HTATIP2 Represents an Innovative Bio-marker in Hepatocellular Carcinoma Detection

Xianfeng Zhang
Harrison international Peace Hospital

Xianjun Zhang
Harrison international Peace Hospital

Xinguo Li
Harrison international Peace Hospital

Hongbing Bao
Harrison international Peace Hospital

Guang Li
Harrison international Peace Hospital

Ning Li
Harrison international Peace Hospital

Hengli Li (;brftyer@126.com)
Harrison international Peace Hospital https://orcid.org/0000-0002-3151-9767

Jian Dou
The Third Hospital of Hebei Medical University

Primary research

Keywords: HTATIP2, Hepatocellular carcinoma, Diagnosis, ROC

DOI: https://doi.org/10.21203/rs.3.rs-57266/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: This study was designed to investigate the serum level of HIV-1 Tat interactive protein 2 (HTATIP2) mRNA in hepatocellular carcinoma (HCC) patients and its diagnostic significance in the disease.

Methods: The serum HTATIP2 mRNA level was determined by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between HTATIP2 expression and clinical parameters was analyzed using Chi-square test. Receiver operating characteristics (ROC) curve was adopted to estimate the diagnostic role of serum HTATIP2 in HCC.

Results: HCC patients showed a significantly lower serum level of HTATIP2 than the healthy control ($P<0.001$). The level of HTATIP2 was closely associated with venous invasion ($P=0.011$), lymph node metastasis ($P=0.007$) and TNM stage ($P=0.016$). ROC curve demonstrated that HTATIP2 could discriminate between HCC patients and healthy individuals at the optimal cutoff point of 2.39. Besides, the AUC was 0.892, with the corresponding sensitivity and specificity of 83.90% and 84.37%, respectively.

Conclusions: HTATIP2 is negatively expressed in HCC and may be a diagnostic biomarker for this disease.

Background

Hepatocellular carcinoma (HCC) is one of the most frequently diagnosed liver cancers, with severe mortality [1, 2]. There are several well known risk factors for HCC, such as alcohol abuse, hepatitis C virus (HCV), hepatitis (HBV) and fatty liver [3]. Until now, a variety of therapeutic strategies are available for HCC patients, such as surgical resection, local ablation therapy, chemoembolization, liver transplantation and molecular target therapy [4, 5]. Despite slight improvements in clinical outcomes, the five-year survival of HCC patients is still dismal [6]. The low survival rate may be attributed to delay in diagnosis [7]. Unfortunately, the majority of HCC patients are diagnosed with advanced stages owing to the lack of efficient screening methods [8, 9]. Therefore, it is urgently needed to investigate novel and effective diagnostic biomarkers for HCC to improve the prognosis of the patients.

HIV-1 Tat interactive protein 2 (HTATIP2), also known as TIP30 or CC3, is located on human chromosome 11p15.1, and codes a 30kD human cellular protein [10, 11]. The gene is initially identified as a metastasis suppressor in human variant small cell lung carcinoma (v-SCLC) [12, 13]. HTATIP2 is ubiquitously expressed in normal tissues, whereas its expression patterns are aberrant in diseases tissues. An increasing number of studies have demonstrated that HTATIP2 acts as a tumor suppressor in various cancers via regulating a series of biological processes, including cell growth, apoptosis, and angiogenesis [14-16]. For instances, in pancreatic cancer, down-regulated HTATIP2 expression could facilitate cancer cell invasion and metastasis via controlling the expression of Snail family members [17]. In esophageal squamous cell carcinoma, inhibiting the expression of HTATIP2 was able to active EMT, thus promoting migrative and invasive abilities of the cancer cells [18]. The anti-tumor action of HTATIP2 in HCC was
also reported in the previous tumor investigations. The study carried out by Lu et al. reported that upregulation of \(HTATIP2\) through Aspirin treatment was able to weaken invasiveness of HCC cells [19]. However, the diagnostic performance of \(HTATIP2\) in HCC remained poorly known.

In the present study, we examined the serum level of \(HTATIP2\) in HCC patients and explored its diagnostic roles in this disease.

