Variational Bayes Factor Analysis for i-Vector Extraction

Jesús Villalba

Communications Technology Group (GTC),
Aragon Institute for Engineering Research (I3A),
University of Zaragoza, Spain
villalba@unizar.es

May 11, 2012

1 Introduction

In this document we are going to derive the equations needed to implement a Variational Bayes i-vector extractor. This can be used to extract longer i-vectors reducing the risk of overfitting or to adapt an i-vector extractor from a database to another with scarce development data. This work is based on [1] and [2].

2 The Model

2.1 JFA

Joint Factor Analysis for i-vector extraction is a linear generative model represented in Figure 1.

![Figure 1: BN for i-vector extractor.](image)

This model assumes that speech frames are generated by a special type of mixture of factor analysers. An speech frame \(x_{it}\) of a session \(i\) and generated by the component \(k\) of the mixture model can be written as:

\[
x_{it} = m_k + W_k y_i + \epsilon_{itk}
\]

where \(m_k\) is a session independent term, \(W_k\) is a low-rank factor loading matrix, \(y_i\) is the factor vector, and \(\epsilon_{itk}\) is a residual term. The prior distribution for the variables:

\[
y_i \sim \mathcal{N}(y_i | 0, I)
\]

\[
\epsilon_{itk} \sim \mathcal{N}(\epsilon_{itk} | 0, \Lambda_k^{-1})
\]

where \(\mathcal{N}\) denotes a Gaussian distribution.
This model differs from a standard mixture of FA in the way in which the factors are tied. In traditional FA, we have a different value of \(y \) for each frame and each component of the mixture of the session. On the contrary, in this model we share the same value of \(y \) for all the frames and mixture components of the same session.

We can define the session mean vector for component \(k \) as

\[
M_{ik} = m_k + W_k y_i .
\]

(4)

In this manner, each frame is a session mean plus the residual term:

\[
x_{it} = M_{ik} + \epsilon_{itk} .
\]

(5)

We find convening stacking the means and factor loading matrices of all components to form a mean supervector:

\[
M_i = m + WY_i
\]

(6)

For this work, we are going to assume that \(m \) and \(\Lambda \) are given. We estimate them by EM-iterations of simple GMM. Besides, we assume that \(P(z_{it}) \) are known and fixed. In practice, we compute them using the GMM.

2.2 Notation

We define:

- Let \(X_i \) be the frames of session \(i \).
- Let \(X \) be the frames of all sessions.
- Let \(Y \) be the factors of all sessions.
- Let \(d \) be the features dimension.
- Let \(n_y \) be the factor dimension.
- Let \(K \) be the number of components of the mixture of FA.
- Let \(\Sigma_k = \Lambda_k^{-1} \).

3 Sufficient statistics

We define the statistics for segment \(i \) and component \(k \) as:

\[
N_{ik} = \sum_{t} P(z_{itk} = 1) F_{ik} = \sum_{t} P(z_{itk} = 1) x_{it}
\]

(7)

We define the normalized sufficient statistics for component \(k \) as:

\[
\overline{F}_{ik} = \sum_{t} P(z_{itk} = 1) \Lambda_k^{1/2} (x_{it} - m_k) = \Lambda_k^{1/2} (F_{ik} - N_{ik} m_k)
\]

(8)

If we normalize the sufficient statistics in mean and variance it is the same as having a FA model with \(m = 0 \) and \(\Sigma = I \). As we assume that \(m \) and \(\Sigma \) are fixed, doing that we can simplify the equations.

We define, too:

\[
N_i = \begin{bmatrix}
N_{i1}I_d & 0 & \cdots & 0 \\
0 & N_{i2}I_d & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & N_{iK}I_d
\end{bmatrix}, \quad \overline{F}_i = \begin{bmatrix}
\overline{F}_{i1} \\
\vdots \\
\overline{F}_{iK}
\end{bmatrix}
\]

(9)
where I_d is the identity matrix of dimension d.

We define the global normalized statistic:

$$
\mathbf{S}_k = \frac{1}{N_i} \sum_{t=1}^{T_i} P(z_{itk} = 1) (x_{it} - m_k) \Lambda_k (x_{it} - m_k)
$$

(10)

4 Conditional likelihood

The likelihood of the data of session i given the latent variables is

$$
\ln P(X_i | Y_i, W, m, \Lambda) = -\frac{K}{2} \sum_{k=1}^{K} \left(\sum_{i=1}^{N_i} \mathbf{S}_{ik} \right) + \frac{1}{2} \sum_{i=1}^{N_i} y_i^T W y_i - \frac{1}{2} y_i^T W N_i W y_i
$$

(11)

5 Variational inference with Gaussian-Gamma priors

5.1 Model priors

We introduce a hierarchical prior $P(W | \alpha)$ over the matrix W governed by a n_y dimensional vector of hyperparameters where n_y is the dimension of the factors. Each hyperparameter controls one of the columns of the matrix W through a conditional Gaussian distribution of the form:

$$
P(W | \alpha) = \prod_{q=1}^{n_y} \mathcal{G}(\alpha_q | a, b)
$$

(12)

where \mathcal{G} denotes the Gamma distribution. Bishop defines broad priors setting $a = b = 10^{-3}$.

5.2 Variational distributions

We write the joint distribution of the latent variables:

$$
P(X, Y, W, \alpha | m, \Lambda, a, b) = P(X | Y, W, m, \Lambda) P(Y) P(W | \alpha) P(\alpha | a, b)
$$

(14)

Following, the conditioning on (m, Λ, a, b) will be dropped for convenience.

