Perioperative outcomes of interrupted anticoagulation in patients with non-valvular atrial fibrillation undergoing non-cardiac surgery

Bo Eun Park, Myung Hwan Bae, Hyeon Jeong Kim, Yoon Jung Park, Hong Nyun Kim, Se Yong Jang, Jang Hoon Lee, Dong Heon Yang, Hun Sik Park, Yongkeun Cho, Shung Chull Chae

Department of Internal Medicine, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea

Background: This study aimed to investigate the incidences of and risk factors for perioperative events following anticoagulant discontinuation in patients with non-valvular atrial fibrillation (NVAF) undergoing non-cardiac surgery.

Methods: A total of 216 consecutive patients who underwent cardiac consultation for suspending perioperative anticoagulants were enrolled. A perioperative event was defined as a composite of thromboembolism and major bleeding.

Results: The mean anticoagulant discontinuation duration was 5.7 (±4.2) days and was significantly longer in the warfarin group (p<0.001). Four perioperative thromboembolic (1.9%; three strokes and one systemic embolization) and three major bleeding events (1.4%) were observed. The high CHA2DS2-VASc and HAS-BLED scores and a prolonged preoperative anticoagulant discontinuation duration (4.4 ±2.1 vs. 2.9 ±1.8 days; p=0.028) were associated with perioperative events, whereas the anticoagulant type (non-vitamin K antagonist oral anticoagulants or warfarin) was not. The best cut-off levels of the HAS-BLED and CHA2DS2-VASc scores were 3.5 and 2.5, respectively, and the preoperative anticoagulant discontinuation duration for predicting perioperative events was 2.5 days. Significant differences in the perioperative event rates were observed among the four risk groups categorized according to the sum of these values: risk 0, 0%; risk 1, 0%; risk 2, 5.9%; and risk 3, 50.0% (p<0.001). Multivariate logistic regression analysis showed that the HAS-BLED score was an independent predictor for perioperative events.

Conclusion: Thromboembolic events and major bleeding are not uncommon during perioperative anticoagulant discontinuation in patients with NVAF, and interrupted anticoagulation strategies are needed to minimize these.

Keywords: Anticoagulants; Atrial fibrillation; Perioperative period; Surgery; Thromboembolism

Introduction

Atrial fibrillation (AF) increases the morbidity and mortality risks in affected patients and is closely related to stroke incidence [1-5]. Anticoagulation is important to reduce these risks. Warfarin has been used for preventing stroke for many decades; recently, non-vitamin K antagonist oral anticoagulants (NOACs) have been developed and used for this purpose [6-11]. If patients with AF who are undergoing anticoagulant therapy need surgery, anticoagulant discontinuation is required for certain duration owing to concerns regarding the increased risk of intraoperative bleeding [6-9]. However, anticoagulant discontinuation can increase the risk of periopera-
tive stroke; thus, it is necessary to determine the appropriate anti-coagulant discontinuation duration to minimize the risk of perioperative stroke and bleeding. Current guidelines on anticoagulant use in patients with AF have suggested the perioperative anticoagulant discontinuation duration according to the bleeding risk associated with the surgery; conversely, they take into account the pharmacokinetic characteristics of anticoagulants and do not reflect the results of clinical studies [7,10-12]. Consequently, in this study, we investigated the incidences of and risk factors for thromboembolism and major bleeding following perioperative anticoagulant discontinuation in patients with non-valvular AF (NVAF) undergoing non-cardiac surgery.

Materials and methods

The study was approved by the by the Institutional Review Board (IRB) of the Kyungpook National University Hospital (IRB No: 2019-11-040). Informed consent was waived by the board.

This observational study included 216 consecutive patients with NVAF who consulted the Department of Cardiology for suspending their perioperative anticoagulant use at the Kyungpook National University Hospital between March 2015 and September 2019. Patients with a mechanical prosthetic heart valve or moderate to severe mitral valve stenosis, as well as those with newly diagnosed AF or those who did not take anticoagulants (NOACs or warfarin), were excluded. All surgeries/interventions were categorized into three groups depending on the surgical bleeding risks according to the 2018 European Heart Rhythm Association Practical Guidelines on the NOACs use in patients with AF [11]: those not necessarily requiring discontinuation (dental intervention, ophthalmology, endoscopy/cystoscopy without biopsy, and superficial surgery), those with a low bleeding risk (endoscopy/cystoscopy with biopsy, prostate or bladder biopsy, and angiography), and those with a high bleeding risk (thoracic, abdominal, orthopedic, spinal, and vascular surgeries, complex endoscopic procedures, and extracorporeal shock wave lithotripsy).

