The impact of *Rhodiola rosea* on biomarkers of diabetes, inflammation, and microbiota in a leptin receptor-knockout mouse model

Mahtab Jafari¹, Jasmin Grace Juanson Arabit¹, Robert Courville¹, Dara Kiani², John M. Chaston³, Cindy Duy Nguyen¹, Nilamani Jena⁴, Zhong-Ying Liu⁴, Prasanthi Tata⁴ & Richard A. Van Etten⁴

Type 2 diabetes (T2D) is a metabolic disease that currently ranks as one of the largest concerns of global public health, affecting an estimated 476 million people worldwide¹. With both genetic and environmental factors contributing to this complex disease, diabetes is a leading cause of mortality in many countries and globally impacts life expectancy in both developed and developing nations³,⁴. One of the hallmarks of the disease is hyperglycemia resulting from defects in insulin secretion, insulin action, or both³. Of the three forms of clinical diabetes, the vast majority (about 90%) of patients have type 2 diabetes (T2D), which is characterized by insulin resistance⁵. Whereas there are many environmental and behavioral factors that modulate genetic susceptibility to this form of diabetes, the prevalence of T2D has risen steadily in recent decades⁶. Due to rising health costs associated with the increasing incidence and prevalence of diabetes worldwide⁷, identifying and evaluating safe and cost-effective therapeutic interventions in the management of T2D is of increasing importance. Current treatment algorithms for T2D include lifestyle changes, as well as oral and parenteral drugs⁷. However, many current treatments have significant limitations or side effects that can impact this large patient population. Although metformin is first-line treatment for T2D, it has side effects including nausea and diarrhea and is contraindicated in patients predisposed to lactic acidosis⁸,⁹. Insulin secretagogues such as sulfonylureas and meglitinides tend to lose their efficacy over time due to beta cell failure⁸,¹⁰, while alpha-glucosidase inhibitors, thiazolidinediones,
Results

Rhodiola rosea alters glucose homeostasis in diabetic *db/db* mice. To assess the effects of *Rhodiola rosea* on a mouse model of T2D, we treated a cohort of 6 week-old leptin receptor-knockout (db/db) mice with an extract of *R. rosea* that was verified for quality based on validated biomarkers (see “Methods”), administered daily at a dose of 25 mg/kg by oral gavage for 4 weeks. The timeline of the study is depicted in Fig. 1. Control mice received gavage with water. We chose oral gavage as the route of administration over adding the extract to food to allow more precise control of the amount of *R. rosea* administered. Following completion of treatment and dipeptidyl peptidase-4 inhibitors have unique mechanisms of action, but adverse effects such as weight gain, heart failure, and gastrointestinal issues have led to poor compliance with therapy11–14. Thus, there is a need for new therapeutic interventions in T2D that are safe and effective.

There is significant evidence that inflammation plays a central role in the pathogenesis of T2D through two distinct pathways15. Obesity, specifically visceral adiposity, causes systemic inflammation through infiltration of adipose tissue by macrophages16,17 and production of pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6, and CCL218,19, which act as antagonists of insulin signaling20. Recent studies also suggest that differences in the human gut microbiome between normal and diabetic subjects are linked to systemic inflammation through altered gut integrity22,23, increased circulating gram-negative bacteria and endotoxin22,24, as well as lipopolysaccharide (LPS)-induced inflammatory cytokine secretion through TLR-4 signaling24,25. Evidence in humans also suggests that certain gut microbiome compositions may predispose individuals to conditions such as obesity and diabetes26–28. As crucial components that moderate host health and physiology, the gut microbiome can contribute to inflammation, alterations of intestinal linings, dyslipidemia, and a wide variety of other changes29. However, studies also indicate that modulation of the gut microbiome can decrease LPS-induced systemic inflammation in a mouse T2D model, thereby counteracting these changes25. Together, these observations suggest that targeting inflammation through the microbiome could be a novel approach to treating T2D27,28.

Plant-derived therapeutics such as cinnamon and curcumin extracts have been shown to have potential anti-diabetic properties, although their efficacy has not been evaluated in randomized clinical trials29,30. The adaptogenic plant *Rhodiola rosea* is used as a medicinal in traditional medical practices worldwide and has been shown to have anti-inflammatory and gut microbiome-modulating properties31–33. As an adaptogen, *R. rosea* represents an important category of pharmacological substances that are known to aid the body in resisting a wide variety of stressors (i.e. biological, chemical, physical, etc.) to maintain homeostasis and stabilize physiological processes that may be disrupted32. *Rhodiola rosea* extract appears to be safe in human studies34–36, which makes it an attractive candidate for the treatment of T2D. *Rhodiola rosea* extended lifespan in several animal models including worms, snails, and flies37–39, suggesting complex effects on the insulin signaling pathway. However, the effects of this plant extract on an animal model of diabetes have not yet been evaluated.

