Trajectory Generation with Fast Lidar-based 3D Collision Avoidance for Agile MAVs

Marius Beul, and Sven Behnke

Abstract—Micro aerial vehicles (MAVs), are frequently used for exploration, examination, and surveillance during search and rescue missions. Manually piloting these robots under stressful conditions provokes pilot errors and can result in crashes with disastrous consequences. Also, during fully autonomous flight, planned high-level trajectories can be erroneous and steer the robot into obstacles.

In this work, we propose an approach to efficiently compute smooth, time-optimal trajectories MAVs that avoid obstacles. Our method first computes a trajectory from the start to an arbitrary target state, including position, velocity, and acceleration. It respects input- and state-constraints and is thus dynamically feasible. Afterward, we efficiently check the trajectory for collisions in the 3D-point cloud, recorded with the onboard lidar. We exploit the piecewise polynomial formulation of our trajectories to analytically compute axis-aligned bounding boxes (AABB) to speed up the collision checking process. If collisions occur, we generate a set of alternative trajectories in real-time. Alternative trajectories bring the MAV in a safe state, while still pursuing the original goal. Subsequently, we choose and execute the best collision-free alternative trajectory based on a distance metric.

The evaluation in simulation and during a real firefighting exercise shows the capability of our method.

I. INTRODUCTION

Micro aerial vehicles (MAVs) are becoming a key element in reducing the required risks, time, and costs for search and rescue missions, aerial reconnaissance, and disaster examination. In most cases, a human pilot operates the MAV remotely to fulfill a mission, or the MAV is following a predefined path of GPS waypoints at an altitude assumed to be obstacle-free. However, permanent line-of-sight from the pilot to the MAV may not be maintainable at all times due to large obstacles. Also, thin obstacles like antennas or power lines may only be perceivable inaccurately by the pilot. Other (probably moving) participants in the airspace like drones, rescue helicopters, birds, or debris proposes a risk for the MAV. Furthermore, during a real rescue scenario, the operator’s cognitive load is significant [1], which provokes human errors. The loss of an MAV due to a crash is expensive, but even worse, it can have disastrous consequences for the executed mission.

To tackle these challenges, in this article, we present an efficient method to compute smooth, time-optimal trajectories for MAVs that automatically avoid obstacles. On the one hand, our method can be used as an obstacle avoidance and control layer in a hierarchy of planners for fully autonomous flight. On the other hand, since it accepts intuitive setpoints, it can be employed to execute the pilot’s commands during manual flight, providing an additional safety layer. This article extends our previous work on trajectory generation for MAVs [2] with an obstacle avoidance feature.

Our main contributions are

- computation of dynamically feasible collision-free alternative trajectories,
- fast analytical bounding box computation for cropping of large point clouds,
- analytical modeling and integration of sensor coverage during planning, and
- evaluation in simulation and a real-world firefighting exercise.

Fig. 1 shows our MAV supporting firefighters by surveying the area with its multimodal sensor setup.

II. RELATED WORK

Low-level obstacle avoidance is an active field of research.

For example, Zhang et al. [3] present a method to instantaneously avoid static obstacles by following precomputed paths in cluttered environments. The paths are hierarchically organized, such that branches from alternative paths can be efficiently stored and executed. The method is fast (≤ 50 ms), but generated trajectories are not optimal.

Similarly, also Barry et al. [4] show impressive results with fast flights of up to 14 m/s. Like the above-noted approach, the authors precompute trajectories from which they select a collision-free instance during runtime. In contrast,
our approach quickly generates trajectories during runtime, incorporating the current continuous 3D state of the robot.

Also, the idea to instantaneously react to sensor measurements instead of planning a trajectory is not new, and many different approaches from vector field histograms [5] to potential field-based obstacle avoidance have been presented.

