Is the tetraneutron a bound dineutron-dineutron molecule?

C.A. Bertulani and V. Zelevinsky

National Superconducting Cyclotron Laboratory,
and Department of Physics and Astronomy,
Michigan State University, East Lansing, MI 48824-1321, USA

(Dated: October 30, 2018)

Abstract

In light of a new experiment which claims a positive identification, we discuss the possible existence of the tetraneutron. We explore a model based on a dineutron-dineutron molecule. We show that this model is not able to explain the tetraneutron as a bound state, in agreement with other theoretical models already discussed in the literature.

PACS numbers: 21.10.Dr,21.45.+v,21.60.Ev

Keywords:

*Electronic address: bertulani@nscl.msu.edu, zelevinsky@nscl.msu.edu
In a recent experiment [1], the existence of bound neutron clusters was studied by fragmentation of intermediate energy (30-50 MeV/nucleon) 14Be nuclei. In particular, the fragmentation channel 10Be + 4n was observed and the 4n system was tentatively described as a bound tetraneutron system.

The possible existence of the tetraneutron has been discussed theoretically by numerous authors already in the 1960’s (e.g., refs. [2, 3, 4, 5, 6, 7, 8, 9]). The experimental search at that time [10, 11, 12, 13], including the experiments on double pion charge exchange reactions with 4He [14, 15], gave negative results. The general conclusion, based on experiment and theory, was that the tetraneutron cannot be bound. More recent experiments [16, 17, 18, 22] and theoretical calculations [19, 20, 21, 23, 24] give support to this assertion, except perhaps ref. [25] where a hyperspherical function method was used and led the authors to the conclusion that the tetraneutron may exist as a resonance in the four-body continuum at energy of about 1-3 MeV. These theoretical models have recently been reconsidered in ref. [26] where it was concluded that a too strong four-nucleon force is needed to bind the tetraneutron and that this force would unreasonably bind 4He by about 100 MeV.

It thus seems very unlikely that the tetraneutron can be explained within any standard theoretical model. In this brief report we consider the possibility that the tetraneutron can be described as a composite dineutron-dineutron molecular system. To our knowledge this is a hitherto unexplored model for the possible binding of neutron matter. In this model, the dineutron is considered to be slightly bound due to a polarization mechanism induced by the presence of the other dineutron. Although the dineutron system is not bound (it has a virtual singlet state at $E = 66$ keV), there is some theoretical [27, 28, 29] and experimental [30] evidence that it might become bound in the presence of another nuclear system.

Another reason to believe that neutrons clusterize, or form correlated bound pairs inside a nucleus, is the existence of the Borromean nuclear systems, e.g. 6He and 11Li, or multineutron configuration systems in light nuclei, e.g. 8He. The Borromean systems [31] are thee-body systems in which the particles are not bound in pairs, but the three-body system is bound. For example, although 10Li and the two-neutron systems are not bound, 11Li is bound. It is the presence of 10Li which induces the neutron-neutron binding correlation, as first suggested by Migdal [27]. The authors of ref. [32] also suggest that two of the three most likely ground state configurations in 8He are compatible with an $\alpha + ^4n$ cluster system.

The model for the tetraneutron is based on two clusters of dineutron molecules as dis-
played in Fig. 1. A similar model was used in the framework of the generator coordinate method for the scattering problem in ref. [33]. The molecular models, similar to those used in quantum chemistry, were successfully applied to the chain of Be isotopes [34]. The dineutron wave function can be written as

\[\varphi_{12} = \sqrt{2} A_{12} \left\{ N_0 \exp \left[-\frac{\xi_a^2}{2b^2} \right] \chi_1^{(+)} \chi_2^{(-)} \right\}, \]

