Association between COX-2 -1195G>A polymorphism and gastrointestinal cancer risk: A meta-analysis

Xiao-Wei Zhang, Jun Li, Yu-Xing Jiang, Yu-Xiang Chen

Xiao-Wei Zhang, Jun Li, Yu-Xiang Chen, Department of Gastrointestinal and Vascular Surgery, Deyang People's Hospital, Deyang 618099, Sichuan Province, China

Yu-Xing Jiang, Department of General Surgery and Center for Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China

Author contributions: Zhang XW and Chen YX conceived and designed the study; Li J and Jiang YX designed the data extraction tool and conducted the literature search; Zhang XW and Li J interpreted and extracted the data; Zhang XW, Li J and Jiang YX performed the statistical analysis; Zhang XW and Li J wrote the first draft of the manuscript; Jiang YX and Chen YX contributed to the revision of the manuscript.

Conflict-of-interest statement: The authors declare no conflicts of interest.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Yu-Xiang Chen, Chief Physician, Department of Gastrointestinal and Vascular Surgery, Deyang People’s Hospital, Deyang 618099, Sichuan Province, China. 773854798@qq.com
Telephone: +86-838-2418116
Fax: +86-838-2418116

Received: December 6, 2016
Peer-review started: December 8, 2016
First decision: February 9, 2017
Revised: February 26, 2017
Accepted: March 4, 2017

Abstract

AIM
To perform a meta-analysis to investigate the association between cyclooxygenase-2 (COX-2) -1195G>A gene polymorphism and gastrointestinal cancers.

METHODS
Publications related to the COX-2 -1195G>A gene polymorphism and gastrointestinal cancers published before July 2016 were retrieved from PubMed, EMBASE, Web of Science, China Biological Medicine Database, China National Knowledge Infrastructure, and CQVIP Database. Meta-analysis was performed using Stata11.0 software. The strength of the association was evaluated by calculating the combined odds ratios (ORs) and the corresponding 95% CIs. The retrieved publications were excluded or included one by one for sensitivity analysis. In addition, the funnel plot, Begg’s rank correlation test, and Egger’s linear regression method were applied to analyse whether the included publications had publication bias.

RESULTS
A total of 24 publications related to the COX-2 -1195G>A gene polymorphism were included, including 28 studies involving 11043 cases and 18008 controls. The meta-analysis results showed that the COX-2 -1195G>A gene polymorphism significantly correlated with an increased risk of gastrointestinal cancers, particularly gastric cancer (A vs G: OR = 1.35; AA/AG vs GG: OR = 1.54; AA vs GG/AG: OR = 1.43; AA vs GG: OR = 1.80; AG vs GG: OR = 1.35). Compared to the Caucasian population in America and Europe, the COX-2 -1195G>A gene polymorphism in the Asian population (A vs G: OR = 1.30; AA/AG vs GG: OR...
= 1.50; AA vs GG/AG: OR = 1.35; AA vs GG: OR = 1.71; AG vs GG: OR = 1.37) significantly increased gastrointestinal cancer risk. The sensitivity analysis (P < 0.05) and the false positive report probability (P < 0.2) confirmed the reliability of the results.

CONCLUSION
The results showed that the COX-2 -1195G>A gene polymorphism might be a potential risk factor for gastrointestinal cancers. Further validation by a large homogeneous study is warranted.

Key words: COX-2; -1195G>A; Polymorphism; Meta-analysis; Gastrointestinal cancer

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: To explore the association of the cyclooxygenase-2 (COX-2) (-1195G>A) polymorphism with gastrointestinal cancers, we conducted this retrospective study. According to this meta-analysis, we discovered that the COX-2 (-1195G>A) polymorphism may be a risk factor for gastrointestinal cancers and may increase the risk of gastrointestinal cancers in the Asian population. Furthermore, we applied a false-positive report probability to make the results more credible. Our findings indicated that focusing on the COX-2 (-1195G>A) polymorphism to prevent gastrointestinal cancers may be viable.

Zhang XW, Li J, Jiang YX, Chen YX. Association between COX-2 -1195G>A polymorphism and gastrointestinal cancer risk: A meta-analysis. World J Gastroenterol 2017; 23(12): 2234-2245 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i12/2234.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i12.2234

INTRODUCTION
Gastrointestinal cancers have high morbidity and mortality worldwide, with most cases being gastric cancer and colorectal cancer[1,2]. Because currently there is still no effective early diagnosis method, patients are often diagnosed at a middle or late stage; even after treatment, their quality of life and survival time are still significantly affected[3]. Improving the early diagnosis and treatment of gastric cancer and colorectal cancer has important significance in the prognosis of patients[4,5]. Therefore, studying pathogenic mechanisms of tumours, clarifying the molecular mechanism, discovering “key” molecular markers of tumours, and predicting cancer risk in a timely fashion are key to the prevention, diagnosis, and molecular targeted therapy of gastric cancer and colorectal cancer.

Previous studies have shown that cyclooxygenase-2 (COX-2) is a rate-limiting enzyme of prostaglandin synthesis[6] and is closely associated with the development of malignant tumours[7]. COX-2 is localized in the nuclear membrane under physiological conditions and can be expressed in the cytoplasm and nucleus of corresponding tissues after inflammatory stimulation to participate in inflammatory reactions and promote the formation of a tumour inflammatory microenvironment[8]. A larger amount of literature confirmed that a high COX-2 expression level was present in many malignant tumours, including breast cancer, lung cancer, liver cancer, and nasopharyngeal carcinoma. The high COX-2 expression level was not only an early event of the development of malignant tumours but was also directly correlated with the infiltration degree, lymph node metastasis, TNM stage, and patient prognosis[9,10]. Further studies indicated that the intracellular localizations of COX-2 in tumour cells of different tissues types were different[11]. COX-2 was highly expressed in gastric cancer and colorectal cancer cells; in addition, COX-2 was expressed in macrophages and fibroblasts in tumour tissues[12]. These results indicated that COX-2 expression gradually increases during the process of malignant transformation of precancerous lesions into malignant tumours, suggesting that COX-2 is involved in the developmental process of gastric cancer and colorectal cancer; however, the specific mechanism is still not clear.

