Statistical properties of physical-like measures

Shaobo Gan¹, Fan Yang²,∗∗, Jiagang Yang³ and Rusong Zheng⁴

¹ School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
² Department of Mathematics, Michigan State University, East Lansing, MI, United States of America
³ Departamento de Geometria, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, Brazil
⁴ Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China

E-mail: gansb@pku.edu.cn, yangfa31@msu.edu, yangjg@impa.br and zhengrs@sustech.edu.cn

Received 29 September 2020, revised 3 December 2020
Accepted for publication 31 December 2020
Published 8 February 2021

Abstract
In this paper we consider the semi-continuity of the physical-like measures for diffeomorphisms with dominated splittings. We prove that any weak-* limit of physical-like measures along a sequence of C^1 diffeomorphisms $\{f_n\}$ must be a Gibbs F-state for the limiting map f. As a consequence, we establish the statistical stability for the C^1 perturbation of the time-one map of three-dimensional Lorenz attractors, and the continuity of the physical measure for the diffeomorphisms constructed by Bonatti and Viana.

Keywords: physical-like measures, Gibbs F-states, dominated splitting, statistical stability
Mathematics Subject Classification numbers: 37C40, 37D30.
1. Introduction

Let $f : M \to M$ be a diffeomorphism on a compact Riemannian manifold M. An f-invariant probability measure μ is a physical measure if the set of points $x \in M$ for which the empirical measures $\delta_{f^n}^{\mu}$ satisfy

$$\delta_{f^n}^{\mu} := \frac{1}{n} \sum_{i=0}^{n-1} \delta_{f^{i+1}} \to \mu \text{ (in the weak-* sense)} \quad (1)$$

has positive volume. This set is called the basin of μ and is denoted by $B(\mu)$. Following the pioneer work of Catsigeras and Enrich [13], we say that an invariant probability μ is physical-like if: for any small neighborhood U of μ inside the space of probabilities $P(M)$ (not necessarily invariant under f) with respect to the weak-* topology, the set

$$\{ x \in M : \text{there are infinitely many } n, k \in \mathbb{N} \text{ such that } \delta_{k}^{f^{n}} \in U \}$$

has positive volume. The set of physical-like measures of f is denoted by $\text{PhL}(f)$. Even though f may not have any physical measure, $\text{PhL}(f)$ is always nonempty, and any physical measure is physical-like (see [13]).

In this paper, we investigate the properties of physical-like measures under the setting of diffeomorphisms with dominated splitting. More precisely, we assume that there exists a splitting $TM = E \oplus F$ of the tangent bundle that is invariant under the tangent map Df, and satisfies

$$\| (Df|_{F(x)})^{-1} \| \| Df|_{E(x)} \| < 1 \text{ at every } x \in M. \quad (2)$$

In other words, the bundle F dominates the bundle E.

A program for investigating the physical measures of partially hyperbolic diffeomorphisms or diffeomorphisms with dominated splitting was initiated by Alves et al in [1, 9]. Since then, there have been great progress in many directions, including the existence, finiteness and statistical stability of physical measures for diffeomorphisms with mostly contracting center [19, 20] and with mostly expanding centers [2–4, 36, 40], and the relation between physical measures and the partial entropy along the unstable foliations [18, 23, 39], to name but a few.

All these works rely on the Pesin theory, in particular, the absolute continuity of the Pesin stable lamination. As a result, f has been assumed to be at least $C^{1+\alpha}$.

Below we will introduce a different method to describe the physical and physical-like measures, which focuses more on the Ruelle’s inequality and Pesin’s entropy formula, and works even for C^1 systems.

Definition 1. We say that a probability measure μ is a Gibbs F-state of f if

$$h_{\mu}(f) \geq \int \log | \det(Df|_{F(x)})| \, d\mu(x), \quad (3)$$

where $h_{\mu}(f)$ is the measure-theoretic entropy of μ. We denote the space of Gibbs F-states by $\text{Gibbs}^F(f)$.

When all the Lyapunov exponents of μ along the F bundle at almost every point are positive, and when the other exponents are non-positive, then combined with Ruelles’s inequality [33], it is easy to see that the previous inequality is indeed an equality, which is known as Pesin’s entropy formula.
The relation between physical-like measures and Gibbs F-states is established by Catsigeras, Cerminara, and Enrichin [14]:

Proposition 1.1. Let f be a C^1 diffeomorphism on a compact manifold M which admits a dominated splitting $TM = E \oplus F$. Then there exists a full volume subset $\Gamma \subset M$ such that, for any $x \in \Gamma$, any limit point μ of the sequence $\{\delta_{f^n}\}$ belongs to $\text{Gibbs}^F(f)$. Moreover, we have $\text{PhL}(f) \subset \text{Gibbs}^F(f)$.

In particular, their result shows that $\text{Gibbs}^F(f)$ is always non-empty; furthermore, if f admits a unique Gibbs F-state μ, then μ is a physical measure whose basin has full volume.

The relation between physical-like measures and the inequality (3) was first discovered by Keller [24, theorem 6.1.8] for one-dimensional C^1 map with Markov partition. Campbell and Quas used Keller’s result in [15] to show that every C^1 generic circle expanding map admits a unique physical measure, whose basin has full volume. The key point of Campbell and Quas’ proof is to show that generic expanding map admits a unique Gibbs F-state. Later, Qiu ([32]) built the same result for uniformly hyperbolic attractors, and proved that C^1 generic hyperbolic attractor admits a unique physical measure.

Despite that all the works mentioned above are under C^1 generic context, we would like to point out that proposition 1.1 works beyond C^1 generic setting. It can be applied to a given diffeomorphism with higher regularity ($C^{1+\alpha}$) where it is used in combination with Pesin’s theory. Examples of such applications include partially hyperbolic diffeomorphisms with mostly contracting center or with mostly expanding center, see for instance [22, 23, 39, 40].

The table below summarizes the various properties of $\text{PhL}(f)$ and $\text{Gibbs}^F(f)$. For the precise statements and proofs, see proposition 2.1 in the next section.

	$\text{PhL}(f)$	$\text{Gibbs}^F(f)$
Existence	True	True
Convexity	False	True
Compactness	True	If $h(f)$ is upper semi-continuous
Semi-continuity	Theorem A below	If $h_\mu(\cdot)$ is upper semi-continuous

Here note that the compactness and semi-continuity of $\text{Gibbs}^F(f)$ largely depend on the continuity of the metric entropy as a function of the invariant measure and of the diffeomorphism. Examples of such continuity include C^∞ maps (by Buzzi [10] and Yomdin [41]), diffeomorphisms away from tangencies (by Liao et al [26]), time-one map of Lorenz-like flows (by Pacifico et al [30]) and many more. However, there are also many counterexamples where the metric entropy function fails to be upper semi-continuous (see [11, 28, 29]).

