Aluminous hydrous magnesium silicate as a lower-mantle hydrogen reservoir: a role as an agent for material transport

Akihiko Nakatsuka1,2, Akira Yoshiasa2, Makio Ohkawa3 & Eiji Ito4

The potential for storage of a large quantity of water/hydrogen in the lower mantle has important implications for the dynamics and evolution of the Earth. A dense hydrous magnesium silicate called phase D is a potential candidate for such a hydrogen reservoir. Its MgO–SiO2–H2O form has been believed to be stable at lower-mantle pressures but only in low-temperature regimes such as subducting slabs because of decomposition below mantle geotherm. Meanwhile, the presence of Al was reported to be a key to enhancing the thermal stability of phase D; however, the detailed Al-incorporation effect on its stability remains unclear. Here we report on Al-bearing phase D (Al-phase D) synthesized from a bridgmanite composition, with Al content expected in bridgmanite formed from a representative mantle composition, under over-saturation of water. We find that the incorporation of Al, despite smaller amounts, into phase D increases its hydrogen content and moreover extends its stability field not only to higher temperatures but also presumably to higher pressures. This leads to that Al-phase D can be one of the most potential reservoirs for a large quantity of hydrogen in the lower mantle. Further, Al-phase D formed by reaction between bridgmanite and water could play an important role in material transport in the lower mantle.

Water/hydrogen is transported into the Earth’s interior via hydrous mineral phases in subducting slabs, which affects melting1 in the Earth and its rheology2–4. Hydrous phases as potential water/hydrogen reservoirs especially in the lower mantle have important implications for the dynamics and evolution of the Earth. A number of high-pressure studies5–16 have demonstrated that several dense hydrous magnesium silicates (DHMS) are such potential candidates. Among DHMS phases, phase D (simplified formula MgSi2O6H2), identical to the later reported phase F and phase G, had been considered the highest-pressure phase. Later, the first principles simulations11 and high-pressure experiments12 reported the presence of phase H (simplified formula MgSiO4H2), a new DHMS stable at pressures higher than the stability field of phase D. A series of high-pressure experiments13 has demonstrated, however, that the MgO–SiO2–H2O forms of these DHMS phases are stable at slab temperatures but decompose at lower temperatures than the normal mantle-geotherm.

On the other hand, the high-pressure experiments8 conducted in a bulk composition adding 1 mass% Al2O3 component to the simplified phase D composition reported that phase D crystallized with several mol% Al2O3 component and broke down at ~ 1600 °C, higher temperature than in Al-free phase D, at 24 GPa. Super-aluminous phase D with extremely high Al-content (Mg0.2Fe0.15Al1.8SiO6H1.8)10 was first synthesized at 1300 °C and 25 GPa from a bulk composition (including 9.8 mass% H2O component) similar to that reported for bridgmanite formed from a mid-ocean ridge basalt (MORB) composition. The further experiment10 using the composition of this super-aluminous phase D produced the sample with the higher H-content (Mg0.29Fe0.15Al1.8SiO6H1.8)10. Later, the high-pressure experiments8 in the simplified system Al2O3–SiO2–H2O reported that (Mg, Fe)-free super-aluminous phase D (simplified formula Al2SiO6H2) could be stable over 2000 °C at 26 GPa. Phase H can also incorporate a large amount of Al, forming a solid solution with δ-AlOOH15,16. The high-pressure experiments16 conducted in a bulk composition of 0.70MgSiO3·0.30Al2O3 with 1.5–7.0 mass% H2O component showed that the aluminous phase H (Al-phase H) was produced with more than 50 mol% Al2O4H2 component and could be stable even along the normal lower-mantle geotherm at > 40 GPa. In addition, these experiments showed that

1Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Ube 755-8611, Japan. 2Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan. 3Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan. 4Institute for Planetary Materials, Okayama University, Misasa 682-0193, Japan. *email: tuka@yamaguchi-u.ac.jp
it could be stable to ~130 GPa, corresponding to a pressure at the lowermost mantle, along a subducting slab geotherm. Thus, the presence of Al is a potential key-factor for enhancing the thermal stability of these DHMS phases at the lower-mantle pressures. The recent high-pressure experiments demonstrated that Al ions are much more preferentially partitioned into hydrous phases (phase D or phase H) than anhydrous phases (bridgmanite or post-perovskite phase); this situation was observed even in Al-poor bulk-compositions such as peridotitic (or pyrolitic) composition. This suggests that under the presence of suitable water amount, the aluminous hydrous phases with high stability could exist not only in Al-rich fields such as MORB of subducting slabs but also everywhere in the lower mantle. However, the crystal-chemical mechanism for the stability enhancement of these hydrous phases due to the incorporation of Al remains to be solved. Here we report on Al-bearing phase D (Al-phase D) synthesized from high-pressure experiments of a bridgmanite composition in the system MgO–SiO2–Al2O3, with Al content close to that reported for bridgmanite formed from a representative mantle composition, under over-saturation of water. We reveal the incorporation mechanism of Al and a large amount of hydrogen (H) into phase D and demonstrate the drastic enhancement in stability of phase D due to the incorporation of a relatively small amount of Al. We discuss the mechanism for such a high stability of Al-phase D, in terms of crystal chemistry based on single-crystal X-ray diffraction. On the basis of these findings, we propose crucial implications for the recycle of water in the lower mantle.

We selected the starting composition of 0.92MgSiO3·0.08Al2O3 because it is close to the composition of bridgmanite, 0.94MgSiO3·0.06Al2O3 (Refs.19,20), expected in a pyrolitic21 lower-mantle. Our high-pressure experiments were conducted under the three different thermal histories. Their experimental conditions are summarized in Table 1. Reagent grade oxides and hydroxides were mixed in the required ratios and sealed in platinum (Pt) capsules together with amounts of liquid water suitable for over-saturation. The samples were compressed to 27 GPa (runs #1 and #2) or 26 GPa (run #3) and then heated to each target maximum temperature of 1600 °C (run #1) or 1900 °C (runs #2 and #3) using a Kawai-type multi-anvil apparatus22. After undergoing each thermal history, the samples were quenched at 1600 °C (runs #1 and #2) or 1300 °C (run #3) and recovered to ambient conditions. In all the runs, liquid water was seeping out of the Pt capsules when those were opened, which shows that the recovered samples were synthesized under over-saturation of water.

