We are good to grow: dynamic integration of cell wall architecture with the machinery of growth

Matheus R. Benatti1,2, Bryan W. Penning1,2, Nicholas C. Carpita1,2,3 and Maureen C. McCann1,2*

1 Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
2 Bindley Bioscience Center, Purdue University, West Lafayette, IN, USA
3 Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA

INTRODUCTION
Cell expansion integrates “loosening” of existing architecture with synthesis and deposition of new wall components. Golgi-associated syntheses of matrix polysaccharides and their subsequent secretion is coordinated closely with cellulose synthesis at the plasma membrane, which is in turn coordinated with dynamic assembly and rearrangement during wall extension (Cosgrove, 2005). Multiple signal pathways regulate wall biophysics to permit cell expansion by controlling expression of cell wall-related genes. For example, the brassinosteroid-activated transcription factor BES1 binds to promoter elements of most cellulose synthase (CesA) genes (Xie et al., 2011), and NAC and MYB domain-containing transcriptional factors bind to AGL-elements of promoters of genes involved in polysaccharide and monolignol syntheses (Zhao and Dixon, 2011). In elongating cells, cellulose microfibrils are laid down in helical patterns transverse to the long axis of the cell, and are separated and reoriented by tangential forces generated by turgor. Walls of grasses and those of other flowering plants interlace with the machinery of growth independent of composition, and progress in identifying proteins involved in transduction of growth signals and integrating their outputs in the molecular machinery of wall expansion.

Keywords: cell wall, cellulose, dicots, extensibility, grasses, growth, pectin, signaling

Despite differences in cell wall composition between the type I cell walls of dicots and most monocots and the type II walls of commelinid monocots, all flowering plants respond to the same classes of growth regulators in the same tissue-specific way and exhibit the same growth physics. Substantial progress has been made in defining gene families and identifying mutants in cell wall-related genes, but our understanding of the biochemical basis of wall extensibility during growth is still rudimentary. In this review, we highlight insights into the physiological control of cell expansion emerging from genetic functional analyses, mostly in Arabidopsis and other dicots, and a few examples of genes of potential orthologous function in grass species. We discuss examples of cell wall architectural features that impact growth independent of composition, and progress in identifying proteins involved in dynamic control.
in some regions, possibly contributing to a tendency for cells to rupture (Anderson et al., 2010).

Mutations in genes whose functions are associated with delivery or activation of cellulose synthases, and other plasma membrane-resident or membrane-associated proteins, also result in cellulose deficiency and inhibition of elongation growth. **Cellulose Synthase Interactive** (CSI) is a microtubule-associated protein that bridges CESA complexes and cortical microtubules, mutation of which affects movement of CESA complexes in the plasma membrane (Gu et al., 2010; Li et al., 2012). Site-directed mutations of the phosphorylation sites of CESA1 to mimic always-on or always-off states provide evidence that CESAs are direct targets of signal pathways impacting elongation (Chen et al., 2010). Mutations in a plasma membrane-associated endo-(1 → 4)-β-d-glucanase, **α**-arabinogalactan (Nicol et al., 1998) and rice (Zhou et al., 2006) or in **COBRA** genes, encoding glycosylphosphatidylinositol-anchored proteins, are cellulose-deficient and compromised in organ elongation in Arabidopsis (Schindelman et al., 2001; Roudier et al., 2005) and rice (Oai et al., 2011).

Loss of cell wall strength to resist turgor pressure is expected with cellulose deficiencies, but similar swelling phenotypes can occur in mutants unaffected in cellulose synthesis. Mutations in two UDP-sugar interconversion pathway genes encoding UDP-glucose dehydrogenases cause significant reduction of substrations to the XyG backbone, arabian side chains of rhamnogalacturonan (RG I, and the apico-posteriorly linking side chains A and B of RG II (Reboul et al., 2011), with phenotypes of swollen roots and cotyledons, and shorter hypocotyls and reproductive organs.

