The classical regime of a quantum universe obtained through a functional method.

Mario Castagnino
Instituto de Astronomía y Física del Espacio
Casilla de Correos 67, Sucursal 28.
1482 Buenos Aires, Argentina.

The functional method, introduced to deal with systems endowed with a continuous spectrum, is used to study the problem of decoherence and correlations in a simple cosmological model.

I. INTRODUCTION.

One of the most important problems of theoretical physics in the last years was to answer the question: How and in what circumstances a quantum system becomes classical? In spite of the great effort made by the physicists to find the answer, the problem is still alive and we are far from a complete understanding of many of its most fundamental features. In fact the most developed and sophisticated theory on the subject: histories decoherence is not free of strong criticisms.

Nevertheless there is an almost unanimous opinion that the classical regime is produced by two phenomena:

i. Decoherence, that in quantum systems, restore the boolean statistic typical of quantum mechanics and

ii.-Correlations, that circumvent the uncertainty relation at the macroscopic level.

But the techniques to deal with these two phenomena are not yet completely developed. One of the main problems is to find a proper and unambiguous definition of the, so called, pointer basis, where, decoherence takes place.

Our contribution to solve this problem is based in old ideas of Segal and van Howe, reformulated by Antoniou et al. We have developed these ideas in papers where we have shown how the Riemann-Lebesgue theorem can be used to prove the destructive interference of the off-diagonal terms of the state density matrix yielding decoherence. Using this technique we have found decoherence and correlations in simple quantum systems where we have defined the pointer basis in an unambiguous way.

On the other hand, the appearance of a classical universe in quantum gravity models is the cosmological version of the problem we are discussing. Then, decoherence and correlations must also appear in the universe. In this paper, using our method, we will solve this problem in a simple quantum-cosmological model and we will find:

i.-Decoherence in all the dynamical variables and in a well defined pointer basis.

ii.-Correlations, in such a way that the Wigner function of the asymptotic diagonal matrix can be expanded as:

\[
F_{W^*}(x, p) = \int p_{\{l\}|a} F_{W\{l\}|a}(x, p) d\{l\} da
\]

where \(F_{W\{l\}|a} \) is a classical density strongly peaked in a trajectory defined by the initial conditions \(a \) and the momenta \(l \) and \(p_{\{l\}|a} \) the probability of each trajectory. As the limit of quantum mechanics is not classical mechanics but classical statistical mechanics this is our final result: The density matrix is translated in a classical density, via a Wigner function, and it is decomposed as a sum of densities peaked around all possible classical trajectories, each one of these densities weighted by their own probability.

Thus our quantum density matrix behaves in its classical limit as a statistical distribution among a set of classical trajectories. Similar results are obtained in papers and .

II. THE MODEL.

Let us consider the flat Roberson-Walker universe (,) with a metric:

\[
ds^2 = a^2(\eta) (d\eta^2 - dx^2 - dy^2 - dz^2)
\]
where \(\eta \) is the conformal time and \(a \) the scale of the universe. Let us consider a free neutral scalar field and let us couple this field with the metric, with a conformal coupling \((\xi = \frac{1}{6}) \). The total action reads \(S = S_g + S_f + S_i \) and the gravitational action is:

\[
S_g = M^2 \int d\eta \left[-\frac{1}{2} \left(\dot{a}^2 - V(a) \right) \right]
\]

where \(M \) is the Planck mass, \(\dot{a} = da/d\eta \), and the potential \(V \) contains the a cosmological constant term and eventually the contribution of some form of classical matter. We suppose that \(V \) has a bounded support \(0 \leq a \leq a_1 \). We expand the field \(\Phi \) as:

\[
\Phi(\eta, x) = \int f_k e^{-ik \cdot x} dk
\]

where the components of \(k \) are three continuous variables.

The Wheeler De-Witt equation for this model reads:

\[
H \Psi(a, \Phi) = (h_g + h_f + h_i) \Psi(a, \Phi) = 0
\]

where:

\[
h_g = \frac{1}{2M^2} \dot{a}^2 + M^2 V(a)
\]

\[
h_f = -\frac{1}{2} \int (\partial_k^2 - k^2 f_k^2) dk
\]

\[
h_i = \frac{1}{2} m^2 a^2 \int f_k^2 dk
\]

being \(m \) is the mass of the scalar field, \(k/a \) is the linear momentum of the field, and \(\partial_k = \partial/\partial f_k \).

