Speckle tracking echocardiography to assess regional ventricular function in patients with apical hypertrophic cardiomyopathy

María Cristina Saccheri, Tomás Francisco Cianciulli, Luis Alberto Morita, Ricardo José Méndez, Martín Alejandro Beck, Juan Enrique Guerra, Alberto Cozzarin, Luciana Jimena Puente, Lorena Romina Balletti, Jorge Alberto Lax

AIM
To explore regional systolic strain of midwall and endocardial segments using speckle tracking echocardiography in patients with apical hypertrophic cardiomyopathy (HCM).

METHODS
We prospectively assessed 20 patients (mean age 53 ± 16 years, range: 18-81 years, 10 were male), with apical HCM. We measured global longitudinal peak systolic strain (GLPSS) in the midwall and endocardium of the left ventricle.

RESULTS
The diastolic thickness of the 4 apical segments was 16.25 ± 2.75 mm. All patients had a normal global systolic
function with a fractional shortening of 50% ± 8%. In spite of supernormal left ventricular (LV) systolic function, midwall GLPPS was decreased in all patients, more in the apical (-7.3% ± -8.8%) than in basal segments (-15.5% ± -6.93%), while endocardial GLPPS was significantly greater and reached normal values (apical: -22.8% ± -7.8%, basal: -17.9% ± -7.5%).

CONCLUSION
This study shows that two-dimensional strain was decreased mainly confined to the mesocardium, while endocardium myocardial deformation was preserved in HCM and allowed to identify subclinical LV dysfunction. This transmural heterogeneity in systolic strain had not been previously described in HCM and could be explained by the distribution of myofibrillar disarray in deep myocardial areas. The clinical application of this novel finding may help further understanding of the pathophysiology of HCM.

Key words: Apical hypertrophic cardiomyopathy; Two-dimensional strain; Speckle tracking; Endocardium; Mid-wall; Regional myocardial systolic function

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: In this study we prospectively assessed 20 patients with apical hypertrophic cardiomyopathy (HCM) in which we used speckle tracking echocardiography for measuring global longitudinal peak systolic strain in the midwall and endocardium of the left ventricle. We showed that two-dimensional strain was decreased mainly confined to the mesocardium, while endocardial deformation was preserved. This finding allowed to identify subclinical left ventricular systolic dysfunction. This transmural heterogeneity in systolic strain had not been previously described in HCM and could be explained by the distribution of myofibrillar disarray in deep myocardial areas. The clinical application of this novel finding may help further understanding of the pathophysiology of HCM.

Saccheri MC, Cianciulli TF, Morita LA, Méndez RJ, Beck MA, Guerra JE, Cozzarin A, Puente LJ, Balletti LR, Lax JA. Speckle tracking echocardiography in HCM. World J Cardiol 2017; 9(4): 363-370. Available from: URL: http://www.wjgnet.com/1949-8462/full/v9/i4/363.htm DOI: http://dx.doi.org/10.4330/wjc.v9.i4.363

INTRODUCTION
Hypertrophic cardiomyopathy (HCM) is a genetic disease transmitted with an autosomal dominant pattern, where-by the direct relatives of affected subjects carry 50% chances of having the disease[1]. Its prevalence in the general population is 0.2% and it is frequent cause of sudden cardiac death in patients younger than age 30, including athletes. The annual mortality rate is 1%, but may be as high as 6% during childhood and adolescence; of note, sudden death may be the first symptom of disease[2]. It is a heterogeneous disease in its clinical as well as genetic aspects, characterized by the presence of primary left ventricular hypertrophy (LVH), with variable clinical expression and outcome[3], and caused by genetic mutations that lead to abnormal sarcomeric proteins[4].

In patients with complete phenotypic expression, characteristic findings are: Hypertrophy, myofibrillar disarray, interstitial fibrosis and microvascular dysfunction, all of which contribute to the progression to heart failure, ventricular arrhythmias and sudden death. Recent studies with MRI have shown that many patients with HCM have multiple areas of myocardial fibrosis, even with normal LV ejection fraction[5].

Epicardial coronary arteries in patients with HCM are usually normal, but coronary flow reserve is diminished due to narrowing of the small intramyocardial arteries[6]. This microvascular ischemia is one of the factors resulting in LV diastolic dysfunction, which in turn is the main functional consequence of this disease.

Although patients with HCM have a normal ejection fraction, studies with Doppler tissue imaging have documented a regional systolic dysfunction in the longitudinal fibers of the LV[7-10].

