Antibody response to homologous epitopes of Epstein-Barr virus, *Mycobacterium avium* subsp. *paratuberculosis* and IRF5 in patients with different connective tissue diseases and in mouse model of antigen-induced arthritis

Marco Boa, Magdalena Niegowskaa, Hayley L. Eamesb, Hannah Almuttaqib, Giannina Arruc, Gian Luca Erreb, Giuseppe Passiud, Tariq E. Khoyrattyb, Erinke van Grinsvenb, Irina A. Udalova\textsuperscript{b,**}, Leonardo A. Sechi\textsuperscript{a,*}

a Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43 b, 07100, Sassari, Italy
b Kennedy Institute of Rheumatology, Oxford University, Oxford, Roosevelt Drive, Headington, OX3 7FY, United Kingdom
c Department of Clinical and Experimental Medicine, Neurological Clinic, University of Sassari, Viale San Pietro 8, 07100, Sassari, Italy
d Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria di Sassari, UOC of Rheumatology, Viale San Pietro 8, 07100, Sassari, Italy

* Corresponding author. Department of Biomedical Sciences, University Sassari, Viale San Pietro 43 b, 07100, Sassari, Italy.
** Corresponding author.

\textit{E-mail addresses:} irina.udalova@kennedy.ox.ac.uk (I.A. Udalova), sechila@uniss.it (L.A. Sechi).

\url{https://doi.org/10.1016/j.jtauto.2020.100048}

\textbf{Article Info}

\textbf{Keywords:}
EBV
MAP
IRF5
Citrullination
Rheumatic diseases
Mouse models of rheumatoid arthritis

\textbf{Abstract}

\textbf{Background:} Improved knowledge of different biomarkers is crucial for early diagnosis of rheumatic diseases and to provide important insights for clinical management. In this study, we evaluated the seroreactivity of patients with different connective tissue diseases (CTDs) (rheumatoid arthritis, RA; systemic lupus erythematosus, SLE; systemic sclerosis, SSc; and Sjögren’s syndrome, SSj) to interferon regulatory factor 5 (IRF5) peptide and homologs derived from Epstein-Barr virus (EBV) and *Mycobacterium avium* subsp. *paratuberculosis* (MAP). Antigen-induced arthritis (AIA) experiments have been performed in control and IRF5 conditional knockout mice to reinforce the hypothesis that antibodies generated against the three homologous peptides are cross-reactive.

\textbf{Methods:} Reactivity against wild-type (wt) and citrullinated (cit) IRF5 (IRF5\textsubscript{424-434}), MAP (MAP\textsubscript{4027-4032}) and EBV (BOLF1\textsubscript{305-320}) peptides were tested by indirect ELISA in sera from 100 RA patients, 54 patients with other CTDs (14 SLE, 28 SSc and 12 SSj) and 100 healthy subjects (HGs). Antibody responses to the same wt peptides have been tested in AIA mouse sera after immunization with complete Freud’s adjuvant (CFA) and methylated bovine serum albumin (mBSA) to induce arthritis in the knee joint.

\textbf{Results:} BOLF1, MAP\textsubscript{4027} and IRF5 peptides triggered different antibody responses in CTD diseases with a stronger reactivity in RA (p=0.0001). Similar trends were observed in AIA mice with significantly higher reactivity after 7 days from induction of arthritis. We also found statistically significant differences in antibody responses between SSc and HGs for BOLF1 (p=0.003), MAP\textsubscript{4027} (p=0.0076) and IRF5 (p=0.0042). Peripheral reactivity to cit peptides was lower compared to their wt counterparts, except for cit-MAP\textsubscript{4027-4032} which induced stronger responses in RA than wt-MAP\textsubscript{4027-4032} (46\% vs. 26\%, p=0.0170).

\textbf{Conclusion(s):} Our results show differential antibody responses to BOLF1, MAP\textsubscript{4027} and IRF5 peptides among CTDs, highlighting their potential as diagnostic biomarkers in these diseases. Experiments performed in IRF5 conditional knockout mice support the hypothesis of cross-reactivity between the investigated homologous antigens.

