Protein kinase Cε: an oncogene and emerging tumor biomarker

Michael A Gorin1 and Quintin Pan*2,3

Address: 1University of Miami, Miller School of Medicine, Miami, FL 33136, USA, 2Department of Otolaryngology-Head and Neck Surgery, the Ohio State University Medical Center, Columbus, OH 43210, USA and 3Arthur G James Cancer Hospital and Richard J Solove Research Institute, the Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA

Email: Michael A Gorin - magorin@med.miami.edu; Quintin Pan* - quintin.pan@osumc.edu

* Corresponding author

Abstract

Members of the protein kinase C (PKC) family have long been studied for their contributions to oncogenesis. Among the ten different isoforms of this family of serine/threonine kinases, protein kinase Cε (PKCε) is one of the best understood for its role as a transforming oncogene. In vitro, overexpression of PKCε has been demonstrated to increase proliferation, motility, and invasion of fibroblasts or immortalized epithelial cells. In addition, xenograft and transgenic animal models have clearly shown that overexpression of PKCε is tumorigenic resulting in metastatic disease. Perhaps most important in implicating the epsilon isoform in oncogenesis, PKCε has been found to be overexpressed in tumor-derived cell lines and histopathological tumor specimens from various organ sites. Combined, this body of work provides substantial evidence implicating PKCε as a transforming oncogene that plays a crucial role in establishing an aggressive metastatic phenotype. Reviewed here is the literature that has led to the current understanding of PKCε as an oncogene. Moreover, this review focuses on the PKCε-mediated signaling network for cell motility and explores the interaction of PKCε with three major PKCε signaling nodes: RhoA/C, Stat3 and Akt. Lastly, the emerging role of PKCε as a tumor biomarker is discussed.

Introduction to the protein kinase C (PKC) family

Several decades of research have documented that members of the protein kinase C (PKC) family of serine/threonine kinases are key signaling molecules involved in diverse cellular functions. Comprised of ten different isoforms, the PKC family is divided into three groups according to structural features and activation requirements. The classical isoforms (α, βI, βII, and γ) have an intact C1 diacylglycerol/phorbol ester binding domain and C2 calcium binding domain and thus require phospholipids and calcium for activation. The second group contains the novel isoforms (δ, ε, θ, and η.), which do not require calcium for their activation. The third group contains the atypical isoforms (ζ, and ι/λ), which can be activated in the absence of diacylglycerol and calcium.

Some of the many cellular processes regulated by PKCs include apoptosis, proliferation, migration, motility, chemo-resistance and differentiation (reviewed in [1-4]). Most notably, PKCs have been extensively studied in the context of oncogenesis. This body of literature first arose from work done in the 1980s when PKC was identified as an intracellular receptor for the tumor promoting phorbol esters [5-7]. Since these early reports, the discrete roles of many PKC isoforms in oncogenesis have been studied. It is now appreciated that each of the ten PKC isoforms is unique in its contribution to cancer development and
progression. For example, within the context of an animal model of skin cancer, overexpression of PKC\(\varepsilon\) has no effect on tumorigenesis [8], while the delta isoform suppresses tumor development [8,9]. In contrast, the epsilon isoform is severely oncogenic and promotes metastatic squamous cell carcinoma [10]. In other model systems, the varying roles of PKC isoforms have also been documented. PKC\(\alpha\) has been described as an essential pro-proliferative and survival molecule in glioma cell lines [11]. Recently, PKC\(\alpha\) was reported as a mediator of cell proliferation in head and neck cancer cell lines and as a predictive biomarker for disease-free survival in head and neck cancer patients [12]. Similarly, the iota isoform is now appreciated for its role in promoting cell motility/invasion [13] and proliferation [14].

Among the many PKC family members, several isoforms have been found to have paradoxical and tissue specific roles in tumor initiation. Of note, the contribution of PKC\(\alpha\) to oncogenesis has been contested through conflicting experimental findings. For example, several lines of evidence support PKC\(\alpha\) as an anti-proliferative molecule. These data include the work done in animal models of skin cancer [9] as well as the finding that PKC\(\alpha\) expression can revert transformed rat colonic epithelial cells towards a wild-type phenotype [15]. In contrast to this body of work, others have found that PKC\(\delta\) promotes the survival of breast and lung cancer cells [16,17]. This discrepancy speaks to the complexity of understanding the roles of PKC family members in the context of oncogenesis. From the abundant literature on PKCs, it is clear that the function of PKC isoforms in oncogenesis is highly tissue dependent and thus it is critical to understand the role of each PKC isoform in the proper cellular context.