The demographic and clinical characteristics of the patients were examined, including age, sex, body weight, pre-medication, laboratory findings, and cardiovascular risk factors (hypertension, diabetes mellitus, previous history of myocardial infarction, stroke/transient ischemic attack [TIA], congestive heart failure, vascular disease, and chronic kidney disease). The CHA2DS2-VASc and HAS-BLED scores were used to assess the stroke and bleeding risks. The left atrial anteroposterior diameter (mm) and left ventricular ejection fraction (LVEF, %) were measured using two-dimensional echocardiography. Regarding laboratory data, the creatinine levels and international normalized ratio values were obtained on the date closest to the actual surgery date. Furthermore, information on pre-hospital medication including warfarin, NOACs (apixaban, dabigatran, edoxaban, and rivaroxaban), and concomitant antiplatelet agents was collected. The anticoagulant discontinuation duration was measured by taking into consideration the actual time the drug was last taken. Heparin bridging therapy used a twice-daily low molecular weight heparin and was discontinued 24 hours before the planned surgery or procedure.

A perioperative event was defined as a composite of stroke, systemic embolism, and major bleeding owing to anticoagulant discontinuation of up to 30 days postoperatively. Stroke was defined as a sudden focal neurological deficit consistent with the territory of a cerebral artery occlusion documented by a brain imaging study. Moreover, systemic embolism was defined as a sudden vascular occlusion in an organ or extremity. Major bleeding was defined as clinically overt bleeding with a decrease of at least 2 g/dL in hemoglobin levels or transfusion of at least two units of packed red blood cells or that resulting in death.

Data are expressed as mean ± standard deviation and percentages for continuous and categorical variables, respectively. All comparisons between the baseline variables were performed using the Student t-test and chi-square test for continuous and categorical variables, respectively. All p-values were two-sided, and p < 0.05 was considered significant. Multivariate logistic regression analysis was used for identifying independent predictors of a perioperative event. The receiver operating characteristics (ROC) curve analysis was performed to determine the cut-off values for predicting a perioperative event. All statistical analyses were performed using the IBM SPSS version 20.0 (IBM Corp., Armonk, NY, USA).

Results

All surgery types (n = 216) were classified into the following three groups according to the risk of bleeding: those not necessarily requiring discontinuation (n = 44), those with a low bleeding risk (n = 3), and those with a high bleeding risk (n = 169) (Table 1). Major orthopedic surgery was the most common type (n = 57), followed by abdominal (n = 45), spinal (n = 21), ophthalmological (n = 18), and vascular (n = 12) surgeries.

The baseline characteristics of the 216 patients (mean age, 73 ± 8 years; 127 males [58.8%]) are shown in Table 2. Hypertension (58.8%) and diabetes mellitus (30.6%) were common comorbidities, and 46 patients (21.3%) had previously experienced a stroke/TIA. The mean LVEF was 55% ± 9%, and the mean left atrial anteroposterior diameter was 48 ± 8 mm. Regarding the laboratory findings, the mean estimated glomerular filtration rate was 78 ± 33 mL/min; furthermore, 52 patients (24.1%) had a history of hypertension.
of chronic kidney disease. The mean CHA\textsubscript{2}-DS\textsubscript{2}-VASc and HAS-BLED scores were 3.3 ± 1.5 and 1.9 ± 1.0, respectively.

