Abstract

We show that: (1) unimodular simplices in a lattice 3-polytope cover a neighborhood of the boundary of the polytope if and only if the polytope is very ample, (2) the convex hull of lattice points in every ellipsoid in \mathbb{R}^3 has a unimodular cover, and (3) for every $d \geq 5$, there are ellipsoids in \mathbb{R}^d, such that the convex hulls of the lattice points in these ellipsoids are not even normal. Part (c) answers a question of Bruns, Michałek, and the author.

Mathematics Subject Classifications: 52B20, 11H06

1 Introduction

1.1 Main result

A convex polytope $P \subset \mathbb{R}^d$ is normal if it is lattice, i.e., has vertices in \mathbb{Z}^d, and satisfies the condition

$$\forall c \in \mathbb{N} \quad \forall x \in (cP) \cap \mathbb{Z}^d \quad \exists x_1, \ldots, x_c \in P \cap \mathbb{Z}^d \quad x_1 + \cdots + x_c = x.$$

A necessary condition for P to be normal is that the subgroup

$$\text{gp}(P) := \sum_{x, y \in P \cap \mathbb{Z}^d} \mathbb{Z}(x - y) \subset \mathbb{Z}^d$$

must be a direct summand. Also, a face of a normal polytope is normal.

Normality is a central notion in toric geometry and combinatorial commutative algebra [7]. A weaker condition for lattice polytopes is very ample; see Section 1.2 for the definition. Normal polytopes define projectively normal embeddings of toric varieties whereas very ample polytopes correspond to normal projective varieties [3, Proposition 2.1].
A sufficient condition for a lattice polytope P to be normal is the existence of a \textit{unimodular cover}, which means that P is a union of unimodular simplices. Unimodular covers play an important role in integer programming through their connection to the \textit{Integral Carathéodory Property} \cite{8, 12, 15}.

There exist normal polytopes in dimensions ≥ 5 without unimodular cover \cite{6}. It is believed that all normal 3-polytopes have unimodular cover. But progress in this direction is scarce. Recent works \cite{4, 11} show that all lattice 3-dimensional parallelepipeds and centrally symmetric 3-polytopes with unimodular corners have unimodular cover.

The normality of the convex hull of lattice points in an ellipsoid naturally comes up in \cite{9}. We consider general ellipsoids, neither centered at 0 nor aligned with the coordinate axes. According to \cite[Theorem 6.5(c)]{9}, the convex hull of the lattice points in any ellipsoid $E \subset \mathbb{R}^3$ is normal. \cite[Question 7.2(b)]{9} asks whether this result extends to higher dimensional ellipsoids.

Here we prove the following

\textbf{Theorem.} Let $P \subset \mathbb{R}^3$ be a lattice polytope, $E \subset \mathbb{R}^d$ an ellipsoid, and $P(E)$ the convex hull of the lattice points in E.

(a) The unimodular simplices in P cover a neighborhood of the boundary ∂P in P if and only if P is very ample.

(b) If $d = 3$ then the polytope $P(E)$ is covered by unimodular simplices.

(c) For every $d \geq 6$, there exists E such that $\text{gp}(P(E)) = \mathbb{Z}^d$ and $P(E)$ is not normal.

If in (c) we drop the condition $\text{gp}(P(E)) = \mathbb{Z}^d$, then ellipsoids $E \subset \mathbb{R}^d$ with $P(E)$ non-normal already exist for $d = 5$; see Remark 7.

1.2 Preliminaries

\mathbb{Z}_+ and \mathbb{R}_+ denote the sets of non-negative integers and reals, respectively.

The convex hull of a set $X \subset \mathbb{R}^d$ is denoted by $\text{conv}(X)$. The relative interior of a convex set $X \subset \mathbb{R}^d$ is denoted by $\text{int} X$. The boundary of X is denoted by $\partial X = X \setminus \text{int} X$.

Polytopes are assumed to be convex. For a polytope $P \subset \mathbb{R}^d$, its vertex set is denoted by $\text{vert}(P)$.

