Evidence of b-jet quenching in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

CMS Collaboration; Chatrchyan, S; Khachatryan, V; Sirunyan, A M; et al; Chiochia, V; Kilminster, B; Robmann, P

Abstract: The production of jets associated to bottom quarks is measured for the first time in PbPb collisions at a center-of-mass energy of 2.76 TeV per nucleon pair. Jet spectra are reported in the transverse momentum (p_t) range of 80-250 GeV, and within pseudorapidity $|\eta| < 2$. The nuclear modification factor (R_{AA}) calculated from these spectra shows a strong suppression in the b-jet yield in PbPb collisions relative to the yield observed in pp collisions at the same energy. The suppression persists to the largest values of p_t studied, and is centrality dependent. The R_{AA} is about 0.4 in the most central events, similar to previous observations for inclusive jets. This implies that jet quenching does not have a strong dependence on parton mass and flavor in the jet p_t range studied.

DOI: https://doi.org/10.1103/PhysRevLett.113.132301
Evidence of b-jet quenching in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

The CMS Collaboration

Abstract

The production of jets associated to bottom quarks is measured for the first time in PbPb collisions at a center-of-mass energy of 2.76 TeV per nucleon pair. Jet spectra are reported in the transverse momentum (p_T) range of 80–250 GeV/c, and within pseudorapidity $|\eta| < 2$. The nuclear modification factor (R_{AA}) calculated from these spectra shows a strong suppression in the b-jet yield in PbPb collisions relative to the yield observed in pp collisions at the same energy. The suppression persists to the largest values of p_T studied, and is centrality dependent. The R_{AA} is about 0.4 in the most central events, similar to previous observations for inclusive jets. This implies that jet quenching does not have a strong dependence on parton mass and flavor in the jet p_T range studied.

Submitted to Physical Review Letters
By colliding heavy nuclei at the Large Hadron Collider (LHC), one expects to reach sufficiently large energy densities to form a quark-gluon plasma (QGP), a state which is characterized by effective deconfinement of the color degrees of freedom [1, 2]. Hard-scattered partons are expected to suffer energy loss as they traverse the QGP via elastic and inelastic interactions [3]. This is commonly thought to be the mechanism responsible for the observed suppression of high transverse momentum (p_T) hadrons and jets, or “jet quenching”, in nuclear collisions [4–14]. Measurements of parton energy loss are expected to reveal the fundamental thermodynamic and transport properties of this phase of matter (see Refs. [15, 16] for recent reviews).

The quenching of jets in heavy-ion collisions is expected to depend upon the flavor of the fragmenting parton [17]. For example, under the assumption that radiative energy loss is the dominant mechanism, gluon jets are expected to quench more strongly than quark jets, owing to the larger color factor for gluon emission from gluons than from quarks. Moreover, jets from heavy quarks may radiate less strongly than those from light flavor due to the so-called “dead-cone” effect [18], particularly when the parton p_T is comparable to its mass. The relevance of this mechanism in heavy-ion collisions, however, is debated [19].

Until now, identification of reconstructed b jets has not been performed in heavy-ion collisions. Recent data on single-particle production of B mesons (via non-prompt J/ψ) [20] suggest a mass dependence of the suppression, compared to D mesons [21] and non-identified charged particles [22, 23]. Compared to B mesons, b jets provide a more direct connection to the b-quark energy loss, albeit typically in a different range of p_T. Through comparisons with the existing measurements of inclusive jet production [24], b-quark jet (b jet) measurements can be used to study the flavor dependence of jet quenching, which in turn provides insight on the dynamics of parton energy loss.

The Compact Muon Solenoid (CMS) detector has excellent capabilities to perform b-jet identification (b tagging) measurements as demonstrated in Ref. [25]. Measurements of the b-jet cross section [26] and b-jet angular correlations [27] have been performed in pp collisions at 7 TeV. This Letter presents the first measurements of b-jet production in heavy-ion collisions using a dataset corresponding to an integrated luminosity of 150 μb$^{-1}$ of PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV delivered by the LHC in 2011. The comparison measurements are performed with a dataset consisting of pp data recorded in 2013 and corresponding to an integrated luminosity of 5.3 pb$^{-1}$ at $\sqrt{s} = 2.76$ TeV.

The central feature of the CMS apparatus is a superconducting solenoid providing a magnetic field of 3.8 T. Charged particle trajectories are measured with the silicon tracker, which provides an impact parameter resolution of \sim15 μm and a p_T resolution of \sim1.5% for 100 GeV/c particles. A PbWO$_4$ crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter (HCAL) surround the tracking volume. The forward regions ($2.9 < |\eta| < 5.2$, where $\eta = -\ln[\tan(\theta/2)]$ and θ is the polar angle measured with respect to the counterclockwise beam direction) are instrumented with iron/quartz-fiber hadron forward calorimeters (HF). Collision centrality, defined as a percentile of the total inelastic nucleus-nucleus cross section (with 0% denoting collisions with zero impact parameter), is calculated using the sum of the HF transverse energy [28]. A set of scintillator tiles, used for triggering and beam-halo rejection, is mounted on the inner side of the HF calorimeters. A more detailed description of the CMS detector can be found in Ref. [29].

Jets are reconstructed from particle candidates obtained from a particle-flow algorithm [30]. The four-momentum of a charged hadron is determined from a combination of the track momentum and the corresponding ECAL and HCAL energies, corrected for zero-suppression effects, and calibrated for the nonlinear response of the calorimeters. This algorithm improves
the resolution of jets, while reducing the parton flavor dependence of the detector response as compared to a purely calorimetric measurement. The anti-k_T clustering algorithm \[31\] is used, with a distance parameter of $R = 0.3$. Details of the jet reconstruction, resolution and energy corrections may be found in Refs. \[12, 14, 32\]. The underlying background of bulk particle production in PbPb collisions is subtracted using the same method described in Ref. \[33\]. Jet p_T resolution effects are unfolded using an iterative method \[34\], as implemented in the ROOUNFOLD package \[35\].

