State Specific Kohn–Sham Density Functional Theory

James P. Finley

Department of Physical Sciences, Eastern New Mexico University, Station #33, Portales, NM 88130 and
Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 Japan

(Dated: November 5, 2018)

Abstract

A generalization of the Kohn–Sham approach is derived where the correlation-energy functional depends on the one-particle density matrix of noninteracting states and on the external potential from the interacting target-state. The one-particle equations contain the exact exchange potential, a nonlocal correlation potential, and an additional operator involving the correlation density. The electronic-energy functional has multiple solutions: Any one-particle density matrix delivering the target-state density yields a solution. In order to obtain the Kohn–Sham solution, the nonlocal operators are converted into local ones using an approach developed by Sala and Görling. Since the exact exchange-potential is used, and the N–representability problem does not arise—in contrast to the Kohn–Sham approach—errors from Coulomb self-interactions do not occur, nor the need to introduce functionals defined by a constraint search. Furthermore, the approach does not use the Hohenberg-Kohn theorem. A density functional formalism is also derived that assumes that the one-particle density matrices of interest have ν–representable (non-interacting) densities and that these density matrices can be written as an explicit functional of the electron density. For simplicity, we only consider noninteracting closed-shell states and target states that are nondegenerate, singlet ground-states.

*Electronic address: james.finley@enmu.edu
I. INTRODUCTION

The Kohn-Sham version of density functional theory plays a major role in both quantum chemistry and condensed matter physics [1, 2, 3, 4, 5, 6, 7]. The local density approximation [8] has been widely used for the solid state. While for molecules, by far, the most successful functional, a hybrid one [9, 10, 11, 12], is known as B3LYP [9, 13].

The Kohn–Sham approach, however, does have well known shortcomings. For example, a constraint search definition [14, 15, 16, 17] is required to treat the ν–representability problem that arises in the original Kohn–Sham method [8]. Unfortunately, this formal definition is difficult to consider when deriving approximate functionals. Furthermore, in contrast to wave function based methods, the exchange-correlation functional is an unknown, implicit functional, and there is no systematic method to improve approximations. In addition, there are well known errors arising from Coulomb self-interactions that appears when using approximate functionals [1, 2, 18]. Also, the most widely used approximate functional for molecular systems, the B3LYP functional, includes a component of the exact exchange-potential, even though the Kohn–Sham approach requires the noninteracting state to come from a local potential. The optimized potential method [19, 20, 21, 22, 23, 24, 25] is an approach to convert a nonlocal operator into a local potential. Unfortunately, this method leads to potentials that are not invariant to a unitary transformation of orbitals and depend explicitly on the individual orbitals and orbital energies.

The formalism presented below uses an electronic-energy functional containing a correlation energy functional E_{co} that depends on the external potential ν and on the one-particle density matrix ρ_1 of determinantal states. Since the ν–representability problem does not appear, a constrain search definition is not needed. Also, since the approach uses the exact exchange-potential, errors from Coulomb self-interactions do not occur. The energy functionals, however, contains multiple solutions, since any one-particle density matrix ρ_1 delivering the density from the interacting state yields a solution. In order to obtain the Kohn–Sham solution, the nonlocal operators are converted into local ones using an approach developed by Sala and Görling [26]. In contrast to the optimized potential method [19, 20, 21, 22, 23, 24, 25], the energy functionals and local potentials are invariant to a unitary transformation of orbitals and do not depend on the individual orbital or the orbital energies. A density functional formalism is also derived that assumes that the one-particle
density matrices of interest have \(v\)-representable (non-interacting) densities and that these density matrices can be written as an explicit functional of the electron density.

Previously we have shown that the correlation energy from many body perturbation theory [27, 28, 29] can be written as an explicit functional of \(v\) and \(\rho_1\) [30]. In a similar manner, but using less restrictive energy denominators, the correlation energy functionals presented below can be shown to be an explicit functional of \(v\) and \(\rho_1\) [31]. Hence, in contrast to the Kohn–Sham method, it maybe possible to derive approximate functionals that can be improved in a systematic manner. For simplicity, we only consider noninteracting closed-shell states and target states that are nondegenerate, singlet ground-states.

II. THE ENERGY FUNCTIONALS AND TRIAL WAVE FUNCTIONS

Our interest is in finding the ground-state eigenvalue of the Hamiltonian operator,

\[
\hat{H}_{Nv} = \hat{T} + \hat{V}_{ee} + \hat{V}_v,
\]

where

\[
\hat{T} = \sum_i (-\frac{1}{2} \nabla_i^2),
\]

\[
\hat{V}_{ee} = \frac{1}{2} \sum_{i \neq j} \frac{1}{r_{ij}},
\]

\[
\hat{V}_v = \sum_i v(i),
\]

and \(v\) is the external potential; \(N\) is the number of electrons. Since the Hamiltonian \(\hat{H}_{Nv}\) is determined by \(N\) and \(v\), so are the ground state wave functions \(|\Psi_{Nv}\rangle\) that satisfy the Schrödinger equation:

\[
\hat{H}_{Nv}|\Psi_{Nv}\rangle = \mathcal{E}_{Nv}|\Psi_{Nv}\rangle,
\]

where, for simplicity, we only consider wave functions that are nondegenerate, singlet ground-states.

Using a second quantization approach, our spin-free Hamiltonian does not depend on \(N\), and it can be expressed by

\[
\hat{H}_v = \sum_{ij} (i|(-\frac{1}{2} \nabla^2)|j) \hat{E}_{ij} + \sum_{ij} (i|v|j) \hat{E}_{ij} + \frac{1}{2} \sum_{ijkl} (ijkl) \hat{E}_{ijkl},
\]
where the symmetry-adapted excitation operators are given by

\[\hat{E}_{ij} = \sum_{\sigma} a_{i\sigma}^\dagger a_{j\sigma}, \]

\[\hat{E}_{ijkl} = \sum_{\sigma\lambda} a_{i\sigma}^\dagger a_{k\lambda}^\dagger a_{l\lambda} a_{j\sigma}, \]

and the one- and two electrons integrals are spin-free integrals written in chemist’s notation using a spatial orbital set, say \(\{\chi\} \); this set has the following form:

\[\psi_{j\sigma}(x) = \chi_j(r)\sigma(\omega); \ \sigma = \alpha, \beta, \]

where the spatial and spin coordinates, \(r \) and \(\omega \), are denoted collectively by \(x \).

Wave function-based methods including perturbation theory, configuration interaction, and coupled cluster theory, use one or more reference states to express \(\Psi \) and \(E \). For closed-shell ground-state wave functions, a single determinant can be used, where closed-shell determinantal, or noninteracting, states can be constructed from a set of doubly occupied spatial-orbitals; these occupied orbitals also determine the spin-less one-particle density-matrix of the noninteracting state, given by

\[\rho_1(r_1, r_2) = 2 \sum_{w \in \{\chi_o\}} \chi_w(r_1)\chi_w^*(r_2), \]

where the sum is over the occupied orbitals; this set of orbitals is denoted by \(\{\chi_o\} \).

