Measurement of the Low-Frequency Charge Noise of Bacteria

Yichao Yang, Hagen Gress, and Kamil L. Ekinci ∗
Department of Mechanical Engineering, Division of Materials Science and Engineering, and the Photonics Center, Boston University, Boston, Massachusetts 02215, United States
(Dated: July 5, 2022)

Bacteria meticulously regulate their intracellular ion concentrations and create ionic concentration gradients across the bacterial membrane. These ionic concentration gradients provide free energy for many cellular processes and are maintained by transmembrane transport. Given the physical dimensions of a bacterium and the stochasticity in transmembrane transport, intracellular ion concentrations and hence the charge state of a bacterium are bound to fluctuate. Here, we investigate the charge noise of 100s of non-motile bacteria by combining electrical measurement techniques from condensed matter physics with microfluidics. In our experiments, bacteria in a microchannel generate charge density fluctuations in the embedding electrolyte due to random influx and efflux of ions. Detected as electrical resistance noise, these charge density fluctuations display a power spectral density proportional to 1/f² for frequencies 0.05 Hz ≤ f ≤ 1 Hz. Fits to a simple noise model suggest that the steady-state charge of a bacterium fluctuates by ±1.30 × 10⁻⁶ e (e ≈ 1.60 × 10⁻¹⁹ C), indicating that bacterial ion homeostasis is highly dynamic and dominated by strong charge noise. The rms charge noise can then be used to estimate the fluctuations in the membrane potential; however, the estimates are unreliable due to our limited understanding of the intracellular concentration gradients.

I. INTRODUCTION

Bacteria create and maintain transmembrane concentration gradients of small metal ions, such as potassium and sodium [1, 2]. These ionic concentration gradients are the main source of the electrical and electrochemical potentials that are present across the cell membrane and facilitate a number of crucial cellular processes [3–9]. The processes for separation, concentration and regulation of the inorganic ions by bacteria are made possible by the plasma membrane and the transmembrane proteins embedded in the membrane, as shown in Fig. 1(a). The plasma membrane is a thin but strongly insulating lipid structure, allowing a bacterium to maintain its charge state effectively. The many different transmembrane proteins that are in the bacterial membrane act as channels and pumps for ions [10]. Figure 1(a) also shows the electrical circuit model [5, 8, 11] of a membrane patch. Here, the ion channels and pumps for each ion are modeled as a nonlinear resistor with a conductance that depends on the electrical potential of the membrane, \(V_{\text{mem}} \), and the Nernst potential, \(E_X \), for the ion X.

A small and insulating system, such as a bacterium, will be particularly susceptible to charge fluctuations [12–14]. Thus, charge noise should play an important role in bacterial ion homeostasis. Based on the circuit model [Fig. 1(a)], the charge fluctuations within the cytoplasm are the result of two coupled noisy processes. First, the ionic current through the ion channels is noisy [15], with the ensuing fluctuations in intracellular ion concentrations causing voltage noise in \(V_{\text{mem}} \). Second, any noise originating in \(V_{\text{mem}} \), e.g., due to a random depolarization of a membrane patch or even thermal noise [16, 17], will cause fluctuations in the transmembrane current [18] and hence the intracellular ion concentrations. Furthermore, these two noise processes will tend to enhance each other. We argue that an equivalent noise voltage, \(e_n \), should be imposed on \(V_{\text{mem}} \) in Fig. 1(a) in order to account for all the electrical fluctuations present.

Our understanding of how a bacterium regulates the concentrations of metal ions in its cytoplasm (i.e., the intracellular metallome) is far from complete. It is generally assumed that the time-averaged intracellular ion concentrations in a bacterium remain roughly constant [19, 20]—indicating charge conservation. Average bacterial ion efflux [21] and influx [22] rates have been determined from concentration measurements in media in which large populations of bacteria are grown. On the other hand, patch clamp measurements on single bacterial ion channels have shown that ion transport is noisy, with the current noise power spectral density (PSD) proportional to 1/f at low frequencies [23]. While the time-averaged charge state remains constant, bacteria surprisingly modulate their membrane potential on the timescale of seconds—as shown in recent fluorescent microscopy experiments [14]. Single cells get hyperpolarized and depolarized spontaneously and repeatedly over time. It has been suggested that these charge fluctuations are purposeful, but little is known about their downstream effects. Thus, bacterial ion homeostasis is expected to be highly dynamic [1] and dominated by strong charge noise. At the present time, quantitative measurements of electrical fluctuations and noise models of single bacterial cells are missing from the biophysics literature, partly due to a lack of sensitive tools on the size scale of a bacterium [14].

To probe the noisy charge dynamics in bacteria with sufficient time resolution and electrical sensitivity, we have combined low-frequency noise analyses from con-
densed matter physics [24] with microfluidics [25]. Our overarching hypothesis is that the metabolic activity of bacteria modulates the concentrations of various ions in the medium, leading to detectable fluctuations in the electrical impedance. In Section II, we present our experimental approach with particular attention to the electrical measurements. The results in Section III establish that electrical fluctuations detected from bacteria scale as $1/f^2$, with the characteristics of equilibrium resistance noise [26–30]. In Section IV, we look at possible noise mechanisms and discuss the possibility of charge noise. Section V is reserved for conclusions. In Appendix A, we present further experimental details. In Appendix C, we discuss how to consistently remove the superficial effects of the measurement circuit from the noise. In Appendix D, we present results from our control experiments and discuss perturbations; we also discuss the contribution of another phenomenon, namely the nanomechanical fluctuations of a bacterium, to the observed noise. In Appendix E, we present the details of how we estimate various electrical noise quantities.

II. EXPERIMENTAL APPROACH

A. Device and setup

1. Microfluidic resistor

We perform our electrical noise measurements in a PDMS microfluidic resistor that sits on an inverted microscope stage. As shown in Fig. 1(b), the device has ten parallel microchannels at its center, each with a nanoscale constriction toward the outlet end [Fig. 1(c)]. The microfluidic resistor is filled with a liquid electrolyte, such as Luria-Bertani (LB) broth medium or phosphate-buffered saline (PBS), and four thin film Cr-Au electrodes allow for electrical contact to the ions in the medium [Fig. 1(b)]. Cr-Au electrodes are a good alternative to AgCl electrodes: they are easy to fabricate and provide satisfactory electrical properties [31–33]. Unless otherwise noted, the temperature of the media is kept at 37°C by the temperature-controlled inverted microscope stage.

2. Loading and trapping the bacteria

The noise measurements are performed on both live and dead bacteria trapped in these parallel microchannels. At the start of each experiment, we load and trap the bacteria using a pressure-driven flow of a bacteria solution from the inlet toward the nanoconstriction with $\Delta p \approx 10$ kPa. The bacteria accumulate in the microchannels in a linear fashion, as shown in Fig. 1(c). Once the bacteria are loaded, we wait for 30 min before starting the electrical measurements. During the measurements, we maintain a constant $\Delta p \approx 0.6$ kPa to ensure the flow of nutrients to the bacteria in the microchannel region, except in experiments for studying the effects of different Δp values. The pressure-driven flow jams the bacteria towards the nanoconstriction and keeps the bacteria from moving; it also prevents the bacteria from oscillating due to the electrokinetic forces.

3. Properties of the bacteria

We use non-motile Gram-negative bacteria (Klebsiella pneumoniae) and Gram-positive bacteria (Staphylococcus saprophyticus) in our experiments. K. pneumoniae is a rod-shaped microorganism that has a length of 2–3 µm.
and a cross-sectional area of 0.8 \(\mu \text{m}^2 \) [34]; \textit{S. saprophyticus} is a spherical microorganism that has a diameter of 1 \(\mu \text{m} \) [35]. The average doubling times for \textit{K. pneumoniae} and \textit{S. saprophyticus} in our microfluidic devices at 37\(^\circ\)C are 55 min. and 100 min., respectively [25]. In experiments with dead bacteria, the cells are first killed by adding a small amount of glutaraldehyde into the broth medium, before they are pushed into the microchannels. Glutaraldehyde is a fixative which kills bacteria by impeding essential cellular functions but preserves the cellular morphology and ultrastructure for the period of our experiments (~3 hours) [36].

B. Electrical measurements

1. Lock-in amplifier setup

We employ a four-probe ac measurement using a lock-in amplifier, as shown schematically in Fig. 1(b) and Fig. 2(a). In Fig. 2(a), \(V_s \) is the reference oscillator output of the lock-in amplifier, with the reference frequency set to \(f_o = 160 \text{Hz} \); \(Z_c \) is the contact impedance at each of the four probes; the impedance \(Z_m \) of the microfluidic resistor is modeled as a resistor \(R_m \) in parallel with a capacitance \(C_m \); and \(Z_{in} \) is the equivalent impedance of the lock-in amplifier input, with \(V_A - V_B \) representing the voltage drop between the two differential inputs \(A \) and \(B \). A current source is created by connecting the lock-in oscillator output in series with a 100 M\(\Omega \) metal film resistor that has a parasitic capacitance \(\leq 0.4 \text{pF} \). The voltage drop across the microfluidic resistor is measured by the differential voltage detection mode of the lock-in amplifier [Fig. 1(b)].

During the noise measurements, an ac bias current of rms amplitude in the range 0.70 nA \(\leq I \leq 16.50 \text{nA} \) is pushed through the microfluidic resistor, and the voltage fluctuations across the resistor are detected. The time constant and filter roll-off of the lock-in amplifier are 3 ms and 18 dB/oct, respectively, resulting in an equivalent noise bandwidth of 31.25 Hz. The data are transferred to a computer using a digitizer at a sampling rate of 128 Hz. Our subsequent numerical filtering only keeps the noise in the frequency interval 0.05 Hz \(\leq f \leq 10 \text{Hz} \). To summarize, our measurements are similar to the ac noise measurements on solid state systems but without the bridge configuration [37]. One big advantage in our system is that we can establish a background noise level by measurements on fixed (dead) bacteria that lack any metabolic activity.
Figure 3(a) shows the rms value of the mean voltage drop, $V_{AB} = V_A - V_B$, for two devices as a function of the rms bias current I that flows through the devices; the value of the phase angle is $-34 \pm 3^\circ$ and stays constant. The devices are nominally identical, but one is filled with live cells and the other with dead cells. To find I, R_m and C_m [Figs. 2(a) and 2(b)], we first determine the impedances of the 100 MΩ resistor, the contact pads, and the lock-in inputs at $f_o = 160$ Hz. We ignore the imaginary component of the 100 MΩ resistor. The input impedance Z_{in} of the lock-in amplifier can be modeled [38] as a resistor, $R_{in} = 10$ MΩ, in parallel with a capacitor, $C_{in} = 25$ pF, as shown in Fig. 2(b). This gives an equivalent impedance of $Z_{in} \approx 9.40 - j2.36$ MΩ at $f_o = 160$ Hz. By comparing the results of two-probe measurements to four-probe measurements, we estimate each contact impedance to be $Z_c \approx 60 - j60$ kΩ and thus negligible. We then calculate I from the rms lock-in reference voltage value V_s using Ohm’s Law in the simplified circuit shown in Fig. 2(b). Here, I and I_m are the currents that flow through the microfluidic resistor and the amplifier input circuit, respectively. Using these properly determined current values, we then find the values of R_m and C_m by linear fitting, i.e., Ohm’s Law, as shown in Fig. 3(a). These fits yield $R_m \approx 3.3$ MΩ and 3.2 MΩ for live and dead cells, respectively, and $C_m \approx 0.2$ nF, resulting in $Z_m \approx 2.30 - j1.50$ MΩ for both cases. This capacitance value is consistent with the parasitic capacitance of the wiring and the cables. We emphasize that the value of R_m depends on the number N of cells trapped in the device [25], and $N \approx 300 \pm 50$ for both measurements in Fig. 3(a). The N value, however, will be varied in some measurements and its effects will be deconvoluted from the measurements, as described below.

3. Johnson-Nyquist noise

Now, we turn to a typical noise data trace and discuss the general features of noise. Figure 3(b) shows the time-domain voltage fluctuations, $v(t)$, measured across the microfluidic resistor filled with roughly 300 cells in LB for a bias current of $I \approx 7.74$ nA in a (noise) bandwidth of $\Delta f \approx 10$ Hz. Within the 120 s data trace, the bacteria do not divide or move into and out of the microchannels. The rms value of the voltage noise can be found as $1.55 \mu V$ for live cells (red) and 0.76 µV for fixed cells (black). The probability distribution of the noise in both cases is nearly Gaussian [Fig. 3(c)].

To understand the origin of this noise, we first estimate the Johnson-Nyquist noise of the microfluidic resistor and the input noise of the lock-in amplifier, which together should result in a white thermal spectrum away from the carrier. The diagram of the Thévenin equivalent noise circuit is shown in Fig. 2(c). Here, Z_m is the source impedance, Z_{in} is the amplifier input impedance, and e_{in} is the thermal noise voltage generated by the source impedance with a PSD of $4k_BT\Re\{Z_m\}$ with \Re denoting the real part of the complex impedance. We approximate the noise arising from the amplifier as follows. We assume that the amplifier adds the equivalent input-referred voltage noise e_{in} to the thermal noise, as shown in Fig. 2(c). We note that the current noise of the amplifier is also lumped into e_{in}. Then, the measured voltage noise PSD with respect to the reference nodes A and B in Fig. 2(c) becomes

$$S_V^{(th)}(f,0) = \left[4k_BT\Re\{Z_m\} + \frac{\langle e_{in}^2 \rangle}{\Delta f}\right] \frac{|Z_{in}|^2}{|Z_m + Z_{in}|^2} = 4k_BT R\Re,$$

where $S_V^{(th)}(f,0)$ indicates that the bias current is zero and Δf is the measurement bandwidth. The resistance $R\Re$ is an equivalent noise resistance representing all the
white thermal noise sources in the system. To determine
\(\langle \epsilon_{in}^2 \rangle / \Delta f \) of the lock-in amplifier for our sensitivity setting
and source impedance value at 160 Hz, we measure
the output noise in separate experiments as a function of
source resistance [39]. These measurements allow us to
find the equivalent input-referred noise voltage PSD and
the equivalent input-referred current noise PSD for each
amplifier input as approximately \(1.70 \times 10^{-15} \text{V}^2/\text{Hz} \) and
\(2.30 \times 10^{-27} \text{A}^2/\text{Hz} \), respectively. Since the lock-in ampli-
plier is used in the \(V_A - V_B \) mode in our measurements,
we calculate the total input-referred noise PSD from the
amplifier inputs by adding the noise PSDs from each ampli-
plier input, leading to \(\langle \epsilon_{in}^2 \rangle / \Delta f \approx 3.85 \times 10^{-14} \text{V}^2/\text{Hz} \).
Finally, by substituting \(Z_m \approx 2.30 - j1.50 \text{M} \Omega \) (for
300 cells), \(Z_{in} \approx 9.40 - j2.36 \text{M} \Omega \) and \(\langle \epsilon_{in}^2 \rangle / \Delta f \approx
3.85 \times 10^{-14} \text{V}^2/\text{Hz} \) into Eq. (1), we find the white noise
PSD at the output to be approximately \(S_{V}^{(th)}(f, 0) \approx
4.80 \times 10^{-14} \text{V}^2/\text{Hz} \). The detectable Johnson-Nyquist
noise voltage within a bandwidth of 10 Hz should therefore
be \(\sqrt{4.80 \times 10^{-14}} \text{V}^2/\text{Hz} \times 10 \text{ Hz} \approx 0.70 \mu \text{V} \).