1. Introduction

Connective tissue diseases (CTDs) are a group of different autoimmune systemic disorders including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc) and Sjögren’s syndrome (SSj) that affect the musculoskeletal system and internal...
organs. The etiology of CTDs is unknown and their pathogenesis is poorly understood. However, the role of immune-mediated responses directed against self-antigens is considered of paramount importance, as highlighted by the shared association with common human leukocyte antigen (HLA) loci and by the expression of a broad range of specific autoantibodies. In RA, specific reactivity of citrullinated peptides is involved in modulation of the autoimmune response. Increased citrullination is observed in the RA synovium, and antibodies against citrullinated peptides (ACPAs) are generated during RA-associated autoimmune responses [1,2]. ACPA are demonstrated early in the course of disease and are considered a specific diagnostic and prognostic marker of RA [3,4].

The immune system’s ability to distinguish self from non-self is negatively modulated by genetic factors and environmental triggers including viral and bacterial infections [5].

Amongst genes most frequently reported to be associated to CTDs, IRF5 gene polymorphisms have been linked to the incidence and severity of RA, SLE and SSc, due to regulation of T-cell, B-cell and dendritic cell maturation, as well as production of pro-inflammatory cytokines [6–11].

Among environmental factors, viral and bacterial infections, including those caused by Epstein-Barr virus (EBV) [12], SSJ [13], SLE [14], SSc [15] and Mycobacterium avium subspecies paratuberculosis (MAP), have been associated with different autoimmune diseases and CTDs [16–21].

Different mechanisms have been suggested to cause the onset and/or exacerbate autoimmune diseases. One such mechanism is molecular mimicry, whereby foreign EBV and MAP antigens share sequence or structural similarities with self-antigens. Due to this homology, the immune response against microbial epitopes could also induce undesirable humoral and/or cellular immunity against host proteins. Also, prolonged proinflammatory responses to infections have been associated with the onset and progression of autoimmunity, in a process facilitated by cytokines like type 1 interferon (IFN), IL-12, IFNγ, IL-17 and TNFα [22]. In RA, it has been established that infections, such as those from Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and EBV, can ignite innate and secondary immune responses with induction of ACPA production [23,24].

Infectious events may also regulate gene expression to induce autoimmune responses. For example, EBV infection is able to stimulate the activation of genes that contribute to the development of autoimmune diseases [25]. EBNA2, a protein of the latent EBV cycle, binds to DNA activation of genes that contribute to the development of autoimmune reactive responses. For example, EBV infection is able to stimulate the maturation, as well as production of pro-inflammatory cytokines like type I interferon (IFN), IL-1β, IL-12, IFNγ, IL-17 and TNFα [22]. In RA, it has been established that infections, such as those from Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and EBV, can ignite innate and secondary immune responses with induction of ACPA production [23,24].

Consecutive unselected 100 RA patients (19 males, 65 females; median age 57.65 ± 10.33), 14 SLE patients (no males, 14 females; median age 36.5 ± 11.2), 28 SSc patients (5 males, 23 females; median age 58.9 ± 13.2) and 12 SSj patients (no males, 12 females; median age 59.5 ± 15.4) attending the outpatient clinic of the Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital of Sassari, Italy, were enrolled in the study. Only patients satisfying disease specific classification criteria [26–29], were enrolled in the study. Collected data relative to RA patients included: duration of RA; therapy including steroid treatment, disease-modifying anti-rheumatic drugs (DMARDs) and/or anti-tumor necrosis factor-alpha therapy, Tocilizumab, Rituximab and Atezolizumab; levels of C-reactive protein (CRP), mg/dL, erythrocyte sedimentation rate (ESR) levels, mm/h; rheumatoid factor positivity; anti-cyclic citrullinated peptide positivity (anti-CCP); Disease Activity Score-28 (DAS-28; Wells G, 2009) and Health Assessment Questionnaire (HAQ). The following disease-specific activity scores were also registered: SLEDAI (Systemic lupus erythematous disease index 2000) for SLE [30]; ESSG-AI (European Scleroderma Research Group Activity Index, for SSc [31] and ESSDAI (EULAR Sjogren’s syndrome disease activity index, for SSj [32], 100 healthy controls (HCs; 26 males, 74 females; median age 45.1 ± 11.7) were recruited at the Blood Transfusion Centre of Sassari, Italy.

