Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
activated memory phenotype and had a marked expansion of plasmablasts by W48. In parallel, ELISPOT data showed an increase in SPU against HBSAg in the 3 patients with HBSAg loss and anti-HBs by W48, confirming the recovery of antibody-producing functionality. **Conclusion**: Functional cure (HBSAg loss) and viral control following NA withdrawal associate with recovery of the low frequencies and poor functionality of HBV-specific B cells in CHB. These findings support further studies to explore the use of B cells as biomarkers of clinical outcome and as targets for further immunotherapeutic boosting.

OS068

Enforced cytotoxic signature of HBV pol455-specific CD8+ T cells in chronic HBV infection

Kathrin Heim1, 2, Sagar Sagar3, Maike Hofmann1, Robert Thimme1, 2

1University Hospital Freiburg, Freiburg im Breisgau, Germany; 2University of Freiburg Faculty of Biology, Freiburg im Breisgau, Germany

Background and aims: T-cell exhaustion represents a distinct T-cell differentiation program associated with chronic viral infections. Several studies have shown that exhausted CD8+ T cells are heterogeneous. In chronic HBV infection, we and others observed major differences in the phenotype and function as well as in the degree of dysfunction of HBV-specific CD8+ T cells targeting different antigens. The aim of this study was to investigate the molecular heterogeneity of HBV-specific CD8+ T cells targeting different antigens.

Method: To determine the subset diversification of HBV-specific CD8+ T cells targeting different antigens, we performed high-throughput single-cell RNA sequencing using CEL-Seq2 technology. We obtained HBVcore18- and HBVpol455-specific CD8+ T cells from HBeAg-negative chronically HBV-infected patients who endogenously control the viral infection as well as under NUC treatment. Phenotypic and functional analyses were performed after pMHC tetramer-based enrichment and peptide-specific expansion.

Results: Cluster analysis of single-cell transcriptomes revealed a different subset diversification of HBVcore18- versus HBVpol455-specific CD8+ T cells. In particular, HBVcore18-specific CD8+ T cells were mostly comprised of precursor/memory-like exhausted T-cell subsets. Within HBVpol455-specific CD8+ T cells, we could identify a cluster of cells that highly expressed cytotoxic genes including GZMB, PRF1, and NKG7 was also elevated in this subset. Interestingly, we further observed that the cytotoxic subset is restricted to HBVpol455-specific CD8+ T cells obtained from patients who endogenously control the viral infection indicating that the enforced cytotoxic signature may be linked to virological HBV control in these patients. The differential transcriptional profile of HBVpol455-specific CD8+ T cells was further confirmed ex vivo after pMHC tetramer-based enrichment. Indeed, at the protein level, we detected a terminal effector differentiation and higher cytotoxic effector capacity of HBVpol455-specific CD8 T cells obtained from treatment-naïve patients in comparison to patients requiring antiviral therapy.

Conclusion: In sum, our data highlight an enforced cytotoxic signature in HBVpol455-specific CD8+ T cells of treatment-naïve patients which may be related to virological control in these patients. This observation might have potential implications for the design of immunotherapeutic approaches in HBV cure.

OS069

Humoral and cellular immune responses to SARS-CoV-2 vaccination across multiple vaccine platforms and liver disease types: an EASL registry multicentre prospective cohort study

Thomas Marjot1, 2, 3, Sam Murray4, Elisa Posa5, 6, Zixiang Lim7, Maria Carlota Londono5, 6, Melanie Wittner8, 9, Marc Luquet10, 11, Virginia Hernandez-Gea11, 12, 13, Juan Carlos Garcia Pagan11, 12, Celda Schaub14, Paul Duengelhoef15, Martina Sterneck14, 15, Angsar W. Lohe13, 14, 16, Palak Trivedi17, Khushpree Bhandal18, Benjamin H. Mulfish19, Pinelopi Manousou19, Patrizia Burra20, 21, Floriana Facchetti21, Susan L. Dobson22, Alexandre S. Deeks23, Lance Turtle22, Paul Klenerman4, 24, Alexandra S. Deeks23, Lance Turtle22, Paul Klenerman4, 24, Susan L. Dobson22, Alexandra S. Deeks23, Lance Turtle22, Paul Klenerman4, 24, Eleanor Barnes2 and On behalf of the EASL Covid-Hep network, OCTAW study, and PITCH consortium25, 26, Oxford Liver Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; 2Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; 3Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, University of Oxford, Oxford, UK; 4University of Oxford, Nuffield Department of Clinical Medicine, Oxford, United Kingdom; 5Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; 6University of Barcelona, Institut de Recerca Biomédica August Pi–Sunyer (IDIBAPS), Liver Unit, Hospital Clinic de Barcelona, Barcelona, Spain; 7Oxford University Hospitals NHS Foundation Trust, Oxford, UK; 8German Center for Infection Research (DZIF), Partner Site Hamburg–Lübeck–Borstel–Riems, Germany; 9Department of Internal Medicine, University Medical Center Hamburg–Eppendorf, Hamburg, Germany; 10Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg–Eppendorf, Hamburg, Germany; 11Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Liver Unit, Hospital Clinic de Barcelona, Barcelona, Spain; 12Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain; 13European Reference Network on Hepatological Diseases (ERN RARE–LIVER); 14University Medical Center Hamburg–Eppendorf, Department of Internal Medicine, Hamburg, Germany; 15Department of Immunology, University Medical Center Hamburg–Eppendorf, Martinistraße 52, 20249 Hamburg, Germany; 16Hamburg Center for Translational Immunology (HCTI); 17National Institute for Health Research Birmingham Biomedical Research Centre, Centre for Liver and Gastroenterology Research, Birmingham, United Kingdom; 18University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom; 19Imperial College London, Department of Metabolism, Digestion and Reproduction, London, United Kingdom; 20University of Padova, Department of Surgery, Oncology and Gastroenterology, Italy; 21Division of Gastroenterology and Hepatology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy; 22NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK; 23Peter Medawar Building for Pathogen Research, Nuffield Dept. of Clinical Medicine, University of Oxford, UK; 24Translational Gastroenterology Unit, University of Oxford; 25Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy; 26Nuffield Department of Medicine, University of Oxford, Oxford, UK

