Extended quantum dimer model and novel valence-bond phases

Kouki Nakata and Keisuke Totsuka
Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-Cho, Kyoto 606-8502, Japan
E-mail: nakata@yukawa.kyoto-u.ac.jp and totsuka@yukawa.kyoto-u.ac.jp

Received 1 September 2010
Accepted 29 December 2010
Published 27 January 2011

Online at stacks.iop.org/JSTAT/2011/P01033
doi:10.1088/1742-5468/2011/01/P01033

Abstract. We extend the quantum dimer model (QDM) introduced by Rokhsar and Kivelson so as to construct a concrete example of the model which exhibits the first-order phase transition between different valence-bond solids suggested recently by Batista and Trugman and look for the possibility of other exotic dimer states. We show that our model contains three exotic valence-bond phases (herringbone, checkerboard and dimer smectic) in the ground-state phase diagram and that it realizes the phase transition from the staggered valence-bond solid to the herringbone. The checkerboard phase has four-fold rotational symmetry, while the dimer smectic, in the absence of quantum fluctuations, has massive degeneracy originating from partial ordering only in one of the two spatial directions. A resonance process involving three dimers resolves this massive degeneracy and the dimer smectic becomes ordered (order from disorder).

Keywords: dimers (theory), phase diagrams (theory), quantum phase transitions (theory)
1. Introduction

Since Anderson's paper in 1973 [1]–[3], the quest for the resonating valence-bond (RVB) state [4]–[7] and exotic valence-bond solids (VBS) [8]–[12] has been one of the recurrent themes in research on frustrated antiferro(AF) magnets [13]–[15]. One of the most studied problems of frustrated magnets has been the ground-state property of the J_1–J_2 Heisenberg model on a square lattice [16]–[19] especially around the fully frustrated point $J_2/J_1 = 1/2$. Chandra and Doucot [16], on the basis of a $1/S$ expansion for the sublattice magnetization, have predicted that the Néel order vanishes for $J_2/J_1 \approx 0.38$ and suggested that for a range of J_2/J_1 beyond 0.38 the ground state might be a spin liquid. Nishimori and Saika [20] used the modified spin wave approximation to conclude that a first-order phase transition from the Néel phase to the collinear AF phase [21] occurs. Gelfand et al [10] have argued that system becomes spontaneously dimerized in the columnar pattern as has been predicted by Read and Sachdev [22]. In spite of these intensive studies, the nature of the ground state of the square-lattice J_1–J_2 Heisenberg model around the fully frustrated point $J_2/J_1 = 1/2$ is still controversial.

One natural way to optimize the (short-range) antiferromagnetic correlation in quantum (i.e. low-spin) magnets is by pairing spins at short distance into spin-singlet dimers. Therefore, it is tempting to consider the quantum dynamics within the spin-singlet subspace made up of all possible (short-range) dimer coverings. The quantum dimer model (QDM), which was originally introduced by Rokhsar and Kivelson [23] to describe the low-energy physics of the square-lattice Heisenberg antiferromagnet, is now considered to capture a certain aspect of the low-energy dynamics of (frustrated) non-magnetic Mott insulators. The standard QDMs à la Rokhsar and Kivelson are defined in the Hilbert space of the nearest-neighbor dimer coverings of the lattice and consist
only of processes which involve a single dimer pair. The square-lattice QDM thus defined
is known to exhibit crystalline orders of the valence bonds and confined spinons except
at the Rokhsar–Kivelson (RK) point [23], where a short ranged RVB state is realized
(see [24,25] for readable reviews of the QDM).

Of course, the Rokhsar–Kivelson QDM is a minimal model that describes the
dynamics of singlet dimers; for instance, when one derives the QDM from a given
microscopic model by the overlap expansion, various higher-order terms (including dimer
moves on larger loops) are generated. Along these lines, Ralko et al [26,27] has
considered an extension of the QDM and investigated the impact of including higher-
order processes. Among other attempts at extending the QDM, Papanikolaou et al [28]
have introduced, on the basis of an analogy to the Pokrovsky–Talapov model [29] of
fluctuating domain walls in two-dimensional classical statistical mechanics [30]–[33], a
two-dimensional microscopic model of interacting quantum dimers, which, in principle,
involves infinitely many arbitrary parameters and dimer patterns.

Recently, Batista and Trugman [34] have undertaken a different microscopic approach
and considered an $S = 1/2 J_1 - J_2$ Heisenberg model with an additional term (four-spin
exchange interactions) that makes the model quasi-exactly solvable at the fully frustrated
point $J_2 / J_1 = 1/2$ (see [8] for a similar approach in spirit). They have argued that any
states having at least one singlet dimer per plaquette are ground states. Although one
can easily see that the staggered and the herringbone VBSs [28] (dubbed a ‘zigzag dimer’
in [34]) are possible candidates for the ground states of their Hamiltonian, it is not clear
when one of these VBSs becomes the unique ground state or what interaction controls the
phase transition between them, and it is known that the simplest QDM does not exhibit
such a first-order transition [35]–[37]. Motivated by this question, we shall extend the
QDM so as to realize the first-order phase transition suggested in [34] and seek for other
exotic dimer states and then map out (a part of) the phase diagram. This is the main
purpose of this paper.

