Identification criteria and indicators of palm oil industrial solid waste processing technology

A Ishak¹ and A Y B Ali²

¹Industrial Engineering Department, Universitas Sumatera Utara, Medan, Indonesia
²School of Mechanical Engineering, Universiti Sains Malaysia, Malaysia

Email: aulia.ishak@gmail.com

Abstract. The palm oil industry continues to grow from year to year — processing of the palm oil industry into Crude Palm Oil (CPO) and Palm Kernel Oil (PKO). The ratio of the amount of oil produced by both products is 30% of the raw material. This means that 70% is palm oil waste. The amount of palm oil waste will increase in line with the development of the palm oil industry. The amount of waste generated by the palm oil industry if it is not handled properly and effectively will contribute significantly to environmental damage. Industrial activities ranging from raw materials to produce products will disrupt the lives of people around the factory. There are many alternative technologies available to process other industries, but problems that often occur are difficult to implement the most appropriate technology. This paper describes an application of multiple criteria analysis (MCA) in assessing criteria and indicators of palm oil industrial solid and liquid waste. These methods were used in a participatory decision-making environment where a team representing various stakeholders and professionals used their expert opinions and judgments in assessing different criteria and indicators (C&I).

1. Introduction

The production of the palm oil industry in Indonesia grew rapidly from 27,782,004 tons in 2013 to reach 35,359,384 tons in 2017. The growth rate of the production of the palm oil industry in Indonesia reaches 6.22% per year. The palm oil industry continues to grow from year to year. The palm oil industry processes palm oil into Crude Palm Oil (CPO) and Palm Kernel Oil (PKO). The comparison of the coconut quantity produced by both products is only 30% of the raw material. This means that 70% is industrial waste. In the production process, palm oil will contribute significantly to the processing of palm oil mills at boiling stations and destruction stations. In addition to producing products, palm oil processing also produces various types of waste, one of which is solid waste. The amount of palm oil mill effluent will increase as the palm oil mill grows. Oil palm fruit bunch processing (FFB) for palm oil production produces several types of waste. The oil extraction and cleaning processes in the factory produce palm oil mill effluent (POME). In the extraction of palm oil, three main processes produce POME, among others: sterilization process, crude palm oil clearance process, which is extortion, separating and clarifying the sterilization of empty fruit bunches. The palm oil mill produces 0.7-1 m³ of POME for every ton of freshly processed fruit bunches. The newly generated POME is generally hot (600-800°C), acidic (pH 3.3-4.6), thick, brownish with solids, oils and fats, chemical oxygen demand (COD) and biological oxygen demand (BOD) tall one. Palm oil mill waste is a colloidal suspension consisting of 95-96% water, 0.6-0.7% oil, a total 4-5% solid waste comprising suspended solids of 2-4% [1]. The palm oil mill effluent contains organic materials of...
BOD, COD, oils and fats, solid waste in varying amounts [2]. Organic materials found in wastewater cause environmental damage if waste processing technology is not available. The most common problem with choosing palm oil processing technology is that it is difficult to apply the most appropriate technology from a range of palm oil processing alternatives to a particular company. Factors such as capital costs, operating costs, maintenance, and land use, are important considerations in the choice of oil waste processing technology.

Developing assessment criteria and methods that provide sustainability measurement are a prerequisite for choosing the best alternative, identifying palm oil industry's processing technology requirements, informing the integrated design of alternative show manufacturers and the effects of social, environmental monitoring. The diversity of criteria and the latest gauges in this rapidly expanding field demonstrates the importance of conceptual work and methodology in this area. Development and selection of criteria require parameters relating to reliability, suitability, practicality and size limits. Many of the weak technologies developed by the technological options are difficult because there is no database and technology valuation method. Database development can facilitate the search and identification of waste processing technologies.

2. Method
The first phase of the study was to collect questionnaires through literature reviews derived from books, references, international journals, websites related to other palm oil industries, waste-processing technologies, decision making, and technology selection over the last period. Surveys were conducted to obtain the availability of palm oil mill processing technology. Data obtaining on waste processing technology is done using interview techniques designed for guided interviews with members involved in the formulation of this system problem using the Delphi method. The experts involved in the Delphi process were identified in personal knowledge and literature review. A literature review is created to find the right criteria for waste technology. Information on these criteria is obtained from published journals and from stakeholders, as well as from expert knowledge. The results are expected to include criteria and indicators for waste technology. Created a literature review to find criteria appropriate to waste processing technology. The research method can be seen in Figure 1.
3. Result and discussion

3.1. Delphi Results
Below is a table showing the percentage of answers on the questionnaire being seen in five experts who are proficient in their respective fields. The Delphi Result can be seen in Table 1.

3.2. Results of Solid Waste Processing Technology
Selection criteria and sub-criteria conducted by interviews with experts in solid waste processing technology against criteria and subcriteria are considered to be influential on alternative waste processing technology alternatives. The stages of this study are the determination of the criteria and sub-criteria of waste processing technology assessment. The summary of the vacancy meeting was the selection criteria, and the sub-criteria of the assessment of solid waste processing technology can be shown in Table 2.
Table 1. Results delphi survey

