Correlation Between Carotid Intima Media Thickness and Serum Uric Acid, Results From 15843 Subjects in 2016-2020

Mingzhu Ma
Chongqing Medical University

Liangxu Wang
Kunming Medical University

Xiaoqi Zhong
Chongqing Medical University

Li Zhong
The First Affiliated Hospital of Chongqing Medical University

Rong Chen
The First Affiliated Hospital of Chongqing Medical University

Longfei Li
Chongqing Medical University

Min Mao (✉ maominmaomin123456@163.com)
The First Affiliated Hospital of Chongqing Medical University https://orcid.org/0000-0003-4720-2892

Original investigation

Keywords: carotid intima media thickness, atherosclerosis, plaque, serum uric acid

DOI: https://doi.org/10.21203/rs.3.rs-729479/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Objective: Uric acid is thought to be associated with the occurrence of atherosclerosis, which is closely related to cardio-cerebrovascular disease. However, the present study examined serum uric acid (SUA) and its correlation with carotid intima-media thickness (CIMT), which is a major issue. The purpose of this paper is to examine serum uric acid concentration and its correlation with carotid artery atherosclerosis according to age and sex groups.

Methods: Individuals who underwent physical examinations at the First Affiliated Hospital of Chongqing Medical University from 2016 to 2020 were selected. The physical examination information of the subjects was recorded, and biochemical indexes such as blood uric acid levels were collected. The intima media thickness of the carotid artery was measured by ultrasound. Using traditional atherosclerosis risk factors as adjustment variables, the association between blood uric acid levels and atherosclerosis was assessed by logistic regression analysis.

Results: A total of 15,843 subjects (73.90% male) were included, with an average age of 52±12 (20-92) years. The prevalence of CIMT thickened was 9.51%, and the plaque prevalence was 28.59%. Univariate analysis results showed that there were significant differences in CIMT thickening and plaque occurrence among different SUA level groups in both men and women (P<0.0001). After adjustment for conventional cardiovascular risk factors, increased SUA levels were significantly associated with an increased risk of CIMT thickening (male: ≤220 μmol/L as the reference group, 220-290 μmol/L: OR=1.591, 95% CI: 1.069-2.367; 290-360 μmol/L: OR=1.65, 95% CI: 1.127-2.415; 360-430 μmol/L: OR=1.857, 95% CI: 1.264-2.73; P < 0.05). Female: ≤210 μmol/L as the reference group, 260-310 μmol/L: OR=1.419, 95% CI: 1.059-1.901; 310-360 μmol/L: OR=1.432, 95% CI: 1.048-1.957; >360 μmol/L: OR=1.557, 95% CI: 1.113-2.177; P < 0.05). Correlation analysis in each age subgroup showed that CIMT was significantly associated with SUA in men ≥60 years old and women 45-60 years old and ≥60 years old (male: ≤220 μmol/L as the reference group, >430 μmol/L: OR=1.972, 95% CI: [1.23,2.38], female: ≤210 μmol/L as the reference group, >360 μmol/L (45-60 years old): OR=1.77, 95% CI[1.107,2.832]; >360 μmol/L (≥60 years old), OR = 1.65, 95% CI: [1.067, 2.551]. P < 0.05).

Conclusions: In both men and women, increased SUA levels are closely associated with thickened CIMT, which is associated with a higher risk of cardio-cerebrovascular disease. The age at which this association was observed in women was lower than in men, and whether this result is due to changes in hormone levels before and after menopause remains to be prospectively studied.

Introduction

In recent years, with the improvement of people's living standards and changes in the diet, the incidence of atherosclerosis has shown an increasing trend each year and has begun to occur in increasingly younger individuals, resulting in higher mortality worldwide [1]. Atherosclerosis is a result of lipid metabolic disorders when fat lesions form on the arterial wall lining, and thickening and hardening of the arterial wall and narrowing of the vascular lumen are the main causes of cardio-cerebrovascular disease [2, 3]. Carotid intima thickness has been suggested to be a marker of atherosclerosis sensitivity and has been increasingly used as a proxy indicator for atherosclerosis [4, 5]. Several studies have shown that increased carotid intima thickness is closely associated with plaque occurrence and an increased risk of future cardio-cerebrovascular disease (including stroke and coronary heart disease) [6, 7].

