Signatures for a nuclear quantum phase transition from $E0$ and $E2$ observables in Gd isotopes

J. Wiederhold1, R. Kern1, C. Lizarazo1, N. Pietralla1, V. Werner1, R.V. Joloș2,3, D. Bucurescu4, N. Florea4, D. Ghita4, T. Glodariu4, R. Lica4, N. Marginean4, R. Marginean4, C. Mihai4, R. Mihai4, I.O. Mitu4, A. Negret4, C. Nita4, A. Olacel4, S. Pascu4, L. Stroe4, S. Toma4, A. Turturica4

1 Institut für Kernphysik, Technische Universität Darmstadt, Schloßgartenstr. 9, 64289 Darmstadt, Germany
2 Joint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia
3 Dubna State University, Dubna, Moscow oblast, 141980 Russia
4 “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125, Bucharest-Magurele, Romania

E-mail: jwiederhold@ikp.tu-darmstadt.de

Abstract. Nuclei are complex quantum objects due to complex nucleon-nucleon interactions. They can undergo rather rapid changes in structure as a function of nucleon number. A well known region of such a shape transition is the rare-earth region around $N = 90$, where accessible nuclei range from spherical nuclei at the closed neutron shell at $N = 82$ to deformed nuclei. For a better understanding of this phenomenon, it is of interest to study empirical signatures like the $E2$ transition strength $B(E2; 2^+_1 \rightarrow 0^+_0)$ or the $E0$ excitation strength $\rho^2(E0; 0^+_0 \rightarrow 0^+_2)$. The nucleus ^{152}Gd with 88 neutrons is located close to the quantum phase transition at $N = 90$. The lifetime $\tau(0^+_2)$ of ^{152}Gd has been measured using fast electronic scintillation timing (FEST) with an array of HPGe- and LaBr$_3$- detectors. Excited states of ^{152}Gd were populated via an (α,n)-reaction on a gold-backed ^{149}Sm target. The measured lifetime of $\tau(0^+_2) = 96(6)$ ps corresponds to a reduced transition strength of $B(E2; 0^+_2 \rightarrow 2^+_1) = 111(7)$ W.u. and an $E0$ transition strength of $\rho^2(E0) = 39(3) \cdot 10^{-3}$ to the ground state. This result provides experimental support for the validity of a correlation between $E0$ and $E2$ strengths that is a novel indicator for a quantum phase transition. This work was published as J. Wiederhold et al., Phys. Rev. C 94, 044302 (2016).

1. Introduction

The rare-earth region around the neutron number $N = 90$ is a well known region where nuclei can undergo a quantum shape phase transition (QPT) $^{[1, 2, 3]}$, a rather rapid change of structure as a function of neutron number. Well known empirical signatures of a shape change in a sequence of even-even nuclei are, e.g., a sudden change in the energy ratio $R_{4/2}$ of the 2^+_1 and 4^+_1 level energies $E(4^+_1)$ and $E(2^+_1)$ or a change in the easier to obtain inverse of the energy $E(2^+_1)$, a sharp change of the $E2$-transition strength connecting the ground state to the first-excited 2^+_1 state $B(E2; 0^+_0 \rightarrow 2^+_1)$, the occurrence of a local extreme point of the two-neutron separation energy S_{2N}, and a maximum of the $E0$-transition strength $\rho^2(E0)$ at the critical point $^{[4, 5, 6]}$. Studying the correlation of these observables is essential for the understanding of the phenomenon.
In a geometrical picture it has been shown [13] that the of nuclear shape phase transitions [10, 11, 12].

Nuclear Data Sheets [7] and [8, 9].

