Informe de Evaluación de Alpelisib (PIQRAY®) en el tratamiento de mujeres postmenopáusicas y hombres con cáncer de mama HR+/HER2-/PIK3CA mutado avanzado.

1. RESUMEN

El Cáncer de mama (CM) es la primera causa de cáncer invasivo en la mujer en el mundo occidental. En España, en la población femenina, según el último informe de SEOM, supone una cifra de casos nuevos de 32953 para 2020, una prevalencia del 36% entre los cánceres que afectan a la mujer y unas 6500 muertes al año. En el varón es un tumor infrecuente y supone alrededor del 0,25% de todos los tumores diagnosticados en el varón y menos del 1% del total de diagnósticos de cáncer de mama [1]. El cáncer de mama avanzado (metastásico y el locorregionalmete avanzado no susceptible de tratamiento local radical) (ABC) continúa siendo una enfermedad incurable con una supervivencia mediana global de unos 2 años, aunque esta varía según los diferentes grupos biológicos, siendo diferente en función de la expresión de receptores hormonales (HR) y HER2. Los tumores HR+/HER2-, denominados también luminales, suponen el grupo más frecuente, tanto de primeros diagnósticos, como en el caso de la enfermedad avanzada (ABC) y suponen aproximadamente un 70% de los ABC y en la actualidad la supervivencia (SV) mediana de este grupo es aproximadamente de unos 43 meses y ha mejorado en los últimos años [2,3]. Los 2 objetivos del tratamiento del ABC es mejorar la supervivencia y optimizar la calidad de vida [4]. En el cáncer de mama luminal el tratamiento de elección es la hormonoterapia asociado o no a terapia diana, salvo en situaciones de crisis visceral en que se indica la quimioterapia, usado de forma secuencial hasta la hormonorresistencia y posteriormente la quimioterapia. En los últimos años el tratamiento de primera línea de elección es la hormonoterapia asociada a inhibidores de ciclinas 4/6 (CDK4/6i) dados sus resultados de tolerancia y eficacia [4].

En CM la vía PIK3(AKT/mTOR, implicada en muchos procedimientos celulares fisiológicos, puede estar desregulada por diferentes mecanismos. Uno de ellos es la presencia de mutaciones activadoras en el gen PIK3CA. Las mutaciones en el gen PIK3CA, que codifica la subunidad p110α de la fosatidilinositol-3-kinasa (PI3K), están presentes en el 28-46% de los cánceres de mama avanzados (ABC) HR+/HER2- y se asocian con resistencia al tratamiento hormonal y a un peor pronóstico [5-6]. La actuación en la vía en el tratamiento del ABC ya había demostrado eficacia moderada con el
Inhibidor de mTOR, everolimus, si bien la presencia o no de mutaciones en PIK3CA no eran predictivas de respuesta [7]. Se han desarrollado inhibidores de PIK3 tanto pan-inhibidores, como selectivos. Los pan-inhibidores aunque han demostrado una eficacia modesta e indicios de que la presencia de mutaciones puede ser predictivo de eficacia, presentan una alta toxicidad por lo que su desarrollo se en ABC no ha continuado [6].

El Alpelisib (BYL719; PIQRAY®; Novartis Pharmaceuticals, Basel, Switzerland) es un inhibidor α-selectivo de PI3K, biodisponible por vía oral, 50 veces mas potente contra PI3Kα que otras isoformas, que ha demostrado sinergismo con el Fulvestrant en modelos preclínicos y actividad en estudios fase I [8].

En el estudio randomizado fase III, SOLAR-1, se objetiva por primera vez la actividad significativa y clínicamente relevante de la combinación de un inhibidor selectivo, el Alpelisib, en combinación con Fulvestrant, en mujeres postmenopáusicas o varones con ABC HR+/HER2- con mutaciones en el gen PIK3CA tras progresión a una primera línea hormonal con inhibidores de aromatasá (AI) y sin quimioterapia para la enfermedad avanzada, con un aumento significativo en la supervivencia libre de progresión (SLP) de 5,7 a 11 m estadísticamente significativo, aunque el aumento de SV global de 31,4 a 39 m no ha conseguido la significación estadística [9,10]. Si bien la toxicidad asociada, es relevante y exige una monitorización estricta y cuidados adicionales especiales.

Con todo ello se puede considerar como una alternativa de tratamiento para las pacientes postmenopáusicas y varones con ABC HR+/HER2- tras progresión a una primera línea con AI.

2. TÍTULO: Informe de Evaluación de Alpelisib (PIQRAY®) en el tratamiento de mujeres postmenopáusicas y hombres con cáncer de mama HR+/HER2- /PIK3CA mutado avanzado.

3. FECHA DE EVALUACIÓN: Febrero 2021

4. FICHA TÉCNICA DEL FÁRMACO

https://cima.aemps.es/cima/dochtml/ft/1201455008/FT_1201455008.html [12] (aquí se puede consultar la ficha técnica completa publicada por la AEMPS)

4.1. Indicaciones terapéuticas

Piqray está indicado en combinación con Fulvestrant para el tratamiento del cáncer de mama localmente avanzado o metastásico en mujeres posmenopáusicas y hombres, con receptor hormonal (HR) positivo, receptor 2 del factor de crecimiento epidérmico humano (HER2) negativo, con una mutación PIK3CA, tras progresión de la enfermedad después de terapia endocrina en monoterapia (ver sección 5.1).
4.2. Posología y forma de administración

El tratamiento con Piqray lo debe iniciar un médico con experiencia en el uso de tratamientos para el cáncer.

Los pacientes con cáncer de mama avanzado HR-positivo, HER2-negativo se deben seleccionar para recibir tratamiento con Piqray en base a la presencia de una mutación de PIK3CA en muestras del tumor o de plasma, utilizando un test validado. Si no se detecta una mutación en una muestra de plasma, se debe analizar el tejido tumoral si está disponible.

