Systematically Dissecting the Global Mechanism of miRNA Functions in Pluripotent Stem Cells

Anyou Wang¹, et al

*Corresponding author
Anyou Wang
anou.wang@alumni.ucr.edu

Running title: Global mechanisms of miRNA roles in stem cells

Key words: miRNAs; global mechanism; stem cells; systems network; pluripotency; functions.
Abstract:

MicroRNAs (miRNAs) critically modulate stem cell properties like pluripotency, but the fundamental mechanism remains largely unknown. This study systematically analyzes multiple-omics data and builds a systems physical network including genome-wide interactions between miRNAs and their targets to reveal the systems mechanism of miRNA functions in mouse pluripotent stem cells. Globally, miRNAs directly repress the pluripotent core factors during differentiation state. Surprisingly, during pluripotent state, the top important miRNAs do not directly regulate the pluripotent core factors as thought, but they only directly target the pluripotent signal pathways and directly repress developmental processes. Furthermore, at pluripotent state miRNAs predominately repress DNA methyltransferases, the core enzymes for DNA methylation. The decreasing methylation repressed by miRNAs in turn activates the top miRNAs and pluripotent core factors, creating an active circuit system to modulate pluripotency. MiRNAs vary their functions with different stem cell states. While miRNAs directly repress pluripotent core factors to facilitate the differentiation during cell differentiation, they also help stem cells to maintain pluripotency by activating pluripotent cores through directly repressing DNA methylation systems and primarily inhibiting development.
Introduction

MicroRNAs (miRNAs), short (~22 nts) conserved endogenous non-coding RNAs, inhibit messenger RNA targets by repressing translation or reducing mRNA stability [1]. MiRNAs critically modulate many cellular events, including the balance between proliferation and differentiation during organ development [1]. In pluripotent stem cells (including induced pluripotent stem cells and embryonic stem cells, referred to as stem cells hereafter), miRNAs play important roles in regulating stem cell bioprocesses [2-6].

miRNAs modulate stem cell pluripotency and differentiation [2-4]. Knocking out the key miRNA processing enzymes Dicer [2-3] or DGCR8 [4] causes stem cells to lose their pluripotency. MiRNA-290 cluster has been proposed to regulate the core pluripotency factors like POU5F1 [7-9]. MiRNA-302/367 cluster has also been used to induce pluripotency [10]. On the other hand, miRNAs like let-7 induce stem cell differentiation [11]. However, these recent studies have mostly focused on individual gene functions in stem cells although genome-wide data might be employed, and the conclusions drawn from these current studies are unavoidably biased on genes selected by these studies. Therefore, these studies only provide partial mechanisms of miRNA functions in stem cells, and the overall systems mechanisms of how miRNAs regulate stem cell processes remain largely elusive.

MiRNAs generally do not work alone to perform their functions [12]. One miRNA might
target more than 100 genes [13-14], and one gene can be repressed by multiple miRNAs in a sequence-specific fashion [12-13, 15]. In turn, proteins can physically bind to the promoters and enhancers of miRNAs to regulate miRNA activations [16]. These binary interactions between miRNAs and proteins would form a complex systematic network. This complexity of miRNA interaction network make it challenged for conventional approaches like gene-knockout to unbiasedly capture the real mechanisms of miRNA functions in stem cells.

This present study employed systems physical network approaches [17] and constructed a comprehensive and unbiased map of genome-wide interactions between miRNAs and their targets to investigate the global basis of miRNA roles in pluripotent stem cells. Results of the present study lay a conceptual framework for future studies and applications of miRNAs in stem cells.

Results

Physical network of miRNA and protein interactions in stem cells

To systematically reveal the roles of miRNAs in stem cells, this study first constructed a systems network [17] of interactions between miRNAs and proteins. These interactions contain binary interactions from two directions, from miRNAs to mRNAs coding for proteins, and from proteins to miRNA promoters and enhancers. The miRNA-targets were inferred from CLIP-seq data, which simultaneously identify miRNAs-mRNA interactions by measuring miRNA-Argonaute complexes [18-19] (materials and
methods). Protein-targets were inferred from ChIP-seq, which measures protein interactions with DNA [20] (Figure 1, Table S1 and materials and methods). The CLIP-seq and ChIP-seq provide data of physical binding interactions. The systems interaction network constructed here includes physical interactions of both miRNA-targets and protein-targets.

The entire network contains ~10,000 nodes and ~233,000 interactions (Figure 1C) and is accessible online (........). Both ChIP-seq and CLIP-seq measures genome-wide targets and thus this network provides a global map of miRNA targets in stem cells. For example, the genome-wide interactions between miRNAs and the pluripotent core factors (NANOG, POU5F1 and SOX2) could be extracted from this network (Figure 1D). Due to its natural interactions generated from experimental data, this network would provide accurate interactions between miRNA and their targets, and results generated from this network would be reliable.

The primary role of miRNAs in stem cells

To understand the primary role of all miRNAs activated (up- or down-regulated when compared with somatic cells) at pluripotent state in stem cells, we searched for the biological functions of the network activated by miRNAs in stem cells. To avoid the dataset biases, we included different datasets of miRNAs and genes coding for proteins and selected miRNAs and genes that are only activated with high frequency in all
datasets (Table S2-S3, materials and methods). These activated miRNAs and genes were used to enrich the entire network (Figure 1) to get the activated network using methods as previously described [17]. The network activated by overexpressed miRNAs and down-regulated proteins (Table S2-S3) formed a subnetwork activated by up-regulated miRNAs in stem cells. We run the GO (gene ontology) functional analysis (www.geneontology.org/) of this subnetwork [21] by separately using references of both entire GO annotation database and a set of all up-regulated genes in stem cells to get the less biased enrichment results. Different references generated different enrichment p-value but produced the similar result that the entire subnetwork primarily functions for development, with corrected p-value<6.517e-62 (Bonferroni correction using entire annotation, referred as corr, hereafter) (Figure S1A). This activated subnetwork was further enriched by the developmental GO term to obtain the developmental module (Figure 2A). This developmental module was decomposed into functional modules based on network topology [22] and it contained 6 sub-functional modules (Materials and Methods). All of these 6 modules primarily function for development (corr p-value<8.2615E-83, Figure 2A), indicating that the primary function of over-expressed miRNAs at pluripotent state is to repress developmental modules.

The repressing role of up-regulated miRNAs was further evidenced by examining the targets of three primarily represented miRNA groups, the top overexpressed miRNA group, a miR-302/367 cluster, and a single miR-294. First, a total of 17 out of the 20 most important miRNAs, which were selected on the basis of the variance contribution
to the system (material and methods, Table S4), directly target a developmental sub-network (corr p<6.3512E-20, Figure S2). Among the 17 miRNAs, the top 5 miRNAs also target a module that primarily functions for development (corr p<8.5158E-23, Figure 2B-2C). Furthermore, the well-known miR-302 cluster and even a single miRNA, miR-294, also target modules functionally enriched in the developmental category with respectively corr p-value <1.4436E-21 (Figure 3A-3B), and corr p-value<1.0157E-29 (Figure 3C-3D). Therefore, overexpressed miRNAs at pluripotent state primarily repress development. Biologically, to maintain the self-renewal and pluripotency, stem cells have some ways to prevent development and differentiation. This repressing function of miRNAs can help miRNAs claim their contributions to the stem cell properties at the pluripotent state.

On the other hand, the down-regulated miRNAs in stem cells directly target genes that primarily function for metabolism and pluripotency (corr-p<3.5159E-42, Figure S1B, Figure S3). These down-regulated miRNAs become up-regulated during differentiation and directly inhibit metabolism and pluripotency during this state. Together, miRNAs primarily and directly repress development during the pluripotent state while they repress metabolism and pluripotency during cell differentiation.