We measured the microfocus X-ray diffraction patterns for the recovered samples of the runs #1 and #2. A typical example of them is shown in Fig. 1. In the patterns, we observed the diffraction peaks corresponding to phase D, stishovite SiO2 and brucite Mg(OH)2. The peaks that cannot be assigned to any known-phases were also observed; these are probably due to impurities precipitated, together with brucite, from fluid during quenching. Here, we determined the unit-cell parameters with trigonal symmetry by least-squares fits of the d spacings of 21 peaks assigned to phase D as follows: a = 4.8239(1) Å, c = 4.3134(2) Å, V = 86.924(4) Å³ for the run #1, a = 4.8416(1) Å, c = 4.3236(2) Å, V = 87.7714(4) Å³ for the run #2. The calculated d values of these peaks are in good agreement with the observed ones (Table 2).

To confirm the presence of phase D, we conducted the electron probe microanalyses for the recovered sample of the run #1. The analytical result showed the presence of products with a chemical composition of 23.11 mass% MgO, 42.97 mass% SiO2 and 18.66 mass% Al2O3 with a total of 84.74 mass%. This phase was damaged by the

![Figure 1](https://example.com/f1.png)

Figure 1. Microfocus powder X-ray diffraction pattern of a recovered sample. As an example, that of the run #2 is given here.

Run no.	Starting materials	P (GPa)	Tmax (°C)	Duration at Tmax (min)	Tq (°C)	Cooling rate from Tmax to Tq (°C/min)
#1	MgO, SiO2, Al(OH)3, H2O	27	1600	10	1600	No cooling
#2	Mg(OH)2, SiO2, Al(OH)3, H2O	27	1900	5	1600	50
#3	MgO, SiO2, Al(OH)3, H2O	26	1900	10	1300	30

Table 1. Conditions of the high-pressure experiments. Tmax target maximum temperature, Tq quenching temperature.
in the present Al-phase D single-crystal \((\text{Mg}_{1.25}\text{Si}_{1.43}\text{Al}_{0.27}\text{O}_6\text{H}_{2.97})\) agrees excellently with that \([2.114(3) \text{ Å}^3]\) in the reported Al-free phase D \((\text{Mg}_{1.24}\text{Si}_{1.76}\text{O}_6\text{H}_{2.48})\)\(^{24}\), whereas the S–O bond length \([1.840(1) \text{ Å}]\) in the former corresponding to the uppermost parts in the lower mantle if it contains some amount of \(\text{Al}_2\text{O}_3\) component, in at 27\,GPa, lying in the normal mantle-geotherm, substantiates that phase D is stable even at the conditions contrast to Al-free phase D, which decomposes at 1200°C \((\text{Ref.}^7)\).

The crystal structure determined for the selected crystal (run #3) are shown in Fig. 3a–c, together with the electron beam. The deficiency (15.26 mass%) from 100 mass% is attributed to the incorporation of \(\text{H}_2\text{O}\) component into the structure, and the chemical formula of the products was calculated to be \(\text{Mg}_{1.01}\text{Si}_{1.26}\text{Al}_{0.65}\text{O}_6\text{H}_{2.99}\). From the compatibility with phase D\(^{5,23–25}\) in terms of unit-cell parameters and chemical formula, it is concluded that the present hydrous phase is Al-phase D. These results obtained from the samples quenched at 1600°C at 27\,GPa, lying in the normal mantle-geotherm, substantiates that phase D is stable even at the conditions corresponding to the uppermost parts in the lower mantle if it contains some amount of \(\text{Al}_2\text{O}_3\) component, in contrast to Al-free phase D, which decomposes at 1200°C \((\text{Ref.}^7)\).

To assess why the presence of Al drastically enhances the stability of phase D, it is quite important to determine the detailed crystal structure of Al-phase D. The slow cooling from higher temperatures is effective to enhance crystal growth from melt, as in the case of Al-free \(\text{MgSiO}_3\) bridgmanite\(^{26}\). The runs #2 and #3, with the slow cooling from 1900°C, were thus conducted to try synthesis of Al-phase D single-crystals large enough for single-crystal X-ray diffraction. Numerous transparent and euhedral single-crystals (Fig. 2), which possess a crystal habit implying a trigonal or a hexagonal symmetry, were found in the recovered samples. No intergrowth textures were observed under polarized microscope. A specimen for single-crystal X-ray diffraction was selected from the crystals produced in the run #3, with the slower cooling rate than in the run #2, because they were better in terms of size and crystallinity than those produced in the run #2. The electron probe microanalyses for the crystals produced in the run #3 showed a chemical composition of 28.46 mass% \(\text{MgO}\), 48.69 mass% \(\text{SiO}_2\) and 7.72 mass% \(\text{Al}_2\text{O}_3\) with a total of 84.87 mass% to give a chemical formula of \(\text{Mg}_{1.25}\text{Si}_{1.43}\text{Al}_{0.27}\text{O}_6\text{H}_{2.97}\) by assigning the deficit from 100 mass% to \(\text{H}_2\text{O}\) component. This composition differs somewhat from that in the run #1 shown above. This is probably due to the difference in thermal history and/or water fugacity, which can influence \(\text{Mg}/\text{Si}\) ratio in fluid, between the two runs.

The crystal structure determined for the selected crystal (run #3) are shown in Fig. 3a–c, together with the residual electron density peak (Fig. 3d) assigned to a hydrogen (H) atom. The structure-analytical information and results are given in Supplementary Table S1, and Tables 3 and 4. The \(\text{M}–\text{O}\) bond length \([2.113(2) \text{ Å}]\) in the reported Al-free phase D \((\text{Mg}_{1.24}\text{Si}_{1.76}\text{O}_6\text{H}_{2.48})\)\(^{24}\), whereas the S–O bond length \([1.823(2) \text{ Å}]\) in the latter. This shows that larger \(\text{Al}^{3+}\) is incorporated only into S-site and substitutes smaller \(\text{Si}^{4+}\), justifying the present site-assignment of Al. Indeed, bond valence sums\(^{27}\), calculated including \(\text{H}–\text{O}\) (donor) and \(\text{H}–\text{O}\) (acceptor) bonds, are 1.88 for S-site and 3.42 for S-site and 2.02 for O-site, approximately equal to their expected values (1.96, 3.54 and 2.0, respectively), demonstrating that the resulting positional parameters and site occupancy parameters are crystal-chemically reasonable.

