Urban Land: Study of Surface Run-off Composition and Its Dynamics

To cite this article: E D Palagin et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 262 012181

View the article online for updates and enhancements.

Related content
- Methodology of research for qualitative composition of municipal solid waste to select an optimal method of recycling
 M V Kravtsova and D A Volkov
- Surface wastewater in Samara and their impact on water basins as water supply sources
 Alexander Strelkov, Mikhail Shuvalov and Marina Gridneva
- A Hierarchical Object-oriented Urban Land Cover Classification Using WorldView-2 Imagery and Airborne LiDAR data
 M F Wu, Z C Sun, B Yang et al.
Urban Land: Study of Surface Run-off Composition and Its Dynamics

E D Palagin, M A Gridneva, P G Bykova
Water Supply and Wastewater Chair, Institute of Architecture and Civil Engineering, Samara State Technical University, 194, Molodogvardeyskaya St., Samara 443001, Russia

E-mail: palagined@mail.ru

Abstract. The qualitative composition of urban land surface run-off is liable to significant variations. To study surface run-off dynamics, to examine its behaviour and to discover reasons of these variations, it is relevant to use the mathematical apparatus technique of time series analysis. A seasonal decomposition procedure was applied to a temporary series of monthly dynamics with the annual frequency of seasonal variations in connection with a multiplicative model. The results of the quantitative chemical analysis of surface wastewater of the 22nd Partsjezd outlet in Samara for the period of 2004-2016 were used as basic data. As a result of the analysis, a seasonal pattern of variations in the composition of surface run-off in Samara was identified. Seasonal indices upon 15 waste-water quality indicators were defined. BOD (full), suspended materials, mineralization, chlorides, sulphates, ammonium-ion, nitrite-anion, nitrate-anion, phosphates (phosphorus), iron general, copper, zinc, aluminium, petroleum products, synthetic surfactants (anion-active). Based on the seasonal decomposition of the time series data, the contribution of trends, seasonal and accidental components of the variability of the surface run-off indicators was estimated.

1. Introduction
Surface waste water or surface run-off (SR) is a significant source of pollution into water bodies [1-11] and a factor reducing water quality of water supply sources [12,13].

2. Relevance
The city of Samara is urban land with a complete separate sewage system. Depending on the topography of the terrain, Samara is divided into 15 sewerage basins to collect and divert surface run-off from the territory of the city. To resolve the problem of polluted surface wastewater discharge from the territory of Samara in 2012, the Municipal program “Development of the rainwater drainage system of Samara for 2013-2022” [14] has been developed and approved. The implementation of a program is still underway. Currently, waste-disposal plants in the territory of Samara are local sewage treatment plants [15] owned by enterprises.

The change in the quality of surface wastewater is not stationary [16]. There are certain seasonal patterns [9,10] and internal interconnections in the drainage composition [16-20].

Let us consider the dynamics of changes in the quality of surface run-off in the last 12 years (from 2004 to 2016), taking "22nd Partsjezd" wastewater outlet in Samara as an example. The main trunk sewer of this wastewater outlet begins at the intersection of Antonov-Ovseenko and Karbyshev streets.
and goes along Antonov-Ovseenko and 22nd Partsjezd streets. There are side connections coming from the streets of Zaporozhskaya, Stavropolskaya, Svoboda, Pobeda, Krasnykh Kommunarov, Yuxhniy Proezd, Rylskaya, Zavodskoe Shosse along the main trunk sewer.

The total length of the main trunk sewer is 5285 m. The depth of the pipe bottom line is between 1.62 and 8.3 m. The diameter of the starting section of the trunk is 500 mm. The maximum diameter of the trunk at the release is 1600 mm. The estimated catchment area is 1707.43 hectares. The wastewater outlet length is 824.0 m. It is located 15.5 km from the mouth of the Samara river. The outlet is of a shore type, it is concentrated. The main pollutants of surface run-off are BOD (full), suspended substances and petroleum products [16]. The content of organic substances in the surface run-off (according to BOD full) at the beginning (the first third) of the period under review (see Figure 1) was sustainable enough. Then it increased almost twofold. There was also an increase in variations of concentration values.

The range of changes in the concentration of suspended substances in the period under review (see Figure 2) was mostly of constant average. In the last third part of the period the variability of the results became significantly lower. The average monthly values of the physico-chemical composition of wastewater in the outlet, calculated according to the quantitative chemical analysis (QCA) in 2004-2016 are shown in Table 1. For a whole range of indicators, waste water does not meet the standards of allowable discharge throughout the year or throughout its greater part. In addition, significant variations of indicators can also be observed.

