Diagnostyka ultrasonograficzna z zastosowaniem dożylnych środków kontrastujących u dzieci i młodzieży – doświadczenia jednego ośrodka

Intravenous contrast-enhanced sonography in children and adolescents – a single center experience

Martin Stenzel

Section of Pediatric Radiology, Institute of Diagnostic and Interventional Radiology I, Friedrich-Schiller University Jena, Jena, Germany
Adres do korespondencji: Martin Stenzel, MD, Section of Pediatric Radiology, Institute of Diagnostic and Interventional Radiology I, Friedrich-Schiller University Jena, Kochstr. 2, D-07745 Jena, Germany, e-mail: martin.stenzel@med.uni-jena.de, tel.: +49 3641 38 265, faks: +49 3641 38 257

Streszczenie
Badania ultrasonograficzne są wykonywane w populacji pediatricznej znacznie częściej niż u osób dorosłych. Metoda ta jest szeroko dostępna oraz nie naraża pacjenta na promieniowaniejonizujące. Wraz z wprowadzeniem do ultrasonografii środków kontrastujących przezwyciężono jedno z ograniczeń metody, jakim był brak możliwości oceny perfuzji. W Europie szeroko stosowanym ultrasonograficznym środkiem kontrastującym jest SonoVue®, który pozwala skutecznie obrazować unaczynienie oraz prawidłową albo uprzedzoną perfuzję tkankową. Zastosowanie dożylnych środków kontrastujących u dzieci i młodzieży jest obecnie w Europie ograniczone, głównie z powodu braku krajowych i międzynarodowych wytycznych określających stosowanie, a także braku rejestracji środków kontrastujących u pacjentów poniżej 18. roku życia. W artykule przedstawiono wskazania, technikę badania, omówiono względy bezpieczeństwa oraz perspektywy stosowania dożylnych środków kontrastujących u dzieci i młodzieży na podstawie badań własnych przeprowadzonych w ostatnich 6 latach u 37 pacjentów.

Cel pracy: Celem badania była ocena przydatności badań ultrasonograficznych poszerzonych o zastosowanie dożylnego środka kontrastującego SonoVue® u dzieci i młodzieży, z uwzględnieniem działań niepożądanych.

Material i metody: Badania ultrasonograficzne z zastosowaniem dożylnego środka kontrastującego wykonano u 37 dzieci w ośrodku autora. Przeprowadzono 39 badań. Średnia wieku pacjentów wynosiła 11,1 roku (zakres od 1 7/12 do 17 11/12 roku). Wskazaniami do badania były guzy, infekcje, urazy i niedokrwienie narządów wewnętrznych. Rodziców pacjentów oraz młodzież poinformowano o braku rejestracji stosowanego środka kontrastującego.

Wyniki: Wszystkich wykonanych badań z zastosowaniem dożylnego ultrasonograficznego środka kontrastującego uzyskano dodatkowe, istotne z punktu widzenia klinicznego informacje, uzupełniające badania w opcji B-mode i z wykorzystaniem dopplera kodowanego kolorem. Większość badań dotyczyła oceny zmian w wątrobie (n=16), w 10 przypadkach w nerwach. Stwierdzono następujące nieprawidłowości: guzy (n=22), infekcje (n=9), urazy (n=5) oraz uprzedzenie perfuzym (n=4). Większość badań przeprowadzono w celu oceny zmiany zlokalizowanej w wątrobie (n=12). Odnotowano jeden przypadek odpowiadający kryteriom możliwej reakcji niepożądanej – u ośmiolatniej dziewczynki 15 minut po zakończeniu badania wystąpiły nudności, które samoistnie ustąpiły. U żadnego pacjenta nie było konieczne leczenie reakcji niepożądanych.

Wnioski: Badanie ultrasonograficzne z zastosowaniem dożylnego środka kontrastującego u dzieci jest możliwe do przeprowadzenia i pozwala...
Abstract

Compared to adult patients, ultrasonography in children and adolescents is much more common, due to lack of ionizing radiation, and its wide availability. With the introduction of contrast-media for use in ultrasonography, one major drawback of the method could be overcome. In Europe, SonoVue® is the only widely available agent, which due to improved stability makes it possible to image normal and diseased tissue perfusion and vascularization with high accuracy. Inability to hold the breath and voluntary body movement of the patient is less of an obstacle compared to color Doppler techniques and makes the method very attractive for use in children, which, depending on age, may not be very cooperative. Use of intravenous contrast-medium in minors is currently very limited for several reasons: availability, lack of recommendation in national and international guidelines, and lack of official licensing. The article will touch medical indications, technique, safety considerations, and perspective of intravenous use of contrast-media in children and adolescents, including data from a 6-year period in 37 patients. **Purpose:** The purpose of the study was to collect data on ultrasonographic examinations, expanded by intravenous administration of the contrast agent SonoVue® in children and adolescents. Besides assessing diagnostic yield, data on adverse medication effects was collected. **Materials and methods:** The study includes contrast-enhanced ultrasound examinations in 37 children at a single institution. Indications for the examinations were tumor lesions, infections, traumatic organ injuries, and parenchymal organ ischemia. Parents of the patients and adolescent patients were informed about the off-label use of the contrast agent. Thirty-nine examinations were performed, the average age of the patient was 11.1 years (range 1 7/12 to 17 3/12 years). **Results:** All of the examinations yielded additional diagnostic value, always expanding results from B mode and color coded sonography. Overall, most examinations were done to assess the liver (n=16), followed by the kidney in 10 cases. The different etiologies were encountered in the following order: tumor (n=22), infection (n=9), trauma (n=5), ischemia (n=4). Most examinations were performed to evaluate a hepatic lesion (n=12). There was one incident recorded that fit the criteria of a possible adverse effect. In an 8-year-old girl nausea was noted, that started 15 minutes after the end of the examination and resolved spontaneously. In none of the patients medical treatment for adverse effects was necessary. **Conclusion:** Ultrasonography in children, enhanced by intravenous use of contrast medium is feasible and allows for further evaluating cystic and solid tumors, and organ perfusion. Given that proper medical equipment and correct ultrasound machine settings are used, it is a robust method without diagnostic failures. In this small-sized case series there were no severe adverse effects, however, off-label use in children needs to be addressed.