where \(\xi_a = 2 |r_1 + R/2| \) is the (relative) intrinsic coordinate and \(r_1 \) is the position of the neutron 1 with respect to the center of mass of the tetraneutron. The relative motion spatial wave function is taken as a Gaussian with \(N_0 = \left(\frac{b^3 \pi^{3/2}}{2} \right)^{-1/2} \), and \(b \) is the oscillator parameter. The dineutron is assumed to be in a spin-0 state, described by the spinors \(\chi_1^{(+)} \) (spin-up) and \(\chi_2^{(-)} \) (spin-down), respectively. The wave function is antisymmetrized by the operator \(A_{12} = \frac{1}{2} (1 - P_{12}) \), where \(P_{12} \) exchanges neutrons 1 and 2. An analogous wave function, \(\varphi_{34} \), is written for the second dineutron molecule. Since the spatial part of the dineutron internal wave functions is even under inversion, the operator \(A_{12} \) only acts over the spin variables and we can write Eq. (1) as

\[\varphi_{12} = N_0 \exp \left[-\frac{\xi_a^2}{2b^2} \right] \chi_{12}^{(0)} \]. \]

Accordingly, the wave function for the second dineutron is

\[\varphi_{34} = N_0 \exp \left[-\frac{\xi_a^2}{2b^2} \right] \chi_{34}^{(0)}. \]

The total wave function of the tetraneutron is

\[\Psi = \sqrt{6} A_{12,34} [\varphi_{12} \varphi_{34}] \Phi(R), \]

where the operator \(A_{12,34} = \frac{1}{6} (1 - P_{13} - P_{14} - P_{23} - P_{24} + P_{13}P_{24} + P_{14}P_{23}) \) implements the antisymmetrization between the dineutrons. The factors \(\sqrt{2} \) in Eq. (1) and \(\sqrt{6} \) in Eq. (4) account for the proper normalization. The function \(\Phi(R) \) is the dineutron-dineutron molecular wave function.

Using Eqs. (1-4), we obtain (here we drop the upper index (0) in the singlet spinors)

\[\Psi = \sqrt{6} N_0^2 \left\{ f(\xi_a, \xi_b) \chi_{12} \chi_{34} - g(\xi_a, \xi_b, R) \chi_{14} \chi_{23} - h(\xi_a, \xi_b, R) \chi_{13} \chi_{24} \right\} \Phi(R), \]

where \(f(\xi_a, \xi_b, R) \), \(g(\xi_a, \xi_b, R) \), and \(h(\xi_a, \xi_b, R) \) are functions of the intrinsic coordinates and the relative coordinates.
FIG. 1: Tetraneutron as a dineutron-dineutron molecule.

where

\[f(\xi_a, \xi_b) = \frac{1}{2} \exp \left[-\frac{\xi_a^2 + \xi_b^2}{2b^2} \right], \]

(6)

\[g(\xi_a, \xi_b, R) = \frac{2}{3} f(\xi_a, \xi_b) \exp \left[-\frac{R^2}{b^2} \right] \exp \left[\frac{\xi_a \xi_b}{2b^2} \right], \]

(7)

and

\[h(\xi_a, \xi_b, R) = \frac{2}{3} f(\xi_a, \xi_b) \exp \left[-\frac{R^2}{b^2} \right] \exp \left[-\frac{\xi_a \xi_b}{2b^2} \right]. \]

(8)

The total Hamiltonian for the tetraneutron system is

\[H = -\frac{\hbar^2}{2m_N} \sum_{i=1}^{4} \Delta_i + V. \]

(9)

The neutron-neutron potential was taken as a two-body Volkov potential [36],

\[V = \sum_{i<j} (1 - M + MP^2_{ij}) V_{ij}, \quad V_{ij}(r) = V_{\alpha} \exp \left(-r^2/\alpha^2 \right) + V_{\beta} \exp \left(-r^2/\beta^2 \right), \]

(10)

where \(P^2_{ij} \) is the Majorana exchange operator and the parameters \(V_{\alpha}, V_{\beta}, \alpha \) and \(\beta \) are chosen to reproduce the scattering length and effective range in low energy nucleon-nucleon collisions, as well as the binding energy of \(^4\text{He}\) [36].

The total Hamiltonian \(H \) can be presented as

\[H = T_a + T_b + T_R + V, \]

(11)

with

\[T_{a,b} = -\frac{\hbar^2}{4m_N} \Delta_{\xi_{a,b}}, \quad T_R = -\frac{\hbar^2}{2m_N} \Delta_{\mathbf{R}}. \]

(12)
FIG. 2: The effective potentials $U_1(R)$ and $U_2(R)$ entering Eq. (20). The solid curve is the sum of the two potentials.

