B_c Production in Higgs Boson Decays

Jun Jiang1,2 and Cong-Feng Qiao1,2,3

1School of Physics, University of Chinese Academy of Sciences, YuQuan Road 19A, Beijing 100049, China
2Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences and
3CAS Center for Excellence in Particle Physics, Beijing 100049, China

Abstract

B_c production rate in Higgs boson decays is evaluated in NRQCD framework. Given Higgs total decay width is about 4.20 MeV and the vector B_c^* meson decays completely to the ground state, we find that the branching fraction of B_c meson production in Higgs decays is 8.50×10^{-4}, where both leading QCD and QED contributions are included. This process is hence detectable in the high-luminosity/energy LHC. It is found that the coupling of $Hb\bar{b}$ dominate the processes, contributions from the triangle top quark loop and other couplings ($Hc\bar{c}$, HWW and HZZ) are small. In confronting to the quarkonia production, we find that the fraction rate of B_c production is more than an order of magnitude bigger than those of charmonium and bottomonium production in Higgs decays. Moreover, various uncertainties and differential distributions of the concerned processes are analysed carefully.

PACS number(s): 12.38.Bx, 14.40.Pq, 14.80.Bn

* jiangjun13b@mails.ucas.ac.cn

† qiaof@ucas.ac.cn, corresponding author
I. INTRODUCTION

In July 2012, the Higgs boson of the Standard Model has been found by ATLAS [1] and CMS [2] at Large Hardron Collider (LHC), which is a milestone in particle physics. Recent results and review papers on Higgs measurements and searches at ATLAS and CMS can be found in Ref.s [3–7]. Due to the insufficient Higgs samples and the detectors’ limits, experimental study on the couplings of Higgs and fermions/bosons leaves much to be desired.

To open the era of precise Higgs physics, upgraded LHC, even new colliders are needed. High luminosity/energy scenarios are designed for LHC (HL/HE-LHC) [8]. Running at center-of-mass energy $\sqrt{s} = 14 \text{ TeV}$, cross-section of Higgs boson production at LHC is about 55 pb (gluon-gluon fusion process dominates) [9]. Given that the integrated luminosity is 3 ab^{-1}, HL-LHC would produce 1.65×10^8 Higgs events. While at HE-LHC who runs at $\sqrt{s} = 33 \text{ TeV}$, the cross-section of Higgs production would be about 200 pb, hence Higgs events can be 3.5 times bigger. For the proposed Higgs factory, Circular Electron-Positron Collider (CEPC) running at $\sqrt{s} = 250 \text{ GeV}$ with an integrated luminosity of 5 ab^{-1}, the cross-section of $e^+e^- \rightarrow H^0Z^0$ is about 0.219 pb, resulting in 1.10×10^6 Higgs events only [10]. However at CEPC, since Higgs candidates can be identified through the recoil mass method without tagging its decays, Higgs production and decay are separated apart directly. Moreover at a e^+e^- collider, physicists can perform measurements of model-independent Higgs total width and exclusive Higgs decay channels much better. The absolute values of Higgs coupling to bosons, gluons and heavy fermions can also be measured. When updated to the Super Proton-Proton Collider (SPPC), researchers can even measure the Higgs self-coupling, which is regarded as the holy grail of experimental particle physics.

With the excellent platforms, rare Higgs boson decay processes, like the heavy quarkonia production in Higgs decays, might be observed for the first time. Pioneer investigation on the search of $H^0 \rightarrow J/\psi\gamma$ and $H^0 \rightarrow \Upsilon(nS)\gamma$ has been carried out by ATLAS [11]. Theoretically, some related calculations have been done [12–15]. Within the Non-Relativistic QCD (NRQCD) formulism [16, 17] and light-cone methods [18, 19], both direct and indirect production mechanism and relativistic corrections to $H^0 \rightarrow J/\psi\gamma$ and $H^0 \rightarrow \Upsilon(nS)\gamma$ are studied [13]. In addition, a detailed and complete analysis of $H^0 \rightarrow (\rho, \phi, \omega, J/\psi, \Upsilon(nS)) + \gamma$ at the one-loop level is performed carefully [14]. Further, the complete inclusive production of heavy quarkonia (J/ψ and Υ) in Higgs boson decays are investigated in both color-
singlet and color-octet mechanism \[15\]. Moreover, processes of Higgs boson decays to a quarkonium associated with a \(Z^0 \) boson are also analyzed \[20\], as well as double production of the quarkonia in Higgs decays \[21\]. Of course, all these rare decay channels might be observed and studied at the future HL/HE-LHC or CEPC/SPPC.

Containing two different flavors of heavy quarks, the \(B_c \) mesons are very good research objects to reveal the nature of strong and weak interactions. Besides the study of direct one, indirect \(B_c \) production through heavy particles decay are attractive. It can inform us not only the nature \(B_c \) itself, but also the properties of the parent particles. Study of \(B_c \) production through \(W \) boson decays \[22, 23\], top quark decays \[24–26\] and \(Z^0 \) boson decays \[27–30\] have been studied systematically and carefully. Particularly, Ref. \[26\] and Ref.s \[29, 30\] show us the precise next-to-leading order calculation of \(B_c^{(*)} \) production, which leads the calculation of \(B_c^{(*)} \) production to the precise study level.

In this work, we will study the \(B_c \) production in Higgs boson decays within NRQCD formulism, an estimation of events at HL/HE-LHC and a comparison with Higgs decays to the heavy quarkonia are also included.

