CONSTRUCTION OF ISOZAKI-KITADA MODIFIERS FOR DISCRETE SCHRÖDINGER OPERATORS ON GENERAL LATTICES

YUKIHIDE TADANO

Abstract. We consider a scattering theory for difference operators on $\mathcal{H} = \ell^2(\mathbb{Z}^d; \mathbb{C}^n)$ perturbed with a long-range potential $V : \mathbb{Z}^d \to \mathbb{R}^n$. One of the motivating examples is discrete Schrödinger operators on \mathbb{Z}^d-periodic graphs. We construct time-independent modifiers, so-called Isozaki-Kitada modifiers, and we prove that the modified wave operators with the above-mentioned Isozaki-Kitada modifiers exist and that they are complete.

1. Introduction

The aim of the present article is to construct a long-range scattering theory for difference operators on the space of vector-valued functions on \mathbb{Z}^d. This problem is motivated by discrete Schrödinger operators on an arbitrary non-primitive lattice, e.g., hexagonal lattice, diamond lattice, Kagome lattice and graphite (see [2] for more examples). Note that the cases of primitive lattices and the hexagonal lattice are considered in [12] and [13], respectively.

Let $\mathcal{H} = \ell^2(\mathbb{Z}^d; \mathbb{C}^n)$, where d and n are positive integers. For $u \in \mathcal{H}$, we use the notation

$$u = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix}, \quad u_j \in \ell^2(\mathbb{Z}^d) = \ell^2(\mathbb{Z}^d; \mathbb{C}).$$

We consider a generalized form of discrete Schrödinger operators on \mathcal{H}:

$$H = H_0 + V.$$
The unperturbed operator H_0 is defined as a convolution operator by $(f_{jk})_{1 \leq j,k \leq n}$, that is,

$$H_0u = \begin{pmatrix} H_{0,11} & H_{0,12} & \cdots & H_{0,1n} \\ H_{0,21} & H_{0,22} & \cdots & H_{0,2n} \\ \vdots & \vdots & \ddots & \vdots \\ H_{0,n1} & H_{0,n2} & \cdots & H_{0,nn} \end{pmatrix} u, \quad u \in \mathcal{H},$$

$$H_{0,jk}u_k(x) = \sum_{y \in \mathbb{Z}^d} f_{jk}(x-y)u_k(y), \quad u_k \in \ell^2(\mathbb{Z}^d).$$

Here each $f_{jk} : \mathbb{Z}^d \to \mathbb{C}$ is a rapidly decreasing function, i.e.,

$$\sup_{x \in \mathbb{Z}^d} \langle x \rangle^m |f_{jk}(x)| < \infty$$

for any $m \in \mathbb{N}$, where $\langle x \rangle = (1 + |x|^2)^{\frac{1}{2}}$. The perturbation V is a multiplication operator by $V = t(V_1, \cdots, V_n) : \mathbb{Z}^d \to \mathbb{R}^n$,

$$Vu(x) = \begin{pmatrix} V_1(x)u_1(x) \\ V_2(x)u_2(x) \\ \vdots \\ V_n(x)u_n(x) \end{pmatrix}, \quad u \in \mathcal{H}.$$

We denote the discrete Fourier transform by \mathcal{F}:

$$\mathcal{F}u(\xi) = \begin{pmatrix} F_{u_1}(\xi) \\ F_{u_2}(\xi) \\ \vdots \\ F_{u_n}(\xi) \end{pmatrix}, \quad \xi \in \mathbb{T}^d := [-\pi, \pi]^d,$n}

$$F_{u_j}(\xi) = (2\pi)^{-\frac{d}{2}} \sum_{x \in \mathbb{Z}^d} e^{-ix\cdot\xi}u_j(x),$$

for $u \in \ell^1(\mathbb{Z}^d, \mathbb{C}^n)$. Then \mathcal{F} is extended to a unitary operator from \mathcal{H} onto $\mathcal{H}' = L^2(\mathbb{T}^d, \mathbb{C}^n)$, and we denote its extension by the same symbol \mathcal{F}. We easily see that $\mathcal{F} \circ H_0 \circ \mathcal{F}^*$ is the multiplication operator on \mathbb{T}^d by the matrix-valued function

$$H_0(\xi) = \begin{pmatrix} h_{11}(\xi) & h_{12}(\xi) & \cdots & h_{1n}(\xi) \\ h_{21}(\xi) & h_{22}(\xi) & \cdots & h_{2n}(\xi) \\ \vdots & \vdots & \ddots & \vdots \\ h_{n1}(\xi) & h_{n2}(\xi) & \cdots & h_{nn}(\xi) \end{pmatrix},$$

where

$$h_{jk}(\xi) := \sum_{x \in \mathbb{Z}^d} e^{-ix\cdot\xi}f_{jk}(x).$$

Since f_{jk}’s are assumed to be rapidly decreasing, h_{jk}’s are smooth functions on \mathbb{T}^d. Note that $\sigma(H_0) = \{ \lambda \mid \det(H_0(\xi) - \lambda) = 0 \text{ for some } \xi \in \mathbb{T}^d \}$ and H_0 is a self-adjoint operator if and only if $H_0(\xi)$ is a symmetric matrix for any $\xi \in \mathbb{T}^d$, i.e., by the definition of $H_0(\xi)$,

$$f_{jk}(-x) = f_{kj}(x), \quad x \in \mathbb{Z}^d, \quad 1 \leq j,k \leq n.$$
In this paper, we assume the following assumption concerning the self-
adjointness of H_0 and a long-range condition of V.

Assumption 1.1. (1) f_{jk}’s are rapidly decreasing functions satisfying (1.1).

(2) $V = {}^t(V_1, \cdots, V_n)$ has the following representation

$$V = V_L + V_S,$$

where each entry of V_L is the same, i.e., $V_L = {}^t(V_k, \cdots, V_t)$ with some

$V_k : \mathbb{Z}^d \rightarrow \mathbb{R}$. Furthermore, there exist $\rho > 0$ and $C, C_\alpha > 0$ such that

(1.2)

$$|\partial_x^\alpha V_l(x)| \leq C_\alpha |x|^{-\rho-|\alpha|},$$

(1.3)

$$|V_S(x)| \leq C|x|^{-1-\rho}$$

for any $x \in \mathbb{Z}^d$ and $\alpha \in \mathbb{Z}_+^d$. Here $\partial_x^\alpha = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_d}^{\alpha_d}$, $\partial_x V(x) = V(x) - V(x - e_j)$ is the difference operator with respect to the j-th variable.

Assumption 1.1 implies that V is a compact operator on \mathcal{H} and hence

$$\sigma_{\text{ess}}(H) = \sigma_{\text{ess}}(H_0),$$

where $\sigma_{\text{ess}}(H)$ (resp. $\sigma_{\text{ess}}(H_0)$) denotes the essential spectrum of H (resp. H_0).

We denote the union of Fermi surfaces corresponding to the energies in

$\Gamma \subset \mathbb{R}$ by

$$\text{Ferm}(\Gamma) := \{ p = (\xi, \lambda) \in \mathbb{T}^d \times \Gamma \mid \lambda \text{ is an eigenvalue of } H_0(\xi) \}$$

$$= \{ p = (\xi, \lambda) \in \mathbb{T}^d \times \Gamma \mid \text{det} (H_0(\xi) - \lambda) = 0 \}. $$

Before describing the main theorem, we prepare the notation of non-threshold energies.

Definition 1.2. $\lambda_0 \in \sigma(H_0)$ is said to be a non-threshold energy of H_0 if the following properties (1) and (2) hold:

(1) For any $\xi_0 \in \mathbb{T}^d$ such that $\text{det}(H_0(\xi_0) - \lambda_0) = 0$, there exists an open neighborhood $G \subset \mathbb{T}^d \times \mathbb{R}$ of $p = (\xi_0, \lambda_0)$ such that $\text{Ferm}(\mathbb{R}) \cap G$ has a graph representation, i.e.

(1.4)

$$\text{Ferm}(\mathbb{R}) \cap G = \{ (\xi, \lambda(\xi)) \mid \xi \in U \}$$

with some $U \ni \xi_0$ and $\lambda \in C^\infty(U)$.

(2) Let ξ_0 be arbitrarily fixed so that $\text{det}(H_0(\xi_0) - \lambda_0) = 0$ holds, and let $\lambda(\xi)$ be as in (1.4). Then $\nabla_\xi \lambda(\xi_0) \neq 0$ holds.

Remark 1.3. There is a sufficient condition of non-threshold energies:

$$\nabla_\xi \text{det}(H_0(\xi) - \lambda_0) \neq 0 \text{ for any } \xi \in \mathbb{T}^d \text{ such that } \text{det}(H_0(\xi) - \lambda_0) = 0.$$

The principal difference is that Definition 1.2 covers the case where $H_0(\xi)$ has degenerate eigenvalues but no branching occurs.

Let $\Gamma(H_0)$ be the set of non-threshold energies of H_0. Then $\Gamma(H_0)$ is an open set of \mathbb{R} and $\Gamma(H_0) \subset \sigma(H_0)$. Note that H_0 has purely absolutely continuous spectrum on $\Gamma(H_0)$; i.e., $\sigma_{ac}(H_0) \cap \Gamma(H_0) = \sigma_{ac}(H_0) \cap \Gamma(H_0) = \phi$

(see Remark 3.2).