Wstęp

Ultrasonografia (USG) stanowi obecnie podstawowe badanie obrazowe w diagnostyce chorób zapalnych, nowotworowych oraz urazów jamy brzusznej u dzieci i niemowląt. Jest to ogólnie przyjęta i szeroko dostępna metoda obrazowania, nienarażająca pacjenta na promieniowanie jonizujące. Ma jednak pewne wady, do których należą zmienna odległość od badającego oraz niewykładane do uzyskania dokumentacja wysokiej jakości. Choć systemy archiwizacji danych PACS (picture archiving computer systems) poprawiają jakość dokumentowania badania, kluczową rolę w poprawnym formułowaniu diagnozy nadal odgrywa wyszczególnienie ultrasonografistów – lekarzy i techników.

Introduction

Nowadays, ultrasonography is the primary imaging modality in infants and children in inflammatory, neoplastic, and traumatic disease of the abdomen. It is a well-established procedure with its clear advantages: wide availability and lack of radiation, and disadvantages: operator-dependency and difficult-to-ensure documentation of high quality. Picture archiving computer systems (PACS) improve the documentation issue to some degree. Still, well-trained sonographers – either doctors or technicians – lay the foundation for correct medical diagnoses.

Use of contrast-enhanced ultrasound (CEUS) with industrially manufactured substances (SHU 454, Echovist®)
Badania ultrasonograficzne z zastosowaniem środków kontrastujących (contrast-enhanced ultrasound, CEUS) wytworzonych przemysłowo przeprowadza się od około 1990 roku(1). Środkie kontrastujące, które wówczas stosowano, to SHU 454 oraz Echovist®. Wkrótce po wprowadzeniu środka kontrastującego EchoVist® na rynek pojawił się ultrasonograficzny środek kontrastujący drugiej generacji SHU 508 A (EchoVist®)(2). W kilku publikacjach zwrócono uwagę na przydatność dopłczesowego użycia tego środka w diagnostyce odpływów pęcherzowo-moczowodowych (vesicoureterorenal reflux, VUR) u dzieci, jako potencjalnej alternatywy dla badań rentgenowskich(3-7).

W 2001 roku pojawił się na rynku środek kontrastujący trzeciej generacji BR1 (SonoVue®)(8). Ponownie dowiedziono, że w przypadku diagnostyki VUR badanie z jego użyciem może zastąpić badanie rentgenowskie(9,10). Obecnie SonoVue® jest szeroko stosowany w specjalistycznych ośrodkach medycznych, jako wyraz nowoczesnego podejścia diagnostycznego u osób dorosłych. U pacjentów pediatrycznych poza diagnostyką odpływu pęcherzowo-moczowodowego preparat SonoVue® nie był dotychczas powszechnie używany. Wynika to z braku rejestracji dożynnych środków kontrastujących u osób poniżej 18 roku życia, czego skutkiem są także nieuwzględnianie wiedza i doświadczenie w ich stosowaniu. Z tego względu w diagnostyce pediatrycznej tego rodzaju badania nadal są rzadkością.

Doświadczenia własne

Autor zetknął się z metodą CEUS przed 12 laty – początkowo ocenił głównie ogniski ogniskowe w wątrobie i nerках u pacjentów dorosłych. Według wiedzy autora w tamtym czasie w Berlinie niewielu lekarzy angażowało się w badania przy użyciu tej techniki, byli to prof. Wolfram Wermke z Kliniki Gastroenterologii, Hepatologii i Endokrynologii Szpitala Uniwersyteckiego Charité oraz prof. Thomas Albrecht z Kliniki Radiologii i Terapii Interwencyjnej Szpitala Uniwersyteckiego Charité.

Autor nabywał doświadczenia z pacjentami pediatrycznymi, oceniając przydatność metody w zakresie wykrywania i klasyfikacji VUR(11). Wiedza zdobyta podczas stosowania dożynnego środka kontrastującego SonoVue® u pacjentów dorosłych została wykorzystana w badaniach wykonywanych u dzieci i młodzieży.

Tło lokalne

W kraju związkowym Turyngia, zamieszkująca przez 2,2 miliona ludzi (około 280 000 osób poniżej 18 roku życia) większość badań z użyciem środków kontrastujących u dzieci przeprowadzają radiolodzy dziecięcy. Prace te dotyczą głównie diagnostyki odpływu pęcherzowo-moczowodowego.

Od maja 2009 do lutego 2013 roku wykonano około 90 badań USG z dożynym podaniem kontrastu u pacjentów started around the year 1990(1). Soon after the introduction of EchoVist®, the second-generation echo enhancing agent SHU 508 A (Leovist®) came to market(2). Due to its stability and its sensitive detection, several investigators could prove Levovist® to be a suitable alternative to X-ray imaging in investigating vesicoureterorenal reflux (VUR) in children(3-7).

The third-generation agent BR1 (SonoVue®) was launched into market in 2001(8). Again, it could be shown that in investigations for VUR, it can replace X-ray examinations(9,10).

SonoVue® is now widely used in specialized medical centers and defines state-of-the-art sonography for diagnosing the adult patient population. Except for investigation of VUR, it has not been adopted to examine pediatric patients.

