RANDOM WALKS ON COUNTABLE GROUPS

MICHAEL BJÖRKLUND

ABSTRACT. We begin by giving a short and essentially self-contained proof of the equivalence between the vanishing of the drift of a finitely generated symmetric measured group with finite first moment and the absence of bounded harmonic functions; a result due to Kaimanovich-Vershik and Karlsson-Ledrappier.

Given a measured group \((G, \mu)\), we introduce the new notion of weak \((G, \mu)\)-mixing and show that the Poisson boundary is weakly \((G, \mu)\)-mixing. In particular, this gives a new proof of the fact that the “double” Poisson boundary is weakly mixing in the non-singular sense, which was first observed by Kaimanovich.

Finally, we show that (non-singular) weak mixing for ergodic \((G, \mu)\)-spaces is equivalent to the absence of a probability measure preserving factor with discrete spectrum.

1. VANISHING OF THE DRIFT OF RANDOM WALKS ON GROUPS

Let \(G\) be a countable group and suppose that \(\mu\) is a probability measure on \(G\) whose support generates \(G\) as a semi-group. For a positive integer \(n\), we define the \(n\)'th convolution of \(\mu\) by

\[
\mu^{\ast n}(s) = \sum_{s_1, \ldots, s_n \in G} \mu(s_1) \cdots \mu(s_n),
\]

where the sum is taken over all \(n\)-tuples \((s_1, \ldots, s_n)\) such that \(s_1 \cdots s_n = s\). We note that \(\mu^{\ast n}\) is again a probability measure on \(G\) and for every element \(s \in G\), there exists an integer \(n\) such that \(\mu^{\ast n}(s)\) is positive. We say that \(\mu\) is symmetric if the adjoint probability measure which is defined by \(\tilde{\mu}(s) := \mu(s^{-1})\) coincides with \(\mu\).

We shall refer to \((G, \mu)\) as a measured group. Given a right-invariant semi-metric \(d\) on \(G\), such that

\[
\sum_s d(s, e) \mu(s) < \infty,
\]

we define the drift \(\ell_d(\mu)\) of the triple \((G, \mu, d)\) by

\[
\ell_d(\mu) = \lim_{n \to \infty} \frac{1}{n} \sum_s d(s, e) \mu^{\ast n}(s),
\]

The limit exists by sub-additivity and is finite by (1.1).

Definition 1.1 (Harmonic function). Let \((G, \mu)\) be a measured group. A \(\mu\)-integrable real-valued function \(u\) on \(G\) is called right \(\mu\)-harmonic if

\[
\sum_s u(gs) \mu(s) = u(g), \quad \text{for all } g \in G,
\]

and we say that \(u\) is left \(\mu\)-harmonic if its adjoint function \(\tilde{u}(s) := u(s^{-1})\) is right \(\mu\)-harmonic. We denote by \(\mathcal{H}^{\infty}(G, \mu)\) the Banach space of all bounded right \(\mu\)-harmonic functions, equipped with the supremum norm. We say that \((G, \mu)\) is Liouville if \(\mathcal{H}^{\infty}(G, \mu)\) consists of only constant functions.

The main aim of this section is to provide a short proof of the following theorem.

2010 Mathematics Subject Classification. Primary 22D40; Secondary: 05C81, 11B13.
Theorem 1.1 (Zero drift and the Liouville property). Let G be a finitely generated group and let d be a right-invariant word-metric on G. Suppose that μ is a symmetric probability measure on G such that \((1.1)\) holds. Then (G, μ) is Liouville if and only if $\ell_\phi(\mu) = 0$.

Remark 1.1. This result has a long history. The "only if"-direction is essentially contained in the main result of Kaimanovich-Vershik in [3], while the "if"-direction is much more recent and first established in the generality above by Karlsson-Ledrappier in [3].

1.1. Liouville implies zero drift.

Definition 1.2 (Quasi-harmonic function). Let (G, μ) be a measured group. A μ-integrable real-valued function ϕ on G is called right quasi-μ-harmonic with distortion ℓ_ϕ if

$$\sum_s \phi(gs) \mu(s) = \phi(g) + \ell_\phi, \quad \text{for all } g \in G.$$

Clearly, if ϕ is a right quasi-μ-harmonic function with zero distortion, then ϕ is right μ-harmonic.

