Upregulation of human PINK1 gene expression by NFκB signalling

Xiaoling Duan1,2, Jade Tong2, Qin Xu2, Yili Wu1,2, Fang Cai2, Tingyu Li1 and Weihong Song1,2*

Abstract

Parkinson’s disease (PD) is one of the major neurodegenerative disorders. Mitochondrial malfunction is implicated in PD pathogenesis. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-induced putative kinase 1 (PINK1), a serine/threonine kinase, plays an important role in the quality control of mitochondria and more than 70 PINK1 mutations have been identified to cause early-onset PD. However, the regulation of PINK1 gene expression remains elusive. In the present study, we identified the transcription start site (TSS) of the human PINK1 gene using switching mechanism at 5’end of RNA transcription (SMART RACE) assay. The TSS is located at 91 bp upstream of the translation start site ATG. The region with 104 bp was identified as the minimal promoter region by deletion analysis followed by dual luciferase assay. Four functional cis-acting nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)-binding sites within the PINK1 promoter were identified. NFκB overexpression led to the up-regulation of PINK1 expression in both HEK293 cells and SH-SY5Y cells. Consistently, lipopolysaccharide (LPS), a strong activator of NFκB, significantly increased PINK1 expression in SH-SY5Y cells. Taken together, our results clearly suggested that PINK1 expression is tightly regulated at its transcription level and NFκB is a positive regulator for PINK1 expression.

Keywords: PINK1, Mitochondrial function, NFκB, Transcription

Background

Parkinson’s disease (PD) is the second most common neurodegenerative disease [1]. PD patients commonly suffer from muscular dysfunction which resulted in body rigidity, tremors, bradykinesia, posture instability, and Parkinsonian gait. Secondary symptoms such as anxiety, depression, memory loss, and dementia may appear over the course of disease progression [2,3]. The pathological hallmarks of PD include neurodegeneration of dopaminergic neurons specifically in the substantia nigra [3], and intracellular aggregation of misfolded proteins forming lewy bodies [4]. Although clinical and experimental studies suggest the involvement of protein misfolding, oxidative stress and mitochondrial dysfunction, the fundamental cause of the disease, its underlying mechanism remains elusive.

Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-induced putative kinase 1 (PINK1), initially was identified as a downstream molecule of PTEN in cancer cells [5]. PINK1 is a type I transmembrane protein of 581 amino acids with a putative serine/threonine kinase domain and an N-terminal mitochondrial targeting signal. Upon synthesis, the full-length PINK1 (FL-PINK1) is imported into mitochondria with the C-terminus facing the cytosol and undergoes proteolysis to produce a predominant product of ~55 kDa (Δ1-PINK1) and a minor one of ~45 kDa (Δ2-PINK1) [6,7]. The proteolytic process is mediated by matrix processing peptidase and presenilin-associated rhomboid-like protein (PARL) [8]. Δ1-PINK1 was reported to be released to the cytosol and interacts with Parkin, a PD-associated E3 ubiquitin ligase [9]. The binding of Δ1-PINK1 with Parkin impairs the recruitment of Parkin to mitochondria and leads to the degradation of Parkin and PINK1 by proteasome pathway in healthy mitochondria [9]. Parkin, PINK1 and DJ-1 formed a complex to promote ubiquitination and degradation of Parkin substrates, including Parkin itself and Synphilin-1 [10]. However, in
dysfunctional mitochondria with reduced mitochondrial membrane potential and mitochondrial oxidative stress, full-length PINK1 is aggregated on the mitochondrial membrane and recruits Parkin to mitochondria through the phosphorylation of Parkin, resulting in mitochondrial autophagy. PINK1 deficiency reduces mitochondrial membrane potential and compromises complex I activity of the mitochondria respiratory chain [11]. Studies suggest that PINK1 together with Parkin is critical for the quality control of mitochondria, including mitochondrial integrity, turnover, and functions. More than 70 mutations in the PINK1 gene were identified in familial PD in an autosomal recessive manner [12,13]. Most of these mutations fail to phosphorylate and recruit Parkin to mitochondria, leading to the accumulation of dysfunctional mitochondria and eventually neuronal death. This strongly suggests that PINK1 plays a critical role in PD pathogenesis and dysregulation of PINK1 may contribute to the development of PD.

Nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) is a family of diametric transcription factors, regulating numerous genes involving in cell survival, inflammation and immunity. The NFκB family consists of five members, p50, p52, p65 (RelA), RelB and C-Rel. All of them share an N-terminal Rel homology domain (RHD) responsible for DNA binding and homo- or hetero-dimerization. Only three members including p65, RelB and C-Rel contain transcription activation domain (TAD) necessary for the activation of target genes. NFκB exists in forms of homo- or hetero-dimer and the most abundant form is the p65/p50 heterodimer. NFκB dimers bind with inhibitor of κB (IkB) proteins in cytoplasm, preventing its nuclear translocation and DNA binding. Once IkB protein degradation is induced, NFκB dimers are released from IkB-NFκB complex and subsequently translocated from cytoplasm to nucleus [14], thus transcription regulation of its target genes is initialized [15]. NFκB can be activated by stimuli such as oxidative stress, cytokines, free radicals and biological antigens. Oxidative stress or free radicals has been shown to be involved in PD. An increase of NFκB translocation to the nucleus and activation have been observed in dopaminergic neurons from both PD animal models and patients [16-21]. It has been shown that NFκB plays an important role in regulating PD related genes, such as UCHL1 [22], USP24 [23] and RNF11 [24].

