Structure, Catalysis, and Inhibition of OfChi-h, the Lepidoptera-exclusive Insect Chitinase*

Tian Liu‡1, Lei Chen‡1, Yong Zhou‡, Xi Jiang‡, Yanwei Duan‡, and Qing Yang*‡5

From the ‡State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China and *Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 West Yuanmingyuan Road, Beijing 100193, China

Received for publication, August 24, 2016, and in revised form, November 28, 2016. Published, JBC Papers in Press, January 4, 2017, DOI 10.1074/jbc.M116.755330

Chitinase-h (Chi-h) is of special interest among insect chitinases due to its exclusive distribution in lepidopteran insects and high sequence identity with bacterial and baculovirus homologs. Here OfChi-h, a Chi-h from Ostrinia furnacalis, was investigated. Crystal structures of both OfChi-h and its complex with chitoheptaose ([(GlcN)7]) reveal that OfChi-h possesses a long and asymmetric substrate binding cleft, which is a typical characteristic of a processive exo-chitinase. The structural comparison between OfChi-h and its bacterial homolog SmChiA uncovered two phenylalanine-to-tryptophan site variants in OfChi-h at subsites +2 and possibly −7. The F232W/F396D double mutant endowed SmChiA with higher hydrolytic activities toward insoluble substrates, such as insect cuticle, α-chitin, and chitin nanowhisker. An enzymatic assay demonstrated that OfChi-h outperformed OfChtl, an insect endo-chitinase, toward the insoluble substrates, but showed lower activity toward the soluble substrate ethylene glycol chitin. Furthermore, OfChi-h was found to be inhibited by N,N',N''-trimethylglucosamine-N,N',N''-trimethylacetylglucosamine-N,N',N''-tetraacetylchitotetraose (TMG-(GlcNAc)₄), a substrate analog which can be degraded into TMG-(GlcNAc)₁₋₂. Injection of TMG-(GlcNAc)₄ into 5th-instar O. furnacalis larvae led to severe defects in pupation. This work provides insights into a molting-indispensable insect chitinase that is phylogenetically closer to bacterial chitinases than insect chitinases.

Insect chitinases belong to glycoside hydrolase family 18 (GH18) and can be classified into 11 groups based on sequence similarity and domain architecture (1, 2). Among them, chitinase-h (Chi-h) is noteworthy because its members are only found in lepidopteran insects, one of the most destructive crop pests (3, 4). Chi-hs and their bacterial homologs share more than 70% sequence identity, suggesting that a gene horizontal transfer occurred between these two phylogenetic-distant species (4, 5).

The physiological role of Chi-h in lepidopteran insects is mostly related to cuticle chitin degradation. During molting and metamorphosis, lepidopteran insects secrete molting fluid, which contains three chitinases (EC 3.2.1.14, group I chitinase (ChiI), group II chitinase (ChiII) and Chi-h), one N-acetyl-β-D-hexosaminidase (EC 3.2.1.52, Hex), and several kinds of proteases to degrade and shed the old cuticle (6). Chitinases degrade polymeric chitin into chitobiase and chitotriose, which are then further degraded into N-acetyl-β-D-glucosamine (GlcNAc) by Hex (7). Compared with the extensively studied ChiI (8–19), there is limited information about the function of ChiII and Chi-h. RNAi of SeChi-h from Spodoptera exigua led to molting deficiency and death indicating that Chi-h is indispensable for molting (17). The spatial and temporal expression patterns of Chi-hs from Bombyx mori (4, 5) and S. exigua (17) are similar to that of Chtl but different from ChiII. This suggests that Chi-h and Chtl may work synergistically throughout insect development.

Several crystal structures of GH18 chitinases have been determined from archaea (20), bacteria (21–29), fungi (30–34), plants (35–41), and mammals (42, 43). These structures show that although all of the GH18 chitinases use the same catalytic mechanism, they have large discrepancies in the shape of the substrate binding cleft. The crystal structure of OfChtl gave structural evidence that Chtl has a long and open-ended substrate binding cleft with symmetrically distributed subsites that is believed to be a structural characteristic of an endo-acting chitinase (44). According to a structure-based sequence alignment, we found that Chi-h does not contain such a substrate binding cleft but contains a long substrate binding cleft with asymmetrically distributed subsites, a structural characteristic of the processive exo-acting chitinase SmChiA from Serratia marcescens (45). Thus, it is unlikely that Chi-h would be able to
act through the same mode of action as ChitI. Revealing the structure of Chi-h will increase our knowledge of why and how lepidopteran insects acquired Chi-h for old cuticle shedding.

In this study, OfChi-h, a Chi-h from the pest Ostrinia furnacalis, was investigated. The crystal structures of OfChi-h and OfChi-h in complex with a substrate analog (GlcN)_2 were obtained and resolved. Through structure-based comparison as well as biochemical characterization, we demonstrate that Chi-h acts synergistically with ChitI to degrade cuticle chitin. Moreover, N,N',N'-trimethylglucosamine-N,N',N'-trimethyl-N',N'-tetra-acyethylchitotetraose (TMG-(GlcNac)_4), an inhibitor against chitinolytic Hexs (46), inhibits OfChi-h, providing a valuable clue for designing efficient inhibitors. Because Chi-h is absent in most beneficial insects including parasitic wasps and bees, this work will also help develop novel and eco-friendly agrochemicals to protect plants and defend economical loss.