We can now go to the semiclassical regime using the WKB method ([15]), writing \(\Psi(a, \Phi) \) as:

\[
\Psi(a, \Phi) = \exp[iM^2 S(a)] \chi(a, \Phi)
\]

and expanding \(S \) and \(\chi \) as:

\[
S = S_0 + M^{-1} S_1 + ..., \quad \chi = \chi_0 + M^{-1} \chi_1 + ...
\]

To satisfy eq. (5) at the order \(M^2 \) the principal Jacobi function \(S(a) \) must satisfy the Hamilton-Jacobi equation:

\[
\left(\frac{dS}{da} \right)^2 = 2V(a)
\]

We can now define the (semi)classical time as a parameter \(\eta = \eta(a) \) such that:

\[
\frac{d}{d\eta} = \frac{dS}{da} \frac{da}{d\eta} = \pm \sqrt{2V(a)} \frac{d}{da}
\]

The solution of this equation is \(a = \pm F(\eta, C) \), where \(C \) is an arbitrary integration constant. Different values of this constant and of the \(\pm \) sign give different classical solutions for the geometry.

Then, in the next order of the WKB expansion, the Schroedinger equation reads:

\[
i \frac{d\chi}{d\eta} = h(\eta) \chi
\]

where:

\[
h(\eta) = h_f + h_i(a)
\]

precisely:
\[h(\eta) = -\frac{1}{2} \int \left[-\frac{\partial^2}{\partial f_k^2} + \Omega_k^2(a) f_k^2 \right] dk \]

(13)

where:

\[\Omega^2_m = m^2 a^2 + k^2 = m^2 a^2 + \varpi \]

(14)

where \(\varpi = k^2 \) and \(k = |k| \). So the time dependence of the hamiltonian comes from the function \(a = a(\eta) \).

Let us now consider a scale of the universe such that \(a_{out} \gg a_1 \). In this region the geometry is almost constants. Therefore we have an adiabatic final vacuum \(|0\rangle \) and adiabatic creation and annihilation operators \(a_k^\dagger \) and \(a_k \). Then \(h = h(a_{out}) \) reads:

\[h = \int \Omega_m a_k^\dagger a_k dk \]

(15)

We can now consider the Fock space and a basis of vectors:

\[|k_1, k_2, ..., k_n, ... \rangle \sim |\{k\} \rangle = a_k^\dagger a_{k_2}^\dagger ... a_{k_n}^\dagger |0\rangle \]

(16)

where we have called \(\{k\} \) to the set \(k_1, k_2, ..., k_n, ... \). The vectors of this basis are eigenvectors of \(h \):

\[h|\{k\} \rangle = \omega|\{k\} \rangle \]

(17)

where:

\[\omega = \sum_{k \in \{k\}} \Omega_m = \sum_{k \in \{k\}} (m^2 a_{out}^2 + \varpi)^{\frac{1}{2}} \]

(18)

We can now use this energy to label the eigenvector as:

\[|\{k\} \rangle = |\omega, [k] \rangle \]

(19)

where \([k] \) is the remaining set of labels necessary to define the vector unambiguously. \(\{|\omega, [k] \rangle\} \) is obviously an orthonormal basis so eq. (15) reads:

\[h = \int \omega |\omega, [k] \rangle \langle \omega, [k]| d\omega d[k] \]

(20)

In the next section we will write this equation using a shorthand notation as:

\[h = \int \omega |\omega \rangle \langle \omega| d\omega \]

(21)

The dynamical variables \([k] \) will reappear in section IV.

III. ENERGY DECOHERENCE.

As we are dealing with a system with a continuous spectrum in \(\omega \), some care must be taken. If not the mathematical manipulations can contain multiplication of distribution and yield infinite meaningless results. In order to deal with this problem and to always work with usual functions (not distribution) a functional method was introduced in papers [7] and [8], that we will now review. The method was used to show the decoherence and the existence of correlations in ordinary quantum mechanical systems [9] and we will use it in our problem.

The physical basis of the method is the following: The states of the universe are only known and measure trough a measurement process where a space of observables \(\mathcal{O} \) is used. For any observable \(O \in \mathcal{O} \) we can only measure the mean value of this \(O \) in a state \(\rho \), namely:

\[\langle O \rangle_{\rho} = Tr(\rho^\dagger O) \]

(22)

Then we can consider that the states are linear functionals over the space of observables and write:
\[(O)_\rho = \rho |O| = (\rho |O) \]

Of course, the states would be endowed with extra some properties, so we will define a convex set of observables \(S \subset O' \), being this last space the dual of \(O \).

It is logical to ask that the hamiltonian \(h \) would be contained in the space of observables \(O \), then the observables must be defined generalizing eq. (23). This generalization, already used in papers [7] and [8], reads:

\[
O = \int O_\omega |\omega\rangle\langle \omega| d\omega + \int \int O_{\omega'\omega} |\omega\rangle\langle \omega'\omega'| d\omega d\omega' =
\]

where we have introduced a basis \(\{ |\omega\rangle, |\omega, \omega'\rangle \} \) of space \(O \) defined as:

\[
|\omega\rangle = |\omega\rangle \langle \omega|, \quad |\omega, \omega'\rangle = |\omega\rangle \langle \omega'|
\]

The terms \(O_\omega \) can be considered as the (singular) diagonal terms, while the terms \(O_{\omega'\omega} \) can be considered as the (regular) off-diagonal terms.