The COX-2 gene is localized at q25.2–25.3 of chromosome 1 and contains 10 exons and 9 introns with a total length of approximately 8.3 kb. COX-2 is a rapid-response gene to various factors, such as inflammatory factors, tumourigenic factors, injury, and growth factors, all of which can induce its rapid expression[13,14,15]. There have been already many published studies on the association between COX-2 gene polymorphisms and susceptibility to gastrointestinal cancers. It is generally considered that COX-2 -765G>C and COX-2 -8473T>C gene mutations are closely associated with the development of gastrointestinal cancers[16,17]. However, the association between COX-2 -1195G>A and gastric and colorectal cancers is still unclear. Because the COX-2 gene has larger distribution differences in populations of different ethnicities and different regions and the sample size in a single study is limited, this association cannot be entirely explained. Given the current controversial study results, we aimed to perform a meta-analysis to confirm the association between the COX-2 -1195G>A polymorphism and susceptibility to gastric and colorectal cancers.

MATERIALS AND METHODS

Retrieval strategy
We performed retrieval using the MeSH terms of (COX-2 -1195G>A or COX-2 -1195G>A) and (gastrointestinal or colorectal or colon or rectal or stomach or gastric) and (cancer or tumour or carcinoma) and (polymorphism or
SNP or variant or mutation) in the following databases: PubMed, EMBASE, Web of Science, China Biological Medicine Database, China National Knowledge Infrastructure, and CQVIP Database. The relevant studies in China and other countries were retrieved. The retrieval period was between the establishment of the databases and July 2016. Relevant conference papers were manually retrieved from the journal database of the Third Military Medical University library.

Inclusion criteria
The included literature in this study met the following criteria: (1) studies about the COX-2 -1195G>A gene polymorphism and susceptibility to gastrointestinal cancers; (2) case-controlled or cohort studies; (3) gastrointestinal cancer patients as the case group; and (4) enough genotype data to calculate odds ratios (ORs) and corresponding 95% confidence internals (CIs).

Exclusion criteria
The exclusion criteria were as follows: (1) the study topic of the article was not about the COX-2 -1195G>A gene polymorphism and susceptibility to gastrointestinal cancers; (2) the studies were not case-controlled or cohort studies; (3) abstracts, reviews, case reports, or repetitively published articles; and (4) the study data were not complete or the raw data could not be obtained.

Data extraction and quality evaluation
The data were independently extracted by two researchers (Xiao-Wei Zhang, Jun Li) using the unified data table. The major extracted data included the following information: first author, publication year, country, tumour type, sources of the control group, matching criteria, genotyping method, genotype distribution in the case group and the control group, and the Hardy-Weinberg equilibrium (HWE) examination result of the control group. If the data extraction results were inconsistent, a third party was consulted to reach a consensus.

The included publications were scored using the predetermined criteria[18, 19]. These criteria were extracted and modified from previous studies (Table 1). The quality evaluation scale was used to evaluate the included studies from six aspects: representativeness of cases, source of controls, case-control match, specimens used for determining genotypes, HWE, and total sample size. The scores ranged from the lowest, 0 points, to the highest, 18 points. Publications with a score < 12 were classified as “low quality” and publications with a score ≥ 12 were classified as “high quality.”

Statistical analysis
The OR and 95%CI were used as the effective index of the study. \(P < 0.05 \) indicated that the difference was statistically significant. Five genetic models, including allele model (A vs G), dominant model (AA/AG vs GG), recessive model (AA vs GG/AG), homozygous model (AA vs GG), and heterozygous model (AG vs GG), were compared. The statistical significance of combined OR values were examined using the Z test, and the significance level was set at 0.05 (bilateral). The \(\chi^2 \) test was used to evaluate whether the genotypes in the control group conformed to HWE. The Cochrane Q test was performed to analyse the heterogeneity among studies\(^{[20]}\). \(P < 0.10 \) was considered significantly different. In addition, the \(I^2 \) value was combined to quantitatively evaluate the level of heterogeneity. The \(I^2 \) values were between 0% and 100%; when the value was larger, the heterogeneity was higher. When the heterogeneity examination result showed \(P < 0.10 \) or \(I^2 > 50\% \), the random effects model (DerSimonian-Laird method)\(^{[21]}\) was used to perform the analysis; otherwise, the fixed effects model (Mantel-Haenszel method)\(^{[22]}\) was used. The included studies were deleted one by one to perform sensitivity analysis to examine the effect of a single study on the total combined effect size. Whether the included literature had publication bias was analysed through the funnel plot\(^{[23]}\), Egger’s linear regression method\(^{[24]}\), and Begg’s rank correlation test\(^{[25]}\). The meta-analysis was performed using Stata11.0 software.

