Use of cystatin C to inform metformin eligibility among adult veterans with diabetes.
Use of cystatin C to inform metformin eligibility among adult veterans with diabetes

Delphine S. Tuot a,*, Rebecca Scherzer b,c, Howard Leong c, Adriana M. Hung d, Carl Grunfeld b,c, Michael G. Shlipak b,c,e

a Division of Nephrology, University of California, San Francisco, CA, USA
b Department of Medicine, University of California, San Francisco, CA, USA
c Veterans Affairs Medical Center, San Francisco, CA, USA
d Division of Nephrology and Hypertension, Vanderbilt University and Veterans Affairs Medical Center, Nashville, TN, USA
e Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA

Original Research

A R T I C L E I N F O
Article history:
Received 17 August 2015
Received in revised form 16 September 2015
Accepted 21 October 2015

Keywords
Chronic kidney disease
Cystatin C
Diabetes
Metformin

A B S T R A C T

Aims: Recommendations for metformin use are dependent on eGFR category: eGFR >45 ml/min/1.73 m² – “first-line agent”; eGFR 30–44 – “use with caution”; eGFR<30 – “do not use”. Misclassification of metformin eligibility by creatinine-based MDRD GFR estimates (eGFRcr) may contribute to its misuse. We investigated the impact of cystatin c estimates of GFR (eGFRcys) on metformin eligibility.

Methods: In a consecutive cohort of 550 Veterans with diabetes, metformin use and eligibility were assessed by eGFR category, using eGFRcr and eGFRcys. Discrepancy in eligibility was defined as cases where eGFRcr and eGFRcys categories (<30, 30–44, 45–60, and >60 ml/min/1.73 m²) differed with an absolute difference in eGFR of >5 ml/min/1.73 m². We modeled predictors of metformin use and eGFR category discrepancy with multivariable relative risk regression and multinomial logistic regression.

Results: Subjects were 95% male, median age 68, and racially diverse (45% White, 22% Black, 11% Asian, 22% unknown). Metformin use decreased with severity of eGFRcr category, from 63% in eGFRcr >60 to 3% in eGFRcr <30. eGFRcys reclassified 20% of Veterans into different eGFR categories. Factors associated with a more severe eGFRcys category compared to eGFRcr were older age (aOR = 2.21 per decade, 1.44–1.82), higher BMi (aOR = 1.04 per kg/m², 1.01–1.08) and albuminuria >30 mg/g (aOR = 1.81, 1.20–2.73).

Conclusions: Metformin use is low among Veterans with CKD. eGFRcys may serve as a confirmatory estimate of kidney function to allow safe use of metformin among patients with CKD, particularly among older individuals and those with albuminuria.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Goals of Healthy People 2020 include developing strategies for safe and effective glycemic control [1]. One key strategy to attain this goal is to promote greater use of metformin. Compared to other oral hypoglycemic agents, metformin is associated with decreased risk of cardiovascular events, slower progression of chronic kidney disease (CKD) and lower death rates [2,3]. Also, metformin does not induce hypoglycemia, a common and potentially very serious adverse side effect of insulin secretagogues, such as sulfonylureas [4]. Because metformin is renally cleared, individuals with severely reduced kidney function who use metformin may be at risk of lactic acidosis [4,5]. Since its introduction to the US market, metformin has thus been labeled with a black box warning contraindicating its use among men with a serum creatinine of ≥1.5 mg/dL and women with a serum creatinine of ≥1.4 mg/dL. As the benefits of metformin have become more widely appreciated, there has been an ongoing debate as to whether these serum creatinine thresholds are too restrictive and whether estimated glomerular filtration rate (eGFR) is a more accurate estimation of kidney function and thus metformin eligibility [6]. The United Kingdom National Institute for Health and Clinical Excellence (NICE) and Kidney Disease Improving Global Outcomes specifically recommend use of metformin for individuals with an estimated glomerular filtration rate (eGFR) of ≥45 ml/min/1.73 m², reviewing and cautious use of lower doses of metformin for individuals with an eGFR of 30–44 ml/min/1.73 m², and not to use metformin for individuals with an eGFR of <30 ml/min/1.73 m² [7,8]. In a 2012 joint position statement, the American Diabetes Association and European Association for the Study of Diabetes concluded that these guidelines appeared very reasonable [9].

