Subfenótipos baseados em dados clínicos de beiraleito de pacientes críticos com COVID-19: um estudo de coorte

Bedside clinical data subphenotypes of critically ill COVID-19 patients: a cohort study

INTRODUÇÃO

A apresentação grave da doença pelo coronavírus 2019 (COVID-19), com necessidade de admissão à unidade de terapia intensiva (UTI), associa-se com elevada mortalidade.¹ A precoce deterioração clínica se associa, principalmente, com disfunções de órgãos não pulmonares e acarreta o maior nível de mortalidade² de modo que o reconhecimento precoce das formas mais graves dessa doença é essencial.

Resumo

O objetivo é identificar apresentações mais graves de COVID-19. Métodos: Pacientes consecutivamente admitidos à unidade de terapia intensiva foram submetidos à análise de clusters por meio de método de explorações sequenciais. Resultados: Analisamos os dados de 147 pacientes, com média de idade de 56 ± 16 anos e Simplified Acute Physiological Score 3 de 72 ± 18, dos quais 103 (70%) demandaram ventilação mecânica e 46 (31%) morreram na unidade de terapia intensiva. A partir do algoritmo de análise de clusters, identificaram-se dois grupos bem definidos, com base na frequência cardíaca máxima [Grupo A: 104 (IC95% 99 - 109) batimentos por minuto versus Grupo B: 159 (IC95% 155 - 163) batimentos por minuto], frequência respiratória máxima [Grupo A: 33 (IC95% 31 - 35) respirações por minuto versus Grupo B: 50 (IC95% 47 – 53) respirações por minuto] e na temperatura corpórea máxima [Grupo A: 37,4 (IC95% 37,1 - 37,7) ºC versus Grupo B: 39,3 (IC95% 39,1 - 39,5)ºC] durante o tempo de permanência na unidade de terapia intensiva, assim como a proporção entre a pressão parcial de oxigênio no sangue e a fração inspirada de oxigênio quando da admissão à unidade de terapia intensiva [Grupo A: 116 (IC95% 99 - 133) mmHg versus Grupo B: 78 (IC95% 63 - 93) mmHg]. Os subfenótipos foram distintos em termos de perfis inflamatórios, disfunções orgânicas, terapias de suporte, tempo de permanência na unidade de terapia intensiva e mortalidade na unidade de terapia intensiva (com proporção de 4,2 entre os grupos).

Conclusão: Nossos achados, baseados em dados clínicos universalmente disponíveis, revelaram dois subfenótipos distintos, com diferentes evoluções de doença. Estes resultados podem ajudar os profissionais de saúde na alocação de recursos e seleção de pacientes para teste de novas terapias.

Descritores: COVID-19; SARS-CoV-2; Análise de clusters; Algoritmos; Fenótipos; Unidades de terapia intensiva
Nos pacientes com síndrome do desconforto respiratório agudo (SDRA), dados clínicos, laboratoriais e inflamatórios são capazes de identificar os subfenótipos de quadros mais graves e,\(^{(3,5)}\) talvez, orientar o suporte respiratório.\(^{(6)}\) Pacientes com COVID-19 compartilham alguns aspectos, predominantemente laboratoriais, que podem identificar os casos mais graves.\(^{(7,8)}\) Apesar da grande quantidade de publicações recentes relacionadas à COVID-19, esta é ainda uma doença nova, e há falta de informações clínicas relacionadas à sua evolução. Mais ainda, a obtenção rápida de informações beira-leito é crítica para a tomada de decisões.

Assim, o objetivo deste estudo foi identificar se há características clínicas, quando da admissão na UTI e durante a estadia na mesma, que podem ajudar na identificação precoce dos pacientes portadores de apresentações mais graves de COVID-19.

MÉTODOS

Este é um estudo de coorte retrospectiva de pacientes críticos com COVID-19. Os dados foram obtidos a partir de uma base de dados e colhidos prospectivamente entre 19 de março de 2020 e 3 de agosto de 2020, derivados de uma UTI com 12 leitos de um hospital acadêmico terciário em São Paulo (SP). O Comitê de Ética em Pesquisa do Hospital das Clínicas da Universidade de São Paulo aprovou o protocolo do estudo (número 107.443), dispensando a necessidade de se obter assinatura de um Termo de Consentimento Livre e Esclarecido, em razão da natureza observacional do estudo.

Incluíram-se nesta análise todos os pacientes admitidos à UTI com COVID-19 suspeita ou confirmada. Foram excluídos os pacientes nos quais a suspeita de COVID-19 era baixa e cujos resultados dos exames de transcrição reversa seguida de reação em cadeia de polimerase (RT-PCR), sorologia para o coronavírus da síndrome respiratória aguda grave 2 (SARS-CoV-2) e/ou tomografia de tórax não foram sugestivos da doença.