Returning to Fig. 3(a), we realize that the rms voltage noise values reported above for both live (1.55 \(\mu \text{V} \)) and
dead cells (0.76 \(\mu \text{V} \)) are larger than the Johnson-Nyquist noise voltage (0.70 \(\mu \text{V} \)).
This qualitatively suggests that “excess” 1/f noise must be dominat-
ing for both live and dead bacteria. What is also remarkable and perhaps un-
expected is the enhanced electrical noise of live cells as
compared to dead cells. The excess 1/f noise will pre-
cisely be the topic of our detailed study.

4. Excess noise

In order to understand the source of the excess voltage noise in the microfluidic resistor, we turn to equilibrium
resistance noise. We first derive the dependence of the
noise power on bias current. As shown in Fig. 2(d), the
applied bias current \(I \) is divided into two, \(I_R \) through
\(R_m \) and \(I_C \) through \(C_m \), so that \(I = I_R + I_C \). For \(I_R \),
we find \(I_R = \left(\frac{1}{1 + j \omega R_mC_m} \right) I = j \omega R_mC_m I = 160 \text{ Hz} \). In
Fig. 2(d), the resistance noise is modeled as being gen-
erated by a time-dependent fluctuating resistance \(r(t) \)
in series with \(R_m \) [24]. Under bias current \(I \), the resis-
tance fluctuations are turned into voltage fluctuations
via Ohm’s Law. The PSD of the excess voltage noise from
the resistance fluctuations is
\[
S_R(f) = \frac{I^2 S_R(f)}{1 + \omega^2 R_m^2 C_m^2},
\]

where \(S_R(f) \) is the PSD of the resistance fluctuations in units of
\(\text{V}^2/\text{Hz} \). Thus, the PSD of the current-dependent excess
voltage noise measured between the nodes \(A \) and \(B \)
in Fig. 2(d) can be expressed as
\[
S_{V}^{(ex)}(f, I) = I^2 S_R(f) \left[\frac{|Z_{in}|^2}{(1 + \omega^2 R_m^2 C_m^2)^2 |Z_m + Z_{in}|^2} \right],
\]
\[
= I^2 S_R(f) C.
\]

Here, the factor \(C \) is a dimensionless coefficient that quan-
tifies how the noise generated in the microfluidic resistor
is attenuated at the output. In our experiments, the fac-
tor \(C \) is assumed to be only a function of \(R_m \), since \(Z_{in} \)
and the capacitance \(C_m \) coming mostly from the wiring
stay constant. The value of \(R_m \) changes with the number
\(N \) of bacteria in the microchannel and/or the resistivity
of the different electrolytes. Using the circuit param-
ters given above, i.e., \(C_m, Z_{in}, \) and \(\omega_0 \), we can readily
determine \(C \) as a function of \(R_m \) as shown in Appendix
C.

In the experiments, we measure the total voltage noise
PSD as
\[
S_V^{(tot)}(f) = S_V^{(ex)}(f, I) + S_V^{(th)}(f, 0),
\]
\[
= C(R_m) I^2 S_R(f) + 4k_B T R_m.
\]

When comparing measurements with different \(R_m \)
values, it is thus necessary to deconvolute the effects of \(R_m \)
from the measured noise for consistency. This should
be the case, for instance, when comparing data taken
in different electrolytes or when the noise power is mea-
sured as a function of number \(N \) of bacteria in the mi-
crochannels. In previous work, we have established that
the \(R_m \) value depends on \(N \) approximately linearly as
\(R_m(N) \approx 2.5 \text{ M} \Omega + N \times 2.5 \text{ k} \Omega \) for \(K. pneumoniae \) and
as \(R_m(N) \approx 2.5 \text{ M} \Omega + N \times 3.5 \text{ k} \Omega \) for \(S. saprophyticus \)
[25]. To compare noise measurements, one should first
subtract from a given \(S_V^{(tot)}(f) \) data the thermal noise
contribution \(S_V^{(th)}(f, 0) \). Then by using the \(C(R_m) \) cor-
responding to the \(R_m \) value of the microfluidic resis-
tor, one can obtain the PSD of the resistance fluctuations as
\[
S_R(f) = \frac{S_V^{(tot)}(f) - S_V^{(th)}(f, 0)}{I^2 C(R_m)}.
\]
The so-called normalized PSD \(S(f) \) can then be calcu-
lated as [37]
\[
S(f) = \frac{S_R(f)}{R_m^{-2}},
\]
\[
= \frac{S_V^{(tot)}(f) - S_V^{(th)}(f, 0)}{C(R_m) I^2 R_m^{-2}}.
\]

C. Data analysis

1. Basic steps

To recapture, we measure the voltage noise, \(v(t) \), in
time domain as a function of the bias current \(I \). We
now describe how these data are processed. Figure 4(a)
shows representative data traces from our measurements
of live \(K. pneumoniae \) in LB under different bias currents
\(I \), with \(I \) as indicated in the figure. The data are first
numerically filtered such that the remaining fluctuations
are in the frequency range of 0.05 Hz ≤ f ≤ 10 Hz. As
FIG. 4. (a) Representative time domain $v(t)$ traces from measurements on live *K. pneumoniae* in LB at 37°C under different bias currents $0.77 \text{ nA} \leq I \leq 15.00 \text{ nA}$ with $N \approx 300 \pm 50$ and $\Delta p \approx 0.6 \text{ kPa}$. The rms values of I are as indicated in the figure. Upper insets show examples of $v(t)$ measured at $I \approx 7.70 \text{ nA}$, with no artifacts (left), with two bacteria entering the microchannel (center), and with one bacterium escaping from the microchannel (right)—as observed in microscope images. The arrows indicate the instants when the bacteria enter and escape. (b) Representative PSDs $S_{V}^{(tot)}(f)$ of $v(t)$ for three different I values before and (c) after smoothing. (d) Normalized PSDs $S(f)$ of excess noise. The data show $S(f)$ for each I (small symbols) and average of $S(f)$ over I (large symbols).

seen in the data traces in Fig. 4(a), we measure $v(t)$ over a period of 3 min for each applied I. These 3 min traces are thus long enough that various artifacts can be removed consistently but short enough that bacteria do not grow substantially and divide. The artifacts arise because bacteria may randomly enter into or escape from the microchannels; these excursions by bacteria can generate spikes [e.g., Fig. 4(a), center and right insets]. Although rare, these artifacts can change the characteristics of the noise data. We thus remove these spikes from the measured $v(t)$ traces before we calculate the frequency domain PSDs. In summary, we use a 2-min long portion of the $v(t)$ data to calculate the PSDs, $S_{V}^{(tot)}(f)$.

The PSD is calculated by taking a fast Fourier transform (FFT) of the autocorrelation function of a 2-min long $v(t)$ data trace. The PSDs [Fig. 4(b)] are then smoothed [Fig. 4(c)] using an eight-point moving average [40–42]. To analyze the asymptotic low-frequency behavior of the excess noise, we calculate the normalized PSD, $S(f)$, of the excess noise. For this, we first determine $S(f)$ for each I using Eq. (5). We then find the average value of $S(f)$ [28, 43]. The small symbols in Fig. 4(d) show $S(f)$ calculated from $S_{V}^{(tot)}(f)$ at different I values, and the large symbols show the average $S(f)$.
2. Averaged excess noise

Finally, we also analyze the dependence of the excess voltage noise on I, Δp, and N below. To this end, we select a frequency range, where $S_V^{(tot)}(f)$ is significantly above the white (thermal) noise level and determine the PSD of the excess noise from Eq. (3), i.e.,

$$S_V^{(ex)}(f) = S_V^{(tot)}(f) - S_V^{(th)}(f,0).$$

Here, the PSD of the thermal noise, $S_V^{(th)}(f,0)$, is assumed to be frequency independent. We then average the excess noise over this frequency range as [44, 45]

$$\overline{S_V^{(ex)}}(f) = \frac{1}{f_2-f_1} \int_{f_1}^{f_2} S_V^{(ex)}(f) df.$$ \hspace{1cm} (6)

The frequency band we use for these averages is $0.05 - 0.2$ Hz.

D. Control experiments

In a number of additional measurements, we have characterized the noise in the microchannels without any bacteria. In these experiments, the microchannels are filled with just the electrolyte solutions, LB and PBS. Some experiments are repeated at 23°C. The measurements of the electrolytes without bacteria are performed with fresh buffers. The experimental approach and data analysis steps are identical to those above.

III. RESULTS

We first make observations on the frequency domain characteristics of the measured noise. These observations lead us to the conclusion that the noise is due to equilibrium resistance fluctuations. We then show the scaling behavior of the measured noise by obtaining its normalized PSD $S(f)$.

A. Noise PSD as a function of different parameters

1. Bias current

Figure 5(a) shows the PSDs of the voltage fluctuations, $S_V^{(tot)}(f)$, measured in microchannels filled with $N \approx 300 \pm 50$ live and dead cells at different bias current values. All the PSDs are obtained from time domain data, such as those in Fig. 4 using the steps described in Section II C. As noted above, the time domain data traces do not contain any voltage spikes due to large perturbations, such as bacterial divisions or displacements. Several observations are noteworthy in Fig. 5(a). For each I, the PSD exhibits a well-defined frequency f_w, where the behavior of the curve changes. For $f > f_w$, the spectrum is white and independent of I; the experimentally measured white noise PSD of 5.25×10^{-14} V2/Hz is consistent with the amplifier input noise combined with the Johnson-Nyquist noise of the microfluidic device, which we have estimated above in Section II B to be 4.80×10^{-14} V2/Hz. For $f < f_w$, the PSDs increase as frequency decreases, showing typical $1/f$ excess noise characteristics [46] for both live and dead cells. The value of f_w also appears to increase with I.

We now turn to the dependence of the excess noise on I. Here, we compare $S_V^{(ex)}(f)$ values, as defined in Eq. (6) above, for different I [44, 45]. Figure 5(b) shows $S_V^{(ex)}(f)$ as a function of I. For live cells, the $S_V^{(ex)}(f)$ data can be fitted to a quadratic function as $S_V^{(ex)}(f) \approx \Gamma_l I^2$, with $\Gamma_l \approx 1.15 \times 10^5$ Ω^2/Hz. The noise of dead bacteria in Fig. 5(c) can also be fitted to a quadratic function, $\Gamma_d I^2$—at least for the high current region of the data with $\Gamma_d \approx 7.20 \times 10^3$ Ω^2/Hz. The dashed lines in Fig. 5(b) show the quadratic fits. It is important to emphasize that all the data here are consistently taken on $N \approx 300 \pm 50$ cells, and all R_m values remain in the range $R_m \approx 3.10 \pm 0.40$ MΩ.

Two important conclusions can be made based on the data and fits in Fig. 5(b). The I^2 dependence of the excess noise suggests that, in both cases, the noise is induced by “equilibrium” resistance fluctuations [26–30]. Live cells exhibit a significantly higher amplitude than dead ones with $\Gamma_l \gg \Gamma_d$, indicating that noise generation is linked to bacterial metabolism. The origin of the noise from dead cells is not entirely clear and will be further addressed in Section III B below.

2. Hydrodynamic pressure

Fig. 5(c) shows $S_V^{(tot)}(f)$ for different applied pressures Δp across the channel at a fixed bias of $I \approx 7.75$ nA. The measured noise remains independent of Δp, and hence the bulk flow velocity, as Δp is varied by more than an order of magnitude. We further note that $S_V^{(ex)}(f)$ at $I \approx 7.75$ nA exhibits no dependence on Δp [Fig. 5(b)].

During the experiments, we establish a net flow from the inlet to the outlet. The drag force due to this steady flow has a stabilizing effect on the system, with the bacteria snugly jammed in the microchannel toward the nanoconstriction. The electrokinetic and other flow forces in the system do not move the bacteria due to the presence of this net steady flow from the inlet toward the nanoscale constriction. Appendix D provides more details on the control experiments where we measure the hydrodynamic and electrokinetic forces on the bacteria in our system.
FIG. 5. (a) Voltage noise PSDs \(S^{(\text{tot})}_V(f) \) for different bias \(I \) for live and dead \((K.\ pneumoniae)\) cells. There are approximately 300 ± 50 cells in both devices, and \(R_m \) values are similar. (b) Averaged PSD \(S^{(ex)}_V(f) \) of the excess voltage noise as a function of \(I \). Each data point is the average from three independent experiments with nominally identical devices that have 300 ± 50 cells and similar \(R_m \) values. The dashed lines are quadratic fits of the form \(S^{(ex)}_V(f) = \Gamma f^2 \), with \(\Gamma = 1.16 \times 10^5 \ \Omega^2/Hz \) (live) and \(7.21 \times 10^3 \ \Omega^2/Hz \) (dead). The symbols + and × respectively show \(S^{(ex)}_V(f) \) for live and dead cells at different \(\Delta p \) ranging from 0.2 kPa to 3.0 kPa with an increment of 0.4 kPa under \(I \approx 7.75 \) nA. Inset shows the same data on a linear scale; error bars show single standard deviations. (c) Representative \(S^{(tot)}_V(f) \) for live and dead cells at three different \(\Delta p \) values, with \(I \approx 7.75 \) nA. (d) Averaged PSD \(S^{(ex)}_V(f) \) as a function of number \(N \) of cells in the microchannels. The bias current is \(I \approx 7.75 \) nA for all. Each data set consists of data points from at least three independent experiments. The line parallel to the \(x \)-axis corresponds to the excess noise power within the 0.2 Hz bandwidth for dead cells. The dashed lines are linear fits with the \(y \)-intercept fixed to the excess noise value for the dead cells. Inset shows three representative \(S^{(tot)}_V(f) \) curves for live \(K.\ pneumoniae \) cells with different \(N \) taken using the same bias \(I \approx 7.78 \) nA.

