Use of ceramic dust waste in the composition of road plates

T S Himich, S A Matveev, V A Utkin and G M Kadisov
Siberian State Automobile and Highway University, 5, Mira ave., Omsk, 644080, Russia
E-mail: dfsibadi@mail.ru

Abstract. The use of industrial waste – ceramic dust in the production of cement concrete mixtures is considered. A comparison of the characteristics of ceramic dust and building sand is done. The analysis of the physicomechanical characteristics of the cement-concrete mixture with a ceramic dust content of 10 and 50 % of the amount of building sand in the mixture was performed. Samples from this mixture were tested in a certified construction laboratory. It is shown that the use of ceramic dust in the composition of the cement-concrete mixture as a filler increases the average concrete strength up to 44 %, without significantly changing neither its structure, nor other physicomechanical properties. The possibility of using cement-concrete in construction practice, in which 50 % of sand is replaced by waste, has been proved.

1. Introduction
Waste management implies their complete or partial elimination, minimization or, where possible, reuse of materials that could otherwise become waste. Waste recycling or reuse is an essential element of sustainable resource management [1, 2].

Reuse of industrial waste in construction is widespread in the form of various additives and substitutes in building materials [3]. Thus, in the manufacture of concrete mixtures, granular blast furnace slag [4], spent polymers [5], and ceramic waste [6–9] are used. Wastes generated in the process of coal mining in the form of coarse-grained or finely dispersed fractions (coal dust) are widely used in the production of road-building materials. Along with these wastes, a by-product of foundry-quartz sand is actively used as a fine aggregate in concrete mixtures [10]. Full or partial replacement of natural aggregates in a self-compacting concrete mixture with industrial waste showed that replacing 50 or 100 % of natural aggregates with recycled concrete aggregates gives concrete with properties comparable to the reference sample [11].

The quality of the aggregate material has a significant impact on the physicomechanical properties of concrete, since aggregate occupies almost 70–80 percent of the total concrete volume. The influence of small aggregates on the properties of concrete is studied in articles [12–13]. The calculation method for determining the sand content in heavy concrete is presented in [14], where the calculation equations for determining the sand content in a mixture of concrete aggregates are substantiated. This ensures the lowest viscosity of the concrete mix and prevents water separation. The properties of concrete with various types of aggregates are studied in [15–19]. The mechanism of the effect of the particle size distribution of aggregate on the strength of concrete is analyzed in [20].

2. Materials and methods
One of the production wastes associated with the machining of metal products is ceramic dust or abrasive powder having a dusty state of aggregation. The starting material for it is a ceramic fraction.
Ceramic dust has a fourth class of environmental hazard and does not have hazardous properties. The waste is black and irregularly shaped particles. Its component composition is presented in table 1.

Component name	% by weight
Silica	44.06
Calcium oxide	19.57
Iron oxide	18.98
Aluminium oxide	8.66
Magnesium oxide	7.40
Titanium oxide	0.60
Nickel	0.1773
Manganese	0.4524
Zinc	0.0837
Copper	0.0102
Lead	0.0064

From the analysis of the table it follows that ceramic dust has a significant similarity with sand since it consists of 44% silicon oxide.

The question arises about the possibility of using ceramic dust waste as a filler in the manufacture of road slabs, which are used not only in road construction, but also in the arrangement of any construction site.

A study of the physical and technical properties of the waste was carried out in the laboratory of Building Materials SibADI. A comparison was also made of the indicators with the requirements of GOST 8735-88 "Sand for construction work. Test methods" to sand class 2. The grain composition of ceramic dust is presented in table 2.

Name the residues	Residues, % by weight, on sieves	Pass through a sieve with a mesh No. 0.16, % by weight				
	2.5	1.25	0.63	0.315	0.16	12.8
Private	0.5	7.7	24.9	34.3	19.8	
Full	0.5	8.2	33.1	67.4	87.2	100

From table 2 it is seen that the largest percentage of the content of particles of ceramic dust accounts for 0.315 sieve and is 34%. Ceramic dust modulus is \(M_k = 1.96 \).

Comparative characteristics of ceramic dust and building sand are presented in table 3.