Demographic and clinical features of all subjects involved in the present study are summarized in Table 1 and Table 2. The study protocols were approved by the ethics committee of Azienda Ospedaliero-Universitaria of Cagliari, Italy (PG/2018/5463) and all participants provided written informed consent.

2.3. Antigen-induced arthritis (AIA) in mouse models

In order to better understand the genetic and environmental factors modulating etiopathogenesis of RA, animal models have been extensively employed for studies focused on molecular mechanisms underlying human diseases with the objective to develop new therapeutic strategies [33–35]. A number of rodent models of arthritis have been generated over decades of research in the field and among them mouse models of RA share many features with the relative disease in humans.

Mice were bred and maintained under SPF conditions in accredited animal facilities at the University of Oxford. All procedures were conducted according to the Operations of Animals in Scientific Procedures Act (ASPA) of 1986 and approved by the Kennedy Institute of Rheumatology Ethics Committee. Animals were housed in individually ventilated cages at a constant temperature with food and water ad libitum. To validate the hypothesis of cross-reactivity, the AIA mouse model was

2.2. Subjects

Table 1

	RA n = 100	SLE n = 14	SSc n = 28	SSj n = 12	HCs n = 100
Age, years	57.6 ± 10.33	36.5 ± 11.2	58.9 ± 13.2	59.5 ± 15.4	45.1 ± 11.7
Female, n(%)	10.3 (100)	11.2 (100)	13.3 (100)	15.4 (100)	11.7 (100)
DAS28	3.45 ± 1.7	/	/	/	/
SLEDAI	/	3.42 ± 4.7	/	/	/
ESSG-AI	/	/	2.23 ± 2.1	/	/
ESSDAI	/	/	/	2.83 ± 2.16	/

RA, rheumatoid arthritis; SLE, systemic lupus erythematosus; SSc, systemic sclerosis; SSj, Sjogren’s syndrome; HCs, healthy controls. DAS-28, disease activity score-28 joints; SLEDAI, systemic lupus erythematosus disease index 2000; ESSG-AI, European Scleroderma Research Group Activity Index; ESSDAI, EULAR Sjogren’s syndrome disease activity index.
employed in this study for the assessment of immune responses against peptides derived from EBV and MAP, which share sequence homology with IRF5. Wildtype C57BL6/J mice were grouped in the following treatment conditions: n = 6 naïve mice not subjected to immunization, n = 5 immunized mice (Day 0 group) and n = 55 AIA arthritic mice (Day 1–7 groups). AIA was also performed in control Lyz2-Cre mice (B6-129P2-Lyz2tm1(cre)Ifo/J, Jackson Laboratories) and IRF5 conditional knockout mice - generated in the Udalova laboratory by crossing Lyz2-Cre mice with IRF5-LoxP mice (C57BL/6-Irf5tm1Ppr/J, Jackson Laboratories), in order to knockout IRF5 in the Lyz2-expressing myeloid compartment. Arthritis was induced at ~12 wk of age as described elsewhere [6,36–38]. Briefly, after sedation with inhaled isoflurane, mice were immunized by subcutaneous injection at the base of the tail with mBSA (Sigma, 100 μg) emulsified in complete Freud’s adjuvant (Difco, 100 μg). Seven days later (Day 0), mice were challenged by intraarticular injection of 200 μg mBSA into the left knee joint using a sterile 30-gauge microcannula to induce inflammation of the knee joint (Fig. 1). Intraarticular injection of PBS alone was used as a control condition in the right knee joint. Daily caliper measurements were taken to monitor the extent of knee swelling and therefore progression of inflammation in the AIA model. Knee joints and blood were harvested on Days 0–7 post

Fig. 1. Schematic diagram showing treatment and harvest time points in the antigen-induced arthritis (AIA) model. (A) Percentage change in knee thickness of WT mice immunized with CFA + mBSA, and then challenged by intra-articular injection of either PBS (control, right knee) or mBSA (arthritic, left knee) Safranin O/Fast Green stained histological sections confirmed differences in thickness of the synovial membrane between arthritic and control knees. (B) Knee swelling in wild-type and Lyz2-Cre, IRF5-LoxP conditional knockout mice at Day 2 and Day 7 post mBSA intra-articular challenge. IRF5 conditional knockout mice show reduced knee swelling at Day 2 compared to control Lyz2-Cre mice, and no difference at Day 7 when inflammation has resolved. P-values were determined by 1-way ANOVA with multiple comparisons using Graphpad Prism v. 8.0 software. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Table 2
Demographic and clinical characteristics of RA patients and HCs.