For ^{158}Sm- (orange) isotopes. (b) The Figure 1. (a) Product $B(E2)_1 \cdot B(E2)_2$ (see text) over neutron number for the Gd- (blue) and Sm- (orange) isotopes. (b) The $E0$ transition rate $\rho^2(E0)$ for the Gd- and Sm-isotopes around $N=90$. For ^{158}Gd also the $\rho^2(E0; 0_3^+ \rightarrow 0_{gs}^+)$ transition strength is given. Data taken from the Nuclear Data Sheets [7] and [8, 9].

of nuclear shape phase transitions [10, 14, 15]. In a geometrical picture it has been shown [13] that the $E0$-transition strength $\rho^2(E0; 0_1^+ \rightarrow 0_1^+)$ can be connected to a product of $B(E2)$-values. Applying the Q-phonon scheme [14, 15, 16, 17, 18, 19], this results to:

$$\rho^2(E0) \approx \left(\frac{4\pi}{3Z}\right)^2 \frac{5}{(eR^2)^4} B(E2)_2 B(E2)_1,$$

with the proton number Z, the radius R of the atomic nucleus, $B(E2)_1 = B(E2; 2_1^+ \rightarrow 0_1^+)$ and $B(E2)_2 = B(E2; 0_2^+ \rightarrow 2_1^+)$. The left-hand side of Figure 1 shows the available data for the product of $B(E2)$-values, while on the right-hand side the available $\rho^2(E0; 0_2^+ \rightarrow 0_1^+)$-data of the Gd- and Sm-isotopes around $N = 90$ are depicted. The available data partly supports the relation of Equation (1). Both, the $\rho^2(E0; 0_2^+ \rightarrow 0_1^+)$ and the product of $B(E2)$-values, decrease beyond $N = 90$ and the $\rho^2(E0; 0_2^+ \rightarrow 0_1^+)$ maximizes for both isotopic chains at $N = 90$. Moreover, the product of $B(E2)$-values maximizes at $N = 90$ for the Sm-chain. But, in the case of ^{152}Gd the correlation seems to be invalid. The value of the product of $B(E2)$-values seems to increase, not decrease, towards ^{152}Gd with $N = 88$ with an extraordinarily large $B(E2; 0_2^+ \rightarrow 2_1^+)$ value of 178(54) W.u. in this vibrational nucleus, however, with a large uncertainty. The lifetime of the second 0^+ state of ^{152}Gd stems mainly from one recoil distance Doppler shift measurement of this lifetime [20]. But the data are dubious. It is in fact mentioned in that work that the statistics for the measurement were not adequate for an accurate lifetime determination by the standard analysis and it was necessary to sum up data from different target-stopper distances.

To validate or eventually improve this value a FEST experiment at the 9MV Tandem accelerator at the National Institute of Physics and Nuclear Engineering (IFIN-HH) in Bucharest has been carried out.

2. Experimental setup

An α-beam impinging on a 1.3 mg/cm2 thick ^{149}Sm-target with a 4.3 mg/cm2 gold backing populated excited states of ^{152}Gd via the $^{148}\text{Sm}(\alpha, n)^{152}\text{Gd}$ fusion-evaporation reaction. The beam energy was set to 17.5 MeV, slightly above the Coulomb barrier for this reaction, to select the one-neutron evaporation channel. The target consisted of 93.2% of ^{149}Sm and some small
contaminants from other stable Sm-isotopes, i.e. ^{150}Sm (3.3%), ^{148}Sm (1.5%), ^{152}Sm (1.2%), and 0.8% of other elements. The ROSPHERE detector array was used in a configuration of 11 LaBr$_3$- and 14 HPGe-detectors [21] to detect de-excitation γ-rays of the isotope of interest. The energy calibration and the energy dependent time-walk calibration of the experimental setup were performed using a ^{152}Eu-source with its well known γ-ray transitions from ^{152}Gd and ^{152}Sm ranging from 244 keV to 1299 keV.