Results

Overall Structure of OfChi-h—The structure of OfChi-h was determined by molecular replacement using the bacterial SmChiA as a search model and was refined to a resolution of 3.2 Å (Table 1). OfChi-h adopts a compact and elongated structure with two domains: domain I (residues 18–125) and domain II (residues 151–553) (Fig. 1A). According to SCOP (Structural Classification of Proteins) classification (47), domain I is different from domain II. Domain I (fibronectin III domain) is an immunoglobulin-like β-domain sandwich composed of eight β-strands. And domain II (catalytic domain) is a (β/α)_8-barrel composed of eight β-strands and eight α-helices. A chitinase insertion domain (residues 437–509), which consists of five antiparallel β-strands flanked by two α-helices, is observed in the domain II (48). Domain I and domain II are connected via a 25-amino acid linker (residues 126–150) and interact with each other via a motif consisting of two antiparallel β-strands and one short α-helix (residues 34–51). Two N-glycosylation sites (Asn³⁹¹ and Asn⁵⁵⁶) were observed (Fig. 1A).

One of the most striking features of OfChi-h is a number of aromatic residues lining the groove starting from the far end of domain I and ending at the far end of the substrate binding cleft of domain II (Fig. 1B). They are nine in total, including Trp²⁷, Trp⁶³, Trp²³⁸, Trp²²⁵, Tyr¹⁶³, Trp¹⁶⁰, Trp³⁵², Trp²⁶⁸, and Trp³⁸⁹. Seven of these aromatic residues are in domain II, but the first two come from domain I. According to the catalytic mechanism (23), the crucial catalytic residues, Asp³⁰⁴, Asp³⁰⁶, and Glu³⁰⁸, are located in the middle of the substrate binding cleft.

Substrate Binding Cleft of OfChi-h—Although our attempts to obtain the structure of OfChi-h complexed to its substrate hexa-N-acetylglucosamine ((GlcNac)₆) failed, the structure of OfChi-h complexed to chitoheptaose ((GlcN)₇), a substrate analog, was obtained by soaking OfChi-h crystals with (GlcN)₇. The structure was determined by molecular replacement using the unliganded form of OfChi-h as a searching model. The final structure was refined to a resolution of 2.7 Å (Table 1). The sugar binding subsites were named according to Davies et al. (49), where subsite −n represents the non-reducing end, subsite +n represents the reducing end, and the enzymatic cleavage happens between the −1 and the +1 subsites. The overall structure of OfChi-h-(GlcN)₇ is very similar to that of unliganded OfChi-h, with a root mean square deviation (r.m.s.d.) of 0.3 Å. The electron density map supports (GlcN)₇ binds along the substrate binding cleft and occupies the sub-

TABLE 1

Details of data collection and structure refinement	OfChi-h	OfChi-h-(GlcN)₇
Space group	P22121	P22121
Unit-cell parameters		
a (Å)	48.908	49.276
b (Å)	114.419	114.220
c (Å)	122.639	123.382
Wavelength (Å)	0.97869	0.97930
Temperature (K)	100	100
Resolution (Å)	50.3-2.3 (3.29-3.23)	50.2-2.7 (2.75-2.70)
Unique reflections	12,123	19,777
Observed reflections	22,262	36,778
R_{merge}	0.36(0.0)	0.175(0.495)
Average multiplicity (I/σ(I))	11.7(10.0)	11.4(11.3)
Ramachandran plot (%)	86.3	89.2
Protein atoms	4,197	4,212
Water molecules	1	47
Average B factor (Å²)	40.7	40.1
Protein atoms	70.60	40.4
Water molecules	89.70	39.8
r.m.s.d. from ideal	0.005	0.010
Bond lengths (Å)	0.800	1.191
Wilson B factor (Å²)	57.77	60.66
Average B factor (Å²)	70.60	40.1
Protein atoms	70.60	40.1
Water molecules	89.70	39.8
Ramachandran plot (%)	86.3	89.2
Favored	13.7	10.8
Allowed	0	0
Outliers	49.07	39.8
PDB code	5GPR	5GQB

FIGURE 1. Structure of OfChi-h. A, schematic representation of OfChi-h. Domain I is shown in light blue, domain II is shown in white, chitinase insertion domain (CID) from domain II is shown in yellow, the linker is shown in red, and the motif that contributes to the domain I-domain II interaction is shown in orange. N-Glycan sites are shown as green sticks. B, surface representation of OfChi-h. The solvent-exposed aromatic residues in domain I (Trp²⁷ and Trp⁶³) and domain II (Trp¹⁶⁰, Tyr¹⁶³, Trp²²⁵, Trp²³⁸, Trp²⁶⁸, Trp³⁵², and Trp³⁸⁹) are shown in cyan and blue, respectively. The catalytic residues (Asp³⁰⁴, Asp³⁰⁶, and Glu³⁰⁸) are shown in red.
Lepidoptera-exclusive Chi-h

- **FIGURE 2. Stereo representation of the structure complex of OfChi-h and (GlcN)$_7$.** The stereo diagram was made by using PyMOL in wall-eye mode. The $F_0 - F_e$ electron-density map around the ligand is contoured at the 2.0 σ level. The hydrogen bonds are shown as *dashed black lines*.