We can now define the cobasis \(\{ (\omega|, (\omega, \omega'|) \} \) of space \(O \) (namely the basis of space \(S \subset O' \)), that obviously satisfies the equations:

\[
(\omega|\omega') = \delta(\omega - \omega'), \quad (\omega, \omega'')|\omega', \omega'''\rangle = \delta(\omega - \omega')\delta(\omega'' - \omega''')
\]

and all other \((.|) = 0\).

Then if \(\rho \in S \) it can be expanded as:

\[
\rho = \int \rho_\omega (\omega|d\omega + \int \int \rho_{\omega'\omega'} (\omega, \omega'|d\omega d\omega'
\]

where \(\rho_\omega \geq 0, \rho_{\omega'\omega'} = \rho_{\omega'\omega}^{\ast} \). Moreover, the ordinary functions \(O_\omega, O_{\omega'\omega}, \rho_\omega, \) and \(\rho_{\omega'\omega'} \), must be endowed with certain properties in order to make all the equations of the formalism well defined. These properties are listed in [7] and they are assumed in this paper. Then:

\[
(\rho|O) = \int \rho_\omega O_\omega d\omega + \int \int \rho_{\omega'\omega} O_{\omega'\omega'} d\omega d\omega' \]

and from eq. (11):

\[
(\rho(\eta)|O) = \int \rho_\omega O_\omega d\omega + \int \int \rho_{\omega'\omega} O_{\omega'\omega'} e^{i(\omega - \omega')\eta} d\omega d\omega' \]

Then, when \(\eta \to \infty \), essentially from the Riemann-Lebesgue theorem (see [7] for details), we have:

\[
\lim_{\eta \to \infty} (\rho(\eta)|O) = \int \rho_\omega O_\omega d\omega = (\rho_\ast|O)
\]

where:

\[
(\rho_\ast| = \int \rho_\omega (\omega|d\omega
\]

is the equilibrium time-asymptotic state, which only contains the diagonal term. So we have proved the existence of decoherence in the energy.
IV. DECOHERENCE IN THE OTHER DYNAMICAL VARIABLES.

If we reintroduce the other dynamical variables in eq. (33) we obtain:

\[
\rho_s = \int \rho_{\omega[k][k']} \langle \omega, [k], [k'] | \omega, [k], [k'] \rangle d\omega d[k] d[k']
\]

where \(\{\omega, [k], [k']\}, \{\omega, \omega', [k], [k']\}\) is the cobasis \(\{\omega, [\omega], [\omega']\}\) but now showing the hidden \([k]\).

Let us observe that if we would use polar coordinates for \(k\) eq. (34) reads:

\[
\Phi(x, n) = \int \sum_{lm} \phi_{klm} dk
\]

where:

\[
\phi_{klm} = f_{k,l}(\eta, r) Y_{lm}(\theta, \varphi)
\]

As \(\rho^* = \rho_s\) then \(\rho_{\omega[k][k'] = \rho_{\omega[k][k']}}\) and therefore a set of vectors \(\{\omega, [l]\}\) exists such that:

\[
\int \rho_{\omega[k][k']} \omega, [l] || [k] || d[k'] = \rho_{\omega[l] || [l] || [k]}
\]

namely \(\{\omega, [l]\}\) is the eigenbasis of the operator \(\rho_{\omega[k][k']}\). Then \(\rho_{\omega[l]}\) can be considered as an ordinary diagonal matrix in the discrete indices like the \(l\) and the \(m\), and a generalized diagonal matrix in the continuous indices like \(k\). Under the diagonalization process eq. (33) is written as:

\[
\rho^* = \int U^{|l|}_k \rho_{|l| || [l]} U^{|l'|}_k \rho_{|l'| || [l']} \langle \omega, [l'], [l']' || [k], [k'] || d[k] d[k'] d[l] d[l'] d[l']' d[l']'
\]

where \(U^{|l|}_k\) is the unitary matrix used to perform the diagonalization and:

\[
\rho_{|l| || [l']} = \rho_{|l| || [l']} \delta_{l l'}
\]

where:

\[
\rho_{|l| || [l]} = \rho_{|l| || [l]} = \int U_{|l|}^{|k|} \rho_{|l| || [k]} U_{|l|}^{|| [k]} d[k] d[k']
\]

so we can define:

\[
\langle \omega, [l] || \omega, [l'] || [k] \rangle = \int U_{|l|}^{|k|} \langle \omega, [k], [k'] || U_{|l|}^{|| [k']} || d[k] d[k']
\]

We can repeat the procedure with vectors \(\langle \omega, \omega', [k], [k'] \rangle\) and obtain vector \(\langle \omega, [\omega'], [l] \rangle\). In this way we obtain a diagonalized cobasis \(\{\omega, [l]||\omega', [l]\}\). So we can now write the equilibrium state as:

\[
\rho_s = \int \rho_{\omega[l]} \omega, [l] || d\omega d[l]
\]

Since vectors \(\omega, [l]\) can be considered as diagonals in all the variables we have obtained decoherence in all the dynamical variables. This fact will become more clear once we study the observables related with this vector and introduce the notion of pointer basis.

