Prevalence, Comparison of Diagnostic Methods, Antibiogram, and Genotyping of Arcobacter spp. in Diarrheal Cases Referring to Clinical Centers in Iran

ABSTRACT

Backgrounds: Arcobacter is an emerging bacterium that may cause watery diarrhea and septicemia in humans. This study aimed to investigate the prevalence of Arcobacter spp. in diarrheal stool specimens using culture and molecular methods, their genetic diversity, and their resistance to different antibiotics in patients referring to clinical centers in Arak, Iran.

Materials & Methods: In this descriptive cross-sectional study, diarrheal stool specimens were collected from 230 patients over a two-month period from July to September 2016. The samples were tested for the presence of Arcobacter species. Suspected colonies were subjected to biochemical tests and identified by phenotypic methods. In addition, antimicrobial susceptibility testing was performed using the disk diffusion method. Arcobacter spp. were also directly detected by multiplex-PCR.

Findings: Out of 230 samples, 20 samples (8.69%) were positive in culture method, and 44 samples (19.13%) were positive in PCR method, all culture-positive samples were also positive in PCR method. Rep-PCR indicated 14 different rep types among Arcobacter spp. isolated from patients with gastroenteritis. All Arcobacter isolates were resistant to cefazolin, ceftazidime, and nalidixic acid. The isolates showed high susceptibility to tetracycline, gentamicin, amikacin, meropenem, erythromycin, and ciprofloxacin.

Conclusions: To the best of our knowledge, this is the first study conducted in Iran to isolate Arcobacter spp. from patients with gastroenteritis. The results indicate that Arcobacter spp. are one of the main causes of acute diarrhea in humans. The research outcomes show that Arcobacter spp. could be considered as the etiology of gastrointestinal infections in humans.

Keywords: Watery diarrhea, Arcobacter, PCR, Prevalence

CITATION LINKS

[1] Debruyne L, Gevers D, Vandamme P. Taxonomy of ...
[2] Jiang ZD, DuPont HL, Brown EL, Nandy RK. ...
[3] Fernandez H, Villanueva MP, Mansilla I, Gonzalez M, Latif F. Arcobacter ...
[4] Ramees TP, Dhamo K, Kartih K, Rathore RS, Kumar A, Saminathan M, et al. ...
[5] Diéguez AL, Balboa M, Magnes T, Romadke JL. Arcobacter ...
[6] Pérez-Cataluña A, Salas-Massó N, Figueras MJ, Arcobacter ...
[7] Lau S, Woo P, Teng J, Leung K, Yuen K. Identification ...
[8] Samie A, Obi C, Barrett L, Powell S, Guerra R. Prevalence ...
[9] Woo PC, Chong KT, Leung KW ...
[10] Vandamme P, Vancannety M, Pot B, Mels L, Hoste B ...
[11] Van Driessche E, Houf K, Van Hoof J, De Zutter L ...
[12] Argüello E, Otto CC, Mead P, Babady NE. Bacteremia ...
[13] Skovgaard N. Microorganisms in ...
[14] Ferreira S, Queiroz JA, Oleastro ...
[15] Vanamme P, Falsen E ...
[16] Prouzet-Maultéon V, Labadi L ...
[17] Ramees TP, Rathore RS, Bagalkot PS, Mohamed ...
[18] Fera MT, Russo GT, Di Benedetto A, La Camera E ...
[19] Webb AL, Boras VF, Kruczkiewicz P ...
[20] Lastovica AJ, le Roux E. Efficient isolation of ...
[21] Taylor DN, Kielhaibach JA, Tee W, Pitaraungsi C, Cheeverich P. Isolation of ...
[22] Mohan HV, Rathore RS, Dhamo K, Ramees TP, Patyal A, Bagalkot P ...
[23] Mandisodza O, Burrows E, Nulsen A. Arcobacter ...
[24] Kayman T, Abby S, Hizdiosy H, Atabay H, Diker KS, Aydin F. Emerging ...
[25] Hsueh PR, Teng LJ, Yang PC, Wang SK, Chang SC ...
[26] Atabay H, Wainse M, Madsen M. Detection and ...
[27] Pejchalova M, Zabickova S, Silhova L, Silha D ...
[28] Merga J, Leatherbarrow A, Winstanley C, Bennett M, Hart C, Miller W ...
[29] Vandenberg O, Dediste A, Houf K, Ibelwem S, Souayah H ...
[30] Hsuw PR, Teng LJ, Yang PC, Wang SK, Chang SC ...
[31] Famael HV, Rathore RS ...
[32] Yildiz G, Gümüşsoy K, Atabay H ...
[33] Phasipol P, Chokeasajawatee N, Luangtongkum T. Comparison of ...
[34] Ramees TP, Rathore RS, Bagalkot PS, Saio B ...
[35] Selkhar MS, Rao TS, Chinnam B ...
[36] Bronzuwaer S. Harmonised monitoring of ...
[37] Ferreira S, Luis A, Oleastro M, Pereira L, Domingues F. A meta-analytic ...
[38] Pérez-Cataluña A, Tapiol J, Benavent C, Carrión C, Gomez F ...
[39] Vanamme P, Falsen E ...
[40] Van den Abeele AM, Vogelaers D ...