For later use, we also mention that for a complete basis set we have

\[2\delta(r_1 - r_2) = \rho_1(r_1, r_2) + \kappa_{\rho_1}(r_1, r_2), \]

where \(\kappa_{\rho_1} \) is determined by the excited orbitals,

\[\kappa_{\rho_1}(r_1, r_2) = 2 \sum_{r \in \{\chi_u\}} \chi_r(r_1)\chi_r^*(r_2), \]

and \(\{\chi_u\} \) denotes the set of orbitals orthogonal to the occupied set \(\{\chi_o\} \). The operator form of Eq. (11) is

\[2\hat{I} = \hat{\rho}_1 + \hat{\kappa}_{\rho_1}, \]

where \(\hat{I} \) is the identity operator; so, the kernels of the three operators within Eq. (13) are given by the corresponding terms within Eq. (11).
It is well known that there is a one-to-one mapping between determinantal states and their one-particle density matrices, say γ, where for a closed-shell state described by the orbitals given by Eq. (9), we have

$$\gamma(x_1, x_2) = \sum_{w \in \{\chi\}} \sum_{\sigma} \chi_w(r_1) \chi^*_w(r_2) \sigma(\omega_1) \sigma^*(\omega_2),$$ \hspace{1cm} (14)

and by using Eq. (10), we obtain

$$\gamma(x_1, x_2) = \frac{1}{2} \rho_1(r_1, r_2) \delta_{\omega_1 \omega_2}.$$ \hspace{1cm} (15)

Since our closed-shell determinantal states are determined by ρ_1, we denote these kets by $|\rho_1\rangle$.

According to the Hohenberg-Kohn theorem, the external potential v is determined by the density, and the density also determines N. So, in principle, we can replace the variables N and v by the electronic density n and, at least for nondegenerate ground-states, write

$$\hat{H}_v |\Psi_n\rangle = E_n |\Psi_n\rangle; \hspace{1cm} n \rightarrow N, v,$$

where these functions serve as density-dependent trial-wave functions for the Kohn-Sham approach. Notice we have omitted the N subscript on the Hamiltonian operator, since \hat{H}_v is independent of N when this operator is expressed in second quantization.

As an alternative to a density-dependent wave function, we consider trial wave functions, say $|\tilde{\Psi}_{vp_1}\rangle$, that are determined by the one-body external potential v and, in addition, by the spin-less one-particle density-matrix ρ_1 of a noninteracting state, and, as mentioned previously, these noninteracting states are denoted by $|\rho_1\rangle$.

By definition, our trial wave function $|\tilde{\Psi}_{vp_1}\rangle$ yields the exact ground-state wave function $|\Psi_n\rangle$ when the noninteracting density ρ_s, i.e., the density of $|\rho_1\rangle$, equals the exact density n of the interacting state $|\Psi_n\rangle$, where n also determines the v and N. This state of affairs can be represented by the following:

$$|\tilde{\Psi}_{vp_1}\rangle = |\Psi_n\rangle; \hspace{0.5cm} \rho_1 \rightarrow \rho_s = n, \hspace{0.5cm} n \rightarrow N, v.$$ \hspace{1cm} (17)

In other words, ρ_1 determines ρ_s, and when $\rho_s = n$, $|\tilde{\Psi}_{vp_1}\rangle$ yields $|\Psi_n\rangle$. Letting ρ_1 denote the one-particle density matrix of interest, we can write

$$|\tilde{\Psi}_{\rho_1}\rangle = |\Psi_n\rangle; \hspace{0.5cm} \rho_1 \rightarrow n, \hspace{0.5cm} n \rightarrow N, v.$$ \hspace{1cm} (18)
For later use, we also mention that the density \(n \) of an interacting state can be partitioned as

\[
n = \rho_s + \rho_c,
\]

where the correlation density is given by

\[
\rho_c(r) = \frac{\langle \Psi_n | \hat{\Gamma}(r) | \Psi_n \rangle}{\langle \Psi_n | \Psi_n \rangle} - \rho_s(r),
\]

and \(\hat{\Gamma} \) is the density operator, given by Eq. (A7).

Using our trial wave function, we introduce a variational energy functional:

\[
E_v[\rho_1] = \frac{\langle \tilde{\Psi}_{v\rho_1} | \hat{H}_v | \tilde{\Psi}_{v\rho_1} \rangle}{\langle \tilde{\Psi}_{v\rho_1} | \tilde{\Psi}_{v\rho_1} \rangle}.
\]

(21)

Our trial wave functions \(|\tilde{\Psi}_{v\rho_1}\rangle \) and energy functionals \(E_v[\rho_1] \) are assumed to be explicit functionals of \(\rho_1 \) and \(v \). However, two different one-particle density matrices, say \(\rho_1 \) and \(\rho_1' \), that yield the same density \(\rho_s \), i.e., \(\rho_1 \to \rho_s \) and \(\rho_1' \to \rho_s \), yield the same \(|\tilde{\Psi}_{v\rho_1}\rangle \) and \(E_v[\rho_1] \), so these functions are implicit functionals of \(\rho_s \), and, therefore, we can write \(|\tilde{\Psi}_{v\rho_s}\rangle \) and \(E_v[\rho_s] \). However, we will continue to consider them as functionals of their explicit variable \(\rho_1 \).

Using Eqs. (16) and (18), we observe that our energy functional \(E_v \), given by Eq. (21), delivers the exact energy \(\mathcal{E}_n \) when the one-particle density matrix determines the exact density \(n \):

\[
E_v[\rho_1] = \mathcal{E}_n, \quad \rho_1 \to n, \quad n \to N,v,
\]

(22)

and for an arbitrary density we get

\[
E_v[\rho_1] \geq \mathcal{E}_n, \quad \rho_1 \to \rho_s \to N,
\]

(23)

where the density \(\rho_s \) from the noninteracting state \(|\rho_1\rangle \) is not necessarily \(v \)-representable.

III. TRIAL HAMILTONIANS

Our trial wave function is a ground-state eigenfunction of a Hamiltonian operator that depend explicitly on the one-particle density of a noninteracting state:

\[
\hat{H}_{v\rho_1} |\tilde{\Psi}_{v\rho_1}\rangle = \mathcal{E}_{v\rho_1} |\tilde{\Psi}_{v\rho_1}\rangle.
\]

(24)
As in our trial wave functions $|\tilde{\Psi}_{v\rho}(\rho_1)\rangle$ and energy functionals $E_v[\rho_1]$, the trial Hamiltonians $\hat{H}_{v\rho}$ are explicit functionals of ρ_1, but implicit functionals of ρ_s. So two trial Hamiltonians, say $\hat{H}_{v\rho}$ and $\hat{H}_{v\rho}'$, are equal if both ρ_1 and ρ_1' yield the same density, i.e., $\rho_1, \rho_1' \to \rho_s$.

