Хронический посттравматический остеомиелит как проблема современной травматологии и ортопедии (обзор литературы)

С.П. Миронов, А.В. Цискарашвили, Д.С. Горбатюк

Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр травматологии и ортопедии имени Н.Н. Приорова» Министерства здравоохранения Российской Федерации, г. Москва, Россия

В работе рассматривается проблема хронического остеомиелита с позиций, в ряде случаев обходимых либо не учитываемых практикующими врачами. Представлены микробиологические, клинико-фармакологические, патоморфологические и патофизиологические аспекты воспалительного процесса костной ткани. В представленном обзоре также изложены иммунологические особенности течения хронического остеомиелита, а также современный взгляд на данное заболевание как на междисциплинарную проблему.

Ключевые слова: хронический остеомиелит, антибиотикотерапия, резистентность микроорганизмов, воспаление, биохимический каскад, микробные биопленки, инфекционный процесс костной ткани, клетки-персистеры, патоморфология хронического остеомиелита, остеобласт, остеокласт,

Staphylococcus aureus, иммунология

ВВЕДЕНИЕ

Хронический остеомиелит в настоящее время считается одним из тяжелейших заболеваний опорно-двигательного аппарата, несмотря на достигнутый уровень развития медицинской помощи [1, 2]. Число больных остеомиелитом, по данным различных авторов [3, 4], составляет 5–5 % от числа пациентов с заболеваниями костей в целом. При этом инвалидизация пациентов достигает 50–90 %. Проблема хронического остеомиелита требует междисциплинарного подхода с обязательным участием не только травматологов-ортопедов,

но также клинических фармакологов, микробиологов, специалистов в области биохимии и остеопороза. За последние годы в литературе появляется информация о микробиологических, биохимических, иммунологических исследованиях, позволяющая пересмотреть привычные подходы к лечению данного заболевания. Попыткой обобщить имеющиеся данные и существенно углубить понимание проблемы хронического посттравматического остеомиелита является данный обзор литературы.

МАТЕРИАЛЫ И МЕТОДЫ

Обзор литературы был проведен в сентябре–октябре 2018 года по базе научных статей PubMed. Поиск проводился по ключевым словам: chronic osteomyelitis, staphylococcus aureus, inflammation, osteoblast, antibiotics, microbiology, immunology, osteoporosis. Из полученной выборки отбирались те статьи, которые соответствовали тематике исследования, предпочтение отдавалось работам 2010–2018 гг. включительно.

В случае необходимости в указанную выборку добавлялись более ранние работы, раскрывающие те аспекты лечения хронического посттравматического остеомиелита, которые остаются неизменными и актуальными на сегодняшний день.

Для уточнения основных аспектов работы и получения дополнительной информации производился целевой поиск работ по ссылкам, представленным в уже найденных материалах. Данные работы включены в список литературы на общих основаниях.

Особенности и сущность хронического посттравматического остеомиелита

Остеомиелит как заболевание: общеклинические сведения

Инфекционный процесс в целом определяется как антагонистическое взаимодействие микропункциона и микроорганизмов [5]. Пристальное внимание к нему обусловлено не только непрерывной эволюцией обоих

Миронов С.П., Цискарашвили А.В., Горбатюк Д.С. Хронический посттравматический остеомиелит как проблема современной травматологии и ортопедии (обзор литературы) // Гений ортопедии. 2019. Т. 25, № 4. С. 610-621.

DOI 10.18019/1028-4427-2019-25-4-610-621
антагонистов, но также и тем, что появление и развитие новых методов лечения, связанных с имплантацией систем и устройств, неизбежно сталкивается с проблемами микробной колонизации. Непрерывная же эволюция как микро-, так и микроорганизм влечет за собой появление новых клинических и патогенетических особенностей и форм уже изученных процессов. В травматологии и ортопедии данная проблема является, вероятно, даже более актуальной, чем во многих других направлениях медицины, в связи с необходимостью предупреждения возможных инфекционных осложнений таких манипуляций, как остеосинтез различными фиксаторами, установка имплантатов из различных искусственных материалов, биокомплексных систем, имплантация комплексов тканей [6].

Термин «инфекция» был введен в медицину в 1841 г. Х.В. Гуфеландом (H.W. Hufeland) и терминологически обозначает факт проникновения патогена в микроорганизм (заражение), локализация возбудителя в организме и собственно инфекционный процесс. Последний характеризуется последовательным чередованием ряда стадий состояния инфекционной раны, начиная от собственно повреждения с контаминацией и инфицированием и заканчивая восстановлением поврежденных структур. По данным ряда авторов [7], даже в условиях травматической раны микробная флора является обязательным участником процесса ее очищения, однако при дисбалансе количественного и качественного состава патогена, с одной стороны, и местного иммунитета микроорганизма, с другой, указанная флора становится ведущим компонентом, резко замедляя и искажая течение процессов, происходящих в травматической ране [8], а именно:
• воспаления и очищения раны с участием микро- и микрофлор, Т- и В-лимфоцитов и других клеток иммунной защиты;
• развития грануляционной ткани с формированием новообразованной микрососудистой сети и началом синтеза фибробластами внеклеточного матрикса;
• рубцевания и эпителизации (для ран кожных покровов).
Число больных остеомиелитом, по данным различных авторов [3], составляет 5–5 % от числа пациентов с заболеваниями костей в целом. При этом инвалидизация пациентов достигает 50–90 %. [1]. Частота встречаемости остеомиелита, по данным авторов [9], составляет 44 % от всех гнойно-воспалительных заболеваний конечностей. Указанная частота имеет тенденцию к увеличению, чему способствует рост числа дорожно-транспортных происшествий, военных конфликтов, наращивания работы иммунной системы и действие соответствующих факторов (например, экологических либо вирусных), изменения со стороны микрофлоры, вызывающей гнойно-воспалительный процесс (в частности, изменение спектра антибиотикорезистентности).
Лечение хронического остеомиелита должно быть комплексным и включать в себя следующие мероприятия:
1) корректную противовимбробную терапию;
2) адекватную хирургическую обработку ран (в том числе операционных), соблюдение принципов асептики и антисептики;
3) восстановление кровоснабжения в тканях, подвергающихся риску гнойно-воспалительных изменений либо уже затронутых ими;
4) стабильную фиксацию костных отломков и фрагментов [5].