Now, we consider the partition of the posterior:

$$
P(Y, W, \alpha | X) \approx q(Y, W, \alpha) = q(Y) q(W) q(\alpha)
$$

(15)

The optimum for $q^*(Y)$:

$$
\ln q^*(Y) = \mathbb{E}_{W, \alpha} [\ln P(X, Y, W, \alpha)] + \text{const}
$$

$$
= \mathbb{E}_W [\ln P(X | Y, W)] + \ln P(Y) + \text{const}
$$

$$
= \sum_{i=1}^{H} y_i^T E[W]^T F_i - \frac{1}{2} y_i^T \left(I + \sum_{k=1}^{K} N_i E[W_k]^T W_k \right) y_i + \text{const}
$$

(16)
Therefore \(q^* (Y) \) is a product of Gaussian distributions.

\[
q^* (Y) = \prod_{i=1}^{H} \mathcal{N} (y_i | \mathbf{y}_i, \mathbf{L}_y^{-1}) \tag{19}
\]

\[
\mathbf{L}_{y_i} = \mathbf{I} + \sum_{k=1}^{K} N_{ik} \mathbb{E} \left[\mathbf{W}_k^T \mathbf{W}_k \right] \tag{20}
\]

\[
\mathbf{y}_i = \mathbf{L}^{-1}_{y_i} \mathbb{E} \left[\mathbf{W} \right]^T \mathbf{F}_i \tag{21}
\]

The optimum for \(q^* (\mathbf{W}) \):

\[
\ln q^* (\mathbf{W}) = \mathbb{E}_{Y, \alpha} \left[\ln P (\mathbf{X}, \mathbf{Y}, \mathbf{W}, \alpha) \right] + \text{const} \tag{22}
\]

\[
= \mathbb{E}_{Y} \left[\ln P (\mathbf{X}| \mathbf{Y}, \mathbf{W}) \right] + \mathbb{E}_{\alpha} \left[\ln P (\mathbf{W}| \alpha) \right] + \text{const} \tag{23}
\]

\[
= \sum_{i=1}^{H} \left(\mathbb{E} [y_i]^T \mathbf{W}^T \mathbf{F}_i - \frac{1}{2} \mathbb{E} \left[y_i^T \mathbf{W}^T \mathbf{N}_i \mathbf{W} y_i \right] \right) - \frac{1}{2} \sum_{q=1}^{n_y} \mathbb{E} \left[\alpha_q \right] \mathbf{w}_q^T \mathbf{w}_q + \text{const} \tag{24}
\]

\[
= \text{tr} \left(\mathbf{W}^T \mathbf{C} - \frac{1}{2} \sum_{k=1}^{K} \mathbf{W}_k^T \mathbf{W}_k \mathbf{R}_k \right) - \frac{1}{2} \sum_{q=1}^{n_y} \mathbb{E} \left[\alpha_q \right] \mathbf{w}_q^T \mathbf{w}_q + \text{const} \tag{25}
\]

\[
= \sum_{k=1}^{K} \sum_{r=1}^{d} \text{tr} \left(\mathbf{w}_{kr}^T \mathbf{C}_k - \frac{1}{2} \mathbf{W}_k^T \mathbf{W}_k \mathbf{R}_k \right) - \frac{1}{2} \sum_{r=1}^{d} \mathbf{w}_{kr}^T \text{diag} (\mathbb{E} [\alpha]) \mathbf{w}_{kr} + \text{const} \tag{26}
\]

\[
= \sum_{k=1}^{K} \sum_{r=1}^{d} \text{tr} \left(\mathbf{w}_{kr}^T \mathbf{C}_k - \frac{1}{2} \mathbf{w}_{kr}^T \mathbf{w}_{kr} (\mathbb{E} [\alpha] + \mathbf{R}_k) \right) + \text{const} \tag{27}
\]

where \(\mathbf{w}_{kr} \) is a column vector containing the \(r^{th} \) row of \(\mathbf{W}_k \),

\[
\mathbf{w}_{kr}^T = \mathbf{W}_k^T \tag{28}
\]

\[
\mathbf{C} = \sum_{i=1}^{H} \mathbf{F}_i \mathbb{E} [y_i]^T \tag{29}
\]

\[
\mathbf{R}_k = \sum_{i=1}^{H} N_{ik} \mathbb{E} [y_i y_i^T] \tag{30}
\]

and \(\mathbf{C}_{kr} \) is the \(r^{th} \) block of \(\mathbf{C} \) corresponding to component \(k \) (row \((k-1)*d + r\)).

Then \(q^* (\mathbf{W}) \) is a product of Gaussian distributions

\[
q^* (\mathbf{W}) = \prod_{k=1}^{K} \prod_{r=1}^{d} \mathcal{N} (\mathbf{w}_{kr} | \mathbf{w}_{kr}^T, \mathbf{L}_{\mathbf{w}_k}^{-1}) \tag{31}
\]

\[
\mathbf{L}_{\mathbf{w}_k} = \mathbb{E} [\alpha] + \mathbf{R}_k \tag{32}
\]

\[
\mathbf{w}_{kr}^T = \mathbf{L}_{\mathbf{w}_k}^{-1} \mathbf{C}_{kr}^T \tag{33}
\]