The rest of this paper is organized as follows: Section II presents our formalism and calculation method, numerical evaluation and some discussion of the results are shown in Section III, and Section IV gives a summary and some conclusions.

II. CALCULATION SCHEME DESCRIPTION AND FORMALISM

Feynman diagrams for processes \(H^0(k) \rightarrow B_c^{(*)}(p_0) + \bar{c}(p_5) + b(p_6) \) are displayed in Fig.1. In our calculation, both QCD and QED contributions have been considered. According to the NRQCD framework, the decay width can be factorized as

\[
\Gamma = \sum_n \Gamma_n(H^0 \rightarrow (c\bar{b})[n] + \bar{c} + b) \times \langle O[n] \rangle.
\]

(1)

In which the width \(\Gamma_n \) represents the short-distance coefficients at the partonic level which can be calculated perturbatively, long-distance matrix element \(\langle O[n] \rangle \) contains all the non-perturbative hardronization information, and \(n \) stands for the involved \(c\bar{b} \) Fock states. In our computation, two color-singlet states \((c\bar{b})[1S_0] \) and \((c\bar{b})[3S_1] \) (donated as \(B_c \) and \(B_c^* \) respectively) are taken into consideration. And their matrix elements can be related directly.
FIG. 1: The QCD/QED Feynman diagrams of processes $H^0(k) \to B_c^{(*)}(p_0) + \bar{c}(p_5) + b(p_6)$, where convolved/waved lines represent the gluon/photon propagators.

to the regularized Shrödinger wave functions at the origin:

$$\langle B_c | \mathcal{O}[^1S_0] | B_c \rangle \approx \frac{1}{4\pi} |\bar{R}_{B_c}|^2,$$

$$\langle B_c^{*} | \mathcal{O}[^3S_1] | B_c^{*} \rangle \approx \frac{1}{4\pi} |\bar{R}_{B_c^{*}}|^2,$$

where radial wave functions $\bar{R}_{B_c^{(*)}}$ can be computed by potential models [31]. Note that the spin-splitting effect of the wave functions is ignored in our calculation, i.e. $|\bar{R}_{B_c}| = |\bar{R}_{B_c^{*}}|$.

For the partonic coefficient $\hat{\Gamma}_n$, its differential form can be expressed as

$$d\hat{\Gamma}_n = \frac{1}{2m_H} \sum |M(n)|^2 d\Phi_3,$$

where \sum sums over the spin, color and polarization, Φ_3 is the 3-body phase space of the final states, m_H is the mass of Higgs boson. The amplitude $M(n)$ which contains both QCD and QED contributions has the form of

$$M(n) = \sum_{i=1}^{4} (C_{QCD} + C_{QED}) \bar{u}(p_6) \cdot M'_i(n) \cdot v(p_5),$$

where $C_{QCD} = \frac{eC_Fg^2}{2m_W\sin\theta_W}$ and $C_{QED} = -\frac{e^3}{9m_W\sin\theta_W}$, with m_W is the mass of W boson, $\sin\theta_W$ is the sine of Weinberg angle θ_W. And $M'_i(n)$ can be read from Fig. 1 directly with the help
of Mathematica package FeynArt\[32\], their analytical expressions are

\[M_1'(n) = \frac{m_c \gamma_\nu \cdot \Pi(n) \cdot (-p_4 - p_5 - p_6 + m_c) \cdot \gamma^\nu}{(p_4 + p_6)^2((p_4 + p_5 + p_6)^2 - m_c^2)}, \]

\[M_2'(n) = \frac{m_b \gamma_\nu \cdot (\bar{p}_3 + \bar{p}_5 + \bar{p}_6 + m_b) \cdot \Pi(n) \cdot \gamma^\nu}{(p_3 + p_5)^2((p_3 + p_5 + p_6)^2 - m_b^2)}, \]

\[M_3'(n) = \frac{m_c \gamma_\nu \cdot \Pi(n) \cdot \gamma^\nu \cdot (\bar{p}_3 + \bar{p}_4 + \bar{p}_6 + m_c)}{(p_4 + p_6)^2((p_4 + p_5 + p_6)^2 - m_c^2)}, \]

\[M_4'(n) = \frac{m_b (-\bar{p}_3 - \bar{p}_4 - \bar{p}_5 + m_b) \cdot \gamma_\nu \cdot \Pi(n) \cdot \gamma^\nu}{(p_3 + p_5)^2((p_3 + p_4 + p_5)^2 - m_b^2)}. \]

In which, \(\Pi(n) \) is the projector of Fock state \(n \), which has the form of \[33\]

\[\Pi(n) = \frac{1}{2\sqrt{m_c + m_b}} \epsilon(n)(p_0 + m_c + m_b) \frac{\delta_{ij}}{\sqrt{N_c}}, \]

where \(\epsilon^{(1)S_0} = \gamma_5 \), \(\epsilon^{(3)S_1} = \gamma^\alpha \) with \(\epsilon^\alpha \) is the polarization vector of \(^3S_1 \) state, \(i \) and \(j \) are the color indexes of the constitute quarks.

Submitting Eqs. \[34\] into Eq. \[3\], squared amplitude \(|M(n)|^2 \) can be obtained with the help of the Mathematica package FeynCalc \[34\]. To construct the differential phase space \(d\Phi_3 \), we adopt partly the fortran codes of the package FormCalc \[35\]. And with its help, the kinematic and dynamic variables can be extracted out easily to carry out the numerical analysis of differential distributions.