Хронический остеомиелит можно рассматривать не только как самостоятельное заболевание, но и как одно из тяжелейших посттравматических осложнений при лечении переломов длинных костей. Это вызвано не только значительной частотой открытых переломов с обширными повреждениями мягких тканей и сопутствующей контаминацией микроорганизмами. Так, открытые переломы длинных костей осложняются развитием хронического остеомиелита в 25 % случаев, огнестрельные переломы — в 5,5–27 %, после операций остеосинтеза и эндопротезирования — в 1–17 % (по данным разных авторов) [10]. По данным других работ, около 7 % «чистых» ортопедических операций на костях осложняются развитием послеоперационного остеомиелита [11], но при наличии загрязнений (в различной степени) ран эта частота значительно выше. Так, после лечения открытых переломов длинных трубчатых костей, сопровождающихся обширным разрушением мягких тканей пораженного сегмента, остеомиелит развивается в 21–46,2 % случаев, а после открытой репозиции закрытых переломов — в 7,6–13,2 % случаев [12].

Для длительно существующего хронического гнойно-некротического процесса характерно чередование обострений и ремиссий, затем происходит нарушение опороспособности и функции конечности, а в дальнейшем развиваются патологические изменения не только в костях, но и в мягких тканях [3]. Такие изменения характерны следующие особенности:
• формирование некрозов костной ткани;
• формирование секвестров;
• вовлечение в гнойно-воспалительный процесс окружающих кость мягких тканей;
• заделание и искажение репаративного остеогенеза.

Инвалидизация пациентов с хроническим остеомиелитом обусловлена развитием всех вышеперечисленных изменений, что требует поиска новых и совершенствования имеющихся методов диагностики и лечения.

Невозможно не отметить потенцирующее действие разнообразных имплантатов (в частности, пластин, винтов, стержней) и эндопротезов на риск и скорость развития хронического остеомиелита, так как остеосинтез металлоконструкциями — одна из особенностей современной травматологии и ортопедии. В 30 % случаев возникающая раневая инфекция приводит к необходиности удаления металлоконструкции, развитию хронического остеомиелита, стойкой утрате трудоспособности. Лечение представляет собой длительный, многоэтапный и достаточно тяжелый для пациента процесс, при котором нужного клинического результата удается добиться далеко не всегда [13]. В последнее время отмечается рост частоты заболеваемости хрони-
Гений Ортопедии, том 25, № 4, 2019 г.

ческим остеомиелитом, при этом сохраняется высокая частота рецидивов (10–40 %) [14].

Эпидемиологические, спектр возбудителей и эпидемиология хронического посттравматического остеомиелита

Клинически гнойный процесс при посттравматическом остеомиелите тесно связан с нарушениями микро- и микроциркуляции в очаге поражения костной ткани, при этом развивается дополнительный некроз мягких тканей, непосредственно вовлеченных в зону повреждения. Таким образом, формируется своеобразный «порочный круг», а именно: в силу гнойно-некротического процесса ухудшается регионарное кровообращение и микроциркуляция в тканях, что ведет к локальной ишемии тканей и увеличению объема некротического поражения [15, 16].

У пациентов с хроническим посттравматическим остеомиелитом отмечается как морфологическая деформация тканей, так и обеднение микрососудистого русла в виде снижения количества кровеносных сосудов и уменьшения их калибра. Снижение интенсивности кровоснабжения в пораженном сегменте подтверждается также данными ультразвуковых и радионуклидных методов исследования [15]. В дальнейшем развиваются стеноз и окклюзия сосудов, что существенно затрудняет процессы репарации в зоне имеющегося некротического поражения и, таким образом, способствует инфекционному процессу и перелому, удлиняет сроки консолидации отломков и, таким образом, способствует обострению и увеличению объема некротического поражения [15, 16].