For example, Falanga et al. [6] use an event camera to quickly detect obstacles in the vicinity of the MAV. While in contrast to normal RGB-cameras, event cameras are advantageous in terms of latency and dynamic range, they still suffer from a narrow field of view and low range compared to lidars. To guarantee a low latency, instead of sophisticated trajectory generation techniques, the MAV performs potential field-based obstacle avoidance.

Similarly, also Nieuwenhuisen et al. [7] perform potential field-based obstacle avoidance with an MAV. To account for the MAV’s non-neglectable dynamics, the authors extend the method with a motion model and predict the MAV state in the near future. The authors report that trajectories with active motion model are smoother than with pure reactive potential field obstacle avoidance.

The idea to generate a set of alternative dynamically feasible trajectories and subsequently selecting a suitable one has been shown in, e.g., [8]. Instead of obstacle avoidance, the authors use the motion primitives to catch a flying ball with an MAV. Like our approach, the authors use closed-form solutions to find suitable trajectories, resulting in computation times in the order of microseconds. The alternative trajectories are not time-optimal and not guaranteed to be collision-free.

Lindqvist et al. [9] present an MPC that features collision avoidance and can also deal with moving obstacles. The authors use a nonlinear solver to find collision-free trajectories within the 50 ms replanning time. In contrast to our technique, the pipeline only predicts 2 s of the trajectory, making it unsuitable for fast flight or fast obstacles. Instead of onboard sensors, the technique relies on a known obstacle path, measured with a motion capture system.

Trajectories produced by all methods mentioned above are dynamically feasible, but not time-optimal. To avoid nimble obstacles (or during fast flight), the control inputs of the robot have to be maximized to achieve maximum dexterity. Thus, similar to our approach, the method from Lopez and How [10] generates time-optimal state and input constrained trajectories by sampling terminal states. With a computation time of 2-5 μs, the method is real-time capable. The authors use an RGB-D camera to measure a point cloud in front of the MAV. Without omnidirectional perception (e.g., obtained with a lidar), safe trajectories are forced to lie in front of the MAV. An additional drawback of the method is that it works in (constant) velocity space instead of position space; thus, e.g., it restricts the MAV from hovering. The method assumes obstacles to be static.

Watterson and Kumar [11] report a hybrid approach for obstacle avoidance. On the one hand, the proposed method uses a receding horizon control policy (RHCP) to steer an MAV through a cluttered environment. On the other hand, the approach always guarantees that there exists a safe stopping policy that brings the MAV to hover. Similarly, our approach searches for multiple classes of trajectories.

To our knowledge, no method exists that can compute smooth, time-optimal obstacle-avoiding 3D trajectories for MAVs within typical control-loop frequencies. The method proposed in this work replaces our reactive low-level obstacle avoidance mechanism [12] that does not scale to aggressive high-speed trajectories.

III. System Setup

In the following sections, we first describe the hardware of our MAV in Sec. III-A. We continue by presenting our approach to point cloud filtering with axis-aligned bounding boxes in Sec. III-B. Collision checking is described in Sec. III-D and Sec. III-E. Lastly, we present our method for generating alternative trajectories in Sec. III-F.

A. Hardware Design

To support firefighters during their mission, we developed the MAV shown in Fig. 2. It is based on the DJI Matrice 210 platform and features a lidar to perform simultaneous localization and mapping (SLAM), and a thermal camera to detect and map, e.g., fires or victims. Furthermore, it features small but fast Intel Bean Canyon NUC8i7BEH onboard PC with...
an axis-aligned bounding box (AABB) around the trajectory

stead of removing random points or other filtering methods,

B. Analytical Bounding Box

alternative collision-free trajectories that bring the MAV in a

sample the trajectories with a constant position offset (per

model and how we check if trajectories pass unknown space

clouds in Sec. III-B. We then describe our measurement

1 310 720

scan (\(\text{per second}\)), we first demonstrate how we

measurements per \(\text{scan}\) (\(65\,536\) point clouds recorded by the onboard lidar.

To extinguish small fires, the MAV is equipped with a fire

extinguisher. We use the robot operating system (ROS) as

middleware on the MAV.