The method reported by Wacholder et al\(^{[26]}\) was used to analyse the false positive report probability (FPRP) of each significant correlation. A prior probability of 0.001 was set to detect an OR of 1.5. When the FPRP value was lower than 0.2, the correlation was noteworthy. The statistical power and FPRP value were calculated using

Table 1 Quality evaluation scale of the included literature

Criterion	Score
Representativeness of cases	
Selected from population or cancer registry	3
Selected from hospital	2
Selected from pathology archives, but without description	1
Not described	0
Source of controls	
Population-based	3
Blood donors or volunteers	2
Hospital-based (cancer-free patients)	1
Not described	0
Case-control match	
Matched by age and gender	3
Not matched by age and gender	0
Specimens used for determining genotypes	1
White blood cells or normal tissues	2
Tumor tissues or exfoliated cells of tissue	1
Hardy-Weinberg equilibrium (HWE)	
Hardy-Weinberg equilibrium in control subjects	3
Hardy-Weinberg disequilibrium in control subjects	0
Total sample size	
> 1000	3
> 500 and < 1000	2
> 200 and < 500	1
< 200	0
the Excel spreadsheet provided by Wacholder et al[26].

RESULTS

Literature retrieval results
A total of 378 relevant publications were retrieved. After repetitive publications were excluded, there were 302 publications. Literature screening was performed according to the inclusion and exclusion criteria. Based on titles and abstracts, 216 publications that were irrelevant to the study topic were excluded. After abstracts and the full texts were further carefully read, 64 publications were excluded (27 publications of non-case-controlled and cohort studies, 22 publications irrelevant to gastrointestinal cancers, 14 publications of abstracts and reviews, and 1 repeatedly published article). Based on the references of the included literature, 2 more publications were obtained. A total of 24 publications were finally included, involving 11,043 cases and 18,088 controls (Figure 1).

Characteristics of the included studies
Among the 24 included publications (Table 2[27-49]), 11 were reports on gastric cancer and 13 on colorectal cancer; 14 were studies in Asian populations, 8 in Caucasian populations, and 2 in mixed populations. The HWE examination results of the distribution of genotypes in the control group are shown in Table 2. Among the 24 publications, the distribution of genotypes in the control groups of 19 publications conformed to HWE. The quality score of a single study ranged from 7 to 18. There were 19 publications of high quality studies (≥ 12).

Meta-analysis results
The ORs of different comparisons and the heterogeneity examination results are shown in Table 3. The results showed that COX-2 -1195G>A gene polymorphism in all of the genetic models (A vs G: OR = 1.54; AA/AG vs GG: OR = 1.24; AA vs GG/AG: OR = 1.16; AA vs GG: OR = 1.31; AG vs GG: OR = 1.18) had a significant correlation with susceptibility to gastrointestinal cancers. However, when the predetermined prior probability was below 0.001, all of the FPRP values were higher than 0.2. This result indicated that the association was not noteworthy.

The subgroup analysis was performed based on tumour types (Figure 2). In the gastric cancer group (A vs G: OR = 1.35; AA/AG vs GG: OR = 1.54; AA vs GG/AG: OR = 1.43; AA vs GG: OR = 1.80; AG vs GG: OR = 1.35), the results showed that the COX-2 -1195G>A gene polymorphism was significantly correlated with cancer susceptibility. Analysis of FPRP in the gastric group showed that the value in the AA vs GG/AG model (FPRP = 0.174) was lower than 0.2, indicating that the result was noteworthy. However, the COX-2 -1195G>A gene polymorphism was not significantly correlated with susceptibility to colorectal cancer.

When subgrouping based on ethnicity (Figure 3), in the Asian population (A vs G: OR = 1.30; AA/AG vs GG: OR = 1.50; AA vs GG/AG: OR = 1.35; AA vs GG: OR = 1.71; AG vs GG: OR = 1.37), COX-2 -1195G>A could significantly increase the risk of developing gastrointestinal cancers. In addition, in the A vs G model (FPRP = 0.069), AA/AG vs GG model (FPRP = 0.167) and AA vs GG model (FPRP = 0.093), the FPRP values were lower than 0.2, indicating that the analytic results were stable and reliable. The results did not show a significant correlation between the COX-2 -1195G>A gene polymorphism and gastrointestinal cancer susceptibility in the Caucasian and mixed populations.

The subgroup analysis based on the sources of the control group showed that, in the studies based on populations from communities (A vs G: OR = 1.16; AA/AG vs GG: OR = 1.26; AA vs GG/AG: OR = 1.19; AA vs GG: OR = 1.35; AG vs GG: OR = 1.19), the COX-2 -1195G>A gene polymorphism significantly correlated with gastrointestinal susceptibility. The FPRP value in the A vs G model was lower than 0.2, indicating that the correlation was noteworthy. For studies based on populations from hospitals, none of the genetic models showed a correlation with intestinal cancers.

The subgroup analysis using the quality evaluation scores showed that, in the high quality studies (A vs G: OR = 1.15; AA/AG vs GG: OR = 1.25; AA vs GG/AG: OR = 1.19; AA vs GG: OR = 1.34; AG vs GG: OR = 1.19), the COX-2 -1195G>A gene polymorphism correlated with susceptibility to the development of...
gastrointestinal cancers. However, the FPRP analytic values were all higher than 0.2, indicating that the analytic results were not stable. In low quality studies, the COX-2 -1195G>A gene polymorphism did not have a significant correlation with gastrointestinal cancers.

