Modular S_4 and A_4 Symmetries and Their Fixed Points: New Predictive Examples of Lepton Mixing

Gui-Jun Ding1, Stephen F. King2, Xiang-Gan Liu1, Jun-Nan Lu1

1Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

2Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ, U.K.

Abstract

In the modular symmetry approach to neutrino models, the flavour symmetry emerges as a finite subgroup Γ_N of the modular symmetry, broken by the vacuum expectation value (VEV) of a modulus field τ. If the VEV of the modulus τ takes some special value, a residual subgroup of Γ_N would be preserved. We derive the fixed points $\tau_S = i$, $\tau_{ST} = (-1 + i\sqrt{3})/2$, $\tau_{TS} = (1 + i\sqrt{3})/2$, $\tau_T = i\infty$ in the fundamental domain which are invariant under the modular transformations indicated. We then generalise these fixed points to $\tau_f = \gamma\tau_S$, $\gamma\tau_ST$, $\gamma\tau_TS$ and $\gamma\tau_T$ in the upper half complex plane, and show that it is sufficient to consider $\gamma \in \Gamma_N$. Focussing on level $N = 4$, corresponding to the flavour group S_4, we consider all the resulting triplet modular forms at these fixed points up to weight 6. We then apply the results to lepton mixing, with different residual subgroups in the charged lepton sector and each of the right-handed neutrinos sectors. In the minimal case of two right-handed neutrinos, we find three phenomenologically viable cases in which the light neutrino mass matrix only depends on three free parameters, and the lepton mixing takes the trimaximal TM1 pattern for two examples. One of these cases corresponds to a new Littlest Modular Seesaw based on CSD(n) with $n = 1 + \sqrt{6} \approx 3.45$, intermediate between CSD(3) and CSD(4). Finally, we generalize the results to examples with three right-handed neutrinos, also considering the level $N = 3$ case, corresponding to A_4 flavour symmetry.
1 Introduction

It is well-known that there are huge mass hierarchies among the quarks and leptons, and the quark mixing angles are small while the lepton sector has two large mixing angles θ_{12}, θ_{23} and one small mixing angles θ_{13} which is of the same order of magnitude as the quark Cabibbo mixing angle [1]. The origin of the flavour structure of the quarks and leptons such as the mass hierarchies, mixing angles and CP violation phases is a big mystery of particle physics. Considerable effort has been devoted to understanding fermion masses and flavour mixing from flavour symmetry for decades. In particular, it is found that the observed lepton mixing angles can be naturally explained by the non-abelian discrete flavour symmetry, see Refs. [2–7] for review. Moreover, the leptonic CP violation phases can be predicted and the precisely measured quark CKM mixing matrix can be accommodated if the discrete flavour symmetry is combined with generalized CP symmetry [8–11].

In the usual paradigm of discrete flavour symmetry, the standard model gauge symmetry is extended by certain finite flavour symmetry at high energy scale which is subsequently broken down to different subgroups in the neutrino and charged lepton sectors at low energy. In general some flavon fields which are standard model singlets are required to realize the flavour symmetry breaking. The flavon fields usually obtain vacuum expectation values (VEVs) along specific directions in order to reproduce phenomenologically viable lepton mixing angles. As a consequence, the scalar potential of discrete flavour symmetry models is rather elaborate, and certain auxiliary abelian symmetries are usually needed to forbid dangerous operators.

Recently, modular symmetry has been suggested as the origin of flavour symmetry [12]. In this new framework, flavon fields might not be needed and the flavour symmetry can be uniquely broken by the VEV of the modulus τ. Moreover, all higher-dimensional operators in the superpotential are completely determined by modular invariance if supersymmetry is exact. In modular invariant models, the Yukawa couplings transform nontrivially under the modular symmetry and they are modular forms which are holomorphic functions of τ [12]. Models with modular flavour symmetry can be highly predictive, the neutrino masses and mixing parameters can be predicted in terms of few input parameters, although the predictive power of this framework may be reduced by the Kähler potential which is less constrained by modular symmetry [13].

The finite modular groups $\Gamma_2 \cong S_3$ [14–17], $\Gamma_3 \cong A_4$ [12,14,15,18–23], $\Gamma_4 \cong S_4$ [25–27] and $\Gamma_5 \cong A_5$ [30,31] have been studied and some simple modular models have been constructed. It is remarkable that even the A_4 modular models can reproduce the measured neutrino masses and mixing angles [12,19,23]. The modular invariance approach has been extended to include odd weight modular forms which can be decomposed into irreducible representations of the the homogeneous finite modular group Γ'_N [32], and the modular symmetry $\Gamma'_3 \cong T'$ has been discussed. It has been shown that the modular symmetry can be consistently combined with generalized CP symmetry, and the modulus τ transforms as $\tau \rightarrow -\tau^*$ under the CP transformation [33–37]. Motivated by factorized tori compactification in superstring theory, the formalism of the single modulus has been generalized to the case of a direct product of multiple moduli [38, 39]. From the view of top-down, the modular symmetry naturally appears in string constructions [34,40–42].

It has been realised that, if the VEV of the modulus τ takes some special value, a residual subgroup of the finite modular symmetry group Γ_N would be preserved. The phenomenological implications of the residual modular symmetry have been discussed in the context of modular A_4 [21], S_4 [26] and A_5 [30] symmetries. If the modular symmetry is broken down to a residual Z_3 (or Z_5) subgroup in charged lepton sector and to a Z_2 subgroup in the neutrino sector, the trimaximal TM1 and TM2 mixing patterns can be obtained [21,26].
In this paper, we derive the fixed points \(\tau_S = i, \tau_{ST} = (-1 + i\sqrt{3})/2, \tau_{TS} = (1 + i\sqrt{3})/2, \tau_T = i\infty \) in the fundamental domain which are invariant under the modular transformations indicated. We then generalise these fixed points to \(\tau_f = \gamma\tau_S, \gamma\tau_{ST}, \gamma\tau_{TS} \) and \(\gamma\tau_T \) in the upper half complex plane, and show that it is sufficient to consider \(\gamma \in \Gamma_N \). Focussing on level \(N = 4 \), corresponding to the flavour group \(S_4 \), we consider all the resulting triplet modular forms at these fixed points up to weight 6. We then apply the results to obtain new predictive examples of lepton mixing, with different residual subgroups in the charged lepton sector and each of the right-handed neutrinos sectors. In the minimal case of two right-handed neutrinos, we find three phenomenologically viable cases in which the light neutrino mass matrix only depends on three free parameters, and the lepton mixing takes the trimaximal TM\(_1\) pattern for two examples. Finally, we generalize the results to examples with three right-handed neutrinos, also considering the level \(N = 3 \) case, corresponding to \(A_4 \) flavour symmetry, listing the values of modular forms at the fixed points in this case also.

It is interesting to compare the modular symmetry approach here to the tri-direct CP approach in usual discrete flavour symmetry based on the residual symmetry \([43,44]\), which can also give rise to very predictive models such as the Littlest seesaw model based on CSD(\(n\)) with \(n = 3, 4 \) or a variant \([45–48]\). In the present work, we shall also follow the tri-direct approach but in the context of modular invariant models and without CP. In the minimal scenario, with two right-handed neutrinos, the two columns of the Dirac neutrino mass matrix are modular forms which are aligned along certain directions at some special values of \(\tau \). One of the minimal \(S_4 \) cases corresponds to a new Littlest Modular Seesaw based on CSD(\(n\)) with \(n = 1 + \sqrt{6} \approx 3.45 \), intermediate between CSD(3) and CSD(4).

The paper is organized as follows. In section 2, we give a brief review on the modular symmetry and the modular forms of level 4 are constructed from the products of the Dedekind \(\eta \) function. In section 3, we analyze the nontrivial fixed points \(\tau_f \) of the complex modulus which preserves a residual modular subgroup. We find there are infinity fixed modulus with the form \(\tau_f = \gamma\tau_S, \gamma\tau_{ST}, \gamma\tau_{TS} \) and \(\gamma\tau_T \), where \(\gamma \) is an arbitrary modular transformation and \(\tau_S = i, \tau_{ST} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \tau_{TS} = \frac{1}{2} + i\frac{\sqrt{3}}{2}, \tau_T = i\infty \). However, the independent alignments of modular forms at the fixed points are finite. In section 4, we present the framework of tri-direct modular model, the minimal scenario is based on the two right-handed neutrinos model, and we generalize this approach to the three right-handed neutrinos case. In order to show concrete examples, we analyze the tri-direct modular models for the \(S_4 \) group. Furthermore, in section 5 we present the cases which can also be obtained, if the modular symmetry is \(A_4 \) instead of \(S_4 \). We conclude in section 6. Finally the group theory of \(S_4 \) as well as the Clebsch-Gordan coefficients in our basis are collected in Appendix A.

2 Modular symmetry and modular form multiplets of level \(N = 4 \)

The modular group \(\Gamma \) is the group of linear fraction transformations which acts on the complex modulus \(\tau \) in the upper half complex plane as follow,

\[
\tau \to \gamma \tau = \frac{a\tau + b}{c\tau + d}, \quad \text{with} \quad a, b, c, d \in \mathbb{Z}, \quad ad - bc = 1, \quad \Im \tau > 0.
\]

We note that the map

\[
\frac{a\tau + b}{c\tau + d} \mapsto \left(\begin{array}{cc} a & b \\ c & d \end{array} \right)
\]

is an isomorphism from the modular group to the projective matrix group \(PSL(2, \mathbb{Z}) \cong SL(2, \mathbb{Z})/\{\pm I\} \), where \(SL(2, \mathbb{Z}) \) is the group of two-by-two matrices with integer entries and
determinant equal to one. It is obvious that
\[
\frac{a\tau + b}{c\tau + d} \text{ is the same as } \frac{-a\tau - b}{-c\tau - d},
\]
therefore we identify
\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ is the same as } \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}
\]
in matrix notation. The modular group \(\Gamma \) can be generated by two generators \(S \) and \(T \)
\[
S : \tau \mapsto -\frac{1}{\tau}, \quad T : \tau \mapsto \tau + 1,
\]
which are represented by the following two matrices of \(\text{PSL}(2, \mathbb{Z}) \),
\[
S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.
\]
We can check that the generators \(S \) and \(T \) obey the relations,
\[
S^2 = (ST)^3 = (TS)^3 = 1.
\]
The principal congruence subgroup of level \(N \) is the subgroup
\[
\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z}), \ b = c = 0 \text{ (mod } N), \ a = d = 1 \text{ (mod } N) \right\},
\]
which is an infinite normal subgroup of \(\text{SL}(2, \mathbb{Z}) \). It is easy to see that \(T^N \) is an element of \(\Gamma(N) \). The projective principal congruence subgroup is defined as \(\overline{\Gamma}(N) = \Gamma(N)/\{\pm I\} \) for \(N = 1, 2 \). For the values of \(N \geq 3 \), we have \(\overline{\Gamma}(N) = \Gamma(N) \) because \(\Gamma(N) \) doesn’t contain the element \(-I\). The quotient group \(\Gamma_N \equiv \overline{\Gamma}(N) \) is the finite modular group, and it can be obtained by further imposing the condition \(T^N = 1 \) besides those in Eq. (7).

A crucial element of the modular invariance approach is the modular form \(f(\tau) \) of weight \(k \) and level \(N \). The modular form \(f(\tau) \) is a holomorphic function of the complex modulus \(\tau \) and it is required to transform under the action of \(\overline{\Gamma}(N) \) as follows,
\[
f \left(\frac{a\tau + b}{c\tau + d} \right) = (c\tau + d)^k f(\tau) \quad \text{for } \forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \overline{\Gamma}(N).
\]
The modular forms of weight \(k \) and level \(N \) span a linear space of finite dimension. It is always possible to choose a basis in this linear space such that the modular forms can be arranged into some modular multiplets \(f_\tau \equiv (f_1(\tau), f_2(\tau), ...)^T \) which transform as irreducible representation \(r \) of the finite modular group \(\Gamma_N \) for even \(k \) [12, 32], i.e.
\[
f_\tau(\gamma \tau) = (c\tau + d)^k \rho_\tau(\gamma) f_\tau(\tau) \quad \text{for } \forall \gamma \in \Gamma,
\]
where \(\gamma \) is the representative element of the coset \(\gamma \Gamma(N) \) in \(\Gamma_N \), and \(\rho_\tau(\gamma) \) is the representation matrix of the element \(\gamma \) in the irreducible representation \(r \).
2.1 Modular forms of level 4

The modular forms of level 4 has been constructed in [25, 26] in terms of \(\eta'(\tau)/\eta(\tau) \), where \(\eta(\tau) \) and \(\eta'(\tau) \) are the Dedekind eta function and its derivative. In this section, we shall construct the modular forms of level 4 from the products of \(\eta(\tau) \). The modular forms of weight \(k \) and level 4 form a linear space \(\mathcal{M}_k(\Gamma(4)) \) as follow [49],

\[
\mathcal{M}_k(\Gamma(4)) = \bigoplus_{a+b=2k, a,b\geq 0} \mathbb{C} \frac{\eta^{2b-2a}(4\tau)\eta^{5a-b}(2\tau)}{\eta^{2a}(\tau)},
\]

(11)

where \(a, b \) and \(k \) are positive integers, and the Dedekind eta function \(\eta(\tau) \) is defined as [50–52],

\[
\eta(\tau) \equiv q^{1/24} \prod_{n=1}^{\infty} (1-q^n), \quad \text{with} \quad q = e^{2\pi i \tau},
\]

(12)

which satisfies the following well-known identities

\[
\eta(\tau + 1) = e^{i\pi/12} \eta(\tau), \quad \eta(-1/\tau) = \sqrt{-i\tau} \eta(\tau).
\]

(13)

