Bioengineered silver nanoparticles using *Curvularia pallescens* and its fungicidal activity against *Cladosporium fulvum*

Abdallah M. Elgorban\(^a,b,\ast\), Abd El-Rahim M. El-Samawaty\(^a,b\), Omar H. Abd-Elkader\(^c,d\), Mohamed A. Yassin\(^a,b\), Shaban R.M. Sayed\(^c,e\), Mujeeb Khan\(^f\), Syed Farooq Adil\(^f,\ast\)

\(^a\) Botany and Microbiology Department, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
\(^b\) Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
\(^c\) Zoology Department, EM Unit, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia
\(^d\) Electron Microscope and Thin Films Department, National Research Centre, El-Behooth St., 12622 Dokki, Cairo, Egypt
\(^e\) Department Botany and Microbiology, College of Science, Minia University, El-Minia 61511, Egypt
\(^f\) Chemistry Department, College of Science, King Saud University, P.O. 2455, Riyadh 11451, Saudi Arabia

Received 1 June 2016; revised 27 August 2016; accepted 25 September 2016
Available online 14 October 2016

KEYWORDS
Curvularia pallescens; Biosynthesis; Silver nanoparticles; Transmission electron microscope; Antifungal activity; *Cladosporium fulvum*

Abstract Microorganisms based biosynthesis of nanomaterials has triggered significant attention, due to their great potential as a vast source of the production of biocompatible nanoparticles (NPs). Such biosynthesized functional nanomaterials can be used for various biomedical applications. The present study investigates the green synthesis of silver nanoparticles (Ag NPs) using the fungus *Curvularia pallescens* (*C. pallescens*) which is isolated from cereals. The *C. pallescens* cell filtrate was used for the reduction of AgNO\(_3\) to Ag NPs. To the best of our knowledge *C. pallescens* is utilized first time for the preparation of Ag NPs. Several alkaloids and proteins present in the phytopathogenic fungus *C. pallescens* were mainly responsible for the formation of highly crystalline Ag NPs. The as-synthesized Ag NPs were characterized by using UV–Visible spectroscopy, X-ray diffraction and transmission electron microscopy (TEM). The TEM micrographs have revealed that spherical shaped Ag NPs with polydisperse in size were obtained. These results have clearly suggested that the biomolecules secreted by *C. pallescens* are mainly responsible for the formation and stabilization of nanoparticles. Furthermore, the antifungal activity of the as-prepared Ag NPs...
1. Introduction

Nanomaterials represent an important class of functional materials due to their extraordinary physicochemical properties. These properties have been extensively utilized for several technological and biomedical purposes including, in the fabrication of various nano-devices, biosensors, bio implants etc (Cook et al., 2008; Bunker et al., 2010; Akbarzadeh et al., 2012; Ashajyothi et al., 2014; Prasai et al., 2015). Particularly, the recent advancements in the field of nanotechnology have led to the development of a variety of new nano-structured materials with desired design and properties (Feng et al., 2000; Elgorban et al., 2015; Shi et al., 2015). Despite tremendous progress in the design and preparation of various nanomaterials for different applications, several challenges exist in many fields including, biomedical sector. For instance, the efficient production of nano drugs with customized size, shape and other physicochemical properties is highly desirable to develop important new types of drugs for various life threatening diseases (Feng et al., 2000; Elgorban et al., 2015; Shi et al., 2015). In other cases, the recent surge in the spreading of different types strain resistant bacteria and fungi requires the development of several new kinds of nanoparticle based antibacterial and antifungal materials. Therefore, the advancement in the design of latest nanomaterials and the development of new techniques for the preparation of nanoparticles to be utilized in the fabrication of efficient nano devices is highly imminent.

