Supporting Information

Li$_5$Sn, the most lithium-rich binary stannide: A combined experimental and computational study

Robert U. Stelzer,1 Yuji Ikeda,2 Prashanth Srinivasan,2 Tanja S. Lehmann,1 Blazej Grabowski,2 and Rainer Niewa1

1Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
2Institute for Materials Science, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany

Appendix A: Displacement parameters of Li$_5$Sn in Cmcm (#7)

Table S1. Displacement parameters (Å2) of Li$_5$Sn in Cmcm (#7) from experiments.

Wyckoff	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Li(1)	0.008(4)	0.046(5)	0.023(4)	0	0	0
Li(2)	0.028(3)	0.033(2)	0.028(2)	0.0032(16)	0.0008(18)	0.005(2)
Sn	0.0189(2)	0.0246(2)	0.0173(2)	0	0	0

Appendix B: Further computational details

B.1. Ab initio molecular dynamics (MD)

For the temperature-dependent Gibbs energy calculations (Section 3.4 in the main text), ab initio MD simulations were conducted for structures #7 and #23 to create both the reference effective harmonic potential and the MTP. We made 288-atom supercell models of the Li$_5$Sn structures. The ab initio MD runs were performed at 300 K (for the fitting of the effective harmonic potential) and 500 K (for the fitting of the MTP). The NVT-ensemble, where the temperature was controlled by a Langevin thermostat with a friction parameter of 0.01 fs$^{-1}$, was employed, and 1000 MD steps were run with the time step of 2 fs. The Fermi–Dirac distribution at the corresponding temperature of a given MD run was applied to include the impact of electronic excitations in the finite-temperature DFT extension by Mermin.31 The exchange–correlation functional, the plane-wave cutoff energy, the mesh for the reciprocal-space sampling, and the orbitals treated as valence states were the same as those chosen for the 0 K structure optimization (setting A in Table 1 in the main text).

B.2. Effective harmonic potentials

The effective harmonic potentials for the structures #7 and #23 were first fitted to 300 K ab initio MD data (Appendix B.1) at four different volumes within the range 16–22 Å3/atom using the implementation in the S/PHI/nX code.32 Each effective force constant was then parametrized by a third-order polynomial in volume which served as the reference for each volume point in the TILD. From the volume-dependent effective force constants, effective phonon frequencies were calculated by constructing the dynamical matrix and solving the eigenproblem,33,34 from which the contribution to the Helmholtz energy, i.e., the first term in eq 3 in the main text, was analytically calculated.

B.3. Moment tensor potentials (MTPs)

We fitted the MTPs to ab initio MD runs at seven different volumes within the range 16–22 Å3/atom at 500 K (Appendix B.1) separately for the structures #7 and #23. We used 1058 basis functions with a maximum cut-off distance of 5 Å. Weights of 1, 0.01, and 0.001 were given to the energies, atomic forces, and stress tensors of configurations, respectively, during fitting. Root-mean-squared errors (RMSEs) in energy and forces of 0.3 meV/atom and 19 meV/Å and 0.2 meV/atom and 16 meV/Å were obtained for structures #7 and #23, respectively.

The fitted MTPs were utilized for the TILD (Section 3.4 in the main text) to compute the second and the third terms in eq 3 in the main text, as well as to investigate the temperature-dependent stability for structures #7 and #23 (Section 4.8 in the main text).
Appendix C: Structure #0: Comparison with Mayo and Morris85

Structure #0 of Li\textsubscript{5}Sn with the space group \textit{P6/mmm} as determined in the present \textit{ab initio} simulations is essentially the same as the one reported by Mayo and Morris.85 Tables S2 and S3 show the lattice parameters and the fractional atomic coordinates, respectively, obtained in the present study and by Mayo and Morris,85 highlighting the good agreement with each other.

| Table S2. Lattice parameters of structure #0 with the space group \textit{P6/mmm}. |
|-----------------------------------|---------|---------|---------|-------|-------|-------|
| Reference | \(a\) (Å) | \(b\) (Å) | \(c\) (Å) | \(\alpha\) (deg.) | \(\beta\) (deg.) | \(\gamma\) (deg.) |
| Present \textit{ab initio} | 4.691 | 4.691 | 5.741 | 90 | 90 | 120 |
| Mayo and Morris85 | 4.685 | 4.685 | 5.701 | 90 | 90 | 120 |

| Table S3. Fractional atomic coordinates of structure #0 with the space group \textit{P6/mmm}. |
|-----------------------------------|---------|---------|---------|---------|---------|---------|
| Wyckoff | Present \textit{ab initio} | | Mayo and Morris85 | |
| | \(x\) | \(y\) | \(z\) | \(x\) | \(y\) | \(z\) |
| Li | 1/3 | 2/3 | 0.77359 | 1/3 | 2/3 | 0.77460 |
| Li | 0 | 0 | 1/2 | 0 | 0 | 1/2 |
| Sn | 0 | 0 | 0 | 0 | 0 | 0 |

