Association of Arsenic with Adverse Pregnancy Outcomes/Infant Mortality: A Systematic Review and Meta-Analysis

Reginald Quansah,1,2 Frederick Ato Armah,3 David Kofi Essumang,4 Isaac Luginaah,5 Edith Clarke,2,6 Kissinger Marfoh,7 Samuel Jerry Cobbina,9 Edward Nketiah-Amponsah,9 Proscovia Bazanya Namujju,10,11 Samuel Obiri,12 and Mawuli Dzodzomenyo2

1Centre for Environmental and Respiratory Health Research, Faculty of Medicine, University Of Oulu, Finland; 2Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, College of Health Sciences, University of Ghana, Legon, Accra, Ghana; 3Environment, Health and Hazards Lab, Department of Geography, Western University, London, Ontario, Canada; 4Environmental Health Group, Department of Chemistry, University of Cape Coast, Cape Coast, Ghana; 5Department of Geography, Western University Canada, London, Ontario, Canada; 6Ghana Health Service, Accra, Ghana; 7Public Health Unit (Biostatistics), Korle-bu Teaching Hospital, Accra, Ghana; 8School of the Environment, Jiangsu University, Jiangsu, China; 9Department of Economics, University of Ghana, Legon, Ghana; 10Department of Child, Adolescent and Adult Health, National Institute for Health and Welfare, Oulu, Finland; 11School of Health Sciences, University of Tampere, Tampere, Finland; 12Council for Scientific and Industrial Research, Accra, Ghana

BACKGROUND: Exposure to arsenic is one of the major global health problems, affecting > 300 million people worldwide, but arsenic’s effects on human reproduction are uncertain.

OBJECTIVES: We conducted a systematic review and meta-analysis to examine the association between arsenic and adverse pregnancy outcomes/infant mortality.

METHODS: We searched PubMed and Ovid MEDLINE (from 1946 through July 2013) and EMBASE (from 1988 through July 2013) databases and the reference lists of reviews and relevant articles. Studies satisfying our a priori eligibility criteria were evaluated independently by two authors.

RESULTS: Our systematic search yielded 888 articles; of these, 23 were included in the systematic review. Sixteen provided sufficient data for our quantitative analysis. Arsenic in groundwater (> 50 μg/L) was associated with increased risk of spontaneous abortion (6 studies: OR = 1.98; 95% CI: 1.27, 3.10), stillbirth (9 studies: OR = 1.77; 95% CI: 1.32, 2.36), moderate risk of neonatal mortality (5 studies: OR = 1.51; 95% CI: 1.28, 1.78), and infant mortality (7 studies: OR = 1.35; 95% CI: 1.12, 1.62). Exposure to environmental arsenic was associated with a significant reduction in birth weight (4 studies: β = –53.2 g; 95% CI: –94.9, –11.4). There was paucity of evidence for low-to-moderate arsenic dose.

CONCLUSIONS: Arsenic is associated with adverse pregnancy outcomes and infant mortality. The interpretation of the causal association is hampered by methodological challenges and limited number of studies on dose response. Exposure to arsenic continues to be a major global health issue, and we therefore advocate for high-quality prospective studies that include individual-level data to quantify the impact of arsenic on adverse pregnancy outcomes/infant mortality.

CITATION: Quansah R, Armah FA, Essumang DK, Luginaah I, Clarke E, Marfoh K, Cobbina SJ, Nketiah-Amponsah E, Namujju PB, Obiri S, Dzodzomenyo M. 2015. Association of arsenic with adverse pregnancy outcomes/infant mortality: a systematic review and meta-analysis. Environ Health Perspect 123:412–421; http://dx.doi.org/10.1289/ehp.1307894

Introduction

Arsenic contamination of drinking water, air, food, and beverages is one of the major global health problems (Essumang 2009; Essumang et al. 2007; Hughes 2006; Navas-Acien and Nachman 2013; Obiri et al. 2010) that affect > 300 million people worldwide. This includes an estimated 13 million people in the United States and about 70 million people in Bangladesh (Mucrott 2012). At concentrations > 50 μg/L, inorganic arsenic (iAs) has been associated with elevated risk of cancer (e.g., bladder, kidney, liver, lung, skin, prostate) (Ahamed et al. 2006b; McDonald et al. 2007; Mink et al. 2008; Steinmaus et al. 2000, 2003; Walvekar et al. 2007), cardiovascular diseases (Moon et al. 2013; Navas-Acien et al. 2005), high blood pressure (Abhyankar et al. 2012; Moon et al. 2013; Navas-Acien et al. 2005), anemia in pregnancy (Hopenhayn et al. 2006; Navas-Acien et al. 2006), mortality from respiratory diseases in both adults and children (Ahamed et al. 2006a; Ferreccio and Sancha 2006; Walvekar et al. 2007), diabetes in adults (Navas-Acien et al. 2006), and neurodevelopment problems (Hamadami et al. 2011). At concentrations around 10 μg/L, which is considered safe by the World Health Organization’s (WHO) provisional guideline (WHO 2011), iAs may still cause cancer in approximately 0.1–0.3% and increased systolic blood pressure in women 6 weeks postpartum (International Agency for Research on Cancer 2004; Kwok 2007). iAs easily crosses human and animal placenta and has been demonstrated to increase the risk of impaired fetal growth and infant mortality in laboratory animal studies (Navarro et al. 2004; Smith and Steinmaus 2009; Vahter 2009). Several epidemiologic studies (e.g., Cherry et al. 2010; Myers et al. 2010; Rahman et al. 2010) have examined the relation between arsenic and adverse pregnancy outcomes/infant mortality, and the findings are equivocal. Our understanding of arsenic exposure and adverse pregnancy outcomes is limited and, at best, fragmented.

To our knowledge, no systematic review and/or meta-analysis has reported on the effect of arsenic on human pregnancy and infant health. Given the widespread low, moderate, and high arsenic exposure in the general population, an understanding of the impact of iAs on maternal and fetal health is relevant for public health policy.

To fill this gap, we conducted a systematic review and meta-analysis of epidemiologic studies to examine the association between arsenic exposure and the risk of spontaneous abortion, stillbirth, preterm delivery, birth weight, and neonatal/infant mortality.

Methods

Search strategy and study selection. This study was conducted according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) group (Moher et al. 2009). We searched PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and Ovid MEDLINE (http://ovidsp.tx.ovid.com) (from 1946 through July 2013) and EMBASE (http://www.embase.com/login) (from 1988 through July 2013) databases (Figure 1), using the terms “arsenic,” “arsenicals,” “arsenite,” “arsenate” and “abortion, spontaneous,” “fetal mortality,” “preterm delivery.” “low birthweight,” “birthweight,” “infant mortality,” “neonatal mortality” (see Supplemental Material, “Search Strategy”). In addition, we searched the reference lists of reviews (Bloom et al. 2010; Smith and Steinmaus 2009; Vahter 2009) and potentially relevant articles.

