This data article presents the compilation of mechanical properties for 370 high entropy alloys (HEAs) and complex concentrated alloys (CCAs) reported in the period from 2004 to 2016. The data sheet includes alloy composition, type of microstructures, density, hardness, type of tests to measure the room temperature mechanical properties, yield strength, elongation, ultimate strength and Young’s modulus. For 27 refractory HEAs (RHEAs), the yield stress and elongation are given as a function of the testing temperature. The data are stored in a database provided in Supplementary materials, and for practical use they are tabulated in the present paper. The database was used in recent publications by Miracle and Senkov [1], Gorsse et al. [2] and Senkov et al. [3].

© 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Experimental factors
Data compilation from available literature. Data sheet contains about 81 references.

Experimental features
Extensive Data compilation. Alloys’ densities and Young’s modulus were computed using the rule of mixtures (ROM) for the different reported alloy compositions.

Data source location
Data are with the article

Data accessibility
Direct submission. Most relevant research article: S. Gorsse, D.B. Miracle, O.N. Senkov, Mapping the world of complex concentrated alloys, Acta Materialia 135 (2017) 177–187 [2].

Value of the data

- The database covers the main mechanical properties of HEAs and CCAs tested under uniaxial loading from published reports since 2004 until end of 2016.
- The database can be used to assess the potential of HEAs and CCAs as possible structural materials.
- The database can be used to represent various property spaces and calculate performance indices.
- The database can enable data mining to extract insights and uncover patterns to guide and accelerate the development of HEAs and CCAs.

1. Data

High entropy alloys (HEAs) and complex concentrated alloys (CCAs) represent a new branch of the metallic alloy tree. HEAs are defined as alloys with 5 or more principal elements that have concentrations between 5 and 35 atom percent, promoting the formation of single-phase-disordered solid solutions presumably stabilized by the configurational entropy of mixing. CCAs encompass all alloys, including HEAs, with three or more principal components. CCAs can have single-phase or multi-phase microstructure.

A detailed comparison of CCAs with competing commercial alloys is crucial to identify the most attractive alloys for structural applications and guide future studies [1-3]. The relative merits of these new alloys depend on combinations of properties specific to the applications and loading conditions. Thus, this data article is a compilation of the density and mechanical properties of CCAs published in the literature since 2004, allowing the performance indices for lighter, stronger and stiffer structures to be evaluated for different loading conditions [2]. The data are stored in a database and tabulated in the present article.

2. Experimental design, materials and methods

The database has a tree-like classification (Fig. 1) which includes four different families: 3d transition metal (3d TM), refractory metal (RHEAs and RCCAs), light metal family, and bronzes and brasses HEAs/CCAs. Each family is expanded in classes (a class is a unique combination of principal elements), and each class contains members having variations in principal element concentrations. Each member is characterized by a set of attributes which includes: alloy composition, phase content, density, hardness (Vickers), type of mechanical test (tension or compression), yield strength, ultimate strength, elongation, and Young’s modulus. A listing of these entries makes up a material record. The database was used by Gorsse et al. [2] with Cambridge Education Software (CES) enabling users to (i) browse the materials data, (ii) search and filter to narrow down the set of materials using given parameters (e.g. alloy composition that contains a specific chemical element), (iii) represent material property maps by plotting any properties or combination of properties against any other property, and (iv) select materials using performance indices as defined by M. F. Ashby.

A representation of the data is illustrated in Fig. 2 where the room temperature yield strength is plotted against the density for CCAs.
Since this work reflects the state of the art of the field of HEAs and CCAs, the properties are not equally populated for every alloy due to the lack of literature data. The density of the alloy was estimated using the rule of mixtures (ROM): $\rho = \sum x_i M_i / \sum x_i V_i$ where x_i, M_i and V_i are the atomic fraction, molar mass and molar volume of the element i. When not experimentally measured, the Young’s modulus was estimated using ROM for single phase solid solutions only: $E = \sum x_i E_i$ where E_i is the Young modulus of the alloy element i.

For practical use by all, the data are also given in the present article using Tables and shared on Google Drive via the following link: https://docs.google.com/spreadsheets/d/1hLiqmlysSKK7Ubv362v8 fasoh8-W17V7zqNzR5oilw/edit?usp=sharing. The main entries for 370 alloy compositions are listed at room temperature in Table 1, while Table 2 shows the temperature dependence of the mechanical properties for 27 HEAs/CCAs. Each row in Table 1 corresponds to one mechanical test for an alloy composition in an experimentally characterized metallurgical condition.

Fig. 1. Tree-like classification of the HEAs/CCAs database.

Fig. 2. Materials property space for room temperature yield strength vs density of HEAs and CCAs. Alloy members have been colored to identify crystal structure (Im stands for intermetallic). The lines give performance index for uniaxial loading (corresponding to the material index $\sigma’/\rho$ where $\sigma’$ and ρ are the yield strength and the density, respectively).
Table 1
HEAs and CCAs for which mechanical tests are reported in literature. ρ represents the density, HV is the hardness in Vickers, σ^Y is the Yield strength, σ^max is the ultimate strength, ε is the elongation and E is the Young’s modulus. Parentheses indicate values estimated using ROM. In the column “Type of tests”, C and T stands for compression and tension. Im stands for Intermetallic. Each row represents the result of a test on a specific alloy composition.