	RA n = 100	HCs n = 100
Age, years	57.6 ± 10.3	45.1 ± 11.7
Female, n (%)	80 (80)	74 (74)
ESR, mm/h	19.5 ± 25	/
CRP, mg/dl	1.34 ± 4.8	/
DAS28 score	3.45 ± 1.7	/
HAQ score	1.04 ± 0.9	/
ACFA positivity, %	65 (65)	/
RF positivity, %	73 (73)	/
Steroid use, %	64 (64)	/
Steroid dose, mg/day	1.5 ± 2.3	/
DMARDs use, %	86 (86)	/
TNF use, %	27 (27)	/
Tocilizumab use, %	13 (13)	/
Abatacept use, %	4 (4)	/
Rituximab use, %	2 (2)	/

RA, rheumatoid arthritis; HCs, healthy controls. ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; DAS-28, disease activity score-28 joints; HAQ, health assessment questionnaire; ACFA, anti-citrullinated peptide antibodies; RF, rheumatoid factor; DMARDs, disease-modifying anti-rheumatic drugs; TNF, tumor necrosis factor-alpha inhibitors.
intra-articular challenge from sacrificed mice. Blood was centrifuged at 2000 rpm for 20 min to separate serum for serological analysis.

2.4. Histology

For histological analysis, mice were sacrificed on day 1–7 after onset of arthritis (Fig. 1). Arthritic paws were severed above the ankle and fixed in 10% buffered formalin. Paws were decalcified in 10% EDTA and dehydrated before embedding in paraffin wax. Sagittal and coronal sections were stained with Safranin O/Fast Green with a haematoxylin and eosin counterstain (Figs. 6 and 7).

2.5. ELISA assays

Indirect ELISA to detect specific antibodies (Abs) against the selected antigens was performed as described previously [16]. The optical density (OD) was read at a wavelength of 405 nm using a SpectraMax Plus 384 microplate reader (Molecular Devices, Sunnyvale, CA 94089, USA). For data normalization, a highly responsive serum with the maximum Abs reactivity fixed at 1.0 arbitrary unit (AU)/ml was included in all experiments involving human sera. Negative control wells were obtained by incubation of immobilized peptides with secondary Abs alone and their mean values subtracted from all samples. Positive control sera were also included in all experiments. OD readings for mouse sera were performed after an overnight incubation with the reaction substrate.

2.6. Statistical analysis

Significant differences between the OD values of RA, SLE, SSc, SSj and HCs groups were determined by ANOVA test. The same test was employed to assess Abs variation between treatment conditions in mice. Significant differences in the proportion of Abs positivity across groups was performed with Mann-Whitney U test and Fisher’s exact test. Differences with $p < 0.05$ were considered statistically significant. The results were expressed as a mean of three separate experiments and the statistical analyses were performed using Graphpad Prism v. 8.0 software (GraphPad Software Inc., La Jolla, CA 92037, USA).

3. Results

3.1. Abs response in RA and rheumatic diseases

Wt-BOLF1305-320 elicited the highest seroreactivity accounting for 53% (n = 53) among RA patients, 7.14% (n = 1) in SLE, 32.1% (n = 9) in SSc, 7.69% (n = 1) in SSJ and 5% (n = 5) in HCs ($p = 0.0001$; Fig. 2A), while Abs against cit-BOLF1305-320 were detected in 21% (n = 21) of RA subjects, 21.4% (n = 3) in SLE, 7.14% (n = 2) in SSc and 7.69% (n = 1) in SSJ and 5% (n = 5) of HCs, ($p = 0.0001$; Fig. 2D). Also, we found a statistically significant difference between SSc and HCs (32.1% vs. 5%, respectively, $p = 0.003$; Fig. 2A) for BOLF1 that highlights the role of EBV in SSc.

