Metformin Activates AMP-activated Protein Kinase by Promoting Formation of the αβγ Heterotrimeric Complex*

Received for publication, August 12, 2014, and in revised form, December 15, 2014. Published, JBC Papers in Press, December 23, 2014. DOI 10.1074/jbc.M114.604421

Shumei Meng‡1, Jia Cao‡1, Qiyi He‡, Lishou Xiong‡, Evan Chang‡, Sally Radovick§, Fredric E. Wondisford‡, and Ling He‡2

From the Divisions of ‡Metabolism and §Endocrinology, Departments of Pediatrics, Physiology, and Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287

Metformin is the most widely prescribed oral anti-diabetic agent. Recently, we have shown that low metformin concentrations found in the portal vein suppress glucose production in hepatocytes through activation of AMPK. Moreover, low concentrations of metformin were found to activate AMPK by increasing the phosphorylation of AMPKα at Thr-172. However, the mechanism underlying the increase in AMPKα phosphorylation at Thr-172 and activation by metformin remains unknown. In the current study, we find that low concentrations of metformin promote the formation of the AMPK αβγ heterotrimeric complex, resulting in an increase in net phosphorylation of the AMPK α catalytic subunit at Thr-172 by augmenting phosphorylation by LKB1 and antagonizing dephosphorylation by PP2C.

Metformin has been used for nearly a century (1) and is now the most widely prescribed oral anti-diabetic agent for the treatment of type 2 diabetes. The major effect of metformin is to reduce hepatic glucose production (2, 3), making metformin an ideal drug for controlling fasting hyperglycemia. However, its mechanism of action remains partly understood. A previous study reported that metformin increases net phosphorylation of the AMP-activated protein kinase (AMPK)α catalytic α subunit at Thr-172, with subsequent activation of AMPK activity in primary hepatocytes (4). Metformin has also been documented to inhibit complex 1 of the mitochondrial respiratory chain, which results in an increase in the AMP/ATP or ADP/ATP ratio, leading to AMPK activation through the binding of either AMP or ADP to AMPK (5, 6).

We recently showed that low metformin concentrations found in the portal vein suppress gluconeogenic gene expression and glucose production in cultured hepatocytes through AMPK (7). AMPK plays a key role in regulating metabolism and maintaining cellular energy homeostasis (8–10). AMPK, a phylogenetically conserved serine/threonine kinase, exists as a heterotrimeric complex, consisting of the catalytic α subunit and regulatory β and γ subunits (10). Each subunit has multiple isoforms (α1, α2, β1, β2, γ1, γ2, γ3), and AMPK subunits are encoded by seven different genes. Phosphorylation of α subunits at Thr-172 by upstream kinases such as the tumor-suppressor liver kinase B1 (LKB1) is critical for the activation of enzyme activity (11, 12). In contrast, phosphorylation of the α subunits at Ser-485/497 by PKA reduces α subunit phosphorylation at Thr-172 and decreases AMPK enzyme activity (7, 13–15). The AMPK β subunit has no catalytic activity, but the C-terminal domain of the β subunit interacts with the α and γ subunits, suggesting that it may function as a scaffold between the regulatory γ subunit and catalytic α subunit to form the AMPK heterotrimeric complex (10). The γ subunits have four cystathionine-β-synthase (CBS) domains, which bind adenine nucleotides. An increase in the AMP/ATP or ADP/ATP ratio results in a change in nucleotide binding to γ subunit and an allosteric change in AMPK (16). The allosteric change leads to an increase in net phosphorylation of α subunit at Thr-172 and AMPK activation either by augmenting phosphorylation by an upstream kinase or preventing dephosphorylation by a protein phosphatase (17).

Expanding on metformin-mediated activation of AMPK by increasing α subunit phosphorylation at Thr-172 (4), hepatic knock-out of LKB1, an upstream kinase for AMPKα phosphorylation, abolishes the effect of metformin to suppress hepatic glucose production (18). Activation of AMPK by metformin increases CBP phosphorylation at Ser-436 resulting in the disassembly of the CREB co-activator complex, inhibition of gluconeogenic gene expression and a reduction of glucose production (19). Numerous studies have confirmed that metformin inhibits mRNA or protein levels of the rate-limiting gluconeogenic gene expression in the liver of mice and in primary hepatocytes (7, 20–24). Accordingly, in a P300G422S knock-in mouse model that bears a reconstituted metformin phosphor...
Metformin Promotes Formation of AMPK Complex

ylation site found in CBP, we found that this mouse model exhibits exaggerated hypoglycemia in a metformin tolerance test (25). Furthermore, phosphorylation of CRTC2 by activated AMPK leads to nuclear exclusion and degradation of CRTC2 in the cytoplasm (26). In the current study, we tested whether metformin mediated activation of AMPK by increasing net phosphorylation of the α subunit through promoting the formation of the AMPK heterotrimeric complex.

