RESEARCH ARTICLE

Genotypic and phenotypic prevalence of *Nocardia* species in Iran: First systematic review and meta-analysis of data accumulated over years 1992-2021

Mohammad Hashemzadeh ID1,2‡, Aram Asareh Zadegan Dezfuli2, Azar Dokht Khosravi ID1,2*, Mohammad Savari1,2‡, Fatemeh Jahangirimehr2

1 Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, 2 Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran, 3 Pain Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

‡ MH is Senior Author.
* azarkhosravi69@gmail.com

Abstract

Background

Nocardia species belong to the aerobic actinomycetes group of bacteria which are gram-positive and partially acid-fast Bacilli. These bacteria may sometimes be associated with nosocomial infections. *Nocardia* diseases are not required to be reported to public health authorities in Iran. Hence, the present study was designed to determine the prevalence of human *Nocardia* spp. in Iran by using a systematic review and meta-analysis according to the preferred reporting items for systematic reviews and meta-Analyses statement.

Methods

The data of the prevalence of *Nocardia* species were collected from databases such as Embase, PubMed/MEDLINE via Ovid, Web of Science, Scopus and Google Scholar as well as national Iranian databases, including SID, Magiran. Analyses were conducted by STATA 14.0.

Results

The meta-analyses showed that the proportion of *Nocardia* spp. in Iranian studies varied from 1.71(1.17, 2.24) to 0.46(0.09, 0.83). *N. asteroides* (21% [95% CI 1.17, 2.24]), *N. cyriacigeorgica* (17% [95% CI 0.99, 1.77]), *N. farciana* (10% [95% CI 0.75, 1.00]) were considered to be common causal agents.

Conclusions

Our study presents that despite the fact that *Nocardia* spp. are normally are saprophytic organisms, are currently accounts as emerging pathogens due to an increase in...
immunocompromised patients among Iranian populations. Considering our results, the establishment of advanced diagnostic facilities for the rapid detection of *Nocardia* infections are required for optimal therapeutic strategies of *Nocardia* spp. in Iran. Our findings could help the programmatic management of the disease within the context of *Nocardia* control programs.

Introduction

Nocardia species (spp.) belong to the aerobic actinomycetes group of bacteria which are gram-positive and partially acid-fast bacilli (AFB) [1]. These bacteria are saprophytic and are found in soil and water, however, they may sometimes be associated with nosocomial infections [2]. More than 40 of the approximately 86 *Nocardia* spp. characterized, have been involved in human infections and include *Nocardia asteroides* complex (more than 50% human cases), *N. brasiliensis*, *N. abscessus*, *N. cyriacigeorgica*, *N. farcinica*, *N. nova*, *N. transvalensis* complex, *N. novocomplex*, *N. pseudobrasiliensis*, and the recently described spp. include *N. veterana*, *N. paucivorans*, *N. elegans*, *N. wallacei* and *N. blacklockiae* of the *N. transvalensis* complex [3].

Human *Nocardia* infection can be airborne via inhalation of dust particles (pulmonary nocardiosis-pneumonia, lung abscess) or skin infections (cutaneous nocardiosis-cellulitis, ulcers), and the infection can then disseminate to the brain, kidneys, joints, heart, eyes, and bones [4]. So far, person to person transmission is not documented [3]. Pulmonary nocardiosis is a low but severe opportunistic infectious disease and mainly affects patients with compromised cell-mediated immunity, such as those experiencing long-term steroid use, patients with acquired immunodeficiency syndrome (AIDS), or recipients of organ transplantation [5]. However, early diagnosis of pulmonary nocardiosis may be difficult because signs and symptoms in the affected patients are nonspecific and very similar to tuberculosis (TB) [6].

Co-infection with *Nocardia* spp. in patients suffering from mycobacterial lung infection, highlights the importance of laboratory diagnosis that may facilitate better patient management. The diagnosis of nocardiosis is currently based on direct examination and conventional culture, while serology is usually not useful [7]. The molecular methodologies which have provided precise identification of *Nocardia* spp. are important for studies of clinical and epidemiological investigations [8]. Unlike tuberculosis, *Nocardia* diseases are not required to be reported to public health authorities in Iran, and therefore, precise incidence and prevalence data are not available. In order to estimate what the true burden of *Nocardia* human infections is global, a meta-analysis was performed to review all studies related to the epidemiology of the *Nocardia* causative agents. Hence, the present study was designed to determine the prevalence of human *Nocardia* spp. in Iran by using a systematic review and meta-analysis according to the preferred reporting items for systematic reviews and meta-Analyses statement.