Uric acid is a normal metabolite of purine nucleotides and may cause atherosclerosis by acting as a mediator of inflammation, inducing endothelial dysfunction and stimulating smooth muscle hyperplasia[8]. SUA is closely related to many traditional cardiovascular risk factors, such as age, hypertension, obesity, diabetes, etc. [9, 10]. In previous studies, the association between increased SUA and cardiovascular and cerebrovascular diseases is considered to be an epigenetic phenomenon rather than a causal relationship [11]. However, increasing evidence supports that hyperuricemia is one of the possible risk factors for atherosclerosis and is closely related to the morbidity and mortality of cardio-cerebrovascular disease, suggesting that uric acid, a biomarker, could be a target for therapeutic intervention [12–16]. Many studies not only support this relationship but also indicate that uric acid is an independent risk factor for cardiovascular and cerebrovascular events, including in high-risk populations such as individuals with coronary heart disease, congestive heart failure, diabetes, hypertension, etc. [17–19]. However, the importance of the association between high uric acid and cardiovascular and cardiovascular events in the general population remains to be clarified.

In this study, we examined the relationship between serum uric acid levels and atherosclerosis in the general checkup population and determined whether this relationship varies with population status. This study aimed to provide new evidence on the relationship between uric acid and cardio-cerebrovascular disease and to clarify the role of uric acid in the occurrence and development of cardio-cerebrovascular disease.

Participants And Methods

2.1 Population Selection

Data collected from the Health Management Center of the First Affiliated Hospital of Chongqing Medical University from 2016 to 2020 were used; adults older than 18 years old were included, and those with incomplete physical examination data, malignant tumors, severe liver or kidney diseases, other metabolic diseases, or recent drug use affecting uric acid metabolism were excluded. After 8–12 hours of overnight fasting, 5 mL venous blood samples were extracted from all subjects, and urine samples were collected the next morning. Biochemical indexes were detected by an automatic biochemical analyzer in the biochemical laboratory.

2.2 General physical measurement and biochemical analysis

The general physical examination was performed by a professional physician. The participants took off their shoes and wore light clothing when their height and weight were measured. After three measurements were obtained, the average value was taken, which was accurate to 0.1 cm(kg). BMI was calculated as weight (kg)/height (m)^2. Waist circumference was measured by placing a soft tape measure around the waist at the navel level. Abdominal central obesity
was defined as waist circumference \geq 90 cm in men and \geq 85 cm in women [20]. The systolic blood pressure and diastolic blood pressure (SBP and DBP, respectively) were measured by two highly trained nurses at 8 to 10 a.m., and the average of the six measurements was taken as the final value. Adult hypertension was defined as SBP/DBP \geq 140/90 mm Hg or use of antihypertensive drugs [21]. Creatinine, fasting blood glucose, HDL-C, LDL-C, hemoglobin, mean platelet volume, globulin, total cholesterol, triglycerides, alanine transaminase, glutamic-oxaloacetic transaminase, glutamyltransferase, urea and urine pH indexes were measured in strict accordance with the standard procedures by the automatic biochemical instrument laboratory of the First Affiliated Hospital of Chongqing Medical University. The laboratory has obtained ISO15189 standard certification. Blood uric acid was measured by the Roche C701 uricase colorimetric method. The source of the SUA reference interval was obtained from the reagent manufacturer's instructions and approved by clinical verification.

2.3 Ultrasound examination of carotid intima media thickness

The intima media thickness of the common carotid artery was measured by Toshiba Apio 500 color Doppler ultrasonography. The vertical distance between the upper endometrial margin and the upper endometrial margin was measured at the distal common carotid artery (1.0-1.5 cm below the level of bifurcation) and the carotid bulb (where the initial segment of the internal carotid artery was relatively enlarged). Normal was defined as IMT < 1.0 mm, and thickened was defined as 1.0 mm \leq IMT < 1.5 mm. A plaque was defined as a focal structure invading the arterial lumen greater than 50% of the peripheral IMT value or IMT ≥ 1.5 mm [22].

2.4 Covariable selection

By consulting experts in the field of cardiovascular and cerebrovascular diseases and referring to relevant information, 51 factors that may be related to atherosclerosis were selected. Combined with our data, 26 variables were retained, and 20 covariates were finally included after variables with more than 30% missing data were eliminated. The included factors were sex, age, BMI, central obesity, hypertension, pulse, creatinine(Cre), fasting blood glucose(FBG), HDL-C, LDL-C, hemoglobin, mean platelet volume(MPV), globulin, total cholesterol(TC), triglycerides(TG), Aspartate aminotransferase(AST), glutamate pyruvic transa(ALT), gamma-glutamyltransferase(GGT), SUA, and urine pH.

