Kawasaki disease (KD) is the most common cause of acquired heart disease in children in developed countries. Although functional and phenotypic changes of immune cells have been reported, a global understanding of immune responses underlying acute KD is unclear. Here, using single-cell RNA sequencing, we profile peripheral blood mononuclear cells from seven patients with acute KD before and after intravenous immunoglobulin therapy and from three age-matched healthy controls. The most differentially expressed genes are identified in monocytes, with high expression of pro-inflammatory mediators, immunoglobulin receptors and low expression of MHC class II genes in acute KD. Single-cell RNA sequencing and flow cytometry analyses, of cells from an additional 16 KD patients, show that although the percentage of total B cells is substantially decreased after therapy, the percentage of plasma cells among the B cells is significantly increased. The percentage of CD8\(^+\) T cells is decreased in acute KD, notably effector memory CD8\(^+\) T cells compared with healthy controls. Oligoclonal expansions of both B cell receptors and T cell receptors are observed after therapy. We identify biological processes potentially underlying the changes of each cell type. The single-cell landscape of both innate and adaptive immune responses provides insights into pathogenesis and therapy of KD.
Kawasaki disease (KD) is an acute, systemic febrile illness and vasculitis of childhood that can lead to coronary artery lesions (CALs)\(^1\). This disease predominantly affects children who are younger than 5 years and has become the most common cause of acquired heart disease among children in many developed countries\(^2\). The etiology of KD remains elusive, and diagnosis continues to depend on principal clinical features including fever, rash, conjunctivitis, changes in the oral mucosa and in the extremities, and cervical lymphadenopathy\(^3\). As the signs and symptoms of KD resemble those of other childhood febrile illnesses, prompt diagnosis of KD is still challenging. High-dose intravenous immunoglobulin (IVIG) within the first 10 days after fever onset is the standard therapy for KD, which remarkably reduces the rate of CALs\(^4\). However, the mechanism of IVIG in the treatment of KD is unknown. Approximately 10% to 20% of KD patients are IVIG-resistant and are at increased risk for CALs\(^3\). Recently, a new multisystem inflammatory syndrome in children (MIS-C) has been reported during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic\(^5,6\). Despite different epidemiology and clinical characteristics between MIS-C and KD, persistent fever and common mucocutaneous findings are present in both of the disorders\(^7,8\). Therefore, it is urgently needed to distinguish MIS-C and KD in research investigations\(^9\).

The most widely favored theory of KD etiology is that it is caused by a ubiquitous infectious agent in a small subset of genetically predisposed children\(^10\). Genome-wide wide association studies (GWAS) have identified a number of susceptibility genes for KD\(^11\). Many of the susceptibility genes including IKK\(\beta\), CASP3, FCGR2A, CD40, and MHC class II are related to immune functions. Nonetheless, the causative agents initiating the disease have been still widely debated over 50 years. Various pathogens have been proposed as the trigger including superantigen toxin, Epstein–Barr virus, coronavirus and retrovirus, but none has been confirmed by subsequent studies\(^12\). Despite the uncertainty of the cause, activation of the immune system provides important evidence for its pathogenesis. Plasma levels of interleukin (IL)-1\(\beta\), and interferon (IFN)-\(\gamma\) are elevated during the acute phase of KD\(^13\). Innate immune cells including neutrophils and monocytes are elevated in the peripheral blood and have been identified in the arterial wall early in the disease\(^14\). Activation of peripheral blood lymphocytes seems also responsible for the development of KD, though their roles remain controversial\(^15\). In addition, antigen-specific IgA plasma cells and CD8\(^+\) T cells infiltrate inflamed tissues, implying an immune response to an intracellular pathogen entering through the respiratory tract\(^16\).

The immune system is composed of numerous cell types with varying states. Most previous studies performed immunophenotyping based on low-throughput assays, which were constrained to a few selected cell types and markers. Several studies performed transcriptome analyses of KD on bulk cell populations\(^17,18\), but the heterogeneity of the immune system cannot be resolved. Over the past few years, the revolution in single-cell RNA sequencing (scRNA-seq) has enabled an unbiased quantification of gene expression in thousands of individual cells, which provides an more efficient tool to decipher the immune system in human diseases\(^19\).

In this work, we profile peripheral blood mononuclear cells (PBMCs) isolated from acute KD patients at single-cell resolution. We show that monocytes are the major source of pro-inflammatory mediators and could be a therapeutic target in PBMCs. Plasma cells and effector memory CD8\(^+\) T cells are also involved in KD, which have oligoclonal expansion of B-cell receptors (BCRs) and T-cell receptors (TCRs) after IVIG therapy. Our results show global and dynamic immune responses unique to each cell type in the pathogenesis and therapy of KD.

Results

Study design and single-cell RNA profiling of PBMCs. We collected 14 fresh peripheral blood samples derived from seven patients with acute KD (P1–P7, Supplementary Table 1). The patients were diagnosed according to the criteria proposed by the American Heart Association\(^3\). Six patients met criteria for complete KD and one (P3) for incomplete KD. For each patient, the first blood sample was taken on the 5th days after the onset of fever before IVIG therapy. The second sample was obtained at 24 h after completion of IVIG therapy and subsidence of fever (Supplementary Table 2). All patients responded to IVIG treatment and had not developed CALs. We also collected fresh peripheral blood samples from three age-matched healthy donors as controls (H1–H3, Supplementary Table 1).