This paper is structured as follows. In section 2, we study a certain region of the
extended QDM (EQDM) defined by equation (2) in the absence of quantum fluctuations
and, as the result, find a new disordered phase dubbed dimer smectic. The main
motivation comes from a first-order transition between the staggered VBS and the
herringbone VBS which has been predicted recently by Batista and Trugman [34] to
be controlled by a certain unspecified parameter ‘g’. We show that by changing one
of the coupling constants in our EQDM we can indeed drive the first-order transition.
Within the usual QDM, both VBSs (staggered and herringbone) are exactly degenerate
zero-energy states of the (classical) Hamiltonian and the single-plaquette resonance does
not lift the degeneracy. In section 3, we consider the effects of quantum fluctuations.
Specifically, we calculate the quantum correction to the ground-state energy for the three
valence-bond states (herringbone, checkerboard and dimer smectic) which are degenerate
in the absence of fluctuations (resonances) and see whether the degeneracy is resolved
or not. We show that the dimer smectic eventually becomes ordered by a new resonance
term which is equivalent to two successive actions of the familiar parallel dimer resonance.
In appendix A, we discuss an interesting mapping between the EQDM and a spin-1 model
which is helpful in writing down the EQDM Hamiltonian in terms of a relatively small
number of coupling constants. In appendix B, we present the second-order calculation of
the energy shift (equation (8)) caused by the t' resonance effect for the dimer smectic.

doi:10.1088/1742-5468/2011/01/P01033
2. Extended quantum dimer model

Recently, Batista and Trugman [34] have introduced the following generalized $S = 1/2 J_1 - J_2$ Heisenberg model on a square lattice including an additional term (a four-spin exchange interaction) that makes a quasi-exact solution feasible at the fully frustrated point $J_2/J_1 = 1/2$:

$$
H_{\text{BT}} = H_{J_1-J_2} + H_{\text{exchange}}
= J_1 \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j + \frac{J_1}{2} \sum_{\langle\langle i,j \rangle\rangle} \vec{S}_i \cdot \vec{S}_j + \frac{J_1}{8} \sum_\alpha (P_{ij}^\alpha P_{kl}^\alpha + P_{jk}^\alpha P_{il}^\alpha + P_{ik}^\alpha P_{jl}^\alpha)
= \frac{3J_1}{2} \sum_\alpha P_\alpha,
$$

where $\langle i,j \rangle$ and $\langle\langle i,j \rangle\rangle$ denote the nearest neighbors and the second nearest neighbors, respectively, and $P_{ij} = S_i \cdot S_j$. The index α labels the plaquettes and $ijkl$ are the four sites of each plaquette in the clockwise order. The four-spin exchange interaction H_{exchange} is similar to the usual four-spin cyclic exchange [38] except that the sign of the last term is different. Since the operator P_α projects the spin state of the plaquette α onto the subspace with total spin $S_\alpha^2 = 2$, it is clear [34] that any states having at least one singlet dimer on each plaquette can be the ground states. Of course, there are many other configurations [34] where we have dimers on diagonal bonds or unpaired $S = 1/2$'s. Nevertheless, we will not consider these configurations hereafter.

Though both the staggered VBS and the herringbone VBS (which is called the ‘zigzag dimer’ in [34]) satisfy the condition for the ground states described above, it is not clear when and how one of these VBSs is chosen as the unique ground state. Also the control parameter that drives the first-order transition from the staggered dimer to herringbone predicted in [34] has not been identified yet either.

Motivated by this, we generalize the usual QDM and consider the following extended quantum dimer model (EQDM):\(^1\)

$$
H_{\text{EQDM}} = \sum_\square \left\{ -t \middle\langle \square \right| - t' \middle\langle \square \right| - t'' \middle\langle \square \right| - \left| \square \middle\rangle \right| - t' \middle\langle \square \right| - t'' \middle\langle \square \right| - \left| \square \middle\rangle \right| - (-4J + 2J' + \lambda) \middle| \square \right\rangle - \left| \square \middle\rangle \right| - J \left| \square \right| \left| \square \middle\rangle \right| - J \left| \square \right| \left| \square \middle\rangle \right| - \left| \square \middle\rangle \right| - (2J + J' + \kappa) \left| \square \right| \left| \square \middle\rangle \right| - \left| \square \middle\rangle \right| + (\text{h.c.)} + (\text{rotations}) + (\text{reflections}) \right\}.
$$

Except for the last term (with the coefficient J'), the above EQDM contains all possible dimer patterns having at least one singlet dimer on each plaquette (with the coefficients given by $-J$, $-J'$, and $(-2J + J' + \kappa)$); the last one appears in the process of deriving the EQDM from the pseudo-spin ($S = 1$) Hamiltonian described in appendix A. However, if we choose the coupling constants as in (A.12)–(A.15), this configuration becomes higher

\(^1\) The steps of defining our EQDM are outlined in the appendix.
Extended quantum dimer model

in energy and we may expect that the EQDM hopefully becomes an effective Hamiltonian for the generalized $S = 1/2$ $J_1 - J_2$ Heisenberg model of Batista and Trugman [34].

We will study the region $J' = 2J(>0)$, $0 \leq \lambda < 2J$ and $\kappa < 0$ where the two valence-bond states—the staggered dimer and the herringbone—compete with each other in the ground state and see that the three-spin interaction ‘κ’ in the pseudo-spin Hamiltonian (see appendix A for the definition) plays a role of the unspecified control parameter ‘g’ in [34]. On the $\lambda = 0$ line, a more exotic phase dubbed dimer smectic will be found.

2.1. Phase diagram in $J' = 2J(>0)$, $0 \leq \lambda < 2J$ and $\kappa < 0$

In this region $(J' = 2J(>0))$, the EQDM is rewritten as

$$
\mathcal{H}_{\text{EQDM}} = \sum_\square \left\{ -t |\underline{\square}| - t' |\underline{\square}'| - t'' |\underline{\square}''| + \lambda |\underline{\square}| - J |\underline{\square}'| - 2J |\underline{\square}''| + (\text{h.c.}) + (\text{rotations}) + (\text{turn over}) \right\}.
$$

We restrict our investigation to the region $\lambda \geq 0$ because otherwise the staggered dimer and the herringbone are not competing, and such a situation is not relevant to our current purpose.