Xyloglucan endo-β-transglycosylases/transferases (XET/XTHs) catalyze the molecular grafting and/or hydrolysis of XyGs in the primary type I cell wall (Rose et al., 2002; Eckoh and Brunner, 2010). Galactose-deficient mur1 XyGs bind to cellulose in vitro and in vivo as do wild-type XyGs, but are exceptionally poor substrates for XET—a feature that correlates with cell swelling at the end of growth (Peta et al., 2004). When XyGs of different molecular sizes are fed to pea stems, large polymers of XyG cross-link cellulose microfibrils and slow growth by action of endogenous XET activity, whereas XyG oligosaccharides promote cell elongation (Takeda et al., 2002). RNAi lines with reduced levels of AXTTH18 show decreased primary root growth compared to that of wild-type (Usami et al., 2006), and AXTTH14 and AXTTH26 reduced the extension of heat-inactivated isolated cell walls under constant-load extension (Maris et al., 2009). Also, when growing roots were exposed to either recombinant XTH protein, cell elongation is reduced in a concentration-dependent manner and abnormal root hairs are formed, suggesting a role for XET activity in stiffening of the side-walls of root hairs and cells of the elongation zone.

While XET activities may be associated with maintenance of tensile strength by religating XyGs during growth, the actual stress relaxation of the walls required for growth is induced by expansins (Cosgrove, 2003). The expansin family falls into two major groups, called α- and β-expansins, in both dicots and grasses, but with many more β-expansins in the grasses (Sampedro and Cosgrove, 2003). The α-expansins disrupt hydrogen bonds between polysaccharides (Cosgrove, 2009), including cellulose microfibrils in filter paper (McQueen-Mason and Cosgrove, 1994). The β-expansin clade also contains maize group-1 pollen allergens, which, unlike α-expansins, solubilize homogalacturonan (HGs) and highly arabinose-substituted GAXs from the middle lamellae of maize silks during pollen growth (Tabuchi et al., 2011).

However, modifications to pectins also impact wall mechanical properties in dicots. The **mur1** mutant of Arabidopsis is deficient in GDP-mannose dehydratase activity, resulting in the absence of fucose residues in cell wall polymers of the shoot (Bonin et al., 1997). A slight dwarfism and greatly reduced tensile strength of the floral stem suggested that the fucose-containing side-group of XyG might be important for cross-linking during growth. However, O’Neill et al. (2001) showed that the reduced stem growth and tensile strength of the **mur1** mutant is rescued to near wild-type levels by spraying plants with excess boron, thus promoting the dimerization of fucose-deficient side-chains of RG II. Ryden et al. (2003) showed that the tensile strength of **mur1** etiolated hypocotyls was about half that of wild type but could be similarly rescued. Rescue of the **mur1** phenotype with boron alone shows that RG II dimers are load-bearing and important for cell and organ growth.

Coordinated cell growth in the context of an organ is far more complex than changing biomechanical properties of individual cell walls, and for which the biophysics of cell layers and volumes control organ form (Green, 1996). Osmotic manipulation of wall tension shows regions of “stiffening” interpreted to provide the mechanical determinants for cell patterning (Kierzkowski et al., 2012). The smooth surface of a meristem gives rise to defined undulations by asymmetric cell expansion in a few cells, and these asymmetries pre-stage the pattern of phyllotaxis (Green et al., 1996). A physical undulation induced by asymmetric application of expansin or induction of its expression is sufficient to induce an entire developmental program of organ development, changing phyllotaxis in the apical meristem or leaf shape (Fleming et al., 1997; Pen et al., 2001).