We used the 10\(\times\) Genomics platform for scRNA-seq of PBMCs isolated from the samples. About 12,000 PBMCs per sample were loaded onto the platform (Supplementary Table 3) and about 6000 cells per sample could be recovered from the sequencing data (Supplementary Table 4). The total number of detected cells passing quality control was 84,986, including 34,073 cells from patients before IVIG therapy, 36,225 cells after therapy, and 14,688 cells from healthy controls (Supplementary Table 4). We also performed single-cell B-cell receptor sequencing (scBCR-seq) and single-cell T-cell receptor sequencing (scTCR-seq) based on the scRNA-seq libraries. Totally, 23,044 and 48,456 cells with productive paired BCRs and TCRs were detected, respectively (Supplementary Tables 5 and 6).

Based on the scRNA-seq profiles, we clustered the cells across samples with Seurat\(^20\) and visualized them in two-dimensional space (Fig. 1). The cell clusters were annotated with SingleR\(^21\) (Supplementary Fig. 1) and refined with expression of canonical marker genes. Major cell types comprising PBMCs could be well captured by scRNA-seq (Supplementary Fig. 2), including T cells (CD3\(\text{D}\), CD3\(\text{E}\), CD3\(\text{G}\), 60.00%), CD4\(^+\) T cells (CD4, 36.94%), CD8\(^+\) T cells (CD8A, CD8B, 18.53%), natural killer (NK) cells (NCAM1 or CD56, KLRB1, NKG7, 5.44%), B cells (CD19, MS4A1 or CD20, 36.28%), monocytes (CD14, CD68, FCGR3A or CD16, 9.60%), myeloid dendritic cells (mDCs) (CD1C, 0.26%), plasmacytoid dendritic cells (pDCs) (LILR4, 0.18%) and hematopoietic stem and progenitor cells (HSPCs) (CD34, 0.12%). There were also some residual erythrocytes (HBB, 0.99%) and megakaryocytes (PPBP, 0.92%) mixed in the PBMCs. We pooled the PBMCs by conditions, and found that compared with healthy controls, pre-treatment KD patients showed an increased percentage of monocytes and B cells, while a decreased percentages of T cells and NK cells (Fig. 1 and Supplementary Fig. 3). These observations were in line with previous clinical reports\(^15,22\), suggesting that scRNA-seq recovered key immune alterations of KD.

We compared the scRNA-seq data with a public bulk gene expression dataset (GSE73577), which profiled PBMCs from 19 KD patients before and after IVIG treatment with cDNA microarray\(^23\) (Supplementary Fig. 4). The fold-changes across all genes were significantly positively correlated between the two datasets (Pearson’s \(R = 0.34\), \(P < 2.2 \times 10^{-16}\)), and the correlation became much stronger for 1054 differentially expressed genes (DEGs, false-discovery rate [FDR] <0.05) in both of the datasets (Pearson’s \(R = 0.74\), \(P < 2.2 \times 10^{-16}\)). These results demonstrated consistent global gene expression patterns between the two datasets.
Dynamics of major PBMC immune cell types. We compared the percentage of each immune cell type for KD patients before and after IVIG therapy, as well as healthy controls on the individual level (Fig. 2a). In parallel to scRNA-seq, we also performed flow cytometric analysis of peripheral blood lymphocytes from 16 additional complete KD patients and 20 age-matched healthy donors (Fig. 2b). The scRNA-seq data demonstrated that KD patients before therapy had an increased percentage of B cells (P = 0.02, two-sided t-test) and a decreased percentage of CD4+ T cells (P = 0.01, two-sided t-test) compared with those after therapy (Fig. 2a). These results were similar to most previous studies15,22,24,25 and could be confirmed by our flow cytometric analysis (Fig. 2b). Moreover, the percentage of B cells was substantially increased in KD patients before therapy compared with healthy controls (P = 5.28 x 10^{-6}, two-sided t-test), which quickly returned to normal after therapy (Fig. 2b). The scRNA-seq data also showed a lower percentage of CD8+ T cells in KD patients than healthy controls (P = 0.02, two-sided t-test, Fig. 2a), which was again consistent with previous reports15,22,24,25 and our flow cytometric results (P = 2.68 x 10^{-3}, two-sided t-test, Fig. 2b). A reduction of NK cells was reported in acute KD22,26,27 and can be verified by our flow cytometric dataset (P = 0.04, two-sided t-test, Fig. 2b). The similar tendency of NK cells could be observed with the scRNA-seq data, though statistical significance was lacking due to the smaller sample size for scRNA-seq (Fig. 2a).