TABLE 2

Enzyme	Insect cuticle (μmol/min/μmol of enzyme)	α-Chitin (μmol/min/μmol of enzyme)	CNW (μmol/min/μmol of enzyme)	EGC (μmol/min/μmol of enzyme)
OfChi-h	0.161 ± 0.016	0.215 ± 0.030	1.39 ± 0.13	6.17 ± 0.32
OfChl	0.086 ± 0.011	0.125 ± 0.006	1.16 ± 0.07	9.44 ± 0.33
SmChiA	0.157 ± 0.030	0.260 ± 0.020	2.19 ± 0.12	17.20 ± 0.56
SmChiA-F232W/F396W	0.182 ± 0.010	0.340 ± 0.019	2.23 ± 0.06	9.21 ± 0.51

TABLE 3

Product	OfChi-h	OfChl	SmChiA	SmChiB	SmChiC
(GlcNAc)$_6$	75	79	75	83	96
(GlcNAc)$_3$	64	64	62	68	70
(GlcNAc)$_4$	49	42	49	36	41

Notes:
- The hydrolytic activities of chitinases for different substrates are the average of three independent repeats, with the S.D indicated.
- As shown in Table 2, OfChi-h exhibited higher activities toward insoluble substrates than OfChl but showed lower activities toward EGC than OfChl. SmChiA-F232W/F396W outperformed SmChiA in hydrolyzing insect cuticle, α-chitin, and CNW but showed lower activities toward EGC.
- The hydrolytic mode of OfChi-h was investigated using (GlcNAc)$_6$ as the substrate. In addition, the hydrolytic modes of OfChl, SmChiA, SmChiB, and SmChiC were also investigated for comparison. Because chitin is a β-1,4-linked polymer of GlcNAc and GH18 chitinases hydrolyze chitin via a retaining mechanism, β-anomeric products will be left after cleavage. SmChiA has been experimentally determined with transmission electron microscopy (52) and high speed atomic force microscopy (45) to be an exo-chitinase that attacks chitin from the reducing end. Supplemental Fig. S2 showed HPLC analysis of α- and β-anomeric hydrolytic products of (GlcNAc)$_6$ in the presence of OfChi-h, OfChl, SmChiA, SmChiB, and SmChiC. As shown in Table 3, the percentage of hydrolytic β-anomeric products in the presence of OfChi-h was very similar to that by SmChiA but different from those in the presence of any of OfChl, SmChiB, or SmChiC. Therefore, we deduce OfChi-h perhaps acted in a similar way as did SmChiA.

Enzymatic Activities of OfChi-h:
- The substrate spectrum of OfChi-h was determined using various insoluble substrates including insect cuticle, α-chitin, chitin nanowhisker (CNW) as well as soluble substrate ethylene glycol chitin (EGC). Two chitinases, OfChl and SmChiA, were chosen to compare with OfChi-h. Because the two tryptophans along the substrate binding cleft of OfChi-h were phenylalanines in SmChiA, the mutant SmChiA-F232W/F396W was thus constructed to test the effects of these site mutations (Fig. 1B and see Fig. 6A). Among the four substrates, OfChi-h and the other enzymes exhibited the highest hydrolytic activity toward the soluble EGC but lower activities toward insoluble substrates (Table 2).
Lepidoptera-exclusive Chi-h

Discussion

Comparison of OfChi-h with Its Bacterial Homolog SmChiA—Insect Chi-h is presumed to have been obtained from bacteria as it shares higher sequence identities with bacterial chitinases than insect chitinases (3, 4). In this study we found SmChiA from *S. marcescens* had the highest sequence identity of 73% and the highest similarity of hydrolytic anomic products profiles with OfChi-h and showed the highest structural similarity with OfChi-h (r.m.s.d. of 1.3 Å for 534 C atoms). Structure superimposition of OfChi-h and SmChiA (E315L) in complex with (GlcNAc)₈ (PDB code 1EHN) demonstrates that the aromatic residues for chitin binding at subsites −5, −3, −1, and +1 are conserved, except the OfChi-h tryptophans at subsite +2 (Trp389) and the SmChiA-corresponding subsite, −6 (Trp225), are substituted by phenylalanines (Phe396 and Phe232) in SmChiA (Fig. 6A). As previously shown, OfChi-h and SmChiA have similar substrate specificity (Table 2) and hydrolytic anomic products composition (Table 3). Given their similar structural characteristics and enzymatic properties, insect Chi-hs and bacterial ChiAs may act similarly in their respective chitin degradation systems.

FIGURE 3. Synergistic effect on chitin degradation by OfChi-h and OfChtl. OfChi-h + OfChtl means the calculated activity for OfChi-h and OfChtl, OfChi-h, and OfChtl means the measured activity of the 1:1 combination of OfChi-h and OfChtl. The results are the average of three independent repeats, with the S.D. indicated.

