Learning One-Clock Timed Automata

Jie An¹, Mingshuai Chen², Bohua Zhan³, Naijun Zhan³, Miaomiao Zhang¹

1. School of Software Engineering, Tongji University, Shanghai, China
2. Lehrstuhl für Informatik 2, RWTH Aachen University, Aachen, Germany
3. SKLCS, Institute of Software, Chinese Academy of Sciences, Beijing, China

bzhan@ios.ac.cn

TACAS · March 30, 2021
Table of contents

1 Introduction and motivation
- Short introduction to model/automaton learning
- L^*: Classic automaton learning of DFA
- Motivation

2 Learning one-clock timed automata
- Basic idea
- Learning from a smart teacher
- Learning from a normal teacher

3 Conclusion and future work
Outline

1. **Introduction and motivation**
 - Short introduction to model/automaton learning
 - L^*: Classic automaton learning of DFA
 - Motivation

2. **Learning one-clock timed automata**

3. **Conclusion and future work**
Model/Automaton learning

- Machine learning
• Machine learning

a sample set

\[M = \{(x, y) | x \in X, y \in Y\} \]

Model

\[f: X \rightarrow Y \]
\[f(x) = y, \forall x \in X \]

predict or identify \(f(x) \)
for all \(x \in X \)
Model/Automaton learning

- Machine learning

A sample set

\[M = \{(x, y) | x \in X, y \in Y\} \]

- Model/Automaton learning

Model

\[f : X \rightarrow Y \]

\[f(x) = y, \forall x \in X \]

Predict or identify \(f(x) \) for all \(x \in X \)
Model/Automaton learning

- Machine learning

A sample set
\[M = \{ (x, y) | x \in X, y \in Y \} \]

Model
\[f : X \rightarrow Y \]
\[f(x) = y, \forall x \in X \]
Predict or identify \(f(x) \) for all \(x \in X \)

- Model/Automaton learning

\[\Sigma \text{ is an alphabet} \]
\[X = \Sigma^* \text{ set of words} \]
\[Y = \{ +, - \} \text{ or other set of labels} \]

Model
\[f \text{ is a language} \]
\[L \subseteq \Sigma^* \]
The model is a kind of Automaton
Dana Angluin proposed an online, active, and exact learning framework L^* for Deterministic Finite Automata (DFA) in 1987 [2].

Two kinds of queries: membership query and equivalence query.
Dana Angluin proposed an online, active, and exact learning framework L^* for Deterministic Finite Automata (DFA) in 1987 [2].

- Two kinds of queries: membership query and equivalence query.
L*: Classic automaton learning of DFA

- Dana Angluin proposed an online, active, and exact learning framework \(L^* \) for Deterministic Finite Automata (DFA) in 1987 [2].
- Two kinds of queries: membership query and equivalence query.

\[
\begin{align*}
\text{Learner} & \quad u \in L? \\
\text{observation table} & \\
\text{Teacher} & \quad \text{yes}(+) \text{ or no}(-) \\
\quad \text{Membership oracle} &
\end{align*}
\]
L*: Classic automaton learning of DFA

- Dana Angluin proposed an online, active, and exact learning framework \(L^* \) for Deterministic Finite Automata (DFA) in 1987 [2].
- Two kinds of queries: membership query and equivalence query.

![Diagram showing the interaction between Learner and Teacher](attachment:image.png)
Motivation

- More recent work extends L^* algorithm to different models
 - Mealy machines [9], I/O automata [1], register automata [6], NFA [3], Büchi automata [7], symbolic automata [8, 4] and MDP [10], etc.
Motivation

- More recent work extends L^* algorithm to different models
 - Mealy machines [9], I/O automata [1], register automata [6], NFA [3], Büchi automata [7], symbolic automata [8, 4] and MDP [10], etc..

- Motivation
 - How to actively learn a timed model for a real-time system?

