Economic Valuation of Parthenium Weed Control Measures, in Gurage Zone, SNNPR of Ethiopia

Mekdes Dessie1*, Dawit Moges1 and Getachew Mekonnen2

1College of Agriculture and Natural Resources, Wolkite University, Ethiopia
2College of Agriculture and Natural Resources, Mizan Tepi University, Ethiopia

Received: September 17, 2018; Published: September 25, 2018

*Corresponding author: Mekdes Dessie, College of Agriculture and Natural Resources, Wolkite University, Wolkite, Ethiopia

Abstract

The study was initiated to estimate the monetary value that farmer households are willing to pay for the control measure of Parthenium weed and to identify the factors determining their level of willingness to pay amount. The primary data were collected from 320 sample households drawn randomly from two purposively selected districts, Abeshige and Kebena (160 from each districts), in Gurage zone, SNNPR of Ethiopia. Both descriptive statistics and Tobit model were used to analyze the data. To elicit and estimate farmers’ responses on the amount of willingness to pay for the control measures of Parthenium weed, a contingent valuation approach involving a single bound with open ended follow up format was used. Accordingly, the estimated mean WTP for the control measure of Parthenium weed was estimated to be 168.52 birr per year per household. In addition, the total maximum willingness to pay (which consists of 6,742 households in all sampled kebeles from both districts) was estimated to be 795,313.288 birr per year. The Tobit model estimates revealed that age, education, livestock ownership, off/non-farm sources of income, past awareness, assistance and membership were found to be the most important determinant factors that affect households’ maximum willingness to pay for the control measures of Parthenium weed in the study area. There is a need to linkage creation and collaboration development between and/or among all concerned body’s and stakeholders and designing and implementing integrated Parthenium weed prevention/controlling packages with full participation of the farmer households’ in the study area. Finally, priority should also be given to urgently continue with the control or eradication of Parthenium weed, to avoid future costs which may result if the control of this weed remains suspended.

Keywords: Invasive Alien Plant Species (IAPS); Parthenium Weed; Economic Valuation; Contingent Valuation Method (CVM); Gurage zone

Introduction

Worldwide in general and in Ethiopia in particular, agriculture holds many future challenges to adapt with such as global warming [1], resource shortages and invasive alien plant species [2]. Invasive alien plant species (IAPS) are plants that are non-native to an ecosystem and which may cause economic or environmental harm or adversely affect human health (The Convention on Biological Diversity, 2009). IAPS may also be termed as weeds, that is, plants that are objectionable or interfere with the activities and welfare of people [3]. Invasive species are of concern because of their capability of spreading fast, their high competitiveness and ability to colonize new areas within short periods. The nature and severity of the impacts of these species on society, economic life, health and national heritage are of global concern [4]. Globally, the cost of damage caused by invasive species has been estimated to be $1.5 trillion per year - close to 5% of the global GDP [5]. In developing countries, where agriculture accounts for a higher proportion of GDP, the negative impact of invasive species on food security as well as on economic performance can be even greater. Virtually all ecosystem types on the planet are affected by invasive species and they pose one of the biggest threats to biodiversity worldwide. They reduce yields of agricultural outputs both crop and livestock, forest land, fishery, decrease water availability and contribute to spread of disease. As a result, IAPS contributes to social instability and economic hardship, placing constraints on sustainable development, economic growth, poverty alleviation and food security [6].