Methods

Ethics approval and consent to participate

The initial proposal of the work was approved by the Institutional Review Board (IRB) and Ethics Committee of the Ahvaz Jundishapur University of Medical Sciences, Iran, and necessary permission was granted for the work (IR.AJUMS.REC.1398.538).
Literature search

A systematic review of available literature was searched using the electronic database such as: Embase, PubMed/MEDLINE via Ovid, Web of Science, Scopus and Google Scholar as well as national Iranian databases, including SID, Magiran, with medical subject headings (MeSH) terms and a proper use of keywords. The search strategy was as follows: "Nocardia", "nocardiosis", "Nocardia and human infection", "actinomycete" and "Iran". Original articles on nocardia and a time filter (from August 1992 to January 2021) applied including Persian and English articles were considered. Likewise, the full texts of potentially relevant articles were assessed for eligibility independently and in duplicate by two investigators. In addition to articles published in English, we also looked for relevant articles in Persian.

Inclusion and exclusion criteria

After the search results were merged into Endnote (X7; Thomson Reuters), the resultant was de-duplicated and screened by applying a Rayyan Qatar Computing Research Institute online application. Criteria considered for inclusion were cross-sectional surveys assessing the frequency or prevalence of Nocardia spp. in Iran. Based on the research protocol and the eligibility criteria, the titles and abstracts were separately retrieved by two independent researchers. Following the elimination of repetitive studies, the full text of the papers in terms of eligibility criteria and the required extracted necessary information were studied. Disagreements between the two researchers were resolved by a consensus method. The final data extracted from the search results included corresponding author, year, place, research design, sample size, location, study period, individual Nocardia spp., and detection method. The exclusion criteria were including the papers with the following features: review articles, meta-analyses or systematic reviews, case reports and letter to editor studies, congress abstracts, and the duplication papers, as well as articles in languages other than English or Persian and those available only in abstract form. To evaluate the eligibility of the articles with inadequate information, we made a contact with the corresponding author. Culture as well as biochemical and molecular tests were the standard methods for detection.

To conduct phenotypic methods, the paraffin baiting technique was used and samples were cultured on various cyclohexamide-containing agars (i.e. blood, nutrient, and Sabouraud Dextrose) and were incubated at 35°C. Kinyoun acid-fast stain and Gram stain were used for initial investigation of colonies grown on culture media. The partially acid-fast and Gram-stained organisms showing that colonies bore a resemblance to the genus Nocardia. Stereomicroscopy was employed to assess the morphology of colonies. Numerous biochemical tests employed on the grown colonies in the present work were as follows: decomposition of L-tyrosine, growth in lysozyme broth and also at 45°C, hydrolysis of casein, esculin, gelatin, urea, xanthine, and hypoxanthine, utilization of citrate, and production of nitrate reductase, as well as acid production of sorbitol, rhamnose, glucose, L-arabinose, D-xylose, galactose, mannitol, lactose, maltose, sucrose, raffinose, and salicin.

Data extraction

Two reviewers independently extracted the data from eligible studies. According to inclusion and exclusion criteria, all collected data from the selected studies were tabulated as follows: (1) First author, (2) publication date, (3) enrollment time, (4) province of study, (5) all patients included in study, and (6) prevalence of Nocardia human infections. Two authors extracted data from involved studies independently. Inconsistency between the reviewers was resolved through discussion.
Quality assessment

The quality of papers was evaluated using the Strengthening the Reporting of Observational studies in epidemiology (PRISMA) checklist and the guidelines of the Cochrane Handbook for Systematic Reviews and Interventions [9]. This checklist has 8 parts which covers different sections of reports. If necessary, the authors were contacted for further information.

Statistical analysis

In this study, the prevalence of *Nocardia* in the country was collected and then the variance of each study was determined by Double arcsine conversion method. The point estimates of effect size, the prevalence of *Nocardia* spp., and its 95% confidence interval (95% CI) were estimated for each study. Random effects models were used, taking into account the possibility of heterogeneity between studies, which was tested with the Cochran’s Q- and the I² statistics. In order to assess possible publication bias, Egger weighted regression methods were used. Value of $P < 0.05$ was considered indicative of statistically significant publication bias. Analyses were conducted by STATA 14.0 (StataCorp, College Station, TX, US).