Считается, что возникающая при этом хроническая гипоксия тканей служит причиной иммуносупрессии и, как следствие, синдрома системной воспалительной реакции [11, 18, 19]. При этом происходит неконтролируемая генерализованная продукция провоспалительных цитокинов TNF-α, IL-1β, а также растворимых (плазменных) рецепторов цитокинов, а также усилению спонтанной адгезии лейкоцитов к эндотелию и их миграции через эндотелиальный барьер под действием провоспалительных медиаторов. К клеточным молекулам адгезии, экспрессируемым на эндотелии, относятся следующие: межклеточные молекулы адгезии (ICAM-1 и ICAM-2); тромбоцито-эндотелиальные молекулы адгезии (PECAM-1); сосудистая молекула адгезии (VCAM-1), молекулы главного комплекса гистосовместимости (MHC – main hystocompatibility complex) I и II класса [20, 21, 22].

В настоящее время в литературе данные об эпидемиологии хронического посттравматического остеомиелита имеют определенные ограничения. В проанализированных работах присутствуют сведения о встречаемости (в процентном отношении) данной нозологической формы среди гнойно-воспалительных заболеваний конечночностей [9] или только костей [3] как части опорно-двигательного аппарата. Часто указываются [23] достаточно обобщенные данные, например, о когортах пациентов, находящихся в зоне риска (в частности, с сахарным диабетом либо состоянием иммуносупрессии), при этом исчерпывающая статистика по заболеваемости не приводится. Подобные сведения недостаточно иллюстративны для планирования и организации медицинской помощи на практике, в частности определения требуемых ее объемов.

Также авторы многих работ, посвященных данной тематике (в том числе послуживших основой для написания данного обзора), делают акцент именно на спектр возбудителей хронического посттравматического остеомиелита и их антибиотикорезистентности, однако не сообщают статистику по общей заболеваемости им.

Hogan и соавт. [24] приводят лишь общие данные по частоте встречаемости инфекционных осложнений после хирургических вмешательств по поводу открытых переломов. Однако отмечено, что частота гнойно-воспалительных осложнений, в том числе обсуждаемой нозологии, зависит от степени тяжести перелома – от 1 % при условно «простых» (с малым объемом разрушенной костной ткани) до 55 % при тяжелых переломах с множеством отломков и массивным нарушением кровоснабжения в пострадавшей костной ткани, что создает подходящие условия для развития хронического посттравматического остеомиелита.

Таким образом, эпидемиология хронического посттравматического остеомиелита является предметом для дальнейшего исследования, в отличие от микробиологических, клинических и иных аспектов самого заболевания. Можно предложить к исследованию такие медико-статистические параметры как первичная заболеваемость, заболеваемость хроническим посттравматическим остеомиелитом и процентное соотношение наблюдаемых исходов у: • всех пациентов травматологического профиля; • пациентов с открытыми переломами длинных трубчатых и иных костей; • пациентов с травмами определенных сегментов и анатомических областей, в том числе открытыми переломами; • пациентов с сочетной, комбинированной и множественной травмой.

По мнению большинства авторов, основным патогеном остеомиелита и гнойного артрита взрослого населения является Staphylococcus aureus, который идентифицируется от 50 до 75 % случаев, при этом речь идет об одном виде, а не о более крупном таксоне [27, 28]. При остеомиелите детского возраста преобладают Streptococcus agalactiae, Escherichia coli, Haemophilus influenzae, Kingella kingae [27]. Считается, что доминирование золотистого стафилококка объясняется целым рядом экспрессируемых факторов, способствующих его адгезии к элементам внеклеточного матрикса. S. aureus продуцирует белки-адгезины (FNBP, fibronectin-binding protein; CNA, collagen-binding protein и др.), способствующие фиксации микроорганизма на матриксе и микроорганизмах. S. aureus и другие микроорганизмы обладают рядом экспрессируемых факторов, способствующих их адгезии к элементам внеклеточного матрикса. S. aureus продуцирует белки-адгезины (FNBP, fibronectin-binding protein; CNA, collagen-binding protein и др.), способствующие фиксации микроорганизма на матриксе и микроорганизмах. За ними следуют представители рода Enterobacter, объединяющие множество родов и видов микроорганизмов, также вызывающих остеомиелит достаточно часто (совокупно до 23 % случаев) [29]. Сюда относятся роды Escherichia, Klebsiella, Enterobacter, Citrobacter, Proteus, Providencia, Serratia. За ними следуют представители рода Pseudomonas и семейства Streptococcaceae: первые встречаются в 9 % случаев и являются типичными представителями но- зокomialных инфекций. Вторые являются основными возбудителями инфекционного процесса у детей, однако регистрируются и у взрослых также до 9 % случаев, преимущественно при контактом остеомиелите у больных сахарным диабетом [30].
Наряду со S. aureus, доминирование которого в микробиоценозах инфекционных очагов бессильно, велика доля также коагулуазонегативных стафилококков. Самыми распространенными из них являются S. epidermidis, S. saprophyticus — данные микроорганизмы были выделены соответственно у 21,7 и 20,0 % пациентов, имеющих закрытые и огнестрельные переломы плечевой кости [26].

Hogan и соавт. [24] приводят следующие данные относительно спектра возбудителей хронического посттравматического остеомиелита, несколько отличающиеся: составом доминирующих микроорганизмов. Автры приводят данные как для родов и семей, так и для изолированных видов S. epidermidis и S. aureus с учетом их резистентности либо чувствительности к метициллину, что продиктовано клиническим значением именем данных микроорганизмов: S. epidermidis (MSSE) — 30 %, S. aureus (MSSA) — 29 %, MRSE — 15 %, Enterococcus spp. — 7,0 %, MRSA — 6,0 %, Enterobacter — 5,45 %, Pseudomonas — 5,0 %, другие — 4,6 %.