A lattice n-simplex $\Delta = \text{conv}(x_0, \ldots, x_n) \subset \mathbb{R}^d$ is \textit{unimodular} if $\{x_1 - x_0, \ldots, x_n - x_0\}$ is a part of a basis of \mathbb{Z}^d.

A \textit{unimodular pyramid} over a lattice polytope Q is a lattice polytope $P = \text{conv}(v, Q)$, where the point v is not in the affine hull of Q and the lattice height of v above Q inside the affine hull of P equals 1.

Cones C are assumed to be \textit{pointed, rational, and finitely generated}, which means $C = \mathbb{R}_+ x_1 + \cdots + \mathbb{R}_+ x_k$, where $x_1, \ldots, x_k \in \mathbb{Z}^d$ and C does not contain a nonzero linear subspace. For a cone $C \subset \mathbb{R}^d$, the smallest generating set of the additive submonoid $C \cap \mathbb{Z}^d \subset \mathbb{Z}^d$ consists of the indecomposable elements of this monoid. This is a finite set, called the \textit{Hilbert basis} of C and denoted by $\text{Hilb}(C)$. See \cite[Chapter 2]{7} for a detailed
discussion on Hilbert bases. For a lattice polytope $P \subset \mathbb{R}^d$, we have the inclusion of finite subsets of \mathbb{Z}^{d+1}:

$$ (P \cap \mathbb{Z}^d, 1) \subset \text{Hilb}(\mathbb{R}_+(P, 1)). $$

This inclusion is an equality if and only if P is normal.

A lattice polytope P is very ample if $\text{Hilb}(\mathbb{R}_+(P - v)) \subset P - v$ for every vertex $v \in \text{vert}(P)$. All normal polytopes are very ample, but already in dimension 3 there are very ample non-normal polytopes [7, Exercise 2.24]. For a detailed analysis of the discrepancy between the two properties see [3].

For a cone $C \subset \mathbb{R}^d$, we say that C has a unimodular Hilbert triangulation (cover) if C can be triangulated (resp., covered) by cones of the form $\mathbb{R}_+ x_1 + \cdots + \mathbb{R} x_n$, where $\{x_1, \ldots, x_n\}$ is a part of a basis of \mathbb{Z}^d as well as of $\text{Hilb}(C)$.

An ellipsoid $E \subset \mathbb{R}^d$ is a set of the form

$$ \{x \in \mathbb{R}^d \mid (l_1(x) - a_1)^2 + \cdots + (l_d(x) - a_d)^2 = 1\} \subset \mathbb{R}^d, $$

where l_1, \ldots, l_d is a full-rank system of real linear forms and $a_1, \ldots, a_d \in \mathbb{R}^d$.

For a lattice polytope P, the union of unimodular simplices in P will be denoted by $U(P)$.

2 Unimodular covers close to the boundary

The following result of Sebő was later rediscovered in [1, 5] in a refined form in the context of toric varieties.

Theorem 1. ([16]) Every 3-dimensional cone C has a unimodular Hilbert triangulation.

Notice. There exist 4-dimensional cones without unimodular Hilbert triangulation [5] and it is not known whether all 4- and 5-dimensional cones have unimodular Hilbert cover. According to [6], in all dimensions ≥ 6 there are cones without unimodular Hilbert cover.

If $P \subset \mathbb{R}^3$ is very ample, then by Theorem 1, for every $v \in \text{vert}(P)$, the cone $\mathbb{R}_+(P - v)$ has a unimodular Hilbert triangulation:

$$ \mathbb{R}_+(P - v) = \bigcup_{T(v)} C_t, $$

where $T(v)$ is a finite index set, depending on v. In particular, the following unimodular simplices form a neighborhood of v in P:

$$ \Delta_{v,t} = \text{conv}(\text{Hilb}(C_t), 0) + v, \quad t \in T(v). $$

Also, lattice polygons have unimodular triangulation [7, Corollary 2.54]. Therefore, the following lemma completes the proof of Theorem (a):
Lemma 2. For a lattice polytope P of an arbitrary dimension, the following conditions are equivalent:

(a) $U(P)$ is a neighborhood of ∂P within P;

(b) $U(P)$ is a neighborhood within P of every vertex of P and $\partial P \subset U(P)$.

