Cadrobbi Pupo, Altair; Pirana, Sulene; Spinelli, Mauro; Lezirovitz, Karina; Mingroni Netto, Regina C.; Macedo, Lisandra S.

Estudo de família brasileira portadora de deficiência auditiva sensorioneural não-sindrômica com herança mitocondrial

Brazilian Journal of Otorhinolaryngology, vol. 74, núm. 5, septiembre-octubre, 2008, pp. 786-789

Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial
São Paulo, Brasil

Disponível em: http://www.redalyc.org/articulo.oa?id=392437854023
Study of a Brazilian Family Presenting Non-syndromic hearing loss with mitochondrial inheritance

We hereby report on the audiological and genetic findings in individuals from a Brazilian family, with the following mitochondrial mutation A1555G in the 12S rRNA gene (MT-RNR-1). Nine individuals underwent speech, audiological (tonal audiometry and logoaudiometry) and genetic evaluations. Eight individuals among the A1555G carriers were affected by hearing impairment and one person had normal hearing thresholds till the end of the present study. The audiologic evaluation results indicated normal hearing thresholds all the way to bilateral profound hearing loss with post-lingual onset and variable configuration. Two affected siblings presented progressive hearing loss. It was impossible to precise the time of hearing loss onset; however, the impairment was present in both children and adults. The genetic study revealed the A1555G mitochondrial mutation in the 12S rRNA gene. Given the prevalence of mitochondrial mutations as a cause of hearing loss, it is fundamental to perform the etiopathologic diagnosis in order to postpone the onset or avoid hearing impairment progression. This kind of hearing impairment represents a challenge to the professionals since there are no physical traits that indicate genetic transmission.

Keywords: genetics, mitochondrial inheritance, hearing loss, nonsyndromic hereditary deafness.

Palavras-chave: genética, herança mitocondrial, perda auditiva, surdez hereditária não-sindrônica.
INTRODUÇÃO

Estima-se que 16% dos casos de surdez no Brasil tenham causas genéticas confirmadas, sendo que em 70% dos casos a surdez é não-sindrômica. Em 80% das perdas auditivas hereditárias não-sindrômicas a herança é autossômica recessiva, em 10 a 20% a herança é autossômica dominante, de 2 a 3% é ligada ao cromossomo X e em apenas 1% é de herança mitocondrial. A deficiência auditiva sensorineural não-sindrômica apresenta-se como um desafio para o médico, o audiologista e o genetista por não se acompanhar de características físicas que apontem para transmissão genética, podendo ser de difícil diagnóstico etiológico, sendo necessário ter um alto grau de suspeição clínica e obter informações adequadas sobre membros da mesma família.

As mutações e deleções no DNA mitocondrial têm sido identificadas em casos de perda auditiva sensorineural não-sindrômica. A mutação mais comum associada à herança exclusivamente materna é a A1555G no gene 12S rRNA, relativamente frequente em população asiática: aproximadamente 3% dos pacientes japoneses com deficiência auditiva sensorineural, 5,3% na Indonésia e de 0,5% a 2,4% em europeus.

Apesar de muito discutido na literatura, os mecanismos patogênicos dessa mutação são ainda desconhecidos. Nos quadros não-sindrômicos, a deficiência auditiva sensorineural de origem mitocondrial é o único sintoma presente. Nestes casos, alguns autores relatam sua correlação com a hipersensibilidade aos aminoglicosídeos.

Nos Estados Unidos, essa mutação está presente em 15% das crianças e 3% dos adultos; no Brasil, em 1% a 2% de indivíduos. A deficiência auditiva sensorineural não-sindrômica é considerada uma das mutações mais comuns em pacientes com surdez e devido à sua prevalência, é uma das mais estudadas. No Brasil, a prevalência de deficiência auditiva sensorineural não-sindrômica é estimada em 0,5% a 2,4% em europeus.

Numa população dinamarquesa, a prevalência da deficiência auditiva sensorineural foi de 15% em população asiática: aproximadamente 3% de indivíduos japoneses com deficiência auditiva sensorineural, 5,3% na Indonésia e de 0,5% a 2,4% em europeus.

Os mesmos aspectos auditológicos foram constatados em outro estudo realizado com 21 famílias japonesas que apresentavam essa mutação. Acrescentaram que havia variação individual das características da perda auditiva, associação com zumbido permanentes, com ou sem história de uso de antibióticos aminoglicosídeos, sendo a perda auditiva mais severa com o uso do antibiótico.

Em estudo semelhante com 55 membros de 6 famílias afetados por deficiência auditiva não-sindrômica decorrente dessa mutação residentes na Califórnia, a perda auditiva, geralmente simétrica, afetou principalmente as frequências altas, o grau variou de leve a moderado e foi lentamente progressiva. Nos casos de história prévia de tratamento com drogas ototóxicas, a perda auditiva era severa e um deles era surdo-mudo.

