Contrasted Reactivity to Oxygen Tensions in Frankia sp. Strain CcI3 throughout Nitrogen Fixation and Assimilation

Faten Ghodhbane-Gtari
Université Tunis El Manar (FST) & Université Carthage (INSAT)

Karima Hezbri
Université de Tunis El Manar (FST) & Université Carthage (INSAT)

Amir Ktari
Université Tunis El Manar

Imed Sbissi

Nicholas Beauchemin
University of New Hampshire, Durham

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/nhaes

Recommended Citation

Faten Ghodhbane-Gtari, Karima Hezbri, Amir Ktari, et al., “Contrasted Reactivity to Oxygen Tensions in Frankia sp. Strain CcI3 throughout Nitrogen Fixation and Assimilation,” BioMed Research International, vol. 2014, Article ID 568549, 8 pages, 2014. https://dx.doi.org/10.1155/2014/568549

This Article is brought to you for free and open access by the New Hampshire Agricultural Experiment Station at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in New Hampshire Agricultural Experiment Station Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact Scholarly.Communication@unh.edu.
Authors
Faten Ghodhbane-Gtari, Karima Hezbri, Amir Ktari, Imed Sbissi, Nicholas Beauchemin, Maher Gtari, and Louis S. Tisa

This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/nhaes/328
Contrasted Reactivity to Oxygen Tensions in \textit{Frankia} sp. Strain CcI3 throughout Nitrogen Fixation and Assimilation

Faten Ghodhbane-Gtari,1,2 Karima Hezbri,1 Amir Ktari,1 Imed Sbissi,1 Nicholas Beauchemin,2 Maher Gtari,1,2 and Louis S. Tisa2

1 Laboratoire Microorganismes et Biomolécules Actives, Université Tunis El Manar (FST) and Université Carthage (INSAT), Campus Universitaire, 2092 Tunis, Tunisia
2 Department of Molecular, Cellular & Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824-2617, USA

Correspondence should be addressed to Louis S. Tisa; louis.tisa@unh.edu

Received 18 April 2014; Revised 28 April 2014; Accepted 15 May 2014; Published 28 May 2014

1. Introduction

The genus \textit{Frankia} is comprised of nitrogen-fixing actinobacteria that are able to establish a mutualistic symbiosis with a variety of dicotyledonous host plants that results in the establishment of a root nodule structure [1–6]. The bacteria nourish their host plant with combined nitrogen and the plants provide in return carbon and energy. This symbiosis allows actinorhizal host plants to colonize nutrient-poor soils. Besides its life style within the host plant, these bacteria are members of soil community although less information is known about this life style [7]. Under arid tropic and subtropic conditions of North Africa, actinorhizal plants are essentially represented by fast growing and highly tolerant trees from the family Casuarinaceae [8].

Under atmospheric oxygen conditions, \textit{Frankia} actively fixes dinitrogen to ammonium within the root nodules of the host plants and aerobically in culture [9–15]. The oxygen-labile nitrogenase enzyme is localized within specialized thick-walled structures, termed vesicles that are formed \textit{in planta} and \textit{in vitro} [2, 16–18]. Their shape is strain dependen- dant and host-plant-influenced. Vesicles act as specialized structures for the nitrogen fixation process and are formed terminally on short side branches of hyphae that have a septum near their base. The mature vesicle is surrounded by an envelope that extends down the stalk of the vesicle past the basal septum, which separates the vesicle from the hypha. The envelope surrounding the vesicle is composed of multilaminated lipid layers containing primarily bacterio-hopanetetrol and its derivatives [19–22]. It is believed that this lipid envelope acts as an oxygen diffusion barrier to protect the nitrogenase enzyme from oxygen inactivation [19].

