Study of neutron-induced background and its effect on the search of $0\nu\beta\beta$ decay in ^{124}Sn

N. Dokaniaa,b V. Singha,b S. Mathimalara,b C. Ghoshc V. Nanalc, R.G. Pillayc, S. Palc, K.G. Bhushand and A. Shrivastavae

aIndia-based Neutrino Observatory, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India
bHomi Bhabha National Institute, V.N. Purav Marg, Anushaktinagar, Mumbai 400 094, India
cDepartment of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
dTechnical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
eNuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India

E-mail: nanal@tifr.res.in

ABSTRACT: Neutron-induced background has been studied in various components of the TIN.TIN detector, which is under development for the search of Neutrinoless Double Beta Decay in ^{124}Sn. Fast neutron flux $\sim 10^6$ n cm$^{-2}$ s$^{-1}$ covering a broad energy range (~ 0.1 to ~ 18 MeV) was generated using $^9\text{Be}(p,n)^9\text{B}$ reaction. In addition, reactions with quasi-monoenergetic neutrons were also studied using $^7\text{Li}(p,n)^7\text{Be}$ reaction. Among the different cryogenic support structures studied, Teflon is found to be preferable compared to Torlon as there is no high energy gamma background ($E_\gamma > 1$ MeV). Contribution of neutron-induced reactions in nat.^{124}Sn from other Sn isotopes ($A = 112–122$) in the energy region of interest, namely, around the $Q_{\beta\beta}$ of ^{124}Sn ($E \sim 2.293$ MeV), is also investigated.

KEYWORDS: Gamma detectors (scintillators, CZT, HPG, HgI etc); Double-beta decay detectors

ArXiv ePrint: 1408.4985

1Corresponding author.
1 Introduction

For rare event studies like Double Beta Decay (DBD) and dark matter searches, the reduction of background is very important for improving the sensitivity of the experiment. Typical half-life for DBD process, $T_{1/2} > 10^{18}$ years [1–3], is much larger than that of natural radioactivity from U, Th chains and 40K ($T_{1/2} \sim 10^8–10^{10}$ years). In recent years, ultra-low levels of background $< 10^{-2}$ counts/(keV kg yr) have been reported in rare decay event experiments [4–8]. The background level in an underground laboratory is mainly limited by trace impurities present in detector materials, which can be minimized but cannot be eliminated completely. Of the different sources of background, namely, α, β, γ and neutrons, background arising from neutrons is most difficult to suppress and hence crucial to understand. In fact, neutrons are reported to be the limiting source of background for dark matter search experiments since they can produce nuclear recoils via elastic scattering off target nuclei resulting in a signal similar to that of WIMPs (Weakly Interacting Massive Particles) [9–11]. Neutrons are produced in the spontaneous fission of natU (mainly 238U), Th present in the rocks and the surrounding materials. In addition, alpha particles produced from decay of intermediate nuclei in the natural decay chains can react with light nuclei in the rocks to produce neutrons via (α, n) reactions [12]. Very high energy neutrons ($E_n \sim \text{GeV}$) are produced by muon-induced interactions in the rocks and materials surrounding the detector. It has been reported that in an underground laboratory, the low energy neutron flux ($E_n < 10 \text{ MeV}$) from natural radioactivity is about two to three orders of magnitude higher than that from the muon-induced reactions [9, 12–14]. Although the high energy neutrons are more penetrating, the average neutron energy reduces from 100–200 MeV to $\sim 45 \text{ MeV}$ [15] as they propagate through layers of shield materials. It should be mentioned that active veto systems are employed for the rejection of muon-induced events in the shield and detector/source assembly [16], while the flux of the low energy neutrons is reduced by suitable shielding (mostly hydrogenous materials) around the detector [17].
Thus, it is important to understand the background arising from low energy neutrons. With low energy neutrons, the inelastic scattering of neutrons \((n, n'\gamma) \) and neutron-capture \((n, \gamma) \) with the source/detector and the surrounding materials are main sources of gamma background. Moreover, these neutrons after thermalisation in the shield can produce significant background by radiative capture reactions in the detector/source assembly. In addition, any impurities in these materials could be potential sources of neutron-induced background. The reaction products formed upon neutron activation can have half-lives ranging from \(\sim \) min to \(\sim \) years. The short-lived activities can be avoided by storing the material for prolonged periods in underground locations but the long-lived activities are highly undesirable.

In India, TIN.TIN detector (The INdia-based TIN detector) comprising cryogenic bolometer array of Tin detector elements is under development for a feasibility study to search for \(0\nu\beta\beta \) decay in \(^{124}\text{Sn} \) \cite{18, 19}. It is essential to understand the gamma background in the region of interest (ROI) near \(Q_{\beta\beta} \), which for \(^{124}\text{Sn} \) is \(2292.64 \pm 0.39 \text{ keV} \) \cite{20}. With this motivation, the neutron-induced background \((E_n < 20 \text{ MeV}) \) in TIN.TIN detector components is investigated. The aim of the neutron activation study \((E_n < 20 \text{ MeV}) \) is two fold — the selection of materials suitable for use in and around the cryogenic bolometer and the evaluation of its effect on the gamma background level. The paper is organized as follows: section 2 describes the experimental details, while data analysis and results are presented in section 3. Conclusions are discussed in section 4.

