Bezbednosni aspekti na aerodromima i spremnost putnika da putuje u inostranstvo tokom pandemije virusa COVID-19

Milan Krivokuća¹, Vladimir Tomašević², Jelena Rajković¹

¹Technical Faculty „Mihajlo Pupin“ Zrenjanin, milann93@hotmail.com
²School of Engineering Management, Belgrade, vladimir.tomasevic@fim.rs

Apstrakt: Izbijanje pandemije COVID-19 koronavirusa i odgovoravajuće mere predostrožnosti radi ograničavanja njegovog širenja imaju jasne uticaje na mobilnost ljudi na globalnom nivou. To je izazvalo smanjenje domaćeg i međunarodnog obima vazdušnog putničkog saobraćaja i spremnost putnika da se odluči na putovanje u inostrane zemlje. Zbog globalne krize u vezi sa koronavirusom, većina zemalja je uvela restriktivne mere kako bi ograničila pandemiju i ograničila broj žrtava. Među restriktivnim merama je upravo i obustava vazdušnog saobraćaja kao efikasna mera u smanjenju mobilnosti na globalnom nivou u kratkom roku, što za posledicu ima visok socio-ekonomski dizbalans kako dugoročno tako i kratkoročno. Ovaj rad se bavi ispitivanjem poznavanja i primenom mera predostrožnosti na aerodromima, sigurnosti i spremnosti putnika da putuje i njihovim iskustvima.

Ključne reči: COVID-19, bezbednost, aerodromi, putovanje

Security Aspects at Airports and the Willingness of Passengers to Travel abroad during a Pandemic of the COVID-19 Virus

Abstract: The outbreak of COVID-19 coronavirus and appropriate precautions measures to limit its spread have clear impacts on human mobility globally. This has caused a reduction in the domestic and international volume of air passenger traffic and the readiness of passengers to decide to travel to foreign countries. Due to the global coronavirus crisis, most countries have introduced restrictive measures to limit the pandemic and limit the number of victims. Among the restrictive measures is the suspension of air traffic as an effective measure in reducing mobility at the global level in the short term, which results in a high socio-economic imbalance in both the long and short term. This paper deals with the examination of knowledge and application of precautionary measures at airports, safety and readiness of passengers to travel and their travel experiences.

Keywords: COVID-19, security, airports, travel

1. Introduction

Hardly anyone expected that the COVID-19 epidemic would have such a big impact on the functioning of the air traffic system. Preliminary scientific research conducted by virologists has indicated the need to introduce distance between people (Bezerra & Gomes, 2012). In March 2020, when large European clusters of COVID-19 cases were identified, first border crossing restrictions were introduced, followed by international and intercontinental flights (Europe - USA). It has become clear that it is only a matter of time before additional restrictions are introduced in air traffic. However, no one expected that air traffic would be practically stopped because it was reduced by more than 80%. Before the outbreak, about 30,000 planes took off every day, and in March, April and May, there were only 2,500 take-offs (Bruno & Genovese, 2012).
The resumption of air traffic depends on several factors: government restrictions and guidelines on air traffic, demand for air services, and ticket prices. However, a key aspect that airport managers and airline executives will have to face is how to ensure passenger safety and persuade them to reuse air transport in an epidemiological situation. There are general regulatory guidelines for passenger transport services at airports (Byrne, 2010). Mandatory temperature control for passengers at the entrance to the passenger terminal and appropriate distancing have been introduced.

One of the systems in which hygiene and social distance are difficult to fulfill is the security checkpoint. According to research, this process is one of the more stressful service processes (Bezerra & Gomes, 2012). Maintaining appropriate rules of distancing and hygiene (e.g. disinfection of hands and X-ray carriers) is crucial for the safe application of the safety control process.

The infrastructure of the existing safety control systems (e.g. length of the conveyor, number of technical devices) guaranteed adequate performance under the assumption that there is no distance and other requirements for epidemics (Fan Yi et al., 2016). The application of social distance has resulted in a significantly reduced number of passengers in each area of the safety control strip. Kierzkowski and Kisiel made an analysis that directly showed that this factor has a key impact on reducing system performance. Corrective actions must be taken to maintain a high performance security control system in the event of an epidemic (Easa, pp.1-28). Two solutions can be introduced. The first is that passengers will arrive at airports much earlier, but then the number of people in the queue will not decrease, where COVID-19 transmissions can occur. Another solution is to try to increase the performance of the system in an epidemic. This paper examines the readiness of passengers to travel to foreign countries due to a pandemic and their knowledge of preventive measures.

