Profiling Phosphoproteins of Yeast Mitochondria Reveals a Role of Phosphorylation in Assembly of the ATP Synthase*

Jörg Reinders‡§§, Karina Wagner§¶¶, Rene P. Zahedι¶¶, Diana Stojanovskiι¶¶, Beate Eyrich‡, Martin van der Laan¶¶, Peter Rehling¶¶, Albert Sickmann‡ ¶¶, Nikolaus Pfanner¶¶, and Chris Meisinger¶¶§§

Mitochondria are crucial for numerous cellular processes, yet the regulation of mitochondrial functions is only understood in part. Recent studies indicated that the number of mitochondrial phosphoproteins is higher than expected; however, the effect of reversible phosphorylation on mitochondrial structure and function has only been defined in a few cases. It is thus crucial to determine authentic protein phosphorylation sites from highly purified mitochondria in a genetically tractable organism. The yeast *Saccharomyces cerevisiae* is a major model organism for the analysis of mitochondrial functions. We isolated highly pure yeast mitochondria and performed a systematic analysis of phosphorylation sites by a combination of different enrichment strategies and mass spectrometry. We identified 80 phosphorylation sites in 48 different proteins. These mitochondrial phosphoproteins are involved in critical mitochondrial functions, including energy metabolism, protein biogenesis, fatty acid metabolism, metabolite transport, and redox regulation. By combining yeast genetics and in vitro biochemical analysis, we found that phosphorylation of a serine residue in subunit g (Atp20) regulates dimerization of the mitochondrial ATP synthase. The authentic phosphoproteome of yeast mitochondria will represent a rich source to uncover novel roles of reversible protein phosphorylation.

Molecular & Cellular Proteomics 6:1896–1906, 2007.

Mitochondria are the central organelle for the energy metabolism of eukaryotic cells and are critical for numerous metabolic pathways, including that for amino acids, lipids, heme, and iron-sulfur clusters, and play key roles in the regulation of programmed cell death (1–5). It is evident that these processes have to be tightly regulated to permit a mitochondrial response to changes in energy demand, cellular metabolism, or environmental conditions (6, 7). Until recently the most common regulatory mechanism of eukaryotic cells, reversible phosphorylation (8–10), was considered to represent an exception in the case of mitochondria, including the E1 subunit of pyruvate dehydrogenase and the branched-chain α-ketoacid dehydrogenase (11–14).

A number of recent studies have provided evidence that phosphorylation of mitochondrial proteins is much more frequent than expected (15–23). (i) Incubation of isolated mitochondria with radiolabeled ATP or staining of mitochondrial proteins with phosphospecific dyes suggested that a substantial fraction of mitochondrial proteins are phosphorylated (24–27). A limitation of these approaches is the inability to identify the specific phosphorylated amino acid residues in addition to the possibility of nonspecific labeling of proteins. (ii) Proteomics analysis of isolated mitochondria by mass spectrometry revealed the presence of numerous protein kinases and phosphatases (28–34), implying that reversible protein phosphorylation may be a widespread mechanism of regulating mitochondrial function. The most comprehensive proteomics analysis of mitochondria, the PROMITO study of highly purified *Saccharomyces cerevisiae* mitochondria, led to the identification of ~850 different proteins and a coverage of ~85% of the known mitochondrial proteins (28, 34). The PROMITO dataset includes more than a dozen predicted protein kinases/phosphatases. Two of them, encoded by the open reading frames YIL042c and YOR090c, were indeed subsequently shown to function as the kinase/phosphatase system that regulates reversible phosphorylation of the yeast pyruvate dehydrogenase complex in the mitochondrial matrix (35). (iii) Mass spectrometry is the most efficient method to identify the exact phosphorylation sites within proteins/peptides. A variety of proteomics techniques can be applied from specific enrichment of phosphorylated proteins/peptides to phosphospecific scanning techniques at the MS level. Lee et al. (36) identified phosphorylated proteins in the mitochondrial fraction from mouse liver. Ficarro et al. (37), Gruhler et al. (38),...
and Chi et al. (39) analyzed the phosphoproteome of whole yeast cell extracts. Among several hundred phosphoproteins, they identified only a few mitochondrial proteins, suggesting that the studies were below saturation level at least for mitochondrial proteins. A limitation of many proteomics studies is the purity of the mitochondrial preparation, and due to contamination of mitochondria with various amounts of other cellular fractions, the assignment of newly identified phosphoproteins to mitochondria can be ambiguous.

S. cerevisiae is a major model organism for the characterization of mitochondrial functions due to its unparalleled genetic and biochemical tractability. The functions of many mitochondrial proteins, e.g., of chaperones, receptors, translocators, and assembly factors, have been identified in yeast first. Moreover yeast is of increasing importance in defining mitochondrial functions in programmed cell death (40–42) and for characterization of the molecular basis of human mitochondrial diseases (43–47). Together with the development of an efficient protocol for the isolation of highly pure mitochondria, yeast is an optimal organism for a comprehensive proteomics and functional analysis of mitochondria (28, 33, 34, 48, 49). The authentic phosphoproteome of pure yeast mitochondria has not been reported so far. Here we performed a profiling of the phosphorylation sites of yeast mitochondrial proteins by a global approach and a phosphospecific approach with the latter focusing on different IMAC systems as well as on strong cation exchange chromatography for the enrichment of phosphorylated peptides. We identified 48 phosphoproteins and defined 80 phosphorylation sites. Among the newly identified phosphoproteins was subunit g (Atp20) of the mitochondrial ATP synthase (F$_0$F$_1$-ATPase),1 the machinery in the mitochondrial inner membrane and matrix that is responsible for ATP production. By combining yeast genetics and native gel electrophoresis, we demonstrated that phosphorylation of serine 62 of Atp20 is critical for regulating assembly of the ATP synthase.

EXPERIMENTAL PROCEDURES

Isolation of Yeast Mitochondria—The wild-type yeast strain YPH499 was grown on non-fermentable medium (YPG: 1% (w/v) yeast extract, 2% (w/v) bactopeptone, and 3% (w/v) glycerol) at 30 °C to an OD of approximately 1. Cells were homogenized in the presence of phosphatase inhibitor mixtures I and II (Sigma-Aldrich). Crude mitochondrial fractions were isolated by differential centrifugation and further purified using a three-step sucrose gradient as described previously (28, 33, 34, 48, 49). Highly purified mitochondria were resuspended in SE buffer (250 mM sucrose, 1 mM EDTA, 10 mM MOPS/KOH, pH 7.2) and stored in aliquots at −80 °C.