- Related work
 - Active learning of event-recording automata [5].
 - Passive identification of timed automata in the limit via fitting a labelled sample $S = (S_+, S_-)$ [12].
 - Passive learning of timed automata via Genetic Programming and testing [11].
Outline

1 Introduction and motivation

2 Learning one-clock timed automata
 - Basic idea
 - Learning from a smart teacher
 - Learning from a normal teacher

3 Conclusion and future work
Basic idea

- Learning (regular) timed-automata with a single clock.
- Challenges
 - State now includes both location and clock value.
 - Determining the guard condition on transitions.
 - Determining reset information on transitions.
 - (related to the previous points) Matching time observed from outside to internal clock used on the guards.
- Solutions of learning deterministic one-clock timed automata (DOTA).
 - A normalization map from delay timed words (outside) to logical timed words (inside).
 - Utilize a partition function to map logical-timed values to finite intervals (similar to learning symbolic automata).
 - First consider the case of a smart teacher who can tell the learner reset informations. Then drop the assumption (i.e. reduction to a normal teacher) by guessing reset information.
Learning from a smart teacher

- The DOTA \mathcal{A} recognizes the target language \mathcal{L}.
- $\Sigma = \{a, b\}; \mathcal{B} = \{\top, \bot\}$ where \top is for reset, \bot otherwise.

Example

A is a complete DOTA of A. Timed language $L(A) = L_A = L$. Delay timed words $(\Sigma \times \mathbb{R} \geq 0)^*$: outside observations; e.g. $\omega = (b, 0)(a, 1.1)(b, 1)$ is an accepting timed words.

Reset-logical timed words $(\Sigma \times \mathbb{R} \geq 0 \times \mathcal{B})^*$: inside logical actions; e.g. $\gamma_r = (b, 0, \top)(a, 1.1, \bot)(b, 2, 1, \top)$ is the reset-logical counterpart of ω.

Logical counterpart $\gamma = (b, 0)(a, 1.1)(b, 2, 1)$.
The DOTA \mathcal{A} recognizes the target language \mathcal{L}.

$\Sigma = \{a, b\} \cup \{\top, \bot\}$ where \top is for reset, \bot otherwise.

\mathcal{A} is a complete DOTA of \mathcal{A}. Timed language $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}) = \mathcal{L}$.
The DOTA \mathcal{A} recognizes the target language \mathcal{L}.

$\Sigma = \{a, b\}; \mathcal{B} = \{\top, \bot\}$ where \top is for reset, \bot otherwise.

\mathcal{A} is a complete DOTA of \mathcal{A}. Timed language $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}) = \mathcal{L}$.

Delay timed words $(\Sigma \times \mathbb{R}_{\geq 0})^* :$ outside observations;

- e.g. $\omega = (b, 0)(a, 1.1)(b, 1)$ is an accepting timed words.

Example

\[
\begin{align*}
\mathcal{A} = \begin{array}{c}
\text{start} \rightarrow q_0 \rightarrow q_1 \rightarrow \text{start} \\
\text{a, } (1, 3), \bot \\
b, [0, \infty), \top \\
b, [2, 4), \top
\end{array}
\end{align*}
\]

\[
\begin{align*}
\mathcal{A} = \begin{array}{c}
\text{start} \rightarrow q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow \text{start} \\
a, (1, 3), \bot \\
b, [0, \infty), \top \\
b, [2, 4), \top \\
a, [0, \infty), \top \\
b, [0, \infty), \top
\end{array}
\end{align*}
\]
Learning from a smart teacher

- The DOTA A recognizes the target language L.
- $\Sigma = \{a, b\}; \mathcal{B} = \{\top, \bot\}$ where \top is for reset, \bot otherwise.
- A is a complete DOTA of A. Timed language $L(A) = L(A) = L$.
- **Delay timed words** $(\Sigma \times \mathbb{R}_{\geq 0})^* :$ outside observations; e.g. $\omega = (b, 0)(a, 1.1)(b, 1)$ is an accepting timed words.
- **Reset-logical timed words** $(\Sigma \times \mathbb{R}_{\geq 0} \times \mathcal{B})^* :$ inside logical actions; e.g. $\gamma_r = (b, 0, \top)(a, 1.1, \bot)(b, 2.1, \top)$ is the reset-logical counterpart of ω. Logical counterpart $\gamma = (b, 0)(a, 1.1)(b, 2.1)$.