Owing to the constraints of the space group, a pair of centrosymmetric H positions (Wyckoff position 6\(k\)) are present in close proximity (H–H = 1.07 Å) (Fig. 3c, Table 4). If an H position is occupied, its nearest H position must be unoccupied to avoid an \(\text{H}^+–\text{H}^+\) interaction (Fig. 3c). Thus, the maximum allowance for the number of H atoms contained in a unit cell is 3, corresponding to a half occupancy of the 6\(k\)-site. The H content of the
present Al-phase D (2.97–2.99 H atoms per unit cell) is very close to the maximum allowance. The comparison of the cation ratios of Al-free phase D (Mg$_{1.11–1.24}$Si$_{1.73–1.89}$O$_6$H$_{2.22–2.81}$)$^{5,23–25}$ with those of the present Al-phase D shows that the substitution Si$^{4+}$ → Al$^{3+}$ + H$^+$, in addition to Si$^{4+}$ → Mg$^{2+}$ + 2H$^+$ and Mg$^{2+}$ → 2H$^+$ + Vc (Vc: cation vacancy) suggested for Al-free phase D5, is responsible for a larger amount of H in Al-phase D. The contents of Al$^{3+}$, Si$^{4+}$, Mg$^{2+}$ and Vc in Al-phase D are adjusted under the constraint that the number of H$^+$ per unit cell must be equal to or less than 3.

In Fig. 4, possible phase relations for pure MgSiO$_3$ (dotted grey lines) and Al$_2$O$_3$-bearing MgSiO$_3$ (solid blue lines) under water-saturated conditions are shown together with the slow-cooling paths (solid red arrows) adopted for our crystal-growth experiments. As the liquidus temperature of MgSiO$_3$ at 27 GPa under water saturation is 1750 °C (Ref.26), our charges would have been above liquidus when kept at 1900 °C in the crystal-growth experiments, in spite of a slight increase of the liquidus due to the Al$_2$O$_3$ component28. Thus, it is inferred that the single crystals of Al-phase D grew from melt. This view is supported by the fact that the crystals have a perfect euhedral-shape (see Fig. 2) and exhibit no intergrowth texture; these observations exclude the possibility that the crystals are product of reaction involving any other phases, such as Al-bearing MgSiO$_3$ bridgmanite (Al-Brg). It is therefore concluded that Al-phase D is stable up to temperatures substantially higher than the normal mantle-geotherm. Moreover, as Al-phase D crystallized from a starting material with the composition of Al-Brg, the former should be more stable than the latter under water-saturated conditions.

Such a drastic change in stability relations between bridgmanite and phase D under water-saturated conditions by addition of a relatively small amount of Al$_2$O$_3$ component is interpreted in terms of the difference in the coordination environments of Al ions between Al-Brg and Al-phase D. The Al ions in Al-Brg occupy both the eightfold- and sixfold-coordinated sites by the substitution VIIIMg$^{2+}$ + VIISi$^{4+}$ → VIIIAl$^{3+}$ + VIAl$^{3+}$ (Ref.29). Eightfold coordination is unsuitable for Al$^{3+}$ because of its small cationic size; indeed, no compound with eightfold-coordinated Al is known except for Al-Brg. Such an unusual eightfold-coordinated Al should enhance the cohesive energy of Al-Brg, and the repulsive interaction with adjacent Si$^{4+}$ or Al$^{3+}$ through the shared faces between (Si, Al)(O$_6$)-octahedra and (Mg, Al)(O$_8$)-polyhedra may especially tend to destabilize the structure. In contrast, the incorporation of Al into phase D will reduce the cation-cation repulsion across the shared edges between (Si, Al)(O$_6$)-octahedra and (Mg, Al)(O$_8$)-polyhedra by the substitution of Al$^{3+}$ for Si$^{4+}$, owing to the lower charge and larger cationic size of Al$^{3+}$. Thus, the incorporation of Al into phase D results in expansion of the stability field to much higher temperatures and presumably to much higher pressures.

It follows from this discussion that phase D could be stable along the normal lower-mantle geotherm up to much higher pressures if it contains some amount of Al$_2$O$_3$ component (cf. Fig. 4). Bridgmanite in the lower mantle probably contains about 6 mol% Al$_2$O$_3$ component19,20, and Al-phase D in the lower mantle could form by reaction between bridgmanite and free water. Given that the representative formula of Al-phase D is Mg$_{2.8–x}$Al$_{0.4–x}$Os$_{2–x}$H$_{2–x}$, the reaction can be expressed as follows:

\[
x \text{Mg}_{0.94} \text{Si}_{0.94} \text{Al}_{0.12} \text{O}_3 (\text{Al-Brg}) + (0.06x + 0.12) \text{H}_2\text{O} \\
\rightarrow 0.12 \text{MgSi}_2 \text{Al}_{0.4} \text{Os}_2 \text{H}_2 \text{O}_{1.4} (\text{Al-phase D}) + (0.94x - 0.12) \text{MgO} + (1.06x - 0.24) \text{SiO}_2.
\]

Bolfan-Casanova et al.30 demonstrated that the major lower-mantle constituents, bridgmanite and ferropericlase (magnesiowüstite), can accommodate very little water, and completely denied the previous result31 that these
nominally anhydrous phases could contain 0.2–0.4 mass% H₂O component. Thus, the Al-phase D is a phase with potential as a reservoir of a large quantity of hydrogen in the normal lower-mantle.

