An Expert Elicitation Analysis for Vessel Allision Risk Near the Offshore Wind Farm by Using Fuzzy Rule-Based Bayesian Network

Q. Yu & K. Liu
Wuhan University of Technology, Wuhan, China

ABSTRACT: This paper develops an expert based framework for analysing and synthesising the ship allision risk near the offshore wind farm (OWF) on the basis of a generic Fuzzy Bayesian network and FMEA analysis. This framework is specifically intended to overcome the difficulty of using traditional risk assessment methods in OWF allision. Under the introduced framework, subjective belief degrees are assigned to model the incompleteness encountered in establishing the knowledge base. The fuzzy transformation technology is then used to introduce all judgements results under various situations. Fully, a Bayesian network is established to aggregate all relevant attributes to the conclusion and to prioritise potential allision risk level of each ship categories. A series of case studies of different ship categories are studied to illustrate the application of the proposed framework. Results show that the fishing vessel and the service vessel have a higher allision risk than the merchant vessel due to insufficient risk detection. The collision consequence of the tanker is significantly higher than other types of vessel. The framework facilitates subjective risk assessment when historical failure data is not available in their practice, which provides support to OWF-safeguarding and decision-making.

1 INTRODUCTION

Wind energy is an environment-friendly and sustainable energy. To develop this burgeoning industry for electrical generation, many countries have developed large numbers of offshore wind farms (OWFs) near the coastal area. As a type of human installation, the OWF leads to a potential collision risk when vessels are passing the OWF area, it is the main issue amongst the OWF impacts to navigation [1]. Current research works have presented a general understanding knowledge of OWF impacts to navigation. For example, several studies used the vessel Automatic Identification System database to assess OWFs influence on the vessel traffic in the Thames Estuary, the Penghu waterway and the south coast of Busan [2][3][4]. According to past research works of vessel traffic flow studies, vessels under different categories may conduct different collision probabilities [5][6][7]. Although there are several issues have been discussed amount these research works, the lack of a conceptual framework of evaluating the ship allision risk, the discussion about OWF impacts on collision probabilities under different ship categories and discussion of the consequence of ship allision are too general. These drawbacks were raised when applying traditional risk analyses in OWF safety study due to following reasons, the accident records for vessel collided with OWF turbines are rare and hard to acquire; understanding of allision mechanism of OWFs still uncompleted [8]. Therefore, this paper introduces a Bayesian Network (BN) model to analyse the vessel collision risk near the OWF area. On the basis of the failure mode and effects analysis (FMEA), the BN model is established to provide a general risk
analysis framework. An expert-based consulting board is constructed to judge the vessel allision risk under different categories based on expert’s knowledge. To improve the accuracy of transforming the belief degree assignments of the vessel allision risk in the vicinity of the OWF. A fuzzy transforming technology is used to transform the expert judgement of each attendance attribute into the conditional probabilities to link the risk factors. The developed BN model is then implemented to prioritise the vessel allision risk under different categories, which extend the understanding of the OWF impacts to navigation environment.

The paper is presented as follows: Section 2 introduces the methodology of developing a hybrid risk model based on FMEA. In section 3, the proposed model is implemented to deal with a subjective database to evaluate the allision risk of different vessel categories. Section 4 gives a discussion of the study result and conclusion from this study is drawn in Section 5.

2 METHODOLOGY

In this section, a rule-based BN model on the basis of the FMEA is introduced. The FMEA is one of the earliest risk analysis method, it was widely used in dealing with the potential risks that can lead to mechanical failures or engineering accidents [9]–[11]. The risk structure of FMEA consists with three factors that include the probability of accident occurred \(L \), the consequence severity of the accident \(C \) and the likelihood ranking of potential risks are detected before it happens \(P \). The kernel of this approach is to introduce reliable database and transform the database into the conclusion by using the risk priority number \(RPN \), then the \(L, C \) and \(P \) are aggregated to conclude the risk priority of the scenarios. [12][13]. However, when applying the method in the OWF area, the accuracy and the reliability of the FMEA approach is limited due to the insufficient database both of accident records or judgements. Therefore, a fuzzy rule-based BN and a transforming framework are developed to help experts to provide more precise judgements and to transform the judgements into marginal probabilities [14]. Then the BN can be used to aggregate all risk factors into conclusion.

