Inappropriate child feeding practice and primary health care as major correlates of stunting and underweight among infants and young children 6-23 months of age in food insecure households of Amhara and Oromia Regions, Ethiopia. A community based cross sectional study

CURRENT STATUS: POSTED

Zelalem Tafese Wondimagegne
Hawassa University College of Agriculture
wudasiez@gmail.com Corresponding Author

Fekadu Reta Alemayehu
Hawassa University College of Agriculture

Anchamo Anato Adole
Hawassa University College of Agriculture

Kaleab Baye Yimam
Addis Ababa University College of Natural Sciences

Yifru Berhan
St pauls hospital millennium medical college

Barbara J Stoecker
Oklahoma State University Center for Health Sciences

DOI: 10.21203/rs.2.12461/v1

SUBJECT AREAS
Pediatrics

KEYWORDS
Stunting, zinc supplement, iodized salt, diet diversity, maternal income
Abstract

Background: Child undernutrition is a major public health problem in Ethiopia. Even though the highest levels of stunting are found in food insecure areas, insufficient evidence limits effective intervention to improve the situation. Therefore, this study aimed to assess undernutrition and associated factors among infants and young children aged 6-23 mo in food insecure households of Amhara and Oromia Regions, Ethiopia. Method: A community based cross-sectional study was conducted in productive safety net targeted rural households of Amhara and Oromia Regions from April 25 to June 15, 2018. A total of 464 mother-child dyads were included in the study. Both bivariate and multivariate analyses were used to identify factors associated with stunting, wasting and underweight separately. Results: The prevalence of stunting, wasting and underweight among children 6-23mo was 42.6%, 12.4% and 27.3% respectively. Age of the child 12-23 vs 6-12mo (AOR = 4.21 95% CI: 2.52, 7.05), female (AOR = 1.84 1.23, 2.75), higher number of births (AOR = 1.721.10, 2.70), lack of zinc supplement (AOR = 2.411.33, 4.38), inadequate diet diversity (AOR=1.691.02, 2.81) and lack of iodized salt in complementary food (AOR=1.551.03, 2.32) were significantly associated with stunting. Similarly, age of child 12-23 mo (AOR=1.921.14, 3.24), female gender (AOR = 1.881.22, 2.90), higher number of births (AOR= 1.671.05, 2.66), lack of zinc supplement (AOR=2.291.14, 4.61), lower maternal income (AOR= 2.341.18, 4.65), and inadequate diet diversity (AOR= 2.341.27, 4.33) showed significant association with underweight.

Conclusion: The magnitude of child undernutrition was found to be very high in the study areas. Child nutrition intervention strategies should take into account nutrition education on appropriate child feeding and iodized salt utilization. In addition, improving zinc supplementation and economic empowerment of women are important to address the high prevalence child undernutrition in the study area.

Key words: Stunting, zinc, iodized salt, diet diversity, maternal income, food insecurity

Background

Child malnutrition is a continuing problem in developing countries [1]. Globally an estimated 151 million children were stunted in 2017. Stunting is the devastating result of poor nutrition in-utero and in early childhood. The UNICEF, WHO, World Bank global and regional child malnutrition estimates indicate that we are still far from a world without malnutrition [2]. The same report noted more than half of all stunted children under 5 lived in Asia and more than one third lived in Africa.
Previous studies summarized different risk factors for childhood undernutrition. Household food security and healthy household environments play important roles in preventing chronic malnutrition [3-5]. Children under 2 years of age have high nutrient requirements because of their rapid growth and are considered the most at-risk age group for undernutrition and increased vulnerability to infectious disease. Taking this age group as a window of opportunity, the World Health Organization (WHO) designed and supports the implementation of Infant and Young Child Feeding (IYCF) strategies [6]. However, poor feeding and health care in children continue as major determinants of undernutrition in developing countries [4].

Failure to wash hands, failure to dispose of feces hygienically and inadequate food hygiene were associated with a high incidence of diarrheal diseases in Ethiopia [7]. According to WHO, the global cause of death for more than half of under five children is diseases that are preventable and treatable through simple and affordable interventions. Particularly, malnourished children have a higher risk of death from common childhood illness such as diarrhea, pneumonia, and malaria. Therefore, children in sub-Saharan Africa are more than 15 times more likely to die before the age of 5 than children in high income countries [8].

Deficiencies of micronutrients like vitamin A, iron and zinc have global public health importance and represent a major threat to the health and development of populations worldwide [4]. These deficiencies are common in developing countries where a higher prevalence of undernutrition exists. Likewise, deficiencies in key vitamins and minerals are among the major public health problems in Ethiopia [9]. A study from northern Ethiopia reported more than two thirds of school-aged children (79.5%) had at least one micronutrient deficiency and 40.5% had two or more coexisting micronutrient deficiencies. Based on biomarkers determined for 764 children, the most prevalent deficiencies were zinc, folate, vitamin A and vitamin D [10]. One of the main factors responsible for micronutrient deficiency is poor diet quality among children. Dietary diversification is one dimension of diet quality and ample evidence indicates dietary diversity is a proxy indicator of nutrient adequacy in a diet [11, 12].

The period from 6 to 24 mo of age in children is one of the most critical periods for linear growth [13]. The recent Ethiopian Demographic and Health Survey (EDHS) reported the national prevalence of stunting, wasting and underweight among children under five years as 38%, 10% and 24% respectively. The magnitude of undernutrition in Ethiopia shows variation from region to region with the lowest prevalence of stunting (14.6%) in Addis Ababa. On the other hand, the regional figures for stunting wasting and underweight were 46.3%, 9.8% and 28.4% respectively in Amhara region and 36.5%, 10.6% and 22.5% in Oromia region [14].

Chronic and acute food insecurity is prevalent, especially among rural populations of Ethiopia, and about 10 percent of citizens are estimated to be chronically food insecure [15, 16]. This situation in Ethiopia is highly linked to severe, recurring food shortage and famine associated with recurrent drought [17]. Being one of three underlying causes of undernutrition, household food insecurity is assumed to affect the nutritional status of children by compromising quantity and quality of dietary intake [18]. But food security cannot be the only determining factor in ensuring adequate nutritional status of children. Hence, further investigation is needed to explore the most important factors behind the prevalence of undernutrition among children in Ethiopia [19].