How to cite this article
Khalili Dermani S, Akbari M, Arjomandzadegan M, Ahmadi A. Prevalence, Comparison of Diagnostic Methods, Antibiogram, and Genotyping of Arcobacter spp. in Diarrheal Cases Referring to Clinical Centers in Iran. Infection Epidemiology and Microbiology. 2022;8(2):107-119

ARTICLE INFO

Article Type
Original Article

Authors
Sara Khalili Dermani, MSC
Majid Akbari, PhD
Mohammad Arjomandzadegan, PhD
Azam Ahmadi, PhD

How to cite this article
Khalili Dermani S, Akbari M, Arjomandzadegan M, Ahmadi A. Prevalence, Comparison of Diagnostic Methods, Antibiogram, and Genotyping of Arcobacter spp. in Diarrheal Cases Referring to Clinical Centers in Iran. Infection Epidemiology and Microbiology. 2022;8(2):107-119

Address
Department of Immunology and Microbiology School of Medicine, Arak University of Medical Sciences, Arak, Iran
Email: akbari@arakmu.ac.ir

Copyright@ 2022, TMU Press. This open-access article is published under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License which permits Share (copy and redistribute the material in any medium or format) and Adapt (remix, transform, and build upon the material) under the Attribution-NonCommercial terms.
Introduction

Arcobacter spp. are Gram-negative, rod-shaped, non-spore forming, curved, motile bacteria. The genus Arcobacter is a member of the Campylobacteraceae family. The most significant difference between Arcobacter and Campylobacter species is the ability of Arcobacter spp. to grow under aerobic conditions and at low temperatures (15-25 °C) [1]. Arcobacter spp. have been isolated from many sources such as water, vegetables, foods of animal origin, food-processing equipment, domesticated and wild animals, primates, and birds [1-4].

The genus Arcobacter currently includes 26 species [4-6], A. cryaerophilus, A. skirrowii, and particularly A. butzleri are associated with human diseases [7-10]. A. butzleri and A. cryaerophilus are predominantly associated with enteritis and bacteremia in humans [11, 12]. However, A. skirrowii is rarely isolated from humans. The clinical symptoms of Arcobacter infections are usually similar to those of campylobacteriosis, such as abdominal cramps and watery diarrhea [13]. However, continuous and watery diarrhoea has been reported to be more common in Arcobacter infections [11, 14].

Objectives: Several studies have reported the isolation of Arcobacter spp. from poultry and slaughterhouse samples in Iran [13], but as far as we know, no such studies have been conducted on Arcobacter species in human samples. Therefore, this study aimed to investigate the prevalence of Arcobacter species in human infectious diarrheal stool samples. Isolates were recognized at the species level using Multiplex PCR and then genotyped by repetitive sequence-based polymerase chain reaction (rep-PCR).

Material and Methods

Sample Collection: In this study, infectious diarrheal stool samples were collected from 230 patients admitted to educational hospitals and medical centers affiliated to Arak University of Medical Sciences over a two-month period from July to September 2016. None of the patients enrolled in this study received antibiotics for at least 7 days prior to sampling. The study questionnaire was completed after obtaining written consent from patients or their parents/guardians. The study protocol No.1395.62 was ratified by the Ethics Committee of Arak University of Medical Sciences.

Culture and Bacterial identification: In the laboratory, 1 mL of each specimen was inoculated into 9 mL of Arcobacter broth (Ibresco, Iran) supplemented with CAT (cefoperazone, amphotericin B, and teicoplanin; Ibresco, Iran), then enrichment broths were incubated (48 hrs, 28°C) in candle jars. After incubation at 28°C for 48 hrs in candle jars, 6 to 8 drops of each enrichment broth was pipetted onto a membrane filter with 0.45 μm pore size and 25 mm diameter (filter-bio, China), placed on a Brucella agar plate (Ibresco, Iran) supplemented with 5% (v/v) sheep blood. The filtration was performed for 45 min at room temperature, and after removing the filter, the plates were incubated at 28°C for 48 hrs under a candle jar. Suspected colonies (pinpointed, translucent, and watery colonies) were selected from each plate and then subcultured on Brucella agar. Pure cultures were confirmed by biochemical tests. The strain A. butzleri ATCC 49616 was used as a positive control [41].

Phenotypic characterization: The isolates were characterized phenotypically. All the isolates were checked by Gram staining, catalase and oxidase tests, H₂S production, growth at different temperatures under aerobic and microaerobic conditions, growth in the presence of NaCl (2% and 3.5%), growth on MacConkey agar, nitrate reduction test, and susceptibility to nalidixic acid (30 μg per disk) and cephalothin (30 μg per disk).
DNA Extraction and PCR: About 5 mL of each diarrheal specimen was added to phosphate-buffered saline (PBS) and stored at -20°C. DNA was extracted from stool samples using the Stool DNA Isolation Mini Kit† (YTA, Iran). Genomic DNA was extracted from all Arcobacter-positive bacterial colonies (n=20) by genomic DNA Extraction Mini Kit‡ (YTA, Iran). The concentration of each DNA was specified spectrophotometrically at 260 and 280 nm. The extracted DNA samples were adjusted to 20 mg/μL and stored at -20 °C until used in PCR analysis. PCR assay was directly conducted on DNA extracted from stool samples.