3E.g.: We can deal with this generalized matrix rigging the space \(S\) and using the Gel’fand-Maurin theorem [16], this procedure allows us to define a generalized state eigenbasis for system with continuous spectrum. It has been used to diagonalize hamiltonians with continuous spectra in [17], [18], [19], etc.
So, let us now consider the observable basis \{|\omega, [l]\}, |\omega, \omega', [l]\}\} dual to the state cobasis \{(\omega, [l]), (\omega, \omega', [l])\}. From eq. (23) and as the \omega does not play any role in the diagonalization procedure we obtain:

\[|\omega, [l]\rangle = |\omega, [l]\rangle \langle \omega, [l]|, \quad |\omega, \omega', [l]\rangle = |\omega, [l]\rangle \langle \omega', [l]| \tag{41} \]

So in the basis \{|\omega, [l]\}, |\omega, \omega', [l]\}\} the hamiltonian reads:

\[\hat{h} = \int \omega |\omega, [l]\rangle d\omega [l] = \int \omega |\omega, [l]\rangle \langle \omega, [l]| d\omega [l] \tag{42} \]

Now, we can also define the operators:

\[\hat{L} = \int 1 |\omega, [l]\rangle d\omega [l] = \int 1 |\omega, [l]\rangle \langle \omega, [l]| d\omega [l] \tag{43} \]

that can also be written:

\[L_i = \int l_i |\omega, [l]\rangle d\omega [l] = \int l_i |\omega, [l]\rangle \langle \omega, [l]| d\omega [l] \tag{44} \]

where \(i \) is an index such that it covers all the dimension of the \(l \). Now we can consider the set \((\hat{h}, L_i) \), which is a CSFO, since all the members of the set commute, because they share a common basis and find the corresponding eigenbasis of the set, precise \(|\omega, [l]\rangle \) since [3]:

\[\hat{h} |\omega, [l]\rangle = \omega |\omega, [l]\rangle \tag{45} \]

\[L_i |\omega, [l]\rangle = l_i |\omega, [l]\rangle \tag{46} \]

Of course the \(L_i \) are constant of the motion because they commute with \(\hat{h} \).

From all these equations we can say that:

i.- \((\hat{h}, L_i) \) is the pointer CSFO.
ii.- \(\{|\omega, [l]\}, |\omega, \omega', [l]\}\} \) is the pointer observable basis.
iii.-\(\{(\omega, [l]), (\omega, \omega', [l])\} \) is the pointer states cobasis.

In fact, from eq. (11) we see that the final equilibrium state has only diagonal terms in this state (those corresponding to vectors \((\omega, [l]) \)), it has not off-diagonal terms (those corresponding to vectors \((\omega, \omega', [l]), (\omega, [k], [k']) \), or \((\omega, \omega', [k], [k']) \)), and therefore we have decoherence in all the dynamical variables.

V. CORRELATIONS.

As it was explained in paper [3] correlations are computed in the limit of small \(\hbar \). Under this assumption it is demonstrated that for each observable (e. g.: momenta or energy) we can find a canonically conjugated dynamical variable (e. g.: configuration variables or the hand of a clock, namely time), if we neglect \(O(\hbar) \) terms. So we will use these approximated canonically conjugated variables in this section, since, we repeat, we are only interested in observational conditions where \(\hbar \) can be considered very small.

Accordingly with this idea the canonically conjugated variable of \(\hat{h} \) would be essentially \(\eta \), but since \(\rho_\pi \) is a \(\pi \)-constant, the time variable is completely unimportant in this section (we will discuss this matter further on section 6.3.). Let us call \(a_\omega \) the canonically conjugated variable (precisely “conjugated variable up to \(O(\hbar) \) terms”) of the observable \(L_i \). Then, \((a_i) \) will be our configuration variables and \((L_i) \) our momentum variables. (We will call \(x, p \) to the old variables of eq. (2) and \(\xi \) or \(a \) to the new configuration variable and \(\pi \) or \(l \) to the new momentum variables).