2. **Literature overview in the field of social responsibility in the application of integrated marketing communication**

Modeling of airport processes has a long history. However, the first models were quickly identified as useless (Braojos et al., 2012). It can be seen that the primary focus was on modeling systems in terms of assessing their performance. An overview of such models was developed by Wu and Mengersen (Hair et al., 2011). The history of modeling service processes at airports can be successfully traced there (Eilon, 2015).

De Lange proposes a model that allows estimating the maximum passenger delay. The authors performed theoretical considerations on a simple model consisting of a subsystem for control and safety control in order to verify the proposed procedure. It was then applied practically at the airport terminal in Atlanta. The analysis of the profiles of reported arrivals at the place of services for passengers when the air traffic was the densest was performed. In the epidemic aspect, it could be useful to assess this indicator due to system disturbances.

However, this model did not take into account the state of the epidemic. Passengers did not keep enough distance (De Lange, De Vos, 2018). Kobza and Jacobson presented an alternative solution suitable for conducting a wider range of analyzes. The model refers to the service of arriving passengers. Model assumptions allow consideration of different scenarios, e.g. allocating appropriate resources to the number of passengers arriving in a particular aircraft, dynamically moving resources according to specific strategies. This is a quasi-stochastic model. Some of the data are given by probability distributions based on actual data at New York airports. Some processes are described by a determined transition time between individual service subsystems.

Therefore, this model may be useful in the epidemic aspect. However, it must be known how much the efficiency of individual processes will decrease. This data can then be updated in the model and the distorted performance can be checked (ICAO, Kobza, Leone, 2015).

Based on Kobza and Jacobson, a similar model was developed, which includes reporting passengers departing from a particular airport. He is represented by Jim and Chang. The model is extended with additional graph vertices that include additional services, i.e. Restaura.nts, information points, etc. The model implements service time characteristics in individual subsystems. Therefore, there are already
models that allow the reproduction of the trajectory of passengers in microscopic terms. This can allow the assessment of the most sensitive zones for the spread of epidemiological risk (Jim & Chang, 1998).

Hsu et al. considered the dynamic distribution of control points using a stochastic simulation model (HSU et al., 2012). In this case, the function of the goal was to minimize the resources used, assuming that certain requirements regarding the waiting time of passengers for the service were met. The model was used at an airport in Taiwan for China Airline. This model could be used to dynamically change the number of seats to reduce queues for flights with more passengers, which significantly reduces contact between passengers in long rows. Bruno and Govense also see the possibility of improving the system in dynamic management. The mathematical model has been developed and previously verified. However, the paper does not provide details that show the extent of the benefits gained (Bruno & Genovese, 2012).

Due to the possibility of conducting safety control procedures in accordance with different procedures, using different control methods, studies on the performance analysis of this phase of passenger transport services mainly focus on the development of models on a microscopic scale. Van Boekhold et al. (2014) present a simulation model used to analyze the sensitivity of the security control process to changes in staff performance, initial control, random alarm index, activated alarm, and number of luggage items. Leone (2002) based on the completed simulation experiments, shows the relationship between the number of activated alarms and the performance of the safety control point. These models can be useful if the control procedure changes due to an epidemic. If this affects the number of operators or the number of alerts, this model will estimate the change in performance. After all, in the history of aviation, security screening procedures have already changed. Leone and Liu (2016) assessed the actual performance of the hand luggage control process after the introduction of regulations requiring the use of ETD control. The results are compared with the theoretical values of equipment performance.