3. Number of cells

We next demonstrate how the number \(N \) of cells in the microchannel affects the measured noise characteristics. We increase the number of bacteria in the microchannels via growth for live cells and via trapping from flow for dead cells. We measure \(v(t) \) at fixed \(I \approx 7.75 \) nA as a function of \(N \). The inset of Fig. 5(d) shows \(S^{(tot)}_V(f) \) of live cells for three different \(N \) values, with the PSD increasing with \(N \) in the low-frequency region. The main plot in Fig. 5(d) shows \(S^{(ex)}_V(f) \) as a function of \(N \) obtained from many different data traces such as those in the inset. While \(S^{(ex)}_V(f) \) increases monotonically with \(N \) for live cells, it remains at a constant value (solid line) for dead cells. The increase of \(S^{(ex)}_V(f) \) with \(N \) for live cells indicates that the noise powers from individual cells are additive. The noise power of \(K. pneumoniae \) appears to be slightly larger than that of \(S. saprophyticus \). We note that, since \(R_m \) increases with \(N \), the fraction of the noise power that is coupled to the amplifier changes with \(N \). Thus, the data only provide a qualitative picture.
data this way removes the contribution of the thermal noise and all the \(I \) and \(R_m \) dependences. The data with different bias currents should then collapse onto a single curve [47]. \(S(f) \) of different systems, e.g., dead and live bacteria, can then be directly compared.

The collapsed \(S(f) \) data are shown in Fig. 6(a) for \(K. \ pneumoniae \) and in Fig. 6(b) for \(S. saprophyticus \), both in LB and PBS. For live bacteria in LB, \(S(f) \propto f^{-3/2} \). The noise of live cells in PBS is noticeably lower than that in LB. In all these measurements, \(N \approx 300 \pm 50 \).

2. Excess noise of dead bacteria and electrolytes

The black data traces in Figs. 6(a) and 6(b) show the average \(S(f) \) for dead \(K. pneumoniae \) and dead \(S. saprophyticus \), respectively, with the shaded regions corresponding to the error (single standard deviations). For dead bacteria, \(S(f) \propto Bf^{-3/2} \).

Microchannels filled with electrolytes (either LB or PBS) with no cells at both 37°C and 23°C show the same noise characteristics and levels as microchannels filled with dead bacteria. This can be seen clearly in the collapsed average \(S(f) \) data in Fig. 7. \(S(f) \) curves in Fig. 7 for no bacteria and dead bacteria also follow the same scaling behavior. In order to obtain these collapse plots, we follow the steps described above in Section II C 1 and use \(C(R_m) \) to correct the measured noise in different electrolytes. This is because the electrical conductance values, and hence the \(R_m \) values, for these devices differ significantly: at 37°C, the \(R_m \) values for devices filled with LB and PBS are 2.5 MΩ and 1.7 MΩ, respectively; at room temperature (23°C), the \(R_m \) value for LB is 3.0 MΩ; the electrical conductivity of PBS at 37°C, LB at 37°C and LB at 23°C are approximately 1.47 S/m, 1.00 S/m, and 0.83 S/m, respectively. These conductivity values agree with those reported in the literature [48–50].

In summary, the presence or absence of dead cells in the electrolyte does not change the background noise appreciably; nor does interchanging LB with PBS or decreasing the temperature to 23°C. More details are available in the Supplemental Material [51]. It may therefore be justifiable to collapse all the background data onto a single curve. All these suggest that the background noise is due to an intrinsic bulk process in the electrolyte—although we cannot conclusively rule out other possibilities, such as contact noise [52] or extrinsic noise.

IV. DISCUSSION

We first systematically look at possible artifacts, concomitants, and perturbations that may give rise to the observed noise. These include extrinsic noise, measurement artifacts, bacterial movements, flow forces, electrokinetic forces, electrical perturbations, and Joule heating. For each case, we provide estimates or experimental methods.

B. Normalized PSD of the excess noise

1. Excess noise of live bacteria

The \(I^2 \) dependence observed in Fig. 5(b) suggests that the noise is due to equilibrium resistance fluctuations. To analyze the asymptotic low-frequency behavior of the excess noise, we return to Eq. (5) and calculate the normalized PSD, \(S(f) \), of the excess noise. Normalizing the

\[
S(f) = \frac{\Delta f}{2} \left[\frac{B}{f^2} \right] \cdot \left(\frac{\tau}{1 + 4\pi^2 f^2 \tau^2} \right)
\]

The solid lines are fits to \(S(f) \) for dead \(K. pneumoniae \) and dead \(S. saprophyticus \) in LB. The shaded regions show the error (single standard deviations). Each data trace on live and dead cells in LB are obtained from three independent experiments. The data trace on live cells in PBS is from a single experiment. The black dashed lines are \(S(f) = B/f^2 \), with \(B = 6.15 \times 10^{-11} \) and \(B = 1.50 \). The solid lines are fits to \(S(f) = \frac{A f^\beta}{1 + 4\pi^2 f^2 \tau^2} \) using \(\tau = 10 \text{ s} \) and \(30 \text{ s} \) for \(K. pneumoniae \) (red) and \(S. saprophyticus \) (blue); the \(A \) values for both time constants for \(K. pneumoniae \) and \(S. saprophyticus \) are approximately \(7.30 \times 10^{-9} \) and \(5.10 \times 10^{-9} \), respectively.

FIG. 6. Collapse and scaling of the noise data. Normalized PSDs, \(S(f) \), of resistance fluctuations for live \(K. pneumoniae \) (a) and \(S. saprophyticus \) (b) in LB and PBS. The black data trace in each plot shows the average \(S(f) \) for dead \(K. pneumoniae \) in LB and dead \(S. saprophyticus \) in LB. The shaded regions show the error (single standard deviations). Each data trace on live and dead cells in LB are obtained from three independent experiments. The data trace on live cells in PBS is from a single experiment. The black dashed lines are \(S(f) = B/f^2 \), with \(B = 6.15 \times 10^{-11} \) and \(B = 1.50 \). The solid lines are fits to \(S(f) = \frac{A f^\beta}{1 + 4\pi^2 f^2 \tau^2} \) using \(\tau = 10 \text{ s} \) and \(30 \text{ s} \) for \(K. pneumoniae \) (red) and \(S. saprophyticus \) (blue); the \(A \) values for both time constants for \(K. pneumoniae \) and \(S. saprophyticus \) are approximately \(7.30 \times 10^{-9} \) and \(5.10 \times 10^{-9} \), respectively.
D indicate that electrokinetic forces are negligible compared to the steady drag force of the pressure-driven flow, which pushes the bacteria toward the nanoconstriction and jams them. We also investigate a possible temperature increase due to Joule heating and conclude that the increase is negligible. An applied electric field, i.e., the bias, can perturb the bacterial membrane and its proteins \([55–57]\), changing the influx and efflux rates. Our electric field strength is too small to induce any electrical perturbations, and bacteria appear to grow normally in our microchannels during our measurements. We therefore conclude that the observed noise is rooted in bacterial metabolism.

B. Nanomechanical fluctuations of bacteria

Active random oscillations and movements are commonly observed in many microorganisms and cells \([58–65]\). Due to active biochemical processes in the cytoplasm and cell membrane \([66, 67]\), highly non-motile bacteria are also expected to exhibit random nanomechanical oscillations. During these nanomechanical oscillations, the bacteria go through quasi periodic deformations, which in principle could get converted to electrical noise by our microchannel transducer \([53]\).

In order to get an order of magnitude estimate of nanomechanical fluctuations, we convert the observed electrical noise power into an active effective temperature \(T_{\text{eff}}\) for the bacteria. To this end, we first numerically calculate the rms thermal amplitude, i.e., nanomechanical thermal equilibrium noise, of a bacterium in several of its eigenmodes; we then convert the nanomechanical noise into electrical resistance noise by considering the change in the geometric cross-section of the microchannel due to the random deformations of 300 bacteria. Based on the responsivity of our microchannel transducer, the random thermal oscillations of 300 bacteria at the equilibrium temperature of 310 K (37°C) result in resistance noise with an rms value of \(\sim 0.8 \Omega\). Experimentally measured rms resistance noise, on the other hand, is \(\sim 200 \Omega\).

To match the observed noise levels, we estimate that a bacterium ought to attain an effective temperature of \(T_{\text{eff}} \sim 10^7\) K. While an active system such as a bacterium should have \(T_{\text{eff}} > 310\) K \([58–60, 64]\), this level of activity seems unreasonable. Nanomechanical motion of bacteria is thus an unlikely source for our observations. Details of the simulations, the assumptions made, and a thorough discussion of the results are provided in Appendix D.

C. Charge noise model

Our hypothesis is that the source of the fluctuations is electrical. The electrolyte-filled microchannels can be considered as one-dimensional conductors in which the primary charge carriers are Na\(^+\) and Cl\(^-\) ions. Each
microchannel is assumed to be long and uniformly filled with bacteria (i.e., \(N \approx 300 \)). Monovalent ions, such as \(K^+ \), \(Na^+ \) and \(Cl^- \), move into and out of the bacteria randomly; this causes fluctuations in the number of charged carriers within the conductors and hence resistance noise.

We first construct an electrical noise model of a single cell by assuming that the flux of a certain ion \(X \) into or out of the cell is proportional to the number of ions within the cell. For instance, if there are excess Na\(^+\) ions in the cell, Na\(^+\) ions will be transported out of the cell and vice versa. This is expected because the excess Na\(^+\) in the cell will change the Nernst potential for Na\(^+\) and activate the ion channel conduction in one direction. Thus, for any given ion \(X \),

\[
d\frac{d n_X}{dt} = -\phi(n_X),
\]

where \(n_X \) is the total number of intracellular \(X \) ions and \(\phi \) is the rate of transport of \(X \) ions through the cell membrane as a function of \(n_X \). The minus sign indicates that when intracellular value of \(n_X \) is decreasing the \(n_X \) flux is positive. Expanding around the equilibrium value \(n_X = \bar{n}_X + \Delta n_X \), we write

\[
d\frac{d\Delta n_X}{dt} = -\frac{\Delta n_X}{\tau_X} + \xi_X,
\]

with \(\xi_X \) being a white noise term. Here, \(\phi(\bar{n}_X) = 0 \), and \(\tau_X = \left(\frac{\partial \phi}{\partial n_X} \bigg|_{\bar{n}_X} \right)^{-1} \) can be regarded as a lifetime for ions or the relaxation time for an ionic perturbation within the cell. From this, we find [68, 69]

\[
S_{n_X}(f) = \frac{4(\Delta n_X)^2 \tau_X}{1 + 4\pi^2 f^2 \tau_X^2}
\]

for the PSD for the fluctuations of the number \(n_X \) of intracellular ions of type \(X \) in a single bacterium. Since we are interested in estimating an order of magnitude, we assume that the \(\tau_X \) for different ions are roughly equal and define an overall effective time constant \(\tau \) such that \(\tau \approx \tau_X \). We also assume that the noise powers generated by bacteria are additive. Then, the PSD of the fluctuations in the total number of charge carriers within our microfluidic resistor containing many bacteria should be expressible in the form

\[
S_n(f) = \frac{4(\Delta n)^2 \tau}{1 + 4\pi^2 f^2 \tau^2},
\]

where \((\Delta n)^2 \) is the rms value of the fluctuations in the number of charge carriers. Note that the particle flux at equilibrium is assumed to be zero—as opposed to the case in generation recombination noise in semiconductors [68].

For the equivalent microfluidic resistor \(R_m \) (with ten microchannels), the relationship between the PSD of the resistance fluctuations, \(S_R(f) \), and the PSD of the carrier number fluctuations, \(S_n(f) \), is [69]

\[
S(f) = \frac{S_R(f)}{R_m^2} = \frac{S_n(f)}{n^2}.
\]

Here, \(n \) is the total number of charge carriers in the resistor. Under the assumption of spatial uniformity, Eq. (11) holds for a single microchannel (out of the ten) (see Appendix E), which has \(n \approx 4 \times 10^{18} \) at the 85 mM NaCl concentration of LB. Thus, there are \(n \pm \Delta n_{\text{rms}} \) charge carriers within the LB filling the microchannel due to the noise generated by bacteria.

We do not see the corner frequency in our data and thus cannot determine \(\tau \) from our experiments. We turn to previous work [14] for an approximate value of \(\tau \). In this remarkable paper [14], the autocorrelation functions of spontaneous electrical blinks from single bacterial cells were shown to decay exponentially over a period of \(10 - 30 \) s. This suggests that bacterial membrane potentials and the intracellular ion concentrations relax with a time constant \(10 \leq \tau \leq 30 \) s. For 10 s and 30 s, we obtain the fits shown in Fig. 6 with \((\Delta n)^2 \sim 5 \times 10^{13} \) for 30 cells at equilibrium yielding \(\Delta n_{\text{rms}} \sim 1.3 \times 10^6 \) per cell. We have estimated the other relevant time constants in the system due to flow, drift and diffusion, and found that the diffusion time constant in the system is close to 10 s. It is also noteworthy that the noise data in Fig. 6 start to deviate from the \(1/f^2 \) asymptote below 0.06 Hz, suggesting that another noise process might be dominating at our lowest frequencies.

D. Estimation of the membrane potential noise

To estimate the noise in the membrane potential due to the charge noise, we use two approaches.

