The effect of age on thymic function

Donald B. Palmer *

Infection and Immunity Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK

Edited by:
Dietmar Herndler-Brandstetter, Yale University School of Medicine, USA

Reviewed by:
James Dooley, VIB – KU Leuven, Belgium
Dietmar Herndler-Brandstetter, Yale University School of Medicine, USA

*Correspondence:
Donald B. Palmer, Infection and Immunity Group, Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, London NW1 0TU, UK
e-mail: dpalmer@rvc.ac.uk

THE IMPACT OF THYMIC INVOLUTION ON PERIPHERAL T CELL SENESCENCE

Advance aging correlates with a reduced ability of the immune system to generate antigen specific responses to pathogens and vaccination. This collectively results in a higher incidence of infection, neoplastic, and autoimmune diseases which are preferentially observed in older individuals. These profound changes exhibited by the aging immune system is termed immunosenescence, which affects both innate and adaptive immunity (1–3).

The thymus is responsible for the development of self-restricted, self-tolerant, immunocompetent T cells but has no self-renewal properties relying on the continuous replenishment of new T cell progenitors from the bone marrow. Maturation of these cells occur through a series of proliferation and differentiation stages dependent upon receiving instructions from the specialized thymic microenvironment (4, 5).

One of the most acknowledged changes of the aging immune system is regression, or involution of the thymus (6–8), which seems to occur in almost all vertebrates suggesting that this is an evolutionary ancient and conserved process (9). Age-associated thymic involution involves a decrease in tissue mass and cellularity, together with a loss of tissue organization with the net outcome being a reduction in naïve T cell output [Figure 1; (6–8)]. This decline in naïve T cell output is believed to have a major impact on the properties on the peripheral T cell pool such that with increasing age, these cells exhibit alterations in phenotype and function, loss of diversity, and replicative senescence (10, 11). Moreover, it is these age-related changes in peripheral T cells that are believed to contribute significantly toward the features of immunosenescence (12, 13), suggesting that the altered thymic activity is a key trigger toward the decline of immune function in the aged (14).

While animal models show that the maintenance of naïve peripheral T cells in the adult do indeed require the release of cells from the thymus (15, 16). In humans, however the relationship between thymic activity and naïve T cell homeostasis is a matter of debate, with the recent observations that peripheral proliferation and not thymic output contributes to the maintenance of naïve T cells in young adults (17). Nevertheless, using signal-joint T cell receptor (TCR) excision circles (sjTREC) as a measurement of thymic function, numerous studies have shown lower sjTREC levels in elderly individuals are associated with a reduction of naïve T cells (18–20).

Moreover, a direct correlation between thymic function and naïve T cell number comes from studies examining the peripheral immune system of thymectomized individuals (21). In one such study which looked at patients 20+ years after thymectomy, the authors observed a decreased proportion of naïve T cells, reduction in TCR diversity and noted that such changes were more marked in individuals infected with Cytomegalovirus (22). Furthermore, thymectomized individuals exhibited a delayed primary response to tick-borne encephalitis vaccination (23). Interestingly, these and other studies seem to suggest that the thymus may play a role in maintaining immune efficacy in the adult (21). Indeed, reports, using mice, have demonstrated the need for the continual production of naïve T cells to mount an effective immune response against bacterial (24), viral (25), and fungal infections (26); with the latter study showing that mice thymectomized at 5 weeks of age exhibited a delayed response to Pneumocystis infection. Furthermore, amongst HIV-infected patients under highly active antiretroviral therapy, those individuals that show enhanced T cell output appear to demonstrate a better prognosis (27, 28). Furthermore, a recent study proposed that thymic function is a key marker in determining mortality in elderly humans (29). Thus, the notion that thymus activity may play an important role in host defense of the adult is interesting and clearly merits further investigation.

Keywords: thymus, immunosenescence, thymic involution, thymic stroma, thymocyte

www.frontiersin.org
October 2013 | Volume 4 | Article 316 | 1
CHANGES IN THYMOCYTE DEVELOPMENT WITH AGE

Although the exact mechanisms involved in age-associated thymic involution are not fully understood, a picture is emerging suggesting defects are present within both developing thymocytes and thymic stroma (30). Thymopoiesis involves a series of sequential developmental steps. Briefly, bone marrow progenitors enter into the thymus and are identified by a lack of both CD4 and CD8. Referred to as double negative (DN) thymocytes, these cells differentiate to become double positive (DP), expressing both CD4 and CD8, and subsequently mature into either single positive (SP) CD4 or SP CD8 T cells, through the process of positive and negative selection, and then exit into the periphery (4, 5).