In the first step, we consider the case where quantum fluctuations (i.e. the resonances t, t' and t'') are absent. The phase diagram for $t = t' = t'' = 0$ is given in figure 1.

(A) $0 < \lambda < 2J$: it is clear that the phase transition from the staggered VBS to the herringbone VBS occurs by changing the parameter κ, which is the coefficient of three-spin interaction in the pseudo-spin Hamiltonian given in appendix A. The critical value is $\kappa_c = -J$. Namely, the three-spin interaction ‘κ’ in the pseudo-spin Hamiltonian plays the role of the unspecified control parameter ‘g’ in [34]. In this sense, the EQDM may be an effective Hamiltonian for a $J_1 - J_2$ Heisenberg model with a four-spin interaction introduced by Batista and Trugman in this region. It is worth mentioning that the usual QDM cannot describe the transition from staggered to herringbone VBS, since both are exactly degenerate zero-energy eigenstates of the QDM Hamiltonian regardless of the parameters. (B) $\lambda = 0$: two novel kinds of VBS, the checkerboard VBS (figure 2) and the dimer smectic (figure 2), emerge and are degenerate with the herringbone VBS ($\kappa \geq -J$). In the next section, we will discuss how to resolve this degeneracy by the effects of resonance (t, t', t'') in detail.

On the $\kappa = -J$ and $\lambda = 0$ point the ground state is highly degenerate and the \mathbb{Z}_4-vortex (figure 5) emerges.

2.2. The features of the VBS phases

Now let us discuss the main features of these VBSs.

(i) Herringbone. The hallmark of this state is that it contains no parallel dimer. In fact, the herringbone shares this important property with the well-known staggered

doi:10.1088/1742-5468/2011/01/P01033
Figure 1. Phase diagram of the EQDM for $t = t' = t'' = 0$, $0 \leq \lambda < 2J$. Basically κ controls the phase transition from staggered VBS to herringbone VBS. On the $\lambda = 0, \kappa > -J$ line the checkerboard VBS and dimer smectic emerge and are degenerate with the herringbone VBS.

References

VBS [23]; there is no flippable (with respect to t, t' and t'') dimer in either VBS. In this sense, both the herringbone and the staggered VBS are totally free from resonance and robust.

(ii) Checkerboard VBS [39]. This VBS is made up of a checkerboard pattern of two kinds of parallel dimers and has four-fold rotational symmetry.

(iii) Dimer smectic. This VBS corresponds in a sense to the intermediate between the checkerboard and the herringbone, which means that this is realized by arranging the (b) plaquettes in figure A.2 in such a way that the number of (b) plaquettes is maximal within each column and then connecting these ‘ordered’ columns horizontally by the herringbone-like (d) plaquettes in figure A.2 (see figure 4 for more details). The horizontal order is formed so as to break the translation symmetry. In other words, there are two ways (types (η) and (τ) in figure 3) of forming the herringbone-like order horizontally. If the integers N_x and N_y are the linear dimensions of the lattice (the lattice spacing is set to unity) and we set N_η and N_τ as the numbers of stripes of types (η) and (τ), they must satisfy

$$2N_\eta + 2N_\tau = N_x.$$

From this, one sees that the horizontal herringbone-like order types (η) and (τ) not only break the translation symmetry but also lead to extensive GS degeneracy since any combinations of (N_η, N_τ) are permitted provided they satisfy equation (4). This huge degeneracy comes from the fact that pure (local) energetics cannot determine the ground state uniquely and is reminiscent of similar degeneracy in such geometrically frustrated magnets as the Kagomé antiferromagnet [40] and the pyrochlore antiferromagnet [41].
Figure 2. (Left) Checkerboard. This VBS is characterized by a checkerboard pattern of parallel dimers and has four-fold rotational symmetry. (Right) Dimer smectic. This is realized by arranging the (b) plaquettes in figure A.2 in such a way that the number of (b) plaquettes is maximal within each column and then connecting these 'ordered' columns horizontally by the herringbone-like (d) plaquettes in figure A.2.

(iv) \(\mathbb{Z}_4 \)-vortex. This VBS becomes one of the ground states only at the special point \(\lambda = 0, \kappa = -J \) (shown in figure 1 as 'highly degenerate'). This phase consists of four domains each of which assumes one of the four possible staggered VBS patterns (see figure 5). We call this phase \(\mathbb{Z}_4 \)-vortex\(^2\) because the following order parameter \(\mathcal{O}_{\mathbb{Z}_4} \) in fact changes its value like a \(\mathbb{Z}_4 \)-variable (1 \(\rightarrow \) i \(\rightarrow \) -1 \(\rightarrow \) -i) as we move around the origin (see figure 5):

\[
\mathcal{O}_{\mathbb{Z}_4} \equiv \frac{1}{N_{\text{site}}} \sum_{\mathbf{r}} (-1)^{f_x + f_y} \{(\bar{S}_{f_x} \cdot \bar{S}_{f_x + \hat{e}_x} - \bar{S}_{f_y} \cdot \bar{S}_{f_y + \hat{e}_y}) \\
+ i(\bar{S}_{f_x} \cdot \bar{S}_{f_x + \hat{e}_y} - \bar{S}_{f_y} \cdot \bar{S}_{f_y + \hat{e}_x})\}.
\]

3. Effects of quantum fluctuations

3.1. Energy corrections from resonance terms

In this section, we investigate how the degeneracy among the three valence-bond phases (herringbone, checkerboard and dimer smectic) found in the previous section is resolved for \(J' = 2J(>0), \lambda = 0 \) and \(\kappa = -(J + h) \) (circled region in figure 1) paying particular attention to the deconfined criticality [42] in that there is no unpaired spin-1/2 which is responsible for the stabilization of the Néel phase out of the columnar VBS.