Here, we investigated the effects of a root extract from *R. rosea* in a Leptin receptor knockout (db/db) mouse model of T2D. Leptin is a key adipokine responsible for maintenance of energy homeostasis and body mass, whereas mice lacking the Leptin receptor display hyperphagia and consequently develop obesity, visceral adiposity, hyperglycemia, and hyperinsulinemia41–43. In other mouse models, deficiencies in Leptin as well as beta-cell dysfunction have been linked to T2D, suggesting that this adipokine plays a key role in the pathogenesis of diabetes44. Like human diabetics, db/db mice show augmented expression of the differentiation marker Aldh1a3 and reduced nuclear expression of the transcription factor Nkx6.1, and exhibit hyperglycemia compared to age-matched congenic non-db/db mice45. These observations make the db/db mouse model suitable for the goals of this study.
at 10 weeks of age, both *R. rosea*-treated and control *db/db* mice exhibited fasting hyperglycemia, with fasting blood glucose levels at 11 weeks of age significantly lower in *R. rosea*-treated mice than in control mice (Fig. 2).

When subjected to a parenteral glucose challenge (glucose tolerance test, GTT) administered at the conclusion of treatment at week 10, there was no further elevation in blood glucose in either group, perhaps due to the extremely high fasting blood glucose levels in these mice, with a subsequent modest decrease in glucose levels over 120 min that might reflect induction of an endogenous insulin response (Fig. 3).

Following a week of recovery, we tested the response of the two treatment cohorts to an exogenous insulin challenge (insulin tolerance test, ITT) at 11 weeks of age, 1 week after supplementation had ended (Fig. 4). *Rhodiola rosea*-treated mice showed a continuous decline in blood glucose levels over the 2 h period following insulin administration, with mean glucose values below those of water-treated mice at every time point (Fig. 4a). By contrast, the control mice exhibited an initial steeper decline in blood glucose in response to insulin (~33% decrease at 30 min; Fig. 4b) but a subsequent increase in blood glucose levels over the following 90 min. These results suggest that *R. rosea* treatment alters the response to insulin in diabetic *db/db* mice in a complex manner, resulting in a more prolonged response to insulin.

Weight loss does not account for the effect of *Rhodiola rosea* on *db/db* mice. To assess whether changes in glucose homeostasis of *R. rosea*-supplemented mice were due to a decrease in obesity, we measured
the body mass of the mice on a weekly basis during the study, beginning at the time of treatment initiation at week 6 (Fig. 5). The two cohorts had very similar mean weight before starting treatment, as expected. Treatment with \textit{R. rosea} was associated with a transient decrease in weight, followed by a recovery in weight gain over time after week 8. Although the mean body weight of \textit{R. rosea}-treated \textit{db/db} mice was lower than control water-treated mice in weeks 8 through 14 of the study, these differences were not statistically significant.

\textit{Rhodiola rosea} modestly modulates the fecal microbiome of \textit{db/db} mice. To assess the effect of \textit{R. rosea} on the fecal microbiome of \textit{db/db} mice, we collected serial stool samples before treatment (week 6) and at weeks 7, 8 and 12 (Fig. 1) from females of the two cohorts and analyzed the composition of the microbial community of the feces with 16S rRNA amplicon next-generation sequencing. The microbiome of both cohorts were dominated by \textit{Bacteroidetes} and \textit{Firmicutes}, and most of the reads could be designated as amplicon sequence variants (ASVs) within four major taxonomic assignments: the families \textit{Rikenellaceae} and \textit{S24-7} (\textit{Bacteroidetes}), and the family \textit{Lachnospiraceae} and genus \textit{Lactobacillus} (\textit{Firmicutes}). Compared to the treatment, time of sample collection accounted for the most variation in the microbiota composition of water and \textit{R. rosea}-treated mice (Supplementary Fig. 1). When the microbiota composition of the two cohorts was subjected to Bray–Curtis analysis46, which does not account for phylogenetic relationships, there was a significant effect of \textit{R. rosea} treatment on the fecal microbiome of \textit{db/db} mice (Fig. 6 and Table 1). The only taxa that varied with time and treatment were reads assigned to the \textit{Desulfovibrionales}, clustered at the order level, which were more abun-

Figure 4. Altered insulin tolerance in \textit{Rhodiola rosea}-treated \textit{db/db} mice. Insulin tolerance test (ITT) of \textit{db/db} mice. ITT was conducted at 11 weeks of age. Following a 4 h fast, mice were injected intraperitoneally with 0.75 IU/kg insulin. Blood was sampled pre-injection and at 30, 60 and 120 minutes post-injection and glucose levels determined. The difference between the two data sets is significant ($P<0.05$, one-way repeated measures ANOVA; \(n=7\) for water and \(n=11\) for \textit{R. rosea}-treated).