The Monte Carlo simulations are performed using PYTHIA 6.422 \[36\] with tune Z2 \[37\]. A parton flavor is assigned to reconstructed jets by matching them in $\Delta R = \sqrt{(\Delta \eta^2 + \Delta \phi^2)}$ to generator-level partons (ϕ is the azimuthal angle measured in radians in the plane transverse to the beams). If a bottom quark is found within $\Delta R < 0.3$ then the jet is considered to be a b jet, irrespective of any other partons in the cone. This definition includes b quarks from gluon splitting ($g \to b\bar{b}$), even if the splitting occurs late in the parton shower (i.e., at low virtuality), consistent with the theoretical treatment of heavy-flavor production in Ref. \[38\]. We note that b jets from gluon splitting comprise about 60% of the total b-jet cross section (according to PYTHIA simulations) and are expected to interact differently with the QGP than those from primary b quarks \[39\]. To compare with PbPb data, PYTHIA events are embedded into PbPb events produced by the HYDJET generator (version 1.8) \[40\], which is tuned to reproduce event properties, such as charged-hadron multiplicity, p_T spectra, and elliptic flow.

Identification of b jets is based on kinematic variables related to the relatively long lifetime and large mass of b hadrons. Charged tracks of $p_T > 1\text{ GeV}/c$ that are associated to jets are used to reconstruct secondary vertices (SV) from b hadrons and/or subsequent c-hadron decays from the $b \to c$ cascade. The contribution of b jets is enhanced by requiring that SVs are far enough from the primary vertex, using a selection on the significance of the three-dimensional flight distance. This selection is chosen to give a misidentification rate of roughly 1% for light jets and 10% on charm-quark jets (c jets), based on simulation. The corresponding b-tagging efficiency is about 65% for pp and 45% for PbPb collisions.

The SV invariant mass is calculated from the constituent tracks. An example SV mass distribution, for jets with $80 < p_T < 90\text{ GeV}/c$, is shown in Fig. [1]. For each jet p_T bin, the b-jet purity (f_b), i.e., the ratio of the number of b jets to that of inclusive jets in the tagged sample, is extracted by means of a template fit. The shapes of the light-quark, c and b contributions are determined from simulation, while their normalizations are allowed to float. After tagging, the three contributions are of comparable magnitude, as shown in the figure, but the b-quark contribution dominates above the c-quark mass threshold near $2\text{ GeV}/c^2$, which allows for an accurate determination of the b-jet contribution.

For the systematic studies described below, an alternative b-tagging strategy is employed, which uses the jet probability (JP) algorithm \[25\]. In contrast to direct reconstruction of SVs, the JP tagger is based on an estimate of the compatibility of tracks with the primary vertex, using their three-dimensional impact parameter significance. A probability density for this compatibility is obtained directly from data using tracks with negative impact parameter, i.e., tracks that appear to come from the side of the primary vertex opposite the jet direction. Such tracks are unlikely to be associated with heavy-flavor decays. The impact parameter (IP) has the same sign as the scalar product of the vector pointing from the primary vertex to the point of closest approach with the jet direction. Tracks originating from the decay of particles traveling along the jet axis will tend to have positive IP values.

The b-jet yield, in a given p_T bin, is obtained as $N_b = N_f_b / \epsilon$, where N is the number of all b-
tagged jets and ϵ is the b-tagging efficiency. The efficiency ϵ is determined from simulation and cross-checked using the so-called reference lifetime tagger method, which uses the JP tagger to determine the efficiency of the SV tagger directly from data, taking advantage of the data-derived calibration of the JP tagger [25]. The simulation reproduces the estimate of ϵ from data to within 5%.

The unfolded b-jet p_T spectra in PbPb collisions are shown in Fig. 2 for several centrality selections. The PbPb data are divided by T_{AA}, computed from a Glauber model (for a review, see Ref. [41]), to scale to the expectation for pp collisions in the absence of nuclear effects. The value of the T_{AA} is the number of nucleon-nucleon (NN) collisions divided by the total inelastic NN cross section and may be interpreted as the NN equivalent luminosity per PbPb collision. Also shown is the measured b-jet cross section in pp collisions. The cross section is compared to PYTHIA simulations, which agree well with the data, as is the case at $\sqrt{s} = 7$ TeV for the p_T range covered by the present study [26]. The points are placed along the abscissa at the centers of the bins.

The systematic uncertainties fall into two general categories: b tagging and jet reconstruction. The b-tagging uncertainty on b-jet yields varies from about 12 to 18%, depending on jet p_T and collision system. The uncertainty is evaluated via the following systematic variations of the tagging procedure, which influence the extracted b-tagging purity and efficiency values:

- varying the SV flight distance selection such that ϵ differs by about 10%,
- using ϵ from the reference lifetime tagger method [25], rather than from simulation,
- fixing the c jet to light-quark jet normalization, rather than allowing them to float independently in the template fits,
- using a non-b-jet template produced from jets with small JP in data,
- varying the gluon-splitting contribution in the b-jet and c-jet templates by 50%.