Proof. The implication (a)\implies(b) is obvious.

For the opposite implication, let:

- $x \in \partial P$;
- F be the minimal face of P containing x;
- $v \in \text{vert}(F)$;
- T_F be a unimodular cover of F with $\dim(F)$-simplices, contained in F;
- T_v be a unimodular cover of a neighbourhood of v in P;
- $T_{v,F}$ be the sub-family of T_v, consisting of simplices that have a $\dim(F)$-dimensional intersection with F;
- T_v/F be the collection of faces of simplices in $T_{v,F}$, opposite to F (that is, from each simplex in $T_{v,F}$ remove the $\dim(F)+1$ vertices that lie in F, so that one is left with a $(\dim(P) - \dim(F))$-simplex).

Then, the collection of $\text{conv}(T_v/F, T_F)$ covers a neighbourhood of x in P and consists of unimodular simplices.

3 Unimodular covers inside ellipsoids

3.1 Proof of Theorem (b)

The set of normal polytopes $P \subset \mathbb{R}^d$ carries a poset structure, where the order is generated by the elementary relation

$$P \preceq Q \text{ if } P \subset Q \text{ and } \#(Q \cap \mathbb{Z}^d) = \#(P \cap \mathbb{Z}^d) + 1.$$

In [9] this poset is denoted by $NPol(d)$. The trivial minimal elements of $NPol(d)$ are the singletons from \mathbb{Z}^d. It is known that $NPol(d)$ has nontrivial minimal elements for $d \geq 4$ [7, Exercise 2.27] and the first maximal elements for $d = 4, 5$ were found in [9]. It is possible that $NPol(d)$ has isolated elements for some d.

Computer searches so far have found neither maximal nor nontrivial minimal elements in $NPol(3)$ [9]. The next lemma is yet another evidence that all normal 3-polytopes have unimodular cover.
Lemma 3. Let P be a normal 3-polytope. If $\ast \leq P$ in $\text{NPol}(3)$ for a singleton $\ast \in \mathbb{Z}^3$ then $P = \text{U}(P)$.

Proof. If $Q \leq P$ is an elementary relation in $\text{NPol}(d)$ and $\dim Q < \dim P$ then P is a unimodular pyramid over Q. In this case every full-dimensional unimodular simplex $\Delta \subset P$ is the unimodular pyramid over a unimodular simplex in Q and with the same apex as P. On the other hand, lattice segments and polygons are unimodularly triangulable. Therefore, it is enough to show that a polytope $P \in \text{NPol}(3)$ has a unimodular cover if there is a 3-polytope $Q \in \text{NPol}(3)$, such that Q has a unimodular cover and $Q \leq P$ is an elementary relation in $\text{NPol}(3)$. Assume $\{v\} = \text{vert}(P) \setminus Q$. By Theorem (a) we have the inclusion $P \setminus \text{U}(P) \subset Q$. Since $Q = \text{U}(Q)$ we have $P = \text{U}(P)$.

Call a subset $E \subset \mathbb{Z}^d$ ellipsoidal and a point $v \in E$ extremal if there is an ellipsoid $E \subset \mathbb{R}^d$, such that $E = \text{conv}(E) \cap \mathbb{Z}^d$ and $v \in E$.

Lemma 4. Let $E \subset \mathbb{R}^d$ be an ellipsoidal set. Then E has an extremal point and $E \setminus \{v\}$ is also ellipsoidal for every extremal point $v \in E$.

