Diabetic kidney disease (DKD) is one of the most epidemic chronic microvascular complications of diabetes mellitus (DM), and it is prevalent in approximately 30–50% of patients with diabetes [1–5]. DKD is the leading cause of chronic and end-stage renal diseases worldwide, and in the past few decades, it has been associated with high morbidity and mortality [6–11].

The pathogenesis of DKD remains not completely understood; however, there is strong experimental evidence that prolonged hyperglycemia leads to the mitochondrial production of reactive oxygen species (ROS), resulting in oxidative stress, which plays a key role in DKD [12–16]. Inflammation induced and exacerbated by oxidative stress is closely associated with the development and progression of DKD.

5-Hydroxytryptamine (5-HT) is a potent vasoactive amine that plays pivotal roles in insulin secretion [17–19], energy metabolism [20], mitochondrial biogenesis [21], the immune system [22, 23], and vascular inflammation [24–27]. However, the functions of 5-HT have not been elucidated yet. Recently, several studies have shown that 5-HT and 5-HT receptors (5-HTR) are involved in the pathogenesis of diabetic vascular complications [17, 28–31]. 5-HTR antagonists have a renoprotective effect by suppressing oxidative stress and inflammatory cytokines [32–35], suggesting that 5-HTR antagonists could be used to treat DKD. This review assesses and describes the current understanding of 5-HT’s involvement in the pathogenesis of DKD and the potential use of 5-HTR antagonists in the clinical treatment of DKD.

2. 5-HT Synthesis and Metabolism and 5-HT Receptors

5-HT is a monoamine neurotransmitter and hormone mainly produced by enterochromaffin cells of the gastrointestinal tract [21]. 5-HT is derived from tryptophan and predominantly stored in circulating platelets, and it is distributed throughout the body to regulate the hormones of
several main physiological parameters, such as cardiovascular function [36], insulin secretion [17], energy homeostasis [20], and appetite [37].

5-HT synthesis is dependent on the enzyme tryptophan hydroxylase (TPH); the released 5-HT is controlled by the autonomous nervous system and released locally into the circulatory system, and most of them are stored in platelets. Reuptake of 5-HT is mediated by SERT. The effects of 5-HT are mediated through 14 serotonergic receptors that have been grouped into seven broad families. All 5-HTRs are G protein-coupled receptors (GPCRs), except 5-HT₃ that is a ligand-gated cationic channel. 5-HT GPCRs were coupled to all three canonical signaling pathways through $G_{i/O}, G_{q/11}$, and G_s that are involved in the cAMP pathway and allow this receptor family to modulate several biochemical signaling pathways.

3. 5-HT in Diabetes and Diabetic Complications

Pancreatic β-cells synthesize and store 5-HT, which is coreleased with insulin [41]. An increased plasma level of 5-HT is a biomarker for diabetic complications, and positive correlations have been established between the plasma 5-hydroxyindoleacetic acid (5-HIAA; the main 5-HT metabolite) level and coronary heart disease [36, 42–45]. Selective serotonergic functional alterations have shown therapeutic relevance in diabetic rats [29, 30, 46]. These studies and their findings have been summarized in the subsequent sections and suggest that 5-HT plays a role in DM.

3.1. 5-HT and Gestational Diabetes.

In pregnant mice, prolactin (PRL) stimulates islet prolactin receptors (PRLRs) to trigger a strong upregulation of both isoforms of TPH. TPH upregulation activates 5-HT synthesis in some pancreatic β-cells, which in turn induce glucose-stimulated insulin secretion (GSIS) [47, 48]. The insulin secretion is upregulated by the 5-HT₂B receptor (5-HT₂BR) and downregulated by the 5-HT₁D receptor (5-HT₁DR) in β-cells, making 5-HT a paracrine regulator of β-cell proliferation. 5-HT₃AR channels in wild-type animals allow a 5-HT-mediated influx of