Address correspondence to R. Quansah, Centre for Environmental and Respiratory Health Research, P.O. Box 5000, FI-90014 University of Oulu, Finland. Telephone: 358 (0)406 724 292. E-mail: rquansah@oulu.oulu.fi

Supplemental Material is available online (http://dx.doi.org/10.1289/ehp.1307894).

The authors declare they have no actual or potential competing financial interests.

Received: 16 November 2013; Accepted: 23 January 2015; Advance Publication: 27 January 2015; Final Publication: 1 May 2015.

412 VOLUME 123 | NUMBER 5 | May 2015 • Environmental Health Perspectives
Two authors (R.Q. and F.A.A.) independently evaluated the articles. Studies that fulfilled the following a priori eligibility criteria were included if the study a) was an original study; b) was a cross-sectional, or a case–control or a cohort design; c) reported on any one or more of the following outcomes: spontaneous abortion, stillbirth, preterm delivery, birth weight, and neonatal infant mortality; and d) presented data on arsenic exposure determined using environmental measures (arsenic in drinking water or airborne arsenic, or arsenic in soil), biomarkers, or indirect measures (e.g., residing in arsenic endemic area). Our exclusion criteria were a) a study was an experimental or a case report or a case series or a letter, b) a study was of arsenic compounds for which human exposure was unlikely [e.g., arsenic in roots of plants (Landgren 1996)], c) a study used job title or living close to a smelter house as surrogate for arsenic exposure, and d) a study did not include our relationships of interest.

If more than one report was published from the same study, the most recent study or the study using the best assessment of arsenic and/or outcome was included. For studies that reported estimates for more than one biomarker, the estimate for the most appropriate biomarker was preferred. The order of preference was as follows: nail > hair > urine. If a study provided estimates for water and a biomarker, the estimate from the latter was used.

Data extraction and quality assessment. Most relevant characteristics of eligible studies including study design, study size, location and country of study, method of arsenic assessment, exposure marker for arsenic, exposure contrast, exposure dose, type of adverse pregnancy/infant mortality and their definitions, year of publication, year of data collection, adjustment for adequate confounders, and study results (i.e., measures of association) were recorded in a standard data extraction form (Quansah and Jaakkola 2010) independently by two authors (R.Q. and F.A.A.). Any discrepancies were resolved by consensus. R.Q. and F.A.A. applied the Newcastle–Ottawa Scale (Wells et al. 2009) for observational studies to assess quality of eligible studies, with the maximum score of 9. Studies scoring ≥ 7 were categorized as high quality (see Supplemental Material, Tables S1 and S2).

Statistical methods. First, odds ratio (OR) or relative risk (RR) and their 95% confidence intervals (CIs) were derived or abstracted from eligible studies. Almost all the studies presented ORs and their 95% CIs; therefore, we used ORs in our analysis. One study (Ahmad et al. 2001) presented adjusted ORs and exact p-values but not the 95% CI, so we calculated the 95% CI from the p-values following Borenstein et al. (2009). Two studies (Guan et al. 2012; Rahman et al. 2007) presented RRs, and these were converted to ORs (Zhang and Yu 1998). Some relevant studies presented ORs for more than two exposure levels for the outcomes; therefore, in the meta-analysis we calculated summary ORs comparing our outcomes of interest (adverse pregnancy outcomes/infant mortality) in the highest (exposed group) and lowest (reference group) arsenic exposure categories presented in the studies. The exposed groups were heterogeneous and consisted of populations exposed to arsenic dose above the WHO guideline (i.e., > 10 μg/L) (WHO 2011). We separated the groups into high dose (exposed to ≥ 50 μg/L) and low-to-moderate dose (exposed to < 50 μg/L) for further analysis (explained below).

We applied the random-effects model (Borenstein et al. 2009) because we anticipated heterogeneity in the study–specific estimates. In the forest plots, we presented summary ORs of the random-effects model. Heterogeneity was computed using the Q (p < 0.1 considered significant), and I²-statistics (I²-statistic > 50% indicates high, 25–50% moderate, and < 25% low heterogeneity). We examined the influence of various characteristics on the study–specific effect estimates by stratifying the analysis by a) arsenic dose (i.e., high arsenic dose (> 50 μg/L) vs. low-to-moderate arsenic dose (< 50 μg/L)) and b) arsenic measured using individual data versus group data. We also performed a series of sensitivity analyses. First, we investigated the relative influence of each study on the summary OR by omitting each study one at a time. None of the studies had substantial influence on the summary ORs for our relations of interest and this finding was not reported. Second, we restricted the analysis to high-quality studies, prospective cohort studies, and studies adjusting for potential adequate confounders (see Supplemental Material, Table S3) documented in the literature (e.g., Di Mario et al. 2007; Ghosh 2012; Kramer 1987, 2003; McClure et al. 2006; Moss et al. 2002; Shah et al. 2011). We also presented dose response for studies with at least three exposure levels graphically. Publication bias was explored with funnel plots. The trim and fill method was used to assess the potential impact of missing studies in the funnel plot. Statistical analysis was performed using STATA software version 9 (StataCorp, College Station, TX, USA).

Results

Study characteristics. Our systematic literature search strategy is shown in Figure 1. A total of 888 studies were retrieved, from which 56 studies were reviewed in depth. Twenty-three studies fulfilled our a priori inclusion criteria (Table 1) for this systematic review. Data from 16 studies were included in our quantitative analysis (see Supplemental Material, Tables S4 and S5). Thirty-three studies were excluded for various reasons (see Supplemental Material, Table S6). We had no data from the authors of two studies on birth weight (Fei et al. 2013; Guan et al. 2012) to calculate 95% CIs, so we included the studies only in our qualitative analysis. Five studies (Ahamed et al. 2006b; Chakraborti et al. 2003; Mukherjee et al. 2005; Rahman et al. 2005; Sen and Chaudhuri 2008) did not control for potential confounders, and they were also included in our qualitative analysis. Five studies (Cherry et al. 2008, 2010; Hopenhayn-Rich et al. 2008; Rahman et al. 2003) included a wide range of arsenic exposure levels, and the highest exposure level was used in the meta-analysis. Five studies (Ahamed et al. 2006b; Chakraborti et al. 2003; Mukherjee et al. 2005; Rahman et al. 2005; Sen and Chaudhuri 2008) did not control for potential confounders, and they were also included in our qualitative analysis. Five studies (Cherry et al. 2008, 2010; Hopenhayn-Rich et al. 2008; Rahman et al. 2003) included a wide range of arsenic exposure levels, and the highest exposure level was used in the meta-analysis.

