Effect of crocin, an active saffron constituent, on ethanol toxicity in the rat: histopathological and biochemical studies

Alireza Rezaee-Khorasany 1, Bibi Marjan Razavi 2,3, Elahe Taghiabadi 4, Abbas Tabatabaei Yazdi 5, Hossein Hosseinzadeh 1,3,

1 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
2 Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
3 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
4 Orthopedic Research Center, Shahid Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
5 Ghaem Hospital, Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran

ARTICLE INFO

Article type: Original article

Article history:
Received: Dec 25, 2018
Accepted: Jul 8, 2019

Keywords:
Crocin
Ethanol
Hepatotoxicity
Nephrotoxicity
Oxidative stress

Abstract

Objective(s): The drinking of ethanol causes the wide range of clinical illness and morphological changes including hepatotoxicity and nephrotoxicity. In the current study, the protective properties of crocin versus oxidative stress, apoptosis and inflammation induced by ethanol were assessed.

Materials and Methods: The male Wistar rats were divided into seven groups consisting of 6 rats in control, ethanol (50% v/v - 5 g/kg), crocin (10, 20 and 40 mg/Kg) plus ethanol, crocin 20 and 40 mg/Kg.

Results: The MDA level was remarkably enhanced, while the content of GSH was significantly diminished in the kidney and liver of alcoholic rat but protective groups restored the level of MDA and GSH contents. Ethanol consumption induced hepatotoxicity and nephrotoxicity as evidenced by biochemical abnormalities and histopathological damages but crocin improved them. Ako, crocin restored the TNF-α and IL-6 levels in the liver. The consumption of ethanol enhanced the levels of caspase-3, -8, -9 and Bax/Bcl-2 ratio (mRNA and protein) but, western blot and real-time PCR data confirmed that crocin treatment prevented apoptosis induced by ethanol.

Conclusion: This research demonstrates that crocin has protective activities against ethanol toxic effects in rat liver and kidney via anti-inflammatory, antioxidant, and anti-apoptotic effects.

Introduction

Ethanol is an addictive agent that can derive from the fermentation of crops such as grains, vegetables and fruits (1). Ethanol consumption leads to various toxic and pharmacological impacts on numerous organs such as brain, liver, heart and kidney (2). Also, ethanol-related different sicknesses such as testicular injury, myopathy, cerebellar atrophy, cancer, immune deficiency, physical dependence and neuropsychiatric problems have been reported (3). Metabolism of ethanol in liver is substantially affected by three enzymes: microsomal ethanol oxidizing system (MEOS), catalase (CAT), and ethanol dehydrogenase (ADH) (4). It has been acknowledged that metabolism of ethanol in liver can cause the appearance of reactive oxygen species (ROS). During this process, extremely free radicals are generated which are proved to be detrimental. Hence, liver is considered as the initial organ, which is susceptible to harm (5). Due to destructive effects of ethanol, some abnormalities are observed in fat and carbohydrate metabolism, hepatic lipoprotein release and mobilization of fat stores, hepatic absorption of circulating lipids, Krebs cycle function and oxidation of fatty acid (6). All these alterations lead to triglycerides accumulation in hepatocytes, steatosis, and fibrosis, as well as high level of serum triglycerides (7). Kidney is another target organ that its function is disturbed by ethanol. Ethanol causes several detrimental impacts on kidney such as necrosis, decrement of glomerular filtration rate, abnormal levels of protein and glucose in urine, and concentrations of creatinine and blood urea (8). According to studies, an imbalance in free radical formation, antioxidant defense systems, and production of ROS is induced by ethanol metabolism, which results in oxidative stress which is regarded as a substantial harm in cell (9).

Thus, it is verified that ethanol, affected by oxidative stress, produces a toxin which has a detrimental role in liver and kidney of animals as well as humans. In such conditions, it is impossible to avoid the appearance of lipid peroxidation. Furthermore, the extrinsic and intrinsic signaling pathways stimulate the apoptosis as a result of toxicity impacts of ethanol (10). The aforementioned findings demonstrated that the antioxidant balance level in liver and kidney was disturbed by ethanol or its metabolite.

Growing bodies of research ratified that antioxidants illustrated significant and helpful impacts on declining the occurrence of detrimental alterations caused by ethanol (11). The current interest lies in discovering fresh antioxidants from natural sources rather than artificial antioxidants in medicinal chemicals and food processing. Nowadays, according to different studies saffron is known as a potent and phenomenal natural antioxidant.

*Corresponding author: Hossein Hosseinzadeh, Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Tel: +98-51-38819042; Fax: +98-51-38823251; Email: hosseinhosseinzadeh@mums.ac.ir
Saffron, dried dark red stigmas, is a member of Crocoideae family, which is found in the flower of the plant *Crocus sativus*, L. Picrocrocin, safranal, and crocin are the most important pharmacological components in saffron. Saffron color is due to the crocin consists of crocetin and two sugars. Picrocrocin, one of the ingredients of saffron, produces a bitter taste. In addition, aroma and odor of saffron are produced through hydroxylation of picrocrocin into a kind of oil known as safranal (12). According to studies conducted so far, modern pharmacological investigations suggest that crocin has numerous therapeutic impacts on different parts of body namely central nervous system (anti-Alzheimer and anti-Parkinson, antidepressant and anticonvulsant) (13-17), cardiovascular system (18, 19), immune system (20-22), genital system (23) and eye (24, 25). Furthermore, several crocin impacts include chemoprotective aspects, treatment of digestive disorders, anti-cancer, and anti-genotoxic (12). Regarding to these facts, the prophylactic and therapeutic roles of saffron and its constituents have been confirmed and are due to their beneficial properties including antioxidant and anti-apoptotic effects (15). Based on the aforementioned results, the current study intends to investigate the *in vivo* defensive impacts of crocin against apoptosis, inflammation, and oxidative stress induced by ethanol usage in rats’ liver and kidney.