We say that a real-valued function ϕ on G is right Lipschitz if

$$\sup_s |\phi(gs) - \phi(s)| < \infty, \quad \text{for all } g \in G.$$

We note that every homomorphism from G into \mathbb{R} is a right Lipschitz and right quasi-μ-harmonic function for every probability measure μ on G.

Let (G, μ) be a measured group. If ϕ is right Lipschitz and right quasi-μ-harmonic with distortion ℓ_ϕ, then for every g in G, the function

$$\phi_g(s) := \phi(gs) - \phi(s), \quad s \in G,$$

is a bounded right μ-harmonic function on G. In particular, if (G, μ) is Liouville, then ϕ_g is constant for every g and thus

$$\phi(gs) - \phi(s) = \phi(g) - \phi(e), \quad \text{for all } g, s \in G.$$

We have thus established the following lemma.

Lemma 1.1. If (G, μ) is a Liouville measured group, then every right Lipschitz and right quasi-μ-harmonic function ϕ with $\phi(e) = 0$ and distortion ℓ_ϕ is a homomorphism and

$$\ell_\phi = \sum_s \phi(s) \mu(s).$$

In particular, if μ is symmetric, then $\ell_\phi = 0$.

The "if"-direction in Theorem 1.1 now follows immediately from the following proposition.

Proposition 1.1. Let (G, μ) be a measured group and suppose that d is a right-invariant metric on G such that \((1.1)\) holds. Then there exists a right Lipschitz and right quasi-μ-harmonic function ϕ_d on G with $\phi_d(e) = 0$ and distortion equal to $\ell_d(\mu)$.

Proof. By the triangle inequality, for every g, the sequence

$$c_k(g) = \sum_t (d(g, t) - d(t, e)) \tilde{\mu}^{*k}(t), \quad k \geq 1,$$

is bounded and one readily verifies that

$$\sum_s c_k(gs) \mu(s) = \sum_{s,t} (d(gs, t) - d(s, e)) \tilde{\mu}^{*k}(t) \mu(s)$$

$$= \sum_{s,t} (d(g, ts^{-1}) - d(ts^{-1}, e)) \tilde{\mu}^{*k}(t) \mu(s)$$

$$+ \sum_{s,t} (d(ts^{-1}, e) - d(s, e)) \tilde{\mu}^{*k}(t) \mu(s),$$
which translates to the equations
\[\sum_s c_k(gs)\mu(s) = c_{k+1}(g) + \sum_s c_k(s)\mu(s), \quad (1.2) \]
for all \(g \in G \) and \(k \geq 1 \). Furthermore, we have
\[|c_k(gs) - c_k(s)| \leq \sum_t |d(gs, t) - d(s, t)| \hat{\mu}^{*k}(t) \leq d(g, e) \quad (1.3) \]
for all \(s, g \) in \(G \), which shows that \(c_k \) is right Lipschitz for every \(k \). Also, we have \(c_k(e) = 0 \) for all \(k \).

By a simple diagonal argument, there exists a sequence \((n_j)\) such that the limits
\[\phi_d(g) := \lim_{j} \frac{1}{n_j} \sum_{k=0}^{n_j-1} c_k(g) \]
exist for all \(g \). By (1.3), the function \(\phi_d \) is right Lipschitz on \(G \) and by (1.2), we have
\[\sum_s \phi_d(gs)\mu(s) = \phi_d(g) + \sum_s \phi_d(s)\mu(s). \]
Furthermore, we have \(\phi_d(e) = 0 \), and
\[\sum_s \phi_d(s)\mu(s) = \lim_{j} \frac{1}{n_j} \sum_{k=0}^{n_j-1} \left(\sum_s d(s, e) \hat{\mu}^{*(k+1)}(s) - \sum_s d(s, e) \hat{\mu}^{*k}(s) \right) \]
\[= \lim_{j} \frac{1}{n_j} \sum_s d(s, e) \hat{\mu}^{*n_j}(s) \]
\[= \lim_{j} \frac{1}{n_j} \sum_s d(s, e) \hat{\mu}^{*n_j}(s) = \ell_d(\mu), \]
where the second to last equality holds since \(d(s, e) = d(s^{-1}, e) \) for all \(s \) in \(G \).

Remark 1.2. If \(G \) is a finitely generated group and \(\mu \) is a symmetric probability measure on \(G \) which is supported on a finite generating set of \(G \), such that \((G, \mu)\) is Liouville, then it is always possible to construct a non-constant right Lipschitz and left \(\mu \)-harmonic function on \(G \). Details of this construction can be found in the appendix of the paper [6].

