Lung ultrasound and computed tomography to monitor COVID-19 pneumonia in critically ill patients: a two-center prospective cohort study

Micah Heldeweg (m.heldeweg@amsterdamumc.nl)
Amsterdam UMC

Jorge A. Lopez Matta
Leiden UMC

Mark E. Haaksma
Amsterdam UMC

Jasper M. Smit
Amsterdam UMC

Carlos V. Elzo Kraemer
Leiden UMC

Harm-Jan S. de Grooth
Amsterdam UMC

E. de Jonge
Leiden UMC

L.J. Meijboom
Amsterdam UMC

Leo M.A. Heunks
Amsterdam UMC

David J. van Westerloo
Leiden UMC

Pieter Roel Tuinman
Amsterdam UMC

Research Article

Keywords: Ultrasonography, Lung, COVID-19, Pneumonia, critical illness, Respiratory Distress Syndrome, Adult

Posted Date: July 21st, 2020

DOI: https://doi.org/10.21203/rs.3.rs-44726/v1
Abstract

Background: Lung ultrasound can adequately monitor disease severity in pneumonia and acute respiratory distress syndrome. We hypothesize lung ultrasound can adequately monitor COVID-19 pneumonia in critically ill patients.

Methods: Adult patients with COVID-19 pneumonia admitted to the intensive care unit of two academic hospitals who underwent a 12-zone lung ultrasound and a chest CT examination were included. Baseline characteristics, and outcomes including composite endpoint death or ICU stay >30 days were recorded. Lung ultrasound and CT images were quantified as a Lung Ultrasound Score Involvement index (LUSI) and CT Severity Involvement index (CTSI). Primary outcome was the correlation, agreement, and concordance between LUSI and CTSI. Secondary outcome was the association of LUSI and CTSI with the composite endpoints.

Results: We included 55 ultrasound examinations in 34 patients, which were 88% were male, with a mean age of 63 years and mean P/F ratio of 151. The correlation between LUSI and CTSI was strong (r=0.795), with an overall 15% bias, and limits of agreement ranging -40 to 9.7. Concordance between changes in sequentially measured LUSI and CTSI was 81%. In the univariate model, high involvement on LUSI and CTSI were associated with a composite endpoint. In the multivariate model, LUSI was the only remaining independent predictor.

Conclusions: Lung ultrasound can be used as an alternative for chest CT in monitoring COVID-19 pneumonia in critically ill patients as it can quantify pulmonary involvement, register changes over the course of the disease, and predict death or ICU stay >30 days.

Trial registration: NTR, NL8584. registered 01 May 2020 - retrospectively registered, https://www.trialregister.nl/trial/8584

Background

Coronavirus disease 2019 (COVID-19) is currently challenging the flexibility and capacity of health care systems around the globe. Five percent of COVID-19 patients are severely ill and require admission to an intensive care unit (ICU), posing an extraordinary challenge to these departments (1). Resources are stretched thin and require novel solutions on an organizational and medical level (2). Maximizing critical care capacity by ensuring efficient use of health care workers, devices, personal protective equipment, and other resources is crucial to minimize COVID-19 related death, even in high-income areas (3).

The COVID-19 pneumonia diagnosis is made through laboratory confirmation combined with clinical (or radiological) suspicion. International (and clinical) guidelines recommend the use of computed tomography (CT) for the (repeated) evaluation of COVID-19 pneumonia lung involvement, in particular in case of non-resolving or worsening clinical picture (4). CT scoring systems, such as the severity score (CT-SS), are used to adequately distinguish mild from severe disease (5,6). However, the ICU population is
severely ill by definition and scanning requires transportation further increasing demands on frail patients and resource-constrained hospitals. Transport outside of isolation carries risks for patients, health care workers, bystanders and requires both contingency plans and post-transport decontamination (7). The need for repeated scans can be minimized by increasing use of bedside monitoring tools.

Lung ultrasound is superior to standard chest radiography and similar to chest CT for the evaluation of pneumonia and adult respiratory distress syndrome (ARDS) with added benefit of repeatability, low cost, absence of radiation exposure, and ease of use (8,9). Several editorials have recommended increasing the use of lung ultrasound during the current pandemic (10–13), but data on its value in diagnosing and especially monitoring COVID-19 pneumonia is still limited (14–16).

We aim to evaluate lung ultrasound as an alternative to CT for monitoring COVID-19 pneumonia lung involvement on the ICU, thereby potentially reducing the need for CT-scanning, its associated risks, and costs. Our hypothesis is that the Lung Ultrasound Score (LUS) strongly correlates with CT-SS (r > 0.70), is reactive to clinical evolution, and predicts outcomes similarly in critically ill COVID-19 pneumonia patients.