Composition (atomic)	Ref.	Type of phases	ρ (g/cm3)	HV	Type of tests σ^Y (MPa)	σ^max (MPa)	ε (%)	E (GPa)	
CoFeNi [4]		FCC	(8.5)	125	C	204		(207)	
CoFeNi [4]		FCC	(8.5)	125	C	209		(207)	
CoFeNi [5]		FCC	(8.5)		T	211	513	31	(207)
CoFeNi0.25 [4]		FCC	(7.7)	149	C	196		(194)	
CoFeNi0.5 [4]		FCC	(7.1)	287	C	476			
CoFeNi0.75 [4]		FCC	(6.6)	570	C	1301			
A10.25CoFeNi [4]		FCC	(7.9)	138	C	158		(196)	
A10.5CoFeNi [4]		FCC + BCC	(7.4)	212	C	346		(187)	
A10.75CoFeNi [4]		FCC + BCC	(7.0)	385	C	794		(179)	
CoCrFeNi [6]		FCC	(8.2)		T	148	413	48	(225)
CoCrFeNi [7]		FCC	(8.2)	116	C			(225)	
CoCrFeNi [7]		FCC	(8.2)	113	C			(225)	
CoCrFeMo0.5Ni [8]		FCC + Im	(8.5)		C	210			
CoCrFeNb0.103Ni [6]		FCC + Im	(8.2)		T	318	622	19	
CoCrFeNb0.155Ni [6]		FCC + Im	(8.2)		T	322	744	23	
CoCrFeNb0.206Ni [6]		FCC + Im	(8.2)		T	403	807	9	
CoCrFeNb0.309Ni [6]		FCC + Im	(8.2)		T	479	879	4	
CoCrFeNb0.412Ni [6]		FCC + Im	(8.2)		T	638	1004	1	
CoCrFeNiTi [9]		FCC	(7.2)		C	2020	9	135	(203)
Co1.5CrFeNi1.5Ti0.5		FCC	(7.8)	509	C			(211)	
Co1.5CrFeNi1.5Ti		FCC + Im	(7.4)		654				
A10.25CoCrFeNi [7]		FCC	(7.7)	110	C			(216)	
A10.25CoCrFeNi [7]		FCC	(7.7)	113	C			(216)	
A10.375CoCrFeNi [7]		FCC	(7.5)	131	C			(211)	
A10.375CoCrFeNi [7]		FCC	(7.5)	196	C			(211)	
A10.5CoCrFeNi [7]		FCC + BCC	(7.3)	159	C			(208)	
A10.5CoCrFeNi [7]		FCC + BCC	(7.3)	209	C			(208)	
A10.7Co0.3CrFeNi [11]		FCC + BCC + B2	(6.8)	624	C	2033	2635	8	
A10.75CoCrFeNi [7]		FCC + BCC	(7.0)	388	C			(200)	
A10.75CoCrFeNi [7]		FCC + BCC	(7.0)	280	C			(200)	
A10.875CoCrFeNi [12]		FCC + BCC	(6.9)	538	C			(197)	
A10.875CoCrFeNi [7]		FCC + BCC	(6.9)	361	C			(197)	
AlCoCrFeNi [7]		FCC + BCC	(6.7)	484	C			(194)	
AlCoCrFeNi [7]		FCC + BCC	(6.7)	433	C			(194)	
AlCoCrFeNi [13]		FCC	(6.7)	395	C			(194)	
AlCoCrFeNi [14]		FCC	(6.7)	395	C			(194)	
AlCoCrFeNi [15]		FCC	(6.7)	1051	C			(194)	
AlCoCrFeNi [16]		FCC	(6.7)	1110	C			(194)	
AlCoCrFeNi [17]		FCC	(6.7)	1138	C			125	(194)
AlCoCrFeNi [18]		FCC	(6.7)	1138	C			112	(194)
AlCoCrFeNi [19]		FCC	(6.7)	1051	C			(194)	
AlCoCrFeNi [20]		FCC	(6.7)	520	C	1373	3531	25	(194)
Al1.25CoCrFeNi [7]		FCC	(6.5)	487	C			(188)	
Al1.25CoCrFeNi [7]		FCC	(6.5)	499	C			(188)	
Al1.5CoCrFeNi [7]		FCC	(6.2)	484	C			(183)	
Al1.5CoCrFeNi [7]		FCC	(6.2)	517	C			(183)	
Al1.5CoCrFeNi [13]		FCC	(6.2)	402	C			(183)	
Al2CoCrFeNi [7]		FCC	(5.9)	509	C			(173)	
Al2CoCrFeNi [7]		FCC	(5.9)	512	C			(173)	
Al2CoCrFeNi [13]		FCC	(5.9)	432	C			(173)	
Al2.5CoCrFeNi [13]		FCC	(5.6)	487	C			(165)	
Al3CoCrFeNi [13]		FCC	(5.3)	506	C			(158)	
Al0.1CoCrFeNi [18]		FCC + Im	(6.7)	C	957	2550	11	213	
Al0.2CoCrFeNi [18]		FCC + Im	(6.8)	C	906	2386	9	151	
Composition (atomic)	Ref.	Type of phases	ρ (g/cm³)	HV Type of tests	σ^\prime (MPa)	σ_{max} (MPa)	ϵ (%)	E (GPa)	
---------------------	------	----------------	----------------	------------------	---------------------	------------------	-------------	----------	
Al0.3CoCrFeNi[18]	BCC + Im	(6.8)	C	867	2178	8	137		
Al0.4CoCrFeNi[18]	BCC + Im	(6.8)	C	1056	2375	7	156		
Al0.5CoCrFeNi[18]	BCC + Im	(6.8)	C	1060	2250	6	181		
AlCoCrFeNi[18]	BCC + Im	(6.9)	C	1251	2166	7	75		
AlCoFeNi[18]	BCC + Im	(7.0)	C	1255	2083	6	73		
AlCoFe0.6Ni[23]	BCC + Im	(7.1)	C	1804	2280	9	(196)		
AlCoFe0.1Ni[19]	BCC	(6.8)	C	1804	2280	9	(196)		
AlCoFe0.2Ni[19]	BCC + Im	(6.9)	C	2456	2953	3			
AlCoFe0.3Ni[19]	BCC + Im	(7.0)	C	2649	3208	3			
AlCoFe0.4Ni[19]	BCC + Im	(7.0)	C	2670	3161	3			
AlCoFe0.5Ni0.5[23]	BCC + Im	(7.0)	C	708					
AlCoFe0.5Ni[21]	BCC + Im	(7.1)	C	2757	3036	3			
AlCoFe0.5Ni[8]	BCC + Im	(7.1)	C	796					
AlCoFe0.5Ni[23]	BCC + Im	(7.1)	C	730					
AlCoFe0.5Ni1.5[23]	FCC + BCC + Im	(7.2)		586					
AlCoFe0.5Ni2[23]	FCC + BCC + Im	(7.4)		395					
AlCoFeNi0.5[21]	BCC + Im	(7.2)		741					
AlCoFeNi0.5[21]	FCC + BCC + Im	(7.3)		586					
AlCoFeNi1.5[21]	BCC + Im	(7.2)		635					
AlCoFeNi2[22]	BCC + Im	(7.2)		639					
AlCoFeNi0.5Ni[8]	BCC + Im	(6.6)		655					
AlCoFeNi0.5Ni[24]	BCC	(6.3)		605					
AlCoFeNi0.1Ni[20]	BCC	(6.8)	569	3285	17	(192)			
AlCoFeNi0.25Ni[20]	BCC + Im	(6.8)	668	3008	11				
