Quantification of Strain of the Pan-African in Mvog-Betsi Area (Yaoundé Group, Cameroon)

Jean Engelbert Mpesse¹, Joseph Martial Akame², *, Eric José Messi Ottou², Bernard Njom², Sébastien Owona¹, Jean Bosco Olinga³, Justin Lissom¹, Joseph Mvondo Ondoaa²

¹Department of Earth Sciences, Faculty of Sciences, University of Douala, Douala, Cameroon
²Department of Earth Sciences, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
³Institut of Geological and Mining Research, Yaoundé, Cameroon

Email address: akamejosephmartial@gmail.com (J. M. Akame)
*Corresponding author

To cite this article:
Jean Engelbert Mpesse, Joseph Martial Akame, Eric José Messi Ottou, Bernard Njom, Sébastien Owona, Jean Bosco Olinga, Justin Lissom, Joseph Mvondo Ondoao. Quantification of Strain of the Pan-African in Mvog-Betsi Area (Yaoundé Group, Cameroon). International Journal of Environmental Monitoring and Analysis. Vol. 6, No. 2, 2018, pp. 40-46. doi: 10.11648/j.ijema.20180602.11

Received: March 30, 2018; Accepted: April 24, 2018; Published: May 25, 2018

Abstract: The ductile deformation in the paragneissic bed of Mvog-Betsi in the north-eastern part of Yaoundé (Cameroon) appears to be intensive and may be traduced by a high shear rate (more than 10%). Some marker subjects that may quantify this strain are observed. Those are elliptical quartz and feldspar, and folds. The study of elliptical markers shows their preferential orientation. The initial rate \(R_i \) of the markers before the strain approaches 3.76, and the harmonic value of \(R_f \) is between 1.51 and 1.71. Main orientation \(\Theta_f \) of strain’s ellipse from the direction of stretching in actual position is situated between -10 and -19. The strain’s rate \(R_S \) is comprised between 1.1 and 1.7. The orientation \(\Theta_S \) of the strain’s ellipse is situated between N10E and N20E. The rate of shortening varies between 20% and 75%.

Keywords: Strain, Method, Rate of Deformation, Yaoundé Group, Cameroon

1. Introduction

The tectonic studies in the migmatites of Yaoundé revealed the tangential nature of Panafican deformation responsible for the actual regional configuration [1-4]. The formations which are metamorphosed in granulite facies and retromorphosed to green schist facies. The deformation was polyphased. Main orogenic phases of deformation in the studied area are evidenced \(D_1 \), \(D_2 \), \(D_3 \), \(D_4 \) and a last post orogenic phase illustrated throw the MORB. The \(D_1 \) is characterized by \(S_1 \) foliation and sporadic \(F_1 \) folds. The most important phase of deformation is the \(D_2 \) phase documented by \(P_2 \) meso-folds, \(L_2 \) lineation, \(C_2 \) shear planes, \(B_2 \) bounding, \(S_2 \) schistosity planes and \(S_2 \) foliation planes which transpose \(S_1 \) planes to form \(S_{1-2} \) composite planes. The \(D_3 \) phase is characterized by ductile to brittle fractures. The \(D_2 \) phase is responsible of the actual morphostructural configuration of the region. In order to characterize the quantification of this deformation, particular forms of certain deformation minerals took our attention to estimate the ration of the deformation. These deformation minerals premise us to determine the ratio of strain and with some folds we have determinated the percentage of shortening. The presence of sheath folds in the region indicates a high shear ratio. All this informations permit us to estimate the rate of deformation. The results obtained here must be considered as preliminary, which is partly due to the bad conditions of the outcrops.

2. Geological Setting

The North Equatorial Mobile belt includes the Yaoundé region between the West African Craton and the Congo Craton. This mobile belt is extended to the East by the Oubanguide mobile belt of the Central African Republic. Geological studies in the region of Yaoundé have been done by several authors: [3-9]. From petrologcal studies, it is known that the Yaoundé Group presents rather uniform petrographic enteties which show similar structural
evolution. This series is constituted by paraderivated and orthoderivated formations. The paraderivated formation are represented by garnet and kyanite gneisses associated with garnet and plagioclase gneisses, quartzits, garnetits, par amphibolits, calcisilicat rocks and marbles. Orthoderivated formations are constituted by metadiorit associated with pyroxenis, biotitites and ortho-amphibolits. These rocks have been affected by polyphase deformations associated with migmatisation [3]. They show the retrometamorphic evolution from granulite facies to green schist facies. Calculated temperatures are 650°C and the pressures range from 8 to 9.5 kbars.