There are two reasons for that. Firstly, intravenous use of echo-enhancing agents is not approved by the national and international authorities. Secondly, this brings about lack of expertise in this new application in those routinely examining pediatric patients. Because of that, pediatric radiologists fall behind general radiologists and specialized clinicians.

Personal history

The author got in touch with CEUS imaging about 12 years ago, in the beginning mainly assessing focal liver and renal lesions in adult patients. To the authors’ knowledge, at that time there were very few people engaged in the method in Berlin, Germany – Prof. Wolfram Wermke, Department of Gastroenterology, Hepatology, and Endocrinology, University Hospital Charité, and Prof. Thomas Albrecht, Department for Radiology and Interventional Therapy, University Hospital Charité.

Own experience in pediatric patients was gained by carrying out a feasibility study in detecting and grading VUR(11). Experience in intravenous use of the contrast medium SonoVue® was then transferred to examinations of pediatric patients.

A local perspective on the topic

In the federal state Thuringia, inhabiting 2.2 million people (about 280 000 below 18 years of age) most of the contrast-enhanced ultrasound examinations in patients less than 18 years are performed by pediatric radiologists. Most of the contrast-enhanced studies are performed to assess vesicoureterorenal reflux disease.

In the time period from May 2009 to February 2013 there were about 90 i.v. use contrast-enhanced ultrasound examinations performed in patients younger than 18 years, including 2 patients younger than 1 year (infants). All of the examinations were diagnostic. Only children with inconclusive non-enhanced B-mode (“fundamental”) and
Wymagania

Aparaty średniej i wysokiej klas wszystkich głównych producentów (General Electric, Philips, Siemens, Toshiba, Zonare) są dostosowane do badań CEUS i wyposażone w odpowiednie głowice. Należy zauważyć, że takie wymagania spełniają głowice typu convex o niskiej częstotliwości, natomiast wysokoczęstotliwościowe głowice liniowe mogą nie być odpowiednie do prowadzenia tego rodzaju badań. Nie zaleca się wykonywania CEUS bez specjalnie przeznaczonych do tego ustawień fabrycznych.

Bezpieczeństwo

SonoVue® nie jest zarejestrowany jako środek do dożylnego podania pacjentom poniżej 18. roku życia w żadnym z państw europejskich. Sytuacja ta nie zmieni się w najbliższej przyszłości (osobista konsultacja z Bracco Imaging). W obecnej sytuacji prawnej w krajach Unii Europejskiej możliwe jest jednak pozarejestracyjne stosowanie (off-label use) ultrasonograficznych środków kontrastujących u dzieci i młodzieży. Należy jednak przestrzegać następujących środków ostrożności:

1. Musi istnieć wyraźne wskazanie do badania CEUS. Należy rozważyć zastosowanie alternatywnych metod obrazowych (np. rezonans magnetyczny, MRI).
2. Stratyfikacja ryzyka musi objąć wywiad chorobowy, w szczególności dotyczące reakcji alergicznych.
3. Należy uzyskać świadectwo zgodę co najmniej jednego rodzica oraz pacjenta, jeśli ukończył 16 lat. Przed uzyskaniem zgody należy zebrać szczegółowy wywiad dotyczący wskazań, możliwości użycia alternatywnych metod oraz ryzyka. Należy dokładnie podkreslić, iż stosowany środek nie jest zarejestrowany u dzieci.
4. Placówka musi spełniać wymagane kryteria bezpieczeństwa. Ze względu na ryzyko wystąpienia reakcji alergicznej musi dysponować odpowiednim zestawem ratunkowym oraz przeszkolonym personelu.

Przygotowanie pacjenta

Nie wymaga się, aby pacjent zgłosił się na badanie na cześć, jednak należy je przełożyć, jeśli spożył ciężki posiłek (zob. poniżej). Preferowany jest dostęp żylny o dużej średnicy w dwóch powodów: umożliwia podanie środka color-coded sonography examinations were considered eligible for contrast-enhanced examinations. No critically ill patients, no patients with congenital or acquired heart disease, known hypersensitivity to any substance, including pharmacuetic agents, and unknown pregnancy status were examined.

Prerequisites

All of the major vendors (General Electric, Philips, Siemens, Toshiba, Zonare) support CEUS in their medium and high-end machines. It is noticeable, however, that support of ultrasound probes differs. Whereas low-frequency curved arrays are always supported, high-frequency linear probes may be unsupported. It is not advisable to do CEUS without dedicated vendor maintained presets.

Safety

SonoVue® is not licensed for intravenous use in patients younger than 18 years of age in any of the European countries. This situation will not change in the near future (personal communication with Bracco Imaging). Consequently, use in children will be off-label. This, however, does not preclude its use in children and adolescents.

Several precautions should be met:

1. There should be a clearly defined indication for the contrast-enhanced ultrasound. Alternative imaging methods (e.g. magnetic resonance imaging, MRI) have to be considered.
2. Risk stratification includes taking medical history, in particular knowledge of allergic reactions.
3. Informed consent must be obtained from at least one parent and the patient him-/herself when 16 years or older. Prior to consent thorough information on indication, alternative methods, and risks need to be gained. The off-label use of the medication needs to be clearly addressed.
4. Examination environment must fulfill certain safety criteria. Based on prior knowledge there is a risk of allergic reactions. This means that emergency equipment and staff must be always available.