MORB component of subducting slabs has Al₂O₃ content higher than pyrolite, and in the lower mantle bridgmanite with about 15–16 mass% Al₂O₃ component is stable in this composition. This Al₂O₃ content is higher than that (about 8 mass%) in the bridgmanite composition employed in the present high-pressure experiments. Therefore, phase D in slabs would contain a large amount of Al₂O₃ component, and this content would be higher than that in the present Al-phase D. Indeed, super-aluminous phase D (simplified formula Al₂SiO₆H₂), which could be stable over 2000 °C at 26 GPa (Ref. 9), was produced from the similar Al-rich bulk composition. If the incorporation of Al into phase D extends its stability field to higher pressure following the above crystal-chemical prediction, then Al-phase D in slabs can carry hydrogen much deeper in the lower mantle than previously estimated. This speculation is consistent with the phase relation reported in the simplified system such as MgO–Al₂O₃–SiO₂–H₂O (Ref. 35), but is inconsistent with that reported recently in the hydrous MORB system (Ref. 38). It was reported that in the former systems the stable region of Al-phase D was stable up to ~ 55 GPa and Al-phase H was the stable hydrous phase at higher pressures, whereas in the latter system the stable region of Al-phase D was drastically reduced to ~ 25 GPa. This discrepancy in the stability relation of the hydrous phases may be attributed to the difference in the starting compositions including water contents, but the details remain to be solved. Even if Al-phase D decomposes into Al-phase H at lower pressures in actual subducting slabs as suggested in the recent study, hydrogen should be transported still deeper in the lower mantle by Al-phase H, stable up to much higher pressures. The ultimately released water would be hardly absorbed into the surrounding lower-mantle constituents and be stored as hydroxyl groups in Al-phase D in the upper region of the lower mantle according to the reaction (1), although Al-phase H produced by reaction with bridgmanite might intervene depending on depth as will discussed below.

Figure 3. Crystal structure of the present Al-phase D, analyzed using a single-crystal produced in the run #3. (a) Projection along the c-axis (excluding H atoms). (b) Projection along the direction close to [110]. H site is denoted with small solid circles. In the present Al-phase D, H atoms occupy about 50% of this site. The crystal structure is based on the hexagonal closest packing array of O atoms and consists of the two types of octahedra, (Si, Al, Mg)O₆-octahedra in S-site and MgO₆-octahedra in M-site. The (Si, Al, Mg)O₆-octahedra form the layer structure by sharing edges with each other, and the layers are stacked along the c-axis. The MgO₆-octahedra, isolated with each other, connect the separations between the (Si, Al, Mg)O₆-octahedral layers by sharing corners with the (Si, Al, Mg)O₆-octahedra. The hydrogen bonds contribute to the linkages between the MgO₆-octahedra and between the MgO₆- and the (Si, Al, Mg)O₆-octahedra. (c) Crystallographic configuration of H atom. The small solid circle is an occupied H-position, and the small open circle is an unoccupied H-position. (d) Difference Fourier map denoting the residual electron density peak assigned to a H atom. The contour interval is 0.05 eÅ⁻³. Positive contours are solid lines. Negative and zero contours are dashed lines and dashed-and-dotted lines, respectively.
The role of Al-phase D in the dynamics of the lower mantle is especially noteworthy. The zero-pressure/room-temperature density of the present Al-phase D is calculated to be $\rho_0 = 3.35 \text{ g/cm}^3$. Although the incorporation of Fe into Al-phase D can affect ρ_0, the reported values (3.45–3.56 g/cm3) of Al-phase D containing some amount of FeO/Fe$_2$O$_3$ component ($\text{Mg}_{0.89-1.0}\text{Fe}_{0.11-0.15}\text{Al}_{0.03-0.32}\text{Si}_{1.5-1.9}\text{O}_6\text{H}_{2.5-2.93}$) are only a little higher than that of the present Al-phase D. These ρ_0 values, including the present data, are all considerably lower than the representative value of the lower-mantle $\rho_0 = 4.15 \text{ g/cm}^3$ (Ref.40). Therefore, a "wet-metasomatized" region containing Al-phase D would move upward owing to pronounced buoyancy even if it contains some amount of FeO/Fe$_2$O$_3$ component. Similarly, the ρ_0 value of (Al, Fe)-free phase H is 3.38 g/cm3 (Ref.41), very close to that (3.43 g/cm3) of (Al, Fe)-free phase D; containing of some amount of Al$_2$O$_3$ and/or FeO/Fe$_2$O$_3$ components will not yield a significant increase in ρ_0 of phase H as well [cf. $\rho_0 = 3.54 \text{ g/cm}^3$ for δ-AlOOH (Refs.42,43); $\rho_0 = 4.45 \text{ g/cm}^3$ for ε-FeOOH (Ref.43), isostructural with δ-AlOOH]. Thus, the same situation due to pronounced buoyancy would also occur in a "wet-metasomatized" region containing Al-phase H. This implies that Al-phase D and Al-phase H could be important agents for material transport in the lower mantle. These aluminous DHMS phases might have played an important role in extraction of water from the solid Earth to form the oceans.

Meanwhile, Al-phase D with much higher Al-content, such as super-aluminous phase D9,10, would be stable even in slabs subducting still deeper, but this would also decompose finally into Al-phase H, i.e. solid solutions between δ-AlOOH and Mg$_2$SiO$_4$H$_2$ (phase H), with much higher Al-content to transport hydrogen presumably to the bottom of lower mantle16. In addition to such a super-aluminous phase H, recently discovered pyrite-type FeOOH$_x$ ($x \leq 1$)$^{44-46}$, which could be produced in subducted banded-iron-formations, may also be a key to yielding the "wet-metasomatized" region under water-saturated conditions. This iron hydroxide is also promising as a hydrous phase stable at the bottom of lower mantle$^{44-46}$ and probably forms solid solutions containing AlOOH and/or Mg$_2$SiO$_4$H$_2$ components in deep subducted slabs46. A portion of water released by decomposition of the super-aluminous phase H and pyrite-type FeOOH$_x$ due to heating at the core-mantle boundary may be spent on incorporating hydrogen into the outer core through the production of iron hydride FeH$_x$. The remainder moving upward may contribute to yielding the water-saturated region in the lower mantle, and may migrate to the surface via Al-phase D from Al-phase H produced by reaction with bridgmanite. (In this process, Al-phase D is implicitly assumed to be formed in the upper region by reaction between Al-phase H and a high-pressure SiO$_2$ polymorph.) Okuchi47 reported that hydrogen is highly-siderophile at high pressure conditions, and suggested that the core-materials (iron ponds) could incorporate a huge amount of hydrogen included in the magma

Site (W.p.)	M (1a)	S (2d)	O (6k)	H (6k)a
Occupancy	0.979(8) Mg1	0.715 Sia	1.0	0.495
x	0	0.3333	0.6340(5)	0.495
y	0	0.6667	0	0
z	0	0.5	0.3669(4)	0.124
U_{eq} (Å2)	0.0130(12)	0.0101(7)	0.0132(17)	-
U_{11} (Å2)	0.0136(12)	0.0108(7)	0.0128(12)	-
U_{22} (Å2)	0.0136	0.0108	0.0208(15)	-
U_{12} (Å2)	0.0118(16)	0.0085(9)	0.0085(11)	-
U_{33} (Å2)	0.0068	0.0054	0.0104	-
U_{13} (Å2)	0	0	-0.0002(7)	-
U_{23} (Å2)	0	0	-	-

Table 3. Refined structural parameters. W.p. Wyckoff position. aSite occupancy parameters of Si and Al were fixed on S-site, and those of Mg were constrained between M- and S-sites to keep the chemical composition from the electron probe microanalyses. bH-atom position was determined from the difference Fourier synthesis, and not refined.

