Direct Recycling of Nd–Fe–B Magnets Based on the Recovery of Nd$_2$Fe$_{14}$B Grains by Acid-free Electrochemical Etching

Xuan Xu,*[a, b] Saso Sturm,[a, b] Zoran Samardzija,[a] Janja Vidmar,[c] Janez Scancar,[b, c] and Kristina Zužek Rozman[a, b]

Recycling of end-of-life Nd–Fe–B magnets is an important strategy for reducing the environmental dangers associated with rare-earth mining and overcoming the supply risks associated with the rare-earth elements. In this study, a novel concept for recycling of sintered Nd–Fe–B magnets by directly recovering the matrix Nd$_2$Fe$_{14}$B grains is presented. The procedure is based on the anodic etching of sintered Nd–Fe–B magnets in a nonaqueous dimethylformamide (DMF)/0.3 mol L$^{-1}$ FeCl$_3$ bath. Selective recovery of Nd$_2$Fe$_{14}$B grains was realized within the applied current density < 5 mA cm$^{-2}$ based on the etching priority of phases: metallic Nd $>$ intergranular NdFe$_5$B$_4$ $>$ matrix Nd$_2$Fe$_{14}$B. The total energy consumption of the proposed recycling route is estimated to be 2.99 kWh kg$^{-1}$, which is comparable to the state-of-the-art methods. However, the proposed recycling route is currently the only procedure that enables repeated recycling of sintered Nd–Fe–B magnets in a closed-loop system.

Neodymium–iron–boron (Nd–Fe–B) permanent magnets (PMs) are widely used in many applications, such as hard-disk drives, wind turbines, acoustic transducers, and electric vehicle drive-trains, owing to their combination of high remanence and high coercivity.[1] As they incorporate 30–35 wt% rare-earth elements (REEs), mainly Nd, with small additions of Dy and/or Tb to increase the coercivity and temperature stability, they represent an important secondary resource of REEs.[2] The total recycling potential for end-of-life (EoL) Nd–Fe–B magnets in the period 2016–2040 is estimated to be 233 kt.[3] As critical materials,[4] less than 1% of REEs are being recycled from EoL products, with REE-containing PMs representing the largest share of these products.[5] Thus, the recycling of Nd–Fe–B PMs from EoL products is now categorized as a “key enabling technol-
To initiate the etching study, the microstructure and the crystal phases of the initial sintered Nd–Fe–B magnets were first investigated (see the Supporting Information, Figure S1). The initial sintered Nd–Fe–B magnet exhibited a typical microstructure that consists of the (Nd, Dy)Fe₂B matrix phase, labeled as "Nd₄Fe₁₄B" for simplicity, surrounded by the REE-rich grain boundary phases, which mostly consists of metallic Nd and a mixture of different Nd-based oxides. The NdFe₄B₃ and a mixture of Nd₂O₃ and Dy₂O₃ phases sitting in some of the triple points are also observed. The electrochemical etching preference of different phases in the Nd–Fe–B magnet was then studied by linear sweep voltammetry (LSV, Figure 1).

All the possible anodic reactions at the Nd–Fe–B magnet anode are given by Equations (1)–(4):

\[
\begin{align*}
\text{Fe}^{2+} - e^- & \rightarrow \text{Fe}^{3+}, \quad E_{\text{Fe}^{2+}/\text{Fe}^{3+}} = -0.41 \text{ V vs. SHE} \\
\text{Nd}^{2+} - 3e^- & \rightarrow \text{Nd}^{3+}, \quad E_{\text{Nd}^{2+}/\text{Nd}^{3+}} = -2.32 \text{ V vs. SHE} \\
\text{NdFe₄B₃} - 23e^- & \rightarrow \text{Nd}^{3+} + 4 \text{Fe}^{3+} + 4 \text{B}^{3+} \\
\text{NdFe₄B₃} - 37e^- & \rightarrow 2 \text{Nd}^{3+} + 14 \text{Fe}^{2+} + \text{B}^{3+}
\end{align*}
\]