We can read from Eq. (11) that the linear space \(\mathcal{M}_k(\Gamma(4)) \) has dimension \(2k + 1 \). As shown in [12, 32], the even weight modular forms of level 4 can be decomposed into irreducible representations of the inhomogeneous finite modular groups \(\Gamma_4 \cong S_4 \), while odd weight modular forms can be arranged into irreducible representations of the homogeneous finite modular groups \(\Gamma'_4 \) which is the double covering group of \(S_4 \). In the present work, we shall focus on the modular forms of even weights. For the weight 2 modular forms with \(k = 2 \), Eq. (11) implies that without loss of generality the basis vectors of \(\mathcal{M}_2(\Gamma(4)) \) could be chosen to be

\[
\frac{\eta^{2b-2a}(4\tau)\eta^{5a-b}(2\tau)}{\eta^{2a}(\tau)},
\]

(14)

with \((a, b) = (0, 4), (1, 3), (2, 2), (3, 1) \) and \((4, 0) \). To be more specific, the basis vectors of \(\mathcal{M}_2(\Gamma(4)) \) are

\[
e_1(\tau) = \frac{\eta^8(4\tau)}{\eta^4(2\tau)}, \quad e_2(\tau) = \frac{\eta^4(4\tau)\eta^2(2\tau)}{\eta^2(\tau)}, \quad e_3(\tau) = \frac{\eta^8(2\tau)}{\eta^4(\tau)},
\]

\[
e_4(\tau) = \frac{\eta^{14}(2\tau)}{\eta^4(4\tau)\eta^6(\tau)}, \quad e_5(\tau) = \frac{\eta^{30}(2\tau)}{\eta^8(4\tau)\eta^8(\tau)}.
\]

(15)

The \(q \)-expansions of the above basis vectors \(e_i \) are given by

\[
e_1(\tau) = q + 4q^3 + 6q^5 + 8q^7 + 13q^9 + \ldots,
\]

\[
e_2(\tau) = q^{3/4}(1 + 2q + 3q^2 + 6q^3 + 5q^4 + 6q^5 + 10q^6 + 8q^7 + 12q^8 + 14q^9 + \ldots),
\]

\[
e_3(\tau) = q^{1/2}(1 + 4q + 6q^2 + 8q^3 + 13q^4 + 12q^5 + 14q^6 + 24q^7 + 18q^8 + 20q^9 + \ldots),
\]

\[
e_4(\tau) = q^{1/4}(1 + 6q + 13q^2 + 14q^3 + 18q^4 + 32q^5 + 31q^6 + 30q^7 + 48q^8 + 38q^9 + \ldots),
\]

\[
e_5(\tau) = 1 + 8q + 24q^2 + 32q^3 + 24q^4 + 48q^5 + 96q^6 + 64q^7 + 24q^8 + 104q^9 + \ldots.
\]

(16)

Note that any modular form of weight 2 and level 4 can be written as a linear combination of \(e_{1,2,3,4,5} \). Under the action of the generator \(T \), it is easy to check that the basis vectors \(e_i \) transform as

\[
e_1(\tau) \mapsto e_1(\tau), \quad e_2(\tau) \mapsto -ie_2, \quad e_3(\tau) \mapsto -e_3, \quad e_4(\tau) \mapsto ie_4, \quad e_5(\tau) \mapsto e_5.
\]

(17)
Under another generator S, we have

$$
\begin{align*}
e_1(\tau) & \mapsto S \frac{\tau^2}{64} (16e_1 - 32e_2 + 24e_3 - 8e_4 + e_5), \\
e_2(\tau) & \mapsto S \frac{\tau^2}{32} (-16e_1 + 16e_2 - 4e_4 + e_5), \\
e_3(\tau) & \mapsto S \frac{\tau^2}{16} (16e_1 - 8e_4 + e_5), \\
e_4(\tau) & \mapsto S \frac{\tau^2}{8} (-16e_1 - 16e_2 + 4e_4 + e_5), \\
e_5(\tau) & \mapsto S \frac{\tau^2}{4} (16e_1 + 32e_2 + 24e_3 + 8e_4 + e_5).
\end{align*}
$$

We see that the basis vectors $e_{1,2,3,4,5}$ are closed under S and T up to multiplicative factors, and they are mapped into themselves by the elements S^2, $(ST)^3$, $(TS)^3$ and T^4. The above five modular forms can be organized into a doublet 2 and a triplet 3 of the finite modular group S_4^1,

$$
Y^{(2)}_2(\tau) = \begin{pmatrix} Y_1(\tau) \\ Y_2(\tau) \end{pmatrix}, \quad Y^{(2)}_3(\tau) = \begin{pmatrix} Y_3(\tau) \\ Y_4(\tau) \\ Y_5(\tau) \end{pmatrix},
$$

where

$$
\begin{align*}
Y_1(\tau) &= 16\omega^2e_1(\tau) - 8(2 + \omega^2)e_3(\tau) + \omega^2e_5(\tau), \\
Y_2(\tau) &= 16e_1(\tau) + 8i\sqrt{3}e_3(\tau) + e_5(\tau), \\
Y_3(\tau) &= -\omega^2[16e_1(\tau) + 16(1-i)e_2(\tau) + 4(1+i)e_4(\tau) - e_5(\tau)], \\
Y_4(\tau) &= -\omega \left[16e_1(\tau) + 8(1 - \sqrt{3})(-1 + i)e_2(\tau) - 2(1 + \sqrt{3})(1 + i)e_4(\tau) - e_5(\tau)\right], \\
Y_5(\tau) &= -16e_1(\tau) + 8(1 + \sqrt{3})(1 - i)e_2(\tau) + 2(1 - \sqrt{3})(1 + i)e_4(\tau) + e_5(\tau),
\end{align*}
$$

with $\omega = e^{2\pi i/3}$. From Eq. (16), we can read out the q-expansion of $Y^{(2)}_2$ and $Y^{(2)}_3$ as follows,

$$
\begin{align*}
Y_1(\tau) &= \omega^2 \left(1 + 24q_1 - 72q_1^2 - 288q_3^3 + 216q_4^4 + 1296q_5^5 - 2592q_6^6 - 5184q_7^7 + \ldots\right), \\
Y_2(\tau) &= 1 - 24q_1 - 72q_1^2 + 288q_3^3 + 216q_4^4 - 1296q_5^5 - 2592q_6^6 + 5184q_7^7 + \ldots, \\
Y_3(\tau) &= \omega^2 \left(1 - 8aq_2 + 64aq_3^3 + 32q_4^4 + 192q_5^5 - 512q_6^6 + 384q_7^7 - 1664q_8^8 + \ldots\right), \\
Y_4(\tau) &= \omega(1 - 8aq_2 + 64aq_3^3 + 32q_4^4 + 192aq_5^5 - 512aq_6^6 + 384aq_7^7 - 1664aq_8^8 + \ldots), \\
Y_5(\tau) &= 1 - 8aq_2 + 64aq_3^3 + 32q_4^4 + 192aq_5^5 - 512aq_6^6 + 384aq_7^7 - 1664aq_8^8 + \ldots,
\end{align*}
$$

where the constants $a = (-1 - \sqrt{3})/2$, $b = (-1 + \sqrt{3})/2$, $q_1 = i\sqrt{q/3}$ and $q_2 = \frac{1}{2}(1 + i)q^{1/4}$. Form the above expressions of q-expansion, we see that the modular forms $Y_i(i = 1, \ldots, 5)$ satisfy the following constraints:

$$
\begin{align*}
3Y_1^2 - \omega(Y_2^2 + 2Y_3Y_4) &= 0, \\
3Y_2^2 - \omega(Y_4^2 + 2Y_3Y_5) &= 0, \\
3Y_3Y_2 - \omega(Y_3^2 + 2Y_4Y_5) &= 0, \\
3Y_1Y_2 - \omega(Y_3^2 + 2Y_4Y_5) &= 0,
\end{align*}
$$

The weight 4 modular forms can be generated from the tensor products of $Y^{(2)}_2$ and $Y^{(2)}_3$. There are 9 linearly independent weight 4 modular forms which can be arranged into S_4 irreducible representations 1, $1'$, 2, 3, $3'$ as follow:

$$
Y^{(4)}_{1,i} = \left(Y_2^{(2)}Y_2^{(2)} \right)_i = 2Y_1Y_2,
$$

\(^{1}\text{In our working basis, the triplet representations 3 and 3' correspond to 3' and 3 of [25, 26] respectively.}\)
\[Y_{2,1}^{(4)} = \left(Y_2^{(2)} Y_2^{(2)} \right)_2 = \left(Y_2^2, Y_1^{(2)} \right)^T, \]
\[Y_{3,1}^{(4)} = \left(Y_3^{(2)} Y_3^{(2)} \right)_3 = \left(Y_1 Y_4 + Y_2 Y_5, Y_2 Y_3 + Y_1 Y_5, Y_1 Y_3 + Y_2 Y_4 \right)^T, \]
\[Y_{3',1}^{(4)} = \left(Y_3^{(2)} Y_3^{(2)} \right)_{3'} = \left(Y_1 Y_4 - Y_2 Y_5, -Y_2 Y_3 + Y_1 Y_5, Y_1 Y_3 - Y_2 Y_4 \right)^T. \]

(23)

Notice that the other possible modular multiplets are either vanishing or parallel to the above modular multiplets:

\[Y_{1',1}^{(4)} = \left(Y_2^{(2)} Y_2^{(2)} \right)_{1'} = 0, \quad Y_{3,II}^{(4)} = \left(Y_3^{(2)} Y_3^{(2)} \right)_3 = \left(0, 0, 0 \right)^T, \]
\[Y_{1,II}^{(4)} = \left(Y_3^{(2)} Y_3^{(2)} \right)_1 = \frac{3}{2 \omega} Y_{1,II}^{(4)}, \quad Y_{2,II}^{(4)} = \left(Y_3^{(2)} Y_3^{(2)} \right)_2 = \frac{3}{\omega^2} Y_{2,II}^{(4)}, \]
\[Y_{3',II}^{(4)} = \left(Y_3^{(2)} Y_3^{(2)} \right)_{3'} = -2 \sqrt{3} \omega Y_{3',II}^{(4)}. \]

(24)

The linear space of modular forms of level 4 and weight 6 has dimension \(2k+1 = 2 \times 6 + 1 = 13 \), under the finite modular group \(S_4 \) it can be decomposed into

\[Y_{1}^{(6)} = \left(Y_2^{(2)} Y_2^{(4)} \right)_1 = Y_1^3 + Y_2^3, \]
\[Y_{1'}^{(6)} = \left(Y_2^{(2)} Y_2^{(4)} \right)_{1'} = Y_1^3 - Y_2^3, \]
\[Y_{2}^{(6)} = \left(Y_2^{(2)} Y_2^{(4)} \right)_{1'} = \left(2Y_1^2 Y_2, 2Y_1 Y_2^2 \right)^T, \]
\[Y_{3,II}^{(6)} = \left(Y_3^{(2)} Y_3^{(4)} \right)_3 = \left(Y_1 Y_2 Y_3, Y_2 Y_3 Y_4, 2Y_1 Y_2 Y_5 \right)^T, \]
\[Y_{3,II}^{(6)} = \left(Y_3^{(2)} Y_3^{(4)} \right)_3 = \left(Y_1 Y_2 Y_3 + Y_2 Y_3 Y_4 \right)^T \]
\[Y_{3',II}^{(6)} = \left(Y_3^{(2)} Y_3^{(4)} \right)_{3'} = \left(2Y_1 Y_2 Y_3, Y_2 Y_3 Y_4, 2Y_1 Y_2 Y_5 - Y_2 Y_3 \right)^T. \]

(25)

Higher weight modular forms can be constructed in the same fashion, see Refs. [25, 26] for modular forms of weight 8 and weight 10. Note that in our working basis the representation matrices are different from those of [25, 26], and they are related to the choices of [25, 26] by unitary transformations.

3 Fixed points and residual modular symmetry

In this section, we shall first discuss the fixed point in the fundamental domain, subsequently we study all the possible fixed points in the upper half complex plane. Finally we investigate the constraints on the neutrino and charged lepton mass matrices imposed by the residual modular symmetries at fixed points.

3.1 Fixed point in the fundamental domain

If a modulus parameter \(\tau_0 \) is invariant under the action of a nontrivial \(SL(2, \mathbb{Z}) \) transformation \(\gamma_0 \neq \pm I \), we call \(\tau_0 \) is the fixed point of \(\gamma_0 \) and \(\gamma_0 \) is the stabilizer of \(\tau_0 \), i.e.

\[\gamma_0 \tau_0 = \tau_0. \]

(26)
The fundamental domain of the modular group is denoted as $\mathcal{F} : |\Re \tau| \leq \frac{1}{2}, \Im \tau > 0, |\tau| \geq 1$. Firstly we consider the case that the fixed point τ_0 is in the fundamental region $\tau_0 \in \mathcal{F}$. The modular transformation γ_0 can be generally parameterized as

$$\gamma_0 = \begin{pmatrix} a_0 & b_0 \\ c_0 & d_0 \end{pmatrix}, \quad \text{with} \quad a_0, b_0, c_0, d_0 \in \mathbb{Z} \quad \text{and} \quad a_0d_0 - b_0c_0 = 1. \quad (27)$$

Thus the fixed point condition of Eq. (26) gives

$$\frac{a_0\tau_0 + b_0}{c_0\tau_0 + d_0} = \tau_0. \quad (28)$$

Multiplying $c_0\tau_0 + d_0$ on both sides of Eq. (28), we can obtain

$$c_0\tau_0^2 + (d_0 - a_0)\tau_0 - b_0 = 0. \quad (29)$$

If $c_0 = 0$, then we have $\tau_0 = \frac{b_0}{d_0 - a_0}$ which is outside the fundamental domain \mathcal{F}. Consequently c_0 should be non-vanishing with $c_0 \neq 0$. Thus the roots of equation in Eq. (29) are given by

$$\tau_0 = \frac{a_0 - d_0 \pm \sqrt{(a_0 + d_0)^2 - 4}}{2c_0}. \quad (30)$$

Since the modular parameter τ_0 is in the fundamental domain and its imaginary part is positive $\Im \tau_0 > 0$, the constraint $|a_0 + d_0| < 2$ should be satisfied. Therefore we have $a_0 + d_0 = 0, \pm 1$, as the parameters a_0, b_0, c_0 and d_0 are all integers.