Given that the thymus requires the continual input of bone marrow progenitors, any age-related alterations in hematopoietic stem cells (HSC) function could conceivably contribute toward thymic involution. Studies have demonstrated that aged HSC appear to exhibit an increased bias toward myeloid differentiation together with a reduced capacity toward lymphoid maturation; which has been observed in mice and human (31, 32). Such alterations in HSC function may manifest within early thymocyte progenitor (ETP) activity. Indeed, aged mice have fewer numbers of ETP, which exhibit reduced proliferation and differentiation potential (33, 34). ETP obtained from young mice are able to differentiate into all the stages of T cell development when seeded into fetal thymic organ culture, in contrast aged ETP showed a reduction of T cell differentiation activity (33). Furthermore, ETP from aged mice show an increased frequency of cells undergoing apoptosis together with a reduced number of Ki67+ cells (34).

ETP are contained within the earliest stages of DN thymocytes and other studies have highlighted further age-related changes within the later stages of DN thymocyte development; with the observation of a decrease in proportion of CD44+CD25+ (DN2) and CD44−CD25+ (DN3) cells (35–38). Additionally, a population of CD44+CD24−CD3+ DN cells has been shown to accumulate in the thymus of older mice (35, 39–41). Interestingly, a similar population has been identified in adult murine bone marrow which appears to be associated with a role in reducing hematopoiesis (42), giving rise to the possibility that the accumulation of such cells in the aging thymus might have a negative impact on thymopoiesis thereby contributing to thymic involution.

Further stages in thymocyte maturation also exhibit phenotypical alterations with age; in particular, studies have demonstrated...
an age-associated decline of CD3 expression on DP and SP thymocytes (40, 41, 43). Such changes may result in impaired TCR-dependent stimulation. Indeed, it has been demonstrated that aged thymocytes, in comparison to young cells, showed reduced Concanavalin A-induced proliferation (37, 40, 41, 44), with the observation that aged cells failed to enter into the G2M phase of the cell cycle (41).

Arguably, these age-related changes in thymopoiesis are likely be acquired by RTE; leading to the possibility that such cells will exhibit reduced immunocompetence. Indeed, several studies have showed that aged RTE undergo phenotypic maturation with delayed kinetics, exhibit decreased proliferative capacity, defective calcium signaling following TCR stimulation, and reduced helper and memory activity (45–47). Furthermore, peripheral T cells from older mice exhibit increased resistance to apoptosis which again may be acquired during thymocyte development as it has been demonstrated that thymocytes from older animals are more resistant to apoptosis (41, 44, 48). It is unlikely that the impairment of aged RTE is acquired in the periphery, but is imprint during their development in the aged thymus and propose that such flawed cells are also likely to contribute further to peripheral immunosenescence. Moreover, these studies also question, the notion regarding whether T cell development is functionally active in the aged and in light of these studies, this often held view may need to be revised (40).

AGE-ASSOCIATED CHANGES IN THE THYMIC Stromal ENvironMENt

The thymic stroma plays a crucial role in thymopoiesis by providing the signals necessary to promote proliferation and differentiation due primarily to the influence of cortical and medullary epithelial cells (4); thus age-related changes in the thymic niches could potentially promote thymic involution. In fact, we have argued that the extrinsic defects within the aged microenvironment contribute significantly to age-associated thymic involution (1, 14, 49). Several studies have demonstrated that with age, the thymic microenvironment undergoes structural, phenotypical, and architectural changes (50). This include down regulation of various thymic epithelial cell (TEC) markers such keratin, MHC class II together with alterations of cortical and medullary markers (37, 51–55). Furthermore, the structural integrity of the thymic niche is disrupted with age, including disorganization of the cortical and medullary junction; together with increase fibrosis, adipose tissue, and the accumulation of senescent cells in the aged thymus (40, 55–57).