In this paper, we are going to reveal further connections between the two spaces of measures, under the context of C^1 perturbation theory. More precisely, we prove:

Theorem A. Suppose that f is a C^1 diffeomorphism which admits a dominated splitting $E \oplus F$, and $\{f_n\}$ is a sequence of diffeomorphisms converging to f in the C^1 topology. Then any weak-* limit of any sequence of physical-like measures μ_n of f_n is a Gibbs F-state of f.

As a result, if a diffeomorphism f admits a dominated splitting and has a unique Gibbs F-state μ, then for any C^1 nearby diffeomorphism g, and for any point x in a full volume
subset, any weak-* limit of the empirical measures \(\{ \delta_{g^n(x)} \} \) must be close to \(\mu \). In particular, any physical measure of \(g \) (when exists) must be close to \(\mu \). This means that the existence of a unique Gibbs \(F \)-state is an intrinsic statistically stable property. It is worth noting that we do not require any extra hypothesis such as \(h \)-expansiveness.

As an application of theorem A, we will show in section 4 that the time-one map of three-dimensional singular hyperbolic attractors and the example of Bonatti and Viana on \(T^4 \) are statistically stable. More precisely, we will show that for the diffeomorphism of Bonatti and Viana, the unique physical measure varies continuously in \(C^1 \) and weak-* topology. We would like to remark that this result could also be obtained from the general criterion of [34, theorem E] combined with the careful study of the entropy structure for the Bonatti–Viana maps in [17], which already shows that the unique physical measure is “almost expansive” (for the precise definition, see [17, definition 2.3]). However, the method in this paper does not rely on this fact.

Remark 1.2. Even though we assume that the dominated splitting is defined on the entire manifold \(M \), it is straightforward to check that the theorem A remains true when the dominated splitting is defined on a compact invariant set \(\Lambda \). In this case the dominated splitting on \(\Lambda \), together with the invariant cones, can be extended to a small neighborhood of \(\Lambda \), see [8, appendix B] for more detail. Then theorem A can be applied to a sequence of physical-like measures supported in this neighborhood. This allows one to obtain the statistical stability for a large family of diffeomorphisms that support finitely many Gibbs \(F \)-states whose supports are mutually disjoint.

2. Properties of physical-like measures and Gibbs \(F \)-states

In this section we collect some properties of \(\text{PhL}(f) \) and \(\text{Gibbs}^F(f) \).

Proposition 2.1. Let \(f \) be a \(C^1 \) diffeomorphism with dominated splitting \(E \oplus F \), then

(a) \(\text{PhL}(f) \subset \text{Gibbs}^F(f) \).
(b) \(\text{PhL}(f) \) is non-empty and compact.
(c) \(\text{Gibbs}^F(f) \) is non-empty and convex.
(d) \(\text{Gibbs}^F(f) \) is compact if \(h_\mu(f) \) is upper semi-continuous w.r.t. \(\mu \).
(e) \(\text{Gibbs}^F(f) \) varies upper semi-continuously w.r.t. \(f \) if \(h_\mu(f) \) varies upper semi-continuously w.r.t. both \(f \) and \(\mu \). To be more precise, if \(f_n \to f \) (in, say, \(C^1 \) topology) and \(\mu_n \in \text{Gibbs}^F(f_n) \) with \(\mu_n \to \mu \) and satisfy

\[
\limsup_n h_{\mu_n}(f_n) \leq h_\mu(f),
\]

then \(\mu \in \text{Gibbs}^F(f) \).

Proof. (a) Follows from proposition 1.1.

For (b), the non-emptiness and compactness follows immediately from the definition of \(\text{PhL}(f) \) and the fact that \(\mathcal{P}(M) \) is compact. See also [13] for more detail.

(c) \(\text{Gibbs}^F(f) \) is non-empty because of (a) and (b). It is convex since \(h_\mu(f) \) is affine in \(\mu \). To prove (d), take \(\mu_n \in \text{Gibbs}^F(f) \) and assume that \(\mu_n \to \mu \) in weak-* topology. If \(h_\mu(f) \), as a function of \(\mu \), is upper semi-continuous, we obtain

\[
h_\mu(f) \geq \limsup_n h_{\mu_n}(f) \geq \limsup_n \int \log |\det(Df|_{F(x)})|d\mu_n(x) = \int \log |\det(Df|_{F(x)})|d\mu(x).
\]
So $\mu \in \text{Gibbs}^f(f)$.

For (e) the proof is similar to (d) and omitted. Note that dominated splitting is persistent under C^1 topology: if $f_n \to f$ then f_n has dominated splitting $E_n \oplus F_n$ such that $E_n \to E$ and $F_n \to F$ in the Grassmannian.

It is also worthwhile to note that $\text{PhL}(f)$ may not be convex, and there exist examples for which $\text{PhL}(f) \subsetneq \text{Gibbs}^F(f)$. To see such an example, consider a uniformly hyperbolic diffeomorphism f with two disjoint transitive attractors Λ_1 and Λ_2, each of which supports an ergodic physical measure μ_i, $i = 1, 2$. Then $\text{PhL}(f) = \{\mu_1, \mu_2\}$ is not convex. Meanwhile, $\text{Gibbs}^F(f) = \{a\mu_1 + (1-a)\mu_2 : a \in [0, 1]\}$, so $\text{PhL}(f) \subsetneq \text{Gibbs}^F(f)$. See also [13] and the discussion following [14, corollary 2].

Finally we would like to point out that neither $\text{PhL}(f)$ nor $\text{Gibbs}^F(f)$ behave well under ergodic decomposition. There are examples (see [13]) such that $\text{PhL}(f)$ consists of a single measure which is not ergodic. Meanwhile it is easy to construct examples such that typical ergodic components of a measure $\mu \in \text{Gibbs}^F(f)$ are no longer in $\text{Gibbs}^F(f)$.