The optimum for \(q^* (\alpha) \):

\[
\ln q^* (\alpha) = \mathbb{E}_{\mathbf{Y}, \mathbf{W}} \left[\ln P (\mathbf{X}, \mathbf{Y}, \mathbf{W}, \alpha) \right] + \text{const} \tag{34}
\]

\[
= \mathbb{E}_{\mathbf{W}} \left[\ln P (\mathbf{W}| \alpha) \right] + \ln P (\alpha|a, b) + \text{const} \tag{35}
\]

\[
= \sum_{q=1}^{n_y} \frac{K d}{2} \ln \alpha_q - \frac{1}{2} \alpha_q \mathbb{E} \left[\mathbf{w}_q^T \mathbf{w}_q \right] + (a - 1) \ln \alpha_q - b \alpha_q + \text{const} \tag{36}
\]

\[
= \sum_{q=1}^{n_y} \left(\frac{K d}{2} + a - 1 \right) \ln \alpha_q - \alpha_q \left(b + \frac{1}{2} \mathbb{E} \left[\mathbf{w}_q^T \mathbf{w}_q \right] \right) + \text{const} \tag{37}
\]
Then

\[q^* (\alpha) = \prod_{q=1}^{n_y} G (\alpha_q | a', b_q') \] (38)

\[a' = a + \frac{Kd}{2} \] (39)

\[b_q' = b + \frac{1}{2} \mathbb{E} [w_q^T w_q] \] (40)

We evaluate the expectations:

\[\mathbb{E} \left[\alpha \right] = a' \] (41)

\[\mathbb{E} \left[W \right] = \begin{bmatrix} \tilde{w}_1^T \\ \tilde{w}_2^T \\ \vdots \\ \tilde{w}_{Kd}^T \end{bmatrix} \] (42)

\[\mathbb{E} \left[w_q^T w_q \right] = \sum_{k=1}^{K} \sum_{r=1}^{d} \mathbb{E} \left[w_{krq}^T w_{krq} \right] = \sum_{k=1}^{K} \sum_{r=1}^{d} \tilde{w}_{krq}^2 + \sum_{r=1}^{d} \tilde{w}_{krq}^2 \] (43)

\[\mathbb{E} \left[w_k^T w_k \right] = \mathbb{E} \left[\tilde{w}_k^T \tilde{w}_k^T \right] = d \mathbb{L}_{\tilde{w}_k} - \mathbb{E} \left[\tilde{w}_k^T \right] \] (46)

\[= d \mathbb{L}_{\tilde{w}_k} + \mathbb{E} \left[\tilde{w}_k \right] \] (47)

5.3 Variational lower bound

The lower bound is given by

\[\mathcal{L} = \mathbb{E}_{Y,W} \left[\ln P (X | Y, W) \right] + \mathbb{E}_{Y} \left[\ln P (Y) \right] + \mathbb{E}_{W, \alpha} \left[\ln P (W | \alpha) \right] + \mathbb{E}_{\alpha} \left[\ln P (\alpha) \right] \]

\[- \mathbb{E}_{Y} \left[\ln q (Y) \right] - \mathbb{E}_{W} \left[\ln q (W) \right] - \mathbb{E}_{\alpha} \left[\ln q (\alpha) \right] \] (48)

The term \(\mathbb{E}_{Y,W} \left[\ln P (X | Y, W) \right] \):

\[\mathbb{E}_{Y,W} \left[\ln P (X | Y, W) \right] = - \sum_{k=1}^{K} N_k d \frac{1}{2} \log(2\pi) - \frac{1}{2} \text{tr} \left(\sum_{k=1}^{K} \mathbb{S}_k \right) \]

\[+ \sum_{i=1}^{H} \mathbb{E} \left[y_i^T \right] \mathbb{E} \left[W \right] \mathbb{F}_i - \frac{1}{2} \sum_{k=1}^{K} \sum_{i=1}^{H} \text{tr} \left(N_{ik} \mathbb{E} \left[W_k^T W_k \right] \mathbb{E} \left[y_i y_i^T \right] \right) \] (49)

\[= - \frac{1}{2} \text{tr} \left(\sum_{k=1}^{K} \mathbb{S}_k \right) \]

\[- \frac{1}{2} \text{tr} \left(-2 \mathbb{E} \left[W \right] \mathbb{C} + \sum_{k=1}^{K} \mathbb{E} \left[W_k^2 W_k \right] \mathbb{R}_k \right) \] (50)

The term \(\mathbb{E}_{Y} \left[\ln P (Y) \right] \):

\[\mathbb{E}_{Y} \left[\ln P (Y) \right] = - \frac{H n_y}{2} \ln(2\pi) - \frac{1}{2} \text{tr} \left(\sum_{i=1}^{H} \mathbb{E} \left[y_i y_i^T \right] \right) \] (51)

\[= - \frac{H n_y}{2} \ln(2\pi) - \frac{1}{2} \text{tr} (\mathbb{P}) \] (52)
where

\[P = \sum_{i=1}^{H} E[y_i y_i^T] \]

(53)

The term \(E_{\mathbf{W}, \alpha} \ln P(\mathbf{W}|\alpha) \):

\[E_{\mathbf{W}, \alpha} \ln P(\mathbf{W}|\alpha) = - \frac{n_y K d}{2} \ln(2\pi) + \frac{K d}{2} \sum_{q=1}^{n_y} E[\ln \alpha_q] - \frac{1}{2} \sum_{q=1}^{n_y} E[\alpha_q] E[w_q^T w_q] \]

(54)

where

\[E[\ln \alpha_q] = \psi(a') - \ln b' \]

(55)

where \(\psi \) is the digamma function.