III. NUMERICAL RESULTS AND ANALYSIS

In the numerical computation, the one-loop running coupling constant is employed. And the values of radial wave functions can be found in Ref. \[31\]. In our calculation, wave functions evaluated by QCD (Buchmüller-Tye) potential model is adopted. For convenience, some input parameters are listed as follows \[36\]:

\(m_c = 1.5 GeV, m_b = 4.9 GeV, m_H = 125.7 GeV, \)

\(\alpha = 1/127, \alpha_s(2m_c) = 0.326, \alpha_s(2m_b) = 0.214, \)

\(m_W = 80.4 GeV, sin\theta_W = \sqrt{0.231}, m_{B^{(*)}} = m_b + m_c, \)

\(m_Z = 91.2 GeV, V_{cb} = 0.0414, m_t = 173.2 GeV. \)

In Table \[4\] the QCD and QED contributions to decay widths \(\Gamma(H^0 \rightarrow B_c^{(*)} + \bar{c} + b) \) are presented. In comparison with the QCD one, QED contribution is negligible. According to
TABLE I: QCD and QED contributions to the decay widths $\Gamma(H^0 \to B^*_c + \bar{c} + b)$ (units: KeV).

	B_c	B^*_c
QCD	1.53	2.08
QED	5.71×10^{-5}	7.75×10^{-5}
cross-terms	-0.0187	-0.0254
total decay width	1.51	2.06

TABLE II: Uncertainties of the decay widths $\Gamma(H^0 \to B^*_c + \bar{c} + b)$ (units: KeV) caused by the matrix element $\langle B^*_c | O[1S_0(3S_1)] | B^*_c \rangle$ (units: GeV3). Percentages in brackets are corrections relative to the QCD (B-T) one.

| $\langle B^*_c | O[1S_0(3S_1)] | B^*_c \rangle$ | B_c | B^*_c |
|------------------|-----------|------------|
| QCD (B-T): 0.1306 | 1.51 | 2.06 |
| Power-law: 0.1361 | 1.57(+4%) | 2.15(+4%) |
| Logarithmic: 0.1200 | 1.39(-8%) | 1.89(-8%) |
| Cornell: 0.2534 | 2.93 | 4.00 |

For our complete leading-order NRQCD calculation, the uncertainty sources mainly include the non-perturbative matrix element $\langle O[n] \rangle$, the mass parameters m_b and m_c, and the running coupling constant $\alpha_s(\mu)$. To estimate the uncertainties from matrix element $\langle B^*_c | O[1S_0(3S_1)] | B^*_c \rangle$, we adopt the four potential models in Ref. [31], and the corresponding decay widths are displayed in Table II. If adopting the Power-law potential and Logarithmic potential as the upper and lower limits respectively, we obtain the corrections to the widths are about +4% and −8% accordingly for both B_c and B^*_c cases. In Table III decay widths with varying quark masses are presented, in which when $m_b(m_c)$ varies, the
TABLE III: Uncertainties of the decay widths $\Gamma(H^0 \rightarrow B_c^{(*)} + \bar{c} + b)$ (units: KeV) caused by the mass parameters m_b and m_c (units: GeV). When $m_b(m_c)$ varies, the $m_c(m_b)$ is fixed at its central value.

$m_{b,c}$	B_c	B_c^*
$m_b = 4.9^{+0.2}_{-0.2}$	$1.51^{+0.12}_{-0.12}$	$2.06^{+0.20}_{-0.19}$
$m_c = 1.5^{+0.1}_{-0.1}$	$1.51^{+0.27}_{-0.35}$	$2.06^{+0.40}_{-0.53}$

$m_c(m_b)$ is fixed at its central value. The uncertainty caused by varying m_b is about 8% and 10% for B_c and B_c^* respectively, while that caused by varying m_c is more than two times bigger. By taking QED Feynman diagrams into account, the decay widths now are no longer proportional to $\alpha_s^2(\mu)$ alone, but have the form of

$$\Gamma_{B_c}(\alpha_s) = 33.4\alpha_s^2 - 0.0873\alpha_s + 0.000057,$$

$$\Gamma_{B_c^*}(\alpha_s) = 45.3\alpha_s^2 - 0.119\alpha_s + 0.000077. \quad (8)$$

Considering that the coupling constant $\alpha_s(\mu)$ decreases by 10% from $\alpha_s(2m_b)$, then decay width Γ_{B_c} would decrease from 1.51 KeV down to 1.22 KeV, and $\Gamma_{B_c^*}$ goes from 2.06 KeV down to 1.66 KeV. Both have about 20% depression.

FIG. 2: The triangle loop (top quark only) and W/Z boson propagated Feynman diagrams of processes $H^0(k) \rightarrow B_c^{(*)}(p_0) + \bar{c}(p_5) + b(p_6)$.

7
TABLE IV: Corrections to the decay widths $\Gamma(H^0 \rightarrow B_c^{(*)} + \bar{c} + b)$ (units: KeV) raised from Fig. 2. Some input parameters are listed in Eq. (7), α_{ew} is the electroweak coupling constant and V_{cb} is the CKM matrix element for the mixing of c, b quarks. Percentages in the brackets are the ratios of various corrections relative to the Fig. 1 (QCD only) one. Note that only QCD Feynman diagrams in Fig. 1 are considered.