Among various nanomaterials, silver nanoparticles (Ag NPs) have gained considerable attention of scientists and biologists, due to their remarkable physicochemical and biological properties (Li et al., 2014). These properties have led to their wide applications in various fields, including, energy sector, and electronics, sensing and health care (Ryenga et al., 2011; Konop et al., 2016). Predominantly, the outstanding antimicrobial properties of Ag NPs have led to the development of a wide variety of nanosilver products, such as, nanosilver-coated wound dressings, contraceptive devices, surgical instruments, and implants (Alarcon et al., 2016; GhavamiNejad et al., 2016; Pazos et al., 2016). Ag NPs have been prepared by using various physical and chemical methods based on the accessibility and feasibility of protocols to attain the required applications (Samal et al., 2013; Sun, 2013) The physical methods include, ball milling, flame pyrolysis, electric arc discharge, laser ablation etc (James et al., 2012), which often require expensive instruments, high temperature and pressure (Xu et al., 2013). Whereas, the chemical methods, involve the concepts of wet chemistry (Polavarapu and Liz-Marzán, 2013). In this process, the formation of NPs is carried out via the reduction/decomposition of metal complexes in solutions using various chemical reductants, such as sodium borohydride, hydrazine or at elevated temperatures (Tahir et al., 2013; Tan and Cheong, 2013) Moreover, to achieve stable dispersions of Ag NPs to make them compatible for various applications, different types of additional stabilizers are often required to prevent aggregation (Mourdikoudis and Liz-Marzán, 2013). Although, these methods have been extensively applied but the reactants, reductants, stabilizers and various organic solvents used in these methods are toxic and potentially hazardous for the environment (Farooq Adil and Siddiqui, 2015).

Therefore, considering the extensive biological applications of Ag NPs, the development of facile approaches for their preparation under ambient conditions using non-toxic reagents and solvents is highly desirable (Marambio-Jones and Hoek, 2010). So far, considerable progress has been made in the preparation of Ag NPs under physiological and eco-friendly conditions, and several green methods have been developed in this regard (Hebbalalu et al., 2013). These methods include electrochemical, microwave, sonochemical, super-critical liquids, ionic liquids etc (Kalathil et al., 2011; Zaourer et al., 2014). Recently, great interest has been generated toward various biological systems for inspiration and using biomolecules as a tool for the synthesis of functional nanomaterials. Therefore, the trend of applying biomaterials, such as, microorganisms, marine organisms, proteins and plant extracts in the green synthesis of Ag NPs has gained enormous popularity in the scientific community (Akhtar et al., 2013; Singh et al., 2016). Among these methods, the utilization of different microorganisms in the preparation of Ag NPs has gained significant attention. The microorganisms not only facilitate the synthesis of the Ag NPs by acting as reducing agents, but also functionalize the surface of NPs (Anand and Mandal, 2015). These multifunctional microorganisms greatly reduce the number of steps in the reaction and also eliminate the use of external stabilizers. Therefore, several unicellular and multicellular microorganisms, including bacteria and different genera of fungi, have been successfully tested for the preparation of Ag NPs. For instance, in different studies, Pseudomonas stutzeri AG256 from Ag mines and Lactobacillus found in buttermilk have been applied for the preparation of Ag NPs (Klaus et al., 1999; Nair and Pradeep, 2002).

Apart from the bacterial mediated synthesis, various eukaryotic organisms, such as, different types of fungal based approaches have been found to be more popular for the preparation of Ag NPs, since, these organisms are easy to handle, secrete more enzymes and usually grow on simple media. Till date, several pathogenic fungi such as Aspergillus fumigatus (Bhainsa and D’Souza, 2006), A. terreus (Kora and Sashidhar, 2015) and the bioagent fungi like Trichoderma har-
Curvularia pallescens, isolated from cereal is used for the synthesis of Ag NPs. Curvularia is a relatively large genus of fungi belonging to some of the most common saprophytic or phytopathogenic organisms (Freire et al., 1998). Currently, there are ~133 species of Curvularia, which occurs mostly in tropical and subtropical areas (Manamgoda et al., 2015). Several species of Curvularia are commonly isolated from soil, air, organic matter, plants and animals, including humans. Apart from this a number of fungi belonging to the species Curvularia are also identified as rice pathogens, including Curvularia pallescens (Almaguer et al., 2013). The phytopathogenic fungus Curvularia pallescens consists of several alkaloids and proteins, such as curvupallides A, B and C, which possess an unusual α,β-unsaturated ene-amide-γ-lactam, which might have played a vital role in the reduction of Ag⁺ ions (Abraham et al., 1995; Mukherjee et al., 2001; Dey et al., 2016).

Apart from the useful applications of fungus in the preparation of various nanomaterials, different fungal strains are also responsible for a variety of problems. Among the many funguses known, Cladosporium fulvum is a biotrophic fungal pathogen that causes serious diseases in different plants (Joosten et al., 1997). Cladosporium is a relatively large genus of fungi belonging to some of the most common indoor and outdoor molds. Several species of Cladosporium, including fungi, are commonly found on plants (both living and dead plants), and produces olive-green to brown or black colonies (Joosten et al., 1997). The genus Cladosporium contained around 800 plant-pathogenic and saprotrophic species, which are often highly osmotolerant, and grow easily on common media. Among various species of Cladosporium, Cladosporium fulvum which causes leaf mold of tomato is an important genetic model, which facilitated the understanding of the genetics of host resistance (Rivas and Thomas, 2005). The fungus causes serious economic losses to commercially grown tomato produced in open field, high tunnels and greenhouses in all the worlds (Rivas and Thomas, 2005).