![Figure 1: A model of 5-HT biosynthesis and metabolism in peripheral tissues. 5-HT synthesis is dependent on the enzyme tryptophan hydroxylase (TPH); the released 5-HT is controlled by the autonomous nervous system and released locally into the circulatory system, and most of them are stored in platelets. Reuptake of 5-HT is mediated by SERT. The effects of 5-HT are mediated through 14 serotonergic receptors that have been grouped into seven broad families. All 5-HTRs are G protein-coupled receptors (GPCRs), except 5-HT₃ that is a ligand-gated cationic channel. 5-HT GPCRs were coupled to all three canonical signaling pathways through $G_{i/O}, G_{q/11}$, and G_s that are involved in the cAMP pathway and allow this receptor family to modulate several biochemical signaling pathways.](image)
Belviq (lorcaserin) is the 5-HT2CR has not been observed [31], the 5-HT2CR agonist homeostasis [51].

Neurons are required to control energy and glucose metabolism. Increased expression of 5-HT2CRi n animals allow a 5-HT-mediated influx of cations, depolarizing the resting membrane potential and lowering the threshold for glucose-induced insulin exocytosis.

3.2. 5-HTR and Type 2 DM. Type 2 DM (T2DM) describes a group of metabolic disorders characterized by defects in insulin secretion and insulin sensitivity. Impaired insulin secretion from pancreatic β-cells is an important factor in the etiology of T2DM. However, the complex regulation and mechanism of insulin secretion from β-cells have not been completely elucidated.

High plasma levels of 5-HT have been reported in patients with T2DM, although its potential effect on insulin secretion is unclear. The release of 5-HT from activated platelets is enhanced, decreasing intraplatelet 5-HT content and resulting in increased plasma levels of 5-HT in patients with diabetes [44].

3.2.1. 5-HT2CR. 5-HT2CR-deficient mice are overweight, exhibit an abnormal feeding behavior, show insulin resistance, and have significantly higher blood glucose concentrations, suggesting that 5-HT may affect glucose and lipid metabolism [17, 20, 50]. Insulin secretion is affected by 5-HT2CR, which is indicative of the possibility that an aberrant 5-HT system could also affect the regulation of energy metabolism. Increased expression of 5-HT2CR in both the hypothalamus and β-cells could mediate a protective strategy to prevent excess energy intake. As illustrated in Figure 3, 5-HT2CR-expressing pro-opiomelanocortin neurons are required to control energy and glucose homeostasis [51].

Although, in human T2DM islet cells, the expression of 5-HT2CR has not been observed [31], the 5-HT2CR agonist Belviq (lorcaserin) is the first FDA-approved drug to treat obesity in 15 years [52], and central serotonin 2C receptors regulated glucose homeostasis and may represent a rational target for type 2 diabetes (T2DM) treatment [53, 54].

The 5-HT2C agonist m-chlorophenylpiperazine (mCPP) improves glucose homeostasis and insulin sensitivity, and antagonists or genetic loss of 5-HT2C impairs glucose homeostasis [55, 56].

3.2.2. 5-HT1D and 5-HT1A. Bennet et al. [31] reported that 5-HT1D and 5-HT1A messenger RNA expression was increased in human T2DM islets. 5-HT inhibits both basal- and glucose-induced insulin secretions, and the selective 5-HT1D agonist (PNU142633) inhibits GSIS in nondiabetic human islets, whereas the 5-HT1A antagonist (LY310762) stimulates GSIS. Interestingly, upon stimulation with 5-HT in isolated islets from patients with T2DM, the inhibitory effect of 5-HT was completely lost (both in basal and stimulatory conditions of glucose); instead, the stimulation of insulin secretion was observed. This indicated that 5-HT acts through increased signaling through the 5-HT2AR in diabetic conditions. The 5-HT2AR antagonist (sarpogrelate hydrochloride) markedly decreased the glycated hemoglobin A1c level. The expression of 5-HT1D had a negative correlation with somatostatin (SST) and SST receptors (SSTR) 1–5, whereas the expression of 5-HT2AR did not have any correlation with either SST or any of the SSTRs; this suggests that increased expression of HT1D in human islet cells, as observed in T2DM islet cells, leads to decreased expression of SST and its receptors (Figure 4).