Inadequate maternal and child health care and poor child feeding practices are among the main challenges that create a vicious cycle and contribute to long term existence of food insecurity. Often in developing countries, food insecure households are unable to produce enough food, even in times with favorable situations for agriculture, because the effect of chronic nutritional problems makes them unable to work to their full potential [20]. Nutrition program implementers often lack adequate evidence about which interventions would be most successful in reducing undernutrition in specific
areas which may cause decisions to be based on assumptions and unjustified conclusions. Inappropriate programs and interventions may be introduced only to discover the consequences after implementation [21]. Hence knowledge of the relative contribution of the predominant risk factors associated with stunting and underweight is an important prerequisite for developing nutrition intervention strategies, particularly in food insecure areas where the prevalence of undernutrition among children is high.

In these areas, identifying the most important factors contributing to undernutrition is important to guide public health planners, policy makers and implementers. Such knowledge assists to plan and design appropriate intervention strategies that will be more likely to enhance nutritional status of children and mitigate the vicious cycle of food insecurity.

Methods

Study setting and design

The study was conducted in five districts, Meket, Lasta and Sekota from Amhara and Chirro and Sirraro from Oromia where the Development Food Security Activity (DFSA) is being implemented. The districts were selected due to high levels of food insecurity. Overall, the program targeted 407,891 productive safety net program (PSNP₄) clients. From the five districts, kebeles (smallest administrative unit in Ethiopia) were selected randomly and a community based cross-sectional study was conducted from April 25 to June 15, 2018. Mother-child dyads were enrolled from households targeted for PSNP₄ if the child was 6–23 months old.

Sample size and sampling procedure

The sample size of 494 mother-child dyads was calculated using Open-Epi analytic software and included an estimate of 5% for non-response rate. The calculated sample was proportionally allocated to the kebeles based on the total number of targeted households with 6–23 mo children in each kebele; study participants were identified by simple random sampling.

Data collection tools and procedure

The primary outcome variable in this study was the anthropometric status of the index child measured as Z scores using WHO standards [22]. Socio-demographic variables, maternal and child health care and feeding practice were the independent variables. The socio-demographic variables were selected from those used by the Ethiopian Demographic and Health Survey (EDHS) [14] and collected using structured questionnaires via individual interview. Educational status was categorized according to the education levels in Ethiopia. Sixteen data collectors with BSc. degree and two community health workers were involved in the data collection process in each kebele. Two days of intensive training were provided to data collectors. Questionnaires were pretested in 25 households in non-selected kebeles and some modifications were made accordingly. Data were collected under close supervision of the principal investigator. Child weight was measured to the nearest 0.1 kg with a SECA electronic balance with graduation of 0.1 kg and a measuring range of up to 25 kg. Weight was taken with light clothing and no shoes. Instrument calibration was checked before weighing each child. Furthermore, the weighing scale was tested daily against a standard weight for accuracy. Length of the index child (aged 6–23 mo) was measured using a wooden length board in recumbent position, and read to the nearest 0.1 cm.

Standardized seven food groups were used to qualitatively assess the dietary diversity of children [6]. Mothers were asked to recall the food items consumed by the child in the 24-h preceding the day of the survey. By considering four food groups as the minimum acceptable dietary diversity, a child with
less than four was classified as inadequate dietary diversity; otherwise diet diversity was considered to be acceptable. Household food security was classified as recommended by the Food and Nutrition Technical Assistance (FANTA) Guideline [23]. The household wealth index was computed using a composite indicator considering selected household assets and size of agricultural land. Using principal component analysis (PCA), the factor scores were summed and ranked into quintiles. Data were checked for completeness and quality on a daily basis by the supervisors and principal investigator.

Data analysis

Statistical analyses were done using STATA 14 (Stata/SE 14) statistical package. Emergency nutrition assessment for standardized monitoring and assessment of relief and transitions (ENA for SMART) 2011 software was used to convert the anthropometric measures weight and length for age into Z-scores. Descriptive statistics were calculated and bivariate analyses were done separately for the three outcome variables: stunting, wasting and underweight. Both Crude Odds Ratio (COR) and the Adjusted Odds Ratio (AOR) with a corresponding 95% Confidence Interval (CI) were computed to show the strength of the associations. All independent variables with p-value less than 0.25 during bivariate analysis were included for multivariate analysis. Multivariate logistic regressions were fitted using stepwise backwards elimination technique to identify determinants of stunting, wasting and underweight separately. In the multivariate logistic regression analysis, variables with a p-value <0.05 were considered as statistically significant. Assumptions of the regression model were found to be satisfied [24].

Results

Socio-demographic characteristics
Totally 464 mother child dyads participated in the present study resulting in a response rate of 94%. Of these, 51.7% of children were females (Table 1). The mean (±SD) age of the children was 14.6 (±4.6) mo and mean household size was 5.0 (±1.8) persons. Only 12.7% of households had three or more under five children. Nearly 91% percent of the mothers were housewives and 64.7% had no formal education.

Obstetric characteristics of mothers

More than 90% of mothers had their first pregnancy within the age range of 15-26 years (Table 2). Concerning the total number of births (parity), nearly 27% of mothers had five or more live births. A limited number (20.9%) of mothers had four or more antenatal care visits for their most recent pregnancy. Only 3.5% of mothers gave birth to their most recent child at a health facility and 52.4% of mothers did not have postnatal care (PNC) even once after their most recent delivery. Furthermore, 97.2% of mothers did not get a vitamin A supplement after their most recent birth.

Child feeding practice and health characteristics

Only 52.6% of mothers reported initiating complementary food for the child at six mo of age (Table 3). The frequency of meals reported on the 24-h recall was four or more times for only 20.2% of the children and only 21.5% of the children 6-23 mo old met the minimum dietary diversity criteria. Grains, roots and tubers were the most commonly consumed food items in the 24 h preceding the survey. Only 14.2 % of 6-23 mo children fulfilled the minimum acceptable diet criteria. Mothers who used iodized salt with complementary food were 55%; however, 47.1% mothers reported adding the salt during cooking.
Overall, 42% of mothers reported their children had respiratory infections, 18% had ear infection and nearly 38% experienced diarrhea in the 2 weeks preceding the survey. Treatment from a health care provider was sought for 47.6% of children with diarrhea out of which 53% of children received zinc treatment. Totally 16% of mothers reported their child had zinc supplements at least once in their life. Prevalence of stunting wasting and underweight

In children 6-23 mo old, 42.6% were stunted, 12.4% were wasted and 27.3% were underweight (Table 4). The children in the 12-23 mo age groups had higher prevalence of stunting and underweight when compared with the 6-11 mo age groups.