Paths from activated miRNAs to pluripotent core factors

MiRNAs like miR-302 cluster mediate pluripotency [7, 23], and it thus was assumed that top over-expressed miRNAs such as miR-302 and miRNA-290-295 cluster in stem cells
might directly or indirectly target pluripotent core factors [7, 23]. To investigate if these top miRNAs directly target the core factors, we systematically searched the shortest paths respectively from the top important miRNAs as described above (Materials and Methods, Table S4) to the three core factors (POU5F1, NANOG, and SOX2). Surprisingly, all these top miRNAs, including miR-302b, miR-367, miR-294, and miR-292, do not directly target any core factors (Figure 4A-4D). Actually, the direct basis of these miRNAs regulating the pluripotent core factors seemed blurred because all these miRNAs must go through at least 2 steps to reach any pluripotency core factor. These two steps include a miRNA and a protein, which are not consistently expressed with these miRNAs. This suggested that these top over-expressed miRNAs in stem cells do not directly mediate the pluripotency.

We then globally and unbiasedly searched for up-regulated miRNAs that target the pluripotent core factors (NANOG, POU5F1 and SOX2). Surprisingly, we only found one miRNA (miR-684) that barely up-regulated (~2 fold changed) in stem cells and directly binds to SOX2 (Figure 4E), which was also targeted by down-regulated miRNA-431. This indicated that activated miRNAs (>100miRNAs) do not primarily and directly target the pluripotent core factors. On the other hand, only limited miRNAs, regardless of expression, target POU5F1, while many miRNAs target SOX2 although they might not over-express in stem cells (Figure 1D), suggesting that the connection from miRNAs to the pluripotent core factors primarily go through SOX2, in contrast with the current thought that miRNAs should primarily target POU5F1 [10], a key factor for
reprogramming induced pluripotent stem cells.

Pluripotent network targeted by activated miRNAs

We next expanded the pluripotent gene list to all pluripotent genes uncovered by Hu et al [24]. We still focused on the direct miRNA target and searched the first neighbor of all overexpressed miRNAs (Figure S4A) and all down-regulated miRNAs (Figure S4B). Most of these targets are shared by up- and down-regulated miRNAs (Figure 5A-5B), indicating that the primary pluripotent genes in stem cells are carefully modulated by multiple up- and down-regulated miRNAs. The function of the entire shared network is primarily for extrinsic signal pathways associated with pluripotency (Figure 5B). For example, the highly connected nodes APC, RAD21 and EIF4G2 are involved in Wnt signaling and mitotic cell cycle pathways. Signaling pathways with similar functions were also found in the network targeted by over-expressed miRNAs only (Figure 5C) and in modules directly targeted by the represented miRNAs cluster in stem cells, such as miR-302/367 cluster (Figure 5D) and miR-294 (Figure 5E). This indicated that miRNAs in stem cells primarily function for modulating the balance of pluripotent signal pathways instead of directly targeting pluripotent core factors. This suggests that these regulations driven by miRNAs might go through multiple steps to the pluripotent core factors.

In contrast to the up-regulated miRNAs in stem cells, down-regulated miRNAs directly target the core pluripotency factors (Figure S5), suggesting that these miRNAs inhibit the core factors for pluripotency to facilitate differentiation when these down-regulated
miRNAs become up-regulated during differentiation. To summarize, miRNAs do not directly target pluripotent core factors during pluripotent state but miRNAs directly target and repress these core factors during differentiation.

MiRNAs abundantly target epigenetic system

The above results indicated that the number of miRNA binding (degree) to their targets (nodes) was very limited. The target with the highest degree, EIF4G2, was only attacked by ~20 up-regulated miRNAs (Figure 5C). It was expected that a certain group of nodes should be targeted by more than that. This drove us to further search the network hubs (the important nodes) in the entire network. We systematically ranked the miRNA targets by degree (miRNA directly binding only) and obtained the top hubs. The top hubs mostly function for RNA processing, but surprisingly, DNMT3A, a DNA-methyltransferase for de novo DNA methylation, was among the top hubs. DNMT3A actually holds more than 160 miRNA binding sites in 3'-UTR region based only on 8bp seed mapping and it was ranked within the top 1% of the up-regulated miRNA targets (Figure 6A). DNMT3A was even ranked higher than EIF4G2, the highest ranked node in the pluripotent genes (Figure 6A, Figure 5B-5C), indicating that DNMT3A should be a top important node in the network directly regulated by miRNAs in stem cells. This also indicated that miRNAs predominately target DNA methylation system, rather than the pluripotent genes. We extracted the network of DNMT3A directly targeted by miRNAs and found that the top miRNA clusters (Table S4), such as miR-302/367 and miR-290-295 cluster, were among the miRNAs that target DNMT3A (Figure 6B). Similarly, Many
well-known miRNA clusters (e.g. miR-290-295 and miR-302) in stem cells also target DNMT1 (Figure 6C), an enzyme predominately responsible for methylation in hemimethylated CpG islands. Many down-regulated miRNAs also target DNMT3A and DNMT1 (Figure S6), but their attacks would lead to differentiation instead of maintaining pluripotency in stem cells. These abundant overexpressed miRNAs that target the methylation system suggest that miRNAs predominately repress DNMTs in stem cells.

In addition, miRNAs directly and abundantly target a core histone modification complex (HDAC4-MEF2C-MEF2D, http://www.ncbi.nlm.nih.gov/gene/9759) (Figure 7), including MEF2C (myocyte enhancer factor 2C), which was targeted by the top over-expressed miRNA clusters including miR-290-295 and miR-302 cluster (Figure 7). Up-regulating MEF2C enhances stem cells differentiation [25], and down-regulated MEF2C should inhibit differentiation. The down-regulation of MEF2C targeted by the top over-expressed miRNA clusters suggests that miRNAs repress differentiation in stem cells. This is consistent with our discussion above on the miRNA repressing development and differentiation at the pluripotent state in stem cells (Figure 2-3). Together, miRNAs directly and abundantly target the epigenetic systems at the pluripotent state.

DNA methylation mediates the miRNA activation in stem cells

To search the mechanism controlling the miRNA activations, this study turned to the genome-wide sequencing of DNA methylation in stem cells and methylation-loss-stem
Discussion

This study is the first, to our knowledge, to investigate the primary mechanism of miRNA functions in stem cells at systems level on the basis of a physical map constructed by direct interactions of miRNAs and proteins. All data employed in this study were collected from published biological experiments, and the core part of this study, the miRNA-target physical binding map, was inferred from the CLIP-seq (Figure 1). This gives our study several advantages. First, the interaction map should be more accurate than that predicted by pure computations, a motif prediction [27], which only produced
20% overlapped with the experimental data (data not shown). Secondly, the nature of map inferred here provides the direct physical binding linkages between miRNAs and their targets. This network makes it possible for us to understand a precise mechanistic picture of miRNA interactions with their targets. In contrast, traditional functional studies like gene knockdown/knockout only provide the linking hint from a gene to phenotypes with unknown mechanisms. Finally, the map provides a path to appreciate the molecular mechanics at systems level, like the pattern and network module recognitions that are based on many components (genes in this case). Mistakes could be made during observations of individual components (genes) because these individual observations could vary with conditions, but the nature of modules and patterns are normally robust enough to buffer the individual variations and noises, and they would not be changed with conditions [28]. Therefore, the results and conclusions on the global roles of miRNAs on the basis of pattern and module recognition here should represent the real nature of miRNA functions in stem cells.

Current studies have demonstrated that miRNAs play critical roles in maintaining overall properties like pluripotency in stem cells [2-4]. However, the mechanisms still remain elusive. In this study, we systematically revealed that one of miRNA primary functions is to repress developmental modules during the pluripotent state while miRNAs directly target pluripotent core factors during differentiation state (Figure 2, Figure 3, and Figure S3). This suggests that miRNAs primarily repress development at pluripotent state to prevent stem cell differentiation and to keep stem cell pluripotency while another set of
miRNAs degrade pluripotent core factors to facilitate differentiation during differentiation state. This is consistent with the recent observation that overexpressions of miRNAs induce pluripotency [10] and miRNAs also facilitate stem cells differentiation [11].