EXPERIMENTAL PROCEDURES

Plasmids and Adenoviruses—The FLAG-tagged AMPKβ1 and γ1 expression vectors were generated by subcloning the gene of mouse AMPKβ1 and γ1 into the p3XFLAG-CMV-7.1 expression vector (Sigma). For generation of adenoviral expression vectors, the mouse AMPKα1, β1, and γ1 genes were cloned into a pENTR2B vector (Invitrogen) and transferred into the pAd/CMV/V5-DEST vector (Invitrogen) by recombination to generate expression clones (27, 28).

Cell Cultures—Lipofectamine 2000 (Invitrogen) was used to transfect equal amounts of plasmids into mouse hepatoma cell lines (Hepa1–6) (27). After 48 h of transfection, cells were harvested, and cell lysates were subjected to immunoblot.

Animal Experiments—All animal protocols were approved by the Institutional Animal Care and Use Committee of the Johns Hopkins University. C57 mice were purchased from the Jackson Laboratory. Mice were fed on high-fat diet (60% calories), and metformin was given to the mice in their drinking water for 2 weeks (50 mg/kg body weight) (7).

Glucose Production Assays—Mouse primary hepatocytes were cultured in William’s medium E supplemented with ITS (BD Biosciences) and dexamethasone. After 16 h of planting, cells were harvested and cell lysates were subjected to immunoblot.

To test the dose of LKB1 on the phosphorylation of AMPKα1, purified α1 was incubated with 80 μM metformin for 1 h at 4 °C in the absence or presence of 2-fold of β1 and γ1 subunits, then different amounts of LKB1-STRAD-MO25 (Millipore) were added, and the reactions were incubated at room temperature for 30 min. In the time course experiment, 5-μl aliquots from each group were transferred at the indicated time points, and the kinase was inactivated immediately by heating at 95 °C for 5 min. In the dephosphorylation assays, purified α1 was first phosphorylated by LKB1-STRAD-MO25, then LKB1 was depleted by immunoprecipitation using LKB1 antibody. In the dephosphorylation assays, phosphorylated AMPKα1 was incubated with metformin for 1 h at 4 °C in the presence or absence of 2-fold of γ1 and/or β1 subunits, then 75 ng of PP2C (Sigma) was added, and the reaction was incubated at 37 °C for 1 h.

Immunoblot—Immunoblots were conducted as previously described (27–29). Cell lysates were passed 15 times through a syringe needle or were sonicated for 15 s three times and immunoblotted to examine the target proteins with antibodies against AMPKα1, α2, β1, γ1 (abcam, Cell Signaling), and pAMPKα (Thr-172) (Cell Signaling) at the concentrations recommended by the manufacturers. Secondary antibodies were used at concentrations around 1:5000.

Statistical Analyses—Statistical significance was calculated with a Student’s t test and ANOVA test. Significance was accepted at the level of p < 0.05.

RESULTS

Heterogeneous Expression of AMPK Subunits in Different Tissues—Our recent study showed that low metformin concentrations suppress glucose production through the activation of AMPK (7). Indeed, low metformin concentration (80 μM) activated AMPK and suppressed glucose production in primary hepatocytes (Fig. 1, a and b). To explore further the effect of AMPK in this pathway, we determined the protein levels of the AMPK subunits in different mouse tissues. As shown in Fig. 1c, the expression patterns of AMPK subunits are quite different. There are comparable amounts of α subunits in cellular lysates from the heart, kidney, and liver. However, the amounts of β2 and γ1/2/3 subunits are quite different in the cellular lysates from these tissues (Fig. 1c).