The age-associated changes in thymopoiesis would principally imply intrinsic defects, however, closer examination reveal that perhaps such alterations could be due, in part, to extrinsic defects within the aged thymic stromal niche resulting in impaired T cell development. For instance, studies have revealed that the production of IL-7, which is necessary for thymopoiesis (58), decreases with age (59). This may be due to the observed loss of MHC class II+ TEC in the aged thymus which has been identified as the cell type responsible for producing IL-7 (54). Moreover, IL-7 administered in older mice (60) and rhesus macaques (61) was shown to increased thymic output. Interestingly, bone marrow from young mice injected into lethally irradiated older mice failed to restore thymic architecture and was still accompanied by a reduction in quantitative thymic function (62). In an elegant study addressing the repopulation potential of thymic progenitors, Zhu and colleagues transplanted fetal thymic lobes under the kidney capsule of 1-month-old and 18-months-old mice and observed that the total number and proportion of developing thymocytes in the grafts were similar in older and younger host mice (56, 63). Similar results were obtained when transplanting RAG deficient thymocytes in that the ability of wild-type thymic progenitors to develop stromal patterning was not dependent on the age of recipients (63). In contrast, it was observed that intrathymic injection of young ETP fail to develop in older animals but did so in the thymus of young recipients (63). Furthermore, recent studies revealed that age-associated thymic involution results primarily with changes in gene expression profile in thymic stromal cells (64).

Above all, these studies suggest that the thymic stroma is a key factor in regulating thymic involution and perhaps the acquired intrinsic defects in aged thymocytes could be due to the inability of the aged thymic microenvironment to support and maintain thymopoiesis (56). Furthermore, the inter-dependency of both thymocyte and TEC to maintain a functional thymic structure (i.e., thymic cross-talk), is also likely to be a contributing factor toward thymic involution (65). Indeed, disrupting the integrity of TEC in the adult thymus has been shown to mimic thymic involution. The transcription factor Foxn1, which is essential for TEC development (66), has been shown to be important for maintaining TEC activity and reducing Foxn1 expression in the postnatal thymus mimics features of thymic involution (67, 68). In contrast, over expression of Foxn1 delays age-associated thymic involution (69). Moreover, rejuvenation of the aging thymus has been successful when targeting TEC, with the administration of exogenous keratin growth factor being shown to enhance thymic cellularity, restore thymic architecture, and improve immune function in aged mice (70). Similar results have also been seen when using growth hormone (71), sex steroid ablation (72), ghrelin (73), and IL-22 (74). However, although such treatment have been effective in directly enhancing thymic activity in the aged, in some instances, this may also be due, in part, by promoting hematopoiesis in the bone marrow (71, 75).

In addition to the age-related changes observed in TEC, there is an accumulation of adipose tissue particularly in the human thymus and there is increasing evidence indicating that thymic adiposity may inhibit thymic function (57). In mice, Yang and colleagues demonstrated that inducing obesity in mice accelerates thymic involution (76). In contrast, in another study, the same group observed that caloric restriction resulted in reduced thymic adiposity and delayed thymic involution (77). Although it is unclear how increase thymic adiposity alters thymic function, it has been proposed that this is due to the cytokines produced by adipocytes (57) and while involution occurs before fat deposition, suggesting that it is not initiating thymic involution, it may however exacerbate the impact of age on thymic function.

Studies have also noted an increase in the proportion of fibroblasts in the aging thymus of several species including mice (1, 54), human (52), and fish (78); suggesting that this may be a common feature. Several tissues such as heart (79), kidney (80), and liver (81) also show increased fibrosis with age which is associated...
with senescence and impairment of tissue function. Reports have implicated a role for TGFβ (82) and metalloproteinases (80) in the accumulation of fibroblasts in various tissues, which may be activated in response to inflammation as a result of wounding (83). It is currently unknown whether similar events also occur in the thymus, but may exacerbate the aforementioned alterations seen with age.

