SPH Simulations with Reconfigurable Hardware Accelerator

Naohito Nakasato, 1 Tsuyoshi Hamada, 1,2 and Toshiyuki Fukushige 2,3

1 Computational Astrophysics Laboratory,
The Institute of Physical and Chemical Research,
2-1 Hirosawa, Wako, Saitama, 251-0198
2 Department of General System Studies,
College of Arts and Sciences, The University of Tokyo,
3-8-1 Komaba, Meguro, Tokyo 153-8902
3 Tokyo Laboratory,
K&F Computing Research Co.,
840-205 Arai, Hino, Tokyo 191-0022
nakasato@riken.jp, thamada@riken.jp, fukushig@provence.c.u-tokyo.ac.jp

(Received ; accepted)

Abstract

We present a novel approach to accelerate astrophysical hydrodynamical simulations. In astrophysical many-body simulations, GRAPE (GRAvity piPE) system has been widely used by many researchers. However, in the GRAPE systems, its function is completely fixed because specially developed LSI is used as a computing engine. Instead of using such LSI, we are developing a special purpose computing system using Field Programmable Gate Array (FPGA) chips as the computing engine. Together with our developed programming system, we have implemented computing pipelines for the Smoothed Particle Hydrodynamics (SPH) method on our PROGRAPE-3 system. The SPH pipelines running on PROGRAPE-3 system have the peak speed of 85 GFLOPS and in a realistic setup, the SPH calculation using one PROGRAPE-3 board is 5-10 times faster than the calculation on the host computer. Our results clearly shows for the first time that we can accelerate the speed of the SPH simulations of a simple astrophysical phenomena using considerable computing power offered by the hardware.

Key words: galaxy: formation — stars: formation — hydrodynamics
1. Introduction

GRAPE ("GRAvity piPE"; Sugimoto et al., 1990; Makino & Taiji, 1998) is a special-purpose computer originally invented and developed for simulations of evolution of a star cluster. In such simulations, most time consuming part of the simulation is calculation of gravity force between stars (or pseudo-particles). After the first development of GRAPE-1, many generation of GRAPE computers have been developed and used very widely for simulations of star cluster (e.g., Makino, 1996; Portegies Zwart et al., 2004), galaxy evolution (e.g., Steinmetz, 1996; Mori et al., 1999; Nakasato & Nomoto, 2003), cluster of galaxies (e.g., Sensui et al., 1999; Fukushige & Makino, 2001; Fukushige et al., 2004), evolution of planetesimal (e.g., Kokubo & Ida, 1996), formation of Moon (e.g., Kokubo et al., 2000), and many more. For details see reviews (Makino & Taiji, 1998; Hut & Makino, 1999; Makino, 2003).

In most of GRAPEs, calculation of gravitational interaction between particles expressed as

\[f_i = -\sum_{j=1}^{N} m_j \frac{r_i - r_j}{(r_i - r_j)^2 + \epsilon^2)^{3/2}}, \]

(1)
is implemented as fully pipelined logic on a LSI (a.k.a. GRAPE chip). Here \(r_i \) and \(m_i \) are the position and mass of \(i \)-th particle, and \(\epsilon \) is the softening parameter. Its relatively less complex formulation is one of reasons that GRAPE hardwares can offer huge advantage both in the absolute speed and in the price-performance.

Although many astrophysical phenomena are primarily driven by gravitational force, hydrodynamics and other physics are sometimes important. A number of research groups use GRAPE hardwares mainly for combined \(N \)-body+hydrodynamical simulations such as the evolution of galaxies or clusters galaxies. (e.g., Steinmetz, 1996; Mori et al., 1999; Nakasato & Nomoto, 2003). Those groups including ourselves use Smoothed Particles Hydrodynamics (SPH) method (Lucy, 1977; Gingold & Monaghan, 1977) for hydrodynamical part of the codes. In the SPH method, fluid is expressed as bunch of particles and hydrodynamical interaction such as pressure force is calculated with a following summation between particles;

\[f_i = -\sum m_j \left(\frac{P_i}{\rho_i^2} + \frac{P_j}{\rho_j^2} + \Pi_{ij} \right) \nabla W(r_i - r_j; h_{ij}), \]

(2)

where \(\rho_i, P_i \) are density and pressure for \(i \)-th particle, respectively, and \(h_{ij} \) is the average smoothing length between \(i \)-th particle and \(j \)-th particle. and \(W(r; h) \) is the kernel function for weighting physical quantities. Furthermore, \(\Pi_{ij} \) is an artificial viscosity term to preserve better numerical stability. In its abstract from, gravity interaction and SPH interaction have a similar structure. However, hydrodynamical interaction is short-range, and summation for \(i \)-th particle in equation (2) is done over neighbor particles whose distance from \(i \)-th particle is less than \(2h \). Accordingly, calculation cost of SPH interaction is \(O(nN) \) instead of \(O(N^2) \), where \(n \) is an average number of neighbor particles, typically 30-100 in 3 dimensional simulations.
The previous implementations of SPH on GRAPE use it only to calculate gravitational interaction and to construct a list of neighbors for the SPH interactions. Actual evaluation of the SPH interaction (e.g., equation (2)) is performed on the host computer. Thus, in the SPH simulations with GRAPE, the speed of the host computer tends to determine the total performance. This is because the calculation cost of the SPH interaction is much larger than the calculation cost of the rest of the simulation program such as time integration and I/O though not as large as that of the gravitational interaction. The calculation cost of single SPH interaction is a few times more than that of the gravitational interaction, e.g., calculation of one SPH interaction needs about 160 floating operations whereas one gravity interaction needs 38 floating operations. If we perform pure SPH simulations without collisionless particles (i.e., interacting with other particles only through gravity), the gain in speed achieved by GRAPE is a factor of few at the best. Practically, in simulations of a galaxy, relatively large number of collisionless particles must be included because of large mass ratio between dark matter and baryon in the universe, and for such calculations GRAPE can offer a large speedup. However, when we want to perform the SPH simulations without collisionless particles, the speedup would be rather limited. Accordingly, though the SPH techniques have been applied to wide variety of problems, such as the dynamics of star-forming regions and hydrodynamical interaction of stars, GRAPE hardwares have not been widely used for those kind of simulations.

In principle, one could develop a special-purpose hardware similar to GRAPE to accelerate the SPH interactions (Yokono et al., 1999). Such a hardware, once completed, would offer a large speedup over general-purpose computers. However, so far feasibility of such a project has still remained unproven. There are several reasons why it is difficult to develop a specialized computer for the SPH method. First, the calculation of the SPH interaction is a bit more complex compared to the calculation of the gravitational interaction as already shown. In concept, implementation of SPH chip is equally simple to GRAPE chip. What we need is a hardware to evaluate sum of quantities weighted by the kernel function W or its derivative. In practice, there are numerous technical details which have to be taken care of. For example, the smoothing length h is different for different particles, and W has to be symmetrized to preserve momentum conserving nature of the scheme.

Another difficulty is that in SPH algorithms (Monaghan, 1992) there are rather large number of varieties. A crucial variety is how to symmetrize W. In addition, there are many methods to implement artificial viscosity Π. Moreover, there have been several new developments in the last few years (e.g., Springel & Hernquist, 2002). In other words, a number of numerical parameters that control and change details of SPH interaction is much larger (say 10 or more) than the gravity interaction which has practically one parameter ϵ. If we would design the SPH chip, the development of the hardware would be significantly more difficult and time-consuming compared to the development of the GRAPE chip, and yet the hardware might become obsolete even before its completion.
We can avoid the risk of becoming obsolete if we can change the hardware of SPH chip after its completion. Changing the hardware might sound self-contradictory, since the hardware is, unlike the software, cannot be changed once it is completed. Though the name might sound strange, such “programmable” chips have been available for several decades now. These chips, usually called FPGA (Field-Programmable Gate Array) chips, consist of small logic elements (LE) and switching matrix to connect them. One LE is typically a small lookup table made of SRAM, combined with additional circuits such as a flip-flop and special logic for arithmetic operations.

The size (in equivalent gate count) of the FPGA chips has been enormously increased, from around 1k of mid-1980’s to around 10 million of 2005. Since the increase is driven essentially by the advance in the semiconductor device technology, one can expect that the increase will continue for the next decade. An FPGA chip with over 20 million gates will be available by 2006. Those FPGA chips are large enough to house fairly complex circuits. For example, the pipeline processor chip of GRAPE-3 (Okumura et al., 1993) is around 20k gates. Thus, even if we assume rather low utilization ratio of 20%, one GRAPE-3 chip should fit into an FPGA chip with 100k gates, which is now quite typical and pretty cheap.

In 1990’s, to implement GRAPE pipelines on FPGA would have little practical meaning, since one GRAPE chip of similar price to one FPGA chip at that time was much faster. However, current situation is the other way around such that for relatively small budget project, cost to design and implement new GRAPE chip even with current modest technology is rather expensive (i.e., the initial development cost of GRAPE-6 chip has exceeded 1M USD; Makino et al. (2003)) and it is not necessarily true that with fixed amount of money, GRAPE chips are cheaper and faster than FPGA chips with GRAPE pipelines. Thus, to implement GRAPE pipelines on FPGA itself is now becoming a considerable alternative to make a new GRAPE chip. Moreover, applications for which no custom hardware is available would find a GRAPE-like hardware implemented using FPGA useful. The SPH interaction is a perfect example for this type of hardware. We may implement any variety of the SPH algorithm, as far as it is expressed as interaction between particles and the necessary circuit fits in a target FPGA chip. The peak performance is not as large as what we can enjoy with custom LSI chips, but could be still orders of magnitude faster than what is available on general-purpose computers.

We call the concept of using a programmable FPGA chip as the pipeline processor for astrophysical simulations as PROGRAPE (PROgrammable GRAPE) that has been introduced by Hamada et al. (2000). It should be noted that PROGRAPE is not the first attempt to use FPGAs as the building blocks of special-purpose computers. There are a number of projects to develop custom computing machines using FPGAs as a main unit. The most influential one are Splash-1 and Splash-2 project (Buell et al., 1996).

In the present work, we report current status of our project that constructs a new generation of FPGA-based GRAPE-like hardware and tries to implement SPH pipeline on the
hardware. We have developed our third-generation of PROGRAPE type hardware which we call PROGRAPE-3. We mainly concentrate to report about details of implementation of SPH pipelines on PROGRAPE-3 and its performance obtained so far. In the companion paper (Hamada & Nakasato, 2006), we will report details of implementation and its performance of GRAPE pipelines on PROGRAPE-3 and other FPGA-base hardware. Ultimately, in the present work, we prove our concept of PROGRAPE is now feasible and very promising. In fact our result clearly shows that at least for astrophysical simulations, the reconfigurable supercomputing era is coming now.

This paper is organized as follows. In section 2, we briefly introduce our third generation of a reconfigurable hardware accelerator for astrophysical simulations. For our new computing board, we have developed special software to implement processors on the board. Using the developed software, we presents details of what we implement on our board in section 3. Here, we describe how a SPH simulation code can be fitted to our reconfigurable hardware. And more importantly, we present how large is the performance improvement obtained so far for SPH simulations. And finally, we summarize our current status and present some possible improvements of our software/hardware system.

2. PROGRAPE-3 system: new reconfigurable hardware accelerator

In this section, we briefly describe the hardware part of our system. As a sub-project of the GRAPE project, PROGRAPE-1 (Hamada et al., 2000), and PROGRAPE-2 have been developed so far. Conceptually, both systems have the same structure as schematically shown in Figure 1. PROGRAPE system consists of a host computer and a PROGRAPE board. This structure is exactly the same as conventional GRAPE systems and its operational scheme is also same, i.e., the PROGRAPE board calculates interactions between particles and the host computer performs all other complex calculations. Inside the PROGRAPE board, there are four units (interface unit, control unit, memory unit and computational pipeline unit) as shown in Figure 1, and this structure is basically also the same as conventional GRAPE boards. The Interface unit is used for communication between the host computer and the board through PCI bus. The Pipeline unit is central engine of the system that calculates interactions between particles. A crucial difference between GRAPE and PROGRAPE is that in the conventional GRAPE, computational pipeline is implemented on specially developed LSIs and hence its function is fixed, on the other hand, the pipeline is implemented on FPGA chips in the case of PROGRAPE. Furthermore, those pipelines on the FPGA chips can be reconfigurable or programmable. This programmability is a most drastic difference between conventional GRAPE and PROGRAPE.
Fig. 1. Schematic structure of PROGRAPE system.

2.1. PROGRAPE-3 system details

PROGRAPE-3 system is the third generation of the PROGRAPE architecture. The system consists of a host computer and single(multiple) FPGA board(s). For our target FPGA board in the present work, we adopt Bioler-3 board that has been developed as a joint project between Chiba University and RIKEN. The Bioler-3 board is a programmable multi-purpose computer board dedicated to accelerate computationally intensive applications. Here, we use the Bioler-3 board for implementing the computational pipeline for astrophysical many-body simulations as described later. In Figure 2, we show main components implemented on the Bioler-3 board. It has four large FPGA chips (hereafter, processor FPGA chip) dedicated for the central engine and one small FPGA chip (interface FPGA chip) for interface unit. Also, the control unit and the memory unit are implemented on the processor FPGA chips. Note in PROGRAPE-1 board and all version of the GRAPE board, memory chips are mounted on those boards for the memory unit. We use a PC whose CPU is AMD Opteron 2.2/2.4 GHz as the host computer of the PROGRAPE-3 system. The Bioler-3 board and the host computer is connected through PCI 64-bit/66MHz bus that has theoretical bandwidth of 512 MB s\(^{-1}\).

In a rather simplified expression, all PROGRAPE system so far is optimized to evaluate a following formula:

\[
f_i = \sum_{j=1}^{N} G(X_i, X_j),
\]

where \(X_i\) is a vector contains information related to the \(i\)-th particle, \(f_i\) is the resulted force on the \(i\)-th particle and \(G\) is a function which describes the interaction between the \(i\)-th and the \(j\)-th particle. To give a specific example, in the case of gravitational interaction, \(X_i = (x_i, m_i)\) and \(G\) is given as equation (1). Note that \(X_i\) and \(X_j\) in equation (3) do not necessarily contain same amount of information, though we refer to them by the same symbol for simplicity. In the case of gravitational interaction, mass \(m_i\) is not used to evaluate equation (3). Therefore, we can remove \(m_i\) from \(X_i\) through \(X_j\) should contain \(m_j\). If PROGRAPE is used to evaluate
SPH interaction, X_i should contain density and pressure to calculate equation (2), and velocity and other physical quantities to calculate Π. And in this case, function G would be given in equation (2). Details will be described in a later section.

The calculation with PROGRAPE proceeds in the following steps.

(1) The host computer sends a configuration data, that is a binary code for FPGA chips, to the processor FPGAs for configuring the FPGA chips to do what one wants to calculate. The configuration data contain all necessary information such that how the control and memory unit is organized and what the pipeline unit calculates etc. This step needs to be done only once.

(2) The host computer sends the data of particles to the memory unit. These data correspond to X_j in equation (3), and we refer to them as “j-data”.

(3) After sending j-data, the host computer sets X_i to the pipeline unit. These data (i-data) are stored in registers in the pipeline unit, which we call “i-register”. Note if the pipeline unit has multiple pipelines inside, each pipeline has own “i-register” and the host computer should set multiple i-data to each pipeline.

(4) Then, the host computer sends the command to the control unit to start the calculation. Accordingly, the control unit starts to send indexes (address) to the memory, and sends start signal to the pipeline unit. At the same time, the memory unit receives the index at each clock and feeds corresponding j-data to the pipeline unit. The pipeline unit receives j-data and evaluates interaction between those j-data and own i-data and accumulate results in its internal accumulators.

(5) Finally, when the summation is finished, the host computer receives a signal and reads the accumulated results (f-data) from the pipeline unit.
Fig. 3. The present configuration of PROGRAPE-3 system.

Note that in the PROGRAPE architecture, one can change only the configuration data of the processor FPGA. That is one can implement an arbitrary interaction function G in the pipeline unit and change the memory and control units if necessary. For example, one would change the amount of j-data transferred from the memory unit to the pipeline unit in one clock to optimize data transfer performance. We are developing a software package to implement or create the content of the processor FPGA chip as described in the next section.

The processor FPGA chips used in the present work are Xilinx XC2VP70-5 chip. This FPGA chip has 66,176 logic cells, 328 16Kbit-SRAM blocks, 328 multiplier blocks with the size of 18-bit. The manufacturer claims that the chip has the capacity equivalent to about 10 million gates. As already noted the pipeline processor chip of GRAPE-3 needs only 20k gates. Even with one processor FPGA chip, one can expect to implement plenty of complex particle interaction function on it. In Figure 3, we present schematic structure of PROGRAPE-3 system.

2.2. Software architecture for PROGRAPE-3 system

The way one use PROGRAPE system is almost exactly the same as the way we use any of GRAPE systems if one already had the configuration data for the processor FPGA. A distinction between PROGRAPE and GRAPE is that in the case of PROGRAPE, the user can specify every details of the pipeline unit with the configuration data. To change its logic in a slightly different way, the user must specify literally every bit of the configuration data for the processor FPGA. To generate such configuration data, one must know how to program FPGA and a difficult thing is that the FPGA programming is not similar to or completely different from conventional programming in Fortran or C language. There are several reasons for this difficulty. Apparent obstacle is that there are too much freedom. An FPGA chips can be used to implement any logic circuit, as far as it fits into the chip. Thus, the FPGA
programming is essentially to specify every detail of the logic using very basic logic gates (such as AND/OR gates) and flip-flops. To make an analogy, an FPGA is something like a universal Turing machine without any high-level languages, library functions or even operating systems.

At present, those who wish to use PROGRAPE for their own work must create configuration data for the processor FPGA by writing its design with any of hardware description languages (such as VHDL or Verilog), unless the application has been developed by somebody else. Although there are a several commercial software available that make the FPGA programming/designing easy, such software usually has only limited applicability. We by ourself are now developing a methodology that would greatly reduce amount of development time and cost for users of PROGRAPE. Our software PGR (Processors Generators for Reconfigurable systems) (Hamada & Nakasato, 2005) is a newest version of former programing system PGPG software (Hamada et al., 2005). Although PGR has a several improvements over PGPG software, a most crucial one is that PGR supports floating-point arithmetic operations with variable bit length.

Support of the floating-point arithmetic is crucial to implement SPH interactions on PROGRAPE system as explained below. So far the first GRAPE system (GRAPE-1) and its replacement GRAPE systems (GRAPE-3 and 5) have used the logarithmic number system (LNS) to implement the gravity pipeline. In LNS, a real number is converted to logarithm of the number. Accordingly, multiply, division, and square operations in LNS are done with addition, subtraction and shift operations, respectively, and in compensation addition and subtraction operations must be done with a table-lookup function (for details, see Kawai et al., 2000). In the case of the GRAPE pipeline, we need 8 addition/subtraction, 5 multiply, 1 division and 3 square operations for computing equation (1). Since implementation of multiply and division operation as logic circuit needs much more resources than addition or subtraction, this nature of LNS is highly desirable in terms of amount of needed resource. Therefore, in the PGPG project, they have only supported LNS and integer number operations. For traditional FPGAs, it is true that implementation of multiply needs larger amount of resources. However, recent FPGA chips including the chips we used in the present work have dedicated special logic for multiply operations. Those special logic are desirable for applications that need many multiply operations. On the other hand, we also need a plenty of addition and subtraction to implement SPH pipelines as shown in later sections. In such situation, LNS has no big advantage over conventional floating point number representation. Furthermore, floating point number representation is more accordant than LNS to those who are programming in Fortran or C language.

Essential ingredients of our methodology is that from a description of a pipeline written in a new language, our software PGR automatically generates or creates (1) necessary VHDL source codes for the configuration file of the processor FPGA, (2) application program interface for a user application, and (3) a software bit-level emulator that is necessary to test whether
one description of the pipeline is correct or not. Details on PGR are described in Hamada & Nakasato (2005) and more specific details on implementation and performance results of GRAPE pipeline developed using PGR have been discussed in the companion paper (Hamada & Nakasato, 2006). In the course of development for the present work, we have extensively used and tested PGR to implement SPH pipelines on PROGRAPE-3 system.

3. SPH implementation on Reconfigurable Hardware Accelerator

In the SPH method, pressure force or any other physical variables are expressed as particle interaction and its summation over neighbor particles. In the SPH simulations, we integrate the equation of motion for particles to evolve a system that we want to simulate or model. There are huge number of literatures for various formulation of the SPH method (see a review for mainly astrophysical applications Monaghan (1992) and for non-astrophysical applications Liu & Liu (2003)). In the present work, since our main interest is the evolution of galaxies and we have our own SPH code (Nakasato & Nomoto, 2003) for mainly modeling the evolution of galaxies, we have adopted widely used formulation for galaxy evolution models as follows (Navarro & White, 1993). Here, we present equations what we exactly implement as pipelines for PROGRAPE-3 system. In the followings, the kernel function we adopted is usual spline kernel proposed by Monaghan & Lattanzio (1985) as follows:

\[W(q, h) = \frac{1}{\pi h^3} \left\{ \begin{array}{ll}
1 - \frac{3}{2}q^2 + \frac{3}{4}q^3, & (0 \leq q \leq 1) \\
\frac{1}{4}(2 - q)^2, & (1 \leq q \leq 2), \\
0, & \text{otherwise}
\end{array} \right. \]

(4)

where \(q \) is defined as \(q = r/h \).

density: \(\rho \)

\[\rho_i = \sum m_j W(r_i - r_j; h_{ij}). \]

(5)

divergence of velocity: \(\nabla \cdot v \)

\[\rho_i (\nabla \cdot v)_i = \sum m_j (v_j - v_i) \cdot \nabla W(r_i - r_j; h_{ij}). \]

(6)

rotation of velocity: \(\nabla \times v \)

\[\rho_i (\nabla \times v)_i = \sum m_j (v_j - v_i) \times \nabla W(r_i - r_j; h_{ij}). \]

(7)

estimate of a number of neighbors: \(n_{\text{neighbor}} \)

\[n_i = \sum W_{\text{neighbor}}(r_i - r_j; h_{ij}). \]

(8)

pressure force: \(\dot{v} \)

\[\dot{v}_i = -\sum m_j \left(\frac{P_i}{\rho_i^2} + \frac{P_j}{\rho_j^2} + \Pi_{ij} \right) \nabla W(r_i - r_j; h_{ij}). \]

(9)
time derivative of energy: \(\dot{u} \)

\[
\dot{u}_i = \sum_m m_j \left(\frac{P_i}{\rho_i} + \frac{1}{2} \Pi_{ij} \right) (v_i - v_j) \cdot \nabla W(r_i - r_j; h_{ij}).
\] (10)

artificial viscous term: \(\Pi \)

\[
\Pi_{ij} = \begin{cases}
 f_{ij} - \alpha c_{ij} \mu_{ij} + \beta \mu_{ij}^2
 & \text{if } (v_i - v_j) \cdot (r_i - r_j) \leq 0 \\
 0 & \text{otherwise}
\end{cases}
\] (11)

\[
f_{ij} = \frac{f_i + f_j}{2},
\] (12)

\[
f_i = \frac{\|\nabla \cdot v\|}{\|\nabla \cdot v\| + \|\nabla \times v\| + 10^{-4} c_i / h_i}
\] (13)

\[
\mu_{ij} = \frac{h_{ij} (v_i - v_j) \cdot (r_i - r_j)}{(r_i - r_j)^2 + (0.1 h_{ij})^2}.
\] (14)

Here, \(c \) is sound velocity of the particle and \(h_{ij}, c_{ij} \) and \(\rho_{ij} \) represent average values between \(i \)-th particle and \(j \)-th particle, namely, \(h_{ij} = (h_i + h_j)/2 \) etc. Since equation (8) is not commonly used in the conventional SPH scheme, we note that this estimate of a number of neighbors is used to update smoothing length \(h \) according to an algorithm proposed by Thacker et al. (2000) and a modified kernel function \(W_{\text{neighbor}} \) (see equation (9) in Thacker et al. (2000) for definition) is used for this purpose.

Currently, we implement those equations as two separate stages as described below.

- **first stage:**

 We compute equations (5), (6), (7), and (8). This is because we need \(\rho \), \(\nabla \cdot v \) and \(\nabla \times v \) for computing equations (9) and (10) through artificial viscous term in equations in (11)-(14).

- **second stage:**

 We compute equations (9) and (10). During computation of those values, we also calculate equations in (11)-(14).

Accordingly, for the first stage, data vector \(X_i \) (\(i \)-data) contains position \(r \), velocity \(v \), and smoothing length \(h \) (in total 7 dimensions) and vector \(X_j \) (\(j \)-data) contains mass \(m \) in addition to the same data as \(X_i \). For the second stage, \(X_i \) contains \(r \), \(v \), \(\rho \), \(c \), \(P/\rho^2 \) (used in equations (9) and (10)) and a quantity \(f \) defined in equation (13) (in total 11 dimensions) and \(X_j \) contains mass \(m \) in addition.

So far, we have made pipeline descriptions for those two stages that is processed by PGR (Hamada & Nakasato, 2005). Each of them is a simple text file of about 200 lines, and basically each line corresponds to a definition of one arithmetic operations. Numbers of arithmetic operations except floating-point comparison for first stage and second stage are 80 and 70, respectively. For most of operations, we have used floating point number operations. Only exceptions are (1) the accumulation part of the pipeline where we use fixed point operations, and (2) the kernel estimate (equation 4) where we also use fixed point operations. After
processing with PGR, total number of the generated VHDL source code is about 7000 lines. Those generated VHDL source codes are synthesized using a CAD software provided by the vendor company of the FPGA chips into the configuration file for the processor FPGA.

3.1. Accuracy Consideration

In this section, we describe how to determine sufficient accuracy for our implementation. Generally, conventional CPUs commonly used for numerical calculation have only two selections of floating number representation such as single (bit-length of the fractional is 23-bit) and double precision (53-bit) with IEEE 754 standard. One of reasons behind great success of GRAPE project was that they have decided not to use double precision operations for constructing the gravity pipeline. In implementing a logic for floating operations, amount of needed resource (i.e., number of transistor) is practically proportional to the square of bit-length of the fractional. This is absolutely true for the case of FPGA implementation and it is completely desirable to use as much as small bit-length of the fractional since resource limitation of FPGA is more severe than the case of developing LSI. A task we have to do before we really implement pipelines is to find an optimized bit-length of the fractional by considering how many bit-length or how much accuracy is sufficient for our application. In PGR, we can freely select bit-length of the fractional up to 23-bit and the exponent up to 8-bit.

In the present work, to find sufficient bit-length for our application of SPH simulations, we have tested ability of our pipelines with various bit-length. For this purpose, we have selected the 1-D Sod’s shock tube problem (Sod, 1978) as a test case. This famous test problem is the most typical standard problem for testing any scheme for the Euler equation and has an analytic solution. Ultimate goal of this test here is how the bit-length of the fractional part affects and changes results of the Sod’s shock tube problem if compared to the results with double precision operation on the host computer. Using PGR, we easily generate software emulators for the SPH pipelines with desired bit-length. We have combined those generated software emulators with our SPH code and calculated the evolution of the Sod’s shock tube problem up to $t = 0.15$. For comparison, we have calculated the evolution with double precision operations on the host computer using the exactly same initial condition. In Figure 4, we show density snapshots at $t = 0.15$ with different bit-length for the fraction, i.e., 53-bit(double precision), 16-bit, 12-bit and 8-bit. In all case except in the case of double precision, we fix the bit-length of the exponent to 8-bit and this size does not affect the results. With 8-bit for the fraction, we apparently notice that accuracy is not enough at all and non-physical oscillation seems to be produced due to the lack of accuracy. However, with 12-bit or 16-bit, there is none or little such non-physical oscillation in the density snapshots. Even with 12-bit, there is no distinguishable difference to the results with the double precision operations.

To see more clearly how the size of the fraction affect the results, we measure and plot accuracy for different cases in Figure 5. Here, we define the relative accuracy for position,
density, velocity and internal energy as the average of error over all particles as

\[F_{i,\text{error}} = \frac{1}{N} \sum_{i=1}^{N} \frac{|F_{i,\text{double}} - F_{i,n}|}{|F_{i,\text{double}}|}, \]

(15)

where \(F_{i,\text{double}} \) is the results for \(i \)-th particle obtained with double precision operations and \(F_{i,n} \) is the results for \(i \)-th particle obtained with operations with \(n \)-bit for the fraction. In Figure 5, the relative accuracy for position, density, velocity and internal energy are plotted as a function of the size of the fraction with the solid line, dashed line, dot-dashed line and dotted line, respectively. More specifically, with 16-bit for the fraction, the relative accuracies for position, density, velocity and internal energy are \(2.98 \times 10^{-6}, 1.33 \times 10^{-4}, 6.06 \times 10^{-4}, \) and \(3.77 \times 10^{-5} \), respectively. Furthermore, we compare those results with analytic solution of the shock tube problem and obtained following results; (a) with double precision on HOST, the relative accuracies (compared to the analytic solution) for density and internal energy are \(2.556 \times 10^{-2} \) and \(1.003 \times 10^{-2} \), respectively. (b) with 16-bit for the fraction, the relative accuracies for density and internal energy are \(2.548 \times 10^{-2} \) and \(9.995 \times 10^{-3} \), respectively. Namely, numerical error that is intrinsic to the SPH scheme and may be intrinsic to our implementation of the SPH scheme is much larger than numerical error caused by the reduced precision used in the present work.

Accordingly, we adopt 16-bit for the fraction and 8-bit for the exponent in the present work. Note this choice of 16-bit for the fraction is desirable in the sense that the dedicated logic for signed \(17 \times 17 \) multiplier in our processor FPGA chip is effectively utilized.

3.2. Implementation

A most distinct difference between the SPH pipelines and the gravity pipeline is that the SPH interaction is short-range force while the gravity is long-range force. In the present work, we have adopted conventional spline kernel for our implementation of SPH pipelines, therefore, only neighbor particles in inside of \(r < 2h \) do contribute to the summations such as equations (5), (6), (7), (9), and (10). Accordingly, the first task of the conventional SPH codes running on a usual CPU is to make a list of neighbor particles (neighbor list), and implementation of the neighbor search may drastically alter the performance of the SPH code. Even with the SPH pipelines running on FPGA chips, we can have a several possibilities how to use the SPH pipelines as follows. Here, we describe two possible algorithms developed so far for the present work. In each algorithm, we only present simplified step-by-step algorithm. In the followings, “HOST” and “PROGRAPE” mean the host computer and the FPGA board(s) of the PROGRAPE-3 system, respectively.

Direct summation algorithm

1. HOST prepares \(j \)-data for the first stage.
2. HOST sends \(j \)-data for the first stage to PROGRAPE.
Fig. 4. Density snapshots at $t = 0.15$ for the Sod's shock tube test. Each panel shows a result with bit-length for fraction of 53-bit (double precision), 16-bit, 12-bit, and 8-bit, respectively from the upper left to the lower right.

3. For all particles, PROGRAPE calculates ρ, $\nabla \cdot \mathbf{v}$, $\nabla \times \mathbf{v}$ and n_{neighbor}, and returns the results to HOST.

4. HOST computes the equation of state and sets up j-data for the second stage.

5. HOST sends j-data for the second stage to PROGRAPE.

6. For all particles, PROGRAPE calculates $\dot{\mathbf{v}}$ and \dot{u}, and returns the results to HOST.

7. HOST integrates the Euler equation using the results obtained by the steps 3 and 6.

As far as we set smoothing length h correctly, calculating the summations in equations (5), (6), (7), (9), and (10) for all particles has no problem at all. However, this algorithm is only efficient if N is less than the maximum size of j-data memory in the system (in the present work, it equals to 8,192). And $N = 8192$ is usually not a practical number of particles if compared to current standard of SPH simulations.

Neighbor algorithm

With the direct summation algorithm, we force PROGRAPE doing unnecessary operations because typically, the average number of neighbor particles is only $\sim 30-100$. To eliminate
those unnecessary operations, before using PROGRAPE, one can construct a neighbor list on HOST and send only those particles in the neighbor list as j-data. In an algorithm combining the tree method with GRAPE (Makino, 1991), they have construct a interaction list using the tree algorithm for a bunch of close particles instead of each particle separately. As a result, calculation cost on HOST for the construction of interaction lists is reduced by a factor of the average number of particles in those bunch (n_g in their notation). Here, we can adopt a similar approach since those particles in a bunch, that is a group of particles very close each other, should have similar neighbor list. Accordingly, it is natural to construct a shared neighbor list for those particles in the bunch. Here, n_b is the number of bunch.

1. HOST constructs the tree structure for all particles.
2. HOST constructs a list of bunch.
3. For $i = 1$ to n_b (all bunch), repeat following steps.

 (a) HOST constructs a neighbor list for i-th bunch.
 (b) HOST only sends j-data of the obtained neighbor particles for the first stage to PROGRAPE.
 (c) For particles in i-th bunch, PROGRAPE calculates ρ, $\nabla \cdot \mathbf{v}$, $\nabla \times \mathbf{v}$ and n_{neighbor}, and returns the results to HOST.

Fig. 5. The relative accuracy for position (solid line), density (dashed line), velocity (dot-dashed line) and internal energy (dotted line) are shown as a function of the size of the fraction.
4. HOST computes the equation of state and sets up j-data for the second stage.
5. For $i = 1$ to n_b (all bunch), repeat following steps.
 (a) HOST only sends j-data of the neighbor particles for the second stage to PROGRAPE.
 (b) For particles in i-th bunch, PROGRAPE calculates \dot{v} and \dot{u}, and returns the results to HOST.
6. HOST integrates the Euler equation using the results obtained by the steps 3 and 6.

In the case of the neighbor algorithm, the number of neighbor search on HOST is $n_b \sim N/n_{\text{group}}$, where n_{group} is the average number of particles in those bunch. To construct a list of bunch, we use the tree algorithm as presented in Makino (1991), and in the course of this construction, we recursively walk through tree nodes to see if the number of particle in the tree code is less than n_{crit}, and if this condition satisfies, we make those particles in the tree node as a new bunch. Usually, n_{group} is smaller than n_{crit} by a factor of 2.0 or so. And, n_{crit} is a parameter that should be optimized depending on the speed of HOST and PROGRAPE. In the present work, we have found $n_{\text{crit}} = 200 - 300$ is a good choice as shown in later.

3.3. Performance Results

In this section, we show the performance of PROGRAPE-3 for the SPH simulations results obtained so far. Since all operations in a pipeline generated by PGR are working in parallel (i.e., pipelined arithmetic operation), at every clock, our first stage pipeline for SPH calculations executes 80 floating-point operations at the same time. On single Bioiler-3 board, we can implemented 8 pipelines, namely, 2 pipelines per one processor FPGA chip with 78\% of the resource utilization of the chip. Although the clock frequency of the processor FPGA is arbitrary, our SPH pipelines are working correctly at maximum frequency of 133.3 MHz. In this case, theoretical peak performance of the first stage pipeline is equivalent to $80(\text{operations}) \times 2(\text{pipelines}) \times (\text{chips}) \times 133.3 \times 10^6 (\text{Hz}) = 85.3$ GFLOPS. In practice, there are a several reasons that limit the performance of the system such that (1) communication time between HOST and PROGRAPE moderates the performance and (2) with the neighbor algorithm, time for neighbor search on HOST is another limiting factor.

Direct summation algorithm

First, we present the results with “Direct summation algorithm” in Figure 6. In this figure, with 8 pipelines of the first stage on PROGRAPE, we plot the performance in GFLOPS for calculating ρ, $\nabla \cdot \mathbf{v}$, $\nabla \times \mathbf{v}$ and n_{neighbor} as a function of N where the solid and dotted lines show the results with clock frequency of 133.3 MHz and 66.6 MHz, respectively. As clearly shown, in either case of clock speed, almost 80\% of the peak performance (> 60 GFLOPS for 133.3 MHz) is obtained for $N > 6000$. Meanwhile, peak performance of double precision operation on HOST (Opteron 2.4GHz) is 4.8 GFLOPS, and obtained performance of “Direct summation algorithm” on HOST is ~ 1.2 GFLOPS. Namely, in this case, calculations on PROGRAPE is
Fig. 6. Obtained performance (in GFLOPS) of the SPH first stage as a function of N are shown in dotted line (clock speed at 66.6MHz) and solid line (133.33MHz). 50 times faster than same calculations on HOST.

Calculation time for “Direct summation algorithm” for the first stage on FPGA is expressed as

$$T_{\text{direct}} = N((n_J + n_I)\tau_{\text{write}} + n_F\tau_{\text{read}}) + N^2 \frac{t_{\text{pipe}}}{n_{\text{pipe}}} + \frac{N}{n_{\text{pipe}}} t_{\text{internal}},$$

where n_J, n_I, and n_F are number of byte per one particle for j-data, i-data and f-data, respectively and, t_{write} and t_{read} are transfer speed (in second per byte) for read and write operation, respectively. Also, t_{pipe} is the time spent on the pipeline for one particle, t_{internal} is the time required to transfer f-data from the processor FPGA to the interface FPGA, and n_{pipe} is the number of pipelines on the system. In the present case of the first stage pipeline, $n_J = n_I = 32$, and $n_F = 48$, and $n_{\text{pipe}} = 8$. For t_{write} and t_{read}, we have measured actual transfer time and obtained $1/t_{\text{write}} \sim 145$ MB sec$^{-1}$ and $1/t_{\text{read}} \sim 42$ MB sec$^{-1}$. Note these obtained results also include time required for conversion from/to double precision on HOST to/from internal floating point format on PROGRAPE and other miscellaneous task such as packing of data. The time constant t_{pipe} is estimated as $t_{\text{pipe}} = 1/c_{\text{pipe}}$, where c_{pipe} is the clock frequency of the pipeline, and $t_{\text{internal}} = n_{\text{freg}} \times (2 + n_{\text{pipe}})/c_{\text{bus}}$, where $c_{\text{bus}} = 66.6 \times 10^6$ (Hz) is the clock frequency of the internal bus of the board. Here, $n_{\text{freg}} = 8$ is the number of registers that contain f-data in each pipeline and “2” is a constant determined by the control logic inside the pipeline. In Figure 7, we compare the measured results for the pipeline with 133.3 MHz (also shown as the solid line in Figure 6) and our model as $(80N^2)/T_{\text{direct}}$ with parameters of $c_{\text{pipe}} = 133.3 \times 10^6$ (Hz). The solid dots represent the measured results and the solid line shows our model. Our model formula is fairly good to reproduce the measured performance.
Neighbor algorithm

In practice, “Direct summation algorithm” is useful only when the number of particles is small because with this algorithm, large fraction of operations on PROGRAPE is unnecessary when the number of particles is large. Here, as practical measure, we show the performance results with “Neighbor algorithm”. The particle distribution used for this performance test is the initial particle distribution of so-called “Cold Collapse Test” (Evra rd, 1988; Hernquist & Katz, 1989), and has the density profile of $\rho \propto r^{-1}$. Here, we measure the required time for one step using PROGRAPE with “Neighbor algorithm” and show the results as a function of N in Figure 8 with the solid line. As a comparison, the dashed line presents the required time for one step using our SPH code on the same HOST. Here, one step is the time spend on full force calculation for all particles. In both cases, we set the number of neighbor particle is ~ 40. Moreover, in the test for PROGRAPE, we set $n_{\text{crit}} = 100$ and obtain $n_{\text{group}} \sim 30$ and the average number of j-particle (\bar{n}_j) ~ 300 where those numbers are slightly depending on N. It is clear from this figure that the results with PROGRAPE outperform the results with HOST by a factor of 5, for example, when $N = 500,000$, PROGRAPE takes 7.61 seconds for one step while HOST takes 38.8 seconds.

Note for those tests with PROGRAPE shown in this section, we use two FPGA chips on one PROGRAPE for the first stage and other two chips for the second stage as shown in Figure 9. In other words, n_{pipe} for both stages is 4 and consequently the theoretical peak performance for both stages is ~ 40 GFLOPS. On the other hand, the performance results for “Direct summation algorithm” are obtained with $n_{\text{pipe}} = 8$, i.e., we use four FPGA chips on PROGRAPE for the first stage as shown in Figure 10. Although we are free to use any number of boards for our tests or applications, the configuration in Figure 9 such that we use two PROGRAPE boards and one PROGRAPE is used for SPH interaction and other for gravity
Fig. 8. The measured time for one step with and without PROGRAPE as a function of N. The solid line represents the results using PROGRAPE using “Neighbor Algorithm” and the dashed line shows the results without PROGRAPE.

Fig. 9. The configuration used for “Neighbor algorithm”. In this case, two processor FPGA chips are used for each first and second stage, respectively and thus the number of pipelines for each stage is 4. A spare board can be used for another purpose such as for gravity interaction.

interaction is realistic at the moment. This is because our main application of the technique presented in the present paper will be simulations of the galaxy evolution that involves both hydrodynamics and gravity. If one wants to calculate pure hydrodynamical simulations, the configuration shown in Figure 10 may be better choice. Even in this case, one can add a third board (PROGRAPE or any GRAPE) to this configuration for gravity interaction.

To see how the required time for one step depends on n_{crit}, we have done the same test above with different n_{crit}. Table 1 shows the comparison between those results for $N = 500,000$.

19
In this case, with $n_{\text{crit}} = 500$, we obtain best performance and the actual average number of particles in the bunch (n_{group}) is ~ 175 with $\bar{n}_j \sim 681$. Although this small number of \bar{n}_j is somewhat surprising for us, this fact directs us toward next generation of PROGRAPE system with more improved transfer speed between HOST and PROGRAPE as explained with a following model.

The required time for one step with “Neighbor algorithm” is expressed as

\[T = T_{\text{host}} + T_{\text{PROGRAPE}} + T_{\text{comm}}, \]

where T_{host}, T_{PROGRAPE} and T_{comm} are the time spent on HOST, the time spent on PROGRAPE, and the time required to transfer data between HOST and PROGRAPE, respectively. The time T_{host} is expressed as

\[T_{\text{host}} = t_{\text{tree}} + \frac{N}{n_{\text{group}}} t_{\text{neighbor}} + t_{\text{misc}}, \]

where t_{tree} is the time required to construct the tree structure and make a list of bunch, and t_{neighbor} is the time required to construct a neighbor list for a bunch. Also, t_{tree} depends on $N \log N$ and t_{neighbor} weakly depends on N and t_{misc} is the time required for other miscellaneous calculations on HOST. The time T_{PROGRAPE} is expressed as

\[T_{\text{PROGRAPE}} = \frac{N}{n_{\text{pipe}}} \bar{n}_j (t_{\text{pipe1st}} + t_{\text{pipe2nd}}) + 2 \frac{N}{n_{\text{pipe}}} t_{\text{internal}}, \]

where t_{pipe1st} and t_{pipe2nd} are the time spent on the pipeline for one particle in the first and second pipelines, respectively. And, T_{comm} is expressed as

\[T_{\text{comm}} = \left[\frac{N}{n_{\text{group}}} \bar{n}_j (n_{\text{1st}} + n_{\text{2nd}}) + N (n_{\text{1st}} + n_{\text{2nd}}) \right] t_{\text{write}} + N (n_{\text{F1st}} + n_{\text{F2nd}}) t_{\text{read}}. \]
where \(n_{J1st} \) and \(n_{J2nd} \) are the number of byte per one particle for \(j \)-data of the first and second stages, respectively, and \(n_{I1st}, n_{I2nd}, n_{F1st}, \) and \(n_{F2nd} \) are same notation.

For simplicity, we approximate the time \(T_{\text{host}} \) as a linear function of \(N \). From the measurement, we use the relation \(T_{\text{host}} = \alpha_{\text{host}} N \) in the following where \(\alpha_{\text{host}} \approx 2.7 \times 10^{-6} \) (sec) for the present HOST.

In Figure 11, we compare the measured results for \(T = T_{\text{host}} + T_{\text{PROGRAPE}} + T_{\text{comm}} \) and our model presented above. The solid dots represent the measured results and the solid line shows our model. The parameters for our model in the present case is as follows; \(t_{\text{pipe}1st} = t_{\text{pipe}2nd} = 1/c_{\text{pipe}} \) where \(c_{\text{pipe}} = 133.3 \times 10^6 \) (Hz). The time \(t_{\text{internal}} \) is the same as explained in section “Direct summation algorithm”. We set \(n_{\text{pipe}} = 4 \) since we use two FPGA chips for each stage (see Figure 9). We set \(n_{J1st} = 32, n_{I1st} = 32, n_{F1st} = 64, n_{J2nd} = 40, n_{I2nd} = 44, \) and \(n_{F2nd} = 64. \) For \(t_{\text{write}} \) and \(t_{\text{read}} \), we have measured actual transfer time and obtained the effect transfer rates between HOST and PROGRAPE as \(1/t_{\text{write}} \approx 145 \text{ MB sec}^{-1} \) and \(1/t_{\text{read}} \approx 37 \text{ MB sec}^{-1}. \) Finally, we set \(\bar{n}_j = 350 \) and \(n_{\text{group}} = 25 \) for the present case. For most of the data points, our model formula matches very well with the measured time.

In the present case of “Neighbor algorithm”, parameters that have room for improvement are \(t_{\text{write}} \) and \(t_{\text{read}}. \) This is clearly shown in the dotted line in Figure 11, that represents the time required for data transfer between HOST and PROGRAPE. Fairly large fraction (\(\sim 70 \% \)) of the time is spent on the data transfer. This means that \(n_{\text{pipe}} \) (i.e., number of pipelines) and \(t_{\text{pipe}} \) (i.e., clock speed of the pipeline) are not important parameters to optimize or enhance for “Neighbor algorithm”. Especially, \(t_{\text{read}} \) is rather large in the present configuration, namely, effective transfer speed from PROGRAPE to HOST (\(\sim 40 \text{ MB sec}^{-1} \)) is much slower than expected from the theoretical transfer rate of the board (512 MB sec\(^{-1}\)) because the design of the present transfer logic is not optimal.

To see how \(t_{\text{write}} \) and \(t_{\text{read}} \) affect the performance, we plot our model formulae for a several different cases in Figure 12. The solid line represents the required time for the present configuration (Model P3). If we assume \(t_{\text{read}} \) equals to \(t_{\text{write}} \) of the configuration, namely we set \(1/t_{\text{write}} = 1/t_{\text{read}} \approx 145 \text{ MB sec}^{-1} \), the result is shown as the dashed line. In this case, the performance is \(\sim 20 \% \) better than Model P3. Furthermore, the dashed line shows the results with \(1/t_{\text{write}} = 1/t_{\text{read}} = 500 \text{ MB sec}^{-1}, \) that is much higher data transfer rate than the present Bioler-3 board. In this case, the performance is \(\sim 200 \% \) better than Model P3 and the one step for 1 million particles SPH simulation takes 7 seconds with the present HOST. Those assumed data transfer rate is not out of reach if we consider new I/O standard such as PCI-Express. With PCI-Express, the theoretical data transfer rate for one-lane configuration is 250 MB sec\(^{-1}\), and four/eight-lane configuration has the theoretical rate of 1000/2000 MB sec\(^{-1}\). For future development of new boards and optimization of those boards, it is very crucial to consider the data transfer between HOST and PROGRAPE.
Fig. 11. The solid dots represent the measured time \(T = T_{\text{host}} + T_{\text{PROGRAPE}} + T_{\text{comm}} \) for one step with “Neighbor Algorithm (B)” as a function of \(N \). The solid line shows our model formula explained in the text. To see the fraction of the time spent on data transfer between HOST and PROGRAPE, the dotted line represents only \(T_{\text{comm}} \).

Fig. 12. We compare predicted \(T = T_{\text{host}} + T_{\text{PROGRAPE}} + T_{\text{comm}} \) with “Neighbor Algorithm (B)” as a function of \(N \) for several different data transfer speed between HOST and PROGRAPE. The solid line corresponds to the present configuration of PROGRAPE-3 system (Model P3). The dashed line and dot-dashed line show the prediction with only enhanced read data transfer speed and with enhanced both read and write data transfer speed, respectively.
Table 1. Comparison between results with different n_{crit}.

n_{crit}	n_{group}	\bar{n}_j	time
50	19.6	256	8.3
100	31.1	320	7.6
200	42.3	363	7.3
500	175	681	6.6
1000	263	829	6.8

3.4. Application Tests

In this section, we present the results for a test application using PROGRAPE. The test application is a standard test of SPH codes, so-called “Cold Collapse Test” (Evrard, 1988; Hernquist & Katz, 1989). This test has been used by many authors to see basic abilities of their SPH simulation code for astrophysical problem involving self gravity. In this problem, we follow the evolution of collapse of a gas sphere with the density profile of $\rho \propto r^{-1}$. The problem setup is similar to structure formation in cosmological simulations. The actual density profile of the problem is as follows;

$$\rho(r) = \frac{M}{2\pi R^2 r},$$

where M is the total mass of the sphere and R is the radius of the sphere. Total internal energy of the sphere is $E_{\text{thermal}} = 0.05M/R$. We set $M = R = 1$ in the present work and initially, total potential energy of the sphere ($|E_{\text{pot}}| \sim 0.6$) is much larger than total internal energy of the sphere ($E_{\text{thermal}} = 0.05$). Accordingly, the sphere quickly collapse and shock is produced due to the collapse. In Figure 13, we show the evolution of E_{thermal} for two cases; (1) calculation with double precision operations on HOST and (2) calculation using PROGRAPE with Neighbor algorithm (B). In both case, initial particle distribution is same and $N = 25000$ and we use the tree method on HOST for gravity calculation with Barnes-Hut criterion $\theta = 0.75$. In this Figure, the solid line shows the results corresponding to case (2) (with a configuration shown in Figure 9 but do not use gravity pipelines for this case) and the solid dots present the results with case (1). There is no significant deviation between two results. This means that SPH calculation on PROGRAPE with the fractional 16 bit is accurate enough to follow shock wave produced by collapse of cold gas sphere.

The performance of this test is much encouraging for us as shown in table 2. In this table, we compare the averaged time (in sec) for one step with 4 different cases; (1) all calculation with double precision operations on HOST (shown in 2nd column), (2) SPH calculation on PROGRAPE and gravity calculation with the tree method on HOST (3rd column), (3) SPH calculation on PROGRAPE and gravity calculation on PROGRAPE with the direct summation scheme (4th column), and (4) SPH calculation on PROGRAPE and gravity calculation on PROGRAPE with the tree method (5th column). The 1st column shows the number of particles.
Fig. 13. The evolution of thermal energy for the Cold Collapse Test with $N = 25,000$. The solid dots show the results with double precision operations on HOST and the thin solid line shows the results with PROGRAPE.

used in those performance tests. The numbers inside parenthesis in the 3rd to 5th column show speedup factor compared to the results in 2nd column. We use exactly the same initial condition for “Cold Collapse Test” that is already described. In the case (3) and (4), we use a configuration shown in Figure 9. For a reference, the peak performance of gravity pipelines running on PROGRAPE for those tests is 324 GFLOPS (see some preliminary performance results of our gravity pipelines Hamada & Nakasato, 2005). The performance results with PROGRAPE is at least 4 times faster and in some case 11 times faster than the calculation on HOST. Namely, combination of SPH pipelines running on PROGRAPE and GRAPE or PROGRAPE with gravity pipelines offers us very promising performance measures. This clearly shows for the first time that using considerable computing power offered by a hardware we can accelerate the speed of SPH simulations of a simple astrophysical phenomena. Our results open new and extensive possibility of hardware acceleration of complicated and computing intensive applications using PROGRAPE architecture or similar approach.

4. Summary

After the introduction of the concept of the GRAPE architecture, subsequent development of the GRAPE systems enable us to quite further advance the number of particles or size of gravitational many-body simulations. Especially, in collisional evolution of dense stellar clus-
Table 2. In this table, we show the required time (in sec) for one step with 4 different cases; (1) all calculation with double precision operations on HOST (shown in 2nd column), (2) SPH calculation on PROGRAPE and gravity calculation with the tree method on HOST (3rd column), (3) SPH calculation on PROGRAPE and gravity calculation on PROGRAPE with the direct summation scheme (4th column), and (4) SPH calculation on PROGRAPE and gravity calculation on PROGRAPE with the tree method (5th column). The numbers inside parenthesis in the 3rd to 5th column show speedup factor compared to the results in 2nd column.

	SPH Gravity	HOST HOST	PROGRAPE PROGRAPE	PROGRAPE PROGRAPE
N = 25,000	2.30	1.39 (1.6)	0.54 (4.3)	0.49 (4.7)
N = 50,000	6.63	3.35 (2.0)	1.30 (5.1)	0.97 (6.8)
N = 100,000	17.8	7.96 (2.2)	3.47 (5.1)	1.95 (9.1)
N = 500,000	107	45.7 (2.3)	51.9 (2.1)	9.62 (11.1)

In this paper, after briefly introduce PROGRAPE-3 system, which is our third generation of PROGRAPE architecture, we present a novel approach to accelerate astrophysical hydrodynamical simulations. PROGRAPE-3 consists of the Bioler-3 board that has four large FPGA chips and a host computer. On PROGRAPE-3 system, we implement logic circuits (numerical pipeline) for gravitational pipeline that is identical to GRAPE-5 system and force pipeline for the SPH method. Generally, implantation of such pipelines for astrophysical simulations needs complex development efforts and considerable development time. To reduce those complex efforts, we have developed a software system (PGR system) that enable us to easily implement arbitrary particle interaction expressed as equation (3).

With PGR, we implement SPH calculation on PROGRAPE-3 system and have shown for the first time that the calculation speed of SPH simulations can be accelerated with our novel approach. Due to its complexity, a development of special LSI for SPH calculations is much harder than the development of the GRAPE chips. However, the combination of PGR and a computational board based on PROGRAPE architecture easily enable us to develop numerical pipelines for SPH calculations on FPGA. For implementing SPH calculations on FPGA, we did a simple test to see how numerical accuracy affects results of SPH calculation by changing bit-width of the fractional of floating point operations. We found that 16-bit for the fraction is enough accurate for instance. With this obtained numerical accuracy, the peak performance of SPH pipelines running on PROGRAPE-3 system is ~ 85 GFLOPS. This
performance number is almost 20 times faster than the peak performance of HOST. Finally, we did a realistic performance test and obtained that the SPH calculation using PROGRAPE-3 board is 5 times faster than the calculation on HOST. Currently, the performance of the SPH calculation on the PROGRAPE system is mainly limited by the data transfer speed between HOST and PROGRAPE and can be much better if we could have a new board with much faster interface. Our results clearly show that numerical calculations on FPGA is a very promising way to enhance the performance of SPH simulations. The methodology that we have presented in this paper will be also directly applicable to other compute intensive calculations on numerical astrophysics and computational physics.

The authors would like to thank T. Ebisuzaki and J. Makino for useful discussions. The authors (N.N. and T.H.) specially thanks R. Spurzem, R. Männer and other colleagues at the Astronomisches Rechen-Institut and University Mannheim for the hospitality during our stay in both institutes where a part of this paper has been written. A part of the work has been supported by the Exploratory Software Project 2004, 2005 of Information Technology Promotion Agency, Japan.

References

Buell, D. A., Arnold, J. M., & Kleinfeld, W. J. 1996, Splash 2 (Los Alamitos: IEEE Computer Society Press)
Evrard, A. E. 1988, MNRAS, 235, 911
Fukushige, T., Kawai, A., & Makino, J. 2004, ApJ, 606, 625
Fukushige, T., & Makino, J. 2001, ApJ, 557, 553
Gingold, R., & Monaghan, J. J. 1977, MNRAS, 181, 375
Hamada, T., Fukushige, T., Kawai, A., & Makino, J. 2000, PASJ, 52, 943
Hamada, T., Fukushige, T., & Makino, J. 2005, PASJ, 57, 799
Hamada, T., & Nakasato, N. 2005, in Proceedings of FPL 2005, 366–373
Hamada, T., & Nakasato, N. 2006, in preparation
Hernquist, L., & Katz, N. 1989, ApJS, 70, 419
Hut, P., & Makino, J. 1999, Science, 283, 501
Kawai, A., Fukushige, T., , Makino, J., & Taiji, M. 2000, PASJ, 52, 659
Kokubo, E., & Ida, S. 1996, Icarus, 123, 180
Kokubo, E., Ida, S., & Makino, J. 2000, Icarus, 148, 419
Liu, G. R., & Liu, M. B. 2003, Smoothed Paricle Hydrodynamics — a meshfree particle method
(Tuck Link: World Scientific)
Lucy, L. 1977, AJ, 82, 1013
Makino, J. 1991, PASJ, 43, 621
—. 1996, ApJ, 471, 796
Makino, J. 2003, in Proceedings IAU Symposium 208, 13–24
Makino, J., Fukushige, T., Koga, M., & Namura, K. 2003, PASJ, 55, 1163
Makino, J., & Taiji, M. 1998, Scientific Simulations with Special-Purpose Computers — The GRAPE Systems (New York: John Wiley and Sons)
Monaghan, J. J. 1992, ARA&A, 30, 543
Monaghan, J. J., & Lattanzio, J. C. 1985, A&A, 149, 135
Mori, M., Yoshii, Y., & Nomoto, K. 1999, ApJ, 511, 585
Nakasato, N., & Nomoto, K. 2003, ApJ, 588, 842
Navarro, J. F., & White, S. D. M. 1993, MNRAS, 271, 271
Okumura, S. K., Makino, J., Ebisuzaki, T., Fukushima, T., Ito, T., Sugimoto, D., Hashimoto, E., Tomida, K., & Miyakawa, N. 1993, PASJ, 45, 329
Portegies Zwart, S. F., Baumgardt, H., Hut, P., Makino, J., & McMillan, S. L. W. 2004, Nature, 428, 724
Sensui, T., Funato, Y., & Makino, J. 1999, PASJ, 51, 943
Sod, G. A. 1978, Journal of Computational Physics, 27, 1
Springel, V., & Hernquist, L. 2002, MNRAS, 333, 649
Steinmetz, M. 1996, MNRAS, 278, 1005
Sugimoto, D., Chikada, Y., Makino, J., Ito, T., Ebisuzaki, T., & Umemura, M. 1990, Nature, 345, 33
Thacker, R. J., Tittley, E. R., Pearce, F. R., Couchman, H. M. P., & Thomas, P. A. 2000, MNRAS, 319, 619
Yokono, Y., Ogawa, R., Inutsuka, Y., Chikada, S., & Miyama, S. 1999, in Proceedings of the International Conference on Numerical Astrophysics 1998, 429–430