Example

![Diagram](image)
Learning from a smart teacher

• Given a DOTA A, $L_r(A)$ represents the recognized reset-logical timed language of A; $L(A)$ represents the logical timed language.

Theorem

Given two DOTAs A and H, if $L_r(A) = L_r(H)$, then $L(A) = L(H)$.
• Given a DOTA A, $L_r(A)$ represents the recognized reset-logical timed language of A; $L(A)$ represents the logical timed language.

• **Guiding principle:** learning the (delayed) timed language of a DOTA A can be reduced to learning the reset-logical timed language of A.

Theorem

Given two DOTAs A and H, if $L_r(A) = L_r(H)$, then $L(A) = L(H)$.

© Jie An et al. TACAS2020 @ Luxembourg 11 / 25
Learning from a smart teacher

- Given a DOTA A, $L_r(A)$ represents the recognized reset-logical timed language of A; $L(A)$ represents the logical timed language.
- **Guiding principle**: learning the (delayed) timed language of a DOTA A can be reduced to learning the reset-logical timed language of A.
- Smart teacher setting: membership queries are logical timed words, teacher responds with reset information.

Theorem

Given two DOTAs A and H, if $L_r(A) = L_r(H)$, then $L(A) = L(H)$.
Definition (Reset-logical-timed observation table)

A reset-logical-timed observation table for a DOTA A is a 7-tuple $T = (\Sigma, \Sigma, \Sigma, S, R, E, f)$ where Σ is the finite alphabet; $\Sigma = \Sigma \times \mathbb{R}_{\geq 0}$ is the infinite set of logical-timed actions; $\Sigma_r = \Sigma \times \mathbb{R}_{\geq 0} \times \mathcal{B}$ is the infinite set of reset-logical-timed actions; $S, R \subseteq \Sigma^*$ and $E \subseteq \Sigma^*$ are finite sets of words, where S is called the set of prefixes, R the boundary, and E the set of suffixes. Specifically,

- S and R are disjoint, i.e., $S \cup R = S \cup R$;
- The empty word is by default both a prefix and a suffix, i.e., $\epsilon \in E$ and $\epsilon \in S$;
- $f: (S \cup R) \cdot E \mapsto \{-, +\}$ is a classification function such that for a reset-logical-timed word $\gamma_r, \gamma_r \cdot e \in (S \cup R) \cdot E$, $f(\gamma_r \cdot e) = -$ if $\Pi_{\{1,2\}} \gamma_r \cdot e$ is invalid \(^1\), otherwise if $\Pi_{\{1,2\}} \gamma_r \cdot e \notin L(A)$, $f(\gamma_r \cdot e) = -$, and $f(\gamma_r \cdot e) = +$ if $\Pi_{\{1,2\}} \gamma_r \cdot e \in L(A)$;

1. The projection of an n-tuple x onto its first two components is denoted by $\Pi_{\{1,2\}} x$, which extends to a sequence of tuples as $\Pi_{\{1,2\}} (x_1, \ldots, x_k) = \left(\Pi_{\{1,2\}} x_1, \ldots, \Pi_{\{1,2\}} x_k\right)$.
Learning from a smart teacher

- Reduced
 - $\forall s, s' \in S: s \neq s'$ implies $\text{row}(s) \neq \text{row}(s')$;

- Closed
 - $\forall r \in R, \exists s \in S: \text{row}(s) = \text{row}(r)$;