IMAC Enrichment after SDS-PAGE—Highly purified mitochondria (400 μg of protein) were separated on a BisTris SDS-PAGE system (NuPAGE, Invitrogen). After visualization by colloidal Coomassie staining (50), gel lanes were cut into 1-mm broad slices, which were subjected to in-gel digestion according to Shevchenko et al. (51) with slight modifications. Vacuum-dried gel pieces were incubated with 12.5 ng/μl trypsin (sequencing grade modified, Promega, Madison, WI) in 50 mM NH$_4$HCO$_3$, pH 7.8, at 37 °C overnight. Peptides were extracted twice with 10 μl of 5% formic acid (FA) and once with 10 μl of 5% FA, 50% ACN. For each gel lane extracts were combined, concentrated under vacuum, and further enriched for phosphopeptides by IMAC (37). Subsequently 10 μl of Phos-SelectTM Iron Affinity Gel (Sigma-Aldrich) was washed twice with loading buffer (250 mM acetic acid, 30% ACN) and combined with the peptide extract, and volumes were adjusted to 100 μl with loading buffer. After incubation for 1 h at room temperature, Phos-Select beads were washed three times with loading buffer and once with ultrapure water, and phosphopeptides were eluted with 30 μl of 400 mM NH$_2$OH, pH 10.5. Eluates were acidified with TFA and analyzed by nano-LC-MS/MS.

One-step IMAC in Solution—Highly purified mitochondria (300 μg of protein) were lysed in 50 mM Tris, pH 7.8, 150 mM NaCl, 0.5% (w/v) SDS, phosphatase inhibitor mixtures I and II (Sigma-Aldrich) and digested in-solution with 6 μg of trypsin in 50 mM NH$_4$HCO$_3$, pH 7.8, at 37 °C overnight. IMAC was carried out as described above but with larger volumes and prolonged steps. The sample was diluted 1:10 with loading buffer and incubated with 80 μl of bead slurry for 4 h. Washing and elution were accomplished in SigmaPrepTM Spin Columns (Sigma-Aldrich) according to the manufacturer’s recommendations. Similarly Ga$^{3+}$- and Zr$^{4+}$-coated PorosTM MC20 (PerSeptive Biosystems, Foster City, CA) beads were used, leaving out the washing step with water.

Two-step IMAC in Solution—Mitochondrial lysate (500 μg of protein) was diluted 1:10 with loading buffer, and IMAC was carried out at the protein level as described before for the one-step procedure. However, instead of acidifying with TFA, eluates were brought to pH 7.8 with 50 mM NH$_4$HCO$_3$ and subjected to overnight digestion at 37 °C using 10 μg of trypsin. Afterward proteolytic digests were enriched for phosphopeptides as described above.

Strong Cation Exchange (SCX) Enrichment of Phosphopeptides—A tryptic digest of highly purified mitochondria (500 μg of protein) was diluted 5-fold with 5 mM NaH$_2$PO$_4$, pH 2.7. Phosphopeptides were enriched according to Beausoleil et al. (52) with slight modifications. A 2.1-mm-inner diameter × 15-cm-long column (PolySULFOETHYL Aspartamide, 200-Å pore size, 5-μm particle size, Chromatographic Technologies, Basel, Switzerland) was used in combination with an UltimateTM HPLC system (Dionex, Idstein, Germany). Chromatographic separation was accomplished using a binary buffer system consisting of 5 mM NaH$_2$PO$_4$, pH 2.7 (buffer A), and 5 mM NaH$_2$PO$_4$, 15% acetonitrile, 500 mM NaCl, pH 2.7 (buffer B), at a flow rate of 150 μl/min. Phosphopeptide-enriched fractions were collected every minute with a ProteineerFC fraction collector (Bruker Daltonics, Bremen, Germany).

MS Acquisition—Nano-LC-MS/MS analyses were performed on a QstarTMXL, a QtrapTM 4000 (both Applied Biosystems, Darmstadt, Germany), and an LCQ Deca XPplusTM (Thermo Electron, Dreieich, Germany), respectively, coupled to Ultimate or Ultimate 3000 nano-HPLC systems (Dionex). The HPLC systems were configured in a preconcentration setup with a 150-μm-inner diameter reverse phase trapping column (53). Peptides were separated on a 75-μm-inner diameter reverse phase main column by applying a 40-min binary gradient (solvent A: 0.1% FA; solvent B: 0.1% FA, 84% ACN) ranging from 5 to 95% solvent B at a flow rate of 270 nl/min. Full MS scans from 400 to 2000 m/z (LCQ Deca XPplus) and from 350 to 2000 m/z (QstarXL and Qtrap 4000) were recorded, and the four (LCQ Deca XPplus and Qtrap 4000) or two (QstarXL) most intensive peaks were subjected to MS/MS taking into account a dynamic exclusion.
MS Data Interpretation—MS data were transformed into mgf format using the following software and respective parameters. For the Qtrap 4000, Analyst 1.4 with the mascot.dll plug-in 1.6b5 (Matrix Science) was used. Charge states were determined from enhanced resolution scans. Spectra with less than 10 ions were omitted. Peaks with intensities 0.1% below base peak were removed, and data were centroided. For the QstarXL, Analyst 1.1 QS with the mascot.dll plug-in 1.6b7 was used. Charge states were determined from survey scans. Spectra with less than 10 signals were omitted, precursor mass tolerance for grouping was set to 0.05 Da, and maximum number of cycles between groups was set to 3. Peaks with intensities 0.1% below base peak were removed. For the LCQ Deca XPlus, LCQ_dta.exe (December 2005) on the basis of Xcalibur 1.4 and 2.0 format as plug-in to the Mascot™ Daemon version 2.1.6 was used. Precursor charge was set to auto, and grouping tolerance was set to 1.4 Da. Minimum scans per group and intermediate scans were set to 1. Generated peak lists were searched against the Saccharomyces Genome Database (SGD) (www.yeastgenome.org, 6712 sequences, November 2005) using Mascot version 2.1.03 (54).

Carbamidomethylation of Cys residues (if accomplished) as fixed modification and phosphorylation of Ser/Thr/Tyr as variable modification were taken into account. Moreover database searches were repeated with acetylation of protein amino termini and oxidation of methionine as additional variable modifications. Trypsin with a maximum of two missing cleavage sites was chosen as enzyme, and peptide and MS/MS tolerances in Da were selected depending on the respective mass analyzers (0.2/0.5 for the QstarXL, 0.4/0.4 for the Qtrap 4000, and 1.5/1.5 for the LCQ Deca XPlus).

Only phosphopeptide spectra with a minimum Mascot score of 32 (p < 0.05 or below for all utilized mass analyzers) were considered for further manual data interpretation. Moreover all spectra were validated and verified manually using MS-Product (University of California San Francisco Mass Spectrometry Facility) with loss of H3PO4 and further manual data interpretation. Moreover all spectra were validated and all phosphopeptide spectra were manually validated.