The main theorem of this paper is the following.
Theorem 1.4. Suppose Assumption 1.1 and $\Gamma \in \Gamma(H_0)$. Then there are bounded operators $J_\pm = J_\pm^\Gamma$ on \mathfrak{H}, called Isozaki-Kitada modifiers, such that the modified wave operators exist:

$$W_{\pm}^{\pm}(\Gamma) = \text{s-lim}_{t \to \pm \infty} e^{itH} J_\pm e^{-itH_0} E_{H_0}(\Gamma),$$

where E_{H_0} denotes the spectral measure of H_0, and that the following properties hold:

i) Intertwining property: $HW_{\pm}^{\pm}(\Gamma) = W_{\pm}^{\pm}(\Gamma)H_0$.

ii) Partial isometries: $\|W_{\pm}^{\pm}(\Gamma)u\| = \|E_{H_0}(\Gamma)u\|$.

iii) Completeness: $\text{Ran} W_{\pm}^{\pm}(\Gamma) = E_{H}(\Gamma)\mathcal{H}_{ac}(H)$.

Here $\mathcal{H}_{ac}(H)$ denotes the absolutely continuous subspace of H.

Various examples of unperturbed operators H_0 are given by Ando, Isozaki and Morioka [2, Section 3]. Note that, if the perturbation V is short-range, i.e., $V_L = 0$, we can set $J_\pm = \text{Id}_{\mathfrak{H}}$, thus there exist the wave operators in this case. See [8] for short-range scattering theory for discrete Schrödinger operators on various lattices. We also note that a long-range scattering theory in the case of $n = 1$, e.g., discrete Schrödinger operators on square and triangular lattices, is considered by Nakamura [6] and the author [12]. Moreover, Theorem 1.4 covers an arbitrary periodic lattice \mathcal{L} with each primitive unit cell \mathcal{L}/Γ containing finite elements, where $\Gamma \cong \mathbb{Z}^d$ denotes the transformation group associated to \mathcal{L}. In particular, it includes the result by the author [13], where a long-range scattering theory for discrete Schrödinger operators on the hexagonal lattice is studied. See also [4], [9], [15] and references therein for scattering theory of Schrödinger operators on \mathbb{R}^d.

The organization of this paper is as follows. We first prepare notations and properties of pseudodifference operators in Section 2. In Section 3, the limiting absorption principle and the propagation estimate for H are studied. We use the Mourre theory and a standard argument of the propagation of wave packets as in Yafaev [15, Chapter 10]. The construction of conjugate operators is essentially due to Parra and Richard [8]. Section 4 is devoted to constructing phase functions which are given as local solutions to eikonal equations corresponding to each fiber of eigenvalues of $H_0(\xi)$. The construction of phase functions is due to [7]. In Section 5, using the phase functions in the previous section, we construct Isozaki-Kitada modifiers. Finally in Section 6, we use lemmas in the previous section to prove Theorem 1.4. The proof is based on Kato’s smooth perturbation theory, and is an analogue of that in long-range scattering theory for Schrödinger operators on \mathbb{R}^d (see [15]).

Acknowledgement

The author was partially supported by JSPS Grant Numbers 20J00247, 21K20337 and 23K12991. This work is supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University. The author would like to thank Shu Nakamura for encouraging me to write this article.
2. Preliminaries

2.1. Representations of fibers. Let Γ be as in Theorem 1.4, and let $I \subseteq \Gamma(H_0)$ be fixed so that $\Gamma \subseteq I \subseteq \Gamma(H_0)$.

For each $p = (\xi_0, \lambda_0) \in \text{Ferm}(\Gamma(H_0))$, let $G = G_p$ be as in Definition 1.2. Then $\{G_p \mid p \in \text{Ferm}(\Gamma(H_0))\}$ is an open covering of $\text{Ferm}(\Gamma(H_0))$. Since $\text{Ferm} (\Gamma)$ is compact, we can take a finite family $\{G_j\}_{j=1}^J = \{G_{p_j}\}_{j=1}^J$ of open sets which covers $\text{Ferm}(\Gamma)$. Let G'_k, $k = 1, \ldots, K$, be the connected components of $\bigcup_{j=1}^J G_j \cap \text{Ferm}(\mathbb{R})$. We see that each G'_k remains to have a graph representation

$$G'_k = \{(\xi, \lambda_k(\xi)) \mid \xi \in U_k\}$$

with some open set $U_k \subset \mathbb{T}^d$ and $\lambda_k \in C^\infty(U_k)$. We denote by $P_k(\xi)$ the projection matrix onto $\text{Ker}(H_0(\xi) - \lambda_k(\xi))$ for $\xi \in U_k$. Then we have for $\psi \in C^\infty(\mathcal{I})$

$$\psi(H_0(\xi)) = \sum_{k=1}^K \psi(\lambda_k(\xi)) P_k(\xi) \chi_{U_k}(\xi).$$

2.2. Pseudodifference calculus. For $a : \mathbb{Z}^d \times \mathbb{T}^d \to M_n(\mathbb{C}) \cong \mathbb{C}^{n \times n}$,

$$a(x, D_x) u(x) := (2\pi)^{-d/2} \int_{\mathbb{T}^d} e^{ix \xi} a(x, \xi) \mathcal{F} u(\xi) d\xi, \quad u \in \mathcal{H},$$

denotes the pseudodifference operator on \mathbb{Z}^d with symbol $a(x, \xi)$. If a depends only on ξ, we denote by $a(D_x) = \mathcal{F}^* \circ a(\cdot) \circ \mathcal{F}$ the Fourier multiplier associated with $a(\xi)$ in short.

We cite a lemma concerning the pseudodifference calculus on \mathcal{H} (see [11, Theorem 4.2.10] and the proof of [12, Lemma 2.2]).

Lemma 2.1. Let $a : \mathbb{Z}^d \times \mathbb{Z}^d \times \mathbb{T}^d \to M_n(\mathbb{C})$ be a smooth function with respect to \mathbb{T}^d, and let

$$A u(x) = (2\pi)^{-d} \int_{\mathbb{T}^d} \sum_{y \in \mathbb{Z}^d} e^{i(x-y) \cdot \xi} a(x, y, \xi) u(y) d\xi.$$

Suppose that for any $\alpha \in \mathbb{Z}_+^d$

$$\sup_{(x,y,\xi) \in \mathbb{Z}^d \times \mathbb{Z}^d \times \mathbb{T}^d} |\partial_\xi^\alpha a(x,y,\xi)| < \infty.$$

Then A is a bounded operator on $\ell^2(\mathcal{H})$.

Let S^m be the symbol class of order $m \in \mathbb{R}$, i.e.,

$$S^m = \left\{ a : \mathbb{Z}^d \times \mathbb{T}^d \to M_n(\mathbb{C}) \mid a(x, \cdot) \in C^\infty(\mathbb{T}^d, M_n(\mathbb{C})) \quad \forall x \in \mathbb{Z}^d, \sup_{(x,\xi) \in \mathbb{Z}^d \times \mathbb{T}^d} (x)^{-m+|\alpha|} |\partial_\xi^\alpha \partial_\xi^\beta a(x, \xi)| < \infty, \forall \alpha, \beta \in \mathbb{Z}_+^d \right\},$$

where ∂_ξ^α denotes the difference operator as in (1.2).
The following two assertions are analogous to the composition formula for pseudodifferential operators. See [11, Theorems 4.7.3 and 4.7.10] for the proofs.

Lemma 2.2. Let \(a \in S^m \) and \(b \in S^\ell \). Then \(a(x,D_x) b(x,D_x) = c(x,D_x) \) with some \(c \in S^{m+\ell} \) satisfying the asymptotic expansion

\[
c(x,\xi) - \sum_{|\alpha| \leq M} \partial_\xi^\alpha a(x,\xi) \partial_\xi^\alpha b(x,\xi) \in S^{m+\ell-M-1}
\]

for any \(M \in \mathbb{Z}_+ \).

Lemma 2.3. Let \(a \in S^m \). Then there exists \(b \in S^m \) such that \(a(x,D_x) \ast b(x,D_x) = \partial_x a(x,\xi) \partial_x b(x,\xi) \in S^{m-1} \).

2.3. **Kato’s smooth perturbation theory.** For a self-adjoint operator \(H \) and an \(H \)-bounded operator \(G \), we say that \(G \) is \(H \)-smooth if

\[
\frac{1}{2\pi} \left| u \right|_{\mathbb{R},1} \int_{-\infty}^{\infty} \left\| Ge^{-itH} u \right\|^2 dt < \infty.
\]

For a Borel set \(I \subset \mathbb{R} \), we say that \(G \) is \(H \)-smooth on \(I \) if \(GE_H(I) \) is \(H \)-smooth, and we also say that \(G \) is locally \(H \)-smooth on \(I \) if \(G \) is \(H \)-smooth on \(I' \) for any \(I' \subset I \).

