An Introduction to the Inverted/Flipped Classroom Model in Education and Advanced Training in Medicine and in the Healthcare Professions

Tolks, Daniel; Schäfer, Christine; Raupach, Tobias; Kruse, Leona; Sarikas, Antonio; Gerhardt-Szép, Susanne; Klauer, Gertrud; Lemos, Martin; Fischer, Martin R.; Eichner, Barbara; Sostmann, Kai; Hege, Inga

Published in:
GMS Journal for Medical Education

DOI:
10.3205/zma001045

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Tolks, D., Schäfer, C., Raupach, T., Kruse, L., Sarikas, A., Gerhardt-Szép, S., Klauer, G., Lemos, M., Fischer, M. R., Eichner, B., Sostmann, K., & Hege, I. (2016). An Introduction to the Inverted/Flipped Classroom Model in Education and Advanced Training in Medicine and in the Healthcare Professions. GMS Journal for Medical Education, 33(3), Article Doc46. https://doi.org/10.3205/zma001045

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
An Introduction to the Inverted/Flipped Classroom Model in Education and Advanced Training in Medicine and in the Healthcare Professions

Abstract

In describing the inverted classroom model (ICM), the following paper is meant to provide an introduction to the subject matter and to serve as a practical guide for those wishing to employ its methods in basic and advanced medical training and education. The ICM is a blended-learning method in which a self-directed learning phase (individual phase) precedes the classroom-instruction phase. During the online phase, factual knowledge is imparted that serves as a basis for the classroom phase. The classroom phase should subsequently be used to assimilate and implement the previously gained knowledge. In contrast, traditional course concepts impart factual knowledge in lectures, for example, or in other face-to-face teaching formats and are followed by the students’ self-instruction in order to assimilate this knowledge. The goal of the ICM is the shift from passive learning to accelerated learning in order to foster learning at cognitively demanding levels such as analysis, synthesis and evaluation.

The concurrent increase in production and use of screencasts and educational videos, the Open Educational Resources “movement” and the widespread use of Massive Open Online Courses (MOOCS) have contributed to the increased dissemination of the inverted-classroom method. The intention of the present paper is to provide an introduction to the subject matter and simultaneously to offer a short overview of important projects and research results in the field of medical education and other health professions. Furthermore, an outline is given of the advantages and disadvantages of the model as well as its potential benefit to the future of medical education and training.

Keywords: inverted classroom, flipped classroom, medical education, educational video, Open Educational Resources, MOOCs, blended learning, screencasts, podcasts, E-Learning

Daniel Tolsk1
Christine Schäfer2
Tobias Raupach3,4
Leona Kruse5
Antonio Sarikas6
Susanne Gerhardt-Szép7
Gertrud Klauer8
Martin Lemos9
Martin R. Fischer1
Barbara Eichner10
Kai Sostmann11
Inga Hege1,12

1 Klinikum der Universität München, Institut für Didaktik und Ausbildungsforschung in der Medizin, München, Deutschland
2 Philipps Universität Marburg, Fachbereich Medizin - Studiendekanat, Marburg, Deutschland
3 Universitätsmedizin Göttingen, Studiendekanat, Medizindidaktik und Ausbildungsforschung, Göttingen, Deutschland
4 University College London, Health Behaviour Research Centre, London, UK
5 CAU Kiel, Medizinische Fakultät, Studiendekanat, Koordination E-Learning, Kiel, Deutschland
6 Technische Universität München (TUM), Fakultät für Medizin, Institut für Pharmakologie und Toxikologie, München, Deutschland
7 Goethe-Universität, Carolinum Zahnärztliches Universitäts-Institut gGmbH,
1. Introduction

In light of increasing division of labour in healthcare, the training and acquisition of both profession-specific and interprofessional competencies have been attributed growing significance, creating the need to test and establish specific teaching formats [1]. Despite ever more complex and interconnected healthcare systems, an increase in patients’ active self-responsibility and innumerable pedagogical and technological innovations, educational systems have not reacted adequately to these new demands. Many authors, not lease the German Council of Science and Humanities, have therefore urged a rethinking of traditional medical education [2], [3], [4], [5], [6], [7], [8], [9]. Student-centred learning activities, such as problem-based and research-based learning, are becoming increasingly significant in view of the numbers of students achieving unsatisfactory levels of competence in critical thinking, communication and writing abilities and complex clinical decision making, for example [10]. The Council of Science and Humanities arrived at a positive evaluation of the various model and reformed courses of study attempting to effectuate a comprehensive reorganisation of medical studies in content and structure as well as methods and didactics [1]. The persistent pervasiveness of instructor-centred learning formats is not only to be found in medical education but in all of the health professions [10], [11], [12]. Although alternative teaching and instruction formats have already been designed and their effectiveness deemed positive in empirical evaluation, the lecture remains the most practised means of transmitting knowledge [7], [8]. In its essence, however, learning is not a question of transmitting information but, moreover, a question of processing information [7]. In traditional instruction units, referred to as “chalk and talk classes” by Becker and Watts, the teaching party presents material in the form of a lecture [13]. As appropriate, questions may be permitted or short processing periods for the students may be integrated into the lecture. The knowledge-assimilating and most essential analysis of the lecture’s contents takes place in the subsequent self-instruction phase, in which the student works alone on concrete tasks. It is during the transfer of knowledge conveyed in the lectures, however, that most questions arise [14]. Of further disadvantage in the traditional lec-
ture is the low level of motivation among students to attend lectures as well as their often heterogeneous knowledge [15]. The Inverted Classroom Model seems to be an eligible instrument for greater facilitation of student-centred and interprofessional learning [3], [4], [5], [6], [7].

2. The inverted classroom concept

Since the end of the 1980s, the expectations for the application of multimedia in basic, advanced and further education and training have peaked in repeating phases of enthusiasm, only to decline again thereafter. Known for some time now, the flipped or inverted classroom model seems to be contributing to a new rise in expectations in the context of a further “hype cycle for technology” [16], [http://www.gartner.com/newsroom/id/2819918 cited 12. Januar 2015]. The term “flipped classroom” describes the use of the model’s methods in primary and secondary education [17], while “inverted classroom” is used to denote the model’s application in higher education [18], [19]. Despite the greater attention it has been receiving of late, it is not a new concept, having been ranked by the Horizon Report 2014, for example, as one of the most significant teaching and learning technologies developed in further education [20].

The Inverted Classroom Model (ICM) involves a blended-learning method in which a self-directed learning phase (individual phase) takes place before the classroom-learning phase (see Figure 1). In the online phase, factual knowledge is conveyed that serves as a basis for the classroom or face-to-face phase. The subsequent classroom phase should then be used to assimilate and implement the acquired knowledge. The traditional course concept foresees the gathering of factual knowledge in lectures or other face-to-face formats of conveyance after which course participants deepen and, on occasion, implement said knowledge on their own. The “Inverted Classroom Model” switches the allocation of the respective tasks of the two phases (see Figure 2).

3. Theoretical basis

The goal of the Inverted Classroom Model is a shift from passive learning to accelerated learning in the classroom phase in order to accelerate the acquisition of more demanding competencies such as analysis, synthesis and evaluation. In the terms of Bloom’s revised taxonomy [21], this means that students accomplish lower-order cognitive processes (acquisition of knowledge and comprehension) independently prior to classroom instruction in order to subsequently execute higher cognitive learning process (use of knowledge, analysis, synthesis and evaluation) in the classroom phase, during which they can be directly supported by peers and instructors. Figure 1 depicts this inversion of learning domains.

Lage, Platt and Treglia (19) assumed that established teaching formats were not compatible with the different learning styles of students. A meta-analysis by the U.S. Department of Education confirmed that the use of blended learning (i.e., the combination of the online and self-directed learning phases with classroom learning) leads to better results than exclusively online seminars or exclusively classroom teaching [22]. A further study showed that students prefer collaborative or interactive learning together with other students or with the lecturer to individual self-directed learning phases [23]. One important finding is that online learning material shows the greatest effect in addressing lower-order cognitive skills, such as learning and comprehension [24]. With regard to online lectures, Nast and colleagues and Burnette and colleagues showed that there was no difference between online lectures and face-to-face lectures where the students’ knowledge retention is concerned [25], [26]. The defining aspect of the Inverted Classroom Model is the promotion of accelerated learning. Through the self-directed-learning phase and enhancement in discussion during the classroom phase, accelerated learning aspects such as teamwork, debate and self-reflection are fostered. Accelerated learning increases learning success, motivation and positive attitudes and facilitates higher-order cognitive learning processes, problem-solving competence and the critical analysis of learning content [27], [28], [29], [30].

4. Developmental trajectories

The concept of the flipped-class method was first mentioned in 1998 in the book “Effective Grading” by Barbara Walvoord and Virginia Johnson Anderson. Their idea was to make select basics from the disciplines history, physics and biology available to students online prior to the actual classroom instruction and to expand and anchor the knowledge gained in the classroom setting [31]. This would re-allocate the transfer of facts to the online phase in order to shift the focus onto the application of this newly gathered knowledge to the classroom phase. To assure the appropriate preparation of the students, they were given assessment tasks prior to classroom instruction.

Almost simultaneously, Maureen Lage, Glenn Platt and Michael Treglia tested the inverted classroom method in higher education in an introductory economics course [18]. Assuming that traditional instruction formats were incompatible with modern forms of learning, they asked students to prepare for the classroom phase by watching video recordings in which economic principles were conveyed using case studies and simulation games. The authors observed a rise in motivation and satisfaction with the course concept and an increase in interaction and participation in verbal contributions (particularly among female participants).
To date, the Flipped or Inverted Classroom Model has been applied chiefly in primary, secondary and higher education. Concepts for adult education have been rare thus far. According to Handke and Schäfer, the ICM has spread across various disciplines, particularly in the United States [32]. Some faculties have reorganised curricula entirely to the Inverted Classroom Model [33], [34], [35]. There has also been a noticeable increase in the curricular integration of the ICM, in mathematics for example [36]. In this context, Treeck points out that the ICM is often applied but not designated as such [14]. Conversely, it would seem that there are many concepts in the meantime that are designated as ICM but do not correspond to the model’s methods.

Three developments have significantly contributed to the increased spread of the Inverted Classroom Model:

- the rise in production and use of screencasts and instructional videos
- the “Open Educational Resources” movement
- Massive Open Online Courses (MOOCs)

These developments are outlined in the following pages.

4.1. Screencasts and educational videos

Acceptance and use of online videos have risen sharply in recent years. 25 percent of the world’s population views online video content daily on their PCs, laptops, tablets or smart phones. In Germany, users primarily stream videos. With a weekly use of 79 percent, 14- to 29-year-olds prove to be particularly fond of video. This is due in part to new technological developments making the production and distribution of self-made videos easier but also to a new understanding of education that was expedited especially by the Khan Academy, the open educational resources movement and by the development of MOOCs.

The Khan Academy, with its new style of educational video, has strongly influenced and advanced inverted-classroom and MOOC activity. In the so-called Khan instructional videos, the focus was moved from the traditional, elaborate high-level production to simpler educational video productions. The lecturer often does not even appear on screen, and the lecture recordings (sound and/or picture), PowerPoint slides, recordings of blackboards, whiteboards, etc. are employed to convey content in the simplest way.
One of the more popular media in this segment is the so-called screencast, in which a software programme records the content of the monitor and the comments made by the lecturer in real-time. In this first step, the videos convey factual knowledge to the viewer. Afterwards, this knowledge is applied in tasks and quizzes, through the writing of reports and through participation in forum discussions.

4.2. Open Educational Resources

In comparison with the worldwide online community, open educational resources in the education sector receive less attention in German-speaking Europe. The underlying conviction of the OER movement is that learning material should be freely accessible to the general public. In accordance with this tenet, educational videos and material are provided without any commercial interests. The number of freely available or “open” lecture videos on the internet has risen notably in recent years. The users of this teaching and learning material are encouraged by the authors to integrate the media into their curricula. Such developments make it possible for German academic institutions to work using filmed lectures from Harvard University, for example. Most authors and users have adopted the philosophy that it is more sensible and efficient to transmit an already existing lecture by experts and colleagues via video than to create the material themselves anew. The more open-access content is created, the greater the chance that the focus will shift from the transmission of information to the processing of information [7].

