REMARKS ON TOPOLOGICAL ALGEBRAS

A. Beilinson
University of Chicago

To Victor Ginzburg on his 50th birthday

The note complements “topological” aspects of the chiral algebras story from [BD]. In its first section (which has a whiff of [G] in it) we show that the basic chiral algebra format (chiral operations, etc.) has a precise analog in the setting of topological linear algebra. This provides, in particular, a natural explanation of the passage from chiral to topological algebras from [BD] 3.6. The second section is a brief discussion, in the spirit of [BD] 3.9, of topological algebras similar to rings of chiral differential operators. We also correct some errors from [BD].

The writing was prompted by a talk of D. Gaitsgory at the end of 2004; I am grateful to him for helpful discussions.

1. Topological tensor products and topological algebras.

1.1. The tensor products. For us, as in [BD] 3.6.1, “topological vector space” is a k-vector space equipped with a linear topology assumed (unless stated explicitly otherwise) to be complete and separated. The category of topological vector spaces is denoted by Top. This is an additive Karoubian k-category.

The category Top is quasi-abelian in the sense of [S]. In particular, it is naturally an exact category: the admissible monomorphisms are closed embeddings, the admissible epimorphisms are open surjections.

Remark. If the topology of $B \in \text{Top}$ admits a countable base, then every short exact sequence $0 \to A \to B \to C \to 0$ is split exact, i.e., B is isomorphic to $A \oplus C$.

Let $\{V_i\}_{i \in I}$ be a finite non-empty collection of topological vector spaces. Consider the tensor product $\otimes V_i$. This is an abstract vector space; it carries several natural linear topologies. Namely:

(a) The \ast topology is formed by all subspaces Q of $\otimes V_i$ which satisfy the following property: for every subset $J \subset I$ and vector $v \in \bigotimes_{i \in J} V_i$ there exist open subspaces $P_j \subset V_j$, $j \in J$, such that $Q \supset (\otimes P_j) \otimes v$. Let $\otimes^\ast V_i$ be the corresponding completion. Then for any topological space F a continuous morphism $\otimes^\ast V_i \to F$ is the same as a continuous polylinear map $\times V_i \to F$.

(b) The $!$ topology has base formed by vector subspaces $\sum_{i \in I} P_i \otimes (\bigotimes_{i' \in I \setminus \{i\}} V_{i'})$ where $P_i \subset V_i$ are any open subspaces. The corresponding completion is denoted by $\otimes^! V_i$. Thus $\otimes^! V_i = \varinjlim \otimes (V_i/P_i)$.

Notice that [BD] (in particular, in [BD] 3.6.1) used the notation $\hat\otimes V_i$; the reason for the change of notation will become clear later.

(c) Suppose we have a linear order τ on I, i.e., an identification $\{1, \ldots, n\} \sim I$. It defines on $\otimes V_i$ the τ topology formed by all subspaces Q which satisfy the following
property: for every $a \in \{1, \ldots, n\}$ and vector $v \in V_{\tau(a+1)} \otimes \ldots \otimes V_{\tau(n)}$ there exists an open subspace $P_a \subset V_{\tau(a)}$ such that $Q \supset V_{\tau(1)} \otimes \ldots \otimes V_{\tau(a-1)} \otimes P_a \otimes v$. The corresponding completion is denoted by $\vec{\otimes}^1 V_i = V_{\tau(1)} \vec{\otimes} \ldots \vec{\otimes} V_{\tau(n)}$.

We refer to morphisms $\otimes V_i \rightarrow F$ which are continuous with respect to the ! topology, i.e., morphisms $\otimes^1 V_i \rightarrow F$, as \otimes^1-continuous polylinear maps. Same for the other tensor products.\(^1\)

Remarks. (i) Let U, V be topological vector spaces. Suppose first that V is discrete. Then $U \otimes^* V = U \vec{\otimes} V$ is equal to $U \otimes V$ equipped with the ind-topology. Precisely, write $V = \lim V_\alpha$ where V_α runs the directed set of finite-dimensional subspaces of V; then $U \otimes V = \lim U \otimes V_\alpha$, and each $U \otimes V_\alpha$ carries an evident topology (as the product of finitely many copies of U), which defines the said inductive limit topology on $U \otimes V$.

If V is arbitrary, then $U \vec{\otimes} V = \lim U \vec{\otimes}(V/P)$, the projective limit is taken along the set of all open subspaces $P \subset V$.

(ii) Suppose we have $A \in \text{Top}$ and an associative bilinear product $\cdot : A \otimes A \rightarrow A$. Then \cdot is \otimes^*-continuous if and only if the product map $A \times A \rightarrow A$ is continuous; it is $\vec{\otimes}$-continuous if and only if it is continuous and the open left ideals form a base of the topology of A;\(^2\) and it is \otimes^1-continuous if and only if the open two-sided ideals form a base of the topology.

The tensor products \otimes^* and \otimes^1 are commutative and associative; they define tensor structures on Top which we denote by Top^1 and Top^*. The tensor product $\vec{\otimes}$ is associative but not commutative; it defines a monoidal structure on Top.

Exercise. The tensor products are exact.

The * topology on $\otimes V_i$ is stronger than each of the τ topologies, which in turn are stronger than the ! topology, so the identity map for $\otimes V_i$ gives rise to the natural continuous morphisms

\[(1.1.1) \quad \otimes^* V_i \rightarrow \vec{\otimes}^1 V_i \rightarrow \otimes^1 V_i.\]

Lemma. The * topology is equal to the supremum of the τ topologies for all linear orders τ on I. The ! topology is the infimum of the τ topologies. I.e., the arrows in (1.1.1) are, respectively, admissible mono- and epimorphism. \(\square\)

Corollary. For any pair U, V of topological vector spaces the short sequence

\[(1.1.2) \quad 0 \rightarrow U \otimes^* V \rightarrow U \vec{\otimes} V \oplus V \vec{\otimes} U \rightarrow U \otimes^1 V \rightarrow 0,\]

where the left arrow comes from the diagonal map and the right one from the difference of the projections, is exact. \(\square\)

1.2. Example. Suppose F, G are Tate vector spaces (see e.g. [BD] 2.7.7, [D] 3.1). Let F^* be the dual Tate space to F, so $F^* \otimes G$ is the vector space of all continuous maps $F^* \rightarrow G$.

\(^1\)So \otimes^*-continuous polylinear maps are the same as continuous polylinear maps.

\(^2\)Or, equivalently, the open left ideals form a base of the topology and for every $r \in A$ either of endomorphisms $a \mapsto ar$ or $a \mapsto ar - ra$ of A is continuous.
maps $F \to G$ with finite-dimensional image. Then $F^* \otimes^! G$ identifies naturally with the space $\text{Hom}(F, G)$ of all continuous linear maps $F \to G$, $F^* \otimes^* G$ with the space $\text{Hom}_d(F, G)$ of maps having open kernel, and $F^* \otimes^* G$ with $\text{Hom}_f(F, G) := \text{Hom}_*(F, G) \cap \text{Hom}_d(F, G)$. So the vector spaces $\text{Hom}(F, G)$, $\text{Hom}_c(F, G)$, $\text{Hom}_d(F, G)$, $\text{Hom}_f(F, G)$ carry natural topologies, and (1.1.2) yields a short exact sequence in Top

\[(1.2.1) \quad 0 \to \text{Hom}_f(F, G) \to \text{Hom}_c(F, G) \oplus \text{Hom}_d(F, G) \to \text{Hom}(F, G) \to 0.\]

Let us describe these topological vector spaces explicitly. Choose decompositions $F = F_c \oplus F_d, G = G_c \oplus G_d$ where F_c, G_c are c-lattices, F_d, G_d are d-lattices. Consider the corresponding decomposition of the Hom spaces into the sum of the four subspaces. One has:

- $\text{Hom}(F_c, G_d) = \text{Hom}_c(F_c, G_d) = \text{Hom}_d(F_c, G_d) = \text{Hom}_f(F_c, G_d)$: this is a discrete vector space;
- $\text{Hom}(F_d, G_c) = \text{Hom}_c(F_d, G_c) = \text{Hom}_d(F_d, G_c) = \text{Hom}_f(F_d, G_c)$: this is a compact vector space;
- $\text{Hom}(F_c, G_c) = \text{Hom}_c(F_c, G_c)$ and $\text{Hom}_d(F_c, G_c) = \text{Hom}_f(F_c, G_c)$; the latter topological vector space equals $G_c \otimes F^*_c$ equipped with the ind-topology;
- $\text{Hom}(F_d, G_d) = \text{Hom}_d(F_d, G_d)$ and $\text{Hom}_c(F_d, G_d) = \text{Hom}_f(F_d, G_d)$; the latter topological vector space equals $F^*_d \otimes G_d$ equipped with the ind-topology.

A correction to [BD] 2.7.7. In loc. cit., certain topologies on the Hom spaces were considered. The topology on $\text{Hom}(F, G)$ coincides with the above one, but those on $\text{Hom}_c, \text{Hom}_d$ and Hom_f are stronger than the above topologies, and they are less natural. Precisely, these topologies differ at terms $\text{Hom}_d(F_c, G_c) = \text{Hom}_f(F_c, G_c)$ and $\text{Hom}_c(F_d, G_d) = \text{Hom}_f(F_d, G_d)$ which are considered in [BD] 2.7.7 as discrete vector spaces. Exact sequence (1.2) coincides with [BD] (2.7.7.1) (up to signs); it is strongly compatible with either of the topologies. These topologies played an auxiliary role: they were used to define (in [BD] 2.7.8) the topology on the Tate extension $\mathfrak{gl}(F)^\flat$ as the quotient topology for the canonical surjective map $\text{End}_c(F) \oplus \text{End}_d(F) \to \mathfrak{gl}(F)^\flat$. Replacing them by the present topologies does not change the quotient topology on $\mathfrak{gl}(F)^\flat$. We suggest to discard the topologies on $\text{Hom}_c, \text{Hom}_d, \text{Hom}_f$ from [BD] 2.7.7, and replace them by those defined above.

1.3. The chiral operations. As in [BD] 1.1.3, the $!$ and $*$ tensor structures on Top can be seen as pseudo-tensor structures with the spaces of operations $P^!(\{V_i\}, F) := \text{Hom}(\otimes^! V_i, F)$ and $P^*(\{V_i\}, F) := \text{Hom}(\otimes^* V_i, F)$.