Posología

La dosis recomendada es de 300 mg de alpelisib (2x comprimidos recubiertos con película de 150 mg) tomados una vez al día de forma continuada. Piqray se debe tomar inmediatamente después de una comida, aproximadamente a la misma hora cada día (ver sección 5.2). La dosis diaria máxima recomendada de Piqray es de 300 mg.

Si se olvida tomar una dosis de Piqray, se puede tomar durante las 9 horas posteriores a la hora en que se administra habitualmente, inmediatamente después de una comida. Si han transcurrido más de 9 horas, se debe omitir la dosis de ese día. El siguiente día se debe tomar Piqray a la hora habitual. Si el paciente vomita después de tomar la dosis de Piqray, no debe tomar una dosis adicional ese día y debe retomar la pauta posológica habitual el día siguiente a la hora habitual.

Piqray se debe administrar junto con fulvestrant. La dosis recomendada de fulvestrant es de 500 mg administrados por vía intramuscular los días 1, 15 y 29, y posteriormente una vez al mes. Consulte la ficha técnica completa de fulvestrant.

El tratamiento debe continuar mientras se observe beneficio clínico o hasta la aparición de toxicidad inaceptable. Puede ser necesario modificar la dosis para mejorar la tolerabilidad.

4.4 Advertencias y precauciones especiales de empleo, En este punto se revisan algunas precauciones especiales y sobre todo el manejo de la hiper glucemia. Hay que tener en cuenta lo que dice respecto a los pacientes con diabetes mellitus (DM):

“No se ha establecido la seguridad de Piqray en pacientes con diabetes Tipo 1 y diabetes Tipo 2 no controlada ya que estos pacientes se excluyeron del ensayo clínico fase III. Se incluyeron pacientes con antecedentes de diabetes Tipo 2. Los pacientes con antecedentes de diabetes mellitus pueden requerir un tratamiento diabético intensificado y se deben controlar de forma estrecha.”
5. RELEVANCIA CLÍNICA Y APLICABILIDAD

5.1. ESCALA ESMO (v 1.1) de valoración de beneficio clínico.
https://www.esmo.org/guidelines/esmo-mcbs/esmo-mcbs-scorecards/scorecard-163-1
ESMO-MCBS v1.1, Scorecard version: 1, Form 2b, última versión publicada en la pagina de ESMO (last update 06.08.2020) (internet accessed 15-jan-2021) [11]
Según la última scorecard publicada en la pagina de la ESMO, con la forma 2b para estudios con tratamientos no curativos, en los que la rama control tiene una SLP < 6m, en las que el objetivo primario (OP) es la supervivencia libre de progresión (SLP) y sin datos aun de SG, le corresponde una puntuación de 3. Al no impactar de forma positiva en la calidad de vida no mejoraría de puntuación.
Sin embargo, con los datos de SG publicados ya, en enero del 2021[10], al no tener un impacto significativo en esta, y no tener mejoría en la calidad de vida la calificación definitiva en la escala MBS v1.1 de ESMO es un beneficio clínico de 2.

5.2. Valoración crítica de la metodología y resultados de los ensayos y de otros estudios disponibles:

a. Evaluación de la metodología y de la validez de los ensayos (endpoints, diseño, poblaciones, líneas posteriores, utilidad clínica)

La aprobación por la agencia reguladora europea, EMA, así como la de la americana, FDA, se basan en el estudio SOLAR-1 (NCT02437318) [9,10]. Es un estudio randomizado, doble ciego controlado con placebo (1:1), multicéntrico que compara Alpelisib mas Fulvestrant (A+F) versus placebo mas Fulvestrant (P+F) con el fin de determinar la eficacia y la seguridad de la combinación en mujeres postmenopáusicas y varones con cáncer de mama avanzado RH+/HER2-, que hubiesen presentado progresión previa a inhibidores de aromatasa. Las mujeres premenopáusicas no eran incluibles, aunque se les realizase supresión ovárica con análogos LHRH. Las pacientes no podían haber recibido quimioterapia para la enfermedad metastásica ni tratamiento previo con Fulvestrant ni inhibidores de la vía PI3K/AKTmTOR.

La resistencia hormonal se consideró primaria (recurrencia en los 24 primeros meses de la adyuvancia o progresión < 6m de la 1ra línea para el CMM) o secundaria (recurrencia después de 24 m del inicio de la hormonoterapia adyuvante o < de 12 m tras la finalización de esta o progresión > 6m a la primera línea de hormonoterapia para el CMM). El resto se consideraban enfermedad sensible (es decir que pacientes con tratamiento con inhibidores de aromatasa adyuvante y recaída tras > 12 m tras la finalización era inicialmente elegibles). En agosto 2016 una enmienda eliminó estas pacientes como elegibles para centrarse en la población endocrino resistente.

La inclusión de pacientes se realizó entre el 26 de Julio 2015 y el 21 de Julio de 2017, con 341 pacientes en la cohorte de pacientes con mutación y 231 en la de sin mutación.

Se incluyeron dos cohortes, una con mutaciones en PIK3CA en el tumor (PIK3CAm), que es el objetivo principal del estudio y otra sin mutaciones
(PIK3CAw) como prueba de concepto. La determinación de las mutaciones era obligatoria previa a la randomización para la asignación a una de las 2 cohortes y se realizaba sobre tejido (tumor primario o metastásico). Se incluyeron en la cohorte mutada pacientes con \(\geq 1 \) de 11 mutaciones específicas de PIK3CA. La randomización se estratificó por la presencia o no de metástasis en pulmón/hígado y tratamiento previo o no con inhibidores CDK4/6. El cruzamiento a la progresión de las pacientes asignadas al grupo placebo no estaba permitido. En la Tabla 1 se describen las características de las pacientes. Aunque los varones eran candidatos solo se incluyó 1.

