Packing Three Cubes in D-Dimensional Space

Zuzana Sedliačková 1,* and Peter Adamko 2**

1 Department of Applied Mathematics, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia
2 Department of Quantitative Methods and Economics Informatics, Faculty of Operation and Economics of Transport and Communications, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia; peter.adamko@fpedas.uniza.sk
* Correspondence: zuzana.sedliackova@fstoj.uniza.sk

Abstract: Denote \(V_n(d) \) the least number that every system of \(n \) cubes with total volume 1 in \(d \)-dimensional (Euclidean) space can be packed parallelly into some rectangular parallelepiped of volume \(V_n(d) \). New results \(V_3(5) \approx 1.802803792 \), \(V_3(7) \approx 2.05909680 \), \(V_3(9) \approx 2.21897778 \), \(V_3(10) \approx 2.27220126 \), \(V_3(11) \approx 2.31533581 \), \(V_3(12) \approx 2.35315527 \), \(V_3(13) \approx 2.38661963 \) can be found in the paper.

Keywords: packing of cubes; extreme

PACS: 52C17

1. Introduction

In 1966, L. Moser [1] raised the following problem: Determine the smallest number \(A \) so that any system of squares of total area 1 can be packed parallelly into some rectangle of area \(A \). This problem can also be found in [2–6]. The problem has been extended to higher dimensions and has been studied for a specific number of squares (cubes). To distinguish so that any system of squares of total area 1 can be packed parallelly into some rectangular parallelepiped of volume \(V_n(d) \). \(V(d) \) denotes the maximum of all \(V_n(d) \), \(n = 1, 2, 3, \ldots \).

Some results are known in 2-dimensional space. Kleitman and Krieger [7] proved that every finite system of squares with total area 1, can be packed into the rectangle with sides of lengths \(\frac{2}{\sqrt{3}} \) and \(\sqrt{2} \), so \(V(2) \leq \frac{4}{\sqrt{6}} \approx 1.632993162 \). After twenty years Novotný [8] showed that \(V_3(2) = 1.2277589 \) and \(V(2) \geq \frac{2 + \sqrt{3}}{\sqrt[3]{2}} > 1.244 \). The exact results are known also for \(n = 4, 5, 6, 7, 8 \), Novotný [9] proved \(V_4(2) = V_5(2) = \frac{2 + \sqrt{3}}{\sqrt[3]{2}} \) and in Novotný [10] proved \(V_6(2) = V_7(2) = V_8(2) = \frac{2 + \sqrt{3}}{\sqrt[3]{2}} \). The estimate of \(V(2) \) was improved by Novotný [11] \(V(2) < 1.53 \). Later, this result was improved by Hurgady [12] \(V(2) \leq \frac{2607}{2000} < 1.4 \).

In 3-dimensional space, the estimate of \(V(3) \) was gradually improved. Meir and Moser [13] proved \(V(3) \leq 4 \) and later Novotný [14] proved \(V(3) \leq 2.26 \). The exact results are known for \(n = 2, 3, 4, 5 \): Novotný [15] \(V_2(3) = \frac{2}{3} \), \(V_3(3) = 1.44009951 \), Novotný [16] \(V_4(3) = 1.5196303266 \), and in Novotný [14] proved \(V_5(3) = V_4(3) \).

The results for \(n = 3 \) and \(d = 4, 6, 8 \) are known too: \(V_3(4) = 1.63369662 \), Bálint and Adamko in [17]; \(V_3(6) = 1.94449161 \), Bálint and Adamko in [18]; \(V_3(8) = 2.14930699 \), Sedliačková in [19].

Adamko and Bálint proved \(\lim_{d \to \infty} V_n(d) = n \) for \(n = 5, 6, 7, \ldots \) in [20]. Theorem holds also for \(n = 2, 3, 4 \).
2. Main Results

The main part of this section is the proof of $V_3(5) \doteq 1.802803792$. We use the same method as [17,18]. At the end of the section, we offer (without proof) the values of $V_3(d)$ for $d \in \{7,9,10,11,12,13\}$.

Theorem 1. $V_3(5) \doteq 1.802803792$.