NOACs and warfarin were prescribed for 138 and 78 patients, respectively. Rivaroxaban (41.3%) was the most commonly prescribed NOAC, followed by apixaban (23.9%), edoxaban (19.6%), and dabigatran (15.2%). The serum creatinine levels as well as male patient and heparin bridging therapy frequencies were higher in the warfarin group than in the NOACs group. However, there were no between-group differences regarding age; body weight; LVEF; left atrial size; renal function; platelet count and hemoglobin level, concomitant antiplatelet agent prescription; comorbidities such as diabetes mellitus, ischemic heart disease, stroke/TIA, heart failure, vascular disease, and chronic kidney disease; and surgery types according to the bleeding risk. Moreover, the mean CHA\textsubscript{2}-DS\textsubscript{2}-VASc (NOACs, 3.3 ± 1.4 vs. warfarin, 3.1 ± 1.8; \(p = 0.410\)) and HAS-BLED (1.9 ± 0.9 vs. 2.0 ± 1.1; \(p = 0.519\)) scores were not different between the groups. The mean anticoagulant discontinuation duration was 5.7 ± 4.2 days, with the duration being significantly longer in the warfarin group (8.6 ± 4.9 vs. 4.0 ± 2.5 days; \(p < 0.001\)) (Fig. 1).

Four thromboembolic events (1.9%; three strokes and one systemic embolization) and three major bleeding events (1.4%) occurred during the perioperative period (Table 3). The clinical characteristics of patients with perioperative stroke or major bleeding are shown in Table 4. Of them, NOACs and warfarin were prescribed in four and three patients, respectively. The CHA\textsubscript{2}-DS\textsubscript{2}-VASc (4.9 ± 2.0 vs. 3.2 ± 1.5; \(p = 0.005\)) and HAS-BLED (3.6 ± 1.1 vs. 1.8 ± 0.9; \(p < 0.001\)) scores were higher and the preoperative anticoagulant discontinuation duration (4.4 ± 2.1 vs. 2.9 ± 1.8 days; \(p = 0.028\)) was longer in patients with perioperative events than in those without them (Table 3). When all patients with low or high surgical bleeding risk were analyzed except those who did not need to stop taking anticoagulants before surgery/intervention, the CHA\textsubscript{2}-DS\textsubscript{2}-VASc and HAS-BLED scores were higher and the duration of preoperative anticoagulant discontinuation was longer in patients with perioperative events (Table 3). Major bleeding events were significantly increased in patients treated with perioperative heparin bridging therapy (5.6% vs. 0%, \(p = 0.015\)). However, there was no significant difference in perioperative events according to the heparin bridging therapy status. Moreover, the anticoagulant type (NOACs or warfarin) and surgery type according to bleeding risk did not affect the perioperative event occurrence.

The area under the ROC curve for predicting the perioperative events was 0.868 (95% confidence interval [CI], 0.722–1.000) for the HAS-BLED score, 0.747 (95% CI, 0.587–0.908) for the CHA\textsubscript{2}-DS\textsubscript{2}-VASc score, and 0.733 (95% CI, 0.508–0.958) for the preoperative anticoagulant discontinuation duration (Fig. 2). The best cut-off levels of the HAS-BLED and CHA\textsubscript{2}-DS\textsubscript{2}-VASc scores were 3.5 and 2.5, respectively, and the preoperative anticoagulant discontinuation duration as per the ROC curve analysis was 2.5 days. When the patients were categorized into four risk score groups according to the sum of the values defined by the cut-off levels, significant differences in the perioperative event rate were observed among the groups: risk 0 (0%), 1 (0%), 2 (5.9%), and 3 (50.0%) (\(p < 0.001\); Fig. 3). Multivariate logistic regression analysis showed that the HAS-BLED score (hazard ratio, 5.812; 95% CI, 1.930–17.502) was an independent predictor for perioperative events after adjusting for the CHA\textsubscript{2}-DS\textsubscript{2}-VASc score and preoperative anticoagulant discontinuation duration (Table 5).

Discussion

Among our study patients, thromboembolic events and major bleeding occurred in 1.9% and 1.4% of patients, respectively, who stopped anticoagulation therapy before surgery. Perioperative events are common in patients with high CHA\textsubscript{2}-DS\textsubscript{2}-VASc and HAS-BLED scores or in those with prolonged anticoagulant discontinuation duration. However, no differences were observed in the perioperative events according to the anticoagulant (NOACs or warfarin) and surgery types.
Patients with AF are at a high risk of developing thromboembolic events and require adequate anticoagulant therapy [6-11]. However, a significant number of patients undergoing anticoagulant therapy may require surgery or other procedures, and the doctors in charge of these interventions may recommend discontinuing the anticoagulant for as long as possible due to the risk of bleeding. NOACs have shorter half-lives and achieve effective drug concentrations faster than warfarin [11-20]. Therefore, anticoagulant use guidelines for patients with AF recommend the cessation of NOACs for 48 hours in case of a high bleeding risk surgery and for 24 hours in case of a low bleeding risk surgery [11]. However, the anticoagulant discontinuation duration recommended by these guidelines is based on the pharmacokinetic characteristics of drugs; moreover, there have been few studies investigating the proper perioperative anticoagulant discontinuation duration [8,9,21-25].