Using these new variables we will compute the Wigner function [31] corresponding to the operator \(\rho_\pi \). We can also use the usual transcription rules:

\[h \to i \frac{\partial}{\partial \eta}, \quad L_i \to -i \frac{\partial}{\partial a_i} \tag{47} \]

In some occasions we will call \(h = L_0 \) and \(\omega = l_0 \).
since the difference with respects to other transcription rules in other coordinates is just a $O(\hbar)$. Then:

$$
\langle \eta, [\Delta a + a_0] \mid \omega \rangle = e^{i(\omega \eta + 1\ast \Delta a)} \langle 0, [a_0] \mid \omega \rangle
$$

(48)

But we will only consider the state of affairs for $\eta = 0$. We will call:

$$
[a] = [\Delta a + a_0], \quad \{l\} = (\omega, [l]), \quad \pi = (\omega, [\pi])
$$

(49)

where, in the second and third equations we have restored the notation of eq. (16). With this notation and for $\eta = 0$, eq. (48) reads:

$$
\langle [a] \mid \{l\} \rangle = e^{i\Delta a \ast 1 \{l\}}
$$

(50)

The Wigner function corresponding to matrix ρ_* reads:

$$
F_{W*}(x, p) = F_{W*}(\xi, \pi) \sim \int_{-\infty}^{\infty} \langle \eta, [l] \mid \xi - \eta \rangle \rho_* \langle \xi + \eta \rangle e^{2i\pi \eta} d[\eta]
$$

(51)

Then from eqs. (10) and (44) (and eq. (45), written for the spatial coordinates for the continuous indices, see details in [3]) we have:

$$
F_{W*}(x, p) \sim \int \ldots \int_{-\infty}^{\infty} \rho_{\{l\}} \langle \xi - \eta \rangle \langle \{l\} \mid \xi + \eta \rangle e^{2i\pi \eta} =
$$

$$
\int \ldots \int_{-\infty}^{\infty} \rho_{\{l\}} \langle \xi - \eta \rangle \langle \{l\} \mid [a_0] \rangle e^{2i\pi \eta} \sim
$$

$$
\int d[\eta] \rho_{\{l\}} \langle \{l\} \mid [a_0] \rangle^2 \delta(\pi - [l])
$$

(52)

where the probability $\langle \{l\} \mid [a_0] \rangle$ has been called with the more familiar (but not rigorous) symbol $\langle \{l\} \mid [a_0] \rangle^2$ (that turns out to be rigorous only for the discrete l) [3]. The $\delta(\pi - [l])$ does not contain the energy. But in the footnote of section 6.3 we will prove that a δ–term in the energy can also be added, so finally:

$$
F_{W*}(x, p) \sim \int d[\eta] \rho_{\{l\}} \langle \{l\} \mid [a_0] \rangle^2 \delta(\pi - [l]) = \int d[\eta] \rho_{\{l\}} \langle \{l\} \mid [a_0] \rangle^2 \prod_{i=0}^{l} \delta(\pi_i - l_i)
$$

(53)

The last equation can be interpreted as follows:

i. $\delta(\{p\} - \{l\})$ is a classical density function, strongly peaked at certain values of the constants of motion $\{l\}$, corresponding to a set of trajectories, where the momenta are equal to the eigenvalues of eqs. (48) and (49), namely $\pi_i = l_i$ ($i = 0, 1, 2, \ldots$). This fact already shows the presence of correlations in our model. In fact: We can consider each set of trajectories labelled by $\{l\}$ (i.e. a “history” obtained using some apparatuses that measure only the momenta) and prove that in these trajectories the usual coordinate x and the usual momentum p are correlated as it is allowed by the uncertainty principle (see [3]). For the conjugated variables l and a, l is completely defined and a is completely undefined, satisfying also the uncertainty principle.

ii. $\rho_{\{l\}}$ is the probability to be in one of these sets of trajectories labelled by $\{l\}$. Precisely: if some initial density matrix is given, from eq. (48) it is evident that its diagonal terms $\rho_{\{l\}}$ are the probabilities to be in the states $\langle \omega, [l] \rangle$ and therefore the probability to find, in the corresponding classical equilibrium density function $F_{W*}(x, p)$, the density function $\delta(\{p\} - \{l\})$, namely the set of trajectories labelled by $\{l\} = (\omega, [l])$.

5We see that ξ disappears from the equation, so $F_{W*}(\xi, \pi)$ is neither a function of the position ξ nor of the conventional origin a_0. This is a consequence of the spatial homogeneity of the model we are studying. Moreover, it can also be seen that if we use eq. (18) with $\eta \neq 0$ the function $F_{W*}(\xi, \pi)$ is a constant of η (as it should be). So, essentially, in all this section we are dealing with functions that are constants in time.
iii. The factor $|\langle a_0 | \{ l \} \rangle|^2$ corresponds to the probability that one of the trajectories $\{ l \}$ would pass by a_0 at time $\eta = 0$ and it can easily be computed from the model.