PKC\(\varepsilon\) as a transforming oncogene

In one of the first experimental works aimed specifically at exploring the oncogenic potential of PKC\(\varepsilon\), Mischak and colleagues overexpressed PKC\(\varepsilon\) in NIH 3T3 fibroblasts [18]. These authors found that upon PKC\(\varepsilon\) overexpression, cells grew at a faster rate and with increased densities and confluence. Cells transfected with PKC\(\varepsilon\) also demonstrated an increased ability to grow in soft agar in the absence of phorbol 12-myristate 13-acetate (PMA). In vivo, 100% of mice injected with PKC\(\varepsilon\) overexpressing NIH 3T3 cells developed tumors. Mice injected with PKC\(\delta\)-expressing or untransfected NIH 3T3 cells did not develop tumors. Combined, these findings were among the first evidence demonstrating PKC\(\varepsilon\) as an oncogene.

In the same year, Cacace and coworkers found that overexpression of PKC\(\varepsilon\) in fibroblasts leads to an oncogenic phenotype in vitro and in vivo [19]. Similar to these earlier findings, Perletti et al. found that overexpression PKC\(\varepsilon\) in FRC/TEX CL D (D/WT) colonic epithelial cells led to a metastatic phenotype which included morphological changes, increased anchorage independent growth and marked tumorigenesis in a xenograft model [20]. These reports set the stage for our current understanding of PKC\(\varepsilon\) as a transforming oncogene.

Proliferation and cell survival

Many of the details about the pro-tumorigenic signaling pathways modulated by PKC\(\varepsilon\) have been elucidated. For example, PKC\(\varepsilon\) is known to exert its oncogenic effects through modulation of the Ras signaling cascade [21-24], one of the best characterized signaling pathways in all of cancer biology (reviewed in [25]). Among the many downstream effects of Ras signaling includes increased cell cycling via up-regulation of cyclin D1 [26-29]. PKC\(\varepsilon\) expression has been linked to activation of the cyclin D1 promoter and increased growth rates [30,31].

In addition to its influence on Ras signaling, PKC\(\varepsilon\) has also been implicated in anti-apoptotic signaling pathways through the modulation of caspases and Bcl-2 family members [32-38]. Similarly, PKC\(\varepsilon\) exerts its pro-survival effects by activating Akt/PKB [39-41]. Like the Ras signaling pathway, the pro-proliferative effects of Akt signaling are well described in the context of oncogenesis (reviewed in [42]). The role of PKC\(\varepsilon\) in proliferation and survival signaling pathways has been extensively reviewed by Basu and Sivaprasad [43].

Motility and invasion

In addition to promotion of proliferation and escape from apoptosis, dysregulation of cellular adhesion and motility are key components of a metastatic phenotype. The ability of a cell to migrate is essential for invasion of surrounding tissues as well as spread to distal sites. It is now appreciated that overexpression of PKC\(\varepsilon\) leads to a highly motile and invasive phenotype. For example, Tachado and coworkers reported that expression of PKC\(\varepsilon\) promotes a polarized cell morphology and in vitro cell invasion [44]. Moreover, these authors found that mice inoculated with NIH 3T3 cells overexpressing PKC\(\varepsilon\) experienced tumor invasion of nearby tissues as well as liver metastases. Consistent with these findings, our group demonstrated that knockdown of PKC\(\varepsilon\) with RNAi decreases in vitro invasion and motility [45,46], as well as incidence of lung metastases in a pre-clinical animal model of breast cancer [45].

Specific details of how PKC\(\varepsilon\) modulates cell motility are beginning to emerge. It is now known that PKC\(\varepsilon\) contains an actin binding domain [47]. Motile cells overexpressing PKC\(\varepsilon\) have been observed to extend lamellipodia-like protrusions [44]. The ability of PKC\(\varepsilon\) to promote F-actin assembly in a cell-free system is compelling evidence for the role of PKC\(\varepsilon\) in modulating outgrowth through actin polymer-
ization [48]. PKCε has been observed to translocate to the cell membrane during the formation of focal adhesions [49]. This initial process of cellular adhesion to the extracellular matrix is known as cell spreading. During spreading, a cell undergoes a redistribution of adhesion and structural molecules. Once a cell has spread it may then take part in contact dependent functions such as motility. The expression of β1-integrin cytoplasmic domain connected to a non-signaling transmembrane domain inhibits the process of cell spreading [50]. PKCε is sufficient to rescue cell spreading in cells expressing non-signaling β1-integrin molecules [50]. This finding suggests PKCε signaling downstream of β1-integrin engagement with the extracellular matrix.