Numa população dinamarquesa, a prevalência da deficiência auditiva sensorineural foi de 15% em população asiática: aproximadamente 3% de indivíduos japoneses com deficiência auditiva sensorineural, 5,3% na Indonésia e de 0,5% a 2,4% em europeus.

CASOS CLÍNICOS

Descrevemos uma família de sujeitos que apresentam deficiência auditiva não-sindrômica com padrão de herança mitocondrial. A partir do atendimento foniatrício de um caso (III-8) no qual se suspeitou de surdez hereditária, foram avaliados clinicamente outros membros da família. Nove indivíduos passaram por exames médicos otorrinolaringológico e foniatrístico, audiológico (audiometria tonal, logoaudiometria e em alguns casos PEATE) e estudo genético. Outros membros compareceram somente para estudo genético ou para os exames clínicos descritos.

Este estudo descreverá e analisará os achados auditológicos e genéticos de uma família brasileira que apresenta a mutação A1555G no gene mitocondrial 12S rRNA.
Seres Humanos do Instituto de Ciências Biomédicas sob o parecer 023/CEP.

O estudo genético incluiu a análise do DNA extraído de linfócitos. A pesquisa da mutação mitocondrial A1555G foi realizada por meio da PCR seguida da digestão do DNA com a enzima de restrição Hae III, de acordo com o protocolo descrito em Estivill et al. (1998)13.

As avaliações foniáticas e audiológicas foram realizadas no ambulatório de Otorrinolaringologia da Universidade de São Paulo (USP) e na clínica da Divisão de Ensino e Reabilitação dos Distúrbios da Comunicação da Pontifícia Universidade Católica de São Paulo (DERDIC/PUC-SP). Os estudos genéticos foram realizados no Centro de Estudos do Genoma Humano, do Departamento de Genética e Biologia Evolutiva do IBUSP.

Todas as pessoas com DNA estudado na família mostraram a presença da mutação A1555G no gene do RNA\textsubscript{r} \textit{12S} do DNA mitocondrial (Figura 1).

Quanto à caracterização audiológica, um sujeito (III-9) foi assintomático, isto é, apresentou audição normal até o momento da aplicação da bateria de exames. Os outros oito membros da família apresentaram perda auditiva sensorineural bilateral que diferia quanto ao grau, variando de moderada a profunda (Figura 2). As informações dos nove sujeitos, os resultados de logoaudiometria e os dados do quadro clínico, especialmente do desenvolvimento da linguagem, indicaram tratar-se de alteração da audição pós-lingual. As perdas simétricas prevaleceram, tal como em estudos citados7,8,9, com exceção do caso do sujeito (II-12). Foram observados quase todos os tipos de configuração de perda, planas, descendentes e ascendentes. No entanto, o tipo de configuração que prevaleceu foi a descendente, com acometimento maior nas frequências altas, assinalada também em outros estudos8,9. Os resultados dos outros exames quando presentes foram coerentes com os dados clínicos.

Foi possível fazer monitoramento audiológico somente nos casos III-8 e III-10, dois irmãos afetados, e observou-se progressão da perda auditiva com padrão de variação flutuante/progressiva na orelha direita e esquerda (Figura 3). A progressão da perda auditiva está de acordo com outros estudos7,8,9. Nesses dois irmãos, a perda auditiva não prejudicou severamente o desenvolvimento de linguagem, ou por ser pós-lingual ou por se tratar de perda parcial com preservação da audição nas frequências da fala. No caso III-8 a perda auditiva manifestou-se partir dos 4 anos com informações dos pais de que havia nascido ouvinte, e no III-10 foi submetido à primeira avaliação audiológica aos 5 anos e 3 meses, por suspeita...
de início da deficiência auditiva. Nos outros casos, I-2, II-3, II-5, II-7, II-9 e II-12 a perda auditiva manifestou-se na idade adulta.

O resultado das avaliações audiológicas, considerando o grau da perda auditiva, mostrou como apontado na literatura que o fenótipo clínico variou consideravelmente entre os membros da família estudada, cujas perdas variaram de grau moderado a profundo, todas bilaterais e pós-linguais. Também, como já foi citado, não houve uma época de manifestação prevalente. Muitos dos afetados na idade adulta apresentavam zumbido e aqueles que foram submetidos à tiveram resultados pouco satisfatórios.

Quanto ao uso de aminoglicosídeos, não pôde ser estabelecida a relação entre o desencadeamento ou agravamento da perda auditiva pelo uso desse antibiótico, pois os membros da família não souberam informar com precisão sobre esse aspecto.

Apenas um sujeito (II-3) com perda auditiva tinha história de exposição a ruído no local de trabalho, um dos possíveis fatores ambientais na expressividade da mutação. O indivíduo I-2 apresentou deficiência auditiva leve restrita a altas frequências aos 61 anos de idade, o que pode estar relacionado à presbiacusia.