Proof. Let $E = \text{conv}(E) \cap \mathbb{Z}^d$ for an ellipsoid $E \subset \mathbb{R}^d$. Applying an appropriate homothetic contraction, centered at the center of E, we can always achieve $E \cap E \neq \emptyset$. In particular, E has an extremal point. For $v \in E \cap E$, after changing E to its homothetic image with factor $(1 + \varepsilon)$ and centered at v, where ε is a sufficiently small positive real number, we can further assume $E \cap E = \{v\}$. Finally, applying a parallel translation to E by $\delta(z - v)$, where z is the center of E and $\delta > 0$ is a sufficiently small real number, we achieve $\text{conv}(E) \cap \mathbb{Z}^d = E \setminus \{v\}$.

Next we complete the proof of Theorem (b). It follows from Lemma 3.2 that, for any natural number d and an ellipsoidal set $E \subset \mathbb{Z}^d$, there is a descending sequence of ellipsoidal sets of the form

$$E = E_k \supset E_{k-1} \supset \cdots \supset E_1,$$

with $\#E_i = i$ for $i = 1, \ldots, k$.

By [9, Theorem 6.5(c)], for $d = 3$, the $\text{conv}(E_i)$ are normal polytopes. Therefore, $\ast \leq \text{conv}(E)$ in $\text{NPol}(3)$ for some $\ast \in \mathbb{Z}^3$. Thus Lemma 3 applies.

3.2 Alternative algorithmic proof in symmetric case

For the ellipsoids E with center in $\frac{1}{2}\mathbb{Z}^3$, there is a different proof of Theorem (b). It yields a simple algorithm for constructing a unimodular cover of $P(E)$.

Instead of Theorem 1 and [9, Theorem 6.5] this approach uses Johnson’s 1916 Circle Theorem [13, 14]. We only need Johnson’s theorem to derive the following fact, which does not extend to higher dimensions: for any lattice $\Lambda \subset \mathbb{R}^2$ and any ellipse $E' \subset \mathbb{R}^2$, such that $\text{conv}(E')$ contains a triangle with vertices in Λ, every parallel translate $\text{conv}(E') + v$, where $v \in \mathbb{R}^2$, meets Λ.

Assume an ellipsoid $E \subset \mathbb{R}^3$ has center in $\frac{1}{2}\mathbb{Z}^3$ and $\dim(P(E)) = 3$ (notation as in the theorem). Assume $U(P(E)) \not\subseteq P(E)$. Because $\partial P(E)$ is triangulated by unimodular
triangles, there is a unimodular triangle \(T \subset P(E) \), not necessarily in \(\partial P(E) \), and a point \(x \in \text{int} \, T \), such that the points in \([0, x]\), sufficiently close to \(x \), are not in \(U(P(E)) \). For the plane, parallel to \(T \) on lattice height 1 above \(T \) and on the same side as 0, the intersection \(E' = \text{conv}(E) \cap H \) is at least as large as the intersection of \(\text{conv}(E) \) with the affine hull of \(T \): a consequence of the fact that \(P(E) \cap \mathbb{Z}^3 \) is symmetric relative to the center of \(E \). The mentioned consequence of Johnson’s theorem implies that \(\text{conv}(E') \) contains a point \(z \in \mathbb{Z}^3 \). In particular, all points in \([x, 0]\), sufficiently close to \(x \) are in the unimodular simplex \(\text{conv}(T, z) \subset P(E) \), a contradiction.

4 High dimensional ellipsoids

For a lattice \(\Lambda \subset \mathbb{R}^d \), define a \(\Lambda \)-polytope as a polytope \(P \subset \mathbb{R}^d \) with \(\text{vert}(P) \subset \Lambda \). Using \(\Lambda \) as the lattice of reference instead of \(\mathbb{Z}^d \), one similarly defines \(\Lambda \)-normal polytopes and \(\Lambda \)-ellipsoidal sets.

Consider the lattice \(\Lambda(d) = \mathbb{Z}^d + \mathbb{Z} \left(\frac{1}{2}, \ldots, \frac{1}{2} \right) \subset \mathbb{R}^d \). We have \([\mathbb{Z}^d : \Lambda(d)] = 2\). Consider the \(\Lambda(d) \)-polytope \(P(d) = \text{conv} \left(B(d) \cap \Lambda(d) \right) \), where \(B(d) = \{ (\xi_1, \ldots, \xi_d) \mid \sum_{i=1}^d (\xi_i - \frac{1}{2})^2 \leq \frac{d}{4} \} \subset \mathbb{R}^d \), i.e., \(\partial(B(d)) \) is the circumscribed sphere for the cube \([0, 1]^d\).

