Chen, Hao

Apollonian ball packings and stacked polytopes. (English) Zbl 1351.52019
Discrete Comput. Geom. 55, No. 4, 801-826 (2016).

The relation between Apollonian packings of \(d\)-dimensional balls, their tangency graphs, and stacked polytopes is studied. For \(d = 2\) it is quite easy to prove that the graph \(G\) is a tangent graph of an Apollonian circle packing if and only if it is the 1-skeleton of some 3-dimensional stacked polytope.

For \(d = 3\) it is proved that the 1-skeleton of a stacked 4-polytope is a tangency graph of an Apollonian 3-balls packing if and only if it does not contain six 4-cliques sharing a 3-clique.

On the other hand, for \(d = 3\) the tangency graph of an Apollonian 3-balls may not be the 1-skeleton of any stacked 4-polytope. But it is proved that this situation never occurs if \(d \geq 4\).

Reviewer: Anton Shutov (Vladimir)

MSC:
52C17 Packing and covering in \(n\) dimensions (aspects of discrete geometry)
52B11 \(n\)-dimensional polytopes
20F55 Reflection and Coxeter groups (group-theoretic aspects)

Keywords:
Apollonian ball packing; stacked polytope; \(k\)-tree; forbidden subgraph

Full Text: DOI arXiv

References:
[1] Bachoc, C; Vallentin, F, Optimality and uniqueness of the \((4,10,1/6)\) spherical code, J. Comb. Theory, Ser. A, 116, 195-204, (2009) · Zbl 1160.94018 · doi:10.1016/j.jcta.2008.05.001
[2] Bannai, E; Sloane, NJA, Uniqueness of certain spherical codes, Can. J. Math., 33, 437-449, (1981) · Zbl 0457.05017 · doi:10.4153/CJM-1981-038-7
[3] Benjamini, I., Schramm, O.: Lack of sphere packing of graphs via non-linear potential theory (2010). arXiv:0910.3071v2 · Zbl 1270.52027
[4] Boyd, DW, The osculatory packing of a three dimensional sphere, Can. J. Math., 25, 303-322, (1973) · Zbl 0258.52012 · doi:10.4153/CJM-1973-030-5
[5] Brightwell, GR; Scheinerman, ER, Representations of planar graphs, SIAM J. Discrete Math., 6, 214-229, (1993) · Zbl 0782.05026 · doi:10.1137/0406017
[6] Chen, H; Labbé, JP, Lorentzian Coxeter systems and Boyd-Maxwell ball packings, Geom. Dedicata, 174, 43-73, (2015) · Zbl 1312.52012 · doi:10.1007/s10711-014-0004-1
[7] Cohn, H, Kumar, A, Uniqueness of the \((22,891,1/4)\) spherical code, New York J. Math., 13, 147-157, (2007) · Zbl 1176.52008
[8] Cohn, H; Kumar, A, Universally optimal distribution of points on spheres, J. Am. Math. Soc., 20, 99-148, (2007) · Zbl 1198.52009 · doi:10.1090/S0894-0347-06-00546-7
[9] Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. Grundlehren der Mathematischen Wissenschaften, vol. 290, 3rd edn. Springer, New York (1999) · Zbl 0915.52003 · doi:10.1007/978-1-4757-6568-7
[10] Cooper, D; Rivin, I, Combinatorial scalar curvature and rigidity of ball packings, Math. Res. Lett., 3, 51-60, (1996) · Zbl 0868.51023 · doi:10.4310/MRL.1996.v3.n1.a5
[11] Coxeter, HSM, Loxodromic sequences of tangent spheres, Aequationes Math., 1, 104-121, (1968) · Zbl 0159.22302 · doi:10.1007/BF01817563
[12] Descartes, R: Oeuvres de Descartes, Correspondance IV. Edited by C. Adam and P. Tannery. Léopold Cerf, Paris (1901) · Zbl 32.0006.02
[13] Eppstein, D, Kuperberg, G, Ziegler, G. M.: Fat 4-polytopes and fatter 3-spheres. In: Bezdek, A. (ed.) Discrete Geometry. In Honor of W. Kuperberg's 60th Birthday. Pure and Applied Mathematics, vol. 253, pp. 239-265. Marcel Dekker Inc., New York (2003) · Zbl 1045.52006
[14] Gonska, B; Ziegler, GM, Inscriptible stacked polytopes, Adv. Geom., 13, 723-740, (2013) · Zbl 1288.52007 · doi:10.1515/advgeom-2013-0014
[15] Gosset, T.: The kiss precise. Nature \(\text{txtbf}{139}\), 62 (1937) · Zbl 1160.94018
Graham, RL; Lagarias, JC; Mallows, CL; Wilks, AR; Yan, CH, Apollonian circle packings: geometry and group theory. I. the Apollonian group, Discrete Comput. Geom., 34, 547-585, (2005) · Zbl 1085.52010 · doi:10.1007/s00454-005-1196-9