3. Analysis and Corrections
3.1. Spectroscopy
Due to the beam energy chosen close to the Coulomb barrier, the reaction channel was clean. The γ-ray transitions of ^{152}Gd were clearly identified, by using the HPGe-detectors with an energy resolution of about 3 keV at 1.4 MeV and 2.5 keV at 300 keV. The γ-ray transitions up to the $10^+_1 \rightarrow 8^+_1$-transition of the yrast band and other bands were identified, including the γ-transitions necessary to determine the lifetime of the 0^+_2 state with FEST, i.e. the $2^+_1 \rightarrow 0^+_2$-transition at 315 keV and the $0^+_2 \rightarrow 2^+_1$-transition at 271 keV (See Figure 2). Only a few contaminants from Coulomb excitation of the gold backing of the target and from fusion-evaporation reactions of α-particles with Cu parts of the target chamber were found in the energy spectrum. These contaminants were eliminated by setting energy gates in the HPGe-detectors, since they can’t be separated from the transitions of interest in the LaBr$_3$-detectors. Figure 2(a) shows the total projection of the HPGe-detector-coincidence matrix between 200 and 600 keV and Figure 2(b) shows the zoomed energy spectra in the energy region 225-325 keV around the relevant transitions for determining the lifetime of the 0^+_2 state (marked in red). A few small contaminants close to the $0^+_2 \rightarrow 2^+_1$-transition were identified. Figure 2(c) shows the energy projection of the LaBr$_3$-detector-coincidence matrix in coincidence with the 351 keV ($4^+_2 \rightarrow 2^+_2$) transition observed in the HPGe-detectors. After setting an additional gate on the
Figure 3. (Left) Part of the $E_{\gamma,LaBr_3} - E_{\gamma,LaBr_3}$ matrix obtained after projection of the $E_{\gamma,LaBr_3} - E_{\gamma,LaBr_3} - \Delta t$ cube. Marked are the coincidence areas of the γ-ray pair 271 and 315 keV, corresponding to the transitions $0^+_2 \rightarrow 2^+_1$ and $2^+_2 \rightarrow 0^+_2$ of 152Gd. (Right) Simplified FEST setup with two detectors and a source.

$0^+_2 \rightarrow 2^+_1$-transition at 271 keV detected in the LaBr$_3$-detectors, the contaminants in the resulting LaBr$_3$-energy spectra vanish (See Figure2(d)).

3.2. Time-Walk

The lifetime of an excited nuclear state can be determined in a FEST measurement by measuring the time-difference between two signals, e.g. from two γ-ray transitions. A simplified setup of a FEST measurement is shown in Figure 3 on the right-hand side. These two signals can stem from two γ-ray transitions, one populating the state of interest and one depopulating it. The measured time-difference is equal to the effective lifetime of the nuclear states between the two γ-transitions and the energy dependent time-walk of both signals. More details can be found in [22, 23, 24]. Using a 152Eu-source, a time-walk correction can be applied to the data, as described in [25]. After correcting for the time-walk to measure the lifetimes of excited states, an Energy-Energy-Δt cube was sorted for the LaBr$_3$ detectors. By selecting the region of the pair of coincident γ-rays (e.g. 271 keV and 315 keV for the 0^+_2 state) in the Energy-Energy plane of this cube (see Figure3(left)) a time-difference spectrum can be extracted. A correction for random coincidences and the Compton background was done, by selecting an area near the peak in the Energy-Energy plane. A time-difference spectrum was also established for the surrounding background. It was normalized to the amount of background underneath the coincidence peaks and subtracted from the time-difference spectrum gated on the coincidence peaks. This way, a background-subtracted time difference spectrum for the pair of coincidences was established.

The typical delayed time distribution, assuming no remaining background contributions, is a convolution of the prompt response function (PRF) of the setup, $P(t')$, and the exponential decay [26]:

$$D_\lambda(t) = n\lambda \int_{-\infty}^{t} P(t')e^{-\lambda(t-t')} dt',$$

with the transition rate $\lambda = 1/\tau$ and the normalization n.

Depending on the lifetime of the nuclear state of interest, there are different approaches to determine the lifetime, e.g. the slope method [26, 27] or the centroid-shift method [28].