\(^2\) This is different from what is discussed in the context of the deconfined criticality [42] in that there is no unpaired spin-1/2 which is responsible for the stabilization of the Néel phase out of the columnar VBS.
attention to the fate of the huge ground-state degeneracy in the dimer smectic. First let us recover the resonance terms t, t' and t'' as perturbation to the diagonal part:

$$V_{\text{perturb}} = \sum \left\{ -t |\sqcup\rangle\langle \sqcup| - t' |\sqgamma\rangle\langle \sqgamma| - t'' |\sqilha\rangle\langle \sqilha| \right\} + \text{(rotations)} + \text{(h.c.)}. \quad (6)$$

The resonance terms t, t' and t'' are assumed to be very small (i.e. $0 < t, t', t'' \ll J$), and will be used as the small parameters in perturbation theory. These perturbing terms come into play for the first time at the second-order and we have to consider the effects of resonance terms up to this order:

$$E^{\text{check}}_{\text{resonance}} = -J N_x N_y - \frac{t^2 N_x N_y}{4J} - \frac{t^2 N_x N_y}{12J} - \frac{t'^2 N_x N_y}{6J}. \quad (7)$$

$$E^{\text{smectic}}_{\text{resonance}} = -J N_x N_y - \frac{t^2}{4J - 2h} N_y^3 - \frac{t^2}{10J} N_y N_y^3 - \frac{t''}{7J - h} N_y^2 N_y^3 - \frac{t''}{16J - 2h} N_y^3. \quad (8)$$

$$E^{\text{herring}}_{\text{resonance}} = -J N_x N_y. \quad (9)$$

The pair of integers (N_η, N_τ) has been defined in section 3 and satisfies

$$2N_\eta + 2N_\tau = N_x. \quad (10)$$

doi:10.1088/1742-5468/2011/01/P01033
We now rescale the couplings as $\tilde{t} \equiv t/J$ and $\tilde{h} \equiv h/J$ and define $\tilde{N}_\eta \equiv N_\eta/N_x$, so that \tilde{N}_η must satisfy $0 \leq \tilde{N}_\eta \leq 1/2$. The parameter $|h|$ is assumed to be very small ($|h| \ll J$) and we approximate $\tilde{h}^2 \sim 0$. Then, the scaled energy $E_{\text{resonance}} \equiv E_{\text{resonance}}/J$ is given by

$$
\frac{E_{\text{resonance}}}{N_x N_y} \simeq -1 - \frac{\tilde{t}^2}{24} - \frac{\tilde{t}^2}{21} \left(1 + \frac{\tilde{h}}{7}\right) - \frac{\tilde{t}^2}{140} \tilde{N}_\eta \left(3 + \frac{55}{14} \tilde{h}\right) - \frac{\tilde{t}^2}{96} \left(1 + \frac{\tilde{h}}{8}\right). \tag{11}
$$

It is apparent that only the resonance \tilde{t}' depends on the numbers of the two types of stripe (η) and τ) in the dimer smectic (fourth term on the right-hand side). Since $|h|$ is so small, we may safely assume that the coefficient of \tilde{N}_η is negative. Then, one can easily see that quantum fluctuations (t') form a minimum of the energy of the dimer smectic at $\tilde{N}_\eta = 1/2$ thereby selecting one particular configuration, which is shown in the lower panel of figure 7, as the ground state. This is because when $|h|$ is small enough, the type (η) configuration can gain more resonance (t') energy than the type (τ) one and the total energy is minimized when all the columns are of the type (η).

Thus the resonance t' which is equivalent to two successive actions of the usual parallel dimer resonance (\tilde{t}) and ignored in the standard QDM plays a special role; it resolves the high degeneracy through the order-by-disorder mechanism [43, 44].

doi:10.1088/1742-5468/2011/01/P01033
Figure 5. Illustration of the \mathbb{Z}_4-vortex. Four dimer domains are characterized by four different values $(1, -1, i, -i)$ of the order parameter O_{Z_4}.

Figure 6. Schematic phase diagram of the EQDM with the $t' - t''$ axis for $J' = 2J (>0), \lambda = 0, \kappa = -(J + h)$. The parameter h takes small negative values. The highly degenerate dimer smectic exists only within a region on the $t' = 0$ plane specified by $t'' < \tilde{t}' \left(\frac{3}{2} - (\tilde{h}/16) \right)^{-1/2}$. In the region shown as ‘(ordered) dimer smectic’, a unique ground state is selected by the resonance \tilde{t}'. The boundary between ordered dimer smectic and checkerboard VBS is given by equation (14).

Then the energy of the ordered dimer smectic is evaluated as

$$
\frac{E_{\text{resonance}}^{\text{smectic}}}{N_x N_y} \simeq -1 - \frac{\tilde{t}^2}{24} - \frac{\tilde{t}'^2}{120} \alpha - \frac{\tilde{t}''^2}{96} \left(1 + \frac{\tilde{h}}{8} \right).
$$

(12)

$$
\alpha \equiv 7 + \frac{5}{2} \tilde{h}.
$$

(13)

By comparing the energies of the three phases, we can draw the phase diagram of the EQDM in this region (figure 6):

$$
E_{\text{resonance}}^\text{smectic} < E_{\text{resonance}}^\text{check} \iff \tilde{t}^2 > 6 \left(1 - \frac{\alpha}{15} \right) \tilde{t}'^2 + \left(\frac{3}{2} - \frac{\tilde{h}}{16} \right) \tilde{t}''^2.
$$

(14)

doi:10.1088/1742-5468/2011/01/P01033
As shown in figure 7 the dimer smectic becomes ordered by the resonance t' on the $(\tilde{t}'-\tilde{t})$ plane and the resonance \tilde{t}' drives the phase transition from dimer smectic to checkerboard VBS through ordered dimer smectic. On the other hand, on the $(\tilde{t}-\tilde{t}'')$ plane (without the t' resonance) because there are no resonance t' effects the dimer smectic does not become ordered and the phase transition from dimer smectic to checkerboard VBS occurs without the ordered dimer smectic phase.

