The Spatial Analysis for Malaria Surveillance in Yogyakarta Special Region, Indonesia: A Cross Sectional Study

Fatma Nuraisyah (fatma.nuraisyah@ikm.uad.ac.id)
Universitas Ahmad Dahlan Fakultas Kesehatan Masyarakat
https://orcid.org/0000-0002-8651-1981

Hari Kusnanto
Universitas Gadjah Mada Fakultas Kedokteran: Universitas Gadjah Mada Fakultas Kedokteran Kesehatan Masyarakat dan Keperawatan

Sukri Palutturi
Universitas Hasanuddin Fakultas Kesehatan Masyarakat

Nova Nursaily
Universitas Ahmad Dahlan

Panggita Adistiapuri
Universitas Ahmad Dahlan

Apryana Irjayanti
Universitas Cenderawasih

Wahida Mapandin
Universitas Ahmad Dahlan

Vidya Aries Anggraini
Universitas Ahmad Dahlan

Rochana Ruliyandari
Universitas Ahmad Dahlan

Sugiarto
Kulon Progo Health Office

Research

Keywords: Malaria, Mapping, GIS

DOI: https://doi.org/10.21203/rs.3.rs-720987/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Malaria case elimination have been seriously issue. Although the prevalence of malaria cases in Indonesia has decreased from 1.3% (2013) to 0.6% (2017), the policy of has been eliminating malaria cases remains unresolved problem. Kulon Progo is one of contributes to malaria cases in Special Region Yogyakarta. Although number of cases has been decreasing year, malaria transmission continues to be a significant.

Purpose

Strengthen the surveillance system and cluster areas of malaria cases through Q-GIS with buffering analysis and spatial analysis in Kulon Progo District in 2015–2018.

Method: Cross sectional was done. Instruments include secondary data on malaria cases occurring from 2015 to 2018 and confirmation data sheets. The questionnaire was used to collected data from 240 respondents.

Results

Malaria case trend was in the watershed area at a distance of < 250meters in Kokap Sub-district. Malaria cases were mostly found in rice fields with a distance of < 250meters in Samigaluh Sub-district. All malaria cases were in the garden areas of < 250meters in Nanggulang and the forest area of > 250meters in the Kalibawang Sub-district.

Conclusion

Probability malaria transmission are river, rice fields and gardens. It is necessary to hold training on the use of the Q-GIS application for surveillance officers.

1. Introduction

Malaria is caused by a parasite called plasmodium, which enters the human body through the bite of the Anopheles sp mosquito [1]–[3]. Globally, the number of malaria cases is estimated to have increased from 217 million in 2016 to 219 million in 2017. Africa has the highest number of malaria cases (92%), Southeast Asia (5%), and the Mediterranean (2%). It is estimated that 15 African countries and India account for 80% of malaria deaths. In 2017, five of them were in Nigeria (25%), the Democratic Republic of the Congo (11%), Mozambique (5%), Uganda (4%), and India (4%) [2], [3].

The majority of malaria cases in Indonesia are positive. There was a decrease in high endemic areas in 2014, from 16% in 2012 to 11% in 2014. Furthermore, the proportion of low-endemic areas went down from 68 % to 67 % in 2014. As a result, precautionary control must always be implemented because a
Malaria cases continue to rise because surveillance activities in Kulon Progo do not include an incident risk map. As a consequence, many policies and procedures focus on the administrative scope, leaving the risk area out of the spotlight. Epidemiological studies concerning the actual location must reflect where the risks are so that prevention policies developed in response to the study's findings are accurate. The Quantum Geographic Information System (QGIS) can be used to create a picture of the incidence or prevalence of health problems in a population [8], [9]. Noticing the distribution pattern of infectious disease cases can be a key health policy if surveillance activities are active down to buffer analysis or QGIS [10]–[13]. This study aims to analyze the relationship between mosquito breeding sites, the distribution of malaria cases through Q-GIS, specifically buffering, and spatial analysis in Kulon Progo Regency from 2015 to 2018.