Consider the \(d \)-dimensional \(\Lambda(d) \)-polytope and the \((d - 1)\)-dimensional \(\Lambda(d) \)-simplex:

\[
Q(d) = \text{conv} \left(\left(P(d) \cap \Lambda(d) \right) \setminus \{ e_1 + \cdots + e_d \} \right),
\]

\[
\Delta(d-1) = \text{conv} \left(e_1 + \cdots + e_{i-1} + e_{i+1} + \cdots + e_d \mid i = 1, \ldots, d \right),
\]

where \(e_1, \ldots, e_d \in \mathbb{R}^d \) are the standard basic vectors.

Notice. Although \(P(d) \cap \mathbb{Z}^d = \{0, 1\}^d \) for all \(d \), yet \([0, 1]^d \subset \not\subset P(d) \) for all \(d \geq 4 \). In fact, \((\frac{1}{2}, \ldots, \frac{1}{2}) + k e_i \in P(d) \cap \Lambda(d) \) for \(1 \leq i \leq d \) and \(-\left\lfloor \frac{\sqrt{2}}{2} \right\rfloor \leq k \leq \left\lceil \frac{\sqrt{2}}{2} \right\rceil \).

Lemma 5. If \(d \geq 5 \) then \(\Delta(d-1) \) is a facet of \(Q(d) \) and \(\Delta(d-1) \cap \Lambda(d) = \text{vert}(\Delta(d-1)) \).

Proof. Assume \(x = (\xi_1, \ldots, \xi_d) \in P(d) \cap \Lambda(d) \) satisfies \(\xi_1 + \cdots + \xi_d \geq d-1 \). We claim that there are only two possibilities: either \(x = e_1 + \cdots + e_d \) or \(x = e_1 + \cdots + e_{i-1} + e_{i+1} + \cdots + e_d \) for some index \(i \). Since \(P(d) \cap \mathbb{Z}^d = \{0, 1\}^d \), only the case \(x \in \left(\frac{1}{2}, \ldots, \frac{1}{2} \right) + \mathbb{Z}^d \) needs to be ruled out. Assume \(\xi_i = \frac{1}{2} + a_i \) for some integers \(a_i \), where \(i = 1, \ldots, d \). Then we have the inequalities

\[
\sum_{i=1}^d a_i^2 \leq \frac{d}{4} \quad \text{and} \quad \sum_{i=1}^d a_i \geq \frac{d}{2} - 1.
\]

Since the \(a_i \) are integers we have \(\frac{d}{4} \geq \frac{d}{2} - 1 \), a contradiction because \(d \geq 5 \). \(\square \)

Lemma 6. For every even natural number \(d \geq 6 \), there exists a point in \(\left(\frac{d}{2} : Q(d) \right) \cap \Lambda(d) \) which does not have a representation of the form \(x_1 + \cdots + x_2 \) with \(x_1, \ldots, x_2 \in Q(d) \cap \Lambda(d) \). In particular, \(Q(d) \) is not \(\Lambda(d) \)-normal.
Assume the baricenter \(\beta(d) = \frac{d-1}{d} \cdot (e_1 + \cdots + e_d) \) of \(\Delta(d-1) \). The point \(\frac{d}{2} \cdot \beta(d) \) is the baricenter of the dilated simplex \(\frac{d}{2} \cdot \Delta(d-1) \) and, simultaneously, a point in \(\Lambda(d) \). Assume \(\frac{d}{2} \cdot \beta = x_1 + \cdots + x_d \) for some \(x_1, \ldots, x_d \in Q(d) \cap \Lambda(d) \). Lemma 5 implies \(x_1, \ldots, x_d \in \Delta(d-1) \cap \Lambda(d) = \text{vert}(\Delta(d-1)) \). But this is not possible because the dilated \((d-1) \)-simplex \(c\Delta(d-1) \) has an interior point of the form \(z_1 + \cdots + z_c \) with \(z_1, \ldots, z_c \in \text{vert}(\Delta(d-1)) \) only if \(c \geq d \).

