Mass cytometry-based single-cell analysis of human stem cell reprogramming uncovers differential regulation of specific pluripotency markers

Ilkyun Im1, Ye Seul Son1,2, Kwang Bo Jung1,2, Insoo Kang3,4,5, Boon-Eng Teh6, Kyung-Bok Lee7, Mi-Young Son1,2,*, and Janghwan Kim1,2,*

From 1Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KIRBB), 125 Gwahag-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; 2Department of functional genomics, KIRBB School of Bioscience, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea; 3 Departments of Internal Medicine, 4Genetics and 5Orthopedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut, 06520, USA; 6Fluidigm Corporation, South San Francisco, CA, 94080-7603, USA; 7Center for Research Equipment, Korea Basic Science Institute (KBSI), 162 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju 28119, Republic of Korea

Running title: Mass cytometry for human induced pluripotency

*To whom correspondence should be addressed: Janghwan Kim (E-mail: janghwan.kim@kribb.re.kr; Tel: 82-42-860-4478 4479; Fax 82-42-860-4608), and Mi-Young Son (E-mail: myson@kribb.re.kr; Tel: 82-42-860-4426 4479; Fax 82-42-860-4608)

Keywords: Human induced pluripotent stem cells; Cellular reprogramming; Mass cytometry; Pluripotency; Cell cycle; spanning-tree progression analysis of density-normalized events (SPADE); single-cell analysis; OCT4; TRA-1-60

ABSTRACT

Human induced pluripotent stem cells (hiPSCs) are reprogrammed from somatic cells and are regarded as promising cell sources for regenerative medicine and disease research. Recently, techniques for analyses of individual cells, such as single-cell RNA-sequencing and mass cytometry, have been used to understand the stem-cell reprogramming process in the mouse. However, the reprogramming process in hiPSCs remains poorly understood. Here, we used mass cytometry to analyze the expression of pluripotency and cell cycle markers in the reprogramming of human stem cells. We confirmed that during the reprogramming, the main cell population was shifted to intermediate population consisting of neither fibroblasts nor hiPSCs. Detailed population analyses, using computational approaches, including dimensional reduction by spanning-tree progression analysis of density-normalized events (SPADE), PhenoGraph, and diffusion mapping, revealed several distinct cell clusters representing the cells along the reprogramming route. Interestingly, correlation analysis of various markers in hiPSCs revealed that the pluripotency marker TRA-1-60 behaves in different pattern from other pluripotency markers. Furthermore, we found that the expression pattern of another pluripotency marker, octamer-binding protein 4 (OCT4), was distinctive in the pHistone-H3high population (M phase) of the cell cycle. To the best of our knowledge, this is the first mass cytometry-based investigation into human reprogramming and pluripotency. Our analysis elucidates several aspects of hiPSC reprogramming, including several intermediate cell clusters active during the process of reprogramming and distinctive marker expression patterns in hiPSCs.

Since Yamanaka and others developed induced pluripotent stem cells (iPSCs) in mouse and human (1-4), there have been many efforts to understand the reprogramming process induced and coordinated by defined transcription factors, such as OCT4, SOX2, c-MYC, and KLF4 (5-14). However, research tools from traditional molecular biology and biochemistry are not sufficient for simultaneously examining the complex dynamics of the many factors involved in the reprogramming process. Recently, mass cytometry, a unique technique incorporating mass spectrometry and flow cytometry using element isotope-conjugated antibodies, has provided an opportunity to monitor more than forty factors at once with minimal spectral overlap compared to...
that of fluorescence-based cytometry (15). This powerful tool is now at the forefront of several fields, such as research on the hematopoietic system (16-20), cancer (21-24), and stem cells (23,24).

A need for analytical tools that can be applied to the complex and large data sets acquired by mass cytometry has led to the development of several computational tools able to organize, analyze, and visualize such data. Dimensional reduction is the most competent concept for simplifying and visualizing multi-dimensional parameters in a two- or three-dimensional field. Spanning-tree progression analysis of density-normalized events (SPADE) was the first clustering algorithm developed for mass cytometry (25). SPADE visualizes the distribution of populations in a tree-like structure according to their marker expression patterns. SPADE also has the ability to detect small populations by applying down-sampling prior to clustering and to group cell populations according to their characteristics. viSNE is another algorithm for visualizing multi-dimensional data in a two-dimensional field based on t-distributed stochastic neighbor embedding (t-SNE) (26) dimensional reduction, developed in 2013 by Amir et al (27). PhenoGraph, another clustering tool, partitions the cells in a sample into several clusters on a two-dimensional plane to identify phenotypic subpopulations easily (18). Metaclustering combined with PhenoGraph enables the phenotypic clustering of several samples into a small number of representative groups. Recently, Cytofkit, based on R, has been developed to support the analysis of mass cytometry data in various ways with a graphical user interface (28). It supports clustering based on various methods, such as ClusterX (28), PhenoGraph, and DensVM (29), followed by visualization based on several methods, such as principal component analysis (PCA), t-SNE, and Isomap (30), as well as diffusion map (31), which can track differentiating cells. These methods show the high-dimensional complex heterogeneity of each population on a comprehensible two-dimensional plane.

In the mouse reprogramming system, a few studies have used mass cytometry to investigate the reprogramming process. First, mass cytometry was used for the identification of early reprogramming regulators and markers by comparison of fully and partially reprogrammed murine iPSC lines (23). The behavior of multiple markers during the reprogramming process was analyzed simultaneously using SPADE. By applying time-resolved progression analysis to mass cytometry, Zunder et al showed the dynamics that occur during reprogramming, including the time-dependent emergence of various populations and cell cycle changes in three different fibroblast reprogramming systems (24). These studies on the murine reprogramming system using mass cytometry greatly improved our understanding of the phases of the reprogramming process at the single-cell level. Thus, this promising technology is expected to provide the opportunity to elucidate human reprogramming and pluripotency at the single-cell level.