The tensor product \otimes is non-commutative, so the definition of the corresponding pseudo-tensor structure requires an appropriate induction:

A digression: Let Σ be the linear orders operad (see [BD] 1.1.4). Suppose we have a k-category T equipped with an associative tensor product (i.e., a monoidal structure) \otimes. For a finite non-empty collection of objects $\{V_i\}_{i \in I}$ and a linear order $\tau \in \Sigma_I$, i.e., $\tau : \{1, \ldots, n\} \to I$, we set $\otimes^\tau V_i := V_{\tau(1)} \otimes \cdots \otimes V_{\tau(n)}$. We define the induced pseudo-tensor structure on T by formula $P^\otimes_I(\{V_i\}, F) := \bigoplus_{\tau \in \Sigma_I} P^!(\{V_i\}, F)^\tau$.
where $P_I^\circ({\{V_i}\}, F)^\tau := \text{Hom}(\otimes^\tau V_i, F)$. The composition of operations is defined in the evident way so that the Σ-grading is compatible with the composition.

If \otimes is actually commutative, then $P_I^\circ({\{V_i}\}, F) = \text{Hom}(\otimes V_i, F) \otimes \text{Ass}_I$ where $\text{Ass} = k[\Sigma]$ is the associative algebras operad (see [BD] 1.1.7). The construction is functorial with respect to natural morphisms between \otimes’s.

Applying this to Top and $\vec{\otimes}$, we get the chiral operations $P^{\text{ch}} := P^{\vec{\otimes}}$, those from the τ-component of P^{ch} are called chiral τ operations. They define the chiral pseudo-tensor structure Top^{ch} on Top. This pseudo-tensor structure is representable (see [BD] 1.1.3) with the pseudo-tensor product $\otimes^{ch} V_i = \bigoplus_{\tau \in \Sigma} \otimes^\tau V_i$.

We see that (1.1.1) gives rise to natural transformations

\begin{equation}
(1.3.1) \quad P_I^!(\{V_i\}, F) \otimes \text{Ass}_I \to P_I^{ch}(\{V_i\}, F) \to P_I^*(\{V_i\}, F) \otimes \text{Ass}_I
\end{equation}

compatible with the composition of operations, i.e., the identity functor of Top lifts naturally to pseudo-tensor functors $\text{Top}^! \otimes \text{Ass} \to \text{Top}^{\text{ch}} \to \text{Top}^* \otimes \text{Ass}$.

Remarks. (i) The arrows in (1.3.1) are injective. If all the V_i are discrete, then they are isomorphisms.

(ii) The endofunctor of Top which assigns to a topological vector space V same V considered as a discrete space lifts in the obvious manner to a faithful pseudo-tensor endofunctor for all the above pseudo-tensor structures.

Composing (1.3.1) from the left and right with the standard embedding $\text{Lie} \hookrightarrow \text{Ass}$ and projection $\text{Ass} \to \text{Com}$, we get natural morphisms (cf. [BD] 3.2.1, 3.2.2)

\begin{equation}
(1.3.2) \quad P_I^!(\{V_i\}, F) \otimes \text{Lie}_I \to P_I^{ch}(\{V_i\}, F) \to P_I^*(\{V_i\}, F).
\end{equation}

By (1.1.2), in case of two arguments we get an exact sequence

\begin{equation}
(1.3.3) \quad 0 \to P_I^!(\{U, V\}, F) \otimes \text{Lie}_2 \to P_I^{ch}(\{U, V\}, F) \to P_I^*(\{U, V\}, F)
\end{equation}

1.4. Chiral algebras in the topological setting. Let A be a topological vector space. A Lie^{ch} algebra (or non-unital chiral algebra) structure on A is a Lie bracket $\mu_A : A \otimes^{ch} A \to A$ for the chiral pseudo-tensor structure; we call such μ_A a chiral product on A.

Consider the map $P_2^{ch}({\{A, A\}, A}) \to \text{Hom}(A \vec{\otimes} A, A)$ which assigns to a binary chiral operation its first component.

Proposition. This map establishes a bijection between the set of chiral products on A and the set of associative products $A \vec{\otimes} A \to A$.

Proof. Our map yields a bijection between the set of skew-symmetric binary chiral operations and $\text{Hom}(A \vec{\otimes} A, A)$. It remains to check that a skew-symmetric

\footnote{Here Lie is the Lie algebras operad and Com is the commutative algebras operad, i.e, the unit k-operad.}
chiral operation μ satisfies the Jacobi identity if and only if the corresponding product $A \otimes A \rightarrow A$ is associative.

By Remark (ii) from 1.3 it suffices to consider the case of discrete A, so now A is a plain vector space. Let $P(A)$ be the operad of polylinear endooperations on A, i.e., $P(A)_I := \text{Hom}(A^I, A)$. By Remark (i) from 1.3 the operad $P^{ch}(A)$ of chiral endooperations of A equals $P(A) \otimes \text{Ass}$.

Let $\cdot_{as} \in \text{Ass}_2$ be the standard associative binary operation. We want to prove that a binary operation $\cdot_A \in P(A)_2$ is associative if and only if the binary operation $\cdot_A \otimes \cdot_{as} - \cdot_A^t \otimes \cdot_{as}^t$ in $P(A) \otimes \text{Ass}$ is a Lie bracket (here t is the transposition of arguments). Indeed, if \cdot_A is associative, then such is $\cdot_A \otimes \cdot_{as}$, hence the commutator $\cdot_A \otimes \cdot_{as} - \cdot_A^t \otimes \cdot_{as}^t$ is a Lie bracket. The converse statement is a simple computation left to the reader. □

Remark. Here is a reformulation of the proposition in a non-commutative algebraic geometry style. We forget about the topologies. Let A be any vector space. Suppose we have an associative algebra structure on A. Then for any test associative algebra R the tensor product $A \otimes R$ is naturally an associative algebra, hence a Lie algebra. In other words, let ϕ_A be the functor $R \mapsto A \otimes R$ from the category of associative algebras to that of vector spaces; then an associative algebra structure on A yields a Lie algebra structure on ϕ_A (i.e., a lifting of ϕ_A to the category of Lie algebras). The claim is that this establishes a bijection between the set of associative algebra structures on A and that of Lie algebra structures on ϕ_A.

For $A \in \text{Top}$ a topological associative algebra structure on A is a continuous associative bilinear product $A \times A \rightarrow A$, i.e., an associative product $A \otimes^* A \rightarrow A$. One can sum up the above proposition as follows (the equivalence of (ii), (iii), and (iv) is Remark (ii) in 1.1):

Claim. For $A \in \text{Top}$ the following structures on A are equivalent:

(i) A non-unital chiral algebra structure μ_A;

(ii) An associative product $\cdot_A : A \otimes A \rightarrow A$;

(iii) A topological associative algebra structure such that the open left ideals form a base of the topology of A.

(iv) An associative algebra structure such that the open left ideals form a base of the topology of A and the corresponding Lie bracket is continuous. □

A correction to [BD] 3.6.1: In loc. cit. this was recklessly called “topological associative algebra” structure; we suggest to rescind this confusing terminology.

A linguistic comment. The term “chiral” refers to the breaking of symmetry between the right and left movers in physics and is rather awkward in the “purely holomorphic” setting of [BD] (where only one type of movers is present). In the topological setting it looks more suitable for we consider associative products whose left-right asymmetry is enforced by the topology (though now it has to do rather with the time ordering of physicists).

One often constructs topological chiral algebras using the next corollary:
Corollary. Let T be an associative algebra equipped with a (not necessary complete) linear topology. Suppose that

- the open left ideals form a base of the topology;
- for every r from a set of associative algebra generators the endomorphisms $t \mapsto [r, t] := rt - tr$ of T are continuous.

Then the completion of T is a chiral algebra.

Proof. The endomorphisms $t \mapsto at$ of T are continuous for any $a \in T$ by the first property, so the second property amounts to continuity of the endomorphisms $t \mapsto tr$ for r from our system of generators, hence they are continuous for every $r \in T$. Thus the completion of T carries the structure from (ii) of the claim. □

Suppose we have a topological Lie algebra L, i.e., L is a topological vector space equipped with a continuous Lie bracket (i.e., a Lie bracket with respect to \otimes^s). We say that L is a topological Lie* algebra if it satisfies the following technical condition: the open Lie subalgebras form a base of the topology of L. Notice that this condition holds automatically if L is a Tate vector space.4

Now the second arrow in (1.3.2) transforms any chiral product μ_A into a continuous Lie bracket $[\]_A$. Equivalently, $[\]_A$ is the commutator for the associative product \cdot_A. By (iii) of the claim, $[\]_A$ is a Lie* algebra structure on A.

Our μ_A is said to be commutative if $[\]_A = 0$. By by Lemma from 1.1 (and the proposition above) a commutative chiral product amounts to a commutative* algebra structure, i.e., a commutative and associative product $\cdot_A : A \otimes^s A \to A$.

We say that a Liech algebra structure is unital if such is the corresponding associative algebra structure. Such algebras are referred to simply as topological chiral algebras.

For a topological chiral algebra A a discrete A-module is a left unital A-module M (we consider A as a mere associative algebra now) such that the action $A \times M \to M$ is continuous (we consider M as a discrete vector space). Equivalently, this is a discrete unital left A-module with respect to \otimes monoidal structure. Denote by A_{mod} the category of discrete A-modules.

Let $\phi : A_{\text{mod}} \to \text{Vec}$ be the forgetful functor (which assigns to a discrete A-module its underlying vector space). Then A recovers from (A_{mod}, ϕ):

Lemma. A equals the topological associative algebra of endomorphisms of ϕ. □

1.5. We denote by $\text{Ass}(\text{Top}^*)$ the category of topological associative unital algebras, by \mathcal{CA}(\text{Top}) the category of topological chiral algebras, and by $\text{Ass}(\text{Top}^!)$ that of associative unital algebras with respect to $\otimes^!$.