* Corresponding author. Tel.: +1 415 206 2784; fax: +1 415 282 8182.
E-mail address: Delphine.tuot@ucsf.edu (D.S. Tuot).

2214-6237/© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
http://dx.doi.org/10.1016/j.jcte.2015.10.002
However, metformin is underused among individuals with diabetes and CKD [10]. This is likely multifactorial, including conflicting messages between the FDA and the aforementioned professional societies [10–12]. Clinician concerns about misclassification of kidney function by eGFRcr may also be contributing. The aforementioned recommendations are based upon creatinine estimates of kidney function (eGFRcr), which are influenced by age, gender, ethnicity, and muscle mass. Importantly, these equations do not include muscle mass per se, but use age, gender, and ethnicity to estimate it. Use of creatinine-based estimates of kidney function may thus lead to biases in GFR estimation across and within individuals [13].

Cystatin C estimates of kidney function (eGFRcys) appear to be more accurate than eGFRcr in older, unselected adults, and they have been more strongly associated with health outcomes across numerous research cohorts [14]. eGFRcys is independent of muscle mass [15]. National and international CKD guidelines now recommend the use of cystatin C to confirm eGFR among individuals for whom eGFRcr may be unreliable [16], such as in older, frail adults among whom creatinine generation due to loss of muscle mass may decrease in parallel with GFR decline, effectively masking the actual loss of GFR [17]. This is also of concern for diabetic adults, in whom skeletal muscle mass is also reduced relative to total body mass [18,19].

Our objectives in this study were: 1) to examine independent predictors of metformin use; 2) to compare categorization of kidney function based upon eGFRcys versus MDRD eGFRcr to determine metformin eligibility among adults with diabetes; 3) to identify characteristics associated with different eGFR categories by cystatin C and creatinine.

Subjects, materials and methods

Study design and study participants

This was a cross-sectional study using data from a cohort of adult Veterans with diabetes who were receiving primary care at the San Francisco Veterans Administration Medical Center (SFVAMC). Veterans were eligible for this study if they were included in the local Medical Practice Performance Measures Dashboard, a local diabetes registry designed to improve the quality of diabetes care delivered to adult Veterans, and if they received their medications from the SFVAMC pharmacy. The first 550 patients who met these criteria were included in this study. The study protocol was approved by the Committee of Human Research at the SFVAMC and University of California, San Francisco.

Data collection

Participant demographic information (age, gender, race/ethnicity), body-mass index (BMI), co-morbid conditions from the problem list (hypertension, cardiovascular disease, congestive heart failure), diabetes medication use (metformin, sulfonylurea, insulin, thiazolidinedione), and laboratory data (glycosylated hemoglobin, urinary albumin-to-creatinine ratio, serum creatinine, MDRD eGFRcr) were ascertained by chart review between November 2013 and March 2014. Only data updated in the prior three months were abstracted. Serum creatinine and MDRD eGFRcr measures were obtained for clinical purposes and were available to clinicians. CKD-EPI eGFRcr and cystatin C were obtained only for research purposes and were not available to clinicians. The creatinine assay was IDMS standardized. Cystatin C measures were performed on a Beckman Synchron DX600 analyzer with reagents produced by Gentian (Norway) and distributed by Beckman. Intra-assay coefficients of variation for cystatin C, estimating within-run precision, ranged from 0.80 to 1.71% with mean serum concentrations between 0.96 and 2.95 mg/L. Inter-assay coefficients of variation for cystatin C, estimating day-to-day precision, ranged from 2.76 to 3.37% with mean serum concentrations between 1.01 and 3.93 mg/L.

Definitions

Metformin eligibility by clinical eGFR category was defined using the most recent recommendations [6,9]: first line agent if eGFR >60 ml/min/1.73 m²; first line agent if eGFR 45–60 ml/min/1.73 m²; use with caution if eGFR 30–44 ml/min/1.73 m²; do not use if eGFR <30 ml/min/1.73 m². Discrepancy between eGFRcys and MDRD eGFRcr was defined as cases where clinical eGFR categories differed by GFR estimate and the eGFR values were at least 5 ml/min/1.73 m² apart.