Phosphorylation site assignment by Mascot was again verified manually using MS-Product (University of California San Francisco Mass Spectrometry Facility) with loss of H3PO4 and further manual data interpretation. Moreover all spectra were validated and all phosphopeptide spectra were manually validated.

RESULTS

Identification of Phosphorylation Sites of Yeast Mitochondrial Proteins—S. cerevisiae mitochondria of very high purity were obtained by differential centrifugation and subsequent sucrose gradient centrifugation (28, 34, 48, 49). We used several parallel approaches to maximize the number of identified phosphorylation sites (Fig. 1A and Supplemental Table 1). Phosphorylated species were enriched at the protein and/or peptide level using IMAC as well as SCX and analyzed by nano-LC-MS/MS. Additionally lysed mitochondria were separated by SDS-PAGE. The gel was cut into small slices, subjected to in-gel digestion, and analyzed either directly by nano-LC-MS/MS or after enrichment of phosphopeptides by IMAC. Database searches were undertaken using Mascot, and all phosphopeptide spectra were manually validated.
Only phosphopeptides that were identified at least three times were considered as positive hits. An example for the spectrum of a peptide containing two phosphorylated residues is shown for Pet9 (Aac2), the main ATP/ADP carrier in the mitochondrial inner membrane (Fig. 1B). Using strict criteria for the interpretation and validation of phosphopeptide spectra as outlined under “Experimental Procedures,” we identified 80 different phosphorylation sites in 48 proteins (Table I). For 28 proteins, a single phosphorylation site was found. 14 proteins contained two distinct phosphorylation sites that were present in close proximity to each other at the primary structure level in most cases. Six proteins possessed three to six different phosphorylation sites each (Mir1, Atp2, Uip4, Ato2, Ato3, and Jen1). We found 49 phosphoserine residues and 29 phosphothreonine residues (in two cases (Aac1 and Ehd3) the exact position of the phosphorylated residue could not be assigned (Table I)). We did not find phosphorylated tyrosine residues in agreement with previous observations that \textit{S. cerevisiae} does not contain typical tyrosine kinases (10, 61, 62) and only a few cases of phosphotyrosines (39, 63), which are probably generated by dual specificity kinases (61). The absence of phosphotyrosines in this study is not due to technical reasons because we can routinely detect such peptides with our methods in other organisms (64).\footnote{R. P. Zahedi, N. Pfanner, C. Meisinger, and A. Sickmann, unpublished data.}

\textbf{FIG. 1.} Scheme of experimental approaches for identification of mitochondrial phosphoproteins. A, starting with pure yeast mitochondria, several parallel approaches were used as outlined in the figure. The technical details are described under “Experimental Procedures.” B, fragment ion spectrum of the peptide ESNFLIDFLMGGVSAAVAKpTAApSPIER, derived from Pet9, with two phosphorylation sites. All prominent signals can be assigned to b-and y-ions, internal fragments, and neutral losses. C, identification of phosphorylation sites by different methods of phosphopeptide enrichment (as described in A). \textit{1D}, one-dimensional.
Phosphorylated peptides from highly purified yeast mitochondria were identified as described under "Experimental Procedures." 80 different phosphorylation sites within 48 different proteins were identified. Asterisks indicate N-terminal acetylation. Spectra are listed in Supplemental Table 1. GPI, glycosylphosphatidylinositol.

ORF	Protein	Gene	Identified phosphopeptide	Position of phosphorylated amino acid
YER178W	Pyruvate dehydrogenase complex E1-α subunit	PDA1	YGGHpSMSDPGTTYR	Ser-313
YMR056C	Mitochondrial inner membrane ADP/ATP translocator	AAC1	STpSQRQFLDLLDVKY	Ser-155/Thr-156/Ser-157
YBL030C	Major ADP/ATP carrier of the mitochondrial inner membrane	PET9	ESNFLIDFLMGGVSAAVAKpTAaSpIER	Thr-39, Ser-42
YJR077C	Phosphate transporter	MIR1	LVpSQPQFANGGLVGFSR	Ser-145
YBL099W	ATP synthase subunit α	ATP1	RpSVHEPVTQGLK	Ser-178
YJR121W	ATP synthase subunit β	ATP2	GlpSELQIYPAVDPLSDK	Ser-373
YPL078C	ATP synthase subunit 4	ATP4	1IpSvSOLONVAETTK	Ser-144
YDR298C	ATP synthase subunit 5	ATP5	NpSSIDAAFQSLQK	Ser-48
YPR202W	ATP synthase subunit g	ATP20	QpSLNFALKPTEVLCLK	Ser-62
YLR038C	Cytochrome c oxidase, subunit Vb	COX12	GIpFAGDIINpSD	Ser-82
YGL187C	Cytochrome c oxidase, subunit IV	COX4	EGpTVPTDLQETGLAR	Thr-55
YPR191W	Ubiquinol cytochrome c reductase core protein 2	QCR2	pSAEDQLYAITFR	Ser-141
YPL262W	Mitochondrial and cytoplasmic fumarase (fumarate hydratase), converts L-malate to fumarate as part of the tricarboxylic acid cycle	FUM1	ANEPRIHELlpTK	Thr-428
YDR148C	Component of the mitochondrial α-ketoglutarate dehydrogenase complex	KGD2	GLVpTPVVRNAESLVSVDIENEIVR	Thr-340
YOR142W	α subunit of succinyl-CoA synthetase	LSC1	SgpnLTLYEAQVQTTK	Thr-186
YOR136W	Isocitrate dehydrogenase, subunit 2	IH2	pTGDLAGATTSFTEAVIK	Thr-349
YKL085W	Malate dehydrogenase	MHD1	FlpSEVENTDPQER	Ser-177
YLR304C	Aconitase	ACO1	pTIFTVPQSEPQIR	Thr-409
YBL015W	Acetyl-CoA hydrolase	ACH1	pSQVSVNPSEMr	Ser-350
YBR120C	Translational activator of COB mRNA	CBP6	MVDEKFpTEESINEQIR	Thr-97
YML120C	NADH-ubiquinone oxidoreductase (AMID homolog)	ND1	FASTRpSpGVSNSAGPSTSFK	Ser-27, Thr-28
YHR008C	Manganese-superoxide dismutase	SOD2	LpTNpTGLAVQGSGWAFIVK	Thr-147, Thr-149
YDR036c	Member of the enoyl-CoA hydratase or isomerase family (fatty acid metabolism)	EHD3	LLLKpSPSSLQIALR	Thr-326/Ser-328
YPL186c	Unknown function	UIP4	GLDNlpSEGNNDNTR	Ser-205
YOR374W	Mitochondrial aldehyde dehydrogenase	ALD4	EMpSVDALQNYLQV	Ser-185
YML128C	Protein of unknown function	MSC1	DpTVFDKWPpSDQLTNWLESHK	Thr-237, Ser-243
YPR231W	Fatty-acid synthase α subunit	FAS2	QDISSpTr	Thr-567
YPR184W	Glycolen-debranching enzyme	GDB1	DQPLyTr	Thr-45
YMR212C	Protein of unknown function	EFR3	DNOIpSdTSDLSDSOVR	Thr-565
YAR035W	Outer carnitine acetyltransferase, mitochondrial	YAT1	LFVKSLLDQApSDATK	Ser-517