Our trial Hamiltonians must be chosen so that Eq. (18) is satisfied, indicating the following identity:

$$\hat{H}_{v\rho} = \hat{H}_v, \quad \rho_1 \to n, \quad n \to N, v. \quad (25)$$

There are many ways to obtain a trial Hamiltonian that satisfies Eq. (25). Consider the following trial Hamiltonian obtained by adding a term to the Hamiltonian:

$$\hat{H}_{v\rho} = \hat{H}_v + \lambda \int d\mathbf{r} g_{\rho_c}(\mathbf{r}) \left(\hat{\Gamma}(\mathbf{r}) - \rho_s(\mathbf{r}) \right), \quad \rho_1 \to \rho_s, \quad (26)$$

where $\hat{\Gamma}(\mathbf{r})$ is the density operator, given by Eq. (A7); $(\hat{\Gamma}(\mathbf{r}) - \rho_s(\mathbf{r}))$ is the one-body portion of $\hat{\Gamma}(\mathbf{r})$ when this operator is written in normal-ordered form [27, 40, 41, 42], given by Eq. (A6). Furthermore, λ is an arbitrary constant, and the functional g is also arbitrary, except that it vanishes when the correlation density ρ_c vanishes

$$\lim_{\rho_c \to 0} g_{\rho_c}(\mathbf{r}) = 0, \quad (27)$$

where ρ_c is defined by Eqs. (19) and (20).

Since $(\hat{\Gamma}(\mathbf{r}) - \rho_s(\mathbf{r}))$ is normal-ordered, we have

$$\langle \rho_1 | \left(\hat{\Gamma}(\mathbf{r}) - \rho_s(\mathbf{r}) \right) | \rho_1 \rangle = 0. \quad (28)$$

Therefore, the added term appearing in Eq. (26) can be considered a sort of correlation term, since it does not contribute in first order. Hence, we have

$$\langle \rho_1 | \hat{H}_{v\rho} | \rho_1 \rangle = \langle \rho_1 | \hat{H}_v | \rho_1 \rangle. \quad (29)$$

One possible choice for g_{ρ_c}, and presented in Appendix A, is given by

$$g_{\rho_c}(\mathbf{r}_1) = \int d\mathbf{r}_2 r_1^{-1} \rho_c(\mathbf{r}_2). \quad (30)$$

IV. A GENERALIZATION OF THE KOHN-SHAM FORMALISM

We now obtain a generalization of the Kohn-Sham formalism. Substituting Eq. (11) into Eq. (21) gives

$$E_v[\rho_1] = \frac{\langle \tilde{\Psi}_{v\rho} | \hat{\Gamma} | \tilde{\Psi}_{v\rho} \rangle}{\langle \tilde{\Psi}_{v\rho} | \tilde{\Psi}_{v\rho} \rangle} + \frac{\langle \tilde{\Psi}_{v\rho} | \hat{V}_{ee} | \tilde{\Psi}_{v\rho} \rangle}{\langle \tilde{\Psi}_{v\rho} | \tilde{\Psi}_{v\rho} \rangle} + \int d\mathbf{r} v(\mathbf{r}) \rho_s(\mathbf{r}) + \int d\mathbf{r} v(\mathbf{r}) \tilde{\rho}_c(\mathbf{r}), \quad (31)$$
where \(\rho_c \) is the correlation density of the trial wave function, i.e., as in Eq. (20), we have

\[
\rho_c(\mathbf{r}) = \frac{\langle \tilde{\Psi}_{v\rho_1} | \tilde{\Gamma}(\mathbf{r}) | \tilde{\Psi}_{v\rho_1} \rangle}{\langle \tilde{\Psi}_{v\rho_1} | \tilde{\Psi}_{v\rho_1} \rangle} - \rho_s(\mathbf{r}) = \tilde{n} - \rho_s(\mathbf{r}), \quad \tilde{\Psi}_{v\rho_1} \rightarrow \tilde{n}, \quad \rho_1 \rightarrow \rho_s, \tag{32}
\]

and \(\tilde{n} \) is the density of \(\tilde{\Psi}_{v\rho_1} \).

Through the first-order, the kinetic energy and electron-electron repulsion energy are given, respectively, by

\[
\langle \rho_1 | \hat{T} | \rho_1 \rangle = \int d\mathbf{r}_1 \left[-\frac{1}{2} \nabla_1^2 \rho_1(\mathbf{r}_1, \mathbf{r}_2) \right]_{\mathbf{r}_2 = \mathbf{r}_1}, \tag{33}
\]

\[
\langle \rho_1 | \hat{V}_{ee} | \rho_1 \rangle = E_J[\rho_s] + E_x[\rho_1], \tag{34}
\]

where the Coulomb and exchange energies are

\[
E_J[\rho_s] = \frac{1}{2} \int \int r_{12}^{-1} d\mathbf{r}_1 d\mathbf{r}_2 \rho(\mathbf{r}_1) \rho(\mathbf{r}_2), \tag{35}
\]

\[
- E_x[\rho_1] = \frac{1}{4} \int \int r_{12}^{-1} d\mathbf{r}_1 d\mathbf{r}_2 \rho_1(\mathbf{r}_1, \mathbf{r}_2) \rho_1(\mathbf{r}_2, \mathbf{r}_1). \tag{36}
\]

Adding and subtracting \(\langle \rho_1 | \hat{T} | \rho_1 \rangle \) and \(\langle \rho_1 | \hat{V}_{ee} | \rho_1 \rangle \), Eq. \(\text{(31)} \) can be written as

\[
E_v[\rho_1] = \int d\mathbf{r}_1 \left[-\frac{1}{2} \nabla_1^2 \rho_1(\mathbf{r}_1, \mathbf{r}_2) \right]_{\mathbf{r}_2 = \mathbf{r}_1} + \int d\mathbf{r} v(\mathbf{r}) \rho_s(\mathbf{r}) + E_J[\rho_s] + E_x[\rho_1] + E_{co}[\rho_1, v] + \int d\mathbf{r} v(\mathbf{r}) \rho_c(\mathbf{r}), \tag{37}
\]

where the correlation-energy functional is given by

\[
E_{co}[\rho_1, v] = \frac{\langle \tilde{\Psi}_{v\rho_1} | \hat{T} | \tilde{\Psi}_{v\rho_1} \rangle}{\langle \tilde{\Psi}_{v\rho_1} | \tilde{\Psi}_{v\rho_1} \rangle} - \langle \rho_1 | \hat{T} | \rho_1 \rangle + \frac{\langle \tilde{\Psi}_{v\rho_1} | \hat{V}_{ee} | \tilde{\Psi}_{v\rho_1} \rangle}{\langle \tilde{\Psi}_{v\rho_1} | \tilde{\Psi}_{v\rho_1} \rangle} - \langle \rho_1 | \hat{V}_{ee} | \rho_1 \rangle. \tag{38}
\]