In the first, we assume that the noise in the transmembrane ionic current results in fluctuations in the total charge in close proximity of the membrane, i.e., on the plates of the capacitor in the circuit in Fig. 1(a). Then, \(e_n \sim \frac{\Delta n_{\text{rms}}}{C} \approx 3.5 \) V, with \(\Delta n_{\text{rms}} \approx 1.3 \times 10^6 \), \(C \approx 6 \times 10^{-14} \) F and \(e \approx 1.60 \times 10^{-15} \) C [12] with \(C \) being the membrane capacitance of the cell.

In the second, we estimate \(e_n \) from fluctuations in the intracellular ion concentrations. We assume that the ions are distributed uniformly inside (and outside) the cell and that only K\(^+\), Na\(^+\), and Cl\(^-\) ions contribute to the steady-state value of \(V_{\text{mem}} \). We find the change in the membrane potential with respect to each ion concentration from the Goldman-Hodgkin-Katz equation [12] and find the total rms change by adding each contribution as
where R is the universal gas constant, T is the temperature, F is Faraday’s constant; p_X is the relative membrane permeability, and $[X]_i$ and $[X]_o$ are the uniform intracellular and extracellular concentrations of the ion. The rms fluctuations in intracellular ion concentration for each ion is estimated to be of order, $\Delta[X]_i \sim \Delta_X^{(i)} \sim 10^{24} \text{ m}^{-3}$, for a cell with volume $V_b \sim 10^{-18} \text{ m}^3$ [12]. The extracellular ion concentrations are assumed to remain constant. By substituting the $\Delta[X]$ values along with the values of p_X, $[X]_i$, and $[X]_o$ into Eq. (12), we find $e_n \sim 1.3 \text{ mV}$. More details are available in Appendix E 2.

These two extreme values for the membrane potential fluctuations, i.e., 1.3 mV and 3.5 V, suggest that the fluctuations depend strongly upon how nonuniformities in ion concentrations get dissipated within the “crowded environment” of the cell. We estimate that an ion would probably diffuse a distance equal to the length scale of a bacterium in $\sim 10 \text{ ms}$ [70]. This indicates that a more accurate noise model for the membrane potential and the electrical fluctuations of the entire bacterium should take into account intracellular diffusion.

V. CONCLUSIONS

Our measurements represent a significant step in understanding the role of fluctuations in bacterial ion homeostasis. By carrying out electrical noise measurements on live and dead bacteria, we have shown evidence that the charge state of live bacteria fluctuates over time. A direct consequence of this observation is that intracellular ion concentrations and the membrane potential V_{mem} both have strongly fluctuating components. It is well established that V_{mem} and intracellular ion concentrations in bacteria affect a number of cellular processes in a crucial manner. Among these processes are ATP synthesis [6], cell division [7], cell motility [71], antibiotic resistance [8], environmental sensing [3, 4] and electrical communication between cells [5, 72]. It is thus reasonable to expect that V_{mem} and the intracellular ion concentrations should practically remain constant over time, because drastic changes and large fluctuations in V_{mem} and ion concentrations would strongly perturb all the above-mentioned cellular processes. More and more experiments, including ours, suggest that the ionic makeup of the cell, and hence V_{mem}, fluctuates strongly. It remains to be seen whether bacteria utilize these fluctuations to its advantage or whether there are built in mechanisms of noise evasion.

We have also established time-resolved electrical resistance measurements as a sensitive tool for studying bacteria. Even lower frequencies and higher sensitivities may be achieved in future studies by redesigning the microfluidic resistor, e.g., by incorporating a nulling bridge in the design or and reducing the background fluctuations. It may also be possible, in principle, to do these experiments in larger channels with many more bacteria—provided that any bacteria movements can be suppressed. Our microfluidic resistor is designed to have a source resistance such that efficient coupling of noise can be achieved to a low-frequency high-impedance amplifier. This requirement can be circumvented, for instance, by performing the measurement at high frequency, where a larger channel with a source resistance close to 50 Ω can be used. Finally, understanding the source of the fluctuations in the electrolyte is also a problem of fundamental relevance. To this end, one may perform experiments with different electrodes and in different electrolytes.

ACKNOWLEDGMENTS

This work was supported by NIH (1R21AI133264-01A1). H. G. acknowledges the Boston University Nanotechnology Innovation Center BUnano Cross-Disciplinary Fellowship. The authors thank V. Yakhot and J. Tien for helpful discussions.

K. L. E. discloses a potential of conflict of interest, as he is the cofounder of a company, Fluctuate Diagnostics, which aims to commercialize this technology. No potential conflicts of interest exist for Y. Y. and H. G.

Appendix A: EXPERIMENTAL DETAILS

1. Device design and fabrication

Our microfluidic resistor is essentially a continuous polydimethylsiloxane (PDMS) microfluidic channel that is bonded onto a glass substrate with pre-patterned metallic electrodes. The device is fabricated using standard soft lithography [25]. The microfluidic channel is made up of two structures with different length scales: the large mm-scale channel narrows down, at its center, to ten smaller parallel microchannels ($l \times w \times h \approx 100 \times 2 \times 2 \mu m^3$). Each microchannel has a nanochannel constriction ($l \times w \times h \approx 5 \times 0.8 \times 2 \mu m^3$) at one end with a cross-sectional area close to that of a single bacterium. More details about the device design and fabrication can be found in [25].
2. Bacteria preparation

Two microorganisms, *Klebsiella pneumoniae* (ATCC 13883) and *Staphylococcus saprophyticus* (ATCC 15305), are purchased from American Type Culture Collection (ATCC, Rockville, MD). *K. pneumoniae* is a Gram-negative, non-motile, rod-shaped bacterium that has a length of 2 – 3 µm and a cross-sectional area of 0.8 µm² [34]. *S. saprophyticus* is a Gram-positive, non-motile, spherical bacterium that has a diameter of 1 µm [35]. We use Luria-Bertani (LB) Lennox broth (pH 6.6) (Sigma-Aldrich, St. Louis, MO) as the growth medium. The broth consists of tryptone (10 g/L), yeast extract (5 g/L), and NaCl (5 g/L). The ionic strength is ∼ 85 mM. We also use phosphate buffer saline (PBS) (pH 7.4) (Lonza Walkersville Inc., Walkersville, MD) in some experiments. Details of the procedure for culturing the bacteria can be found in [25]. We measure the pH values of the media using a Pocket Pro® pH Tester (Hach, Loveland, CO) at 37°C. The incubation of bacteria in the media does not change the pH values, and the pH values of the media remain unchanged over the entire period of our experiment (∼ 3 hours).

To fix the cells, the following steps are used. The cells are first washed twice in PBS, the washed cells are then fixed in glutaraldehyde (Sigma-Aldrich, St. Louis, MO) in LB for 2 hours at 37°C. The concentration of glutaraldehyde used is 2.5% (vol/vol) [73]. After this step, the fixed cells are washed twice in PBS and subsequently re-suspended in LB for our noise measurements. Glutaraldehyde is a chemical fixative that crosslinks proteins on bacterial surfaces and inhibits transport processes [36]. The fixation solution has been shown to effectively preserve morphology of both bacterial cells and surface ultrastructures for a period longer than the duration of our experiments (∼ 3 hours) [73, 74]. This fixation method is not expected to change the susceptibility of bacteria to electrical perturbations [see Appendix D1].

3. Experimental setup

The experiments are performed on an Axio observer inverted microscope (Carl Zeiss, Oberkochen, Germany). We use a PeCon 2000–2 Temp Controller (PeCon GmbH, Erbach, Germany). At the beginning of each experiment, the sample is loaded into the microfluidic resistor under a pressure-driven flow established through the microfluidic channel using the flow controller OBI-Mk3 (Elveflow, Paris, France). More details regarding sample loading can be found in [25].

Our experiments investigate the dependence of the excess noise on three experimental parameters: the amplitude of the bias current I, the pressure gradient Δp of the bulk flow, and the number N of bacterial cells. When we focus on one parameter, the other two parameters are maintained more or less unchanged. Briefly, for studying the I dependence, we measure the voltage noise for $0.70 \text{ nA} \leq I \leq 16.50 \text{ nA}$, while keeping $N \approx 300 \pm 50$ and $\Delta p \approx 0.6 \text{ kPa}$. For studying the Δp dependence, we measure the voltage noise under constant Δp in the range $0.2 \text{ kPa} \leq \Delta p \leq 3.0 \text{ kPa}$ (incremented by 0.4 kPa), while we keep $I \approx 7.75 \text{ nA}$ and $N \approx 300 \pm 50$. For studying the N dependence, we measure the voltage noise with $20 \leq N \leq 500$, while maintaining $I \approx 7.75 \text{ nA}$ and $\Delta p \approx 0.6 \text{ kPa}$. All measurements are performed at 37°C, unless indicated otherwise.

4. Electrical measurements and data acquisition

A SR830 DSP lock-in amplifier (Stanford Research Systems, Sunnyvale, CA) is used for the measurements. We record the output signals from the lock-in amplifier at a sampling frequency of 128 Hz using a data acquisition card NI 6221 (National Instruments, Austin, TX) through a LabVIEW (National Instruments, Austin, TX) Virtual Instrument interface. Microscope images of the bacterial cells in the microchannels are acquired on an Axio observer inverted microscope (Carl Zeiss, Oberkochen, Germany) with 5× and 63× objectives, an AxioCam 503 mono camera (Carl Zeiss, Oberkochen, Germany), and ZEN image acquisition software (Carl Zeiss, Oberkochen, Germany). Most data processing is performed using Origin (MicroCal Software, Northampton, MA).

Appendix B: AUTO-CORRELATION FUNCTION

In the 1/f noise literature, the PSD of noise is more commonly displayed than the autocorrelation function—although there are some exceptions [75]. This is partially due to the following reason: to obtain the asymptotic 1/f behavior of the noise, one needs to subtract the high-frequency white noise tail, as we have done in Section II C 1 (for instance, see Eq. (5) and Fig. 6). Thus, it becomes harder to visualize asymptotic noise characteristics in the time domain. Regardless, it may be helpful to look at the autocorrelation function here for comparison.

Figure 8 shows the normalized autocorrelation functions of the voltage fluctuations, $C_v(\Delta t) = \frac{\langle v(t) \cdot v(t+\Delta t) \rangle}{\langle v(t)^2 \rangle}$, for different conditions. Here, the angular brackets indicate averaging over time and Δt is the time lag. Each data trace in Fig. 8 is obtained from 12 20-second-long $v(t)$ data traces. Briefly, $C_v(\Delta t)$ of a single trace is computed, smoothed, and averaged.

The increase in $C_v(\Delta t)$ at short time scales, $\Delta t < 0.1 \text{ s}$, is due to the high frequency fluctuations, which are removed from the PSDs. At large timescales, $\Delta t > 3\text{s}$, $C_v(\Delta t)$ becomes inaccurate because the data traces are only 20 s long. The dip seen in the data, in particular, may be an artifact due to the finite length of the data. The shading in Fig. 8 approximately corresponds to the...
frequency range of the PSDs shown in Fig. 6. The bacteria data in Fig. 8 can be fit to exponential decays with time constants of \(\sim 10 \) s. In this respect, the autocorrelation function does not provide any new insight into the phenomena.

Appendix C: THE DIMENSIONLESS FUNCTION \(C \)

In Section III.B, we express the PSD of the current-dependent excess voltage noise measured between the nodes \(A \) and \(B \) in Fig. 2(b) as Eq. (2). Here, the factor \(C \) is a dimensionless coefficient that quantifies how the measured noise at the input of our electronics is attenuated as compared to the noise generated in the microfluidic resistor. In our experiments, the value of \(R_m \) changes with the number \(N \) of bacteria in the microchannel and/or the resistivity of the different electrolytes. The parasitic capacitance coming mostly from the wiring stays more or less constant. Thus, the factor \(C \) is assumed to be only a function of \(R_m \). Using the values given in Section II.B for \(C_m, Z_m, \) and \(\omega_o \), we calculate \(C \) as a function of \(R_m \), as shown in Fig. 9. When comparing measurements with different \(R_m \) values, we deconvolute the effects of \(R_m \) from the measured noise for consistency by using the \(C(R_m) \) corresponding to the \(R_m \) value of the microfluidic resistor, as described in Section II.B.

Appendix D: PERTURBATIONS, CONTROL EXPERIMENTS, AND VARIOUS OTHER ESTIMATES

1. **Electrical perturbations**

 At the frequency of the excitation current \(f_o = 160 \) Hz, the expected change in membrane potential \(\Delta \Psi \) due to the applied electric field \(E(f_o) \) can be calculated using the Schwan equation
 \[
 \Delta \Psi = \frac{1.5aE(f_o)}{\sqrt{1 + (2\pi f_o T)^2}}. \tag{D1}
 \]
 Here, \(a \) is the radius of the bacterium and \(T \) the relaxation time of the membrane [76, 77]. For a rodlike bacterium like \(K. pneumoniae \), we can approximate \(a \approx 1 \) \(\mu \)m and \(2\pi f_o T \ll 1 \) [56]. The highest electric field in our experiment, \(E(f_o) = 350 \) V/m, corresponds to fluctuations in membrane potential of \(\Delta \Psi_{rms} = 0.52 \) mV. Thus, electroporation of the bacteria membrane as well as stimulation of any voltage-gated ion channels are unlikely [55–57]. The largest current density in our experiments (580 A/m\(^2\)) is also expected to have no harmful effects on the bacteria [78, 79].

2. **Electrokinetic and flow forces on a bacterium**

 Here, we compare the magnitude of the various forces acting on the bacteria in the microchannels. In particular, bacteria experience an electrokinetic force induced by the oscillating voltage and a hydrodynamic drag force due to the pressure driven flow. Since these non-motile bacteria are in the Stokes flow regime, estimating the flow velocities will be sufficient to assess the magnitude
of the forces. We thus look at the pressure-driven component, $u_{\Delta p}$, and the electrokinetic component, u_{EK}, of the flow velocity in the microchannel in separate control experiments.