Unlike other actinorhizal plants, \textit{Frankia} found within the root nodules of \textit{Casuarina} and \textit{Allocasuarina} plants are
devoid of symbiotic vesicle structures [23, 24]. A positive correlation was observed between the differentiation of intracellular hyphae and the lignifications of the host-infected cell walls [23]. In several actinorhizal nodules, a low oxygen tension was shown to be consistent with the high concentrations of hemoglobin [2]. Frankia are known to produce truncated hemoglobins [25–27]. Besides hemoglobins, Frankia possess hydrogenases that may act as oxygen-scavenging enzymes [28]. Sequencing of several Frankia genomes [29–34] has provided insight on the physiology and opened up new genomics tools for these microbes. These databases have been used in transcriptomics [35–37] and proteomics studies [38–40] on these bacteria. The aim of the present study was to investigate the expression levels for several selected genes involved under different oxygen concentration for the Casuarina compatible Frankia sp. strain CcI3. These genes were involved in the following functions: nitrogen fixation and assimilation, hopanoid biosynthesis, hydrogen uptake, and oxidative stress.

2. Materials and Methods

2.1. Culture Conditions and Experimental Design. Frankia sp. strain CcI3 [41] was grown and maintained at 28 °C in basal MP growth medium with 5.0 mM propionate and 5.0 mM NH₄Cl as carbon and nitrogen sources, respectively, as described previously [42].

In all experimental procedures, Frankia cells were grown for 7 days in 250 mL cylindrical bottles with a working MP medium volume of 50 mL with and without NH₄Cl for nitrogen-deficient and nitrogen-replete conditions, respectively. Three sets of oxygen tensions were considered: oxic (atmospheric condition), hypoxic (reduced partial pressure of oxygen), and hyperoxic (elevated oxygen levels). Hypoxic conditions were generated by placing the cultures in Brewer’s jar that contained reduced partial pressures of oxygen by the use of gas packets (BBL GasPak BBL CampyPak System). For this system, water interacts with catalyst in the packet generating a reduced partial pressure of oxygen within the chamber. Hyperoxic conditions were generated by continuously air-sparging the cultures via an aquarium pump.

2.2. Growth Assessment and Vesicle Count. For dry weight determinations, cell cultures were collected on tarred membrane filters (type HA, 0.45 um pore size; Millipore Corp.). The filters were placed in a Petri dish over desiccant and dried at 90 °C to constant weight [43]. In parallel, protein content was measured. Briefly, cell samples were solubilized by heating for 15 min at 90 °C in 1.0 N NaOH and total proteins were measured using BCA method [44].

Vesicle numbers were determined as previously described [45, 46]. Briefly, cells were sonicated for 30 s with a Braun model 350 sonifier under power setting of 3 using microtip probe. This treatment disrupted the mycelia and released vesicles. The numbers of vesicles were counted by using a Petroff-Hausser counting chamber with a phase-contrast microscope at magnification of 400x.

2.3. Determination of Ammonia. Ammonium concentration was determined in cell-free media using modified protocol of Berthelot’s reagent [47].

2.4. RNA Extraction, RT-PCRs, and Q-PCR. For these experiments, all solutions and materials were DEPC-treated to prevent RNA degradation. RNA extractions were performed by the Triton X100 method as previously described [48]. RNA samples were treated with DNase I (New England Biolabs) according to the manufacturer’s recommendations. RNA samples were quantified with a Nanodrop 2000c spectrophotometer (Thermo Scientific) and stored at –80 °C until use. The cDNA synthesis was performed using hexamer primers, 400 ng RNA and SuperScript III reverse transcriptase (Invitrogen) according to the manufacturer’s recommendations. The cDNA was quantified by a Nanodrop 2000c spectrophotometer, diluted to 10 ng/μL working stocks in DNase-free, RNase-free H₂O, and stored at –20 °C until use.

Frankia gene expression analyses were performed by qRT-PCR using specific primers (Table 1) and SYBR Green PCR Master Mix (Applied Biosystems) as described previously [49]. Briefly, each 25 μL reaction contained 50 ng template cDNA, 300 nM of the forward and reverse primer mix, and SYBR Green PCR Master Mix. Parameters for the Agilent MP3000 were as follows: (1) 95 °C for 15 min, (2) 40 cycles of 95 °C for 15 s and 60 °C for 30 s, and (3) thermal dissociation cycle of 95 °C for 60 s, 55 °C for 30 s, and incremental increases in temperature to 95 °C for 30 s. Reactions were performed in triplicates and the comparative threshold-cycle method was used to quantify gene expression. The results were standardized with rpsA expression levels. Relative expression (fold changes) was determined by the Pfaffl method [50] with the control as the calibrator. Two biological replicates of the triplicate samples were averaged.