Tabla 1. Características de las pacientes [9]

Characteristic	Cohort with PIK3CA-Mutated Cancer	Cohort without PIK3CA-Mutated Cancer
	Alpelisib–Fulvestrant Group (N=169)	Placebo–Fulvestrant Group (N=172)
	Alpelisib–Fulvestrant Group (N=115)	Placebo–Fulvestrant Group (N=116)
Age — yr	63	64
	25–87	38–92
Range		
Female sex — no. (%)	168 (99.4)	172 (100)
	115 (100)	116 (100)
ECOG performance-status score — no. (%)†		
0	112 (66.3)	113 (65.7)
	84 (73.0)	79 (68.1)
1	56 (33.1)	58 (33.7)
	30 (26.1)	37 (31.9)
Missing data	1 (0.6)	1 (0.6)
	1 (0.9)	0
Sites of metastases — no. (%)‡		
Breast	1 (0.6)	3 (1.7)
	5 (4.3)	4 (3.4)
Bone only	42 (24.9)	35 (20.3)
	26 (22.6)	23 (19.8)
Visceral site		
Lung	93 (55.0)	100 (58.1)
	66 (57.4)	74 (63.8)
Liver	49 (29.0)	54 (31.4)
	41 (35.7)	36 (31.0)
Lung	57 (33.7)	68 (39.5)
	37 (32.2)	55 (47.4)
Lung or liver	84 (49.7)	86 (50.0)
	56 (48.7)	56 (48.3)
No. of metastatic sites — no. (%)§		
0	0	1 (0.6)
1	63 (37.3)	52 (30.2)
	44 (38.3)	33 (28.4)
2	58 (34.3)	60 (34.9)
	35 (30.4)	36 (32.8)
2–3	48 (28.4)	59 (34.3)
	36 (31.3)	45 (38.8)
Previous treatment — no. (%)§		
Any CDK4/6 inhibitor	9 (5.3)	11 (6.4)
	7 (6.1)	8 (6.9)
Chemotherapy	101 (59.8)	107 (62.2)
	78 (67.8)	72 (62.1)
Line of treatment in advanced disease — no. (%)¶		
First line	88 (52.1)	89 (51.7)
	71 (61.7)	62 (53.4)
Second line	79 (46.7)	82 (47.7)
	42 (36.3)	53 (45.7)
Endocrine status — no. (%)**		
Primary resistance	23 (13.6)	22 (12.8)
	31 (27.0)	26 (22.4)
Secondary resistance	120 (71.0)	127 (73.8)
	66 (57.4)	65 (56.0)
Sensitivity	20 (11.8)	19 (11.0)
	16 (13.9)	20 (17.2)

El objetivo primario (OP) era la supervivencia libre de progresión (SLP) valorada por el investigador según los criterios RECIST v1.1 en la cohorte mutada. Si bien, inicialmente, el OP incluía las 2 cohortes, en marzo 2016 se realizó una enmienda y se limitó el objetivo primario a la población PIK3CAw y la cohorte sin mutación se cambió a un objetivo secundario (OS) como prueba de concepto. La SG en la población mutada era un objetivo secundario (OS) clave. La SG dentro de cada cohorte se testaba sólo si había diferencias
significativas en la SLP. El análisis de seguridad se realizaba en las pacientes de las 2 cohortes que hubieran recibido al menos una dosis de cualquier medicación del estudio.

El resultado respecto al OP, SLP en la población mutada, fue de una SLP estimada de 11 meses (95% CI: 7.5-14.5) en la rama A+F vs 5.7m (95% CI: 3.7-7.4) en la rama P+F (HR 0.65; 95% CI: 0.50-0.85; 2s p=0.001). Por lo tanto, el estudio cumple el objetivo primario.

El beneficio en la SLP se objetivó en todos los subgrupos e independientemente de la localización de la mutación.

En la cohorte sin mutaciones de PIK3CA no se objetivó beneficio en la SLP (HR 0.85; 95% CI: 0.58-1.25) (figura 1).

Figura 1. Solar-1. SLP (A PIK3CAm, B PIK3CAw) [9]

Al presentarse los datos del OP, con un seguimiento mediano de 20 m en la población mutada, los datos de supervivencia global (SG) que eran un objetivo secundario clave, no estaban aún maduros. En el diseño del estudio, este OS tenía un poder del 72% con un nivel de significación de 2% de 1 cola para rechazar la hipótesis nula, si el HR era de 0.67 que se correspondería a un aumento del 15m en la SG mediana (asumiendo 30 m para la rama control y 45m para la experimental).

El análisis final de la SG sería estadísticamente significativo si p < 0.016. Los resultados de SG en la cohorte mutada se han presentado con un seguimiento de 30.8m para este objetivo [10]. En el análisis final de la SG en la cohorte mutada, con 181 muertes, la SG mediana fue de 39.3 m (95% CI: 34.1-44.9) en el grupo A+F vs 31.4 m (95% CI: 26.8-41.3) en el grupo P+F (HR=0.86, 95% CI: 0.64-1.15; 1s p=0.15 no cruzándose el límite pre-especificado de O’Brian-Fleming). Por lo que el incremento de 7.9 meses en la SG no es estadísticamente significativo (figura 2).
En la Tabla 2 se resumen los Objetivos del estudio Solar-1

OBJETIVOS	A+F	P+F	HR	p	Seguimiento mediano
Cohorte PIK3CAm					
Primario – SLP (m)	11.0	5.7	0.65	0.001	20 m
Secundarios					
Respuesta global	26.6%	12.8%			
Beneficio clínico	61.5%	45.3%			
SG (m)	39.3	31.4	0.86	0.15	30,8 m
Exploratorios					
SLP2 (m)	22.8	18.2	0.8		
TTC (m)	23.3	14.8	0.72		
Cohorte PIK3CAw					
Secundario SLP (m)	7.4	5.6	0.85	ns	7.4 m
Exploratorio SG en ctDNA-PIK3CA mutado (cualquier cohorte)	34.4 (28.7 - 44.9)	25.2 (20.7 - 29.6)	0.74 (0.51 - 1.08)		

SLP2: tiempo desde la randomización a la progresión a la siguiente línea de tratamiento; TTC: tiempo desde la randomización a la 1ª quimioterapia

Con un seguimiento de 42,4m en abril 2020, en la cohorte mutada 21 pacientes de la rama A+F seguían en tratamiento comparado con 7 de la rama P+F.