1.2. Zero drift implies Liouville.

Definition 1.3. Let \((G, \mu)\) be a measured group and suppose that \(G \) acts bi-measurably on a standard Borel probability measure space \((X, \nu)\) such that the set of null sets of \(\nu \) is preserved by the \(G \)-action. If
\[\sum_s \left(\int_X f(s \cdot x) \, d\nu(x) \right) \mu(s) = \int_X f(x) \, d\nu(x), \quad \text{for all } f \in L^\infty(X, \nu), \]
then we say that \(\nu \) is \(\mu \)-stationary and we refer to \((X, \nu)\) as a \((G, \mu)\)-space. We say that \((X, \nu)\) is ergodic if the only essentially \(G \)-invariant elements in \(L^\infty(X, \nu) \) are essentially constant.

Suppose that \((X, \nu)\) is a (not necessarily ergodic) \((G, \mu)\)-space. Since the \(G \)-action is assumed to preserve the set of null sets of \(\nu \), there exists by the Radon-Nikodym’s Theorem, for every \(s \in G \), a uniquely determined element \(\sigma_s(s, \cdot) \in L^1(X, \nu) \) such that
\[\int_X f(s \cdot x) \, d\nu(x) = \int_X f(x) \sigma_s(s, x) \, d\nu(x), \quad \text{for all } f \in L^\infty(X, \nu). \]
One readily verifies that \(\sigma_s \) satisfies the equations
\[\sigma_s(st, x) = \sigma_s(s, x) \sigma(t, s^{-1} \cdot x), \quad \text{for all } s, t \in G \text{ and } \nu\text{-a.e. } x \in X. \]
Furthermore, since
\[\sum_s \left(\int_X f(s \cdot x) d\nu(x) \right) \mu^\ast n(s) = \int_X f(x) \left(\sum_s \sigma_v(s, x) \mu^\ast n(s) \right) d\nu(x), = \int_X f(x) d\nu(x), \]
for all \(f \in L^\infty(X, \nu) \) and for all \(n \), we can conclude that
\[\sum_s \sigma_v(s, x) \mu^\ast n(s) = 1, \quad \text{for } \nu\text{-a.e. } x \in X, \quad (1.4) \]
and for all \(n \). By assumption, the support of \(\mu \) generates \(G \) as a semi-group, and thus there exists for every \(g \in G \), an integer \(n \) such that \(\mu^\ast n(g) \) is positive. In particular, by (1.4), we have
\[\sigma_v(g, x) \mu^\ast n(g) \leq \sum_s \sigma_v(s, x) \mu^\ast n(s) = 1, \]
for \(\nu \)-almost every \(x \) in \(X \) and thus \(\sigma_v(g, \cdot) \) is essentially bounded. Also, again by (1.4), we see that \(\|\sigma_v(g, \cdot)\|_\infty \geq 1 \) for every \(g \in G \).

We conclude that the map \(r_v : G \to L^\infty(X, \nu) \) defined by
\[r_v(s) = -\log \sigma_v(s, \cdot), \quad s \in G, \]
satisfies (by Jensen’s inequality)
\[\int_X r_v(s) d\nu \geq 0, \quad \text{for all } s \in G \quad (1.5) \]
and is a cocycle in the following sense.

Definition 1.4. Let \((G, \mu)\) be a measured group and suppose that \((X, \nu)\) is a \((G, \mu)\)-space. A function \(c : G \to L^\infty(X, \nu) \) is called a cocycle if
\[c(st) = c(s) + \pi(s)c(t), \quad \text{for all } s, t \in G, \]
where \(\pi \) denotes the left regular representation of \(G \) on \(L^\infty(X, \nu) \), that is to say, \(\pi(s)f = f(s^{-1}) \) for \(f \in L^\infty(X, \nu) \) and \(s \in G \). Clearly it follows that \(c(e) = 0 \).

If \(c : G \to L^\infty(X, \nu) \) is a cocycle, then one readily verifies that
\[\sum_s \left(\int_X c(s) d\nu(s) \right) \hat{\mu}^\ast n(s) = n \sum_s \left(\int_X c(s) d\nu(s) \right) \hat{\mu}(s). \quad (1.6) \]
In particular, since the support of \(\mu \) (and thus \(\hat{\mu} \)) is assumed to generate \(G \) as semi-group, we note that, by (1.5) and Jensen’s inequality, the probability measure \(\nu \) is \(G \)-invariant if and only if
\[\sum_s \left(\int_X r_v(s) d\nu \right) d\hat{\nu}(s) = 0. \]

We summarize the discussion above as follows.