A distinctive cell cycle progression is one of the well-known properties of pluripotent stem cells. They exhibit a faster cell cycle with a shortened G1 and elongated S phase compared with those in somatic cells (24,32). This phenomenon is caused by the involvement of pluripotency markers, which aid in the rapid progression through the G1/S checkpoint. To date, the contribution of many components expressed by pluripotent stem cells, such as OCT4, SOX2, NANOG, and c-MYC, to progression through the G1/S checkpoint is already known (33). However, multi-dimensional study of the representative pluripotency and cell cycle markers and examination of their relationships have not been reported yet.

In this study, we analyzed the expression of pluripotency and cell cycle markers in the reprogramming process of human iPSCs (hiPSCs) using mass cytometry. Subsequent computational analyses, such as statistical correlation and dimensional reduction by SPADE, PhenoGraph, and diffusion map, were applied to investigate the reprogramming process and the relationship among the various pluripotency and cell cycle markers.

Results

Population changes during reprogramming

Since the viral infection is known to affect the cell cycle checkpoints of the host cells (34-36), we utilized episomal vector system for hiPSC reprogramming to investigate the cell cycle and pluripotency during reprogramming process to minimize the interference of viral infection, despite of its relatively lower efficiency than those of methods using viral vectors (37,38). To select sampling timepoints, we first analyzed the reprogramming process at day 20 and 30. Although we observed few individual cells
expressing OCT4 and NANOG at day 20, fully reprogrammed hiPSC colonies were found at around day 30 (Fig. S1a). The number of alkaline phosphatase (AP)-positive colonies were increased along reprogramming process, and reached about fifty (~0.05% efficiency) at day 30 (Fig. S1b), which is higher than previous studies with episomal reprogramming (39,40). These results indicate that reprogramming entered late stage at day 20 and completed at day 30.

To investigate the early and late stage of reprogramming, we decided to analyze day 10 and 20 of reprogramming process as well as human fibroblasts and hiPSCs as negative and positive controls, respectively, using mass cytometry (Fig. S1c). Samples were analyzed by Helios™ mass cytometer for 10 markers: OCT4, SOX2, NANOG, TRA-1-60, c-MYC, CD44, phosphor-pRB (pRB), Cyclin B1, Ki67, and phosphor-histone H3 (pHistone H3). Arc-hyperbolic sine transformation and sequential gating isolated viable singlet cells for subsequent analysis (Fig. S1d). We obtained a total of 1,153,971 cells (299,520 fibroblasts, 462,978 cells on reprogramming day 10, 147,030 cells on reprogramming day 20, and 244,442 hiPSCs) for analysis.

SPADE analysis clustered by pluripotency markers (OCT4, SOX2, NANOG, and TRA-1-60) and fibroblast marker CD44 revealed relatively concentrated populations in stage-specific clusters at each stage (Fig. 1a). Many reports have suggested the presence of intermediate populations that appear during the reprogramming process and do not share the characteristics of the origin cells or iPSCs (4,23,24,41,42). Therefore, we grouped the cells into three clusters: a fibroblast-like population, which was mainly found in the human fibroblast sample; an iPSC-like population, which was enriched in hiPSCs; and an intermediate-like population, which was not included in the other two populations. The intermediate-like population increased over the course of the reprogramming process (50–60%), while the fibroblast-like and iPSC-like populations accounted for about 82% and 99% of fibroblasts and hiPSCs, respectively, implying a population shift from fibroblasts to hiPSCs during reprogramming (Fig. 1b, Table S1). This reflected a decrease in CD44 expression and increase in the expression of pluripotency markers and some cell cycle signatures, such as pRB, Cyclin B1, and Ki67 (Fig. S1e).

Phenotypic clustering of cells to identify distinctive populations in reprogramming

To examine which populations emerged during the course of reprogramming from fibroblasts to hiPSCs, we employed PhenoGraph, which is an advanced t-SNE algorithm that clusters single cells according to their marker expression patterns. Using PhenoGraph, each sample was clustered and visualized on a 2D plane with two bh-SNE axes (Fig. S2a-d, upper panel) (43) based on its marker expression patterns (Fig. S2a-d, lower panel). Since the expression levels of the markers in PhenoGraph heatmaps are each shown as a relative value from 0 to 1 separately, a total of 44 clusters representing expression changes occurring during the reprogramming process was presented in a single heatmap (Fig. S2e). Based on this, metaclustering was performed to investigate the clusters by their phenotypes throughout the reprogramming process. As a result, the 44 clusters were clustered again into 5 metaclusters (Fig. 2a) and shown on the t-SNE map with colors indicating the samples and metaclusters (Fig. 2b and 2c).

Metacluster 1 showed a fibroblast-like phenotype with high expression of CD44 that was observed in fibroblasts and reprogramming cells on days 10 and 20 (Fig. 2b and 2c). Metacluster 2 exhibited a pluripotent cell-like phenotype with high expression of pluripotency markers, such as TRA-1-60, SOX2, OCT4, and NANOG, and no expression of fibroblast marker CD44. Consistent with this, most clusters classified into metacluster 2 were found in the hiPSC sample (Fig. 2b and 2c). Interestingly, metaclusters 3 and 5 were mostly found in cells during the reprogramming process (Fig. 2b and 2c). Metacluster 3 exhibited low expression of most of markers except CD44, implying that the cells in this metacluster were in a non-proliferating state based on their lack of cell cycle marker expression. Some cells in the fibroblast sample were also included in this cluster, indicating that these cells were unlikely to achieve pluripotency. Metacluster 5 exhibited further reduction in CD44 expression and a slight increase in SOX2 expression (Fig. 2b and 2c, Fig. S2f and S2g). In particular, the three clusters (clusters 12, 23, and 24) in metacluster 5 consisted of cells from reprogramming days 10.
Mass cytometry for human induced pluripotency

and 20 only (Fig. 2b and 2c), which may imply the establishment of reprogramming-prone populations by successful expression of reprogramming factors. It has been reported that SOX2 is the first factor expressed during the hierarchical phase of reprogramming after the stochastic phase and that it plays an indispensable role in the activation of the pluripotency circuit (7). By contrast, metacluster 4 contained small number of cells expressing various markers such as SOX2, Cyclin B1, OCT4, pRB, NANOG, CD44, pHistone H3, and c-MYC. These cells may be mixture of reprogrammed cells; however, fibroblasts that were not transfected with reprogramming factors were also contained within this population (Fig. 2b and 2c, Fig. S2a and S3e). This suggests that the clusters contained in metacluster 4 should be considered outliers as a result of non-specific antibody binding. Based on these results, we could identify the appearance of various cell populations during the reprogramming process and classify them into several groups, including cells on the reprogramming process.