Ethiopia is among the developing African countries affected by IAS. This is reflected in the fact that IAS has been clearly identified...
as one of the emerging problems facing the country over the last two decades [7]. Several alien species are spreading at alarming rate, and threatening agricultural lands, rangelands, national parks, lakes, rivers, power dams, and urban green spaces - causing huge economic and ecological losses [8]. Foremost among these invasive plant species is Parthenium hysterophorus L. (Parthenium), which is an emerging problem in Ethiopia; the weed has been spreading throughout the country after it was first noticed around Dire Dawa in 1980’s [9] and [10]. The impacts of Parthenium are numerous and are most profound on agriculture, environment and human health. Studies in some other parts of the world have shown that impact of Parthenium invasion on animal and human health as well as the economic loss in agriculture [6]. Crop losses are caused primarily through allelopathic effects over and above its ability to compete for nutrients and moisture and these losses are often proportionally higher than expected from a similar crop weed. Another mechanism by which Parthenium impacts upon crop productivity is through its ability to cover crops in pollen, which prevents seed set with resulting losses in yields of up to 40% [11]. Which indicates the existence of Parthenium is a growing danger to small-scale farmers. If it is not controlled on time, it will occupy the land alone.

Under controlled experiments, at high densities, yields showed a 97 percent decline [12]. Estimates show that between one and two million hectares of farming land (up to 2 per cent of the land area) is affected in Ethiopia [10]. Furthermore, it increases production costs and thereby lowers the profitability of farm enterprises and driving farmers to poverty. In addition to direct competition for resources and allelopathic effects, Parthenium causes health hazard to humans and animals. In general, there is fear that the rapid and uncontrolled expansion of the weed may considerably weaken the carrying capacity of the grazing land [13]. While the adverse impacts of Parthenium weed on native habitats have become an issue of global concern, there remains a gap in the understanding of the weed in many areas of the world including Ethiopia [14]. The weed is currently invading almost all regions of the country at an alarming rate [15]. Attempts have been made both at national and regional levels to mitigate this problem which has a direct causal effect to declining agricultural productivity and food insecurity. However, problems have been more serious and critical than ever before and threaten many people’s lives in the country as well as in the study area [16-20].

Though, there are no precise data available on the current infestation level of Parthenium weed in the region its distribution is widely increasing with its detrimental effect on agricultural productivity and production as it can be seen from ground reality. In the study area (Gurage zone) almost all kebeles are highly invaded by Parthenium. Consequently, people are now facing challenges and problems due to the spreading of the weed [21-23]. Much of the studies conducted on Parthenium focused on biological aspects such as distribution, diversity, biological control etc. Effort has not been made to assess farmers’ perception of the socio-economic impact of Parthenium and the interrelated socio-economic and physical factors that determine farmers’ participation in the preventive and control measures at household level.

The major problems encountered in the past and current control activities were related with wrong perception towards the problem, poor participation of community members because of the externalization of the issue, lack of sustainability of control programs, lack of enforcement mechanisms, resource limitations, unavailability of a recommended package of control techniques; shortage/unavailability of information, shortage of trained manpower, lack of an institutional set up for designing and implementing Parthenium control programs and lack of proper national attention to control Parthenium, poor coordination among stakeholders [14]. Formulation of control measure strategies for environmental protection from such kind of invasive weeds demands the participation of farmers (in terms of their willingness to contribute) from the very beginning. Accordingly, identification of factors that influence farmers’ WTP for control measures of Parthenium weed, can help policy makers, practionaires and other stakeholders to take appropriate action in formulating strategies that curb the problem of invasion by Parthenium with active participation of farmers [24]. Hence, this study was initiated to estimate the value farmers are willing to pay for the control measure of Parthenium weed, and identify factors determining farmers’ willingness to pay for control measure of Parthenium weed in Gurage zone, SNNPR of Ethiopia.

Research Methodology

Description of the Study Area

This study was undertaken in Abeshige and Kebena districts of Gurage zone in SNNPR of Ethiopia. Abeshge district is situated between 8.19’- 8.43’ North latitudes and 37.45’-38.89’ East longitudes. The topography of Abeshge district varies from 1001-2000 masl. The annual average temperature ranges from 15.5 - 25 °C while the total annual rainfall varies between 801mm and 1400 mm [25]. These situations resulted in a diverse agro-ecology which is suitable for the production of various annual crops (such as teff, maize and sorghum), perennial crops (such as coffee and khat) and livestock. The district covers a total area of 559 km². The district has an estimated population of 68,598 of which 36,240 are male and 32,358 are female. The district consists of 26 kebeles, of which constitutes only two of them are urban. On the other hand, Kebena district is situated between 8.22’ - 8.39’ North latitudes and 37.72’ - 38.13’ East longitudes. The topography of Kebena district varies from 1501-2000 masl. The annual average temperature ranges from 17.6 – 20°C while the total annual rainfall varies between 1201 mm
and 1400mm. These situations resulted in a diverse agro-ecology which is suitable for the production of various annual crops (such as teff, barley, maize and sorghum), perennial crops and livestock. The district covers a total area of 298 km2. The district consists of 23 rural based administrative kebeles. The district has an estimated population of 58,496 [26].