Tratamento dos pacientes

Durante a permanência na UTI, os pacientes receberam suporte orgânico de acordo com a melhor evidência atual, sem uso de antibióticos (exceto em caso de elevada suspeita ou confirmação de coinfecção ou superinfecção),\(^{(9)}\) assim como não se utilizaram fármacos antivirais (exceto em protocolos de pesquisa).\(^{(10)}\) Contudo, antes da transferência, no atendimento de emergência, a maioria dos pacientes recebeu pelo menos uma dose de antimicrobianos – principalmente ceftriaxona, azitromicina e/ou oseltamivir. Realizou-se profilaxia para tromboembolismo com uso de 40mg de enoxaparina ou 15.000 UI de heparina não fracionada.\(^{(11,12)}\) Corticosteroides foram utilizados, como metilprednisolona 1 - 2mg/kg/dia por 14 dias, com desmame de até 28 dias.\(^{(13-16)}\) Tanto a ventilação mecânica protetora, quanto a posição prona foram utilizados conforme a descrição clássica.\(^{(17,18)}\) O uso da driving pressure só foi feito ocasionalmente para titulação da pressão expiratória positiva final (PEEP) em alguns pacientes, porém não como uma meta a beira-leito.\(^{(19)}\) Os pacientes só foram intubados em razão de hipoxemia ou desconforto respiratório graves, de forma que nenhum deles recebeu intubação precoce para evitar lesão pulmonar auto-inflingida.\(^{(20)}\) Só se utilizou bloqueio neuromuscular na presença de assincronia grave ou dispneia (“fome de ar”).\(^{(21)}\) O balanço hídrico acumulado foi direcionado para a meta de zero assim que possível.\(^{(22)}\) Utilizaram-se corticosteroides em quase todos os pacientes.\(^{(16,23,24)}\) Em razão dos grandes ônus em termos humanos e econômicos, a oxigenação por membrana extracorpórea (ECMO) só foi empregada em pacientes com hipoxemia grave (relação entre a pressão parcial de oxigênio no sangue e a fração inspirada de oxigênio - PaO\(_2/\text{FiO}_2\) - persistentemente abaixo de 300mmHg, a despeito das manobras de resgate), sob ventilação mecânica por até 7 dias, com idade inferior a 60 anos e sem comorbidades graves. Não se utilizou ECMO como tratamento de hiperacapnia refratária, tendo sido a ventilação por pressão positiva de alta frequência (HFPPV) adotada frequentemente. Esses critérios para ECMO divergem dos estabelecidos na literatura atual,\(^{(25,26)}\) porém foram adaptados para utilização nos quadros mais graves da doença durante o período pandêmico.

Variáveis analisadas

Utilizou-se a análise de clusters para caracterizar e agregar os pacientes. A seleção das variáveis para o procedimento se baseou em simplicidade clínica, disponibilidade e baixo custo. Assim, optou-se pela inclusão de sinais vitais, especificamente, frequência cardíaca (FC), frequência respiratória (FR) e temperatura corpórea, sendo esses dados colhidos a cada 2 horas durante todo o tempo de permanência na UTI. Além disso, também se utilizou para a análise a PaO\(_2/\text{FiO}_2\) quando da admissão à UTI. Após a aplicação do método, os dados de disfunções de órgãos, terapias de suporte orgânico e o desfecho clínico foram comparados entre os grupos. O nível de creatinina foi avaliado pela variação entre o pior valor documentado e o inicial, almejando à correção parcial do valor encontrado de creatinina para eventual comprometimento renal crônico preexistente.
Análise estatística

Os dados quantitativos foram apresentados como a média ± desvio-padrão, com exceção do tempo, em dias, de permanência na UTI e sob ventilação mecânica, que foram apresentados como mediana [25° percentil e 75° percentil]. As comparações entre sobreviventes e não sobreviventes foram realizadas com o teste t, assumindo variâncias iguais, com o teste de Mann-Whitney, teste do qui-quadrado, ou teste exato de Fisher, conforme apropriado. Os quatro indicadores mencionados formaram o substrato para a análise de clusters. Esses indicadores foram testados e selecionados em combinações individuais até uma clara separação visual (gráfica) em diferentes grupos de médias k. Adoptou-se padrãoização utilizando escores Z para minimizar os vieses por diferenças de escala. Aplicou-se o método de maximização da expectativa por meio do algoritmo de clusters da Microsoft, realizado com o programa Power BI, em uma abordagem multifásica, e o número de conglomerados (k) foi definido por dois sistemas distintos, automaticamente pelo algoritmo do programa e pela predição por meio do método do cotovelo. Foi realizada, então, uma análise combinatoria das quatro escalas de mensuração. Considerando-se o mesmo conjunto de dados, diferentes condições iniciais podem gerar agrupamentos consideravelmente dissimilares, o que sustenta esse processo multifacetado. Mais ainda, uma subanálise trinomial permitiu a elaboração de diagramas de dispersão, que favorecem a percepção visual, uma forma intuitiva de distinguir e validar os grupos. Subsequentemente, os achados do método foram apreciados e, então, combinados, assegurando-se a não superposição de dados. O conjunto resultante foi adicionalmente refinado pela preservação apenas dos pontos de dados constantes em todos os modelos, para potencializar a solidez dos grupos. Por outro lado, essa estratégia teve como custo a diminuição do tamanho da amostra. Finalmente, a qualidade interna do grupo foi certificada por uma nova análise de clusters. A PaO2/FiO2 mínima por ocasião da admissão foi mais baixa no Grupo B (Grupo A: 116 [IC95% 99 - 133] mmHg versus Grupo B: 159 [IC95% 155 - 163] mmHg), assim como a FR máxima (Grupo A: 50 [IC95% 47 - 53] respirações por minuto versus Grupo B: 159 [IC95% 155 - 163] batimentos por minuto) e a temperatura (Grupo A: 37,4 (IC95% 37,1 - 37,7)ºC versus Grupo B: 39,3 [IC95% 39,1 - 39,5]ºC) foram mais altas durante a permanência na UTI. Todas as métricas referentes ao suporte respiratório, cardiovascular e renal diferiram entre os grupos, tanto em frequência quanto em duração, com maior necessidade de intervenções no Grupo B. As contagens de leucócitos no Grupo B estavam mais altas durante a permanência na UTI. Toda a gama de resultados referentes aos próprios parâmetros que definiram os clusters apresenta as falências de órgãos e suporte na UTI; no grupo de sobreviventes, observou-se Sequential Organ Failure Assessment (SOFA) máximo mais baixo, exceto quanto ao domínio hematológico, assim como menores níveis de ventilação mecânica invasiva, menor uso de bloqueio neuromuscular, menor utilização da posição prona, menor uso de vasopressores, menor uso de terapia de substituição renal e menor uso de antibióticos. Os desfechos na UTI são apresentados na tabela 3; 46 pacientes não sobreviveram (31%).