Patient preparation

Patients are not required to be in a fasting state, however, examination after a heavy meal should be postponed (see below). A large-bore venous indwelling catheter serves for two purposes: firstly, contrast-medium administration and the saline flush can be performed, secondly, in case of treatment of an adverse event medication and infusion can be administered. Prior the examination, the catheter should be flushed in order to guarantee its patency. Monitoring of blood pressure, pulse rate, oxygen
Przeprowadzenie badania

Badanie z zastosowaniem ultrasonograficznego środka kontrastującego należy poprzez podstawowym bade
niem w opcji B-mode. Idealną sytuacją jest możliwość uwidocznienia badanego obszaru niezależnie od fazy cyklu oddychowego pacjenta. Każde badanie z użyciem rodów kontrastujących powinno być archiwizowane w formie długich sekwencji filmowych, umożliwiających późniejszą interpretację uzyskanych obrazów.

Indeks mechaniczny (MI) pozwala na ocenę działania fal ultradźwiękowych na tkankę oraz pęcherzyki środka kontrastującego. Jest on różny w zależności od aparatu USG, zazwyczaj ustawia się go na bardzo niskim poziomie, poniżej 0,1.

Obecnie w Europie najczęściej stosowanym ultrasonograficznym środkiem kontrastującym jest preparat SonoVue® (Braico Imaging, Mediolan, Włochy), który cechuje wysoki poziom bezpieczeństwa. Autor stosuje go w przypadku poziomu bezpiecznego pacjentâ powinien pozostawa

Obecnie w Europie najczęściej stosowanym ultrasonograficznym środkiem kontrastującym jest preparat SonoVue® (Braico Imaging, Mediolan, Włochy), który cechuje wysoki poziom bezpieczeństwa. Autor stosuje go w przypadku poziomu bezpiecznego pacjenta. W przypadku potrzeby weryfikacji wyników taką samą objętość środka można podać powtórnie. Świeżo przygotowany środek kontrastujący podawany jest w bolusie przez umieszczony tymczasowo cewnik dożylny lub stały cewnik typu Hickman®, przepływany odpowiednią objętością roztworu soli fiziologicznej.

Zgodnie z zaleceniami bezpieczeństwa podanymi przez producenta pacjenci powinni pozostawać pod stą podobną do lekarza przez co najmniej 30 minut po podaniu SonoVue®. Przed opuszczeniem pracowni diagnostycznej wszystkie dzieci należy przebadâ na karterm nieprawidłowych obja

Zgodnie z zaleceniami bezpieczeństwa podanymi przez producenta pacjenci powinni pozostawać pod stą podobną do lekarza przez co najmniej 30 minut po podaniu SonoVue®. Przed opuszczeniem pracowni diagnostycznej wszystkie dzieci należy przebadât na karterm nieprawidłowych objawów przedmiotowych i podmiotowych (rumienie w miejscu wkłucia, zaczerwienienie, wzrost ciepłoty ciała, świad, pokrzywka, nudności, wymioty, zawroty głowy, duszność).

Rodzice powinni być poinstruowani o konieczności zgla

Rodzice powinni być poinstruowani o konieczności zgla

Główne wskazania do CEUS

1. Ocena przepływu/obecności naczyń krwionośnych w obszarze zmiany, np. w torbielach złożonych wątroby lub nerki.

saturation, and ECG waves is an option. Our local poli
cies do not include such a monitoring, however, prior knowledge makes monitoring advisable. As to the authors’ knowledge there are two cases (Gdansk, Poland; Halle/Saale, Germany) in which a severe adverse event occurred in children (personal communication) making intensive care necessary.

The examination

A contrast-enhanced ultrasound examination should always start with the fundamental B-mode sonography. Ideally, the region of interest is visible independent of the respiratory cycle of the patient. In-depth knowledge of the ultrasound machine helps to avoid incomplete documentation of the examination. Often, video loops can be stored either prospectively or retrospectively. Often, the length of the loop is limited to a certain amount of seconds. The settings can be changed in the machine’s preference menu.

The mechanical index (MI) is an estimate of effects of the ultrasound waves on the tissue and the contrast medium bubbles. It differs between different ultrasound machines. Usually, it is set very low, below 0.1.

Currently, in Europe there is only one pharmaceutical company that sells echo-enhancing agents. SonoVue® (Bracco Imaging, Milan, Italy) has been used for many years now and shows a very good safety profile. The author uses it in a concentration of 0.1 ml solution per patient age in years. When necessary, a second injection with the same amount of contrast medium can be given, depending on the need for verification of results.

The freshly prepared contrast agent is given via a tempo
rarily placed venous indwelling catheter or a Hickman® long-term venous catheter as a bolus injection, flushed with an appropriate amount of physiologic saline solution.

According to safety considerations issued by the manufac
turer, patients should be kept under strict medical supervi
sion for at least 30 minutes following the administration of SonoVue®. Before leaving the department of radiology all children should be checked for any abnormal physical signs and symptoms (erythema at site of injection, general erythema, flushing, warm skin, pruritus, urticaria, nausea, emesis, vertigo, dyspnea).

It is advisable to instruct parents to report any abnormal findings occurring within 24 hours after contrast medium application to the examiner.

Main indications for intravenous CEUS

1. Detection of flow/presence of vessels in space-occupy

ing lesions, e.g. in non-simple (complicated) hepatic and renal cysts.