Factors associated with stunting, wasting and underweight

The results of the multivariate logistic regression model predicting stunting (Table 5) detected significant associations of age, sex and zinc supplement (p<0.01) and total number of births, iodized salt utilization and dietary diversity of the index child (p<0.05). Among these variables remaining in the model, more than four times higher likelihood of stunting was found among children in the 12-23 mo age group [AOR = 4.21; 95%CI: 2.52, 7.05] compared to infants aged 6-11mo. Baby girls showed 1.84 times more likelihood of stunting (AOR = 1.84 [1.23, 2.75]) compared with baby boys. Similarly children who didn’t ever have zinc supplement were more than 2.4 times more likely to be stunted (AOR = 2.41 [1.33, 4.38]). Likewise, 1.5 times higher likelihood of stunting was found among children whose mothers didn’t utilize iodized salt with complementary food (AOR = 1.55 [1.03, 2.32]) compared to children who received iodized salt. Children whose mothers gave birth five or more times also showed nearly 1.7 times higher likelihood of stunting (AOR = 1.72 [1.10, 2.70]) compared to those whose mothers had less than five births. Finally 1.7 times higher likelihood of stunting was seen among children who consumed fewer than four food groups (AOR = 1.69 [1.02, 2.89]) in the 24 hr prior to the survey. The other factor that showed associations in bivariate analysis but was not significant in the multivariate model was consuming untreated water (AOR = 1.17 [0.69, 1.99]) compared to those who consumed treated water.

The multivariate logistic regression model (Table 6) predicting wasting detected sex, maternal income per month and untreated drinking water to have significant association with wasting at p<0.05. Nearly two times higher likelihood of wasting was found (AOR=1.97[1.10, 3.51]) among girls as compared to boys. Children whose mothers’ monthly income was <500 Eth.birr had 3 times higher likelihood of wasting than children of mothers earning ≥500 Eth.birr (AOR=3.29[1.14, 9.50]). Likewise, the likelihood of wasting was more than threefold (AOR=3.22[1.24, 8.39]) higher among children from households who consumed untreated water compared to those who used treated water. Other factors that had significant associations in bivariate analysis but did not remain in the multivariate model were receiving growth monitoring service compared with not receiving the service (AOR=0.60[0.34, 1.08]) and family size of five or more (AOR=1.70[0.94, 3.08]).

Regarding the determinants of underweight, the multivariate logistic regression model (Table 7) detected significant association of sex and diet diversity with underweight at p<0.01 and age of index child, number of births, zinc supplement and monthly maternal income at p<0.05. Children 12-23 mo showed 1.9 times higher likelihood of underweight (AOR = 1.92[1.14, 3.24]) compared with infants 6-11 mo of age. The likelihood of underweight was 1.88 times higher (AOR = 1.88 [1.22, 2.90]) among girls as compared to boys. Likewise children who had never received zinc supplements had more than two times higher likelihood of being underweight (AOR=2.29[1.14, 4.61]) as compared to those who got zinc supplements at least once. Children who got fewer than four food groups showed 2.34 times higher likelihood of underweight (AOR=2.34[1.27,4.33]). Finally, 2.34 times higher odds of underweight were found among children whose mothers’ monthly income was less than 500 Eth.birr (AOR: 2.34[1.18, 4.65]) compared to children whose mothers monthly income was 500 Eth.birr or
Discussion

The present study revealed that the prevalence’s of stunting and underweight among children 6-23mo of age were 42.6% and 27.3% respectively. These high rates suggest the severe public health significance of problems that need intervention. The findings are consistent with previous studies from Uganda and Ethiopia [25, 26]. Compared to this study, higher prevalence of stunting was reported from Central Africa Republic (61.5%) [27] and Kenya (51%) [3]. However, the present finding was much higher than stunting rates reported from Egypt (23.3%) [28] and Sri Lanka (17.1%) [29].

Even though associations of household food insecurity and wealth index with childhood stunting have been reported in previous studies [29-31], our study did not show significant associations of these variables either with stunting or underweight. Perhaps a skewed distribution of households in our study contributed because the study specifically was conducted in poor and food insecure households. Unlike findings in several previous studies [14, 17, 32], the present study revealed baby girls were more stunted than baby boys. A study in food insecure households of Pakistan [31], reported that female children were nearly three times more likely to be stunted than male children. In the context of Ethiopia, where girls have historically experienced discrimination [33], more preference may have been given to boys, especially as the household experienced greater food stress. A previous study from Ethiopia, which reported large gender difference in feeding practices in severely food insecure households [34], supports this idea. Another study noted that girls were more likely than boys to be stunted in childhood, whereas boys were more likely than girls to be stunted in adolescence [35].

Consistent with a previous review from Ethiopia [19], the present study showed that the likelihood of being stunted was more than fourfold higher among children aged 12-23 mo compared to infants 6-11mo of age. A plausible explanation might be the effect of malnutrition starting to manifest when the child’s nutrient requirement from complementary food increases and breast milk meets less of the needs, particularly at the age of one year and above. This is also an age at which the child is very likely to put everything to his mouth which may increase the risk of infection that negatively impacts the linear growth of the child.

We noted increased risk of stunting among children who did not meet the minimum diet diversity criteria. Previous studies have reported that dietary diversity is a proxy indicator of dietary quality and nutrient adequacy; hence, the overall nutritional quality of the child’s diet is improved with a diverse diet [36, 37]. Diversity in the diet is important to meet the requirements for energy and other essential nutrients particularly for those who are at risk of nutrient deficiencies like children in food insecure households. Inadequate diet diversification among children was revealed to be a problem in the present study and lower diet diversity among children was associated with a higher likelihood of stunting. Poor diet diversification in addition to higher nutritional demand related with increased child age may increase the risk of impaired linear growth and be more obvious as these infants and young children grow older.