Furthermore, the subgroup analysis based on different genotyping methods showed that, in the studies using the Restriction Fragment Length Polymorphism Analysis of PCR-Amplified Fragments (PCR-RFLP) genotyping method (A vs G: OR = 1.23; AA/AG vs GG: OR = 1.46; AA vs GG/AG: OR = 1.24; AA vs GG: OR = 1.58; AG vs GG: OR = 1.35), the COX-2 -1195G>A gene polymorphism significantly correlated with gastrointestinal cancer susceptibility. However, the FPRP analysis showed that the evidence of the real correlation of positive results was not sufficient. For genotyping using Taqman and other technologies, the COX-2 -1195G>A gene polymorphism in none of the genetic models was significantly correlated with intestinal cancers.
Table 3: Stratified analyses of the COX-2 -1195G>A polymorphism with risk of gastrointestinal cancers

Allele model	Dominant model	Heterozygous comparison
(A) vs (G)	(AA/AG vs AG)	(AA/AG vs GG)
OR (95%CI)	OR (95%CI)	OR (95%CI)
n	OR (95%CI)	OR (95%CI)

Table Legend:
- **OR**: Odds Ratio
- **95%CI**: 95% Confidence Interval
- **OR (95%CI)**: Odds Ratio with 95% Confidence Interval
- **Hetero model**: Heterozygous comparison
- **Homo model**: Homozygous comparison
- **Stratified analysis**: Stratified analyses of the COX-2 -1195G>A polymorphism with risk of gastrointestinal cancers

Publication bias

Sensitivity analysis and cumulative analysis

The present stage of the research and analysis process was carried out through the study of the included studies. The OR value of the combined effect did not have a significant change, indicating that the results are stable and reliable (Figure 4). A cumulative analysis based on the chronologic order showed that the OR value of the combined effect did not have a significant change, indicating that the results are stable and reliable (Figure 4). A cumulative analysis based on the chronologic order showed that the OR value of the combined effect did not have a significant change, indicating that the results are stable and reliable (Figure 4).

Discussion

In addition to environmental factors, the risk of cancer is also closely associated with the genetic susceptibility of an individual. Previous genetic studies indicated that gene mutations of some indole-cytochrome P450 enzymes were closely associated with various diseases, including malignant tumours and congenital malformations. These include codon, the purpose of changing the encoded proteins and inducing the presence of disease events. Currently, the influences of genes and genetics on the occurrence and development of gastrointestinal cancers are similar to other important factors, such as smoking, drinking habits and geographical environment.

Figure 5

Publication bias

The funnel plots, Begg's rank correlation test, and Egger's linear correlation were used to evaluate publication bias. The funnel plots of all of the models with a correlation significant change, indicating that the results are stable and reliable (Figure 4). A cumulative analysis based on the chronologic order showed that the OR value of the combined effect did not have a significant change, indicating that the results are stable and reliable (Figure 4). A cumulative analysis based on the chronologic order showed that the OR value of the combined effect did not have a significant change, indicating that the results are stable and reliable (Figure 4). A cumulative analysis based on the chronologic order showed that the OR value of the combined effect did not have a significant change, indicating that the results are stable and reliable (Figure 4).

Zhang XW et al. COX-2-1195G>A polymorphism and gastrointestinal cancers

Study	ID	OR (95%CI)	Weight
Gastric cancer			
Liu (2006)		1.53 (1.08, 2.16)	4.75
Jiang (2007)		1.10 (0.72, 1.67)	4.28
Zhang (2011)		2.07 (1.39, 3.08)	4.40
Zhang (2011)		1.18 (0.87, 1.60)	5.03
Jing (2012)		2.06 (1.17, 3.64)	3.40
Li (2012)		1.53 (1.04, 2.27)	4.47
Shin (2012)		1.73 (0.83, 3.62)	2.60
Gao (2015)		1.10 (0.72, 1.66)	4.31
Lu (2015)		5.02 (2.89, 8.71)	3.49
Tao (2015)		1.10 (0.60, 2.03)	3.17
Zamudio (2016)		1.03 (0.63, 1.69)	3.82
Subtotal (I² = 68.8%, P = 0.000)		1.54 (1.20, 1.96)	43.72
Colorectal cancer			
Siezen (2006a)		1.00 (0.46, 2.19)	2.44
Siezen (2006b)		1.38 (0.79, 2.41)	3.46
Tan (2007)		1.39 (1.13, 1.70)	5.59
Andersen (2009)		0.90 (0.45, 1.78)	2.84
Hoff (2009)		0.96 (0.43, 2.12)	2.36
Thompson (2009)		1.48 (0.64, 3.42)	2.23
Pereira (2010)		0.68 (0.19, 2.45)	1.19
Zhang (2012)		2.24 (1.53, 3.28)	4.52
Andersen (2013)		0.69 (0.47, 1.02)	4.48
Li (2013)		0.93 (0.68, 1.26)	4.98
Makar (2013a)		0.94 (0.66, 1.35)	4.66
Makar (2013b)		1.19 (0.77, 1.83)	4.22
Makar (2013c)		1.09 (0.61, 1.95)	3.34
Makar (2013d)		0.56 (0.30, 1.05)	3.12
Ruan (2013)		1.06 (0.59, 1.91)	3.28
Pereira (2014)		0.53 (0.26, 1.09)	2.66
Vogel (2014)		2.28 (0.50, 10.43)	0.90
Subtotal (I² = 56.5%, P = 0.002)		1.05 (0.87, 1.28)	56.28
Overall (I² = 65.6%, P = 0.000)		1.24 (1.06, 1.45)	100.00

Figure 2 Forest plot of the stratified analysis of the COX-2 -1195G>A dominant model (AA/AG vs GG) and susceptibility to gastrointestinal cancers in different tumour types.