Although the function of PINK1 is well studied in terms of mitochondrial quality control, the regulation of PINK1 gene expression is barely explored. In the present study, we aimed to understand the transcriptional regulation of the PINK1 gene. For the first time, we identified that the transcription start site (TSS) of PINK1 is located 91 bp upstream of the translation start site (ATG). The region of 104 bp (−78 to +26) contains the minimal promoter with functional transcriptional activity for the PINK1 gene. Furthermore, we showed that the PINK1 gene promoter contains 4 functional cis-acting NFκB-binding sites, which promote PINK1 expression. Taken together, our results demonstrated that PINK1 expression is tightly regulated at its transcriptional level and that NFκB is a positive regulator for PINK1 expression.

Results and discussion
Cloning the human PINK1 gene promoter and mapping its transcription initiation site
The human PINK1 gene spans a region of 18,056 bp on chromosome 1p36. The human PINK1 gene transcript (NCBI Reference Sequence: NM_032409) is 2680-bp long and composed of 8 exons (Figure 1A). Human genomic DNA samples were extracted from SH-SY5Y cells and an 1825 bp 5′ flanking region of the PINK1 gene was amplified and cloned. The DNA fragment was sequenced (Figure 1B). To identify the transcription start site of human PINK1 gene, SMART-RACE was performed. The 5′ends of PINK1 cDNA with approximate 650 bp in length were amplified (Figure 1C). The sequencing results indicated that the transcription start site (TSS), an adenine labeled as +1, is located 91 bp upstream of the translation start site (Figure 1D). Further sequence analysis and a computer-based transcription factor binding site search using Genomatix and TFS can be activated by stimuli such as oxidative stress, cytokines, free radicals and biological antigens. Oxidative stress or free radicals has been shown to be involved in PD. An increase of NFκB translocation to the nucleus and activation have been observed in dopaminergic neurons from both PD animal models and patients [16-21]. It has been shown that NFκB plays an important role in regulating PD related genes, such as UCHL1 [22], USP24 [23] and RNF11 [24].

Although the function of PINK1 is well studied in terms of mitochondrial quality control, the regulation of PINK1 gene expression is barely explored. In the present study, we aimed to understand the transcriptional regulation of the PINK1 gene. For the first time, we identified that the transcription start site (TSS) of PINK1 is located 91 bp upstream of the translation start site (ATG). The region of 104 bp (−78 to +26) contains the minimal promoter with functional transcriptional activity for the PINK1 gene. Furthermore, we showed that the PINK1 gene promoter contains 4 functional cis-acting NFκB-binding sites, which promote PINK1 expression. Taken together, our results demonstrated that PINK1 expression is tightly regulated at its transcriptional level and that NFκB is a positive regulator for PINK1 expression.

Results and discussion
Cloning the human PINK1 gene promoter and mapping its transcription initiation site
The human PINK1 gene spans a region of 18,056 bp on chromosome 1p36. The human PINK1 gene transcript (NCBI Reference Sequence: NM_032409) is 2680-bp long and composed of 8 exons (Figure 1A). Human genomic DNA samples were extracted from SH-SY5Y cells and an 1825 bp 5′ flanking region of the PINK1 gene was amplified and cloned. The DNA fragment was sequenced (Figure 1B). To identify the transcription start site of human PINK1 gene, SMART-RACE was performed. The 5′ends of PINK1 cDNA with approximate 650 bp in length were amplified (Figure 1C). The sequencing results indicated that the transcription start site (TSS), an aden ine labeled as +1, is located 91 bp upstream of the translation start site (Figure 1D). Further sequence analysis and a computer-based transcription factor binding site search using Genomatix and TFS can be activated by stimuli such as oxidative stress, cytokines, free radicals and biological antigens. Oxidative stress or free radicals has been shown to be involved in PD. An increase of NFκB translocation to the nucleus and activation have been observed in dopaminergic neurons from both PD animal models and patients [16-21]. It has been shown that NFκB plays an important role in regulating PD related genes, such as UCHL1 [22], USP24 [23] and RNF11 [24].

Although the function of PINK1 is well studied in terms of mitochondrial quality control, the regulation of PINK1 gene expression is barely explored. In the present study, we aimed to understand the transcriptional regulation of the PINK1 gene. For the first time, we identified that the transcription start site (TSS) of PINK1 is located 91 bp upstream of the translation start site (ATG). The region of 104 bp (−78 to +26) contains the minimal promoter with functional transcriptional activity for the PINK1 gene. Furthermore, we showed that the PINK1 gene promoter contains 4 functional cis-acting NFκB-binding sites, which promote PINK1 expression. Taken together, our results demonstrated that PINK1 expression is tightly regulated at its transcriptional level and that NFκB is a positive regulator for PINK1 expression.