Outline of the proof

1. We show that there are only two important packing configurations. Their volumes are $W_1 = x^4(x + y + z)$ and $W_2 = x^3(x + y)(y + z)$, see Figure 1. Firstly, we need to find $\min \{W_1, W_2\}$ for each $\{x, y, z\}$. The maximum from $\min \{W_1, W_2\}$ is the final result, we denote it $\max \min \{W_1, W_2\}$;
2. Cubes with sides $x \doteq 0.946629932$, $y \doteq 0.690148624$, and $z \doteq 0.608279275$ have $W_1 = W_2 = 1.802803792$. We prove that this volume is sufficient for packing any three cubes with a total volume of 1 in dimension 5;
3. We obtain an estimation of the side size of the largest cube: $0.9445 \leq x \leq 0.9939$;
4. Using $1 = x^5 + y^5 + z^5$ and $1 > x \geq y \geq z > 0$, we obtain constraints $x^5 + y^5 \leq 1$ and $x^5 + 2y^5 \geq 1$;
5. $z = (1 - x^5 - y^5)^{1/5}$. Therefore, it is sufficient to work only with x and y. M is a region of $\{x, y\}$ bounded by constraints from steps 3 and 4. We obtain a curve C from $W_1 = W_2$, see Figure 2. Curve C divides the region M into continuous regions C_1 and C_2, see Figure 3;
6. We clarify:
 (a) $W_1(X) < W_2(X)$ holds for $X \in C_1$. Therefore, $\max \min \{W_1, W_2\} = \max W_1(X)$, $X \in C_1$;
 (b) $W_1(X) > W_2(X)$ holds for $X \in C_2$. Therefore, $\max \min \{W_1, W_2\} = \max W_2(X)$, $X \in C_2$;
7. We show that the asked maximum is on curve C;
 (a) We use critical points for region C_1;
 (b) We were unable to use critical points on the whole C_2, so we gradually numerically exclude subregions. We start with comparison of maximum of subregions and 1.8 (packing with $V_3(5) > 1.8$ exists).

Proof. Consider three cubes with edge lengths x, y, z in the 5-dimensional Euclidean space, where $1 > x \geq y \geq z > 0$ and the total volume $x^5 + y^5 + z^5 = 1$.

We are looking for the smallest volume of a parallelepiped containing all three cubes. Therefore, from several ways of packing, we can ignore the packing that leads in any circumstances to a larger volume.

Let X, Y, Z denote the cubes (sorted from the largest). We attach cubes X and Y to each other, for example, in the direction of the fifth dimension. Parallelepiped containing cubes X and Y has volume $x^4(x + y)$.

If we place the cube Z to the cube X in the direction of the fifth dimension, we receive volume $x^4(x + y + z)$. We obtain volume $x^3(x + y)(x + z)$ for other four directions.

If we place the cube Z to the cube Y in the direction of the fifth dimension, we receive again $x^4(x + y + z)$. We obtain (after appropriate shifting of the cube Y) volume $x^3(x + y)(y + z)$ for other four directions.

Because $x^3(x + y)(y + z) \leq x^3(x + y)(x + z)$, we can ignore packings that lead to the volume $x^3(x + y)(x + z)$.

If we start with cubes X and Z, or Z and Y, the same results are obtained.

Therefore, it is sufficient to consider only two cases of packing three cubes, see Figure 1a,b. In the first case, the volume $W_1 = x^4(x + y + z)$ is sufficient for packing, in the second case, the volume $W_2 = x^3(x + y)(y + z)$ is sufficient.
The function \(W = C \), \(2, 2046 \)

\[
\frac{y}{x} \leq \frac{y}{x} = 0.596398035.
\]

Let us consider only the case that \(y + z > x \). From \(y^5 + y^5 = 1 - x^5 \), we find
\[
y \leq \sqrt[5]{1 - x^5}, \text{ and, therefore, } y + z \leq 2y \leq 2\sqrt[5]{1 - x^5}. \text{ Then, } x < y + z \leq 2\sqrt[5]{1 - x^5} \text{ and, therefore, } x^5 < 2\sqrt[5]{1 - x^5}.
\]

We attain the upper bound for \(x, x \leq \frac{2}{\sqrt[5]{3}} \). \(x \geq y \geq z \) and \(x^5 + y^5 + z^5 = 1 \), therefore, \(x^5 \geq \frac{1}{2} \) and \(x \geq \frac{1}{\sqrt[5]{3}} \). This implies that we can consider only \(x \in \left[\frac{1}{\sqrt[5]{3}}, \frac{2}{\sqrt[5]{3}} \right] \), i.e., \(0.8027 \leq x \leq 0.9939 \).