![Fig. 2. A-F) ELISA-based analysis of Abs reactivity against human, viral and MAP-derived peptides in RA patients, SLE, SSc, SSj and HCs. The sera were tested against plate-coated BOLF1305-320 (A), MAP_402718-32 (B) and IRF5424-434 (C) peptides. Also, the sera were tested against plate-coated BOLF1305-320 Citrullinated (D), MAP_402718-32 Citrullinated (E) and IRF5424-434 Citrullinated (F) peptides. Bars represent the median ± interquartile range. Thresholds for Abs positivity are indicated by dashed lines. P-values are indicated above the distributions. (G–I) Mean distribution of OD values and Fisher’s exact test.](image-url)
In RA and SSc, wt-BOLF1305-320 elicited a greater reactivity than its citrullinated counterpart ($p = 0.0001$ and $p = 0.0403$, respectively), while no statistically significant difference was attained in SLE and SSj groups (Fig. 2A).

Regarding MAP peptides, wt-MAP_4027_18-32 elicited the highest seroreactivity among RA patients accounting for 26% ($n = 26$), 14.29% ($n = 2$) in SLE, 28.57% ($n = 8$) in SSc, 15.38% ($n = 2$) in SSj and 8% ($n = 8$) in HCs, ($p = 0.0001$; Fig. 2B), while Abs against cit-MAP_4027_18-32 were detected in 43% ($n = 43$) of RA subjects, 28.57% ($n = 4$) in SLE, 10.71% ($n = 3$) in SSc, none in SSj and 6% ($n = 6$) among HCs ($p = 0.0001$; Fig. 2E). SSc and HCs significantly differed when considering values obtained for MAP_4027_18-32 ($p = 0.0076$; Fig. 2B). Of note, a statistical difference was registered in RA patients between the proportion of Abs against wt- and cit-MAP_4027_18-32 (26 vs. 43%, $p = 0.0170$; Fig. 2H).

IRF5 peptide elicited a higher seroreactivity reaching 73% ($n = 73$) among RA patients, 7.14% ($n = 1$) in SLE, 32.1% ($n = 9$) in SSc, 23.1% ($n = 3$) in SSj and 9% ($n = 9$) in HCs ($p = 0.0001$, Fig. 2C), while Abs against cit-IRF5 peptide were detected in 14% ($n = 14$) of RA subjects, 14.3% ($n = 2$) in SLE, 10.7% ($n = 3$) in SSc, 7.69% ($n = 1$) in SSj and 0% ($n = 10$) of HCs ($p = 0.0001$; Fig. 2F). A significant difference was observed for IRF5_424-434 between SSc and HCs ($p = 0.0042$; Fig. 2C).

We then compared the Abs response against wt-IRF5 peptide versus its citrullinated variant in all disease-specific groups. The proportion of anti-wt-IRF5 vs. anti-cit-IRF5 Abs was statistically significant in RA patients only (73% vs. 14%; $p = 0.0001$; Fig. 2I).

Although there was no statistical significance for the assessed peptides in SLE, SSc and SSj compared to RA, we performed correlation analyses of Abs positivity values among SLE, SSc and SSj patients (Fig. 3 and Fig. 4). The highest coefficients were obtained for the homologous epitopes BOLF1305-320, MAP_4027_18-32 and IRF5_424-434 in pairwise plots pointing at cross-reactivity due to shared amino acid sequence (Fig. 3). The lack of correlation was found for all homologous pairs of citrullinated peptides, with the exception of high coefficients observed between
cit-BOLF1305-320 and cit-MAP_402718-32 in SLE (R^2 = 0.8439; Fig. 4A). Similarly, cit-BOLF1305-320 and cit-IRF5424-434 highly correlated in SSJ (R^2 = 0.906; Fig. 4I).

3.2. Abs response against IRF5, MAP, BOLF peptides in mouse models of arthritis

The reactivity to three homologous peptides IRF5, BOLF1 and MAP was tested in serum of three arthritis models (AIA, Collagen-Induced Arthritis (CIA) and Collagen Antibody-Induced Arthritis (CAIA)) and revealed different responses.

