Case report

Sequential multimodal imaging of isolated necrotic full-thickness macular hole secondary to toxoplasma retinochoroiditis

Shreyas Shah a,*, George J. Manayath a, Ratnesh Ranjan a, Narendran Venkatapathy a, Anuradha Kanakath b

a Department of Vitreoretina, Aravind Eye Hospital, Postgraduate Institute of Ophthalmology, Coimbatore, Tamil Nadu, India
b Department of Uvea, Aravind Eye Hospital, Postgraduate Institute of Ophthalmology, Coimbatore, Tamil Nadu, India

ARTICLE INFO

Keywords:
Macular hole
Necrotizing retinitis
Ocular toxoplasmosis
Toxoplasma retinochoroiditis

ABSTRACT

Purpose: To describe the sequential multimodal imaging features of an isolated necrotic macular hole secondary to Toxoplasma retinochoroiditis.

Observation: A 23-year-old male was referred for surgical management of an idiopathic macular hole following sudden decrease in vision in his right eye. Right eye examination showed best-corrected visual acuity of 20/200, mild anterior segment inflammation, and a full thickness non operculated macular hole (MH) with ill-defined ragged margins and surrounding strip of pallid edema. Further multimodal imaging including optical coherence tomography (OCT), fundus autofluorescence (FAF), fluorescein angiography (FFA), and OCT-angiography confirmed the atypical configuration and inflammatory nature of MH. Serological tests showed elevated level of Toxoplasma gondii-specific antibodies. A diagnosis of necrotic isolated full-thickness MH secondary to toxoplasma retinochoroiditis was made. Patient was treated medically with anti-toxoplasma medication for 6 months. Sequential multimodal imaging highlighted the healing process of necrotic MH with vision improving to 20/80 at 6 months after presentation.

Conclusion and importance: A high level of suspicion and multimodal imaging plays an important role in accurate etiological diagnosis and management of atypical macular hole as in our case. Sequential multimodal imaging may provide an insight into the pathogenesis and healing pattern of such lesion.

1. Introduction

Ocular toxoplasmosis, caused by the parasite Toxoplasma gondii, is the most common cause of infectious posterior uveitis in immunocompetent individuals worldwide.1,2 The typical and most common presentation of ocular toxoplasmosis is recurrent episodes of unilateral focal necrotising retinochoroiditis accompanied by vitritis, frequently associated with an adjacent pigmented retinochoroidal scar.2,3 Toxoplasma retinochoroiditis is frequently associated with the vitreoretinal complications such as epiretinal membrane, cystoid macular edema, vitreoretinal traction, choroidal neovascularization and retinal detachment.2 However, formation of macular hole secondary to toxoplasma retinochoroiditis has been rarely reported in literature.1-5

We report a case of toxoplasma retinochoroiditis associated with macular hole and the process of healing following treatment with multimodal imaging.

2. Case report

A 23-year-old male was referred to our vitreoretinal services for surgical management of an idiopathic macular hole in his right eye. There was a history of sudden decrease in vision in the right eye for three weeks. There was no history of ocular trauma or any previous ocular complaints.

On examination, his best-corrected visual acuity (BCVA) was 20/200 in the right eye and 20/20 in the left eye. A slit-lamp examination of the right eye revealed 1+ cells and 1+ flare in anterior chamber, and 1+ cells in anterior vitreous face. Fundus examination revealed a full thickness non-operculated macular hole (MH) with ill-defined ragged margins and surrounding strip of pallid edema [Fig. 1A]. Rest of the fundus including periphery was normal. There was no evidence of posterior hyaloid detachment. The left eye examination was normal. Optical coherence tomography (OCT) of the right eye showed a full thickness MH with a loosely overhanging intact internal limiting
membrane (ILM) and hyper-reflective material deposit at the base
[Fig. 1B]. Due to the absence of classical configuration of MH in the OCT
along with the presence of anterior segment inflammation and vitritis in
a young patient without any history of ocular trauma, we suspected an
inflammatory etiology of MH.

Fundus Autofluorescence (FAF) of the right eye showed a central
hyper-autofluorescence corresponding to the area of clinically observed
MH and a surrounding halo of hypo-autofluorescence corresponding to
the retinal edema, which in turn was encompassed by another ring of
hyper-autofluorescence. The outer ring of hyper-autofluorescence sug-
gested that the inflammatory pathology extended well beyond the
clinically observed lesion [Fig. 1C]. Fluorescence angiography (FFA)
showed central blocked fluorescence caused by the central necrotic
deposit, enlargement of foveal avascular zone in early phase, and
leakage due to perifoveal edema in the subsequent phases resulting in
multiple hyper-fluorescent satellite lesions suggestive of inflammatory
activity [Fig. 1D and E]. OCT-angiography (OCTA) of the right eye
revealed an enlargement of foveal avascular zone (FAZ) with the areas
of capillary dropouts at the level of superficial and deep capillary plexus
suggesting an ischemic insult [Fig. 1F and G]. OCTA image at chorio-
capillaris layer showed low flow suggesting sub-foveal choroidal hypo-
perfusion [Fig. 1H].