Figure 5. Effect of \textit{Rhodiola rosea} treatment on body weight of \textit{db/db} mice. Mice in each cohort (\(n=8\) water-treated, \(n=11\) \textit{R. rosea}-treated) were weighed weekly starting just before initiation of treatment (week 6). None of the paired differences in weight were significant (one-way repeated measures ANOVA).
dant in *R. rosea*-treated mice than control mice (Supplementary Fig. 2). While a previous study demonstrated reduction in *Desulfovibrionales* abundance in the intestinal microbiota of BALB/c mice following treatment with salidroside\(^47\), a glycoside found in *R. rosea*, the difference in *Desulfovibrionales* abundance was observed before *R. rosea* was administered, suggesting the changes might be attributed to differences in microbiota composition before the experiment began (e.g. early cage effects) rather than to *R. rosea* treatment. Together, these findings identify modest but significant variation in the composition of the mouse fecal microbiota associated with *R. rosea* treatment.

Rhodiola rosea decreases circulating lipopolysaccharide levels and a marker of inflammation. To determine whether the changes of the fecal microbiota associated with *R. rosea* treatment had any physiological consequences, we determined the lipopolysaccharide (LPS) content from serum samples from the two cohorts via a limulus amoebocyte lysate (LAL) assay. Treatment with *R. rosea* decreased the LPS levels in the serum by almost 50% (Fig. 7a). Whereas circulating LPS (derived from gram-negative bacteria) triggers production of inflammatory cytokines by tissue macrophages and other cells, to further observe inflammation levels exhibited by the *db/db* mice, we determined if *R. rosea* treatment was associated with changes in C-reactive protein (CRP), an inflammatory marker exclusively produced by hepatocytes. Similar to LPS, *R. rosea* treatment decreased hepatic CRP transcript levels by about 40% (Fig. 7b).

Discussion

The goal of this study was to evaluate the impact of *R. rosea*, a medicinal plant of emerging interest and possible therapeutic value, on the phenotype and the fecal microbiota of the *db/db* mouse model of T2D. Although this study shares a common format with a number of published microbiota-disease interaction articles\(^48-51\), it is one of the few studies that evaluates the impact of a botanical extract on the fecal microbiota throughout the progression of T2D. The format of our study was correlative and associative but the results may serve as the basis for future mechanism-based studies. We elected to use *db/db* mice for this study to test whether *R. rosea* can improve glucose homeostasis in a T2D model that is similar to severe and advanced human T2D in terms of visceral adiposity and insulin resistance, without resorting to a high-fat diet or other dietary manipulations. The use of this severe model may have prevented us from observing beneficial effects of *R. rosea* that might be relevant to less severe phenotypes of diabetes (i.e., pre-diabetes).
Desulfovibrionales species from the order have been associated with the pathophysiology of T2D, and R. rosea treatment significantly altered the response of db/db mice to exogenous insulin in a complex fashion, manifested as a decrease in acute blood glucose lowering but a sustained hypoglycemic response that persisted over 2 h. These effects were not a consequence of decreased food intake and reduction in obesity. Taken together, these results suggest that administration of R. rosea may favorably modulate the T2D phenotype, either by improving the function of insulin-responsive tissues in db/db mice or ameliorating the exhaustion of pancreatic beta cells that is observed in this model.

Multiple studies have demonstrated major changes in the gut microbiota during the development of obesity and T2D in humans, including significantly reduced proportions of phylum Firmicutes and class Clostridia, in addition to compositional changes in the microbiota. In addition, the presence of sulfate-reducing bacterial species from the Desulfovibrionales order has been associated with the pathology of T2D. db/db mice display elevated levels of gut bacteria from the S24-7 family compared to wild-type mice and we observed a similar trend, with S24-7 bacteria dominating the composition of the fecal microbiome in both cohorts at all time points (Supplementary Fig. 1). While Bray–Curtis analysis demonstrated significant effects of R. rosea treatment on the db/db fecal microbiome (Fig. 6), our previous studies suggest that R. rosea does not modulate the gut microbiome through direct anti-microbial activity, as the plant extract did not suppress growth when tested on bacteria isolated from the Drosophila gut.