Lemma 1.2. For every \((G, \mu)\)-space \((X, \nu)\), the function
\[r_v(s) = -\log \sigma_v(s, \cdot), \quad s \in G, \]
is a cocycle and \(\nu \) is \(G \)-invariant if and only if
\[\sum_s \left(\int_X r_v(s) d\nu \right) d\hat{\nu}(s) = 0. \]

Let \(c : G \to L^\infty(X, \nu) \) be a cocycle. One readily verifies that the function \(\rho_c : G \to [0, \infty) \) defined by
\[\rho_c(g) = \|c(g)\|_\infty, \quad g \in G, \]
satisfies \(\rho_c(e) = 0 \) and is sub-additive, i.e. the function
\[d_c(s, t) = \rho_c(st^{-1}), \quad s, t \in G, \quad (1.7) \]
is a right invariant semi-metric on G. Furthermore, it is symmetric, i.e. $\rho_c(s^{-1}) = \rho_c(s)$ for all s in G.

The following lemma relates the drift of the triple (G, μ, d_c) for a given cocycle c and a certain integral involving c.

Lemma 1.3. For every (G, μ)-space (X, ν) and every cocycle $c : G \to L^\infty(X, \nu)$, we have

$$\left| \sum_s \left(\int_X c(s) d\nu \right) d\hat{\mu}(s) \right| \leq \ell_d(\mu).$$

Proof. By (1.5) we have

$$\sum_s \left(\int_X c(s) d\nu \right) d\hat{\mu}(s) = n \cdot \sum_s \left(\int_X c(s) d\nu \right) \hat{\mu}(s)$$

for all n, and thus

$$\left| \sum_s \left(\int_X c(s) d\nu \right) d\hat{\mu}(s) \right| \leq \frac{1}{n} \sum_s \rho_c(s) \hat{\mu}^n(s) = \frac{1}{n} \sum_s \rho_c(s) \mu^n(s)$$

for all n. Upon letting n tend to infinity we conclude that

$$\left| \sum_s \left(\int_X c(s) d\nu \right) d\hat{\mu}(s) \right| \leq \ell_d(\mu),$$

which finishes the proof. \square

Proposition 1.2 (Furstenberg, [1]). For every (not necessarily symmetric) measured group (G, μ), there exists an ergodic (G, μ)-space (B, m), which we shall refer to as the Poisson boundary of (G, μ), such that the linear map $P_m : L^\infty(X, \nu) \to \mathcal{H}^\infty(G, \mu)$ defined by

$$P_m \phi(s) = \int_X \phi(s \cdot b) dm(b), \quad \phi \in L^\infty(B, m),$$

is an isometric isomorphism. In particular, (G, μ) is Liouville if and only if m is G-invariant.

If G is finitely generated, and $S \subseteq G$ is a given symmetric generating set, then the right invariant word metric d on G associated to G has the property that for every right invariant semi-metric d' on G, there exists a constant C, which only depends on the set S such that

$$d'(s, e) \leq C \cdot d(s, e), \quad \text{for all } s \in G.$$

In particular, we have $\ell_{d'}(\mu) \leq C \cdot \ell_d(\mu)$ for every probability measure μ on G.

Hence, if μ is a probability measure on G such that the support of μ generates G and $\ell_d(\mu) = 0$, then $\ell_{d_m}(\mu) = 0$, where d_m denotes the right-invariant semi-metric on G associated to the Radon-Nikodym cocycle r_m on the Poisson boundary (B, m) of the measured group (G, μ), and thus

$$\sum_s \left(\int_X r_m(g) dm \right) \hat{\mu}(s) = 0$$

by Lemma 1.3. We conclude that m is G-invariant by Lemma 1.2 and thus (G, μ) is Liouville.

2. Weak (G, μ)-mixing for the Poisson boundary

We begin by giving the central definition of this section.