Materials and Methods

Chemicals

Absolute ethanol, sodium dodecyl sulphate (SDS), N, N, N, N-tetramethyl-ethylenediamine (TEMED), thiobarbituric acid (TBA), β-mercaptoethanol (β-ME), malondialdehyde (MDA) were purchased from Merck (Germany). Complete protease inhibitor cocktail, reduced glutathione and phenyl-methanesulfonyl fluoride (PMSF) were supplied from Sigma-Aldrich Chemical Company (USA). BCA protein assay kit (USA, Rockville) and enhanced chemiluminescence Western blotting detecting reagents (ECL) were provided from Pierce. Coomassie (Bradford) Protein Assay Kit (USA, New York) and polyvinylidene difluoride (PVDF) membrane were prepared from Bio-Rad. TNT-α Rat ELISA Kit (USA, Salem), IL-6 Rat ELISA Kit (USA, San Diego), and Express one-step SYBR R Green ER™kit (USA, Carlsbad) were purchased from Invitrogen.

Preparation of crocin from saffron stigmas

Saffron stigma was prepared from Novin Saffron Company, Mashhad, Iran. After grinding, saffron stigma powders (10 g) were suspended in 20 ml ethanol 70% at 0 °C. It was shaken by vortex (VTX-3000, Scientica, Japan) for 3 min. The supernatant was separated after centrifugation (Universal 320R, Heittich, Germany) at 3000 g for 10 min. Ethanol (70% - 20 ml) and sediment were mixed and extraction should be repeated. This step was repeated five other times. A glass container was used for keeping of the solution at -18 °C for one month in darkness. After separation of collected crystals from solution, to remove remaining water, crystals were washed with acetone (26, 27). The efficiency of crocin extraction was 16%.

Animals

Forty-two adult male Wistar rats (weight 190-240 g) were prepared by Animal Center of School of Pharmacy, Mashhad University of Medical Sciences. The experimental animals were divided into seven groups and each group consisted of six rats for the main experiment. For intraperitoneally administration, fresh crocin was dissolved in distilled water. Also, to prepare ethanol 50% v/v, distilled water was used. Distilled water was also used for group 1 (control group) as a control group by gavage. Groups 2 received ethanol (50% v/v - 5 g/kg) orally by gavage. Groups 3, 4 and 5 were administered crocin (10, 20 and 40 mg/kg) plus ethanol (50% v/v - 5 g/kg). Groups 6 and 7 were treated with crocin 20 mg/kg and crocin 40 mg/kg, respectively. All groups of animals have been received daily treatment for four weeks. At the end, after overnight fast, the rats were killed by decapitation. After the occurrence of blood clotting, the samples were centrifuged at 4000 g for 15 min and the obtained serums were maintained at -20 °C for further biochemical analysis. For histopathological detection, some parts of liver and kidney were washed in normal saline and preserved in neutral buffered formalin (10%) and other parts of kidney and liver were stored at -80 °C for next analyses.

Biochemical blood evaluation

The commercial colorimetric kits were used for measurement of serum levels of AST, ALT, and ALP as liver enzymes. Also, urea, creatinine, HDL, LDL, TG, FBS, and total cholesterol were evaluated with standard diagnostic kits (Hitachi, Japan).

Histopathology

Tissue samples of liver and kidney were fixed in 10% buffered formalin solution for at least 24 hr, passaged of samples by Autotechnicon (overnight) and then embedded in paraffin blocks. Rotatory microtome was used to cut the tissue samples at 5 μm thickness, mounted on a glass slide, stained with hematoxylin and eosin. Then, they were dehydrated, cleared and cover-slipped and ultimately, the slides of samples were examined under the light microscope. Scores between normal histology, mild (+), moderate (++), and severe (+++) were devoted to range of histopathological damage in liver and kidney tissues.

Assessment of MDA in the kidney and liver tissues

MDA is the famous indicator of oxidative stress and lipid peroxidation biomarker. The method of Niehaus and Samuelsson was conducted for determination of MDA level (30). For assessment of MDA, it should be
Measurement of GSH content in the kidney and liver tissues

GSH was determined by the method of Moron et al in the kidney and liver (31). For preparation of homogenate (10% - w/v), ice-cold 0.1 M phosphate buffer (pH=7.4) was added to the tissues and the mixture was homogenized. GSH contents reduction were measured using 5, 5'-dithiobis (2-nitrobenzoic acid) (DTNB) which produced 5-thio-2-nitrobenzoic acid (TNB) that have the yellow color. The equal amounts of samples and 10% trichloroacetic acid (TCA) were mixed and the resulting combination was centrifuged at 3000 g for 5 min. Then, supernatants (0.5 ml), DTNB reagent (0.04%, 0.5 ml) and sodium phosphate buffer (0.1 M, pH=8.0, 2 ml) were added. Ultimately, UV-VIS spectrophotometer was applied to determine the TNB absorbance at 412 nm. The content of GSH was assessed in accordance with a standard curve and it was expressed as nmol/g tissue.

Assessment of inflammatory biomarkers

Invitrogen ELISA kits was used for assessment of the specific inflammatory biomarkers (TNF-α and IL-6) in the liver and kidney tissues according to the instructions of the manufacturer and ELISA reader (Stat fax-2100, UK).

Western blot analysis

For Western blot analysis, pieces of liver and kidney were used for extraction of the protein. The samples were homogenized in the homogenization buffer containing 10 mM NaF, Tris 50 mM pH = 7.4, 1 mM Na3VO4, 2 mM EDTA, 10 mM b-glycerol-phosphate, 1 mM phenylmethylsulfonyl fluoride (PMSF), 0.2% W/V sodium deoxycholate and complete protease inhibitor cocktail (Sigma, P8340) using Polytron homogenizer (POLYTRON- PT 10-35, Kinematica, Switzerland) in ice and the obtained combination was centrifuged at 4 °C and 10000 g for 15 min. The determination of total protein content was performed by using Bradford protein assay kit (Bio-Rad). Also, immune blotting analysis was conducted for assessment of the levels of β-actin, caspase-8, -9, -3, Bax and Bcl2. Equal amounts of protein extracts (50 μg) and loading buffer were mixed and then heated at 95 °C for 5 min and loaded to SDS-PAGE gel. The mixture was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis on a 12% gel and transfer of proteins to polyvinylidene fluoride (PVDF) membrane was done in the next step. The blots were incubated in blocking buffer TBS-T (0.1% Tween-20 and 5% nonfat skim milk in Tris-buffered saline) for 2 hr at room temperature. The primary and secondary antibodies were observed in the Table 1. All antibodies were used at a dilution of 1:1000. The incubation time for the primary antibodies at room temperature was 2 hr and then the blots were washed 3 times for 5 min each in TBS with 0.1% Tween-20. The corresponding secondary antibody was used for incubation of the membranes for 60 min. Protein bands were visualized by Alliance gel doc (Alliance 4.7 Gel doc, UK) and Enhanced chemiluminescence (Pierce ECL Western blotting substrate). UV Tec Software (UK) was used to semi-quantify protein bands. All protein bands were normalized against β-actin protein to reach the result.