Regional LV function may be assessed non-invasively by measuring strain or systolic deformation. Initially, strain calculated with colour tissue Doppler proved to be a useful and sensitive tool to detect early systolic function abnormalities in patients with HCM[11]. However, its clinical application proved to be hindered by the complexity of data collection and limited reproducibility.

Recently, a method derived from the two-dimensional (2-D) echocardiogram, called “speckle tracking” of 2-D strain, has been developed to measure systolic strain[12]. The goal of this study was to assess the abnormalities of global and regional systolic LV function using 2-D strain in patients with apical HCM.

MATERIALS AND METHODS
Population
The study has a cross-sectional design and included 20 patients with apical HCM who were being followed at our tertiary referral center. Using a retrospective methodology, 2-D strain was measured in 340 myocardial segments.

The diagnostic criteria for apical HCM included demonstration of asymmetric left ventricular hypertrophy (LVH), confined predominantly to the LV apex with an apical wall thickness > 15 mm, a ratio of maximal apical to posterior wall thickness >1.5[13], and a “spade shape” deformity of the left ventricle with apical cavity obliteration in end-systole based on 2-D echocardiography.

Inclusion criteria were: HCM with apical involvement, non-dilated LV, normal global and regional systolic LV function, normal blood pressure, sinus rhythm, absence of comorbidities and without history of hypertension.
Noninvasive evaluation of global and regional systolic LV function was done by calculation of LV ejection fraction and visual judgement of segmental function from 2-D echocardiographic images.

Exclusion criteria were obesity, poor echocardiographic window, concomitant diseases that could cause ventricular hypertrophy or abnormal systolic or diastolic function (hypertension, diabetes, coronary heart disease, valve disease, cardiomyopathy, pericardial disease, congenital heart disease or systemic disease).

The study was approved by the Education and Research Committee and the Ethics Committee of the "Dr. Cosme Argerich" Hospital. All patients signed the informed consent form, including the authorization to use the data collected for future studies.

Echocardiographic measurements
Standard echocardiographic examinations were performed in all patients using a Vivid Seven digital ultrasound system (GE Medical System, Hotern, Norway). Cardiac cycles were stored in digital, cineloop format for off-line analysis performed by two independent observers (TFC and JAL) with a dedicated software package (EchoPAC PC, version 108.1.5).

Both parasternal long- and short-axis views were analyzed. The M-mode echo was derived from the parasternal short-axis at the papillary muscle level, and the following measurements were obtained according to the American and European Societies of Echocardiography: LV end-diastolic diameter (EDD), LV end-systolic diameter (ESD), interventricular septum and posterior LV wall thickness, and end-systolic left atrial diameter. Ejection fraction was measured by Simpson method. Continuous Doppler from the apical 5-chamber view was used to rule out the presence of a dynamic subaortic gradient.

Measurement of 2-D strain
2-D strain is a novel non-Doppler-based method to evaluate strain from standard 2-D acquisitions. By tracing the endocardial contour on an end-systolic frame, the software will automatically track the contour on subsequent frames. Adequate tracking can be verified in real-time and corrected by adjusting the region of interest (ROI) or manually correcting the contour to ensure optimal tracking. A minimum frame rate of 30 Hz was required for reliable operation of this program and frame rates of 30 to 80 Hz were used for routine gray scale imaging. 2-D longitudinal strains were assessed in 2 orthogonal apical views (4- and 2-chambers, 17 segments) starting from the septal, posterior and the inferior atrioventricular wall junction, respectively. The 2-D strain software adequately tracked > 85% of the attempted segments.

The ROI was reduced and shifted to the endocardium to obtain the parametric image, which allowed quantifying strain in each of the 17 segments of the LV as a "bull’s eye" (Figure 1A and B), the mean value of peak global systolic strain and strain in the 3 apical views. Later, the ROI was shifted to the endocardium to obtain...
we used the Wilcoxon or Signed Rank Test. All P values < 0.05 were considered statistically significant. Statistical analyses were performed with Statistix 7.0 software for Windows.

RESULTS

The clinical and echocardiographic characteristics of patients with apical HCM are summarized in Table 1. No patient was receiving medication at the time of inclusion in this study.

All patients exhibited apical hypertrophy, (the diastolic thickness of the 4 apical segments is described in Table 1). All patients had a normal ejection fraction (69% ± 5%).

A total of 20 patients with apical HCM were assessed and 340 myocardial segments were analyzed; midwall longitudinal peak systolic strain (LPSS) was measured and compared to endocardial LPSS (Table 2 and Figure 4). We confirmed that, in spite of a supernormal systolic LV function, midwall GLPSS exhibited a diminished percent of strain, which was more marked in the apical than in basal segments. By contrast, endocardial GLPSS was significantly higher and reached normal values.