2 Experimental details

The TIN.TIN detector will consist of \(^{nat}\text{Sn} \) or \(^{124}\text{Sn} \) bolometer mounted in a specially designed low background cryostat. The neutron-induced gamma background from the cryostat housing can be significantly reduced by mounting low activity Pb shield inside the cryostat (similar to CUORE \cite{21}). Hence, only the neutron activation of materials in the close vicinity of the detector elements is of prime importance. For neutron-induced background study the materials chosen are: high purity ETP (Electrolytic Tough Pitch) \(^{nat}\text{Cu} \) (2N purity) used inside the cryostat; Torlon (4203), Torlon (4301) and Teflon — cryogenic materials for detector holders; \(^{nat}\text{Pb} \) — the common shielding material, \(^{nat}\text{Sn} \) (7N purity) and 97.2% enriched \(^{124}\text{Sn} \) (research grade, supplied by M/S Isoflex \cite{22}). It is known that the Torlon has better tensile strength and lower coefficient of linear thermal expansion but higher thermal conductivity as compared to the Teflon. In addition to the thermal properties, the radiopurity and neutron-induced background is an important factor for choice of the detector holder material in cryogenic bolometer. Torlon 4203, 4301 and Teflon samples used were of standard commercial grade. Elemental concentrations were obtained using Time of Flight Secondary Ion Mass Spectrometry (TOF-SIMS). Since all the materials contain high percentage of \(^{19}\text{F} \), Secondary Ion Mass Spectra were obtained in both positive and negative ion modes to ascertain the total fluorine concentration. Final elemental concentrations were obtained after suitable correction with weighted relative sensitivity factors (RSF) for individual element \cite{23}. Besides C, F and O, the major elements found in Torlon 4203 is Ti (contains TiO\(_2\) \cite{24}) while Fe was found in Torlon 4301, which could be undesirable for low temperature applications.

The neutron activation was performed using proton beam on Be and Li production targets in the neutron irradiation setup at the Pelletron Linac Facility, Mumbai \cite{25}. Irradiation targets were mounted in a forward direction with respect to the proton beam, close to the production
target but outside the vacuum chamber. This facilitated the change of irradiation targets without breaking the accelerator vacuum. The setup is located in a well shielded area above the analyzing magnet of the Pelletron, which permits the use of high proton beam current ~ 120 nA on the production target. In the present study, proton beams of energy $E_p = 10, 12$ and 20 MeV on a Be target (5 mm thick) were used to obtain neutrons of a broad energy range with reaction 9Be$(p,n)^9$B ($Q = -1.850$ MeV) [26]. Beam energies were chosen to cover the energy range of neutron spectra originating from fission and (α, n) reactions in the rocks [12]. The energy dependence of the cross-sections of the possible reaction channels in different targets was also taken into consideration. In addition, nearly mono-energetic neutrons were produced with the 7Li$(p,n)^7$Be ($Q = -1.644$ MeV) reaction by bombarding a 0.15 mm thick natural Lithium target (wrapped in a ~ 2 µ thick Ta foil) with proton beam of energy 12 MeV. Contribution from the 6Li (natural abundance 7.59%) in the natural lithium target is expected to be negligible. At $E_p = 12$ MeV, due to the contributions from the excited states of 7Be, quasi-monoenergetic neutrons are produced [27, 28]. The flux obtained in case of the Li target was smaller than that in the case of Be by a factor of ~ 10. However, the better definition of neutron energy was useful for identification of some of the reaction channels. It should be mentioned that neutron energy could not be measured accurately in the setup and hence natFe target ($\sim 5–6$ mg/cm2) was used to estimate neutron flux with the 56Fe$(n,p)^{56}$Mn reaction. Multiple irradiation targets (upto five) were stacked in a 3 cm long target holder (Aluminum or Teflon) using Teflon spacers for an efficient utilization of beam time. In this geometry, the solid angles subtended by the neutron beam at the first and last target were ~ 0.25 sr and ~ 0.04 sr, respectively. Thickness of irradiated targets varied from 1.8 mg/cm2 to 0.29 g/cm2. Both short (2–3 h) as well as long (10–35 h) duration irradiation were carried out to look for short-lived and long-lived products. In case of long irradiation experiments, the access to target area was restricted due to the radiation safety limits and targets could be taken out for measurements only after sufficient cooling time (~ 20 min to ~ 1 h). Hence, some of the short-lived activities could not be observed.

The irradiated targets were counted offline for the detection of characteristic γ-rays of reaction products resulting from neutron activation. Three counting setups with efficiency calibrated HPGe detectors were used. One setup consisted of a low background detector of relative efficiency (R.E.) $\sim 70\%$ with a 10 cm low activity Pb (210Pb < 0.3 Bq/kg) and 5 cm low activity Cu shield [29]. The other two HPGe detectors of R.E. $\sim 30\%$ (D1 and D2) were shielded with 5 cm thick normal Pb rings. D1 and D2 were mostly used for identification of gamma-rays and half-life measurements. Targets were mounted in a close geometry in these counting setups to search for low levels of activity and coincident summing effects had to be taken into account. Data were recorded with a commercial FPGA (Field-Programmable Gate Array) based 100 MS/s digitizer (CAEN-N6724) [30] and analyzed using LAMPS [31]. It should be mentioned that all targets were studied in the low background setup prior to irradiation and did not show any radioactivity above the background level.

2.1 Estimation of neutron flux

As mentioned earlier, the neutron flux is estimated from the yield of 846.7 keV γ-ray, produced via 56Fe$(n,p)^{56}$Mn reaction. Since the neutron spectra produced from the 9Be$(p,n)^9$B reaction is continuous, energy integrated neutron flux has been estimated in the energy range of $E_n \sim 0.1$ MeV to E_{max}, where $E_{\text{max}} = E_p - Q_{th}$ with $Q_{th} = 2.057$ MeV.
The number of Mn atoms \(N_{\text{Mn}} \) produced by irradiation of a Fe target with a constant neutron flux \(\phi_n \) \(\text{(n cm}^{-2}\text{s}^{-1}) \) for time \(t_{irr} \) is given by,

\[
N_{\text{Mn}} = \frac{N_{\text{Fe}} (1 - e^{-\lambda t_{irr}}) \sum E_n \sigma_c(E_n) \phi_n(E_n) dE_n}{\lambda} \tag{2.1}
\]

where \(N_{\text{Fe}} \) is number of Fe target atoms, \(\lambda \) is the decay constant of \(^{56}\text{Mn} \) and \(\sigma_c(E_n) \) is the \((n,p)\) cross-section of \(^{56}\text{Fe}(n,p)^{56}\text{Mn} \) reaction at the neutron energy \(E_n \). The factor \(((1 - e^{-\lambda t_{irr}})/\lambda) \) arises from decay during irradiation.