AlCoFeNi0.5Ni[20]	BCC + Im	(7.0)	747	3170	4				
AlCoFeNi0.75Ni[20]	BCC + Im	(7.0)							
AlCoFeNi0.2[24]	BCC	(6.5)	C	1265	2173	14	(188)		
AlCoFeNi0.4[24]	BCC	(6.2)	C	1481	2444	13	(183)		
AlCoFeNi0.6[24]	BCC	(6.0)	C	1834	2195	3	(178)		
AlCoFeNi0.8[24]	BCC + Im	(5.8)	C	2179	2664	2			
AlCoFeNi[24]	BCC	(5.7)		110					
AlCoFeNi[24]	BCC + Im	(5.7)	C	2411	2950	1			
A1.1CoFeNi0.5[10]	FCC	(7.6)		487					
A1.1CoFeNi1.5Ti0.5	FCC + Im	(7.2)		717					
A1.1CoFeNiTi[9]	BCC + Im	(6.6)	C	1600	10	107			
A1.1CoFeNiTi0.5[25]	FCC	(6.4)	178	3135	24	72	(187)		
A1.1CoFeNiTi0.6[25]	FCC	(6.4)	178	3240	23	78	(187)		
A1.1CoFeNiTi[26]	BCC	(6.2)	C	1860	2580	9	90	(181)	
A1.1CoFeNiTi[9]	BCC + Im	(6.2)	C	2280	6	148			
A1.1CoFeNiTi1.5[26]	BCC + Im	(6.1)	C	2220	2720	5	160		
A1.1CoFeNiTi[9]	BCC	(5.9)	C	2110	10	133	(172)		
Al2CoFeNiTI[9]	BCC	(5.6)	643	1030	5	94	(165)		
Al2CoFeNiTiVZr[27]	BCC	(6.3)	780						
CoFeMnNi[28]	FCC	(8.0)	176	T	208	62	(219)		
CoFeMnNi[29]	FCC	(8.0)	144	C	230	75	(219)		
CoFeMnNi0.25[29]	FCC	(7.9)	151	C	200	75	(219)		
CoFeMnNi0.5[29]	FCC	(7.8)	186	C	620	75	(211)		
CoFeMnNi0.75[29]	FCC + Im	(7.7)	342	C	740	1325	8		
CoFeMnNi1.0[29]	FCC + Im	(7.7)	650	C	1660	1845	< 1		
A1.10CoFeMnNi[28]	FCC	(7.9)		80					
A1.20CoFeMnNi[28]	FCC	(7.7)	171	T	220	56	(214)		
A1.38CoFeMnNi[28]	FCC	(7.5)	182	T	244	45	(209)		
A1.43CoFeMnNi[28]	FCC + BCC	(7.4)	183	T	285	35	(208)		
A1.49CoFeMnNi[28]	FCC + BCC	(7.4)	220	T	331	29	(206)		
A1.56CoFeMnNi[28]	FCC + BCC	(7.3)	278	T	526	16	(204)		
A1.62CoFeMnNi[28]	FCC + BCC	(7.2)	405	T	833	5	(203)		
Composition (atomic)	Ref.	Type of phases	ρ (g/cm3)	HV Type of tests	σ^y (MPa)	σ^max (MPa)	ϵ (%)	E (GPa)	
---------------------	------	----------------	------------------	----------------	------------------	------------------	---------------	----------	
Al0.68CoCrFeMnNi	[28]	FCC + BCC	(7.2)	486	(202)				
Al0.75CoCrFeMnNi	[28]	FCC + BCC	(7.1)	530	(200)				
Al0.81CoCrFeMnNi	[28]	FCC + BCC	(7.0)	539	(199)				
Al0.88CoCrFeMnNi	[28]	FCC + BCC	(7.0)	533	(197)				
Al0.95CoCrFeMnNi	[28]	FCC + BCC	(6.9)	535	(196)				
Al1.25CoCrFeMnNi	[28]	BCC	(6.6)	539	(190)				
CoCrNi	[5]	FCC	(8.3)	300	860	60	229		
CoMnNi	[5]	FCC	(8.4)	231	653	38	202		
FeMnNi	[5]	FCC	(8.1)	221	602	36	203		
CoCrFeNi	[5]	FCC	(8.2)	274	708	39	225		
CoCrMnNi	[5]	FCC	(8.1)	282	694	44	222		
CoFeMnNi	[5]	FCC	(8.2)	170	550	41	205		
Al0.5CrFe1.5MnNi0.5	[30]	BCC	(7.0)	396					
Al0.3CoCrCuFeNi	[32]	FCC	(7.7)	180					
Al0.5CoCrCuFeNi	[32]	FCC	(7.4)	207					
Al0.8CoCrCuFeNi	[32]	FCC	(7.0)	271					
Al1.3CoCrCuFeNi	[32]	FCC	(6.8)	407					
Al1.5CoCrCuFeNi	[32]	FCC	(6.5)	476					
Al1.8CoCrCuFeNi	[32]	FCC + BCC	(6.0)	557					
Al2.0CoCrCuFeNi	[32]	FCC + BCC	(5.9)	567					
Al2.3CoCrCuFeNi	[32]	FCC + BCC	(5.7)	603					
Al2.5CoCrCuFeNi	[32]	FCC + BCC	(5.6)	624					
Al2.8CoCrCuFeNi	[32]	BCC	(5.5)	657					
Al3.0CoCrCuFeNi	[32]	BCC	(5.4)	644					
CoCrCuFeNiO.5Ni	[33]	FCC	(8.3)	172					
CoCrCuFeNiO.5Co	[34]	FCC	(8.3)	132 C	230		56 (206)		
CoCrCuFeNiO.5Al	[45]	FCC	(8.3)	286 C	230	888	51 (206)		
CoCrCuFeNiO.5Co	[13]	FCC	(8.3)	286 C					
CoCrCuFeNiO.5Co	[34]	FCC	(7.8)	1650	29	93 (198)			
CoCrCuFeNiO.5Co	[35]	FCC	(7.8)	1650	22	99 (198)			
CoCrCuFeNiO.5Co	[35]	FCC + Im	(7.6)	1848	3	128			
CoCrCuFeNiO.5Co	[35]	FCC	(7.4)	1272	2	77 (191)			
Al0.25CoCrCu0.5FeNi	[25]	FCC	(7.5)	750	1970	39	103 (195)		
Al0.25CoCrCu0.75FeNi	[25]	FCC	(7.5)	1970	39	103 (195)			
Al0.3CoCrCuFeNi	[34]	FCC	(7.9)	180					
Al0.5CoCrCuFeNi	[34]	FCC	(7.6)	210 C					
Al0.5CoCrCuFeNi	[34]	FCC	(7.6)	300					
Al0.5CoCrCuFeNi	[37]	FCC	(7.6)	225					
Al0.5CoCrCuFeNi	[38]	FCC	(7.6)	215					
Al0.8CoCrCuFeNi	[21]	FCC + BCC	(7.3)	270					
Al0.8CoCrCuFeNi	[34]	FCC	(7.3)	270					
Al0.8CoCrCuFeNi	[34]	FCC + BCC	(7.1)	406 C					
Al0.8CoCrCuFeNi	[39]	FCC + BCC	(7.1)	406 C					
Al0.8CoCrCuFeNi	[40]	FCC + BCC + Im	(7.1)	1005	15				
Al0.8CoCrCuFeNi	[40]	FCC + BCC + Im	(6.6)	1234	9	174			
Al0.8CoCrCuFeNi	[40]	FCC + BCC + Im	(6.9)	1469	16	175			
Al1.3CoCrCuFeNi	[34]	FCC + BCC	(6.8)	470					
Al1.5CoCrCuFeNi	[34]	FCC + BCC	(6.8)	506					
Al1.8CoCrCuFeNi	[34]	FCC + BCC	(6.4)	650					