Патоморфология инфекционного процесса в костной ткани

Течение инфекционного процесса в костной ткани патогенетически и морфологически близко к инфекционному процессу в других тканях, в том числе и раневому процессу. Существенным отличием такого процесса является первичный механизм повреждения костной и параоссальных тканей. Так, в случае развития раневой инфекции пусковым механизмом является механическая травма, а усугубление и тяжесть процесса определяется микробной инвазией, а в случае остеомиелитического процесса повреждающим фактором является микробная агрессия. Патогенез хронического остеомиелита основан на сочетании данных факторов (механической травмы с нарушением микроциркуляции в зоне перелома и собственно микробной инфекции), которые усугубляют друг друга [31]. До настоящего времени не изучена в полной мере проблема тропности микроорганизмов к костным структурам при гематогенных остеомиелитах длинных и плоских костей [32].

Следует отдельно отметить важность участия остебластов в иммунном ответе. Иммунная роль исторически не приписывалась данным клеткам, однако в настоящее время известно об их подобных способностях: они вырабатывают воспалительные цитокины и хемокины в ответ на инфекцию (что было показано на примере S. aureus) [35].

Считается, что при остеомиелитах (в том числе гематогенных) этиологическими возбудителями инфекции является множество разнородных популяций и видов бактерий, что позволяет сделать вывод о том, что возможность инвазии определяется не родовыми и видовыми факторами патогенности, а нарушениями локального гомеостаза, иммунитета, микроциркуляции [34]. Так, в метафизарных отделах длинных трубчатых костей в месте перехода артериального русла в венозный ламинарный кровоток смещается турбулентным, что создает благоприятные условия для локальной микробной инвазии [35]. Дальнейшим определяющим фактором внедрения является относительное обеднение данных отделов сосудистого русла фагоцитирующими клетками и неполноценность эндотелевой выстилки, что позволяет бактериям неизменно транслокироваться в окружающую сосуды ткань [36]. В настоящее время существует точка зрения, что гипергемическая реакция иммунной системы способна создавать условия для дальнейшего распространения инфекции [37]. Это реализуется при помощи каскада биохимических механизмов, начинающихся с продукции провоспалительных цитокинов (IL-1, IL-6, IL-8, ФНО), моноцитами, нейтрофилами [38] и ведущих избыточному накоплению матриксных металлопротеиназ (ММП) [39]. Данные ферменты относятся к семейству цинк-зависимых эндопептидаз, синтезируются и секретируются разнообразными клеточными представителями, включая мезенхимальные стромальные клетки, остеобласть, фибробласты, лейкоциты, фагоциты. Основной их функцией является модулирование обмена белков матрикса, участие в морфогенезе тканей с их резорбцией и ремоделированием, а также процессах адгезии, дифференцировки и пролиферации клеток [39]. В обычных условиях данные ММП синтезируются в незначительных количествах, однако при их гиперпродукции наступает дисбаланс данного механизма, результирующий в резорбции и деградации межклеточного матрикса. Поскольку избыточное количество ММП (в частности ММП-2 и ММП-9, желатиназа-A и желатиназа-B соответственно) нарушает репаративный гистогенез [40], то при продолжающейся микробной инвазии деструктивные изменения в кости непрерывно нарастают. Аналогичная роль ММП описана в процессах разрушения хрящевой ткани при ревматоидных заболеваниях, где ведущая роль принадлежит ММП-1, ММП-8, ММП-13 (другие названия соответственно: коллагеназа 1 типа, коллагеназа нейтрофилов, строма-лизис-3) [39]. Именно данной особенностью можно объяснить быструю гибель гиалинового хряща при переходе инфекционного процесса в полость сустава при остеомиелитических поражениях либо первичных гнойных артритах. С другой стороны, важным фактором патогенеза может быть снижение гуморального и клеточного звеньев иммунитета, что подтверждается данными о высокой смертности ВИЧ-инфицированных пациентов от осложненного гематогенного артрита [41]. Кроме того, некоторые возбудители (прежде всего, S. aureus) могут вызывать гиперпродукцию воспалительных цитокинов остеобластами, изменения и потенциально извращающий иммунный ответ. К числу таких цитокинов относятся ИЛ-6, ИЛ-12, различные хемокины, факторы роста, а также молекулы CD40 и MHC II (рис. 1) [42].