Genus-specific PCR: For genus-specific PCR, Arc1 and Arc2 primers targeting a section of the 16S rRNA gene were used. PCR amplifications were performed in a final volume of 25 µL. PCR reaction mixtures consisted of 3 mL of template DNA, 12.5 μL of PCR Master Mix Red (1.5 mM MgCl₂; Ampliqon, Denmark), and 0.7 μL (10 pmol) of forward and reverse primers (CinnaGen, Iran) shown in Table 1. The volume of the reaction mixtures reached 25 μL using distilled deionized (DI) water. PCR thermal cycling was performed under the following conditions: an initial denaturation step at 94°C for 5 min; followed by 27 cycles of denaturation at 94°C for one min, annealing at 52.7°C for 55 seconds, extension at 72°C for 55 seconds, and a final extension step at 72°C for 8 min. PCR products were separated by electrophoresis on 1.5% agarose gel and stained with 1% safe stain§ (CinnaClon, Iran). The bands were visualized and recorded in a gel documentation system. The DNA of the reference strain was used as a positive control, and DI water was used as a negative control in PCR experiments.

Multiplex-PCR at the Species Level (Species-specific m-PCR): To differentiate Arcobacter strains at the species level, primers and PCR conditions specific to A. butzleri, A. skirrowii, and A. cryaerophilus were utilized for Arcobacter-positive samples. The sequences of multiplex-PCR primers were targeted to three Arcobacter species 16S rRNA and 23S rRNA genes, the selected primers amplify a 401 bp fragment of A. butzleri, a 257 bp fragment of A. cryaerophilus, and a 198 bp fragment of A. skirrowii. Details of these primers are given in Table 1. The reaction mixtures and temperature gradients were set according to genus-specific PCR.

REP-PCR and electrophoresis: REP-PCR was performed in a total volume of 25 mL of the prepared PCR mixture, consisting of 2 μL of template DNA, 12.5 μL of Taq DNA Polymerase Master Mix Red (1.5 mM MgCl₂; Ampliqon, Denmark), and 1.5 μL (10 pmol) of (GTG)₅ primer (5'-GTG GTG GTG GTG GTG-3') (CinnaGen, Iran). The volume of the reaction mixtures reached 25 μL using sterile water in molecular grade. DNA amplification was performed under the following conditions: an initial denaturation step at 94°C for 5 min; followed by 27 cycles of denaturation at 94°C for 1 min, 51°C for 1 min, and 65°C for 1 min; and a final extension step at 65°C for 8 min. PCR products were separated on 1.5% agarose gel in 0.5× TAE buffer at 80 V for 2 hrs. The gel was analysed by visual detection of various DNA profiles under UV light to detect DNA polymorphisms among the isolates.

All rep-PCR profiles were examined using GelCompar II® software (Version 6.6.11, Applied Maths BVBA, Kortrijk, Belgium). Gel images were normalized by aligning the size marker strips on each gel. The optimization setting and band position tolerance were 1%. The similarity of the band patterns was calculated using Pearson’s correlation coefficient.
coefficient, and then the patterns were clustered using a dendrogram generated by unweighted pair group method with arithmetic mean (UPGMA) according to the rep-PCR results. Isolates with a similarity value more than 94% were placed in the same rep-PCR type [33].

Susceptibility testing: *Arcobacter* isolates were evaluated for susceptibility to 18 commercially available antibiotic disks using the disk diffusion technique. Suspensions of 0.5 McFarland standard turbidity were prepared from fresh culture of *Arcobacter* isolates in Mueller-Hinton broth. Each suspension was inoculated onto a 150 mm Mueller-Hinton agar plate (Ibresco, Iran) with 5% sheep blood using a sterile swab. The agar surfaces were allowed to dry, and antimicrobial disks were placed on the plates. The plates were incubated at 30°C for 48 hrs in a candle jar. The inhibition zones were measured using a scaled ruler in millimeter [13]. *Escherichia coli* ATCC 25992 was used as a control strain. The antibiotic disks and their concentrations were as follows: chloramphenicol (C, 30 μg), meropenem (TMP, 30 μg), nalidixic acid (NA, 30 μg), erythromycin (E, 15 μg), ciprofloxacin (CP, 15 μg), gentamicin (GN, 10 μg), amikacin (AK, 30 μg), tetracycline (TE, 30 μg), cefazolin (CZ, 30 μg), ampicillin (AM, 10 μg), and ceftazidime (CAZ 30 μg). Since there is no recommendation of breakpoint values for *Arcobacter* strains, the Clinical and Laboratory Standards Institute guideline (M100–S26) for Enterobacteriaceae was used for all antibiotics (CLSI 2010, M45-A2) [23, 24].

Sequencing: The produced amplicons were sent for sequencing. The sequencing was carried out with the ABI Applied Biosystem machine, Model 3730XL (Macrogen, South Korea).