Methods

Patients and serum specimens

A total of 118 patients who were pathologically diagnosed with HCC were recruited from Harrison international Peace Hospital. The clinical features of patients were listed in Table 1. All the patients were classified based on the World Health Organization (WHO). None of the patients had received any treatments, such as radio- or chemo- therapy. In addition, 64 healthy donors who were age and gender matched with the patients were enrolled in this study. 5 mL peripheral blood was collected from each participant on the morning after fasting for 8-10h. The serum samples were prepared from peripheral blood through centrifugation and stored in EDTA-containing tubes at -80°C. This study was approved by the Ethics Committee of Harrison international Peace Hospital. Each participant signed the informed consent before blood collection.

RNA isolation and quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA was extracted from serum samples using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) following the manufacture’s instructions. Then the total RNA was used to synthesis the first chain of cDNA by PrimerScript RT reagent kit (Takara, China). qRT-PCR was applied to detect the relative mRNA level of \(HTATIP2\) in serum specimens. The reaction was carried out by SYBR Premix Ex Taq (Takara, China) in the 7500 Real Time PCR system (Applied Biosystems) under optimal conditions. All assays were conducted in triple. \(\beta\)-actin was taken as an internal reference. The primer sequences were as follows: \(HTATIP2\), forward 5’-TCACCTTGCAGAGGCT-3’, reverse 5’-GCTCTGACGACTCCAGACCA-3’; \(\beta\)-actin, forward 5’-CGTGGACATCCGTAAAGACC-3’, reverse 5’-ACATCTGCTGGAAGGTTGAC-3’. The expression of \(HTATIP2\) mRNA was calculated using the \(2^{-\Delta\Delta Ct}\) method.

Statistical analysis

All data were statistically analyzed by SPSS 18.0 software and Graphpad Prism 5.0. Student’s t-test was adopted to evaluate the expression difference of \(HTATIP2\) mRNA between HCC patients and healthy controls. The associations between \(HTATIP2\) expression and clinical parameters of patients were determined by Chi-square test. Receiver operating characteristics (ROC) curve was generated to estimate the diagnostic sensitivity and specificity of \(HTATIP2\) in HCC. \(P<0.05\) was considered significant.

Table 1. Relationship of \(HTATIP2\) expression and clinical features
Clinical characteristics	Case NO.	HTATIP2 expression	χ^2	P value
		Low (n=79)		
		High (n=39)		
Age (year)			3.579	0.059
<60	55	32		
≥60	63	47		
Gender			1.534	0.216
Male	64	46		
Female	54	33		
Serum AFP (ng/ml)			2.260	0.133
≥400	57	42		
<400	61	37		
Etiology			3.158	0.076
HBV	53	40		
HCV	65	39		
Venous invasion			6.472	0.011
Present	62	48		
Absent	56	31		
Lymph node metastasis			7.235	0.007
Negative	64	36		
Positive	54	43		
TNM stage			5.833	0.016
I,II	60	34		
III,IV	58	45		

Results

Expression of *HTATIP2* mRNA was decreased in HCC serum

To determine the expression of *HTATIP2* mRNA in HCC patients, we conducted the qRT-PCR test. As shown in Figure 1, the expression of *HTATIP2* mRNA in HCC serum samples was significantly lower than that in healthy controls (1.83±0.59 vs 3.12±0.80, $P<0.0001$).
Association between *HTATIP2* expression and clinical characteristics

The patients were divided into high expression group (n=39) and low expression group (n=79), based on their median expression level of *HTATIP2*. Chi-square test was applied to estimate the association between *HTATIP2* mRNA level and clinical characteristics of the patients. As listed in Table 1, the decreased expression of *HTATIP2* was significantly correlated with venous invasion (*P*=0.011), positive lymph node metastasis (*P*=0.007) and advanced TNM stage (*P*=0.016). However, no significant relationship was found between *HTATIP2* expression and age (*P*=0.059), serum AFP (*P*=0.133), gender (*P*=0.216) or etiology (*P*=0.076).

Diagnostic performance of *HTATIP2* in HCC

ROC curve was built to assess the diagnostic value of serum *HTATIP2* in HCC. The curve demonstrated that the value of AUC was 0.892 with the corresponding specificity and sensitivity of 84.37% and 83.90%, respectively. Besides, the cut-off value of *HTATIP2* for HCC diagnosis was 2.39. All these results indicated that serum *HTATIP2* might be a potential diagnostic biomarker in HCC (Figure 2).