Lee et al. (2018) used computer simulation to compare six different queue structures in queues before security controls. The Monte-Carlo analysis was performed in terms of determining the structure with the highest performance. The analysis takes into account the factor of whether the passenger has hand luggage, which also affects the time spent waiting. In addition, it was assumed that passengers could choose a queue according to three different rules: random, shortest queue and shortest waiting time. As a result of the analysis, it was found that different passenger waiting structures were suitable for different passenger preferences in terms of order selection strategies. Importantly, in terms of social distance in an epidemic state, it can be difficult to apply certain types of waiting. This model could be useful for analyzing this fact.

However, in this case, it may be better to use regular rows. This allows passengers to stay out of the waiting system while waiting for the safety control procedure. A simulation experiment was performed, which, in addition to shortening the waiting time, also showed the possibility of limiting the resources needed to perform the security control process.

The way a passenger goes through a phase in a security control system also has a significant impact on system performance. Kierzkowski and Kisiel modeled passenger flow to compare two variants of the safety lane configuration - single and double. Subsequently, a simulation model was used for the Kierzkowski and Kisiel (2015) models - checkpoint for double lane. The capacity of individual protection line zones is crucial. The epidemic, which introduced the need for social distance, reduced the capacity of these zones. So far, the impact of changes in handling procedures related to the epidemic has not been analyzed. In particular, the influence of social distance on process characteristics has not been studied.

3. Methodology

Systematic review protocol

The methodological basis of this paper is based on a combination of several different methods. In order to satisfy the methodological procedures (generality, reliability, objectivity and systematicity), various scientific research methods were used. An exploratory research method, ie the use of existing literature and electronic sources, was used to determine the current state and development trends. Adequate research will use the classification method to identify the basic factors that affect the degree of its
implementation. In the further development of the paper we will use the method of analysis, as well as a comparative method.

The exploratory method will help to determine the current positions in the field of air traveling and its application in the current pandemic situation and restrictions that occurred, and the classification method will identify differences and compare current, ruling trends in the field of social responsibility. In further analysis of the paper and the obtained results, the statistical SPSS method will be used. A complex methodological approach and the application of several scientific methods is necessary due to the complexity of the problem that is the subject of research in this scientific paper. The survey was conducted in June 2020 and had 100 respondents.

In accordance with the defined research tasks, the following hypotheses were set:

- **HYPOTHESIS 1**: There are statistically significant differences in the knowledge of prevention measures in relation to age.
- **HYPOTHESIS 2**: There is a statistically significant difference in the knowledge of prevention measures in relation to the country from which the respondents travel.
- **HYPOTHESIS 3**: There is a statistically significant difference in the sense of security in the country they come from in terms of coronavirus compared to the country from which the respondents travel.
- **HYPOTHESIS 4**: There is a statistically significant difference in staying in Serbia in relation to the country from which the respondents travel.
- **HYPOTHESIS 5**: There is a statistically significant difference in the choice of the country from which the respondents travel in relation to the feeling of security in the country they come from regarding the coronavirus.

4. Results

We first sorted the database so that the variables could be used for statistical analysis and defined each variable (Table 1).

Variable	Way of expressing values
Age	Continuous
Question 1	Categorical
Question 2	Categorical
Question 3	Categorical
Question 4	Categorical
Question 5	Categorical
Question 6	Categorical
Question 7	Categorical
Question 8	Categorical

Source: Authors’ calculations

We observed whether there are statistically significant differences in knowledge of prevention measures in relation to the age of the respondents. T-test of independent samples was used to examine differences in relation to age (Tables 2 and 3).

Group Statistics	Are you familiar with prevention measures?	N	Mean	Std. Deviation	Std. Error Mean
AGE	YES	53	41.13	14.334	1.969
	NO	47	41.94	14.115	2.059

Source: Authors’ calculations
From the table we see that the total number of respondents is 100, of which 53 respondents are familiar with prevention measures while 47 respondents are not familiar with prevention measures. The table also shows the mean values and standard deviation for each group separately.

By T-test of independent samples, we observed whether there are statistically significant differences in the knowledge of prevention measures in relation to the age of the respondents (Table 3). In our example, the assumption of equality of variance is not violated because the significance level of Levine’s test is $p = 0.638$ (which is higher than the significance threshold of 0.05), based on which we conclude that our sample is homogeneous and we observe the results from the first order (“Equal variance assumed”). The level of significance of the t-test is $p = 0.779$, which is higher than the significance threshold (0.05), based on which we conclude that there are no significant statistical differences in the mean value between the age of the respondents in relation to the knowledge of prevention measures.