Herein, we report on the green synthesis of Ag NPs via the reduction of Ag ions using the fungus Curvularia pallescens, which is isolated from cereal. The as-prepared Ag NPs were characterized using various microscopic and analytical techniques including X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible absorption (UV-vis) spectroscopy, and transmission electron microscopy (TEM). Furthermore, the antifungal activity of the as-prepared Ag NPs was tested against Cladosporium fulvum which causes several serious plant diseases, including tomato leaf mold infection.

2. Materials and methods

The organisms used for the green synthesis was Cladosporium fulvum, which was isolated from tomato leaves dropped until...
nanoparticles was confirmed using TEM (JEOL-1010). X-ray powder diffraction (XRD) analysis was performed on X Pert Pro diffractometer by using Cu Kα radiation at 40 kV and 40 mA. The scans were typically performed over a 2θ range from 10° to 85° at a speed of 0.02/s, with an aperture slit, an anti-scatter slit, and a receiving slit of 2 mm, 6 mm, and 0.2 mm, respectively. X-rays Cu-Kα wavelength was (1.54056 Å).

2.3 Antifungal activity of Ag NPs against Cladosporum fulvum

The antifungal activity of Ag NPs against Cladosporum fulvum (Syn. Fulvia fulva) causing tomato leaf mold was studied on Potato dextrose agar (PDA). The Ag NP solutions were added to Erlenmeyer flasks at 0, 25, 50, 75, 100, 150 and 200 ppm and autoclaved. Flasks were poured into Petri plates. The Petri plates containing Ag NPs were incubated at 25 ± 2 °C. After 2 days, disks from mycelial (3 mm) were taken from the edge of 7-day-old fungal cultures, put in the center of each plate containing Ag NPs, plates without Ag⁺ served as control. The petri dishes incubated at 28 ± 2 °C for 5 days. The inhibition zones in radial growth were measured after 5 days according to this formula

\[
\text{Inhibition Zone} = \frac{R - r}{R} \times 100
\]

where R is the radial growth of fungal mycelia on the control and r the mycelial growth of fungal mycelia on the plate treated with Ag NPs.

3. Results and discussion

3.1 Characterization

3.1.1 Optical absorption measurements

C. pallescens fungal extract was used for the biosynthesis of Ag NPs under facile conditions. It was observed that on the addition of fungal extract into the aqueous solution of AgNO₃, the color of the solution gradually changed from light yellow to dark brown, indicating the formation of Ag NPs. Under a similar set of conditions, no change in the color of AgNO₃ solution was observed even after several hours. The formation of the as-prepared Ag NPs was initially monitored by UV–vis analysis. Typically, Ag NPs exhibit absorption under a visible range of 380–450 nm, depending on the shape and size of the NPs. The UV–vis spectrometry is a spectroscopic technique involving the use of light in the visible, near ultra-violet and near infrared regions to cause electronic transitions in the target material. The absorption spectrum of metal NPs is sensitive to several factors, including particle size, shape, and particle–particle interaction (agglomeration) with the medium. Therefore, the aqueous bioreduction of Ag⁺ ions can be effectively monitored by a UV–vis spectrophotometer. Optical absorption of Ag NPs is illustrated in Fig. 1, which clearly demonstrated the appearance of absorption peak at 415 nm. Generally, a broad peak at a higher wavelength indicates an increase in particle size, whereas a narrow line at a shorter wavelength represents smaller particle size.

In the case of Pulicaria glutinosa plant extract mediated biosynthesis of Ag NPs reported in our previous study...

![Figure 1](image1.png) Ultraviolet–visible (UV–vis) absorption spectra of the corresponding solution depicting the formation of Ag NPs.

![Figure 2](image2.png) (A) TEM image of the biosynthesized Ag NPs obtained by using C. pallescens (B) Particle size distribution graph of the nanoparticles obtained.
Khan et al., 2013), the absorption peaks appeared in the range of 420–460 nm (depending on the concentration of plant extract), where Ag NPs with a particle size between 20 and 60 nm were obtained. However, in this case, the narrow absorption peak at lower wavelength (415 nm) clearly demonstrated the smaller size of NPs in the range of 10–25 nm, which is also confirmed by TEM analysis.