Isolation of RNA and real-time PCR (RT-PCR)

Isolation of total RNAs from kidney and liver tissues was done by high pure RNA tissue kit (Roche, #12033674001) according to the manufacturer protocol. For evaluation of quantity and quality (260/280 and 260/230 ratios) of isolated RNAs, Nanodrop (Nanodrop™ 2000, USA) was used and then, samples of RNAs were kept at -80 °C (Freezer -80, JAHL C (Freezer -80, JAHL JD150L, UK). To determination of transcript levels, step one thermal cycler (ABI) and Express one-step SYBR Green ER™kit (Invitrogen, #11780–200) were performed. For evaluation of β-actin (NM_031144.3), Bcl2 (NM_016993.1), and Bax (NM_017059.2), Beacon Design® software (BioSoft) was considered to select the primer pairs (Table 2). Melting curve analysis

Table 1. Primary and secondary antibodies used for Western blot analysis of liver and kidney tissue

Primary antibodies	Rabbit monoclonal anti-serum against caspase-3 (Cell Signaling, #9665)
	Rabbit monoclonal anti-serum against caspase-9 (Cell Signaling, #9506)
	Rabbit monoclonal anti-serum against caspase-8 (Cell Signaling, #4790)
	Rabbit monoclonal anti-serum against Bcl2 (Cell Signaling, #2870)
Secondary antibodies	Anti-mouse IgG labeled with horseradish peroxidase (Cell Signaling, #7076)
	Anti-rabbit IgG labeled with horseradish peroxidase (Cell Signaling, #7074)
was prepared for evaluation of products and primers quality. To normalize the relative quantitation values of the genes, β-actin was used as a criterion. Increasing of genes expression was measured by ΔΔCT method.

Statistical analysis
The results are demonstrated as mean ± SEM. ANOVA followed by Tukey-Kramer test were used to compare means. P-values less than 0.05 were regarded as significant.

Results

Effect of ethanol and crocin on body weight changes
The body weight alterations and weight gain were evaluated for each week during the study. The lowest weight gain was seen in ethanol group (P<0.001). The difference between ethanol group and group of crocin 20 mg/kg plus ethanol was meaningful, while weight gain in group of crocin 20 mg/kg and control group was not considerable (Figure 1).

Biochemical evaluation
The levels of AST, ALT, LDL, TG, urea and creatinine were enhanced in the ethanol-treated group in comparison with the control group (P<0.05, P<0.001). Crocin 20 mg/kg plus ethanol reduced urea, creatinine, AST, ALT, LDL and TG levels which increased by ethanol (P<0.05, *** P<0.001 comparison with control, ## P<0.01, ### P<0.001 comparison with control). The usage of crocin 20 mg/kg and ethanol could improve the MDA level and GSH contents compared to the control group (Figure 2, Figure 3).

Histopathological analysis
The control group and crocin 20 mg/kg alone had the normal histological findings in the kidney and liver (Table 4, Figure 4, Figure 5). Histological damages induced by ethanol were seen in the kidney and liver tissues. Ethanol-induced liver damages were severe congestion (dilatation in the central vein of the lobule), steatosis

Table 2. Sequences of different primers used for real-time PCR reactions

Gene	Primer	Sequence
Bcl2	Forward	5'-GGTGGAGAATCTTCTAGGGA-3'
	Reversed	5'-GGTGGATCTGATGTCGACCA-3'
Bax	Forward	5'-ATGATGTTCTGATCAGTCCG-3'
	Reversed	5'-GGGAATTGCTGGTGACATT-3'
β-actin	Forward	5'-GGGCCAGTGGGACTC-3'
	Reversed	5'-GGGCCAGTGGGACATT-3'

Table 3. Effects of ethanol (Et) and crocin (4 weeks) on biochemical marker levels such as ALT, AST, ALP, cholesterol, TG, LDL, HDL, FBS, Urea and Creatinine in rats. Data showed as mean±SEM, * P<0.05, *** P<0.001 comparison with control, # P<0.05, ## P<0.01, ### P<0.001 comparison with ethanol treated group, Tukey-Kramer test, n=6

Group	Control (mg/kg)	Ethanol (5g/kg,50%)	Crocin 10 mg/kg	Crocin 20 mg/kg	Crocin 40 mg/kg		
ALP (µU)	34.2±7.703	442±42±22.02	441±51.56	337±16.99	334±21.79	396±15.70	
ALT (µU)	60.17±1.033	57.40±0.244	79.60±5.329	55.40±2.358	47.80±1.905	74.20±3.929	50.80±2.267
AST (µU)	166.01±0.506	234.6±6.045	256.6±15.44	163±4.329	130.0±2.000	233±4.319	169±7.318
CHOL (mg/dl)	67.50±1.500	80.00±5.229	73.40±0.362	72.40±6.654	51.40±3.641	81.00±5.030	69.40±2.694
TG (mg/dl)	46.6±4.702	85.60±6.790	60.80±0.290	54.60±3.702	50.40±1.288	65.40±5.963	55.40±3.530
HDL (mg/dl)	27.17±0.672	25.60±1.122	27.80±1.281	28.40±0.777	28.00±0.316	24.80±0.600	24.80±0.612
LDL (mg/dl)	7.9±3.037	6.90±0.244	8.00±0.362	6.08±0.374	6.60±0.400	6.00±0.400	6.20±0.374
FBS (mg/dl)	89.8±3.312	105.8±2.502	108.6±9.60	91.0±5.992	88.6±4.057	104.4±6.524	88.0±1.772
Urea (mg/dl)	32.4±2.532	51.3±5.137	47.3±6.725	36.0±3.392	34.1±2.247	46.9±3.652	43.7±1.851
Creatinine (mg/dl)	0.64±0.361	1.08±0.137	0.92±0.726	0.71±0.528	0.67±0.692	0.87±0.146	0.81±0.239
and portal lymphocytic infiltration (Table 4 and Figure 4-A2, Figure 4-B2, Figure 4-C2). The histopathological damages of kidney such as proteinuria and infiltration of inflammatory factors around glomerular were observed in ethanol group (Table 4 and Figure 5-D2, Figure 5-E2).