Reprogramming aspects identified by diffusion map analysis

For more detailed analysis of reprogramming, we employed Cytofkit, a multifunctional clustering and visualization tool for mass cytometry (28). All samples were clustered into 30 sub-clusters on the same t-SNE plane using the PhenoGraph algorithm (Fig. 3a). Similar to the earlier results, samples from reprogramming days 10 and 20 occupied positions on the plane between those of fibroblasts and hiPSCs (Fig. 3b). For simplified examination of the reprogramming process based on clustering, clusters were classified into three groups according to their expression changes during reprogramming: fibroblast-enriched, reprogramming-enriched, and hiPSC-enriched clusters (Fig. 3c, Fig. S3a, Table S2). As a result, 9, 14, and 6 clusters were found to belong to each group, respectively (Fig. S3b). The fibroblast-enriched clusters clearly showed high expression of CD44, while the reprogramming-enriched clusters showed reduced expression of CD44 and heterogeneous expression of other markers (Fig. S3c).

Using these clusters, we examined the reprogramming process using diffusion map, which was developed for single-cell analysis of differentiation data (31), using Cytofkit. Each cluster from Fig. 3a was displayed with the same color in the diffusion map and highlighted separately by each population-enriched cluster (Fig. 3d). The fibroblast-enriched population was located in the upper area of the diffusion map, and as reprogramming proceeded, the placement of each cluster moved downwards. In reprogramming-enriched populations, two major populations were observed, in addition to a few cells falling near the hiPSC-enriched population indicated by red circle in left lower panel of Fig. 3D. According to the expression pattern of each marker along the diffusion map axes (Fig. S3d), the two reprogramming-enriched populations, separated to distal side of diffusion map component 1, showed slight differences in the expression of markers. However, positions of most cells in those two populations on the diffusion map plane were relatively distant from that of the hiPSCs. Thus, we focused on the few cells observed near the hiPSC-enriched population. Although these cells were derived from various clusters, most belonged to clusters 18 and 20 (Fig. S3e, left panel). These two clusters occupied the position nearest the hiPSCs in both the PCA plot and t-SNE map (Fig. S3e, middle and right panels, respectively), which implies that they exhibit the most similar phenotypes to hiPSCs among the cells in the reprogramming process. Given the expression pattern of metacluster 5 in the previous analysis (Fig. 2a), cluster 18 likely contains reprogrammed cells. Based on these results, we speculate that at least SOX2 and perhaps pHistone-H3 expression is necessary for reprogramming.

Relationship of pluripotency and cell cycle markers in hiPSCs

After necessary and in-depth classification by marker expressions, we sought to examine the relationships among markers. viSNE was performed with CD44 and the pluripotency markers OCT4, SOX2, NANOG, and TRA-1-60 (Fig. S4a). The distributions of cells indicated that fibroblasts and cells in the reprogramming process shared a high proportion of the population while fibroblasts and hiPSCs were totally distinct from other samples due to their high expression of pluripotency markers, as expected. In terms of cell cycle markers, most of the markers showed similar gradient pattern, implying high correlations among those markers. To quantify the correlation between each pair of markers, Spearman’s rank correlations were calculated (Table S3). Hierarchical clustering of correlations among markers within each sample
revealed a highly conserved correlation between c-MYC and pHistone H3 (Fig. 4a). This result is consistent with previous reports showing that pHistone H3 is a functional downstream target of c-MYC (44). In addition, hiPSCs exhibited strong correlations among pRB, Ki67, and OCT4 as well (Fig. 4a).

Since strong correlations among the markers were observed only in hiPSCs (likely because of the lack of pluripotency markers in other samples), we focused on hiPSCs for further analysis. For a more accurate calculation of correlations between markers, we sought to exclude cells that spontaneously differentiated during culture and those abnormally unmarked by antibodies; we therefore identified 82,103 undifferentiated hiPSCs that expressed the pluripotency markers OCT4, SOX2, NANOG, and TRA-1-60 at levels higher than 95% of fibroblasts (OSNT-gated population). Gated cells showed similar correlations between each pair of markers as the total hiPSC sample (Fig. 4a and Fig. S4b). Gating was also used to remove non-proliferating cells expressing low levels of cell cycle markers, such as Ki67, pRB, and pHistone-H3 (Fig. S4c). In the resulting sample, we revisited the relationships among pluripotency markers. Unexpectedly, TRA-1-60 appeared to behave differently from the other pluripotency markers, with weak correlations with other markers in both the viable and OSNT-gated populations (Fig. 4a and Fig. S4b). Since TRA-1-60 expression in the OSNT-gated population revealed two distinct populations, TRA-1-60low and TRA-1-60high (Fig. S4d-e), we analyzed the expression level of each marker in each of these populations (Fig. 4b). Interestingly, pluripotency and cell cycle markers showed similar expression pattern between the TRA-1-60low and the TRA-1-60high populations. This result suggests the possibility that TRA-1-60, known as a critical marker for fully reprogrammed state (45), is independent of the core pluripotency circuit consisting of OCT4, SOX2, and NANOG in hiPSCs.

