High Prevalence of Urinary Schistosomiasis in a Desert Population: Results from an Exploratory Study Around the Ounianga Lakes in Chad

Wendelin Moser
Swiss Tropical and Public Health Institute: Schweizerisches Tropen- und Public Health-Institut

Annour Aboum Batil
IRED Institut de Recherche en Elevage pour le Developpement

Rebekka Ott
Swiss Tropical and Public Health Institute: Schweizerisches Tropen- und Public Health-Institut

Moussa Abderamane
Univeriste de N'Djamena

Ruth Clements
Natural History Museum

Rahel Wampfler
Swiss Tropical and Public Health Institute: Schweizerisches Tropen- und Public Health-Institut

Sven Poppert
Swiss Tropical and Public Health Institute: Schweizerisches Tropen- und Public Health-Institut

Peter Steinmann
Swiss Tropical and Public Health Institute: Schweizerisches Tropen- und Public Health-Institut

Fiona Allan
Natural History Museum

Helena Greter
Swiss Tropical and Public Health Institute: Schweizerisches Tropen- und Public Health-Institut
https://orcid.org/0000-0003-1844-3961

Research Article

Keywords: Bulinus truncatus. Chad, malacology, Ounianga, POC-CCA, prevalence, Sahara, Schistosoma bovis, Schistosoma haematobium, schistosomiasis

Posted Date: October 28th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1016632/v1
High prevalence of urinary schistosomiasis in a desert population: results from an exploratory study around the Ounianga lakes in Chad

Wendelin Moser¹,², Annour Adoum Batil³, Rebekka Ott¹,², Moussa Abderamane⁴, Ruth Clements⁵, Rahel Wampfler¹,², Sven Poppert¹,², Peter Steinmann¹,², Fiona Allan⁵, Helena Greter¹,²

¹Swiss Tropical and Public Health Institute, Basel, Switzerland
²University of Basel, Basel, Switzerland
³Institut de Recherche en Elevage pour le Développement, Ndjamena, Chad
⁴University of Ndjamena, Geology Department, Ndjamena, Chad
⁵Department of Life Sciences, Natural History Museum, London, UK

*Corresponding author:
Helena Greter
Swiss Tropical and Public Health Institute
Socinstrasse 57, P.O. Box
CH-4002 Basel, Switzerland
Tel.: +41 61 284 87 30
E-mail: helena.greter@swisstph.ch
Orcid: 0000-0003-1844-3961
ABSTRACT

Background: Researching a water-borne disease in the middle of the Sahara desert might not seem the most relevant concern. However, nomadic Sahelian pastoralist’s health concerns regarding their livestock and anecdotal reports about trematode infections of *Fasciola* spp and *Schistosoma* spp in desert-raised animals justified an exploratory study focusing on the lakes of Ounianga in Northern Chad. The aim was to test whether trematode parasites such as *Schistosoma* spp occur in human populations living around the Sahara desert lakes of Ounianga Kebir and Ounianga Serir in northern Chad.

Methods: The study comprised of three components. First, a cross sectional survey based on a random sample drawn from the population to detect infections with *S. haematobium* and *S. mansoni*; second, focus group discussions exploring disease priorities, access to health and health seeking behaviour; and third, searching water contact sites for intermediate host snails. Samples of trematode parasites and snails were confirmed on species level by molecular genetics methods.

Results: Among 258 participants, the overall *S. haematobium* prevalence using urine filtration was 39.1% (95% CI 33.2% – 45.1%), with 51.5% of the infected suffering from heavy infection. The intermediate host snail of *S. haematobium* (*Bulinus truncatus*) occurred at water sites near both study villages, revealing the potential for local transmission. Although a positive *S. mansoni* POC-CCA test result was obtained from 15.2% (10.6%-19.7%) of the samples no intermediate host snails of *S. mansoni* were found, and the relevance of *S. mansoni* remains uncertain. Qualitative findings underline the importance of morbidity caused by urinary schistosomiasis, and the lack of access to diagnostics and treatment as a major health concern.

Conclusion: This research revealed a high prevalence of urinary schistosomiasis in the population living around the lakes of Ounianga in the Sahara, a UNESCO world heritage site in Chad. Despite the high public health importance of the associated morbidity expressed by the population there is no access to diagnostics and treatment. Further research is needed to develop and test a context adapted intervention.
Key words

Bulinus truncatus. Chad, malacology, Ounianga, POC-CCA, prevalence, Sahara,

Schistosoma bovis, Schistosoma haematobium, schistosomiasis
BACKGROUND

Schistosome infections are listed among the 20 neglected tropical diseases (NTDs) targeted by the World Health Organisation (WHO) for elimination by 2030 (1). In endemic regions, those populations affected by schistosomiasis are often those living in poverty and/or in settings with restricted access to clean water for their sanitation and hygiene needs (2). Worldwide, an estimated 230 million people harbour an infection with *Schistosoma* spp (3). Occupational and recreational activities in close contact with freshwater, e.g. fishing, doing laundry and bathing present the main risk of infections. Highest prevalence is commonly observed among school-aged children as they enjoy playing in stagnant water sites. Undetected and therewith untreated urinary or intestinal schistosomiasis leads to chronic infections and serious morbidities including a wide range of different pathologies as e.g. anaemia, stunted growth, impaired cognition and organ damages, that negatively affect economic activities and therewith maintain poverty (4, 5). The safe and effective drug, Praziquantel, is currently used for mass drug administration programs in endemic settings as well as for treatment of individual acute infections. However, its effectiveness is threatened by increasing resistance of the parasite that is observed (6).