O estudo de clusters levou a dois conjuntos bem definidos (Figura 1 e Tabela 4), nomeados aqui como Grupo A (n = 22) e Grupo B (n = 35), com aspectos demográficos comparáveis, porém aspectos clínicos e laboratoriais contrastantes. Em cinco pacientes de cada grupo, faltaram dados referentes ao dimero-D e em três e seis pacientes houve falta de dados sobre PCR, respectivamente, nos Grupos A e B. De grande relevância foram as disparidades referentes aos próprios parâmetros que definiram os clusters. A PaO2/FiO2 mínima por ocasião da admissão foi mais baixa no Grupo B (Grupo A: 116 [IC95% 99 - 133] mmHg versus Grupo B: 159 [IC95% 155 - 163] mmHg), assim como a FR máxima (Grupo A: 50 [IC95% 47 - 53] respirações por minuto versus Grupo B: 159 [IC95% 155 - 163] batimentos por minuto) e a temperatura (Grupo A: 37,4 (IC95% 37,1 - 37,7)ºC versus Grupo B: 39,3 [IC95% 39,1 - 39,5]ºC) foram mais altas durante a permanência na UTI. Todas as métricas referentes ao suporte respiratório, cardiovascular e renal diferiram entre os grupos, tanto em frequência quanto em duração, com maior necessidade de intervenções no Grupo B. As contagens de leucócitos no Grupo B estavam mais altas durante a permanência na UTI. Toda a gama de resultados referentes aos próprios parâmetros que definiram os clusters apresenta as falências de órgãos e suporte na UTI; no grupo de sobreviventes, observou-se Sequential Organ Failure Assessment (SOFA) máximo mais baixo, exceto quanto ao domínio hematológico, assim como menores níveis de ventilação mecânica invasiva, menor uso de bloqueio neuromuscular, menor utilização da posição prona, menor uso de vasopressores, menor uso de terapia de substituição renal e menor uso de antibióticos. Os desfechos na UTI são apresentados na tabela 3; 46 pacientes não sobreviveram (31%).

RESULTADOS

Foram obtidos 147 pacientes consecutivos, dos quais três foram excluídos após confirmação de outros diagnósticos. A tabela 1 apresenta as características gerais dos pacientes, estratificados segundo a sobrevivência. Os sobreviventes apresentaram níveis significativamente mais baixos do Simplified Acute Physiological Score 3 (SAPS3). Apesar da elevada suspeita de COVID-19, o teste de RT-PCR só foi positivo em 101 pacientes (69%). A tabela 2 apresenta as falências de órgãos e suporte na UTI; no grupo de sobreviventes, observou-se Sequential Organ Failure Assessment (SOFA) máximo mais baixo, exceto quanto ao domínio hematológico, assim como menor necessidade de ventilação mecânica invasiva, menor uso de bloqueio neuromuscular, menor utilização da posição prona, menor uso de vasopressores, menor uso de terapia de substituição renal e menor uso de antibióticos. Os desfechos na UTI são apresentados na tabela 3; 46 pacientes não sobreviveram (31%).
Tabela 1 - Características gerais do grupo total de pacientes, estratificado por sobrevivência

Características	Grupo total	Sobreviventes	Não sobreviventes	Valor de p*
	n = 147	n = 101	n = 46	
Idade (anos)	56 ± 15	54 ± 15	62 ± 14	0,002
Sexo masculino	86 (59)	56 (55)	30 (65)	0,350
SAPS3	72 ± 18	67 ± 18	82 ± 15	< 0,001
ECOG	1,42 ± 1,16	1,36 ± 1,19	1,57 ± 1,07	0,287

Gasometria na admissão

- PaO₂/FiO₂ (mmHg)
 - < 100mmHg: 62 (42) vs 32 (32) vs 30 (65)
 - 100 a < 200mmHg: 51 (35) vs 39 (39) vs 12 (26)
 - 200 a < 300mmHg: 14 (10) vs 11 (11) vs 3 (7)
 - ≥ 300mmHg: 6 (4) vs 6 (6) vs 0 (0)
- Lactato (mmol/L)
 - < 1,70 ± 1,11 vs 3,42 ± 4,10: 62 (42) vs 32 (32) vs 30 (65)
 - 100 a < 200mmHg: 51 (35) vs 39 (39) vs 12 (26)
 - 200 a < 300mmHg: 14 (10) vs 11 (11) vs 3 (7)
 - ≥ 300mmHg: 6 (4) vs 6 (6) vs 0 (0)

- pH: 7,36 ± 0,11 vs 7,39 ± 0,08 vs 7,31 ± 0,13: 62 (42) vs 32 (32) vs 30 (65)
- PaCO₂ (mmHg): 44 ± 13 vs 41 ± 10 vs 50 ± 16: 62 (42) vs 32 (32) vs 30 (65)
- SBE (mEq/L): - 1,17 ± 4,63 vs - 0,28 ± 3,88 vs - 2,91 ± 5,45: 62 (42) vs 32 (32) vs 30 (65)

- Insuficiência respiratória: 122 (83) vs 81 (80) vs 41 (89)
- Sepse/choque séptico: 14 (10) vs 9 (9) vs 5 (11)
- Choque cardiogênico: 2 (1) vs 2 (2) vs 0 (0)
- Síndromes neurológicas: 4 (3) vs 4 (4) vs 0 (0)
- Insuficiência cardíaca aguda: 2 (1) vs 2 (2) vs 0 (0)
- Insuficiência renal aguda: 2 (1) vs 2 (2) vs 0 (0)
- Pós-operatório de alto risco: 1 (1) vs 1 (1) vs 0 (0)

Comorbidades

- Hipertensão: 88 (60) vs 54 (53) vs 34 (74)
- Insuficiência cardíaca: 23 (16) vs 17 (17) vs 6 (13)
- Diabetes: 43 (29) vs 27 (27) vs 16 (35)
- Neoplasia: 16 (11) vs 10 (10) vs 6 (13)
- Tabagismo: 15 (10) vs 8 (8) vs 7 (15)
- Insuficiência renal crônica: 11 (7) vs 9 (9) vs 2 (4)
- AVC: 2 (1) vs 2 (2) vs 0 (0)
- DPSC: 6 (4) vs 2 (2) vs 4 (8)
- AIDS: 3 (2) vs 3 (3) vs 0 (0)