4.3. MOOCs

MOOC (massive open online course) designates a course that takes place online, usually addressing a subject over the space of weeks and in which, principally, anyone may participate. MOOCs generally have several organisers or moderators and are coordinated through a common website or learning management system. In part, the actual content of the event is decided in cooperation with participants through their contributions and discussions in forums, chats, social networks, video conferences and occasionally in local face-to-face meetings. The amount of different types of MOOCs (cMOOCs or xMOOCs) is constantly rising and their use has become quite widespread in Europe in the meantime [http://openeducationeuropa.eu/en/european_scoreboard_moocs cited 12. Januar 2015]. The MOOC movement also profits from open educational resources and the new type of instructional video developed by the Khan Academy. Most MOOC concepts are based on the transmission of knowledge through open-access educational clips, screencasts and filmed lectures. Additionally, the capability of making videos quickly and cost-efficiently has expedited the widespread use of educational videos in MOOCs considerably. The inverted classroom model can be used in combination with MOOCS (MOOC wrapping) [37]. MOOC content conveyed through educational videos could be used in the self-directed learning phase. The facts accumulated there can then be further assimilated in the classroom phase.

5. Implementation of the Inverted Classroom Model

In the online phase, learning material is made available to course participants, often encompassing short educational videos. The use of educational videos is, however, not absolutely necessary. If the decision is made to implement educational videos, the instructors may choose to create their own short instructional clips or to draw on existing videos, should they be openly accessible. Screencasts or short lecture recordings are normally used in creating in-house educational clips; other forms of content display are also possible online (e.g., scripts, books, text excerpts). There are varying opinions as to the optimal length of the clips. Khan deems the optimal video length to be between six and ten minutes, whereas Lindner suggests that videos should be kept to shorter lengths when incorporating many visual elements, as Kerres has emphasised as well [38], [39], [https://www.youtube.com/watch?v=Ohu-5SvUX2&feature=ytube_gdata_player cited 13. Januar 2015]. Handke & Franke speak of e-lectures conceived as “maximally 20-minute educational videos” and whose “content is closely tied to the virtual sessions but also offers additional information” [40]. This length corresponds to the maximal attention span of the average learner and should therefore be seen as length limit [41]. A large-scale survey found the best attention span among users of MOOC videos to be six minutes [42]. It is, however, difficult to keep to this very short time span, particularly when dealing with complex subject matter.

In the use of learning content for online instruction, there is a noticeable trend toward easily created instructional clips. In comparison to the elaborate production of high-quality educational video material, the simpler version is more time- and cost-efficient, flexible and facilitates quick updates. In the classroom phase, content delivery can be flexibly enhanced and supplemented by filming individual sessions of the classroom phase and can then also be used in other courses.

Video use can be made a central aspect of the ICM. As previously described, it is equally possible to implement other learning material. In other words, the ICM is not “video learning” [19], [36].

In the context of local curricular focus areas, many instructors will want to create the specific preparation material for their face-to-face sessions themselves. As far as generic material that is taught independent of local practise in similar intensity is concerned, however, it is possible to make use of open-access external sources. An overview of this type of freely available learning material, which may be used for instruction in compliance with the respective licensing requirements, is offered in the

GMS Journal for Medical Education 2016, Vol. 33(3), ISSN 2366-5017
following description. Although the authors of the material encourage its use, they strongly suggest that a case-by-case review be made with regard to quality, didactic value, appropriateness for the planned instructional event, as well as utilisation rights principles.

Online lectures & open educational video sites

Some of the following providers allow the integration of their videos into other websites. Videos can be linked or integrated directly into websites or learning management systems.

- **The Khan Academy**: With the support of the Gates Foundation, Sal Khan’s organisation is currently the leading provider of free tutorials on various topics and at various levels of difficulty.
- **The OpenCourseWare Consortium**: This is also an extensive database with many open-access video lectures.
- **Academic Earth**: This website offers hundreds of free videos from leading universities such as Yale, Stanford, Harvard, etc.
- **TED – Ideas worth spreading**: A collection of lecture contributions with an emphasis on "Technology, Education and Design" from this non-profit organisation.

Further providers of open educational resources:

- **OER Commons**: The OER Commons is a structured database offering a collection of approx. 30,000 learning and instructional resources from other websites.
- **The DiscoverEd Search Engine Creative Commons**: A search engine designed solely for the purpose of searching for Creative Commons/OER materials.
- **The OER Dynamic Search Engine page Wikispaces**: Wikispaces.com, already with a great number of existing wikispaces, is a web-hosting site where education experts create their own web presence.

The classroom phase should serve as a forum for application of previously delivered factual knowledge. This face-to-face phase leans more strongly toward tasks, interaction and questions. The instructor should not repeat content from the online phase during the classroom phase. Course participants must fully understand that preparation for the classroom phase and assuming responsibility for it represents a central part of the concept [14]. In the classroom phases, group methods such as pair work, group discussion, problem-based learning, think-pair-share, buzz groups or snowballing can be used. Playful approaches to higher education are being increasingly discussed, as yet, primarily in the context of audience response systems and gamification. The face-to-face session in the inverted classroom can be used for lecture hall games in which students test their knowledge in playful quiz situations and groups compete with each other, for example [43].

6. **Advantages**

The general advantage of the Inverted Classroom Model as opposed to the classic lecture lies in removing the transmission of purely factual knowledge from the classroom phase, thus making more time available for the application of knowledge and for transfer accomplishment in this face-to-face phase, including large lecture events. This gives teachers and learners, with their individually constructed knowledge, the possibility to exchange and reflect on their procedures and experiences, even within a large gathering, and to co-create the instructional event accordingly. In publications on the subject, the greater involvement of students is seen as a fundamental advantage of the ICM [35]. According to the University of Southern California, the implementation of the Inverted Classroom Model offers the following additional advantages [https://cst.usc.edu/teach/strategies/the-inverted-classroom/ cited 13. Januar 2015]:

- the possibility for students to appropriate content at their own learning pace;
- the possibility of self-assessment for students and lecturers, through the introduction of small tasks and quizzes into the process;
- the possibility to receive direct feedback;
- the possibility to interact with the lecturer;
- the possibility to work on, answer and discuss questions that arise.

7. **Disadvantages**

The disadvantages of the ICM emerge chiefly when the requirements for the successful implementation of the methods are not fulfilled. Therefore, this section will deal with some of the conditions upon which, in the view of the authors, the success of the ICM depends. Firstly, it is evident that the effective implementation of the ICM requires that students prepare themselves with the aid of learning materials made available to them previously. Some reasons for inadequate acquisition of knowledge in the online or self-directed learning phase may be lack of time, lack of motivation, or highly complex content [36]. In this case, lecturers would need to depart from the ICM in favour of traditional knowledge transmission in the classroom phase. It follows that course participants will not have sufficient space and time to assimilate and apply the factual knowledge that was actually presupposed. The problematic nature of this lack of assimilation then also comes to light when the classroom phase does not build on the online phase. Consequently, assimilation does not take place and the course participants’ motivation to prepare for the following course declines. The significance of a careful selection of preparatory material is correspondingly great. The use of the aforementioned open resources saves time. Simultaneously, there is a danger that the online material and
classroom instruction will not be congruent. Instructors must know the content of the online resources they have selected and identify with it in order for a classroom-phase discussion of the content’s validity to arise. Additionally, the resources for the preparation phase should be in harmony with local curricular needs and the National Competency-Based Catalogue of Learning Objectives for Medical/Dental Education. A further requirement for the ICM is that instructors must initially expend more effort (selection of teaching material; content- and format-related planning of the classroom phase). This said, the already created contents can be used for several courses, and the effort in total can be reduced through the utilization of existing instructional material. A further requirement for the effective implementation of the model is an initial instruction of the students, in which the aforementioned conditions are explained and operationalised in practical examples.

8. Research results

Research results on some aspects of the ICM do already exist. The following studies are only a small excerpt and refer to the overview by Bishop and Verleger [44] for the most part. They in make no claims to being complete. It is of particular note that the researched contexts are very diverse: Publications on the implementation of the ICM in primary/secondary education, in higher education, in relation to medical and non-medical content, as well as research from various countries is available. The results can potentially not all be generalised for all contexts. For example, it has yet to be definitively shown that preparation for the classroom phase without specific preparatory tasks will lead to successful learning at all. Many of the works document the use of filmed lectures in teaching, focussing on material implementation and on participation in face-to-face instruction. Fischer and Spannagel have summarised several studies on the altogether positive reception of the Inverted Classroom Model. In this context, Loviscach points out that the IC Model is particularly suitable in identifying knowledge gaps and problems that were left undetected in conventional lectures [36]. A prospective study by Raupach and colleagues showed that the use of podcasts in combination with quizzes prior to medical instruction has a positive influence on short- and medium-term knowledge retention [45]. Lage and colleagues have attested to the positive reaction to the new course concept among students, who report that they enjoy learning more and actually use the content from the online phase during the classroom phase. Furthermore, the students feel less inhibited to actively take part in discussions. They generally display higher activity levels in the classroom phase in comparison to traditional lecture situations. Lecturers have observed a more active participation among students in discussions. Most students report preferring the ICM to traditional instruction.

In a study by Deslauriers and colleagues, it was shown that the use of the flipped classroom method can lead to significant learning improvements among physics pupils [46].

9. The inverted classroom in medical education and health professions

As some studies on learning results and medical students’ participation have indicated, there are several deficits in traditional higher education. It is, for example, well known that students’ attention decreases after only ten minutes and after an average of 15 to 20 minutes is almost fully lost. Directly following a lecture, students only remember approximately 20% of the transmitted content [47]. In light of these findings alone, there is an urgent need for a teaching reform that provides for more effective knowledge transmission than in traditional lectures. In the case of the education and training of physicians, the necessity of practising clinical decision making is an additional aspect. This can be done very effectively by means of casework with online-communicated cases, having the further inherent advantage that the students can learn from their mistakes without endangering patients [48].

The Inverted Classroom Model has already been implemented in several projects in medical education as well as other health professions. The following is a presentation of some of these projects, making no claim to being complete. The projects presented are those that have been mentioned and cited most frequently.

In medical education, there have been a few studies in the area of the ICM. Using the Inverted Classroom Model for gynaecological oncology, Morgan and colleagues arrived at good results with regard to student acceptance as well as with reduction of knowledge transmission duration [49]. At the Northwestern University Feinberg School of Medicine in Chicago, the Inverted Classroom Model was implemented in case-presentation training, providing all preparatory, theoretical content in an online phase. The actual presentation was trained in the classroom phase under instructor supervision. As a result, the students’ examination performance improved significantly compared with that of the previous semester’s [50].

Further studies were also able to show an improved learning effect in the physiology faculty, with mixed levels of acceptance among students however [51], [52]. The interpretation of these results is limited due to shortcomings stemming from the respective study designs (mostly historical controls; lacking or, at best, random congruence between instructional material and exam content). Several studies and projects featuring ICM implementation in other health professions exist as well.

In Germany, the Inverted Classroom Model was applied at the Ludwig Maximilian University of Munich (LMU) in...
the scope of academic instruction qualification, offering further good results in student acceptance [53]. Albeit with few study participants (n=40), the Inverted Classroom Model also proved appropriate for this segment of education and advanced training. In addition to this, the ICM is being tested in LMU’s faculty of general medicine.

The school of dentistry at the Goethe University of Frankfurt implemented the ICM in conservative dentistry in the form of the “P@L” project, which was accepted as an example of good practice by the German Rector’s Conference. One particularity of the ICM used here is that learning takes place in small groups in problem-based-learning scenarios (PBL). Gerhardt-Szép was able to show that particularly collaborative and self-directed learning in this context received positive evaluations from the students [54]. At their annual conference in 2014 and 2015, the Association for Medical Education in Europe (AMEE) presented the AMEE Initiative: Research Papers: “Flipped-Classroom – Technology and Assessment for Learning”, in response to the advantages offered by the new teaching and learning method. Participants were able to acquire relevant information prior to the conference in an online phase, allowing them to engage in more intense discussion with speakers at the event itself. The event, however, only met with patchy success: According to their own statement, only one symposium guest had viewed the online material beforehand.