Next, we classified OSNT-gated cells into nine subgroups according to the expression levels of OCT4 and NANOG (Fig. 4c). SOX2 and TRA-1-60 were excluded due to their uniform expression in hiPSCs and weak correlations with other markers, respectively (Fig. 4a-b). OCT4 and NANOG expression was divided into high, medium, and low (Fig. S4d-e). After removing subgroups accounting for less than 1% of cells (Fig. 4c, gray text), six subgroups were further analyzed. The expression of most markers decreased as OCT4 and NANOG expression decreased, with the exception of cell cycle markers in the OCT4low and NANOGmid (LM) population (Fig. 4d). It is generally known that pluripotency and cell cycle progression are tightly linked and regulate each other (24,32,33,46). In this analysis, however, the LM population exhibited high expression of cell cycle markers, especially pHistone-H3. Since pHistone-H3 is a well-known marker expressed during mitosis or meiosis (47), this result implies a distinctive behavior of pluripotency markers during the M phase of the cell cycle. We next compared marker expression levels in M phase (pHistone-H3high population) with those in other populations (pHistone-H3low population) in hiPSCs (Fig. S4f). Interestingly, OCT4 showed the opposite expression pattern from most markers, including cell cycle markers and other pluripotency markers such as SOX2 and NANOG, which were highly expressed in the pHistone-H3low population (Fig. 4e). OCT4 expression level in pHistone-H3low population was about 2-fold higher than that in pHistone-H3high population (Fig. S4g). This result implies the distinct regulation of OCT4 during cell cycle progression in the pluripotent state. Taken together, our results indicate that using the in-depth single cell analysis with various pluripotency and cell cycle markers, we were able to precisely look into the relationships between markers and discover unexpected regulatory aspects of TRA-1-60 and OCT4 in regard to pluripotency and the cell cycle, respectively, in hiPSCs.

Discussion

Compared to traditional omics studies, single-cell analyses provide ultimate resolution for investigations into complex processes with heterogeneous populations such as iPSC reprogramming. Many tools have been developed for single-cell analyses of cellular component expression, with single-cell RNA-sequencing and mass cytometry among the most popular tools for the analysis of mRNA and epitope expression levels, respectively. Single-cell RNA-sequencing enables the acquisition of the entire transcriptome of each cell. However, the number of cells that can be analyzed is restricted by cost and technical limitations. Although mass cytometry allows the examination of fewer markers than single-cell RNA-sequencing, the number of markers included is greater than for any other fluorescent dye-labeled antibody-based cytometry. Mass
cytometry also has the advantages of allowing the analysis of an unlimited number of cells and the detection of epitopes that cannot be analyzed using mRNA sequences, such as analysis of proteins that undergo post-translational modification, polysaccharides, or lipids. Here, we analyzed human somatic reprogramming using mass cytometry, as we needed to acquire a large number of cells due to the low efficiency of human reprogramming. As this new technology has not yet been employed to examine the human reprogramming process, we analyzed reprogramming from the macroscopic to microscopic level by investigating population shifts, the emergence of various cell populations, the reprogramming route, and the relationships among pluripotency and cell cycle markers. Based on these results, we provide new insights into pluripotency and cell cycle regulation regarding TRA-1-60 and pHistone-H3, which cannot be analyzed in the conventional RNA-sequencing.

In our analysis, pluripotency and cell cycle markers such as pRB, Ki67, c-MYC, OCT4, NANOG, and pHistone-H3 were clustered based on their strong correlations in hiPSCs. Strong correlations between several pluripotency and cell cycle markers in hiPSCs implies that the proliferation of iPSCs may be strongly associated with the expression of pluripotency markers as known to date (24,32,33,46,48). Interestingly, two pluripotency markers, SOX2 and TRA-1-60, did not exhibit strong correlations, even with OCT4 and NANOG. SOX2 was similarly expressed in all cells, while TRA-1-60 showed differential expression and was not correlated to any other pluripotency marker expression in hiPSCs. TRA-1-60 epitope is a sialylated keratan sulfate proteoglycan that is expressed on podocalyxin in some pluripotent cells including embryonic carcinoma cells as well as pluripotent stem cells (49-51). However, its regulatory mechanism and relationship with other pluripotency network components remain unclear. It is known that molecular mass of podocalyxin is changed and the epitope is no longer detected by TRA-1-60 antibody along with differentiation (51). Knock-out of podocalyxin in human embryonic stem cells results in decreases of TRA-1-60, but does not disrupt maintenance of pluripotency (52). As other pluripotent stem cell-specific glycosphingolipid surface antigens, i.e., stage-specific embryonic antigen (SSEA)-3 and -4, are dispensable for maintaining pluripotency and differentiation in vitro and in vivo (53), we assume that TRA-1-60 also may be a marker for human pluripotent stem cells and independent of core pluripotency network.

The expression levels of OCT4 and NANOG tended to be correlated with those of cell cycle markers. Intriguingly, we found that the \(\text{OCT4}^{\text{low}} \text{NANOG}^{\text{mid}} \) (LM) population showed high levels of cell cycle markers, especially the M-phase marker pHistone-H3. In addition, OCT4 showed the opposite trend compared to the other markers. This result implies that the expression of some pluripotency markers may not be constant but oscillate during cell cycle progression. It was reported that the expression of pluripotency marker genes such as \(\text{NANOG}, \text{TERF1}, \text{PRDM14}, \) and \(\text{TDGF1} \) may increase during the cell cycle, mainly at S-G2 phase, to maintain pluripotency (46). It makes sense for pluripotency markers to be observed at high levels in S-G2 phase because many pluripotency markers are involved in the regulation of the G1/S checkpoint for rapid cell cycle progression in hiPSCs (33). Another study reported that differentiation potential of hiPSCs varies at each stage of cell cycle, and is especially restricted at M-phase (54). This could be a clue for the relationship between OCT4 decrease and pHistone-H3 increases in terms of restricted differentiation and chromosome condensation during mitotic phases. Thus, further study is needed to clarify this possibility on the nature of pluripotency markers during cell cycle progression.