The majority of schistosomiasis cases occur in sub-Saharan Africa, and the disease is reported from countries throughout the Sahel, including Mauretania, Mali, Niger, Chad and Sudan (7-11). Infections are predominantly due to *Schistosoma haematobium* which has the ability to maintain its life cycle in a semi-arid environment, including in the ecoregion of the Sahel (12). Yet, there are old reports on schistosomiasis occurrence also more to the north, from within the Sahara desert (7, 13). The occurrence of *Schistosoma* spp, a genus of water-transmitted parasites belonging to the clades of digenean trematodes, and its occurrence in the hot and hyper-arid desert may seem surprising but occurrence in at least two desert-specific ecosystems have been described so far. These are (a) oases where schistosomiasis transmission is linked to man-made irrigation systems (14, 15), and (b) areas with reclaimed land for agriculture, made cultivable by artificial irrigation from deep wells (16).
Anecdotal reports from nomadic Sahelian pastoralists on *Fasciola* spp, another digenean trematode species, in livestock raised in the Chadian Sahara and recent reports about modern and early Holocene finding of intermediate host snails pointed towards the occurrence and potential ongoing transmission of schistosomiasis at the desert lakes of Ounianga, Chad (17). Triggered by these information an exploratory study was conceptualized with the aim to investigate whether trematode parasites such as *Schistosoma* spp occur in two settlements at the lakes of Ounianga, Ennedi Ouest province, in Northern Chad. The study was covering three aspects, namely epidemiology, malacology and the population’s health priorities, their access to health care and treatment.

METHODS

Study site and study population

The study was carried out in January 2019 around the lakes and the two settlements of Ounianga Kebir and Ounianga Serir, Ennedi Ouest province in Northern Chad (Figure 1).

<<Figure 1 near here>>

Fig 1. A map showing the lakes and the settlements of Ounianga Kebir and Ounianga Serir in Northern Chad.>>

The official population estimates according to the latest national population census in Chad for Ounianga Kebir counts around 9000 people and for Ounianga Serir about 1000 people (RGPH2, 2009). In both communities, the primary schools were operational, yet not the secondary schools. The only functional health centre of the Ounianga district is located in Ounianga Kebir and its catchment population is estimated to include 30,000 people. Ounianga Serir has no functional health centre; the population has set up a health post to provide basic health services to the community members.

Epidemiological survey
The resident population of Ounianga Kebir and Ounianga Serir, older than 5 years of age, were eligible for participation. Sample size was calculated using Epi Info 7.1.3.3 (CDC). Parameters used were “population survey” with two-sided confidence intervals of 95%, an expected frequency of 50% and a population size of 10000, resulting in a sample size of 370. Proportional to the total population estimates, the targeted sample size repartition was 330 people in Ounianga Kebir and 40 people in Ounianga Serir. At household level and at the primary schools, individuals were randomly selected by applying the spatial sampling method from the Expanded Programme of Immunization (EPI) of the World Health Organization as previously published (18). After obtaining oral consent from each selected individual, or in case of children from their caretakers, they were asked to produce a urine sample. A mobile field laboratory was set up at the health centre, and health post, respectively. The urine samples were analysed for haematuria by reagent strip testing (Hemastix; Siemens Healthcare Diagnostics GmbH; Eschborn, Germany) and classified as negative, light and severe haematuria as outlined by the testing handbook. Subsequently, 10 ml samples were subjected to urine filtration, followed by microscopic screening of the filter content for the presence of *S. haematobium* eggs. A point-of-care circulating cathodic antigen (POC-CCA) urine cassette test (Rapid Medical Diagnostics; Pretoria, South Africa) was performed to screen for *S. mansoni* infections.

Qualitative survey

In both communities, one focus group discussion (FGDs) with men and one with women were organized. Additionally, one FGD was organized with the staff of the health centre in Ounianga Kebir. In Ounianga Serir, an in-depth interview (IDI) was carried out with the person responsible for the health post. The topics covered by the interview guides were disease priorities and priority health issues, perceptions and health seeking behaviour. FGDs and IDI were assisted by an interpreter who translated the conversation from Arabic to French, allowing the study team to take notes. Digital recordings of the FGDs and IDI were transcribed and translated into French, integrating the notes taken during the FGDs or IDI.
Malacological survey

Individual community members and school-aged children were asked to guide the team to human-water contact sites. At each site, GPS coordinates and the water parameters temperature (°C), pH, conductivity (µs/cm) and dissolved oxygen (mg/l) were recorded, using a portable multimeter (Hach®, HQ40D, Loveland, USA)). For turbidity, a turbidimeter was used (Formazin Nephelometric Units [FNU]; Hach®, 2100P Iso). The snail sampling was performed adhering to standard protocols. In short, for 15 minutes, all aquatic snails were collected by one person using a scoop or forceps to detach them from aquatic and subaquatic plants (19). Subsequently, the snails were placed on wet cotton in petri dishes, and transferred to the field laboratory. Snails were identified to the genus or, if possible to species level on site. At midday, each collected snail identified as intermediate host species was placed in water for three hours to induce cercarial shedding. The snail size (in mm) and weight (in mg) was measured using a calibre and balance, respectively. Thereafter, all snail specimens were conserved in 70% ethanol, and shipped to the National History Museum, London (NHM) for molecular analysis.