As one component of diet diversity animal source foods (ASF) have potential to affect linear growth of children. Diets poor in energy, protein and micronutrients can be important contributing factors for stunting [38]. Because ASF are important for improving the dietary quality of children, a more diverse diet is highly correlated with adequate energy, protein, and micronutrients [39-42]. ASF are better than plant source foods for supplying certain micronutrients and high quality protein that are particularly important for bone growth at an early age. Some nutrients also are more bioavailable from ASF. The most important micronutrients contained in ASF are Fe, Zn, Ca, riboflavin, vitamin A and vitamin B_{12}. Hence, relatively small amounts of ASF can substantially increase nutrient adequacy,
particularly for young children [41, 42]. The present study also revealed higher likelihood of stunting among children who never received zinc treatment and whose caretakers didn’t utilize iodized salt for complementary foods. Previous studies in developing countries have noted that multiple micronutrient deficiencies, particularly deficiencies of vitamin A, zinc, iron and iodine are evident among children [1, 43]. Zinc supplementation in children in endemic areas of zinc deficiency has been reported to enhance linear growth of children [44-46], especially when administered separately from other micronutrients. Zinc plays an important role in cellular growth, cellular differentiation and metabolism and hence has been recommended by previous researchers from Ethiopia and elsewhere to be included in national strategies to reduce stunting in children < 5 years of age in developing countries [45-47].

Increased demand for zinc can occur due to malnutrition and due to loss from the gut in diarrhea. High prevalence of zinc deficiency in infants has been confirmed in Ethiopia [48], and the effect of zinc on linear growth of children was demonstrated [46]. Even though zinc supplementation is recommended protocol in diarrhea management in Ethiopia, poor compliance has been reported. The most recent EDHS reported that treatment from a health facility or provider for a child with diarrhea was sought for nearly 43% of under five children but zinc supplements were given for only 33% of these children [14]. A study from northern Ethiopia confirmed poor management and inadequate treatment for children with acute diarrhea [49].

The other factor significantly associated with stunting in the present study was iodized salt utilization. Children whose mothers did not utilize iodized salt for complementary food were 1.5 times more likely to be stunted. A low level of iodized salt utilization has been reported in previous studies in Ethiopia [50, 51]. The association of iodized salt with linear growth of children might be explained as iodine is one of the micronutrients that plays an important role in secretion of growth hormone particularly in early life and the deficiency may result in impaired somatic growth [52]. This might have contributed to the prevalence of stunting in the study area. Underweight and stunting in the present study were higher among children 12-23 mo of age as compared to infants 6-11 mo of age. Evidence-based nutrition intervention focused on identified factors in early life would be expected to have a positive effect on stunting reduction.

Even in places with adequate resources for child feeding, nutritional knowledge and factors such as reducing work overload of mothers are crucial to improve the nutritional status of children [53]. Hence it is important to consider a wide range of information in analyzing the association between feeding practices and child growth [54]. The determinants of stunting are varied and there is no single cause for undernutrition among children. Important pathways for effective interventions to mitigate stunting and promote healthy growth require clarification and consideration of context [55, 56]. However, epidemiological studies have reported repeatedly that suboptimal breastfeeding and complementary feeding practices, recurrent infections and micronutrient deficiencies are important proximal determinants of stunting [29, 57]. Considering a holistic approach, intervention against stunting during the early age of the child should not be overlooked. Also, women who were stunted as children tend to have stunted off spring. This creates an intergenerational cycle of stunting and poverty and of reduced human capital that is difficult to break [58].

We identified that as the number of births increases, so too do the odds of being stunted and underweight. Our finding is supported by another study from Ethiopia which stated that children whose mothers gave birth to more than four children were more likely to be stunted compared to children from mothers who had given birth to only one child [26]. Families with more children may face difficulty in providing the daily nutrition requirements for proper child physical development. As the number of children increases there may be scarcity of resources for the household especially for food and healthcare which ultimately may lead to stunted growth. Furthermore, parents with many
children may lack adequate time to pay proper attention to the needs of each child. The present study is one of only a few studies in Ethiopia that identify the determinants of stunting, wasting and underweight specifically in food insecure households and in one of the most vulnerable population groups, infants and young children aged 6–23mo. Despite the possibility of recall bias and measurement errors, the data revealed factors that could direct important interventions in the study area.

Conclusions
The prevalence’s of stunting, wasting and underweight in the study area were higher than the national average. Undernutrition among infants and young children is a severe public health concern that needs critical attention at early ages. Improving zinc treatment, iodized salt utilization in complementary food and diversification of complementary food should be important interventions to mitigate the high burden of undernutrition in the study area. Nutrition education on appropriate feeding practices through existing community-based programs and improving the quality of primary health care to improve micronutrient supplementation and family spacing are critical to accelerate improvement in children’s nutritional status. Furthermore economic empowerment of women should be emphasized to address the high prevalence of undernutrition in the study area. Further controlled studies are recommended to evaluate the effect of nutrition interventions on addressing the challenges of undernutrition among infants and young children.

Abbreviations
AOR: Adjusted odds ratio; ASF: Animal source food; CI: Confidence interval; COR: Crude odds ratio; DDS: Dietary diversity score; EDHS: Ethiopian Demographic and Health Survey; Eth.bIRR: Ethiopian birr; HEW: Health extension workers; Index child: Child 6-23 mo enrolled for the study; IYCF: Infant and young child feeding; MO: Months; PCA: Principal component analysis; PSNP4: Productive safety net program; SD: Standard deviation; WHO: World Health Organization

Declarations
Competing interest
The authors declare that they have no competing interests.

Funding
The financial support for this study came from Hawassa University and World Vision Ethiopia Cooperative Agreement No AID-FFP-A-16-00008-Strengthen PSNP4Institutions and Resilience Learning Agenda Implementation. The funding institution had no role in the design and development, analysis and interpretation of the data, or preparation, review, or approval of the paper.

Author’s contribution
Z T conceptualized the study, develop proposal and data collection materials, trained the data collection team, involve in data collection, analysis and write up, BJS involve in design, analysis, write up and critically reviewed the manuscript, YB, KB, AA and FR have participated in the planning, analysis and review. All authors read and approved the final manuscript.

Availability of data and materials
The datasets analyzed during the current study are available from the corresponding author on reasonable request.

Ethical consideration

Ethical clearance was secured from the Institutional Review Board (IRB) of Hawassa University, College of Medicine and Health Sciences. Data were collected after getting permission from the respective district health offices and taking informed consent from study subjects.