REFERENCES

1. Aw D, Silva AB, Palmer DB. Immunosenescence: emerging challenges for a ageing population. *Immunology* (2007) **120**:435–46. doi:10.1111/j.1365-2567.2007.02555.x

2. Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM. Aging of the innate immune system. *Curr Opin Immunol* (2010) **22**:507–13. doi:10.1016/j.coi.2010.05.003

3. McElhaney JE, Zhou X, Talbot HK, Soothout E, Bleackley RC, Granville DJ, et al. The unmet need in the elderly: how immunosenescence, CMV infection, co-morbidities and frailty are a challenge for the development of more effective influenza vaccines. *Vaccine* (2012) **30**:2660–7. doi:10.1016/j.vaccine.2012.01.015

4. Anderson G, Jenkinson EJ. Lympho-histiocytic interactions in thymus development and function. *Nat Rev Immunol* (2001) **1**:31–40. doi:10.1038/35095500

5. Ma D, Wei Y, Liu F. Regulatory mechanisms of thymus and T cell development. *Dev Comp Immunol* (2013) **39**:91–102. doi:10.1016/j.dcii.2012.11.013

6. George AJ, Ritter MA. Thymic involution with aging: obsolence or good housekeeping? *Immunol Today* (1996) **17**:267–72. doi:10.1016/1056-5899(96)80543-3

7. Taub DD, Longo DL. Insights into thymic aging and regeneration. *Immunol Rev* (2005) **205**:72–93. doi:10.1111/j.0105-2896.2005.00275.x

8. Lynch HE, Goldberg GL, Chidgey A, Van den Brink MR, Boyd R, Sempowski GD. Thymic involution and immune reconstitution. *Trends Immunol* (2009) **30**:366–73. doi:10.1016/j.it.2009.04.003

9. Shanley DP, Aw D, Manley NR, Palmer DB. An evolutionary perspective on the mechanisms of immunosenescence. *Trends Immunol* (2009) **30**:374–81. doi:10.1016/j.it.2009.05.001

10. Hobbsinner PJ, Goronzy JJ, Weyand CM. Telomere dysfunction, autoimmunity and aging. *Aging Dis* (2011) **2**:524–37.

11. Akbar AN, Henson SM. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? *Nat Rev Immunol* (2011) **11**:289–95. doi:10.1038/nri2959

12. Haynes L, Swain SL. Why aging T cells fail: implications for vaccination. *Immunol Today* (2006) **24**:663–6. doi:10.1016/j.immtod.2006.06.003

13. Goronzy JJ, Weyand CM. Understanding immunosenescence to improve responses to vaccines. *Nat Rev Immunol* (2013) **14**:428–36. doi:10.1038/nri3288

14. Aw D, Palmer DB. The origin and implication of thymic involution. *Aging Dis* (2011) **2**:347–43.

15. Cicc-Sain L, Messaoudi I, Park B, Carrié N, Planer S, Fischer M, et al. Dramatic increase in naive T cell turnover is linked to loss of naive T cells from old primates. *Proc Natl Acad Sci U S A* (2007) **104**:19960–5. doi:10.1073/pnas.0705905104

16. Bourgeois C, Hao Z, Rajewsky K, Potocki AJ, Stockinger B. Ablation of thymic export causes accelerated decay of naive CD4 T cells in the periphery because of activation by environmental antigen. *Proc Natl Acad Sci U S A* (2008) **105**:85691–6. doi:10.1073/pnas.0803732105

17. den Braber I, Mugwagwa T, Vriesekoop N, Westera L, Mögling R, de Boer AB, et al. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. *Immunity* (2012) **36**:288–97. doi:10.1016/j.immuni.2012.02.006

18. Nasi M, Troiano L, Lugli E, Pinti M, Ferreira R, Monterastelli E, et al. Thymic output and functionality of the IL-7/IL-7 receptor system in centenarians: implications for the neolymphogenesis at the limit of human life. *Aging Cell* (2006) **5**:167–75. doi:10.1111/j.1474-9726.2006.00204.x

19. Mitchell WA, Lang PO, Aspinall R. Tracing thymic output in older individuals. *Clin Exp Immunol* (2010) **161**:897–503. doi:10.1111/j.1365-2249.2010.04299.x

20. Ferrando-Martínez S, Ruiz-Mateos E, Hernández A, Gutiérrez E, Rodríguez-Méndez MM, Ordóñez A, et al. Age-related deregulation of naive T cell homeostasis in elderly humans. *Aging (Dordr)* (2011) **3**:197–207. doi:10.1007/s11357-010-9170-8

ACKNOWLEDGMENTS

I would like to thank Professor Julian Dyson for critical reading of the manuscript.
21. Sauce D, Appay V. Altered thymic activity in early life: how does it affect the immune system in young adults? *Curr Opin Immunol* (2011) 23:543–8. doi:10.1016/j.coi.2011.05.001