Molecular snail species and infections status confirmation

The snail samples selected for the molecular analyses represented individuals from each collection site. All specimens were stored in 70% ethanol in the field. On arrival at the NHM, the snail species identification was confirmed based on morphological characters and samples re-spirited (absolute ethanol) for incorporation into the Schistosomiasis Collection at the Natural History Museum (SCAN) (20). Photographic images were taken of the snail shells prior to DNA extraction. Specimens were placed in TE buffer (10mM Tris, 0.1mM EDTA) pH 7.4 for one hour in order to remove any remaining alcohol from within the tissue, which might interfere with subsequent extraction steps. Total genomic DNA was isolated from head/foot tissue using the DNeasy Blood and Tissue kit (Qiagen, UK) according to manufacturer’s instructions. DNA was eluted into 200µl sterile water.
Amplification of Cox1 fragments of snail DNA

A polymerase chain reaction (PCR) amplification of a partial cytochrome oxidase 1 (Cox1) sequence was performed using primers LCO1490 (5'GGTCAACAAATCATAAAG ATATTGG3' forward) and HCO2198 (5'TAAACTTCAGGGTGACCAAAAAATCA3' reverse) (21). PCR investigations and sequencing conditions were chosen as previously outlined (22, 23).

Checking of sequence data

The electropherograms produced were checked and Cox1 sequences edited using Geneious, version 11.0.5 (http://www.geneious.com (24)). Sequences were compared to database entries by performing BLAST searches via the National Center for Biotechnology Information against GenBank and EMBL sequence databases; and aligned with reference material [3,4] using Geneious version 11.0.5.

Sequencing of Schistosoma spp. eggs in urine

Positive urine samples from Ouinanga Kebir were combined into 7 different pools of 8-12ml respectively one pooled sample of 12ml for the villages of Ouinanga Serir. Samples were shipped to the diagnostic center of the Swiss Tropical and Public Health Institute (Swiss TPH) in Basel, Switzerland for further processing. There, each pool was centrifuged at 3000g for 10 minutes. Exactly 500µl of the pellet was re-suspended and transferred to a 2ml tube containing garnet beads. After addition of 1 ml PBS, the sample was centrifuged 1min at 13000g and the supernatant was discarded. The pellet with the garnet beads was frozen 30min at -80°C and further processed as described by Barda and colleagues (25, 26). Samples were first tested by simplex generic Schistosoma spp. 28S real-time PCR amplifying S. mansoni, S. haematobium, S. intercalatum, S. bovis (27) and additionally S. japonicum because of modifications added to the second reverse primer of the assay (table 1). The reaction mix contained 1x TaqMan GenExpression MasterMix (ThermoFisher Scientific, Basel, Switzerland), 800nmoles of forward primer, 400nmoles of each reverse primer and 200nmoles of probe. The samples were subsequently tested by a duplex real-time PCR for the presence of a specific S. mansoni TRE region and of S. haematobium dra1 sequence (27, 28). Each
reaction mix contained 1x TaqMan GenExpression MasterMix (ThermoFisher Scientific, Basel, Switzerland), 800nmoles of each primer, 200nmoles each probe (Table 1). The thermoprofile of all assays on the QuantStudio5 (ThermoFisher) consisted of 2min at 50°C, 10min at 95°C followed by 45 cycles of 15s at 95°C and 1min at 58°C. The specificity of all assays was previously tested on a variety of DNA from stool and blood samples including: Ascaris lumbricoides, Blastocystis hominis, Cryptosporidium spp., Dientamoeba fragilis, Encephalitozoon spp., Endolimax nana, Entamoeba coli, E. dispers, E. histolytica, E. moshkovskii, E. polecki, Enterocytozoon bieneusi, Giardia lamblia, Hymenolepis nana, Iodamoeba bütschlii, Sarcocystis spp., Taenia spp., Strongyloides stercoralis, Trichuris trichiura, Plasmodium falciparum, P. vivax, P. malariae, P. ovale, Trypanosoma cruzi, T. brucei, Leishmania spp. and was found to be 100% specific. Analytical limit of detection (LOD) was tested by a plasmid dilution row ranging from 10^7 to 10^-1 plasmids/µl containing an insert with the sequence of the Schistosoma real-time PCR product, and was found to be at 10 plasmids/µl for all assays. On each real-time PCR plate and for each target we included negative and positive low-copy plasmid controls.