Covariates

Candidate covariates included demographic characteristics (age, gender, race/ethnicity), co-morbid conditions (hypertension, hyperlipidemia, cardiovascular disease, congestive heart failure), BMI, treatment of diabetes using glycosylated hemoglobin and urine albumin-to-creatinine ratio (ACR). We examined the relationship of continuous parameters including age, BMI, glycosylated hemoglobin and ACR using smoothing splines to determine whether associations with outcomes were linear [20]. In the final models, we dichotomized glycosylated hemoglobin (≥7%, ≥5.30 mmol/mmol) and ACR (>30 mg/g). Multiple imputation with the Markov chain Monte Carlo method was used to impute missing covariates, with 10 imputations to yield ~95% relative efficiency [21].

Statistical methods

Participant characteristics and diabetic medication use were compared by eGFR category using the Kruskal–Wallis test for continuous parameters and χ² tests for categorical parameters. Multivariable relative risk regression with a robust variance estimator and a Poisson working model was used to identify predictors of metformin use [22]. We used stepwise backward selection with a significance level of α = 0.05 to remove candidate covariates that were not associated with the outcome. In addition to the candidate covariates listed above, either eGFRcr or serum creatinine was included in the models for metformin use. Reclassification of metformin eligibility by eGFR estimating equation was also performed across the clinical eGFR categories. We calculated the number-needed-to-screen (NNS) by cystatin C to identify a patient with an eGFR of <30 ml/min/1.73 m², as this person would not be eligible for metformin. Multinomial logistic regression was used to identify factors associated with bidirectional discrepancy by eGFRcys and eGFRcr categories using agreement between methods (“same category”) as the reference group. Sensitivity analyses were performed using eGFRcr defined by CKD-EPIcr [23] to broaden generalizability of study results to institutions that use CKD-EPIcr estimates of GFR for clinical purposes. All analyses were conducted using the SAS system, version 9.3 (SAS Institute, Inc., Cary, NC).

Results

Characteristics of the study population

Overall, the 550 cohort subjects were 95% male, of diverse racial/ethnic backgrounds (45% White, 22% Black, 11% Asian, 22% unknown), and had a median age of 68 years. The median MDRD eGFRcr, CKD-EPI eGFRcr and eGFRcys were 73 ml/min/1.73 m², 69 ml/min/1.73 m², and 59 ml/min/1.73 m², respectively. Characteristics included in our analysis are summarized in Table 1, stratified by
Participants with lower eGFRcr tended to be older, had higher rates of hypertension and congestive heart failure, and higher ACR, compared to those with higher eGFRcr (Table 1). Treatment of diabetes as measured using hemoglobin A1c was similar across eGFR categories.

Prevalence of diabetes medication use

Overall metformin use was 51% and was inversely proportional to severity of CKD, defined by eGFRcr category (Fig. 1): 63% in eGFRcr >60 ml/min/1.73 m², 45% in eGFRcr 45–60 ml/min/1.73 m², 8% in eGFRcr 30–44 ml/min/1.73 m², and 3% in eGFRcr <30 ml/min/1.73 m² (p < 0.001). By contrast, the prevalence of insulin use increased with more severe eGFRcr categories (from 2% in those with eGFRcr >60 ml/min/1.73 m² to 65% in those with eGFRcr of <30 ml/min/1.73 m², p < 0.001). Overall sulfonylurea use was 28% and was highest among individuals with an eGFR of 45–60 ml/min/1.73 m². Thiazolidinedione use was low (7% overall) and did not differ by eGFRcr category (p = 0.82). Similar trends in prevalence of diabetes medication use were noted when severity of kidney disease was defined by serum creatinine rather than eGFRcr (data not shown).

Predictors of metformin use

In the unadjusted model examining predictors of metformin use, we found higher probability of metformin use associated with higher eGFRcr, with a plateau observed around 70–80 ml/min/1.73 m² (p < 0.0001, Supplementary Fig. S1). In multivariable analysis, kidney function defined by either eGFRcr or serum creatinine was the strongest predictor of metformin use, independent of age, gender, race, diabetes control, and congestive heart failure (Table 2 and Supplementary Table S1), though clinicians seemed to be more influenced