Findings

Isolation and identification: Out of a total of 230 samples, 20 samples (8.69%) were positive for the presence of *Arcobacter* species using culture method (Fig.1). The prevalence of *A. butzleri* (14 cases) among the samples was higher than that of *A. cryaerophilus* (4 cases) and *A. skirrowii* (2 cases). These results were confirmed by biochemical assays and PCR (Table 2). All the isolates were positive for oxidase and catalase production and nitrate reduction but negative for H2S production and urease activity. The isolates showed variable growth rates on MacConkey agar in the presence of NaCl. All the isolates were susceptible to nalidixic acid and resistant to cephalothin. In PCR method, 44 samples (19.13%) were positive for the presence of *Arcobacter* species (Fig. 2). Among which, the prevalence of *A. butzleri* was more (11.3%, 26 of 230) compared to *A. cryaerophilus* (5.6%, 13 of 230) and *A. skirrowii* (2.17%, 5 of 230) (Table 2).

Clinical features: *Arcobacter* species were isolated from 44 patients, including 28 children and 16 adults. The most common symptoms in all patients were abdominal pain with cramps, acute diarrhoea, and occasionally fever and nausea. Diarrhea was watery in 10 adult and 18 pediatric patients. In 11 pediatric and three adult patients, vomiting was accompanied by diarrhea. By microscopic examination (10X

Figure 1) *Arcobacter* colony morphology on Brucella agar plates
magnification), leukocytes and mucus were observed in the stool samples (Table 5). The clinical features of the patients are given in Table 3.

REP-PCR: A total of 20 *Arcobacter* isolates were examined, and 14 rep types were determined, including six common types and eight single types. All *A. butzleri* isolates (14 cases) were placed in three common types (*A*₃, *A*₉, and *A*₁₃) and eight single types. Also, four *A. cryaerophilus* isolates were placed in two common types (*A*₁ and *A*₂). In addition, two *A. skirrowii* strains

Table 1 Nucleotide sequences used as primers in the PCR reaction to identify *Arcobacter* genus and *A. butzleri*, *A. cryaerophilus*, and *A. skirrowii* species

Name of Primer	Sequence (5` to 3`)	Target Gene	Product Size (bp)	Reference
Arc 1	AGAACGTTAGCATGCTAT	16SrRNA	181	(Gonzalez et al., 1999)
Arc 2	GATACAATACGCTAAATCTCT			
Butz Arco	CCTGGACTTGACATGAGAATGA	16SrRNA	401	(Houf et al. 2000)
Cry1 Cry2	TGCTGAGGAGTAAAGTAACATC	16SrRNA	257	(Houf et al., 2000)
SkiR ArcoF	TCAGGATACTAAAGTTATGGAAGAAGAAATCAA	23SrRNA	198	(Douidah et al.2010)

Table 2 Comparison of sensitivity of culture and PCR methods in detecting *Arcobacter* species

Species	Culture N (%)	Polymerase Chain Reaction (PCR) N (%)
A. butzleri	14 (6.08)	26 (11.3)
A. cryaerophilus	4 (1.73)	13 (5.6)
A. skirrowii	2 (0.87)	5 (2.17)
Total	20 of 230 (8.69)	44 of 230 (17.3)

Table 3 Clinical features of patients infected with *Arcobacter* spp.

Clinical Features	Adult Patients (N=16)	Pediatric Patients (N=28)
Abdominal pain	11	28
Fever	5	18
Nausea	12	15
Vomiting	3	11
Watery diarrhea	10	18
Mucus in stool	6	10
Erythrocytes in stool	0	2
Leukocytes in stool	8	11

Clinical Status

	Ambulatory	Hospitalized
Ambulatory	16	23
Hospitalized	0	5
showed a similar common type (A$_{14}$) (Fig. 3).

Antibiotic susceptibility test: All of the 20 *Arcobacter* isolates were resistant to one or more antimicrobial agents. The antimicrobial susceptibility testing results of the isolates are shown in Table 4. All *Arcobacter* isolates were found to be resistant to cefazolin, ceftazidime, nalidixic acid, and chloramphenicol (except two isolates of *A. cryaerophilus*) and susceptible to tetracycline, gentamicin (except two isolates of *A. skirrowii* and one isolate of *A. cryaerophilus*), ampicillin, amikacin (except two isolates of *A. skirrowii*), meropenem (except two isolates of *A. skirrowii*), erythromycin (except three isolates of *A. butzleri*), and ciprofloxacin (except two isolates of *A. butzleri*).

Sequencing: Sequencing results were analysed using Chromas, Mega 4.0, Blast, and Blat software (Fig. 4).

Table 4) Resistance rates of *Arcobacter* spp. to antimicrobial agents

Antimicrobial Agent	*A. butzleri* (%) (N=14)	*A. cryaerophilus* (%) (N=4)	*A. skirrowii* (%) (N=2)
Amikacin	0(0)	0(0)	2(100)
Ampicillin	0(0)	0(0)	0(0)
Cefazolin	14(100)	4(100)	2(100)
Ceftazidime	14(100)	4(100)	2(100)
Gentamicin	0(0)	0(0)	0(0)
Ciprofloxacin	2(14.28)	0(0)	0(0)
Meropenem	0(0)	0(0)	0(0)
Nalidixic acid	14(100)	4(100)	2(100)
Tetracycline	0(0)	0(0)	0(0)
Erythromycin	3(21.42)	0(0)	0(0)
Chloramphenicol	14(100)	1(25)	0(0)
Figure 3) Numerical analysis of rep patterns of *Arcobacter* strains. The clustering of *Arcobacter* isolates is based on Pearson's correlation coefficient and the dendrogram constructed using UP-GMA with a tolerance of 1%. Isolates with a similarity value higher than 94% were considered in the same rep-PCR type.