To estimate the cellular ratio of endogenous AMPK subunits, we generated adenoviral vectors to express FLAG-tagged AMPKα1, β1, and γ1, because they account for over 90% of AMPK activity in hepatocytes (30, 31). Each of the AMPKα1, β1 and γ1 subunits could be expressed both in primary hepatocytes and Hepa1–6 cells (Fig. 2a). Next, we expressed FLAG-tagged AMPK subunits at their endogenous levels (Fig. 2b), and then the pooled samples containing expressed FLAG-tagged AMPK subunits were immunoblotted with anti-FLAG specific antibody (Fig. 2c). In addition, FLAG-tagged AMPK subunits were expressed at their endogenous levels along with increasing amounts of their protein levels, and their relative expression levels were examined using anti-FLAG antibody (Fig. 2d). Our data suggest that β1 subunit is much more abundant than α1 and γ1 subunits in Hepa1–6 cells (Fig. 2, c and d). To more
accurately assess their cellular protein ratio, we purified FLAG-tagged AMPK subunits (Fig. 3a). The purified FLAG-tagged AMPK subunits were not associated with detectable endogenous AMPK subunits (Fig. 3b, lower panel). We determined the amounts of purified FLAG-tagged α1, β1, and γ1 subunits that were needed to match the corresponding protein levels in 20 μg of cellular lysates from Hepa1–6 cells (Fig. 3c,d). Then, the same amounts of purified FLAG-tagged α1, β1, and γ1 subunits were added to primary hepatocytes (left panel) and Hepa1–6 (right panel). 48 h after incubation, cells were harvested, and cell lysates were subjected to immunoblot. b, FLAG-tagged AMPK subunits were expressed at their endogenous levels in Hepa1–6 cells. c, pooled samples (20 μg) of cell lysates from Hepa1–6 cells containing the expressed FLAG-tagged AMPKα1, β1 and γ1 in b were subjected to immunoblot using the anti-FLAG M2 antibody. d, FLAG-tagged AMPK subunits were expressed in Hepa1–6 cells with increasing amounts of their protein levels. Control denoted as "0" in each panel is the same cell lysate from Hepa1–6 cells without the addition of virus. In lane 2 of each panel, FLAG-tagged AMPK subunits were expressed at their endogenous levels. Equal amounts (20 μg) of cell lysates were loaded and immunoblotted with anti-FLAG M2 antibody. * nonspecific.
γ1 subunits that matched their endogenous protein levels in 20 μg of cellular lysates (Fig. 3d) were employed and immunoblotted with anti-FLAG antibody. As shown in Fig. 3, e and f, the α1β1γ1 subunits exist approximately in a 1:5:0.6 molar ratio in Hepa-1–6 cells based on densitometry measurements.

Next, we assessed the ratio of α1β1γ1 subunits in the liver. First, we determined the amounts of purified FLAG-tagged α1, β1, and γ1 subunits that were needed to match the corresponding protein levels in 20 μg of mouse hepatic lysates (Fig. 4a). Subsequently, the same amounts of purified FLAG-tagged α1, β1, and γ1 subunits were used and immunoblotted with anti-FLAG antibody (Fig. 4b). In good agreement with the results from Hepa-1–6 cells, we found that β1 subunit is much more abundantly than α1 and γ1 subunits in the liver. The α1β1γ1 subunits exist approximately in a 1:31:0.5 molar ratio (Fig. 4, b and c). To validate further these results, we used different commercial antibodies against α1, β1 subunits, and FLAG tag (Cell Signaling) and obtained similar results showing that there is ~32-fold higher β1 subunit protein levels than α1 subunit (data not shown).

Metformin Promoted the Formation of Endogenous AMPKαβγ Heterotrimeric Complex—The AMPK β subunit has no catalytic activity, but it interacts with both α and γ subunits, suggesting that it may function as a scaffold between the regulatory γ subunit and catalytic α subunit to form the AMPK heterotrimeric complex (10). Having seen the unequal endogenous expression of α1, β1, and γ1 protein levels (Figs. 3, e and f, and 4, b and c), we next asked whether metformin is able to affect the assembly of this AMPK heterotrimeric complex in hepatocytes. In untreated Hepa-1–6 cells, β1 and γ1 bound together, and the α subunits did not associate with β1 and γ1 subunits (Fig. 5a, left panel). In contrast, in metformin-treated Hepa-1–6 cells, immunoprecipitation with β1/2 antibodies depleted α subunits from the supernatant, and they were found in the pellet. Furthermore, phosphorylated α subunits (Thr-172) induced by metformin remained in a complex with β1 and γ1 subunits and was not found free in the supernatant (Fig. 5a, right panel). Metformin also increased the association of endogenous α with endogenous β and γ subunits in immunoprecipitation assays with antibodies against the β1/2 subunit (Fig. 5b). We observed increased association of endogenous α with endogenous β and γ subunits in Hepa-1–6 cells treated with metformin regardless of the assay conditions (Fig. 5, b and c). In addition, metformin administration in mice fed a high-fat diet for 2 weeks led to increased α subunit phosphorylation at Thr-172 as well as the association of α subunit with β subunit in the liver (Fig. 5d).

