Evaluation of anti-inflammatory effects of green tea and black tea: A comparative in vitro study

Priyanka Chatterjee, Sangita Chandra, Protapaditya Dey, Sanjib Bhattacharya
Pharmacognosy Division, Bengal School of Technology (A College of Pharmacy), Sugandha, Hooghly, West Bengal, India

Abstract
The present study was conducted to evaluate and compare the anti-inflammatory effects of aqueous extracts of green tea and black tea leaves (Camellia sinensis) against the denaturation of protein in vitro. The test extracts at different concentrations were incubated with egg albumin under controlled experimental conditions and subjected to determination of absorbance to assess the anti-inflammatory property. Diclofenac sodium was used as the reference drug. The present results exhibited a concentration-dependent inhibition of protein (albumin) denaturation by both the tea extracts. From the present findings it can be concluded that both green and black tea leaves possessed a marked anti-inflammatory effect against the denaturation of protein, in vitro. Green tea was found to be more active than black tea, plausibly due to the higher flavonoid contents of green tea.

Key words: Anti-inflammatory, green tea, polyphenols, protein denaturation

INTRODUCTION

The inflammatory process is the response to an injurious stimulus evoked by a wide variety of noxious agents, for example, infections, antibodies or physical injuries. Inflammation is a bodily response to injury, infection or destruction, characterized by heat, redness, pain, swelling and disturbed physiological functions. Inflammation is a normal protective response to tissue injury caused by physical trauma, noxious chemical or microbial agents. It is the body response to inactivate or destroy the invading organisms, to remove the irritants, and set the stage for tissue repair. It is triggered by the release of chemical mediators from injured tissue and migrating cells.[1] The commonly used drug for the management of inflammatory conditions are non-steroidal anti-inflammatory drugs (NSAIDs), which have several adverse effects especially gastric irritation leading to the formation of gastric ulcers.[2,3] Natural products have contributed significantly towards the development of modern medicine. Of late, traditional medicine is being re-evaluated worldwide, by extensive research on different plant species and their active therapeutic principles. The rich wealth of the plant kingdom can represent a novel source of newer compounds with significant anti-inflammatory activities. The major merits of herbal medicine seem to be their perceived efficacy, low incidence of serious adverse effects, and low cost.

Tea, a product made from the leaf and bud of the plant, Camellia sinensis, is the second most consumed beverage in the world.[4] Camellia sinensis is a large evergreen shrub indigenous to Eastern Asia, where it is cultivated extensively. The dried, cured leaves of C. sinensis have been used to prepare beverages for more than 4000 years. The method of curing determines the nature of the tea to be used for infusion. Green tea is a type of cured tea that is ‘non fermented’ and produced by drying and steaming the fresh leaves; whereas, black tea leaves are withered, rolled, fermented, and then dried.[5] Tea has been used medicinally for centuries in the Traditional Chinese Medicine (TCM). In recent times, there has been renewed interest in green tea, for the prevention of several disease risks and other important health benefits.[6] Previous researchers have reported the effects of several pharmacological and toxicological properties of green tea and black tea on animals and
humans, including anti-inflammatory activities. In the present study it has been found worthwhile to evaluate and compare the possible anti-inflammatory effect of green tea and black tea against the denaturation of protein, in vitro, as their anti-inflammatory effects have not been studied in this model so far.

MATERIALS AND METHODS

Plant Materials
Packaged green tea and black tea leaves were procured in the month of July, 2011, from Desai and Sons, Ezra Street, Kolkata 700001, India. Just after procurement, both type of tea leaves were ground mechanically into fine powder and kept into an air-tight container for use in the study.

Preparation of Extracts
The powdered plant materials (50 g) were extracted with distilled water (350 mL) by boiling under reflux for 30 minutes. The extracts were filtered and evaporated to dryness to yield the dry extracts of green tea (AQGT, yield: 51.28%) and black tea (AQBT, yield: 17.45%). The dry extracts were kept in a vacuum desiccator until use.