Table 1

Characteristics of SFVA adult veterans with diabetes, by MDRD eGFRcr category

Parameter	eGFR MDRD <30 ml/min/1.73 m² (n = 31)	eGFR MDRD 30–44 ml/min/1.73 m² (n = 58)	eGFR MDRD 45–60 ml/min/1.73 m² (n = 93)	eGFR MDRD >60 ml/min/1.73 m² (n = 368)	P-value
Male	30 (97%)	55 (95%)	87 (94%)	350 (95%)	0.89
Age (y)	69 (65–78)	78 (70–84)	75 (66–82)	66 (61–74)	<0.0001
20–39	0	0	0	2 (13%)	
40–59	3 (10%)	1 (2%)	9 (10%)	76 (21%)	
60–79	22 (71%)	34 (59%)	55 (59%)	245 (67%)	
>80	6 (19%)	23 (40%)	29 (31%)	45 (12%)	
Race/ethnicity					0.06
African-American	11 (35%)	8 (14%)	19 (20%)	81 (22%)	
Asian/Pacific Islander	4 (13%)	7 (12%)	15 (16%)	37 (10%)	
White	7 (23%)	31 (53%)	39 (42%)	171 (46%)	
Unknown	9 (29%)	12 (21%)	20 (22%)	79 (21%)	
Hypertension	30 (97%)	53 (91%)	82 (88%)	283 (77%)	0.0009
Hemoglobin A1c	71 (5.9–8.4)	72 (6.5–8.1)	70 (6.3–7.5)	6.9 (6.2–7.9)	0.42
<7% (<53 mmol/mol)	14 (45%)	23 (40%)	46 (49%)	198 (54%)	
7–7.9% (53–63 mmol/mol)	7 (23%)	19 (33%)	31 (33%)	81 (22%)	
8–8.9% (64–74 mmol/mol)	6 (19%)	6 (10%)	7 (8%)	40 (11%)	
≥9% (>75 mmol/mol)	4 (13%)	10 (17%)	9 (10%)	49 (13%)	0.02
BMI (kg/m²)	31 (25–34)	29 (26–33)	28 (25–32)	31 (27–35)	
Hyperlipidemia	22 (71%)	40 (69%)	66 (71%)	260 (71%)	0.99
Cardiovascular disease	8 (26%)	9 (16%)	13 (14%)	52 (14%)	0.37
Congestive heart failure	9 (29%)	22 (38%)	15 (16%)	26 (7%)	<0.0001
Creatinine (mg/dL)	3.34 (2.68–6.96)	1.88 (1.70–2.06)	1.43 (1.32–1.53)	0.96 (0.85–1.10)	<0.0001
eGFR MDRD	22 (9–26)	38 (33–41)	54 (50–57)	86 (73–100)	<0.0001
eGFRcr CKD Epi 2012	10 (9–23)	34 (29–37)	50 (45–52)	82 (69–94)	<0.0001
eGFRcrys	20 (9–24)	31 (25–37)	46 (36–53)	73 (56–92)	<0.0001
ACR (mg/g)	759 (110–1616)	61 (20–319)	36 (10–149)	11 (5–40)	<0.0001

Abbreviations: eGFR = estimated glomerular filtration rate; MDRD = Modified Diet in Renal Disease; BMI = body mass index. Continuous outcomes are summarized by median (interquartile range).
to withhold metformin due to eGFRcr than serum creatinine. In the fully adjusted model, compared to individuals with an MDRD eGFRcr of >30 ml/min/1.73 m², the likelihood of metformin use was 23% lower for persons with an eGFRcr of 45–59 ml/min/1.73 m² and 82% lower among individuals with an MDRD eGFRcr of 30–44 ml/min/1.73 m². In a comparable, multivariable adjusted model using serum creatinine, compared to individuals with a serum creatinine of <1.2 mg/dL, the likelihood of metformin use was 51% lower among individuals with a serum creatinine of 1.5 to <1.8 mg/dL. Among those with a creatinine of 1.2–1.5 mg/dL, the likelihood of metformin use was 22% lower, although the association did not reach statistical significance (p = 0.23). Individuals with better controlled diabetes, defined by a glycosylated hemoglobin <7.0% (5.3 mmol/mol), and those with more severe heart failure were also less likely to be prescribed metformin, independent of other factors. Younger age appeared strongly associated with metformin use in unadjusted analysis, though results were attenuated and not statistically significant after adjustment for eGFR categories. Similar results were noted when analyses were performed using the CKD-EPI equation to calculate eGFRcr, but with a stronger age effect (Supplemental Table S2).