To speed up computation, we first filter the point cloud. In-

since our lidar produces up to \(65\,536\) point clouds.

Fig. 3 shows an excerpt of our software pipeline, running

onboard the MAV. In the shown example, an operator directly

defines 4D setpoints (X, Y, Z, Yaw) for the trajectory

generator. Instead, the commands can also be generated by

a higher layer planning pipeline during a fully autonomous

flight (see [12]).

The depicted trajectory generator\(^1\) generates smooth third-

order time-optimal trajectories that respect asymmetrical

state and input constraints. It is described in detail in [2],

[13], and [14]. We now extend the capabilities of our tra-

jectory generator by real-time obstacle avoidance employing

point clouds recorded by the onboard lidar.

Since our lidar produces up to \(65\,536\) measurements per

scan (\(1310\,720\) per second), we first demonstrate how we

analytically compute bounding boxes to crop the large point

clouds in Sec. III-B. We then describe our measurement

model and how we check if trajectories pass unknown space

in Sec. III-E. In Sec. III-C, we show how we exploit the

polynomial formulation of our trajectories to analytically

sample the trajectories with a constant position offset (per

dimension). Subsequently, we present how we generate alter-

native collision-free trajectories that bring the MAV in a

safe state while still pursuing the original goal in Sec. III-F.

B. Analytical Bounding Box

To speed up computation, we first filter the point cloud. In-

stead of removing random points or other filtering methods,

we crop the point cloud such that points that are outside of

an axis-aligned bounding box (AABB) around the trajectory

\(^1\)https://github.com/AIS-Bonn/opt_control

are discarded. To do so, we analytically compute the axis-

aligned bounding box employing the polynomial formulation

of the trajectory.

As described in [2], our trajectories consist of a con-
catenation of n-dimensional polynomials with constant n-
dimensional jerk. In each segment and each dimension, the

position \(p\) follows Eq. 1 with the jerk \(j\), the acceleration

\(a\), and the velocity \(v\) at the beginning of the segment. We

determine the global maxima and minima of each polynomial

by deriving the position with respect to time. With \(t_{ex}\)

being the segment’s extremal times from Eq. 2 and Eq. 3,

we subsequently check if the extremal time lies within the

segment’s interval. If so, the segment produces a global

extremum of the trajectory at point \(p_{ex}\) with Eq. 4. We

execute this procedure for each dimension for each segment
to compute the axis-aligned bounding box. As a last step,

we expand the bounding box by the MAV size.

\[
p(t) = vt + \frac{1}{2}a t^2 + \frac{1}{6}j t^3
\]

\[
p'(t_{ex}) := 0 \Rightarrow 0 = v + a t_{ex} + \frac{1}{2}j t_{ex}^2
\]

\[
t_{ex} = -\left(\frac{a \pm \sqrt{(a^2 - 2j v)}}{j}\right)
\]

\[
p_{ex} = p + v t_{ex} + \frac{1}{2}a t_{ex}^2 + \frac{1}{6}j t_{ex}^3
\]

Fig. 4 displays an example AABB. In this typical example,

only 1372 of the 65 536 total scan points are in the proximity

of the trajectory and considered for the following computa-

tions. This means a reduction of 97.9\%.

C. Constant Distance Sampling

We now sample the trajectory with a constant time dif-

ference, or with a constant position difference. We depict

sampling with a constant time difference in Eq. 5, with

\(p_{n+1}\) being the position after \(\Delta t\) with the initial position

\(p_n\), velocity \(v_n\), acceleration \(a_n\), and jerk \(j_n\).

\[
p_{n+1} = p_n + v_n \Delta t + \frac{1}{2}a_n \Delta t^2 + \frac{1}{6}j_n \Delta t^3
\]

However, sampling the trajectory with a constant time dif-
fERENCE gives inhomogeneous resolution over the trajectory.