Appendix D: Structure #83: Comparison with Sen and Johari86

Structure #83 of Li\textsubscript{5}Sn with the space group \textit{C2/m} as determined in the present \textit{ab initio} simulations is essentially the same as the one reported by Sen and Johari.86 Tables S4 and S5 show the lattice parameters and the fractional atomic coordinates, respectively, obtained in the present study and by Sen and Johari,86 highlighting the good agreement with each other. Note that the results of Sen and Johari86 correspond to 1 atm, while ours to zero pressure. For solid phases, however, such a small pressure difference will only marginally affect the results.

| Table S4. Lattice parameters of structure #83 with the space group \textit{C2/m}. |
|-----------------------------------|---------|---------|-------|-------|-------|-------|
| Reference | \(a\) (Å) | \(b\) (Å) | \(c\) (Å) | \(\alpha\) (deg.) | \(\beta\) (deg.) | \(\gamma\) (deg.) |
| Present \textit{ab initio} | 15.897 | 5.745 | 12.023 | 90 | 128.81 | 90 |
| Sen and Johari86 | 15.918 | 5.738 | 12.043 | 90 | 128.86 | 90 |

| Table S5. Fractional atomic coordinates of structure #83 with the space group \textit{C2/m}. |
|-----------------------------------|---------|---------|---------|---------|---------|---------|
| Wyckoff | Present \textit{ab initio} | | Sen and Johari86 | |
| | \(x\) | \(y\) | \(z\) | \(x\) | \(y\) | \(z\) |
| Li | 0.02321 | 0.23895 | 0.12583 | 0.02329 | 0.23903 | 0.12587 |
| Li | 0.35724 | 0.24208 | 0.12875 | 0.35730 | 0.24201 | 0.12869 |
| Li | 0.23201 | 0.23806 | 0.37413 | 0.23212 | 0.23819 | 0.37423 |
| Li | 0.40002 | 0.22446 | 0.37803 | 0.40011 | 0.22485 | 0.37799 |
| Li | 0.05992 | 0 | 0.38638 | 0.05996 | 0 | 0.38658 |
| Li | 0.30396 | 0 | 0.86362 | 0.30362 | 0 | 0.86329 |
| Sn | 0.18374 | 0 | 0.11299 | 0.18370 | 0 | 0.11280 |
| Sn | 0.57054 | 0 | 0.36794 | 0.57071 | 0 | 0.36776 |
Appendix E: Stability of structures #7 and #23 at finite temperatures

To determine the temperature up to which a stable TILD could be performed, the MTPs were first used to predict the stability of the corresponding phases during heating. The simulations were performed using LAMMPS on a 5148-atom system at a heating rate of 0.25 K/ps. Figure S1 shows the variation of the atomic volume while heating the systems from 500 K. A sudden jump in the curve indicates that the initial phase is no longer stable above that particular temperature as predicted by the MTPs. This temperature was found to be 675 K for structure #7 and 760 K for structure #23. Further calculations and analysis of the high temperature phases are beyond the scope of this work. Considering this as an over-heated value and choosing a conservative temperature, we decided to perform TILD up to 600 K.

Figure S1. Atomic volume as a function of temperature during heating of the #7 and #23 Li$_5$Sn structures using MTPs in a 5148-atom simulation cell.

Appendix F: Density of states: Li$_5$Sn in Cmcm (#7)

Figure S2 shows the ab initio computed densities of states (DOSs) for Cmcm Li$_5$Sn (#7) found in experiments using settings A (Li 2s and Sn 5s5p orbitals are treated as valence) and D (Li 1s2s and Sn 4d5s5p orbitals are treated as valence) from Table 1 in the main text. The DOSs clearly show a metallic trend. Further, the two computational settings show almost the same DOSs, indicating that not only the energetics (as demonstrated in Figure 8 in the main text) but also the electronic structures are robust against the choice of the PAW potentials considered in the present study.
Figure S2. *Ab initio* computed DOSs of *Cmcm* Li₅Sn (#7) found in experiments computed using settings A and D from Table 1 in the main text.

[S1] N. D. Mermin, Thermal properties of the inhomogeneous electron gas, *Phys. Rev.* 137, A1441 (1965).
[S2] S. Boeck, C. Freysoldt, A. Dick, L. Ismer, and J. Neugebauer, The object-oriented DFT program library S/PHI/nX, *Comput. Phys. Commun.* 182, 543 (2011).
[S3] D. C. Wallace, *Thermodynamics of Crystals* (Dover Publications, New York, 1998).
[S4] M. T. Dove, *Introduction to Lattice Dynamics* (Cambridge University Press, Cambridge, 1993).
[S5] M. Mayo and A. J. Morris, Structure prediction of Li–Sn and Li–Sb intermetallics for lithium-ion batteries anodes, *Chem. Mater.* 29, 5787 (2017); M. Mayo, J. P. Darby, M. L. Evans, J. R. Nelson, and A. J. Morris, Correction to structure prediction of Li–Sn and Li–Sb intermetallics for lithium-ion batteries anodes, *Chem. Mater.* 30, 5516 (2018).
[S6] R. Sen and P. Johari, Understanding the lithiation of the Sn anode for high-performance Li-ion batteries with exploration of novel Li–Sn compounds at ambient and moderately high pressure, *ACS Mater. Inter.* 9, 40197 (2017).
[S7] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, *J. Comput. Phys.* 117, 1 (1995).