- $a_0 + d_0 = 0$

In this case, we have $a_0 = -d_0$. The fixed modulus τ_0 in Eq. (30) is of the following form,

$$\tau_0 = \frac{a_0}{c_0} \pm \frac{i}{c_0}. \quad (31)$$

Since τ_0 is in fundamental region with $|\Re \tau_0| \leq \frac{1}{2}$ and $|\tau_0| \geq 1$, thus we have the following constraint,

$$\left| \frac{a_0}{c_0} \right| \leq \frac{1}{2}, \quad \left| \frac{1}{c_0} \right| \geq \frac{\sqrt{3}}{2}, \quad (32)$$

which implies

$$a_0 = d_0 = 0, \quad c_0 = \pm 1. \quad (33)$$

Moreover, the unit determinant of γ_0 requires $a_0d_0 - b_0c_0 = 1$, thus we find

$$b_0 = -c_0 = \mp 1. \quad (34)$$

Hence the modular transformation γ_0 takes the form

$$\gamma_0 = \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \mp S. \quad (35)$$

Notice that S and $-S$ lead to the same linear fractional transformation, as shown in Eq. (4). Accordingly the fixed point is $\tau_0 = i \equiv \tau_S$.

2Notice that $c_0\tau_0 + d_0 \neq 0$ for τ_0 in the fundamental domain.
\(a_0 + d_0 = 1 \)

The parameter \(d_0 \) can be expressed in terms of \(a_0 \) as

\[
d_0 = 1 - a_0. \tag{36}
\]

The solution for \(\tau_0 \) in Eq. (30) is simplified into

\[
\tau_0 = \frac{2a_0 - 1 \pm i\sqrt{3}}{2c_0}. \tag{37}
\]

The requirement of \(\tau_0 \in F \) entails

\[
\left| \frac{2a_0 - 1}{2c_0} \right| \leq \frac{1}{2}, \quad \left| \frac{\sqrt{3}}{2c_0} \right| \geq \frac{\sqrt{3}}{2}, \tag{38}
\]

which leads to

\[
a_0 = 0, \quad b_0 = \mp 1, \quad c_0 = \pm 1, \quad d_0 = 1, \tag{39}
\]

or

\[
a_0 = 1, \quad b_0 = \mp 1, \quad c_0 = \pm 1, \quad d_0 = 0. \tag{40}
\]

As a consequence, \(\gamma_0 \) and \(\tau_0 \) are determined to be

\[
\gamma_0 = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} = -ST, \quad \tau_0 = \frac{-1 + i\sqrt{3}}{2}, \tag{41}
\]

or

\[
\gamma_0 = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix} = -(TS)^2, \quad \tau_0 = \frac{1 + i\sqrt{3}}{2},
\]

\[
\gamma_0 = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} = -TS, \quad \tau_0 = \frac{1 + i\sqrt{3}}{2}, \tag{42}
\]

or

\[
\gamma_0 = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} = -(ST)^2, \quad \tau_0 = \frac{-1 + i\sqrt{3}}{2}.
\]

\(a_0 + d_0 = -1 \)

In this case, the parameter \(d_0 = -1 - a_0 \) and the solution of \(\tau_0 \) is

\[
\tau_0 = \frac{2a_0 + 1 \pm i\sqrt{3}}{2c_0}. \tag{43}
\]

The condition \(\tau_0 \in F \) imposes the following constraints,

\[
\left| \frac{2a_0 + 1}{2c_0} \right| \leq \frac{1}{2}, \quad \left| \frac{\sqrt{3}}{2c_0} \right| \geq \frac{\sqrt{3}}{2}. \tag{44}
\]

Hence the parameters \(a_0, b_0, c_0 \) and \(d_0 \) are determined to be

\[
a_0 = -1, \quad b_0 = \mp 1, \quad c_0 = \pm 1, \quad d_0 = 0, \tag{45}
\]

or

\[
a_0 = 0, \quad b_0 = \mp 1, \quad c_0 = \pm 1, \quad d_0 = -1. \tag{46}
\]
The modular transformation γ_0 and the corresponding fixed point τ_0 are found to be given by

\[\gamma_0 = \begin{pmatrix} \frac{-1}{2} & 1 \\ 1 & 0 \end{pmatrix} = (ST)^2, \quad \tau_0 = \frac{-1 + i\sqrt{3}}{2}, \tag{47} \]

\[\gamma_0 = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix} = TS, \quad \tau_0 = \frac{1 + i\sqrt{3}}{2}, \]

or

\[\gamma_0 = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} = (TS)^2, \quad \tau_0 = \frac{1 + i\sqrt{3}}{2}, \tag{48} \]

\[\gamma_0 = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix} = ST, \quad \tau_0 = \frac{-1 + i\sqrt{3}}{2}. \]

We see that $\tau_{ST} = \frac{-1 + i\sqrt{3}}{2}$ and $\tau_{TS} = \frac{1 + i\sqrt{3}}{2}$ are the fixed points of the modular transformation $\pm ST$ and $\pm TS$ respectively. Moreover they are related by modular transformation T,

\[T\tau_{ST} = \tau_{TS}. \tag{49} \]

Furthermore, there is a fourth fixed point $\tau_0 = i\infty$. It is easy to check that $i\infty$ is invariant under the action of T as $T(i\infty) = i\infty + 1 = i\infty$. We shall denote $\tau_T \equiv i\infty$ in the following. In short, we have only the following four nontrivial fixed points in the fundamental domain,

\[\tau_S = i, \quad \tau_{ST} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \quad \tau_{TS} = \frac{1}{2} + i\frac{\sqrt{3}}{2}, \quad \tau_T = i\infty. \tag{50} \]

In general, a modular multiplet $Y_r^{(k)}(\tau)$ of weight k in the irreducible representation r of the finite modular group Γ_N satisfies the following property,

\[Y_r^{(k)}(\gamma\tau) = J_k(\gamma, \tau)\rho_r(\gamma)Y_r^{(k)}(\tau), \tag{51} \]

where $J_k(\gamma, \tau)$ is the so-called automorphy factor [50],

\[J_k(\gamma, \tau) \equiv (c\tau + d)^k, \quad \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma. \tag{52} \]

At the fixed point τ_0, Eq. (51) gives us,

\[Y_r^{(k)}(\tau_0) = Y_r^{(k)}(\gamma_0\tau_0) = (c_0\tau_0 + d_0)^k\rho_r(\gamma_0)Y_r^{(k)}(\tau_0), \tag{53} \]

which implies

\[\rho_r(\gamma_0)Y_r(\tau_0) = J_k^{-1}(\gamma_0, \tau_0)Y_r(\tau_0), \tag{54} \]

Hence the modular multiplets $Y_r(\tau_0)$ at the fixed point τ_0 is actually the eigenvector of the representation matrix $\rho_r(\gamma_0)$ with eigenvalue $J_k^{-1}(\gamma_0, \tau_0)$. It is straightforward to obtain

\[S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad J_1(S, \tau_S) = -i, \]

\[ST = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \quad J_1(ST, \tau_{ST}) = \omega^2, \]

\[TS = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}, \quad J_1(TS, \tau_{TS}) = \omega^2, \]
\[
\begin{array}{|c|c|c|c|c|}
\hline
& \tau & \tau_{ST} & \tau_{TS} & \tau_T \\
Y_2^{(2)} & Y_S(1, -1) & Y_{ST}(0, 1) & Y_{TS}(1, 0) & Y_T(1, \omega) \\
Y_3^{(2)} & -\frac{\omega}{\sqrt{3}}Y_S(1, 1 + \sqrt{6}, 1 - \sqrt{6}) & \sqrt{3}\omega Y_{ST}(0, 1, 0) & -\frac{2\omega}{\sqrt{3}}Y_{TS}(1, 1, -\frac{1}{2}) & Y_T(1, \omega^2, \omega) \\
Y_4^{(4)} & -2Y_S^{2} & 0 & 0 & 2\omega Y_T^{2} \\
Y_2^{(4)} & Y_S^{2}(1, 1) & Y_{ST}^{2}(1, 0) & Y_{TS}^{2}(0, 1) & \omega^2 Y_T^{2}(1, \omega) \\
Y_3^{(4)} & -2\sqrt{2}\omega Y_S^{2}(1, -\frac{1}{2}, -\frac{1}{2}) & \sqrt{3}\omega Y_{ST}^{2}(0, 0, 1) & -\frac{2\omega}{\sqrt{3}}Y_{TS}^{2}(1, -\frac{1}{2}, 1) & 2\omega^2 Y_T^{2}(1, \omega^2, \omega) \\
Y_4^{(4)} & -\frac{2\omega}{\sqrt{3}}Y_S^{2}(1, 1 - \sqrt{\frac{3}{2}}, 1 + \sqrt{\frac{3}{2}}) & -\sqrt{3}\omega Y_{ST}^{2}(0, 0, 1) & -\frac{2\omega}{\sqrt{3}}Y_{TS}^{2}(1, -\frac{1}{2}, 1) & (0, 0, 0) \\
Y_4^{(6)} & 0 & Y_{ST}^{3} & Y_{TS}^{3} & 2Y_T^{3} \\
Y_2^{(6)} & 2Y_S^{3} & -Y_{ST}^{3} & Y_{TS}^{3} & 0 \\
Y_2^{(6)} & -2Y_S^{3}(1, -1) & (0, 0) & (0, 0) & 2\omega Y_T^{3}(1, \omega) \\
Y_4^{(6)} & \frac{2\omega}{\sqrt{3}}Y_S^{3}(1, 1 + \sqrt{6}, 1 - \sqrt{6}) & (0, 0, 0) & (0, 0, 0) & 2\omega Y_T^{3}(1, \omega^2, \omega) \\
Y_4^{(6)} & -\frac{2\omega}{\sqrt{3}}Y_S^{3}(1, 1 - \sqrt{\frac{3}{2}}, 1 + \sqrt{\frac{3}{2}}) & \sqrt{3}\omega Y_{ST}^{3}(1, 0, 0) & -\frac{\omega}{\sqrt{3}}Y_{TS}^{3}(1, 1, -\frac{1}{2}) & 2\omega Y_T^{3}(1, \omega^2, \omega) \\
Y_4^{(6)} & -2\sqrt{2}\omega Y_S^{3}(1, -\frac{1}{2}, -\frac{1}{2}) & \sqrt{3}\omega Y_{ST}^{3}(1, 0, 0) & -\frac{\omega}{\sqrt{3}}Y_{TS}^{3}(1, -\frac{1}{2}, 1) & (0, 0, 0) \\
\hline
\end{array}
\]

Table 1: The values of the modular forms with weights \(k = 2, 4, 6\) and level 4 at the fixed points \(\tau_S, \tau_{ST}, \tau_{TS}\) and \(\tau_T\), where \(Y_S \simeq -1.045 - 0.603i, Y_{ST} \simeq 1.793, Y_{TS} \simeq -0.896 - 1.553i\) and \(Y_T \simeq -0.5 - 0.866i\).

\[
T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad J_1(T, \tau_T) = 1. \tag{55}
\]

Therefore the automorphy factor \(J_k(\gamma_0, \tau_0)\) at the fixed points \(\tau_S, \tau_{ST}, \tau_{TS}\) and \(\tau_T\) must be a phase with unit absolute value. We find that the weight two modular forms at these fixed points take the following values,

\[
Y_2^{(2)}(\tau_S) = Y_S \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad Y_3^{(2)}(\tau_S) = -\frac{\omega}{\sqrt{3}} Y_S \begin{pmatrix} 1 \\ 1 + \sqrt{6} \\ 1 - \sqrt{6} \end{pmatrix},
\]

\[
Y_2^{(2)}(\tau_{ST}) = Y_{ST} \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad Y_3^{(2)}(\tau_{ST}) = \sqrt{3}\omega Y_{ST} \begin{pmatrix} 0 \\ 1 \end{pmatrix},
\]

\[
Y_2^{(2)}(\tau_{TS}) = Y_{TS} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad Y_3^{(2)}(\tau_{TS}) = -\frac{2\omega}{\sqrt{3}} Y_{TS} \begin{pmatrix} 1 \\ -\frac{1}{2} \end{pmatrix},
\]

\[
Y_2^{(2)}(\tau_T) = Y_T \begin{pmatrix} 1 \\ \omega \end{pmatrix}, \quad Y_3^{(2)}(\tau_T) = Y_T \begin{pmatrix} 1 \\ \omega^2 \end{pmatrix}, \tag{56}
\]

with \(Y_S \simeq -1.045 - 0.603i, Y_{ST} \simeq 1.793, Y_{TS} \simeq -0.896 - 1.553i\) and \(Y_T \simeq -0.5 - 0.866i\). From Eq. (54) we know that \(Y_3^{(2)}(\tau_S)\) is an eigenvector of the representation matrix \(\rho_4(S)\) with eigenvalue \(-1\). However \(\rho_3(S)\) has two degenerate eigenvalues \(-1\), consequently the alignment of \(Y_3^{(2)}(\tau_S)\) can not be uniquely fixed by Eq. (54). It is remarkable that modular symmetry helps to break the degeneracy in some sense and fix \(Y_3^{(2)}(\tau_S)\) along the direction \((1, 1 + \sqrt{6}, 1 - \sqrt{6})^T\). The values of the modular forms of level 4 up to weight 6 at the fixed points \(\tau_S, \tau_{ST}, \tau_{TS}\) and \(\tau_T\) are summarized in table 1. In the present work, we are mainly concerned with the triplet modular forms transforming as \(3\) or \(3'\).
3.2 Fixed points in upper half complex plane

Let us consider the general fixed points \(\tau_f \) of the modular transformation \(\gamma_f \) in the upper half complex plane. By definition, \(\tau_f \) must be related to some modulus \(\tau' \in \mathcal{F} \) by certain modular transformation \(\gamma' \), i.e., \(\tau_f = \gamma' \tau' \). Then the fixed point condition \(\gamma_f \tau_f = \tau_f \) becomes

\[
\gamma_f \gamma' \tau' = \gamma' \tau'.
\] (57)