Figure 4) Nucleotide sequences obtained from the sequencing of clinical samples (Chromas and Mega4 software)
Table 5) Demographic and clinical characteristics of Arcobacter infection

REP Type	Bacterial Species	Antibiotic Susceptibility	Clinical Features	Place of Illness	Age	Gender
A₁	A. cryaerophilus	R S S S R R R S + + + +	Outpatient + -	City	12	Male
A₁	A. cryaerophilus	S R S S R R R S + - - - +	Outpatient - -	Village	1.8	Male
A₂	A. cryaerophilus	R R S S S R R S S - - + +	Outpatient - +	City	7	Male
A₂	A. cryaerophilus	S R S S S R R S S - - + +	Outpatient - +	City	51	Male
A₃	A. butzleri	R R S S S R R S S + - + + +	Hospitalization - -	Village	11 mon	Female
A₄	A. butzleri	R R S S S R R S S - + + + +	Outpatient - -	City	2.1	Female
A₅	A. butzleri	R R S R S R R S S + - - - +	Outpatient - -	City	4.2	Female
A₆	A. butzleri	R R S R S R R S S - - - - +	Outpatient - -	City	3	Female
A₇	A. butzleri	R R S R S R R S S - - - + +	Outpatient - -	City	5	Female
A₈	A. butzleri	R R S S S R R S S + - - - +	Outpatient - -	City	3.8	Female
A₉	A. butzleri	R R S S S R R S S - - - - +	Outpatient - -	City	21	Female
A₁₀	A. butzleri	R R S S S R R S S - - - + +	Outpatient - -	City	4.6	Male
A₁₁	A. butzleri	R R S S S R R S S + + - - +	Hospitalization - -	City	29	Male
A₁₂	A. butzleri	R R S S S R R S S - - - + +	Hospitalization - -	City	3.9	Female
A₁₃	A. butzleri	R R S S S R R S S - - - - +	Hospitalization - -	City	1.9	Male
A₁₄	A. butzleri	R R S S S R R S S - - + - +	Outpatient - -	City	5	Male
A₁₅	A. butzleri	R R S S S R R S S - - - + +	Outpatient - -	City	35	Male
A₁₆	A. butzleri	S R S S R R S S R R + - + + +	Outpatient - -	City	1.1	Male

1: watery diarrhea, 2: mucoid diarrhea, S: sensitive, R: resistant, I: intermediate

Discussion
In this study, the prevalence of Arcobacter spp. in diarrheic stool samples was examined using culture and PCR methods; in addition, genotyping and antimicrobial susceptibility testing were carried out for the isolated strains. Arcobacter species have been isolated from symptomatic and asymptomatic people in many countries. Some Arcobacter species have been isolated from the feces of patients with/without diarrhea, occasionally accompanied by bacteremia, endocarditis, and peritonitis. The incidence of Arcobacter in human infections has been underestimated, especially due to the use of inappropriate detection and typing methods in stool culture. A. butzleri is a species often observed in people with diarrhea. The prevalence of Arcobacter isolates in this study was determined to be 19.13%
by molecular method and 8.69% by culture method.

In the last decade, numerous studies conducted on the isolation and identification of *Arcobacter* spp. in different countries have reported variable prevalence rates. The prevalence rate obtained for *Arcobacter* species in this study by PCR method was higher than the prevalence rates reported by Fernandez et al. (2015) in Chile (3.6%) [3], Samie et al. (2007) in South Africa (9.12%) [8], and Ramees et al. (2014) in India (11.76%) [17] but lower than the prevalence rates found by Fera et al. (2010) in Italy (46.46%) [18] and Webb et al. (2016) in Canada (60%) [19]. In all the mentioned studies, including the present research, the most prevalent species was *A. butzleri*. Also, the prevalence rate obtained by culture method in this study was higher than the results reported in South Africa (0.1%) [20] and Thailand (2.4%) [21]. In a study performed in India [17], the prevalence rate of *Arcobacter* strains isolated from human diarrheic stool samples was 2.67% using culture method, whilst 4% of the samples were positive in PCR screening test after enrichment. In another study conducted by Fera et al. (2010) in Italy [18], the prevalence rate of *Arcobacter* isolates was determined to be 3 and 46.46% by culture and PCR methods, respectively. In Canada in 2016 [19], the prevalence rate of *Arcobacter* isolates was determined to be 8.0% by culture method and 60% by PCR. In contrast, in a study conducted in Chile in 2015 [3], the prevalence rate of *Arcobacter* isolates was determined to be 7.0% by culture method and 4.1% by molecular methods. Mohan et al. (2014) also reported that the prevalence rate of *Arcobacter* spp. in human stools was 2% by cultural isolation and 2.00% by PCR screening [22].

By enrichment method in *Arcobacter* broth and then transfer onto *Arcobacter* selective medium, the prevalence of *Arcobacter*-positive samples among human stool samples has been reported to be 1.31% in Belgium and 0.9% in New Zealand [23]. Kayman et al. (2012) in Turkey examined 3287 stool samples, of which nine (0.3%) samples were positive for *Arcobacter* species; in their study, a modified CCDA-Preston medium was used to isolate *Arcobacter* spp. [24].