Proof of Theorem (c). Since \(e_1, \ldots, e_d, (\frac{1}{2}, \ldots, \frac{1}{2}) \in Q(d) \) we have the equality \(\text{gp}(Q(d)) = \Lambda(d) \). By Lemmas 4 and 5, the set \(Q(d) \cap \Lambda(d) \) is \(\Lambda(d) \)-ellipsoidal for \(d \geq 5 \). By applying a linear transformation, mapping \(\Lambda(d) \) isomorphically to \(\mathbb{Z}^d \), Lemma 6 already implies Theorem (c) for \(d \) even.

One involves all dimensions \(d \geq 6 \) by observing that (i) if \(\mathcal{E} \subset \mathbb{R}^d \) is an ellipsoidal set then \(\mathcal{E} \times \{0,1\} \subset \mathbb{R}^{d+1} \) is also ellipsoidal and (ii) the normality of \(\text{conv}(\mathcal{E} \times \{0,1\}) \) implies that of \(\text{conv}(\mathcal{E}) \). While (ii) is straightforward, for (i) one applies an appropriate affine transformation to achieve \(\mathcal{E} = \text{conv}(S^{d-1}) \cap \Lambda \), where \(S^{d-1} \subset \mathbb{R}^d \) is the unit sphere, and \(\Lambda \subset \mathbb{R}^d \) is a shifted lattice. In this case the ellipsoid \(E = \{ (\xi_1, \ldots, \xi_d) \mid \frac{\xi_1^2}{a^2} + \cdots + \frac{\xi_{d-1}^2}{a^2} + \frac{(\xi_d+1)^2}{b^2} = 1 \} \subset \mathbb{R}^{d+1} \) with \(b > \frac{1}{2} \) and \(a = \frac{2b}{\sqrt{d^2-1}} \), is within the \((b - \frac{1}{2}) \)-neighborhood of the region of \(\mathbb{R}^{d+1} \) between the hyperplanes \(\mathbb{R}^d, 0 \) and \(\mathbb{R}^d, 1 \) and satisfies the following conditions: \(E \cap \mathbb{R}^d = (S^{d-1}, 0) \) and \(E \cap (\mathbb{R}^d, 1) = (S^{d-1}, 1) \). In particular, when \(\frac{1}{2} < b < \frac{3}{2} \) we have \(\text{conv}(E) \cap (\Lambda \times \mathbb{Z}) = \mathcal{E} \times \{0,1\} \).

Remark 7. The definition of a normal polytope in the introduction is stronger than the one in [7, Definition 2.59]: the former is equivalent to the notion of an *integrally closed* polytope, whereas ‘normal’ in the sense of [7] is equivalent to \(\text{gp}(P) \)-normal. Examples of \(\text{gp}(P) \)-normal polytopes, which are not normal, are lattice non-unimodular simplices, whose only lattice points are the vertices. Lemma 5 and the proof of Lemma 6 show that the 5-simplex \(\Delta(5) \) is not \(\Lambda(6) \)-unimodular. Applying an appropriate affine transformation we obtain a lattice non-unimodular simplices \(\Delta' \subset \mathbb{R}^5 \) with \(\text{vert}(\Delta') \) ellipsoidal. Such examples in \(\mathbb{R}^5 \) have been known since the 1970s: a construction of Voronoi [2] yields a lattice \(\Lambda \subset \mathbb{R}^5 \) and a 5-simplex \(\Delta \subset \mathbb{R}^5 \) of \(\Lambda \)-multiplicity 2, whose circumscribed sphere does not contain points of \(\Lambda \) inside except \(\text{vert}(\Delta) \).