3.1.2. Transmission electron microscope

The as-prepared nanoparticles were subjected to transmission electron microscopy (TEM) to understand the morphology of Ag NPs formed and the particle size distribution graph is illustrated in Fig. 2. From the micrograph obtained (Fig. 2A) it can be clearly observed that the Ag NPs obtained are spherical in nature and are well-dispersed, with meager agglomerations. In order to obtain the mean particle size the images obtained were analyzed using image processing software ImageJ. The values obtained were plotted as a histogram and it was found that the mean particle size of the Ag NPs obtained was found to be 16.74 ± 0.62 nm it is clear that the variation of particle size from 3 to 13 nm, good gaussian variation is obtained as shown as in Fig. 2B.

3.1.3. Energy dispersive spectrometry

The sample was subjected to EDS in order to ascertain the presence of elemental Ag in the sample. Measurement of energy dispersive spectrometry (EDS) of Ag NPs is illustrated in Fig. 3. From the spectrum obtained it can be concluded that the silver nanoparticles are formed and the mass % obtained is ~20% from all samples.

3.1.4. X-ray analysis

X-ray diffraction studies of green synthesized Ag NPs were carried out to ascertain the presence of crystalline Ag NPs and to correlate the data obtained with data from the crystallographic database. The XRD spectrum is illustrated in Fig. 4. As shown in the figure there are four distinct reflections in the diffractogram at 2θ 37.9469 (111), 44.1015 (200), 64.1373 (220), 77.0091 (311). These characteristic reflections can be indexed to the face centered cubic (fcc) structure of Ag (PDF File No. 040783, space group: Fm3 m). The intense reflection at (111), in comparison with the other three, may indicate the preferred growth direction of the nanocrystals (Khan et al., 2014). On the basis of the half width of the (111) reflection, the average crystallite size (~20 nm) of the Ag NPs was determined using the Scherrer equation (Scherrer, 1912).

The observed and calculated lattice parameters, unit cell volume, and space group for PDF File No. 040783, and differences between them are compiled in Table 1. Table 2 depicts the observed and calculated crystallographic data as well as the Miller indices (h k l), where d-spacing is the inter-planar spacing, and 2θ is the diffraction angle.

The Average grain size (D) for nano particles was calculated using the following equations:

$$D = \frac{0.9\lambda}{b \cos \theta}$$

where β is the full–width at half–maximum of peaks, λ is the X-ray wavelength, and θ is the diffraction angle.

3.2. Biological Evaluation of Ag NPs

3.2.1. Antifungal activity

The inhibition effect of Ag NPs at various concentrations was analyzed in PDA (Table 3). The higher suppression of
C. fulvum growth was recorded at 200 ppm concentration. The lowest level of reduction was noticed against C. fulvum on PDA treated with a 50 ppm concentration of Ag NPs. It was observed that increased inhibition by increasing the concentration of silver nanoparticles. This high antimicrobial activity of Ag NPs could be related to the high intensity at which the solution was able to saturate and adhere to hypha of fungi and to disrupt phytopathogenic fungi. Studies on the inhibitory action mechanism of Ag⁺ on microorganisms have shown that onto treatment with silver ions, DNA collapse its capability to replicate (Bidnenko et al., 2002), which inactivated expression of ribosomal subunit proteins, in addition to some other enzymes and cellular proteins essential to adenosine triphosphate production (Feng et al., 2000). As it has been the assumption that Ag⁺ affects primarily the function of membrane-associated enzymes, such as those found in the respiratory chain (McDonnell and Russell, 1999). Therefore, it was concluded that silver nanoparticles have significant antifungal activity, and further examination for field applications is needed.

4. Conclusion

We have demonstrated a green approach for the synthesis of Ag NPs using fungal strain Curvularia pallescens as a bioreductant. Applying this methodology yielded highly crystalline, spherical-shaped Ag NPs without the usage of any harmful reducing or capping agents. The as prepared Ag NPs were characterized and confirmed using the spectroscopic as well as microscopic techniques. These Ag NPs were evaluated for their fungicidal activity against Cladosporum fulvum and were found to display excellent activity against the fungal strain tested. These encouraging results can easily be exploited for the large-scale synthesis of efficient and low-cost Ag NPs and can be tested for various applications such as catalysts and biomedical applications including, biosensors.

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding this Research group No (RG-1436-009).

