LOSS Revisited. I. Unraveling Correlations between Supernova Rates and Galaxy Properties, as Measured in a Reanalysis of the Lick Observatory Supernova Search

Or Graur1,2,3,7, Federica B. Bianco2,4, Shan Huang2, Maryam Modjaz2, Isaac Shivvers5, Alexei V. Filippenko5, Weidong Li5,8, and J. J. Eldridge6

1 Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA; or.graur@cfa.harvard.edu
2 CCPP, New York University, 4 Washington Place, New York, NY 10003, USA
3 Department of Astrophysics, American Museum of Natural History, New York, NY 10024, USA
4 Center for Urban Science and Progress, New York University, 1 MetroTech Center, Brooklyn, NY 11201, USA
5 Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA
6 Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand

Received 2016 September 2; revised 2017 February 2; accepted 2017 February 3; published 2017 March 9

Abstract

Most types of supernovae (SNe) have yet to be connected with their progenitor stellar systems. Here, we reanalyze the 10-year SN sample collected during 1998–2008 by the Lick Observatory Supernova Search (LOSS) in order to constrain the progenitors of SNe Ia and stripped-envelope SNe (SE SNe, i.e., SNe IIn, Ib, Ic, and broad-lined Ic). We matched the LOSS galaxy sample with spectroscopy from the Sloan Digital Sky Survey and measured SN rates as a function of galaxy stellar mass, specific star formation rate, and oxygen abundance (metallicity). We find significant correlations between the SN rates and all three galaxy properties. The SN Ia correlations are consistent with other measurements, as well as with our previous explanation of these measurements in the form of a combination of the SN Ia delay-time distribution and the correlation between galaxy mass and age. The ratio between the SE and SN II rates declines significantly in low-mass galaxies. This rules out single stars as SE SN progenitors, and is consistent with predictions from binary-system progenitor models. Using well-known galaxy scaling relations, any correlation between the rates and one of the galaxy properties examined here can be expressed as a correlation with the other two. These redundant correlations preclude us from establishing causality—that is, from ascertaining which of the galaxy properties (or their combination) is the physical driver for the difference between the SE SN and SN II rates. We outline several methods that have the potential to overcome this problem in future works.

Key words: catalogs – galaxies: fundamental parameters – supernovae: general – surveys

Supporting material: machine-readable tables

1. Introduction

Of the various types of supernovae (SNe) we observe, only certain subtypes of SNe II have been conclusively connected to their progenitors. Pre-explosion imaging has shown that SNe II-plateau (SNe IIP), for example, come from red supergiants (see review by Smartt 2009). Owing to their cosmological significance, the progenitor systems of SNe Ia have been pursued relentlessly over the last two decades, but their nature is still debated (see Maoz et al. 2014 for a recent review).

SNe II and stripped-envelope SNe (SE SNe, i.e., SNe IIn, Ib, Ic, and broad-lined Ic; e.g., Filippenko 1997; Matheson et al. 2001; Modjaz et al. 2014) are attributed to the core collapse (CC) of stars more massive than \(\sim 8 M_\odot \). Spectroscopically, SE SNe are distinguished from SNe II by the lack of hydrogen features (either partial, as in SNe IIn, or nearly complete, as in SNe Ib; e.g., Filippenko 1997; Liu et al. 2016). SNe Ic also lack helium features. In order to explain this lack of hydrogen and helium, SE SNe are thought to be the explosions of stars that have had their outer envelopes stripped away before the explosion (hence their name). Of all the processes suggested to explain this stripping, the leading models make use of either stellar winds (e.g., Heger et al. 2003), interaction with a binary companion (e.g., Paczynski 1971; Podsiadlowski et al. 1992; De Donder & Vanbeveren 1998; Vanbeveren et al. 1998), or a combination of the two (e.g., Smith et al. 2011). In the case of broad-lined SNe Ic connected to gamma-ray bursts, chemically homogeneous evolution (e.g., Yoon & Langer 2005; Woosley & Heger 2006) and explosive common-envelope ejection (Podsiadlowski et al. 2010) have also been suggested. Pre-explosion imaging of the sites of these SNe has so far failed to reveal the nature of their progenitors conclusively (e.g., Eldridge et al. 2013; Eldridge & Maund 2016; Folatelli et al. 2016; Van Dyk et al. 2016), though the case for yellow supergiants in binary systems as the progenitors of SNe IIn is gaining traction (e.g., Van Dyk et al. 2013, 2014; Bersten et al. 2014; Fremling et al. 2014; Eldridge et al. 2015). New observational methods are required to address this question.

SNe Ia are thought to be thermonuclear explosions of carbon–oxygen white-dwarf remnants of \(<8 M_\odot \) stars. In order to disrupt the otherwise stable white dwarf, most models place it in a binary system where it can grow in mass, raising the temperature in the core until the carbon is ignited in a thermonuclear runaway. To grow in mass, the white dwarf can either siphon matter off a main-sequence or evolved companion star (the so-called “single-degenerate” scenario; Whelan & Iben 1973) or merge with a second carbon–oxygen white dwarf after the two spiral in owing to loss of energy and angular momentum to gravitational waves (the “double degenerate” scenario; Iben & Tutukov 1984; Webbink 1984). Recently, direct collisions of white dwarfs have also been suggested as a
possible progenitor channel (e.g., Katz & Dong 2012; Kushnir et al. 2013; Dong et al. 2015; but see also Hamers et al. 2013).

Many methods have been used to constrain these various SN progenitor models, including (but far from limited to) direct imaging of the explosion sites either before or long after the SN explosion (e.g., Maoz & Mannucci 2008; Li et al. 2011a; Graur et al. 2014a, 2016b; Kelly et al. 2014), multiwavelength follow-up observations (e.g., Horesh et al. 2012; Milisavljevic et al. 2013; Margutti et al. 2014; Chomiuk et al. 2016), and analyses of SN remnants (e.g., Ruiz-Lapuente et al. 2004; Schaefer & Pagnotta 2012; Kerzendorf et al. 2013; Bedin et al. 2014).

Over the last few decades, studies have consistently shown that SNe Ia are more common in blue, star-forming, late-type galaxies than in red, passive, early-type galaxies (e.g., Oemler & Tinsley 1979; Cappellaro & Turatto 1988; Evans et al. 1989; van den Bergh 1990; van den Bergh & Tammann 1991; Della Valle & Livio 1994; Wang et al. 1997; Cappellaro et al. 1999; Della Valle et al. 2005).

Sullivan et al. (2006) showed that SN Ia rates per unit mass decreased with increasing galaxy stellar mass. Li et al. (2011b, hereafter L11) showed the same effect for all SN types, in all types of galaxies (but see Section 4), and dubbed this the “rate-size,” or rate-mass, relation. We confirmed this trend for SNe Ia in star-forming galaxies in Graur & Maoz (2013) and for SNe II in Graur et al. (2015, hereafter G15). Following Kistler et al. (2013), we argued that the dependence of the SN Ia rates on stellar mass results from a combination of galaxy scaling relations (older galaxies are more massive, on average, than younger ones; Gallazzi et al. 2005) and the SN Ia delay-time distribution (DTD), which behaves as a power law with an index of ~-1 (e.g., observations by Totani et al. 2008; Maoz et al. 2010; Maoz & Badenes 2010; Graur et al. 2011, 2014b; Rodney et al. 2014; and reviews by Wang & Han 2012; Hillebrandt et al. 2013; Maoz et al. 2014).

Mannucci et al. (2005), Sullivan et al. (2006), Smith et al. (2012), and G15 also measured SN Ia rates as a function of the galaxies’ specific star formation rate (sSFR). In G15, we showed that our explanation for the rate-mass correlation also explained the observed trend between SN Ia rates and sSFR, where the rates are constant in passive galaxies but rise with increasing sSFR in star-forming galaxies.

In G15, we also measured SN rates as a function of stellar mass and sSFR for SNe II and claimed that their rate-mass relation was simply the result of their progenitors’ short lifetimes: because SNe II come from massive (>8 M_\odot) stars, their rates track the star formation rates of their galaxies. Similar measurements of CC SN rates (i.e., combining SNe II and SE SNe) were made by Botticella et al. (2012).

L11 was part of a series of papers that explored the SN sample collected by the Lick Observatory Supernova Search (LOSS; L11; Leaman et al. 2011; Li et al. 2011c; Maoz et al. 2011; Smith et al. 2011). LOSS is an ongoing survey for SNe in local galaxies using the 0.76 m Katzman Automatic Imaging Telescope. For detailed descriptions of the survey, see Li et al. (2000), Filippenko et al. (2001), and Filippenko (2003, 2005).

Here, we use the LOSS sample to remeasure and reanalyze the SN rates originally published by L11. In Section 2, we match between the LOSS sample and spectroscopy from the Sloan Digital Sky Survey (SDSS; York et al. 2000) in order to go beyond L11 and measure the SN rates not only as a function of galaxy stellar mass but also of sSFR and metallicity, as expressed by the abundance of gas-phase oxygen in the centers of the LOSS galaxies. Throughout this work, we use the metallicity scale of Tremonti et al. (2004, hereafter T04).

In Section 3, we make several addenda to the LOSS sample. We publish the control times necessary to measure SN rates with this sample, as well as updated tables of galaxy properties and SN rates. We deal with SNe Ia in Section 4, and with CC SNe in Section 5.

We find significant correlations between the SN rates and the various galaxy properties. Most importantly, we find that the CC SN rates behave differently in different types of galaxies: the SE SN rates are shown to be depressed, relative to the SN II rates, in galaxies with low stellar mass, high sSFRs, and low metallicity values. Other studies have reported similar trends through measurements of correlations between fractions of SNe within a given sample and metallicity (e.g., Prieto et al. 2008; Boissier & Prantzos 2009; Kelly & Kirshner 2012; Anderson et al. 2015), or by splitting SN fractions between different types of galaxies, which encompass different metallicity regimes (Arcavi et al. 2010; Hakobyan et al. 2014). We conduct an in-depth comparison of our results with these works in Section 6. We also show that our measurements rule out theoretical models based on single-star progenitors for SE SNe, but are consistent with models that assume binary-system progenitors.

In Section 6, we additionally discuss how the various rate correlations are not independent. For all SN types, we show that a correlation with one galaxy property can be transformed into the measured correlations with any other of the galaxy properties studied here by using well-known galaxy scaling relations. This makes it impossible to distinguish causation from correlation, especially for the deficiency of SE SNe in lower-mass galaxies. However, we argue that the structure seen in the correlations (e.g., the way the ratio between the SE SN and SN II rates depends on galaxy stellar mass) can be incorporated into models and used to constrain progenitor models.