As we have seen in 1.4, the above structures on $A \in \text{Top}$ are the same as an associative product $A \otimes A \to A$ that satisfies stronger and stronger continuity

4Proof: if $P \subset L$ is a c-lattice, then its normalizer Q is an open Lie subalgebra of L, hence $P \cap Q$ is also an open Lie subalgebra.
conditions. Thus we have fully faithful embeddings

(1.5.1) \[\text{Ass}(\text{Top}^1) \hookrightarrow \text{CA}(\text{Top}) \hookrightarrow \text{Ass}(\text{Top}^*). \]

These embeddings admit left adjoint functors

(1.5.2) \[\text{Ass}(\text{Top}^1) \leftarrow \text{CA}(\text{Top}) \leftarrow \text{Ass}(\text{Top}^*). \]

Namely, for \(A \in \text{Ass}(\text{Top}^*) \) the corresponding chiral algebra \(A^{ch} \) is the completion of \(A \) with respect to the topology whose base is formed by open left ideals, and for \(B \in \text{CA}(\text{Top}) \) the corresponding associative\(^1\) algebra is the completion of \(B \) with respect to the topology whose base is formed by open two-sided ideals (see Remark (ii) in 1.1).

Remark. For \(B \in \text{Ass}(\text{Top}^*) \) the category of left unital discrete \(A \)-modules coincides with \(B^{ch}\text{mod}\(^5\).

The forgetful functor from either of the categories of topological algebras above to \(\text{Top} \) which sends a topological algebra to the underlying topological vector space also admits left adjoint. For \(V \in \text{Top} \) the corresponding algebras are denoted by \(T^*V, T^{ch}V, \) and \(T^!V \). These are completions of the “abstract” tensor algebra \(TV := \bigoplus_{n \geq 0} V^{\otimes n} \) with respect to the topology whose base is formed by all subspaces of type \(f^{-1}(U) \), where \(f : TV \rightarrow A \) is a morphism of associative algebras such that \(f|_V : V \rightarrow A \) is continuous, \(A \) is an algebra of our class, and \(U \subset A \) is an open subspace.

Remarks. (i) Consider \(T := \bigoplus_{n \geq 0} V^{\otimes^n} \). This is a topological vector space (with the inductive limit topology) and an associative algebra, but the product need not be continuous. If \(V \) is a Tate space, then the product is continuous if \(V \) is either discrete or compact, and not continuous otherwise.\(^5\)

(ii) One obtains \(T^{ch}V \) and \(T^!V \) by applying to \(T^*V \) the functors from (1.5.2). Certainly, \(T^!V = \varprojlim P \) where \(P \) runs the set of an open subspaces of \(V \) and \(T(V/P) \) is its plain tensor algebra (which is a discrete vector space).

A correction to [BD] 3.6.1: In loc. cit. there is a wrong claim that \(T^{ch}V \) equals the direct sum \(\bar{T}V := k \oplus V \oplus V^{\otimes 2} \oplus \ldots \) (equipped with the direct limit topology).

1.6. A topological \(\mathcal{D} \)-module setting. Let \(X \) be our curve and \(x \in X \) be a point. We will consider pairs \((M, \Xi_M) \) where \(M \) is a \(\mathcal{D} \)-modules on \(X \) and \(\Xi_M \) is a topology on \(M \) at \(x \) (see [BD] 2.1.13); such pairs form a \(k \)-category \(\mathcal{M}(X, \text{Top}_x) \). Denote by \(\hat{h}_x(M, \Xi_M) \) the completion of the de Rham cohomology stalk \(h(M)_x \) with respect to our topology (see loc. cit.); we get a functor \(\hat{h}_x : \mathcal{M}(X, \text{Top}_x) \rightarrow \text{Top} \).

We will extend \(\hat{h}_x \) to a pseudo-tensor functor with respect to the \(!, \ast\) and chiral polylinear structures. In order to do this, one needs to explain which operations between \(\mathcal{D} \)-modules are continuous with respect to our topologies.

(a) \(\ast \) operations (cf. [BD] 2.2.20). Let \((M_i, \Xi_{M_i}), i \in I, \) be a finite non-empty collection of objects of \(\mathcal{M}(X, \text{Top}_x) \).

\(^5\)To check the latter assertion, use the next fact (applied to \(P := V^{\otimes 2}, T_i := V^{\otimes i} \)): if \(P, T_0, T_1, \ldots \in \text{Top} \) are non-discrete and \(P \) is not Tate, then \(\oplus (P \otimes^* T_i) \neq P \otimes^* (\oplus T_i) \).
Lemma. The \mathcal{D}_{X^i}-module $\boxtimes M_i$ carries a natural topology $\boxtimes^* \Xi_{M_i}$ at $\Delta^{(I)}(x) = (x, \ldots, x) \in X^I$ such that the corresponding completion of the de Rham cohomology stalk $h(\boxtimes M_i)_{(x, \ldots, x)}$ equals $\otimes^* \hat{h}_x(M_i, \Xi_{M_i})$.

Proof. We want to assign in a natural way to every discrete quotient T of $\otimes^* \hat{h}_x(M_i, \Xi_{M_i})$ a certain quotient of $\boxtimes M_i$ equal to $i_{(x, \ldots, x)}^* T$. Since \hat{h}_x commutes with inductive limits, we can assume that each M_i is a finitely generated \mathcal{D}_{X^i}-module. Then $\hat{h}_x(M_i, \Xi_{M_i})$ are all compact, so we can assume that $T = \otimes T_i$ where T_i are discrete (finite-dimensional) quotients of $\hat{h}_x(M_i, \Xi_{M_i})$. So $i_{x*} T_i$ is a quotient of M_i, hence $i_{(x, \ldots, x)}^* T = \boxtimes i_{x*} T_i$ is a quotient of $\boxtimes M_i$, and we are done. \]

Let (N, Ξ_N) be another object of $\mathcal{M}(X, \text{Top}_x)$. A * operation $\varphi \in P_i^1(\{M_i\}, N)$ is said to be continuous with respect to our topologies if $\varphi : \boxtimes M_i \to \Delta^{(I)} N$ is continuous with respect to the topologies $\boxtimes^* \Xi_{M_i}$ and $\Delta^{(I)} \Xi_N$. The composition of continuous operations is continuous, so they form a pseudo-tensor structure $\mathcal{M}(X, \text{Top}_x)^*$ on $\mathcal{M}(X, \text{Top}_x)$. By construction, \hat{h}_x lifts to a pseudo-tensor functor

$$\hat{h}_x : \mathcal{M}(X, \text{Top}_x)^* \to \text{Top}^*.$$

(b) Chiral operations. From now on we will consider a full subcategory $\mathcal{M}(U_x, \text{Top}_x)$ of $\mathcal{M}(X, \text{Top}_x)$ formed by those pairs (M, Ξ_M) that $M = j_{x*} j^*_x M$ where j_x is the embedding $U_x := X \setminus \{x\} \hookrightarrow X$. Suppose that our (M_i, Ξ_{M_i}) lie in this subcategory.

Lemma. The \mathcal{D}_{X^i}-module $\boxtimes^! M_i$ carries a natural topology $\boxtimes^! \Xi_{M_i}$ at x such that the corresponding completion of $h(\boxtimes^! M_i)_{x}$ is equal to $\boxtimes^! \hat{h}_x(M_i, \Xi_{M_i})$.

Proof. $\boxtimes^* \Xi_{M_i}$ is the topology with base formed by submodules $\boxtimes^! P_i$ of $\boxtimes^! M_i$ where $P_i \subset M_i$ are open submodules for Ξ_{M_i}.

Set $\boxtimes^! (M_i, \Xi_{M_i}) := (\boxtimes^! M_i, \boxtimes^! \Xi_{M_i})$. This tensor product makes $\mathcal{M}(U_x, \text{Top}_x)$ a tensor category which we denote by $\mathcal{M}(U_x, \text{Top}_x)^!$. Its unit object is $j_{x*} \omega_{U_x}$ equipped with the topology formed by the open submodule $\omega_X \subset j_{x*} \omega_{U_x}$. The functor \hat{h}_x lifts naturally to a tensor functor

$$\hat{h}_x : \mathcal{M}(U_x, \text{Top}_x)^! \to \text{Top}^!.$$

(c) Chiral operations. Let (M_i, Ξ_{M_i}) be, as above, some objects of $\mathcal{M}(U_x, \text{Top}_x)$, and $j^{(I)} : U^{(I)} \hookrightarrow X^I$ be the complement to the diagonal divisor.

Lemma. The \mathcal{D}_{X^i}-module $j^{(I)}_* (j^{(I)})^* \boxtimes M_i$ carries a natural topology $\boxtimes^\chi \Xi_{M_i}$ at $(x, \ldots, x) \in X^I$ such that the corresponding completion of the de Rham cohomology stalk $h(j^{(I)}_* (j^{(I)})^* \boxtimes M_i)_{(x, \ldots, x)}$ is equal to $\boxtimes^\chi \hat{h}_x(M_i, \Xi_{M_i})$.

Proof. We proceed by induction by $|I|$. Let us choose for each $i \in I$ a Ξ_{M_i}-open submodule $P_i \subset M_i = j_{x}^* j_x^* M_i$; set $T_i := h(M_i/P_i)_{x}$, so $M_i/P_i = i_{x*} T_i$. Set $I_i := I \setminus \{i\}$. The sequence $0 \to \boxtimes P_i \to \boxtimes M_i \to \bigoplus_{i \in I} (\boxtimes M_{i'}) \boxtimes i_{x*} T_i \to 0$ is short exact over $U^{(I)}$. So we have a short exact sequence

$$0 \to j^{(I)}_* (j^{(I)})^* \boxtimes P_i \to j^{(I)}_* (j^{(I)})^* \boxtimes M_i \to \bigoplus_{i \in I} (j^{(I)}_* (j^{(I)})^* \boxtimes M_{i'}) \boxtimes i_{x*} T_i \to 0.$$
By the induction assumption, for each $i \in I$ the \mathcal{D}_{X^i}-module $j_*^{(I)} j_!^{(I)} * \bigotimes_{i' \in I_i} M_{i'}$ carries the topology $\bigotimes_{i' \in I_i} h_{x_i}(M_{i'}, \Xi_{M_{i'}})$ at (x, \ldots, x) with the completed de Rham cohomology stalk $\bigotimes_{i' \in I_i} \hat{h}_{x_i}(M_{i'}, \Xi_{M_{i'}})$. Let us equip the \mathcal{D}_{X^i}-module $(j_*^{(I)} j_!^{(I)} * \bigotimes_{i' \in I_i} M_{i'}) \bigotimes_{i' \in I_i} i_{x_i} T_i = i^{X_{x_i} \times X_{x_i}} (j_*^{(I)} j_!^{(I)} * \bigotimes_{i' \in I_i} M_{i'}) \otimes T_i$ with the ind-topology (cf. Remark in 1.1), so the completion of its de Rham cohomology stalk equals $\bigotimes_{i' \in I_i} \hat{h}_{x_i}(M_{i'}, \Xi_{M_{i'}}) \hat{\otimes} T_i$. By (1.6.3), the product of these topologies can be seen as a topology on the quotient module $j_*^{(I)} j_!^{(I)} * \bigotimes_{i' \in I_i} M_{i'}/j_*^{(I)} j_!^{(I)} * \bigotimes_{i' \in I_i} P_i$ which we denote by $\Xi_{(P)}$.