Outcomes used in the meta-analysis

Spontaneous abortion: 6 studies
Stillbirth: 9 studies
Preterm delivery: 3 studies
Birth weight: 6 studies
Neonatal mortality: 5 studies
Infant mortality: 7 studies

Figure 1. Study selection flow diagram.
including urine, maternal/cord/placenta blood, hair, and nail; and the remaining studies measured arsenic dose at the region/village/household level. Ihrig et al. (1998) measured arsenic dose in airborne emissions. Huyck et al. (2007) measured maternal hair arsenic dose at first prenatal visit, maternal hair arsenic dose at birth, and maternal nail arsenic dose at first prenatal visit, but the estimates of the latter biomarker was considered suitable and included in the meta-analysis. There were 10 reports on spontaneous abortion, 14 on stillbirth, 3 on preterm delivery, 6 on birth weight, 5 on neonatal mortality, and 7 on infant mortality. Eligible studies applied either questionnaire/interview or hospital/medical records or national registers to ascertain information on the outcomes of interest. Most of the studies (Table 1) scored low on the Newcastle–Ottawa Scale for several reasons, including bias associated with selection of study population, measurement of arsenic exposure, lack of individual arsenic data, inappropriate definition of cases/controls, inappropriate comparable reference, and a lack of adequate adjustment for potential confounders (Table 1).

Table 1. Characteristics of studies included in the systematic review and meta-analysis.

Sources (study design)	Location	Study population	Arsenic levels in	Marker for exposure	Exposure contrast	Range, median, or mean	Outcome studied	Confounders adjusted for	Total score on NOS
Fei et al. 2013a (PCO)	New Hampshire (USA)	133 pregnant women	Arsenic levels in urine	NA	Not reported	Birth weight	Infant sex, maternal age, gestational age	7/9	
Guan et al. 2012b (CS)	Dalian (China)	125 mother–infant pairs	Arsenic levels in maternal and cord blood	Arsenic-affected area (590 μg/L) vs. arsenic-free area	Not reported	Birth weight	Maternal age, BMI, parity, gestational age at delivery, maternal education, maternal secondhand smoke exposure, infant sex	5/9	
Cherry et al. 2010c (RCO)	Gonoshasthaya Kendra villages (Bangladesh)	934 infant mortality occurring in designated area, 2001–2003	Arsenic levels in tube-well water	≥ 50 μg/L vs. < 10 μg/L	0.05–166 μg/L	Infant mortality	First pregnancies, others with formal education, mothers designated as destitute	7/9	
Myers et al. 2010d (RCO)	Bayingnormen (Mongolia, China)	9,890 singleton deliveries of mothers	Arsenic levels in tube-well water	≥ 50 μg/L vs. ≤ 50 μg/L	UD–1,200 μg/L	Birth weight, preterm delivery, stillbirth, and neonatal mortality	Maternal age, gravidity, infant sex for the analysis of birth weight and maternal age, gravidity, infant sex adequacy for the analysis of preterm delivery, stillbirth, and neonatal mortality	7/9	
Rahman et al. 2010b (PCO)	Matlab district (Bangladesh)	2,924 pregnant women	Arsenic levels in urine	249–1,253 μg/L vs. < 33 μg/L (spontaneous abortion) 268–2,019 μg/L vs. < 38 μg/L (stillbirth) 268–2,019 vs. < 38 μg/L (infant mortality)	UD–1,253 μg/L	Spontaneous abortion, stillbirth, infant mortality	No significant confounder was found	7/9	
Rahman et al. 2009b (PCO)	Matlab (Bangladesh)	1,578 women with single births	Arsenic concentrations in urine	≥ 100 μg/L vs. < 100 μg/L	6–978 μg/L	Birth weight	Asset score, BMI, height, age, education, season, gestational age at birth, sex of infant	8/9	
Cherry et al. 2009e (RCO)	Villages in 13 subdistricts (Bangladesh)	30,984 pregnancies and outcomes	Average arsenic concentrations in hand-pumped well water	≥ 50 μg/L vs. < 10 μg/L	UD–81 μg/L	Stillbirth	Age, sex, previous pregnancy, previous stillbirth, low socioeconomic status, maternal education, paternal education, maternal smoking, mother high BP, mother edema, gestational age, birth weight, home delivery	8/9	
Sen and Chaudhuri 2008a (CS)	Villages located in North 24 Parganas district (states of West Bengal)	Pregnancy outcomes of 240 married women	Arsenic levels in tube-well water	600 μg/L vs. < 10 μg/L	0.14–3.28 μg/g	Spontaneous abortion and stillbirth	None	2/9	
Huyck et al. 2007b (PCO)	42 villages in Sirajdikhan Upakila of Munshiganj district (Bangladesh)	49 women ≥ 18 years of age	Arsenic levels in maternal hair at first visit	≥ 2.70 μg/g vs. < 0.28 μg/g	Birth weight	Gestational age at first prenatal visit, maternal weight gain, birth weight, gestational age, and activity level during pregnancy	7/9		
Rahman et al. 2007c (PCO)	Matlab (Bangladesh)	29,134 pregnancies identified by the HDSS in 1991–2000	Arsenic levels in tube-well water	≥ 409 μg/L vs. < 10 μg/L	Median, 224 μg/L	Fetal loss, infant mortality, neonatal	Age, parity, education, and socioeconomic status	7/9	
Ahamed et al. 2006a, 2006b (CS)	Eruani village (Bangladesh)	56 pregnancy outcomes in women of reproductive age	Arsenic levels in tube-well water	Exposed area (501–1,200 μg/L) vs. control area 501–1,200 μg/L	Spontaneous abortion and stillbirth	None	1/9		

Table continued
Arsenic exposure in the general population. Spontaneous abortion. In all 10 studies that examined the association with spontaneous abortion, 4 were excluded from our quantitative analysis because the authors did not control for potential confounders. Sen and Chaudhuri (2008) studied outcome of pregnancy in 240 married women. In women with the highest concentrations of arsenic in drinking water (501–1,200 μg/L), there was an increase in spontaneous abortion. A similar observation was noted by Ahamed et al. (2005). Six studies provided data for our quantitative analysis (see Supplemental Material, Table S4). All the studies reported ORs. Summary OR in populations exposed to high arsenic dose (> 50 μg/L) in groundwater showed increased association (OR = 1.98; 95% CI: 1.27, 3.10) (Figure 2A). Our finding in populations exposed to low to moderate arsenic in groundwater (Guo et al. 2003) or in public tap water (Aschengrau et al. 1989) was inconclusive (Figure 2B). Overall, the summary OR was 2.02 (95% CI: 1.40, 2.91). The direction and magnitude of the association persisted in studies applying biomarkers/individual arsenic data, prospective studies, studies adjusting for adequate potential confounders, and high-quality studies (Table 2). Figure 3A shows the dose–response relation of arsenic in drinking water and spontaneous abortion. The risk trend was not consistent across the studies. A funnel plot suggested influence of publication bias (see Supplemental Material, Figure S1A), and an adjustment with the trim and fill method did not change the strength of the overall summary OR (Table 2).