- Consistent
 - $\forall \gamma_r, \gamma_r' \in S \cup R, \text{row}(\gamma_r) = \text{row}(\gamma_r')$ implies $\text{row}(\gamma_r \cdot \sigma_r) = \text{row}(\gamma_r' \cdot \sigma_r')$, for all $\sigma_r, \sigma_r' \in \Sigma_r$ satisfying $\gamma_r \cdot \sigma_r, \gamma_r' \cdot \sigma_r' \in S \cup R$ and $\Pi_{\{1,2\}} \sigma_r = \Pi_{\{1,2\}} \sigma_r'$;

- Evidence-closed
 - $\forall s \in S$ and $\forall e \in E$, the reset-logical-timed word $\pi(\Pi_{\{1,2\}} s \cdot e)$ belongs to $S \cup R^2$.

2. For the sake of simplicity, we define a function π that maps a logical-timed word to its unique reset-logical-timed counterpart in membership queries.
Learning from a smart teacher

T	ϵ	$\cdot\cdot\cdot$
ϵ	$-$	
$(a, 1.1, \perp)$	$+$	
$(a, 0, T)$	$-$	
$(b, 0, T)$	$-$	
$(a, 1.1, \perp)(a, 0, T)$	$-$	
$(a, 1.1, \perp)(b, 0, T)$	$-$	
Learning from a smart teacher

The prefixes set S indicates the locations

S	T	ϵ	\cdots
		ϵ	$-\,$
		$(a,1,1,\bot)$	$+$
		$(a,0,\top)$	$-\,$
		$(b,0,\top)$	$-\,$
		$(a,1,1,\bot)(a,0,\top)$	$-\,$
		$(a,1,1,\bot)(b,0,\top)$	$-\,$
Learning from a smart teacher

The prefixes set S indicates the locations:

S	T	ϵ	...
ϵ	$-$		
$(a, 1.1, \perp)$	$+$		
$(a, 0, \top)$	$-$		
$(b, 0, \top)$	$-$		
$(a, 1.1, \perp)(a, 0, \top)$	$-$		
$(a, 1.1, \perp)(b, 0, \top)$	$-$		

The boundary R indicates the transitions:

- ϵ does not accept $(a, 0) \cdot \epsilon$ and gives the reset information \top.
- $(a, 1.1, \perp) \cdot \epsilon$ and gives the reset information \perp.

© Jie An et al. TACAS2020 @ Luxembourg
Learning from a smart teacher

S	T	E
	ε	· · ·
	(a, 1.1, ⊥)	+
(a, 0, ⊤)	−	
(b, 0, ⊤)	−	
(a, 1.1, ⊥)(a, 0, ⊤)	−	
(a, 1.1, ⊥)(b, 0, ⊤)	−	

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations
Learning from a smart teacher

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations

Body records whether automaton accepts logical timed words

S	T	E
ϵ	$\epsilon \cdots$	$-$
$(a, 1.1, \bot)$	$+$	
$(a, 0, \top)$	$-$	
$(b, 0, \top)$	$-$	
$(a, 1.1, \bot)(a, 0, \top)$	$-$	
$(a, 1.1, \bot)(b, 0, \top)$	$-$	
Learning from a smart teacher

T	ϵ	\cdots
ϵ	$-$	
$(a, 1.1, \bot)$	$+$	
$(a, 0, \top)$	$-$	
$(b, 0, \top)$	$-$	
$(a, 1.1, \bot)(a, 0, \top)$	$-$	
$(a, 1.1, \bot)(b, 0, \top)$	$-$	

The prefixes set S indicates the locations

The boundary R indicates the transitions

The suffixes set E distinguishes the locations

Body records whether automaton accepts logical timed words

- accepts $(a, 1.1) \cdot \epsilon$ and gives the reset information \bot
- does not accept $(a, 0) \cdot \epsilon$ and gives the reset information \top
• Given a target timed language \mathcal{L} which is recognized by a DOTA \mathbb{A}, let $n = |Q|$ be the number of locations of \mathbb{A}, $m = |\Sigma|$ the size of the alphabet, and κ the maximal constant appearing in the clock constraints of \mathbb{A}.