Multiplying \(\gamma'^{-1} \) from left on both sides of the above equation, we can obtain

\[
\gamma'^{-1} \gamma_f \gamma' \tau' = \tau',
\] (58)

which is exactly the fixed point condition Eq. (26) inside the fundamental domain. Hence we have

\[
\tau' = \tau_0 \in \{ \tau_S, \tau_{ST}, \tau_{TS}, \tau_T \},
\gamma'^{-1} \gamma_f \gamma' = \gamma_0 \in \{ \pm S, \pm ST, \pm TS, \pm T \}.
\] (59)

Hence the fixed point \(\tau_f \) of the modular group and the corresponding stabilizer \(\gamma_f \) are given by

\[
\tau_f = \gamma' \tau_0, \quad \gamma_f = \gamma' \gamma_0 \gamma'^{-1}, \quad \gamma' \in \bar{\Gamma},
\] (60)

where \(\gamma' \) is an arbitrary modular symmetry element. It is straightforward to check \(\gamma_f \tau_f = \tau_f \) which means that \(\tau_f \) is really the fixed point of \(\gamma_f \). Hence all fixed points are related to \(\tau_S, \tau_{ST}, \tau_{TS}, \) and \(\tau_T \) by modular transformations. For illustration, we display part of the fixed points of the modular group in figure 1. Since there are infinity fixed points, it is impossible to show all the fixed points. From Eq. (60) we see that only the modular symmetry transformation conjugate to \(\gamma_0 \) can have fixed point. In other words, \(\gamma_f \) and \(\gamma_0 \) must belong to the same conjugacy class. The value of the modular form at the fixed point \(\gamma_f \) is

\[
Y_{\tau}(\tau_f) = Y_{\tau}(\gamma' \tau_0) = J_k(\gamma', \tau_0) \rho_{\tau}(\gamma') Y_{\tau}(\tau_0),
\] (61)

which implies that the direction of \(Y_{\tau}(\tau_f) \) is proportional to \(\rho_{\tau}(\gamma') Y_{\tau}(\tau_0) \). The modular group \(\bar{\Gamma} \) can be decomposed into disjoint union of right cosets of the principal congruence subgroup \(\Gamma(N) \) in \(\bar{\Gamma} \),

\[
\Gamma = \bigcup_{i=1}^{[\Gamma_N]} g_i \Gamma(N), \quad g_i \in \Gamma_N,
\] (62)

where we taken into account the fact \(\Gamma_N = \bar{\Gamma}/\Gamma(N) \) such that the finite modular group \(\Gamma_N \) can be regarded as the system of right coset representatives of \(\Gamma(N) \) in \(\bar{\Gamma} \). As a consequence, any element \(\gamma \in \bar{\Gamma} \) can always be written as \(\gamma = g_i h, h \in \Gamma(N) \), thus \(\rho_{\tau}(\gamma) = \rho_{\tau}(g_i) \rho_{\tau}(h) = \rho_{\tau}(g_i) \) because of the representation matrix \(\rho_{\tau}(h) = 1 \). Therefore the alignment \(Y_{\tau}(g_i h \tau_0) \) is proportional to \(\rho_{\tau}(g_i) Y_{\tau}(\tau_0) \) and it is independent of \(h \in \Gamma(N) \). The nonequivalent directions of the modular forms \(Y_{\tau}(\tau_f) \) at fixed points are actually generated by the finite modular group \(\Gamma_N \). Although there are infinite numbers of fixed points \(\tau_f \), it sufficient to only consider these fixed points \(\tau_f \) which belong to the orbits \(\Gamma_N \tau_S, \Gamma_N \tau_{ST}, \Gamma_N \tau_{TS}, \Gamma_N \tau_T \) in the fundamental domain, the corresponding stabilizer subgroup is an abelian subgroup generated by \(\gamma_0 \) and it is denoted as \(\text{Stab}_{\Gamma_N}(\gamma_0) \equiv \langle \gamma_0 \rangle \).

We can decompose the modular group \(\Gamma_N \) into the right coset of the stabilizer subgroup \(\text{Stab}_{\Gamma_N}(\gamma_0) \): \(\Gamma_N = \bigcup_i A_i \text{Stab}_{\Gamma}(\gamma_0) \) where \(A_i \) is the right coset representative element. Thus the orbit \(\Gamma_N \tau_0 \) can be generally simplified into

\[
\Gamma_N \tau_0 = \bigcup_i A_i \text{Stab}_{\Gamma}(\gamma_0) \tau_0 = \bigcup_i A_i \tau_0.
\] (63)
Figure 1: The fixed points of the modular group, it is impossible to display all of them because there are infinite fixed points. The red region and yellow region are the fundamental domains of Γ and $\Gamma(4)$ respectively. The fixed points are displayed in solid (hollow) circles and diamonds in (outside) the fundamental domain of $\Gamma(4)$.

Hence the number of the independent modulus in the orbit $\Gamma_N \tau_0$ is equal to $|\Gamma_N|/|\text{Stab}_\Gamma(\tau_0)|$ which is the number of distinct right cosets of $\text{Stab}_{\Gamma_N}(\tau_0)$. Here the notation $|G|$ denotes the order of a group G. Furthermore, after some algebra, we can show that the modular multiplet $Y_r(\tau_f)$ has the following property

$$Y_r(\tau_f) = J_k(\gamma_0, \tau_0) \rho_r(\gamma_f) Y_r(\tau_f),$$

which gives rise to

$$\rho_r(\gamma_f) Y_r(\tau_f) = J_k^{-1}(\gamma_0, \tau_0) Y_r(\tau_f).$$

This means that the modular multiplet $Y_r(\tau_f)$ at the fixed point τ_f is an eigenvector of the representation matrix $\rho_r(\gamma_f)$ with the eigenvalue $J_k^{-1}(\gamma_0, \tau_0)$ given in Eq. (55). We give the nontrivial and nonequivalent fixed points and the corresponding alignments of the triplet modular forms of level 4 in table 2. As we shall show in the present work, these alignments at the fixed points could give a rich phenomenology of neutrino mixing in the framework of tri-direct modular approach.
Table 2: The alignments of the triplet modular forms $Y_{3,4}(\tau_f)$ of level 4 up to weight 6

γ	γ_{ST}	$Y_{3,4}^w(\tau_3)$	$Y_{3,4}^{w_1}(\tau_3)$	$Y_{3,4}^{w_2}(\tau_3)$	$Y_{3,4}^{w_3}(\tau_3)$	$Y_{3,4}^{w_4}(\tau_3)$
$\{1, S\}$	i	$(1.1 + \sqrt{6}, 1 - \sqrt{6})$	$(1.1 - \sqrt{6}, 1 + \sqrt{6})$			
$\{T, T, ST\}$	$2 + i$	$(1.1 + \sqrt{6}, 1 - \sqrt{6})$	$(1.1 - \sqrt{6}, 1 + \sqrt{6})$			
$\{ST, ST\}$	$-\frac{1}{2} + i$	$(1.1 - \sqrt{6}, 1 + \sqrt{6})$	$(1.1 + \sqrt{6}, 1 - \sqrt{6})$			
$\{ST^2, TST^2\}$	i	$(1.1 + \sqrt{6}, 1 - \sqrt{6})$	$(1.1 - \sqrt{6}, 1 + \sqrt{6})$			
$\{ST, ST\}$	$1 + i$	$(1.1 + \sqrt{6}, 1 - \sqrt{6})$	$(1.1 - \sqrt{6}, 1 + \sqrt{6})$			
$\{ST, T\}$	$-1 + i$	$(1.1 + \sqrt{6}, 1 - \sqrt{6})$	$(1.1 - \sqrt{6}, 1 + \sqrt{6})$			
$\{T^2, ST^2, ST\}$	$2 + i$	$(1.1 + \sqrt{6}, 1 - \sqrt{6})$	$(1.1 - \sqrt{6}, 1 + \sqrt{6})$			
$\{ST^2, TST^2\}$	i	$(1.1 + \sqrt{6}, 1 - \sqrt{6})$	$(1.1 - \sqrt{6}, 1 + \sqrt{6})$			
$\{TST^2, TST^2\}$	$2 + i$	$(1.1 + \sqrt{6}, 1 - \sqrt{6})$	$(1.1 - \sqrt{6}, 1 + \sqrt{6})$			

3.3 Residual modular symmetry and its implication

We assume that neutrinos are Majorana particles in the following. The charged lepton and neutrino mass terms in modular invariant approach can be generally written as

$$W_m = -(y_{e})_{ij}E_i c_Y \gamma_T E_j c_Y \gamma_T H_d - \frac{1}{2\Lambda} (y_{\nu})_{ij} L_i L_j \gamma_Y \gamma_T H_u H_u,$$

(66)

where the two-component notation of the fermion fields is used. The fields L_i and $E^c_i = e^c_i, \mu^c_i, \tau^c_i$ stand for the left-handed lepton doublets and the right-handed charged leptons respectively, H_u and H_d are Higgs doublets, and $Y_{\nu}(\tau)$ and $Y_{e}(\tau)$ are modular forms. The neutral components of the Higgs fields acquire vacuum expectation values $\langle H_{u, d}^0 \rangle = v_{u, d}$ after the electroweak symmetry breaking, then the charged lepton and neutrino mass matrices
can be read off as
\[
m_e(\tau) = y_e Y_e(\tau)v_d, \quad m_\nu(\tau) = y_\nu Y_\nu(\tau)\frac{v_u^2}{\Lambda}.
\] (67)

Under a generic modular transformation $\gamma \in \Gamma$, the lepton fields $L = (L_1, L_2, L_3)$ and $E^c = (e^c, \mu^c, \tau^c)^T$ transform as
\[
L \xrightarrow{\gamma} (c\tau + d)^{-k_L}\rho_L(\gamma)L, \quad E^c \xrightarrow{\gamma} (c\tau + d)^{-k_{E}}\rho_E(\gamma)L,
\] (68)

where $-k_L$ and $-k_{E}$ are the modular weights of L and E^c respectively. Modular invariance requires that the summation of the modular weights of each term in Eq. (66) should be vanishing and the mass matrices $m_e(\tau)$ and $m_\nu(\tau)$ should transform under a modular transformation as
\[
m_e(\tau) \xrightarrow{\gamma} m_e(\gamma\tau) = (c\tau + d)^{k_L+k_E}\rho_E^*(\gamma)m_e(\tau)\rho_L^*(\gamma),
\]
m_\nu(\tau) \xrightarrow{\gamma} m_\nu(\gamma\tau) = (c\tau + d)^{2k_E}\rho_L^*(\gamma)m_\nu(\tau)\rho_L^*(\gamma).
\] (69)

In modular invariant models, the vacuum expectation value of the complex modulus $\langle \tau \rangle$ is the unique source of flavour symmetry breaking. If $\langle \tau \rangle$ is at some fixed point $\langle \tau \rangle = \tau_f$, a residual subgroup $\{\gamma^n : n \in \mathbb{Z}\}$ generated by the stabilizer γ_f would be preserved. For example, the residual symmetries are $Z_2^S \equiv \{1, S\}$ and $Z_2^{ST} \equiv \{1, ST, (ST)^2\}$ respectively for $\langle \tau \rangle = \tau_S = i$ and $\langle \tau \rangle = \tau_{ST} = (-1 + i\sqrt{3})/2$. In the following, we shall discuss the constraints on the lepton mass matrices $m_e(\tau)$ and $m_\nu(\tau)$ imposed by the residual modular symmetry. At the fixed point τ_f which fulfills $\tau_f = \gamma_f\tau_f$, we have
\[
m_e(\tau_f) = m_e(\gamma_f\tau_f) = J_{k_L+k_E}(\gamma_f, \tau_f)\rho_E^*(\gamma_f)m_e(\tau_f)\rho_L^*(\gamma_f),
m_\nu(\tau_f) = m_\nu(\gamma_f\tau_f) = J_{2k_L}(\gamma_f, \tau_f)\rho_L^*(\gamma_f)m_\nu(\tau_f)\rho_L^*(\gamma_f),
\] (70)

where $J_{k_L+k_E}(\gamma_f, \tau_f) = J_{k_L+k_E}(\gamma_0, \tau_0)$ and $J_{2k_L}(\gamma_f, \tau_f) = J_{2k_L}(\gamma_0, \tau_0)$ are certain phase factors \(^3\), as shown in Eq. (55). From Eq. (70), we know that the hermitian combination of the charged lepton mass matrix $m_e^\dagger(\tau_f)m_e(\tau_f)$ should be subject to the following constraint,
\[
\rho_L^*(\gamma_f)m_e^\dagger(\tau_f)m_e(\tau_f)\rho_L(\gamma_f) = m_e^\dagger(\tau_f)m_e(\tau_f),
\] (71)

which implies $\rho_L(\gamma_f)$ and $m_e^\dagger(\tau_f)m_e(\tau_f)$ are commutable. The representation matrix $\rho_L(\gamma_f)$ can be diagonalized by a unitary matrix U_e,
\[
U_e^\dagger\rho_L(\gamma_f)U_e = \hat{\rho}_L(\gamma_f),
\] (72)

where $\hat{\rho}_L(\gamma_f)$ is a diagonal unitary matrix and the non-vanishing entries are eigenvalues of $\rho_L(\gamma_f)$. Then we can see
\[
U_e^\dagger m_e^\dagger(\tau_f)m_e(\tau_f)U_e = U_e^\dagger\rho_L^*(\gamma_f)m_e^\dagger(\tau_f)m_e(\tau_f)\rho_L(\gamma_f)U_e = \hat{\rho}_L^*(\gamma_f)U_e^\dagger m_e^\dagger(\tau_f)m_e(\tau_f)U_e\hat{\rho}_L(\gamma_f).
\] (73)

If the diagonal entries of $\hat{\rho}_L(\gamma_f)$ are non-degenerate, then $U_e^\dagger m_e^\dagger(\tau_f)m_e(\tau_f)U_e$ is also diagonal since only a diagonal matrix is invariant when conjugated by a non-degenerate phase matrix. If $\hat{\rho}_L(\gamma_f)$ has two degenerate diagonal entries, only one column of U_e can be determined at the fixed point τ_f. In the same fashion, we can show that the neutrino mass matrix $m_\nu(\tau_f)$ is also diagonalized by the unitary transformation U_e in Eq. (72). As a result, the lepton mixing matrix would have six zeros for non-degenerate $\hat{\rho}_L(\gamma_f)$ or four zeros for partially degenerate

\(^3\)Using the identities $J_k(\gamma_1\gamma_2, \tau) = J_k(\gamma_1, \gamma_2\tau)J_k(\gamma_2, \tau)$ and $J_k(\gamma^{-1}, \gamma\tau) = J_{-k^-1}(\gamma, \tau)$, one can prove $J_k(\gamma_f, \tau_f) = J_k(\gamma^*\gamma \gamma^{-1}, \gamma \gamma^{-1}) = J_k(\gamma_0, \gamma_0)$.
\(\hat{\rho}_L(\gamma_f) \) [21, 26], and this is not consistent with the experimental data. Therefore there are no phenomenologically viable models with one common fixed point \(\tau_f \) in both neutrino and charged lepton sectors.