In the warfarin era, several studies showed that perioperative warfarin discontinuation for a brief period (≤ 5 days) is associated with a low risk of thromboembolism [4,24]. However, there are few studies examining the relationship between the anticoagulant discontinuation duration and a perioperative event in the NOACs era, except for the recent perioperative anticoagulation use for surgery evaluation (PAUSE) study [26].

Table 2. Baseline clinical characteristics of the patients according to anticoagulant type

Characteristic	All patients (n = 216)	NOACs (n = 138)	Warfarin (n = 78)	p-value
Age (yr)	72.9 ± 7.7	73.2 ± 7.6	72.3 ± 8.1	0.418
Male sex	127 (58.8)	74 (53.6)	53 (67.9)	0.04
Body weight (kg)	63.0 ± 11.5	62.2 ± 12.2	64.2 ± 10.2	0.232
Comorbidities				
Hypertension	127 (58.8)	89 (64.5)	38 (48.7)	0.024
Diabetes mellitus	66 (30.6)	43 (31.2)	23 (29.5)	0.798
Ischemic heart disease	24 (11.1)	15 (10.9)	9 (11.5)	0.881
Stroke/TIA	46 (21.3)	25 (18.1)	21 (26.9)	0.129
Congestive heart failure	16 (7.4)	11 (8.0)	5 (6.4)	0.674
Vascular disease	18 (8.3)	10 (7.2)	8 (10.3)	0.442
CHA$_2$DS$_2$-VASc score	3.3 ± 1.5	3.3 ± 1.4	3.1 ± 1.8	0.41
HAS-BLED score	1.9 ± 1.0	1.9 ± 0.9	2.0 ± 1.1	0.519
Chronic kidney disease	52 (24.1)	28 (20.3)	24 (30.8)	0.084
Echocardiography				
Left ventricular ejection fraction (%)	55.1 ± 9.2	56.0 ± 9.2	53.6 ± 9.1	0.078
Left atrium size, AP diameter (mm)	47.7 ± 7.7	47.0 ± 7.9	48.9 ± 7.8	0.081
Laboratory findings				
Serum creatinine (mg/dL)	1.1 ± 0.8	0.9 ± 0.3	1.3 ± 1.3	0.008
eGFR (mL/min)	77.8 ± 32.7	80.0 ± 29.1	74.0 ± 38.1	0.23
Hemoglobin (g/dL)	12.7 ± 1.8	12.7 ± 1.7	12.9 ± 1.9	0.412
Platelet (× 109/µL)	205.9 ± 77.0	206.5 ± 66.1	204.8 ± 93.7	0.874
Medication				
Concomitant antiplatelet agents	26 (12.0)	15 (10.9)	11 (14.1)	0.495
Heparin bridging therapy	54 (25.0)	15 (10.9)	39 (50.0)	<0.001
Type of NOACs				
Apixaban	-	33 (23.9)	-	
Dabigatran	-	21 (15.2)	-	
Edoxaban	-	27 (19.6)	-	
Rivaroxaban	-	57 (41.3)	-	
Surgical bleeding risk				0.395
Not necessarily requiring discontinuation	44 (20.4)	30 (21.7)	14 (17.9)	
Low bleeding risk	3 (1.4)	3 (2.2)	0	
High bleeding risk	169 (78.2)	105 (76.1)	64 (82.1)	

Values are presented as mean ± standard deviation or number (%). NOACs, non-vitamin K antagonist oral anticoagulants; TIA, transient ischemic attack; AP, anteroposterior; eGFR, estimated glomerular filtration rate.
In our study, the mean preoperative anticoagulant discontinuation duration was 2 days for NOACs and 4.6 days for warfarin, which is not significantly different from the duration recommended in the guidelines [11]. Nevertheless, a perioperative event occurred in 3.2% of patients. In particular, long preoperative anticoagulant discontinuation duration was associated with perioperative events, and the thromboembolism frequency in our study (1.9%) was relatively higher than that of the PAUSE study (0.33%) [26]. Unlike the study environment in which the anticoagulant discontinuation duration is strictly controlled, it is believed that this difference may occur because the actual anticoagulant discontinuation duration is often different from the recommended period, at the discretion of the attending physician in real practice. It is sometimes impossible to use anticoagulants after surgery due to excessive antiplatelet usage.