FIGURE 4. *In vitro* and *in vivo* evaluation of OfChi-h inhibitors. A, inhibitory activities of TMG-(GlcNAc)₄ and TMG-(GlcNAc)₂ against OfChi-h and chitinases from different organisms. B, the *in vivo* activity of TMG-(GlcNAc)₄ against the pupation of *O. furnacalis* at a dosage of 0.2 µg per insect. (GlcNAc)₁₋₂ is the final stable inhibitor, and both OfChi-h and OfHex1 (Hex1 from *O. furnacalis*) are likely the targets *in vivo*.

Synergism coefficient = \(\frac{0.5 \times \text{activity}_{\text{OfChi-h+OfChtl}}}{(\text{activity}_{\text{OfChi-h}} + \text{activity}_{\text{OfChtl}})} \) (Eq. 1)

It is worthy to note that the synergistic coefficient at different time points increased with the reaction time from 1.24 at 2 h to 1.98 at 6 h.

Inhibition of OfChi-h by TMG-(GlcNAc)₄ and TMG-(GlcNAc)₂—TMG-(GlcNAc)₂₋₄ have been shown to be highly selective inhibitors against chitinolytic Hexs (46). As shown in Fig. 4A, TMG-(GlcNAc)₄ and TMG-(GlcNAc)₂ were found to be potent inhibitors against OfChi-h with 95 and 65% inhibition at 10 µM concentration, respectively. Interestingly, TMG-(GlcNAc)₄ and TMG-(GlcNAc)₂ were only weak inhibitors of SmChiA and SmChIβ.

To test the *in vivo* activity, 0.2 µg of TMG-(GlcNAc)₄ was injected into a 5th instar, day-3 *O. furnacalis* larva. The metamorphosis of the TMG-(GlcNAc)₄-injected group was severely affected compared with the water-injected group (Fig. 4B). In the control group, 100% of the insects molted into normal pupa 5 days after injection compared with only 40% of the insects from the TMG-(GlcNAc)₂-injected group. 23% of the insects in the TMG-(GlcNAc)₄-injected group were arrested during the larva stage, whereas the other 37% molted into abnormal pupa. The abnormal pupa appeared to be prepupa trapped by detached head capsules and thoracic legs (Fig. 4B). Eventually, most of the abnormal pupa and larvae died within 10 days after injection.

Because TMG-(GlcNAc)₄ is a substrate analog (Fig. 5A), we tried to identify whether TMG-(GlcNAc)₄ could be degraded by OfChi-h, SmChiA, or SmChIβ using electrospray ionization time of flight mass spectrometry (ESI-TOF MS). The results showed that TMG-(GlcNAc)₄ (m/z 1034.45) was degraded into TMG-(GlcNAc)₂ (m/z 628.29) and TMG-GlcNAc (m/z 425.21) (Fig. 5, C to E). Taken together, we deduce that TMG-(GlcNAc)₄ showed that TMG-(GlcNAc)₄ (m/z 1034.45) was degraded into TMG-(GlcNAc)₂ (m/z 628.29) and TMG-GlcNAc (m/z 425.21) (Fig. 5, C to E).
The mutation of Phe232 to Ala in \textit{Sm}ChiA has been reported to affect the hydrolytic activity but not the binding activity toward crystalline \(\beta\)-chitin. Phe232 is thought to aid in guiding the chitin chain into the catalytic cleft (54). Similarly, the Phe396 to Ala mutation in \textit{Sm}ChiA was reported to decrease its hydrolytic activity toward crystalline \(\beta\)-chitin but increase its hydrolytic activity toward soluble chitosan (55). To explore the effect of the Phe to Trp substitutions in the chitin binding cleft of \textit{Of}Chi-h, Phe232 and Phe396 in \textit{Sm}ChiA were mutated to tryptophan, and the substrate specificity of \textit{Sm}ChiA-F232W/F396W was tested using insect cuticle, \(\alpha\)-chitin, CNW, and EGC as substrates. Compared with wild-type \textit{Sm}ChiA, \textit{Sm}ChiA-F232W/F396W showed higher hydrolytic activity for insoluble and crystalline substrates but lower hydrolytic activity for the soluble substrate (Table 2). Because Trp allows more aromatic interactions with chitin chains (56), we deduce that \textit{Sm}ChiA-F232W/F396W may guide chitin chains into the substrate binding cleft more efficiently and may improve binding affinity for chitin. Given that the formation of the complex with the chitin chain is presumed to be the rate-limiting step for \textit{Sm}ChiA (57), this may explain why F232W/F396W had a higher activity for insoluble chitin. This result also suggests that the substitution of Phe to Trp in \textit{Of}Chi-h increases its ability to degrade insect cuticles, which are highly insoluble and crystalline.