The term \(E_{\alpha} \ln P(\alpha) \):

\[E_{\alpha} \ln P(\alpha) = n_y (a \ln b - \ln \Gamma(a)) + \sum_{q=1}^{n_y} (a - 1)E[\ln \alpha_q] - bE[\alpha_q] \]

(56)

\[= n_y (a \ln b - \ln \Gamma(a)) + (a - 1) \sum_{q=1}^{n_y} E[\ln \alpha_q] - b \sum_{q=1}^{n_y} E[\alpha_q] \]

(57)

The term \(E_{\mathbf{Y}} \ln q(\mathbf{Y}) \):

\[E_{\mathbf{Y}} \ln q(\mathbf{Y}) = - \frac{H n_y}{2} \ln(2\pi) + \frac{1}{2} \sum_{i=1}^{H} \ln |L_{y_i}| - \frac{1}{2} \text{tr} \left(L_{y_i} E \left[(y_i - y_i') (y_i - y_i')^T \right] \right) \]

(58)

\[= - \frac{H n_y}{2} \ln(2\pi) + \frac{1}{2} \sum_{i=1}^{H} \ln |L_{y_i}| - \frac{1}{2} \sum_{i=1}^{H} \text{tr} \left(L_{y_i} E \left[(y_i - y_i') (y_i - y_i')^T \right] \right) \]

(59)

\[= - \frac{H n_y}{2} \ln(2\pi) + \frac{1}{2} \sum_{i=1}^{H} \ln |L_{y_i}| - \frac{1}{2} \sum_{i=1}^{H} \text{tr}(I) \]

(60)

\[= - \frac{H n_y}{2} (\ln(2\pi) + 1) + \frac{1}{2} \sum_{i=1}^{H} \ln |L_{y_i}| \]

(61)

The term \(E_{\mathbf{W}} \ln q(\mathbf{W}) \):

\[E_{\mathbf{W}} \ln q(\mathbf{W}) = - \frac{K d n_y}{2} \ln(2\pi) + \frac{d}{2} \sum_{k=1}^{K} \ln |L_{w_k}| \]

\[- \frac{1}{2} \sum_{k=1}^{K} \sum_{r=1}^{d} \text{tr} \left(L_{w_k} E \left[(w_k' - \mathbf{w}_k') (w_k' - \mathbf{w}_k')^T \right] \right) \]

(62)

\[= - \frac{K d n_y}{2} (\ln(2\pi) + 1) + \frac{d}{2} \sum_{k=1}^{K} \ln |L_{w_k}| \]

(63)
The term $E_\alpha [\ln q(\alpha)]$:

$$
E_\alpha [\ln q(\alpha)] = -n_y \sum_{q=1}^{n_y} H[q(\alpha_q)]
$$

(64)

$$
= \sum_{q=1}^{n_y} (a' - 1)\psi(a') + \ln b'_q - a' - \ln \Gamma(a')
$$

(65)

$$
= n_y ((a' - 1)\psi(a') - a' - \ln \Gamma(a')) + \sum_{q=1}^{n_y} \ln b'_q
$$

(66)

5.4 Hyperparameter optimization

We can set the Hyperparameters manually or estimate them from the development data maximizing the lower bound.

We derive for a:

$$
\frac{\partial L}{\partial a} = n_y (\ln b - \psi(a)) + \sum_{q=1}^{n_y} E[\ln \alpha_q] = 0 \quad \Rightarrow
$$

(67)

$$
\psi(a) = \ln b + \frac{1}{n_y} \sum_{q=1}^{n_y} E[\ln \alpha_q]
$$

(68)

We derive for b:

$$
\frac{\partial L}{\partial b} = \frac{n_y a}{b} \sum_{q=1}^{n_y} E[\alpha_q] = 0 \quad \Rightarrow
$$

(69)

$$
b = \left(\frac{1}{n_y a} \sum_{q=1}^{n_y} E[\alpha_q] \right)^{-1}
$$

(70)

We solve these equations with the procedure described in [3]. We write

$$
\psi(a) = \ln b + c
$$

(71)

$$
b = \frac{a}{d}
$$

(72)

where

$$
c = \frac{1}{n_y} \sum_{q=1}^{n_y} E[\ln \alpha_q]
$$

(73)

$$
d = \frac{1}{n_y} \sum_{q=1}^{n_y} E[\alpha_q]
$$

(74)

Then

$$
f(a) = \psi(a) - \ln a + \ln d - c = 0
$$

(75)

We can solve for a using Newton-Raphson iterations:

$$
a_{new} = a - \frac{f(a)}{f'(a)} =
$$

(76)

$$
= a \left(1 - \frac{\psi(a) - \ln a + \ln d - c}{a \psi'(a) - 1} \right)
$$

(77)
This algorithm does not assure that a remains positive. We can put a minimum value for a. Alternatively we can solve the equation for \tilde{a} such as $a = \exp(\tilde{a})$.

$$\tilde{a}_{\text{new}} = \tilde{a} - \frac{f(\tilde{a})}{f'(\tilde{a})} = \tilde{a} - \frac{\psi(a) - \ln a + \ln d - c}{\psi'(a)a - 1}$$ (78)

Taking exponential in both sides:

$$a_{\text{new}} = a \exp\left(\frac{-\psi(a) - \ln a + \ln d - c}{\psi'(a)a - 1}\right)$$ (80)

5.5 Minimum divergence

We assume a more general prior for the hidden variables:

$$P(y) = \mathcal{N}(y|\mu_y, \Lambda_y^{-1})$$ (81)

To minimize the divergence we maximize the part of L that depends on μ_y:

$$L(\mu_y, \Lambda_y) = \sum_{i=1}^{H} E_Y [\ln \mathcal{N}(y|\mu_y, \Lambda_y^{-1})]$$ (82)