3. Results

3.1. Growth and Vesicle Production under Different Oxygen Pressures. Figure 1 shows the effect of oxygen on the growth yield of Frankia sp. strain CcI3. Under nitrogen-replete conditions (NH₄), the biomass of cells grown under hyperoxic conditions was greater than both cultures grown under oxic and hypoxic conditions. Under nitrogen-deficient (N₂) conditions, the biomass correlated with the oxygen level with the hyperoxic conditions generating the greatest biomass. Furthermore, vesicle production under nitrogen-deficient (N₂) conditions positively correlated with oxygen tension. Cells under hyperoxic (air-sparged) conditions produced 2.6- and 5.4-fold more vesicles (6.50 ± 0.41 × 10⁶/mg) than oxic (2.45 ± 0.29 × 10⁶/mg) and hypoxic (1.20 ± 0.36 × 10⁶/mg) conditions, respectively. Analysis of ammonia metabolism by Frankia CcI3 indicates that it was correlated with oxygen tension. With nitrogen-replete conditions, hyperoxic conditions resulted in the highest ammonia consumption, followed by oxic condition and lastly hypoxic condition (Figure 1(c)). Under nitrogen-deficient conditions the level of ammonium ions increased under lower oxygen tension. This level decreased with corresponding increases in oxygen tension.
3.2. Expression of Nitrogen Fixation and Assimilation Genes under Different Oxygen Pressures. The effect of oxygen on the expression of several genes involved in nitrogen fixation and assimilation was measured by detecting changes in mRNA levels via qRT-PCR (Figure 2). For nitrogen-deficient conditions, the level of structural nitrogenase genes (nifHDK) mRNA increased >10-fold under hyperoxic and hypoxic conditions compared to oxic condition (Figure 2(a)). Under nitrogen-replete conditions, the expression levels for these genes were very low and there was no change with different oxygen tensions.

The Frankia genome contains two glutamate synthase genes (gltB and gltD) encoding the large and small subunits of the enzyme. These two glutamate synthase genes were studied for their expression levels under three oxygen tensions. The mRNA levels of the gltB gene were reduced except under hypoxic and nitrogen-replete conditions (Figure 2(b)). The gltD mRNA levels increased slightly (1.3–2.5-fold) under the different nitrogen and oxygen conditions. There were four glutamine synthetase orthologs found within the Frankia sp. strain Cc13 genome. We were able to follow the expression of three of these glnA genes (Figure 2(c)). The level of francci3_3143 mRNA was controlled by nitrogen. Under all oxygen conditions, francci3_3143 mRNA levels increased 10–15-fold under nitrogen-deficient (N₂) conditions. Both high and low oxygen tensions increased the level of francci3_3143 mRNA. The level of francci3_3142 mRNA was decreased under nitrogen-deficient (N₂) conditions and showed 7-fold increase under hyperoxic conditions. The levels of francci3_4059 mRNA remained constant except under hypoxic conditions, in which levels increased 15-fold. Under hypoxic conditions, the levels of francci3_4059 mRNA were controlled by nitrogen status and increased approximately 2-3-fold from nitrogen-replete (NH₄⁺) conditions.

