general health, within the context of identification of suspected COVID-19 patients primarily when they are asymptomatic.\(^1\) A similar methodology can be used to help identify dental patients with possible long-term complications. Recovering COVID-19 patients may require liver function tests, kidney function tests, coagulation profile namely prothrombin time, and blood sugar level, as part of the treatment planning. Maxillofacial surgeons should consider consultation with patients’ physicians if sufficient data pertaining to the medical history was not completely provided by the patient.

REFERENCES

1. Elsayed SA, Abu-Hammad O, Alolayan AB, et al. Getting to know SARS-CoV-2: towards a better understanding of the factors influencing transmission. Pesqui Bras Odontopediatr Clin Integr 2020;20(Suppl 1):e0122
2. Cervino G, Fiorillo L, Surace G, et al. SARS-CoV-2 persistence: data summary up to Q2 2020. Data 2020;5:81
3. Cucciù M, Cervino G, Baldari S. Covid-19 pandemic: the use of protective visor in the dentistry degree course of dental prosthetics technology of the University of Messina. Prosthesis 2020;2:321–324
4. Fiorillo L, Cervino G, Matarrese M, et al. COVID-19 surface persistence: a recent data summary and its importance for medical and dental settings. Int J Environ Res Public Health 2020;17:3132
5. Elsayed SA, Abu-Hammad O, Alolayan AB, et al. Fallacies and facts around COVID-19: the multifaceted infection. J Craniofac Surg 2020;31:e643–e644
6. Gupta A, Madhavan MV, Sehgal K, et al. Epidemiological manifestations of COVID-19. Nat Med 2020;26:1017–1032
7. Pylınska-Dąbrowska D, Staszynska A, Cubala WJ, et al. Psychological functioning of patients undergoing oral surgery procedures during the pandemic related with SARS-CoV-2 pandemic. J Clin Med 2020:9:3344
8. Ödeh ND, Babkair H, Abu-Hammad O, et al. COVID-19: present and future challenges for dental practice. Int J Environ Res Public Health 2020;17:3151
9. Abu Hammad O, Alnazzawi A, Borzangy SS, et al. Factors influencing global variations in COVID-19 cases and fatalities; a review. Healthcare (Basel) 2020;8:216
10. Worldometers. Available at: https://www.worldometers.info/coronavirus. Accessed December 15, 2020.
11. Rodrı́guez Martı́nez S, Talaván Serna J, Silvestre FI. Manejo odontológico en el paciente cı́trico. Gastroenterol Hepatol 2016;39:224–232
12. Fraser E. Long term respiratory complications of COVID-19. BMJ 2020;370:m3001
13. British Thoracic Society. British Thoracic Society Guidance on Respiratory Follow Up of Patients with a Clinico-Radiological Diagnosis of COVID-19 Pneumonia. London, UK: British Thoracic Society (BTS); 2020
14. Nishigá M, Wang DW, Han Y, et al. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol 2020;17:543–558
15. Madjid M, Safavi-Naeini P, Solomon SD, et al. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol 2020;5:831–840
16. Zheng YY, Ma YT, Zhang JY, et al. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020;17:259–260
17. Vera-Pineda R, Francisco Carrizales-Sepulveda E, Camacho-Ortiz A, et al. Electrocardiographic characteristics of subjects with COVID-19: a case series. Cardiol Case Rep 2020;11:260–265
18. Chong PY, Chu P, Ling AE, et al. Analysis of deaths during the severe acute respiratory syndrome (SARS) epidemic in Singapore: challenges in determining a SARS diagnosis. Arch Pathol Lab Med 2004;128:195–204
19. Pierce D, Çalkins BC, Thornton K. Infectious endocarditis: diagnosis and treatment. Am Fam Physician 2012;85:981–986
20. Lockhart PB, Brennan MT, Sasser HC, et al. Bacteremia associated with toothbrushing and dental extraction. Circulation 2008;117:3118–3125
21. Haseinein M, Thomas G, Talerico J. Management of acute kidney injury in COVID-19 [published online ahead of print, 2020 May 20]. Cleve Clin J Med 2020_doit:10.3949/ccjm.87a.ccc034. Online ahead of print

Surgical Treatment of Oromandibular Limb Hypogenesis Syndrome Type I A by Distraction Osteogenesis Combined With Orthodontic Rehabilitation