We summarize our results in Section 7. Paper II in this series (Graur et al. 2016a) will use population fractions, as measured from the LOSS volume-limited subsample of SNe, to strengthen the results presented here and add further constraints on SN progenitor scenarios. For Paper II, we rely on a reclassification of the SNe in this subsample, as reported by Shivvers et al. (2017).

2. Galaxy and Supernova Samples

Between 1998 March and 2008 December, LOSS discovered a total of 1036 SNe. Most of these were discovered among the 14,882 galaxies directly targeted by the search (at a median distance of 80^{+30}_{-40} Mpc, where the upper and lower bounds contain 68% of the galaxies in the sample), but a few dozen were also discovered in background galaxies in the LOSS fields. This sample, along with the subsamples used to measure the LOSS SN luminosity functions (Li et al. 2011c) and rates (L11), is described in detail by Leaman et al. (2011).

LOSS classified SNe into three broad categories (e.g., Filippenko 1997): SNe Ia, Ib/c, and II. The first category included all SN Ia subtypes, including the subluminous SN 1991bg-like SNe Ia, overluminous SN 1991T-like SNe Ia, and SN 2002cx-like SNe Ia (now referred to as SNe Iax; Jha et al. 2006; Foley et al. 2013). SNe Ib/c included SNe Ib, Ic, and “peculiar” SE SNe (such as broad-lined SNe Ic; see, e.g.,...
Woo H & Bloom 2006 for a review). The final category comprised SNe IIP, IIL, IIn, and IIb. However, as mentioned earlier, SNe IIb are characterized by hydrogen deficiency, which is an indication of envelope stripping. Thus, they should be grouped with the SNe Ib/c (e.g., Filippenko et al. 1993). In this work, we use “SE SNe” instead of “SNe Ib/c.” However, because we use the control times calculated by L11 for the LOSS sample (see Sections 3 and 5.1, below), we must keep the SNe IIb grouped with the SN II class when calculating rates.

Fourteen SNe had no spectroscopic classification. Leaman et al. (2011) divided these SNe into the three SN categories “according to the statistics of the SNe having spectroscopic classification” and used them in the L11 rate calculations. We choose to exclude these SNe from the rate measurements performed in this work.

Leaman et al. (2011) divided the LOSS galaxies into eight Hubble types—E, S0, Sa, Sb, Sbc, Sc, Sd, and Irr (irregular) —according to their designations in the NASA Extragalactic Database. We keep these designations in the current work.

We divide the complete LOSS galaxy sample into several subsamples, which we label the “LOSS,” “sSFR,” and “metallicity” samples. The LOSS sample is similar to the sample used by L11 to measure the original LOSS SN rates (i.e., the “full-optimal” subsample; 10,121 galaxies from the targeted list only, i.e., excluding SNe discovered in background galaxies) and is used here to measure SN rates per unit mass (“specific” rates) as a function of galaxy stellar mass. The sSFR sample comprises 2415 galaxies targeted by LOSS that had spectra acquired by the SDSS and were analyzed by both the MPA-JHU Galspec pipeline (Kauffmann et al. 2003; Brinchmann et al. 2004; Tremonti et al. 2004) and the NASA-Sloan Atlas (NSA), which is based on the SDSS DR8 spectroscopic catalog (Aihaara et al. 2011). This sample is used to correlate the SN rates with sSFR. The “metallicity” sample is a subset of 1000 galaxies from the MPA-JHU Galspec catalog, which we use to measure specific SN rates as a function of the central oxygen abundances of the galaxies. We detail the selection criteria for each of the subsamples in Appendix A. In Appendix B, we show that the rates measured with each sample are mutually consistent. The numbers of galaxies and SNe in each subsample are summarized in Table 1 and the properties of the galaxies in the entire LOSS sample are given in Table 2.

3. Addenda to the Original LOSS Rates

Before delving into correlations between SN rates and galaxy properties, we use this section to present several updates and extensions to the original LOSS papers. Figures 3 and 4 of

Sample	N_{sd}	N_{s}	N_{se}	N_{t}
LOSS	10117	274	116	324
sSFR	2415	65	18	79
Metallicity	1000	24	14	52

L11 show measurements of specific SN rates as a function of galaxy stellar mass in galaxies of different Hubble types. However, in these figures, the rates for each type are scaled to match the rates as measured in Sbc galaxies. This means that the scatter of the rates in different galaxy types is not visible in the figures (though it can be reconstructed to some degree from the parameters of the fits to the original, unscaled measurements, which appear in Table 4 of L11), and the rate−mass correlation appears tighter than it really is. In Figure 1, we show similar measurements, but do not scale them, so that their spread is apparent. In the SN II rates, where the scatter is largest, there is a clear progression from late-type (i.e., younger and less massive) galaxies, where the rates are highest, to early-type (older, more massive) galaxies. In the SE SN and SN Ia rates, where the scatter is smaller, this trend is not as clear.

We publish our newly calculated LOSS rates in Table 3. L11 fit power laws to their rates and published the fits in their Table 4. They did not, however, publish the measurements themselves. Our rates are not identical to those measured by L11, because we use the entire full-optimal subset of galaxies, after filling in missing masses (see Appendix A), but leave out the 14 SNe without spectroscopic classifications (see Section 2, above). However, the differences between the LOSS sample used here and the one used by L11 are minor and have little effect on the resultant rates.

L11 divided their SNe into bins so that each rate bin contained roughly the same number of SNe (“SN-fixed” bins). This is a common practice in studies where the SN sample sizes are either small to begin with or reduced owing to binning (in this case, by binning the host galaxies according to Hubble type); we will follow this binning scheme in the following sections. Once the sample size is increased, though, other binning schemes become available, such as using bins of constant stellar mass (“mass-fixed” bins). It then becomes necessary to formulate an objective, data-driven method to determine the binning scheme that will extract the most information from the sample.

To better trace the correlation between the SN rates and stellar mass, we use a sliding mass bin of constant width. The size of this bin depends on the size of the SN sample and is determined by Knuth’s rule (Knuth 2006), with the added constraint that the bin width not exceed 1 dex of M_{☉}. In each iteration, the bin either gains or loses the nearest SN to its current borders, such that in some iterations, losing one SN on one end may lead to a gain of several SNe on the other. In each bin i, the specific SN rate, \(R_i \), is measured according to

\[
R_i = \frac{N_i}{\sum_{j=1}^{n} t_{i,j} M_{*j}},
\]

where \(N_i \) is the number of SNe in the bin, \(M_{*j} \) is the stellar mass of the jth galaxy in the bin, and \(t_{i,j} \) is the control (or visibility) time of the jth galaxy—i.e., the time during which a given SN type could have been detected by LOSS during the survey. These control times take into account the detection efficiency of the survey, as well as our broad knowledge of SN characteristics (i.e., shapes of light curve and luminosity functions). The resulting rates are reported in Table 4.

We use the original LOSS control times as computed by L11 (see also Leaman et al. 2011; Li et al. 2011c; see Section 5.1 for a discussion of how the inclusion of SNe Iib in the SN II control times may affect the rates measured here). These

9 http://ned.ipac.caltech.edu/
10 http://www.sdss3.org/dr9/algorithms/galaxy.php
11 http://www.nsatlas.org/
Galaxy	f_{LO}	N_{Ia}	N_{II}/c	N_{Ib}	t_{Ia}	t_{Ib}/c	t_{II}	M_{LOSS}	L_{B}	L_{K}	d	T	α	β	τ	M_{MPA}	M_{NSA}	SFR	sSFR	O/H	M_{NGC}	sSFR$_{\text{NSA}}$
UGCA_017	0	1	0	0	8.222	7.817	7.799	0.2599	0.3566	1.0383	25.78	Sc	21.5601	-6.0942
UGCA_024	1	0	0	0	9.772	9.534	9.599	0.1499	0.7365	17.44	Scd	31.1308	-6.1989	
UGC_03825	0	0	1	0	6.776	2.215	4.993	10.0454	3.3217	15.1121	115.29	Sbc	110.8882	41.4350	1864	53313	171	0.0276	0.1012	0.0137	4.3351	0.2624
UGC_03944	0	0	0	0	8.730	7.540	6.696	0.9475	1.2143	2.2752	55.03	Scd	114.6521	37.6335	431	51877	34	0.0130	0.8508	0.4333	0.0161	0.7980
UGC_04226	0	1	0	0	6.624	4.436	3.355	5.3292	2.4379	8.9522	110.23	Scd	121.8392	40.3983	545	52202	111	0.0264	4.4377	0.0777	0.0161	4.4055

Note. Columns: (1) Galaxy name. (2) Whether galaxy belongs to the LOSS “full-optimal” (f_{LO}) subsample used to measure SN rates here and by L11 (1—yes, 0—no). (3)-(5) Number of SNe Ia, SE SNe, and SNe II (respectively) discovered in each galaxy. (6)-(8) SN control time, in yr, for SNe Ia, SE SNe, and SNe II (respectively). (9) Galaxy stellar mass in units of 10^{10} M_{\odot}, measured by L11 from the B- and K-band luminosities. (10)-(11) B- and K-band luminosities (respectively), in units of 10^{10} L_{\odot}. (12) Distance to galaxy, in Mpc. (13) Hubble type of galaxy, according to the system adopted by Leaman et al. (2011). (14)-(15) Right ascension and declination (respectively) of galaxy, in decimal units. (16)-(18) SDSS plate, Modified Julian Date (MJD), and Fiber identifier (respectively). (19) Galaxy redshift, measured from the SDSS spectrum. (20)-(23) Galaxy stellar mass, SFR, sSFR, and oxygen abundance (respectively) measured by the SDSS MPA-JHU Galspec pipeline, in units of 10^{10} M_{\odot}, M_{\odot} yr$^{-1}$, 10^{10} yr$^{-1}$, and 12 + [log(O/H)], respectively. (24)-(25) Galaxy stellar mass and sSFR (respectively) measured from NSA Petrosian and Sérsic photometry, in the same units as the MPA M$_*$$^{-1}$, and sSFR values. SNe Ia, SE SNe, and SNe II (respectively) discovered in each galaxy. (This table is available in its entirety in machine-readable form.)
control times were not included in Tables 2 and 4 of Leaman et al. (2011), which laid out most of the properties of the LOSS galaxy and SN samples. In order for our work to be reproducible, and for others to continue to explore the LOSS sample, we publish the control times in Table 2. As can be seen in Figure 1, the sliding-bin rates diverge wildly at the edges of the mass range in each panel. As the number of galaxies that goes into the denominator in Equation (1) grows smaller (as shown in the stellar mass histograms in the bottom panels), and the number of SNe decreases, the Poisson noise dominates, and the rate eventually diverges. This problem also affects rates measured with SN-fixed or mass-fixed bins (as shown in Figure 13), but is usually not as apparent.