1 MSSE = метициллин-чувствительный стафилококcus epidermidis, метициллин-чувствительный эпидермальный стафилококк.
3 MSSA = метициллин-чувствительный staphylococcus aureus, метициллин-чувствительный эпидермальный стафилококк.
4 MRSE = метициллин-резистентный staphylococcus epidermidis, метициллин-резистентный эпидермальный стафилококк.
5 MRSA = метициллин-резистентный staphylococcus aureus, метициллин-резистентный эпидермальный стафилококк.
6 ФНО = фактор некроза опухолей (TNF, tumor necrosis factor).
Кроме того, при нарушениях иммунитета, характерных для серповидно-клеточной анемии, лимфогранулематоза и других системных заболеваний крови, облегчается инвазия атипичных сальмонелл или грибковых микроорганизмов. Наиболее часто выявляемым возбудителем инфекции — *S. aureus* — обладает целым рядом специфических свойств, в частности, способностью адгезироваться к элементам внеклеточного матрикса [28]. На фоне гиперпродукции металлопротеиназ стафилококк негативно влияет как на матрикс, так и на клеточные элементы костной ткани, активируя различные механизмы дифференцировки и активации остеокластов, угнетая пролиферацию и вызывая апоптотическую гибель остеобластов, результатом чего является прогрессирующий остеолиз, разрушение костной ткани, что способствует дальнейшей инвазии и размножению микроорганизма. Спектр разрушительного действия *S. aureus* на остеобласты обусловлен следующими механизмами:

- снижение пролиферации остеобластов;
- снижение продукции ферментов (лабораторно определяется сниженный уровень щелочной фосфатазы) и компонентов внеклеточного матрикса, таких как коллаген типа 1, остеокальцин, остеопонтин, остеонектин (данные получены на моделях инфицирования остеобластов *S. aureus in vitro* [42].

Нарушение процесса минерализации костной ткани: в культурах инфицированных *S. aureus* остеобластов минерализация шла в меньших объемах, чем в контрольной группе [43].

Группой авторов было показано, что убитые ультрафиолетовым излучением клетки *S. aureus*, находящиеся на поверхности титанового имплантата, улучшали адгезию остеобластов, а также их дифференцировку и минерализацию костной ткани, что поставило под сомнение однозначность воздействия *S. aureus* на данные клетки. Jin и соавт. сделано предположение, что подобное воздействие *S. aureus* на остеобласты опосредовано микроРНК [43]. Понимание точного механизма данного явления может быть предметом дальнейших исследований; прежде всего, актуален вопрос, какие факторы угнетают, а какие — стимулируют активность остеобластов.

Внедрение *S. aureus* в остеобласты опосредовано связыванием возбудителя с соответствующими белками на поверхности последних (рис. 2). Поглощенные бактерии «ускальзывают» в цитоплазму клетки и представляют собой достаточно трудную «мишень» для иммунной системы, в дальнейшем вызывая также апоптоз клетки. Внимания заслуживает тот факт, что данный механизм работает только на живых клетках — в эксперименте внедрение патогена в убитые остеобласты не происходило [45]. Считается, что способность *S. aureus* вызывать апоптоз остеобластов не зависит от степени подавления их активности. Данные в пользу этого получены авторами, исследовавшими in vitro процесс инфицирования остеобластов указанным возбудителем [46]. В остеобластах, инфицированных *S. aureus*, апоптоз запускается лигандом TRAIL (tumor necrosis factor-related apoptosis-inducing ligand). Указанный лиганд взаимодействует с «рецепторами смерти» DR4 и DR5, экспрессирующимися в инфицированных *S. aureus* остеобластах, соответственно активируя апоптотические сигнальные пути, в частности каспа-8 и каспазу-9; в качестве одного из финальных «звеньев цепи» активируется каспаза-3 (рис. 3).

Кроме апоптотического, возможен также и некротический путь гибели остеобласта, ключевыми факторами в котором являются продуцируемые *S. aureus* токсины: PSMα и PSMβ (PSMs), а также α-токсин и δ-токсин [47]. Данные факторы не задействуют сигнальные каскады, а непосредственно повреждают мембрану остеобласта; таким образом, два пути гибели остеобласта при инфицировании *S. aureus* протекают независимо друг от друга.
Рис. 2. Молекулярные факторы Staphylococcus aureus, участвующие во взаимодействии с остеобластами [35]. Протеин A возбудителя непосредственно связывается с рецептором TNFR-1 остеобластов, активируя каскад клеточных реакций, результатом которых является апоптоз. Fnbp A/B – фибронектин-связывающие белки являются своеобразными «якорями», взаимодействующими с интегрином α5β1. Показано, что в отсутствии Fnbp A/B адгезия S. aureus протекает крайне медленно. Кроме указанных механизмов, S. aureus повышает экспрессию RANKL-лигандов, что ведет к усилению резорбции кости остеокластами и ее разрушению, механизм данного взаимодействия в настоящее время исследуется.

Следует отметить, что адгезия к остеобластам не является исключительной особенностью S. aureus. Подобным механизмом обладает и семейство энтеробактерий, «использующих» пили IV типа, фимбрии I типа, группы поверхностных протеинов (так называемых самораспознающих транспортеров – self-associating autotransporters, SAAT) [50], а при состоявшейся адгезии они способны наращивать продукцию эффекторных белков специфического цитотоксического действия – эндотоксинов, что также способствует развитию инфекционного очага и прогрессированию остеомиелитического процесса. Кроме указанных патогенов, такой механизм присутствует у рода Pseudomonas и семейства Streptococcae [31].

Весьма важна способность отдельных возбудителей не только противостоять фагоцитозу, но и выживать в фагоцитированном состоянии. Во многом данный фактор объясняет частоту хронизации остеомиелитического процесса. Так, золотистый стафилококк способен персистировать в макрофагах и остеобластах, при этом снижается производство внутриклеточных активных форм кислорода, активность щелочной фосфатазы в остеобластах, а фагоцитарная активность макрофагов по сравнению с неинфицированными клетками повысается. Более подробно механизмы защиты золотистого стафилококка при фагоцитозе его макрофагом представлены на рисунке 5.