Stillbirth. Of the 14 studies reporting association with stillbirth, 5 (Ahamed et al. 2006a; Chakraborti et al. 2003; Mukherjee et al. 2005; Rahman et al. 2005; Sen and Chaudhuri 2008) were excluded from our quantitative analysis because the authors did not control for potential confounders. All 5 studies observed an increase in stillbirth in women who had the highest concentrations of arsenic in their

Table 1. Continued.

Sources (study design)	Location	Study population	Marker for exposure	Exposure contrast	Range/median/mean	Outcome studied	Confounders adjusted for	Total score on NOS
von Ehrenstein et al. 2006 CS (CS)	21 villages in West Bengal (South 24-Parganas district) (India)	292 married women, 20–40 years of age	Arsenic levels in tube-well/aqua	≥ 200 μg/L vs. < 50 μg/L	Mean = 101.7 μg/L	Spontaneous abortion, stillbirth, neonatal mortality, infant mortality	Mother’s age at child’s birth, BMI, marital education, education of the head of the household, and type of housing material	3/9
Milton et al. 2005 CS (CS)	29 villages in Comilla district, 2 villages in the Chandpur district, 43 villages in the Chaudanga district (Bangladesh)	533 ever-married women, 15–49 years of age	Arsenic levels in tube-well/aqua	> 50 μg/L vs. ≤ 50 μg/L	UD–1,710 μg/L	Spontaneous abortion, stillbirth, and neonatal mortality	Height, history of hypertension and diabetes, and age at first pregnancy for neonatal mortality	3/9
Mukherjee et al. 2005 CS (CS)	Murshidabad (West Bengal, India)	17 married women of reproductive age (18–40 years) with at least 1 pregnancy	Arsenic levels in drinking water	Exposed area (401–1,474 μg/L) vs. nonexposed area (< 3 μg/L)	401–1,474 μg/L	Spontaneous abortion and stillbirth	None	1/9
Rahman et al. 2005 CS (CS)	Jalangi block (India)	13 married women of reproductive age (18–40 years)	Arsenic levels in drinking water	Women in exposed areas (501–1,474 μg/L) vs. women in control area (< 10 μg/L)	Not reported	Spontaneous abortion and stillbirth	None	1/9
Chakraborti et al. 2003 CS (CS)	Somnia Ojha Pattii village of Ara (Bhoipur, India)	16 women	Arsenic levels in tube-well/aqua	463–1,025 μg/L vs. 1–3 μg/L	7–1,025 μg/L	Stillbirth	None	1/9
Guo et al. 2003 CS (CS)	Villages in Wayan County (Inner Mongolia, China)	224 women	Arsenic levels in well water	Exposed area (43 μg/L) vs. nonexposed area (8.9 μg/L)	Not reported	Spontaneous abortion	Sex, age, smoking and alcohol consumption	3/9
Hopenhayn et al. 2003 PCO (PCO)	Antofagasta and Valparaiso (Chile)	844 singleton mothers	Arsenic levels in water	Full birth weight	32.9–52.7 μg/L	Birth weight	Location, calendar time, arsenic exposure	6/9
Yang et al. 2003 PCO (PCO)	18 villages in 4 townships in Lanyang Basin (Taiwan)	18,259 singleton births	Arsenic levels in water	Full birth weight	UD–3.59 ppm	Preterm delivery, birth weight	Maternal age, marital status, maternal education, infant sex	6/9
Ahmad et al. 2001 CS (CS)	Village of Samta in thana Sharsha, Jessore district, village of Katiarchar in Sadar thana, Kishorgonjon district (Bangladesh)	192 married women of reproductive age (15–49 years)	Arsenic levels in tube-well/aqua	> 50 μg/L vs. ≤ 0.2 μg/L	200–450 μg/L	Spontaneous abortion, stillbirth, and preterm birth	Socioeconomic status, education, and age at marriage	3/9
Hopenhayn-Rich et al. 2000 PCO (PCO)	Antofagasta and Valparaiso (Chile)	Mortality of infants, 1950–1986	Arsenic levels in public water	> 50 μg/L vs. < 5 μg/L	40–860 μg/L	Fetal mortality, neonatal mortality, abortion	Location, calendar time, arsenic exposure	6/9
Ihrig et al. 1998 C-C	Bryan, TX (USA)	119 case babies, and 267 control babies	Arsenic levels estimated from airborne emissions	> 100 μg/L vs. 0 μg/L	Not reported	Spontaneous abortion	Maternal age, race/ethnicity, parity, income group, exposure as a categorical variable, and exposure–race/ethnicity interaction	7/9
Aschengrau et al. 1989 CS (CS)	Boston, MA (USA)	286 cases, 1,391 controls	Arsenic levels in public drinking water	1.4–1.9 μg/L vs. UD	UD–19 μg/L	Spontaneous abortion	Water source, maternal age, educational level, history of prior spontaneous abortion	7/9

Abbreviations: BMI, body mass index; BP, blood pressure; C-C, case–control study; CS, cross-sectional study; HDSS, health and demographic surveillance system; NA, not applicable; NOS, Newcastle–Ottawa Scale; PCO, prospective cohort study; RCO, retrospective cohort study; UD, undetected. *Studies examining low to moderate arsenic dose in the general population. *Studies examining high arsenic dose in the general population. *Studies applying biomarkers/individual-level data. *Studies applying group/ecological data. *Studies that did not control for potential confounders.
drinking water. Nine studies examining the association between environmental arsenic and stillbirth provided data for our quantitative analysis (see Supplemental Material, Table S4). Two studies (Hopenhayn-Rich et al. 2000; Rahman et al. 2007) reported RR. Arsenic was measured in groundwater in 8 studies and in air in 1 study. Summary OR in populations exposed to high arsenic dose (> 50 μg/L) in groundwater was increased (OR = 1.77; 95% CI: 1.32, 2.36; Figure 4A). Only 1 study (Ihrig et al. 1998) was conducted in a population exposed to low-to-moderate arsenic dose (Figure 4B). The overall summary OR for environmental arsenic was 1.84 (95% CI: 1.38, 2.45). In subgroup/sensitivity analyses, the risk of stillbirth was increased in studies adjusting for adequate potential confounders, studies using group data on arsenic, studies conducting quantitative analysis (see Supplemental Material, Table S5), with the strength of association was reduced marginally (Table 2).

Preterm delivery. In all, 3 studies (Ahmad et al. 2001; Myers et al. 2010; Yang et al. 2003) investigated the relation between arsenic exposure and preterm delivery (see Supplemental Material, Table S4). They all reported ORs and were conducted in populations exposed to high arsenic dose in groundwater. The finding of the summary OR was inconclusive (OR = 1.41; 95% CI: 0.83, 2.41) (Figure 5A).