3.3. 5-HT as an Immunomodulator in DM. Although several physiological causes that lead to DM remain unknown, evidence suggests that autoimmunity plays an important role in DM and diabetic complications. There is an increasingly collective perspective regarding the association of 5-HT with the activation of immunoinflammatory pathways and the onset of autoimmune reactions. Almost all the circulating 5-HT are found in platelets and released following platelet activation, on contact with damaged endothelium or induced by ischemia, indicating that 5-HT also contributes to the innate and adaptive immune responses [22, 57]. 5-HT

![Figure 2](https://example.com/figure2.png)

Figure 2: Mechanism of 5-HT in the mouse pancreatic beta-cells during pregnancy. In pregnant mice, prolactin (PRL) stimulates islet prolactin receptors (PRLRs) to trigger a strong upregulation of both isoforms of TPH. TPH upregulation activates 5-HT synthesis in some β-cells, which in turn induce GSIS. The insulin secretion is upregulated by the 5-HT2B receptor (5-HT2BR) and downregulated by the 5-HT1D receptor (5-HT1DR) in β-cells, making 5-HT a paracrine regulator of β-cell proliferation. 5-HT1AR channels in wild-type animals allow a 5-HT-mediated influx of cations, depolarizing the resting membrane potential and lowering the threshold for glucose-induced insulin exocytosis.
stimulation increases murine peritoneal macrophage production of proinflammatory cytokines [25]. The expression of 5-HTRs has been identified in rodent and human innate immune cells, which include neutrophils, eosinophils, monocytes, macrophages, dendritic cells, mast cells, and natural killer cells [58].

5-HT was identified as an immunomodulator owing to its ability to stimulate or inhibit inflammation.
3.4. 5-HT$_{2A}$R and DM-Induced Vascular Complications. 5-HT is a potent vasoactive amine in the cardiovascular system. Cardiovascular disorders of diabetes can be characterized by atherosclerosis [63]. There is strong evidence that impaired vascular endothelial and smooth muscle functions play important roles in the process of DM-induced cardiovascular complications [63, 64]. 5-HT, induced by impaired vascular endothelial cells, is involved in the pathological process of platelet aggregation [45], thrombogenesis [65], contraction of carotid arteries [66], and arteriogenesis [67] in DM-induced vascular complications through 5-HT$_{2A}$R.

Sarpogrelate, a 5-HT2AR antagonist, has been shown to attenuate diabetes-induced cardiovascular complications, which decrease the blood glucose level [66], inhibit the release of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) [68], and reduce 5-HT-induced contraction in aortas through the PI3K [66] and Rho kinase [69] pathway, as illustrated in Figure 5.

Moreover, 5-HT has immunomodulatory effects that are induced by activating 5-HTR and SERT, which are differentially expressed in many leukocytes. Arthritis [59], systemic sclerosis [38, 60], lung fibrosis [61], and allergic asthma [62] are all associated with changes in the serotonergic system, which is associated with leukocytes.

Figure 5: Mechanisms of 5-HT$_{2A}$R receptor antagonist contributing to DM-induced cardiovascular complications. Sarpogrelate, a 5-HT2AR antagonist, has been shown to attenuate diabetes-induced cardiovascular complications, which decrease the blood glucose level, inhibit the release of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and reduce 5-HT-induced contraction in aortas through the PI3K and Rho kinase pathway.

4. Mechanism of the 5-HTR Antagonist for Treating DKD

DKD is a main microvascular complication of diabetes and the most common cause of end-stage renal disease strongly associated with cardiovascular morbidity and mortality, which cause an enormous burden on affected patients and health care systems [70]. Histopathological changes associated with DKD are characterized by thickening of the glomerular basement membrane; podocyte effacement and hypertrophy; accumulation of extracellular matrix and proteins, such as collagen and fibronectin; and the hyalinization of afferent and efferent glomerular arterioles [71, 72].

Studies have indicated that inflammation is an important mechanism in the pathogenesis of DKD that triggers a complex network of pathophysiological events that modulate intracellular signaling pathways involving protein kinase C [73–75] and ROS [76–78] and act in a concerted manner to induce transcription factors, cytokines, chemokines, and growth factors during hyperglycemia [13–15, 79–81]. Although many factors have been implicated in the pathogenesis of DKD, inflammation is believed to play a fundamental role in the early development and progression of DKD [14, 71, 78, 80, 82]. Drugs with anti-inflammatory effects have been used as a new clinical approach for treating DKD.