The sliding-bin rates are useful for visual recognition of possibly interesting features, such as the break and rate ratio discussed in Section 5.1 below. However, since they are not independent measurements, they cannot be used for curve fitting. Thus, throughout this work, we use SN-fixed bins for fitting purposes. The number of bins for each fit is chosen to maximize the number of SNe in each bin while also revealing as much structure in the rates as possible. We repeat each fit with a different number of bins to make sure that the results do not change appreciably. All rates in this paper are presented in units of $10^{-12} M_{\odot}^{-1} \text{yr}^{-1}$, which are abbreviated to “SNuM” (i.e., SN rate per unit mass). In all the SN rate figures presented here, vertical error bars are 68% Poisson uncertainties, while horizontal error bars denote the 16th and 84th percentiles of the distribution of galaxies within each bin.

4. SN Ia Rates

We fit the SN Ia rates as a function of galaxy stellar mass shown in Figure 1, in all galaxies combined, with a linear fit.
Galaxy type	M_e (10^10 M☉)	Rate(SN)	N_{SN}	M_e (10^10 M☉)	Rate(SN)	N_{SN}	M_e (10^10 M☉)	Rate(SN)	N_{SN}	N_{int}	
SNe Ia											
S0	6.1 ± 1.1	0.10 ± 0.03	9	14 ± 3.3	0.10 ± 0.03	8	21 ± 2.6	0.10 ± 0.03	9	33 ± 1.5	0.10 ± 0.03
Sab	2.5 ± 0.2	0.10 ± 0.03	14	7 ± 0.7	0.10 ± 0.03	14	14 ± 3.4	0.10 ± 0.03	14	27 ± 3.3	0.10 ± 0.03
Sb	2.5 ± 0.2	0.10 ± 0.03	11	4 ± 0.7	0.10 ± 0.03	10	7 ± 1.7	0.10 ± 0.03	11	15 ± 3.5	0.10 ± 0.03
Scd	1.2 ± 0.2	0.10 ± 0.03	9	3 ± 0.8	0.10 ± 0.03	8	6 ± 1.0	0.10 ± 0.03	8	12 ± 3.6	0.10 ± 0.03
Sbc	1.2 ± 0.2	0.10 ± 0.03	9	3 ± 0.8	0.10 ± 0.03	8	6 ± 1.0	0.10 ± 0.03	8	12 ± 3.6	0.10 ± 0.03
Scd	1.2 ± 0.2	0.10 ± 0.03	9	3 ± 0.8	0.10 ± 0.03	8	6 ± 1.0	0.10 ± 0.03	8	12 ± 3.6	0.10 ± 0.03
E–Scd	1.2 ± 0.2	0.10 ± 0.03	9	3 ± 0.8	0.10 ± 0.03	8	6 ± 1.0	0.10 ± 0.03	8	12 ± 3.6	0.10 ± 0.03
All galaxies	2.5 ± 0.2	0.10 ± 0.03	7	11 ± 3.1	0.10 ± 0.03	7	20 ± 4.4	0.10 ± 0.03	7	22 ± 3.6	0.10 ± 0.03
Passive	2.5 ± 0.2	0.10 ± 0.03	7	11 ± 3.1	0.10 ± 0.03	7	20 ± 4.4	0.10 ± 0.03	7	22 ± 3.6	0.10 ± 0.03
Star-forming	2.5 ± 0.2	0.10 ± 0.03	7	11 ± 3.1	0.10 ± 0.03	7	20 ± 4.4	0.10 ± 0.03	7	22 ± 3.6	0.10 ± 0.03

Notes:

a The uncertainties mark the 16th and 84th percentiles of the mass distribution in a given bin.

b Mass-normalized SN rate, in units of 10^{-12} M_{⊙} yr^{-1}.

c Passive and star-forming galaxies are defined as having log(SfSFR/yr⁻¹) < -12 and log(SfSFR/yr⁻¹) > -12 (respectively), as measured by the MPA-JHU Galspec pipeline.

(i.e., a first-order polynomial) in log–log space (not shown).

The resultant slope, -0.44 ± 0.06, is consistent with that found by L11, -0.50 ± 0.10. We also find that a suspected bend in the SN Ia rates at ~10^{10} M_{⊙}, seen in Figure 1, is not statistically significant, and conclude that the SN Ia rate evolves smoothly over the range of galaxy mass probed here.

Several studies have shown an anticorrelation between specific SN Ia rates and host-galaxy stellar masses (Sullivan et al. 2006; L11; Graur & Maoz 2013). However, all of these studies noted that while the anticorrelation was significant for star-forming galaxies, it was unclear whether it persisted in passive galaxies as well. Using the likelihood-ratio test (see Appendix C), we find that while the anticorrelation was significant for star-forming galaxies, there is only a >3σ trend in E+S0 galaxies (as well as in S0 galaxies alone) and a trend with 2σ < S < 3σ (i.e., insignificant) in E galaxies. These findings are in agreement with L11. Furthermore, we measure SN Ia rates in star-forming (log(SfSFR/yr⁻¹) > -12) and passive (log(SfSFR/yr⁻¹) < -12) galaxies using the SFR sample. We find a >5σ trend between the SN Ia rates and galaxy stellar mass in the former, but no trend (S < 2σ) in the latter. Our sample includes only 35 SNe Ia in E galaxies and 22 in passive ones, so the absence of a significant trend may be due to small-number statistics. Although the LOSS galaxy sample is biased toward high-mass galaxies, which restricts most of the E and passive galaxies to a narrow mass range of about 10^{10}–5 × 10^{11} M_{⊙}, this should not be the reason why we find no significant trend, because S0 galaxies (with 56 SNe Ia)—for which there is a significant trend—occupy the same mass range.

In Figure 2, we show specific SN Ia rates as a function of SFR and SfSFR. The rates as a function of SFR shown here are consistent with those from G15. As in that work, the new rates favor a flat trend, but owing to their large statistical
uncertainties they are also consistent with the G15 model rates. The G15 model could be challenged either by measuring more precise rates or by targeting low-mass, passive galaxies, where the G15 model predicts rates ~3–4 times higher than the flat trend.

Formally, the second set of measurements can be fit with a simple linear function, at a significance of >3σ. However, it is more interesting to note that these measurements follow the same pattern observed by previous studies (Mannucci et al. 2005; Sullivan et al. 2006; Smith et al. 2012; G15): the rates are flat in passive galaxies and rise with rising sSFR values in star-forming galaxies. In G15, we showed that this pattern is another result of the interplay between the SN Ia DTD and galaxy scaling relations.

In Figure 3, we show specific SN Ia rates versus metallicity. There is no significant correlation, but, if we replace M* in the SN Ia rate–mass correlation with metallicity via the galaxy scaling relations shown in Figure 4, the resultant correlation is consistent with the measured rates. Rebinning the G15 rate simulation12 according to the metallicity values of the galaxies shows that our favored model is also broadly consistent with the measurements.

5. Core-collapse Supernova Rates

In this section, we show that the SE SN rates are depressed, relative to the SN II rates, in low-mass galaxies. This result, which was hinted at in L11, is more significant than first thought. We attempt to explain this result by investigating possible correlations between the SN rates and other galaxy properties (sSFR and metallicity) and show that any correlation between the SN rates and one of the galaxy properties examined here can be transformed, with the aid of previously known galaxy scaling relations, into the measured correlation with the other two galaxy properties.

5.1. CC SN Rates and Galaxy Stellar Mass

In Figure 1, we show specific CC SN rates as a function of galaxy stellar mass. Using the likelihood-ratio test, we find a break (i.e., a “knee” in the curve) at ~10^10 M_☉ in both the SN II and SE SN rates, as measured with all galaxy types. This break has a significance of >3–5σ, depending on how many bins are used to calculate the rates. However, this break is no longer statistically significant when the galaxy sample is limited to Sab–Scd galaxies, so we attribute it to the inclusion of E and S0 galaxies in the rate calculation. These galaxies, which tend to be massive, passive galaxies, do not host CC SNe and thus drop down the rates in the high-mass range. The lack of a break in the CC SN rates in star-forming galaxies implies a smooth dependence of the rate on either SFR or a combination of galaxy properties, such as SFR and metallicity.

The sliding bin used to calculate the rates shown in Figure 1 also makes it appear as if there is a dip in the SE SN rates at ~6 × 10^9 M_☉. We attribute this to Poisson noise stemming from the width of the bin. This dip disappears in Figure 13, where we use different techniques to measure the rates in discrete bins.

We measure the slopes of the SE SN and SN II rates as a function of galaxy stellar mass and find that the SE SN rates have a shallower decline with stellar mass than the SN II rates: −0.46 ± 0.10 (−0.64 ± 0.09) as opposed to −0.68 ± 0.05 (−0.84 ± 0.05), as fit when using Sab–Scd (all) galaxies. L11, on the other hand, found that the SE SN and SN II rates had identical slopes (0.55 ± 0.10).

12 A combination of a t−1 DTD and the correlation between galaxy age and stellar mass; see Graur & Maoz (2015) for more details.
Although the values of the slopes depend on which galaxy sample we use to derive the rates, the ratio of the SE SN to SN II rates, R_{SE}/R_0, shown in Figure 5 and collected in Table 5, has the same structure: it rises from 0.2 to 0.6 in galaxies with masses $M \lesssim 10^{10} M_\odot$, then remains constant. L11 made a similar measurement of the ratio of the SE SN rates to the total CC SN rate, rebinned according to the metallicity values of the galaxies in the metallicity sample (dashed curve with gray 68% uncertainty region). SDSS metallicity values were measured using the T04 metallicity scale.

Figure 2. Specific SN Ia rates as a function of SFR (left) and sSFR (right). The rates measured here (red squares) are consistent with previous measurements from the literature, as marked by white symbols (Mannucci et al. 2005; Sullivan et al. 2006; Smith et al. 2012; G15), as well as with the G15 model that combines the SN Ia DTD with the scaling relation between galaxy age and stellar mass (dashed curve with gray 68% uncertainty region, reproduced from G15). As in Figure 1, the bottom panels show distributions of the galaxy property in question in the SN host galaxies (color) and the entire sample (gray).

Figure 3. Specific SN Ia rates as a function of galaxy metallicity. A first-order polynomial fit to the data is shown as a thick curve (though formally, there is no significant correlation between the rates and metallicity). The rate–mass correlation, coupled with the galaxy scaling relation between M_* and metallicity, is consistent with the measurements (thin curve), as is the G15 rate simulation, rebinned according to the metallicity values of the galaxies in the metallicity sample (dashed curve with gray 68% uncertainty region). SDSS metallicity values were measured using the T04 metallicity scale.