Equality \(W_1 = W_2 \) holds if, and only if, \(x^2 = y^2 + yz \). In this case, \(z = \frac{x^2 - y^2}{y} \) and \(W_1 = W_2 = x^5 + \frac{x^6}{y} \). When we substitute \(z = \frac{x^2 - y^2}{y} \) into \(x^5 + y^5 + z^5 = 1 \), we find the curve \(C: x^5y^5 + y^{10} - y^5 + (x^2 - y^2)^5 = 0 \) (Figure 2).

The interval for \(x \) can be reduced. If we choose \(x \in [a, b], 0 < a < b < 1 \), then \(1 - b^5 \leq 1 - x^5 \leq 1 - a^5 \). If \(y = z \), then \(1 - x^5 = y^5 + z^5 = 2y^5 \) and, therefore, \(y = \sqrt[5]{\frac{1 - x^5}{2}} \).

The function \(W_1 = x^4(x + y + z) \) has the greatest value if \(y = z \), i.e., \(y = \sqrt[5]{\frac{1 - x^5}{2}} \). For \(x \in [a, b] \), we find \(W_1 \leq x^4(x + 2y) \leq b^4 \left(b + 2\sqrt[5]{\frac{1 - a^5}{2}} \right) \).

Denote \(W_1(a, b) = b^4 \left(b + 2\sqrt[5]{\frac{1 - a^5}{2}} \right) \).

The inequality \(W_1(a, b) < 1.8021 \) is valid for the intervals: \(x \in [0.8027, 0.9190], x \in [0.9190, 0.9360], x \in [0.9360, 0.9410], x \in [0.9410, 0.9420], x \in [0.9420, 0.9430], x \in [0.9430, 0.9440], x \in [0.9440, 0.9445] \), hence for the asked maximum holds \(x \geq 0.9445 \).

Therefore, we have shown that the asked \(\text{max min} \{ W_1, W_2 \} \) will be attained for \(x \in [0.9445, 0.9939] \).

From the assumption \(0 < z \leq y \leq x < 1 \) follows that \(x^5 + y^5 \leq x^5 + y^5 + z^5 = 1 \) and also \(1 = x^5 + y^5 + z^5 \leq x^5 + 2y^5 \).
Consider the closed region M determined by inequalities $0.9445 \leq x \leq 0.9939$, $x^5 + y^5 \leq 1$, $x^5 + 2y^5 \geq 1$. The curve C divides the region M into two open regions C_1, C_2, (Figure 3).

![Figure 3. Regions C_1, C_2.](image)

We are looking for $\max \min \{W_1, W_2\}$, when $W_1 = x^4(y + z)$, $W_2 = x^3(y + z).$ From the condition $x^5 + y^5 + z^5 = 1$ we find

$$W_1 = W_1(x, y) = x^4(y + z) + \sqrt[5]{1 - x^5 - y^5},$$

(1)

$$W_2 = W_2(x, y) = x^3(y + z)(y + z) + \sqrt[5]{1 - x^5 - y^5}.$$ (2)

Let C_1 denote the closure of the set C. The functions W_1, W_2 are continuous on M and the equality $W_1 = W_2$ holds just in the points of the curve C.

Take the point $A_1 = (0.945, 0.70) \in C_1$. The inequality $W_1(X) < W_2(X)$ holds in every point $X \in C_1$, because of $W_1(A_1) < W_2(A_1)$. Therefore, for the asked maximum holds $\max \min \{W_1(X), W_2(X)\} = \max \{W_1(X)\}.$

Take the point $A_2 = (0.965, 0.65) \in C_2$. The inequality $W_1(X) > W_2(X)$ holds in every point $X \in C_2$, because of $W_1(A_2) > W_2(A_2)$. Therefore, for the asked maximum holds $\max \min \{W_1(X), W_2(X)\} = \max \{W_2(X)\}.$

On the compact set C_1 the function (1) has its maximum in some point B.