There are several conditions equivalent to (2.4) (see e.g. [14]), and the one we need in the following is:

\[
\sup_{\lambda \in \mathbb{R}, \varepsilon > 0} \left\| G\delta_\varepsilon(\lambda, H) G^* \right\| < \infty,
\]

where \(\delta_\varepsilon(\lambda, H) = \frac{1}{2\pi i} \{ (H - \lambda - i\varepsilon)^{-1} - (H - \lambda + i\varepsilon)^{-1} \} \).

3. **Limiting absorption principle and radiation estimates**

In this section, we consider the limiting absorption principle and radiation estimates for the proof of Theorem 1.4.

3.1. **Limiting absorption principle.** For a self-adjoint operator \(A \) and \(m \in \mathbb{N} \), let

\[
C^m(A) = \{ S \in \mathcal{B}(\mathcal{H}) \mid \mathbb{R} \to \mathcal{B}(\mathcal{H}), t \mapsto e^{-itA} Se^{itA} \text{ is strongly of class } C^m \},
\]

and \(C^\infty(A) = \cap_{m \in \mathbb{N}} C^m(A) \). We denote by \(C^{1,1}(A) \) the set of the operators \(S \) satisfying

\[
\int_0^1 \left\| e^{-itA} Se^{itA} + e^{itA} Se^{-itA} - 2S \right\|^2 dt < \infty.
\]

We set the Besov space

\[
B := (D(a\langle x \rangle), \mathcal{H})_{\frac{1}{2},1},
\]

where we have used the notation of real interpolation \((\cdot, \cdot)_{\theta,p}\) between Banach spaces (see [1, Section 2.1]).

The following proposition is called the limiting absorption principle. The proof is given by the Mourre theory, and the construction of conjugate operators is essentially due to [8, Lemma 6.2].
Proposition 3.1. Suppose Assumption 1.1. Then:
(1) The set of eigenvalues of H is locally finite in $\Gamma(H_0)$ with counting multiplicities.
(2) For any $\lambda \in \Gamma(H_0) \setminus \sigma_{pp}(H)$, there exist the weak-* limits in $B(B, B^*)$
$$\lim_{\varepsilon \to 0^+} (H - \lambda \mp i\varepsilon)^{-1}.$$ Moreover, each convergence is locally uniform in $\lambda \in \Gamma(H_0) \setminus \sigma_{pp}(H)$. In particular, for any $\Gamma \in \Gamma(H_0) \setminus \sigma_{pp}(H)$,
$$\sup_{\lambda \in \Gamma, \varepsilon > 0} \| (H - \lambda \mp i\varepsilon)^{-1} \|_{B(B, B^*)} < \infty.$$ (3.1)

Proof. Let $\Gamma \in \Gamma(H_0)$ be arbitrarily fixed, and recall the representation (2.2). We set $\chi_k \in C^\infty_c(U_k)$ so that $\chi_k = 1$ on $\lambda^{-1} \kappa^{-1}(\Gamma)$. We also set the conjugate operator A by
$$A = \sum_{k=1}^K P_k(D_x) \chi_k(D_x) i[\lambda_k(D_x), |x|^2] P_k(D_x) \chi_k(D_x)$$
$$= \sum_{k=1}^K P_k(D_x) \chi_k(D_x) M_k P_k(D_x) \chi_k(D_x),$$
where
$$M_k = x \cdot \nabla_\xi \lambda_k(D_x) + \nabla_\xi \lambda_k(D_x) \cdot x.$$ Now we employ the Mourre theory ([1, Proposition 7.1.3, Corollary 7.2.11, Theorem 7.3.1], see also [13, Theorem A.1]). Then, since A is $(\cdot)^{-1}$-bounded, it suffices to show that $H \in C^{1,1}(A)$ and that, for any $\psi \in C^\infty_c(\Gamma)$, there exist $c > 0$ and a compact operator K such that the Mourre inequality holds:
$$\psi(H) i[H, A] \psi(H) \geq c \psi(H)^2 + K.$$ (3.2)
For the first assertion, we easily see $H_0 \in C^\infty(A)$, and $V \in C^{1,1}(A)$ is proved by (1.2), (1.3) and Lemma 2.2 (see [8] and [13] for details of the proof).
For the proof of (3.2), we learn by Definition 1.2 (2) that
$$\psi(H_0) i[H, A] \psi(H_0)$$
$$= 2 \sum_{k=1}^K P_k(D_x) \psi(\lambda_k(D_x)) \chi_k(D_x) |\nabla_\xi \lambda_k(D_x)|^2 P_k(D_x) \psi(\lambda_k(D_x)) \chi_k(D_x)$$
$$\geq c \sum_{k=1}^K P_k(D_x) \psi(\lambda_k(D_x))^2 \chi_k(D_x)^2 \geq c \psi(H_0)^2.$$ (3.3)
It follows from (1.2) and (1.3) that $i[V, A]$ and $\psi(H) - \psi(H_0)$ are compact, and hence we have (3.2).

Remark 3.2. If we adopt the Mourre theory to $H = H_0$, (3.3) implies that H_0 has purely absolutely continuous spectrum on $\Gamma(H_0)$. □
Corollary 3.3. For any $s > \frac{1}{2}$, $(x)^{-s}$ is locally H-smooth on $\Gamma(H_0) \setminus \sigma_{pp}(H)$.

3.2. Radiation estimates. In order to prove the existence and completeness of modified wave operators, we use, in addition to the limiting absorption principle, other propagation estimates called radiation estimates (see [15, Theorem 10.1.7]).

Proposition 3.4. Let $\Gamma \in \Gamma(H_0)$ be fixed, and let $\lambda_k(\xi), k = 1, \ldots, K$, be as in (2.1). We set for $k = 1, \ldots, K$ and $j = 1, \ldots, d,$

$$\nabla_{k,j}^\perp := \{(\partial_\xi \lambda_k)(D_x) - \chi(\xi \neq 0)|x|^{-2}x_j \langle x, (\nabla_\xi \lambda_k)(D_x) \rangle \} P_k(D_x) \chi_k(D_x),$$

where $\chi_k \in C^\infty_c(\mathbb{U}_k)$ is fixed arbitrarily so that $\chi_k = 1$ on $\lambda_k^{-1}(\Gamma)$. Then

$$(3.4) \quad \chi(\xi \neq 0)|x|^{-\frac{d}{2}+} \nabla_{k,j}^\perp$$

is locally H-smooth on $\Gamma(H_0) \setminus \sigma_{pp}(H)$.

Proof. Fix $k = 1, \ldots, K$. For simplicity of notation, we write λ, P, χ and ∇_{j}^\perp instead of λ_k, P_k, χ_k and $\nabla_{k,j}^\perp$, respectively.

Let $a \in C^\infty(\mathbb{R}^d)$ be fixed so that $a(x) = |x|$ for $|x| \geq 1$, and let

$$a_j := \partial_x a, \quad v_j := \partial_\xi \lambda.$$

We set

$$A := (P\chi)(D_x) \sum_{j=1}^{d} \{a_j(x)v_j(D_x) + v_j(D_x)a_j(x)\} (P\chi)(D_x).$$

Then the representation (2.2) implies

$$i[H_0, A] = (P\chi)(D_x) \cdot M \cdot (P\chi)(D_x),$$

where

$$M = \sum_{j=1}^{d} \{i[\lambda(D_x), a_j(x)] \cdot v_j(D_x) + v_j(D_x) \cdot i[\lambda(D_x), a_j(x)]\}.$$

It follows from Lemma 2.2 that, formally,

$$M = 2 \sum_{j=1}^{d} \sum_{\ell=1}^{d} \{v_\ell(D_x)a_{j\ell}(x)v_j(D_x) + R_1,$$

where $a_{j\ell} := \partial_\xi \partial_\xi a$, and R_1 satisfies $(x)^2(P\chi)(D_x)R_1(P\chi)(D_x) \in \mathcal{B}(\mathcal{H})$. Since for $|x| \geq 1$

$$a_{j\ell}(x) = \partial_\xi \partial_\xi \langle |x| \rangle = -\frac{x_jx_\ell}{|x|^3} + \delta_{j\ell}|x|^{-1},$$
we learn

\begin{equation}
(u, i[H_0, \mathbb{A}]u) = -2 \sum_{j=1}^{d} \sum_{\ell=1}^{d} (u_{\ell}(x_{j}(x)\neq 0)u_{j}(x)) + 2 \sum_{j=1}^{d} (u_{j}(x|^{-1})\chi(x\neq 0)u_{j}(x)) + ((P\chi)(D_x)u, R_2(P\chi)(D_x)u),
\end{equation}

where

\begin{equation}
u_{j} := (v_j P\chi)(D_x) u,
\end{equation}

and

\begin{equation}
R_2 = R_1 + 2 \sum_{j=1}^{d} \sum_{\ell=1}^{d} a_{j\ell}(0) v_{\ell}(D_x) \chi_{x=0}(x) v_j(D_x)
\end{equation}

also satisfies \((x^2(P\chi)(D_x)R_2(P\chi)(D_x)u) \in \mathcal{B}(\mathcal{H}).\)