Reclassification of metformin eligibility by eGFRcys vs. eGFRcr

Using MDRD eGFRcr categories, 84% (95%CI, 81.0–87.0, n = 461) of individuals were eligible to use metformin as first line therapy, whereas 10.6% (95%CI, 8.0–13.1, n = 58) were eligible to use metformin with caution, and 5.6% (95%CI, 3.7–7.6, n = 31) were not eligible to use metformin. Relative to eGFRcr, eGFRcys reclassified 109 (20% of 550) patients into different eGFR categories, including 32 (5.8% of 500) patients reclassified downward into “do not use” and 70 (12.7% of 550) reclassified downward into “use with caution” (Table 3). The weighted kappa coefficient was 0.57 suggesting moderate agreement between eGFRcys and eGFRcr, while Bowker’s test of symmetry was rejected (p < 0.001), suggesting a significant difference in classification. Only 7 (1.3% of 550) patients were classified upward into a less severe eGFR category. The percentages of patients who were reclassified by eGFRcys to <30 ml/min/1.73 m² rose from 1% (number needed to screen [NNS] = 100) among those with eGFRcr of >60 ml/min/1.73 m², to 9% (NNS = 11) in the eGFRcr 45–60 ml/min/1.73 m² group, and 40% (NNS = 3) in the eGFRcr 30–45 ml/min/1.73 m² group.

Qualitatively similar results were noted when analyses were performed using the CKD-EPI equation to calculate eGFRcr, though fewer individuals were reclassified downward to an eGFRcys of <30 ml/min/1.73 m² or eGFRcys of 30–45 ml/min/1.73 m² (Supplemental Table S3). The percentage of patients reclassified to an eGFR of <30 ml/min/1.73 m² was 5% (NNS = 20) among those in the CKD-EPI eGFRcr 45–60 ml/min/1.37 m² group and 27% (NNS = 4) in the eGFRcys 30–45 ml/min/1.73 m² group.

Factors associated with change in category

Factors independently associated with a more severe eGFR category by eGFRcys vs. MDRD eGFRcr were risk factors for kidney disease: older age (aRR = 2.21 per decade, 95%CI 1.79–2.73), ACR > 30 mg/g (aRR = 1.81, 95%CI 1.20–2.73) and higher BMI (aRR = 1.04 per kg/m², 95%CI 1.01–1.08) (Table 4). We did not identify any factors that had statistically significant associations with

Parameter	Unadjusted	Adjusted
eGFRcys <30 ml/min/1.73 m²	28 (90%)	23 (40%)
30–44 ml/min/1.73 m²	30 (10%)	31 (53%)
45–60 “first line”	0	4 (7%)
>60 “first line”	0	0

Dark shading represents downward reclassified into “do not use” category; medium shading represents downward reclassification into “use with caution” category; light shading represents upward reclassification.
a less severe eGFR category by eGFRcys vs. MDRD eGFRcr. Results were similar when using CKD-EPI to calculate eGFRcr (Supplemental Table S4), although abnormal insulin metabolism predisposes to hypoglycemia via decreased gluconeogenesis and abnormal insulin metabolism [26]. This is also an important consideration for older adults with diabetes, as hospital admission rates for hypoglycemia in this population, often associated with falls [27], now exceed those for hyperglycemia [28]. On the other hand, risk of lactic acidosis among patients using metformin with severely impaired kidney function is real, though relatively rare [6].

Cystatin C has been recommended as a confirmatory test to diagnose CKD among individuals in whom creatinine-based eGFR measurements may not be accurate [16,28]. Compared to creatinine-based estimates of kidney function, cystatin C-based estimates are more highly correlated with eGFR decline among patients with diabetes [29]. Cystatin C may thus be useful to identify individuals at higher risk of metformin accumulation and lactic acidosis, potentially leading to safer prescribing practices. In our study, cystatin C reclassified 21% of individuals into different clinical eGFR categories compared to MDRD eGFRcr. Most patients were reclassified downward into a more severe eGFR category. The number of patients needed to screen with cystatin C to reclassify an individual to <30 ml/min/1.73 m² (not eligible for metformin) was 11 among those with an MDRD eGFRcr of 45–60 ml/min/1.73 m² and approximately 3 among those with MDRD eGFRcr of 30–45 ml/min/1.73 m². While the overall degree of reclassification by cystatin C was consistent with prior studies, its predominantly uni-directional nature, with many more patients reclassified into a more severe eGFRcys category compared to eGFRcr, was surprising [30]. This finding may be driven by the lower muscle mass among patients with diabetes, which is not accounted for in either the MDRD or the CKD-EPI GFR estimating equations but is independent of eGFRcys [15]. The insensitivity of eGFRcr may be of most clinical importance among older patients, those who are obese, have albuminuria, or have an eGFRcr of <60 ml/min/1.73 m², as these were independent predictors of more severe cystatin C-based eGFR clinical categories in our study.