Ivaska et al. reported that PKCε plays a role in the return of endocytosed β1-integrin molecules to the plasma membrane [51]. The inhibition of PKCε with bisindolylmaleimide I (BIM-I) leads to an accumulation of intercellular β1-integrin/PKCε containing vesicles. Without the recycling of integrins, a necessary process for the advancement of cell’s leading edge, a decrease in motility was observed. It is now known that phosphorylation of the cytoskeletal protein, vimentin, by PKCε is needed for the regulated release of integrin from recycled vesicles back to the plasma membrane [52].

In glioma cells, PKCε has also been found to be an important promoter of cell migration [53,54]. In adhesion assays, PKCε overexpressing cells were shown to adhere in greater numbers to laminin, vitronectin and fibronectin as compared to control cells [54]. PKCε expression was also responsible for lamellipodia formation. Similar to other reports, these authors found that PKCε interacts with β-integrin chains. In addition, it was found that RACK1, a scaffold protein associated with PKCε, is also a requirement of cell motility and forms a complex along with PKCε and β-integrin. This same group also found that extracellular-signal related kinase (ERK) localizes to sites of focal adhesions [53]. In PKCε overexpressing clones, an increase in the amount of activated phospho-ERK, a downstream molecule in the Ras signaling cascade, was observed. Cells transfected with an anti-sense PKCε cDNA showed the opposite pattern. Moreover, upon inhibition of the ERK signaling pathway, cells were less adhesive and motile in response to PMA stimulation.

Our laboratory reported that PKCε-driven cell motility is mediated at least in part due to downstream activation of small Rho GTPases, specifically RhoA and/or RhoC [45,46]. RNAi-mediated knockdown of PKCε in head and neck cancer cells with elevated endogenous PKCε levels is sufficient to significantly impair cell motility [46]. Moreover, reconstitution of constitutive active RhoA or RhoC in these PKCε-deficient head and neck cancer cells rescued the loss-of-function motility defect providing direct evidence that RhoA and RhoC is downstream of the PKCε signaling cascade [46]. Our work, although novel, merely adds to the published literature on the linear signaling pathways mediated by PKCε to modulate cell motility. It is clear that signal transduction pathways must be approached through a systems biology perspective to capture the conditions necessary to drive a particular cellular event. To this end, we constructed a schematic model of the PKCε signaling network for cell motility using published results from our laboratory and other laboratories (Figure 1). This model contains three highly interconnected PKCε signaling nodes, Akt, RhoA/RhoC, and Stat3, with multiple positive and negative points.

Akt is activated through two phosphorylation events. PDK1 phosphorylates Akt at threonine 308 and recently, PKCε was identified as the kinase that phosphorylates Akt at serine 473 leading to full Akt activation [55]. There is evidence that Akt phosphorylates and activates PAK1 to enhance cell migration [56,57]. Interestingly, PAK1 was shown to inhibit the activity of NET1, a RhoA-specific guanine nucleotide exchange factor, suggesting that PAK1 will inhibit RhoA activation under certain conditions [58]. PAK1 phosphorylates myosin light chain kinase (MLCK) resulting in decreased MLCK activity and myosin light chain (MLC) phosphorylation in epithelial cells [59]. MLC is a component of myosin and involved in the assembly of actomyosin filaments for contraction. MLC is phosphorylated at Ser19 by myosin light chain kinase (MLCK) and Rho-kinase, a downstream effector of RhoA and RhoC, to enhance myosin ATPase activity and muscle contraction [60,61]. PAK1 and Rho-kinase also directly regulates the activation of LIM domain kinases (LIMKs), a family of two serine/threonine kinases involved in actin cytoskeleton regulation. PAK1 phosphorylates LIMK1 at Thr508 and Rho-kinase, a downstream effector of RhoA and RhoC, phosphorylates LIMK2 at Thr505 resulting in an increase in LIMK1 and LIMK2 activity, respectively [62,63]. Activated LIMK1/LIMK2 inhibits the actin depolymerizing activity of cofilin by phosphorylation at the Ser3 residue of cofilin resulting in formation of stress fibers and focal adhesions for cell migration [63-65].

Recent reports demonstrated that PKCε directly phosphorylates Stat3 at Ser727 resulting in an increase in nuclear translocation and transcriptional activation of Stat3 [66-68]. Additionally, RhoA activation, mediated at least in part through Rho-kinase, results in an increase in Stat3 phosphorylation at Tyr705 and Ser727 and nuclear translocation [69]. Interestingly, Stat3 was reported to directly bind to the tubulin-binding region of stathmin to attenuate binding of stathmin to tubulin resulting in microtubule stabilization [70]. Stathmin is a ubiquitous cytosolic phosphoprotein involved in the regulation of the micro-
tubule filament system by promoting tubulin filament depolymerization. Stathmin was reported to be phosphorylated at four serine residue, Ser16, Ser25, Ser38, and Ser63 by various kinases, including cyclin-dependent kinase, MAP kinase, and PKA [71,72]. Phosphorylation of stathmin at Ser16 and Ser63 was found to be necessary to optimally prevent stathmin from binding to tubulin resulting in microtubule stabilization [73].