Methods

Study aim, design, and setting. Our aim was to evaluate lung ultrasound as an alternative to CT for monitoring COVID-19 pneumonia lung involvement on the ICU. We conducted a prospective observational cohort study of laboratory-confirmed COVID-19 cases in two academic adult ICUs (Amsterdam UMC, location VUmc, the Netherlands and LUMC, Leiden, the Netherlands). Bedside ultrasound evaluations are regularly performed in these centers, providing there is a relevant clinical indication and an available certified ultrasound physician. The local ethics boards approved the study and usage of data gathered during routine ultrasound without informed consent. This trial was registered in Dutch Trial Registry (ID: NL8584) and was drafted in compliance with the STROBE guidelines (17).

Participants and outcome variables. Adult (>18 years) patients admitted to the ICU and diagnosed with COVID-19 between April 1st and May 30th were screened. They were included when a clinically indicated 12-zone lung ultrasound had was performed and recorded within 48 hours of a chest CT-scan. Baseline characteristics (age, sex, height, weight), ventilator settings, arterial blood gas values, and Sequential Organ Failure Assessment score (SOFA) were collected from the electronic patient database as close to time of CT as possible. The ratio of arterial oxygen partial pressure to fractional inspired oxygen (P/F ratio) was calculated based on arterial blood gas values and concurrent ventilator oxygen setting. We used the Kigali Modification of the Berlin Definition of ARDS (so non-ventilated patients could also be classified) to classify COVID-19 cases as mild, moderate, and severe (18). P/F ratio for non-ventilated patients on low-flow oxygen was estimated using an established conversion method (19). Follow-up started at intubation or, for non-ventilated patients, at ICU admission. Patients were followed for the longest possible follow-up until discharge, death, or, when still admitted, until drafting of this manuscript. An inclusive composite outcome of death or ICU stay >30 days was calculated.
Lung Ultrasound. Images were acquired or supervised by certified clinicians (n=8) using the Sonosite-EDGE II or Philips Lumify ultrasound system. Certification entailed a two-day course and thereafter supervision by a physician with extensive ultrasound experience (>5 years) until sufficient expertise was reached (a minimum of 30 exams) prior to this study (20). All measurements were performed on supine patients using a 10-5 MHz linear transducer (VUmc) or a Lumify 4-1MHZ MHz S4-1 broadband phased array transducer (LUMC) with the lung examination setting with a depth of >6 centimeters (21). Measurements were conducted according to the 12-zone LUS protocol: one superior and inferior zone on ventral, lateral, and dorsal areas of each hemithorax (22). Offline analyses of ultrasound images were performed by researchers blinded to the patient’s CT results. The offline reviewers determined the LUS of involvement: normal=0, well-separated B-lines=1; coalescent B-lines, small consolidation or quad sign (< 1 cm) =2, consolidation, large consolidation or quad sign (> 1cm)=3; of each zone(22). A global score was calculated by summing the scores of all 12 lung regions, ranging from 0 (i.e. all zones with normal aeration) to 36 (i.e. all zones with large consolidation or large quad signs). Regional scores were calculated by summing the field scores of ventral, lateral, and dorsal regions (ranging from 0 to 12) or superior and inferior regions (ranging from 0 to 18). A ventral-1-lateral score (3 views per hemithorax) was derived by summing the ventral and lateral scores without the ventroinferior points (23). Missing scores values from one or more regions that were non-examinable were resolved by expressing the lung ultrasound score as an ‘involvement index’(LUSI): (actual score / total score achievable) × 100. The number of potential regions was at most 12, 6, or 4 for the LUSI and regional scores, respectively. As such, an involvement percentage of 0% would represent normal aeration on all lung fields and a score of 100% would represent consolidation on all lung fields.

Chest computed tomography. Chest CT was performed on two multidetector CT scanners: Siemens Somatom Drive (Siemens Healthineers, Erlangen, Germany), and a GE Discovery 750 HD (GE Healthcare, Milwaukee, MI). All patients underwent CT scanning of the chest in the supine position during end-inspiration. Slice thickness for all scanners was between 0.625-1.25 mm. HD lung (GE Healthcare) kernel, pulmonary Br59F kernel (Siemens Healthineers) were applied. The chest CT was performed for clinical reasons at any point after the definitive diagnosis was made, on indication of the treating physician, and evaluated by a radiologist blinded for lung ultrasound results. Further follow-up CT scans were performed because of non-resolving or worsening clinical picture. The radiologists in the Netherlands determined a CT-SS based on a previously validated study in severe acute respiratory syndrome (24). The five lobes of the lung were each scored for involvement with ground glass or consolidation: 0% (0 points), 1-5% (1 point), 5-25% (2 points), 25-50% (3 points), 50-75% (4 points), or >75% (5 points). Data on the CT-SS, ranging from 0 to 25, was collected from the radiology report. A CT-SS ‘involvement index’ (CTSI), with 0% representing no involvement, and 100% representing >75% involvement on all five lobes, was also calculated for the CT-SS (CTSI).