In contrast to the ethanol group, the kidney and liver lesions were improved in group of crocin 20 mg/kg plus ethanol (Table 4). In other words, histopathological changes in groups of crocin 20 mg/kg plus ethanol and control were the same (Table 4 and Figure 5-D2, Figure 5-E2).

Table 4. Effect of crocin and ethanol (Et) on histopathological changes in liver and kidney tissues of rat after 4 weeks treatment. Histopathological criteria were determined semi-quantitatively from mild (+) to moderate (+++) and sever (+++) n=6

Groups	Liver	Kidney
Control	Normal	Normal
Ethanol (5 g/kg-50% v/v)	Severe congestion (+++), steatosis (+++) and portal lymphocytic infiltration (+)	Proteinuria (+) and infiltration of inflammatory factors around glomerular (+)
Crocin 10 mg/kg+ethanol	Moderate congestion (+), steatosis (+) and portal lymphocytic infiltration (+)	Proteinuria (+) and infiltration of inflammatory factors around glomerular (+)
Crocin 20 mg/kg+ethanol	Mild congestion (+)	Normal
Crocin 20 mg/kg	Normal	Normal
Crocin 40 mg/kg+ethanol	Severe congestion (+++), steatosis (+) and portal lymphocytic infiltration (+)	Proteinuria (+) and infiltration of inflammatory factors around glomerular (+)
Crocin 40 mg/kg	Mild congestion (+) and portal lymphocytic infiltration (+)	Proteinuria (+) and infiltration of inflammatory factors around glomerular (+)
Inflammatory markers measurement

As seen in Figure 6, the production of IL-6 and TNF-α in ethanol treatment group had an increasing trend as compared with the control group in the liver (P<0.001 and P<0.05, respectively). Crocin 20 mg/kg plus ethanol decreased the concentration of TNF-α and IL-6 to those of the control group (Figure 6). It is noteworthy that there were no remarkable changes in TNF-α and IL-6 levels in the rat kidney (Figure 7).

Western blot analysis for apoptosis

The protein expression of Bax/Bcl-2 was up-regulated in ethanol group in the liver and kidney (P<0.001) (Figure 8, Figure 9). Also, protein expressions of caspase-3, -8, and -9 were up-regulated by ethanol in the liver (P<0.001) and kidney (P<0.001) tissues (Figure 10, Figure 11, Figure 12, respectively). On the contrary, in liver and kidney, the Bax/Bcl-2 ratio (P<0.001) (Figure 8, Figure 9) and the levels of caspase-3 (P<0.001 and P<0.01, respectively), caspase-8 (P<0.01) and caspase-9

![Figure 4](image_url) Effect of crocin and ethanol (Et) on histopathological changes in liver tissue of rat after 4 weeks treatment. (A1) Crocin 20 mg/kg+ethanol group (Hematoxylin and eosin, 40×) and (A2) ethanol treated rats showed severe congestion (Hematoxylin and eosin, 40×). (B1) Liver of crocin 20 mg/kg+ethanol group (Hematoxylin and eosin, 100×) and (B2) ethanol treated rats showed steatosis (Hematoxylin and eosin, 40×). (C1) Liver of crocin 20 mg/kg+ethanol group (Hematoxylin and eosin, 100×) and (C2) ethanol treated rats showed portal lymphocytic infiltration (Hematoxylin and eosin, 40×). (F1) Normal liver (Hematoxylin and eosin, 40×).

![Figure 5](image_url) Effect of crocin and ethanol (Et) on histopathological changes in kidney tissue of rat after 4 weeks treatment. (D1) Crocin 20 mg/kg+ethanol group (Hematoxylin and eosin, 100×) and (D2) ethanol treated rats showed proteinuria (Hematoxylin and eosin, 100×). (E1) Kidney of crocin 20 mg/kg+ethanol group (Hematoxylin and eosin, 100×) and (E2) ethanol treated rats showed infiltration of inflammatory factors around glomerular (Hematoxylin and eosin, 100×). (F2) Normal kidney (Hematoxylin and eosin, 40×).

![Figure 6](image_url) Effects of ethanol (Et) and crocin treatment (4 weeks) on IL-6 and TNF-α levels in the rat liver. Crocin was administered intraperitoneally, once a day. Ethanol was administered via gavage to rats once a day. Data showed as mean±SEM, * P<0.05, *** P<0.001 comparison with control, # P<0.05, ### P<0.001 comparison with ethanol-treated group, Tukey-Kramer test, n=6.

Measurement of mRNA level of Bax/Bcl-2 ratio in the liver and kidney tissues by quantitative RT-PCR

The data proved that in both of liver and kidney, ethanol up-regulated Bax/Bcl-2 mRNA expression.

Figure 7. Effects of ethanol (Et) and crocin treatment (4 weeks) on IL-6 and TNF-α levels in the rat kidney. Crocin was administered intraperitoneally, once a day. Ethanol was administered via gavage to rats once a day. Data showed as mean±SEM, Tukey-Kramer test, n=6

Figure 8. Effect of crocin 20 mg/kg and ethanol (Et) on the protein levels of Bax and Bcl-2 in the rat liver tissue. (A) Representative Western blots showing specific bands for Bax, Bcl-2 and β-actin as an internal control. Equal amounts of protein sample (50 μg) obtained from whole liver homogenate were applied in each lane. (B) Densitometric data of protein analysis. Data are expressed as the mean±SEM. *** P<0.001 comparison with control group, ### P<0.001 comparison with ethanol group, Tukey-Kramer test, n=4

(P<0.001 and P<0.01, respectively) (Figure 10, Figure 11, Figure 12 respectively) have declined because of simultaneous usage of ethanol and crocin 20 mg/kg in the kidney and liver.