The results obtained highlight a statistical difference between Naïve vs. D7, D1 vs. D7 and D2 vs. D7 for BOLF1, between Naïve vs. D7, D1 vs. D7 and D2 vs. D7 for MAP_4027 and between Naïve vs. D7, D1 vs. D7 and D2 vs. D7, D3 vs. D7 and D4 vs. D7 for IRF5 in the AIA model (Fig. 5). No statistical difference for the same peptides was found in the CIA and CAIA models (data not shown). No statistical difference was also observed when IRF5 conditional knockout AIA sera (from mice in which IRF5 was knocked out in Lyz2 expressing myeloid cells) were compared to control sera for each of the 3 peptides (Fig. 5).

4. Discussion

In this study, we demonstrated that Abs responses to IRF5, EBV and MAP homologous peptides are different across CTDs, with RA sera showing the most significant reactivity against either wild-type or cit-rullinated peptides. These results confirmed our previous data [16,22] and were reinforced by observations in vivo. Abs formed after immunization with a CFA/mBSA emulsion in the AIA model were able to cross-react with MAP antigens triggering a persistent inflammation towards IRF5 and EBV. To validate this hypothesis, we analyzed the immune responses in IRF5 conditional knockout mice in order to understand whether relative Abs are able to cross-react in a similar way. These mice lack IRF5 expression in Lyz2 expressing cells of the myeloid
suggesting a role for MAP citrullinated antigens in RA autoimmunity
counterparts. Signiﬁcant peptides in RA and other CTDs was equal and, in some instances, even
exception of anti-cit-MAP, seroreactivity to the other two citrullinated
has been demonstrated that exposure to EBV is able to infect human
ogous peptides of IRF5, MAP and EBV was also shown in SSc patients. It
IRF5 in myeloid cells [39]. Abs responses of the IRF5 conditional
harvested at Day 7 post-challenge in the AIA (Antigen-Induced arthritis) model. There was no signiﬁcant difference between the 2 groups for any of the 3 peptides
(Mann-Whitney U test performed in Graphpad Prism software). D-F) ELISA-based analysis of Abs reactivity against EBV, MAP and IRF5 peptides using WT serum from an
AIA (Antigen-Induced arthritis) timecourse experiment. P-values were determined by ANOVA test with multiple comparisons.

For the first time in this study, a signiﬁcant Abs response to homologous peptides of IRF5, MAP and EBV was also shown in SSc patients. It has been demonstrated that exposure to EBV is able to infect human
dermal ﬁbroblasts in vitro, inducing pro-ﬁbrotic phenotypic switching, a relevant pathogenetic pathway underlying skin ﬁbrosis in SSc [40]. Moreover, EBV viral transcripts and proteins were demonstrated in ﬁbroblasts and endothelial cells in the skin of SSc patients [40]. EBV chronic replication in SSc primary monocytes has been proved to activate the TLR8 molecular pathway to sustain monocyte-derived inﬁammation in SSc [15]. In addition, a higher frequency of Abs against EBV has been recently demonstrated in SSc compared to healthy controls [41]. Taken collectively, these data suggest that EBV-speciﬁc responses may be an initiating trigger of SSc with persistent viral infection-related tissue injury underlying chronic inﬁammation and ﬁbrosis. It is probable that defective type 1 IFN-mediated signaling may blunt anti-viral responses and EBV infection control in patients with SSc, as recently demonstrated in MS [42]. Interestingly, the number of minor rs4728142 alleles of IRF5 has been described as a predictive factor for longer survival in SSc patients [11]. Therefore, it is conceivable that Abs-mediated modulation of IRF5 expression/function in SSc may have an impact on the pathogenesis and severity of disease.

The signiﬁcant reactivity of SSc sera against MAP peptides demonstrated in our study is intriguing and worthy of further investigation. Although preliminary, our data suggest that SSc and RA patients actuate a similar autoimmune response to MAP-derived antigens, pointing at MAP infection as a common pathogenetic contributor to various CTDs. Weak or insigniﬁcant immune responses to the assessed epitopes among patients with SLE and SSj further supports the concept that (auto)immune responses to environmental pathogens are variable across CTDs.