Structural studies done shown tangential tectonics, [1] with south vergent thrusting of the Yaoundé Series on the Congo Craton, structural map in Yaoundé region shows the orientation of structures as scales [3] in the studied area.

Figure 1. (a) Pre-drift reconstruction of Pan-African and Brasiliano terranes (modified from [23]). (b) Structural map of Yaoundé (modified afster [11]).
International Journal of Environmental Monitoring and Analysis 2018; 6(2): 40-46

(figure 1). That had as consequence a high rate of strain responsible of sheath folds in Mvog-Betsi [4]. That could be appeared during transpression and transtension sinistral shear movement, in the Yaoundé neoproterozoic in south Cameroon [10, 11]. The configuration of some rocks and minerals show some structures of the geometry of deformation which permits to characterize the tangential tectonics responsible of the kinematics of the actual structures and to characterize the strain responsible.

3. Materials and Methods

The material used are compass to define the orientation of long axe of ellipse of the object deformed and the metric object for measurement of the folded objects.

Many makers of deformation ovoid quartz and feldspar eyes (Figure 3B) and folds enable us to make a quantitative study.

Contrary of method of deformation in granular assemblies by [12] on the velocity gradient characteristics, the method here concerns the study of the elliptical markers by the \(R_f \) method of [13, 14, 15, 16]. This method is useful for the reconstitution of the initial form of the deformed markers from their finite ellipticity \(R_f \) and their orientation \(\Theta_f \). Note that \(R_f = L/l \); L and l are the lengths of respectively the large and the short axes of the marker; \(\Theta_f \) is the angle between the large axis and a taken reference direction. In the case of this study, the reference direction is that of the stretching lineation in its actual position, [3,]. A great number of markers of known azimuth have been used. In order to know the initial configuration of these markers before the strain, a set of data \((R_f, \Theta_f)\) taken on the field have been treated through the THETA program of [17] and the RPHIN program of [18].

A test of symmetry [19] has been realised to see the repartition of markers. A test of the homogeneity of strain has been done through the [20]. The estimation of strain’s rate \(R_S \) and the orientation \(\Theta_S \) of the strain’s ellipse have been also done through this net. The calculation of the shortening has been realised through two repair levels on the folded objects.

4. Results and Discussions

4.1. Regional Strain Pattern

The tectonic is illustrated by main structural elements. They are \(S_{1-2} \) foliation, meso-folds, stretching structures (\(L_2 \) lineation; boudins, rods of quartz), shear planes, faults. \(S_{1-2} \) is regional. The dip is around 20-25 NNE, (Figure 2a). The lineation are mineral or mechanic (Stretching lineation stria). The stretching lineation is sometime folded. Lineation is on quartzitic material plane \(S_{0-1-2} \), these shows a regional variation, (Figure 2b). In general, we note dispersion of orientation, but a general disposition around the direction N20-N30 with moderate dip to the North. We can also observe another SW-NW orientation which confirms the domings and basins character of the region.

Shearing is the principal mechanism of deformation. The planes are sub-horizontal. We denote the tendency of parallelism between foliation and shear plane. Sheath folds (Figure 3) are the consequence when the shear ratio is high under high temperatures.
4.2. Strain Quantification

The $R_i - \bar{O}_i$ (Figure 4a-e) and $R_i - \bar{O}_0$ (Figure 6a-e) diagrams have been made on the basis of a set of (R_i, \bar{O}_i) data treated through THETA and RPHIN programs. The main value R_i before the strain is 3.76 (Figure 5a-e). The test of symmetry shows an initial preferential orientation between -90 and 45°. The homogeneity of the strain (Figure 6a-e), shows an identical repartition of markers, which means that the strain is homogeneous. The strain’s rate R_S, deduced from the stereograms, (Figure 7a-e) is comprised between 1.1 and 1.7.

The ellipse orientation is between N 10 and N 20, (Table 1). The shortening rate is $\varepsilon = (L_0 - L_1)/L_0$ (where L_0 is the length between two repair points before the folding; L_1 is the length between the same points after folding). The shortening rate is $\varepsilon=20-75\%$, (Table 2).

Table 1. Results obtained from the program THETA of Peach and Lisle, (1979), and from [21]. N= number of (R_i, \bar{O}_i) datas; MR= harmonic value of R_i; $M\bar{O}$= mean of \bar{O}_i; I_{sym}= index of symmetry; R_S= strain’s rate; \bar{O}_0= orientation of strain’s ellipse; A= Azimut of planes; N= number of datas.