Definition 2.1 (Weak (G, μ)-mixing). Let (G, μ) be a measured group and suppose that (X, ν) is a (G, μ)-space. We say that the G-action on (X, ν) is weakly (G, μ)-mixing if for every ergodic $(G, \tilde{\mu})$-space (Y, η), the diagonal G-action on $(X \times Y, \nu \otimes \eta)$ is ergodic.
If \((X, \nu)\) is a standard Borel probability measure space equipped with an action of \(G\) by bi-measurable transformations which preserve the set of null sets of \(\nu\), then we say that \((X, \nu)\) is a \textit{non-singular} \(G\)-space. We say that \((X, \nu)\) is ergodic if the only essentially \(G\)-invariant elements in \(L^\infty(X, \nu)\) are essentially constant, and we say that \((X, \nu)\) is \textit{weakly mixing} (in the non-singular sense) if for every probability measure preserving \(G\)-space \((Z, \xi)\), the diagonal \(G\)-action on the direct product
\[(X \times Z, \nu \otimes \xi),\]
which clearly is non-singular, is an ergodic \(G\)-space. We note that if \((G, \mu)\) is a measured group and the \(G\)-action on \((X, \nu)\) is weakly \((G, \mu)\)-mixing, then \((X, \nu)\) is weakly mixing in the non-singular sense as well. Indeed, every ergodic probability measure preserving \(G\)-space \((Z, \xi)\) is an ergodic \((G, \mu)\)-space.

Lemma 2.1. Let \((G, \mu)\) be a measured group and suppose that \((X, \nu)\) is a weakly \((G, \mu)\)-mixing space and \((Y, \eta)\) is a weakly \((G, \hat{\mu})\)-mixing space. Then the diagonal \(G\)-action on the direct product
\[(X \times Y, \nu \otimes \eta)\]
is weakly mixing in the non-singular sense.

The main result of this section can now be formulated as follows.

Theorem 2.1. For every measured group \((G, \mu)\), the \(G\)-action on the Poisson boundary \((B, \mu)\) is weakly \((G, \mu)\)-mixing. In particular, if \((\hat{B}, \hat{\mu})\) denotes the Poisson boundary of \((G, \hat{\mu})\), then the diagonal \(G\)-action on
\[(B \times \hat{B}, \mu \otimes \hat{\mu})\]
is weakly mixing in the non-singular sense.

Remark 2.1. The author has not been able to locate the first part of this theorem in the existing literature. However, the second part is a special case of the main result in [5].

We begin the proof by stating a simple consequence of Theorem 1.2.

Corollary 2.1. The linear span of the set
\[\mathcal{R} = \{\sigma_m(s, \cdot) : s \in G\} \subset L^1(B, \mu)\]
is norm-dense in \(L^1(B, \mu)\).

Proof. If the linear span is not dense, then, by Hahn-Banach’s Theorem, there exists at least one element \(\phi \in L^\infty(B, \mu) = L^1(B, \mu)^*\), which is not identically zero, such that
\[
\int_B \phi(b) \sigma_m(s, b) dm(b) = \int_B \phi(s \cdot b) dm(b) = (P_m \phi)(s) = 0,
\]
for all \(s \in G\). Since \(P_m : L^\infty(B, \mu) \to \mathcal{H}^\infty(G, \mu)\) is an isometric isomorphism by Theorem 1.2, we conclude that \(\phi\) is identically zero, which is a contradiction. \(\square\)

Let \((Y, \eta)\) be an ergodic \((G, \hat{\mu})\)-space and suppose that \(f \in L^\infty(B \times Y, \mu \otimes \eta)\) is an essentially \(G\)-invariant element. We may assume that
\[
\int_B \int_Y f(b, y) dm(b) d\eta(y) = 0,
\]
and we wish to prove that \(f\) vanishes almost everywhere, or equivalently: For every \(\phi \in L^1(B, \mu)\), we have
\[
\int_B f(b, y) \phi(b) dm(b) = 0, \quad \text{for \(\eta\)-a.e.} \ y \in Y.
\]
By Corollary 2.1 this is equivalent to proving that
\[\int_B f(b,y) \sigma_m(s,b) dm(b) = \int_B f(s \cdot b,y) dm(b) = \int_B f(b,s^{-1} \cdot y) dm(b) = 0, \]
for every \(s \in G \) and \(\eta \)-a.e. \(y \in Y \). Since \((Y, \eta)\) is a non-singular \(G\)-space, it suffices to show that the element \(F \in L^\infty(Y, \eta) \) defined by
\[F(y) = \int_B f(b,y) dm(b), \quad y \in Y, \]
is essentially constant. We note that
\[\sum_s F(s \cdot y) \tilde{\mu}(s) = \sum_s F(s^{-1} \cdot y) \mu(s) = \sum_s \left(\int_B f(s \cdot b,y) dm(b) \right) \mu(s) = F(y), \]
for \(\eta \)-a.e. \(y \in Y \), since \(m \) is \(\mu \)-harmonic. Theorem 2.1 can now be deduced from the following lemma applied to the ergodic \((G, \tilde{\mu})\)-space \((Y, \eta)\).