Birth weight. The association between arsenic and birth weight was examined in 6 studies. Two studies did not provide sufficient quantitative data for the meta-analysis. Fei et al. (2013) measured arsenic dose in maternal urine (UAs) and observed an inverse dose response (coefficient; β = −1.3) between UAs and birth weight. Guan et al. (2012) also observed that newborns of mothers whose UAs was > 5.30 μg/L weighed on average 0.22 kg less than those of mothers whose UAs was ≤ 5.30 μg/L. Four studies (Hopenhayn-Rich et al. 2003; Huyck et al. 2007; Rahman et al. 2009; Yang et al. 2003) provided regression coefficient and standard errors for our quantitative analysis (see Supplemental Material, Table S4). Environmental arsenic shows a significant reduction in birth weight (~53.2 g; 95% CI: −94.9, −11.4) (Figure 5B).

Neonatal mortality. Five studies examined neonatal mortality (see Supplemental Material, Table S5), of which two (Hopenhayn-Rich et al. 2000; Rahman et al. 2007) reported RR. All the studies were conducted in populations exposed to high arsenic dose in groundwater. The overall summary OR was 1.51 (95% CI: 1.28, 1.78) (Figure 5C). The direction of association did not change in studies applying biomarkers/individual arsenic data and in studies adjusting for adequate potential confounders (Table 2). Rahman et al. (2007) reported on this relation. Dose response was examined in three studies (Figure 5C.). A consistent dose–response trend was observed by von Ehrenstein et al. (2006), but the risk trend was inconsistent in studies by Milton et al. (2005) and Rahman et al. (2007). Evidence of publication bias was observed in the funnel plot (see Supplemental Material, Figure S1C). The trim and fill method imputed two studies, and the strength of association was reduced marginally (Table 2).

Infant mortality. Arsenic and infant mortality was investigated in seven studies (see Supplemental Material, Table S5), with two (Hopenhayn-Rich et al. 2000; Rahman et al. 2007) reporting RR. The studies were conducted in populations exposed to high

Table 2. Summary OR for the relation between arsenic and the risk of spontaneous abortion, stillbirth, neonatal mortality, and infant mortality (see study characteristics).

Analysis	Spontaneous abortion	Stillbirth	Neatatal mortality	Infant mortality				
	Random-effects model	Heterogeneity statistics						
	OR (95% CI)	Q (I²-statistics, p-value)	OR (95% CI)	Q (I²-statistics, p-value)	OR (95% CI)	Q (I²-statistics, p-value)	OR (95% CI)	Q (I²-statistics, p-value)
Summary OR	2.02 (1.40, 2.91)	11.2 (8), 55.3, 0.048	1.84 (1.38, 2.34)	38.40 (6), 79.2, 0.000	1.51 (1.28, 1.78)	5.34 (2.51, 2.64)	1.35 (1.12, 1.62)	8.31 (7), 30.4, 0.216
Stratified analysis								
Assessment of arsenic exposure								
Individual data/biomarker	2.02 (1.04, 3.48)	7.96 (3), 74.9, 0.019	1.96 (1.17, 2.92)	19.91 (5), 79.9, 0.001	1.30 (1.00, 1.67)	4.78 (2), 16.4, 0.274	1.74 (0.92, 3.28)	6.02 (3), 66.8, 0.049
Group data	1.51 (0.79, 2.87)	1.59 (3), 0.951	1.79 (2.32, 2.48)	5.46 (4), 45.1, 1.041	1.59 (1.43, 1.77)	1.75 (3), 0.0, 0.146	1.32 (1.08, 1.60)	2.44 (4), 0.0, 0.486
Sensitivity analysis								
Prospective cohort studies	1.45 (0.99, 2.12)	0.68 (2), 0.0, 0.951	1.13 (0.98, 1.30)	0.67 (2), 0.0, 0.412	1.21 (0.98, 1.506)	0.52 (2), 0.0, 0.670	2.12 (0.53, 8.42)	0.24 (2), 79.3, 0.028
Studies adjusting for potential confounders	1.72 (1.25, 2.37)	4.43 (5), 57.7, 0.351	1.85 (1.22, 2.92)	18.06 (7), 68.8, 0.005	1.53 (1.11, 2.10)	4.63 (3), 35.2, 0.201	1.65 (1.01, 2.47)	8.39 (5), 52.3, 0.079
High-quality studies (> 7 on NOS)	1.45 (0.99, 1.12)	1.65 (3), 0.0, 0.438	1.28 (0.98, 1.67)	4.27 (4), 29.7, 0.234	1.49 (0.92, 2.31)	2.57 (2), 61.1, 0.109	1.41 (0.14, 9.2)	7.55 (4), 60.2, 0.056
Impact of missing studies on overall summary OR								
By trim and fill method	2.02 (1.20, 2.91)	55.3 (8), 55.3, 0.048	1.43 (1.11, 1.85)	58.06 (13), 79.33, 0.000	1.47 (1.27, 1.71)	7.15 (7), 21.5, 0.307	1.22 (0.98, 1.53)	8.62 (10), 30.0, 0.017

Abbreviations: NOS, Newcastle–Ottawa Scale; OR, n number of studies.

One prospective study reported on neonatal mortality.
arsenic dose in groundwater. Summary OR was 1.35 (95% CI: 1.12, 1.62) (Figure 5D). Compared with that of the overall summary OR, the association was slightly elevated in studies applying biomarkers/individual arsenic data, studies adjusting for adequate potential confounders, and high-quality studies, but marginally reduced in studies using group data on arsenic (Table 2). Our findings from two prospective studies were inconclusive. Among three studies examining dose response (Figure 3D), a consistent risk trend was observed by Rahman et al. (2010), but the risk trend was not consistent in studies by Rahman et al. (2007) and von Ehrenstein et al. (2006). A funnel plot showed evidence of asymmetry, suggesting influence of small positive studies (see Supplemental Material, Figure S1D). As expected, the strength of association was attenuated with the trim and fill method, and three missing studies were imputed (Table 2).

Discussion

This is the first systematic review and meta-analysis on the association between iAs exposure and adverse pregnancy outcomes/infant mortality. We found positive associations of arsenic with spontaneous abortion, stillbirth, birth weight, and neonatal and infant mortality. These findings are important to many countries around the globe where pregnant women and infants continue to be exposed to low through moderate to high arsenic dose in different media (e.g., drinking water, air, food, beverages).

Validity issues. Our study has a number of strengths. We searched several databases including reference lists of reviews and relevant studies. Two authors independently checked

Reference

Exposure contrast	OR (95% CI)	Weight
High dose (≥ 50 µg/L)		
Myers et al. 2010	2.01 (1.12, 3.60)	11.23
Rahman et al. 2010	2.02 (0.50, 8.20)	3.51
Cherry et al. 2008	1.20 (0.71, 2.02)	12.32
Rahman et al. 2007	1.12 (0.97, 1.29)	19.74
von Ehrenstein et al. 2006	6.07 (1.54, 23.96)	3.63
Milton et al. 2005	2.50 (1.29, 4.85)	9.88
Ahmad et al. 2001	2.24 (1.55, 3.24)	15.49
Hopenhayn-Rich et al. 2000	1.81 (1.58, 2.08)	19.80
Subtotal ($I^2 = 80.5\%, p = 0.000$)	1.77 (1.32, 2.36)	95.60

Low-to-moderate dose (< 50 µg/L)		
Ihrig et al. 1998	4.00 (1.18, 13.54)	4.40
Overall ($I^2 = 79.2\%, p = 0.000$)	1.84 (1.38, 2.45)	100.00

Figure 4. Forest plot for the relation between arsenic exposure and the risk of stillbirth, assessed by (A) high arsenic dose and (B) low to moderate arsenic dose.
the eligibility of the studies according to a predefined set of criteria. We followed systematically the guideline of PRISMA (Moher et al. 2009).