*SAPS3 - Simplified Acute Physiological Score 3; ECOG - Eastern Cooperative Oncology Group; PaO₂/FiO₂ - pressão parcial de oxigênio no sangue/fração inspirada de oxigênio; PaCO₂ - pressão parcial de dióxido de carbono no sangue arterial; SBE - excesso de base; UTI - unidade de terapia intensiva; AVC - acidente vascular cerebral; DPSC - doença pulmonar obstructiva crônica. * Os valores de p resultam das comparações entre sobreviventes e não sobreviventes. Resultados expressos como média ± desvio-padrão ou n (%).
Tabela 2 - Disfunções de órgãos e suporte para o grupo total de pacientes e estratificado por sobrevivência

Características	Grupo total	Sobreviventes	Não sobreviventes	Valor de p*
	n = 147	n = 101	n = 46	
SDFA máximo durante a permanência na UTI†				
Respiratório	3,16 ± 1,03	2,87 ± 1,07	3,81 ± 0,50	< 0,001
Cardiovascular	2,28 ± 1,81	1,72 ± 1,78	3,56 ± 1,12	< 0,001
Renal	2,26 ± 1,70	1,70 ± 1,63	3,51 ± 1,05	< 0,001
Neurológico	2,48 ± 1,68	1,89 ± 1,66	3,81 ± 0,70	< 0,001
Hepático	0,45 ± 0,89	0,21 ± 0,54	1,00 ± 1,23	< 0,001
Hematológico	0,29 ± 0,68	0,23 ± 0,64	0,44 ± 0,73	0,086
Suporte respiratório				
Ventilação mecânica	103 (70)	61 (60)	42 (91)	< 0,001
Ventilação mecânica não invasiva	55 (37)	40 (40)	15 (33)	0,529
Bloqueio neuromuscular	55 (37)	22 (22)	33 (72)	< 0,001
Cânula nasal de alto fluxo	31 (21)	22 (22)	9 (20)	0,930
Posição prona	26 (18)	13 (13)	13 (28)	0,042
Inalação de óxido nítrico	7 (5)	3 (3)	4 (9)	0,274
ECMO	5 (3)	1 (1)	4 (9)	0,058
Suporte não respiratório				
Cuidados paliativos < 48 horas‡	23 (16)	6 (6)	17 (37)	< 0,001
Vasopressores	84 (57)	43 (43)	41 (89)	< 0,001
Inotrópicos	9 (6)	5 (5)	4 (9)	0,612
Diálise lenta de baixa eficiência	21 (14)	13 (13)	8 (17)	0,637
Terapia de substituição renal continua	17 (12)	5 (5)	12 (26)	0,001
Antibióticos§	30 (20)	10 (10)	20 (43)	< 0,001
Sinais vitais e glicemia durante a permanência na UTI				
Frequência cardíaca máxima (batimentos/minuto)	131 ± 23	127 ± 23	141 ± 21	0,001
Pressão arterial média mínima (mmHg)	56 ± 19	58 ± 20	51 ± 16	0,036
Frequência respiratória máxima (respirações/minuto)	46 ± 13	44 ± 13	50 ± 10	0,005
Saturação periférica de oxigênio mínima (%)	76 ± 14	78 ± 14	73 ± 11	0,021
Temperatura corpórea máxima (°C)	38,31 ± 0,90	38,14 ± 0,85	38,86 ± 0,91	0,001
Glicemia mínima (mg/dL)	68 ± 28	68 ± 24	67 ± 36	0,834
Glicemia máxima (mg/dL)	242 ± 131	211 ± 109	308 ± 151	< 0,001
Dados laboratoriais¶				
Dímero-D plasmático máximo (ng/mL)	14.271 ± 28.588	8.310 ± 18.539	26.017 ± 39.686	0,003
LDH plasmático máximo (U/L)	640 ± 690	502 ± 275	925 ± 1095	0,003
Contagem mínima de leucócitos (células/mm3)	714 ± 459	822 ± 507	507 ± 246	< 0,001

SOFA - Sequential Organ Failure Assessment; UTI - unidade de terapia intensiva; ECMO - oxigenação por membrana extracorpórea; LDH - desidrogenase láctica. *Os valores de p resultam das comparações entre sobreviventes e não sobreviventes; † Valores correspondentes ao Sequential Organ Failure Assessment máximo para cada dimensão do escore Sequential Organ Failure Assessment, extraído diariamente; ‡ Pacientes em terapia paliativa exclusiva dentro das primeiras 48 horas de permanência na unidade de terapia intensiva; § esses números incluem todos os antibióticos utilizados durante a permanência na unidade de terapia intensiva para coinfeções ou superinfecções; ¶ os dados de exames laboratoriais foram obtidos em qualquer momento durante a permanência na unidade de terapia intensiva. Resultados expressos como média ± desvio-padrão ou n (%).

Tabela 3 - Desfechos na unidade de terapia intensiva para o grupo total de pacientes e estratificado por sobrevivência

Características	Grupo total	Sobreviventes	Não sobreviventes	Valor de p*
	n = 147	n = 101	n = 46	
Tempo de permanência na UTI (dias)	7 [3 - 13]	6 [3 - 12]	9 [5 - 14]	0,072
Dias sob ventilação mecânica invasiva	5 [3 - 9]	4 [0 - 7]	7 [3 - 11]	0,009
Mortalidade na UTI	46 (31)	---	---	---

UTI - unidade de terapia intensiva. * Estes valores de p resultam das comparações entre sobreviventes e não sobreviventes. Resultados expressos por mediana (25º percentil - 75º percentil) ou n (%).
Subfenótipos baseados em dados clínicos de beira-leito de pacientes críticos com COVID-19

Figura 1 - Representação gráfica da conglomeração multifásica.