Evaluation of Anti-inflammatory Effect in vitro
The reaction mixture (5 mL) consisted of 0.2 mL of egg albumin (from fresh hen’s egg), 2.8 mL of phosphate-buffered saline (PBS, pH 6.4) and 2 mL of varying concentrations of AQGT and AQBT so that final concentrations became 31.25, 62.5, 125, 250, 500, 1000 μg/mL. A similar volume of double-distilled water served as the control. Next, the mixtures were incubated at 37 ± 2°C in a BOD incubator (Labline Technologies) for 15 minutes and then heated at 70°C for five minutes. After cooling, their absorbance was measured at 660 nm (SHIMADZU, UV 1800) by using the vehicle as a blank. Diclofenac sodium in the final concentrations of 78.125 to 2500 μg/mL, was used as a reference drug which also exhibited concentration-dependent inhibition of protein denaturation [Table 2]. The IC$_{50}$ values are summarized in Table 3. Here, AQGT was found to be more effective than AQBT; however, the effect of diclofenac sodium was found to be quite low when compared with both the test tea extracts. This was further confirmed by comparing their IC$_{50}$ values [Table 3].

The increments in the absorbance of the test samples, with respect to the control, indicated stabilization of protein, that is, inhibition of protein (albumin) denaturation or an anti-denaturation effect by the tea extracts and the reference drug, diclofenac sodium. Tea leaves contain varying amounts of polyphenols

RESULTS AND DISCUSSION

There are certain problems associated with the use of animals in experimental pharmacological research, such as, ethical issues and the lack of rationale for their use when other suitable methods are available, or can be investigated. Hence, in the present study the protein denaturation bioassay was selected for in vitro assessment of the anti-inflammatory property of the aqueous extracts of green tea and black tea (AQGT and AQBT). Denaturation of the tissue proteins is one of the well-documented causes of inflammatory and arthritic diseases. Production of auto-antigens in certain arthritic diseases may be due to denaturation of proteins in vitro. Therefore, using agents that can prevent protein denaturation would be worthwhile for anti-inflammatory drug development.

In the present investigation, the in vitro anti-inflammatory effect of AQGT and AQBT was evaluated against denaturation of egg albumin. The results are summarized in Table 1. The present findings exhibited a concentration-dependent inhibition of protein (albumin) denaturation by AQGT and AQBT, throughout the concentration range of 31.25 to 1000 μg/mL. Diclofenac sodium, in the concentration range of 78.125 to 2500 μg/mL, was used as a reference drug which also exhibited concentration-dependent inhibition of protein denaturation [Table 2]. The IC$_{50}$ values are summarized in Table 3. Here, AQGT was found to be more effective than AQBT; however, the effect of diclofenac sodium was found to be quite low when compared with both the test tea extracts. This was further confirmed by comparing their IC$_{50}$ values [Table 3].

Concentration (μg/mL)	% Inhibition (AQGT)	% Inhibition (AQBT)
Control	-	-
31.25	220	140
62.5	320	180
125	620	220
250	1100	700
500	2480	1540
1000	4980	2480

AQGT: Aqueous extract of green tea, AQBT: Aqueous extract of black tea

Concentration (μg/mL)	% Inhibition
Control	-
78.125	12.5
156.25	12.5
312.5	25
625	50
1250	212.5
2500	812.5

AQGT: Aqueous extract of green tea, AQBT: Aqueous extract of black tea

Table 1: Effect of AQGT and AQBT against protein denaturation.

Table 2: Effect of diclofenac sodium against protein denaturation.
particularly flavonoids. Polyphenols are well-known natural products known to possess several notable biological properties.\[17\] Black tea and green tea both contain almost a similar amount of flavonoids, however, they differ in their chemical composition; green tea contains more catechins (simple flavonoids), while the oxidation undergone by the leaves, in order to make black tea, polymerizes these simple flavonoids into theaflavins and thearubigins (polymerized flavonoids).\[8,18\] In the present study, the higher anti-inflammatory effect of green tea can be attributed to its higher flavonoids (catechin) content. The effect may be due to the synergistic effect rather than a single constituent.