In this study, we first analyzed the human reprogramming process and pluripotency in terms of pluripotency and cell cycle markers using mass cytometry. Our results showed that mass cytometry can reproduce previous results as well as produce new findings, demonstrating its reliability and effectiveness, respectively. Mass cytometry and its analytical tools are helpful for understanding multidimensional aspects of biological process by analyzing multiple combinations of various markers in which post-transcriptional or post-translational markers are included. This enables laborious and time-consuming analyses with numerous markers to be replaced with a single experiment. Our research therefore suggests that mass cytometry is an invaluable tool for complex research involving the reprogramming process, pluripotency, and other stem cell phenomena, as well as the phenotyping of heterogeneity in cancer or other diseases.

EXPERIMENTAL PROCEDURES
Cell culture and reprogramming human fibroblasts into hiPSCs

Human CRL-2097 fibroblasts were cultured in Dulbecco modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum, 1% non-essential amino acids, and 1% sodium pyruvate (Thermo Fisher Scientific, Waltham, MA, USA). A hiPSC line derived from CRL-2097 (ATCC, VA, USA) was maintained in DMEM/F12 supplemented with 20% KnockOut™ Serum Replacement (Thermo Fisher Scientific) and 20 ng/ml basic fibroblast growth factor (bFGF; R&D Systems, Minneapolis, MN, USA). For cellular reprogramming, CRL-2097 cells were transfected with three episomal expression vectors, pCXLE-OCT3/4-shP53, pCXLE-L-myc-Lin28, and pCXLE-SOX2-KLF4 (Addgene, Cambridge, MA, USA), with the Neon™ transfection system and transfection kit (Thermo Fisher Scientific) according to the manufacturer’s instructions. Electroporation conditions were as follows: pulse voltage: 1650, pulse width: 10, and pulse number: 3. For reprogramming, transfected cells were plated on the culture dish at 10,000 cells/cm² density and cultured with hiPSC medium-based conditioned medium from a culture of gamma-irradiated mouse embryonic fibroblast feeder cells in hiPSC medium supplemented with 20 ng/ml bFGF, 1 mM nicotinamide, and 10 mM Y-27632 (Tocris, Bristol, UK). The medium was changed every two days. Samples were collected on days 10 and 20 after transfection. As a negative and positive control, CRL-2097 fibroblasts and their derivative iPSC lines, respectively, were also collected.

Alkaline phosphatase analysis

As previously described (55), samples were washed once with phosphate-buffered saline (PBS; Welgene, Daegu, Korea) and fixed with 4% formaldehyde solution (Sigma-Aldrich, St. Louis, MO, USA) for 30 sec, followed by staining with AP staining solution for 15 min in the dark. The number of AP-stained colonies was counted at day 20 and 30 of reprogramming, respectively, to check the reprogramming efficiency.

Immunofluorescence analysis

Samples were washed once with PBS (Welgene) and fixed with 4% formaldehyde solution (Sigma-Aldrich) for 10 min, followed by three washes with PBS. Blocking and permeabilization were done with 3% BSA and 0.3% Triton X-100 solution in PBS for 1 h. Primary antibodies were diluted in 1% BSA and incubated overnight at 4°C. After 1 h of washing, samples were incubated with secondary antibodies conjugated with Alexa-488 or Alexa-594 (Invitrogen, Carlsbad, CA, USA) for 1 h. Nuclei were stained with Hoechst 33342 diluted in 0.1% BSA. All procedures were performed at room temperature unless indicated otherwise.

Mass cytometry

Mass cytometry was performed with Helios™ (Fluidigm, South San Francisco, CA, USA) according to the manufacturer’s instructions. In brief, cells, including CRL-2097, hiPSCs, and reprogramming day 10 and 20 cells, were detached from dishes at each stage and re-suspended in Maxpar® Cell Staining Buffer (Fluidigm) for barcoding. Prior to barcoding, dead cells were stained by Cell-ID™ cisplatin reagent (Fluidigm) followed by fixation with Maxpar® Fix I Buffer (Fluidigm). Samples were barcoded and blocked by Fc-Blocking solution. Then, samples were stained with Maxpar® metal-conjugated antibodies against OCT4, SOX2, NANOG, c-MYC, TRA-1-60, CD44, Cyclin B1, pRB (S807/S811), phosphor-histone H3 (S28), and Ki67 included in the Maxpar® ESC/iPSC phenotyping panel kit and Maxpar® Cell Cycle panel kit (Fluidigm). The expression pattern of each sample was acquired on the Helios™ mass cytometer and exported in FCS format.

Computational analysis of mass cytometry data

For data analysis, normalized raw FCS files were normalized and debarcoded using Helios™ pre-installed software prior to analysis using the web-based tool Cytobank, R-based Cytofkit (28), and Matlab-based open source analytic tool CYT (27,56). The FCS files were transformed using an inverse hyperbolic sine (arcsinh) function with a cofactor of 5 and pre-gated manually to exclude EQ beads, cell debris, cell doublets, and dead cells (Fig. S1d). SPADE and viSNE analyses were performed via Cytobank. SPADE analysis was performed with 50 nodes and 1% target down-sampled events. PhenoGraph and metaclassing were done on gated cells (3,500 cells)/(18). The number of neighbors (k parameter) used in PhenoGraph clustering was set to 30, the default number in the CYT program. For metaclassing, the k parameter was set to 8. All data representing clusters in each sample were expressed as heatmaps and Barnes-Hut stochastic neighbor embedding (bh-SNE) fields. Cytofkit was used...
for cell clustering with the PhenoGraph method, PCA, and analysis of the reprogramming route by diffusion map performed in Fig. 3. The default settings of Cytofkit were used for the analyses.