Sampling Procedure and Methods of Data Collection

The study employed multi stage purposive and random sampling techniques to draw a representative sample. At the first stage, the two districts (Abeshige and Kebena) were selected purposively. At the second stage, four kebeles (Sunika Dinicho, Katibare, Tatesa Weshribe and Odobera) from Kebena and five kebeles (Darge, Mida Tedele, Nacha Qulit, Hudad 5 Ena 6 and Gibe) from Abeshige districts were purposively selected. Finally, on the basis of probability proportional to size (PPS) of the number of farmers in each selected kebeles, a total sample size of 320 farmer households (160 from each selected districts) were randomly drawn. Both primary and secondary data sources were used in this study. The Primary data was collected using Focus Group Discussion (FGD) and structured questionnaires. The FGD was conducted using some purposively and randomly selected key informants and households from the above selected kebeles in both districts to determine the appropriate threshold value/price. To elicit farmers’ responses on the amount of WTP , the study used a contingent valuation method (CVM) involving a single bound with open ended follow up question [27,28].

Methods of Data Analysis

Descriptive Analysis

Estimating Aggregate Maximum WTP Value: An important issue related to the measurement of welfare using WTP is aggregation of benefit [28]. Accordingly, the maximum figures for the WTP reported by the respondents can simply be averaged to produce an estimate of Mean Maximum WTP:

\[
\text{Mean } MWTP = \frac{\sum y_i}{n} \tag{1}
\]

Where: \(n\) is the sample size and each \(y_i\) is a reported WTP amount by the surveyed farmers

Estimating Total Maximum WTP

The estimation of total social benefits from the environmental protection (Parthenium weed control measures in this case) is conventionally carried out by estimating the aggregate of individual WTP [29]. Accordingly, it was calculated using the following formula:

\[
WTP_{\text{total}} = WTP_{hh} \times HH \times R_w^{wp} \tag{2}
\]

Where: \(WTP_{\text{total}}\) is the total amount of WTP that households in both districts are willing to pay per year; \(WTP_{hh}\), is the mean annual household WTP; HH denotes the total number of households in both districts and \(R_w^{wp}\), is the percentage of respondents’ willing to pay.

Econometric Analysis

Since the value of dependent variable (Maximum WTP for the control measure of Parthenium weed) in this study is all positive values, the Ordinary Least Square method [30], will not yield consistent estimates. A widely used approach, the Tobit model[31] was developed to alleviate the problems caused by OLS. In this study, therefore, Tobit model is employed to identify factors determining the decision and the amount that a household is willing to pay for the control measure of Parthenium weed in the study area.

The general form of Tobit Model, when lower limit is censored to zero, can be defined as:

\[
y_i^* = \beta X_i + \epsilon_i \tag{3}
\]

\[
y_i = y_i^* \text{ if } y_i^* > 0 \tag{4}
\]

\[
y_i = 0 \text{ if } y_i^* \leq 0 \tag{5}
\]

With \(u_i \sim N(0, \sigma^2)\) \(u_i \sim N(0, \sigma^2)\)

Where:

\(y_i^*\) = the observed maximum WTP for the control measure of parthenium weed;

\(y^*\) = the latent or unobserved willingness to pay for control measure of Parthenium weed;