3d TM HEAS and CCAs in the Al-Co-Cr-Cu-Fe-Mn-Ni system and derivates

CoCrCuFe

CoCrCuFeNi

CoCrCuFeNiO.5
Composition (atomic)	Ref.	Type of phases	ρ (g/cm³)	HV	Type of tests	σ^ρ (MPa)	σ_{max} (MPa)	ϵ (%)	E (GPa)
Al2CoCrCuFeNi	[34]	FCC + BCC	(6.3)	560	C	1620			
Al2.3CoCrCuFeNi	[34]	FCC + BCC	(6.1)	600					
Al2.5CoCrCuFeNi	[34]	FCC + BCC	(6.0)	620					
Al2.8CoCrCuFeNi	[34]	BCC	(3.8)	650					
Al3CoCrCuFeNi	[41]	BCC	(3.7)	640					
Al0.5B0.2CoCrCuFeNi	[36]	FCC + BCC	(7.7)	415					
Al0.5B0.6CoCrCuFeNi	[36]	FCC + BCC	(7.7)	505					
Al0.5CoCrCuFeNi	[36]	FCC + BCC	(7.8)	736					
A0.5CoCrCu0.5FeNiTi0.5	[25]	FCC + BCC	(7.1)	1580	2389	17	161(192)		
A0.5CoCrCuFeNiTi0.2	[37]	FCC	(7.5)	272					
A0.5CoCrCuFeNiTi0.4	[37]	FCC	(7.3)	321					
A0.5CoCrCuFeNiTi0.6	[37]	FCC + BCC	(7.2)	458					
A0.5CoCrCuFeNiTi0.8	[37]	FCC + BCC	(7.1)	590					
A0.5CoCrCuFeNiTi1.2	[37]	FCC + BCC + Im	(7.0)	636					
A0.5CoCrCuFeNiTi1.4	[37]	FCC + BCC + Im	(6.9)	646					
A0.5CoCrCuFeNiTi1.6	[37]	FCC + BCC + Im	(6.8)	664					
A0.5CoCrCuFeNiTi1.8	[37]	FCC + BCC + Im	(6.6)	667					
A0.5CoCrCuFeNiTi2	[37]	FCC + BCC + Im	(6.5)	696					
A0.5CoCrCuFeNiV0.2	[38]	FCC	(7.6)	204					
A0.5CoCrCuFeNiV0.4	[38]	FCC + BCC	(7.5)	231					
A0.5CoCrCuFeNiV0.6	[38]	FCC + BCC + Im	(7.5)	328					
A0.5CoCrCuFeNiV0.8	[38]	FCC + BCC + Im	(7.4)	447					
A0.5CoCrCuFeNiV1.0	[38]	FCC + BCC + Im	(7.4)	639					
A0.5CoCrCuFeNiV1.2	[38]	BCC	(7.3)	579					
A0.5CoCrCuFeNiV1.4	[38]	BCC	(7.3)	577					
A0.5CoCrCuFeNiV1.6	[38]	BCC	(7.2)	594					
A0.5CoCrCuFeNiV1.8	[38]	BCC	(7.2)	597					
A0.5CoCrCuFeNiV2.0	[38]	BCC	(7.2)	587					
A0.75CoCrCu0.25FeNiTi0.5	[25]	FCC + BCC	(6.8)	1900	2697	12	164(189)		
AlCoCrCuNiTi	[42]	FCC	(6.4)	1495	8	36(167)			
AlCoCrCuNiTi0.5	[42]	Im	(6.1)	1025	3	36			
AlCoCrCuNiTi0.8	[42]	Im	(3.9)	1325	5	38			
AlCoCrCuNiTiY	[42]	Im	(3.8)	1192	4	37			
AlCoFeNi	[4]	FCC	(6.6)	456	C	964			
AlCoFeNiVZr	[27]	FCC	(6.2)	790					
CoCuFeNi	[43]	FCC	(8.6)	480	T	15	188		
CoCuFeNi0.02	[43]	FCC	(8.6)	548	T	17	187		
CoCuFeNi0.04	[43]	FCC + Im	(8.6)	594	T	18			
CoCuFeNi0.05	[43]	FCC + Im	(8.6)	615	T	20			
CoCuFeNi0.07	[43]	FCC + Im	(8.6)	632	T	19			
CoCuFeNi0.1	[43]	FCC + Im	(8.6)	602	T	5			
CoCuFeNi0.2	[43]	FCC + Im	(8.5)	261	T	2			
CoCuFeNi0.5	[43]	FCC + Im	(8.3)	536					
AlCoFeNi	[39]	FCC + BCC	(7.0)	578					
AlCoFeNbNi	[39]	FCC + BCC	(5.9)	682					
AlCoFeNiSi	[39]	FCC + BCC	(6.5)	626					
AlCoFeNiTi	[39]	FCC + BCC	(6.9)	472					
AlCoFeNiZr	[39]	FCC + BCC + Im	(8.4)	1400	1900	14	190		
CoCuFeNi0.03	[44]	FCC	(8.4)	192	T	465	18		
CoCuFeNi0.05	[44]	FCC + Im	(8.4)	205	T	475	12		
CoCuFeNi0.08	[44]	FCC + Im	(8.3)	219	T	425	7		
CoCuFeNi0.10	[44]	FCC + Im	(8.3)	253	T	470	6		
CoCuFeNi0.20	[44]	FCC + Im	(8.3)	319	T	368	2		
CrCuFeNi	[13]	FCC	(8.1)	296					
CrCuFeNi	[13]	FCC	(8.7)	263					
AlCrCuFeNi0.6	[45]	FCC + BCC	(6.6)	496					
AlCrCuFeNi0.8	[45]	FCC + BCC	(6.7)	486					