In the majority of these studies, the plates were incubated at 37°C for 2 to 3 days, or often for 3 to 4 days in microaerobic conditions, but in the current study, *Brucella* agar medium was used and incubated at 28°C for 48 hrs in the candle jar. Discrepancies in isolation rates may be due to the use of different isolation methods. Some of the factors influencing isolation rate are as follows: the sensitivity of isolation methods, test conditions (optimum incubation time, temperature required, type of culture medium, and atmosphere), study population, study area, diet, the degree of exposure to natural reservoirs of *Arcobacter* species, the immunity level of the studied population, living conditions, drinking water status, nutritional habits especially nutrition containing poultry, and the relationship with animals and the environment such as exposure to pets [25-28].

In the current study, *Arcobacter* spp. were detected in 8.68% of patients’ stool cultures. All patients had gastroenteritis, and their clinical and laboratory features (Table 3) were similar to the results reported by Kayman et al. (2012) [24], Prouzet-Mauléon et al. (2006) [16], and Vandenberg et al. (2004) [29]. The age range of pediatric and adult patients was 2-7 and 19-65 years, respectively. The main symptoms of *Arcobacter* infection were nausea, abdominal pain and cramps, acute diarrhea, and sometimes fever. In a study conducted in Turkey in 2012, the most common symptoms were nausea, abdominal pain, and fever [24]. In another study in France in 2006, severe diarrhea, abdominal pain,
and fever were the most common disease symptoms [16]. The most common symptoms in children were abdominal pain, diarrhea, fever, and nausea, while in adults, the most common symptoms were diarrhea and nausea.

Genotyping of Arcobacter isolates has been used to determine the molecular epidemiology of Arcobacter spp. isolated from a variety of sources such as birds [30], cattle [31], and food [32]. It has been specified that this microorganism has a large number of subtypes. For example, in a study in Turkey, nine isolates typed as A. butzleri were found to have nine different genotypes using ERIC-PCR [24]. In another study in Thailand in 2013, 27 patterns were obtained for 33 isolates using rep-PCR [33].

Subtyping of Arcobacter isolates in another study in India using ERIC-PCR revealed a great degree of heterogeneity among the isolates with 18 different subtypes for 27 A. butzleri isolates and 14 different subtypes for 22 A. cryaerophilus isolates [34]. In another study in India, the analysis of 16 A. butzleri isolates revealed 14 ERIC-PCR and 15 rep-PCR patterns. In addition, the analysis of 13 A. cryaerophilus isolates resulted in 13 ERIC-PCR and 12 rep-PCR patterns, representing the genetic diversity of Arcobacter species [35]. The genotyping results of Arcobacter species by rep-PCR in the present study resulted in 14 different rep types, indicating a high genetic diversity among 20 isolates with no dominant pattern. Genetic diversity among Arcobacter isolates observed in the present and previous studies suggests that there are multiple resources of Arcobacter contamination in the environment.

Extended use of antibiotics could lead to the development and spread of antibiotic-resistant bacteria in humans and animals [36]. Although Arcobacter strains have been isolated from human infections since 1991, so far no standardized procedures have been established to determine their antibiotic susceptibility patterns. However, several studies have been conducted on clinical cases to determine their antibiotic susceptibility pattern [23, 24, 37, 38]. In the present study, all Arcobacter isolates were resistant to cefazolin, ceftazidime, and nalidixic acid. In addition, resistance to chloramphenicol (75%) was found to be high among Arcobacter species. In a study conducted in New Zealand (2012), 12 A. butzleri strains were isolated from diarrheic patients. All Arcobacter isolates were sensitive to ciprofloxacin, and most of them were also sensitive to erythromycin (92%) but less sensitive to tetracycline (67%) and ampicillin (50%) [23]. In Turkey, Kayman et al. (2012) investigated antibiotic susceptibility of nine A. butzleri isolates isolated from patients with acute or chronic diarrhea and found that all nine isolates were resistant to ampicillin and susceptible to gentamicin, tetracycline, erythromycin, and ciprofloxacin [24]. In a meta-analysis performed in 2018, it was shown that resistance rates to penicillins and cephalosporins ranged from 69.3–99.2% and 30.5–97.4%, respectively. The total resistance to fluoroquinolones ranged from 4.3 to 14.0%, and the highest resistance was observed to levofloxacin.

Resistance rates to antibiotics ranged from 10.7–39.8% for macrolides, 1.8-12.9% for aminoglycosides, and 0.8–7.1% for tetracyclines [37]. A study in Belgium in 2016 showed that Arcobacter strains isolated from human stool samples were susceptible to gentamicin (99%) and tetracycline (89%). Erythromycin (78%), ciprofloxacin (72%), and doxycycline (76%) exhibited moderate activity against Arcobacter spp. Only %9 of the strains were susceptible to ampicillin [39-40]. Differences in these studies results may be due to differences in the methods used in
antibiotic susceptibility testing. Ciprofloxacin and erythromycin are the antibiotics of choice in the treatment of Campylobacter infections [41]. The current study results also showed that all Arcobacter isolates were susceptible to tetracycline, ciprofloxacin, and ampicillin. These antibiotics, therefore, could be used to treat disease(s) caused by Arcobacter species. Most isolates of similar genotypes showed the same resistance patterns; however, in some cases, common-genotype strains showed different antimicrobial resistance patterns.