Contributions	Order	B_c	B_c^*
Fig. 1 (QCD only)	$\alpha_{ew}\alpha_s^2$	1.53	2.08
cross-terms of Fig. 1 (a,b))	$\alpha_{ew}\alpha_s^3$	$5.32 \times 10^{-2}(+3.5\%)$	$6.98 \times 10^{-3}(+0.34\%)$
Fig. 2(c)	$\alpha_{ew}V_{cb}^4$	$2.58 \times 10^{-7}(+0.0\%)$	$2.67 \times 10^{-7}(+0.0\%)$
Fig. 2(d)	α_{ew}^3	$1.65 \times 10^{-3}(+0.11\%)$	$1.67 \times 10^{-3}(+0.08\%)$
cross-terms of Fig. 1 (c,d))	—	$-5.69 \times 10^{-4}(-0.037\%)$	$8.23 \times 10^{-6}(+0.0\%)$

Now, let’s discuss the uncalculated corrections of order-v^2, order-α_s^3 and order-$v^2\alpha_s^3$, where v is the heavy quark or anti-quark velocity in the bound state rest frame. Generally, $v^2 \sim 25\%$ for J/ψ and $v^2 \sim 10\%$ for Υ. Assuming $v^2 \sim 20\%$ for $B_c^{(*)}$ and $\alpha_s(2m_b) \sim 0.2$, we estimate the order-v^2 correction to be 20%, order-α_s^3 correction to be 20% and order-$v^2\alpha_s^3$ correction to be 4%. In fact, we calculated the order-α_s^3 contribution from the triangle loop (top quark only) Feynman diagrams in Fig. 2(a,b), whose correction to the decay widths $\Gamma(H^0 \rightarrow B_c^{(*)} + \bar{c} + b)$ is presented in Table IV. Where percentages in the brackets are the ratios of various corrections relative to the Fig. 1 (QCD only) one. It is found that correction raised from the triangle top quark loop for B_c case is bigger by a factor of 10 than that for B_c^* one. Corrections through the propagation of Higgs fragments to double W/Z bosons (Fig. 2(c,d)) are also included, all of which are quite small.

Assuming that the vector state B_c^* decays to the ground state B_c with 100% efficiency through electromagnetic interaction, then at $\alpha_s(2m_b) = 0.214$ we have the total decay width (Since the corrections listed in Table IV are small, data in Table I are used only.):

$$\Gamma_{total}(H^0 \rightarrow B_c + \bar{c} + b) = 3.57_{-0.67}^{+0.88} KeV,$$

where the errors are caused by varying m_c only, which should be the biggest uncertainty

1 This seems strange but we checked the calculation carefully.
source (as high as 25% correction). If we adopt the Higgs total decay width \(\Gamma_H = 4.20 \text{ MeV} \) \[37\], then we obtain the total branching fraction:

\[
Br_{\text{total}}(H^0 \rightarrow B_c + \bar{c} + b) = \frac{\Gamma_{\text{total}}(H^0 \rightarrow B_c + \bar{c} + b)}{\Gamma_H} \\
= 8.50(^{+1.6}_{-2.1}) \times 10^{-4}. \tag{10}
\]

Presently experimental results on Higgs couplings have no deviation from the Standard Model predictions \[3–7\], yet the new physics might lie in the Yukawa coupling highly possible. Presumably, the total branching fraction \(Br_{\text{total}} \) has a strong dependence only on the \(Hb\bar{b} \) coupling\(^2\). Given a adjustable factor \(\kappa_b \) to the \(Hb\bar{b} \) coupling, we obtain a \(\kappa_b^2 \) factor to the total branching fraction. For example, 300% correction \((\kappa_b^2 = 4) \) to the total branching fraction implies a 100% deviation from the Standard Model \(Hb\bar{b} \) coupling. In addition, new heavier particles which couple to Higgs boson could give an appreciable enhancement to the triangle loop in Fig. 2(a,b), and/or to the coupling similar to the ones in Fig. 2(c,d) if the new particles interact with gluons and quarks.

Running at \(\sqrt{s} = 14 \text{ TeV} \) and with the integrated luminosity of \(3 \text{ ab}^{-1} \), HL-LHC could produce \(1.65 \times 10^8 \) Higgs boson. Hence we can obtain about \(1.4 \times 10^5 B_c \) events according to Eq. (10). For the \(B_c \) detection, the fully constructed channel is \(B_c \rightarrow J/\psi(1S)\pi^+ \), whose branching fraction is about 0.5% \[38\]. Further considering that the branching rate of \(J/\psi \rightarrow l^+l^- (l = e, \mu) \) is about 12% \[36\], number of \(B_c \) candidates produced in Higgs decays at HL-LHC is about 80. When center-of-mass energy is upgraded to 33 TeV (i.e. at HE-LHC), the \(B_c \) events produced would be approaching 300. Then it might be a choice for experimental physicists to study the couplings of Higgs and heavy quarks through the Higgs decays to \(B_c \) channel.