On the other hand, a direct computation implies for \(x \neq 0\)

\begin{equation}
\left| \nabla_{\perp}^{\perp} u(x) \right|^2 = |u'(x)|^2 - |x|^{-2} x_j d \times \left(u^{\ell}(x) u'(x) + u^{\ell}(x) u'(x) \right)
\end{equation}

\begin{equation}
+ |x|^{-1} x_j d \times \sum_{\ell=1}^{d} \sum_{m=1}^{d} x_{\ell} x_{m} u^{\ell}(x) u^{m}(x).
\end{equation}

Summing up over \(j = 1, \ldots, d\), we learn

\begin{equation}
\sum_{j=1}^{d} \left| \nabla_{\perp}^{\perp} u(x) \right|^2
= \sum_{j=1}^{d} |u'(x)|^2 - |x|^{-2} d \times \sum_{j=1}^{d} \sum_{\ell=1}^{d} x_{j} x_{\ell} \left(u^{\ell}(x) u'(x) + u^{\ell}(x) u'(x) \right)
\end{equation}

\begin{equation}
+ |x|^{-2} d \times \sum_{\ell=1}^{d} \sum_{m=1}^{d} x_{\ell} x_{m} u^{\ell}(x) u^{m}(x)
\end{equation}

\begin{equation}
= \sum_{j=1}^{d} |u'(x)|^2 - |x|^{-2} \sum_{j=1}^{d} \sum_{\ell=1}^{d} x_{j} x_{\ell} u^{\ell}(x) u^{m}(x), \quad x \neq 0.
\end{equation}

Combining (3.6) with (3.5), we obtain

\begin{equation}
(u, i[H, \mathbb{A}]u) = 2 \sum_{j=1}^{d} \left| \chi_{\{x \neq 0\}} |x|^{-1/2} \nabla_{\perp}^{\perp} u \right|^2
+ ((P\chi)(D_x)u, R_2(P\chi)(D_x)u) + (u, i[V, \mathbb{A}]u).
\end{equation}

We see that \(\langle x^{1+\rho} \rangle \in \mathcal{B}(\mathcal{H})\) by (1.2), (1.3) and Lemma 2.2. According to [15, Proposition 0.5.11], the above formula and local \(H\)-smoothness of \(\langle x \rangle^{-s}\) for \(s > \frac{1}{2}\) imply that of (3.4).
4. Classical mechanics

In this section, we construct phase functions used for the definition of time-independent modifiers J_\pm in (1.5). For the precise definition of J_\pm, see (6.1).

Let $\lambda_k(\xi) : \mathbb{U}_k \to \mathbb{R}$, $k = 1, \ldots, K$, be the functions in (2.1). The next proposition concerns the classical scattering problem with respect to the Hamiltonian $\lambda_k(\xi) + \tilde{V}_t(x)$ on $T^* \mathbb{U}_k = \mathbb{R}^d_x \times \mathbb{U}_k$, where \tilde{V}_t is a smooth extension of V_t onto \mathbb{R}^d such that $|\partial_x^\alpha \tilde{V}_t(x)| \leq C'_\alpha(x)^{-\rho-|\alpha|}$ holds. See [6, Lemma 2.1] for a concrete construction of \tilde{V}_t.

The proof of the following proposition is given by [7, Section 2] (see also [12] and [5]).

Proposition 4.1. Let $\lambda_k(\xi) : \mathbb{U}_k \to \mathbb{R}$, $k = 1, \ldots, K$, be fixed. Then for any open set $U \subseteq \mathbb{U}_k$ and $\varepsilon \in (0, 2)$, there exist $R_0 > 0$ and smooth functions $\varphi^k_\pm(x, \xi)$ defined on a neighborhood of $D_{k, \pm} = \{(x, \xi) \in \mathbb{R}^d \times U \mid |x| \geq R_0, \pm \cos(x, \nabla \lambda_k(\xi)) \geq -1 + \varepsilon\}$, where

$$\cos(x, \nabla \lambda_k(\xi)) := \frac{x \cdot \nabla \lambda_k(\xi)}{|x||\nabla \lambda_k(\xi)|},$$

such that

$$\lambda_k(\nabla_x \varphi^k_\pm(x, \xi)) + \tilde{V}_t(x) = \lambda_k(\xi), \quad (x, \xi) \in D_{k, \pm}.$$

Furthermore, φ^k_\pm satisfy for $(x, \xi) \in D_{k, \pm}$

$$|\partial^\alpha_x \partial^\beta_\xi \left[\varphi^k_\pm(x, \xi) - x \cdot \xi \right]| \leq C_{\alpha\beta}(x)^{1 - \rho - |\alpha|},$$

$$\left| |\nabla_x \nabla_\xi \varphi^k_\pm(x, \xi) - I| \right| < \frac{1}{2}.$$

5. Construction of Isozaki-Kitada modifiers

Let $\Gamma \subseteq \Gamma(H_0)$ be fixed. Let $\lambda_k \in C^\infty(\mathbb{U}_k)$, $k = 1, \ldots, K$, be as in (2.1), and let φ^k_\pm be the phase functions constructed in Proposition 4.1 with setting $\varepsilon = \frac{1}{4}$ and U so that $\lambda_k^{-1}(\Gamma) \subseteq U \subseteq \mathbb{U}_k$.

We take functions $\chi_k \in C^\infty(U; [0, 1])$, $\eta \in C^\infty(\mathbb{R}^d)$ and $\sigma_\pm \in C^\infty([0, 1])$ such that

$$\chi_k(\xi) = 1, \quad \xi \in \lambda_k^{-1}(\Gamma),$$

$$\eta(x) = \begin{cases} 1 & \text{if } |x| \geq 2R, \\ 0 & \text{if } |x| \leq R, \end{cases}$$

$$\sigma_\pm(\theta) = \begin{cases} 1 & \text{if } \pm \theta \geq \frac{1}{2}, \\ 0 & \text{if } \pm \theta \leq -\frac{1}{2}, \end{cases}$$

$$\sigma_+^2(\theta) + \sigma_-^2(\theta) = 1, \quad \theta \in \mathbb{R},$$

where $R > 0$ is the constant in Proposition 4.1. Then we define the Isozaki-Kitada modifiers J^k_\pm associated with the pair $(F_k, \lambda_k, \mathbb{U}_k)$ by

$$J^k_\pm u(x) := (2\pi)^{-\frac{d}{2}} \int_{\mathbb{T}^d} e^{i\varphi^k_\pm(x, \xi)} \mathcal{F} u(x) d\xi,$$
where
\[s^k_\pm(x, \xi) := \eta(x)\sigma_\pm (\cos(x, \nabla \lambda_k(\xi))) \, P_k(\xi)\chi_k(\xi). \]

We recall that \(P_k(\xi) \) is the projection matrix onto \(\text{Ker}(H_0(\xi) - \lambda_k(\xi)) \), and note that \(\text{supp} \, s^k_\pm \subseteq D_{k,\pm} \) holds. Their formal adjoints are given by
\[(J^k_\pm)^* u(x) = \mathcal{F}^* \left((2\pi)^{-\frac{d}{2}} \sum_{y \in \mathbb{Z}^d} e^{-i\varphi^k_\pm(y, \cdot)} s^k_\pm(y, \cdot) u(y) \right). \]

Direct computations imply
\[\sup_{(x,\xi) \in \mathbb{R}^d \times T^d} |\langle x \rangle^{|\alpha|} \partial^\alpha_x \partial^\beta_\xi s^k_\pm(x, \xi)| < \infty, \]
in particular (2.3) holds.

The next lemma follows from an analogue of the argument of calculus of Fourier integral operators (see [5] and [12]).

Lemma 5.1. Let \(k = 1, \ldots, K \) be fixed, and let \(\rho > 0 \) be the constant in Assumption 1.1 (2). Then:

1. \(J^k_\pm \) are bounded operators on \(\mathcal{H} \).
2. The operators
 \[\langle x \rangle^\rho \left(J^k_\pm (J^k_\pm)^* s^k_\pm(x, D_x) s^k_\pm(x, D_x)^* \right), \]
 \[\langle x \rangle^\rho \left((J^k_\pm)^* J^k_\pm - s^k_\pm(x, D_x)^* s^k_\pm(x, D_x) \right) \]
 are bounded on \(\mathcal{H} \).
3. For any \(q \geq 0 \),
 \[\langle x \rangle^{-q} J^k_\pm(x)^q, \]
 is bounded on \(\mathcal{H} \).
4. Suppose that \(\psi = \psi(\xi) \in C^\infty(T^d; M_\rho(\mathbb{C})) \) commutes with \(s^k_\pm(x, \xi) \) for any \((x, \xi) \in \mathbb{Z}^d \times T^d \). Then
 \[\langle x \rangle^\rho [J^k_\pm, \psi(D_x)] \]
 is bounded on \(\mathcal{H} \). In particular, \([J^k_\pm, \psi(D_x)] \) are compact.
5. If \(k \neq \ell \), then \(J^k_\pm (J^\ell_\pm)^* = 0 \), and \((J^k_\pm)^* J^\ell_\pm \) are compact on \(\mathcal{H} \).