Statistical analysis. Statistical analyses were performed using SPSS IBM version 22 (SPSS Inc., Chicago, IL, USA) and the R language for statistical computing with the tidyverse suite of packages (25). Demographic, clinical, and outcome variables were presented as means ± standard deviations (±SD),
medians and interquartile range [IQR], or numbers (percent %) when appropriate. A Shapiro-Wilk’s test, visual inspection of histograms, and Q-Q plots were used to determine data distribution.

Baseline and different zones. An ANOVA one-way (or Kruskal Wallis if non-parametric) test was used to compare baseline characteristics across categories of ARDS severity. The same test was used to determine whether there were differences in (regional) LUSI, CTSI, and across ARDS severity categories.

Primary outcome: correlation, agreement and concordance. The Spearman’s rank test was used to assess the correlation coefficient (r) between LUSI and CTSI on all examinations. We used the same test to assess the correlation between different zone regions of LUSI and CTSI for all examinations and only for unique patients. A correlation coefficient between 0.10 and 0.39 indicates weak, 0.4 and 0.69 moderate, and 0.70 and 0.89 a strong positive relationship (26). A Bland-Altman plot was created to assess agreement. The change in LUSI was assessed by correlating the difference (Δ) of sequential LUSI and CTSI examinations with a Spearman’s rank test. The overall concordance was assessed by allocating full concordance (1) to changes in the same direction, discordance (0) to changes opposite directions, or tie (0.5) when either LUSI or CTSI did not change.

Secondary outcome: prediction of outcomes. A logistic regression analysis was performed to assess the prediction of LUSI and CTSI on the outcomes of all unique patients. Five independent variables were selected as candidate predictors: age, P/F ratio, SOFA score, LUSI, and CTSI. As LUSI and CTSI are percentages of lung involvement and not strictly continuous variables, they were dichotomized to high involvement (≥50%) and low involvement, reflecting the ‘severe illness’ category in the National Institutes of Health guidelines for the management of COVID-19 (27). A univariate analysis was made for death, ICU stay >30 days, and their composite. A multivariate analysis was performed for the composite outcome.

Sample size. A previous study that correlated CT tissue density with LUS for ARDS found a strong correlation coefficient of 0.79 (28). Considering a two-sided α of 0.05 and a β of 0.05 this study would require a sample size of 14 to determine that the correlation coefficient differs from zero (29). Cases were collected until a sufficient sample for clinical evolution was also reached.

Results

Patients. Out of 91 screened patients, 34 were included with 55 lung ultrasound examinations (a total of 660 zones). Six (0.9%) of these zones were missing (figure 1). The median time between the lung ultrasound and CT examination was 17.2 [25.6] hours. Baseline characteristics are shown in table 1, ventilator settings and arterial blood gas values are shown in electronic supplementary material table S1. The overall patient population was 88% male, with a mean age of 63 (±10.2), and a BMI of 28.2 (±4.4). Two patients were not mechanically ventilated at the time of CT. The mean follow-up from intubation was 31.8 (±16.5) days, whereas the mean days from intubation to first follow-up CT after diagnosis was 14.6 (±10.1).
Table 1. Baseline characteristics at time of computed tomography and outcomes.

	Overall (N=34)	Mild (n=6)	Moderate (n=25)	Severe (n=3)	P-value
P/F ratio	150.3±43.9	222.8±16.1	141.8±20.8	75.6±29.5	0.068

Baseline demographics at CT

Age (years)	63.0±10.2	61.8±9.0	61.9±10.4	74.0±4.4	0.068
Gender (male)	30 (88.2%)	5 (83.3%)	22 (88.0%)	3 (100%)	0.763
BMI, m/kg²	28.2±4.4	29.0±3.5	27.6±4.0	32.1±8.3	0.473
Time since symptoms (days)	23.4±11.8	27.3±14.4	23.7±11.1	13.8±11.4	0.339
SOFA score	7.5±3.4	8.5±6[6]	7.4±3.5	7.0±4.6	0.755
CTSI	73.1±18.7	70.7±33.7	73.3±15.2	76.0±12.0	0.930
LUSI	57.6±16.8	53.7±21.8	58.9±16.3	53.7±13.1	0.779