It was well established that the abundance of monocytes was decreased following IVIG therapy15,28,29. However, one patient (P1) in the scRNA-seq data showed a remarkably increased percentage of monocytes after therapy (Fig. 2a). To exclude any potential technical bias, we checked the routine blood test data of the patients for scRNA-seq and flow cytometry (Fig. 2c). The data confirmed a significant decrease of monocytes after therapy in general (P = 6.26 x 10^{-5}, two-sided t-test), whereas only P1 displayed a reverse tendency similar to that found with scRNA-seq.

Monocyte subsets and responses. Next, we considered the subsets of each cell type to dissect their heterogeneity. Two subsets of monocytes were recognized, including CD14+ monocytes (CD14, 70.30%) and CD16+ monocytes (FCGR3A, 29.70%) (Fig. 1 and Supplementary Figure 5). After IVIG therapy, the patients showed a significantly decreased percentage of CD16+ monocytes (P = 0.02, two-sided t-test, Fig. 3a and Supplementary Fig. 6). It was reported that CD16+ monocytes were more closely associated with many inflammatory conditions30, including acute KD15,29. The percentage of CD16+ monocytes remained significantly lower in post-treatment KD patients than healthy controls (P = 1.96 x 10^{-3}, two-sided t-test), but we did not find significant difference between pre-treatment KD patients and healthy controls (Fig. 3a).

To identify more genes involved in the immune responses, we performed differential expression analysis separately for each cell type using DESeq231 (Supplementary Data 1). The most DEGs (FDR < 0.05) resulted from monocytes among all PBMC populations (Supplementary Figure 7). Gene ontology (GO) and pathway over-representation analyses of the DEGs (Supplementary Data 2) suggested that they were significantly enriched in S100 proteins, immunoglobulin receptors, cytokine receptors, complement and receptors and MHC class II receptors (FDR < 0.05, Fig. 3b). S100A8, S100A9 and S100A12 are predominantly expressed by neutrophils and monocytes, which exert pro-inflammatory functions in a range of diseases32. Consistent with previous findings33,34, these genes were significantly overexpressed before therapy compared with those after therapy and healthy controls (Fig. 3b). Similarly, most DEGs encoding immunoglobulin receptors were overexpressed in pre-treatment KD patients, including FCGR3A, FCGR3B, FCGR2A, FCGR2B, FCGR1B and FCEG1G (Fig. 3b). Notably, although FCGR2B was considered as an inhibitory receptor in immune complex driven reactions35, our results were coherent to a previous study that the expression of FCGR2B in monocytes was reduced after IVIG therapy36. In addition, we found that most DEGs of complement and receptors were upregulated before therapy, including C1QA, C1QB, C1QC, C2, CFD, C3ARI and C5ARI (Fig. 3b). In contrast, most DEGs encoding MHC class II receptors were downregulated in KD patients compared to healthy controls regardless of therapy, including HLA-DQA1, HLA-DQB1, HLA-DR, HLA-DPB1, HLA-DMA, HLA-DMB, and HLA-DOA (Fig. 3b). The expression patterns of DEGs encoding cytokine and chemokine receptors were more diverse. While some of them were overexpressed in pre-treatment patients, including IFNAR2, IFNGR2, IL3RA, IL10RB, and CX3CR1, others were overexpressed in post-treatment patients or in healthy controls, including IL7R, IL13RA1, IL6ST, and CXCR3 (Fig. 3b).

As hypercytokinemia is one of the most important characteristics of KD, we traced the expression of cytokines reported to be elevated in KD13 (Fig. 3c). IL-1β and TNF are crucial
the post-treatment patients had a significantly higher percentage of plasma cells than both pre-treatment patients ($P = 0.01$, two-sided t-test) and healthy controls ($P = 0.03$, two-sided t-test).

Although B cells showed the fewest DEGs among all PBMC populations (Supplementary Fig. 7), the DEGs were enriched in several interesting functional categories, including cell cycle process, interferon signaling pathway, and S100 genes (FDR < 0.05, Fig. 4c and Supplementary Data 1 and 2). Many DEGs positively associated with cell cycles were upregulated in pre-treatment KD patients compared with post-treatment patients such as CCND2, RRM2, CENPM, NME1, CKS1B and MYC, while DEGs to inhibit cell cycles were downregulated in pre-treatment patients such as BTG2 and CDKN1B (Fig. 4c). These expression patterns were consistent with the substantially increased abundance of B cells before therapy. Several interferon response genes were upregulated after therapy, including IRF1, STAT1, ITGB7, PARP14, and CD38, a marker of cellular activation expressed by plasma cells (Fig. 4c). The expression of S100A8, S100A9 and S100A12 were higher in KD patients than in healthy controls, though no significance was found before and after therapy (Fig. 4c).