Con respecto a la seguridad, los efectos adversos (AE) se analizaron en las pacientes incluidas en las 2 cohortes que recibieron al menos una dosis del tratamiento en estudio y se midieron según la versión CTCAE 4.03 [13]. Los efectos adversos grado 3/4 más frecuentes en la rama con alpelisib fueron hiperglicemia, rash y diarrea. El tiempo medio de aparición de los efectos...
grado 3/4 fue 15 días para la hiperiglicemia, 13 para el rash cutáneo y 139 días para la diarrea. Ver tabla 3.

Dado que la hiperglucemia era un efecto esperado, no eran incluibles en el estudio pacientes con diabetes mellitus tipo I, ni tipo II no controlada, siendo obligatorio que a la inclusión la HBA1c fuera < 8%. Sin embargo, posteriormente, tras la inclusión de 317 pacientes (56%) se realizó una enmienda para mejorar la monitorización de la toxicidad cutánea y la hiperglucemia. En esta enmienda el nivel de HBA1c se redujo a < 6.5% para poder incluir al paciente. Así mismo se incluyeron guías para mejorar la monitorización y tratamiento de la hiperiglicemia, el rash y la diarrea. Con respecto a la hiperglucemia la mayoría se controlaron con metformina asociado o no a otros antidiabéticos orales y ocasionales requirieron Insulina. La mayoría de los casos volvieron a su situación basal cuando se retiró el tratamiento.

Tabla 3. Solar-1 – Efectos adversos [13]

AE, n (%)	Alpelisib plus fulvestrant (n = 284)	Placebo plus fulvestrant (n = 287)								
	Any AE (n)	Grade 1	Grade 2	Grade 3	Grade 4	Any AE (n)	Grade 1	Grade 2	Grade 3	Grade 4
	282 (99.3)	12 (4.2)	54 (19.0)	183 (64.4)	33 (11.6)	264 (92.9)	69 (24.0)	92 (32.1)	87 (30.3)	15 (5.2)
Hiperiglicemia	181 (63.7)	32 (11.3)	45 (15.6)	93 (32.7)	11 (3.9)	28 (9.8)	19 (6.6)	7 (2.4)	1 (0.3)	1 (0.3)
Diarrea	164 (57.7)	93 (33.7)	52 (18.8)	19 (6.7)	0	45 (15.7)	30 (10.5)	14 (4.9)	1 (0.3)	0
Nausea	127 (44.7)	90 (31.7)	30 (10.6)	7 (2.5)	0	64 (22.3)	49 (17.1)	1.4 (4.9)	1 (0.3)	0
Decreased appetite	101 (35.6)	75 (26.4)	24 (8.5)	2 (0.7)	0	30 (10.5)	21 (7.3)	8 (2.8)	1 (0.3)	0
Rash	101 (35.6)	48 (16.9)	25 (8.8)	28 (9.9)	0	27 (9.5)	14 (4.9)	2 (0.7)	1 (0.3)	0
Vomiting	77 (27.1)	64 (22.5)	11 (3.9)	2 (0.7)	0	28 (9.8)	18 (6.3)	9 (3.1)	1 (0.3)	0
Decreased weight	76 (26.8)	34 (12.0)	31 (10.9)	11 (3.9)	0	6 (2.1)	1 (0.3)	5 (1.7)	0	0
Stomatitis	75 (26.4)	39 (13.7)	24 (8.5)	7 (2.5)	0	38 (13.3)	15 (5.2)	3 (1.0)	0	0
Fatigue	69 (24.3)	36 (12.7)	23 (8.1)	10 (3.5)	0	49 (17.1)	36 (12.5)	10 (3.5)	3 (1.0)	0
Asthenia	58 (20.4)	25 (8.8)	28 (9.9)	5 (1.8)	0	27 (9.5)	29 (10.5)	8 (2.8)	0	0

AEs were graded per the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.03.

Tras la enmienda para el ajuste de medicación de soporte y criterios de inclusión para la glucemia las discontinuaciones de tratamiento por EA ≥3 se redujeron de un 18% al 7.9%. La mediana de dosis de Alpelisib en los pacientes PIK3CAm fue de 248 mg/d, la SLP fue de 12.5 y 9.6 m respectivamente para intensidades de dosis de Alpelisib ≥ 248 mg/d y < 248 mg/d, lo que indica la importancia de manejar bien los EAs para mantener una dosis adecuada.

Cuando se diseñó el estudio muy pocas pacientes se trataban entonces con inhibidores CDK4/6 (DCK4/6is) asociados a inhibidor de aromatasa (AI) en primera línea y aunque era un factor de estratificación sólo un 6% de las pacientes incluidas en el estudio Solar-1 lo recibieron, por lo que en base al ensayo pivotal es difícil extender los resultados a esta población. Para valorar los datos en estas pacientes, se realizó posteriormente el estudio BYLieve (NCT03056755), un ensayo fase II no randomizado con 3 cohortes en población mutada, en el que la cohorte A son pacientes tratadas en con AI+CDK4/6i en primera línea y que a la progresión se tratan con A+F [14]. El OP de este estudio era la proporción de pacientes vivas sin progresión a 6 meses, valorado por el investigador por RECIST v1.1, calculado con un IC del 95% de 2 colas y se valoraba como clínicamente significativo y que se conseguía el OP si el límite inferior del IC era > 30%. Se incluyeron 127
pacientes, el 60% con resistencia endocrina secundaria. El resultado para el OP fue de 54.4% de vivas sin progresión a 6m (95% CI, 41.2-59.6), que fue por tanto clínicamente significativo y que cumplía las premisas del estudio. La SLP mediana (OS) fue de 7.3m (95% CI, 5.6-8.3). En comparación con los resultados del estudio SOLAR-1, en el que mayoritariamente los pacientes se trataron con hormonoterapia sola, es inferior a la SLP de 11 m (7.5-14.5) de las pacientes tratadas con la combinación y apenas 1.5 m superior a la rama control de dicho estudio, si bien las poblaciones no son comparables en ambos estudios ya en el estudio BYLieve habían pacientes con > 1 línea de tto previa. La comparación con una cohorte control generada a partir de los datos de vida real de la base de datos Flatiron, en la que la mediana de SLP estaba en torno a 3.5 meses, podría sugerir resultados mejores para la combinación alpelisib+fulvestrant (datos que se muestran en la presentación de la cohorte A del BYLieve en ASCO 2020). En cualquier caso, dada la ausencia de un brazo control en el estudio BYLIEVE, cualquier comparación es indirecta y muy limitada en su alcance.