Figure 4. Galaxy metallicity vs. stellar mass. Gray squares represent the 1000 SDSS galaxies in the metallicity sample, while colored symbols represent SN host galaxies: SNe Ia (red squares), SE SNe (green diamonds), and SNe II (blue circles). The curves are linear fits to these data sets in log–log space. The solid line is a fit to all 1000 galaxies, while the dashed lines are fits to the separate SN host samples. The line colors match those of the symbols. SDSS metallicity values were measured using the T04 metallicity scale.

Although the values of the slopes depend on which galaxy sample we use to derive the rates, the ratio of the SE SN to SN II rates, R_{SE}/R_0, shown in Figure 5 and collected in Table 5, has the same structure: it rises from 0.2 to 0.6 in galaxies with masses $M \lesssim 2 \times 10^{10} M_\odot$, then remains constant. L11 made a similar measurement of the ratio of the SE SN rates to the total CC SN rate. They noted that the lowest-mass measurement was lower than the others, but that this was only a 2σ effect. As shown in Figure 5, a likelihood-ratio test shows that either a first- or second-order polynomial provides a better fit to R_{SE}/R_0 than a constant (i.e., zeroth-order polynomial, which represents the possibility that there is no trend), at a significance of $\geq 3\sigma$. Varying the number of bins and the mass range over which the test is performed results in similar significance values. Altogether, this means that the trend we see in the ratio between the SN rates is not simply a result of the uncertainties of the measurements, but a real effect. We note that L11 included systematic uncertainties in their rates, while we consider only statistical uncertainties. However, as the SE SN and SN II rates should suffer from similar systematics, the ratio between the rates should be affected only by the statistical uncertainties.

When they computed the SN control times, L11 treated SNe Ibb as SNe II, though they are considered to be a type of SE SN (e.g., Filippenko 1988, 1997; Filippenko et al. 1993). In this work, we have chosen not to recalculate the control times, so
our SN II rates remain contaminated by SNe IIb. To test whether this is the reason for the deficiency of SE SNe relative to SN II in low-mass galaxies, we remeasure the SN rates, using the same control times but with SNe IIb removed from the SN II sample and added to the SE SN sample. The resulting rates will not be strictly correct, but will reveal whether the addition of the SNe IIb to the SE SN sample can make up for the deficit. In Figure 6, we show that the number of SNe IIb in low-mass galaxies, while of the same order of magnitude as other SE SNe, is not enough to make up for the deficiency of SE SNe in low-mass galaxies relative to SN II.

The deficiency of SE SNe in low-mass galaxies could also be explained by a bias on the part of the LOSS survey toward this SN type, but we have no reason to think that such a bias exists. First, all SNe should be easier to discover in low-mass (and hence lower-luminosity) galaxies, where the contrast between the SN and galaxy light is greater than in more massive galaxies. Second, on average, SE SNe are more luminous than SNe II (e.g., L11; Drout et al. 2011; Kiewe et al. 2012; Richardson et al. 2014). At the same time, they brighten and decline faster than SNe II. The latter are dominated by SNe IIP, which have a long plateau phase of ~100 days shortly after explosion. These properties are accounted for in the control times, which end up being very similar for SE SNe and SNe II.

We show this similarity in Figure 7, where the control times in galaxies with $M_\star \lesssim 10^{10} M_\odot$, which lie in the range 4–6 yr, are very similar for both SN types. The SN II control times are larger by a factor of ~1/3, which means the survey is more sensitive to them in these low-mass galaxies. However, this small difference is not enough to balance the factor ~10 difference between the number of SNe II and SE SNe in these galaxies, as seen in Figure 6.

Finally, we must take into consideration the targeted nature of LOSS. This survey targeted large, massive galaxies, so that while it is complete down to galaxies with absolute K-band magnitudes of ~24, it is deficient in low-luminosity galaxies. So, if SE SNe preferentially explode in low-luminosity galaxies, their deficiency in low-mass galaxies is perhaps not surprising.
Measurements from G15, which included only SNe in IIP and IIL, are shown as green diamonds. White triangles denote CC SN rates measured by Botticella et al. (2012) - CC SNe. Blue stars indicate CC SNe measured by Modjaz et al. (2011). The largest CC SNe sample is from the SDSS DR7 (Sánchez et al. 2012b). An additional large sample of CC SNe from the SDSS DR11 is used here. A comparison between galaxy properties and metallicity can be seen in Figure 9, where the correlation between the SN II rates and metallicity is plotted with a black line. The correlation between the SE SN rates and metallicity is shown with a green line. The slopes of the SN II and SE SN rates are consistent with each other. Formally, though, the SE SN rates have a slightly shallower slope than the SN II rates. If this difference between the slopes was confirmed with a larger SN sample, it would be in line with the trend we observe in low-mass galaxies, which are, on average, more star-forming. This should be confirmed with a larger SN sample. We also note that in G15 we showed that the rate–mass correlation could be transformed into the rate–sSFR correlation by plugging in the galaxy scaling relations between stellar mass and sSFR. This remains true here.

5.3. CC SN Rates and Metallicities

In Figure 9, we show specific SN rates as a function of galaxy metallicity (collected in Table 6). Because these metallicity values are derived from SDSS spectra of the galaxies, they represent the metallicity values in the centers of the galaxies alone. Many studies have shown that galaxies have metallicity gradients, where the metallicity decreases as a function of the distance from the galaxy center (e.g., Díaz 1989; Garnett et al. 1994; Garnett et al. 1997; Henry & Worthey 1999; Rolleston et al. 2000; Sánchez et al. 2012b). Some studies have shown that in certain galaxies this gradient flattens or even falls off in their centers (e.g., Díaz 1989; Vila-Costas & Edmunds 1992; Bresolin et al. 2009; Rosales-Ortega et al. 2011). This means that the metallicities at the locations of the SNe are bound to be different from those measured from the SDSS spectra and used here (Modjaz et al. 2011).

However, the central metallicity values can still be used as a proxy for the local values, in certain circumstances. Recently, Calar Alto Legacy Integral Field Area Survey (Calar Alto Legacy Integral Field Area Survey; Sánchez et al. 2012a) galaxies that hosted 132 SNe to study
Table 5
Ratio Between SE SN and SN II Specific Rates in the
Range $2 \times 10^{9} \leq M_{*} \leq 2 \times 10^{11} M_{\odot}$

Mass ($10^{10} M_{\odot}$)	Metallicity	R_{SE}/R_{II}	N_{SE}/N_{II}	
(1)	(2)	(3)	(4)	
0.32$^{+0.12}_{-0.09}$	8.84$^{+0.06}_{-0.06}$	0.13$^{+0.09}_{-0.08}$	3	26
0.84$^{+0.28}_{-0.23}$	9.01$^{+0.05}_{-0.06}$	0.35$^{+0.11}_{-0.11}$	14	47
2.1$^{+0.7}_{-0.6}$	9.17$^{+0.05}_{-0.05}$	0.59$^{+0.13}_{-0.11}$	34	77
5.1$^{+1.8}_{-1.3}$	9.32$^{+0.05}_{-0.05}$	0.64$^{+0.14}_{-0.11}$	38	93
12$^{+3}_{-3}$	9.47$^{+0.05}_{-0.05}$	0.64$^{+0.15}_{-0.15}$	20	58

Note. (1) The uncertainties mark the 16th and 84th percentiles of the mass distribution in a given bin. (2) Metallicity (on the T04 scale) converted from stellar masses using the mass–metallicity relation in Table 7 (for all galaxies). (3) Ratio between mass-normalized SE SN and SN II rates. (4) Number of SE SNe in a given bin. (5) Number of SN II in a given bin.

The result of inserting the galaxy scaling relation into the rate–mass correlation. As in Figure 8, while the slopes of the fits to the SE SN and SN II rates hint at a deficiency of SE SNe in low-metallicity (hence low-mass) galaxies, due to the size of the metallicity sample, this effect is not statistically significant.

The MPA-JHU Galspec metallicity values were measured using the T04 scale, which is based on the [O II] $\lambda 3727$, Hβ, [O III] $\lambda 5007$, [N II] $\lambda 6548$, 6584, and [S II] $\lambda 6716$, 6731 emission lines (Brinchmann et al. 2004). Kewley & Ellison (2008), Andrews & Martini (2013), and Salim et al. (2014) have shown that the strengths of the correlations between stellar mass and metallicity, as well as sSFR and metallicity, depend on how the metallicities were measured and what calibration scale was used (see also Modjaz & al. 2008). This means that care must be taken when comparing galaxy samples with metallicities measured using different methods and scales. In this work, we use only Galspec metallicities and measure empirical galaxy scaling relations for the specific galaxies in our metallicity subsample. Thus, even though Salim et al. (2014) have shown that the correlation between sSFR and metallicity using the T04 method is weaker than when using metallicities measured with other methods, our conclusion that any correlation between the SN rates and one galaxy property can be converted, through galaxy scaling relations, into the measured correlations with the two other galaxy properties examined here is internally consistent.

6. Discussion
Here, we compare the rate correlations we observe to similar measurements from the literature as well as predictions from theoretical models.

6.1. CC SN Rates versus Number Ratios
In Figure 10, we compare between our measurements of the ratio between the SE SN and SN II rates, R_{SE}/R_{II}, and the measured ratio of the numbers of SE SNe and SN II, N_{SE}/N_{II}, from the literature, as well as model predictions for R_{SE}/R_{II}. We find that our rate ratios are broadly consistent with previous number-ratio measurements, as well as with models that assume a significant fraction of SE SNe arise from interacting binary systems, rather than solely single stars.

As we explain in detail below, our measurements differ from, and add to, previous works on the following points: (1) they are based on absolute rates, as opposed to number ratios; (2) they are derived from the well-understood, homogeneous LOSS SN sample; and (3) they sample higher metallicity values than other studies, at which the ratio might be leveling out instead of continuing to increase monotonically (a statistically significant trend, as we have shown in Section 5.1). Figure 10 compares between several studies, each of which included different types of SNe in their ratios and used different methods to estimate metallicities.

Prieto et al. (2008), Boissier & Prantzos (2009), and Anderson et al. (2015) measured the number ratio of SNe Ib to SNe II. In these cases, “SNe Ib” referred to SNe Ib, Ic, and SNe that might have been either of these (usually referred to as SNe Ib/c). These studies do not mention SNe Ib by name, and we assume they were included in the SN II category (for Anderson et al. 2015, this has been ascertained through private communication with J. Anderson). Kelly & Kirshner (2012) explicitly included SNe Ib in the numerator of their number.
As for metallicity, Prieto et al. (2008) and Kelly & Kirshner (2012) used SDSS metallicities measured by the MPA-JHU pipeline, using the T04 scale (see Section 5.3 for details). Kelly & Kirshner (2012) specifically chose SDSS fibers closest to the SN explosion sites. Boissier & Prantzos (2009) relied on the correlation between galaxy luminosity (i.e., mass) and metallicity to estimate global metallicities, and on galaxy metallicity gradients to estimate metallicities at the explosion sites (in Figure 10, we reproduce the latter). Anderson et al. (2015) conducted a meta-analysis of literature measurements of oxygen abundances in host-galaxy H II regions at the SN explosion sites, in the PP04-O3N2 scale (Pettini & Pagel 2004). Here, we have converted these values to the T04 scale via the conversion factors from Kewley & Ellison (2008). Finally, we converted our measurements of rate ratio as a function of stellar mass from Figure 5 into rate ratios versus metallicity (reported in Table 5) via the empirical mass–metallicity correlation from Table 7 (for all galaxies).