\(X_i = \text{ a vector of explanatory variable (socio-economic, demographic and institutional factors) and } \beta = \text{ a vector of unknown parameters }\)

\(u_i\) = residuals that are independently and normally distributed with mean zero and a common variance, \(\sigma^2\)

The Tobit coefficients do not directly give the marginal effects of the explanatory variables on the dependent variable [32]. Hence, one has to compute the derivatives of the estimated Tobit model to predict the effects of changes in the exogenous variables. Thus, a change in (explanatory variables) has two effects. It affects the probability that the observation will fall in that part of the distribution and it affects the conditional mean of \(y_i^*\) in the positive part of the distribution. Following the works of [33] similar approach is used in this study.
Results and Discussion

Results of the Descriptive Analysis

Out of the total 320 sampled households taken in both districts, about 224 respondents were willing (WTP) and 96 were not willing to pay (NWTP) for the control measure of Parthenium weed. As it is shown in Table 1 the descriptive result showed that the willing and not willing households differed significantly from each other in age, education, family size, livestock ownership, engagement in any off/non-farm sources of income, past awareness on prevention technology methods, impact of Parthenium weed encountered, assistance (training and extension service) and membership of the households in cooperative organizations.

Table 1: Descriptive statistics result of household’s demographic, socio-economic and institutional characteristics in both districts (N=320).

Variables category	Dummy variables	WTP (224)	NWTP (96)	Total (320)	χ²-value					
		Frequency	Frequency	Frequency	%	Frequency	%	Frequency	%	
SEXHH	Male	208	65	40	12.5	248	77.5	-0.702		
	Female	16	5	56	17.5	72	22.5			
OFFARINC	Yes	120	37.5	8	2.5	128	40	16.182***		
	No	104	32.5	88	27.5	192	60			
PASTAWERPP	Yes	72	22.5	48	15	120	37.5	5.614***		
	No	152	47.5	48	15	200	62.5			
LANDTENURE	Yes	66	20.6	84	26.3	150	46.9	2.406		
	No	158	49.4	12	3.75	170	53.1			
IMPACT	Yes	149	46.6	18	5.6	167	52.2	9.398***		
	No	75	23.4	78	24.4	153	47.8			
ASSISTANCE	Yes	80	25	10	3.1	90	28.1	4.211**		
	No	144	45	86	26.9	230	71.9			
ATITUDTOPAY	Yes	48	15	66	20.6	114	35.6	-0.17		
	No	176	55	30	9.4	206	64.4			
MEMBSHIP	Yes	161	50.3	28	8.7	196	59	4.890**		
	No	63	19.7	68	21.3	131	41			

Continuous variable	WTP (224)	NWTP (96)	Total (320)	t-value			
	Mean	Std.	Mean	Std.	Mean	Std.	
AGEHH (in years)	42.95	5.39	48.12	1.88	45.1	5.52	-7.586***
EDULHH (in years of schooling)	7.25	0.52	4.28	1.87	5.87	2.83	2.524**
FAMSIZHH (in adult equivalent)	5.39	1.98	2.5	0.52	5.25	2.04	5.818***
LIVSTOWN (in TLU)	5.46	0.71	2.62	0.44	5.32	1.71	4.202*
LANDSIZE (in ha)	4.08	0.74	2.5	0.59	3.25	1.41	-4.625

***, **, *show significance level at 1%, 5% and 10% probability levels, respectively.

Source: Survey data result, 2017.

Estimating the Maximum Mean and Total WTP value

The mean maximum WTP amount for 320 households was found to be 168.52 birr per annum per household. The aggregate maximum WTP was calculated by multiplying the mean MWTP by the total 320 sampled household respondents. Following the formula and procedure (in equation 3), the aggregate Maximum WTP for Parthenium weed control measures was computed to be 53,926.4 birr per year. Similarly, following the formula and procedure (in equation 4) the total maximum amount that households’ (6,742 households’ in both districts) are willing to pay per year for the control measure of Parthenium weed was found to be 795,313.288 birr per year.

