Pseudogaps in the t-J model: Extended DMFT study

K. Haule1,4, A. Rosch2, J. Kroha3 and P. Wölfle2

1 Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway NJ 08854-8019, USA
2 Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, D-76128 Karlsruhe
3 Physikalisches Institut, Universität Bonn, Nussallee 12, 53115 Bonn
4 J. Stefan Institute, 1000 Ljubljana, Slovenia

(Dated: August 23, 2018)

We investigate the highly incoherent regime of hole-doped 2d Mott-Hubbard insulators at moderately small doping δ and temperatures $\lesssim 0.1J$, where J is the exchange coupling. Within an extended dynamical mean-field theory of the t-J model and a generalized non-crossing approximation we calculate the single-particle spectral function, the dynamical susceptibility, and thermodynamic and transport quantities. Short-ranged antiferromagnetic fluctuations lead to strongly incoherent single-particle dynamics, large entropy and large electrical resistivity. At low doping a pseudogap is found to open up both in the single-particle and the spin excitation spectra leading to a decrease in entropy and resistivity. The Hall coefficient changes sign to positive values upon lowering the doping level and increases inversely proportional to δ.

PACS numbers: 71.30.+h,74.72.-h,71.10.Hf

I. INTRODUCTION

Strongly interacting Fermi systems on a two-dimensional lattice have been a focus of interest ever since high temperature superconductor materials were discovered in 1986. The unusual properties of these materials, in particular in the normal conducting phase, have led to the hypothesis that the usual Landau Fermi liquid theory may not be applicable in this case. A widely accepted view holds that these systems may be considered as hole-doped Mott-Hubbard insulators. The correlations present in a Mott-Hubbard insulator are characterized by strongly suppressed charge fluctuations (due to the constrained hopping of the holes resulting from the strong on-site Coulomb repulsion U) and enhanced quantum spin fluctuations governed by the antiferromagnetic nearest-neighbor spin exchange interaction. The interplay of the motion of holes with the antiferromagnetically correlated spin background is the central problem of hole-doped Mott-Hubbard insulators. Despite an extraordinary effort by many theorists and a correspondingly large number of papers we believe it to be fair to say that a thorough understanding of this problem is still lacking.

The ground state of the Mott-insulating state of electrons on a square lattice at half-filling is expected to be antiferromagnetically ordered. Doping with holes leads to a rapid destruction of long-range order, at a critical concentration δ_c of a few percent doping. For larger dopings there is evidence for strong antiferromagnetic spin fluctuations of relatively short range.

In this paper we undertake to explore the consequences of strong incoherent and local (i.e. nearest neighbor) spin fluctuations on the dynamics of charge carriers, and on the thermodynamics of the systems. We also investigate how the single-particle properties feed back into the spin dynamics. Our approach is focused on the temperature regime of $0.1J \lesssim T \lesssim t$ ($J=0.3t$ in the cuprates) where J is the exchange constant and t is the nearest neighbor hopping amplitude. In this regime we expect strong quantum and thermal fluctuations driven by competing interactions to decohere the fermionic excitations. This temperature regime is bounded from below by possible antiferromagnetic, superconducting or other ordered states. The incoherent regime is confined to small doping levels $\delta_c \lesssim \delta \lesssim 0.3$, and crosses over into a Fermi liquid state at $\delta \gtrsim 0.3$.

A minimal model encompassing the physics described above is the t-J model. It is well known that the interplay of hopping and the local correlations induced by the on-site Coulomb interaction may be captured in Dynamical Mean-Field Theory, in which the lattice model is mapped onto a quantum impurity coupled to a fermionic bath in a self-consistent fashion. In the same spirit the nearest neighbor exchange interaction of a given spin to its neighboring spins may be approximated by a dynamically fluctuating bosonic field, to be determined self-consistently. In this way the two principal processes, constrained hopping and spin exchange interaction, may be fully incorporated on the same footing, on the level of short-range correlations.

As reviewed in Section III the Extended Dynamical Mean Field Theory (EDMFT) for the two-dimensional t-J model is obtained by approximating the single-particle self-energy $\Sigma_k(\omega)$ and the two-particle self-energy $M_{k\ell}(\omega)$ by momentum independent functions. $\Sigma(\omega)$ and $M(\omega)$ are obtained by equating the local (i.e. the momentum integrated) single-particle Green’s function and spin susceptibility, respectively, with the corresponding quanti-
ties of an extended Anderson impurity model, featuring a fermionic and a bosonic bath to be determined self-consistently. For the bare hopping integrals and exchange couplings we use a nearest-neighbor tight-binding model on the square lattice. The local approximation is better the higher the spatial dimension d and becomes exact for $d \to \infty$, provided the hopping amplitude t and the exchange coupling J are scaled as t/\sqrt{d} and J/\sqrt{d}. This scaling is possible in the paramagnetic regime. Most of the methods employed for the solution of the Anderson impurity or Kondo problem do not work here. We use self-consistent perturbation theory in the form of conserving approximations, and the exact projection onto the Hilbert space without double occupancy (limit $U \to \infty$). We are interested in describing the highly incoherent regime at small doping levels and not too low temperatures, where the spectral functions are broad and relatively featureless. In this regime we expect vertex corrections and higher order processes in general, to change the characteristic parameters like maximum values, peak widths and gap widths of the dynamic quantities by correction terms of order unity, but we do not expect that these contributions lead to more coherence or new collective behavior. In this spirit we approximate all self-energies by their lowest order self-consistent perturbation theory expressions (in the hopping parameter and exchange coupling). The resulting theory, presented in Section III, is an extension of the Non-Crossing Approximation (NCA) including the bosonic bath.

The results of this approximation scheme for the t-J model are presented in Section IV. It turns out that nearest-neighbor spin fluctuations are sufficient to create a pseudogap in the single-particle spectrum and in the spin excitation spectrum at q-vectors away from (π, π), for small dopings $0 \lesssim \delta \lesssim 0.1$, similar to what is seen in ARPES experiments and in the magnetic properties. The pseudogap scales with J. There are several indications that Fermi liquid behavior is violated for $\delta \lesssim 0.2$. Most noteworthy, the effective chemical potential is found to move from the center of the band up to the band edge, as the doping is decreased to small values. As δ grows beyond 0.25, however, Fermi liquid behavior appears to be restored. The entropy turns out to be large in the range $0.1 \lesssim \delta \lesssim 0.2$ and is reduced on both sides of this interval by the pseudogap and the incipient Fermi liquid behavior, respectively. The resistivity is dominated by strong incoherent scattering, and the Hall coefficient is found to be hole-like, $\propto 1/\delta$, for small δ, again resembling the observed behavior. Some of the results have been reported in [16].

Results similar to ours have been found in two recent works using DMFT for a clusters of sites within the Hubbard model. Maier et al. applied the dynamical cluster approximation (DCA) for various cluster sizes up to 64 sites to the Hubbard model in the intermediate coupling regime ($U \sim$ bandwidth). The DCA equations were solved with Quantum Monte Carlo techniques down to room temperature. The authors of Ref. [16] identified signals for non-Fermi liquid behavior at low doping $\delta \lesssim 0.1$ and found a large residual scattering rate and a pronounced pseudogap at low doping. In Ref. [17], Stanescu and Phillips studied the Hubbard model at intermediate coupling within a two-site cluster approach using the Non-Crossing Approximation as a quantum impurity solver at not too low temperatures. It is again found that Luttinger’s theorem appears to be violated for low doping in a regime where a pseudogap opens.

Despite the similarity of the numerical results, quite different explanations for the observed pseudogap physics have been suggested, ranging from short-range spin correlations, spin-charge separation and resonance valence bond (RVB) physics to effects of the upper Hubbard band and current-correlations involving three neighboring sites. By construction our approximation scheme is not able to describe such intersite correlations or RVB singlets and does not include the upper Hubbard band: nevertheless the overall results are qualitatively very similar. We take this as a strong indication that neither short-range magnetic or current correlations nor RVB physics is the underlying reason but argue that there is another generic mechanism for pseudogap formation: The strongly incoherent dynamics captured in our scheme as well as those of Refs. [16,17] appears to be the dominant feature of the Hubbard model as well as the t-J model in the low energy sector ($0.1J \lesssim \omega \lesssim t$) for small doping. Therefore pseudogap formation seems to be a generic property of any strongly incoherent Fermi system close to a Mott insulator. In other words, the existence of a pseudogap neither requires slowly fluctuating, finite-sized ordered domains (antiferromagnetic, superconducting) nor a local resonance state.

II. EXTENDED DYNAMICAL MEAN FIELD THEORY OF THE t-J MODEL

The standard model embodying the physics of the holodoped Mott-Hubbard insulator is the t-J model, defined by the Hamiltonian

$$H = \sum_{i,j} t_{ij} \bar{c}_{i\sigma}^\dagger c_{j\sigma} + \frac{1}{2} \sum_{i,j} J_{ij} S_i S_j \tag{1}$$

where $S_i = \frac{1}{2} \sum_{\sigma,\sigma'} \bar{c}_{i\sigma}^\dagger \tau_{\sigma\sigma'} c_{i\sigma'}$ is the spin operator at lattice site i, τ denotes the vector of Pauli matrices and $t_{ij}(J_{ij})$ are the hopping amplitudes (exchange interaction) connecting sites i and j. For the numerical evaluation to be discussed later we will use a tight-binding model on a two-dimensional square lattice, $t_{ij} = -t \delta_{i,j+1}$, $J_{ij} = J \delta_{i,j+1}$, where δ labels nearest neighbor sites. The operator $c_{i\sigma}^\dagger (\bar{c}_{i\sigma})$ creates (annihilates) an electron at site i with spin projection σ at a singly occupied lattice site. In terms of usual electron operators $c_{i\sigma}^\dagger (c_{i\sigma})$ one has $\bar{c}_{i\sigma}^\dagger = c_{i\sigma}^\dagger (1 - n_{i,-\sigma})$, where $n_{i\sigma} = c_{i\sigma}^\dagger c_{i\sigma}$ is the occupation number operator. In this way occupation of lattice sites by two electrons with spins \uparrow and \downarrow is avoided,
which would cost the large Hubbard energy U. We will be interested in electron densities close to half-filling of the band, such that $(\sum_{\sigma} n_{i\sigma}) = n = 1 - \delta$, where $\delta \ll 1$ is the doping concentration of holes.

Whereas at exactly half-filling, when H reduces to the Heisenberg model, the ground state has antiferromagnetic long-range order, we anticipate that this will not be the case for sufficiently large doping $\delta > \delta_c$ (in experiment $\delta_c \simeq 0.03$). In this regime it is reasonable to assume the antiferromagnetic correlations in the system to be short-ranged. We assume furthermore that additional forms of long-range order (such as superconductivity) that may be possible ground states of the t-J model are confined to a lower temperature regime, such that the corresponding fluctuations are sub-dominant at elevated temperatures. Consequently, one expects an extended high-temperature regime where short-ranged spin fluctuations lead to a highly incoherent metallic state, as observed in high-temperature superconductors, with anomalous transport properties (large, non-Fermi liquid type electrical resistivity, hole-like Hall constant), large entropy, broad “quasiparticle” peaks in photoemission, etc. It is our aim to investigate this regime within an approximation scheme which neglects most of the longer range spatial correlations, but keeps the dominant short range spin correlations.