iv. Therefore $p(\{ l \}|\{ a_0 \}) |\{ l \} |^2 = p(\{ l \}|a_0)$ is the probability that, given an initial density matrix, a trajectory, with constant of the motion $\{ l \}$ would pass by the point a_0 at time $\eta = 0$, and then it would follow the classical trajectory:

$$ a = l\eta + a_0 $$

But, really $p(\{ l \}|a_0)$ is not a function of a_0, it is simply a constant in a_0 (as explained in a previous footnote) since this is only an arbitrary point and our model is spatially homogenous, we can write:

$$ p(\{ l \}|a_0) = \int p(\{ l \}|a_0) \prod_{i=1} \delta(\xi_i - a_{0i}) d[a_0] $$

in this way we have changed the role of a_0, it was a fixed (but arbitrary) point and it is now a variable that moves all over the space. Then eq. (53) reads:

$$ F_{W*}(x,p) \sim \int p(\{ l \}|a_0) \prod_{i=0} \delta(\pi_i - l_i) \prod_{j=1} \delta(\xi_j - a_{0j}) d[a_0] d\{ l \} $$

So if we call :

$$ F_{W_l}(x,p) = \prod_{i=0} \delta(\pi_i - l_i) \prod_{j=1} \delta(\xi_j - a_{0j}) $$

we have:

$$ F_{W*}(x,p) \sim \int p(\{ l \}|a_0) F_{W_l}(x,p) d[a_0] d\{ l \} $$

From eq. (55) we see that $F_{W_l}(x,p) \neq 0$ only in a narrow strip around the classical trajectory defined by the momenta $\{ l \}$ and passing through the point $[a_0]$ (really the density function is as peaked as it is allowed by the uncertainty principle, so its width is essentially a $O(\hbar)$, since the $\delta-$functions of all the equation are really Dirac’s deltas when $\hbar \to 0$) These trajectories explicitly show the presence of correlations in our model. So we have proved eq. (58) which, in fact, it is eq. (1) as announced.

Then we have obtained the classical limit. When $\eta \to \infty$ the quantum density ρ becomes a diagonal density matrix ρ_*. The corresponding classical distribution $F_{W*}(x,p)$ can be expanded as a sum of classical trajectories density functions $F_{W_l}(x,p)$, each one weighted by its corresponding probability $p(\{ l \}|a_0)$. So, as the limit of our quantum model we have obtained a statistical classical mechanical model, and the classical realm appears.

6 From the spatial homogeneity of the problem and the usual normalization we have $(\{ l \}|a_0) = |\langle a_0 | \{ l \} \rangle|^2 \sim \omega^{-n}$, being n the particle number.

7 Of course, our "trajectories" are not only one trajectory for a one particle state, but they are n trajectories (each one corresponding to a momenta $(l_1, l_2, \ldots l_n) = \{ l \}$ and passing by a point $(a_1, a_2, \ldots a_n) = [a]$ for the n particle states. As $p(\{ l \}|a) \sim \omega^{-n}$ the probability decreases with the particle number and the energy.

8 In this section we have faced the following problem:

$F_{W*}(x,\pi)$ is a ξ constant that we want to decompose in functions $F_{W_l}(x,p)$ which are different from zero only around the trajectory and therefore are variables in ξ.

Then, essentially we use the fact that if $f(x,y) = g(y)$ is a constant function in x we can decompose it as:

$$ g(y) = \int g(y) \delta(x-x_0) dx_0 $$

namely the densities $\delta(x-x_0)$ are peaked in the trajectories $x = x_0 = const.$, $y = var.$ and, therefore, are functions of x. This trajectories play the role of those of eq. (55).

As all the physics, including the correlations, is already contained in eq. (53) (as explained in point i) the reader may just consider the final part of this section, from eq. (53) to eq. (58) a didactical trick.
VI. DISCUSSION AND COMMENTS.

A. Characteristic times.

The decaying term of eq. \(29\) (i.e., the second term of the r.h.s.) can be analytically continued using the techniques explained in papers \([7, 14, 19]\). In these papers it is shown that each pole \(z_i = \omega_i - i\gamma_i\), of the S-matrix of the problem considered, originates a damping factor \(e^{-\gamma t}\). Then, if \(\gamma = \min(\gamma_i)\) the characteristic decoherence time is \(\gamma^{-1}\). This computation is done in the specific models of papers \([14]\). If \(\gamma \ll 1\), even if the Riemann-Lebesgue theorem is always valid, there is no practical decoherence since \(\gamma^{-1} \gg 1\).