Acknowledgment

We would like to thank Hawassa University Research Directorate and World Vision Ethiopia for financially and technically supporting this research project. We also would like to extend our gratitude to Professor Getachew Dagne and Mr. Samuel Hailu for their unreserved help during data analysis. Our heartfelt gratitude goes to the data collectors and study participants for their unconditional involvement in this study.

References

1. Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008;371(9608):243-60.

2. UNICEF, WHO and World Bank. Levels and trends in child malnutrition: UNICEF/WHO/World Bank Group joint child malnutrition estimates, 2017. Accessed from: http://www.who.int/nutgrowthdb/jme_brochure2017.pdf.ua=1. Accessed: 29 March 2019

3. Shinsugi C, Matsumura M, Karama M, Tanaka J, Changoma M. Factors associated with stunting among children according to the level of food insecurity in the household: a cross-sectional study in a rural community of Southeastern Kenya. BMC Public Health. 2015;15(441):1-10.

4. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, Uauy R, Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013; 382(9890):427-51.
5. Kanjilal B, Mazumdar P, Mukherjee M, Rahman M. Nutritional status of children in India: household socio-economic condition as the contextual determinant. Int J Equity Health. 2010; 9(1):19.

6. Indicators for assessing infant and young child feeding practices: Part 2: measurement. World Health Organization. Dept. of Child and Adolescent Health and Development. Geneva. 2010. 35-37. http://apps.who.int/iris/handle/10665/44306.

7. BezatuMengistie, YemaneBerhane, Alemayehu Worku. Prevalence of diarrhea and associated risk factors among children under-five years of age in Eastern Ethiopia: A cross-sectional study. Open J Prev Med. 2013;3(7):446–53.

8. World Health Organization (WHO). Children: reducing mortality. Fact sheets. Geneva. September, 2018

9. Jemal Haider. Common micronutrient deficiencies among food aid beneficiaries: Evidence from refugees in Ethiopia. Ethiop J Health Dev. 2011;25(3):222–9.

10. Herrador Z, Sordo L, Gadisa E, Buño A, Gómez-Rioja R, Iturzaeta JM, et al. Micronutrient deficiencies and related factors in school-aged children in Ethiopia: A cross-sectional study in Libo Kemkem and Fogera districts, Amhara Regional state. PLoS One. 2014;9(12):1–21.

11. Habte TY, Krawinkel M. Dietary Diversity Score: A measure of nutritional adequacy or an indicator of healthy diet? J Nutr Health Sci.2016; 3(3): 303. doi: 10.15744/2393-
12. Ruel M. Operationalising dietary diversity: a review of measurement issues and research priorities. J Nutr. 2003; 133 (11 Suppl. 2): 3911S–3926S

13. Shrimpton R, Victora CG, Onis M De, Lima C, Blo¨ssner M, Clugston G. Worldwide Timing of Growth Faltering: Implications for. Pediatrics. 2001;107(5):1–7

14. Central Statistical Agency(CSA) Ethiopia and ICF. Ethiopia Demographic and Health Survey. Addis Ababa, Ethiopia, and Rockville, Maryland, USA: CSA and ICF. 2016. 1–555 p.

15. Taylor L. From food crisis to nutrition: challenges and possibilities in Ethiopia’s nutrition sector analysing nutrition governance: Ethiopia Country Report. 2012.

16. Anderson S, Elisabeth F. USAID Office of Food for Peace Food Security Country Framework for Ethiopia FY 2016 – FY 2020. Washington, D.C.: Food Economy Group, 2015.

17. Chemeda Bokora. The role of safety net in ensuring food security: The case of east Harerghe zone. J Behav Econ Financ Entrep Account Transp. 2015;3(2):76–82.

18. Ali D, Saha KK, Nguyen PH, Diressie MT, Ruel MT, Menon P. Household food insecurity is associated with higher child undernutrition in Bangladesh, Ethiopia, and Vietnam, but the effect is not mediated by child dietary diversity. J Nutr. 2013;143 (12):2015–21.
19. Zewditu Getahun, Kelbessa Urga, Timotewos Ganebo, Ayele Nigatu. Review of the status of malnutrition and trends in Ethiopia. Ethiop J Health Dev. 2001; 15(2):55–74.

20. Burchi F, Scarlato M, D’Agostino G. Addressing food insecurity in sub-Saharan Africa: the role of cash transfers. Discussion paper; Germer development institute 17: 2016:1-42.

21. BekaTeshome, Wambui K, Zewditu Getahun, Girum Taye. Magnitude and determinants of stunting in children under-five years of age in food surplus regions of Ethiopia. Ethiop. J. Health Dev. 2009; 23(2):98-106

22. WHO/ UNICEF: Child growth standards and the identification of severe acute malnutrition in infants and children: joint statement by the World Health Organization and the United Nations Children's fund. 2009.

23. Coates J, Swindale A, Bilinsky P. Household Food Insecurity Access Scale (HFIAS) for Measurement of Household Food Access: Indicator Guide (v. 3). Washington, D.C.: Food and Nutrition Technical Assistance Project, Academy for Educational Development, August 2007.

24. Williams MN, Gómez ACG, Kurkiewicz D. Assumptions of Multiple Regression: Correcting Two Misconceptions. Pract Assessment, Res Eval. 2013;18(11):1–14.

25. Batte A, Lwabi P, Lubega S, Kiguli S, Otwombe K, Chimoyi L, et al. Wasting,
underweight and stunting among children with congenital heart disease presenting at Mulago hospital, Uganda. BMC Pediatr. 2017;17(10):1-7.

26. Mandefro Asfaw, Mekitie Wondaferash, Mohammed Taha, Lamessa Dube. Prevalence of undernutrition and associated factors among children aged between six to fifty nine months in Bule Hora district, South Ethiopia. BMC Public Health. 2015;15(41):1-9.

27. Iwanaga Y, Tokunaga M, Ikuta S, Inadomi H, Araki M, Nakao Y, et al. Factors associated with nutritional status in children aged 6-24 mo in Central African Republic-An anthropometric study at health centers in Bangui. J Int Health. 2009; 24(4):289-98.

28. Seedhol AE, Mohamed ES, Mahfouz EM. Determinants of stunting among preschool children, Minia, Egypt. Int Public Heal Forum. 2014;1(2):6-9.

29. Ubeyskara NH, Jayathissa R, Wijesinghe CJ. Nutritional status and associated feeding practices among children aged 6-24 mo in a selected community in Sri Lanka. Eur J Prev Med. 2015; 3(2-1):15-23.