Clinical outcomes

Discharge (%)	17 (51.5%)	5 (83.3%)	11 (45.8%)	1 (33.3%)	0.636
Still admitted on ICU (%)	7 (21.2%)	1 (16.7%)	5 (20.8%)	1 (33.3%)	0.636
Lost to follow-up (%)	3 (8.8%)	0 (0%)	3 (12.0%)	0 (0%)	0.636
Deceased (%)	6 (17.6%)	0 (0%)	5 (20.0%)	1 (33.3%)	0.636
ICU admission >30 days (%)	16 (59.4%)	3 (50.0%)	12 (63.2%)	1 (50.0%)	0.817
Composite outcome (%)	22 (66.7%)	3 (50%)	17 (70.8%)	2 (66.7%)	0.626

BMI body mass index; CT chest tomography; CTSI chest computed tomography severity involvement index; ICU intensive care unit; LUSI lung ultrasound score involvement; P/F ratio between partial oxygen pressure and fraction of inspired oxygen; variables were presented as means ± standard deviations (±SD), medians and interquartile range [IQR], or numbers (percent %) depending on distribution.

Primary outcome: correlation, agreement, and concordance between LUSI and CTSI. The mean LUSI was 58 (±17) and mean CTSI was 73 (±19). The correlation between LUSI and CTSI was 0.794 (95%CI 0.67; 0.87). The correlation between LUSI and CTSI is shown in figure 2a. The bias was -15.1 (95%CI -18.6; -11.7), indicating that LUSI underestimated CTSI by 15.1%, and the limits of agreement ranged from -40 to 9.7 (electronic supplementary material figure S1). The slope of the association between LUSI and CTSI (0.87, 95%CI 0.65 – 1.10) was not significantly different from 1, indicating that the magnitude of the bias was not related to the magnitude of involvement (there was no proportional bias). The mean measurement error decreased with involvement (p=0.007), indicating that LUSI reflected CTSI more precisely with higher involvement.

Twenty-one follow-up examinations (lung ultrasound and CT) were performed in 12 unique patients. LUSI change had a strong correlation with CTSI change (r=0.748, P<0.001). The concordance between changes in sequentially measured LUSI versus changes in CTSI was 0.81 (95%CI 0.67 – 0.88). There were no absolute discordant measurements (increased involvement on LUS but decreased involvement on CT or vice versa) (figure 2b).
LUSI was different across regional zones (p<0.001 – 0.018), with involvement being the least in the ventral zones, moderate in the lateral zones, and most in the dorsal zones (electronic supplementary material table S2). All of the distinct regional LUSI correlated with the CTSI (electronic supplementary material table S3). The ventral-1-lateral LUSI (one ventrosuperior zone and two lateral zones) had the highest correlation coefficient with CTSI (r=0.81).

Secondary outcome: LUSI, CTSI, and clinical outcomes. The univariate analyses for death and ICU stay >30 days are shown in table 2. LUSI and CTSI at the first CT were higher in patients with an ICU stay >30 days. With only 6 deaths (17.6%) and 7 patients still admitted (21.1%), neither the involvement on imaging, nor the baseline characteristics were associated with death. A composite outcome of death and ICU stay >30 days could be created for 33 (97.1%) of patients. Only LUSI (OR=17.5; 95%CI 3.02 – 154) and CTSI (OR=5.28; 95%CI 1.01 – 32.8) predicted the composite outcome in the univariate analysis. Lung ultrasound involvement at the ventral-1-lateral zone had comparable association with composite outcome as LUSI or CTSI (OR=16.9; 95%CI 3.15 – 124), but was not included in multivariate model to avoid overfitting. The multivariate analysis only retained LUSI for the prediction of composite outcome (OR=17.5; 95%CI 2.03-388.7) (figure 3).