Pectins also appear to be involved in transduction of biophysical signals. HG is synthesized as a heavily methyl-esterified polymer that are de-esterified by pectin methyl esterases (PMEs) to variable extents during cell elongation. Like expansins, modification of methyl esterification of cell wall pectins is linked to organ initiation and control of the normal pattern of phyllotaxis in the apical meristem (Peaucelle et al., 2008, 2011a). Arabidopsis PMEs is regulated by the homeodomain transcription factor **BELRINGER**; in the **belringer** mutant, PMEs activity is enhanced in the meristem (Peaucelle et al., 2011b). In contrast, PMEs expression is down-regulated in the mutant, which results in reduced internode elongation. These data suggest a dual function for **BELRINGER** — a repressor of PME in the meristem dome and an activator of PME in the elongating stem. Hydroxyproline-rich glycoproteins (HRGPs) and glycine-rich proteins (GRPs) become cross-linked in walls at the cessation of growth. However, recent work demonstrates that failure to glycosylate these proteins results in defects early in cell growth. An extension is required for proper cell plate formation during cytokinesis (Cannon et al., 2008). The Arabidopsis prolyl 4-hydroxylase (AP4H4) hydroxylates prolines of glycoproteins, such as extensins, which are O-glycosylated with arabinosyl and galactosyl residues by ER- and Golgi-resident glycosyltransferases (Shpak et al., 1999;
While severe defects in wall architecture affect anisotropic growth, there is an enormous plasticity in composition and architecture that may compensate, at least in part, for architectural deficiencies. The cellulose synthesis inhibitor dichlorobenzonitrile induces tomato and tobacco culture cells to synthesize a modified type I cell wall (Held et al., 2004). In the temperature-sensitive mutant allele of korrigan (Caño-Delgado et al., 2000, 2003). In both Arabidopsis and rice, primary wall cellulose deficiencies resulting from either mutated CesA or CesA result in ectopic lignification (Castro-Delgado et al., 2008, 2009). Arabidopsis cells habituated to grow in the cellulose synthesis inhibitor isonaben alter their cell walls to compensate for the loss of this structural scaffold, and this response is accompanied by strong up-regulation of a glycine-rich cell-wall protein, the CELLULOSE SYNTHASE-LIKE E5, a trichome birefringence-like glycosyltransferase (Bischoff et al., 2010), and a putative glycosyltransferase of unknown function (Manfield et al., 2004). The murr10 mutation in a secondary wall GESA7 results in alterations to pectin side-group composition in primary walls in cells surrounding the vasculature of Arabidopsis (Bosca et al., 2006).

In contrast, primary wall cellulose deficiencies resulting from either mutated CesA or CesA result in ectopic lignification (Castro-Delgado et al., 2008, 2009). In both Arabidopsis and rice, mutations in other genes associated with cellulose synthesis, such as korrigan and cobra, can result in increased pectin content and/or ectopic lignification (Nical et al., 1995; Sato et al., 2001; Zhou et al., 2006). In the temperature-sensitive mutant allele of korrigan, altered cell wall, an increase in pectin content of 62% is observed when cellulose content is reduced by 60% at the restrictive temperature (Sato et al., 2001). In rice, mutation in a COBRA-like gene, Brittle Cylindrical-Like, causes a dwarf phenotype with fewer tillers than the wild-type (Dai et al., 2011), and an increase in levels of pectin; several CesA and CesA genes are up-regulated in the mutant compared to wild-type despite reduced cellulose content, suggesting that interference with cellulose deposition elicits a positive feedback mechanism. Two cellulose-deficient dwarf mutant alleles of kbell (kbell), a cell wall-localized protein (Gerritsen and Sung, 2003), have increased pectin content, and an increase in the ectopic deposition of both cellulose and lignin in dark-grown seedlings (Pugazhenthi et al., 2002).

Mutations in a XyG-specific fucosyltransferase (mur2) and galactosyltransferase (mur3) alter or eliminate the α-L-Fuc-(1→2)-β-(1→4)-galactopyranose (1→2)-side group, yet the mutant plants are indistinguishable from wild-type (Vanzin et al., 2002; Madison et al., 2003). These mutants compensate for these mutations by enhancing activity of a second galactosyl transferase that adds galactose to the middle xylosyl residue (Péna et al., 2004). Although acid growth and wall extensibility is reduced, expansins still induce extension growth in the XyG-less xxt1/xxt2 mutant, even though they are missing the primary target of their activity (Park and Cosgrove, 2012a). While the shoots and floral stem are indistinguishable from wild-type in the mur1 mutant, tensile strength is reduced in etiolated hypocotyls (Byden et al., 2003; Péna et al., 2004). The reduced tensile strength was traced to a near absence of galactosyl side-groups on xyloglucan XyG (Péna et al., 2004). Cell growth is similar to wild-type, but the mur3hypocotyls present an abnormal swelling and bulging along with an increased diameter of both epidermal and underlying cortical cells.