Jayrus Sangwatankul, MDS,* Shaohua Song, MDS,* and Nuo Zhou, PhD†

Abstract: Oromandibular limb hypogenesis syndrome is a rare developmental anomaly and only a few cases are reported with complete surgical and orthodontic rehabilitation. An adult male patient with isolated hypoglossia, micrognathism, hypodontia, (omandibular limb hypogenesis syndrome type I A) was treated...
with a combination of distraction osteogenesis and orthodontic intervention. The patient was followed up for the duration of 6 years from his first visit to 4 years after the surgery. The combined procedure resulted in successful and satisfactory treatment of the patient by restoring facial aesthetics, occlusal balance, and functional harmony. However, there was not enough tongue enlargement due to late surgical intervention. The objective of this report is to describe the etiology of hypoglossia, the consequences for oral function, and to share our experience from the oral rehabilitation during the treatment procedure.

Key Words: Distraction osteogenesis, hypoglossia, micrognathism, orthodontics, rehabilitation

Hypoglossia is a rare congenital abnormality. Hypoglossia can occur either as an isolated malformation or in association with other deformities. This anomaly is almost associated with the malformation in the upper and the lower extremities and dental agenesis. However, isolated hypoglossia is even rarer. As a consequence of the lack of muscular stimulus between the alveolar arches, these do not develop transversely and the mandible does not grow in the anterior direction, resulting in severe transverse deficiency of the mandible, hypodontia, anterior crowding, and unilateral or bilateral maxillomandibular discrepancies.

The prevalence of isolated hypoglossia is unknown and appears to be very rare. At the time of this writing, there are very few cases of hypoglossia reported. In cases of isolated hypoglossia and micrognathism distraction osteogenesis (DO) and orthodontic intervention are the mainstay of treatment. Recent studies report that the mandibular widening by DO followed by orthodontics is an effective treatment for mandibular transverse deficiency and associated telescopic bite. A 6-year follow-up case of oromandibular limb hypogenesis syndrome type I A treated combine with DO and orthodontic rehabilitation is reported.

CLINICAL EXAMINATION

Extraoral examination revealed a convex facial profile and reduced lower anterior facial height at the frontal view. Deep labiomental fold accompanied mandibular retrognathism which showed the short facial type and shallow mandibular plane. The maxilla and the mandible both were taper arch form (V-shaped) with maxilla being narrow and high palatal vault. There was severe anterior crowding in both maxilla and the mandible and 31 (mandibular left central incisor), 41 (mandibular right central incisor), and 42 (mandibular right lateral incisor) were missing. He had micrognathism and hypoglossia without limb anomalies. He had no history of any trauma and not any significant family history. Moreover, he had no other abnormal physical nor mental history contraindicating treatment. The extraoral photographs, radiographs, and intraoral photographs of the patient are shown in Figures 1–3 respectively.

TREATMENT PROGRESS AND RESULTS

The surgery was performed when the patient was 18 years old. Three distractors were placed on both sides of the body of the mandible, and the mandibular midline distractor on the symphysis area for the lengthening and widening of the mandible. An intraoral DO device was used to avoid facial scarring, pin tract infections, and high visibility. At the same time, the midpalatal suture was opened surgically and tooth-borne rapid maxillary expansion was placed on the maxilla and expanded.

After a sufficient maxillary expansion, extraction of 14 (maxillary right first premolar) and 24 (maxillary left first premolar) was done to correct the overjet and the space created was closed by fixed orthodontic appliance for 16 months. Endodontic treatment was done in 32 and was restored by post and core treatment followed by a crown. The patient’s mandible grown significantly, the occlusion relationship is normal, and the appearance is better. The overall treatment process was 45 months.

DISCUSSION

The exact cause of hypoglossia is difficult to understand. In hypoglossia, the tongue has a significantly reduced volume which leads to an unbalanced equilibrium, resulting in lingual inclination of the teeth due to the outer pressure from the circum-oral muscles. Therefore, under this condition correcting malocclusion is a difficult task.
In mandibular symphysis distraction, osteotomy must be carried out with great care to avoid encroaching on or injuring the periodontal ligaments adjacent to the osteotomy line. If the osteotomy line is encroached by periodontal ligament tissues, the distraction gap fills with bone and moderate amounts of periodontal ligament-like tissues, leading to pseudo-union. In our case report, the lower anterior region was severely crowded, thus causing difficulty in performing osteotomy. However, DO was performed and obtained good results after consolidation.