3. Proof of the main theorem

In this section we prove theorem A. From now on, $\{f_n\}$ is a sequence of C^1 diffeomorphisms with $f_n \to f$. For convenience we will write $f_0 = f$. Denote by $E_n \oplus F_n$ the dominated splitting for f_n. We will take $\mu_n \in \text{PhL}(f_n)$ with $\mu_n \rightharpoonup^\star \mu$. Then μ is an invariant probability of f.

Let us briefly explain the structure of the proof. Proving by contradiction, we will assume that the limiting measure μ is not a $\text{Gibbs} F$-state. As a result, the metric pressure of μ:

$$P_\mu(f) := h_\mu(f) - \int \log |\det(Df|_{F(x)})|d\mu(x)$$

must be negative. Then, for a proper finite partition \mathcal{A} the metric pressure of f_n with respect to the nth join of \mathcal{A} (and note that such join depends on the map f_n) is negative, uniformly in n: there exists $b > 0$, $N > 0$ such that for all n large enough:

$$\frac{1}{N} H_{\mu_n} \left(\bigvee_{i=0}^{N-1} f_n^{-i}(\mathcal{A}) \right) - \int \log |\det(Df_n|_{F_n(x,i)})|d\mu_n < -b < 0.$$

This step is carried out in sections 3.1 and 3.2.

From here the proof largely follows the idea of the variational principle [37]. We will consider the following good set:

$$G_m^n = \{x : \delta_{f^{n-m}} \in U_n\},$$

where U_n is a small neighborhood of μ_n in the space of probability measures. Using the pressure estimate above, we will show in section 3.3 that the volume of G_m^n, when restricted to any disk tangent to local F_n-cone with dimension equal to $\dim F$, is of order e^{-bm}; furthermore, this estimate can be made uniform in n. Then it follows that for Lebesgue almost every point, the empirical measures $\delta_{f^{n-m}}$ can only be in U_n for finitely many m’s, contradicting with the choice of $\mu_n \in \text{PhL}(f_n)$.

1018
To this end, we will assume from now on that $\mu \notin \text{Gibbs}^F(f)$. To simplify notation we write

$$\phi_f^\mu(x) = -\log |\det(Df|_{F(x)})|,$$

then there exists $a > 0$ such that

$$h_\mu(f) + \int \phi_f^\mu(x) d\mu(x) \leq -a < 0. \quad (4)$$

Also note that the definition of the function $\phi_f^\mu(x)$ can be extended to any subspace $\bar{F}(x) \subset T_xM$.

3.1. A C^1 neighborhood of f

We denote by d^G the distance in the Grassmannian manifold. By the continuity of ϕ_f^μ and the compactness of the Grassmannian, we can choose a C^1 neighborhood U of f and $\delta_0 > 0$ small enough, with the following property:

For any $g \in U$, $x, y \in M$ with $d(x, y) < \delta_0$, and any subspaces $\bar{F}(x) \subset T_xM, \bar{F}(y) \subset T_yM$ with $\dim \bar{F}(x) = \dim \bar{F}(y) = \dim F_0$ and $d^G(F_g(x), \bar{F}(x)) < \delta_0, \quad d^G(F_g(y), \bar{F}(y)) < \delta_0,$

where $E_g \oplus F_g$ is the dominated splitting of g which is the continuation of $E \oplus F$, one has

$$|\phi_{\bar{F}}^\mu_g(x) - \phi_{\bar{F}}^\mu_g(y)| < \frac{a}{1000}. \quad (5)$$

We further assume that δ_0 is small enough, such that for every point $x \in M$ the exponential map $\exp_x : T_xM \rightarrow M$ sends the δ_0-ball $B_{\delta_0}(0_x) \subset T_xM$ diffeomorphically onto its image.

For any $\delta > 0$, we denote by $C_\delta(f_g(x)) \subset T_xM$ the δ-cone around $F_g(x)$:

$$C_\delta(F_g(x)) = \{ v \in T_xM : |v_{E_g}| \leq \delta |v_{F_g}| \text{ for } v = v_{E_g} + v_{F_g} \in E_g \oplus F_g \}.$$

By the dominated assumption, the cone field $C_\delta(f_g)$ is invariant under the iteration of Dg, i.e., there is $0 < \lambda < 1$ independent of δ such that

$$Dg(C_\delta(F_g(x))) \subset C_{\lambda \delta}(F_g(g(x))).$$

For δ_0 satisfying (5) above, we will refer to

$$C_{\delta_0}(F_g(x)) = \exp_x \left(C_{\delta_0}(F_g(x)) \cap B_{\delta_0}(0_x) \right)$$

as the local F_g cone on the underlying manifold M. Note that the local F_g cones are invariant in the following sense: there exists $\delta_1 \in (0, \delta_0)$ small enough such that for all $x \in M$ one has

$$g \left(C_{\delta_0}(F_g(x)) \cap B_{\delta_1} \left(\frac{x}{\|x\|_1} \right) \right) \subset C_{\delta_0}(F_g(g(x))) \cap B_{\delta_1}(g(x)).$$

From now on, δ_0 and δ_1 will be fixed.

Definition 2. Given $g \in U$, an embedded submanifold $K \subset M$ is said to be **tangent to local F_g cone**, if for any $x \in K$ one has
\[K \subset C_{\delta_0}(F_g(x)) \cap B_{\delta_1}(x). \]

The following simple lemma is taken from [30, lemma 2.3].

Lemma 3.1. There is a constant \(L > 0 \) such that for any \(g \in \mathcal{U} \) and for every \(x \in M \) and any disk \(D \) tangent to local \(F_g \) cone, we have \(\text{vol}(D) < L \).

Writing

\[B_{\delta_n}(x, g) := \{ y \in M : d(g^i(x), g^i(y)) < \delta, \quad i = 0, \ldots, n-1 \} \]

for the \((\delta, n)\)-Bowen ball around \(x \). By the contraction of the cone filed on the tangent space, it follows that

Lemma 3.2. If \(K \subset M \) is a disk tangent to local \(F_g \) cone with dimension \(\dim(f_g) \), then for any \(x \in K \) and \(n \geq 0 \),

\[g^n \left(K \cap B_{\frac{\delta}{\|g\|_{C^1}}, \delta}(x, g) \right) \]

is still tangent to local \(F_g \) cone. Moreover,

\[\text{vol}_{g^n(K)} \left(g^n \left(K \cap B_{\frac{\delta}{\|g\|_{C^1}}, \delta}(x, g) \right) \right) \leq L. \] (6)

Proof. The first part of the lemma follows from the forward invariance of the local cone and induction. The second part is a consequence of lemma 3.1. \(\square \)

From now on, we take \(\delta_2 = \frac{\delta}{\sup_{g \in \mathcal{U}} \|g\|_{C^1}} \) which will be the size of the Bowen balls and separated sets.