The \(N_{\text{Mn}} \) can be obtained from the measured photo peak area \((N_\gamma) \) of 846.7 keV \(\gamma \)-ray as,

\[
N_{\text{Mn}} = \frac{N_\gamma}{e^{-\lambda t_c} \left(1 - e^{-\lambda t} \right) I_\gamma \epsilon_\gamma} \tag{2.2}
\]

where \(t_c \) is the time elapsed between the end of neutron irradiation and start of the counting (cool-down time), \(t \) is the counting period, \(I_\gamma \) is the branching ratio and \(\epsilon_\gamma \) is the photo peak detection efficiency of \(E_\gamma \) (846.7 keV) for a finite size source in close geometry, computed from Geant4-based Monte Carlo simulations \[29\].

Since the distribution of neutrons produced from the \(^9\text{Be}(p,n)^9\text{B} \) reaction is continuous, energy integrated neutron flux can be estimated as,

\[
< \phi_n > = \frac{\sum E_n \sigma_c(E_n) \phi_n(E_n) dE_n}{\sum E_n \sigma_c(E_n) dE_n} \tag{2.3}
\]

The numerator in eq. (2.3) is extracted from eq. (2.1) while the denominator is obtained using ENDF/B-VII library \[32\]. In case of Li target, since the emitted neutrons are nearly monoenergetic, the measured value of neutron capture cross section in the same setup, \(\sigma_c = 65.88 \text{ (4.54) barn} \), at an average neutron energy \(E_n = 9.85 \text{ MeV} \) corresponding to \(E_p = 12 \text{ MeV} \) is used \[33\].

Table 1 shows the extracted neutron flux at a distance \(d \sim 5 \text{ cm} \) from the production target (Be/Li) for different proton energies together with maximum energy of the neutrons \(E_{\text{max}} \), average energy of the neutrons \(< E_n > \) and the average proton beam current \(< I > \). The \(< E_n > \) for \(p+^9\text{Be} \) reaction is calculated as,

\[
< E_n > = \frac{\sum_{i=0}^{3} \sum E_n \sigma_{(p,n_i)}(E_n) dE_n}{\sum_{i=0}^{3} \sum E_n \sigma_{(p,n_i)}(E_n) dE_n} \tag{2.4}
\]

where the summation runs over \(E_n \) from \(\sim 0.1 \text{ MeV} \) to \(E_{\text{max}} \) and \(\sigma_{(p,n_i)}(E_n) \) corresponds to \(^9\text{Be}(p,n_i)^9\text{B} \) cross-section at \(E_n \) for the \(i^{th} \) channel of neutron production \[32\]. Only \((p,n_0) \), \((p,n_1) \), \((p,n_2) \) and \((p,n_3) \) channels are considered and others with total cross-sections \(< 6\% \) of \((p,n_0) \) are neglected. The uncertainty in the neutron flux includes the error in \(\epsilon_\gamma \), statistical and fitting errors in the photo peak area of 846.7 keV \(\gamma \)-ray \((N_\gamma) \) and error in the coincident summing correction factor for \(^{56}\text{Mn} \). It should be noted that the neutron flux at \(E_p = 10 \text{ MeV} \) could not be measured since the activity of 846.7 keV \(\gamma \)-ray was not observed due to relatively lower yield.

3 Data analysis and results

Table 2 lists the details of the products formed in different samples together with their half-lives and the expected most intense \(\gamma \)-rays. The last two columns of the table 2 show the minimum neutron energy \(E_n \) at which the cross-section for the respective neutron-induced reaction channel is \(\geq \mu \text{b} \). In most of the cases, the half-life \((T_{1/2}) \) of the reaction products were measured and were found to agree within 20\% of the reference values \[32\]. As the expected energy resolution
Table 1. Estimated energy integrated neutron flux from 56Fe(n, p)56Mn reaction for 12 and 20 MeV proton energies (at $d \sim 5$ cm).

Production Target	E_p (MeV)	E_{max} (MeV)	$< E_n >$ (MeV)	ϕ_n (ncm$^{-2}$s$^{-1}$)	$< I >$ (nA)
9Be	12	9.9	3.9	2.3(0.2)\times 105	133
	20	17.9	5.6	9.9(0.7)\times 105	148
nat Li [34]	12	10.1	9.85	1.3(0.2)\times 105	112

of the Tin bolometer is 0.2–0.5% (full width at half maximum) at $Q_{\beta\beta}$, the ROI for background estimation is taken as 2292.6 ± 25 keV (i.e., $Q_{\beta\beta} \pm 5\sigma$). The gamma-rays with energies within this ROI as well as with $E \geq Q_{\beta\beta}$ are potential sources of background and are highlighted in bold text in table 2. It should be mentioned that many of these reaction products decay by β^- emission and if the $Q_{\beta} \geq Q_{\beta\beta}$(124Sn), electrons or bremsstrahlung resulting from these electrons can contribute to the background in ROI. In particular, the (n,γ) reaction on 124Sn leads to 125Sn which β^- decays with a Q_{β} (2357 keV) value close to the $Q_{\beta\beta}$ of 124Sn. Due to short range of electrons, contribution to the background in the detector arising due to β^-decays in the shield and support materials will be mainly from the surface events. This together with β^-decays within the detector will affect the background, which is not considered in the present work.