Discussion

HCC is a prevalent malignancy with insidious onset. Tumor stage at diagnosis and appropriate therapy are key for outcomes of HCC patients [7]. To date, there is no available tool for early detection of the disease, due to the unclear etiology and pathogenesis [20]. Consequently, most of the patients are diagnosed at an advanced stage, resulting in low survival rate. The detection of biomarkers in body tissues or fluids are considered as a promising way to improve the diagnostic accuracy of HCC [21]. Serum AFP (alpha fetoprotein) is one of the major biomarkers for HCC diagnosis currently. Despite of high specificity, the low sensitivity of AFP may lead to missed diagnosis [22]. Hence, more specific and sensitivity tumor markers are urgently needed for HCC research.

HTATIP2 is a tumor metastasis-related gene which is primitively discovery by Shtivelman et al. [23]. *HTATIP2* plays inhibitory roles in tumorigenesis via regulating various processes, such as inhibiting tumor growth, inducing cancer cell apoptosis, weakening athletic ability, and so on [14-16]. As a tumor suppressor gene, *HTATIP2* has been reported to be involved in the development and progression of various cancers. Chen et al. reported that promoter methylation caused down-regulation of *HTATIP2* that contributed to tumor progression of colorectal cancer [24]. Tong et al. suggested that *HTATIP2* was down-regulated in lung cancer and its decreased expression showed significant association with metastatic potential of the disease [25]. In this study, we determined the expression pattern of *HTATIP2* in HCC, as well as its functional roles in tumor progression.

In the current study, we found that *HTATIP2* mRNA level was down-regulated in HCC patients compared with the healthy controls. Besides, chi-square test demonstrated that the reduced expression of *HTATIP2* might contribute to positive venous invasion, lymph node metastasis and advanced TNM stage. The above findings hinted that *HTATIP2*, as a tumor suppressor, was involved in the development and
progression of HCC. The conclusion was consistent with the previous studies. A related study carried out by Zhu et al. demonstrated that HTATIP2 was decreased in HCC patients and its expression level showed close association with E-cadherin expression. Cell experiments proved that down-regulated HTATIP2 expression contributed to activated EMT, as well as enhanced invasion and motility of HCC cells, suggesting the inhibitory function of the gene in malignant development and progression of HCC [26].

As an important tumor suppressor, HTATIP2 was proved to play a predictive role in tumor initiation and progression. In pancreatic ductal adenocarcinoma, decreased expression of HTATIP2 predicted poor prognosis for the patients [17]. Among gastric cancer patients, reduced expression of HTATIP2 represented dismal overall survival[27]. In the present study, we evaluated the diagnostic value of HTATIP2 in HCC. ROC curve demonstrated that HTATIP2 could discriminate between HCC patients and healthy controls with satisfactory sensitivity and specificity. Though we had confirmed the low expression of HTATIP2 in HCC patients and identified its diagnostic role in this malignancy, its precise mechanism on this disease was still not well understood. Accumulating evidences proved that HTATIP2 might be linked with the development and progression of angiogenesis in HCC, which was realized through modulating the transcription of angiogenesis regulator [28]. Besides, it was also proposed that HTATIP2 served as a tumor suppressor via inducing cell apoptosis in HCC [29]. All the related researches could provide theoretical foundations for our further studies.

Conclusion

In conclusion, HTATIP2 expression is significantly lower in HCC patients than that in the healthy controls. The expression level of HTATIP2 may efficiently discriminate HCC patients from healthy controls.

Abbreviations

HIV-1 Tat interactive protein 2 (HTATIP2)

hepatocellular carcinoma (HCC)

quantitative real-time polymerase chain reaction (qRT-PCR)

Receiver operating characteristics (ROC)

hepatitis C virus (HCV)

variant small cell lung carcinoma (v-SCLC)

World Health Organization (WHO)

Declarations

Ethics approval and consent to participate
This study was supported by the Ethics Committee of Harrison international Peace Hospital and also has been carried out in accordance with the World Medical Association Declaration of Helsinki.

The subjects had been informed the objective. Certainly, written consents were signed by every subject in this study.

Consent for publication

We obtaining permission from participants to publish their data.

Availability of data and materials The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests The authors declare that they have no competing interests.

Funding Not applicable.

Authors’ contributions X.Z. and X.L. conceived and designed the experiments; X.Z. and H.B. conceived and performed the experiments; G.L. and N.L. prepared figures. H.L., J.D. and J.Z. wrote the main manuscript text. All authors reviewed the manuscript.