To make our analysis more helpful to the experiments detection, the differential distributions of invariant masses \(s_1 = (p_0 + p_5)^2 \) and \(s_2 = (p_5 + p_6)^2 \), i.e. \(d\Gamma / ds_1 \) and \(d\Gamma / ds_2 \) are presented in Fig. 3. And the differential distributions \(d\Gamma / d\cos\theta_{12} \) and \(d\Gamma / d\cos\theta_{13} \) are displayed in Fig. 4, where \(\theta_{12} \) is the angle between \(\vec{p}_5 \) and \(\vec{p}_6 \), and \(\theta_{13} \) is that between \(\vec{p}_6 \) and \(\vec{p}_0 \) in the Higgs boson rest frame. It can be found that the largest differential width is achieved when \(B_c^{(*)} \) mesons and \(\bar{c} \) quark fly side by side \((\theta_{12} = 0) \), or \(B_c^{(*)} \) mesons and \(b \) quark fly back to back \((\theta_{13} = \pi) \). Here is the reason:

\(^2\) This is reasonable since the contributions from the triangle top quark loop and other couplings \((Hc\bar{c}, HZZ \text{ and } HWW) \) are relatively small, see Tables IV, V.
FIG. 3: Differential decay widths $d\Gamma/ds_1$ (left) and $d\Gamma/ds_2$ (right) for processes $H^0(k) \rightarrow B_c^*(p_0) + \bar{c}(p_5) + b(p_6)$, where $s_1 = (p_0 + p_5)^2$ and $s_2 = (p_5 + p_6)^2$ are the invariant masses.

FIG. 4: Differential decay widths $d\Gamma/d\cos\theta_{12}$ (left) and $d\Gamma/d\cos\theta_{13}$ (right) for processes $H^0(k) \rightarrow B_c^*(p_0) + \bar{c}(p_5) + b(p_6)$, where $\theta_{12}(\theta_{13})$ is the angle between \vec{p}_0 and $\vec{p}_5(\vec{p}_6)$ in the Higgs boson rest frame.

- firstly, Feynman diagrams (2) and (4) in Fig. 1 (i.e. the $Hb\bar{b}$ coupling one) dominate the processes;
- then, the gluon propagator $\frac{1}{(p_3+p_5)^2}$ in $M_{2,4}^c(n)$ reaches its peak value when $B_c^*(p_0)$ mesons (in fact, the constitute quark $c(p_3)$) and $\bar{c}(p_5)$ quark go to the same direction.

Now, we will compare our results with the fragmentation ones. To make it more clear, we divide our complete NRQCD leading-order results into three groups (only QCD contributions are included here): contributions from $Hb\bar{b}$ coupling (diagrams (2,4) in Fig. 1); contributions from $Hc\bar{c}$ coupling (diagrams (1,3) in Fig. 1); the cross-terms of the previous two groups. The corresponding branching fractions are displayed in Table V where the percentages in brackets are ratios of the contributions from the three groups relative to the total branching fractions. Obviously, the contribution from $Hb\bar{b}$ coupling dominates the processes, about two orders of magnitude bigger than the $Hc\bar{c}$ one.
TABLE V: Branching fractions of \(H^0(k) \to B_c^{(*)}(p_0) + \bar{c}(p_5) + b(p_0) \) through complete leading-order NRQCD calculation (QCD contributions only). The percentages in brackets are ratios of the contributions from the three groups relative to the total branching fractions.

Branching Fractions	\(B_c \)	\(B_c^* \)
\(Hb\bar{b} \) coupling	\(3.61 \times 10^{-4} +98.9\% \)	\(4.97 \times 10^{-4} +100.2\% \)
\(Hc\bar{c} \) coupling	\(8.82 \times 10^{-7} +0.2\% \)	\(7.32 \times 10^{-7} +0.2\% \)
Cross-terms	\(3.34 \times 10^{-6} +0.9\% \)	\(-1.85 \times 10^{-6} -0.4\% \)

TABLE VI: Branching fractions of \(H^0 \to B_c^{(*)} \) through \(\bar{b} \) and \(c \) quark fragmentation calculation.

Branching Fractions	\(B_c \)	\(B_c^* \)
\(H^0 \to \bar{b}b \to B_c^{(*)} \)	\(3.10 \times 10^{-4} \)	\(4.36 \times 10^{-4} \)
\(H^0 \to c\bar{c} \to B_c^{(*)} \)	\(2.00 \times 10^{-7} \)	\(1.73 \times 10^{-7} \)

Under the fragmentation calculation, the branching fractions can be obtained by Higgs boson decays to \(\bar{b}b \) or \(c\bar{c} \), following the \(\bar{b} \) or \(c \) quark fragments to \(B_c^{(*)} \) mesons. At \(m_H = 125.7 GeV \), the decay rates of \(H^0 \to \bar{b}b \) and \(H^0 \to c\bar{c} \) are 56.6\% and 2.85\% respectively [37]. As for the fragmentation probabilities of \(\bar{b}/c \to B_c^{(*)} \), by adopting the Eq.s (13-16) in Ref. [39] but our input parameters, we obtain the probabilities:

\[
P_{\bar{b} \to B_c} = 5.48 \times 10^{-4}, \\
P_{\bar{b} \to B_c^*} = 7.70 \times 10^{-4}, \\
P_{c \to B_c} = 7.02 \times 10^{-6}, \\
P_{c \to B_c^*} = 6.06 \times 10^{-6}.
\]

When multiplying these fragmentation probabilities by the decay rates of Higgs decays to \(\bar{b}b/c\bar{c} \) couples, the branching fractions of \(H^0 \to B_c^{(*)} \) can be obtained directly, which are presented in Table VI. It is found that the fragmentation results consist with the complete
leading-order calculation well3.