Results and discussion
Cloning the human PINK1 gene promoter and mapping its transcription initiation site
The human PINK1 gene spans a region of 18,056 bp on chromosome 1p36. The human PINK1 gene transcript (NCBI Reference Sequence: NM_032409) is 2680-bp long and composed of 8 exons (Figure 1A). Human genomic DNA samples were extracted from SH-SY5Y cells and an 1825 bp 5′ flanking region of the PINK1 gene was amplified and cloned. The DNA fragment was sequenced (Figure 1B). To identify the transcription start site of human PINK1 gene, SMART-RACE was performed. The 5′ends of PINK1 cDNA with approximate 650 bp in length were amplified (Figure 1C). The sequencing results indicated that the transcription start site (TSS), an aden ine labeled as +1, is located 91 bp upstream of the translation start site (Figure 1D). Further sequence analysis and a computer-based transcription factor binding site search using Genomatix and TFS can be activated by stimuli such as oxidative stress, cytokines, free radicals and biological antigens. Oxidative stress or free radicals has been shown to be involved in PD. An increase of NFκB translocation to the nucleus and activation have been observed in dopaminergic neurons from both PD animal models and patients [16-21]. It has been shown that NFκB plays an important role in regulating PD related genes, such as UCHL1 [22], USP24 [23] and RNF11 [24].

Although the function of PINK1 is well studied in terms of mitochondrial quality control, the regulation of PINK1 gene expression is barely explored. In the present study, we aimed to understand the transcriptional regulation of the PINK1 gene. For the first time, we identi fied that the transcription start site (TSS) of PINK1 is located 91 bp upstream of the translation start site (ATG). The region of 104 bp (−78 to +26) contains the minimal promoter with functional transcriptional activity for the PINK1 gene. Furthermore, we showed that the PINK1 gene promoter contains 4 functional cis-acting NFκB-binding sites, which promote PINK1 expression. Taken together, our results demonstrated that PINK1 expression is tightly regulated at its transcriptional level and that NFκB is a positive regulator for PINK1 expression.
promoter region required for PINK1 gene expression, a series of deletion mutants within the 1,825 bp fragment of pPINK1-A were generated as indicated in Figure 2A. The luciferase activity assays of these deletion mutants were performed. The results indicated that placing the 1,825 bp fragment in a reverse orientation (pPINK1-B) completely abolished luciferase activities observed in pPINK1-A transfected cells (Figure 2B). Deletion of −1799 to −103 bp in pPINK1-F reduced the luciferase activities of pPINK1-A moderately (71.16 ± 3.02 RLU). Deletion of the

Figure 1 Sequence features of the human PINK1 gene promoter. (A) The genomic organization of human PINK1 gene on chromosome 1. E represents exon. ATG is the translation start codon and TGA is the stop codon. (B) The nucleotide sequence of the human PINK1 gene from −1799 to +97 bp. The adenine +1 represents the transcription start site. The putative transcription factor binding sites are underlined in bold face. (C) SMARTer-RACE was performed to map the PINK1 transcription start site. The PCR product was run on a 1.5% agarose gel. (D) The PCR product was cloned into pcDNA4 vector and sequenced to identify the transcription start site. The first base after the adapter is the TSS from which is underlined.
identified transcription initiation site (pPINK1-E) from pPINK1-F occluded the remaining luciferase activities (Figure 2B). Further deletion of the promoter region to −78 to +26 bp maintained similar luciferase activity in pPINK1-G (78.44 ± 4.74 RLU) comparing to pPINK1-F (p > 0.05). However, additional deletion of 31 bp from pPINK1-G to pPINK1-H (−47 to +26) significantly reduced the luciferase activity to 11.46 ± 2.50 RLU (p < 0.05). These data suggest that the region from −78 to +26, containing the transcription start site, possesses the minimal promoter activity.

The human PINK1 gene promoter contains NFκB binding sites

Computer-based transcription factor binding site analysis revealed four putative NFκB elements in the 1.8 kb promoter region of the human PINK1 gene (Figure 1B). To determine whether NFκB signaling regulates PINK1 gene transcription by interacting with these putative NFκB cis-acting elements, the effect of NFκB overexpression on the promoter activity of the 1.8 kb region were examined. Plasmid pPINK1-A, containing 4 NFκB binding sites, was transfected into HEK293 cells, SH-SY5Y cells or N2A cells with either the NFκB expression plasmid or the empty vector pMTF. The results showed that NFκB overexpression significantly increased PINK1 promoter activity to 3.43 ± 0.55 folds (Figure 3A), 2.11 ± 0.10 folds (Figure 3B) and 1.63 ± 0.01 folds (Figure 3C) in HEK293, SH-SY5Y cells and N2A cells, respectively (p < 0.01). These results suggest that NFκB activates PINK1 gene transcription and the PINK1 promoter fragment contains functional NFκB sites.