We then calculated the magnitude of the impact in the t-test of the independent samples. The magnitude of the impact is estimated based on the eta squares. This square determines the magnitude of the impact, which indicates the magnitude of the difference between the groups, and not just whether the difference is random or not. This square is equal to 0.0008, which represents an extremely small influence, which confirms that there is no statistically significant difference in the mean value between the observed groups.

Descriptive statistics were then applied to examine whether preventive measures for coronavirus at the airport were followed (Tables 4 and 5). Based on Table 5, we can see that only 1 respondent believes that appropriate preventive measures have been taken at the airport while 99 respondents believe the opposite (Graph 1).
Table 6. Descriptive statistics

Are you familiar with prevention measures?	N	Mean	Std. Deviation	Std. Error Mean
Yes	53	3.57	2.144	.294
No	47	5.02	2.090	.305

Source: Authors’ calculations

The group information is checked first (Table 6). From the table we see that the total number of respondents is 100, of which 53 respondents are familiar with prevention measures while 47 respondents are not familiar with prevention measures.

The table also shows the mean values and standard deviation for each group separately. By T-test of independent samples, we observed whether there are statistically significant differences in the knowledge of prevention measures in relation to the country from which the respondents travel (Table 7, Graph 2).

In our example, the assumption of equality of variance is not violated because the significance level of Levine’s test is $p = 0.583$ (which is higher than the significance threshold of 0.05) on the basis of which we conclude that our sample is homogeneous and the results are observed from the first order.

The level of significance of the t-test is $p = 0.001$, which is less than the significance threshold (0.05), on the basis of which we conclude that there is a significant statistical difference in the mean values in relation to the knowledge of prevention measures.

We then calculated the magnitude of the impact in the t-test of the independent samples. The magnitude of the impact is estimated based on the eta squares. This square determines the magnitude of the impact, which indicates the magnitude of the difference between the groups, and not just whether the difference is random or not.

This square is equal to 0.107, which represents the mean influence, which confirms that there is a statistically significant difference in the mean value between the observed groups.

Table 7. T-test of independent samples

Where are you travelling from?	Equal variances assumed	Equal variances not assumed	
Levene’s Test for Equality of Variances	F	3.433	1.455
(Sig. 0.05)	583	97.103	425
t-test for Equality of Means	df	0.001	97.103
(Sig. 0.05)	3.428	1.455	
Mean Difference	3.428	1.455	
Std. Error Difference	3.428	1.455	
95% Confidence Interval of the Difference	Lower	.297	
	Upper	.614	

Source: Authors’ calculations
We then examined whether travelers felt safe in the country they came from in terms of coronavirus. Respondents' responses are shown in Table 8 and the expected responses for each country are also shown. From Table 8 we see that most respondents felt safe in Germany, France, Russia, Turkey, America, and the United Arab Emirates, while half half were in China and in Italy they did not feel safe.

Table 8. Have you felt safe in the country you come from regarding coronavirus

From which country are you traveling	did you feel safe in the country you are coming from regarding Coronavirus	Total	
	have you felt safe in the country you come from regarding Corona virus		
	yes	no	Total
Where are you travelling from?			
China	5	6	12
Expected Count	6.5	3.5	12.0
Italy	8	12	20
Expected Count	14.2	5.8	20.0
Germany	5	3	8
Expected Count	5.7	2.3	8.0
France	7	6	13
Expected Count	9.2	3.8	13.0
Russia	3	0	3
Expected Count	3.2	3.8	13.0
Turkey	13	0	13
Expected Count	13	3.8	13.0
USA	12	2	14
Expected Count	9.9	4.1	14.0
UAE	0	0	0
Expected Count	0	2	2
Total	71	29	100

Source: Authors’ calculations

We observed whether there were statistically significant differences in the sense of security in the country they came from in terms of coronavirus compared to the country from which the respondents traveled.