Results of Econometric Analysis

Prior to running the Tobit model, the hypothesized explanatory variables were checked for the existence of multicollinearity and heteroscedasticity. The Tobit model shown below Table 2 estimates the parameters of the variables which are expected to determine the probability to affect farmer Maximum WTP and the intensity level/amount of payment for the control measure of Parthenium weed.
From the Tobit model output indicated in the Table 2 below, it is observed that seven variables (age, education, live stock ownership, off farm income, past awareness, assistance and membership) were significantly influenced the probability of households’ maximum WTP and intensity of payment among individuals. Since, direct interpretation of the Tobit model output presented in Table 2 is not straightforward, the study used three set of marginal effects (only the significant variables incorporated) for interpretation and report purpose: the effect on the probability of a positive WTP, the effect on conditional WTP (among willing respondents) and the effect on unconditional WTP (among all willing and unwilling respondents), which is presented in Table 3.

Table 2: MLE of the Tobit model for Factors Affecting Farmers’ WTP in both districts.

Variables	Coefficients	t-ratio
Sex	-24.92	-0.65
Off farm income	78.491	2.9***
Past awareness	79.687	1.74*
Impact of land tenure	-37.536	-0.94
Impact of Parthenium	58.844	4.19
Assistance	124.011	3.6***
Attitude to pay	1.967	0.31
Membership	13.097	3.28***
Age	-4.487	-2.26**
Education	73.102	2.31**
Family size	5.632	0.59
Live stock ownership	16.989	1.75*
Total land size	-9.3218	-0.919
Cons	84.686	0.8
Number of observations	320	
Prob > chi2	0	
Pseudo R2	0.3146	
LR chi2(13)	413.72	

***, **, *, shows significance level at 1%, 5% and 10% probability levels, respectively.

Source: Survey data result, 2017.

According to the result of the Tobit model marginal effect showed below in Table 3 age has a negative and significant influence on the probability of maximum WTP. The result implies that as a household becomes older, the probability of willingness to pay for the control measure of Parthenium weed will increase by 1.28%, ceteris paribus. The result is in line with the findings of [34,35] and [36]. A unit increase in the number of livestock (in TLU) an individual owns will increase the probability of willingness to pay by 0.26% (at 10% probability level). This might be due to the fact that the number of Livestock holding could be a proxy for wealth under Ethiopian farmers’ condition. When the wealth of a household increases, the Willingness to pay will also increase (Animut, 2007). The implication might be as Parthenium is observed to have an adverse and different kind of impact on livestock production and productivity. Therefore, farmers who owned a large number of livestock are more likely to be WTP and invest more on the control measures of this weed.

Table 3: Marginal effects of the explanatory variables.

| Variables | The Change in the probability of WTP as independent variable Xi changes: \(\partial F(Z) / \partial x_i \) | The change in amount of WTP with respect to a change in an explanatory variable among willing respondents: \(\partial E(y_i | y_i > 0) / \partial x_i \) | The marginal effect of an explanatory variable on the expected value of the dependent variable (change among all) is: \(\partial E(y_i) / \partial x_i \) |
|------------------------|--|--|---|
| Age | -0.007** | -4.193** | -4.440** |
| Education | 0.0128* | 67.735** | 72.193** |
| Live stock ownership | 0.002* | 15.883* | 16.820* |
| Off farm income | -0.012** | 73.654*** | 77.725*** |
| Past awareness | 0.0121* | 74.457* | 78.851* |
| Assistance | 0.0127*** | 118.276*** | 123.165*** |
| Membership | 0.0241** | 5.408*** | 11.316*** |