| Table 2. Univariate analysis of predictors and outcomes. |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| | | | | | |
| | Death (n=24) | | | | |
| | No (n=18) | Yes (n=6) | OR (95% CI) | <30 (n=11) | >30 (n=16) | OR (95% CI) |
| LUSI Low | 8 (89%) | 1 (11%) | Ref | 7 (87%) | 1 (13%) | Ref |
| High | 10 (67%) | 5 (33%) | 4.00 (0.50-85.1) | 4 (21%) | 15 (79%) | 26.3 (3.37-575)* |
| Ventral-1-lateral LUSI Low | 9 (90%) | 1 (10%) | Ref | 8 (80%) | 2 (20%) | Ref |
| High | 9 (64%) | 5 (36%) | 5.00 (0.63-106) | 3 (18%) | 14 (82%) | 18.7 (3.01-180)* |
| CTSI Low | 5 (71%) | 2 (29%) | Ref | 5 (83%) | 1 (17%) | Ref |
| High | 13 (76%) | 4 (24%) | 0.77 (0.11-6.82) | 6 (29%) | 15 (71%) | 12.5 (1.59-268)* |
| P/F ratio per unit | 160±53 | 136±23 | 0.99 (0.96-1.01) | 151±61 | 157±43 | 1.00 (0.99-1.02) |
| SOFA Score per unit | 6.9±3.6 | 8.5±3.0 | 1.14 (0.87-1.53) | 5.1±2.6 | 7.9±3.5 | 1.12 (0.89-1.45) |
| Age per year | 63±8 | 67±8 | 1.07 (0.95-1.25) | 62±8 | 61±12 | 0.99 (0.91-1.07) |

CI confidence interval; CTSI chest computed tomography severity involvement index; ICU intensive care unit; LUSI lung ultrasound score involvement; OR odds ratio; P/F ratio between partial oxygen pressure and fraction of inspired oxygen; SOFA sequential organ failure assessment; variables were presented as means ± standard deviations (±SD), or numbers (percent %) depending on distribution. Involvement ≥50% was the cutoff for LUSI and ventral-1-lateral LUSI, whereas involvement ≥65% was the cutoff for CTSI. Odds ratios with significant (p<0.05) associations are indicated by *.

The cutoff for low-to-high involvement of CTSI was adjusted with the underestimation bias (15%) to ≥65%. This produced a larger odds ratio with a more narrow confidence interval than the original ≥50% cutoff in all analyses.
Discussion

The main findings of this study on lung ultrasound and CT for monitoring COVID-19 pneumonia in critically ill patients were the following: (1) LUSI has a strong correlation with CTSI. A six-zone LUSI performs similar to a twelve-zone LUSI; (2) LUSI is reactive to change in CTSI in sequential examinations (concordance=81%); (3) High pulmonary involvement on LUSI and CTSI predicts ICU length of stay, but not death. Only LUSI was retained in the multivariate regression model to predict the composite of death and ICU stay >30 days.

Our results suggest that lung ultrasound can be used as a substitute of chest CT for the monitoring of COVID-19 pneumonia severity in critically ill patients. Lung ultrasound underestimates CT involvement by 15.1% but the clinical relevance of this bias seems limited. It could be attributed to lung ultrasound's inability to identify pathology beyond the pleural line, inadvertently missing centrally located consolidation (10), although COVID-19 pneumoniae all present with a peripheral or mixed distribution (30). Another reason might be CTSS' skewed scoring system which does not discriminate pulmonary involvement above 75%. Although we used CT as reference standard, a recent study suggests that lung ultrasounds provides a higher sensitivity than CT to detect pulmonary content variations in COVID-19 (31).

In addition, lung ultrasound was able to concordantly detect clinical evolution of lung involvement, demonstrating it can evaluate the course of COVID-19 pneumonia over time similarly to chest CT. It has been shown that chest CT identifies progression of COVID-19 pneumonia from ground glass opacities towards consolidations and subsequent absorption (32). This is important as there appears to be a time-related disease spectrum for COVID-19, with different respiratory treatments for different phenotypes (33). The non-ARDS type is characterized by mainly ground-glass densities on CT and a low amount of non-aerated tissue, indicating minimal recruitability. On the other hand, the ARDS-type shows a remarkable increase in non-aerated tissues, increasing the potential for recruitability (34).

Increased pulmonary involvement might indicate a protracted ICU stay. In line with this, our study found that high pulmonary involvement on lung ultrasound (≥50%) and CT (≥65%) carried increased risk of ICU stay beyond 30 days. A restricted multivariate model showed that high involvement on lung ultrasound carried the best prediction for outcomes. It is important to note that COVID-19 is not merely a pneumonia, and many of its patient-centered outcomes also depend on complications (35). Major COVID-19 complications often encountered on the ICU are pulmonary embolism or (fungal) superinfections, which do require CT angiography or bronchoalveolar lavage for the respective diagnosis.