It holds $\frac{\partial W_1}{\partial y} = x^4 \left(1 - \frac{y^4}{\sqrt[5]{1 - x^5 - y^5}}\right).$ The equality $\frac{\partial W_1}{\partial y} = 0$ holds if $x^5 + 2y^5 - 1 = 0$ but the points of the curve $x^5 + 2y^5 - 1 = 0$ do not belong to the region C_1. For every point $X \in C_1$ holds $\frac{\partial W_1}{\partial y} < 0$. Therefore, the point B must lie on the curve C.

For every point $X = (x, y), x \in [a, b], y \in [c, d]$ the inequality $z \leq \sqrt[5]{1 - a^5 - c^5}$ holds, and so $W_1 = x^4(y + z) \leq b^4(b + d + \sqrt[5]{1 - a^5 - c^5})$, $W_2 = x^3(y + z) \leq b^3(b + d)(d + \sqrt[5]{1 - a^5 - c^5})$.

Denote

$$W_{11}(a, b, c, d) = b^4(b + d + \sqrt[5]{1 - a^5 - c^5}),$$

$$W_{22}(a, b, c, d) = b^3(b + d)(d + \sqrt[5]{1 - a^5 - c^5}).$$

Examine the region C_2.

For $x \in [0.9900, 0.9939], y \in [0.43, 0.60]$ is $W_{22} < 1.8$. For $x \in [0.9850, 0.9900], y \in [0.47, 0.60]$ is $W_{22} < 1.8$. For $x \in [0.9800, 0.9850]$ and, step by step, for $y \in [0.51, 0.56], [0.56, 0.60], [0.60, 0.65]$ is always $W_{22} < 1.8$.
For $x \in [0.975, 0.980]$ and, step by step, for $y \in [0.54, 0.60], [0.60, 0.64], [0.64, 0.7]$ is always $W_{22} < 1.8$.

For $x \in [0.970, 0.975]$ and, step by step, for $y \in [0.56, 0.61], [0.61, 0.63], [0.63, 0.65], [0.65, 0.68]$ is always $W_{22} < 1.8$.

For $x \in [0.965, 0.970]$ and, step by step, for $y \in [0.58, 0.61], [0.61, 0.63], [0.63, 0.64], [0.64, 0.65], [0.65, 0.66], [0.66, 0.67], [0.67, 0.69], [0.69, 0.75]$ is always $W_{22} < 1.8$.

For $x \in [0.960, 0.965]$ and, step by step, for $y \in [0.60, 0.62], [0.62, 0.63], [0.63, 0.65], [0.65, 0.64], [0.64, 0.644], [0.644, 0.647], [0.647, 0.65], [0.65, 0.652], [0.652, 0.654], [0.654, 0.656], [0.656, 0.658], [0.658, 0.66], [0.66, 0.662], [0.662, 0.664], [0.664, 0.666], [0.666, 0.668], [0.668, 0.67], [0.67, 0.673], [0.673, 0.677], [0.677, 0.68], [0.68, 0.685], [0.685, 0.695], [0.695, 0.72]$ is always $W_{22} < 1.8$.

For $x \in [0.955, 0.960]$ and, step by step, for $y \in [0.62, 0.63], [0.63, 0.635], [0.635, 0.638], [0.638, 0.64], [0.64, 0.641], [0.641, 0.642], [0.697, 0.698], [0.698, 0.7], [0.7, 0.703], [0.703, 0.709], [0.709, 0.724], [0.724, 0.73]$, is always $W_{22} < 1.8$.

We do not exclude the region $x \in [0.955, 0.960], y \in [0.642, 0.697]$ in this way, it is not effective.

