\(R_D(\ast) \), \(R_K(\ast) \) and neutrino mass in the 2HDM-III with right-handed neutrinos

Shao-Ping Li*, Xin-Qiang Li†, Ya-Dong Yang‡ and Xin Zhang§

Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, Hubei 430079, China

Abstract

Given that the two-Higgs-doublet model of type III (2HDM-III) has the potential to address the \(R_D(\ast) \) anomalies while the resolution to the \(R_K(\ast) \) deficits requires new degrees of freedom within this framework, we consider in this paper a unified scenario where the low-scale type-I seesaw mechanism is embedded into the 2HDM-III, so as to accommodate the \(R_D(\ast) \) and \(R_K(\ast) \) anomalies as well as the neutrino mass. We first revisit the \(R_D(\ast) \) anomalies and find that the current world-averaged results can be addressed at 2\(\sigma \) level without violating the bound from the branching ratio \(B(B_c^- \to \tau^- \bar{\nu}) \leq 30\% \). The scenario predicts two sub-eV neutrino masses based on a decoupled heavy Majorana neutrino and two nearly degenerate Majorana neutrinos with mass around the electroweak scale. For the \(R_K(\ast) \) anomalies, the same scenario can generate the required Wilson coefficients in the direction \(C_{9\mu}^{\text{NP}} = -C_{10\mu}^{\text{NP}} < 0 \), with \(\mathcal{O}(1) \) Yukawa couplings for the muon and the top quark.
1 Introduction

Flavor physics is one of the most powerful probes of physics beyond the Standard Model (SM) [1, 2]. Recently, several discrepancies between the SM predictions and the experimental measurements have been observed in $b \to c$ and $b \to s$ semi-leptonic transitions. The measured observables that can be used to test the lepton-flavor universality (LFU) are theoretically rather clean, because the involved hadronic uncertainties are cancelled to a large extent. Thus, the anomalies observed in these decays would suggest intriguing hints for LFU violating New Physics (NP) beyond the SM.

The LFU violating observables we first consider are the ratios $R_{D^{(*)}}$, which are defined as

$$R_{D^{(*)}} = \frac{B(\bar{B} \to D^{(*)} \tau \bar{\nu})}{B(\bar{B} \to D^{(*)} \ell \bar{\nu})},$$

(1.1)

with $\ell = e$ or μ, and have been measured by the BaBar [3, 4], Belle [5–8], and LHCb [9–11] collaborations. The latest world-averaged results compiled by the Heavy Flavor Averaging Group (HFLAV) [12] read: $R_{D^*} = 0.306 \pm 0.013\text{(stat)} \pm 0.007\text{(syst)}$ and $R_D = 0.407 \pm 0.037\text{(stat)} \pm 0.024\text{(syst)}$, which indicate a combined deviation from the SM values $R_{D^*}^{SM} \approx 0.26$ [13–16] and $R_{D}^{SM} \approx 0.30$ [14, 16–19] at the level of 4σ. Thus far, feasible NP scenarios based on model-independent analyses [13, 20–32] as well as model-dependent constructions such as leptoquarks [33–42] and two-Higgs-doublet models (2HDM) [35, 43–46] have been extensively studied towards an explanation of the $R_{D^{(*)}}$ anomalies. In particular, the general 2HDM of type-III (2HDM-III) with tree-level flavor-changing neutral current (FCNC) can address the $R_{D^{(*)}}$ anomalies [44–46], but suffers severe constraint from the B^-_c lifetime [38, 47–49].

On the other hand, the LFU violating observables $R_{K^{(*)}}$, which are defined as

$$R_{K^{(*)}} = \frac{B(\bar{B} \to K^{(*)} \mu^+ \mu^-)}{B(\bar{B} \to K^{(*)} e^+ e^-)},$$

(1.2)

have also been reported by the LHCb collaboration, giving $R_K = 0.745^{+0.090}_{-0.074}\text{(stat)} \pm 0.036\text{(syst)}$ in $1 \leq q^2 \leq 6 \text{ GeV}^2$ [50], $R_{K^*} = 0.66^{+0.11}_{-0.07}\text{(stat)} \pm 0.03\text{(syst)}$ in $0.045 \leq q^2 \leq 1.1 \text{ GeV}^2$ and $0.69^{+0.11}_{-0.07}\text{(stat)} \pm 0.05\text{(syst)}$ in $1.1 \leq q^2 \leq 6.0 \text{ GeV}^2$ [51], where q^2 is the dilepton invariant mass squared. The R_K result deviates from the SM value $R_K^{SM} = 1.00 \pm 0.01$ [52–54] in
the same q^2 region at the level of 2.6σ, while the R_{K^*} measurements deviate from the SM predictions1 by 2.1 \sim 2.3σ for the first and 2.4 \sim 2.5σ for the second q^2 region, depending on the theoretical predictions used \cite{51}. The $R_{K^{(*)}}$ deficits stir up both model-independent global analyses \cite{53, 55–68} and model-dependent NP constructions such as the Z' models \cite{69–80} and the leptoquark models \cite{33–37, 81–84}. It is generally found that reasonable explanations for the $R_{K^{(*)}}$ anomalies at the second q^2 region can be achieved, while the resolution to the R_{K^*} deficit at the first q^2 region requires more involved NP scenario \cite{64, 66}. Therefore, we will not consider the latter in this paper. While the $R_{D^{(*)}}$ anomalies can be improved in the 2HDM-III with a particular up-quark Yukawa texture \cite{46}, the same scenario cannot address the $R_{K^{(*)}}$ deficits, because the resulting Wilson coefficients $C_{9,10}^{2\text{HDM}}$ (see eqs. (50,51) in ref. \cite{46}) are universal for all lepton flavors. However, keeping further the electron and/or neutrino Yukawa couplings of both Higgs doublets in a general 2HDM-III can lead to lepton-flavor non-universal $C_{9,10}^{2\text{HDM}}$, and hence provide a viable resolution to the $R_{K^{(*)}}$ anomalies, as shown for example in ref. \cite{85}.

Besides the above two intriguing anomalies, there is another clear NP signature observed in neutrino oscillations that indicates nonzero neutrino masses \cite{86}. The massive neutrinos, no matter how small their masses are, cannot be generated in the SM due to the absence of right-handed neutrino states as well as the requirement of renormalizability. In neutrino physics, there exist many interesting models that can address the neutrino mass problem, such as the type I-III seesaw models2, the inverse seesaw (ISS) model \cite{87–89}, as well as the low-scale type-I seesaw (LSS-I) model \cite{90–95}. Given that the 2HDM-III considered in ref. \cite{46} has the potential to accommodate the $R_{D^{(*)}}$ anomalies, while the resolution to the $R_{K^{(*)}}$ deficits based on the same framework requires new degrees of freedom, we will consider in this paper a unified scenario where the LSS-I mechanism is embedded into the 2HDM-III and discuss the compatibility of neutrino mass generation along with the explanation towards the $R_{K^{(*)}}$ deficits.

Our paper is organized as follows. We begin in Sec. 2 with a brief overview of the 2HDM-III, and then revisit the $R_{D^{(*)}}$ anomalies, demonstrating that the current world-averaged results can be addressed at 2σ level without violating the bound $B(B^- \to \tau^- \bar{\nu}) \leq 30\%$. In Sec. 3, we combine the 2HDM-III with the LSS-I mechanism, and discuss the relevant neutrino mass problem and the lepton-flavor violating constraints from the processes $\ell_i \to \ell_j \gamma$. In Sec. 4, we

1The theoretical predictions for the ratio R_{K^*} can be found in ref. \cite{51} and references therein.

2We refer to the review \cite{86} and references therein for these three different seesaw models.
determine the Wilson coefficients in the direction $C^\text{NP}_{9\mu} = -C^\text{NP}_{10\mu} < 0$, providing therefore an explanation for the $R_{K^{(*)}}$ deficits at 1σ level. Finally, our conclusions are made in Sec. 5.

2 General 2HDM-III and $R_D^{(*)}$ anomalies

2.1 Framework of general 2HDM-III

In the 2HDM [96, 97], an additional scalar doublet with hypercharge $+1$ is introduced to the SM field content. The most general scalar potential with a softly-broken Z_2 symmetry can be written as

$$V = m_1^2 \Phi_1^\dagger \Phi_1 + m_2^2 \Phi_2^\dagger \Phi_2 - (m_{12}^2 \Phi_1^\dagger \Phi_2 + \text{H.c.}) + \frac{\lambda_1}{2} (\Phi_1^\dagger \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^\dagger \Phi_2)^2$$
$$+ \lambda_3 \Phi_1^\dagger \Phi_1 \Phi_2^\dagger \Phi_2 + \lambda_4 \Phi_1^\dagger \Phi_2^\dagger \Phi_1^\dagger \Phi_2 + \left[\frac{\lambda_5}{2} (\Phi_1^\dagger \Phi_2)^2 + \text{H.c.} \right].$$ (2.1)

If CP conservation is imposed further on the potential, the parameters m_{12}^2 and λ_5 would be real. The two scalar doublets are usually parametrized as

$$\Phi_a = \begin{pmatrix} \varphi_a^+ \\ \frac{1}{\sqrt{2}} (v_a + \phi_a + i\chi_a) \end{pmatrix},$$ (2.2)

and the two vacuum expectation values satisfy $v = \sqrt{v_1^2 + v_2^2} = 246$ GeV. The physical mass eigenstates are obtained from rotations of the weak-interaction basis in the following way:

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix},$$ (2.3)

$$\begin{pmatrix} G(G^\pm) \\ A(H^\pm) \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \chi_1(\varphi_1^+) \\ \chi_2(\varphi_2^+) \end{pmatrix},$$ (2.4)

with $\tan \beta = v_2/v_1$. Here G and G^\pm denote the Goldstone bosons, and H^\pm, $H(h)$ and A are the physical charged, scalar and pseudoscalar Higgs bosons, respectively.
The generic Yukawa Lagrangian in the 2HDM-III is given by
\[
-\mathcal{L}_{\text{int}} = \bar{Q}_L(Y^u_1 \tilde{\Phi}_1 + Y^u_2 \tilde{\Phi}_2)u_R + \bar{Q}_L(Y^d_1 \Phi_1 + Y^d_2 \Phi_2)d_R + \bar{E}_L(Y^\ell_1 \Phi_1 + Y^\ell_2 \Phi_2)e_R + \text{H.c.} \quad (2.5)
\]

Here, \(\tilde{\Phi}_i = i\tau_2 \Phi_i^* \) with \(\tau_2 \) being the Pauli matrix; \(Q_L \) and \(E_L \) denote the left-handed quark and lepton doublets, respectively; \(u_R \), \(d_R \) and \(e_R \) are the right-handed singlets. The physical eigenstates of fermions are obtained by performing the rotations \(f_{L,R} = V_{fL,R} f'_{L,R} \), where the primed fields denote the weak eigenstates. After transforming to the mass-eigenstate basis, the Lagrangian in eq. (2.5) gives rise to the tree-level scalar-mediated FCNCs.