3.1 Neutron-induced activity from Torlon and Teflon

Figure 1 shows the γ-ray spectra of the irradiated Torlon 4203, Torlon 4301 and Teflon samples at different times (t_c) after the neutron irradiation. Both Torlon 4203 and 4301 samples were exposed to similar neutron dose, while the neutron dose received by the Teflon sample was $\sim 40\%$ lower. It can be seen that the most dominant gamma-ray is 511 keV in all the three samples, but the Torlon and Teflon samples show different levels of activity and different impurities. The Teflon and Torlon samples contain fluorocarbon in different proportions, which is reflected in the intensity of the 511 keV γ-ray with Teflon having the maximum intensity.

As mentioned earlier, the Torlon 4203 contains TiO$_2$ [24] and many gamma-rays originating from Ti(n, X)Sc reactions are clearly visible (see table 2). Most of the Sc isotopes formed are short-lived and produce γ-rays with $E_\gamma < 1312$ keV. However, 46Sc has a relatively long half-life, namely, $T_{1/2} = 83.79$ d. It may be mentioned that the Large Underground Xenon (LUX) dark matter experiment has observed background from 46Sc, which was formed due to the cosmogenic activation of the LUX Titanium cryostat [35]. In case of the Torlon 4301, γ-rays resulting from 56Fe(n,p)56Mn reaction were observed (see figure 1(b)). Both the Torlon samples have traces of Al, which gives rise to γ-ray of energy 2754.0 keV (which is higher than $Q_{\beta\beta}$(124Sn)) with a $T_{1/2} = 14.99$ h and is highly undesirable. Figure 2 shows the decay curves for 511 keV γ-ray in the irradiated Torlon and Teflon samples. The background rate at 511 keV in the different detector systems has been taken into account. The origin of 511 keV as the β^+ annihilation γ-ray from the 19F(n,2n)18F reaction is confirmed since the measured half-life agrees with that of 18F within errors, namely, $T_{1/2}^{\text{ref}} = 109.77(5)$ min [32]. Considering the threshold energy $E_n \sim 11.5$ MeV for 19F(n,2n)18F reaction [32], this channel is not expected to be activated at lower neutron energies. The γ-ray spectra of irradiated samples at $E_p = 12$ MeV are shown in figure 3 for Teflon (in dotted
Table 2. Neutron-induced reaction products, $T_{1/2}$ and the expected most intense γ-rays in the irradiated samples. The minimum neutron energy E_n at which corresponding σ is $\geq \mu$b is also listed [32].

Sample	Reaction channel	$T_{1/2}$	E_γ (keV)	E_n (MeV)	σ (barn)					
Torlon 4203	nat11Ti(n, X)37Sc	3.3492 d	159.4							
	nat11Ti(n, X)38Sc	43.67 h	175.4, 983.5	1037.5, 1312.1						
	nat11Ti(n, X)46Sc	83.79 d	889.3, 1120.5							
	27Al(n, $\alpha$$)^{24}$Na	14.997 h	1368.6, 2754.0	4.6	1.4×10^{-6}					
	27Al(n, p)27Mg	9.458 min	843.8, 1014.5	2.5	1.9×10^{-5}					
Torlon 4301	56Fe(n,p)56Mn	2.5789 h	846.8, 1810.7	2113.1	4	6.0×10^{-6}				
	27Al(n, $\alpha$$)^{24}$Na	14.997 h	1368.6, 2754.0	4.6	1.4×10^{-6}					
Teflon	19F(n, 2n)18F	109.77 min	511	11.5	1.5×10^{-3}					
nat204Pb	204Pb(n, 2n)203Pb	51.92 h	279.2, 401.3, 680.5	8.5	2.1×10^{-3}					
	204Pb(n, n)204mPb	66.93 min	374.8, 899.2, 911.7, 1274	1.0	2.4×10^{-4}					
nat121Sb	121Sb(n, $\gamma$$)^{122}$Sb	2.7238 d	564.2, 692.7	0.1	2.1×10^{-1}					
nat123Sb	123Sb(n, $\gamma$$)^{124}$Sb	60.20 d	602.7, 1690.9, 2090.9, 2182.6, 2294.0	0.1	1.9×10^{-1}					
nat63Cu	63Cu(n, $\gamma$$)^{64}$Cu	12.701 h	511, 1345.8	0.055	2.5×10^{-2}					
	65Cu(n, $\gamma$$)^{66}$Cu	1925.28 d	1173.2, 1332.5	2.5	1.1×10^{-2}					
	65Cu(n, $\gamma$$)^{66m}$Co	5.120 min	1039.2	0.06	1.1×10^{-2}					
	65Cu(n, $\gamma$$)^{65}$Ni	13.91 min	1163.5, 1172.9, 2003.7, 2104.9, 2301.9, 2882.3	5	3.9×10^{-6}					
	65Ni(n, $\gamma$$)^{65}$Ni	2.5175 h	1115.5, 1481.8, 1623.4, 1724.9	2.5	1.0×10^{-6}	0.553	6.5×10^{-3}			
nat112Sn	112Sn(n, np)111In	2.8047 d	171.3, 245.4	12	4.9×10^{-6}					
	116Sn(n, np)115mIn	4.486 h	336.2	14.5	7.6×10^{-5}	5	1.9×10^{-4}	0.5	6.4×10^{-3}	
	115Sn(n, p)115mIn	2.048 min	1293.6, 2112.3	8	1.5×10^{-4}					
	116Sn(n, p)116mIn	54.29 min	416.9, 818.7, 1097.3, 1293.6, 2112.3	8	1.5×10^{-4}					
nat117Sn	117Sn(n, n)117mSn	15.76 d	156.0, 158.6	0.2	2.9×10^{-1}	0.1	5.5×10^{-2}	9.9	7.2×10^{-2}	
	116Sn(n, $\gamma$$)^{117m}$Sn	13.76 d	156.0, 158.6	0.2	2.9×10^{-1}	0.1	5.5×10^{-2}	9.9	7.2×10^{-2}	
	118Sn(n, 2n)117mSn	13.76 d	156.0, 158.6	0.2	2.9×10^{-1}	0.1	5.5×10^{-2}	9.9	7.2×10^{-2}	
	124Sn(n, 2n)123mSn	40.06 min	160.3	9	1.6×10^{-1}	0.3	1.2×10^{-2}			
	122Sn(n, $\gamma$$)^{123m}$Sn	129.2 d	1088.6	9	1.6×10^{-1}	0.3	1.2×10^{-2}			
	124Sn(n, $\gamma$$)^{125m}$Sn	9.52 min	331.9	0.315	6.8×10^{-3}	9.64 d	$822.5, 1067.1, 1089.2$	331.9	0.315	6.8×10^{-3}