\textit{Structural Differences between Of}Chi\textit{-h} and \textit{Of}ChtI—As do key chitinases during molting, we found that \textit{Of}Chi\textit{-h} and \textit{Of}ChtI work synergistically according to their catalytic efficiency in vitro. Their differences in the architecture of substrate-binding sites were then discussed.
hydrolyze crystalline substrate. However, in reducing end side but only two in the reducing end side. How-
there are 13 solvent-exposed aromatic residues in the non-
substrate binding cleft is symmetric (Fig. 6)
substrates binding to the enzyme rely largely on
reducing end side of the cleavage site. Because oligosaccharide
structural characteristics. First, in the Cht-I, the distribution of aromatic residues aligned along the
substrate binding cleft is highly asymmetric with regard to the enzymatic cleavage site (Fig. 6B). There are 13 solvent-exposed aromatic residues in the non-
reducing end side but only two in the reducing end side. How-
ever, in Cht-I, the distribution of aromatic residues along the
substrate binding cleft is symmetric (Fig. 6B); namely, five aromatic residues on both the non-reducing end side and the
reducing end side of the cleavage site. Because oligosaccharide
substrates binding to the enzyme rely largely on \(\pi-\pi \) and/or hydrophobic interactions, these aromatic residues are likely
important for substrate binding. And the asymmetric architecture is generally believed to be a feature of processive exo-chitinases (45). Second, a unique structural element in Cht-I, but not in Cht-I (residues 188–214), was observed on the wall of the
substrate binding cleft. This structural element increases the
depth of the substrate binding cleft and narrows the substrate binding cleft (the narrowest point between residue \(\text{Ile}^{210} \) and
\(\text{Gln}^{466} \) is 6.6 Å) (Fig. 6B). This may further increase the binding affinity of Cht-I for chitin chains and thus favor Cht-I to hydrolyze crystalline substrate.

Taken together, we deduce that Cht-I works synergisti-
cally with Cht-I, an endo-chitinase. Because both Cht-I and
Cht-I are highly conserved in lepidopteran species, this syner-
gistic mechanism is likely generalizable.

Experimental Procedures

Gene Cloning and Construction of the Expression Plasmid—
Total RNA was extracted from \(O. fumralis \) during the prepupal
state using RNAiso Reagent (TaKaRa, Japan) and was subjected to reverse transcription using the PrimeScript\textregistered RT
reagent Kit (TaKaRa). Based on the mRNA sequence of Cht-I (GenBank\textregistered accession number AB201281.1), two primers, 5'-CTGAACTACGTAAGATTCGCCGGCTGACCAAACCC-3' (forward) and 5'-GTGGTGTGGTGTTG
GTGGTGACTAGTCGCCTGTATTACCTAGACCCA-3' (reverse) were designed to amplify the gene fragment encoding mature Cht-I and add a C-terminal His\textsubscript{6} tag. The resulting PCR products were digested with EcoRI/Spel and then ligated into pPIC9 vector (Invitrogen) to generate the expression plasmid pPIC9-Cht-I.

Protein Expression and Purification—The expression plasmid pPIC9-Cht-I was linearized by Pmel (New England Bio-
labs) and transformed into Pichia pastoris GS115 cells by elec-
troration. Positive clones carrying His+ and Mut+ traits were selected on minimal methanol and minimal dextrose plates. The selected transformant was first cultured in minimal glycerol-complex medium at 30 °C to an \(A_{600} \) of 2.0. The cells were then collected and resuspended in 1 liter minimal metha-

Although the substrate binding clefts of both Cht-I and Cht-I are long with both sides open, they have different structural
differences. First, in Cht-I, the distribution of aromatic residues aligned along the
substrate binding cleft is highly
symmetric with regard to the enzymatic cleavage site (Fig. 6B). There are 13 solvent-exposed aromatic residues in the non-
reducing end side but only two in the reducing end side. How-
ever, in Cht-I, the distribution of aromatic residues along the
substrate binding cleft is symmetric (Fig. 6B); namely, five aromatic residues on both the non-reducing end side and the
reducing end side of the cleavage site. Because oligosaccharide substrates binding to the enzyme rely largely on \(\pi-\pi \) and/or hydrophobic interactions, these aromatic residues are likely
important for substrate binding. And the asymmetric architecture is generally believed to be a feature of processive exo-chitinases (45). Second, a unique structural element in Cht-I, but not in Cht-I (residues 188–214), was observed on the wall of the
substrate binding cleft. This structural element increases the
depth of the substrate binding cleft and narrows the substrate binding cleft (the narrowest point between residue \(\text{Ile}^{210} \) and
\(\text{Gln}^{466} \) is 6.6 Å) (Fig. 6B). This may further increase the binding affinity of Cht-I for chitin chains and thus favor Cht-I to hydrolyze crystalline substrate.

Taken together, we deduce that Cht-I works synergisti-
cally with Cht-I, an endo-chitinase. Because both Cht-I and
Cht-I are highly conserved in lepidopteran species, this syner-
gastic mechanism is likely generalizable.