In silico analysis using the Genomatix-MatInspector software identified Stat3 and serum response factor (SRF) transcription factor binding sites in the predicted PKCε promoter region. Stat3 nuclear translocation and transcriptional activity are regulated directly by PKCε and Rho-kinase [68]. In addition, SRF-mediated transcription is activated in response to RhoA and RhoC activation [74,75]. These observations is attractive from a molecular mechanism point of view as it suggests that a feed-forward mechanism, through PKCε-mediated increases in Stat3 and SRF transcriptional activities, may result in a sustained activation of the PKCε signaling network. Moreover, it is not known at this time, the contribution and requirement of each PKCε signaling module for promoting a motile cell phenotype. It is possible that there is redundancy in this system and that perhaps, only select nodes are indispensable to drive PKCε-mediated cell motility in cancer cells.

Overexpression in various cancer types

The role PKCε in specific cancer types has been explored in great detail. To date, the overexpression of PKCε has been observed in a large number of cancer types (Table 1). The etiology of PKCε overexpression, however, remains elusive. To the best of our knowledge, no publications exist which document mutations responsible for PKCε overexpression. One group, however, has found 2p21 to

Figure 1

Schematic model illustrating the PKCε signaling network for cell motility. Arrow Black lines represent activation and Circle red lines represent inactivation. Arrow dashed lines represent putative interactions based on in silico transcription factor binding prediction software. All interactions are based on published literature as described in the text.
be amplified in the rearranged DNA of WRO thyroid carcinoma cell lines and thyroid tumor samples [76,77]. This region on the short arm of chromosome 2 is home to the PKCε gene. The clinical value of this knowledge, however, is yet to be determined. Regardless of the origin of PKCε overexpression, it is clear that this protein is emerging through the literature as an important biomarker and potential drug target for many cancer types.

Our laboratory was the first to report that PKCε plays a causative role in establishing an aggressive, invasive, and motile phenotype in breast cancer [45]. Inhibition of PKCε by RNAi in MDA-MB231 cells, a highly metastatic breast cancer cell line with elevated PKCε levels, was sufficient to dramatically decrease cell proliferation, anchorage-independent colony formation, invasion, and motility in vitro. Similarly, MDA-MB231 cells transfected with RNAi against PKCε showed decreased tumor growth kinetics and a reduced incidence in the number of lung metastases in an orthotopic model of breast cancer. Moreover, using high-density tissue microarrays with tumor specimens from invasive ductal breast carcinoma patients, elevated PKCε was associated with high histologic grade, positive Her2/neu receptor status, and negative estrogen and progesterone receptor status. In addition, elevated PKCε was demonstrated to be a prognostic biomarker of poorer overall and disease-free survival.

PKCε has also been implicated in head and neck squamous cell carcinoma (HNSCC). In a small prospective study of 29 patients with primary squamous cell carcinomas of the oral cavity, elevated PKCε levels were significantly associated with disease relapse and decreased overall survival [78]. The authors of this study concluded that elevated PKCε may serve as a prognostic marker of aggressive disease in oral cancers. Consistent with this work, our laboratory reported that PKCε is elevated in a panel of HNSCC cell lines [46]. In vitro, HNSCC cell lines with high endogenous PKCε levels are associated with a highly invasive and motile phenotype. Additionally, RNAi-mediated silencing of PKCε in HNSCC with high endogenous PKCε levels resulted in a marked reduction in cell invasion and motility.

Elevated levels of PKCε have been documented in lung cancers. In the small cell lung carcinoma cell line (SCLC) NCI-N417, a constitutively active catalytic fragment of PKCε has been reported [79]. In non-SCLC cell lines (NSCLC), PKCε is associated with a chemo-resistant phenotype [32]. Aberrant PKCε levels have also been observed in histopathological lung tumor specimens [80]. Bae and colleagues have found PKCε to be overexpressed in >90% of NSCLC histological sections as compared to normal controls.

Like our group’s work in both breast and head and neck cancer, inhibition of PKCε in NSCLC cells leads to decreased aggressive phenotype in vitro [80]. More specifically, cells treated with a dominant negative version of PKCε showed marked decreases in cell proliferation and anchorage-independent growth. Treatment of NSCLC cells with this dominant negative, or a RNAi against PKCε, resulted in a decrease in G1-S cell cycle transition. The authors attribute this arrest to an induction of p21/Cip1, a cyclin-dependent kinase inhibitor. From these results the authors point to PKCε as promoting dysregulation of the cell cycle in NSCLC.