To test further whether metformin increases AMPKαβγ heterotrimeric complex formation, we overexpressed a FLAG-tagged AMPKα1 subunit in hepatocytes. Anti-FLAG antibody was used to immunoprecipitate protein from cell lysates after metformin treatment. Metformin (250 μM) not only increased phosphorylation of FLAG-tagged AMPKα1 at Thr-172 but also increased the association of endogenous β1 and γ1 subunits with FLAG-tagged AMPKα1 subunit (Fig. 6a). Unbound endogenous β1 and γ1 subunits from control vehicle-treated cells remained in the supernatant in the immunoprecipitation assay. In agreement with the notion that the β1 subunit is more...
abundant than the α1 and γ1 subunits (Figs. 3, e and f, and 4, b and c), we only observed a small decrease in β1 in the supernatant after metformin treatment and immunoprecipitation (Fig. 6a). Moreover, metformin also increased the association of endogenous α1 with FLAG-tagged β1; unbound α1 was therefore reduced in the supernatant after immunoprecipitation.
Metformin Promotes Formation of AMPK Complex

![Diagram](https://via.placeholder.com/150)

FIGURE 6. Metformin promoted the association of FLAG-tagged AMPK subunits with endogenous partners to form the heterotrimeric complex in hepatocytes. (a) and (b), 48 h after the addition of FLAG-tagged AMPKα1 (a) or β1 (b) adenovirus, Hepa1–6 cells were subjected to serum starvation for 90 min, and then 0.25 mM metformin was added. Cells were harvested 5 h later. Cell lysates were incubated with anti-FLAG M2 magnetic beads for 16 h at 4 °C. The supernatant and magnetic beads (pellet) were collected separately, and the magnetic beads were washed twice. (c) 48 h after the addition of adenoviral FLAG-tagged AMPKα1, the primary hepatocytes were treated with metformin at 40, 80 μM for 24 h.

(Fig. 6b). Lower concentrations of metformin had a similar effect on augmenting the association of endogenous β1 and γ1 subunits with FLAG-tagged α1 subunit in primary hepatocytes (Fig. 6c).

To probe further whether metformin affects the formation of the AMPK heterotrimeric complex directly or indirectly, we assembled the complex in vitro by combining 2-fold greater concentrations of purified β1 and γ1 subunits versus α1 subunit, treating the mixture with different concentrations of metformin for 1 h and then immunoprecipitating α1 using an anti-α1-specific antibody. Low concentrations of metformin did indeed increase association of α1 subunit with β1 and γ1 subunits (Fig. 7, a and b), suggesting that metformin directly promotes the formation of the AMPK heterotrimeric complex. Consistent with the role of β subunit in bridging α and γ subunits, β subunit is able to bind to α subunit without the presence of γ subunit (Fig. 7b). Interestingly, another biguanide agent phenformin did not affect the formation of the AMPK heterotrimeric complex (Fig. 7c). In addition, AMP and ADP had no effect on the formation of AMPK heterotrimeric complex (Fig. 7d) and did not augment metformin-mediated AMPK heterotrimeric complex formation (Fig. 7e). However, metformin did not change AMPKα1 enzymatic activity in the absence or presence of β1 and γ1 subunits (Fig. 7, f and g). Importantly, assembly of the AMPK complex in vitro by metformin was concentration-dependent, reaching a maximal effect at ~100 μM; higher concentrations (0.5 and 1.0 mM) of metformin did not promote AMPK complex assembly.

_Metformin Increased the Phosphorylation of AMPKα1 at Thr-172 by LKB1 in the Presence of β1 and γ1 Subunits—Activators of AMPK kinase, such as AMP, bind to the β or γ subunit and lead to an increase in net phosphorylation of Thr-172 on the α subunit. The increase in net phosphorylation has been attributed to either an increase in phosphorylation by an upstream kinase or a decrease in dephosphorylation by a protein phosphatase (32, 33). To assess the effect of the β and γ subunits on the α subunit phosphorylation at Thr-172, we over-expressed FLAG-tagged β1 and γ1 subunits in Hepa1–6 cells. Overexpression of FLAG-tagged β1 or γ1 subunit led to an increase in AMPKα phosphorylation at Thr-172, and overexpression of both plasmids further elevated net phosphorylation (Fig. 8a). Therefore, we tested in vitro whether both the β1 and γ1 subunits could affect the phosphorylation of α1 subunit by LKB1. As expected in this in vitro experiment, metformin alone was unable to stimulate phosphorylation of the α1 at Thr-172 even in the presence of the β1 and γ1 subunits (Fig. 8b). In contrast, after addition of LKB1-STRAD-MO25 (referred to as LKB1 kinase hereafter), phosphorylation of Thr-172 was observed and was much stronger in the presence of β1 and γ1 subunits (Fig. 8, b and c). In a time-course experiment, phosphorylation of the α1 subunit at Thr-172 was only seen in the presence of β1 and γ1 subunits (Fig. 8d). Higher concentrations of metformin did not affect AMPKα1 phosphorylation at Thr-172 by LKB1 kinase in the absence of the β1 and γ1 subunits (Fig. 8c). In comparison, Thr-172 phosphorylation of the α1 subunit by LKB1 kinase was maximal at 100 μM metformin in the presence of β1 and γ1 subunits and absent at higher concentrations of metformin (Fig. 8e). The phosphorylation of the α1 subunit at Thr-172 correlates well with the amount of β1 and γ1 subunits in the AMPKαβγ heterotrimeric complex (Figs. 7a, and 8, e and f). The γ1 subunit is required for metformin effect on Thr-172 phosphorylation of the α1 subunit by LKB1 kinase, because the metformin effect was lost when the γ1 subunit was absent in the reaction (Fig. 8g). We cannot exclude the possibility that high concentrations (0.5,
1 mM) of metformin might inhibit LKB1 activity directly, thereby decreasing phosphorylation of the α1 subunit at Thr-172 (Fig. 8e).