![Fig. 1. Duration of perioperative anticoagulant discontinuation according to anticoagulant type (non-vitamin K antagonist oral anticoagulants [NOACS] vs. warfarin).](https://doi.org/10.12701/yujm.2020.00353)

Table 3. Clinical characteristics of the patients according to the presence or absence of thromboembolism and/or bleeding

Characteristic	All patients (n = 216)	Low/high bleeding risk patients (n = 172)	p-value			
	Events (+) (n = 7)	Events (-) (n = 209)	p-value	Events (+) (n = 6)	Events (-) (n = 166)	p-value
Age (yr)	74.4 ± 5.4	72.8 ± 7.8	0.585	74.3 ± 6.0	72.6 ± 7.8	0.582
Male sex	4 (57.1)	123 (58.9)	1.000	3 (50.0)	96 (57.8)	0.700
Body weight (kg)	65.0 ± 10.3	62.9 ± 11.6	0.633	65.3 ± 11.2	63.2 ± 11.2	0.642
Comorbidities						
Hypertension	7 (100)	120 (57.4)	0.043	6 (100)	99 (59.6)	0.083
Diabetes mellitus	3 (42.9)	63 (30.1)	0.439	3 (50.0)	53 (31.9)	0.392
Ischemic heart disease	1 (14.3)	23 (11.0)	0.567	1 (16.7)	16 (9.6)	0.470
Stroke/TIA	3 (42.9)	43 (20.6)	0.168	3 (50.0)	36 (21.7)	0.131
Congestive heart failure	2 (28.6)	14 (6.7)	0.087	2 (33.3)	8 (4.8)	0.040
Vascular disease	2 (28.6)	16 (7.7)	0.107	1 (16.7)	12 (7.2)	0.380
CHA2DS2-VASc score	4.9 ± 2.0	3.2 ± 1.5	0.005	5.0 ± 2.1	3.3 ± 1.5	0.007
HAS-BLED score	3.6 ± 1.1	1.8 ± 0.9	< 0.001	3.8 ± 1.0	1.9 ± 0.9	< 0.001
Chronic kidney disease	3 (42.9)	49 (23.4)	0.363	2 (33.3)	39 (23.5)	0.629
Echocardiography						
Left ventricular ejection fraction (%)	52.9 ± 12.8	55.2 ± 9.1	0.509	52.2 ± 13.9	55.9 ± 8.5	0.303
Left atrium size, AP diameter (mm)	46.6 ± 7.7	47.7 ± 7.7	0.708	4.8 ± 0.8	4.8 ± 0.8	0.988
Laboratory findings						
Serum creatinine (mg/dL)	0.9 ± 0.3	1.1 ± 0.8	0.660	0.9 ± 0.2	1.1 ± 0.9	0.571
eGFR (mL/min)	76.4 ± 25.2	77.8 ± 33.0	0.912	80.0 ± 25.6	79.1 ± 34.3	0.951
Hemoglobin (g/dL)	11.6 ± 1.8	12.8 ± 1.8	0.079	11.5 ± 1.9	12.7 ± 1.8	0.094
Platelet (× 10^9)/µL	225.7 ± 33.8	205.2 ± 78.0	0.490	231.3 ± 33.2	205.5 ± 82.7	0.448
Medication						
Concomitant antiplatelet agents	2 (28.6)	24 (11.5)	0.202	2 (33.3)	21 (12.7)	0.185
Heparin bridging therapy	4 (57.1)	50 (23.9)	0.067	4 (66.7)	45 (27.1)	0.056
Anticoagulants						
NOACs	4 (57.1)	134 (64.1)	0.705	3 (50.0)	105 (63.3)	0.672
Warfarin	3 (42.9)	75 (35.9)	0.705	3 (50.0)	61 (36.7)	0.672
High bleeding risk surgery	6 (85.7)	163 (78.0)	1.000	6 (100)	163 (98.2)	1.000
Discontinuation duration (day)						
Before surgery	4.4 ± 2.1	2.9 ± 1.8	0.028	4.7 ± 2.3	3.0 ± 1.8	0.029
After surgery	1.8 ± 4.4	2.8 ± 3.4	0.539	1.8 ± 0.4	3.1 ± 3.8	0.444
Total	5.7 ± 2.6	5.7 ± 4.2	0.978	6.2 ± 2.5	6.1 ± 4.5	0.985

Values are presented as mean ± standard deviation or number (%).