Аналогичную возможность S. aureus инфицировать не только остеобласты, но и эпителиальные, эндотелиальные клетки, лейкоциты подтверждают имеющиеся данные [52]. Подобные механизмы свойственны и для других патогенов, причем в ряде случаев они оказываются антиапоптотическим действием на макрофаг – такими свойствами, обладает, например, Edwardsiella tarda. В других случаях, наоборот, инфицирование макрофага приводит к быстрой гибели последнего, что характерно для S. typhimurium.
ствительности бактерий к антибиотикам не могут быть заменяемых антибиотиков в сопоставимое число раз [56]. Наиболее спорны формы, что требует увеличения концентрации при антибиотикам в 100-1000 раз ниже, чем у “планктонной” формы, что нивелирует действие данных факторов [54]. В дальнейшем от сформированных биопленок постоянно отделяются планктонные бактерии, микроколонии и фрагменты самой биопленки, которые могут рассеиваться и образовывать новые колонии. Хронология образования биопленок характеризуется достаточно сходным течением:

1. присоединение (адгезия) происходит в течение нескольких минут;
2. прочно присоединяющие к субстрату микроколонии создают в течение 2–4 часов;
3. выработка внеклеточных полисахаридов (формирование матрикса) занимает 6–12 часов;
4. окончательное формирование биопленки занимает 2–4 дня;
5. восстановление биопленки после механического разрушения происходит в течение 24 часов.

Как уже было сказано, бактерии в составе биопленок менее чувствительны не только к антибиотикам, но и к иммунному ответу со стороны микроорганизма. Положение усугубляется тем, что фагоциты микроорганизма не только испытывают затруднения при уничтожении бактерий в биопленке, но и сами подвергаются инактивации.

Процесс формирования биопленки можно разделить на две основных фазы: первичную (обратимую) адгезию бактерий к субстрату (например, поверхности имплантата либо металлоконструкции) и вторичную (необратимую) адгезию. Установлено, что применение антибиотиков (лазеполид, ванкомицин, даптомицин) в минимальных ингибирующих концентрациях (МИС) способно предотвратить фазу первичной адгезии. Для сравнения: при добавлении антибиотиков к уже сформированной биопленке, т.е. во вторую фазу, данный эффект не достигался даже при концентрациях антибиотиков, в 100 раз больших, чем МИС [56].

Следует, однако, отметить, что Stewart и другими авторами [57] получены данные о том, что определенные виды антибиотиков могут проникать через биопленку, несмотря на то, что в любом случае их концентрация внутри биопленки значительно ниже, чем в окружающем растворе. Так, было показано, что молекулы даптомицина, регистрируемые с помощью флуоресцентной метки, могут проникать через обра-

Рис. 5. Механизмы защиты S. aureus при фагоцитозе [51]. Слева вверху: иллюстрация процесса фагоцитоза S. aureus макрофагом. Справа внизу: механизмы защиты. Ареолизин (areolysin) блокирует противомикробные пептиды макрофага, которые также отслаживаются положительно заряженной мембраной клетки возбудителя, а проникая через клеточную стенку, удаляются молекулярными насосами (efflux pumps). Лизоzem (lysozyme), вырабатываемый макрофагом, не способен взаимодействовать с клеточной стенкой S. aureus, содержавшей в себе мурамовую кислоту (muramic acid). S. aureus также блокирует каротиновый пигмент макрофага за счет секреции супероксиддисмутаз (SOD), превращающихся вооруженных агрессирующих против возбудителя активных факторов кислорода. Наконец, за счет секреции индуцибельной лактат-дегидрогеназы (inducible lactate dehydrogenase, iLDH) S. aureus не чувствителен к воздействию т.н. активных соединений азота (reactive nitrogen intermediates), функцией которых является осуществление нитрогеназных циклов, образование и репродукция бактерий. Слева внизу: механизмы защиты. Биопленка (biofilm) подвергается воздействию иммунных агентов и активных форм кислорода. Биопленка, как указано выше, испытывает затруднения при уничтожении бактерий в биопленке, но и сами подвергаются инактивации.

616 Гений Ортопедии, том 25, № 4, 2019 г.

7 МИС – minimum inhibitory concentration.
зованную S. epidermidis биопленку с коэффициентом диффузии около 28 %. Ванкомицин и рифампицин, по данным указанных авторов, способны «преодолевать» искусственную биопленку, образованную стафилококками, уже в терапевтических концентрациях. Аналогичные наблюдения сделаны в экспериментах in vitro для ванкомицина [58]. Таким образом, опровергается точка зрения, что матрикс биопленки представляет собой сугубо механическое препятствие для молекул антибиотиков. Тем не менее, значимой гибели бактериальных клеток в биопленке не выявлялось, несмотря на присутствие антибиотиков в эффективных (терапевтических) концентрациях [59]. Следовательно, эффект биопленок заключается скорее в инактивации антибиотика, чем в создании для него механического барьера.