AlCrCuFeNi	[45]	FCC + BCC	(6.8)	495					
Composition (atomic)	Ref.	Type of phases	ρ (g/cm3)	HV	Type of tests	σ_y (MPa)	σ_{max} (MPa)	ε (%)	E (GPa)
----------------------	------	----------------	-----------------	-----	---------------	----------------	----------------	-------------	----------
AlCrCuFeNi1.2	[45]	FCC + BCC	(6.8)	407					
AlCrCuFeNi1.4	[45]	FCC + BCC	(6.9)	367					
AlCrCuFeNi2	[46]	FCC + BCC	(7.1)						
AlCrCuFeNiTi	[47]	BCC + Im	(6.3)		C	1219			
Al0.2CrCuFeNi2		FCC	(8.0)						
Al0.4CrCuFeNi2	[46]	FCC	(7.8)						
Al0.6CrCuFeNi2	[46]	FCC	(7.5)						
Al0.8CrCuFeNi2	[46]	FCC	(7.3)						
Al1.2CrCuFeNi2	[46]	FCC + BCC	(6.9)						
AlCrCuFeNi	[13]	FCC + BCC	(6.8)	342					
Al1.125CuFe0.75NiTi1.125	[48]	FCC + BCC	(6.8)	342					
AlCuNiTi		Im	(2.7)						
Reaftery metal base HEAs and CCAs									
Al0.5MgSn0.2Zn0.5	[49]	FCC + Im	(2.9)		C	546	546		
AlCuNiTi		Im	(2.7)						
Light metal base HEAs and CCAs									
Al0.25MoNbTiV	[51]	BCC	(5.6)	1300	1430		1	(124)	
Al0.5MoNbTiV	[51]	BCC + Im	(5.8)	1550	1570		< 1	(1)	
Al0.5NbTiV	[51]	BCC + Im	(5.9)	1700	1700			< 1	
Al0.4H0.6NbTaTiZr	[52]	BCC	(9.1)	1841	2269		10	(110)	
Al0.3H1.0NbTaTiZr	[53]	BCC	(9.5)	353	1188		50	63	(108)
Al0.5H1.0NbTaTiZr	[53]	BCC	(9.3)	396	1302		46	97	(107)
Al0.75H1.5NBaTiZr	[53]	BCC	(9.1)	427	1415		30	102	(105)
AlMo0.5NbTa0.5TiZr	[52]	BCC	(7.1)	591	2000		10	(123)	
Al0.25MoNbTiV	[54]	BCC	(7.1)	460	1250		13	(164)	
Al0.5MoNbTiV	[54]	BCC	(6.8)	487	1625		11	(158)	
Al0.75MoNbTiV	[54]	BCC	(6.6)	517	1260		8	(154)	
AlMo0.5NbTaTiV	[54]	BCC	(6.4)	537	1375		3	(150)	
Al0.25NbTaTiV	[55]	BCC	(8.8)	1330	92	(130)			
Al0.5NbTaTiV	[55]	BCC	(8.5)	1014	97	(127)			
AlNbTaTiV	[55]	BCC	(7.9)	993		101	(121)		
Al0.3NbTa0.8Ti1.4V0.2Zr1.3	[52]	BCC	(7.7)	500	1965	2061	5	(110)	
Al0.5NbTa0.8Ti1.5V0.2Zr	[52]	BCC	(7.6)	530	2035	2105	5	(111)	
Al0.3NbTaTi1.4Zr1.3	[52]	BCC	(8.1)	490	1965	2054	5	(113)	
Al0.15Ta0.5Ti1.5Sr0.5	[52]	BCC	(6.8)	408	1280	1367	4	(106)	
AlNbTiV	[56]	BCC	(5.5)	448	1020	1318	5	(105)	
AlNbTiV	[51]	BCC	(5.5)		1000	1280	5	(105)	
CrHfNbTiZr	[57]	BCC + Im	(8.2)	464	1375	2130	3	112	
CrMo0.5NbTa0.5TiZr	[58]	BCC + Im	(8.0)	540	1595	2046	5		
CrNbTiVZr	[59]	BCC + Im	(6.6)	482	1298		3		
CrNbTiZr	[59]	BCC + Im	(6.6)	418	1260		6		
FeMoNiTiVZr	[27]	BCC + Im	(7.1)	740					
Hf0.5Mo0.5NbTiZr	[60]	BCC + Im	(7.9)	400	1178		25		
Hf0.5Mo0.5NbSi0.1TiZr	[60]	BCC + Im	(7.7)	442	1365		28		
Hf0.5Mo0.5NbSi0.3TiZr	[60]	BCC + Im	(7.5)	494	1428		23		
Hf0.5Mo0.5NbSi0.5TiZr	[60]	BCC + Im	(7.2)	524	1605		23		
Hf0.5Mo0.5NbSi0.7TiZr	[60]	BCC + Im	(7.0)	580	1604		12		
Hf0.5Mo0.5NbSi0.9TiZr	[60]	BCC + Im	(6.8)	640	1677		9		
Hf0.5Mo0.5NbTiZr0.1	[61]	BCC + Im	(7.8)		1183	2139	38		
Hf0.5Mo0.5NbTiZr0.3	[61]	BCC + Im	(7.7)		1201	1965	33		
HfMo0.25NbTaTiZr	[62]	BCC	(9.9)	395	1112		50	96	(121)
HfMo0.5NbTaTiZr	[62]	BCC	(10.0)	480	1317		50	102	(130)
Table 1 (continued)