In order to accommodate the observed lepton mixing angles, it is assumed the complex modulus \(\tau \) in the charged lepton and neutrino mass matrices takes two different values \(\tau_{f,e} \) and \(\tau_{f,\nu} \) which break the modular symmetry into the residual subgroups generated by \(\gamma_{f,e} \) and \(\gamma_{f,\nu} \) respectively in the charged lepton and neutrino sectors. In this approach, the trimaximal TM2 lepton mixing pattern can be obtained from the \(A_4 \) modular group [21] and the models giving TM1 mixing are constructed with multiple modular \(S_4 \) groups [38, 39]. Inspired by the tri-direct CP approach [43, 44, 48], in the following we shall present the tri-direct modular model which has three fixed moduli.

4 New Predictive Examples of Lepton Mixing

The tri-direct approach is based on the minimal seesaw model with two right-handed neutrinos which are denoted as \(N^c_{\text{atm}} \) and \(N^c_{\text{sol}} \) [43, 44, 48]. In this section we shall generalize the tri-direct approach to the modular invariance models, and the flavon fields would be replaced by modular forms. The superpotential for the charged lepton and neutrino masses in the tri-direct modular model is of the following form

\[
W = -y_e E_e Y_e(\tau) L H_d - y_{\text{atm}} L Y_{\text{atm}}(\tau) N^c_{\text{atm}} H_u - y_{\text{sol}} L Y_{\text{sol}}(\tau) N^c_{\text{sol}} H_u \\
- \frac{1}{2} M^c_{\text{atm}} N^c_{\text{atm}} N^c_{\text{atm}} - \frac{1}{2} M^c_{\text{sol}} N^c_{\text{sol}} N^c_{\text{sol}},
\]

where we don’t specify whether the above operators arise from only one independent or several independent modular invariant contractions. We assign the lepton doublets \(L \) to triplet of the finite modular group \(\Gamma_N \), while both right-handed neutrinos \(N^c_{\text{atm}} \) and \(N^c_{\text{sol}} \) transform as singlets of \(\Gamma_N \). Then modular invariance requires \(Y_{\text{atm}}(\tau) \) and \(Y_{\text{sol}}(\tau) \) are triplet modular forms. For instance, in the case of \(N = 4 \), we can assume \(L \sim 3, N^c_{\text{atm}} \sim 1, N^c_{\text{sol}} \sim 1', Y_{\text{atm}}(\tau) \sim 3, Y_{\text{sol}}(\tau) \sim 3' \) or \(L \sim 3, N^c_{\text{atm}} \sim 1', N^c_{\text{sol}} \sim 1, Y_{\text{atm}}(\tau) \sim 3', Y_{\text{sol}}(\tau) \sim 3 \).

The cross term \(N^c_{\text{atm}} N^c_{\text{sol}} \) could be forbidden by proper weight assignment of \(N^c_{\text{atm}} \) and \(N^c_{\text{sol}} \). Motivated by the idea of tri-direct CP approach [43, 44, 48], we shall consider the scenario of three moduli in the theory: \(\tau_e \) and its vacuum expectation value (VEV) at certain fixed point \(\tau_{f,e} \) break the modular symmetry in the charged lepton sector, \(\tau_{\text{atm}} \) and \(\tau_{\text{sol}} \) are responsible for the breaking of modular symmetry in the atmospheric and solar neutrino sectors respectively.

Similar to section 3.3, the charged lepton mass matrix is determined to be \(m_e(\tau_e) = y_e E_e Y_e(\tau_e) v_d \) and it is diagonalized by the unitary matrix \(U_e \) fulfilling \(U_e^\dagger \hat{\rho}_L(\gamma_f,e) U_e = \hat{\rho}_L(\gamma_f,e) \) at the fixed point \(\langle \tau_e \rangle = \tau_{f,e} \). Notice that \(U_e \) is determined up to permutations and phases of its column vectors since the order of the charged lepton masses is undefined in our framework. Subsequently we can read out the neutrino Dirac mass matrix and the Majorana mass matrix of right-handed neutrinos,

\[
m_D = \begin{pmatrix} y_{\text{atm}} Y_{\text{atm}}(\tau_{\text{atm}}) & y_{\text{sol}} Y_{\text{sol}}(\tau_{\text{sol}}) \end{pmatrix} v_u, \quad m_N = \begin{pmatrix} M_{\text{atm}} & 0 \\ 0 & M_{\text{sol}} \end{pmatrix},
\]

where the Clebsch-Gordan coefficients in both contractions \(y_{\text{atm}} L Y_{\text{atm}} N^c_{\text{atm}} H_u \) and \(y_{\text{sol}} L Y_{\text{sol}} N^c_{\text{sol}} H_u \) are omitted for notation simplicity. The effective light neutrino mass matrix is given by the seesaw formula \(m_\nu = -m_D m_N m_D^T \), which implies

\[
m_\nu = -\frac{y^2_{\text{atm}} v_u^2}{M_{\text{atm}}} Y_{\text{atm}} Y_{\text{atm}}^T - \frac{y^2_{\text{sol}} v_u^2}{M_{\text{sol}}} Y_{\text{sol}} Y_{\text{sol}}^T.
\]
the Dirac mass matrix are proportional to \(0_{4 \times 4}\).

4.1 Examples of \(N = 4\)

We have considered all possible fixed points of the three moduli \(\tau_e, \tau_{atm}, \tau_{sol}\) and the corresponding alignments of triplets modular forms shown in table 2. We find three possible cases which can accommodate the experimental data on neutrino masses and mixing angles. The assignments for the modular forms \(Y_{atm}\) and \(Y_{sol}\) and the vacuum expectation values of the moduli \(\tau_{atm}\) and \(\tau_{sol}\) are summarized in table 3.

4.1.1 \(G_e = Z_3^{ST}\)

If the VEV of the modulus \(\tau_e\) is \(\langle \tau_e \rangle = \tau_{ST}\), the modular symmetry would be broken down to the residual subgroup \(G_e = Z_3^{ST}\) in the charged lepton sector. Since the representation matrix of the element \(ST\) is diagonal, the charged lepton diagonalization matrix would be a unit matrix \(U_e = \mathbb{1}_{3 \times 3}\) up to column permutations, and the lepton flavour mixing completely originates from the neutrino sector. From table 2 we can read out the alignments of the triplet atmospheric and solar modular forms at the fixed points,

\[
\text{Case A: } Y_{atm}(\tau_{f, atm} = i) \propto \begin{pmatrix} 1 \\ 1 + \sqrt{6} \\ 1 - \sqrt{6} \end{pmatrix}, \quad Y_{sol}(\tau_{f, sol} = 2 + \omega) \propto \begin{pmatrix} 1 \\ 1 + i\sqrt{3} \\ 1 - i\sqrt{3} \end{pmatrix},
\]

\[
\text{Case B: } Y_{atm}(\tau_{f, atm} = 2 + i) \propto \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \quad Y_{sol}(\tau_{f, sol} = i) \propto \begin{pmatrix} 1 \\ 1 + \sqrt{6} \\ 1 - \sqrt{6} \end{pmatrix}.
\]

Note that the case B corresponds to the CSD(\(n\)) model with \(n = 1 + \sqrt{6}\), the two columns of the Dirac mass matrix are proportional to \((0, 1, -1)\) and \((1, n, 2 - n)\) respectively in CSD(\(n\)) model [45–48]. The predictive Littlest seesaw model and its variant are the cases of \(n = 3\) [45, 47, 53–55], \(n = 4\) [46, 56–58] and \(n = -1/2\) [48] respectively. It has been shown that the CSD(\(n\)) model can be reproduced from the \(S_4\) flavour symmetry in the tri-direct CP approach [43, 44], and the parameter \(n\) is constrained to be a generic real parameter by the \(S_4\) flavour symmetry and CP symmetry [43, 44]. Here the modular symmetry can fix the alignment parameter \(n\) to be \(1 + \sqrt{6}\). This is a remarkable advantage of modular symmetry with respect to discrete flavour symmetry. From Eq. (76), we find the neutrino mass matrix is predicted to be

\[
\text{Case A: } m_\nu = m_a \begin{pmatrix} 1 & 1 - \sqrt{6} & 1 + \sqrt{6} \\ 1 + \sqrt{6} & 7 - 2\sqrt{6} & -5 \\ 1 + \sqrt{6} & -5 & 7 + 2\sqrt{6} \end{pmatrix} + m_a e^{i\eta} \begin{pmatrix} 1 & 1 - i\sqrt{3} & 1 + i\sqrt{3} \\ 1 - i\sqrt{3} & -2 - 2i\sqrt{3} & 4 \\ 1 + i\sqrt{3} & 4 & -2 + 2i\sqrt{3} \end{pmatrix},
\]
Table 4: Results of the χ^2 analysis for cases A, B and C. Here χ^2_{min} is the global minimum of the χ^2 function. The parameter β denotes the Majorana CP violation phase, the predictions for the effective Majorana mass m_{ee} in neutrinoless double decay are listed in the last column. Note that the lightest neutrino is massless $m_1 = 0$ for each case.

Case	η/π	m_a(meV)	m_s/m_a	χ^2_{min}	$\sin^2\theta_{13}$	$\sin^2\theta_{12}$	$\sin^2\theta_{23}$	δ_{CP}/π	β/π	m_2(meV)	m_3(meV)	m_{ee}(meV)
A	0.818	2.166	1.722	3.804	0.0227	0.318	0.591	-0.369	-0.564	8.697	50.166	2.244
B	0.760	31.355	0.076	0.609	0.0223	0.318	0.553	-0.426	-0.473	8.610	50.264	2.300
C	0.333	4.352	7.334	11.188	0.0226	0.346	0.596	-0.365	-0.608	8.565	50.312	2.543

Case B: $m_\nu = m_a \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{array} \right) + m_s e^{i\eta} \left(\begin{array}{ccc} 1 & 1 - \sqrt{6} & 1 + \sqrt{6} \\ 1 - \sqrt{6} & 7 - 2\sqrt{6} & -5 \\ 1 + \sqrt{6} & -5 & 7 + 2\sqrt{6} \end{array} \right)$. \hspace{1cm} (79)

It is notable that only three free parameters m_a, m_s and η are involved in the neutrino mass matrix. It is straightforward to check that the column vector $(2, -1, -1)^T$ is an eigenvector of m_ν with vanishing eigenvalue. Therefore the neutrino mass spectrum is normal ordering, and lightest neutrino is massless $m_1 = 0$, and the lepton mixing matrix is determined to be the TM1 pattern,

$$U_{PMNS} = \left(\begin{array}{ccc} \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{3}} & -\frac{2}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{3}} & \frac{2}{\sqrt{3}} \end{array} \right).$$ \hspace{1cm} (80)

Using the general formulae for lepton mixing angles, CP violating phases and neutrino masses in the tri-direct model given in [43, 44], we find the experimental data can be accommodated very well for certain values of m_a, m_s and η. We present the results of χ^2 analysis for the different cases in table 4. The contour plots of $\sin^2\theta_{13}$, $\sin^2\theta_{12}$, $\sin^2\theta_{23}$ and m_2^2/m_3^2 in the plane r versus η are shown in figure 2 where $r = m_s/m_a$.

4.1.2 $G_4 = Z_4^{ST^2}$

The residual symmetry of the charged lepton sector would be $G_4 = Z_4^{ST^2}$ for the fixed point $\tau_{f,e} = -1$. In the case, the unitary transformation U_e is of the following form,

$$U_e = \frac{1}{6} \left(\begin{array}{ccc} 2\sqrt{3} & 2\sqrt{3} & -2\sqrt{3} \\ -3 - \sqrt{3} & 2\sqrt{3} & -3 + \sqrt{3} \\ 3 - \sqrt{3} & 2\sqrt{3} & 3 + \sqrt{3} \end{array} \right).$$ \hspace{1cm} (81)

There are only one independent case which can be compatible with experimental data. The triplet modular forms Y_{atm} and Y_{sol} are aligned along the directions

Case C: $Y_{\text{atm}}(\tau_{f,\text{atm}} = -1 + i) \propto \left(\begin{array}{c} 1 \\ (1 + \sqrt{6})\omega \\ (1 - \sqrt{6})\omega^2 \end{array} \right)$, $Y_{\text{sol}}(\tau_{f,\text{sol}} = ((9 + i\sqrt{3})/14) \propto \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right)$. \hspace{1cm} (82)

The most general form of the neutrino mass matrix reads as

$$m_\nu = m_a \left(\begin{array}{ccc} 1 & (1 - \sqrt{6})\omega^2 & (1 + \sqrt{6})\omega \\ (1 - \sqrt{6})\omega^2 & (7 - 2\sqrt{6})\omega & -5 \\ (1 + \sqrt{6})\omega & -5 & (7 + 2\sqrt{6})\omega^2 \end{array} \right) + m_s e^{i\eta} \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right).$$ \hspace{1cm} (83)

The lepton mixing matrix turns out to be of the form

$$U_{PMNS} = \left(\begin{array}{ccc} \frac{1}{2\sqrt{10}} \sqrt{10 + (1 + \sqrt{2})(4 + \sqrt{6})} & - & - \\ \frac{1}{2\sqrt{5}} \sqrt{6 - \sqrt{6}} & - & - \\ \frac{1}{2\sqrt{10}} \sqrt{10 + (1 - \sqrt{2})(4 + \sqrt{6})} & - & - \end{array} \right) \approx \left(\begin{array}{ccc} 0.800 & - & - \\ 0.421 & - & - \\ 0.428 & - & - \end{array} \right).$$ \hspace{1cm} (84)
Notice that the first column of the mixing matrix looks much more complex although the experimental data can be accommodated. The predictions for lepton mixing parameters and neutrino masses are listed in table 4.