We have

From (2):

$$\frac{\partial W_2}{\partial x} = \sqrt{\frac{x^2}{(1-x^2-y^2)^3}} \left[(4x + 3y)(y\sqrt{(1-x^2-y^2)^4 + 1} - x^5) - 5x^6 - 4x^5y \right]$$

and

$$\frac{\partial W_2}{\partial y} = \sqrt{\frac{x^3}{(1-x^2-y^2)^3}} \left[(x + 2y)(\sqrt{(1-x^2-y^2)^4 + 1} - x - 2y - xy^4) \right].$$

If $\frac{\partial W_2}{\partial x} > 0$ and $\frac{\partial W_2}{\partial y} > 0$, therefore, for every point $X = (x, y), x \in [a, b], y \in [c, d]$ we have two inequalities:

$$(4x + 3y)(y\sqrt{(1-x^2-y^2)^4 + 1} - x^5) - x^5(5x + 4y) \leq$$

$$\leq (4b + 3d)(d\sqrt{(1-a^2-c^5)^4 + 1} - a^5) - a^5(5a + 4c)$$

and

$$(x + 2y)(\sqrt{(1-x^2-y^2)^4 + 1} - x^5 - 2y - xy^4) \geq$$

$$\geq (a + 2c)(\sqrt{(1-b^5-d^5)^4 + 1} - b^5 - 2d^5 - bd^4).$$

Denote

$$DW_{2x}(a, b, c, d) = (4b + 3d)(d\sqrt{(1-a^2-c^5)^4 + 1} - a^5) - a^5(5a + 4c),$$

$$DW_{2y}(a, b, c, d) = (a + 2c)(\sqrt{(1-b^5-d^5)^4 + 1} - b^5 - 2d^5 - bd^4).$$

For $x \in [0.955, 0.960]$ and $y \in [0.642, 0.670]$ is $DW_{2x}(a, b, c, d) < 0$ and, therefore, $\frac{\partial W_2}{\partial x} < 0$.

For $x \in [0.955, 0.960]$ and $y \in [0.670, 0.697]$ is also $DW_{2x}(a, b, c, d) < 0$ and, therefore, $\frac{\partial W_2}{\partial x} < 0$.

Therefore, the asked maximum cannot be achieved for $x \in [0.955, 0.960]$.

For $x \in [0.950, 0.955]$ and, step by step, for $y \in [0.63, 0.636], [0.636, 0.639], [0.639, 0.64], [0.64, 0.641], [0.717, 0.718], [0.718, 0.72], [0.72, 0.725], [0.725, 0.73], [0.73, 0.75]$ is always $W_{22} < 1.8$.

We do not exclude the region $x \in [0.950, 0.955], y \in [0.641, 0.717]$ in this way, it is not effective.

For $x \in [0.950, 0.955]$ and $y \in [0.641, 0.671]$ is $DW_{2y}(a, b, c, d) > 0$ and, therefore, $\frac{\partial W_2}{\partial y} > 0$.
For \(x \in [0.950, 0.955] \) and \(y \in [0.671, 0.700] \) is \(\frac{\partial W_2}{\partial x} < 0 \) and, therefore,

\[
\frac{\partial W_2}{\partial x} < 0.
\]

This implies that the asked maximum cannot be achieved for \(x \in [0.950, 0.955] \).

For \(x \in [0.9475, 0.9500] \) and, step by step, for \(y \in [0.640, 0.649], [0.649, 0.653], [0.653, 0.655], [0.655, 0.656], [0.656, 0.657], [0.719, 0.720], [0.720, 0.722], [0.722, 0.726], [0.726, 0.735], [0.735, 0.750] \) is always \(W_{22} < 1.8 \).

We do not exclude the region \(x \in [0.9475, 0.9500], y \in [0.657, 0.719] \) in this way, it is not effective.

For \(x \in [0.9475, 0.9500] \) and \(y \in [0.657, 0.684] \) is \(\frac{\partial W_2}{\partial y} > 0 \).

For \(x \in [0.9475, 0.9500] \) and \(y \in [0.684, 0.719] \) is \(\frac{\partial W_2}{\partial x} < 0 \) and, therefore,

\[
\frac{\partial W_2}{\partial x} < 0.
\]

This implies that the asked maximum cannot be achieved for \(x \in [0.9475, 0.9500] \), see Figure 4.

![Figure 4](image-url)

Figure 4. The Region \(M \) after the final reduction.

For \(x \in [0.9445, 0.9475] \) and, step by step, for \(y \in [0.650, 0.653], [0.653, 0.655], [0.655, 0.656], [0.656, 0.657] \) is always \(W_{22} < 1.8 \).

For \(x \in [0.9445, 0.9475] \) and \(y \in [0.657, 0.690] \) is \(\frac{\partial W_2}{\partial y} > 0 \).

