Tilted Empirical Risk Minimization

Tian Li*
CMU

Ahmad Beirami*
Facebook AI

Maziar Sanjabi
Facebook AI

Virginia Smith
CMU

ICLR 2021
Tilted ERM (TERM) Objective

TERM can increase or decrease the influence of outliers to enable fairness or robustness.
\[\tilde{R}(t; \theta) := \frac{1}{t} \log \left(\frac{1}{n} \sum_{i=1}^{n} e^{tf(x_i;w)} \right) \]

- recovers a family of objectives parameterized by \(t \)
- a smooth transition from \text{min-loss} to \text{avg-loss} to \text{max-loss}

\[f_1(\theta) = (\theta + 0.2)^2, f_2(\theta) = (\theta - 0.2)^2 + 0.1, f_3(\theta) = (\theta - 1.2)^2 \]
Properties: Trade-off between average loss and max-/min-loss

positive t: as t increases, the **average loss** will increase, and the **max-loss** will decrease and the **loss variance** will decrease \Rightarrow better generalization

negative t: as t increases, the **average loss** will decrease, and the **min-loss** will increase
Properties: Approximation of quantile losses

k-th quantile losses: k-th largest individual loss from \(\{f(x_i; \theta)\}_{i \in [N]} \)

e.g., median loss ($k = N/2$)

TERM solutions can approximate k-loss solutions ($1 \leq k \leq N$)
TERM can be solved with a simple modification to batch/stochastic ERM solvers

1) batch case

\[\nabla_{\theta} \tilde{R} = \sum_{i=1}^{N} w_i(t; \theta) \nabla_{\theta} f(x_i; \theta), \quad w_i(t; \theta) = \frac{e^{tf(x_i; \theta)}}{\sum_{j \in [N]} e^{tf(x_j; \theta)}} \]

convergence rate scales linearly with \(t \)

2) stochastic case

have some stochastic dynamics to estimate the normalizer of the weights
TERM is widely applicable to a broad range of ML problems

$t < 0$
- Outlier Mitigation
- Robust Regression/Classification

$t > 0$
- Class Imbalance
- Fair PCA
- Variance Reduction

$t_1 < 0$
$t_2 > 0$
- Fairness + Robustness

, and many more

Competitive/Superior performance compared with application-specific approaches
E.g., TERM applied to Robust Classification \((t < 0)\)

noisy annotators in for crowdsourcing

TERM is able to completely remove the noisy outliers, achieving the accuracy of Genie ERM
E.g., TERM applied to Fair PCA \((t > 0)\)

Goal of fair PCA:

\[
\text{low-dimension features} \quad \Rightarrow \quad \text{two groups}
\]

\[
\text{loss}(L; U) \approx \text{loss}(H; U)
\]

TERM can recover the min-max solution with a large \(t\)

also offer more flexible tradeoffs between performance and fairness
Future Work

✧ Other applications and properties of the TERM framework
✧ Generalization guarantees of the TERM objective with respect to t
✧ Further connections with other risks (DRO, CVaR, IRM, etc)

Paper: OpenReview website

Code: https://github.com/litian96/TERM