For the cases A, B and C, both Y_{atm} and Y_{sol} are triplet modular forms with weights 2 or 4, and their values at fixed points are uniquely fixed, as shown in table 2. However, at weight 6 there are two linearly independent modular forms $Y_{3,I}^{(6)}$ and $Y_{3,II}^{(6)}$ transforming as 3 under S_4. As a consequence, if either Y_{atm} or Y_{sol} is a weight 6 modular form in the representation 3, its alignment would not be fixed uniquely by the residual modular symmetry. For instance, we assign $G_e = Z_3^{ST}$ and

$$Y_{\text{atm}} \sim Y_{3}^{(4)}$$ or $$Y_{3}^{(6)} , \quad Y_{\text{sol}} \sim Y_{3}^{(6)} , \quad \tau_{f,\text{atm}} = T^2 \tau_S = 2 + i , \quad \tau_{f,\text{sol}} = ST \tau_S = -\frac{1}{2} + \frac{i}{2} , \quad (85)$$

which implies

$$Y_{\text{atm}} (\tau_{f,\text{atm}}) \propto \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} , \quad Y_{3,I}^{(6)} (\tau_{f,\text{sol}}) \propto \begin{pmatrix} 1 \\ \frac{1}{\omega} \sqrt{3} \\ \frac{1}{\omega} \sqrt{3} \end{pmatrix} , \quad Y_{3,II}^{(6)} (\tau_{f,\text{sol}}) \propto \begin{pmatrix} 1 \\ \frac{1}{\omega} \sqrt{3} \\ \frac{1}{\omega} \sqrt{3} \end{pmatrix} . \quad (86)$$
The solar modular form Y_{sol} is generally a linear combination of $Y_{3,l}^{(6)}$ and $Y_{3,ll}^{(6)}$, and it can be written as

$$Y_{\text{sol}}(\tau_{f,\text{sol}}) = r_1 e^{i\eta_1} Y_{3,l}^{(6)}(\tau_{f,\text{sol}}) + r_2 e^{i\eta_2} Y_{3,ll}^{(6)}(\tau_{f,\text{sol}}),$$

where $r_{1,2}$ and $\eta_{1,2}$ are real parameters. Then the light neutrino mass matrix can be parameterized as

$$m_{\nu} = m_a \left[Y_{\text{atm}}(\tau_{f,\text{atm}}) Y_{\text{atm}}^T(\tau_{f,\text{atm}}) + Y_{\text{sol}}(\tau_{f,\text{sol}}) Y_{\text{sol}}^T(\tau_{f,\text{sol}}) \right].$$

In this scenario, the neutrino mass matrix depends on five free parameters m_a, r_1, r_2, η_1 and η_2. The experimental data can be reproduced very well, e.g.

$$m_a = 20.362 \text{ meV}, \quad r_1 = 0.826, \quad \eta_1 = -0.588\pi, \quad r_2 = 0.427, \quad \eta_2 = 0.062\pi,$$

and the best fit values of the neutrino mixing angles and mass squared differences can be obtained,

$$\sin^2 \theta_{13} = 0.0224, \quad \sin^2 \theta_{12} = 0.310, \quad \sin^2 \theta_{23} = 0.563, \quad \delta_{CP} = -0.413\pi,$$

$$\beta = 0.556\pi, \quad m_1 = 0 \text{ meV}, \quad m_2 = 8.597 \text{ meV}, \quad m_3 = 50.279 \text{ meV}.$$

Choosing other possible values of the fixed points $\tau_{f,e}$, $\tau_{f,\text{atm}}$ and $\tau_{f,\text{sol}}$, we can find similar models compatible with data. We shall not list all the possibilities since there are many viable cases.

4.2 Tri-direct modular model with three right-handed neutrinos

The above tri-direct modular approach can be straightforwardly extended to the conventional seesaw model with three right-handed neutrinos denote as N_{atm}^c, N_{sol}^c and N_{dec}^c. Then the superpotential for the charged lepton and neutrino masses is

$$W = -y_e e^c Y_e(\tau) L H_d - y_{\text{atm}} L Y_{\text{atm}}(\tau) N_{\text{atm}}^c H_u - y_{\text{sol}} L Y_{\text{sol}}(\tau) N_{\text{sol}}^c H_u - y_{\text{dec}} L Y_{\text{dec}}(\tau) N_{\text{dec}}^c H_u - \frac{1}{2} M_{\text{atm}} N_{\text{atm}}^c N_{\text{atm}}^c - \frac{1}{2} M_{\text{sol}} N_{\text{sol}}^c N_{\text{sol}}^c - \frac{1}{2} M_{\text{dec}} N_{\text{dec}}^c N_{\text{dec}}^c.$$

In this scenario, the theory has four moduli: τ_e in the charged lepton sector, τ_{atm}, τ_{sol} and τ_{dec} associated with the atmospheric, solar and “decoupled” right-handed neutrinos sectors respectively. Analogous to the two right-handed neutrinos case discussed above, we assume the modular symmetry is broken to different residual subgroups through the VEVs of τ_e, τ_{atm}, τ_{sol} and τ_{dec}. Many viable model can be found in this scenario. For illustration, we shall present one example in the following, and we assume the residual modular symmetry $G_e = Z_3^{ST}$ in the charged lepton sector and

$$Y_{\text{atm}} \sim Y_3^{(4)}, Y_3^{(6)}, \quad Y_{\text{sol}} \sim Y_3^{(2)}, \quad Y_{\text{dec}} \sim Y_3^4,$$

$$\tau_{f,\text{atm}} = T^2 \tau_S = 2 + i, \quad \tau_{f,\text{sol}} = \tau_S = i, \quad \tau_{f,\text{dec}} = T \tau_S = 1 + i.$$

From table 2 we can read off the alignments of the modular forms as follow

$$Y_{\text{atm}}(\tau_{f,\text{atm}}) \propto \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \quad Y_{\text{sol}}(\tau_{f,\text{sol}}) \propto \begin{pmatrix} 1 \\ 1 + \sqrt{6} \\ 1 - \sqrt{6} \end{pmatrix}, \quad Y_{\text{dec}}(\tau_{f,\text{dec}}) \propto \begin{pmatrix} 1 \\ \frac{\sqrt{2}}{\sqrt{2}} \omega \\ \frac{\sqrt{2}}{\sqrt{2}} \omega^2 \end{pmatrix}.$$

Consequently the neutrino mass matrix is given by

$$m_{\nu} = m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix} + r_1 e^{i\eta_1} \begin{pmatrix} 1 & 1 - \sqrt{6} & 1 + \sqrt{6} \\ 1 - \sqrt{6} & 7 - 2\sqrt{6} & -5 \\ 1 + \sqrt{6} & -5 & 7 + 2\sqrt{6} \end{pmatrix}.$$
\[+r_2 e^{in_2} \frac{1}{2} \begin{pmatrix} 2 & \sqrt{2}i\omega & \sqrt{2}i\omega \\ \sqrt{2}i\omega & -\omega & -1 \\ \sqrt{2}i\omega & -1 & -\omega^2 \end{pmatrix}, \quad (94) \]

where \(r_{1,2} \) and \(\eta_{1,2} \) are real free parameters. Excellent agreement with experimental data can be achieved in this case, and a numerical benchmark is

\[
m_a = 16.629 \text{ meV}, \quad r_1 = 0.150, \quad r_2 = 0.877, \quad \eta_1 = 1.313\pi, \quad \eta_2 = 0.787\pi, \\
\sin^2 \theta_{13} = 0.0224, \quad \sin^2 \theta_{12} = 0.310, \quad \sin^2 \theta_{23} = 0.563, \\
\delta_{CP} = -0.635\pi, \quad \alpha_{21} = 0.813\pi, \quad \alpha_{31} = -0.547\pi, \\
m_1 = 3.830 \text{ meV}, \quad m_2 = 9.411 \text{ meV}, \quad m_3 = 50.425 \text{ meV}. \quad (95)\]

5 Fixed points and tri-direct modular model for \(N = 3 \)

The modular group \(\Gamma(3) \) has been extensively studied in the literature \([12,14,15,18–22]\). The finite modular group \(\Gamma_3 \) is isomorphic to \(A_4 \). In the present work we shall adopt the same convention as \([12,23]\). In the triplet representation \(3 \), the \(A_4 \) generators \(S \) and \(T \) are represented by

\[
S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix}. \quad (96)\]

The weight 2 modular forms \(Y_{3}^{(2)} = (Y_1, Y_2, Y_3)^T \) transform as a triplet of \(A_4 \) and it can be constructed in terms of \(\eta(\tau) \) as follow \([12]\),

\[
Y_1(\tau) = \frac{i}{2\pi} \left[\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \frac{\eta'((\tau + 1)/3)}{\eta((\tau + 1)/3)} + \frac{\eta'((\tau + 2)/3)}{\eta((\tau + 2)/3)} - \frac{27\eta'(3\tau)}{\eta(3\tau)} \right], \\
Y_2(\tau) = \frac{-i}{\pi} \left[\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \omega^2 \frac{\eta'((\tau + 1)/3)}{\eta((\tau + 1)/3)} + \omega \frac{\eta'((\tau + 2)/3)}{\eta((\tau + 2)/3)} \right], \\
Y_3(\tau) = \frac{-i}{\pi} \left[\frac{\eta'(\tau/3)}{\eta(\tau/3)} + \omega \frac{\eta'((\tau + 1)/3)}{\eta((\tau + 1)/3)} + \omega^2 \frac{\eta'((\tau + 2)/3)}{\eta((\tau + 2)/3)} \right]. \quad (97)\]

There are five weight 4 modular forms given by

\[
Y_{1}^{(4)} = Y_1^2 + 2Y_2Y_3 \sim 1, \\
Y_{1'}^{(4)} = Y_3^2 + 2Y_1Y_2 \sim 1', \\
Y_{2}^{(4)} = \begin{pmatrix} Y_1^2 - Y_2Y_3 \\ Y_3^2 - Y_1Y_2 \\ Y_2^2 - Y_1Y_3 \end{pmatrix} \sim 3. \quad (98)\]

The weight 6 modular forms can be decomposed as \(1 \oplus 3 \oplus 3 \) under \(A_4 \) \([12]\),

\[
Y_{1}^{(6)} = Y_1^3 + Y_2^3 + Y_3^3 - 3Y_1Y_2Y_3 \sim 1, \\
Y_{3,l}^{(6)} = \begin{pmatrix} Y_1^3 + 2Y_1Y_2Y_3 \\ Y_2^3 + 2Y_2Y_3 + 3Y_1^2Y_2 \\ Y_3^3 + 2Y_3Y_1 + 3Y_2^2Y_2 \\ Y_1Y_2^2 + 2Y_1^2Y_3 \\ Y_2Y_3^2 + 2Y_2^2Y_1 \end{pmatrix} , \quad (99)\]

\[
Y_{3,ll}^{(6)} = \begin{pmatrix} Y_1^3 + 2Y_1Y_2Y_3 \\ Y_2^3Y_1 + 2Y_1^2Y_2 \\ Y_3^3Y_2 + 2Y_2^2Y_1 \end{pmatrix} .
\]
The alignments of triplet modular forms $Y_{a,b}^{(l)}(\gamma\tau_S)$ of level 3 up to weight 6

γ	$\gamma\tau_S$	$Y_a^{(l)}(\gamma\tau_S)$, $Y_b^{(l)}(\gamma\tau_S)$, $Y_c^{(l)}(\gamma\tau_S)$, $Y_d^{(l)}(\gamma\tau_S)$
$\{1, S\}$	i	$(1,1,1), (1, \sqrt{3} - 3\sqrt{3} - 2)$, $(1,1,1), (1, -2 - \sqrt{3}, 1 + \sqrt{3})$
$\{T, TS\}$	$1 + i$	$(1,1,1), (1, -\sqrt{3} \omega, (\sqrt{3} - 3) \omega)$, $(1, \omega^2, \omega^2)$, $(1, -2 - \sqrt{3} \omega, (1 + \sqrt{3}) \omega)$
$\{ST, STS\}$	$1 + \sqrt{2}$	$(1,1,1), (1, \sqrt{3} \omega, (\sqrt{3} - 3) \omega)$, $(1, \omega^2, \omega^2)$, $(1, -2 - \sqrt{3} \omega, (1 + \sqrt{3}) \omega)$
$\{T^2, T^2S\}$	$2 + i$	$(1,1,1), (1, \sqrt{3} \omega, (\sqrt{3} - 3) \omega)$, $(1, \omega^2, \omega^2)$, $(1, -2 - \sqrt{3} \omega, (1 + \sqrt{3}) \omega)$
$\{ST^2, ST^2S\}$	$1 + \sqrt{2}$	$(1,1,1), (1, \sqrt{3} \omega, (\sqrt{3} - 3) \omega)$, $(1, \omega^2, \omega^2)$, $(1, -2 - \sqrt{3} \omega, (1 + \sqrt{3}) \omega)$

Table 5: The alignments of the triplet modular forms $Y_{a,b}^{(l)}(\gamma\tau_S)$ of level 3 up to weight 6 at the fixed point $\tau_S = \gamma\tau_S$. We have identified the modulus parameter τ with $T^3 \tau = \tau + 3$ in the second column because $Y_f(\tau) = Y_f(\tau + 3)$ for any modular multiplet Y_f of level 3.

As shown in section 3, the modular group has infinite nontrivial fixed points while the nonequivalent alignments of the modular forms at fixed points are finite. It is sufficient to only consider the fixed points $\Gamma_N\tau_S$, $\Gamma_N\tau_{TS}$, $\Gamma_N\tau_{STS}$, $\Gamma_N\tau_T$ with $\gamma \in A_4$. We have identified the modulus parameter τ with $T^3 \tau = \tau + 3$ in the second column because $Y_f(\tau) = Y_f(\tau + 3)$ for any modular multiplet Y_f of level 3.