In conclusion, we confirm low metformin use among individuals with mild kidney disease. Educational campaigns that highlight the recent recommendations for metformin eligibility may be helpful to enhance its use among individuals with preserved kidney function, while a clinical trial is needed to determine the risks and benefits of metformin use among individuals with eGFR of 30–44 ml/min/1.73 m². Given the degree of reclassification of clinical eGFR categories with cystatin C compared to creatinine, particularly for older diabetic adults with obesity, albuminuria, and/or eGFR of <60 ml/min/1.73 m², a strategy of reflexively measuring cystatin C in these populations before prescription (and possibly yearly) may also be helpful for clinicians. A second eGFR measurement with cystatin C may lead to less metformin use among individuals with an eGFRcr of <45 ml/min/1.73 m² due to downward reclassification. But, confirmation of eGFR of ≥45 ml/min/1.73 m² with cystatin C may result in greater clinician confidence to use metformin for this more sizeable population. A prospective study examining the risks/benefits of such a strategy on clinician prescribing practices and patient-level adverse events is needed to elucidate the role of cystatin C for metformin prescribing purposes.

Acknowledgments

We thank and acknowledge the participation of clinicians at the San Francisco Veterans Affairs Medical Practice Clinic and the Chemistry Laboratory at the San Francisco Veterans Affairs Medical Center. This work was supported by the Clough Mem Fund from the University of California, San Francisco Research Evaluation and Allocation Committee. Dr. Tuot is also supported by K23DK094850 from the National Institute of Diabetes and Digestive and Kidney Diseases as well as the National Center for Advancing Translational Sciences at the National Institutes of Health, through UCSF-CTSI Grant Number UL1 TR000004. Dr. Scherer received an honorarium from Merck for participating in a Renal Expert Input Forum; this honorarium was donated to NCIRE to support kidney research.
Conflict of interest

The authors declare they have no conflicts of interest.

Authorship

Drs. Delphine Tuot and Michael Shlipak are guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. DT obtained funding and contributed to study concept/design, acquisition of data, and drafting the manuscript. RS performed data analysis and critically revised the manuscript. HL contributed to data acquisition and reviewed the manuscript. CG reviewed/editied the manuscript. AH reviewed/editied the manuscript. MS contributed to study design, data interpretation and revision of the manuscript and provided study supervision.

Results in this manuscript were presented in poster format at the American Society of Nephrology Kidney Week meeting in Philadelphia, PA, on November 15, 2014.

Appendix. Supplementary material

Supplementary data to this article can be found online at doi:10.1016/j.jcte.2015.10.002.

References

[1] United States Department of Health and Human Services. Healthy People 2020 topics and objectives. <http://www.healthypeople.gov/2020/topicsobjectives2020/default.aspx> [accessed 01.02.13].

[2] Roumie CL, Hung AM, Greely RA, Grijalva CG, Liu X, Mufff HJ, et al. Comparative effectiveness of sulfonylurea and metformin monotherapy on cardiovascular events in type 2 diabetes mellitus: a cohort study. Ann Intern Med 2012;157:601–10.

[3] Hung AM, Roumie CL, Greely RA, Liu X, Grijalva CG, Mufff HJ, et al. Comparative effectiveness of incident oral antidiabetic drugs on kidney function. Kidney Int 2012;81:698–706.

[4] Bodnar M, Meier C, Krabenhul S, Jick SS, Meier CR. Metformin, sulfonylureas, or other antidiabetes drugs and the risk of lactic acidosis or hypoglycemia: a nested case-control analysis. Diabetes Care 2008;31:2086–91.

[5] Bristol-Myers Squibb Company, Glucophage [package insert]. Princeton (NJ): Bristol-Myers Squibb; 2009.

[6] Inzucchi SE, Lipska KJ, Mayo H, Bailey CJ, McGuire DK. Metformin in patients with type 2 diabetes and kidney disease: a systematic review. JAMA 2014;312:2668–75.

[7] Molitch ME, Adler AI, Flyvbjerg A, Nelson RG, So WY, Wanner C, et al. Diabetic kidney disease: a clinical update from Kidney Disease: Improving Global Outcomes. Kidney Int 2014;87(1):20–30.