2.5 Statistical analysis

Categorical variables are presented as frequencies (relative frequencies), while continuous variables are presented as the mean \pm standard deviation. The Wilcoxon rank sum test was used to compare the rates of each variable between the normal, thickened and plaque groups, and $P < 0.05$ was considered to be statistically significant. The reference intervals of all physical examination variables were in accordance with the physical examination standards of the First Affiliated Hospital of Chongqing Medical University (Appendix 1). SUA was divided into categories. Since the critical value of hyperuricemia was 428 µmol/L for males and 357 µmol/L for females, after rounding up, > 430 µmol/L and > 360 µmol/L were used as the highest SUA levels in the male and female groups, respectively, and the group intervals were 70 µmol/L for males and 50 µmol/L for females. The population was divided into five groups according to the serum uric acid level (male: Group1: \leq220 µmol/L, Group2: 220–290 µmol/L, Group3: 290–360 µmol/L, Group4: 360–430 µmol/L, Group5: >430 µmol/L; female: Group1: \leq210 µmol/L, Group2: 210–260 µmol/L, Group3: 260–310 µmol/L, Group4: 310–360 µmol/L, Group5: >360 µmol/L). Four ordered logistic regression models were constructed: Model 1 was the unadjusted single factor model, Model 2 was adjusted for age, Model 3 was adjusted for age, BMI, central obesity and hypertension, and Model 4 was adjusted for all covariates. All statistical analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, NC, USA) and R 4.0.4 software.

Results

3.1 CIMT thickened and plaque prevalence in males and females

A total of 15,843 persons (73.90% male, mean age 52 ± 12 [20–92]) who met the inclusion and exclusion criteria were selected. According to the classification standard of carotid intima media thickness, 61.90% of the people had normal CIMT. Thickened was found in 9.51% of the participants, and the plaque prevalence was 28.59%. The prevalence of CIMT thickened and plaque in the male population was higher than that in the female population (P < 0.0001), and the specific proportion distribution is shown in Fig. 1.