30. Hong R, Banta JE, Betancourt JA. Relationship between household wealth inequality and chronic childhood under-nutrition in Bangladesh. Int J Equity Health. 2006;5(15):1-10.

31. Baig-Ansari N, Rahbar MH, Bhutta ZA. Child’s gender and household food insecurity are associated with stunting among young Pakistani children residing in urban
squatter settlements. Food Nutr Bull. 2014;27(2):114-27.

32. Bork KA, Diallo A. Boys are more stunted than girls from early infancy to 3 years of age in rural Senegal. J Nutr 2017;147:940-7

33. Tefera Belachew, Hadley C, Lindstrom D, Abebe Gebremariam, Michael KW, YehenewGetachew, et al. Gender differences in food insecurity and morbidity among adolescents in southwest Ethiopia. Pediatrics. 2011;127:e398-e405.

34. Hadley C, Lindstrom D, Fasil Tessema, Tefera Belachew. Gender bias in the food insecurity experience of Ethiopian adolescents. SocSci Med. 2009;66(2):427–38.

35. Bosch AM, Baqui AH, van Ginneken JK. Early-life determinants of stunted adolescent girls and boys in Matlab, Bangladesh. J Health Popul Nutr. 2008;26(2):189-99.

36. Islam MM, Sanin KI, Mahfuz M, Ahmed AMS, Mondal D, Haque R, et al. Risk factors of stunting among children living in an urban slum of Bangladesh: findings of a prospective cohort study. BMC Public Health. 2018;18:197

37. Ogle BM, Hung PH, Tuyet HT. Significance of wild vegetables in micronutrient intakes of women in Vietnam: an analysis of food variety. Asia Pac J Clin Nutr. 2001;10(1):21-30.

38. Torheim LE, Barikmo I, Parr CL, Hatl A, Ouattara F, Oshaug A. Validation of food variety as an indicator of diet quality assessed with a food frequency questionnaire for Western Mali. Eur J Clin Nutr. 2003; 57:1283–91.
39. Stewart CP, Iannotti L, Dewey KG, Michaelsen KF, Onyango AW. Contextualising complementary feeding in a broader framework for stunting prevention. Matern Child Nutr. 2013;9(2):27-45.

40. Swindale A, Bilinsky P. Household Dietary Diversity Score (HDDS) for Measurement of Household Food Access: Indicator Guide VERSION 2. 2006. Washington, D.C.: FHI 360/FANTA.

41. Neumann CG, Bwibo NO, Murphy SP, Sigman M, Whaley S, Allen LH, et al. Animal source foods improve dietary quality, micronutrient status, growth and cognitive function in Kenyan school children: background, study design and baseline findings. J Nutr. 2003;133, 3941S–3949S.

42. Murphy SP, Allen LH. Animal source foods to improve micronutrient nutrition and human function in developing countries. J Nutr. 2003;133:3932–5

43. Michaelsen KF, Hoppe C, Roos N, Kaestel P, Stougaard M, Mølgaard C, et al. Choice of foods and ingredients for moderately malnourished children 6 months to 5 years of age. Food Nutr Bull. 2009;30(3).

44. Ejaz MS, Latif N. Stunting and micronutrient deficiencies in malnourished children. J Pak Med Assoc. 2010;60(7):543–7.

45. Rerksuppaphol S, Rerksuppaphol L. Zinc supplementation enhances linear growth in school-aged children: A randomized controlled trial. Pediatr Rep. 2017;9:7294.
46. Umeta M, West CE, Haidar J, Deurenberg P, Hautvast JG. Zinc supplementation and stunted infants in Ethiopia: a randomised controlled trial. Lancet. 2000; Jun 10; 355(9220):2021-6.

47. Imdad A, Bhutta ZA. Effect of preventive zinc supplementation on linear growth in children under 5 years of age in developing countries. BMC Public Health. 2011;11(3):377.

48. Dassoni F, Zerihun Abebe, Ricceri F, Morrone A, Albertin C, Naafs B. High frequency of symptomatic zinc deficiency in infants in northern Ethiopia. Dermatol Res Pract. 2014;1-5 PMC4273532

49. Tadese Melaku, Sewunet Admasu, Tamirat Befikadu, Begashaw Melaku, Fitsum Sebisibe, Habtamu Gebremeskel. Management of children’s acute diarrhea by community pharmacies in five towns of Ethiopia: simulated client case study. TherClin Risk Manag. 2016;12:515–26.

50. Wondimagegne Paulos, Yusuf Haji, Junayde Abdurahman, Yohannes Mihiretie. Factors affecting the presence of adequately iodized salt at home in Wolaita, southern Ethiopia: community based study. Int J Food Sci. 2018;2018:1-9

51. Gidey B , Alemu K , Atnafu A , Kifle M, Tefera Y, Sharma HR. Availability of Adequate Iodized Salt at Household Level and Associated Factors in Rural Communities of LaelayMaychew District, Northern Ethiopia: A Cross Sectional Study. J Nutr Health Sci. 2015 Feb;1(4):1-9. doi: 10.15744/2393-9060.1.403

52. Zimmermann MB. The role of iodine in human growth and development. Semin Cell
53. Fabusoro E, Afolabi W.A.O, Adelekan L.A. Effect of rural women’s workload on care practices and children’s growth: The case of Yewa South Local Government Ogun State, Nigeria. Outlook on Agriculture. 2004; 33; 2: 125-132.

54. Reinbott A, Kuchenbecker J, Herrmann J, Jordan I, Muehlhoff E, Kevanna O, et al. A child feeding index is superior to WHO IYCF indicators in explaining length-for-age Z-scores of young children in rural Cambodia. Paediatr Int Child Health. 2015; 35(2):124-34.

55. Prendergast AJ, Humphrey JH. The stunting syndrome in developing countries. Paediatr Int Child Health. 2014 ;34(4):250-65.

56. Prado EL, Jimenez EY, Vosti S, Stewart R, Stewart CP, Somé J, et al. Path analyses of risk factors for linear growth faltering in four prospective cohorts of young children in Ghana, Malawi and Burkina Faso. BMJ Glob Health. 2019;4:1-11

57. Ersino G, Henry CJ, Zello GA. Suboptimal feeding Practices and high levels of undernutrition among infants and young children in the rural communities of Halaba and Zeway, Ethiopia. Food Nutr Bull. 2016;37(3):409-24.