Since in our model the mean positions of the clusters are taken to be at $R/2$ and $-R/2$, respectively, and since the position of each nucleon is symmetric with respect to the origin of each cluster, there is no admixture of spurious motion of the center of mass.

We use Eq. (5) as a starting point of a variational procedure. To obtain an effective Schrödinger equation for $\Phi (R)$, we multiply the full 4-body Schrödinger equation $H\Psi = E\Psi$ by $\Psi^\dagger/\Phi (R)$ and integrate over ξ_1 and ξ_2. We will assume the variational function $\Phi (R)$ to be independent of angles (i.e., an s-wave state),

$$\Phi (R) = \frac{1}{\sqrt{4\pi}} \frac{u(R)}{R} \tag{13}$$

so that the operator T_R in eq. (12) becomes

$$T_R = -\frac{\hbar^2}{2m_N} \frac{d^2}{dR^2} \tag{14}$$

The integrals over ξ_1 and ξ_2 can be performed analytically. One obtains an effective Schrödinger equation for $u(R)$ in the form

$$-\frac{\hbar^2}{2m_N}u''(R) + RV_3(R)u'(R) + \{V_1(R) + V_2(R) - E\} u(R) = 0 \tag{15}$$
FIG. 3: (a) The total potential $U_1(R) + U_2(R)$ entering Eq. (20) for 8 different parameterizations of the Volkov potential. The oscillator parameter $b = 1.5$ fm was used. (b) The same as in (a), but using the Volkov-1 interaction and varying b from 1.2 fm to 2.0 fm.

where

$$V_1(R) = \frac{\hbar^2}{m_N b^2} \left(\frac{R^2}{b^2} - \frac{7}{4} \right) \exp \left(-\frac{R^2}{b^2}\right),$$ \hspace{1cm} (16)

$$V_2(R) = 2 \left[M - 1 - M \frac{1 - \exp \left(-\frac{2R^2}{b^2}\right)}{1 - \exp \left(-\frac{R^2}{b^2}\right)} \right] [f(\alpha) + f(\beta)],$$ \hspace{1cm} (17)

$$f(\alpha) = \frac{V_\alpha \alpha^3}{(\alpha^2 + b^2)^{3/2}} \left\{ 1 + \exp \left[-\frac{R^2}{\alpha^2 + b^2}\right] \right\},$$ \hspace{1cm} (18)

and

$$V_3(R) = -\frac{2\hbar^2}{m_N b^2} \exp \left(-\frac{R^2}{b^2}\right).$$ \hspace{1cm} (19)

Since we are interested only in the relative energy between the clusters, we extract from the total Hamiltonian the internal kinetic energy of each cluster: $T^{int} = 3\hbar^2/(4mb^2)$ and $V^{int} = V_\alpha \left(1 + b^2/\alpha^2\right)^{-3/2} + V_\beta \left(1 + b^2/\beta^2\right)^{-3/2}$ that do not depend on R.

Eq. (15) can be put in a conventional form of a Schrödinger equation:

$$-\frac{\hbar^2}{2m_N} v''(R) + \{U_1(R) + U_2(R) - E\} v(R) = 0,$$ \hspace{1cm} (20)
where
\[v(R) = u(R) \exp \left[\frac{1}{2} \int_0^R f(R')dR' \right], \quad f(R) = -\frac{\hbar^2}{2m_N} RV_3(R). \tag{21} \]

The effective potentials in eq. 20 are given by
\[U_2(R) = V_2(R), \tag{22} \]
and
\[U_1(R) = V_1(R) - \frac{RV_3^2(R)}{2} - \frac{V_3(R)}{2} + \frac{m_N}{2\hbar^2} [RV_3(R)]^2 \\
= -\frac{\hbar^2}{m_Nb^2} \left[\left(\frac{3}{4} + \frac{R^2}{b^2} \right) \exp \left(-\frac{R^2}{b^2} \right) - \frac{2R^2}{b^2} \exp \left(-2\frac{R^2}{b^2} \right) \right]. \tag{23} \]

We use for the oscillator parameter \(b = 1.5 \) fm. A set of 8 parameters of the Volkov potential were taken from Ref. [36]. In Fig. 2 we show the results for the Volkov V1 force. We notice that the potential \(U_2(R) \) is repulsive and the potential \(U_1(R) \) is attractive. Their sum is dominated by the repulsive part.