A t-test of independent samples was used to examine the differences in relation to the country from which the respondents travel (Tables 9 and 10). The T-test of independent samples is used to compare the mean in relation to two different groups that are arranged according to whether they felt safe in the country they come from.
Table 9. Descriptive statistics

Group Statistics	Have you felt safe in the country you come from regarding the Corona virus				
N	Mean	Std. Deviation	Std. Error Mean		
Where are you travelling from?	Yes	71	4.90	1.32	253
N	Mean	Std. Deviation	Std. Error Mean		
No	29	2.66	1.587	295	

Source: Authors’ calculations

The group information is checked first (Table 9). We can see from the table that the total number of respondents is 100, of which 71 respondents felt safe in the country from which they travel, while 29 respondents did not feel safe in the country from which they travel. The table also shows the mean values and standard deviation for each group separately.

Table 10. T-test of independent samples

Independent Samples Test	Levene's Test for Equality of Variances	t-test for Equality of Means								
	F	Sig.	t	df	Sig. (2-tailed)	Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference		
Where are you travelling from?	Equal variances assumed	4.542	.036	5.117	98	.000	2.246	.439	1.375	3.117
	Equal variances not assumed	5.782	69.408	.000	2.246	.389	1.471	3.021		

Source: Authors’ calculations

By T-test of independent samples, we observed whether there are statistically significant differences in the sense of security in relation to the country from which the respondents travel (Table 10.). In our example, the assumption of equality of variance is violated because the significance level of Levine's test is p = 0.036 (which is less than the significance threshold of 0.05), on the basis of which we conclude that our sample is heterogeneous and we observe the results from the second order. "). The significance level of the t-test is p <0.005, which is less than the significance threshold (0.05), based on which we conclude that there is a significant statistical difference in the mean values in relation to the sense of security in relation to the country they come from. We then calculated the magnitude of the impact in the t-test of the independent samples. The magnitude of the impact is estimated based on the eta squares. This square determines the magnitude of the impact, which indicates the magnitude of the difference between the groups, and not just whether the difference is random or not. This square is equal to 0.254, which is an extremely large influence, which confirms that there is a statistically significant difference in the mean value between the observed groups.

We observed whether there are statistically significant differences in staying in Serbia in relation to the country from which the respondents travel. A t-test of independent samples was used to examine the differences in relation to the country from which the respondents travel (Tables 11 and 12). The T-test of independent samples is used to compare the mean value in relation to two different groups that are distributed according to how long they remain in Serbia.

Table 11. Descriptive statistics

Group Statistics	For how long are you staying in Serbia				
N	Mean	Std. Deviation	Std. Error Mean		
Where are you travelling from?	1-5	47	4.13	1.941	283
N	Mean	Std. Deviation	Std. Error Mean		
6 and on	53	4.36	2.474	340	

Source: Authors’ calculations

The group information is checked first (Table 11). From the table we see that the total number of respondents is 100 of which 47 respondents stay 1 to 5 days while 29 respondents stay longer. The table also shows the mean values and standard deviation for each group separately.
Table 12. T-test of independent samples

Independent Samples Test	Levene's Test for Equality of Variances	-t-test for Equality of Means	95% Confidence Interval of the Difference							
	F	Sig.	df	Mean Difference	Std. Error Difference	Lower Bound	Upper Bound			
Where are you travelling from?	Equal variances assumed	5.688	0.019	-5.14	98	608	-231	649	0.121	660
	Equal variances not assumed	-5.22	0.617	603	-231	442	-1.09	647		

Source: Authors’ calculations

By T-test of independent samples, we observed whether there are statistically significant differences in residence in Serbia in relation to the country from which the respondents come (Table 12 and Graph 4).

In our example, the assumption of equality of variance is violated because the significance level of Levine’s test is $p = 0.019$ (which is less than the significance threshold of 0.05), based on which we conclude that our sample is heterogeneous and the results are observed from the second order. The level of significance of the t-test is $p = 0.608$, which is higher than the threshold of significance (0.05), based on which we conclude that there is no significant statistical difference in the mean values in relation to the stay of respondents in Serbia.