We analyzed the scBCR-seq data to explore dynamics of BCR repertoires during acute KD. The percentage of IGH and IGH were significantly elevated after IVIG therapy ($P = 0.02$, two-sided t-test, Fig. 4d and Supplementary Fig. 11), which implicated isotype switching of immunoglobulins from IgM/IgD to IgG/IgA resulted from B-cell activation. We then examined the clonality of BCRs based on unique VDJ sequences for each patient. Intriguingly, in most of the patients except P7, the percentages of clonal BCRs (clonal size ≥ 3) were substantially increased after therapy compared with those before therapy (Fig. 4e). The clonality of BCRs measured by the Gini coefficient was also...
significantly higher in post-treatment KD patients than that in pre-treatment patients (\(P = 0.03\), two-sided \(t\)-test) and healthy controls (\(P = 0.04\), two-sided \(t\)-test, Supplementary Fig. 12). Particularly, in every post-treatment patient except P7, we could observe remarkable oligoclonal expansions, which were dominated by IgA and IgG isotypes (FDR < 0.01, Fisher’s exact test, Fig. 4e). The IGHV gene usage of the expanded clones was diverse among the patients (Fig. 4e), and no obvious bias in IGHV usage was observed between KD patients and healthy controls (Supplementary Fig. 13), indicating specific B-cell reactions rather than responses to a superantigen.

T- and NK-cell subsets and TCR repertoires. We refined CD4\(^+\) T, CD8\(^+\) T, and NK-cell clusters based on expression of canonical genes, respectively (Supplementary Figs. 14 and 15). Both CD4\(^+\) T and CD8\(^+\) T cells comprised three subsets (Fig. 1): naive cells (CCR7, SELL, 70.41%), central memory cells (co-expression of CCR7, SELL and S100A4, 12.04%) and effector memory cells (S100A4, 6.54%)\(^{39}\). The memory CD8\(^+\) T cells also expressed high levels of cytotoxicity-associated genes (GZMK, GZMB). In addition, regulatory CD4\(^+\) T cells (FOXP3, 3.51%), γδ T cells (TRDC, 5.34%) and proliferating T cells (TYMS, 2.15%) were identified. While we did not observe significant alterations among the CD4\(^+\) T-cell subsets during acute KD (Supplementary Fig. 16), we found a significantly increased percentage of naive cells (\(P = 0.01\), two-sided \(t\)-test) and a decreased percentage of effector memory cells among the CD8\(^+\) T cells in KD patients compared with those in healthy controls (\(P = 0.04\), two-sided \(t\)-test, Fig. 5a and Supplementary Fig. 17). These results indicated that the effector memory cells, which can acquire rapid cytotoxic functions following activation, were the major subset contributing to the reduction of CD8\(^+\) T cells in PBMCs. Flow cytometric analysis of the CD8\(^+\) T-cell subsets for the additional 16 KD patients (Supplementary Fig. 18) confirmed that they had a higher percentage of naive cells (\(P = 0.001\), two-sided \(t\)-test) and a lower percentage of effector memory cells (\(P = 0.03\), two-sided \(t\)-test) than the healthy controls, and these subsets were not significantly affected by IVIG therapy (Fig. 5b). The NK cells included two subsets (Fig. 1 and Supplementary Fig. 15): CD16-high cells (FCGR3A, 89.83%) and CD56-high cells (NCAM1, KLRC1, 10.17%)\(^{40}\). The percentage of CD16-high NK cells was decreased after therapy (\(P = 0.03\), two-sided \(t\)-test, Supplementary Fig. 19), which was similar to the tendency of CD16\(^+\) monocytes.

Many DEGs in CD4\(^+\) and CD8\(^+\) T cells shared similar expression patterns related with immune responses and energy metabolisms (Supplementary Data 1 and 2). A common set of DEGs was significantly enriched in interferon signaling and responses in both CD4\(^+\) and CD8\(^+\) T cells (FDR < 0.05, Fig. 5c). While some of these DEGs were upregulated before therapy such as IFN\(_{\gamma}\), ITIM2 and SOCS3, others were upregulated after therapy such as STAT1, IRF1, GBP1, GBP4 and IL10, a
receptor involved in IL10-mediated anti-inflammatory functions. The discordant interferon responses were also observed in NK cells (Supplementary Figure 20). Similar to B cells, the expression of S100 genes in all these lymphocyte populations were higher in KD patients than those in healthy controls (Fig. 5c). In addition, the gene set enrichment analysis (GSEA) identified significantly coordinated changes of several hallmark gene sets in both CD4⁺ and CD8⁺ T cells (FDR < 0.05, Fig. 5d), where oxidative phosphorylation and MYC targets were strongly activated in pre-treatment patients relative to post-treatment patients and healthy controls. It was reported that activated T cells require a substantial increase in energy production including oxidative phosphorylation, and MYC is essential in the metabolic reprogramming. In both CD4⁺ and CD8⁺ T cells, we observed a lot of MYC target genes including MYC itself were significantly upregulated in pre-treatment KD patients (Fig. 5c, e). Another interesting DEG specific to CD4⁺ T cells was FOXP3, a canonical marker of regulatory T cells. Although we did not find significant change in the percentage of regulatory T cells, the expression of FOXP3 was upregulated after therapy as described in a previous study. In both CD4⁺ and CD8⁺ T cells with high expression of GZMB (Supplementary Fig. 21), indicating strong cytolytic activity of the cells. Similar to the dynamics of BCR repertoires, we observed that the percentages of clonal TCRs were obviously increased in most of the patients after IVIG therapy (Fig. 5f), and the increase in the Gini coefficient was also significant (P = 0.04, two-sided t-test, Supplementary Fig. 22). We did not find any predominant TRBV families in the clonal TCRs (Fig. 5f), and no skewed usage of TRBV and TRAV could be detected by comparing KD patients and healthy controls (Supplementary Figs. 23 and 24). Again, these results supported that conventional antigens rather than a superantigen could be responsible for the pathogenesis of KD.

