FTVd is beyond Fast Total Variation regularized Deconvolution

Yilun Wang, Member, IEEE

Abstract—In this paper, we revisit the “FTVd” algorithm for Fast Total Variation Regularized Deconvolution, which has been widely used in the past few years. Both its original version implemented in the MATLAB software FTVd 3.0 and its related variant implemented in the latter version FTVd 4.0 are considered [1]. In FTVd 3.0, the operator splitting, quadratic penalty and the continuation scheme are the key concepts of the algorithm and our novel point here is that the intermediate results during the continuation procedure are in fact the solutions of a combination of Tikhonov and total variation regularizations for image deconvolution, and therefore some of them often have a better image quality than its final solution, which is corresponding to the pure total variation regularized model. In FTVd 4.0, the quadratic penalty are augmented with a Lagrangian term in order to implicitly performing the continuation scheme for better computational efficiency and stability. Correspondingly, some intermediate results during the iterations still empirically achieve better recovery quality than the final solution, in terms of reduced staircase effect.

Index Terms—Total variation, Tikhonov, regularization, image deblurring, variable splitting, quadratic penalty, augmented Lagrangian.

I. INTRODUCTION

Total variation regularized least-squares deconvolution is one of the most standard image processing problems, and the “FTVd” package [1, 2] is among the most popular MATLAB softwares due to its outstanding computational efficiency.

We first briefly review the FTVd as follows. For simplicity, the underlying images are assumed to have square domains, though all discussions can be equally applied to rectangle domains. Let \(u^0 \in \mathbb{R}^{n \times n} \) be an original \(n \times n \) gray-scale image, \(K \in \mathbb{R}^{n^2 \times n^2} \) represent a blurring (or convolution) operator, \(\omega \in \mathbb{R}^{n^2} \) be additive noise, and \(f \in \mathbb{R}^{n^2} \) an observation which satisfies the relationship:

\[
 f = Ku^0 + \omega. \tag{1}
\]

Given \(f \) and \(K \), the image \(u^0 \) is recovered from the model

\[
 \min_{u} \sum_{i=1}^{n^2} \| D_i u \|_2 + \frac{\mu}{2} \| Ku - f \|_2^2, \tag{2}
\]

where \(D_i u \in \mathbb{R}^2 \) denotes the discrete gradient of \(u \) at pixel \(i \), and the sum \(\sum \| D_i u \| \) is the discrete total variation (TV) of \(u \). Model (2) is also widely referred to as the TVL2 model.

In (2), the TV is isotropic if the norm \(\| \cdot \| \) in the summation is 2-norm, and anisotropic if it is 1-norm. While FTVd applies to both isotropic and anisotropic TV, we will only review the isotropic case, \(\| \cdot \| = \| \cdot \|_2 \) because the treatment for the anisotropic case is completely analogous.

As we have already known, FTVd is initially derived from the well-known operator-splitting and quadratic penalty techniques in optimization as follows. At each pixel an auxiliary variable \(w_i \in \mathbb{R}^2 \) is introduced to transfer \(D_i u \) out of the non-differentiable term \(\| \cdot \|_2 \) as follows.

\[
 \min_{w,u} \sum_i \| w_i \|_2 + \frac{\mu}{2} \| Ku - f \|_2^2, \quad \text{s.t.} \quad w_i = D_i u \tag{3}
\]

Notice that the main purpose of the introduction of \(w \) is for the operator splitting. Then FTVd aims to get an unconstrained version of (3) for easiness of computation and adopts different methods to deal with the constraint \(w_i = D_i u \) in its different versions. In the FTVd 3.0 version, the simple quadratic penalty scheme was adopted, yielding the following approximation model of (3):

\[
 \min_{w,u} Q_A(u,w,\beta) \tag{4}
\]

with a sufficiently large penalty parameter \(\beta \), where

\[
 Q_A(u,w,\beta) = \sum_i \| w_i \|_2 + \frac{\beta}{2} \sum_i \| w_i - D_i u \|_2^2 + \frac{\mu}{2} \| Ku - f \|_2^2. \]

This type of quadratic penalty approach can be traced back to as early as Courant [3] in 1943. The motivation for this formulation is that while either one of the two variables \(u \) and \(w \) is fixed, minimizing the function with respect to the other has a closed-form formula with low computational complexity and high numerical stability. This kind of alternative minimization scheme is one of the main contribution of FTVd, i.e. given \(\beta \), the (4) is solved in following alternative minimization scheme.

\[
\begin{align*}
 w^{k+1} & \leftarrow \arg\min_w Q_A(u^k,w,\beta) \\
 u^{k+1} & \leftarrow \arg\min_u Q_A(u,w^{k+1},\beta) \tag{5}
\end{align*}
\]

The detailed formulations of the close form solution of each subproblem can be referred to [2].

