Effect of herbicides in weed management of wheat-chickpea intercropping system

Vishal Guleria, Dr. Gurpreet Singh and Shweta

DOI: https://doi.org/10.22271/chemi.2020.v8.i2ag.9076

Abstract

The review paper is based on the effect of various herbicides in weed management of wheat (Triticum aestivum L.)- Chickpea (Cicer arietinum L.) intercropping system. Weeds are considered most harmful to the crops. They interfere with crops during the different growth stages and reduce the growth and yield of the crop drastically. Therefore, different weed management practices have been taken to decrease the crop-weed competition, especially by using herbicidal treatments. So in reference to the weeds found in the wheat-chickpea intercropping and their control, various herbicidal treatments are used to check the weed competition with crops. The chemical weed control method is the most effective and time saving. The herbicides should be selected properly on the basis of selectivity, so they do not harm the main crop. Pre-emergence like Pendimethalin are translocated herbicide, they are applied in the soil and inhibit the cell division in the weed seeds. Post-emergence herbicides like Isoproturon, clodinafop-propargyl, pinoxaden etc are contact herbicide, they enter through aerial parts like leaves and affect the photosynthesis (photosystem-I, II). All these herbicides were proven to be efficient in reducing weed density, dry matter accumulation of weeds and increased the yield and net returns of main crop grown in the field.

Keywords: Herbicide, weed management, efficiency, competition, yield losses

1. Introduction

Wheat (Triticum aestivum L.) is one of the most important cereal crop grown in the world. Popularly it is also called as the ‘king of the cereals’. Chickpea (Cicer arietinum L.) is the third most important pulse crop, which plays an immense role in economy of agriculture globally (FAO, 2003) [9]. The protein content present in wheat is 11-12% while in chickpea, it is about 21%. Among the cereals, Wheat ranks first in the world both in terms of area and production and in India it ranks second after rice. The state having maximum area and production under wheat cultivation is U.P. while the productivity is highest in Punjab (45q/ha). Productivity of wheat in highest in Punjab is due to the fact that most of the land is irrigated and more demand for higher doses of fertilizer requirement and consumption. While in case of chickpea, India is the largest producer of gram in the world. In India, Madhya Pradesh is the state having maximum area and production under chickpea cultivation (Nem Raj Sundha).

In modern world, intercropping has become a topic of tremendous attention because of its potential advantages as it offers. When a legume crop is intercropped with any other crop (preferably a cereal crop), then the nitrogen fixation of the linked crop will also be improved by direct nitrogen transfer from legume to cereal crop (Giller and Wilson, 1991) [10]. Heavy incidence of weeds cause hindrance in increasing the productivity of wheat and chick pea globally. Weeds are the unwanted material grown in the wrong place and compete with the main crop for moisture, sunlight, space and nutrition and retarded the proper growth and development of main crop in the field. Uncontrolled weeds are reported to cause up to 66% yield reduction in wheat (Angiras et al. 2008, Kumar et al. 2009 and Kumar et al. 2011) [2, 16, 17]. Whereas, in chickpea, weed cause yield reduction up to 75% (Chaudhary et al. 2005) [6]. Chemical weed control is a preferred practice over hand weeding due to requirement of scare and expensive labour as well as lesser likelihood of mechanical or manual weeding. So, the use of herbicides will be the only adequate method of weed control in the future (Young et al., 1996 and Norris, 1982) [32, 25].

“2191”

Corresponding Author:

Vishal Guleria

Department of Agronomy, School of Agriculture, Lovely Professional University, Jalandhar, Punjab, India
2. Weeds associated with wheat and chickpea intercropping

Weeds found in Wheat

S. No.	Weeds Classification
1.	Grasses
	Avena fatua
	Cynodon dactylon
	Digitaria sanguinalis
	Phalaris paradoxa
2.	Broad-leaf weeds
	Amaranthus spinosus
	Convolvus arvensis
	Chenopodium albumum
	Chenopodium album
	Corrigiola capensis
	Oralis latifolia
	Raphanus raphanistrum
	Spergula arvensis
	Tagetes minuta

(Ansar et al. 2009) [1]

Weeds found in Chickpea

S. No.	Weeds Classification
1.	Grasses
	Echinochloa spp.
	Panicum spp.
	Sporobolus spp.
	Cynodon dactylon
2.	Sedges
	Cyperus rotundus
3.	Broad-leaf weeds
	Chrozophora rottleri
	Phyllanthus niruri
	Aristolochia bracteata
	Trianthema portulacastrum
	Portulaca oleracea
	Ogera arvensis