Recognizing the first four terms from Eq. \(\text{(37)} \) as the energy through the first order, \(\mathcal{E}_1 \), we can write

\[
E_v[\rho_1] = \mathcal{E}_1[\rho_1, v] + E_{co}[\rho_1, v] + \int d\mathbf{r} v(\mathbf{r}) \rho_c(\mathbf{r}), \tag{39}
\]

where

\[
\mathcal{E}_1[\rho_1, v] = \langle \rho_1 | H_v | \rho_1 \rangle = \int d\mathbf{r}_1 \left[-\frac{1}{2} \nabla_1^2 \rho_1(\mathbf{r}_1, \mathbf{r}_2) \right]_{\mathbf{r}_2 = \mathbf{r}_1} \tag{40}
\]

\[
+ \int d\mathbf{r}_1 v(\mathbf{r}_1) \rho(\mathbf{r}_1) + \frac{1}{2} \int \int d\mathbf{r}_1 d\mathbf{r}_2 r_{12}^{-1} \rho(\mathbf{r}_1) \rho(\mathbf{r}_2) - \frac{1}{4} \int \int d\mathbf{r}_1 d\mathbf{r}_2 r_{12}^{-1} \rho_1(\mathbf{r}_1, \mathbf{r}_2) \rho_1(\mathbf{r}_2, \mathbf{r}_1).
\]

Now consider the correlation energy that is obtained by wave function methods. Using the notation from Eq. \(\text{(31)} \), and a reference state \(| \rho_1 \rangle \), the correlation energy is given by

\[
\mathcal{E}_{co}[\rho_1, v] = \frac{\langle \Psi_{Nv} | \hat{H}_v | \Psi_{Nv} \rangle}{\langle \Psi_{Nv} | \Psi_{Nv} \rangle} - \mathcal{E}_1[\rho_1, v], \tag{41}
\]

8
where previously we have shown that \mathcal{E}_{co} can be written as an explicit functional of v and ρ_1. In a similar manner, but using less restrictive energy denominators, our correlation energy functional E_{co}, given by Eq. (38), can be shown to be an explicit functional of v and ρ_1. Therefore, by requiring the last term within Eq. (39) to be an explicit functional of v and ρ_1, E_v can also be written as an explicit functional of v and ρ_1.

We now focus our attention on minimizing the energy functional E_v, subject to the constraint that the spin-less one-particle density-matrix ρ_1 comes from a closed-shell single-determinantal state. For the more general case of a determinantal state, say $|\gamma\rangle$, with the (spin-dependent) one-particle density matrix γ, as in Eq. (14), the two necessary conditions for γ to satisfy are given by the following [2, 34]:

$$\int \int \gamma(x_3, x_4)\delta(x_3 - x_4) \, dx_3 dx_4 = N,$$

(42)

$$\int \gamma(x_3, x_5)\gamma(x_5, x_4) \, dx_5 = \gamma(x_3, x_4),$$

(43)

where the first relation indicates that the electron density yields the number of electrons N; the second relation indicates that γ is indempotent. For our special closed-shell case, we substitute Eq. (15) into the above constrains, yielding the following conditions:

$$\int \int \rho_1(r_3, r_4)\delta(r_3 - r_4) \, dr_3 dr_4 = N,$$

(44)

$$\int \rho_1(r_3, r_5)\rho_1(r_5, r_4) \, dr_5 = 2\rho_1(r_3, r_4).$$

(45)

It is well know that the functional derivative of \mathcal{E}_{1} with respect to the γ yields the kernel of the Fock operator [2]. For the closed-shell case, we have

$$F(r_1, r_2) = \frac{\delta\mathcal{E}_{1}[\rho_1, v]}{\delta\rho_1(r_2, r_1)},$$

(46)

where, using Eq. (40), the Fock kernel is given by

$$F_{\rho_1}(r_1, r_2) = \delta(r_1 - r_2) \left(-\frac{1}{2} \nabla^2 + v(r_2) + \int dr_3 r_3^{-1} \rho(r_3) \right) + v^{\rho_1}_{x}(r_1, r_2),$$

(47)

and the exchange operator, say $\hat{v}^{\rho_1}_{x}$, has the following kernel:

$$v^{\rho_1}_{x}(r_1, r_2) = -\frac{1}{2} r_1^{-1} \rho_1(r_1, r_2).$$

(48)

By generalizing Eq. (46), we define a generalized, or exact, Fock operator $\hat{\mathcal{F}}$, where the kernel of this operator is

$$\mathcal{F}_{\rho_1}(r_1, r_2) = \frac{\delta E_v[\rho_1]}{\delta\rho_1(r_2, r_1)} = F_{\rho_1}(r_1, r_2) + v^{\rho_1}_{co}(r_1, r_2) + v^{\rho_1}_{ec}(r_1, r_2),$$

(49)
and the correlation operator $\hat{v}_{co}^{\rho_1}$ and external-correlation operator $\hat{v}_{ec}^{\rho_1}$ are defined by their kernels:

$$v_{co}^{\rho_1}(r_1, r_2) = \frac{\delta E_{co}[\rho_1,v]}{\delta \rho_1(r_2, r_1)}, \quad (50)$$

$$v_{ec}^{\rho_1}(r_1, r_2) = \frac{\delta \left(\int dr_3 v(r_3) \tilde{\rho}_c (r_3) \right)}{\delta \rho_1(r_2, r_1)}. \quad (51)$$

Minimizing the functional E_v, given by Eq. (39), subject to the constraints given by Eqs. (44) and (45), is very similar to the corresponding Hartree–Fock derivation and the derivation for reference-state one-particle density matrix theory. The only difference being that the spin variable has been eliminated, and we have a factor of two appearing in Eq. (45). Therefore, we only state the main results, i.e., this minimization yields the exact electronic energy E_n for the interacting state, as given by Eq. (22), where the one-particle density-matrix ρ_1 satisfies the following conditions:

$$\hat{\kappa}_1 \hat{\rho}_1 \hat{\kappa}_1 = 0, \quad (52)$$

$$\hat{\rho}_1 \hat{\kappa}_1 \hat{\rho}_1 = 0, \quad (53)$$

and the kernels of the operators $\hat{\rho}_1$ and $\hat{\kappa}_1$ are given by the terms on the right side of Eq. (11); also, as mentioned previously, ρ_1 yields the exact density n of the interacting state Ψ_n. Using Eqs. (52) and (53), it is readily shown that $\hat{\kappa}_1$ and $\hat{\rho}_1$ commute:

$$\left[\hat{\kappa}_1, \hat{\rho}_1 \right] = 0, \quad (54)$$

and the occupied orbitals satisfy a generalized Hartree–Fock equation:

$$\hat{F}_{\rho_1} \chi_w = \sum_{x \in \rho_1} \varepsilon_{xw} \chi_x, \quad (55)$$

where the notation $x \in \rho_1$ indicates a summation over the occupied orbitals from the determinantal state $|\rho_1\rangle$; χ_w is also an occupied orbital from $|\rho_1\rangle$. Furthermore, we can choose orbitals that diagonalize the matrix ε_{xw}, yielding exact, canonical Hartree–Fock equations:

$$\left(-\frac{1}{2} \nabla^2 + v + v_j^n + \hat{v}_x^{\rho_1} + \hat{v}_{co}^{\rho_1} + \hat{v}_{ec}^{\rho_1} \right) \chi_w = \varepsilon_w \chi_w, \quad \chi_w \in \rho_1, \quad (56)$$

where the Coulomb operator is defined by

$$v_j^\rho(r_1) \chi(r_1) = \int dr_2 r_{12}^{-1} \rho(r_2) \chi(r_1), \quad (57)$$
and we have

$$\varrho_1(\mathbf{r}, \mathbf{r}) = n(\mathbf{r}).$$ \hfill (58)

Equation (56) is also satisfied by the canonical excited orbitals.

For later use, we also mention that the determinantal states $|\varrho_1\rangle$ satisfy the following noninteracting Schrödinger equation:

$$\sum_{i=1}^{N} \hat{F}_{\varrho_1}(\mathbf{r}_i)|\varrho_1\rangle = 2 \left(\sum_w \varepsilon_w \right) |\varrho_1\rangle. \hfill (59)$$

Appendix B presents an alternative way of partitioning the energy functional that differs from Eq. (59).

V. CONVERSION OF THE NONLOCAL POTENTIAL INTO A LOCAL ONE

As mentioned previously, our energy functionals E_v are implicit functionals of the non-interacting density ρ_s. Hence, any one-particle density-matrix that yields the interacting density minimizes our energy functional, i.e., we have

$$E_n = E_v[\varrho_1] = E_v[\varrho_1'] = E_v[\varrho_1''] \cdots, \hfill (60)$$

where

$$n(\mathbf{r}) = \varrho_1(\mathbf{r}, \mathbf{r}) = \varrho_1'(\mathbf{r}, \mathbf{r}) = \varrho_1''(\mathbf{r}, \mathbf{r}) \cdots, \hfill (61)$$

and there are other solutions besides Eq. (56), e.g,

$$\hat{F}_{\varrho_1'} \chi_w = \left(-\frac{1}{2} \nabla^2 + v + v^n_j + \hat{w}_{\varrho_1'} \right) \chi_w = \varepsilon_w \chi_w, \quad \chi_w \in \varrho_1', \hfill (62)$$

where the nonlocal potential \hat{w}_{ρ_1} is given by

$$\hat{w}_{\rho_1} = \hat{v}_{\varrho_1}^{\rho_1} + \hat{v}_{\varrho_1'}^{\rho_1} + \hat{v}_{\varrho_1''}^{\rho_1}. \hfill (63)$$

Assuming n is a noninteracting v-representable density, there exist a noninteracting state, say $|\varphi_1\rangle$, that has n as its density:

$$n(\mathbf{r}) = \varphi_1(\mathbf{r}, \mathbf{r}). \hfill (64)$$
and this determinant—assuming it is a closed-shell determinant—is the ground-state solution of the following noninteracting Schrödinger equation:

\[
\sum_{i=1}^{N} \hat{f}(r_i)|\varphi_1\rangle = 2 \left(\sum_{w} \epsilon_w \right) |\varphi_1\rangle,
\]

where

\[
\hat{f} = -\frac{1}{2} \nabla^2 + v_s,
\]

and \(v_s\) is a local potential. Therefore, the canonical occupied orbitals from \(|\varphi_1\rangle\) satisfy the following one-particle Schrödinger equation:

\[
\hat{f} \phi_w = \left(-\frac{1}{2} \nabla^2 + v + v^n_j + v_{xc} \right) \phi_w = \epsilon_w \phi_w, \quad \phi_w \in \varphi_1,
\]

where with no loss of generality, we have required \(v_s\) to be defined by

\[
v_s = v + v^n_j + v_{xc}.
\]

By definition, or using Eqs. (60), (61), and (64), \(\varphi_1\) is a one-particle density matrix that minimizes our energy functional:

\[
\mathcal{E}_n = E_v[\varphi_1],
\]

and, therefore, \(\varphi_1\) also satisfies Eq. (59):

\[
\sum_{i=1}^{N} \hat{F}_{\varphi_1}(r_i)|\varphi_1\rangle = 2 \left(\sum_{w} \epsilon_w \right) |\varphi_1\rangle.
\]

Hence, it follows from Eqs. (65) and (70) that \(|\varphi_1\rangle\) is an eigenstate of two different noninteracting Hamiltonians. By comparing Eq. (62) and (67) with \(g'_1 = \varphi_1\), we see that the two operators, \(\hat{F}_{\varphi_1}\) and \(\hat{f}\), are identical, except that \(\hat{F}_{\varphi_1}\) contains the nonlocal operator \(\hat{w}_{\varphi_1}\) and \(\hat{f}\) contains the local potential \(v_{xc}\). Furthermore, the occupied orbitals from Eq. (62) and (67) with \(g'_1 = \varphi_1\) may differ by a unitary transformation, but they yield the same one-particle density matrix:

\[
\varphi_1(r_1, r_2) = 2 \sum_{w \in \varphi_1} \chi_w(r_1) \chi_w^*(r_2) = 2 \sum_{w \in \varphi_1} \phi_w(r_1) \phi_w^*(r_2).
\]

Using the approach by Sala and Görling [26], and Eqs. (65), (70), (62) and (67), but permitting the orbitals to be complex, it is readily demonstrated that \(v_{xc}\) is given by

\[
v_{xc}(r) = \frac{1}{2n(r)} \int d\mathbf{r} \left[2w(\mathbf{r}, \mathbf{r}) \varphi_1(\mathbf{r}, \mathbf{r}_1) - \varphi_1(\mathbf{r}, \mathbf{r}_1) \int d\mathbf{r}_2 \varphi_1(\mathbf{r}_2, \mathbf{r}) w(\mathbf{r}_1, \mathbf{r}_2) + \varphi_1(\mathbf{r}, \mathbf{r}_1) \varphi_1(\mathbf{r}, \mathbf{r}_1) v_{xc}(\mathbf{r}_1) \right].
\]