Results

Characteristics of the included studies

A total of 93 articles were obtained by a literature search with a combination of keywords from the databases as shown in Fig 1. In secondary screening and after duplication, 18 articles were identified and were removed due to the irrelevant titles. Then based on the abstract evaluation, 55 articles were excluded (3 review articles, 27 case reports, 8 letters to the editor, and 17 were related to non-clinical *Nocardia* specimens). So, according to quality assessment criteria and inclusion/exclusion criteria data, a remaining 20 most-related articles were included in present study [10–29]. Among 20 articles involving a total of 338 *Nocardia* isolates, the prevalence of *Nocardia* spp. were recorded. The articles were published between years 1994 to 2021. The characteristics of the selected articles are summarized in Table 1.

The prevalence of different *Nocardia* spp.

In total, 338 different *Nocardia* spp. were identified in the studied Iranian articles, with the varied proportion from 1.71(1.17, 2.24) to 0.46 (0.09, 0.83) using 90% confidence interval Table 2. *N. asteroides* (21% [1.17, 2.24]), *N. cyriacigeorgica* (17% [95% CI 0.99, 1.77]), *N. facanica* (10% [0.75, 1.00]) were considered to be the most common causative agents, while, *N. coubleae* (0/0011% [0.09, 0.80]), *N. cummideleens* (0/0011% [0.09, 0.80]), *N. neocaldeoniensis* (0/0011% [0.24, 1.84]) and *N. ignorata* (0/0011% [0.09, 0.80]) isolates were considered as the uncommon causative agents mentioned in only one study. It is necessary to mention that the causative agents were not identified to the spp. level in 12% of cases [01.67, 2.86]). Fig 2 shows the forest plot of meta-analysis of *Nocardia* prevalence. Some evidence for publication bias was observed in Fig 3.

The prevalence of different *Nocardia* spp. in provinces of Iran

Out of these 20 articles, 15 were belong to reports from Tehran, center of Iran. The rest were as follows: 5 from southwest of Iran (4 of them from Khuzestan and 1 from Kermanshah provinces), Isfahan, Yazd, Central (Arak), and Golestan provinces one report each. Fig 4 shows the distribution of *Nocardia* spp. in different parts of Iran. The *Nocardia* isolation in the central provinces of Iran demonstrated apparent characterization, as from the central province (Tehran) to the southwest province (Khuzestan, Kermanshah) the *Nocardia* isolation rate was
increased. The most frequent isolated *Nocardia* spp. in central provinces were *N. otitidisca-viarum*, *caviae* and *N. cyriacigeorgica*, while *N. farcinica* and *N. wallacei* were the most typical isolated species (Table 3).
The prevalence of *Nocardia* spp. in clinical specimens

The distribution of pulmonary nocardiosis sites shown in Table 4. Among the patients with pulmonary *Nocardia* infection 139 out of 259 (53%) with bronchoalveolar lavage (BAL) and 120(46%) was sputum. Among the patients with extra pulmonary specimen, 4(2%) with wound, 26 (32%) abscess, 8 (27%) blood, one specimen was pleural and 30 (26%) skin. The distribution of extra pulmonary sites shown in Table 5.

Discussion

Due to the low probability of transmission among people, *Nocardia* infection was not taken into account as a public health problem, and its incidence still remains unknown [30]. Literature review have revealed that the number of clinical isolations of *Nocardia* infection is escalating globally, possibly in relation to the increased number of immunocompromised patients and improved laboratory techniques for nocardiosis detection [31, 32]. To our knowledge, this is the first study in Iran which focuses on the incidence of *Nocardia* spp. among Iranian population.

The analysis has revealed a relatively high prevalence of *Nocardia* spp. among Iranian patients. The overall prevalence of this species was also greater when the study was performed after the year 2000 with the rate of 54% compared to the rate before year 2000 as 38%. The higher number of reports of *Nocardia* spp. appears to be due to the significance of the disease identified by microbiologists and physicians, advancement of laboratory facilities, and increasing the incidence of immunocompromised hosts, which gives rise to a growth in *Nocardia* spp. in the entire population. In general, the relatively high incidence (0.49%) of *Nocardia* spp. in our country may have an adverse impact on public health. Despite the implementing of...
national control programs, tuberculosis (TB) is still among the highest health hazard in Iran. Owing to the clinical similarity of Nocardiosis to many other infections, TB in particular, Nocardia infections are commonly missed or not suspected and delay in diagnosis [33]. The preliminary and rapid method for suspected lung infections is acid fast staining on prepared sputum smears for the screening of acid fast bacilli (AFB), however this method alone is unable to differentiate \textit{M. tuberculosis} from non-tuberculous mycobacteria (NTM) and \textit{Nocardia} spp. Thus, failure in the characterization of \textit{Nocardia} lung infections that are positive in acid fast staining, contributes to the misclassification of these infections, thereby leading to a failure in the treatment of pulmonary Nocardiosis [34]. Since \textit{Nocardia} spp. is abundant in different areas of the country, including the central and southwest parts, performing nucleic acid amplification tests (NAAT) is routinely required for differentiating between \textit{Nocardia} and other AFB smear-positive sputum samples.