Discussion

Although great efforts have been made in the research and treatment of KD, many essential questions remain to be clarified, such as what trigger the disease, how the CAL is developed and the mechanism of IVIG therapy. The lack of knowledge has impeded a precise diagnostic test, a better management of IVIG-resistant patients and long-term cardiac sequelae. An overt immune reaction is the most important clinical features of acute KD, which has helped to elucidate etiology and pathogenesis of KD. However, many immunological studies reported conflicting results, in part due to the limited resolution of low-throughput screening assays. Bulk transcriptome analyses were performed for peripheral blood, but the signals were overwhelmed by the activation of innate immune system, probably due to the dominate abundance of neutrophils. Although the dysregulations of innate immune system were well established in these studies, the roles of adaptive immune system were largely neglected because of the less abundance and high heterogeneity of lymphocytes. In this study, we used scRNA-seq to dissect the complex immune responses of PBMCs in acute KD. We observed remarkable temporal changes in the cell abundance before and after therapy by using the two-sided Fisher’s exact test.
after IVIG therapy, which were largely consistent with previous studies and our flow cytometric analyses. In particular, the abundance of B cells, CD8+ T cells and NK cells could be helpful in distinguishing KD and other febrile diseases, and predicting the effectiveness of IVIG22.

We identified unique signatures of gene expression for each cell type. Most of the DEGs arose from monocytes, including many crucial pro-inflammatory mediators and therapeutic targets such as S100 genes33,34, TNF and IL1B37. Most DEGs encoding immunoglobulin receptors showed high expression level before IVIG therapy and returned to normal level after therapy, suggesting that the immunomodulatory effects of IVIG may involve the blockade of activating immunoglobulin receptors52. Another intriguing signature was the underexpression of MHC class II genes in acute KD patients relative to healthy controls, which was robustly observed in patients with SARS-CoV-2 infection33 though the pathological conditions were dissimilar2-9. The gene clusters of immunoglobulin receptors and MHC class II receptors were also identified as susceptibility loci of KD in GWAS studies11, highlighting their essential roles in KD pathogenesis.

Regarding to the lymphocyte populations, we found that although the total B-cell abundance was substantially decreased after therapy, the percentage of plasma cells among the B cells was elevated, which was accompanied by extensive oligoclonal expansion of BCRs and isotype switching to IgG and IgA. We also found significant depletion of CD8+ T cells in PBMCs during acute KD, especially the subset of effector memory cells. In addition, oligoclonal expansion of TCRs was observed after therapy in effector memory CD8+ T cells. These evidences supported the hypothesis that KD could be caused by an acquired immune response to specific conventional antigens but not superantigens10,12. In fact, both oligoclonal IgA plasma cells54,55 and CD8+ T cells56 were reported to infiltrate vascular tissue in acute KD, which were proposed as the most important evidence for a respiratory viral etiology16. Synthetic antibodies based on the oligoclonal BCRs could be designed to identify potential pathogens of KD57,58. However, clinical material available for this kind of study is scarce because accessing the inflamed tissue of KD is impossible in living children. Our results suggested that the oligoclonal BCRs prepared from peripheral blood of patients who
recover from acute KD could show promising opportunity for antigen identification and therapeutic development. Among the CD8+ T cells, acute KD patients showed a higher percentage of naive cells and lower percentage of effector memory cells than healthy controls, which appeared not affected by IVIG therapy. A possible explanation is that a deficiency in effector memory CD8+ T cells, which can rapidly respond to antigens, could be a risk factor for KD.

We also identified many biological processes that were rarely investigated in previous studies, such as the promotion of cell cycle progression in B cells, the enhancement of oxidative phosphorylation and the simulation of MYC targets in T cells. Most of the expression patterns were coupled with the over-activated immune responses in acute KD. However, the expression patterns of interferon-induced gene expression in acute KD, especially compared with virus infection, were also associated with the susceptibility of KD and IVIG responsiveness.

If KD is triggered by viral infection, the roles of interferon responses in the disease are worth further investigation.

It is notable that MIS-C, a rare and severe hyperinflammatory syndrome temporally associated with SARS-Cov-2 infection, shares some clinical features with KD, including high fever, conjunctivitis, rash, lymphadenopathy, oropharyngeal changes and possible occurrence of coronary artery dilation. However, other characteristic findings in MIS-C, such as lymphopenia, shock, cardiac dysfunction and multiple organ failure are rarely seen in KD. Moreover, MIS-C affected older children than KD, with the median age up to 9 years old. A recent study has compared the immunopathology of MIS-C, KD and healthy controls. Within the CD4+ T cells, MIS-C patients had higher abundance of memory CD4+ T cells and lower abundance of native CD4+ T cells as compared to KD patients. Consistent with our results, there was no significant difference reported in the CD4+ T-cell subsets between KD patients and healthy children. Plasma IL17A level was significantly higher in KD patients than that in MIS-C and healthy children, but the expression level of IL17A in PBMCs was too low to detect differential expression in our scRNA-seq data (Fig. 3c).