Tabela 4 - Características dos grupos

Características	Grupo A	Grupo B	Valor de p*
	n = 22/ n = 10	n = 35/n = 30	
Idade (anos)	58 ± 16/58 ± 15	55 ± 17/56 ± 15	0,461/0,226
Sexo masculino	15 (68)/7 (70)	23 (66)/19 (63)	0,923/0,702
SAPS3	65 ± 17/65 ± 17	82 ± 16/81 ± 15	< 0,001/0,275
ECOG	1,68 ± 1,36/1,68 ± 1,35	1,15 ± 1,08/1,03 ± 1,02	0,108/0,370
Comorbidades			
Hipertensão	13 (59)/7 (70)	21 (60)/18 (60)	0,834/0,850
Diabetes	5 (23)/2 (20)	13 (37)/11 (37)	0,397/0,559
Obesidade	3 (14)/2 (30)	7 (20)/6 (20)	0,797/0,827
Insuficiência cardíaca	5 (23)/1 (10)	4 (11)/3 (10)	0,444/1,000
DPOC/asma	2 (9)/1 (10)	3 (9)/2 (7)	0,679/0,729
Tabagismo	1 (5)/1 (10)	2 (6)/2 (7)	0,677/0,729
Neoplasia	4 (18)/3 (30)	2 (6)/1 (3)	0,294/0,068
Insuficiência renal crônica	0 (0)	2 (6)/2 (7)	0,688/0,402
Imunossupressão	0 (0)	3 (9)/3 (10)	0,423/0,729
Suporte respiratório			
Cânula nasal de alto fluxo (nº de pacientes); (dias)	2 (9)/0 (0 - 0)	9 (26)/0 (0 - 1)	0,229; 0,058
	1 (10)/0 (0 - 0)	8 (27)/0 (0 - 1,5)	0,512; 0,194
Ventilação mecânica não invasiva (nº de pacientes); (dias)	5 (23)/0 (0 - 0)	18 (51)/1 (0 - 4)	0,061; 0,014
	3 (30)/0 (0 - 1,5)	16 (53)/1 (0 - 4)	0,361; 0,206
Ventilação mecânica (nº de pacientes); (dias)	8 (38)/0 (0 - 2)	35 (100)/7 (5 - 13,5)	< 0,001; < 0,001
	4 (40)/0 (0 - 1,8)	30 (100)/8 (5 - 13,3)	< 0,002; < 0,001
Necessidade de reintubação (nº de pacientes); (ocorrências)	0 (0)/0	18 (51)/0,66 ± 0,76	< 0,001; < 0,001
	16 (53)/0,63 ± 0,67	0,009; 0,005	
Bloqueio neuromuscular (nº de pacientes); (dias)	4 (18)/0,18 ± 0,39	26 (74)/1,89 ± 2,29	< 0,001; 0,001

Continua...
Suporte não respiratório

Posição prona (nº de pacientes); (dias)	0 (0); 0	15 (43); 1,00 ± 1,39	0,001; 0,001
Inalação de óxido nítrico (nº de pacientes); (dias)	0 (0); 0	5 (14); 0,34 ± 0,94	0,169; 0,093
ECMO (nº de pacientes); (dias)	1 (5); 0,05 ± 0,21	2 (6); 0,43 ± 2,08	0,677; 0,394

Vasopressores (nº de pacientes); (dias)

0 (0); 0	15 (43); 1,00 ± 1,39	0,001; 0,001
5 (14); 0,34 ± 0,94	0,169; 0,093	

Inalação de óxido nítrico (nº de pacientes); (dias)

| 1 (5); 0,05 ± 0,21 | 2 (6); 0,43 ± 2,08 | 0,677; 0,394 |

Outros suportes

ECMO (nº de pacientes); (dias)

| 1 (10); 0,10 ± 0,32 | 1 (3); 0,40 ± 2,19 | 0,402; 0,671 |

Valores da oxigenação

PaO₂/FiO₂ (mmHg)

| 116 ± 40/114 ± 41 | 78 ± 44/78 ± 45 | 0,002/0,034 |

PaO₂/FiO₂ – categorias

< 100mmHg	8 (36)/4 (40)	28 (80)/25 (83)	0,002/0,025
100 a < 200mmHg	13 (59)/6 (60)	6 (17)/4 (13)	0,003/0,011
200 a < 300mmHg	1 (5)/0 (0)	1 (3)/1 (3)	0,688/0,559
≥ 300mmHg	0 (0)	0 (0)	

Sinais vitais durante a permanência na UTI

Frequência cardíaca máxima (batimentos/minuto)

| 104 ± 13/105 ± 12 | 159 ± 11/159 ± 11 | < 0,001/< 0,001 |

Frequência respiratória máxima (respirações/minuto)

| 33 ± 5/35 ± 5 | 50 ± 10/49 ± 8 | < 0,001/< 0,001 |

Temperatura corpórea máxima (°C)

| 37,4 ± 0,8/37,7 ± 1,0 | 39,3 ± 0,6/39,3 ± 0,7 | < 0,001/< 0,001 |

Dados laboratoriais‡

Contagem máxima de leucócitos (células/mm³)

| 13.906 ± 8.089/15.883 ± 9.765 | 25.788 ± 10.828/25.701 ± 11.007 | < 0,001/0,017 |

Proteína C-reactiva máxima (mg/L)

| 147 ± 123/163 ± 161 | 245 ± 154/257 ± 158 | 0,025/0,160 |

Dímero-D plasmático máximo (ng/mL)

| 8.833 ± 15.993/13.976 ± 21.925 | 25.408 ± 40.260/27.608 ± 42.590 | 0,112/0,394 |

SOFA máximo durante a permanência na UTI§

Respiratório	2,73 ± 1,12/3,40 ± 0,84	3,89 ± 0,32/3,90 ± 0,31	< 0,001/0,008
Cardiovascular	0,86 ± 1,55/1,20 ± 1,75	3,60 ± 1,14/3,57 ± 1,22	< 0,001/< 0,001
Renal	1,05 ± 1,68/1,40 ± 1,84	3,26 ± 1,15/3,27 ± 1,20	< 0,001/< 0,001
Neurológico	1,14 ± 1,42/1,50 ± 1,65	3,83 ± 0,62/3,83 ± 0,65	< 0,001/< 0,001
Hepático	0,23 ± 0,61/0,40 ± 0,84	0,94 ± 1,03/0,93 ± 1,05	0,005/0,154
Hematológico	0,27 ± 0,77/0,50 ± 1,08	0,49 ± 0,82/0,50 ± 0,86	0,331/1,000