A	N	MR_i	$M\bar{O}_i$	I_{sym}	R_S	\bar{O}_0
N231. 10	50	1.62	-14.1	0.76	1.1	-15
N338. 15	54	1.633	-11.3	0.78	1.2	15
N300. 42	80	1.65	-12.2	0.85	1.2	18
N272. 36	101	1.66	-10.7	0.83	1.2	14
N35. 3	116	1.59	-12.2	0.88	1.3	3

Table 2. Estimation of shortening rate in Mvog-Betsi area.

L_0	L_1	ε															
8.8	3.6	59	30	17	43	13	4	68	9	4.3	52	7.1	4.5	37			
12.7	7	45	11.3	7.4	35	13	10.5	19	7.4	4.8	35	18.8	6	68	8	5	38
20	11	43	15	8	47	15	9	40	6.4	5.4	19	13.7	5.8	58	17	7.5	53
14.8	15	53	36.8	22	40	8	3.6	55	16.5	6.3	62	12	8	33	16	6.1	61
24	10.5	56	24	10.5	56	9.5	5.5	42	7	2.8	60	13.5	9	33	19	9.5	50
10	7	30	9.5	5.1	46	16	7.6	52	11	5.5	50	12	4.4	63	33	13.5	59
11	9.1	19	9.5	3.5	63	18	6.5	64	10	5	50	14	7.8	44	11	7	36
18	10.2	42	23.3	5.4	77	25	14.5	42	9	3.9	57	13.6	8.8	35	24	18.5	23
8	4.1	49	13.5	9	33	17	6	65	77.5	3.1	59	8	3.4	58	10	5	50
9.8	6.1	38	22	13.5	39	12	2.7	78	14.5	9	38	4.4	2.2	50	10	7	30
5.2	3	42	24	15.5	35	38	27	29	15.1	9	40	4.7	2.9	38	16	3.8	76
12.9	5.3	59	5.4	2.1	61	20	5.5	73	8.7	4.3	51	6.1	2.5	59	11	5.2	53
Figure 4. R_i/Θ_i diagrams of markers taken in several planes of known azimuth: a: N35.3; b: N231.10; c: N338.15; d: N300.42; e: N272.36.

Figure 5. R_i/Θ_i diagrams of markers taken in several planes of known azimuth. a: N35.3; b: N231.10; c: N338.15; d: N300.42; e: N272.36.
The ductile strain in the Mvog-Betsi area appears is progressive, [3, 21, 22]. A spatial evolution of the stretching lineation showed that, the Ω_3 value (N10°E to N20°E) is similar to the orientation of the stretching lineation in its actual position. The markers should therefore be contemporaneous with the stretching lineation. It means that the deformation ratio estimated from the markers may be that responsible of the lineation. The folds through which estimation of shortening has been done may also be contemporaneous of these structures. The shortening ratio estimated may also at last be the one that prevailed during the deformation responsible of the stretching lineation and the elliptical markers.

![Figure 6](image1.png)

Figure 6. Test of homogeneity of deformation on various planes.

![Figure 7](image2.png)

Figure 7. Estimation of R_3 and Ω_3 in various planes.
5. Conclusion

Quantification of the Panafican strain in the Mvog-Betsi (Yaoundé) area show the strain’s rate between 1.1 and 1.7, the rate of shortening varies between 20% and 75%. This first local estimation most considers the conditions of outcrop and the orientation of the plane where the data were taken.

Acknowledgements

The authors are very grateful to the referees Dr. Lissom Justin, University of Douala, Dr Essono Jean, University of Yaoundé I which helped to improve the original manuscript. We are also indebted to Prof. Dr. Wolfgang Frisch, Tübingen, Germany, for his valuable comments. A thankful acknowledgement is made to DAAD (Deutscher Akademischer Austauschdienst, German Academic Exchange Service) for their financial support.

References

[1] Ball, E., Bard, J., P., Soba, D., 1984. Tectonique tangentielle dans la catazone du Cameroun: Les gneiss de Yaoundé. J. Afr. Earth Sci. Vol. n°2, P. 91-95.

[2] Nzenti J., P.: 1987. Pétrogénèse des migmatites de Yaoundé (Cameroun): élément pour un modèle géodynamique de la chaîne Pan-africaine Nord-équatoriale. Thèse de l’Université de Nancy I, 147 p.

[3] Mpessè, J., E., 1999. Contribution à l’étude pétrostructurale des formations métamorphiques de la région de Yaoundé et définition de la géométrie de sa tectonique tangentielle. Thèse doct. 3è cycle, Univ. de Yaoundé I, 148.