Figure 9. Effect of crocin 20 mg/kg and ethanol (Et) on the protein levels of Bax and Bcl-2 in the rat kidney tissue. (A) Representative Western blots showing specific bands for Bax, Bcl-2 and β-actin as an internal control. Equal amounts of protein sample (50 μg) obtained from whole kidney homogenate were applied in each lane. (B) Densitometric data of protein analysis. Data are expressed as the mean±SEM. *** P<0.001 comparison with control group, ### P<0.001 comparison with ethanol group, Tukey-Kramer test, n=4
(P<0.001), while in crocin 20 mg/kg plus ethanol group, the expression of Bax/Bcl-2 mRNA was reduced and it was similar to the control group (Figure 13).

Discussion

The development of oxidative stress by ethanol is recognized to contribute to the beginning of serious irregularities in a variety of body parts namely liver and kidney (32, 33). Nowadays, herbal drugs are used for treatment of diseases induced by ethanol since they are useful, safe and effective. *C. sativus* L. (saffron) is one of the famous plants because of traditional knowledge of medicinal properties and various therapeutic effects according to the biological and pharmacological potential of saffron. A wide range of modern pharmacological studies as well as clinical experiments confirms that saffron is an interesting agent against oxidative stress, lipid peroxidation and apoptosis (12, 15). Due to all the aforementioned positive properties, in the present investigation, crocin (major bioactive ingredient of *C. sativus* L. (saffron) is one of the famous plants because of traditional knowledge of medicinal properties and various therapeutic effects according to the biological and pharmacological potential of saffron. A wide range of modern pharmacological studies as well as clinical experiments confirms that saffron is an interesting agent against oxidative stress, lipid peroxidation and apoptosis (12, 15). Due to all the aforementioned positive properties, in the present investigation, crocin (major bioactive ingredient of

![Figure 10](image1.png)

Figure 10. Effect of crocin 20 mg/kg and ethanol (Et) on the protein level of cleaved caspase-3 in the rat liver (I) and kidney (II) tissues. (A) Representative Western blots showing specific bands for cleaved caspase-3 (17KDa) and β-actin as an internal control. Equal amounts of protein sample (50 μg) obtained from whole liver and kidney homogenates were applied in each lane. (B) Densitometric data of protein analysis. Data are expressed as the mean±SEM, *** P<0.001 comparison with control group, ## P<0.01, ### P<0.001 comparison with ethanol group, Tukey-Kramer test, n=4

![Figure 11](image2.png)

Figure 11. Effect of crocin 20 mg/kg and ethanol (Et) on the protein level of cleaved caspase-8 in the rat liver (I) and kidney (II) tissues. (A) Representative Western blots showing specific bands for cleaved caspase-8 (10KDa) and β-actin as an internal control. Equal amounts of protein sample (50 μg) obtained from whole liver and kidney homogenates were applied in each lane. (B) Densitometric data of protein analysis. Data are expressed as the mean±SEM, *** P<0.001 comparison with control group, ## P<0.01, ### P<0.001 comparison with ethanol group, Tukey-Kramer test, n=4

![Figure 12](image3.png)

Figure 12. Effect of crocin 20 mg/kg and ethanol (Et) on the protein level of cleaved caspase-9 in the rat liver (I) and kidney (II) tissues. (A) Representative Western blots showing specific bands for cleaved caspase-9 (35KDa) and β-actin as an internal control. Equal amounts of protein sample (50 μg) obtained from whole liver and kidney homogenates were applied in each lane. (B) Densitometric data of protein analysis. Data are expressed as the mean±SEM, *** P<0.001 comparison with control group, ## P<0.01, ### P<0.001 comparison with ethanol group, Tukey-Kramer test, n=4
Safron was used to reduce ethanol toxicity. According to the results of our research, ethanol led to renal toxicity and hepatotoxicity via increasing the levels of biochemical markers (urea, creatinine, LDL, TG, AST, and ALT levels) and inflammatory biomarkers (IL-6 and TNF-α), GSH content decline and the rise of MDA levels, extensive disturbance in gene expression and apoptosis while we proved that crocin treatment was able to remove all above mentioned abnormalities in liver and kidney of rat in a period of 28 days.

GSH is regarded as a major antioxidant in organisms with the capacity to minimize ROS-induced damage and MDA is considered as a symptom of oxidative stress. GSH decline and MDA overproduction in ethanol consumption are induced by appearance of oxidative stress. In our research, subsequent to a one-month administration of ethanol (50% v/v - 5 g/kg), levels of creatinine and urea (kidney damage markers), LDL, TG, AST, and ALT levels were escalated. Dose and exposure time of ethanol is influential in fluctuation of these factors. For instance, biochemical factors undergo more detrimental effects in administration of ethanol (20%, 5 g/kg BW) for 60 days (46), than consumption of ethanol (30%, 3 g/kg BW) for 15 days (47). In addition, a wealth of research indicated that AST, ALT, and ALP are ameliorated via toxicity of ethanol. For instance, consumption of ethanol (7.9 g/kg/day) for 45 days

![Figure 13. Effect of ethanol (Et) and crocin on Bax/Bcl-2 mRNA expression in the rat liver (A) and kidney (B) tissues after 4 weeks treatment by real-time PCR. The transcript level of each sample was normalized against β-actin transcript level. Data are expressed as the mean±SEM. *** P<0.001 comparison with control group, ### P<0.001 comparison with ethanol group, Tukey-Kramer test, n=4](image)
leads to an oxidative damage which heightens the GGT, AST, ALT, and ALP activates (48). Another study declared that a nine-week administration of ethanol (56% v/v, 10 ml/kg) induced decline in HDL-C level as lipid disorders, enhanced LDL-C, TG levels and cholesterol, increased AST and ALT activities as unusual liver performance (49). To evaluate renal function, we measured the plasma urea and creatinine that increasing of these parameters confirms the initial kidney dysfunction due to ethanol consumption. According to analysis of data, ethanol toxicity could cause fluctuation in these parameters. The levels of urea and creatinine demonstrated an increasing trend in ethanol group, while crocin treatment reduced them considerably. These results proved that crocin is able to neutralize toxic effects of ethanol in the kidneys. Similar to our study, the use of ethanol (20%, 5 g/kg/day) elevated the concentration of urea and creatinine in rat plasma during 60 days. But treatment of Pterocarpus santalinus (250 mg/kg/day) lowered these items (50). In another research, urea and creatinine were considered as sensitive markers of toxicity in the kidney. The administration of ethanol (30%, 3 g/kg/day) for a period of 15 days caused the increasing trend in the levels of creatinine and urea in rat while they were moderated in protective group by sardinelle (Sardinella aurita) protein hydrolysate (47).

