Supporting Information

for Adv. Mater., DOI: 10.1002/adma.202008082

Curvature Induced by Deflection in Thick Meta-Plates

Mohammad J. Mirzaali,* Aref Ghorbani, Kenichi Nakatani, Mahdiyeh Nouri-Goushki, Nazli Tümer, Sebastien J. P. Callens, Shahram Janbaz, Angelo Accardo, José Bico, Mehdi Habibi, and Amir A. Zadpoor
Curvature induced by deflection in thick meta-plates

M. J. Mirzaalia,*, A. Ghorbanib,1, K. Nakatania, M. Nouri-Goushkia, N. Tümera, S. J. P. Callensa, S. Janbaza, A. Accardod, J. Bicoc, M. Habibib,2, A. A. Zadpoora,2

aDepartment of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD, Delft, The Netherlands

bPhysics and Physical Chemistry of Foods, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, The Netherlands

cSorbonne Université, Université Paris Diderot and Laboratoire de Physique et de Mécanique des Milieux Hétérogènes (PMMH), CNRS, ESPCI Paris, FSL Research University - 10 rue Vauquelin, 75005 Paris, France

dDepartment of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

Table S1. The geometrical parameters and Poisson’s ratio of the specimens tested in this study. The parameters are defined in Figures 1c and 1e.

θ [°]	φ [°] = 90 - θ	a [mm]	b [mm]	ν_{yx} [-]	ν_{xy} [-]
48	-42	12.00	6.73	-1.35	-0.74
56	-34	10.57	6.03	-0.97	-1.03
64	-26	9.52	5.56	-0.69	-1.45
72	-18	8.71	5.26	-0.46	-2.17
80	-10	8.04	5.08	-0.25	-3.96
88	-2	7.45	5.00	-0.05	-19.67
96	6	6.87	5.03	0.16	6.44
104	14	6.25	5.15	0.37	2.67
112	22	5.52	5.39	0.61	1.64
120	30	4.63	5.77	0.87	1.15

Table S2. The parameters of the linear regression fit ($\kappa_2 = m \times v$) for meta-plates with different out-of-plane thickness, h, values (Figure S1a).

h [mm]	$m = 1/m$
1	0.2
2.5	1.4
5	4.2
7.5	6.7
5 (EXP)	5

* Corresponding author. Tel.: +31-15-2783133
E-mail address: m.j.mirzaali@tudelft.nl

1 These authors contributed equally to this work.

2 These authors jointly supervised this work.
Figure S1. Induced curvature, κ_1, vs. imposed curvature, κ_2, calculated for meta-plates (circular markers) and plain (i.e., non-architected) plates with equivalent elastic properties (crossed markers).
Figure S2. The evolution of κ_2 as a function of the Poisson’s ratio for plates with different values of the thicknesses, h, (κ_1, W are kept constant). κ_2 exhibits a linear relationship with ν, where the coefficient, m, is presented in Table S2 (supplementary document) for each plate thickness.