The four putative NFκB elements in the 1.8-kb PINK1 promoter region are located at −1493 to -1474 bp, −814 to -794 bp, −111 to -92 bp, and −54 to -35 bp, respectively. The sequences of these regions are highly homologous to the NFκB consensus sequence 5′-GGGRNNYYCC in which R stands for purine, Y stands for pyrimidine, and N stands for deoxynucleotides. To determine which putative binding site actually binds with NFκB, EMSA was performed using four pairs of synthesized oligonucleotides containing the binding sequence. The sequences of these four oligonucleotides are: PINK1-NFκB-1, 5′-caaatgg-gaattcatct, PINK1-NFκB-2, 5′-ggcatgggatcaccacctt, PINK1-NFκB-3, 5′-gcaaagggaagtcactgct, and PINK1-NFκB-4, 5′-agtcggggaactgccgcggg, respectively. A NFκB binding probe (NFκB-Wt-oligo) served as a positive binding probe and a mutant NFκB binding probe (NFκB-Mu-oligo) which loses the NFκB binding ability served as a negative binding probe [25]. NFκB-Wt-oligo was labelled with IRDye-700 and the labelled probe was named NFκBwt-IR700. After 30-min incubation with NFκB enriched nuclear extracts of HEK293 cells, the NFκBwt-IR700 bound to NFκB protein and formed a shifted DNA-protein complex band (Figure 3D, lane2). Adding 10-fold of the unlabelled NFκB-Wt-oligo sharply
reduced the intensity of the shifted band, indicating that the unlabelled NFkB-Wt-oligo competed with and reduced the binding of NFkB-wt-IR700 to NFkB protein (Figure 3D, lane 5). Increasing the amount of unlabelled NFkB-Wt-oligo to 100-fold almost completely abolished the shifted band (Figure 3D, lane 6). Addition of the NFkB-Mu-oligo, which fails to bind with NFkB, did not affect the interaction between NFkBwt-IR700 and protein (Figure 3D, lane 3–4). The PINK1-NFkB-1 to -4 oligos were tested for their ability to compete against NFkBwt-IR700 binding with NFkB protein. The results indicated that addition of 30-fold excess of the four PINK1-NFkB oligos individually barely reduced the intensity of the shifted band (Figure 3D, lane 7, 9, 11, 13). However, increasing the amount to 300-fold significantly reduced the intensity of the shifted band for PINK1-NFkB-1 and PINK1-NFkB-3, with PINK1-NFkB-1 being a stronger competitor than PINK1-NFkB-3 in binding with NFkB protein (Figure 3D, lane 8 and 12). PINK1-NFkB-2 and PINK1-NFkB-4 showed limited ability in competing with NFkBwt-IR700 to bind with NFkB (Figure 3D, lane 10 and 14).

To further confirm the binding between PINK1-NFkB-1 in the human PINK1 promoter region and NFkB, we performed EMSA with IRDye-700 labelled PINK1-NFkB. The probe showed a shifted band (Figure 3E lane 2) after incubation with nuclear extracts from HEK293 cells over-expressing NFkB. The intensity of the shifted band was remarkably reduced when a 10-fold excess of NFkB-wt-oligo was added to the incubation and abolished after the concentration of the competitor increased to 100-fold (Figure 3E, lane 3–4). However, no competition was found when either 10-fold or 100-fold NFkB-Mu-oligo was added (Figure 3E, lane 5 and 6). A super-shift assay was further performed with the anti-p65 antibody. The super-shifted band containing labelled PINK1-NFkB-1, NFkB, and anti-p65 antibody was observed at the top of the gel (Figure 3E, lane 7), and the band was competed down by NFkB-Wt-oligo (Figure 3E lane 8). Taken together, the EMSA results demonstrate that NFkB binds to the
human PINK1 gene promoter and the −1493 to −1474 bp of PINK1 promoter region is the main binding site.

NFκB increases the human PINK1 gene expression

Next we examined the effects of NFκB on PINK1 gene expression by RT-PCR and Western blot analysis. The semi-quantitative RT-PCR was performed to test whether endogenous PINK1 mRNA level was affected by NFκB. Using the human β-actin as an internal control, NFκB overexpression significantly increased endogenous human PINK1 transcription by 59.51% ± 15.13% (p < 0.01) (Figure 4A). To examine whether NFκB modulates PINK1 expression at the protein level, endogenous PINK1 protein was detected by Western blot analysis. The full-length human PINK1 protein (FL-PINK1, 63 kDa) and its proteolytic products, Δ1-PINK1 (55 kDa) and Δ2-PINK1 (45 kDa), were detected and analyzed. The endogenous PINK1 expression increased by 114.53% ± 38% (p < 0.01) (Figure 4B) in the NFκB overexpressing HEK293 cells when compared with the vector control. Meanwhile, the same experiment was performed in SH-SY5Y cells and three PINK1 species were observed. Consistently, the endogenous PINK1 bands were also up-regulated in NFκB overexpressing SH-SY5Y cells by 45.26% ± 19.58%, 41.10 ± 6.70% and 48.54 ± 4.50% (p < 0.01), respectively (Figure 4C). Furthermore, when the NFκB activator LPS (Lipopolysaccharide) was used to treat SH-SY5Y cells for 16 hours, endogenous PINK1 protein levels were elevated compared to the untreated control by 26.77% ± 2.33%, 24.46 ± 2.59% and 83.57 ± 4.60% (p < 0.001) (Figure 4D), respectively.

Mitochondrial dysfunction plays a critical role in the development of PD and other neurodegenerative diseases such as Alzheimer’s disease [26-29] and multiple sclerosis [30,31]. Mutations in several genes including UCHL1 [32], LRRK2 [33], PINK1 [12,34], PARKIN [35] are associated with PD pathogenesis. PINK1 is a mitochondrial targeted protein and has been extensively studied because of its crucial role in autosomal recessive familial Parkinson’s disease [36] and protective role against mitochondrial dysfunction, oxidative stress and apoptosis [37,38]. However, the regulation of PINK1 gene expression has not been well addressed yet [39]. For the first time, we studied the transcriptional regulation of the human PINK1 gene in the present study.