The communication of similar competencies is also necessary in other health professions. Critical thinking and teamwork are also important factors for nursing [53], [54], [55], [56], [57]. At the University of Bradford, these competencies in particular are conveyed using the Inverted Classroom Model. Results here suggest that the use of the ICM not only leads to improved learning performance but also facilitates problem-solving competency and (interdisciplinary) teamwork. According to the authors, the inverted classroom model presents an appropriate form of instruction because it targets complex-problem solving and the facilitation of problem-solving competencies and teamwork [58].

One study within the field of physiotherapy also attested to an improvement in learning performance, albeit with low-level acceptance of the learning format among students [59].

At the University of North Carolina School of Pharmacy, the traditional teaching concept was changed to the Inverted Classroom Model. Three elements explicitly were implemented: facts were transmitted online, the focus of teaching and learning methods were on student-centred communication and assessment formats were used. For the online phase, filmed lectures averaging 34 minutes in length were prepared, with the intention of delivering the most important content in compressed form, and literature was included as a supplement. In the classroom phase, learning activities such as feedback and Q&A, microlectures, “clicker” systems (audience response), pair-and-share, presentations, discussions and quizzes were used to facilitate assimilation of the knowledge gathered by students in the self-directed learning phase, to foster critical thinking and to stimulate discussion. The students (n=150) showed significantly improved exam results in comparison with the previous, traditionally instructed semester. Furthermore, greater course concept satisfaction (93.1%) and higher attendance rates were observed [4].

Prober and Heath implemented the Inverted Classroom Model in a biochemistry curriculum and also showed significantly improved learning results in comparison with the previous semester. They too observed very high satisfaction levels and a 30% to 80% higher attendance rate [5]. Good results were also recorded in the framework of pharmacy studies at Shenandoah University in Winchester, Virginia in a renal pharmacotherapy module. In addition to improved test results in comparison with the previous year, the use of the ICM produced high satisfaction levels (80%) among students [60]. A further study within pharmacokinetics also delivered good results in learning performance [61].

10. Discussion and outlook

A departure from traditional lecture formats toward learner-centred instruction appears to be advisable in medical education and in the education and training of other health professions. This demands the shift of fact transmission to an online, self-directed learning phase and of the application of knowledge and exercises to the classroom phase. In view of the outlined parameters and published research data, future instruction should not limit itself to the transmission of purely factual knowledge, but should provide the space to use this knowledge for problem solving in practice. Van der Vleuten and Driessen argue for a shift of focus from information transmission to information processing and emphasise that this can be facilitated using the ICM [7]. According to the authors, the ICM has the potential to bolster the imparting of competencies such as clinical reasoning, critical thinking, communication behaviour and the capacity for teamwork. All of these outcomes are of great significance in patient-centred healthcare. Further studies are necessary, however, in order to confirm whether this potential of the ICM can be realised at all and, if so, under what conditions. The use of virtual patients, case-based teaching and learning methods and communication training could be integrated into the ICM to this end [7].

In the opinion of the authors, the reasons for the success measured in the (predominantly non-medical) studies undertaken to date and the high acceptance levels of the Inverted Classroom Model are rooted in the following aspects:

- It is learner-centred and facilitates accelerated and independent learning.
- It incorporates technical innovations (screencasts).
1. The students must be provided the opportunity to acquire factual knowledge prior to the classroom phase. Short educational videos and accessing existing instructional material in terms of Open Educational Resources are helpful, provided they are matched to the respective learning objectives of the specific course. The use of other, non-digital material is, however, equally possible. The course concept must make the thematic connection between online and classroom phase clear. Only then can the students recognise and utilise the advantages of the method.

2. Incentive systems should be created to stimulate students to address the contents before the classroom phase. For example, active forum discussions with students or quizzes could be given marks or assessed.

3. Assessment instruments must be implemented in the process in order to give feedback to the students on their knowledge and learning performance and to allow instructors to get an idea of the knowledge levels of the respective user.

4. Activities in the online phase and classroom phase must be well-structured. Students can deal with the concept more easily when content and time requirements are firmly defined.

5. Instructors should not repeat content from the online phase at the beginning of the classroom phase; they should only respond to questions.

6. Instructors should facilitate and support the creation of learning groups and supervise them.

7. Feedback from instructors and students is essential to the success of the ICM. Feedback on learning progress should be given iteratively during the entire process; this holds for the online phase as well.

8. Implemented technology should be easy-access and ideally already familiar to the users.

The need for the systematic examination from the outset even of recent developments such as the ICM is apparent. Likewise with regard to Gartner’s Hype Cycle, it is urgently necessary to push foundational research in this field in order to prevent it from fading to obscurity because of lack of theoretical grounding.

The authors declare that they have no competing interests.

Competing interests

References

1. Fabry G, Fischer MR. Das Medizinstudium in Deutschland – Work in Progress. GMS Z Für Med Ausbild. 2014;31(3):Doc36. DOI: 10.3205/zma000928

2. Ellaway R, Masters K. AMEE Guide 32: e-Learning in medical education Part 1: Learning, teaching and assessment. Med Teach. 2008;30(5):455–473. DOI: 10.1080/01421590802108331

3. Mehta NB, Hull AL, Young JB, Stoller JK. Just Imagine: New Paradigms for Medical Education. Acad Med. 2013;88(10):1418-1437. DOI: 10.1097/ACM.0b013e3182a36a07

4. McLaughlin J, Roth MT, Glatt DM, Gharkholonareh N, Davidson CA, Griffin LM, Esserman DA, Mumper RJ. The flipped classroom: a course redesign to foster learning and engagement in a health professions school. Acad Med. 2014;89(2):236–243. DOI: 10.1097/ACM.0000000000000086

5. Prober CG, Heath C. Lecture halls without lectures – a proposal for medical education. N Engl J Med. 2012;366(18):1657–1659. DOI: 10.1056/NEJMp1202451
6. Prober CG, Khan S. Medical Education Reimagined: A Call to Action. Acad Med. 2013;88(10):1407-1410. DOI: 10.1097/ACM.0b013e3182e368bd

7. Van der Vleuten CP, Driessen EW. What would happen to education if we take education evidence seriously? Perspect Med Educ. 2014;3(3):222–232. DOI: 10.1007/s40037-014-0129-9

8. Wissenschaftsrat. Empfehlungen zur Weiterentwicklung des Medizinstudiums in Deutschland auf Grundlage einer Bestandsaufnahme der humanmedizinischen Modellstudiengänge. Köln: Wissenschaftsrat; 2014.

9. Arum R, Roksa J. Academically Adrift: Limited Learning on College Campuses. Chicago: University of Chicago Press; 2011. S.272

10. Berwick DM, Finkelstein JA. Preparing Medical Students for the Continual Improvement of Health and Health Care: Abraham Flexner and the New "Public Interest". Acad Med. 2010;85(9 Suppl):S56-65.

11. Iry DM, Cooke M, O’Brien BC. Calls for Reform of Medical Education by the Carnegie Foundation for the Advancement of Teaching: 1910 and 2010. Acad Med. 2010;85(2):220-227. DOI: 10.1097/ACM.0b013e3181b84449

12. peedieMK,BaldwinJN,CarterRA,RaehlCL,YanchickVA,Maine LL. Cultivating Habits of Mind” in the Scholarly Pharmacy Clinician: Report of the 2011-12 Argus Commission. Am J Pharm Educ. 2012;76(6):S3.

13. Becker WE, Watts M, Becker SR. Teaching Economics: More Educationifwetakeeducationevidenceseriously?Perspect

14. Treec T van, Himpis-Gutermann K, Robes J. Offene und assessing:A revision of Bloom's taxonomy of educational

15. Lorenz A, Einert A, Dinter B. FCW Inf: Flipped Classroom in der Medizinstudiumsin Deutschland. Görlitz: Hochschule Zittau/Görlitz, Zentrum für Informatik; 2012. S.225–236.

16. European Commission. Report to the European Commission on New modes of learning and teaching in higher education. Luxembourg: European Commission; 2014.

17. Bergmann J, Sams A. Flip Your Classroom: Reach Every Student in Every Class Every Day. Eugene, Oregon: International Society for Technology in Education; 2012.

18. Lage MJ, Platt GJ, Treglia M. Inverting the classroom: A gateway to creating an inclusive learning environment. J Econ Educ. 2000;31(1):30–43. DOI: 10.1080/00220480009596759

19. Handke J. Das Inverted Classroom Modell: Begleitband zur ersten deutschen ICN-Konferenz. München: Oldenbourg Wissenschaftsverlag; 2012.

20. Johnson L, Adams Becker S, Estrada V, Freeman A. NMC Horizon Report: 2014 Higher Education Edition. Austin: The New Media Consortium; 2014.

21. Anderson LW, Krathwohl DR. A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives, abridged edition. White Plains: Longman; 2001.

22. Means B, Toyama Y, Murphy R, Bakia M, Jones K. Evaluation of Evidence-Based Practices in Online Learning: A Meta-Analysis and Review of Online Learning Studies. Oxford: Association for Learning Technology; 2009. Zugänglich unter/available from: http://repository.alt.ac.uk/629/

23. Schreiber BE, Fukuta J, Gordon F. Live lecture versus video podcast in undergraduate medical education: A randomised controlled trial. BMC Med Educ. 2010;10(1):68. DOI: 10.1186/1472-6920-10-68

24. Prunuske AJ, Batzli J, Howell E, Miller S. Using Online Lectures to Make Time for Active Learning. Genetics. 2012;192(1):67–72. DOI: 10.1534/genetics.112.141754

25. Nast A, Schäfer-Hesterberg G, Ziehle H, Sterry W, Rzany B. Online lectures for students in dermatology: A replacement for traditional teaching or a valuable addition? J Eur Acad Dermatol Venereol. 2009;23(9):1039–1043. DOI: 10.1111/j.1468-3083.2009.03246.x

26. Burnette K, Ramundo M, Stevenson M, Beeson MS. Evaluation of a web-based asynchronous pediatic emergency medicine learning tool for residents and medical students. Acad Emerg Med. 2009;16 Suppl 2:S46–50.

27. Freeman S, O'Connor E, Parks JW, Cunningham M, Hurley D, Haak D, u. a. Prescribed active learning increases performance in introductory biology. CBE Life Sci Educ. 2007;6(2):132–139. DOI: 10.1187/cbe.06-09-0194

28. Bonwell CC, Eison JA. Active Learning: Creating Excitement in the Classroom. Washington, DC: Jossey-Bass; 1991.

29. Bransford JD, Brown AL, Cokking RR. How people learn: Brain, mind, experience, and school. Washington, DC, US: National Academy Press; 1999.

30. O'Dowd DK, Aguilar-Roca N. Garage demos: using physical models to illustrate dynamic aspects of microscopic biological processes. CBE Life Sci Educ. 2008;7(2):118–122. DOI: 10.1187/cbe.07-09-0001.

31. Walvoord BE, Anderson VJ. Effective Grading: A Tool for Learning and Assessment in College. 2 Edition. San Francisco, CA: Jossey-Bass; 2009. S.272

32. Handke J, Schäfer AM. E-Learning, E-Teaching und E-Assessment in der Hochschullehre: Eine Anleitung. München: Oldenbourg Wissenschaftsverlag; 2012.

33. Carlisle MC. Using YouTube to Enhance Student Classroom Participation. MERLOT JOLT. 2013;9(2). Zugänglich unter/available from: http://jolt.merlot.org/vol9no2/bruff_0613.htm

34. Day JA, Foley JD. Evaluating a Web Lecture Intervention in a Human Rn dash/Computer Interaction Course. IEEE Trans Educ. 2006;49(4):420–431. DOI: 10.1109/TE.2006.879792

35. Gannod GC, Burke JE, Helmick MT. Using the inverted classroom to teach software engineering. Proceedings of the 41st ACM Technical Symposium on Computer Science Education. New York (USA): ACM; 2010. S.470–444.