22. Sauce D, Larsen M, Fastenack-Sels, D, Duprée K, Keller M, Gruber-Deckensteiner B, et al. Evidence of premature immune aging in patients thymectomized during early childhood. *J Clin Invest* (2009) 119:3070–8. doi:10.1172/JCI32969

23. Van Zant G, Liang Y. Concise review: hematopoietic stem cell aging, life span, and transplantation. *Stem Cells Transl Med* (2012) 9:651–7. doi:10.5966/sctm.2012-0033

24. Min H, Montecino-Rodriguez E, Dorshkind K. Reduction in the developmental potential of thymic T cell progenitors with age. *Immunity* (2004) 173:245–56.

25. Heng TS, Goldberg GL, Gray DH, Sutherland JS, Chidgey AP, Boyd RL. Effects of castration on thymocyte development in two different models of thymic involution. *Immunity* (2005) 175:2928–32.

26. Thoman ML. The pattern of thymocyte differentiation is altered during thymic involution. *J Gerontol A Biol Sci Med Sci* (1995) 50:M155–70. doi:10.1093/gerona/50.11.M155

27. Aspinall R. Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. *Immunity* (1997) 15:3037–45.

28. Li L, Hsu HC, Grizzle WE, Stockard CR, Ho KJ, Lott P, et al. Cellular mechanism of thymic involution. *Scand J Immunol* (2003) 57:410–42. doi:10.1046/j.1365-3083.2003.01206.x

29. Sutherland JS, Goldberg GL, Hammett MV, Ulich RP, Berzins SP, Heng TS, et al. Activation of thymic regeneration in mice and humans following androgen blockade. *J Immunol* (2005) 175:2741–33.

30. Fowlkes BJ, Pardoll DM. Molecular and cellular events of T cell development. *Adv Immunol* (1989) 44:207–64. doi:10.1016/S0065-2776(89)80043-4

31. Aw D, Silva AB, Palmer DB. Is thymocyte development functional in the aged? (Albany NY) (2009) 1:146–53.

32. Aw D, Silva AB, Palmer DB. The effect on the age of the phenotype and function of developing thymocytes. *J Comp Pathol* (2010) 142(Suppl 1):S54–59. doi:10.1016/j.jcpath.2009.10.004

33. Sykes M. Unusual T cell populations in adults and murine bone marrow. Prevalence of CD3+CD4-CD8- and alpha beta TCR- NK1.1+ cells. *Immunology* (1990) 70:129–15.

34. Lall LS, Spain LM. Altered aging-related thymic involution in T cell receptor transgenic, MHC-deficient, and CD4-deficient mice. *Mach Ageing Dev* (2000) 114:101–21. doi:10.1016/S0047-6374(00)00091-9

35. Leposavic G, Pesic V, Kosec D, Radijevic K, Arsenovic-Ranin N, Pilipovic I, et al. Age-associated changes in CD90 expression on thymocytes and in TCR-dependent stages of thymocyte maturation in male rats. *Exp Gerontol* (2006) 41:574–89. doi:10.1016/j.exger.2006.03.006

36. Hale JS, Boursalian TE, Turk GL, Fink PJ. Thymic output in aged mice. *Proc Natl Acad Sci U S A* (2006) 103:8447–52. doi:10.1073/pnas.0601401103

37. Clise-Dwyer K, Huston GE, Buck AL, Duso DK, Swain SL. Environmental and intrinsic factors lead to antigen unresponsiveness in CD4+ recent thymic emigrants from aged mice. *J Immunol* (2007) 178:1321–31.

38. Eaton SM, Maue AC, Swain SL, Haynes L. Bone marrow precursor cells from aged mice generate CD4 T cells that function well in primary and memory responses. *J Immunol* (2008) 181:4825–31.

39. Provinceal M, Di Stefano G, Storoni S. Flow cytometric analysis of CD3/TCR complex, zink, and glutocorticoid-mediated regulation of apoptosis and cell cycle distribution in thymocytes from old mice. *Cytometry* (1998) 31:281–8. doi:10.1002/SIC.19980301206.x

40. Fink PJ. Thymic output in aged mice. *Blood* (2004) 103:2263–9. doi:10.1182/blood-2004-02-0042

41. Ferrando-Martínez S, Romero-Opin Immunol* (2012) 10:500–6. doi:10.1016/j.coi.2010.06.007

42. Proesch O, Mukai Y, Herzenberg L, Barnes PF, Su D-M. The aged thymus. *Stem Cells and the aging hematopoietic system. *Curr Opin Immunol* (2010) 22:500–6. doi:10.1016/j.coi.2010.06.007

43. Min H, Montecino-Rodriguez E, Dorshkind K. Reduction in the developmental potential of thymic T cell progenitors with age. *Immunity* (2004) 173:245–56.