Previous reports have indicated that the increased plasma concentrations of 5-HT or its metabolite (5-HIAA) are valuable biomarkers for estimating the DKD-associated risk during the early stages of the disease [35, 83, 84]. 5-HT has been shown to enhance the production of type IV collagen by human mesangial cells, and its production is mediated by the activation of protein kinase C and a subsequent increase in active transforming growth factor-β (TGF-β) [85]. Stimulation of 5-HT$_{2A}$Rs by 5-HT induces the expression of TGF-β through extracellular signal-regulated kinases, a key mediator of proliferative and fibrotic signals in mesangial cells [86–89], as illustrated in Figure 6.

Studies have shown that 5-HTR antagonists are effective in preventing diabetic nephropathy. Sarpogrelate, a 5-HT2 subtype 2A antagonist [33, 34], reduced albuminuria in the early stages of DKD by improving glomerular endothelial function through the reduction in glomerular platelet activation and an increase in serum adiponectin concentrations in a diabetic animal model. Ogawa et al. [90] and Park et al. [91] found that sarpogrelate can reduce albuminuria and plasma and urinary monocyte chemoattractant protein-1 levels in patients with DKD. Tropisetron, a 5-HT$_{3}$ receptor antagonist, can attenuate early DM through calcineurin inhibition and by suppressing oxidative stress and some inflammatory cytokines in streptozotocin-induced diabetic rats [32].

5. Conclusions

There is an increasing repertoire of evidence supporting 5-HT as a causative agent for increased ROS generation in DM. Since 5-HT mediates accelerated atherosclerosis in diabetes, pharmacological inhibition of the 5-HT receptor presents an attractive therapeutic strategy for
patients with diabetes to attenuate the development of nephropathy and macrovascular complications. A better understanding of the role of these new receptor targets in the context of DKD will facilitate the development of novel therapeutic strategies that can be successfully translated into clinical applications.

Abbreviations

- **5-HT**: 5-Hydroxytryptamine
- **TPH**: Tryptophan hydroxylase
- **AADC**: Unbiquitous aromatic L-amino acid decarboxylase
- **5-HTT**: 5-HT transporter
- **Cys-loop LGICs**: Cys-loop ligand-gated ion channels
- **5-HTT (SERT)**: 5-Hydroxytryptamine transporter
- **GPCRs**: G protein-coupled receptors
- **AC**: Adenylyl cyclase
- **cAMP**: Cyclic adenosine monophosphate
- **PIP2**: Phosphatidylinositol 4,5-bisphosphate
- **IP3**: Inositol trisphosphate
- **DAG**: Diacylglycerol
- **PKC**: Protein kinase C
- **Rho**: Ras homolog gene family member
- **ICAM-1**: Intercellular adhesion molecule-1
- **VCAM-1**: Vascular cell adhesion molecule-1
- **TGF-β**: Transforming growth factor-β
- **PRL**: Prolactin
- **PRLR**: Islet prolactin receptors
- **GSIS**: Glucose-stimulated insulin secretion
- **SST**: Somatostatin
- **SSTR**: SST receptors
- **NADP**: Nicotinamide adenine dinucleotide phosphate
- **ERK**: Extracellular signal-regulated kinases
- **5-HT2AR**: 5-HT2A receptor

Figure 6: Illustration to show the mechanism of 5-HT2AR in mesangial cells. 5-HT has been shown to enhance the production of type IV collagen by human mesangial cells, and its production is mediated by the activation of protein kinase C and a subsequent increase in active TGF-β. Stimulation of 5-HT2ARs by 5-HT induces the expression of TGF-β through extracellular signal-regulated kinases.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Acknowledgments

This work was supported in part by the National Key Research and Development Program of China (2016YFC1305301) and the National Natural Science Foundation of China (no. 81460501).

References

[1] I. H. de Boer, T. C. Rue, Y. N. Hall, P. J. Heagerty, N. S. Weiss, and J. Himmelfarb, “Temporal trends in the prevalence of diabetic kidney disease in the United States,” *The Journal of the American Medical Association*, vol. 305, pp. 2532–2539, 2011.