2. Method

The objective of this study was to assess a pattern of malaria case distribution using surveillance data, with an indication of the results of malaria diagnosis in Kulon Progo District from 2015 to 2018[7], and the implementation of Q-GIS as a medium for strengthening the surveillance system and mapping of malaria case clusters in Kulon Progo District. This study applied a cross-sectional approach. Purposive sampling was used as a sampling technique [14]; and therefore, the sample size in this study was 240 cases, based on positive malaria cases diagnosed using the traditional method of thick blood and thin smear in Kulon Progo District between 2015 and 2018 [7]. Secondary data on malaria cases in Kulon Progo Health Office from 2015 to 2018 were used as the instruments, and the questionnaires served as a confirmation sheet for respondent data. GPS (Global Positioning System) was used to determine the coordinates of malaria events [15]. Direct research was carried out on the addresses of confirmed malaria cases based on secondary data from the Kulon Progo Health Office to develop the spatial map of the Kulon Progo Regency. The results of descriptive data analysis are presented in maps and tables. Maps present the endemicity of malaria cases by sub-district. Data on malaria cases are presented in a four-year time series. Area classification using QGIS software with buffer analysis [16] was utilized to determine the distribution pattern of malaria in rivers, gardens, rice fields, and forest areas that have the potential as breeding places for malaria mosquitoes [1], [17]–[20].

3. Results

3.1 Malaria Prevalence and Spatial Trends
A total of 240 respondents participated in this research. The distribution pattern based on location shows that the highest prevalence occurs in Kokap Sub-District as presented in Fig. 1. Meanwhile, the distribution pattern based on the time shows that the highest was in 2015 with 98 cases (41%), as mentioned in Table 1. In terms of the distribution of characteristics, most malaria cases were experienced by men (58.3%), aged 46–65 years (28.7%), elementary/junior high school graduated (65.4%), and working as farmers (47.5%), as presented in Table 2.

Time (Year)	Frequency (n)	Percentage (%)
2015	98	40.8
2016	78	33
2017	56	23
2018	8	3
Total	**240**	**100**

Data source: Kulon Progo Health Office, 2015–2018

Table 2. The Distribution of Malaria Cases based on the Demographic Characteristics in 2015–2018; n = 240
Category	Frequency	Percentage (%)
Gender		
Man	140	58.3
Woman	100	41.7
Age (Year old)		
0–5	12	5
6–11	19	7.9
12–25	50	20.8
26–45	66	27.5
46–65	69	28.7
≥ 65	24	10
Education level		
Did not go to school	12	5
Did not complete elementary school	37	15.5
Graduated from elementary/junior high school	157	65.4
Graduated from senior high school	32	13.3
Graduated from bachelor degree/equivalent	2	0.8
Occupation		
Not labor force		
Housewife	28	11.7
Student/unemployed	45	18.8
Children	18	7.5
Labor force		
Farmer	114	47.5
Labor	13	5.4
Entrepreneur	18	7.5
Civil servant/teacher	4	1.7

Data source: Kulon Progo Health Office, 2015–2018
3.2. Spatial Analysis

The implementation of the use of QGIS is useful, as evidenced by the clustering of the distribution of malaria cases in the Kokap and Samigaluh Sub-districts, as shown in Fig. 1. The results of spatial analysis on the distribution pattern of malaria cases show the trends of malaria cases in the watershed area of < 250 meters in the Kokap Sub-district, as shown in Fig. 2. Meanwhile, cases were discovered far from high-risk areas such as rivers and gardens. More cases, however, were noticed at < 250 meters of rice fields in the Samigaluh Sub-district, as demonstrated in Fig. 3. Figure 4 presents that cases were also discovered in the garden areas at a distance of < 250 meters after buffering was completed in Nanggulan Sub-district. Furthermore, Fig. 5 exhibits that malaria cases were identified far from river areas, gardens, and rice fields, but close to forest areas at a distance of < 250 meters in Kalibawang Sub-district.

4. Discussion

Analysis of the prevalence of malaria cases based on time shows that the overall trend has decreased, as displayed in Table 1, with the most cases found in Kokap Sub-district (Fig. 1). Figure 1 demonstrates that the results of the cluster spatial analysis have revealed that the zone with the highest cases of malaria is the Kokap Sub-district area. The spatial analysis and buffering show that the radius of distribution of case location to the place potential as risk factors [21], [22]. In this study, the buffering was performed with a radius < 250 meters to determine the approximate size limit or radius of the nearest or farthest location from the case with a potential breeding place for *Anopheles sp* mosquitoes [11], [23]. Figure 2 depicts the results of this research, which show that the spatial pattern of the highest malaria case cluster in the Kokap Sub-district from 2015 to 2018 is adjacent to the river basin area.