Ряд исследователей считают, что выходом из данного положения может служить использование комбинации антибиотиков вместо изолированных препаратов, в особенности на ранних этапах адгезии, когда она еще обратима. Parra-Ruiz и соавт. показали с использованием фармакокинетически-фармакодинамической модели (pharmacokinetic/pharmacodynamic model, PK/PD), что ни моксифлоксацин в дозировке 400 мг каждые 24 ч., ни даптомицин в высоких дозах (10 мг/кг каждые 24 ч.) по отдельности значимо не влияли на рост биопленок, однако при комбинации данных препаратов наблюдался либо резко усиливался бактерицидный эффект [60]. С полученными данными согласуются и результаты исследования [61], в которой аналогичные наблюдения сделаны для сочетания Телаванцина (Telavancin) со следующими препаратами: ванкомицином, тейкопланином, линезолидом и моксифлоксацином. Моксифлоксацин, по данным приведенных работ, является наиболее эффективным (по бактерицидному эффекту) препаратом, при условии использования его в комбинации с другими. Также целесообразно использовать такие комбинации препаратов, как кларитромицин + цефазолин или ванкомицин; линезолид + даптомицин, а также сочетания рифампицина с другими препаратами – линезолидом, цефазолином, оксациллином, ванкомицином, гентамицином, азитромицином, ципрофлоксацином, фузидовой кислотой (при необходимости терапии биопленок, образованных бактериями рода Staphylococcus). Таким образом, единственным эффективным вариантом антибактериотерапии биопленок является использование комбинаций препаратов.

В настоящее время имеются данные ряда исследований in vivo, выполненных на лабораторных животных. Так, в исследовании [62] отражены результаты терапии MRSA – имплантационной инфекции комбинациями рифампицина с линезолидом и ванкомицином. Ни один из антибиотиков не давал положительного клинического эффекта, будучи примененным по отдельности, однако комбинация препаратов, назначенная через 4 недели после начала инфекционного процесса и продолжавшаяся 21 день, была успешной. Saleh-Mghir и соавт. получили сходный результат на кроликах, работая с комбинациями рифампицина + ванкомицина + даптомицина [63].

Для биопленок характерно присутствие т.н. клеток-персистеров, представляющих собой метаболически неактивные клетки, обеспечивающие выживание популяции в условиях, летальных для большинства клеток в биопленке [64]. Количество таких клеток не превышает 1–5 % от общей клеточной массы, оно увеличивается преимущественно в стационарную фазу. Такие клетки становятся антибиотикотолерантными за счет резкого замедления всех физиологических и биохимических процессов клетки, на которые могут воздействовать антибиотики. Данный механизм не следует путать с антибиотикорезистентностью, опосредованной изменением «мишеней» антибиотиков, синтезом нейтрализующих ферментов и т.д. Кроме того, известно, что бактерицидные антибиотики преимущественно действуют на активно делящиеся клетки, а в отношении персистеров, большинство белков которых временно прекращает работу, данные препараты будут оказывать только бактериостатический эффект [65].

ЗАКЛЮЧЕНИЕ

Хронический посттравматический остеомиелит по состоянию на сегодняшний день остается значимой проблемой травматологии и ортопедии. За счет характерных особенностей инфекционного процесса в костной ткани
лечение одними лишь «классическими» методами гнойной хирургии и травматологии оказывается недостаточным. Микроорганизмы, вызывающие хронический остеомиелит, обладают целым «арсеналом» средств защиты и сохранения своей популяции, при этом различные процессы деструкции костной ткани протекают синхронно, усиливая друг друга. Так, помимо развития «собственно инфекционного» процесса с гнойно-воспалительными реакциями, может иметь место усиление резорбции костной ткани, формирование устойчивости ко всем новым антибактериальным препаратам, а также развитие рецидивов возбудителей как биологических сообществ с формированием биопленок, равно как и разрушение матрикса костной ткани под действием собственных металлопротеиназ клеток иммунной системы. Для решения данной проблемы требуется междисциплинарный подход с сотрудничеством не только травматологов-ортопедов, но и иммунологов, микробиологов, клинических фармакологов, а также исследователей в области фундаментальных наук, в частности цитологии и биохимии, фармацевтической химии, материаловедения и других. Основными направлениями перспективных исследований являются поиск и синтез новых антибиотиков, совершенствование методов хирургической санации тканей в ходе оперативных вмешательств, разработка и совершенствование методов борьбы с биопленками (физических, механических, лекарственных и иных), блокирование патологических (извращенных) иммунных и остеорезорбтивных реакций, а также поиск, разработка и совершенствование методов профилактики развития хронического посттравматического остеомиелита у пациентов как до травмы, так и в ходе ее первичного оперативного лечения.

Финансирование и конфликт интересов. Авторы не получали финансирования на проведение данной работы. Конфликт интересов нет.