As a consequence of changes in the local microbiome, gut integrity and intestinal permeability may be lowered through multiple mechanisms, leading to endotoxemia and chronic inflammation that is postulated to contribute to the pathogenesis of T2D. Mice with obesity induced by diet or genetic mutation (db/db) also have impaired gut integrity and increases in circulating LPS and inflammatory cytokines. Importantly, we observed significantly decreased levels of circulating LPS and decreased hepatic CRP transcripts in mouse liver, calculated by the ΔΔCt method (n = 6 for water-treated and n = 5 for R. rosea-treated mice).

In conclusion, while previous studies have illustrated that R. rosea has anti-inflammatory and gut microbiome-modulating properties and can extend lifespan in several animal models, the present study demonstrates that short-term exposure to R. rosea has beneficial effects on glucose homeostasis in the Leptin receptor knockout (db/db) mouse model of severe T2D, and suggests a possible mechanism of action. While only a modest modulation of the fecal microbiome was observed in this study, we hypothesize that these changes may have improved the integrity of the gut barrier, leading to decreased systemic inflammation. Rhodiola rosea is a good candidate for further investigation as a potential treatment for T2D, but further mechanistic studies in mice, and ultimately human clinical trials, are indicated.

Methods

All methods were performed in accordance with applicable guidelines and regulations.

Mouse strains and handling. BKS.Cg-Dock7m^{tm1fs} Lepr^{db/hi} and C57BL/6J mice were obtained from the Jackson Laboratory (Bar Harbor, ME). Lepr^{db/hi} mice were bred to generate homozygous Lepr^{db}/Lepr^{hi} (db/db) pups which were used to model T2D. During the study, mice were group-housed by sex in microisolator cages with filter tops (Techniplast) on a ventilated rack, provided with contact wood chip bedding (autoclaved Envigo Teklad corncob, 1/8 in.) and were allowed ad libitum access to food (Purina rodent chow #5001) and RO water. The animal room was maintained in 12 h light/dark cycles (0630 on/1830 off) at a temperature of 72°F ± 2°F.
humidity of 50% ± 5%. Enrichment was provided as two Nestlets (6 g, from Ancare) per cage. The animal facility was a SPF barrier facility; the health of the mice was monitored twice weekly by staff, testing for pathogens was done by monitoring extract dust and sentinels exposed to dirty bedding. Surveillance pathogen testing included Sendai virus, MHV, MPV, PVM, Reo-3, Mycoplasma, TMEV, LCMV, MVV, MNV, MKPV, EDIM, Ectromelia, pinworms, fur mites, Helicobacter, C. bovis, and S. muis.

Mice were weaned when they were 3 weeks old, and entered into the study at 6 weeks of age. At that point, mice were weighed, and mice of the same size (36 ± 1.5 g) randomly assigned to control (water) or experimental (R. rosea) treatment, with equal numbers of males and females per group. A cohort size of n = 9 was predicted to give 90% power to detect a decrease in fasting blood glucose from 800 to 600 mg/dL given an estimated standard deviation of 150 at a significance of α = 0.05 (one-sample t-test). At the end of the study, mice were humanely euthanized by a AVMA-approved method (CO2 asphyxiation using a gradual-fill method followed by cervical dislocation). The study was approved by the Institutional Animal Care and Use Committee (IACUC) of UCI (Protocol #AUP-16-52). All experiments were performed in accordance with guidelines from UCI IACUC, U.S. Dept. of Agriculture APHIS, and ARRIVE version 2.0 (https://arriveguidelines.org).

Study timeline. The study timeline is summarized in Fig. 1. Mice were administered either water (control) or 25 mg/kg R. rosea extract (treatment) by oral gavage daily for the 4 weeks of treatment, initiated when the mice were 6 weeks old and continued until the mice were 10 weeks old. This dose was selected based on our own preliminary dose-finding work and previously published studies where R. rosea was evaluated in rodent diabetes models57,58. The quality of the R. rosea extract was verified by HPLC that showed the extract contained 1.3% salidroside and 3.9% rosavins, consistent with a high-quality extract (data on file). Fecal samples were collected at 6 weeks of age (prior to treatment), 7 weeks of age, 8 weeks of age and 12 weeks of age. The glucose tolerance test (GTT) was performed at week 10 and insulin tolerance test (ITT) was performed at week 11. Mice were sacrificed and subjected to necropsy at week 14.