To investigate the transcription and translation of the human PINK1 gene, we first mapped the adenine 91 bp upstream of the first ATG in exon 1 as the transcription start site. Next we cloned the 1.8 kb fragment of 5’ UTR
of the human PINK1 gene into a promoterless vector upstream of a reporter luciferase gene. The luciferase assay showed that this 1.8 kb fragment has strong promoter activity, indicating that the 1.8 kb fragment functions as the human PINK1 gene promoter. Subsequently, by deletion analysis we found that the 104 bp fragment from –78 to 26 serves as the minimal promoter region. The human PINK1 gene promoter does not have high GC content (<50%) like the human BACE1 and TMP21 promoter [40,41]. Computer-based analysis revealed that the human PINK1 promoter contains several putative transcriptional factor binding elements such as MZF1, APIF, CREB, NFκB and EGRF. Due to the importance of NFκB in PD, the potential regulation of PINK1 by NFκB was examined. There are four putative NFκB binding sites in the human PINK1 gene promoter and our results indicate that two of them physically bind with NFκB p65 with one strong binding site at the distal end. The effect of NFκB p65 on human PINK1 gene promoter was further confirmed by luciferase assay, where the overexpression of NFκB p65 elevated PINK1 promoter activity dramatically. Furthermore, we examined the effects of overexpression of NFκB p65 on PINK1 expression at the transcription and translation levels. Indeed, NFκB p65 increased the human PINK1 expression significantly at both the mRNA and protein levels. Due to the low expression level of the human PINK1 gene, few commercially available antibodies could detect the endogenous PINK1 clearly. We therefore cloned the human PINK1 plasmid, encoding a full-length PINK1 protein (~63 kDa) that is proteolytically processed into at least two shorter forms (~55 kDa and ~45 kDa), into a human dopaminergic neuroblastoma cell line (SH-SY5Y) [6,7,42]. In this cell line, we were able to detect three PINK1-related bands. Only the full-length PINK1 could be detected in the HEK293 cell line. This might be due to different expression levels and mitochondrial function between the different cell lines.

In this study, we clearly showed that NFκB significant upregulates PINK1 expression in both human and rodent cell lines, indicating that same regulation pathway exists in both human and rodents. It provides the strong evidence to support the use of rodent models to study the regulation of PINK1 expression in vivo, promoting the investigation of PD pathogenesis and drug development. Moreover, as SH-SY5Y cells are human dopaminergic cells and the dopaminergic neurons are mainly affected in PD patients, the results from SH-SY5Y cells can better represent the possible PINK1 regulation pathway in the brain of PD patients.

N-terminal proteolysis of FL-PINK1 produces two fragments, Δ1-PINK1 and Δ2-PINK1. After processing the proteolysis productions translocate to cytosol and undergo proteasome degradation [6,7,42]. Although the functional role of PINK1 in mitochondria or in Parkinson’s disease has not been well defined, PINK1 has been shown to confer a protective effect through preventing mitochondrial dysfunction, anti-apoptosis and promoting cell survival [43]. It has also been reported that FL-PINK1 accumulates in the brains of patients with sporadic PD or other synucleinopathies, and interestingly, the cleavage products of PINK1 are also increased in PD brains [44–46]. This accumulation of Δ-PINK1 might due to the upregulation of PINK1 expression in response to PD-related stress [44]. Given that truncated PINK1 can confer protection, increased cleavage of PINK1 may play a role in protecting neurons during PD pathogenesis. Our result showed that all of the three forms of PINK1 (FL-PINK1, Δ1-PINK1 and Δ2-PINK1) were elevated by overexpression or activation of NFκB signaling. Thus, the increase of PINK1 expression by NFκB activation could be neuroprotective. On the other hand, previous studies have suggested that the elevation of NFκB in dopaminergic neurons of PD patients is a reflection of the apoptotic and inflammatory state of the diseased brain [16]. These studies suggest that the activation of NFκB could be a double-edged sword in PD pathogenesis and the role of NFκB dysregulation in PD warrants further study.

Conclusion

Our results demonstrate that PINK1 expression is tightly regulated at its transcription level and NFκB signaling is a positive regulator for PINK1 gene expression.

Methods

Primers and plasmid construction

To amplify the 5’-untranslated region of the PINK1 gene from DNA extracted from the human neuroblastoma cells SH-SY5Y, a forward primer (5’-ccgctcgagcttgcggcccggtgtcttg) corresponding to ~1799 bp of the transcriptional start site on exon 1 and a reverse primer (5’-cccaccctctacaaaatggggggttcc) corresponding to +26 bp of the transcriptional start site were used. The PINK1 DNA fragment was cloned into a pGL3-basic vector upstream of a luciferase reporter gene (Promega) to construct pPINK1-A. Primers were designed to include restriction enzyme sites so that the PCR-amplified fragments can be inserted into the multiple cloning sites of the pGL3-basic vector. A series of deletion mutations (pPINK1-B, pPINK1-C, pPINK1-D, pPINK1-E, pPINK1-F, pPINK1-G, pPINK1-H and pPINK1-I) of PINK1 promoter were constructed utilizing primers listed as following: 26 F-ccgctcgagcacttcagcctgcgg, and 1799R-cccaagctttgcccggtggtcttg; -795 F-gggcatggggatccaccatcttc gg and -339 F-ccgctcgagccagcatagcccccagcccagcccaggggg; -78 F-ccgctcgagccagcatagcccccagcccaggggg; -47 F-ccgctcgagccagcatagcccccagcccaggggg; -33 F-ccgctcgagccagcatagcccccagcccaggggg.
Switching mechanism at 5’end of RNA transcription (SMART) RACE cDNA amplification

