Physiological Characterization of Manzano Hot Pepper (Capsicum pubescens R & P) Landraces

Mario Pérez-Grajales, Víctor A. González-Hernández, Ma. Carmen Mendoza-Castillo, and Cecilia Peña-Valdívia
IRENAT, Colegio de Postgraduados 56230, Montecillo, Texcoco, Estado de México
Aureliano Peña-Lomelí and Jaime Sahagún-Castellanos
Departamento de Fitotecnia, Universidad Autónoma Chapingo, 56230, Chapingo, Edo. de México

Received for publication 19 Aug. 2002. Accepted for publication 5 Aug. 2003.

Abstract. Six manzano hot chile pepper landraces (Capsicum pubescens R & P) were evaluated to identify genotypes which might contribute toward obtaining superior hybrids by providing the following characteristics: low height, short internodes, rapid biomass accumulation, high harvest index, high fruit quality, and high photosynthetic rate. The landraces studied were ‘Chiapas’, ‘Huatusco I’, ‘Huatusco II’, ‘Perú’, ‘Puebla’, and ‘Zongolica’. Plants were grown in a shaded glasshouse for 9 months, with drip irrigation. Growth, biomass distribution, fruit quality and yield were determined. All varieties exhibited advantageous characteristics, i.e., large fruit (60 mL) with thick pericarp (4.2 mm) in ‘Puebla’; short internodes (10 cm) in ‘Zongolica’ and ‘Huatusco II’; high harvest index (0.24), high yield (18 to 19 t·ha–1) and high relative growth rates (0.12 g·g–1·d–1) in ‘Perú’ and ‘Puebla’; and high dry mass accumulation (450 g/plant) in ‘Chiapas’. The highest photosynthesis rate in manzano hot pepper was 7.7 μmol of CO₂/m²/s at 500 μmol photons/m²/s, in ‘Zongolica’ and ‘Puebla’.

Manzano hot chile pepper (Capsicum pubescens R & P) is a perennial plant that originated in the South American highlands of Bolivia, Perú and Chile. It was introduced into México at the beginning of the 20th century. This pepper is cultivated as an annual crop in small orchards associated with fruit trees for support and shading, at altitudes between 1700 and 2400 m (Pérez and Castro, 1998). It exhibits phenotypic variability regarding plant and fruit characteristics which are desirable in the initiation of a pepper breeding program. The yellow, apple-shaped fruit (three to four locules) are generally preferred over the orange or red, pear-shaped fruit (one to two locules).

Based on the increasing demand for this species in México and the United States, an intensive production system as an annual crop was developed for greenhouse conditions (Pérez and Castro, 1998). The evaluation of agronomic and physiological characteristics of existing landraces should help in the development of improved manzano varieties. Superior hybrids must produce high yields of high quality marketable fruit, have multiple insect and disease resistances, and exhibit a wide range of adaptability.

This research was initiated to evaluate physiological characteristics of six manzano hot pepper landraces to provide breeders with useful information for developing improved cultivars. An adequate physiological characterization can be achieved through plant growth analysis. According to Hunt (1990), this analysis allows the quantification of the joint effects of environmental and genetic factors influencing the production and distribution of dry mass during the growing season. It requires periodic measurements of the plant’s dry mass (DM) and leaf area (LA). With these data, growth efficiency indices of whole plants and their organs can be calculated, as well as the relationship between the assimilation apparatus and dry mass production (Evans, 1972).

Plant breeders use genotypic yield differences to carry out the selection process (Wallace et al., 1972). Since yield is a complex polygenic trait, plant breeding may be simplified by selecting simpler traits, such as fruit size and number (yield components), and physiological traits like LA, DM, and efficiency indices such as growth rate (GR), relative growth rate (RGR), etc. (Peña et al., 2002).

About 95% of the plant’s dry mass is made up of carbon compounds, so that fruit yield is closely linked to the net photosynthetic rate and to the subsequent photoassimilate distribution among the different organs in the plant (Gifford et al., 1984). In annual crops, Lambers and Porter (1992) estimated that >50% of the net CO₂ fixed by the leaves could be lost through respiration, and the energy required for cell maintenance might represent half of the whole plant respiration. There is also evidence that increments in the crop growth rate and yield are associated with low respiration rates (Gifford et al., 1984).

The present research work was focused on the physiological characterization of six manzano hot chile pepper landraces with contrasting fruit, leaf and stem morphology, as a basis to identify genotypes to produce superior hybrids.