3.2. A finite partition

The goal of this section is to rewrite (4) in terms of the information entropy \(H_\nu \) of the finite join (under the iteration of the perturbed maps \(f_n \)) of a finite partition; here \(\nu \) is a probability measure (not necessarily invariant under \(f \) or \(f_n \)) that is close to some \(\mu_\nu \). To this end, let \(\delta_0 \) and \(\mathcal{U} \) be given in the previous section, and recall that \(\mu_\nu \to \mu \) in weak-* topology. We also write \(\mu_0 = \mu \). Fix \(\mathcal{A} \) a finite, measurable partition of \(M \) with \(\text{diam}(\mathcal{A}) < \delta_2 \), such that \(\mu_i(\partial A) = 0 \) for all \(i = 0, 1, \ldots \). The existence of such a partition follows from the fact that there are at most countable disjoint sets with positive \(\mu_i \) measure for each \(i \), thus for any point \(x \), there is a ball with radius \(r_x \) arbitrarily small such that the boundary of this ball has vanishing \(\mu_i \) measure for any \(i \). Each ball and its complement form a partition, we can take \(\mathcal{A} \) as the refinement of finitely many such partitions.

Moreover, we can take \(\mathcal{A} \) to be fine enough, such that:

\[h_\mu(f, \mathcal{A}) + \int \phi_f^* \, d\mu < \frac{999}{1000} \sigma. \] (7)

\(^7\)We slightly abuse notation and use \(B_{\delta_0}(\cdot) \) both for balls in \(T_xM \) and in \(M \); one could easily tell the difference by looking at the center.
Then there is N large enough, such that
\[
\frac{1}{N} H_\mu \left(\bigcup_{i=0}^{N-1} f^{-i}(A) \right) + \int \phi_{f^n} \, d\mu < -\frac{998}{1000} a. \quad (8)
\]

We would like to replace $\frac{1}{N} H_\mu \left(\bigcup_{i=0}^{N-1} f^{-i}(A) \right)$ by $\frac{1}{N} H_\mu \left(\bigvee_{i=0}^{N-1} f^{-i}(A) \right)$. This creates an extra difficulty since the partition in question depends on f_n. To solve this issue, we introduce the following lemma, whose proof is standard in the measure theory and is thus omitted.

Lemma 3.3. Let μ, μ_i, $i = 1, 2, \ldots$ be probability measures such that $\mu_i \xrightarrow{\text{weak}^*} \mu$. Let $A_i, i = 1, 2, \ldots$ be a sequence of measurable sets with the following properties:

(a) $\tilde{A} := \text{int}(A)$, $\tilde{A}_n := \text{int}(A_n)$ satisfy that for every compact set $K \subset \tilde{A}$, there exists $N_K > 0$ such that $K \subset \tilde{A}_n$ for all $n > N_K$;

(b) the above property holds with A and A_n replaced by A' and A'_n;

(c) $\mu(\partial A) = \mu_i(\partial A_i) = 0$, $i = 1, 2, \ldots$

Then we have $\lim_{n \to \infty} \mu_i(A_n) = \mu(A)$.

As an immediate application, we have:

Lemma 3.4. For $N > 0$ fixed, we have
\[
\lim_{n \to \infty} \frac{1}{N} H_{\mu_n} \left(\bigvee_{i=0}^{N-1} f^{-i}(A) \right) = \frac{1}{N} H_\mu \left(\bigvee_{i=0}^{N-1} f^{-i}(A) \right).
\]

Proof. Elements of $\bigvee_{i=0}^{N-1} f^{-i}(A)$ have the form:
\[
A = \bigcap_{i=0}^{N-1} f^{-i}(B_i)
\]
for some sequence $\{B_i \in A\}_{i=0}^{N-1}$. Given such a sequence, we denote by
\[
A_n = \bigcap_{i=0}^{N-1} f^{-i}(B_i).
\]
Since f_n converges to f in C^1 topology and elements of \mathcal{A} are finite intersections of open balls $B_{r_{\mathcal{A}}}(x_k)$ and their complements, (a) and (b) of Lemma 3.3 are satisfied by the sets A and A_n. For (c) of Lemma 3.3, observe that $\mu_n(\partial A) = 0$ implies that $\mu_n \left(\bigcup_{i=0}^{N-1} f^{-i}(\partial A) \right) = 0$ for all n, and the same holds for μ and f. It follows that $\mu(\partial A) = \mu_n(\partial A_n) = 0$.

Now we can apply the previous lemma to get $\lim_n \mu_n(A_n) = \mu(A)$. In particular,
\[
-\mu_n(A_n) \log \mu_n(A_n) \to -\mu(A) \log \mu(A).
\]
Summing over all elements of $\bigvee_{i=0}^{N-1} f^{-i}(A)$ (and keep in mind that this is a finite partition for fixed N) and divide by N, we obtain the desired result. \[\square\]

Combine Lemma 3.4 with (8) and use the continuity of ϕ_{f^n}, we conclude that there exists $N_1 \in \mathbb{N}$ such that
\[
\frac{1}{N} H_{\mu_n} \left(\bigvee_{i=0}^{N-1} f^{-i}(A) \right) + \int \phi_{f^n} \, d\mu_n < -\frac{996}{1000} a, \quad (9)
\]
for all \(n > N_1 \).