36. Fischer M, Spannagel C. Lernen mit Vorlesungsvideos im khan-style/ videos-im-khan-style/

37. Bransford JD, Brown AL, Cocking RR. How people learn: Brain, mind, experience, and school. Washington, DC, US: National Academy Press; 1999.

38. Kerres M. Mediendidaktik: Konzeption und Entwicklung von mediengestützten Lernangeboten. München: Oldenbourg Wissenschaftsverlag; 2012.

39. Lindner M. Wiemachtman MOOC-Videos im Khan-Style? Schwetzingen; mathemooc.de; 2013.Zugänglich unter/available from:http://mathemooc.de/2013/07/02/wie-macht-man-mooc-videos-im-khan-style/
40. Handke J, Franke P. xMOOCs im Virtual Linguistics Campus. In: Schulmeister R, Herausgeber. MOOCs-Massive Open Online Courses: Offene Bildung oder Geschäftsmodell? Münster: Waxmann; 2013. S.101–126.

41. Kopp M, Ebner M, Nagler W, Lackner E. Technologie in der Hochschullehre. Rahmenbedingungen, Strukturen und Modelle. In: Ebner M, Schön S (Hrsg). Lehrbuch für Lernen und Lehren mit Technologien. Berlin; epubli; 2013. S. 475–482.

42. Guo PJ, Kim J, Rubin R. How video production affects student engagement: An empirical study of mooc videos. In: Proceedings of the first ACM conference on Learning@ scale conference [Internet]. New York; ACM; 2014. S. 41–50. Zugänglich unter/available from: http://dl.acm.org/citation.cfm?id= 2566239

43. Lucius K, Spannagel J, Spannagel C. Hörsaalspiele im Flipped Classroom. In: Rummel K (Hrsg). Lernräume gestalten – Bildungskontexte vielfältig denken. Münster: Waxmann; 2014. S.376

44. Bishop JL, Verleger MA. The flipped classroom: A survey of the research. 120th ASEE Annual Conference & Exposition. Atlanta, June 23-26, 2013. Washington/DC: American Society for Engineering Education; 2013. Zugänglich unter/available from: https://www.asee.org/public/conferences/20/papers/6219/

45. Raupach T, Grefe C, Brown J, Meyer K, Schuelper N, Anders S. Moving Knowledge Acquisition From the Lecture Hall to the Student Home: A Prospective Intervention Study. J Med Internet Res. 2015;17(9):e223.

46. Deslauriers L, Schelew E, Wieman C. Improved learning in a Large-Enrollment Physics Class. Science. 2011;332(6031):862–864. DOI: 10.1126/science.1201783

47. Hartley J, Cameron A. Some Observations on the Efficiency of Lecturing. Educ Rev. 1967;20(1):30–37. DOI: 10.1080/0013191670200103

48. Kononowicz AA, Hege I. Virtual patients as a practical realisation of the e-learning idea in medicine. In: Safeullah S. E-learning, experience and future. Vukovar, Croatia: In-Teh; 2010. S. 345–370.

49. Morgan H, McLean K, Chapman C, Fitzgerald J, Yousuf A, Hammond M. The flipped classroom for medical students. Clin Teach. 2015;12(3):155–160. DOI: 10.1111/cct.12328

50. Heiman HL, Uchida T, Adams C, Butcher J, Cohen E, Persell SD, Pribaz P, MacGaghie WC, Martin GJ. E-learning and deliberate practice for oral case presentation skills: A randomized trial. Med Teach. 2012;34(12):e820–826.

51. Tune JD, Sturek M, Basile DP. Flipped classroom model improves graduate student performance in cardiovascular, respiratory, and renal physiology. Adv Physiol Educ. 2013;37(4):316–320. DOI: 10.1152/advan.00091.2013

52. Street SE, Gilliland KO, McNeil C, Royal K. The Flipped Classroom Improved Medical Student Performance and Satisfaction in a Pre-clinical Physiology Course. Med Sci Educ. 2014;25(1):35–43. DOI: 10.1007/s40670-014-0092-4

53. Tolks D, Pelczar I, Bauer D, Brendel T, Göritz A, Küfner J, Simensohn A, Hege I. Implementation of a Blended-Learning Course as Part of Faculty Development. Creat Educ. 2014;05(11):948–953. DOI: 10.4236/ce.2014.511108

54. Gerhardt-Szep S. Praxisbeispiel PBL?: Erprobung eines neuen Lernformates. Bonn, Berlin: Hochschulrektorenkonferenz; 2013. Zugänglich unter/available from: http://www.hrk-nexus.de/uploads/media/Präsentation_Dr._Gerhardt-Szep.pdf

55. March PL, McPherson A. The important attributes of a nurse from the perspective of qualified and student nurses. J Adv Nurs. 1996;24(4):810–816. DOI: 10.1046/j.1365-2648.1996.25820.x

56. Thomas EJ, Sexton JB, Helmreich RL. Discrepant attitudes about teamwork among critical care nurses and physicians. Crit Care Med. 2003;31(3):956–959. DOI: 10.1097/01.CCM.0000056183.89175.76

57. Shin K, Jung DY, Shin S, Kim MS. Critical thinking dispositions and skills of senior nursing students in associate, baccalaureate, and RN-to-BSN programs. J Nurs Educ. 2006;45(6):233–237.

58. Middleton-Green L, Ashelford S. Using Team-Based Learning in Teaching Undergraduate Pathophysiology for Nurses. Health Soc Care Educ. 2013;2(2):53–58.

59. Lake DA. Student Performance and Perceptions of a Lecture-based Course Compared With the Same Course Utilizing Group Discussion, Phys Ther. 2001;81(3):896–902.

60. Pierce R, Fox J. Vodcasts and Active-Learning Exercises in a Flipped Classroom” Model of a Renal Pharmacotherapy Module. Am J Pharm Educ. 2012;76(10):196. DOI: 10.5688/ajpe7610196

61. Persky AM, Dupuis RE. An Eight-year Retrospective Study in "Flipped" Pharmacokinetics Courses. Am J Pharm Educ. 2014;78(10).

Erratum

Author’s name “Klauer G” corrected to “Klauer G”.

Corresponding author:

Daniel Tolks
Klinikum der Universität München, Institut für Didaktik und Ausbildungsforschung in der Medizin, Ziemsenstraße 1, D-80336 München, Deutschland
daniel.tolks@med.uni-muenchen.de

Please cite as
Tolks D, Schäfer C, Raupach T, Kruse L, Sarikas A, Gerhardt-Szép S, Klauer G, Lemos M, Fischer MR, Eichener B, Sostmann K, Hege I. An Introduction to the Inverted/Flipped Classroom Model in Education and Advanced Training in Medicine and in the Healthcare Professions. GMS J Med Educ. 2016;33(3):Doc46.
DOI: 10.3205/zma001045, URN: urn:nbn:de:0183-zma0010451

This article is freely available from
http://www.ejms.de/en/journals/zma/2016-33/zma001045.shtml

Received: 2015-04-08
Revised: 2016-03-04
Accepted: 2016-03-16
Published: 2016-05-17
Published with erratum: 2016-03-16

Copyright ©2016 Tolks et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Eine Einführung in die Inverted/Flipped-Classroom-Methode in der Aus- und Weiterbildung in der Medizin und den Gesundheitsberufen

Zusammenfassung

Dieser Artikel beschreibt die Inverted-Classroom-Methode (ICM) im Sinne einer Einführung in die Thematik und soll als Praxisleitfaden für diejenigen dienen, die diese Methode in der medizinischen Aus-, Fort- und Weiterbildung einsetzen möchten. Es handelt sich bei der ICM um einen Blended-Learning-Methode, bei dem eine Selbsterlernphase (individuelle Phase) vor die Präsenzunterrichtsphase gesetzt wird. In der Online-Phase wird Faktenwissen vermittelt, das als Grundlage für die Präsenzphase dient. Die Präsenzphase soll anschließend dafür genutzt werden, das erlernte Wissen zu vertiefen und anzuwenden. Dem gegenüber stehen die traditionellen Kurzkonzepte, in denen das Faktenwissen beispielsweise in Vorlesungen oder in anderen Präsenzunterricht-Formaten vermittelt wird und die Vertiefung dieses Wissens durch Studierenden im Anschluss daran im Selbststudium stattfinden soll. Das Ziel der ICM ist die Verschiebung des passiven Lernens hin zum aktivierenden Lernen, um das Lernen auf kognitiv anspruchsvollen Ebenen wie Analyse, Synthese und Evaluation zu unterstützen.

Dabei haben die gestiegene Produktion und Nutzung von Screencasts und Lernvideos, die „Bewegung“ der „Open Educational Resources“ und die verbreitete Nutzung von „Massive Open Online Courses“ (MOOCs) zu einer gestiegenen Verbreitung der Inverted-Classroom-Methode beigetragen. Der Artikel soll als Einführung in die Thematik dienen und dabei eine kurze Übersicht über wichtige Projekte und Forschungsergebnisse in der medizinischen Ausbildung und in weiteren Gesundheitsberufen geben. Außerdem werden die Vor- und Nachteile der Methode und ihr potentieller Nutzen für die zukünftige medizinische Aus- und Weiterbildung dargestellt.

Schlüsselwörter: Inverted Classroom, Flipped Classroom, medizinische Ausbildung, Lernvideos, Open Educational Ressources, MOOCs, Blended-Learning, Screencasts, Podcasts, E-Learning, Screencasts

Daniel Tolks¹
Christine Schäfer²
Tobias Raupach³,⁴
Leona Kruse⁵
Antonio Sarikas⁶
Susanne Gerhardt-Szép⁷
Gertrud Klauer⁸
Martin Lemos⁹
Martin R. Fischer¹
Barbara Eichner¹⁰
Kai Sostmann¹¹
Inga Hege¹,¹²

¹ Klinikum der Universität München, Institut für Didaktik und Ausbildungsforschung in der Medizin, München, Deutschland
² Philipps Universität Marburg, Fachbereich Medizin - Studiendekanat, Marburg, Deutschland
³ Universitätsmedizin Göttingen, Studiendekanat, Medizindidaktik und Ausbildungsforschung, Göttinge, Deutschland
⁴ University College London, Health Behaviour Research Centre, London, UK
⁵ CAU Kiel, Medizinische Fakultät, Studiendekanat, Koordination E-Learning, Kiel, Deutschland
⁶ Technische Universität München (TUM), Fakultät für Medizin, Institut für Pharmakologie und Toxikologie, München, Deutschland
⁷ Goethe-Universität, Carolinum Zahnärztliches Universitäts-Institut gGmbH,

GMS Journal for Medical Education 2016, Vol. 33(3), ISSN 2366-5017 12/23
1. Einleitung

Vor dem Hintergrund der zunehmenden Arbeitsteilung im Gesundheitswesen wird der Ausbildung und dem Erwerb von – sowohl professions-spezifischen als auch interprofessionellen – Kompetenzen eine zunehmende Bedeutsamkeit zugesprochen, für die spezifische Lehrformate erprobt und etabliert werden müssen [1]. Obwohl Gesundheitssysteme immer komplexer und vernetzter werden, Patienten häufiger aktive Selbstverantwortung übernehmen und unzählige pädagogische und technologische Innovationen entstehen, hat das Bildungssystem auf diese neuen Anforderungen bisher nicht ausreichend reagiert. Viele Autoren und nicht zuletzt der Wissenschaftsrat fordern deshalb auch ein Umdenken in der traditionellen medizinischen Ausbildung [2], [3], [4], [5], [6], [7], [8], [9]. Studierenden-zentrierten Lernaktivitäten wie Problem-basiertem und forschendem Lernen, kommt zunehmende Bedeutung zu, da ein Teil der Studierenden notwendige Kompetenzen wie kritisches Denken, Kommunikations- und Schreibfähigkeiten und komplexe klinische Entscheidungsfindung nicht in ausreichendem Maße erwirbt (10). Der Wissenschaftsrat kommt zu einer positiven Bewertung der verschiedenen medizinischen Modell- und Reformstudiengänge, die versuchen, das Medizinstudium umfassend strukturell-inhaltlich und methodisch-didaktisch neu zu organisieren [1].