Lemma 2.2. Let \((X, \nu)\) be a \((G, \mu)\)-space. If \(F \in L^\infty(X, \nu) \) satisfies
\[\sum_s F(s \cdot x) \mu(s) = F(x), \quad \text{for } \nu\text{-a.e. } x \in X, \]
then \(F \) is \(G \)-invariant. In particular, if \((X, \nu)\) is ergodic, then \(F \) is essentially constant.

Proof. We may assume that \(F \) is real-valued. Since the support of \(\mu \) generates \(G \) as a semi-group, it suffices to show that
\[\sum_s \left(\int_X |F(s \cdot x) - F(x)|^2 d \nu(x) \right) \mu^k(s) = 0 \]
for all \(k \). Upon expanding the square and using the \(\mu \)-harmonicity of \(\nu \), we note that
\[\sum_s \left(\int_X (F(s \cdot x) - F(x))^2 d \nu(x) \right) \mu^k(s) = 2 \left(\int_X F^2 d \nu - \int_X F(x) \left(\sum_s F(s \cdot x) \mu^k(s) \right) d \nu(x) \right). \]
By our assumption on \(F \), we conclude that these expressions vanish for every \(k \).

3. **A Characterization of Non-singular Weak Mixing for \((G, \mu)\)-Spaces**

Let \(G \) be a countable group and suppose that \((X, \nu)\) is a \(G \)-space. Recall that another \(G \)-space \((Y, \eta)\) is a *factor* of \((X, \nu)\) if there exist co-null Borel sets \(X' \subset X \) and \(Y' \subset Y \) and a \(G \)-equivariant Borel measurable map \(p : X' \to Y' \). Clearly, if \((X, \nu)\) is ergodic (weakly mixing), then every factor of \((X, \nu)\) is ergodic (weakly mixing).

Standard examples of a non-weakly mixing *probability measure preserving* \(G \)-space are given by compact homogeneous spaces. Let \(K \) be a non-trivial compact group and let \(L \subset K \) be a closed (not necessarily normal) subgroup. Suppose that there exist a homomorphism \(\tau : G \to K \) with dense image. Then the \(G \)-action on \(K/L \) given by
\[g \cdot kL = \tau(g)kL, \quad g \in G, kL \in K/L \]
preserves the Haar measure \(m \) on the quotient space \(K/L \) and is ergodic. We shall refer to \(G \)-spaces of the form \((K/L, m)\) as above as *isometric*.

Definition 3.1 (Discrete spectrum). Let \(G \) be a countable group and suppose that \((\mathcal{H}, \pi)\) is a unitary representation of \(G \). We say that \((\mathcal{H}, \pi)\) has *discrete spectrum* if \((\mathcal{H}, \pi)\) decomposes as an orthogonal sum of *finite-dimensional* sub-representations.

The following result of Mackey [7] characterizes isometric \(G \)-spaces among the probability measure preserving \(G \)-spaces.
Proposition 3.1. Every ergodic probability measure preserving G-space (Y, η) whose associated Koopman G-representation has discrete spectrum is isomorphic as a G-space to an isometric G-space.

The main result of this section can now be formulated as follows. Recall that a countable group is minimally almost periodic if every ergodic probability measure preserving G-space is weakly mixing. For instance, every finitely generated simple infinite group is minimally almost periodic.

Theorem 3.1. Let (G, μ) be a (countable) measured group and suppose that (X, ν) is an ergodic (G, μ)-space which is not weakly mixing in the non-singular sense. Then (X, ν) admits a non-trivial probability measure preserving factor which is isometric. In particular, if G is minimally almost periodic, then every ergodic (G, μ)-space is weakly mixing in the non-singular sense.

We note that if (\mathcal{H}, π) is a unitary representation of G on a separable Hilbert space \mathcal{H}, then the unit ball $B_1(\mathcal{H})$ is sequentially compact in the weak topology, and G acts on $B_1(\mathcal{H})$ by homeomorphisms by

$$g \cdot v = \pi(g)v, \quad g \in G, v \in B_1(\mathcal{H}).$$

By the definition of the weak topology and the Stone-Weierstrass Theorem, the complex conjugate invariant algebra generated by functions of the form $\langle \cdot, u \rangle$, where u ranges over \mathcal{H} is dense in $C(B_1(\mathcal{H}))$, and it is not hard to show that if (\mathcal{H}, π) has discrete spectrum, then for every G-invariant probability measure η on $B_1(\mathcal{H})$ (if such exist), the associated Koopman representation on $L^2(B_1(\mathcal{H}), \eta)$ has discrete spectrum.