Genetics have gradually become the hotspots of studies on the pathogenic mechanism of gastrointestinal cancers\cite{50,51}. COX-2 overexpression can influence the tumorigenic gene features of tumour cells, including induction of anti-apoptosis, regulation of extracellular matrix adhesion, promotion of angiogenesis, increase of metastatic potential, and influence of anti-tumour effects\cite{52-54}. Recent studies showed that the COX-2 -1195G>A gene polymorphism generated a c-MYB binding site, thus increasing the transcription activity of the COX-2 gene. c-MYB is an active transcription factor in the hematopoietic system and gastrointestinal tract. c-MYB functions on many genes to regulate the exquisite balance between cell division, differentiation and survival\cite{55}, which further confirms that the COX-2 -1195G>A polymorphism might increase susceptibility of individuals to gastrointestinal cancers. However, there were also reports showing that this polymorphism could reduce the risk of developing gastric cancer and colorectal cancer\cite{32}. To clarify this association, we included all case-controlled or cohort studies that met the inclusion criteria to evaluate the correlation using a meta-analysis.

Our study included 24 publications, including 11 gastric cancer publications and 13 colorectal cancer publications. A total of 11,043 cases in the case group and 18,008 cases in the control group were included. The overall meta-analysis results showed that the COX-2 -1195G>A gene in all of the genetic models (A vs G: OR = 1.54, 95%CI: 1.04-1.26, P < 0.001; AA/AG vs GG: OR = 1.24, 95%CI: 1.06-1.45, P < 0.001; AA vs GG/AG: OR = 1.16, 95%CI: 1.04-1.30, P < 0.001; AG vs GG: OR = 1.18, 95%CI: 1.04-1.34, P = 0.007) was associated with a high risk of developing gastrointestinal cancers. The results of the publication bias and sensitivity analysis also increased the reliability of the association.

The differences in ethnicity, sources of the control population, environmental factors, and the tumour types can all change the risk of developing gastrointestinal cancers.
gastrointestinal diseases through the gene-environment interaction. Therefore, the present study performed subgroup analysis based on the different specific conditions of all of the studies. In the classification of tumour types, the results showed that the COX-2 -1195G>A gene in the AA/AG vs GG model had a clear correlation with the gastric cancer susceptibility but did not have a significant correlation with colorectal cancer, suggesting that this genotype might be a very important predisposing factor for gastric cancer. This result was also similar to the reported results in some literature. In addition, the subgroup analysis based on the ethnicity of the study population showed that the mutation frequency of this polymorphism in the Asian gastrointestinal cancer population was higher than that in the Caucasian population in America and Europe, suggesting that the presence of the COX-2 -1195G>A gene polymorphism might greatly increase susceptibility of the Asian population, as represented by Chinese and Korean populations, to gastrointestinal cancers. For the mixed population from America, there were only two reports on its association with gastrointestinal cancers. This result was not sufficient to explain the issue, and studies with a larger sample size are needed to confirm its reliability. The subgroup analysis based on the sources of the control population showed that an increase in the risk of developing gastrointestinal cancers in the population from communities had a statistical correlation with the COX-2 -1195G>A polymorphism; however, this correlation in the population from hospitals was not statistically significant. These results suggested that, in the selection of the sources of controls, the hospital population was restricted by their diseases and medications; therefore, the genotyping results might be affected. Thus, samples from the community population were more representative than those from hospitals and relevant studies should be increased to confirm the reliability of the results.

Study ID	OR (95%CI)	Weight
Liu (2006)	1.53 (1.08, 2.16)	4.75
Jiang (2007)	1.10 (0.72, 1.67)	4.28
Tan (2007)	1.39 (1.13, 1.70)	5.59
Zhang (2011)	2.07 (1.39, 3.09)	4.40
Zhang (2011)	1.18 (0.87, 1.60)	5.03
Jing (2012)	2.06 (1.17, 3.64)	3.40
Li (2012)	1.53 (1.04, 2.27)	4.47
Shin (2012)	1.73 (0.83, 3.62)	2.60
Zhang (2012)	2.24 (1.53, 3.28)	4.52
Li (2013)	0.93 (0.68, 1.26)	4.98
Ruan (2013)	1.06 (0.59, 1.91)	3.28
Gao (2015)	1.10 (0.72, 1.66)	4.31
Lu (2015)	5.02 (2.89, 8.71)	3.49
Tao (2015)	1.10 (0.60, 2.03)	3.17
Subtotal (I² = 70.8%, P = 0.000)	1.50 (1.23, 1.84)	58.28
Siezen (2006a)	1.00 (0.46, 2.19)	2.44
Siezen (2006b)	1.38 (0.79, 2.41)	3.46
Andersen (2009)	0.90 (0.45, 1.78)	2.84
Hoff (2009)	0.96 (0.43, 2.12)	2.36
Pereira (2010)	0.68 (0.19, 2.45)	1.19
Andersen (2013)	0.69 (0.47, 1.02)	4.48
Makar (2013a)	0.94 (0.66, 1.35)	4.66
Makar (2013b)	1.19 (0.77, 1.83)	4.22
Makar (2013c)	1.09 (0.61, 1.95)	3.34
Makar (2013d)	0.56 (0.30, 1.05)	3.12
Pereira (2014)	0.53 (0.26, 1.10)	2.66
Vogel (2014)	2.28 (0.50, 10.43)	0.90
Subtotal (I² = 8.7%, P = 0.360)	0.91 (0.76, 1.08)	35.68
Thompson (2009)	1.48 (0.64, 3.42)	2.23
Zamudio (2016)	1.03 (0.63, 1.69)	3.82
Subtotal (I² = 0.0%, P = 0.466)	1.13 (0.74, 1.73)	6.05
Overall (I² = 65.6%, P = 0.000)	1.24 (1.06, 1.45)	100.00

NOTE: Weights are from random effects analysis.