The pressure-driven velocity $u_{\Delta p}$ at $\Delta p \approx 0.6$ kPa can be estimated through optical tracking. During an experiment with live bacteria, bacteria entering the microchannels are optically tracked, as shown in Fig. 10(a). We use ImageJ [80] to analyze the videos which have a frame-rate of 10 fps and a resolution of ±200 nm. Each bacterium is tracked from the moment it enters the microchannel until its collision with the bacteria already trapped by the nanoconstriction [Fig. 10(a)]. The velocity is obtained by a linear fit of the position over time as shown in Fig. 10(b). The velocity depends on the number N_1 of bacteria already trapped in the microchannel [Fig. 10(c)], because each bacterium trapped in the microchannel increases the hydraulic resistance of the microchannel. A microchannel gets completely filled with bacteria when $N_1 \approx 40$. During the experiments, about $300 - 350$ bacteria are trapped in all ten microchannels. From Fig. 10(c), we estimate the steady-state flow velocity during electrical noise measurements to be $u_{\Delta p} \approx 2.5 \mu m/s$.

The electrokinetic flow velocity is measured in separate experiments by tracking the sinusoidal displacements of single live and dead bacteria at various carrier frequencies f and electric field strengths E in the absence of any pressure-driven flow. Figure 11(a) shows an example of the oscillation cycle of a dead bacterium at $f = 0.1$ Hz with $E = 1,041$ V/m. Bacteria are observed for 30 s with a framerate of 30 fps, and the displacement is again tracked using ImageJ. Figure 11(b) shows the displacement amplitudes A_{EK} of a live and a dead bacterium collected at $f = 0.1$ Hz for five different electric field strengths. The dashed lines show a linear fit passing through the origin. No significant changes in A_{EK} are found between live and dead bacteria, suggesting that neither electrokinetic forces nor friction coefficients are affected by fixation with glutaraldehyde.

Our goal is to determine the largest value of the electrokinetic velocity in our experiments obtained at an applied electric field strength of $E(f_o) = 350$ V/m at the carrier frequency of $f_o = 160$ Hz. Because of resolution limits, we cannot directly measure this quantity. Instead, we measure the displacement amplitudes of a single bacterium at low frequencies and high electric fields. The value of $E(f_o)$ is slightly lower than $E(f \lesssim 10$ Hz) due to attenuation by the parasitic capacitance in our system, as shown by the calculated blue curve in Fig. 11(c). For $f \leq 3$ Hz, we convert the displacement amplitudes to velocity via $u_{EK}(f) = 2\pi f A_{EK}(f)$. We find $u_{EK}(f \leq 3$ Hz) $\approx 1.6 \mu m/s$, corresponding to an electrokinetic mobility of $\mu_{EK} \approx 3.8 \times 10^{-9} m^2/(V \cdot s)$ through the relation $u_{EK}(f) \approx \mu_{EK} E(f)$. Using this mobility value, we find the maximum electrokinetic velocity at 160 Hz to be $u_{EK}(f_o) \approx 1.3 \mu m/s$.

In summary, the electrokinetic force acting on the bacteria is measured to be smaller than the drag force due to the pressure-driven flow. Hence, the bacteria are pushed toward the nanoconstrictions in the microchannels. Once loaded under the high pressure flow, the cells tend to stay in place and not move at all.

3. Time constants

There are a number of time constants in the system, in addition to the charge relaxation time of a single bacterium. Here, we discuss these and provide estimates for each. Since there is a steady flow of velocity $2.5 \mu m$ from inlet to outlet, the microchannels get flushed in a time scale $\tau_f \sim \frac{200 nm}{u_{\Delta p}} \sim 40$ s. The diffusion time constant, $\tau_d \sim \frac{1^2}{D} \sim 10$ s, where $D \sim 10^{-9} m^2/s$ is the diffusion coefficient for small inorganic cations in water [81]. The charge relaxation time of the bacteria and τ_d are of the same order. Finally, ions drift in the microchannels due to the electric field. Since we are using an ac field, the cations drift on the average $l_{\mu} \sim \frac{\mu E f_o}{D} \sim 110$ nm during half of a cycle of the oscillating field. Here, the mobility for small cations is taken as $\mu \sim 10^{-7} m^2/(V \cdot s)$ [82] and the largest electric field value is used for the estimate. Since $l_{\mu} \ll l$, drift does not play a role in our observations.

4. Temperature increase due to Joule heating

We estimate the temperature increase in our microchannels due to Joule heating using a control volume approach. We use one of the ten channels as the control volume. Conservation of energy per unit time in steady state leads to:

$$\dot{m}c_p(T_\infty - T_C) + I_1^2 R_1 - q"A = 0.$$ \hfill (D2)

Here, \dot{m} is the mass flow rate, c_p is the specific heat capacity of the broth, $T_\infty = 310$ K is the temperature of our sample far removed from the channel, T_C is the microchannel temperature, $I_1 = \frac{l_{\mu}}{10} \approx 1.7$ nA is the maximum current passing through the channel, $R_1 = 10 R \approx 31$ MΩ is the channel resistance, $q"$ is the heat flux, and A is the relevant area of channel wall. The mass flow rate can be expressed as $\dot{m} = \rho_l wh u_{\Delta p}$, where $\rho_l \approx 1,000$ kg/m3 is the density of the broth. We use $c_p \approx 4,000 J/(kg \cdot K)$ [83]. We simplify the calculation of $q"$ using a one-dimensional model by neglecting any heat flux through the PDMS due to the smaller thickness $d = 1$ mm and higher thermal conductivity of the glass substrate [84]. The heat flux through the glass substrate can then be approximated as

$$q" \approx k \left(\frac{T_C - T_\infty}{d} \right).$$ \hfill (D3)

Here, $k = 1.4$ W/(m \cdot K) is the thermal conductivity of glass. With the contact area between broth and glass
substrate $A = lw$, the channel temperature can then be expressed as

$$T_C = T_\infty + \frac{I_1^2 R_1}{mc_p + k \nu T_r}.$$ \hfill (D4)

For the maximum current used in our experiments, the temperature in the microchannels increases by $\sim 3.2 \times 10^{-4} \, \text{K}$.

5. Resistance fluctuations due to nanomechanical fluctuations of a bacterium

a. Finite element model

A finite element model of the nanomechanical dynamics of a $K.\ pneumoniae$ cell in water is created using COMSOL Multiphysics$^\text{TM}$. The bacterium is modeled as a hollow cylinder with length $l_{cyl} = 2 \, \mu m$, radius $r_{cyl} = 500 \, \text{nm}$ and wall thickness $t = 26 \, \text{nm}$, with two semi-spheres of the same radius and thickness attached to both ends, as shown in Fig. 12(a) \hbox{[34]. The cell wall is modeled as a linear elastic material with Young’s modulus $E = 49 \, \text{MPa}$, Poisson’s ratio $\nu = 0.16$, and density $\rho_b = 1,100 \, \text{kg/m}^3$ \hbox{[34, 85, 86]. The inside of the bacterium is modeled as water under turgor pressure ($p_T = 29 \, \text{kPa}$) \hbox{[34]. The bacterium is surrounded by a sphere of water under atmospheric pressure. Both bodies of water are modeled as viscous compressible Newtonian fluids, and the diameter of the surrounding water sphere is chosen as 100 μm such that all viscous and thermal losses can be captured within the model [Fig. 12(b)] \hbox{[87]. A pre-stressed eigenfrequency study is used, which consists of a stationary solver followed by an eigenfrequency solver.}}

For the stationary step, a boundary load is placed on the inner wall of the bacterium to model the expansion...
due to the turgor pressure. For the eigenfrequency step, a multiphysics coupler connects the Solid Mechanics and Thermoviscous Acoustics modules.

The matrix x_0 contains the initial radial and axial coordinates for each of the N finite elements comprising the axisymmetric cell surface. The turgor pressure expands the shell coordinates to x_0 [Fig. 12(c)]. The time dependent coordinates of the N finite elements during eigenmode oscillations are of the form $x_0 + a_n \cos(\omega_n t)$, where a_n is the modal amplitude, i.e., the amplitude along the eigenvector, and ω_n is the eigenfrequency. An example of the deformations in one of the eigenmodes is shown in Fig. 12(d).

In order to make more quantitative comparisons, we will use the strain energy U. Strain energy will allow us to express a given rms oscillation amplitude in units of the strain energy $U^{(th)}$ of the thermal fluctuations and define an approximate effective temperature. To this end, we can easily find the modal amplitude $a_n^{(th)}$ for each mode, which results in a strain energy of $U^{(th)} = k_B T$, where k_B is the Boltzmann constant and $T = 310$ K is the equilibrium temperature. One could think of $U^{(th)}$ as the approximate energy of a fixed bacterium—assuming the physical properties of the fixed bacterium do not change upon chemical fixing.

In live bacteria, nanomechanical fluctuations originating from active processes must be dominant compared to the thermal fluctuations. Nanoscale movements due to active processes has been observed in different human and animal cells [58–63], giant vesicles [64], yeast [65], as well as motile and non-motile bacteria [66, 88]. For non-motile bacteria, these active processes include, but are not limited to, the activity of ion pumps [89], the movement of proteins across the outer membrane [90, 91], and the fluctuations in the cytoskeleton (e.g., due to motor proteins) [92]. A live bacterium would thus have a strain energy $U^{(act)}$ that is significantly larger than the thermal strain energy $U^{(th)} = k_B T$, discussed above. The corresponding effective temperature, $k_B T_{eff} = U^{(act)}$, is also larger than the equilibrium temperature $T = 310$ K.

b. Conversion of deformations into resistance changes

The rms resistance change r across a single microchannel with cross-sectional area $A_c = 4 \, \mu m^2$ and length $l_c = 100 \, \mu m$ caused by one bacterium oscillating coherently with an energy equal to its equilibrium thermal energy can be approximated as

\[
 r \approx \frac{\rho}{2 \sqrt{2}} \left| \frac{i_b^{(max)}/2}{A_c - A_b^{(max)}(x)} \frac{dx}{dx} - \frac{i_b^{(min)}/2}{A_c - A_b^{(min)}(x)} \right| \left| -\frac{1}{A_c} \right|.
\]

(D5)

Here, r is calculated by finding the difference in microchannel resistance between the maximum and minimum deformation states of the bacterium [shown as 1 and 2 in Fig. 12(d)]. The parameters $i_b^{(max)}$, $i_b^{(min)}$, $A_b^{(max)}$, and $A_b^{(min)}$ can be understood as the respective bacterial lengths and cross-sections of these deformed states. The value of ρ for LB broth has been determined as $\rho \approx 1.2 \, \Omega \cdot \text{m}$ from previous measurements [25]. To account for the 300 ± 50 bacteria in our experiments, we assume 30 bacteria in each of the ten microchannels, all oscillating in the same eigenmode. In this step, by assuming that the oscillations are not coherent but their noise powers are additive, we make a transition from eigenmode oscillations to fluctuations. We calculate the total rms resistance fluctuations in our system as $r_{300} \approx \sqrt{30} r$.

We show the obtained values for r_{300} for four different eigenmodes in Table I. Here, the modal strain energies are set to the thermal energy $U^{(th)}$ as described above, and hence the effective temperature is 310 K. In order to compare the simulated results with the resistance fluctuations observed in our measurements, we find the experimental rms resistance fluctuations by calculating the variance of the resistance fluctuations from the measured PSDs [see Fig. 3] in the frequency range $0.05 \, \text{Hz} \leq f \leq 1 \, \text{Hz}$ and properly subtracting the background noise power. The experimentally-determined value is $r_{300} \approx 214 \, \Omega$. We then find the modal amplitude $a_n^{(hot)}$ from numerical simulations, at which the simulated r_{300} matches the experimental value based on Eq. (D5) and $r_{300} \approx \sqrt{30} r$. We do this exercise for the eigenmode with the largest thermal r_{300} value, i.e., the eigenmode at 8.26 MHz with $r_{300} \approx 0.766 \, \Omega$. The effective temperature T_{eff} at which active fluctuations attain the experimentally measured r_{300} is determined by using the strain energy ratios as $U^{(act)} / U^{(th)} = T_{eff} / T$. As a result, we obtain that $T_{eff} \approx 7 \times 10^7$ K for the bacteria in the experiments.

c. Discussion

Our eigenfrequency and quality factor values for the first mode generally agree with those in other simulations where bacteria are modeled as floating shells filled with and surrounded by water [90–95]; they are, however, significantly lower than the values obtained in simulations where bacteria are modeled as solid spheres attached to a
substrate and surrounded by air [96]. We also note that the following factors seem to affect the results in the literature: (i) the material properties of the bacterial shell; (ii) boundary conditions; (iii) computing algorithm. We are not sure which physical mechanisms dominate the energy dissipation. We also don’t know whether or not the Q factors observed here and in the literature are reasonable.

Because of a lack of understanding of the nanomechanical fluctuations of bacteria at low frequencies, our model comes with shortcomings and only provides some level of comparison. First, we are essentially comparing thermal fluctuations with 1/f noise. Thermal fluctuations in this system are spread over a broad bandwidth on the order of a few MHz, as suggested by the Q values, whereas the observed 1/f noise is at low frequency within 2 Hz from dc. Second, we assume that the active cell movements come with the spatial deformations of the eigenmodes—even though active processes should excite the cell deformations at random locations. Regardless, the enormous difference between the observed and computed strain energies has convinced us that nanomechanical motion is an unlikely source for our observations.