The uncertainty on the spectra due to the jet reconstruction is 10–12% for pp and 15–17% for PbPb, and is comprised of the following sources:

- a 10% uncertainty in the jet energy resolution [42],
- a 2% uncertainty in the jet energy scale (JES) [42].
Figure 2: The b-jet yield as a function of p_T is shown for various centrality classes of PbPb collisions as indicated in the legend. The yields are scaled by the equivalent number of minimum bias events sampled and by T_{AA}. The spectra are also scaled by powers of 10 for visibility. The b-jet cross section in pp collisions is also shown, and compared to PYTHIA. Statistical uncertainties are represented by error bars, while systematics uncertainties are shown as filled boxes.

- an additional, centrality-dependent, 1–2% uncertainty in the JES in PbPb collisions due to the underlying event, evaluated from random-cone and embedding studies,
- an uncertainty in the unfolding procedure evaluated by varying the number of iterations and the presumed prior spectrum.

The pp luminosity has an uncertainty of 3.6%, while the uncertainty in T_{AA} varies from about 4% for centrality 0–10% to 15% for 50–100% [14].

Figure 3 shows the centrality-integrated b-jet nuclear modification factor (R_{AA}), which is the ratio of the T_{AA}-normalized PbPb yield and the measured pp cross section in Fig. 2 as a function of p_T. A significant suppression of the yield with respect to the pp expectation is observed in b jets, which is indicative of the parton energy loss in the hot medium. No strong trend is observed as a function of p_T, although the data hint a modest rise at higher p_T. The jet and b-tagging systematic uncertainties in R_{AA} are obtained by varying the pp and PbPb data simultaneously. This results in partial cancellation, giving a systematic uncertainty of 16–21%, which is dominated by the b-tagging uncertainty.

Figure 4 shows R_{AA} as a function of the number of participating nucleons (N_{part}), which is derived from the centrality (as measured by the energy in the forward calorimeters) through a Glauber calculation. Data for $80 < p_T < 90$ GeV/c and $90 < p_T < 110$ GeV/c are shown. For both jet selections R_{AA} shows a smooth decrease with increasing centrality from about 0.70–0.75 to about 0.35–0.40.

The data presented in this study demonstrate the jet quenching phenomenon in the b-quark sector using fully reconstructed b jets for the first time in heavy-ion collisions. Integrating over
all collision centralities, b jets are found to be suppressed over the 80–250 GeV/c p_T range explored in this study. For the 80–110 GeV/c p_T range, R_{AA} is found to decrease with collision centrality. At larger p_T, the trend is less evident due to the reduced statistical precision. The b-jet suppression is found to be qualitatively consistent with that of inclusive jets [24]. The absence of a strong dependence of the jet suppression on the mass of the fragmenting parton would favor a perturbative model in which mass effects are expected to be small at large p_T, as in Ref. [39], when compared against a model based on strong coupling (via the AdS/CFT correspondence) [17], in which mass effects could persist to large p_T. A weaker mass dependence, such as the one predicted in Ref. [43], cannot be ruled out with the present uncertainties.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).
Figure 4: The b-jet R_{AA}, as a function of N_{part} for two jet p_T selections as indicated in the legend. Statistical uncertainties are shown as error bars. The filled boxes represent the systematics uncertainties, excluding the T_{AA} uncertainties, which are depicted as open boxes. The normalization uncertainty in the integrated luminosity in pp collisions is represented by the green band around unity.

References

[1] É. V. Shuryak, “Theory of hadron plasma”, Sov. Phys. JETP 47 (1978) 212.

[2] J. C. Collins and M. J. Perry, “Superdense Matter: Neutrons Or Asymptotically Free Quarks?”, Phys. Rev. Lett. 34 (1975) 1353, doi:10.1103/PhysRevLett.34.1353.

[3] J. D. Bjorken, “Energy loss of energetic partons in QGP: possible extinction of high p_T jets in hadron-hadron collisions”, FERMILAB-PUB 82-059-THY, (1982).

[4] PHENIX Collaboration, “Formation of dense partonic matter in relativistic nucleus nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration”, Nucl. Phys. A 757 (2005) 184, doi:10.1016/j.nuclphysa.2005.03.086, arXiv:nucl-ex/0410003.

[5] STAR Collaboration, “Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR collaboration’s critical assessment of the evidence from RHIC collisions”, Nucl. Phys. A 757 (2005) 102, doi:10.1016/j.nuclphysa.2005.03.085, arXiv:nucl-ex/0510009.

[6] PHOBOS Collaboration, “The PHOBOS perspective on discoveries at RHIC”, Nucl. Phys. A 757 (2005) 28, doi:10.1016/j.nuclphysa.2005.03.084, arXiv:nucl-ex/0410022.

[7] BRAHMS Collaboration, “Quark Gluon Plasma and Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment”, Nucl. Phys. A 757 (2005) 1, doi:10.1016/j.nuclphysa.2005.02.130, arXiv:nucl-ex/0410020.

[8] STAR Collaboration, “Evidence from d + Au measurements for final state suppression of high-p_T hadrons in Au+Au collisions at RHIC”, Phys. Rev. Lett. 91 (2003) 072304, doi:10.1103/PhysRevLett.91.072304, arXiv:nucl-ex/0306024.
[9] STAR Collaboration, “Distributions of charged hadrons associated with high transverse momentum particles in pp and Au + Au collisions at √s_{NN} = 200-GeV”, Phys. Rev. Lett. 95 (2005) 152301, doi:10.1103/PhysRevLett.95.152301, arXiv:nucl-ex/0501016.

[10] PHENIX Collaboration, “Suppressed π^0 production at large transverse momentum in central Au+Au collisions at √s_{NN} = 200 GeV”, Phys. Rev. Lett. 91 (2003) 072301, doi:10.1103/PhysRevLett.91.072301, arXiv:nucl-ex/0304022.

