Buchholz, Simon
Phase transitions for a class of gradient fields. (English) [Zbl 1467.82031]
Probab. Theory Relat. Fields 179, No. 3-4, 969-1022 (2021).

Summary: We consider gradient fields on \mathbb{Z}^d for potentials V that can be expressed as

$$e^{-V(x)} = pe^{-\frac{q x^2}{2}} + (1-p)e^{-\frac{x^2}{2}}.$$

This representation allows us to associate a random conductance type model to the gradient fields with zero tilt. We investigate this random conductance model and prove correlation inequalities, duality properties, and uniqueness of the Gibbs measure in certain regimes. We then show that there is a close relation between Gibbs measures of the random conductance model and gradient Gibbs measures with zero tilt for the potential V. Based on these results we can give a new proof for the non-uniqueness of ergodic zero-tilt gradient Gibbs measures in dimension 2. In contrast to the first proof of this result we rely on planar duality and do not use reflection positivity. Moreover, we show uniqueness of ergodic zero-tilt gradient Gibbs measures for almost all values of p and q and, in dimension $d \geq 4$, for q close to one or for $p(1-p)$ sufficiently small.

MSC:
82B26 Phase transitions (general) in equilibrium statistical mechanics
82B05 Classical equilibrium statistical mechanics (general)
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
60K37 Processes in random environments

Keywords:
gradient Gibbs measures; phase transitions; random conductance model

Full Text: DOI arXiv

References:
[1] Adams, S., Buchholz, S., Kotecký, R., Müller, S.: Cauchy-born rule from microscopic models with non-convex potentials. arXiv preprint arXiv:1910.13564v1 (2019)
[2] Adams, S., Kotecký, R., Müller, S.: Strict convexity of the surface tension for non-convex potentials. arXiv preprint arXiv:1606.09541 (2016)
[3] Armstrong, S.; Kuusi, T.; Mourrat, J-C, Quantitative Stochastic Homogenization and Large-Scale Regularity, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2019), Cham: Springer, Cham - Zbl 1482.60001
[4] Benjamini, I.; Lyons, R.; Peres, Y.; Schramm, O., Uniform spanning forests, Ann. Probab., 29, 1, 1-65 (2001) - Zbl 1016.60009 · doi:10.1214/aop/1008956321
[5] Billingsley, P., Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics (1999), New York: Wiley, New York - doi:10.1002/9780470316962
[6] Biskup, M.; Kotecký, R., Phase coexistence of gradient Gibbs states, Probab. Theory Relat. Fields, 139, 1-2, 1-39 (2007) - Zbl 1120.82003 · doi:10.1007/s00440-006-0013-6
[7] Biskup, M.; Spohn, H., Scaling limit for a class of gradient fields with nonconvex potentials, Ann. Probab., 39, 1, 224-251 (2011) - Zbl 1222.60076 · doi:10.1214/10-AOP548
[8] Brascamp, HJ; Lieb, EH, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal., 22, 4, 366-389 (1976) - Zbl 0334.26009 · doi:10.1016/0022-1236(76)90004-5
[9] Brydges, DC; Spencer, T., Fluctuation estimates for sub-quadratic gradient field actions, J. Math. Phys., 53, 9, 095216, 5 (2012) - Zbl 1278.82057 · doi:10.1063/1.4747194
[10] Buchholz, S.: Renormalisation in discrete elasticity. Dissertation, University of Bonn (2019)
[11] Cotar, C.; Deuschel, J-D, Decay of covariances, uniqueness of ergodic component and scaling limit for a class of ∇ nabla
\(\nabla \phi \) systems with non-convex potential, Ann. Inst. Henri Poincaré Probab. Stat., 48, 3, 819-853 (2012) · Zbl 1247.60133 · doi:10.1214/11-AIHP437

[12] Cotar, C.; Deuschel, J-D; Müller, S., Strict convexity of the free energy for a class of non-convex gradient models, Commun. Math. Phys., 286, 1, 359-376 (2009) · Zbl 1173.82010 · doi:10.1007/s00220-008-0659-2

[13] Delmotte, T., Inégalité de Harnack elliptique sur les graphes, Colloq. Math., 72, 1, 19-37 (1997) · Zbl 0871.31008 · doi:10.4064/cm-72-1-19-37

[14] Delmotte, T.; Deuschel, J-D, On estimating the derivatives of symmetric diffusions in stationary random environment, with applications to \(\langle \nabla \nabla \phi \rangle \) interface model, Probab. Theory Relat. Fields, 133, 3, 358-390 (2005) · Zbl 1083.60082 · doi:10.1007/s00440-005-0340-7