Appendix E: ELECTRICAL NOISE CALCULATIONS

1. Determining charge noise from resistance noise

As noted in the main text, the relationship between the PSD of the resistance fluctuations, $S_R(f)$, and the PSD of the carrier number fluctuations, $S_n(f)$, is given by Eq. (11). As shown in Eq. (11), both $S_R(f)$ and R_m are resultant values for the entire microfluidic resistor, i.e., the ten microchannels in parallel. It is easy to show that $S_R(f) = \frac{S_R(f)}{R_m^2}$, where R_1 and $S_R^{(1)}(f)$ are respectively the resistance value and the PSD of the resistance fluctuations of a single microchannel (out of the ten). Since $R_1 = \rho_\text{dc} \frac{l}{A c}$, $R_m = \rho_{\text{10A}} l / A_c$, $S_R^{(1)}(f) = S_{\rho} \frac{l^2}{A_c}$ and $S_R(f) = S_{\rho} \frac{l^2}{100 A_c}$, we arrive at $S(f) = \frac{S_R(f)}{R_m} = \frac{S_R^{(1)}(f)}{R_1} = \frac{S_{\rho}}{\rho}$ for spatially uniform fluctuations. Here, S_{ρ} is the PSD of the resistivity fluctuations. We make estimates by focusing on a single microchannel (out of the ten), in which $n \approx 4 \times 10^{10}$ at the 85 mM NaCl concentration of LB. There are $N \approx 30$ bacteria in

FIG. 12. (a) Cross-section of a bacterium (K. pneumoniae) immersed in water. The bacterium is modeled as a hollow cylinder with wall thickness t, length l_{cyl} and radius r_{cyl}, with a hollow semi-sphere of the same thickness on each end. The inside of the bacterium is modeled as water under turgor pressure p_T [34]. (b) In the model, the bacterium is immersed in a sphere of water with 100 μm diameter to capture all viscous, acoustic and thermal losses. The logarithmic plot of the normalized fluid velocity shows that the fluid can be assumed as quiescent at the boundary of our model. The scale bar is 20 μm. (c) Steady-state expansion due to turgor pressure. The induced tension in the cell wall affects the eigenmode oscillations. (d) Maximum (1) and minimum (2) deformations during the oscillation cycle of the eigenmode at 8.26 MHz. The amplitude field shown gives a strain energy that is equal to the thermal energy at 310 K. The respective lengths and cross-sections of the bacterium are represented as $l_{b}^{(\max)}$, $l_{b}^{(\min)}$, $A_{b}^{(\max)}$, and $A_{b}^{(\min)}$. The eigenmode deformations are artificially scaled up by a scale factor of 2000 for enhancing the contrast.
TABLE I. Estimated parameters for the simulated nanomechanical eigenmodes of *K. pneumoniae*. We only show selected eigenmodes which have the largest deformations. The first column shows the deformation of the bacterium in the eigenmode. The deformations are artificially scaled up by a scale factor of 2000 for better contrast. The second and third columns show the eigenfrequency and the quality factor of the mode, respectively. The fourth column lists the effective temperature for the strain energy, determined by equating the strain energy to $k_B T_{\text{eff}}$, as described in the text. The last column is the rms value of the resistance fluctuations r_{300} caused by 300 bacteria at a strain energy of $k_B T_{\text{eff}}$. The bottom row shows the experimental values for comparison.

Eigenmode	f [MHz]	Q	T_{eff} [K]	r_{300} [Ω]
$\times 10^{-12}$m				
70	8.26	3.09	310	0.766
60	11.88	2.19	310	0.524
50	15.95	2.15	310	0.219
40	18.48	1.69	310	0.012

Experiment - - - 2.4×10^7 214.0

a single microchannel. The result holds if we focus on the entire microfluidic resistor, where $n \approx 4 \times 10^{11}$ and $N \approx 300$.

2. Estimating voltage noise from charge noise

To find the value of τ, we turn to previous work [14]. In Fig. 3 of [14], the authors have shown that spontaneous electrical blinks in bacteria decay exponentially on timescales $10 \text{s} \lesssim \tau \lesssim 30 \text{s}$. These timescales are obtained by fitting the autocorrelation function of the fluorescence intensity measured from single bacterial cells to a single exponential decay. For $\tau = 10 \text{s}$ and 30s, we find the rms value of the fluctuations in the number of ions for one bacterium is $\Delta n_{\text{rms}}^{(1)} \approx 1.3 \times 10^6$, based on our data shown in Fig. 6 in the main text.

In the second approach provided in the main text, we estimate the noise, ϵ_n, in the membrane potential, V_{mem}, from the fluctuations in the intracellular ion concentrations. We assume that the ions are distributed uniformly inside and outside the cell. We focus on the K^+, Na^+, and Cl^- because these three make the largest contribution to the steady-state value of V_{mem} (i.e., the resting membrane potential). The Goldman-Hodgkin-Katz (GHK) equation [12] provides the value of V_{mem} as

$$V_{\text{mem}} = \frac{RT}{F} \ln \left(\frac{p_K[K^+]_o + p_{Na}[Na^+]_o + p_{Cl}[Cl^-]_i}{p_K[K^+]_i + p_{Na}[Na^+]_i + p_{Cl}[Cl^-]_o} \right).$$

(E1)

Here, $R = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ is the universal gas constant, $T = 310 \text{ K}$ is the temperature, $F = 96,485 \text{ C} \cdot \text{mol}^{-1}$ is Faraday’s constant; p_K, p_{Na}, and p_{Cl} are respectively the relative membrane permeabilities; $[K^+]_i$, $[Na^+]_i$, and $[Cl^-]_i$ are respectively the intracellular ion concentrations; and $[K^+]_o$, $[Na^+]_o$, and $[Cl^-]_o$ are respectively the uniform extracellular ion concentrations for K^+, Na^+, and Cl^-.

For a bacterium, the relative membrane permeabilities are $p_K : p_{Na} : p_{Cl} = 1 : 0.05 : 0.45$; the intracellular ion concentrations are $[K^+]_i = 150 \text{ mM}$, $[Na^+]_i = 15 \text{ mM}$, and $[Cl^-]_i = 10 \text{ mM}$; the extracellular ion concentrations are $[K^+]_o = 4 \text{ mM}$, $[Na^+]_o = 145 \text{ mM}$, and $[Cl^-]_o = 110 \text{ mM}$. By substituting the values of the relative permeabilities p_X, the intracellular ion concentrations $[X]_i$, and the extracellular ion concentrations $[X]_o$ into Eq. (E1), we find the steady-state value of the membrane potential to be $V_{\text{mem}} \approx -67.92 \text{ mV}$. For a given ion X with charge z, we use $E_X = \frac{RT}{zF} \ln \left(\frac{[X]_o}{[X]_i} \right)$ to find the equilibrium potentials (Nernst potentials). This
yields -96.81 mV, 60.60 mV, and -64.05 mV for K^+, Na^+, and Cl^-, respectively.

To find the total rms change in V_{mem} due to fluctuations in the concentration of each ion, we calculate the change (fluctuation) in potential from Eq. (E1) with respect to each $[X]_i$ as $\frac{\partial V_{\text{mem}}}{\partial [X]_i} \Delta [X]_i$, square each fluctuation value, add the squares, and then take the square root of the sum. Then, we find the total rms change e_n described by Eq. (12). As shown in Eq. (12), $\Delta [K^+]_i$, $\Delta [Na^+]_i$, and $\Delta [Cl^-]_i$ are the rms fluctuations in the intracellular ion concentrations; the other parameters are as listed above for Eq. (E1). For a bacterium with volume $V_b \sim 10^{-18} \text{ m}^3$, the rms fluctuations in intracellular ion concentration for each ion is estimated from our experiments to be of order $\Delta [K^+]_i = \Delta [Na^+]_i = \Delta [Cl^-]_i \sim \frac{\Delta n^{(1)}_{\text{rms}}}{k_b} \sim 10^{24} \text{ m}^{-3}$. The extracellular ion concentrations are assumed to remain unchanged. Then, by substituting all the values into Eq. (12), we find $e_n \sim 1.3 \text{ mV}$.

Appendix F: SYMBOLS USED

Below we list all and define all the symbols used throughout the main text and the Appendices.

Symbol	Definition
a	Radius of a bacterium
a_n	Modal amplitude of a bacterium
A	Relevant area of microchannel wall
A_b	Cross-sectional area of a bacterium
A_c	Cross-sectional area of a microchannel
A_E	Displacement amplitude of bacteria due to the applied electric field
c_p	Specific heat capacity of the broth
C	Dimensionless correction factor
C_{mem}	Equivalent capacitance of the cell
C_{in}	Equivalent capacitance of the microfluidic resistor
d	Thickness of the glass substrate
D	Diffusion coefficient for small inorganic cations in water
e_{in}	Equivalent input-referred voltage noise
e_n	Equivalent noise voltage
e_{th}	Thermal noise voltage generated by the source impedance
E	Young's modulus for the bacterial shell
E_X	Nernst potential for ion X
$E(f)$	Electric field strength at frequency f
f	Frequency
f_0	Reference frequency of the lock-in amplifier
F	Faraday's constant
I	Applied ac bias current: $I = I_R + I_C$
I_{in}	Current flowing into the amplifier input
I_C	Part of I flowing through C_m
I_R	Part of I flowing through R_m
I_1	Current passing through a single microchannel
k	Thermal conductivity of glass
l, w, h	Length, width, height of a single microchannel
l_b	Length of a bacterium
l_{cyl}, r_{cyl}, t	Dimensions of a bacterium in numerical models (a hollow cylinder with length l_{cyl}, radius r_{cyl}, and wall thickness t)
l_u	Cation drift length in a microchannel
\dot{m}	Mass flow rate in a microchannel
n	Total number of charge carriers in the microfluidic resistor
n_X	Total number of intracellular X ions
N	Number of bacterial cells trapped in the microfluidic resistor
N_1	Number of bacteria trapped in the microchannel
p_T	Turgor pressure inside a bacterium
p_X	Relative membrane permeability
PSD	Power spectral density
q''	Heat flux
Q	Quality factor for the vibrational mode of a bacterium
$r(t)$	The rms value of resistance fluctuations (change)
R	The universal gas constant
R_{in}	Equivalent resistance of the lock-in amplifier
\begin{align*}
R_m & \quad \text{Equivalent resistance of the microfluidic resistor} \\
R_n & \quad \text{Equivalent noise resistance representing all the white thermal noise sources} \\
R_1 & \quad \text{Resistance of a single microchannel} \\
S(f) & \quad \text{Normalized PSD of the excess voltage noise: } S(f) = \frac{S_p(f)}{R_m^2} \\
S_n(f) & \quad \text{PSD of the fluctuations in the total number of charge carriers: } S_n(f) = \frac{S_p(f)}{n^2} \\
S_{nX}(f) & \quad \text{PSD for the fluctuations of the number } n_X \text{ of intracellular ions of type X in a single bacterium} \\
S_R(f) & \quad \text{PSD of the resistance fluctuations} \\
S_R^{(1)}(f) & \quad \text{PSD of the resistance fluctuations of a single microchannel} \\
S_p & \quad \text{PSD of the resistivity fluctuations} \\
S_{V(\text{ex})}^{(c)}(f, I) & \quad \text{PSD of the current-dependent excess voltage noise} \\
S_{V(\text{ex})}^{(c)}(f) & \quad \text{Averaged PSD of the excess voltage noise: } S_{V(\text{ex})}^{(c)}(f) = \frac{1}{f_2-f_1} \int_{f_1}^{f_2} S_{V(\text{ex})}^{(c)}(f) df \\
S_{V(\text{th})}(f, 0) & \quad \text{PSD of the (thermal) white noise} \\
S_{V(\text{tot})}(f) & \quad \text{PSD of the total voltage noise: } S_{V(\text{tot})}^{(c)}(f) = S_{V(\text{ex})}^{(c)}(f) + S_{V(\text{th})}(f, 0) \\
T & \quad \text{Sample temperature} \\
T_C & \quad \text{Microchannel temperature} \\
T_\infty & \quad \text{The temperature far removed from the channel} \\
u_{\text{DP}} & \quad \text{Pressure-driven component of the flow velocity in the microchannel} \\
u_{\text{EK}} & \quad \text{Electrokinetic component of the flow velocity in the microchannel} \\
U & \quad \text{Strain energy stored in a deformed bacterium} \\
v(t) & \quad \text{Time-domain voltage fluctuations} \\
V_b & \quad \text{Volume of a single bacterial cell} \\
V_{\text{mem}} & \quad \text{Electrical potential of the bacterial membrane} \\
V_s & \quad \text{Reference oscillator output of the lock-in amplifier} \\
V_A, V_B & \quad \text{Voltages at the two differential inputs A and B of the lock-in amplifier} \\
[X]_i & \quad \text{Intracellular concentration of the ion X} \\
[X]_o & \quad \text{Extracellular concentration of the ion X} \\
Z_c & \quad \text{Contact impedance at each of the four probes in the microchannel device (microfluidic resistor)} \\
Z_{\text{in}} & \quad \text{Equivalent impedance of the lock-in amplifier input circuit: } Z_{\text{in}} = R_{\text{in}} \parallel C_{\text{in}} \\
Z_m & \quad \text{Equivalent impedance of the microfluidic resistor: } Z_m = R_m \parallel C_m \\
\Gamma & \quad \text{Coefficient of } I^2 \text{ dependence of } S_{V(\text{ex})}^{(c)}(f, I): \overline{S_{V(\text{ex})}^{(c)}(f)} = \Gamma I^2 \\
\Delta f & \quad \text{Measurement bandwidth} \\
\Delta n_{\text{rms}} & \quad \text{The rms value of the fluctuations in the number of charge carriers in the entire microfluidic resistor} \\
\Delta n_{\text{rms}}^{(1)} & \quad \text{Per cell} \\
\Delta p & \quad \text{Pressure drop along the microchannel during bulk flow} \\
\Delta [X]_i & \quad \text{The rms fluctuations in the intracellular ion concentration of ion X} \\
\Delta \Psi & \quad \text{Change in membrane potential due to the applied electric field} \\
\mu & \quad \text{Mobility for small cations} \\
\nu & \quad \text{Poisson’s ratio for the bacterial shell} \\
\rho & \quad \text{Electrical resistivity of the electrolyte} \\
\rho_b & \quad \text{Density for for the bacterial shell} \\
\phi & \quad \text{Rate of transport of X ions through the cell membrane} \\
\tau & \quad \text{Overall effective relaxation time constant} \\
\tau_d & \quad \text{Diffusion time constant for cations in a microchannel} \\
\tau_f & \quad \text{Flow time constant in a microchannel} \\
\tau_X & \quad \text{Lifetime for ions of X (or the relaxation time for a perturbation for by X ions within the cell)} \\
\omega_n & \quad \text{Eigenfrequency of a bacterium} \\
\end{align*}

[1] L. Galera-Laporta, C. J. Comerci, J. Garcia-Ojalvo, and G. M. S"uel, Ionobiology: The functional dynamics of the intracellular metallome, with lessons from bacteria, Cell Systems 12, 497 (2021).

[2] N. Korolev, How potassium came to be the dominant biological cation: of metabolism, chemiosmosis, and cation selectivity since the beginnings of life, BioEssays 43, 2000108 (2021).