For collision checking, we thus prefer the (more complicated)
constant distance sampling. To do so, we analytically solve Eq. 6 for t in a preprocessing step.

$$\Delta p = v_n t + \frac{1}{2} a_n t^2 + \frac{1}{6} j_n t^3$$ \hspace{1cm} (6)

This gives three analytical equations for t_{1-3}. For brevity, we refrain from picturing the solutions here. Subsequently, during runtime, we evaluate the three solutions with the desired position offset Δp, and select the smallest positive non-imaginary t of all dimensions. We compute the position at this timestep with Eq. 5 as the next sample and continue this procedure until the end of the trajectory is reached.

Exemplarily, Fig. 4 shows a trajectory sampled with $\Delta p = 10\text{cm}$ in each dimension. Since trajectories can have multiple jerk segments (e.g., the trajectory in Fig. 4 has 18 segments), we also account for effects at the segment borders that we cannot cover here for brevity. The distance offset in each dimension does not have to be equal. Thus by assigning inhomogeneous Δp, individual dimensions can be sampled denser or sparser.

D. Collision Checking

With the trimmed point cloud from Sec. III-B, and the trajectory positions equidistantly sampled from Sec. III-C, we check each dimension n of each trajectory position $p_{\text{test},n}$ for two distances $l_{\text{test}} = l_{\text{warn}} \lor l_{\text{coll}}$ indicating if a point $p_{\text{pc},n}$ is within warning distance or if a point is so close that it causes a collision. Checking for two individual distances allows for hysteresis at the border of obstacles and for a more sophisticated validation (see Sec. III-F).

$$b_{\text{close},n} = p_{\text{pc},n} > p_{\text{test},n} - l_{\text{test},n} \land p_{\text{pc},n} < p_{\text{test},n} + l_{\text{test},n}$$ \hspace{1cm} (7)

Since the world is not static, we model moving observations with a constant velocity model. Although our lidar does not give 3D velocities for the measurements, future sensor modalities like radar possibly will do so, and thus we extend the approach to collision checking to points moving with the 3D velocity vector $v_{\text{pc},n}$.

For each dimension n, we calculate the times $t_{1,n}$ and $t_{2,n}$, when the point cloud point with position $p_{\text{pc},n}$ and velocity $v_{\text{pc},n}$ enters resp., leaves the axis-aligned hyperrectangle defined by center point $p_{\text{test},n}$ and elongation $l_{\text{test},n}$ with Eq. 8 and Eq. 9. Subsequently, we sort all times according to their size and check if there exists a period where all dimensions of the line are inside the hyperrectangle, as shown in Eq. 10 and Eq. 11. If this is the case, the point cloud point moves through the AABB. Thus, if the line defined by p_{pc} and v_{pc} crosses the hyperrectangle defined by p_{test} and l_{test}, it is causing a collision with $b_{\text{close}} = \text{true}$.

$$t_{1,n} = \frac{p_{\text{test},n} - l_{\text{test},n} - p_{\text{pc},n}}{v_{\text{pc},n}}$$ \hspace{1cm} (8)

$$t_{2,n} = \frac{p_{\text{test},n} + l_{\text{test},n} - p_{\text{pc},n}}{v_{\text{pc},n}}$$ \hspace{1cm} (9)

$$t_{\text{sort}} = \text{sort}(t_{n})$$ \hspace{1cm} (10)

$$b_{\text{close}} = \max(t_{\text{sort},1}) < \min(t_{\text{sort},2})$$ \hspace{1cm} (11)

In this paper, we mark each trajectory sample within a warning distance of at least one point (and the corresponding points) yellow. Points that are causing a collision, and the corresponding trajectory points, are marked red.