Eventos trombóticos

| 4 (18)/2 (20) | 10 (29)/10 (33) | 0,568/0,690 |

Tempo de permanência na UTI (dias)

| 2 (1,25 - 3,75)/5 (2 - 6) | 13 (8 - 21)/15 (8 - 22) | < 0,001/0,006 |

Mortalidade na UTI

| 3 (14)/3 (30) | 20 (57)/16 (53) | 0,003/0,361 |

Referências

SAPS 3 - Simplified Acute Physiological Score 3; ECOG - Eastern Cooperative Oncology Group; DPOC - doença pulmonar obstrutiva crônica; ECMO - oxigenação por membrana extracorpórea; PaO₂/FiO₂ - pressão parcial de oxigênio no sangue/fração inspirada de oxigênio; UTI - unidade de terapia intensiva; SOFA - Sequential Organ Failure Assessment. Os dados em cinza refletem os achados no subgrupo de pacientes com COVID-19 confirmada por transcrição reversa seguida de reação em cadeia de polimerase. * Estes valores de p resultam das comparações entre sobreviventes e não sobreviventes; † esses números compreendem todos os antibióticos utilizados durante a permanência na unidade de terapia intensiva; ‡ esses dados laboratoriais foram obtidos a qualquer momento durante a permanência na unidade de terapia intensiva; § esses valores são o Sequential Organ Failure Assessment máximo extraído diariamente relativamente a cada dimensão do Sequential Organ Failure Assessment. Resultados expressos como média ± desvio-padrão ou n (%).
FC foi de 72 - 99 batimentos por minuto, da FR foi de 16 - 28 respirações por minuto e, quanto à temperatura, entre 35,5 e 37,0ºC. No Grupo B, as flutuações observadas foram de 92 - 126 batimentos por minuto, de 19 - 36 respirações por minuto e de 35,8 - 38,9ºC, respectivamente. Assumindo os limites superiores da faixa como o limite do Grupo A e levando em conta todo o conjunto de pacientes, apenas em 8,6% do tempo de observação a FC foi compatível com o subfenótipo do Grupo A. O mesmo aconteceu em 25,6% e 13,6% do tempo, respectivamente, para FR e temperatura (Figura 2). As interrelações entre os parâmetros também foram heterogêneas. As três variáveis se mantiveram concomitantemente em limiar compatível com o Grupo B em 60,3% do tempo observado, e em apenas 0,6% do tempo observado as três variáveis foram conjuntamente compatíveis com o Grupo A (Figura 2).

DISCUSSÃO

Considerando-se apenas os pacientes de UTI com COVID-19, a heterogeneidade persiste como um fenômeno acentuado. Na nossa coorte, observaram-se diversas diferenças clínicas e laboratoriais, relativas às características gerais, à falência orgânica e ao suporte a órgãos, entre os pacientes com COVID-19 grave que sobreviveram ou não à UTI. Entretanto, variáveis clínicas simples, como FC, FR e temperatura corpórea durante a permanência na UTI e PaO₂/FiO₂ na admissão à UTI, puderam distinguir dois subfenótipos diferentes de pacientes com COVID-19.

Algumas características dos pacientes foram diferentes entre sobreviventes e não sobreviventes quando da admissão à UTI, como SAPS3, idade, PaO₂/FiO₂, níveis de lactato e condição acidobásica; todos alinhados com a literatura atual.\(^{27-29}\)

Sistemas para prognosticar evolução desfavorável já foram propostos. Há diferentes modelos de predição de desfechos que levam em conta dados demográficos,\(^2\) dados laboratoriais\(^{22}\) e uma combinação de aspectos clínicos e radiológicos.\(^2\) Contudo, nenhum estudo se dedicou a explorar apenas dados clínicos obtidos junto ao leito. Dentro desse racional, também com base na premissa de diferentes evoluções da doença, clusters de subfenótipos de pacientes com COVID-19 foram relatados. A abordagem de Azoulay et al.\(^{2}\) incluiu análise de múltiplos parâmetros clínicos e laboratoriais, identificando achados condizentes com estudos de previsão do risco. O refinamento do processamento dos clusters resultou em um tamanho de amostra pequeno para ambos os grupos; de modo que essa técnica reduz a sensibilidade das características dos clusters, por outro lado acentuando sua especificidade.\(^{30}\)

É interessante observar que o tempo despendido com sinais vitais na faixa do Grupo A foi baixo, provavelmente em razão do menor tempo de permanência destes pacientes na UTI. Mais ainda, esse comportamento reforça a percepção de um grupo de pacientes com desfechos favoráveis.

A finalidade desta casuística, que estudou dados predominantemente clínicos, foi oferecer uma alternativa custo-efetiva para orientar a alocação de recursos e, eventualmente, ajudar na seleção de candidatos, para testar novas terapêuticas ou mesmo para a implantação de futuros tratamentos.
As limitações de nosso estudo incluem o tamanho da amostra, a fonte de pacientes em um único centro, a subjetividade que permeou a seleção de variáveis para os clusters, e a ausência de validação em uma coorte externa. Em compensação, nossa proposta foi construída de forma que a ampla heterogeneidade de recursos disponíveis nos diferentes centros não constituiu uma restrição para realização de ensaios prospectivos em populações diferentes ou maiores. Mais ainda, como a estratificação de pacientes é uma tarefa crítica na tomada de decisão clínica, elementos passíveis de se obter junto ao leito poderiam facilitar e tornar mais rápido o processo.

Outro ponto forte deste estudo é a considerável similaridade pré-mórbida entre os pacientes de ambos os grupos, minimizando, assim, a presença de fatores de confusão. Igualmente, a condição de um serviço terciário em hospital acadêmico, juntamente da grande diversidade sociocultural no Brasil e em São Paulo, pode ter contribuído para diminuir a sub-representação de subgrupos populacionais.