When using Pt as the working electrode (black curve), the current density started to increase at approximately 0.15 V along the BC line owing to the onset of the oxidation of Fe²⁺ (reaction 1), which includes also the oxidation of the \([\text{FeCl₄}]^{2-}\) complex and might explain the mild current peak at approximately 0.55 V and the peak current \(I_p\) attributed to \([\text{FeCl₄}]^{2-}\) oxidation at the potential of 0.75 V. When the Nd–Fe–B magnet was used as the working electrode, the current density started to increase at the potential of \(-0.40\) V, shown by the red curve. The peak \(I_p\) of 5 mA cm⁻² recorded at \(-0.02\) V was related to the oxidation of metallic Nd in the grain boundaries (reaction 2) owing to its very negative electrode potential \((-2.32\) V vs. standard hydrogen electrode, SHE)).

The peak \(I_p\) at 0.30 V is likely the result of the combined oxidation of the NdFe₄B₃ phase (reaction 3) with oxidation of Fe²⁺ (reaction 1). From point C on, the current density regularly increases along CD on the red curve, which is the response of the oxidation of all the Nd-containing phases together with the Fe²⁺ oxidation (reactions 1–4). Accordingly, the etching priority of the phases inside the magnet is as follows: metallic Nd (in the grain boundary) > NdFe₄B₃ > NdFe₄B₃ (magnetic phase). This is in good agreement with previous reports.

Based on the etching priority, selective etching of the metallic Nd from the grain boundary could be realized by applying a potential of \(<-0.02\) V (corresponding to \(<5\) mA cm⁻²) on the anode, whereas applying potentials of higher than 0.40 V (corresponding to \(>9.9\) mA cm⁻²) lead to the nonselective etching of all the phases present, for example, the metallic Nd phase, the NdFe₄B₃, and NdFe₄B₃ (Figure S2).

To reduce the etching of the NdFe₄B₃ grains, a low current density of 2 mA cm⁻² was applied to study the etching effect on the microstructure of a polished Nd–Fe–B magnet surface (Figure 2a). The metallic Nd in the roundish (labeled by the white circle), triangular (labeled by the yellow dashed triangle) white phase and the grain boundaries were etched away first (Figure 2b). The grain boundaries surrounding the NdFe₄B₃ grains were further etched away when the etching time was extended to 2 min (labeled by the yellow dashes, Figure 2c). When the polished Nd–Fe–B magnet was etched for 4 min, the grain boundaries were completely etched away, exposing the NdFe₄B₃ grains and leaving behind the Dy/Nd-based oxides (the white phase in the triple points of Figure 2d), which are regularly etched away with an applied potential of \(-0.02\) V. The NdFe₄B₃ grains were further etched away when the etching time was extended to 2 min (labeled by the yellow dashes, Figure 2c). When the polished Nd–Fe–B magnet was etched for 4 min, the grain boundaries were completely etched away, exposing the NdFe₄B₃ grains and leaving behind the Dy/Nd-based oxides (the white phase in the triple points of Figure 2d), which are regularly etched away with an applied potential of \(-0.02\) V.
not prone to electrochemical oxidation. The gaps (labeled by the white dashes, Figure 2d,e) between the Nd$_{14}$Fe$_{8}$B grains (the thickness of the gaps varies from approximately 500 nm to 1 μm) were formed after preferential etching of the metallic Nd in the grain boundaries, indicating that some etching of the Nd$_{14}$Fe$_{8}$B grain edges also occurred. The edges of the Nd$_{14}$Fe$_{8}$B grains were further etched perpendicular to the polished surface with a prolonged etching time of 8 min (white arrows, Figure 2e). When the Nd–Fe–B magnet was etched for 15 min (Figure 2f), the polished surface was progressively etched, resulting in a porous structure for the Nd$_{14}$Fe$_{8}$B grains and some detachment of the Nd$_{14}$Fe$_{8}$B grains (the position labeled by a white circle). The second layer of the Nd$_{14}$Fe$_{8}$B grains (labeled with white arrows) was much less damaged with the grain boundary completely etched. This indicates that timely removal of the Nd$_{14}$Fe$_{8}$B grains from the magnet body can reduce the further etching the Nd$_{14}$Fe$_{8}$B grains.