[11] PHENIX Collaboration, “Dihadron azimuthal correlations in Au+Au collisions at √s_{NN} = 200-GeV”, Phys. Rev. C 78 (2008) 014901, doi:10.1103/PhysRevC.78.014901, arXiv:0801.4545.

[12] CMS Collaboration, “Jet momentum dependence of jet quenching in PbPb collisions at √s_{NN} = 2.76 TeV”, Phys. Lett. B 712 (2012) 176, doi:10.1016/j.physletb.2012.04.058, arXiv:1202.5022.

[13] ATLAS Collaboration, “Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at √s_{NN} = 2.76 TeV with the ATLAS Detector at the LHC”, Phys. Rev. Lett. 105 (2010) 252303, doi:10.1103/PhysRevLett.105.252303, arXiv:1011.6182.

[14] CMS Collaboration, “Observation and studies of jet quenching in PbPb collisions at √s_{NN} = 2.76 TeV”, Phys. Rev. C 84 (2011) 024906, doi:10.1103/PhysRevC.84.024906, arXiv:1102.1957.

[15] J. Casalderrey-Solana and C. A. Salgado, “Introductory lectures on jet quenching in heavy ion collisions”, Acta Phys. Polon. B 38 (2007) 3731, arXiv:0712.3443.

[16] D. d’Enterria, “Jet quenching”, volume 23: Relativistic Heavy Ion Physics of Springer Materials - The Landolt-Börnstein Database, ch. 6.4. Springer-Verlag, 2010. arXiv:0902.2011.

[17] W. A. Horowitz and M. Gyulassy, “Heavy quark jet tomography of Pb + Pb at LHC: AdS/CFT drag or pQCD energy loss?”, Phys. Lett. B 666 (2008) 320, doi:10.1016/j.physletb.2008.04.065, arXiv:0706.2336.

[18] Y. L. Dokshitzer and D. E. Kharzeev, “Heavy quark colorimetry of QCD matter”, Phys. Lett. B 519 (2001) 199, doi:10.1016/S0370-2693(01)01130-3, arXiv:hep-ph/0106202.

[19] P. Aurenche and B. G. Zakharov, “Anomalous mass dependence of radiative quark energy loss in a finite-size quark-gluon plasma”, JETP Lett. 90 (2009) 237, doi:10.1134/S0021364009160048, arXiv:0907.1918.

[20] CMS Collaboration, “Suppression of non-prompt J/ψ, prompt J/ψ, and Y(1S) in PbPb collisions at √s_{NN} = 2.76 TeV”, JHEP 05 (2012) 063, doi:10.1007/JHEP05(2012)063, arXiv:1201.5069.

[21] ALICE Collaboration, “Suppression of high transverse momentum D mesons in central Pb-Pb collisions at √s_{NN} = 2.76 TeV”, JHEP 09 (2012) 112, doi:10.1007/JHEP09(2012)112, arXiv:1203.2160.
References

[22] CMS Collaboration, “Study of high-\(p_T \) charged particle suppression in PbPb compared to pp collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV”, *Eur. Phys. J. C* **72** (2012) 1945, doi:10.1140/epjc/s10052-012-1945-x, arXiv:1202.2554

[23] ALICE Collaboration, “Centrality Dependence of Charged Particle Production at Large Transverse Momentum in Pb–Pb Collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV”, *Phys. Lett. B* **720** (2013) 52, doi:10.1016/j.physletb.2013.01.051, arXiv:1208.2711

[24] ATLAS Collaboration, “Measurement of the jet radius and transverse momentum dependence of inclusive jet suppression in lead-lead collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV with the ATLAS detector”, *Phys. Lett. B* **719** (2013) 220, doi:10.1016/j.physletb.2013.01.024, arXiv:1208.1967

[25] CMS Collaboration, “Identification of b-quark jets with the CMS experiment”, *JINST* **8** (2013) P04013, doi:10.1088/1748-0221/8/04/P04013, arXiv:1211.4462

[26] CMS Collaboration, “inclusive b-jet production in pp collisions at \(\sqrt{s} = 7 \) TeV”, *JHEP* **04** (2012) 084, doi:10.1007/JHEP04(2012)084, arXiv:1202.4617

[27] CMS Collaboration, “Measurement of \(B\bar{B} \) Angular Correlations based on Secondary Vertex Reconstruction at \(\sqrt{s} = 7 \) TeV”, *JHEP* **03** (2011) 136, doi:10.1007/JHEP03(2011)136, arXiv:1102.3194

[28] CMS Collaboration, “Dependence on pseudorapidity and centrality of charged hadron production in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV”, *JHEP* **08** (2011) 141, doi:10.1007/JHEP08(2011)141, arXiv:1107.4800

[29] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004

[30] CMS Collaboration, “Particle–Flow Event Reconstruction in CMS and Performance for Jets, Taus, and \(E_{T}^{miss} \)”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, (2009).

[31] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\(k_t \) jet clustering algorithm”, *JHEP* **04** (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189

[32] CMS Collaboration, “Studies of jet quenching using isolated-photon+jet correlations in PbPb and pp collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV”, *Phys. Lett. B* **718** (2013) 773, doi:10.1016/j.physletb.2012.11.003, arXiv:1205.0206

[33] O. Kodolova, I. Vardanian, A. Nikitenko, and A. Oulianov, “The performance of the jet identification and reconstruction in heavy ions collisions with CMS detector”, *Eur. Phys. J. C* **50** (2007) 117, doi:10.1140/epjc/s10052-007-0223-9

[34] G. D’Agostini, “A multidimensional unfolding method based on Bayes’ theorem”, *Nucl. Instrum. Meth. A* **362** (1995) 487, doi:10.1016/0168-9002(95)00274-X

[35] T. Adye, “Unfolding algorithms and tests using RooUnfold”, (2011). arXiv:1105.1160

[36] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, *JHEP* **05** (2006) 026, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175

[37] R. Field, “Early LHC Underlying Event Data — Findings and Surprises”, (2010). arXiv:1010.3558
[38] S. Frixione and M. L. Mangano, “Heavy quark jets in hadronic collisions”, *Nucl. Phys. B* **483** (1997) 321, doi:10.1016/S0550-3213(96)00577-9, arXiv:hep-ph/9605270.