The lifetime of the 0^+_2 state of 152Gd was determined with the centroid-shift method [13]. As mentioned above an additional energy gate had to be set in the HPGe-detectors to exclude
Figure 4. (Left) Time-difference-spectra for the combination of start-gate on 315 keV ($2^+_1 \rightarrow 0^+_2$) and stop-gate on 271 keV ($0^+_2 \rightarrow 2^+_2$) in green and vice versa in red (dashed line) with an additional gate on 344 keV ($2^+_1 \rightarrow 0^+_2$) in the HPGe-detectors. (Right) The same with a different gate for the HPGe-detectors ($4^+_2 \rightarrow 2^+_2$ at 351 keV). The right top corner of every time-difference plot shows a partial level scheme of ^{152}Gd. Marked in blue is the HPGe-gate. The dashed vertical lines mark the centroids of the time-difference spectra. The difference between the centroids is equal to two times the lifetime $\tau(0^+_2)$ of ^{152}Gd \cite{13}.

Contributions from any contaminants close to the $0^+_2 \rightarrow 2^+_2$-transition at 271 keV. Figure 4 shows time-difference spectra, one with an additional gate above the state of interest, i.e. the $4^+_2 \rightarrow 2^+_2$-transition at 351 keV (Figure 4(b)), and one below the 0^+_2 state on the $2^+_1 \rightarrow 0^+_2$-transition at 344 keV (Figure 4(a)). Both obtained lifetimes agree within their uncertainties and the lifetime of the 0^+_2 state of ^{152}Gd was determined to $\tau = 96(6)$ ps or $T_{1/2} = 67(4)$ ps \cite{13}.

4. Results and Discussion

From the obtained value for the lifetime $\tau(0^+_2)$ the corresponding $E2$ transition strength with the conversion coefficient $\alpha = 0.0826(12)$ \cite{29} can be calculated to

$$B(E2; 0^+_2 \rightarrow 2^+_2) = 0.536(33)e^2b^2 = 111(7)\text{W.u.}$$ \hspace{1cm} (3)

The quoted error represents the statistical uncertainty in determining the centroids and the contributions to the error from the uncertainty of the energy-dependent time-walk. Additionally, a new value for the $\rho^2(E0)$ transition strength can be determined from the $B(E2; 0^+_2 \rightarrow 2^+_2)$-strength using the dimensionless ratio of the $E0$- and $E2$-transitions defined by Rasmussen \cite{30}:

$$X(E0/E2) \equiv \frac{B(E0)}{B(E2)} = \frac{\rho^2(E0)e^2R^4}{B(E2)}.$$ \hspace{1cm} (4)

With the literature value of $X(E0/E2) = 0.0122(5)$ \cite{9} one obtains the fairly large value of

$$\rho^2(E0) = 39(3) \cdot 10^{-3}.$$ \hspace{1cm} (5)

Figure 5 shows the $\rho^2(E0)$-strength and the product $B(E2)_1 \cdot B(E2)_2$ as a function of the neutron number for the Sm- and Gd-isotopes including the new values for ^{152}Gd. The maximum for the product of $B(E2)$-values lies between $N=88$ and $N=90$ and it does not exactly coincide with the location of the maximum of the $E0$ strength. This may be traced back to the approximation of the Q-phonon scheme applied.
Figure 5. (a) Product $B(E2)_1B(E2)_2$ of Gd- and Sm-isotopes. Red (filled diamond) value from [13]. For $N=86$ isotopes, there is no lifetime data of the 0^+_2 state. Product $B(E2)_1B(E2)_2$ was approximated as $2 \cdot B(E2)^2$. (b) Experimental values of $\rho^2(E0)$ values for the $0^+_2 \rightarrow 0^+_1$ transition for Gd- (blue) and Sm- (orange) isotopes. Red (filled diamond) value from [13]. For 158Gd the $\rho^2(E0;0^+_3 \rightarrow 0^+_1)$ value is shown, too. Note the difference to Figure 1 for $N = 88$.