Yeast Mitochondrial Phosphoproteome

1900 Molecular & Cellular Proteomics 6.11
As shown previously (65), different phosphopeptide enrichment methods reproducibly enrich for distinct segments of the phosphoproteome. In the present study, the overlap between IMAC and SCX, for instance, accounts for only 11 phosphopeptides, whereas 18 phosphopeptides were exclusively identified using IMAC, and 27 were identified only using SCX enrichment (Fig. 1C). However, 18 phosphopeptides, which were identified by IMAC but not after SCX enrichment, contain missed cleavage sites and therefore are expected to elute with the bulk of doubly (and triply) charged non-phosphorylated tryptic peptides at pH 2.7.

Functional Classification of Identified Phosphoproteins—We grouped the identified phosphoproteins according to their determined or proposed functions (Fig. 2). The two largest

ORF	Protein	Gene	Identified phosphopeptide*	Position of phosphorylated amino acid*
YKL187C	Protein of unknown function	YKL187C	KGEIYTGDGSAIpSADR	Ser-678
			KGEIYTGDGpSAlpSADR	Ser-675, Ser-678
			VYpSODQGVEEDEEDKPNLSAASIK	Ser-81
			YINQVEEYADGLpSISDIVEQK	Ser-584
			*SpSITDEK	Ser-4
			SpSITDEKISGETQAPGR	Ser-4
			MIDSNVpSK	Ser-606
			SpSITDEKIpSGETQAPGR	Ser-4, Ser-11
YKL217W	Pyruvate and lactate/H⁺ symporter, member of the major	JEN1	YETpLYTDGYGSAIpSADR	Ser-675
	facilitator superfamily (MFS)		YETpLYTDGYpSAlpSADR	Ser-675
			YINQVEEYADGLpSISDIVEQK	Ser-584
YCR010C	Protein may function as an acetate permease, Fun34	ADY2	IYpTGGDNNEYIYIGR	Thr-47
	motif		ALDpSSEGFESENNDQSR	Ser-21/Ser-22
YNR002C	Protein possibly involved in ammonium export, Fun34	ATO2	ALDpSSEGFESENNDQSR	Ser-21, Ser-22
	motif		ALDpSSEGFEIpSENNDQSR	Ser-21, Ser-22, Ser-28
			HSOpSICK	Ser-40
			EqpSSGNTAFENPK	Ser-7
			pSDEQSSGNTAFENPK	Ser-2
			ALDpSpSSEGFESENNDQSR	Ser-21, Ser-22
YDR384C	Protein possibly involved in ammonium export, Fun34	ATO3	TSpSASSPQDLEK	Ser-4
	motif		TSpSASSPQDQLEK	Ser-4, Ser-6
			TsSASSPQDLEK	Ser-3, Ser-6
			TSSApSpSQDLEK	Ser-6
YBR054W	Protein paralog of Mrh1p, has similarity to heat	YRO2	AQQEEDVApTDpSE	Thr-341, Ser-343
	shock protein Hsp30		KAQEEEEDVApTDpSE	Thr-341
			KAQEEEEDVApTDpSE	Thr-341, Ser-343
			APVApSPRPAATPNLSK	Ser-289
			PAAPTPNLSK	Thr-295
YDR033W	Membrane protein related to Hsp30p	MRH1	ALLELLDSSpTPGETRPAYDGYEASK	Thr-233
			ALLELLDSSpTPGETRPAYDGYEASK	Thr-233
YGR086C	Phosphorylation inhibited by long chain bases	PIL1	LEETKEpSLQNK	Ser-25
			LEETKEpSLQNK	Ser-25
YOL109W	Protein that appears to act as a negative regulator of	ZEO1	NEApTPEAEQVK	Thr-49
	the Pkc1p-Mpk1p cell integrity pathway		NEApTPEAEQVK	Thr-49
			EQAEApSIDNLK	Ser-40
			NNpSITSATS	Ser-130
			InpSDAPNFADTTVGK	Ser-53
			LQpSNGAQGDSFVC	Ser-339
YMR031C	Protein of unknown function	YMR031c	NEApTPEAEQVK	Thr-49
YBL064C	Mitochondrial thiol peroxidase	PRX1	EQAEApSIDNLK	Ser-40
			NNpSITSATS	Ser-130
YBR078W	GPI-anchored protein of unknown function	ECM33	InpSDAPNFADTTVGK	Ser-53
			LQpSNGAQGDSFVC	Ser-339
YML072C	Protein involved in calcium-dependent phospholipid	TCB3	SPSLNSTSVpTPR	Thr-1350
	binding		SPSLNSTSVpTPR	Thr-1350
YJR045C	Mitochondrial heat shock protein 70	SSC1	AQQEApTLTAPLVK	Thr-330
YLR259C	Mitochondrial heat shock protein 60	HSP60	AQQEApTLTAPLVK	Thr-330
YNL055C	Porin 1	POR1	pTNEAAGDGTTSATVLGR	Thr-102
			pTNEAAGDGTTSATVLGR	Thr-102
			pSAVLNTTFTQFFTARG	Ser-109

*Phosphorylated amino acid is indicated by p (pS for phosphoserine or pT for phosphothreonine).

* Positions were determined from precursor protein sequences.

* Manual inspection of spectra revealed ambiguous phosphorylation site.
groups were formed by proteins involved in mitochondrial energy metabolism and transport processes. Remarkably seven subunits of the F_{0}F_{1}-ATPase were phosphorylated, suggesting that this central machinery for cellular ATP production is a frequent target for covalent modification. Among the phosphorylated transport proteins, Ato2, Ato3, and Ady2 belong to the GPR1/FUN34/yaaH family and are potential permeases for acetate and ammonium (66, 67). For Ato2, Ato3, and Yat1 of the lipid metabolism group, a role in mitochondrial retrograde signaling has been proposed (68, 69). Further groups of phosphoproteins include proteins involved in redox processes, protein folding, and genome maintenance (Fig. 2). Thus phosphorylation is observed in a broad spectrum of yeast mitochondrial proteins. Furthermore we identified seven phosphoproteins with unknown function, raising the possibility that phosphorylation can affect additional mitochondrial activities.