The results of this study indicate that the spatial trend pattern of malaria cases is in the river flow area < 250 meters. Based on river buffers, rivers can be seen to be a risk factor for malaria transmission. It has been discovered that mosquitoes can lay their eggs in rivers, puddles, and dammed water bodies. Because water is required for the oviposition and breeding stages of mosquito larvae, mosquito density is higher during the rainy season than during the dry season, resulting in seasonal malaria epidemiology [24]. *Anopheles sp* larvae breed in swamps, lagoons, ground pools, rivers, ditches, and wells, as well as habitat within a radius of 0.5 – 2 km of the homes of malaria-positive sufferers [25], [26]. The reproductive habitat of *Anopheles sp* is in seepage or flow from the river to the surrounding environment and forms puddles [12], [25]–[27]. In other mountainous and hilly areas, springs and streams with water-filled rock basins can be breeding grounds for *An. maculatus* mosquitoes [9], [23], [28].

Furthermore, rice field buffer shows that malaria cases are mostly concentrated in the radius of the buffer < 250 meters from the rice fields in Kokap Sub-district, as displayed in Fig. 2. This is compliant with the breeding habitats for *Anopheles sp* larvae, which include rivers, ponds, and rice fields [29], [30]. Rice field is a potential habitat area at high risk of malaria transmission with a buffer zone of 500 meters [31], [32].
All malaria cases were found < 250 meters from the garden area. Based on the flight distance of mosquitoes, which is 0.5 km, this means that the presence of the garden may be a risk factor for malaria transmission. During the day, the garden serves an important role as a resting place for *Anopheles* *sp* mosquitoes [17], [28]. This means that the presence of shrubs/gardens near the house increases the risk of malaria [33], [34]. *Anopheles maculatus* is a species of mosquito that is a vector of malaria and lives in habitats such as garden areas [10], [19]. Gardens are a high-risk area for malaria transmission, with less than 10% of the area within 1 km [35].

The results of this study also show that majority of the malaria cases occurred > 250 meters from the forest. This signifies that based on the mosquito flight distance of 0.5 km, the presence of forests is not a risk factor for malaria transmission. Which reported that forest does not have a significant effect on the incidence of malaria, with a distance of 900 to 1,250 meters [36]. However, several cases of malaria were discovered < 0.5 kilometers away from the forest area because the forest is a breeding site for *Anopheles* *sp*. Because of Indonesia's geographical location on the equator, it has a tropical climate, and the living environment in the forest will increase the incidence of malaria because it is classified as an endemic area. Activities such as leaving the house at night without long-sleeve clothes and repellents in mosquito breeding sites such as forests will increase the risk of transmission. According to research in Thailand, living near a mosquito breeding site increases the risk of transmission by 2.37 times, and living in a forest area with active transmission increases the risk of transmission by 7.19 times [37]. Forest and bush areas are habitats for *Anopheles balabacensis* and *Anopheles maculatus* mosquitoes [12].

Some methods of prevention and control of *Anopheles* *sp* vectors are spatial monitoring, analysis of time trends[21], [38], [39], and environmental management such as cleaning the environment that has the breeding potential, for example clearing shrubs in the garden area near the house [21] and closing standing water which has the potential to become a breeding ground for mosquitoes. Wearing long-sleeve clothes when going out at night, using insecticide-treated mosquito nets, using repellants, putting on mosquito repellent gauze, and giving prophylactic treatment when entering or working in endemic areas are also the ways that can prevent and control the vector [40]–[42].

The strength of this study lies in its focuses on the detection and analysis of the cluster of the distribution pattern[43] and area coverage of a geosphere phenomenon based on breeding places for malaria mosquitoes in rivers [18], [44], garden [44], rice fields [31], [34], [45], [46] and forests [44], [47], [48] by buffering [13], [49]–[52], which has not been implemented investigation thoroughly in the vulnerable areas in Kulon Progo District in 2015–2018. The findings of this study are projected to support stakeholders in making policy and providing representative management of malaria case elimination. However, this study has some limitations does not perform risk factor analysis and space-time permutation or space-time temporal analysis.