Bonds/separations	Distances (Å)	Angles (°)
M–O	2.113(2) × 6	-
S–O	1.840(1) × 6	-
H–O (donor)	0.913	-
H–O (acceptor)	1.802	-
H–H	1.073	-
O–H–O	-	152.84

Table 4. Selected interatomic distances and angles.

The role of Al-phase D in the dynamics of the lower mantle is especially noteworthy. The zero-pressure/room-temperature density of the present Al-phase D is calculated to be $\rho_0 = 3.35 \text{ g/cm}^3$. Although the incorporation of Fe into Al-phase D can affect ρ_0, the reported values (3.45–3.56 g/cm3) of Al-phase D containing some amount of FeO/Fe$_2$O$_3$ component (Mg$_{0.89-1.0}$Fe$_{0.11-0.15}$Al$_{0.03-0.32}$Si$_{1.5-1.9}$O$_6$H$_{2.5-2.93}$)$^{36-39}$ are only a little higher than that of the present Al-phase D. These ρ_0 values, including the present data, are all considerably lower than the representative value of the lower-mantle $\rho_0 = 4.15 \text{ g/cm}^3$ (Ref.40). Therefore, a "wet-metasomatized" region containing Al-phase D would move upward owing to pronounced buoyancy even if it contains some amount of FeO/Fe$_2$O$_3$ component. Similarly, the ρ_0 value of (Al, Fe)-free phase H is 3.38 g/cm3 (Ref.41), very close to that (3.43 g/cm3)43 of (Al, Fe)-free phase D; containing of some amount of Al$_2$O$_3$ and/or FeO/Fe$_2$O$_3$ components will not yield a significant increase in ρ_0 of phase H as well [cf. $\rho_0 = 3.54 \text{ g/cm}^3$ for δ-AlOOH (Refs.42,43); $\rho_0 = 4.45 \text{ g/cm}^3$ for ε-FeOOH (Ref.43), isostructural with δ-AlOOH]. Thus, the same situation due to pronounced buoyancy would also occur in a "wet-metasomatized" region containing Al-phase H. This implies that Al-phase D and Al-phase H could be important agents for material transport in the lower mantle. These aluminous DHMS phases might have played an important role in extraction of water from the solid Earth to form the oceans.

Meanwhile, Al-phase D with much higher Al-content, such as super-aluminous phase D9,10, would be stable even in slabs subducting still deeper, but this would also decompose finally into Al-phase H, i.e. solid solutions between δ-AlOOH and Mg$_2$SiO$_4$H$_2$ (phase H), with much higher Al-content to transport hydrogen presumably to the bottom of lower mantle16. In addition to such a super-aluminous phase H, recently discovered pyrite-type FeOOH$_x$ ($x \leq 1$)$^{44-46}$, which could be produced in subducted banded-iron-formations, may also be a key to yielding the "wet-metasomatized" region under water-saturated conditions. This iron hydroxide is also promising as a hydrous phase stable at the bottom of lower mantle$^{44-46}$ and probably forms solid solutions containing AlOOH and/or Mg$_2$SiO$_4$H$_2$ components in deep subducted slabs46. A portion of water released by decomposition of the super-aluminous phase H and pyrite-type FeOOH$_x$ due to heating at the core-mantle boundary may be spent on incorporating hydrogen into the outer core through the production of iron hydride FeH$_x$. The remainder moving upward may contribute to yielding the water-saturated region in the lower mantle, and may migrate to the surface via Al-phase D from Al-phase H produced by reaction with bridgmanite. (In this process, Al-phase D is implicitly assumed to be formed in the upper region by reaction between Al-phase H and a high-pressure SiO$_2$ polymorph.) Okuchi47 reported that hydrogen is highly-siderophile at high pressure conditions, and suggested that the core-materials (iron ponds) could incorporate a huge amount of hydrogen included in the magma
ocean and the incorporated hydrogen never returns to the silicate Earth. If the Earth’s core has been saturated with hydrogen, it would have been released from the outer core over geologic time. However, the geophysical observations combined with the mineral physics data suggested that the core is undersaturated with hydrogen. At present, hydrogen is thus unlikely to be provided from the outer core. In future, however, water continuously released from super-aluminous phase H and pyrite-type FeOOH$_x$ might saturate the core with hydrogen. If so, hydrogen might come to be released from the outer core and this released hydrogen might also come to migrate to the surface via Al-phase D from Al-phase H.