Note that for each \(n \) and \(N \), the set \(\bigcup_{i=0}^{N-1} f_n^{-i}(\partial A) \) is closed, so its measure varies upper semi-continuously with respect to probability measures (not necessarily invariant by any of \(f_n \)). Fix \(\varepsilon > 0 \) small enough. For each \(n > N_1 \), we can take a small convex neighborhood \(U_n \subset \mathcal{P}(M) \) of \(\mu_n \) such that for any \(\nu \in U_n \),

\[
\nu \left(\bigcup_{i=0}^{N-1} f_n^{-i}(\partial A) \right) < \varepsilon, \text{ and consequently }
\]

\[
\frac{1}{N} H_\nu \left(\bigcap_{i=0}^{N-1} f_n^{-i}(A) \right) \leq \frac{1}{N} H_{\mu_n} \left(\bigcap_{i=0}^{N-1} f_n^{-i}(A) \right) + \frac{1}{1000} a. \tag{10}
\]

By the continuity of \(\phi_{fn}^p \), we can shrink \(\varepsilon \) and finally obtain

\[
\frac{1}{N} H_\nu \left(\bigcap_{i=0}^{N-1} f_n^{-i}(A) \right) + \int \phi_{fn}^p \, d\nu < \frac{-994}{1000} a, \text{ for all } \nu \in U_n. \tag{11}
\]

3.3. From pressure to the measure of the good set

In this subsection we assume that \(I \) is a smooth disk with dimension \(\text{dim } F \) that is tangent to local \(F \) cone (to simplify notation we write \(F_n = F_{f_n} \), for some \(n = 0, 1, 2, \ldots \)). Recall that every \(\mu_n \) is a physical-like measure of \(f_n \). As a result, there is a positive volume subset \(\Lambda_n \) such that for every \(x \in \Lambda_n \), there is a sequence \(\{i_k\} \) such that the empirical measures satisfy

\[
\delta_{f_n^{i_k}} \in U_n \tag{12}
\]

for any \(k \), where \(U_n \) is the neighborhood of \(\mu_n \) in \(\mathcal{P}(M) \) that we chose in the previous subsection such that (10) and (11) hold.

To obtain a contradiction, for \(m \in \mathbb{N} \), we define

\[
\mathcal{G}^{I,n}_m = \{ x \in I \cap \Lambda_n : \delta_{f_n^{i_k}} \in U_n \}.
\]

The goal is to show that \(\mathcal{G}^{I,n}_m \) have small measure with respect to the Riemannian volume on \(I \), uniformly in \(n \).

For this purpose, we let \(E^{I,n}_m \) be a maximal \((\delta_2, m)\)-separated set of \(\mathcal{G}^{I,n}_m \) w.r.t. the map \(f_n \). Here we drop the dependence of \(E^{I,n}_m \) on \(\delta_2 \) since it is fixed throughout the paper. Consider the following probability measure \(\sigma_{nm}^m \) supported on \(E^{I,n}_m \):

\[
\sigma_{nm}^m = \sum_{i \in E^{I,n}_m} e^{S_{f_n}^i \phi_{f_n}^p (\cdot)} \delta_{f_n^{i_k}} \sum_{z \in E^{I,n}_m} e^{S_{f_n}^i \phi_{f_n}^p (z)}.
\]

Here \(S_{f_n}^i \phi \) is the Birkhoff sum of \(\phi \) w.r.t. the map \(f_n \), i.e., \(S_{f_n}^i \phi = \sum_{j=0}^{i-1} \phi \circ f_n^j \).

By the convexity of the neighborhoods \(U_n \) of \(\mu_n \) and the definition of \(\mathcal{G}^{I,n}_m \), the measure

\[
\mu_{nm}^m = \frac{1}{m} \sum_{i=0}^{m-1} (f_n^i)_* \sigma_{nm}^m
\]
is a convex combination of δf_n^{m} for $x \in G_m^{f_n}$ and thus is contained in U_m. Denote by

$$P_m^a = \frac{1}{m} \log \sum_{x \in F_m^a} e^{\delta f_n^{m} \phi f_n^{m}(x)}$$

the pressure of the separated set E_m^a and $P_m^a = \lim \sup_m P_m^a$ the limiting pressure for each f_n.

Lemma 3.5. For $n > N_1$, we have

$$P_m^a < -\frac{994}{1000} a.$$

Proof. The proof is motivated by the proof of variational principle [37].

For any $l \geq 2N$, write $a(j) = \lfloor \frac{l}{N} \rfloor$ for $0 \leq j \leq N - 1$. Here $N > 0$ is the integer chosen in the previous section such that (8) to (11) holds. Then for each j we have

$$\int f_n^{-i} A = \sum_{i=0}^{a(j)-1} f_n^{-i} \left(\bigvee_{i=0}^{N-1} f_n^{-i} A \right) \vee \bigvee_{i \in S} f_n^{-i} A,$$

where S is a subset of $\{0, 1, \ldots, l - 1\}$ with $\#S \leq 2N$. Therefore

$$mP_m^a = \log \sum_{x \in G_m^{f_n}} e^{\delta f_n^{m} \phi f_n^{m}(x)} = H_{\sigma_m}^{a} \left(\bigvee_{i=0}^{m-1} f_n^{-i} A \right) + \int S_m^f \phi^{f_n^m} d\sigma_m^a$$

$$\leq \sum_{r=0}^{a(j)-1} H_{\sigma_m}^{a} f_n^{-r} \left(\bigvee_{i=0}^{N-1} f_n^{-i} A \right) + H_{\sigma_m}^{a} \left(\bigvee_{i \in S} f_n^{-i} A \right) + \int S_m^f \phi^{f_n^m} d\sigma_m^a$$

$$\leq \sum_{r=0}^{a(j)-1} H_{\sigma_m}^{a} f_n^{-r} \left(\bigvee_{i=0}^{N-1} f_n^{-i} A \right) + 2N \log \#A + \int S_m^f \phi^{f_n^m} d\sigma_m^a.$$

Summing over j from 0 to $N - 1$:

$$NmP_m^a \leq \sum_{r=0}^{m-1} \sum_{j=0}^{a(j)-1} H_{\sigma_m}^{a} f_n^{-r} \left(\bigvee_{i=0}^{N-1} f_n^{-i} A \right) + 2N \log \#A + N \int S_m^f \phi^{f_n^m} d\sigma_m^a.$$

Dividing by mN yields

$$P_m^a \leq \frac{1}{N} H_{\sigma_m}^{a} \left(\bigvee_{i=0}^{N-1} f_n^{-i} A \right) + \frac{2N}{m} \log \#A + \int \phi^{f_n^m} d\mu_m^a$$

$$\leq \frac{994}{1000} a + \frac{2N}{m} \log \#A,$$

where the second inequality follows from (11).

Sending m to infinity, we conclude the proof.