Now our topology $\bigotimes_{i' \in I_i} \Xi_{M_{i'}}$ is formed by all \mathcal{D}_{X^i}-submodules $P \subset j_*^{(I)} j_!^{(I)} * \bigotimes_{i' \in I_i} M_{i'}$ such that P contains the submodule $j_*^{(I)} j_!^{(I)} * \bigotimes_{i' \in I_i} P_i$ for some choice of $\Xi_{M_{i'}}$-open $P_i \subset M_i$ and the image of P in $j_*^{(I)} j_!^{(I)} * \bigotimes_{i' \in I_i} M_{i'}/j_*^{(I)} j_!^{(I)} * \bigotimes_{i' \in I_i} P_i$ is $\Xi_{(P)}$-open. \square

Let (N, Ξ_N) be another object of $\mathcal{M}(U_x, \text{Top}_x)$ and $\varphi \in P_i^{ch}(\{M_i\}, N)$ be a chiral operation. We say that φ is continuous with respect to our topologies if $\varphi : j_*^{(I)} j_!^{(I)} * \bigotimes_{i' \in I_i} M_{i'} \to \Delta_*^{(I)} N$ is continuous with respect to the topologies $\bigotimes_{i' \in I_i} \Xi_{M_{i'}}$ and $\Delta_*^{(I)} \Xi_N$. The composition of continuous operations is continuous, so they form a pseudo-tensor structure $\mathcal{M}(X, \text{Top}_x)^{ch}$ on $\mathcal{M}(U_x, \text{Top}_x)$. By construction, \hat{h}_x lifts to a pseudo-tensor functor

$$\tag{1.6.4} \hat{h}_x : \mathcal{M}(U_x, \text{Top}_x)^{ch} \to \text{Top}^{ch}.$$

1.7. Example. Let A be a chiral algebra on U_x. As in [BD] 3.6.4, we denote by Ξ_x^{as} the topology on $j_{x*} A$ at x whose base is formed by all chiral subalgebras of $j_{x*} A$ that coincide with A on U_x. Set $A_x^{as} := \hat{h}_x(j_{x*} A, \Xi_x^{as})$.

Lemma. The chiral product μ_A is Ξ_x^{as}-continuous. \square

Therefore, according to (1.6.4), A_x^{as} is a topological chiral algebra. We leave it to the reader to check that the associiative product on A_x^{as} coincides with the one defined in [BD] 3.6.6.

2. Topological cdo.

2.1. The classical limit: from chiral to coisson algebras. Let A be any topological vector space. Below a filtration on A always means an increasing filtration $A_0 \subset A_1 \subset \ldots$ by closed vector subspaces of A such that $A_\infty := \bigcup A_i$ is dense in A. We have a graded topological vector space $\text{gr} A$ with components $\text{gr}_i A := A_i/A_{i-1}$.

The vector space $\bigoplus \text{gr}_i A$ carries a natural topology whose base is formed by subspaces $\bigoplus(P \cap A_i)/(P \cap A_{i-1})$ where P is an open subspace of A; we denote by $\text{gr} A$ the completion.

Suppose now that A is a topological chiral algebra and A, \ldots, as above is a ring filtration, i.e., $A_i \cdot A_j \subset A_{i+j}$, $1 \in A_0$; we call such A a chiral algebra filtration. Then $\text{gr} A$ is naturally a topological chiral algebra.
Our A_∞ is a subring of A. Consider a topology on A_∞ formed by all left ideals I in A_∞ such that $I \cap A_i$ is open in A_i for every i. For any $r \in A_\infty$ the right multiplication endomorphism $a \mapsto ar$ of A_∞ is continuous, so (by Corollary in 1.4) the completion A_∞ of A_∞ with respect to this topology is a topological chiral algebra. The embedding $A_\infty \subset A$ extends by continuity to a morphism of topological chiral algebras $A_\infty \to A$.

Definition. A chiral algebra filtration A is **admissible** if $A_\infty \sim A$, i.e., a closed left ideal $I \subset A$ is open if (and only if) each $I \cap A_n$ is open in A_n.

Example. Consider the algebra $k[[t]]$ equipped with the usual topology. Its chiral algebra filtration $k[[t]]_n := k + kt + \ldots + kt^n$ is not admissible.

Below **topological coisson algebra** means a topological vector space R equipped with a Poisson algebra structure such that the Lie bracket is (\otimes^*)-continuous and the product is \otimes-continuous. We also demand R to be a topological Lie* algebra (see 1.4); equivalently, this means that open ideals of the commutative algebra R which are Lie subalgebras form a base of the topology.

Let A be any topological chiral algebra. A chiral algebra filtration on A is said to be **commutative** if $\text{gr}A$ is a commutative algebra. Then gr^A is a commutative topological chiral algebra, i.e., a commutative1 algebra. The usual Poisson bracket on $\text{gr}A$ extends by continuity to a continuous Lie bracket on gr^A, which makes $\text{gr}A$ a topological coisson algebra.

2.2. Topological Lie* algebroids

Let R be any (unital) topological commutative1 algebra. We denote by Rmod^1 the category of unital R-modules in the tensor category Top^1. This is a tensor k-category with tensor product \otimes^1_R, and an exact category: a short sequence of Rmod^1-modules is exact if it is exact as a sequence in Top^1 (see 1.1). For $M \in \text{Rmod}^1$ and an open ideal $I \subset R$ we write $M_{R/I} := (R/I) \otimes^1_R M = M/\overline{IM}$ (here \overline{IM} is the closure of IM); this is a topological R/I-module.

For any $M \in \text{Rmod}^1$ we denote by Sym^1_RM the universal topological commutative1 R-algebra generated by M, i.e., $\text{Sym}^1_RM = \varprojlim \text{Sym}_{R/J}(M/P)$ where the projective limit is taken with respect all pairs (J, P) where $J \subset R$ is an open ideal and $P \subset M$ an open R-submodule such that $J\mathcal{L} \subset P$. Our Sym^1_RM carries an evident chiral algebra filtration $(\text{Sym}^1_RM)_a = R \oplus M \oplus \ldots \oplus \text{Sym}^1_RM$; here Sym^1_RM is the symmetric power of M in the tensor category Rmod^1. The filtration is admissible (due to the universality property of Sym^1_RM), and $\text{gr}^1_RM = \text{Sym}^1_RM$ is the universal graded topological commutative1 R-algebra generated by M in degree 1.

A topological Lie* R-algebroid is a topological vector space \mathcal{L} equipped with a Lie R-algebroid structure such that the Lie bracket is (\otimes^*)-continuous and the R-action on \mathcal{L} is \otimes-continuous. We demand that \mathcal{L} is a topological Lie* algebra in the sense of 1.4, or, equivalently, that open Lie R-subalgebroids of \mathcal{L} form a base of the topology of \mathcal{L}. If \mathcal{L} is a topological Lie* R-algebroid, then $\text{Sym}^1_R\mathcal{L}$ is naturally a topological coisson algebra.

Examples. (i) Let L be a topological Lie* algebra that acts continuously on R. Then $L_R := R \otimes^1 L$ is naturally a topological Lie* R-algebroid.

(ii) Let $\Omega_R := \varinjlim \Omega_{R/I}$ be the topological R-module of continuous differentials
of R. Suppose that R is reasonable, formally smooth, and the topology of R admits a countable base; then $Ω_R$ is a Tate R-module (see [D] Th. 6.2(iii)). Let $Θ_R$ be the dual Tate R-module. Explicitly, $Θ_R = \varprojlim Θ_{R,R/I}$ where for an open ideal $I \subset R$ the topological R/I-module $Θ_{R,R/I} = R/I \otimes_R Θ_R$ consists of all continuous derivations $\theta : R \to R/I$; the topology of $Θ_{R,R/I}$ has base formed by R/I-submodules that consist of θ that kill given open ideal $J \subset I$ and finite subset of R/J. Our $Θ_R$ is naturally a topological Lie* R-algebroid called the tangent algebroid of R.

2.3. PBW filtrations. Let A be a topological chiral algebra equipped with a commutative chiral algebra filtration A. Set $R := A_0$, $L := \text{gr}_1 A = A_1/A_0$. Then R is a topological commutative1 algebra and L is a topological Lie* R-algebroid. By the universality property we have an evident morphism of commutative1 R-algebras, which is automatically a morphism of topological coisson algebras,

\[
(2.3.1) \quad \text{Sym}_R^n L \to \widehat{\text{gr}} A,
\]

called the Poincaré-Birkhoff-Witt map.

Lemma. Suppose that the filtration A is admissible and each map $\text{Sym}_R^n L \to \text{gr}_n A$ is an admissible epimorphism (i.e., an open surjection). Then for every open subspace $P \subset A_1$ the closure $\overline{AP} = \overline{A_\infty P}$ of the left ideal generated by P is open. Such ideals form a base of the topology of A.

Proof. The second assertion is immediate, once we check the first one. By admissibility, it suffices to check that $\overline{A_{n-1}P}$ is open in A_n for each n. By induction, we know that $\overline{A_{n-1}P} \cap A_{n-1}$ is open in A_{n-1}, i.e., we have an open $V \subset A_n$ such that $V \cap A_{n-1} \subset \overline{A_{n-1}P} \cap A_{n-1}$. The image $\text{gr}_n \overline{A_{n-1}P}$ of $\overline{A_{n-1}P}$ in $\text{gr}_n A$ is open; indeed, if an open subspace T of P tends to zero, then $A_{n-1}T$ tends to zero, hence $\text{gr}_n \overline{A_{n-1}P}$ contains the image of $\varprojlim (\text{gr}_{n-1} A \cdot \text{gr}_1 P)/(\text{gr}_{n-1} A \cdot \text{gr}_1 T)$ which is an open subspace in $\text{gr}_n A$. Choose T as above such that $A_{n-1}T \subset V$; replacing V by its intersection with the preimage of the open subspace $\text{gr}_n \overline{A_{n-1}T}$ of $\text{gr}_n A$, we can assume that $V = (V \cap A_{n-1}) + (A_{n-1}T)$, hence $V \subset \overline{A_{n-1}P}$, q.e.d.