[3] G. N. Bruni, R. A. Weekley, B. J. Dodd, and J. M. Kralj, Voltage-gated calcium flux mediates Escherichia coli mechanosensation, Proceedings of the National Academy of Sciences 114, 9445 (2017).
[4] A. Anishkin, S. H. Loukin, J. Teng, and C. Kung, Feeling the hidden mechanical forces in lipid bilayer is an original sense, Proceedings of the National Academy of Sciences 111, 7898 (2014).
[5] A. Prindle, J. Liu, M. Asally, J. Garcia-Ojalvo, and G. M. Siel, Ion channels enable electrical communication in bacterial communities, Nature 527, 59 (2015).
[6] P. Mitchell, Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism, Nature 191, 144 (1961).
[7] H. Strahl and L. W. Hamoen, Membrane potential is important for bacterial cell division, Proceedings of the National Academy of Sciences 107, 12281 (2010).
[8] D. L. Dong-yeon, L. Galera-Laporta, M. Bialecka-Fornal, E. C. Moon, Z. Shen, S. P. Briggs, J. Garcia-Ojalvo, and G. M. Siel, Magnesium flux modulates ribosomes to increase bacterial survival, Cell 177, 352 (2019).
[9] P. D. Damper and W. Epstein, Role of the membrane potential in bacterial resistance to aminoglycoside antibiotics, Antimicrobial Agents and Chemotherapy 20, 803 (1981).
[10] D. C. Gadsby, Ion channels versus ion pumps: the principal difference, in principle, Nature Reviews Molecular Cell Biology 10, 344 (2009).
[11] C.-Y. Yang, M. Bialecka-Fornal, C. Weatherwax, J. W. Larkin, A. Prindle, J. Liu, J. Garcia-Ojalvo, and G. M. Siel, Encoding membrane-potential-based memory within a microbial community, Cell Systems 10, 417 (2020).
[12] J. M. Benarroch and M. Asally, The microbiologist’s guide to membrane potential dynamics, Trends in Microbiology 28, 304 (2020).
[13] Z. Schofield, G. N. Meloni, P. Tran, C. Zerfass, G. Sena, Y. Hayashi, M. Grant, S. A. Contera, S. D. Minteer, M. Kim, et al., Bioelectrical understanding and engineering of cell biology, Journal of the Royal Society Interface 17, 20200013 (2020).
[14] J. M. Kralj, D. R. Hochbaum, A. D. Douglass, and A. E. Cohen, Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein, Science 333, 345 (2011).
[15] M. Queralt-Martín, D. A. Perini, and A. Alcaraz, Specific adsorption of trivalent cations in biological nanopores determines conductance dynamics and reverses ionic selectivity, Physical Chemistry Chemical Physics 23, 1352 (2020).
[16] L. J. DeFelice, Introduction to membrane noise (Springer, New York, 1981).
[17] J. C. Weaver and R. D. Astumian, The response of living cells to very weak electric fields: The thermal noise limit, Science 247, 459 (1990).
[18] T. Xie, Y.-D. Chen, P. Marszalek, and T. Y. Tsong, Fluctuation-driven directional flow in biochemical cycle: further study of electric activation of Na, K pumps, Biophysical Journal 72, 2496 (1997).
[19] L. Endresen, K. Hall, J. Høy, and J. Myrheim, A theory for the membrane potential of living cells, European Biophysics Journal 29, 90 (2000).
[20] T. J. Hund, J. P. Kucera, N. F. Otani, and Y. Rudy, Ionic charge conservation and long-term steady state in the huo–rudy dynamic cell model, Biophysical Journal 81, 3324 (2001).
[21] L. Shabala, T. Ross, I. Newman, T. McMeekin, and S. Shabala, Measurements of net fluxes and extracellular lar changes of H+, Ca2+, K+, and NH4 in Escherichia coli using ion-selective microelectrodes, Journal of Microbiological Methods 46, 119 (2001).
[22] L. Shabala, J. Bowman, J. Brown, T. Ross, T. McMeekin, and S. Shabala, Ion transport and osmotic adjustment in Escherichia coli in response to ionic and non-ionic osmota, Environmental Microbiology 11, 137 (2009).
[23] S. M. Bezrukov and M. Winterhalter, Examining noise sources at the single-molecule level: 1/f noise of an open maltoporin channel, Physical Review Letters 85, 202 (2000).
[24] J. H. Scofield, ac method for measuring low-frequency resistance fluctuation spectra, Review of Scientific Instruments 58, 985 (1987).
[25] Y. Yang, K. Gupta, and K. L. Ekinci, All-electrical monitoring of bacterial antibiotic susceptibility in a microfluidic device, Proceedings of the National Academy of Sciences 117, 10639 (2020).
[26] R. F. Voss and J. Clarke, Flicker (1/f) noise: Equilibrium temperature and resistance fluctuations, Physical Review B 13, 556 (1976).
[27] P. Dutta and P. Horn, Low-frequency fluctuations in solids: 1/f noise, Reviews of Modern Physics 53, 497 (1981).
[28] P. A. W. E. Verleg and J. I. Dijkhuis, Resistance fluctuations in hydrogenated amorphous silicon: Thermal equilibrium, Physical Review B 58, 3904 (1998).
[29] C. Tasserit, A. Koutsisoubas, D. Lairez, G. Zalczer, and M.-C. Clochard, Pink noise of ionic conductance through single artificial nanopores revisited, Physical Review Letters 105, 260602 (2010).
[30] C. Wen, S. Zeng, K. Arstila, T. Sajaavaara, Y. Zhu, Z. Zhang, and S.-L. Zhang, Generalized noise study of solid-state nanopores at low frequencies, ACS Sensors 2, 300 (2017).
[31] P. R. Rocha, P. Schlett, U. Kintzel, V. Mailänder, L. K. Vandamme, G. Zeck, H. L. Gomes, F. Biscarini, and D. M. De Leeuw, Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glia cell populations, Scientific reports 6, 34843 (2016).
[32] M. Tsutsui, S. Rahong, Y. Iizumi, T. Okazaki, M. Taniguchi, and T. Kawai, Single-molecule sensing electrode embedded in-plane nanopore, Scientific reports 1, 1 (2011).
[33] T. Maleki, S. Mohammadi, and B. Ziaie, A nanofluidic channel with embedded transverse nanoelectrodes, Nanotechnology 20, 105302 (2009).
[34] H. Zhang, H. Wang, J. J. Wilksch, R. A. Strugnell, M. L. Gee, and X.-Q. Feng, Measurement of the interconnected turgor pressure and envelope elasticity of live bacterial cells, Soft Matter 17, 2042 (2021).
[35] J. M. Monteiro, P. B. Fernandes, F. Vaz, A. R. Pereira, A. C. Tavares, M. T. Ferreira, P. M. Pereira, H. Veiga, E. Kuru, M. S. VanNieuwenhze, et al., Cell shape dynamics during the staphylococcal cell cycle, Nature Communications 6, 1 (2015).
[36] G. McDonnell and A. D. Russell, Antiseptics and disinfectants: activity, action, and resistance, Clinical Microbiology Reviews 12, 147 (1999).
[37] J. H. Scofield, J. V. Mantese, and W. W. Webb, 1/f noise of metals: A case for extrinsic origin, Physical Review B 32, 736 (1985).
[38] K. R. Foster and H. C. Lukasik, Whole-body impedance–
what does it measure?, The American Journal of Clinical Nutrition 64, 388S (1996).
[39] R. Mancini, Op amps for everyone: design reference (Newnes, London, 2003).
[40] R. M. Smeets, U. F. Keyser, N. H. Dekker, and C. Dekker, Noise in solid-state nanopores, Proceedings of the National Academy of Sciences 105, 417 (2008).
[41] S. Heerema, G. Schneider, M. Rozemuller, L. Vicarelli, H. Zandbergen, and C. Dekker, 1/f noise in graphene nanopores, Nanotechnology 26, 074001 (2015).
[42] Z. Siwy and A. Fulinski, Origin of 1/f noise in membrane channel currents, Physical Review Letters 89, 158101 (2002).
[43] D. Fleetwood, 1/f noise and defects in microelectronic materials and devices, IEEE Transactions on Nuclear Science 62, 1462 (2015).
[44] A. N. Pal and A. Ghosh, Resistance noise in electrically biased bilayer graphene, Physical Review Letters 102, 126805 (2009).
[45] D. P. Hoogerheide, S. Garaj, and J. A. Golovchenko, Probing surface charge fluctuations with solid-state nanopores, Physical Review Letters 102, 256804 (2009).
[46] F. N. Hooge, 1/f noise sources, IEEE Transactions on Electron Devices 41, 1926 (1994).
[47] F. N. Hooge, 1/f noise is no surface effect, Physics Letters A 29, 139 (1969).
[48] J. Binette, M. Baron, P. Savard, M. McKee, and M. Buschmann, Tetrapolar measurement of electrical conductivity and thickness of articular cartilage, J. Biomech. Eng. 126, 475 (2004).
[49] J. L. Prieto, H.-W. Su, H. W. Hou, M. P. Vera, B. D. Levy, R. M. Baron, J. Han, and J. Voldman, Monitoring sepsis using electrical cell profiling, Lab on a Chip 16, 4333 (2016).
[50] H. Li, C. Multari, C. Palego, X. Ma, X. Du, Y. Ning, J. Buceta, J. C. Hwang, and X. Cheng, Differentiation of live and heat-killed E. coli by microwave impedance spectroscopy, Sensors and Actuators B: Chemical 255, 1614 (2018).
[51] See Supplemental Material for additional data plots from supplemental measurements.
[52] A. Hassibi, R. Navid, R. W. Dutton, and T. H. Lee, Comprehensive study of noise processes in electrode electrolyte interfaces, Journal of Applied Physics 96, 1074 (2004).
[53] V. Kara, C. Duan, K. Gupta, S. Kuroswa, D. J. Stearns-Kuroswa, and K. L. Ekinci, Microfluidic detection of movements of Escherichia coli for rapid antibiotic susceptibility testing, Lab on a Chip 18, 743 (2018).
[54] C. Lissandrello, L. Li, K. Ekinci, and V. Yakhot, Noisy transitional flows in imperfect channels, Journal of Fluid Mechanics 778 (2015).
[55] T. Y. Tsong, Electrical modulation of membrane proteins: enforced conformational oscillations and biological energy and signal transductions, Annual Review of Biophysics and Biophysical Chemistry 19, 83 (1990).
[56] T.-D. Xie and T. Y. Tsong, Study of mechanisms of electric field-induced dna transfection. II. Transfection by low-amplitude, low-frequency alternating electric fields, Biophysical Journal 58, 897 (1990).
[57] J. P. Stratford, C. L. Edwards, M. J. Ghanshyam, D. Malyshiev, M. A. Delise, Y. Hayashi, and M. Asally, Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity, Proceedings of the National Academy of Sciences 116, 9552 (2019).
[58] E. Ben-Isaac, Y. K. Park, G. Popescu, F. L. H. Brown, N. S. Gov, and Y. Shokef, Effective temperature of red-blood-cell membrane fluctuations, Physical review letters 106, 238103 (2011).
[59] H. Turler, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J.-F. Joanny, G. Gompper, and T. Betz, Equilibrium physics breakdown reveals the active nature of red blood cell flickering, Nature physics 12, 513 (2016).
[60] A. Biswas, A. Alex, and B. Sinha, Mapping cell membrane fluctuations reveals their active regulation and transient heterogeneities, Biophysical journal 113, 1768 (2017).
[61] S. L. Nelson, D. T. Proctor, A. Ghasemloonia, S. Lama, K. Zareinia, Y. Ahn, M. R. Al-Saiedy, F. H. Green, M. W. Amrein, and G. R. Sutherland, Vibrational profiling of brain tumors and cells, Theranostics 7, 2417 (2017).
[62] S. Wu, X. Liu, X. Zhou, X. M. Liang, D. Gao, H. Liu, G. Zhao, Q. Zhang, and X. Wu, Quantification of cell viability and rapid screening anti-cancer drug utilizing nanomechanical fluctuation, Biosensors and Bioelectronics 77, 164 (2016).
[63] V. R. Singh, Y. A. Yang, H. Yu, R. D. Kamm, Z. Yaoqob, and P. T. So, Studying nucleic envelope and plasma membrane mechanics of eukaryotic cells using confocal reflectance interferometric microscopy, Nature communications 10, 3652 (2019).
[64] J.-B. Manneville, P. Bassereau, S. Ramaswamy, and J. Prost, Active membrane fluctuations studied by micropipet aspiration, Physical Review E 64, 021908 (2001).
[65] R. G. Willaert, P. Vanden Boer, A. Malovichko, M. Allosia-Perez, K. Radotić, D. Bartolić, A. Kalauzi, M. I. Villalba, D. Sanglard, G. Dietler, et al., Single yeast cell nanomotions correlate with cellular activity, Science Advances 6, eaba3139 (2020).
[66] G. Longo, L. Alonso-Sarduy, L. M. Rio, A. Bizzini, A. Trampuz, J. Notz, G. Dietler, and S. Kasas, Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors, Nature Nanotechnology 8, 522 (2013).
[67] C. Lissandrello, F. Inci, M. Francom, M. Paul, U. Demirci, and K. Ekinci, Nanomechanical motion of Escherichia coli adhered to a surface, Applied Physics Letters 105, 113701 (2014).
[68] A. Van der Ziel, Noise in measurements (Wiley, New York, 1976).
[69] V. Mitin, L. Reggiani, and L. Varani, Generation-recombination noise in semiconductors, in Noise and Fluctuations Control in Electronic Devices, edited by A. A. Balandin (American Scientific Publishers, Los Angeles, 2002) pp. 11–29.
[70] S. R. McGuffee and A. H. Elcock, Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm, PLoS Computational Biology 6, e1000694 (2010).
[71] M. Guragain, D. L. Lenaburg, F. S. Moore, I. Reutlinger, and M. A. Patrauchan, Calcium homeostasis in pseudomonas aeruginosa requires multiple transporters and modulates swarming motility, Cell Calcium 54, 350 (2013).
[72] J. Liu, R. Martinez-Corral, A. Prindle, D.-y. D. Lee, J. Larkin, M. Gabalda-Sagarra, J. Garcia-Ojalvo, and
G. M. Suel, Coupling between distant biofilms and emergence of nutrient time-sharing, Science 356, 638 (2017).

[73] Y. Chao and T. Zhang, Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy, Applied Microbiology and Biotechnology 92, 381 (2011).