For \(x \in [0.9445, 0.9475] \) and \(y \in [0.690, 0.700] \) is \(\frac{\partial W_2}{\partial x} < 0 \) and, therefore,

\[
\frac{\partial W_2}{\partial x} < 0.
\]

For \(x \in [0.9445, 0.9475] \) and, step by step, for \(y \in [0.720, 0.726], [0.726, 0.743], [0.743, 0.760] \) is always \(W_{11} < 1.8 \).

So function (2) on the compact set \(C_2 \) must achieve its maximum in some point of the curve \(C \). It is the same point \(B \) as above.

We ask constrained maximum of the function

\[
W(x, y) = x^5 + \frac{x^6}{y} \tag{3}
\]

on the curve \(C \)

\[
C(x, y) = x^5 y^5 + y^{10} - y^5 + (x^2 - y^2)^5 \tag{4}
\]

for \(x \in [0.9445, 0.9475] \).
System of equations \(\frac{\partial W}{\partial x} \frac{\partial C}{\partial y} - \frac{\partial W}{\partial y} \frac{\partial C}{\partial x} = 0 \) and \(C(x, y) = 0 \) has the form

\[
7x^6y^5 + 12xy^{10} - 6xy^5 + 5x^5y^6 + 10y^{11} - 5y^6 + (x^2 - y^2)^4(2x^3 - 10y^3 - 12xy^2) = 0,
\]
\[
x^5y^6 + y^{10} - y^5 + (x^2 - y^2)^5 = 0.
\]

The solution is \(x = 0.946629932, y = 0.690148624, \) and then \(z = 0.608279275. \)

If we generalize considerations from the proof, we will achieve the curve \(C: x^d y^d + y^{2d} - y^d + (x^2 - y^2)^d = 0, \) where \(d \) is dimension. The graph of the curve \(C \) depends on the parity of \(d \), see Figures 5 and 6. Considering only the values \(1 > x \geq y > 0 \), the shape of the curve \(C \) is similar, regardless of parity, see Figure 2.

For \(d \leq 10 \) the asked maximum is achieved on the curve \(C \). For dimensions 7, 9 and 10 the results are:

\[
V_3(7) = 2.05909680 \quad \text{and} \quad x = 0.978852925, \quad y = 0.703495386, \quad z = 0.658493716,
\]
\[
V_3(9) = 2.21897778 \quad \text{and} \quad x = 0.991008397, \quad y = 0.704394561, \quad z = 0.689849087,
\]
\[
V_3(10) = 2.27220126 \quad \text{and} \quad x = 0.993961280, \quad y = 0.702901846, \quad z = 0.702641521.
\]

Let \(P \) is intersection the constraint curve \(x^d + 2y^d - 1 = 0 \) and the curve \(C \). If \(d = 11 \), then the constrained extreme on the curve \(C \) does not meet the required assumption \(y \geq z \). Therefore, the asked maximum must be on the constraint curve to the left of point \(P \) or on the curve \(C \) above \(P \), see Figure 7. The same situation occurs for \(d = 12 \) and \(d = 13 \).

\[
V_3(11) = 2.31533581 \quad \text{and} \quad x = 0.994989464, \quad y = z = 0.719809616,
\]
\[
V_3(12) = 2.35315527 \quad \text{and} \quad x = 0.995762712, \quad y = z = 0.734956999,
\]
\[
V_3(13) = 2.38661963 \quad \text{and} \quad x = 0.996369617, \quad y = z = 0.748358875.
\]
3. Conclusions

The issue of packing squares is an old problem and even though there are multiple partial results, it remains unresolved. We investigated a modified problem: packing three cubes in 5-dimensional space. We also calculated results for dimensions 7, 9, 10, 11, 12, 13.

Considering the previous results by [17–19], we can say that solution is located on the curve C for dimensions 4 . . . 10. It means, that there are two (different) packings that give (the same) the largest volume.

There seems to be only a single maximal packing for dimensions greater than 10. In this packing, two smallest cubes are the same. However, the paper confirms it only for dimensions 11, 12, 13.

There is a space for several improvements in our work: Is it possible to find a $V_3(d)$ without long numerical calculations? Is it true that two different maximum packings exist only for dimensions less than 11?