Midwall GLPSS in the basal segments (Table 3) was lower than the endocardial GLPSS, but without significant differences (-15.5% ± -6.93% vs -17.9% ± -7.5%, P...
In patients with HCM, Popović et al. have shown that 2-D strain was lower in patients whose MRI showed myocardial fibrosis than in patients without fibrosis, but they did not analyze whether longitudinal strain had greater hypertrophy. In patients with HCM, Popović et al. have shown that 2-D strain was lower in patients whose MRI showed myocardial fibrosis than in patients without fibrosis, but they did not analyze whether longitudinal strain had.
transmural heterogeneity, as shown in our study.

The normal LV contracts longitudinally in systole and also radially. The array of myocardial fibers in the ventricular wall is quite unique; endocardial and subepicardial fibers align longitudinally, in a spiral shape, and midwall fibers are aligned circumferentially. This latter group is responsible for the radial contraction in the minor axis of the LV (similar to the movement of the bellows of an accordion), while the former cause longitudinal contraction similar to the movement of a piston. This fiber orientation is so efficient that a 15%-20% reduction in the myocite's length can result in a 40%-60% radial wall thickening, thus allowing the LV to achieve an ejection fraction of 60%.

In patients with apical HCM, longitudinal midwall strain allowed to identify subclinical global systolic dysfunction, with a lower intra and interobserver variability than for strain derived from colour tissue Doppler.

In our study of 20 patients with apical HCM, we analyzed 340 myocardial segments with midwall LPSS and compared it to endocardial LPSS. We confirmed that although systolic ventricular function was supernormal, midwall GLPSS exhibited a decrease in the percent of strain, more evident in apical than in medial segments, whereas endocardial GLPSS was significantly greater, and reached normal values. These findings indicate that in spite of the apical ventricular hypertrophy with excellent ejection fraction parameters, there is subclinical abnormality in midwall strain, while endocardial function is preserved. An explanation for this phenomenon could be that myofiber disarray and interstitial fibrosis are mostly located in the mid third of the ventricular wall.

This particular distribution of histological abnormalities in apical HCM also explains why endomyocardial biopsy does not reach the myocardium with fiber disarray and interstitial fibrosis.

Study limitations

One limitation of this study is that we only measured longitudinal strain. It is possible that measurement of radial and circumferential strain will add useful information to the data obtained in this work. 2-D strain is a sensitive method to measure myocardial strain, but it is very much dependent on echo image quality, and in patients with necrotic scars strain may be measured in 80% of segments analyzed. Such limitation is not applicable to our population, since the presence of LVH helps in obtaining a good quality image.

Another limitation is that the ROI of speckle tracking method cannot be diminished more than 10 mm. The most patients did not exhibit hypertrophy of the basal segments; hence, further midwall strain overlapped with endocardial strain, which might explain the smaller difference between them.

In conclusion, this study shows that 2-D strain assessed by ‘speckle tracking’ is a sensitive method to detect subclinical systolic LV dysfunction. When
midwall and endocardial strain values were compared, we confirmed that the decrease in strain was confined to the midwall, while endocardial myocardial function was preserved. This transmural heterogeneity of systolic deformity in apical HCM has not been previously described. A possible explanation could be that myofibrillar disarray and interstitial fibrosis are distributed in deeper areas of the myocardium. The clinical application of this new finding may help in the pathophysiological interpretation of HCM.

Future studies, with more subjects, will allow assessing whether patients with greater change in midwall strain may be at higher risk for ventricular arrhythmias, sudden death or progression to heart failure due to systolic dysfunction. Additionally, the method could help in evaluating the benefit of conventional treatment and new therapeutic strategies.

ACKNOWLEDGMENTS

We would like to thank Ing. Ariel Desseno (General Electric) for his technical assistance.

COMMENTS

Background

Hypertrophic cardiomyopathy (HCM) is associated with normal left ventricular (LV) ejection fraction and impaired LV strain, but there are no studies so far comparing midwall and endocardial strain.

Research frontiers

The diagnostic criteria for apical HCM included demonstration of asymmetric left ventricular hypertrophy (LVH), confined predominantly to the LV apex with an apical wall thickness > 15 mm, a ratio of maximal apical to posterior wall thickness > 1.5, and a “spade shape” deformity of the left ventricle with apical cavity obliteration in end-systole based on 2-D echocardiography.

