A Comparative Study of Manual Liquid-Based Cytology with the Conventional Pap Smear for Cervical Cancer Screening in a Tertiary Care Hospital of Mandya, Karnataka

Manjunath M.R.1, Sheetal2

1 Department of Pathology, Mandya Institute of Medical Sciences, Mandya, Karnataka, India.
2 Department of Pathology, BMCRI, Bangalore, Karnataka, India.

ABSTRACT

BACKGROUND
A long pathological process for investigation of precursor lesion squamous intraepithelial lesion (SIL) leads to invasive cervical cancer. This SIL can be detected much earlier before the lesion progresses to invasive cancer. For greater than fifty years, screening for cancer cervix was done by conventional scrape smears and stained by Papanicolaou [Pap] stain but conventional Pap smears (CPAP) have been reported to have low sensitivity. To overcome these drawbacks manual liquid-based cytology [MLBC] was introduced. The objective of this study was to screen females for cervical cancer using CPAP and MLBC techniques and compare the results of these techniques.

METHODS
Cervical cytology samples were obtained from 120 non-pregnant females through specialised Uprep cytobrush with a detachable head. Thus, obtained samples were first smeared onto a clean glass slide for CPAP smear, and the whole head to cytobrush was dropped into the specialised Uprep liquid preservative medium and processed by using Uprep Cytospin machine to obtain MLBC smears. Both the smears were stained by conventional Pap stain and reported according to 2014 Bethesda system.

RESULTS
In this study, the CPAP method had a greater number of unsatisfactory smears than that of MLBC method which was statistically significant. MLBC identified more number of intraepithelial lesions when compared to CPAP and MLBC had an increased detection rate [IDR] of 73.68 % over CPAP.

CONCLUSIONS
Analysis of our results showed that MLBC had more advantages over CPAP. Since the cost effective MLBC has an improved rate of detection of abnormal lesions, MLBC can be used as a routine technique for screening of cancer cervix in India. Also, MLBC offers an important advantage of performing both human papillomaviruses deoxyribonucleic acid (HPV DNA) test and cytological analysis on a single sample.

KEYWORDS
Cervical Cancer, Conventional Pap Smear, Manual Liquid Based Cytology, Human Papilloma Virus (HPV DNA), Bethesda System
Uterine cervical cancer is a global health problem. Cancer cervix is second most common cancer in India among women aged between 15 and 44 years and is responsible for 67,477 deaths every year.1 Cervical cancer epidemiology shows wide geographical variation in its occurrence, these differences are related to persistent infections by high-risk human papilloma virus (HPV) especially type 16 and 18 which leads to development of cancer cervix.2 In India about 5% of women harbour cervical HPV - 16 / 18 at a given time, and 83.2% of invasive cervical cancers are caused due to infection by HPV 16 / 18. Invasive cervical cancer begins with a precursor lesion called squamous intraepithelial lesions (SIL) which can be detected years before development of invasive carcinoma.3 In 1988, at a meeting in Bethesda, SIL was classified into three main categories: ASCUS, LSIL and HSIL.4 Atypical squamous cells of undermined significance (ASCUS), low grade squamous intraepithelial lesion (LSIL) which corresponds to HPV associated mild dysplasia and cervical intraepithelial neoplasia (CIN 1) and high grade squamous intraepithelial lesion (HSIL) which corresponds to moderate and severe dysplasia, carcinoma in situ (CIS) and CIN II and CIN III.

Conventional Pap (CPAP) smears have been the wall for screening of cancer cervix since 1960. CPAP is accredited in many developed countries for successfully reducing the incidence and mortality of invasive cervical cancer, but the accuracy of this tool is controversial due to low sensitivity.5,6 Liquid based cytology (LBC) was introduced as an alternative to CPAP in mid 1990s. LBC increased the detection rate of HSIL, reduced the number of unsatisfactory and "satisfactory-but-limited-by" specimens and provided residual cellular material for further molecular testing (detection of HPV DNA) which were the major advantages of LBC over CPAP.5 ThinPrep (cytyc corp) and SurePath (TriPath Imaging)2 are two Food and Drug Administration (FDA) approved liquid-based preparations to obtain LBC smears. But in this study, a relatively inexpensive manual method of LBC (MLBC) by using cytopsin to make direct smears was used to improve the screening method for cervical cancer in our tertiary care hospital of Mandya district.