Metformin Decreased the Dephosphorylation of AMPKα1 at Thr-172 by Protein Phosphatase in the Presence of β1 and γ1 Subunits—To investigate further whether metformin has any effect on dephosphorylation of the α1 subunit at Thr-172, we used purified protein phosphatase 2C (PP2C), which has been shown to dephosphorylate the AMPKα1 subunit at Thr-172 in an in vitro assay (33, 34). In the absence of β1 and γ1 subunits, metformin had a minimal effect on preventing dephosphorylation of catalytic α1 subunit by PP2C (Fig. 9a). In contrast, at a low metformin concentration (≤100 μM), dephosphorylation of the catalytic α1 subunit by PP2C was blocked in the presence of β1 and γ1 subunits (Fig. 9b). The γ1 subunit is dispensable for the block of dephosphorylation of the catalytic α1 subunit by PP2C due to the fact that low metformin concentrations prevented α1 subunit dephosphorylation at Thr-172 by PP2C in the absence of γ1 subunit (Fig. 9c).

DISCUSSION

Our recent study showed that low metformin concentrations found in the portal vein suppress glucose production through the activation of AMPK in hepatocytes (7). AMPK is an energy-sensing enzyme that is highly conserved and present in virtually all eukaryotes (10, 35). It is activated when cellular energy levels are low, triggering a switch from ATP-consuming anabolic pathways to ATP-producing catabolic pathways by stimulating glucose uptake and utilization and fatty acid oxidation together with reduction of hepatic glucose production. Originally, when AMPK was purified from the liver of rats, it was revealed that AMPK was associated with two other proteins, leading to the discovery of the β1 and γ1 subunits. Thus, functional AMPK is a heterotrimeric complex comprised of an α catalytic subunit and βγ non-catalytic subunits (30, 31, 36, 37). It was suggested that AMPK α1β1γ1 or α2β1γ1 subunits exist approximately in a 1:1:1 molar ratio in the purified AMPK complex (30, 31). However, this ratio may not reflect the cellular protein ratio of AMPK subunits. Our results demonstrate, in fact, that the α1,
FIGURE 8. Increased association of AMPK β and γ subunits with the α subunit led to increased phosphorylation of AMPK α at Thr-172 by LKB1. a, 48 h after transfection with plasmids containing FLAG-tagged β1 and/or γ1, Hepa1–6 cells were harvested; cell lysates were subjected to immunoblots. b, phosphorylation of purified α1 subunit by LKB1 kinase in the absence/presence of purified FLAG-tagged β1 and γ1 subunits in an in vitro assay. c, different metformin concentrations had minimal effects on the phosphorylation of purified α1 subunit by LKB1 in the absence of purified β1 and γ1 subunits in an in vitro assay. d, phosphorylation of purified α1 subunit by LKB1 only occurred in the presence of purified β1 and γ1 subunits in the time course in vitro assay, in which α1 was incubated with 80 μM metformin with or without β1 and γ1 subunits for 1 h at 4 °C before the addition of LKB1. e, purified α1, β1 and γ1 subunits were incubated with different amounts of metformin for 1 h at 4 °C before the addition of 25 ng of LKB1 in an in vitro assay. f, densitometric analysis of purified β1 and γ1 subunits associated with purified α1 subunit in Fig. 7a and the phosphorylation levels of purified α1 subunit at Thr-172 in e, g, purified α1, β1, and γ1 or α1 and β1 subunits were incubated with 50, 100 μM metformin for 1 h at 4 °C before the addition of 25 ng of LKB1 in an in vitro assay.