There were several shortcomings in our study. The sample size for scRNA-seq analysis was limited, which affected the statistical power in differential abundance and differential expression analysis. Because all patients diagnosed with acute KD would be treated with IVIG, the intrinsic immune responses to potential pathogens were mixed with the immunomodulatory effects of IVIG. For example, further efforts should be made to distinguish clonally expanded BCRs specific to unknown pathogens and exogenous immunoglobulins after therapy. This study was performed on PBMCs and might not reflect the local inflammatory responses developing in the coronary artery. Also, more patients with various clinical presentations are needed to determine the relationship between immune responses of different cell types and disease outcomes.

Methods

Patients. All donors were recruited from Shanghai Children’s Hospital between December 2019 and December 2020. The study was reviewed and approved by the Ethics Committee of Shanghai Children’s Hospital (IRB Protocol Number: 2019R081). Informed consent was obtained from the donors and their guardians. The diagnosis of KD was made by using the criteria proposed by the American Heart Association, including fever of unknown etiology lasting for ≥5 days, and the presence of five associated symptoms (conjunctivitis, oral changes, extremity changes, rash, cervical lymphadenopathy). Complete KD was diagnosed if at least four of the symptoms were fulfilled, otherwise incomplete KD. The patients received high-dose IVIG (1 g/kg per day) for two consecutive days combined with oral aspirin (30 mg/kg per day) and were regularly monitored by two-dimensional echocardiography. The seven KD patients subjected to scRNA-seq were aged 1.6–5.4 years, and most of them except P3 were diagnosed with complete KD. The 16 additional KD patients subjected to flow cytometric validation were aged 0.4–7.2 years, and all of them were diagnosed with complete KD. Both groups of patients followed the same timepoints for blood sampling, i.e., the 5th day after the onset of fever before IVIG therapy and 24 h after IVIG therapy and subsidence of fever. All of the patients underwent routine blood tests before and after therapy. They all responded to IVIG therapy and did not develop CALs. Three healthy donors for scRNA-seq and 20 healthy donors for flow cytometric validation with similar ages (1.2–5.5 years) were recruited at routine physical examinations, who presented no recent history of fever, infection or immunization.

Single-cell preparation and sequencing. For each donor subjected to scRNA-seq, 2 ml venous blood was collected in EDTA anticoagulant tubes and transferred to the laboratory with ice. The blood was processed within 4 h of collection. PBMCs were isolated by density gradient centrifugation using the Ficoll–Paque medium. The cell viability should exceed 90% determined with trypan blue staining. An appropriate volume of cell suspension was limited, which affected the statistical power: total UMI count between 2,000 and 60,000, and mitochondrial gene percentage <5%. For P1 before therapy, a lower cutoff of total UMI count (1000) was used due to its lower median UMI count per cell. The count matrix was log-normalized, and the top 2,000 most variable genes were identified for dimensional reduction. The samples collected in the first phase of the study (P1–P4 and H1–H3) were integrated to remove batch effects with the canonical correlation analysis (CCA), which identified cross-sample pairs of cells in a matching and then used the anchors to correct technical differences between samples. The integrated matrix was then scaled, and the top 30 dimensions resulted from the principal component analysis (PCA) were used for the uniform manifold approximation and projection (UMAP). The top PCs were chosen to account for ~93% of the total variance, and the curve flattens out in the 15th PC (Supplementary Fig. 2b). Meanwhile, the shared cross-sample pairs of cells were used for graph-based clustering was performed on the PCA-reduced data to identify cell clusters. The resolution was set to 0.1 to obtain major cell types of PBMCs, and 1.2 to obtain subsets of each cell type. Then the integrated dataset was adopted to annotate new samples collected in the subsequent phase of the study (P5–P7) with Seurat’s data transfer utility. The cell identities were determined with SingleR (v1.0.6)71, which compared the transcriptome of each cell cluster to various reference datasets (human primary cell atlas, Blueprint/ENCODE, Database of Immune Cell Expression, Novoshtern hematopoietic data and Monaco immune data). Because inconsistency and ambiguity remained with the automatic assignment, we then refined the cell cluster annotations based on the expression of canonical marker genes.