58. Martorell R, Zongrone A. Intergenerational influences on child growth and undernutrition. Paediatr Perinat Epidemiol. 2012; 26(1):302-14.
### Tables

| Variables                        | Frequency |
|---------------------------------|-----------|
| **Age of the index child**      |           |
| 6-11                            | 124       |
| 12-23                           | 338       |
| **Sex of the index child**      |           |
| Male                            | 224       |
| Female                          | 240       |
| **Marital status**              |           |
| Not married                     | 33        |
| Married/living together         | 396       |
| Divorced/Widowed/Separated      | 35        |
| **Educational status of mother**|           |
| High school and above           | 23        |
| Primary school (1-8)            | 140       |
| No formal education             | 301       |
| **Educational status of father**|           |
| Secondary school and above      | 66        |
| Primary school                  | 164       |
| No formal education             | 234       |
| **Occupation of mother**        |           |
| Housewife                       | 421       |
| Farmer                          | 21        |
| Other employment                | 3         |
| Merchant                        | 16        |
| Daily laborer                   | 3         |
| **Occupation of father**        |           |
| Farmer                          | 137       |
| Other employment                | 20        |
| Merchant                        | 301       |
| Daily laborer                   | 6         |
| **Wealth quintile**             |           |
| Highest                         | 92        |
| Fourth                          | 100       |
| Middle                          | 102       |
| Second                          | 86        |
| Lowest                          | 84        |
| **Mother had own income**       |           |
| Yes                             | 316       |
| **Income of mother /month (in Eth Birr)** (1 US dollar = 27 Eth Birr) | |
| ≥ 500                           | 65        |
| Household food security level | < 500 | 399 |
|--------------------------------|-------|-----|
|                               | Food secure | 154 |
|                               | Mild food insecurity | 78 |
|                               | Moderate and severe food insecurity* | 232 |
| Head of family | Mother | 68 |
| | Father | 396 |
| Family size | <5 | 212 |
|              | ≥ 5 | 252 |
| Number of <5 children | ≤ 2 | 405 |
|                     | >2 | 59 |

*Only two households (0.43%) were severely food insecure

Table 2. Obstetric characteristics of the respondents from food insecure households from the rural communities of Amhara and Oromia Regions, 2018(n = 464)
Table 3. Child feeding practices, sanitation and health characteristics of the index child in rural communities of Amhara and Oromia Regions, 2018 (n=464).

| Variable name | Frequency |
|---------------|-----------|
| Age of the mother at first pregnancy |  |
| <15 | 28 | 6.0 |
| 15-26 | 424 | 91.4 |
| 27-38 | 12 | 2.6 |
| Total number of births |  |
| <5 | 340 | 73.3 |
| ≥ 5 | 124 | 26.7 |
| Number of ANC visits |  |
| ≥ 4 visits | 97 | 20.9 |
| 3 visits | 181 | 39.0 |
| 1-2 visits | 114 | 24.6 |
| Not at all | 72 | 15.5 |
| Number of PNC visits |  |
| ≥ 4 visits | 3 | 0.6 |
| 3 visits | 124 | 26.7 |
| 1-2 visits | 94 | 20.3 |
| Not at all | 243 | 52.4 |
| Birth order of the index child |  |
| First | 73 | 15.7 |
| Second | 112 | 24.1 |
| Third | 94 | 20.3 |
| Fourth | 70 | 15.1 |
| Fifth and above | 115 | 32.8 |
| Delivery place of the index child |  |
| Health facility | 16 | 3.5 |
| Home with HEW | 196 | 42.2 |
| Home with family | 252 | 54.3 |
| Mother had vitamin A supplement after birth of the index child |  |
| Yes | 13 | 2.8 |
| Mother had iron/folate supplement during pregnancy of the index child |  |
| Yes | 276 | 59.5 |

| Variable name | Frequency |
|---------------|-----------|
| Age complementary food started |  |
| <4 mo | 16 |
| 4-6mo | 21 |
| At 6 mo | 244 |
| Question                                                                 | Value |
|-------------------------------------------------------------------------|-------|
| Index child’s 1st complementary food                                    |       |
| Beyond 6mo                                                              | 183   |
| Cow’s milk                                                              | 120   |
| Formula milk                                                            | 11    |
| Cereal Gruel /porridge                                                  | 153   |
| Gruel /porridge mixed                                                    | 154   |
| Family food                                                             | 26    |
| Diet diversity of the index child                                       |       |
| ≥ 4 food group                                                          | 100   |
| <4 food group                                                           | 364   |
| Index child met minimum acceptable diet                                 |       |
| Yes                                                                     | 66    |
| No                                                                      | 398   |
| Meal frequency for children 6-23 mo                                     |       |
| ≥ 4 times                                                               | 94    |
| <4 times                                                                | 370   |
| Frequency of the index child fed animal source foods                    |       |
| Once in a week                                                          | 233   |
| Once in 2 week                                                          | 47    |
| Once in a month                                                         | 41    |
| During holidays only                                                    | 143   |
| Used iodized salt for complementary food preparation                    |       |
| Yes                                                                     | 255   |
| Iodized salt added after cooking                                        |       |
| Yes                                                                     | 120   |
| Index child had respiratory illness in the last 2 weeks                 |       |
| Yes                                                                     | 194   |
| Index child had diarrhea in the last 2 weeks                            |       |
| Yes                                                                     | 174   |
| Index child had treatment from health facility for this diarrheal episode |       |
| Yes                                                                     | 83    |
| Index child who got zinc among those with diarrhea in the last 2 weeks   |       |
| Yes                                                                     | 44    |
| Index child had zinc at least for one prior diarrheal episode            |       |
| Yes                                                                     | 75    |
| Index child had ear infection in the last 2 weeks                       |       |
| Yes                                                                     | 85    |
| Index child immunized for age                                           |       |
| Yes                                                                     | 422   |
| Index child had growth monitoring at least once                         |       |
| Yes                                                                     | 246   |
| Index child received Vitamin A supplement in last 6 mo                   |       |
| Yes                                                                     | 328   |
| Main source of water in the household                                   |       |
| Piped water                                                             | 247   |
| Protected Spring/well                                                   | 138   |
| Unprotected Spring/well                                                 | 57    |
| River/pond/Rain water                                                   | 22    |
| Household used treated drinking water                                   |       |
| Yes                                                                     | 93    |
| Household had latrine                                                   |       |
| Yes                                                                     | 374   |
Mothers washed hands at all critical times: Yes 99