Experimental Procedures

Gene Cloning and Construction of the Expression Plasmid—

Protein Expression and Purification—

Experimental Procedures

Gene Cloning and Construction of the Expression Plasmid—

Protein Expression and Purification—

Experimental Procedures

Gene Cloning and Construction of the Expression Plasmid—

Protein Expression and Purification—

Experimental Procedures

Gene Cloning and Construction of the Expression Plasmid—

Protein Expression and Purification—
Lepidoptera-exclusive Chi-h

Enzymatic Assays—Three kinds of polymeric substrates, EGC (Wako Pure Chemicals, Osaka, Japan), CNW (prepared as described in Kuusk et al.; Ref. 57), and α-chitin (Sigma), were used as substrates for the chitinase activity assays. The 100-μl reaction mixtures consist of 2 μM enzyme and 3 mg/ml substrate in 20 mM sodium phosphate buffer, pH 6.0. After incubating at 30 °C for an appropriate time, the amount of reducing sugars was determined by the potassium ferricyanide method (58).

Hydrolytic direction of chitinase was determined for (GlcNAc)₆ (Qingdao BZ Oligo Biotech Co., Ltd., China) reacting 0.1 mM substrate with the 0.1 mM enzyme in 50 μl of sodium phosphate buffer (20 mM, pH 6.0). Immediately after incubation at 30 °C for an appropriate period, 10 μl of the hydrolysis products were separated on a TSKgel amide-80 column (4.6 × 250 mm, Tosoh, Tokyo, Japan) (59).

The chitin from insect cuticle was prepared as follows: 50 of the 5th-instar day-3 larvae were dissected, and the integuments were collected. The integuments were milled into powder in the 5th-instar day-3 larvae were dissected, and the integuments were collected at different times to determine the production of reducing sugars. Inhibitory Activity Assays—TMG-(GlcNAc)₄ and TMG-(GlcNAc)₂ were synthesized by Dr. Yu’s group (46). All of the inhibitory activity assays were performed using 4-methylumbelliferyl-N,N’-acetyl-β-D-chitobioside (MU-β-(GlcNAc)₂) (Sigma) as the substrate. The final concentration of inhibitors was 10 μM, and 0.1 mM protein was used.

Analysis of TMG-(GlcNAc)₄ Hydrolytic Products by ESI-TOF MS—Three copies of TMG-(GlcNAc)₄ at 10 μM concentration were incubated with 0.1 mM O/Chi-h, SmChiA, and SmChiB for 30 min. Then 20-μl of hydrolysate was analyzed by ESI-TOF MS using an Agilent G6224A (Agilent) in positive-ion reflection mode.

In Vivo Bioevaluation of TMG-(GlcNAc)₄ by Injection—O. furnacalis larvae were reared using an artificial diet with 16 h of light and 8 h of darkness and a relative humidity of 70–90% at 26–28 °C. Larvae at day-3 of the fifth instar were selected for the microinjection experiment. In the experimental group, 0.2 μg of TMG-(GlcNAc)₄ (solved in water) was injected into the penultimate abdominal segment of larvae. In the control group, distilled water was injected instead. Each group contained 10 individual larvae with three independent replicates. After injection, all of the treated larvae were reared under identical conditions as described above. Mortality and developmental defects were recorded every day until eclosion.

Crystallization and Data Collection—Pure O/Chi-h was spin-concentrated to 10 mg/ml in 20 mM bis-Tris (pH 6.5) containing 50 mM NaCl. Crystallization screening of recombinant O/Chi-h was performed using the following commercially available screens: Index, Crystal Screen, and Crystal Screen 2 (Hampton Research). The hanging-drop vapor-diffusion crystallization experiments were set up at 4 °C by mixing 1 μl of O/Chi-h and 1 μl of reservoir solution. The protein crystallized after 1 month in 100 mM HEPES, pH 7.0, 30% (w/v) Jeffamine® ED-2001.

Crystals of O/Chi-h-ligand complexes were obtained by transferring native crystals to a reservoir solution consisting of 5 mM (GlcNAc)₁₀, 10 mM (GlcN)₇ (Qingdao BZ Oligo Biotech Co., Ltd.), or 1 mM TMG-(GlcNAc)₄. For (GlcNAc)₁₀, the crystals were soaked for 5 min, 15 min, and 1 h at room temperature. For (GlcN)₇, or TMG-(GlcNAc)₄, the crystals were soaked for 1 h at room temperature. Then the crystals were soaked for several minutes in a reservoir solution containing 25% (v/v) glycerol and subsequently flash-cooled in liquid nitrogen. Diffraction data were collected on the BL-18U1 at the Shanghai Synchrotron Radiation Facility in China, and the diffraction data were processed using the HKL-2000 package (60).

Structure Determination and Refinement—The structure of free O/Chi-h was solved by molecular replacement with Phaser (61) using the structure of SmChiA (PDB code: 1EDQ) as a model. O/Chi-h-(GlcN)₇ complexes were solved using the coordinates of free O/Chi-h as a model. Structure refinement was performed using PHENIX (62). The molecular models were manually built and extended using Coot (63). The stereochemistry of the models was checked by PROCHECK (64). The data collection and structure refinement statistics are summarized in Table 1. The coordinates of O/Chi-h and O/Chi-h-(GlcN)₇ are deposited in the PDB with the codes 5GPR and 5GQB, respectively. All structural figures were prepared using PyMOL (DeLano Scientific LLC, San Carlos, CA).

Author Contributions—T. L. and Q. Y. designed the experiments. T. L., L. C., X. J., and Y. D. performed the experiments. T. L. and Y. Z. analyzing the protein structures. T. L. and Q. Y. analyzed the data and wrote the paper.