3.2 Baseline characteristics and univariate analysis

Table 1 shows the distribution of various variables in the normal, thickened and plaque groups of CIMT in different male and female populations. With increasing age, the incidence of thickened and plaque in CIMT gradually increased. The thickened rate of CIMT in patients with central obesity and hypertension was significantly higher than that in patients without central obesity and hypertension. Univariate analysis showed that age, BMI, central obesity, hypertension, FBG, urine pH, TC, TG, LDL-C, hemoglobin, AST, ALT, urea, Cre, and SUA had significant effects on CIMT in the male population. In the female population, the variables that had a significant influence on CIMT were age, BMI, central obesity, hypertension, pulse, FBG, urine pH, TC, TG, HDL-C, LDL-C, hemoglobin, ALT, GGT, urea, Cre, and SUA.
	Male(n = 11708)	Female(n = 4135)				
	CIMT	p^a	CIMT	p^a		
	Normal(59.35%)	Thickened(10.13%)	Plaque(30.52%)	Normal(69.12%)	Thickened(7.76%)	Plaque(23.12%)
Age(years)	Normal(59.35%)	Thickened(10.13%)	Plaque(30.52%)	Normal(69.12%)	Thickened(7.76%)	Plaque(23.12%)
18–45	2948(89.14)	125(3.78)	234(7.08)	937(95.61)	13(1.33)	30(3.06)
45–60	3171(59.36)	641(12)	1530(28.64)	1366(76.02)	139(7.74)	292(16.25)
≥ 60	830(27.13)	420(13.73)	1809(59.14)	555(40.87)	169(12.44)	634(46.69)
BMI (kg/m²)	0.0094	< 0.0	0.0094	< 0.0		
< 18.5	79(54.86)	10(6.94)	55(38.19)	174(84.47)	6(2.91)	26(12.62)
18.5–24	2757(59.92)	426(9.26)	1418(30.82)	1968(72.11)	210(7.7)	551(20.19)
24–28	3252(58.21)	608(10.88)	1727(30.91)	579(60.06)	81(8.4)	304(31.54)
≥ 28	861(62.57)	142(10.32)	373(27.11)	137(58.05)	24(10.17)	75(31.78)
Central obesity	0.0004	< 0.0	< 0.0			
Yes	2600(56.93)	532(11.65)	1435(31.42)	403(52.34)	75(9.74)	292(37.92)
No	4349(60.9)	654(9.16)	2138(29.94)	2455(72.11)	246(7.31)	664(19.73)
Hypertension	< 0.0001	< 0.0001	< 0.0001	< 0.0001		
Yes	1440(44.99)	422(13.18)	1339(41.83)	473(47.68)	104(10.48)	415(41.83)
No	5509(64.76)	764(8.98)	2234(26.26)	2385(75.88)	217(6.9)	541(17.21)
Pulse (counts per minute)	0.5080	0.0	0.5080	0.0		
Lower	498(59)	84(9.95)	262(31.04)	124(60.78)	22(10.78)	58(28.43)
Normal	6229(59.48)	1062(10.14)	3182(30.38)	2619(69.52)	293(7.78)	855(22.7)
Higher	222(56.78)	40(10.23)	129(32.99)	115(70.12)	6(3.66)	43(26.22)
FBG (mmol/l)	< 0.0001	< 0.0001	< 0.0001	< 0.0001		
Lower/Normal	5760(63.7)	868(9.6)	2415(26.71)	2600(72.67)	261(7.29)	717(20.04)
Higher	1189(44.62)	318(11.93)	1158(43.45)	258(46.32)	60(10.77)	239(42.91)
Urine PH	6.35(0.54)	6.31(0.54)	6.28(0.51)	6.42(0.61)	6.35(0.60)	6.33(0.60)
TC (mmol/L)	< 0.0001	< 0.0001	< 0.0001	< 0.0001		
Lower	27(44.26)	7(11.48)	27(44.26)	-	-	-
Normal	4223(61.63)	665(9.71)	1964(28.66)	1612(73.67)	132(6.03)	444(20.29)
Higher	2699(56.29)	514(10.72)	1582(32.99)	1246(64)	189(9.71)	512(26.3)
TG (µmol/l)	< 0.0001	< 0.0001	< 0.0001	< 0.0001		
Lower/Normal	3659(57.18)	655(10.24)	2085(32.58)	2266(71.37)	232(7.31)	677(21.32)
Higher	3290(61.97)	531(10)	1488(28.03)	592(61.67)	89(9.27)	279(29.06)
HDL-C (mmol/L)	0.5230	0.0	0.5230	0.0		
Lower	2624(60.45)	454(10.46)	1263(29.09)	540(63.75)	75(8.85)	232(27.39)
Normal	2461(59.02)	433(10.38)	1276(30.6)	862(69.63)	82(6.62)	294(23.75)
Higher	1864(58.3)	299(9.35)	1034(32.34)	1456(71.02)	164(8)	430(20.98)
	Male (n = 11708)	Female (n = 4135)				
------------	-----------------	------------------				
LDL-C (MMOL/L)						
Normal	4590(61.39)	2031(73.83)				
	737(9.86)	173(6.29)				
	2150(28.75)	547(19.88)				
Higher	2359(55.76)	827(59.75)				
	449(10.61)	148(10.69)				
	1423(33.63)	409(29.55)				
Hemoglobin(g/L)						
Normal	66(39.05)	109(81.34)				
	18(10.65)	5(3.73)				
	85(50.3)	20(14.93)				
Higher	252(63.96)	160(64)				
	37(9.39)	28(11.2)				
	105(26.65)	62(24.8)				
MPV(f1)	0.6268	0.1				
Lower	6460(59.26)	2632(68.85)				
	1115(10.23)	299(7.82)				
	3327(30.52)	892(23.33)				
Higher	489(60.67)	226(72.44)				
	71(8.81)	22(7.05)				
	246(30.52)	64(20.51)				
Globulin(g/L)						
Normal	55(58.51)	281(69.15)				
	12(12.77)	318(7.77)				
	27(28.72)	945(23.08)				
Higher	838(69.72)	181(66.54)				
	108(8.99)	28(10.29)				
	256(21.3)	63(23.16)				
ALT(U/L)						
Normal	234(48.45)	41(71.93)				
	61(12.63)	2(3.51)				
	188(38.92)	14(24.56)				
Higher	838(69.72)	181(66.54)				
	108(8.99)	28(10.29)				
	256(21.3)	63(23.16)				
AST(U/L)						
Normal	6354(59.61)	2636(69.26)				
	1065(10.28)	291(7.65)				
	3250(31.38)	879(23.1)				
Higher	361(63.78)	144(64.86)				
	49(8.66)	20(9.01)				
	156(27.56)	58(26.13)				
GGT(U/L)						
Normal	1565(57.84)	2599(68.92)				
	1005(10.44)	294(7.8)				
	3052(31.72)	878(23.28)				
Higher	361(63.78)	144(64.86)				
	49(8.66)	20(9.01)				
	156(27.56)	58(26.13)				
Urea (mmol/L)						
Normal	326(63.67)	136(26.56)				
	50(9.77)	-				
	136(26.56)	-				
Higher	38(40.86)	45(48.39)				
	10(10.75)	117(54.93)				
	45(48.39)	18(8.45)				
	326(26.56)	78(36.62)				
Cre (µmol/l)						
Normal	70(42.94)	16(59.26)				
	18(11.04)	2(7.41)				
	75(46.01)	9(33.33)				
Higher	74(39.36)	179(59.87)				
	20(10.64)	31(10.37)				
	94(50)	89(29.77)				
SUA (µmol/l)						
Group1	2181(61.89)	333(59.89)				
	337(9.56)	50(8.99)				
	1006(28.55)	173(31.12)				
Group2	2437(61.31)	511(64.6)				
	393(9.89)	69(8.72)				
	1145(28.81)	211(26.68)				
Group3	1796(56.34)	876(67.91)				
	333(10.45)	113(8.76)				
	1059(33.22)	301(23.33)				
Group4	460(51.74)	828(75.41)				
	107(12.04)	60(5.46)				
	322(36.22)	210(19.13)				
The mechanism by which uric acid leads to atherosclerosis is considered to be a pathophysiological process. Previous studies have suggested that uric acid can be used as a danger signal to promote the proliferation of vascular smooth muscle cells and oxidative stress [28] and induce inflammation. The occurrence of this process involves a variety of reactions, including oxidation of low-density lipoprotein [29] and inhibition of nitric oxide production and endothelial dysfunction, which eventually leads to atherosclerosis [30–32]. However, it is not clear whether uric acid has a pathogenic role in the development of atherosclerosis or is merely a marker of the atherosclerotic process. Therefore, it is necessary to conduct a large cohort study to investigate the role of uric acid levels in the progression of atherosclerosis.