Total RNA was extracted from SH-SY5Y cells using TRI reagent (Sigma) following the manufacturer’s protocol. SMART-RACE was performed using the SMARTer™ RACE cDNA Amplification Kit (Clontech) following the user’s manual. Simply, the first stand cDNA was synthesized from total RNA extracted from SH-SYHY cells with oligo (dT) primer in the presence of SMARTer II A oligonucleotide (5’-aagcaggtgatacaaccagactacctagxxxxxxx X is undisclosed base in the proprietary SMARTer oligo sequence). The SMARTer II A oligonucleotide is able to anneal to the 5’-end of the first stand cDNA and serve as template to extend the 5’-end cDNA tail. A PINK1 reverse primer (5’-ccgagtctggcctgtcgtctgt) was specifically designed to recognize the +431 to +450 bp of human PINK1 gene downstream of the transcription start site (ATG). The PCR products containing PINK1 promoter region were amplified using SMARTer II A oligonucleotide and PINK1 reverse primer and the first stand cDNA as template. The resultant PCR products were cloned into pcDNA4/myc-His A vector for sequencing and the first nucleotide linking with the adapter sequence was identified as the transcription start site of the human PINK1 gene.

Cell culture, transfection, and luciferase assay

Human embryonic kidney HEK293, mouse neuroblastoma N2A and human neuroblastoma SH-SY5Y cell lines were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum (FBS), 1 mM sodium pyruvate, 2 mM L-glutamine, 50 units/ml penicillin G sodium, and 50 μg/ml streptomycin sulfate (Invitrogen). All cells were maintained in a humidified 37°C incubator containing 5% CO2, 500 ng plasmid DNA per well of 24-well-plate for luciferase assay or 2 μg plasmid DNA per 35-mm-diameter plate for RNA extraction and Western blot analysis were used for cell transfection, respectively. For luciferase assay, pCMV-Rluc (Promega, USA) was co-transfected as a control to normalize the transfection efficiency. The cells were transfected using PEI reagent (Cat® 23966, Polysciences Inc.) or Lipofectamine™ 2000 reagent (Invitrogen). Cells were harvested 24 hrs after transfection and lysed with 100 μl 1× passive lysis buffer (Promega) per well. Firefly luciferase activities and Renilla luciferase activities of the same sample were sequentially assayed on a luminometer (Turner Designs Model 20/20) following the protocol of the Dual-luciferase Reporter Assay System (Promega). The firefly luciferase activity was normalized to the Renilla luciferase activity and the resulted value reflected the promoter activity.

Electrophoretic mobility shift assay (EMSA)

HEK293 cells were transiently transfected with NFκB p65 and nuclear extracts were collected. Cells were rinsed and harvested with 1× phosphate-buffered saline. After centrifugation, cell pellets were resuspended with 5× volume of buffer A [10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM diithiothreitol (DTT), 0.5 mM phenylmethylsulfonfyl fluoride (PMSF)]. Cells were pipetted up and down gently and maintained on ice for 15 minutes. The cell suspension was transferred to a Kontes all glass Dounce tissue grinder and ruptured by 10 strokes. 10% NP40 was added into the cell suspension for a final concentration of 0.5%. The samples were placed on ice for 15 minutes and struck 5 more times. Crude nuclei were collected by centrifugation at 2000 g for 10 minutes and washed three times with buffer A containing 0.5% NP40 and resuspended in buffer C [20 mM HEPES pH 7.9, 0.4 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM dithiothreitol (DTT), 1 mM phenylmethylsulfonfyl fluoride (PMSF), 10% Glycerol] at 4°C for 15 min. The samples were centrifuged at 12000 g for 4 min at 4°C, and the supernatant containing nuclear proteins was collected. EMSA was performed as previously described [40]. Four pairs of oligonucleotides containing the putative NFκB binding site on human PINK1 promoter region were synthesized for detecting the binding ability of NFκB to PINK1 promoter. The sequences of the oligos were listed as following: NFκB-54-35, forward, agtcggggagaagctcggggg and reverse, ccgccggcattccccggacc; NFκB-111-92, forward, gcaaggaggaatcctgtg and reverse, agcagtcgaattccccggga; NFκB-814-794, forward, gcgtgggctctcaagtttct and reverse aagatgtgcttctaccctg; NFκB-1493-1474, forward, caatgtgg tgttctctctg and reverse atagatgtctatcttg. The probes were labeled with IRDye-700 (IDT). Prior to incubation with nuclear extract, oligonucleotide probes were heated at 98°C for 5 minutes and annealed at 65°C for 10 minutes. 0.5 pmol of annealed probes were incubated with 2 μl of nuclear extract for 20 minutes at 22°C and the reaction mixtures were separated on a 4% Tris-glycine-EDTA gel in darkness. The mobility of probes on the gel was visualized using the LI-COR Odyssey (LI-COR Biosciences). For the competition assay, wild-type NFκB consensus oligonucleotides (forward: agtgagggactttccagccg, and reverse: gcctgggaaactctcccaactc) and mutant NFκB consensus oligonucleotides (forward: agtgagggactttccagccg, and reverse: gcctgggaaactctcccaactc) were used as positive and negative controls, respectively. For the super shift assay, the nuclear extract was incubated in 10× EMSA binding buffer (100 mM Tris, 500 mM KCl, 10 mM diithiothreitol, pH 7.5) with monoclonal anti-NFκBp65 antibody (Sigma) for 10 minutes prior to the probe adding.
Semi-quantitative RT-PCR
HEK293 cells and SH-SY5Y cells transfected with NFκB p65 were harvested 48 hours after the transfection and total RNA was extracted using TRI reagent (Sigma). Reverse transcription was sequentially performed using ThermoScript™ RT-PCR system kit following the manufacturer’s protocol (Invitrogen). The PINK1 gene specific primer PINK1 776 F-taccagtgcaccagggagga and PINK1 984R- gcttgggacctctcttggat were used to amplify a 208 bp fragment of human PINK1 gene. The β-actin gene was also amplified using the forward primer (hActin-662fBamHI: cgaaggatccgcttcggaagcgg) and reverse primer (hActin-1124rXbaI: cagtctagagaagcatttgcggtggacg), which produced a 500 bp fragment. The PCR products were analyzed on 2% agarose gels.