Table 4. The prevalence of stunting, wasting and underweight among children 6-23 mo by age group in rural communities of Amhara and Oromia Regions, 2018 (n=464).

| Age(mo) | Freq. | Stunting |  | Wasting |  | Underweight |  |
|---------|-------|----------|---|---------|---|-------------|---|
|         |       | Moderate | Severe | Moderate | Severe | Moderate | Severe |
|         |       | Freq. (%) |
| 6-11    | 126   | 11 (8.7) | 15 (11.9) | 5 (4) | 9 (7.1) | 20 (15.9) | 4 (3.2) |
| 12-23   | 338   | 92 (27.2) | 82 (24.3) | 24 (7.1) | 19 (5.6) | 72 (21.3) | 31 (9.2) |
| Total   | 464   | 103 (22.1) | 97 (20.5) | 29 (6.25) | 28 (6.1) | 92 (19.8) | 35 (7.5) |

Table 5. Factors associated with stunting among children aged 6-23mo, Amhara and Oromia Regions, Ethiopia, 2018 (n=464)
### Table 6.
Factors associated with wasting among children aged 6–23 mo, Amhara and Oromia Regions, Ethiopia, 2018 (n=464)

| Variables                          | Number stunted | COR [95% CI]          | AOR [95% CI] |
|------------------------------------|----------------|-----------------------|--------------|
|                                    | Yes            | No                    |              |
| Age of index child                 |                |                       |              |
| 12-23mo.                           | 173            | 167                   | 4.31 [2.67,7.07] ** 4.2 |
| 6-11mo.                            | 24             | 100                   | 1            |
| Sex of index child                 |                |                       |              |
| Female                             | 111            | 113                   | 1.72 [1.19,2.50] ** 1.84 [1.23,2.75] |
| Male                               | 87             | 153                   | 1            |
| Total number of births             |                |                       |              |
| ≥5                                 | 64             | 60                    | 1.63 [1.08,2.48] * 1.72 |
| <5                                 | 134            | 206                   | 1            |
| Child treated with zinc at least once |            |                       |              |
| No                                 | 179            | 210                   | 2.51 [1.43,4.38] ** 2.41 [1.23,4.38] |
| Yes                                | 19             | 56                    | 1            |
| Child utilized iodized salt        |                |                       |              |
| No                                 | 106            | 103                   | 1.82 [1.25,2.64] ** 1.55 [1.23,2.75] |
| Yes                                | 92             | 163                   | 1            |
| Diet diversity of index child      |                |                       |              |
| <4 food groups                     | 164            | 200                   | 1.59 [1.02,2.52] * 1.69 [1.02,2.52] |
| ≥4 food groups                     | 34             | 66                    | 1            |
| Treated drinking water             |                |                       |              |
| No                                 | 167            | 204                   | 1.63 [1.01,2.63] * 1.17 [1.01,2.63] |
| Yes                                | 31             | 62                    | 1            |

*Significant at a P-value of <0.05  **Significant at a P-value of <0.01
| Variables                                      | Number wasted | COR [95% CI] | AOR  |
|------------------------------------------------|---------------|--------------|------|
|                                                | Yes           | No           |      |
| Sex of the index child                         |               |              |      |
| Female                                         | 35            | 189          | 1.83 [1.04, 3.23] * | 1.97 |
| Male                                           | 22            | 218          | 1    |      |
| Received growth monitoring at least once       |               |              |      |
| Yes                                            | 23            | 223          | 0.55 [0.31, 0.98] * | 0.60 |
| No                                             | 34            | 184          | 1    |      |
| Family size                                    |               |              |      |
| ≥5                                             | 38            | 214          | 1.80 [1.00, 3.23] * | 1.70 |
| <5                                             | 19            | 193          | 1    |      |
| Maternal income per month                      |               |              |      |
| <500Eth.birr                                   | 53            | 338          | 2.73 [0.94, 7.71]   | 3.29 |
| ≥500Eth.birr                                   | 4             | 69           | 1    |      |
| Treated drinking water                         |               |              |      |
| No                                             | 52            | 319          | 2.86 [1.11, 7.40] * | 3.22 |
| Yes                                            | 5             | 88           | 1    |      |

*Significant at P-value of <0.05

Table 7. Factors associated with underweight among children aged 6-23mo, Amhara and Oromia Regions, Ethiopia, 2018 (n=464)
| Variables                              | Under weight | COR [95% CI]         | AOR  |
|---------------------------------------|--------------|----------------------|------|
|                                       | Yes          | No                   |      |
| Age of index child                    |              |                      |      |
| 12-23 month                           | 101          | 237                  | 1.77 [1.07, 2.93] * | 1.92 |
| 6-11 month                            | 24           | 101                  | 1.77 [1.07, 2.93] * | 1.92 |
| Sex of index child                    |              |                      |      |
| Female                                | 73           | 151                  | 1.70 [1.12, 2.57] * | 1.88 |
| Male                                  | 53           | 187                  | 1.92 [1.14, 3.24]  | 1    |
| Total number of births                |              |                      |      |
| ≥ 5                                   | 43           | 81                   | 1.64 [1.05, 2.56]  | 1.67 |
| < 5                                   | 83           | 257                  | 1.64 [1.05, 2.56]  | 1    |
| Child treated with zinc at least once |              |                      |      |
| No                                    | 114          | 275                  | 2.44 [1.24, 4.79] * | 2.29 |
| Yes                                   | 12           | 63                   | 2.44 [1.24, 4.79] * | 2.29 |
| Diet diversity of the index child     |              |                      |      |
| <4 food groups                        | 110          | 254                  | 2.27 [1.27, 4.05] **| 2.34 |
| ≥ 4 food groups                       | 16           | 84                   | 2.27 [1.27, 4.05] **| 2.34 |
| Maternal income per month             |              |                      |      |
| <500Eth.birr                          | 114          | 277                  | 2.09 [1.08, 4.03] * | 2.34 |
| ≥500 Eth.birr                         | 12           | 61                   | 2.09 [1.08, 4.03] * | 2.34 |

*Significant at a P-value of <0.05  ** Significant at a P-value of <0.01