12
By substituting \(v_{xc} \) repeatedly on the right side we can obtain an expansion for \(v_{xc} \):

\[
v_{xc}(\mathbf{r}) = \frac{1}{2n(\mathbf{r})} \left[2w(\mathbf{r}_1, \mathbf{r})\varphi_1(\mathbf{r}, \mathbf{r}_1) - \varphi_1(\mathbf{r}, \mathbf{r}_1)\varphi_1(\mathbf{r}_2, \mathbf{r})w(\mathbf{r}_1, \mathbf{r}_2) \right]
\]

\[
+ \varphi_1(\mathbf{r}_1, \mathbf{r})\varphi_1(\mathbf{r}, \mathbf{r}_1) \left\{ \frac{1}{n(\mathbf{r}_1)} \left[w(\mathbf{r}_2, \mathbf{r}_1)\varphi_1(\mathbf{r}_1, \mathbf{r}_2) - \frac{1}{2}\varphi_1(\mathbf{r}_1, \mathbf{r}_2)\varphi_1(\mathbf{r}_3, \mathbf{r}_1)w(\mathbf{r}_2, \mathbf{r}_3) \right] \right\}
\]

\[
+ \varphi_1(\mathbf{r}_1, \mathbf{r})\varphi_1(\mathbf{r}, \mathbf{r}_1) \left[\frac{1}{2n(\mathbf{r}_1)} \varphi_1(\mathbf{r}_2, \mathbf{r}_1)\varphi_1(\mathbf{r}_1, \mathbf{r}_2) - \frac{1}{2n(\mathbf{r}_2)}w(\mathbf{r}_3, \mathbf{r}_2)\varphi_1(\mathbf{r}_2, \mathbf{r}_3) \right] \right] + \cdots \right],
\]

where there are integrations over the dummy variables \(\mathbf{r}_1, \mathbf{r}_2 \) and \(\mathbf{r}_3 \). The leading term of Eq. (73) is the Slater potential \([45, 46, 47]\); this term also appears within the Krieger–Li–Iafrate (KLI) approximation of the optimized potential method \([19, 22, 47, 48]\).

The orbitals \(\phi_w \) satisfying Eq. (67) are the Kohn–Sham orbitals \([8]\); \(|\varphi_1\rangle \) is the Kohn–Sham noninteracting state. However, \(\hat{f} \) differs from the Kohn–Sham operator, since, in addition to depending explicitly \(\varphi_1 \), instead of \(n \), \(\hat{f} \) depends explicitly on the external potential \(v \) from the interacting Hamiltonian \(\hat{H}_v \). Furthermore, the external-correlation operator \(\hat{v}_{ec}^{\rho_1} \) does not appear in Kohn–Sham formalism. In addition, unlike the original Kohn–Sham approach \([8]\), the \(N \)-representability problem does not arise, nor the need to introduce a constraint-search definition \([14, 15, 16, 17]\) to avoid this problem.

In our derivation we have assumed that \(|\varphi_1\rangle \) is a ground state solution of Eq. (65). However, the results may also be valid if \(|\varphi_1\rangle \) is an excited state solution, since the Sala and Görling approach may also be valid in this case.

VI. CONVERSION OF THE ONE-PARTICLE DENSITY-MATRIX FUNCTIONALS INTO DENSITY FUNCTIONALS

For noninteracting states, the wave function is determined by the one-particle density matrix. For certain closed-shell determinantal states, we can write \(\rho_1[\rho_s] \), where this functional includes all densities that are noninteracting \(v \)-representable, but it is also defined for all \(N \)-representable densities. Using the constraint search approach \([14, 15, 16, 17]\), for a given density, say \(\rho' \), the functional \(\rho_1[\rho'] \) yields the one-particle density matrix that minimizes the expectation value of the kinetic energy:

\[
\text{Min}_{\rho_1 \to \rho'} \langle \rho_1|\hat{T}|
ho_1\rangle = \langle \rho_1[\rho']|\hat{T}|
ho_1[\rho']\rangle,
\]

where the search is over all determinantal states that have a density of \(\rho' \).
Substituting $\rho_1[\rho]$ into E_{co} of Eq. (37) gives

$$E_v[\rho_1] = \int d\mathbf{r}_1 \left[-\frac{1}{2} \nabla^2 \rho_1(\mathbf{r}_1, \mathbf{r}_2) \right]_{\mathbf{r}_2=\mathbf{r}_1} + \int d\mathbf{r} v(\mathbf{r}) \rho_1(\mathbf{r})$$

$$+ E_J[\rho_1] + E_X[\rho] + E_{co}[\rho, v] + \int d\mathbf{r} v(\mathbf{r}) \tilde{\rho}_c(\mathbf{r}), \ \rho \rightarrow \rho_1, (75)$$

where, using $\rho_1[\rho]$, the last term is also a functional of v and ρ. This equation differs from the Kohn–Shan density functional, since the correlation-energy functional depends on the external potential v, and the last term does not appear in the Kohn–Sham approach. However, mathematically speaking, the minimization of Eq. (75) follows the same procedure as in the Kohn–Sham method, yielding

$$\hat{f}\phi_w = \left(-\frac{1}{2} \nabla^2 + v + v^n_x + v^n_{co} + v^n_{ec} \right) \phi_w = \epsilon_w \phi_w, \ \phi_w \in \varphi_1,$$

where the local potentials are given by

$$v^n_x(\mathbf{r}) = \frac{\delta E_x[\rho, v]}{\delta \rho(\mathbf{r})}, \quad (77)$$

$$v^n_{co}(\mathbf{r}) = \frac{\delta E_{co}[\rho, v]}{\delta \rho(\mathbf{r})}, \quad (78)$$

$$v^n_{ec}(\mathbf{r}) = \frac{\delta \left(\int d\mathbf{r}_1 v(\mathbf{r}_1) \tilde{\rho}_c(\mathbf{r}_1) \right)}{\delta \rho(\mathbf{r})}. \quad (79)$$

Assuming the density n from the interacting state is noninteracting v-representable, we have

$$E_v[n] = \mathcal{E}_n, \ n \text{ is noninteracting } v\text{-representable}. \quad (80)$$

Note that Eq. (75) is a valid energy functional only when the one-particle density matrix that enters the first term is the same one generated by the functional $\rho_1[\rho]$; this is the case, at least when ρ is non-interacting v-representable.