Also, the creatinine was assessed as a nephrotoxic index in chronic ethanol treatment (30% v/v, 8 weeks). The fluctuation of creatinine in alcoholic rats was introduced as an oxidative effect of chronic ethanol consumption on the kidney functions that folic acid supplementation improved it (5). The results obtained from our experience demonstrated that levels of cholesterol, FBS, HDL, and ALP did not show meaningful differences between control and ethanol group. These parameters might be heightened if the time and amount of ethanol administration is increased. With regards to the findings of the study, the release of cytokines namely IL-6 and TNF-α might be induced via oxidative stress which is regarded as a significant markers of tissue inflammation (51). The current research authenticated a substantial increase in the TNF-α and IL-6 levels in liver in the group with ethanol administration in comparison with the control group; however, no substantial difference in groups was detected in the kidney. It is believed that the levels of IL-6 and TNF-α in the kidney might be affected by an increase in amount and time of ethanol administration. The findings of this study are consistent with other bodies of research illustrating IL-6 and TNF-α as proper signs of inflammation in fatty liver and hepatic lipid accumulation, substantially heightened as a result of ethanol administration (5 g/kg - 12 weeks or 2 g/kg for 30 days) in rats (36). Similarly, another survey, conducting on AML12 cells, substantiated that ethanol administration increased TNF-α expression, NOX4 (oxidative stress signs) expression, and GSH-synthesizing enzymes expression. Besides other detrimental impacts of ethanol, it has been revealed that an increase in TNF-α level in cell line of liver is as a result of inflammation (52). Conversely, Amorphophallus campanulatus, P. chinense Pursh, and Akebia quinata extracts decreased the elevation of IL-6 and TNF-α levels (36, 43, 52).

The effect of crocin (20 mg/kg) was consistent with aforementioned plants that can alter the affected TNF-α and IL-6 levels by ethanol. Moreover, previous research confirmed that Antrodia camphorata and Armillariella tabescens (0.5 g/kg), P. chinense Pursh (10.30 g/kg) and green Capsicum annum (250 mg/kg) have shown a protective mechanism against ethanol toxicity (5 g/kg, a modified Lieber-Decarli alcohol liquid diet, 2 g/kg respectively) similar to silymarin (positive control) in amounts of 200, 86 and 50 mg/kg respectively (53, 43, 54). Therefore, it can be concluded that like silymarin, crocin reveals the protective effect against liver toxicity induced by ethanol (50% v/v - 5 g/kg).

In our experiment, we evaluated the levels of caspases-3, -8, -9 and Bax/Bcl-2 ratio in order to assess apoptosis. Treatment with crocin (20 mg/kg/day) diminished the increased level of Bax/Bcl-2 ratio in the mRNA and protein levels in the liver and kidney. Also, the increasing of caspase-8, -9, and -3 was prevented by crocin. Consistent to our findings, β-carotene (1 μM) stopped the hepatotoxicity stimulated by ethanol through anti-apoptotic and antioxidant aspects. β-carotene ameliorated the levels of caspase-9, caspase-3, expressions of CYP2E1 and lipid peroxides (55). In this regard, Liu et al. confirmed that ethanol (300 mmol/l) could increase Bax level, decline in the level of Bcl₂ and disturb the activation of caspase-3 which was consistent with our findings (56). Also, thymoquinone (10 mg/Kg/day) and N. sativa fixed oil (0.5 ml/kg/day) were revealed to improve the mRNA and protein levels of Bax/Bcl-2 ratio and the levels of caspase-8, caspase-9, caspase-3 which stimulated by ethanol (40% v/v) at the dose of 3 g/kg/day for 4-week in liver and kidney of rats (32, 33). According to the recent study, treatment with saffron aqueous extract (80 mg/kg) for 4 weeks was useful against the abnormal changes of the mRNA and protein levels of Bax/Bcl-2 ratio and the levels of caspase-3, caspase-8 and caspase-9 induced by ethanol (50% v/v-5 g/kg) in the liver of rat (57). In general, it can be said that although ethanol increased Bax/Bcl-2 ratio and the levels of caspase-3, -8, -9, crocin as the main bioactive component of saffron could stop induction of apoptosis by ethanol.

Conclusion

According to all obtained data, crocin has protective effects against nephrotoxicity and hepatotoxicity stimulated by ethanol through prevention of apoptosis by adjusting the levels of caspase-3, -8 and -9, ameliorating Bax/Bcl-2 ratio (protein and mRNA), alleviating biochemical levels (LDL, TG, AST, ALT, creatinine and urea) and inflammatory biomarkers (IL-6 and TNF-α), reducing histopathological damages, diminishing lipid peroxidation, and increasing GSH content.

Acknowledgment

The authors are thankful to the Vice Chancellor of Research, Mashhad University of Medical Sciences for financial support. The results described in this paper were part of a Ph.D. thesis.