Conclusion
The malaria case distribution can be seen from the buffering of malaria locations, that rivers, rice fields, and gardens are places risky for malaria transmission, while forests are not. The GIS is very applicable in the implementation of surveillance and helps provide an overview for determining targets and policy-making strategies. It is suggested that buffering prioritize malaria areas because QGIS has not been implemented for health surveillance officers.

Declarations

Ethics approval and consent to participate

This secondary data analysis research protocol was approved by the ethics committee of Universitas Ahmad Dahlan No. 011906057.

Consent for Publication

Not applicable

Availability of data and materials

The dataset and materials used for this study can be made available only upon the approval by the Public Health Kulon Progo Department

Competing interests

The authors have no conflicts of interest to declare for this study.

Funding

This study was not funded.

Authors’ contributions

FN, HK, and SP designed the research and interpreted the results. FN, NN, SP, and VAA contributed to the research implementation and the interpretation of the results. NN, PA, RR and S participated in the data collection. FN, HK, AI, and WM handled the data analysis. The authors of this paper have read and approved the final manuscript.

Acknowledgments

Researchers would like to thank the Kulon Progo Health Office for facilitating this research and the respondents who were involved in this research.

References
1. Adebayo SB, Gayawan E, Heumann C, Seiler C. ‘Spatial and Spatio-temporal Epidemiology Joint modeling of Anaemia and Malaria in children under five in Nigeria’. Spat Spat Epidemiol. 2016;17:105–15.

2. Medicines for Malaria Venture. ‘World Malaria Report 2018’, 2018.

3. Medicines for Malaria Venture. ‘World Malaria Report 2020’, 2020.

4. Ministry of Public Health Republik Indonesia. Health Indonesia Profile 2014. Jakarta: Ministry of Public Health; 2015.

5. Ministry of Public Health Republik Indonesia. Basic of Health Research. Jakarta: Ministry of Public Health; 2018.

6. Public Health of Bantul District Departement. ‘Public Health Profile 2018’. Bantul: Public Health Bantul District Departement; 2018.

7. Health of Kulon Progo District Departement. *Public Health of Kulon Progo District Departement 2019*. 2020.

8. Khashoggi BF, Murad A. ‘Issues of Healthcare Planning and GIS: A Review’. Int J Geo-Information. 2020;9:2–24.

9. Hanifati WP, Adhina A, Anggi P, Dian M, Dita WE, Intan RD, Nabila EA, Yusron RH, Adhina HA, Anggi P, Dian M, Dita WE, Intan RD. Ekaafri A., Nabila, ‘Application of Remote Sensing and GIS for Malaria Disease Susceptibility Area Mapping in Padang Cermin Sub-District, District of Pesawaran, Lampung Province’. Earth Enviroment Sci. 2018;165:1–10.

10. Shirayama Y, Phompida S, Shibuya K. ‘Geographic information system (GIS) maps and malaria control monitoring: intervention coverage and health outcome in distal villages of Khammouane province, Laos’. Malar J. 2009;8:1–8.

11. Marjan Z, et al. ‘Space-Time Cluster Analysis of Malaria in Fars Province-Iran’. Epidemiol Access. 2020;7(3):0–5.

12. Hasyim H, et al., ‘Spatial modelling of malaria cases associated with environmental factors in South Sumatra, Indonesia’, *Malar. J.*, pp. 1–15, 2018.

13. Zayeri F, Salehi M, Pirhosseini H. ‘Geographical mapping and Bayesian spatial modeling of malaria incidence in Sistan and Baluchistan province, Iran’. Asian Pac J Trop Med. 2011;4(12):985–92.

14. Lwanga S, Lemeshow S, *Sample size determination in health studies: A practical manual, 1991*. 1991.

15. Xia J, et al. ‘Spatial, temporal, and spatiotemporal analysis of malaria in Hubei Province, China from 2004–2011’. Malar J. 2015;14:1–10.

16. Calba C, et al. ‘Surveillance systems evaluation: A systematic review of the existing approaches’. BMC Public Health. 2015;15(1):2–13.