In the framework of tri-direct modular model with two-right handed neutrinos, we have considered all possible residual symmetries in different sectors, yet no viable models can be found if the modular weights of Y_{atm} and Y_{sol} are equal to 2 or 4. Some models compatible with experimental data can be obtained if either Y_{atm} or Y_{sol} is a weight 6 modular form transforming as 3 under A_4 such that its alignment is not fixed uniquely. We give one example in the following, the residual symmetry of the charged lepton sector is $G_e = Z_3^T$ and $Y_{atm} \sim Y_3^{(2)}$, $Y_{sol} \sim Y_3^{(6)}$, $\tau_f, atm = ST\tau_S = -1/2 + i$, $\tau_f, sol = \tau_S = i$. (100)

The neutrino mass matrix is of the form of Eq. (88), and the measured values of the mixing parameters and neutrino masses can be accommodated very well, e.g.

$$m_a = 2.090 \text{ meV}, \quad r_1 = 0.982, \quad \eta_1 = 1.354 \pi, \quad r_2 = 0.385, \quad \eta_2 = 1.683 \pi,$$

$$\sin^2 \theta_{13} = 0.0224, \quad \sin^2 \theta_{12} = 0.310, \quad \sin^2 \theta_{23} = 0.563, \quad \delta_{CP} = -0.399 \pi,$$

$$\beta = -0.124 \pi, \quad m_1 = 0 \text{ meV}, \quad m_2 = 8.597 \text{ meV}, \quad m_3 = 50.279 \text{ meV}.$$ (101)
modular forms are assigned to transform as

$$Y_{\text{atm}} \sim Y_3^{(2)}, \quad Y_{\text{sol}} \sim Y_3^{(4)}, \quad Y_{\text{dec}} \sim Y_3^{(2)},$$
$$\tau_{f, \text{atm}} = \tau_S = i, \quad \tau_{f, \text{sol}} = \tau_S = i, \quad \tau_{f, \text{dec}} = TST_{\tau ST} = 2 + \omega. \quad (102)$$

The neutrino mass matrix in this case is of the following form

$$m_\nu = m_a \begin{pmatrix}
1 & -2 + \sqrt{3} & 1 - \sqrt{3} \\
-2 + \sqrt{3} & 7 - 4\sqrt{3} & -5 + 3\sqrt{3} \\
1 - \sqrt{3} & -5 + 3\sqrt{3} & 4 - 2\sqrt{3}
\end{pmatrix} + r_1 e^{i\eta_1} \begin{pmatrix} 1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{pmatrix} \quad + r_2 e^{i\eta_2} \begin{pmatrix} 1 & -1 & 1 \\
-1 & 1 & -1 \\
1 & -1 & 1
\end{pmatrix}. \quad (103)$$

The agreement with experiment data is optimised for

$$m_a = 48.353 \text{ meV}, \quad r_1 = 0.705, \quad \eta_1 = 0.066\pi, \quad r_2 = 0.859, \quad \eta_2 = 1.037\pi, \quad (104)$$

and accordingly the neutrino masses and mixing parameters are determined to be

$$\sin^2 \theta_{13} = 0.0224, \quad \sin^2 \theta_{12} = 0.310, \quad \sin^2 \theta_{23} = 0.563, \quad$$
$$\delta_{CP} = -0.353\pi, \quad \alpha_{21} = -0.676\pi, \quad \alpha_{31} = -1.551\pi, \quad$$
$$m_1 = 72.207 \text{ meV}, \quad m_2 = 72.717 \text{ meV}, \quad m_3 = 87.988 \text{ meV}. \quad (105)$$

6 Conclusion

Models based on modular flavour symmetry are highly predictive. In the most economical version of modular symmetry models, the VEV of the modulus τ is the unique source of the flavour symmetry breaking, and the flavon fields are not absolutely necessary. If the VEV of τ takes some special values, certain residual subgroup of the modular symmetry would be preserved. Inside the fundamental domain, we have derived the four nontrivial fixed points $\tau_S = i$, $\tau_{ST} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, $\tau_{TS} = \frac{1}{2} + i\frac{\sqrt{3}}{2}$, $\tau_T = i\infty$ which are invariant under the actions of the modular subgroups Z_3^S, Z_3^{ST}, Z_3^{TS} and Z_3^T respectively with N being the level of modular group. Other fixed points of modulus are related to τ_S, τ_{ST}, τ_{TS} and $\tau_T = i\infty$ through modular transformation. The most general form of the fixed modulus is given by $\tau_f = \gamma \tau_S$, $\gamma \tau_{ST}$, $\gamma \tau_{TS}$, $\gamma \tau_T$ with $\gamma \in \Gamma$. Although the number of fixed point τ_f is infinity, the inequivalent directions of the modular forms $Y_f(\tau_f)$ at fixed points are finite. We have shown that it is sufficient to only consider the values of $Y_f(\tau_f)$ with τ_f given by $\Gamma_N\tau_S$, $\Gamma_N\tau_{ST}$, $\Gamma_N\tau_{TS}$ and $\Gamma_N\tau_T$.

Before applying these results to lepton mixing, we first proved that it is necessary for the neutrino and charged lepton sectors to have different residual symmetry, since if they shared a common symmetry value of τ_f, the lepton mixing would contain four or six zeros which is excluded by present data. The approach to lepton mixing followed here is motivated by the tri-direct CP approach in usual discrete flavour symmetry, however here we find that it is unnecessary to CP, as we discuss below. For example, in the minimal scenario with two right-handed neutrinos, we assumed that the modular symmetry is broken to different residual subgroups in the charged lepton sector, atmospheric neutrino sector and solar neutrino sector. In this case, the two columns of the Dirac neutrino mass matrix are triplet modular forms whose alignments are determined by residual symmetry at fixed points τ_f.
Focussing on level $N = 4$, corresponding to the flavour group S_4, we considered all the resulting triplet modular forms at the above fixed points up to weight 6. We then applied the results to lepton mixing, with different residual subgroups in the charged lepton sector and each of the right-handed neutrinos sectors. In the minimal case of two right-handed neutrinos, we found three phenomenologically viable cases, denoted A, B and C. We showed that if only weight 2 and weight 4 modular forms are involved in the neutrino Yukawa coupling, the light neutrino mass matrix involves three real parameters and three independent cases can be compatible with the experimental data, as summarized in table 3. The cases A and B lead to TM1 mixing pattern, and the first column of the lepton mixing matrix is approximately $(0.800, 0.421, 0.428)^T$ for the case C. The case B corresponds to the CSD(n) model with $n = 1 + \sqrt{6} \approx 3.45$, intermediate between CSD(3) and CSD(4).

We find it remarkable that, even without CP, the modular symmetry uniquely fixes the value of n to be a unique real number (to be compared to the usual tri-direct approach, where n takes an arbitrary real value, assuming a CP symmetry). If a higher weight (e.g., weight 6) modular form enters in the neutrino Yukawa coupling, its alignment is not constant vector any more at fixed point τ_f and more free parameters are involved in the light neutrino mass matrix. Hence we find many cases can described the measured values of lepton masses and mixing in this scenario, and we give one example for illustration. Furthermore, we generalized the tri-direct modular approach to the models with three right-handed neutrinos, and many cases in agreement with experimental data can also be found.

In the same fashion, we also studied the possible tri-direct modular models for the level $N = 3$ case, corresponding to A_4 flavour symmetry. In the minimal model with two right-handed neutrinos, no models can be compatible with data if the modular weights of Y_{atm} and Y_{sol} are equal to 2 or 4. However, phenomenologically viable models can be found if the modular weights of either Y_{atm} or Y_{sol} are greater than 4 or three right-handed neutrinos are involved.

In the tri-direct modular approach here, the physical results only depend on the structure of modular symmetry group and the assumed residual symmetries. The details of the mechanism realising the desired residual symmetries are irrelevant. It seems that at least three complex moduli τ_e, τ_{atm} and τ_{sol} responsible for the breaking of modular symmetry in the charged lepton sector, atmospheric neutrino sector and solar neutrino sector may be needed.

It would be interesting to implement one of the successful cases A, B, C in a concrete model based on multiple modular symmetries [38, 39] or some other mechanism which can lead to different values of τ in the charged lepton, atmospheric neutrino and solar neutrino sectors, and this is left for future work.

Acknowledgements

G.-J. D., X.-G. L. and J.-N. L. acknowledges the support of the National Natural Science Foundation of China under Grant Nos 11975224 and 11835013. S. F. K. acknowledges the STFC Consolidated Grant ST/L000296/1 and the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreements Elusives ITN No. 674896 and InvisiblesPlus RISE No. 690575. S. F. K. also acknowledges the hospitality of G.-J. D. during this collaboration. We acknowledge Prof. Shun Zhou and Dr. Newton Nath for stimulating discussion in the initial stage of this work.
Table 6: The representation matrices of the generators S and T in the five irreducible representations of S_4, where $\omega = e^{2\pi i/3} = -1/2 + i\sqrt{3}/2$ is a cubic root of unity.

Appendix

A Group theory of $\Gamma_4 \cong S_4$

The finite modular group Γ_4 has two generators S and T which fulfill the following relations

$$S^2 = (ST)^3 = (TS)^3 = T^4 = 1.$$ \hfill (A.1)

The finite modular group Γ_4 is isomorphic to the permutation group S_4 of four objects. In order to see the correlation between S_4 and tri-bimaximal mixing and the connection to S_3, A_4 groups more easily, it is convenient to generate the S_4 group in terms of three generators \hat{S}, \hat{T} and \hat{U} with the multiplication rules [60,61],

$$\hat{S}^2 = \hat{T}^3 = \hat{U}^2 = (\hat{S}\hat{T})^3 = (\hat{S}\hat{U})^2 = (\hat{T}\hat{U})^2 = (\hat{S}\hat{T}\hat{U})^4 = 1,$$ \hfill (A.2)

where \hat{S} and \hat{T} alone generate the group A_4, while \hat{T} and \hat{U} alone generate the group S_3. The generators S, T can be expressed in terms of \hat{S}, \hat{T} and \hat{U}

$$S = \hat{S}\hat{U}, \quad T = \hat{S}\hat{T}\hat{U}, \quad ST = \hat{T}$$ \hfill (A.3)

or vice versa

$$\hat{S} = (ST^2)^2, \quad \hat{T} = ST, \quad \hat{U} = T^2ST^2.$$ \hfill (A.4)

The S_4 group has five conjugacy classes as follow,

1C_1 = \{1\},
3C_2 = \{(ST^2)^2, T^2, ST^2S\},
6C_3 = \{T^2ST^2, TST^3, S, TST^2S, T^3ST, ST^2ST\},
8C_3 = \{ST, T^2ST^3, T^2ST, (TS)^2, (ST)^2, T^3ST^2, TST^2, TS\},
6C_4 = \{TST, STS, T^3, T, ST^2, T^2S\}, \hfill (A.5)

where nC_k denotes a conjugacy class with n elements and the subscript k is the order of the elements. The group S_4 has five irreducible representations: two singlets 1 and 1', one doublet 2 and two triplets 3 and 3'. In the present work, we choose the same basis as that of [61]. The explicit forms of S and T in each of the irreducible representations are summarized in table 6. Notice that the triplet representations 3 and 3' correspond to 3' and 3 of Refs. [25,26] respectively.

The Clebsch-Gordan coefficients in our working basis can be found in [61], for completeness we present them in the following. We shall use α_i to denote the elements of first
representation and β_i stands for the elements of the second representation of the tensor product.

\[1' \otimes 2 = 2 \sim \begin{pmatrix} \alpha \beta_1 \\ -\alpha \beta_2 \end{pmatrix}, \quad (A.6) \]

\[1' \otimes 3 = 3' \sim \begin{pmatrix} \alpha \beta_1 \\ \alpha \beta_2 \\ \alpha \beta_3 \end{pmatrix}, \quad (A.7) \]

\[1' \otimes 3' = 3 \sim \begin{pmatrix} \alpha \beta_1 \\ \alpha \beta_2 \\ \alpha \beta_3 \end{pmatrix}. \quad (A.8) \]

\[2 \otimes 2 = 1 \oplus 1' \oplus 2 \quad \text{with} \quad \begin{cases} 1 \sim \alpha_1 \beta_2 + \alpha_2 \beta_1 \\ 1' \sim \alpha_1 \beta_2 - \alpha_2 \beta_1 \\ 2 \sim \begin{pmatrix} \alpha_2 \beta_2 \\ \alpha_1 \beta_1 \end{pmatrix} \\ 3 \sim \begin{pmatrix} \alpha_1 \beta_2 + \alpha_2 \beta_3 \\ \alpha_1 \beta_3 + \alpha_2 \beta_1 \\ \alpha_1 \beta_1 + \alpha_2 \beta_2 \end{pmatrix} \end{cases} \quad (A.9) \]

\[2 \otimes 3 = 3 \oplus 3' \quad \text{with} \quad \begin{cases} 1 \sim \alpha_1 \beta_2 + \alpha_2 \beta_3 \\ 1' \sim \alpha_1 \beta_3 - \alpha_2 \beta_1 \\ 2 \sim \begin{pmatrix} \alpha_2 \beta_2 + \alpha_1 \beta_3 \\ \alpha_3 \beta_3 + \alpha_1 \beta_2 + \alpha_2 \beta_1 \end{pmatrix} \\ 3 \sim \begin{pmatrix} \alpha_1 \beta_2 - \alpha_2 \beta_3 \\ \alpha_1 \beta_3 - \alpha_2 \beta_1 \\ \alpha_1 \beta_1 - \alpha_2 \beta_2 \end{pmatrix} \end{cases} \quad (A.10) \]