Theorem

The learning process with a smart teacher terminates and returns a DOTA which recognizes the target timed language \mathcal{L}.

Theorem

The complexity of the algorithm is $O(mn^5\kappa^4)$ for number of membership queries, and $O(mn^2\kappa^3)$ for number of equivalence queries.
Learning from a normal teacher

- In the normal teacher setting, the teacher responds to delay timed words, and **no longer returns reset information** in answers to membership and equivalence queries.

- The learner **guesses the resets** in order to convert between delay and logical timed words.
Learning from a normal teacher

- In the normal teacher setting, the teacher responds to delay timed words, and no longer returns reset information in answers to membership and equivalence queries.
- The learner guesses the resets in order to convert between delay and logical timed words.
- Basic process
 - At every round, guess all needed resets and put all resulting table candidates into a set $ToExplore$.
 - Take out one table instance from the set $ToExplore$.
 - The operations on the table are same to those in the situation with a smart teacher.
Learning from a normal teacher

- Termination and complexity
 - At every iteration, the learner selects the table instance which requires the least number of guesses.
 - The learner keeps the correct table instance of each iteration in ToExplore since he guesses all reset informations.
 - If $T = (\Sigma, \Sigma, \Sigma_r, S, R, E, f)$ is the final observation table for the correct candidate in the situation with a smart teacher, the learner can find it after checking $O(2^{(|S|+|R|)} \times (1+\sum_{e_i \in E \setminus \{\epsilon\}} (|e_i|-1)))$ table instances in the worst situation with a normal teacher.
 - The process also may terminate and return a DOTA which is different to the one in the smart teacher situation.

Theorem

The learning process with a normal teacher terminates and returns a DOTA which recognizes the target timed language L. It has exponential complexity in the number of membership and equivalence queries.
Table 1 – Experimental results on random examples for the smart teacher situation.

| Case ID | $|\Delta|_{\text{mean}}$ | #Membership | #Equivalence | n_{mean} | t_{mean} |
|----------|--------------------------|-------------|--------------|-------------------|-----------------|
| | | N_{min} | N_{mean} | N_{max} | |
| | | N_{min} | N_{mean} | N_{max} | |
| 4_4_20 | 16.3 | 118 | 245.0 | 650 | 4.5 | 24.7 |
| 7_2_10 | 16.9 | 568 | 920.8 | 1393 | 9.1 | 14.6 |
| 7_4_10 | 25.7 | 348 | 921.7 | 1296 | 9.3 | 38.0 |
| 7_6_10 | 26.0 | 351 | 634.5 | 1050 | 7.8 | 49.6 |
| 7_4_20 | 34.3 | 411 | 1183.4 | 1890 | 9.5 | 101.7 |
| 10_4_20 | 39.1 | 920 | 1580.9 | 2160 | 11.7 | 186.7 |
| 12_4_20 | 47.6 | 1090 | 2731.6 | 5733 | 16.0 | 521.8 |
| 14_4_20 | 58.4 | 1390 | 2238.6 | 4430 | 16.0 | 515.5 |

Case ID: n_{m_κ}, consisting of the number of locations, the size of the alphabet and the maximum constant appearing in the clock constraints, respectively, of the corresponding group of A’s.

$|\Delta|_{\text{mean}}$: the average number of transitions in the corresponding group.

#Membership & #Equivalence: the number of conducted membership and equivalence queries, respectively. N_{min}: the minimal, N_{mean}: the mean, N_{max}: the maximum.

n_{mean}: the average number of locations of the learned automata in the corresponding group.

t_{mean}: the average wall-clock time in seconds, including that taken by the learner and by the teacher.
Figure 1 – Left: The functional specification of the TCP protocol with timing settings. Right: The learnt functional specification of the TCP protocol. Colors indicate the splitting of locations.
Table 2 – Experimental results on random examples for the normal teacher situation.