This study assessed the correlation between SUA and CIMT in individuals according to sex. The results showed that although SUA was significantly associated with CIMT in both men and women after adjustment for conventional cardiovascular risk factors, higher SUA levels were not significantly associated with CIMT thickening in men in the univariate model, whereas associations were present in women in both univariate and multivariate models. In previous studies on the relationship between SUA and atherosclerosis, sex differences also existed in the risk of atherosclerosis associated with SUA [33, 34]. Studies have shown that uric acid is a multifactorial trait that is controlled by strong genes in addition to environmental factors [35, 36], and there are significant differences in blood uric acid concentrations between males and females [37]. In addition, studies have shown that the biological effects of uric acid in men and women are different; there are many differences in the influence on the different developmental stages of carotid artery atherosclerosis [38–40]. Therefore, women are more prone to vascular injury than men and have a higher risk of asymptomatic cerebral infarction [41]. We believe that the differences identified between men and women in this study are also related to these reasons.

In men, no significant association was found in the single-factor model, and no correlation was found in the two-factor model adjusted for BMI, hypertension, and central obesity. However, in the model adjusted for age alone, the risk of CIMT thickening was significantly increased in the high SUA group, suggesting that age may be an important factor affecting the correlation between SUA and CIMT. Further analysis stratified by age showed that the risk of CIMT thickening and plaque associated with high SUA was higher in men ≥ 60 years old and women 45–60 years old and ≥ 60 years old. Therefore, the correlation between blood uric acid and carotid atherosclerosis may be different in different age groups. Elderly individuals compose the population most commonly

3.3 Correlation between serum uric acid and carotid intima media thickness

The correlation analysis results of SUA and CIMT are shown in Fig. 2. Since sex had a significant effect on the correlation between the two, males and females were analyzed separately. The results showed that in the male population, the risk of CIMT thickening was not significantly different in the group with higher SUA compared to the group with the lowest in the unadjusted model 1. However, after adjusting for age (Model 2) and for age, BMI, central obesity, and hypertension (Model 3), the risk of CIMT thickening was significantly increased in the group with higher SUA levels. After adjustment for all risk factors, the risk of CIMT thickening increased significantly with the increase in SUA level (≤ 220 µmol/L as the reference group, 220–290 µmol/L: OR = 1.65, 95% CI: 1.069–2.367; 290–360 µmol/L: OR = 1.73; P < 0.05) (Fig. 2 Male). In the female population, the risk of CIMT thickening was significantly increased in the high SUA group compared to that in the low SUA group whether the univariate model or all risk factors were included in the adjustment (≤ 210 µmol/L as the reference group, 260–310 µmol/L: OR = 1.419, 95% CI: 1.059–1.901; 310–360 µmol/L: OR = 1.432, 95% CI: 1.048–1.957; > 360 µmol/L: OR = 1.557, 95% CI: 1.113–2.177; P < 0.05) (Fig. 2 Female).