Because the upper limits of arsenic exposure differed among studies, we studied the effect in populations in low-to-moderate arsenic areas (i.e., < 50 µg/L) separately from the effect in populations in high arsenic areas (i.e., ≥ 50 µg/L). In studies of spontaneous abortion and stillbirth, the findings were inconclusive.

We excluded from our quantitative analysis small ecological studies that did not adjust for potential confounders (Altman 1994; Turner et al. 2013). Also, in considering our core and additional confounders various studies should have adjusted for, we followed recommendations in the literature (e.g., Di Mario et al. 2007; Ghosh 2012; Kramer 1987, 2003; Kumar 2011; McClure et al. 2006; Moss et al. 2002; Shah et al. 2011).

While acknowledging the importance of our findings, we note a number of limitations. First, the use of summary scores to identify high-quality studies in Newcastle–Ottawa Scale is a bit problematic. A risk of bias tool that applies a domain-based evaluation may allow one to explore the influence of each domain on the overall summary effect estimate (Higgins and Green 2011; National Research Council 2004). Second, a well-designed study may be categorized as low quality because the authors failed to provide detail information in the publication. Finally, some items of the Newcastle–Ottawa Scale such as representativeness of study cohort with respect to community and duration of follow-up do not belong to the risk of bias tools (Deeks et al. 2003; National Research Council 2004; Sanderson et al. 2007). Thus, the interpretation of how well a study does on the Newcastle–Ottawa Scale in our study should be done with caution. Inclusion of ecological studies in our review may lead to underestimation of our observed associations. Also the studies incorporated in this meta-analysis were different with regard to exposure levels in the reference groups. However, in computing the overall summary OR from the different studies, we made an implicit assumption that any differences in exposure levels in the reference groups will not have much influence on our summary OR.

We observed substantial heterogeneity in the study-specific estimates for studies on spontaneous abortion and stillbirth, and moderate heterogeneity for studies on neonatal and infant mortality. In stratified analysis, heterogeneity persisted in studies applying biomarkers for the association with spontaneous abortion, stillbirth, and infant mortality. In sensitivity analyses, heterogeneity persisted in prospective studies on infant mortality, studies on stillbirth and infant mortality that have controlled for adequate potential confounders, and high-quality studies on neonatal and infant mortality. The original studies also applied different exposure assessment methods and incorporated different exposure contrasts, thus making it difficult to relate any exposure increase to change in birth weight. Differences in responses to arsenic exposure may also exist across study populations (Abhyankar et al. 2012; Concha et al. 2002; Hopenhayn-Rich et al. 1998), and these could be potential sources of the observed heterogeneity.

We lacked data on these factors and we also did not have sufficient data from the original studies to elaborate further the reasons for the heterogeneity. We applied the trim and fill method to examine the impact of publication bias on our overall summary OR, and the summary OR was slightly reduced for stillbirth, neonatal mortality, and infant mortality, suggesting that publication bias is not an explanation of our observed associations. Nonetheless, the trim and fill method performs poorly in the presence of substantial heterogeneity, so the influence of publication bias on the observed associations cannot be ruled out.

Figure 5. Forest plot for the relation between arsenic exposure and (A) preterm delivery, (B) birth weight, (C) neonatal mortality, and (D) infant mortality.
Our findings, however, should be interpreted in the light of limitations inherent in the original studies. Some studies failed to adjust for appropriate potential confounders of adverse pregnancy outcomes/infant mortality and could not establish the independent role of arsenic. Although few studies adjusted for proxies of socioeconomic status, only one study considered access and utilization of prenatal care. This is an important socioeconomic factor to be considered in the studies of stillbirth and neonatal/infant mortality (Kiely et al. 1985; Ronsmans et al. 2004; Shah et al. 2011). Exposure assessment was also a major challenge in the studies. Three studies measured arsenic contents in urine (Fei et al. 2013; Rahman et al. 2007, 2010). One study measured arsenic content in blood (Guan et al. 2012), and Huycyk et al. (2007) measured arsenic content in hair. Arsenic content in urine/blood is a marker of current exposure, whereas information on arsenic exposure can be obtained from arsenic content in hair or finger/toe nails. The remaining studies applied ecological measures. Questionnaires were administered in most studies, but data on water consumption pattern (i.e., the frequency and quantity of water intake) were not reported. Lack of individual data may result in measurement error with underestimation of the true effect. Many of the studies were cross-sectional in design, precluding temporality. Although few studies have collected data on our outcomes of interest from medical records/established registers, most studies have relied on maternal recall. Methods applied in collecting data on spontaneous abortion were not sensitive enough to detect events occurring in early pregnancy. Thus, the fetal and infant health effect of arsenic observed in our study may have been substantially underestimated.

Comparison with previous studies. Only two qualitative reviews were available on this subject. In the first study, Smith and Steinmaus (2009) examined the effects of arsenic and chromium in drinking water on low birth weight and infant mortality. The authors identified 10 studies and failed to reach any conclusion. In the second study, Bloom et al. (2010) examined the association of spontaneous abortion with arsenic in drinking water. The authors also identified 9 studies and concluded that chronic exposure to arsenic was associated with spontaneous abortion. In the present study, we observed excess risk of 102% for spontaneous abortion, 84% for stillbirth, 51% for neonatal mortality, 35% for infant mortality, and a 53-g reduction in birth weight. The magnitude of association persisted in studies applying biomarkers, studies using aggregate data on arsenic exposure, studies adjusting for adequate potential confounders, and high-quality studies. From the global public health point of view, the observed association is relevant considering the magnitude of the estimated effect and the extent of exposure to arsenic globally.

The precise biologic window of susceptibility of arsenic for adverse pregnancy outcomes is unknown (Vahter 2007, 2009). But arsenic exposure at different periods before or during pregnancy could cause a wide range of adverse pregnancy outcomes (Selevan et al. 2000). In laboratory animals, prenatal arsenic exposure causes spontaneous abortion by defective implantation or zygote development and aneuploidy, or through aberrant placental vasculogenesis and placental insufficiency (He et al. 2007; Navarro et al. 2004). Epidemiologic studies have also shown that arsenic causes oxidative stress, lipid peroxidation, interference of hormonal activities, and perturbation of DNA methylation, which may be associated with a wide range of adverse pregnancy outcomes through defective placenta and preclampsia (Concha et al. 1998; Hood et al. 1988; Hu et al. 1998; Hughes 2002; Vahter 2007, 2009).