3. Research Theory

Let us analyze these changes and discover their reasons. For the study of the dynamics of waste-water quality, it is relevant to use time series analysis techniques. A seasonal decomposition procedure was applied to a temporary series of monthly dynamics with the annual frequency of seasonal variations in connection with a multiplicative model.

To point out a deterministic component, an additive model was accepted.

\[x_t = d_t + c_t + s_t + \varepsilon_t \]

where \(x_t \) is a time series element; \(d_t \) is a deterministic component; \(c_t \) is an irregular component; \(t, r, +, c_t \) is a trend-cyclical component; \(s_t \) is a seasonal component; \(t = 1, ..., n \) are sequence numbers of the time series elements. The analysis revealed seasonal indices of 15 waste-water quality indicators (see Table 2). The "+" and "-" characters describe the direction of the change of concentration (increase or decrease). It is possible to conclude which groups of indicators have similar seasonal changes and in what time-periods these changes take place.

4. Research

Based on data from the seasonal decomposition of the time series, the contribution of each component to the overall variability of the indicators has been assessed (see Table 3). A simple moving average was used as a trend (trend-cyclical function).

An analysis of the obtained data shows that an accidental factor is the most important factor for all 15 indicators. It is about 72%. The trend of the process under consideration is approximately one fifth (21.1%) and the seasonal average is about 6.9% of the total variability of the indicators.

![Figure 1. Results of waste water QCA (BOD full).](image)
Figure 2. Results of waste water QCA (Suspended substances).

Table 1. Average monthly values of physico-chemical composition of wastewater at the outlet.

№	Name of the indicator	Average long-term values, mg/l
1	BOD total	8.24 5.67 7.43 6.58 5.50 5.58 9.72 5.88 5.62 6.80 9.14 6.42
2	Suspended substances	19.76 17.97 27.40 34.85 21.37 19.57 17.49 16.43 14.96 20.06 19.76 16.98
3	Mineralization	523.9 495.0 531.7 539.9 502.9 531.4 552.7 542.3 515.2 513.0 513.0 488.2 528.0
4	Chlorides	66.1 64.9 70.2 81.1 67.2 71.9 71.3 77.1 65.9 70.7 67.3 65.1
5	Sulphates	129.9 116.2 124.5 129.4 118.2 125.6 141.5 122.7 123.5 125.7 114.1 135.9
6	Ammonium ion	1.7680 1.6791 1.4909 1.4182 1.3879 1.7145 1.3558 1.1604 1.8800 1.5371 1.8127 1.6083
7	Nitrite-anion	0.1895 0.1386 0.1502 0.1458 0.2247 0.1490 0.2713 0.1632 0.1482 0.1807
8	Nitrate-anion	2.5640 2.2718 2.3736 2.5555 2.9908 3.2182 2.1725 3.5450 3.5564 2.2233 1.9855 2.4175
9	Phosphate (R)	0.1830 0.2042 0.2500 0.1946 0.1508 0.1713 0.1551 0.1684 0.1786 0.2058 0.1638
10	Iron Total	0.5720 0.5891 0.6409 1.1509 0.6483 0.5067 0.5396 0.4545 0.5408 0.5809 0.4325
11	Copper	0.0067 0.0060 0.0061 0.0124 0.0081 0.0057 0.0063 0.0052 0.0054 0.0066 0.0064
12	Zinc	0.0134 0.0116 0.0185 0.0295 0.0129 0.0106 0.0103 0.0123 0.0113 0.0124 0.0115
13	Aluminium	0.0233 0.0204 0.0284 0.0205 0.0309 0.0195 0.0301 0.0250 0.0150 0.0215 0.0183 0.0225
14	Petroleum products	0.1215 0.0795 0.1085 1.2529 0.0769 0.0705 0.0693 0.0958 0.1219 0.1201 0.1011 0.3015
15	Synthetic Surfactants	0.0772 0.0582 0.0742 0.0849 0.0694 0.0655 0.0717 0.0790 0.0660 0.0714 0.0654 0.0663

Table 2. Seasonal indices for waste-water quality indicators.