Two surveys are not represented in Figure 10. Arcavi (2012) measured $N_{\text{Ibc}}/N_{\text{II}}$ ratios (SNe Ib were treated as SNe II) as a function of host-galaxy luminosity, but there does not seem to be a significant trend in their measurements. We do not show these measurements in Figure 10, but note that as they vary in the range $0.22-0.4$, they would be broadly consistent with the other measurements in the plot. Hakobyan et al. (2012, 2014) used a subsample of SNe from the Asiago Supernova Catalog (Barbon et al. 1999) and the Sternberg Astronomical Institute (SAI) Supernova Catalog (Tsvetkov et al. 2004) to measure $N_{\text{Ibc}}/N_{\text{II}}$ in galaxies with different morphologies and disturbance levels (e.g., interacting versus merging galaxies). They found that $N_{\text{Ibc}}/N_{\text{II}}$ is lower in late-type (Sc–Sm) galaxies than in early-type (S0/a–Sbc) at a 5% significance level, which is consistent with the trend we observe. As in this work, Hakobyan et al. (2014) included SNe IIb in the SN II bin.

The biggest difference between our measurements and those of previous studies is that we measure the ratio of SN rates, as opposed to numbers. The rates take into account both the numbers of observed SNe and, through the control times, the survey’s sensitivity to different types of SNe. Normalized by

Table 6
Specific SN Rates as a Function of Various Galaxy Properties

SN type	Metallicity*	R (SNeM)	N_{SN}	sSFR (log/sSFR yr$^{-1}$)	R (SNeM)	N_{SN}	sSFR (log/SFR/M$_{\odot}$ yr$^{-1}$)	R (SNeM)	N_{SN}
Ia	8.83 ± 0.18	0.77 ± 0.38	8	-12.16 ± 0.19	0.09 ± 0.03	16	-1.8 ± 0.3	0.118 ± 0.032	21
	9.109 ± 0.05	0.20 ± 0.0	8	-11.2 ± 0.5	0.073 ± 0.023	16	-0.33 ± 0.27	0.100 ± 0.026	22
	9.19 ± 0.02	0.31 ± 0.11	8	-10.33 ± 0.12	0.16 ± 0.05	17	0.34 ± 0.25	0.135 ± 0.029	22
SE	8.77 ± 0.18	1.0 ± 0.7	5	-11.84 ± 0.57	0.008 ± 0.019	1	-0.68 ± 0.45	0.045 ± 0.027	6
	9.07 ± 0.04	0.34 ± 0.27	4	-10.43 ± 0.17	0.09 ± 0.03	6	0.1 ± 0.13	0.13 ± 0.08	6
	9.166 ± 0.072	0.25 ± 0.11	5	-10.08 ± 0.09	0.28 ± 0.19	5	0.45 ± 0.21	0.13$ \pm 0.08$	6
	-9.7 ± 0.3	+0.3	5	-10.08 ± 0.09	0.28 ± 0.19	5	0.45 ± 0.21	0.13$ \pm 0.08$	6

Note.
* SDSS metallicity values were measured using the T04 metallicity scale.
the mass of the stars surveyed for SNe in each galaxy, these rates are an accurate representation of the numbers of SNe produced by a given stellar population. SN numbers, on their own, can also be used to compare between different SN types and to connect between SNe and local stellar populations, but only if those numbers come from a complete sample that takes into account SNe missed by the survey.¹³

Arcavi (2012) does not discuss the composition of the Palomar Transient Factory (PTF) sample, so its completion cannot be ascertained. Boissier & Prantzos (2009), Kelly & Kirshner (2012), and Hakobyan et al. (2014) used the Asiago and SAI catalogs. Both of these are inhomogeneous collections of SNe reported by different surveys, each with its own, sometimes unknown, detection and classification biases.¹⁴

Prieto et al. (2008) and Boissier & Prantzos (2009) limited the redshift range of their SN samples in order to turn them into quasi-complete samples. Kelly & Kirshner (2012) found that the different CC SN subtypes in their sample broadly followed the same redshift distribution, from which they concluded that the surveys from which these SNe originated had similar control times for the various CC SN subtypes. The consistency of the N_{SE}/N_{II} measurements of these studies with our R_{SE}/R_{II} measurements shows that these attempts to make their samples complete were, on the whole, successful.

On the other hand, Anderson et al. (2015) did not try to limit their sample. They drew SNe from several studies that attempted to measure metallicities at the SN explosion sites (see their Section 3.3), and so were biased toward SE SNe. This explains why their measurements are inconsistent with all the others in Figure 10, and why their number ratios are biased to more SE SNe rather than SNe II. As we measure rate ratios, and the rates are derived from the homogeneous, well-understood LOSS SN sample, our measurements are not subject to these concerns.

Because the LOSS galaxy sample is biased toward massive galaxies, our rate ratios cover a range of higher metallicity values that was not covered by previous surveys. In this range, the rate ratio might be leveling out instead of continuing to rise monotonically, as one might extrapolate from previous studies. If metallicity alone is the driver of the CC SN rate correlations, this plateau would imply that, above some threshold, higher metallicity values would have no effect on SE SN progenitors.

6.2. Constraints on SE SN Progenitors

In Figure 10, we compare the different rate- and number-ratio measurements to model predictions derived with the Binary Population and Spectral Synthesis code (BPASS; version 1: Eldridge et al. 2008, version 2: Eldridge & Stanway 2016; Stanway et al. 2016). The BPASS models include predictions for single-star as well as interacting binary progenitors. The BPASS v2 binary models are split between a model that includes all SNe produced during CC and a model where SNe that produce a black hole during CC are removed. There is growing evidence that, at least for some SNe, formation of a black hole makes it difficult to observe the events (Gerke et al. 2015; Smartt 2015). Therefore, removing such events from model predictions provides an estimate of their contribution to the SN rates.

While observational studies report oxygen abundances, stellar evolutionary models use the metallicity mass fraction Z, and in particular the iron mass fraction of the SN progenitor, since it

Table 7
Polynomial Fits ($y = ax + b$) to SN Rates and Galaxy Scaling Relations

y (1)	x (2)	a (3)	b (4)	χ^2/dof (5)	S (6)
log(R_{SN}/SNuM)⁺	log(M_\odot/SNuM)	−0.44 ± 0.06	3.8 ± 0.6	2.7/2	>5σ
log(R_{SN}/SNuM)⁺	log(M_\odot/SNuM)	−0.43 ± 0.08	3.7 ± 0.8	3.9/2	>5σ
log(R_{SN}/SNuM)⁺	log(sSFR/yr⁻¹)	0.23 ± 0.08	1.7 ± 0.8	3.2/2	>3σ
log(R_{SN}/SNuM)++	$12 + \log(O/H)$	−1.3 ± 0.7	11 ± 7	1.0/1	>2σ
log(R_{SN}/SNuM)⁺	log(M_\odot/SNuM)	−0.64 ± 0.09	5.8 ± 0.9	7.3/2	>4σ
log(R_{SN}/SNuM)⁺	log(M_\odot/SNuM)	−0.46 ± 0.10	4.1 ± 1.0	2.1/2	>4σ
log(R_{SN}/SNuM)⁺	log(sSFR/yr⁻¹)	0.8 ± 0.5	7 ± 5	0.5/1	>5σ
log(R_{SN}/SNuM)++	$12 + \log(O/H)$	−1.5 ± 1.0	13 ± 9	10⁻⁵/1	>2σ
log(R_{SN}/SNuM)⁺	log(M_\odot/SNuM)	−0.84 ± 0.05	8.2 ± 0.5	21/4	>4σ
log(R_{SN}/SNuM)⁺	log(M_\odot/SNuM)	−0.68 ± 0.05	6.6 ± 0.5	5.6/4	>4σ
log(R_{SN}/SNuM)⁺	log(sSFR/yr⁻¹)	0.9 ± 0.2	9 ± 2	2.7/2	>5σ
log(R_{SN}/SNuM)++	$12 + \log(O/H)$	−1.73 ± 0.45	16 ± 4	0.6/2	>5σ
log(R_{SN}/SNuM)⁺	$12 + \log(O/H)$	2.5	−12.6
log(R_{SN}/SNuM)⁺	$12 + \log(O/H)$	2.31 ± 0.13	−10.8 ± 1.2	48/24	...
log(R_{SN}/SNuM)⁺	$12 + \log(O/H)$	3.4 ± 0.1	−20.4 ± 1.2	16/10	...
log(R_{SN}/SNuM)⁺	$12 + \log(O/H)$	3.33 ± 0.08	−20.1 ± 0.7	321/45	...

Notes.

⁺ Using rates measured for all galaxy types.

⁺⁺ Using rates measured in E-Scd (Sah–Scd) galaxies for SNe Ia (SE SNe and SNe II).

¹³ Restricted to measurements in galaxies with log(sSFR/yr⁻¹) > −11.

¹⁴ Measured with MATLAB’s cftool fitting suite, which does not provide χ^2 values.
sets the mass loss of the pre-explosion star (e.g., Vink & de Koter 2005) and the opacity of the stellar envelope (and therefore, e.g., the lifetime and luminosity of the star on the main sequence). Given the uncertainty in the measurement for the solar oxygen abundance, as well as in the relationship between iron and oxygen abundances (for a review on SN metallicity studies and their caveats, see, e.g., Modjaz 2011; Anderson et al. 2015), the systematic uncertainties in comparing metallicities from stellar evolutionary models to observed abundances are estimated to be of the order of 0.1 dex.

The BPASS models based on single-star evolution consistently fail to produce enough SE SNe (see also, e.g., Smith et al. 2011), because the minimum initial mass for SE SN progenitors is quite constant at high metallicities (the minimum mass for SN II progenitors rises slightly with increasing metallicity, but the overall rate is mostly affected by the minimum mass set by the initial mass function (IMF)) and because they are limited by the amount of mass loss that stars with $M < 20 M_\odot$ require to strip their hydrogen layer before exploding.