Methods

High-pressure experiments. The high-pressure experiments were conducted using a 5000-ton Kawai-type multi-anvil apparatus installed at the Institute for Planetary Materials, Okayama University. The experimental procedures and techniques are essentially the same as those described in our previous studies as follows. We employed a 6 mm regular octahedron of sintered MgO containing 5% of Cr$_2$O$_3$ as a pressure-transmitting medium and a LaCrO$_3$ as a heating material. The three runs reported here were performed under the different conditions shown in Table 1. The mixture of the starting materials, including an amount of liquid water suitable for over-saturation, was placed in a Pt capsule and sealed by arc-welding the capsule ends. In particular, liquid water was carefully injected into the capsule using a microsyringe. During arc-welding, the capsule was cooled by wrapping in water-soaked absorbent cotton to prevent evaporation of injected water. The Pt capsule was inserted into the LaCrO$_3$ heater and electrically insulated from the heater by a MgO spacer. The heater was surrounded with ZrO$_2$ thermal insulator, and then was put into the MgO octahedron. This cell assembly was set in the anvil assembly of tungsten carbide cubes with truncated edge lengths of 2 mm, and then was compressed.
up to the target pressure (26 or 27 GPa) at room temperature. The temperature was then raised to the target maximum temperature (1600 or 1900 °C) in each run at a rate of 35 °C/min. The temperature was controlled with a W97%Re3%-W75%Re25% thermocouple, whose junction was put at the midpoint of the outer surface of the Pt capsule. No correction was made for the pressure effect on emf. After being exposed to the different thermal histories in each run (Table 1), the products were quenched at 1300 or 1600 °C by shutting off the electric power supply. The pressure was released slowly and the products were recovered at ambient conditions. The recovered samples were mounted with epoxy and polished for the chemical analyses using a JEOL JEM-733II electron probe microanalyzer. For the analyses, the irradiated electron beam was focused to 5 μm in diameter, sufficiently smaller than area sizes of analyzed crystals, under operation conditions of a 15 kV acceleration voltage and a 10 nA beam current. No contamination from the cell assembly materials into the products was detected from qualitative electron probe microanalyses. For the phase identification, the polished samples were also characterized by a Rigaku RINT RAPID-R microfocus X-ray diffractometer with Cu Ka radiation (λ = 1.5418 Å) operated at 40 kV and 200 mA.

Single-crystal X-ray diffraction intensity measurements and structure refinements. The single-crystal X-ray diffraction intensity measurements, data processing and structure refinements were conducted according to essentially the same procedures and techniques as those described in our previous studies49–58 as follows. A single crystal with a size of $75 \times 45 \times 20 \text{μm}^3$ produced in the run #3 was selected and then mounted on the tip of a glass fiber for X-ray diffraction intensity measurements using a graphite-monochromatized Mo Ka radiation ($λ = 0.71069$ Å). The measurements were conducted at room temperature (296 K) using a Rigaku AFC-7R four-circle diffractometer operated at 60 kV and 250 mA. The unit-cell parameters were determined by the least-squares method from a set of 27 reflections within the range of $38° ≤ 2θ ≤ 50°$. The intensity data of a total of 1961 reflections within $2θ ≤ 100°$ were collected using the continuous $ω–2θ$ scan mode and corrected for Lorentz-polarization factors and absorption effects ($ψ$-scan method). The unit-cell parameters were calculated as $a = 4.8372(8)$ Å, $b = 4.8359(11)$ Å, $c = 4.3236(5)$ Å, $α = 90.000(14)°$, $β = 90.005(12)°$ and $γ = 119.981(12)°$ without any constraints, agreeing with a trigonal cell. The final unit-cell parameters were determined as $a = 4.8379(4)$ Å and $c = 4.3236(4)$ Å under the constraints of trigonal setting. Intensity statistics, indeed, showed Laue symmetry $31m$ (trigonal cell). The intensity data were averaged in this Laue symmetry to give 351 unique reflections. Of these, unique reflections with $|F_o| ≤ 3σ_o$ were eliminated, where $σ_o$ is the standard deviation for observed structure factor F_o. Even if unique reflections had intensities of $|F_o| > 3σ_o$ after averaging, those averaged from data set of equivalent reflections including reflection(s) with $|F_o| ≤ 3σ_o$ were also discarded since these reflections were potentially affected by multiple scattering as in Refs.51–56. Finally, 167 unique reflections were used in the present refinements.

The crystal structure was determined by the direct method using the program SIR97 (Ref.59) and refined by minimizing the function $\sum σ_o^2 (|F_o| − |F_c|)^2$ using the full matrix least-squares program RADD 60. Among the space groups subjected to Laue symmetry $31m$, the possible ones are $P31m$, $P312$ and $P31m$ because no systematic absences were observed. We selected the centrosymmetric space group $P31m$, adopted in Al-free phase $D^{25–26}$, because the structure refinements assuming the remaining two space groups resulted in unsuccessful convergence with larger reliability indices. Indeed, in the difference Fourier synthesis after the final refinement assuming $P311m$, no significant residual electron densities were observed around the M, S and O sites; thus, site-splitting due to symmetry reduction to non-centrosymmetric subgroup $P31m$ or $P31$ is most unlikely. H atom was excluded from the structure refinements because of its low X-ray scattering power. Scattering factors of Mg, Al, Si and O (Table 6.1.3 in International Tables for Crystallography64), and O$^-$ (Tokonami62) were used. Anomalous dispersion coefficients for each scattering factor were taken from Table 4.2.6.8 in International Tables for Crystallography64. Several correction models for the secondary extinction effects were attempted during the refinements, and the isotropic correction of Type $I^{35–36}$ with a Gaussian mosaic spread distribution model yielded the best fit.

In super-alumina phase D^{19} (simplified formula Al$_2$SiO$_4$), the following three M or four S symmetrically distinct octahedral sites are partially occupied by a disordered distribution of Al and Si: M-site (Wyckoff position 1a) and S-site (2d), which are also occupied in Al-free phase $D^{23–25}$ (simplified formula Mg$_2$SiO$_4$), and the one (2c) or two (2c, 1b) additional octahedral sites, which are vacant in Al-free phase D. The difference Fourier synthesis for the present Al-phase D, however, showed that no significant residual electron density peak is detected on these additional octahedral sites, which indicates that cations are distributed only on M- and S-sites as in Al-free phase $D^{23–25}$. The structure refinements were therefore performed by varying P(Mg) as the only valuable site occupancy parameter under the following constraints to keep the chemical composition from the electron probe microanalyses: P(Si)$ = 0.715$ (fix), P(Al)$ = 0.135$ (fix), P(Mg)$ = 0.625 − 0.5 × P$(Mg), where the superscripts M and S represent the occupied sites of the cations. The final structure refinement converged smoothly to $R = 0.0320$ and $wr = 0.0319$ with anisotropic displacement parameters. The resulting P(Mg) is 0.979(8), indicating that M- and S-sites both are almost full occupied. In the final difference Fourier synthesis, the residual electron density peaks with a height of 0.36 e Å$^{-3}$ (Fig. 3d) were observed at equivalent positions of the coordinates (0.495, 0, 0.124), located 0.91 Å and 1.80 Å away from adjacent O atoms. These distances are reasonable as H-O (donor) and H-O (acceptor) bond lengths, respectively, which was also confirmed from the bond valence calculations72. We therefore assigned the peaks to H atoms.