In an animal model of prostate cancer, overexpression of PKCε in androgen-dependent LNCaP cells resulted in a transformation to an androgen-independent phenotype [81]. In both wild-type and castrated male nude mice, these cells undergo aggressive tumor growth. In vitro, PKCε overexpression conferred an increase in proliferation as well as resistance to apoptosis. Elevated PKCε levels have also been documented in clinical prostate cancer samples. One investigation found PKCε to be overexpressed in specimens of early prostatic adenocarcinomas obtained at time of radical prostatectomy [82]. As determined by high-density tissue microarrays, other investigators found increasing PKCε levels to correlate with tumour grade [67]. PKCε has also been found to be overexpressed in samples from other tissues of the urogenital tract. High PKCε levels have been detected in renal carcinoma cells [83] and in tumor specimens from the urinary bladder [84]. In the latter, increasing PKCε cells correlated with tumor grade [84].

PKCε has been shown to be an important player in driving squamous cell carcinoma (SCC) of the skin. Transgenic expression of PKCε under the control of the human keratin 14 promoter/enhancer has been shown to result in an 18-fold increase in PKCε [11]. This overexpression of PKCε drove the development of SCC in these animals with 40% of transgenic mice developing SCC of the skin as compared to 7% of controls. Histopathology revealed malignant invasion of tumors as well as metastases to regional lymph nodes. Overexpression of PKCε in FVB/N

Table 1: PKCε overexpression in histopathological specimens

Organ	Reference
Bladder	84
Brain	87
Breast	45
Head and Neck	78
Lung	80
Prostate	67, 82

mice has also been demonstrated to predispose mice to SCC after ultra-violate radiation (UVR) exposure [85].

PKCε has been studied in malignancies of the central nervous system. In glioblastoma cell cultures, PKCε was found to be elevated between three to thirty times that of normal protein levels [86]. Consistent with this observation, Sharif and Sharif have reported that PKCε is overexpressed in a large number of astroglial cell lines [87]. Similarly, these authors report that PKCε is overexpressed in histological samples from anaplastic astrocytoma, glioblastoma multiforme and gliosarcoma tumor samples. Interestingly, PKCε was not found in polocytic astrocytomas samples, a grade I malignancy.

The role of PKCε in myelo- and lympho-proliferative diseases has not been well studied. In one animal model, overexpression of PKCε in the epidermis of mice results in a myeloproliferative disease characterized by gross increases in the number eosinophils and neutrophils [88]. These mice show marked increases in serum levels of interleukin-5, interleukin-6 and G-CSF as well as infiltration of the lungs, liver and kidneys by the proliferative myeloid cells. The authors postulate that the overexpression of PKCε in these mice leads to an induction of cytokines which in turn promotes disease. Although this model system may prove to be important in studying myeloproliferative disease, the clinical significance of PKCε in this setting is still uncertain. At present, there is no existing literature to document PKCε overexpression in samples from patients with hematopoietic cancers. As such, the role of PKCε in such diseases of the hematopoietic compartment is unclear.

Conclusion

Dysregulation of PKCε is a frequent genetic event associated with oncogenesis from multiple organ sites, including breast, prostate, and head and neck. PKCε is elevated in cell lines derived from patients and primary tumor specimens in numerous cancers providing substantial evidence for PKCε as a general transforming oncogene. Evidence to support PKCε as a prognostic biomarker for disease-recurrence and overall survival is beginning to emerge. Additional work is needed before the utility of PKCε as a value-added tool in the clinical decision-making process can be applied in the clinic. There is accumulating literature on the PKCε signaling pathway involved for cell invasion, motility, proliferation and survival; however, a system biology approach will be needed to begin to understand the conditions necessary to drive PKCε-mediated oncogenesis. Detailed understanding of the global PKCε signaling network, including temporal and intensity dynamics, is essential to identify "druggable" points in the signaling cascade to optimize therapeutic efficacy and minimize unwanted adverse effects. This approach will lead to the development of novel molecularly-targeted anti-cancer therapeutics which hopefully will improve the prognosis or quality of life for patients with aggressive metastatic disease.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MAG and QP drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We apologize to the researchers whose findings were not covered in this Review due to space limitations. This work was supported by grants from the American Cancer Society, the Flight Attendant Medical Research Institute, and the National Institutes of Health/National Cancer Institute (R01-CA135096 and P50-CA097248).

