)-\(_{1989c}\) (Rv1949c-Rv1950c) | Unknown (conserved hypotheticals) | no | + |
| PPE11 (PPE11) | Unknown (PPE family protein) | no | + |
| arsC (arsC) | Protein involved in arsenate resistance | no | + |
| mmpL7 (mmpL7) | Phthiocerol dimycocerosate transporter | no | + |
| BCG\(_{2043c}\) (Rv2024c) | Unknown | no | + |
| BCG\(_{3116}\) (Rv3091) | Unknown | no | + |
| BCG\(_{0914c}\) (Rv0862c) | Unknown | no | + |
| papA2 (papA2) | Protein involved in sulfolipid-1 biosynthesis | no | + |
| BCG\(_{2017}\) (Rv2000) | Unknown | no | + |
| BCG\(_{1401}\) (Rv1339) | Unknown | no | + |
| BCG\(_{1635}\) (Rv1597) | Unknown | no | + |
| BCG\(_{1082}\) (Rv1026) | Protein involved in polyphosphate regulation | no | + |
| BCG\(_{2497c}\) (Rv2477c) | Macrolide exporter | no | ++ |
| BCG\(_{3185c}\) (Rv3161c) | Dioxygenase | no | ++ |
| BCG\(_{0233}\) (Rv0196) | Transcriptional regulator | no | ++ |
| BCG\(_{3873}\) (Rv3811) | Cell surface protein involved in virulence | no | ++ |
| BCG\(_{1897}\) (Rv1861) | Conserved transmembrane protein | no | ++ |
| BCG\(_{2026}\) (vapB15) | Antitoxin component of an toxin-antitoxin operon with BCG\(_{2027}\) (vapC15) | no | ++ |
| kgtP (kgtP) | Ketoglutarate transport protein | no | ++ |
| mbtJ (mbtJ) | Protein involved in mycobactin biosynthesis | no | ++ |
| BCG\(_{1492}\) (Rv1431) | Conserved membrane protein | no | ++ |
| thiG (thiG) | Protein involved in thiamine biosynthesis | no | ++ |
| BCG\(_{3826c}\) (3767c) | SAM-dependent methyltransferase which may be involved in Polyketide synthesis | no | ++ |
| BCG\(_{0424}\) (Rv0386) | Transcriptional regulator | no | ++ |
| upp-sapM (upp-sapM) | Proteins involved in pyrimidine the salvage pathway and arresting phagosomal maturation, respectively (insertion is located within the intergenic region of these two genes) | no | ++ |
| fadD2 (fadD2) | Fatty-acid CoA Ligase | no | ++ |
| PPE33a (PPE33a) | Unknown (PPE family protein) | no | ++ |
| essJ (essJ) | Unknown | no | ++ |

\(^{a}\)PAS susceptibility was assessed by determining the minimum concentration (MIC) of drug required to inhibit growth on 7H10 agar plates. The M. bovis BCG PAS MIC was found to be 0.25 µg/ml. \(^{b}\)Growth of M. bovis BCG transposants on
methionine (10 µg/ml) only plates compared visually to plates containing methionine (10 µg/ml) and PAS (5 µg/ml) to
screen for transposon insertion mutants susceptible to PAS-methionine treatment. (++++) represents no growth difference
between PAS-methionine and methionine only plates (WT BCG). (++) represents approximately 50% impairment in
growth. (+) represents 25% or less growth. (–) represents no growth observed.

**Table 3. Antagonism of PAS and pterin-PAS by methionine**

| Strain                  | PAS MIC$_{90}$$^a$ | Pterin-PAS MIC$_{90}$ |
|-------------------------|--------------------|------------------------|
|                         | - Met              | + Met$^b$              | - Met | + Met |
| *M. bovis BCG*          | 1 (6.53)           | >250 (1630)            | 5 (15.1) | >20 (61.5) |
| *M. tuberculosis* H37Ra | 0.6 (3.92)         | >250 (1630)            | ND   | ND   |
| *M. tuberculosis* H37Ra $\Delta$pabB | 0.15 (0.98) | 0.3 (1.96) | ND   | ND   |

$^a$MIC$_{90}$ is defined as the minimum concentration of drug required to restrict at least 90% of growth relative to
growth seen in the no-drug control cultures. MIC90 are shown in µg/ml (µM).

ND, not determined; Met, methionine; PAS, para-aminosalicylic acid.

$^b$Methionine was supplemented at 10 µg/ml.