The linkage between miRNAs and pluripotency has been widely investigated [7-9], but whether the linkage is direct or indirect still remains to be investigated. It has been consistently observed that gene expressions of the top over-expressed miRNAs are positive correlative to that of pluripotent core factors. Recent evidences also show that miRNA-302/367 cluster could induce pluripotency [10]. The observations lead to a speculation that miRNAs might directly target the pluripotent core factors. Although miRNAs could have many functions in certain conditions, the primary functions of miRNAs are for degrading and inhibiting their targets. If the overexpressed miRNAs directly target the core factors, these miRNAs would likely repress the core factors as previously evidenced [29], leading to down-regulations of these core factors. A negative correlation between them should show up, but the fact is that positive correlation has been consistently observed. This suggests that the top miRNAs might not directly target and degrade pluripotent core factors. Here, we utilized the power of our system network to exhaustively search the direct linkages between miRNAs and the pluripotent core factors. Our results revealed that the top miRNAs (Table S4) such as miR-290 and miRNA-302 cluster do not directly target any core pluripotent factors during the pluripotent state (Figure 4). Most of top miRNAs only directly target the extrinsic signal pathways associated with pluripotency (Figure 5). A signal from a signal pathway
normally travels through multiple steps to reach its targets. Therefore, the top miRNAs indirectly target the core factors and indirectly regulate the pluripotency.

In contrast to the indirect mechanism of miRNAs in targeting the genetic system, the top miRNAs, including miRNA-302/367 and miRNA-294 cluster, directly and abundantly target the core enzymes of DNA methylation system, DNMT3A and DNMT1 (Figure 6). Targeting these DNMTs by the top expressed miRNAs suggests inhibition of DNMTs, which highly express in somatic cells but lowly express in stem cells (Figure 6). This parallels the most recent observations showing that gene expressions of up-regulated miRNAs are negatively correlative with that of DNA methyltransferases (DNMTs) [30-31] and that microRNAs degrade DNMTs in stem cells [30].

Our result of miRNA directly repressing DNMTs can help to understand the positive relationship existing between up-regulated miRNAs and overexpressed core pluripotent factors in stem cells as discussed above. Over-expressed miRNAs directly target DNMTs, leading to DNA methylation reductions at genome-wide level, including the loci of the pluripotent core factors. This results in over-expression of these core factors responsible for pluripotency. This is consistent with the observation of less methylation in the loci of the core factors during induced pluripotent stem cell reprogramming, and it is also consistent with our recent finding that the demethylation level can be used as a variable for discriminating different stem cells [32]. Therefore, miRNAs primarily and directly target the epigenetic system that further activates pluripotent core factors in
DNA methylation might regulate expressions of a certain group of genes in stem cells [28]. Our data further showed that DNA methylation globally mediates the miRNA activations in stem cells (Figure 8). These miRNA activations by DNA methylation in turn repress the DNA methylation (Figure 6). Less methylation activates the miRNAs and pluripotent core factors again.

Together, we proposed a system-wide circuit to describe a part of miRNA primary roles in modulating pluripotency in pluripotent stem cells (Figure 9). In this circuit, miRNAs directly repress development and directly repress the DNA methylation system, while miRNAs indirectly regulate pluripotency genes. This repression of DNA methylation activates both pluripotent factors and miRNAs. The activations of pluripotent factors and repression of development contribute to pluripotency in stem cells, while the activations of miRNAs further inhibit both DNA methylation and development. This create an active system-wide circuit in stem cells to maintain the pluripotent state (Figure 9).

We here pay more attentions on the primary functions of miRNAs in pluripotent state than that in differentiation state and we do not exclude other functions of miRNAs in stem cells. The results made here are based on the current limited data and these miRNA functions drawn here only account for as a part of miRNA roles in stem cells.
With data accumulating, more functions of miRNAs will certainly be explored. However, understanding the fundamental systems roles of miRNAs studied here would broadly direct the future functional studies of miRNAs in stem cells and would guide the successful development of stem-cell–based therapies for regenerative medicine.

Materials and methods

Data resources

This study analyzed data generated by high-throughput methods, including CLIP-seq, ChIP-seq, RNA-seq, microarray, and bisulfite sequencing DNA (Table S1). The data was downloaded from GEO database (www.ncbi.nlm.nih.gov/geo/) and the details are shown in table S1.

Data bioinformatics analysis

To be consistent and comparable, all sequencing data were mapped to mouse genome (mm9). All fastq files (Table S1) from CLIP-seq, ChIP-seq and RNA-seq were aligned using BWA 0.6.2 with default parameters [33]. All PCR-duplicates were removed. Bisulfite sequencing DNA was aligned by Bismark 0.7.6 with tolerating one non-bisulfite mismatch per read (http://www.bioinformatics.babraham.ac.uk/projects/bismark/).

The clusters from CLIP-seq were generated by using GenomicRanges 1.12 under R 2.15 and were subjected to second noise quartile cutoff. The filtered clusters located in 3'UTRs and CDSs were used to search for miRNA bindings. The miRNA bindings were
searched against the perfect match of miRNA seed sequences (6-8nt) using home-
made python scripts. The seed sequences were extracted from miRNA sequences
downloaded from miRBase 19 (http://microrna.sanger.ac.uk/). Peaks from ChIP-seq
were called using SISSRs 1.4 (http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/sissrs/)
and the peaks were annotated using ChIPpeakAnno 2.8 under R-2.15. The differential
expressions from RNA-seq were performed using negative binomial model using edgeR
3.2 under R 2.15. Bisulfite DNA methylation was counted against the genome
coordinates of miRNAs (Table S4). Microarray data were analyzed using limma 3.16
under R 2.15.

Activated genes and miRNAs selection

To minimize the biases from individual experiments and cell lines as well as the noises
caused by high-throughput methods, we selected genes and miRNAs activated in
different conditions by using different sets of data(Table S1). Expression data from
various resources (Table S1) were employed. Genes coding for proteins with activating
frequency >50% in all observations and miRNAs with activating frequency of more than
25% out of all observations were treated as activated genes and were selected (Table
S2-S3). The up-regulation and down-regulation was based on comparison to somatic
cells in each experiment (corrected p< 0.01 and fold change > 2).

The top important miRNAs (Table S4) were selected on the basis of their contributions
to network structure and variance by using the algorithm as we previously published [28]. Briefly, the top miRNAs were selected on the basis of their ranking scores calculated by the eigengene-based connectivity as defined below [28].

$$SCORE = \frac{d_i}{d_{max}} + 2 \times cor|X_i, E|$$

where d_i denotes the i^{th} node degree, and d_{max} denotes the maximum degree of a node in the entire network. $|Cor(x_i, E)|$ represents the absolute Pearson correlation coefficient, where x_i represents a vector of i^{th} node value, and E eigengene of the network.

Network construction and analysis

The network construction and analysis were performed by approaches as our previous reports [17, 34]. Briefly, we built the map (Figure 1,) by collecting the interactions of both miRNAs targets from the CLIP-seq and protein-binding promoters of miRNAs from ChIP-seq data. The interactions from CLIP-seq and ChIP-seq were signed as miRNA or proteins respectively (Figure 1). Only the direct interactions (first-neighbor) were selected and included, and thus this map is a physical binding network. The network was enriched by the activated genes and miRNAs selected above to get the activated network. Functional modules were further enriched by the functional genes based on gene ontology enrichment (e.g. Figure S1, http://www.geneontology.org/). Six sub-modules in functional developmental module (Figure 2A) were based on network topology to identify the densely connected modules. The target node ranking was based
on the degree of each miRNA node (Figure 6A-6B).

Acknowledgments

We specially thank Drs. Ying Du and Chunxiao Zhou for data collection.

Author contributions

A.W, conceived and designed the experiments, analyzed the data, contributed data/materials/analysis tools, wrote the manuscript. Y.Z., Q.H. contributed data/materials/analysis tools. All authors reviewed the manuscript.

Competing interests

No competing interests exist in this study

No financial conflict of interest in this study.

References

1. Kloosterman WP, Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell 2006, 11(4):441-450.
2. Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K: Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 2005, 19(4):489-501.
3. Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ: Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A 2005,
4. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R: DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. *Nat Genet* 2007, 39(3):380-385.

5. Chen CZ, Li L, Lodish HF, Bartel DP: MicroRNAs modulate hematopoietic lineage differentiation. *Science* 2004, 303(5654):83-86.

6. Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN, Srivastava D: **miR-145** and **miR-143** regulate smooth muscle cell fate and plasticity. *Nature* 2009, 460(7256):705-710.

7. Hanina SA, Mifsud W, Down TA, Hayashi K, O’Carroll D, Lao K, Miska EA, Surani MA: Genome-wide identification of targets and function of individual MicroRNAs in mouse embryonic stem cells. *PLoS Genet* 2010, 6(10):e1001163.

8. Benetti R, Gonzalo S, Jaco I, Munoz P, Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P et al: A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. *Nat Struct Mol Biol* 2008, 15(3):268-279.

9. Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F, Artus-Revel CG, Zavolan M, Svoboda P, Filipowicz W: MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. *Nat Struct Mol Biol* 2008, 15(3):259-267.

10. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA et al: Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. *Cell Stem Cell* 2011, 8(4):376-388.

11. Melton C, Judson RL, Blelloch R: Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. *Nature* 2010, 463(7281):621-626.

12. Stefani G, Slack FJ: Small non-coding RNAs in animal development. *Nat Rev Mol Cell Biol* 2008, 9(3):219-230.

13. Bartel DP: MicroRNAs: target recognition and regulatory functions. *Cell* 2009, 136(2):215-233.

14. Chen C, Ridzon D, Lee CT, Blake J, Sun Y, Strauss WM: Defining embryonic stem cell identity using differentiation-related microRNAs and their potential targets. *Mamm Genome* 2007, 18(5):316-327.

15. Rajewsky N: microRNA target predictions in animals. *Nat Genet* 2006, 38 Suppl:S8-13.

16. Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS: MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. *Cell* 2009, 137(4):647-658.

17. Wang A, Johnston SC, Chou J, Dean D: A systemic network for Chlamydia pneumoniae entry into human cells. *J Bacteriol* 2010, 192(11):2809-2815.

18. Leung AK, Young AG, Bhutkar A, Zheng GX, Bosson AD, Nielsen CB, Sharp PA: Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. *Nat Struct Mol Biol* 2011, 18(2):237-244.

19. Chi SW, Zang JB, Mele A, Darnell RB: Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. *Nature* 2009, 460(7254):479-486.

20. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, Guenther MG, Johnston WK, Wernig M, Newman J et al: Connecting microRNA genes to the
core transcriptional regulatory circuitry of embryonic stem cells. *Cell* 2008, 134(3):521-533.

21. Maere S, Heymans K, Kuiper M: BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. *Bioinformatics* 2005, 21(16):3448-3449.

22. Bader GD, Hogue CW: An automated method for finding molecular complexes in large protein interaction networks. *BMC Bioinformatics* 2003, 4:2.

23. Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F et al: Reprogramming of mouse and human cells to pluripotency using mature microRNAs. *Cell Stem Cell* 2011, 8(6):633-638.

24. Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ: A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. *Genes Dev* 2009, 23(7):837-848.

25. Cho EG, Zaremba JD, McKercher SR, Talantova M, Tu S, Masliah E, Chan SF, Nakanishi N, Terskikh A, Lipton SA: MEF2C enhances dopaminergic neuron differentiation of human embryonic stem cells in a parkinsonian rat model. *PLoS One* 2011, 6(8):e24027.

26. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB et al: Genome-scale DNA methylation maps of pluripotent and differentiated cells. *Nature* 2008, 454(7205):766-770.

27. Lewis BP, Burge CB, Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. *Cell* 2005, 120(1):15-20.

28. Wang A, Huang K, Shen Y, Xue Z, Cai C, Horvath S, Fan G: Functional modules distinguish human induced pluripotent stem cells from embryonic stem cells. *Stem Cells Dev* 2011, 20(11):1937-1950.

29. Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I: MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. *Nature* 2008, 455(7216):1124-1128.

30. Guo X, Liu Q, Wang G, Zhu S, Gao L, Hong W, Chen Y, Wu M, Liu H, Jiang C et al: microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming. *Cell Res* 2013, 23(1):142-156.

31. Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, Schwind S, Pang J, Yu J, Muthusamy N et al: MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. *Blood* 2009, 113(25):6411-6418.

32. Wang A, Du Y, He Q, Zhou C: A quantitative system for discriminating induced pluripotent stem cells, embryonic stem cells and somatic cells. *PLoS One* 2013, 8(2):e56095.

33. Li H, Durbin R: Fast and accurate long-read alignment with Burrows-Wheeler transform. *Bioinformatics* 2010, 26(5):589-595.

34. Wang A, Al-Kuhlani M, Johnston SC, Ojcius DM, Chou J, Dean D: Transcription Factor Complex AP-1 Mediates Inflammation Initiated by Chlamydia pneumoniae Infection. *Cell Microbiol* 2012.
Figure legends

Figure 1. Overall view. A, The concept of miRNA and protein interactions. B, Workflow of this study. C, Overall view of the entire network constructed by this study. D, A sample of entire network contents shows direct interactions between miRNAs and pluripotent core factors (NANOG, POU1F5, and SOX2). Nodes denote miRNAs or proteins as labeled; red node represents the gene up-regulation in pluripotent stem cells, green node as down-regulation, and white node as insignificant expression. Edges represent interactions; red edge represents miRNA targeting proteins and green edge represents the binding of proteins with the regulatory elements of miRNAs. This labeling strategy applies to all figures in this study.

Figure 2. MiRNAs primarily repress developmental processes in pluripotent stem cells. A, Up-regulated miRNAs primarily target a developmental module, which includes 6 primary sub-modules functioning for development as highlighted in cycles. B, The key modules targeted by the top 5 important miRNAs (Table S4). C, the key modules were significantly and abundantly enriched in the developmental category.

Figure 3. Modules targeted by miRNA-302/367 cluster and miRNA-294. A, modules targeted by the miRNA-302/367 cluster and their functional enrichment was shown in B. C, a module targeted by miRNA-294, and D, its functional enrichment.

Figure 4. Pathways from activated miRNAs to pluripotent core factors. A, B, C, D,
the shortest paths from miR-302b, miR-367, miR-294, and miR-292-5p respectively to the pluripotent core factors. None of these top overexpressed miRNAs directly binds to any of these core factors. E, Core factors directly targeted by activated miRNAs in stem cells.

Figure 5. Pluripotent genes targeted by over-expressed miRNAs in stem cells. A. Venn diagram of pluripotent genes targeted by both up-and down-regulated miRNAs. B, activated modules commonly targeted by both up- and down-regulated miRNAs. The enlarged nodes represent the highly connected targets that are targeted by both up- and down-regulated miRNAs in stem cells, and they work for pluripotent signal pathways. C, down-regulated modules targeted by over-expressed miRNAs in stem cells. D, activated modules targeted by the miRNA-302/367 cluster in stem cells. E, an activated network targeted by miR-294.

Figure 6. MiRNAs abundantly target DNA methylation systems. A, DNMT3A was targeted by 30 up-regulated miRNAs and was ranked in the top 1% of the up-regulated miRNA targets. The network nodes (miRNA targets) were plotted against the node degree (miRNA binding number only). B, the DNMT3A network targeted by miRNAs. The most important miRNAs, including the miRNA-302/367 and miR-290-295 cluster, are found in the DNMT3A network. C, miRNAs target another methylation enzyme DNMT1.
Figure 7. MiRNAs directly target a histone complex. The MiR-290-295 cluster heavily attacks the MEF2C.

Figure 8. DNA methylation mediates miRNA activations in stem cells. A, The methylation levels upstream and downstream from the miRNA start site. Down-regulated miRNAs have significantly higher methylation in upstream region when compared with up-regulated miRNAs. B, Detailed methylation profiling for regions that are 2000bp upstream from the activated miRNAs. The top 30 down-regulated miRNAs (Table S2) have higher methylation around -1000bp (green highlighted in middle panel) than that of the top 30 up-regulated miRNAs (Table S2, upper panel). The methylation profiling of a single down-regulated miRNA-133 as a representative example (bottom panel). C. Negative correlation between DNA methylation and miRNA expression. Red line represents regression line.