Differential expression and functional enrichment analysis. We performed differential expression analysis for each cell type on the sample level following the recommendation of Bioconductor. A pseudo-bulk expression profile was generated by summing UMI counts together for all cells with the same combination of cell type and sample. Then the differential expression analysis was conducted between conditions by using DESeq2 (v1.28.1)72, which estimated variance-mean dependence in count data and tested for differential expression based on the negative binomial distribution. We used clusterProfiler (v3.16.0)73 for function over-representation analyses of DEGs with FDR <0.05. GO,KEGG74 and hallmark gene sets in MSigDB (v7.1)75 served as the gene function databases. GSEA (v4.0.3)76 was performed based on the counts per million reads (CPM) matrix between conditions, and the hallmark gene sets were used as the database. The permutation type was set to phenotype and the number of permutations was
sequence data generated in this study have been deposited in the National Omics Data CDR3 sequences and V gene usages were explored by immunarch (v0.6.5)69. The cells with more than one consensus sequence detected for the same chain type, the one with higher UMI counts was chosen. Clonotypes represented by CDR3 sequences and V gene usages were explored by immunarch (v0.6.5)69. The entire repertoire complexity of a sample was measured by the Gini coefficient, where zero expresses perfect equality and one expresses maximal inequality among clone types. The proportion of individual clonotypes (size ≥ 3 in at least one sample) was compared between pre- and post-treatment samples with the Fisher’s exact test. Clonotypes and expression profiles were matched based on the same cell barcodes.

Flow cytometric analysis. We followed a flow cytometric multicolor protocol designed for children to analyze peripheral blood lymphocytes70. EDTA-anticoagulated whole blood was transferred to the laboratory and processed immediately after collection. The blood sample was split into three different panels to identify lymphocyte subsets: 1) major lymphocyte populations defined with the BD Multitest IMK Kit (Cat# 662965, 1/2 dilution), including CD19+ B, CD3+ CD4+ T, CD3+ CD8+ T and CD3+ CD16+ CD56+ NK cells; 2) B-cell subset panel in which plasma cells are defined with CD19-APC-H7 (Cat# 641395, 1/2 dilution), CD24-PE (Cat# 555428, 1/3 dilution) and CD38-FTC (Cat# 340909, 1/2 dilution); 3) T-cell subset panel in which CD8+ T-cell subsets are defined with CD3-V450 (Cat# 560365, 1/2 dilution), CD27-APC (Cat# 558664, 1/30 dilution) and CD45RA-PE-Cy7 (Cat# 560675, 1/2 dilution). All of the antibodies were purchased from BD Biosciences. After 15 min incubation for staining in the dark at room temperature, red blood cells were lysed with 1 ml RBC lysis buffer (Cat# 711233, 10X dilution). T cells are gated using the BD FACSDiva software.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. The processed sequencing data generated in this study have been deposited in the Gene Expression Omnibus (GEO) database under accession code GSE168732. The raw sequence data generated in this study have been deposited in the National Omics Data Encyclopedia database of Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences under accession code OEO001162. The raw sequence data are available under restricted access because of privacy laws, and access can be obtained by reasonable request to the corresponding authors. The bulk gene expression data used in this study are available in the GEO database under accession code GSE73577. Source data are provided with this paper.

Code availability. Source code used for analyzing the data are available at a public GitHub repository: https://github.com/zhengw100/scKD71.

Received: 10 September 2020; Accepted: 25 August 2021; Published online: 14 September 2021.
35. Ben Mkaddem, S., Benhamou, M. & Monteiro, R. C. Understanding Fc receptor involvement in inflammatory diseases: from mechanisms to new therapeutic tools. Front. Immunol. 10, 811 (2019).

36. Ichiyama, T. et al. Intravenous immunoglobulin does not increase NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25771-5

37. Aeschlimann, F. A. & Yeung, R. S. TNF and IL-1 targeted treatment in Kawasaki disease. Rheumatol. (Oxf.) 44, 314–317 (2005).

38. Perez-Andres, M. et al. Human peripheral blood B-cell compartments: a crossroad in B-cell traffic. Cytom. B Clin. Cytom. 78(Suppl 1), S47–S60 (2010).

39. Weng, N. P., Araki, Y. & Subedi, K. The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat. Rev. Immunol. 12, 306–315 (2012).

40. Cooper, M. A., Fehninger, T. A. & Caligiuri, M. A. The biology of human natural killer-cell subsets. Trends Immunol. 22, 633–640 (2001).

41. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

42. Almeida, L., Lochner, M., Berod, I. & Sparwasser, T. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. 28, 514–524 (2016).

43. Rathmell, J. C. T cell Myc-tabolism. Immunity 35, 845–846 (2011).

44. Furuno, K. et al. CD8+·CD4+ regulatory T cells in patients with Kawasaki disease. J. Pediatr. 145, 385–390 (2004).

45. Choi, I. H. et al. Clonal expansion of CD8+ T cells in Kawasaki disease. J. Immunol. 158, 481–486 (1997).

46. Mancia, L. et al. Characterization of the T-cell receptor V-beta repertoire in Kawasaki disease. Scand. J. Immunol. 48, 443–449 (1998).

47. Pietra, B. A., De Innocenzo, J., Giannini, E. H. & Hirsch, R. TCR V beta family repertoire and T cell activation markers in Kawasaki disease. J. Immunol. 153, 1881–1888 (1994).

48. Abe, J. et al. Selective expansion of T cells expressing T-cell receptor variable regions V beta 2 and V beta 8 in Kawasaki disease. Proc. Natl Acad. Sci. USA 89, 4096–4070 (1992).