Graham, RL; Lagarias, JC; Mallows, CL; Wilks, AR; Yan, CH, Apollonian circle packings: geometry and group theory. III. higher dimensions, Discrete Comput. Geom., 35, 37-72, (2006) · Zbl 1085.52012 · doi:10.1007/s00454-005-1197-8

Hliněný, P., Touching graphs of unit balls. In: Graph Drawing (Rome, 1997), pp. 350-358 (1997)

Kleinschmidt, P., Eine graphentheoretische kennzeichung der stapelpolytope, Arch. Math. (Basel), 27, 663-667, (1976) · Zbl 0347.52002 · doi:10.1007/BF01224736

Klitzing, R., Convex segmentochora, Symmetry Cult. Sci., 11, 139-181, (2000) · Zbl 1026.52005 · doi:10.2307/2695498

Koike, P., Kontaktprobleme der konformen abbildung, Ber. Verh. Sächs. Akad. Leipzig, 88, 141-164, (1936) · Zbl 62.1217.04

Kotlov, A; Lovász, L; Vempala, S, The Colin de Verdière number and sphere representations of a graph, Combinatorica, 17, 483-521, (1997) · Zbl 0910.05056 · doi:10.1007/BF01195002

Kuperberg, G; Schramm, O, Average kissing numbers for non-congruent sphere packings, Math. Res. Lett., 1, 339-344, (1994) · Zbl 0836.52007 · doi:10.4310/MRL.1994.v1.n3.a5

Lagarias, JC; Mallows, CL; Wilks, AR, Beyond the Descartes circle theorem, Am. Math. Mon., 109, 338-361, (2002) · Zbl 1027.51022 · doi:10.2307/2695498

Maehara, H., Oshiro, A.: On Soddy's hexlet and a linked 4-pair. In: Discrete and Computational Geometry. Proceedings of the Japanese Conference (JCDCG’98) Tokyo, Japan, 9-12 Dec 1998, pp. 188-198 (2000) · Zbl 0964.51022

Miller, GL; Teng, S-H; Thurston, WP; Vavasis, SA, Separators for spherepackings and nearest neighbor graphs, J. ACM, 44, 1-29, (1997) · Zbl 0883.68100 · doi:10.1145/256292.256294

Mitchell, L., Yengulalp, L.: Sphere representations, stacked polytopes, and the Colin de Verdière number of a graph. Electron. J. Comb. 23(1), P1.9 (2016) · Zbl 1329.05195

Musin, OR, The problem of the twenty-five spheres, Russ. Math. Surv., 58, 794-795, (2003) · Zbl 1059.52023 · doi:10.1070/RM2003v058n04ABEH000651

Odlyzko, AM; Sloane, N.J.A., New bounds on the number of unit spheres that can touch a unit sphere in n dimensions, J. Comb. Theory, Ser. A, 26, 210-214, (1979) · Zbl 0408.52007 · doi:10.1016/0097-3165(79)90074-8

Sachs, H., Coin graphs, polyhedra, and conformal mapping, Discrete Math. · texbf{(134)}(1-3), 133-138 (1994). Algebraic and topological methods in graph theory (Lake Bled, 1991) · Zbl 0808.05043

Schramm, O., How to cage an egg, Invent. Math., 107, 543-560, (1992) · Zbl 0765.52003 · doi:10.1007/BF01231901

Sloane, N.J.A., Hardin, R.H., Smith, W.D., et al.: Tables of Spherical Codes. www.research.att.com/~njas/packings/ · Zbl 1176.52008

Soddy, F., The hexlet, Nature, 138, 958, (1936)- doi:10.1038/138958a0

Soddy, F., The kiss precise, Nature, 137, 1021, (1936)- doi:10.1038/1371021a0

Thurston, W.P., Milnor, J.W.: The Geometry and Topology of Three-Manifolds. Princeton University Press, Princeton (1979)

Wilker, JB, Circular sequences of disks and balls, Notices Am. Math. Soc., 19, a.193, (1972)

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.