The sintered Nd–Fe–B magnet was electrochemically etched with an applied current of 10 mA (current density of 2 mA cm$^{-2}$) for 360 min to recover the Nd$_{14}$Fe$_{8}$B grains. The magnetically collected particles shown in Figure 3a are individual particles, confirming that Nd$_{14}$Fe$_{8}$B grains can be extracted through selective etching. X-ray diffraction (XRD; Figure S3) confirms that these magnetic particles maintain the Nd$_{14}$Fe$_{8}$B crystal structure, which can be re-used for making new PMs. For the 1.61 g of the sintered Nd–Fe–B magnet treated at 10 mA (2 mA cm$^{-2}$) for 40 h, 1.08 g of Nd$_{14}$Fe$_{8}$B grains were obtained. Accordingly, 67.2% of the Nd–Fe–B magnet was recovered in the form of Nd$_{14}$Fe$_{8}$B grains and the energy consumption per kilogram of the obtained Nd$_{14}$Fe$_{8}$B grains was calculated to be 0.58 kWh. Around 20% of the Nd$_{14}$Fe$_{8}$B grains was etched and dissolved into the electrolyte (assuming that the initial Nd–Fe–B magnet contained 87% Nd$_{14}$Fe$_{8}$B grains).[14] This is caused by the decreasing over-potential for etching the metallic Nd during the etching process, which forces the etching of the Nd$_{14}$Fe$_{8}$B grains according to the etching mechanism (Figure S4) and the timely removal of the Nd$_{14}$Fe$_{8}$B grains from the magnet anode after the complete etching of the surrounding grain boundaries. However, the recovery of the Nd$_{14}$Fe$_{8}$B grains can be further improved by using an ultrasonic bath during the electrochemical etching process to remove the Nd$_{14}$Fe$_{8}$B grains from the magnet anode in time. The nonmagnetic particles collected by filtering the electrolyte after electrolytic etching are presented in Figure 3b. The round particles consist of Nd$_{2}$O$_{3}$ and Dy$_{2}$O$_{3}$ phases, whereas the elongated ribbed particles consist of Nd$_{5}$O$_{8}$, Dy$_{2}$O$_{3}$, Nd, and Nd$_{5}$B$_{4}$ phases, as confirmed by the energy-dispersive X-ray spectroscopy (EDS) and XRD analysis (Figure S5).

In parallel, pure Fe metal was deposited on the cathode with the current efficiency of 99.6% (Figure S6a). As Fe$^{2+}$ was consumed (deposited) on the cathode, while Fe$^{3+}$ and REE ions (REE$^{3+}$), for example, Nd$^{3+}$ were generated from the partly etched magnet anode, the concentration of Fe$^{2+}$, as a whole, decreased in the electrolyte with increasing etching time. In contrast, the concentrations of REE$^{3+}$ in the electrolyte increased linearly with the increasing etching time (Figure S6b). Therefore, the whole electrolysis process, including the magnet etching on the anode and the Fe deposition on the cathode, ends up with the Nd$_{14}$Fe$_{8}$B grains, REE-containing electrolyte and REE-based particles, and pure Fe metal as the final products with only the consumption of FeCl$_{2}$ and electricity.

A recycling route for EoL Nd–Fe–B magnets is proposed based on the electrochemical etching (Figure 4). The obtained Nd$_{14}$Fe$_{8}$B grains are used as raw materials for making new magnets. The REE-containing electrolyte and REE-based particles can be further treated by the conventional hydrometallurgical process for a high purity of > 99% REE recovery$^{[1, 7b]}$, followed by molten salt electrolysis$^{[20]}$ for making RE metal/ alloys, which can be used together with the obtained Nd$_{14}$Fe$_{8}$B grains to make new Nd–Fe–B magnets. DMF can be recovered by distillation and re-used in a closed-loop with minimized safety risk and environmental impact. Based on that, the overall REE mass balance from the initial magnet is 100% preserved, which forms a circular economy. The total energy consumption of the magnet-manufacturing process using the proposed electrochemical recycling route is estimated to be 2.99 kWh kg$^{-1}$, which is directly comparable to the re-use methods (Table 1), if we consider the conventional additive of the Nd–Pr hydride (4 wt%). However, the additive can be replaced by other alloys, such as Nd–Cu$^{[21]}$ and Ce$^{[22]}$, which could lead to a much lower energy footprint.