b. Evaluación de los resultados de calidad de vida

La calidad de vida se evaluó durante el estudio utilizando los siguientes cuestionarios: EORTC QLQ-C-30 (salud global y calidad de vida), EQ-5D-5L (valores índices), y BPI-SF (dolor). Los cuestionarios se obtenían al inicio (screening), cada 8 semanas durante 18 m y posteriormente cada 12 semanas hasta progresión y al final del tratamiento [15]. No se encontró impacto en la calidad de vida ni positivo ni negativo a lo largo del estudio.

Figura 4. Solar-1. Calidad de vida [15]

c. Revisiones sistemáticas y metanálisis disponibles – No existen en este momento.

5.3. Biomarcadores: interpretación clínica de su valor y de la definición de grupos con distinto nivel de beneficio de acuerdo con ellos.

El Alpelisib, inhibidor α-selectivo de PI3K, en el estudio SOLAR-1 solo ha demostrado eficacia en cáncer de mama avanzado HR+/HER2- con mutaciones en PIK3CA (en cualquiera de las mutaciones estudiadas) por lo que el conocimiento del estatus mutacional es obligatorio.
En el estudio Solar-1, la mutación se realizaba en tejido (bien de la metástasis o del primario). Y los resultados para el OP y el OS clave de SG son en función de la mutación detectada aquí.

Además, existía un estudio paralelo de determinaciones de la mutación en DNA circulante (ctDNA), en las pacientes de las 2 cohortes utilizando la siguiente tecnología – “Qiagen therascreen PIK3CA RGQ polymerase chain reaction (PCR) kit”, y se analizó el resultado de SG, en los casos mutados por esta tecnología (siendo éste un estudio exploratorio). Los datos fueron positivos para las pacientes con mutaciones ctDNA [10].

Se evaluó la concordancia en 328 participantes en el estudio con estudio en tejido positivo y 215 con estudio negativo. El porcentaje de acuerdo positivo (PPA) del plasma para las 11 mutaciones comparado con el tejido fue 179/328 (54.6%) en el análisis de concordancia, que puede ser por no liberación de DNA a sangre en algunos casos. 5 de 11 mutaciones no se detectaron en plasma y sí en tejido, el porcentaje de acuerdo negativo (NPA) fue 97.2% (209/215). Con estos datos, el fabricante y la FDA recomiendan dada la facilidad, hacer el test en sangre y si este sale negativo hacerlo en el tejido para evitar perder casos verdaderos positivos.

La FDA, ha aceptado esta prueba como técnica para la selección de las pacientes. La EMA no exige prueba específica para la detección de la mutación. La ESMO si recomienda la detección de las mutaciones PIK3CA como uno de los marcadores a determinar en su guía de alteraciones genómicas accionables ESCAT [23] y en sus recomendaciones para el uso de NGS (Next Generation Sequencing) en cáncer avanzado [24].

Una de las cuestiones a tener en cuenta es que hay estudios que muestran una discrepancia de hasta el 30% entre el tumor primario y la metástasis, generalmente a expensas de ganancia mutacional en la metástasis, por lo que probablemente sería mejor...
hacerlo en la lesión metastásica previa al tratamiento más que en el tumor inicial [25,26]. La biopsia líquida puede ser una alternativa y reservar la biopsia de tejido de metástasis en los negativos por cTDNA como recomienda la FDA.

5.4. Posicionamiento del fármaco y su indicación a lo largo de la trayectoria de la enfermedad, especialmente en los casos en los que pueda tener varias indicaciones.

Tal y como lo ha aprobado la EMA, solo tras hormonoterapia en monoterapia, para aquellas pacientes postmenopáusicas que cumplan este criterio en la actualidad, está la combinación Fulvestrant + CDKis con un nivel de eficacia contrastado y con un nivel de beneficio clínico según la escala ESMO MSCBS-1.1 de 4, con datos ya de SG para Abemaciclib y Ribociclib y de calidad de vida para los 3 CDKis (Abemaciclib, Ribociclib y Palbociclib) y muy buena tolerancia y que no ha demostrado peor eficacia en mutadas (es factor pronóstico solo). Y no hay comparación entre ellos (Fulvestrand+CDKi vs Fulvestrant + Alpelisib en pacientes con mutación) en esta línea. Por lo que con los datos actuales tras monoterapia hormonal esta sería hoy en día la opción más razonable.

Con respecto a las pretratadas con Inhibidor de aromatasa + CDKi en primera línea y desde una perspectiva más amplia como la de la FDA y la guía ABC5 y la posición discrepante de algunos de los evaluadores de la EMA y teniendo en cuenta los datos del estudio Bylieve, que no pueden darse como definitivos pues es un fase II no randomizado y con datos que sugieren una menor eficacia [14], habría, quizá, que tener en cuenta a esas pacientes, si bien los datos no tienen la fortaleza suficiente. En caso de no incluirse, tal y como esta la ficha técnica ahora para Europa su posición en segunda línea es muy limitada.