We then calculated the magnitude of the impact in the t-test of the independent samples. The magnitude of the impact is estimated based on the eta squares. This square determines the magnitude of the difference between the groups, and not just whether the difference is random or not. This square is equal to 0.0026, which represents an extremely small influence, which confirms that there is no statistically significant difference in the mean value between the observed groups.

We observed whether there were statistically significant differences in the country from which the respondents came in relation to the sense of security in the country they came from regarding the coronavirus. One-factor ANOVA of independent samples was used to examine differences in relation to the sense of security in the country from which the respondents travel. A one-factor ANOVA of independent samples is used to compare the mean with respect to three or more different groups distributed according to which country the respondents come from.

Table 13. Descriptive statistics

Descriptives	Have you felt safe in the country you come from regarding the Corona virus?							
	N	Mean	Std. Deviation	Std. Error	95% Confidence Interval for Mean			
					Lower Bound	Upper Bound	Minimum	Maximum
China	12	50	522	151	17	83	0	1
Italy	20	60	503	112	36	84	0	1
Germany	8	38	518	183	-0.6	81	0	1
France	13	46	519	144	15	78	0	1
Russia	13	0.0	000	0.00	0.00	0.00	0	0
Turkey	13	0.0	000	0.00	0.00	0.00	0	0
USA	14	14	363	199	-0.7	35	0	1
UAE	7	0.0	000	0.00	0.00	0.00	0	0
Total	100	29	456	046	20	38	0	1

Source: Authors’ calculations

The group information is checked first (Table 13). From the table we see that the total number of respondents is 100, of which the most respondents come from Italy (20) and then from the United States (14) while the least number of respondents come from the UAE (7). The table also shows the mean values and standard deviation, minimum and maximum for each group separately.
We then examined the homogeneity of variance and in our example the assumption of equality of variance was violated because the significance level of the Levine test was $p < 0.0005$ (which is less than the significance threshold of 0.05) on the basis of which we conclude that our sample is heterogeneous (Table 14).

Table 15. One-factor Anova of independent samples

Source: Authors’ calculations
ANOVA
Have you felt safe in the country you come from regarding the Corona virus?
Sum of Squares
Between Groups
Within Groups
Total

The level of significance of one-factor ANOVA is $p < 0.005$, which is less than the significance threshold (0.05), based on which we conclude that there is a significant statistical difference in the mean values in relation to the country from which the respondents come (Table 15). We then calculated the magnitude of the effects in the one-factor ANOVs of the independent samples. The magnitude of the impact is estimated based on the eta squares. This square determines the magnitude of the impact, which indicates the magnitude of the difference between the groups, and not just whether the difference is random or not. This square is equal to 0.289, which is an extremely large influence, which confirms that there is a statistically significant difference in the mean value between the observed groups.

Table 16. Comparison between which groups there is a statistically significant difference

Source: Authors’ calculations
Multiple Comparisons
Dependent Variable: Have you felt safe in the country you come from regarding the Corona virus
Tukey HSD
(J) Where are you travelling from?
China
Germany
France
Russia
Turkey
USA
UAE
Italy
Germany
France
Russia
Turkey
USA
UAE
Germany
Italy
France
Russia
Turkey
USA
UAE
France
Italy
The survey found that travel restrictions have apparently been successful in mitigating the spread and reducing local transmission of COVID-19 once the epidemic has spread around the world. The combination of interventions carried out in China is especially useful in the early stages of an outbreak. However, travel restrictions may be less effective in the late stages of an outbreak.

Respondents were also found to feel safest in Russia, Turkey, Italy and the UAE. Travel restrictions are less effective in the late stages of an outbreak.

The feeling of security also varies in relation to the country from which they travel and it can be concluded that the respondents feel less safe in relation to the countries where they have not traveled. The respondents were also found to feel safest in Russia, Turkey, and the UAE.

The research examined the knowledge of preventive measures and readiness to travel due to the coronavirus epidemic. Based on the conducted research, it was determined that age does not affect knowledge of prevention measures.

The researchers found that 99% of respondents believe that appropriate preventive measures related to the protection of coronavirus transmission at the airport have not been implemented. Based on these results, we can conclude that the volume of airport traffic has been reduced because people are afraid of getting infected, which is why they cancel scheduled trips. Based on the research, we can conclude that there are statistically significant differences in knowledge of prevention measures depending on the country from which the respondent travels, which leads us to the conclusion that not every country is in the same way introduced to preventive measures.