We recall that every unitary G-representation (\mathcal{H}, π) can be decomposed into an orthogonal sum of two sub-representations \mathcal{H}_c and \mathcal{H}_{wm}, where \mathcal{H}_c is the closure of the direct sum of all finite-dimensional sub-representations of π and where \mathcal{H}_{wm} completely lacks finite-dimensional sub-representations.

If $u \in \mathcal{H}$, then we denote by u^* the element in \mathcal{H}^* defined by $u^*(v) = \langle u, v \rangle$ for all $v \in \mathcal{H}$. We identify \mathcal{H} and \mathcal{H}^* via the inner product $\langle \cdot, \cdot \rangle$ defined by

$$\langle u^*, v^* \rangle = \overline{\langle u, v \rangle}, \quad u, v \in \mathcal{H}.$$

The contragradient of (\mathcal{H}, π) is the unitary G-representation π^* on \mathcal{H}^* defined by

$$(\pi^*(g)u^*)(v) = \overline{\langle u, \pi(g^{-1})v \rangle}, \quad u, v \in \mathcal{H},$$

where we have adopted the convention that the first variable is anti-linear over the complex numbers. Clearly, (\mathcal{H}, π) and (\mathcal{H}^*, π^*) are isomorphic as unitary G-representations.

We can write

$$|\langle u, v \rangle|^2 = \overline{\langle u, v \rangle} \cdot \langle u, v \rangle = \langle u^* \otimes u, v^* \otimes v \rangle,$$

so that if η is a G-invariant probability measure on $B_1(\mathcal{H})$, then

$$\int_{B_1(\mathcal{H})} |\langle u, v \rangle|^2 d\eta(v) = \langle u^* \otimes u, z \rangle,$$

where the element

$$z = \int_{B_1(\mathcal{H})} v^* \otimes v d\eta(v) \in \mathcal{H}^* \otimes \mathcal{H},$$

is invariant under the tensor representation $\pi^* \otimes \pi$ on $\mathcal{H}^* \otimes \mathcal{H}$. In particular, the compact operator $K_z : \mathcal{H} \to \mathcal{H}^*$ defined by

$$\langle u, K_z v \rangle = \langle z, u^* \otimes v \rangle, \quad u, v \in \mathcal{H}.$$
intertwines the representations π and π^*, and upon identifying \mathcal{H}^* and \mathcal{H}, we see that K_z is hermitian. We also note that if \mathcal{H} (and thus \mathcal{H}^*) does not admit any finite-dimensional sub-representations, then
\[
\int_{B_1(\mathcal{H})} |\langle u, v \rangle|^2 \, d\eta(v) = \langle u^*, K_z u \rangle = 0, \quad \text{for all } u \in \mathcal{H},
\]
by the spectral theorem for compact hermitian operators, and thus η must be concentrated at zero. In particular, since \mathcal{H}_{wm} lacks finite-dimensional sub-representations and
\[
B_1(\mathcal{H}) = \{ (u, v) \in \mathcal{H}_c \oplus \mathcal{H}_{wm} : \|u\|^2 + \|v\|^2 \leq 1 \},
\]
we conclude that every G-invariant probability measure on $B_1(\mathcal{H})$ is concentrated on $B_1(\mathcal{H}_{c})$ and thus the G-space $(B_1(\mathcal{H}), \eta)$ has discrete spectrum, and is isometric by the result of Mackey stated above.

To prove Theorem 3.1 we now argue as follows. Suppose that (X, ν) is an ergodic (G, μ)-space which is not weakly mixing in the non-singular sense. Then there exists a ergodic probability measure preserving G-space (Y, η) and an essentially G-invariant element $f \in L^{\infty}(X \times Y, \nu \otimes \eta)$ which is not essentially constant. We may assume that the essential supremum of f is bounded above by one, so that the image of the G-equivariant map $p_f : X \to L^2(Y, \eta)$ defined by (after choosing a representative of f)
\[
p_f(x) = f(x, \cdot) \in L^2(Y, \eta), \quad x \in X,
\]
is contained in $B_1(L^2(Y, \eta))$. The image measure $\zeta = (p_f)_*\nu$ is an ergodic μ-harmonic probability measure on $B_1(L^2(Y, \eta))$, where G acts via the Koopman representation on $L^2(Y, \eta)$, so that Theorem 3.1 will be a direct consequence of the following observation, and the discussion above.