17. Booman M, et al. ‘Using a geographical information system to plan a malaria control programme in South Africa’. Bull World Health Organ. 2003;78(12):1438–41.
18. Wangdi K, Banwell C, Gatton ML, Kelly GC, Namgay R. ‘Development and evaluation of a spatial decision support system for malaria elimination in Bhutan’. Malar J. 2016;15(180):1–13.
19. Djonkam L, et al. ‘Spatial distribution of Anopheles gambiae sensu lato larvae in the urban environment of Yaoundé, Cameroon’. Infect Dis Poverty. 2019;8(85):2–15.
20. Shao-sen Z, et al., ‘Monitoring of malaria vectors at the China-Myanmar border while approaching malaria elimination’, Parasite and Vectors, vol. 11, no. 511, pp. 3–6, 2018.
21. Ndiath M, et al. ‘Identifying malaria hotspots in Keur Soce health and demographic surveillance site in context of low transmission’. Malar J. 2014;13(453):1–8.
22. Rohani A, et al. ‘Mapping of mosquito breeding sites in malaria endemic areas in Pos Lenjang, Kuala Lipis, Pahang, Malaysia’. Malar J. 2011;10(361):2–8.
23. Kumar DS, Andimuthu R, Rajan R, Venkatesan MS. ‘Spatial trend, environmental and socioeconomic factors associated with malaria prevalence in Chennai’. Malar J. 2014;8(13):1–9.
24. Olalubi OA, Salako G, Adetunde OT, Sawyerr HO, Ajao M, Tambo E. ‘Geospatial Modeled Analysis and Laboratory Based Technology for Determination of Malaria Risk and Burden in a Rural Community’. Int J Trop Dis Heal. 2020;41(8):59–71.
25. Kifle MM, Teklemariam TT, Teweldeberhan AM, Tesfamariam EH, Andegiorgish AK, Kidane EA, ‘Malaria Risk Stratification and Modeling the Effect of Rainfall on Malaria Incidence in Eritrea’, J. Environ. Public Heal., vol. 2019, p. 11, 2019.
26. Barroso D. G. et al., ‘Spatial clustering and risk factors of malaria infections in Bata district, Equatorial Guinea’. Malar J. 2017;16(146):1–9.
27. Ihantamalala FA, et al. ‘Spatial and temporal dynamics of malaria in Madagascar’. Malar J. 2018;17(58):1–13.
28. Sullivan O, et al. ‘Malaria elimination in Isabel Province, Solomon Islands : establishing a surveillance-response system to prevent introduction and reintroduction of malaria Malaria elimination in Isabel Province, Solomon Islands : establishing a surveillance-response sy’. Malar J. 2011;10(1):235.
29. Fanjasoa Rakotomanana JB, Randremanana V, Rindra R, Léon P, Duchemin J, Ratovonjato RJP, Ariey, Frédéric, Isabelle J. ‘Determining areas that require indoor insecticide spraying using Multi Criteria Evaluation, a decision-support tool for malaria vector control programmes in the Central Highlands of Madagascar’. Int J Health Geogr. 2007;11:1–11.
30. Gouagna LL, Dehecq S, Jean G, Romain B, Sebastiaen L, Guy, Fontenille, Didier GL, Louis DS, Jean, Girod Romain, Boyer Sebastiaen, Lemperiere Guy, Fontenille Didier, ‘Spatial and temporal distribution patterns of Anopheles arabiensis breeding sites in La Reunion Island - multi-year trend analysis of historical records from 1996–2009’, Parasite and Vectors, vol. 4, no. 121, pp. 2–14, 2011.
31. Dambach P, Sié A, Lacaux JP, Vignolles C, Machault V, Sauerborn R. ‘Using high spatial resolution remote sensing for risk mapping of malaria occurrence in the Nouna district, Burkina Faso’. Glob Health Action. 2009;2(1):1–6.
32. Pergantas P, Tsatsaris A, Malesios C, Kriparakou G, Demiris N, Tselentis Y. ‘A spatial predictive model for malaria resurgence in central Greece integrating entomological, environmental and social data’, *PLoS One*, pp. 1–15, 2017.

33. Balicer RD, et al. ‘Using big data for non-communicable disease surveillance’. *Lancet Diabetes Endocrinol.* 2018;6(8):595–8.

34. ArgDamte M, Id A, Woldegiorgis AG. ‘Access to malaria prevention and control interventions among seasonal migrant workers: A multi-region formative assessment in Ethiopia’, *PLoS One*, pp. 1–15, 2021.