Phosphorylation of Atp20 Affects Dimerization of the F_{0}F_{1}-ATPase—Atp20 has been shown to be required for dimerization of the F_{0}F_{1}-ATPase (70–72). Dimerization of the ATP synthase can be directly monitored by blue native electrophoresis. Generation of the dimeric ATP synthase was strongly inhibited in the mutant, whereas the monomeric ATP synthase was efficiently formed (Fig. 3A, lanes 2, 6, and 10). The mutant protein Atp20^{S62E} was imported into isolated mitochondria and transported to a protease-protected location (Fig. 3B, lanes 3 and 4), excluding the possibility that the mutation prevented transfer of the precursor of Atp20 to mitochondria. The steady-state levels of various control proteins analyzed were comparable to that of wild-type mitochondria, including Atp3 and the preprotein translocase subunits Tim22 and Tim23 of the inner membrane (Fig. 3C, lanes 7–9 compared with lanes 1–3). Moreover the TOM complex analyzed by blue native electrophoresis was present as in wild-type mitochondria (Fig. 3D, lanes 1 and 2). We thus conclude that a phosphomimetic residue at position 62 of Atp20 inhibits formation of the dimeric ATP synthase.

We also substituted alanine for serine 62. The resulting mutant protein Atp20^{S62A} was expressed in atp20Δ yeast. Isolated mitochondria were subjected to blue native electrophoresis. The mitochondria efficiently formed the dimeric ATP synthase with a yield that was even moderately increased compared with that of wild-type mitochondria (Fig. 3A, lanes 3, 7, and 11). Atp20^{S62A} was imported into mitochondria to a protease-protected location (Fig. 3B, lanes 5 and 6) and the steady-state levels of control proteins were comparable to that of wild-type mitochondria (Fig. 3, C and D). Thus the prevention of phosphorylation of serine 62 of Atp20 favors dimerization of the mitochondrial ATP synthase.

DISCUSSION

We have performed the first systematic profiling of phosphorylation sites of yeast mitochondrial proteins. With a multidimensional approach we identified 80 phosphorylation sites in 48 proteins of highly purified mitochondria. Three previous studies analyzed the phosphoproteome of whole yeast cells. Taken together, Ficarro et al. (37) (383 phosphorylation sites in 171 different yeast proteins), Gruhler et al. (38) (729 phosphorylation sites in 503 different yeast proteins), and Chi et al. (39) (1252 phosphorylation sites in 629 different yeast proteins) found only 10 mitochondrial phosphoproteins that were identified here. Thus, the subfractionation of yeast to purify mitochondria significantly increased the sensitivity of detection of phosphoproteins.

An important point is the inclusion of phosphatase inhibi-
tors during the subfractionation of yeast cells because in the absence of added inhibitors we were only able to identify 10 phosphoproteins in isolated mitochondria. It is conceivable that additional mitochondrial phosphoproteins were not detected in our study. Possible reasons are that not all phosphatases were inactivated during the cellular subfractionation, that only a minor fraction of a protein may be phosphorylated under the growth conditions applied, that the tryptic digest failed to generate peptides that were reliably detected by MS, or that the presence of further modifications within a phosphopeptide, introduced in \textit{vitro} as well as \textit{in vivo}, might interfere with the analysis (e.g., we identified several amino-terminal phosphopeptides that were acetylated).

The identified phosphoproteins cover a broad range of mitochondrial functions from bioenergetics, transport, and lipid metabolism to redox regulation, protein folding, and genome maintenance (Fig. 2), suggesting that many mitochondrial functions are regulated by reversible protein phosphorylation. The identification of seven phosphoproteins with so far unknown function supports this view. Phosphorylation is likely to play a critical role in the communication of mitochondria with the nucleus because Ato2, Ato3, and Yat1, three proteins with a role in retrograde signaling of mitochondria (6), were found to be phosphorylated. Interestingly Pil1 and Zeo1, which are involved in the Pkc1-MAP kinase pathway (68, 69), are also phosphorylated. The Pkc1-MAP kinase pathway regulates cell wall integrity and cell proliferation (68, 69, 73), raising the question of how this pathway should be related to mito-

\begin{figure}
\centering
\includegraphics[width=\textwidth]{fig3}
\caption{Phosphorylation of Atp20 interferes with dimerization of the mitochondrial ATP synthase. \textbf{A}, analysis of monomeric (V\textsubscript{mon}) and dimeric ATP synthase (V\textsubscript{dim}) by blue native electrophoresis. Mitochondria isolated from yeast atp20 strains expressing either wild-type Atp20, Atp20S62E, Atp20S62A, or the empty vector (\textemdash) were lysed in digitonin buffer and subjected to blue native electrophoresis. Immunodecoration was performed using the indicated antisera and the ECL detection system. By comparing the levels of dimeric ATP synthase in the presence of Atp20S62A (non-phosphorylated), Atp20S62E (phosphomimetic), and wild-type Atp20, the functional degree of phosphorylation was assessed to be \textasciitilde40\% under wild-type conditions. Asterisk, unspecific protein band (79). \textbf{B}, import of mutant forms of Atp20 into mitochondria. Radiolabeled Atp20 with wild-type sequence or S62E or S62A mutations were imported into isolated mitochondria for the indicated time periods as described under "Experimental Procedures." After treatment with proteinase K, mitochondrial proteins were separated by SDS-PAGE, and imported proteins were visualized by digital autoradiography. \textbf{C}, steady-state levels of proteins in mitochondria with mutant Atp20. Mitochondrial proteins were separated by SDS-PAGE and blotted onto PVDF membrane. Immunodecoration was performed with the indicated antisera and the ECL detection system. \textbf{D}, the TOM complex is not altered by mutation of Atp20. Mitochondria were lysed in digitonin buffer and separated by blue native electrophoresis followed by Western blot analysis with Tom40 antisera. Mito, mitochondria.}
\end{figure}
Yeast Mitochondrial Phosphoproteome

chondria. Very recently, it was shown that upon exposure to farnesol Pkc1 could localize to yeast mitochondria where it is involved in managing the generation of reactive oxygen species most likely by phosphorylation of mitochondrial proteins (74).

Seven subunits of the F$_{1}$F$_{0}$-ATPase were found to be phosphorylated (Table I). A detailed analysis of subunit g (Atp20) by genetic manipulation and a native gel assay revealed that phosphorylation of serine 62 plays a critical role in the dimerization of the ATP synthase. Generation of a phosphomimetic residue at position 62 (S62E) inhibited dimerization of the ATP synthase, whereas a block of phosphorylation by substitution of alanine for serine even enhanced the level of dimerization. It has been reported that a conserved GXXGX motif in the transmembrane domain of Atp20 is involved in oligomerization of the ATP synthase (71, 72). Similarly such a motif was also observed in the transmembrane domain of subunit e (Atp21/Tim11), a second dimerization factor of the ATP synthase (75). Because an intact GXXGX motif is not essential for the interaction of Atp20 with Atp21, further regions of these subunits seem to be involved in the interaction (72). The phosphorylation site described here is located in the matrix domain of Atp20, i.e. outside the transmembrane domain, and may thus mark an additional region involved in dimerization.