**Figure legends**

**Figure 1. Previously proposed models for PAS activation and methionine-mediated PAS inactivation.** As indicated on the left, PAS is a prodrug that must be activated by the *M. tuberculosis* folate biosynthetic pathway. PAS is incorporated in lieu of PABA by FolP1 and glutamoylated by
FolC to form the antimetabolite HDHF which inhibits DfrA activity (indicated as red blunted arrows) (Dawadi, Kordus, Baughn and Aldrich 2017, Minato, Thiede, Kordus, McKlveen, Turman and
Baughn 2015, Zhao, Wang, Erber, Luo, Guo, Yang, Gu, Turman, Gao, Li, Cui, Zhang, Bi, Baughn, Zhang and Deng 2014, Zheng, Rubin, Bifani, Mathys, Lim, Au, Jang, Nam, Dick, Walker, Pethe and
Camacho 2013). Previous work has identified N-methyl and N,N-dimethyl PAS species (methyl
groups indicated with dotted red boxes) in metabolite extracts from *M. tuberculosis* treated with PAS
(Chakraborty, Gruber, Barry, Boshoff and Rhee 2013). As N,N-dimethylation of PAS prevents
incorporation by FolP1, the resulting metabolite is inactive (shown on the right). This activity is
presumed to be dependent upon an as of yet unidentified SAM-dependent methyltransferase(s).
Supplementation with methionine may increase SAM pools, which could be utilized by the
methyltransferase(s) to inactivate PAS, thus conferring resistance. Abbreviations: PAS, para-
aminosalicylic acid; PABA, para-aminobenzoic acid; HDHP, 2’-hydroxy-7,8-dihydropterate; HDHF, 2’-hydroxy-7,8-dihydrofolate; FolP1, dihydropterate synthase; FolC, dihydrofolate synthase; DfrA, dihydrofolate reductase; MT, methyltransferase; SAM, S-adenosyl methionine; SAH, S-adenosyl homocysteine.

Figure 2. Schematic representation of genome-wide transposon mutagenesis of *M. bovis* BCG and Met-PAS screening method. *M. bovis* BCG::himar1 mutants (approximately 10,000 mutants) were patched onto Met and Met-PAS plates. Colonies with observable growth defects on Met-PAS plates were subjected to secondary screening. These 35 mutants that passed the secondary screening were collected and insertion site locations were determined.

Figure 3. BCG_3282c is essential for methionine-mediated PAS antagonism and utilization of sulfur derived from methionine in *M. bovis* BCG. (A) Growth kinetics of *M. bovis* BCG BCG_3282c::himar1 and *M. bovis* BCG wild type during PAS exposure when antagonistic metabolites are added. Growth was assessed by OD$_{600}$ readings every 2-3 days. (B) *M. bovis* BCG strains were grown to an OD$_{600}$ of approximately 0.5, washed three times to remove residual sulfate with sulfate-free Sautons medium, and resuspended in sulfate-free Sautons medium to a starting OD$_{600}$ of 0.01 and cells were starved for sulfur for 5 days. Following the exhaust period, sulfur-sources were added, and cells were incubated for 7 days to resume growth. The fold-change in growth was assessed as a ratio of the final OD$_{600}$ over the starting OD$_{600}$ following the exhaust period (final OD$_{600}$/starting OD$_{600}$). p-values of pairwise comparisons (denoted by lines) were calculated using the Student t test. *, p < 0.05, **, p.<.0.005, ns indicates no significant difference (p > 0.05). (A,B) Error bars denote standard deviation and are representative of 3 separate experiments.

Figure 4. Methionine can affect but not bypass essentiality of upstream folate biosynthetic pathways in *M. tuberculosis*. (A) New working model of methionine-mediated PAS antagonism. (B) *M. tuberculosis ΔpabB* was grown to an OD$_{600}$ of approximately 0.5, washed three times to remove residual PABA with PABA-free 7H9 medium, and resuspended in PABA-free 7H9 medium to a starting OD$_{600}$ of 0.01 (3 x 10$^6$ cells/mL). Cultures were then supplemented with the indicated metabolites and incubated for 14 days with OD$_{600}$ readings taken at the given time points.

Figure 5. Disruption of *bioB* is growth inhibitory and potentiates drug action. (A,B) *M. bovis* BCG bioB::himar1 was grown to an OD$_{600}$ of approximately 0.5, washed three times to remove residual biotin with biotin-free 7H9 medium, and resuspended in biotin-free 7H9 medium to a starting OD$_{600}$ of 0.01. Cultures were then supplemented with biotin and incubated for 14 days with OD$_{600}$ readings taken at the given time points. Error bars denote standard deviation and are representative of 2 separate experiments. (B) *M. bovis* BCG and bioB::himar1 were grown to an OD$_{600}$ of approximately 0.5, washed three times to remove residual biotin, and resuspended in biotin-free 7H9 medium to a starting OD$_{600}$ of 0.01. Cultures were then supplemented with biotin (0.05 and 5) and incubated for 14 days with OD$_{600}$ readings taken at the given time points. MIC$_{90}$ is defined as the minimum concentration of inhibitor required to restrict at least 90% of growth relative to growth seen in the no-drug control cultures. Abbreviations: PAS, *para*-aminosalicylic acid; SMX, sulfamethoxazole; RIF, rifampin; INH, isoniazid. Results shown are representative of 3 separate experiments.
M. bovis BCG::himar1 mutant library

Primary screen

~10000 mutants

1. Collect all mutants with growth defects on Met-PAS plates

142 mutants

Secondary screen

2. Collect mutants with severe growth defects on Met-PAS plates

35 mutants