One-factor ANOVA found that there was a statistically significant difference between the observed groups but not which groups, which is why we applied a post hoc test to determine which groups there is a statistically significant difference. There is a statistically significant difference between China and Russia, China and Turkey, Italy and Russia, Italy and Turkey, Italy and America, Italy and the UAE.

5. Conclusion

The research examined the knowledge of preventive measures and readiness to travel due to the coronavirus epidemic. Based on the conducted research, it was determined that age does not affect knowledge of prevention measures, ie younger and older people are equally familiar. The research found that 99% of respondents believe that appropriate preventive measures related to the protection of coronavirus transmission at the airport have not been implemented. Based on these results, we can conclude that the volume of airport traffic has been reduced because people are afraid of getting infected, which is why they cancel scheduled trips. Based on the research, we can conclude that there are statistically significant differences in knowledge of prevention measures depending on the country from which the respondent travels, which leads us to the conclusion that not every country is in the same way introduced to preventive measures.

The feeling of security also varies in relation to the country from which they travel and it can be concluded that the respondents feel less safe in relation to the countries where there are many infected with the coronavirus and where a state of emergency has been imposed. As for the time the respondents spend in Serbia, it does not depend on the country from which the respondents travel. Respondents were also found to feel safest in Russia, Turkey, and the UAE. Travel restrictions are especially useful in the early stages of an outbreak. However, travel restrictions may be less effective once the epidemic has spread around the world. The combination of interventions carried out in China has apparently been successful in mitigating the spread and reducing local transmission of COVID-19.

Much further and more detailed work is needed to determine how to optimally balance the expected positive effect on public health with the negative impact on freedom of movement, the economy and...
society in general. Understanding the epidemiology and dynamics of transmission of this virus is the key to successful epidemic control. As the COVID-19 pandemic continues to spread rapidly and threaten the health of the population, there is an urgent need for more rigorous research focused on virus mitigation and control strategies.