A common way to parametrize these scalar-mediated FCNC effects is to define:
\[
X_{i,f} \equiv \frac{1}{\sqrt{2}} V_L^f Y_{i,f} V_R^{f\dagger}, \quad (2.6)
\]
where for \(i = 1 \), \(f = u \) and for \(i = 2 \), \(f = \ell, d \). A systematic analysis for the effective couplings \(X_{i,f} \) has been given in ref. [98]. It is found that all entries of \(X_{2,d,\ell} \) are severely constrained by various flavor processes. For \(X_{1,u} \), on the other hand, there are only tight constraints on the first two generations, while \(O(1) \) \(X_{1,32} \) and \(X_{1,33} \) are still allowed, which has also been found in refs. [85, 99]. Based on these observations, we will show in the subsequent sections that \(X_{1,32} \) and \(X_{1,33} \) are crucial for accommodating the \(R_D(\ast) \) and \(R_K(\ast) \) anomalies, respectively.

2.2 Revisiting the \(R_D(\ast) \) resolution in the 2HDM-III

In the 2HDM-III, new scalar and pseudoscalar operators generated by the exchanges of charged Higgs bosons \(H^\pm \) will contribute to the tree-level \(b \to c \tau \bar{\nu} \) transitions\(^3\). The corresponding effective Hamiltonian is given by
\[
\mathcal{H}_{\text{eff}} = \frac{4G_FV_{cb}}{\sqrt{2}} (C_{SL}O_{SL} + C_{SR}O_{SR}), \quad (2.7)
\]
with
\[
O_{SL} = (\bar{c}P_L b) (\bar{\tau} P_L \nu), \quad O_{SR} = (\bar{c}P_R b) (\bar{\tau} P_L \nu), \quad (2.8)
\]
\(^3\)As the Wilson coefficients of these operators are proportional to the mass of the final-state lepton, we will assume that only the tauonic modes are affected significantly by these operators.
where \(P_{R,L} = (1 \pm \gamma_5)/2 \) are the chiral projection operators.

Under the 2HDM-III, the ratios \(R_D \) and \(R_{D^*} \) can be expressed in terms of their SM counterparts, respectively, as [13, 45, 100, 101]:

\[
R_D = R_D^{SM} \left[1 + 1.5 \, \text{Re} \left(C_{SR} + C_{SL} \right) + 1.0 \left| C_{SR} + C_{SL} \right|^2 \right],
\]

\[
R_{D^*} = R_{D^*}^{SM} \left[1 + 0.12 \, \text{Re} \left(C_{SR} - C_{SL} \right) + 0.05 \left| C_{SR} - C_{SL} \right|^2 \right].
\] (2.9)

The pseudoscalar operator, with the corresponding coefficient \(C_P = C_{SR} - C_{SL} \), contributes also to the purely leptonic decay \(B_c^- \to \tau^- \bar{\nu} \), with the corresponding branching ratio given by

\[
B(B_c^- \to \tau^- \bar{\nu}) = \frac{G_F^2 |V_{ub}|^2 m_{b,c}^2 f_{B_c}^2}{8\pi} \left(1 - \frac{m_{\tau}^2}{m_{B_c}^2} \right)^2 \left[1 + \frac{m_{B_c}^2}{(m_b + m_c)m_\tau} C_P \right]^2,
\] (2.10)

where \(f_{B_c} \) is the \(B_c^- \) decay constant, \(\tau_{B_c} \) the \(B_c^- \) lifetime, and \(m_{b,c} \) the \(\overline{\text{MS}} \) quark masses. The constraint from the \(B_c^- \) lifetime [38, 47–49] requires \(B(B_c^- \to \tau^- \bar{\nu}) \leq 30\% \), which is obtained as follows [47, 48]: As the total width of the \(B_c \) meson is distributed among modes induced by the partonic transitions \(\bar{c} \to \bar{s}u \bar{d} \) (47%), \(\bar{c} \to \bar{s} \ell \bar{\nu} \) (17%), \(\bar{b} \to c \bar{u} \bar{d} \) (16%), \(\bar{b} \to c \ell \bar{\nu} \) (8%) and \(\bar{b} \to \bar{c} \bar{s} \) (7%) [102], one can infer that only \(\lesssim 5\% \) of the experimentally measured width is attributed to the tauonic mode, including the scalar NP contribution. However, due to the sizable theory uncertainties in this estimate, \(0.4 \, \text{ps} \leq \tau_{B_c} \leq 0.7 \, \text{ps} \) [102], such a constraint can be relaxed up to \(a \leq 30\% \) of the total width if the longer lifetime \(\tau_{B_c} = 0.7 \, \text{ps} \) is taken as an input for the SM calculation, as suggested firstly in ref. [47]. This results in the conservative bound \(B(B_c \to \tau \nu) \leq 30\% \), as is now commonly used in the literature.

Based on the allowed regions for the couplings \(X^f_i \) [98], a particular texture of \(X^u_1 \) was first considered in ref. [45] to address the \(R_{D(\tau)} \) anomalies:

\[
X^u_1 = \frac{1}{\sqrt{2}} V^u_L V^u_R \equiv \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \epsilon_{\ell_c} & \epsilon_{\ell_t} \end{pmatrix},
\] (2.11)

\[\text{Here, to be more conservative, we do not adopt the more stringent constraint } B(B_c^- \to \tau^- \bar{\nu}) \leq 10\% \text{ obtained in ref. [49], because this bound depends on the widespread theoretical values used for } B(B_c^- \to J/\psi \ell \bar{\nu}).\]
Recently, such a scenario is re-analyzed more thoroughly in ref. [46], concluding that it is possible (impossible) to accommodate the 1σ region of $R_{D(*)}$ suggested by Belle (HFLAV) under the constraint $\mathcal{B}(B^- \rightarrow \tau^- \bar{\nu}) \leq 30\%$. However, we will show explicitly that, under the same constraint, the current world-averaged results for $R_{D(*)}$ [12] could be addressed at 2σ level, based on the above X_1^u texture.

At this point, it is interesting to mention that the measured differential distributions $d\Gamma(\bar{B} \rightarrow D^{(*)}\tau\bar{\nu})/dq^2$ by BaBar [4] and Belle [5, 103] can also provide complementary information to distinguish different NP models; see for example refs. [48, 104]. However, as pointed out in refs. [46, 48], both of the two collaborations’ results still have large uncertainties and rely on the theoretical models. Therefore, we will not consider these q^2 distributions as a further constraint throughout this paper.

To demonstrate that the current world-averaged $R_{D(*)}$ results can be accommodated at 2σ level under the constraint from $\mathcal{B}(B^- \rightarrow \tau^- \bar{\nu}) \leq 30\%$, we calculate the relevant Wilson coefficients in a particular 2HDM-III framework where $Y_1^d = 0$, $Y_2^f = 0$ and the up-quark FCNC is determined by eq. (2.11). In this case, only the coefficient C_{SL} is significant in the large $\tan \beta$ regime, with its size being given by

$$C_{SL}(M_{H^\pm}) \simeq \frac{V_{tb}\tan \beta}{V_{cb}M_{H^\pm}^2} m_{\tau} \epsilon_{tc},$$

evaluated at the NP scale $\mu_H = M_{H^\pm}$. Evolving it down to the b-quark mass scale, we get [35]:

$$C_{SL}(m_b) = \left[\frac{\alpha_s(m_t)}{\alpha_s(m_b)} \right]^{-12/23} \left[\frac{\alpha_s(M_{H^\pm})}{\alpha_s(m_t)} \right]^{-4/7} C_{SL}(M_{H^\pm}).$$

(2.13)

When considering the SM predictions for $R_{D(*)}$, it should be pointed out that the soft-photon corrections to the decays $\bar{B}^0 \rightarrow D^+\tau^-\bar{\nu}$ and $B^- \rightarrow D^0\tau^-\bar{\nu}$ relative to the ones with muon final state can lead to 4.4% and 3.1% enhancements in $R_{D^0}^{SM}$ and $R_{D^0}^{SM}$, respectively, which are larger than the current lattice-QCD uncertainty of R_{D}^{SM} [105]. Bearing this in mind, we will adopt therefore the 2σ ranges of the arithmetic averages for $R_{D^0}^{SM}$ from ref. [12] in our analysis.

To fit the 2σ ranges of the current world-averaged $R_{D(*)}$ results, we choose ϵ_{tc} as a free complex parameter and vary the charged-Higgs boson masses while fix $\tan \beta = 50$. The SM parameters, if not stated otherwise, are taken from ref. [106] as follows: $G_F = 1.166 \times 10^{-5}$ GeV$^{-2}$,
The allowed regions of ϵ_{tc} obtained from a 2σ-level fit of the current world-averaged R_{D^*} results, under the constraint $\mathcal{B}(B_c^- \to \tau^- \bar{\nu}) \leq 30\%$, with three different charged-Higgs boson masses and $\tan \beta = 50$.

$\alpha_s(M_Z) = 0.118$, $m_t = 173.21$ GeV, $m_b(m_b) = 4.18$ GeV, $m_c(m_c) = 1.27$ GeV, $m_\tau = 1.78$ GeV, $M_{B_c} = 6.275$ GeV, $\tau_{B_c} = 0.507$ ps, $f_{B_c} = 0.434$ GeV [107], $|V_{cb}| = 0.041$, and $|V_{tb}| = 0.999$.

The result is shown in Fig. 1. We can see that the constraint on ϵ_{tc} becomes more severe with smaller M_{H^\pm}. Note that a negative Re(ϵ_{tc}) is required, because only C_{SL} plays the significant role in the fit and the dominant contribution to R_{D^*} comes from the interference term (see eq. (2.9)). Generically, the magnitude $|\epsilon_{tc}|$ is bounded at $0.1 - 0.2$.

We conclude therefore that the R_{D^*} anomalies can be addressed at 2σ level without violating the bound from $\mathcal{B}(B_c^- \to \tau^- \bar{\nu}) \leq 30\%$ in the 2HDM-III. In the remaining sections, we will turn our attention to the neutrino mass as well as the R_{K^*} anomalies in the same framework but with the LSS-I mechanism embedded into it.