The use of lung ultrasound as the primary monitoring modality potentially reduces the number of medical devices used, thus reducing costs, fomites, and patient transportation, and sparing personal protective equipment as well as (time of) health care workers (36). This is important since COVID-19 is capable of rapid nosocomial spread through fomites. This is highlighted by a South-African report where a single introduction spread through five hospital wards and 135 patients mainly through indirect contact with (medical) equipment (37). Concurrently, ultrasound can also be employed on the ICU for multiple
indications surrounding a COVID-19 admission, such as diagnostic or procedural guidance (38–40). Moreover, our data suggests that a three-zone evaluation of both hemithoraces performs as well as a full twelve-zone evaluation. This result needs to be validated in another study but does coincide somewhat with the widely used BLUE-profile (41).

In summary, both lung ultrasound and CT are equally capable of quantifying pulmonary involvement and registering changes over the course of disease. Pulmonary involvement on lung ultrasound shows a stronger association with death and ICU stay >30 days. These results suggest that CT can be reserved for those situations where lung ultrasound does not adequately explain the clinical question, for example when a pulmonary embolism is suspected.

Limitations & strengths. Our study had a sufficiently large sample size to make an inference about the primary outcome, but was not powered for the secondary outcome. The estimated odds ratio shows a definite association with outcome, but its confidence intervals were large. This can be explained by the low absolute occurrence of outcome events. Time between scan and ultrasound was rather large (48 hours). However, based on our clinical observations of COVID-19 pneumonia severity it is unlikely that drastic changes occur within two days.

Our study has several strengths. Although the manuscript was submitted before definite end points were reached in all patients, we created a functional outcome for 97.1% of patients with the composite ICU outcome. We investigated the correlation between lung ultrasound and CT using multiple ultrasound operators and two centers, increasing generalizability and validity of the results. This is especially relevant considering global spread of COVID-19 and the implications of these results for COVID-19 monitoring in ICUs worldwide.

Conclusions

This two-center prospective cohort study shows that lung ultrasound can be a valuable alternative for chest CT in monitoring COVID-19 pneumonia in critically ill patients as it can quantify, detect changes in, and prognosticate pulmonary involvement. Considering the drawbacks of CT scanning and patient transportation our results support the increased uptake of lung ultrasound during the COVID-19 pandemic.

List Of Abbreviations

Abbreviation	Definition
ARDS	Acute Respiratory Distress Syndrome
CI	Confidence Interval
COVID-19	Coronavirus Disease 2019
CT	(chest) Computed Tomography
CTSI: CT Severity Involvement index
CT-SS: Computed Tomography Severity Score
FiO2: Fraction of Inspired Oxygen
ICU: Intensive Care Unit
IQR: Inter Quartile Range
LUS: Lung Ultrasound Score
LUSI: Lung Ultrasound Score Involvement index
PaO2: Partial Oxygen Pressure
P/F ratio: Ratio between Partial Oxygen Pressure and Fraction of Inspired Oxygen
SD: Standard Deviation
SOFA: Sequential Organ Failure Assessment

Declarations

Ethics approval and consent to participate

The local ethics committee ('Medisch-ethische toetsingscommissie') of each respective center approved this study (Registration ID: 2020.011 and 2016.002). Consent for participation was not applicable as ultrasound measurements were carried out as part of routine clinical examination.

Consent for publication

Consent for publication was waived by the local ethics board.

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests

Funding

No funding was received for this study.
Authors' contributions:

MHe, JLM, MHa, JS, CK, HdG, LM, EdJ, LH, DW and PT were responsible for the conception and design of the work. MHe, JLM, JS, HdG, and PT were responsible for acquisition and analysis of the data. MHe and JLM were responsible for building the database. MHe and PT were responsible for drafting the manuscript and all authors provided critical revisions for it. All authors read and approved the final manuscript and ensured that questions related to the accuracy or integrity of any part of the work were investigated and resolved.