Author Contributions: Conceptualization, Z.S. and P.A.; methodology, Z.S. and P.A; software, P.A.; validation, P.A. and Z.S.; formal analysis, Z.S. and P.A; writing—original draft preparation, Z.S.; writing—review and editing, P.A.; visualization, Z.S.; supervision, Z.S.; project administration, Z.S.; funding acquisition, Z.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the Slovak Grant Agency KEGA through the project No. 027ŽU-4/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Moser, L. Poorly Formulated Unsolved Problems of Combinatorial Geometry, Mimeographed List. 1966. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=2ahUKEwjNi_6E2MvyAhVQ82EKHXwkDswQFnoECAgQAQ&url=https%3A%2F%2Farxiv.org%2Fpdf%2F2104.09324&usg=AOvVaw04NiNvdYuVgpLbONhXT6Zzw (accessed on 8 July 2021).
2. Brass, P.; Moser, W.O.J.; Pach, J. Research Problems in Discrete Geometry; Springer: New York, NY, USA, 2005.
3. Croft, H.T.; Falconer, K.J.; Guy, R.K. Unsolved Problems in Geometry; Springer: New York, NY, USA, 1991.
4. Moon, J.W.; Moser, L. Some packing and covering theorems. Colloq. Math. 1967, 17, 103–110. [CrossRef]
5. Moser, W. Problems, problems, problems. Discret. Appl. Math. 1991, 31, 201–225. [CrossRef]
6. Moser, W.; Pach, J. Research Problems in Discrete Geometry; McGill University: Montreal, QC, Canada, 1994.
7. Kleitman, D.J.; Krieger, M.M. An optimal bound for two dimensional bin packing. In Proceedings of the 16th Annual Symposium on Foundations of Computer Science, Berkeley, CA, USA, 13–15 October 1975; pp. 163–168.
8. Novotný, P. A note on a packing of squares. Stud. Univ. Transp. Commun. Zilina Math.-Phys. Ser. 1995, 10, 35–39.
9. Novotný, P. On packing of four and five squares into a rectangle. *Note Mat.* 1999, 19, 199–206.
10. Novotný, P. Využitie počítača pri riešení ukladacieho problému. In *Proceedings of the Symposium on Computational Geometry, Kočovce, Slovak Republic*, 9–11 October 2002; pp. 60–62. (In Slovak)
11. Novotný, P. On packing of squares into a rectangle. *Arch. Math.* 1996, 32, 75–83.
12. Hougardy, S. On packing squares into a rectangle. *Comput. Geom.* 2011, 44, 456–463. [CrossRef]
13. Meir, A.; Moser, L. On packing of squares and cubes. *J. Comb. Theory* 1968, 5, 126–134. [CrossRef]
14. Novotný, P. Ukladanie kociek do kvádra. In *Proceedings of the Symposium on Computational Geometry, Kočovce, Slovak Republic*, 19–21 October 2011; pp. 100–103. (In Slovak)
15. Novotný, P. Pakovanie troch kociek. In *Proceedings of the Symposium on Computational Geometry, Kočovce, Slovak Republic*, 27–29 September 2006; pp. 117–119. (In Slovak)
16. Novotný, P. Najhoršie pakovateľné štyri kocky. In *Proceedings of the Symposium on Computational Geometry, Kočovce, Slovak Republic*, 24–26 October 2007; pp. 78–81. (In Slovak)
17. Bálint, V.; Adamko, P. Minimalizácia objemu kvádra pre uloženie troch kociek v dimenzii 4. *Slov. Pre Geom. Graf.* 2015, 12, 5–16. (In Slovak)
18. Bálint, V.; Adamko, P. Minimization of the parallelepiped for packing of three cubes in dimension 6. In *Proceedings of the Aplimat: 15th Conference on Applied Mathematics, Bratislava, Slovak Republic*, 2–4 February 2016; pp. 44–55.
19. Sedlaciaková, Z. Packing Three Cubes in 8-Dimensional Space. *J. Geom. Graph.* 2018, 22, 217–223.
20. Adamko, P.; Bálint, V. Universal asymptotical results on packing of cubes. *Stud. Univ. Žilina Math. Ser.* 2016, 28, 1–4.