Innovations and breakthroughs

This study shows that two-dimensional strain assessed by “speckle tracking” is a sensitive method to detect subclinical systolic LV dysfunction. When midwall and endocardial strain values were compared, the authors confirmed that the decrease in strain was confined to the midwall, while endocardial myocardial function was preserved. This transmural heterogeneity of systolic deformity in apical HCM has not been previously described. A possible explanation could be that myofibrillar disarray and interstitial fibrosis are distributed in deeper areas of the myocardium. The clinical application of this new finding may help in the pathophysiological interpretation of HCM.

Applications

Two-dimensional strain is a novel non-Doppler-based method to evaluate strain from standard two-dimensional acquisitions. By tracing the endocardial contour on an end-systolic frame, the software will automatically track the contour on subsequent frames. Two-dimensional longitudinal strains were assessed in 2 orthogonal apical views (4- and 3-2-chambers, 17 segments). The region of interest (ROI) was reduced and shifted to the mesocardium to quantify strain in each of the 17 segments. Two-dimensional longitudinal strains were assessed in 2 orthogonal apical views (4- and 3-2-chambers, 17 segments). The region of interest (ROI) was reduced and shifted to the mesocardium to quantify strain in each of the 17 segments.

Peer-review

The study by Saccheri et al reports the data obtained by speckle tracking echocardiography in patients with apical hypertrophic cardiomyopathy. The authors show that two-dimensional strain is able to identify subclinical systolic left ventricular dysfunction in this patient population. The manuscript is interesting and well written.

REFERENCES

1. Navarro-López F. [Hypertrophic cardiomyopathy. Genetic basis and clinical implications]. Rev Esp Cardiol 2004; 57 Suppl 1: 22-32 [PMID: 15511386]
2. García-Castro M, Reguero JR, Batalla A, Catalán F, Mayordomo J, Coto E. [Direct detection of malignant mutations in patients with hypertrophic cardiomyopathy]. Rev Esp Cardiol 2003; 56: 1022-1025 [PMID: 14563299]
3. Maron BJ. Hypertrophic cardiomyopathy. Lancet 1997; 350: 127-133 [PMID: 9228976 DOI: 10.1016/S0140-6736(97)01282-8]
4. McKenna WJ, Coccolo F, Elliott PM. Genes and disease expression in hypertrophic cardiomyopathy. Lancet 1998; 352: 1162-1163 [PMID: 9777827 DOI: 10.1016/S0140-6736(98)00033-6]
5. Choudhury L, Mahroholt H, Wagner A, Choi KM, Elliott MD, Klocce FJ, Bonow RO, Judd RM, Kim RJ. Myocardial scaring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2002; 40: 2156-2164 [PMID: 12505229 DOI: 10.1016/S0735-1097(02)02602-5]
6. Lim DS, Roberts R, Marian AJ. Expression profiling of cardiac genes in human hypertrophic cardiomyopathy: insight into the pathogenesis of phenotypes. J Am Coll Cardiol 2001; 38: 1175-1180 [PMID: 11583900 DOI: 10.1016/S0735-1097(01)0599-1]
7. Tabata T, Oki T, Yamada H, Abe M, Onose Y, Thomas JD. Subendocardial motion in hypertrophic cardiomyopathy: assessment from long- and short-axis views by pulsed tissue Doppler imaging. J Am Soc Echocardiogr 2000; 13: 108-115 [PMID: 10668013]
8. Vinereau D, Florescu N, Sculthorpe N, Tweddell AC, Stephens MR, Fraser AG. Differentiation between pathologic and physiologic left ventricular hypertrophy by tissue Doppler assessment of long-axis function in patients with hypertrophic cardiomyopathy or systemic hypertension and in athletes. Am J Cardiol 2001; 88: 53-58 [PMID: 11423058]
9. Saccheri MC, Cianciulli TF, Konopka IV, Vilika Ansoerea J, Serans DF, Acunzo RS, Redruello HJ, Prezioso HA. Evaluación de la función miocárdica regional con Doppler tisular en los 3 tipos más frecuentes de miocardiopatia hipertrófica. Rev Argent Cardiol 2005; 73 (Supl 2): 127
10. Saccheri MC, Cianciulli TF, Las JA, Guerra J, Redruello HJ, Reich Glogier F, Gagliardi JA, Dorelle AN, Prezioso HA. Evaluación de la función miocárdica regional con Doppler tisular en los 3 tipos más frecuentes de miocardiopatia hipertrófica. Rev Argent Cardiol 2005; 73 (Supl 2): 127
11. Lim DS, Roberts R, Marian AJ. Expression profiling of cardiac genes in human hypertrophic cardiomyopathy: insight into the pathogenesis of phenotypes. J Am Coll Cardiol 2001; 38: 1175-1180 [PMID: 11583900 DOI: 10.1016/S0735-1097(01)0599-1]
12. Slevin M, Lysyansky P, Sidenko S, Shir V, Peleg E, Benenbaum M, Kaluski E, Krakover R, Vered Z. Two-dimensional strain—a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 2000; 26: 657-664 [PMID: 15954814 DOI: 10.1111/j.1540-8175.2008.00871.x]
13. Yang H, Sun JP, Lever HM, Popovic ZB, Drisko JK, Greenberg NL, Shiota T, Thomas JD, Garcia M. Use of strain imaging in detecting segmental dysfunction in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr 2003; 16: 233-239 [PMID: 12618731 DOI: 10.1067/mje.2003.60]
14. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Benenbaum M, Kaluski E, Krakover R, Vered Z. Two-dimensional strain—a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 2004; 17: 1021-1029 [PMID: 15452466 DOI: 10.1016/j.echo.2004.06.019]
15. Webb JG, Sasson Z, Rakowski H, Liu P, Wagle ED. Apical hypertrophic cardiomyopathy: clinical follow-up and diagnostic correlates. J Am Coll Cardiol 1990; 15: 83-90 [PMID: 2295747]
16. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J, Solomon S, Spencer KF, ST John Sutton M, Stewart W; American Society of Echocardiography’s Nomenclature and Standards Committee; Task Force on Chamber Quantification; American College of Cardiology Echocardiography Committee; American Heart Association; European Association of Echocardiography, European Society of Cardiology. Recommendations for chamber quantification. Eur J Echocardiogr 2006; 7: 79-108 [PMID: 16458610 DOI: 10.1016/j.euje.2005.12.014]
17. Marwick TH, Leano RL, Brown J, Sun JP, Hoffmann R, Lysyansky
Saccheri MC et al. Speckle tracking echocardiography in HCM