Our findings suggest that the effect of arsenic is strongest for spontaneous abortion. Although methylation is expected to have improved dramatically in the second trimester (Concha et al. 1998; Vahter 2007), at high arsenic dose (> 50 μg/L) observed in the populations included in our study, methylation is inhibited and the fetus blood plasma may essentially contain unmetabolized arsenic and monomethylarsonic acid, which could threaten fetal survival and growth (Hall et al. 2013; Vahter 2007). Exposure to arsenic in utero and in early life may also pose a threat to infant survival (Hughes 2002; Vahter 2007). This observation has been noted in series of cohort studies conducted in the developing countries (Milton et al. 2005; Myers et al. 2010; Rahman et al. 2009, 2010).

Studies with the greatest weight in the meta-analyses did not provide data for the evaluation of dose–response trend. However, in the few studies that provided data, we observed inconsistent dose–response trend at high arsenic dose. The evidence was scarce for low to moderate arsenic dose and for studies evaluating preterm delivery.

Conclusions

Our systematic review and meta-analysis found positive associations of arsenic exposure with spontaneous abortion, stillbirth, birth weight, and neonatal and infant mortality. However, the interpretation of causal association of high arsenic dose in drinking water is limited by methodological problems in the original studies and limited studies on dose response.

REFERENCES

Abhyankar LN, Jones MR, Guillar E, Navas-Acien A. 2012. Arsenic exposure and hypertension: a systematic review. Environ Health Perspect 120:494–500; doi:10.1289/ehp.1109388.
Ahamed S, Sengupta MK, Mukherjee A, Hossain MA, Das B, Nayak B, et al. 2006a. Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and middle Ganga plain, India: a severe danger. Sci Total Environ 370:310–322.
Ahamed S, Sengupta MK, Mukherjee SC, Pati S, Mukherjee A, Rahman MM, et al. 2006b. An eight-year study report on arsenic contamination in groundwater and health effects in Erusani village, Bangladesh and an approach for its mitigation. J Health Popul Nutr 24:129–138.
Ahmad SA, Sayed MH, Barua S, Khan MH, Faruque MH, Mail J, et al. 2001. Arsenic in drinking water and pregnancy outcomes. Environ Health Perspect 109:293–301.
Altman DG. 1994. The scandal of poor medical research [Editorial]. BMJ 308:283–284.
Aschengrau A, Zierler S, Cohen A. 1989. Quality of community drinking water and the occurrence of spontaneous abortion. Arch Environ Health 44:283–290.
Bloom MS, Fitzgerald EF, Kim K, Neamtiu I, Guruz E. 2010. Spontaneous pregnancy loss in humans and exposure to arsenic in drinking water. Int J Hyg Environ Health 213:401–413.
Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. 2009. Introduction to Meta-Analysis. New York:JohnWiley and Sons.
Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, et al. 2003. Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect 111:1194–1201; doi:10.1289/ehp.5966.
Cherry N, Shaikh K, McDonald C, Chowdhury Z. 2008. Stillbirth in rural Bangladesh: arsenic exposure and other etiologic factors: a report from Gonoshasthaya Kendra. Bull World Health Organ 86:172–177.
Cherry N, Shaikh K, McDonald C, Chowdhury Z. 2010. Manganese, arsenic, and infant mortality in Bangladesh: an ecological analysis. Arch Environ Occup Health 65:148–153.
Concha G, Vogler G, Lazzaro D, Nermell B, Vahter M. 1998. Exposure to inorganic arsenic metabolites during early human development. Toxicol Sci 44:185–190.
Concha G, Vogler G, Nermell B, Vahter M. 2002. Intra-individual variation in the metabolism of inorganic arsenic. Int Arch Occup Environ Health 75:578–580.
Deeks JJ, D’Amico R, Sowden AJ, Sakarovitch C, Song F, et al. 2003. Evaluating non-randomised intervention studies. Health Technol Assess 7:1–173.
Di Mario S, Say L, Lincetto D. 2007. Risk factors for stillbirth in developing countries: a systematic review of the literature. Sex Transm Dis 34(7 suppl):S11–S21.
Essumang DK. 2009. Analysis and human health risk assessment of arsenic, cadmium, and mercury in Manta birostria (manta ray) caught along the Ghanaian coastline. Hum Ecol Risk Assess 15:965–988.
Essumang DK, Dadoo DK, Obiri S, Yaney JY. 2007. Arsenic, cadmium, and mercury in cocoyam (Xanthosoma sagittifolium) and watercocoypot (Colocasia esculenta) in Tarkwa a mining community. Bull Environ Contam Toxicol 79:377–379.
Fei DL, Koestler DC, Li Z, Giambelli C, Sanchez-Mejias A,
International Agency for Research on Cancer. 2004. Some occupational disinfectants and contami-
nants, including arsenic. IARC Monogr Eval Carcinog
Risk Hum 84:1–477.
Kiely JL, Paneth N, Susser M. 1985. Fetal death during
labor: an epidemiologic indicator of level of obstetric care.
Am J Obstet Gynecol 153:721–727.
Kramer MS. 1987. Determinants of low birth weight:
methodological assessment and meta-analysis.
Bull World Health Organ 65:652–737.
Kramer MS. 2003. The epidemiology of adverse
pregnancy outcomes: an overview. J Nutr 133(5
suppl 2):1592S–1596S.
Kumar S. 2011. Occupational, environmental and
lifestyle factors associated with spontaneous abortion.
Reprod Sci 18:915–930.
Kwok RK. 2007. A review and rationale for studying the
cardiovascular effects of drinking water arsenic in
women of reproductive age. Toxicol Appl Pharmaroll
224:344–350.
Landgren O. 1996. Environmental pollution and delivery
outcome in southern Sweden: a study with central
registration. Acta Paediatr 85:1361–1364.
McCleare EM, Nalubamba-Phiri M, Goldenberg RL.
2006. Stillbirth in developing countries. Int J
Gynaecol Obstet 94:82–90.
McDonald C, Hoque R, Huda N, Cherry N. 2007. Risk of
arsenic-related skin lesions in Bangladeshi villages at
relatively low exposure: a report from Gongoshasthaya Kendra.
Bull World Health Organ 85:668–673.
Milton AH, Smith W, Rahman B, Hasen Z, Kulsum U,
Dear K, et al. 2005. Chronic arsenic exposure and
adverse pregnancy outcomes in Bangladesh.
Epidemiology 16:82–86.
Mink PJ, Alexander D, Barraj LM, Kelish MA, Tsuji JS.