A limitation of this study was the administration of different immunosuppressive therapies to patients at the moment of sample collection, a fact that may have biased the interpretation and signiﬁcance of humoral responses. In addition, a study of diagnostic performance of Abs against the selected peptides has not been performed due to limited sample size of non-RA CTDs sera. Prospective studies are therefore needed to follow changes in reactivity over time along with disease progression and the
effector of tryptophan. To strengthen our observations, we plan to evaluate the levels of pro-inflammatory cytokines and quantify INF-γ upon stimulation with the analyzed peptides. Also, analysis of immune response against the above peptides in IRF5 conditional knockout mice has been useful in order to understand the cross-reactivity among peptides and to investigate the role of IRF5 in RA, as well as expanding knowledge on possible intervention targets to block Abs production responsible for triggering chronic inflammation. Future comparison of these in vivo results with reactivity against relative citrullinated peptides will provide additional elements on mechanisms involved in RA pathogenesis.

The diagnostic performance of antibodies to BOLF1, MAP and IRF5 homologous peptides in differentiating between healthy condition and CTDs and discriminating between different CTDs, needs to be tested in larger case-control studies including other autoimmune and chronic inflammatory diseases.

Credit author statement

M.B. conceived the study and its experimental design, contributed to sample collection, carried out the sample analysis, analyzed the results, performed research and wrote the paper. M.N. revised the manuscript and contributed to the analysis of results. G.A. helped to collect samples. G.L.E. and G.P. visited patients and diagnosticated the diseases, attended and contributed to the analysis of results. G.A. helped to collect samples. L.A.S. conceived the study and its experimental design, contributed to sample collection, carried out the sample analysis, analyzed the results, and approved the manuscript.

Funding

University of Sassari grant to L.A. Sechi.

Declaration of competing interest

Authors declare no conflicts of interest.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jtanta.2020.100048.

References

[1] R. Yamada, Citrullinated proteins in rheumatoid arthritis, Front. Biosci. 10 (2005) 54, https://doi.org/10.2741/1506.
[2] Y. Kim, J. Lee, H. Jung, H. Yi, Y.A. Rim, S.M. Jung, J.H. Ju, Development of synthetic anti-cyclic citrullinated peptide antibody and its arthritogenic role, Clinical & Translational Immunology 4 (2015) e51, https://doi.org/10.1038/cti.2015.24.
[3] L.M. Jansen, D. van Schaardenburg, I. van der Horn-Bruinsma, R.J. van der Stad, M.H. de Koning, B.A. Dijkmans, The predictive value of anti-cyclic citrullinated peptide antibodies in early arthritis, J. Rheumatol. 30 (8) (2003) 1691–1695.
[4] S. Rautapaa-Dahlqvist, B.A.W. de Jong, E. Berglind, G. Hallmann, G. Wadell, H. Stenhund, U. Sundin, W.J. van den Nieuwenhuijzen, Anti-cyclic citrullinated peptide antibodies in early arthritis, J. Rheumatol. 30 (8) (2003) 1691–1695.
[5] A. Vojdani, A potential link between environmental triggers and autoimmunity, Autoimmun. Dis. (2014) 1–18, https://doi.org/10.1155/2014/437231, 2014.
[6] F. Pratesi, C. Tommasi, C. Anzilotti, D. Chimenti, P. Migliorini, Deiminated Epstein-Barr virus nucleic acid in a mouse model, Arthritis Rheum. 54 (2006) 733–741, https://doi.org/10.1002/art.21629.
[7] J.B. Harley, X. Chen, M. Pujato, D. Miller, A. Maddox, C. Forney, A.M. Forge, A. Lynch, K. Chetel, M. Yukiwa, A. Barski, N. Salomonis, K.-M. Kaufman, L.C. Kotyan, M.T. Weiranz, Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity, Nat. Genet. 50 (2018) 699–707, https://doi.org/10.1038/s41588-018-0102-3.
[8] D. Aletahe, T. Neogi, A.O. Silman, J. Funovits, D.T. Felson, C.O. Bingham, N.S. Birnbaum, G.R. Burmester, V.P. Bykerk, M.D. Cohen, B. Combe, K.H. Costenbader, M. Dougados, P. Emery, G. Ferraccioli, J.M. Haines, K. Hebo, T.W. Huizinga, A. Kavanagh, T.K. Koven, P. Lamy, P. Meate, H.A. Menard, L.W. Moreland, R.L. Naden, T. Pincus, J.S. Smolen, E. Stanislawska-Biernat, D. Symmons, P.P. Tak, K.S. Upchurch, J. Vencovsky, G. Walker, Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League against Rheumatism collaborative initiative, Arthritis Rheum. 69 (2010) 1580–1588, https://doi.org/10.1002/art.381461, 2010.
[9] M. Petrini, A.M.-Orbi, G.S. Aralcon, C. Gordon, J.T. Merrill, P.R. Fortin, L.N. Bruce, J.J. Arendberg, D.J. Wallace, J. Newberry-Goldman, R. Newberry, S.-C. Bae, J.G. Hanly, J. Sánchez-Guerrero, A. Clarke, C. Aranow, S. Manzi, M. Urowitz, D. Gladman, K. Kalunian, M. Costner, V.P. Werth, A. Zoma, S. Bernatsky, G. Ruiz-
L. Bevaart, M.J. Vervoordeldonk, P.P. Tak, Evaluation of therapeutic targets in systemic lupus erythematosus, Arthritis Rheum. 64 (2012) 2677–2686, https://doi.org/10.1002/art.34473.