№	Name of the indicator	Average long-term values, mg/l
1	BOD total	2.7090 -1.1217 1.3176 -0.4916 -1.6058 -1.6294 -1.1319 -1.6294 -0.6711 2.5141 -1.4123
2	Suspended substances	2.1504 -2.6303 4.9220 13.2705 2.4925 0.2981 2.7098 -3.4058 -4.5932 0.3837 -0.9193 -4.9602
3	Mineralization	3.7315 29.3737 2.5497 15.2097 -16.6509 5.1642 37.5809 22.9786 -3.3812 -4.1615 35.9062 14.8195
4	Chlorides	1.3200 -5.1048 0.2494 11.0149 -2.7517 0.8070 1.4600 7.1392 -2.6801 -0.6949 -2.1839 -5.9351
5	Sulphates	1.7881 12.8468 5.9661 1.9546 -7.1100 1.8055 18.6392 -2.0191 5.3724 1.5612 11.3642 15.3816
6	Ammonium ion	0.3637 0.2732 0.0803 0.1947 -0.1635 0.2792 0.2163 -0.3686 0.2446 -0.3528 0.2917 -0.2366
7	Nitrite-anion	0.0203 -0.0314 0.0150 0.0194 -0.0248 0.0576 0.0298 -0.0032 0.1048 -0.0202 -0.0350 -0.0039
8	Nitrate-anion	0.5319 -0.3054 0.0189 0.0102 -0.0513 0.5633 0.4918 0.9784 1.3163 -0.4457 -0.6670 -0.1073
9	Phosphate (R)	0.0058 0.0511 0.0893 0.0148 -0.0246 -0.2048 0.0254 0.0001 -0.0227 0.0183 -0.0331
10	Iron Total	0.0431 -0.0246 0.0107 0.4968 0.0704 0.3046 0.1983 -0.0630 -0.1602 -0.3506 0.1012 -0.1621
11	Copper	0.0004 -0.0007 0.0008 0.0046 0.0016 0.0010 0.0004 0.0003 -0.0016 -0.0011 0.0000 -0.0003
12	Zinc	0.0008 -0.0022 0.0058 0.0121 -0.0010 0.0016 0.0034 -0.0025 -0.0029 -0.0020 0.0005 -0.0021
13	Aluminium	0.0007 -0.0017 0.0034 0.0003 0.0086 0.0022 0.0057 0.0001 -0.0008 -0.0028 -0.0024 -0.0016
14	Petroleum products	0.0850 -0.1124 0.0899 0.8677 -0.1062 0.1230 0.1225 -0.1235 -0.0940 -0.0629 -0.8166 0.1334
15	Synthetic Surfactants	0.0063 -0.0142 0.0059 0.0125 -0.0005 0.0058 0.0005 0.0073 0.0035 -0.0069 0.0008 -0.0095
Table 3. Indicators of seasonal decomposition of variability time series.

№№	Name of the indicator	Components Contribution (%) to the variability of surface runoff indicators			
		Trend	Seasonal	Accidental	Deterministic
1	BOD total	19.3	7.4	73.3	26.7
2	Suspended materials	16.2	8.8	74.9	25.1
3	Mineralization	14.3	5.5	80.2	19.8
4	Chlorides	34.1	5.5	60.4	39.6
5	Sulphates	35.8	7.0	57.2	42.8
6	Ammonium ion	42.5	6.3	51.2	48.8
7	Nitrite-anion	15.8	12.8	71.4	28.6
8	Nitrate-anion	26.9	10.8	62.3	37.7
9	Phosphates (phosphorus)	20.9	8.3	70.8	29.2
10	Iron Total	11.3	8.4	80.3	19.7
11	Copper	11.1	4.6	84.2	15.8
12	Zinc	11.2	5.2	83.6	16.4
13	Aluminium	31.5	3.7	64.8	35.2
14	Petroleum products	7.3	5.5	87.2	12.8
15	Synthetic surfactants anion-active	19.4	3.2	77.4	22.6
	Average:	21.1	6.9	72.0	28.0

Paper [16] considered averaged data of 12 wastewater outlets. The values of individual components (trend – seasonal – accidental) according to that research equaled 11%-34%-55% for BOD (full); 10%-42%-48% for suspended materials; 8%-70%-22% for petroleum products. In this study, the ratio of these components changed. The role of trend and accident components increased for BOD (full) and for suspended materials and a seasonal factor decreased significantly (about 4.5–5 times).

The situation changed dramatically for petroleum products. The role of trend remained the same, the role of the seasonal factor dropped down to 5.5%, and the role of the accident factor rose to 87.2%. In general, a deterministic component accounts for less than 50% (about 28%) of variability of surface run-off.

5. Conclusions

For the first time, a time series analysis upon 15 waste-water quality indicators has been used to assess the quality of surface wastewater of urban land. The contribution of each component to the variability of surface run-off has been determined. It is proved that the quality of surface wastewater shows seasonal variations. The contribution of a seasonal factor to the variability of individual indicators is 3.2% to 12.8% (6.9% at an average). The contribution of the trend varies from 7.3% (for petroleum products) to 31.5% (for aluminium) and is 21.1% at an average. The proportion of the accident factor is also assessed. The accident factor contributes to the variability of all the indicators to the greatest extent and comes up to 87.2% (for petroleum products). Concentrations of ammonium nitrogen (51.2%), sulphates (57.2%) and chlorides (60.4%) are least prone to the accident factor influence. The same indicators are also affected by the trend.