3 2HDM-III embedded with the LSS-I mechanism

3.1 Review of the LSS-I model

The ISS [87–89] and LSS-I [90–95] models are the two popular candidates which allow for the low-scale heavy neutrino mass and the sizeable light-heavy neutrino mixing. In both of the
two cases, the tiny neutrino mass is accounted for by a softly $U(1)$-symmetric breaking term. From the consideration of minimality, we will only discuss the LSS-I model, as the ISS model requires three more fermion singlets.

In the LSS-I model, at least two right-handed neutrino singlets should be introduced beyond the SM field content, to generate the phenomenologically viable pattern of neutrino masses. Such a minimal scenario with two right-handed neutrino singlets can be found e.g. in refs. [92, 108]. Here we will consider the three-generation case. The neutrino Yukawa interaction is now given by

$$ E_L Y^\nu \bar{H} N_R + \frac{1}{2} \bar{N}_R M_R N_R + H.c., $$

where H is the SM Higgs doublet and N_R the right-handed neutrino singlet accompanied by a Majorana mass matrix M_R. After the spontaneous symmetry breaking, it leads to a full 6×6 neutrino mass matrix:

$$ -\frac{1}{2} \bar{n}_L M_\nu n_L^* + H.c.. $$

Here $n_L = (\nu_L, N_R^c)^T$. The mass matrix M_ν can be block-diagonalized by a 6×6 unitary matrix U^ν defined in the following way [94]:

$$ U^{\nu T} M_\nu U^\nu \equiv \begin{pmatrix} U^{\nu T}_{\nu \nu} & U^{\nu T}_{\nu N} \\ U^{\nu T}_{\nu N} & U^{\nu T}_{N N} \end{pmatrix} \begin{pmatrix} 0 & M_D \\ M_D^T & M_R \end{pmatrix} \begin{pmatrix} U_{\nu \nu} & U_{\nu N} \\ U_{N \nu} & U_{N N} \end{pmatrix} \simeq \begin{pmatrix} m_\nu & 0 \\ 0 & M_R \end{pmatrix}, $$

with the Dirac neutrino mass matrix $M_D = vY^\nu/\sqrt{2}$. The light neutrino mass matrix $m_\nu \simeq -M_D M_R^{-1} M_D^T$ and the heavy Majorana neutrino mass matrix M_R can be further diagonalized by the 3×3 unitary matrices \tilde{U}_P and V_R, respectively; i.e.,

$$ \tilde{m}_\nu \equiv \tilde{U}_P \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix}, \quad \tilde{M}_N \equiv V_R \begin{pmatrix} M_1 \\ M_2 \\ M_3 \end{pmatrix} $$

where $\tilde{m}_\nu \equiv \text{diag}(m_1, m_2, m_3)$ and $\tilde{M}_N \equiv \text{diag}(M_1, M_2, M_3)$ denote the light and heavy neutrino mass eigenvalues, respectively.
As pointed out in ref. [91], the tiny neutrino mass can be induced by nearly degenerate heavy neutrinos with mass around TeV scale. Earlier in ref. [90], another scenario where three heavy neutrinos are nearly degenerate due to a softly $SO(3)$-symmetric breaking term was proposed to realize the electroweak-scale resonant leptogenesis and the small neutrino mass. In both of these two cases, however, the light-heavy neutrino mixing which is encoded in $U_{\nu N} \simeq M_D M_R^{-1}$ [94] cannot reach $\mathcal{O}(1)$ due to the indirect constraints from the low-energy precision data, such as the electroweak precision observables and the LFU tests [109–112]. As a consequence, the severely restricted $U_{\nu N}$ cannot provide a solution to the $R_K(\ast)$ anomalies via the neutrino-mediated box diagrams [113]. Therefore, we have to introduce additional neutrino Yukawa interactions so as to provide an explanation for the $R_K(\ast)$ deficits. In the next two subsections, we will illustrate that the additional neutrino Yukawa couplings can reach $\mathcal{O}(1)$ in the 2HDM-III framework.

3.2 2HDM-III with electroweak-scale heavy neutrinos

In the same spirit of ref. [91], we consider the following Yukawa Lagrangian added to eq. (2.5):

$$-L_N = \overline{E}_L(Y_1^\nu \Phi_1 + Y_2^\nu \Phi_2)N_R + \frac{1}{2} N_R^c M_R N_R + \text{H.c.}.$$ (3.5)

In the basis where the charged-lepton mass matrix is diagonal, we assume that the two Yukawa matrices $Y_{1,2}^\nu$ and the right-handed neutrino mass matrix M_R have respectively the following textures:

$$Y_1^\nu = \begin{pmatrix} x_1 & 0 & 0 \\ x_2 & 0 & 0 \\ x_3 & 0 & 0 \end{pmatrix}, \quad Y_2^\nu = \begin{pmatrix} 0 & 0 & y_1 \\ 0 & 0 & y_2 \\ 0 & 0 & y_3 \end{pmatrix}, \quad M_R = \begin{pmatrix} 0 & M & 0 \\ M & \mu & 0 \\ 0 & 0 & M_3 \end{pmatrix}.$$ (3.6)

From the group-theoretical perspective, these textures manifest a global $U(1)$ symmetry under the charge assignments: $L(N_1) = -L(N_2) = 1$, $L(N_3) = 0$, $L(E_L) = 1$, $L(\Phi_1) = 0$ and $L(\Phi_2) = -1$. To avoid the scalar-mediated FCNC in the charged-lepton sector, we can assign to the right-handed charged leptons the $U(1)$ charges as: $L(e_R) = L(\mu_R) = L(\tau_R) = 1$. On the
other hand, we do not consider explicit $U(1)$ charge assignments for the quarks, because the explicit flavor-symmetry construction should now not only generate the needed FCNC texture given by eq. (2.11), but also produce the already-known pattern of the Cabibbo–Kobayashi–Maskawa mixing matrix [114, 115], which would become extremely nontrivial. Instead, we will assume that the Yukawa interactions in the quark sector are $U(1)$ invariant. In this case, the parameters μ in eq. (3.6) and m_{12}^2 in eq. (2.1) (with $\lambda_5 = 0$) become the only sources to break softly the $U(1)$ symmetry.

The light neutrino mass matrix is now given by

$$m_\nu \simeq -M_D M_R^{-1} M_D^T,$$

(3.7)

with

$$A = \frac{v^2 x_1^2 \mu \cos^2 \beta}{2M^2} - \frac{v^2 y_1^2 \sin^2 \beta}{2M^2},$$

$$B = \frac{v^2 x_1 x_2 \mu \cos^2 \beta}{2M^2} - \frac{v^2 y_1 y_2 \sin^2 \beta}{2M^2},$$

$$C = \frac{v^2 x_1 x_3 \mu \cos^2 \beta}{2M^2} - \frac{v^2 y_1 y_3 \sin^2 \beta}{2M^2},$$

$$D = \frac{v^2 x_2^2 \mu \cos^2 \beta}{2M^2} - \frac{v^2 y_2^2 \sin^2 \beta}{2M^2},$$

$$E = \frac{v^2 x_2 x_3 \mu \cos^2 \beta}{2M^2} - \frac{v^2 y_2 y_3 \sin^2 \beta}{2M^2},$$

$$F = \frac{v^2 x_3^2 \mu \cos^2 \beta}{2M^2} - \frac{v^2 y_3^2 \sin^2 \beta}{2M^2}.$$

(3.8)

As the above neutrino mass matrix is of rank two, only two massive neutrinos are predicted in the considered scenario. Under the conditions that (i) $\tan \beta \gg 1$, (ii) the parameter μ is small, and (iii) $M_3 \gg M \simeq O(v)$, the sub-eV neutrino mass can be easily produced, without tuning the Yukawa couplings x_i and y_i to be extremely small. Explicitly, we find that the following set of parameters

$$x_i \sim O(1), \quad y_i \sim O(10^{-2}), \quad \tan \beta \sim O(50),$$

$$M \sim O(10^2) \text{ GeV}, \quad M_3 \sim O(10^{10}) \text{ GeV}, \quad \mu \sim O(10^{-7}) \text{ GeV},$$

(3.9)

would induce $m_\nu \sim 0.1 \text{ eV}^5$. Furthermore, the heavy Majorana neutrinos have mass eigenvalues

^5Realistic neutrino mass generation via the seesaw mechanism within the 2HDM framework has also been
\[\tilde{M}_N = \text{diag}(M - \mu/2, M + \mu/2, M_3). \] This indicates that the first two generations form a pseudo-Dirac neutrino [91, 117] with mass splitting proportional to \(\mu \), while the third one is considered to decouple from the 2HDM-III field content when \(M_3 \gg M \simeq O(v) \).

We now make remarks on the choice of the parameter set given by eq. (3.9). The non-decoupled heavy neutrinos are assumed to reside at the electroweak scale, so that they can be produced directly at the high-energy colliders, providing therefore experimental tests for the LSS-I mechanism [118–127]. One of the intriguing properties of the parameter \(\mu \) in our case is that it is not necessary to be extremely small\(^6\), because it is now accompanied by \(\cos^2 \beta \), the value of which is preferred to be small in light of the \(R_D(\ast) \) resolution within the 2HDM-III. Therefore, the hierarchy issue (\(\mu \ll M \)) can be relaxed to a large extent [128, 129].

For the couplings \(x_i \), as will be discussed in Sec. 4, an \(O(1) \) \(x_2 \) is required to address the \(R_{K(\ast)} \) anomalies. Such a muon-philic coupling also receives the indirect constraints studied in refs. [109–112] for the light-heavy neutrino mixing parameters, but its contributions to the one-loop self-energy corrections of the \(W/Z \) bosons were found to be negligible with electroweak-scale heavy neutrinos [111]. Following the analysis made in ref. [112], we find that the contributions up to the one-loop order can be formally expressed as

\[
\eta_\ell + \frac{|x_i|^2}{16\pi^2} S_a(M, M_{H\pm}, M_{H,A}), \quad (3.10)
\]

where \(\eta_\ell \) represent the tree-level light-heavy neutrino mixing parameters, which are constrained to be of \(O(10^{-3}) \) [112], while \(S_a(M, M_{H\pm}, M_{H,A}) \) denote the one-loop scalar functions. One can see that large \(x_i \) may still be possible as their contributions are suppressed by the loop factor \(1/(4\pi)^2 \). At the same time, without any cancellations between the tree-level and one-loop contributions\(^7\), we find that \(S_a(M, M_{H\pm}, M_{H,A}) \) cannot exceed \(O(1) \) for \(|x_i| \simeq O(1) \), which can be readily satisfied with electroweak-scale neutrinos and Higgs bosons, say, \(M \simeq O(100 \text{ GeV}) \) and \(M_H \simeq M_A \simeq M_{H\pm} \simeq O(200 \text{ GeV}) \).