[39] J. Huang, Z.-B. Kang, and I. Vitev, “Inclusive b-jet production in heavy ion collisions at the LHC”, *Phys. Lett. B* **726** (2013) 251, doi:10.1016/j.physletb.2013.08.009, arXiv:1306.0909.

[40] I. P. Lokhtin and A. M. Snigirev, “A model of jet quenching in ultrarelativistic heavy ion collisions and high-p_T hadron spectra at RHIC”, *Eur. Phys. J. C* **45** (2006) 211, doi:10.1140/epjc/s2005-02426-3, arXiv:hep-ph/0506189.

[41] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, “Glauber modeling in high energy nuclear collisions”, *Ann. Rev. Nucl. Part. Sci.* **57** (2007) 205, doi:10.1146/annurev.nucl.57.090506.123020, arXiv:nucl-ex/0701025.

[42] CMS Collaboration, “Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS”, *JINST* **6** (2011) P11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.

[43] A. Buzzatti and M. Gyulassy, “Jet Flavor Tomography of Quark Gluon Plasmas at RHIC and LHC”, *Phys. Rev. Lett.* **108** (2012) 022301, doi:10.1103/PhysRevLett.108.022301, arXiv:1106.3061.
1 The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut f"ur Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicicv, J. Er"o, C. Fabjan1, M. Friedl, R. Fr"uhwirth1, V.M. Ghete, C. Hartl, N. H"ormann, J. Hrubec, M. Jeitler1, W. Kiesenhofer, V. Kn"unz, M. Krammer1, I. Kr"atschmer, D. Liko, I. Mikulec, D. Rabady2, B. Rahbaran, H. Rohringer, R. Sch"ofbeck, J. Strauss, A. Taurok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, L. Micibello, S. Ochesanu, B. Roland, R. Rougny, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Bryweert, J. D’Hondt, N. Heracleous, A. Kalogeropoulos, J. Keaveney, T.J. Kim, S. Lowette, M. Maes, A. Olbrechts, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Universit´e Libre de Bruxelles, Bruxelles, Belgium
C. Caillol, B. Clerbaux, G. De Lentdecker, L. Favart, A.P.R. Gay, A. Léonard, P.E. Marage, A. Mohammadi, L. Perniè, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Dildick, G. Garcia, B. Klein, J. Lellouch, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, S. Walsh, E. Yazgan, N. Zaganidis

Universit´e Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi3, G. Bruno, R. Castello, A. Caudron, L. Ceard, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco4, J. Hollar, P. Jez, M. Komm, V. Lemaitre, J. Liao, O. Militaru, C. Nuttens, D. Pagano, A. Pin, K. Pietrzkowski, A. Popov5, L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia

Universit´e de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
G.A. Alves, M. Correa Martins Junior, T. Martins, M.E. Pol, M.H.G. Souza

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W.L. Aldá Júnior, W. Carvalho, J. Chinellato6, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, M. Malek, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote6, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardes6, F.A. Dias6,7, T.R. Fernandez Perez Tomei6, E.M. Gregores6, C. Laganaa, P.G. Mercadanteb, S.F. Novaes6, Sandra S. Padulaa
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
V. Genchev, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, R. Du, C.H. Jiang, D. Liang, S. Liang, X. Meng, R. Plestina, J. Tao, X. Wang, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, W. Li, S. Liu, Y. Mao, S.J. Qian, H. Teng, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, S. Morovic, L. Tikvica

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgamal, T. Elkafrawy, A. Ellithi Kamel, M.A. Mahmoud, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Müntel, M. Murumaa, M. Raidal, L. Rebane, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, A. Nayak, J. Rander, A. Rosowsky, M. Titov
University of Hamburg, Hamburg, Germany
M. Aldaya Martin, V. Blobel, H. Enderle, J. Erflle, E. Garutti, K. Goebel, M. Görner, M. Gosselink, J. Haller, R.S. Höing, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, I. Marchesini, J. Ott, T. Peiffer, N. Pietsch, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, J. Sibille\(^1\), V. Sola, H. Stadie, G. Steinbrück, D. Troendle, E. Usai, L. Vanelnderen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, M. Guthoff\(^2\), F. Hartmann\(^2\), T. Hauth\(^2\), H. Held, K.H. Hoffmann, U. Husemann, I. Katkov\(^5\), A. Kornmayer\(^2\), E. Kuznetsova, P. Lobelle Pardo, D. Martschei, M.U. Mozer, Th. Müllner, M. Niegel, A. Nürnberg, O. Oberst, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, F.-P. Schilling, G. Schott, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, R. Wolf, M. Zeise

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, S. Kesisoglou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, E. Ntomari, A. Psallidas, I. Topsis-giotis

University of Athens, Athens, Greece
L. Gouskos, A. Panagiototou, N. Saoulidou, E. Stiliaris

University of Ioánina, Ioánina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

Wigner Research Centre for Physics, Budapest, Hungary
G. Benze, C. Hajdu, P. Hidas, D. Horvath\(^18\), F. Sikler, V. Veszpremi, G. Vesztergombi\(^19\), A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
J. Karancsi, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, M. Kaur, M.Z. Mehta, M. Mittal, N. Nishu, A. Sharma, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma, R.K. Shivpuri