2. Lack of perfusion/vessels in infarction zones, abscesses and hemorrhages
2. Brak oznak przepływu/obecności naczyń w okolicach objętych zawalem, krwotokiem lub w ropniach.
3. Wizualizacja perfuzji (żywości) tkanki po usunięciu guza w przypadku obecności guza resztkowego lub wznowy.
4. Różnicowanie charakteru zmian na podstawie kine tyki perfuzji oraz wzorców unaczynienia, szczególnie w przypadku guzów wątroby.
5. Obrazowanie ubytków perfuzji w przypadku urazu narządów mięśniowych.
6. Visualisation of perfused (viable) tissue after tumor surgery in case of residual tumor tissue or tumor relapse.
4. Differentiation of the character of the lesions on the basis of their perfusion kinetics and vasculature pattern, especially in liver tumors.
5. Imaging of perfusion defects in case of parenchymal trauma.
6. Documentation of contrast-medium extravasation and abnormal vessel contours in case of vessel laceration, fistulae, and aneurysms.
The ultrasound examinations serve several purposes. Incidentally detected lesions in fundamental B-mode ultrasound can be further characterized. Occult lesions in classic B-mode ultrasound can be demonstrated due to the higher sensitivity for perfusion defects. And finally, small and large vessels diseases can be characterized in much more detail than in power Doppler sonography alone.

At the University Hospital of Jena, there is one examiner specialized in intravenous CEUS in children. Tab. 1 shows indications for CEUS on a selected number of examined patients.

The following four examples will demonstrate the additional diagnostic value of CEUS as compared to classic B-mode sonography.

Case 1

The 11.9-year-old girl was known to have a solitary complicated liver cyst. So far she was followed up with MRI examinations once a year. Classic B-mode sonography delineated a solitary, septated cystic lesion in the right lobe of the liver, measuring 82 mm. Power Doppler did not depict perfusion of the septa (fig. 1 A), although it was proven on MRI scans. CEUS not only confirmed one perfused septum, but showed a second one (fig. 1 B). The patient is followed-up by annual ultrasound examinations, including CEUS.

Tab. 1. Organ examined and pathologies in 39 examinations (in one patient both liver and spleen were examined)

Obrazowany narząd	Rozpoznanie	Zmiana ogniskowa	Infekcja	Urag	Niedokrwienie
Wątroba (Liver)		12	2	2	
Nerka (Kidney)		2	3	1	4
Śledziona (Spleen)		1	1	2	
Trzustka (Pancreas)		1	1		2
Nadnercze (Adrenal)		2			
Płuco (Lung)		1			
Pęcherz moczowy (Lymph nodes)		1			
Jajnik (Ovary)		1			
Węzły chłonne (Urinary bladder)		2	1		
Staw kolanowy (Knee joint)		1			

Tab. 1. Obrazowane narządy i stwierdzone odchylenia w badaniach (u jednego pacjenta badano zarówno wątrołę, jak i śledzionę)
Przypadek 2.

U 3-letniej pacjentki diagnozowanej z powodu dolegliwości bólowych jamy brzusznej w badaniu USG w V segmencie wątrobę ujawniono izoechoogeniczną zmianę z hipoechogeniczną obwódką (A). 61 sekund po podaniu środka kontrastującego zmiana wykazuje silniejsze wzmocnienie w porównaniu z sąsiadującą tkanką wątrobę. W części centralnej widocze naczynie średniej wielkości (B) oraz niewielki obszar braku przepływu odpowiadający bliźnicy centralnej (C). Film przedstawia bliźnicę centralną oraz typowe unaczynienie (film 1 – dostępny na www.jultrason.pl).

Fig. 3. Case 3: The big arrows mark a focal liver lesion. The small arrow marks the center of the lesion. The asterisks depict intrahepatic vessels. In B-mode sonography the lesion is isoechogenic to normal liver tissue, although there is a partial hyperchogetic rim (A). 61 sec after contrast-medium application the lesion shows a stronger enhancement compared to the surrounding liver tissue. The very center shows a medium-sized vessel (B). Besides the central vessel, there is a small area lacking perfusion, in keeping with a central scar (C). Video shows the central scar and typical vessel (video 1 – available on the website www.jultrason.pl).

Case 2

The 3.9-year-old girl was examined for abdominal pain. At B-mode sonography, a lesion measuring 14×21×42 mm which was hypoechoic, well outlined, solid, located in the 5th segment of the liver was found (fig. 2 A). In power Doppler sonography the lesion showed central perfusion, representing a central vessel (fig. 2 B). CEUS exhibited contrast flow dynamics typical of a hemangioma with pronounced peripheral enhancement in the arterial phase (fig. 2 C) followed by gradual centripetal filling (fig. 2 D). A follow-up B-mode ultrasound examination 18 months later (planned visits were repeatedly cancelled by the parents) showed the lesion stable as to size and echogenicity.
Naczniki wątroby u dzieci i młodzieży, w odróżnieniu od pacjentów dorosłych, mogą mieć w badaniu różnicę echogenicznośc.

Przypadek 3.

U 17-letniej pacjentki diagnozowanej z powodu przewlekłego bólu głowy wykonano USG jamy brzusznej. W wątrobie uwidoczniło się jedno, dobrze odgraniczone, mierzenie echogeniczną zmianę o wymiarach $42 \times 41 \times 33$ mm (ryc. 3 A). Po dożylnym podaniu ultrasonograficznego środka kontrastującego uwidoczniło się zmiane pochodzące od jednego naczynia tętniczego (ryc. 3 B, film 1 – dostępny na www.jultrason.pl). Niewielką przestrzeń centralną (ryc. 3 C, film 1 – dostępny na www.jultrason.pl) oraz brak wypłukiwania kontrastu (wash-out) w późnej fazie badania. Ustalono rozpoznanie [ogólnikowego przerośtu guzkowego (focal nodular hyperplasia, FNH)]. Obraz nie zmienił się w badaniu kontrolnym wykonanym 15 miesięcy po postawieniu wstępnjej diagnozy.

Przypadek 4.