P, Becker M, Thomas JD. Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging 2009; 2: 80-84 [PMID: 19356538 DOI: 10.1016/j.jcmg.2007.12.007]

16 Prieto L, Lamarca R, Casado A. [Assessment of the reliability of clinical findings: the intraclass correlation coefficient]. Med Clin (Barc) 1998; 110: 142-145 [PMID: 9541905]

17 Popović ZB, Kwon DH, Mishra M, Buakhamtri A, Greenberg NL, Thamilarasan M, Flamm SD, Thomas JD, Lever HM, Desai MY. Association between regional ventricular function and myocardial fibrosis in hypertrophic cardiomyopathy assessed by speckle tracking echocardiography and delayed hypoenhancement magnetic resonance imaging. J Am Soc Echocardiogr 2008; 21: 1299-1305 [PMID: 19041572 DOI: 10.1016/j.echo.2008.09.011]

18 Afonso LC, Bernal J, Bax JJ, Abraham TP. Echocardiography in hypertrophic cardiomyopathy: the role of conventional and emerging technologies. JACC Cardiovasc Imaging 2008; 1: 787-800 [PMID: 19356516 DOI: 10.1016/j.jcmg.2008.09.002]

19 Saccheri MC, Cianciulli TF, Beck MA, Lax JA, Dorelle AN, Chazarreta EL, Prezioso HA, Vidal LA. Strain bidimensional en las miocardiopatías hipertróficas. Rev Argent Cardiol 2009; 77 (Sup 2): 121

20 The Endomyocardial biopsy: Techniques and role in diagnosis of heart diseases. In: Cardiovascular Pathology. Virmany R, Burke A, Farb A, Atkinson JB. Second Edition. Volume 40 in the serie: Major problems in pathology. WB: Saunders Company, 2001: 301-302

21 Phadke RS, Vaideeswar P, Mittal B, Deshpande J. Hypertrophic cardiomyopathy: an autopsy analysis of 14 cases. J Postgrad Med 2001; 47: 165-170 [PMID: 11832616]

22 Tazelaar HD, Billingham ME. The surgical pathology of hypertrophic cardiomyopathy. Arch Pathol Lab Med 1987; 111: 257-260 [PMID: 3827529]

23 Shirani J, Pick R, Roberts WC, Maron BJ. Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. J Am Coll Cardiol 2000; 35: 36-44 [PMID: 10636256]

24 Hauck AD, Edwards WD. Histopathologic examination of tissue obtained by endomyocardial biopsy. In: Fowles RE. Cardiac biopsy. Mount Kisco: Futura Publishing CO, 1992: 95-153

P- Reviewer: De Ponti R, Kettering K, Vermeersch P
S- Editor: Song XX L- Editor: A E- Editor: Lu YJ