Subsequently, all samples were tested by classic PCR of the COX gene of S. haematobium and S. bovis as modified from Boon and co-workers (Table 1) (29). The reaction mix contained 1x HotStarTaq Plus Master Mix (Qiagen, Hilden, Germany), 800nmoles of each Primer, 5µl DNA in a total reaction volume of 50µl. The thermoprofile consisted of 5min at 94°C followed by 40 cycles of 40s at 94°C, 40s at 58°C and 1min at 72°C and a final step of 10min at 72°C. After visualization on a 2% Agarose-Gel, the positive sample of the S. bovis-COX PCR was sent for Sanger sequencing with the primers of amplification at Microsynth AG (Baldach, Switzerland). The Sequence was then compared to database entries by performing BLAST searches via the National Center for Biotechnology Information. The sequence is accessible in GenBank under the number: MW937895. A table listing primers and probes is accessible in the supplementary materials.

Statistical analysis
Descriptive statistics of epidemiological and malacological data was performed using STATA version 16.0 (STATA Corp Inc., TX, USA) and ArcGIS (Version 10.7.1.; ESRI Inc. ArcMap™ 10.7, Redlands, CA, USA). Qualitative data analysis included full review of all transcripts, followed by a descriptive and explorative thematic analysis.

RESULTS

Epidemiological survey

In both study sites, urinary schistosomiasis was highly prevalent. Indeed, 35.3% (95% CI 28.7% – 41.8%) of the tested participants were *S. haematobium* egg positive in Ounianga Kebir and 54.9% (95% CI 40.8% – 69.0%) in Ounianga Serir, resulting in an overall prevalence of 39.2% (95% CI 33.2% – 45.1%) (Table 1).

Tab 1. Prevalence of *S. haematobium* and *S. mansoni* infection, haematuria and infection intensities in the study population, Ounianga Serir and Ounianga Kebir, Chad, 2019.

	Ounianga Kebir	Ounianga Serir	Total		
	Male	Female	Male	Female	
Total number of participants	65	142	21	30	258
Participants age <18 years	47 (72%)	65 (46%)	14 (67%)	11 (37%)	137 (53%)
S. haematobium infection (egg positive)					
Total no. positive	27 (41.5%)	46 (32.4%)	11 (52.4%)	17 (56.7%)	101 (39.2%)
Age <18 years*	24 (51.1%)	24 (36.9%)	9 (64.3%)	8 (72.7%)	65 (47.5%)

	Ounianga Kebir	Ounianga Serir	Total		
	Male	Female	Male	Female	
Heavy *S. haematobium* infection					
Total no. positive	14 (51.9%)	21 (45.7%)	8 (72.7%)	9 (52.9%)	52 (51.5%)
Age <18 years*	14 (58.3%)	14 (58.3%)	8 (88.9%)	7 (87.5%)	43 (66.2%)

	Ounianga Kebir	Ounianga Serir	Total		
	Male	Female	Male	Female	
POC-CCA test results					
Total no. positive	14 (21.9%)	17 (13.0%)	1 (4.8%)	5 (17.9%)	37 (15.2%)
Age <18 years*	14 (30.4%)	10 (16.7%)	1 (7.1%)	3 (27.3%)	28 (21.4%)

*(%) from all participants <18 year

The *S. haematobium* prevalence was highest among children and adolescents below 18 years in both villages (Table 1). In Ounianga Kebir, more boys than girls were infected (51.1% versus 36.9%), whereas in Ounianga Seker girls had a higher prevalence (72.7%).
Figure 2. Map showing the prevalence and snail abundance for Ounianga Kebir and Serir. The prevalence among participants is displayed by neighbourhood. For each water site sampled, the abundance of the intermediate host snail *Bulinus truncatus* is indicated.

Mapping of the schistosomiasis prevalence by place of living (neighbourhood) shows a slightly higher prevalence for those neighbourhoods closer to a water site where the aquatic intermediate host snail *Bulinus truncates* was present (Fig 2, Ounianga Kebir: Yiggybeshi, Ounianga Serir: Roy). Regarding the POC-CCA testing for *S. mansoni*, 15.2% of the urine samples showed a positive test results.

More than half of all participants harboured a heavy *S. haematobium* infection (51.5%; heavy infection: >50 eggs/10 ml urine) and the burden was higher in children, whereof two third were heavily infected (Table 1) (30). Overall, 10.2% of all egg-negative, 69.4% of all light and 92.3% of all heavily infected participants had severe haematuria (Fig 3), with no big differences between age and gender.

Qualitative survey

During FGDs in both study sites, abdominal issues and blood in urine were the most frequently mentioned health problems among adults and also in children. Health staff mentioned that the majority of patients seeking care at the centre for any cause additionally suffers from abdominal issues. Among children, diarrhoeal diseases, respiratory infections and scorpion stings were reported as major health issues. Adults also suffered from eye problems, headache and joint pain. Fertility issues are another major concern and women reported difficulties getting pregnant again after they had their second or third child.
A major constraint for people in both sites is the difficult access to health facilities. Accessible facilities are usually underequipped; rarely have drugs available and the personnel had only basic training. To obtain appropriate care and treatment, people needed to travel long distances within Chad (to Faya, Abeche and N'Djamena) or abroad to Libya or Sudan.