If we want to hold the enough fidelity to the original model (2) or (3), it is naturally that \(\beta \) need to be a very large positive number. In the original FTVd (implemented in FTVd 3.0 version), the continuation scheme is adopted, i.e. the \(\beta \) increases gradually from a small number to a larger one, because it has been showed that, for any fixed \(\beta \), the algorithm of solving (4) via minimizing \(u \) and \(w \) alternately has faster convergence when \(\beta \) is small, but slower when \(\beta \)
We have the following iterative framework to solve it.

The augmented lagrangian function.

Adding a lagrangian term, i.e. making use of the following augmented lagrangian function.

\[L_A(u, w, \lambda) = \sum_i (\|w_i\| - \lambda_i^T(w_i - D_i x)^2) + \frac{\beta}{2}\|w_i - D_i x\|^2 + \frac{\mu}{2}\|K u - f\|^2 \] (6)

We have the following iterative framework to solve it.

\[\begin{cases} w_i^{k+1} &\leftarrow \arg\min_w L_A(u, w, \lambda^k) \\ u_i^{k+1} &\leftarrow \arg\min_u L_A(u, w_i^{k+1}, \lambda_i^{k+1}) \\ \lambda_i^{k+1} &\leftarrow \lambda_i^k - \beta(w_i^{k+1} - D_i u_i^{k+1}) \end{cases} \] (7)

It is well-known that the presence and iterative updates of multiplier \(\lambda\) avoids \(\beta\) explicitly going to infinity and guarantees convergence of (7) to a solution of the original TV model (3). For the sake of computational easiness, (7) can be further written as the alternative direction method (ADM, in short), which was studied extensively in optimization and variational analysis, following the pioneer work [4], [8], [6], [7]. ADM applied to (6) or (7) yields the following iterative scheme:

\[\begin{cases} w_i^{k+1} &\leftarrow \arg\min_w L_A(u_i^{k}, w, \lambda^k) \\ u_i^{k+1} &\leftarrow \arg\min_u L_A(u, w_i^{k+1}, \lambda_i^{k}) \\ \lambda_i^{k+1} &\leftarrow \lambda_i^k - \beta(w_i^{k+1} - D_i u_i^{k+1}) \end{cases} \] (8)

Here the resulting subproblems do have closed-form solutions in our context of image deconvolution. In general, FTVd 4.0 has a faster convergence than FTVd 3.0. In [8], the authors derived (5) from the Bregman iterative method [9], and the equivalence between split bregman and with the ADM under certain conditions is established and analyzed in [10], [11].

A. Contributions

The main point of the paper is that solving the problem (3) or (4) in FTVd 3.0 is through solving a series of the combined Tikhonov and total variation regularized image deconvolution models, and the details will be given in Section II.

\[\min_{u_1, u_2} \|D_1 u_1\|_2 + \frac{\beta}{2} \|D_2 u_2\|_2 + \frac{\mu}{2}\|K(u_1 + u_2) - f\|^2 \] (9)

The intermediate results of FTVd are corresponding to different size of \(\beta\) and the final solution of FTVd is corresponding to a huge \(\beta\) where the TV regularization dominates and the Tikhonov regularization is almost ignorable. Therefore, some of the intermediate solutions of FTVd might be of higher recovered image quality such as reduced staircase artifacts than its final solution, which is corresponding to the pure total variation model (2).

B. Paper Organization

The organization of the paper is as follows. We will further explain why FTVd is beyond the signal total variation regularized model in Section II. In Section III, several numerical experiments will verify our point of view. In the end, the conclusion and future work will be given.

II. FTVd Involves Both Total Variation Regularization and Tikhonov Regularization

FTVd is based on the constrained version of the original TV model (3) resulted from operator splitting. In order to get an equivalent unconstrained version of (3), the quadratic penalty method is adopted in FTVd 3.0 and then augmented with a lagrangian term in FTVd 4.0. In this part, we will look at FTVd from variable splitting or image decomposition point of view as below.