Models that assume that a majority of SE SNe are produced in binaries are broadly consistent with the various number and rate ratios, whether they include SNe that produce black holes during CC or not. However, it is intriguing that all such models are offset from the rate ratio at $12 + \log(O/H) > 9$ by ~ 0.2 dex (though this may be consistent with the systematic uncertainties in comparing metallicities from stellar evolutionary models to observed abundances). The BPASS models do not extend beyond $12 + \log(O/H) = 9.3$, but their extrapolation to higher metallicities (shown as the area between the last measured value and the linear extrapolation of that value) is consistent with our measurements.

These conclusions are consistent with previous studies that have preferred binaries over single stars as SE SN progenitors, e.g., through studies of relative rates (e.g., Smith et al. 2011; Shivvers et al. 2017) or comparisons of the ejecta masses of observed SE SNe (e.g., Drout et al. 2011; Cano 2013; Lyman et al. 2016) and the estimated masses of Wolf–Rayet stars at the time of explosion (e.g., Meynet & Maeder 2003; Yoon 2015). We note that Groh et al. (2013b) used rapidly rotating single stars to reproduce observed SE SN rates, but had to invoke high mass-loss rates, which might not be physical (e.g., Smith 2014).

The most direct method to identify SN progenitors remains the detection of candidate progenitors in pre-explosion imaging. The majority of SE SN pre-explosion observations provide only nondetections and thus upper limits on the luminosity of the progenitors (e.g., Graur & Maoz 2012; Eldridge et al. 2013; Smartt 2015). The only case of a detected SE SN progenitor was for the SN Ib iPTF 13bvn by Cao et al. (2013), who identified the progenitor as a Wolf–Rayet star. Bersten et al. (2014), on the other hand, argued that the pre-explosion source and the ejecta mass derived from the SN light curve were consistent with an interacting binary as the progenitor. This was consistent with the prediction of Yoon et al. (2012) that a lower-mass helium star in a binary would be the first SE SN progenitor to be detected. Groh et al. (2013a) suggested a rapidly rotating star as an alternative explanation, but its final ejecta mass would have been higher than that inferred from the light curve. Eldridge & Maund (2016) and Folatelli et al. (2016) have reported the disappearance of the progenitor in late-time images and concluded that the progenitor was part of a binary system.

In summary, for single stars to reproduce the observational constraints described above, they typically require either rapid rotation or high mass-loss rates. These are inconsistent with the rotation and mass-loss rates of observed stellar populations. Binary models, and specifically the BPASS models used in this work, are able to match all of these observations (Eldridge et al. 2013; Eldridge & Maund 2016; Lyman et al. 2016), using a distribution of binaries that is similar to the observed distribution, and without requiring fine tuning (e.g., Sana et al. 2012).

6.3. Correlation versus Causation

Our results provide an ideal example of the old adage that “correlation does not imply causation.” Although we measure several strong correlations between SN rates (of various types) and different galaxy properties, we show throughout this paper that by using well-known galaxy scaling relations we can turn a correlation between the SN rates and one galaxy property into any of the other correlations measured here. This means that we cannot tell which galaxy property, or combination of properties, is the cause of these correlations.

There are theoretical reasons to expect that the rates of massive stars could be determined in part by metallicity (e.g., Langer 2012; Smith 2014; Yoon 2015) or SFR conditions (e.g., because galaxies with high sSFRs may have altered IMFs or because they may possess dense clusters with a high number of dynamical interactions; Habergham et al. 2010; Gunawardhana et al. 2011; Sana et al. 2012; Geha et al. 2013; Weidner et al. 2013; Pastorello et al. 2014), but it is not clear how the total mass of the galaxy would impact the death of one or two massive local stars. On their own, though, our data do not allow us to either prove or disprove these claims.

It is tempting to assume that SN II rates are only dependent on a galaxy’s SFR, or that the SE SN rates depend on metallicity. Previous works have made such claims (e.g., Boissier & Prantzos 2009). We made a similar error when, in G15, we claimed that our model for the SN Ia rates was self-consistent because it fit not only the rates versus stellar mass, but also the rates versus SFR and sSFR; because of the galaxy scaling relations, once a model is fit to one correlation it will automatically fit the others.

Thus, the mere existence of correlations between SN rates and galaxy properties cannot be used to constrain SN progenitor models. Instead, we suggest concentrating on emergent structures within the SN rate correlations. For example, the model we use to explain the SN Ia rate correlations predicts that the rates should plateau in galaxies with $M_* < 10^9 M_\odot$ and $M_* > 10^{11} M_\odot$. Likewise, any model for the progenitors of SE SNe, whether it depends on metallicity, binarity, or rotation (or some combination of these properties; e.g., de Mink et al. 2013, 2014), should explain why the efficiency of SE SN production, relative to SN II production, rises as a function of galaxy stellar mass, but levels out in galaxies more massive than $\sim 2 \times 10^{10} M_\odot$. Such a model should also produce a smooth dependence between the rates and the different galaxy properties examined here. For example, Ibeling & Heger (2013) predict a complicated relation between the metallicity of CC SN progenitors and the minimum mass at which they should explode. Within the metallicity range tested here, this relation is smooth and
broadly consistent with our measurements. However, if the SN II and SE SN rates remain smooth over a larger metallicity range, that would pose a challenge to this model.

Because the galaxy scaling relations connect between the different SN correlations shown here, we also suggest concentrating on measurements of the rates as a function of either galaxy stellar mass or luminosity, as these are the most straightforward properties to measure.

A possible way to ascertain which of the galaxy properties examined here is responsible for the deficiency of the SE SN rates in low-mass galaxies is to follow Perley et al. (2016) and Chen et al. (2016), who compared the stellar masses, sSFRs, and metallicities of the host galaxies of superluminous SNe with those of a complete local galaxy sample (from the Local Volume Legacy Survey, which includes 258 galaxies out to 11 Mpc; Kennicutt et al. 2008; Dale et al. 2009). Such a comparison allows one to test whether the SN host galaxies diverge from the rest of the galaxies in one of the galaxy parameters, or in two or more. Although the LOSS galaxy sample is not complete, we can still use it to test for divergences within the sample.

Figure 11 shows a subsample of 875 LOSS galaxies that have both Galspec metallicities and sSFR measurements derived from NSA photometry. Within this subsample, we find no significant divergence between the SN host galaxies and the majority of the galaxies in the subsample either in metallicity or in sSFR. We caution that this may simply reflect the size of the subsample used here (<10% of the full LOSS sample) or the lack of low-luminosity galaxies in LOSS. It would be a worthwhile endeavor to measure sSFRs and metallicities for all of the LOSS SN host galaxies, or at least for the SN-complete, volume-limited subsample (see Paper II), to mitigate the effect of the sample size. To facilitate similar tests to that in Perley et al. (2016), future SN surveys should also strive to target galaxy samples that are representative of the galaxy luminosity function.

Alternatively, one could try to remove the effect of the galaxy scaling relations on the rate correlations. With a sufficiently large SN sample, such as the one that will be created by the Large Synoptic Survey Telescope (LSST Science Collaboration et al. 2009), one could single out SN host galaxies within a narrow mass range and then look for correlations with other galaxy properties. A different path would be to correlate the SN rates with explosion-site properties (the galaxy scaling relations invoked throughout this work have only been established for global galaxy properties). Integral-field unit spectroscopy of the LOSS galaxy sample would turn it into a survey of distinct star-forming regions. One could then not only measure rates as a function of local properties, but also sample the DTDs of the different SN subtypes directly, as done by Maoz & Badenes (2010) and Maoz et al. (2011).

7. Summary and Conclusions

This is the first of a series of papers in which we reanalyze the LOSS SN rates. Here, we matched the LOSS galaxy sample with SDSS and then remeasured the LOSS SN rates as a function of various global properties of galaxies: stellar mass, star formation rates, and metallicity (in the form of nebular oxygen abundance). All of these measurements, including the control times necessary to compute them, are made public through the various tables in this work. We make the following observations.

1. The specific SN II rates are strongly correlated with all galaxy properties measured here. SE SN and SN Ia rates show strong correlations with stellar mass and sSFR, but not with nuclear metallicity.
2. The SN Ia rate–mass correlation is statistically significant in star-forming galaxies, but not in passive ones, as also noted by Sullivan et al. (2006).
3. The SN Ia rates are well fit by a model that combines a r^{-1} DTD with the galaxy mass–age scaling relation (Figures 2 and 3), as suggested by Kistler et al. (2013), Graur & Maoz (2013), and G15.
4. The ratio between SE SN and SN II rates rises with galaxy stellar mass until it flattens in galaxies with $M_* \gtrsim 10^{10} M_\odot$ (or $12 + \log(O/H) \gtrsim 9.2$) (Figures 5 and 10). This trend is statistically significant, at a $>3\sigma$ level.
5. The measurements of rate ratio rule out single stars as progenitors of SE SNe, but are consistent with models that assume binary-system progenitors, as suggested by earlier works (Figure 10).
6. Similar deficiencies in the SE SN rates relative to the SN II rates are seen when correlating the rates with other galaxy properties, though those trends are not statistically significant (Figures 8 and 9).
7. The SN II and SE SN correlations do not exhibit significant breaks, which means that their underlying dependence on any of the galaxy properties studied here (or a combination of these properties) must be smooth within the dynamical range probed in this work.
8. SE SN host galaxies follow the same distribution in sSFR versus metallicity space as SN II host galaxies and LOSS galaxies that did not host SNe during the survey.

Although the correlations shown here are broadly consistent with those shown in previous studies, the results of this work differ from previous studies by being based on absolute SN...
rates derived from a homogeneous, well-characterized SN sample. The LOSS sample, which is biased toward massive galaxies, has allowed us to sample a higher metallicity range than previous studies. Interestingly, in this range, the statistically significant correlation between the ratio of SE SN to SN II rates and galaxy stellar mass (or metallicity) levels off instead of continuing to increase monotonically.

We have shown that, owing to the known galaxy scaling relations, any correlation between the SN rates—of any SN type—and a specific galaxy property can be transformed into the measured correlations with the other galaxy properties studied here. This precludes us from ascertaining which of the galaxy properties (or some combination of them) is responsible for the correlations we observe or for the deficiency of SE SNe in low-mass galaxies. We have outlined several methods that might allow us to bypass this problem in future experiments.

Finally, we have also enriched the LOSS sample with additional galaxy properties and the publication of the SN control times, so that further studies can be undertaken with this sample.

We thank the anonymous referee for helpful suggestions and comments. We further thank Lair Arcavi, Ryan Chornock, Jenny Greene, Patrick Kelly, Dan Maoz, Asaf Pe’er, Michael Shara, Nathan Smith, and Todd Thompson for their comments on this work.