E samples. The minimum neutron energy E_n at which corresponding σ is $\geq \mu$b is also listed [32].
Figure 1. (Color online) γ-ray spectra of the neutron irradiated (a) Torlon 4203 with \(E_p = 20 \) MeV, \(t_{irr} = 3 \) h, \(N_n \sim 1.31(9) \times 10^{10} \), (b) Torlon 4301 with \(E_p = 20 \) MeV, \(t_{irr} = 3 \) h, \(N_n \sim 1.38(9) \times 10^{10} \) and (c) Teflon with \(E_p = 20 \) MeV, \(t_{irr} = 2 \) h, \(N_n \sim 0.82(6) \times 10^{10} \) for different \(t_c \)-time elapsed since the end of irradiation. The spectrum shown in (a) is measured in the D2 setup while spectra in (b) and (c) are recorded in the D1 setup. In panels (a) and (b), spectra for larger \(t_c \) are scaled by 0.1 for better visualization. The γ-rays originating from room background are indicated with stars.

red lines) and in figure 4 for the Torlon samples. It can be clearly seen that the \(^{18}\text{F}\) is not populated at \(E_n \leq 9.9 \) MeV (\(E_p = 12 \) MeV) and yield of 511 keV γ-ray is significantly reduced, whereas most of the reaction channels in Torlon are populated even at lower neutron energy (see table 2). It may be mentioned that the observed peaks at 1022 keV and \(\sim 685.6 \) keV in the Teflon spectrum, originate from summing of two 511 keV γ-rays and from summing of 511 keV with backscattered gamma-rays, respectively. This is also seen in the \(^{nat}\text{Cu}\) sample.

Even though the 511 keV γ-ray activity in Teflon is significantly larger (\(\sim 15.5 (1.2) \) times) than that in Torlon 4301, there is no gamma background at energies higher than 511 keV in Teflon. Therefore from the neutron-induced gamma background consideration, Teflon seems to be a better candidate as compared to the Torlon for use in the TIN.TIN detector.

3.2 Neutron-induced activity from \(^{nat}\text{Pb}\) and \(^{nat}\text{Cu}\)

The Lead shield is generally closer to the detector assembly and the gamma-rays produced by neutron-induced reactions in Lead can contribute to the background levels. It has been previously reported in ref. [15] that inelastic scattering of neutrons in Lead can be a significant source of
background for double beta decay experiments. The γ-ray spectra of the irradiated natPb and natCu samples are shown in figures 5(a) and (b), respectively. Gamma-rays originating from decay of 203Pb and 204mPb (see table 2) are seen in the spectrum. In addition, Sb impurities are also found in the Lead sample. It should be noted that the decay of 124Sb produces many gamma-rays with energies higher than Qββ of 124Sn but with small branching fractions: 2294.0 keV (0.0320%), 2323.5 keV (0.00243%), 2455.2 keV (0.0015%), 2681.9 keV (0.00165%), 2693.6 keV (0.0030%) and 2807.5 keV (0.00147%) [32]. In the present work, only 602.7 keV is observed in the gamma-ray spectrum above the detection limit of the low background setup. But Eγ = 2294.0 keV may be a crucial source of background in an underground laboratory with improved sensitivity.

In the γ-ray spectrum of natCu (see figure 5(b)) short-lived activities (T1/2 ~ h) such as 64Cu and 65Ni are seen. The long-lived products like 66Co (T1/2 = 5.27 y) are visible in the spectra after sufficient cooling time ~ 10 h, when the overall gamma background level due to the decay of the short-lived nuclei is reduced. Short-lived products (T1/2 ~ min) such as 62mCo and 66Cu formed in the Copper sample are visible where spectra could be measured after shorter cooling time.

Figure 6(a) shows a decay curve of 511 keV γ-ray in natPb sample. A single exponential fit indicated T1/2 ~ 41(4) min, while a two component fit resulted in T1/2 as 11(4) and

Figure 2. (Color online) Decay curves for 511 keV γ-ray of 18F formed in the neutron irradiated (a) Torlon 4203 with Ep = 20 MeV and tirr = 10 h, (b) Torlon 4301 with Ep = 20 MeV and tirr = 3 h and (c) Teflon with Ep = 20 MeV and tirr = 2 h.
Figure 3. (Color online) γ-ray spectra of the neutron irradiated Teflon with $E_p = 20$ MeV, $t_{irr} = 2$ h and $N_n \sim 0.82(6) \times 10^{10}$ (shown by solid black lines) together with $E_p = 12$ MeV, $t_{irr} = 13$ h and $N_n \sim 1.27(9) \times 10^{10}$ (shown by dotted red lines). Both the spectra have been measured after similar cooling time (t_c) 14 min and 10 min, respectively, in the D1 setup. Stars have same meaning as in figure 1.

Figure 4. (Color online) γ-ray spectra of the neutron irradiated (a) Torlon 4203 ($N_n \sim 1.4(1) \times 10^{10}$) and (b) Torlon 4301 ($N_n \sim 1.3(1) \times 10^{10}$) with $E_p = 12$ MeV and $t_{irr} = 13$ h. Both the spectra are recorded in the low background setup. Stars have same meaning as in figure 1.