Another common theme was the lack of safe drinking water as pumps are rare and open wells are commonly used as water sources. Perceived water quality is low due to salty taste and visible contamination.

The population was well aware of parasitic diseases, yet had limited knowledge on risk factors and transmission. Blood in urine was linked to parasitic infections, low quality of drinking water, water contact at the nearby lakes, or kidney issues. Kadi and Kouli are two local names for parasite infections linked to abdominal pain. Kadi describes an intestinal worm infection causing symptoms like intestinal spasms and flatulence, increased appetite with the tendency of weight loss. As a traditional treatment, infected people are given natron or an extract of the roots of a plant called Boa to initiate diarrhoea, causing a worm with a red ‘mouth’ to leave the body via the excrements. The symptoms described for Kouli correlate with symptoms of the parasite Enterobius vermicularis such as persistent itching in the perianal area and sleep disturbances. The traditional treatment administered to Kouli patients are eating butter or drinking an extract of a medical plant called Chi.

Ouco is the local term to describe the health condition related to blood in urine combined with pain while urinating and reduced male erectile function. In traditional medicine, the urine of the animal called Nii (Fennec Fox, Vulpes zerda) is believed to have a curative effect.

The reported level of satisfaction with access to medical treatment for the above mentioned health issues is mixed. Important challenges mentioned included stock outs of medicines, lack of diagnostic means and non-effectiveness of the medical treatment received. Especially the female FGD participants expressed a need for health education and sensitization among the population.

Malacological survey
Among a total of 17 different collection sites, 8 harboured fresh water snails (Tab 2, Fig 2).

Highest snail numbers were collected from the two intermediate host snail species *Limnea natalensis* (n=42) and *Bulinus truncatus* (n=38), and two species of no medical importance, *Gyralus sp.* and *Polypylis sp.* (n=42). Particularly high numbers of any snail species were collected at two sites, namely Yoa 2 (n=35) in Ounianga Kebir and Agouta (n=34) in Ounianga Kebir. Among all snails, only one *B. truncatus* was shedding cercariae (from Yoa 2). Upon testing, they were recognized to not represent *S. haematobium* cercariae, and consequently were not further studied. The average shell height of all *L. natalensis* specimen was 10.6mm (95% confidence interval, 9.08mm - 12.11mm), 6.66 mm (95% CI, 5.97mm - 7.34mm) for *B. truncates*, whereas all *Gyralus sp.* were juveniles with an average shell height of 1 mm or below.

Across all sites where snails were found, the average water temperatures was 18.9°C (standard deviation ±3.3), the average oxygen content was 4.8 mg/l (± 2.1) and a turbidity of 3.0 FNU (± 1.4). The sites without snails were characterized by a wide range of measured water parameters, i.e. temperature of 22.1°C (range: 14.1-28.2), oxygen 5.9 mg/l (range: 1.1-15.0) and turbidity 267.0 FNU (range: 1.0 - >1000.0). Snails obviously preferred the pH range between 7.0 and 8.8 compared the sites without snails with a pH varying between 7.0 and 10.5. Inconclusive results were found for the conductivity comparing sites with and without snails with a range of 6.0 to 1941.0 µs/cm and 2.8 to >2500.0 µs/cm, respectively.

Table 3. Snail abundance and water parameters for each sampling site

Site*	Snail species	No. of snails found	Temperature [°C]	Conductivity [µs/cm]	pH	Oxygen [mg/l]	Turbidity [FNU]
Yoa (Girki)							
1*	*Gyralus sp.*	1	17.5	1054.0	6.8	2.7	1.3
2*	*B. truncatus*	28	14.5	1046.0	6.9	4.1	2.5
3*	*L. natalensis*	6	22.7	1941.0	7.1	3.2	1.9
Yoa (source 2)							
3*	*L. natalensis*	19	22.7	1941.0	7.1	3.2	1.9
4*	*L. natalensis*	7	22.8	2.56	7.0	3.0	3.7
Ounianga Serir							
Agouta	*Gyralus sp.*	27	14.5	8.0	8.3	4.9	3.5
	L. natalensis	7	22.8	2.56	7.0	3.0	3.7
	V. nilotica	√	22.7	1941.0	7.1	3.2	1.9
Sequencing of *Schistosoma* spp. eggs in urine

All eight urine pools were positive in the generic *Schistosoma* spp. 28S real-time assay, in the *S. haematobium* dra1 real-time assay and in the *S. haematobium* COX1 PCR consistent with the presence of *S. haematobium* eggs in all pools. No pool was positive for *S. mansoni* TRE real-time PCR. One pool from the village of Ounianga Serir was positive for *S. bovis* COX1. This result indicates the possibility of the presence of *S. haematobium* X *bovis* hybrids as observed in previous studies in West Africa (29, 31).