Figure 3 Forest plot of stratified analysis of the COX-2 -1195G>A dominant model (AA/AG vs GG) and gastrointestinal cancer susceptibility in different populations.
try to select those from the community population as a control group. Furthermore, we also performed subgroup analysis based on genotyping methods and found that the statistical results among subgroups had clear differences. The differences might be because the different detection methods had different theoretical bases. To make the positive rate of our analytic results more real and reliable, we performed FPRP and found that the correlation of the COX-2 -1195G>A polymorphism in the gastric cancer recessive model (FPRP = 0.174), the allele model of the Asian population (FPRP = 0.069) and the linear model (FPRP) all passed the FPRP test. These results suggested that the correlation of these two aspects had very strong reliability and the authenticity was further confirmed.

The present study had some limitations. First, during overall and subgroup analyses, we found that there was moderate heterogeneity among samples. Although we tried to resolve this issue and used FPRP to increase the reliability of the study results, the exact source of the heterogeneity still could not be completely explained. The present study also revealed that the heterogeneity was not from a single study. The differences in the distribution of the gene polymorphism frequency among ethnic groups and other unknown factors might be the real sources of the heterogeneity. Because gastrointestinal cancers are influenced by many factors, comprehensive study and analysis should be performed in the future by combining these factors, such as diet, living habits, and environmental exposure. Next, due to the restriction of the sample size and disease types in the included literature, we did not retrieve similar literature reports on other gastrointestinal cancers other than gastric cancer and colorectal cancer, and their association with the COX-2 -1195G>A gene polymorphism could not be clarified. Third, the present study is a meta-analysis based on the reported data of the included literature. The unreasonable data in the original studies could not be corrected and possible potential confounding factors, such as age, gender, ethnicity, specific living habits, and smoking and drinking habits, might be present. Fourth, all of the included literature was published in Chinese or English; relevant studies written in other languages may have been missed. Only including Chinese and English literature was also a reason that the sample size was not large enough, which might result in the presence of false-negative results. In addition, this meta-analysis only included published literature, and there are some relevant, important unpublished studies, which might cause a potential publication bias.

In summary, we demonstrate that the AA genotype in the COX-2 -1195G>A gene polymorphism might be an important predisposing factor for gastrointestinal cancers compared to the AG or GG phenotypes, especially for gastric cancer. In addition, compared to the included studies on American and European Caucasian populations, COX-2 -1195G>A increased susceptibility of the Asian population to gastrointestinal...
In the future, studies with larger sample sizes, more rational design, and more disease types should be performed to validate our conclusion, which can more clearly clarify the association between the COX-2 -1195G>A gene polymorphism and gastrointestinal cancers.

COMMENTS

Background
Cyclooxygenase-2 (COX-2) is closely associated with the development of malignant tumours and is highly expressed in gastric cancer and colorectal cancer cells. Many studies have investigated the association between the COX-2 -1195G>A gene polymorphism and gastrointestinal cancers; however, the results are inconsistent.

Research frontiers
The COX-2 gene is a very important tumour-related gene with multiple SNPs. The expression level of this gene and the function of its encoded protein will be affected by some polymorphic sites, thus increasing or decreasing tumour susceptibility.

Innovations and breakthroughs
In the present study, the authors explored the COX-2 -1195G>A gene polymorphisms associated with susceptibility to gastrointestinal cancers and used an FPRP-based criterion to evaluate whether the study finding was noteworthy.

Applications
This report may present a novel site for the prevention, diagnosis, and molecular targeted therapy of gastric cancer and colorectal cancer.

Terminology
The false positive report probability (FPRP), which is the probability of no true association between a genetic variant and disease given a statistically significant finding, depends not only on the observed P-value but also on both the prior probability and the statistical power of the test.

Peer-review
The authors performed a meta-analysis of the association between the COX-2 -1195G>A polymorphism and gastrointestinal cancer risk, which has been extensively investigated.
REFERENCES

1. Abdelfatah E, Kerner Z, Nanda A, Ahuja N. Epigenetic therapy in gastrointestinal cancer: the right combination. Therap Adv Gastroenterol 2016; 9: 560-579 [PMID: 27366224 DOI: 10.1177/1756233X16642477]

2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87-108 [PMID: 25651787 DOI: 10.3322/caac.21262]

3. Rahbani M, Rahbani N, Reissfelder C, Weitz J, Kahlett C. Exosomes: novel diagnostic implications in treatment and diagnosis of gastrointestinal cancer. Langenbecks Arch Surg 2016; 401: 1097-1110 [PMID: 27342853 DOI: 10.1007/s00423-016-1468-2]

4. Karimi Kurdistani Z, Saberi S, Tsai KW, Mohammadi M. MicroRNA-21: Mechanisms of Oncogenesis and its Application in Diagnosis and Prognosis of Gastrointestinal Cancer. Arch Iran Med 2015; 18: 524-536 [PMID: 26265521]

5. Khatakov IE, Kragaranova AV, Zakharzhevskaya NB, Babikova EA, Generozov EV, Shcherbakov PL, Parfenov AI. [Current principles in the screening, diagnosis, and therapy of colorectal cancer]. Ter Arkh 2016; 88: 90-96 [PMID: 27313506]

6. Simoons DI, Botting RM, Ha T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 2004; 56: 387-437 [PMID: 15317910 DOI: 10.1124/pr.56.3.3]