Czteroletni pacjent został przyjęty do szpitala w złym stanie ogólnym. Chłopiec zgłaszał ból kończyn dolnej. W ciągu 2 tygodni poprzedzających hospitalizację stracił na masie ciała 2 kg. W wstępnym badaniu USG jamy brzusznej uwidocznił się powiększony wątroba z liczonymi litymi, hipoechogenicznymi zmianami ogolnikiowymi o różnej wielkości. Badanie CEUS umożliwiło lepsze zображanie zmian (ryc. 4, film 2 – dostępny na www.jultrason.pl), których obraz sugerował obecność przerzutów nerwiazarodkowego (IV stopień zaawansowania). Pacjent był leczony według protokołu NB2004 dla grup wysokiego ryzyka. Leczenie zakończono przeszczepieniem komórek macierzystych (stem cell transplantation, SCT).

W badaniu obejmującym 37 pacjentów autor zanotował tylko jeden przypadek reakcji niepożądanej – u 8-letniej dziewczynki z podejrzeniem ostrego, odmiedniczkowego zapalenia nerek. Około 15 minut po dożylnym podaniu środka kontrastującego pacjentka zgłaszała nudności, które utrzymywały się przez kolejne 30 minut i ustąpiły bez konieczności leczenia.

Omówienie

W ostatnich kilkudziesięciu latach nastąpił istotny postęp w diagnostyce ultrasonograficznej, co pozwoliło na uzyskanie wysokiej jakości obrazów i ograniczenie ilości artefaktów. Charakterystyka unacznienia oraz przepływu tkankowego ma kluczowe znaczenie w diagnostyce wielu jednostek chorobowych. Ocena przy zastosowaniu metody doplera często nie pozwala na uzyskanie wystarczających informacji o wzorcu unacznienia obrazowanych zmian.

In contrast to adult patients, hepatic hemangioma in infants and children are not very often hyperechoic.

Case 3

The 17.1-year-old girl, suffering from chronic headaches had a general check-up examination of the abdomen. Transabdominal sonography revealed an incidental solitary hepatic mass of $42 \times 41 \times 33$ mm, which was slightly hypoechoic and well circumscribed (fig. 3 A). CEUS showed a centrally located prominent vessel (fig. 3 B, video 1 – available on the website www.jultrason.pl), and a small scar (fig. 3 C, video 1 – available on the website www.jultrason.pl) and no late wash-out. Diagnosis of a focal nodular hyperplasia was made. The latest follow-up sonography 15 months after initial diagnosis showed the lesion stable as to size and echogenicity.

Case 4

The 4.2-year-old boy complained about pain in the leg and was brought to the hospital in bad general condition. He lost 2 kg within the last 2 weeks. The initial abdominal sonography showed hepatomegaly, and multiple, hypoechoic, solid, lesions of different size in the liver. Some of them were poorly outlined and difficult to differentiate from normal parenchyma in standard B-mode exam, but were clearly visible in CEUS (fig. 4, video 2 – available on the website www.jultrason.pl). The lesions represented multiple metastases of neuroblastoma stage 4.

The patient received chemotherapy (NB2004 high risk protocol). He recently underwent stem cell transplantation (SCT).

In our series of 37 patients the author saw only one adverse event in one 8-year-old girl examined for renal infection. She complained about nausea ca. 15 minutes after i.v. administration of the contrast which continued for about 30 minutes. No medical treatment was necessary.

Discussion

Over the last decades, medical diagnostic sonography has advanced considerably, resulting in high-resolution images with little artifact overlay. Characterization of vascularization and assessment of perfusion is crucial in arriving at correct diagnoses in many disease entities. Color, and especially power Doppler coded sonography give information on that, however, lack sensitivity. Especially in (restless) toddlers and in body regions of interest close to moving organs (e.g. lungs and heart) Doppler techniques have limited diagnostic value in assessment of parenchymal perfusion due to motion artifacts. Therefore, contrast agents are necessary to overcome these drawbacks.
W wielu sytuacjach niemożliwa jest także ocena doplerowska zmian obrazowanych u niewspółpracujących pacjentów oraz zmian położonych w pobliżu ruchomych narządów (np. płuc i serca). Użycie środków kontrastujących pozwala wyeliminować powyższe wady.

W opinii autora niniejszego opracowania, bazującego na własnych doświadczeniach, stosowanie CEUS u dzieci i młodzieży jest bezpieczne i pozwala podnieść wartość diagnostyczną ultrasonografii. Z wyjątkiem jednego przypadku reakcji niepożądanej, która ustąpiła samoistnie, dożynne zastosowanie SonoVue® było bezpieczne nawet u dzieci w wieku przedszkolnym. W piśmiennie twie można znaleźć kilka prac na temat zastosowania badań CEUS u pacjentów pediatrycznych. Największe jak dotychczas przeprowadzono na 51-osobowej grupie dzieci i młodzieży. Wykazano ogólną skuteczność CEUS – na poziomie 95,2%. W cytowanym badaniu użyto środka Levovist® (SHU 508 A) i nie zaobserwowano reakcji niepożądanych12.

Thorelius przedstawił wyniki stosowania CEUS u pacjentów dorosłych i dzieci z typowym urazem brzucha13. Manetta i wsp.14 oceniali przydatność SonoVue® w diagnostyce niewielkiego stopnia urazów wątroby i śledziony u dzieci. Valentino i wsp.15 przebadali 27 dzieci z typowym urazem brzucha i porównali uzyskane wyniki z badaniami techniką tomografii komputerowej z zastosowaniem środka kontrastującego. Wykazali wysoką skuteczność ultrasonografii, nie obserwując jednocześnie reakcji niepożądanych związanych z podażą dożylną SonoVue®15.