We have depicted cross-hybridizing of cellulose microfibrils with XyGs and GAXs as the principal load-bearing interaction in our cell wall models (McCann and Roberts, 1991; Carpita and Gibeaut, 1993). However, double mutations eliminating function of two GT34 xylosyltransferases, XXT1 and XXT2, produce plants with no detectable XyG (Cavalier et al., 2008). Plants grow more slowly, are slightly dwarfed, and form short root hairs with bulging bases, but are otherwise surprisingly healthy. The reduction in XyG content slightly reduces stiffness and tensile strength of xxt2 and xxt1xxt2 mutant hypocotyls but does not significantly impact extensibility or organ growth. A third xylosyltransferase mutant, xxt5, has a phenotype similar to those observed in xxt1xxt2 double mutants, and reduced XyG content and xylosylation of the glucan backbone (Zabotina et al., 2008). Extensibility is enhanced several-fold in the xxt1xxt2 mutant by treatment of tissues with endoxylanase, polygalacturonase, and other treatments that disrupt matrix polysaccharides other than XyGs, indicating that GAX and HG may functionally replace XyGs (Park and Cosgrove, 2012a). These authors conclude that the inherently high extensibility of the mutant over wild-type indicates a reinforcing role for XyGs as well as being the optimal extensibility determinant for which GAX and HG cannot completely substitute. Taken together, these observations reveal a curious paradox – loss of xylosylation of XyG impacts wall tensile strength in organ failure tests, but complete loss of XyG does not. Park and Cosgrove (2012b) also showed that creep can be induced in wild-type, but not in xxt1xxt2 mutant plants, by enzymes active against both cellulose and XyG; a cocktail of XyG-specific and cellulose-specific enzyme activities is not effective. These results suggest that the load-bearing connection between microfibrils and XyGs is in a relatively inaccessible region of interaction rather than the extended regions of XyG that span between microfibrils (Park and Cosgrove, 2012b).

MEDIATORS OF SIGNAL TRANSMISSION PATHWAYS AND CELL WALL STATUS HAVE BEEN IDENTIFIED

The Catharanthus roseus (Cr) receptor-like kinase (RLK1) family contains 17 Arabidopsis members, of which four, FERONIA (FER), THEAUSI (THE), HERCULES1 (HERK1), and HERK2, are implicated in regulation of cell wall deposition and extensibility during growth (Hemyat and Holte, 2008; Steinwand and Kerchev, 2010). The xyl1 mutant was identified as a suppressor of the hypocotyl elongation defect observed in the CESA-defective procate (Hemyat et al., 2007). No visible change in growth or...
Wagner and Kohorn, 2001; Kohorn et al., 2006). Expression of an antisense WAK2 of function mutant of the transcription factor involved in the BRASSINOSTEROID RECEPTOR1 (bri1) mutant but partially suppresses the excessive cell elongation phenotype of the gain-of-function mutant of the transcription factor involved in brassinosteroid response, brc1-D (Gao et al., 2009b). Mutations in two Arabidopsis leucine-rich repeat (LRR)-RLKs, FEI2 and FEI2, cause swollen-root phenotypes (Nie et al., 2008).

Matrix polymers other than cellulose are also involved in signal pathways. Extracellular domains of WALL-ASSOCIATED KINASES (WAKs) directly bind to pectin (Semert and Blaaksoep, 2010; Kohorn and Kohorn, 2012). Mutation of WAK2 or expression of antisense WAK2 or WAK4 to reduce levels of WAK proteins in reduction in cell elongation (Lally et al., 2001; Wiegand and Kohorn, 2001; Kohorn et al., 2009). Arabinogalactan proteins (AGPs) are highly glycosylated extracellular proteins anchored to the plasma membrane without kinase activities. Exogenous AGP induces somatic embryogenesis in carrot cells (van Hengel et al., 2001), and apical cell elongation in moss depends on a functional AGP (Lee et al., 2005). The Arabidopsis fasciclin-like arabinogalactan1 results in reduction of hypocotyl elongation, but, unlike mutations in structural elements, the reduced growth does not result from changes in numbers of cells, cell width, numbers of layers or hypocotyl diameter (Tang et al., 2003).