Let \(u = u_1 + u_2\) and \(D_1 u_1 = w\), then \(D_1 u_2 = D_2 u - w\), where \(w\) is the auxiliary variable. Equation (4) based on operator splitting and the quadratic penalty adopted in FTVd 3.0, can be rewritten as

\[\min_{u_1, u_2} \sum_i \|D_i u_i\|_2 + \frac{\beta}{2} \|D_i u_i\|_2^2 + \frac{\mu}{2}\|K(u_1 + u_2) - f\|^2 \] (10)

Here (4) is reconsidered from the viewpoint of image decomposition, instead of previous operator splitting. Specifically, we consider the recovered image \(u\) as a sum of two components: a piecewise constant component \(u_1\) and a smooth component \(u_2\). Correspondingly, (4) is considered as a combination of Tikhonov regularization and total variation regularization. Therefore, the surrogate model (4) is expected to be more flexible than the original model (2), which is only of a single total variation regularization term, as analyzed in [12].

Specifically, Tikhonov regularization preserves small derivative coefficients while severely penalizing the spikes, hence recovering smooth regions while smoothing discontinuities in the regularized solution. In contrast, total variation regularization preserves the spikes while severely penalizing the small coefficients, likely changing the smooth regions in final solution into staircases.

There have existed several similar models [13] based on image decomposition. In order to better preserve corners and edges, or reduce staircasing of the total variation regularization, an infimal-convolution functional

\[\min_{u_1 + u_2 = u} \int_{\Omega} |\nabla u_1| + \alpha |

\int_{\Omega} |\nabla u_2| dx + \frac{\mu}{2}||K u - f||^2_2, \]

was proposed in [13] and proved to be practically effective for images containing various grey levels as well as edges and corners. A modified form was proposed in [14], where the regularization term is of the form

\[\min_{u_1 + u_2 = u} \int_{\Omega} |\nabla u_1| + \alpha |\nabla u_2| dx + \frac{\mu}{2}||K u - f||^2_2; \]

i.e., the second derivative is replaced by the Laplacian, and a dual method for its numerical realization is derived. This above idea could certainly be used in many other settings, when a signal or an image presents various types of characteristic features that need to be preserved and reconstructed.

The novelty of this paper is that while the quadratic penalty and the continuation scheme are originally proposed mainly from the viewpoint of computational efficiency, we consider them from the viewpoint of image decomposition. We point
out that one of the biggest advantages of FTVd is that splitting the variable \(u\) into two components \(u_1\) and \(u_2\) is very straightforward. Specifically, the operator splitting and the quadratic penalty showed in the formula (4), in fact naturally split the unknown variable \(u\) into two components \(u_1\) and \(u_2\), as showed in (10), which is equivalent with (4). The quadratic penalty corresponding to the Tikhonov regularization of \(u_2\). In FTVd 3.0, during the continuation, as \(\beta\) is starting from small positive value and approaching to \(\infty\), the surrogate model (4) or (10) is approaching to the original model (2), due to the flexibility of the model (4), we might prefer its solution with proper \(\beta\) rather than that of the original total variation model (2). Therefore, in practice, we can record all the intermediate results during the continuation procedure, pick the one of the best visual quality, and we can even stop increasing \(\beta\) if we think the recovery quality is no longer improving. The continuation scheme behaviors like a procedure to test different size of \(\beta\) and so we do not have to worry about the best choice of \(\beta\).

As mentioned above, in order to further accelerate the convergence to the solution of the total variation regularized model (2), FTVd 4.0 augmented the quadratic penalty by adding a lagrangian term, i.e. making use of the augmented lagrangian method (ALM) (15). The price is to introduce an explicit lagrange multiplier estimate at each iteration. Specifically, the continuation scheme, i.e., explicitly increasing \(\beta\) in FTVd 3.0 is replaced by estimating the multiplier for a fixed \(\beta\), as did in (7), which can be considered as a way of implicitly increasing \(\beta\) in context of quadratic penalty. For further computational convenience, the alternating direction method (ADM) is then applied to ALM (7), resulting to alternatively minimizing \(u\) and \(w\), as showed in (8).

Due to the implicit way of increasing \(\beta\) in context of quadratic penalty, FTVd 4.0 also enjoys the advantages of a combination of Tikhonov and total variation regularizations for reconstruction of piecewise-smooth signals during its intermediate iterations. We expect some \(u\) results of certain intermediate iterations of FTVd 4.0 to have better recovery quality than the final solution, due to their corresponding to an appropriate balance between total variation and Tikhonov regularization. In both FTVd 3.0 and FTVd 4.0, by “the better image quality”, we mainly mean reduced stair-case effects, which are inherent in the solution of the pure total variation model. Its reduction is benifited from the additional Tikhonov regularization.