5. Summary
The lifetime of the 0^+_2 state of 152Gd was measured using the fast-timing technique. The lifetime of the 0^+_2 state, $96(6)$ ps [13] is nearly two times the previously measured value of $53(12)$ ps [20]. With the new value for $\tau(0^+_2)$ of 152Gd the $\rho^2(E0)$-transition strength were determined to $39(3) \cdot 10^{-3}$ and the $B(E2; 0^+_2 \rightarrow 2^+_1)$-transition strength to $0.536(33) e^2b^2$ or $111(7)$ W.u. The $\rho^2(E0)$ values for the 0^+_2 state and the absolute strength product of the $E2$-$E2$ cascade, $B(E2)_2B(E2)_1$ peak at $N=90$ or between $N=88$ and $N=90$ for the Sm- and the Gd-isotopic chains, respectively indicating the presence of a quantum shape phase transition.

Acknowledgments
The authors thank the Bucharest Tandem accelerator crew for their support during the experiment. This work was supported by the Deutsche Forschungsgemeinschaft under the Grant No. SFB 634 and the BMBF under the grants 05P15RDFN1/05P15RDFN9 within the collaboration 05P15 NuSTAR R&D.

References
[1] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).
[2] R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 87, 052503 (2001).
[3] R. Kröcken et al., Phys. Rev. Lett. 88, 232501 (2002).
[4] P. von Brentano et al., Phys. Rev. Lett. 93, 152502 (2004).
[5] N. Pietralla and O. M. Gorbachenko, Phys. Rev. C 70, 0113042 (2004).
[6] J. Bonnet et al., Phys. Rev. C 79, 034307 (2009).
[7] Nuclear Data Sheets, http://www.nndc.bnl.gov/ensdf.
[8] J. L. Wood et al., Nucl. Phys. A 651, 323 (1999).
[9] T. Kibédi and R. H. Spear, At. Data Nucl. Data Tables 89, 77 (2005).
[10] R. F. Casten, Prog. Part. Nucl. Phys. 62, 183 (2009).
[11] P. Cejnar and J. Jolie, Prog. Part. Nucl. Phys. 62, 210 (2009).
[12] E. A. McCutchan, N. V. Zamfir and R. F. Casten, Phys. Rev. C 69, 064306 (2004).
[13] J. Wiederhold et al., Phys. Rev. C 94, 044302 (2016).
[14] G. Siems et al., Phys. Lett. B 320, 1 (1994).
[15] T. Otsuka and K.-H. Kim, Phys. Rev. C 50, R1768 (1994).
[16] N. Pietralla et al., Phys. Rev. Lett. 73, 2962 (1994).
[17] N. Pietralla et al., Phys. Lett. B 349, 1 (1995).
[18] N. Pietralla et al., Phys. Rev. C 57, 150 (1998).
[19] Y. V. Palchikov, P. von Brentano and R. V. Jolos, Phys. Rev. C 57, 3026 (1998).
[20] N. R. Johnson et al., Phys. Rev. C 26, 1004 (1982).
[21] D. Bucurescu et al., Nucl. Instrum. Methods Phys. Res. A 837, 1 (2016).
[22] H. Mach, R. L. Gill and M. Moszyński, Nucl. Instrum. Methods Phys. Res. A 280, 49 (1989).
[23] M. Moszyński H. Mach, Nucl. Instrum. Methods Phys. Res. A 277, 407 (1989).
[24] J.-M. Régis et al., Nucl. Instrum. Methods Phys. Res. A 726, 191 (2013).
[25] N. Marginean et al., Eur. Phys. J. A 46, 329 (2010).
[26] L. Boström et al., Nucl. Instrum. Methods. 44, 61 (1966).
[27] V. Werner et al., Phys. Rev. C 93 034323 (2016).
[28] Z. Bay, Phys. Rev. 77, 419 (1950).
[29] T. Kíbedi et al., Nucl. Instrum. Methods. Phys. Res. A 589, 202 (2008).
[30] J. O. Rasmussen, Nucl. Phys. 19, 85 (1960).