Glucose tolerance test (GTT) and insulin tolerance test (ITT). Given the importance of in vivo mouse models for studying the pathogenesis of T2D and various treatment interventions, several methods have been developed to investigate glucose tolerance, as well as the secretion and action of insulin in these models59. To ascertain potential differences between treatment and control groups with regards to glucose homeostasis, both glucose and insulin tolerance tests were performed. Four hours before the assays were performed, the food was removed to induce a state of fasting. Mice were placed briefly in an immobilization device without anesthesia, and blood samples (~2 µL) obtained from the mouse tail vein punctured by a 21 Ga needle. The first drop of blood was wiped away, and the second drop used to record values. Samples were blinded before determination of glucose blood glucose levels using an AlphaTrak2 Blood Glucose Monitoring System. Blood glucose values were recorded 30, 60, and 120 min after intraperitoneal injection of either 0.5 g/kg glucose (5 µL per gram body weight of a 10% solution) or 0.75 IU/kg (3 µL per gram body weight of 0.25 IU/mL insulin stock). The number of mice utilized was 11 for the R. rosea-treated cohort and 7 water-treated control mice. Data were plotted using GraphPad Prism v8, statistical analysis was done in SAS using one-way repeated measures ANOVA.

Body mass assay. Mice from both treatment cohorts (n = 8 for water-treated, n = 11 for R. rosea-treated) were weighed weekly from weeks 6–14. Data from male and female mice in each cohort were pooled and plotted using GraphPad Prism v8. Statistical analysis was performed in SAS using one-way repeated measures ANOVA.

Microbiome analysis. Fecal samples from female mice were collected at 6 weeks of age (prior to treatment), 7 weeks of age, 8 weeks of age, and 12 weeks of age (Fig. 1). DNA was extracted using the Zymobiomics Mini DNA kit. 16S rRNA amplicon PCR was performed, targeting the V4-V5 region using the EMP primers 515F (barcoded) and 926R. The samples were prepared into a library that was sequenced at the UC Irvine Genomics High Throughput Facility on an Illumina MiSeq, using paired-end 300 bp v3 sequencing chemistry. The raw sequence data were imported into QIIME2 (qiime2.org)62,63 and demultiplexed64. This bioinformatics platform has recently been rewritten and reengineered for the next generation of microbiome sequencing, facilitating taxonomic and phylogenetic analyses. While dozens of software packages written in various programming languages are often needed for comprehensive analyses of this type of sequencing data, QIIME2 allows for “sequence quality checking, denoising, taxonomic classification, alignment, and phylogenetic tree building”—allowing for seamless analysis, description, and quantification of microbial communities64. The sequences were assigned a taxonomic classification using the q2-feature-classifier65 on a GreenGenes database downloaded in July 2020 from the QIIME2 website (qiime2.org)64. A total of 6,352,455 read pairs passed Illumina quality filters. However, the quality scores of the reverse reads were generally lower than the forward reads, and no read pairs passed DADA2 quality filter steps65. Therefore, we analyzed the data only using the forward reads, which had higher average quality scores than the reverse reads. Forward reads that passed quality filtering and denoising by default DADA2 parameters in QIIME2 were rarefied to 11,390 reads per sample and beta-diversity distance metrics were calculated using QIIME266,67,68 (Supplementary Fig. 3). As part of calculating the Unifrac beta-diversity metrics we constructed a phylogenetic tree with fasttree268 based on maft alignment69. Permutational multivariate analysis of variance (PERMANOVA)70 and analysis of microbial communities (ANCOM)71 analyses were performed in R.

Limulus amebocyte lysate assay of serum LPS. Serum samples were obtained at week 14 (Fig. 1) from n = 6 R. rosea-treated mice and n = 9 control water-treated mice. Samples were blinded, diluted 40-fold, and
LPS levels determined using the Pierce™ Chromogenic Endotoxin Quant Kit according to the manufacturer’s recommended protocol. Data were plotted and analyzed using GraphPad Prism v8.

CRP transcript assay. Mice were sacrificed at week 14 (Fig. 1) and RNA extracted from liver tissue using Trizol. A total of 5 samples were collected from *R. rosea*-treated mice and 6 samples from control water-treated mice. Samples were blended and the RNA extract was treated with DNA-free™ DNA Removal Kit from Invitrogen to remove any contaminating DNA. A cDNA library was generated with the iScript™ cDNA Synthesis Kit from Bio-Rad. qPCR was performed on a BioRad MJ Mini Personal Thermal Cycler with iQ SYBR Green Supermix. The PCR amplification program consisted of an initial denaturation set at 94 °C for 3 min, followed by 40 three-step cycles at 94 °C for 10 s, 60 °C at 30 s and at 72 °C for 45 s. The ΔΔCt Method was used to quantify the relative expression of genes of interest46. The CRP (gene of interest) and GAPDH (reference gene) primers were derived from PrimerBank (Supplementary Table 1). Data were plotted and analyzed using GraphPad Prism v8.