Definition. We say that A satisfies the weak PBW property if $\text{Sym}_R^n L \sim \text{gr}_n A$ for each n; the strong PBW property means that the filtration is admissible and (2.3.1) is an isomorphism. Such a filtration is referred to as weak, resp. strong, PBW filtration.

Remarks. (i) The strong PBW property asserts the existence of large discrete quotients of A. Indeed, it amounts to the following two conditions: (a) The filtration is generated by A_1, i.e., each A_n, $n \geq 1$, equals the closure of $(A_1)^n$; (b) Let $P \subset A_1$ be an open subspace such that $\text{gr}_0 P = P \cap R$ is an ideal in R and $\text{gr}_1 P$ is an R-submodule of $\text{gr}_1 A$. Then one can find an open ideal $I \subset A$ such that $I \cap A_1 \subset P$ and the projection $\text{gr}_1 A/\text{gr}_1 I \to \text{gr}_1 A/\text{gr}_1 P$ lifts to a morphism of algebras $\text{gr}_A/\text{gr}_I \to \text{Sym}_R^n/(\text{gr}_1 A/\text{gr}_1 P)$.

(ii) I do not know if every admissible weak PBW filtration automatically satisfies the strong PBW property.

2.4. The chiral envelope of a Lie* algebra. The forgetful functor from the category of topological chiral algebras to that of Lie* algebras $(A, μ_A) \mapsto (A, []_A)$
(see 1.4) admits (as follows easily from 1.5) a left adjoint functor. For a Lie* algebra \(L \) we denote by \(U^\text{ch}(L) \) the corresponding \textit{chiral enveloping} algebra. Explicitly, \(U^\text{ch}(L) \) is the completion of the plain enveloping algebra \(U(L) \) with respect to a topology formed by all the left ideals \(U(L)P \) where \(P \subseteq L \) is an open vector subspace (it satisfies the conditions of Corollary in 1.4).

Our \(U^\text{ch}(L) \) carries a standard filtration \(U^\text{ch}(L) \). defined as the completion of the standard (Poincaré-Birkhoff-Witt) filtration on \(U(L) \). It is admissible and commutative, so the morphism of Lie* algebras \(L \to \text{gr}_1U^\text{ch}(L) \) yields a morphism of topological coisson algebras

\[
\text{Sym}^1L \to \text{gr}U^\text{ch}(L) .
\]

Lemma. \((2.4.1)\) is an isomorphism, i.e., \(U^\text{ch}(L) \). is a strong PBW filtration.

Proof. By the usual PBW theorem, for every open Lie subalgebra \(P \subseteq L \) one has \(\text{gr}(U(L)/U(L)P) = \text{Sym}^1(L/P) \) (here the quotient \(U(L)/U(L)P \) is equipped with the image of the standard filtration). Such \(P \) form a base of the topology of \(L \) (by the definition of Lie* algebra, see 1.4), and we are done. \(\square \)

2.5. Chiral extensions of a Lie* algebroid. We want to prove a similar result for a topological Lie* algebroid. First we need to define its enveloping algebra. This requires (just as in the \(D \)-module setting of [BD] 3.9) an extra structure of chiral extension that we are going to define.

So let \(R \) be a topological commutative1 algebra, \(\mathcal{L} \) a topological Lie* \(R \)-algebroid.

Consider for a moment \(R \) as a commutative algebra and \(\mathcal{L} \) as a Lie \(R \)-algebroid in the tensor category \(\text{Top}^\ast \). Let \(\mathcal{L}^\circ \) be a Lie \(R \)-algebroid extension of \(\mathcal{L} \) by \(R \) in \(\text{Top}^\ast \); below we call such \(\mathcal{L}^\circ \) simply a \textit{topological \(R \)-extension} of \(\mathcal{L} \). Explicitly, our \(\mathcal{L}^\circ \) is an extension of topological vector spaces

\[
0 \to R \xrightarrow{i} \mathcal{L}^\circ \xrightarrow{\pi} \mathcal{L} \to 0
\]

(2.5.1)

together with a Lie \(R \)-algebroid structure on \(\mathcal{L}^\circ \) such that \(\pi \) is a morphism of Lie \(R \)-algebroids, \(i \) is a morphism of \(R \)-modules, \(i^\circ := i(1) \) is a central element of \(\mathcal{L}^\circ \); we also demand that \(\mathcal{L}^\circ \) is a Lie* algebra and the \(R \)-action on \(\mathcal{L}^\circ \) is \((\otimes^\ast-)\) continuous.

Exercise. \(\mathcal{L}^\circ \) is automatically a topological Lie* algebra (see 1.4).

Our \(\mathcal{L}^\circ \) is automatically an \(R \)-bimodule where the right \(R \)-action is defined by formula \(\ell^\circ r = r\ell^\circ + \ell(r) \), where \(\ell^\circ \in \mathcal{L}^\circ, r \in R, \ell := \pi(\ell^\circ) \), and \(\ell(r) \in R \subseteq \mathcal{L}^\circ \); the right \(R \)-action is continuous as well.

Definition. (a) \(\mathcal{L}^\circ \) is called a \textit{classical \(R \)-extension} of \(\mathcal{L} \) if \(\mathcal{L}^\circ \) is a topological \(R \)-algebroid, i.e., the (left) \(R \)-action on \(\mathcal{L} \) is \(\otimes \)-continuous, so we have \(R \otimes^\ast \mathcal{L}^\circ \to \mathcal{L}^\circ \).

(b) \(\mathcal{L}^\circ \) is called a \textit{chiral \(R \)-extension} of \(\mathcal{L} \) if the left and right \(R \)-actions on \(\mathcal{L}^\circ \) are \(\otimes \)-continuous, i.e., we have \(R \otimes^\ast \mathcal{L}^\circ \to \mathcal{L}^\circ \) and \(\mathcal{L}^\circ \otimes^\ast R \to \mathcal{L}^\circ \).

Example. As in 2.3, let \(A \) be a chiral algebra equipped with a commutative filtration \(A_\ast \), so \(R := A_0 \) is a commutative1 algebra and \(\mathcal{L} := \text{gr}_1A_\ast \) is Lie* \(A_0 \)-algebroid. Set \(\mathcal{L}^\circ := A_1 \); this is an \(R \)-extension of \(\mathcal{L} \). The Lie bracket on \(A_1 \), the
left A_0-action on A_1, and the adjoint action of A_1 on A_0 make L^0 a topological R-extension of the Lie* R-algebroid L. Since the right R-action on L^0 equals the right A_0-action on A_1 that comes from the algebra structure on A, it is \mathcal{O}-continuous. Therefore L^0 is a chiral R-extension of L.

The topological R-extensions of L form naturally a Picard groupoid $\mathcal{P}(L)$; the operation is the Baer sum. More precisely, $\mathcal{P}(L)$ is a k-vector space in groupoids: For $L^0_1, L^0_2 \in \mathcal{P}(L)$ and $a_1, a_2 \in k$ the topological R-extension $L^{a_1 b_1 + a_2 b_2}$ is defined as the the push-out of $0 \to R \times R \to L^{a_1} \times_L L^{b_2} \to L \to 0$ by the map $R \times R \to R$, $(r_1, r_2) \mapsto a_1 r_1 + a_2 r_2$; the Lie R-algebroid structure on it is defined by the condition that the canonical map $L^{a_1} \times_L L^{b_2} \to L^{a_1 b_1 + a_2 b_2}$ is a morphism of Lie R-algebroids.

Let $\mathcal{P}_{cl}(L)$, $\mathcal{P}_{ch}(L) \subset \mathcal{P}(L)$ be the subgroupoids of classical and chiral R-extensions.

Lemma. $\mathcal{P}_{cl}(L)$ is a Picard subgroupoid (actually, a k-vector subspace) of $\mathcal{P}(L)$. If $\mathcal{P}_{ch}(L)$ is non-empty, then it is a $\mathcal{P}_{cl}(L)$-torsor.

Proof. Let L^0 be a topological R-extension of L; fix $\lambda \in k$. For $\theta \in L^0$, $r \in R$ set $\theta \cdot \lambda \ r = r \theta + \lambda(\theta)$. The operation $\cdot \lambda$ is a right R-module structure on L^0 (which commutes with the left R-module structure). Notice that $\cdot 1$ is the old right R-action on L^0, and $\cdot 0$ is the left R-action.

Suppose we have $L^{b_i} \in \mathcal{P}(L)$ and $\lambda_i, a_i \in k$; here $i = 1, 2$. The right R-actions $\cdot \lambda_i$ on L^{b_i} yield a right R-action on $L^{a_1 b_1 + a_2 b_2}$, hence a right R-action on $L^{a_1 b_1 + a_2 b_2}$ such that the canonical map $L^{a_1} \times_L L^{b_2} \to L^{a_1 b_1 + a_2 b_2}$ is a morphism of right R-modules. The latter right R-action on $L^{a_1 b_1 + a_2 b_2}$ clearly equals $\cdot a_1 \lambda_1 + a_2 \lambda_2$.

If the right R-actions $\cdot \lambda_i$ on L^{b_i} are \mathcal{O}-continuous, then the right R-actions on $L^{b_1} \times_L L^{b_2}$ and $L^{a_1 b_1 + a_2 b_2}$ are \mathcal{O}-continuous as well. Therefore the right R-action $\cdot a_1 \lambda_1 + a_2 \lambda_2$ on $L^{a_1 b_1 + a_2 b_2}$ is \mathcal{O}-continuous.