2.1 Fuzzy mapping and transforming

When applying the expert elicitation, experts may express their judgement in different ways. This requires a method to integrate the judgement results under various form into a consistent way before introducing to the risk analysis model [9]. We used the fuzzy mapping approach to normalise the expert judgement and to aggregate the data. On the basis of the FMEA approach, three risk factors of \(L, C \) and \(P \) are described using the linguistic variables associated with the antecedent attributes. Refer to the literature survey, the linguistic variables used to estimate \(L, C \) and \(P \) are defined as follows: the \(L \) is defined with five linguistic grades as \(L = \) very low, \(L = \) low, \(L = \) average, \(L = \) frequent and \(L = \) very frequent; the \(C \) is defined as \(C = \) negligible, \(C = \) marginal, \(C = \) moderate, \(C = \) critical and \(C = \) catastrophic; the \(P \) is described as \(P = \) unlikely, \(P = \) reasonable unlikely, \(L = \) likely, \(L = \) reasable likely and \(L = \) definite \) [14]. To transform the expert judgement into the belief degree of linguistic terms, the fuzzy mapping function is used and the membership function of each linguistic variables is defined with an equal interval as \(L = C = P = 0.1, \ L = C = P = 0.3, \ L = C = P = 0.5, \ L = C = P = 0.7, \ L = C = P = 0.9 \). Three examples of transforming the expert judgements under different forms are given as followings. For the shape of trapezoidal, antecedent attributes are given with the format of the lowest possible number \(lp \), the lowest belief number \(lb \), the highest belief number \(hb \) and the highest possible number \(hp \), which as \((lp, lb, hb, hp) \).

![Figure 1. Fuzzy mapping for the shape of the trapezoidal format](image)

The Figure 1 graphically shows the transforming function for the judgement \(J = (lp=0.15, lb=0.45, \ hb=0.55, \ hp=0.95) \) gives by an expert. The \(J \) can be transformed into the fuzzy mapping distribution set \(D \) including each linguistic term \(S \), and the \(D = (S_1=0, S_2=0.5, S_3=1, S_4=0.625, S_5=0.125) \). Normalising the \(D \), the belief degree distribution \(Q \) of each \(S \) is computed as \(Q = (0, 0.22, 0.44, 0.57, 0.28, 0.06) \).

![Figure 2 Fuzzy mapping for the shape of the triangular format](image)

A judgement used the triangular format can be transformed as shown in Figure 2. The judgement expresses with three parameters: the lowest possible number \(lp \), the average possible number \(ap \) and the highest possible number \(hp \), show as \((lp, ap, hp) \). Gives a \(J = (lp=0.15, ap=0.45, hp=0.95) \), the \(D \) is calculated as \((S_1=0, S_2=0.5, S_3=0.9, S_4=0.5, S_5=0.1) \) and then the \(Q \) = \((S_1=0, S_2=0.25, S_3=0.45, S_4=0.25, S_5=0.05) \).
where β_h^s ($n=1, 2, 3, 4, 5$) is the belief degree to which the R^s is believed to be the consequence for the hth rule with the combination of their parent nodes are stated as P, C_i and L_j. To simplify the CPT for the allision risk, the equivalence principle is used to construct the rule base set, which is given as followings:

- **BR1**: IF P, and C_1 and L_1, THEN $R^1 = \{(1, R_1), (0, R_2), (0, R_3)\}$
- **BR2**: IF P, and C_1 and L_2, THEN $R^2 = \{(0.67, R_1), (0.33, R_2), (0, R_3)\}$
- **BR3**: IF P, and C_1 and L_3 THEN $R^3 = \{(0, R_1), (0, R_2), (0, R_3)\}$
- **BR4**: IF P, and C_1 and L_4, THEN $R^4 = \{(0, R_1), (0, R_2), (0.33, R_3)\}$
- **BR5**: IF P, and C_1 and L_5, THEN $R^5 = \{(0, R_1), (0.67, R_2), (0, R_3)\}$

The above set of rule base is established and then used to construct the CPT, which shows as Table 1.