(Ratnam et al. 2011) [26]

3. Effect of various herbicides in weed management of wheat-chick pea intercropping

Effect of Isoproturon

Application of the isoproturon @ 1 kg/ha after 2 weeks of sowing helps in reducing the weed competition and increases the yield and yielding attributes traits in wheat (Sharma et al. 1985). Pre-emergence application of herbicide, isoproturon @2kg/ha+ 1 hand hoeing after 50 days after sowing results in highest grain yield (6.3t/ha), harvest index (44.96%) and net income of wheat (Rs. 45625/ha) (Khaliq et al. 2003) [14]. Isoproturon @ 1kg/ha had shown the best killing efficiency (42.26%) alongside with highest yield and yield contributing traits like spike length, no. of tillers, no. of grains per spike, test weight, grain yield, biological yield and harvest index in wheat (Marwat et al. 2005) [23]. Highest weed control efficiency (84%), maximum number of tillers/m² (250) and yield/ha in wheat was found best by the post-emergence application of isoproturon 50WP@ 1.0kg ai/ha (Fahad et al. 2009). Puma super (isoproturon) 75EW@1.2 lit/ha were found to give highest seed yield and also controls the weeds in chick pea under rainfed and semi arid conditions (Ansar et al. 2010). In wheat, application of isoproturon+2, 4-D results in maximum decline in weed population (89.6%) and dry matter content (78.8%) (Kumar et al. 2010). In chick pea, weed population and weed density (98/m²) were recorded to be less by the application of isoproturon 500EW. Highest 100 seed weight (20.25g) was observed in plots treated with isoproturon 500EW@125g/ha (Khan et al. 2011). Isoproturon gave the best control of weeds in it. Also it reduces the weed density by 86%, dry weight by 89% and moreover increases the yield by 40% over weedy check (Mahmood et al. 2013) [22]. Post emergence herbicide like isoproturon @1.50kg/ha+15 cm row spacing were proved to be efficient in control of broad leaved and total weeds and also improve the weed suppressive efficiency of wheat crop (Amare 2014) [1].

Effect of Pinoxaden

Pinoxaden, the post- emergence herbicide applied @ 30-60g ai/ha was found efficient against many grassy weed species viz., Alopoeus myosuroides, Aperuspiac-venti, Avena spp., Lolium spp., Phalaris spp., and Setaria sp. (Hofer et al. 2006) [11]. Herbicide pinoxaden SEC @50g/ha reduced the dry weight of Phalaris minor to the level of 92-99% and 89-98% correspondingly and also increased the grain yield of wheat to the amount of 6.1-6.2 t/ha and 5.7-6.1 t/ha. It also results in the highest net returns and maximum benefit ratio in the cost of cultivation of wheat crop (Yadav et al. 2009) [31]. In chick pea, Phalaris minor weed were effectively controlled by the post emergence application of Pinoxaden@ 50g/ha and cladinofop@ 60g/ha. The highest grain yield was recorded by the pre-emergence application of Pinoxaden@ 50g/ha applied after 45 days of sowing (Kumar et al. 2014). In wheat cultivation, application of pinoxaden @50g/ha significantly controlled the population of the grassy weeds and broad leaf weeds with more than 90% weed control efficiency and also reduced the dry weight of weeds (Kamboj et al. 2017) [13].

Effect of pendimethalin

Pre-emergence treatment of pendimethalin @ 0.90kg/ha reduces the number of weeds, increases weed control efficiency and in turn also increased the grain yield of wheat per hectare (Jhala et al. 2008) [12]. Application of pre-emergence herbicide, pendimethalin@0.5 kg/ha combined with one hand hoeing after 40 days of sowing considerably reduced the dry weight of the weeds in chickpea from 16.5% and 15.3% respectively (Singh and Mukierjee 2009) [30]. It was recorded that between all individual herbicide treatments, pre-emergence application of pendimethalin @ 1.5 kg/ha substantially reduced the weed density, dry weight of weeds and tremendously increased the grain yield in chickpea (Ratnam et al. 2011) [26]. Pendimethalin @1 kg/ha along with one hoeing after 40 days of sowing results in reducing weed population, dry matter content and increased the highest yield/ha in chickpea (Bhutada et al. 2013) [4]. One hand weeding at 20,40 and 60 days after sowing results in lowest dry weight of weeds and maximum yield followed by pendimethalin@ 0.75kg/ha (Chandrakar et al. 2015). In chick pea, reduction in the total weed density and dry matter of weed was significantly reduced by the application of pendimethalin@ 1.25kg/ha. It also resulted in higher net return and B: C ratio (Kumar et al. 2015) [19]. In chick pea, highest yield and yield attributing traits were recorded by the pre-emergence treatment of herbicide pendimethalin@1kg ai/ha along with one hand weeding at 48 days of sowing (Singh et al. 2019) [29].