[2] S. P. Silveiro, G. N. Araujo, M. N. Ferreira, F. D. Souza, H. M. Yamaguchi, and E. G. Camargo, “Chronic kidney disease epidemiology collaboration (ckd-epi) equation pronouncedly underestimates glomerular filtration rate in type 2 diabetes,” *Diabetes Care*, vol. 34, pp. 2353–2355, 2011.

[3] A. S. Krolewski, “Progressive renal decline: the new paradigm of diabetic nephropathy in type 1 diabetes,” *Diabetes Care*, vol. 38, pp. 954–962, 2015.

[4] R. Amin, B. Widmer, A. T. Prevost et al., “Risk of microalbuminuria and progression to macroalbuminuria in a cohort with childhood onset type 1 diabetes: prospective observational study,” *British Medical Journal*, vol. 336, pp. 697–701, 2008.

[5] A. Kowalski, A. Krikorian, and E. V. Lerma, “Diabetes and chronic kidney disease,” *Disease-a-Month*, vol. 61, pp. 378–386, 2015.

[6] J. J. Liu, S. C. Lim, L. Y. Yeoh et al., “Ethnic disparities in risk of cardiovascular disease, end-stage renal disease and
all-cause mortality: a prospective study among Asian people with type 2 diabetes,” *Diabetic Medicine*, vol. 33, pp. 332–339, 2016.

[7] C. C. Lim, B. W. Teo, P. G. Ong et al., “Chronic kidney disease, cardiovascular disease and mortality: a prospective cohort study in a multi-ethnic Asian population,” *European Journal of Preventive Cardiology*, vol. 22, pp. 1018–1026, 2015.

[8] K. R. Tuttle, G. L. Bakris, R. W. Bilous et al., “Diabetic kidney disease: a report from an ADA Consensus Conference,” *Diabetes Care*, vol. 37, pp. 2864–2883, 2014.

[9] E. T. Rosolowsky, J. Skupien, A. M. Smiles et al., “Risk for ESRD in type 1 diabetes remains high despite renoprotection,” *Journals of the American Society of Nephrology*, vol. 22, pp. 545–553, 2011.

[10] R. Saran, Y. Li, B. Robinson et al., “US renal data system 2015 annual data report: epidemiology of kidney disease in the United States,” *American Journal of Kidney Diseases*, vol. 67, pp. A7–A8, 2016.

[11] S. B. Ghaderian, F. Hayati, S. Shayanpour, and S. S. Beladi, “Mitochondrial biogenesis and function in human renal mesangial cells,” *Diabetes Research and Clinical Practice*, vol. 171, 2011.

[12] H. B. Lee, “Reactive oxygen species-regulated signaling pathways in diabetic nephropathy,” *Journal of the American Society of Nephrology*, vol. 14, pp. 2415–2455, 2003.

[13] K. Susztak, A. C. Raff, M. Schiffer, and E. P. Bottinger, “Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy,” *Diabetes*, vol. 55, pp. 225–233, 2006.

[14] G. Al-Kafaji, M. A. Sabry, and C. Skrypnyk, “Time-course effect of high-glucose-induced reactive oxygen species on mitochondrial biogenesis and function in human renal mesangial cells,” *Cell Biology International*, vol. 30, pp. 36–48, 2016.

[15] L. Sun, R. K. Dutta, P. Xie, and Y. S. Kanwar, “Myo-inositol oxygenase overexpression accentuates generation of reactive oxygen species and exacerbates cellular injury following high glucose amnesia: a new mechanism relevant to the pathogenesis of diabetic nephropathy,” *The Journal of Biological Chemistry*, vol. 291, pp. 5688–5707, 2016.

[16] K. Kim, C. M. Oh, M. Ohara-Imaizumi et al., “Functional role of serotonin in insulin secretion in a diet-induced insulin-resistant state,” *Endocrinology*, vol. 156, pp. 444–452, 2015.

[17] Q. Zhang, Y. Zhu, W. Zhou, L. Gao, L. Yuan, and X. Han, “Serotonin receptor 2c and insulin secretion,” *PLoS One*, vol. 8, article e54250, 2013.