References

1. Jaken S: Protein kinase C isozymes and substrates. Curr Opin Cell Biol 1996, 8(2):168-173.
2. Dempsey EC, Newton AC, Mochly-Rosen D, Fields AP, Reyland ME, Insel PA, Messing RO: Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol Lung Cell Mol Physiol 2000, 279(3):L429-38.
3. Gutchter I, Webb PR, Anderson NG: The isofrom-specific regulation of apoptosis by protein kinase C. Cell Mol Life Sci 2003, 60(4):1061-1070.
4. Griner EM, Kazanian MG: Protein kinase C and dialacylglycerol effectors in cancer. Nat Rev Cancer 2007, 7(4):281-294.
5. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y: Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 1982, 257(13):7847-7851.
6. Kikkawa U, Takai Y, Tanaka Y, Miyake R, Nishizuka Y: Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem 1983, 258(19):11442-11445.
7. Leach KL, James ML, Blumberg PM: Characterization of a specific phorbol ester aporeceptor in mouse brain cytosol. Proc Natl Acad Sci USA 1983, 80(14):4208-4212.
8. Jansen AP, Dreckschmidt NE, Verwiebe EG, Wheeler DL, Oberley TD, Verma AK: Relation of the induction of epidermal ornithine decarboxylase and hyperplasia to the different skin tumor-promotion susceptibilities of protein kinase C alpha, -delta and -epsilon transgenic mice. Int J Cancer 2001, 93(5):635-643.
9. Reddig PJ, Dreckschmidt NE, Ahrens H, Sinsmian R, Tseng CP, Zhou J, Oberley TD, Verma AK: Transgenic mice overexpressing protein kinase Cdelta in the epidermis are resistant to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 1999, 59(22):5710-5718.
10. Jansen AP, Verwiebe EG, Dreckschmidt NE, Wheeler DL, Oberley TD, Verma AK: Protein kinase C-epsilon transgenic mice: a unique model for metastatic squamous cell carcinoma. Cancer Res 2001, 61(3):808-812.
11. Cameron AJ, Procter KJ, Leitges M, Parker PJ: PKC alpha protein but not kinase activity is critical for glioma cell proliferation and survival. Int J Cancer 2008, 123(4):759-779.
12. Cohen EE, Zhu H, Lingen MW, Martin LE, Kuo WL, Choi EA, Kocherginsky M, Parker JS, Chung CH, Rosner MR: A feed-forward loop involving protein kinase Calpha and microRNAs regulates tumor cell cycle. Cancer Res 2009, 69(1):65-74.
13. Baldwin RM, Parolin DA, Lorimer IA: Regulation of glioblastoma cell invasion by PKC iota and RhoB. Oncogene 2008, 27(25):3587-3595.
14. Patel R, Win H, Desai S, Patel K, Matthews JA, Acevedo-Duncan M: Involvement of PKC- iota in glioma proliferation. Cell Prolif 2008, 41(1):122-135.
15. Perfetti GP, Marras E, Concari P, Piccinini F, Tashjian AH Jr: PKCdelta acts as a growth and tumor suppressor in rat colon cells. Oncogene 1999, 18(12):1251-1256.
16. Clark AS, West KA, Blumberg PM, Dennis PA: Altered protein kinase C (PKC) isoforms in non-small cell lung cancer cells: PKCdelta promotes cellular survival and chemotherapeutic resistance. Cancer Res 2003, 63(4):780-786.
17. McCracken MA, Mafirigiala LJ, McKay RA, Siroli JS: Protein kinase C delta is a prosurvival factor in human breast tumor cell lines. Mol Cell Ther 2003, 2(3):273-281.
18. Mischak H, Goodnight JA, Kolch W, Martiny-Baron G, Schaechtle C, Kazanietz MG, Blumberg PM, Pierce JH, Mushinski JF: Overexpression of protein kinase C-delta and -epsilon in NIH 3T3 cells induces opposite effects on growth, morphology, anchorage dependence, and tumorigenicity. J Biol Chem 1993, 268(9):6090-6096.
19. Cacace AM, Guadagnino SN, Krauss RS, Fabbro D, Weinstein IB: The expression of protein kinase C is an oncogene when overexpressed in rat fibroblasts. Oncogene 1993, 8(8):2095-2104.
20. Perfetti GP, Folini M, Lin HC, Mischak H, Piccinini F, Tashjian AH Jr: Overexpression of protein kinase C epsilon is oncogenic in rat colon epithelial cells. Oncogene 1997, 12(16):3833-3838.
21. Cacace AM, Ueffing M, Philipp A, Han EK, Kolch W, Weinstein IB: PKC epsilon functions as an oncogene by enhancing activation of the Raf kinase. Oncogene 1996, 13(12):2517-2526.