CONCLUSÃO

Este estudo identificou dois subfenótipos clinicamente distintos de pacientes com COVID-19, segundo a gravidade da doença. Valores máximos de frequência cardíaca, temperatura corpórea e frequência respiratória, bem como a proporção entre a pressão parcial de oxigênio no sangue e a fração inspirada de oxigênio na admissão à unidade de terapia intensiva foram variáveis passíveis de se obter junto ao leito, que podem ajudar a identificar os pacientes mais graves com COVID-19.

Contribuições dos autores

RR Ururahy: conceitualização, metodologia, análise formal, investigação e redação do manuscrito inicial; CA Gallo: metodologia, investigação e redação (revisão e edição); BAMP Besen: investigação e redação (revisão e edição); MT Carvalho: investigação e redação (revisão e edição); JM Ribeiro: investigação e redação (revisão e edição); R Zigaib: investigação e redação (revisão e edição); PV Mendes: investigação e redação (revisão e edição); M Park: conceitualização, metodologia, análise formal, investigação, redação (revisão e edição), e administração do projeto.

DISPONIBILIDADE DE DADOS E MATERIAIS

Os dados que dão suporte aos achados deste estudo estão disponíveis no banco de dados da Unidade de Terapia Intensiva do Hospital das Clínicas da Universidade de São Paulo. Há restrições com relação à disponibilidade destes dados, que foram utilizados sob autorização para o presente estudo e, assim, não estão publicamente disponíveis. Contudo, os dados estão disponíveis com os autores em caso de solicitações razoáveis, condicionado à permissão pelo Comitê de Ética em Pesquisa da instituição.

ABSTRACT

Objective: To identify more severe COVID-19 presentations.

Methods: Consecutive intensive care unit-admitted patients were subjected to a stepwise clustering method.

Results: Data from 147 patients who were on average 56 ± 16 years old with a Simplified Acute Physiological Score 3 of 72 ± 18, of which 103 (70%) needed mechanical ventilation and 46 (31%) died in the intensive care unit, were analyzed. From the clustering algorithm, two well-defined groups were found based on maximal heart rate [Cluster A: 104 (95%CI 99 - 109) beats per minute versus Cluster B: 159 (95%CI 155 - 163) beats per minute], maximal respiratory rate [Cluster A: 33 (95%CI 31 - 35) breaths per minute versus Cluster B: 50 (95%CI 47 - 53) breaths per minute], and maximal body temperature [Cluster A: 37.4 (95%CI 37.1 - 37.7)°C versus Cluster B: 39.3 (95%CI 39.1 - 39.5)°C] during the intensive care unit stay, as well as the oxygen partial pressure in the blood over the oxygen inspiratory fraction at intensive care unit admission [Cluster A: 116 (95%CI 99 - 133) mmHg versus Cluster B: 78 (95%CI 63 - 93) mmHg]. Subphenotypes were distinct in inflammation profiles, organ dysfunction, organ support, intensive care unit length of stay, and intensive care unit mortality (with a ratio of 4.2 between the groups).

Conclusion: Our findings, based on common clinical data, revealed two distinct subphenotypes with different disease courses. These results could help health professionals allocate resources and select patients for testing novel therapies.

Keywords: COVID-19; SARS-CoV-2; Cluster analysis; Algorithms; Phenotypes; Intensive care units
Subfenótipos baseados em dados clínicos de beira-leito de pacientes críticos com COVID-19

REFERÊNCIAS

1. Rieg S, von Cube M, Kalbhenn J, Uztolóno S, Pernice K, Bechet L, Baur J, Lang CN, Wagner D, Wolkewitz M, Kern WV, Bleuer P. COVID UK Study Group. COVID-19 in-hospital mortality and mode of death in a dynamic and non-restricted tertiary care model in Germany. PLoS One. 2020;15(11):e0242127.

2. Azoulay E, Farthouk M, Darmon M, Géri G, Vioriot G, Dupont T, et al. Increased mortality in patients with severe SARS-CoV-2 infection admitted within seven days of disease onset. Intensive Care Med. 2020;46(9):1714-22.

3. Kitsos GD, Yang L, Manatikis DV, Nouraei M, Evankovich J, Bian W, et al. Host-response subphenotypes offer prognostic enrichment in patients with or at risk for acute respiratory distress syndrome. Crit Care Med. 2019;47(12):1724-34.

4. Spadaro S, Park M, Turini C, Tunstall T, Thwaites R, Mauri T, et al. Biomarkers for acute respiratory distress syndrome and prospects for personalized medicine. J Inflamm (Lond). 2019;16:1.

5. Callejo CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA; NIH/NIARDS Network. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med. 2014;2(8):611-20.

6. Sinha P, Delucchi KL, McAuley DF, O’Kane CM, Matthay MA, Callejo CS. Development and validation of parsimonious algorithms to classify acute respiratory distress syndrome phenotypes: a secondary analysis of randomised controlled trials. Lancet Respir Med. 2020;8(3):247-57.

7. Azoulay E, Zafrani L, Mirouze A, Langliné E, Darmon M, Chevret S. Clinical phenotypes of critically ill COVID-19 patients. Intensive Care Med. 2020;46(8):1651-2.

8. Lin SH, Zhao YS, Zhou DX, Zhou FX, Xu F. Coronavirus disease 2019 (COVID-19): cytokine storms, hyper-inflammatory phenotypes, and acute respiratory distress syndrome. Genes Dis. 2020;7(4):520-7.

9. Furtado RH, Benwanger D, Fonseca HA, Cordeiro FD, Feraz LR, Lapa MG, Zamperi FG, Veiga VC, Azvedo LGP, Lopes RD, Avezum A, Manoel ALO, Piza FMT, Martins PA, Lisboa TC, Pereira AJ, Olivia GB, Dantas VCS, Milan EP, Gebara OCE, Amorim AR, Oliveira MB, Soares RVP, Moia DDF, Piano LPA, Castillo K, Momesso ARG, Detrano GPT, Rio LV, Neto AS, Machado FR, Calvacante AL, COALITION COVID-19 Brazil II Investigators. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): a randomised clinical trial. Lancet. 2020;396(10256):959-67.