Proposition 3.2. If (\mathcal{H}, π) is a unitary representation of G and ν is a μ-harmonic probability measure on $B_1(\mathcal{H})$, then ν is G-invariant.

We note that it is enough to show that whenever u_1, \ldots, u_k and w_1, \ldots, w_l are elements in the Hilbert space \mathcal{H}, then
\[
\int_{B_1(\mathcal{H})} \phi(g \cdot v) \, d\nu(v) = \int_{B_1(\mathcal{H})} \phi(v) \, d\nu(v), \quad \text{for all } g \in G,
\]
where
\[
\phi(v) = \langle w_1, v \rangle \cdots \langle w_l, v \rangle \cdots \langle u_1, v \rangle \cdots \langle u_k, v \rangle, \quad v \in \mathcal{H}.
\]
However, since ν is assumed to be μ-harmonic, and thus
\[
\sum_g \left(\int_{B_1(\mathcal{H})} \phi(g \cdot v) \, d\nu(v) \right) \mu(g) = \int_{B_1(\mathcal{H})} \phi(v) \, d\nu(v),
\]
for all $u_1, \ldots, u_k, w_1, \ldots, w_l \in \mathcal{H}$, we note that the element
\[
u = \int_{B_1(\mathcal{H})} (v^*)^{\otimes l} \otimes \nu^{\otimes k} \, d\nu(v) \in (\mathcal{H}^*)^{\otimes l} \otimes \mathcal{H}^{\otimes k}
\]
satisfies
\[
\int_{B_1(\mathcal{H})} \phi(g \cdot v) \, d\nu(v) = \langle w_1^* \otimes \ldots \otimes w_l^* \otimes u_1 \otimes \ldots \otimes u_k, \pi_{k,l}(g)u \rangle
\]
for all $g \in G$, where $\pi_{k,l} = (\pi^*)^{\otimes l} \otimes \pi^{\otimes k}$ and
\[
\sum_g \mu(g) \cdot \pi_{k,l}(g)u = u.
\]
We wish to show that u is $\pi_{k,l}(g)$-invariant for every $g \in G$. If $u = 0$, then this is clear, and if u is non-zero, then we may assume that its norm equals one, and then the last equation simply
means that a convex combination of unitary translates of u equals u, which cannot happen unless all of these translates are trivial (due to the strict convexity of the unit ball in tensor product $(\mathcal{H}^\alpha)\otimes \mathcal{H}^\beta$). We conclude that u is invariant, and thus ν is G-invariant.

Remark 3.1. An alternative proof of Proposition 3.2 (using the fact that the G-action on $B_1(\mathcal{H})$ is weakly almost periodic) is given in the paper [2] by Furstenberg and Glasner.

References

1. H. Furstenberg, Random Walks and discrete subgroups of Lie groups. 1971 Advances in Probability and Related Topics, Vol. 1, pp. 1–63 Dekker, New York.

2. H. Furstenberg, E. Glasner, Stationary dynamical systems, Dynamical number–interplay between dynamical systems and number theory, 1–28, Contemp. Math., 532, Amer. Math. Soc., Providence, RI, 2010.

3. A. Karlsson, F. Ledrappier, Linear drift and Poisson boundary for random walks. Pure Appl. Math. Q. 3 (2007), no. 4, Special Issue: In honor of Grigory Margulis. Part 1, 1027–1036.

4. V. Kaimanovich, A. Vershik, Random walks on discrete groups: boundary and entropy, Ann. Prob. 11 (1983) 457–490

5. V.A. Kaimanovich, Double ergodicity of the Poisson boundary and applications to bounded cohomology. Geom. Funct. Anal. 13 (2003), no. 4, 852–861.

6. B. Kleiner, A new proof of Gromov’s theorem on groups of polynomial growth. Preprint. Arxiv: http://arxiv.org/abs/0710.4593

7. G. W., Mackey, Ergodic transformation groups with a pure point spectrum. Illinois J. Math. 8 1964 593–600.

Department of Mathematics, Chalmers, Gothenburg, Sweden

E-mail address: micbjo@chalmers.se