22. Cai H, Smola U, Wixler V, Eisenmann-Tappe I, Diaz-Meco MT, Perletti GP, Marras E, Concari P, Piccinini F, Tashjian AH Jr: Protein kinase C-epsilon associates with the Raf-1 kinase and induces the activation of protein kinase C-delta and -epsilon in NIH 3T3 cells. Mol Cell Biol 1997, 17(2):732-741.
23. Ueffing M, Lovric J, Philipp A, Mischak H, Kolch W: Protein kinase C-epsilon associates with the Raf-1 kinase and induces the production of growth factors that stimulate Raf-1 activity. Oncogene 1997, 15(24):2921-2927.
24. Perfetti GP, Concari P, Brusaferrri S, Marras E, Piccinini F, Tashjian AH Jr: Protein kinase C epsilon is oncogenic in colon epithelial cells by interaction with the ras signal transduction pathway. Oncogene 1998, 16(25):3345-3348.
25. Malumbres M, Barbadci M: RAS oncogenes: the first 30 years. Nat Rev Cancer 2003, 3(6):459-465.
26. Albacanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A, Pestell RG: Transforming p21ras mutants and c-Ets-2 activate ras-stimulated G1 progression through independent-regulated protein kinase C isoforms in growth factor activation of the Raf-1 protein kinase. J Mol Cell Biol 1997, 42(25):6329-6337.
27. Cheng M, Sexl V, Sherr CJ, Roussel MF: Assembly of cyclin D-dependent kinase and titration of p27kip1 is regulated by mitogen-activated protein kinase (MEK1). Proc Natl Acad Sci USA 1998, 95(13):7091-7096.
28. Lavoie JN, Rivard N, L’Allemand G, Pouysségur J: A temporal and biochemical link between growth factor-activated MAP kinase, cyclin D1 induction and cell cycle entry. Prog Cell Cycle Res 1996, 2:49-58.
29. Weber JD, Hu W, Jefcoat SC Jr, Raben DM, Baldassare JJ: Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27. J Biol Chem 1997, 272(52):39662-39671.
30. Chun JS, Ha MJ, Jacobson BS: Differential translocation of protein kinase C epsilon during HeLa cell adhesion to a gelatin substratum. J Biol Chem 1996, 271(22):12008-12012.
31. Berrier AL, Mastrangelo AM, Downward J, Ginsberg M, LaFlamme SE: Inhibition of RhoA and B-Raf and S6K2. Cancer Res 2003, 63(16):7301-7309.
32. Pan Q, Bao LW, Kleer CG, Sabel MS, Griffith KA, Teknos TN, Mera-jver SD: Protein kinase C epsilon is a predictive biomarker of aggressive breast cancer and a validated target for RNA interference anticancer therapy. Cancer Res 2005, 65(18):8366-8371.
33. Pan Q, Bao LW, Teknos TN, Mera-jver SD: Targeted disruption of protein kinase C epsilon reduces cell invasion and motility through inactivation of RhoA and Brcoc GTPases in head and neck squamous cell carcinoma. Cancer Res 2006, 66(19):9379-9384.
34. Prekiers R, Hernandez RM, Mayhew MW, White MK, Terrin DM: Molecular analysis of the interactions between protein kinase C-epsilon and filamentous actin. J Biol Chem 1998, 273(41):26790-26798.
35. Abisheva EV, Wescott GG, Mayhew MW, Mcilwain TL, Goodwin CD, McJilton MA, Terrin DM: Regulation of tumor invasion and metastasis in protein kinase C epsilon-transformed NIH3T3 fibroblasts. J Cell Biochem 2002, 85(4):785-797.
36. Vivanco I, Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002, 2(7):489-501.
37. Basu A, Sivaprasad U, Protein kinase C epsilon makes the life and death decision. Cell Signal 2007, 19(8):1633-1642.
38. Pardo OE, Wellbrock C, Khazanda UK, Aurbet M, Arozarena I, Davidson S, Bondz F, Pilenkonko VV, Goult IT, Seire B, Marinis R, Downward J, Seckl MJ: FGF-2 protects small cell lung cancer cells from apoptosis through a complex involving PKCepsilo n, B-Raf and S6K2. EMBO J 2006, 25(13):3078-3088.
39. Wu D, Sivaprasad U, Huang J, Shankar E, Morrow S, Basu A: Protein kinase C epsilon protects MCF-7 cells from TNF-mediated cell death by inhibiting Bax translocation. Apoptosis 2007, 12(10):1893-1900.
40. Tanaka T, Sivaprasad U, Shankar E, Basu A: Downregulation of Bid is associated with PKCe-pisolien-mediated TRAIL resistance. Cell Death Differ 2007, 14(4):851-860.
54. Besson A, Wilson TL, Yong VW. The anchoring protein RACK1 links protein kinase C epsilon to integrin beta chains. Requirements for adhesion and motility. J Biol Chem 2002, 277(24):22073-22084.