2.3 Safety level prioritisation

In order to rank the safety level of the results, a novel of functions is assigned to calculate the belief degree distribution and the preference number PN of each state in L, C and P are defined with the range from 1 to 9. The preference number for nodes are assigned as $PN(L_1) = PN(C_1) = PN(P) = 9$, $PN(L_2) = PN(C_2) = PN(P) = 7$, $PN(L_3) = PN(C_3) = PN(P) = 5$, $PN(L_4) = PN(C_4) = PN(P) = 3$ and $PN(L_5) = PN(C_5) = PN(P) = 1$. Then a risk priority function is given as followings:

- $PN(R_i = poor) = PN(L_i) \times PN(C_i) \times PN(P) = 1 \times 1 \times 1 = 1$
- $PN(R_i = fair) = PN(L_i) \times PN(C_i) \times PN(P) = 3 \times 3 \times 3 = 27$
- $PN(R_i = average) = PN(L_i) \times PN(C_i) \times PN(P) = 5 \times 5 \times 5 = 125$
- $PN(R_i = Good) = PN(L_i) \times PN(C_i) \times PN(P) = 7 \times 7 \times 7 = 343$
- $PN(R_i = excellent) = PN(L_i) \times PN(C_i) \times PN(P) = 9 \times 9 \times 9 = 729$

According to the fuzzy mapping function, a single deterministic judgement can be transformed according to the mean maximum method. It graphically as Figure 3: if $f = 0.45$, then $D = Q = (S_1 = 0, S_2 = 0.25, S_3 = 0.75, S_4 = 0, S_5 = 0)$.

2.2 Development of rule bases for Bayesian structures in FMEA

In the FMEA, the allision risk for vessel near the OWF is influenced by three factors as the probability of allision (L), consequence severity (C) and the chance of allision risk be detected (P). The FMEA based BN structure is shown in Figure 4.

To linked each node in the BN, the IF-THEN rule is used to develop the conditional probability table (CPT) between parent nodes of P, L and C with the final node of allision risk [14]. A set of belief rules BRs consist of the IF-THEN rule with a belief structure that applying in FMEA can be expressed as:

- **BRs**: IF P, and C and L_i, THEN $R^h = \{(\beta_i^h, R_1), (\beta_i^h, R_2), (\beta_i^h, R_3), (\beta_i^h, R_4), (\beta_i^h, R_5)\}$, where $(i, j, k = 1, 2, 3, 4, 5, h=1, 2, ..., 125)$.

Figure 4 BN for the vessel allision risk in FMEA

Figure 3. Fuzzy mapping for the shape of the single deterministic format
and

$$SL = \sum_{m=1}^{5} \beta(R_m) \times PN(R_m)$$

(1)

where the SL means the safety level index. A higher safety level means low risk of allision, the opposite result means a high risk of vessel allision.

3 IMPLICATION AND DISCUSSION

The above introduced methods are used to investigate the vessel allision risk near the OWF under different categories. According to the categories given in AIS records, vessels are grouped as ‘the fishing vessel’, ‘the service vessel’, ‘the tanker’, ‘the general cargo vessel’ and ‘the passenger vessel’. A group of three experts from different background are invited to provide a subjective evaluation of the allision risk of every vessel type. To test the transformation technology introduced in section 2.1, the experts are asked to give their judgement under a different format. The judgement result set is presented as Table 2.

By using the fuzzy transformation technology, judgement results can be transformed into the CPT for L, P and C, which given as Table 3, Table 4 and Table 5.
When introducing the CPTs into the BN model, the conclusion of each vessel categories can be generated and presented as a format of the posterior probability distribution. For instance, the allision risk for fishing vessel is distributed as (0.13 (poor), 0.46 (fair), 0.18 (average), 0.15 (good), 0.09 (excellent)), which is graphical given in Figure 5.