Figure 9. A system view of miRNAs primary mechanistic roles in maintaining pluripotency in pluripotent stem cells. MiRNAs directly repress both the DNA methylation system and the development, while indirectly regulate pluripotency genes. Reduced DNA methylation activates the miRNAs and pluripotent core factors for pluripotency. The activated circuit between miRNAs and DNA methylation, as well as the development inhibition, help stem cells to maintain the pluripotent state, see text for detail. The solid lines are directly derived from the present study and they represent direct interactions and the dash dark line represents indirect interactions, while dash green lines denote evidences from reference papers.
Systematically Dissecting the Global Mechanism of MiRNA functions in Stem Cells

Anyou Wang 1*, et al

Supplemental materials

Figure S1, Functional enrichments of all targets that are targeted by all up- and down-regulated miRNAs. A, Up-regulated miRNAs. B, down-regulated miRNAs.

Figure S2, total 17 out of top 20 important miRNAs target developmental genes.

Figure S3, down-regulated miRNAs mediate metabolism in stem cells.

Figure S4, all pluripotent genes targeted by up-regulated miRNAs (A) and down-regulated miRNAs (B) in stem cells.

Figure S5. An activated network targeted by down-regulated miRNAs.

Figure S6. Activated miRNAs targeting DNA methylation systems. A. Up-regulated miRNAs targeting DNMT3A. B, Down-regulated miRNAs targeting DNMT3A.

Table S1, Data sources

Table S2, a list of miRNAs that are frequently and significantly differential expressed between stem cells and somatic cells.

Table S3, a list of genes coding for proteins that are frequently and significantly differential expressed between stem cells and somatic cells.

Table S4, a list of top 20 important miRNAs
Figure 1

A. miRNA and protein interactions

B. Workflow

Network construction (CLIP-seq, ChIP-seq)

Enriched by expression data (RNA-seq, microarray)

Network dissections of miRNA regulatory mechanisms

Activated miRNAs modulated by DNA methylation (Next-Gen bisulfite sequencing)

C. Entire network

D. A section of entire network
Figure 6

A

B

C

Degree

Upregulated miRNA target

DNMT3A

EIF4G2

mmu-miR-361

mmu-miR-210

mmu-miR-96

mmu-miR-467a

mmu-miR-130a

mmu-miR-363

mmu-miR-25

mmu-miR-130b

mmu-miR-32

mmu-miR-708

mmu-miR-191

mmu-miR-30c

mmu-miR-690

mmu-miR-150

mmu-miR-367

mmu-miR-101a

mmu-miR-292-3p

mmu-miR-709

mmu-miR-136

mmu-miR-669b

mmu-miR-741

mmu-miR-126p

mmu-miR-101b

mmu-miR-543

mmu-miR-106b

mmu-miR-295

mmu-miR-499

mmu-miR-106a

mmu-miR-20b

mmu-miR-291a-3p

mmu-miR-106b

mmu-miR-126-3p
Figure 8

A

Upstream Downstream

Mean of percentage methylation in 2000bp

p-value = 0.1899

p-value = 3.685e-05

B

Up-regulated miRNA methylation in stem cells

Down-regulated miRNA methylation in stem cells

An example of down-regulated miRNA

C

Relationship between methylation and miRNA expression

p-value < 0.04793
Pearson correlation coefficient -0.349937

Mean of percentage methylation

-2000 -1000 0

Fold change of miRNA Expression

0.0 10 20 30 40

Percentage methylation mean of upstream ~1150bp to ~850bp
Total 17 out of top 20 miRNAs target developmental genes
Down-regulated miRNAs mediate metabolism and pluripotency
Pluripotent genes targeted by up-regulated miRNAs in stem cells

Pluripotent genes targeted by down-regulated miRNAs in stem cells
GEO number	Platform	measurement
GSE25310	CLIP-seq	ES miRNA targets
GSE11724	ChIP-seq	TF binding
GSE11431	ChIP-seq	TF binding
GSM278905	RRBS	ES DNA methylation
GSM278902	RRBS	TKO methylation
GSM539867	RNA-Seq	mouse embryonic fibroblast cells [09-002]
GSM539866	RNA-Seq	mouse embryonic stem cells [09-002]
GSE30012	Mouse430_2	ES miRNA expression
GSE25310	GPL11410	micrRNA and mRNA expression
GSM231739	Agilent-GPL2872	ES gene expression TKO/WT
GSE15267	AffymetrixGPL1261	Gene expression somatic cells vs stem cells
GSE14012	AffymetrixGPL1261	Gene expression somatic cells vs stem cells
GSE10871	AffymetrixGPL1261	Gene expression somatic cells vs stem cells
GSE14790	AffymetrixGPL1261	Gene expression somatic cells vs stem cells
GSE16062	IlluminaGPL6885	Gene expression somatic cells vs stem cells
Table S2 miRNAs differentially expressed between stem cell vs somatic cells with high frequency >25% of observations

geneID	foldChange.Stemcell-vs-SomaticCells
mmu-miR-291a-3p	23.38772103
mmu-miR-292-5p	20.9773225
mmu-miR-295	18.61514609
mmu-miR-290	16.83638073
mmu-miR-291b-5p	16.74397919
mmu-miR-294	16.33979504
mmu-miR-293	15.71944751
mmu-miR-291a-5p	10.70302558
mmu-miR-291b-3p	8.775662583
mmu-miR-205	8.656636965
mmu-miR-292-3p	7.513040922
mmu-miR-200a	7.476828136
mmu-miR-20b	7.113430578
mmu-miR-429	6.970376253
mmu-miR-93	6.320621674
mmu-miR-302b	6.319533201
mmu-miR-124a	6.210366092
mmu-miR-141	6.112532011
mmu-miR-32	5.892597823
mmu-miR-25	5.664093286
mmu-miR-106a	5.660199796
mmu-miR-96	5.576097803
mmu-miR-690	5.56673137
mmu-miR-210	5.494180249
mmu-miR-182	5.380304319
mmu-miR-339	5.178218031
mmu-miR-33	5.150748639
mmu-miR-19b	5.130661066
mmu-miR-302d	4.786597786
mmu-miR-195	4.773097795
mmu-miR-297b	4.742119218
mmu-miR-499	4.699375408
mmu-miR-106b	4.67924418
mmu-miR-712*	4.616388282
mmu-miR-101b	4.615452785
mmu-miR-706	4.57798951
mmu-miR-672	4.425689091
mmu-miR-20a	4.355849211
mmu-miR-302	4.187271105
mmu-miR-142-3p	4.185529766
mmu-miR-19a	4.154314537
mmu-miR-450b	4.143615059
mmu-miR-200c	4.139625599
mmu-miR-17-5p	4.015734124
miRNA	Score
---------------	-------------
mmu-miR-669b	4.0056
mmu-miR-363	4.0044
mmu-miR-130b	3.9212
mmu-miR-142-5p	3.7716
mmu-miR-708	3.7578
mmu-miR-301b	3.6711
mmu-miR-297	3.6498
mmu-miR-711	3.6427
mmu-miR-135b	3.6131
mmu-miR-145	-3.6891
mmu-miR-125b	-3.7505
mmu-miR-675-3p	-3.7758
mmu-miR-31	-3.7899
mmu-miR-431	-3.8278
mmu-miR-133a	-3.9316
mmu-miR-434-5p	-3.9597
mmu-miR-29a	-4.1238
mmu-miR-125a	-4.1685
mmu-miR-27b	-4.1812
mmu-miR-206	-4.1991
mmu-miR-222	-4.2067
mmu-miR-329	-4.2268
mmu-let-7i	-4.2536
mmu-miR-221	-4.2776
mmu-miR-132	-4.3274
mmu-miR-345	-4.3627
mmu-miR-452	-4.4939
mmu-let-7d	-4.7333
mmu-miR-181a*	-4.8900
mmu-miR-212	-5.0301
mmu-miR-152	-5.0919
mmu-miR-143	-5.2519
mmu-miR-433-5p	-5.3534
mmu-let-7e	-5.6272
mmu-miR-322	-5.6275
mmu-miR-380-5p	-5.8402
mmu-miR-666	-5.9634
mmu-miR-365	-6.0539
mmu-miR-10a	-6.4632
mmu-miR-24*	-6.5014
mmu-miR-99b	-6.5406
mmu-miR-98	-6.8241
mmu-miR-28	-6.9855
mmu-miR-23a	-7.2582
mmu-miR-675-5p	-7.3191
mmu-miR-224	-7.3832
mmu-miR-133b	-8.3319
mmu-miR-155 -12.36089174
Table S3. Genes differentially expressed between stem cells and somatic cells with high frequency >50% of observations