The, we get

$$\mu_y = \frac{1}{H} \sum_{i=1}^{M} E_Y [y_i]$$ (83)

$$\Sigma_y = \Lambda_y^{-1} = \frac{1}{H} \sum_{i=1}^{H} E_Y [(y_i - \mu_y)(y_i - \mu_y)^T]$$ (84)

$$= \frac{1}{H} \sum_{i=1}^{H} E_Y [y_i y_i^T] - \mu_y \mu_y^T$$ (85)

We have a transform $y = \phi(y')$ such as y' has a standard prior:

$$y = \mu_y + (\Sigma_y^{1/2})^T y'$$ (86)

Now, we get $q(W)$ such us if we apply the transform $y' = \phi^{-1}(y)$, the term $E[\ln P(X|Y, W)]$ of L remains constant:

$$\bar{w}_{kr} \leftarrow \Sigma_y^{1/2} \bar{w}_{kr}$$ (87)

$$L_{W_k}^{-1} \leftarrow \Sigma_y^{1/2} L_{W_k}^{-1} (\Sigma_y^{1/2})^T$$ (88)

$$L_{W_k} \leftarrow (\Sigma_y^{1/2})^{-1} L_{W_k} (\Sigma_y^{1/2})^{-1}$$ (89)

6 Variational inference with full covariance priors

6.1 Model priors

Let's assume that we compute the posterior of W given a development database with a large amount of data. If we want to compute the posterior W for a small database we could use the posterior given the large database as prior. Thus, we take a prior distribution for W

$$P(W) = \prod_{k=1}^{K} \prod_{r=1}^{d} \mathcal{N}(\bar{w}_{kr}^'|\bar{w}_{0kr}', L_{W_k}^{-1})$$ (90)

where $\bar{w}_{0kr}', L_{W_k}^{-1}$ are parameters computed with the large dataset.
6.2 Variational distributions

The joint distribution of the latent variables:

\[P(X, Y, W) = P(X|Y, W, m, \Lambda) P(Y) P(W) \]

We approximate the posterior by:

\[P(Y, W|X) \approx q(Y, W) = q(Y) q(W) \]

The optimum for \(q^*(Y) \) is the same as in section 5.2.

The optimum for \(q^*(W) \) is

\[
\ln q^*(W) = E_Y \left[\ln P(X|Y, W) \right] + \text{const}
\]

\[
= \sum_{k=1}^{K} \sum_{r=1}^{d} \text{tr} \left(w'_{kr} C_{kr} - \frac{1}{2} w'_{kr} w'_{kr}^T R_k \right) - \frac{1}{2} (w'_{kr} - w'_{0kr})^T L_{W_{0kr}} (w'_{kr} - w'_{0kr}) + \text{const}
\]

\[
= K \sum_{k=1}^{K} \sum_{r=1}^{d} \text{tr} \left(w'_{kr} \left(L_{W_{0kr}} L_{W_{0kr}} + C_{kr} \right) - \frac{1}{2} w'_{kr} w'_{kr}^T \left(L_{W_{0kr}} + R_k \right) \right) + \text{const}
\]

Therefore, the \(q^*(W) \) is, again, a product of Gaussian distributions:

\[q^*(W) = \prod_{k=1}^{K} \prod_{r=1}^{d} \mathcal{N}(w'_{kr}|w'_{0kr}, L_{W_{kr}}^{-1}) \]

\[L_{W_k} = L_{W_{0k}} + R_k \]

\[w'_{kr} = L_{W_{0kr}}^{-1} \left(L_{W_{0kr}} w'_{0kr} + C_{kr} \right) \]

6.3 Variational lower bound

The lower bound is given by

\[
\mathcal{L} = E_{X,Y,W} \left[\ln P(X|Y, W) \right] + E_Y \left[\ln P(Y) \right] + E_W \left[\ln P(W) \right] - E_Y \left[\ln q(Y) \right] - E_W \left[\ln q(W) \right]
\]
The term $E_w \ln P(W)$:

$$E_w \ln P(W) = -\frac{n_y K d}{2} \ln(2\pi) + \frac{d}{2} \sum_{k=1}^{K} \ln |L_{W_{ok}}|$$

$$- \frac{1}{2} \sum_{k=1}^{K} \sum_{r=1}^{d} \text{tr} \left(L_{W_{ok}} E \left[(w'_{kr} - w'_{0kr}) (w'_{kr} - w'_{0kr})^T \right] \right)$$

$$= -\frac{n_y K d}{2} \ln(2\pi) + \frac{d}{2} \sum_{k=1}^{K} \ln |L_{W_{ok}}|$$

$$- \frac{1}{2} \sum_{k=1}^{K} \sum_{r=1}^{d} \text{tr} \left(L_{W_{ok}} (L_{W_{ok}}^{-1} w'_{kr} w'_{kr} - w'_{0kr} w'_{0kr} - w'_{kr} w'_{0kr} + w'_{0kr} w'_{0kr}) \right)$$ \hspace{1cm} (102)

$$= -\frac{n_y K d}{2} \ln(2\pi) + \frac{d}{2} \sum_{k=1}^{K} \ln |L_{W_{ok}}|$$

$$- \frac{d}{2} \sum_{k=1}^{K} \text{tr} \left(L_{W_{ok}} L_{W_{ok}}^{-1} \right) - \frac{1}{2} \sum_{k=1}^{K} \sum_{r=1}^{d} (w'_{kr} - w'_{0kr})^T L_{W_{ok}} (w'_{kr} - w'_{0kr})$$ \hspace{1cm} (103)

$$= -\frac{n_y K d}{2} \ln(2\pi) + \frac{d}{2} \sum_{k=1}^{K} \ln |L_{W_{ok}}|$$

$$- \frac{d}{2} \sum_{k=1}^{K} \text{tr} \left(L_{W_{ok}} L_{W_{ok}}^{-1} \right) - \frac{1}{2} \sum_{k=1}^{K} \sum_{r=1}^{d} (w'_{kr} - w'_{0kr})^T L_{W_{ok}} (w'_{kr} - w'_{0kr})$$ \hspace{1cm} (104)

The rest of terms are the same as the ones in section 5.3

7 Variational inference with Gaussian-Gamma priors for high rank W

The amount of memory needed for the factor analyser grows quadratically with the dimension of the factor vector n_y. Due to that, we are limited to use small i-vectors ($n_y < 1000$). We are going to modify the variational partition function so that the memory grows linearly with the number of factors. We derive the equations for the case of Gaussian-Gamma prior for W.