W kolejnym badaniu stwierdzono, że zastosowanie dożynnego środka kontrastującego SonoVue® pozwala ograniczyć liczbę przeprowadzonych procedur inwazyjnych. Badaniem objęto grupę 30 dzieci po zakończonej procedurze przeszczepienia wątroby16.

Pozarejestracyjne stosowanie środków kontrastujących zostało pośrednio skomentowane w wytycznych European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) oraz zaleceniach Dobrej Praktyki Klinicznej (GCP) w następujący sposób: „Zaleca się ostrożność w stosowaniu pozarejestracyjnym ultrasonograficznych środków kontrastujących w tkankach, w których uszkodzenia układu mikronaczyniowego mogą mieć poważne implikacje kliniczne, np. w oku, mózgu i w badaniu noworodków”17. W ten sposób EFSUMB nie wyklucza stosowania CEUS u dzieci. Wydana w 2008 roku aktualizacja wytycznych i zaleceń Dobrej Praktyki Klinicznej dotycząca badań USG z użyciem środków kontrastujących w przypadku zmian o lokalizacji pozażartybowej zawiera pojedyncze wskazania do stosowania CEUS u dzieci, są nimi uraz narządów mięśniowych jamy brzusznej oraz skręt powórka nasiennego18.

Temat ten został również szczegółowo omówiony w kolejnym dokumencie EFSUMB zatytułowanym: Update 2011 on non-hepatic applications poprzez publikację korespondencji redaktora i zwolenników metody19.

In the author’s experience contrast-enhanced sonography in children, and adolescents is safe and of additional diagnostic value. Diagnostic certainty in various disease entities can be achieved and expanded. Except one case which resolved spontaneously, it is shown that intravenous use of SonoVue® is safe, even in preschool-children. Several papers present results of CEUS applications in pediatric patients. The largest study reported so far of intravenous contrast agents use in 51 children and adolescents showed an overall accuracy of CEUS of 95.2%. The study utilized Levovist® (SHU 508 A) as contrast agent. No adverse reactions were observed12.

Thorelius reports on the use of CEUS in blunt abdominal trauma in adults and in children13. Children are also the subject of CEUS exams in another paper describing SonoVue® application in mild liver and splenic trauma14. Valentino et al. examined 27 children with blunt abdominal trauma and compared CEUS with contrast-enhanced computed tomography. A high accuracy of sonography was found and no adverse effects were observed in i.v. use of SonoVue®15.

The use of SonoVue® in post-transplant patients was studied in 30 pediatric liver transplant recipients. The authors concluded that CEUS improved diagnostic confidence and reduced the need for a more invasive approach16.

The off-label use issue is indirectly addressed by the European Federation of Societies for Ultrasound in Medicine and Biology (EFSUMB) guidelines and Good Clinical Practice (GCP) recommendations by stating that “Caution should be considered for off label use of UCAs in tissues where damage to microvasculature could have serious clinical implications, such as in the eye, the brain and the neonate”17. The EFSUMB thereby does not per se exclude CEUS use in children. The 2008 update on guidelines and good clinical practice recommendations for contrast enhanced ultrasound in non-hepatic lesions includes some indications for intravenous CEUS in children which are: abdominal solid organs injury and spermatic cord torsion18.

The topic is very recently dealt with in detail in another EFSUMB document entitled the Update 2011 on non-hepatic applications by the correspondence between editor and advocates of the method19.

Another recent publication discusses intracavitary and intravenous use of CEUS in children in the United States and Europe. Members of the board of the Society for Pediatric Radiology (SPR) established a task force with the mission of spreading knowledge about CEUS in children20. Whereas conventional B-mode ultrasound in children is performed by many (pediatric) radiologists, many pediatricians and some pediatric surgeons in Europe, information on the use of contrast-enhanced sonography in children became available recently21.

From the authors’ own knowledge there are some centers in Germany who perform CEUS for diagnosing VUR, however, there are only a couple of centers who do intravenous examinations.

Martin Stenzel
W kolejnej, niedawnej publikacji omawiano dojałowe i dożynne zastosowania CEUS u dzieci w Stanach Zjednoczonych i w Europie. Członkowie Zarządu Towarzystwa Radiologii Pediatrycznej (Society for Pediatric Radiology, SPR) powołali grupę zadaniową, której misją jest upowszechnianie wiedzy o CEUS u dzieci[20].

O ile konwencjonalne badania w opcji B-mode są wykonywane przez wielu radiologów (dziewczęcych), pediatrów i chirurgów dziecięcych w Europie, o tyle informacje dotyczące stosowania środków kontrastujących u dzieci pojawiły się dopiero niedawno[21]. Według wiedzy autora w Niemczech istnieje kilka ośrodków wykonujących CEUS w diagnostyce VUR, jednak niewiele spośród nich przeprowadza badania z podaniem dożylnym.

Trzeba pamiętać, że ultrasonograficzne środki kontrastujące nie uzyskały dotąd rejestracji u dzieci. Z tego względu ich stosowanie nadal nie jest popularne w środowisku radiologów, choć uzasadnione – pod warunkiem udzielenia pełnej informacji rodzicom albo pacjentom nastoletnim oraz uzyskania świadomej zgody. Aby przekonać radiologów, klinicystów i rodziców do metod CEUS, należy podkreślać brak zagrożenia strony promieniowania jonizującego, konieczności sedacji czy znieczulenia. Istotne jest także zdobycie przez radiologów umiejętności w zakresie stosowania ultrasonograficznych środków kontrastujących. Zagadnienie to omówiono szczegółowo w innych publikacjach[22].

Nie dysponujemy obecnie opracowaniami dotyczącymi dzieci, jednak duże wielośrodkowe badania przeprowadzone u pacjentów dorosłych są bardzo obiecujące[23].