It has been reported that one of the features of several non-steroidal, anti-inflammatory drugs, is their ability to stabilize (prevent denaturation) heat-treated albumin at the physiological pH (pH: 6.2 – 6.5).\[19\] Therefore, from the results of the present preliminary study, it can be concluded that both green and black tea leaves possess a marked anti-inflammatory effect against the denaturation of protein \textit{in vitro}. Previous researchers have reported the anti-inflammatory activity of both green tea and black tea.\[9,32\] The present findings corroborated this property \textit{in vitro}, against this protein denaturation model. This correlation is further strengthened by the fact that the present study was performed in a different model, in which it has not been studied earlier. It is suggested that the anti-inflammatory effect of tea leaves could be further evaluated in other experimental models.

ACKNOWLEDGEMENT

The authors are thankful to the authority of the Bengal School of Technology (A College of Pharmacy), Sugandha, Hooghly, 712102, West Bengal, India, for providing the necessary facilities for the present study.

REFERENCES

1. Anonymous. New medical dictionary. 2nd ed. New Delhi: Oxford and IBH Publishing Co. Pvt. Ltd.; 2005.
2. Tripathi KD. Essentials of medical pharmacology. 6th ed. New Delhi: Jaypee Brother’s Medical Publishers (P) Ltd.; 2008.
3. Bennett PN, Brown MJ. Clinical pharmacology. New Delhi: Churchill Livingstone; 2005.
4. Kietveld A, Wiseman S. Antioxidant effects of tea: evidence from human clinical trials. J Nutr 2003;133:3279-3284.
5. Duke JA, Bogenschuz-Godwin MJ, duCellier J. Duke PK. Handbook of medicinal plants. Boca Raton: CRC Press; 2002.
6. DerMarderosian A. The reviews of natural products. Missouri: Facts and Comparisons; 2001.
7. McKay DL, Blumberg JB. The role of tea in human health: An update. J Am Coll Nutr 2002;21:1-13.
8. Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea - a review. J Am Coll Nutr 2006;25:79-99.
9. Aneja R, Odoms K, Denenberg AG, Wong HR. Theaflavin, a black tea extract, is a novel anti-inflammatory compound. Crit Care Med 2004;32:2097-103.
10. Nag Chaudhuri AK, Karmakar S, Roy D, Pal S, Pal M, Sen T. Anti-inflammatory activity of Indian black tea (Sikkim variety). Pharmacol Res 2005;51:169-75.
11. Tipoe GL, Leung TM, Hung MW, Fung ML. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc Hematol Disord Drug Targets 2007;7:135-44.
12. Cavet ME, Harrington KL, Vollmer TR, Ward KW, Zhang JZ. Anti-inflammatory and anti-oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells. Mol Vis 2011;17:533-42.
13. Chandra S, Chatterjee P, Dey P, Bhattacharya S. Evaluation of anti-inflammatory effect of ashwagandha: a preliminary study \textit{in vitro}. Phcog J 2012;4:47-9.
14. Opie EL. On the relation of necrosis and inflammation to denaturation of proteins. J Exp Med 1962;115:597-608.
15. Umapathy E, Ndebia EJ, Meeme A, Adam B, Menziwa P, Nkem-Chungag, BN, et al. An experimental evaluation of \textit{Albuca setosa} aqueous extract on membrane stabilization, protein denaturation and white blood cell migration during acute inflammation. J Med Plants Res 2010;4:789-95.
16. Jagtap VA, Agasimundim YS, Jayachandran E, Sathe BS. \textit{In vitro} anti-inflammatory activity of 2-amino-3-(substituted benzylidinecarbohydrazide)-4,5,6,7 tetrahydrobenzothiophenes. J Pharm Res 2011;4:378-79.
17. Bhattacharya S. Are we in the polyphenols era? Pharmacognosy Res 2011;3:147.
18. Graham H. Green tea consumption, consumption and polyphenol chemistry. Prev Med 1992;21:334-50.
19. Williams LAD, O’Connor A, Latore L, Dennis O, Ringer S, Whittaker JA, et al. The \textit{in vitro} anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals, in the early stages of the drug discovery process. West Indian Med J 2008;57:327-31.

How to cite this article: Chatterjee P, Chandra S, Dey P, Bhattacharya S. Evaluation of anti-inflammatory effects of green tea and black tea: A comparative \textit{in vitro} study. J Adv Pharm Tech Res 2012;3:136-8.

Source of Support: Nil, **Conflict of Interest**: Nil.