TIA, transient ischemic attack; AP, anteroposterior; eGFR, estimated glomerular filtration rate; NOACs, non-vitamin K antagonist oral anticoagulants.

https://doi.org/10.12701/yujm.2020.00353
Table 4. Clinical characteristics of patients with perioperative thromboembolism or major bleeding

Patient	Sex	Age (yr)	Name of surgery	CHA_{DS}₂-VASc score	HAS-BLED score	Anticoagulant	INR at event	Discontinuation duration (day) (before/after)	Heparin bridging therapy	Perioperative event
1	Female	74	Craniotomy/aneurysm clipping	5	4	Rivaroxaban	20 mg	–	–	Stroke
2	Female	78	Femur fracture^a	8	4	Warfarin	2.1	8 (6/2)	+	Stroke
3	Female	75	Total hysterectomy	7	5	Warfarin	2.49	7 (5/2)	+	Major bleeding
4	Male	75	Planned tooth extraction	4	2	Apixaban 5 mg	–	3 (3/0)	–	Systemic embolism
5	Male	76	Femur fracture^a	3	4	Warfarin	2.68	5 (3/2)	+	Major bleeding
6	Male	63	Planned gastric EMR	3	2	Edoxaban 60 mg	–	6 (6/0)	–	Stroke
7	Male	80	Acetabular fracture^d	4	4	Rivaroxaban 10 mg	–	2 (1/1)	+	Major bleeding

INR, international normalized ratio; EMR, endoscopic mucosal resection.
^aClosed reduction-internal fixation with proximal femur nail antirotation.
^bTotal hip replacement arthroplasty.
^cOpen reduction-internal fixation with reconstruction plate.

Fig. 2. Receiver operating characteristics curve analyses of the HAS-BLED and CHA_{DS}₂-VASc scores and duration of preoperative anticoagulant discontinuation for predicting perioperative events. AUC, area under the curve.

Sensitivity

- AUC for HAS-BLED score=0.868
- AUC for CHA_{DS}₂-VASc score=0.747
- AUC for discontinuation duration before surgery=0.733

Heparin bridging therapy during the perioperative period is known to increase bleeding in patients taking NOACs or warfarin [26,27], which is consistent with our study results. However, the use of heparin bridging therapy did not significantly change the occurrence of any perioperative events including thromboembolism and major bleeding.

The CHA_{DS}₂-VASc score is used to assess the thromboembolic risk in patients with NVAF. The higher the score, the higher the risk of thromboembolism; thus, anticoagulation is recommended. The HAS-BLED is a scoring system that was developed to assess the risk of major bleeding in patients taking anticoagulants; patients with a score > 3 are considered to be a high-risk group for major bleeding and must exercise caution when taking anticoagulants. However, there has been no study on whether these scoring systems are useful for predicting stroke and major bleeding risks in patients with NVAF undergoing non-cardiac surgery. In the present study, we showed that a CHA_{DS}₂-VASc score > 2.5 and a HAS-BLED score > 3.5 are associated with high perioperative events when anticoagulation therapy is discontinued for a certain hospitalization period. In addition, on analyzing these scoring systems along with the preoperative anticoagulant discontinuation duration, a significantly different perioperative event rate was observed between the high-risk (score, 3; 50.0%) and the low-risk (score, 0–1; 0%) groups. Therefore, perioperative management including an appropriate anticoagulant discontinuation strategy is more important in these high-risk groups.

This study has some limitations. First, this was a single-center, retrospective study. In addition, because we included patients treated since 2015, when NOACs began to be used to prevent stroke in patients with atrial fibrillation, a small number of patients were included. Second, our study included only those patients who had received consultation at the Department of Cardiology before undergoing surgery; therefore, patients who had discontinued antico-
agulant use without consultation could have been missed. Third, it is challenging to determine whether the cause of major bleeding was the surgery itself or an early resumption of anticoagulant use. However, considering that all patients who experienced major bleeding resumed anticoagulant use within 2 days of surgery and that major bleeding occurred at least 4 days postoperatively, anticoagulant use most likely affected the major bleeding.