[15] Deuschel, J-D; Nishikawa, T.; Vignaud, Y., Hydrodynamic limit for the Ginzburg-Landau \(\langle \nabla \nabla \phi \rangle \) interface model with non-convex potential, Stoch. Process. Appl., 129, 3, 924-953 (2019) · Zbl 1407.60012 · doi:10.1016/j.spa.2018.03.025

[16] Devroye, L., Mehrabian, A., Reddad, T.: The total variation distance between high-dimensional Gaussians. arXiv preprint arXiv:1810.08693 (2018)

[17] Duminil-Copin, H., Lectures on the Ising and Potts Models on the Hypercubic Lattice, Random Graphs, Phase Transitions, and the Gaussian Free Field. Springer Proceedings in Mathematics and Statistics, 35-161 (2020), Cham: Springer, Cham · Zbl 1447.82007

[18] Duminil-Copin, H.; Raoufi, A.; Tassion, V., Sharp phase transition for the random-cluster and Potts models via decision trees, Ann. Math. (2), 189, 1, 75-99 (2019) · Zbl 1482.82060 · doi:10.4007/annals.2019.189.1.2

[19] Funaki, T., Stochastic Interface Models, Lectures on Probability Theory and Statistics. Lecture Notes in Mathematics, 103-274 (2005), Berlin: Springer. Berlin · Zbl 1119.60081

[20] Funaki, T.; Spohn, H., Motion by mean curvature from the Ginzburg-Landau \(\langle \nabla \nabla \phi \rangle \) interface model, Commun. Math. Phys., 185, 1, 1-36 (1997) · Zbl 0884.58098 · doi:10.1007/s00220-0005080

[21] Georgii, H-O, Gibbs Measures and Phase Transitions. de Gruyter Studies in Mathematics (2011), Berlin: Walter de Gruyter \& Co., Berlin · Zbl 1225.60001 · doi:10.1515/9783110250329

[22] Giacomin, G.; Olla, S.; Spohn, H., Equilibrium fluctuations for \(\langle \nabla \nabla \phi \rangle \) interface model, Ann. Probab., 29, 3, 1138-1172 (2001) · Zbl 1017.60100 · doi:10.1214/aop/1015345600

[23] Grimmett, G., The Random-Cluster Model, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (2006), Berlin: Springer. Berlin · Zbl 1085.60093

[24] Hilger, S.: Scaling limit and convergence of smoothed covariance for gradient models with non-convex potential. arXiv preprint arXiv:1603.04703 (2016)

[25] Holley, R., Remarks on the \(\langle (\ell \text{ r.n FKG} \rangle \) inequalities, Commun. Math. Phys., 36, 227-231 (1974) · doi:10.1007/BF01645980

[26] Kesten, H., Percolation Theory for Mathematicians, Progress in Probability and Statistics (1982), Boston: Birkhäuser, Boston · Zbl 0552.60080 · doi:10.1007/978-1-4899-2730-9

[27] Lyons, R.; Peres, Y., Probability on Trees and Networks, Cambridge Series in Statistical and Probabilistic Mathematics (2016), New York: Cambridge University Press, New York · Zbl 1376.60002 · doi:10.1017/9781316072815

[28] Naddaf, A.; Spencer, T., On homogenization and scaling limit of some gradient perturbations of a massless free field, Commun. Math. Phys., 183, 1, 55-84 (1997) · Zbl 0871.35010 · doi:10.1007/BF02509796

[29] Piccinini, LC; Spagnolo, S., On the Hölder continuity of solutions of second order elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa (3), 26, 391-402 (1972) · Zbl 0237.35028

[30] Sheffield, S.: Random surfaces, Astérisque, no. 304, vi+175 (2005) · Zbl 1104.60002

[31] Strassen, V., The existence of probability measures with given marginals, Ann. Math. Stat., 36, 423-439 (1965) · Zbl 0135.18701 · doi:10.1214/aisc/1177700153

[32] Tutte, WT, Graph Theory, Encyclopedia of Mathematics and its Applications (2001), Cambridge: Cambridge University Press, Cambridge

[33] Velenik, Y., Localization and delocalization of random interfaces, Probab. Surv., 3, 112-169 (2006) · Zbl 1173.82010 · doi:10.1214/10506000000000050

[34] Ye, Z., Models of gradient type with sub-quadratic actions, J. Math. Phys., 60, 7, 073304, 26 (2019) · Zbl 1426.82021

[35] Zahradník, M., Contour Methods and Pirogov-Sinai Theory for Continuous Spin Lattice Models, On Dobrushin’s Way, From Probability Theory to Statistical Physics. American Mathematical Society Translations: Series 2, 197-220 (2000), Providence: American Mathematical Society, Providence · Zbl 1156.82334

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.