49. Curtis, N., Zheng, R., Lamb, J. R. & Levin, M. Evidence for a superantigen mediated process in Kawasaki disease. Arch. Dis. Child. 72, 308–311 (1995).

50. Yoshioka, T. et al. Polyclonal expansion of TCRBV2- and TCRBV6-bearing T cells in patients with Kawasaki disease. Immunology 96, 465–472 (1999).

51. Brogan, P. A., Shah, V., Clarke, L. A., Dillon, M. J. & Klein, N. T cell activation profiles in Kawasaki syndrome. Clin. Exp. Immunol. 151, 267–274 (2008).

52. Tha-In, T., Bayry, J., Metselaar, H. J., Kaveri, S. V. & Kwekkeboom, J. Modulation of the cellular immune system by intravenous immunoglobulin. Trends Immunol. 29, 608–615 (2008).

53. Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020).

54. Rowley, A. H., Eckerley, C. A., Jack, H. M., Shulman, S. T. & Baker, S. C. IgA plasma cells in vascular tissue of patients with Kawasaki syndrome. J. Immunol. 159, 3984–3995 (1997).

55. Rowley, A. H., Shulman, S. T., Spike, B. T., Mask, C. A. & Baker, S. C. Oligoclonal IgA response in the vascular wall in acute Kawasaki disease. J. Immunol. 166, 1334–1343 (2001).

56. Brown, T. J. et al. CD8 T lymphocytes and macrophages infiltrate coronary artery aneurysms in acute Kawasaki disease. J. Infect. Dis. 184, 940–943 (2001).

57. Rowley, A. H. et al. Cloning the arterial IgA antibody response during acute Kawasaki disease. J. Immunol. 175, 8386–8391 (2005).

58. Rowley, A. H. et al. Detection of antigen in bronchial epithelium and macrophages in acute Kawasaki disease by use of synthetic antibody. J. Infect. Dis. 190, 856–865 (2004).

59. Gonzalez-Navajas, J. M., Lee, J., David, M. & Raz, E. Immunomodulatory functions of type I interferons. Nat. Rev. Immunol. 12, 125–135 (2012).

60. Muhl, H. & Pfäschter, J. Anti-inflammatory properties of pro-inflammatory interferon-gamma. Int. Immunopharmacol. 3, 1247–1255 (2003).

61. Popper, S. J. et al. Gene transcript abundance profiles distinguish Kawasaki disease from adenovirus infection. J. Infect. Dis. 200, 657–666 (2009).

62. Huang, Y. et al. Interferon-gamma genetic polymorphism and expression in Kawasaki disease. Med. Biol. Immunol. 35, e501 (2016).

63. Consiglio, C. R. et al. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell 183, 968–981 e7 (2020).

64. Amezquita, R. A. et al. Orchestrating single-cell analysis with Bioconductor. Nat. Methods 17, 137–145 (2020).

65. Yu, G., Wang, L. G., Han, T. & He, Q. Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

66. Liberson, Z. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

67. Lefranc, M. P. et al. IMGT(R), the international ImMunoGeneTics information system(R) 25 years on. Nucleic Acids Res. 43, D413–D422 (2015).

68. ImmunoMind Team. immunarch: an R package for painless bioinformatics analysis of T-cell and B-cell immune repertoires. Zenodo https://doi.org/10.5281/zenodo.3367200 (2019).

69. Ding, Y. et al. Reference values for peripheral blood lymphocyte subsets of healthy children in China. J. Allergy Clin. Immunol. 142, 970–973 e8 (2018).

70. Wang, Z. Single-cell RNA sequencing of peripheral blood mononuclear cells from acute Kawasaki disease patients. Zenodo https://doi.org/10.5281/zenodo.5139264 (2021).

Acknowledgements
This work was supported by the National Key R&D Program of China (2016YFC0901704, 2017YFA0505000), the National Natural Science Foundation of China (30207050), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB38000000), the Science and Technology Service Network Initiative of Chinese Academy of Sciences (KJF-ST5-QYZZ-126), the Youth Innovation Promotion Association CAS (2017325), the Shanghai Science and Technology Committee research funding (17141195300, 18111695800, 19149581040), the Shanghai Municipality Health Commission research funding (2019YS025, 2018ZHYL0223), the Shanghai Children’s Hospital research funding (2019YL201), the Shanghai Jiaotong University research funding (ZHE2018ZDA26), and the Shanghai Hospital Development Center research funding (SHDCD12016119). We would like to thank all the donors who contributed samples, Anhui Engineering Laboratory for Big Data of Precision Medicine who contributed computational resource, and Genery Bio-technology, Co. Ltd who provided scRNA-seq support for this work.

Author contributions
Z.W., L.X., G.D., Y.L. and M.H. designed research. L.X., S.S., L.C., T.X., Y.H., and M.H. collected samples and clinical information. G.D., G.L., and J.L. performed sequencing. Z.W., G.D., and Y.L. analyzed data. X.M., D.H., Y.Z., and H.Z. performed flow cytometric analyses. Z.W., L.X., Y.L., and M.H. wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-25771-5.

Correspondence and requests for materials should be addressed to Zhen Wang, Yixue Li or Min Huang.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021