FIGURE 9. Increased association of AMPK β and γ subunits with the α subunit prevented the dephosphorylation of AMPK α at Thr-172 by PP2C. a and b, effect of different concentrations of metformin on the dephosphorylation of purified phosphorylated α1 subunit by 75 ng of PP2C in the absence (a) and presence (b) of purified β1 and γ1 subunits. The α1-specific antibody was used to examine the purified FLAG-tagged α1; anti-FLAG M2 antibody was used to examine the FLAG-tagged β1 and γ1 subunits. c, metformin antagonized the dephosphorylation of purified phosphorylated α1 subunit by 75 ng of PP2C in the presence of purified β1 and γ1 subunits or β1 subunit.
β1, and γ1 subunits do not exist in a 1:1:1 molar ratio in Hepa1–6 cells and liver tissues as in the purified AMPK complex. The β1 subunit is much more abundant than the α1 and γ1 subunits (Figs. 2, c and d; 3, e and f; and 4, b and c), suggesting that there might be unbound AMPK subunits in hepatocytes.

In this respect, we tested whether metformin has any effect on the formation of the AMPK heterotrimeric complex. Indeed, metformin promoted the formation of the AMPK heterotrimeric complex, which has been proved in three ways. First, metformin increased the association of endogenous α subunits with endogenous β and γ subunits (Figs. 5, a and b); similar results were also obtained using a different cell lysis buffer (Fig. 5, b and c). Importantly, metformin administration in mice fed a high-fat diet led to increased association of α subunits with endogenous β and γ subunits in the liver (Fig. 5d).

Second, metformin augmented the association of β and γ subunits with FLAG-tagged α1 subunit in Hepa1–6 cells and primary hepatocytes, respectively (Fig. 6, a and c). Furthermore, metformin increased the association of the α1 subunit with FLAG-tagged β1 subunit (Fig. 6b). Phosphorylated α subunit (Thr-172) existed only in the complex (Figs. 5a and 6). Finally, metformin increased the association of FLAG-tagged α1 subunit with FLAG-tagged β and γ subunits in in vitro assays (Fig. 7, a, b, d, e), demonstrating that metformin binds directly to AMPK subunit to increase the formation of the AMPK heterotrimeric complex. Since β and γ subunits bind together in resting Hepa1–6 cells (Fig. 5a, left panel) and in hepatocytes without treatment (Figs. 5, b—d and 6), these data demonstrate that β and γ subunits appear to be preassembled before their association with α1 subunit. Interestingly, phenformin had no effect on the formation of the AMPK heterotrimeric complex (Fig. 7c), indicating that phenformin activates AMPK and suppresses hepatic glucose production through a potentially different mechanism.

Since the upstream AMPK kinase-LKB1 is in a constitutively active state (11), this indicates that metformin-mediated activation of AMPK occurs at AMPK complex. In light of this, metformin has been documented to activate AMPK by increasing α subunit phosphorylation at Thr-172 (4, 19, 32). We determined the importance of metformin-mediated formation of the AMPK heterotrimeric complex in the phosphorylation of α1 at Thr-172 by LKB1. Our results showed that low metformin concentrations drastically increased the phosphorylation of α1 subunit by LKB1. This occurred only in the presence of both β and γ subunits (compare Fig. 8, c, e, and g). In addition, we observed a pronounced increase in α1 phosphorylation at Thr-172 by LKB1 only in the presence of β and γ subunits during a time course experiment in which the same amounts of metformin and LKB1 were employed (Fig. 8d). Furthermore, metformin reduced the dephosphorylation of the α subunit at Thr-172 by protein phosphatase PP2C only in the presence of β and γ subunits, especially in the presence of β subunit (Fig. 9). It appears that γ subunit is not necessary for protecting against PP2C-mediated dephosphorylation of the α subunit at Thr-172 by metformin. Interestingly, high metformin concentrations (≥500 μM) did not promote the formation of the AMPK heterotrimeric complex (Fig. 7a) and did not increase α1 phosphorylation at Thr-172 by LKB1 even in the presence of β and γ subunits (Fig. 8e). This may be due to the fact that promiscuous binding of metformin to AMPK subunits at higher concentrations may interfere with the association of AMPK subunits because the -NH groups in metformin are able to form hydrogen bonds with amino acid residues in these subunits. Even though we found that low metformin concentrations suppress hepatic glucose production through the activation of AMPK, some metformin effects are reported to be AMPK-independent such as inhibition of mTORC1 activity (38).

In summary, we elucidate here the novel finding that metformin promotes the formation of the AMPK heterotrimeric complex, which leads to the activation of AMPK by increasing the net phosphorylation of AMPKα at Thr-172 through augmenting phosphorylation by LKB1 and antagonizing dephosphorylation by PP2C. Importantly, this occurred at low metformin concentrations (25–100 μM). We present data showing that metformin promotes the formation of the AMPK complex, but the binding site(s) of metformin on AMPK subunits still needs to be characterized.