Wszyscy główni producenci sprzętu ultrasonograficznego dostosowali aparatury wyższych klas do badań CEUS. Dotyczy to przede wszystkim badań wykonywanych głowicą typu convex. Ponieważ badanie CEUS u dzieci oraz obrazowanie narzędzi położonych powierzchniowo u pacjentów dorosłych wymaga zastosowania głowic liniowych, należy przekonać branżę ultrasonograficzną o potrzebie dostosowania do tej techniki większego zakresu głowic.

Konflikt interesów

Autor nie zgłasza żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpłynąć na treść publikacji oraz rościć sobie prawo do tej publikacji.

Piśmiennictwo

1. Schlief R: Ultrasound contrast agents. Curr Opin Radiol 1991; 3: 198–207.
2. Schlief R, Bauer A: Ultrasound contrast media. New perspectives in ultrasound diagnosis. Radiologe 1996; 36: 51–57.
3. Bosio M: Cystosonography with echocontrast: a new imaging modality to detect vesicoureteric reflux in children. Pediatr Radiol 1998; 28: 250–255.
4. Darge K, Düttting T, Zieger B, Möhring K, Rohrschneider W, Tröger J: Diagnosis of vesicoureteral reflux with echo-enhanced micturition urosonography. Radiologe 1998; 38: 405–409.
5. Mentzel HJ, Vogt S, Patzer L, Schubert R, John U, Misselwitz J et al.: Contrast-enhanced sonography of vesicoureteral reflux in children: preliminary results. AJR Am J Roentgenol 1999; 173: 737–740.
6. Kenda RB, Novljan G, Kenig A, Hojker S, Feitich JJ: Echo-enhanced ultrasound voiding cystography in children: a new approach. Pediatr Nephrol 2000; 14: 297–300.
7. Farina R, Arena C, Pennisi F, Di Benedetto V, Politi G, Di Benedetto A: Vesico-ureteral reflux: diagnosis and staging with voiding color Doppler US: preliminary experience. Eur J Radiol 2000; 35: 49–53.
8. Schneider M: SonoVue, a new ultrasound contrast agent. Eur Radiol 1999; 9 Suppl 3: S347–S348.
9. Ascenti G, Zimbaro G, Mazzotti S, Chinenz R, Fede C, Visalli C et al.: Harmonic US imaging of vesicoureteric reflux in children: usefulness of a second generation US contrast agent. Pediatr Radiol 2004; 34: 481–487.
10. Darge K: Voiding urosonography with US contrast agents for the diagnosis of vesicoureteric reflux in children. II. Comparison with radiological examinations. Pediatr Radiol 2008; 38: 54–63.
11. Stenzel M, Dalse HP, Rößler E, Stobbe G: Methodenvergleich Miktionszystouretrographie (MCU) vs. Miktionsurosonographie (MUS) zur Detektion und Graduierung des VUR. Ultraschall Med 2004; 25 – P_09_17.
12. Riccabona M, Uggowitzer M, Klein E, Lindbichler F, Ehner F, Fetter R: Echo-enhanced color Doppler sonography in children and adolescents. J Ultrasound Med 2000; 19: 789–796.
13. Thorelius L: Emergency real-time contrast-enhanced ultrasonography for detection of solid organ injuries. Eur Radiol 2007; 17 Suppl 6: F107–F111.
14. Manetta R, Pistoia ML, Bultrini C, Stavroulis E, Di Cesare E, Masciocchi C: Ultrasound enhanced with sulphur-hexafluoride-filled microbubbles agent (SonoVue) in the follow-up of mild liver and spleen trauma. Radiol Med 2009; 114: 771–779.
15. Valentino M, Serra C, Pavlica P, Labate AM, Lima M, Baroncini S et al.: Blunt abdominal trauma: diagnostic performance of contrast-enhanced US in children – initial experience. Radiology 2008; 246: 903–909.
16. Bonini G, Pezzotta G, Morzenti C, Agazzi R, Nani R: Contrast-enhanced ultrasound with SonoVue in the evaluation of postoperative complications in pediatric liver transplant recipients. J Ultrasound 2007; 10: 99–106.
17. Claudon M, Cosgrove D, Albrecht T, Bolondi L, Bosio M, Calliada F et al.: Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) – update 2008. Ultraschall Med 2008; 29: 28–44.
18. Piscaglia F, Nolsøe C, Dietrich CF, Cosgrove DO, Gilja OH, Bachmann Nielsen M et al.: The EFSUMB Guidelines and Recommendations on the Clinical Practice of Contrast Enhanced Ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med 2012; 33: 33–59.
19. Piskunowicz M, Kosiat W, Irga N: Primum non nocere? Why can’t we use second generation ultrasound contrast agents for the examination of children? Ultraschall Med 2011; 32: 83–86.
20. Riccabona M: Application of a second-generation US contrast agent in infants and children – a European questionnaire-based survey. Pediatr Radiol 2012; 42: 1471–1480.
21. Darge K; CEUS task force of the Society for Pediatric Radiology: Contrast-enhanced US (CEUS) in children: ready for prime time in the United States. Pediatr Radiol 2011; 41: 1486–1488.
22. Sidhu PS: The EFSUMB guidelines for contrast-enhanced ultrasound are comprehensive and informative for good clinical practice: will radiologists take the lead? Br J Radiol 2008; 81: 525–525.
23. Seitz K, Strobel D, Bernatik T, Blank W, Friedrich-Rust M, von Herbay A et al.: Contrast-Enhanced Ultrasound (CEUS) for the characterization of local liver lesions – prospective comparison in clinical practice: CEUS vs. CT (DEGUM multicenter trial). Ultraschall Med 2009; 30: 383–389.