The main result of this section is the following lemma:

Lemma 3.6. For every $n > N_1$ and every ($\dim F$)-dimensional disk I that is tangent to local F_n cone, we have

$$\lim \sup_{m \to \infty} \frac{1}{m} \log \text{vol}(G_m^{f_n}) < \mathcal{P}_n^a + \frac{1}{1000} a < -\frac{993}{1000} a.$$
Proof. By the choice of δ_0, δ_2 and (5), we obtain
\[
\text{vol}(G_{m}^{L_n}) \leq \sum_{z \in E_n} \text{vol}(B_{\delta_0,n}(z, f_n)) \\
\leq \sum_{z \in E_n} \text{vol}_{f_n^{-m}(f_n(z))} \left(f_n^{-m} \right) (e^{\frac{m}{1000}})^m.
\]

By lemma 3.2, the previous inequality is bounded by
\[
\text{vol}(G_{m}^{L_n}) \leq L \sum_{z \in E_n} \left| \det(Df_n^{-m}|_{f_n^{-m}(z)}) \right| (e^{\frac{m}{1000}})^m.
\]

Thus
\[
\frac{1}{m} \log \text{vol}(G_{m}^{L_n}) \leq \frac{1}{m} \log L + P_m + \frac{a}{1000},
\]
and
\[
\limsup \frac{1}{m} \log \text{vol}(G_{m}^{L_n}) \leq \limsup \frac{a}{1000} = \frac{a}{1000} < -\frac{993}{1000}a.
\]

3.4. Proof of theorem A

Fix any $n > N_1$. Recall that Λ_n is a positive volume subset such that (12) holds. We take a smooth foliation box $B : f_{\dim E} \times f_{\dim F} \to M$ such that $\text{vol}(B \cap \Lambda_n) > 0$ and for any $a \in f_{\dim E}$, $B(a, \cdot)$ maps $\{a\} \times f_{\dim F}$ to a disk I_a that is tangent to local F_a cone. Since the foliation chart is smooth, by Fubini theorem, there is $a_n \in f_{\dim E}$ such that the corresponding disk I_{a_n} satisfies $\text{vol}_{I_a}(\Lambda_{a_n}) > 0$.

On the other hand, lemma 3.6 applied to I_{a_n} yields
\[
\limsup \frac{1}{m} \log \text{vol}_{I_a}(G_{m}^{L_n}) < -\frac{993}{1000}a < 0.
\]

In particular, this means that
\[
\sum_{m=1}^{\infty} \text{vol}_{I_a}(G_{m}^{L_n}) < \infty.
\]

By the Borel–Contelli lemma, we have
\[
\text{vol}_{I_a}\{x \in I_a : \delta_n^{f_{n,m}} \in U_n \text{ infinitely often} \} = 0.
\]

However, this contradicts with the choice of a_n such that $\text{vol}_{I_a}(\Lambda_{a_n}) > 0$. We conclude the proof of theorem A.

4. Examples of application

In this section, we will provide examples where the metric entropy function is not upper semi-continuous, yet our main result still applies. Observe that in these cases, one cannot expect to obtain the continuity of Gibbs F-states only from its definition.
4.1. Statistical stability of singular hyperbolic attractors

We consider C^1 perturbations for the time-one map of singular hyperbolic attractors on three-dimensional manifolds. Let X be a C^2 vector field on a compact boundaryless three-manifold M and ϕ_t be the flow induced by X. An attractor Λ is called singular hyperbolic, if all the singularities in Λ are hyperbolic, and if there is a dominated splitting for ϕ_t:

$$T_\Lambda M = E^s \oplus F^{cu}$$

with $\dim E^s = 1$, such that $D\phi_t|_{E^s}$ is uniformly contracting, and $D\phi_t|_{F^{cu}}$ is volume expanding: there exist $C > 0$ and $\lambda > 1$ such that

$$|\det D\phi_t|_{F^{cu}}(x)| \geq C\lambda^t$$

for all $x \in \Lambda$ and $t > 0$. Note that this condition prevents trivial measures (i.e. Dirac measure of a singularity or trivial measures on a periodic orbit) to be Gibbs F^{cu}-states. Examples of singular hyperbolic attractors include the famous Lorenz attractor. We invite the reader to the book [6] for a comprehensive study on this topic.

It is proven in [7, theorems B and C, corollary 2] that every singular hyperbolic attractor has a unique physical measure μ. Moreover, μ is ergodic, hyperbolic (meaning that μ has a unique zero Lyapunov exponent which is given by the flow direction), fully supported on Λ, has absolutely continuous conditional measures on the center-unstable manifolds (these are the images of the Pesin strong unstable manifolds under the flow), and satisfies the entropy formula:

$$h_\mu(\phi_1) = \int \log |\det D\phi_1|_{F^{cu}}|d\mu.$$

Note that ϕ_1 is the time-one map of the flow. Denote by U the attracting neighborhood of Λ. Since ϕ_1 is C^2, by Ledrappier–Young formula [25], we see that μ is the unique Gibbs F^{cu}-state:

$$Gibbs^{F^{cu}}(\phi_1|_U) = \{\mu\}.$$

By theorem A, we obtain the statistical stability for C^1 perturbations of the time-one map:

Theorem 4.1. Assume that Λ is a singular hyperbolic attractor for a three-dimensional flow ϕ_t with attracting neighborhood U. Let $\{f_n\}$ be a sequence of C^1 diffeomorphisms converging to ϕ_1 in C^1 topology, and μ_n be a physical-like measure of f_n supported in U. Then we have $\mu_n \rightharpoonup^* \mu$, where μ is the unique physical measure of ϕ_1 on Λ.

In a recent work [5], Araújo established the finiteness and statistical stability for physical measures of sectional hyperbolic attractors among C^{1+} vector fields under C^1 topology. Here, we remark that f_n in theorem 4.1 need not be the time-one map of a vector field X_n that is C^1 close to X. In this case, since the bundle F^{cu} admits no further domination, it is possible to create homoclinic tangency after C^1 perturbation, see Gourmelon [21, theorem 3.1], Pujals, Sambarino [31] and Wen [38] for previous results along this direction. Following the work of Newhouse [29] (see also [11] for a refined construction) local horseshoes with large entropy can be created, which prevents the metric entropy from being upper semi-continuous\(^8\).

\(^8\)Note that the robust h-expansiveness (which implies the upper semi-continuity of $h_\mu(X)$) proven in [30] applies only to nearby flows.
4.2. The example of Bonatti and Viana on \mathbb{T}^4

Following Mañé’s study [27] of derived from Anosov diffeomorphisms on \mathbb{T}^3, Bonatti and Viana constructed in [9] (see also [35]) a family of robustly transitive diffeomorphisms without any hyperbolic direction. Their examples are obtained by perturbing a linear Anosov diffeomorphism $A : \mathbb{T}^4 \rightarrow$ near two fixed points p and q.