Let us call L^0 a λ-chiral R-extension if the left R-action $R \otimes L^0 \to L^0$ and the right action $\cdot \lambda : L^0 \otimes R \to L^0$ are \mathcal{O}-continuous. E.g., 0-chiral extension is the same as classical extension, and 1-chiral extension is the same as chiral extension. We have checked that if L^{b_i} are λ_i-chiral R-extensions, then $L^{a_1 b_1 + a_2 b_2}$ is an $a_1 \lambda_1 + a_2 \lambda_2$-chiral extension. In particular: If L^{b_i} are classical extensions, then $L^{a_1 b_1 + a_2 b_2}$ is a classical extension for every $a_i \in k$. If L^{b_1} is a classical extension, L^{b_2} is a chiral one, then $L^{b_1 + b_2}$ is a chiral extension. If L^{b_1} are chiral extensions, then $L^{b_1 - b_2}$ is a classical extension. We are done.

Exercises. (i) A classical extension L^0 of L is a chiral extension if and only if for every open ideal $I \subset R$ there is an open ideal $J \subset R$ such that $L(J) \subset I$. (ii) For a topological R-extension L^0 let $L^{0\tau}$ be the “inverse” R-extension: so we have an identification of topological vector spaces $L^{0\tau} \cong L^0$ which commutes with i’s and anticommutes with π’s in (2.5.1), interchanges the left and right R-module structures, and identifies the Lie bracket with on $L^{0\tau}$ with minus Lie bracket on L^0. Show that if L^0 is a classical extension, then $L^{0\tau}$ is a chiral extension if and only if for every open ideal $I \subset R$ there is an open $P \subset L$ such that $P(R) \subset I$.

2.6. The enveloping algebra of a chiral Lie algebroid

Let L^0 be a chiral extension of a Lie* R-algebroid R; we call a triple (R, L, L^0) a topological chiral Lie algebroid. These objects form naturally a category $\mathcal{CL}(\text{Top})$.
Let $\mathcal{CA}^f_c(Top)$ be the category of topological chiral algebras equipped with a commutative filtration. By Example in 2.5, we have a functor $\mathcal{CA}^f_c(Top) \to \mathcal{CL}(Top)$, $(A, A.) \mapsto (A_0, \text{gr}_1 A, A_1)$.

Proposition. This functor admits a left adjoint $\mathcal{CL}(Top) \to \mathcal{CA}^f_c(Top)$.

We denote this adjoint functor by $(R, \mathcal{L}, \mathcal{L}^\flat) \mapsto U^c_L(\mathcal{L})^\flat$ and call $U^c_L(\mathcal{L})^\flat$ the *chiral enveloping algebra* of \mathcal{L}^\flat. The commutative filtration $U^c_L(\mathcal{L})^\flat$ on $U^c_L(\mathcal{L})^\flat$ is referred to as the *standard* filtration.

Proof. Let us define $U^c_L(\mathcal{L})^\flat$ as a universal chiral algebra equipped with a continuous map $\varphi^\flat : \mathcal{L}^\flat \to U^c_L(\mathcal{L})^\flat$ such that φ^\flat is a morphism of Lie algebras, its restriction to $R \subset \mathcal{L}^\flat$ is a morphism of chiral (or associative) algebras, and φ^\flat is a morphism of R-bimodules (with respect to $\varphi^\flat|_R$). To construct it explicitly, consider the “abstract” enveloping algebra $U_R(\mathcal{L})^\flat$ of \mathcal{L}^\flat, i.e., take copies of R, \mathcal{L}, and \mathcal{L}^\flat equipped with discrete topologies; then $U_R(\mathcal{L})^\flat$ is the corresponding chiral enveloping algebra (its topology is discrete). Now $U_R(\mathcal{L})^\flat$ carries a linear topology whose base is formed by all left ideals $U_R(\mathcal{L})^\flat(P + I)$ where $P \subset L$ and $I \subset R$ are open subspaces. Shrinking P, I if necessary, one can assume that P is an open Lie subalgebra of \mathcal{L}^\flat and I an open P-stable ideal of R. This topology satisfies the conditions of Corollary from 1.4, so the corresponding completion is a chiral algebra which equals $U^c_L(\mathcal{L})^\flat$ due to the universality property.

The standard filtration is defined in the usual manner: $U^c_L(\mathcal{L})^\flat_n$ is the closure of the image of \mathcal{L}^\flat for $n = 0$, and is the closure of the image of nth power of the image of \mathcal{L}^\flat if $n \geq 1$. It is clearly admissible and commutative. As an object of $\mathcal{CA}^f_c(Top)$, our $U^c_L(\mathcal{L})^\flat$ evidently satisfies the universality property of the statement, and we are done. \square

Remark. The above explicit construction of $U^c_L(\mathcal{L})^\flat$ implies that a discrete $U^c_L(\mathcal{L})^\flat$-module is the same as a vector space M equipped with a continuous Lie algebra action of \mathcal{L}^\flat such that the action of $R \subset \mathcal{L}^\flat$ is a unital R-module structure on M, and for $r \in R$, $\ell^\flat \in \mathcal{L}^\flat$, $m \in M$ one has $(r\ell^\flat)m = r(\ell^\flat m)$.

2.7. Rigidified chiral extensions. Let R be a topological commutative$^\flat$ algebra, L a topological Lie* algebra that acts on R in a continuous way. Then $L_R := R \otimes^L L$ is naturally a topological Lie* R-algebroid.

Lemma. There is a unique, up to a unique isomorphism, chiral extension L^\flat_R equipped with a Lie* algebra morphism $L \to L^\flat_R$ which lifts the embedding $L \hookrightarrow L_R$.

Proof. We construct \mathcal{L}^\flat explicitly; the uniqueness is clear from the construction.

Forgetting for a moment about the topologies, consider the L-rigidified Lie R-algebroid $L^\delta_R = R \otimes L$ and its trivialized R-extension $L^\sharp_R = L^\delta_R \oplus R$. Our L^\sharp_R contains L as a Lie subalgebra; as in 2.5, it is naturally an R-bimodule. For open subspaces $P \subset L$ and $I \subset R$ let $(P, I) \subset L^\sharp_R$ be the vector subspace formed by linear combinations of all vectors $rp, \ell i, i' \in L^\sharp_R$ where $p \in P$, $i, i' \in I$ and ℓ, r are

$^\flat$It suffices to demand that φ^\flat is a morphism of either left or right R-modules.
arbitrary elements of \(L, R \). These subspaces form a topology on \(L_R^2 \); we define \(L_R^b \) as the corresponding completion.

Notice that the subspaces \(\langle P, I \rangle \) with \(P \subset L \) an open Lie subalgebra and \(I \subset R \) an open ideal preserved by the \(P \)-action form a base of the topology on \(L_R^1 \). For such \(P, I \) one has \(\langle P, I \rangle = RP + L_R^2 I \). One also has \(\langle P, I \rangle \cap R = I \), so \(L_R^1 \) is an extension of \(R \otimes^L \) by \(R \). The evident morphism \(L \to L_R^1 \) is continuous.

For \(P, I \) as above the subspace \(\langle P, I \rangle \) is a Lie subalgebra and a left \(R \)-submodule (i.e., a Lie \(R \)-subalgebroid) of \(L_R^1 \). The Lie bracket and the left and right actions of \(R \) on \(L_R^2 \) are continuous with respect to our topology, hence \(L_R^b \) is a topological \(R \)-extension of \(L_R \) in the sense of 2.5. Clearly it is a chiral \(R \)-extension, q.e.d.

Remark. Here is another description of \(L_R^b \) as a mere topological extension. The map \(L \otimes R \otimes R \otimes L \to L_R^2, \ell \otimes r + r' \otimes \ell' \mapsto \ell r + r' \ell' \), extends by continuity to a continuous morphism \(L \otimes R \otimes R \otimes L \to L_R^b \). It identifies \(L_R^b \) with the quotient of \(L \otimes R \otimes R \otimes L \otimes R \) modulo the closed subspace generated by vectors \(\ell \otimes r - r \otimes \ell - \ell(r) \).

Equivalently, consider the extension \(0 \to L \otimes^R R \overset{(+, -)}{\to} L \otimes L \otimes^R L \overset{(+, +)}{\to} R \otimes L \to 0 \) (see (1.1.2)); then \(0 \to R \to L_R^1 \to L_R \to 0 \) is its push-out by the \(L \)-action. The de Rham-Chevalley differential preserves the subalgebra \(C \) and is continuous on it, so \(C \) is a topological commutative DG algebra. □

2.8. The de Rham-Chevalley chiral \(L^* \)-algebroid. Let \(R \) be a reasonable topological algebra, \(\mathcal{L} \) a Tate \(R \)-module, \(\mathcal{L}^* \) the dual Tate \(R \)-module (see [D]).

Exercise. The \(R \)-module of all continuous \(R \)-n-linear maps \(\mathcal{L} \times \ldots \times \mathcal{L} \to R \) identifies naturally with the \(n \)th tensor power of \(\mathcal{L}^* \) in \(R \text{mod}^1 \).

Suppose we have a \(L^* \)-algebroid structure on \(\mathcal{L} \). Forget for a moment about the topologies and consider \(\mathcal{L} \) as a mere Lie \(R \)-algebroid. We have the corresponding de Rham-Chevalley complex \(C_R(\mathcal{L}) \): this is a commutative DGA whose \(n \)th term equals \(\text{Hom}_R(\Lambda^n_R \mathcal{L}, R) \) and the differential is given by the usual formula. By the exercise, the continuous maps form a graded subalgebra \(C = C_R(\mathcal{L}) \) of \(C_R(\mathcal{L}) \) which equals \(\text{Sym}^R(\mathcal{L}^*[-1]) \).

Lemma. The de Rham-Chevalley differential preserves the subalgebra \(C \) and is continuous on it, so \(C \) is a topological commutative DG algebra. □

Exercise. A \(L^* \)-algebroid structure on \(\mathcal{L} \) amounts to a differential on the topological graded algebra \(\text{Sym}^R(\mathcal{L}^*[-1]) \).