In Fig. 3(a) we show the total potential \(U_1(R) + U_2(R) \) for the 8 sets of parameters in the Volkov potential, as taken from Ref. [36]. One sees that none of the parameter sets leads to a potential with an attractive pocket, which could be a sign for the existence of a bound state. But even in that case the pocket would have to be deep enough to allow for the appearance of the bound state.

Finally, we have varied the oscillator parameter from 1.2 fm to 2 fm for each set of parameters of the Volkov interaction. No pocket appeared in the effective potential \(U_1(R) + U_2(R) \) within this range of variation. Figure 3(b) shows this for the specific case of the Volkov-1 interaction.

In summary, we have explored a model of the tetraneutron as a dineutron-dineutron molecule. Using a variational calculation we have found an effective Schrödinger equation for the relative motion of the dineutrons, after a proper account for the Pauli exclusion principle. An effective potential for the relative motion of the dineutron molecules was obtained. We showed that this potential does not have a pocket and thus the tetraneutron is very unlikely to be bound as a dineutron-dineutron molecule, although more complex variational approaches still can be explored. For example, one might consider a different spatial wavefunction for the dineutron system. We have used Gaussian for convenience. But the asymptotic form of the wavefunction might not be correct. An Yukawa form might be
more appropriate to achieve a lower energy for the system. Another improvement might be the use of more realistic interactions, other than the Volkov interaction. Interactions including tensor parts might lead to some modifications of our results. Finally, although less probable as an improvement, one might relax the assumption of singlet states for the dineutron allowing for the triplet configurations in the calculation.

Our study is complementary to other approaches and reinforces the commonly accepted idea that a tetraneutron is not a possible outcome of a theoretical calculation starting with underlying two-body nucleon-nucleon interactions. If the tetraneutron is bound, most probably it will be due to a special four-body attraction in $T = 2$ states or an exceptional fine tuning of the nucleon-nucleon interaction which does not seem to fit within present nuclear models. It might however be useful to recall an old phenomenological argument \[5\] against the stability of the tetraneutron. Adding a pair of neutrons to a nucleus one usually increases the separation energy of the proton. If this rule holds, a simple comparison of the particle-stable tritium and unstable ^5H immediately leads to the conclusion that $M(^4\text{n}) > 4M_n$.

After this paper was completed, a detailed variational Monte-Carlo calculation for the tetraneutron was done in Ref. \[37\]. It was shown that it does not seem possible to change modern nuclear Hamiltonians to bind a tetraneutron without destroying many other successful predictions of those Hamiltonians. Otherwise, our understanding of nuclear forces would have to be significantly changed.

More elaborate QCD calculations based on lattice gauge theories cannot presently assess this problem. There are some lattice calculations for the H-dibarion state with not very reliable results (see Ref. \[38, 39\]). However, lattice calculations still cannot determine if, e.g., the deuteron is bound. State of the art lattice numerical calculations are aiming at $O(10)$ MeV accuracy in binding energy, not $O(1)$ MeV or less that is relevant for nuclear physics. Also, how the calculations depend on quark masses is an interesting but very difficult question.

We acknowledge useful discussions with M. Creutz, S. Pieper, S. Ohta and K. Orginos. This work was supported by the National Science Foundation under Grants No. PHY-
0110253, PHY-9875122, PHY-007091, PHY-0070818 and PHY-0244453.