3.4 Stratified analysis according to age

The overall analysis showed that the relationship between SUA and CIMT tended to be stable after age was included in the model (Model 2, Model 3, and Model 4) (Fig. 2). Obviously, age had a significant influence on the correlation between SUA and CIMT, so we further analyzed the correlation between these variables in each age group. The result is shown in Fig. 3. We found no association between SUA and CIMT in male and female aged 18–45 years. In male ≥ 60 years old, an increase in SUA concentration significantly increased the risk of CIMT thickening (≤ 220 µmol/L as the reference group, > 430 µmol/L: OR = 1.972, 95% CI: [1.23, 238] P < 0.05) (Fig. 3 Male). There was a significant correlation between SUA and CIMT in female aged 45–60 years and ≥ 60 years (≤ 210 µmol/L as the reference group, > 360 µmol/L (45–60 years old): OR = 1.77, 95% CI: [1.107, 2.832]; > 360 µmol/L (≥ 60 years old) OR higher, OR = 1.65, 95% CI: [1.067, 2.551]. P < 0.05) (Fig. 3 Female).

Discussion

In this cross-sectional study, we investigated the association between SUA and CIMT in adults. Overall, the analysis results showed that an increased risk of CIMT thickening was significantly associated with higher SUA in both men and women after adjustment for traditional atherosclerosis risk factors. The results of subgroup analysis by age showed that there was a significant correlation between SUA and CIMT only in men aged ≥ 60 years and in women aged 45–60 years and ≥ 60 years. Therefore, this study suggests that high blood uric acid levels may be a risk factor for atherosclerosis and that the age associated with carotid intima thickness is lower in women than in men.

Many previous studies have also explored the relationship between SUA and CIMT and found that elevated blood uric acid levels are associated with a variety of cardiovascular and cerebrovascular diseases [23]. Most studies have shown that increased SUA levels are positively correlated with atherosclerosis [24, 25]. This study is consistent with the results of previous studies, as well as the results of our published meta-analysis and another systematic review [26, 27].
affected by atherosclerosis. With increasing age, the function of the human body declines, and the effect of uric acid in the human body also changes, which may be the reason for the occurrence of this result. It has been reported that serum uric acid levels are higher in postmenopausal women than in premenopausal women [42, 43]. Our study shows that SUA exhibits an association with CIMT at a younger age in females than in men, menopause may play a role in uric acid's effect in the body perhaps due to female hormone level changes before and after menopause [44].

This study aimed to explore the relationship between SUA and CIMT. The main limitations of this study are as follows: first, due to the limitations of physical examination data, all risk factors for atherosclerosis, such as smoking, drinking and disease history, were not included in the multifactor regression model, which may introduce some bias to the results. Second, although our study concluded that serum uric acid levels were associated with carotid intima thickness, the cross-sectional nature of the study makes it impossible to elucidate a cause-effect relationship. Third, our study was single centered, and the participants were all Chinese, so the applicability of the findings to other ethnic groups may be limited. Fourth, since female hormone levels were not included in the physical examination data, the differences between male and female results in terms of age could not be further explored. We will conduct prospective studies in this regard in the future. Despite these limitations, we believe that the conclusion of this study provides theoretical support for further clinical studies and have important implications for the clinical prevention and treatment of carotid atherosclerosis.

Conclusion

In summary, in this study, we explored the correlation between SUA and CIMT in detail by gender and age and found that after adjusting for traditional cardiovascular risk factors, both men and women with high uric acid had a significantly increased risk of CIMT thickening and plaque. In the subgroup analysis by age, a significant association was found only in men ≥ 60 years and women 45–60 and ≥ 60 years. It is suggested that uric acid is closely related to the occurrence and development of carotid atherosclerosis, which may be a cause of cardiovascular events. This relationship may be strengthened with increasing age, and the degree of association in the female population is greater than that in the male population.

Abbreviations

CIMT: carotid intima media thickness; SUA: serum uric acid; LDL-C: low density lipoprotein cholesterol; HDL-C: high density lipoprotein cholesterol; TC: total cholesterol; BMI: body mass index; ALT: glutamate pyruvic transa; AST: Aspartate aminotransferase; GGT: Gamma-glutamyltransferase; FBG: Fasting blood glucose; TC: total cholesterol; Cre: Creatinine; MPV: mean platelet volume; TG: triglycerides

Declarations

Ethics approval and consent to participate

Since our study used physical examination data in hospital, this study was exempt from ethical approval from Chongqing Medical University Institutional Review Board. The requirement for informed consent was waived as the database was constructed after anonymization according to strict confidentiality guidelines.

Consent for publication

Not applicable

Availability of data and materials

The datasets generated during and/or analysed during the current study are not publicly available due the fact that its copyright belongs to the First Affiliated Hospital of Chongqing Medical University but are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests

Funding

This work was supported by the Chongqing Science and Technology Commission (Project number cstc2020jcyj-msxmX0853); and Chongqing Municipal Public Health Bureau (Project number ZY201802121). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors received no specific funding for this work.