Acknowledgements

Not applicable

References

1. Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020 Feb 28;
2. Grasselli G, Pesenti A, Cecconi M. Critical Care Utilization for the COVID-19 Outbreak in Lombardy, Italy. JAMA. 2020 Mar 13;
3. Leung K, Wu JT, Liu D, Leung GM. First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. Lancet. 2020 Apr 25;0(0):1382–93.
4. Rubin GD, Haramati LB, Kanne JP, Schluger NW, Yim J-J, Anderson DJ, et al. The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. Radiology. 2020 Apr 7;201365.
5. Li K, Fang Y, Li W, Pan C, Qin P, Zhong Y, et al. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur Radiol. 2020 Mar 25;1–10.
6. Yang R, Li X, Liu H, Zhen Y, Zhang X, Xiong Q, et al. Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19. Radiol Cardiothorac Imaging. 2020 Apr 1;2(2):e200047.
7. Liew MF, Siow WT, Yau YW, See KC. Safe patient transport for COVID-19. Vol. 24, Critical Care. BioMed Central Ltd.; 2020. p. 94.
8. Mayo PH, Copetti R, Feller-Kopman D, Mathis G, Maury E, Mongodi S, et al. Thoracic ultrasonography: a narrative review. Vol. 45, Intensive Care Medicine. Springer Verlag; 2019. p. 1200–11.
9. Winkler MH, Touw HR, van de Ven PM, Twisk J, Tuinman PR. Diagnostic Accuracy of Chest Radiograph, and When Concomitantly Studied Lung Ultrasound, in Critically Ill Patients With Respiratory Symptoms: A Systematic Review and Meta-Analysis. Crit Care Med. 2018 Jul 1;46(7):e707–14.
10. Cheung JC, Lam KN. POCUS in COVID-19: pearls and pitfalls. Lancet Respir. 2020;2600(20):30166.
11. Buonsenso D, Pata D, Chiaretti A. COVID-19 outbreak: less stethoscope, more ultrasound. Lancet Respir Med. 2020 Mar;
12. Soldati G, Smargiassi A, Inchingolo R, Buonsenso D, Perrone T, Briganti DF, et al. Is There a Role for Lung Ultrasound During the COVID-19 Pandemic? J Ultrasound Med. 2020 Apr 7;
13. Phua J, Weng L, Ling L, Egi M, Lim C, Divatia JV, et al. Review Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir. 2020;2019(20):1–12.
14. Peng QY, Wang XT, Zhang LN. Findings of lung ultrasonography of novel corona virus pneumonia during the 2019–2020 epidemic. Intensive Care Medicine. Springer; 2020. p. 1–2.
15. Volpicelli G, Gargani L. Sonographic signs and patterns of COVID-19 pneumonia. ultrasound J. 2020 Apr 21;12(1):22.
16. Haaksma ME, Heldeweg MLA, Matta JEL, Smit JM, Trigt JD van, Nooitgedacht JS, et al. Lung ultrasound findings in patients with novel SARS-CoV2. medrxiv. 2020;Preprint.
17. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. UroToday Int J. 2009;2(2):806.
18. Riviello ED, Kiviri W, Twagirumugabe T, Mueller A, Banner-Goodspeed VM, Officer L, et al. Hospital incidence and outcomes of the acute respiratory distress syndrome using the Kigali modification of the Berlin definition. Am J Respir Crit Care Med. 2016 Jan 1;193(1):52–9.
19. Kallstrom TJ. AARC Clinical Practice Guideline: oxygen therapy for adults in the acute care facility-2002 revision & update. Respir Care. 2002;47(6):717–20.
20. Touw HRW, Tuinman PR, Gelissen HPMM, Lust E, Elbers PWG. Lung ultrasound: Routine practice for the next generation of internists. Vol. 73, Netherlands Journal of Medicine. Van Zuiden Communications BV; 2015. p. 100–7.
21. Haaksma ME, Smit JM, Heldeweg MLA, Pisani L, Elbers P, Tuinman PR. Lung ultrasound and B-lines: B careful! Intensive Care Med. 2020 Jan 29;
22. Bouhemad B, Mongodi S, Via G, Rouquette I. Ultrasound for “lung monitoring” of ventilated patients. Vol. 122, Anesthesiology. Lippincott Williams and Wilkins; 2015. p. 437–47.
23. Pisani L, Vercesi V, van Tongeren PSI, Lagrand WK, Leopold SJ, Huson MAM, et al. The diagnostic accuracy for ARDS of global versus regional lung ultrasound scores - a post hoc analysis of an observational study in invasively ventilated ICU patients. Intensive Care Med Exp. 2019 Jul 25;7(S1):44.
24. Chang YC, Yu CJ, Chang SC, Galvin JR, Liu HM, Hsiao CH, et al. Pulmonary sequelae in convalescent patients after severe acute respiratory syndrome: Evaluation with thin-section CT. Radiology. 2005 Sep;236(3):1067–75.
25. Wickham H. tidyverse: Easily Install and Load “Tidyverse” Packages. R package version 1.2.1. 2017.
26. Schober P, Boer C, Schwarte LA. Correlation Coefficients. Anesth Analg. 2018 May 1;126(5):1763–8.
27. National Institutes of Health. Management of COVID-19 [Internet]. June 11, 2020. [cited 2020 Jun 12]. Available from: https://www.covid19treatmentguidelines.nih.gov/overview/management-of-covid-19/

28. Chiumello D, Mongodi S, Algieri I, LucaVergani G, Orlando A, Via G, et al. Assessment of lung aeration and recruitment by CT scan and ultrasound in acute respiratory distress syndrome patients. Crit Care Med. 2018;46(11):1761–8.