References

Abraham, W.-R., Meyer, H., et al, 1995. Curvupallides, a new class of alkaloids from the fungus Curvularia pallescens. Tetrahedron 51 (17), 4947–4952.
Ahluwalia, V., Kumar, J., et al, 2014. Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind. Crops Prod. 55, 202–206.
Akbarzadeh, A., Samiei, M., et al, 2012. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 7 (1), 1–13.
Akhtar, M.S., Panwar, J., et al, 2013. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chem. Eng. 1 (6), 591–602.
Alarcon, E., Vulesevic, B., et al, 2016. Coloured cornea replacements with anti-infective properties: expanding the safe use of silver nanoparticles in regenerative medicine. Nanoscale 8 (12), 6484–6489.
Almaguer, M., Rojas, T.I., et al, 2013. Effect of temperature on growth and germination of conidia in Curvularia and Bipolaris species isolated from the air. Aerobiologia 29 (1), 13–20.
Anand, K.K.H., Mandal, B.K., 2015. Activity study of biogenic spherical silver nanoparticles towards microbes and oxidants. Spectrochim. Acta Part A 135, 639–645.

Table 1	Observed and calculated lattice parameters, unit cell volume, and space group for PDF file No. 040783.							
a	B	c	α	β	γ	Volume	Space Group	
Ag NPs	4.107	4.107	4.107	90	90	90	69.277	Fm3 m
PDF	4.086	4.086	4.086	90	90	90	68.23	Fm3 m

Table 2	Observed and calculated crystallographic data as well as the Miller indices.						
h	k	l	2θ Calc.	2θ Obs.	Difference	d. Obs.	d. Calc.
1	1	1	37.5000	37.9469	0.4469	2.3984	2.3712
2	0	0	43.7200	44.1015	0.3815	2.0706	2.0535
2	2	0	64.0400	64.1373	0.0973	1.4540	1.4521
3	1	1	77.1200	77.0091	0.1109	1.2368	1.2383

Table 3	Effect of Ag NPs against Cladosporum fulvum.										
	50 ppm	100 ppm	150 ppm	200 ppm	ED₅₀	ED₉₅	Slope ± SE				
R.G.	Inh.%										
0.00	65.00	27.78	51.75	42.50	49.75	44.72	39.00	55.56	164.3	4782.6	1.12 ± 6.2

a R.G. = Radial growth.
b Inh.% = Inhibition%.
Ashajyothi, C., Oli, A.K., et al, 2014. Potential bactericidal effect of silver nanoparticles synthesised from enterococcus species. Orient. J. Chem. 30 (3), 1253–1262.

Bhanis, K.C., D’Souza, S., 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. B 47 (2), 160–164.

Bidnенко, V., Erflich, S.D., et al, 2002. Replication fork collapse at replication terminator sequences. EMBO J. 21 (14), 3898–3907.

Bunker, K., Surgeon, J., et al, 2010. Nanoparticle characterization in pharmaceutical applications using electron microscopy. Microsc. Microanal. 16 (S2), 668–669.

Chitra, K., Annadurai, G., 2013. Bioengineered silver nanobowls using Trichoderma viride and its antibacterial activity against gram-positive and gram-negative bacteria. J. Nanosci. Chem. 3 (1), 1–7.

Cook, S., Padmos, J., et al, 2008. Surface structural characteristics and tunable electronic properties of wet-chemically prepared Pd nanoparticles. J. Chem. Phys. 128 (15), 154705.

Dey, D., Saha, B., et al, 2016. Mass spectrometry-based identification of allergens from Curvularia pallescens, a prevalent aerospore in India. Biochim. Biophys. Acta 1864 (7), 869–879.

Elgorban, A.M., El-Samawaty, A.E.-R.M., et al, 2015. Antifungal silver nanoparticles synthesis, characterization and biological evaluation. Biotechnol. Biotechnol. Equip., 1–7.

Farooq Adil, S., Siddiqui, M. Rafiq H., 2015. Biogenic synthesis of palladium nanoparticles mediated by Pulicaria glutinosa extract. Int. J. Nanomed. 8, 1482–1485.

Feng, Q., Wu, J., et al, 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52 (4), 662–668.

Freire, S.V.P., Paiva, L.M., et al, 1998. Morphological, cytological, and cultural aspects of Curvularia pallescens. Revista de Microbiol. 29 (3).

GhavamiNejad, A., Park, C.H., et al, 2016. In situ synthesis of silver nanoparticles within antifouling zwiterionic hydrogels by catecholic redox chemistry for wound healing application. Biomacromolecules 17 (13), 1213–1223.