Because the phases on either side of the boundary have totally different symmetries, we may expect that the transition is of first-order.

3.2. Finite temperatures

It would be interesting to consider how the above one-dimensional solids in the dimer smectic phase melt into disordered states at finite temperatures. In fact, this kind of columnar structure reminds us of the smectic metal state in strongly correlated systems [45, 46] and the sliding phases in liquid crystals [47] or in frustrated spin systems [48, 49]. Below, we give a brief discussion about the possibility of sliding behavior in the dimer smectic phase.

The energy cost necessary to slide a column (a one-dimensional solid) vertically and destroy the dimer smectic (i.e. herringbone-like) order is estimated as (see figure 8)

$$\Delta E_{\text{smectic shift}} \sim O(N_y).$$ \hfill (15)
Figure 8. (Left) Shift of a solid column (the rightmost one) in the vertical direction destroys the herringbone-like order (hatched plaquettes in the middle column). The necessary energy cost is estimated as $\Delta E_{\text{shift}}^{\text{smectic}} \sim O(N_y)$. (Right) Destruction of a columnar (1D) solid itself occurs by the insertion of wrong plaquettes into the column. The energy to destroy a one-dimensional solid itself is estimated as $\Delta E_{\text{column}}^{\text{smectic}} \sim O(1)$.

On the other hand, the energy to destroy a one-dimensional solid itself is estimated as

$$\Delta E_{\text{column}}^{\text{smectic}} \sim O(1),$$

(16)

because we can adjust the dimer configurations so as to minimize the effects of breakdown in the one-dimensional solid (see figure 8). These values suggest that as the temperature is increased, one-dimensional solids themselves are destroyed in the first place and exclude the possibility of the phase of fluctuating one-dimensional solids.

4. Summary

In the usual QDM of Rokhsar and Kivelson, the staggered and the herringbone VBSs should be degenerate, because both VBSs are zero-energy states and have no plaquettes on which the resonance term (t) and the diagonal term (pair dimer) can act.

In the present paper, we have extended the QDM so as to describe the phase transition from the staggered VBS to the herringbone VBS. We can include all (nearest-neighbor) dimer configurations which have at least one dimer in each plaquette. Therefore, the
EQDM is considered in a sense to be a generalization of the \(S = 1/2 \) \(J_1 - J_2 \) model with four-spin exchange interactions \([34]\) at its fully frustrated point \((J_1 = 2J_2)\).

We then mapped out the phase diagram of the EQDM in the region where both the staggered VBS and the herringbone VBS exist as the ground states \((J' = 2J (>0), \lambda = 0, \kappa = -(J + h))\) by the second-order perturbation theory in quantum fluctuations \(t, t'\) and \(t''\). We have found that the three-spin interaction \(\kappa'\) in the pseudo-spin Hamiltonian plays the role of the unspecified control parameter \(g\) suggested by Batista and Trugman which drives the first-order phase transition between the above two VBS phases. We have also found that there does exist a new VBS phase called the dimer smectic. This novel phase forms period-3 structure only in one (say, vertical) direction, and each ordered column is connected by the herringbone-like plaquettes. The order in the horizontal direction is formed so as to break the translational symmetry and leads to huge ground-state degeneracy. A resonance process involving three dimers \((t')\) resolves this massive degeneracy and the dimer smectic eventually becomes ordered (see the alternating pattern in figure 7) through the order-by-disorder mechanism.

Finally, in this paper we did not pursue the (approximate) realization of our EQDM in specific spin models. Though our original motivation for introducing the EQDM is to present a specific model which realizes a first-order staggered–herringbone transition predicted in \([34]\) and exhibits a novel dimer smectic phase, this phase unfortunately does not satisfy the condition for the ground state of the generalized \(J_1 - J_2 \) spin model of Batista and Trugman (some plaquettes in the dimer smectic do not contain dimer bonds). Therefore it is interesting to look for spin Hamiltonians which exhibit the dimer smectic.

Acknowledgments

We thank K Harada for useful comments at the early stage of this study and K Penc for discussions on the Batista–Trugman model. The author (KT) was supported by Grant-in-Aid for Scientific Research (C) 20540375 and on Priority Areas ‘Novel States of Matter Induced by Frustration’ (No. 19052003) from MEXT, Japan.

Appendix A. Definition of extended QDM

In this appendix, we describe an interesting mapping between the EQDM (2) and a (pseudo)spin-1 Hamiltonian with multi-spin interactions. This mapping helps us to reduce the number of free parameters and keep a small number of relevant dimer configurations, in a spirit close to that of Moessner et al (see \([50]\)).

The key step in establishing the mapping is to assign the eigenstates \(|1\rangle, |0\rangle\) and \(|-1\rangle\) of the pseudo-spin-1 operator \(s^z\) to the dimer configurations not on a single bond but on an extended cluster containing the bond on which the spin-1 is defined (see figure A.1). The state \(|1\rangle\) is assigned when the bond is occupied by a dimer and either \(|0\rangle\) or \(|-1\rangle\) is assigned otherwise. This rule connects the dimer configurations to those of the \(S = 1\) pseudo-spins.