The summary of crystallographic data, data-collection and refinement parameters is given in Supplementary Table S1. The refined structural parameters and the selected interatomic distances and angles are listed in Tables 3 and 4, respectively. Crystallographic Information File (CIF) is deposited in the Cambridge Structural Database (CSD) (Deposition No. 2118607).
References

1. Iwamori, H. Transportation of H₂O and melting in subduction zones. Earth Planet. Sci. Lett. 160, 65–80 (1998).

2. Karato, S.-I., Paterson, M. S. & Fitzgerald, J. D. Rheology of synthetic olivine aggregates: Influence of grain size and water. J. Geophys. Res. 91(B8), 8151–8176 (1986).

3. Mez & Kohlstedt, D. L. Influence of water on plastic deformation of olivine aggregates: 1. Diffusion creep regime. J. Geophys. Res. 105(B9), 21457–21469 (2000).

4. Mez & Kohlstedt, D. L. Influence of water on plastic deformation of olivine aggregates: 2. Dislocation creep regime. J. Geophys. Res. 105(B9), 21471–21481 (2000).

5. Ohtani, E. Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat. Geosci. 7, 224–227 (2014).

6. Ohtani, E., Amaike, Y., Kamada, S., Sakamaki, T. & Hirano, N. Stability of hydrous phase H MgSiO₄H₂ under lower mantle conditions. Geophys. Res. Lett. 41, 8283–8287 (2014).

7. Ohtani, E., Toma, M., Litasov, K., Kubo, T. & Suzuki, A. Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle. Phys. Earth Planet. Inter. 124, 105–117 (2001).

8. Ghosh, S. & Schmidt, M. W. Melting of phase D in the lower mantle and implications for recycling and storage of H₂O in the deep mantle. Geochim. Cosmochim. Acta 145, 72–88 (2014).

9. Sano, M. G. et al. Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate. Nat. Geosci. 8, 75–79 (2015).

10. Bolfan-Casanova, N., Keppler, H. & Rubie, D. C. Water partitioning at 660 km depth and evidence for very low water solubility in Earth's lower mantle. Earth Planet. Sci. Lett. 305, 190–201 (2011).

11. Walter, M. J. Absence of an aluminous phase in the upper part of the Earth's lower mantle. Earth Planet. Sci. Lett. 159, 13–23 (1998).

12. Ringwood, A. E. In Advances in Earth Sciences (ed. Hurley, P.) 287–356 (MIT Press, 1966).

13. Kudoh, Y., Nagase, T., Mizobata, H. & Ohtani, E. Structure and crystal chemistry of phase G, a new hydrous silicate in the upper part of Earth's lower mantle. Earth Planet. Sci. Lett. 524, 115714 (2019).

14. Kubo, A. & Akaogi, M. Post-garnet transitions in the system MgSiO₃–MgAl₂SiO₆ up to 28 GPa: Phase relations of garnet, ilmenite and perovskite. Phys. Earth Planet. Inter. 121, 85–102 (2000).

15. Ito, E. & Weidner, D. J. Crystal growth of MgSiO₃ perovskite. Geophys. Res. Lett. 13, 464–466 (1986).

16. Gagné, O. C. & Hawthorne, F. C. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr. B71, 562–578 (2015).

17. Kudoh, Y. & Ito, E. Melting relations in the system MgSiO₃(Fe)–MgAl₂SiO₅(P) at high pressures. Phys. Earth Planet. Inter. 96, 159–169 (1996).

18. Andraudeau, D. A., Neuville, D. R., Flank, A.-M. & Wang, Y. Cation sites in Al-rich MgSiO₃ perovskites. Am. Mineral. 83, 1045–1053 (1998).

19. Rust, J. & Buseck, P. R. Water partitioning in melts of Earth's lower mantle. Nature 295, 1885–1887 (1982).

20. Bolfan-Casanova, N., Keplinger, H. & Rubie, D. C. Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite. Geophys. Res. Lett. 30, 1005. https://doi.org/10.1029/2003GL017182 (2003).

21. Murakami, M., Hirose, K., Yurimoto, H., Nakashima, S. & Takafuji, N. Water in earth's lower mantle. Science 295, 1885–1887 (2002).

22. Ono, S., Ito, E. & Katsura, T. Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet. Sci. Lett. 190, 57–63 (2001).

23. Hirose, K. & Fei, Y. Subsolidus and melting phase relations of basaltic composition in the uppermost lower mantle. Geochim. Cosmochim. Acta 66, 2099–2108 (2002).

24. Shi, S. R., Mao, H.-K., Henley, R. J. & Ming, L. C. Decomposition of phase D in the lower mantle and the fate of dense hydrous silicates in subducting slabs. Earth Planet. Sci. Lett. 159, 13–23 (1998).

25. Liu, X., Matsukage, K., Nishihara, Y., Suzuki, T. & Takahashi, E. Stability of the hydrous phases of Al-rich phase D and Al-rich phase H in deep subducted oceanic crust. Am. Mineral. 104, 64–72 (2019).

26. Litasov, K., Ohtani, E., Suzuki, A. & Funakoshi, K. The compressibility of Fe- and Al-bearing phase D to 30 GPa. Phys. Chem. Miner. 34, 159–167 (2007).

27. Litasov, K., Ohtani, E., Nishihara, Y., Suzuki, A. & Funakoshi, K. Thermal equation of state of Al-rich phase D. J. Geophys. Res. 113(B8), 108205 (2008).

28. Rosa, A. D., Sanchez-Valle, C. & Ghosh, S. Elasticity of phase D and implication for the degree of hydration of deep subducted slabs. Geophys. Res. Lett. 39, L06304 (2012).

29. Chang, Y.-Y. et al. Spin transition of Fe²⁺ in Al-bearing phase D: An alternative explanation for small-scale seismic scatterers in the mid-lower mantle. Earth Planet. Sci. Lett. 382, 1–9 (2013).

30. Ito, E., Takahashi, E. & Matsui, Y. The mineralogy and chemistry of the lower mantle: An implication of the ultrahigh-pressure phase relations in the system MgO–FeO–SiO₂. Earth Planet. Sci. Lett. 67, 238–248 (1984).