Questionnaire	Percentage	Agreed
There is the right technology	7.53	5
Eco-friendly products	6.27	5
Pollution levels are low	6.27	5
The maintenance of nature around life	6.27	5
Higher profit	6.02	4
Security reassignment	6.02	4
Arrange clear rules or regulations	6.02	4
Can provide input to be used for the palm oil industry	5.02	5
There is no social conflict	5.02	4
Enough physical infrastructure	5.02	4
Access to information and data	5.02	4
Public welfare	4.52	4
The use of sources is around optimally and non-polluting	4.52	4
Low waste management cost	4.52	3
Facilities or infrastructure are adequate	4.52	3
The existence of a network of academics with business and government	4.02	4
Increase in foreign exchange	3.39	3
Trustor community support	2.51	2
Processing equipment tray	2.51	2
Clean water	2.51	2
Support from donor agencies		
Total	**100.00**	**78**
Table 2. Solid waste processing technology criteria and sub-criteria assessment

Criteria	Sub - Criteria	Explanation
Environmental	CO₂ emissions	CO₂ content found in waste
	Energy usage	The energy used to support transformation activities
	Residual integration	Integration of several oil palm waste treatment technologies and interconnections with one another to increase added value from waste technology processing
Environmental	Energy efficiency	The most frequently used criteria for assessing technology and usage systems
	Emission Level	Reducing the emission levels of greenhouses to reduce the environmental impact of fuel consumption
Technology	Technology maturity	Technology readiness in processing waste
	Technological development efforts	Evaluation of related technology as an effort for future development
	Technology industry support	Prescribed as a capability in which technology linkages or industry support can be sought during the development of solid waste bunk processing plant technology
	Ease of operation	Ease of use of technology by operators in processing waste
	Failure Rate	Percentage failure of technology in processing waste
Performance		The capacity of palm oil solid waste processing technology regarding producing optimum output and input in system use
Maintenance		Technology capability can be treated
Human resources		Sufficient human resources for technology development
Industrial support		The capabilities in which technology linkages or industry support can be sought during the development of empty fruit bunches solid waste processing technology
Resistance		Resistant technology
Economy	Initial investment	Cost of industrial facilities and facilities required for technological solid waste processing
	Operation cost	The costs incurred in the process of processing solid waste of empty fruit bunches
	Maintenance cost	The costs incurred in the process of processing solid waste of empty fruit bunches
	Human Resource Cost	Costs incurred for recruiting human resources
Social	Area usage	The proportion of the area is needed for the empty fruit bunches solid waste processing technology
	Social acceptance	Set as if the system is safe for people and people
	Technological impact	Empty waste processing of solid waste bunches does not pollute the environment and disturb the community

4. Conclusion
On the quest for critique has been found Criteria that can be used as sustainability of the selection of waste processing technology; among others there are 22 criteria from 4 fields, namely energy consumption, waste integration, energy efficiency, emission level, technology development efforts, performance, maintenance, human resources, industry support, initial investment, operating cost, maintenance cost, human resource cost, use area, social acceptance, and technological impact.
References

[1] [Anonim] 2006 Pedoman Pengelolaan Limbah Kilang Kelapa Sawit Subdit Pengelolaan Alam sekitar, Ditjen PPHP, Deptan. http://www.agribisnis.deptan.go.id. [15 January 2009].

[2] Chan Y J, Chong M F, Law C L 2010 Biological Treatment of Anaerobically Digested Palm Oil Mill Effluent (POME) using a Lab-scale Sequencing Batch Reactor (SBR) (J. Environ. Manag 9 1738-1746)

[3] IChemE - Institution of Chemical Engineers 2002 Sustainable Development Progress Metrics: Recommended for Use in the Process Industries. (Institution of Chemical Engineers, Warwickshire, UK).

[4] Joung C B, Carrell J, Sarkar P, Feng S C 2013 Categorization of indicators for sustainable manufacturing Ecol. Indic 24 148-157

[5] Lattimore B, Smith C T, Titus B D, Stupak I, Egnell G 2009 Environmental factors in woodfuel production: opportunities, risks, and criteria and indicators for sustainable practices Biomass & Bioenergy 33 1321–42

[6] Lohsomboon P, Palapleevalya P, Worathanakul P, Jirajjariyavech A, Liangsakul R 2002 Competitiveness for Thai Industr through Environmental Management Benchmarking Case Study: Palm Oil Industry, (Thailand Environmental Institute)

[7] Parveen Fatemeh Rupani, Rajeev Pratap Singh, M. Hakimi Ibrahim, and Norizan Esa 2010 Review of Current Palm Oil Mill Effluent (POME) Treatment Methods: Vermicomposting as A Sustainable Practice, Accessed from https://www.idosi.org/wasj/WASJ10(10)/12.pdf

[8] S Eom, S Lee, E Kim, C Somarajan 1998 A survey of decision support system applications, (1988–1994 The Journal of the Operational Research Society 49 109–120

[9] Thanh NC, Muttamara S, Lohani BN 1980 Palm Oil Wastewater Treatment Study in Malaysia and Thailand. Final Report No.114 International Development Research Centre, Canada

[10] Turban E, Aronson J E, Liang T P, and Sharda R 2007 Decision support and business intelligence systems (eighth ed). New Jersey: Prentice Hall

[11] Wibowo S and Deng H 2012 Intelligent decision support for effectively evaluating and selecting ships under uncertainty in marine transportation Expert Syst. Appl 39 6911–6920

[12] Wibowo S and Deng H 2013 Consensus-based decision support for multicriteria group decision making. Comput Ind. Eng 66 625–633

[13] Wu T Y, Mohammad A W, Md Jahim J, and Anuar N 2010 Pollution Control Technologies for the Treatment of Palm Oil Mill Effluent (POME) through End-of-Pipe Processes J. Environ. Manag 91 1467-1490

[14] Wong S A 1980 Ponding System for Palm Oil Effluent Treatment, Palm Oil Research Institute of Malaysia PORIM Malaysia 18-23