The inflammatory work-up included routine blood tests and sero-
logical tests for Toxoplasma gondii (T. gondii), Human
immunodeficiency virus and Treponema pallidum. The serology results
were positive for T. gondii-specific immunoglobulin M antibody, done
by ELISA kit, (2.7 S/Co, cut off value 1.3 S/Co) and immunoglobulin G
antibody (8.5 S/Co, cut off value 1.2 S/Co) and the titres were elevated.
Serological tests for Human immunodeficiency virus and Treponema
pallidum were negative and all other tests including CBC and CD4 count
(912 cells/mm3) were normal. Therefore, a diagnosis of necrotic isolated
full-thickness MH secondary to toxoplasma retinochoroiditis was made
in the right eye. Patient was started on oral Prednisolone (40mg/day)
along with empirical oral treatment with anti-toxoplasmosis drugs
-sulphamethoxazole (800 mg)/trimethoprim (160 mg) twice a day. Oral
steroid was gradually tapered off, but anti-toxoplasmosis drugs were
continued for 6 months. Serial OCT showed gradual disappearance of
the necrotic debris, regeneration of photoreceptors, appearance and
disappearance of intraretinal cystoid spaces, gradual reduction in the
size of the MH and finally its conversion to residual outer lamellar hole
at 6 months [Fig. 2]. Sequential autofluorescence images during follow-
up visits correlated with changes of reducing inflammation with healing
and scarring [Fig. 3]. During serial follow-ups, the intraocular inflam-
mation subsided gradually with a final BCVA of 20/80 at 6 months after
presentation. No surgical intervention was considered.

Fig. 1. Multimodal imaging of the right eye at presentation: Fundus photo showing macular hole with ragged margins and surrounding pallid retinal edema
(appearing as whitish edge) [A]; OCT showing full thickness macular hole with hyperreflective necrotic debris at the base, loss of photoreceptors extending beyond
margin of macular hole, overlying loose intact internal limiting membrane, and the presence of few inflammatory cells in the pre-retinal hyaloid [B]; Fundus
Autofluorescence showing central hyper-autofluorescence with a surrounding halo of hypo-autofluorescence and outer ring hyper-autofluorescence suggesting extent
of inflammatory pathology beyond clinically observed macular hole [C]; FFA showing enlarged foveal avascular zone with perifoveal capillary dropouts in early
phase [D], and leakage from retinal edema resulting in multiple spots of hyper-fluorescence along the edge of macular hole in the late phase [E]; OCT angiography
showing enlargement of foveal avascular zone with perifoveal capillary dropouts at the level of superficial and deep capillary plexus suggestive of macular ischemia
[F,G respectively]; OCT angiography showing low flow at the level of choriocapillaris suggestive of sub-macular choroidal hypoperfusion [H].
3. Discussion

In literature, there are very limited case reports and series describing MH formation as a complication of toxoplasma retinochoroiditis. Toxoplasma infection is often highest in the area that have hot and humid climates, and lower altitudes because the oocysts survive better in these types of environment. Many studies have reported higher incidence of Toxoplasma in Southern India, the region of our report. Although there was no history of exposure to water contamination or close contact with cats, we attributed Toxoplasmosis as the cause of necrotic MH based on clinical and multimodal imaging features, results of the inflammatory work-up as well as response to the anti-toxoplasma regimen. The main mechanism implicated in the pathogenesis of MH formation is either an antero-posterior or a tangential vitreoretinal traction. The antero-posterior traction is caused by posterior vitreous detachment induced by associated inflammation of vitreous, while tangential traction could be caused by an epiretinal membrane or an adjacent retinochoroidal scar.

The absence of vitreomacular traction and epiretinal membrane due to appearance of intraretinal cystoid spaces; at 2 months, showing complete clearance of basal necrotic debris and reduction in necrotic debris, regeneration of photoreceptor layer, and taut internal limiting membrane due to appearance of intraretinal cystoid spaces; at 2 months, showing complete clearance of basal necrotic debris and reduction in the size of macular hole due to migration of retinal cells under internal limiting membrane; at 3 months, showing gradual closure of macular hole with further growth of retinal cells under internal limiting membrane; at final visit (6 months), showing reduction in cystoid edema, conversion of full-thickness macular hole to outer lamellar hole due to gliosis of inner retina along with significant regeneration of photoreceptor layer.

The only case with similar presentation with toxoplasmosis induced MH reported by Brasnon et al. recommended that surgical intervention should not be contemplated cautiously in such cases. However, their case presented with foveal involving retinochoroiditis which gradually evolved into MH.