Die immer noch starke Verbreitung Dozierenden-zentrierter Lernformate bezieht sich nicht nur auf die medizinische Ausbildung, sondern gilt auch für die Ausbildung sämtlicher Gesundheitsberufe [10], [11], [12]. Obwohl bereits alternative Lehr- und Unterrichtsformen entwickelt und in ihrer Wirksamkeit empirisch positiv evaluiert wurden, ist die Vorlesung in der Praxis immer noch die am weitesten verbreitete Veranstaltungsform zur Wissensvermittlung [7], [8]. Lernen ist jedoch im Wesentlichen keine Frage der Informationsvermittlung, sondern vielmehr eine Frage der Informationsverarbeitung [7]. In den traditionellen Vorlesungen, von Becker und Watts „chalk and talk classes“ betitelt, halten Lehrende in der Regel einen Vortrag [13]. Gegebenenfalls sind Rückfragen erlaubt oder es werden kurze Arbeitsphasen für die Studierenden integriert. Die vertiefende und wesentliche Auseinandersetzung mit den Inhalten der Vorle-
sung findet dann in der anschließenden Selbstlernphase statt, in welcher die Lernenden allein an konkreten Aufgaben arbeiten. Beim Transfer des in der Vorlesung vermittelten Wissens in die Praxis entstehen allerdings die meisten Fragen [14]. Ein weiterer Nachteil der traditionellen Vorlesung ist die geringe Motivation der Studierenden, eine Vorlesung zu besuchen sowie der oftmals heterogene Wissensstand [15]. Die Inverted-Classroom-Methode scheint ein geeignetes Instrument zu sein, um stärker als bisher Studierenden-zentriertes und interprofessionelles Lernen zu ermöglichen [3], [4], [5], [6].

2. Das Konzept des Inverted Classroom

Seit dem Ende der 80er Jahre wurden die Erwartungen an den Einsatz multimediaaler Angebote für die Aus-, Fort- und Weiterbildung in wiederkehrenden Phasen des Enthusiasmus immer wieder erhöht, um dann später jeweils wieder abzufallen. Die bereits seit längerem bekannte Methode Flipped Classroom bzw. Inverted Classroom scheint wieder zu einem Anstieg der Erwartungen im Rahmen eines weiteren „Hype Cycle for Technology“ beizutragen [16], [http://www.gartner.com/newswire/ id/2819918 zitiert 12. Januar 2015]. Der Begriff Flipped Classroom (engl. to flip something – etwas umdrehen) beschreibt den Einsatz der Methode im schulischen Kontext [17], der Begriff Inverted Classroom den Einsatz der Methode in Rahmen von Hochschulen und anderen Formen der Erwachsenenbildung [18], [19]. Es ist kein neues Konzept, gleichwohl wird ihm in letzter Zeit eine größere Aufmerksamkeit zuteil. So wird zum Beispiel im Horizon Report 2014 die Flipped-Classroom-Methode als eine der wichtigsten lehr- und lerntechnologischen Entwicklungen im Hochschulbereich eingestuft [20]. Es handelt sich bei dem Inverted Classroom Modell (ICM) um eine Blended-Learning-Methode, bei der eine Selbstlernphase (individuelle Phase) vor die Präsenzphase gesetzt wird (siehe Abbildung 1).

In der Online-Phase wird Faktenwissen vermittelt, das als Grundlage für die Präsenzphase dient. Die Präsenzphase soll anschließend dafür genutzt werden, das erlernte Wissen zu vertiefen und anzuwenden. Im traditionellen Konzept der Vorlesung bzw. des Präsenzunterrichts wurde bisher im Unterricht das Faktenwissen vermittelt und die Teilnehmenden sollen dies zuhause vertiefen und ggf. anwenden. Die „Inverted-Classroom-Methode vertauscht die Zuordnung der jeweiligen Aufgaben zu den einzelnen Phasen (siehe Abbildung 2).

3. Theoretische Basis

Das Ziel der Inverted-Classroom-Methode ist die Verschiebung des passiven Lernens hin zum aktivierenden Lernen in der Präsenzphase, um den Erwerb von kognitiv an- spruchsvoller Fähigkeiten wie Analyse, Synthese und Evaluation zu forcieren. Bezogen auf die überarbeitete Taxonomie von Bloom [21] bedeutet dies, dass sich die Studierenden, die auf den niedrigen Leveln verorteten kognitiven Prozesse (Erwerb von Wissen und Verständnis) selbstständig im Vorfeld der Präsenzphase aneignen, um anschließend die höheren kognitiven Lernprozesse (Anwendung von Wissen, Analyse, Synthese und Evaluation) in der Präsenzphase durchzuführen, in welcher sie durch Peers und Dozierende direkt unterstützt werden können. Abbildung 1 visualisiert diese Inversion der Lerndomäne.

Lage, Platt und Treglia [18] gingen davon aus, dass die bestehenden, starren Lehrangebote nicht kompatibel zu den unterschiedlichen Lernstilen der Studierenden waren. In einer Meta-Analyse des US-Department of Education wurde belegt, dass der Blended-Learning-Ansatz, also die Kombination von Online- und Selbstlernphase mit Präsenzunterricht, zu besseren Lernergebnissen führt als ausschließlich Online-Seminare oder ausschließlich Präsenzlehre [22]. Eine weitere Studie hat nachgewiesen, dass Studierende kollaboratives und interaktives Lernen gemeinsam mit anderen Studierenden oder dem Dozierenden im Vergleich zu Einzelseitlernphasen bevorzugen [23]. Eine wichtige Erkenntnis ist, dass Online-Lernmaterial den größten Lerneffekt bei der Adressierung von „lower order cognitive skills“ (Wissen und Verstehen) zeigt [24]. Bezüglich der Online-Vorlesung konnten Nast et al. und Burnette et al. nachweisen, dass es keine Unterschiede bei der Speicherung von Wissen durch Online-Lectures im Vergleich zu Präsenzvorfahrungen gibt [25], [26].

Der entscheidende Aspekt der Inverted-Classroom-Methode ist die Förderung des aktivierenden Lernens. Durch die Selbstlernphase und die vertiefende Diskussion in der Präsenzphase werden Aspekte des aktivierenden Lernens, wie zum Beispiel Teamwork, Debatten und Selbstreflexion gefördert. Das aktivierende Lernen steigert den Lernerfolg, die Motivation und positive Einstellungen und fördert höhere cognitive Lernprozesse, Problemlösungskompetenz und die kritische Auseinandersetzung mit dem Lerninhalt [27], [28], [29], [30].

4. Entwicklungslinien

Das Konzept der Flipped-Classroom-Methode wurde erstmals 1998 von Barbara Walvoord und Virginia Johnson Anderson in ihrem Buch „Effective Grading“ erwähnt. Die Idee war es, Schülern im Vorfeld des eigentlichen Schulunterrichts ausgewählte Grundlagen in den Fächern Geschichte, Physik und Biologie Online zur Verfügung zu stellen, die in nachfolgenden Präsenzeinheiten vertieft werden sollten [31]. Die Faktenvermittlung sollte in der Online-Phase transferiert werden, um in der Präsenzphase den Fokus auf die Anwendung des Wissens zu verlagern. Um eine entsprechende Vorbereitung der Lernenden zu gewährleisten, wurden ihnen Assessment-Aufgaben im Vorfeld des Klassenunterrichts gestellt.
Maureen Lage, Glenn Platt und Michael Treglia haben fast zeitgleich die Inverted-Classroom-Methode in der Hochschulbildung in dem Kurs „Einführung in die Ökonomie“ erprobt [18]. Ausgehend von der Annahme, dass traditionelle Unterrichtsformen inkompatabel zu neuartigen Lernformen sind, forderten sie die Studierenden auf, sich mit Videoaufzeichnungen, in welchen Fallstudien und Planspiele ökonomischer Prinzipien vermittelt wurden, auf die Präsenzphase vorzubereiten. Dabei konnten die Autoren eine erhöhte Motivation und Zufriedenheit mit dem Kuskonzept beobachten und eine gestiegene Interaktion und Beteiligung an Wortbeiträgen (insbesondere bei den Teilnehmerinnen).

Die Flipped-/Inverted-Classroom-Methode wurde bislang im schulischen Bereich sowie in der Hochschulbildung...
eingesetzt. Konzepte für die Erwachsenenbildung sind bislang noch selten. Laut Handke und Schäfer hat sich die ICM insbesondere in den USA über verschiedene Disziplinen hinweg verbreitet [32]. An einigen Fakultäten wurden Curricula komplett auf die Inverted-Classroom-Methode umgestellt [33], [34], [35]. In deutschsprachigen Raum ist ebenfalls eine vermehrte curriculare Einbindung der ICM zu verzeichnen, wie zum Beispiel in Mathematikvorlesungen [36]. Tolket weist in diesem Zusammenhang darauf hin, dass die ICM oftmals angewandt wird, ohne als diese bezeichnet zu werden [14]. Zudem scheint es mittlerweile auch viele Konzepte zu geben, die als ICM bezeichnet werden, aber nicht der eigentlichen Methode entsprechen.

Drei Entwicklungen haben maßgeblich zu der zunehmenden Verbreitung der Inverted-Classroom-Methode beigetragen:

- die gestiegene Produktion und Nutzung von Screencasts und Lernvideos
- die „Bewegung“ der „Open Educational Resources“
- die „Massive Open Online Courses“ (MOOCs).

Diese Entwicklungen werden in den folgenden Kapiteln detaillierter skizziert.

4.1. Screencasts und Lernvideos

Die Akzeptanz und Nutzung von Online-Videos ist in den letzten Jahren stark angestiegen. 25 Prozent der Weltbevölkerung sieht derzeit täglich Online-Video-Inhalte auf einem PC, Laptop, Tablet oder Smartphones. In Deutschland schauen sich die Nutzer Vierer im Internet überwiegend per Stream an. Als besonders Video-affin erweisen sich mit einer wöchentlichen Nutzung von 79 Prozent die 14- bis 29-Jährigen. Dies liegt zum einen an neuen technologischen Entwicklungen, welche die Produktion von eigenen Videos und deren Distribution stetig vereinfachen und zum anderen an einem neuartigen Bildungsverständnis, das insbesondere durch die Khan-Academy, die Open-Educational-Resources-Bewegung und durch die Entwicklung von MOOCs forciert wurde.

Die Khan-Academy hat mit ihrer neuen Art von Lehrvideos die Inverted-Classroom- und MOOC-Aktivitäten stark beeinflusst und gefördert. Bei den so genannten Khan-Lernvideos ging der Fokus weg von den traditionellen, aufwendigen High-Level-Produktionen und hin zur weniger aufwendigen Lernvideoproduktion. Dabei werden die Dozierenden selbst oftmals nicht mehr eingebettet und Vorlesungsaufzeichnungen (Ton und/oder Bild), Powerpoint-Folien, Aufnahmen von Tafelbildern, Whiteboards und Ähnliches genutzt, um möglichst unkompliziert Inhalte zu vermitteln.

Eine in diesem Segment weit verbreitete Methode sind die so genannten Screencasts. Dabei werden durch ein Softwareprogramm die Inhalte des Monitors (engl. Screen) und die Äußerungen der Dozierenden per Ton in Echtzeit aufgezeichnet. Durch die Videos findet im ersten Schritt die Vermittlung des Faktenwissens statt. Anschließend wird das Wissen mittels Aufgaben, Quizzes, durch das Verfassen von Berichten und durch das Mitwirken an Forumsdiskussionen von den Teilnehmern angewendet.

4.2. Open Educational Resources

Open Educational Resources werden - im Vergleich zur weltweiten Online-Community im Bildungssektor im deutschsprachigen Raum weniger Aufmerksamkeit zuteil. Der Bewegung liegt die Überzeugung zugrunde, dass Lernmaterial für die Allgemeinheit frei verfügbar sein sollte.