Finally, let’s take a look at the branching fractions of Higgs boson decays to charmonium and bottomonium. Within complete leading-order calculation, we obtain the branching fractions of $H^0 \to (\eta_c, J/\psi) + \bar{c} + c$ and $H^0 \to (\eta_b, \Upsilon) + \bar{b} + b$ channels as follows (only QCD contributions are included):

$$
Br(H^0 \to \eta_c + \bar{c} + c) = 7.87 \times 10^{-5},
$$
$$
Br(H^0 \to J/\psi + \bar{c} + c) = 7.59 \times 10^{-5},
$$
$$
Br(H^0 \to \eta_b + \bar{b} + b) = 8.89 \times 10^{-5},
$$
$$
Br(H^0 \to \Upsilon + \bar{b} + b) = 6.61 \times 10^{-5}.
$$

(12)

Which are about a factor of 1/5 smaller than the B_c one. Consistent results can also be obtained via the fragmentation calculation (fragmentation probabilities of b/c quarks fragment into quarkonia can be found in Ref. [40]). It is worth noting that a factor 2 should be multiplied since both the quark and anti-quark can fragment into the quarkonia. The $Hb\bar{b}$ coupling, which appears in Higgs decays to $B^{(*)}_c$, is about 10 times larger than the $Hc\bar{c}$ coupling, which appears in the Higgs decays to charmonium. Hence, the Higgs branching fraction to $B^{(*)}_c$ is larger than the Higgs branching fraction to charmonium. The propagator $\frac{1}{(p_3 + p_5)^2}$ in $M_{2A}^2(n)$ peaks at much larger values when the gluon fragments to $c\bar{c}$ than when it fragments to $b\bar{b}$. This effect accounts for the enhancement of the Higgs branching fraction to $B^{(*)}_c$ relative to the Higgs branching fraction to bottomonium.

In contrast to the exclusive radiative Higgs decay processes $H^0 \to (J/\psi, \Upsilon(nS)) + \gamma$, we find that the branching fractions of $H^0 \to B^{(*)}_c + \bar{c} + b$ are even larger. Latest results for $H^0 \to (J/\psi, \Upsilon(nS)) + \gamma$ can be found in Ref. [14], where direct amplitudes are evaluated at next-to-leading order in α_s and loop-induced indirect amplitudes are also included. The branching fractions obtained there are $\sim 10^{-6}$ for J/ψ and $\sim 10^{-9}$ for $\Upsilon(nS)$, which are two and five orders of magnitude smaller than the $B^{(*)}_c$ one respectively.

3In fact, the results related to $Hb\bar{b}$ coupling agree under the two framework, yet fragmentation results related to $Hc\bar{c}$ coupling deviate by a factor of 4 from the complete leading-order calculation. We believe that the non-relativistic assumption ($v \simeq 0$) is not an apposite one when c quark propagator is involved since c quark is not heavy enough in the bound state. Although both framework have adopted the assumption, it might enlarge the differences of those two calculation methods when c quark propagator emerges. We guess that the higher order correction in v might reduce the discrepancy here. Luckily, the contribution containing the $Hc\bar{c}$ coupling is small in comparison with the $Hb\bar{b}$ coupling one here.
IV. SUMMARY AND CONCLUSIONS

In this work, we calculate the leading-order decay widths of processes $H^0 \rightarrow B^*_c + \bar{c} + b$ under NRQCD formulism, which include both QCD and QED contributions. Corrections from triangle top quark loop and HWW (HZZ) couplings are also discussed. Uncertainties of the widths caused by the matrix elements $\langle O[n] \rangle$, quark masses and running coupling constant $\alpha_s(\mu)$ are taken into consideration. We also estimate the total branching fractions of B^*_c mesons in Higgs boson decays, as well as the events at HL/HE-LHC. Effects on the total branching fraction when the $Hb\bar{b}$ coupling deviates from the Standard Model is discussed. To make the analysis more helpful, the differential distributions $d\Gamma/ds_{1,2}$ and $d\Gamma/d\cos\theta_{12,13}$ are presented. Moreover, a comparison between our results and the ones calculated under fragmentation formulism is displayed in detail. And the comparison between the branching fractions of Higgs boson decays to B^*_c and those of Higgs decays to charmonium ($\eta_c, J/\psi$) or bottomonium (η_b, Υ) is also presented.

We find that QCD contribution dominates the processes as is expected, and the varying c quark mass has a strong influence on the total branching fraction (the correction to the total branching rates can reach about 25%). We also find that Feynman diagrams with the coupling of $Hb\bar{b}$ (i.e., Fig.1(2,4)) dominate, contributions from the triangle top quark loop and other couplings ($Hc\bar{c}$, HWW and HZZ) are small comparatively. Differential distributions $d\Gamma/d\cos\theta_{12,13}$ show that the largest differential width emerges when B^*_c mesons and \bar{c} jet fly side by side, or B^*_c mesons and b jet fly back to back at the Higgs boson rest frame. Moreover, the calculation results inform that the branching fractions of Higgs boson decays to B^*_c are bigger than those of Higgs decays to quarkonia.

According to our study, when 14 TeV LHC delivering the integrated luminosity of 3 ab^{-1} (i.e. HL-LHC), about 1.4×10^5 B_c events can be produced through Higgs boson decays. Considering that the detection efficiency of fully constructed channel $B_c \rightarrow J/\psi(\rightarrow l^+l^-) + \pi^+$ is around six in ten thousands, about 84 B_c candidates can be observed at HL-LHC, and 3.5 times bigger when the center-of-mass energy is upgraded to 33 TeV (i.e. HE-LHC).