Effect of cladinofo-propargyl

Spray of cladinafo-propargyl @75g/ha at an interval of 35 days after sowing significantly controlled the broad leaf and grassy weed in wheat and also results in reducing the dry matter accumulation of weeds. Moreover, it considerably increased the grain yield and net return (Angiras et al. 2008) [2]. The experimental plots treated with Topik 15WP (cladinofo- propargyl) results in minimum weed density, weed fresh biomass, maximum grain yield, number of tillers and maximum plant height at maturity in wheat (Bibi et al. 2008) [5]. Maximum weed control efficiency, crop resistance index, efficiency index and also highest net return due to efficient weed control were recorded in the plots treated with cladinofo 60g/ha +metribuzin 12.2g/ha (Kumar et al. 2013)
In wheat, use of metribuzin combined with clodinafop-propargyl @500-600g/ha resulted in reduced density of weeds after 30 and 60 days of sowing. This combination of two herbicides also increases the grain yield (Singh et al. 2015) [20]. Maximum grain yield, weed control efficiency, effective and efficient cost of cultivation were recorded in chickpea by the pre-emergence application of herbicide, pendimethalin 1000g/ha combined with post-emergence application of clodinafop-propargyl @60g/ha (Dube et al. 2018) [7].

4. References

1. Amare T. Effect of weed management methods on weeds and wheat (Triticum aestivum L.) yield. African Journal of Agricultural Research. 2014; 9(24):1914-1920.

2. Angiras NN, Kumar S, Rana SS, Sharma N. Standardization of dose and time of application of clodinafop-propargyl to manage weeds in wheat. Himachal Journal of Agricultural Research. 2008; 34(2):121-124.

3. Ansar M, Anwar A, Arif M, Nadeem M, Zahid A. Screening of pre and post emergence herbicides against chickpea (Cicer arietinum L.) weeds under semi rainfed conditions of potohara, Pakistan. Pak. J. Weed Sci. Res. 2010; 16(4):421-430.

4. Bhutada PO, Bhale VM. Efficacy of Herbicides and Cultural Management on Weed Control in Gram (Cicer arietinum). Journal of Agriculture and Veterinary Science, 2013, 2319-2372.

5. Bibi S, Marwat KB, Hassan G, Khan NM. Effect of herbicides and wheat population on control of weeds in wheat. Pak. J. Weed Sci. Res. 2008; 14(3-4):111-119.

6. Chaudhary BM, Patel JJ, Delvadia DR. Effect of weed management practices and seed rates on weeds and yield of chickpea. Indian Journal of Weed Science. 2005; 37:271-272.

7. Dube SK, Kumar A, Singh D, Partap T, Chaurasiya A. Effect of Different Weed Control Measures on Performance of Chickpea under Irrigated Condition. International Journal of Current Microbiology and Applied Science. 2018; 7(5):3103-311.

8. Fahad S, Nie1 L, Rahman A, Chen C, Wu C, Saud S et al. Comparative Efficacy of Different Herbicides for Weed Management and Yield Attributes in Wheat. American Journal of Plant Sciences. 2013; 4:1241-1245.

9. FAO. Production Year Book. 2002. Food and Agriculture Organisation of the United Nation (FAO), Rome, Italy, 2003. http://apps.fao.org

10. Giller KE, Wilson KJ. Nitrogen Fixation and Tropical Cropping Systems, CAB International, Wallingford, 1991, 10-120.

11. Hofer U, Muehelebach M, Hole S, Zoschke A. Pinoxadon – for broad spectrum grass weed management in cereal crops. Journal of Plant Diseases and Protection, 2006, 989-995.

