High rate production of polarized 3He with meta-stability exchange method

Ema Ihara1 *, Tomotsugu Wakasa1 †, Masanori Dozono1, and Yasuhiro Sakemi2

1Department of Physics, Kyushu University, Fukuoka 812-8581
2Cyclotron and Radioisotope Center, Tohoku University, Miyagi 980-8578

KEYWORDS: polarized 3He, meta-stability exchange, infrared laser

Recent progress in the development of high intensity infrared fiber lasers enables us to produce highly polarized 3He nuclei by the meta-stability exchange method.1 Polarization with $P \gtrsim 0.8$ has been realized,2–4 and the polarized 3He gas has been used as polarized 3He targets for nuclear physics experiments as well as signal source for lung magnetic resonance imaging (MRI). The meta-stability exchange method produces polarized 3He nuclei much faster than the spin-exchange method because the pumping rate, i.e., the rate at which 3He nuclei can be polarized, is much higher. This advantage is suitable for applications such as on-demand production for lung MRI. Another important feature of the meta-stability exchange method is simultaneous production of polarized 3He$^+$ ions. The electrons of 3He$^+$ ions are also polarized, and thus they can be applied for investigation of material surfaces.5 For polarized 3He targets, higher nuclear polarization has been required for experiments, and higher polarization can be achieved with slower relaxation rate resulting in slower pumping rate. For the above-mentioned applications, on the contrary, faster pumping rate with reasonable nuclear polarization is suitable. Therefore, we have investigated the relation between the pumping rate and the nuclear polarization in high pumping rate region.

The meta-stability exchange method is an extension of ordinary optical pumping method.6 Figure 1 shows a schematic of our PLUM system (PLUM stands for Polarizer with Laser Using Meta-stability exchange). A 3He gas with a pressure of 0.3 Torr is sealed in a Pyrex glass cell with a size of $3\,\text{cm}^3 \times 5\,\text{cm}^2$. This 3He cell is set in a uniform magnetic field of 13 G generated by a Helmholtz coil in order to keep the polarization. In the meta-stability exchange method, first 3He atoms are excited to the meta-stable 2^3S_1 state by applying an RF field with a frequency of $f=1$–10 MHz. Secondly, 3He atoms in 2^3S_1 are optically pumped to the 2^3P state with ~ 1083 nm infrared light produced by a Keopsys fiber laser module.7 We use a linearly polarizing beam-splitter cube followed by a quarter-wave plate to circularly polarize the laser light. For the cell with 3 cm diameter, we expand the beam with a Galilean type beam expander. By using left-handed circularly polarized light, only two sublevels of $M_F = -3/2$ and $-1/2$ out of four sublevels of $M_F = \pm 3/2$ and $\pm 1/2$ in 2^3S_1 are concerned with
the optical pumping, which results in atomic (= total spin F) polarization for ^3He atoms in the meta-stable 2^3S_1 state. There are nine transitions C_1–C_9 between 2^3S_1 and 2^3P, and C_8 and C_9 transitions are known to be efficient for production of highly polarized ^3He. The C_8 and C_9 transitions correspond to $(2^3\text{S}_1,F = 1/2) \rightarrow (2^3\text{P}_0,F = 1/2)$ and $(2^3\text{S}_1,F = 3/2) \rightarrow (2^3\text{P}_0,F = 1/2)$, respectively. Finally, the atomic polarization is transferred to the nuclear polarization of the ground state by meta-stability exchange collisions.

Figure 2 shows the measured transmission of infrared light as a function of wave length with an RF discharge frequency of $f = 6.5 \text{ MHz}$. Resonance absorptions for C_1–C_9 transitions are clearly observed in the spectrum. The observed width of $\sim 2 \text{ GHz}$ corresponds to the intrinsic linewidth of the fiber laser, which is suitable for efficient optical pumping because the linewidth well matches to the $\sim 2 \text{ GHz}$ Doppler bandwidth of the ^3He gas. This narrow linewidth is sufficient to resolve the 6.7 GHz hyperfine splitting in the 2^3S_1 state, which enables us to use the C_8 and C_9 transitions separately.

