1 VB Laplace approximation code

The VB Laplace approximation function and its usage is briefly explained below.

1.1 Function Call in R

The function call used to perform an analysis is as follows:

```r
vb_model2_la(
formula, design_mats, alpha_0, beta_0, Sigma_alpha_0, Sigma_beta_0,
LargeSample = FALSE, epsilon = 1e-05)
```

1.2 Named Arguments

The arguments of the function are as follows

- **formula** - Double right-hand side formula describing covariates of detection and occupancy in that order. e.g. Assume that the presence absence data is named y; the detection covariates is contained in a named list W (see below) and the occupancy covariates is stored X. Further suppose that the named lists are named W1, W2, W3 and X1 and X2 respectively. \(y \sim W1 + W2 + W3 \sim X1 + X2 \) would be one example of a suitable formula call. The function does not allow one to fit a model that only contains intercepts at the moment. This option will be included in future.

- **design_mats** - A named list generated by the call `vb_Designs(W, X, y)`.

\(W \) is a named list of data frames of covariates that vary within sites. i.e. The data frames are of dimension \(n \times J \) where each row is associated with a site and each column represents a site visit.
e.g. Suppose W contained three data frames W_1, W_2 and W_3; W\$W1[1,]$ = the covariate values for site 1 for all of the visits. Note that some of the entries might be ‘NA’ meaning that no visit took place at those occasions.

X is a named data frame that varies at site level.

y is an $n \times J$ matrix of the detection, non-detection data, where n is the number of sites, J is the maximum number of sampling periods per site.

NOTE: THE FUNCTION DOES NOT ALLOW THERE TO BE ANY MISSING VALUES IN THE COVARIATE MATRICES IF A SURVEY WAS UNDERTAKEN AT A PARTICULAR LOCATION!!!

- **alpha_0** - Prior mean of the detection covariate coefficients. It is assumed that the detection covariate coefficients have the following prior distribution $\alpha \sim N(\alpha_0, \Sigma_{\alpha_0})$. Here α is viewed as a vector.

- **beta_0** - Prior mean of the occurrence covariate coefficients. It is assumed that the occupancy covariate coefficients have the following prior distribution $\beta \sim N(\beta_0, \Sigma_{\beta_0})$. Here β is viewed as a vector.

- **Sigma_alpha_0** - Prior covariance matrix of the detection covariate coefficients.

- **Sigma_beta_0** - Prior covariance matrix of the occurrence covariate coefficients.

- **LargeSample** - LargeSample==TRUE - indicates that the number of sites is ‘large’ and that an approximation to $B(\mu, \sigma^2)$ is used instead of integrations (otherwise numerical integrations are performed).

- **epsilon** - Convergence measured relative to this quantity.
1.3 The values outputted by the function

- **alpha** - The VB estimate of the posterior mean vector of α. ($s \times 1$ vector)
- **beta** - The VB estimate of the posterior mean vector of β. ($r \times 1$ vector)
- **Sigma_alpha** - The VB estimate of the posterior covariance matrix of the α vector. ($s \times s$ matrix)
- **Sigma_beta** - The VB estimate of the posterior covariance matrix of the β vector. ($r \times r$ matrix)
- **occup_p** - The VB estimate of the posterior occupancy probabilities at the sites considered. ($n \times 1$ vector)
- **Log_mla** - The lower bound of the log marginal log likelihood.
- **Breakcounter** - Breakcounter==1 if the number of iterations to perform the calculations are large. At the moment ‘large’ is viewed as 2000 iterations.

2 A small simulated data set

The following R code could be used to produce a small simulated data set that could be used to undertake the VB Laplace approximations.

```
#A simple example of how to construct y, X and W; the
detection/non-detection data, site covariates and observation covariates
#-----------------------------------------------------------------------
require(MASS)
set.seed(1000)
beta.param = c(-1.85, 1.5, -0.5)
```
n = 5

create 2 site covariates used to model occupancy
x1 = runif(n, -2,2)
x1 = (x1 - mean(x1)) / sd(x1)
x2 = runif(n, -5,5)
x2 = (x2 - mean(x2)) / sd(x2)
X = cbind(rep(1,n), x1, x2)
psi = as.vector(1/(1+exp(-X %*% beta.param))) ## logistic link function used
z = rbinom(n, size=1, prob=psi)

J = 3 # the maximum number of surveys (some sites might have fewer visits)

three observation covariates used to model the detection probs
alpha.param = c(-1.35, 1.0, 0.5, -.25)
w1 = runif(n*J, -5,5)
w1 = (w1 - mean(w1)) / sd(w1)
w2 = runif(n*J, -1,1)
w2 = (w2 - mean(w2)) / sd(w2)
w3 = runif(n*J, 0,5)
w3 = (w3 - mean(w3)) / sd(w3)
W = array(dim=c(n,J,4))
W[,,1] = 1
W[,,2] = w1
W[,,3] = w2
W[,,4] = w3

p = matrix(nrow=n, ncol=J)
y = matrix(nrow=n, ncol=J)
for (j in 1:J)
{
 p[, j] = c(1/(1+exp(-W[,j,] %*% alpha.param)))
 y[, j] = rbinom(n, size=1, prob=z*p[, j])
}