Our \(C \) carries a natural topological DG \(L^* \)-algebroid \(\mathcal{L}_C \) (cf. [BD] 3.9.16). To construct it, consider \(\mathcal{L} \) as a mere Lie\(L^* \) algebra. It acts on \(\mathcal{C} \) by transport of structure, and this action extends naturally to an action of the contractible Lie\(L^* \) DG algebra \(\mathcal{L}_1 := \mathcal{C} \circ \text{Hom}(\text{id} : \mathcal{L} \to \mathcal{L}) \): namely, the component \(\mathcal{C}[1] \) acts by the evident \(R \)-linear derivations of \(\text{Sym}^R(\mathcal{L}^*[-1]) \). Thus we have the corresponding DG \(L^* \)-algebroid \(\mathcal{L}_C \). By construction, \(\mathcal{L}_C^{\leq -1} = 0 \) and \(\mathcal{L}_C^{-1} = R \otimes \mathcal{L} \). Let \(K \) be the closed DG \(\mathcal{C} \)-submodule of \(\mathcal{L}_C \) generated by \(K^{-1} \subset \mathcal{L}_C^{-1} \) defined as the kernel of the product map \(R \otimes \mathcal{L} \to \mathcal{L} \). Since \(K^{-1} \) acts trivially on \(\mathcal{C} \) and is normalized by the adjoint action of \(\mathcal{L}_+ \), we see that \(K \) is a DG ideal in the Lie\(\mathcal{C} \)-algebroid \(\mathcal{L}_C \). The promised \(\mathcal{L}_C \) is the quotient \(\mathcal{L}_C/K \).
Set \(\mathcal{L}_{1C} := \text{Sym}^1(\mathcal{L}^*[1]) \otimes_R \mathcal{L}[1] \); we consider it as the graded Lie \(\mathcal{C} \)-algebroid generated by the action of the Lie \(\mathcal{C} \)-algebra \(\mathcal{L}[1] \) on \(\mathcal{C} \). The embedding into \(\mathcal{L}_{1C} \) identifies it with \(\mathcal{C} \cdot \mathcal{L}^{-1}[1] \), which is a graded subalgebra of \(\mathcal{L}_{1C} \) not preserved by the differential: in fact, the Kodaira-Spencer map \(\mathcal{L}_{1C} \to \mathcal{L}_{1C}/\mathcal{L}_{1C}^+, \ell \mapsto d(\ell)\text{mod}\mathcal{L}_{1C}^+ \), is an isomorphism. Similarly, consider \(\mathcal{K}_+ := \mathcal{K} \cap \mathcal{L}_{1C}^+ \); then \(\mathcal{K}_+ = \text{Sym}^1(\mathcal{L}^*[1]) \otimes_R \mathcal{K}^{-1} \) and the Kodaira-Spencer map \(\mathcal{K}_+ \to \mathcal{K}/\mathcal{K}_+ \) is an isomorphism. Therefore \(\tilde{\mathcal{K}}_{1C} := \text{the closed } C\text{-submodule of } \mathcal{K}_+ \) generated by \(\tilde{\mathcal{K}}_+ \), equals \(\text{Sym}^1_R(\mathcal{L}^*[1]) \otimes_R \mathcal{L}^{-1}[1] = \text{Sym}^1_R(\mathcal{L}^*[1]) \otimes_R \mathcal{L}[1] \), and the Kodaira-Spencer map \(\mathcal{L}_{1C}^+ \to \mathcal{K}/\mathcal{K}_{1C}^+ \) is an isomorphism.

Remark. We see that the Lie \(\ast \)-algebroid \(\mathcal{L}_{1C}^0 \) is an extension of \(\mathcal{L} \) by \(\mathcal{L}_{1C}^0 = \mathcal{L}^* \otimes_R \mathcal{L} \). It acts naturally on the Tate \(\mathcal{R} \)-module \(\mathcal{L}_{1C}^{-1} = \mathcal{L} \) by the adjoint action. The restriction of this action to the Lie \(\ast \)-algebra \(\mathcal{L}^* \otimes_R \mathcal{L} \) identifies \(\mathcal{L}^* \otimes_R \mathcal{L} \) with the Lie algebra \(\mathfrak{gl}_R(\mathcal{L}) \) of continuous \(\mathcal{R} \)-linear endomorphisms of \(\mathcal{L} \) as in 1.2.

Proposition. The topological DG Lie \(\ast \)-algebroid \(\mathcal{L}_{1C} \) admits a unique topological chiral DG extension \(\mathcal{L}_{1C}^0 \).

Proof (cf. [BD] 3.9.17). **Existence.** Consider the rigidified DG chiral extension \(\mathcal{L}_{1C}^\ast \) of the Lie \(\ast \)-algebroid \(\mathcal{L}_{1C} \). Let \(\tilde{\mathcal{K}} \subset \mathcal{L}_{1C}^\ast \) be the closed DG left \(\mathcal{C} \)-subalgebra of \(\mathcal{L}_{1C}^\ast \) generated by \(\tilde{\mathcal{K}}^- \). It remains to prove that the closure of \(\mathcal{C} \cdot \tilde{\mathcal{K}}^- \subset \mathcal{L}_{1C}^\ast \) does not intersect \(\mathcal{R} \). The map \(\mathcal{C}^* \otimes \sigma \tilde{\mathcal{K}}^- \otimes \sigma \mathcal{C}^1 \to \mathcal{L}_{1C}^\ast, c \otimes k \otimes k' \otimes \mathcal{C}^1 \to c \mathcal{C} \otimes k \mathcal{C}^1 \), vanishes on the subspace \(\mathcal{C}^1 \otimes \sigma \tilde{\mathcal{K}}^- \) (see (1.1.2)) since \(\mathcal{K}^- \) acts trivially on \(\mathcal{C} \). So, by (1.1.2), the product map \(\mathcal{C}^1 \otimes \sigma \tilde{\mathcal{K}}^- \to \mathcal{L}_{1C}^\ast \) extends by continuity to \(\mathcal{C}^1 \otimes \tilde{\mathcal{K}}^- \to \mathcal{L}_{1C}^\ast \), and, by \(\mathcal{R} \)-bilinearity, to \(\mu : \mathcal{C}^1 \otimes_R \tilde{\mathcal{K}}^- \to \mathcal{L}_{1C}^\ast \). We know that the composition \(\mathcal{C}^1 \otimes_R \tilde{\mathcal{K}}^- \to \mathcal{L}_{1C}^\ast \) is a closed embedding, so \(\mu \) is a closed embedding whose image does not intersect \(\mathcal{R} \), q.e.d.

Uniqueness. By the proposition in 2.5, it suffices to show that every classical DG extension \(\mathcal{L}_{1C}^0 \) of \(\mathcal{L}_{1C} \) admits a unique splitting. The uniqueness of the splitting is clear since \(\mathcal{L}_{1C}^0 \cong \mathcal{L}_{1C}^\ast \) and \(\mathcal{L}_{1C} \) is generated by \(\mathcal{L}_{1C}^\ast \) as a DG Lie \(\ast \)-algebroid. To construct one, consider the embedding \(\mathcal{L}[1] \hookrightarrow \mathcal{L}_{1C}^\ast \). It extends to a morphism of complexes \(\mathcal{L} = \text{Cone}(\text{id}_\mathcal{C}) \to \mathcal{L}_{1C}^\ast \) which is a morphism of Lie \(\ast \)-algebras (as an immediate computation shows). By universality, we get a morphism of DG Lie \(\ast \)-algebroids \(\mathcal{L}_{1C} \to \mathcal{L}_{1C}^\ast \) which vanishes on \(\mathcal{K}^- \). Thus it vanishes on \(\mathcal{K} \), hence we get a promised splitting \(\mathcal{L}_{1C} \to \mathcal{L}_{1C}^\ast \). \(\square \)
Remark. By the R-extension property, the Lie* bracket between \mathcal{L}_c^{-1} and $\mathcal{C}^{1} \subset \mathcal{L}_c^{0}$ equals the standard pairing $\mathcal{L} \times \mathcal{L}^* \to R$. Therefore the subalgebra of $U_c^\theta(L_c)$ generated by these submodules equals the Clifford algebra $\text{Cl} = \text{Cl}_R(\mathcal{L}^* \oplus \mathcal{L})$ of the Tate R-module $\mathcal{L}^* \oplus \mathcal{L}$ equipped with the usual hyperbolic quadratic form. It contains the Lie* R-subalgebra L_c^{0} which is the Clifford R-extension $\mathfrak{gl}_R(\mathcal{L})^{CI}$ of $\mathfrak{gl}_R(\mathcal{L})$.

2.9. \mathcal{D}-modules. The most interesting special case of the construction from 2.8 is that of $\mathcal{L} = \Theta_R$ for R as in Example (ii) in 2.2. Then \mathcal{C} is the de Rham DG algebra of R.

Remark. In the vertex (or chiral) algebra setting the enveloping algebra $U_c^\text{ch}(\Theta_R)^0$ was first considered in [MSV] under the name of the chiral de Rham complex; for other, essentially equivalent, constructions (in slightly different settings) see [BD] and [KV].

Consider for a moment $U_c^\text{ch}(\Theta_R)^0$ as a non-graded topological chiral algebra (which requires an evident completion). The category of discrete $U_c^\text{ch}(\Theta_R)^0$-modules plays the role of the category of \mathcal{D}-modules on the ind-scheme SpecR (this construction, mentioned in [D] 6.3.9, generalizes the constructions from [D] and [KV]).

Exercises. (i) Suppose that R is discrete. Show that for a discrete $U_c^\text{ch}(\Theta_R)^0$-module M the subspace $M^\ell \subset M$ of elements killed by $\Theta_R[1] = L_c^\text{ch}$ is naturally a left \mathcal{D}-module on Spec R, i.e., an R-module equipped with a flat connection. The functor $M \mapsto M^\ell$ is an equivalence between the category of discrete $U_c^\text{ch}(\Theta_R)^0$-modules and that of left \mathcal{D}-modules.

(ii) Suppose that R is projective limit of k-algebras of finite type, so one has a natural notion of right \mathcal{D}-module. Show that for a discrete $U_c^\text{ch}(\Theta_R)^0$-module M the subspace $M^r \subset M$ of elements killed by $\mathcal{C}^{2,1}$ is naturally a right \mathcal{D}-module, and the functor $M \mapsto M^r$ is an equivalence between the category of discrete $U_c^\text{ch}(\Theta_R)^0$-modules and that of right \mathcal{D}-modules.