Authors' contributions

MM participated in the design of the study and drafted the manuscript. MZM and LXW contributed to the study design, performed statistical analyses and revised the manuscript. XNZ substantively revised the manuscript. LZ and RC performed data collection. LFL participated in the data analysis. All authors read and approved the final manuscript.
Acknowledgements

We are grateful to the Chongqing Science and Technology Commission and Chongqing Municipal Public Health Bureau for their financial support for this work, and we are also grateful for all professors and colleagues for helping us during the current research.

References

1. Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L, Lewis EF. Atherosclerosis. Nat Rev Dis Primers. 2019 Aug 16;5(1):56. doi: 10.1038/s41572-019-0106-z. PMID: 31420554.

2. Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ Res. 2016 Feb 19;118(4):535-46. doi: 10.1161/CIRCRESAHA.115.307611. PMID: 26892956.

3. Barquera S, Pedroza-Tobias A, Medina C, Hernández-Barrera L, Bibbins-Domingo K, Lozano R, Moran AE. Global Overview of the Epidemiology of Atherosclerotic Cardiovascular Disease. Arch Med Res. 2015 Jul;46(5):328-38. doi: 10.1016/j.arcmed.2015.06.006. Epub 2015 Jun 29. PMID: 26135634.

4. Wu AH, Gladden JD, Ahmed M, Ahmed M, Filippatos G. Relation of serum uric acid to cardiovascular disease. Int J Cardiol. 2016 Jun 15;213:4-7. doi: 10.1016/j.ijcard.2015.08.110. Epub 2015 Aug 24. PMID: 26341316.

5. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007 Jan 30;115(4):459-67. doi: 10.1161/CIRCULATIONAHA.106.628875. Epub 2007 Jan 22. PMID: 17242284.

6. Naqvi TZ, Lee MS. Carotid intima-media thickness and plaque in cardiovascular risk assessment. JACC Cardiovasc Imaging. 2014 Oct;7(10):1025-38. doi: 10.1016/j.jcmg.2013.11.014. Epub 2014 Jul 16. PMID: 25051948.

7. Mehta A, Rigdon J, Tattersall MC, German CA, Barringer TA 3rd, Joshi PH, Sperling LS, Budoff MJ, Bertoni A, Michos ED, Blaha MJ, Stein JH, Shapiro MD. Association of Carotid Artery Plaque With Cardiovascular Events and Incident Coronary Artery Calcium in Individuals With Absent Coronary Calcification: The MESA. Circ Cardiovasc Imaging. 2021 Apr;14(4):e011701. doi: 10.1161/CIRCIMAGING.120.011701. Epub 2021 Apr 8. PMID: 33827231; PMCID: PMC8058258.

8. Feng L, Hua C, Sun H, Qin LY, Niu PP, Guo ZN, Yang Y. Association between Serum Uric Acid Level and Carotid Atherosclerosis in Chinese Individuals Aged 75 Years or Older: A Hospital-Based Case-Control Study. J Nutr Health Aging. 2018;22(4):508-512. doi: 10.1007/s12603-017-0984-2. PMID: 29582890.

9. Kanbay M, Segal M, Afasar B, Kang DH, Rodriguez-Iturbe B, Johnson RJ. The role of uric acid in the pathogenesis of human cardiovascular disease. Heart. 2013 Jun;99(11):759-66. doi: 10.1136/heartjnl-2012-302535. Epub 2013 Jan 23. PMID: 23343689.

10. Soltani Z, Rasheed K, Kapusta DR, Reisin E. Potential role of uric acid in metabolic syndrome, hypertension, kidney injury, and cardiovascular diseases: is it time for reappraisal? Curr Hypertens Rep. 2013 Jun;15(3):175-81. doi: 10.1007/s11906-013-0344-5. PMID: 23588856; PMCID: PMC3736857.

11. Katsiki N, Karagiannis A, Athyros VG, Mikhailidis DP. Hyperuricaemia: more than just a cause of gout? J Cardiovasc Med (Hagerstown). 2013 Jun;14(6):397-402. doi: 10.2459/JCM.0b013e3283595adc. PMID: 23032963.

12. Stack AG, Hanley A, Casserly LF, Cronin CJ, Abdalla AA, Kieman TJ, Murthy BV, Hegarty A, Hannigan A, Nguyen HT. Independent and conjoint associations of gout and hyperuricaemia with total and cardiovascular mortality. QJM. 2013 Jul;106(7):647-58. doi: 10.1093/qjmed/hct083. Epub 2013 Apr 5. PMID: 23564632.

13. Zhang W, Iso H, Murakami Y, Miura K, Nagai M, Sugiyama D et al (2016) Serum uric acid and mortality form cardiovascular disease: EPOCH-JAPAN study. J Atheroscler Thromb 23:692–703.