In the similar way, results for other four vessel categories are ‘service vessel = (0.33 (poor), 0.04 (fair), 0.28 (average), 0.22 (good), 0.13 (excellent))’, ‘tanker = (0.15 (poor), 0.17 (fair), 0.02 (average), 0.19 (good), 0.47 (excellent))’, ‘general cargo vessel = (0.01 (poor), 0.24 (fair), 0.08 (average), 0.15 (good), 0.52 (excellent))’, ‘passenger vessel = (0.07 (poor), 0.26 (fair), 0.29 (average), 0.26 (good), 0.12 (excellent))’, see Figure 6.

The functions introduced in section 2.3 are used to prioritise the vessel allision risk on different categories based on the distribution result. For example, the SL for the type of fishing vessel is calculated as followings:

\[SL_{fish} = 0.13 \times 1 + 0.46 \times 27 + 0.18 \times 125 + 0.15 \times 343 + 0.09 \times 729 = 152.11 \]

Similar computations are performed for other four vessel categories in the study, which are

\[SL_{service} = 204.49, \quad SL_{tanker} = 417.91, \quad SL_{general} = 445.25, \quad SL_{passenger} = 219.48 \]

Consequently, the allision risk of each vessel category are ranked as ‘fishing vessel’ > ‘service vessel’ > ‘passenger vessel’ > ‘tanker’ > ‘general cargo vessel’. The ranking result indicates the type of fishing vessels requires more attention to control the allision risk than other vessel categories. The belief degree distribution for \(L, C \) and \(P \) on the fishing vessel can present more information. The Figure 5 shows although the fishing vessel has a low collision consequence, but fishing vessels has a higher probability of allision and low probability of risk detection before allision. Consulting the experts, this state is explained as two main reasons. In the study OWF area, many fishing vessels takes a fishing operation inside the OWF area, which is very close to the turbine structures and facilities. It leads to a very high collision risk if fishing vessels loss their control due to the machine failure or bad weather occurred. Meanwhile, another reason is the ability of detecting the risk for the fishing vessel is insufficient, which may due to the insufficient training or lack of facilities, which all leading to a low the probability of detecting the collision risk.

Figure 5. Analysis result for the fishing vessel in BN

\[\text{835} \]
The sensitivity analysis is used to test the effect of P on the fishing vessel. We assume there is a security control option is implemented on the fishing vessel to improve the risk detection probability. The security control options include improving training, equipping with the collision warning system, etc. To take a sensitivity analysis, we first set the node vessel category as ’100% of the fishing vessel in the BN model. Then the belief degree of P is equivalently increased from 0.05 to 0.1, which means the detection probability for fishing vessel increasing from 100% of unlikely to 100% of definite. As a result (see Figure 7), the SL increased from 141.41 to 384.07, which shows a significant increase in safety level for this type of vessel. When belief degree of P less than 0.5, the influence degree of P to the conclusion is slight, which increased from 141.41 to 182.74. The influence degree of P to the safety level is significant when P larger than 0.5. It increased the safety level index from 182.74 to 384.07. Therefore, the result states that security control options can improve the safety level for vessels. It is necessary to ensure the belief degree of P for fishing vessels not smaller than 0.5, which mean not worse than the state as ‘likely’. However, this sensitivity analysis can be also used to test the influence of risk factors on other vessel categories, which is worth to analysis in the further study.

4 CONCLUSION

This paper introduced a fuzzy rule-based BN model based on FMEA analysis. In this model, the fuzzy mapping and the rule base technology are to transform the subjective judgement into conditional probabilities. Three belief factors are developed to model the relationship between the allision risk level associated with its risk attributes L, C and P that based on the FMEA analysis.

The proposed framework is then applied to analyse the vessel allision risk near the OWF under different categories. In order to facilitate the study, a group of three experts has been invited to give judgement under various format shapes. Through the fuzzy mapping and transforming technology, the judgement is then used to provide the conditional probability table for each risk factors of L, C and P in the BN model. A set of rule bases is given to link each risk factor to the conclusion of allision risk. The obtained posterior probability distributions under different vessel categories are then computed to priorities the safety level, and sensitivity analysis is implemented at last.