DISCUSSION

This exploratory study was the very first time a medical research team focused on the Sahara oasis of Ounianga, Ennedi Ouest province in Chad. We were able to show for the first time the high prevalence of *S. haematobium* in the population of both villages Ounianga Kebir and Serir. Living specimens of *B. truncatus* were found at both sites, whereas the previous findings were fossils dating back to the early Holocene (17). These findings suggest the possibility of ongoing local schistosomiasis transmission in this desert oasis environment.
The larger of the two villages, Ounianga Kebir had an overall lower schistosomiasis prevalence compared to the smaller village of Ounianga Serir (35% versus 55%). In the different neighbourhoods of Ounianga Kebir the prevalence varied and ranged from 21% to 42% (Fig 2). This may be partly explained by the proximity to the rare freshwater sites that are used for washing cloth, bathing and swimming. For example, Lake Yoa with its cold temperature and high salinity is fed by numerous freshwater springs. These provide habitats for the intermediate host snails, and the neighbourhood with the highest prevalence was the one closest to a freshwater spring. The quarters with lower prevalence were closer to freshwater sources including the two hot springs (Yoa 5 and 6). Here, the high water temperature might explain the absence of snails (32). The two adjacent sampling sites Yoa 3 and 4 are cold and only used for irrigating the surrounding gardens or for watering livestock. Interestingly, at these two sites snails of the species Limnea natalesis were found, the intermediate host of the liver fluke Fasciola spp. In Ounianga Serir, there are no hot springs and the two freshwater lakes (Djara and Boku) are used for all water-related activities. In both, B. truncatus were present and the lakes’ close proximity to the quarter Roy may explain the high urinary schistosomiasis prevalence.

About half of the adult participants and two thirds of the children with a positive test suffered from heavy S. haematobium infections. Our data show that the infection intensity is associated with the severity of haematuria, pointing towards chronic schistosomiasis caused by long-term exposure and recurrent reinfection. Hence, the major health problems reported by the local population, namely abdominal issues and blood in urine, may well be due to schistosomiasis, and are likely the consequences of the lacking access to diagnostics and treatment options and the absence of any preventive intervention, as it has also been reported from other remote areas in Chad (33).

The study was set-up as an exploratory study with the aim to reveal the presence of the Schistosoma spp. lifecycle in the desert. Its scope is therefore limited and leaves several factors unaddressed at this stage. For example, the men’s main activities involve working in soda extraction sites, trading using traditional caravans, and raising livestock through mobile
pastoralism. Hence, during the visit of the study team, the majority of men aged 16 to 60 years were absent resulting in an over-representation of women in the study population (ratio 1:2). Regarding the \textit{S. mansoni} diagnostics that showed a positive POC-CCA result for 15.2\% of all urine samples, we cannot conclude with certainty that \textit{S. mansoni} is present in the study population as no stool samples were collected and hence, no parasitological proof of \textit{S. mansoni} infection is available. Of note, according to the tests handbook, also a heavy infection with \textit{S. haematobium} can lead to a positive test result (34). It is also significant that no intermediate host snails of the genus \textit{Biomphalaria} were found. However, the exploratory study was conducted in January while snail abundance is highly seasonal (35).

Conclusion

This exploratory study presents the first modern evidence of urinary schistosomiasis among the population of these oasis villages. There is clearly a need for further studies to fully understand the current epidemiological situation. However, apart from further studies the main problems are already evident; namely the lack of health education, diagnostics and access to treatment. With a combined approach, including sensitization, mass drug administration, and morbidity management the control or even elimination of urinary schistosomiasis in this population might be possible.

Declarations

Ethics approval and consent to participate

The study received approval from the ethics committee Northwest and Central Switzerland (reference no. BASEC Nr Req-2018-0120) and the ‘Comité National de Bioéthique du Tchad’ (CNBT) in N’Djamena, Chad (reference no. 134/PR/MESRI/SG/CNBT/2018). Research authorization was granted by the Chadian Ministry of Health and its ‘Direction de la Lutte contre la Maladie et de la Promotion de la Santé’ (reference no. 007/PR/MSP/DG/DLMPS/2018).
Upon arrival in the study villages, an assembly was organized with the community representatives to discuss the study objectives and procedures. The traditional leaders, together with the local authorities, discussed the study and decided about concrete participation. Once a collective decision had been reached, written informed consent was obtained from the community representatives. In line with high illiteracy rates among the general population, individual participants consented orally. These consent procedures had received approval by the respective ethics committees. Those participants with a positive test result from either filtration or POC-CCA testing were invited to the health centre / health post and were administered praziquantel in the adequate dose (40 mg/kg) by the study nurse.

Consent for publication

All authors approved submission for publication of this manuscript.

Availability of data and materials

Data will be available on request by email to the corresponding author.

Competing interests

The authors declare that they have no competing interests.

Funding

This work has received funding through a starting grant from the Rudolf Geigy Foundation (Basel, Switzerland).

Authors' contributions

HG conceived and designed the study protocol with input from PS; AAB, HG, RO and WM implemented the research in Chad; AAB, HG, MA, RO and WM carried out the field work and the parasitological examinations, together with a medical team; HG and WM sampled the snails, and FA and RC performed the genetic sequencing and analysis for species confirmation. RW and SP performed the genetic sequencing and analysis of the *Schistosoma*
samples. AAB, FA, HG, RO and WM analysed and interpreted the epidemiological data; HG, RO and WM drafted the manuscript; all authors critically revised the manuscript for intellectual content and approved the final manuscript. HG is the guarantor of the paper.