2008. Low-level arsenic exposure in drinking water and
bladder cancer: a review and meta-analysis. Regul Toxicol Pharacol
52:299–310.
Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA
Group. 2009. Preferred reporting items for system-
atic reviews and meta-analyses: the PRISMA
statement. J Clin Epidemiol 62:1006–1012.
Muss W, Darmstadt GL, Marsh DR, Black RE, Santosa
S, Mousavizadeh M. 2002. Research priorities for the
reduction of perinatal and neonatal morbidity and
mortality in developing countries. J Perinatol 22:484–495.
Mukherjee SC, Saha KC, Pal S, Dutta RN, Rahman MM,
Sengupta MK, et al. 2005. Murshidabad—one of the
nine groundwater arsenic-affected districts of West
 Bengal, India. Part II: dermatological, neuro-
logical, and obstetric findings. Clin Toxicol (Phil a)
43:835–848.
Murcott S. 2012. Arsenic Contamination in the World:
An International Sourcebook 2012. London: IWA
Publishing.
Musher SA, Lobbell DL, Liu Z, Xia Y, Ren H, Li Y, et
al. 2010. Maternal drinking water arsenic exposure
and perinatal outcomes in Inner Mongolia, China.
J Epidemiol Community Health 64:325–329.
National Research Council. 2004. Review of EPA's
Integrated Risk Information System (IRIS) Process.
Washington DC:National Academies Press.
Navarro PA, Liu L, Keefe DL. 2004. In vivo effects of
arsenate on meiosis, preimplantation development,
and apoptosis in the mouse. Biol Reprod 70:980–985.
Navas-Acien A, Nachman KE. 2013. Public health
responses to arsenic in rice and other foods.
JAMA Intern Med 173:1395–1396.
Navas-Acien A, Sharrett AR, Silbergeld EK, Schwarz BS, Nachman KE, Vaher TA, et al. 2005.
Arsenic exposure and cardiovascular disease: a
systematic review of the epidemiologic evidence.
Am J Epidemiol 162:1037–1049.
Navas-Acien A, Silbergeld EK, Strete RA, Clark JM,
Burke TA, Guilla E. 2006. Arsenic exposure and
type 2 diabetes: a systematic review of the experi-
mental and epidemiological evidence. Environ
Health Perspect 114:641–648; doi:10.1289/ehp.8551.
Obiri S, Dodo DK, Essuman DK, Armath FA. 2010. Cancer
and non-cancer risk assessment from exposure to
arsenic, copper, and cadmium in borehole, tap, and
surface water in the Obuasi Municipality, Ghana.
Human Eco Risk Assess 16:651–665.
Quansah R, Jaakkoja JJ. 2010. Occupational explo-
sures and adverse pregnancy outcomes among
nurses: a systematic review and meta-analysis.
J Womens Health (Larchmt) 19:1851–1862.
Rahman A, Persson LA, Nermell B, El Arifeen S,
Ekström EC, Smith AH, et al. 2010. Arsenic
exposure and risk of spontaneous abortion, still-
births, and infant mortality. Epidemiology 21:797–804.
Rahman A, Vahter M, Ekström EC, Rahman M, Golam
Mustafa AH, Wahed MA, et al. 2007. Association of
arsenic exposure during pregnancy with fetal loss and
infant death: a cohort study in Bangladesh. Am
J Epidemiol 165:1389–1396.
Rahman A, Vahter M, Smith AH, Nermell B, Yunus M,
El Arifeen S, et al. 2009. Arsenic exposure during
pregnancy and size at birth: a prospective cohort
study in Bangladesh. Am J Epidemiol 169:304–312.
Rahman MM, Sengupta MK, Ahmed S, Chowdhury UK,
Lodh D, Hossain A, et al. 2005. Arsenic contamina-
tion of groundwater and its health impact on resi-
dents of a village in West Bengal, India. Bull World
Health Organ 83:49–57.
Ronsmans C, De Brouwere V, Dubourg D, Dietiens G.
2004. Measuring the need for life-saving obstetrics
surgery in developing countries. BJOG 111:1027–1030.
Sanderson S, Tatt ID, Higgins JP. 2007. Tools for
assessing quality and susceptibility to bias in
observational studies in epidemiology: a systematic
review and annotated bibliography. Int J Epidemiol
36:666–676.
Selevan SG, Kimmel CA, Mendola P. 2000. Identifying
critical windows of exposure for children's health.
Environ Health Perspect 108(suppl 3):451–455.
Sen J, Chaudhuri AB. 2008. Arsenic exposure through
drinking water and its effect on pregnancy outcome
in Bengali women. Arch Hig Rada Toksikol 59:271–275.
Shah PS, Zao J, Al-Wassia H, Shah V, Knowledge
Synthesis Group on Determinants of Preterm/LBW
Births. 2011. Pregnancy and neonatal outcomes of
aboriginal women: a systematic review and meta-
analysis. Womens Health Issues 21:29–39.
Smith AH, Steinmaus CM. 2009. Health effects of
arsenic and chromium in drinking water: recent
human findings. Annu Rev Public Health 30:107–122.
Steinmaus C, Moore L, Hopenhayn-Rich C, Biggs ML,
Smith AH. 2000. Arsenic in drinking water and
bladder cancer. Cancer Invest 18:174–181.
Steinmaus C, Yuan Y, Bates MN, Smith AH. 2003.
Case–control study of bladder cancer and drinking
water arsenic in the western United States. Am J
Epidemiol 158:1193–1199.
Turner RM, Bird SM, Higgins JP. 2013. The impact
of study size on meta-analyses: examination of
underpowered studies in Cochrane reviews. PLoS
One 8:e59202; doi:10.1371/journal.pone.0059202.
Vaher TE. 2007. Interactions between arsenic-
induced toxicity and nutrition in early life. J
Nutr 137:2798–2804.
Vaher TE. 2008. Effects of arsenic on maternal and
fetal health. Annu Rev Nutr 29:381–399.
von Ehrenstein OS, Guha Mazumder DN, Hirahsmith M, Ghosh N, Yuan Y, Windham G, et al. 2006. Pregnancy outcomes, infant mortality, and arsenic in drinking water in West Bengal, India. Am J Epidemiol 163:662–669.
Walvekar RR, Kane SV, Nadkarni MS, Bagwan IN, Chaukar DA, D'Cruz AK. 2007. Chronic arsenic poisoning: a global health issue—a report of multiple primary cancers. J Cutan Pathol 34:203–206.
Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. 2009. The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Available: http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm [accessed 6 February 2011].
WHO (World Health Organization). 2011. Guidelines for Drinking-Water Quality. 4th ed. Geneva:WHO.
Yang CY, Chang CC, Tsai SS, Chuang HY, Ho CK, Wu TN. 2003. Arsenic in drinking water and adverse pregnancy outcome in an arseniasis-endemic area in northeastern Taiwan. Environ Res 91:29–34.
Zhang J, Yu KF. 1998. What’s the relative risk? A method of correcting the odds ratio in cohort studies of common outcomes. JAMA 280:1690–1691.