III. Numerical Experiments

In this section, we present detailed numerical results to show the intermediate results and final solutions of FTVd 3.0 and FTVd 4.0, respectively. The main purpose is to show that as a byproduct, some intermediate results empirically often have better recovery quality than the final solution, at least in terms of slightly higher SNR and visually significant reduced staircase artifacts.

A. Experimental Settings

Due to the lengthy of paper, we only show our results on the test image “Barbara” with size 512 x 512, which has a nice mixture of detail, flat regions, shading area, and texture and is suited for our experiments. Its grey levels are normalized to [0, 1].

FTVd was implemented in MATLAB (11). The blurring kernel is generated by the MATLAB function “fspecial” and all blurring effects were then generated using the MATLAB function “imfilter” with periodic boundary conditions. In all our experiments, we take the “average” convolution kernel of size 9 x 9. The additive noise used was Gaussian noise with zero mean and standard deviation \(\sigma = 10^{-2}\).

The parameter \(\mu\) controls the amount of regularization applied to the squared \(\ell_2\)-distance between \(Ku\) and \(f\). The issue of how to optimally select \(\mu\) is important (16, 17, 18), but is outside of the scope of this work. FTVd adopts the empirical formula \(\mu = 0.05/\sigma^2\), where \(\sigma\) is the standard deviation of the additive Gaussian noise.

For FTVd 3.0, the quadratic penalty parameter \(\beta\) starts from initial small positive values to large ones, as the continuation scheme proceeds. Here FTVd has 11 outer iterations corresponding to the \(\beta\)-sequence \(\{2^0, 2^1, \ldots, 2^{10}\}\). We preserve all the intermediate results corresponding to the continuation steps and the final solution. Here for each intermediate \(\beta\), we use the same tight stopping tolerance as the final one when solving (5), because we also care about the quality of the intermediate solutions. In the original implementation of FTVd 3.0, the intermediate \(\beta\) used a looser stopping tolerance, because they only cared about the final solution and this way a faster convergence can be achieved.

In FTVd 4.0, the \(\beta\) is fixed and the default value is 10. As (8) showed, the continuation scheme is replaced by the method of multipliers. The updating of multiplier \(\lambda\) plays the similar role as increasing \(\beta\) in FTVd 3.0, but achieve a faster convergence. We also record all the intermediate results during the iterations.

In all these experiments, the parameters of FTVd algorithms are the default values implemented in the FTVd software (11), unless specified otherwise.

B. Numerical Results

Figures (1) is the result of FTVd 3.0 run on the image Barbara. The left subfigure of the first row is the original image and the right one is the blurry and noisy one which is \(f\). The SNRs of the initial guess \((f, \text{here})\) and the intermediate results of every continuation step including the last step are showed in the left subfigure of the second row. The right subfigure is the truncated version for better display. We can see that SNRs increase dramatically first as the continuation proceeds and the total variation regularization begins to play a more and more important role, then begin to slightly decrease in the last few continuation steps where the total variation dominates too much over Tikhonov regularization. While the decreasing of SNR in the latter part of the continuation procedure is not very significant, we can see obvious differences visually as showed in the third and fourth rows. Specially, we plot the
Fig. 1. Image deblurring experiment of FTVd 3.0. Top left: original image. Top right: blurred noisy image. Second row: SNRs of the results of each continuation step. Left of third row: intermediate result of highest SNR. Right of third row: the final solution. Four row: zoom in displays. We can see the intermediate result of the 6-th continuation step has slightly high SNR and significant reduced staircase than the pure TV solution.

Fig. 2. Image deblurring experiment of FTVd 4.0. Top left: original image. Top right: blurred noisy image. Second row: SNRs of the results of each iteration. Left of third row: intermediate result of highest SNR. Right of third row: the final solution. Four row: zoom in displays. We can see the intermediate result of the 3-th iteration has slightly high SNR and significant reduced staircase than the pure TV solution.