REFERENCES

1. Witters, L. A. (2001) The blooming of the French lilac. J. Clin. Invest. 108, 1105–1107
2. Hundal, R. S., Krssak, M., Dufour, S., Laurent, D., Lebon, V., Chandramouli, V., Inzucchi, S. E., Schumann, W. C., Petersen, K. F., Landau, B. R., and Shulman, G. I. (2000) Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49, 2063–2069
3. Takashima, M., Ogawa, W., Hayashi, K., Inoue, H., Kinoshita, S., Okamoto, Y., Sakae, H., Wataoka, Y., Emi, A., Senga, Y., Matsuki, Y., Watanabe, E., Hiramatsu, R., and Kasuga, M. (2010) Role of KLF15 in regulation of hepatic glycogenesis and metformin action. Diabetes 59, 1608–1615
4. Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doeblinger, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J., and Moller, D. E. (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174
5. Owen M. R., Doran E., and Halestrap A. P. (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614
6. El-Mir, M. Y., Nogueira, V., Fontaine, E., Avéret, N., Rigoulet, M., and Leverve, X. (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223–228
7. Cao, J., Meng, S., Chang, E., Beckwith-Fickas, K., Xiong, L., Cole R. N., Radovick, S., Wondisford, F. E., and He, L. (2014) Low concentrations of metformin suppress glucose production in hepatocytes through AMPK. J. Biol. Chem. 289, 20435–20446
8. Ha, J., Daniel, S., Broyles, S. S., Kim, K. H. (1994) Critical phosphorylation sites for acetyl-CoA carboxylase activity. J. Biol. Chem. 269, 22162–22168
9. Dyck, J. R. B., Kudo, N., Barr, A. J., Davies, S. P., Hardie, D. G., and Lopaschuk, G. D. (1999) Phosphorylation control of cardiac acetyl-CoA carboxylase by AMP-dependent protein kinase and 5′-AMP activated protein kinase. Eur. J. Biochem. 262, 184–190
10. Hardie, D. G., Ross, F. A., and Hawley, S. A. (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262
11. Lizzano, J. M., Göransson, O., Toth, R., Deak, M., Morrice, N. A., Boudreau, J., Hawley, S. A., Udd, L., Mäkelä, T. P., Hardie, D. G., Alessi, D. R. (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23, 833–843
12. Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M., Carling, D. (2003) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008
Metformin Promotes Formation of AMPK Complex

13. Djouder, N., Tuerk, R. D., Suter, M., Salvioni, P., Thali, R. F., Scholz, R., Vahtomeri, K., Auchi, Y., Rechsteiner, H., Brunisholz, R. A., Viollet, B., Mäkelä, T. P., Wallimann, T., Neumann, D., and Krek, W. (2010) PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. EMBO J. 29, 469–481

14. Hurley, R. L., Barré, L. K., Wood, S. D., Anderson, K. A., Kemp, B. E., Means, A. R., and Witters, L. A. (2006) Regulation of AMP-activated protein kinase by multisite phosphorylation in response to agents that elevate cellular cAMP. J. Biol. Chem. 281, 36662–36672

15. Ning, J., Xi, G., and Clemmons, D. R. (2011) Suppression of AMPK activation via S485 phosphorylation by IGF-I during hyperglycemia is mediated by AKT activation in vascular smooth muscle cells. Endocrinology 152, 3143–3154

16. Xiao, B., Heath, R., Saiu, P., Leiper, F. C., Leone, P., Jing, C., Walker, P. A., Haire, L., Eccleston, J. F., Davis, C. T., Martin, S. R., Carling, D., and Gamblin, S. J. (2007) Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496–500

17. Davies, S. P., Helps, N. R., Cohen, P. T., Hardie, D. G. (1995) 5’-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2Cα and native bovine protein phosphatase-2AC. FEBS Lett. 377, 421–425

18. Shaw R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., and Cantley, L. C. (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646

19. He, L., Sabet, A., Djedjos, S., Miller, R., Sun, X., Hussain, M. A., Radovick, S., Wondisford, F. E. (2009) Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137, 635–646

20. Martin-Montalvo, A., Mercken, E. M., Mitchel, S. J., Palacios, H. H., Mote, P. L., Scheibye-Knudsen, M., Gomes, A. P., Ward, T. M., Minor, R. K., Blouin, M. J., Schwab, M., Pollak, M., Zhang, Y., Yu, Y., Becker, K. G., Bohr, V. A., Ingram, D. K., Sinclair, D. A., Wolf, N. S., Spindler, S. R., Bernier, M., and de Cabo, R. (2013) Metformin improves healthspan and lifespan in mice. Nat. Comm. 4, 1–7