70(32) min, respectively, but the origin of 511 keV in natPb was not identified. Whereas the decay curve in figure 6(b) for natCu gives $T_{1/2} \sim 12.4(5)$ h, implying that the 511 keV γ-ray results from the 63Cu(n,γ)64Cu reaction. It should be noted that no 18F was observed in the natPb or natCu samples, confirming that the Teflon sample holder/spacers did not contribute to observed impurities in these samples.

Refs. [21, 36] have reported the formation of 60Co in Copper due to cosmogenic activation. In addition, the 62mCo decay produces several high energy γ-rays (see figure 5(c)). Therefore for minimizing the Co activity, it is essential to store Copper in an underground location.
Figure 5. (Color online) γ-ray spectra of the neutron irradiated (a) natPb with $E_p = 20$ MeV, $t_{irr} = 2$ h and $N_n \sim 0.69(5) \times 10^{16}$ for different cooling time t_c. (b) natCu with $E_p = 20$ MeV, $t_{irr} = 10$ h, $N_n \sim 5.9(4) \times 10^{16}$ for different cooling time t_c and (c) natCu with $E_p = 20$ MeV, $t_{irr} = 2$ h and $N_n \sim 1.09(8) \times 10^{16}$. The spectrum shown in (a) is measured in the D2 setup while those in (b) and (c) in the low background setup. In panels (a) and (b), spectra for larger t_c are scaled by 0.1 for better visualization. Stars have same meaning as in figure 1.

3.3 Neutron-induced activity in natSn and 124Sn

Figure 7(a) shows the γ-ray spectra of the neutron irradiated ($E_{\text{max}} = 17.9$ MeV) enriched 124Sn (97.2%) sample. In addition to the gamma-rays originating from neutron activation of 124Sn, reaction products of other Sn isotopes, namely, 112Sn, 115Sn, 116Sn, 117Sn and 122Sn, are also found in the enriched sample (see table 2). Most of the isotopes formed are short-lived, the longest-lived being 123Sn with a $T_{1/2} = 129.2$ d. The highest energy gamma-ray $E_\gamma = 2112.3$ keV originates in the decay of 116mIn. Some of the observed reaction products can be produced by different Tin isotopes depending on the incident neutron energy and the relative cross-sections. For example, 123mSn can be formed either by 122Sn(n,γ)123mSn or by 124Sn(n,2n)123mSn reaction. The contribution from 122Sn was probed by low energy neutron irradiation ($E_{\text{max}} = 7.9$ MeV corresponding to $E_p = 10$ MeV) where the 124Sn(n,2n)123mSn reaction is unfavoured. The observation of significantly reduced (0.16%) but measurable activity of 123mSn ($E_\gamma = 160.3$ keV) at lower neutron energy clearly indicated the traces of 122Sn in the enriched sample. Similarly, 115mIn ($E_\gamma = 336.2$ keV) can be produced from 115,116Sn with high energy neutrons but at lower neutron energy only 115In(n,n')115mIn (115In natural abundance 95.7%) is the possible reaction channel. Thus, observation of 336.2 keV with low energy neutrons implies presence of trace impurity of...
In the enriched Tin target. In the observed spectra, γ-rays 1088.6 and 1089.2 keV originating from decay of 123Sn ($T_{1/2} = 129.2$ d) and 125Sn ($T_{1/2} = 9.64$ d), respectively, could not be separated. Measurements after $t_{irr} \sim 10$ d showed that the relative yield of $E_{\gamma} = 1089.2$ keV was higher than that for $E_{\gamma} = 1067$ keV confirming the formation of 123Sn. It should be noted that 331.9 keV and 822.5 keV γ-rays from 125mSn and 125Sn, respectively, were also visible.

Figure 7(b) shows the γ-ray spectra of irradiated natSn sample with low energy neutrons, where the gamma-rays from reaction products of 112Sn, 116Sn and 122Sn are visible. The other stable isotopes of Sn upon neutron activation form either long-lived and/or stable reaction products and hence could not be observed. It should be noted that 336.2 keV γ-ray from 115mIn was not visible in the natSn (7N) sample at the same detection sensitivity as in case of 124Sn. Gamma-rays originating from decay of 24Na was observed in the samples irradiated in an Al target holder, produced via 27Al$(n,\alpha)^{24}$Na reaction (see figure 7(b)). No additional impurities are seen in the natSn (7N) sample.

3.4 Effect of neutron-induced gamma background for $0\nu\beta\beta$ decay in 124Sn

Neutron-induced gamma background at energies $E_{\gamma} \geq 2.1$ MeV is estimated for the measured neutron flux corresponding to $E_p = 20$ MeV. Activities of different reaction products in the natCu, natPb and $^{124,\text{nat}}$Sn samples are calculated from the yields of observed γ-rays of 2003.7 keV, 602.7 keV and 416.9 keV, respectively (see table 2). These γ-rays could be observed only in the close counting geometry even in the low background setup (high efficiency), in case of higher intensities in the respective decay chains. The activity thus obtained for a particular reaction product was then used to estimate the expected background from gamma rays in the ROI using known branching ratios (see table 2). Table 3 shows the expected yield of such high energy gamma rays in the natCu,
Figure 7. (Color online) γ-ray spectra of the neutron irradiated (a) ^{124}Sn with $E_p = 20 \text{ MeV}$, $t_{irr} = 10 \text{ h}$, $N_n \sim 4.1(3) \times 10^{10}$ (solid black lines) and with $E_p = 10 \text{ MeV}, t_{irr} = 5 \text{ h}$ and $N_n \sim 0.44(4) \times 10^{10}$ (dotted red lines), (b) ^{nat}Sn with $E_p = 20 \text{ MeV}, t_{irr} = 2 \text{ h}, N_n \sim 1.9(1) \times 10^{10}$ (solid black lines) and with $E_p = 10 \text{ MeV}, t_{irr} = 5 \text{ h}, N_n \sim 0.51(4) \times 10^{10}$ (dotted red lines). All spectra are recorded in the low background setup and those corresponding to larger t_c have been scaled by 0.1 for better visualization. Stars have same meaning as in figure 1.