\[2 \otimes 3' = 3 \oplus 3' \quad \text{with} \quad \begin{cases} 1 \sim \alpha_1 \beta_1 + \alpha_2 \beta_3 + \alpha_3 \beta_2 \\ 2 \sim \begin{pmatrix} \alpha_2 \beta_2 + \alpha_1 \beta_3 + \alpha_3 \beta_1 \\ \alpha_3 \beta_3 + \alpha_1 \beta_2 + \alpha_2 \beta_1 \end{pmatrix} \\ 3' \sim \begin{pmatrix} \alpha_1 \beta_2 + \alpha_2 \beta_3 \\ \alpha_1 \beta_3 + \alpha_2 \beta_1 \\ \alpha_1 \beta_1 + \alpha_2 \beta_2 \end{pmatrix} \end{cases} \quad (A.11) \]

\[3 \otimes 3 = 3' \otimes 3' = 1 \oplus 2 \oplus 3 \oplus 3' \quad \text{with} \quad \begin{cases} 3 \sim \begin{pmatrix} \alpha_2 \beta_2 - \alpha_3 \beta_3 \\ \alpha_1 \beta_2 - \alpha_2 \beta_1 \\ \alpha_3 \beta_1 - \alpha_1 \beta_3 \end{pmatrix} \\ 3' \sim \begin{pmatrix} 2\alpha_1 \beta_1 - \alpha_2 \beta_3 - \alpha_3 \beta_2 \\ 2\alpha_3 \beta_3 - \alpha_1 \beta_2 - \alpha_2 \beta_1 \\ 2\alpha_2 \beta_2 - \alpha_1 \beta_3 - \alpha_3 \beta_1 \end{pmatrix} \end{cases} \quad (A.12) \]
3 \otimes 3' = 1' \oplus 2 \oplus 3 \oplus 3' \quad \text{with} \quad \begin{aligned}
1' &\sim \alpha_1 \beta_1 + \alpha_2 \beta_3 + \alpha_3 \beta_2 \\
2 &\sim \begin{pmatrix}
\alpha_2 \beta_2 + \alpha_1 \beta_3 + \alpha_3 \beta_1 \\
-(\alpha_3 \beta_3 + \alpha_1 \beta_2 + \alpha_2 \beta_1)
\end{pmatrix} \\
3 &\sim \begin{pmatrix}
2 \alpha_1 \beta_1 - \alpha_2 \beta_3 - \alpha_3 \beta_2 \\
2 \alpha_3 \beta_3 - \alpha_1 \beta_2 - \alpha_2 \beta_1 \\
2 \alpha_2 \beta_2 - \alpha_1 \beta_3 - \alpha_3 \beta_1
\end{pmatrix} \\
3' &\sim \begin{pmatrix}
\alpha_2 \beta_3 - \alpha_3 \beta_2 \\
\alpha_1 \beta_2 - \alpha_2 \beta_1 \\
\alpha_3 \beta_1 - \alpha_1 \beta_3
\end{pmatrix}
\end{aligned}
(A.13)
References

[1] **Particle Data Group** Collaboration, M. Tanabashi *et al.*, “Review of Particle Physics,” *Phys. Rev. D*98 no. 3, (2018) 030001.

[2] G. Altarelli and F. Feruglio, “Discrete Flavor Symmetries and Models of Neutrino Mixing,” *Rev. Mod. Phys.* 82 (2010) 2701–2729, arXiv:1002.0211 [hep-ph].

[3] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada, and M. Tanimoto, “Non-Abelian Discrete Symmetries in Particle Physics,” *Prog. Theor. Phys. Suppl.* 183 (2010) 1–163, arXiv:1003.3552 [hep-th].

[4] S. F. King and C. Luhn, “Neutrino Mass and Mixing with Discrete Symmetry,” *Rept. Prog. Phys.* 76 (2013) 056201, arXiv:1301.1340 [hep-ph].

[5] S. F. King, A. Merle, S. Morisi, Y. Shimizu, and M. Tanimoto, “Neutrino Mass and Mixing: from Theory to Experiment,” *New J. Phys.* 16 (2014) 045018, arXiv:1402.4271 [hep-ph].

[6] S. F. King, “Models of Neutrino Mass, Mixing and CP Violation,” *J. Phys. G*42 (2015) 123001, arXiv:1510.02091 [hep-ph].

[7] S. F. King, “Unified Models of Neutrinos, Flavour and CP Violation,” *Prog. Part. Nucl. Phys.* 94 (2017) 217–256, arXiv:1701.04413 [hep-ph].

[8] J.-N. Lu and G.-J. Ding, “Alternative Schemes of Predicting Lepton Mixing Parameters from Discrete Flavor and CP Symmetry,” *Phys. Rev. D*95 no. 1, (2017) 015012, arXiv:1610.05682 [hep-ph].

[9] C.-C. Li, J.-N. Lu, and G.-J. Ding, “Toward a unified interpretation of quark and lepton mixing from flavor and CP symmetries,” *JHEP* 02 (2018) 038, arXiv:1706.04576 [hep-ph].

[10] J.-N. Lu and G.-J. Ding, “Quark and lepton mixing patterns from a common discrete flavor symmetry with a generalized CP symmetry,” *Phys. Rev. D*98 no. 5, (2018) 055011, arXiv:1806.02301 [hep-ph].

[11] J.-N. Lu and G.-J. Ding, “Dihedral flavor group as the key to understand quark and lepton flavor mixing,” *JHEP* 03 (2019) 056, arXiv:1901.07414 [hep-ph].

[12] F. Feruglio, “Are neutrino masses modular forms?,” in *From My Vast Repertoire ...: Guido Altarelli’s Legacy*, A. Levy, S. Forte, and G. Ridolfi, eds., pp. 227–266. 2019. arXiv:1706.08749 [hep-ph].

[13] M.-C. Chen, S. Ramos-Sanchez, and M. Ratz, “A note on the predictions of models with modular flavor symmetries,” arXiv:1909.06910 [hep-ph].

[14] T. Kobayashi, K. Tanaka, and T. H. Tatsuishi, “Neutrino mixing from finite modular groups,” *Phys. Rev. D*98 no. 1, (2018) 016004, arXiv:1803.10391 [hep-ph].

[15] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H. Tatsuishi, and H. Uchida, “Finite modular subgroups for fermion mass matrices and baryon/lepton number violation,” arXiv:1812.11072 [hep-ph].
[16] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, and T. H. Tatsuishi, “Modular S_3 invariant flavor model in SU(5) GUT,” arXiv:1906.10341 [hep-ph].

[17] H. Okada and Y. Orikasa, “A modular S_3 symmetric radiative seesaw model,” arXiv:1907.04716 [hep-ph].

[18] J. C. Criado and F. Feruglio, “Modular Invariance Faces Precision Neutrino Data,” arXiv:1807.01125 [hep-ph].

[19] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto, and T. H. Tatsuishi, “Modular A_4 invariance and neutrino mixing,” arXiv:1808.03012 [hep-ph].

[20] H. Okada and M. Tanimoto, “CP violation of quarks in A_4 modular invariance,” arXiv:1812.09677 [hep-ph].

[21] P. P. Novichkov, S. T. Petcov, and M. Tanimoto, “Trimaximal Neutrino Mixing from Modular A_4 Invariance with Residual Symmetries,” arXiv:1812.11289 [hep-ph].

[22] T. Nomura and H. Okada, “A two loop induced neutrino mass model with modular A_4 symmetry,” arXiv:1906.03927 [hep-ph].

[23] G.-J. Ding, S. F. King, and X.-G. Liu, “Modular A_4 symmetry models of neutrinos and charged leptons,” JHEP 09 (2019) 074, arXiv:1907.11714 [hep-ph].

[24] T. Asaka, Y. Heo, T. H. Tatsuishi, and T. Yoshida, “Modular A_4 invariance and leptogenesis,” arXiv:1909.06520 [hep-ph].

[25] J. T. Penedo and S. T. Petcov, “Lepton Masses and Mixing from Modular S_4 Symmetry,” Nucl. Phys. B939 (2019) 292–307, arXiv:1806.11040 [hep-ph].

[26] P. P. Novichkov, J. T. Penedo, S. T. Petcov, and A. V. Titov, “Modular S_4 Models of Lepton Masses and Mixing,” arXiv:1811.04933 [hep-ph].

[27] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, and T. H. Tatsuishi, “New A_4 lepton flavor model from S_4 modular symmetry,” arXiv:1907.09141 [hep-ph].

[28] J. C. Criado, F. Feruglio, and S. J. D. King, “Modular Invariant Models of Lepton Masses at Levels 4 and 5,” arXiv:1908.11867 [hep-ph].

[29] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, and T. H. Tatsuishi, “A_4 lepton flavor model and modulus stabilization from S_4 modular symmetry,” arXiv:1909.05139 [hep-ph].

[30] P. P. Novichkov, J. T. Penedo, S. T. Petcov, and A. V. Titov, “Modular A_5 Symmetry for Flavour Model Building,” arXiv:1812.02158 [hep-ph].

[31] G.-J. Ding, S. F. King, and X.-G. Liu, “Neutrino Mass and Mixing with A_5 Modular Symmetry,” arXiv:1903.12588 [hep-ph].

[32] X.-G. Liu and G.-J. Ding, “Neutrino Masses and Mixing from Double Covering of Finite Modular Groups,” arXiv:1907.01488 [hep-ph].

[33] P. P. Novichkov, J. T. Penedo, S. T. Petcov, and A. V. Titov, “Generalised CP Symmetry in Modular-Invariant Models of Flavour,” JHEP 07 (2019) 165, arXiv:1905.11970 [hep-ph].
A. Baur, H. P. Nilles, A. Trautner, and P. K. S. Vaudrevange, “Unification of Flavor, CP, and Modular Symmetries,” arXiv:1901.03251 [hep-th].

B. S. Acharya, D. Bailin, A. Love, W. A. Sabra, and S. Thomas, “Spontaneous breaking of CP symmetry by orbifold moduli,” Phys. Lett. B357 (1995) 387–396, arXiv:hep-th/9506143 [hep-th]. [Erratum: Phys. Lett.B407,451(1997)].

T. Dent, “CP violation and modular symmetries,” Phys. Rev. D64 (2001) 056005, arXiv:hep-ph/0105285 [hep-ph].

J. Giedt, “CP violation and moduli stabilization in heterotic models,” Mod. Phys. Lett. A17 (2002) 1465–1473, arXiv:hep-ph/0204017 [hep-ph].

I. De Medeiros Varzielas, S. F. King, and Y.-L. Zhou, “Multiple modular symmetries as the origin of flavour,” arXiv:1906.02208 [hep-ph].

S. F. King and Y.-L. Zhou, “Trimaximal TM1 mixing with two modular S4 groups,” arXiv:1908.02770 [hep-ph].

T. Kobayashi, S. Nagamoto, S. Takada, S. Tamba, and T. H. Tatsuishi, “Modular symmetry and non-Abelian discrete flavor symmetries in string compactification,” Phys. Rev. D97 no. 11, (2018) 116002, arXiv:1804.06644 [hep-th].

T. Kobayashi and S. Tamba, “Modular forms of finite modular subgroups from magnetized D-brane models,” Phys. Rev. D99 no. 4, (2019) 046001, arXiv:1811.11384 [hep-th].

G.-J. Ding, S. F. King, and C.-C. Li, “Lepton mixing predictions from S4 in the tridirect CP approach to two right-handed neutrino models,” Phys. Rev. D99 no. 7, (2019) 075035, arXiv:1811.12340 [hep-ph].

S. F. King, “Minimal predictive see-saw model with normal neutrino mass hierarchy,” JHEP 07 (2013) 137, arXiv:1304.6264 [hep-ph].

S. F. King, “Minimal see-saw model predicting best fit lepton mixing angles,” Phys. Lett. B724 (2013) 92–98, arXiv:1305.4846 [hep-ph].

S. F. King, “Littlest Seesaw,” JHEP 02 (2016) 085, arXiv:1512.07531 [hep-ph].

P.-T. Chen, G.-J. Ding, S. F. King, and C.-C. Li, “A New Littlest Seesaw Model,” arXiv:1906.11414 [hep-ph].

D. Schultz, “Notes on Modular Forms.”
https://faculty.math.illinois.edu/~schult25/ModFormNotes.pdf, 2015.

F. Diamond and J. M. Shurman, A first course in modular forms, vol. 228 of Graduate Texts in Mathematics. Springer, 2005.

J. H. Bruinier, G. V. D. Geer, G. Harder, and D. Zagier, The 1-2-3 of Modular Forms. Universitext. Springer Berlin Heidelberg, 2008.
[52] S. Lang, *Introduction to modular forms*, vol. 222 of *Graduate Texts in Mathematics*. Springer, 2012.

[53] S. F. King and C. Luhn, “Littlest Seesaw model from S₄ × U(1),” *JHEP* **09** (2016) 023, arXiv:1607.05276 [hep-ph].

[54] P. Ballett, S. F. King, S. Pascoli, N. W. Prouse, and T. Wang, “Precision neutrino experiments vs the Littlest Seesaw,” *JHEP* **03** (2017) 110, arXiv:1612.01999 [hep-ph].

[55] S. F. King, S. Molina Sedgwick, and S. J. Rowley, “Fitting high-energy Littlest Seesaw parameters using low-energy neutrino data and leptogenesis,” *JHEP* **10** (2018) 184, arXiv:1808.01005 [hep-ph].

[56] S. F. King, “A model of quark and lepton mixing,” *JHEP* **01** (2014) 119, arXiv:1311.3295 [hep-ph].

[57] S. F. King, “A to Z of Flavour with Pati-Salam,” *JHEP* **08** (2014) 130, arXiv:1406.7005 [hep-ph].

[58] F. Björkeroth and S. F. King, “Testing constrained sequential dominance models of neutrinos,” *J. Phys.* G**42** no. 12, (2015) 125002, arXiv:1412.6996 [hep-ph].

[59] I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni, and T. Schwetz, “Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ₂₃, δcp, and the mass ordering,” arXiv:1811.05487 [hep-ph].

[60] C. Hagedorn, S. F. King, and C. Luhn, “A SUSY GUT of Flavour with S₄ x SU(5) to NLO,” *JHEP* **06** (2010) 048, arXiv:1003.4249 [hep-ph].

[61] G.-J. Ding, S. F. King, C. Luhn, and A. J. Stuart, “Spontaneous CP violation from vacuum alignment in S₄ models of leptons,” *JHEP* **05** (2013) 084, arXiv:1303.6180 [hep-ph].