Acknowledgements Not applicable.

References

1. Li X, Liang Q, Zhuang L, Zhang X, Chen T, Li L, Liu J, Calimente H, Wei Y, Hu J: **Preliminary Study of MR Diffusion Tensor Imaging of the Liver for the Diagnosis of Hepatocellular Carcinoma.** *PloS one* 2015, 10(8):e0135568.

2. Shaheen KY, Abdel-Mageed Al, Safwat E, AlBreedy AM: **The value of serum midkine level in diagnosis of hepatocellular carcinoma.** *International journal of hepatology* 2015, 2015:146389.

3. Schutte K, Schulz C, Link A, Malfertheiner P: **Current biomarkers for hepatocellular carcinoma: Surveillance, diagnosis and prediction of prognosis.** *World journal of hepatology* 2015, 7(2):139-149.

4. Yamashita M, Wada H, Eguchi H, Ogawa H, Yamada D, Noda T, Asaoka T, Kawamoto K, Gotoh K, Umeshita K et al: **A CD13 inhibitor, ubenimex, synergistically enhances the effects of anticancer drugs in hepatocellular carcinoma.** *International journal of oncology* 2016, 49(1):89-98.

5. Sacco R, Mismas V, Romano A, Bertini M, Bertoni M, Federici G, Metrangolo S, Parisi G, Tumino E, Bresci G et al: **Assessment of clinical and radiological response to sorafenib in hepatocellular carcinoma patients.** *World journal of hepatology* 2015, 7(1):33-39.

6. Huang WJ, Jeng YM, Lai HS, Fong IU, Sheu FY, Lai PL, Yuan RH: **Expression of hypoxic marker carbonic anhydrase IX predicts poor prognosis in resectable hepatocellular carcinoma.** *PloS one* 2015, 10(3):e0119181.
7. Wu H, Shi XL, Zhang HJ, Song QJ, Yang XB, Hu WD, Mei GL, Chen X, Mao QS, Chen Z: Overexpression of ST3Gal-I promotes migration and invasion of HCCLM3 in vitro and poor prognosis in human hepatocellular carcinoma. *OncoTargets and therapy* 2016, 9:2227-2236.

8. Han SX, Wang JL, Guo XJ, He CC, Ying X, Ma JL, Zhang YY, Zhao Q, Zhu Q: Serum SALL4 is a novel prognosis biomarker with tumor recurrence and poor survival of patients in hepatocellular carcinoma. *Journal of immunology research* 2014, 2014:262385.

9. Jin Y, Chen JN, Feng ZY, Zhang ZG, Fan WZ, Wang Y, Li JP: OPN and alphavbeta3 expression are predictors of disease severity and worse prognosis in hepatocellular carcinoma. *PloS one* 2014, 9(2):e87930.

10. Hou Y, Velthof GL, Oenema O: Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment. *Global change biology* 2015, 21(3):1293-1312.

11. Hu Y, Chen F, Liu F, Liu X, Huang N, Cai X, Sun Y, Li A, Luo R: Overexpression of TIP30 inhibits the growth and invasion of glioma cells. *Molecular medicine reports* 2016, 13(1):605-612.

12. Dong X, Deng Q, Nie X, Zhang M, Jia W, Chen C, Xu C, Xu R: Downregulation of HTATIP2 expression is associated with promoter methylation and poor prognosis in glioma. *Experimental and molecular pathology* 2015, 98(2):192-199.

13. Zhu M, Yin F, Yang L, Chen S, Chen R, Zhou X, Jing W, Fan X, Jia R, Wang H *et al*: Contribution of TIP30 to chemoresistance in laryngeal carcinoma. *Cell death & disease* 2014, 5:e1468.

14. Shuai S, Yan X, Zhang J, Kang S, Chen F, Luo R, Li A: TIP30 nuclear translocation negatively regulates EGF-dependent cyclin D1 transcription in human lung adenocarcinoma. *Cancer letters* 2014, 354(1):200-209.

15. Dong W, Shen R, Cheng S: Reduction of TIP30 in esophageal squamous cell carcinoma cells involves promoter methylation and microRNA-10b. *Biochemical and biophysical research communications* 2014, 453(4):772-777.

16. Chen J, Zhu C, Zhu M, Geng M, Tian Y, Li G, Zheng H: Clinicopathologic significance and survival of TIP30 expression in laryngeal squamous cell carcinoma. *International journal of clinical and experimental medicine* 2015, 8(4):6024-6031.