The single-particle dynamics and the two-particle dynamics of the model are described by the Green’s function

$$G_{k,\sigma}(i\omega) = -\int_0^\beta d\tau e^{i\omega\tau} \langle T_\tau \hat{c}_{k\sigma}(\tau)\hat{c}_{k\sigma}(0) \rangle,$$

$$= \frac{1}{i\omega + \mu - \epsilon_k - \Sigma_{k,\sigma}(i\omega)} \tag{2}$$

and by the spin susceptibility

$$\chi_{q,\alpha}(i\Omega) = \int_0^\beta d\tau e^{i\Omega\tau} \langle T_\tau S_{q,\alpha}(\tau)S_{q,\alpha}(0) \rangle,$$

$$= \frac{1}{J_q + M_{q,\alpha}(i\omega)} \tag{3}.$$

Here β is the inverse temperature T (we employ units with $k_B = h = 1$), ω and Ω are fermionic and bosonic Matsubara frequencies, and ϵ_k and J_q are the lattice Fourier transforms of the hopping amplitudes t_{ij} and the exchange couplings J_{ij}, respectively. While the self-energies $\Sigma_k(i\omega)$ and $M_Q(i\omega)$ are momentum dependent in general, the observation that the fluctuations in the system are short-ranged in the regime we are interested in suggests that a “local” approximation, neglecting the momentum dependence of Σ and M altogether, may be a good starting point. We therefore employ in this paper the main approximation

$$\Sigma_k(\omega) \simeq \Sigma(\omega) \tag{4}$$

and

$$M_q(\omega) \simeq M(\omega), \tag{5}$$

thus capturing the effect of local fluctuations in time, which we expect to be important in the presence of strong inelastic scattering.

The momentum independence of Σ and M allows us to map the lattice problem onto an Anderson impurity problem where the host medium has to be determined self-consistently. Considering first the single-particle properties, i.e. $\Sigma(\omega)$, the corresponding Dynamic Mean-Field Theory (DMFT) has been widely used to calculate properties of the Hubbard model and periodic Anderson model. One maps the problem onto an Anderson impurity embedded in a fermionic bath. Applied to the t-J model it amounts to treating the exchange interaction in mean-field theory. This is not sufficient to allow us to maintain the balance between dynamical hopping processes and spin fluctuations, which is at the heart of the t-J model. We therefore follow Refs. [6,7] and extend the dynamical mean-field idea for the paramagnetic phase by introducing a fluctuating magnetic field coupling to the local spin as representing an additional class of degrees of freedom of the medium. This type of approximation, termed “extended DMFT” (EDMFT), has been applied to the Kondo lattice model and the extended Hubbard model. It is important to note that EDMFT becomes exact in the limit of infinite dimensions $d \to \infty$, provided t and J are scaled as t/\sqrt{d} and J/\sqrt{d}, respectively. We shall use this property in deriving the EDMFT equations (see Appendix A). We will, however, regard EDMFT as an approximation applied in finite dimensions, and as such will use the tight-binding expressions for ϵ_k and J_q valid in $d = 2$.

To summarize, the EDMFT is probably best visualized by considering a single-site, the “impurity”, and its coupling to the surrounding “medium”. There are two types of coupling processes, as is evident from the Hamiltonian:

(i) hopping to and from the “impurity” into the medium, as in the Anderson impurity model (in the limit of infinite U, as a consequence of the no double occupancy constraint). The medium is modeled by a non-interacting fermion system (the “conduction electrons”), whose local density of states has to be determined self-consistently.

(ii) exchange coupling of the local spin at the “impurity” site to the spins of the medium. In the limit $d \to \infty$ the two components of the medium, fermions (see above) and spin fluctuations are completely decoupled. We do not expect that this approximation holds in $2d$ for low temperatures. But in the regime considered in this paper, where electrons are highly incoherent, we believe that such a modeling is appropriate. The spin fluctuations of the medium are described by a (vector) bosonic bath, whose spectrum again has to be determined self-consistently.

In this way one is led to a generalized quantum impurity
model with Hamiltonian:
\[H_{\text{EDMFT}} = \sum_{k \sigma} E_k c_{k \sigma}^\dagger c_{k \sigma} + V \sum_{k \sigma} (c_{k \sigma}^\dagger d_{\sigma} + h.c.) \]
\[-\mu n_d + \sum_q \omega_q h_q \cdot h_q + I \sum_q S_d \cdot (h_q + h_{-q}^\dagger). \] (6)

A formal derivation of \(H_{\text{EDMFT}} \) in the limit \(d \to \infty \) is given in Appendix \(\text{A} \). Here \(d_{\sigma}^\dagger \) is a projected fermion creation operator for the impurity orbital (the original operator \(c_{k \sigma}^\dagger \) at the chosen “impurity” site 0), \(n_d = \sum_q d_{\sigma}^\dagger d_{\sigma} \) and \(S_d = \frac{1}{2} \sum_{\sigma, \sigma'} d_{\sigma}^\dagger d_{\sigma'} d_{\sigma'}^\dagger d_{\sigma} \). The fermionic bath is represented by free fermion operators \(c_{k \sigma}^\dagger \), the bosonic bath by free boson operators \(h_{q \alpha}^\dagger \), \(\alpha = 1, 2, 3 \) with \(h_q = (h_{q1}, h_{q2}, h_{q3}) \), and \(\sum_q (h_q + h_{-q}^\dagger) \) playing the role of a fluctuating local magnetic field. The excitation spectrum of the bath degrees of freedom, \(E_k \) and \(\omega_q \), as well as the coupling constants \(V \) and \(I \) have to be determined self-consistently by equating both the single-particle Green’s function and the spin susceptibility of the impurity model \(G_{\text{imp}} \), \(\chi_{\text{imp}} \) with the local Green’s function \(G_{\text{loc}} \) and the local susceptibility \(\chi_{\text{loc}} \) of the lattice model,
\[G_{\text{imp}, \sigma}(i\omega) = -\int_0^\beta d\tau e^{i\omega \tau} \langle T_{\tau} \tilde{d}_{\sigma}(\tau) \tilde{d}_{\sigma}^\dagger(0) \rangle = G_{\text{loc}}(i\omega) \] (8)
\[\chi_{\text{imp}, \alpha}(i\omega) = \int_0^\beta d\tau e^{i\omega \tau} \langle T_{\tau} S_{\alpha}(\tau) S_{\alpha}(0) \rangle = \chi_{\text{loc}}(i\omega). \] (9)

The local \(G \) and \(\chi \) are obtained from their lattice counterparts \(G_k, \chi_k \), taking into account \(\chi_0 \), \(\chi \), and by summation over all momenta
\[G_{\text{loc}}(\omega) = \sum_k G_k(i\omega), \] (8)
\[\chi_{\text{loc}}(\omega) = \sum_q \chi_q(i\omega). \] (9)

As shown in Appendix \(\text{A} \), the self-energies \(\Sigma \) and \(M \) also characterize the impurity Green’s functions:
\[G_{\text{imp}}(i\omega) = [i\omega + \mu - V^2 G_c(i\omega) - \Sigma(i\omega)]^{-1}, \] (10)
\[\chi_{\text{imp}}(i\omega) = [M - I^2 G_h]^{-1}, \] (11)
where
\[G_c(i\omega) = \sum_k \frac{1}{i\omega - E_k}, \] (12)
\[G_h(i\omega) = \sum_q \frac{2\omega_q}{(i\omega)^2 - (\omega_q)^2}. \] (13)

so that the system of equations (2) - (11) is closed. It follows from (10,10) that only the densities of states of the baths,
\[A_c(\omega) = \frac{V^2}{\pi} \text{Im} \ G_c(\omega-i0) = V^2 \sum_k \delta(\omega - E_k) \] (14)
and
\[D_h(\omega) = \frac{I^2}{\pi} \text{Im} \ G_h(\omega-i0) \]
\[= d^2 \sum_q \left[\delta(\omega - \omega_q) - \delta(\omega + \omega_q) \right]. \] (15)

are needed. For practical purposes we have included the coupling constants \(V \) and \(I \), respectively, in the definitions of the density of states.

III. Generalized Non-Crossing Approximation

The solution of the quantum impurity model (6) for given \(A_c(\omega) \) and \(D_h(\omega) \) is difficult. Many of the methods developed in the past for solving Anderson impurity models in the context of DMFT such as iterated perturbation theory and the numerical renormalization group methods are not applicable in the case of a bosonic bath. The Quantum Monte Carlo method has been successfully applied to an anisotropic Kondo lattice model with Ising-type spin coupling, but it is extremely difficult to treat Heisenberg couplings with manageable effort. The only method left to us is self-consistent perturbation theory like the non-crossing approximation (NCA) or the conserving T-matrix approximation (CTMA).\(^{22,23}\)

We will therefore employ a conserving diagrammatic approximation in which infinite classes of perturbation theory in \(V \) and \(I \) are resummed. We are aiming at a level of approximation corresponding to NCA for the usual Anderson model. A convenient way to phrase the perturbation theory in the hopping \(V \) and the exchange coupling \(I \), in the presence of an infinitely strong Coulomb repulsion \(U \), is in terms of a pseudo-particle representation. We define pseudo-fermion operators \(f_\sigma^+ = \uparrow, \downarrow \), creating the singly occupied impurity state and the slave boson operator \(b^+ \) creating the empty impurity level, when acting on a corresponding vacuum state. Since the local level is either empty or singly occupied, the operator constraint \(Q = b^+ b + \sum_\sigma f_\sigma^+ f_\sigma = 1 \) has to be satisfied at all times. The constraint is enforced exactly by adding a term \(\lambda Q \) to the Hamiltonian and taking the limit \(\lambda \to \infty \) (see below). The projected local electron operators \(d_\sigma \) may then be replaced by \(b^+ f_\sigma \), turning the problem into a many-body system of pseudo-fermions \(f_\sigma \) and slave bosons \(b \), interacting with the fermions \(c_{k\sigma} \) and bosons \(h_q \) of the bath.

It is essential for any approximation scheme to respect the projection and not to allow transitions between different sectors of Hilbert space labeled by \(Q \). To

\[\Phi = \begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=1\textwidth]{diagram_a}}
\end{array}
\end{array} + \frac{1}{2} \begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=1\textwidth]{diagram_b}}
\end{array}
\end{array} \]

\[\Sigma_f = \begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=1\textwidth]{diagram_c}}
\end{array}
\end{array}, \quad \Sigma_h = \begin{array}{c}
\begin{array}{c}
\text{\includegraphics[width=1\textwidth]{diagram_d}}
\end{array}
\end{array} \]

FIG. 1: The two lowest order contributions to the Luttinger-Ward functional \(\Phi \) and corresponding self-energies. Only diagrams with no line-crossings are taken into account (a generalization of NCA). The broken (wavy) line denotes pseudo fermion (pseudo-boson) Green’s function \(G_f (G_b) \), and the solid lines represent the conduction electron Green’s functions \(G_c \), the curly line the correlator \(G_\lambda \) of the bosonic bath. Also shown are the pseudo self-energies as well as self-energies of the baths.

In this end we employ a conserving approximation specified by a generating Luttinger-Ward type functional \(\Phi \) from which all self-energies are obtained as functional derivatives, \(\Sigma_\alpha = \frac{\delta \Phi}{\delta A_\alpha} \). The building blocks of \(\Phi \) are the dressed Green’s functions of pseudofermions \(G_f \) (depicted as dashed line), slave bosons \(G_b \) (wiggly line), bath fermions \(G_c \) (solid line) and bath bosons \(G_h \) (curly line) and the vertices corresponding to hopping \(V \) and exchange interaction, \(I \).