Acknowledgments—We thank Prof. Biao Yu (Institute of Organic Chemistry, Chinese Academy of Sciences) for providing the BmChi-h gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. Insect Biochem. Mol. Biol. 33, 749–759

References

1. Arakane, Y., and Muthukrishnan, S. (2010) Insect chitinase and chitinase-like proteins. Cell. Mol. Life Sci. 67, 201–216
2. Tetreau, G., Cao, X., Chen, Y.-R., Muthukrishnan, S., Jiang, H., Blissard, G. W., Kanost, M. R., and Wang, P. (2015) Overview of chitin metabolism enzymes in Manduca sexta: identification, domain organization, phylogenetic analysis and gene expression. Insect Biochem. Mol. Biol. 62, 114–126
3. Daimon, T., Hamada, K., Mita, K., Okano, K., Suzuki, M. G., Kobayashi, M., and Shimada, T. (2003) A Bombyx mori gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. Insect Biochem. Mol. Biol. 33, 749–759

Author Contributions—T. L. and Q. Y. designed the experiments. T. L., L. C., X. J., and Y. D. performed the experiments. T. L. and Y. Z. analyzed the protein structures. T. L. and Q. Y. analyzed the data and wrote the paper.

Acknowledgments—We thank Prof. Biao Yu (Institute of Organic Chemistry, Chinese Academy of Sciences) for providing the BmChi-h gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. Insect Biochem. Mol. Biol. 33, 749–759

References

1. Arakane, Y., and Muthukrishnan, S. (2010) Insect chitinase and chitinase-like proteins. Cell. Mol. Life Sci. 67, 201–216
2. Tetreau, G., Cao, X., Chen, Y.-R., Muthukrishnan, S., Jiang, H., Blissard, G. W., Kanost, M. R., and Wang, P. (2015) Overview of chitin metabolism enzymes in Manduca sexta: identification, domain organization, phylogenetic analysis and gene expression. Insect Biochem. Mol. Biol. 62, 114–126
3. Daimon, T., Hamada, K., Mita, K., Okano, K., Suzuki, M. G., Kobayashi, M., and Shimada, T. (2003) A Bombyx mori gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. Insect Biochem. Mol. Biol. 33, 749–759
4. Daimon, T., Katsuma, S., Iwanaga, M., Kang, W., and Shimada, T. (2005) The BmChi-h gene, a bacterial-type chitinase gene of Bombyx mori, encodes a functional exochitinase that plays a role in the chitin degradation during the molting process. Insect Biochem. Mol. Biol. 35, 1112–1123

5. Zhu, B., Lou, M.-M., Xie, G.-L., Zhang, G.-Q., Zhou, X.-P., Li, B., and Jin, G.-L. (2011) Horizontal gene transfer in silkworm, Bombyx mori. BMC Genomics 12, 248

6. Qu, M., Ma, L., Chen, P., and Yang, Q. (2014) Proteomic analysis of insect molting fluid with a focus on enzymes involved in chitin degradation. J. Proteome Res. 13, 2931–2940

7. Zhu, K. Y., Merzendorfer, H., Zhang, W., Zhang, J., and Muthukrishnan, S. (2016) Biosynthesis, turnover, and functions of chitin in insects. Annu. Rev. Entomol. 61, 177–196

8. Kramer, K. J., Corpuz, L., Choi, H. K., and Muthukrishnan, S. (1993) Sequence of a cDNA and expression of the gene encoding epidermal and gut chitinases of Manduca sexta. Insect Biochem. Mol. Biol. 23, 691–701

9. Kim, M. G., Shin, S. W., Bae, K. S., Kim, S. C., and Park, H. Y. (1998) Molecular cloning of chitinase cDNAs from the silkworm, Bombyx mori and the fall webworm, Hyphantria cunea. Insect Biochem. Mol. Biol. 28, 163–171

10. Feix, M., Glöggler, S., Londershausen, M., Weidemann, W., Spindler, K. D., and Spindler-Barth, M. (2000) A cDNA encoding a chitinase from the insect cuticle cell line of Chironomus tentans (Insecta, diptera) and its functional expression. Arch. Insect Biochem. Physiol. 45, 24–36

11. Shinoda, T., Kobayashi, J., Matsu, M., and Chiniye, Y. (2001) Cloning and functional expression of a chitinase cDNA from the common cutworm, Spodoptera litura, using a recombinant baculovirus lacking the virus-encoded chitinase gene. Insect Biochem. Mol. Biol. 31, 521–532

12. Zheng, Y., Zheng, S., Cheng, X., Ladd, T., Linghofer, E. J., Krell, P. J., Arif, B. M., Retnakaran, A., and Feng, Q. (2002) A mott-associated chitinase cDNA from the spruce budworm, Choristoneura fumiferana. Insect Biochem. Mol. Biol. 32, 1813–1823

13. Ahmad, T., Rajagopal, R., and Bhatnagar, R. K. (2003) Molecular characterization of chitinase from polyphagous pest Helicoverpa armigera. Biochem. Biophys. Res. Commun. 310, 188–195

