Proof

Herein it is proven that any benzenoid composed of h benzene rings can be enumerated in the specific isosceles trapezoid as described in the Section Methodologies. The length of each leg (m) of the trapezoid is:

$$m = \left\lfloor \frac{2h+1}{3} \right\rfloor$$

where, h is the number of hexagons of each enumerated benzenoid; m is the integer part of the quotient of $(2h+1)/3$. The lengths of the two bases are h and $h-m+1$.

In a hexagonal lattice, a benzenoid of size h can be regarded as planar connected polyhexes, called h continuous hexagons here. The proof based on pure graph theory is introduced as follows.

A coordinate system (x, γ) in a hexagonal lattice is shown in Figure 1. In the system, every hexagon in the grid can be represented by a unique coordinate.

![Figure 1. An xy coordinate system in a hexagonal lattice](image)

Then a third axis is introduced as shown in Figure 2. Every hexagon still has a unique coordinate. And for every coordinate (x, γ, z), it is easy to find that the equation $x + \gamma = z$ is always correct. For example, the coordinates of four grey hexagons in Figure 2 are $(0, 0, 0), (1, 1, 2), (1, 2, 3)$ and $(2, 2, 4)$.
Lemma 1: If \(h-1 \) continuous hexagons are added (the hexagon added one by one) from a starting hexagon \((x_0, y_0, z_0)\), \(z \) of any hexagon is less than \(z_0+h \).

Proof

Every hexagon has six neighbors next to it, and if the coordinate of a hexagon is \((x, y, z)\), the coordinates of its six neighbors are \((x, y+1, z+1)\), \((x, y, z+1)\), \((x, y-1, z)\), \((x, y-1, z-1)\), \((x+1, y, z+1)\) and \((x-1, y+1, z)\). In this case, any neighbor \((x_n, y_n, z_n)\) satisfies: \(z_n \leq z+1 \). Thus, if \(h-1 \) continuous hexagons are added one by one from a starting hexagon \((x_0, y_0, z_0)\), \(z \) of any hexagon is less than \(z_0+h \).

Lemma 2: If \(h-1 \) continuous hexagons are added one by one from a starting hexagon \((x_0, y_0, z_0)\) and the coordinate \(y \) of one added hexagon is 0, the value of \(z \) of any added hexagon is less than \(z_0+h-y_0 \), i.e., \(z \leq z_0+h-y_0 \).

Proof

For a hexagon \((x, y, z)\), there are six neighbors as above. The coordinates \(y \) of two neighbors decrease, and their coordinates are \((x+1, y-1, z)\) and \((x, y-1, z-1)\). It can be found that the coordinates satisfy: \(z_0 \leq z \). When the coordinate of starting hexagon is \((x_0, y_0, z_0)\) and the coordinate \(y \) of one added hexagon is 0, at least \(y_0 \) hexagons satisfying \(y_0 = y-1 \) need be added, that is, at least \(y_0 \) hexagons are added, but \(z \) doesn’t
increase. In this case, if \(h-1 \) continuous hexagons are added from the starting hexagon, based on lemma 1 the coordinate of any added hexagon satisfy: \(z-\alpha_0 < h-1 \), that is, the value of \(z \) of any added hexagon is less than \(h-1+\alpha_0 \). i.e., \(z < h-1+\alpha_0 \).

Lemma 3: Any benzenoid composed of \(h \) hexagons can be placed in an equilateral triangular area whose edge consists of \(h \) hexagons.

Proof

An equilateral triangular area (the length of any edge is \(h \)) on hexagonal lattice is shown in Figure 3 and the coordinate of \(O \) is the origin \((0, 0, 0)\). Any benzenoid composed of \(h \) hexagons placed on the grid is required to follow two predefined rules:

1) For the coordinate \((x, y, z)\) of any hexagon, there must be \(x \geq 0 \) and \(y \geq 0 \);

2) At least one hexagon is placed on \(x \)-axis and one hexagon is on \(y \)-axis.