In conclusion, thromboembolic events and major bleeding are not uncommon during perioperative anticoagulant discontinuation in patients with NVAF. The high CHA₂DS₂-VASc and HAS-BLED scores and prolonged anticoagulant discontinuation duration are associated with perioperative events. Therefore, optimal strategies for interrupted anticoagulation are needed in patients with NVAF who are at a high risk of perioperative events.

Acknowledgments

Conflicts of interest
No potential conflict of interest relevant to this article was reported.

![Fig. 3. Perioperative event rate categorized according to the cut-off levels of the HAS-BLED and CHA₂DS₂-VASc scores and duration of preoperative anticoagulant discontinuation. Significant differences in perioperative event rates are observed among the risk 0 (0%), 1 (0%), 2 (5.9%), and 3 (50.0%) groups (p < 0.001). HAS-BLED score > 3.5: 1, CHA₂DS₂-VASc > 2.5: 1, discontinuation duration before surgery > 2.5 days: 1.](https://doi.org/10.12701/yujm.2020.00353)

Table 5. Multivariate logistic regression analysis for perioperative stroke/major bleeding

Variable	Odds ratio	95% confidence interval	p-value
CHA₂DS₂-VASc score	0.93	0.49–1.76	0.835
HAS-BLED score	5.81	1.93–17.50	0.002
Discontinuation duration before surgery	1.50	0.98–2.29	0.058

Author contributions
Conceptualization: MHB, BEP, SCC; Data curation: MHB, SYJ; Formal analysis: HJK, HNK, SYJ, YC; Methodology: MHB, BEP, YJP, HSP; Project administration: JHL; Visualization: BEP, DHY; Investigation: BEP; Resources: HJK, HNK; Software: SYJ; Supervision: YC; Writing-original draft: MHB, BEP; Writing-review & editing: MHB, BEP; DHY; JHL.

ORCID
Bo Eun Park, https://orcid.org/0000-0002-5245-9863
Myung Hwan Bae, https://orcid.org/0000-0001-7677-4895
Hyeon Jeong Kim, https://orcid.org/0000-0002-3496-3148
Yoon Jung Park, https://orcid.org/0000-0001-5132-226X
Hong Nyun Kim, https://orcid.org/0000-0002-9903-1848
Se Yong Jang, https://orcid.org/0000-0002-4981-879X
Jang Hoon Lee, https://orcid.org/0000-0002-1646-6126
Hun Sik Park, https://orcid.org/0000-0001-7138-1494
Yongkeun Cho, https://orcid.org/0000-0001-9455-0190
Shung Chull Chae, https://orcid.org/0000-0002-9871-6976

References
1. Lip GY, Lim HS. Atrial fibrillation and stroke prevention. Lancet Neurol 2007;6:981–93.
2. Wolf PA, Mitchell JB, Baker CS, Kannel WB, D’Agostino RB. Impact of atrial fibrillation on mortality, stroke, and medical costs. Arch Intern Med 1998;158:229–34.
3. Hughes M, Lip GY; Guideline Development Group; National Clinical Guideline for Management of Atrial Fibrillation in Primary and Secondary Care; National Institute for Health and Clinical Excellence. Stroke and thromboembolism in atrial fibrillation: a systematic review of stroke risk factors, risk stratification schema and cost effectiveness data. Thromb Haemost 2008;99:295–304.
4. Go AS, Hylek EM, Phillips KA, Chang Y, Hoenault LE, Selby JV, et al. Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study. JAMA 2001;285:2370–5.
5. Hylek EM, Go AS, Chang Y, Jensvold NG, Hoenault LE, Selby JV, et al. Effect of intensity of oral anticoagulation on stroke severity and mortality in atrial fibrillation. N Engl J Med 2003;349:1019–26.
6. Rivera-Caravaca JM, Roldán V, Esteve-Pastor MA, Valdés M, Vicente V, Lip GY, et al. Cessation of oral anticoagulation is an
7. Heidbuchel H, Verhamme P, Alings M, Antz M, Diener HC, Hacke W, et al. Updated European Heart Rhythm Association practical guide on the use of non-vitamin-K antagonist anticoagulants in patients with non-valvular atrial fibrillation: executive summary. Eur Heart J 2017;38:2137–49.