When applying this BN model in practice, the result shows the category of the fishing vessel has the highest allision risk than the other four types of vessels. Fishing vessels have a high probability of collision and a low chance of detecting the risk before allision. Meanwhile, the type of service vessel is ranked as the second and following with the passenger vessel, the tanker and the general cargo.
vessel. Influence degree of risk detection on the fishing vessel is analysed, the result shows that some security control options such as equipping the early warning system, providing safety training can reducing the vessel allision risk.

This paper discussed the probability of using a rule-based BN model to analyse the vessel allision risk near the OWF when using the expert judgement. An example of studying vessel allision risk is given to test the reliability of the model. However, there are some insufficiencies should be studied in further analyses. The example in this paper is simple and general. Enhancing the BN structure can significantly improve the usage of the BN model. Methods of mitigating the bias in the expert judgement are required, which not discussed in this paper. Other security control options can be tested and prioritised by using the BN model, which can provide support for risk prevention and safety control.

REFERENCE

[1] F. Biehl and E. Lehmann, “Collisions of ships with offshore BN models: Calculation and risk evaluation,” Offshore Wind Energy Res. Environ. Impacts, pp. 281–304, 2006.

[2] A. Rawson and E. Rogers, “Assessing the impacts to vessel traffic from offshore wind farms in the Thames Estuary,” Sci. Journals Marit. Univ. Szczecin-Zeszyty Nauk. Akad. Morskiej W Szczecinie, vol. 43, no. 115, pp. 99–107, 2015.

[3] S. Chang, K. Tseng, and S. Chang, “Assessing Navigational Risk of Offshore Wind Farm Development,” pp. 0–5, 2014.

[4] D. Ahn, S. C. Shin, S. Y. Kim, H. Kharoufi, and H. C. Kim, “Comparative evaluation of different offshore wind turbine installation vessels for Korean west-south wind farm,” Int. J. Nav. Archit. Ocean Eng., vol. 9, no. 1, pp. 45–54, 2017.

[5] R. A. Mehdi and J. U. Schröder-Hinrichs, “A theoretical risk management framework for vessels operating near offshore wind farms,” in MARE-WINT: New Materials and Reliability in Offshore Wind Turbine Technology, Springer, Cham, 2016, pp. 359–400.

[6] L. Dai, S. Ehlers, M. Kausand, and I. B. Utne, “Risk of collision between service vessels and offshore wind turbines,” Reliab. Eng. Syst. Saf., vol. 109, pp. 18–31, 2013.

[7] C. F. Christensen, L. W. Andersen, and P. H. Pedersen, “Ship collision risk for an offshore wind farm,” Struct. Saf., pp. 1–7, 2001.

[8] C. E. Presencia and M. Shafigee, “Risk analysis of maintenance ship collisions with offshore wind turbines,” Int. J. Sustain. Energy, vol. 37, no. 6, pp. 576–596, 2018.

[9] Z. Yang and J. Wang, “Use of fuzzy risk assessment in FMEA of offshore engineering systems,” Ocean Eng., vol. 95, pp. 195–204, 2015.

[10] H. Arabian-Hoseynabadi, H. Oraee, and P. J. Tavner, “Failure Modes and Effects Analysis (FMEA) for wind turbines,” Int. J. Electr. Power Energy Syst., vol. 32, no. 7, pp. 817–824, 2010.

[11] J. Kang, L. Sun, H. Sun, and C. Wu, “Risk assessment of floating offshore wind turbine based on correlation-FMEA,” Ocean Eng., vol. 129, no. 154, pp. 382–388, 2017.

[12] C. Daşgüzey, E. Göçmen, M. Narlı, and A. Kokangül, “Classical and fuzzy FMEA risk analysis in a sterilization unit,” Comput. Ind. Eng., vol. 101, pp. 286–294, 2016.

[13] R. Xin Nie, Z. Peng Tian, X. Kang Wang, J. Qiang Wang, and T. Li Wang, “Risk evaluation by FMEA of supercritical water gasification system using multi-granular linguistic distribution assessment,” Knowledge-Based Syst., no. January, 2018.

[14] Z. Yang, S. Bonsall, and J. Wang, “Fuzzy rule-based Bayesian reasoning approach for prioritization of failures in FMEA,” IEEE Trans. Rel., vol. 57, no. 3, pp. 517–528, 2008.