Por otro lado, otras alternativas son el Everolimus, no comparado directamente con Alpelisib y con el que es muy difícil hacer comparaciones indirectas pues la población del estudio Bolero estaba más tratada [29]. Se ha comunicado recientemente una comparación indirecta entre ambos estudios que, tras ajustar las poblaciones por las principales variables pronósticas, sugiere mejores resultados para alpelisib y fulvestrant, pero las conclusiones están muy limitadas por el escaso número de pacientes (36 vs 79), y porque en la rama de placebo también la población del Bolero tenía resultados inferiores (y esa población ninguna llevaba ni alpelisib ni everolimus [30]. Respecto a la población que haya recibido una línea de QT para la enfermedad avanzada, ambas eran inclusions en el estudio con Everolimus y en algunos estudios con CDKis en 2ª línea [4], mientras que no se incluyeron en el estudio SOLAR-1 y por tanto no hay datos de la eficacia de alpelisib en ese grupo.

Y por último tenemos los datos de Capecitabina, una quimioterapia oral, con un perfil de toxicidad manejable, tras progresión a AIs que ha demostrado una eficacia similar cuando se compara con hormonoterapia combinado tanto con Everolimus [27] como con el CDK4/6i Palbociclib [28] y con un perfil de toxicidad diferente

Tanto los CDKis como el Everolimus y la Capecitabina se pueden utilizar en pacientes diabéticos.

5.5. Posicionamiento según agencias reguladoras y guías internacionales.

a. **Aprobaciones FDA** [16-18]

Aprobación en Mayo 2019
Indicación: “PIQRAY is a kinase inhibitor indicated in combination with fulvestrant for the treatment of postmenopausal women, and men, with hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative, PIK3CA-mutated, advanced or metastatic breast cancer as detected by an FDA-approved test following progression on or after an endocrine-based regimen.
https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212526s000lbl.pdf (internet accessed 15-jan-2021)
FDA-approved test: therascreen PIK3CA RGQ PCR Kit (QIAGEN GmbH)
Breast cancer (tissue and plasma)
https://www.fda.gov/medical-devices/vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-vitro-and-imaging-tools (internet accessed 15-jan-2021).

LA FDA acepta como tratamiento previo un tratamiento basado en terapia endocrina con lo que acepta la combinación con CDK4/6 como previo.

b. Aprobación EMA [19,20]
Aprobación en Julio 2020
Indicación: “Piqray está indicado en combinación con fulvestrant para el tratamiento del cáncer de mama localmente avanzado o metastásico en mujeres posmenopáusicas y hombres, con receptor hormonal (HR) positivo, receptor 2 del factor de crecimiento epidérmico humano (HER2) negativo, con una mutación PIK3CA, tras progresión de la enfermedad después de terapia endocrina en monoterapia.
https://www.ema.europa.eu/en/documents/assessment-report/piqray-epar-public-assessment-report_en.pdf
https://www.ema.europa.eu/en/documents/product-information/piqray-epar-product-information_en.pdf
https://www.ema.europa.eu/en/documents/product-information/piqray-epar-product-information_es.pdf (español)
Está en la lista de medicamentos sujetos a seguimiento adicional (motivo-producto biológico nuevo).
En la aprobación de la EMA solo se aprueba para pacientes que han progresado tras hormonoterapia en monoterapia, lo que prácticamente equivale a la exclusión de las pacientes tratadas previamente con hormonoterapia + inhibidores de CDK4/6. Aunque un grupo de evaluadores y algún experto externo expresaron su posición discordante haciendo ver que no hay datos de que estas pacientes no se beneficien y que creen se deberían incluir, el SAG (Scientific Advisory Group) de Oncología tuvo una postura unánime a favor de la restricción de la población de la indicación [19].

c. Guías de práctica clínica internacionales
Se incluye en las guías de:
- ESMO (ABC-5) [4] – lo incluye como indicado para pacientes con mutaciones en los exones 9 o 20 de PIK3CA tratados previamente con AI, con un nivel adecuado de HbA1c y otros criterios de toxicidad y dice que su eficacia tras CDK4/6 es desconocida con el estudio Solar-1 pero no lo desaconseja y en el momento de publicarla le da el ESMO-MCBS v1.1 score 3. Las guías ESMO indican que las premenopáusicas deben
ser tratadas como las postmenopáusicas con supresión ovárica adecuada y en este caso no hace excepción a pesar de que no se incluyeron en el estudio (siguiendo el mismo criterio que hizo en su día para los CDK4/6i). La guía reconoce explícitamente que la secuencia óptima de tratamiento de base hormonal es incierta. Sin embargo, en el texto del consenso sí especifica que el beneficio de los inhibidores de CDK4/6 es mayor, por lo que, en entornos en los que se disponga de todos los fármacos, la secuencia más adecuada es la utilización de inhibidores de CDK4/6 en primera línea, seguida en segunda línea de alpelisib con fulvestrant en tumores con mutaciones de PIK3CA o de everolimus con tratamiento hormonal en tumores sin mutaciones de PIK3CA o con status mutacional desconocido.

- NCCN (NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)- Breast Cancer Version 1.2021) [21] – lo incluye con un nivel de evidencia categoría 1 y categoría de preferencia como preferencia en segunda línea.

- AGO -guidelines – lo incluyen en 2ª línea con un nivel de evidencia Ib [22].

d. Guía SEOM más reciente – la guía SEOM mas reciente es de 2018 y previa a los datos de Alpelisib por lo que no lo incluye.