Acknowledgments

We are deeply grateful to Dr. Baba Mallaye, director of the Centre d’Appui à la Recherche (CNAR), N’Djamena, Chad, who not only guided us through the desert to safely arrive at the Lakes of Ounianga, but also introduced us and the purpose of our research visit to the local authorities. We thank the population of Ounianga Kabir and Ounianga Serir for hosting us and for their willingness to participate in the study. Special thanks go to the staff of the health centers at the study sites for their support. Without the tireless engagement of our study nurse Ali Abba Abakar, this work would not have succeeded. Nomadic pastoralists at Lake Chad have triggered this study, and we like to express here our deepest thanks for their hospitality and sharing of their wisdom.
References

1. WHO. Ending the neglect to attain the sustainable development goals. A road map for neglected tropical diseases 2021–2030. Geneva: World Health Organisation; 2020.

2. Ehrenberg N, Ehrenberg JP, Fontes G, Gyapong M, Rocha EMM, Steinmann P, et al. Neglected tropical diseases as a barometer for progress in health systems in times of COVID-19. BMJ Glob Health. 2021;6(4).

3. Colley DG, Bustinduy AL, Secor WE, King CH. Human schistosomiasis. The Lancet. 2014;383(9936):2253-64.

4. Verjee MA. Schistosomiasis: still a cause of significant morbidity and mortality. Res Rep Trop Med. 2019;10:153-63.

5. King CH. Parasites and poverty: the case of schistosomiasis. Acta tropica. 2010;113(2):95-104.

6. Vale N, Gouveia MJ, Rinaldi G, Brindley PJ, Gartner F, Correia da Costa JM. Praziquantel for schistosomiasis: single-drug metabolism revisited, mode of action, and resistance. Antimicrob Agents Chemother. 2017;61(5):e02582-16.

7. Monjour L, Niel G, Mogahed A, Sidat M, Gentilini M. [Epidemiology of bilharziasis in the Sahel and Sahara regions of Mauritania (sero-immunologic evaluation. 1973)]. Bulletin de la Societe de pathologie exotique et de ses filiales. 1983;76(2):157-65.

8. Chippaux JP, Boulanger D, Bremond P, Campagne G, Vera C, Sellin B. The WHO Collaborating Centre for Research and Control of Schistosomiasis at Niamey, Niger. Memorias do Instituto Oswaldo Cruz. 1997;92(5):725-8.

9. Medina DC, Findley SE, Doumbia S. State-space forecasting of Schistosoma haematobium time-series in Niono, Mali. PLoS neglected tropical diseases. 2008;2(8):e276.

10. Cha S, Elhag MS, Lee Y-H, Cho D-S, Ismail HA, Hong S-T. Epidemiological findings and policy implications from the nationwide schistosomiasis and intestinal helminthiasis survey in Sudan. Parasites & vectors. 2019;12(1):429-.
11. Greter H, Batil AA, Ngandolo BN, Alfaroukh IO, Moto DD, Hattendorf J, et al. Human and livestock trematode infections in a mobile pastoralist setting at Lake Chad: added value of a One Health approach beyond zoonotic diseases research. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2017;111(6):278-84.

12. Moreau JP, Boudin C, Trotobas J, Roux J. Répartition des schistosomiases dans les pays francophones d’Afrique de l’ouest. Médecine tropicale : revue du Corps de santé colonial. 1980;40(1):23-30.

13. Buck AA, Anderson RI, Sasaki TT, Kawata K. Health and disease in Chad. Epidemiology, culture, and environment in five villages. Baltimore and London: The Johns Hopkins Press; 1970.

14. Ranque J, Rioux JA. Urinary Schistosomiasis in the Oasis of Faya-Largeau, North Chad. Médecine d’Afrique Noire. 1963;10(6):287-90.

15. Boelee E, Laamrani H. Environmental control of schistosomiasis through community participation in a Moroccan oasis. Tropical medicine & international health : TM & IH. 2004;9(9):997-1004.

16. el-Sayed HF, Rizkalla NH, Mehanna S, Abaza SM, Winch PJ. Prevalence and epidemiology of Schistosoma mansoni and S. haematobium infection in two areas of Egypt recently reclaimed from the desert. The American journal of tropical medicine and hygiene. 1995;52(2):194-8.

17. Van Bocxlaer B, Verschuren D, Schettler G, Kropelin S. Modern and early Holocene mollusc fauna of the Ounianga lakes (northern Chad): implications for the palaeohydrology of the central Sahara. J Quaternary Sci. 2011;26(4):433-47.

18. Milligan P, Njie A, Bennett S. Comparison of two cluster sampling methods for health surveys in developing countries. Int J Epidemiol. 2004;33(3):469-76.

19. Mandahl-Barth G. Key to the identification of east and central African freshwater snails of medical and veterinary importance. Bulletin of the World Health Organization. 1962;27:135-50.
20. Emery AM, Allan FE, Rabone ME, Rollinson D. Schistosomiasis collection at NHM (SCAN). Parasites & vectors. 2012;5:185.

21. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3(5):294-9.