APPENDIX A: A POSSIBLE CHOICE FOR $g_{\rho C}$

The electron-electron repulsion operator is spin-free and can be written as

$$\hat{V}_{ee} = \frac{1}{2} \sum_{ij} (ij|_{12}^{-1}|kl) \hat{E}_{ijkl}. \quad (A1)$$
where the two-electron integral is written in chemist’s notation \[32\] and the two-electron spin-adapted excitation-operator is given by Eq. \([8]\). This operator can also be written as

\[
\hat{V}_{ee} = \int \int d\mathbf{r}_1 d\mathbf{r}_2 r_{12}^{-1} \hat{\Gamma}_2(\mathbf{r}_2, \mathbf{r}_1),
\]

(A2)

where the pair-function operator is given by

\[
\hat{\Gamma}_2(\mathbf{r}_2, \mathbf{r}_1) = \frac{1}{2} \sum_{ijkl} \chi_j(\mathbf{r}_1) \chi_i(\mathbf{r}_1) \chi_l(\mathbf{r}_2) \chi_k(\mathbf{r}_2) \hat{E}_{ijkl},
\]

(A3)

and this operator yields the diagonal elements of the spinless two-particle density matrix as the expectation value. Writing this operator in normal-ordered form \([27, 40, 41, 42]\) with respect to the vacuum state \(|\rho_1\rangle\), we have

\[
\hat{V}_{ee} = \int \int d\mathbf{r}_1 d\mathbf{r}_2 r_{12}^{-1} \rho_2(\mathbf{r}_2, \mathbf{r}_1)\rho_1 + \int \int d\mathbf{r}_1 d\mathbf{r}_2 r_{12}^{-1} \rho_s(\mathbf{r}_2)\hat{\Gamma}(\mathbf{r}_1)\rho_s
\]

\[
- \frac{1}{2} \int d\mathbf{r}_1 d\mathbf{r}_2 r_{12}^{-1} \rho_1(\mathbf{r}_2, \mathbf{r}_1)\hat{\Gamma}(\mathbf{r}_1, \mathbf{r}_2)\rho_1 + \int \int d\mathbf{r}_1 d\mathbf{r}_2 r_{12}^{-1} \hat{\Gamma}_2(\mathbf{r}_2, \mathbf{r}_1)\rho_1,
\]

(A4)

where, examining each term in turn, from the first term we have

\[
\rho_2(\mathbf{r}_2, \mathbf{r}_1)\rho_1 = \frac{1}{2}\rho_s(\mathbf{r}_2)\rho_s(\mathbf{r}_1) - \frac{1}{4}\rho_1(\mathbf{r}_2, \mathbf{r}_1)\rho_1(\mathbf{r}_1, \mathbf{r}_2),
\]

(A5)

and this function is the diagonal elements of the spinless second-order density matrix of the determinantal state \(|\rho_1\rangle\). From the second term, we have

\[
\hat{\Gamma}(\mathbf{r})_{\rho_s} = \sum_{ij} \chi_j(\mathbf{r})\chi_i(\mathbf{r})\{\hat{E}_{ij}\}_{\rho_1} \rightarrow \rho_s,
\]

(A6)

and this operator is the one-body portion of the density operator, where the density operator is given by

\[
\hat{\Gamma}(\mathbf{r}) = \sum_{ij} \chi_j(\mathbf{r})\chi_i(\mathbf{r})\hat{E}_{ij}.
\]

(A7)

Note that we can write

\[
\hat{\Gamma}(\mathbf{r})_{\rho_s} = \hat{\Gamma}(\mathbf{r}) - \rho_s(\mathbf{r}),
\]

(A8)

indicating that \(\hat{\Gamma}(\mathbf{r})_{\rho_s}\) is determined by \(\rho_s\) and not by \(\rho_1\); two different one-particle density matrices that yield the same density have the same \(\hat{\Gamma}(\mathbf{r})_{\rho_s}\).

Returning to Eq. \((A4)\), from the third term we have

\[
\hat{\Gamma}(\mathbf{r}_1, \mathbf{r}_2)\rho_1 = \sum_{ij} \chi_j(\mathbf{r}_1)\chi_i(\mathbf{r}_2)\{\hat{E}_{ij}\}_{\rho_1},
\]

(A9)
and this operator is the one-body portion of the one-particle density-matrix operator, given by

$$\hat{\Gamma}(\mathbf{r}_1, \mathbf{r}_2) = \sum_{ij} \chi_j(\mathbf{r}_1)\chi_i^*(\mathbf{r}_2) \hat{E}_{ij} = \rho_1(\mathbf{r}_1, \mathbf{r}_2) + \hat{\Gamma}(\mathbf{r}_1, \mathbf{r}_2)_{\rho_1}. \quad (A10)$$

And from the last term, we have

$$\hat{\Gamma}_2(\mathbf{r}_2, \mathbf{r}_1)_{\rho_1} = \frac{1}{2} \sum_{ijkl} \chi_j(\mathbf{r}_1)\chi_i^*(\mathbf{r}_1)\chi_l^*(\mathbf{r}_2)\chi_k^*(\mathbf{r}_2) \{\hat{E}_{ijkl}\}_{\rho_1}, \quad (A11)$$

and this operator is the two-body portion of the pair-function operator, Eq. (A3).

To obtain a slight modification of \hat{V}_{ee}, we replace the determinantal state density ρ_s, that appears in Eq. (A4), with the exact density n, giving

$$\hat{V}^{\rho_1}_{ee} = \int \int d\mathbf{r}_1 d\mathbf{r}_2 \rho_2(\mathbf{r}_2, \mathbf{r}_1)_{\rho_1} + \int \int d\mathbf{r}_1 d\mathbf{r}_2 \rho_2(\mathbf{r}_2, \mathbf{r}_1)_{\rho_1} \hat{\Gamma}(\mathbf{r}_1)_{\rho_s}$$

$$- \frac{1}{2} \int \int d\mathbf{r}_1 d\mathbf{r}_2 \rho_1(\mathbf{r}_2, \mathbf{r}_1)\hat{\Gamma}(\mathbf{r}_1, \mathbf{r}_2)_{\rho_1} + \int \int d\mathbf{r}_1 d\mathbf{r}_2 \hat{\Gamma}_2(\mathbf{r}_2, \mathbf{r}_1)_{\rho_1}, \quad (A12)$$

and this operator can also be written as

$$\hat{V}^{\rho_1}_{ee} = \hat{V}_{ee} + \int \int d\mathbf{r}_1 d\mathbf{r}_2 \rho_c(\mathbf{r}_2) \left(\hat{\Gamma}(\mathbf{r}_1) - \rho_s(\mathbf{r}_1)\right), \quad (A13)$$

Replacing \hat{V}_{ee} by $\hat{V}^{\rho_1}_{ee}$ within the Hamiltonian operator, we have obtain a trial Hamiltonian:

$$\hat{H}_{v\rho_1} = \hat{H}_v + \lambda \int \int d\mathbf{r}_1 d\mathbf{r}_2 \rho_c(\mathbf{r}_2) \left(\hat{\Gamma}(\mathbf{r}_1) - \rho_s(\mathbf{r}_1)\right), \quad (A14)$$

where λ is unity, but it can be permitted to be any constant value. Comparing this equation with Eq. (26) yields Eq. (30).