Lernvideos und -Materialien werden hier ohne kommerzielle Interessen zur Verfügung gestellt. Die Anzahl von frei verfügbaren Vorlesungsaufzeichnungen im Internet nimmt in den letzten Jahren deutlich zu. Die Nutzer dieser Lehr- und Lernmaterialien werden durch die Urheber dazu ermutigt, solche Produkte in ihre Curricula einzubinden. So ist es mittlerweile möglich, dass mit Vorlesungsaufzeichnungen der Harvard-University an deutschen Hochschulen gearbeitet wird. Die meisten Urheber und Nutzer vertreten dabei die Philosophie, dass es sinnvoller und effizienter ist, eine bereits vorhandene Vorlesung von Experten und Kollegen im Video zu vermitteln als diese nochmal selbst zu erstellen. Je mehr Inhalte erschaffen werden, die jeder nutzen kann, desto mehr kann der Fokus von der Informationsvermittlung hin zur Informationsverarbeitung verschoben werden [7].

4.3. MOOCs

Ein MOOC (engl.: Massive Open Online Course) ist eine online stattfindende meist mehrwöchige Veranstaltung zu einem Themengebiet, an der prinzipiell jeder in der Regel kostenfrei teilnehmen kann. Ein MOOC hat meist mehrere Veranstalter oder Moderatoren und wird über eine gemeinsame Webseite oder ein Lern-Management-System koordiniert. Die konkreten Inhalte der Veranstaltung werden von den Teilnehmern teilweise mitbestimmt und zwar durch deren Beiträge und Diskussionen in Foren, Chats, sozialen Netzwerken, Videokonferenzen und teilweise auch lokalen Präsenzreflexen. Das Angebot an unterschiedlichen Arten von MOOCs (cMOOCs oder xMOOCs) steigt stetig und die Nutzung ist mittlerweile auch im europäischen Raum sehr verbreitet [http://openeducationeuropa.eu/en/european_scoreboard_moocs zitiert 12. Januar 2015]. Die MOOC-Bewegung profitiert von den Open Educational Resources und der neuen Art der Lernvideos im Khan-Stil. Die meisten MOOC-Konzepte basieren auf der Vermittlung von Wissen durch frei verfügbare Lernclips, Screencasts und Vorlesungsaufzeichnungen. Zusätzlich forcieren die Möglichkeiten der Erstellung von Videos die breite Anwendung von Lernvideos in MOOCs erheblich. Die Inverted-Classroom-Methode kann in Kombination mit MOOCs eingesetzt werden (MOOC-Wrapping) [37]. Inhalte der MOOCs, die durch Lernvideos vermittelt werden, könnten als Grundlage für die Selbst-
lernphase genutzt werden. Die dort vermittelten Fakten können dann in Präsenzphasen weiter vertieft werden.

5. Durchführung der Inverted-Classroom-Methode

In der Online-Phase werden den Kursteilnehmern Lernmaterialien zur Verfügung gestellt, die oftmals kurze Lernvideos enthalten. Der Einsatz von Lernvideos ist aber nicht zwingend notwendig. Entscheidet man sich für die Verwendung von Lernvideos, steht es der oder dem jeweiligen Dozierenden frei, eigene kurze Lernclips zu erstellen oder auf bereits bestehende Lernvideos zurückzugreifen, wenn diese frei verfügbar sind. Die Erstellung eigener Lernclips erfolgt meist mittels Bildschirmmitschnitts (Screencasts) oder kurzen Vorlesungsaufzeichnungen; andere Formen der Inhaltsdarstellung sind online ebenfalls möglich (wie zum Beispiel Skripte, Bücher, Textauszüge). Bezüglich der optimalen Länge von Lernclips bestehen unterschiedliche Ansichten. Khan versteht unter einer optimalen Video-Länge sechs bis zehn Minuten, wobei Lindner annimmt, dass Videos kürzer gestaltet sein sollten, wenn viele visuelle Elemente eingebaut sind, was auch von Kerres betont wird [38], [39], [https://www.youtube.com/watch?v=Ohu-5sVux28&feature=youtube_gdata_player zitiert 13. Januar 2015]. Handke & Franke berichten von E-Lectures, die als „maximal 20-minütige Lehrvideos“ konzipiert und „inhaltlich eng mit den virtuellen Sitzungen verknüpft sind, aber auch Zusatzinformationen bieten“ [40]. Diese Dauer entspricht der Aufmerksamkeitsspanne der durchschnittlichen Lernen- und Schulzeit. Eine große Übersichtsstudie hat die beste Aufmerksamkeitsspanne der bei der Nutzung von Videos bei MOOCs bei der Länge von sechs Minuten nachgewiesen [42]. Es ist allerdings insbesondere bei komplexen Inhalten schwierig, diese sehr kurzen Zeitspannen einzuhalten. Der Ersteller sollte aber zumindest prüfen, ob die einzelnen Themenaspekte auf kleinere Einheiten reduziert werden können.

Bei dem Einsatz von Lerninhalten für die Online-Lehre ist zu beobachten, dass der Trend hin zu einfach zu erstellenden Lernclips geht. Gegenüber der sehr aufwendigen Produktion von hochqualitativen Video-Lernmaterialien ist dieser Ansatz zeit- und kostensparend, flexibel und ermöglicht rasche Aktualisierungen. In der Präsenzphase kann die Inhaltsvermittlung durch die Aufzeichnung einzelner Sitzungen der Präsenzphase, die auch in anderen Kurseinheiten verwendbar sind, flexibel erweitert und ergänzt werden. Die Nutzung von Videos kann ein zentraler Aspekt der Methode sein; es ist aber wie beschrieben ebenso möglich, andere Lernmaterialien einzusetzen. Es handelt sich also bei der ICM nicht um „Video-Lernen“ [19], [36]. Im Kontext lokaler curricularer Schwerpunkte werden viele Lehrende das spezifische Vorbereitungsmaterial für ihre Präsenzveranstaltungen selbst erstellen wollen. Für generische Inhalte, die standortunabhängig in ähnlicher Tiefe gelehrt werden, besteht jedoch die Möglichkeit, frei verfügbare externe Quellen zu verwenden. Eine Übersicht solcher frei verfügbarer Lernmaterialien, die abhängig von der Einhaltung der jeweiligen Lizenzanforderungen für den Unterricht verwendet werden dürfen, werden im Folgenden beschrieben. Die Autoren möchten einerseits zur Nutzung dieser Materialien ermutigen aber auch klar darauf hinweisen, dass die angebotenen Materialien immer einer Einzelfallprüfung unterzogen werden sollten im Hinblick auf Qualität, didaktischen Mehrwert und Passung für die geplante Lehrveranstaltung sowie rechtliche Verwertungsgrundlagen.

Online Vorlesungen & Open Educational Video Sites

Einige der folgenden Anbieter erlauben die Integrierung ihrer Videos in andere Webseiten. Videos können verlinkt oder in Webseiten oder Lernmanagementsysteme integriert werden.

- The Khan Academy: Mit der Unterstützung der Gates Foundation, ist Sal Khan’s Organisation der derzeit führende Anbieter für freie Tutorials mit einer Vielzahl von unterschiedlichen Themen und Schwierigkeitsgraden.
- The OpenCourseWare Consortium: Ebenfalls eine umfangreiche Datenbank mit vielen, frei verfügbaren „Video Lectures“.
- Academic Earth: Diese Website bietet hunderte freie Videos von Lehrenden führender Universitäten wie Yale, Stanford, Harvard usw. an.
- TED – Ideas worth spreading: Eine Sammlung von Redebeiträgen im Bereich “Technology, Education, and Design“ einer “Non-Profit-Organization“ für Studierende und Lehrende.

Weitere Anbieter von Open Educational Ressourcen

- OER Commons: Bei der OER Commons handelt es sich um eine strukturierte Datenbank, die eine Sammlung von ca. 30.000 Lehr- und Lernmaterialien anderer Webseiten anbietet.
- The DiscoverEd Search Engine Creative Commons: Ein Suchprogramm, das eigens für die Suche nach Creative Commons-/OER-Materialien entwickelt wurde.
- The OER Dynamic Search Engine page Wikispaces: Wikispaces.com ist eine Wiki-Seite, auf der Bildungs- expernten eigene Wiki-Seiten erstellen und die bereits über eine Vielzahl von bestehenden Wiki-Seiten verfügt.

In der Präsenzphase soll das in der Online-Phase vermittelte Faktenwissen angewandt werden. Die Präsenzphase ist stärker auf Aufgaben, Interaktion und Fragen ausgerichtet. Den Dozierenden steht frei, wie der Unterricht methodisch gestaltet wird. Dabei ist zu beachten, dass Dozierende keine Wiederholung der Inhalte der Online-Phase in der Präsenzphase geben sollten. Die Kursteil-
nehmen müssen verstehen, dass die Vorbereitung auf die Präsenzphase einen zentralen Teil des Konzeptes in ihrer Verantwortung darstellt [14]. In den Präsenzphasen können Gruppen-Methoden wie zum Beispiel Partnerarbeiten, Gruppendiskussionen, Problem-Orientiertes-Lernen, Think-Pair-Share, Aktives Plenum, Buzz-Group oder Snowballing etc. eingesetzt werden. Spielerische Ansätze in der Hochschullehre werden bislang vor allem im Kontext von „Audience Response“-Systemen und Gamification verständlich diskutiert. Die Präsenzveranstaltung im Inverted Classroom kann für die Durchführung von Hörsaal spielen genutzt werden, in denen Studierende zum Beispiel ihr Wissen in spielerischen Quiz-Situationen überprüfen und Gruppen im Wettstreit gegeneinander antreten [43].

6. Vorteile

Der generelle Vorteil der Inverted-Classroom-Methode gegenüber der klassischen Vorlesung liegt darin, dass die reine Faktenvermittlung aus der Präsenzphase ausgelagert wird und somit mehr Zeit für die Anwendung des Wissens und Transferleistungen in der Präsenzphase zur Verfügung steht und zwar auch in Großveranstaltungen. Dies gibt den Lehrenden und Lernenden bei dem individuell konstruierten Wissen mehr Möglichkeiten, Vorgehensweisen und Erfahrungen auch innerhalb einer Großveranstaltung auszutauschen, zu reflektieren und die Lehrveranstaltung dementsprechend (mit-)zu gestalten. In der Literatur wird die stärkere Einbeziehung der Studierenden als wesentlicher Vorteil der ICM angesehen [35].

Laut der University of Southern California (USC) bietet der Einsatz der Inverted-Classroom-Methode dazu noch die folgenden Vorteile [https://cst.usc.edu/teach/strategies/the-inverted-classroom/ zitiert 13. Januar 2015):

- Die Möglichkeit für die Studierenden, sich den Inhalt in eigener Lerngeschwindigkeit anzueignen.
- Die Möglichkeit des Self-Assessment für die Studierenden und Dozierenden, indem bspw. kleine Aufgaben und Quizze in den Prozess eingebaut werden.
- Die Möglichkeit, direktes Feedback zu bekommen.
- Die Möglichkeit mit den Dozierenden zu interagieren.
- Mehr Möglichkeiten, aufkommende Fragen sofort zu bearbeiten, zu beantworten und zu besprechen.