31. Ito, E., Takahashi, E. & Matsui, Y. The mineralogy and chemistry of the lower mantle: An implication of the ultrahigh-pressure phase relations in the system MgO–FeO–SiO₂. Earth Planet. Sci. Lett. 67, 238–248 (1984).
42. Komatsu, K., Kuribayashi, T., Sano, A., Ohtani, E. & Kudoh, Y. Redetermination of the high-pressure modification of AIOOH from single-crystal synchrotron data. Acta Crystallogr. C62, 1216–1218 (2015).
43. Xu, C., Nishi, M. & Inoue, T. Solubility behavior of δ-AIOOH and e-FeOOH at high pressures. Am. Mineral. 104, 1416–1420 (2019).
44. Hu, Q. et al. Dehydration of goethite in Earth’s deep lower mantle. Proc. Natl. Acad. Sci. U.S.A. 114, 1498–1501 (2017).
45. Liu, J. et al. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones. Nature 551, 494–497 (2017).
46. Nishi, M., Kuwayama, Y., Tsuchiya, T. & Tsuchiya, T. The pyrite-type high-pressure form of FeOOH. Nature 547, 205–208 (2017).
47. Okuchi, T. Hydrogen partitioning into molten iron at high pressure: Implications for Earth’s core. Science 278, 1781–1784 (1997).
48. Terakasai, H. et al. Stability of Fe-Ni hydride after the reaction between Fe-Ni alloy and hydrous phase (δ-AIOOH) up to 1.2 Mbar: Possibility of H contribution to the core density deficit. Phys. Earth Planet. Inter. 194–195, 18–24 (2012).
49. Nakatsuka, A., Yoshihisa, A., Yamanaka, T. & Ito, E. Structure refinement of a birefringent Cr-bearing majorite Mg5(Mg0.34Si0.34Al0.18Cr0.14)2Si3O12. Am. Mineral. 84, 199–202 (1999).
50. Nakatsuka, A. et al. Symmetry change of majorite solid-solution in the system Mg6Al2Si2O10–Mg8SiO16. Am. Mineral. 84, 1135–1143 (1999).
51. Nakatsuka, A. et al. Temperature dependence of crystal structure of CaGeO3 high-pressure perovskite phase and experimental determination of its Debye temperatures studied by low- and high-temperature single-crystal X-ray diffraction. Am. Mineral. 100, 1190–1202 (2015).
52. Nakatsuka, A. et al. Incorporation mechanism of Fe and Al into bridgmanite in a subducting mid-ocean ridge basalt and its crystal chemistry. Sci. Rep. 11, 22839. https://doi.org/10.1038/s41598-021-00403-6 (2021).
53. Nakatsuka, A. et al. Static disorders of atoms and experimental determination of Debye-temperature in pyrope: Low- and high-temperature single crystal X-ray diffraction study. Am. Mineral. 96, 1593–1605 (2011).
54. Nakatsuka, A., Arima, H., Ohtaka, O., Fujimura, K. & Yohihsa, A. Crystal structure of SrGeO3 in the high-pressure perovskite-type phase. Acta Crystallogr. E71, 502–504 (2015).
55. Nakatsuka, A., Sugiyama, K., Yonedo, A., Fujimura, K. & Yoshihisa, A. Crystal structure of post-perovskite-type CaIrO3, reinterpreted: New insights into atomic thermal vibration behaviors. Acta Crystallogr. E71, 1109–1113 (2015).
56. Nakatsuka, A., Yoshihisa, A., Fujimura, K. & Ohtaka, O. Variable-temperature single-crystal X-ray diffraction study of SrGeO3 high-pressure perovskite phase. J. Mineral. Petrol. Sci. 113, 280–285 (2018).
57. Nakatsuka, A., Ikuta, Y., Yoshihisa, A. & Ishii, K. Single crystal X-ray diffraction study of the vanadate garnet Ca2NaZn2V3O12. Mater. Res. Bull. 39, 949–956 (2004).
58. Nakatsuka, A., Chaya, H. & Yoshihisa, A. Crystal structure of single-crystal CaGeO3 tetragonal garnet synthesized at 3 GPa and 1000 °C. Am. Mineral. 90, 755–757 (2005).
59. Allomare, A. et al. SIR97: A new tool for crystal structure determination and refinement. J. Appl. Crystallogr. 32, 115–119 (1999).
60. Sasaki, S. RADY: A Fortran Program for the Least-Squares Refinement of Crystal Structures (National Laboratory for High Energy Physics, 1987).
61. International Tables for Crystallography Vol. C (ed Wilson, A. J. C.) (Kluwer Academic Publishers, 1992).
62. Tokonami, M. Atomic scattering factor for O2−. Acta Crystallogr. 19, 486 (1965).
63. Becker, P. J. & Coppens, P. Extinction within the limit of validity of the Darwin transfer equations. I. General formalisms for primary and secondary extinction and their application to spherical crystals. Acta Crystallogr. A30, 129–147 (1974).
64. Becker, P. J. & Coppens, P. Extinction within the limit of validity of the Darwin transfer equations. II. Refinement of extinction in spherical crystals of SrF2 and LiF. Acta Crystallogr. A30, 148–153 (1974).

Acknowledgements
The present study was supported by JSPS KAKENHI (Grant Nos. JP15K05344, JP22244068, JP15740317 and JP12740299). The high-pressure experiments and microfocus X-ray diffraction measurements were performed using joint-use facilities of the Institute for Planetary Materials, Okayama University. We also acknowledge Dr. M. J. Walter of Carnegie Institution for Science for critical reading of the manuscript and Y. Shibata of Hiroshima University for electron probe microanalyses.

Author contributions
A.N. designed the study and compiled the data. A.N. and E.I. conducted the high-pressure experiments, and A.N. performed the microfocus X-ray diffraction measurements for the recovered samples. A.N. and A.Y. performed the single-crystal X-ray diffraction experiments and crystal structure analyses. M.O. analyzed the chemical compositions of the samples from the electron probe microanalyses. The manuscript was written by A.N., revised by E.I. and finally reviewed by all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-07007-8.
Correspondence and requests for materials should be addressed to A.N.
Reprints and permissions information is available at www.nature.com/reprints.