[18] Y. Ohta, Y. Kosaka, N. Kishimoto et al., “Convergence of the insulin and serotonin programs in the pancreatic beta-cell,” *Diabetes*, vol. 60, pp. 3208–3216, 2011.

[19] C. M. Oh, J. Nambung, Y. Go et al., “Regulation of systemic energy homeostasis by serotonin in adipose tissues,” *Nature Communications*, vol. 6, p. 6794, 2015.

[20] K. A. Rasbach, J. A. Funk, T. Jayavelu, P. T. Green, and R. G. Schnellmann, “5-Hydroxytryptamine receptor stimulation of mitochondrial biogenesis,” *The Journal of Pharmacology and Experimental Therapeutics*, vol. 332, pp. 632–639, 2010.

[21] Arreola, E. Becerril-Villanueva, C. Cruz-Fuentes et al., “Immunomodulatory effects mediated by serotonin,” *Journal of Immunochemistry Research*, vol. 2015, Article ID 354957, 21 pages, 2015.

[22] G. P. Ahern, “5-HT and the immune system,” *Current Opinion in Pharmacology*, vol. 11, pp. 29–33, 2011.

[23] G. A. Ramirez, S. Franchini, P. Rovere-Querini, M. G. Sabbadini, A. A. Manfredi, and N. Maugeri, “The role of platelets in the pathogenesis of systemic sclerosis,” *Frontiers in Immunology*, vol. 3, p. 160, 2012.

[24] M. de Las Casas-Engel and A. L. Corbi, “Serotonin modulation of macrophage polarization: inflammation and beyond,” *Advances in Experimental Medicine and Biology*, vol. 824, pp. 89–115, 2014.

[25] M. Idzko, S. Pitchford, and C. Page, “Role of platelets in allergic airway inflammation,” *The Journal of Allergy and Clinical Immunology*, vol. 135, pp. 1416–1423, 2015.

[26] J. J. Worthington, “The intestinal immunoendoctrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease,” *Biochemical Society Transactions*, vol. 43, pp. 727–733, 2015.

[27] T. Sugisue, Y. Dohi, S. Yamasita, Y. Hirowatari, S. Fujii, and N. Ohte, “Serotonin in peripheral blood reflects oxidative stress and plays a crucial role in atherosclerosis: novel insights toward holistic anti-atherothrombotic strategy,” *Atherosclerosis*, vol. 246, pp. 157–160, 2016.

[28] K. Nonogaki and T. Kaji, “Mosapride, a selective serotonin 5-HT4 receptor agonist, and aloglipin, a selective dipeptidyl peptidase-4 inhibitor, exert synergic effects on plasma active glp-1 levels and glucose tolerance in mice,” *Diabetes Research and Clinical Practice*, vol. 110, pp. e18–e21, 2015.

[29] F. Montastruc, A. Palmaro, H. Bagheri, L. Schmitt, J. L. Montastruc, and M. Lapereyre-Mestre, “Role of serotonin 5-HT2c and histamine H1 receptors in antipsychotic-induced diabetes: a pharmacoepidemiological-pharmacodynamic study in vigibase,” *European Neuropsychopharmacology*, vol. 25, pp. 1556–1565, 2015.

[30] H. Bennet, A. Balhuizen, A. Medina et al., “Altered serotonin (5-HT) 1D and 2A receptor expression may contribute to defective insulin and glucagon secretion in human type 2 diabetes,” *Peptides*, vol. 71, pp. 113–120, 2015.

[31] A. Barzegar-Fallah, H. Alimoradi, F. Asadi, A. R. Dehpour, M. Asgari, and M. Shafei, “Tropisetron ameliorates early diabetic nephropathy in streptozotocin-induced diabetic rats,” *Clinical and Experimental Pharmacology & Physiology*, vol. 42, pp. 361–368, 2015.

[32] S. Kobayashi, M. Satoh, T. Namikoshi et al., “Blockade of serotonin 2A receptor improves glomerular endothelial function in rats with streptozotocin-induced diabetic nephropathy,” *Clinical and Experimental Nephrology*, vol. 12, pp. 119–125, 2008.