7. Coussens LM. Web Z. Inflammation and cancer. Nature 2002; 420: 860-867 [PMID: 12490059 DOI: 10.1038/nature01322]

8. Sasaki Y, Kaniyama S, Kaniyama A, Matsumoto K, Akatsu M, Nakatani Y, Kwatwa H, Ishikawa Y, Ishii T, Yokoyama C, Hara S. Genetic-deletion of Cyclooxygenase-2 Downstream Prostacyclin Synthase Inhibitory Reactions but Facilitates Carcinogenesis, unlike Deletion of Microsomal Prostaglandin E Synthase-1. Sci Rep 2015; 5: 17376 [PMID: 26613322 DOI: 10.1038/srep17376]

9. Pan J, Kong L, Lin S, Chen G, Chen Q, Lu J. The clinical significance of coexpression of cyclooxygenases-2, vascular endothelial growth factors, and epidermal growth factor receptor in nasopharyngeal carcinoma. Laryngoscope 2008; 118: 1970-1975 [PMID: 18758376 DOI: 10.1097/MLG.0b013e3181805134]

10. Qin G, Xu F, Qin T, Zheng Q, Shi D, Xia W, Tian Y, Tang Y, Wang J, Xiao X, Deng W, Wang S. Pamboclibib inhibits epithelial-mesenchymal transition and metastasis in breast cancer via c-Jun/COX-2 signaling pathway. Oncotarget 2015; 6: 41794-41808 [PMID: 26540629 DOI: 10.18632/oncotarget.5993]

11. Zeng W, van den Berg A, Huitema S, Gouw AS, Molema G, Kong L, Lin S, Chen G, Chen Q, Lu JJ. The clinical significance of coexpression of cyclooxygenases-2, vascular endothelial growth factors, and epidermal growth factor receptor in nasopharyngeal carcinoma. Laryngoscope 2008; 118: 1970-1975 [PMID: 18758376 DOI: 10.1097/MLG.0b013e3181805134]

12. Zhang XW, Zhao B, Long CY, Li H, Lu X, Liu G, Tang XZ, Tang X. Genetic variants in cyclooxygenase-2 and platelet 12-lipoxygenase with risk of occurrence and advanced disease status of colorectal cancer. Carcinogenesis 2007; 28: 1197-1201 [PMID: 17151091 DOI: 10.1093/carcin/bgl242]

13. Andersen V, Ostergaard M, Christensen J, Overvad K, Tjonneland A, Vogel U. Polymorphisms in the xenobiotic transporter Multidrug Resistance 1 (MDR1) and interaction with meat intake in relation to risk of colorectal cancer in a Danish prospective case-cohort study. BMC Cancer 2009; 9: 407 [PMID: 19930591 DOI: 10.1186/1471-2407-9-407]

14. Hoff JH, Je Morsche RH, Roelofs HM, van der Logt EM, Nagengast FM, Peters WH. COX-2 polymorphisms -765G->A and -1195A-->G and colorectal cancer risk. World J Gastroenterol 2009; 15: 4561-4565 [PMID: 19777615 DOI: 10.3748/wjg.v15.i45.4561]

15. Thompson CL, Plummer SJ, Merkulova A, Cheng I, Tucker
Zhang JW et al. COX-2-1195G>A polymorphism and gastrointestinal cancers

TC, Casey G, Li L. No association between cyclooxygenase-2 and uridine diphosphate glucuronosyltransferase 1A6 genetic polymorphisms and colon cancer risk. *World J Gastroenterol* 2009; 15: 2240-2244 [PMID: 19437564 DOI: 10.3748/wjg.15.2240]

Pereira C, Pimentel-Nunes P, Brandão C, Moreira-Dias L, Medeiros R, Dinis-Ribeiro M. COX-2 polymorphisms and colorectal cancer risk: a strategy for chemoprevention. *Eur J Gastroenterol Hepatol* 2010; 22: 607-613 [PMID: 20075740 DOI: 10.1097/MEG.0b013e3283352ebb]

Zhang X, Zhong R, Zhong Z, Yuan J, Liu L, Wang Y, Kadlubar S, Feng F, Xiao X. Interaction of cyclooxygenase-2 promoter polymorphisms with Helicobacter pylori infection and risk of gastric cancer. *Mol Carcinog* 2011; 50: 876-883 [PMID: 21538574 DOI: 10.1002/mc.20784]

Zhang XM, Zhong R, Liu L, Wang Y, Yuan JX, Wang P, Sun C, Zhang Z, Song WG, Xiao XP. Smoking and COX-2 functional polymorphisms interact to increase the risk of gastric cardia adenocarcinoma in Chinese population. *PLoS One* 2013; 8: e21894 [PMID: 21779349 DOI: 10.1371/journal.pone.0021894]

Jing YM, Liu J, Li SJ, Shi WJ, Cheng XL. Genetic polymorphisms in the promoter of Cyclooxygenase-2 and their association with the risk of gastric cancer. *Zhongguo Yousheng and Yichuan Zazhi* 2012; 20: 24-25

Li Y, Dai L, Zhang J, Wang P, Chai Y, Ye H, Zhang J, Wang K. Cyclooxygenase-2 polymorphisms and the risk of gastric cancer in various degrees of relationship in the Chinese Han population. *Oncof Lett* 2012; 3: 107-112 [PMID: 22740864 DOI: 10.3892/ol.2011.426]

Shin WG, Kim HJ, Cho SJ, Kim HS, Kim KH, Jung MK, Lee JH, Kim HY. The COX-2-1195AA Genotype Is Associated with Diffuse-Type Gastric Cancer in Korea. *Gut Liver* 2012; 6: 321-327 [PMID: 22844559 DOI: 10.5009/gnl.2012.6.3.321]

Zhang Y, Liu CM, Peng HP, Zhang JZ, Cai XQ, Feng QL. Relationship between polymorphisms in the promoter region of the COX-2 gene and susceptibility to colorectal cancer. *Shijie Huaren Xiaoouhua Zazhi* 2012; 20: 1579-1584