5.6. Coste-opportunidad desde una vertiente clínica, definido por la Comisión como “qué pierden los pacientes que no lo reciben” y adicionalmente “qué cuesta para los que lo reciben”:

a. Coste-opportunidad general
Es un tratamiento que teniendo en cuenta las toxicidades y tal y como se ha aprobado en Europa tiene un área de aplicabilidad limitada, tal y como se ha comentado en el punto 5.4. Aun así, en esas pacientes supone un aumento en la SLP significativo y de SG no significativo, pero a tener en cuenta (ya que el estudio no estaba planificado en su tamaño estral para el estudio de SG).

b. Balance entre beneficio y toxicidad-
En este apartado hay que tener en cuenta la toxicidad sobre todo cutánea y la hiperiglucemia que empeora el balance ya que requiere monitorización y añadir fármacos (antihistamínicos para el rash en todas al principio y en un porcentaje muy importante de antidiabéticos). Con mas seguimiento no parece que las toxicidades se incrementen, pero hay que esperar a un mayor seguimiento y a datos de vida real con una población mucho mas amplia.

c. Definición de subgrupos, de acuerdo a los datos de los estudios y las alternativas disponibles, en los que puede ser prioritario el uso del fármaco por motivos clínicos (pero manteniendo el rigor metodológico en la definición de subgrupos).
El subgrupo que se beneficia es el de las pacientes HR+/HER2- con mutaciones en PIK3CA. Y en este momento tras progresión a una primera línea de hormonoterapia.
Las pacientes premenopáusicas se excluyeron del estudio y también están excluidas de la indicación en ficha técnica en Europa.
5.7. Valoración desde una perspectiva social:
 a. Innovación
 El Alpelisib es el primer fármaco que actúa directamente sobre PI3-K que demuestra eficacia específica en población mutada y con un perfil de toxicidad manejable.
 b. Impacto en cuidadores y en la carga económica para el paciente y familia, con referencia a los datos de calidad de vida del paciente.
 Implica un aumento de la monitorización, sobre todo de la glucemia y un incremento en el uso de medicación de soporte tal y como se ha comentado en el punto 5.6.b
 c. Impacto para el sistema sanitario, en el uso de otros recursos como hospitalización o fármacos de soporte.
 Implica como ya se ha dicho el uso de fármacos de soporte (antihistamínicos para el rash y antidiabéticos), mayor número de visitas de monitorización, aunque no se ha comparado con las que necesitan los CDKi. El tratamiento es todo oral, por lo que no implica el uso de recursos de hospital de día. Precisa el apoyo de especialistas auxiliares como endocrinología.
 d. Estimación del número de pacientes candidatos a tratamiento y del beneficio en esos pacientes. Ya hemos dicho que dentro del cáncer de mama avanzado (ABC) supone el grupo mas frecuente (60-70%), de las que la mayoría llegan a la segunda línea hormonal y de ellas entre un 30-40% serán población mutada y por tanto candidata, si bien habría que eliminar al menos un 20% de casos con DM I o II que no cumplieran los criterios de HBAc1 que no serían candidatas.

5.8. Aspectos en los que es necesaria más información, tanto en cuanto a su posicionamiento, como a toxicidad/calidad de vida o biomarcadores, incluyendo propuesta de estudios observacionales relevantes.
 - Sería relevante un registro de las pacientes tratadas amplio en vida real para conocer el impacto de las toxicidades y del uso de recursos sanitarios, y el número de abandonos por toxicidad.

Posibles estudios relevantes
- Comparación en 2ª línea con CDKis en esta población tras Hormonoterapia en monoterapia y valorar si es mas eficaz en mutadas – estudio difícil por el uso de CDKis en 1ra línea.
- Comparación con Everolimus tras CDKis en 1ra línea en combinación con Fulvestrant
- Valorar su uso en primera línea en pacientes mutadas frente a CDKis – estudio difícil por la eficacia de estos últimos y el perfil de toxicidad
- Estudios en población premenopáusicas y con una línea de QT previa para la enfermedad avanzada
- búsqueda de otros biomarcadores
- evaluar el perfil mutacional por ctDNA a la progresión tras Alpelisib

6. CONCLUSIONES
 - La combinación Fulvestrant + Alpelisib ha demostrado eficacia en segunda línea tras AIs en mujeres postmenopáusicas y varones con Cáncer de mama avanzado HR+/HER2-/PIK3CAm, que ha progresado a tratamiento con inhibidores de aromatasa bien durante la adyuvancia o antes de un año del fin de la misma o a una 1ra línea para la enfermedad avanzada con AI, con criterios de hormonoresistencia primaria o secundaria, con un incremento de 5.7 a 11 m en
SLP y un incremento no significativo estadísticamente en la SG por lo que no tener un impacto relevante en la SG su eficacia final se ha de considerar moderada y que supone una alternativa de tratamiento para los pacientes que cumplan estos criterios. Además, supone un retraso en el uso de quimioterapia.
- La toxicidad es relevante y por su impacto en la glucemia no se puede recomendar en pacientes con Diabetes Mellitus I y II no controlada y que superen los niveles de HbA1c desaconsejados por el estudio, lo que limita su aplicabilidad.

7. RECOMENDACIONES FINALES
- Se recomienda su uso de acuerdo con la indicación en ficha técnica.
- Ante otras alternativas como CDKis o Everolimus en pacientes tratadas solo con hormonoterapia sin terapia dirigida previa no hay datos comparativos directos para elegirlo de forma prioritaria
- No hay datos para pacientes que hubieran recibido alguna línea de quimioterapia para la enfermedad avanzada, ni en pacientes premenopáusicas, aunque se realice supresión ovárica pues estaban excluidas del estudio.
- Debe abstenerse su uso en pacientes con DM-I y DM-II no controlada y con niveles de HbA1c ≥ 6.5%