3.3. Expression of Genes Known to Protect Nitrogenase from Oxygen and Reactive Oxygen Species. The biosynthesis of

Locus tag	Gene	Gene identity	Sequence
francci3_4488 nifH	Nitrogenase reductase iron-sulfur protein	5'-CGACAACGACATGAAGACC-3' 5'-CTTCCGGTAGTGCCTC-3'	
francci3_4487 nifD	Nitrogenase molybdenum-iron protein alpha chain	5'-AAGGACATGCTCAACATCGGCAC-3' 5'-AACCTGTCCGCGGGAGATTTC-3'	
francci3_4486 nifK	Nitrogenase molybdenum-iron protein beta chain	5'-TGAGCAGAGCTCAGGGAAACAAAC-3' 5'-TGTTGAGACCGTCACTGCC-3'	
francci3_4496 hup1	Nickel-dependant hydrogenase, large subunit	5'-AACAAATCTGCAGCTACGTTCA-3' 5'-ACTCTCGATCCATCCGCGAGTA-3'	
francci3_1076 hup2	Uptake hydrogenase, large subunit	5'-TGGAAAGTCAATGCTCGGAGAA-3' 5'-ATGCTTACAGTACCGGAGAAGAA-3'	
francci3_1149 hboO	Truncated hemoglobin	5'-GGCAAGGCGCTGACGAGA-3' 5'-CCAGAAGCTGCTGAGATC-3'	
francci3_2581 hboN	Truncated hemoglobin	5'-CACCCCTCTTGGCAACCG-3' 5'-GGTGTTTCTCGGCGAAC-3'	
francci3_0823 sqhC	Squalene hopene cyclase	5'-TGGCCTGAGAGTGTTGGAT-3' 5'-AATTCGGCCGTCGCCGTT-3'	
francci3_0819 hpnC	Squalene synthase	5'-AATCTCCCGCTGTCGCCGTT-3' 5'-AACCGCTGGAAGATGGAACGACC-3'	
francci3_2949 katA	Catalase	5'-ACATGCGCCTGTCAGCTGACGT-3' 5'-ACATCAGCCTCAGTGCGACGT-3'	
francci3_2817 sodA	Superoxide dismutase	5'-GTGCCAATGTGCTGAGATA-3' 5'-AGTGGGAATATGGCAAGAG-3'	
francci3_3012 gltD	Glutamate synthase, small subunit	5'-TGCATGCGAGCAACACTTCC-3' 5'-ATGATGTGACCTGTCTGTGGT-3'	
francci3_3013 gltB	Glutamate synthase, large subunit	5'-CGTGGCTGAAGGTGATGTCA-3' 5'-AAAAGGCGCTGACGAGC-3'	
francci3_3142 glnA	Glutamine synthetase, type I	5'-ATGCCCGGACTCAACGGCGA-3' 5'-GCTGCAGCTGACAGCTGAC-3'	
francci3_3143 glnA	Glutamine synthetase, type II	5'-AACATCTCGACAGAGCGG-3' 5'-AGAACTTTGCACACGAGCTG-3'	
francci3_4059 glnA	Glutamine synthetase, catalytic region	5'-TACAAATCAGCTCGGCGTTTGC-3' 5'-ATACCGGAACAGCAGCTGAG-3'	
francci3_1057 rpsA	30S ribosomal protein S1	5'-CGAATTCGGCTGAGGTT-3' 5'-GGCCGAAAGTCGAGGAT-3'	

Locus tag and gene designation were determined from the Integrated Microbial Genomes System (IMG) at the Joint Genome Institute (https://img.jgi.doe.gov/) [51].
hopanoids has been correlated with vesicle development [19]. The effect of oxygen tension on the expression of the squalene synthase (hpnC) and squalene/phytoene cyclase (sqhC) genes was examined (Figure 2(d)). Under nitrogen-replete conditions (NH$_4$), the level of mRNA for sqhC showed a 2-fold increase for hyperoxic conditions. A smaller increase was observed for hpnC mRNA levels. In general, sqhC and hpnC were expressed constitutively with comparable mRNA levels for hypoxic and oxic levels. Under nitrogen-deficient (N$_2$) conditions, the mRNA levels of both genes (sqhC and hpnC) increased 2- and 1.5-fold, respectively.

The Frankia CcI3 genome contains two hydrogenase operons [30, 52, 53]. We tested the effects of oxygen tension and nitrogen status of their gene expression levels (Figure 2(e)). Under nitrogen-replete (NH$_4$) conditions, the level of mRNA for hup2 increased proportionally with the level of oxygen present, while the level of mRNA for hup1 only increased under hyperoxic conditions. The expression of hup2 was influenced by the nitrogen status of the cells and by the oxygen levels. Under both conditions, hup2 mRNA levels increased, but hup1 expression remained constant.