[1] F. M. Marques et al., Phys. Rev. C 65, 044006 (2002).
[2] P.E. Argan, G. Bendiscioli, A. Piazzoli, U. Bisi, M.J. Ferrero and G. Piragino, Phys. Rev. Lett. 9, 405 (1962); Phys. Lett. 4, 350 (1963).
[3] V.I. Goldanskii, Phys. Lett. 9, 184 (1964).
[4] E. Lohrman, H. Meyer and H.O. Wüster, Phys. Lett. 6, 216 (1963).
[5] N.A. Vlasov and L.N. Samoilov, Atomic Energy 17, 3 (1964).
[6] F. von Hippel and P.O. Divakaran, Phys. Rev. Lett. 12, 128 (1964).
[7] M.J. Beniston, B. Krishnamurthy, R. Levi-Setti and M. Raymund, Phys. Rev. Lett. 13, 553 (1964).
[8] R.L. Dangle, J. Jobst and T.I. Bonner, Bul. Am. Phys. Soc. 10, 422 (1965).
[9] Y.C. Tang and B.F. Bayman, Phys. Rev. Lett. 15, 165 (1965).
[10] J. Schiffer and R. Vandenbosch, Phys. Lett. 5, 292 (1963).
[11] O.D. Brill et al., Phys. Lett. 12, 51 (1964).
[12] S. Cierjacks et al., 137, B345 (1965).
[13] R.C. Cohen, A.D. Kanaris, S. Margulies, and J.L. Rosen, Phys. Lett. 16, 292 (1965).
[14] R.E.P. Davis, A. Beretvas, N.E. Booth, C. Dolnick, R.J. Esterling, R.E. Hill, M. Raymund and D. Sherden, Bul. Am. Phys. Soc. 9, 627 (1964).
[15] L. Gilly et al., Phys. Lett. 19, 335 (1965).
[16] J.E. Ungar et al., Phys. Lett. B 144, 333 (1984).
[17] A.V. Belozyorov et al., Nucl. Phys. A 477, 131 (1988).
[18] D.V. Aleksandrov et al., Yad. Fiz. 47, 3 (1988).
[19] T.P. Gorringe et al., Phys. Rev. C 40, 2390 (1989).
[20] J.J. Bevelacqua, Nucl. Phys. A 341, 414 (1980).
[21] A.M. Badalyan, T.I. Belova, N.B. Konyuhova and V.D. Efros, Sov. J. Nucl. Phys. 41, 926 (1985).
[22] A.M. Gorbatov et al., Yad. Fiz. 50, 347 (1989).
[23] K. Varga and Y. Suzuki, Phys. Rev. C 52, 2885 (1995).
[24] S.A. Sofianos, S.A. Rakityansky and G.P. Vermaak, J. Phys. G 23, 1619 (1997).
[25] I.F. Gutich, A.V. Nesterov and I.P. Okhrimenko, Yad. Fiz. 50, 19 (1989).
[26] N. K. Timofeyuk, Los Alamos preprint server, nucl-th/0203003.
[27] A.B. Migdal, Sov. J. Nucl. Phys 16, 238 (1973).
[28] B.S. Pudliner et al., Phys. Rev. Lett. 76, 2416 (1996).
[29] A. Smerzi, D.G. Ravenhall and V.R. Pandharipande, Phys. Rev. C 56, 2549 (1997).
[30] H. Simon et al., Phys. Rev. Lett. 83, 496 (1999).
[31] M.V. Zhukov et al., Phys. Rep. 231, 151 (1993).
[32] M.V. Zhukov, A.A. Korsheninnikov, and M.H. Smedberg, Phys. Rev. C 50, R1 (1994).
[33] B. Giraud, J.C. Hocquenghem and A. Lumbroso, Phys. Rev. C 7, 2274 (1973).
[34] Y. Kanado-En’yo and H. Horiuchi, Phys. Rev. C 66, 024305 (2002); nucl-th/0301059.
[35] V. Ajdacic, M. Cerineo, B. Lalovic, G. Paic, I. Slaus and P. Tomas, Phys. Rev. Lett. 14, 444 (1965).
[36] A.B. Volkov, Nucl. Phys. A74, 33 (1965).
[37] S.C. Pieper, Phys. Rev. Lett. 90, 252501 (2003).
[38] I. Wetzorke and F. Karsch, Los Alamos server preprint, hep-lat/0208029.
[39] J.W. Negele, A. Pochinsky and B. Scarlet, Los Alamos server preprint, hep-lat/9809077.