E. Analytical Coverage Test

Besides checking for collisions with the (potentially moving) point cloud, we also check if the trajectory passes unobservable terrain. For this, we model the 3D lidar with an omnidirectional field of view that has cone-shaped blind spots on top and bottom depicted in Fig. 5. We also model the maximum range of the lidar. To test if a 3D point lies within the blind cones, we first obtain the normal vector of the MAV p_{norm} from the Inertial Measurement Unit (IMU).
which points upward during hover.

\[
p_{is} = (p_{norm} \cdot p_{test}) \cdot p_{norm} \tag{12}
\]

\[
l_{cone} = |p_{is}| \cdot \tan\left(\frac{\pi}{2} - \theta_{lidar} \right) \tag{13}
\]

\[
l_{test} = |p_{test} - p_{is}| \tag{14}
\]

\[
l_{test} < l_{cone} \land p_{is,z} > 0 \Rightarrow \text{In upper cone} \tag{15}
\]

\[
l_{test} < l_{cone} \land p_{is,z} < 0 \Rightarrow \text{In lower cone} \tag{16}
\]

\[
l_{test} > l_{lidar} \Rightarrow \text{Out of range} \tag{17}
\]

We then compute the point on the normal vector \(p_{is} \) that is closest to the tested trajectory point \(p_{test} \), as shown in Eq. 12. With the lidar opening angle \(\theta_{lidar} \), we obtain the horizontal extend of the cone at the specific height of \(p_{is} \) with Eq. 13. Subsequently, we decide if point \(p_{test} \) is inside the unobservable area with Eq. 14–Eq. 17.

Since both cones touch at the origin, the model is very susceptible for small \(z \)-values. Therefore, we assume that all points that lie inside of the MAV are always collision-free. The trajectory from Fig. 6 conforms to the highlighted constraints with opening angle \(\theta_{lidar} = 33.2^\circ \) and maximum range \(l_{lidar} = 120 \text{ m} \).

F. Alternative Trajectories

With a confirmed collision somewhere on the trajectory or a warning that will not clear itself on the current trajectory, we generate alternative safe trajectories. If the trajectory is within warning distance at the beginning, but enters a safe state on its own, we classify it as safe. Since our trajectory generation method is very fast (\(\ll 1 \text{ ms} \)), we can generate multiple alternative trajectories with the lidar frequency of 20 Hz. One can imagine many different metrics that would yield good target points for safe trajectories. We pursue two strategies. Our safe trajectories target a) waypoints on concentric spheroids around the current MAV position, and b) waypoints on concentric tubes around the original trajectory.

Fig. 7 shows a set of alternative trajectories targeting waypoints that lie on concentric spheroids. These time-

FIG. 8. Alternative safe trajectories that end in a concentric tube around the original trajectory. All 204 trajectories are safe in terms of collisions with the point cloud and do not pass unobservable space.

optimal trajectories bring the MAV to stop as fast as possible without bringing it significantly nearer to the original target.

Alternatively, trajectories targeting a concentric tube around the original trajectory can be safe, while still pursuing the intent of the original trajectory. Fig. 8 shows an example of these trajectories.

After generating all alternative trajectories, we execute the steps from Sec. III-B–Sec. III-E to check if each trajectory is safe. As with the original trajectory, an alternative trajectory is safe if it does not enter a warning (or even collision) zone around any point and does not enter unperceivable space.

We evaluate our approach in simulation as well as with a real MAV. To evaluate our approach, we use point clouds recorded during a fully autonomous flight during the Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2020. Here, our MAV flew into a wall and crashed due to a bug in the coordinate system alignment. During the challenge, we employed the same trajectory generator we present here, but unfortunately, without any obstacle avoidance. We report results from the challenge in [15] and [16]. We previously showed the applicability of our method to MAV flight in, e.g., [12]. The laser scans from the scenarios in Fig. 4, 6, 7, and 8 are extracted from recordings
of the challenge. A video showcasing the evaluation can be found on our website².

A. Computation Time

We evaluate the computation time with the computer onboard the MAV. Fig. 10 shows the total computation time of our approach for a typical scenario.

It can be seen that most of the time is spent on computing the time-optimal trajectories and that we are able to generate, rollout, and check a total of approximately 164 trajectories within the 50 ms time frame.