Proof. (1) We compute
\[J^k_\pm (J^k_\pm)^* u(x) = (2\pi)^{-d} \int_{T^d} \sum_{y \in \mathbb{Z}^d} e^{i(x-y) \cdot \zeta} \varphi^k_\pm(y, \xi) s^k_\pm(x, \xi) s^k_\pm(y, \xi) u(y) d\xi. \]

We set \(\varphi^k_\pm(x, \xi) = (x-y) \cdot \zeta(x, y) \), where
\[\zeta(x; y, \xi) := \int_0^1 \nabla_x \varphi^k_\pm(x + \theta(x-y), \xi) d\theta. \]

Then Proposition 4.1 implies that the mapping \(\xi \mapsto \zeta(\xi; x, y) \) is a diffeomorphism from \(U \) into \(\zeta(U) \) for any \(x, y \in \mathbb{Z}^d \). Thus we have
\[J^k_\pm (J^k_\pm)^* u(x) = (2\pi)^{-d} \int_{T^d} \sum_{y \in \mathbb{Z}^d} e^{i(x-y) \cdot \zeta} \varphi^k_\pm(x, \xi) u(y) d\xi, \]
Lemma 7.1] (see also [12, Lemma 2.3]) implies
of PDO calculus; the argument using Poisson’s summation formula as in [7,
where

Since $|\frac{d}{d\xi}(\xi) - I| < \frac{1}{2}$ by Proposition 4.1, (5.6) implies $|\partial_\xi^\alpha t_\pm^k(x, y, \xi)| \leq C_\alpha$
for any α. Therefore J_{\pm}^k are bounded by Lemma 2.1.

(2) The same argument as in (1) implies

$$
\left(J_{\pm}^k(J_{\pm}^k)^* - s_\pm^k(x, D_x)s_\pm^k(x, D_x)^*\right) u(x)
= (2\pi)^{-d} \int_{\mathbb{T}^d} \sum_{y \in \mathbb{Z}^d} e^{i(x-y)\cdot \zeta} r(x, y, \xi) u(y) d\zeta,
$$

where

$$
r(x, y, \xi) = t_\pm^k(x, y, \xi) - s_\pm^k(x, \xi)s_\pm^k(y, \xi).
$$

Since $|\partial_\xi^\alpha r(x, \xi, y)| \leq C_\alpha(x)^{-\rho}$, Lemma 2.1 implies the boundedness of (5.7).

The other case (5.8) can be treated similarly if we consider the justification of PDO calculus; the argument using Poisson’s summation formula as in [7, Lemma 7.1] (see also [12, Lemma 2.3]) implies

$$
\mathcal{F}((J_{\pm}^k)^*J_{\pm}^k)^* f(\xi) = (2\pi)^{-d} \int_{\mathbb{R}^d} \int_{\mathbb{T}^d} e^{i(-\xi \cdot \eta + \xi \cdot \eta)} s_\pm^k(x, \xi)s_\pm^k(x, \eta) f(\eta) d\eta dx + K_1 f(\xi),
$$

$$
\mathcal{F} s_\pm^k(x, D_x)^* s_\pm^k(x, D_x)^* f(\xi) = (2\pi)^{-d} \int_{\mathbb{R}^d} \int_{\mathbb{T}^d} e^{i(x-\eta)\cdot \xi} s_\pm^k(x, \xi)s_\pm^k(x, \eta) f(\eta) d\eta dx + K_2 f(\xi),
$$

where $K_j, j = 1, 2$, is a smoothing operator in the sense that $(D_x)^N K_j \in \mathcal{B}(\mathcal{H})$ for any $N > 0$. Then by changing variables $x \mapsto \int_0^1 \nabla_\xi \varphi_\pm^k(x, \xi + \theta(\eta - \xi)) d\theta$, PDO calculus on \mathbb{T}^d implies the boundedness of (5.8).

(3) By a complex interpolation argument, it suffices to show (5.9) for $q \in 2\mathbb{Z}_+$. Note that for $\alpha \in \mathbb{Z}_+^d$

$$
J_{\pm}^k x^\alpha u(x) = (2\pi)^{-\frac{d}{2}} \int_{\mathbb{T}^d} e^{i\varphi_\pm^k(x, \xi)} s_\pm^k(x, \xi) |\alpha|! \partial_\xi^\alpha \mathcal{F} u(\xi) d\xi
= (-i)^{|\alpha|}(2\pi)^{-\frac{d}{2}} \int_{\mathbb{T}^d} \partial_\xi^\alpha (e^{i\varphi_\pm^k(x, \xi)} s_\pm^k(x, \xi)) \mathcal{F} u(\xi) d\xi.
$$

Then we learn for any $N \in \mathbb{Z}_+$,

$$
J_{\pm}^k (x)^{2N} u(x) = (2\pi)^{-\frac{d}{2}} \int_{\mathbb{T}^d} e^{i\varphi_\pm^k(x, \xi)} (L^N s_\pm^k(x, \xi)) \mathcal{F} u(\xi) d\xi,
$$

where $L := (\nabla_\xi \varphi_\pm^k)^2 - i\Delta_\xi \varphi_\pm^k - 2i(\nabla_\xi \varphi_\pm^k, \nabla_\xi) - \Delta_\xi$. Since

$$
|\partial_\xi^\beta (L^N s_\pm^k)(x, \xi)| \leq C_{p, \beta, N} x^N
$$

for any $\beta \in \mathbb{Z}_+^d$, we have the boundedness of (5.9).
(4) It suffices to show the boundedness of \(\langle D_\xi \rangle^{\rho}[J^k_\pm, \psi(\xi)] \) as an operator on \(L^2(\mathbb{T}^d; \mathbb{C}^n) \), where \(J^k_\pm := \mathcal{F} J^k_\pm \mathcal{F}^* \). Direct computation imply

\[
\langle D_\xi \rangle^{\rho}[J^k_\pm, \psi(\xi)]f(\xi) = (2\pi)^{-d} \sum_{x \in \mathbb{Z}^d} \int_{\mathbb{T}^d} e^{i(-x - \xi + \varphi^k_\pm(x, \eta))} \langle x \rangle^\rho (\psi(\eta) - \psi(\xi)) s^k_\pm(x, \eta) f(\eta) d\eta
\]

and

\[
(2\pi)^{-d} \sum_{x \in \mathbb{Z}^d} \int_{\mathbb{T}^d} e^{i(-x - \xi + \varphi^k_\pm(x, \eta))} \langle x \rangle^\rho \psi(x, \xi, \eta) s^k_\pm(x, \eta) f(\eta) d\eta + (2\pi)^{-d} \sum_{x \in \mathbb{Z}^d} \int_{\mathbb{T}^d} e^{i(-x - \xi + \varphi^k_\pm(x, \eta))} \langle x \rangle^\rho \psi(x, \xi, \eta) s^k_\pm(x, \eta) f(\eta) d\eta,
\]

where

\[
\psi(x, \xi) := \psi(\eta) - \psi(\nabla_x \varphi^k_\pm(x, \eta)),
\]

\[
\psi(x, \xi, \eta) := \psi(\nabla_x \varphi^k_\pm(x, \eta)) - \psi(\xi).
\]

The first term is treated similarly to (2), since \(|\partial_\eta^{\rho} \psi(x, \eta)| \leq C_\alpha \langle x \rangle^{-\rho} \) by (4.2). For the second term, we first employ the argument in the proof of boundedness of (5.8) to replace the summation over \(\mathbb{Z}^d \) by the integral on \(\mathbb{R}^d \) modulo smoothing operators. Then, since

\[
\Psi_2(x, \xi, \eta) = (\nabla_x \varphi^k_\pm(x, \eta) - \xi) \cdot \int_0^1 \nabla_\xi \psi(\xi + \theta(\nabla_x \varphi^k_\pm(x, \eta) - \xi)) d\theta,
\]

we have

\[
(2\pi)^{-d} \int_{\mathbb{R}^d} \int_{\mathbb{T}^d} e^{i(-x - \xi + \varphi^k_\pm(x, \eta))} \langle x \rangle^\rho \psi(x, \xi, \eta) s^k_\pm(x, \eta) f(\eta) d\eta dx
\]

\[
= i(2\pi)^{-d} \int_{\mathbb{R}^d} \int_{\mathbb{T}^d} e^{i(-x - \xi + \varphi^k_\pm(x, \eta))} a(\xi, \eta, \eta) f(\eta) d\eta dx,
\]

where

\[
a(\xi, \eta, \eta) = \nabla_\xi \cdot \left(\langle x \rangle^\rho s^k_\pm(x, \eta) \int_0^1 \nabla_\xi \psi(\xi + \theta(\nabla_x \varphi^k_\pm(x, \eta) - \xi)) d\theta \right)
\]

satisfies \(|\partial_\xi \partial_\eta \partial_\xi \partial_\eta a(\xi, \eta, \xi)| \leq C_{\alpha, \beta, \gamma} \). Finally we apply [3, Theorem 2.1] to obtain the boundedness of the second term.

(5) The first assertion follows from \(s^k_\pm(x, \xi) s^k_\pm(y, \xi) = 0 \) for any \(x, y \) and \(\xi \).