Composition (atomic)	Ref.	Type of phases	ρ (g/cm3)	HV Type of tests	σ^\prime (MPa)	σ_{max} (MPa)	ε (%)	E (GPa)
HfMo0.75NbTaTiZr	[62]	BCC	10.0 (9.9)	492	1373	50	109 (139)	
HfMoNbTaTiZr	[63]	BCC	10.0	505	1512	12	115 (147)	
HfMoTaTiZr	[63]	BCC	10.2 (10.2)	542	1600	4	155	
HfMoNbTiZr	[64]	BCC	(8.7)		1803	10	139	
HfNbSi0.5TiV	[65]	BCC + Im	8.6 (7.8)	490	1399	1.6	115	
HfNbSi0.5TiVZr	[66]	BCC + Im	7.8 (7.5)	464	1540	1643	17	
HfNbTaZr	[67]	BCC	(11.1)	365	1315			(109)
Hf0.5Nb0.5Ta0.5Ti1.5Zr	[68]	BCC	(8.7)		C	1719	10	
HfNbTaTiZr	[69,70]	BCC	(9.9)		C	295	50	(111)
HfNbTaTiZr	[69,70]	BCC	(9.9)		C	1803	1719	(139)
Hf0.5Nb0.5Ta0.5Ti1.5Zr	[68]	BCC	(8.2)		492	1399	1680	11
HfNbTaTiZr	[62]	BCC	9.9 (9.9)	542	1512	12	147	
HfNbTaTiZr	[62]	BCC	9.9 (9.9)	335	1512	12	147	
Mo0.3NbTiVZr	[74]	BCC	6.7	C	1289			42
Mo0.5NbTiVZr	[74]	BCC	6.8		1473			32
Mo0.7NbTiVZr	[74]	BCC	7.0	C	1706			32
MoNbTiVZr	[74]	BCC	7.1	C	1779			32
Mo1.1NbTiVZr	[74]	BCC	7.3	C	1496			30
Mo1.5NbTiVZr	[74]	BCC	7.4	C	1603			20
Mo1.7NbTiVZr	[74]	BCC	7.5	C	1645			15
Mo2NbTiVZr	[74]	BCC	7.6	C	1765			12
MoNbTiVO.25Zr	[75]	BCC	(7.3)	C	1776	3893	30	(153)
MoNbTiVO.50Zr	[75]	BCC	(7.2)	C	1647	3307	28	(152)
MoNbTiVO.75Zr	[75]	BCC	(7.2)	C	1708	3929	29	(150)
MoNbTiV1.0Zr	[75]	BCC	(7.1)	C	1786	3828	26	(149)
MoNbTiV1.5Zr	[75]	BCC	(7.1)	C	1735	3300	20	(147)
MoNbTiV2.0Zr	[75]	BCC	(7.0)	C	1538	3176	23	(146)
MoNbTiV2.5Zr	[75]	BCC	(6.9)	C	1418	2508	20	(143)
MoNbTiZr	[75]	BCC	(7.3)	C	1592	3450	34	(155)
NbTaTiV	[55]	BCC	(9.2)	C	1092		106 (134)	
NbTaV	[76]	BCC	(12.8)	492	1530	12	208	
NbTaTiVW	[76]	BCC + HCP	(11.1)	447	1420	20		
NbTiVO.3Zr	[74]	BCC	6.5	C	866			45
NbTiVO.3Mo0.1	[74]	BCC	6.6	C	932			45
NbTiVO.3Mo0.3	[74]	BCC	6.8	C	1312			50
NbTiVO.3Mo0.5	[74]	BCC	6.9	C	1301			43
NbTiVO.3Mo0.7	[74]	BCC	7.1	C	1436			27
NbTiVO.3Mo	[74]	BCC	7.3	C	1455			25
NbTiVO.3Mo1.3	[74]	BCC	7.4	C	1603			20
NbTiVO.3Mo1.5	[74]	BCC	7.5	C	1576			8
NbTiZr	[74]	BCC	6.5	C	1104			50
NbTiZr	[59]	BCC	(6.5)	335	1105	> 50 (104)		
NbTiZr	[59]	BCC	(6.4)	304	918	> 50 (109)		

Other HEAs and CCAs

Composition (atomic)	Ref.	Type of phases	ρ (g/cm3)	HV Type of tests	σ^\prime (MPa)	σ_{max} (MPa)	ε (%)	E (GPa)
CoCrCuFeNiTiVZr	[27]	(7.1)	680					(168)
CoCrFeMoNiTiVZr	[27]	(7.3)	850					(193)
CoFeNiV	[77]	FCC	(7.8)	238				(187)
CoFeMo0.2NiV	[77]	FCC + Im	(8.0)	267				
CoFeMo0.4NiV	[77]	FCC + Im	(8.1)	402				
CoFeMo0.6NiV	[77]	FCC + Im	(8.2)	557				
CoFeMo0.8NiV	[77]	FCC + Im	(8.3)	606				
CoFeMoNiV	[77]	FCC + Im	(8.4)	625				
CoFeMoNi1.2V	[77]	FCC + Im	(8.4)	602				
Table 1 (continued)

Composition (atomic)	Ref.	Type of phases	ρ (g/cm³)	HV	Type of tests	σ^ν (MPa)	σ^\max (MPa)	ϵ (%)	E (GPa)
CoFeMoNi1.4V	[77]	FCC + Im	(8.5)	538					
CoFeMoNi1.6V	[77]	FCC + Im	(8.5)	520					
CoFeMoNi1.8V	[77]	FCC + Im	(8.5)	510					
CoFeMoNi2V	[77]	FCC + Im	(8.5)	382					
CoFeMoNiTiVZr	[27]		(7.3)	790					
CuFeNiTiVZr	[27]		(6.8)	590					
CoCrCuFeMnNiTiV	[78]	FCC + BCC + Im	(7.3)	C	1312	1312	< 1	74	(142)
AI1Ij(CoCrCuFeMnNiTiV)	88.9	FCC + BCC	(6.7)	C	1862	2431	< 1	164	(182)
Al20(CoCrCuFeMnNiTiV)/80	[78]	BCC	(6.1)	C	1465	2016	2	190	(180)
Al40(CoCrCuFeMnNiTiV)/60	[78]	BCC + Im	(5.1)	C	1461	1461	< 1	163	
AlFeNiTiVZr	[27]	BCC	(5.9)	800					
(CuMnNi)75Zn25	[79]	FCC	(8.3)	147	215			> 60	(169)
(CuMnNi)80Zn20	[79]	FCC	(8.3)	109	140			> 65	(171)
(CuMnNi)90Al110	[79]	FCC + Im	(8.1)	241	515			40	
(CuMnNi)90Sn10	[79]	FCC + Im	(8.3)	318	630			20	
(CuMnNi)95Al5	[79]	FCC	(8.3)	166	330			> 45	(174)
(CuMnNi)95Sn5	[79]	FCC + Im	(8.4)	205	380			> 63	

Table 2

HEAs and CCAs for which mechanical tests are reported in literature as a function of temperature.