Indicator	Ceramic dust value	GOST 8735-88 requirements for sand of the II class (small)
True density, \(\text{kg} / \text{m}^3 \)	3100	not standardized
Bulk density, \(\text{kg} / \text{m}^3 \)	1655	not standardized
Intergranular voidness	46.7	not standardized
Fineness modulus	1.96	1.5-2.0
Grain content (total residue on sieve No. 063 is finer than 0.16 mm)	33.1	10-30
The content of clay and dust particles	0.5	no more than 5

From the analysis of the comparative characteristics presented in table 3, it follows that sand of class 2 (fine) and ceramic dust have similar physical and mechanical properties and satisfy the
For testing, three concrete mixes were selected, from which samples were made of cubes of the reference (clean) concrete mix and samples containing 10 and 50 % ceramic dust instead of sand. The compositions of concrete mixtures are presented in table 4.

Table 4. The composition of concrete mixtures

Compositions	Pure mixture, kg	Mix with 10 % ceramic dust, kg	Mix with 50 % ceramic dust, kg
Cement	4.8	4.8	4.8
Sand	8.4	7.56	4.2
Ceramic dust	–	0.84	4.2
Crushed stone	21.24	21.24	21.24
Water	2.2	2.2	2.3

Testing of the samples was carried out in accordance with GOST 10181 - 2014 “Concrete mixtures. Test Methods”. At the same time, the requirements of the following standards were taken into account: GOST 26633-2015 “Concrete heavy and fine-grained. Specifications”, GOST 13015-2012 "Concrete and reinforced concrete products for construction. General technical requirements. Rules for acceptance, marking, transportation and storage”, GOST 10060 – 2012 “Concretes. Methods for determining frost resistance”.

3. The discussion of the results

The test results of samples of concrete mix are presented in table 5.

Table 5. Test results of samples made from concrete mix

Name indicator	Clean mixture	Mixture with 10 % ceramic dust	Mixture with 50 % ceramic dust	GOST 13015-2012 requirements
Cone draft, cm	4	4.3	4.1	not standardized
The average density of the	2500	2520	2530	not standardized
concrete mixture, kg/m³				
The average strength of concrete after steaming, MPa	26.6	31.9	28.8	Not less than 70 % of concrete class
The average strength of concrete at the age of 28 days, MPa	29.5	40.7	42.5	Not lower than 26.19±4.5
Average abrasion of concrete	0.17	0.125	0.1	No more than 0.7 g/cm²
mix, g/cm²				
Concrete frost resistance	0.20	0.25	0.21	0.18–0.25 (F 200)

From the analysis of table 5 it follows that the sediment cone and the average density of the concrete mixture containing ceramic dust, slightly differ from similar parameters of the clean mixture, not exceeding the values of 7.5 and 3.6 %, respectively. The average strength of concrete increases with an increase in the percentage of ceramic dust in its composition. So the average concrete strength at the age of 28 days increases to 44 % when replacing 50 % of sand with ceramic dust. The rate of abrasion of a concrete mixture containing ceramic dust is reduced compared to the rate of a clean mixture, but still corresponds to the grade of abrasion G1 – (0.7 g/cm), established by the standard for structures operating in conditions of increased traffic intensity (road plates, sidewalk plates, etc.). The frost resistance of a concrete mixture with ceramic dust slightly exceeds the frost resistance of a clean mixture.

All the indicators shown comply with the requirements of GOST 13015-2012; therefore, all the mixtures presented are suitable for the manufacture of products for structures operating in conditions of increased traffic.
In accordance with GOST 33148-2014 “General automobile roads. intensity: sidewalk plates and road plates”.

For the production of road slabs with non-tensioning reinforcement, the strength class of concrete must be at least B30 “Reinforced concrete road plates. Technical requirements”. Concrete mixtures where part of the sand is replaced with ceramic dust, have just such a strength class, therefore they are suitable for the production of road plates.

4. Conclusions
1. The study of the physical and technical properties of ceramic dust showed that it can be used as a fine aggregate for cement concrete mixtures.
2. The developed composition of cement concrete with 50 % ceramic dust content as a fine aggregate has a strength class of B30, abrasion resistance of 0.1 g/cm² and in accordance with GOST 33148-2014 can be used for the manufacture of road plates.
3. The frost resistance indicator makes it possible to use road plates for arranging construction sites and laying roads in winter.