12. Jhala AJ, Shah SC, Rathod PH, Bhatt H. Integrated effect of seed rates and weed management treatments in wheat (Triticum aestivum L.). Research Journal of Agriculture and Biological Sciences. 2008; 4(6):704-711.

13. Kamboj NK, Hooda VS., Gupta G, Sangwan M. Weed management studies in wheat (Triticum aestivum) with herbicides under different planting methods. International Journal of Current Microbiology and Applied Sciences. 2017; 6(2):1742-1749.

14. Khalqi A, Ali K, Imran M. Integrated weed management in wheat grown in irrigated areas. International Journal of Agriculture & Biology, 2003, 530-532.

15. Khan IA, Marwat KB, Hassan G, Khan R, Ullah Z. Suppressive capability of herbicides and plant extracts against chickpea weeds. The Journal of Animal and Plant Science. 2012; 22(2):67-69.

16. Kumar S, Angiras NN, Rana SS, Sharma N. Alternative methods of isoproturon application in wheat. Himachal Journal of Agricultural Research. 2009; 35(1):31-33.

17. Kumar S, Angiras NN, Rana SS. Bioefficiency of clodinafop – propargyl + metsulfuron -methyl against complex weed flora in wheat. Indian Journal of Weed Science. 2011; 43(3-4):195-198.

18. Kumar N, Nandal LP, Punia SS. Weed management in chickpea under irrigated conditions. Indian Journal of Weed Science. 2014; 46(3):300-301.

19. Kumar N, Hazra KK, Yadav SL. Weed dynamics and productivity of chickpea (Cicer arietinum) under pre- and post-emergence application of herbicides. Indian Journal of Agronomy. 2015; 60(4):570-575.

20. Kumar N, Mina BL, Singh KP, Chandra S, Kumar M, Srivastava AK. Weed control for yield and profit maximization in wheat (Triticum aestivum) in Indian Himalaya. Indian Journal of Agronomy. 2010; 55(2):119-122.

21. Kumar S, Rana SS, Ramesh, Chander N. Herbicide combinations for broad-spectrum weed control in wheat. Indian Journal of Weed Science. 2013; 45(1):29-33.

22. Mahmood A, Azhar GS, Iqbal J, Wahela AJ, Mahmood R. Effects of herbicides on weed density and wheat yield. Mycopath. 2013; 11(2):103-108.

23. Marwat KB, Hussain Z, Saeed M, Gul B, Noor S. Chemical weed management in wheat at higher altitudes. Pak. J. Weed Sci. 2005; 11(1-2):1-6.

24. Nema Raj Sundha. A Competitive Book of Agriculture, Surheee Publications, Bobas, Jaipur, 2011.

25. Norris RF. Interactions between weeds and other pests in the Agro ecosystem, 1982, 343-406.

26. Ratnam M, Rao AS, Reddy TY. Integrated Weed Management in Chickpea (Cicer arietinum L.). Indian J. Weed Sci. 2011; 43(1-2):70-72.

27. Sharma KK, Verma SP, Singh CM. Cultural and chemical manipulations for weed management in wheat with reference to grassy weeds. Tropical Pest Management. 1985; 31(2):133-138.

28. Singh RD, Singh VK, Dwivedi G. Weed management studies in chickpea (Cicer arietinum L.) under varying levels of phosphorus in Bundelkhand region of southern U.P. Journal of Pharmacognosy and Phytochemistry. 2019; (3):373-376.

29. Singh R, Singh AP, Chaturvedi S, Rekha, Pal R, Pal J. Metribuzin+clodinafop-propargyl effects on complex weed flora in wheat and its residual effect on succeeding crop. Indian Journal of Weed Science. 2015; 47(4):362-365.

30. Singh RK, Mukierjee D. Influence of biofertilizers, fertility levels and weed management practices on chickpea (Cicer arietinum L.) under late sown conditions. Ann. Agric. Res. New Serious. 2009; 30(3-4):116-120.

31. Yadav DB, Punia SS, Yadav A, Singh S, Lal R. Pinoxadon: an alternate herbicide against littleseeded canary grass (Phalaris minor) in wheat (Triticum aestivum). Indian Journal of Agronomy. 2009; 54(4):433-437.

32. Young FL, Ogg AG, Young DL, Papendick RI. Weed management for crop production in the northwest wheat region. Weed Sci. 1996; 44 (2):429-436.