Statistical analysis

Statistical analysis and visualization of graphs were performed with Microsoft Excel (Microsoft, Redmond, WA, USA) and R. The calculation of Spearman’s correlation coefficients and visualization of hierarchy clustering were performed using R.
Acknowledgement: We thank Dr. Byung-kook Min from KRIBB, who helped calculate statistical correlations between the markers.

Conflict of interests: The authors have declared that no conflicts of interest exist.
References
1. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676
2. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872
3. Yu, J., Vodyanik, M. A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, II, and Thomson, J. A. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917-1920
4. Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., Lerou, P. H., Lensch, M. W., and Daley, G. Q. (2008) Reprogramming of human adult somatic cells to pluripotency with defined factors. Nature 451, 141-146
5. Buganim, Y., Faddah, D. A., and Jaenisch, R. (2013) Mechanisms and models of somatic cell reprogramming. Nat Rev Genet 14, 427-439
6. Golipour, A., David, L., Liu, Y., Jayakumaran, G., Hirsch, C. L., Trcka, D., and Wrana, J. L. (2012) A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 11, 769-782
7. Jaenisch, R., and Young, R. (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132, 567-582
8. Li, R., Liang, J., Ni, S., Zhou, T., Qing, X., Li, H., He, W., Chen, J., Li, F., Zhuang, Q., Qin, B., Xu, J., Li, W., Yang, J., Gan, Y., Qin, D., Feng, S., Song, H., Yang, D., Zhang, B., Zeng, L., Lai, L., Esteban, M. A., and Pei, D. (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51-63
9. Pasque, V., Miyamoto, K., and Gurdon, J. B. (2010) Efficiencies and mechanisms of nuclear reprogramming. Cold Spring Harb Symp Quant Biol 75, 189-200
10. Polo, J. M., Anderssen, E., Walsh, R. M., Schwarz, B. A., Neffzer, C. M., Lim, S. M., Borkent, M., Apostolou, E., Alaei, S., Cloutier, J., Bar-Nur, O., Cheloufi, S., Stadtfeld, M., Figueroa, M. E., Robinton, D., Fortes, S., Melnick, A., Zhu, J., Ramaswamy, S., and Hochedlinger, K. (2012) A molecular roadmap of reprogramming somatic cells into iPSCs. Cell 151, 1617-1632
11. Samavarchi-Tehrani, P., Golipour, A., David, L., Sung, H. K., Beyer, T. A., Datti, A., Wolftten, K., Nagy, A., and Wrana, J. L. (2010) Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell 7, 64-77
12. Stadtfeld, M., and Hochedlinger, K. (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev 24, 2239-2263
13. Vierbuchen, T., and Wernig, M. (2012) Molecular roadblocks for cellular reprogramming. Mol Cell 47, 827-838
14. Zhao, Y., Zhao, T., Guan, J., Zhang, X., Fu, Y., Ye, J., Zhu, J., Meng, G., Ge, J., Yang, S., Cheng, L., Du, Y., Zhao, C., Wang, T., Su, L., Yang, W., and Deng, H. (2015) A XEN-like State Bridges Somatic Cells to Pluripotency during Chemical Reprogramming. Cell 163, 1678-1691
15. Bandura, D. R., Baranov, V. I., Ornatsky, O. I., Antonov, A., Kinach, R., Lou, X., Pavlov, S., Vorobiev, S., Dick, J. E., and Tanner, S. D. (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81, 6813-6822
16. Bendall, S. C., Davis, K. L., Amir el, A. D., Tadmor, M. D., Simonds, E. F., Chen, T. J., Shenfeld, D. K., Nolan, G. P., and Pe’er, D. (2014) Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157, 714-725
17. Cols, M., Rahman, A., Maglione, P. J., Garcia-Carmona, Y., Simchoni, N., Ko, H. M., Radigan, L., Cerutti, A., Blankenship, D., Pascual, V., and Cunningham-Rundles, C. (2016) Expansion of inflammatory innate lymphoid cells in patients with common variable immune deficiency. J Allergy Clin Immunol 137, 1206-1215 e1206
18. Levine, J. H., Simonds, E. F., Bendall, S. C., Davis, K. L., Amir el, A. D., Tadmor, M. D., Litvin, O., Fienberg, H. G., Jager, A., Zunder, E. R., Finck, R., Gedman, A. L., Radtke, I., Downing, J. R., Pe’er, D., and Nolan, G. P. (2015) Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell 162, 184-197
19. Saeys, Y., Gassen, S. V., and Lambrecht, B. N. (2016) Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat Rev Immunol 16, 449-462
20. Strauss-Albee, D. M., Fukuyama, J., Liang, E. C., Yao, Y., Jarrell, J. A., Drake, A. L., Kinuthia, J., Montgomery, R. R., John-Stewart, G., Holmes, S., and Blish, C. A. (2015) Human NK cell repertoire
diversity reflects immune experience and correlates with viral susceptibility. *Sci Transl Med* **7**, 297ra115

21. Behbehani, G. K., Bendall, S. C., Clutter, M. R., Fantl, W. J., and Nolan, G. P. (2012) Single-cell mass cytometry adapted to measurements of the cell cycle. *Cytometry A* **81**, 552-566

22. Giesen, C., Wang, H. A., Schapiro, D., Zivanovic, N., Jacobs, A., Hattendorf, B., Schueller, P. J., Groliumund, D., Buhmann, J. M., Brandt, S., Varga, Z., Wild, P. J., Gunther, D., and Bodenmiller, B. (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. *Nat Methods* **11**, 417-422

23. Lujan, E., Zunder, E. R., Ng, Y. H., Goronzy, I. N., Nolan, G. P., and Wernig, M. (2015) Early reprogramming regulators identified by prospective isolation and mass cytometry. *Nature* **521**, 352-356