In the strongly incoherent regime we are interested in, vertex corrections are not expected to change the behavior in a qualitative way. They may, however, lead to quantitative changes. In this paper we would like to explore the leading behavior first, so that we may neglect vertex corrections for the moment. The lowest order terms of \(\Phi \) in self-consistent perturbation theory in the bare coupling constants \(V \) and \(I \) are shown in Fig. \(\textbf{II} \). The first one is the known generating functional of NCA, whereas the second one is new and involves the bath bosons. The corresponding self-energies are shown in Fig. \(\textbf{III} \), for the pseudofermions (\(\Sigma_f \)) and slave bosons (\(\Sigma_b \)), as well as the bath fermions (\(\Sigma_c \)) and the bath bosons (\(\Sigma_h \)). We note that the impurity single-particle Green’s function after projection (\(\lambda \to \infty \)) is related to \(\Sigma_c \) by

\[G_{\text{imp}}(i\omega) = \frac{1}{V^2} \Sigma_c(i\omega) \quad (16) \]

and likewise the impurity spin susceptibility is proportional to the bath boson self-energy

\[\chi_{\text{imp}}(i\omega) = -\frac{1}{T^2} \Sigma_h(i\omega). \quad (17) \]

Cutting a pseudofermion line in each of the two diagrams of the generating functional, Fig. \(\textbf{III} \), one finds two diagrams for the pseudofermion self-energy

\[\Sigma_f(i\omega) = \Sigma_f^{(2a)}(i\omega) + \Sigma_f^{(2b)}(i\omega) \quad (18) \]

as depicted in Fig. \(\textbf{III} \). Likewise, the slave boson self-energy \(\Sigma_h \), the fermion bath self-energy \(\Sigma_c \) and the boson bath self-energy \(\Sigma_h \) are obtained by cutting the respective Green’s function lines in the two diagrams of \(\Phi \). The corresponding analytical expressions are given by

\[\Sigma_f^{(2a)}(i\omega) = -V^2 T \sum_{\omega'} G_{f\sigma}(i\omega') G_b(i\omega - i\omega') , \quad (19a) \]

\[\Sigma_f^{(2b)}(i\omega) = -\frac{1}{4} I^2 \sum_{\sigma', \sigma} \tau_\sigma^{\alpha'} \tau_\sigma^\alpha \times T \sum_{\omega} G_{h\alpha}(i\Omega) G_{f\sigma'}(i\omega + i\Omega) , \quad (19b) \]

\[\Sigma_b(i\Omega) = V^2 T \sum_{\sigma, \omega'} G_{c\sigma}(i\omega') G_{f\sigma}(i\Omega + i\omega') , \quad (19c) \]

\[\Sigma_c(i\omega) = -V^2 T \sum_{\Omega} G_{f\sigma}(i\omega + i\Omega) G_b(i\Omega) , \quad (19d) \]

\[\Sigma_h(\Omega) = \frac{1}{4} I^2 \sum_{\sigma, \sigma'} \tau_\sigma^{\alpha'} \tau_\sigma^\alpha \times T \sum_{\omega'} G_{f\sigma}(i\omega') G_{f\sigma'}(i\omega' + i\Omega) , \quad (19e) \]

where \(i\omega, i\omega' \) and \(i\Omega \) are fermionic and bosonic Matsubara frequencies, respectively; \(\sigma, \sigma' = \uparrow, \downarrow; \alpha = 1, 2, 3 \). Next one may transform the Matsubara frequency sums into frequency integrals along the branch-cuts of the Green’s functions and perform the analytical continuation to the real frequency axis. The projection to the singly-occupied sector of Hilbert space may now be carried out. To this end the frequency arguments of the pseudoparticle Green’s functions are shifted by the chemical potential \(\lambda \) and the limit \(\lambda \to \infty \) is taken. This yields

\[\Sigma_f^{(2a)}(\omega + i0) = \int d\xi f(-\xi) A_{c\sigma}(\xi) G_b(\omega - \xi + i0) , \quad (20a) \]

\[\Sigma_f^{(2b)}(\omega + i0) = \frac{1}{4} \sum_{\sigma', \sigma} \tau_\sigma^{\alpha'} \tau_\sigma^\alpha \times \int d\xi n(\xi) D_{h\alpha}(\xi) G_{f\sigma'}(\omega + \xi + i0) , \quad (20b) \]

\[\Sigma_b(\omega + i0) = \sum_{\sigma} \int d\xi f(\xi) A_{c\sigma}(\xi) G_{f\sigma}(\omega + \xi + i0) , \quad (20c) \]

where \(f(\xi) \) and \(n(\xi) \) are the Fermi and Bose functions, respectively, and \(A_{c\sigma}(\xi) \) and \(D_{h\alpha}(\xi) \) are spectral functions of the fermionic and bosonic baths as defined in [14], [15].

Since we incorporated the factors of \(V^2 \) and \(I^2 \) into the definition, \(A_{c\sigma} \) and \(D_{h\alpha} \) are not normalized anymore, their total weight being given by \(V^2 \) and \(I^2 \), respectively.
The projected pseudoparticle Green’s functions are expressed in terms of their self-energies as

\[G_f(\omega + i0) = \frac{1}{\omega + \mu - \lambda_0 - \Sigma_f(\omega + i0)}, \quad (21a) \]
\[G_b(\omega + i0) = \frac{1}{\omega - \lambda_0 - \Sigma_b(\omega + i0)}, \quad (21b) \]

where the (finite) energy shift \(\lambda_0 \) is determined by fixing the local charge \(Q^\text{loc} \)

\[
\lim_{\lambda \to \infty} e^{\beta \lambda} \langle \sum_s f^+_s f_s + b^+ b \rangle_G = \int d\omega e^{-\beta \omega} \left[\sum_s A_f(\omega) + A_b(\omega) \right] = 1. \quad (22)
\]

Here the subscript \(G \) specifies an expectation value in the grand canonical ensemble and \(A_f(\omega) = -\frac{1}{2} \text{Im} G_f(\omega+i0) \), etc.

The remaining self-energies \(\Sigma_c \) and \(\Sigma_b \) contain one pseudoparticle loop each and are therefore \(\propto e^{-\beta \lambda} \). The projected expectation value of any operator that vanishes in the \(Q = 0 \) subspace is then given by \(e^{\beta \lambda} \langle A \rangle \), using (22). It follows that

\[
\langle A \rangle = \lim_{\lambda \to \infty} \langle A \rangle_G = \lim_{\lambda \to \infty} e^{\beta \lambda} \langle A \rangle_G \quad (23)
\]

With the help of (10) we find the imaginary part of the impurity Green’s function in the compact form

\[
\text{Im } G^{\text{imp},\sigma}(\omega + i0) = -\frac{\pi}{\beta} \int \frac{d\xi}{(-\omega)} e^{-\beta \xi} A_f(\xi + \omega + i0) A_b(\xi - \omega - i0) \quad (25)
\]

From (12, 20) one finds after analytical continuation and projection

\[
\Sigma_{h\sigma}(\omega + i0) = \frac{\pi}{2} \sum_{\sigma,\sigma'} \tau_{\sigma\sigma'}^\alpha \tau_{\sigma\sigma'}^\alpha \int d\xi e^{-\beta \xi} \left[A_f(\xi) G_{\sigma\sigma'}(\xi + \omega + i0) + G_{f\sigma}(\xi - \omega - i0) A_{\sigma\sigma'}(\xi) \right] \quad (26)
\]

The impurity susceptibility is obtained from (17, 29) as

\[
\text{Im } \chi^{\text{imp},\sigma}(\omega + i0) = \frac{\pi}{4 n(\omega)} \sum_{\sigma,\sigma'} \tau_{\sigma\sigma'}^\alpha \tau_{\sigma\sigma'}^\alpha \int d\xi e^{-\beta \xi} A_{\sigma}(\xi - \omega) A_{\sigma'}(\xi). \quad (27)
\]

Equations (7 - 13), together with the “impurity solver”, Eqs. (18, 19abc) - 22, 26, 27 have been solved self-consistently. Starting with given initial values of the fermionic and bosonic bath and pseudoparticle spectral functions, \(A_c(\xi) \) and \(D_h(\xi) \), the first approximation to the pair of impurity Green’s functions \(G_{\text{loc}} \) and \(\chi_{\text{loc}} \) as well as the pseudoparticle spectral functions is determined. Using the identities

\[
G_{\text{loc}} = \sum_k \frac{1}{G_{\text{loc}}^{-1} + V^2 G_c - \epsilon_k} \quad (28)
\]
\[
\chi_{\text{loc}} = \sum_q \frac{1}{\chi_{\text{loc}}^{-1} - T^2 G_h + J_q} \quad (29)
\]

that follow from equations (27, 5, 10) and (8, 9, 11), the new bath spectral functions \(A_c = -\frac{1}{2} \text{Im} V^2 G_c \) and \(D_h = -\frac{1}{2} \text{Im} T^2 G_h \) may be deduced. With these and the updated pseudoparticle Green’s functions one determines new \(G_{\text{loc}}, \chi_{\text{loc}}, G_f, G_b \) with the help of the impurity solver. The iteration is continued, until convergence is found to the desired level. This process is found to converge well in the temperature regime \(T \geq 0.04 t \) using a nearest-neighbor tight-binding model, where \(t \) is the hopping amplitude. At lower \(T \) a solution could not be found any more. In the following we will present the results of the numerical evaluation, before discussing in detail the reasons for the breakdown of the solution in the low temperature domain.

IV. RESULTS

A. Local spectral function: pseudogap and non-Fermi liquid physics

The most striking result of our work is the appearance of a pseudogap in the local electron spectral function \(A_{\text{loc}}(\omega) \) at small hole doping and low temperatures. Fig. 2 shows how the pseudogap starts to form when the exchange interaction \(J \) is switched on, for \(\delta = 0.015 \) and \(T = 0.1t \). In the limiting case of \(J = 0 \), corresponding to the Hubbard model in the limit \(U \to \infty \), \(A_{\text{loc}}(\omega) \) is
Characterized by a broad maximum below the Fermi level \((\omega = 0)\) interpreted as the lower Hubbard band, and a narrow peak (“quasiparticle peak”) above \(\omega = 0\). As \(J\) is switched on, the quasiparticle peak disappears rapidly and the weight under it appears to have shifted a distance \(\sim J\) below the Fermi level, forming a peak-dip-lump structure. The width of the pseudogap appears to scale with \(J\). At the same time the spectral function develops a tail above \(\omega = 0\) reaching far \(\sim t\) above the bare band edge. It is instructive to observe how the pseudogap disappears for a given \(J = 0.3t\) at \(T = 0.06t\) with increasing doping level (Fig. 3). The pseudogap vanishes and the quasiparticle peak begins to appear at dopings above \(\delta \approx 0.1\). We note in passing that the bulk of the spectral weight in the lower Hubbard band is shifted rigidly with the chemical potential and only a section of width \(\sim 4\max(J, \delta t)\) at the chemical potential is changing with the doping.

The formation of the pseudogap at a low doping \(\delta = 0.04\) and fixed \(J = 0.3t\) as the temperature is lowered from \(T = 2J\) down to \(T = 0.2J\) is shown in the inset of Fig. 2. In order to quantify the appearance of the pseudogap for given \(\delta\) as a function of \(T\) one may define the temperature \(T^{*}\) at which the curvature of \(A_{loc}(\omega)\) at \(\omega = 0\) changes sign from negative to positive values as \(T\) is lowered. In the inset of Fig. 4 the \(T^*\) values determined in this way are plotted versus \(\delta\). \(T^*\) is seen to drop rapidly with \(\delta\), tending to zero at \(\delta \approx 0.15\). These results are reminiscent of what is seen in ARPES experiments on high \(T_c\) superconductors.

How is the pseudogap generated? The clue to this question lies in the behavior of the effective chemical potential \(\mu_{eff} = \mu - \Re \Sigma(0)\), as a function of doping. In Fig. 4, \(\mu_{eff}\) is shown at a low temperature \(T = 0.06t\), in comparison with the bare chemical potential \(\mu_0\) (of the noninteracting system). At doping levels \(\delta \geq 0.2\) one finds that \(\mu_{eff}\) coincides nearly with \(\mu_0\), a necessary condition for Fermi liquid behavior. Upon lowering the doping concentration, \(\mu_{eff}\) is seen to grow until at \(\delta \approx 0.02\) the upper edge of the bare band is reached (the zero of energy is fixed at the center of the tight-binding band). In fact \(\mu_{eff}\) moves above the bare band, signifying the availability of states even above the latter. By contrast, the bare chemical potential remains located in the center of the band, approaching \(\mu_0 = 0\) in the limit \(\delta \to 0\). The fact that \(\mu_{eff}\) is moving up towards the upper band edge for \(\delta \to 0\) is a strong and unequivocal signal of non-Fermi liquid behavior – it is only possible for a highly incoherent metal with a large \(\Im \Sigma\). It is interesting to

![FIG. 2: The local spectral function plotted versus frequency for four different \(J/t = 0, 0.1, 0.2\) and 0.3 and \(T = 0.1t\) for doping level of \(\delta = 0.015\). The evolution of the pseudogap with \(J\) is clearly visible. The zero of energy is set at the chemical potential \(\mu\). The inset shows temperature dependence of the local spectral function at the doping level 4% and for \(J = 0.3t\).](image1)

![FIG. 3: The local spectral function plotted versus frequency for \(T = 0.06t\) and \(J/t = 0.3\) for various hole-doping concentrations \(\delta\). The inset shows the characteristic temperature \(T^*\) where the pseudogap opens (for the definition see the main text).](image2)

![FIG. 4: The effective chemical potential \(\mu_{eff}\) vs doping for \(J = 0.3t\) and \(T = 0.06t\) (left scale). The dotted line shows the non-interacting chemical potential \(\mu_0\). Open circles mark the estimation for the Kondo temperature \(T_K\) vs doping as calculated from Eq. 31 (right scale). The arrow marks the position where \(T_K\) is equal to \(J\). Only in the regime where \(T_K\) is larger than \(J\), the solution shows the onset of a Fermi liquid phase.](image3)
recall that in DMFT for the Hubbard model (which in the limit \(U \to \infty \) is identical to the \(t-J \) model for \(J \to 0 \)) one finds Fermi liquid behavior at low temperatures, and \(\mu_{\text{eff}} = \mu_0 \). Even at not so low temperatures (\(T \gtrsim 0.06t \)) for \(J = 0 \) \(\mu_{\text{eff}} \) follows \(\mu_0 \) except at rather low doping values \(\delta \lesssim 0.05 \), where a strong temperature dependence appears.

Similar behavior has been found in Refs. [16,17] for the Hubbard model at intermediate coupling. In Ref. [16] a the dynamical cluster approximation involving up to 64 sites was employed and the mean-field equations were solved by QMC simulation and the maximum entropy method, to effect the analytical continuation from imaginary to real frequencies. Maier et al. [16] interpreted the pseudogap found in their spectra as generated by finite range antiferromagnetic correlations on the cluster or as RVB physics. Since the results are so similar to ours, and within our approach finite range AF correlations or the formation of intersite singlets are not included, we suggest that their pseudogap is created by the same mechanism we identify as being responsible for our pseudogap: incoherent fluctuations (see above). Stanescu and Phillips [24] used a two-site cluster approach to derive non-local DMFT equations. The quantum impurity model was solved by an adaptation of the non-crossing approximation. Again the results for the spectral functions are similar to ours. The authors claim that an effective low-energy model cannot be defined, as low and high-energy sectors are mixed in a dynamical way. We do not see any reason for such an unusual situation, neither from their paper nor from outside arguments. Rather, in the limit \(U \gg t \), or more precisely, if \(U \) is strong enough to generate a Mott gap, the separation of the lower and upper Hubbard band is well defined, and a projection onto the lower band is justified. In Ref. [17] the appearance of the pseudogap is attributed to short-range (nearest-neighbor) correlations, limiting the phase space for low-energy excitations. These correlations are identified as orbital ring currents flowing between three adjacent sites. Since such effects are not included in our calculation, and we nonetheless find a pseudogap and a violation of Luttinger’s theorem, very similar to Ref. [17], we conclude that the (and sketched above) interpretation given in Ref. [17] is not correct.

We conclude that the behavior found in our scheme for low doping, namely pseudogap and non-Fermi liquid physics, is a generic feature of an incoherent metal. We have found this incoherent state to be quite robust, e.g. against changes in band structure. It is worth mentioning that Parcollet and Georges [22] recently studied a \(t-J \) model with random \(J \), which is equivalent to our EDMFT equations for the Bethe lattice. They did not find indications for a pseudogap. We believe the reason is that they employ slave boson mean-field theory, and thereby miss the incoherent part of the spectral function. A similar spin model has been considered before by Sachdev and Yu [25].

At larger dopings the solution shows the onset of a Fermi liquid phase, which we now proceed to discuss. First we show in Fig. 4 the local spectral function at \(\delta = 0.24 \) and \(J = 0.3t \). With increasing temperature the quasiparticle peak broadens and the chemical potential shifts to lower energies. The value of \(A(\omega) \) at the Fermi level increases with falling temperature and tends to a limiting value as \(T \to 0 \).

At large doping the exchange interaction \(J \) is unimportant and the EDMFT model reduces to an Anderson impurity model. We may estimate the hybridization width \(\Gamma \) of this model from the density of states of the fermionic bath at the Fermi level (\(\omega = 0 \)):

\[
\Gamma = \pi A_c(\omega = 0). \tag{30}
\]

The energy of the local orbitals \(E_d \), according to Eq. (30), is given by the chemical potential \(E_d = -\mu \). An estimate of the Kondo temperature is obtained from the conventional expression \(T_K = \sqrt{D \Gamma} \exp\left(\frac{\mu}{2E_D}\right) \) as

\[
T_K = \sqrt{D \pi A_c(0)} \exp\left(\frac{\mu}{2A_c(0)}\right). \tag{31}
\]

Fig. 4 shows \(T_K/t \) as a function of \(\delta \) for the low temperature \(T = 0.1t \), using \(D = 2t \). The Kondo temperature is seen to fall strongly with decreasing \(\delta \) even at the highest value \(\delta = 0.24 \), and approaches zero rapidly in the pseudogap regime. The value where \(T_K = J \) is indicated. In the regime \(T_K \lesssim J \) one expects the exchange interaction to be of increasing importance, such that the interpretation in terms of an Anderson impurity model loses its meaning.

In the Fermi liquid regime the imaginary part of the self-energy of \(G_{\text{loc}} \) is expected to vary as

\[
\text{Im } \Sigma(\omega - i0) \sim t \left[\omega^2 + (\pi T)^2 \right] / T_K^2. \tag{32}
\]
where the Kondo temperature T_K plays the role of the renormalized Fermi energy. The quadratic dependence is expected to hold for $\omega, T \ll T_K$. The inset of Fig. 6 shows $\text{Im} \Sigma(0)$ as a function of T for doping levels from $\delta = 0.3$ down to 0.01. A limiting quadratic temperature dependence is not seen since the lowest temperature reached in our evaluation is above T_K (or, for $\delta > 0.2$, only slightly below T_K).

However, for $\delta = 0.24$ and 0.3 behavior consistent with Fermi liquid theory would smoothly match the results shown; For smaller doping, in particular around $\delta \sim 0.1$, $\text{Im} \Sigma$ at $T \sim 0.03t$ is so large that it is impossible to connect this behavior smoothly with a Fermi liquid behavior below $T_K \approx 0.1t$. At still smaller δ $\text{Im} \Sigma$ is seen to decrease with doping, due to the formation of the pseudogap.

As a further indication of Fermi liquid behavior we evaluate the quasiparticle weight factor Z defined as

$$Z = \left(1 - \frac{\partial \text{Re} \Sigma}{\partial \omega}\right)^{-1} \bigg|_{\omega=0}. \quad (33)$$

Fig. 6 shows Z as a function of temperature for $\delta = 0.02 - 0.3$. A finite quasiparticle weight in the limit $T \to 0$ would signal Fermi liquid behavior. It is seen that only for the highest doping levels $\delta = 0.3$ and 0.24 would an extrapolation to $T = 0$ give a finite value. For smaller values of δ the Z-factor appears to drop rapidly with decreasing temperature, possibly extrapolating to zero.

B. Pseudoparticle spectral functions

The pseudofermion spectral function $A_f(\omega)$ at $\delta = 0.015$ and $T = 0.1t$ is plotted versus ω/t in Fig. 7 for values of J/t from 0 to 0.3. While at $J = 0$ $A_f(\omega)$ is characterized by a narrow peak at a frequency $\omega \sim T$ and of width $\sim T$, increasing J leads to a rapid asymmetric broadening of the peak, of width $\Delta \omega \sim J$. Although in the limit $T \to 0$ for general reasons one expects $A_f(\omega)$ (and also $A_b(\omega)$) to acquire power-law divergent behavior at the threshold $\omega = 0$, the temperature $T = 0.1t$ is too high to show the asymptotic behavior. At large doping, $\delta > 0.2$, when the Kondo temperature T_K as defined in Fig. 1 is larger than J, $A_f(\omega)$ is hardly affected by J. The doping dependence of $A_f(\omega)$ at $J = 0.3t$, as shown in the inset of Fig. 7, is weak. The characteristic energy scale is max($J, T_K) \approx J$ up to the highest doping of $\delta = 0.24$, and hence is independent of δ.

The pseudoboson spectral function shown in Fig. 8 is roughly speaking a mirror image of the lower Hubbard band. As J is switched on spectral weight is pushed from below the threshold at $\omega = 0$ and from the far end of the Hubbard band into a peak at $\omega \sim J$, emulating the peak-dip-hump structure in $A_{loc}(\omega)$ in the pseudogap regime.

Both in the case of $J = 0$ and for $\delta > 0.2$ a sharp quasiparticle peak is observed to form in $A_b(\omega)$ at $\omega = 0$.

![Image 1](image1.png)

Fig. 6: Quasiparticle renormalization amplitude Z plotted vs temperature for various doping concentrations. The inset shows the imaginary part of the self-energy at zero frequency as a function of temperature.

![Image 2](image2.png)

Fig. 7: The pseudo-fermion spectral function plotted vs frequency for four different values of J. The inset shows the evolution of spectra by doping the system at constant $J = 0.3t$.

![Image 3](image3.png)

Fig. 8: The pseudo-boson spectral function for the same parameters as used in Fig. 7.
The dynamical spin susceptibility is expected to reveal how the character of spin fluctuations depend on doping and exchange coupling constant J. In Fig. VI the imaginary part of $\chi_{\text{loc}}(\omega)/\omega$ is shown at low doping, $\delta = 0.01$, and low temperature, $T = 0.09t$, for various values of J/t ranging from 0 to 0.3. As J is increased, the peak of $\text{Im}(\omega)\chi/\omega$ broadens and the width is seen to be given by $\Delta \omega \approx J$. The real part $\text{Re}(\chi'(\omega = 0)) = \chi'(0)$ decreases with J as shown in Fig. IV. However, there is no trace of a pseudogap in $\text{Im}(\chi_{\text{loc}}(\omega))$. The pseudogap reveals itself in the spectrum of the self-energy $M(\omega)$ of magnetic excitations, as shown in Fig. IX where $\text{Im}M(\omega) = M''(\omega)$ is observed to develop a gap for $\omega \lesssim J$. As analyzed in Section V the pseudogap is caused by large values of $\chi'(\omega)$, which force a redistribution of spectral weight in $M''(\omega)$ by way of the self-consistent feedback of $\chi'(\omega)$ into $M''(\omega)$. In Fig. IX the momentum-resolved spin excitation spectrum, $\chi''_q(\omega)/\omega$ is shown for $J = 0.3t$, $\delta = 0.01$ and $T = 0.1t$. Whereas a pronounced gap exists at q-values away from the antiferromagnetic wavevector $Q = (\pi, \pi)$, near Q the gap is filled in. This is due to the fact that in the region of q-space around Q not only $M''(\omega)$ is small for $\omega \lesssim J$, but also the real part of the denominator of $\chi_q(\omega)$ vanishes, as $M'(\omega) + J_q \to 0$ for $q \to Q$ and as the transition to the antiferromagnetically ordered state is approached. Consequently, the ratio $M''(\omega)/|\chi_q(\omega)|^2$ develops pronounced peaks at $|\omega| \sim J$ rather than a pseudogap. In the local susceptibility the contribution from $q \approx Q$ tends to fill in the pseudogap, which is therefore not discernible in Fig. VIII. The effect of approaching the ordered state is also observed in the real part of $\chi_q(\omega)$, shown in Fig. X. The static q-dependent susceptibility $\chi_q(0)$ is seen to grow by two orders of magnitude as q is varied from $q = 0$ to $q = Q$. This behavior reflects the effect of a large spin correlation length ξ, defined through

$$\chi_q(0) = \frac{2}{zJ}\frac{1}{\xi^2 + (q - Q)^2},$$

for $q \approx Q$ ($z = 4$ is the coordination number and length is measured in units of the lattice constant). In Fig. XI the inverse correlation length is plotted versus T/t for $J = 0.3t$ and for various doping levels. For comparison, the theoretical result for the Heisenberg model (two loop
FIG. 12: The inverse of dynamic correlation length plotted as a function of temperature for various doping levels. The curve for $\delta = 0$ is taken from Ref. [27] and corresponds to the two-dimensional Heisenberg model.

FIG. 13: The fermionic bath spectral function A_c for two different doping levels $\delta = 0.01$ and $\delta = 0.18$ at $J = 0.3t$ and $T = 0.1t$. The local spectral function is also shown for comparison.

order RG of the nonlinear sigma model) given in Ref. [27] (limit $\delta = 0$) is shown as well. It appears to connect smoothly to the curve for $\delta = 0.02$. Fig. 12 also serves to show that the numerical solution ceases to exist at $\chi_Q(0) \gtrsim 10^2$, as will be discussed in Section VI.

D. Spectral functions of the fermionic and bosonic baths

The spectral function $A_c(\omega)$ of the fermionic bath is shown for $J = 0.3t$ and at $T = 0.1t$ in Fig. 13. The imposed self-consistency of the EDMFT equations has led to a drastic renormalization of the structureless tight-binding density of states. In fact $A_c(\omega)$ reflects the structure seen in $A_{loc}(\omega)$ to a large degree: On the one hand, the quasiparticle peak at large doping and on the other the pseudogap at small δ. For comparison we show $A_{loc}(\omega)$ in Fig. 13 as well.

A similar trend is seen in the case of the spectral function of the bosonic bath $D_h(\omega)$, as is apparent from Fig. 14. Here we also see from the comparison with $\chi_{loc}''(\omega)$ a large degree of similarity.

The total weight under the spectral functions $A_c(\omega)$ and $D_h(\omega)$ is equal to the squares of the coupling constants V^2 and I^2, respectively. As shown in Appendix B, the coupling constant V^2 is fixed by sum rules and is given by

$$V^2 = 2t^2(1 + \delta).$$

In contrast, a similarly simple relation does not hold for I^2. However, I^2 may be related to χ_{loc} and M as follows:

$$I^2 = \int_0^\infty \frac{d\omega}{\pi} \text{Im} [M(\omega - i0) - \chi_{loc}^{-1}(\omega - i0)].$$

It turns out that the numerical evaluation yields

$$I^2 \approx 2J^2(1 - \delta).$$

The first moment of the eigenfrequencies ω_q of the bosonic bath, is given by the f-sum rule,

$$\bar{\omega}_q = \sum_q \omega_q = \frac{\langle \epsilon^2 \rangle}{2J^2} \int_{-\infty}^\infty \frac{d\omega}{\pi} \omega \chi_{loc}''(\omega),$$

where $\langle \epsilon^2 \rangle = \int d\epsilon \epsilon^2 N_J(\epsilon)$ and $N_J(\epsilon)$ is the density of states (DOS) of J_q.

E. Thermodynamic properties

The thermodynamic potential Ω within EDMFT can be expressed in terms of the impurity free energy Ω_{imp} and contributions from the fermionic and bosonic baths:
\[
\Omega = \Omega_{\text{imp}} + k_B T \sum_{i\omega} \left\{ \sum_{k,\sigma} \ln \left[G_{k\sigma}(i\omega)/G_{\text{loc},\sigma}(i\omega) \right] + \frac{1}{2} \sum_{q,\alpha} \ln \left[\chi_{q\alpha}^{\sigma}(i\omega)/\chi_{\text{loc}}^{\sigma}(i\omega) \right] \right\} e^{i\omega \sigma^+}.
\]

Performing the analytical continuation from imaginary frequencies to the real axis and expressing the momentum summations as energy integrals, Eq. (39) may be written as

\[
\Omega = \Omega_{\text{imp}} + \frac{1}{\pi} \int d\epsilon D(\epsilon) \text{Im} \left\{ 2 \int d\omega f(\omega) \ln \left[G_{\text{loc}}(\omega)(\omega + \mu - \Sigma(\omega) - \epsilon) \right] + \frac{3}{2} \int d\omega n(\omega) \ln \left[\chi_{\text{loc}}(\omega)(M(\omega) + J t \epsilon) \right] \right\}.
\]

(40)

FIG. 14: The bosonic bath spectral function \(D_h\) for two different doping levels \(\delta = 0.01\) and \(\delta = 0.18\) at \(J = 0.3t\) and \(T = 0.1t\). For comparison, the local dynamic spin susceptibility is also shown.

The impurity free energy is given by the shift of the chemical potential, \(\lambda_0\), defined by

\[
\Omega_{\text{imp}} = \lambda_0.
\]

(41)

The entropy \(S = -\left(\frac{20}{37}/\mu\right)\) as a function of doping concentration \(\delta\) for various temperatures is shown in Fig. 15. Even at the low temperature, \(T = 0.1t\), \(S\) is seen to be rather large \((\sim 0.5 \ln 2)\), an indication for strong correlations and a rather incoherent state. The entropy of a noninteracting system at the same density would be about an order of magnitude smaller. The overall magnitude of \(S\) compares well with both the results of exact diagonalization for a small system and experimental data for \(La_{2-x}Sr_xCuO_4\). The calculated entropy shares the trend that it is reduced both at large doping, when the system crosses over to a Fermi liquid, and at smaller doping in the pseudogap phase. The quenching of the magnetic fluctuations by the incipient magnetic order as the antiferromagnetic Mott insulator is approached for \(\delta \to 0\) is qualitatively reproduced (note that for \(J = 0\), \(S\) increases as \(\delta \to 0\), and this behavior is obtained in DMFT calculations of the Hubbard model).

FIG. 15: Entropy per site as a function of doping \(\delta\) at various temperatures. Exact diagonalization results for the same temperatures are denoted by dotted lines while the open circles correspond to the experimental data on \(La_{2-x}Sr_xCuO_4\).

FIG. 16: Specific heat coefficient vs temperature for various doping concentrations. In the right panel we show results obtained by the exact diagonalization.

In Fig. 16 the specific heat divided by the temperature is plotted versus \(T\) for various dopings \(\delta\) (left panel). For comparison the results of ED are shown on the right panel.
Therefore given by the single-particle Green’s function as by differentiating Ω, which provides a check for numerical values of n Green’s function as curvature.

As expected, δ varies monotonically with μ at $T = 0.1t$. The particle density may also be obtained from the local Green’s function as $n = 2G_{loc,\sigma}(\tau = 0^+)$. The resulting values of n are indistinguishable from those calculated by differentiating Ω, which provides a check for numerical accuracy within our conserving approximation.

F. Transport properties

The calculation of transport properties in EDMFT is facilitated by the observation that a momentum independent self-energy leads to a local current vertex function (in other words, the non-local parts vanish in the limit dimension $d \to \infty$). The optical conductivity is therefore given by the single-particle Green’s function as

$$\sigma_{xx}(i\omega) = \frac{e^2}{\omega}k_BT \sum_{i\omega'} k_\sigma (v_k^x)^2 G_k(i\omega') G_k(i\omega' + i\omega),$$

(43)

where $v_k^x = 2t \sin k_x$ is the bare current vertex. Using the fact that G_k depends on k only through ϵ_k [see 2, 4], and performing the analytical continuation to the real frequency axis one finds

$$\text{Re}\sigma_{xx}(\omega + i\delta) = 2\pi e^2 \int d\epsilon \Phi_{xx}(\epsilon)$$

$$\times \int d\omega' \frac{f(\omega') - f(\omega' + \omega)}{\omega} A(\epsilon, \omega') A(\epsilon, \omega' + \omega)$$

(44)

where

$$\Phi_{xx}(\epsilon) = \sum_k (v_k^x)^2 \delta(\epsilon - \epsilon_k)$$

(45)

and $A(\epsilon_k, \omega) = \frac{1}{2}\text{Im}G_k'/(\omega + i\delta)$.

Similarly, the off-diagonal or Hall conductivity in the presence of a magnetic field B perpendicular to the plane takes the form.

$$\sigma_{xy} = \frac{4\pi^2 e^3}{3} B \int d\epsilon \Phi_{xy}(\epsilon) \int d\omega \left(-\frac{\partial f}{\partial \omega} \right) \left[A(\epsilon, \omega) \right]^3$$

(46)

where

$$\Phi_{xy}(\epsilon) = \sum_k \det(k)\delta(\epsilon - \epsilon_k)$$

(47)

and

$$\det(k) = \left| \begin{array}{cc} \epsilon_k^x & \epsilon_k^y \\ \epsilon_k^y & \epsilon_k^x \end{array} \right| ; \quad \epsilon_k^\alpha = \frac{\partial \epsilon_k}{\partial k^\alpha} ; \quad \epsilon_k^{\alpha\beta} = \frac{\partial^2 \epsilon_k}{\partial k^\alpha \partial k^\beta}$$

(48)

The weight factors Φ_{xx} and Φ_{xy} are shown in Fig. 18. One observes that for the simple 2D tight-binding lattice, Φ_{xx} is even function of energy while Φ_{xy} is an odd function of energy.

The Hall coefficient R_H is defined as

$$R_H = \frac{\sigma_{xy}}{\sigma_{xx} B}.$$
For orientation it is useful to discuss the limit of low temperatures, assuming \(\text{Im} \Sigma(\omega) \to 0 \) at \(\omega \to 0 \), and \(A(\epsilon, \omega) \) sharply peaked as a function of \(\epsilon \) at \(\epsilon = \omega + \mu_{\text{eff}} \). One may then do the integrations on \(\epsilon \) and \(\omega \) in (44) and (45), yielding

\[
\sigma_{xx} \simeq e^2 \frac{\Phi_{xx}(\mu_{\text{eff}})}{|\text{Im} \Sigma(0)|},
\]

and

\[
R_H \simeq \frac{1}{2e} \frac{\Phi_{yy}(\mu_{\text{eff}})}{[\Phi_{xx}(\mu_{\text{eff}})]^2},
\]

with \(e = -|e| \). We observe that \(R_H \) does not depend on \(\text{Im} \Sigma \) in this limit. In the Fermi liquid regime \(\mu_{\text{eff}} = \mu_0 < 0 \), and consequently \(\Phi_{yy}(\mu_0) > 0 \), leading to a negative \(R_H < 0 \).

By contrast, in the incoherent regime of the \(t-J \) model \(\mu_{\text{eff}} \) is found to be positive, approaching the upper band edge for \(\delta \to 0 \) (see Fig. 3). Since \(\Phi_{yy}(\epsilon) \) is negative for positive \(\epsilon \), and \(R_H \) is seen to be positive (hole-like). For \(\delta > 0.17 \), \(\mu_{\text{eff}} \) changes sign and \(R_H \) turns negative. For the nearest neighbor tight-binding model, and assuming a linear variation of \(\mu_{\text{eff}} \) with \(\delta \), \(\mu_{\text{eff}} = 4t(1-C\delta) \), \(R_H \) takes the simple form

\[
R_H \simeq \frac{\pi}{2C|e|\delta} ; \quad \delta \to 0 ; \quad C > 0.
\]

Using in addition the result for a single hole in the half-filled band, \(R_H = 1/|e|\delta \), one finds by comparison \(C = \frac{\pi}{4} \). For the conductivity one obtains in a similar way

\[
\sigma_{xx} \simeq e^2 \frac{t\delta}{|\text{Im} \Sigma(0)|}, \quad \delta \to 0.
\]

Although (52) and (53) are in qualitative agreement with our numerical results, we emphasize that the assumption of small \(\text{Im} \Sigma(0) \) is not justified in the incoherent regime. A large \(\text{Im} \Sigma \) is actually necessary to obtain a \(\mu_{\text{eff}} \) close to the band edge and therefore a positive sign of \(R_H \).

We now present the numerical results. In Fig. 19 (54) the scaled resistivity \(\rho_{xx}\delta/\rho_0 \), where \(\rho_0 = \hbar/e^2 \), is plotted versus temperature for values of \(\delta \) ranging from 0.01 to 0.23. The curves form a narrow band meaning that the scaling \(\rho_{xx} \propto 1/\delta \) shown in (53) holds approximately (and \(\text{Im} \Sigma(0) \) is a weak function of \(\delta \)). The values of the resistivity are rather high. In the pseudogap regime (\(\delta < 0.1 \)) the resistivity tends to turn downward for decreasing temperature. By contrast, at higher dopings an upward curvature is observed, leading to a plateau at low \(T \), before \(p \) begins to drop to lower values at still lower \(T \).

We cannot exclude that the plateau is an artifact of the NCA approximation. The Hall coefficient is plotted in Fig. 20 versus temperature, for values of \(\delta \) ranging from 0.01 to 0.23. For small doping \(\delta < 0.16 \), \(R_H \) is always positive, approaching the expected value \(1/(|e|\delta) \) in the limit \(\delta \to 0, T \to 0 \). For doping levels \(\delta \geq 0.16 \) \(R_H \) is negative at low \(T \), consistent with (51), and changes sign at higher \(T \), similar to what is observed in experiment.

V. INSTABILITY OF THE EDMFT SOLUTION DUE TO CRITICAL FLUCTUATIONS IN \(d = 2 \)

We will now investigate the question of why no solutions of the EDMFT equations exist for low temperatures and small dopings. Within the EDMFT of the \(t-J \) model long-range antiferromagnetic fluctuations are not taken into account in a proper way. As a consequence the local spin excitation spectrum \(\chi_{\text{loc}}(\omega) = \text{Im} \chi_{\text{loc}}(\omega - i0) \) keeps a simple Lorentzian-type shape. On the other hand the static local susceptibility \(\chi_{\text{loc}}(0) \) (in two dimensions) diverges as \(1/\xi^2 \) when the transition to the antiferromagnetically ordered state is approached and the spin correlation length \(\xi \to \infty \). This in turn forces the slope of \(\chi_{\text{loc}}(\omega) \)
in the limit $\omega \to 0$ to diverge as $\ln \xi$ as well. Within the effective impurity model of EDMFT a steep slope of $\chi''_{loc}(\omega)$ entails a large maximum of $\chi''_{loc}(\omega)$ at $\omega_{\text{max}} \lesssim J$, of value $\chi''_{loc}(\omega_{\text{max}}) \sim \chi_{loc}(0)$. As will be shown below, a maximum value of $\chi''_{loc}(\omega_{\text{max}})$ larger than some critical value $\chi''_{\text{loc, crit}} = \frac{c}{J}$, where the constant c depends on the density of states $N_J(\epsilon)$ (see (56)), leads to an unphysical pole in $\chi_{q}(\omega)$ at $\omega = \omega_{\text{max}}$ and $q = q_{\text{max}}$. This in turn forces $\text{Im} \, M(\omega - i0)$ to change sign into an unphysical branch of the complex frequency plane. This is the point when a stable numerical solution cannot be found any longer.

To demonstrate this behavior explicitly we consider now a flat density of states of spin excitations,

$$ N_J(\epsilon) = \sum_{q} \delta(\epsilon - J_{q}) = \frac{1}{8J} \theta(4J - |\epsilon|), \quad (54) $$

where the bandwidth $8J$ has been chosen to agree with that of the tight-binding model, $J_{q} = 2J(\cos q_{x} + \cos q_{y})$.

The local susceptibility as defined by (9) may then be expressed analytically in terms of the self-energy $M(\omega)$

$$ \chi_{loc}(\omega - i0) = \frac{1}{8J} \ln \frac{4J + M(\omega - i0)}{-4J + M(\omega - i0)} = \chi' + i\chi'' \quad (55) $$

Inverting this relation one finds

$$ M(\omega - i0) = 4J \frac{v + 1}{v - 1} = 4J \frac{|v|^2 - 1 - 2iv''}{|v|^2 - 1}, \quad (56) $$

where $v = \exp(8J\chi') = v' + iv''$. The imaginary part of v, given by

$$ v'' = \exp(8J\chi') \sin(8J\chi'') \quad (57) $$

will change sign as $\chi''(\omega)$ increases with increasing ω, if $8J\chi''(\omega) \geq \pi$. By (55), this will lead to a sign change of $M''(\omega - i0)$ from negative (stable) to positive values.

How can $\chi''(\omega)$ and $M''(\omega)$ both be positive? This is possible since $\chi_{q}(\omega - i0)$ develops a pole in the physical domain, $-|J_{q}| < 4J$, at finite $\omega = \omega_{\text{max}}$, giving a contribution to χ_{loc} with the “right” sign. The instability occurs at finite frequency and thus is not easily interpreted as a physical phenomenon.

In the numerical treatment we found that a convergent solution cannot be obtained when the stability criterion

$$ \chi''_{loc} < \frac{c}{J} \quad (58) $$

is violated. The constant c takes the value $\pi/8$ for the flat DOS and a value $\simeq 0.3$ for the tight-binding model.

We emphasize that this instability is not an artifact of the method of solution of the impurity model but is a generic feature of the EDMFT equations in two dimensions. We argue that whenever the ground-state at $T = 0$ is ordered, the self-consistency scheme has to break down below some finite temperature. This argument is not only relevant for our calculation but should be relevant for other applications of EDMFT which have focused on discussing the possibility of novel quantum critical points in the presence of two dimensional magnetic fluctuations37,38. While our reasoning does not apply directly to the quantum critical point, it strongly suggests that no solution exists on the ordered side of the phase diagram, casting doubt on the applicability of EDMFT also at the quantum phase transition. Our formal argument starts from the observation that in two dimensions no phase transition (of first or second-order) is possible for $T > 0$ within EDMFT, since in a hypothetical ordered phase the local susceptibility would diverge due to the presence of Goldstone modes – in this respect, the EDMFT approach obeys the Mermin-Wagner theorem. We mention in passing that even in the case of Ising symmetry a second-order phase transition is not possible, as within EDMFT the longitudinal fluctuations would diverge at the critical point; however, in this case the first-order transition towards an ordered phase for $T > 0$ cannot be excluded on general grounds. Indeed, a first order transition has been found by Sun and Kotliar, Gresch and Zhu, Gresch and Stohr20 for an Ising-coupled Anderson lattice or Kondo lattice, respectively. Assuming that for $T = 0$ the system is magnetically ordered, the local susceptibility $\chi_{loc}(0) \sim \ln \xi$ will grow steadily as T is lowered where ξ is exponentially large, $\xi \sim e^{\beta E^*}$, for $T \ll E^*$ and E^* can crudely be identified with the mean-field transition temperature. However, we have shown that within EDMFT $\chi''(\omega)$ is bounded from above by the requirements of self-consistency. How can this be reconciled with large $\chi_{loc}(0) = \int \frac{\text{Im} \chi''(\omega) d\omega}{2\pi} \sim \ln \xi$? The only possibility consistent with the Kramers-Kronig relation is that $\chi''(\omega)$ is constant down to an exponentially small energy scale $E^{*'} \sim 1/\xi^z$, where z is some positive exponent. For sufficiently small T, $E^{*'}$ will be exponentially smaller than T. At this point we have to ask the question whether the solution of the effective impurity model can result in a scale exponentially smaller than T. We think that this is extremely unlikely and conclude therefore that no solution can exist for sufficiently small T, consistent with our results and also with QMC simulations by Burdin et al28 of a model equivalent to ours in the limit of zero doping.

Eq. (59) also shows how the pseudogap in $M(\omega)$ emerges from the self-consistency of χ and M. The absorptive part of the self-energy M, as seen from (57), is exponentially small in the regime where

$$ 8J \chi'(\omega) \gg 1. \quad (59) $$

From the numerical results in Fig. 10 one sees that (59) is satisfied if $|\omega| < cM J$, where cM is a constant of order unity, which depends on the DOS $N_J(\epsilon)$. Thus, the pseudogap is found to develop as a consequence of the increase of $\chi'(0) \propto \frac{1}{\xi} \ln \xi$ with growing ξ, in two-dimensions. We stress that a relation similar to (59) between $M(\omega)$ and $\chi(\omega)$ holds whenever the DOS $N_J(\epsilon)$ is finite at the band edges, which is a signature of two
dimensions. In this case the conclusions drawn above remain valid when $\frac{\Delta}{\mu}$ is replaced by $\Delta N J$, the DOS jump and χ is replaced by $\chi - \chi_{\text{reg}}$, where $\chi_{\text{reg}}(\omega) = \int d\epsilon (N J(\epsilon) - \Delta N J)/[J_0 + M(\omega)]$.

VI. CONCLUSION

The physics of the doped Mott-Hubbard insulator is governed by the interplay of the motion of holes and the antiferromagnetic fluctuations of the spin background. In this paper we have used a local approximation scheme to describe both the constrained hopping of holes and the quantum spin fluctuations in the paramagnetic phase on an equal footing. The local approximation becomes exact in the limit of infinite coordination number of the underlying lattice and is known as Extended Dynamical Mean Field Theory. Rather than studying the model in this limit, we take the point of view that in finite dimensions the approximation of neglecting the momentum dependence of the single-particle self-energy and the J-irreducible spin susceptibility may still be useful. Here we have applied this scheme to the two-dimensional square lattice with nearest-neighbor hopping and exchange interaction. We expect that the approximation should work in a regime of temperatures and doping concentrations where incoherent fluctuations dominate and wash out any of the collective effects sensitive to the system dimension, such as long-range antiferromagnetic order or superconductivity.

In the regime of temperatures above $T \sim 0.1J$ and for doping levels of $0.01 \lesssim \delta \lesssim 0.3$, we indeed find a highly incoherent phase, with a broad distribution of spin excitation energies, a high entropy and a large electrical resistance. Most strikingly, the local single-particle spectral function, which is characterized by a narrow peak above the chemical potential for $\delta \gtrsim 0.25$, develops a pseudogap as δ is reduced down to the few percent range. The appearance of the pseudogap is related to a dramatic shift of the effective chemical potential from its noninteracting (i.e. Fermi liquid) value near the center of the lower Hubbard band to the upper band edge. The shift persists down to the lowest accessible temperatures of $T \approx 0.1J$ and constitutes an unequivocal signal of non-Fermi liquid behavior in the regime $0.01 \lesssim \delta \lesssim 0.2$. The single-particle pseudogap is accompanied by a gap in the spin excitation spectrum for momenta not too close to the ordering wave vector $Q = (\pi, \pi)$.

The Hall transport is found to be hole-like, the Hall constant tending to large positive values $\propto 1/\delta$ as the doping is reduced. At large dopings and low temperatures Fermi liquid type behavior is recovered.

These results are encouraging and give rise to the expectation that the present EDMFT scheme is able to capture the main features of the t-J model in the incoherent regime. At lower temperatures and small dopings one should expect the closeness to the antiferromagnetic transition at $T = 0$ and $\delta < \delta_c$ to play an important role. We indeed find that the EDMFT equations stop having a physical solution below a limiting temperature of $T \approx 0.1J$. We are able to trace this behavior to an intrinsic lack of structure in the spin structure factor of the effective impurity model, which is ultimately due to the insufficient treatment of critical fluctuations in the EDMFT model. It is likely that similar limitations apply to other applications of the EDMFT in low dimensional systems.

In conclusion, we emphasize that within the present local approximation scheme neither effects of finite-range, slowly fluctuating antiferromagnetic or superconducting domains, nor local singlet formation or similar short-range correlations are included. Nonetheless, the strongly incoherent fluctuations characteristic of our approach (in this case of the spins, but one could imagine similar effects e.g. in the superconducting sector) suffice to drive pseudogap formation, a violation of Luttinger’s theorem and a hole-type Fermi surface in the proximity of a Mott insulator.

We acknowledge helpful discussions with E. Arahams, J. Bonča, A. Georges, D.R. Grempel, M. Grilli, P. Howell, G. Kotliar, O. Parcollet, Q. Si and especially P. Prelovšek. Part of this work was supported by the Ministry of Education, Science and Sport of Slovenia, the FERLIN program of the ESF (K.H.) and the Emmy-Noether program of the Deutsche Forschungsgemeinschaft (A.R.).

APPENDIX A: EDMFT DERIVATION

In this appendix we derive the EDMFT self-consistent equations for the t-J model using the cavity method.

To treat the no-double occupancy constraint of the t-J model, we will add a local Coulomb repulsion term explicitly and take the limit $U \to \infty$ at the end. In this approach, the electron creation (destruction) operators c_i^\dagger (c_i) obey the usual fermion anticommutation relations. The resulting Hamiltonian is the so-called extended Hubbard model

$$H = -\sum_{ij,\sigma} t_{ij} c_{i\sigma}^\dagger c_{j\sigma} + U \sum_i n_{i\uparrow} n_{i\downarrow} + \frac{1}{2} \sum_{ij} J_{ij} S_i \cdot S_j. \quad (A1)$$

It is straightforward to extend the theory to other non-local interactions like non-local Coulomb repulsion, but since we are mainly interested in the effect of magnetic fluctuations we will neglect other terms in the Hamiltonian. For simplicity, let us assume there is no long-range order (i.e. the system is in the paramagnetic state). Let us start the derivation of the EDMFT equations with the action corresponding to the Hamiltonian (A1):
The action can be divided into three parts: the on-site part for the chosen site \(S_o \)

\[
S_o = \int_0^\beta d\tau \left[\sum_{i,\sigma} c_{i\sigma}^\dagger(\tau) \left(\left(\frac{\partial}{\partial \tau} - \mu \right) \delta_{ij} - t_{ij} \right) c_{i\sigma}(\tau) + \frac{1}{2} \sum_{ij} J_{ij} S_i(\tau) S_j(\tau) + \sum_i U_{n_i}(\tau) n_{i\downarrow}(\tau) \right].
\]

The inter-site interaction between the chosen site \(o \) and the rest of the system \(\Delta S \)

\[
\Delta S = \int_0^\beta d\tau \left[\sum_{i,\sigma} -t_{io} c_{i\sigma}^\dagger(\tau) c_{o\sigma}(\tau) - t_{oi} c_{o\sigma}(\tau) c_{i\sigma}(\tau) + \frac{1}{2} (J_{io} + J_{oi}) S_i(\tau) \cdot S_o(\tau) \right],
\]

and the lattice action in the presence of the cavity \(S^{(0)} \), which is equal to the original action \(A^2 \) with site \(o \) excluded from all summations. The series expansion in the coupling between the central site and the rest of the system can be expressed as

\[
Z = \int Dc_{o\sigma} Dc_{o\sigma} \prod_{i \neq o} Dc_{i\sigma}^\dagger Dc_{i\sigma} \exp \left(-S_o - S^{(0)} - \int_0^\beta \Delta L(\tau) d\tau \right)
\]

\[
= \int Dc_{o\sigma} Dc_{o\sigma} \exp(-S_o) Z^{(0)} \left(1 - \int_0^\beta \langle \Delta L(\tau) \rangle^{(0)} d\tau + \frac{1}{2!} \int_0^\beta d\tau_1 \int_0^\beta d\tau_2 \langle \Delta L(\tau_1) \Delta L(\tau_2) \rangle^{(0)} + \ldots \right),
\]

where \(\Delta S = \int_0^\beta \Delta L(\tau) d\tau \) and \(\langle \rangle^{(0)} \) means the average over the cavity action \(S^{(0)} \). In the second line we have integrated out all fermions except for site \(o \).

The first term linear in \(\Delta L \) vanishes, since the average of each spin \(\langle S_i(\tau) \rangle = 0 \) is zero by the assumption of no long range order in the system. For the broken-symmetry phase, the spin operator has to be replaced with its deviation from the average value \(\overline{S}_j \to S_j - \langle S_j \rangle \) and the derivation can proceed along the same lines. The second term in the series expansion reads

\[
\frac{1}{2!} \int_0^\beta d\tau_1 \int_0^\beta d\tau_2 \langle \Delta L(\tau_1) \Delta L(\tau_2) \rangle^{(0)} = \int_0^\beta d\tau_1 \int_0^\beta d\tau_2 \left[T_r \left[\sum_{i,\sigma} t_{io} c_{i\sigma}^\dagger(\tau_1) c_{o\sigma}(\tau_1) + t_{oi} c_{o\sigma}(\tau_1) c_{i\sigma}(\tau_1) - \sum_i J_{oi} S_o(\tau_1) \cdot S_i(\tau_1) \right] \right.
\]

\[
\left. \times \left[\sum_{i,\sigma} t_{io} c_{i\sigma}^\dagger(\tau_2) c_{o\sigma}(\tau_2) + t_{oi} c_{o\sigma}(\tau_2) c_{i\sigma}(\tau_2) - \sum_i J_{io} S_i(\tau_2) \cdot S_o(\tau_2) \right] \right)^{(0)}. \]

It is crucial to observe that there is no interference between the kinetic and the spin term since the average of the correlation function \(\langle c_{i\sigma}(\tau_1) S_j(\tau_2) \rangle^{(0)} \) vanishes. The leading-order term in the effective action thus reads

\[
S_{\text{eff}} = S_o - \int_0^\beta d\tau_1 d\tau_2 \left[c_{o\sigma}(\tau_1) \sum_{ij} t_{io} t_{oj} \langle T_r c_{i\sigma}(\tau_1) c_{j\sigma}^\dagger(\tau_2) \rangle^{(0)} c_{o\sigma}(\tau_2) + S_o(\tau_1) \frac{1}{2} \sum_{ij} J_{io} J_{oj} \langle T_r S_i(\tau_1) S_j(\tau_2) \rangle^{(0)} S_o(\tau_2) \right].
\]

Within EDMFT both terms are equally important and are of order 1 in the \(1/d \) expansion. The two-point Green’s function and the susceptibility scale as \(1/d^{\beta-\gamma/2} \) since \(t \) and \(J \) fall off as \(1/\sqrt{d} \). Furthermore \(i \) and \(j \) are neighbors of site \(o \) and are thus at least 2 lattice sites apart (in Manhattan distance) giving a contribution of order \(1/d \). The prefactor \(t^2 \) or \(J^2 \) is proportional to \(1/d \), while the double sum gives \(d^2 \) and the net result is therefore of order 1.

Further it follows from the Linked Cluster Theorem...
that only connected n-point correlation functions appear in higher-order terms of the effective action. Since they have the usual dependence on $1/d$, all but the first term vanish in the limit $d \to \infty$. For instance, the next-order term would involve 3-point connected correlation function $\chi_{ijk} \sim \langle S_i^z S_j^z S_k^z \rangle$ or $C_{ijk} \sim \langle S_i^z c_j^\dagger c_k \rangle$ that scale like $1/d_{ij}^{\mu-j-i/2}d_{ik}^{\nu-k-i/2}$. When all three variables i, j, and k are different, the correlation function is of order $1/d^2$ since all three sites are neighbors of o. The prefactor J^3 or Jt^2 is proportional to $1/d^3/2$ while the sums give d^3. The term is thus of order $1/\sqrt{d}$. If $i = j$ but distinct from k the correlation function is of order $1/d$ while sums give d^2 and the net result is again of order $1/\sqrt{d}$. Higher-order terms fall off faster than $1/\sqrt{d}$. Thus, in the limit of large d all but the first term (A8) can be neglected and the effective action becomes

$$S_{\text{eff}} = \int_0^\beta U n_{\alpha\tau}(\tau)n_{\alpha\delta}(\tau) - \int_0^\beta d\tau_1 \int_0^\beta d\tau_2 \, c_{\alpha\sigma}(\tau_1)G_{ij}^{-1}(\tau_1 - \tau_2)c_{\alpha\sigma}(\tau_2) - \frac{1}{2} \int_0^\beta d\tau_1 \int_0^\beta d\tau_2 \, S_0(\tau_1)\chi_{ij}^{-1}(\tau_1 - \tau_2)S_0(\tau_2)$$ \hspace{1cm} (A9)

where

$$G_{ij}^{-1}(\omega) = \omega + \mu - \sum_{ij} t_{io\tau}G_{ij}^{(0)}(\omega),$$

$$\chi_{ij}^{-1}(\omega) = \sum_{ij} J_{io\tau} \chi_{ij}^{(0)}(\omega).$$ \hspace{1cm} (A10)

The Weiss fields are thus determined by the cavity Green’s function $G_{ij}^{(0)}$ and the cavity susceptibility $\chi_{ij}^{(0)}$.

The absence of interference between the kinetic and spin terms in (A8) also leads to separate equations for both cavity quantities

$$G_{ij}^{(0)} = G_{ij} - G_{io}G_{oo}^{-1}G_{oj},$$

$$\chi_{ij}^{(0)} = \chi_{ij} - \chi_{io}\chi_{oo}^{-1}\chi_{oj}.$$ \hspace{1cm} (A11)

With the power-counting arguments one can show that in the limit $d \to \infty$ and EDMFT scaling the single-particle self-energy $\Sigma(i\omega)$ as well as the double particle self-energy $M(i\omega)$ become local quantities, i.e.,

$$G_k(i\omega) = \frac{1}{i\omega + \mu - \epsilon_k - \Sigma(i\omega)},$$

$$\chi_q(i\omega) = \frac{1}{J_q + M(i\omega)}.$$ \hspace{1cm} (A12)

Inserting the definitions (A12) into (A11) and combining with (A10) we finally obtain the self-consistent conditions

$$G_k^{-1} = \Sigma + G_{loc}^{-1},$$

$$\chi_k^{-1} = M - \chi_{loc}^{-1}.$$ \hspace{1cm} (A13)

These relate the Weiss fields to the local quantities computable from the local action (A9). The system of equations is thus closed.

For practical computation, however, it is convenient to have a Hamiltonian representation of the local effective action (A9). Since it includes retardation effects through frequency dependent Weiss fields, it is necessary to introduce auxiliary degrees of freedom describing the baths. The one-particle character of the Weiss field G_k^{-1} can be represented with the fermionic bath while the two particle field χ_k^{-1} has a bosonic nature and dictates bosonic bath. One of the possible choices is

$$H = \sum_{k\sigma} E_k c_{k\sigma}^\dagger c_{k\sigma} + V \sum_{k\sigma} (c_{k\sigma}^\dagger c_{o\sigma} + c_{o\sigma}^\dagger c_{k\sigma}) - \sum_{\sigma} \mu c_{o\sigma}^\dagger c_{o\sigma} + U n_{o\uparrow}n_{o\downarrow} + \sum_{q} \omega_q h_q^\dagger h_q + I \sum_{q} S_o \cdot (h_q + h_q^\dagger),$$ \hspace{1cm} (A14)

where h_q corresponds to a vector-bosonic bath with the commutation relations $[h_q^\alpha, h_q^\beta] = \delta_{q\alpha} \delta_{\alpha\beta}$. The corresponding action

$$S = S_o + \int_0^\beta d\tau \sum_{k\sigma} \left[c_{k\sigma}^\dagger(\tau) \left(\frac{\partial}{\partial \tau} + E_k \right) c_{k\sigma} + V c_{k\sigma}^\dagger(\tau)c_{o\sigma}(\tau) + V c_{o\sigma}^\dagger(\tau)c_{k\sigma}(\tau) \right]$$

$$+ \int_0^\beta d\tau \sum_{q} \left[h_q^\dagger(\tau) \left(\frac{\partial}{\partial \tau} + \omega_q \right) h_q(\tau) + I h_q(\tau) \cdot S_0(\tau) + I S_0(\tau) \cdot h_q^\dagger(\tau) \right]$$ \hspace{1cm} (A15)

is quadratic in $c_{k\sigma}$ and h_q, and therefore both baths can be eliminated leading to

$$S = S_o - \int_0^\beta d\tau_1 \int_0^\beta d\tau_2 \sum_{\sigma} c_{o\sigma}^\dagger(\tau_1) \left(\sum_k V \frac{\delta_{\tau_1\tau_2}}{\partial \tau} + E_k \right)c_{o\sigma}(\tau_2) - \int_0^\beta d\tau_1 \int_0^\beta d\tau_2 S_0(\tau_1) \left(\sum_q I^2 \frac{\delta_{\tau_1\tau_2}}{\partial \tau} + \omega_q \right) S_o(\tau_2).$$ \hspace{1cm} (A16)

This action is identical to the effective action (A8) provided that the following relations hold

$$G_k^{-1}(\tau_1 - \tau_2) = -\left(\frac{\partial}{\partial \tau_1} - \mu \right) \delta_{\tau_1\tau_2} + \sum_k V^2 \frac{\delta_{\tau_1\tau_2}}{\partial \tau} + E_k,$$

$$\chi_q^{-1}(\tau_1 - \tau_2) = \sum_q I^2 \left(\frac{\delta_{\tau_1\tau_2}}{\partial \tau} + \omega_q + \frac{\delta_{\tau_1\tau_2}}{\partial \tau} + \omega_q \right).$$ \hspace{1cm} (A17)
or equivalently
\[G_{loc}^{-1}(i\omega) = i\omega + \mu - V^2 G_c(i\omega), \]
\[\chi_{0}^{-1}(i\omega) = -I^2 G_h(i\omega). \] \(\text{(A18)} \)

Finally, combining (A13) and (A18) yields
\[G_{loc} = i\omega + \mu - \Sigma - V^2 G_c, \]
\[\chi_{loc} = M + I^2 G_h, \] \(\text{(A19)} \)

which coincide with (10) and (11).

APPENDIX B: SUM RULE CONSTRAINTS ON \(V^2 \) AND \(I^2 \)

Within EDMFT, the coupling parameters \(V \) and \(I \) defined by (6), describing the hopping on to, and the exchange interaction with the impurity, are determined self-consistently. Interestingly, sum rules completely determine the values of \(V \) and partially constrain the values of \(I \). We start with the single-particle hopping \(V \). Defining a complex variable \(z = \omega + \mu + \Sigma(i\omega - i0) \) one may write the EDMFT self-consistency condition (7), using (2), (8) and (10), as
\[H(z) = \int \frac{D(\epsilon) d\epsilon}{z - \epsilon} = \frac{1}{z - V^2 G_c(\omega - i0)}, \] \(\text{(B1)} \)

with \(D(\epsilon) \) the DOS of the tight-binding band \(\epsilon_k \) and \(G_c(\omega) \) the fermionic bath Green’s function defined in (12). Solving (B1) for \(V^2 G_c \) and taking the limit \(\omega \rightarrow \infty \) one finds
\[\lim_{\omega \rightarrow \infty} [\omega V^2 G_c(\omega - i0)] = V^2 = \lim_{\omega \rightarrow \infty} \omega (z - \frac{1}{H(z)}) = \lim_{\omega \rightarrow \infty} \frac{1}{2} \langle \epsilon^2 \rangle. \] \(\text{(B2)} \)

Here the zero of energy has been chosen such that \(\langle \epsilon \rangle = 0 \), with \(\langle \epsilon^* \rangle = \int d\epsilon D(\epsilon) \epsilon^* \), and \(\langle \epsilon^2 \rangle \) is a measure of the squared width of the band. For the tight-binding band \(\epsilon_k = 2t(cosk_x + cosk_y) \) one finds \(\langle \epsilon^2 \rangle = 4t^2 \).

We now use the sum rule on the spectral weight in the lower Hubbard band,
\[n_L = \int_{-\infty}^{\infty} \frac{d\omega}{\pi} \text{Im} G_{loc}(\omega - i0) = \frac{1}{2} (1 + \delta) \] \(\text{(B3)} \)

which, using the analyticity of \(G_c(\omega - i0) \) in the lower half-plane, is equivalent to the statement
\[n_L = \lim_{\omega \rightarrow -\infty} \omega G_{loc}(\omega - i0) = \lim_{\omega \rightarrow -\infty} \frac{1}{N_L} \sum_k \frac{\omega}{\omega - \epsilon_k} \] \(\text{(B4)} \)

where \(N_L \) is the number of \(k \)-points in the first Brillouin zone, which are summed over. Combining (B2)-(B4) one gets
\[V^2 = \frac{1}{2} (1 + \delta) \langle \epsilon^2 \rangle. \] \(\text{(B5)} \)

The coupling constant \(I \) may be related to \(\chi_{loc}(\omega) \) and \(M(\omega) \). Using (11), one may express \(G_h \) as
\[I^2 G_h(\omega) = M(\omega) - \chi_{loc}^{-1}(\omega). \] \(\text{(B6)} \)

Since \(G_h \) is a boson Green’s function (see (13)) with positive energy spectrum, \(\omega_q \geq 0 \), the following relation holds
\[\int_0^{\infty} \frac{d\omega}{\pi} \text{Im} G_h(\omega - i0) = 1. \] \(\text{(B7)} \)

From (B7) one then finds
\[I^2 = \int_0^{\infty} \frac{d\omega}{\pi} \text{Im} \left[M(\omega - i0) - \chi_{loc}^{-1}(\omega - i0) \right]. \] \(\text{(B8)} \)

A further relation is obtained by using the \(f \)-sum rules:
\[\int \frac{d\omega}{\pi} \omega \text{Im} G_h(\omega - i0) = \lim_{\omega \rightarrow -\infty} \omega^2 G_h(\omega) = \frac{1}{N_L} \sum_q 2\omega_q \equiv \bar{\omega}_q \] \(\text{(B9)} \)

and
\[\int \frac{d\omega}{\pi} \chi_{loc}''(\omega) = \lim_{\omega \rightarrow -\infty} \omega^2 \chi_{loc}(\omega). \] \(\text{(B10)} \)

Taking the limit \(\lim_{\omega \rightarrow -\infty} \omega^2 [\ldots] \) of (B10) one finds
\[\bar{\omega}_q = \langle \epsilon^2 \rangle \frac{1}{2I^2} \int \frac{d\omega}{\pi} \omega \chi_{loc}''(\omega) \] \(\text{(B11)} \)

with \(\langle \epsilon^2 \rangle \) as defined after 122.
1. N.E. Bickers, Rev. Mod. Phys. 59, 845 (1987).
2. A. Ino et al., Phys. Rev. B 65, 094504 (2002); J. C. Campuzano, et al. Physica B 259-261, 517 (1999).
3. T. Timusk and B. Statt, Phys. Rep. 62, 61 (1999).
4. J.L. Tallon and J.W. Loram, Physica C 349, 53 (2001).
5. J.R. Cooper and J.W. Loram, J. Phys. I France 6, 2237 (1996); Y. Ando et al., cond-mat/0208096.
6. K. Haule, A. Rosch, J. Kroha, and P. Wölfle, Phys. Rev. Lett. 89, 236402 (2002).
7. T. Timusk and B. Statt, Phys. Rep. 62, 61 (1999).
8. J.W. Loram, K.A. Mirza, J.R. Cooper, N.A. Athanasopoulou, and W.Y. Lian, Proc. of 10th Anniversary HTS Workshop Houston, World Scientific, 341 (1996).
9. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).
10. E. Müller-Hartmann, Z. Phys. B 74, 507 (1989).
11. A. Khurana, Phys. Rev. Lett. 64, 1990 (1990).
12. H. Kohno and K. Yamada, Progr. Theor. Phys. 80, 623 (1988).
13. P. Voruganti, A. Golubetsov, and S. John, Phys. Rev. B 45, 1395 (1992).
14. E. Lange and G. Kotliar, Phys. Rev. Lett. 82, 1317 (1991).
15. P. Prelovšek, Phys. Rev. B55, 9219 (1997).
16. Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Nature, 413, 804 (2001).
17. T. Ishigaki, J. Takeda, and M. Sata, J. Phys. Soc. Jpn. 63, 1441 (1994).