Histopathological changes of focal retinochoroiditis of ocular toxoplasmosis is characterised by local leukemic infiltration, ischemic coagulative retinal necrosis and granulomatous inflammation of underlying choroid causing choriocapillaritis. These changes in a macula involving lesion may cause foveal hypoperfusion leading to development of MH as seen in our case. Similar necrotic macular defect has been described in a case measles associated subacute sclerosing panencephalitis.

Fig. 2. Sequential OCT images: At presentation as described in Fig. 1B [A]; at 2 weeks, showing basal necrotic debris, roundening of macular hole edge, obvious loss of photoreceptors beyond configuration of hole, and sagging of internal limiting membrane [B]; at 1 month, showing reduction in necrotic debris, regeneration of photoreceptor layer, and taut internal limiting membrane due to appearance of intraretinal cystoid spaces [C]; at 2 months, showing complete clearance of basal necrotic debris and reduction in the size of macular hole due to migration of retinal cells under internal limiting membrane [D]; at 3 months, showing gradual closure of macular hole with further growth of retinal cells under internal limiting membrane [E]; at final visit (6 months), showing reduction in cystoid edema, conversion of full-thickness macular hole to outer lamellar hole due to gliosis of inner retina along with significant regeneration of photoreceptor layer [F].

Fig. 3. A: OCT showing serous retinal detachment; B: OCTA showing hypoperfusion with capillary dropout; C: ICGA showing focal choroidal vascular hypoperfusion; D: OCT showing subretinal fluid on OCT.

To conclude, ophthalmologists must suspect atypical causes like inflammation for the development of MH in a young patient with the presence of anterior chamber cells or vitreous cells and the absence of posterior vitreous detachment. This case of toxoplasma retinochoroiditis had unique presentation as an isolated non-tractional necrotic MH, sequential multimodal imaging of which provided an insight into the
pathogenesis and healing pattern following the medical treatment. Early treatment of active retinitis should be the first line of management and surgical intervention should be reserved for an inactive persistent MH despite medical therapy.

Patient consent

An informed consent has been obtained from the patient for using his clinical details and images for publication purpose.

Disclosures

Funding

No funding or grant support.

Financial disclosures

All the authors of this case report have no financial disclosures (G.J Manayath, Shreyas Shah, Ratnesh Ranjan, Anuradha VK, V. Narendran).

Authorship

All authors attest that they meet the current ICMJE criteria for authorship.

Declaration of competing interest

Authors have no conflict of interest.

Acknowledgments

None.
References

1. Blaise P, Comhaire Y, Rakic JM. Giant macular hole as an atypical consequence of toxoplasmic chorioretinitis. Arch Ophthalmol. 2005;123:863–864.
2. Sousa DC, Andrade GC, Nascimento H, Maia A, Muccioli C. Macular hole associated with toxoplasmosis: a surgical case series. Retin Cases Brief Rep. 2021 Mar 1;15(2):110–113 ([Epub ahead of print]).
3. Papageorgiou E, Kozeis N, Gatziovoula Z. Macular hole formation after toxoplasmic retinochoroiditis. BMJ Case Rep. 2013;2013.
4. Arana B, Fonollosa A, Artaraz J, et al. Macular hole secondary to toxoplasmic retinochoroiditis. Int Ophthalmol. 2014;34:141–143.
5. Babu K, Shah D, Bhagya M, Murthy KR. Near full thickness macular hole with an intact overlying internal limiting membrane following resolution of fulminant acquired toxoplasma retinitis - a unique finding. Indian J Ophthalmol. 2020;68:244–246.
6. Singh S, Munawwar A, Rao S, Mehta S, Hazarika NK. Serologic prevalence of Toxoplasma gondii in Indian women of child bearing age and effects of social and environmental factors. PLoS Neglected Trop Dis. 2014;8:e2797.
7. Tanaka R, Obata R, Sawamura H, et al. Temporal changes in a giant macular hole formed secondary to toxoplasmic retinochoroiditis. Can J Ophthalmol. 2014;49:e115–e118.
8. Butler NJ, Furtado JM, Winthrop KL, Smith JR. Ocular toxoplasmosis II: clinical features, pathology, and management. Clin Exp Ophthalmol. 2013;41:95–108.
9. Tripathy K, Chawla R, Mittal K, et al. Ophthalmic examination as a means to diagnose subacute sclerosing panencephalitis: an optical coherence tomography and ultrasound field imaging evaluation. Eye Vis. 2017;4:1.
10. Branson SV, McClafferty BR, Kurup SK. Vitrectomy for epiretinal membranes and macular holes in uveitis patients. J Ocul Pharmacol Therapeut. 2017;33:298–303.
11. Bonnin N, Cornut PL, Chaise F, et al. Spontaneous closure of macular holes secondary to posterior uveitic case series and a literature review. J Ophthalmic Inflamm Infect. 2013;3:34.