[4] Mpessè J. E., Lissom, J., Mvondo Ondoa, J., Njom B., Frisch Wolfgang, (2002). Plis en fourreau dans les migmatites panafricaines de Yaoundé preuve d’une déformation chevauchante progressive. Sci. Technol. Dev. vol. 9, n01, 37-43.

[5] Jegouzo, 1984. Déformation chevauchante et cisaillante dans la zone mobile d’Afrique centrale au Cameroun. Coll. Cheuvauchement et Deformation, Toulouse.

[6] Nédélec, A., Macaudière, J., Nzenti, J. P., Barbey, P., 1986. Evolution structurale et métamorphique des schistes de Mbalmayo (Cameroun). Implications pour la structure de la zone mobile panafricaine d’Afrique Centrale, au contact du craton du Congo. Comptes Rendus de l’Académie des Sciences, Paris 303, 75–80.

[7] Maurizot P, Abessolo A, Feybesse A, Johan JL, Lecompte P., 1984. Tectonique tangentielle dans la catazone du Cameroun: Les gneiss de Yaoundé. J. Afr. Earth Sci. Vol. n°2, P. 91-95.

[8] Nzenti JP, Barbey P, Macaudiere J, Soba D (1988). Origin and evolution of the late Precambrian high-grade Yaoundé gneisses (Cameroun). Precamb. Res. 38:91-109.

[9] Minyem, D., 1994. Contribution à l’étude de l’évolution métamorphique et strutturale du secteur Eséka-Makak (Cameroun, Département du Nyong et Kelle, Province du Centre). Thèse de l’Université Yaoundé I, 166 p.

[10] Ngako, V., Affaton, P., Nnangue, J., M; and Njanko, Th. 2003. Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movements. Journal of African Earth Sciences, 36, 207-214.

[11] Mvondo Ondoa, J., and Essono, J., 2007. Tectonic evolution of the Yaoundé segment of the Neoproterozoic Orgogenic Belt in South Cameroon (central Africa). Canadian Journal of Earth Sciences, 44, 443-444.

[12] Pengcheng Fu and Yannis F. Dafalias 2012. Quantification of large and localized deformation in granular materials. Elsevier, Volume 49, Pages 1741–1752.

[13] Ramsay, J., G., 1967. Folding and fracturing of rocks. M. C. Graw-Hill, New-York. 568p.

[14] Dunnet, D., 1969. A technique of finite strain analysis using elliptical markers. Tectonophysics, V. 7, n 2, P. 117-136.

[15] Dunnet, D. and Siddans, A., B., 1971. Non-random sedimentary fabrics and their modification by strain. Tectonophysics, 12, 307-325.

[16] Lisle, R., J., 1979. Strain analysis using deformed pebble shape: the influence of initial pebble shape. Tectonophysics, 60: 263-277; Amsterdam.

[17] Peach, C. J. & Lisle, R. J. 1979. A Fortran IV program for the analysis of tectonic strain using deformed elliptical markers. Comput. Geosci. 5, 325-334.

[18] Ratschbacher, L., Meschede, M., Spener, B., and Pfänder, J. 1994. Computer-techniken und anwendungen: Eine Computer-programm bibliothek zur quantitativen Strukturanalyse. Tubinger Geowissenschaftliche Arbeiten (TGA). Reihe A, Band 21, 73.

[19] Lisle, R., J., 1985. Geological strain analysis: a manual for the Rf/Ω technic. Pergamon Press, Oxford, 99p.

[20] De Paor, D., G., 1988. Rf/Ω strain analysis using an orientation net. J. of Structural geology, 10, pp. 323 to 333, Oxford.

[21] Olinga, J. B., Mpessè, J., E., Minyem, D., Ngako, V., Ndougsa Mbarga, T. and Ekodeck, G., E., 2010. The Awā–Ajos strike-slip shear zones (southern Cameroon): geometry, kinematics and significance in the late pan-african tectonics, Yaoundé. N. Jb. Geol. Paläont. Abh. 257/1, 1–11.

[22] Mvondo H, Den Brok, S. W. J., Mvondo Ondoa, J., 2003. Evidence for symmetric extension and exhumation of Yaoundé nappe (Pan-African fold belt, Cameroon). Journal of African Earth Sciences 36, 215-231.

[23] Castaing C, Feybesse JL, Thiélémont D, Triboulet C, Chèvremont P (1994). Palaeogeographical reconstructions of the Pan-African/Brasiliano orogen: closure of an oceanic domain or intracontinental convergence between major blocks? Precamb. Res., 69 (1-4): 327-344.