14. Fitches, E., Wilkinson, H., Bell, H., Bown, D. P., Gatehouse, J. A., and Edwards, J. P. (2004) Cloning, expression and functional characterisation of chitinase from larvae of tomato moth (Lacanobia oleracea): a demonstration of the insecticidal activity of insect chitinase. Insect Biochem. Mol. Biol. 34, 1037–1050

15. Zhu, Q., Arakane, Y., Reeman, R. W., Kramer, K. J., and Muthukrishnan, S. (2008) Functional specialization among insect chitinase family genes revealed by RNA interference. Proc. Natl. Acad. Sci. USA 105, 6650–6655

16. Zhang, J., Zhang, X., Arakane, Y., Muthukrishnan, S., Kramer, K. J., Ma, E., and Zhu, K. Y. (2011) Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae). Genetics 187, 439–447

17. Tsuji, H., Ishihara, S., Inui, T., Kado, Y., Ishikawa, K., Nakamura, T., and Uegaki, K. (2010) Kinetic and crystallographic analyses of the catalytic domain of chitinase from Pyrococcus furiosus: the role of conserved residues in the active site. FEBS J 277, 2683–2695

18. Pankari, A., Tevis, I., Dauter, Z., Oppenheim, A. B., Chet, I., Wilson, K. S., and Vorgias, C. E. (1994) Crystal structure of a bacterial chitinase at 2.3 Å resolution. Structure 2, 1169–1180

19. Matsumoto, T., Nonaka, T., Hashimoto, M., Watanabe, T., and Mitsui, Y. (1999) Three-dimensional structure of the catalytic domain of chitinase Al from Bacillus circularus WL-12 at a very high resolution. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 75, 269–274

20. van Aalten, D. M., Synstad, B., Brueger, M. B., Hough, E., Riise, B. W., Eijssink, V. G., and Wierenga, R. K. (2000) Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9 Å resolution. Proc. Natl. Acad. Sci. U.S.A. 97, 5842–5847

21. Perrakis, A., Tews, I., Dauter, Z., Oppenheim, A. B., Chet, I., Wilson, K. S., Edwards, J. P. (2004) Cloning, expression and functional characterisation of chitinase from larvae of tomato moth, Lacanobia oleracea: a demonstration of the insecticidal activity of insect chitinase. Insect Biochem. Mol. Biol. 32, 1813–1823

22. Madhuprakash, J., Bobbili, K. B., Moerschbacher, B. M., Singh, T. P., Swamy, M. J., and Podile, A. R. (2015) Inverse relationship between chitinase and transglycosylation activities of chitinase-D from Serratia proteamaculans revealed by mutational and biophysical analyses. Sci. Rep. 5, 15657

23. Hollis, T., Monzingo, A. F., Bortone, K., Ernst, S., Cox, R., and Robertus, J. D. (2000) The X-ray structure of a chitinase from the pathogenic fungus Coccioidoides immitis. Protein Sci. 9, 544–551

24. Rao, F. V., Houston, D. R., Boot, R. G., Aerts, J. M., Hodkinson, M., Adams, D. J., Shirori, K., Omura, S., and van Aalten, D. M. (2005) Specificity and affinity of natural product cyclopentapeptide inhibitors against A. fumigatus, human, and bacterial chitinases. Chem. Biol. 12, 65–76

25. Hurtado-Guerrero, R., and van Aalten, D. M. (2007) Structure of Saccharomyces cerevisiae chitinase 1 and screening-based discovery of potent inhibitors. Chem. Biol. 14, 589–599

26. Schüttekopf, A., Gros, L., Blair, D. E., Frearson, J. A., van Aalten, D. M., and Gilbert, I. H. (2010) Acetazolamide-based fungal chitinase inhibitors. Bioorg. Med. Chem. 18, 8334–8340

27. Yang, J., Gan, Z., Lou, Z., Tao, N., Mi, Q., Liang, L., Sun, Y., Guo, Y., Huang, X., Zou, C., Rao, Z., Meng, Z., and Zhang, K. Q. (2010) Crystal structure and mutagenesis analysis of chitinase CcChi from the nematophagous fungus Clonostachys rosea in complex with the inhibitor caffeine. Microbiology 156, 3566–3574

28. Tenwischka van Scheltinga, A. C., Kalk, K. H., Beintema, J. J., and Dijkstra, W. B. (1994) Crystal structures of hevamine, a plant defence protein with lectin-like and chitin-binding properties. Acta Crystallogr. D Biol. Crystallogr. 69, 821–829

29. Cavada, B. S., Moreno, F. B., da Rocha, B. A., de Azevedo, W. F., Jr, Casabone, E. A., and Cavada, B. S. (2006) cDNA cloning and 1.75 Å crystal structure determination of a chitinase homolog from Yersinia enterocolitica. J. Mol. Biol. 356, 359–371

30. Madhuprakash, J., Bobbili, K. B., Moerschbacher, B. M., Singh, T. P., Swamy, M. J., and Podile, A. R. (2015) Inverse relationship between chitinase and transglycosylation activities of chitinase-D from Serratia proteamaculans revealed by mutational and biophysical analyses. Sci. Rep. 5, 15657