#-----------------------------

Now lets simulate the number of visits to each of the sites
i.e. we need to set some of the y and W entries equal to NA
nvisits<-sample(1:J, n, replace=T)
empty.sites<-which(nvisits!= J)

for (i in 1:length(empty.sites))
{
 #adds NA to sites with visits less than J
 y[empty.sites[i], (nvisits[empty.sites[i]]+1):J] <- NA

 #adds NA to W entries with visits less than J
 W[empty.sites[i], (nvisits[empty.sites[i]]+1):J,] <- NA
}

#Note W[i,,] are the covariate values for site i
#each row is for a specific visit
#--

#An nxJ matrix of the observed measured data,
#where n is the number of sites and J is the
#maximum number of observations per site.
Y.eg<-y
#--

#siteCovs
#A data.frame of covariates that vary at the site level.
#This should have n rows and one column per covariate
X.eg=as.data.frame(cbind(x1,x2))
#--

#obsCovs
#the obsCovs matrix is constructed as per the 'unmarked' package
#i.e. W.eg.l1 is a named list of data.frames of covariates that
#vary within sites.
#i.e. The dataframes are of dimension n by J
#where each row is associated with a site
#and each column represents a site visit.
#e.g. W.eg.l1$W1[1,] = the covariate values for site 1 for all of the
#visits. Note that some of the entries might be 'NA'
#meaning that no visit took place at those occasions.
W1=matrix(NA,nrow=n, ncol=J)
W2=matrix(NA, nrow=n, ncol=J)
W3=matrix(NA, nrow=n, ncol=J)
for (i in 1:n)
{
W1[i,]<- W[i,,2]
W2[i,]<- W[i,,3]
W3[i,]<- W[i,,4]
}

#colnames(W1)<-paste("W1." ,1:J,sep="")
#colnames(W2)<-paste("W2." ,1:J,sep="")
#colnames(W3)<-paste("W3." ,1:J,sep="")

W.eg.l1<-list(W1=W1, W2=W2, W3=W3)
W.eg.l1

#An alternate way of 'viewing' the site covariates is as follows:
#Create a list element; one for each site, where the data
#for each site have been stacked one below the other either as
#a dataframe or as a matrix. e.g.
#W.eg.ls[[2]] is the data for site 2.

W.eg.l2=list(list())
for (i in 1:n)
{
if (nvisits[i]!=1)
{
dframe<-as.data.frame(W[i,1:nvisits[i],][-1])
}else
{
dframe<-as.data.frame(matrix(W[i,1:nvisits[i],][-1], nrow=1))
}

names(dframe)<-c("w1","w2","w3")
W.eg.l2[[i]]<-dframe
}

6
Two different ways of representing the observation covariates

W.eg.l1
W.eg.l2

If the site covariates are provided as per W.eg.l1
then we can construct W.eg as follows

(here W.eg is the way in which 'vb_model2_la')
creates the site covariate matrix W)
We assume that all sites are visited at least once
although all might not be visited J times
We further assume that there are no missing covariate
values for those occasions sites are visited

W.temp <- NULL
n <- length(W.eg.l1)
for (i in 1:n)
{
 W.temp <- cbind(W.temp, W.eg.l1[[i]])
}
W.temp

nvisits <- apply(W.eg.l1[[1]], 1, function(x) {length(na.omit(x))})
nvisits

W.eg <- NULL
for (i in 1:n)
{
 W.eg <- rbind(W.eg, matrix(c(na.omit(W.temp[i,])), nrow = nvisits[i]))
}
W.eg

If the site covariates are provided as per W.eg.l2
then we can construct W.eg as follows

W.eg <- NULL
n <- length(W.eg.l2)
for (i in 1:n)
{
 W.eg<- rbind(W.eg, W.eg.l2[[i]])
}
W.eg

SimData<- list(y=Y.eg, X=X.eg, W.eg.l1=W.eg.l1, W.eg.l2=W.eg.l2, W_vb=W.eg)

The simulated data is stored in a list named SimData and its contents are displayed below.