55. Zhang J, Baines CP, Zong C, Cardwell EM, Wang G, Vondriska TM, Ping P. Functional proteomic analysis of a three-tier PKC-epsilon-Akt-eNOS signaling module in cardiac protection. Am J Physiol Heart Circ Physiol 2005, 288(2):H645-661.

56. Zhou GL, Zhuo Y, King CC, Fryer BH, Bokoch GM. Field J: Akt phosphorylation of serine 21 on Pak1 modulates Nck binding and cell migration. Mol Cell Biol 2003, 23(22):8058-8069.

57. Menard RE, Mattingly RR. Betagamma subunits stimulate p21-activated kinase 1 (PAK1) through activation of PI3-kinase and Akt but act independently of Rac1/Cdc42. FEBS Lett 2004, 556(1-3):187-192.

58. Alberts AS, Qin H, Carr HS, Frost JA: PAK1 negatively regulates the activity of the Rho exchange factor NET1. J Biol Chem 2000, 275(16):12152-12161.

59. Sanders LC, Matsumura F, Bokoch GM, de Lanerolle P. Inhibition of myosin light chain kinase by p21-activated kinase. Science 1999, 283(5410):2083-2085.

60. Ikebe M, Hartshorne DJ: Phosphorylation of smooth muscle myosin at two distinct sites by myosin light chain kinase. J Biol Chem 1995, 260(18):10027-10031.

61. Totsukawa G, Yamakita Y, Yamashiro S, Hartshorne DJ, Sasaki Y, Matsumura F. Distinct roles of ROCK (Rho-kinase) and MLCK in spatial regulation of MLC phosphorylation for assembly of stress fibres and focal adhesions in T3J fibroblasts. J Cell Biol 2000, 150(4):779-806.

62. Edwards DC, Sanders LC, Bokoch GM, Gill GN. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1999, 1(5):253-259.

63. Sumi T, Matsumura K, Nakamura T. Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem 2001, 276(1):670-676.

64. Maekawa T, Iwizaki T, Boku S, Watanabe N, Fujita A, Iwashita Y, Obinata T, Ohashi K, Mizuno K, Narumiya S. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 1999, 285(5429):895-898.

65. Amano T, Tanabe K, Eto T, Narumiya S, Mizuno K. LIM-kinase 2 isozyme is activated in response to cytokines and functions as a myosin at two distinct sites by myosin light chain kinase. J Biol Chem 1999, 274(33):22073-22084.

66. Aziz MH, Manoharan HT, Verma AK: Protein kinase C-epsilon has isoform pattern in urinary bladder carcinomas. J Urol 2004, 172(2):7756-7765.

67. Xiao H, Goldthwait DA, Mapstone T. Constitutive activation in prostate cancer. Am J Pathol 2007, 168(1):137-144.

68. Brenner W, Benzing F, Gudejko-Thiel J, Fischer R, Farber G, Hengster JG, Seliger B, Thuroff JW. Regulation of beta integrin expression by PKCepsilon in renal cancer cells. Int J Oncol 2004, 25(4):1157-1163.

69. Varga A, Czifra G, Tallai B, Nemeth T, Kovacs I, Kovacs L, Biro T: Tumor grade-dependent alterations in the protein kinase C isoenzyme patterns characteristically modulated in early prostate cancer. Am J Pathol 1999, 154(1):1-7.

70. Wilson TL, Yong VW. The anchoring protein RACK1 links protein kinase C epsilon to integrin beta chains. Requirements for adhesion and motility. J Biol Chem 2002, 277(24):22073-22084.

71. Liu HW, Halayko AJ, Fernandes DJ, Harmon GS, McCauley JA, Kocieniewski P, McConville J, Fu Y, Forsythe SM, Kogut P, Bellam S, Dowell M, Churchill J, Lesso H, Kassiri K, Mitchell RW, Hershenson MB, Camoretti-Mercado B, Solway J. The RhoA/Rho kinase pathway regulates nuclear localization of serum response factor. Am J Respir Cell Mol Biol 2003, 29(1):39-47.

72. Collison EA, Kleer C, Wu M, De A, Gambhir SS, Merajver SD, Kolodny MS. Acorvastatin prevents RhoC isoprenylation, invasion, and metastasis in human melanoma cells. Mol Cancer Ther 2003, 2(10):941-948.

73. Chen X, Knauf JA, Gonsky R, Wang M, Lai EH, Chissoe S, Fagin JA, Korenberg JR. From amplification to gene in thyroid cancer: a high-resolution mapped bacterial-artificial-chromosome resource for cancer chromosome aberrations guides gene discovery after comparative genome hybridization. Am J Hum Genet 1998, 63(2):625-637.

74. Xiao H, Goldthwait DA, Mapstone T. Constitutive activation in prostate cancer. Am J Pathol 2007, 168(1):137-144.