As stressed in ref. [112], the lepton-flavor violating transitions \(\ell_i \rightarrow \ell_j \gamma \) give one of the most

\(^6\)In the ISS and LSS-I models, the scale of \(\mu \) usually depends on the preference for the non-decoupled heavy neutrinos as well as the neutrino Yukawa couplings.

\(^7\)If there exists cancellations to some extent, the constraints on \(x_i \) can be further diluted. The cancellation scenario in which the light-heavy neutrino mixing parameters are allowed to be enhanced can be found \(e.g. \) in refs. [110, 111, 130, 131].
severe constraints on the light-heavy neutrino mixing parameters. Thus, we will consider such constraints on the x_i parameters with $x_2 \simeq O(1)$ in the next subsection. Specifically, we will analyze the process $\tau \rightarrow \mu \gamma$, while the more severe constraint from $\mu \rightarrow e \gamma$ that sets bound on the product $x_1 x_2$ can be simply avoided if $x_1 \rightarrow 0$ [112, 132].

3.3 $\tau \rightarrow \mu \gamma$ constraint

In our scenario, the ratio between the decay width of $\tau \rightarrow \mu \gamma$ with respect to that of $\tau \rightarrow \mu \nu \bar{\nu}$ is given by

$$\mathcal{B}(\tau \rightarrow \mu \gamma) \equiv \frac{\Gamma(\tau \rightarrow \mu \gamma)}{\Gamma(\tau \rightarrow \mu \nu \bar{\nu})} = \frac{s_W^4 M_W^4}{384 \pi^3 \alpha_{em} M_{H^\pm}^4} |x_2 x_3|^2 \left[\frac{2\lambda^3 + 3\lambda^2 - 6\lambda^2 \log(\lambda) - 6\lambda + 1}{(\lambda - 1)^4} \right]^2 ,$$

(3.11)

where $\lambda = M^2 / M_{H^\pm}^2$, $s_W = \sin \theta_W$ with θ_W being the weak mixing angle, and α_{em} is the fine-structure constant. In the above result, we have neglected the small Yukawa couplings in the charged-lepton part.

Fixing $x_2 = 1$, we show in Fig. 2 the contours in the $(M_{H^\pm}, |x_3|)$ (left) and $(M, |x_3|)$ (right)
planes, respectively. The regions below the curves are allowed by the experimental data with the inputs taken from ref. [106] as follows: $\sin^2 \theta_W = 0.2315$, $M_W = 80.385$ GeV, $\mathcal{B}(\tau \to \mu \gamma) \lesssim 4.4 \times 10^{-8}$ and $\mathcal{B}(\tau \to \mu \nu \bar{\nu}) = 0.17$. We can see from Fig. 2 that $|x_3|$ is required to be small in order to comply with the $\tau \to \mu \gamma$ constraint. However, $|x_3|$ can still increase when M or M_{H^\pm} becomes larger.

Finally, we discuss the neutrino mixing parameters observed in the neutrino oscillation experiments. It was noticed that viable neutrino mixing pattern can be reproduced with $x_1 = 0$ [91]. In this limit, the well-known tri-bimaximal mixing pattern (see e.g. the review [133]) with an inverted mass hierarchy $m_2 > m_1 > m_3 = 0$ can be obtained if $x_2 = x_3$, $y_2 = y_3$ and $D = (A + B)/2$ (see eqs. (3.7) and (3.8)), which is motivated by the analysis made in ref. [92]. Certainly, the tri-bimaximal mixing pattern should be modified in order to generate nonzero reactor angle (see e.g. the updated global fit for the neutrino oscillation data [134]), which, however, cannot be realized in the $x_1 = x_3 = 0$ limit8. For specific parameter choices, we refer to ref. [91] for details.

4 $R_K(\ast)$ deficits in the 2HDM-III embedded with the LSS-I mechanism

4.1 Theoretical $R_K(\ast)$ explanation

In our analysis, we will focus only on the following subsets of operators which are directly responsible for the transition $b \to s \ell^+ \ell^-$ [135]:

\begin{align}
\mathcal{O}_7 &= \frac{e}{16\pi^2} m_b (\bar{s}\gamma_\mu P_L b) F^{\mu\nu}, \\
\mathcal{O}_9' &= \frac{e}{16\pi^2} m_b (\bar{s}\sigma_{\mu\nu} P_L b) F^{\mu\nu}, \\
\mathcal{O}_9 &= \frac{\alpha_{\text{em}}}{4\pi} (\bar{s}\gamma_\mu P_L b) (\bar{\mu}\gamma^\mu \mu), \\
\mathcal{O}_9' &= \frac{\alpha_{\text{em}}}{4\pi} (\bar{s}\gamma_\mu P_R b) (\bar{\mu}\gamma^\mu \mu), \\
\mathcal{O}_{10} &= \frac{\alpha_{\text{em}}}{4\pi} (\bar{s}\gamma_\mu P_L b) (\bar{\mu}\gamma^\mu \gamma_5 \mu), \\
\mathcal{O}_{10}' &= \frac{\alpha_{\text{em}}}{4\pi} (\bar{s}\gamma_\mu P_R b) (\bar{\mu}\gamma^\mu \gamma_5 \mu).
\end{align}

Thus far, there are extensively model-independent analyses on the Wilson coefficients $C_{7,9,10}$ by fitting to the $R_K(\ast)$ deficits as well as the various available data on $b \to s \ell^+ \ell^-$ and $b \to s\gamma$.

8We thank the referee for pointing out this unrealistic limit.
Figure 3: Box diagrams contributing to $b \rightarrow s\mu^+\mu^-$ transition in the 2HDM-III embedded with the LSS-I mechanism.

transitions, such as the (differential) branching ratios $\mathcal{B}(B \rightarrow K^{(*)}\mu^+\mu^-)$ and $\mathcal{B}(B_s \rightarrow \phi\mu^+\mu^-)$, the (optimised) angular observables in $B^0 \rightarrow K^{(*)}\mu^+\mu^-$ and $B_s \rightarrow \phi\mu^+\mu^-$, and the branching ratio of the inclusive decay $B \rightarrow X_s\mu^+\mu^-$ [53, 55–59, 61–68]. It is consistently found that the NP in the muon sector is preferred, whereas no preference for the NP in the electron mode was favored [53, 55–59, 61–68]. Through the one-dimensional fits, it is found that the most preferred scenarios fall into the following three directions: (I) $C_{9\mu}^{\text{NP}} < 0$, (II) $C_{9\mu}^{\text{NP}} = -C_{10\mu}^{\text{NP}} < 0$, and (III) $C_{9\mu}^{\text{NP}} = -C_{9\mu}^{\text{NP}} < 0$. However, the scenario (III) predicts $R_K = 1$ and hence cannot explain the $R_K^{(*)}$ deficits simultaneously. In ref. [66], it is further found that the scenario (II) can provide a better fit in light of the LHCb measurement of $R_K^{(*)}$ [51]. Accordingly, we will investigate if this interesting scenario could be reproduced in our framework.

In our scenario, the Wilson coefficients $C'_{7,9,10}$ will receive a suppression factor $1/\tan\beta$, which can be also seen from refs. [46, 98]. Although a sizeable C_7 can be generated in our scenario, it is severely constrained by the inclusive decay $B \rightarrow X_s\gamma$. Hence only $C_{9,10}$ are relevant to our discussion for the $R_K^{(*)}$ anomalies. We find that the Feynman diagrams depicted in Fig. 3 can give sizeable contributions to $C_{9\mu}^{\text{NP}} = -C_{10\mu}^{\text{NP}} < 0$, which is favored by the scenario (II). The dominant contribution comes from the third diagram with two charged Higgs bosons running in the loop, because the vertex $H^\pm N\mu^\mp$ allows a sizeable coupling ($\mathcal{O}(1)$) while the $W^\pm N\mu^\mp$ coupling is constrained to be $\mathcal{O}(10^{-2})$ [109–112]. To this end, for simplicity, we will consider only the contribution coming from this diagram.

After a direct calculation, the corresponding Wilson coefficients are given by

$$C_{9\mu}^{\text{NP}} = -C_{10\mu}^{\text{NP}} = \frac{v^4}{32s_W^2M_W^4} \sum_{i=e,t} |\epsilon_{ti}|^2 |x_2|^2 I(x,y,z),$$

(4.4)

In ref. [136], we have shown explicitly that C_7 can be significantly reduced due to a destructive cancellation if a nonzero ϵ_{ct} is introduced in eq. (2.11), especially in the case for a relatively light charged Higgs boson.
with ϵ_{tt} given by eq. (2.11). The scalar function $I(x, y, z_i)$ is defined as

$$I(x, y, z_i) = \frac{y^2 \log \left(\frac{x}{y} \right)}{(x - y)^2(y - z_i)} + \frac{z_i^2 \log \left(\frac{x}{z_i} \right)}{(x - z_i)^2(z_i - y)} - \frac{x}{(x - y)(x - z_i)},$$

(4.5)

where $x = M_{H^\pm}^2/M_W^2$, $y = M^2/M_W^2$, and $z_i = m_i^2/M_W^2$. Here we have neglected the mass splitting between the two non-decoupled heavy Majorana neutrinos. The decoupled Majorana neutrino, on the other hand, does not play any role in the box diagrams because its couplings to the 2HDM fields are suppressed by the inverse of its mass.

Finally, we need to mention that there are also contributions from the Z- and γ-penguin diagrams, giving rise to the lepton-flavor universal Wilson coefficients $C_{NP}^{9\ell}$ and $C_{NP}^{10\ell}$, with $\ell = e$, μ, or τ. However, using the formulae given in ref. [46], we have checked numerically that these contributions are small for $M_{H^\pm} \simeq 500$ GeV, $|\epsilon_{tc}| \leq 0.5$, and $|\epsilon_{tt}| \leq 1$. Hence we will not consider these contributions in the following numerical analysis.

4.2 Numerical $R_{K(\ast)}$ analysis

The free parameters in eq. (4.4) are $\epsilon_{tc,tt}$ and x_2, together with the heavy neutrino mass M and the charged-Higgs boson mass M_{H^\pm}. However, as shown in Fig. 1, there exists a strong correlation between ϵ_{tc} and M_{H^\pm} stemming from the $R_{D(\ast)}$ fits. Therefore, we choose three typical values of $(|\epsilon_{tc}|, M_{H^\pm})$: (0.08, 300 GeV), (0.14, 400 GeV), and (0.21, 500 GeV) with $\tan \beta = 50$ in our numerical analysis.