[8] National Collaborating Centre for Chronic Conditions. Type 2 diabetes: national clinical guideline for management in primary care secondary care (update). London: Royal College of Physicians; 2008.

[9] Inzucchi SE, Bergenstal RM, Buse JB, Diamant M, Ferrannini E, Nauck M, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2012;35:364–79.

[10] Tuot DS, Lin F, Shlipak MG, Grubbs V, Hsu CY, Yee J, et al. Potential impact of prescribing metformin according to eGFR rather than serum creatinine. Diabetes Care 2015;38(11):2059–67.

[11] Alexander GC, Sehgal NL, Moloney RM, Stafford RS. National trends in treatment of type 2 diabetes mellitus, 1994–2007. Arch Intern Med 2008;168:2088–94.

[12] Corraro G, Romio SA, Zambon A, Merlino L, Bosi E, Scavini M. Multiple outcomes associated with the use of metformin and sulphonylureas in type 2 diabetes: a population-based cohort study in Italy. Eur J Clin Pharmacol 2011;67:289–99.

[13] Lipska KJ, Bailey CJ, Inzucchi SE. Use of metformin in the setting of mild-to-moderate renal insufficiency. Diabetes Care 2011;34:1431–7.

[14] Shlipak MG, Coresh J, Gannevoort RT. Cystatin C versus creatinine for kidney function-based risk. N Engl J Med 2013;369:2459.

[15] Odden MC, Scherzer R, Baccetti P, Szczech LA, Sidney S, Grunfeld C, et al. Cystatin C level as a marker of kidney function in human immunodeficiency virus infection: the PRAM study. Arch Intern Med 2007;167:2213–18.

[16] KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Summary of recommendation statements. Kidney Int Suppl (2011) 2013;3:5–14.

[17] Hostpitalization, Chertow GM, Fried LF, Newman AB, Connelly S, Angleman S, et al. Cystatin C and measures of physical function in elderly adults: the Health, Aging, and Body Composition (HABC) Study. Am J Epidemiol 2006;164:1180–90.

[18] Park SW, Goodpaster BH, Lee JS, Kuller LH, Broudeau R, Kammerer C, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care 2009;32:1993–7.

[19] Park SW, Goodpaster BH, Strotmeyer ES, Kuller LH, Broudeau R, Kammerer C, et al. Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes Care 2007;30:1507–12.

[20] Hastie T, Tibshirani R. Generalized additive models. 1st ed. London; New York: Chapman and Hall; 1990.

[21] Gilks WR, Richardson S, Spiegelhalter DJ. Markov chain Monte Carlo in practice. Boca Raton, Fla.: Chapman & Hall; 1996.

[22] Zou G. A modified Poisson regression approach to prospective studies with binary data. Am J Epidemiol 2004;159:702–6.

[23] Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604–12.

[24] Nathan DM, Buse JB, Davidson MB, Ferrannini E, Holman RR, Sherwin R, et al. Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 2009;32:193–203.

[25] Quilliam BJ, Simeone JC, Ozby AB. Risk factors for hypoglycemia-related hospitalization in patients with type 2 diabetes: a nested case-control study. Clin Ther 2011;33:1781–91.

[26] Williams ME, Garg R. Glycemic management in ESRD and earlier stages of CKD. Am J Kidney Dis 2014;63:S22–38.

[27] Malahub UH, Vangaveti VN, Kennedy RL. Disease burden evaluation of fall-related events in the elderly due to hypoglycemia and other diabetic complications: a clinical review. Clin Epidemiol 2014;6:287–94.

[28] Lipska KJ, Ross JS, Wang Y, Inzucchi SE, Minges K, Karter AJ, et al. National trends in US hospital admissions for hyperglycemia and hypoglycemia among Medicare beneficiaries, 1999 to 2011. JAMA Intern Med 2014;174:1116–24.

[29] Maciasca R, Premaratne E, Jurums G. Estimating glomerular filtration rate in diabetes using serum cystatin C. Clin Biochem Rev 2011;32:61–7.

[30] Shlipak MG, Sarnak MJ, Katz R, Fried LF, Seliger SL, Newman AB, et al. Cystatin C and the risk of death and cardiovascular events among elderly persons. N Engl J Med 2005;352:2049–60.

[31] Rule AD, Glasscock RJ. GFR estimating equations: getting closer to the truth? Clin J Am Soc Nephrol 2013;8:1414–20.