7. Nachteile

Nachteile der ICM entstehen in erster Linie dann, wenn die Voraussetzungen für den erfolgreichen Einsatz der Methode nicht erfüllt sind. Daher werden in diesem Abschnitt einige Bedingungen aufgeführt, von denen der Erfolg der ICM nach Ansicht der Autoren abhängig ist. Zunächst ist offensichtlich, daß eine effektive Implementierung der ICM die Vorbereitung der Studierenden mit Hilfe des vorab zur Verfügung gestellten Lehrmaterials erfordert. Gründe für einen nicht ausreichenden Wissensvererb in der Online- bzw. Selbstan-Zelnnten, Problem-Orientiertes-Lernen, Think-Pair-Share, Aktives Plenum, Buzz-Group oder Snowballing etc. eingesetzt werden. Spielerische Ansätze in der Hochschullehre werden bislang vor allem im Kontext von „Audience Response“-

8. Forschungsergebnisse

Zu Teilaspekten der Inverted-Classroom-Methode gibt es bereits einige Forschungsergebnisse. Die folgenden Studien sind nur ein kleiner Auszug und beziehen sich zum größten Teil auf die Übersichtsarbeiten von Bishop und Verleger [44]. Sie erheben keinen Anspruch auf Vollständigkeit. Insbesondere ist anzumerken, daß die untersuchten Kontexte sehr divers sind: Es liegen Publikationen zum Einsatz der ICM in der Schule, im Studium, bezüglich medizinischer und nicht-medizinischer Inhalte sowie aus unterschiedlichen Ländern vor. Die Ergebnisse sind möglicherweise nicht auf alle diese Kontexte generalisierbar. So wurde beispielsweise für das Medizinstudium bis heute nicht methodisch sauber nachgewiesen, daß die Vorbereitung auf die Präsenzphase ohne spezifische Vorbereitungsaufgabe überhaupt zu einem Lernerfolg führt.
In vielen Arbeiten wurde der Einsatz von Vorlesungsaufzeichnungen in der Lehre dokumentiert. Dabei lag der Fokus auf der Nutzung der Materialien und auf der Teilnahme an Präsenzveranstaltungen. Fischer und Spannagel haben einige Studien zur durchweg positiven Aufnahme der Inverted-Classroom-Methode zusammengefasst. Loviscach weist in diesem Zusammenhang darauf hin, dass die IC-Methode insbesondere geeignet ist, Wissenslücken und Probleme, die in der herkömmlichen Vorlesung unentdeckt geblieben wären, aufzuzeigen [36]. Eine prospektive Studie von Raupach und Kollegen konnte nachweisen, dass der Einsatz von Podcasts in Kombination mit Quizfragen im Vorfeld medizinischer Lehrveranstaltungen einen förderlichen Einfluss auf den kurz- und mittelfristigen Wissenserwerb hat [45].

Lage und Kollegen wiesen nach, dass Studierende positiv auf das neue Kurzkonzept reagieren. Sie geben an, mehr Spaß am Lernen zu haben und die Inhalte aus der Online-Phase in der Präsenzphase tatsächlich anzuwenden. Deren Studierende geben an, dass sie die ICM dem klassischen Unterricht vorziehen. Deslauriers et al. wiesen in ihrer Studie nach, dass der Einsatz der Flipped-Classroom-Methode zu signifikanten Lernverbesserungen bei Schülern im Physikunterricht führen kann [46].

9. Inverted Classroom in der medizinischen Ausbildung und in den Gesundheitsberufen

Wie in einigen Studien zum Lernerfolg und Partizipation von Medizinstudierenden nachgewiesen werden konnte, bestehen einige Defizite in der traditionellen Hochschullehre.

So ist bekannt, dass bei der traditionell gestalteten Vorlesung die Aufmerksamkeit der Studierenden schon nach zehn Minuten abnimmt und nach durchschnittlich 15 bis 20 Minuten kaum mehr vorhanden ist. Unmittelbar nach einer Vorlesung erinnern sich die Studierenden an nur noch etwa 20% der vermittelten Inhalte [47]. Schon wegen dieser Befunde besteht ein dringender Bedarf an Lehrformen, die Wissen effektiver vermitteln als die traditionelle Vorlesung. Dazu kommt im Falle der Ausbildung von Ärztinnen und Ärzten die Notwendigkeit, klinische Entscheidungsfindung einzubeziehen. Dies gelingt sehr effektiv durch die Bearbeitung von Fällen, die online vermittelt werden können und grundsätzlich den Vorteil haben, dass die Studierenden aus Fehlern lernen können, ohne dabei Patienten zu gefährden [48].

Die Inverted-Classroom-Methode wurde bereits in einigen Projekten der medizinischen Ausbildung sowie der Ausbildung anderer Gesundheitsberufe angewendet. Im Folgenden sollen einige Projekte vorgestellt werden, diese Aufzählung erhebt keinen Anspruch auf Vollständigkeit. Es werden die Projekte vorgestellt, die am häufigsten erwähnt und zitiert wurden.

In der medizinischen Ausbildung gibt es ein paar Studien im Bereich ICM. Morgan und Kollegen kamen bei dem Einsatz der Inverted-Classroom-Methode in der gynäkologischen Onkologie zu guten Ergebnissen bezüglich der studentischen Akzeptanz sowie zur Reduzierung der Dauer der Wissensvermittlung [49].

An der Northwestern University Feinberg School of Medicine, Chicago wurde die Inverted-Classroom-Methode dazu genutzt, mündliche Fallpräsentation zu trainieren. Dabei wurden sämtliche vorbereitenden, theoretischen Inhalte in einer Online-Phase zur Verfügung gestellt. Die eigentliche Präsentation wurde in der Präsenzphase geübt und durch die Dozierenden betreut. Im Resultat zeigten die Studierenden erheblich bessere Prüfergebnisse als die Studierenden im vorherigen Semester [50].

Weitere Studien konnten ebenfalls einen verbesserten Lerneffekt in dem Fachbereich Physiologie nachweisen, allerdings mit gemischter Akzeptanz durch die Studierenden [51], [52]. Die Interpretation dieser Ergebnisse ist durch die sich aus den jeweiligen Studiendesigns ergebenden Schwächen (zumeist historische Vergleiche; fehlende oder allenfalls zufällige Kongruenz zwischen Lehrmaterial und Prüfungsinhalte) limitiert. In anderen Gesundheitsberufen gibt es ebenfalls einige Studien und Projekte mit dem Einsatz der ICM. In Deutschland wurde die Inverted-Classroom-Methode an der Münchner Ludwig-Maximilians-Universität (LMU) im Rahmen der Hochschullehrerqualifizierung angewandt und konnte dort ein weiteres Mal gute Ergebnisse hinsichtlich der Akzeptanz verzeichnen [53]. Wenn auch nur an wenigen Teilnehmern untersucht (n=40), zeigte sich, dass die Inverted-Classroom-Methode auch für dieses Segment der Aus- und Weiterbildung geeignet ist. Des Weiteren wird die ICM in der Allgemeinmedizin an der LMU erprobt.

An der Frankfurter Goethe Universität wurde die ICM im Zahnmedizinstudium im Fach Zahnerhaltungskunde in Form des Projektes „P@L“ implementiert und 2013 als Good practice- Beispiel von der Hochschulrektorenkonferenz aufgenommen. Eine Besonderheit der hier angewendeten ICM ist, dass in der Präsenzphase im Rahmen von Problem-Orientierten-Lernszenarien (POL) in Kleingruppen gelernt wird. Gerhardt-Szép konnte dabei zeigen, dass in diesem Kontext besonders das kollaborative und selbstgesteuerte Lernen von den Studierenden positiv bewertet wurden [54].

The Association for Medical Education in Europe (AMEE) bot auf ihrer Jahreskonferenz 2014 und 2015 die AMEE Initiative: Research Papers: „Flipped-Classroom – Technology and Assessment for Learning“ an, und reagiert somit auf die Vorteile der neuen Lehr- und Lernmethode. Die Teilnehmer konnten sich im Vorfeld die relevanten Informationen in einer Online-Phase aneignen, um vor Ort mit den Vortragenden intensiver diskutieren zu kön-
nen. Der Erfolg dieser Veranstaltungen kann allerdings nur als durchwachsen bezeichnet werden: Im Jahr 2015 hatte sich nach eigenen Angaben nur ein einziger Besucher des Symposiums das Online-Material im Vorfeld angesehen.

Auch in der Ausbildung weiterer Gesundheitsberufe finden sich vergleichbare zu vermittelnde Kompetenzen. Kritisches Denken und Teamwork sind auch für Fachkräfte der Pflege wichtige Faktoren [53], [54], [55], [56], [57]. Besonders diese Kompetenzen werden an der University of Bradford durch die Inverted-Classroom-Methode vermittelt. Der Einsatz der ICM führt demnach nicht nur zu guten Ergebnissen beim Lernprozess und der Zufriedenheit mit der Lehre, sondern fördert auch die Problemlösungs- kompetenz und das Arbeiten im (interdisziplinären) Team. Laut den Autoren stellt die Inverted-Classroom-Methode eine passende Lehrform dar, da sie auf die Lösung komplexer Probleme und auf die Förderung von Problemlösungskompetenzen und Teamwork abzielt [58].

Eine Studie in der Physiotherapie konnte ebenfalls eine Verbesserung der Lernerfolge nachweisen, zeigte allerdings eine geringe Akzeptanz des Lernformats durch die Studierenden [59].

An der University of North Carolina in der School of Pharmacy wurde das traditionelle Lehrkonzept auf die Inverted-Classroom-Methode umgestellt. Drei Elemente wurden explizit implementiert: Fakten werden online vermittelt, bei den Lehr-/Lernmethoden liegt der Schwerpunkt auf einer studierendenzentrierten Vermittlung und es werden Assessment-Formate genutzt. Für die Online-Phase wurden Vorlesungsaufzeichnungen von durchschnittlich 34 Minuten Länge erstellt, welche die wichtigsten Inhalte in komprimierter Form vermitteln sollten, dazu kommt ergänzende Literatur. In der Präsenzphase wurden studierendenzentrierte Lernaktivitäten wie Feedback und Fragenrunden, „Microlectures“, Clicker-Systeme (Audience-Response), die “Pair and Share”- Methode, Präsentationen, Diskussionen und Quizze einge- setzt, um das in der Selbstlernphase angemessene Wissen der Studierenden zu vertiefen, das kritische Denken zu fördern und Diskussionen zu stimulieren. Die Studierenden (n=150) zeigten signifikant bessere Klausurergebnisse im Vergleich zu dem vorherigen Semester mit traditioneller Lehrform. Weiter wurde bei den Studierenden eine sehr hohe Zufriedenheit mit dem Kurzkonzept (93,1%) und eine erhöhte Anwesenheit beobachtet [4].

Prober und Heath haben die Inverted-Classroom-Methode in einem Biochemie-Curriculum eingesetzt und kamen ebenfalls zu signifikant besseren Lernergebnissen im Vergleich zu dem vorherigen Semester. Auch sie konnten eine sehr hohe Zufriedenheit der Studierenden und eine 30% bis zu 80% höhere Anwesenheitsrate feststellen [5].

Gute Ergebnisse konnten auch im Rahmen des Pharmazie-Studiums an der Shenandoah University in Winchester in dem Fach „Renal Pharmacotherapy“ beobachtet werden. Neben besseren Testergebnissen im Vergleich zum Vorjahr wurde eine hohe Zufriedenheit der Studierenden (80%) durch den Einsatz der ICM festgestellt [60]. Eine weitere Studie im Bereich Pharmakokinetik kam ebenfalls zu guten Ergebnissen bezüglich der Lernerfolge [61].

10. Diskussion und Ausblick

Die Abkehr von traditionellen Vorlesungsformaten hin zu Lernenden-zentriertem Unterricht scheint in der medizinischen Ausbildung sowie in der Ausbildung von Gesundheitsberufen empfehlenswert; hierbei wird die Faktorenver- mittlung in eine (Online-)Selbstlernphase verlagert und das Anwenden von Wissen und das Üben von Handlungen in der Präsenzphase eingefordert. Angesichts der skizzierten Rahmenbedingungen und der publizierten Forschungsdaten sollte sich die Lehre künftig nicht darauf beschränken, reines Faktenwissen zu vermitteln, sondern dieses Wissen sollte auf das Lösenvon Problemen in der Praxis angewandt werden können.