It is easy to find that each hexagon on the line DE satisfies the condition \(z=h-1 \). In this case, if \(z < h \) can be proved for every hexagon \((x, y, z)\) contained in any benzenoid size of \(h \), lemma 3 is proved.

The coordinate of hexagon A is \((0, |OA|, |OA|)\) and the coordinate of hexagon B is \((|OB|, 0, |OB|)\). When hexagon A is regarded as starting hexagon, the remaining \(h-1 \) hexagons were added one by one, and \(z \) of any added hexagon is less than \(h-|OA|+|OA|=h \) based on lemma 2 \((z < h-1+\alpha_0)\). Thus, it is proved that \(z < h \).

![Figure 3. An equilateral triangular area on hexagonal lattice](image-url)
Lemma 4: Any benzenoid composed of \(h \) benzene rings can be placed in an isosceles trapezoidal area with the parameters: the length of each leg is

\[m = \left\lfloor \frac{2h + 1}{3} \right\rfloor; \]

the lengths of the two bases are \(h \) and \(h - m + 1 \).

Proof

A benzenoid can be rotated in 2D space, and the different poses require different size of trapezoidal area. As an example of a benzenoid shown in Figure 4, there are six ways to place a benzenoid and all the six trapezoidal areas have the same number of hexagons (\(h \)) along the lower base, which is in accordance with Lemma 3.

![Figure 4. Six poses of a benzenoid and the corresponding trapezoidal area](image)

The ranges of coordinates \((x, y, z)\) of a benzenoid are illustrated in Figure 5. In Figure 5, \(x_{\text{min}} \) denotes the minimum value of all the \(x \) of all the hexagons in a benzenoid, \(x_{\text{max}} \) denotes the maximum of these \(x \); and \(y_{\text{max}}, y_{\text{min}}, z_{\text{max}} \) and \(z_{\text{min}} \) denotes the corresponding maximum and minimum values of \(y \) and \(z \). If \(X = x_{\text{max}} - x_{\text{min}}, Y = y_{\text{max}} - y_{\text{min}}, Z = z_{\text{max}} - z_{\text{min}} \), the value of \(\min(X, Y, Z) + 1 \) is the number of the layers of hexagons in the trapezoidal area are really required.

The benzenoid that looks like a clover has the largest value of \(\min(X, Y, Z) \) of all the benzenoids with a certain number of hexagons. In order to get this benzenoid a hexagon is added to one of the leaves circling around the central hexagon every time.
The procedure of adding hexagons is shown in Figure 6, and herein \(X = \min(X, Y, Z)\).

Figure 5. The ranges of coordinates of a benzenoid

Figure 6. The procedure of adding hexagons to the benzenoid that have the
Figure 7 shows that how the value of min(X, Y, Z) changes when hexagons are added one by one.

Figure 7. The values of min(X, Y, Z) as hexagons are added one by one

Thus, the equation to calculate min(X, Y, Z) is:

\[
\text{min}(X, Y, Z) = \left\lfloor \frac{(h-1)}{3} \right\rfloor \times 2 + a \quad \begin{cases}
(\text{if } (h-1) \mod 3 = 2, \ a = 1 \\
\text{else}, \ a = 0
\end{cases}
\]

The number of hexagons along the legs of the trapezoidal area is:

\[
m = \text{min}(X, Y, Z) + 1 \\
m = \left\lfloor \frac{(h-1)}{3} \right\rfloor \times 2 + 1 + a \quad \begin{cases}
(\text{if } (h-1) \mod 3 = 2, \ a = 1 \\
\text{else}, \ a = 0
\end{cases}
\]

The equation can be simplified as:

\[
m = \left\lfloor \frac{2h+1}{3} \right\rfloor
\]

It can be found in Figure 3 that if \(m=2\), the upper base of trapezoid is \(h-1\). Further,
it can be found that the length upper base is $h-m+1$.