In our study, \textit{N. asteroides} was the most frequent isolate species, which supports the findings of other research works [3, 35]. The pathological importance of \textit{Nocardia} infections lies on the pathogenesis process in human body. The pathogenesis mechanism of \textit{Nocardia} related to its ability to survive and grow in a variety of human cells including phagocytic cells by mechanisms including production of catalase and superoxide dismutase and inhibition of phagosome-lysosome fusion [36]. In brief, after the organism enters the body, reticuloendothelial system represents the initial response by mobilization of neutrophils, leads to limiting the dissemination of infection. Later, by the action of cell-mediated immunity macrophage activation occurs, i.e. T-cell population, giving rise to direct lymphocyte-mediated toxicity to the organism. The interplay between phagocytic cells and \textit{Nocardia} hinges on the virulence of the strain

Table 2. \textit{Nocardia} spp. distribution among Iranian studies.

Nocardia spp.	N. of studies	N/\%	Prevalence of nocardia (95% CI*)	Heterogeneity test I2 (%)	Heterogeneity test P-Value	Eggers test P-value	
\textit{N. asteroides}	9	74/(21\%)	1.71(1.17, 2.24)	92.8	<0.001	1.34	0.228
\textit{Nocardia.spp}	8	42/(12\%)	2.27(1.67, 2.86)	78.7	<0.001	0.78	0.470
\textit{N. cyriacigeorgica}	6	60/(17\%)	1.38(0.99, 1.77)	86.0	<0.001	1.84	0.139
\textit{N. farcinica}	6	41/(12\%)	0.87(0.75, 1.00)	0.0	0.562	-0.06	0.956
\textit{N. ottidiscaviarum, caviae}	5	40/(11\%)	0.66(0.49, 0.82)	30.0	0.222	0.58	0.601
\textit{N. nova}	5	7/(0/02)	0.38(0.25, 0.50)	25.7	0.250	7.11	0.006
\textit{N. wallacei}	3	14/(0/04)	0.70(0.35, 1.05)	71.2	0.031	3.12	0.198
\textit{N. arthritidis}	3	3/(0/008)	0.28(0.14, 0.42)	0.0	0.442	1.86	0.145
\textit{N. a.complex}	2	5/(0/014)	1.22(0.80, 1.64)	65.0	0.091	-	-
\textit{N. carnea}	2	6/(0/017)	0.39(0.24, 0.54)	39.9	0.197	-	-
\textit{N. kruzaokiae}	2	2/(0/008)	0.25(0.10, 0.40)	0.0	0.411	-	-
\textit{N. abscessus}	2	33/(0/09)	0.59(0.16, 1.03)	85.5	0.009	-	-
\textit{N. veterana}	2	2/(0/008)	0.25(0.10, 0.40)	0.0	0.411	-	-
\textit{N. brasiliensis}	2	2/(0/008)	0.53(0.22, 0.84)	0.0	0.351	-	-
\textit{N. transvalensis}	1	1/(0/0011)	0.46(0.09, 0.83)	-	-	-	-
\textit{N. coulbeae}	1	1/(0/0011)	0.44(0.09, 0.80)	-	-	-	-
\textit{N. cummideles}	1	1/(0/0011)	0.44(0.09, 0.80)	-	-	-	-
\textit{N. ignorata}	1	1/(0/0011)	0.44(0.09, 0.80)	-	-	-	-
\textit{N. mexicana}	1	2/(0/008)	1.40(0.60, 2.20)	-	-	-	-
\textit{N. neocaledoniensis}	1	1/(0/0011)	1.04(0.24, 1.84)	-	-	-	-

*Confidence Interval.