Ethical statement. All experiments involving laboratory mice were carried out in compliance with ARRIVE guidelines 2.0 and with the approval of the UCI Institutional Animal Care and Use Committee (UCI IACUC; Animal Welfare Assurance # A3416-01) under the auspices of protocol AUP-16-52 (Van Etten laboratory; approval date 13 December 2016).

Data availability

16S rRNA metagenomic data are deposited in the NCBI Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra), accession # PRJNA848938. CRP transcript data are deposited in DRYAD (https://datadryad.org), https://doi.org/10.7280/D1FX2D. Other data in this manuscript are freely available to qualified researchers by contacting the lead author at mijafari@hsuci.edu.

Received: 19 December 2021; Accepted: 3 June 2022
Published online: 22 June 2022

References

1. Lin, X. *et al.* Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. *Sci. Rep.* 10, 14790 (2020).
2. Manibya, M. *et al.* The play of genes and non-genetic factors on type 2 diabetes. *Front. Public Health* 7, 349 (2019).
3. Association, A. D. Diagnosis and classification of diabetes mellitus. *Diabetes Care* 36(Suppl 1), S67–S74 (2013).
4. Murea, M., Ma, L. & Freedman, B. I. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. *Rev. Diabet. Stud.* 9, 6–22 (2012).
5. Smyth, S. & Heron, A. Diabetes and obesity: The twin epidemics. *Nat. Med.* 12, 75–80 (2006).
6. Association, A. D. Economic costs of diabetes in the U.S. in 2017. *Diabetes Care* 41, 917–928 (2018).
7. Marín-Péralver, J. J., Martín-Timón, I., Sevilla-Collantes, C. & Del Cañizo-Gómez, F. J. Update on the treatment of type 2 diabetes mellitus. *World J. Diabetes* 7, 354–395 (2016).
8. Lee, H. & Ko, G. Effect of metformin on metabolic improvement and gut microbiota. *Appl. Environ. Microbiol.* 80, 5935–5943 (2014).
9. Takahashi, A. *et al.* Sulfonylurea and glinide reduce insulin content, functional expression of K(ATP) channels, and accelerate apoptotic beta-cell death in the chronic phase. *Diabetes Res. Clin. Pract.* 77, 343–350 (2007).
10. Maedler, K. *et al.* Sulfonylurea induced beta-cell apoptosis in cultured human islets. *J. Clin. Endocrinol. Metab.* 90, 501–506 (2005).
11. Chiasson, J. L. *et al.* Acarbose treatment and the risk of cardiovascular disease and hypertension in patients with impaired glucose tolerance: the STOP-NIDDM trial. *JAMA* 290, 486–494 (2003).
12. Abe, M., Okada, K. & Soma, M. Antiadipetic agents in patients with chronic kidney disease and end-stage renal disease on dialysis: Metabolism and clinical practice. *Curr. Drug Metab.* 12, 57–69 (2011).
13. Bogacka, I., Xie, H., Bray, G. A. & Smith, S. R. The effect of pioglitazone on peroxisome proliferator-activated receptor-gamma target genes related to lipid storage in vivo. *Diabetes Care* 27, 1660–1667 (2004).
14. Rosenwater, R. F., Sultan, S., Sutton, D., Choksi, R. & Epstein, B. J. SGLT-2 inhibitors and their potential in the treatment of diabetes. *Diabetes Metab. Syndr. Obes.* 6, 453–467 (2013).
15. Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. *Annu. Rev. Immunol.* 29, 415–445 (2011).
16. Sweet, M. J. & Hume, D. A. Endothelin signal transduction in macrophages. *J. Leukoc. Biol.* 60, 8–26 (1996).
17. Xu, H. *et al.* Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. *J. Clin. Invest.* 112, 1821–1830 (2003).
18. Shoelson, S. E., Lee, J. & Goldfine, A. B. Inflammation and insulin resistance. *J. Clin. Investig.* 116, 1793–1801 (2006).
19. Berg, A. H. & Scherer, P. E. Adipose tissue, inflammation, and cardiovascular disease. *Circ. Res.* 96, 939–949 (2005).
20. Peraldi, P., Hotamisligil, G. S., Buurman, W. A., White, M. F. & Spiegelman, B. M. Tumor necrosis factor (TNF)-alpha inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. *J. Biol. Chem.* 271, 13018–13022 (1996).
21. Qin, J. *et al.* A metagenome-wide association study of gut microbiota in type 2 diabetes. *Nature* 495, 55–60 (2012).
22. Cani, P. D. *et al.* Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2 driven improvement of gut permeability. *Gut* 58, 1091–1103 (2009).