Auch Van der Vleuten und Driessen fordern eine Verschie- bung des Fokus von der Informationsvermittlung hin zur Informationsverarbeitung und betonen, dass dies mit dem Einsatz der ICM gefordert wird [7]. Laut den Autoren hat die ICM – das Potential, die Vermittlung von Kompetenzen wie Clinical Reasoning, Critical Thinking, Kommunikationsverhalten und die Fähigkeit zu Teamwork zu unterstützen. Alle diese Outcomes sind in der patientenzen- trierten Gesundheitsversorgung von großer Bedeutung. Allerdings werden noch Studien benötigt, in denen untersucht wird, ob und unter welchen Bedingungen sich dieses Potential der ICM am ehesten realisieren lässt. Dabei könnte auch der Einsatz von virtuellen Patienten, fallbasierten Lehr- und Lernmethoden und Kommunikati- onstrainings in die ICM integriert werden [7].

Die Gründe für den in den bisherigen – vornehmlich nicht- medizinischen – Studien gemessenen Erfolg und die hohe Akzeptanz der Inverted-Classroom-Methode liegen nach Meinung der Autoren an folgenden Aspekten:

- Sie ist Lernenden-zentriert und ermöglicht aktivieren- des und selbstständiges Lernen.
- Sie berücksichtigt technische Innovationen (Screen- casts).
- Die „Open Educational Resources“-Bewegung fügt sich sehr gut in die ICM ein und kann ein integraler Bestandteil der Methode sein. Sie ermöglicht eine Anpassung an den Lernverhalten der Lernenden.
- Sie bietet Freiräume für Diskussion und die Vertiefung von Wissen.

Nicht zuletzt unterscheidet sie sich gegenüber vielen Blended-Learning-Szenarien dahingehend, dass die ICM konkrete Angaben über die Anordnung von Lernphasen macht. Lehrende, die diese Methode anwenden, sind mehr als sonst dazu gezwungen, im Vorfeld ein didakti- sches Konzept zu erarbeiten, in dem das Prinzip der Kongruenz zwischen Lernzielen und Lehrmethoden sowie der Umsetzung tatsächlich umgesetzt wird. In diesem Kontext bietet sich ein nicht unerheblicher Gestaltungsspielraum für Lehrende und Lernende. Die oben skizzier- ten guten Ergebnisse, Studien und Projekte bezüglich
des Lernerfolges sowie große Akzeptanz durch die Studierenden und Dozierenden gegenüber diesem Lehrkonzept sollen als Ansporn dienen, diese neue Lernform selbst zu erproben und anzuwenden. Die bislang durchgeführten Projekte können als Good-Practice-Beispiele für die Ausbildung in den Gesundheitsberufen dienen. Insbesondere sind aber Experten für Ausbildungsforschung gefordert, durch methodisch stringente Studien den tatsächlichen Nutzen und die für einen effektiven Einsatz erforderlichen Rahmenbedingungen näher zu definieren. Entsprechende Untersuchungen, in denen der studentische Lernerfolg den wesentlichen Outcome-Parameter darstellen sollte, können die Grundlage für praktische Handreichungen und Praxis-Empfehlungen bilden. Auch in Ermangelung solcher belastbarer Daten wollen die Autoren interessierten Leserinnen und Lesern zum Abschluss dieser Einführung in die ICM einige Tipps geben, die bei der Implementierung von ICM-Veranstaltungen hilfreich sein können. Diese Tipps basieren auf Veröffentlichungen des Vanderbilt Center for Teaching, Brame und der University of Southern California [http://cft.vanderbilt.edu/guides-sub-pages/flipping-the-classroom/ zitiert 27. Mai 2014]:

1. Es muss den Studierenden ermöglicht werden, sich im Vorfeld der Präsenzphase das Faktenwissen im Selbststudium anzuzeigen. Dabei sind der Einsatz von kurzen Lernvideoclips und das Zurückgreifen auf bereits bestehende Lehrmaterialien im Sinne der Open Educational Resources hilfreich, sofern sie auf die jeweils intendierten Lernziele einer spezifischen Veranstaltung abgestimmt sind. Es ist aber ebenso der Einsatz anderer – auch nicht-digitaler – Lernmaterialien möglich.

2. Das Kurskonzept muss die thematische Verbindung zwischen der Online-Phase und der Präsenzphase transparent machen. Nur so können die Studierenden die Vorteile der Methode erkennen und nutzen. Diese Informationen sollten im Vorfeld den Studierenden vermittelt werden.

3. Es sollten Anreizsysteme für die Studierenden geschaffen werden, sich mit den Inhalten im Vorfeld der Präsenzphase zu befassen. Beispielsweise können aktive Forumsdiskussionen durch die Studierenden oder Quizzes benotet oder bewertet werden.

4. Es müssen Assessment-Instrumente in den Prozess implementiert werden, um zum einen den Studierenden eine Rückmeldung zu ihrem Wissensstand und Lernerfolg zu geben und zum anderen, damit sich die Dozierenden ein Bild über den jeweiligen Wissensstand der Nutzer machen können.

5. Die Aktivitäten der Online-Phase und der Präsenzphase müssen gut strukturiert werden. Die Studierenden kommen besser mit dem Konzept zurecht, wenn inhaltliche und zeitliche Anforderungen verbindlich definiert werden.

6. Die Lehrenden sollten zu Beginn der Präsenzphase nicht die Inhalte der Online-Phase wiederholen sondern lediglich auf Fragen eingehen.

7. Die Lehrenden sollten die Erwartungshaltung von Lerngruppen ermöglichen, fördern und diese betreuen.

8. Grundlegend für den Erfolg der ICM ist das Feedback durch Dozierende und Studierende. Feedback bzw. Rückmeldungen über den Lernfortschritt sollten während des gesamten Prozesses iterativ gegeben werden; dies gilt auch für die Online-Phase.

9. Die eingesetzten Technologien sollten leicht zugänglich und im Optimalfall Anreiz für den Anwender bereits vertraut sein.

Es ergibt sich die Notwendigkeit, auch Neuentwicklungen wie ICM von vorn herein systematisch zu beforschen. Auch im Hinblick auf den Hype Cycle von Gartner ist es dringend notwendig, die Grundlagenforschung in diesem Feld weiter zu forciern, um eben nicht aufgrund mangelnder theoretischer Fundierung wieder in die Bedeutungslosigkeit zu fallen [http://www.gartner.com/newsroom/id/2819918 zitiert 12. Januar 2015]. Die ersten, recht inhomogenen Forschungen in dem Feld zeigen vielversprechende Ergebnisse und sollten zwingend für die medizinische Ausbildung und für die Ausbildung weiterer Gesundheitsberufe erprobt und beforscht werden. Insbesondere das Zusammenspiel zwischen der ICM und dem aktivierenden Lernen sowie in der medizinischen Ausbildung relevanten Clinical Reasoning sollte tiefergehend analysiert werden. Des Weiteren gilt es herauszufinden, welche Wissensdomänen adressiert werden können und ob evtl. sogar affektive Lernziele mit der ICM vermittelt werden können.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Fabry G, Fischer MR. Das Medizinstudium in Deutschland – Work in Progress. GMS Z Für Med Ausbild. 2014;31(3):Doc36. DOI: 10.3205/zma000928
2. Ellaway R, Masters K. AMEE Guide 32: e-Learning in medical education Part 1: Learning, teaching and assessment. Med Teach. 2008;30(5):455–473. DOI: 10.1080/01421590802108331
3. Mehta NB, Hull AL, Young JB, Stoller JK. Just Imagine: New Paradigms for Medical Education. Acad Med. 2013;88(10):1418-1431. DOI: 10.1097/ACM.0b013e3182a36a07
4. McLaughlin JE, Roth MT, Glatt DM, Gharkholonarehe N, Davidson CA, Griffin LM, Esserman DA, Mumper RJ. The flipped classroom: a course redesign to foster learning and engagement in a health professions school. Acad Med. 2014;89(2):236–243. DOI: 10.1097/ACM.0000000000000086
5. Prober CG, Heath C. Lecture halls without lectures—a proposal for medical education. N Engl J Med. 2012;366(18):1657–1659. DOI: 10.1056/NEJMp1202451
6. Prober CG, Khan S. Medical Education Reimagined: A Call to Action. Acad Med. 2013;88(10):1407-1410. DOI: 10.1097/ACM.0b013e3182a368bd
23. Schreiber BE, Fukuta J, Gordon F. Live lecture versus video podcast in undergraduate medical education: A randomised controlled trial. BMC Med Educ. 2010;10(1):68. DOI: 10.1186/1472-6920-10-88

24. Prunaske AJ, Batzli J, Howell E, Miller S. Using Online Lectures to Make Time for Active Learning. Genetics. 2012;192(1):67–72. DOI: 10.1534/geneics.112.141754

25. Nast A, Schäfer-Hesterberg G, Zielke H, Sterry W, Rzany B. Online lectures for students in dermatology: A replacement for traditional teaching or a valuable addition? J Eur Acad Dermatol Venereol. 2009;23(9):1039–1043. DOI: 10.1111/j.1468-3083.2009.03246.x

26. Burnett E, Ramundo M, Stevenson M, Beeson MS. Evaluation of a web-based asynchronous pediatric emergency medicine learning tool for residents and medical students. Acad Emerg Med. 2009;16 Suppl 2:S46–50.

27. Freeman S, O'Connor E, Parks JW, Cunningham M, Hurley D, Haas D, u.a. Prescribed active learning increases performance in introductory biology. CBE Life Sci Educ. 2007;6(2):132–139. DOI: 10.1187/cbe.06-09-0194

28. Bonwell CC, Eison JA. Active Learning: Creating Excitement in the Classroom. Washington, DC: Jossey-Bass; 1991.

29. Brooks JD, Brown AL, Cockling RR. How people learn: Brain, mind, experience, and school. Washington, DC, US: National Academy Press; 1999.

30. O'Dowd AK, Aguilar-Roca N. Garage demos: using physical models to illustrate dynamic aspects of microscopic biological processes. CBE Life Sci Educ. 2009;8(2):118–122. DOI: 10.1187/cbe.09-01-0001

31. Walvoord BE, Anderson VJ. Effective Grading: A Tool for Learning and Assessment in College. 2. Edition. San Francisco, CA: Jossey-Bass; 2009. S.272

32. Handke J, Schäfer AM. E-Learning, E-Teaching und E-Assessment in der Hochschullehre: Eine Anleitung. München: Oldenbourg Wissenschaftsverlag; 2012.

33. Carlisle MC. Using YouTube to Enhance Student Class Preparation in an Introductory Java Course. Proceedings of the 41st ACM Technical Symposium on Computer Science Education. New York (USA): ACM; 2010. S.470–444.

34. Day JA, Foley JD. Evaluating a Web Lecture Intervention in a Human nádt/Computer Interaction Course. IEEE Trans Educ. 2006;49(4):420–431. DOI: 10.1109/TE.2006.879792

35. Gannod GC, Burge JE, Helmick MT. Using the inverted classroom to teach software engineering. Leipzig: ICSE International Conference on Software Engineering; 2008. S.777–786.

36. Fischer M, Spannagel C. Lernen mit Vorlesungsvideos in der umgekehrten Mathematikvorlesung. In: Desel J, Haake JM, Spannagel C (Hrsg). DeLFI 2012 – Die 10. E-Learning Fachtagung für Informatik der Gesellschaft für Informatik e.V. Bonn: Gesellschaft für Informatik; 2012. S.225–236.

37. Bruff DO, Fisher DH, McEven KE, Smith BE. Wrapping a MOOC: Student Perceptions of an Experiment in Blended Learning. MERLOT JOLT. 2013;9(2). Zugänglich unter/available from: http://jolt.merlot.org/vol9no2/bruff_0613.htm

38. Kerres M. Mediendidaktik: Konzeption und Entwicklung mediengestützter Lernangebote. München: Oldenbourg Wissenschaftsverlag; 2012.

39. Lindner M. Wie macht man MOOC-Videos im Khan-Style? Schwetzingen: mathemoo.de; 2013. Zugänglich unter/available from: http://mathemoo.de/2013/07/02/wie-macht-man-mooc-videos-im-khan-style/

40. Handke J, Franke P. xMOOCs im virtuellen Linguistics Campus. In: Schulmeister R, Herausgeber. MOOCs-Massive Open Online Courses: Offene Bildung oder Geschäftsmodell? Münster: Waxmann; 2013. S.101–126.