As oligomerization of the ATP synthase is important for a full bioenergetic activity of mitochondria (76), phosphorylation of Atp20 is apparently involved in regulating the bioenergetic state of mitochondria.

Because yeast is a major model organism for studying mitochondrial functions and for the analysis of human mitochondrial diseases, the phosphoproteome reported here will provide a rich source for characterizing the role of reversible phosphorylation in regulation of mitochondrial activities under physiological and pathological conditions and in communication of mitochondria with the rest of the cell.

Acknowledgments—We thank Drs. Trevor Lithgow and Joachim Rassow for antisera and Birgit Schönfisch for expert technical assistance.

REFERENCES

1. Neupert, W. (1997) Protein import into mitochondria. Annu. Rev. Biochem. 66, 863–917
2. Scheffler, I. E. (1999) Mitochondria, Wiley, New York
3. Newmeyer, D. D., and Ferguson-Miller, S. (2003) Mitochondria: releasing power for life and unleashing the machine of death. Cell 112, 481–490
4. Green D. R., and Kroemer, G. (2004) The pathophysiology of mitochondrial cell death. Science 305, 626–629
5. Lill, R., and Mühlenhoff, U. (2005) Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem. Sci. 30, 133–141
6. Liu, Z., and Buitow, R. A. (2008) Mitochondrial retrograde signaling. Annu. Rev. Genet. 40, 159–185
7. Ryan, M. T., and Hoogenraad, N. J. (2007) Mitochondrial-nuclear communications. Annu. Rev. Biochem. 76, 701–722
8. Hunter, T. (2000) Signaling—2000 and beyond. Cell 100, 113–127
9. Cohen, P. (2002) The origins of protein phosphorylation. Nat. Cell Biol. 4, E127–E130
10. Manning, G., Ploewman, G. D., Hunter, T., and Sudarsanam, S. (2002) Evolution of protein kinase signaling from yeast to man. Trends Biochem. Sci. 27, 514–520
11. Linn, T. C., Pettit, F. H., and Reed, L. J. (1969) α-Keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc. Natl. Acad. Sci. U. S. A. 62, 234–241
12. Paxton, R., and Harris, R. A. (1982) Isolation of rabbit liver branched chain α-ketoacid dehydrogenase and regulation by phosphorylation. J. Biol. Chem. 257, 14433–14439
13. Uhlinger, D. J., Yang, C. Y., and Reed, L. J. (1986) Phosphorylation-dephosphorylation of pyruvate dehydrogenase from bakers’ yeast. Biochemistry 25, 5673–5677
14. Wynn, R. M., Kato, M., Machius, M., Chuang, J. L., Li, J., Tomchick, D. R., and Chuang, D. T. (2004) Molecular mechanism for regulation of the human mitochondrial branched-chain α-ketoacid dehydrogenase complex by phosphorylation. Structure (Lond.) 12, 2185–2196
15. Cho, J. H., Lee, Y. K., and Chae, C. B. (2001) The modulation of the biological activities of mitochondrial histone Abd2p by yeast PKA and its possible role in the regulation of mitochondrial DNA content during glucose repression. Biochim. Biophys. Acta 1522, 175–186
16. Thomson, M. (2002) Evidence of undiscovered cell regulatory mechanisms: phosphoproteins and protein kinases in mitochondria. Cell. Mol. Life Sci. 59, 213–219
17. Goldenthal, M. J., and Marín-García, J. (2004) Mitochondrial signalling pathways: a receiver/integrator organelle. Mol. Cell. Biochem. 262, 1–16
18. Valente, E. M., Abou-Gleim, P. M., Caputo, V., Muquit, M. M., Harvey, K., Gispert, S., Ali, Z., Del Turco, D., Bentivoglio, A. R., Healy, D. G., Albanese, A., Nussbaum, R., Gonzalez-Maldonado, R., Deller, T., Salvi, S., Cortelli, P., Gilks, W. P., Latchman, D. S., Harvey, R. J., Dallapiccola, B., Auburger, G., and Wood, N. W. (2004) Hereditary early-onset Parkin-son’s disease caused by mutations in PINK1. Science 304, 1158–1160
19. Pagliarini, D. J., Wiley, S. E., Kimpel, M. E., Dixon, J. R., Kelly, P., Worby, C. A., Casey, P. J., and Dixon, J. E. (2005) Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic β cells. Mol. Cell 19, 197–207
20. Horbinski, C., and Chu, C. T. (2005) Kinase signalling cascades in the mitochondrion: a matter of life or death. Free Radic. Biol. Med. 38, 2–11
21. Pagliarini, D. J., Dixon, J. E. (2006) Mitochondrial modulation: reversible phosphorylation takes center stage? Trends Biochem. Sci. 31, 24–34
22. McBride, H. M., Neuspiel, M., and Wasiaik, S. (2006) Mitochondria: more than just a powerhouse.Curr. Biol. 16, R551–R560
23. Boneh, A. (2006) Regulation of mitochondrial oxidative phosphorylation by second messenger-mediated signal transduction mechanisms. Cell. Mol. Life Sci. 63, 1236–1248
24. Schülenberg, B. Aggeler, R., Beechem, J. M., Capaldi, R. A., and Patton, W. F. (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J. Biol. Chem. 278, 27251–27255
25. Bykova, N. V., Egsgaard, H., and Møller, I. M. (2003) Identification of 14 new phosphorylation sites in rat liver mitochondrial farnesol Pkc1 could localize to yeast mitochondria where it is involved in managing the generation of reactive oxygen species most likely by phosphorylation of mitochondrial proteins (74).

Seven subunits of the F$_{1}$F$_{0}$-ATPase were found to be phosphorylated (Table I). A detailed analysis of subunit g (Atp20) by genetic manipulation and a native gel assay revealed that phosphorylation of serine 62 plays a critical role in the dimerization of the ATP synthase. Generation of a phosphomimetic residue at position 62 (S62E) inhibited dimerization of the ATP synthase, whereas a block of phosphorylation by substitution of alanine for serine even enhanced the level of dimerization. It has been reported that a conserved GXXGX motif in the transmembrane domain of Atp20 is involved in oligomerization of the ATP synthase (71, 72). Similarly such a motif was also observed in the transmembrane domain of subunit e (Atp21/Tim11), a second dimerization factor of the ATP synthase (75). Because an intact GXXGX motif is not essential for the interaction of Atp20 with Atp21, further regions of these subunits seem to be involved in the interaction (72). The phosphorylation site described here is located in the matrix domain of Atp20, i.e. outside the transmembrane domain, and may thus mark an additional region involved in dimerization.

As oligomerization of the ATP synthase is important for a full bioenergetic activity of mitochondria (76), phosphorylation of Atp20 is apparently involved in regulating the bioenergetic state of mitochondria.