44. Heng TS, Goldberg GL, Gray DH, Sutherland JS, Chidgey AP, Boyd RL. Effects of castration on thymocyte development in two different models of thymic involution. *Immunity* (2005) 175:2928–32.

45. Thoman ML. The pattern of thymocyte differentiation is altered during thymic involution. *J Gerontol A Biol Sci Med Sci* (1995) 50:M155–70. doi:10.1093/gerona/50.11.M155

46. Aspinall R. Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. *Immunity* (1997) 15:3037–45.

47. Li L, Hsu HC, Grizzle WE, Stockard CR, Ho KJ, Lott P, et al. Cellular mechanism of thymic involution. *Scand J Immunol* (2003) 57:410–42. doi:10.1046/j.1365-3083.2003.01206.x

48. Sutherland JS, Goldberg GL, Hammett MV, Ulich RP, Berzins SP, Heng TS, et al. Activation of thymic regeneration in mice and humans following androgen blockade. *J Immunol* (2005) 175:2741–33.

49. Fowlkes BJ, Pardoll DM. Molecular and cellular events of T cell development. *Adv Immunol* (1989) 44:207–64. doi:10.1016/S0065-2776(89)80043-4

50. Aw D, Silva AB, Palmer DB. Is thymocyte development functional in the aged? (Albany NY) (2009) 1:146–53.

51. Aw D, Silva AB, Palmer DB. The effect on the age of the phenotype and function of developing thymocytes. *J Comp Pathol* (2010) 142(Suppl 1):S54–59. doi:10.1016/j.jcpath.2009.10.004

52. Sykes M. Unusual T cell populations in adults and murine bone marrow. Prevalence of CD3+CD4+CD8- and alpha beta TCR- NK1.1+ cells. *Immunology* (1990) 70:129–15.

53. Lall LS, Spain LM. Altered aging-related thymic involution in T cell receptor transgenic, MHC-deficient, and CD4-deficient mice. *Mach Ageing Dev* (2000) 114:101–21. doi:10.1016/S0047-6374(00)00091-9
have a synchronized defect with age-related thymic involution. Aging Cell (2007) 6:663–72. doi:10.1111/j.1474-9726.2007.00325.x

64. Griffith AV, Fallahi M, Venables T, Petrie HT. Persistent degenerative changes in thymic organ function revealed by an inducible model of organ regrowth. Aging Cell (2012) 11:169–77. doi:10.1111/j.1474-9726.2011.00773.x

65. Palmer DB, Viney JL, Ritter MA, Hayday AC, Owen MJ. Expression of the alpha beta T-cell receptor is necessary for the generation of the thymic medulla. Dev Immunol (1993) 3:175–9. doi:10.1155/1993/56290

66. Nehls M, Pfeifer D, Schropp M, Hedrich H, Boehm T. New members of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature (1994) 372:103–7. doi:10.1038/372a0

67. Chen L, Xiao S, Manley NR. Foxn1 related thymic involution. Blood (2006) 108:3721–8. doi:10.1182/blood-2006-08-043794

68. Cheng L, Guo J, Sun L, Fu J, Zook EC, Krishack PA, Zhang J, Hedrick H, Boehm T. New members of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature (1994) 372:103–7. doi:10.1182/blood-2006-08-043794

69. Olsen NJ, Olson G, Viselli SM, Gu X, Kovacs WJ. Androgen receptors in thymic epithelium modulate thymus size and thymocyte development. Endocrinology (2001) 142:1278–83. doi:10.1210/en.142.3.1278

70. Yang H, Youm YH, Vandanmagsar B, Hultin LE, Scripture-Deitsch J, et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol (2001) 32:237–42. doi:10.1053/hupa.2001.22747