***, **, *, shows significance level at 1%, 5% and 10% probability levels, respectively.

As households engaged in any off/non-farm sources of income/employment, the probability of maximum WTP increases by 1.12% (at 5 % probability level of significance). This is in line with the basic economic theory, which states that individuals demand for most goods or services depends on income [37]. The other possible explanation for this result is, this is because income sources from any off-farm activities would contribute to the improved welfare of the households and able them to relieve different financial constraints [38] and thereby increases their WTP. In addition, the study result is in line with the findings by [39]. Households’ awareness on the impact and in the available option on the effective control and prevention method of Parthenium weed known and undertaken in the past, which is a proxy for management or control technology awareness, found to affect the probability of farmers’ maximum amount of WTP positively and significantly (at 10% probability level). The result implies that as a household awareness on the impact and in the available option on the effective control and prevention method of Parthenium weed known and undertaken in the past, which is a proxy for management or control technology awareness, found to affect the probability of farmers’ maximum amount of WTP positively and significantly (at 10% probability level). The result implies that as a household...
becomes aware, the probability of WTP for the control measure of Parthenium weed will increase by 1.21%, ceteris paribus. As it is indicated the variable assistance (in the form of extension service and training) increases the probability of WTP by 1.27% at 1% probability level of significance. Extension provides farmers with information related to better agricultural farming practices and technologies while protecting their natural resource which improves their knowledge and thus awareness of the need to protect and manage the resource [40]. With regard to training; a study by [41] showed that it was positively associated with willingness to pay. As farmers received any form of assistance in the prevention and control measures had positively influenced farmers’ maximum WTP amount by birr 118.28 and 123.16 among willing and the entire sample respondents, respectively.

Conclusion and Recommendation

The study estimated the economic value farmers are willing to pay for the control measure of Parthenium weed and examined the factors that determine their maximum WTP amount of money for the control measures of Parthenium weed in Abeshige and Kebena districts, Gurage zone. To achieve the above-mentioned objectives both primary and secondary data were used. The Primary data were collected from 320 randomly sampled farmer households from the two districts (160 from each) using a structured questionnaire. To elicit the maximum amount farmers are WTP the study used a single bound with open ended follow up CVM. The data obtained was analyzed using both descriptive and econometric methods. Accordingly, the result of the study showed that about 224 respondents were willing and 96 were not willing to pay for the control measure of Parthenium weed. The result of the estimated mean maximum WTP value of controlling Parthenium weed was found to be 168.52 birr per year per household. In addition, the total maximum willingness to pay from the total population in both districts (6, 742 households) was estimated to be birr 795,313.288 birr per year.

The simultaneous Tobit analysis result indicated that, age, education level, livestock ownership, off/non-farm sources of income, past awareness, assistance and membership in any form cooperatives were found to significantly affect farmer households’ willingness to pay. Thus, these factors have important policy implications in that due emphasis should be given to these important policy variables. Accordingly, it can be concluded that understanding and addressing of these factors is a necessary and first step before designing and implementing the most effective measures/strategies to control or eradicate Parthenium weed in the study area.

Therefore, based on the results obtained the following important policy recommendations can be suggested to control or eradicate Parthenium weed in the study area:

- **a)** The study first and foremost, underlined the crucial importance of creating and raising or improving farmer households’ awareness and knowledge about the adverse impact of Parthenium weed through different outreach methods and instruments so as to promote their maximum willingness to pay for the most effective strategies/packages to control or eradicate this weed.
- **b)** There is also a need to linkage creation and collaboration development between and/or among all concerned body’s and stakeholders and designing and implementing integrated Parthenium weed controlling packages with full participation of farmer households’ in the study area.
- **c)** In addition, making, implementing and strengthening of policies and strategies that encourages or promotes farmers to form or join farmer associations (particularly in the form of cooperatives) and that support the expansion and promotion of off-farm sources of income/employment are among others will be a step in the right direction in this regard.
- **d)** Furthermore, farmers’ capacity building programs to asset formation or accumulation should be strengthened.
- **e)** Finally, priority also should be given to urgently continue with the control or eradication of Parthenium weed, to avoid future costs which may result if the control of this weed remains suspended.