21. Heishi, M., Hayashi, K., Ichihara, J., Ishikawa, H., Kawamura, T., Kanaoka, M., Taiji, M., Kimura, T. (2008) Comparison of gene expression changes induced by biguanides in db/db mice liver. J. Toxicol. Sci. 33, 339–347

22. Aatsinki, S. M., Buler, M., Salomäki, H., Koulu, M., Pavek, P., Hakkola, J. (2014) Metformin induces PGC-1α expression and selectively affects hepatic PGC-1α functions. Br. J. Pharmacol. 171, 2351–2363

23. Kim, Y. D., Li, T., Ahn, S. W., Kim, D. K., Lee, J. M., Hwang, S. L., Kim, Y. H., Lee, C. H., Lee, I. K., Chiang, J. Y., Choi, H. S. (2012) Orphan nuclear receptor small heterodimer partner negatively regulates growth hormone-mediated induction of hepatic gluconeogenesis through inhibition of signal transducer and activator of transcription 5 (STAT5) transactivation. J. Biol. Chem. 287, 37098–37108

24. Cheng, J. T., Huang, C. C., Liu, I. M., Tzeng, T. F., Chang, C. J. (2006) Novel mechanism for plasma glucose-lowering action of metformin in streptozocin-induced diabetic rats. Diabetes 55, 819–825

25. He, L., Meng, S., Germain-Lee, E. L., Radovick, S., Wondisford, F. E. (2014) Potential biomarker of metformin action. J. Endocrinol. 221, 363–369

26. Koo, S. H., Flechner, L., Qi, L., Zhang, X., Screaton, R. A., Jeffries, S., Hedrick, S., Xu, W., Boussouar, F., Brindle, P., Takemori, H., and Montminy, M. (2005) The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109–1111

27. He, L., Naik, K., Meng, S., Cao, J., Sidhaye, A. R., Ma, A., Radovick, S., and Wondisford F. E. (2012) Transcriptional co-activator p300 maintains basal hepatic gluconeogenesis. J. Biol. Chem. 287, 32069–32077

28. Wondisford, A. R., Xiong, L., Chang, E., Meng, S., Meyers, D. J., Li, M., Cole, P. A., He, L. (2014) Control of Foxo1 gene expression by co-activator p300. J. Biol. Chem. 289, 4326–4333

29. He, L., Cao, J., Meng, S., Ma, A., Radovick, S., and Wondisford, F. E. (2013) Activation of basal gluconeogenesis by co-activator p300 maintains hepatic glycogen storage. Mol. Endo. 27, 1322–1332

30. Davies, S. P., Hawley, S. A., Woods, A., Carling, D., Haystead, T. A. J., and Hardie, D. G. (1994) Purification of the AMP-activated protein kinase on ATP-γ-S-phenylalanine and analysis of its subunit structure. Eur. J. Biochem. 223, 351–357

31. Stapleton, D., Mitchell, K., Gao, G., Widmer, J., Michell, B., Teh, T., House, C. M., Fernandez, C. S., Cox, T., Witters, L. A., and Kemp, B. E. (1996) Mammalian AMP-activated protein kinase subfamily. J. Biol. Chem. 271, 611–614

32. Hawley, S. A., Gadalla, A. E., Olsen, G. S., Hardie, D. G. (2002) The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51, 2420–2425

33. Merrill, G. F., Kurth, E. J., Hardie, D. G., and Winder, W. W. (1997) AICA riboside increases AMP-activated protein kinase activity, fatty acid oxidation, and glucose uptake in rat muscle. Am. J. Physiol. 273, E1107–E1112

34. Sanders, M. J., Grondin, P. O., Hegarty, B. D., Snowden, M. A., and Carling, D. (2007) Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J. 403, 139–148

35. Hardie, D. G., Carling, D., and Gamblin, S. J. (2011) AMP-activated protein kinase: also regulated by ADP? Trends Biochem. Sci. 36, 470–477

36. Mitchell, K. I., Stapleton, D., Gao, G., House, C., Michell, B., Katsis, F., Witters, L. A., and Kemp, B. E. (1994) Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J. Biol. Chem. 269, 2361–2364

37. Kapeller, A., Selvaraj, A., Kim, S. Y., Gulati, P., Brulé, S., Viollet, B., Kemp, B. E., Bardeesy, N., Dennis, P., Schlager, J. J., Marette, A., Koza, S. C., and Thomas, G. (2010) Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 11, 390–401