Conflicts of Interest

The authors declare that there are no conflicts of interest.
References
1. Sararaj PJ, Sivasakthivelan P, Naveen M. Fermentation of fruit wine and its quality analysis: a review. AJST 2017;1:85-97.
2. Pari L, Suresh A. Effect of grape (Vitis vinifera L) leaf extract on alcohol induced oxidative stress in rats. Food Chem Toxicol 2008;46:1627-1634.
3. Tahir M, Sultan S. Chrysophala modulates ethanol metabolism in Wistar rats: a promising role against organ toxicities. Alcohol Alcohol 2011;46:383-392.
4. Faremi TY, Suru SM, Fafunso MA, Obioha UE. Hepatoprotective potentials of Phyllanthus amarus against ethanol-induced oxidative stress in rats. Food Chem Toxicol 2008;46:2658-2664.
5. Ojeda M, Barrero M, Nogales F, Murillo M, Carreras O. Oxidative effects of chronic ethanol consumption on the functions of heart and kidney: follic acid supplementation. Alcohol Alcohol 2012;47:404-412.
6. Kode A, Rajagopalan R, Penumastha SV, Menon VP. Role of an aminothiazole derivative on ethanol-induced toxicity. Toxicol Mech Methods 2007;17:33-40.
7. Saravanan R, Pugalendhi K. Effect of Piper betel on blood glucose and lipid profiles in rats after chronic ethanol administration. Pharm Biol 2004;42:233-237.
8. Mani V, Siddique AI, Arivalagan S, Thomas NS, Namasivayam N. Zingerone ameliorates hepatic and renal damage in alcohol-induced toxicity in experimental rats. Int J Nutr Pharmacol Neurodis 2016;1:25-132.
9. You Y, Yoo S, Yoon HG, Park J, Lee YH, Kim S, et al. In vitro and in vivo hepatoprotective effects of the aqueous extract from Taraxacum officinale (dandelion) root against alcohol-induced oxidative stress. Food Chem Toxicol 2010;48:1632-1637.
10. McVicker BL, Tuma DJ, Casey CA. Effect of ethanol on pro-apoptotic mechanisms in polarized hepatic cells. World J Gastroenterol 2007;13:4960-4966.
11. Navasunmit P, Ward TH, Dodd NJ, O’Connor PJ. Ethanol-induced free radicals and hepatic DNA strand breaks are prevented in vivo by antioxidants: effects of acute and chronic ethanol exposure. J Carcinog 2008;21:93-99.
12. Rezaee-Khorasany AR, Hosseinzedeh H. Therapeutic effects of saffron (Crocus sativus L.) in digestive disorders: a review. Iran J Basic Med Sci 2016;19:455-469.
13. Mohamadzadeh L, Abnous K, Razavi BM, Hosseinzedeh H. Crocin-protected malathion-induced spatial memory deficits by inhibiting Tau protein hyperphosphorylation and antiapoptotic effects. Nutr Neurosci 2019;21:1-16.
14. Adabizadeh M, Mehr S, Rajapour M, Abnous K, Rashedinia M, Hosseinzedeh H. The effects of crocin on spatial memory impairment induced by hyoscine: Role of NMDA, AMPA, ERK, and CaMKII proteins in rat hippocampus. Iran J Basic Med Sci 2019;22:601-609.
15. Alavizadeh SH, Hosseinzedeh H. Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol 2014;64:65-80.
16. Amin B, Naksaz A, Hosseinzedeh H. Evaluation of the antidepressant-like effects of acute and sub-acute administration of crocin and crocetin in mice. Avicenna J Phytomed 2015;5:458-468.
17. Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, Tsatsakis AM. The effects of Crocus sativus (saffron) and its constituents on nervous system: A review. Avicenna J Phytomed 2015;5:376-391.
18. Mehdizadeh R, Parizadeh MR, Khoei AR, Mehr S, Hosseinzedeh H. Cardioprotective effect of saffron extract and safranal against ischemia-reperfusion-induced myocardial infarction in wistar rats. Iran J Basic Med Sci 2013;16:56-63.
19. Razavi BM, Hosseinzedeh H, Movassaghi AR, Imenshahidi M, Abnous K. Protective effect of crocin on diazinon induced cardiotoxicity in rats in chronic exposure. Chem Biol Interact 2013;203:547-555.
20. Zeinali M, Zirak MR, Rezaee SA, Karimi G, Hosseinzedeh H. Immunoregulatory and anti-inflammatory properties of Crocus sativus (Saffron) and its main active constituents: A review. Iran J Basic Med Sci 2019;22:334-344.
21. Riahi-Zanjani B, Balali-Mood M, Mohammad M, Badie-Bostan M, Memar B, Karimi G. Safranal as a safe compound to mice immune system. Avicenna J Phytomed 2015;5:441-449.
22. Hosseini A, Razavi BM, Hosseinzedeh H. Saffron (Crocus sativus) petal as a new pharmacological target: a review. Iran J Basic Med Sci. 2018;21:1091-1099.
23. Hosseinzedeh H, Ziaee T, Sadeghi A. The effect of saffron, Crocus sativus stigma, extract and its constituents, safranal and crocin on sexual behaviors in normal male rats. Phytomedicine 2008;15:491-495.
24. Rameshwar M, Razavi BM, Hosseinzedeh H. Saffron and its derivatives, crocin, crocetin and safranal: a patent review. Expert Opin Ther Pat 2018;28:147-165.
25. Hashemi M, Hosseinzedeh H. A comprehensive review on biological activities and toxicology of crocetin. Food Chem Toxicol 2019;130:44-60.
26. Lari F, Abnous K, Imenshahidi M, Rashedinia M, Razavi M, Hosseinzedeh H. Evaluation of diazinon-induced hepatotoxicity and protective effects of crocin. Toxicol Ind Health 2015;31:367-376.
27. Hadizadeh F, Mohajer SI, Seifi M. Extraction and purification of crocin from saffron stigmas employing a simple and efficient crystallization method. Pak J Biol Sci 2010;13:691-698.
28. Mohammadzadeh L, Hosseinzedeh H, Abnous K, Razavi BM. Neuroprotective potential of crocin against malathion-induced motor deficit and neurochemical alterations in rats. Environ Sci Pollut Res Int 2018;25:4904-4914.
29. Dorri SA, Hosseinzedeh H, Abnous K, Hasani FV, Robati RY, Razavi BM. Involvement of brain-derived neurotrophic factor (BDNF) on malathion induced depressive-like behavior in subacute exposure and protective effects of crocin. Iran J Basic Med Sci 2015;18:958-966.