References

1. IPCC (Intergovernmental Panel on Climate Change) (2013) Climate Change 2013: The Physical Science Basis: Summary for Policymakers, Geneva [IPCC].
2. Casey JF, JR Kahn, AAP Rivas (2008) Willingness to accept compensation for the environmental risks of oil transport on the Amazon A choice modeling experiment, Ecological Economics 67(4): 552-559.
3. Osborn E, Lusupa B, Mkongo S, Khumalo L (2007) Implication of Weed Control Methods on Sanduzeeve (Chromolaena odorata) in Swaziland. World Journal of Agricultural Sciences, 3(6): 704-713. IDOSI.
4. McNeely JA, Mooney AH, Scheip EL, Waage KJ (2001) A Global strategy on Invasive Alien species, IUCN Gland Switzerland and Cambridge, UK, in collaboration with GISP p. 50.
5. IBC (Institute of Biodiversity Conservation) (2005) National Biodiversity Strategy and action plan. Addis Ababa, Ethiopia.
6. GISP (Global Invasive Species Program) (2007) The Economic Impact and Appropriate Management of selected Invasive Alien Species on the African Content. Report prepared by CSIR, South Africa.
7. EARO (Ethiopian Agricultural Research Organization) (2002b) Proceedings of a National Stakeholders Workshop on Invasive Alien Species. 17-18 August 2002, Hiruy Meeting Hall, EARO Headquarters, Addis Ababa, Ethiopia.
8. Senait Ragassa (2004) Socioeconomic Impact and control base line condition of Invasive Alien Species, Unpublished Manuscript, Ethiopian Institute of Agricultural Research, Deberzeit Center.
9. Frew Mekbib, Solomon Kebede, Masihla Dejene (1996) Prevalence and distribution of Parthenium hysterophorus in Eastern Ethiopia. Arem 1: 19-26.
10. Tamado Tana (2001) Biology and management of Parthenium hysterophorus L in Eastern Ethiopia. PhD Thesis Presented to the School of Graduate Studies of Swedish University of Agricultural Sciences, Uppsala, Sweden, p. 75.

11. Taye Tesema, Christian R, Dieter K, Carmen B, Christian U (2007) Economic Impacts of Invasive Weed Species in Developing Countries: The Case of Parthenium in Ethiopia Abstract. International Research on Utilization of diversity in land use systems Sustainable and organic approaches to meet human needs. Berlin, Germany.

12. Adams DC, DJ Lee (2007) Estimation the value of invasive aquatic plant control: a bioeconomic analysis of 13 public lakes in Florida. Journal of Agricultural and Applied Economics 39(1): 97-109.

13. Taye Tessema, Obermair C, Einhorn G, Seemuller E, Buttner C (2004) Phylloody disease of parthenium weed in Ethiopia. Pest management Journal of Ethiopia 8: 39-50.

14. Abiy Aemu (2012) Determinants of farmers’ participation in preventive and control measures of invasive species: the case of parthenium in boset woreda, east shewa zone of Oromiya region. Msc thesis Haramaya University.

15. Kuma Ebisa (2008) Perceived Socio Economic Impact of Parthinium weed and its effects on crop production in Babile, Haramaya and Tulo woredas East and West Hararge zone of Ethiopia, MSc Thesis, Haramaya University.

16. Barbier, Arcerman, Knowler (1997) Economic Valuation of Wetlands: A Guide for Policy makers and planners, Ramsar Convention Bureau publication.

17. Loomis JB, White DS (1996) Economic Benefits of Rare and Endangered Species: Summary and Metaanalysis. Ecological Economics, 18(3): 197-206.

18. Lipton DW, Wellman K, Shelfer IC, Welger RF (1995) Economic valuation of natural resources: A handbook for coastal resource policy makers. NOAA Coastal Ocean Program Decision Analysis series No 5. NOAA Coastal Ocean office, Silver Spring.

19. Broadway R, Bruce N (1984) Welfare Economics. Basil Blackwell, Oxford, UK.

20. Chandrasekaran K, Devarajulu S, Kuppannan P (2009) Farmers Willingness to Pay for Irrigation Water: A case of tank irrigation systems in South India. Water Journal 1(1): 5-18.