[33] T. Takahashi, M. Yano, J. Minami et al., “Sarpogrelate hydrochloride, a serotonin2A receptor antagonist, reduces albuminuria in diabetic patients with early-stage diabetic nephropathy,” *Diabetes Research and Clinical Practice*, vol. 58, pp. 123–129, 2002.

[34] K. Hara, Y. Hirowatari, Y. Shimura, and H. Takahashi, “Serotonin levels in platelet-poor plasma and whole blood in people with type 2 diabetes with chronic kidney disease,” *Diabetes Research and Clinical Practice*, vol. 94, pp. 167–171, 2011.
S. C. Tang, W. H. Yiu, M. Lin, and K. N. Lai, “Mechanisms underlying increased serotonin-induced contraction in carotid arteries from chronic type 2 diabetic Goto-Kakizaki rats,” *Pharmacological Research*, vol. 87, pp. 123–132, 2014.

S. C. Bir, M. Fujita, A. Marui et al., “New therapeutic approach for impaired arteriogenesis in diabetic mouse hindlimb ischemia,” *Circulation Journal: Official Journal of the Japanese Circulation Society*, vol. 72, pp. 633–640, 2008.

Y. Su, N. Mao, M. Li et al., “Sarpogrelate inhibits the expression of ICAM-1 and monocyte-endothelial adhesion induced by high glucose in human endothelial cells,” *Molecular and Cellular Biochemistry*, vol. 373, pp. 195–199, 2013.

P. M. Nelson, J. S. Harrod, and K. G. Lamping, “5HT(2a) and 5HT(2b) receptors contribute to serotonin-induced vascular dysfunction in diabetes,” *Experimental Diabetes Research*, vol. 2012, Article ID 398406, 11 pages, 2012.

E. R. Seaquist, “Addressing the burden of diabetes,” *The Journal of the American Medical Association*, vol. 311, pp. 2267–2268, 2014.

C. Mora-Fernandez, V. Dominguez-Pimentel, M. M. de Fuentes, J. L. Gorriz, A. Martinez-Castelao, and J. F. Navarro-Gonzalez, “Diabetic kidney disease: from physiology to therapeutics,” *The Journal of Physiology*, vol. 592, pp. 3997–4012, 2014.

G. Wolf, “New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology,” *European Journal of Clinical Investigation*, vol. 34, pp. 785–796, 2004.

J. Wang, F. Qin, A. Deng, and L. Yao, “Different localization and expression of protein kinase C-beta in kidney cortex of diabetic nephropathy mice and its role in telmisarten treatment,” *American Journal of Translational Research*, vol. 7, pp. 1116–1125, 2015.

J. Yang and J. Zhang, “Influence of protein kinase C (PKC) on the prognosis of diabetic nephropathy patients,” *International Journal of Clinical and Experimental Pathology*, vol. 8, pp. 14925–14931, 2015.

K. Zhu, T. Kakehi, M. Matsumoto et al., “NADPH oxidase NOX1 is involved in activation of protein kinase C and premature senescence in early stage diabetic kidney,” *Free Radical Biology & Medicine*, vol. 83, pp. 21–30, 2015.

J. C. Jha, V. Thallas-Bonke, C. Banal et al., “Podocyte-specific NOX4 deletion affords renoprotection in a mouse model of diabetic nephropathy,” *Diabetologia*, vol. 59, pp. 379–389, 2016.

Y. Gorin, R. C. Cavagneri, K. Khazim et al., “Targeting NADPH oxidase with a novel dual NOX1/NOX4 inhibitor attenuates renal pathology in type 1 diabetes,” *American Journal of Physiology Renal Physiology*, vol. 308, pp. F1276–F1287, 2015.

A. B. Bhatti and M. Usman, “Drug targets for oxidative podocyte injury in diabetic nephropathy,” *Cureus*, vol. 7, article e393, 2015.

S. C. Tang, W. H. Yiu, M. Lin, and K. N. Lai, “Diabetic nephropathy and proximal tubular damage,” *Journal of Renal Nutrition: The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation*, vol. 25, pp. 230–233, 2015.