Materials and Methods

Experimental setup. The study was conducted from March 2000 to February 2001 in a glasshouse of the Universidad Autónoma Chapingo, at Chapingo, México. Seeds of each population were planted according to the intensive production system proposed by Pérez and Castro (1998). This system includes drip irrigation with Steiner’s universal nutrient solution (Steiner, 1984), whose pH is adjusted to 5.5 with sulfuric acid. In addition, the system includes 50% shading with a plastic mesh, and red gravel, locally named red tezontle, as a substrate, contained in black polyethylene bags (40 cm in diameter and 45 cm in height). Potted plants were arranged in rows 80 cm apart and 50 cm between them. Environmental conditions fluctuated during the growing season from 20/10 to 25/12 °C day/night temperature, 500 to 550 μmol of photons/m²/s at midday, 11 to 13 h photoperiod, 60% to 75% relative humidity; and 330 to 400 μL·L–1 of CO₂ concentration.

ADDITIONAL INDEX WORDS. Capsicum pubescens, growth, biomass distribution, fruit quality, photosynthesis.
PLANT MATERIALS. Six manzano landraces, five representing the Mexican genotypes and one from Perú, were included in this study. Three of them are from two locations in the State of Veracruz, Huatusco (‘Huatusco I and II’) and Zongolica (‘Zongolica’). These three cultivars have medium-sized yellow fruit, varying in shape from pear to apple-shaped. The cultivar from Tlatlahuiqueitepec, Puebla (‘Puebla’) has long internodes, large leaves, and large red, yellow to orange-colored and apple-shaped fruit. The fifth cultivar, obtained from San Cristóbal de las Casas, Chiapas (‘Chiapas’), has tall plants (>3 m) and red fruit. The sixth variety, from Lima (‘Perú’), has short internodes with red or yellow pear- and apple-shaped fruit.

EXPERIMENTAL DESIGN AND STATISTICAL ANALYSIS. The experimental design was completely randomized with 60 replicate plants for each cultivar. Three replicate plants randomly selected per cultivar were harvested every month for growth analysis. Statistical analysis included analyses of variance and Tukey’s multiple range test (α = 0.05), performed with the SAS statistical software (SAS, 1996).

GROWTH ANALYSIS. Three whole plants per cultivar were collected at 30-d intervals during 9 months to obtain dry mass of roots, stems, leaves and fruit. Plants were oven-dried (Precision 17 GCA Corp.) at 70 °C until they reached constant weight. Fruit quality characteristics were determined in 10 fruit per plant for fruit size (volume in mL), pericarp thickness (mm), number of seeds and locules per fruit. The number of leaves (LN) and leaf area (LA) per plant were determined for the same plants, with an area integrator (LI-3100; LI-COR Inc., Lincoln, Nebr.). For growth, the LA and DM data were plotted versus time. The last sampling date was used to calculate the harvest index (fruit DM/whole plant DM). The mean leaf size (whole plant LA/number of leaves) was calculated for each month.

The equations used to calculate growth rate (GR) and relative growth rate (RGR) were (Hunt, 1990) as follows:

\[
GR = \frac{(W_2 - W_1)}{(t_2 - t_1)} \tag{1}
\]

where \(GR\) = mean growth rate, in g·d\(^{-1}\) of DM; \(W_1\) and \(W_2\) = total plant dry weights at the beginning \((t_1)\) and at the end \((t_2)\) of one sampling interval, in days.

\[
RGR = \frac{(LnW_2 - LnW_1)}{(t_2 - t_1)} \tag{2}
\]

where \(RGR\) = mean relative growth rate, in g·g\(^{-1}\)·d\(^{-1}\); \(LnW_1\) and \(LnW_2\) = natural logarithms of the total plant dry weights at the beginning \((t_1)\) and the end \((t_2)\) of one sampling period.

DAILY NET PHOTOSYNTHETIC RATE. Instantaneous CO\(_2\) net assimilation rate (\(\mu\)mol of CO\(_2\)/m\(^2\)/s) was measured in the youngest mature leaf of each plant from 0900 to 1800 hr, at 2-h intervals, with a portable gas analyzer (LI-6200; LI-COR). Such a leaf corresponds to the fourth leaf of the main stem, counting from the top. The readings were obtained in the fourth month after planting, when plants started to bloom.

Results

TOTAL BIOMASS. Manzano hot pepper is a late maturing species taking up to 9 months to complete a fruiting cycle. In contrast, other hot pepper varieties grown throughout México such as ‘Jalapeño’, ‘Serrano’, ‘Ancho’, ‘Pasilla’, and ‘Guajillo’, members of the Capsicum annuum L. species, have a maturity cycle of 4 to 5 months. All manzano landraces showed little dry mass accumulation (Fig. 1) and slow growth rate (Fig. 2) during the first 3 months. An average of 13 g of biomass accumulated in this period, equivalent to 4% of the total biomass (350 g/plant) at the end of cycle. However, the highest relative growth rates in all landraces were observed at 90 d after planting, particularly in ‘Huatusco I’, ‘Puebla’, and ‘Perú’, with values between 0.12 and 0.14 g·g\(^{-1}\)·d\(^{-1}\) (Fig. 3).