Email: ellie.barnes@ndm.ox.ac.uk

Background and aims: Emerging data have demonstrated suboptimal immune responses to SARS-CoV-2 vaccination in immunosuppressed cohorts. However, unified assessments comparing multiple vaccine platforms across the spectrum of liver disease are lacking. We aimed to investigate humoral and cellular immune responses in patients across Europe with cirrhosis, autoimmune hepatitis (AIH), liver transplantation (LT), and vascular liver disorders using coordinated sampling timepoints and laboratory assays.
Method: Serum and peripheral blood mononuclear cells were collected for 792 and 283 patients respectively by the EASL COVID-Hep network and UK OCTAVE study across 4 European countries. Data for 93 healthy controls (HC) were derived from the UK PITCH consortium. Samples were taken <1-week before second vaccination (V2), 28-days post V2, and at baseline where possible. As of 28/11/2021, anti-Spike (S) and nucleocapsid (N) Ig titres (Roche) and Spike (V2), 28-days post V2, and at baseline where possible. As of 28/11/2021, anti-Spike (S) and nucleocapsid (N) Ig titres (Roche) and Spike (V2), 28-days post V2, and at baseline where possible. As of 28/11/2021, anti-Spike (S) and nucleocapsid (N) Ig titres (Roche) and Spike specific T-cell responses (IFN-γ ELISpot) were available in 151 and 75 patients respectively, and all controls. Ongoing analysis using proliferation, intracellular cytokine stimulation, tetramer, and AIM assays will define cellular function.

Results: In HC, two doses of BNT162b2 induced a 10-fold increase in median anti-S Ig titre compared to two doses of ChAdOx1 (15634 vs 1198 U/ml; p < 0.0001) (Fig 1A). LT recipients had diminished median anti-S Ig titres compared to HC after two vaccine doses of either BNT162b2 (169 vs 15634 U/ml; p < 0.0001) or ChAdOx1 (51 vs 1198 U/ml; p < 0.0001). Compared to HC, patients with cirrhosis had reduced anti-S Ig titres when vaccinated with BNT162b2 (1155 vs 15634 U/ml; p < 0.0001) but comparable titres when vaccinated with ChAdOx1 (1259 vs 1198 U/ml; p = 0.97). There was no difference in response to ChAdOx1 according to Child-Pugh class. Data was available for AH patients vaccinated with ChAdOx1 who had lower anti-S Ig titres compared to HC (443 vs 1198 U/ml; p = 0.0241). There were suboptimal antibody responses to a single vaccine dose across all disease groups relative to HC (Fig 1A). Seroconversion (anti-S Ig ≥0.8 U/ml) occurred in 100% of cirrhosis patients, 99.5% of AH, but only 70% of LT recipients versus 100% of HC (p < 0.0001). Four LT recipients receiving BNT162b2 were positive for N-protein antibodies and had elevated anti-S Ig compared to those negative for N-protein antibodies (25 000 vs 170 U/ml; p < 0.0001). T-cell responses were heterogeneous across all cohorts (Fig 1B) however a higher proportion of LT recipients failed to generate an IFN-γ response after V2 compared to HC (32% vs 10%; p = 0.0369).

Conclusion: LT recipients had markedly reduced antibody and T-cell responses to SARS-CoV-2 vaccination. Responses to BNT162b2 were significantly reduced in patients with cirrhosis compared to healthy controls. Ongoing analysis across the rest of the cohort will define SARS-CoV-2 specific T- and B-cell function.