Given the taxonomic proximity of Arcobacter to Campylobacter species, the presence of resistance and decreased susceptibility to erythromycin and ciprofloxacin among Arcobacter isolates is a matter of concern because these antimicrobial agents are commonly prescribed for the treatment of Campylobacteraceae infections in humans, and resistance to them may have consequences for human health. Considering the high intake of chicken meat among people, the prevalence of these bacteria in the human gastrointestinal tract may be due to various reasons, among them the consumption of incompletely-cooked poultry meat or contact with raw meat and remnants of chicken digestive tract while washing chicken carcasses could play an important role in the transmission of these bacteria. To conclude, this is the first study conducted in Iran to detect Arcobacter species in human stool samples using molecular and culture methods with practical implications for controlling this pathogen.

Conclusion
In this study, the prevalence of Arcobacter spp. in diarrheic stool samples was evaluated using culture and PCR methods. In addition, genotyping and antimicrobial susceptibility testing were carried out for the isolated strains. The prevalence of Arcobacter spp. was determined to be 19.13% by molecular method and 8.69% by culture method. This is the first study conducted in Iran to isolate Arcobacter spp. from patients with gastroenteritis. The results show that Arcobacter spp. are one of the main causes of acute diarrhea in humans.

Acknowledgments
The authors would like to thank Arak University of Medical Sciences (Iran) for the financial support and technical assistance to this study.

Ethical Permissions: The project received approval from the Ethics Committee of Arak University of Medical Sciences, Iran (IR. ARAKU.REC.1395.62).

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Authors’ Contribution: Conceptualization: MAK, MAR; data curation: SK; formal analysis: SK; funding acquisition: MAK; investigation: SK, AA; methodology: SK; project administration: MAK; resources: MAK; supervision: MAK; writing of the original draft: SK; writing-review and editing: SK, AA, MAK, AMR.

Fundings: This study was financially supported by Arak University of Medical Sciences, Iran.

Consent to participate: Informed consent was obtained from all individual participants included in the study.

References
1. Debruyne L, Gevers D, Vandamme P. Taxonomy of the family Campylobacteraceae. Campylobacter. 3rd ed. American Society of Microbiology; 2008, p. 3-25.
2. Jiang ZD, DuPont HL, Brown EL, Nandy RK, Ramamurthy T, Sinha A, et al. Microbial etiology of travelers’ diarrhea in Mexico, Guatemala, and India: Importance of enterotoxigenic Bacteroides fragilis and Arcobacter species. J Clin Microbiol. 2010;48(4):1417-9.
Infection Epidemiology and Microbiology

Prevalence, Comparison of Diagnostic Methods ...

Fernandez H, Villanueva MP, Mansilla I, Gonzalez M, Latif F. Arcobacter butzleri and A. cryaerophilus in humans, animals, and food sources in southern Chile. Braz J Microbiol. 2015;46(1):145-7.

Ramees TP, Dhama K, Karthik K, Rathore RS, Kumar A, Saminathan M, et al. Arcobacter: An emerging food-borne zoonotic pathogen, its public health concerns, and advances in diagnosis and control—a comprehensive review. Vet Q. 2017;37(1):136-61.

Diéguez AL, Balboa S, Magnesen T, Romalde JL. Arcobacter lekithochrous sp. nov., isolated from a molluscan hatchery. Int J Syst Evol Microbiol. 2017;67(5):1327-32.

Pérez-Cataluña A, Salas-Massó N, Figueras MJ. Arcobacter canalis sp. nov., isolated from a water canal contaminated with urban sewage. Int J Syst Evol Microbiol. 2018;68(4):1258-64.

Lau S, Woo P, Teng J, Leung K, Yuen K. Identification by 16S ribosomal RNA gene sequencing of Arcobacter butzleri bacteremia in a patient with acute gangrenous appendicitis. J Clin Pathol. 2002;55(3):182-5.

Samie A, Obi C, Barrett L, Powell S, Guerrant R. Prevalence of Campylobacter species, Helicobacter pylori, and Arcobacter species in stool samples from the Venda region, Limpopo, South Africa: Studies using molecular diagnostic methods. J Infect. 2007;54(6):558-66.

Woo PC, Chong KT, Leung KW, Que TI, Yuen KY. Identification of Arcobacter cryaerophilus isolated from a traffic accident victim with bacteremia by 16S ribosomal RNA gene sequencing. Diagn Microbiol Infect Dis. 2001;40(3):125-7.

Vandamme P, Vancanneyt M, Pot B, Mels L, Vandamme P. Isolation of Arcobacter species in diarrhoeal faeces from humans, animals, and foods of animal origin by culture and multiplex PCR based methods. Asian J Anim Vet Adv. 2014;9(2):243-52.

Féra MT, Russo GT, Di Benedetto A, La Camera E, Orlando A, Giandalia A, et al. High prevalence of Arcobacter carriage in older subjects with type 2 diabetes. Biomed Res Int. 2010;2010.