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan, A.P. Singh

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty\(^2\), L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, R.M. Chatterjee, S. Ganguly, S. Ghosh, M. Guchait\(^20\), A. Gurru\(^21\), G. Kole,
S. Kumar, M. Maity22, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage23

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Arfaei, H. Bakhshiansohi, H. Behnamian, S.M. Etesami24, A. Fahim25, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, B. Safarzadeh26, M. Zeinali

University College Dublin, Dublin, Ireland
M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa,b, L. Barbonea,b, C. Calabriaa,b, S.S. Chhibraa,b, A. Colaleoa, D. Creanzaa,c, N. De Filippisa,c, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia, B. Marangellia,b, S. Mya,c, S. Nuzzoa,b, N. Pacificoa, A. Pompilia,b, G. Pugliesea,c, R. Radognaa,b, G. Selvaggia,b, L. Silvestrisa, G. Singha,b, R. Vendittia,b, P. Verwilligena, G. Zitoa

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendia, A.C. Benvenutia, D. Bonacorsia,b, S. Braibant-Giacomellia,b, L. Brigliadoria,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, G. Codispotia,b, M. Cuffiania,b, G.M. Dallavallea, F. Fabbrinia, A. Fanfania,b, D. Fasanellaa,b, P. Giacomellia, C. Grandia, L. Guiduccia,b, S. Marcellinia, G. Masettia, M. Meneghellia,b, A. Montanaria, F.L. Navarriaa,b, F. Odoricia, A. Perrottaa, F. Primaveraa,b, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b, N. Tosia,b, R. Travaglinia,b

INFN Sezione di Catania a, Università di Catania b, CSFNSM c, Catania, Italy
S. Albergoa,b, G. Cappelloa, M. Chiorbolia,b, S. Costaa,b, F. Giordanoa,2, R. Potenzaa,b, A. Tricomia,b, C. Tuvea,b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbaglioa, V. Ciullia,b, C. Civininia, R. D'Alessandroa,b, E. Focardia,b, E. Galloa, S. Gonzia,b, V. Goria,b, P. Lenzia,b, M. Meschinia, S. Paolettia, G. Guazzonia, A. Tropianoa,b

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbrì, D. Piccolo

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
P. Fabbricatorea, R. Ferrettia,b, F. Ferroa, M. Lo Veterea,b, R. Musenicha, E. Robuttia, S. Tosia,b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
A. Benagliaa, M.E. Dinardoa,b, S. Fiorendia,b,2, S. Gennaia, A. Ghezzia,b, P. Govonia,b, M.T. Lucchinia,b,2, S. Malvezzia, R.A. Manzonia,b,2, A. Martellia,b,2, D. Menascea, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, N. Redaellia, T. Tabarelli de Fatisa,b

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Università della Basilicata (Potenza) c, Università G. Marconi (Rom) d, Napoli, Italy
S. Buontempoa, N. Cavalloa,c, F. Fabozzia,c, A.O.M. Iorioa,b, L. Listaa, S. Meolaa,d,2, M. Merolaa, P. Paoluccia,d,2

INFN Sezione di Padova a, Università di Padova b, Università di Trento (Trento) c, Padova, Italy
P. Azzia, N. Bacchettaa, D. Biselloa,b, A. Brancaa,b, R. Carlina,b, P. Checchiaa, T. Dorigoa, U. Dossellia, M. Galantia,b,2, F. Gasparinia,b, P. Giubilatoa,b, A. Gozzelinoa, K. Kanishcheva,c,
S. Lacapraraa, I. Lazzizzeraa,c, M. Margonia,b, A.T. Meneguzzoa,b, F. Montecassianoa, M. Passaseoa, J. Pazzinia,b, M. Pegoraroa, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b

\textbf{INFN Sezione di Pavia} a, Università di Pavia b, Pavia, Italy
M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Vituloa,b

\textbf{INFN Sezione di Perugia} a, Università di Perugia b, Perugia, Italy
M. Biasinia,b, G.M. Bileia, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, F. Romeoa,b, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b

\textbf{INFN Sezione di Pisa} a, Università di Pisa b, Scuola Normale Superiore di Pisa c, Pisa, Italy
K. Androsova,d,27, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Bocciaa, G. Broccoloa,c, R. Castaldia, M.A. Cioccia,d,27, R. Dell’Orsoa, F. Fioria,c, L. Foàa,c, A. Giassia, M.T. Grippoa,d,27, A. Kraana, F. Ligabuea,c, T. Lomtadzea, L. Martinellia,b, A. Messineoa,b, C.S. Moona,d,28, F. Pallaa, A. Rizzia,b, A. Savoy-Navarroa,d,29, A.T. Serbana, P. Spagnoloa, S. Squillacia,d,27, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia, C. Vernieria,d,e

\textbf{INFN Sezione di Roma} a, Università di Roma b, Roma, Italy
L. Baronea,b, F. Cavallaria, D. Del Rea,b, M. Diemoza, M. Grassia,b, C. Jordàa, E. Longoa,b, F. Margarolia,b, P. Meridiania, F. Michelia,b, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, C. Rovellia, L. Soffia,b, P. Traczyka,b

\textbf{INFN Sezione di Torino} a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapania,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, R. Bellana,b, C. Biinoa, N. Cartigliaa, S. Casassoa,b, M. Costaa,b, A. Deganoa,b, N. Demariaa, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha, M.M. Obertinoa,c, G. Ortonaa,b, L. Puchera,b, N. Pastronea, M. Pelliccionia,2, A. Potenzaa,b, A. Romeoa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, U. Tamponia