Composition	Refs.	Phase	ρ (g/cm³)	T (°C)	σ^ν (MPa)	ϵ (%)
Al0.3NbTa0.8Ti1.4V0.2Zr1.3	[52]	BCC	7.8 (7.7)	25	1965	5
				800	678	> 50
				1000	166	> 50
Al0.3NbTaTi1.4Zr1.3	[52]	BCC	8.2 (8.1)	25	1965	5
				800	362	> 50
				1000	236	> 50
Al0.4Hf0.6NbTaTiZr	[52]	BCC	9 (9.1)	25	1841	10
				800	796	> 50
				1000	298	> 50
Al0.5CoCrCuFeNi	[80]	FCC	7.9 (7.6)	1000	150	5
				25	388	
				300	411	
				500	421	
				700	426	
				900	230	
				1100	80	
Al0.5NbTa0.8Ti1.5V0.2Zr	[52]	BCC	7.4 (7.6)	25	2035	5
				800	796	> 50
				1000	220	> 50
Al2CoCrCuFeNi	[80]	BCC	6.7 (6.3)	1000	116	5
				1100	79	
				25	1620	
				600	805	
				500	1120	
				700	567	
				900	214	
				800	302	
AlCoCrCuFeNi	[80]	FCC + BCC	7.4 (7.1)	1000	47	5
				25	948	
				600	561	
				700	307	
				800	172	
				900	98	
Table 2 (continued)

Composition	Refs.	Phase	\(\rho \) (g/cm\(^3\))	\(T \) (°C)	\(\sigma' \) (MPa)	\(\varepsilon \) (%)
AlCrMoNbTi	[81]	BCC	(6.6)	25		
			400	1080	2	
			600	1060	3	
			800	860	2	
			1000	594	15	
			1200	105	24	
AlMo0.5NbTa0.5TiZr	[52]	BCC	7.4 (7.1)	25		
			800	2000	10	
			1000	1597	11	
			1200	745	> 50	
AlNb1.5Ta0.5Ti1.5Zr0.5	[52]	BCC	6.9 (6.8)	25		
			800	1280	4	
			1000	728	> 12	
			1200	403	> 50	
AlNbTiV	[56]	BCC	5.6 (5.5)	25		
			600	1020	5	
			800	810	12	
			1000	685	50	
CrHfNbTiZr	[57]	BCC + Im	(8.1)	25		
			300	1375	3	
			500	1420	4	
			700	1457	2	
			900	1322	1	
CrMo0.5NbTa0.5TiZr	[28]	BCC + Im	8.2 (8)	25		
			800	1595	5	
			1000	983	6	
			1200	546	50	
CrNbTiVZr	[59]	BCC + Im	6.6	25		
			600	1298	3	
			800	1230	10	
			1000	615	> 50	
			1200	259	> 50	
CrNbTiZr	[59]	BCC + Im	6.7 (6.6)	25		
			600	1260	6	
			800	1035	> 50	
			1000	300	> 50	
			1200	115	> 50	
HfMoNbTaTiZr	[63]	BCC	9.97 (9.95)	25		
			800	1512	12	
			1000	1007	23	
			1200	814	30	
			1400	556	30	
HfMoNbTiZr	[64]	BCC	8.7	25		
			800	1575	9	
			1000	825	50	
			1200	635	50	
			1400	187	50	
HfMoTaTiZr	[63]	BCC	10.24 (10.21)	25		
			800	1600	4	
			1000	1045	19	
			1200	855	30	
			1400	404	30	
HfNbSi0.5TiV	[65]	BCC + Im	8.6 (7.8)	25		
			800	1399	11	
			1000	875	50	
			1200	240	50	
HfNbSi0.5TiVZr	[66]	BCC + Im	7.75 (7.5)	0		
			600	1540	17	
			800	1252	50	
			1200	427	50	
HfNbTaTiZr	[40]	BCC	9.9	25		
			600	929	50	
			800	675	50	
			1000	535	50	
			1200	295	50	
			1400	92	50	
				1400	790	50
Acknowledgements

SG would like to acknowledge DGA (Direction Générale de l’Armement), France, for support through the ERE program (ERE 2015 60 0013). The authors thank Adam Pilchak for the support provided for this work. SG thanks Raghavan Srinivasan for the arrangements that were made to host him at Wright State University in 2016.

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2018.11.111.

References

[1] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511.
[2] S. Gorsse, D.B. Miracle, O.N. Senkov, Mapping the world of complex concentrated alloys, Acta Mater. 135 (2017) 177–187.
[3] O.N. Senkov, D.B. Miracle, K.J. Chaput, J.-P. Couzinie, Development and exploration of refractory high-entropy alloys—a review, J. Mater. Res. (2018) 1–37. https://doi.org/10.1557/jmr.2018.153.
[4] T.T. Zuo, R.B. Li, X.J. Ren, Y. Zhang, Effects of Al and Si addition on the structure and properties of CoFeNi equal atomic ratio alloy, J. Magn. Magn. Mater. 371 (2014) 60–68.
[5] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater. 81 (2014) 428–441.
[6] W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics 60 (2015) 1–8.
[43] L. Liu, J.B. Zhu, C. Zhang, J.C. Li, Q. Jiang, Microstructure and the properties of FeCoCuNiSnx high entropy alloys, Mater. Sci. Eng. A 548 (2012) 64–68.

[44] L. Liu, J.B. Zhu, L. Li, J.C. Li, Q. Jiang, Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys, Mater. Des. 44 (2013) 223–227.

[45] P. Jin, P. Ye, Z. Hui, Z. Lu, Microstructure and properties of AlCrFeCuNiX (0.6 1/4 × 1.4) high-entropy alloys, Mater. Sci. Eng. A 534 (2012) 228–233.

[46] S. Guo, C. Ng, J. Liu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys, J. Appl. Phys. 109 (2011) 103505.

[47] Jin-Hong Pi, Ye Pana, Lu Zhang, Hui Zhang, Microstructure and property of AlTiFeNiCu high-entropy alloy, J. Alloy. Compd. 509 (2011) 5641–5645.

[48] E. Fazakas, V. Zadorozhnyy, D.V. Louguine-Luzgin, Effect of iron content on the structure and mechanical properties of Al25Ti25Ni25Cu25 and (AlTi)60–xNi20Cu20Fex (x = 15, 20) high-entropy alloys, Appl. Surf. Sci. 358 (2015) 549–555.

[49] X. Yang, S.Y. Chen, J.D. Cotten, Y. Zhang, Phase stability of low-density, multiprincipal component alloys containing aluminum, magnesium, and lithium, JOM 66 (10) (2014) 2009–2020.

[50] K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, C.C. Koch, A novel low-density, high-hardness, high entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett. 3 (2015) 95–99.

[51] N.D. Stepanov, N. Yu Yurchenko, D.V. Skibin, M.A. Tikhonovsky, G.A. Salishchev, Structure and mechanical properties of the AlCrNbxTiV (x = 0, 0.5, 1, 1.5) high entropy alloys, J. Alloy. Compd. 652 (2015) 266–280.

[52] O.N. Senkov, C. Woodward, D.B. Miracle, Microstructure and properties of aluminum-containing refractory high entropy alloys, JOM 66 (10) (2014) 2030–2042.