To evaluate the effectiveness of subsets of the point cloud with the AABB, we conducted an ablation study. We removed this specific feature and directly checked for collisions of each rolled out state with the entire point cloud. By comparing the computation times for the typical scenario from Fig. 10, we found that the process takes averagely 1147 µs instead of the 77.16 µs (7.12 µs + 50.84 µs + 19.20 µs) from Fig. 10. This corresponds to a speedup of 1487% for the collision checking method and 452% speedup in relation to the entire algorithm.

To further speed up our pipeline, we plan to adopt the approach from [17] for collision checking with moving obstacles. Furthermore, the structure of our method offers excellent possibilities for parallelization. Thus, we are currently working on parallelizing our technique with alternative waypoints distributed to individual CPU cores.

B. Moving Obstacles

As described in Sec. III-D, every point in the point cloud can have an associated 3D velocity. To evaluate our approach, we simulate lidar measurements on an object that moves into the trajectory. We show the scenario in Fig. 9. It can be seen that the obstacle crosses the trajectory. Instantaneously, the MAV generates multiple valid rescue trajectories and avoids the obstacle. It decides that it is safe and dynamically feasible to fly in front of the obstacle in the target direction (using the tube trajectories). If the obstacle moved faster, trajectories behind the obstacle would be feasible. If the object were more extensive or additional obstacles would be present, a hard braking maneuver that uses the full dynamic capabilities of the MAV would be performed.

C. Real-World Experiments

We evaluate our method with a dataset that was recorded during the MBZIRC 2020 challenge, where our MAV actually flew into a wall and crashed. We use the recorded lidar and GPS measurements as input to our method and assess if the crash could be hindered by our new obstacle avoidance feature. Fig. 11 shows a still from the world model during the challenge. It can be seen that the MAV successfully avoids a collision by targeting an alternative instead of the commanded waypoint.

The experiments with the dataset show that our method never plans trajectories that lie close to measured obstacles. Instead, it always generates feasible alternative waypoints and corresponding trajectories. This experiment is, however, not sufficient to show that our method works reliably, since it does not close the loop and thus does not execute the planned trajectories.

To evaluate our method in a real-world scenario in a closed-loop, we brought our MAV to a real firefighting exercise. Here, we a) intentionally commanded the MAV to fly into a tree, and b) approached the MAV during hovering to provoke an evasive maneuver. Fig. 12 shows one of the experiments and the corresponding world model. The MAV detects the approaching person and avoids it with a trajectory in the opposing direction. During the entire exercise, no crash with static nor dynamic obstacles happened. The closed-loop avoidance maneuvers, however, were not always smooth since the MAV often switched between alternative waypoints, causing a jittery behavior. We address this issue by favoring alternative waypoints that lie close to previously selected alternative waypoints for the alternative waypoint costs $C_{awp} = \alpha \cdot |AC| + (1 - \alpha) \cdot |AB|$ with $|AC|$ being the distance of the alternative waypoint to the commanded waypoint and $|AB|$ being the distance from the alternative waypoint to the previously selected alternative waypoint. By computing more alternative trajectories in parallel, we want to increase the waypoint density in the future and thus further reduce jumps between individual alternatives. We also found that the horizontal and vertical dynamics of our MAV differ significantly. Therefore, we had to adjust the parameters of the spheroids during the experiments to be oblate (height \ll diameter) since the MAV strongly preferred vertical movement.

V. Conclusion

We have provided detailed insight into our robust trajectory generation framework. The viability of our approach has been demonstrated in simulation as well as in a real-world scenario during a real firefighting exercise.

In particular, the ability to analytically crop large point clouds, makes our method scale to larger and denser point

²www.ais.uni-bonn.de/videos/ssrr_2020_beul
clouds in the future. Due to the fast runtime, our method can run in real-time as MPC onboard the MAV, and it can react to obstacles, perceived with the lidar rate of 20 Hz. We showed that the ability to reject unskilled control inputs could help prevent crashes and thus increase the reliability of flying robots.