As a final remark, the study of B_c production in Higgs boson decays could be considered as the choice for the measurement of $Hb\bar{b}$ coupling at future HL/HE-LHC. And it is also a place searching for signals which deviate from the Standard Model.
Acknowledgments

This work was supported in part by Ministry of Science and Technology of the People’s Republic of China (2015CB856703), and by the National Natural Science Foundation of China (NSFC) under the grant 11375200.

[1] G. Aad et al. [ATLAS Collaboration], “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1 (2012) [arXiv:1207.7214 [hep-ex]].

[2] S. Chatrchyan et al. [CMS Collaboration], “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC,” Phys. Lett. B 716, 30 (2012) [arXiv:1207.7235 [hep-ex]].

[3] D. Orestano [ATLAS Collaboration], “Latest Higgs physics results with the ATLAS detector,” Int. J. Mod. Phys. Conf. Ser. 39, 1560091 (2015), doi:10.1142/S2010194515600915.

[4] K. Mochizuki [ATLAS Collaboration], “Search for the Higgs boson in fermionic channels using ATLAS detector,” J. Phys. Conf. Ser. 623, no. 1, 012020 (2015), doi:10.1088/1742-6596/623/1/012020.

[5] M. Flechl [CMS Collaboration], “Higgs boson discovery and recent results,” [arXiv:1510.01924 [hep-ex]].

[6] The ATLAS and CMS Collaborations, “Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV,” ATLAS-CONF-2015-044, CMS-PAS-HIG-15-002.

[7] C. Kourkoumelis [ATLAS and CMS Collaborations], “ATLAS and CMS review of SM Higgs boson searches: bosonic and fermionic decays,” PoS Charged 2014, 001 (2015);

P. Jež [ATLAS and CMS Collaborations], “Review of SM Higgs properties measured by ATLAS and CMS: couplings, spin, mass,” PoS Charged 2014, 002 (2015).

[8] E. Todesco, M. Lamont and L. Rossi, “High luminosity LHC and high energy LHC,” Conference: C12-05-28.4.

[9] LHC Higgs Cross Section Working Group, https://twiki.cern.ch/twiki/bin/view/LHCPhysics/HiggsEuropeanStrategy#SM_Higgs_production_cross_se_AN2.
[10] [CEPC-SPPC Study Group Collaboration], “CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector,” IHEP-CEPC-DR-2015-01, IHEP-TH-2015-01, HEP-EP-2015-01; “CEPC-SPPC Preliminary Conceptual Design Report. 2. Accelerator,” IHEP-CEPC-DR-2015-01, IHEP-AC-2015-01.

[11] G. Aad et al. [ATLAS Collaboration], “Search for Higgs and Z Boson Decays to $J/\psi\gamma$ and $\Upsilon(nS)\gamma$ with the ATLAS Detector,” Phys. Rev. Lett. 114, no. 12, 121801 (2015) [arXiv:1501.03276 [hep-ex]].

[12] N. N. Achasov and V. K. Besprozvannykh, “Decays $\psi, \Upsilon \rightarrow H(a)\gamma$ and $H \rightarrow \psi\gamma, \Upsilon\gamma$,” Sov. J. Nucl. Phys. 55, 1072 (1992) [Yad. Fiz. 55, 1934 (1992)].

[13] G. T. Bodwin, F. Petriello, S. Stoynev and M. Velasco, “Higgs boson decays to quarkonia and the $H\bar{c}c$ coupling,” Phys. Rev. D 88, no. 5, 053003 (2013) doi:10.1103/PhysRevD.88.053003 [arXiv:1306.5770 [hep-ph]];
G. T. Bodwin, H. S. Chung, J. H. Ee, J. Lee and F. Petriello, “Relativistic corrections to Higgs boson decays to quarkonia,” Phys. Rev. D 90, no. 11, 113010 (2014) [arXiv:1407.6695 [hep-ph]].

[14] M. Knig and M. Neubert, “Exclusive Radiative Higgs Decays as Probes of Light-Quark Yukawa Couplings,” JHEP 1508, 012 (2015), [arXiv:1505.03870 [hep-ph]].

[15] C. F. Qiao, F. Yuan and K. T. Chao, “Quarkonium production in SM Higgs decays,” J. Phys. G 24, 1219 (1998) [hep-ph/9805431].

[16] G. T. Bodwin, E. Braaten and G. P. Lepage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” Phys. Rev. D 51, 1125 (1995) [Phys. Rev. D 55, 5853 (1997)] [hep-ph/9407339].

[17] A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, “NLO production and decay of quarkonium,” Nucl. Phys. B 514, 245 (1998) [hep-ph/9707223].

[18] G. P. Lepage and S. J. Brodsky, “Exclusive Processes in Perturbative Quantum Chromodynamics,” Phys. Rev. D 22, 2157 (1980).

[19] V. L. Chernyak and A. R. Zhitnitsky, “Asymptotic Behavior of Exclusive Processes in QCD,” Phys. Rept. 112, 173 (1984).

[20] D. N. Gao, “A note on Higgs decays into Z boson and $J/\psi(\Upsilon)$,” Phys. Lett. B 737, 366 (2014) [arXiv:1406.7102 [hep-ph]].