In principle, one could have taken another strategy. Namely, one could have used the \(S = 1/2 \) operators to map a QDM containing large resonance loops and long-range (dimer–dimer) interactions \([28]\) onto an \(S = 1/2 \) (pseudo)spin Hamiltonian with multi-spin (six-spin and more) and long-range interactions. However, this may lead to complexity of the interactions and hinder further analyses of the resulting (pseudo-spin) Hamiltonian as
Extended quantum dimer model

Figure A.1. Definition of the eigenstates $|\pm 1\rangle|0\rangle$. $|1\rangle$ is located on the center of a link which is occupied by a dimer, and $|0\rangle, |-1\rangle$ are located on the centers of links where dimers are absent. $|-1\rangle$ is placed on a link where the links on either side are not occupied by a dimer, and $|0\rangle$ on the others.

Well as loss of local Ising gauge invariance. If we use the spin-1 mapping, on the other hand, we can still work within the space of Hamiltonians with only short-range interactions in the sense that the spin–spin interactions exist only among four spins forming a plaquette. In this sense, our EQDM may be thought of as a minimal model of generalized QDMs.

Obviously, the naive state space spanned by the pseudo-spin 1s is much larger than that of the QDM and we have to implement the hardcore dimer constraint in the pseudo-spin language:

$$\sum_+ \Theta(s_z) = 1 \quad \text{with} \quad \Theta(x) \equiv \begin{cases} 1 & \text{when } 0 < x \\ 0 & \text{when } x \leq 0. \end{cases}$$

(A.1)

When the hardcore constraint is neglected, a single plaquette can take 3^4 different configurations. When the hardcore dimer constraint that at each site only one of the four links emanating from it can be occupied by a dimer and the coefficient of diagonal terms (V_{EQDM} discussed in the next paragraph) are taken into account, then relevant dimer arrangements of a plaquette are restricted to the five patterns shown in figure A.2. At this point, one may notice that some dimer configurations allowed by the hardcore dimer constraint are missing in the patterns shown in figure A.2. For instance, a spin-1 state $|s_{1z}^1\rangle|s_{2z}^2\rangle|s_{3z}^3\rangle|s_{4z}^4\rangle$ with $s_{1z}^1 = s_{2z}^2 = s_{3z}^3 = s_{4z}^4 = 0$ (a pinwheel-like configuration) is permissible but the coefficient of the diagonal term corresponding to this state is zero as will be seen in equation (A.2). A similar argument enables us to drop other constraint-allowed configurations from figure A.2.

Having defined the three $S=1$ pseudo-spin eigenstates in terms of the dimer configurations on an extended (three-bond) cluster, we are at the position of defining the diagonal part of our pseudo-spin Hamiltonian:

$$V_{\text{EQDM}} = J s_{i+1}^z s_{i+2}^z + J' s_i^z s_{i+2}^z + \kappa s_i^z s_{i+1}^z s_{i+2}^z + \lambda s_i^z s_{i+1}^z s_{i+2}^z s_{i+3}^z,$$

(A.2)

where the first two are the well-known J_1–J_2 interactions [16, 20] and the third one (κ term) is a three-spin interaction. Note that this is the most general form which contains...
all possible short-range many-body spin-spin interactions. The interaction V_{EQDM} and the correspondence figure A.2 determine the coefficients of the diagonal terms as

\begin{align}
V_{\text{EQDM}}^{(a)} &= -4J + 2J' + \lambda, \\
V_{\text{EQDM}}^{(b)} &= -J', \\
V_{\text{EQDM}}^{(c)} &= J', \\
V_{\text{EQDM}}^{(d)} &= -J, \\
V_{\text{EQDM}}^{(e)} &= -2J + J' + \kappa.
\end{align}

Now it is clear why we have dropped in the previous paragraph several dimer configurations allowed by the hardcore constraint alone (see figure A.2). In fact, the pinwheel state $|0\rangle_1|0\rangle_2|0\rangle_3|0\rangle_4$ mentioned before yields zero when V_{EQDM} is applied. For the clarity of the argument, in what follows, we shall restrict our discussion to the diagonal parts of the Hamiltonians, although it is possible to write down the pseudo-spin interactions corresponding to the off-diagonal part of the EQDM.

The mapping is not completed yet at this stage; there exist configurations as shown in figure A.3 that are permitted by the constraint equation (A.1) in the spin system, but not in the dimer systems because of the consistency of the definition (figure A.1)

V_{EQDM} is assigned per plaquette.
of the three eigenstates4. In order to suppress these forbidden states and realize one-to-one correspondence between the EQDM and the pseudo-spin Hamiltonian, we add the following interaction term to the spin Hamiltonian:

\begin{equation}
V_{\text{consistency}} = J'' \sum \left[s_j^z s_k^z - \frac{1}{2} \right]^2
\end{equation}

with $|J''| \gg |J|, |J'|, J'' > 0$. The summation is taken over all the vertices of the original lattice (see figure A.3). The auxiliary interaction $V_{\text{consistency}}$ excludes in the limit $J'' \to \infty$ the unwanted configurations ([Forbidden]) and selects the allowed ones ([Permitted]) while leaving the latter degenerate:

\begin{equation}
V_{\text{Forbidden}} = \frac{9}{4} J'', \quad V_{\text{Permitted}} = \frac{1}{4} J''.
\end{equation}

This finally establishes the one-to-one mapping between the diagonal part of the EQDM and that of the pseudo-spin Hamiltonian5.

The resulting pseudo-spin Hamiltonian consists of the diagonal part and the auxiliary interaction $V_{\text{consistency}}$ which imposes the consistency condition:

\begin{equation}
V_{\text{pseudo}} = V_{\text{EQDM}} + V_{\text{consistency}}
= \sum \left[J^z_i s_i^z s_{i+1}^z + J'^z_i s_i^z s_{i+2}^z + \kappa s_i^z s_{i+1}^z s_i^z + \lambda s_i^z s_{i+2}^z s_{i+3}^z s_{i+4}^z \right] + J'' \left[s_j^z s_k^z - \frac{1}{2} \right]^2 + \text{(rotations)},
\end{equation}

4 The configuration where the two states $|1\rangle$ and $|-1\rangle$ are adjacent is not allowed since these are incompatible when on the neighboring bonds.