IV. Conclusion

In this paper, we have demonstrated that some of intermediate results of FTVd can empirically achieve better recovery quality than the final solution, which is expected to be the solution of the pure TV model (2). FTVd in fact solves a combined TV and Tikhonov regularized model (10). Either the continuation scheme in FTVd 3.0 or the method of multipliers in FTVd 4.0 can be reconsidered as a procedure to adjust the proportion of Tikhonov regularization compared with TV regularization from large to approaching null. Therefore, some intermediate results empirically achieve better recovery quality than the final solution, in terms of reduced staircase effect, when a proper balance between these two regularizations has been achieved.

Acknowledgment

This work was supported by the Natural Science Foundation of China, Grant Nos. 11201054, 91330201 and by the Fundamental Research Funds for the Central Universities ZYGX2012J118.
REFERENCES

[1] J. Yang, Y. Zhang, W. Yin, and Y. Wang, *FTVd: A Fast Algorithm for Total Variation based Deconvolution*, Rice University, 2008. [Online]. Available: http://www.caam.rice.edu/~optimization/L1/ftvd/

[2] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alternating minimization algorithm for total variation image reconstruction,” *SIAM J. Imag. Sci.*, vol. 1, no. 3, pp. 248–272, Aug. 2008.

[3] R. Courant, “Variational methods for the solution of problems with equilibrium and vibration,” *Bull. Amer. Math. Soc.*, vol. 49, pp. 1–23, 1943.

[4] R. Glowinski and A. Marrocco, “Sur lapproximation par elements finis dordre un, et la resolution par penalisation-dualite dune classe de problemes de dirichlet nonlineaires,” *Rev. Francaise dAut. Inf. Rech. Oper.*, vol. 2, pp. 41–76, 1975.

[5] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via finite-element approximations,” *Comput. Math. Appl.*, vol. 2, pp. 17–40, 1976.

[6] R. Glowinski and P. L. Tallec, *Augmented Lagrangian and operator-splitting methods in nonlinear mechanics*, Philadelphia,PA, 1989.

[7] J. Douglas and H. H. Rachford, “On the numerical solution of heat conduction problems in two and three space variables,” *Transactions of the American mathematical Society*, vol. 82, pp. 421–439, 1956.

[8] T. Goldstein and S. Osher, “The split bregman method for l1-regularized problems,” *SIAM J. Imag. Sci.*, vol. 2, pp. 323–343, 2009.

[9] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regularization method for total variational-based image restoration,” *SIAM Multiscale Model. and Simu.*, vol. 4, pp. 460–489, 2005.

[10] E. Esser, “Applications of Lagrangian based alternating direction methods and connections to split Bregman,” UCLA, CAM Report 09-31, 2009.

[11] C. Wu and X.-C. Tai, “Augmented lagrangian method, dual methods, and split bregman iteration for rof, vectorial tv, and high order models,” *SIAM J. Imag. Sci.*, vol. 3, no. 3, pp. 300–339, Jul. 2010. [Online]. Available: http://dx.doi.org/10.1137/090767558

[12] A. Gholami and S. M. Hosseini, “A balanced combination of tikhonov and total variation regularizations for reconstruction of piecewise-smooth signals,” *Signal Process.*, vol. 93, no. 7, pp. 1945–1960, Jul. 2013. [Online]. Available: http://dx.doi.org/10.1016/j.sigpro.2012.12.008

[13] A. Chambolle and P. L. Lions, “Image recovery via total variation minimization and related problems,” *Numer. Math.*, vol. 76, no. 2, pp. 167–188, 1997.

[14] T. Chan, S. Esedoglu, and F. Park, “A fourth order dual method for staircase reduction in texture extraction and image restoration problems,” in *Image Processing (ICIP), 2010 17th IEEE International Conference on*, 2010, pp. 4137–4140.

[15] J. Nocedal and S. J. Wright, *Numerical Optimization*, second edition ed. Springer, 2006.

[16] D. Strong and T. F. Chan, “Edge-preserving and scale-dependent properties of total variation regularization,” *Inverse Problems*, vol. 19, pp. 165–187, 2003.

[17] Y.-W. Wen and A. M. Yip, “Adaptive parameter selection for total variation image deconvolution,” *Numerical Mathematics: Theory, Methods and Applications*, vol. 2, no. 4, pp. 427–438, 2009.

[18] B. Jin and D. A. Lorenz, “Heuristic parameter-choice rules for convex variational regularization based on error estimates,” *SIAM J. Numer. Anal.*, vol. 48, no. 3, pp. 1208–1229, Aug. 2010. [Online]. Available: http://dx.doi.org/10.1137/100784369