References

[1] Bykova P G, Strelkov A K, Palagin E D and Kondrina E E 2010 The quality of surface water coming from the city of Samara to Saratov reservoir and the Samara river Traditions and innovations in architecture and civil engineering 67th All-Russia Scientific Practical Technical Conf Proc (Samara) pp 567–9

[2] Kichigin V I, Palagin E D, Ponomareva Y P 2006 Environmental management and environmental impact of economic sectors Human survival prob. in the tech. environment of
modern cities: works of the 11th All Cong. on Ecology and Health (Samara) pp 116–7

[3] Kichigin V I and Palagin E D 2005 Modelling of water pollution by surface run-off (Samara: SGASU) p 270

[4] Strelkov A K and Gridneva M A 2011 Techno-economic and environmental analysis of the effectiveness of technical solutions for the protection of watercourses from pollution Traditions and innovations in architecture and civil engineering 68th All-Russia Scientific Practical Technical Conf Proc (Samara) p 438

[5] Strelkov A K, Shuvalov M V, Shuvalov S V and Gridneva M A 2008 Water-discharge crossing point Water Mag. 6 p 26

[6] Strelkov A K, Gridneva M A, Dremina E V and Nabok T U 2011 Designing regulatory reservoirs in the rainwater sewer systems Traditions and innovations in architecture and civil engineering 68th All-Russia Scientific Practical Technical Conf Proc (Samara) pp 436–7

[7] Strelkov A K, Gridneva M A, Dremina E V and Nabok T U 2011 Systems and facilities for rain water disposal Traditions and innovations in architecture and civil engineering 68th All-Russia Scientific Practical Technical Conf Proc (Samara) pp 435–6

[8] Strelkov A K and Gridneva M A 2008 Determining the best relations in the design of rainwater waste-disposal plants and regulatory reservoirs Traditions and innovations in architecture and civil engineering 65th All-Russia Sc. Practical Technical Conf Proc (Samara) pp 406–7

[9] Strelkov A K, Gridneva M A and Bikbaeva G M 2010 Determining the optimal surface run-off purification scheme Traditions and innovations in architecture and civil engineering 67th All-Russia Scientific Practical Technical Conf Proc (Samara) pp 624–6

[10] Palagin E D and Tsypin A V 2014 Some features of the calculation of different surface run-off management schemes Traditions and innovations in architecture and civil engineering 71th All-Russia Scientific Practical Technical Conf Proc (Samara) pp 763–5

[11] Palagin E D, Bykova P G, Pakhomova U M 2011 Research of the main patterns of variation in the quality of surface wastewaters of Samara Vest. SGASU Town Plan. & Arc. J. 2 pp 80–2

[12] Strelkov A K, Shuvalov M V and Gridneva M A 2015 Samara surface waste water and its impact on water sources, such as water supply Sc. Surv. 3

[13] Bykova P G and Palagin E D 2012 Factors in water supply sources quality reduction Traditions and innovations in architecture and civil engineering 69th All-Russia Scientific Practical Technical Conf Proc (Samara) pp 204–6

[14] Bykova P G and Palagin E D 2012 The concept of the "Development of the rainwater drainage system of Samara" target program Traditions and innovations in architecture and civil engineering 69th All-Russia Scientific Practical Technical Conf Proc (Samara) pp 246–7

[15] Palagin E D, Bykova P G and Pakhomova U M 2012 Surface wastewater purification at local sewage treatment facilities Traditions and innovations in architecture and civil engineering 69th All-Russia Scientific Practical Technical Conf Proc (Samara) pp 249–50

[16] Palagin E D, Gridneva M A, Bykova P G and Nabok T U 2013 Regularities of change in the composition of surface wastewater Water Del. & Sanit. Eng. 8 pp 56–60

[17] Palagin E D, Bykova P G and Pakhomova U M 2011 Analysing seasonal variability of the contents of BOD, suspended substances and petroleum products in surface run-off Vestnik SGASU Town Plan. & Arc. Jour. 4 pp 57–59

[18] Palagin E D, Bykova P G and Pakhomova U M 2011 On the effects of seasonal factors on the content of suspended substances, BOD and petroleum products in surface run-off Traditions and innovations in architecture and civil engineering 68th All-Russia Scientific Practical Technical Conf Proc. (Samara) pp 567–9

[19] Palagin E D, Bykova P G and Pakhomova U M 2011 Analysing regularities of variation in the quality of surface wastewater in Samara Vestnik SGASU Town Plan. & Arc. Jour. 2 pp 80–82

[20] Palagin E D, Bykova P G and Pakhomova U M 2011 Analyzing regularities of quality composition formation of surface wastewater Traditions and innovations in architecture and civil engineering 68th All-Russia Scientific Practical Technical Conf Proc (Samara) pp 771–4