Case ID	$	\Delta	_{mean}$	#Membership		#Equivalence		#Learnt			
		N_{min}	N_{mean}	N_{max}	N_{min}	N_{mean}	N_{max}	n_{mean}	t_{mean}	$#T_{explored}$	
3_2_10	4.8	43	83.7	167	5	8.8	14	3.0	0.9	149.1	10/10
4_2_10	6.8	67	134.0	345	6	13.3	24	4.0	7.4	563.0	10/10
5_2_10	8.8	75	223.9	375	9	15.2	24	5.0	35.5	2811.6	10/10
6_2_10	11.9	73	348.3	708	10	16.7	30	5.6	59.8	5077.6	7/10
4_4_20	16.3	231	371.0	564	27	30.9	40	4.0	137.5	8590.0	6/10

#Membership & #Equivalence: the number of conducted membership and equivalence queries with the cached methods, respectively. N_{min}: the minimal, N_{mean}: the mean, N_{max}: the maximum.

#T$_{explored}$: the average number of the explored table instances.

#Learnt: the number of the learnt DOTAs in the group (learnt/total).
Outline

1. Introduction and motivation
2. Learning one-clock timed automata
3. Conclusion and future work
Conclusion and future work

• Contributions
 ● Give an active learning algorithm with a smart teacher for DOTA.s. It is an efficient (polynomial) algorithm. (white-box or gray-box)
 ● Give an active learning algorithm with a normal teacher for DOTA.s. It has an exponential complexity increase. (black-box)

• Future work
 ● Extension to non-deterministic and multi-clock timed automata.
 ● Improvements to efficiency of the algorithms.
Conclusion and future work

• Contributions
 - Give an active learning algorithm with a smart teacher for DOTAs. It is an efficient (polynomial) algorithm. (white-box or gray-box)
 - Give an active learning algorithm with a normal teacher for DOTAs. It has an exponential complexity increase. (black-box)

• Future work
 - Extension to non-deterministic and multi-clock timed automata.
 - Improvements to efficiency of the algorithms.
[1] F. Aarts and F. W. Vaandrager.
Learning I/O automata.
In CONCUR’10, pages 71–85, 2010.

[2] D. Angluin.
Learning regular sets from queries and counterexamples.
Inf. Comput., 75(2) :87–106, 1987.

[3] B. Bollig, P. Habermehl, C. Kern, and M. Leucker.
Angluin-style learning of NFA.
In IJCAI’09, pages 1004–1009, 2009.

[4] S. Drews and L. D’Antoni.
Learning symbolic automata.
In TACAS’17, pages 173–189, 2017.

[5] O. Grinchtein, B. Jonsson, and M. Leucker.
Learning of event-recording automata.
Theor. Comput. Sci., 411(47) :4029–4054, 2010.

[6] F. Howar, B. Steffen, B. Jonsson, and S. Cassel.
Inferring canonical register automata.
In VMCAI’12, pages 251–266, 2012.
[7] Y. Li, Y. Chen, L. Zhang, and D. Liu. A novel learning algorithm for Büchi automata based on family of DFAs and classification trees. In TACAS’17, pages 208–226, 2017.

[8] O. Maler and I. Mens. Learning regular languages over large alphabets. In TACAS’14, pages 485–499, 2014.

[9] M. Shahbaz and R. Groz. Inferring Mealy machines. In FM’09, pages 207–222, 2009.

[10] M. Tappler, B. K. Aichernig, G. Bacci, M. Eichlseder, and K. G. Larsen. L^*-based learning of Markov decision processes. In FM’19, pages 651–669, 2019.

[11] M. Tappler, B. K. Aichernig, K. G. Larsen, and F. Lorber. Time to learn - learning timed automata from tests. In FORMATS’19, pages 216–235, 2019.

[12] S. Verwer, M. de Weerdt, and C. Witteveen. The efficiency of identifying timed automata and the power of clocks. Inf. Comput., 209(3):606–625, 2011.
Thanks.