5 It is evident that for a given dimer configuration we can determine the $S = 1$ configuration uniquely by figure A.1. Given a pseudo-spin configuration, on the other hand, the constraint (A.1) and $V_{\text{consistency}}$ guarantee that it satisfies the hardcore dimer constraint. Hence the mapping is one-to-one.
where the parameters must satisfy $|J''| \gg |J|, |J'|$. By using the equivalence, the corresponding EQDM is then written down as

$$\mathcal{H}_{\text{EQDM}}^{\text{diagonal}} = \sum_{\square} \left\{ (-4J + 2J' + \lambda) |\square\rangle\langle\square| - J |\square\rangle\langle\square| - J' |\square\rangle\langle\square| + (-2J + J' + \kappa) |\square\rangle\langle\square| + J' |\square\rangle\langle\square| + (\text{h.c.}) + (\text{rotations}) + (\text{reflections}) \right\}. \quad (A.11)$$

As an effective Hamiltonian for Batista and Trugman’s generalized $J_1 - J_2$ Heisenberg model (i.e. any states having at least one singlet dimer per plaquette are ground states), the region of each parameter is restricted as

$$V_{\text{EQDM}}^{(d)} < 0 \iff J > 0, \quad (A.12)$$
$$V_{\text{EQDM}}^{(e)} < 0 \iff \kappa < 2J - J', \quad (A.13)$$
$$V_{\text{EQDM}}^{(a)} + V_{\text{EQDM}}^{(b)} < 0, \quad 2V_{\text{EQDM}}^{(a)} + V_{\text{EQDM}}^{(c)} > 0, \quad (A.14)$$
$$\iff 4J - \frac{5}{2}J' < \lambda < 4J - J', \quad J' > 0. \quad (A.15)$$

Introducing the resonance terms

$$\mathcal{H}_{\text{EQDM}}^{\text{resonance}} = \sum_{\square} \left\{ -t |\square\rangle\langle\square| - t' |\square\rangle\langle\square| - t'' |\square\rangle\langle\square| + (\text{rotations}) + (\text{reflections}) \right\} \quad (A.16)$$

by hand, we arrive at the EQDM Hamiltonian (2). The coefficient t describes the usual resonance of parallel dimers and the new term t' (t'') moves three (four) dimers on a length-6 (8) loop. Thus, the EQDM is defined as $\mathcal{H}_{\text{EQDM}} = \mathcal{H}_{\text{EQDM}}^{\text{resonance}} + \mathcal{H}_{\text{EQDM}}^{\text{diagonal}}$. When $t', t'', J, J', \kappa = 0$, the EQDM reduces to the usual Rokhsar–Kivelson QDM [23]. Furthermore, when $t = J' = t'' = \lambda = \kappa = 0$, the phase transition from the columnar VBS to the herringbone, which has been studied by Papanikolaou et al [28], occurs.

In summary, the requirement that the pseudo-spin Hamiltonian should consist only of short-range interactions enabled us to keep only a restricted class of dimer configurations out of infinitely many. This is the greatest advantage of using the pseudo-spin representation of the EQDM.

Appendix B. Calculation of the t' resonance effect in the dimer smectic

In this section, we outline the second-order calculation of the energy shift (equation (8)) caused by the t' resonance effect for the dimer smectic. Our calculation closely follows the work of Papanikolaou et al [28]. We treat the small positive resonance terms t' as
Figure B.1. An example of an intermediate state caused by the t' resonance term in the type (η) dimer smectic. There are two types of intermediate states (types $[\eta-1]$ and $[\eta-2]$).

A perturbation:

$$V_{\text{perturb}}^{t'} = \sum \left\{ -t' \left| \sum_{m} V_{nm} \right| \right\} + \text{(rotations)} + \text{(h.c.)}.$$ \hspace{1cm} (B.1)

The first non-trivial contribution of $V_{\text{perturb}}^{t'}$ occurs at the second-order and the energy shift due to the resonance is given by

$$E_{\text{resonance}} = \epsilon - t'^2 \sum_{m} \sum_{n} V_{nm} V_{mn} \epsilon_{m} - \epsilon_{n} + O(t'^4),$$ \hspace{1cm} (B.2)

where ϵ is the unperturbed energy and the primed summation is over all dimer coverings except the original state. The terms in the sum which give nonzero contribution correspond to states connected to the initial state by a single flipped cluster; these processes are interpreted as brought about by quantum fluctuations.

Let us consider the energy shift for the dimer smectic case. As has been discussed in section 2.2, the dimer smectic has two possible configurations of three neighboring columns (figure 3) and therefore, we have to treat the two different patterns types (η) and (τ) carefully.

Type (η). First, we have to realize furthermore the two different ways (type $[\eta-1]$ and type $[\eta-2]$ in figure B.1) in which a cluster is flipped by t'. In fact, the intermediate states are different and their energies\(^6\) are different from each other too:

$$\Delta_{t'[\eta-1]}^{\text{smectic}} = (0) - (-10J) = 10J,$$ \hspace{1cm} (B.3)

$$\Delta_{t'[\eta-2]}^{\text{smectic}} = (-8J - 2h) - (-12J) = 4J - 2h.$$ \hspace{1cm} (B.4)

\(^6\) V_{EQDM} (i.e. the potential term) is assigned per plaquette as shown in figure A.2.
Extended quantum dimer model

Figure B.2. Typical intermediate states caused by the t' resonance term in the type (τ) dimer smectic.