O.G. is supported in part by National Science Foundation (NSF) award AST-1413260 and by an NSF Astronomy and Astrophysics Fellowship under award AST-1602595. F.B.B. is supported in part by the NYU Astrophysics Fellowship under award AST-1602595. F.B.B. is supported in part by NSF CAREER award AST-1352405 and by NSF award AST-1413260. A.V.F. and the Lick Observatory Supernova Search (LOSS) have received generous financial assistance from the TABASGO Foundation, US Department of Energy (DoE) ScIDAC grant DE-FC02-06ER41453, DoE grant DE-FG02-08ER41653, and many NSF grants (most recently AST-1211916). KAIT and its ongoing operation were made possible by donations from Sun Microsystems, Inc., the Hewlett-Packard Company, AutoScope Corporation, Lick Observatory, the NSF, the University of California, the Sylvia & Jim Katzman Foundation, and the TABASGO Foundation. Research at Lick Observatory is partially supported by a generous gift from Google. We thank the Lick staff for their assistance at the observatory. J.J.E. acknowledges support from the University of Auckland. The BPASS models values were calculated thanks to the contribution of the NeSI high performance computing facilities and the staff at the Centre for eResearch at the University of Auckland.

This research has made use of NASA’s Astrophysics Data System and the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. We also acknowledge the usage of the HyperLeda database (http://leda.univ-lyon1.fr).

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by

the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

The NASA-Sloan Atlas was created by Michael Blanton, with extensive help and testing from Eyal Kazin, Guangtun Zhu, Adrian Price-Whelan, John Moustakas, Demitri Muna, Renbin Yan, and Benjamin Weaver. Renbin Yan provided the detailed spectroscopic measurements for each SDSS spectrum. David Schiminovich kindly provided the input GALEX images. We thank Nikhil Padmanabhan, David Hogg, Doug Finkbeiner, and David Schlegel for their work on SDSS image infrastructure. Funding for the NASA-Sloan Atlas has been provided by the NASA Astrophysics Data Analysis Program (08-ADP08-0072) and the NSF (AST-1211644).

Software: AstroML (Ivezic et al. 2014), MATLAB, MPA-JHU Galspec pipeline (Kauffmann et al. 2003; Brinchmann et al. 2004; Tremonti et al. 2004), WebPlotDigitizer.

Appendix A
Sample Construction Details

L11 measured the LOSS SN rates in a subsample of the LOSS galaxies, termed the “full-optimal” sample, which excluded (1) highly inclined galaxies, namely those galaxies with inclinations $i > 75^\circ$, where the inclinations were calculated according to the formula from Hubble (1926) and measurements of the apparent major and minor axes of the galaxies (see Equation (2) of Leaman et al. 2011); and (2) small (major axis $<1'$), early-type (E–S0) galaxies, because those were found to have lower SN detection efficiencies, at any SN magnitude, relative to the other galaxies in the sample, due to SNe being obscured by the bright nuclear regions of these galaxies. L11 further restricted the sample used for rate measurements to galaxies of Hubble types E–Scd for SNe Ia and Sab–Scd for CC SNe, because the other types of galaxies hosted very few (<5) or no SNe during the survey. We also use the full-optimal subsample, but do not apply this last criterion to the LOSS galaxy sample.

To estimate the masses of the LOSS galaxies, Leaman et al. (2011) used B- and K-band photometry acquired from the HyperLeda database and Equation (1) from Mannucci et al. (2005), reproduced here as

$$ \log \left(\frac{M_*/L_K}{M_*/L_\odot} \right) = 0.212(B - K) - 0.959, $$

where M_* is the stellar mass of the galaxy and L_K is its luminosity in the K band.

In Figure 12, we compare the stellar masses of 3855 galaxies that have nonzero LOSS and Galspec stellar masses, and find
that the LOSS masses are systematically larger than the Galspec masses by 0.1 dex. For consistency between the LOSS and SDSS “sSFR” and “metallicity” samples, throughout this work we scale down the LOSS stellar masses by a factor of 1.2. This difference may be attributed to the different IMFs used by each method: a “diet” Salpeter (1955) IMF for the LOSS masses (Mannucci et al. 2005), as opposed to a Kroupa (2001) IMF for the Galspec masses (Salim et al. 2007). It is important to note that, overall, the Galspec masses are consistent with the LOSS masses. This empirical test shows that the Galspec masses do not suffer the same bias as the SFRs, as described in Section 5.2.

Of the 10,121 galaxies in the LOSS sample, there are 866 galaxies (8.6%) without known masses owing to a lack of either B- or K-band photometry. L11 chose not to use these galaxies when measuring their SN rates. Here, we correlate between the existing stellar masses and luminosities in order to interpolate the missing stellar masses. We divide the galaxies into bins of width 0.2 dex in either \(L_B \) or \(L_K \). For a specific galaxy with unknown mass, we assign the median of the masses within its luminosity bin as its mass value, and take the 16th and 84th percentiles of the mass distribution within the bin as the mass values’ uncertainty. In Paper II, we show an example of this procedure for a subsample of the LOSS galaxies. Of the 866 galaxies with missing masses, four are outliers with low luminosities, which result in near-zero masses. These galaxies, which do not host any SNe, are excluded from the final sample.

In this work, we use two SDSS value-added catalogs—the MPA-JHU Galspec galaxy properties and the NASA-Sloan Atlas (NSA) photometry—to measure specific SN rates as a function of sSFR and metallicity. We refer the reader to Kauffmann et al. (2003), Brinchmann et al. (2004), and Tremonti et al. (2004) for a thorough description of the Galspec pipeline. We initially used the Galspec measurements to construct the “sSFR” sample and “metallicity” samples. We first cross-matched the coordinates of the LOSS galaxies, as given in Table 2 of Leaman et al. (2011), with the SDSS coordinates of all the galaxies analyzed with Galspec, requiring that any two sets of coordinates be no more than 3\(^\circ\) (the diameter of the SDSS fiber aperture) apart. Of the 14,882 LOSS galaxies, 4196 (~28%) were matched with SDSS galaxy spectra. For the SDSS sSFR sample, we select only those that have nonzero stellar mass, sFR, and sSFR values (4040 galaxies), and are part of the LOSS full-optimal sample. For the SDSS metallicity sample, we also require nonzero metallicity values. As these values were only measured for those SDSS galaxies classified as “star-forming” (Tremonti et al. 2004), this subsample (1000 galaxies) represents a subset of the galaxies in the SDSS sample.

The host galaxies of CC SNe tend to be star-forming. However, the SDSS pipeline photometry suffers from shredding if multiple star-forming sites are resolved in the disks. Usually, the LOSS host galaxy is cross-matched to the central source, so that only the redder light from the galaxy bulge is picked up. The galaxy properties, especially the sSFRs, derived from such standard SDSS photometry, may not represent those of the entire galaxy or at the SN site with active star formation. To better characterize the global properties of the SDSS galaxies, we make use of NSA photometry, which improves on the original SDSS photometric analysis using the detection and deblending technique described by Blanton et al. (2011).

To derive global stellar masses and sSFRs, we apply spectral energy distribution (SED) fitting to the NSA photometry in the five SDSS bands, adopting the methodology of Salim et al. (2007). The full details of the SED fitting technique used here can be found in Huang et al. (2012a, 2012b). A library of model SEDs are generated, using the stellar population synthesis code of Bruzual & Charlot (2003), with an extensive range of internal extinction, metallicity, and star formation history considered. The final physical properties, including stellar mass and sSFRs, are computed as the median of all model values, where each model is weighted according to its fit likelihood.

The SDSS standard pipeline magnitudes are expected to miss the blue light from star-forming regions in disk regions. As shown in the right panel of Figure 12, we have confirmed that the NSA Sérsic fluxes yield overall bluer colors and thus higher sSFRs from SED fitting, relative to those from the SDSS pipeline magnitudes. However, as shown in the central panels of Figure 12, the stellar mass estimates, based on NSA Petrosian fluxes, are less affected by shredding, because the red central bulge dominates the mass. We use the same library of model SEDs as the MPA-JHU Galspec pipeline. As a result, our stellar mass estimates are consistent with the Galspec values for the sources with good SDSS pipeline photometry. Thus, for the sSFR sample, we adopt the stellar masses and sSFR values computed here from the NSA photometry. For the metallicity sample, however, we use the Galspec stellar mass...
estimates. Our estimates of the stellar masses and sSFRs, based on NSA photometry, are included in Table 2.

Appendix B

Consistency among Galaxy Samples

In this work, we measure specific SN rates using the LOSS “full-optimal” sample and two subsamples of this sample, labeled “sSFR” and “metallicity,” which are described in Section 2. As one chooses progressively smaller subsamples of a given sample, there arises the possibility that any resulting measurements from those subsamples would be biased, relative to measurements performed with the main sample. To test for any such biases, and whether the sliding-bin rates are a good representation of the rates, Figure 13 shows the rates for each SN type as measured from the different subsamples and with various binning schemes. “SN-fixed” bins are chosen so that they contain roughly the same number of SNe in each bin while “mass-fixed” bins contain roughly the same amount of stellar mass, on a log scale. Finally, we also show the rates in fixed bins of varying width, as calculated with the AstroML15 (Ivezić et al. 2014) realization of the Bayesian Blocks algorithm of Scargle et al. (2013).

The various binning schemes produce measurements that generally agree with each other, except at the lower end of the mass range, where the small number of galaxies and SNe can cause relatively large fluctuations in the rates. It is also clear that the rates as measured with a sliding bin are a good representation of the data. Moreover, the rates measured with the sSFR subsample are consistent with those measured with the main LOSS sample. The rates measured from the metallicity subsample, however, are markedly higher in the largest-mass bin for both SNe II and SE SNe; no such bias is noticeable for the SN Ia rates. We ascribe this bias to the small size of the metallicity subsample (∼10% of the main LOSS sample). This bias means that a larger sample is required to test the validity of the correlations between the SN rates and metallicity shown in Figure 9. The connection between these correlations and the galaxy scaling relations between metallicity and stellar mass, however, should not be

Figure 13. Specific SN rates as a function of galaxy stellar mass for SNe Ia (upper left), SE SNe (upper right), and SNe II (lower center). Symbols show the rates as measured with the LOSS, sSFR, and metallicity samples, in bins with either roughly equal numbers of SNe (“SN-fixed”) or equal galaxy mass (“mass-fixed,” in log space). The black symbols denote rates as measured in bins calculated with the Bayesian Blocks algorithm. The curves show rates measured with a sliding bin; the 68% Poisson uncertainties of these measurements are shown as the gray regions. Light-gray patches show where the sliding-bin rates are based on ≤3 SNe per bin, leading to large Poisson uncertainties. The various measurements, from different samples and with different bins, are generally consistent. Note that the rates of the metallicity samples are constrained to a narrower range of galaxy stellar masses and are slightly enhanced in more massive galaxies.
affected by this bias, because in this work we measure the latter scaling relation directly from the galaxies and SN hosts in the metallicity subsample.