7.1 Variational distributions

We choose the partition function:

$$P(Y, W, \alpha | X) \approx q(Y, W, \alpha) = \prod_{p=1}^{P} q(Y^{(p)}) q(W^{(p)}) q(\alpha)$$ \hspace{1cm} (106)

where

$$Y = \begin{bmatrix} Y^{(1)} \\ Y^{(2)} \\ \vdots \\ Y^{(P)} \end{bmatrix}$$ \hspace{1cm} (107)

We define the blocks $W_{k}, W^{(p)}$ and $W_{k}^{(p)}$ of W such as

$$W = \begin{bmatrix} W_1 \\ W_2 \\ \vdots \\ W_K \end{bmatrix} = \begin{bmatrix} W^{(1)} \\ W^{(2)} \\ \vdots \\ W^{(P)} \end{bmatrix} = \begin{bmatrix} W_{1}^{(1)} & W_{1}^{(2)} & \ldots & W_{1}^{(P)} \\ W_{2}^{(1)} & W_{2}^{(2)} & \ldots & W_{2}^{(P)} \\ \vdots & \vdots & \ddots & \vdots \\ W_{K}^{(1)} & W_{K}^{(2)} & \ldots & W_{K}^{(P)} \end{bmatrix}$$ \hspace{1cm} (108)
This partition function assumes that there are groups of components of the i-vectors that are independent between them in the posterior. For example, the components in \(Y_1 \) would be independent from the components in \(Y_2 \) but the components inside \(Y_i \) would be dependent between them. We are going to assume that every group has the same number of components \(n_y = n_y / P \).

The optimum for \(q^\ast(Y^{(p)}) \):

\[
\ln q^\ast(Y^{(p)}) = E_{W,Y^{(p)}} \left[\ln P(X,Y,W) \right] + \text{const} \tag{109}
\]

\[
= E_{W,Y^{(p)}} \left[\ln P(X|Y,W) \right] + \ln P(Y^{(p)}) + \text{const} \tag{110}
\]

\[
= \sum_{i=1}^{H} E_{Y^{(p)}} [y_i]^T E[W]^T f_i
\]

\[
- \frac{1}{2} \sum_{k=1}^{K} \frac{N_{ik}}{N} E_{W,Y^{(p)}} \left[y_i^{(n)} y_i^{(m)} \right] - \frac{1}{2} \gamma(y^{(p)} y^{(p)}) + \text{const} \tag{111}
\]

\[
= \sum_{i=1}^{H} y_i^{(p)} E[W_i] f_i - \frac{1}{2} y_i^{(p)} \left(\mathbf{I} + \sum_{k=1}^{K} N_{ik} E \left[W_k^{(p)} W_k^{(p)} \right] \right) y_i^{(p)} + \text{const} \tag{112}
\]

\[
= \sum_{i=1}^{H} y_i^{(p)} F_i - \frac{1}{2} y_i^{(p)} \left(\mathbf{I} + \sum_{k=1}^{K} N_{ik} E \left[W_k^{(p)} W_k^{(p)} \right] \right) y_i^{(p)} + \text{const} \tag{113}
\]

\[
= \sum_{i=1}^{H} y_i^{(p)} \sum_{k=1}^{K} \left(E \left[W_k^{(p)} \right] f_{ik} - N_{ik} \sum_{n \neq p} E \left[W_k^{(p)} W_n^{(n)} \right] y_i^{(n)} \right)
\]

\[
- \frac{1}{2} y_i^{(p)} \left(\mathbf{I} + \sum_{k=1}^{K} N_{ik} E \left[W_k^{(p)} W_k^{(p)} \right] \right) y_i^{(p)} + \text{const} \tag{114}
\]

\[
= \sum_{i=1}^{H} y_i^{(p)} \sum_{k=1}^{K} \left(E \left[W_k^{(p)} \right] f_{ik} - N_{ik} \sum_{n \neq p} E \left[W_k^{(p)} W_n^{(n)} \right] y_i^{(n)} \right)
\]

\[
- \frac{1}{2} y_i^{(p)} \left(\mathbf{I} + \sum_{k=1}^{K} N_{ik} E \left[W_k^{(p)} W_k^{(p)} \right] \right) y_i^{(p)} + \text{const} \tag{115}
\]

\[
= \sum_{i=1}^{H} y_i^{(p)} \left(F_i - N_{i} \sum_{n \neq p} E \left[W_n^{(n)} \right] y_i^{(n)} \right)
\]

\[
- \frac{1}{2} y_i^{(p)} \left(\mathbf{I} + \sum_{k=1}^{K} N_{ik} E \left[W_k^{(p)} W_k^{(p)} \right] \right) y_i^{(p)} + \text{const} \tag{116}
\]

Therefore \(q^\ast(Y^{(p)}) \) is a product of Gaussian distributions.