There is no evidence that the expression of this equilibrium has a great challenge. It also has a great possibility of relapse in the long-term.

Surgically assisted maxillary expansion has been recommended as a solution for transverse problems in adult patients. Distraction osteogenesis at both sides of the mandible and mandibular midline distraction can improve the skeleton and soft tissue profile, as well as reduce the degree of relapsing.

In this case, the expansion of the midpalatal suture and the DO of the mandible were performed at the same time. One of the main challenges during the distraction process is controlling the direction of the newly formed bone. During DO, forward advancement of the mandible resulted in prematurity occlusal contact of the posterior teeth, which lead to clockwise rotation of the mandible. Therefore, as the mandible lengthened, anterior open bite and an increased lower facial third were noted. In postoperative orthodontic treatment, it is necessary to properly intrude the posterior teeth and extend the anterior teeth to improve the vertical bite. The study of Strijen et al. showed that high-angle patients have a higher risk of recurrence after DO.

During lengthening of the mandible, the condyle may have moved backward and caused stress on the condyle surface. In this study, the length of the ramus was shorter than pretreatment due to the counterforce created by the distractors upon the condyle, which lead to the backward and clockwise rotation of the condyle resulting in backward and upward movement of the Gonion point.

Many studies reported no incidence of temporomandibular joint pain following widening of the mandible. Some studies have reported patient with temporomandibular pain and dysfunction after mandibular widening. However, in our case the patient has not reported any signs of temporomandibular dysfunction.

In mandibular symphysis distraction, osteotomy must be carried out with great care to avoid encroaching on or injuring the periodontal ligaments adjacent to the osteotomy line. If the osteotomy line is encroached by periodontal ligament tissues, the distraction gap fills with bone and moderate amounts of periodontal ligament-like tissues, leading to pseudo-union. In our case report, the lower anterior region was severely crowded, thus causing difficulty in performing osteotomy. However, DO was performed and obtained good results after consolidation.

In conclusion, early surgical correction is necessary for better occlusal function and speech. If treatment of hypoglossal patients with midline mandibular distraction is performed during the growing age, it could help to regain the normal tongue size spontaneously. Long-term retention was necessary to reduce the risk for transversal relapse. The combined orthodontic-orthognathic surgical procedure helps to improve the quality of life in patients with hypoglossia with transversal discrepancies.

REFERENCES
1. Sharma G, Vengal M, Pai KM, et al. Hypoglossia type 1A: report of a case and review of literature with focus on clinical investigations. Indian J Dent Res 2012;23:264–270
2. King JW, Wallace JC. Unilateral Brodie bite treated with distraction osteogenesis. Am J Orthod Dentofacial Orthop 2004;125:500–509
3. Chrcanovic BR, Custodio AL. Orthodontic or surgically assisted rapid maxillary expansion. Oral Maxillofac Surg 2009;13:123–137
4. Yamada A, Konno N, Imai Y, et al. Treatment of hypoglossalhypodactyly syndrome without extremity anomalies. Plast Reconstr Surg 2000;106:274–279
5. Jaipal PR, Rachala MR, Rajan R, et al. Management of adult transverse malocclusion with surgically assisted rapid palatal expansion. J Clin Diagn Res 2016;10:Z110–Z112
6. Sahoo NK, Issar Y, Thakral A. Mandibular distraction osteogenesis. J Craniofac Surg 2019;30:e743–e746
7. van Strijen PJ, Breuning KH, Becking AG, et al. Stability after distraction osteogenesis to lengthen the mandible: results in 50 patients. J Oral Maxillofac Surg 2004;62:304–307
8. Zou S, Hu J, Wang D, et al. Changes in the temporomandibular joint after mandibular lengthening with different rates of distraction. Int J Adult Orthodon Orthognath Surg 2001;16:221–225
9. Weil TS, Van Sickels JE, Payne CJ. Distraction osteogenesis for correction of transverse mandibular deficiency: a preliminary report. J Oral Maxillofac Surg 1997;55:953–960