29. Hulley S, Cummings S, Browner W, Grady D, Newman T. Designing Clinical Research (Fourth Edition). Lippincott Williams & Wilkins. 2013. 17-19 (263) p.

30. Lomoro P, Verde F, Zerboni F, Simonetti I, Borghi C, Fachinetti C, et al. COVID-19 pneumonia manifestations at the admission on chest ultrasound, radiographs, and CT: single-center study and comprehensive radiologic literature review. Eur J Radiol Open. 2020 Jan 1;7.

31. Yang Y, Huang Y, Gao F, Yuan L, Wang Z. Lung ultrasonography versus chest CT in COVID-19 pneumonia: a two-centered retrospective comparison study from China. Intensive Care Med. 2020 May 25;

32. Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. Time Course of Lung Changes On Chest CT During Recovery From 2019 Novel Coronavirus (COVID-19) Pneumonia. Radiology. 2020 Jun 1;200370.

33. Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Vol. 24, Critical Care. BioMed Central Ltd.; 2020. p. 154.

34. Maiolo G, Collino F, Vasques F, Rapetti F, Tonetti T, Romitti F, et al. Reclassifying acute respiratory distress syndrome. Am J Respir Crit Care Med. 2018 Jun 15;197(12):1586–95.

35. Wadman M, Couzin-Frankel J, Kaiser J, Matacic C. A rampage through the body. Science (80-). 2020;368(6489):356–60.

36. Mongodi S, Orlando A, Arisi E, Tavazzi G, Santangelo E, Caneva L, et al. Lung Ultrasound in Patients with Acute Respiratory Failure Reduces Conventional Imaging and Health Care Provider Exposure to COVID-19. Ultrasound Med Biol. 2020 May 6;

37. Lessells R, Moosa Y, De Oliveira T. Report into a nosocomial outbreak of coronavirus disease 2019 (COVID-19) at Netcare St. Augustine’s Hospital. 2020.

38. Smit JM, Haaksma ME, Lim EHT, Steenvoorde TS, Blans MJ, Bosch FH, et al. Ultrasound to detect central venous catheter placement associated complications: A multicenter diagnostic accuracy study. Anesthesiology. 2020 Apr 1;132(4):781–94.

39. Lopez Matta JE, Elzo Kraemer C V., Van Westerloo DJ. To see or not to see: Ultrasound-guided percutaneous tracheostomy. Netherlands J Crit Care. 2018;26(2):66–9.

40. Tuinman PR, Jonkman AH, Dres M, Shi ZH, Goligher EC, Goffi A, et al. Respiratory muscle ultrasonography: methodology, basic and advanced principles and clinical applications in ICU and ED patients—a narrative review. Vol. 46, Intensive Care Medicine. Springer; 2020. p. 594–605.

41. Mojoli F, Bouhemad B, Mongodi S, Lichtenstein D. Lung ultrasound for critically ill patients. Vol. 199, American Journal of Respiratory and Critical Care Medicine. American Thoracic Society; 2019. p. 701–14.
Electronic Supplementary Legend

Electronic Supplementary Material Figure S1. Bland-Altman plot. The bias was -15.1 (95%CI -18.6; -11.7), indicating that LUSI underestimated CTSI by 15.1%

Figures

Figure 1

Flowchart of COVID-19 patient screening and inclusion. n0 refers to the amount of baseline examinations. n1, n2, etc. refers to second examination, third examination, etc. respectively.
a. The correlation between lung ultrasound score involvement index (LUSI) and chest computed tomography severity involvement index (CTSI). The shaded area is a Bland-Altman where the line represents the biased association between the measurements (lung ultrasound underestimates CT involvement) and the shaded area represents the limits of agreement. The measurement error decreases with increased involvement. b. Concordance between changes in sequentially measured lung ultrasound score involvement index (LUSI) and changes in chest computed tomography severity involvement index (CTSI). Green squares denote concordance (involvement changes in the same direction) and red squares represent discordance (involvement changes in different directions).
Figure 3

Forest plot of the odds ratios (OR) for the composite outcome of death or intensive care unit (ICU) stay >30 days. High lung ultrasound score involvement index (LUSI) was ≥50% whereas high computed tomography severity involvement index (CTSI) was ≥65%.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- Electronicsupplementarymaterial.docx
- ElectronicsupplementarymaterialFigureS1.eps