24. Zunder, E. R., Lujan, E., Goltsev, Y., Wernig, M., and Nolan, G. P. (2015) A continuous molecular roadmap to iPSC reprogramming through progression analysis of single-cell mass cytometry. *Cell Stem Cell* **16**, 323-337

25. Qiu, P., Simonds, E. F., Bendall, S. C., Gibbs, K. D., Jr., Bruggner, R. V., Linderman, M. D., Sachs, K., Nolan, G. P., and Plevritis, S. K. (2011) Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. *Nat Biotechnol* **29**, 886-891

26. Laurens van der Maaten, G. H. (2008) Visualizing Data using t-SNE. *Journal of Machine Learning Research* **9**, 2579-2605

27. Amir el, A. D., Davis, K. L., Tadmor, M. D., Simonds, E. F., Levine, J. H., Bendall, S. C., Shenfeld, D. K., Krishnasawamy, S., Nolan, G. P., and Pe'er, D. (2013) viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. *Nat Biotechnol* **31**, 545-552

28. Chen, H., Lau, M. C., Wong, M. T., Newell, E. W., Poidinger, M., and Chen, J. (2016) Cytofkit: A Bioconductor Package for an Integrated Mass Cytometry Data Analysis Pipeline. *PLoS Comput Biol* **12**, e1005112

29. Becher, B., Schlitzer, A., Chen, J., Mair, F., Sumatoh, H. R., Teng, K. W., Low, D., Ruedl, C., Riccardi-Castagnoli, P., Poidinger, M., Greter, M., Ginhoux, F., and Newell, E. W. (2014) High-dimensional analysis of the murine myeloid cell system. *Nat Immunol* **15**, 1181-1189

30. Tenenbaum, J. B., de Silva, V., and Langford, J. C. (2000) A global geometric framework for nonlinear dimensionality reduction. *Science* **290**, 2319-2323

31. Haghverdi, L., Buettner, F., and Theis, F. J. (2015) Diffusion maps for high-dimensional single-cell analysis of differentiation data. *Bioinformatics* **31**, 2989-2998

32. Hindley, C., and Philpott, A. (2013) The cell cycle and pluripotency. *Biochem J* **451**, 135-143

33. Liu, L., Michowski, W., Inuzuka, H., Shimizu, K., Nihira, N. T., Chick, J. M., Li, N., Geng, Y., Meng, A. Y., Ordureau, A., Kolodziejczyk, A., Ligon, K. L., Bronson, R. T., Polyak, K., Harper, J. W., Gygi, S. P., Wei, W., and Sicinski, P. (2017) G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells. *Nat Cell Biol* **19**, 177-188

34. Bagga, S., and Bouchard, M. J. (2014) Cell cycle regulation during viral infection. *Methods Mol Biol* **1170**, 165-227

35. Emmett, S. R., Dove, B., Mahoney, L., Wurm, T., and Hiscox, J. A. (2005) The cell cycle and virus infection. *Methods Mol Biol* **296**, 197-218

36. Katz, R. A., Greger, J. G., and Skalka, A. M. (2005) Effects of cell cycle status on early events in retroviral replication. *J Cell Biochem* **94**, 880-889

37. Okita, K., Hong, H., Takahashi, K., and Yamanaka, S. (2010) Generation of mouse-induced pluripotent stem cells with plasmid vectors. *Nat Protoc* **5**, 418-428

38. Zhou, Y. Y., and Zeng, F. (2013) Integration-free methods for generating induced pluripotent stem cells. *Genomics Proteomics Bioinformatics* **11**, 284-287

39. Bang, J. S., Choi, N. Y., Lee, M., Ko, K., Lee, H. J., Park, Y. S., Jeong, D., Chung, H. M., and Ko, K. (2018) Optimization of episomal reprogramming for generation of human induced pluripotent stem cells from fibroblasts. *Anim Cells Syst (Seoul)* **22**, 132-139

40. Yu, J., Hu, K., Smuga-Otto, K., Tian, S., Stewart, R., Slukvin, Ii, and Thomson, J. A. (2009) Human induced pluripotent stem cells free of vector and transgene sequences. *Science* **324**, 797-801

41. Efe, J. A., Hilcove, S., Kim, J., Zhou, H., Ouyang, K., Wang, G., Chen, J., and Ding, S. (2011) Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. *Nat Cell Biol* **13**, 215-222

42. Kim, J., Efe, J. A., Zhu, S., Talanova, M., Yuan, X., Wang, S., Lipton, S. A., Zhang, K., and Ding, S. (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. *Proc Natl Acad Sci U S A* **108**, 7838-7843

43. Maaten, L. v. d. (2014) Accelerating t-SNE using Tree-Based Algorithms. *Journal of Machine Learning Research* **5**, 2579-2605
44. Zhang, Q., Zhong, Q., Evans, A. G., Levy, D., and Zhong, S. (2011) Phosphorylation of histone H3 serine 28 modulates RNA polymerase III-dependent transcription. *Oncogene* **30**, 3943-3952

45. Chan, E. M., Ratanasirintraawot, S., Park, I. H., Manos, P. D., Loh, Y. H., Huo, H., Miller, J. D., Hartung, O., Rho, J., Ince, T. A., Daley, G. Q., and Schlaeger, T. M. (2009) Live cell imaging distinguishes bona fide human iPSC cells from partially reprogrammed cells. *Nat Biotechnol* **27**, 1033-1037

46. Gonzales, K. A., Liang, H., Lim, Y. S., Chan, Y. S., Yeo, J. C., Tan, C. P., Gao, B., Le, B., Tan, Z. Y., Low, K. Y., Liou, Y. C., Bard, F., and Ng, H. H. (2015) Deterministic Restriction on Pluripotent State Dissolution by Cell-Cycle Pathways. *Cell* **162**, 564-579