We believe that our contribution will make the operation of MAVs during rescue missions safer and more reliable.

REFERENCES

[1] G. J. M. Kruijff, I. Kruijff-Korbayová, S. Keshavadas, B. Larochelle, M. Janiček, F. Colas, M. Liu, F. Pomereleau, R. Siegwart, M. A. Nieuwenhuisen, R. Looije, N. J. M. Smets, T. Mioch, J. van Diggelen, P. Pirri, M. Gianni, F. Ferri, M. Memna, R. Worst, T. Linder, V. Tretjakov, H. Surmann, T. Svoboda, M. Reinstein, K. Zimmermann, T. Petříček, and V. Hlaváč, “Designing, developing, and deploying systems to support human-robot teams in disaster response,” Advanced Robotics, vol. 28, no. 23, pp. 1547–1570, 2014.

[2] M. Beul and S. Behnke, “Fast full state trajectory generation for multicopters,” in Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), 2017.

[3] J. Zhang, R. G. Chadha, V. Velivela, and S. Singh, “P-CAP: Precomputed alternative paths to enable aggressive aerial maneuvers in cluttered environments,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018.

[4] A. J. Barry, P. R. Florence, and R. Tedrake, “High-speed autonomous obstacle avoidance with pushbroom stereo,” Journal of Field Robotics (JFR), vol. 35, no. 1, pp. 52–68, 2018.

[5] I. Ulrich and J. Borenstein, “VFH+: Reliable obstacle avoidance for fast mobile robots,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 1998.

[6] D. Falanga, K. Kleber, and D. Scaramuzza, “Dynamic obstacle avoidance for quadrotors with event cameras,” Science Robotics, vol. 5, no. 40, 2020.

[7] M. Nieuwenhuisen, M. Schadler, and S. Behnke, “Predictive potential field-based collision avoidance for multicopters,” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Archives), vol. W2, no. XL-1, pp. 293–298, 2013.

[8] M. W. Mueller, M. Hehn, and R. D’Andrea, “A computationally efficient motion primitive for quadrocopter trajectory generation,” IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[9] B. Lindqvist, S. S. Mansouri, A. A. Agha-mohammadi, and G. Nikolakopoulos, “Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles,” IEEE Robotics and Automation Letters (RA-L), vol. 5, no. 4, 2020.

[10] B. T. Lopez and J. P. How, “Aggressive 3-D collision avoidance for high-speed navigation,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2017.

[11] M. Watterson and V. Kumar, “Safe receding horizon control for aggressive mav flight with limited range sensing,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015.

[12] M. Beul, D. Droeschel, M. Nieuwenhuisen, J. Quenzel, S. Houben, and S. Behnke, “Fast autonomous flight in warehouses for inventory applications,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2018.

[13] M. Beul and S. Behnke, “Analytical time-optimal trajectory generation and control for multicopters,” in Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), 2016.

[14] ——, “Fast time-optimal avoidance of moving obstacles for high-speed MAV flight,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019.

[15] M. Schwarz, M. Beul, J. Quenzel, S. Bultmann, P. Lowin, D. Pavlichenko, A. Rochow, R. A. Rosu, B. Scheider, D. Schleich, M. Schreiber, M. Splietker, F. Sükerkrub, and S. Behnke, “Team Nim-biko at MBZIRC 2020: Heterogeneous MAVs for solving challenging tasks,” Under Review at Journal of Field Robotics (JFR).

[16] M. Beul, S. Bultmann, A. Rochow, R. A. Rosu, D. Schleich, M. Splietker, and S. Behnke, “Visually guided balloon popping with an autonomous MAV at MBZIRC 2020,” in Proceedings of the IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), 2020.

[17] J. Białkowski, M. Otte, S. Karaman, and E. Frazzoli, “Efficient collision checking in sampling-based motion planning via safety certificates,” The International Journal of Robotics Research (IJRR), vol. 35, no. 7, pp. 767–796, 2016.