PROSPECTS

Despite differences in the structural components of plant cell walls of dicots and grasses, the architectural principles of their construction, the architectural principles of their construction, the nature of cell walls of grasses are similar, giving rise to biophysical properties that underpin common mechanisms of growth. Perturbations to wall architecture, by altering cellulose synthesis and orientation, cross-linking, and mechanical properties of the pectin matrix, reveal sensing mechanisms that result in feedback to other biosynthetic pathways. While some candidate components of the sensing mechanisms are receptor kinases or arabinogalactan proteins, a major challenge will be untangling the direct responses of cells to signal transduction mechanisms from the many indirect effects of a life-long deficiency in mutant genotypes. Establishing systems for inducible timing of wall perturbations, introduced by interference with wall synthesis or signal pathways, is a promising approach to unravel the direct integration of growth signals, wall architecture, and biophysical mechanisms of growth.

ACKNOWLEDGMENTS

This review was completed through support of the Center for Direct Catalytic Conversion of Biomass to Biofuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DE-SC0009997).

REFERENCES

Andersson, C. T., Carroll, A., Akhme- torum, L., and Somerville, C. (2010). Real-time imaging of cellulose reori- entation in wall biophysics and cell expansion. Plant Physiol. 153, 787–798.

Areh, T., Pong, L., Betram, A. S., Burn, J., Winkler, W., Hirth, W., Camilleri, C., Höltke, H., Flamini, J., Birch, B., Cork, A., Glaser, L., Römheld, J., and Williamson, R. E. (1998). Molec- ular analysis of cellulose biosynthesis and the Arabidopsis. Science 279, 717–726.

Bischoff, V., Nita, S., Neumüller, L., Schindelshmid, D., Ulrich, A., Ehrfeld, R., Persson, D., Dörner, D., and Schüle, W. B. (2010). TRI- CHROME BREFINE and its homolog AGP5160 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol. 153, 799–802.

Boman, C. P., Potter, I., Varum, G. E., and Baten, W. D. (1997). The MURI gene of Arabidopsis thaliana encodes an isoform of GDP-mannose-4,6- dihydrofuranosyltransferase catalyzing the first step in the de novo synthesis of GDP-fucose. Proc. Natl. Acad. Sci. U.S.A. 94, 2083–2088.

Bosa, S., Burton, C. J., Taylor, N. G., Ryden, P., Neumüller, L., Peaty, M., Roberts, K., and Solfer, G. J. (2008). Expression of genes associated with cell wall biogenesis and pathogen response is WAK2-dependent, suggesting a role in relaying pectin-based signals from the cell wall (Kohorn et al., 2009). Arabinogalactan proteins (AGPs) are highly glycosylated extracellular proteins anchored to the plasma membrane without kinase activities. Exogenous AGP induces somatic embryogenesis in carrot cells (van Hengel et al., 2001), and apical cell elongation in moss depends on a functional AGP (Lee et al., 2005). The Arabidopsis fasciclin-like arabinogalactan1 (fla1) mutant reduces shoot forma- tion in callus regeneration (Johnson et al., 2011), and mutation of an ASAGFP9 results in reduction of hypocotyl elongation, but, unlike mutations in structural elements, the reduced growth does not result from changes in numbers of cells, cell width, numbers of layers or hypocotyl diameter (Tang et al., 2003).

PROSPECTS

Despite differences in the structural components of plant cell walls of dicots and grasses, the architectural principles of their construction, the nature of cell walls of grasses are similar, giving rise to biophysical properties that underpin common mechanisms of growth. Perturbations to wall architecture, by altering cellulose synthesis and orientation, cross-linking, and mechanical properties of the pectin matrix, reveal sensing mechanisms that result in feedback to other biosynthetic pathways. While some candidate components of the sensing mechanisms are receptor kinases or arabinogalactan proteins, a major challenge will be untangling the direct responses of cells to signal transduction mechanisms from the many indirect effects of a life-long deficiency in mutant genotypes. Establishing systems for inducible timing of wall perturbations, introduced by interference with wall synthesis or signal pathways, is a promising approach to unravel the direct integration of growth signals, wall architecture, and biophysical mechanisms of growth.