References
[1] Napier T 2016 Construction Waste Management Retrieved from: https://wbdg.org/resources/construction-waste-management
[2] Sokolov E M and Moskvichev Y A 2006 Recycling of production and consumption waste. (Yaroslavl: Yaroslavl State Technical University Publishing House) 388 p.
[3] Dvorkin L, Dvorkin O and Ribakov Y 2016 Construction Materials Based on Industrial Waste Products (New York: Nova Science Publishers) 242 p.
[4] Kononova O V, Anisimov S N, Smirnov A O and Leshkanov A Y 2016 The effectiveness of granulated blast furnace slag in concrete with an additive based on polycarboxylate ether Modern high technolog. 6-2 259–63
[5] Galvão J C A, Portella K F, Joukoski A, Mendes R and Ferreira E S 2010 Use of Waste Polymers in Concrete for Repair of Dam Hydraulic Surfaces (Elsevier) pp 1049–54
[6] Juan A, Medina C, Ignacio Guerra M, Morán J M, Aguado P J, Sánchez de Rojas M I and Frías Mand Rodríguez O 2012 Re-Use of Ceramic Wastes in Construction Ceramic Materials (Rijeka, Croatia: Sciyo) pp 197–211
[7] Higashiyama H, Yagishita F, Sano M and Takahashi O 2012 Compressive Strength and Resistance to Chloride Penetration of Mortars Using Ceramic Waste as Fine Aggregate Construct. and Building Mater. 26 96–101
[8] Suzuki M, Meddah M S and Sato R 2009 Use of Porous Ceramic Waste Aggregates for Internal Curing of High Performance Concrete Cement and Concrete Res. 39 373–81
[9] Puertas F, García-Diaz I, Palacios M, Gazulla M F, Gomes M P and Orduna M 2010 Clinkers and Cements Obtained from Raw Mix Containing Ceramic Waste as a Raw Material: Characterization, Hydration and Leaching Studies Cement and concrete composites (Elsevier) 175–86
[10] Mishra B and Mishra R S 2015 A Stud on Use of Industrial Wastes in Rural Road Construction Int. J. of Innovat. Res. in Sci., Engineer. and Technol. 4(11) 10387–98
[11] Kenai S, Menadi B, Debbih A and Kadri E H 2014 Effect of Recycled Concrete Aggregates and Natural Pozzolana on Rheology of Self-Compacting Concrete Key Engineer. Mater. 600 256–63
[12] Kronlof A 1994 Effect of very fine aggregate on concrete strength Mater. and Structures 27(1) 15–25
[13] Muhit I B, Haque S and Alam M R 2013 American J. of Civil Engineer. and Architect. 1(5) 103–6 DOI: 10.12691/ajcea-1-5-3
[14] Dvorkin L I 2018 Magazine of Civil Engineer. 7 186–97
[15] Kalashnikov V I, Tarakanov O V, Kuzneczov Y S, Volodin V M and Belyakova E A 2012
Magazine of Civil Engineer. 8 47–53

[16] Sivakumar N, Muthukumar S, Sivakumar V, Gowtham D and Muthuraj V 2014 Int. J. of Engineer. and Sci. 4(1) 27–36

[17] Abdullahi M 2012 Effect of aggregate type on Compressive strength of concrete Int. J. of Civil. and Structur. Engineer. 2(3) 791–800

[18] Liu J, Wu K, Wang Y and Yang Y 2017 Effects of fly ash diatomite admixture with variable particle sizes on the mechanical properties and porosity of concrete J. of Wuhan Univer. of Technol.-Mater. 32(5) 1072–9

[19] Zimbili O, Salim W and Ndambuki M 2014 A Review on the Usage of Ceramic Wastes in Concrete Production Int. J. of Civil. and Environmental Engineer. 8(1) 91–5

[20] Wu J, Feng M, Meo X and Xu J 2018 J. Construct. and Building Mater. 193 295–311