The effect of oxygen tension and nitrogen status was investigated on the expression of two truncated hemoglobins (hboO and hboN). The level of mRNA of hboO and hboN increased under hyperoxic condition for both nitrogen conditions (Figure 2(f)). Under nitrogen-replete (NH$_4$) conditions, mRNA levels for hboO increased proportionally to the oxygen tension levels. Under hypoxic nitrogen-deficient conditions, mRNA levels for hboN increased about 1.5-fold.

The effects of oxygen tension and nitrogen status on the expression levels of two oxygen defense enzymes, catalase (katA) and superoxide dismutase (sodA), were also tested (Figure 2(g)). Under hyperoxic conditions, the mRNA levels of katA increased 6.5- and 8-fold under nitrogen-deficient (N$_2$) and nitrogen-replete (NH$_4$) conditions, respectively. The expression of the sodA gene appeared to be constitutive under all oxygen tensions and both nitrogen statuses.

4. Discussion

Without a doubt, the vesicle is the most characteristic morphogenetic structure produced by Frankia [1]. Vesicles are functionally analogous to cyanobacterial heterocysts providing unique specialized cells that allow nitrogen fixation under aerobic condition [54, 55]. In this study, the growth of Frankia strain CcI3 was evaluated under three oxygen tensions. The results indicate that growth increased with elevated oxygen tensions (Figure 1) confirming the aerobic nature of the microbe. Although the dry weight measurement increased, the total protein values were reduced under hyperoxic nitrogen-deficient (N$_2$) conditions. This result would imply that the cells were producing other metabolic products under this condition and a similar level of protein compared to hypoxic nitrogen-deficient (N$_2$) condition. Thus, this result
suggests that part of the respiration was uncoupled providing some oxygen protection. Frankia contains two respiratory systems and a cyanide-insensitive system was proposed to help protect nitrogenase from oxygen inactivation [46]. With other aerobic nitrogen-fixing bacteria, increased respiratory rates in response to elevated oxygen tensions help maintain low levels of intracellular oxygen protecting nitrogenase from inactivation [56, 57]. Under nitrogen-deficient (N₂) conditions, vesicles were produced and correlated with oxygen tensions. The numbers of vesicles produced per mg dry weight increased with elevated oxygen levels. These results confirm those obtained previously [58, 59].

In our study, we investigated the effects of oxygen on gene expression for a variety of functional genes involved in nitrogen fixation, nitrogen assimilation, and protection from oxygen and other reactive oxygen species [60]. The levels of expression for the structural nitrogenase genes (nifHDK) indicate a concordant profile with clear induction under...
nitrogen-deficient \((N_2) \) conditions. Transcriptome studies on *Frankia* sp. strain CcI3 under nitrogen-deficient and nitrogen-replete conditions also show an increase in *nif* HDK gene expression [35, 36]. The levels of *nif* HDK mRNA showed an increase under hypoxic and hyperoxic conditions indicating that nitrogenase induction was influenced by oxygen levels.

The hopanoid envelope has been postulated to be involved in the protection of nitrogenase from oxygen inactivation [19]. We found that mRNA levels of squalene synthase (*hpnc*) and squalene-hopene cyclase (*sqhc*) genes increased in response to oxygen tension under nitrogen-deficient conditions, but remained constant under nitrogen-replete conditions (Figure 2(d)). The results correlate with the increase in vesicle envelope observed under high oxygen levels [61]. Nalin et al. [62] found only a slightly higher hopanoid content under nitrogen-deficient conditions suggesting remobilization rather than nascent biosynthesis. Furthermore, the *Frankia* sp. strain CcI3 transcriptome profiles under nitrogen-deficient and nitrogen-replete conditions did not show any significant differences in hopanoid biosynthetic genes [35, 36]. However, these studies were performed under one oxygen tension while our study has investigated three different oxygen tensions.

Analysis of the nitrogen assimilation genes (*gltB, gltD, and glnA*) is a bit more complex. The *Frankia* CcI3 genome contained several homologues of *glnA*. The mRNA level of *francci3_3143* correlated the best with nitrogen regulation, being increased under nitrogen-deficient conditions. Transcriptome studies have shown that *francci3_3143* expression increased significantly under nitrogen-fixing conditions [35, 36], while all of the other homologues remained consistent. This result would suggest that this gene encoded primary nitrogen scavenging enzyme. The levels of expression were also influenced by elevated oxygen tensions during increased nitrogenase activity. The expression levels of the *gltB* and *gltD* appear to be less influenced by oxygen tension. These effects seemed in agreement with the ammonia metabolism results that showed an increase in consumption under hyperoxic conditions.