14. Zhao G, Huang L, Song M, Song Y. Baseline serum uric acid level as a predictor of cardiovascular disease related mortality and all-cause mortality: a meta-analysis of prospective studies. Atherosclerosis. 2013 Nov;231(1):61-8. doi: 10.1016/j.atherosclerosis.2013.08.023. Epub 2013 Aug 31. PMID: 24125412.

15. Wang R, Song Y, Yan Y, Ding Z. Elevated serum uric acid and risk of cardiovascular or all-cause mortality in people with suspected or definite coronary artery disease: A meta-analysis. Atherosclerosis. 2016 Nov;254:193-199. doi: 10.1016/j.atherosclerosis.2016.10.006. Epub 2016 Oct 6. PMID: 27755985.

16. Otaki Y, Konda T, Ichikawa K, Fujimoto S, Iseki K, Moriyama T, Yamagata K, Tsuruya K, Kondo M, Shibagaki Y, Kasahara M, Asahi K, Watanabe T. Possible burden of hyperuricaemia on mortality in a community-based population: a large-scale cohort study. Sci Rep. 2021 Apr 26;11(1):8999. doi: 10.1038/s41598-021-88631-8. PMID: 33903733; PMCID: PMC8076257.

17. Okura T, Higaki J, Kurata M, Iriyama M, Miyoshi K, Yamazaki T, Hayashi D, Kohro T, Nagai R; Japanese Coronary Artery Disease Study Investigators. Elevated serum uric acid is an independent predictor for cardiovascular events in patients with severe coronary artery stenosis: subanalysis of the Japanese Coronary Artery Disease (JCAD) Study. Circ J. 2009 May;73(5):885-91. doi: 10.1253/circj.cj-08-0828. Epub 2009 Mar 31. PMID: 19336924.

18. Chen JH, Chuang SY, Chen HJ, Yeh WT, Pan WH. Serum uric acid level as an independent risk factor for all-cause, cardiovascular, and ischemic stroke mortality: a Chinese cohort study. Arthritis Rheum. 2009 Feb 15;61(2):225-32. doi: 10.1002/art.24164. PMID: 19177541.

19. Bos MJ, Koudstaal PJ, Hofman A, Witteman JC, Breteler MM. Uric acid is a risk factor for myocardial infarction and stroke: the Rotterdam study. Stroke. 2006 Jun;37(6):1503-7. doi: 10.1161/01.STR.0000221716.55088.d4. Epub 2006 May 4. PMID: 16675740.

20. Health and Family Planning Commission, PRC.WS/T 428-2013Health Industry Standard of the People's Republic of China.Beijing:Health Industry Standard of the People's Republic of China,2013.[In Chinese]

21. 2018 Chinese Guidelines for the Management of Hypertension[J]. Chinese Journal of Cardiovascular Medicine,2019,24(01):24-56.[In Chinese]

22. Expert consensus on problems of cerebral and carotid vascular ultrasonography(Part of carotid)[J], Chinese Journal of Cerebrovascular Diseases,2020,17(06):346-353.[In Chinese]
10.1016/j.atherosclerosis.2009.12.013. Epub 2009 Dec 16. PMID: 20053405; PMCID: PMC3793203.

Interaction with genetic association of atherogenic uric acid concentrations. Atherosclerosis. 2010 Jun;210(2):474-8. doi: 10.1016/j.atherosclerosis.2009.12.013. Epub 2009 Dec 16. PMID: 20053405; PMCID: PMC3793203.

fig 34

fig 33

fig 32

fig 31

fig 30

fig 29

fig 28

fig 27

fig 26

fig 25

fig 24

fig 23

fig 22

fig 21

fig 20

fig 19

fig 18

fig 17

fig 16

fig 15

fig 14

fig 13

fig 12

fig 11

fig 10

fig 9

fig 8

fig 7

fig 6

fig 5

fig 4

Figures
Figure 1
Normal, thickened and plaque incidence of CIMT in males and females

Figure 2
Forest map of correlation analysis between SUA and CIMT

Model1: Unadjusted
Model2: Adjusted for age
Model3: Adjusted for age, BMI, central obesity & hypertension
Model4: Fully adjusted
Figure 3

Forest map of correlation analysis stratified by age. Notes: (1) There were too few males 18-45 years old with a level $\leq 220 \mu\text{mol/L}$, so this population was combined with the 220-290 $\mu\text{mol/L}$ population. (2) There were too few females 18-45 years old with a level $\leq 210 \mu\text{mol/L}$, so this population was combined with the 210-260 $\mu\text{mol/L}$ population.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Appendix1.docx