22. Kane RA, Stothard JR, Emery AM, Rollinson D. Molecular characterization of freshwater snails in the genus Bulinus: a role for barcodes? Parasites & vectors. 2008;1(1):15.

23. Allan F, Sousa-Figueiredo JC, Emery AM, Paulo R, Mirante C, Sebastião A, et al. Mapping freshwater snails in north-western Angola: distribution, identity and molecular diversity of medically important taxa. Parasites & vectors. 2017;10(1):460.

24. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647-9.

25. Barda B, Schindler C, Wampfler R, Ame S, Ali SM, Keiser J. Comparison of real-time PCR and the Kato-Katz method for the diagnosis of soil-transmitted helminthiasis and assessment of cure in a randomized controlled trial. BMC Microbiol. 2020;20(1):298.

26. Cnops L, Tannich E, Polman K, Clerinx J, Van Esbroeck M. Schistosoma real-time PCR as diagnostic tool for international travellers and migrants. Tropical medicine & international health : TM & IH. 2012;17(10):1208-16.

27. Cnops L, Soentjens P, Clerinx J, Van Esbroeck M. A Schistosoma haematobium-specific real-time PCR for diagnosis of urogenital schistosomiasis in serum samples of international travelers and migrants. PLoS neglected tropical diseases. 2013;7(8):e2413.

28. Wichmann D, Poppert S, Von Thien H, Clerinx J, Dieckmann S, Jensenius M, et al. Prospective European-wide multicentre study on a blood based real-time PCR for the diagnosis of acute schistosomiasis. BMC infectious diseases. 2013;13:55.

29. Boon NAM, Van Den Broeck F, Faye D, Volckaert FAM, Mboup S, Polman K, et al. Barcoding hybrids: heterogeneous distribution of Schistosoma haematobium × Schistosoma bovis hybrids across the Senegal River Basin. Parasitology. 2018;145(5):634-45.
30. Utzinger J, Becker SL, van Lieshout L, van Dam GJ, Knopp S. New diagnostic tools in schistosomiasis. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2015;21(6):529-42.

31. Catalano S, Sène M, Diouf ND, Fall CB, Borlase A, Léger E, et al. Rodents as natural hosts of zoonotic Schistosoma species and hybrids: an epidemiological and evolutionary perspective from West Africa. J Infect Dis. 2018;218(3):429-33.

32. Kazibwe F, Makanga B, Rubaire-Akiiki C, Ouma J, Kariuki C, Kabatereine NB, et al. Ecology of Biomphalaria (Gastropoda: Planorbidae) in Lake Albert, Western Uganda: snail distributions, infection with schistosomes and temporal associations with environmental dynamics. Hydrobiologia. 2006;568(1):433-44.

33. Greter H, Cowan N, Ngandolo BN, Kessely H, Alfaroukh IO, Utzinger J, et al. Treatment of human and livestock helminth infections in a mobile pastoralist setting at Lake Chad: Attitudes to health and analysis of active pharmaceutical ingredients of locally available anthelminthic drugs. Acta tropica. 2017;175:91-9.

34. Greter H, Krauth SJ, Ngandolo BN, Alfaroukh IO, Zinsstag J, Utzinger J. Validation of a point-of-care circulating cathodic antigen urine cassette test for Schistosoma mansoni diagnosis in the Sahel, and potential cross-reaction in pregnancy. The American journal of tropical medicine and hygiene. 2016;94(2):361-4.

35. Moser W, Greter H, Schindler C, Allan F, Ngandolo BN, Moto DD, et al. The spatial and seasonal distribution of Bulinus truncatus, Bulinus forskali and Biomphalaria pfeifferi, the intermediate host snails of schistosomiasis, in N'Djamena, Chad. Geospatial health. 2014;9(1):109-18.
Table 1. Primers and probes

Parasite	Name	Sequence 3’-5’	Origin
Generic Schistosoma spp.	Schisto28S_F	GTGGAGTTGAACTGCAAGC	Modified from Cnops et al. 2012
	Schisto28S_R1	CCATAGCAGACAGGCAGGC	
	Schisto28S_R2	GCTCAACAWTAATAGTCAACCTG	
	Schisto28S_P	FAM- ACTGACAAAGCAGACCCCTACACC-BHQ1	
S. mansoni TRE	Sman_F	CCACGCTTCGCAAATAATCTA	Modified from Wichmann et al. 2013
	Sman_R	AAATCGTTGTATCTCCGAAAACCA	
	Sman_P	YYE- ACAAACATCATAAAATCCGTCCA-MGB-Q5	
S. haematobium dra1	Shae_F	GATCTCACCTATCAGACGAAAAC	Identical to Cnops et al. 2013
	Shae_R	TCACAACGATACGACCAAC	
	Shae_P	FAM- TGGTTGGAAGTGCTGTTCGCAA-BHQ1	
S. haematobium COX	SH_COX_F	TTTTTGGTCTATCCAGAGGTGTAT	Modified from Boon et al. 2018
	SH_COX_R	TAATAATCAATGACCCTGCAATAA	
S. bovis COX	SB_COX_F	TTTTTGGCATCCGGAGGTGTAT	
	SB_COX_R	CACAGGATCGACAAACGAGTACC	