METHODS
The present study was a cross sectional study undertaken during the period of January 2017 to June 2018 where cervical cytology samples were obtained from a total of 120 subjects aged between 20 - 70 years who were patients attending the Obstetrics and Gynaecology [OBG] Outpatient Department of Mandya Institute of Medical Sciences [MIMS]. Both conventional Pap smears and manual liquid based cytology smears were obtained from a single sample collected from each patient.

Inclusion Criteria
Cervical cytology samples were obtained from all women attending the OBG outpatient department of MIMS aged between 20 - 70 years with presenting complaints of post-menopausal bleeding / spotting, white discharge per vagina, post-coital bleeding, irregular menstruation and from women who have visited for cervical cancer screening.

Exclusion Criteria
- Pregnant women.
- Patients having massive bleeding per vagina.
- Treated cases for cervical cancer.
- Women who has undergone hysterectomy

Sample Size Calculation
Sample size was calculated using sensitivity formula.

\[
\text{Sample size (N)} = Z^2 \times \frac{S_n}{1 - S_n} \times \frac{L^2}{0.8} \times \text{Prevalence}
\]

\[
S_n = \text{Sensitivity of Pap smear} = 86 \%
\]

Prevalence – 0.8, L – Absolute precision – 0.07, Z = 1.96

\[
N = 3.84 X 0.86 X (1 - 0.86) / (0.07)^2 X 0.8
\]

N = 0.462336 / 0.00392

N = 117.94

Sample size (N) ≈ 120 samples

Sample Collection
In this study we have utilised the Uprep manual liquid-based technology for studying the cervical cytology. After getting the consent from the patients, detailed clinical history and complete clinical examination of each patient was obtained. A specialised Uprep plastic cytobrush was used to obtain cervical cytology samples. The Uprep cytobrush has two types of bristles, long bristles at the centre and short bristles at the periphery. The main advantage of cytobrush is that after insertion into the cervical os the long bristles are inserted into the endocervical cavity and short bristles are outside the cavity. After the brush was positioned, the Uprep cytobrush was rotated 5 times in clockwise direction for 360° rotations in the same direction. This helped in collection of cells from endocervix by long bristle and from ectocervix and transformation zone from short bristles of the cytobrush. Split sampling technique was used where one side of cytobrush was scraped on a clean glass slide and fixed with 95% ethyl alcohol for CPAP and the entire detachable head of Uprep cytobrush was detached and dropped into a plastic
preservative bottle containing 14 ml of Uprep methanol based preservative. The bottle was tightly capped and patient’s details were noted down on bottle label. After fixation, the CPAP smears were stained by conventional Pap stain and reported according to 2014 Bethesda system of classification.

For MLBC Smears
The following steps were followed for processing of each sample:
1. The sample in Uprep preservative bottle was agitated thoroughly to obtain homogenous mixture of the sample.
2. 7 ml of sample solution was transferred into a centrifuge tube which was pre-filled with 4 ml of Uprep separator solution.
3. Centrifuged at 2000 rotations per minute (rpm) for 5 minutes.
4. Supernatant was discarded and the pellet was added with 1 / 2 drops of distilled water or saline depending on the density of the pellet.
5. The Uprep specialised pre-charged optic coat slide was placed in the Uprep centrifuge holder and the funnel was fitted above the slide after which one drop of distilled water and 50 microlitres of pellet was placed inside the funnel on the glass slide.
6. Centrifuge at 1500 rpm for 2 minutes in Uprep Nanocyt machine was done.
7. The funnel was remove to get a clear round smear and the smear was air dried.
8. These smears were further stained by conventional PAP stain and reported according to 2014 Bethesda system of classification.

Statistical Analysis
The detailed data which was collected from 120 patients was entered in Excel sheet and the data was analysed by trial version of Statistical Package for the Social Sciences (SPSS) for statistical analysis. Descriptive analysis was carried out by mean and standard deviation for quantitative variables, frequency and proportion for categorical variables. Data was also represented using appropriate diagrams. The association between explanatory variables and categorical outcomes was assessed by cross tabulation and comparison of percentages. Chi-square test was used to test statistical significance. P-value < 0.05 was considered statistically significant.

RESULTS
Present cross-sectional study was conducted in the Department of Pathology, MIMS, Mandya from January 2017 to June 2018, for a period of 18 months on 120 patients. The results of this study were as follows.

The mean age of the study group was 37.87 ± 11.41. Minimum and maximum age of the patients in this study was 20 and 74 years respectively. Majority of patients, 62 (51.70 %) had a chief complaint of white discharge per vagina, 43 (35.80 %) were asymptomatic, 6 (5 %) had irregular bleeding / spotting per vagina and 1 (0.8 %) patient had post-menopausal bleeding.