[74] A. D. Meade, C. Clarke, F. Draux, G. D. Sockalingum, M. Manfiet, F. M. Lyng, and H. J. Byrne, Studies of chemical fixation effects in human cell lines using raman microspectroscopy, Analytical and Bioanalytical Chemistry 396, 1781 (2010).

[75] P. Dmitruk, P. D. Mininni, A. Pouquet, S. Servidio, and W. H. Matthaeus, Emergence of very long time fluctuations and 1/f noise in ideal flows, Physical Review E 83, 066318 (2011).

[76] P. Marszalek, D. Liu, and T. Y. Tsong, Schwan equation and transmembrane potential induced by alternating electric field, Biophysical Journal 58, 1053 (1990).

[77] K. Maswiwat, D. Wachner, R. Warnke, and J. Gimsa, Simplified equations for the transmembrane potential induced in ellipsoidal cells of rotational symmetry, Journal of Physics D: Applied Physics 40, 914 (2007).

[78] A. Sale and W. Hamilton, Effects of high electric fields on microorganisms: I. killing of bacteria and yeasts, Biochimica et Biophysica Acta (BBA)-General Subjects 148, 781 (1967).

[79] B. Brambach, A. Michels, J. Franzke, and R. Kettler, Current density and conductivity dependent electroportion of Escherichia coli c6000, Progress in Biophysics and Molecular Biology 111, 46 (2013).

[80] W. S. Rasband, Imagej, u.s. national institutes of health, bethesda, maryland, usa, http://imagej.nih.gov/ij/ (2011).

[81] E. Samson, J. Marchand, and K. A. Snyder, Calculation of ionic diffusion coefficients on the basis of migration test results, Materials and Structures 36, 156 (2003).

[82] B. J. Kirby, Micro-and nanoscale fluid mechanics: transport in microfluidic devices (Cambridge University Press, Cambridge, 2010).

[83] B. Han and J. C. Bischof, Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications, J. Biomech. Eng. 126, 196 (2004).

[84] D. Erickson, D. Sinton, and D. Li, Joule heating and heat transfer in poly (dimethylsiloxane) microfluidic systems, Lab on a Chip 3, 141 (2003).

[85] M. Mirzaali, I. Van Dongen, N. Tümer, H. Weinans, S. A. Yavari, and A. Zadpoor, In-silico quest for bactericidal but non-cytotoxic nanopatterns, Nanotechnology 29, 43LT02 (2018).

[86] P. Gerhardt and J. A. Judge, Porosity of isolated cell walls of saccharomyces cerevisiae and bacillus megaterium, Journal of Bacteriology 87, 945 (1964).

[87] A. T. Liem, A. B. Ari, C. Ti, M. J. Cops, J. G. McDaniel, and K. L. Ekinci, Nanoflows induced by mems and nems: Limits of two-dimensional models, Physical Review Fluids 6, 024201 (2021).

[88] I. E. Roslo, A. Japaridze, P. G. Steeneken, C. Dekker, and F. Alijani, Probing nanomotion of single bacteria with graphene drums, Nature Nanotechnology 17, 637 (2022).

[89] P. Dimroth, C. von Ballmoos, and T. Meier, Catalytic and mechanical cycles in F-ATP synthases, EMBO reports 7, 276 (2006).

[90] T. Lenn, M. C. Leake, and C. W. Mullineaux, Clustering and dynamics of cytochrome bd-i complexes in the Escherichia coli plasma membrane in vivo, Molecular microbiology 70, 1397 (2008).

[91] J. Spector, S. Zakharov, Y. Lill, O. Sharma, W. A. Cramer, and K. Ritchie, Mobility of btub and ompf in the Escherichia coli outer membrane: implications for dynamic formation of a translocon complex, Biophysical journal 99, 3880 (2010).

[92] R. G. Winkler and G. Gompper, The physics of active polymers and filaments, The Journal of Chemical Physics 153, 040901 (2020).

[93] P. V. Zinin and J. S. Allen III, Deformation of biological cells in the acoustic field of an oscillating bubble, Physical Review E 79, 021910 (2009).

[94] Y. Choi, W.-S. Ohm, and Y.-T. Kim, Comment on “deformation of biological cells in the acoustic field of an oscillating bubble”, Physical Review E 82, 013901 (2010).

[95] G. Tamadapu, A. Nordmark, and A. Eriksson, Resonances of a submerged fluid-filled spherically isotropic microsphere with partial-slip interface condition, Journal of Applied Physics 118, 044903 (2015).

[96] E. Gil-Santos, J. J. Ruz, O. Malvar, I. Favero, A. Lemaître, P. M. Kosaka, S. García-López, M. Calleja, and J. Tamayo, Optomechanical detection of vibration modes of a single bacterium, Nature Nanotechnology 15, 469 (2020).
Supplemental Material for
“Measurement of the Low-Frequency Charge Noise of Bacteria”

Yichao Yang,1 Hagen Gress,1 and Kamil L. Ekinci1,*

1Department of Mechanical Engineering, Division of Materials Science and Engineering, and the Photonics Center, Boston University, Boston, Massachusetts 02215, United States
(Dated: July 5, 2022)

Contents

I. Additional Data
A. Noise in Electrolytes Containing No Bacteria at 37°C 2
B. Noise in Electrolytes Containing No Bacteria at Room Temperature 3
C. Noise in Electrolytes Containing Dead Bacteria at 37°C 3
D. Summary of Background Data: Average Noise Curves in Different Electrolytes With and Without Dead Bacteria 4
E. Noise in Electrolytes Containing Live Bacteria at 37°C 5
F. Values of Relevant Parameters for Different Electrolytes 6
G. Probability Density Functions of Voltage Fluctuations 6

*Electronic mail: ekinci@bu.edu

arXiv:2207.00901v1 [physics.app-ph] 2 Jul 2022
I. ADDITIONAL DATA

In this Supplemental Material, we provide additional data plots from control measurements. For the noise data shown in Sections A-E below, we calculate and correct the normalized PSD $S(f)$ for the excess noise using Eq. (5) in the main text. The noise data below for no bacteria, dead bacteria, and live bacteria are structured as follows. In Sections A and B, we show the noise measured in electrolytes with no bacteria, including in LB and PBS at 37°C and LB at 23°C. In Section C, we show the noise measured in electrolytes containing dead bacteria at 37°C. For each plot in Sections A-C, we show $S(f)$ for each current I using small symbols, while we show the average $S(f)$ using large symbols. In Section D, we compare the noise from experiments with no bacteria with those with dead bacteria. Our goal here is to establish that the (background) noise level in just the electrolyte taken with no bacteria is close to the noise level in the electrolyte containing dead bacteria. In Section E, we show the noise measured with live bacteria at 37°C, with small symbols showing $S(f)$ for each I and large symbols showing the average $S(f)$. In Section F, we present values of relevant parameters for different electrolytes in all measurements. In Section G, we show the normalized probability density functions of the voltage fluctuations in LB with no bacteria, dead bacteria, and live bacteria. All the relevant information is given in the captions.

A. Noise in Electrolytes Containing No Bacteria at 37°C

FIG. S1: Normalized PSDs $S(f)$ of the resistance fluctuations for LB (a-c) and for PBS (d-f) containing no bacteria at 37°C. Each plot represents one independent experiment. In each plot, the small symbols show the data for each bias current, and the large symbols are the average of the data with different bias currents. The dashed lines correspond to $S(f) = B/f^\beta$. The values of B and β are given in Table S1.
B. Noise in Electrolytes Containing No Bacteria at Room Temperature

FIG. S2: (a-c) Normalized PSDs $S(f)$ of the resistance fluctuations for LB containing no bacteria at 23°C. Each plot represents one independent experiment. In each plot, the small symbols show the data for each bias current, and the large symbols are the average of the data with different bias currents. The dashed lines correspond to $S(f) = B/f^\beta$. The values of B and β are given in Table S1.

C. Noise in Electrolytes Containing Dead Bacteria at 37°C

FIG. S3: Normalized PSDs $S(f)$ of the resistance fluctuations for LB containing dead K. pneumoniae (a-c) and dead S. saprophyticus (d-f) at 37°C. Each plot represents one independent experiment. In each plot, the small symbols show the data for each bias current, and the large symbols are the average of the data with different bias currents. The dashed lines correspond to $S(f) = B/f^\beta$. The values of B and β are given in Table S1.
Our experiments show different resistance values for microfluidic resistors filled with different electrolytes (containing no bacteria). At 37°C, the R_m values for LB and PBS are measured as approximately 2.5 MΩ and 1.7 MΩ, respectively. At room temperature (23°C), the measured R_m value for LB is approximately 3.0 MΩ. The different R_m values measured in PBS and LB are due to their different resistivities. Based on the analysis in the main text, we use $C(R_m)$ to correct the measured noise when making a comparison of the excess noise levels between different electrolytes.

Figure S4 shows a comparison between the normalized PSD, $S(f)$, of the noise measured from electrolytes containing no bacteria (green) and dead bacteria (black). Here, the data for no bacteria (at 37°C and 23°C) are the average of $S(f)$ for each I value shown in each plot of Figs. S1 and S2; the data for dead bacteria (at 37°C) are the average of $S(f)$ for each I shown in each plot of Fig. S3. We calculate and correct the curve for $S(f)$ in Figs. S1-S3 for each I using Eq. (5) in the main text; the value of $C(R_m)$ for each R_m is plotted in Fig. 9 in the main text; the R_m value for each experiment is listed in Table (S1). We find that the $S(f)$ curves in Fig. S4 for no bacteria and dead bacteria exhibit very close noise levels and follow the same scaling behavior of the form $S(f) = B/f^\beta$.

![FIG. S4: Normalized PSD $S(f)$ of the resistance fluctuations for electrolytes containing no bacteria and dead bacteria. The small green symbols show data from nine independent experiments, three each for PBS at 37°C, LB at 37°C, and LB at 23°C. The small gray symbols show data from six independent experiments three with dead *K. pneumoniae* and three with dead *S. saprophyticus*, both in LB at 37°C. The larger symbols show the average values of the experiments with no bacteria (green) and with dead bacteria (black). The dashed lines are not fits but show the asymptotic behavior and correspond to $S(f) = B/f^\beta$, with $B = 4.05 \times 10^{-11}$ and $\beta = 1.50$ for no bacteria (green) and $B = 6.15 \times 10^{-11}$ and $\beta = 1.50$ for dead bacteria (black).](image-url)
E. Noise in Electrolytes Containing Live Bacteria at 37°C

![Normalized PSDs S(f) of the resistance fluctuations of LB containing live K. pneumoniae (a-c) and live S. saprophyticus (d-f), and of PBS with live K. pneumoniae (g) and live S. saprophyticus (h) at 37°C. Each plot represents one independent experiment. In each plot, the small symbols show the data for each bias current, and the large symbols are the average of the data with different bias currents; the solid curves correspond to $S(f) = \frac{A^2}{(\pi^2 + 4\pi^2 f^2)^2}$, with $\tau = 10$ s (bottom), and with $\tau = 30$ s (top); the values of A corresponding to different τ values are given in Table S1.](image-url)
F. Values of Relevant Parameters for Different Electrolytes

TABLE S1: Summary of the values of the parameters in all measurements. The first and second columns show the electrolytes and temperatures used in the experiments, respectively. The third column lists the measured bacteria: *K. pneumoniae* (KP) and *S. saprophyticus* (SS). The fourth column shows the values of R_m with $N \approx 300 \pm 50$ of (dead or live) bacteria in the microchannel. The fifth column shows the values of the electrical conductivity for the electrolytes. The sixth and seventh columns show the values of A and τ for live bacteria in the formula $S(f) = A\tau^2 \frac{\Delta v^2}{1 + 4\pi^2 f^2 \tau^2}$. The last two columns show the values of B and β for no bacteria and dead bacteria in the formula $S(f) = B/f^\beta$.

Electrolytes	Temperature [°C]	Bacteria	Typical R_m [MΩ]	Conductivity [S/m]	A $[\times 10^{-9}]$	τ [s]	B $[\times 10^{-11}]$	β
LB	37	-	2.50 ± 0.04	1.00	-	-	3.95, 4.15, 5.45	1.50, 1.50, 1.50
LB	23	-	3.00 ± 0.04	0.83	-	-	2.65, 3.15, 2.75	1.50, 1.50, 1.50
PBS	37	dead KP	1.70 ± 0.002	1.47	-	-	3.05, 3.05, 3.05	1.50, 1.50, 1.50
LB	37	dead SS	3.10 ± 0.40	-	-	-	5.05, 5.05, 5.05	1.50, 1.50, 1.50
LB	37	live KP	3.10 ± 0.40	-	8.80, 6.80, 6.30	10, 30	-	-
LB	37	live SS	3.10 ± 0.40	-	6.10, 5.40, 3.80	10, 30	-	-
PBS	37	live KP	2.15	-	3.40	10, 30	-	-
PBS	37	live SS	2.24	-	2.40	10, 30	-	-

G. Probability Density Functions of Voltage Fluctuations

![PDF](https://via.placeholder.com/150)

FIG. S6: Normalized probability density functions (PDFs) for the voltage fluctuations plotted in units of the rms values v_{rms} in LB containing no bacteria (a), dead bacteria (b), and live bacteria (c) at 37°C. Here, the voltage fluctuations are all measured using $I \approx 7.80$ nA; the data of live and dead bacteria are *K. pneumoniae*; the gray line in each plot is a Gaussian; the value of v_{rms} for each data set is noted in the figure. For computing the PDFs shown in (a-c), we use four time series of $v(t)$ (each of 120 s) for the same experiment, such as those shown in Fig. 3(b) in the main text. We calculate the values of the normalized n-th moments of the PDFs, $\frac{\mu_n}{\sigma^n}$, where $\mu_n = \langle v^n \rangle$ and $\sigma = \langle v^2 \rangle^{1/2}$ (the brackets indicate averages over the PDF) are respectively the n-th central moment and the standard deviation of the voltage fluctuations. We find the normalized high-order moments as 3.02 ($n=4$), 15.01 ($n=6$), and 102.17 ($n=8$) for no bacteria (a), 2.98 ($n=4$), 14.48 ($n=6$), and 95.61 ($n=8$) for dead bacteria (b), and 3.05 ($n=4$), 14.76 ($n=6$), and 93.00 ($n=8$) for live bacteria (c).