21. Hanemann WM (1991) Welfare evaluations in contingent valuation experiments with discrete responses. American Journal of Agricultural Economics 73(3): 332-341.

22. Yang JC, Pattanyak S, Choe KA (2007) Good practices for estimating reliable willingness to pay values in the water supply and sanitation sector No 23 Philippines: Asian Development Bank.

23. Pearce D, Eczedemiroghu (2002) Economic valuation with stated preference techniques: A guide, government Department, Local Government and the Regions. Eland House, London, UK.

24. Whittington D, Smith VK, Otorafo A, Okore U, Liu JL, et al. (1992) Giving respondents time to think in contingent valuation studies: A developing country application. Journal of Environmental Economics and Management 22(3): 205-225.

25. Guo X, Hammit JK, Haab TC (2006) Contingent valuation and the economic value of air pollution related health risks in China. Journal of Environmental Economics and Management.

26. BoFED (Bureau of finance and Economic Development) (2011) Annual statistical abstract report on the demographic and socio-economic profile of all the districts in Southern Nations, Nationalities and Peoples Regional State (SNNPR), Hawassa Ethiopia.

27. Bennett J, R Blamey (2001) The Choice modeling approach to environmental valuation, Edward Elgar publishing Cheltenham.

28. Alemu Mekonen (2000) Valuation of Community Forestry in Ethiopia: A Contingent Valuation Study of Rural Households. Environment and Development Economics 5: 289-308.

29. Rai RK, Scarborouh H (2012b) Valuing the Damage Caused by Invasive Plant Species in a Low-income Community in Nepal. South Asian Network for Development and Environmental Economics (SANDEE), working paper Kathmandu, Nepal, pp. 74-12.

30. Greene WH (2007) Econometric Analysis, (5th edn.). Prentice Hall, Upper Saddle River New Jersey, USA.

31. Tobin J (1958) Estimation of Relationships for Limited Dependent Variables. Econometrica 26: 24-36.

32. Johnston J, Dinardo J (1997) Econometrics Methods. Fourth Edition.

33. Maddala GS (1997) Limited Dependent and Qualitative Variables in Econometrics. Cambridge University press, USA.

34. Alemayehu Tekle (2014) Farmers Small holder Farmers Willingness to Pay for Improved Irrigation Water: A Contigent Valuation Study in Koga Irrigation Project Ethiopia. Journal of Economic and Sustainable Development 8(19): 5-15.

35. Wendimu S, Bekele shiferawu (2011) Determinants of individual willingness to pay for quality waters supply: The case of Wonji Shoa sugar estate, Ethiopia. Journal of Ecology and the Natural Environment 3: 474-480.

36. Mezgebo A, Tessema W, Asfaw Z (2013) Economic Values of Irrigation Water in Wondo Genet District, Ethiopia: An Application of Contingent Valuation method. Journal of Economics and Sustainable Development 4(2): 23-36.

37. Mbata J (2006) Estimating Household Willingness for Water Services in Rural Economy: The Case of Kanye, Southern Botswana. Development of Southern Africa 23: 29-43.

38. Taylor T, Markandy a, Perelet R, Mason P (2002) Dictionary of Environmental Economics, Earthscan Publications Ltd, UK.

39. Tefera Mengistu (2006) Frontier Community Valuation for Forest Patches: The case of Woliso Wosha Subcatchment, Southern Nations, Nationalities and Peoples Region, Ethiopia. Ethiopian Journal of Natural Resources 8: 281-293.

40. Addis Tesfaye (2010) Economic Valuation of Irrigation Water: The case of Erere Woldia irrigation project in Harari Regional State, Ethiopia. MSc Thesis, Addis Ababa University, Ethiopia.

41. Calatrrava JL, Sayadi S (2005) Economic valuation of water and willingness to pay analysis with respect to tropical fruit production in south eastern Spain. Spanish Journal of Agricultural Research 3(1): 25-33.