B. Sets of trajectories decoherence.

It is usual to say that in the classical regime there is decoherence of the set trajectories labelled by the constant of the motion \(\omega, [l]\). This result can easily be obtained with our method in the following way.

i.- Let us consider two different states \([\omega, [l]]\) and \([\omega', [l']]\) that will define classes of trajectories with different constants of the motion \((\omega, [l]) \neq (\omega', [l'])\). We must compute:

\[
\langle \omega|l\rangle \rho_\omega \langle \omega'|l'\rangle = (\rho_\omega |\omega|l) = \left[\int \rho_{\omega''|l'}(\omega''|l')d\omega''d[l'] \right] |\omega\omega|l\rangle = 0
\]

due to the orthogonality of the basis \{\((\omega, [l]), (\omega', [l'])\)\} .

ii.- But if we compute:

\[
\langle \omega|l\rangle \rho_\omega |\omega|l\rangle = (\rho_\omega |\omega|l) = \left[\int \rho_{\omega''|l'}(\omega''|l')d\omega''d[l'] \right] |\omega\omega|l\rangle = 0
\]

\[
\int \rho_{\omega''|l'}\delta(\omega - \omega'')\delta([l] - [l'])d\omega''d[l'] = \rho_{\omega|l} \neq 0
\]

The last two equations complete the demonstration. We will discuss the problem of the decoherence of two trajectories, with the same \([l]\) but different \([a_0]\) in subsection 6.4.

C. A discussion on time decoherence.

It is well known that one of the main problems of quantum gravity is the problem of the time definition (see \([21]\)). A not well studied feature of this problem is that, there must be a decoherence process related with time, since time is as a classical variable. In this subsection, using the functional technique, we will give a model that shows that this is the case. (but we must emphasize that this subject is not completely developed).

We must compute \(\langle \eta|\rho_\eta|\eta'\rangle\) where \(|\eta\rangle\) and \(|\eta'\rangle\) are two states of the system for different times that evolve as \(\hat{\eta}^t\):

\[
|\eta\rangle = e^{-i\hbar\eta}|0\rangle
\]

\(|\eta\rangle\langle\eta'|\) can be considered as an observable, then:

\[
\langle \eta'|\rho_\eta|\eta\rangle = (\rho_\eta |\eta\rangle\langle\eta'|)
\]

But:

\[
(\omega|\eta\rangle\langle\eta'|) = (\omega|e^{-i\hbar\eta}|0\rangle\langle0|e^{i\hbar\eta'} = [e^{i\hbar\eta'}(\omega|e^{-i\hbar\eta}|0\rangle \langle0|]
\]

Now, for any observable \(O\) we have:

\(^9\text{Cf. eq. (18)}\) and remember that therefore in this subsection we are dealing with equations only valid when \(\hbar \to 0\).
\[
e^{ih\eta}(\omega|e^{-ih\eta})|O\rangle = \left[e^{ih\eta}(\omega|e^{-ih\eta}) \right] \int O_{\omega'}|\omega'\rangle d\omega' + \int \int O_{\omega',\omega''}|\omega',\omega''\rangle d\omega' d\omega'' = \\
e^{ih\eta}(\omega|e^{-ih\eta}) \left[\int O_{\omega'}|\omega'\rangle d\omega' + \ldots = (\omega|\int O_{\omega'} e^{-i\omega'|\omega'}\rangle e^{i\omega'|\eta'} \rangle d\omega' \right] = e^{-i(\eta'-\eta)}(\omega|O)\] (64)

Thus
\[
(\omega||\eta)(\eta') = e^{-i\omega(\eta'-\eta)}(\omega||0)(0)\] (65)

So now we can compute the following two cases:

i.-
\[
\langle \eta'|\rho_+|\eta \rangle = (\rho_+||\eta)(\eta') = [\int \rho_\omega(\omega|d\omega)||\eta\rangle\langle \eta'\rangle] = \int \rho_\omega e^{-i\omega(\eta'-\eta)}(\omega||0)(0)\rangle d\omega \rightarrow 0 \] (66)

when \(|\eta' - \eta| \rightarrow \infty\), due to the Riemann-Lebesgue theorem.

ii.- Analogously:
\[
\langle \eta|\rho_+|\eta \rangle = \int \rho_\omega(\omega||0)(0)\rangle d\omega \neq 0 \] (67)

So we have time decoherence for two times \(\eta\) and \(\eta'\) if they are far enough.

This result is important for the problem of time definition, since in order to have a reasonable classical time this variable must first decohere. The result above shows that this is the case for \(\eta\) and \(\eta'\) far enough, but also that, for closer times (namely such that their difference is smaller than Planck’s time) there is no decoherence and time cannot be considered as a classical variable. Classical time is a familiar concept but the real nature of the non-decohered quantum time is opened to discussion.

D. Decoherence in the space variables.

Now that we know that there is time decoherence we can repeat the reasoning for the rest of the variables \(\xi\) at time \(\eta = 0\) and changing eq. (61) by:
\[
|\xi\rangle = e^{i\xi \cdot l}|0\rangle \] (68)

and we will reach to the conclusions:

i.-
\[
\langle \xi'|\rho_+|\xi \rangle \rightarrow 0 \] (69)

when \(|\xi - \xi'| \rightarrow \infty\).

ii.-
\[
\langle \xi|\rho_+|\xi \rangle \neq 0 \] (70)

therefore there is also decoherence between two trajectories with the same \(|l\) but different \([a_0]\).