Western blot analysis
Western blot was performed as described previously [47,48]. NFκB p65 plasmid DNAs (2 µg/35 mm dish) were transfected into HEK293 cells and SH-SY5Y cells. 48 hours after transfection, cells were harvested by RIPA-DOC buffer (1% Triton X-100, 0.1% sodium dodecysulphate, 1% sodium deoxycholate, 0.15 mM NaCl, 0.05 M Tris–HCl pH 7.2, 0.5 mM phenylmethylsulfonyl fluoride) containing protease inhibitors (Roche). Cell lysates were separated on 10% Tris-glycine gel and protein bands were visualized using the LI-COR Odyssey software. The experiment was done in triplicate to minimize experimental errors.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
XD and WS conceived and designed the experiments; XD, JT, QX, YW performed the experiments; XD, YW, TL and WS analyzed the data; FC, WS contributed reagents/materials/analysis tools; XD, YW and WS wrote the paper. All authors read and approved the final manuscript.

Acknowledgements
We thank Si Zhang, Juelu Wang, Yi Yang and Zhe Wang for providing valuable comments and technique support. This work was supported by Canadian Institutes of Health Research (CIHR) Operating Grant TAD-117948 (WS), and National Natural Science Foundation of China (NSFC) Grant 811611204098 (TL)). WS is the holder of the Canada Research Chair in Alzheimer’s Disease (Tier 1). X.D. is supported by the Chinese Scholarship Council awards.

Received: 4 June 2014 Accepted: 29 July 2014
Published: 11 August 2014

References
1. Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM: Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 2003, 157(11):1015–1022.
2. Parkinson J: An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 2002, 14(2):223–236. discussion 222.
3. Shulman JM, De Jager PL, Feany MB: Parkinson’s disease: genetics and pathogenesis. Annu Rev Pathol 2011, 6:193–222.
4. Levy F: Paralysis agitans. I. Pathologische anatomie. Handbuch der Neurologie 1912, 3920–933.
5. Unoki M, Nakamura Y: Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene 2001, 20(33):4457–4465.
6. Lin W, Wang XJ: Characterization of PINK1 processing, stability, and subcellular localization. J Neurochem 2008, 106(1):464–474.
7. Takatori S, Ito G, Iwatsubo T: Cytoplasmic localization and proteasomal degradation of N-terminally cleaved form of PINK1. Neurosci Lett 2008, 450(1):13–17.
8. Greene AW, Grenier K, Ialongo T, Frontali M, Albanese A, Wood NW: Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004, 304(5674):1158–1160.
9. Nilsson VA, Verstrekken P, Roethig A, Smet L, Serrlinck A, Vanbrabant M, Haddad D, Frezza M, Mandemakers W, Vogt-Weisenhorn D, Van Coster R, Wurtz W, Scorrano L, De Strooper B: Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med 2009, 1(2):99–111.
10. Benke EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albaniene A, Nussbaum R, Gonzalez-Maldonado R, DeDert L, Salvi S, Cotelli P, Glick WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW: Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. J Neurochem 2007, 106(1):95–99.
11. Haddad D, Freza M, Mandemakers W, Vogt-Weisenhorn D, Van Coster R, Wurtz W, Scorrano L, De Strooper B: Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. J Physiol 2001, 536(1):77–90.
12. Valente EM, Bentivoglio AR, Dixon PH, Ferraris A, Ialongo T, Frontali M, Albanese A, Wood NW: Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet 2001, 68(4):895–900.
13. Jicha G, Stys PK, Stys PJ, Kurek JJ, Kowall NW, Farrants S, Slavik J, Akiyama H, Bialystok E: A novel interaction of human tau with the mitochondrial protein parkin. EMBO Rep 2001, 2(11):941–945.
14. Shembade N, Harhaj NS, Liebl DJ, Harhaj EW: Essential role for Tau1XBP1 in the termination of TNF-alpha, IL-1- and LPS-mediated NF-kappaB and JNK signaling. EMBO J 2007, 26(17):3910–3922.
15. Liu S, Chen ZJ: Expanding role of ubiquitination in NF-kappaB signaling. Cell Res 2011, 21(1):6–21.
16. Mogi M, Kondo T, Mizuno Y, Nagatsu T: p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci Lett 2007, 414(1):94–97.
17. Hunot S, Brugg B, Ricard D, Michel PP, Muriel MP, Ruberg M, Fauchecux BA, Agid Y, Hirsch EC: Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc Natl Acad Sci U S A 1997, 94(14):7531–7536.
21. Zheng L, Liu H, Wang P, Song W, Sun X. Regulator of calcineurin 1 gene transcription is regulated by nuclear factor-kappab. Curr Alzheimer Res 2014, 11(2):156–164.

22. Wang R, Zhang M, Zhou W, Ly FT, Cai F, Song W. NF-kappab signalling inhibits ubiquitin carboxyl-terminal hydrolase L1 gene expression. J Neurochem 2015, 116(5):616–170.