For the second assertion, we set \(\psi_k \in C^\infty(\mathbb{T}^d; M_n(\mathbb{C})) \) so that \(\psi_k(\xi) = \rho_k(\xi) \) on \(\text{supp} \chi_k \). Then we use the equality \(J^k_\pm = \rho_k(D_x) \) and compactness of \([J^k_\pm, \psi_k(D_x)] \), which follows from (4).

Now we prove the existence of the following (inverse) local wave operators

\[
W^\pm(\mathcal{J}) := \beta_{\pm} \lim_{t \to \pm \infty} e^{it \mathcal{J}} \mathcal{J} e^{-it \mathcal{J}_0} E_{\mathcal{J}_0}(\Gamma),
\]

\[
I^\pm(\mathcal{J}) := \beta_{\pm} \lim_{t \to \pm \infty} e^{it \mathcal{J}_0} \mathcal{J} e^{-it \mathcal{J}} E_{\mathcal{J}_0}(\Gamma),
\]

for \(\mathcal{J} = J^k_\# \) with \(k = 1, \ldots, K \) and \(\# \in \{+,-\} \). Note that, if \(\mathcal{J} \) is compact, then \(W^\pm(\mathcal{J}) = I^\pm(\mathcal{J}) = 0 \).
We set $\tilde{\chi}_k \in C_c^\infty(\Omega_k)$ so that $\tilde{\chi}_k = 1$ on $\text{supp} \chi_k$. Since

$$(P_k \tilde{\chi}_k)(D_x) J^k_{\#} - J^k_{\#} = [(P_k \tilde{\chi}_k)(D_x), J^k_{\#}]$$

is compact by Lemma 5.1 (4), we have

$$W^\pm(J^k_{\#}) = W^\pm((P_k \tilde{\chi}_k)(D_x) J^k_{\#}),$$

and thus it suffices to show the existence of (5.11) and (5.12) for Lemma 5.2.

Lemma 5.2.

$$(H(P_k \tilde{\chi}_k)(D_x) J^k_{\#} - (P_k \tilde{\chi}_k)(D_x) J^k_{\#} H_0)u(x)$$

$$= (2\pi)^{-d} \int_{\mathbb{T}^d} \sum_{y \in \mathbb{Z}^d} e^{i(x-y, \xi)}a^k_{\pm}(x, \xi)u(y) d\xi,$$

where

(5.13)

$$a^k_{\pm}(x, \xi) = -i\eta(x) \sigma^\pm(\cos(x, \nabla_\xi \lambda_k(\xi))) \frac{|\nabla_\xi \lambda_k(\xi)|^2 - |x|^{-2}(x \cdot \nabla_\xi \lambda_k(\xi))^2}{|x||\nabla_\xi \lambda_k(\xi)|} P_k(\xi) \chi_k(\xi)$$

$$+ r^k_{\pm}(x, \xi)$$

and $|\partial_\xi^\alpha r^k_{\pm}(x, \xi)| \leq C_{\beta}(x)^{-\min(1+\rho, 2)}$.

Proof. Step 1. Let

$$g(x) := (2\pi)^{-d} \int_{\mathbb{T}^d} e^{ix-\xi} H_0(\xi) P_k(\xi) \tilde{\chi}_k(\xi) d\xi$$

$$= (2\pi)^{-d} \int_{\mathbb{T}^d} e^{ix-\xi} P_k(\xi) \tilde{\chi}_k(\xi) d\xi.$$

Then we learn

$$H_0(P_k \tilde{\chi}_k)(D_x) J^k_{\#} u(x) = (2\pi)^{-d} \int_{\mathbb{T}^d} \sum_{y \in \mathbb{Z}^d} e^{i(x-y, \xi)} a^k_{\pm}(x, \xi)u(y) d\xi,$$

where

$$a^k_{\pm}(x, \xi) = \sum_{y \in \mathbb{Z}^d} g(y)e^{i(\varphi^k_{\pm}(x-y, \xi) - \varphi^k_{\pm}(x, \xi))}\delta^k_{\pm}(x-y, \xi)$$

$$= \sum_{y \in \mathbb{Z}^d} g(y)e^{-iy \cdot \nabla_\xi \varphi^k_{\pm}(x, \xi)}(1 + R(x, y, \xi))\delta^k_{\pm}(x-y, \xi),$$

and

$$R(x, y, \xi) := \exp \left[i \left(\varphi^k_{\pm}(x-y, \xi) - \varphi^k_{\pm}(x, \xi) + y \cdot \nabla_\xi \varphi^k_{\pm}(x, \xi) \right) \right] - 1.$$
Since

$$\left| \partial_\xi^\beta \left[\varphi^k_\pm (x - y, \xi) - \varphi^k_\pm (x, \xi) + y \cdot \nabla_x \varphi^k_\pm (x, \xi) \right] \right|$$

$$= \left| y \cdot \int_0^1 \partial_\xi^\beta \left(\nabla_x \varphi^k_\pm (x, \xi) - \nabla_x \varphi^k_\pm (x - \theta y, \xi) \right) d\theta \right|$$

$$= \left| y \cdot \int_0^1 \left(\int_0^1 \partial_\xi^\beta \nabla_x^2 \varphi^k_\pm (x - \phi \theta y, \xi) d\phi \right) \theta y d\theta \right|$$

$$\leq C_\beta(x)^{-1 - \rho} \langle y \rangle^{3 + \rho},$$

we learn \(\left| \partial_\xi^\beta R(x, y, \xi) \right| \leq C'_\beta(x)^{-1 - \rho} \langle y \rangle^{(3 + \rho) \max\{1, |\beta|\}}, \) and thus

$$\left| \partial_\xi^\beta \sum_{y \in \mathbb{Z}^d} g(y) e^{-iy \cdot \nabla_x \varphi^k_\pm (x, \xi)} R(x, y, \xi) s^k_\pm (x - y, \xi) \right| \leq C''_\beta(x)^{-1 - \rho}.$$

Furthermore, since (5.6) implies the similar inequality

$$\left| \partial_\xi^\beta \left[s^k_\pm (x - y, \xi) - s^k_\pm (x, \xi) + y \cdot \nabla_x s^k_\pm (x, \xi) \right] \right|$$

$$= \left| y \cdot \int_0^1 \left(\int_0^1 \partial_\xi^\beta \nabla_x^2 s^k_\pm (x - \phi \theta y, \xi) d\phi \right) \theta y d\theta \right|$$

$$\leq C_\beta(x)^{-2} \langle y \rangle^4,$$

we have

$$\sum_{y \in \mathbb{Z}^d} g(y) e^{-iy \cdot \nabla_x \varphi^k_\pm (x, \xi)} s^k_\pm (x - y, \xi)$$

$$= \sum_{y \in \mathbb{Z}^d} g(y) e^{-iy \cdot \nabla_x \varphi^k_\pm (x, \xi)} \left(s^k_\pm (x, \xi) - y \cdot \nabla_x s^k_\pm (x, \xi) \right) + O(\langle x \rangle^{-2})$$

$$= (\lambda_k P_k \tilde{\varphi}^k (x, \xi)) s^k_\pm (x, \xi) - i \nabla_\xi (\lambda_k P_k \tilde{\varphi}^k (x, \xi)) \cdot \nabla_x s^k_\pm (x, \xi) + O(\langle x \rangle^{-2}).$$

Thus we obtain

$$a^{k,1}_\pm (x, \xi)$$

$$= (\lambda_k P_k \tilde{\varphi}^k (x, \xi)) s^k_\pm (x, \xi) - i \nabla_\xi (\lambda_k P_k \tilde{\varphi}^k (x, \xi)) \cdot \nabla_x s^k_\pm (x, \xi) + O(\langle x \rangle^{-\min(1 + \rho, 2)}).$$

Similar computations imply that

$$V(P_k \tilde{\varphi}^k_k(D_x) J^k_\pm u(x) = (2\pi)^{-d} \int_{\mathbb{T}^d} \sum_{y \in \mathbb{Z}^d} e^{i(\varphi^k_\pm (x, \xi) - y, \xi)} a^{k,2}_\pm (x, \xi) u(y) d\xi,$$

$$P_k \tilde{\varphi}^k_k(D_x) J^k_\pm H_0 u(x) = (2\pi)^{-d} \int_{\mathbb{T}^d} \sum_{y \in \mathbb{Z}^d} e^{i(\varphi^k_\pm (x, \xi) - y, \xi)} a^{k,3}_\pm (x, \xi) u(y) d\xi,$$
where
\[a_{\pm}^{k,2}(x, \xi) = V(x) \left((P_k \tilde{\chi}_k)(\nabla_x \varphi_{\pm}^k(x, \xi))s_{\pm}^k(x, \xi) - i \nabla_\xi(P_k \tilde{\chi}_k)(\nabla_x \varphi_{\pm}^k(x, \xi)) \cdot \nabla_x s_{\pm}^k(x, \xi) \right) + O(|x|^{-\rho-\min(1,\rho,2)}), \]
\[a_{\pm}^{k,3}(x, \xi) = \lambda_k(\xi)(P_k \tilde{\chi}_k)(\nabla_x \varphi_{\pm}^k(x, \xi))s_{\pm}^k(x, \xi) - i \lambda_k(\xi)\nabla_\xi(P_k \tilde{\chi}_k)(\nabla_x \varphi_{\pm}^k(x, \xi)) \cdot \nabla_x s_{\pm}^k(x, \xi) + O(|x|^{-\min(1,\rho,2)}). \]