\[
q^\ast(Y^{(p)}) = \prod_{i=1}^{H} \mathcal{N} \left(y_i^{(p)} | \mathbf{y}_i^{(p)}, \mathbf{L}_i^{(p)} \right) \tag{117}
\]

\[
\mathbf{L}_i^{(p)} = \mathbf{I} + \sum_{k=1}^{K} N_{ik} E \left[W_k^{(p)} W_k^{(p)} \right] \tag{118}
\]

\[
\mathbf{y}_i^{(p)} = \mathbf{y}_i^{(p)} - \mathbf{F}_i - N_{i} \sum_{n \neq p} E \left[W_n^{(n)} \right] y_i^{(n)} \tag{119}
\]
The optimum for $q^* (\mathbf{W}^{(p)})$:

$$
\ln q^* (\mathbf{W}^{(p)}) = E_{X,Y} [\ln P (X,Y,W,\alpha)] + \text{const}
$$

$$
= E_{X,Y} [\ln P (X|Y,W)] + E_{W^{(p)},\alpha} [\ln P (W|\alpha)] + \text{const}
$$

$$
= \sum_{i=1}^{H} \left(E \left[y_i^{(p)} \right]^{T} \mathbf{W}^{(p)} \mathbf{F}_i \right) - \frac{1}{2} E_{X,Y} [E_{W^{(p)}} \left[y_i^{T} W^T N_i W y_i \right]]
$$

$$
- \frac{1}{2} \sum_{q=1}^{n_p} E \left[\alpha_{q}^{(p)} \right] w_q^{(p)} w_q^{(p)} + \text{const}
$$

$$
= \sum_{i=1}^{H} \left(E \left[y_i^{(p)} \right]^{T} \mathbf{W}^{(p)} \mathbf{F}_i \right) - \frac{1}{2} \sum_{k=1}^{K} \sum_{n=1}^{P} E_{W^{(p)},\alpha} \left[y_i^{(n)}^{T} W_k^{(n)} W_k^{(n)} y_i^{(n)} \right]
$$

$$
- \frac{1}{2} \sum_{q=1}^{n_p} E \left[\alpha_{q}^{(p)} \right] w_q^{(p)} w_q^{(p)} + \text{const}
$$

$$
= \text{tr} \left(\mathbf{W}^{(p)} \sum_{i=1}^{H} \left(\mathbf{F}_i - N_i \sum_{n \neq p} E \left[W^{(n)} \right] E \left[y_i^{(n)} \right] \right) E \left[y_i^{(p)} \right]^{T} \right)
$$

$$
- \frac{1}{2} \sum_{k=1}^{K} W_k^{(p)} W_k^{(p)} \sum_{i=1}^{H} N_i E \left[y_i^{(p)} y_i^{(p)T} \right]
$$

$$
- \frac{1}{2} \sum_{q=1}^{n_p} E \left[\alpha_{q}^{(p)} \right] w_q^{(p)} w_q^{(p)} + \text{const}
$$

$$
= \text{tr} \left(\mathbf{W}^{(p)} \mathbf{C}^{(p)} - \frac{1}{2} \sum_{k=1}^{K} W_k^{(p)} W_k^{(p)} R_k^{(p)} \right)
$$

$$
- \frac{1}{2} \sum_{q=1}^{n_p} E \left[\alpha_{q}^{(p)} \right] w_q^{(p)} w_q^{(p)} + \text{const}
$$

$$
= \sum_{k=1}^{K} \text{tr} \left(\mathbf{W}_k^{(p)} \mathbf{C}_k^{(p)} - \frac{1}{2} \mathbf{W}_k^{(p)} \mathbf{W}_k^{(p)} R_k^{(p)} \right)
$$

$$
- \frac{1}{2} \sum_{k=1}^{d} \sum_{r=1}^{d} \mathbf{w}_{kr}^{(p)T} \text{diag} \left(E \left[\alpha_{q}^{(p)} \right] \right) \mathbf{w}_{kr}^{(p)} + \text{const}
$$

$$
= \sum_{k=1}^{K} \sum_{r=1}^{d} \text{tr} \left(\mathbf{w}_{kr}^{(p)} \mathbf{C}_{kr}^{(p)} - \frac{1}{2} \mathbf{w}_{kr}^{(p)} \mathbf{w}_{kr}^{(p)T} \left(E \left[\alpha_{q}^{(p)} \right] + R_k^{(p)} \right) \right) + \text{const}
$$

where $\mathbf{w}_{kr}^{(p)}$ is a column vector containing the r^{th} row of $\mathbf{W}_k^{(p)}$,

$$
\mathbf{C}^{(p)} = \sum_{i=1}^{H} \left(\mathbf{F}_i - N_i \sum_{n \neq p} E \left[W^{(n)} \right] E \left[y_i^{(n)} \right] \right) E \left[y_i^{(p)} \right]^{T}
$$

$$
\mathbf{R}_k^{(p)} = \sum_{i=1}^{H} N_i E \left[y_i^{(p)} y_i^{(p)T} \right]
$$

and $\mathbf{C}_{kr}^{(p)}$ is the r^{th} of the block of $\mathbf{C}^{(p)}$ corresponding to component k (row $(k-1) \times d + r$).
Then \(q^* (W^{(p)}) \) is a product of Gaussian distributions:

\[
q^* (W^{(p)}) = \prod_{k=1}^{K} \prod_{r=1}^{d} \mathcal{N} (w_{kr}^{(p)}, \mathbb{W}_{kr}^{(p)}, L_{W_{kr}}^{(p)-1})
\]

\[
L_{W_{kr}}^{(p)} = \mathbb{E} [\alpha_k^{(p)}] + R_{k}^{(p)}
\]

\[
\mathbb{W}_{kr}^{(p)} = \mathbb{L}_{W_{kr}}^{(p)-1} C_{kr}^{(p)T}
\]

The optimum for \(q^* (\alpha) \) is the same as in equation (35).