References

1. Bezerra G., Gomes C. (2015). The effects of service quality dimensions and passenger characteristics on passenger's overall satisfaction with an airport. *J. Air Transport. Manag.* 2015;44:77–81.
2. Braojos-Gomez, J., Benites-Amado, J., & Llorens-Montes, F.J. (2015). How Do Small Firms Learn to Develop Social Media Competence?. *International Journal of Information Management*, Vol. 35 (4), 443-458.
3. Bruno G., Genovese A. (2010). A mathematical model for the optimization of the airport check-n service problem. *Electron. Notes Discrete Math.* 2010;36:703–710.
4. Byrne, B. M. (2010). *Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming* (2nd Edition). New York: Taylor and Francis Group Publication.
5. Chamberlain I., Micka S. (1969). Simulation and the airport problem. *Clearing House Rep.* 1969:182154:1–9.
6. Copenhaver, M., Shrestha, R., Wickersham, J.A., Weikum, D.; & Altice, F.L. (2016). An Exploratory Factor Analysis of a Brief Self-Report Scale to Detect Neurocognitive Impairment Among Participants Enrolled in Methadone Maintenance Therapy. *Journal of Substance Abuse Treatment*, Vol. 63, 61-65.
7. De Lange R., Samoilovitch I., Van Der Rhee B. (2013). Virtual queuing at airport securitylanes. *Eur. J. Oper. Res.* 2013;225(1):153–165.
8. De Vos J. (2020). The effect of COVID-19 and subsequent social distancing on travel behavior. *Transportation Res Interdisciplinary Perspect.* 2020;5:1–3. doi: 10.1016/j.trip.2020.100121.
9. EASA . (2020). vol. 1. European Union Aviation Safety Agency; 2020. pp. 1–28. (COVID-19 Aviation Health Safety Protocol).
10. EC . (2008). Regulation (EC) No 300/2008 of the European Parliament and of the Council of 11 March 2008 on Common Rules in the Field of Civil Aviation Security and Repealing Regulation (EC) No 2320/2002. (Text with EEA relevance)
11. Eilon S., Mathewson S. (1973). A simulation study for the design of an air terminal building. *IEEE Trans on Sys. Man and Cybernetics.* 1973;3(4):308–317.
12. EU . 2015. Commission Implementing Regulation (EU) 2015/1998 of 5 November 2015 Laying Down Detailed Measures for the Implementation of the Common Basic Standards on Aviation Security.
13. Fan, Yi., Chen, J., Shirkey, G., John, R., Wu, S. R., Park, H., & Shao, C. (2016). Application of Structural Equation Modeling (SEM) in Ecological Studies: An Updated Review, *Ecological Process*, Vol. 5 (19), 1-12.
14. Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012). The Use of Partial Least Squares Structural Equation Modeling in Strategic Management Research: A Review of Past Practices and Recommendations for Future Applications. *Long Range Planning, 45*(5–6), 320–340. http://doi.org/10.1016/j.lrp.2012.09.008
15. Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2014). *A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM).* Thousand Oaks: SAGE Publications.
16. Hsu C., Chao C., Shih K. (2012). Dynamic allocation of check-in facilities and dynamic assignment of passengers at air terminals. *Comput. Ind. Eng.* 2012;63:410–417.
17. ICAO . (2020). Covid19 Airport Status. https://www.icao.int/safety/Pages/COVID-19-Airport-Status.aspx. Accessed on October, 12, 2020.
18. Jim H., Chang Z. (1998). An airport passenger terminal simulator: a planning and design tool. *Simulat. Pract. Theor.* 1998;6(4):387–396.
19. Kierzkwowski A., Kisiel (2015). Concept Reliability Model of the Passenger Service at the Wroclaw Airport Landside Area, Safety and Reliability of Complex Engineered Systems: *Proceedings of the 25th European Safety and Reliability Conference, ESREL 2015*; pp. 1599–1606.
20. Kierzkwowski A., Kisiel T. (2015). An Impact of the Operators and Passengers’ Behavior on the Airport’s Security Screening Reliability. Safety and Reliability: Methodology and
Applications – *Proceedings of the European Safety and Reliability Conference*; pp. 2345–2354.

21. Kierzkowski A., Kisiel T. (2015) Functional readiness of the security control system at an airport with single-report streams *Proceedings of the Tenth International Conference on Dependability and Complex Systems DepCoS-RELCOMEX*, June 29 – July 3, Brunów, Poland. Springer; 2015. 211–221.

22. Kobza J., Jacobson S. (1996). Addressing the dependency problem in access security system architecture design. *Risk Anal.* 1996;16:801–812.

23. Leone K., Liu R. (2003). Measures of effectiveness for passenger baggage security screening. Transportation research record. *J Transportation Res Board.* 2003:40–48, 1822.

24. Leone L. (2002). Security System Throughput Modeling. 36th Annual 2002 *International Carnahan Conference on Security Technology*, pp. 144–150.

25. Li Y., Gao X., Xu Z., Zhou X. (2018). Network-based queuing model for simulating passenger throughput at an airport security checkpoint. *J. Air Transport. Manag.* 2018;66:13–24.

26. Li, J., Weng, J., Shao, C., & Guo, H. (2016). Cluster-Based Logistic Regression Model for Holiday Travel Mode Choice. *Procedia Engineering*, Vol. 137, 729-737.

27. Smith E., Murphy J. (1968). Simulation of Passenger Flows in Pier Fingers *University of California*; Berkeley: 1968; pp. 1–121.

28. Van Boekhold J., Faghri A., Li M. (2014). Evaluating security screening checkpoints for domestic flights using a general microscopic simulation model. *J Transportation Security*. 2014;7(1):45–67.

29. Willaby, H.W., Costa, D.S.J., Burns, B.D., Maccann, C., & Roberts, R.D. (2015). Testing Complex Models with Small Sample Sizes: A Historical Overview and Empirical Demonstration of What Partial Least Squares (PLS) can offer. *Differential Psychology, Personality and Individual Differences*, Vol. 84, 73-75.

30. Wu P., Mengersen K. (2013). A review of models and model usage scenarios for an airport complex system. *Transport. Res. Part A.* 2013;47:124–140.