Hebbalulu, D., Lalley, J., et al, 2013. Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves. ACS Sustainable Chem. Eng. 1 (7), 703–712.

James, S.L., Adams, C.J., et al, 2012. Mechanocatalysis: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41 (1), 413–447.

Joosten, M., De Wit, P., 1999. The Tomato-Cladosporium fulvum interaction: a versatile experimental system to study plant-pathogen interactions. Ann. Rev. Phytopathol. 37 (1), 355–367.

Joosten, M., Vogelsang, R., et al, 1997. The biotrophic fungus Cladosporium fulvum circumvents Ci-f4-mediated resistance by producing unstable AVR4 elicitors. Plant Cell 9 (3), 367–379.

Kathril, S., Lee, J., et al, 2011. Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water. Green Chem. 13 (6), 1482–1485.

Khan, M., Khan, M., et al, 2013. Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. Int. J. Nanomed. 8, 1507–1516.

Khan, M., Khan, M., et al, 2014. Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction. Dalton Trans. 43 (24), 9026–9031.

Klaus, T., Joerger, R., et al, 1999. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. 96 (24), 13611–13614.

Kong, M., Damps, T., et al, 2016. Certain aspects of silver and silver nanoparticles in wound care: a minireview. J. Nanomat.

Kora, A.J., Sashidhar, R.B., 2015. Antibacterial activity of biogenic silver nanoparticles synthesized with gum ghatti and gum olibanum: a comparative study. J. Antibiot. 68 (2), 88–97.

Li, H., Xia, H., et al, 2014. Synthesis of monodisperse, quasi-spherical silver nanoparticles with sizes defined by the nature of silver precursors. Langmuir 30 (9), 2498–2504.

Manamgoda, D.S., Rossman, A.Y., et al, 2015. A taxonomic and phylogenetic re-appraisal of the genus Curvularia (Pleosporaceae): human and plant pathogens. Phytopathologia 212 (3), 175–198.

Marambio-Jones, C., Hoek, E.M., 2010. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 12 (5), 1531–1551.

McDonnell, G., Russell, A.D., 1999. Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. 12 (1), 147–179.

Mouridkoudis, S., Liz-Marrñán, L.M., 2013. Oleylamine in nanoparticle synthesis. Chem. Mater. 25 (9), 1465–1476.

Mukherjee, P., Ahmad, A., et al, 2001. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 1 (10), 515–519.

Nair, B., Pradeep, T., 2002. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. J. Cryst. Growth Des. 2 (4), 283–298.

Pazos, E., Sleep, E., et al, 2016. Nucleation and growth of ordered arrays of silver nanoparticles on peptide nanofibers: hybrid nanostructures with antimicrobial properties. J. Am. Chem. Soc. Polavarapu, L., Liz-Marrñán, L.M., 2013. Growth and galvanic replacement of silver nanocubes in organic media. Nanoscale 5 (10), 4355–4361.

Prasai, B., Ren, Y., et al, 2015. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt–Ru nanoloy catalysts. Nanoscale 7 (17), 8122–8134.

Rivas, S., Thomas, C.M., 2005. Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annu. Rev. Phytopathol. 43, 395–436.

Rycenga, M., Cobley, C.M., et al, 2011. Controlling the synthesis and assembly of silver nanostructures for plasmic applications. Chem. Rev. 111 (6), 3669–3712.

Samal, A.K., Polavarapu, L., et al, 2013. Size Tunable Au@Ag core–shell nanoparticles: synthesis and surface-enhanced Raman scattering properties. Langmuir 29 (48), 15076–15082.

Scherrer, P., 1912. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. Springer.

Shi, D., Sadat, M., et al, 2015. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale 7 (18), 8209–8232.

Singh, P., Kim, Y.-J., et al, 2016. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol.

Sun, Y., 2013. Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering. Chem. Soc. Rev. 42 (7), 2497–2511.

Syed, A., Saraswati, S., et al, 2013. Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytotoxicity using normal and cancer cell lines. Spectrochim. Acta Part A 114, 144–147.

Tahir, M.N., Natalio, F., et al, 2013. Controlled synthesis of linear and branched Au@ZnO hybrid nanocrystals and their photocatalytic properties. Nanoscale 5 (20), 9944–9949.

Tan, K.S., Cheong, K.Y., 2013. Advances of Ag, Cu, and Ag–Cu alloy nanoparticles and prospects toward green chemistry. J. Mater. Chem. 23 (33), 9026–9031.

Sun, Y., 2013. Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering. Chem. Soc. Rev. 42 (7), 2497–2511.