Type (τ). We do not have to worry about the above difference, because both cases give the same results. The energy shift is as below (figure B.2):

$$
\Delta_{t'[\tau]}^{\text{smectic}} = (-4J - h) - (-11J) = 7J - h.
$$

Putting all these effects of the resonance t' together, we obtain the energy shift caused by the t'-resonance of the dimer smectic as

$$
\Delta E_{t'\text{resonance}}^{\text{smectic}} = -\frac{t'^2}{4J - 2h} N_n N_y \frac{N_y}{3} - \frac{t'^2}{7J - h} N_n 2N_y \frac{N_y}{3}.
$$

The calculation goes similarly for t and t'' as well and collecting all the terms we obtain the energy of the dimer smectic with all resonance effects as equation (8).

References

[1] Anderson P W, 1973 Mater. Res. Bull. 8 153
[2] Fazekas P and Anderson P W, 1974 Phil. Mag. 30 23
[3] Anderson P W, 1987 Science 235 1196
[4] Tasaki H and Kohmoto M, 1990 Phys. Rev. B 42 2547
[5] Takano K and Sano K, 1989 Phys. Rev. B 39 7367
[6] Read N and Chakraborty B, 1989 Phys. Rev. B 40 7133
[7] Kohmoto M and Shapir Y, 1988 Phys. Rev. B 37 9439
[8] Raman K S, Moessner M and Sondhi S L, 2005 Phys. Rev. B 72 064413
[9] Moessner R and Sondhi S L, 2003 Phys. Rev. B 68 184512
[10] Gelfand M P, Singh R R P and Huse D A, 1989 Phys. Rev. B 40 10801
[11] Moessner R, Sondhi S L and Chandra P, 2000 Phys. Rev. Lett. 84 4457
[12] Moessner R and Sondhi S L, 2001 Phys. Rev. B 63 224401
[13] Lhuillier C, 2005 arXiv:cond-mat/05024641
[14] Majumdar C K and Ghosh D K, 1969 J. Math. Phys. 10 1399
[15] Shastry B S and Sutherland B, 1981 Physica B 108 1069
[16] Chandra P and Doucot B, 1988 Phys. Rev. B 38 9335

doi:10.1088/1742-5468/2011/01/P01033
Extended quantum dimer model

[17] Melzi R, Carretta P, Lascialfari A, Mambrini M, Troyer M, Millet P and Mila F, 2000 Phys. Rev. Lett. 85 1318
[18] Sushkov O P, Oitmaa J and Weihong Z, 2000 Phys. Rev. B 63 104420
[19] Oitmaa J, Hamer C and Zheng W, 2006 Series Expansion Method for strongly interacting Lattice Models (Cambridge: Cambridge University Press)
[20] Nishimori H and Saika Y, 1990 J. Phys. Soc. Japan 59 4454
[21] Chandra P, Coleman P and Larkin A I, 1990 Phys. Rev. Lett. 64 88
[22] Read N and Sachdev S, 1989 Phys. Rev. Lett. 62 1694
[23] Rokhsar D S and Kivelson S A, 1988 Phys. Rev. Lett. 61 2376
[24] Misguich G and Lhuillier C, 2005 Two-Dimensional Quantum Antiferromagnets (Singapore: World Scientific) chapter 5, p 229
[25] Moessner R and Raman K S, 2008 arXiv:cond-mat/08093051
[26] Ralko A, Mambrini M and Poilblanc D, 2009 Phys. Rev. B 80 184427
[27] Schwandt D, Mambrini and Poilblanc D, 2010 Phys. Rev. B 81 214413
[28] Papanikolaou S, Raman K S and Fradkin E, 2007 Phys. Rev. B 75 094406
[29] Pokrovsky V I and Talapov A L, 1978 Sov. Phys. JETP 51 134
[30] Harris A B, Micheletti C and Yeomans J M, 1995 Phys. Rev. B 52 6684
[31] Bak P and Boehm J V, 1980 Phys. Rev. B 21 5297
[32] Fisher M E and Selke W, 1980 Phys. Rev. Lett. 44 1502
[33] Harris A B, Micheletti C and Yeomans J M, 1995 Phys. Rev. Lett. 74 3045
[34] Batista C D and Trugman S A, 2004 Phys. Rev. Lett. 91 217202
[35] Leung P W, Chiu K C and Runge K J, 1996 Phys. Rev. B 54 12938
[36] Syljuasen O F, 2006 Phys. Rev. B 73 245105
[37] Ralko A, Poilblanc D and Moessner R, 2008 Phys. Rev. Lett. 100 037201
[38] Muller M, Vecua T and Mikeska H J, 2002 Phys. Rev. B 66 134423
[39] Normand B, Nussinov Z, Batista C D and Trugman S A, 2007 Phys. Rev. B 75 094411
[40] Chubukov A, 1992 Phys. Rev. Lett. 69 832
[41] Moessner R and Chalker J T, 1998 Phys. Rev. B 58 12049
[42] Levin Michael and Senthil T, 2004 Phys. Rev. B 70 220403
[43] Villain J, Bidaux R, Carton J P and Conte R, 1980 J. Physique 41 1263
[44] Shender E F, 1982 Sov. Phys. JETP 56 178
[45] Fradkin E, Kivelson S A and Emery V J, 1998 Nature 393 550
[46] Kivelson S A, Emery V J, Fradkin E and Lubensky T C, 2000 Phys. Rev. Lett. 85 2160
[47] Lubensky T C, O’Hern C S and Toner J, 1999 Phys. Rev. Lett. 83 2745
[48] Singh R R P, Starykh O A and Levine G C, 2002 Phys. Rev. Lett. 88 167203
[49] Fouet J-B, Sindzingre P and Lhuillier C, 2002 Phys. Rev. B 66 174424
[50] Moessner R, Sondhi S L and Fradkin E, 2001 Phys. Rev. B 65 024504

doi:10.1088/1742-5468/2011/01/P01033