More generally, suppose R is arbitrary, and we have a fermion module V in the sense of [D] 5.4.1 over the Clifford algebra Cl from the second remark in 2.8. Then V yields a chiral extension \mathcal{L}^V of \mathcal{L} defined as follows (cf. [BD] 3.9.20). The Lie* subalgebra \mathcal{L}_c^{0V} normalizes $\text{Cl} \subset U_c^\text{ch}(\mathcal{L}_c)$, and its adjoint action on Cl factors through \mathcal{L}_c^0. Let \mathcal{L}_c^{0V} be the set of pairs (τ, τ_V) where $\tau \in \mathcal{L}_c^0$ and τ_V is a lifting of τ to V, i.e., a continuous endomorphism of V such that $\tau_V(cv) = \tau(c)v + c\tau_V(v)$ for $c \in Cl, v \in V$. One shows easily that \mathcal{L}_c^{0V} is naturally a Lie* R-algebroid which is an R-extension of \mathcal{L}_c^0. Notice that the action on V of $\mathfrak{gl}_R(\mathcal{L})^{CI} \subset \text{Cl}$ identifies the restriction of \mathcal{L}_c^{0V} to $\mathfrak{gl}_R(\mathcal{L})$ with $\mathfrak{gl}_R(\mathcal{L})^{CI}$.

Exercise. For a discrete $U_c^\text{ch}(\Theta_R)^0$-module M the natural action of \mathcal{L}_c^{0V} on $M^V := \text{Hom}_{\text{Cl}}(V, M)$ factors through \mathcal{L}^V, and the functor $M \mapsto M^V$ is an equivalence between the category of discrete $U_c^\text{ch}(\Theta_R)^0$-modules and that of discrete modules over the enveloping chiral algebra $U_R^\text{ch}(\mathcal{L})^V$ of \mathcal{L}^V.

\footnote{In fact, by Remark in 2.8, \mathcal{L}_c^0 identifies with the Atiyah Lie* R-algebroid of infinitesimal symmetries of the Tate R-modules Θ_R or Ω_R.}
Remark. The key ingredient of \mathcal{O}- and \mathcal{D}-module theory in the usual finite-dimensional setting is functoriality of the derived categories with respect to morphisms of varieties. The Clifford module picture permits to recover the pull-back functoriality for appropriately twisted derived categories (the \mathbb{Z}-grading of complexes should be labeled by the dimension \mathbb{Z}-torsor, and the derived category itself should be understood in an appropriate way). This construction is necessary in order to define the notion of \mathcal{O}- or \mathcal{D}-module on orbit spaces such as the moduli space of (de Rham) local systems on the formal punctured disc. I hope to return to this subject in a joint work with Gaitsgory.

2.10. The weak PBW theorem for topological chiral algebroids. Let $(R, \mathcal{L}, \mathcal{L}^0)$ be a topological chiral Lie algebroid where R is reasonable. The morphisms $R \to U^{ch}(\mathcal{L})_0$, $\mathcal{L} \to \gr_1 U^{ch}(\mathcal{L})^b$ yield then a morphism of topological coisson algebras (see (2.3.1))

\begin{equation}
\Sym^1_R \mathcal{L} \to \widehat{\gr} U^{ch}_R(\mathcal{L})^b.
\end{equation}

Theorem. If \mathcal{L} is a flat R-module with respect to \otimes^1, then $\Sym^1_R \mathcal{L} \cong \gr U^{ch}_R(\mathcal{L})^b$. Thus the standard filtration satisfies the weak PBW property.

Proof. We follow [BD] 3.9.13. Set $U^{ch} := U^{ch}_R(\mathcal{L})^b$ and $U := U_R(\mathcal{L})^b$.

(a) Suppose our chiral extension admits a rigidification, so we have a Lie* algebra L acting on R, $\mathcal{L} = L_R = R \otimes^1 L$, and $\mathcal{L}^b = L^b_R$ is the L-rigidified chiral extension.

Then U is the enveloping algebra of (L, R), i.e., the quotient of the free associative algebra generated by $L \oplus R$ modulo the relations saying that the map $L \to U$ is a morphism of Lie algebras and the map $R \to U$ is a morphism of associative algebras which commutes with the L-action (where L acts on U via $L \to U$ and the adjoint action). Our U^{ch} is the corresponding chiral enveloping algebra which can be constructed as follows. Consider the topology on U whose base is formed by all left ideals $U(P + I)$ where $P \subset L$ and $I \subset R$ are open subspaces. Shrinking P, I if necessary, one can assume that P is an open Lie subalgebra of L and I an open P-stable ideal of R. This topology satisfies the conditions from Corollary in 1.4, hence U^{ch} is the completion of U with respect to this topology.

For (P, I) as above the quotient $U/U(P+I)$ coincides with the L-module induced from the P-module R/I. Thus $\gr(U/U(P+I)) = \Sym(L/P) \otimes R/I$ by the usual PBW theorem. Passing to the projective limit with respect to (P, I), we see that the standard filtration satisfies the PBW property (actually, the strong one).

(b) Now let \mathcal{L} be an arbitrary Lie* R-algebroid and \mathcal{L}^b is chiral extension. Let L be a copy of \mathcal{L}^b considered as a mere Lie* algebra acting on R. Consider the corresponding Lie* R-algebroid $L_R = R \otimes^1 L$ and its L-rigidified chiral extension L^b_R. We have an evident morphism of Lie* R-algebroids $L_R \to \mathcal{L}$ and its lifting to the chiral extensions $L^b_R \to \mathcal{L}^b$. The projection $L^b_R \to L_R$ identifies the kernels of those morphisms. Our K is an R-module (in the \otimes^1 sense, as a submodule of L_R) equipped with a continuous L-action (the adjoint one).

Set $\tilde{L}_R := \text{Cone}(K \to L_R)$, $\tilde{L}^b_R := \text{Cone}(K \to L^b_R)$. Then L_R is naturally a DG Lie* R-algebroid, and \tilde{L}_R is its chiral extension. These structures are uniquely
defined by the condition that the embedding \(L_R \to \tilde{L}_R \) is a morphism of Lie\(^*\) \(R\)-algebroids, and that \(L^b_R \to \tilde{L}^b_R \) is a morphism of chiral extensions. Therefore we have a DG chiral algebra \(U_{\tilde{R}}^ch(\tilde{L}_R)^b \).

Set \(\tilde{R} := \text{Sym}^1_R(K[1]) \); this is a commutative\(^*\) graded topological \(R\)-algebra whose component in degree \(-1\) equals \(\Lambda^1_R K \). It carries a natural continuous \(L\)-action. So we have the \((\mathbb{Z}-\text{graded})\) \(\tilde{R}\)-algebroid \(L_{\tilde{R}} \), its \(L\)-rigidified chiral extension \(L^b_{\tilde{R}} \), and the corresponding chiral enveloping algebra \(U^ch_{\tilde{R}}(L_{\tilde{R}})^b \).

Lemma. There is a unique isomorphism of \(\mathbb{Z}\)-graded topological chiral algebras

\[
U^ch_{\tilde{R}}(L_{\tilde{R}})^b \cong U^ch_{\tilde{R}}(L_{\tilde{R}})^b
\]

which identifies copies of \(R \) and \(L \) in the degree 0 components, and identifies \(K \subset \tilde{L}^b_{\tilde{R}} \) with \(K \subset \tilde{R} \) in the components of degree \(-1\).

Proof. Both algebras are generated by \(R, K, \) and \(L \) with same relations. \(\Box \)

Isomorphism (2.10.2) is identifies the standard filtrations up to a shift by the grading: one has \(U^ch_{\tilde{R}}(L_{\tilde{R}})^{a+n}_n \cong U^ch_{\tilde{R}}(L_{\tilde{R}})_{a+n} \). By (a), \(U^ch_{\tilde{R}}(L_{\tilde{R}})^b \) satisfies the PBW property. So we have an isomorphism of graded DG chiral algebras

\[
\text{Sym}^1_{\tilde{R}} \tilde{L}_R \cong \text{gr} U^ch_{\tilde{R}}(\tilde{L}_R)^b.
\]

(c) Suppose that \(\mathcal{L} \) is \(R\)-flat with respect to \(\otimes^1 \). Then the projection \(\text{Sym}^1_{\tilde{R}} \tilde{L}_R \to \text{Sym}_{\tilde{R}}^1 \mathcal{L} \) is a quasi-isomorphism in the exact category \(R\text{-mod}^1 \). Therefore the differential \(d \) on \(U^ch_{\tilde{R}}(\tilde{L}_R)^b \) is strictly compatible with the standard filtration. Let \(I_n \subset U^ch_{\tilde{R}}(\tilde{L}_R)^b_n \) be the closure of \(K U^ch_{\tilde{R}}(\tilde{L}_R)^b_{n-1} \); then \(I_n = I_m \cap U^ch_{\tilde{R}}(\tilde{L}_R)^b_n \) for any \(m \geq n \), hence \(\text{gr} U^ch_{\tilde{R}}(\mathcal{L})^b \cong \text{gr} U^ch_{\tilde{R}}(\tilde{L}_R)^b / \text{gr} I \cong \text{Sym}^1_{\tilde{R}} \mathcal{L} \), q.e.d. \(\Box \)

Exercise. Suppose the topology of \(R \) has a base formed by open reasonable ideals \(I \) that satisfy the next property: The open \(\text{Lie}^* \) \(R\)-subalgebrods \(M \subset \mathcal{L} \) such that \(M(I) \subset I, M \supset I \mathcal{L} \), and \(\mathcal{L}/M \) is a flat \(R/I\)-module, form a base of the topology of \(\mathcal{L}/\mathcal{T}\mathcal{L} \). Then the standard filtration on \(U^ch_{\tilde{R}}(\mathcal{L})^b \) is a strong PBW filtration.

References

[BD] A. Beilinson and V. Drinfeld, *Chiral Algebras*, AMS, Providence, RI, 2004.

[D] V. Drinfeld, *Infinite-dimensional vector bundles in algebraic geometry: an introduction*, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser, Boston, MA, 2006, pp. 263–304.

[G] A. Grothendieck, *Produits tensoriels topologiques et espaces nucléaires*, Mem. AMS (1955), no. 16.

[MSV] F. Malikov, V. Schechtman, and A. Vaintrob, *Chiral de Rham complex*, Commun. Math. Phys. 204 (1999), 439–473.

[KV] M. Kapranov and E. Vasserot, *Vertex algebras and the formal loop space*, Publ. Math. IHES 100 (2004), 209–269.

[S] J.-P. Schneiders, *Quasi-abelian categories and sheaves*, Mém. Soc. Math. Fr. (1999), no. 76.