30. Niehaus W, Samuelsson B. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. FEBS J 1966;1:126-130.
31. Moron MS, Depierre JW, Mannerkirk B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat liver and lung. Biochim Biophys Acta 1979;58:67-78.
32. Pourbaksh H, Taghizadeh E, Abnous K, Hariri AT, Hosseini SM, Hosseinzedeh H. Effect of Nigella sativa fixed oil on ethanol toxicity in rats. Iran J Basic Med Sci 2014;17:1020-1031.
33. Hosseini SM, Taghizadeh E, Abnous K, Hariri AT, Pourbaksh H, Hosseinzedeh H. Protective effect of thyroquinone, the active constituent of Nigella sativa fixed oil, against ethanol toxicity in rats. Iran J Basic Med Sci 2017;20:927-939.
34. Carrero RJ, Husain K. Renal oxidative stress in chronic alcohol-induced hypertension. Ethn Dis 2005;15:17-19.
35. Amrani A, Boubekeur N, Lassad S, Zama D, Benayache F, Benayache S. Alcohol induced hepato-cardiototoxicity and oxidative damage in rats. The protective effect of n-butanol extract of green tea (Camellia sinensis (L.) Kuntze). Cardiovasc Hemol Dis Drug Targets 2017;17:18-23.
36. Subhashree BMD, Anurupa S, Gouriprosad D. Protective role of crude extract of Amorphophallus campanulatus against ethanol-induced oxidative renal damage. Asian J Pharm Clin Res 2018;11:240-250.
37. Dinu D, Nechifor MT, Movileanu L. Ethanol-induced alterations of the antioxidant defense system in rat kidney. J Biochem Mol Toxicol 2006;20:386-395.
38. Oyenihi OR, Afolabi BA, Oyenihi AB, Ogunmokun OJ, Anjum NO. Antioxidant effect of trans-3-hydroxycinnamic acid against liver damage methotrexate...
induced in rats. J Anim Plant Sci 2018;28:1574–1578.
40. Akdemir FNE, Albayrak M, Çalış M, Bayir Y, Gülçin I. The protective effects of p-coumaric acid on acute liver and kidney damages induced by cisplatin. Biomedicines 2017;5:18-29.
41. Akdemir FNE, Gülçin I, Gürsül C, Alwasef SH, Bayir Y. Effect of p-coumaric acid against oxidative stress induced by cisplatin in brain tissue of rats. Biomedicines 2017;27:1560–1564.
42. Ekinci-Akdemir FN, Yıldırım S, Kandemir FM, Gülçin I, Küçükler S, Sağlam Y. The effects of casticin and myricetin on liver damage induced by methotrexate in rats. Iran J Basic Med Sci 2018;21:1281–1288.
43. Cao YW, Jiang Y, Zhang DY, Wang M, Chen WS, Su H, et al. Protective effects of Penthorum chinense Pursh against chronic ethanol-induced liver injury in mice. J Ethnopharmacol 2015;161:92–98.
44. Akomolafe S, Oboh G, Akindahunsi A, Afolayan A. Tetracarpidium conophorum ameliorates oxidative reproductive toxicity induced by ethanol in male rats. BMC Complement Altern Med 2015;15:439-448.
45. Shanmugam K, Ramakrishna C, Mallikarjuna K, Reddy KS. Protective effect of ginger against alcohol-induced renal damage and antioxidant enzymes in male albino rats. Indian J Exp Biol 2010;48:143–149.
46. Saravanan N, Nalini N. Hemidesmus indicus protects against ethanol-induced liver toxicity. Cell Mol Biol Lett 2008;13:20–37.
47. Kamoun Z, Kamoun AS, Bougatf A, Kharrat RM, Youssefi H, Bouadara T, et al. Hepatoprotective and nephroprotective effects of sardinelle (Sardinella aurita) protein hydrolysate against ethanol-induced oxidative stress in rats. Environ Sci Pollut Res Int 2017;24:4132–4141.
48. Sivaraj A, Vinothkumar P, Sathiyaraj K, Sundaresan S, Devi K, Senthilkumar B. Hepatoprotective potential of Andrographis paniculata aqueous leaf extract on ethanol induced liver toxicity in albino rats. J Appl Pharm Sci 2011;1:204–208.
49. Lu C, Zhang F, Xu W, Wu X, Lian N, Jin H, et al. Curcumin attenuates ethanol-induced hepatic steatosis through modulating Nrf2/FXR signaling in hepatocytes. JUOBMB Life 2015;67:645–658.
50. Bulle S, Reddy VD, Hebbar AN, Padmavathi P, Challagalla C, Puvada PK, et al. Nephro-protective action of P. santalinus against alcohol-induced biochemical alterations and oxidative damage in rats. Biomed Pharmacother 2016;84:740–746.
51. Gutierrez-Ruiz M, Gomez LQ, Hernandez E, Bucio L, Souza V, Llorente L, et al. Cytokine response and oxidative stress produced by ethanol, acetaldehyde and endotoxin treatment in HepG2 cells. Isr Med Assoc J 2001;3:131–136.
52. Lee SH, Song YS, Jeong Y, Ko KS. Antioxidative and Anti-Inflammatory Activities of Akebia quinata Extracts in an in vitro Model of Acute Alcohol-Induced Hepatotoxicity. J Med Food 2017;20:912-922.
53. Zhen-Ming L, Wen-Yi T, Xi-Liang Z, Hui-Zi F, Zong-Hua A. Protective effects of mycelia of Antrodia camphorata and Armillariella tabescens in submerged culture against ethanol-induced hepatic toxicity in rats. J Ethnopharmacol 2007;110:160–164.
54. Das M, Basu S, Banerjee B, Sen A, Jana K, Datta G. Hepatoprotective effects of green Capsicum annum against ethanol induced oxidative stress, inflammation and apoptosis in rats. J Ethnopharmacol 2018;227:69-81.
55. Peng HC, Chen JR, Chen YL, Yang SC, Yang SS. β-Carotene exhibits antioxidant and anti-apoptotic properties to prevent ethanol-induced cytotoxicity in isolated rat hepatocytes. Phytother Res 2010;24:183-189.
56. Liu Y, Zuo H, Wang Y, Tian L, Xu X, Xiong J, et al. Ethanol promotes apoptosis in rat ovarian granulosa cells via the Bcl-2 family dependent intrinsic apoptotic pathway. Cell Mol Biol 2018;64:118-125.
57. Rezaee-Khorasany AR, Razavi BM, Taghiabadi E, Tabatabaei Yazdi A, Hosseinzadeh H. Effect of saffron (stigma of Crocus sativus L.) aqueous extract on ethanol toxicity in rats: A biochemical, histopathological and molecular study. J Ethnopharmacol 2019;237:286-299.