Because yeast is a major model organism for studying mitochondrial functions and for the analysis of human mitochondrial diseases, the phosphoproteome reported here will provide a rich source for characterizing the role of reversible phosphorylation in regulation of mitochondrial activities under physiological and pathological conditions and in communication of mitochondria with the rest of the cell.

Acknowledgments—We thank Drs. Trevor Lithgow and Joachim Rassow for antisera and Birgit Schönfisch for expert technical assistance.

* This work was supported in part by the Deutsche Forschungsge-meinschaft (to A. S. and C. M.), the Forschungszentrum FZT-82, the Sondersforchungsbereich Grants 688 (to A. S.) and 746, the Gottfried Wilhelm Leibniz Program, the Max Planck Research Award, and the Fonds der Chemischen Industrie (to N. P.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ These authors contributed equally to this work.

** Recipient of an Alexander von Humboldt Research Fellowship.

†† To whom correspondence may be addressed. Tel.: 49-931-201-48730; Fax: 49-931-201-48123; E-mail: Albert.Sickmann@virchow. uni-wuerzburg.de.

‡‡ To whom correspondence may be addressed. Tel.: 49-761-203-5287; Fax: 49-761-203-5261; E-mail: Christoph.Meisinger@biochemie. uni-freiburg.de.
27. Schieke, S. M., Phillips, D., McCoy, J. P., Aponte, A. M., Shen, R. F., Balaban, R. S., and Finkel, T. (2006) The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. *J. Biol. Chem.* 281, 27643–27652

28. Sickmann, A., Reinders, J., Wagner, Y., Joppich, C., Zahedii, R., Meyer, H. E., Schönfisch, B., Perschli, I., Chacinska, A., Guiard, B., Rehling, P., Pfanner, N., and Meisinger, C. (2003) The proteome of *Saccharomyces cerevisiae* mitochondria. *Proc. Natl. Acad. Sci. U. S. A.* 100, 13207–13212

29. Moota, V. K., Bunekborg, J., Olsen, J. V., Hjerrild, M., Winsiwksi, J. R., Stahl, E., Beloumi, M. S., Ray, H. N., Siahag, S., Kamal, M., Patterson, N., Landete, E., Ritz, D., and Mann, M. (2003) Integrated analysis of protein composition, tissue disposition, and gene regulation in mouse mitochondria. *Cell* 115, 629–640

30. Taylor, S. W., Fahy, E., Zhang, B., Glenn, G. M., Warron, D. E., Wiley, S., Murphy, A. N., Gaucher, S. P., Capaldi, R. A., Gibbons, B. W., and Ghosh, S. S. (2003) Characterization of the human heart mitochondrial proteome. *Nat. Biotechnol.* 21, 239–240

31. Ohmeier, S., Kastaniotis, A. J., Hiltunen, J. K., and Bergmann, U. (2004) The yeast mitochondrial proteome, a study of fermentative and respiratory growth. *J. Biol. Chem.* 279, 3956–3979

32. Proksch, H., Scharfe, C., Camp D. G., Xiao, W., David, L., Andreoli, C., Taylor, S. W., Fahy, E., Zhang, B., Glenn, G. M., Warnock, D. E., Wiley, S., Mootha, V. K., Bunkenborg, J., Olsen, J. V., Hjerrild, M., Wisniewski, J. R., Monroe, M. E., Moore, R. J., Gritsenko, M. A., Kozany, C., Hixon, K. K., Mottaz, H. M., Zischka, H., Ueffting, M., Herrmann, Z. S., Davis, R. W., Reilting, T., Oefner, P. J., Smith, R. D., and Meisinger, C. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. *J. Proteome Res.* 5, 1543–1554

33. Zahedi, R. P., Sickmann, A., Boehm, A. M., Winkler, C., Zufall, N., Schönfisch, B., Guiard, B., Pfanner, N., and Meisinger, C. (2006) Proteome analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. *Mol. Biol. Cell* 17, 1436–1450

34. Reinders, J., Zahedi, R. P., Pfanner, N., Meisinger, C., and Sickmann, A. (2006) Toward the complete yeast mitochondrial proteome: multidimensional separation techniques for mitochondrial proteomics. *J. Proteome Res.* 5, 1543–1554

35. Krause-Buchholz, U., Gey, U., Wunschmann, J., Becker, S., and Rödel, G. (2006) YL042c and YOR090c encode the kinase and phosphatase of the *Saccharomyces cerevisiae* pyruvate dehydrogenase complex. *FEBS Lett.* 580, 2553–2560

36. Lee, J., Xu, Y., Chen, Y., Sprung, R., Kim, S. C., Xie, S., and Zhao, Y. (2007) The yeast mitochondrial proteome, a study of extra mitochondrial calcium. *J. Mol. Biol.* 368, 44–54

37. Steinmetz, L. M., Scharfe, C., Deutschbauer, A. M., Mokranjac, D., Herman, Z. S., Jones, T., Chu, A. M., Glaveer, G., Proksch, H., Oefner, P. J., and Davis, R. W. (2002) Systematic screen for human disease genes in yeast. *Nat. Genet.* 31, 400–404

38. Barrientos, A. (2003) Yeast models of human mitochondrial diseases. *IUBMB Life* 55, 83–95

39. Wallace, D. C. (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a drawn for evolutionary medicine. *Annu. Rev. Genet.* 39, 359–407

40. Brandner, K., Mick, D. U., Frazier, A. E., Taylor, R. D., Meisinger, C., and Rehling, P. (2005) Taz1, an outer mitochondrial membrane protein, affects stability and assembly of inner membrane protein complexes: implications for Barth Syndrome. *Mol. Biol. Cell* 16, 5202–5214

41. Schwimmer, C., Rak, M., Lefebvre-Legendre, L., Duvezin-Caubet, S., Plane, G., and di Rago, J. P. (2006) Yeast models of human mitochondrial diseases: from molecular mechanisms to drug screening. *Biotechnol. J.* 1, 270–281

42. Meisinger, C., Sommer, T., and Pfanner, N. (2000) Purification of *Saccharomyces cerevisiae* mitochondria devoid of microsomal and cytosolic contaminations. *Anal. Biochem.* 287, 339–342

43. Meisinger, C., Pfanner, N., and Truscott, K. N. (2006) Isolation of yeast mitochondria. *Methods Mol. Biol.* 313, 33–39

44. Neuhoff, V., Arol, N., Tabe, D., and Erhardt, W. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. *Electrophoresis* 9, 255–262

45. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectroscopic sequencing of proteins silver-stained polyacrylamide gels. *Anal. Chem.* 68, 850–858

46. Beausoleil, S. A., Jedywarsch, D., Schwartz, D., Elias, J. E., Villen, J., Li, J., Cohn, M. A., Cantley, L. C., and Gygi, S. P. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. *Proc. Natl. Acad. Sci. U. S. A.* 101, 12130–12135