Thereafter, plant growth increased following a sigmoid pattern. ‘Chiapas’ accumulated the highest biomass while ‘Puebla’ had the
The stem was the organ with the highest dry mass accumulation, representing from 44% to 65% of the total biomass; it was followed by leaves, fruit and roots (Table 4). Consequently, the harvest indices were lower than in most crops, fluctuating between 0.05 in 'Chiapas' to 0.23 and 0.24 in 'Perú' and 'Puebla' (Table 1).

LEAVES. As with biomass, leaf area growth was negligible in all genotypes during the first 90 d (Fig. 4). Landraces 'Chiapas', 'Huatusco I', 'Puebla' and 'Zongolica' reached their maximum leaf area in 8 months, while 'Huatusco II' and 'Perú' continued increasing throughout the ninth month. By the end of the growing season, 'Huatusco II', 'Chiapas', and 'Huatusco I' had the largest leaf areas (2.9, 2.5, and 2.3 m² per plant, respectively), the highest number of leaves (664, 566 and 560, respectively), and the largest leaf sizes (45, 44, and 42 cm², respectively) (Tables 2 and 3). The mean leaf size tended to remain constant after the third month, so that it can be considered as a stable trait in this species. Consequently, the differences in leaf area among genotypes were largely determined by the number of leaves rather than by leaf size.

STEM. There were no significant differences among landraces in main stem diameter, measured just below the first bifurcation.
Table 4. Means of plant height, internode length, and stem diameter in six manzano hot pepper landraces, nine months after planting.

Landrace	Plant ht (m)	Internode length (cm)	Main stem diam (cm)
Zongolica	2.9bc	11.3b	1.3a
Huatusco II	2.6c	11.1b	1.1a
Puebla	3.1ab	11.7b	1.1a
Huatusco I	2.8bc	10.8b	1.1a
Peru	2.7bc	10.8b	1.2a
Chiapas	3.4a	14.0a	1.1a
CV (%)	4.7	6.8	8.8

*Means (n = 3) with the same letter in each column are statistically equal (Tukey, 0.05).

Table 5. Comparison of means of variables used to measure fruit quality and yield in six manzano hot pepper landraces.

Landrace	Fruit/ Plant (no.)	Fruit vol (mL)	Pericarp thickness (mm)	Yield (t·ha⁻¹)
Zongolica	10.3 bc	33.7b	2.7 b	8.27 b
Huatusco I	14.3 ab	38.1 b	2.7 b	8.42 b
Puebla	21.3 ab	60.0 a	4.2 a	17.87 ab
Huatusco II	21.3 ab	35.7 b	2.8 b	14.37 ab
Peru	34.7 a	36.7 b	2.4 b	19.25 a
Chiapas	5.7 b	40.1 b	2.9 b	4.03 c
CV (%)	37	14	18	41

*Means (n = 3) with the same letter in each column are statistically equal (Tukey, 0.05).

Discussion

The factors determining the source strength in crops are the active leaf area and the net photosynthetic rates (Priol and Schwabel-Dugu, 1992). Considering the high leaf areas observed for the six landraces (ranging from 1.5 to 2.9 m²/plant), it may be inferred that leaf area is not the main factor limiting the source strength in manzano hot pepper (Fig. 4). In maize (Zea mays L.), the lack of grain formation in secondary ears was more related to assimilate transport deficiencies and lower assimilate demand, than to leaf area (Mendoza et al., 2000). In addition, two of the landraces with the lowest leaf area, Puebla and Zongolica (Fig. 4), had high fruit yield and harvest index, thus showing a better photosynthetic use efficiency. In contrast, Chiapas was the tallest plants with the most abundant foliage, the highest total biomass accumulation and the second highest net photosynthetic rate, but had the least fruit yield (Table 5). It appears that in manzano hot pepper the photosynthesis rate is more related to plant growth and dry mass accumulation than to biomass distribution and fruit yield.

According to the harvest indices shown by these genotypes (Table 1), only 24% of the fixed carbon is used for fruit growth in ‘Perú’, the highest yielding landrace. In order to increase this species yield potential it would be necessary to improve its harvest index, as suggested by Gifford et al. (1984). For example, in winter wheat (Triticum aestivum L.) the gains in grain yield of the varieties developed in England over 70 years are mostly due to increases in the harvest index, rather than to increments in dry mass production. In this regard, Gifford et al. (1984) suggest that to raise the harvest index it is necessary to reduce an excessive vegetative growth and to increase the net photosynthetic rate per unit leaf area.