GB_ACC	ENTREZ_GI Gene.Symbol	logFoldChange.ESvsSC	
BC006640	20315 Cxcl12	-7.932773867	
BF225802	16011 Igfbp5	-7.7652649	
AW550625	12825 Col3a1	-7.7405454	
BF227507	12843 Col1a2	-7.50996995	
BB542051	18295 Ogn	-7.13772715	
U08020	12842 Col1a1	-7.025342217	
NM_013655	20315 Cxcl12	-6.8464668	
NM_011581	21826 Thbs2	-6.743730283	
AV229424	12832 Col5a2	-6.6650371	
BB051738	18933 Prrx1	-6.523803517	
M65143	16948 Lox	-6.263793183	
AF007248	14118 Fbn1	-6.234405867	
NM_009933	12833 Col6a1	-6.142877467	
NM_007993	14118 Fbn1	-6.087729233	
BC019502	12111 Bgn	-6.042548083	
AB015978	18414 Osmr	-6.018220117	
BE197945	20324 Sdpr	-5.902171217	
NM_007729	12814 Col11a1	-5.888984717	
AW049660	18032 Nfix	-5.878165733	
NM_010514	16002 Igf2	-5.805814817	
BB197591	54216 Pcdh7	-5.793524283	
AV226618	13837 Epha3	-5.703367667	
AF378762	69538 Antxr1	-5.671588117	
M68513	13837 Epha3	-5.646988233	
BC002064	19242 Ptn	-5.631718783	
NM_011340	20317 Serpinf1	-5.561155483	
BB795075	18214 Ddr2	-5.5521091	
BC023060	216616 Efemp1	-5.541377517	
BF144658	21808 Tgfb2	-5.516599417	
BB250384	22329 Vcam1	-5.511377133	
AB029929	12389 Cav1	-5.478985417	
D67076	11504 Adams1	-5.469247617	
BB315728	18032 Nfix	-5.460392167	
BI794771	12842 Col1a1	-5.456734267	
L06502	18933 Prrx1	-5.448142767	
BG793483	21813 Tgfb2	-5.434682533	
BB532202	14264 Fmod	-5.394454433	
BB361162	22771 Zic1	-5.383117233	
AI931862	12111 Bgn	-5.378983617	
BC014690	21809 Tgfb3	-5.302384367	
NM_018865	22402 Wisp1	-5.29682725	
AV064339	20324 Sdpr	-5.2953667	
BG067986	54216 Pcdh7	-5.295023283	
NM_030888	81799 C1qtnf3	-5.279631533	
Gene Accession	Gene Symbol	log2FoldChange	
----------------	-------------	----------------	
NM_007833	Dcn	-4.66888083	
AF357006	Loxl1	-4.66139267	
BC011507	Samd4	-4.6606821	
BB493031	Gpc6	-4.659793267	
BI249259	Nfix	-4.659746767	
NM_054044	Gpr124	-4.652361	
BC001999	Emp3	-4.64868717	
BB041180	Lhx9	-4.63140583	
BI690209	Parva	-4.603038383	
AK018128	F15Ri	-4.599817333	
AI595932	Mef2c	-4.571089667	
AI463873	Nr2f2	-4.558937633	
BG075699	Flrt2	-4.550595967	
AV149705	Lhfp	-4.537199083	
AK014221	Bmp3	-4.536276183	
BB468025	Pgcp	-4.535907333	
BB363812	Eya4	-4.52926855	
AK020118	Gpc6	-4.5247486	
BM217996	Bicc1	-4.521218667	
NM_009636	Aebp1	-4.509546617	
AA987181	Hoxa9	-4.496607467	
NM_011766	Zfpm2	-4.496262983	
AV315205	Alcam	-4.495887367	
U95030	Alcam	-4.4742135	
BF147716	Mmp2	-4.463715417	
NM_008608	Mmp14	-4.4584154	
AV332957	Shox2	-4.44107	
AK008112	Prx1	-4.429082483	
BB787243	Igfbp4	-4.408829283	
M27130	Cd44	-4.408205433	
NM_023118	Dab2	-4.401669267	
BBB17332	Flrt2	-4.401003567	
D63423	Anxa5	-4.3868292	
BC014870	Parp3	-4.368841483	
U03425	Egfr	-4.353990467	
NM_011150	Lgals3bp	-4.34716645	
BB229377	Eln	-4.3469066	
BF681826	Angptl2	-4.34243245	
AV369812	Egfr	-4.340586717	
AI385532	Thbs1	-4.3388455	
AK012411	Serpinf1	-4.334218667	
NM_016900	Cav2	-4.327267733	
NM_007471	App	-4.3209575	
BC026153	Epha7	-4.322886683	
BE652876	Fads3	-4.31762715	
NM_022563	Ddr2	-4.317137833	
BC005490	App	-4.311839833	
Accession	Locus	Description	Log2 Fold Change
-----------	-------	-------------	-----------------
AY083458	235505	Cd109	-4.310650267
AW146109	12505	Cd44	-4.309742383
AF022889	268977	Ltbp1	-4.293179333
BF780807	23972	Papss2	-4.2837158
NM_010222	14231	Fkbp7	-4.283483917
BB765827	74761	Mxra8	-4.28266945
BB369191	27528	DOH4S114	-4.258134683
NM_011658	22160	Twist1	-4.252172233
BC022679	52552	Parp8	-4.249244683
BC024375	14600	Ghr	-4.235411317
AW558570	13617	Ednra	-4.235029783
NM_010151	13865	Nr2f1	-4.23268835
BB053506	20718	Rbms3	-4.227119367
BB464523	12293	Cacna2d1	-4.2176231
AI325255	14230	Fkbp10	-4.2139772
NM_009365	21804	Tgfb1i1	-4.2037574
AW537708	18595	Pdgfra	-4.201673433
BG244279	26360	Angptl2	-4.19122825
AV021105	208647	Creb3l2	-4.189322833
NM_021474	58859	Efemp2	-4.172999333
AW558468	23010	Npr2	-4.170204383
BM230959	22973	Slc25a24	-4.15558595
NM_013519	14234	Foxc2	-4.150217817
BG248060	12153	Bmp1	-4.1456309
AK011935	67155	Smarca2	-4.1424534
BC009660	109042	Prkcdbp	-4.138494033
NM_010730	16952	Anxa1	-4.137948167
NM_017464	18003	Nedd9	-4.12548817
NM_020606	57342	Parva	-4.117250083
NM_054042	70445	Cd248	-4.1162995
AW107196	74480	Samd4	-4.089650683
NM_008520	16998	Ltbp3	-4.088398567
NM_007400	11489	Adam12	-4.087465183
BB138485	70676	Gulp1	-4.06900915
BB041237	17389	Mmp16	-4.0669223
NM_009152	20346	Sema3a	-4.06663545
AK007400	77889	Lbh	-4.065124233
BC027199	23328	Lrrk1	-4.0638856
BC003726	14789	Leprel2	-4.061919033
BM220576	53623	Gria3	-4.059143167
BM570006	20564	Slit3	-4.050010933
NM_007472	11826	Aqp1	-4.049342233
BB329489	12406	Serpinh1	-4.035949167
BC024358	22004	Tpm2	-4.027790067
BB371406	57265	Fzd2	-4.024201683
BI106777	12293	Cacna2d1	-4.016322467
BB484759	22402	Scarf2	-3.995337517
Gene ID	Accession	Description	Value
----------	-----------	-------------	--------
BC025145	19266	Ptprd	-3.96890555
AK004519	56726	Sh3bg1	-3.91509523
NM_010221	14230	Fkbp10	-3.91402667
BB114067	21345	Tagln	-3.90768233
NM_010517	16010	Igfbp4	-3.89571617
AV164956	22418	Wnt5a	-3.88912501
U71189	13592	Ebf2	-3.88362473