47. Hans, F., and Dimitrov, S. (2001) Histone H3 phosphorylation and cell division. *Oncogene* **20**, 3021-3027

48. Schoeftner, S., Scarola, M., Comisso, E., Schneider, C., and Benetti, R. (2013) An Oct4-pRb axis, controlled by MiR-335, integrates stem cell self-renewal and cell cycle control. *Stem Cells* **31**, 717-728

49. Andrews, P. W., Banting, G., Damjanov, I., Arnaud, D., and Avner, P. (1984) Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight polypeptides on the surface of human embryonal carcinoma cells. *Hybridoma* **3**, 347-361

50. Badcock, G., Pigott, C., Goepel, J., and Andrews, P. W. (1999) The human embryonal carcinoma marker antigen TRA-1-60 is a sialylated keratan sulfate proteoglycan. *Cancer Res* **59**, 4715-4719

51. Schopperle, W. M., and DeWolf, W. C. (2007) The TRA-1-60 and TRA-1-81 human pluripotent stem cell markers are expressed on podocalyxin in embryonal carcinoma. *Stem Cells* **25**, 723-730

52. Freedman, B. S., Brooks, C. R., Lam, A. Q., Fu, H., Morizane, R., Agrawal, V., Saad, A. F., Li, M. K., Hughes, M. R., Werff, R. V., Peters, D. T., Lu, J., Bacc, A., Siedlecki, A. M., Valerius, M. T., Musunuru, K., McNagny, K. M., Steinman, T. I., Zhou, J., Lerou, P. H., and Bonventre, J. V. (2015) Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. *Nat Commun* **6**, 8715

53. Brimble, S. N., Sherrer, E. S., Uhl, E. W., Wang, E., Kelly, S., Merrill, A. H., Jr., Robins, A. J., and Schulz, T. C. (2007) The cell surface glycosphingolipids SSEA-3 and SSEA-4 are not essential for human ESC pluripotency. *Stem Cells* **25**, 54-62

54. Pauklin, S., and Vallier, L. (2013) The cell-cycle state of stem cells determines cell fate propensity. *Cell* **155**, 135-147

55. Son, M. Y., Sim, H., Son, Y. S., Jung, K. B., Lee, M. O., Oh, J. H., Chung, S. K., Jung, C. R., and Kim, J. (2017) Distinctive genomic signature of neural and intestinal organoids from familial Parkinson’s disease patient-derived induced pluripotent stem cells. *Neuropathol Appl Neurobiol* **43**, 584-603

56. Kotecha, N., Krutzik, P. O., and Irish, J. M. (2010) Web-based analysis and publication of flow cytometry experiments. *Curr Protoc Cytom Chapter 10*, Unit10 17
FOOTNOTES
This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1601-06 and KIBB initiative program.

The abbreviation used are: iPSC, induced pluripotent stem cell; SPADE, Spanning-tree progression analysis of density-normalized events; t-SNE, t-distributed stochastic neighbor embedding; PCA, principal component analysis; AP, alkaline phosphatase;
Figure 1. Appearance of intermediate populations during reprogramming (A) SPADE analysis clustered by pluripotency markers and CD44. Populations enriched in each stage were grouped into three clusters: fibroblast-like, intermediate-like, and iPSC-like. As reprogramming proceeded, the main population was shifted downward in the SPADE tree (red arrows). The color of each circle indicates the number of cells included in each cluster. (B) Proportion of each population at each stage. Intermediate-like populations accounted for more than 50% of reprogramming day 10 and 20 samples, reflecting the progression of reprogramming. (C) PCA plot. Down-sampled cells (5,000 per sample) were placed on the PC plane. (D) PCA plot separated by sample. Population shift during the reprogramming process was observed.
Figure 2. Phenotypic clustering of cells during reprogramming by PhenoGraph and metaclustering. (A) Metaclusters based on PhenoGraph algorithm. All clusters were classified into 5 metaclusters depending on their marker expression patterns. Each metacluster showed various phenotypes including fibroblast-like, iPSC-like, and reprogramming-like phenotypes. (B-C) t-SNE map of the clusters labeled by sample (B) and metacluster (C). Metaclusters showed the heterogeneity of each population except hiPSCs, which were mostly found in metacluster 2. Metacluster 5 consisted of only cells from reprogramming days 10 and 20.
Figure 3. Diffusion map analysis of reprogramming (A) Clustering of all samples by PhenoGraph algorithm on Cytofkit, with 30 clusters generated. (B) Distribution of cells in each sample. Population shift was observed during reprogramming. (C) Clusters were classified into stage-enriched clusters: fibroblast-enriched (Fib), reprogramming-enriched (Rep), and hiPSC-enriched clusters mainly include fibroblasts, cells during reprogramming, and hiPSCs, respectively. (D) Diffusion map analysis of reprogramming. Position of each cluster is shown, and Fib-, Rep-, and hiPSC-enriched clusters are indicated.
Figure 4. Relationships among pluripotency and cell cycle markers in hiPSCs (A) Hierarchical clustering based on Spearman’s correlation coefficients between each pair of markers in individual samples. (B) Marker expression patterns in TRA-1-60high and TRA-1-60low populations, showing no significant difference between the two populations. (C) Classification of cells according to OCT4 and NANOG expression levels. Number and proportion of cells in each group are shown. (D) Marker expression levels of each group. Cell cycle marker expression is shown in proportion to OCT4 and NANOG expression. The OCT4lowNANOGmid population (LM) exhibited exceptionally high cell cycle marker levels. (E) Marker expression levels in pHistone-H3high and pHistone-H3low populations. Most markers showed higher expression in pHistone-H3high, except OCT4.
Mass cytometry-based single-cell analysis of human stem cell reprogramming uncovers differential regulation of specific pluripotency markers
Ilkyun Im, Ye Seul Son, Kwang Bo Jung, Insoo Kang, Boon-eng Teh, Kyung-Bok Lee, Mi-Young Son and Janghwan Kim

J. Biol. Chem. published online September 30, 2019

Access the most updated version of this article at doi: 10.1074/jbc.RA119.009061

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts