A scenario is presented, based on renormalization group (linear perturbation) ideas, which can explain the self-similarity and scaling observed in a numerical study of gravitational collapse of radiation fluid. In particular, it is shown that the critical exponent β and the largest Lyapunov exponent $\ln(2a)$ of the perturbation is related by $\beta = (\Re \kappa)^{-1}$. We find the relevant perturbation mode numerically, and obtain a fairly accurate value of the critical exponent $\beta \approx 0.3558019$, also in agreement with that obtained in numerical simulation. In this letter, we present a scenario that explains the critical behaviour observed in the radiation fluid collapse. We directly relate eigenvalues (Lyapunov exponents) of perturbations of the self-similar solution to the critical exponent β, using an argument of renormalization group transformation. The formulation is general, and could be applied to other models with approximate self-similarity. We find the eigenvalues of the perturbation by numerical analysis, and find that the value of the exponent β predicted from our analysis matches very well with that observed in [3].

We present our picture in sec. 2. After reviewing the equations of motion in sec. 3, and the self-similar solution in sec. 4, we confirm our picture to an extent in sec. 5 by numerical study. Sec. 6 is for conclusions and discussions.

2. A Scenario based on renormalization group ideas. We give a formalism for linear perturbations around a self-similar spacetime from the point of view of renormalization group theory, which proved to be extremely successful in the study of critical phenomena [4]. We have benefitted from the formulation of [5]. The argument is general but the notation is so chosen as to pave the shortest path to our analysis on radiation fluid. We introduce the ‘’scaling variable’’ s and the ‘’spatial coordinate’’ x, which are related to the time t and the radial coordinate r by $s \equiv -\ln(-t)$, $x \equiv \ln(-r/t)$.

2a. Renormalization Group and Linear Perturbations. Let $h = (h_1, h_2, ..., h_m)$ be functions of s and x which satisfy a partial differential equation

$$L(h, \frac{\partial h}{\partial s}, \frac{\partial h}{\partial x}) = 0. \quad (1)$$

Suppose that the PDE is invariant under the “scaling transformation” (translation in s) with $s_0 \in \mathbb{R}$

$$h(s, x) \mapsto h(s + s_0, x). \quad (2)$$

A renormalization group transformation (RGT) \hat{R}_{s_0} is a transformation on the space of functions of x,

$$\hat{R}_{s_0} : H \mapsto H^{(s_0)}, \quad (3)$$

where

$$H(x) \equiv h(0, x), \quad (4)$$

$$H^{(s_0)}(x) = h(s_0, x). \quad (5)$$
Namely, one obtains $H^{(s_0)}$ by evolving the initial data H at $s = 0$ by the PDE to $s = s_0$. \mathcal{R}_{s_0} forms a semigroup with parameter s_0, and we denote its generator by $\mathcal{D}\mathcal{R}$, i.e. $\mathcal{D}\mathcal{R} = \lim_{s_0 \to 0} (\mathcal{R}_{s_0} - 1)/s_0$. In this context, a self-similar solution $h_{ss}(s, x) = H_{ss}(x)$ can be considered as a fixed point of \mathcal{R}_{s_0} for any s_0, and is characterized by $\mathcal{R}_{s_0}H_{ss} = H_{ss}$ or $\mathcal{D}\mathcal{R}H_{ss} = 0$.

The tangent map of \mathcal{R}_s at a fixed point H_{ss} is defined as a transformation on functions of x:

$$\mathcal{T}_{s_0}F = \lim_{\epsilon \to 0} \frac{\mathcal{R}_{s_0}(H_{ss} + \epsilon F) - H_{ss}}{\epsilon}. \quad (6)$$

An eigenmode $F(x)$ of $\mathcal{D}\mathcal{T} = \lim_{s_0 \to 0} (\mathcal{T}_{s_0} - 1)/s_0$ is a function which satisfies $(\kappa \in \mathbb{C})$

$$\mathcal{D}\mathcal{T}F = \kappa F. \quad (7)$$

These modes determine the flow of the RGT near the fixed point. A mode with $\text{Re} \kappa > 0$, a relevant mode, is a flow diverging from H_{ss}, and one with $\text{Re} \kappa < 0$, an irrelevant mode, is a flow converging to it. A $\text{Re} \kappa = 0$ mode is called marginal.

2b. The critical solution. In this and the next subsections, we present a scenario which explains the observed critical behaviour of radiation fluid, assuming that there is a unique relevant mode with eigenvalue κ (and, for simplicity, no marginal mode) around the fixed point H_{ss}. This assumption is confirmed to some extent in sections 3–5.

The assumption implies that the RG flow around the fixed point is shrinking, except for the direction of the relevant mode (Fig. 1). There will be a “critical surface” or a “stable manifold” S of the fixed point H_{ss}, of codimension one, whose points will all be driven towards H_{ss}. There will be an “unstable manifold” U of dimension one, whose points are all driven away from H_{ss}. A one parameter family of initial data I will in general intersect with the critical surface, and the intersection H_c will be driven to H_{ss} under the RGT:

$$\lim_{s \to \infty} |H_c^{(s)}(x) - H_{ss}(x)| = 0. \quad (8)$$

So, H_c is the initial data with critical parameter p^*. The existence of a critical solution for an arbitrarily chosen family of initial data thus supports the assumption of a unique relevant mode $[6]$.

2c. The critical behaviour. We now consider the fate of an initial data H_{init} in the one-parameter family, which is close to H_c ($\epsilon = p - p^*$):

$$H_{\text{init}}(x) = H_c(x) + \epsilon F(x). \quad (9)$$

We evolve this data to $s = s_0$ (chosen later): it will first be driven towards H_{ss} along the critical surface, but eventually be driven away along the unstable manifold. Using linear perturbations we have $[6]$:

$$H_{\text{init}}^{(s_0)} = \mathcal{R}_{s_0}H_{\text{init}} = \mathcal{R}_{s_0}(H_c + \epsilon F) \simeq H_c^{(s_0)} + \epsilon T_{s_0}F + O(\epsilon^2). \quad (10)$$

In the second term, only the relevant mode survives:

$$\mathcal{T}_{s_0}F = \exp(s_0\mathcal{D}\mathcal{T})F \simeq \epsilon^{\kappa_{s_0}} F_{\text{rel}}, \quad (11)$$

where F_{rel} is the component of the relevant mode in F. Due to $[6]$, we finally have (for large s_0 and $x \lesssim s_0$)

$$H_{\text{init}}^{(s_0)}(x) \simeq H_{ss}(x) + \epsilon^{\kappa_{s_0}} F_{\text{rel}}(x). \quad (12)$$

Now we choose s_0 so that the first and second terms in $[12]$ become comparable, i.e.

$$\epsilon^{\text{Re} \kappa_{s_0}} = O(1). \quad (13)$$

Now that the second term is of $O(1)$, the data $H_{\text{init}}^{(s_0)}$ differs from H_{ss} so much that one can tell the fate of this data depending on the sign of ϵ; and if a black hole is formed, the radius of its apparent horizon, and thus its mass, will be $O(1)$ measured in x.

Finally, we translate the above result back into our original coordinate (t, r). The relation $r = \epsilon^{s_0 - s}$ implies that the radius of the apparent horizon, which is $O(1)$ measured in x, is in fact $O(\epsilon^{-s_0})$ measured in r. So we have from $[13]$:

$$M_{BH} \simeq O(\epsilon^{-s_0}) \simeq O(\epsilon^{1/(\text{Re} \kappa)}). \quad (14)$$

Therefore the critical exponent is given exactly by

$$\beta = \frac{1}{\text{Re} \kappa}. \quad (15)$$
3. Equations of Motion. The line element of any spherically symmetric spacetime is written as
\[ds^2 = -\alpha^2(t,r)dt^2 + a^2(t,r)dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2). \] (16)

The only coordinate transformation which preserves the form of eq. (16) is
\[t \mapsto F^{-1}(t). \] (17)

We assume the matter content is perfect fluid having energy-momentum tensor \(T_{\alpha\beta} = \rho u_{\alpha} u_{\beta} + p(g_{\alpha\beta} + u_{\alpha} u_{\beta}) \), where \(u^\alpha \) is a unit timelike vector and \(p = (\gamma - 1)\rho \). We only consider the radiation fluid \(\gamma = 4/3 \) in this letter. The components of \(u^\alpha \) can be written as \(u_t = a(1 - V^2)^{-1/2} \) and \(u_r = aV(1 - V^2)^{-1/2} \), where \(V \) is the 3-velocity of fluid particles. In terms of variables \(s \equiv -\ln(-t) \), \(x \equiv \ln(-r/t) \), and introducing \(N \equiv \omega a^2 e^{-x} \), \(A \equiv \alpha^2 \omega r^4 \pi^2 a^2 \rho \), we can write the equations of the system in an autonomous form, which makes the scale invariance of the system transparent:
\[
\frac{A_x}{A} = 1 - A + \frac{2\omega}{1 - V^2} \left(1 + \frac{V^2}{3} \right),
\]
\[
\frac{N_x}{N} = -2 + A - \frac{2\omega}{3},
\]
\[
\frac{\omega_s}{N} + (1 + NV)\omega_{,x} + 4(VV_s + (N + V)V_x) = \frac{(1 + \frac{4\omega}{9(1 - V^2)})}{3(1 - V^2)} = 0,
\]
\[
\frac{4V\omega_s + (4V + N + 3NV^2)\omega_{,x}}{A} = \frac{4(1 + V^2)V_s + (1 + V^2 + 2NV)V_x}{1 - V^2} + \frac{N(1 - V^2)A_x}{A} + 4(1 + V^2)N_x + 2N(1 + 3V^2) = 0.
\] (18)

4. The critical solution. One obtains self-similar spacetimes by assuming that \(N \) and \(A \) depend only on \(x \): \(N = N_{ss}(x) \), \(A = A_{ss}(x) \). Conversely, it can be shown that one can express any spherically symmetric self-similar spacetimes in that form if one retains the freedom of coordinate transformation (17). Then it follows from eqs. (18) that \(\omega_s \) and \(V_{ss} \) are also functions of \(x \) only: \(\omega = \omega_{ss}(x), V = V_{ss}(x) \). We fix the coordinate system by requiring that the sonic point (see below) be at \(x = 0 \).

We require (i) that the self-similar solution be analytic for all \(x \in \mathbb{R} \), and (ii) as a boundary condition that the spacetime and the matter are regular, \(A = 1 \) and \(V = 0 \), at the center \((x = -\infty) \). As has been extensively studied by Ori and Piran [8], the analyticity condition (i) requires that the solution be analytic in particular around the sonic point, where the velocity of the fluid particle seen from the observer on the constant \(x \) line is equal to the speed of sound \(1/\sqrt{3} \). The sonic point is a singular point for the ODE’s satisfied by self-similar solutions, and considering the power series expansion, one can see that the solutions are specified by one parameter, say, the value of \(V_{ss}(0) \). This, together with the regularity condition at the center (ii), restricts \(V_{ss}(0) \) to have only discrete values. We employ the Evans–Coleman self-similar solution as our \(H_{ss} \) in the following.

5. Perturbation. Perturbation equations (7) are obtained by taking the first order variation in eqs. (18) from the Evans–Coleman solution \(H_{ss} \): \(h(s, x) = H_{ss}(x) + \epsilon h_{ss}(s, x) \), (19)

where \(\epsilon \) represents each of \((N, A, \omega, V) \). We require \(N_{ss}(s, 0) = 0 \) to fix the coordinate freedom (17).

We consider eigenmodes of the form \(h_{ss}(s, x) = h_p(x)e^{\kappa s} \), with \(\kappa \in \mathbb{C} \) being a constant. Substituting this form into (19), and then into (18) yields linear, homogeneous first order ODE’s for \((N_p, A_p, \omega_p, V_p) \).

As in the case of self-similar solutions, we require (i) that the perturbations are analytic for all \(x \in \mathbb{R} \), and (ii) that the perturbed spacetimes are regular at the center \((A_p, V_p) \) are finite at \(x = -\infty \). The sonic point becomes a regular singular point for the perturbations. It is not hard to see that apart from the overall multiplicative factor, the perturbation solutions which satisfy the analyticity condition (i) are specified by one free parameter \(\kappa \). This, together with the regularity condition (ii) at the center, allows only discrete values for \(\kappa \) in general.

Fig. 2 shows the profile of the largest relevant eigenmode obtained numerically. It has the eigenvalue \(\kappa \approx 2.81055255 \), which corresponds to the exponent value \(\beta \approx 0.35580192 \), according to our scenario of section 2. This is in good agreement with the value of \(\beta \).

To further confirm our scenario, we have checked that there are no other relevant (or marginal) eigenmodes in
the range \(0 \leq \text{Re} \kappa \leq 15, |\text{Im} \kappa| \leq 14\). We remark that there is an unphysical “gauge mode” at \(\kappa \simeq 0.35699\) (in our gauge), which emerges from a coordinate transformation applied to the self-similar solution. Due to the complicated structure of the equations of motion, we have not found a beautiful argument which can restrict possible eigenvalues (like that of \([11]\) and references therein).

6. Conclusions and discussions. In this letter we have presented a scenario based on the renormalization group (linear perturbation) ideas, by which the critical behaviour in the black hole formation in the radiation fluid collapse is well understood. In particular, we have shown that the critical exponent \(\beta\) is equal to the inverse of the largest Lyapunov exponent \(\text{Re} \kappa\). We have performed a partial confirmation of the picture, and modulo some assumptions about distributions of eigenmodes, have found an accurate value \(\beta \simeq 0.35580192\), which is also close to that reported in \([3]\).

Complete confirmation of the scenario requires further study of local and global structure of RG flows around the fixed point \(H_{ss}\). To establish the local picture, i.e. the contraction property of the RGT on the cospace of our relevant mode in some neighbourhood of \(H_{ss}\), one could try to prove that the eigenmodes form a complete set of solutions and that all modes except our relevant one are in fact irrelevant. Establishing the global picture, which corresponds to proving that the global critical surface exists and the RG flow around it is as depicted in Fig. 1, will pose another challenging problem which will be beyond the scope of linear perturbations. Complete knowledge of the RG flow could expand the horizon of our understanding the gravitational collapse.

It is expected that the critical behaviour in scalar field collapse, where the self-similarity is discrete, can be understood in a manner similar to the analysis in this letter. One can consider the critical solution as a fixed point of the RGT \(\hat{R}_{ss}\) with a suitably chosen \(s_0\), and can perform linear perturbation analysis around it. A work in this direction is now in progress.

Our intuition on gravitational collapse still seems to be heavily based on few exact solutions, especially the limiting case of pressureless matter. The critical behaviour may provide a different limiting case that the final mass is small compared to the initial mass for more realistic and wider range of matter contents. It will be of great help to settle the problems in gravitational collapse such as cosmic no hair conjecture.

Acknowledgments. T. K. thanks Yasufumi Kojima for discussions. We thank Akio Hosoya for reading our manuscript. The research is supported in part by Japan Society for the Promotion of Science (T. K.). All the computations were performed on several work stations of Tokyo Institute of Technology.

[1] M. W. Choptuik, Phys. Rev. Lett. 70 (1993) 9.
[2] A. M. Abrahams and C. R. Evans, Phys. Rev. Lett. 70 (1993) 2980.
[3] C. R. Evans and J. S. Coleman, Phys. Rev. Lett. 72 (1994) 1782.
[4] K. Wilson and J. Kogut, Phys. Rep. 12C (1974) 75. For more recent exposition see, e.g., N. Goldenfeld, Lectures on Critical Phenomena and the Renormalization Group (Addison-Wesley, 1992).
[5] J. Bricmont, A. Kupiainen and G. Lin, Comm. Pure Appl. Math. XLVII (1994) 893.
[6] J. Bricmont, A. Kupiainen and G. Lin, Comm. Pure Appl. Math. XLVII (1994) 893.
[7] If there are more than one relevant modes, the stable manifold of \(H_{ss}\) will have codimension more than one; a generic family of initial data will not intersect the stable manifold, thus no sharp critical behaviour will be seen.
[8] An alert reader will notice a gap between the first and second lines of eq. (10): \(\hat{T}\) on the second line, which is defined as the tangent map at the fixed point \(H_{ss}\), should in fact be the tangent map at \(H_c\). The maneuver however can in general be justified, because of eq. (8). More precisely, what matters most in controlling the critical behaviour is the part of the RGT flow in the vicinity of the fixed point (between \(P\) and \(Q\) of Fig. 1), where \(H_{\text{init}}^{(s)}\) spends most of its time during its journey from \(H_{\text{init}}\) to \(H_{\text{init}}^{(s)}\). For the part from \(P\) to \(Q\), we can justify the use of \(T\) above. The parts \(H_{\text{init}} \to P\) and \(Q \to H_{\text{init}}^{(s)}\) are supposed to be regular. For this reason, it is expected that our conclusion, eq. (13), is an exact relation.
[9] T. Hara, T. Koike and S. Adachi, in preparation.
[10] A. Ori and T. Piran, Phys. Rev. D42, 1068-1090 (1990).
[11] S. Chandrasekhar, Proc. Roy. Soc. London A343, 289-298 (1975).