https://doi.org/10.1371/journal.pone.0254840.t002
and the growth phase of the nocardial cells. Virulent *Nocardia* can be explained by the complexity of cell wall glycolipids that prevents the fusion of phagosome-lysosome, declines the activity of lysosomal enzyme in macrophages, neutralizes phagosomal acidification, and even withstand the oxidative killing mechanisms of phagocytes. In chronic granulomatous disease, neutrophils and macrophages are unable to produce a burst of oxidative metabolism in the course of phagocytosis, which induces and impairs the intracellular killing of catalase-positive bacteria viz *Nocardia* species [37]. Ultimately, the host have to enhance a lymphocyte response and then release antibody and/or lymphocyte signals, allowing the phagocytic cells to destroy *N. asteroides*. Pulmonary nocardiosis is the most frequent clinical symptoms of infection because the main route of bacterial exposure is inhalation [37, 38]. In some occasions, the gastrointestinal tract, especially the appendix, is penetrated. In rare conditions, pulmonary infection leads to a dental or periodontal infection. Patients on immunosuppressive drugs, as well as cases with chronic granulomatous disease, chronic alcoholism, diabetes mellitus, and human immunodeficiency virus infection are also more susceptible to pulmonary infections with *Nocardia* [39]. The commencement of symptoms might be acute, subacute, or chronic, and pulmonary nocardiosis, if untreated, can have multiple attributes to the same as
tuberculosis, comprising fever, weight loss, nonproductive cough, anorexia, night sweats, dyspnea, hemoptysis. Acute forms of the disease are peculiarly observed in the compromised host [37].

A vast majority of surveys have been performed in the central and southwest regions, but not northern part, of Iran. These data denote that Tehran, the capital city of Iran with many healthcare centers, has a referral role for the whole areas of the country. Therefore, patients, especially those with complicated conditions, are referred to Tehran from all over the country for better management. Considering these data, it seems that the main reason for the isolation of most Nocardia spp. in the central provinces is accessibility of the commercial methodologies for detecting this species. Thus, conducting continuous DNA sequencing of homologous genes with a maximum resolution is considerably recommended for areas having a high incidence of Nocardia spp. [40].

For the ultimate bacteriological diagnosis of nocardiosis, it is required to isolate and identify the agent from clinical material and from the laboratory where the samples were analyzed [41]. The common diagnostic strategies for Nocardia spp. are mostly conventional and molecular methods [42]. In culture media, the growth of Nocardia spp. is slow, and at least two-week incubation is needed. Initial culture discontinuation will diminish the susceptibility of recovery and even may understate the real prevalence of Nocardiosis [37]. Consequently, in view of the clinical presentation and imaging of nocardiosis, which is typically comparable with TB, numerous recent investigations uncovered that the speciation of Nocardia may need to be affirmed by molecular methods. So, different molecular techniques have been put forward to precisely identify Nocardia spp. In Iran, and a large number of studies have utilized molecular analysis to identify Nocardia spp. [10, 12, 13, 18, 19, 24–26, 28, 29]. In cited surveys conducted
Fig 4. Forest chart of meta-analysis of Nocardia prevalence by provinces of Iran based on random effects model.

https://doi.org/10.1371/journal.pone.0254840.g004

Table 3. The prevalence of Nocardia species in certain provinces of Iran (n = 338).

Kermanshah	Tehran	Khuzestan
N.asteroides (2)	Nocardia.spp (28)	Nocardia.spp (1)
N.ostitidiscaviarum.caviae (1)	N.asteroides (27)	N.asteroides (1)
N.cyriacigeorgica (1)	N.ostitidiscaviarum.caviae (34)	N.ostitidiscaviarum.caviae (1)
N.farcinica (4)	N.cyriacigeorgica (46)	N.cyriacigeorgica (1)
N.abscessus (1)	N.transvalensis (1)	N.farcinica (1)
Golestan		
N.farcinica (17)		N.carnea (1)
N.asteroides (3)	N.nova (7)	N.abscessus (1)
N.ostitidiscaviarum.caviae (1)	N.carnea (3)	N.wallacei (1)
N.cyriacigeorgica (3)	N.kruzaeki (2)	Isfahan
N.farcinica (4)	N.abscessus (24)	Nocardia.spp (1)
N.abscessus (2)	N.a.complex (5)	N.asteroides (1)
Yazd		
N.veterana (2)		N.ostitidiscaviarum.caviae (1)
Nocardia.spp (4)	N.wallacei (6)	N.cyriacigeorgica (1)
Markazi		
N.asteroides (26)	N.brasiensis (2)	N.carnea (1)
N.cyriacigeorgica (1)	N.oubala (1)	N.abscessus (1)
N.farcinica (1)	N.cummidelen (1)	N.wallacei (1)
N.mexicana (2)	N.ignorata (1)	
N.neocaledoniensis (1)		

https://doi.org/10.1371/journal.pone.0254840.t003
before years 2000, the identification system was on the basis of biochemical tests and culture, while after this year, PCR was the method that could differentiate recently identified *Nocardia* spp. Since the first step in controlling the spread of *Nocardia* spp. and the related infections, is precise detection of species by employing sophisticated laboratory methods, so evidence has reflected that the identification of almost all *Nocardia* isolates were carried out by molecular analysis based on the interconnected gyrB-16S rRNA gene sequences; thus, PCR remains the gold standard in this regard (Table 6). Besides, though the outbreak of Nocardiosis outbreak is still rare in Iran, however, hospitals should maintain strong infection control practices to avoid outbreaks of Nocardiosis.