Our results on hemoglobin gene expression correlate with previous results [48] that showed no increase in *hboN* and *hboO* expression in response to nitrogen status increased under low oxygen tension. However, our results conflict in response to oxygen. We found that both *hboN* and *hboO* mRNA levels increased under hyperoxic conditions. The use of the more sensitive qRT-PCR in our study compared to RT-PCR is the best explanation for these differences.

Frankia possesses two uptake hydrogenase systems [52, 53]. One of them has been correlated with symbiotic growth and the other to free-living conditions [53]. Our results show that *hup2* gene expression was influenced by nitrogen status suggesting that it was associated with vesicle production, while *hup1* gene expression was relatively constant. The levels of *hup2* mRNA increased proportionally with oxygen tensions suggesting potential oxygen protection mechanism. Anoxic conditions have no effect on hydrogenase gene expression by *Frankia* CcI3 but increased by 30% for *Frankia alni* ACN14a [60]. We did not test anoxic conditions in our study.

Increased oxygen tension can lead to elevated oxidative stress conditions. We investigated the influence of oxygen tensions on reactive oxidative stress genes. While sodA expression levels were constitutive, *katA* gene expression increased under hyperoxic conditions. In general, our results confirm those of Steele and Stowers [63], which examined enzymatic activity levels. They reported an increase in catalase activity in cultures derepressed for nitrogen fixation compared to ammonium-grown cultures.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

Louis S. Tisa was supported in part by Agriculture and Food Research Initiative Grant 2010-65108-20581 from the USDA National Institute of Food and Agriculture, Hatch Grant NH530, and the College of Life Sciences and Agriculture at the University of New Hampshire, Durham, NH, USA. This is scientific contribution number 2556 from the NH Agricultural Experimental Station. Maher Gtari and Faten Ghodhbane-Gtari were supported in part by a Visiting Scientist and Postdoctoral Scientist Program administered by the NH AES at the University of New Hampshire.

References

[1] D. R. Benson and W. B. Silvester, “Biology of *Frankia* strains, actinomycete symbionts of actinorhizal plants,” *Microbiological Reviews*, vol. 57, no. 2, pp. 293–319, 1993.

[2] K. Huss-Danell, “Actinorhizal symbioses and their N\(_2\)_ fixation,” *New Phytologist*, vol. 136, no. 3, pp. 375–405, 1997.

[3] L. G. Wall, “The actinorhizal symbiosis,” *Journal of Plant Growth Regulation*, vol. 19, no. 2, pp. 167–182, 2000.

[4] C. Santi, D. Bogusz, and C. Franche, “Biological nitrogen fixation in non-legume plants,” *Annals of Botany*, vol. 111, no. 5, pp. 743–767, 2013.

[5] J. Schwencke and M. Carú, “Advances in actinorhizal symbiosis: host plant–*Frankia* interactions, biology, and applications in arid land reclamation. A review,” *Arid Land Research and Management*, vol. 15, no. 4, pp. 285–327, 2011.

[6] A. Sellested and K. H. Richau, “Aspects of nitrogen-fixing actinobacteria, in particular free-living and symbiotic *Frankia*,” *FEMS Microbiology Letters*, vol. 342, no. 2, pp. 179–186, 2013.

[7] E. E. Chaia, L. G. Wall, and K. Huss-Danell, “Life in soil by the actinorhizal root nodule endophyte *Frankia*. A review,” *Symbiosis*, vol. 51, no. 3, pp. 201–226, 2010.

[8] M. Gtari and J. O. Dawson, “An overview of actinorhizal plants in Africa,” *Functional Plant Biology*, vol. 38, no. 8-9, pp. 653–661, 2011.