Out of 120 patients, in MLBC cervical samples were adequate in 117 (97.5 %) patients and inadequate in 3 (2.5 %) patients whereas in CPAP cervical samples were adequate in 113 (94.17 %) patients and inadequate in 7 (5.8 %) patients respectively. This difference in the proportion was statistically significant (P-value 0.040).

Epithelial Cell Abnormalities
In MLBC, 33 (27.5 %) patients were diagnosed with epithelial cell abnormalities whereas in CPAP 19 (15.88 %) patients were diagnosed with epithelial cell abnormalities. MLBC detected ASCUS in 6 (5 %) patients whereas CPAP detected ASCUS in 2 (1.66 %) patients. This difference in the proportion was statistically significant (P-value 0.003) and thus the detection rate of MLBC on epithelial cell abnormality (ASCUS) is relatively more significant than CPAP.

MLBC detected LSIL in 11 (9.1 %) patients whereas CPAP detected LSIL in 7 (5.83 %) patients. This difference in the proportion were statistically significant (P-value 0.001) and thus the detection rate of MLBC on epithelial cell abnormality (LSIL) is relatively more significant than conventional Pap smear method.
MLBC detected HSIL in 10 (8.33 %) patients whereas CPAP detected HSIL in 4 (3.33 %) patients. This difference in the proportion were statistically significant (P-value < 0.001) and thus detection rate of MLBC on epithelial cell abnormality – HSIL is relatively more significant than CPAP.

Increased Detection Rate [IDR] of Abnormal Cervical Cytology Smears
Increased detection rate (IDR) of MLBC was calculated as follows:

$$\text{IDR} = \frac{(\text{Pm} - \text{Pc})}{\text{Pc}} \times 100; \text{IDR} = \left(\frac{33 - 19}{19}\right) \times 100; \text{IDR} = 73.68\%$$

Predictive Validity of MLBC in Predicting CPAP Diagnosis (N = 120)
MLBC had a sensitivity of 84.00 % (95 % CI 63.92 % to 95.46 %) in predicting CPAP diagnosis with a specificity of 85.26 % (95 % CI 76.51 % to 91.70 %), false positive rate of 14.74 % (95 % CI 8.30 % to 23.49 %), false negative rate of 16.00 % (95 % CI 4.54 % to 36.08 %), positive predictive value of 60.00 % (95 % CI 42.11 % to 76.13 %), negative predictive value of 95.29 % (95 % CI 88.39 % to 98.70 %), and the total diagnostic accuracy was 85.00 % (95 % CI 77.33 % to 90.86 %) in predicting the diagnosis of CPAP.

Predictive Validity of CPAP in Predicting MLBC Diagnosis (N = 120)
CPAP had a sensitivity of 60.00 % (95 % CI 42.11 % to 76.13 %) in predicting MLBC diagnosis, specificity of 95.29 % (95 % CI 88.39 % to 98.70 %), false positive rate of 4.71 % (95 % CI 1.30 % to 11.61 %), false negative rate of 40.00 % (95 % CI 23.87 % to 57.89 %), positive predictive value of 84.00 % (95 % CI 63.92 % to 95.46 %), negative predictive value of 85.26 % (95 % CI 76.51 % to 91.70 %), and total diagnostic accuracy was 85.00 % (95 % CI 77.33 % to 90.86 %) in predicting the diagnosis of MLBC.

DISCUSSION
For more than 50 years, conventional Pap smear (CPS) has been the mainstay for cervical cancer screening without major changes in the techniques related to preparation and interpretation. Despite its success as a preventive screening tool for cervical cancer, CPS has its limitations (Deshou et al.). False negatives in CPS may be related to inadequate sampling, inadequate transfer of sample onto glass slide where approximately 20 % of the cells collected were smeared on the glass slide in CPS (Sherwani et al.).

To overcome these problems, a new slide preparation method MLBC was introduced by Maksem et al. Many studies have shown that with proper training, MLBC results in a higher diagnostic yield than CPAP (Baandrup et al.). MLBC is a technique which enables cells to be suspended uniformly in a monolayer by centrifuge technique, which improves specimen adequacy and detection of precursor lesions. MLBC is also cost effective which can be used in low resource settings and can be a great alternative to CPAP.