Andersen Y, Holst R, Kopp TI, Tjonneland A, Vogel U. Interactions between diet, lifestyle and IL10, IL1B, and PTGS2/COX-2 gene polymorphisms in relation to risk of colorectal cancer in a prospective Danish case-control study. *PLoS One* 2013; 8: e78366 [PMID: 24194923 DOI: 10.1371/journal.pone.0078366]

Li S, Zhao X, Wu Z, Li Y, Zhu L, Cui B, Dong X, Tian S, Hu F, Zhao Y. Polymorphisms in arachidonic acid metabolism-related genes and the risk and prognosis of colorectal cancer. *Fam Cancer* 2013; 12: 755-765 [PMID: 23715757 DOI: 10.1007/s10455-013-9659-z]

Makar KW, Poole EM, Resler AJ, Seuffert B, Curtin K, Kleinstein SE, Duggan D, Kulmacz RJ, Hsu L, Whitton J, Carlson CS, Rimorin CF, Caan BJ, Baron JA, Potter JD, Slattery ML, Ulrich CM. COX-1 (PTGS1) and COX-2 (PTGS2) polymorphisms, NSAID interactions, and risk of colon and rectal cancers in two independent populations. *Cancer Causes Control* 2013; 24: 2059-2075 [PMID: 24022467 DOI: 10.1007/s10552-013-0282-1]

Ruan YF, Sun J, Wu F, Jiang SH. Relationship between cyclooxygenase-2 polymorphisms and colorectal cancer risk. *Int J Dig Dis* 2013; 33: 260-263

Pereira C, Queiroz S, Galaghar A, Sousa H, Pimentel-Nunes P, Brandão C, Moreira-Dias L, Medeiros R, Dinis-Ribeiro M. Genetic variability in key genes in prostaglandin E2 pathway (COX-2, HPGD, ABCC4 and SLCO2A1) and their involvement in colorectal cancer development. *PLoS One* 2014; 9: e92000 [PMID: 24694755 DOI: 10.1371/journal.pone.0092000]

Vogel LK, Saeb M, Huyer H, Kopp TI, Vogel U, Godiksen S, Frenzel FB, Hamford J, Bowitz-Lothe IM, Johnson E, Kure EH, Andersen V. Intestinal PTGS2 mRNA levels, PTGS2 gene polymorphisms, and colorectal carcinogenesis. *PLoS One* 2013; 8: e105254 [PMID: 25166592 DOI: 10.1371/journal.pone.0105254]

Gao F, Lu L, Qin JD, Zhang B, Li JJ, Zhou CY, Jia YB. Single Nucleotide Polymorphism in COX-2 Gene are Associated with Risk of Non-cardia Gastric Cancer. *Cancer Res Prev Treat* 2015; 42: 470-473

Tao M, Zhang LX, Song Y, Zhumang, Zhang NX, Zhang L. Association of COX-2 genetic polymorphisms and H.pylori infection with susceptibility of gastric cancer in Shaanxi area. *Shanshi Yike Daxue Xuebao* 2015; 16: 7-20

Zamudio S, Pereira L, Rocha CD, Berg DE, Muniz-Queiroz T, Sant Anna HP, Cabrera L, Combe JM, Herrera P, Jahuira MH, Leão FB, Lyon F, Prado WA, Rodrigues MR, Rodrigues-Saore F, Santolalla ML, Zolini C, Silva AM, Gilman RH, Tarazona-Santos E, Kehdy FS. Population, Epidemiological, and Functional Genetics of Gastric Cancer Candidate Genes in Peruvians with Predominant Amerindian Ancestry. *Dig Dis Sci* 2016; 61: 107-116 [PMID: 26391267 DOI: 10.1007/s10620-015-3859-6]

Anand S, Huntly BJ. Disordered signaling in myeloproliferative neoplasms. *Hematol Oncol Clin North Am* 2012; 26: 1017-1035 [PMID: 23009935 DOI: 10.1016/j.hoc.2012.07.004]

Robertson A, Allen J, Laney R, Curnow A. The cellular and molecular carcinogenic effects of radon exposure: a review. *Int J Mol Sci* 2013; 14: 14024-14063 [PMID: 23880854 DOI: 10.3390/ijms140714024]

Chan MW, Wong CY, Cheng AS, Chan VY, Chan KK, To KF, Chan FK, Sung JJ, Leung WK. Targeted inhibition of COX-2 expression by RNA interference suppresses tumor growth and potentiates chemosensitivity to cisplatin in human gastric cancer cells. *Oncol Rep* 2007; 18: 1557-1562 [PMID: 17982644]

Johnson GE, Ivanov VN, Hei TK. Radiosensitization of melanoma cells through combined inhibition of protein regulators of cell survival. *Apoptosis* 2006; 13: 790-802 [PMID: 18454317 DOI: 10.1007/s10495-008-0212-y]

Palyaooor ST, Arayankalayil MJ, Shoabi A, Coleman CN. Radiation sensitization of human carcinoma cells transfected with small interfering RNA targeted against cyclooxygenase-2. *Clin Cancer Res* 2005; 11: 6980-6986 [PMID: 16203791 DOI: 10.1186/1476-4598-6-15]

Ramsay RG, Barton AL, Gonda TJ. Targeting c-myc expression in human disease. *Expert Opin Ther Targets* 2003; 7: 235-248 [PMID: 12667100 DOI: 10.1517/14728227.7.2.235]

P- Reviewer: Ghiorzo P S- Editor: Ma YJ L- Editor: Wang TQ E- Editor: Wang CH