Step 2. Step 1 implies
\[a_{\pm}^k(x, \xi) = (P_k \tilde{\chi}_k)(\nabla_x \varphi_{\pm}^k(x, \xi))s_{\pm}^k(x, \xi)\lambda_k(\nabla_x \varphi_{\pm}^k(x, \xi)) + V(x) - \lambda_k(\xi) \]
\[- i \nabla_\xi(P_k \tilde{\chi}_k)(\nabla_x \varphi_{\pm}^k(x, \xi)) \cdot \nabla_x s_{\pm}^k(x, \xi)\lambda_k(\nabla_x \varphi_{\pm}^k(x, \xi)) + V(x) - \lambda_k(\xi) \]
\[- i \lambda_k(\xi)\nabla_\xi(P_k \tilde{\chi}_k)(\nabla_x \varphi_{\pm}^k(x, \xi)) \cdot \nabla_x s_{\pm}^k(x, \xi) + O(|x|^{-\min(1,\rho,2)}). \]

The first and second terms are of order $|x|^{-1-\rho}$ by (4.1) and (1.3). Moreover simple computations imply that, setting $v := \nabla_\xi \lambda_k(\xi)$,
\[\nabla_x s_{\pm}^k(x, \xi) = \eta(x)\sigma_\pm(\cos(x, v)) \left(\frac{1}{|x||v|}v - \frac{x \cdot v}{|x|^3|x|^2} \right) P_k(\xi)\chi_k(\xi) + O(|x|^{-\infty}), \]
and therefore
\[a_{\pm}^k(x, \xi) = - i(P_k \tilde{\chi}_k)(\xi)\nabla_\xi \lambda_k(\xi) \cdot \nabla_x s_{\pm}^k(x, \xi) + O(|x|^{-\min(1,\rho,2)}) \]
\[= - \eta(x)\sigma_\pm(\cos(x, v)) \left(\frac{|v|}{|x|} - \frac{(x \cdot v)^2}{|x|^3|v|} \right) P_k(\xi)\chi_k(\xi) + O(|x|^{-\min(1,\rho,2)}). \]

Here we have used (4.2) in the first equality to replace $\nabla_x \varphi_{\pm}^k(x, \xi)$ by ξ.

Proposition 5.3. For any $k = 1, \ldots, K$, there exist the limits (5.11) and (5.12) with $J = J_\pm^k$.

Proof. We only prove the existence of (5.11), since the other is done in the same way.

We may assume $\rho < 1$ without loss of generality. The standard argument of existence of (modified) wave operators (see, e.g., [15, Lemmas 10.2.1 and 10.2.2, Theorem 0.5.4] and [10, Theorem XIII. 24]) implies that it suffices to prove that $H(P_k \tilde{\chi}_k)(D_x)J_{\pm}^k - (P_k \tilde{\chi}_k)(D_x)J_{\pm}^k H_0$ is a finite sum of the form $G_j^* B_j G_j'$ with G_j (resp. G_j') being H- (resp. H_0-) smooth in Γ and $B_j \in \mathcal{B}(\mathcal{H})$.

We set
\[a_{\pm}^k(x, \xi) = \eta(x)|x|^{-\frac{1}{2}} \left(\partial_\xi \lambda_k(\xi) - |x|^{-2} x_j(x \cdot \nabla_\xi \lambda_k(\xi)) \right) P_k(\xi)\tilde{\chi}_k(\xi), \]
\[b_{\pm}^k(x, \xi) = - \eta(x)\sigma_\pm(\cos(x, \nabla_\xi \lambda_k(\xi))) P_k(\xi)\chi_k(\xi). \]
Then we observe that

\[a^k_j(x, D_x) = \eta(x)|x|^{-\frac{1}{2}}\nabla_{k,j}^\perp, \]

where \(\nabla_{k,j}^\perp \) is as in Proposition 3.4. Moreover we have by the definition (5.13) of \(a^k_\pm(x, \xi) \)

\[a^k_\pm(x, \xi) = b^k_\pm(x, \xi) \sum_{j=1}^d a^j_\pm(x, \xi)^2 + r^k_\pm(x, \xi), \]

where \(\partial^\alpha \nabla_{k,j}^\perp (x, \xi) = O((x)^{-2}) \).

We take functions \(\tilde{\chi}_k, \tilde{\sigma}_\pm(\theta) \in C^\infty(\mathbb{R}) \) such that

\[\tilde{\sigma}_\pm(\theta) = \begin{cases} 1 & \text{if } \pm \theta \geq -\frac{1}{2}, \\ 0 & \text{if } \pm \theta \geq -\frac{3}{4}, \end{cases} \]

\[\tilde{\chi}_k(\xi) = 1, \quad \xi \in \text{supp } \tilde{\chi}_k. \]

We set

\[\tilde{s}^k(x, \xi) = \eta(x)P_k(\xi)\tilde{\chi}_k(\xi), \]

\[\tilde{\varphi}_\pm^k(x, \xi) = \eta(x)\tilde{\sigma}_\pm(\cos(x, \nabla \lambda_k(\xi)))\varphi_\pm^k(x, \xi) + (1 - \eta(x)\tilde{\sigma}_\pm(\cos(x, \nabla \lambda_k(\xi)))) x \cdot \xi, \]

and

\[\tilde{J}^k_\pm u(x) = (2\pi)^{-\frac{d}{2}} \int_{\mathbb{T}^d} e^{i\varphi_\pm^k(x, \xi)} a^k_\pm(x, \xi)F(u(\xi))d\xi, \]

\[A^k_\pm,j u(x) = (2\pi)^{-\frac{d}{2}} \int_{\mathbb{T}^d} e^{i\varphi_\pm^k(x, \xi)} a^j_\pm(x, \xi)F(u(\xi))d\xi, \]

\[C^k_\pm,j u(x) = (2\pi)^{-\frac{d}{2}} \int_{\mathbb{T}^d} e^{i\varphi_\pm^k(x, \xi)} b^k_\pm(x, \xi)a^j_\pm(x, \xi)F(u(\xi))d\xi. \]

Then it follows from the same argument as Lemma 5.1 (2) that

\[\tilde{j}^k_\pm(\tilde{j}^k_\pm)^* = \tilde{s}^k(x, D_x)\tilde{s}^k(x, D_x) + R^k_\pm,j,1, \]

\[(\tilde{j}^k_\pm)^* A^k_\pm,j = a^k_\pm(x, D_x) + R^k_\pm,j,2, \]

\[(\tilde{j}^k_\pm)^* C^k_\pm,j = a^k_\pm(x, D_x)b^k_\pm(x, D_x)a^j_\pm(x, D_x) + R^k_\pm,j,3, \]

where \(\langle x \rangle^{1+2\ell} R^k_\pm,j,\ell(x) \in B(\mathcal{H}), \ell = 1, 2, 3. \) Moreover we learn by the argument in Lemma 5.1 (4) that

\[\tilde{s}^k(x, D_x)A^k_\pm,j = A^k_\pm,j + R^k_\pm,j,4, \]

\[\tilde{s}^k(x, D_x)C^k_\pm,j = C^k_\pm,j + R^k_\pm,j,5, \]
where \(\langle x \rangle^{1+\rho} R^k_{\pm,j} \) \(\langle x \rangle^{1+\rho} \in \mathcal{B}(\mathcal{H}) \), \(\ell = 4, 5 \). Thus we have, modulo operators of the form \(\langle x \rangle^{-1+\rho} B(x) \langle x \rangle^{-1+\rho} \) with \(B \in \mathcal{B}(\mathcal{H}) \),

\[
H(P_k \tilde{\chi}_k)(D_x) J^{k,\pm}_{\pm,j,k} - (P_k \tilde{\chi}_k)(D_x) J^k_{\pm,j,k} H_0
\]

\[
\equiv \sum_{j=1}^{d} C^{k}_{\pm,j}
\]

\[
\equiv \sum_{j=1}^{d} \tilde{s}^k(x, D_x)^2 C^{k}_{\pm,j}
\]

\[
\equiv \sum_{j=1}^{d} \tilde{j}^{k}_{\pm}(J^{k,\pm}_{\pm,j,k})^* C^{k}_{\pm,j}
\]

\[
\equiv \sum_{j=1}^{d} \tilde{j}^{k}_{\pm}(J^{k,\pm}_{\pm,j,k})^* A^{k}_{\pm,j} b^k_{\pm}(x, D_x) a^k_{\pm}(x, D_x)
\]

\[
\equiv \sum_{j=1}^{d} \tilde{s}^k(x, D_x)^2 A^{k}_{\pm,j} b^k_{\pm}(x, D_x) a^k_{\pm}(x, D_x)
\]

\[
\equiv \sum_{j=1}^{d} A^{k}_{\pm,j} b^k_{\pm}(x, D_x) a^k_{\pm}(x, D_x).
\]