APPENDIX B: ENERGY FUNCTIONAL USING INTERMEDIATE NORMALIZATION

Using Eq. (26), our energy functional E_v, Eq. (21), can be also be written as

$$E_v[\rho_1] = \frac{\langle \tilde{\Psi}_{\rho_1} | \hat{H}_{v\rho_1} | \tilde{\Psi}_{\rho_1} \rangle}{\langle \tilde{\Psi}_{\rho_1} | \tilde{\Psi}_{\rho_1} \rangle} - \lambda \int d\mathbf{r} g_{\rho_c}(\mathbf{r}) \left(\hat{\Gamma}(\mathbf{r}) - \rho_s(\mathbf{r})\right). \quad (B1)$$

By requiring our trial wave functions to satisfy intermediate normalization,

$$\langle \rho_1 | \tilde{\Psi}_{\rho_1} \rangle = 1, \quad (B2)$$
we have

\[E_v[\rho_1] = \langle \rho_1 | \hat{H}_{vp_1} | \tilde{\Psi}_{vp_1} \rangle - \lambda \int d\mathbf{r} \, g_{\rho_c}(\mathbf{r}) \left(\hat{\Gamma}(\mathbf{r}) - \rho_s(\mathbf{r}) \right). \]

(B3)

This form suggests the following partitioning:

\[E_v[\rho_1] = \mathcal{E}_1[\rho_1, v] + \tilde{E}_{co}[\rho_1, v] - \lambda \int d\mathbf{r} \, g_{\rho_c}(\mathbf{r}) \left(\hat{\Gamma}(\mathbf{r}) - \rho_s(\mathbf{r}) \right), \]

(B4)

where \(\tilde{E}_{co} \) is the correlation-energy (functional) of the trial wave function:

\[\tilde{E}_{co}[\rho_1, v] = \langle \rho_1 | \hat{H}_{vp_1} | \tilde{\Psi}^Q_{vp_1} \rangle, \]

(B5)

and the correlation function \(\tilde{\Psi}^Q_{vp_1} \) is defined by

\[|\tilde{\Psi}_{vp_1}\rangle = |\rho_1\rangle + |\tilde{\Psi}^Q_{vp_1}\rangle. \]

(B6)

[1] R. M. Dreizler and E. K. U. Gross, *Density Functional Theory: An Approach to the Quantum Many-Body Problem* (Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, 1990).

[2] R. G. Parr and W. Yang, *Density-Functional Theory of Atoms and Molecules* (Oxford University Press, New York, 1989).

[3] M. Springborg, ed., *Density Functional Methods in Chemistry and Material Science* (Wiley, Chichester, 1997).

[4] D. E. Ellis, ed., *Density Functional Methods of Molecules, Clusters, and Solids* (Kluwer, Dordrecht, 1995).

[5] E. K. U. Gross and R. M. Dreizler, eds., *Density Functional Theory* (Plenum, New York, 1994).

[6] J. Seminario and P. Politzer, eds., *Modern Density Functional Theory. A Tool for Chemistry* (Elsevier, Amsterdam, 1995).

[7] N. C. Handy, in *Europe Summerschool in Quantum Chemistry*, B. O. Roos and P. -O. Widmark eds. (1997), 2nd ed., (see internet address www.teokem.lu.se/esqc).

[8] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[9] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
[10] K. Burke, M. Ernzerhof, and J. P. Perdew, Chem. Phys. Lett. 265, 115 (1997).
[11] J. P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
[12] M. Ernzerhof, Chem. Phys. Lett. 263, 499 (1996).
[13] P. J. Stephens, J. F. Devlin, and C. F. Chabalowski, J. Phys. Chem. 98, 11623 (1994), (see also internet address http://www.gaussian.com/q3.htm).
[14] M. Levy, Int. J. Quantum Chem. 13, 89 (1978).
[15] M. Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).
[16] M. Levy, Phys A 26, 1200 (1982).
[17] M. Levy and J. P. Perdew, in Density Functional Methods Physics, Dreizler, R. M. and Providencia, J. da, eds., (Plenum, New York, 1985), pp. 11–30.
[18] W. Koch and M. C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, New York, 2000).
[19] C. Fiolhais, F. Nogueira, and M. Marques, eds., Lecture Notes in Physics: A primer on Density Functional Theory (Springer-Verlag, Berlin, Heidelberg, New York, Barcelona, Hong Kong, London, Milan, Paris, Tokyo, 2003), (and references therein).
[20] R. T. Sharp and G. K. Horton, Phys. Rev. 90, 317 (1953).
[21] J. Talman and W. Shadwick, Phys. Rev. A 14, 36 (1976).
[22] Y. Li, J. B. Krieger, and G. J. Iafrate, Phys. Rev. A 47, 165 (1993).
[23] V. Shaginyan, Phys. Rev. A 47, 1507 (1994).
[24] A. Görling and M. Levy, Phys. Rev. A 50, 196 (1994).
[25] T. Grabo, T. Kreibich, S. Kurth, and E.K.U Gross, in Strong Coulomb Correlation in Electronic Structure: Beyond the Local Density Approximation (Gordon and Breach, Tokyo, 2000).
[26] F. D. Sala and A. Görling, J. Chem. Phys. 115, 5718 (2001).
[27] I. Lindgren and J. Morrison, Atomic Many-Body Theory, Springer Series on Atoms and Plasmas (Springer-Verlag, New York, Berlin, Heidelberg, 1986), 2nd ed.
[28] F. E. Harris, H. J. Monkhorst, and D. L. Freeman, Algebraic and Diagrammatic Methods in Many-Fermion Theory (Oxford University Press, New York, 1992).
[29] S. Raimes, Many-Electron Theory (North-Holland, Amsterdam, 1972).
[30] J. P. Finley (2003), arXiv:physics/0308056.
[31] J. P. Finley (2005), (to be published).
[32] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic
Structure Theory (Macmillian, New York, 1982).

[33] R. McWeeny, Rev. Mod. Phys. 32, 335 (1960).

[34] J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems (MIT Press, Cambridge, Mass., 1986).

[35] P. A. M. Dirac, Proc. Cambridge Phil. Soc. 26, 376 (1930).

[36] P. A. M. Dirac, Proc. Cambridge Phil. Soc. 27, 240 (1931).

[37] P. -O. Löwdin, Phys. 97, 1474 (1955).

[38] P. -O. Löwdin, Phys. 97, 1490 (1955).

[39] P. Hohenberg and W. Kohn, Phys. Rev. 136B, 864 (1964).

[40] J. Čížek, J. Chem. Phys. 45, 4256 (1966).

[41] J. Čížek, Adv. Chem. Phys. 14, 35 (1969).

[42] J. Paldus and J. Čížek, Adv. Quantum Chem. 9, 105 (1975).

[43] J. P. Finley, Phys. Rev. A. 69, 042514 (2004).

[44] J. P. Finley, Mol. Phys. 102, 627 (2004), also arXiv:physics/0308084.

[45] J. C. Slater, Phys. Rev. 81, 385 (1951).

[46] M. K. Harbola and V. Sahni, J. Chem. Ed. 70, 920 (1993).

[47] S. Hirata, S. Ivanov, I. Grabowski, R. Bartlett, K. Burke, and T. J, J. Chem. Phys. 115, 1635 (2001).

[48] J. B. Krieger, Y. Li, and G. J. Iafrate, Phys. Rev. A 45, 101 (1992).