In a systematic review, the limitations related to possible publication bias should be taken into consideration. Likewise, the present study has its own shortcomings. First, the Nocardia spp. prevalence among the Iranian population cannot be fully represented as the magnitude of this species has not yet studied in many areas of the country. Second, the probable influence of age, sex, and immigration could not be examined due to the limitation of information achieved from the studied articles. Third, although the number of articles studied was enormous, after several screenings, there were quite small eligible studies. This limitation in the number of
articles could lessen the statistical power for the detection of funnel plot asymmetry. Fourth, in some studies, detection of Nocardia isolates in many cities of Iran are limited to the application of phenotypic methods, while the use of molecular techniques is more sensitive and specific than conventional methods for diagnosis of Nocardia spp. Fifth, in three studies, the source of samples (pulmonary or extra pulmonary) was not known; therefore, we could not report the exact rate based on sample source.

Conclusions
In overall, our study presents that despite the fact that *Nocardia* spp. are normally are saprophytic organisms, are currently accounts as emerging pathogens due to an increase in immunocompromised patients among Iranian populations. Therefore, the findings of the present survey could help the programmatic management of the disease within the context of Nocardiosis control programs. Moreover, this review emphasizes on the Nocardia spp. as neglected pathogens and related infections should be taken into account more seriously in future. The distinction of Nocardia infection from other pulmonary infections such as tuberculosis has significant practical importance. Considering our results, the establishment of advanced diagnostic facilities for the rapid detection of *Nocardia* spp. are necessary for optimal therapeutic strategies of Nocardia infections in Iran.

Supporting information
S1 Checklist. PRISMA 2009 checklist. (DOC)
S1 Data. (DOCX)
S2 Data. (XLS)

Acknowledgments
This work is part of a research project which was approved in Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. We are grateful to research affairs of the university for their encouragement and support.

Author Contributions
Data curation: Mohammad Hashemzadeh, Aram Asareh Zadegan Dezfuli.
Formal analysis: Mohammad Hashemzadeh, Aram Asareh Zadegan Dezfuli.
Funding acquisition: Mohammad Hashemzadeh.
Investigation: Aram Asareh Zadegan Dezfuli.
Methodology: Mohammad Savari, Fatemeh Jahangirimehr.
Project administration: Mohammad Savari.

Writing – original draft: Azar Dokht Khosravi.

Writing – review & editing: Azar Dokht Khosravi.

References

1. Arjun R, Padmanabhan A, Attunuru BP, Gupta P. Disseminated nocardiosis masquerading as metastatic malignancy. Lung India. 2016; 33:434. https://doi.org/10.4103/0970-2113.184920 PMID: 27578940

2. Bergogne-Berezin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev. 1996; 9:148. https://doi.org/10.1128/CMR.9.2.148 PMID: 8964033

3. Brown-Elliott BA, Brown JM, Conville PS, Wallace RJ. Clinical and laboratory features of the Nocardia spp. based on current molecular taxonomy. Clin Microbiol Rev.2006; 19:259–282. https://doi.org/10.1128/CMR.19.2.259-282.2006 PMID: 16614249

4. Kandi V. Human Nocardia infections: a review of pulmonary nocardiosis. Cureus 2015; 7:8. https://doi.org/10.7759/cureus.304 PMID: 26430578

5. Yu S, Wang J, Fang Q, Zhang J, Yan F. Specific clinical manifestations of Nocardia: A case report and literature review. Exp Ther Med.2016; 12:2021–2026. https://doi.org/10.3892/etm.2016.3571 PMID: 27698688

6. Aggarwal D, Garg K, Chander J, Saini V, Janmeja AK. Pulmonary nocardiosis revisited: a case series. Lung India. 2015: 32:165. https://doi.org/10.4103/0970-2113.152638 PMID: 25814804

7. Eschle-Meniconi ME, Guex-Crosier Y, Wolfensberger TJ. Endogenous ocular nocardiosis—an interventional case report with a review of the literature. Surv Ophthalmol.2011; 56:383–415. https://doi.org/10.1016/j.survophthal.2011.03.003 PMID: 21813147

8. Baio PV, Ramos JN, dos Santos LS, Soriano MF, Ladeira EM, Souza MC, et al. Molecular identification of Nocardia isolates from clinical samples and an overview of human nocardiosis in Brazil. PLoS Negl Trop Dis. 2013; 7:2573. https://doi.org/10.1371/journal.pntd.0002573 PMID: 24340116

9. Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement (Chinese edition). Chin J Integr Med. 2009; 7(9):889–896.