The nuclear polarization of ^3He can be obtained by measuring the circular polarization of an optical line at 668 nm $(3^1\text{D}_2 \rightarrow 2^1\text{P}_1)$. An isolation of 668 nm light is performed using a Thorlabs laserline filter FL670. The circular polarization of the isolated light is measured using a Thorlabs polarization analyzing system PAX5710VIS. Figure 3 shows the typical ^3He nuclear polarization deduced from the circular polarization of 668 nm light as a function of time. The laser was tuned for the C_8 transition, and was irradiated from $t = 30$ to 130 s with an RF discharge frequency of $f = 8.3 \text{ MHz}$. The measurements were performed for several RF discharge intensities which resulted in 668 nm light powers of $-54 \sim -48 \text{ dBm}$ on the system. The nuclear polarization P reaches its saturation value with an effective laser power of $\sim 400 \text{ mW}$ on the cell, and it is insensitive to the applied RF frequencies. The time dependence of P is expressed as $P_0[1 - \exp(-t/\tau_p)]$ where P_0 is the final polarization for $t \rightarrow \infty$ and τ_p is the pumping time, and the solid curves in Fig. 3 are the results of fitting. The pumping time τ_p was short as 1–6 s, which is an unique feature of the meta-stability exchange method. The maximum nuclear polarization of $P_0 = 72\%$ was obtained in -54 dBm case. The relaxation of P after stopping the laser irradiation is expressed as $P_0[\exp(-t/\tau_r)]$ where τ_r is the relaxation time, and the dashed curves in Fig. 3 are the results of fitting. The relaxation time τ_r was long as 3–19 s compared with the pumping time τ_p.

The relation between τ_r and P_0 is shown in Fig. 4(a). The Caltech data4 for a 0.3 Torr cell with $f = 10 \text{ MHz}$ are also represented in the large τ_r region. It is found that in the whole τ_r region, the C_8 transition is the better choice to obtain higher polarization P_0 at fixed τ_p. The nuclear polarization P_0 can be expressed using τ_p and τ_r as

$$P_0 = P_\infty \frac{1}{1 + \tau_p/\tau_r},$$

where P_∞ is the maximum polarization for $\tau_r \rightarrow \infty$. The solid curves in Fig. 4 are the results
of fitting with Eq. (1) with constant τ_p, which reproduce the measured data reasonably well.

The pumping rate R can be defined as $R = N P_0 / \tau_p$ where N is the number of 3He atoms in the cell. The relations between R and P_0 are displayed in Fig. 4(b) for the measurements with $f = 9.6$ MHz. The nuclear polarization P_0 decreases almost linearly as the pumping rate R increases. The solid curves are reproduction of the data with linear functions, which reproduce the data very well. In the low R region of $R \lesssim 4 \times 10^{18}$ atoms/s, the C_8 transition is the better choice to obtain higher polarization P_0, and this transition has been generally used to prepare polarized 3He targets. In the present high R region, on the contrary, the C_9 transition is the better choice because the nuclear polarization less depends on the pumping rate and thus it takes a higher value in this region. This is mainly due to a smaller τ_p value for C_9 compared with the corresponding τ_p for C_8, and thus the pumping rate R for C_9 becomes higher. It is found that high rate production of $R \simeq 2 \times 10^{19}$ is possible with keeping the polarization $P_0 \simeq 50\%$ by using the C_9 transition. This high rate is useful for applications which require on-demand production such as lung MRI.

We are grateful to P. J. Nacher and G. Tastevin at ENS, E. W. Otten, W. Heil, R. K. Kremer and M. Batz at Maintz, and H. Sasada at Keio for our interaction and their valuable suggestions. This work was supported in part by the Grant-in-Aid for Scientific Research No. 16654064 of the Ministry of Education, Culture, Sports, Science, and Technology of Japan.
Fig. 1. Schematic view of the PLUM system.

Fig. 2. Transmission of infrared light in 3He gas as a function of wave length. The C_1–C_9 peaks correspond to the resonance absorptions from 2^3S_1 to 2^3P.
Fig. 3. Build-up and relaxation of nuclear polarization P as a function of time. See text for details.

Fig. 4. (a) Nuclear polarization P_0 as a function of relaxation time τ_r for C_8 and C_9 transitions. The data in large τ_r region are the Caltech data. The solid curves are the results of fitting with Eq. (1). (b) Nuclear polarization P_0 as a function of pumping rate R for C_8 and C_9 transitions. The solid lines are the results of fitting with linear functions.
References

1) F. D. Colegrove, L. D. Chaearer and G. K. Walters: Phys. Rev. 132 (1963) 2561.
2) N. P. Bigelow, P. J. Nacher and M. Leduc: J. Phys. II France 2 (1992) 2159.
3) G. Eckert et al.: Nucl. Instrum. Methods A 320 (1992) 53.
4) T. R. Gentile and R. D. McKeown: Phys. Rev. A 47 (1993) 456.
5) M. Hidaka: private communication.
6) W. Happer, Rev. Mod. Phys. 44 (1972) 169.
7) http://www.keopsys.com
8) W. Lorenzon, T. R. Gentile, H. Gao and R. D. McKeown: Phys. Rev. A 47 (1993) 468.
9) http://www.thorlabs.com
10) P. J. Nacher and M. Leduc: J. Physique 46 (1985) 2057.