Table 3. Estimated neutron-induced background from the high energy γ-rays in Pb, Cu and Sn samples.

Sample	Neutron fluence ncm$^{-2}$(\times 10^{10})	Reaction Product	$T_{1/2}$	E_γ of interest (keV)	Expected Intensity of E_γ (Bq g$^{-1}$)
^{nat}Pb	0.30(2)	^{124}Sb	60.2 d	2182.6, 2294.0	0.0007(3), 0.0005(2)
^{nat}Cu	0.33(2)	^{62}Co	13.91 min	2301.9, 2882.3	6(2), 4(1)
^{124}Sn	1.6(1)	^{116m}In	54.29 min	2112.3	5(1)
^{nat}Sn	0.84(6)	^{116m}In	54.29 min	2112.3, 224(6)	

^{nat}Pb and $^{124, nat}\text{Sn}$ samples. The neutron flux is corrected for solid angle subtended by targets in the cascade geometry, placed at different distances (d) from the production target. It should be noted that the coincident summing of low energy gamma-rays in these decay cascades can also produce gamma background in the ROI, which will depend on the detector configuration.
Most of the activities producing high energy gamma-rays are short-lived and can be minimized by storage in an underground location prior to use in the detector setup. Typical neutron flux in underground locations at $E_n < 10$ MeV is 10^{-6} n cm$^{-2}$s$^{-1}$ [16] and the required overall background level will be $< 10^{-2}$ counts/(keV kg year). Hence, contribution from Cu and Pb samples in the region of high energy gamma-rays would be negligible. From table 3, it can be seen that natSn will produce $\sim 5(2)$ times higher gamma background of 2112.3 keV on neutron activation and can be of concern.

4 Conclusions

Neutron-induced background has been studied in various materials to be used in the TIN.TIN detector, which is under development for the search of $0\nu\beta\beta$ decay in 124Sn. In the present work, materials such as Torlon 4203 and 4301, Teflon, natCu, natPb and 124,natSn are studied. The contribution to the gamma background has been evaluated for an average neutron flux $\sim 10^6$ n cm$^{-2}$s$^{-1}$ integrated over neutron energy $E_n = 0.1$ to ~ 18 MeV. Both Torlon samples show presence of Al which will contribute to high energy gamma background. In addition, Torlon 4301 has Fe impurity while Ti in Torlon 4203 can produce long-lived impurities like 46Sc. Teflon shows only 511 keV γ-ray activity resulting from 19F(n,2n)18F reaction at $E_n \geq 11.5$ MeV. Hence, Teflon appears to be a better material for support structures in the Sn cryogenic bolometer from neutron-induced background consideration. Although, the natCu sample and Sb impurity in natPb produces high energy gamma background ($E_\gamma > 2.1$ MeV) upon neutron activation, the contribution in the ROI of $0\nu\beta\beta$ decay in 124Sn is estimated to be negligible. The neutron-induced reactions form short-lived activities in both 124Sn and natSn samples, which are of concern for the Tin detector. Among the various Sn isotopes formed 123Sn has the longest half-life $T_{1/2} = 129.2$ d, while 116mIn produces high energy γ-ray of 2112.3 keV. Thus, for background reduction enriched Tin is preferable as compared to natural Tin. Further, these results suggest that it would be necessary to store Sn material in underground location for extended periods prior to use in the cryogenic bolometer setup.

Acknowledgments

The authors would like to thank Mr. S.C. Sharma, Mr. M.S. Pose, Mr. K.V. Anoop and Mr. K.V. Divekar for help during the setup and Mr. A.G. Mahadkar for the preparation of targets. We are grateful to the Pelletron Linac staff for the smooth operation of the machine during the experiment.

References

[1] A.S. Barabash, Precise half-life values for two neutrino double beta decay, Phys. Rev. C 81 (2010) 035501 [arXiv:1003.1005].

[2] S.R. Elliott, Recent Progress in Double Beta Decay, Mod. Phys. Lett. A 27 (2012) 1230009 [arXiv:1203.1070].

[3] O. Cremonesi and M. Pavan, Challenges in Double Beta Decay, Adv. High Energy Phys. 2014 (2014) 951432 [arXiv:1310.4692].

[4] CUORE collaboration, D.R. Artusa et al., Initial performance of the CUORE-0 experiment, Eur. Phys. J. C 74 (2014) 2956 [arXiv:1402.0922].
[5] GERDA collaboration, M. Agostini et al., Results on Neutrinoless Double-\(\beta\) Decay of \(^{76}\)Ge from Phase I of the GERDA Experiment, \emph{Phys. Rev. Lett.} \textbf{111} (2013) 122503 [arXiv:1307.4720].

[6] EXO-200 collaboration, J.B. Albert et al., Search for Majorana neutrinos with the first two years of EXO-200 data, \emph{Nature} \textbf{510} (2014) 229 [arXiv:1402.6956].

[7] NEMO collaboration, A.S. Barabash, NEMO 3 double beta decay experiment: Latest results, \emph{J. Phys. Conf. Ser.} \textbf{173} (2009) 012008 [arXiv:0807.2336].

[8] KAMLAND-ZEN collaboration, A. Gando et al., Limit on Neutrinoless \(\beta\beta\) Decay of \(^{136}\)Xe from the First Phase of KAMLAND-Zen and Comparison with the Positive Claim in \(^{76}\)Ge, \emph{Phys. Rev. Lett.} \textbf{110} (2013) 062502 [arXiv:1211.3863].