10. Fatahi-Bafghi M, Heidarieh P, Rasouli-Nasab M, Habibnia S, Hashemi-Shahraki A, and Eshraghi SS. Comparison of restriction enzyme pattern analysis and full gene sequencing of 16S rRNA gene for Nocardia spp. identification, the first report of Nocardia transvalensis isolated of sputum from Iran, and review of the literature. Antonie Van Leeuwenhoek 2016; 109:1285–1298. https://doi.org/10.1007/s10482-016-0746-x PMID: 27613736

11. Eshraghi S, Amin M. Nocardia asteroides complex in patient with symptomatic pulmonary nocardiosis. Iran J Public Health. 2001; 30:99–102.

12. Javan T, Hosseini H, Moslemi E. Molecular diagnosis of Nocardia (spp)in multiple sclerosis patients by PCR. Int J Biol Pharm Allied Sci. 2015; 4:382–393.

13. Heidarzadeh S, Pourmand MR, Ghaseimi A, Zarrinfar H, Saber S, Soori T, et al. The identification of Nocardia in BAL specimens of bronchoscopic patients by using classical and molecular methods. Tehran Univ Med J. 2011; 69:581–587. [Article in Persian]

14. Zaker Bostanabad S, Hashemi-Shahraki A, Heidarieh P, Sheikh N, Sharifi A, Seyri Fouron Abad M. Charactrization and isolation of Nocardia from clinical sample Patient suspected to active tuberculosisNCMBJ. 2014; 4:19–23. [Article in Persian]

15. Bostanabad SZ, Hashemi-Shahraki A, Heidarieh P, Saber S, Meyamie A, Gheitoli K, et al. Nocardia isolation from clinical samples with the paraffin baiting technique. Germs. 2015; 5:12. https://doi.org/10.11599/germs.2015.1066 PMID: 25763363

16. Ekrami A, Khosravi AD, Zadeh AR, Hashemzadeh M. Nocardia co-infection in patients with pulmonary tuberculosis. Jundishapur J Microbiol. 2014; 71–74. https://doi.org/10.5812/jim.12495 PMID: 25741428
19. Hashemi-Shahraki A, Heidarieh P, Bostanabad SZ, Hashemzadeh M, Feizabadi MM, Schraufnagel D, et al. Genetic diversity and antimicrobial susceptibility of Nocardia spp. among patients with nocardiosis. Sci Rep. 2015; 7:17862.

20. Bafghi F, Eshraghi S, Abdollahi A, Negahban S, Ashrafi A, Heidarieh P. Isolation and Identification of Nocardia in Suspected Tuberculosis Samples Using Paraffin Baiting Technique. Sadra Med Sci J. 2014; 7:207–212. [Article in Persian]

21. Abtahi H, Saffari M, Jourabchi A, Rafiei M. Pulmonary Nocardiosis and its related factors in patients with pulmonary infection in Arak. Feyz. 2003; 7:87–91. [Article in Persian]

22. Eshraghi S, Moroqidian K, Kordbache P, Grami SM, Saber S. Nocardiosis in pulmonary patients. J Guilan Uni Med Sci. 2004; 28–33. [Article in Persian]

23. Kordbache P, Saber S, Tavakoli P. Isolation of Nocardia from pulmonary patients using paraffin-specific medium. Iran J Public Health. 1994; 1–4: 53–62. [Article in Persian]

24. Famili A, Kachuei R, Mirnejad R, Mozafari N, Mirhaj Mohammad Abadi H. The identification of Nocardiosis agents in BAL samples of Patients with suspected tuberculosis admitted to hospitals in Tehran by PCR method. Yafte. 2015; 16:79–87. [Article in Persian]

25. Bolourchi N, Ebrahimi E, Falah J, Javadi A, Eshraghi S S. Detection of Nocardia Asteroides Complex in Clinical Isolates by Real-Time Polymerase Chain Reaction. SISPH 2019; 17:257–268. [Article in Persian]

26. Gharebaghi F, Eshraghi S, bostanabad S. Identification of biodiversity of Nocardia spp. Isolated from clinical samples of the Tehran hospitals using phenotypic and molecular method. Appl Biol. 2015; 9: 40–52. [Article in Persian]

27. Larjianian L, Hashemi J, Siadat D. Identification of Etiologic Agents of Actinomycetal Infections among Patients Referred to the Health Faculty of Tehran University of Medical Sciences. Iran J Med Microbiol. 2018; 11:203–209. [Article in Persian]