23. Wang K, Liu S, Wang J, Wu Y, Cai F, Song W. Transcriptional regulation of human USP24 gene expression by NF-kappa B. J Neurochem 2014, 128(6):818–828.

24. Pranski E, Van Sanford CD, Dalal N, Orr AL, Kamali D, Cooper DS, Gearing M, Lah JI, Levey AI, Betarbet R. NF-kappab activity is inversely correlated to RNF11 expression in Parkinson’s disease. Neurosci Lett 2013, 547:16–20.

25. Hellweg CE, Baumstark-Khan C, Horneck G. Generation of stably transfected Mammalian cell lines as fluorescent screening assay for NF-kappab activation-dependent gene expression. J Biomed Screen 2003, 8(5):511–521.

26. Wu Z, Zhu Y, Cao X, Sun S, Zhao B. Mitochondrial toxic effects of abeta through mitofusins in the early pathogenesis of Alzheimer’s disease. Mol Neurobiol 2014. (Epub ahead of printing) PMID:24710686.

27. Hauptsan M, Scherping J, Deseo S, Brandt U, Schulz KJ, Jendrach M, Leuner K, Eckert A, Muller WE. Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging 2009, 30(10):1574–1586.

28. Reddy PH. Amyloid beta mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp Neurol 2009, 218(2):286–292.

29. Aliev G, Malcharek HH, Walrafen B, Lipsitt AE, Obrenovich ME, Morales I. Brain mitochondria as a primary target in the development of treatment strategies for Alzheimer disease. Int J Biochem Cell Biol 2009, 41(10):1989–1994.

30. Bonora D, Mar De Marchi E, Paternagni S, Suski JM, Cesli F, Bononi A, Giorgi C, Marchi S, Rinesi A, Duysens J, Pozzan T, Wieckowski MR, Pinton P. Tumor necrosis factor-alpha impairs oligodendroglial differentiation through a mitochondria-dependent process. Cell Death Differ 2011, 18(11):198–1208.

31. Ghafourifar P, Moussavi-zadeh K, Panarhi MS, Nazarewicz RR, Panarhi A, Zenebe WJ. Mitochondria in multiple sclerosis. Front Biosci 2008, 13(11):3116–3126.

32. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Haga T, Brownstein MJ, Jornalalaga S, Chernova T, Dehejia A, Lavedan C, Gasser T, Steinbach PJ, Wilkinson RD, Polymeropoulos MH. The ubiquitin pathway in Parkinson’s disease. Nature 1998, 395(6701):451–452.

33. Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, Lopez de Munain A, Aparicio S, Gil AM, Khan N, Johnson J, Martinez JP, Nicholl D, Carrera IM, Pena AS, de Silva R, Lees A, Marsico M. 2007, 78(4):633–656.

34. Qiong H, Zhou W, Christensen MA, Sun X, Tong Y, Song W. Degradation of BACE by the ubiquitin-proteasome pathway. J Biol Chem 2003, 278(13):1571–1573.

35. Zhang J, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A, Yanker BA. Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nat Cell Biol 2000, 2(7):463–465.

36. Liu S, Zhang S, Bromley-Brits K, Cai F, Zhou W, Xia K, Mittelholz J, Song W. Transcriptional regulation of TMP21 by Nfkb. Mol Neurodegeneration 2011, 6:21.

37. Deas E, Plun-Favelle R, Gandhi S, Desmond H, Kjaer S, Loh SH, Renton AE, Harvey RJ, Whitworth AJ, Martins LM, Abramov AF, Wood NW. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 2011, 20(5):867–879.

38. Sanchez-Mora RM, Arboleda H, Arboleda G. PINK1 overexpression protects against C2-ceramide-induced CAD cell death through the P38/ERK pathway. J Mol Neurosci 2012, 47(5):582–594.

39. Muquit MM, Abou-Sleiman PM, Saurin AT, Harvey K, Gandhi S, Deas E, Eaton S, Payne Smith MD, Venner K, Matilla A, Healy DG, Gilks WP, Lees AJ, Holton J, Revesz T, Parker PJ, Harvey RJ, Wood NW, Latchman DS. Altered cleavage and localization of PINK1 to aggresomes in the presence of pro teaseal stress. J Neurochem 2006, 98(1):156–169.

40. Gandhi S, Muquit MM, Stanler Y, Healy DG, Abou-Sleiman PM, Hargreaves I, Heales S, Ganguly M, Parsons L, Lees AJ, Latchman DS, Holton JL, Wood NW, Revesz T. PINK1 protein in normal human brain and Parkinson’s disease. Brain 2006, 129(Pt 7):1720–1731.

41. Murakami T, Moriwaki Y, Kawarabayashi T, Nagai M, Ohta Y, Deguchi K, Kurata T, Morimoto N, Takehisa Y, Matsubara E, Ikeda M, Harigaya Y, Shoji M, Takahashi R, Abe K. PINK1, a gene product of PARK6, accumulates in alpha-synucleinopathy brains. J Neurol Neurosurg Psychiatry 2007, 78(4):633–656.

42. Qiong H, Zhou W, Christensen MA, Sun X, Tong Y, Song W. Degradation of BACE by the ubiquitin-proteasome pathway. J Biol Chem 2003, 278(13):1571–1573.

43. Zhang J, Nadeau P, Song W, Donoviel D, Yuan M, Bernstein A, Yanker BA. Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nat Cell Biol 2000, 2(7):463–465.