Figure 3. BSE-SEM images of (a) collected magnetic powder after electrochemical etching (360 min) and (b) collected nonmagnetic particles by filtration after the electrochemical etching (360 min). Etching conditions: 10 mA (2 mA cm$^{-2}$), room temperature, no stirring.
Figure 4. Flowsheet of electrochemical recycling of sintered Nd–Fe–B magnets.

Table 1. Energy consumption of making sintered Nd–Fe–B magnets through different recycling routes.26

Route	Energy consumption [kWh kg$^{-1}$]	Ref.
hydrometallurgy	30.0–33.4	[19]
direct re-use	≈ 3.0	[19]
electrochemical recycling	≈ 2.99	this study

[a] The detailed calculation of energy consumption based on previous reports is given in the Supporting Information.

In summary, we are proposing a facile and cost-effective electrochemical recycling process that selectively recovers the Nd$_{Fe}B$ grains from sintered Nd–Fe–B magnets at room temperature. The anodic etching mechanism is based on fine-tuning of the applied current density <5 mA cm$^{-2}$ to exploit the etching priority series of the phases present in the pristine Nd–Fe–B magnet: metallic Nd $>$ intergranular Nd$_{Fe}B_4$ $>$ matrix Nd$_{Fe}B$, which allows the preferential etching of their surrounding REE-rich grain boundaries, leaving the individual Nd$_{Fe}B$ grains behind for magnetic separation. The total energy consumption of the proposed electrochemical recycling route is estimated to be 2.99 kWh kg$^{-1}$, which is, in the long term, expected to be economically more feasible while offering considerably more flexibility.

Acknowledgements

This work was supported by the European Union’s EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No. 674973 (DEMETER). The authors thank the COST Action e-MINDs community for sharing the knowledge.

Conflict of interest

Xuan Xu, Saso Sturm, Kristina Zupek Rozman, and Jozef Stefan Institute have filed a patent on the presented results. All other authors declare no competing financial interests.

Keywords: electrochemistry • etching • extraction • magnets • rare-earth elements