In our cross-sectional study, MLBC method was found comparable to CPAP on some parameters and superior on few others which are discussed as follows.

In our study, the unsatisfactory smear rate was reduced from 5.8 % to 2.5 % in MLBC when compared with CPAP method. The most common reason for unsatisfactory smears...
was low cellularity in both categories. In CPS, there was a higher rate of unsatisfactory smears due to the presence of obscuring materials such as blood, inflammatory cells along with dirty necrotic background which hinders screening process. The reduction of unsatisfactory smears in MLBC samples was consistent with many previous studies. Our finding was in concordance with the studies of Bergeron (2001), Afas el al. (2007), Strander et al. (2007), Beerman et al. (2009), Singh et al. (2015) and Costa (2015). They also reported an increased number of satisfactory cases on LBC than conventional smears, which was statistically significant.

![Table 2. Comparison of Percentage of Satisfactory Smears Obtained by Conventional and LBC by Various Authors](image)

According to Afaf et al. (2015) in MLBC smears had marked decrease in artefacts, contaminating mucus, blood and cells are evenly distributed on slides as the centrifugation in MLBC process. The reduction of unsatisfactory smears in MLBC was statistically significant. Hence, the MLBC which we have used in our study is an inexpensive, cost effective method of LBC is superior in adequacy and utility when compared to CPS.

CONCLUSIONS

LBC is recommended for screening for cancer cervix, but it involves use of automated devices that are high in cost. But the less expensive MLBC which was used in our study was found to be better than conventional Pap as it overcomes various limitations of CPAP and can be used as an alternative strategy for screening of cancer cervix in low resource settings.

Data sharing statement provided by the authors is available with the full text of this article at jebmh.com. Financial or other competing interests: None.

Disclosure forms provided by the authors are available with the full text of this article at jebmh.com. We acknowledge and express deep sense of gratitude and humble regards to all the teaching faculty, technicians and the non-technical staff of Department of Pathology, Mandya Institute of Medical Sciences, Mandya for timely guidance, suggestions and valuable support. We are ever grateful to the U PREP NANOCTY company for timely help, guidance and their co-operation with us for providing preservatives and U PREP NANOCTY CYTOPSPIN machine for the processing of manual liquid based cytology samples. We thank all the patients for their contribution to this study.

REFERENCES

[1] WHO/ICO/IARC Information Centre on HPV and Cervical Cancer (HPV WHO Information Centre). Human Papillomavirus and Related Cancers in India. Summary Report, [Fact sheet cited July 2017]. http://www.who.int/hpvcentre.

[2] Monie A, Hung CF, Wu TC. Preventive and therapeutic HPV vaccines. Curr Opin Invest Drugs 2007;8(12):1038-1050.

[3] Fremont-Smith M, Marino J, Griffin B, et al. Comparison of the Surepath™ liquid-based Papanicolaou smear with the conventional Papanicolaou smear in a multisite direct-to-vial study. Cancer Cytopathology 2004;102(5):269-279.

[4] Benson WL, Norris HJ. A critical review of the frequency of lymph node metastasis and death from microinvasive carcinoma of the cervix. Obstetrics & Gynecology 1977;49(5):632-638.

[5] Taylor S, Kuhn L, Dupree W, et al. Direct comparison of liquid-based and conventional cytology in a South African screening trial. Int J Cancer Oncol 2006;118(4):957-962.

[6] Fahey MT, Irwig L, Macaskill P. Meta-analysis of Pap test accuracy. American Journal of Epidemiology 1995;141(7):680-689.

[7] Chinaka CC, Abdullahi M, Mohammed OM. A comparative study on the use of liquid based cytology and conventional Pap smear in cervical screening. JMMR 2014;2(4):40-50.
[8] Aadya S, Vaman K, Unnikrishnan B, et al. Profile of cervical cancer patients attending tertiary care hospitals of Mangalore, Karnataka. A 4 year retrospective study. J Nat Sci Biol Med 2017;8(1):125-129.

[9] Deshau H, Changhua W, Qinyan L, et al. Clinical utility of Liqui-PREP™ cytology system for primary cervical cancer screening in a large urban hospital setting in China. Journal of Cytology 2009;26(1):20-25.

[10] Sherwani RK, Khan T, Akhtar K, et al. Conventional Pap smear and liquid based cytology for cervical cancer screening - a comparative study. Journal of Cytology 2007;24(4):167-172.