[9] J. D. Tjepkema, W. Ormerod, and J. G. Torrey, “Vesicle formation and acetylene reduction activity in *Frankia* sp. CPII cultured in defined nutrient media,” *Nature*, vol. 287, no. 5783, pp. 633–635, 1980.
[10] J. D. Tjepkema, W. Ormerod, and J. G. Torrey, “Factors affecting vesicle formation and acetylene reduction (nitrogenase activity) in Frankia sp. Cpl1,” Canadian Journal of Microbiology, vol. 27, no. 8, pp. 815–823, 1981.

[11] D. Gauthier, H. G. Diem, and Y. Dommergues, “In vitro nitrogen fixation by 2 actinomycete strains isolated from Casuarina nodules,” Applied and Environmental Microbiology, vol. 41, pp. 306–308, 1981.

[12] M. A. Murry, Z. Zhongze, and J. G. Torrey, “Effect of O2 on vesicle formation, acetylene reduction, and O2-uptake kinetics in Frankia sp. HFPcCl3 isolated from Casuarina cunninghamiana,” Canadian Journal of Microbiology, vol. 31, no. 9, pp. 804–809, 1985.

[13] Z. Zhongze and J. G. Torrey, “Biological and cultural characteristics of the effective Frankia strain HFPcCl3 (Actinomycetales) from Casuarina cunninghamiana (Casuarinaceae),” Annals of Botany, vol. 56, no. 3, pp. 367–378, 1985.

[14] M. S. Fontaine, S. A. Lancelle, and J. G. Torrey, “Initiation and ontogeny of vesicles in cultured Frankia sp. strain HFPaR13,” Journal of Bacteriology, vol. 160, no. 3, pp. 921–927, 1984.

[15] A. J. P. Burggraaf and W. A. Shipton, “Studies on the growth of Frankia isolates in relation to infectivity and nitrogen fixation (acetylene reduction),” Canadian Journal of Botany, vol. 61, no. 11, pp. 2774–2782, 1983.

[16] T. M. Meesters, “Localization of nitrogenase in vesicles of Frankia sp. Ccl1 by immunogold labelling on ultrathin cryosections,” Archives of Microbiology, vol. 146, no. 4, pp. 327–331, 1987.

[17] T. M. Meesters, S. T. Van Gensen, and A. D. L. Akkermans, “Growth, acetylene reduction activity and localization of nitrogenase in relation to vesicle formation in Frankia strains Ccl1 and Cpl2,” Archives of Microbiology, vol. 143, no. 2, pp. 137–142, 1985.

[18] T. M. Meesters, W. M. Vanvliet, and A. D. L. Akkermans, “Nitrogenase is restricted to the vesicles in Frankia strain EANlpeC,” Physiologia Plantarum, vol. 70, no. 2, pp. 267–271, 1987.

[19] A. M. Berry, O. T. Harriott, R. A. Moreau, S. F. Osman, D. R. Benson, and A. D. Jones, “Hemopan lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 13, pp. 6091–6094, 1993.

[20] A. M. Berry, R. A. Moreaua, and A. D. Jones, “Bacterio-hopanetetrol: abundant lipid in Frankia cells and in nitrogen-fixing nodule tissue,” Plant Physiology, vol. 95, no. 1, pp. 111–115, 1991.

[21] O. T. Harriott, L. Khaierallah, and D. R. Benson, “Isolation and structure of the lipid envelopes from the nitrogen-fixing vesicles of Frankia sp. strain Cpl1,” Journal of Bacteriology, vol. 173, no. 6, pp. 2061–2067, 1991.

[22] H. C. Lamont, W. B. Silvester, and J. G. Torrey, “Nile red fluorescence demonstrates lipid in the envelope of vesicles from N2-fixing cultures of Frankia,” Canadian Journal of Microbiology, vol. 34, no. 5, pp. 656–660, 1988.

[23] R. H. Berg and L. McDowell, “Endophasy differentiation in Casuarina actinorhiza,” Protoplasma, vol. 136, no. 2-3, pp. 104–117, 1987.

[24] R. H. Berg and L. McDowell, “Cytochemistry of the wall of infected-cells in Casuarina actinorhiza,” Canadian Journal of Botany, vol. 66, no. 10, pp. 2038–2047, 1988.