AF339910	18605	Enpp1	-3.88293505
BQ173967	13640	Efna5	-3.88255346
AV246882	235505	Cd109	-3.87937775
AK003186	22004	Tpm2	-3.87505733
NM_009821	12394	Runx1	-3.86665070
NM_010743	17082	Il1r1	-3.86581388
BB324823	16998	Ltbp3	-3.86059405
BC025514	102644	Oaf	-3.85705678
NM_007801	13036	Ctsh	-3.85513275
NM_010581	16423	Cd47	-3.85495011
AV238225	16905	Lmna	-3.85100580
AK018679	16423	Cd47	-3.83208426
BG073383	15410	Hoxb3	-3.82093346
NM_026405	67844	Rab32	-3.81980867
BF144687	70676	Gulp1	-3.81964405
NM_019391	16985	Lsp1	-3.81878645
NM_013586	16950	Loxl3	-3.81346631
AI415741	94352	Loxl2	-3.81203260
BI220012	12406	Serpinh1	-3.81131117
NM_007802	13038	Ctsk	-3.80463886
BB832504	18028	Nfib	-3.80108311
BC013463	15430	Hoxd10	-3.784799
M22479	22003	Tpm1	-3.78367716
BG963150	20563	Slit2	-3.78354121
BC013560	12827	Col4a2	-3.77435816
NM_008984	19274	Ptprm	-3.76913271
BB233088	21928	Tnfaip2	-3.7684148
BC008277	13617	Ednra	-3.76796817
BI111620	21859	Temp3	-3.76779495
BB475194	23794	Adamts5	-3.76137165
NM_021355	14264	Fmod	-3.73608273
NM_007985	12306	Anxa2	-3.73101533
BFS78055	229731	Scl25a24	-3.72529593
BB547877	20563	Slit2	-3.71672981
NM_016753	17035	Lxn	-3.70538055
AV016275	20742	Spnb2	-3.70117383
NM_008495	16852	Lgals1	-3.69910150
AW551930	83675	Bicc1	-3.69841417
AK018466	207181	Rbms3	-3.68959625
NM_008987	19288	Ptx3	-3.68735936
Accession	Symbol	Description	Log2 Fold Change
-----------	--------	-------------	-----------------
AK003819	74777	Sepn1	-3.6822946
AW412729	12816	Col12a1	-3.663389833
BC020152	223272	Itgb1	-3.657189217
Y07687	18028	Nfib	-3.657044833
NM_011985	26561	Mmp23	-3.644890267
NM_009378	21824	Thbd	-3.6371471
BF451748	107589	Mylk	-3.626035767
BM251152	13003	Vcan	-3.620597833
BB468082	18481	Pak3	-3.6195631
NM_007899	13601	Ecm1	-3.6077534
BB522674	20541	Slc8a1	-3.606644633
NM_019989	56726	Sh3bgrl	-3.60465905
BC023448	23888	Gpc6	-3.603901967
AK002516	11857	Arhgdib	-3.6024453
BF100813	13618	Ednrb	-3.594391017
NM_011777	22793	Zyx	-3.594158817
BB326929	58194	Sh3kbp1	-3.582396833
BB248904	56726	Sh3bgrl	-3.58152235
BB027759	231997	Fkbp14	-3.5728165
AU021035	15529	Sdc2	-3.570693117
AI481026	29817	Igfbp7	-3.56210855
NM_008393	16373	Irx3	-3.560717517
BB526042	320452	P4ha3	-3.5487859
BB100920	17118	Marcks	-3.53907495
BB097480	223254	Farp1	-3.534434933
BI687652	18028	Nfib	-3.524464033
BG868949	17122	Mxd4	-3.514140767
NM_020561	57319	Smpdl3a	-3.51306225
AF059567	12579	Cdkn2b	-3.5073857
NM_009472	22253	Unc5c	-3.505214767
NM_009794	12334	Capn2	-3.498667433
NM_009627	11535	Adm	-3.48734415
BQ175796	18481	Pak3	-3.4733871
BC005569	58809	Rnase4	-3.460646467
BB327018	14118	Fbn1	-3.456580617
NM_010212	14200	Fhl2	-3.453920533
BB313689	20541	Slc8a1	-3.452686383
AK019164	17475	Mpdz	-3.437966567
AW702161	11745	Anxa3	-3.4355384
BC027084	259300	Ehd2	-3.43459445
BC005686	13713	Elk3	-3.43373535
BB065799	240725	Sulf1	-3.429931133
NM_130449	140792	Colec12	-3.424621383
BB823350	19092	Prkg2	-3.412943967
AI642438	16852	Lgals1	-3.4127125
NM_007855	13345	Twist2	-3.412527233
BB787292	14302	Frk	-3.411315533
Gene ID	Gene Symbol	Description	Log2 Fold Change
------------	-------------	-------------	-----------------
BB354684	Trib2	-3.410151567	
AF117951	Loxl2	-3.400751667	
BCO25897	Zadh2	-3.398803383	
NM_019877	Copz2	-3.386908433	
AV162270	Dpysl3	-3.3799255	
D63383	Sim2	-3.378190883	
NM_008546	Mfap2	-3.375675317	
NM_008008	Fgf7	-3.37393283	
BQ174721	Sertad4	-3.37195165	
BB377873	Cspg4	-3.368490867	
BB542535	Dap	-3.3666448	
BC024876	Ehd2	-3.36419667	
L24755	Bmp1	-3.36024783	
X66083	Cd44	-3.35473553	
AW547821	Meis1	-3.3441435	
BC016447	Creb3l1	-3.34256433	
BM213516	Spn2b	-3.33549655	
BM220880	Foxp1	-3.32646233	
AK004853	Dkk3	-3.31433147	
NM_008809	Pdgfrb	-3.31185265	
AV245241	Ehd2	-3.30410023	
NM_020007	Mbnl1	-3.289487817	
BCO28307	Srpx2	-3.28413355	
AA709993	Serf1	-3.27546543	
BC006737	Casp8	-3.272708067	
BB151715	Ets1	-3.27110016	
BI452727	Fstl1	-3.26508275	
BB003393	Tnc	-3.2549266	
BB535494	Nedd9	-3.2516385	
BB779859	Hoxc10	-3.2440814	
BI248947	Cald1	-3.241609283	
L26349	Tnrsf1a	-3.2395265	
BCO12674	Ptf1	-3.22872136	
U30244	Efnb2	-3.22523617	
AK004598	Armcx3	-3.218577033	
BB075247	Ptprd	-3.21706471	
BB76878	Col16a1	-3.216479983	
NM_019586	Ube2j1	-3.216275217	
NM_008761	Fxyd5	-3.21540255	
M24849	Vim	-3.212612833	
BB366804	Nxn	-3.208821517	
AV031691	Zic1	-3.207325183	
AK003303	Ptprd	-3.1900006	
NM_009252	Serpina3n	-3.1897822	
BM233698	Csf1	-3.186593767	
AK018666	Crim1	-3.184091083	
NM_013813	Epb4.113	-3.17559455	
Accession	Gene Symbol	Log2 Fold Change	
-----------	-------------	-----------------	
BB097063	Ldb2	-3.167842717	
BG070361	Pbx1	-3.16060585	
NM_023564	Plscr3	-3.156913317	
BC016893	Hoxb6	-3.149439067	
BC025602	Rcn3	-3.143586083	
BE628275	Zfp467	-3.129177833	
BB751459	Sulf1	-3.118822083	
NM_023813	Camk2d	-3.106603767	
BE630020	Prnp	-3.099244017	
NM_015786	Hist1h1c	-3.096520833	
NM_010736	Ltbr	-3.096244717	
NM_008380	Inhba	-3.090835667	
AF080900	Sema3f	-3.086323	
AV220340	Pbxip1	-3.08320105	
NM_016846	Rgl1	-3.08172067	
AA510713	Soxs5	-3.08271985	
AV246759	Tgfb2	-3.078846817	
AV238718	Galntl4	-3.07739925	