Литература

1. Ишутов И., Алексеев Д. Основные принципы озонотерапии в лечении пациентов с хроническим остеомиелитом // Вестник экспериментальной и клинической хирургии. 2011. Т. 4, № 2. С. 314-320.
2. Eid A.J., Berbari E.F. Osteomyelitis: review of pathophysiology, diagnostic modalities and therapeutic options // J. Med. Liban. 2012. Vol. 60, No 1. P. 51-60.
3. Антисептики и биодеградирующие имплантаты в лечении хронического послеоперационного остеомиелита / Н.А. Кузнецов, В.Г. Никифоров // Гений ортопедии, том 25, № 4, 2019 г.
4. Calhoun J.H., Manning M.M., Shifflett M. Osteomyelitis of the long bones // Semin. Plast. Surg. 2009. Vol. 23, No 2. P. 59-72. DOI: 10.1055/s-0029-12141158.
5. Рахманова А.Г., Неверов В.А., Пригожина В.К. Инфекционные болезни. Руководство. 2-е изд. СПб. : Питер, 2001. 569 с.
6. Инфекционные осложнения как показатель смены вариантов лечения в травматологии и ортопедии / Э.Б. Гатина, М.И. Митронин, И.Ф. Ахметов // Травматология и ортопедия детского возраста”. Курган, 2011. Т. 4, № 2. С. 314-320.
7. ТОТОЯН А.А., ФРЕЙДЛИН И.С. Клетки иммунной системы. СПб., 2000. Т. 1-2. 231 с.
8. Guo S., Dipietro L.A. Factors affecting wound healing // J. Dent. Res. 2010. Vol. 89, No 3. P. 219-229. DOI: 10.1177/0022034509359125.
9. Амирасланов Ю.А., Светухин А.М., Борисов И.В. Современные принципы хирургического лечения хронического остеомиелита (лекция) // Инфекция в хирургии. 2004. Т. 2, № 1. С. 8-13.
10. Brause B. Infections with prostheses in bones and joints. In: Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 7th Ed. / Mandell G.L., Bennett J.E., Dolin R., eds. Philadelphia, Churchill Livingstone, Elsevier. 2010. Vol. Part II. Section K. P. 1469.
56. Jacqueline C., Caillon J. Impact of microbial biofilm on the treatment of prosthetic joint infections. J. Antimicrob. Chemother., 2012, vol. 56, no. 12, pp. 6566-6571. DOI: 10.1128/AAC.01180-12.

57. Stewart P.S., Davison W.M., Steenbergen J.N. Daptomycin rapidly penetrates a Staphylococcus epidermidis biofilm. Antimicrob. Agents Chemother., 2009, vol. 53, no. 8, pp. 3505-3507. DOI: 10.1128/AAC.01728-08.

58. Darouiche R.O., Dhir A., Miller A.J., Landon G.C., Raad I.I., Musher D.M. Vancomycin penetration into biofilm covering infected prostheses and hip joints. Antimicrob. Agents Chemother., 2006, vol. 50, no. 10, pp. 4597-4602. DOI: 10.1128/AAC.01180-05.

59. Costerton J.W., Stewart P.S., Greenberg E.P. Bacterial biofilms: a common cause of persistent infections. Science, 1995, vol. 270, pp. 157-162. DOI: 10.1126/science.270.5228.157.

60. Parra-Ruiz J., Vidaillac C., Rose W.E., Rybak M.J. Activities of high-dose daptomycin, vancomycin, and moxifloxacin alone or in combination against Staphylococcus aureus biofilms. Antimicrob. Agents Chemother., 2012, vol. 56, no. 12, pp. 6566-6571. DOI: 10.1128/AAC.01180-12.

61. Hamza T., Li B. Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection. J. Bacteriol., 2010, vol. 192, no. 7, pp. 1946-1955. DOI: 10.1128/JB.01231-09.

62. Pace J.L., Rupp M.E., Finch R.G. Telavancin: in vitro activity against Staphylococcus epidermidis biofilms. Mol. Microbiol., 2006, vol. 60, no. 3, pp. 602-616. DOI: 10.1111/j.1365-2958.2006.05123.x.

63. Saleh-Mghir A., Müller-Serieys C., Dinh A., Massias L., Crémieux A.C. Adjunctive rifampin is crucial to optimizing daptomycin efficacy against Staphylococcus aureus biofilms. Antimicrob. Agents Chemother., 2009, vol. 54, no. 10, pp. 4539-4544. DOI: 10.1128/AAC.00453-10.

64. Pace J.L., Rupp M.E., Finch R.G. Biologics, infection, and antimicrobial therapy. London, Boca Raton, Fla, Taylor & Francis, 2006.

65. Miker N., Dean C.R., Tao I. Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. J. Bacteriol., 2010, vol. 192, no. 7, pp. 1946-1955. DOI: 10.1128/JB.01231-09.

66. Gostev V.V., Sidorenko S.V. Bakterialnye bioplenki i infektsii [Bacterial biofilms and infections]. Zhurnal Infektiologii, 2010, vol. 2, no. 5, pp. 4-15.

Information about the authors

1. Sergey P. Mironov, M.D., Ph.D., Professor, Academician of RAS, National Medical Research Center Of Traumatology And Orthopedics p.a. N.N. Priorov, Moscow, Russian Federation

2. Archil V. Tsiskarashvili, M.D., Ph.D., National Medical Research Center Of Traumatology And Orthopedics p.a. N.N. Priorov, Moscow, Russian Federation, Email: armed05@mail.ru

3. Dmitrii S. Gorbatiuk, National Medical Research Center Of Traumatology And Orthopedics p.a. N.N. Priorov, Moscow, Russian Federation