10. Calvacante AL, Zamperi FG, Rosa RG, Azvedo LC, Veiga VC, Avezum A, Damiani LP, Marcondes A, Kawano-Dourado L, Lisboa T, Junqueira DLM, de Barros E Silva PGM, Tramajus L, Abreu-Silva EO, Laranjeira LN, Soares ET, Achenine LS, Pereira AJ, Freitas FN, Barata GGB, Dantas VCS, Milan EP, Gebara OCE, Amorim AR, Oliveira MB, Soares RVP, Moia DDF, Piano LPA, Castillo K, Momesso ARG, Detrano GPT, Rio LV, Neto AS, Machado FR, Calvacante AL, COALITION COVID-19 Brazil II Investigators. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N Engl J Med. 2020;383(21):2041-52.

11. Schümann HJ, Kushman C, Burnett A, Kim SR, Beyer-Westendorf J, Schoenfeld D, Thompson BT, Hayden D, de Brito Morais DC, Reis BT, Linsell L, et al. Comparison of two fluid-management strategies for acute respiratory distress syndrome. N Engl J Med. 2020;382(4):381-90.

12. Schümann HJ, Kushner C, Burnett A, Kim SR, Beyer-Westendorf J, Schoenfeld D, Thompson BT, Hayden D, de Brito Morais DC, Reis BT, Linsell L, et al. Comparison of two fluid-management strategies for acute respiratory distress syndrome. N Engl J Med. 2020;382(4):381-90.

13. Furtado RH, Benwanger D, Fonseca HA, Cordeiro FD, Feraz LR, Lapa MG, Zamperi FG, Veiga VC, Azvedo LGP, Lopes RD, Avezum A, Manoel ALO, Piza FMT, Martins PA, Lisboa TC, Pereira AJ, Olivia GB, Dantas VCS, Milan EP, Gebara OCE, Amorim AR, Oliveira MB, Soares RVP, Moia DDF, Piano LPA, Castillo K, Momesso ARG, Detrano GPT, Rio LV, Neto AS, Machado FR, Calvacante AL, COALITION COVID-19 Brazil II Investigators. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): a randomised clinical trial. Lancet. 2020;396(10256):959-67.

14. Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino JC, Teixeira C, Rezende V, Martinez A, Luciano PM, Schettino G, Soares M; ERICC Investigator Group. Extracorporeal membrane oxygenation for severe acute respiratory failure in adult patients: a systematic review and meta-analysis. Intensive Care Med. 2005;31(10):1345-55.

15. Moreira KD, Denard R, Stockto R, Figueiredo E, Costa EL, Lopes CL, et al. Differences in acid-base behavior between intensive and nonhospitalized medical patients. Blood Adv. 2018;2(22):3198-225.

16. Schümann HJ, Kushner C, Burnett A, Kim SR, Beyer-Westendorf J, Schoenfeld D, Thompson BT, Hayden D, de Brito Morais DC, Reis BT, Linsell L, et al. Comparison of two fluid-management strategies for acute respiratory distress syndrome. N Engl J Med. 2020;382(4):381-90.

17. Calvacante AL, Zamperi FG, Rosa RG, Azvedo LC, Veiga VC, Avezum A, Damiani LP, Marcondes A, Kawano-Dourado L, Lisboa T, Junqueira DLM, de Barros E Silva PGM, Tramajus L, Abreu-Silva EO, Laranjeira LN, Soares ET, Achenine LS, Pereira AJ, Freitas FN, Barata GGB, Dantas VCS, Milan EP, Gebara OCE, Amorim AR, Oliveira MB, Soares RVP, Moia DDF, Piano LPA, Castillo K, Momesso ARG, Detrano GPT, Rio LV, Neto AS, Machado FR, Calvacante AL, COALITION COVID-19 Brazil II Investigators. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N Engl J Med. 2020;383(21):2041-52.

18. Schümann HJ, Kushner C, Burnett A, Kim SR, Beyer-Westendorf J, Schoenfeld D, Thompson BT, Hayden D, de Brito Morais DC, Reis BT, Linsell L, et al. Comparison of two fluid-management strategies for acute respiratory distress syndrome. N Engl J Med. 2020;382(4):381-90.

19. Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino JC, Teixeira C, Rezende V, Martinez A, Luciano PM, Schettino G, Soares M; ERICC Investigator Group. Extracorporeal membrane oxygenation for severe acute respiratory failure in adult patients: a systematic review and meta-analysis of current evidence. J Crit Care. 2013;28(6):998-1005.

20. Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino JC, Teixeira C, Rezende V, Martinez A, Luciano PM, Schettino G, Soares M; ERICC Investigator Group. Extracorporeal membrane oxygenation for severe acute respiratory failure in adult patients: a systematic review and meta-analysis of current evidence. J Crit Care. 2013;28(6):998-1005.

21. Moreira KD, Denard R, Stockto R, Figueiredo E, Costa EL, Lopes CL, et al. Differences in acid-base behavior between intensive and nonhospitalized medical patients. Blood Adv. 2018;2(22):3198-225.

22. Schümann HJ, Kushner C, Burnett A, Kim SR, Beyer-Westendorf J, Schoenfeld D, Thompson BT, Hayden D, de Brito Morais DC, Reis BT, Linsell L, et al. Comparison of two fluid-management strategies for acute respiratory distress syndrome. N Engl J Med. 2020;382(4):381-90.

23. Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino JC, Teixeira C, Rezende V, Martinez A, Luciano PM, Schettino G, Soares M; ERICC Investigator Group. Extracorporeal membrane oxygenation for severe acute respiratory failure in adult patients: a systematic review and meta-analysis of current evidence. J Crit Care. 2013;28(6):998-1005.

24. Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, Iapichino JC, Teixeira C, Rezende V, Martinez A, Luciano PM, Schettino G, Soares M; ERICC Investigator Group. Extracorporeal membrane oxygenation for severe acute respiratory failure in adult patients: a systematic review and meta-analysis of current evidence. J Crit Care. 2013;28(6):998-1005.