BB311061	Nelf	-3.07710745	
BM231794	Aldh1l2	-3.071789317	
NM_053147	Pcdhb22	-3.06913275	
AV124445	Ndn	-3.067003683	
AI747133	Capn6	-3.061495833	
NM_009784	Cacna2d1	-3.0553154	
NM_008675	Nbl1	-3.054173417	
X58380	Hmgaa2	-3.053552917	
NM_009468	Dpsyl3	-3.0489959	
NM_019390	Lmna	-3.043480833	
BB533903	Hist1h1c	-3.028666667	
BB250811	Pcolce	-3.026413336	
BE951265	11100360O3R	-3.02614895	
AW546141	Marcks	-3.021924833	
BB825801	Elk3	-3.021571583	
NM_009255	Serpine2	-3.02130325	
BF158638	Col4a1	-3.010500317	
NM_016886	Gria3	-3.003217433	
NM_009925	Col10a1	-3.001262167	
AV278675	Triml1	3.01398255	
BG966751	Etv5	3.0156244	
X67668	Hmgb2	3.020431667	
BB089717	Ccnf	3.022975367	
BB292220	Hic2	3.025155533	
BG069191	Nasp	3.027593567	
BG066754	Eif2s2	3.0295477	
AK019115	Krt42	3.03983065	
AU015121	Ccnb1	3.042294933	
NM_008566	Mcm5	3.058338333	
Accession	Description	Value	
-----------	-------------------	-----------	
NM_019812	Sirt1	3.0642	
NM_020599	Rlbp1	3.0682	
AV280841	D14Ertd668e	3.0786	
BB493242	Nasp	3.0819	
NM_022409	Zfp296	3.0824	
NM_013873	Sult4a1	3.0839	
AF302127	Ripk4	3.0863	
BE650359	Phc1	3.0914	
BM247863	Arid3b	3.1041	
BM935811	Itga6	3.1095	
BG071670	Cdyl2	3.1133	
BC006704	Dyrk3	3.1148	
NM_008628	Msh2	3.1188	
BM196098	Gdf3	3.1294	
NM_020567	Gmnn	3.1298	
AK011289	Cdca7	3.1332	
NM_009426	Trh	3.1339	
BB367422	Liph	3.1340	
BC014474	Lck	3.1405	
NM_011176	St14	3.1422	
BB667216	Vwf	3.1435	
BI739053	Clcn3	3.1595	
NM_011487	Stat4	3.1698	
BQ177140	Amph	3.1718	
NM_008452	Klf2	3.1728	
AF329833	Grtp1	3.2038	
BB540053	C79407	3.2218	
NM_007691	Chek1	3.2292	
BC016095	Klf18a	3.2313	
BC017621	Pim3	3.2367	
U42190	Msh6	3.2424	
NM_027288	Manba	3.2501	
BE951628	C79407	3.2698	
BB125424	Actr3b	3.2700	
AK006509	Cdyl2	3.3047	
NM_010174	Fabp3	3.3091	
NM_053271	Rims2	3.3143	
BG070553	D1Pas1	3.3181	
NM_133664	Lad1	3.3238	
BQ176661	Mkrm1	3.3289	
AF237702	Shmt1	3.3317	
NM_016851	Irf6	3.3338	
AA543734	Tbx3	3.3339	
Accession	Description	Log2FoldChange	
-----------	-------------	----------------	
AK009960	69697 2310057J16Ri	3.9715563	
AF285580	77485 Stk31	3.971668	
NM_007397	11481 Acvr2b	3.974705033	
BC003778	21420 Tcfap2c	4.010026117	
NM_011934	26380 Esrrb	4.057861333	
NM_016907	20732 Spint1	4.0584333	
BC004654	19725 Rfx2	4.07663867	
AV060866	18778 Pla2g1b	4.077706683	
BE133749	54484 Mkrrn1	4.082165	
AF425084	97848 Serpin6c	4.1037625	
AV213552	24074 Tafl7	4.123073	
BQ175337	72685 Dnajc6	4.13664	
AF104416	11828 Aqp3	4.179715783	
BM210256	14106 Foxh1	4.21111117	
NM_023844	67374 Jam2	4.220985	
AK019319	11816 Apoe	4.313206417	
NM_031383	83557 Lin28	4.33894817	
BG084230	66824 Pycard	4.3386605	
AK010826	67374 Jam2	4.35834267	
AF330212	12310 Calca	4.358796767	
BQ173923	12808 Cobl	4.384203133	
M18775	17762 Mapt	4.42236835	
BC027285	68713 Ifitm1	4.4224295	
AK021186	77485 Stk31	4.436390117	
NM_009903	12740 Clmd4	4.437383	
NM_009749	12069 Bex2	4.4578505	
NM_009434	22113 Phlda2	4.47461333	
BC017609	18424 Otx2	4.492426433	
BC023498	72027 Slc39a4	4.528567183	
AA215046	67080 1700019D03R	4.535403217	
BC004037	22256 Ung	4.580378817	
NM_007515	11989 Slc7a3	4.595658	
BC049300	243574 Kbtbd8	4.605572983	
NM_016754	17907 Mylpf	4.613079	
AV277440	18020 Nfatc2ip	4.6769755	
BI556771	76974 1190003J15Ri	4.717042917	
BB559861	60510 Syt9	4.853818083	
BB218107	16792 Laptm5	4.885893	
NM_030676	26424 Nr5a2	5.081557	
NM_008108	14562 Gdf3	5.14285725	
NM_133982	102614 Rpp25	5.190646483	
BG245669	14275 Folr1	5.20975025	
NM_008652	17865 Mybl2	5.21072917	
AV095095	17865 Mybl2	5.318561367	
NM_009482	22286 Utf1	5.421930317	
AK006110	67080 1700019D03R	5.43684025	
C79957	13511 Dsg2	5.656151683	
Accession	Length	Gene	Expression
-----------	--------	------	------------
BB739342	58198	Sall1	5.673027467
BB414515	20527	Slc2a3	5.699811883
BG092030	13511	Dsg2	6.010094817
BG064756	99377	Sall4	6.034042167
BC006054	103551	E130012A19R	6.06322625
AF220524	54427	Dnmt3l	6.105105033
NM_009477	22271	Upp1	6.128136833
BB067210	73693	Dppa4	6.18730683
M75135	20527	Slc2a3	6.2282474
X69698	20527	Slc2a3	6.23042505
AV029604	22773	Zic3	6.296894567
NM_021480	58865	Tdh	6.529936483
AF176530	50764	Fbxo15	6.66547415
AK005720	71827	Lrrc34	6.691872117
BB550860	21420	Tcfap2c	6.771666083
AK010400	406217	Bex4	6.816883167
AV212609	353283	Eras	6.834029183
AV298358	381269	Mreg	6.872264583
NM_009337	21432	Tcl1	6.879203683
BB732077	22773	Zic3	6.953696833
AV099404	245128	AU018091	7.054458833
U31967	20674	Sox2	7.296394917
BB709552	14175	Fgf4	7.45980965
AV333667	26380	Esrrb	7.469081817
NM_007430	11614	Nr0b1	7.59146485
BB041571	381591	L1td1	7.663746183
NM_009556	22702	Zfp42	7.9192687
NM_009864	12550	Cdh1	7.9907572
NM_013633	18999	Pou5f1	8.090839917
AK010332	71950	Nanog	8.503540967
AV294613	21667	Tdgf1	8.80162735
miRNA Name			

mmu-miR-290			
mmu-miR-293			
mmu-miR-291a-3p			
mmu-miR-292-5p			
mmu-miR-295			
mmu-miR-294			
mmu-miR-291a-5p			
mmu-miR-291b-5p			
mmu-miR-302b			
mmu-miR-124a			
mmu-miR-182			
mmu-miR-200a			
mmu-miR-20b			
mmu-miR-302d			
mmu-miR-106a			
mmu-miR-183			
mmu-miR-135b			
mmu-miR-690			
mmu-miR-142-3p			
mmu-miR-302			