Let us briefly recall the construction of the example. Let $A \in \text{SL}(4, \mathbb{Z})$ be a linear Anosov diffeomorphism with four distinct real eigenvalues:

$$0 < \lambda_1 < \lambda_2 < 1/3 < \lambda_3 < \lambda_4,$$

and let p, q be two fixed points of A. We fix some $r > 0$ small enough and consider the following perturbation of A, and note that such perturbations are C^0 small but C^1 large:

(a) outside $B_r(p)$ and $B_r(q)$ the map is untouched;
(b) in $B_r(p)$ the fixed point p undergoes a pitchfork bifurcation in the direction corresponding to λ_2; this changes the stable index of p from 2 to 1 and creates two new fixed points inside $B_r(p)$ with stable index 2, which we denote by p_1 and p_2;
(c) a small perturbation near $B_r(p_1) \subset B_r(p)$ makes the contracting eigenvalues complex;
(d) repeat steps (b) and (c) in $B_r(q)$ for A^{-1}.

Write

$$\lambda_{cs} = \sup \{ \log \| Df_{BV}[E_{cs}(x)] \| : x \in B_r(p) \} > 0,$$
$$\lambda_{cu} = \sup \{ \log \| Df_{BV}^{-1}[E_{cu}(x)] \| : x \in B_r(q) \} > 0,$$
$$\lambda = \max\{\lambda_{cs}, \lambda_{cu}\}.$$

Choosing $r, \lambda > 0$ small enough (we refer to [9] for full detail and [12] for a refined construction), we obtain a diffeomorphism which we denote by f_{BV}, such that:

- there exists an open neighborhood $U_{BV} \subset \text{Diff}^1(\mathbb{T}^4)$ of f_{BV} such that every $g \in U_{BV}$ is transitive;
- $g \in U_{BV}$ admits a dominated splitting $T\mathbb{T}^4 = E^{cs} \oplus E^{cu}$ with $\dim E^{cs} = \dim E^{cu} = 2$; moreover, E^{cs} and E^{cu} cannot be further split into one-dimensional invariant subbundles;
- E^{cs} and E^{cu} are integrable (this requires the refined construction in [12]).

The following theorem is proven in [17].

Theorem 4.2 [17, theorem B]. For $r, \lambda > 0$ small enough, there exists a C^1 neighborhood U of f_{BV} such that every $g \in U \cap \text{Diff}^2(\mathbb{T}^4)$ has a unique physical measure μ_g which is the unique equilibrium state for the potential $\varphi_g = -\log \det(Dg|_{E^{cs}})$, and satisfies

$$P(\varphi_g, g) = h_{\mu_g}(g) + \int \varphi_g \, d\mu_g = 0.$$

Combining with theorem A, we obtain the continuity of the physical measures for the example of Bonatti and Viana:

Theorem 4.3. Let U be the neighborhood of f_{BV} given by theorem 4.2. Then restricted to $U \cap \text{Diff}^2(\mathbb{T}^4)$, it satisfies that μ_g varies continuously (in the weak-* topology) with respect to g in the C^1 topology.
Proof. The previous theorem states that
\[\text{Gibbs}^{E^u}(g) = \{ \mu_g \} \]
for \(g \in \mathcal{U} \cap \text{Diff}^2(T^d) \). Let \(g_n, g \) be \(C^2 \) diffeomorphisms in \(\mathcal{U} \), with \(g_n C^1 \xrightarrow{\text{weak}^*} g \). Then theorem A shows that \(\mu_{g_n} \xrightarrow{\text{weak}^*} \mu_g \), as desired. \(\square \)

Similar to the previous example, since the bundles \(E^{cs} \) and \(E^{cu} \) admit no further domination, it is possible to create homoclinic tangency after \(C^1 \) perturbation and therefore the metric entropy is not upper semi-continuous. See also [17], particularly lemma 6.11, for the characterization on the refined entropy structure for \(g \in \mathcal{U}_{BV} \).

4.3. The open examples in [1], including the example of Mañé [27]

We conclude our paper with a brief discussion on the \(C^1 \) open family of diffeomorphisms constructed in [1], which generalizes both the example of Mañé [27] and Bonatti–Viana [9].

The construction in [27] calls for a linear Anosov diffeomorphism \(f_0 \) on \(T^d \), \(d \geq 2 \) and a small closed domain \(V \subset T^d \). Then one considers diffeomorphisms \(f \) on \(T^d \) such that:

- \(f \) admits invariant cone fields \(C^{\alpha} \) and \(C^{\alpha} \) containing the stable and the unstable bundle of \(f_0 \), respectively;
- \(Df \) is volume expanding on disks tangent to \(C^{\alpha} \), and volume contracting on disks tangent to \(C^{\alpha} \), for all \(x \in M \);
- outside \(V \), \(f \) is \(C^1 \) close to \(f_0 \);
- inside \(V \), \(\|Df^{-1}\|_{TD^u} \| < (1 + \delta_0) \) and \(\|Df\|_{TD^c} \| < (1 + \delta_0) \) for some \(\delta_0 > 0 \) small enough and for all disks \(D^c, D^u \) tangent to \(C^c, C^u \) respectively.

It is proven that any map \(f \) satisfying the assumptions above are non-uniformly expanding along the centre-unstable direction (for the precise definition, see [1, equation (2)]). In particular, such maps support ergodic SRB measures which are Gibbs \(F \)-states. Our main result could be applied to such family of diffeomorphisms, provided that one follows closely the argument in [17] to obtain the uniqueness of the Gibbs \(F \)-state.

A special case is Mañé’s derived-from-Anosov diffeomorphisms [27]. Here \(f_0 \) is a linear Anosov diffeomorphism on \(T^3 \). We further consider the following situations:

Case 1. The eigenvalues of \(f_0 \) are \(0 < \lambda_1 < \lambda_2 < 1 < \lambda_3 \).

In this case we take \(E = E^a \), and \(F = E^u \) to be the unstable bundle; \(f \) constructed above has mostly contracting center [9, 19], in the sense that every Gibbs \(u \)-state has negative center Lyapunov exponent. The uniqueness of the Gibbs \(F \)-state (in this case, Gibbs \(u \)-state) has been established in [16, 20]. With theorem A, we obtain the statistical stability for the physical measure.

Case 2. The eigenvalues of \(f_0 \) are \(0 < \lambda_1 < 1 < \lambda_2 < \lambda_3 \).