Webb AL, Boras VF, Kruczkiewicz P, Selinger LD, Taboada EN, Inglis GD. Comparative detection and quantification of Arcobacter butzleri in stools from diarrheic and non-diarrheic people in southwestern Alberta, Canada. J Clin Microbiol. 2016;54(4):1082-8.

Lastovica AJ, le Roux E. Efficient isolation of campylobacteria from stools. J Clin Microbiol. 2000;38(7):2798-9.

Taylor DN, Kiehlbauch JA, Tee W, Pitarrangsi C, Echeverria P. Isolation of group 2 aerotolerant campylobacteria from stools. J Clin Microbiol. 2016;42(3):364-83.

Vandamme P, Falsen E, Rossau R, Hoste B, Segers P, Tytgat R, et al. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: Emendation of generic descriptions and proposal of Arcobacter gen. nov. Int J Syst Evol Microbiol. 1991;41(1):88-103.

Prouzet-Mauléon V, Labadi L, Bouges N, Ménard A, Méraud F. Arcobacter butzleri: Underestimated enteropathogen. Emerg Infect Dis. 2006;12(2):307-9.

Ramees TP, Rathore RS, Bagalkot PS, Mohan HV, Kumar A, Dhama K. Detection of Arcobacter butzleri and Arcobacter cryaerophilus in clinical samples of humans and foods of animal origin by culture and multiplex PCR based methods. Asian J Anim Vet Adv. 2014;9(2):243-52.
27. Pejchalova M, Zabcikova S, Silhova L, Silha D, Brozkova I, Haslova M. Presence of Arcobacter species in pet cats and dogs in the Czech Republic. Vet Med. 2016;61(8):449-55.

28. Merga J, Leatherbarrow A, Winstanley C, Bennett M, Hart C, Miller W, et al. Comparison of Arcobacter isolation methods and diversity of Arcobacter spp. in Cheshire, United Kingdom. Appl Environ Microbiol. 2011;77(5):1646-50.

29. Vandenberg O, Dediste A, Houf K, Ilbekwem S, Souayah H, Cadranel S, et al. Arcobacter species in humans. Emerg Infect Dis. 2004;10(10):1863-7.

30. Houf K, De Zutter L, Van Hoof J, Vandamme P. Assessment of the genetic diversity among arcobacters isolated from poultry products by using two PCR-based typing methods. Appl Environ Microbiol. 2002;68(5):2172-8.

31. Van Driessche E, Houf K, Vangroenweghe F, De Zutter L, Van Hoof J. Prevalence, enumeration, and strain variation of Arcobacter species in the faeces of healthy cattle in Belgium. Vet Microbiol. 2005;105(2):149-54.

32. Aydin F, Gümüşsoy K, Atabay H, Ica T, Abay S. Prevalence and distribution of Arcobacter species in various sources in Turkey and molecular analysis of isolated strains by ERIC-PCR. J Appl Microbiol. 2007;103(1):27-35.

33. Phasipol P, Chokesajjawatee N, Luangtongkum T. Comparison of repetitive sequence-based polymerase chain reaction (rep-PCR) and pulsed-field gel electrophoresis (PFGE) for genetic characterization of Arcobacter spp. Thai J Vet Med. 2013;43(2):307-11.

34. Ramees TP, Rathore RS, Bagalkot PS, Salio B, Mohan HV, Kumar A, et al. Genotyping and genetic diversity of Arcobacter butzleri and Arcobacter cryaerophilus isolated from different sources by using ERIC-PCR from India. Vet Q. 2014;34(4):211-7.

35. Sekhar MS, Rao TS, Chinnam B, Subramanyam K, Metta M, Sharif NM. Genetic diversity of Arcobacter species of animal and human origin in Andhra Pradesh, India. Indian J Microbiol. 2017;57(2):250-2.

36. Bronzwaer S. Harmonised monitoring of antimicrobial resistance in Salmonella and Campylobacter isolates from food animals in the European Union. Clin Microbiol Infect. 2008;14(6):522-33.

37. Ferreira S, Luis A, Oleastro M, Pereira L, Domingues F. A meta-analytic perspective on Arcobacter spp. antibiotic resistance. J Glob Antimicrob Resist. 2019;16:130-9.

38. Pérez-Cataluña A, Tapiol J, Benavent C, Sarvisé C, Gomez F, Martinez B, et al. Antimicrobial susceptibility, virulence potential, and sequence types associated with Arcobacter strains recovered from human faeces. J Med Microbiol. 2017;66(12):1736-43.

39. Vandenberg O, Houf K, Douat N, Vlaes L, Retore P, Butzler JP, et al. Antimicrobial susceptibility of clinical isolates of non-jejuni/coli campylobacters and arcobacters from Belgium. J Antimicrob Chemother. 2006;57(5):908-13.

40. Van den Abeele AM, Vogelaers D, Vanlaere E, Houf K. Antimicrobial susceptibility testing of Arcobacter butzleri and Arcobacter cryaerophilus strains isolated from Belgian patients. J Antimicrob Chemother. 2016;71(5):1241-4.

41. Aski HS, Tabatabaei M, Khoshbakht R, Raeisi M. Occurrence and antimicrobial resistance of...