[1] Y. X. Yang, A. Walton, R. Sheridan, K. Guth, R. Gauss, O. Gutfleisch, M. Buchert, B. M. Steenari, T. Van Gerven, P. T. Jones, K. Binnemans, J. Sustainable Metallurgy 2017, 3, 122–149.
[2] O. Gutfleisch, M. A. Willard, E. Bruck, C. H. Chen, S. G. Sankar, J. P. Liu, Adv. Mater. 2011, 23, 821–842.
[3] M. V. Reimer, H. Y. Schenk-Mathes, M. F. Hoffmann, T. Elwert, Metals 2018, 8, 867.
[4] K. M. Goodenough, F. Wall, D. Merriman, Nat. Resour. Res. 2018, 27, 201–216.
[5] B. K. Reck, T. E. Graedel, Science 2012, 337, 690–695.
[6] a) M. Venkatesan, S. Vander Hoogerstraete, T. Hennekeb, K. Binnemans, J. Sietisma, Y. X. Yang, Green Chem. 2018, 20, 1065–1073; b) H. Y. Jin, P. Afluny, S. Dove, G. Furlan, M. Zokotnik, Y. Yih, J. W. Sutherland, Environ. Sci. Technol. 2018, 52, 3796–3802.
[7] a) M. Firdaus, M. A. Rhandhiani, Y. Durandet, W. J. Rankin, M. McGregor, J. Sustainable Metallurgy 2016, 2, 276–295; b) K. Binnemans, P. T. Jones, B. Blanpain, T. Van Gerven, Y. Yang, A. Walton, M. Buchert, J. Cleaner Prod. 2013, 51, 1–22.
[8] a) E. H. Lalana, M. J. Degri, A. Bradshaw, A. Walton in European Congress and Exhibition on Powder Metallurgy, European PM Conference Proceedings, The European Powder Metallurgy Association, 2016, pp. 1–6; b) M. Zokotnik, C. Tudor, Waste Manage. 2015, 44, 48–54.
[9] a) M. Zokotnik, L. Harris, A. Williams, J. Alloys Compd. 2008, 450, 525–531; b) M. Farr, Doctoral thesis, Production of anisotropic injection moulded NdFeB magnets from end-of-life sintered magnets, University of Birmingham, UK, 2018; c) A. Lixandru, I. Poenaru, K. Guth, R. Gauss, O. Gutfleisch, J. Alloys Compd. 2017, 724, 51–61.
[10] J. Meakin, J. Speight, R. Sheridan, A. Bradshaw, I. Harris, A. Williams, A. Walton, Appl. Surf. Sci. 2016, 378, 540–544.
[11] M. Zokotnik, I. Harris, A. Williams, J. Alloys Compd. 2009, 469, 314–321.
[12] H. Sepehri-Amin, T. Ohkubo, M. Zokotnik, D. Prosperi, P. Afluny, C. Tudor, K. Hono, J. Alloys Compd. 2017, 694, 175–184.
[13] W. F. Li, T. Ohkubo, K. Hono, M. Sagawa, J. Magn. Magn. Mater. 2009, 321, 1100–1105.
[14] J. Holc, S. Beneniar, D. Kolar, J. Mater. Sci. 1990, 25, 215–219.
[15] a) S. Wang, Y. Li, J. Magn. Magn. Mater. 2005, 285, 177–182; b) L. Yanfeng, Z. Minggang, L. Anhua, F. Halbo, S. Huang, L. Wei, D. An, Q. Yan, J. Rare Earths 2014, 32, 628–632.
[16] a) S.-I. Ishiguro, K. Ozutsumi, H. Ohtaki, J. Chem. Soc. Faraday Trans. 1 1988, 84, 2409–2419; b) W. Gryzbowski, M. Pilarczyk, J. Chem. Soc. Faraday Trans. 1 1986, 82, 1745–1753.
[17] a) J. B. Bard, R. Parsons, J. Jordan, International Union of Pure and Applied Chemistry, Standard Potentials in Aqueous Solution, M. Dekker, New York, 1985.
[18] a) L. Schultz, A. El-Aziz, G. Barkleit, K. Mumme, Mater. Sci. Eng. A 1999, 267, 307–313; b) E. Isotahdon, E. Huttunen-Saari-Lauri, S. Heinonen, V. T. Kuokkala, M. Paju, J. Alloys Compd. 2013, 526, 349–359; c) F. Fabiano, F. Calegato, A. Giordano, C. Borsellino, L. Bonacci, L. Calabrese, P. Tiberio, G. Cordasco, G. Matarese, V. Fabiano, Phys. B 2014, 435, 92–95; d) E. Isotahdon, E. Huttunen-Saari-Lauri, V. T. Kuokkala, M. Paju, Mater. Chem. Phys. 2012, 135, 762–771.
[19] M. Zokotnik, C. O. Tudor, L. T. Peiró, P. Afluny, R. Skomski, G. P. Hatch, Environ. Technol. Innovation 2016, 3, 117–126.
[20] M. Tanaka, T. Oki, K. Koyama, H. Narita, T. Oishi in Handbook on the Physics and Chemistry of Rare Earths, Vol. 43, Elsevier, Amsterdam, 2013, pp. 159–211.

[21] K. Hono, H. Sepehri-Amin, Scr. Mater. 2012, 67, 530–535.

[22] A. K. Pathak, M. Khan, K. A. Gschneidner, Jr., R. W. McCallum, L. Zhou, K. Sun, K. W. Dennis, C. Zhou, F. E. Pinkerton, M. J. Kramer, Adv. Mater. 2015, 27, 2663–2667.

Manuscript received: August 26, 2019
Revised manuscript received: September 17, 2019
Accepted manuscript online: September 17, 2019
Version of record online: October 17, 2019