In Fig. 4, we plot the (x_2, ϵ_{tt}) plane (assuming $x_2 > 0$) by using the 1σ range of the Wilson coefficients $C_{9\mu}^{NP} = -C_{10\mu}^{NP} < 0$ obtained through a global fit to the $R_{K(\ast)}$ deficits as well as the various available data on $b \to s\ell^+\ell^-$ and $b \to s\gamma$ transitions. Here we have fixed $M = 200$ GeV as the scalar function (eq. (4.5)) is insensitive to the neutrino mass around the electroweak scale. As can be seen from Fig. 4, $O(1)\ x_2$ and $|\epsilon_{tt}|$ are required to account for the $R_{K(\ast)}$ deficits. When the other eight box diagrams depicted in Fig. 3 are also taken into account with a sizeable $W^\pm N\mu^\mp$ coupling [112], the required sizes of x_2 and $|\epsilon_{tt}|$ can both be reduced. However, these contributions are not explicitly taken into account when making the plots in Fig. 4, because in this case more parameters would be involved.

It should be pointed out that the parameters ϵ_{tt} and M_{H^\pm} are also tightly constrained by
Figure 4: Constraint on the parameters x_2 and ϵ_{tt} using the 1\(\sigma\) range of the Wilson coefficients $C_{9\mu}^{\text{NP}} = -C_{10\mu}^{\text{NP}} < 0$ obtained through a global fit to the $R_{K^{(*)}}$ deficits as well as the various available data on $b \to s\ell^+\ell^-$ and $b \to s\gamma$ transitions [67].

the $B_s - \bar{B}_s$ mixing and the $b \to s\gamma$ transitions, with the findings that $\epsilon_{tt} \lesssim 1$ for $M_{H^\pm} \lesssim 500$ GeV [98, 137], which are compatible with the ones required for explaining the $R_{K^{(*)}}$ deficits. Thus, our scenario can provide an explanation for the $R_{D^{(*)}}$ and $R_{K^{(*)}}$ anomalies, while complying with these tight constraints. On the other hand, the $O(1)$ coupling x_2, besides its contribution to $R_{K^{(*)}}$, also contributes to the muon $g - 2$ dominantly at the one-loop level. However, this contribution is only of $O(10^{-10})$ for $M_{H^\pm} \gtrsim 100$ GeV [138], which is smaller than the current experimental data [106] by an order of magnitude. It is therefore difficult to provide a resolution to the muon $g - 2$ excess in the same scenario. In a follow-on paper [136], we will show that large contributions to the muon $g - 2$ can come from the two-loop Barr-Zee type diagrams. If the muon $g - 2$ excess is attributed to these two-loop Barr-Zee contributions, large ϵ_{tt} and relatively light charged Higgs bosons would be required. In this case, the constraints from $B_s - \bar{B}_s$ mixing and $b \to s\gamma$ transitions would become very severe. However, with a nonzero ϵ_{ct} introduced to X_μ^u (see eq. (2.11)) [85, 98, 99, 139], the muon $g - 2$ anomaly can still be addressed while the constraints from these processes are satisfied at the same time [136].

Finally, it should be mentioned that, due to the presence of $O(1)$ parameters x_2 and ϵ_{tt}, the decay modes $H^+ \to tb$ and $H^+ \to \mu N$ can have large branching ratios, depending on
the explicit mass spectrum of heavy neutrino, top quark and charged Higgs boson. For the $H^+ \rightarrow tb$ decay, a recent search performed at the LHC has put upper limits on the cross section times branching ratio $\sigma(pp \rightarrow tbH^+) \times B(H^+ \rightarrow tb)$ for $M_{H^\pm} = 200 - 2000$ GeV [140]. As for the $H^+ \rightarrow \mu N$ decay, the detection of the final states relies on the decay products of the heavy neutrinos and hence would involve the free light-heavy neutrino mixing parameters. If this decay mode dominates the charged Higgs boson decays, it can provide a new way to test the low-scale seesaw mechanism [118–127]. On the other hand, the branching ratio of $H^+ \rightarrow \tau^+\nu$ can also be large for $\tan\beta \simeq O(50)$. If the decay $H^+ \rightarrow \tau^+\nu$ dominates the charged Higgs boson decays, a lower limit on the charged Higgs boson mass applies with $M_{H^\pm} > 80$ GeV [141]. Upper limits on $\sigma(pp \rightarrow tbH^+) \times B(H^+ \rightarrow \tau^+\nu)$ have also been obtained for $M_{H^\pm} = 90 - 2000$ GeV [142] and $M_{H^\pm} = 180 - 600$ GeV [143], respectively. Following the discussions made explicitly in refs. [46, 85, 144], which are sufficient for the current purpose, we have found that all these experimental bounds can be satisfied by the parameter regions allowed by the $R_{D^(*)}$ and $R_{K^(*)}$ anomalies. As a further nonzero ϵ_{ct} needs to be introduced to X_{1u}^i in order to provide a resolution to the muon $g - 2$ excess while complying with the tight constraints from the B-physics observables [136], we plan to perform a detailed study of the direct LHC constraints on the charged and neutral scalars at nonzero values of ϵ_{tt}, ϵ_{tc} and ϵ_{ct}, as well as the neutrino Yukawa couplings in an upcoming paper.

5 Conclusions

Based on the structure of the 2HDM-III that has been proposed to address the $R_{D^(*)}$ anomalies, we have considered a unified scenario where right-handed heavy neutrinos are introduced to the model, so as to generate small neutrino masses and, at the same time, provide reasonable explanation for the $R_{K^(*)}$ anomalies.

Our main conclusions can be summarized as follows: Within the 2HDM-III, the current world-averaged results for the ratios $R_{D^(*)}$ can be accommodated at 2σ level, under the constraint from $B(B^- \rightarrow \tau^-\bar{\nu}) \leq 30\%$. For the light neutrino mass problem, only two massive neutrinos are produced with the sub-eV scale being accounted for by (i) two nearly degenerate Majorana neutrinos with mass around the electroweak scale, (ii) a decoupled heavy Majorana
neutrino with mass around 10^{10} GeV, and (iii) a large $\tan\beta$ with value around $\mathcal{O}(50)$. For the $R_{K^{(*)}}$ anomalies, we found that a muon-philic neutrino Yukawa coupling as well as a new top-quark Yukawa coupling, with both of their sizes being of $\mathcal{O}(1)$, are required to reproduce the 1σ range of the Wilson coefficients in the direction $C_{0\mu}^{NP} = -C_{10\mu}^{NP} < 0$. Such a large neutrino Yukawa coupling indicates that the coupling in the electron channel should be largely suppressed so as to comply with the constraint from $\mu \rightarrow e\gamma$ while the coupling in the tauonic channel is less constrained from $\tau \rightarrow \mu\gamma$, particularly for heavier charged Higgs boson and right-handed neutrinos.

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11675061, 11775092 and 11435003. X.L. is also supported in part by the self-determined research funds of CCNU from the colleges’ basic research and operation of MOE (CCNU18TS029). X.Z. is also supported by the China Postdoctoral Science Foundation (2018M632897).

References

[1] M. Artuso et al., *B, D and K decays*, *Eur. Phys. J.* C57 (2008) 309–492, [arXiv:0801.1833].

[2] M. Antonelli et al., *Flavor Physics in the Quark Sector*, *Phys. Rept.* 494 (2010) 197–414, [arXiv:0907.5386].

[3] BaBar Collaboration, J. P. Lees et al., *Evidence for an excess of $\bar{B} \rightarrow D^{(*)}\tau^-\bar{\nu}_\tau$ decays*, *Phys. Rev. Lett.* 109 (2012) 101802, [arXiv:1205.5442].

[4] BaBar Collaboration, J. P. Lees et al., *Measurement of an Excess of $\bar{B} \rightarrow D^{(*)}\tau^-\bar{\nu}_\tau$ Decays and Implications for Charged Higgs Bosons*, *Phys. Rev.* D88 (2013), no. 7 072012, [arXiv:1303.0571].

[5] Belle Collaboration, M. Huschle et al., *Measurement of the branching ratio of
$\bar{B} \to D^{(*)}\tau^-\bar{\nu}_\tau$ relative to $\bar{B} \to D^{(*)}\ell^-\bar{\nu}_\ell$ decays with hadronic tagging at Belle, Phys. Rev. D92 (2015), no. 7 072014, [arXiv:1507.03233].

[6] Belle Collaboration, Y. Sato et al., Measurement of the branching ratio of $\bar{B}^0 \to D^{*+}\tau^-\bar{\nu}_\tau$ relative to $\bar{B}^0 \to D^{*+}\ell^-\bar{\nu}_\ell$ decays with a semileptonic tagging method, Phys. Rev. D94 (2016), no. 7 072007, [arXiv:1607.07923].

[7] Belle Collaboration, S. Hirose et al., Measurement of the τ lepton polarization and $R(D^*)$ in the decay $\bar{B} \to D^*\tau^-\bar{\nu}_\tau$, Phys. Rev. Lett. 118 (2017), no. 21 211801, [arXiv:1612.00529].

[8] Belle Collaboration, S. Hirose et al., Measurement of the τ lepton polarization and $R(D^*)$ in the decay $\bar{B} \to D^*\tau^-\bar{\nu}_\tau$ with one-prong hadronic τ decays at Belle, Phys. Rev. D97 (2018), no. 1 012004, [arXiv:1709.00129].

[9] LHCb Collaboration, R. Aaij et al., Measurement of the ratio of branching fractions $B(\bar{B}^0 \to D^{*+}\tau^-\bar{\nu}_\tau)/B(\bar{B}^0 \to D^{*+}\mu^-\bar{\nu}_\mu)$, Phys. Rev. Lett. 115 (2015), no. 11 111803, [arXiv:1506.08614]. [Erratum: Phys. Rev. Lett.115,no.15,159901(2015)].

[10] LHCb Collaboration, R. Aaij et al., Measurement of the ratio of the $B^0 \to D^{*-}\tau^+\nu_\tau$ and $B^0 \to D^{*-}\mu^+\nu_\mu$ branching fractions using three-prong τ-lepton decays, Phys. Rev. Lett. 120 (2018), no. 17 171802, [arXiv:1708.08856].