17. Guo S, Jing W, Hu X, Zhou X, Liu L, Zhu M, Yin F, Chen R, Zhao J, Guo Y: Decreased TIP30 expression predicts poor prognosis in pancreatic cancer patients. *International journal of cancer Journal international du cancer* 2014, 134(6):1369-1378.

18. Bu F, Liu X, Li J, Chen S, Tong X, Ma C, Mao H, Pan F, Li X, Chen B *et al*: TGF-beta1 induces epigenetic silence of TIP30 to promote tumor metastasis in esophageal carcinoma. *Oncotarget* 2015, 6(4):2120-2133.

19. Lu L, Sun HC, Zhang W, Chai ZT, Zhu XD, Kong LQ, Wang WQ, Zhang KZ, Zhang YY, Zhang QB *et al*: Aspirin minimized the pro-metastasis effect of sorafenib and improved survival by up-regulating HTATIP2 in hepatocellular carcinoma. *PloS one* 2013, 8(5):e65023.
20. Tang H, Li RP, Liang P, Zhou YL, Wang GW: miR-125a inhibits the migration and invasion of liver cancer cells via suppression of the PI3K/AKT/mTOR signaling pathway. Oncology letters 2015, 10(2):681-686.

21. Reichl P, Mikulits W: Accuracy of novel diagnostic biomarkers for hepatocellular carcinoma: An update for clinicians (Review). Oncology reports 2016, 36(2):613-625.

22. Malaguarnera G, Giordano M, Paladina I, Berretta M, Cappellani A, Malaguarnera M: Serum markers of hepatocellular carcinoma. Digestive diseases and sciences 2010, 55(10):2744-2755.

23. Shtivelman E: A link between metastasis and resistance to apoptosis of variant small cell lung carcinoma. Oncogene 1997, 14(18):2167-2173.

24. Chen X, Cao X, Dong W, Luo S, Suo Z, Jin Y: Expression of TIP30 tumor suppressor gene is down-regulated in human colorectal carcinoma. Digestive diseases and sciences 2010, 55(8):2219-2226.

25. Tong X, Li K, Luo Z, Lu B, Liu X, Wang T, Pang M, Liang B, Tan M, Wu M et al: Decreased TIP30 expression promotes tumor metastasis in lung cancer. The American journal of pathology 2009, 174(5):1931-1939.

26. Zhu M, Yin F, Fan X, Jing W, Chen R, Liu L, Zhang L, Liu Y, Liang Y, Bu F et al: Decreased TIP30 promotes Snail-mediated epithelial-mesenchymal transition and tumor-initiating properties in hepatocellular carcinoma. Oncogene 2015, 34(11):1420-1431.

27. Li X, Zhang Y, Cao S, Chen X, Lu Y, Jin H, Sun S, Chen B, Liu J, Ding J et al: Reduction of TIP30 correlates with poor prognosis of gastric cancer patients and its restoration drastically inhibits tumor growth and metastasis. International journal of cancer Journal international du cancer 2009, 124(3):713-721.

28. Wang WQ, Liu L, Xu HX, Sun HC, Wu CT, Zhu XD, Zhang W, Xu J, Liu C, Long J et al: The combination of HTATIP2 expression and microvessel density predicts converse survival of hepatocellular carcinoma with or without sorafenib. Oncotarget 2014, 5(11):3895-3906.

29. Zhao J, Chen J, Lu B, Dong L, Wang H, Bi C, Wu G, Guo H, Wu M, Guo Y: TIP30 induces apoptosis under oxidative stress through stabilization of p53 messenger RNA in human hepatocellular carcinoma. Cancer research 2008, 68(11):4133-4141.

Figures
The mRNA level of serum HTATIP2 in HCC patients and healthy controls was determined using the qRT-PCR. It was found that HTATIP2 was up-regulated in HCC patients compared with healthy control. ***: suggested P<0.0001.

Figure 1
The diagnostic accuracy of serum HTATIP2 in HCC was investigated using ROC analysis. The AUC was 0.892, suggesting that serum HTATIP2 could be employed as a diagnostic biomarker for HCC. The cut-off value of HTATIP2 for HCC diagnosis was 2.39, with the sensitivity of 84.4% and the specificity of 83.9%.

Figure 2