28. Rahdar HA, Salehi MR, Bahador A, Jasemi S, Karami-Zarandi M, Nejad MH, et al. Detection of Nocardia, Streptomyces and Rhodococcus from bronchoalveolar lavage specimens of patients with HIV by Multiplex PCR Assay. Ethiop J Health Sci. 2019; 29:737–744. https://doi.org/10.4314/ejhs.v29i6.10 PMID: 31741644

29. Azadi D, Motallebirad T, Ghaffari K, Shokri D, Rezaei F. Spp. Diversity, Molecular Characterization, and Antimicrobial Susceptibility of Opportunistic Actinomycetes Isolated from Immunocompromised and Healthy Patients of Markazi Province of Iran. Infec Drug Resis. 2020; 13: 13.

30. Al-Jahdali H, Baharoon S, Alothman S, Memish Z, Waness A Nocardiosis in a tertiary care hospital in Saudi Arabia. J Glob Infect Dis. 2011; 3:128. https://doi.org/10.4103/0974-777X.81688 PMID: 21731298

31. Matulionyte R, Rohner P, Uckay I, Lew D, Garbino J. Secular trends of nocardiosis infection over 15 years in a tertiary care hospital. J Clin Pathol. 2004; 57:807–12. https://doi.org/10.1136/jcp.2004.016923 PMID: 15280400

32. Hoza AS, Mfinanga SG, Moser I, König B. Isolation, biochemical and molecular identification of Nocardia spp. among TB suspects in northeastern, Tanzania; a forgotten or neglected threat? BMC Infect Dis. 2017; 17:407. https://doi.org/10.1186/s12879-017-2520-8 PMID: 28595598

33. Bialvaei AZ, Asgharzadeh M, Aghazadeh M, Nourazarian M, Kafi HS. Challenges of tuberculosis in Iran. Jundishapur J Microbiol. 2017; 10:1.

34. Charlton CL, Babady E, Ginocchio CC, Hatchette TF, Jerris RC, Li Y, et al. Practical guidance for clinical microbiology laboratories: viruses causing acute respiratory tract infections. Clin Microbiol Rev. 2018; 32:1–49. https://doi.org/10.1128/CMR.00042-18 PMID: 30541871

35. Provost F, Laurent F, Blanc MV, Boiron P. Transmiss on of nocardiosis and molecular typing of Nocardia spp.: a short review. Eur J Epidemiol. 1997; 13:235–238. https://doi.org/10.1023/a:1007324214800 PMID: 9085011

36. Mehta HH, Shamoo Y. Pathogenic Nocardia: A diverse genus of emerging pathogens or just poorly recognized? PLoS pathogens. 2020; 16(3):e1008280. https://doi.org/10.1371/journal.ppat.1008280 PMID: 32134995

37. Pati SP, Nadkami NJ, Sharma NR. Nocardiosis: clinical and pathological aspects. Martinez EP: Histopathology–Reviews and Recent Advances. InTech. 2012. 5;81–96.

38. Manoharan H, Selvarajan S, Sridharan KS, Sekar U. Pulmonary infections caused by emerging pathogenic species of Nocardia. Case Rep Infect Dis. 2019; 2019:5184386. https://doi.org/10.1155/2019/5184386 PMID: 31662925

39. SteinbrinkJulie 1, Leavens Joan 1, Kauffman Carol A 2, 3, Miceli Marisa H 3 Manifestations and outcomes of nocardia infections: Comparison of immunocompromised and nonimmunocompromised adult patients Medicine (Baltimore) 2018; 97(40):e12436.
40. Furuta Y, Kobayashi I. Movement of DNA sequence recognition domains between non-orthologous proteins. Nucleic Acids Res. 2012; 40:9218–9232. https://doi.org/10.1093/nar/gks681 PMID: 22821560

41. Baio PV, Ramos JN, dos Santos LS, Soriano MF, Ladeira EM, Souza MC, et al. Molecular identification of Nocardia isolates from clinical samples and an overview of human nocardiosis in Brazil. PLoS Negl Trop Dis. 2013; 7:2573. https://doi.org/10.1371/journal.pntd.0002573 PMID: 24340116

42. Apostolou A, Bolcen SJ, Dave V, Jani N, Lasker BA, Tan CG, et al. Nocardia cyriacigeorgica infections attributable to unlicensed cosmetic procedures an emerging public health problem? Clin Infect Dis. 2012; 55:251–253. https://doi.org/10.1093/cid/cis341 PMID: 22491504