We do not know whether there are ellipsoidal subsets \(\mathcal{E} \subset \mathbb{R}^5 \) with \(\text{conv}(\mathcal{E}) \) non-normal and \(\text{gp}(\text{conv}(\mathcal{E})) = \mathbb{Z}^5 \). For instance, \(Q(5) \) is \(\Lambda(5) \)-normal, as checked by Normaliz [10].

Acknowledgments

We thank the referees for the streamlined version of the original proof of Theorem (a), bringing [2] to our attention, and spotting several inaccuracies.
References

[1] Stefano Aguzzoli and Daniele Mundici. An algorithmic desingularization of 3-dimensional toric varieties. *Tohoku Math. J. (2)*, 46(4):557–572, 1994. DOI: 10.2748/tmj/1178225680.

[2] E. P. Baranovskiı. Volumes of L-simplexes of five-dimensional lattices. *Mat. Zametki*, 13:771–782, 1973. DOI: 10.1007/BF01147478.

[3] Matthias Beck, Jessica Delgad, Joseph Gubeladze, and Mateusz Michałek. Very ample and Koszul segmental fibrations. *J. Algebraic Comb.*, 42(1):165–182, 2015. DOI: 10.1007/s10801-014-0577-7.

[4] Matthias Beck, Christian Haase, Akihiro Higashitani, Johannes Hofscheier, Katharina Jochemko, Lukas Katthän, and Mateusz Michałek. Smooth centrally symmetric polytopes in dimension 3 are IDP. *Ann. Comb.*, 23(2):255–262, 2019. DOI: 10.1007/s00026-019-00418-x.

[5] Catherine Bouvier and Gérard Gonzalez-Sprinberg. Système générateur minimal, diviseurs essentiels et G-désingularisations de variétés toriques. *Tohoku Math. J. (2)*, 47(1):125–149, 1995. DOI: 10.2748/tmj/1178225640.

[6] Winfried Bruns and Joseph Gubeladze. Normality and covering properties of affine semigroups. *J. Reine Angew. Math.*, 510:161–178, 1999. DOI: 10.1515/crll.1999.044.

[7] Winfried Bruns and Joseph Gubeladze. *Polytopes, rings, and K-theory*. Springer Monographs in Mathematics. Springer-Verlag, New York, 2009. DOI: 10.1007/b105283.

[8] Winfried Bruns, Joseph Gubeladze, Martin Henk, Alexander Martin, and Robert Weismantel. A counterexample to an integer analogue of Carathéodory’s theorem. *J. Reine Angew. Math.*, 510:179–185, 1999. DOI: 10.1515/crll.1999.045.

[9] Winfried Bruns, Joseph Gubeladze, and Mateusz Michałek. Quantum Jumps of Normal Polytopes. *Discrete Comput. Geom.*, 56(1):181–215, 2016. DOI: 10.1007/s00454-016-9773-7.

[10] Winfried Bruns, Bogdan Ichim, Tim Römer, and Christof Söger. Normaliz. Available from http://www.math.uos.de/normaliz/.

[11] Giulia Codenotti and Francisco Santos. Unimodular covers of 3-dimensional parallelepipeds and Caley sums. *Preprint*, arXiv:1907.12312.

[12] William Cook, Jean Fonlupt, and Alexander Schrijver. An integer analogue of Carathéodory’s theorem. *J. Combin. Theory Ser. B*, 40(1):63–70, 1986. DOI: 10.1016/0095-8956(86)90064-X.

[13] Frank Jackson and Eric W. Weisstein. Johnson circles. https://mathworld.wolfram.com/JohnsonCircles.html.

[14] Roger A. Johnson. A Circle Theorem. *Amer. Math. Monthly*, 23(5):161–162, 1916. DOI: 10.1080/00029890.1916.11998200.
[15] Alexander Schrijver. *Theory of linear and integer programming*. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons, Ltd., Chichester, 1986. A Wiley-Interscience Publication.

[16] Andras Sebő. Hilbert bases, Carathéodory’s theorem and combinatorial optimization. *Proc. of the IPCO conference (Waterloo, Canada)*, pages 431–455, 1990.