[11] LHCb Collaboration, R. Aaij et al., Test of Lepton Flavor Universality by the measurement of the $B^0 \to D^{*-}\tau^+\nu_\tau$ branching fraction using three-prong τ decays, Phys. Rev. D97 (2018), no. 7 072013, [arXiv:1711.02505].

[12] HFLAV Collaboration, R. Aaij et al., Average of $R(D)$ and $R(D^*)$ for Summer 2018, . https://hflav-eos.web.cern.ch/hflav-eos/semi/summer18/RDRDs.html.

[13] S. Fajfer, J. F. Kamenik, and I. Nisandzic, On the $B \to D^*\tau\bar{\nu}_\tau$ Sensitivity to New Physics, Phys. Rev. D85 (2012) 094025, [arXiv:1203.2654].

[14] F. U. Bernlochner, Z. Ligeti, M. Papucci, and D. J. Robinson, Combined analysis of semileptonic B decays to D and D^*: $R_{D^{(*)}}$, $|V_{cb}|$, and new physics, Phys. Rev. D95
(2017), no. 11 115008, [arXiv:1703.05330]. [Erratum: Phys. Rev.D97,no.5,059902(2018)].

[15] D. Bigi, P. Gambino, and S. Schacht, \(R_{D^*}, |V_{cb}|, \) and the Heavy Quark Symmetry relations between form factors, JHEP 11 (2017) 061, [arXiv:1707.09509].

[16] S. Jaiswal, S. Nandi, and S. K. Patra, Extraction of \(|V_{cb}| \) from \(B \to D^{(*)}\ell\nu_\ell \) and the Standard Model predictions of \(R(D^{(*)}) \), JHEP 12 (2017) 060, [arXiv:1707.09977].

[17] MILC Collaboration, J. A. Bailey et al., \(B \to D\ell\nu \) form factors at nonzero recoil and \(|V_{cb}| \) from 2+1-flavor lattice QCD, Phys. Rev. D92 (2015), no. 3 034506, [arXiv:1503.07237].

[18] HPQCD Collaboration, H. Na, C. M. Bouchard, G. P. Lepage, C. Monahan, and J. Shigemitsu, \(B \to D\ell\nu \) form factors at nonzero recoil and extraction of \(|V_{cb}| \), Phys. Rev. D92 (2015), no. 5 054510, [arXiv:1505.03925]. [Erratum: Phys. Rev.D93,no.11,119906(2016)].

[19] D. Bigi and P. Gambino, Revisiting \(B \to D\ell\nu \), Phys. Rev. D94 (2016), no. 9 094008, [arXiv:1606.08030].

[20] S. Fajfer, J. F. Kamenik, I. Nisandzic, and J. Zupan, Implications of Lepton Flavor Universality Violations in B Decays, Phys. Rev. Lett. 109 (2012) 161801, [arXiv:1206.1872].

[21] D. Bečirević, N. Košnik, and A. Tayduganov, \(\bar{B} \to D\tau\bar{\nu}_\tau \) vs. \(\bar{B} \to D\mu\bar{\nu}_\mu \), Phys. Lett. B716 (2012) 208–213, [arXiv:1206.4977].

[22] P. Biancofiore, P. Colangelo, and F. De Fazio, On the anomalous enhancement observed in \(B \to D^{(*)}\tau\bar{\nu}_\tau \) decays, Phys. Rev. D87 (2013), no. 7 074010, [arXiv:1302.1042].

[23] B. Bhattacharya, A. Datta, D. London, and S. Shivashankara, Simultaneous Explanation of the \(R_K \) and \(R_{D^{(*)}} \) Puzzles, Phys. Lett. B742 (2015) 370–374, [arXiv:1412.7164].

[24] R. Alonso, B. Grinstein, and J. Martin Camalich, Lepton universality violation and lepton flavor conservation in B-meson decays, JHEP 10 (2015) 184, [arXiv:1505.05164].
[25] D. Bardhan, P. Byakti, and D. Ghosh, *A closer look at the R_D and R_{D^*} anomalies*, *JHEP* **01** (2017) 125, [arXiv:1610.03038].

[26] P. Colangelo and F. De Fazio, *Tension in the inclusive versus exclusive determinations of $|V_{cb}|$: a possible role of new physics*, *Phys. Rev.* **D95** (2017), no. 1 011701, [arXiv:1611.07387].

[27] S. Bhattacharya, S. Nandi, and S. K. Patra, *Looking for possible new physics in $B \to D^{(*)}\tau\nu$ in light of recent data*, *Phys. Rev.* **D95** (2017), no. 7 075012, [arXiv:1611.04605].

[28] M. A. Ivanov, J. G. Körner, and C.-T. Tran, *Probing new physics in $\bar{B}^0 \to D^{(*)}\tau^-\bar{\nu}_\tau$ using the longitudinal, transverse, and normal polarization components of the tau lepton*, *Phys. Rev.* **D95** (2017), no. 3 036021, [arXiv:1701.02937].

[29] A. K. Alok, D. Kumar, J. Kumar, S. Kumbhakar, and S. U. Sankar, *New physics solutions for R_D and R_{D^*}*, arXiv:1710.04127.

[30] A. Azatov, D. Bardhan, D. Ghosh, F. Sgarlata, and E. Venturini, *Anatomy of $b \to c\tau\nu$ anomalies*, arXiv:1805.03209.

[31] F. Feruglio, P. Paradisi, and O. Sumensari, *Implications of scalar and tensor explanations of $R_{D^{(*)}}$*, arXiv:1806.10155.

[32] P. Colangelo and F. De Fazio, *Scrutinizing $\overline{B} \to D^* (D\pi) \ell^-\bar{\nu}_\ell$ and $\overline{B} \to D^* (D\gamma) \ell^-\bar{\nu}_\ell$ in search of new physics footprints*, *JHEP* **06** (2018) 082, [arXiv:1801.10468].

[33] F. F. Deppisch, S. Kulkarni, H. Päs, and E. Schumacher, *Leptoquark patterns unifying neutrino masses, flavor anomalies, and the diphoton excess*, *Phys. Rev.* **D94** (2016), no. 1 013003, [arXiv:1603.07672].

[34] M. Bauer and M. Neubert, *Minimal Leptoquark Explanation for the $R_{D^{(*)}}$, R_K, and $(g-2)_\mu$ Anomalies*, *Phys. Rev. Lett.* **116** (2016), no. 14 141802, [arXiv:1511.01900].

[35] M. Freytsis, Z. Ligeti, and J. T. Ruderman, *Flavor models for $\overline{B} \to D^{(*)}\tau\bar{\nu}$*, *Phys. Rev.* **D92** (2015), no. 5 054018, [arXiv:1506.08896].
[36] S. Fajfer and N. Košnik, “Vector leptoquark resolution of R_K and $R_{D(\ast)}$ puzzles,” *Phys. Lett.* **B755** (2016) 270–274, [arXiv:1511.06024].

[37] D. Bečirević, I. Doršner, S. Fajfer, D. A. Faroughy, N. Košnik, and O. Sumensari, “Scalar leptoquarks from GUT to accommodate the B-physics anomalies,” [arXiv:1806.05689].

[38] X.-Q. Li, Y.-D. Yang, and X. Zhang, “Revisiting the one leptoquark solution to the $R_{D(\ast)}$ anomalies and its phenomenological implications,” *JHEP* **08** (2016) 054, [arXiv:1605.09308].

[39] N. Assad, B. Fornal, and B. Grinstein, “Baryon Number and Lepton Universality Violation in Leptoquark and Diquark Models,” *Phys. Lett.* **B777** (2018) 324–331, [arXiv:1708.06350].

[40] A. K. Alok, D. Kumar, J. Kumar, and R. Sharma, “Lepton flavor non-universality in the B-sector: a global analyses of various new physics models,” [arXiv:1704.07347].

[41] M. Blanke and A. Crivellin, “B Meson Anomalies in a Pati-Salam Model within the Randall-Sundrum Background,” *Phys. Rev. Lett.* **121** (2018), no. 1 011801, [arXiv:1801.07256].

[42] W. Altmannshofer, P. Bhupal Dev, and A. Soni, “$R_{D(\ast)}$ anomaly: A possible hint for natural supersymmetry with R-parity violation,” *Phys. Rev.* **D96** (2017), no. 9 095010, [arXiv:1704.06659].

[43] A. Celis, M. Jung, X.-Q. Li, and A. Pich, “Sensitivity to charged scalars in $B \to D^{(*)}\tau\nu_\tau$ and $B \to \tau\nu_\tau$ decays,” *JHEP* **01** (2013) 054, [arXiv:1210.8443].

[44] A. Crivellin, C. Greub, and A. Kokulu, “Explaining $B \to D\tau\nu$, $B \to D^*\tau\nu$ and $B \to \tau\nu$ in a 2HDM of type III,” *Phys. Rev.* **D86** (2012) 054014, [arXiv:1206.2634].

[45] A. Crivellin, J. Heeck, and P. Stoffer, “A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model,” *Phys. Rev. Lett.* **116** (2016), no. 8 081801, [arXiv:1507.07567].
[46] S. Iguro and K. Tobe, *R_{D(\omega)} in a general two Higgs doublet model*, Nucl. Phys. **B925** (2017) 560–606, [arXiv:1708.06176].

[47] R. Alonso, B. Grinstein, and J. Martin Camalich, *Lifetime of B_c^- Constrains Explanations for Anomalies in B \to D^{(*)}\tau\nu*, Phys. Rev. Lett. **118** (2017), no. 8 081802, [arXiv:1611.06676].

[48] A. Celis, M. Jung, X.-Q. Li, and A. Pich, *Scalar contributions to b \to c(u)\tau\nu transitions*, Phys. Lett. **B771** (2017) 168–179, [arXiv:1612.07757].

[49] A. G. Akeroyd and C.-H. Chen, *Constraint on the branching ratio of B_c \to \tau\bar{\nu} from LEP1 and consequences for R_{D(\omega)} anomaly*, Phys. Rev. **D96** (2017), no. 7 075011, [arXiv:1708.04072].

[50] LHCb Collaboration, R. Aaij et al., *Test of lepton universality using B^+ \to K^+\ell^+\ell^- decays*, Phys. Rev. Lett. **113** (2014) 151601, [arXiv:1406.6482].

[51] LHCb Collaboration, R. Aaij et al., *Test of lepton universality with B^0 \to K^{*-0}\ell^+\ell^- decays*, JHEP **08** (2017) 055, [arXiv:1705.05802].

[52] G. Hiller and F. Kruger, *More model-independent analysis of b \to s processes*, Phys. Rev. **D69** (2004) 074020, [hep-ph/0310219].