We need to evaluate the expectations:

\[
\mathbb{E} [w_q^{(p)T} w_q^{(p)}] = \sum_{k=1}^{K} dL_{W_{kq}}^{(p)-1} + \sum_{r=1}^{d} \mathbb{W}_{rkq}^{(p)^2}
\]

\[
\mathbb{E} [W_k^{(p)T} W_k^{(p)T}] = \mathbb{L}_{W_{k}}^{(p)-1} + \mathbb{E} [W_k^{(p)}]^{T} \mathbb{E} [W_k^{(p)}]
\]

7.2 Variational lower bound

The lower bound is given by

\[
\mathcal{L} = \mathbb{E}_{Y,W} [\ln P (X|Y, W)] + \mathbb{E}_{Y} [\ln P (Y)] + \mathbb{E}_{W, \alpha} [\ln P (W|\alpha)] + \mathbb{E}_{\alpha} [\ln P (\alpha)]
\]

\[
- \sum_{p=1}^{P} \mathbb{E}_{Y^{(p)}} [\ln q (Y^{(p)})] - \sum_{p=1}^{P} \mathbb{E}_{W^{(p)}} [\ln q (W^{(p)})] - \mathbb{E}_{\alpha} [\ln q (\alpha)]
\]

The term \(\mathbb{E}_{Y,W} [\ln P (X|Y, W)] \):

\[
\mathbb{E}_{Y,W} [\ln P (X|Y, W)] = - \sum_{k=1}^{K} \frac{N_k d}{2} \log (2\pi) - \frac{1}{2} \text{tr} \left(\sum_{k=1}^{K} \mathbb{S}_k \right) + \sum_{i=1}^{H} \mathbb{E} [y_i]^{T} \mathbb{E} [W]^{T} \mathbb{F}_i
\]

\[
- \frac{1}{2} \sum_{k=1}^{K} \sum_{i=1}^{H} \sum_{n=1}^{P} \sum_{m=1}^{P} \text{tr} \left(N_{ik} \mathbb{E} [W_{k}^{(n)T} W_{k}^{(m)}] \mathbb{E} [y_i^{(m)} y_i^{(n)T}] \right)
\]

\[
= - \sum_{k=1}^{K} \frac{N_k d}{2} \log (2\pi) - \frac{1}{2} \text{tr} \left(\sum_{k=1}^{K} \mathbb{S}_k \right) + \text{tr} (\mathbb{E} [W]^{T} \mathbb{C})
\]

\[
- \frac{1}{2} \sum_{k=1}^{K} \sum_{n=1}^{P} \text{tr} \left(\mathbb{E} [W_{k}^{(n)T} W_{k}^{(n)}] \right) R_{k}^{(n)}
\]

\[
+ 2 \sum_{m=n+1}^{P} \mathbb{E} [W_{k}^{(n)}]^{T} \mathbb{E} [W_{k}^{(m)}] R_{k}^{(m,n)}
\]

where

\[
R_{k}^{(m,n)} = \sum_{i=1}^{H} N_{ik} \mathbb{E} [y_i^{(m)}] \mathbb{E} [y_i^{(n)T}]
\]

The term \(\mathbb{E}_{Y} [\ln P (Y)] \):

\[
\mathbb{E}_{Y} [\ln P (Y)] = - \frac{H n_2}{2} \ln (2\pi) - \frac{1}{2} \text{tr} \left(\sum_{i=1}^{H} \mathbb{E} [y_i y_i^{T}] \right)
\]

\[
= - \frac{H n_2}{2} \ln (2\pi) - \frac{1}{2} \sum_{p=1}^{P} \text{tr} \left(\sum_{i=1}^{H} \mathbb{E} [y_i^{(p)} y_i^{(p)T}] \right)
\]

\[
= - \frac{H n_2}{2} \ln (2\pi) - \frac{1}{2} \sum_{p=1}^{P} \text{tr} (P^{(p)})
\]
where

\[P^{(p)} = \sum_{i=1}^{H} E \left[y_i^{(p)} y_i^{(p)T} \right] \] (143)

The term \(E_{Y^{(p)}} [\ln q (Y^{(p)})] \):

\[E_{Y^{(p)}} [\ln q (Y^{(p)})] = - \frac{H \tilde{n}_y}{2} (\ln(2\pi) + 1) + \frac{1}{2} \sum_{i=1}^{H} \ln |L_{y_i}^{(p)}| \] (144)

The term \(E_{W^{(p)}} [\ln q (W^{(p)})] \):

\[E_{W^{(p)}} [\ln q (W^{(p)})] = - \frac{K \tilde{n}_w}{2} (\ln(2\pi) + 1) + \frac{d}{2} \sum_{k=1}^{K} \ln |L_{W_k}^{(p)}| \] (145)

The rest of terms are the same as in section 5.3.

References

[1] Patrick Kenny, “Joint factor analysis of speaker and session variability : Theory and algorithms - Technical report CRIM-06/08-13,” Tech. Rep., CRIM, Montreal, 2005.

[2] C M Bishop, “Variational principal components,” 9th International Conference on Artificial Neural Networks ICANN 99, vol. 1, no. 470, pp. 509–514, 1999.

[3] Matthew J Beal, “Variational algorithms for approximate Bayesian inference,” Philosophy, vol. 38, no. May, pp. 1–281, 2003.