23. Kirschman, L. J. & Milligan-Myhr, K. C. The costs of living together: Immune responses to the microbiota and chronic gut inflammation. *Appl. Environ. Microbiol.* 85, e02147-18 (2019).
24. Cani, P. D. *et al.* Metabolic endotoxia initiates obesity and insulin resistance. *Diabetes* 56, 1761–1772 (2007).
25. Cani, P. D. *et al.* Changes in gut microbiota control metabolic endotoxia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. *Diabetes* 57, 1470–1481 (2008).
26. Musso, G., Gambino, R. & Cassader, M. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. *Annu. Rev. Med.* 62, 361–380 (2011).
27. Kalliomäki, M., Collado, M. C., Salminen, S. & Isolauri, E. Early differences in fecal microbiota composition in children may predict overweight. *Am. J. Clin. Nutr.* 87, 534–538 (2008).
28. Fantuzzi, G. Adipose tissue, adipokines, and inflammation. *J. Allergy Clin. Immunol.* 115, 911–919 (2005).
29. Chuangsaensarn, S., Rattanamongkolgul, S., Luechapidorn, R., Phisalaphong, C. & Jrawatnotai, S. Curcumin extract for prevention of type 2 diabetes. *Diabetes Care* 35, 2121–2127 (2012).
30. Kirkham, S., Akilen, R., Sharma, S. & Tsiami, A. The potential of cinnamon to reduce blood glucose levels in patients with type 2 diabetes and insulin resistance. Diabetes Obes. Metab. 11, 1100–1113 (2009).
31. Lee, Y. et al. Anti-inflammatory and Neuroprotective Effects of Constituents Isolated from Rhodiola rosea. Evid. Based Complement. Alternat. Med. 2013, 514094 (2013).
32. Bawa, A. S. & Khanum, F. Anti-inflammatory activity of Rhodiola rosea—a second-generation adaptogen”. Phytother. Res. 23, 1099–1102 (2009).
33. Labachyan, K. E., Kiani, D., Sevrioukov, E. A., Chir, S. E. & Jafari, M. The impact of Rhodiola rosea on the gut microbial community of Drosophila melanogaster. Gut Pathog. 10, 12 (2018).
34. Darbinyan, V. et al. Clinical trial of Rhodiola rosea L. extract SHR-5 in the treatment of mild to moderate depression. Nord. J. Psychiatry 61, 343–348 (2007).
35. Olsson, E. M., von Scheele, B. & Panossian, A. G. A randomised, double-blind, placebo-controlled, parallel-group study of the standardised extract shr-5 of the roots of Rhodiola rosea in the treatment of subjects with stress-related fatigue. Planta Med. 75, 105–112 (2009).
36. Shetvoo, V. A. et al. A randomized trial of two different doses of a SHR-5 Rhodiola rosea extract versus placebo and control of capacity for mental work. Phytochem. Int. J. Phytother. Phytopharmacol. 10, 95–105 (2003).
37. Chan, C. et al. Rhodiola rosea extends lifespan and improves stress tolerance in silkworm, Bombyx mori. Biogerontology 17, 373–381 (2016).
38. Wiegant, F. A. et al. Plant adaptogens increase lifespan and stress resistance in C. elegans. Biogerontology 10, 27–42 (2009).
39. Schirner, S. et al. Extension of the Drosophila lifespan by Rhodiola rosea through a mechanism independent from dietary restriction. PLoS ONE 8, e63886 (2013).
40. Boom-Niermeijer, E. K., van den Berg, A., Wikman, G. & Wiegant, F. A. Phyto-adaptogens protect against environmental stress-induced death of embryos from the freshwater snail Lymnaea stagnalis. Phytochem. Int. J. Phytother. Phytopharmacol. 7, 389–399 (2000).
41. Tartaglia, L. A. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 83, 1263–1271 (1995).
42. Bray, G. A. & York, D. A. Hypothalamic and genetic obesity in experimental animals: An autonomic and endocrine hypothesis. Physiol. Rev. 59, 719–809 (1979).
43. Kobayashi, K. et al. The db/db mouse, a model for diabetic dyslipidemia: Molecular characterization and effects of Western diet feeding. Metab. Clin. Exp. 49, 22–31 (2000).
44. Chen, W. S. et al. Leptin deficiency and beta-cell dysfunction underlie type 2 diabetes in compound Akt knockout mice. Mol. Cell. Biol. 29, 3151–3162 (2009).
45. Burke, S. J. et al. db/db mice exhibit features of human type 2 diabetes that are not present in weight-matched C57BL/6 mice fed a western diet. J. Diabetes Res. 2017, 8503754 (2017).
46. Sorensen, T. A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skr. 5, 3–14 (1948).