[53] S. Descotes-Genon, L. Hofer, J. Matias, and J. Virto, *Global analysis of b \to s\ell\ell anomalies*, JHEP **06** (2016) 092, [arXiv:1510.04239].

[54] M. Bordone, G. Isidori, and A. Pattori, *On the Standard Model predictions for R_K and R_{K^*}, Eur. Phys. J. C76* (2016), no. 8 440, [arXiv:1605.07633].

[55] W. Altmannshofer and D. M. Straub, *New physics in b \to s transitions after LHC run 1*, Eur. Phys. J. C**75** (2015), no. 8 382, [arXiv:1411.3161].

[56] D. Ghosh, M. Nardecchia, and S. A. Renner, *Hint of Lepton Flavour Non-Universality in B Meson Decays*, JHEP **12** (2014) 131, [arXiv:1408.4097].

[57] T. Hurth, F. Mahmoudi, and S. Neshatpour, *Global fits to b \to s\ell\ell data and signs for lepton non-universality*, JHEP **12** (2014) 053, [arXiv:1410.4545].
[58] W. Altmannshofer and D. M. Straub, *Implications of $b \to s$ measurements*, in Proceedings, 50th Rencontres de Moriond Electroweak Interactions and Unified Theories: La Thuile, Italy, March 14-21, 2015, pp. 333–338, 2015. arXiv:1503.06199.

[59] L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren, and R.-X. Shi, *Towards the discovery of new physics with lepton-universality ratios of $b \to s\ell\ell$ decays*, Phys. Rev. D96 (2017), no. 9 093006, [arXiv:1704.05446].

[60] D. Bardhan, P. Byakti, and D. Ghosh, *Role of Tensor operators in R_K and R_{K^*}*, Phys. Lett. B773 (2017) 505–512, [arXiv:1705.09305].

[61] B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias, and J. Virto, *Patterns of New Physics in $b \to s\ell^+\ell^-$ transitions in the light of recent data*, JHEP 01 (2018) 093, [arXiv:1704.05340].

[62] G. D’Amico, M. Nardecchia, P. Panci, F. Sannino, A. Strumia, R. Torre, and A. Urbano, *Flavour anomalies after the R_{K^*} measurement*, JHEP 09 (2017) 010, [arXiv:1704.05438].

[63] M. Ciuchini, A. M. Coutinho, M. Fedele, E. Franco, A. Paul, L. Silvestrini, and M. Valli, *On Flavourful Easter eggs for New Physics hunger and Lepton Flavour Universality violation*, Eur. Phys. J. C77 (2017), no. 10 688, [arXiv:1704.05447].

[64] D. Ghosh, *Explaining the R_K and R_{K^*} anomalies*, Eur. Phys. J. C77 (2017), no. 10 694, [arXiv:1704.06240].

[65] T. Hurth, F. Mahmoudi, D. Martinez Santos, and S. Neshatpour, *Lepton nonuniversality in exclusive $b \to s\ell\ell$ decays*, Phys. Rev. D96 (2017), no. 9 095034, [arXiv:1705.06274].

[66] A. K. Alok, B. Bhattacharya, A. Datta, D. Kumar, J. Kumar, and D. London, *New Physics in $b \to s\mu^+\mu^-$ after the Measurement of R_{K^*}*, Phys. Rev. D96 (2017), no. 9 095009, [arXiv:1704.07397].

[67] W. Altmannshofer, P. Stangl, and D. M. Straub, *Interpreting Hints for Lepton Flavor Universality Violation*, Phys. Rev. D96 (2017), no. 5 055008, [arXiv:1704.05435].
[68] G. Hiller and I. Nisandzic, \(R_K \) and \(R_{K^*} \) beyond the standard model, \textit{Phys. Rev.} \textbf{D96} (2017), no. 3 035003, [arXiv:1704.05444].

[69] D. Aristizabal Sierra, F. Staub, and A. Vicente, Shedding light on the \(b \to s \) anomalies with a dark sector, \textit{Phys. Rev.} \textbf{D92} (2015), no. 1 015001, [arXiv:1503.06077].

[70] A. J. Buras and J. Girrbach, Left-handed \(Z' \) and \(Z \) FCNC quark couplings facing new \(b \to s \mu^+\mu^- \) data, \textit{JHEP} \textbf{12} (2013) 009, [arXiv:1309.2466].

[71] R. Gauld, F. Goertz, and U. Haisch, An explicit \(Z' \)-boson explanation of the \(B \to K^* \mu^+\mu^- \) anomaly, \textit{JHEP} \textbf{01} (2014) 069, [arXiv:1310.1082].

[72] W. Altmannshofer, S. Gori, M. Pospelov, and I. Yavin, Quark flavor transitions in \(L_{\mu} - L_{\tau} \) models, \textit{Phys. Rev.} \textbf{D89} (2014) 095033, [arXiv:1403.1269].

[73] A. Crivellin, G. D’Ambrosio, and J. Heeck, Explaining \(h \to \mu^+\tau^- \), \(B \to K^* \mu^+\mu^- \) and \(B \to K \mu^+\mu^- \)/\(B \to K e^+e^- \) in a two-Higgs-doublet model with gauged \(L_{\mu} - L_{\tau} \), \textit{Phys. Rev. Lett.} \textbf{114} (2015) 151801, [arXiv:1501.00993].

[74] A. Crivellin, G. D’Ambrosio, and J. Heeck, Addressing the LHC flavor anomalies with horizontal gauge symmetries, \textit{Phys. Rev.} \textbf{D91} (2015), no. 7 075006, [arXiv:1503.03477].

[75] A. Celis, J. Fuentes-Martin, M. Jung, and H. Serodio, Family nonuniversal \(Z' \) models with protected flavor-changing interactions, \textit{Phys. Rev.} \textbf{D92} (2015), no. 1 015007, [arXiv:1505.03079].

[76] Y. Tang and Y.-L. Wu, Flavor non-universal gauge interactions and anomalies in \(B \)-meson decays, \textit{Chin. Phys.} \textbf{C42} (2018), no. 3 033104, [arXiv:1705.05643].

[77] C.-W. Chiang, X.-G. He, J. Tandean, and X.-B. Yuan, \(R_{K^{(*)}} \) and related \(b \to s \ell \ell \) anomalies in minimal flavor violation framework with \(Z' \) boson, \textit{Phys. Rev.} \textbf{D96} (2017), no. 11 115022, [arXiv:1706.02696].

[78] S. F. King, Flavourful \(Z' \) models for \(R_{K^{(*)}} \), \textit{JHEP} \textbf{08} (2017) 019, [arXiv:1706.06100].
[79] M. Chala and M. Spannowsky, *On the behaviour of composite resonances breaking lepton flavour universality*, arXiv:1803.02364.

[80] D. Guadagnoli, M. Reboud, and O. Sumensari, *A gauged horizontal SU(2) symmetry and $R_{K^(*)}$*, arXiv:1807.03285.

[81] G. Hiller and M. Schmaltz, *R_K and future $b \to s\ell\ell$ physics beyond the standard model opportunities*, Phys. Rev. D90 (2014) 054014, [arXiv:1408.1627].

[82] B. Gripaios, M. Nardecchia, and S. A. Renner, *Composite leptoquarks and anomalies in B-meson decays*, JHEP 05 (2015) 006, [arXiv:1412.1791].

[83] D. Bećirević, N. Košnik, O. Sumensari, and R. Zukanovich Funchal, *Palatable Leptoquark Scenarios for Lepton Flavor Violation in Exclusive $b \to s\ell_1\ell_2$ modes*, JHEP 11 (2016) 035, [arXiv:1608.07583].

[84] D. Bećirević and O. Sumensari, *A leptoquark model to accommodate $R_{K}^{\exp} < R_{K}^{SM}$ and $R_{K^*}^{\exp} < R_{K^*}^{SM}$*, JHEP 08 (2017) 104, [arXiv:1704.05835].

[85] S. Iguro and Y. Omura, *Status of the semileptonic B decays and muon $g-2$ in general 2HDMs with right-handed neutrinos*, JHEP 05 (2018) 173, [arXiv:1802.01732].

[86] R. N. Mohapatra et al., *Theory of neutrinos: A White paper*, Rept. Prog. Phys. 70 (2007) 1757–1867, [hep-ph/0510213].

[87] R. N. Mohapatra and J. W. F. Valle, *Neutrino Mass and Baryon Number Nonconservation in Superstring Models*, Phys. Rev. D34 (1986) 1642.

[88] M. Malinsky, T. Ohlsson, and H. Zhang, *Non-unitarity effects in a realistic low-scale seesaw model*, Phys. Rev. D79 (2009) 073009, [arXiv:0903.1961].

[89] P. S. B. Dev and A. Pilaftsis, *Minimal Radiative Neutrino Mass Mechanism for Inverse Seesaw Models*, Phys. Rev. D86 (2012) 113001, [arXiv:1209.4051].

[90] A. Pilaftsis and T. E. J. Underwood, *Electroweak-scale resonant leptogenesis*, Phys. Rev. D72 (2005) 113001, [hep-ph/0506107].
[91] J. Kersten and A. Yu. Smirnov, *Right-Handed Neutrinos at CERN LHC and the Mechanism of Neutrino Mass Generation*, Phys. Rev. D76 (2007) 073005, [arXiv:0705.3221].

[92] H. Zhang and S. Zhou, *The Minimal Seesaw Model at the TeV Scale*, Phys. Lett. B685 (2010) 297–301, [arXiv:0912.2661].

[93] R. Adhikari and A. Raychaudhuri, *Light neutrinos from massless texture and below TeV seesaw scale*, Phys. Rev. D84 (2011) 033002, [arXiv:1004.5111].

[94] A. Ibarra, E. Molinaro, and S. T. Petcov, *TeV Scale See-Saw Mechanisms of Neutrino Mass Generation, the Majorana Nature of the Heavy Singlet Neutrinos and (ββ)0ν-Decay*, JHEP 09 (2010) 108, [arXiv:1007.2378].

[95] A. Ibarra, E. Molinaro, and S. T. Petcov, *Low Energy Signatures of the TeV Scale See-Saw Mechanism*, Phys. Rev. D84 (2011) 013005, [arXiv:1103.6217].

[96] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, *The Higgs Hunter’s Guide*, Front. Phys. 80 (2000) 1–404.

[97] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, *Theory and phenomenology of two-Higgs-doublet models*, Phys. Rept. 516 (2012) 1–102, [arXiv:1106.0034].