35. Brock PM, et al., ‘Predictive analysis across spatial scales links zoonotic malaria to deforestation’, *Proc. R. Soc. B Biol. Sci.*, vol. 286, no. 1894, pp. 2–3, 2019.

36. Adeola AM, et al. ‘Environmental factors and population at risk of malaria in Nkomazi municipality, South Africa’. *Trop Med Int Heal.* 2016;21(5):675–86.

37. Honrado E. Social and Behavioral Risk Factors Related to Malaria in Southeast Asia Counties. Bangkok: Departemen of Medical Medicine. Faculty of Medical Medicine. Mahidol University; 2003.

38. Nosten PA, Francois H. ‘Rethinking management of neonates at risk of sepsis’. *Lancet*. 2019;394(10195):278–9.

39. Ndiath DAT, Mansour M, Badara C, Ndiaye L, Jean GF, Jules, Bathiery, Ousmane O, Gaye, and and Faye B. ‘Application of geographically-weighted regression analysis to assess risk factors for malaria hotspots in Keur Soce health and demographic surveillance site’. *Malar J.* 2015;14(463):1–11.

40. Brownson RC, Fielding JE, Maylahn CM. ‘Evidence-Based Public Health: A Fundamental Concept for Public Health Practice’. *Annu Rev Public Health*. 2009;30(1):175–201.

41. Hou S-I. ‘Review: Evaluating Public and Community Health Programs’. *Health Promot Pract*. 2011;12(5):641–4.

42. World Health Organization. *Dengue guidelines for diagnosis, treatment, prevention and control: new edition*. 2009.

43. Selemani Majige M, Sigibert S, Amri S, Josephine MJ, Karen MY, Msengwa S, Amina, Mbago Y, Maurice C, Angelina LM. ‘Spatial and space–time clustering of mortality due to malaria in rural Tanzania: evidence from Ifakara and Rufiji Health and Demographic Surveillance System sites’. *Malar J.* 2015;14(369):2–10.

44. Wangdi K, et al. ‘Analysis of clinical malaria disease patterns and trends in Vietnam 2009–2015’. *Malar J.* 2018;17(332):1–15.

45. Adlaoui E, et al., ‘Mapping Malaria Transmission Risk in Northern Morocco Using Entomological and Environmental Data’, *Malar. Res. Treat.*, vol. 2011, p. 9, 2011.

46. Diuk-Wasser AMA, Bagayoko M, Sogoba N, Dolo G, Touré MB, Traoré SF, Taylort CE. ‘Mapping rice field anopheline breeding habitats in Mali, West Africa, using Landsat ETM + sensor data’. *Int J Remote Sens.* 2007;25(2):359–76.
47. Shi B, Zheng J, Qiu H, Yang G, Xia S, Zhou X. ‘Risk assessment of malaria transmission at the border area of China and Myanmar’. Infect Dis Poverty. 2017;6(108):1–9.

48. Obsomer V, Defourny P, Coosemans M. ‘The Anopheles dirus complex: spatial distribution and environmental drivers’. Malar J. 2007;6(26):1–16.

49. Chitunhu Simangaliso M, Eutasius. ‘Spatial and socio-economic effects on malaria morbidity in children under 5 years in Malawi in 2012’. Spat Spat Epidemiol. 2016;16:1–13.

50. Lin H, et al. ‘Spatial and temporal distribution of falciparum malaria in China’. Malar J. 2009;8:1–9.

51. Parker DM, et al., ‘A multi-level spatial analysis of clinical malaria and subclinical Plasmodium infections in Pailin’, *Heliyon*, no. October, p. e00447, 2017.

52. Sluydts V, et al. ‘Spatial clustering and risk factors of malaria infections in Ratanakiri Province, Cambodia’. Malar J. 2014;13:2–10.

Figures

![Distribution of Malaria Case in Kulon Progo District during 2015-2018](image)

Figure 1
Figure 2

Map of Malaria Cases Distribution with River Buffers in Kulon Progo Regency in 2015 – 2018
Figure 3

Map of Malaria Cases Distribution with Rice Field Buffers in Kulon Progo Regency in 2015 – 2018
Figure 4

Map of Malaria Cases Distribution with Farm Field Buffers in Kulon Progo Regency in 2015 - 2018
Figure 5

Map of Malaria Cases Distribution with Woodland Buffers in Kulon Progo Regency in 2015 – 2018