[25] V. Coats, C. R. Schwintzer, and J. D. Tjepkema, “Truncated hemoglobins in Frankia Cc13: effects of nitrogen source, oxygen concentration, and nitric oxide,” Canadian Journal of Microbiology, vol. 55, no. 7, pp. 867–873, 2009.

[26] J. D. Tjepkema, “Hemoglobins in the nitrogen-fixing root nodules of actinorhizal plants,” Canadian Journal of Botany, vol. 61, no. 11, pp. 2924–2929, 1983.

[27] J. D. Tjepkema, R. E. Cashon, J. Beckwith, and C. R. Schwintzer, “Hemoglobin in Frankia, a nitrogen-fixing actinomycete,” Applied and Environmental Microbiology, vol. 68, no. 5, pp. 2629–2631, 2002.

[28] A. Sellstedt, P. Reddell, and P. Rosbrook, “The occurrence of hemoglobin and hydrogenase in nodules of 12 Casuarina-Frankia symbiotic associations,” Physiologia Plantarum, vol. 82, no. 3, pp. 458–464, 1991.

[29] F. Ghodbhane-Gtari, N. Beauchemin, D. Bruce et al., “Draft genome sequence of Frankia sp. strain CN3, an atypical, non-infective (Nod-) ineffective (Fix-) isolate from Coriaria nepalensis,” Genome Announcements, vol. 1, no. 2, Article ID e008513, 2013.

[30] P. Normand, P. Lapierre, L. S. Tisa et al., “Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography,” Genome Research, vol. 17, no. 1, pp. 7–15, 2007.

[31] A. Sen, N. Beauchemin, D. Bruce et al., “Draft genome sequence of Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida,” Genome Announcements, vol. 1, no. 2, Article ID e0010313, 2013.

[32] S. R. Mansour, R. Oshone, S. G. Hurst, K. Morris, W. K. Thomas, and L. S. Tisa, “Draft genome sequence of Frankia sp. strain Cc16, a salt-tolerant nitrogen-fixing actinobacterium isolated from the root nodule of Casuarina cunninghamiana,” Genome Announcements, vol. 2, no. 1, Article ID e01205-13, 2014.

[33] I. Nouioui, N. Beauchemin, M. N. Cantor et al., “Draft genome sequence of Frankia sp. strain BMG5.12, a nitrogen-fixing actinobacterium isolated from Tunisian soils,” Genome Announcements, vol. 1, no. 4, Article ID e00468-13, 2013.

[34] L. G. Wall, N. Beauchemin, M. N. Cantor et al., “Draft genome sequence of Frankia sp. strain BCUI0501, a nitrogen-fixing actinobacterium isolated from nodules of Discaria trinevis,” Genome Announcements, vol. 1, no. 4, Article ID e00503-13, 2013.

[35] D. M. Bickhart and D. R. Benson, “Transcriptomes of Frankia sp. strain Cc13 in growth transitions,” BMC Microbiology, vol. 11, article 192, 2011.

[36] H.-I. Lee, A. J. Donati, D. Hahn, L. S. Tisa, and W.-S. Chang, “Alteration of the exopolysaccharide production and the transcriptional profile of free-living Frankia strain Cc13 under nitrogen-fixing conditions,” Applied Microbiology and Biotechnology, vol. 97, no. 24, pp. 10499–10509, 2013.

[37] N. Alloisois, C. Queiroux, P. Fournier et al., “The Frankia alni symbiotic transcriptome,” Molecular Plant-Microbe Interactions, vol. 23, no. 5, pp. 593–607, 2010.

[38] N. Alloisois, S. Félix, J. Maréchal et al., “Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions,” Physiologia Plantarum, vol. 130, no. 3, pp. 440–453, 2007.

[39] J. E. Mastronunzio and D. R. Benson, “Wild nodules can be broken: proteomics of Frankia in field-collected root nodules,” Symbiosis, vol. 50, no. 1-2, pp. 13–26, 2010.

[40] J. E. Mastronunzio, Y. Huang, and D. R. Benson, “Diminished exoproteome of Frankia spp. in culture and symbiosis,” Applied and Environmental Microbiology, vol. 75, no. 21, pp. 6721–6728, 2009.