47. Mitulovic, G., Smoluch, M., Chervet, J. P., Steinmacher, I., Kungl, A., and Mechtler, K. (2003) An improved method for tracking and reducing the void volume in nano HPLC-MS with micro trapping columns. *Anal. Bioanal. Chem.* 376, 946–957

48. Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. *Electrophoresis* 20, 3551–3567

49. Steen, H., Jebanathirajah, J. A., Rush, J., Morrice, N., and Kirschner, M. W. (2006) Phosphorylation analysis by mass spectrometry. *Mol. Cell. Proteomics* 5, 172–181

50. Sikorski, R. S., and Hieter, P. (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in *Saccharomyces cerevisiae*. Genetics 122, 19–27

51. Ryan, M. T., Voos, W., and Pfanner, N. (2001) Assaying protein import into mitochondria. *Methods Cell Biol.* 65, 189–215

52. Wiedemann, N., Pfanner, N., and Rehling, P. (2006) Import of precursor proteins into isolated yeast mitochondria. *Methods Mol. Biol.* 313, 372–383

53. Stagliar, H., and von Jagow, G. (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. *Anal. Biochem.* 199, 223–231

54. Meisinger, C., Ryan, M. T., Hill, K., Model, K., Lim, J. H., Sickmann, A., Müller, H., Meyer, H. E., Wagner, R., and Pfanner, N. (2001) Protein import channel of the outer mitochondrial membrane: a highly stable Tom40-Tom22 complex that is able to interact with preproteins, small Tom proteins, and import receptors. *Mol. Cell. Biol.* 21, 2337–2348

55. Rehling, P., and Plowman, G. D. (1997) The protein kinases of budding yeast: six score and more. *Trends Biochem. Sci.* 22, 18–22

56. Tomaska, L. (2000) Mitochondrial protein phosphorylation: lessons from yeast. *Gene (Amst.)* 255, 59–64

57. Modiést, A., Bini, L., Carraresi, L., Magherini, F., Liberati, S., Pallini, V., Manaio, G., Pinna, L. A., Raugeli, G., and Ramponi, G. (2001) Expression of the small tyrosine phosphatase (Stp1) in *Saccharomyces cerevisiae*: a study on the protein tyrosine phosphatase, *Electrophoresis* 22, 576–585

58. Zahedi, R. P., Begonja, A. J., Gambaryan, S., and Sickmann, A. (2006) Phosphoproteomics of human platelets: a quest for novel activation pathways. *Biochem. Biophys. Acta 1764*, 1963–1976

59. Bodenmiller, B., Mueller, L. N., Mueller, M., Domon, B., and Aebersold, R. (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. *Nat. Methods* 4, 231–237

Molecular & Cellular Proteomics 6.11

1905
66. Paiva, S., Devaux, F., Barbosa, S., Jacq, C., and Casal, M. (2004) Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. *Yeast* **21**, 201–210

67. Palkova, Z., Devaux, F., Icicova, M., Minarikova, L., Le Crom, S., and Jacq, C. (2002) Ammonia pulses and metabolic oscillations guide yeast colony development. *Mol. Biol. Cell* **13**, 3901–3914

68. Green, R., Lesage, G., Sdicu, A. M., Ménard, P., and Bussey, H. (2007) A synthetic analysis of the Saccharomyces cerevisiae stress sensor Mid2p, and identification of a Mid2p-interacting protein, Zeo1p, that modulates the PKC1-MPK1 cell integrity pathway. *Microbiology* **149**, 2487–2499

69. Zhang, X., Lester, R. L., and Dickson, R. C. (2004) Protein kinase-like kinase Pkh1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. *J. Biol. Chem.* **279**, 22030–22038

70. Arnold, I., Pfeiffer, K., Neupert, W., and Schägger, H. (1998) Yeast mitochondrial F\textsubscript{1}F\textsubscript{0}-ATP synthase exists as a dimer: identification of three dimer-specific subunits. *EMBO J.* **17**, 7170–7178

71. Bustos, D. M., and Velours, J. (2005) The modification of the conserved G\textsubscript{XXXG} motif of the membrane-spanning segment of subunit g destabilizes the supramolecular species of yeast ATP synthase. *J. Biol. Chem.* **280**, 29004–29010

72. Saddar, S., and Stuart, R. A. (2005) The yeast F\textsubscript{1}F\textsubscript{0}-ATP synthase: analysis of the molecular organization of subunit g and the importance of a conserved G\textsubscript{XXXG} motif. *J. Biol. Chem.* **280**, 24435–24442

73. Martin-Yken, H., Dagkessamanskaya, A., Talibi, D., and Francois, J. (2002) KN4 is a member of the PKC1 signalling pathway and genetically interacts with BCK2, a gene involved in cell cycle progression in Saccharomyces cerevisiae. *Curr. Genet.* **41**, 323–332

74. Fairn, G. D., MacDonald, K., and McMaster, C. R. (2007) A chemogenomic screen in Saccharomyces cerevisiae uncovers a primary role for the mitochondria in farnesol toxicity and its regulation by the Pkc1 pathway. *J. Biol. Chem.* **282**, 4868–4874

75. Arselin, G., Giraud, M. F., Dautant, A., Vaillier, J., Brèthes, D., Coulary-Salin, B., Schaeffer, J., and Velours, J. (2003) The G\textsubscript{XXXG} motif of the transmembrane domain of subunit e is involved in the dimerization/oligomerization of the yeast ATP synthase complex in the mitochondrial membrane. *Eur. J. Biochem.* **270**, 1875–1884

76. Bornhövd, C., Vogel, F., Neupert, W., and Reichert, A. (2006) Mitochondrial membrane potential is dependent on the oligomeric state of F\textsubscript{1}F\textsubscript{0}-ATP synthase supercomplexes. *J. Biol. Chem.* **281**, 13990–13998

77. Cherry, J. M., Adler, C., Ball, C., Chervitz, S. A., Dwight, S., Hester, E. T., Jia, Y., Juvik, G., Roe, T., Schroeder, M., Weng, S., and Botstein, D. (1998) SGD: Saccharomyces Genome Database. *Nucleic Acids Res.* **26**, 73–79

78. Hodges, P. E., Payne, W. E., and Garrels, J. I. (1998) The Yeast Protein Database (YPD): a curated proteome database for Saccharomyces cerevisiae. *Nucleic Acids Res.* **26**, 68–72

79. Frazier, A. E., Taylor, R. D., Mick, D. U., Warscheid, B., Stoepel, N., Meyer, H. E., Ryan, M. T., Gieraltowski, B., and Rehling, P. (2006) Mdm38 interacts with ribosomes and is a component of the mitochondrial protein export machinery. *J. Cell Biol.* **172**, 553–564