[9] H.J. Kim et al., Measurement of the neutron flux in the CPL underground laboratory and simulation studies of neutron shielding for WIMP searches, \emph{Astropart. Phys.} \textbf{20} (2004) 549.

[10] CDMS collaboration, R. Agnese et al., Silicon Detector Dark Matter Results from the Final Exposure of CDMS II, \emph{Phys. Rev. Lett.} \textbf{111} (2013) 251301 [arXiv:1304.4279].

[11] LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, \emph{Phys. Rev. Lett.} \textbf{112} (2014) 091303 [arXiv:1310.8214].

[12] H. Wulandari, J. Jochum, W. Rau and F. von Feilitzsch, Neutron flux underground revisited, \emph{Astropart. Phys.} \textbf{22} (2004) 313 [hep-ex/0312050].

[13] F. Bellini et al., Monte Carlo evaluation of the external gamma, neutron and muon induced background sources in the CUORE experiment, \emph{Astropart. Phys.} \textbf{33} (2010) 169 [arXiv:0912.0452].

[14] D.-M. Mei and A. Hime, Muon-induced background study for underground laboratories, \emph{Phys. Rev. D} \textbf{73} (2006) 053004 [astro-ph/0512125].

[15] D.-M. Mei, S.R. Elliott, A. Hime, V. Gehman and K. Kazkaz, Neutron inelastic scattering processes as a background for double-beta decay experiments, \emph{Phys. Rev. C} \textbf{77} (2008) 054614 [arXiv:0704.0306].

[16] CUORICINO collaboration, E. Andreotti et al., Muon-induced backgrounds in the CUORICINO experiment, \emph{Astropart. Phys.} \textbf{34} (2010) 18 [arXiv:0912.3779].

[17] C. Bungau et al., Monte Carlo studies of combined shielding and veto techniques for neutron background reduction in underground dark matter experiments based on liquid noble gas targets, \emph{Astropart. Phys.} \textbf{23} (2005) 97.

[18] V. Nanal, Search for neutrinoless double beta decay in \(^{124}\)Sn, \emph{Eur. Phys. J. Conf.} \textbf{66} (2014) 08005.

[19] V. Singh, S. Mathimalar, N. Dokania, V. Nanal, R.G. Pillay and S. Ramakrishnan, Cryogen-free dilution refrigerator for bolometric search of neutrinoless double beta decay \((0\nu\beta\beta)\) in \(^{124}\)Sn, \emph{Pramana} \textbf{81} (2013) 719.

[20] D.A. Nesterenko et al., Double-beta transformations in isobaric triplets with mass numbers \(A=124, 130\) and \(136\), \emph{Phys. Rev. C} \textbf{86} (2012) 044313 [ssPIRE].

[21] CUORE collaboration, C. Arnaboldi et al., CUORE: A cryogenic underground observatory for rare events, \emph{Nucl. Instrum. Meth. A} \textbf{518} (2004) 775 [hep-ex/0212053].

[22] http://www.isolflex.com.

[23] R.G. Wilson, SIMS qualification in Si, GaAs, and diamond — an update, \emph{Int. J. Mass Spectrom. Ion Process.} \textbf{143} (1995) 43.

[24] Solvay Advanced Polymers, \emph{Torlon Resins Engineering Data}.
[25] S. Paul et al., Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick 9Be target and estimation of neutron yields, *Rev. Sci. Instrum.* **85** (2014) 063501.

[26] S. Kamada, T. Itoga, Y. Unno, W. Takahashi, T. Oishi and M. Baba, Measurement of Energy-angular Neutron Distribution for 7Li, 9Be(p,xn) Reaction at $E_p = 70$ MeV and 11 MeV, *J. Korean Phys. Soc.* **59** (2011) 1676.

[27] C.H. Poppe, J.D. Anderson, J.C. Davis, S.M. Grimes and C. Wong, Cross sections for the 7Li(p,n)7Be reaction between 4.2 and 26 MeV, *Phys. Rev.* **C 14** (1976) 438.

[28] S.P. Simakov et al., Analysis of the Dosimetry Cross sections Measurements up to 35 MeV with a 7Li(p,xn) Quasi-monoenergetic Neutron Source, *J. Korean Phys. Soc.* **59** (2011) 1856.

[29] N. Dokania, V. Singh, S. Mathimalar, V. Nanal, S. Pal and R.G. Pillay, Characterization and modeling of a low background HPGe detector, *Nucl. Instrum. Meth. A* **745** (2014) 119 [arXiv:1311.4779].

[30] K.V. Anoop, S. Pal, N. Dokania, V. Nanal and R.G. Pillay, Performance of digitizers with HPGe and scintillation detectors, in proceedings of 58th DAE Symposium on Nuclear Physics, Bhabha Atomic Research Center, India, 2–6 December 2013.

[31] Linux Advanced Multi-Parameter System (LAMPS), http://www.tifr.res.in/~pell/lamps.html.

[32] http://www.nndc.bnl.gov.

[33] V.K. Mulik et al., Measurement of 56Fe$(n,p)^{56}$Mn reaction cross-section at $E_n = 5.9, 9.85, 14.8$ and 15.5 MeV, *J. Radioanal. Nucl. Chem.* **296** (2013) 1321.

[34] H. Naik et al., Measurement of the neutron capture cross-section of 232Th using the neutron activation technique, *Eur. Phys. J. A* **47** (2011) 51.

[35] D.S. Akerib et al., Radiogenic and Muon-Induced Backgrounds in the LUX Dark Matter Detector, *Astropart. Phys.* **62** (2015) 33 [arXiv:1403.1299].

[36] NEMO collaboration, J. Argyriades et al., Measurement of the background in the NEMO 3 double beta decay experiment, *Nucl. Instrum. Meth. A* **606** (2009) 449 [arXiv:0903.2277].