Since \(b^k_{\pm}(x, D_x) \in \mathcal{B}(\mathcal{H}) \) and Proposition 3.4 implies \(a^k_{\pm}(x, D_x) \) is \(H_0 \)-smooth on \(\Gamma \), it remains to prove that \(A^{k}_{\pm,j} \) is \(H \)-smooth on \(\Gamma \). However, the proof is completed if we observe that \(a^k_{\pm}(x, D_x) \) and \(\langle x \rangle^{1+\rho} \) are \(H \)-smooth on \(\Gamma \) and that

\[
(A^{k,\pm}_{\pm,j})^* A^{k,\pm}_{\pm,j} = a^k_{\pm}(x, D_x)^* a^k_{\pm}(x, D_x) + R''_j,
\]

where \(\langle x \rangle^{1+\rho} R''_j \langle x \rangle^{1+\rho} \in \mathcal{B}(\mathcal{H}) \).

\[\Box\]

6. Proof of Theorem 1.4

We set

\[
(6.1) \quad J^k_\pm := \sum_{k=1}^{K} J^k_\pm,
\]

where \(J^k_\pm \)'s are given by (5.5). Then Proposition 5.3 implies the existence of the modified wave operators \((1.5) \). The proof of the intertwining property is skipped since it is easily proved.

Proposition 6.1. \(W^\pm(J^k_\pm) = I^\pm(J^k_\pm) = 0 \).

Proof. For the first assertion, it suffices to prove \(\lim_{t \to \pm \infty} J^k_\pm e^{-itH_0} u = 0 \) for any \(u \) satisfying

\[
(P_k \tilde{\chi}_k)(D_x) u = u.
\]
We easily see that
\[J_k^\pm e^{-itH_0}u(x) = (2\pi)^{-d/2} \int_{\mathbb{R}^d} e^{i(\varphi_\pm^k(x,\xi) - t\lambda_k(\xi))} \eta(x) \sigma_\mp (\cos(x, \nabla\lambda_k(\xi))) \mathcal{F}u(\xi)d\xi. \]

The estimate (4.2) and the conditions (5.2) and (5.3) imply there is a constant \(c > 0 \) such that on the support of the integrand
\[|\nabla_\xi \varphi_\mp^k(x,\xi) - t\nabla\lambda_k(\xi)| \geq |x - t\nabla\lambda_k(\xi)| - |x - \nabla_\xi \varphi_\mp^k(x,\xi)| \geq \sqrt{1 - \cos(x, \pm\nabla\lambda_k(\xi))} \frac{|x||t\nabla\lambda_k(\xi)|}{2} \geq c(|x| + |t||\nabla\lambda_k(\xi)|) \]
for sufficiently large \(\pm t \geq 0 \). The non-stationary phase method implies that
\[|J_k^\pm e^{-itH_0}u(x)| \leq C_N(1 + |x| + |t|)^{-N}, \quad x \in \mathbb{Z}^d, \quad \pm t \geq 0, \]
for any \(N \geq 1 \). Thus we obtain \(\|W^\pm(J_\pm)u\| = 0 \).

For the other assertion \(I^\pm(J_\pm) = 0 \), the intertwining property implies
\[I^\pm(\mathcal{J}) = I^\pm(\mathcal{J})E_H(\Gamma) = E_{H_0}(\Gamma)I^\pm(\mathcal{J}). \]

Thus we learn that for any \(v \in \mathcal{K} \)
\[(I^\pm(J_\pm)u, v) = (E_{H_0}(\Gamma)I^\pm(J_\pm)u, v) = \lim_{t \to \pm \infty} (e^{itH_0}J_\pm^*e^{-itH}E^{ac}_H(\Gamma)u, E_{H_0}(\Gamma)v) = \lim_{t \to \pm \infty} (E^{ac}_H(\Gamma)u, e^{itH}J_\pm e^{-itH_0}E_{H_0}(\Gamma)v) = (E^{ac}_H(\Gamma)u, W^\pm(J_\pm)v) = 0 \]
by the first assertion. \(\square \)

Proposition 6.2. For any \(u \in \mathcal{K} \),
\begin{align*}
(6.2) \quad & \|W^\pm(J_\pm)u\| = \|E_{H_0}(\Gamma)u\|, \\
(6.3) \quad & \|I^\pm(J_\pm)u\| = \|E^{ac}_H(\Gamma)u\|.
\end{align*}

Proof. We learn
\[\|W^\pm(\mathcal{J})u\|^2 = \lim_{t \to \pm \infty} \|e^{-itH_0}E_{H_0}(\Gamma)u\|^2 = \lim_{t \to \pm \infty} (u_t, \mathcal{J}^*u_t), \]
where \(u_t := e^{-itH_0}E_{H_0}(\Gamma)u \). Thus Lemmas 2.3, 2.2, 5.1 (2), (5) and (2.2), (5.1), (5.4) imply
\[
\|W^\pm(J_+)u\|^2 + \|W^\pm(J_-)u\|^2 \\
= \lim_{t \to \pm \infty} (u_t, (J_+^*J_+ + J_-^*J_-)u_t) \\
= \lim_{t \to \pm \infty} \left(u_t, \left(\sum_{k=1}^{K} (J_+^*J_+ + (J_-^*)^*J_-) \right) u_t \right) \\
= \lim_{t \to \pm \infty} \left(u_t, \left(\sum_{k=1}^{K} s_+^k(x,D_x)s_+^k(x,D_x)^* + s_-^k(x,D_x)s_-^k(x,D_x)^* \right) u_t \right) \\
= \lim_{t \to \pm \infty} \left(u_t, \eta(x)^2 \sum_{k=1}^{K} (P_k\chi_k^2)(D_x)u_t \right) \\
= \lim_{t \to \pm \infty} \left(u_t, \eta(x)^2 u_t \right) \\
= \|E_{H_0}(\Gamma)u\|^2.
\]
Here we have used (2.2) and (5.2) to obtain \(\sum_{k=1}^{K} (P_k\chi_k^2)(D_x)E_{H_0}(\Gamma) = E_{H_0}(\Gamma) \) and compactness of \(1 - \eta(x)^2 \). Therefore we have the first equality (6.2) by Proposition 6.1.

The other equality (6.3) is obtained by the similar argument and the compactness of \(\psi(H) - \psi(H_0) \) for \(\psi \in C_c^\infty(\mathbb{R}) \).

\(\square \)

It remains to prove the completeness of (1.5). However it is proved by the existence of \(I^\pm(J_\pm) \) and (6.3).

References

[1] W. Amrein, A. Boutet de Monvel, V. Georgescu: \(C_0 \)-groups, commutator methods and spectral theory of \(N \)-body Hamiltonians. Progress in Mathematics, 135. Birkhäuser Verlag, Basel, 1996.
[2] K. Ando, H. Isozaki, H. Morioka: Spectral properties of Schrödinger operators on perturbed lattices. Ann. Henri Poincaré 17 (2016), 2103–2171.
[3] K. Asada, D. Fujiwara: On some oscillatory integral transformations in \(L^2(\mathbb{R}^n) \). Japan. J. Math. (N.S.) 4 (1978), no. 2, 299–361.
[4] J. Dereziński, C. Gérard: Scattering Theory of Classical and Quantum \(N \)-Particle Systems. Springer Verlag, 1997.
[5] H. Isozaki, H. Kitada: Modified wave operators with time-independent modifiers. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 (1985), no. 1, 77–104.
[6] S. Nakamura: Modified wave operators for discrete Schrödinger operators with long-range perturbations. J. Math. Phys. 55 (2014), 112101 (8 pages).
[7] S. Nakamura: Long-range scattering matrix for Schrödinger-type operators. Analysis & PDE 15 (2022), no. 7, 1763–1774.
[8] D. Parra, S. Richard: Spectral and scattering theory for Schrödinger operators on perturbed topological crystals. Rev. Math. Phys. 30 (2018), 1850009-1 – 1850009-39.
[9] M. Reed, B. Simon: The Methods of Modern Mathematical Physics, Volume III, Scattering Theory, Academic Press, 1979.
[10] M. Reed, B. Simon: The Methods of Modern Mathematical Physics, Volume IV, Analysis of Operators, Academic Press, 1978.
[11] M. Ruzhansky, V. Turunen: Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics, Pseudo-Differential Operators, Theory and Applications 2. Springer Basel AG, 2009.
[12] Y. Tadano: Long-range scattering for discrete Schrödinger operators. Ann. Henri Poincaré 20 (2019), no. 5, 1439–1469.
[13] Y. Tadano: Long-range scattering theory for discrete Schrödinger operators on graphene. J. Math. Phys. 60 (2019), no. 5, 052107 (11 pages).
[14] D. R. Yafaev: Mathematical Scattering Theory. General Theory. Mathematical Surveys and Monographs, 105. American Mathematical Society, Providence, RI, 1992.
[15] D. R. Yafaev: Mathematical scattering theory. Analytic theory. Mathematical Surveys and Monographs, 158. American Mathematical Society, Providence, RI, 2010.