Based on the growth characteristics of the six manzano hot pepper landraces in a breeding program, ‘Chiapas’ is expected to supply a high growth rate and a greater photosynthetic apparatus size, which would result in a maximum accumulation of total biomass. ‘Perú’, ‘Puebla’, and ‘Huatusco I’ could contribute high relative growth rate, fruit yield and harvest index values, while ‘Huatusco II’ and ‘Zongolica’ would contribute a lower plant height with short internodes. In theory, in the absence of unfavorable pleiotropy and strong linkage among desirable genes, it might be possible to obtain intervarietal hybrids of intermediate height, high dry mass accumulation, earliness and high harvest index, appropriate for an intensive production system where space is limited, but without restrictions in water and nutrient availability. As for fruit quality, ‘Puebla’ should be the best parent because of its largest fruit and thickest pericarp, in addition to a high yield (Table 5).
Under glasshouse conditions and 500 µmol·m⁻²·s⁻¹ of photosynthetically active radiation, the highest net photosynthesis rate in *Capsicum pubescens* was 7.7 µmoles of CO₂/m²/s, which occurred between 1100 to 1400 HR (Fig. 5). This rate is 23% to 30% smaller than the maximum rates registered in *C. annuum* bell pepper (10 to 11 µmol of CO₂/m²/s) grown under greenhouse conditions with a photon flux density of 400 to 700 µmol·m⁻²·s⁻¹ (Turner and Wien, 1994). However, manzano hot pepper produces more leaves (500 to 600) and leaf area (1.6 to 2.9 m²) per plant than bell pepper, which only had 0.6 m² leaf area when grown in similar glasshouse conditions (Wien, 1997).

In these conditions and at a plant population equivalent to 18,000 plants per hectare, manzano plants grew tall, at least 2.6 m, thus requiring strong physical supports to keep them erect. In addition to the selection of genotypes with short internodes and lower height, such as landraces ‘Peru’ and ‘Zongolica’, to facilitate their management and harvesting, another practical way to shorten manzano plants to 1.8 m tall is to trim the stem apices and pruning lateral buds and branches.

Conclusion

The physiological and agronomic variations observed among these six manzano hot pepper landraces allow us to propose an ideotype for an intensive production system under greenhouse conditions. This ideotype should have a high relative growth rate at the vegetative stage, intermediate or low values of growth rate and leaf area during fruit production, short internodes, large fruit with thick pericarp, and high fruit yields and harvest indices. These results are also useful in selecting parents for breeding by hybridization, and in recommending the best landraces as varieties for commercial production under that system.

Literature Cited

Evans, C.E. 1972. The quantitative analysis of plant growth. Univ. Calif. Press, Berkeley.

Gifford, R.M, J.H. Thorne, W.D. Hitz, and R.T. Giaquinta. 1984. Crop productivity and photosynthetic partitioning. Science 225:801–808.

Hunt, R. 1990. Basic growth analysis. Unwin Hyman, London.

Lambers, H. and H. Porter. 1992. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Adv. Ecol. Res. 23:188–261.

Mendoza C.M.C., V.A. González, E.M. Engleman, and J. Ortiz. 2000. Phloem area and prolificacy in maize. Agrociencia 34:141–151.

Peña, R.A., J.D. Eastin, S.D. Kachman, and D.I. Andrews. 2002. Selection response for grain yield and its components seed number and seed size in sorghum. Rev. Fitotecnia Mexicana 25 (1):49–56.

Pérez G.M. and R. Castro. 1998. Guía técnica para la producción intensiva de chile manzano. Universidad Autónoma Chapingo. Chapingo, México. Boletín de Divulgación 1.

Prioul, J.L. and N. Schwobel-Dugu. 1992. Source–sink manipulations and carbohydrate metabolism in maize. Crop Sci. 32:751–756.

SAS Institute. 1996. SAS software release 6.12. SAS Inst. Inc., Cary, N.C.

Steiner, A. 1984. The universal nutrient solution, p. 633–650. In: 6th international congress on soilless culture. Proc. Intl. Soc. Soilless Cult., Luteren, Netherlands.

Turner, A.D. and H.C. Wien. 1994. Photosynthesis, dark respiration and bud sugar concentration in pepper cultivar differing in susceptibility to stress-induced bud abscission. Ann. Bot. 73:623–628.

Wallace, D.H., J.L. Ozbun, and H.M. Munger. 1972. Physiological genetics of crop yield. Adv. Agr. 24:96–142.

Wien, H.C. 1997. Peppers, p. 259–293. In: H.C. Wien (ed.). The physiology of vegetable crops. Cornell Univ., Ithaca, N.Y.