\textbf{INFN Sezione di Trieste} a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Roccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, D. Montaninoa,b, A. Penzoa,b, A. Schiavonia,b, T. Umera,b, A. Zanettia

\textbf{Kangwon National University}, Chunchon, Korea
S. Chang, T.Y. Kim, S.K. Nam

\textbf{Kyungpook National University}, Daegu, Korea
D.H. Kim, G.N. Kim, J.E. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, D.C. Son

\textbf{Chonnam National University Institute for Universe and Elementary Particles}, Kwangju, Korea
J.Y. Kim, Zero J. Kim, S. Song

\textbf{Korea University}, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, K.S. Lee, S.K. Park, Y. Roh

\textbf{University of Seoul}, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

\textbf{Sungkyunkwan University}, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, E. Kwon, B. Lee, J. Lee, S. Lee, H. Seo, I. Yu

\textbf{Vilnius University}, Vilnius, Lithuania
A. Juodagalvis
University of Malaya Jabatan Fizik, Kuala Lumpur, Malaysia
J.R. Komaragiri

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, J. Martinez-Ortega, A. Sanchez-Hernandez, L.M. Villasenor-Cendejas

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarguen

Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
M. Ahmad, M.I. Asghar, J. Butt, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, S. Qazi, M.A. Shah, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Gorski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, G. Wrochna, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, W. Wolszczak

Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisboa, Portugal
P. Bargassa, C. Beirao Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, G. Kozlov, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin
P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, V. Korotkikh, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Djordjevic, M. Ekmedzic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
M. Aguilar-Benitez, J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, C. Fernandez Bedoya, J.P. Fernández Ramos, A. Ferrando, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, E. Navarro De Martino, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, S.H. Chuang, J. Duarte Campderros, M. Fernandez, G. Gomez, J. Gonzalez Sanchez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodriguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, L. Benhabib, J.F. Benitez, C. Bernet, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, T. Christiansen, J.A. Coarasa Perez, S. Colafranceschi, M. D’Alfonso, D. d’Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, S. Di Guida, M. Dobson, N. Dupont-Sagorin, A. Elliott-Peisert, J. Esgueverria, G. Franzoni, W. Funk, M. Giffels, D. Gigi, K. Gill, M. Girone, M. Giunta, F. Glege, R. Gomez-Reino Garrido, S. Gowdy, R. Guida, J. Hammer, M. Hansen, P. Harris, V. Innocente, P. Janot, E. Karavakis, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, P. Musella, L. Orcini, E. Palencia Cortezon, E. Perez, L. Perrozzi, A. Petrilli, G. Petracciani, A. Pfeiffer, M. Pierini, M. Pimià, D. Piparo, M. Plagge, A. Racz, W. Reece, G. Rolandi, M. Rovere, H. Sakulin, F. Santanastasio, C. Schäfer, C. Schwik, S. Sekmen, A. Sharma, P. Siegrist, P. Silva,
M. Simon, P. Sphicas36, J. Steggemann, B. Stieger, M. Stoye, A. Tsirou, G.I. Veres19, J.R. Vlimant, H.K. Wöhrli, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, S. König, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, W. Lustermann, B. Mangano, A.C. Marini, P. Martinez Ruiz del Arbol, D. Meister, N. Mohr, C. Nägeli37, P. Nef, F. Nepel-Tedaldi, F. Pandolfi, L. Pape, F. Pauss, M. Peruzzi, M. Quittnat, F.J. Ronga, M. Rossini, A. Starodumov38, M. Takahashi, L. Tauscher, K. Theofilatos, D. Treille, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland
C. Amsler39, V. Chiochia, A. De Cosa, C. Favaro, A. Hinzmann, T. Hreus, M. Ivova Rikova, B. Kilminster, B. Millan Mejias, J. Ngadiuba, P. Robmann, H. Snoek, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, S.W. Li, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Bartalini, P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y. Hsiung, K.Y. Kao, Y.J. Lei, Y.F. Liu, R.-S. Lu, D. Majumder, E. Peträkou, X. Shi, J.G. Shiu, Y.M. Tseng, M. Wang, R. Wilken

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci40, S. Cerci41, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut42, K. Ozdemir, S. Ozturk40, A. Polatoz, K. Sogut43, D. Sunar Cerci41, B. Tali41, H. Topakli40, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, T. Aliev, B. Bilin, S. Bilmis, M. Deniz, H. Gamsizkan, A.M. Guler, G. Karapinar44, K. Ocalan, A. Ozpineci, M. Serin, R. Sever, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak45, M. Kaya46, O. Kaya46, S. Ozkorucuklu47

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar48, E. Barlas, K. Çankocak, Y.O. Güneydin49, F.I. Vardarlı, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold50, S. Parameswaran, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
A. Belyaev51, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Ilic,
E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, W. Ferguson, J. Fulcher, D. Futyan, A. Gilbert, A. Guneratne Bryer, G. Hall, Z. Hatherell, J. Hays, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, J. Marrouche, B. Mathias, R. Nandi, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, M. Pioppi, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp, A. Sparrow, A. Tapper, M. Vazquez Acosta, T. Virdee, S. Wakefield, N. Wardle