Foram dadas orientações a respeito da importância do acompanhamento auditivo e do risco associado ao uso de aminoglicosídeos a todos os pacientes atendidos. Aqueles nos quais se adaptou aparelho de amplificação sonora individual tiveram grande benefício na comunicação, e consequentemente, na qualidade de vida. O grande benefício alcançado com o uso de aparelho de amplificação sonora individual na melhora dos limiares auditivos tonais e vocais confirmou o comprometimento coclear sem comprometimento de vias auditivas centrais, no caso das perdas auditivas de origem mitocondrial.

COMENTÁRIOS Finais

Vários estudos têm sido feitos visando ao aperfeiçoamento do diagnóstico etiopatológico das perdas auditivas. O desenvolvimento tecnológico, a introdução de novas técnicas de exames e o estudo genético têm trazido grandes contribuições para que o diagnóstico das perdas auditivas seja realizado o quanto antes e de forma mais precisa, permitindo em muitos casos o esclarecimento da etiologia.

Sabendo que as mutações no DNA mitocondrial representam uma causa importante de perda auditiva, é imprescindível o cuidado por parte de clínicos na realização do diagnóstico etiopatogênico, para o qual muito contribui o estudo genético. Dessa forma, o clínico pode contribuir na tentativa de evitar o aparecimento precoce da perda auditiva e mesmo seu agravamento, bem como diminuir o aparecimento do zumbido, orientando o paciente quanto ao risco do uso de aminoglicosídeos e da exposição prolongada ao ruído.

REFERÊNCIAS BIBLIOGRÁFICAS

1. Godinho R, Keogh I, Ewey R. Perda Auditiva Genética. Rev Bras Otorrinolaringol 2003;59(1):100-4.
2. Malik SG, Pieter N, Sudoyo H, Kadir A, Marzuki S. Prevalence of the mitochondrial DNA A1555G mutation in sensorineural deafness patients in island Southeast Asia. J Hum Genet 2003;48(9):480-3.
3. Giordano C, Pallotti F, Walker W, Checcarelli N, Musumeci O, Santorelli F et al. Pathogenesis of the deafness-associated A1555G mitochondrial DNA mutation. Biochem Biophys Res Commun 2002;293(2):521-9.
4. Carvalho MFP, Ribeiro FAQ. As deficiências auditivas relacionadas às alterações do DNA mitocondrial. Rev Bras Otorrinolaringol 2002;68(2):268-75.
5. Pfeilsticker LN, Stole G, Sartorato EL, Delfino D. Guerra ATM. A investigação genética na surdez hereditária não-sindrômica. Rev Bras Otorrinolaringol 2004;70 (2):182-6.
6. Ke X, Qi Y, Gu Z, Zhang Z, Zhang W, Jiang S, et al. Aminoglycoside ototoxicity associated with mitochondrial DNA mutation. Lin Chuang Er Bi Yan Hou Ke Za Zhi. J Clin Otorhinolaryngol 1999;13(5):195-7.
7. Xing G, Bu X, Yan M. Audiological findings and mitochondrial DNA mutation in a large family with matrilineal sensorineural hearing loss. Zhonghua Er Bi Yan Hou Ke Za Zhi. Clin J Otorhinolaryngol 2000;35(2):98-101.
8. Usami S, Abe S, Shinkawa H, Kimberling W. Sensorineural hearing loss caused by mitochondrial DNA mutations: special reference to the A1555G mutation. J Comm Disord 1998;31(1):42-35.
9. Morales A, Gallo T, Del Castillo I, Moreno P, Garcia-Manilla J, Moreno H. Audiometric features of familial hearing impairment transmitted by mitochondrial inheritance (A1555G) Acta Otorrinolaringol Esp 2002;53(9):641-8.
10. Østergaard E, Montserrat-Sentis B, Granskov K, Brandum-Nielsen K. The A1555G mtDNA mutation in Danish hearing-impaired patients: frequency and clinical signs. Clin Genet 2002;62(3):303-5.
11. Mingroni-Netto RC, Abreu-Silva RS, Braga MCC, Leziroritz K, Della-Rosa VA, Pirana S et al. Mitochondrial mutation A1555G (12SsrRNA) and connexin 35delG mutation are frequent causes of deafness in Brazilian. Am J Hum Genet 2001;69 (suppl):A2124.
12. Abreu-Silva RS. Pesquisa de Mutações Mitocôndrias Associadas à Deficiência Auditiva [Dissertação]. São Paulo (SP): Universidade de São Paulo; 2003.
13. Estivill X, Govea N, Barcelo E, Badenase C, Romero E, Moral L et al. Familial progressive sensorineural deafness is mainly due to the mtDNA A1555G mutation and is enhanced by treatment of aminoglycosides. Am J Hum Genet 1998:62(2):27-35.