[28] F. van den Hoogen, D. Khanna, J. Fransen, S.R. Johnson, M. Baron, A. Tyndall, M. Matucci-Cerinic, R.P. Naden, T.A. Medger, P.E. Carreira, G. Riemekasten, P.J. Clements, C.P. Denton, O. Distler, Y. Allanore, D.E. Funat, A. Gabrielli, M.D. Mayes, J.M. van Laar, J.R. Seibold, I. Cizikaj, V.D. Steen, M. Inanc, O. Kowal-Bielecka, U. Müller-Ladner, G. Valenti, D.J. Veale, M.C. Vonk, U.A. Walker, L. Chung, D.H. Collier, M. Ellen Cruka, B.J. Fessler, S. Guiducci, A. Herrick, V.M. Hsu, S. Jimenez, B. Kahaleh, P.A. Merkel, S. Sierakowski, R.M. Silver, R.W. Simms, J. Varga, J.E. Pope, 2013 classification criteria for systemic sclerosis: an American college of rheumatology/European league against rheumatism collaborative initiative, Ann. Rheum. Dis. 72 (2013) 1747–1755, https://doi.org/10.1136/annrheumdis-2013-204424.

[29] C.H. Shiboski, S.C. Shiboski, R. Seror, A. Rasmussen, H. Scofield, M. Labetoulle, T.M. Lietman, E. Gottenberg, H. Bootsma, X. Mariette, C. Vitali, EULAR Sjögren’s syndrome criteria: a consensus and data-driven methodology involving three international patient cohorts, Arthritis & Rheumatology 69 (2016) 35–45, https://doi.org/10.1002/art.39859, 2017.

[30] I.D.U.M.B. Gladman Dd, Systemic lupus erythematosus disease activity index 2000, J. Rheumatol. 29 (2002) 288–291.

[31] G. Valentini, European multicentre study to define disease activity criteria for systemic sclerosis. II. Identification of disease activity variables and development of preliminary activity index, Ann. Rheum. Dis. 60 (2001) 592–598, https://doi.org/10.1136/ard.60.6.592.

[32] R. Seror, P. Ravau, S.J. Bowman, G. Baron, A. Trizouaf, E. Theander, J.-E. Gottenberg, H. Bootma, X. Mariette, C. Vitali, EULAR Sjögren’s syndrome disease activity index: development of a consensus systemic disease activity index for primary Sjögren’s syndrome, Ann. Rheum. Dis. 69 (2010) 1103–1109, https://doi.org/10.1136/annrheumdis.2010.196019.

[33] L. Bevaart, M.J. Vervoordeldonk, P.P. Tak, Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis? Arthritis Rheum. 62 (2010) 2192–2205, https://doi.org/10.1002/art.27503.