[21] V. Kartvelishvili, A. V. Luchinsky and A. A. Novoselov, “Double vector quarkonia production
in exclusive Higgs boson decays,” Phys. Rev. D 79, 114015 (2009) [arXiv:0810.0953 [hep-ph]]; V. G. Kartvelishvili, A. V. Luchinsky and A. A. Novoselov, “Double production of vector quarkonia in exclusive Higgs boson decays,” Phys. Atom. Nucl. 73, 949 (2010) [Yad. Fiz. 73, 983 (2010)].

[22] C. F. Qiao, L. P. Sun, D. S. Yang and R. L. Zhu, “W Boson Inclusive Decays to Quarkonium at the LHC,” Eur. Phys. J. C 71, 1766 (2011) [arXiv:1103.1106 [hep-ph]].

[23] Q. L. Liao, X. G. Wu, J. Jiang, Z. Yang and Z. Y. Fang, “Heavy Quarkonium Production at LHC through W Boson Decays,” Phys. Rev. D 85, 014032 (2012) [arXiv:1111.4609 [hep-ph]]; Q. L. Liao, X. G. Wu, J. Jiang, Z. Yang, Z. Y. Fang and J. W. Zhang, “Excited Heavy Quarkonium Production at the LHC through W-Boson Decays,” Phys. Rev. D 86, 014031 (2012) [arXiv:1204.2594 [hep-ph]].

[24] C. F. Qiao, C. S. Li and K. T. Chao, “Top quark decays into heavy quark mesons,” Phys. Rev. D 54, 5606 (1996) [hep-ph/9603275].

[25] C. H. Chang, J. X. Wang and X. G. Wu, “Production of B_c or \bar{B}_c meson and its excited states via \bar{t} quark or t quark decays,” Phys. Rev. D 77, 014022 (2008) [arXiv:0711.1898 [hep-ph]].

[26] P. Sun, L. P. Sun and C. F. Qiao, “The Next-to-Leading Order Corrections to Top Quark Decays to Heavy Quarkonia,” Phys. Rev. D 81, 114035 (2010) [arXiv:1003.5360 [hep-ph]].

[27] C. H. Chang and Y. Q. Chen, “The Production of B_c or \bar{B}_c meson associated with two heavy quark jets in Z0 boson decay,” Phys. Rev. D 46, 3845 (1992) [Phys. Rev. D 50, 6013 (1994)].

[28] L. C. Deng, X. G. Wu, Z. Yang, Z. Y. Fang and Q. L. Liao, “Z0 Boson Decays to $B_c^{(*)}$ Meson and Its Uncertainties,” Eur. Phys. J. C 70, 113 (2010) [arXiv:1009.1453 [hep-ph]]; Z. Yang, X. G. Wu, L. C. Deng, J. W. Zhang and G. Chen, “Production of the P-Wave Excited B_c-States through the Z^0 Boson Decays,” Eur. Phys. J. C 71, 1563 (2011) [arXiv:1011.5961 [hep-ph]].

[29] C. F. Qiao, L. P. Sun and R. L. Zhu, “The NLO QCD Corrections to B_c Meson Production in Z^0 Decays,” JHEP 1108, 131 (2011) [arXiv:1104.5587 [hep-ph]].

[30] J. Jiang, L. B. Chen and C. F. Qiao, “QCD NLO corrections to inclusive B_c^\pm production in Z^0 decays,” Phys. Rev. D 91, no. 3, 034033 (2015) [arXiv:1501.00338 [hep-ph]].

[31] E. J. Eichten and C. Quigg, “Quarkonium wave functions at the origin,” Phys. Rev. D 52, 1726 (1995) [hep-ph/9503356].

[32] T. Hahn, “Generating Feynman diagrams and amplitudes with FeynArts 3,” Comput. Phys.
Commun. 140, 418 (2001) [hep-ph/0012260].

[33] G. T. Bodwin and A. Petrelli, “Order-v^4 corrections to S-wave quarkonium decay,” Phys. Rev. D 66, 094011 (2002) [Phys. Rev. D 87, no. 3, 039902 (2013)] [arXiv:1301.1079 [hep-ph]].

[34] R. Mertig, M. Bohm and A. Denner, “FEYN CALC: Computer algebraic calculation of Feynman amplitudes,” Comput. Phys. Commun. 64, 345 (1991).

[35] T. Hahn and M. Perez-Victoria, “Automatized one loop calculations in four-dimensions and D-dimensions,” Comput. Phys. Commun. 118, 153 (1999) [hep-ph/9807565].

[36] K. A. Olive et al. [Particle Data Group Collaboration], “Review of Particle Physics,” Chin. Phys. C 38, 090001 (2014).

[37] S. Heinemeyer et al. [LHC Higgs Cross Section Working Group Collaboration], “Handbook of LHC Higgs Cross Sections: 3. Higgs Properties,” arXiv:1307.1347 [hep-ph].

[38] C. H. Chang and Y. Q. Chen, “The Decays of B_c meson,” Phys. Rev. D 49, 3399 (1994).

[39] E. Braaten, K. m. Cheung and T. C. Yuan, “Perturbative QCD fragmentation functions for B_c and B_c^* production,” Phys. Rev. D 48, 5049 (1993) [hep-ph/9305206].

[40] E. Braaten, K. m. Cheung and T. C. Yuan, “Z^0 decay into charmonium via charm quark fragmentation,” Phys. Rev. D 48, 4230 (1993) [hep-ph/9302307].