[53] C.-M. Lin, C.-C. Juan, C.-H. Chang, C.-W. Tsai, J.-W. Yeh, Effect of Al addition on mechanical properties and microstructure of refractory Al60Nb5Ta15Zr alloy, J. Alloy. Compd. 624 (2015) 100–107. https://doi.org/10.1016/j.jallcom.2014.11.064.

[54] S.Y. Chen, X. Yang, K.A. Dahmen, P.K. Liaw, Y. Zhang, Microstructures and cracking noise of AlxNbTiMoV high entropy alloys, Entropy 16 (2014) 870–884. https://doi.org/10.3390/e16020070.

[55] X. Yang, Y. Zhang, P.K. Liaw, Microstructure and compressive properties of NbTiVTaAlx high entropy alloys, Procedia Eng. 36 (2012) 292–298.

[56] N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, M.A. Tikhonovsky, Structure and mechanical properties of a light-weight AlNb5TiV high entropy alloy, Mater. Lett. 142 (2015) 153–155.

[57] E. Fazakas, V. Zadorozhnyy, L.K. Varga, A. Inoue, D.V. Louguine-Luzgin, F. Tian, L. Vitos, Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys, Int. J. Refract. Met. Hard Mater. 47 (2014) 131–138.

[58] O.N. Senkov, C.F. Woodward, Microstructure and mechanical properties of a refractory NbCrMo0.5Ta0.5TiZr alloy, Mater. Sci. Eng. A 529 (2011) 311–320.

[59] O.N. Senkov, V. Senkova, D.B. Miracle, C. Woodward, Mechanical properties of low-density, refractory multi-principal alloy elements of the Cr-Nb-Ti-V-Zr system, Mater. Sci. Eng. A 563 (2015) 51–62.

[60] E. Fazakas, V. Zadorozhnyy, L.K. Varga, A. Inoue, D.V. Louguine-Luzgin, F. Tian, L. Vitos, Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys, Int. J. Refract. Met. Hard Mater. 47 (2014) 131–138.

[61] C.-C. Juan, K.-K. Tseng, W.-L. Hsu, M.-H. Tsai, C.-M. Lin, S.-K. Chen, S.-J. Lin, J.-W. Yeh, Solution strengthening of ductile refractory HfMoxNbTa15Zr high-entropy alloys, Mater. Lett. 175 (2016) 284–287. https://doi.org/10.1016/j.matlet.2016.03.133.

[62] C.-C. Juan, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, W.-R. Wang, C.-C. Yang, S.-K. Chen, S.-J. Lin, J.-W. Yeh, Enhanced mechanical properties of HfMoxTa15Zr high-entropy alloys, Mater. Lett. 175 (2016) 74–77.

[63] C.-C. Juan, K.-K. Tseng, W.-L. Hsu, M.-H. Tsai, C.-W. Tsai, C.-M. Lin, S.-K. Chen, S.-J. Lin, J.-W. Yeh, Solution strengthening of ductile refractory HfMoxNbTa15Zr high-entropy alloys, Mater. Lett. 175 (2016) 284–287. https://doi.org/10.1016/j.matlet.2016.03.133.

[64] S. Majit, W. Steurer, Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy, Acta Mater. 106 (2016) 87–97. https://doi.org/10.1016/j.actamat.2016.01.018.

[65] S. Sheikh, S. Shafee, Q. Hu, J. Ahlstrom, C. Persson, J. Vesely, J. Zyka, U. Klement, S. Guo, Alloy design for intrinsically ductile refractory high-entropy alloys, J. Appl. Phys. 120 (2016) 164902. https://doi.org/10.1063/1.4966659.

[66] O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkotten, D.B. Miracle, C.F. Woodward, Microstructure and elevated temperature properties of a refractory TaHfBZrTi alloy, J. Mater. Sci. 47 (2012) 4062–4074.

[67] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high entropy TaHfBZrTi alloy, J. Alloy. Compd. 509 (2011) 6043–6048.

[68] Y.D. Wu, Y.H. Cai, T. Wang, J.J. Su, J. Shi, J. Zhu, Y.D. Wang, X.D. Hui, A refractory Hf52Nb25Ti25Zr5 high-entropy alloy with excellent structural stability and tensile properties, Mater. Lett. 130 (2014) 277–280.

[69] H. Yao, J.-W. Qiao, M.C. Gao, J.A. Hawk, S.-G. Ma, H. Zhou, MoNbTaV medium-entropy alloy, Entropy 18 (2016) 189. https://doi.org/10.3390/e18050189.

[70] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19 (2011) 698–706.

[71] Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Su, L. Wang, Y.D. Wang, X.D. Hui, Phase composition and solid solution strengthening effect in TiZnNbMoV high-entropy alloys, Mater. Des. 83 (2015) 651–660. https://doi.org/10.1016/j.matdes.2015.06.072.

[72] Y. Zhang, X. Yang, P.K. Liaw, Alloy design and properties optimization of high entropy alloys, JOM 64 (7) (2012) 830–838.
[76] H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou, Y. Zhang, NbTaV-(Ti,W) refractory high-entropy alloys: experiments and modeling, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 674 (2016) 203–211. https://doi.org/10.1016/j.msea.2016.07.102.

[77] L. Jiang, Z.Q. Cao, J.C. Jie, J.J. Zhang, Y.P. Lu, T.M. Wang, T.J. Li, Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNiVMo high entropy alloys, J. Alloy. Compd. 649 (2015) 585–590.

[78] Y.J. Zhou, Y. Zhang, Y.L. Wang, G.L. Chen, Microstructure and compressive properties of multicomponent Alx(TiCrMn-FeCoNiCu)100–x high-entropy alloys, Mater. Sci. Eng. A 454–455 (2007) 260–265.

[79] K.J. Laws, C. Crosby, A. Sridhar, P. Conway, L.S. Koloadin, M. Zhao, S. Aron-Dine, L.C. Bassman, High entropy brasses and bronzes: microstructure, phase evolution and properties, J. Alloy. Compd. 650 (2015) 949–961.

[80] C.-J. Tong, M.-R. Chen, S.-K. Chen, J.-W. Yeh, T.-T. Shun, S.-J. Lin, S.-Y. Chang, Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metall. Mater. Trans. A 26 (2005) 1263.

[81] H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemueller, J.N. Wagner, H.-J. Christ, M. Heilmaier, Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb-Mo-Cr-Ti-Al, J. Alloy. Compd. 661 (2016) 206–215. https://doi.org/10.1016/j.jallcom.2015.11.050.