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasihi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, D. Lazic, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA
J. Alimena, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, S. Jabeen, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, A. Kopecky, R. Lander, T. Miceli, D. Pellett, J. Pilot, F. Ricci-Tam, B. Rutherford, M. Searle, S. Shalhout, J. Smith, M. Squires, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
V. Andreev, D. Cline, R. Cousins, S. Erhan, P. Everaerts, C. Farrell, M. Felcini, J. Hauser, M. Ignatenko, C. Jarvis, G. Rakness, P. Schlein, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
J. Babb, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, P. Jandir, F. Lacroix, H. Liu, O.R. Long, A. Luthra, M. Malberti, H. Nguyen, A. Shrinivas, J. Sturdy, S. Sumowidagdo, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, D. Evans, A. Holzner, R. Kelley, D. Kovalskyi, M. Lebourgeois, J. Letts, I. Macneill, S. Padhi, C. Palmer, M. Pieri, M. Sané, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, S. Wasserbaech, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, C. Campagnari, T. Danielson, K. Flowers, P. Geffert, C. George, F. Golf, J. Incandela,
C. Justus, R. Magaña Villalba, N. McColl, V. Pavlunin, J. Richman, R. Rossin, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, D. Kcira, A. Mott, H.B. Newman, C. Pena, C. Rogan, M. Spiropulu, V. Timciuc, R. Wilkinson, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, R. Carroll, T. Ferguson, Y. Iiyama, D.W. Jang, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, B.R. Drell, W.T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, N. Eggert, L.K. Gibbons, W. Hopkins, A. Khukhunaishvili, B. Kreis, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, V. Chetyrkin, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko, S. Nahn, C. Newman-Holmes, V. O’Dell, O. Prokofyev, N. Ratnikova, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, A. Whitbeck, J. Whitmore, W. Wu, F. Yang, J.C. Yun

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, T. Cheng, S. Das, M. De Gruttola, G.P. Di Giovanni, D. Dobur, R.D. Field, M. Fisher, Y. Fu, I.K. Furic, J. Hugon, B. Kim, J. Konigsberg, A. Korytov, A. Kropivnitskaya, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska, N. Shchutska, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA
V. Gaultney, S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, J. Chen, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, B. Dorney, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, V.E. Bazterra, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, P. Kurt, D.H. Moon, C. O’Brien, C. Silkworth, P. Turner, N. Varelas
The CMS Collaboration

The University of Iowa, Iowa City, USA
U. Akgun, E.A. Albayrak, B. Bilki, W. Clarida, K. Dilsiz, F. Duru, M. Haytmyradov, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic, C. Martin, M. Swartz

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, R.P. Kenny III, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA
A.F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, J. Temple, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, G. Bauer, W. Busza, I.A. Cali, M. Chan, L. Di Matteo, V. Dutta, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.-S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, T. Ma, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephans, F. Stöckli, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch, M. Yang, A.S. Yoon, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. De Benedetti, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, L.M. Cremaldi, R. Kroeger, S. Oliveros, L. Perera, R. Rahmat, D.A. Sanders, D. Summers

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, S. Jain, A. Kharchilava, A. Kumar, S. Rappoccio, Z. Wan

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasos, J. Haley, A. Massironi, D. Nash, T. Orimoto, D. Trocino, D. Wood, J. Zhang

Northwestern University, Evanston, USA
A. Anastassov, K.A. Hahn, A. Kubik, L. Lusito, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
D. Berry, A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard,
University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane

University of Wisconsin, Madison, USA
D.A. Belknap, L. Borrello, D. Carlsmith, M. Cepeda, S. Dasu, S. Duric, E. Friis, M. Grothe, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, J. Klukas, A. Lanaro, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, A. Sakharov, T. Sarangi, A. Savin, W.H. Smith

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at California Institute of Technology, Pasadena, USA
8: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
9: Also at Suez Canal University, Suez, Egypt
10: Also at British University in Egypt, Cairo, Egypt
11: Also at Ain Shams University, Cairo, Egypt
12: Also at Cairo University, Cairo, Egypt
13: Also at Fayoum University, El-Fayoum, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Joint Institute for Nuclear Research, Dubna, Russia
16: Also at Brandenburg University of Technology, Cottbus, Germany
17: Also at The University of Kansas, Lawrence, USA
18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
19: Also at Eötvös Loránd University, Budapest, Hungary
20: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
21: Now at King Abdulaziz University, Jeddah, Saudi Arabia
22: Also at University of Visva-Bharati, Santiniketan, India
23: Also at University of Ruhuna, Matara, Sri Lanka
24: Also at Isfahan University of Technology, Isfahan, Iran
25: Also at Sharif University of Technology, Tehran, Iran
26: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
27: Also at Università degli Studi di Siena, Siena, Italy
28: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
29: Also at Purdue University, West Lafayette, USA
30: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
31: Also at National Centre for Nuclear Research, Swierk, Poland
32: Also at Institute for Nuclear Research, Moscow, Russia
33: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
34: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
35: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
36: Also at University of Athens, Athens, Greece
37: Also at Paul Scherrer Institut, Villigen, Switzerland
38: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
39: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
40: Also at Gaziosmanpasa University, Tokat, Turkey
41: Also at Adiyaman University, Adiyaman, Turkey
42: Also at Cag University, Mersin, Turkey
43: Also at Mersin University, Mersin, Turkey
44: Also at Izmir Institute of Technology, Izmir, Turkey
45: Also at Ozyegin University, Istanbul, Turkey
46: Also at Kafkas University, Kars, Turkey
47: Also at Istanbul University, Faculty of Science, Istanbul, Turkey
48: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
49: Also at Kahramanmaras Sütçü Imam University, Kahramanmaras, Turkey
50: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
51: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
52: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
53: Also at Utah Valley University, Orem, USA
54: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
55: Also at Argonne National Laboratory, Argonne, USA
56: Also at Erzincan University, Erzincan, Turkey
57: Also at Yildiz Technical University, Istanbul, Turkey
58: Also at Texas A&M University at Qatar, Doha, Qatar
59: Also at Kyungpook National University, Daegu, Korea