[98] A. Crivellin, A. Kokulu, and C. Greub, *Flavor-phenomenology of two-Higgs-doublet models with generic Yukawa structure*, Phys. Rev. D87 (2013), no. 9 094031, [arXiv:1303.5877].

[99] B. Altunkaynak, W.-S. Hou, C. Kao, M. Kohda, and B. McCoy, *Flavor Changing Heavy Higgs Interactions at the LHC*, Phys. Lett. B751 (2015) 135–142, [arXiv:1506.00651].

[100] A. G. Akeroyd and S. Recksiegel, *The Effect of H± on B± → τ±ντ and B± → μ±νμ*, J. Phys. G29 (2003) 2311–2317, [hep-ph/0306037].

[101] Y. Sakaki and H. Tanaka, *Constraints on the charged scalar effects using the forward-backward asymmetry on B− → D(∗) τ ντ*, Phys. Rev. D87 (2013), no. 5 054002, [arXiv:1205.4908].
[102] M. Beneke and G. Buchalla, *The Bc Meson Lifetime*, *Phys. Rev.* **D53** (1996) 4991–5000, [hep-ph/9601249].

[103] Belle Collaboration, A. Abdesselam et al., *Measurement of the branching ratio of \(\bar{B}^0 \to D^{\ast+}\tau^-\bar{\nu}_\tau \) relative to \(\bar{B}^0 \to D^{\ast+}\ell^-\bar{\nu}_\ell \) decays with a semileptonic tagging method*, in *Proceedings, 51st Rencontres de Moriond on Electroweak Interactions and Unified Theories: La Thuile, Italy, March 12-19, 2016*. arXiv:1603.06711.

[104] M. Tanaka and R. Watanabe, *New physics in the weak interaction of \(\bar{B} \to D^{(\ast)}\tau\bar{\nu} \),* *Phys. Rev.* **D87** (2013), no. 3 034028, [arXiv:1212.1878].

[105] S. de Boer, T. Kitahara, and I. Nisandzic, *Soft-Photon Corrections to \(\bar{B} \to D\tau^-\bar{\nu}_\tau \) Relative to \(\bar{B} \to D\mu^-\bar{\nu}_\mu \)*, *Phys. Rev. Lett.* **120** (2018), no. 26 261804, [arXiv:1803.05881].

[106] Particle Data Group Collaboration, C. Patrignani et al., *Review of Particle Physics*, *Chin. Phys.* **C40** (2016), no. 10 100001.

[107] HPQCD Collaboration, B. Colquhoun, C. T. H. Davies, R. J. Dowdall, J. Kettle, J. Koponen, G. P. Lepage, and A. T. Lytle, *B-meson decay constants: a more complete picture from full lattice QCD*, *Phys. Rev.* **D91** (2015), no. 11 114509, [arXiv:1503.05762].

[108] Z.-C. Liu, C.-X. Yue, and Z.-h. Zhao, *Neutrino \(\mu - \tau \) reflection symmetry and its breaking in the minimal seesaw*, *JHEP* **10** (2017) 102, [arXiv:1707.05535].

[109] S. Antusch, C. Biggio, E. Fernandez-Martinez, M. B. Gavela, and J. Lopez-Pavon, *Unitarity of the Leptonic Mixing Matrix*, *JHEP* **10** (2006) 084, [hep-ph/0607020].

[110] E. Akhmedov, A. Kartavtsev, M. Lindner, L. Michael, and J. Smirnov, *Improving Electro-Weak Fits with TeV-scale Sterile Neutrinos*, *JHEP* **05** (2013) 081, [arXiv:1302.1872].

[111] E. Fernandez-Martinez, J. Hernandez-Garcia, J. Lopez-Pavon, and M. Lucente, *Loop level constraints on Seesaw neutrino mixing*, *JHEP* **10** (2015) 130, [arXiv:1508.03051].
[112] E. Fernandez-Martinez, J. Hernandez-Garcia, and J. Lopez-Pavon, *Global constraints on heavy neutrino mixing*, JHEP 08 (2016) 033, [arXiv:1605.08774].

[113] X.-G. He and G. Valencia, *Are the B-anomalies evidence for heavy neutrinos?*, arXiv:1706.07570.

[114] N. Cabibbo, *Unitary Symmetry and Leptonic Decays*, Phys. Rev. Lett. 10 (1963) 531–533. [,648(1963)].

[115] M. Kobayashi and T. Maskawa, *CP Violation in the Renormalizable Theory of Weak Interaction*, Prog. Theor. Phys. 49 (1973) 652–657.

[116] M. D. Campos, D. Cogollo, M. Lindner, T. Melo, F. S. Queiroz, and W. Rodejohann, *Neutrino Masses and Absence of Flavor Changing Interactions in the 2HDM from Gauge Principles*, JHEP 08 (2017) 092, [arXiv:1705.05388].

[117] S. M. Bilenky and B. Pontecorvo, *Lepton Mixing and Neutrino Oscillations*, Phys. Rept. 41 (1978) 225–261.

[118] P. S. B. Dev, A. Pilaftsis, and U.-k. Yang, *New Production Mechanism for Heavy Neutrinos at the LHC*, Phys. Rev. Lett. 112 (2014), no. 8 081801, [arXiv:1308.2209].

[119] A. Das and N. Okada, *Improved bounds on the heavy neutrino productions at the LHC*, Phys. Rev. D93 (2016), no. 3 033003, [arXiv:1510.04790].

[120] CMS Collaboration, V. Khachatryan et al., *Search for heavy Majorana neutrinos in e⁺e⁻ + jets and e⁺μ⁻ + jets events in proton-proton collisions at √s = 8 TeV*, JHEP 04 (2016) 169, [arXiv:1603.02248].

[121] A. Das, P. Konar, and S. Majhi, *Production of Heavy neutrino in next-to-leading order QCD at the LHC and beyond*, JHEP 06 (2016) 019, [arXiv:1604.00608].

[122] A. Das, P. S. B. Dev, and C. S. Kim, *Constraining Sterile Neutrinos from Precision Higgs Data*, Phys. Rev. D95 (2017), no. 11 115013, [arXiv:1704.00880].

[123] A. Das, P. Konar, and A. Thalapillil, *Jet substructure shedding light on heavy Majorana neutrinos at the LHC*, JHEP 02 (2018) 083, [arXiv:1709.09712].
A. Das and N. Okada, *Bounds on heavy Majorana neutrinos in type-I seesaw and implications for collider searches*, Phys. Lett. B774 (2017) 32–40, [arXiv:1702.04668].

A. Das, Y. Gao, and T. Kamon, *Heavy Neutrino Search via the Higgs boson at the LHC*, arXiv:1704.00881.

A. Das, *Searching for the minimal Seesaw models at the LHC and beyond*, Adv. High Energy Phys. 2018 (2018) 9785318, [arXiv:1803.10940].

A. Bhardwaj, A. Das, P. Konar, and A. Thalapillil, *Challenging Sterile Neutrino Searches at the LHC Complemented by Jet Substructure Techniques*, arXiv:1801.00797.

A. G. Dias, C. A. de S. Pires, and P. S. R. da Silva, *How the Inverse See-Saw Mechanism Can Reveal Itself Natural, Canonical and Independent of the Right-Handed Neutrino Mass*, Phys. Rev. D84 (2011) 053011, [arXiv:1107.0739].

P. S. Bhupal Dev, R. Franceschini, and R. N. Mohapatra, *Bounds on TeV Seesaw Models from LHC Higgs Data*, Phys. Rev. D86 (2012) 093010, [arXiv:1207.2756].

W. Loinaz, N. Okamura, T. Takeuchi, and L. C. R. Wijewardhana, *The NuTeV anomaly, neutrino mixing, and a heavy Higgs boson*, Phys. Rev. D67 (2003) 073012, [hep-ph/0210193].

W. Loinaz, N. Okamura, S. Rayyan, T. Takeuchi, and L. C. R. Wijewardhana, *The NuTeV anomaly, lepton universality, and nonuniversal neutrino gauge couplings*, Phys. Rev. D70 (2004) 113004, [hep-ph/0403306].

M. Lindner, M. Platscher, and F. S. Queiroz, *A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation*, Phys. Rept. 731 (2018) 1–82, [arXiv:1610.06587].

G. Altarelli and F. Feruglio, *Discrete Flavor Symmetries and Models of Neutrino Mixing*, Rev. Mod. Phys. 82 (2010) 2701–2729, [arXiv:1002.0211].

I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler, and T. Schwetz, *Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity*, JHEP 01 (2017) 087, [arXiv:1611.01514].
[135] G. Buchalla, A. J. Buras, and M. E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125–1144, [hep-ph/9512380].

[136] S.-P. Li, X.-Q. Li, and Y.-D. Yang, Muon $g − 2$ in a $U(1)$-symmetric Two-Higgs-Doublet Model, arXiv:1808.02424.

[137] F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D81 (2010) 035016, [arXiv:0907.1791].

[138] E. Ma and M. Raidal, Neutrino mass, muon anomalous magnetic moment, and lepton flavor nonconservation, Phys. Rev. Lett. 87 (2001) 011802, [hep-ph/0102255].
[Erratum: Phys. Rev. Lett.87,159901(2001)].

[139] C.-H. Chen and T. Nomura, Charged-Higgs on $B_q^− → ℓν$ and $\bar{B} → (P,V)ℓν$ in a generic two-Higgs doublet model, arXiv:1803.00171.

[140] ATLAS Collaboration, M. Aaboud et al., Search for charged Higgs bosons decaying into top and bottom quarks at $\sqrt{s} = 13$ TeV with the ATLAS detector, arXiv:1808.03599.

[141] LEP, DELPHI, OPAL, ALEPH, L3 Collaboration, G. Abbiendi et al., Search for Charged Higgs bosons: Combined Results Using LEP Data, Eur. Phys. J. C73 (2013) 2463, [arXiv:1301.6065].

[142] ATLAS Collaboration, M. Aaboud et al., Search for charged Higgs bosons decaying via $H^± → τ^±ν_τ$ in the $τ$+jets and $τ$+lepton final states with 36 fb$^{-1}$ of pp collision data recorded at $\sqrt{s} = 13$ TeV with the ATLAS experiment, Submitted to: JHEP (2018) [arXiv:1807.07915].

[143] CMS Collaboration, V. Khachatryan et al., Search for a charged Higgs boson in pp collisions at $\sqrt{s} = 8$ TeV, JHEP 11 (2015) 018, [arXiv:1508.07774].

[144] S. Gori, C. Grojean, A. Juste, and A. Paul, Heavy Higgs Searches: Flavour Matters, JHEP 01 (2018) 108, [arXiv:1710.03752].