> SimData
$y
 [,1] [,2] [,3]
[1,] 0 NA NA
[2,] 0 1 0
[3,] 0 NA NA
[4,] 0 1 0
[5,] 0 0 NA

$X
 x1 x2
1 1.0468539 1.3166989
2 -1.3879419 0.7589495
3 0.7897816 -0.5628716
4 0.1315297 -0.4178415
5 -1.1047705 -1.1515037 -1.0836617

$W.eg.l1
$W.eg.l1$W1
 [,1] [,2] [,3]
[1,] -1.1475341 NA NA
[2,] 0.3516124 1.4671572 0.2061681
[3,] 0.8607333 NA NA
[4,] -1.1047705 -1.1515037 -1.0836617
[5,] 0.6777174 0.5505103 NA
$W.eg.l1$W2

```
[,1]     [,2]     [,3]
[1,] 0.08380091 NA       NA
[2,] -1.61591051 -1.7122869 -0.0359153
[3,]  0.06444337 NA       NA
[4,]  1.39241296  0.1392068  0.2994426
[5,] -0.10518068 -0.7375655  NA
```

$W.eg.l2$W3

```
[,1]     [,2]     [,3]
[1,] 0.6508060 NA       NA
[2,] 0.6021102  0.5024673  0.6489031
[3,] -0.0692492 NA       NA
[4,] -1.5268438 -0.2837397  1.4945716
[5,] -0.3372867  0.2584308  NA
```

$W.eg.l2[[1]]$

```
w1     w2     w3
1 -1.147534 0.08380091 0.650806
```

$W.eg.l2[[2]]$

```
w1     w2     w3
1 0.3516124 -1.6159105 0.6021102
2 1.4671572 -1.7122869 0.5024673
3 0.2061681 -0.0359153 0.6489031
```

$W.eg.l2[[3]]$

```
w1     w2     w3
1 0.8607333 0.06444337 -0.0692492
```

$W.eg.l2[[4]]$

```
w1     w2     w3
1 -1.104771  1.3924130 -1.5268438
2 -1.151504  0.1392068 -0.2837397
3 -1.083662  0.2994426  1.4945716
```

$W.eg.l2[[5]]$
The following R code could be used as an example of how to use the VB code in order to undertake a small analysis.

```r
## Load the data into your workspace
##-------------------------------------
#This data set is stored as a supplementary information document
#First download the file and then save it into your working directory
#before running the rest of the script
load("S2_Data.rda")

#Set Uninformative priors
#------------------------
#Coefficients in the detection model
alpha_0 <- matrix(0, ncol=1, nrow=4)
#Covariance matrix of the coefficients in the detection model
```
Sigma_alpha_0 <- diag(4)*1000
Coefficients in the occupancy process
beta_0 <- matrix(0, ncol=1, nrow=3)
Covariance matrix of the coefficients in the occupancy model
Sigma_beta_0 <- diag(3)*1000

Construct the required matrices using vb_Designs
#--
Ensure that the function 'vb_Designs' is stored in the workspace
The function is included here if this was not done

vb_Designs<-function(W, X, y)
{
 # create the required 'response' and 'regressor matrices'
 # using all of the X and W data
 # the output is stored as a named list

 # create the Y matrix that will be used
 Y<-matrix(na.omit(matrix(t(y), ncol=1)))
 pres_abs <- apply(y,1,max,na.rm=T) # check if this will work for NA's

 # create the W matrix
 W.temp<-NULL
 nv<-length(W)
 for (i in 1:nv){W.temp<-cbind(W.temp, W[[i]])}

 nvisits<-apply(W[[1]],1,function(x){length(na.omit(x))})
 n<-length(nvisits)

 W.out<-NULL
 for (i in 1:n)
 {
 W.out<-rbind(W.out, matrix(c(na.omit(W.temp[i,])), nrow=nvisits[i]))
 }
 colnames(W.out)<-names(W)

 list(Y=as.data.frame(Y), X=as.data.frame(X), W=as.data.frame(W.out),
 Names=c(colnames(X), colnames(W.out)), nvisits=nvisits,)
pres_abs=pres_abs)
}
design_mats<-vb_Designs(W=SimData2$W.eg.l1, X=SimData2$X, y=SimData2$y)

Here we use the large sample approximation and run the VB algorithm
#---
Assume that the formula used will be of the following form:
formula1<- y~X1+X2~W1+W2+W3
The occupancy model uses 2 covariates, X1 and X2; while
the detection model uses 3 covariates W1, W2 and W3
Intercepts are included in both models
The function does not allow one to repress the intercept term

ensure that the 'vb_model2_la' function is in the workspace
vb_fit<-vb_model2_la(y~X1+X2~W1+W2+W3, design_mats=design_mats,
 alpha_0=alpha_0, beta_0=beta_0,
 Sigma_alpha_0=Sigma_alpha_0, Sigma_beta_0=Sigma_beta_0,
 LargeSample=TRUE, epsilon=1e-5)

The detection model parameters
vb_fit$alpha

The occupancy model parameters
vb_fit$beta

The respective covariance matrices
vb_fit$Sigma_alpha
vb_fit$Sigma_beta

The approximate conditional occupancy probabilities
plot(vb_fit$occup_p, ylab="Occupancy prob", xlab="Site number")