8. Wysokinski WE, McBane RD, Daniels PR, Litin SC, Hodge DO, Dowling NF, et al. Periprocedural anticoagulation management of patients with nonvalvular atrial fibrillation. Mayo Clin Proc 2008;83:639–45.

9. Doherty JU, Gluckman TJ, Hucker WJ, Januzzi JL Jr, Ortel TL, Saxonhouse SJ, et al. 2017 ACC expert consensus decision pathway for periprocedural management of anticoagulation in patients with nonvalvular atrial fibrillation: a report of the American College of Cardiology Clinical Expert Consensus Document Task Force. J Am Coll Cardiol 2017;69:871–98.

10. Larsen TB, Sjøth F, Nielsen PB, Kjeldgaard JN, Lip GY. Comparative effectiveness and safety of non-vitamin K antagonist oral anticoagulants and warfarin in patients with atrial fibrillation: propensity weighted nationwide cohort study. BMJ 2016;353:i3189.

11. Steffel J, Verhamme P, Potpara TS, Albaladejo P, Antz M, Desteghe L, et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation. Eur Heart J 2018;39:1330–93.

12. Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet 2014;383:955–62.

13. Birman-Deych E, Radford MJ, Nilasena DS, Gage BF. Use and effectiveness of warfarin in Medicare beneficiaries with atrial fibrillation. Stroke 2006;37:1070–4.

14. Wallentin L, Yusuf S, Ezekowitz MD, Alings M, Flather M, Franzosi MG, et al. Efficacy and safety of dabigatran compared with warfarin at different levels of international normalised ratio control for stroke prevention in atrial fibrillation: an analysis of the RE-LY trial. Lancet 2010;376:975–83.

15. Lopes RD, Alexander JH, Al-Khatib SM, Ansell J, Diaz R, Easton JD, et al. Apixaban for reduction in stroke and other Thromboembolic events in atrial fibrillation (ARISTOTLE) trial: design and rationale. Am Heart J 2010;159:331–9.

16. Connolly SJ, Ezekowitz MD, Yusuf S, Reilly PA, Wallentin L; Randomized Evaluation of Long-Term Anticoagulation Therapy Investigators. Newly identified events in the RE-LY trial. N Engl J Med 2010;363:1875–86.

17. Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2013;369:2093–104.

18. Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981–92.

19. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011;365:883–91.

20. Connolly SJ, Ezekowitz MD, Yusuf S, Ezekowitz MD, et al. Apixaban versus warfarin in patients with atrial fibrillation: N Engl J Med 2009;361:1139–51.

21. Levy JH. Discontinuation and management of direct-acting anticoagulants for emergency procedures. Am J Med 2016;129 (11 Suppl):S47–53.

22. Kornej J, Potpara T, Lip GY. Anticoagulation management in nonvalvular atrial fibrillation: current and future directions. Pol Arch Med Wewn 2013;123:623–34.

23. Kearon C, Hirsh J. Management of anticoagulation before and after elective surgery. N Engl J Med 1997;336:1506–11.

24. Garcia DA, Regan S, Henault LE, Upadhyay A, Baker J, Othman M, et al. Risk of thromboembolism with short-term interruption of warfarin therapy. Arch Intern Med 2008;168:63–9.

25. Raval AN, Cigarroa JE, Chung MK, Diaz-Sandoval LJ, Diercks D, Piccini JP, et al. Management of patients on non-vitamin K antagonist oral anticoagulants in the acute care and periprocedural setting: a scientific statement from the American Heart Association. Circulation 2017;135:e604–33.

26. Douketis JD, Spyropoulos AC, Duncan J, Carrier M, Le Gal G, Tafur AJ, et al. Perioperative management of patients with atrial fibrillation receiving a direct oral anticoagulant. JAMA Intern Med 2019;179:1469–78.

27. Siegal D, Yudin J, Kaatz S, Douketis JD, Lim W, Spyropoulos AC. Periprocedural heparin bridging in patients receiving vitamin K antagonists: systematic review and meta-analysis of bleeding and thromboembolic rates. Circulation 2012;126:1630–9.