71. Dixit VD, Yang H, Sun Y, Weeraratna AT, Youm YH, Smith KG, et al. Ghrelin promotes thymopoiesis during aging. J Clin Invest (2007) 117:2778–90. doi:10.1172/JCI30248

72. Dukdakov JA, Hanash AM, Jenq RR, Jia J, Barnes PF, Metzger D, et al. Post-natal tissue-specific disruption of transcription factor Foxn1 triggers acute thymic atrophy. J Biol Chem (2012) 287:567–74. doi:10.1182/jbc.2008-05-156265

73. Yang H, Youm YH, Vandanmagsar B, Hultin LE, Scripture-Deitsch J, et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol (2001) 32:237–42. doi:10.1053/hupa.2001.22747

74. Dukdakov JA, Goldberg GL, Reiseger JJ, Vlahos K, Chidgey AF, Boyd RL. Sex steroid ablation is necessary for the generation of thymic medulla. Dev Immunol (2001) 336:91–5. doi:10.1126/science.1218004

75. Dukdakov JA, Goldberg GL, Reiseger JJ, Vlahos K, Chidgey AF, Boyd RL. Sex steroid ablation is necessary for the generation of thymic medulla. Dev Immunol (2001) 336:91–5. doi:10.1126/science.1218004

76. Dukdakov JA, Goldberg GL, Reiseger JJ, Vlahos K, Chidgey AF, Boyd RL. Sex steroid ablation is necessary for the generation of thymic medulla. Dev Immunol (2001) 336:91–5. doi:10.1126/science.1218004

77. Youm YH, Youm YH, Vandanmagsar B, Hultin LE, Scripture-Deitsch J, et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol (2001) 32:237–42. doi:10.1053/hupa.2001.22747

78. T orroba M, Zapata AG. Aging of the thymus: a dosage-sensitive manner. AIP Conf Proc (2009) 1138:508–11. doi:10.1063/1.322097

79. Khan AS, Sane DC, Wannenburg T, Sonntag WE. Growth hormone, insulin-like growth factor-1 and the aging cardiovascular system. Cardiovasc Res (2002) 54:25–35. doi:10.1016/S0008-6363(01)00533-8

80. Zhang X, Chen X, Hong Q, Lin H, Zhu H, Liu Q, et al. TIMP-1 promotes age-related renal fibro- sis through upregulating ICAM-1 in human TIMP-1 transgenic mice. J Gerontol A Biol Sci Med Sci (2006) 61:1130–43. doi:10.1093/gerona/61.11.1130

81. Paradis V, Youssef N, Dargere D, Ba N, Bonvoust F, Deschatrette J, et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum Pathol (2001) 32:237–42. doi:10.1053/hupa.2001.22747

82. Gaudaille J, Kolb M, Ask K, Martin G, Bonninha P, Warburton D, Smad3 signaling involved in pul- monary fibrosis and emphysema. Proc Am Thorac Soc (2006) 3:696–702. doi:10.1513/pats.200605-125F

83. Mori R, Shaw TJ, Martin P. Molecular mechanisms linking wound inflammation and fibrosis: knock- down of osteopontin leads to rapid repair and reduced scarring. J Exp Med (2008) 205:43–51. doi:10.1084/jem.20071412

84. Montecino-Rodriguez E, Min H, Dorskind K. Reevaluating current models of thymic involution. Semin Immunol (2005) 17:356–61. doi:10.1016/j.smim.2005.05.006

85. Aw D, Palmer DB. It’s not all equal: a multiphasic theory of thymic involution. Immunol Res (2009) 43:316–31. doi:10.3389/fimmu.2013.00316

86. Steinmann GG. Changes in the human thymus during aging. Curr Top Pathol (1986) 75:43–88. doi:10.1007/978-3-642-82480-7_2

87. Steinmann GG. Changes in the human thymus during aging. Curr Top Pathol (1986) 75:43–88. doi:10.1007/978-3-642-82480-7_2

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 03 May 2013; accepted: 18 Septem- ber 2013; published online: 07 Octo- ber 2013.

Citation: Palmer DB (2013) The effect of age on thymic function. Front. Immunol. 4:316. doi: 10.3389/fimmu.2013.00316

This article was submitted to T Cell Biology, a section of the journal Frontiers in Immunology. Copyright © 2013 Palmer. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the origi- nal author(s) or licensor are credited and that the original publication in this jour- nal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.