ACKNOWLEDGMENTS

This review was completed through support of the Center for Direct Catalytic Conversion of Biomass to Biofuels, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DE-SC0009997).
by the cell wall protein expansin. Science 276, 1415–1418.
Gille, S., Haendel, U., Zamanian, M., and Pauli, M. (2009). Identification of plant cell wall mutants by means of a forward chemical genetic approach using fediloxins. Proc. Natl. Acad. Sci. U.S.A. 106, 14899–14904.
Green, P. R. (1998). Expression of form and pattern in plants – a role for bio-
physical fields. Sen. Cell Biol. 7, 905–911.
Green, P. R., Steck, C. S., and Bennish, C. S. (1996). Pholidotic patterns: a biophysical mechanism for their origin. J. Exp. Bot. 57, 513–527.
Gu, S., Kaplinsky, N., Bringmann, M., Cobb, A., Carroll, S., Sampathkum-
aran, A., Bankai, T. I., Person, S., and Somerville, C. R. (2010). Identifica-
tion of a cellulose synthase-like-related protein required for cellulose biosyn-
thesis. Proc. Natl. Acad. Sci. U.S.A. 107, 12866–12871.
Guo, H., Li, L., Ye, H., Alpern, A., and Yin, Y. (2009a). Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Plant Signal. Behav. 4, 700–704.
Guo, H., Ye, H., Li, L., and Yin, Y. (2008b). A family of receptor-like kinases are regulated by BES1 and involved in shoot growth in Arabi-
dopsis thaliana. Plant Signal. Behav. 3, A9–A10.
Habu, S., Inoue, T., Kusumoto, H., Hara, M., Shikahara, K., and Kaizuka, M. J. (2004). Di-acetylchitotriosyl-trisaccharide is the inter-
molecular cross-link of cellulose microfibers. Nature 433, 198–201.
Herrera-Estrella, L. (2011). Pectin-induced growth. Crit. Rev. Plant Sci. 30, 215–240.
Hemmingsen, R., and Höfte, H. (2011a). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Hemmingsen, R., Arno, M., Feick, S., Papenbrock, J., and Mouille, G. (2011). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Hemmingsen, R., Arno, M., Feick, S., Papenbrock, J., and Mouille, G. (2011). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Hemmingsen, R., Arno, M., Feick, S., Papenbrock, J., and Mouille, G. (2011). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Hemmingsen, R., Arno, M., Feick, S., Papenbrock, J., and Mouille, G. (2011). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Hemmingsen, R., Arno, M., Feick, S., Papenbrock, J., and Mouille, G. (2011). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Hemmingsen, R., Arno, M., Feick, S., Papenbrock, J., and Mouille, G. (2011). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Hemmingsen, R., Arno, M., Feick, S., Papenbrock, J., and Mouille, G. (2011). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Hemmingsen, R., Arno, M., Feick, S., Papenbrock, J., and Mouille, G. (2011). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Hemmingsen, R., Arno, M., Feick, S., Papenbrock, J., and Mouille, G. (2011). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Hemmingsen, R., Arno, M., Feick, S., Papenbrock, J., and Mouille, G. (2011). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Hemmingsen, R., Arno, M., Feick, S., Papenbrock, J., and Mouille, G. (2011). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Hemmingsen, R., Arno, M., Feick, S., Papenbrock, J., and Mouille, G. (2011). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Hemmingsen, R., Arno, M., Feick, S., Papenbrock, J., and Mouille, G. (2011). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Hemmingsen, R., Arno, M., Feick, S., Papenbrock, J., and Mouille, G. (2011). The transcription factor BELLRINGER modulates phytokinins by regulating the expression of a pectin methyltransferase in Arabidopsis. Development 138, 6735–6741.
Benatti et al.
Wall biophysics and cell expansion

Copyright © 2012 Benatti, Penning, Carpenter and McCombe. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 11 May 2012; accepted: 01 August 2012

Giovanni Benatti MR, Penning BN, Carpenter NC and McCombe MC (2012)
We are good to grow: dynamic integration of cell wall architecture with the machinery of growth. Front. Plant Sci. 3:187. doi:10.3389/fpls.2012.00187

This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

Copyright © 2012 Benatti, Penning, Carpenter and McCombe. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.