[11] Maksem JA, Finnormore M, Belsheim BL, et al. Manual method of liquid based cytology: a demonstration using 1,000 gynecological cytologies collected directly to vial and prepared by a smear-slide technique. Diagn Cytopathology 2001;25(5):334-338.

[12] Nandhini NM, Nandish SM, Pallavi P, et al. Manual liquid based cytology in primary screening for cervical cancer – a cost effective preposition for scarce resource settings. Asian Pacific Journal of Cancer Prevention 2012;13(8):3645-3651.

[13] Bandrup U, Bishop JW, Bonfiglio TA, et al. Sampling, sampling errors and specimen preparation. Acta Cytol 2000;44(6):944-948.

[14] Chimaatay D, Kalpana KMK. Comparison of manual liquid based cytology and conventional Pap smear in cervical cancer screening. National J Lab Med 2017;6(2):32-37.

[15] Bergeron C, Bishop J, Lemarie A, et al. Accuracy of thin-layer cytology in patients undergoing cervical cone biopsy. Acta Cytologica 2001;45(4):519-524.

[16] Sherwani RK, Khan T, Akhtar K, et al. Conventional Pap smear and liquid based cytology for cervical cancer screening-a comparative study. J Cytol 2007;24(4):167-172.

[17] Strander B, Andersson-Ellstrom A, Milsom I, et al. Liquid-based cytology versus conventional Papanicolaou smear in an organized screening program. Cancer 2007;111(5):285-291.

[18] Beerman H, Van Dorst EB. Kuenen-Boumeester V, et al. Superior performance of liquid-based versus conventional cytology in a population-based cervical cancer screening program. Gynecologic Oncology 2009;112(3):572-576.

[19] Singh VB, Gupta N, Nijahawan R, et al. Liquid-based cytology versus conventional cytology for evaluation of cervical Pap smears: experience from the first 1,000 split samples. Indian Journal of Pathology and Microbiology 2015;58(1):17-21.

[20] Costa MO, Heracio SA, Coelho AV, et al. Comparison of conventional Papanicolaou cytology samples with liquid-based cervical cytology samples from women in Pernambuco, Brazil. Brazilian Journal of Medical and Biological Research 2015;48(9):831-838.

[21] Stabile SAB, Evangelista DHR, Talamonte VH, et al. Comparative study of the results from conventional cervico-vaginal oncotic cytology and liquid-based cytology. Einstein (Sao Paulo) 2012;10(4):466-472.

[22] Afaf T, Elnashar, Hazem M, et al. The use of cytology tests in the diagnosis of cervical lesions in high risk patients. Med J 2009;80:125-132.

[23] Burd EM. Human papilloma virus and cervical cancer. Clinical Microbiological Reviews 2003;16(1):1-17.

[24] Akbar S, Pervez SN, Shah W. Manual liquid based cytology for Pap smear preparation and HPV detection by PCR in Pakistan. Asian Pac J Cancer Prev 2015;16(2):579-583.

[25] Celik C, Gezginc K, Toy H, et al. A comparison of liquid-based cytology with conventional cytology. Int J Gynecol Obstet 2008;100(2):163-166.

[26] Kavatkar AN, Nagwanshi CA, Dabak SM. Study of a manual method of liquid-based cervical cytology. Indian Journal of Pathology and Microbiology 2008;51(2):190-194.

[27] Williams ARW. Liquid-based cytology and conventional smears compared over two 12-month periods. Cytopathology 2006;17(2):82-85.

[28] Ronco G, Cuzick J, Pierotti P, et al. Accuracy of liquid based versus conventional cytology: overall results of new technologies for cervical cancer screening: randomised controlled trial. BMJ 2007;335(7609):28.

[29] Simion N, Caruntu ID, Avadanei ER, et al. Conventional cytology versus liquid based in cervical pathology: correspondence and inconsistencies in diagnosis, advantages and limits. Rom J Morphol Embryol 2014;55(4):1331-1337.

[30] Austin RM, Ramzy I. Increased detection of epithelial cell abnormalities by liquid based gynecological cytology preparations. A review of accumulated data. Acta Cytol 1998;42(1):178-184.

[31] Mututu OM, Kavoi BM, Kahota MN, et al. The utility of a manual liquid based cytology in screening for precancerous lesion and cervical cancer. JMSCR 2018;6(2):600-605.

[32] Bishop JW, Bigner SH, Colgan TJ, et al. Multicenter masked evaluation of AutoCyte PREP thin layers with matched conventional smears. Including initial biopsy results. Acta Cytol 1998;42(1):189-197.