Appendix C
Calculation of Likelihood Ratio

The likelihood-ratio test is used to compare the goodness of fit of nested models, such as polynomials of increasing order. In this work, we use the likelihood-ratio test to compare between zeroth-, first-, and second-order polynomials as fits to various data sets. The likelihood ratio (R_L) is simply the ratio of the likelihoods (L) of the data (λ) given the best-fitting parameters of each type of fit, θ_0 for the null hypothesis (the lower-order polynomial) and θ_1 for the model being tested:

$$R_L = \frac{L(\theta_0|\lambda)}{L(\theta_1|\lambda)}.$$

The likelihood ratio is distributed as a χ^2 distribution, with the number of degrees of freedom equal to the difference in the degrees of freedom of the models tested (one or two in our case). $\chi^2 = -2 \ln(R_L)$, so that through the likelihood ratio we can obtain a p-value for the significance of the rejection of the null hypothesis. These p-values can then be translated into Gaussian standard deviations, so that here we report the significance of the tests in multiples of σ, with 3σ as the minimal significance for a “discovery.”

When fitting the SN rates, the likelihood function is simply that of the Poisson probability density function (PDF), as the uncertainties of the rates are dominated by the sizes of the SN samples. The likelihood function is then

$$L = \prod_{i=1}^{N} P(n_i|\lambda_i),$$

where N is the number of bins in which the rates are measured, λ is the observed number of SNe, and n is the number of SNe resulting from the best fit to the rates.

The likelihood function of the measurements of rate ratio shown in Figure 5 is more complicated. Formally, it should be the ratio (w) of the Poisson PDFs of the SE SNe, $P(x) = (\lambda_x/x!\exp^{-\lambda_x})$, and SE II, $P(y)$, in each bin. However, as Griffin (1992) notes, if $P(y) = 0$, the denominator vanishes, and R_L is undefined. Griffin (1992) uses a truncated version of $P(y)$, so that $p[P(y) \leq 1] = 1$, to solve this problem, but the resultant PDF of w is hard to compute. However, for sufficiently large values of λ_x and λ_y, the Poisson PDFs will approach the Gaussian PDFs $G(x)$ and $G(y)$, with means $\mu_x = \lambda_x$ and $\mu_y = \lambda_y$, and standard deviations $\sigma_x = \sqrt{\lambda_x}$ and $\sigma_y = \sqrt{\lambda_y}$. Hinkley (1969) calculated the ratio of Normal PDFs. For Gaussian functions, Hayya et al. (1975) have shown that, given that x and y are uncorrelated, and that the coefficients of variation satisfy $CV(x) > 0.005$ and $CV(y) < 0.39$, the ratio w can be transformed via the Geary–Hinkley transformation into

$$t = \frac{\mu_y w - \mu_x}{\sqrt{\sigma^2 y w^2 - 2\rho \sigma_x \sigma_y w + \sigma^2_x}},$$

and the PDF of t will then be a Normal distribution with $\mu = 0$ and $\sigma = 1$. For $G(x)$ and $G(y)$, the conditions on the coefficients are satisfied for $\lambda_x \geq 39,200$ and $\lambda_y > 7$.

The latter conditions are satisfied for all binning methods of the rate ratio. However, owing to the small SN samples, the basic condition for the approximations described above—that the numbers of SNe are large enough that their Poisson PDFs approach Gaussian ones—is clearly not satisfied. To alleviate this problem, when fitting the polynomials to the measurements, we take the upper uncertainty (which, for a Poisson distribution, is always larger than the lower uncertainty) of each measurement as the overall uncertainty.

References

Alihara, H., Allende Prieto, C., An, D., et al. 2011, ApJS, 193, 29
Anderson, J. P., James, P. A., Habergham, S. M., Galbany, L., & Kuncarayakti, H. 2015, PASA, 32, e019
Andrews, B. H., & Martini, P. 2013, ApJ, 765, 140
Arcavi, I. 2012, in IAU Symp. 279, Death of Massive Stars: Supernovae and Gamma-Ray Bursts, ed. P. Roming, N. Kawai, & E. Pian (Cambridge: Cambridge Univ. Press), 34
Arcavi, I., Gal-Yam, A., Kasliwal, M. M., et al. 2010, ApJ, 721, 777
Barbon, R., Buonf., V., Cappellaro, E., & Turatto, M. 1999, A&AS, 139, 531
Bedin, L. R., Ruiz-Lapuente, P., González Hernández, J. I., et al. 2014, MNRAS, 439, 354
Benaloh, M. C., Benvenuto, O. G., Folatelli, G., et al. 2014, AJ, 148, 68
Blanton, M. R., Kazin, E., Muna, D., Weaver, B. A., & Price-Whelan, A. N. 2011, AJ, 142, 31
Boissier, S., & Prantzos, N. 2009, A&A, 503, 137
Botticella, M. T., Smartt, S. J., Kennicutt, R. C., et al. 2012, A&A, 537, A132
Bresolin, F., Ryan-Weber, E., Kennicutt, R. C., & Goddard, Q. 2009, ApJ, 695, 580
Brüchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151
Brualz summarized, G., & Charlot, S. 2003, MNRAS, 344, 1000
Canou, Z. 2013, MNRAS, 434, 1098
Cao, Y., Kasliwal, M. M., Arcavi, I., et al. 2013, ApJL, 775, L7
Cappellaro, E., Evans, R., & Turatto, M. 1999, A&A, 351, 459
Cappellaro, E., & Turatto, M. 1998, A&A, 190, 10
Chen, T.-W., Smartt, S. J., Yates, R. M., et al. 2016, MNRAS, submitted (arXiv:1605.04925)
Chomiuk, L., Soderberg, A. M., Chevalier, R. A., et al. 2016, ApJ, 821, 119
Dale, D. A., Cohen, S. A., Johnson, L. C., et al. 2009, ApJ, 703, 517
De Donder, E., & Vanbeveren, D. 1998, A&A, 333, 557
Della Valle, M., & Livio, M. 1994, ApJ, 423, 311
Della Valle, M., Panagia, N., Padovani, P., et al. 2005, ApJL, 423, L31
de Mink, S. E., Langer, N., Izzard, R. G., Sana, H., & de Koter, A. 2013, ApJ, 764, 166
de Mink, S. E., Sana, H., Langer, N., Izzard, R. G., & Schneider, F. R. N. 2014, ApJ, 782, 7
Diaz, A. I. 1989, in Evolutionary Phenomena in Galaxies, ed. J. E. Beckman & B. E. J. Pagel (Cambridge: Cambridge Univ. Press), 377
Dong, S., Katz, B., Kasnir, D., & Prieto, L. J. 2015, MNRAS, 454, L61
Drout, M. R., Soderberg, A. M., Gal-Yam, A., et al. 2011, ApJ, 741, 97
Eldridge, J. J., Fraser, M., Maund, J. R., & Smartt, S. J. 2014, MNRAS, 439, 695
Eldridge, J. J., & Stanway, E. R. 2016, MNRAS, 462, 3302
Evans, R., van den Bergh, S., & McClure, R. D. 1989, ApJ, 345, 752
Filippenko, A. V. 1998, AJ, 96, 1941
Filippenko, A. V. 1997, ARA&A, 35, 309
Filippenko, A. V. 2003, in From Twilight to Highlight: The Physics of Supernovae, ed. W. Hillebrandt & B. Leibundgut (Berlin: Springer), 171
Filippenko, A. V. 2005, in ASP Conf. Ser. 332, The Fate of the Most Massive Stars, ed. R. Humphreys & K. Stanek (San Francisco, CA: ASP), 33
Filippenko, A. V., Li, W. D., Treffers, R. R., & Modjaz, M. 2001, in ASP Conf. Ser. 246, IAU Coll. 183, Small Telescope Astronomy on Global Scales, ed. B. Paczynski, W.-P. Chen, & C. Lemme (San Francisco, CA: ASP), 121
Filippenko, A. V., Matheson, T., & Ho, L. C. 1993, ApJL, 415, L103
Folatelli, G., Van Dyk, S. D., Kuncarayakti, H., et al. 2016, ApJL, 825, L22
Foley, R. J., Challis, P. J., Chornock, R., et al. 2013, ApJ, 767, 57
Fremling, C., Solierman, J., Taddia, F., et al. 2014, A&A, 565, A114
Galbany, L., Stanishev, V., Mouriou, A. M., et al. 2016, A&A, 591, A48

Graur et al.
Huang, S., Haynes, M. P., Giovanelli, R., & Brinchmann, J. 2012b, ApJ, 771, 29
Gehke, J. R., Kochanek, C. S., & Stanek, K. Z. 2015, MNRAS, 450, 3289
Graur, O., Bianco, F. B., Huang, S., et al. 2016a, arXiv:1609.02923
Graur, O., Bianco, F. B., & Modjaz, M. 2015, MNRAS, 450, 905 (G15)
Graur, O., & Maoz, D. 2012, ATEI, 4199, 1
Graur, O., & Maoz, D. 2013, MNRAS, 430, 1746
Graur, O., Maoz, D., & Shara, M. M. 2014a, MNRAS, 442, L28
Graur, O., Poznanski, D., Maoz, D., et al. 2011, MNRAS, 417, 916
Graur, O., Rodney, S. A., Maoz, D., et al. 2014b, ApJ, 783, 28
Grafton, N. J., Krabbe, C. E., & Rabin, M. A. 2009, ApJ, 706, 113
Grif
Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M., & Tremonti, C. A. 2005, MNRAS, 362, 41
Garnett, D. R., Shields, G. A., Skillman, E. D., Sagan, S. P., & Dufour, R. J. 1997, ApJ, 489, 63
Geha, M., Brown, T. M., Tumlinson, J., et al. 2013, ApJ, 771, 29
Gerke, J. R., Kochanek, C. S., & Stanek, K. Z. 2015, MNRAS, 450, 3289
Graur, O., Bianco, F. B., Huang, S., et al. 2016a, arXiv:1609.02923
Graur, O., Bianco, F. B., & Modjaz, M. 2015, MNRAS, 450, 905 (G15)
Graur, O., & Maoz, D. 2012, ATEI, 4199, 1
Graur, O., & Maoz, D. 2013, MNRAS, 430, 1746
Graur, O., Maoz, D., & Shara, M. M. 2014a, MNRAS, 442, L28
Graur, O., Poznanski, D., Maoz, D., et al. 2011, MNRAS, 417, 916
Graur, O., Rodney, S. A., Maoz, D., et al. 2014b, ApJ, 783, 28
Grafton, N. J., Krabbe, C. E., & Rabin, M. A. 2009, ApJ, 706, 113
Grif