8. BIBLIOGRAFÍA

1. Las cifras del cáncer en España 2020. (internet; accessed 22-Jan-2020)
 https://seom.org/seomcms/images/stories/recursos/Cifras_del_cancer_2020.pdf
2. (2018). Lib_El_AlamollAnexo_I.pdf.
 https://www.geicam.org/wpcontent/uploads/2017/04/Lib_El_AlamollAnexo_I.pdf
 (internet; accessed 22-Jan-2020)
3. Deluche E, Antoine A, Bachelot T, et al. Contemporary outcomes of metastatic breast cancer among 22,000 women from the multicentre ESME cohort 2008-2016. Eur J Cancer. 2020; 129: 60-70
4. Cardoso F, Paluch-Shimon S, Senkus E, et al. 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC 5). Ann Oncol. 2020; 31: 1623-1649
5. Fruman DA, Chiu H, Hopkins BD et al. The PI3K pathway in human disease. Cell 2017; 170(4): 605–635.
6. Verret, B.; Cortes, J.; Bachelot, T.; Andre, F.; Arnedos, M. Efficacy of PI3K inhibitors in advanced breast cancer. Ann. Oncol. 2019, 30 (Suppl. 10), x12–x20.
7. Baselga J, Campone M, Piccart M, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 2012;366:520-9.
8. Juric D, Janku F, Rodón J et al. Alpelisib plus fulvestrant in PIK3CA- altered and PIK3CA-wild-type estrogen receptor-positive advanced breast cancer: a phase 1b clinical trial. JAMA Oncol 2018; e184475.
9. Andre F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380:1929-1940.
10. André F, Ciruelos EM, Juric D, et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2negative advanced breast cancer: Final overall survival results from SOLAR-1. Ann Oncol. 2021;32. https://doi.org/10.1016/j.annonc.2020.11.011.
11. https://www.esmo.org/guidelines/esmo-mcbs/esmo-mcbs-scorecards/scorecard-163-1. ESMO-MCBS v1.1, Scorecard version: 1, Form 2b, (last update 06.08.2020) (internet accessed 15-Jan-2021)
12. https://cima.aemps.es/cima/dochtml/ft/1201455008/FT_1201455008.html (internet accessed 15-jan-2021)
13. Rugo HS, André F, Yamashita T, et al. Time course and management of key adverse events during the randomized phase III SOLAR-1 study of PI3K inhibitor alpelisib plus fulvestrant in patients with HR-positive advanced breast cancer. Ann Oncol. 2020;31:1001-1010.
14. Rugo H, Lerebours F, Ciruelos E et al. Alpelisib + fulvestrant in patients with PIK3CA-mutated hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2–) advanced breast cancer previously treated with cyclin-dependent kinase 4/6 inhibitor + aromatase inhibitor: BYLieve study results. ASCO 2020 [accessed 15-jan-2021]. Available from: https://meetinglibrary.asco.org/record/186927/abstract
15. Mayer IA, Rugo HS, Loibl S, et al. Patient-reported outcomes in patients with PIK3CA-mutated hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer from SOLAR-1. Paper presented at: American Society of Clinical Oncology 2019 Annual Meeting; 31 May - 4 June; Chicago, IL. Abstract 1039.
16. P Narayan, TM Prowell, JJ Gao et al. FDA Approval Summary: Alpelisib plus fulvestrant for patients with HR-positive, HER2-negative, PIK3CA-mutated, advanced or metastatic breast cancer. Clinical Cancer Research. This OnlineFirst version was published on November 9, 2020. doi: 10.1158/1078-0432.CCR-20-3652
17. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212526s000lbl.pdf (internet accessed 15-jan-2021)
18. FDA-approved test: therascreen PIK3CA RGQ PCR Kit (QIAGEN GmbH) Breast cancer (tissue and plasma) https://www.fda.gov/medical-devices/vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-vitro-and-imaging-tools (internet accessed 15-jan-2021)
19. https://www.ema.europa.eu/en/documents/assessment-report/piqray-epar-public-assessment-report_en.pdf (internet accessed 15-jan-2021)
20. https://www.ema.europa.eu/en/documents/product-information/piqray-epar-product-information_en.pdf (internet accessed 15-jan-2021)
21. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®)- Breast Cancer Version 1.2021 — January 15, 2021 https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf (internet accessed 15-jan-2021)
22. Ditsch, N.; Untch, M. AGO recommendations for the diagnosis and treatment of patients with locally advanced and metastatic breast cancer: Update 2020. Breast Care 2020, 15, 294–309
23. Condorelli R, Mosele F, Verret B et al. Genomic alterations in breast cancer: level of evidence for actionability according to ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol 2019; 30(3): 365–373.
24. Mosele F, et al. Recommendations for the use of next generation sequencing (NGS) for patient with metastatic cancers: A report from the ESMO Precision Medicine Working Group. Ann Oncol. 2020; 31:1491-1505.
25. Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K, et al. PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol Cancer Ther. 2011;10:1093-1101.
26. Dupont Jensen J, Laenkholm AV, Knoop A, et al. PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin Cancer Res. 2011;17:667-677.
27. Jerusalem G, de Boer RH, Hurvitz S, et al. Everolimus plus exemestane vs everolimus or capecitabine monotherapy for estrogen receptor-positive, HER2-negative advanced breast cancer: The BOLERO-6 randomized clinical trial. JAMA Oncol. 2018;4:1367-1374.

28. Martín M, Zielinski C, Ruiz-Borrego M, et al. Palbociclib in combination with endocrine therapy versus capecitabine in hormonal receptor-positive, human epidermal growth factor 2-negative, aromatase inhibitor-resistant metastatic breast cancer: a phase III randomised controlled trial-PEARL. Ann Oncol 2021, in press. https://doi.org/10.1016/j.annonc.2020.12.013

29. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 2012;366(6):520–9.

30. Ciruelos EM, Delea T, Moynahan A et al. Population-Adjusted Comparison of PFS for Alpelisib plus Fulvestrant versus Everolimus plus Exemestane in Postmenopausal Women with PIK3CA-mutated HR+/HER2- Advanced Breast Cancer Receiving Second-Line Treatment based on SOLAR-1 and BOLERO-2 Trials. Ann Oncol 2020; 31(suppl2):574 (ESMO Breast 2020 abs 163P)

9. DECLARACIÓN DE CONFLICTO DE INTERESES

Participación en reuniones de asesoría, ponencias remuneradas y financiación de asistencia a cursos y congresos: AstraZeneca, Eisai, MSD, Novartis, Pfizer, Roche y Palex.