In this case \(E = E^c \) is the stable bundle, and \(F = E^{cs} \); following [1], \(f \) has mostly expanding center. The finiteness and the statistical stability of the physical measure have been established under various situations [3, 4, 36, 40]. Alternatively, the argument in [17] can be easily adapted to prove the uniqueness of the Gibbs \(F \)-state, and the statistical stability follows from theorem A.

ORCID iDs

Fan Yang https://orcid.org/0000-0002-4954-9681
References

[1] Alves J F, Bonatti C and Viana M 2000 SRB measures for partially hyperbolic systems whose central direction is mostly expanding Invent. Math. 140 351–98
[2] Andersson M 2010 Robust ergodic properties in partially hyperbolic dynamics Trans. Am. Math. Soc. 362 1831–67
[3] Andersson M and Vásquez C H 2018 On mostly expanding diffeomorphisms Ergod. Theor. Dyn. Syst. 38 2838–59
[4] Andersson M and Vásquez C H 2017 Statistical stability of mostly expanding diffeomorphisms (arXiv:1710.07970)
[5] Araujo V 2020 Finitely many physical measures for sectional-hyperbolic attracting sets and statistical stability Ergod. Theor. Dyn. Syst. https://doi.org/10.1017/etds.2020.91
[6] Araujo V, Pacifico M J 2010 Three-Dimensional Flows (Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics vol 53) (Heidelberg: Springer) [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] With a foreword by Marcelo Viana
[7] Araujo V, Pacifico M J, Pujals E R and Viana M 2009 Singular-hyperbolic attractors are chaotic Trans. Am. Math. Soc. 361 2431–85
[8] Bonatti C, Diaz L and Viana M 2005 Dynamics Beyond Uniform Hyperbolicity (Encyclopaedia of Mathematical Sciences vol 102) Mathematical Physics vol 3 (Berlin: Springer)
[9] Bonatti C and Viana M 2000 SRB measures for partially hyperbolic systems whose central direction is mostly contracting Ist. J. Math. 115 157–93
[10] Bruin J 1997 Intrinsic ergodicity of smooth interval maps Ist. J. Math. 100 125–61
[11] Bruin J, Crovisier S and Fisher T 2018 The entropy of C^1-diffeomorphisms without a dominated splitting Trans. Am. Math. Soc. 370 6685–734
[12] Bruin J and Fisher T 2013 Entropic stability beyond partial hyperbolicity J. Mod. Dyn. 7 527–52
[13] Catsigeras E and Enrich H 2011 Entropic stability beyond partial hyperbolicity J. Mod. Dyn. 7 527–52
[14] Catsigeras E, Cerminara M and Enrich H 2015 The Pesin entropy formula for C^2 diffeomorphisms with dominated splitting Ergod. Theor. Dyn. Syst. 35 737–61
[15] Climenhaga V, Fisher T and Thompson D J 2019 Equilibrium states for Mañé diffeomorphisms Ergod. Theor. Dyn. Syst. 39 2433–55
[16] Climenhaga V, Fisher T and Thompson D J 2018 Unique equilibrium states for Bonatti–Viana diffeomorphisms Nonlinearity 31 2532–70
[17] Crovisier S, Yang D and Zhang J 2020 Empirical measures of partially hyperbolic attractors Commun. Math. Phys. 375 725–64
[18] Dolgopyat D 2000 On dynamics of mostly contracting diffeomorphisms Commun. Math. Phys. 213 181–201
[19] Dolgopyat D, Viana M and Yang J 2016 Geometric and measure-theoretical structures of maps with mostly contracting center Commun. Math. Phys. 341 991–1014
[20] Gourmelon N 2010 Generation of homoclinic tangencies by C^1-perturbations Discrete Continuous Dyn. Syst. 26 1–42
[21] Rodríguez Hertz M A, Ures R and Yang J 2018 Robust minimality of strong foliations for DA diffeomorphisms: cu-volume expansion and new examples arXiv:1912.05786
[22] Hua Y, Yang F and Yang J 2018 New criterion of physical measures for partially hyperbolic diffeomorphisms Trans. Am. Math. Soc. 373 385–417
[23] Keller G 1998 Equilibrium States in Ergodic Theory (Cambridge: Cambridge University Press)
[24] Ledrappier F and Young L-S 1985 The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula Ann. Math. 122 509–39
[25] Liao G, Viana M and Yang J 2013 The entropy conjecture for diermorphism away from tangencies J. Eur. Math. Soc. 15 2043–60
[26] Mañé R 1978 Contributions to the stability conjecture Topology 17 383–96
[27] Misirwicz M 1973 Diffeomorphim without any measure of maximal entropy Bull. Acad. Pol. Sci., Series Sci. Math., Astr. et Phys., 21 903–10
[28] Newhouse S E 1978 Topological entropy and Hausdorff dimension for area preserving diermorphism of surfaces Dynamical Systems Vol 3 (Société Mathématique: Paris) pp 323–34
[30] Pacifico M J, Yang F and Yang J Entropy theory for sectional hyperbolic flows Ann. Inst. Henri Poincaré C. Anal. Non Linéaire (in press)
[31] Pujals E R and Sambarino M 2000 Homoclinic tangencies and hyperbolicity for surface diffeomorphisms Ann. Math. 151 961–1023
[32] Qiu H 2011 Existence and uniqueness of SRB measure on C^1 generic hyperbolic attractors Commun. Math. Phys. 302 345–57
[33] Ruelle D 1978 An inequality for the entropy of differentiable maps Bull. Braz. Math. Soc. 9 83–7
[34] Shi Y, Yang F and Yang J 2019 A countable partition for singular flows, and its application on the entropy theory (arXiv:1908.01380)
[35] Tahzibi A 2004 Stably ergodic diffeomorphisms which are not partially hyperbolic Isr. J. Math. 142 315–44
[36] Vásquez C H 2007 Statistical stability for diffeomorphisms with dominated splitting Ergod. Theor. Dyn. Syst. 27 253–83
[37] Walters P 1982 An Introduction to Ergodic Theory (Graduate Texts in Mathematics vol 79) (New York: Springer)
[38] Wen L 2002 Homoclinic tangencies and dominated splittings Nonlinearity 15 1445–69
[39] Yang J 2016 Entropy along expanding foliations (arXiv:1601.05504)
[40] Yang J 2019 Geometrical and measure-theoretic structures of maps with mostly expanding center (arXiv:1904.10880)
[41] Yomdin Y 1987 Volume growth and entropy Isr. J. Math. 57 285–300