47. Yuan, Y., Wu, X., Zhang, X., Hong, Y. & Yan, H. Ameliorative effect of salidroside from Rhodiola rosea in the treatment of subjects with stress-related fatigue. Mol. Nutr. Food Res. 105–112 (2009).
48. Wu, X. et al. Gut microbiota modulation with norfloxacin and ampicillin enhances glucose tolerance in mice. FASEB J. 22, 2416–2426 (2008).
49. Chou, C. J., Membrez, M. & Blancher, F. Gut decontamination with norfloxacin and ampicillin enhances insulin sensitivity in mice. Nestle Nutr. Workshop Ser. Pediatr. Program 62, 127–137 (2008).
50. Geurts, L. et al. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: Impact on splin regulation in adipose tissue. Front. Microbiol. 2, 149 (2011).
51. Liu, W. et al. Grape seed proanthocyanidin extract ameliorates inflammation and adiposity by modulating gut microbiota in high-fat diet mice. Mol. Nutr. Food Res. 61, 1601082 (2017).
52. Jumpertz, R. et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 94, 58–65 (2011).
53. Wu, X. et al. Molecular characterisation of the faciaal microbiota in patients with type II diabetes. Curr. Microbiol. 61, 69–78 (2010).
54. Larsen, N. et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5, e9085 (2010).
55. Yu, F. et al. Abnormal gut microbiota composition contributes to the development of type 2 diabetes mellitus in db/db mice. Aging 11, 10454–10467 (2019).
56. Brunt, P. et al. Increased intestinal permeability in obese mice: New evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G518-525 (2007).
57. Deciaga-Campos, M. et al. Antihyperalgesic activity of Rhodiola rosea in a diabetic rat model. Drug Dev. Res. 77, 29–36 (2016).
58. Niu, C. S., Chen, L. J. & Niu, H. S. Antihyperglycemic action of rhodiolae-aqueous extract in type1-like diabetic rats. BMC Complement. Altern. Med. 14, 20 (2014).
59. Beguinot, F. & Nigro, C. Measurement of glucose homeostasis in vivo: Glucose and insulin tolerance tests. Methods Mol. Biol. 933, 219–228 (2012).
60. Hall, M. & Beiko, R. G. 16S rRNA gene analysis with QIIME2. Methods Mol. Biol. 1849, 113–129 (2018).
61. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
62. Whelan, F. J., Rossi, L., Stearns, J. C. & Surette, M. G. Culture and molecular profiling of the respiratory tract microbiota. Methods Mol. Biol. 1849, 49–61 (2018).
63. Bokuchwal, N. A. et al. Optimizing genomic classification of marker-gene amplicon sequences with QIIME2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).
64. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).
65. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
66. Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).
67. Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).
68. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
69. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).
70. Oksanen, J. et al. vegan: Community Ecology Package, version 2.5-7, https://CRAN.R-project.org/package=vegan (2020).
71. Mandal, S. et al. Analysis of composition of microorganisms: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).
Acknowledgements
We would like to acknowledge the UCI Microbiome Center for granting a Pilot Award, providing consulting on study design and supporting the generation of the microbiome amplicon sequence data. We would like to thank Ms. Claudia Weihe, Dr. Jennifer Martiny and Dr. Katrine Whiteson from the UCI Microbiome Center. We thank the UCI School of Medicine-Pharmaceutical Sciences Collaborative Research Funds and Mr. and Mrs. John P. and Lois C. Wareham for providing funding for this work.

Author contributions
M.J. and R.A.V. designed the study, oversaw the experiments, and wrote and revised the manuscript; J.M.C. and R.C. analyzed microbiome data and participated in writing the results and discussion; J.G.J.A., D.K., and C.D.N. performed the mouse and biochemical experiments; N.J., P.T., and Z.-Y.L. maintained the mouse colonies and participated in the mouse experiments; all authors read and approved the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-14241-7.

Correspondence and requests for materials should be addressed to M.J.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022