These facts complete the scenario about decoherence and correlations.

10 Considering this equation and repeating the procedure done, from eq. (51) to eq. (53), we can see that there is an extra \(\delta\)-factor \(\delta(\pi_0 - l_0)\) related with the energy. Therefore the trajectories described in section 5 conserve, not only the momenta \(l\), but also the energy \(h\).
VII. CONCLUSION.

After the WKB expansion and the decoherence and correlations process our quantum model has:

i.- A defined classical time \(\eta \) and a defined classical geometry related by eq. (11).

ii.- Decoherence has appeared in a well defined pointer basis.

iii.- The quantum field has originated a classical final distribution function (eq. (58)) that is a weighted average of some set densities, each one related to a classical trajectory. The weight coefficients are the probabilities of each trajectory.

We can foresee that if instead of a spinless field we would coupled the geometry with a spin 2 metric fluctuation field the result would be more or less the same. Then the corresponding quantum fluctuations would become classical fluctuations that would correspond to matter inhomogeneities (galaxies, clusters of galaxies, etc.) that will move along the trajectories described above. But this subject will be treated elsewhere with great detail.

VIII. ACKNOWLEDGMENTS.

This work was partially supported by grants CI1*-CT94-0004 and PSS* — 0992 of the European Community, PID 3183/93 of CONICET, EX053 of the Buenos Aires University, and also grants from Fundación Antorchas and OLAM Foundation.

[1] W. Zurek, Preferred sets of states, predictability, classicality and environment induced decoherence, in "The Physical Origin of Time Asymmetry", J. J. Halliwell et al. eds., Cambridge University Press, Cambridge, 1994.
[2] D. Giuliani et al., Decoherence and the appearance of classical world in quantum theory, Spinger Verlag, Berlin, 1996.
[3] F. Dowker, A. Kent. On the histories approach to quantum mechanics, gr-qc/9412067 V2, 1996.
[4] N. N. Bogolubov, A. A. Lugunov, I. T. Todorov, Introduction to axiomatic quantum filed theory. Benjamin, London, 1975.
[5] L. van Howe, Physica 23, 268, 1959.
[6] I. Antoniou et al., Physica 173, 737, 1997.
[7] R. Laura, M. Castagnino, Phys. Rev. A, 57, 4140, 1998.
[8] R. Laura, M. Castagnino, Phys. Rev. E, 57, 3948, 1998.
[9] M. Castagnino, R. Laura, submitted to Phys. Rev. A.
[10] A. Gangui, F. D. Mazzitelli, M. Castagnino, Phys. Rev. D 43, 1853, 1991.
 M. Castagnino, A. Gangui, F. D. Mazzitelli, I. I. Tkachev, Class. Quant. Grav., 10, 2495, 1993.
[11] J. Halliwell, A. Zouppas, Phys. Rev. D, 1995.
[12] Polarsky, A. A. Starobinsky, preprint unpublished, 1997.
[13] J. P. Paz, S. Sinha, Phys. Rev. D., 44, 1038, 1991.
[14] M. Castagnino, Phys. Rev. D, 57, 750, 1998.
 M. Castagnino, E. Gunzig, F. Lombardo., Gen. Rel. Grav., 27, 257, 1995.
 M. Castagnino, F. Lombardo, Gen. Rel. Grav., 28, 263, 1996.M. Castagnino, E.
[15] J. Hartle, in High energy physics, 1985, Proceeding of the Yale Summer School, N. J. Bowik, F. Gursey Eds. World Scientific, Singapore, 1985.
[16] G. Parravicini, V. Gorini, E. C. G. Sudarshan, Jour. Math. Phys. 21, 2208, 1980.
[17] A. Bohm, Quantum mechanics, foundations and applications, Springer-Verlag, 1986.
[18] M. Castagnino, F. Gaioli, E. Gunzig, Found. Cos. Phys., 16, 221, 1996
[19] M. Castagnino, R. Laura, Phys. Rev. A, 56, 108, 1997.
[20] M. Hillery, R. O’Connell, M. Scully, E. Wigner, Phys. Rep., 106, 123, 1984.
[21] M. Castagnino, Phys. Rev. D, 39, 2216, 1989.
 M. Castagnino, F. D. Mazzitelli, Phys. Rev. D, 42, 482, 1990.
 M. Castagnino, F. Lombardo, Phys. Rev. D, 48, 1722, 1993.
K. Kuchar, Time and interpretation of quantum gravity, Proceeding of the Canadian Conference on General Relativity and Relativistic Astrophysics, G. Kunstatter et al. eds. World Scientific, Singapore, 1992.
C. Isham, in Recent problems in mathematical physics, Salamanca 1992 (unpublished).