The New Era of Physio-Logging and Their Grand Challenges

Fahlman, Andreas; Aoki, Kagari; Bale, Gemma; Brijs, Jeroen; Chon, Ki H.; Drummond, Colin K.; Føre, Martin; Manteca, Xavier; McDonald, Birgitte I.; McKnight, J. Chris; Sakamoto, Kentaro Q.; Suzuki, Ippei; Rivero, M. Jordana; Ropert-Coudert, Yan; Wisniewska, Danuta M.

Published in:
Frontiers in Physiology

DOI:
10.3389/fphys.2021.669158

Publication date:
2021

Document version:
Final published version

Document license:
CC BY

Citation for published version (APA):
Fahlman, A., Aoki, K., Bale, G., Brijs, J., Chon, K. H., Drummond, C. K., Føre, M., Manteca, X., McDonald, B. I., McKnight, J. C., Sakamoto, K. Q., Suzuki, I., Rivero, M. J., Ropert-Coudert, Y., & Wisniewska, D. M. (2021). The New Era of Physio-Logging and Their Grand Challenges. Frontiers in Physiology, 12, [669158]. https://doi.org/10.3389/fphys.2021.669158

Go to publication entry in University of Southern Denmark's Research Portal

Terms of use
This work is brought to you by the University of Southern Denmark. Unless otherwise specified it has been shared according to the terms for self-archiving. If no other license is stated, these terms apply:

- You may download this work for personal use only.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying this open access version.

If you believe that this document breaches copyright please contact us providing details and we will investigate your claim. Please direct all enquiries to puresupport@bib.sdu.dk

Download date: 15. Jul. 2021
The New Era of Physio-Logging and Their Grand Challenges

Andreas Fahlman1,2, Kagari Aoki3, Gemma Bale3, Jeroen Brijs4, Ki H. Chon5, Colin K. Drummond6, Martin Føre7, Xavier Manteca8, Birgitte I. McDonald9, J. Chris McKnight10, Kentaro Q. Sakamoto2, Ippei Suzuki11, M. Jordana Rivero12, Yan Ropert-Coudert13 and Danuta M. Wisniewska14

INTRODUCTION

The field of bio-sensing refers to studies where the physiology of an animal, its behavior and movement, as well as the characteristics of the environment it moves in, is measured either by electronic sensor-carrying devices that store the data (bio-logging), or those that transmit the data directly (bio-telemetry). One of the first bio-sensing studies was conducted over 80 years ago with the attachment of a capillary tube to a fin whale (Balaenoptera physalus) to assess the dive depth of a free-ranging marine mammal (Scholander, 1940). In humans, the stethoscope was developed by Rene Laennec in 1819 as the first non-invasive heart monitor, which solved the challenge of listening to the heart by placing an ear on the patient's chest (not always welcome in the Victorian era) (Roguin, 2006). Quickly the system found new uses eventually leading to a shift from subjective to objective data about the internal body. The field of bio-sensing has since increased exponentially and revolutionized our understanding of animal ecology. With the technological development of miniaturized sensors, numerous studies of movement ecology, behavior, and communication in a diverse range of animals (e.g., species of fish, reptiles, birds and mammals) have been reviewed in (Frost et al., 1997; Davis, 2008; Ropert-Coudert et al., 2009a; Rutz and Hays, 2009; Swain et al., 2011; Hussey et al., 2015; Wilmers et al., 2015; Endo and Wu, 2019; Börger et al., 2020; Wassmer et al., 2020). While determining the physiological limits and plasticity of a species is essential for understanding its ecology and evolution, studies that measure the physiological responses of free-ranging animals (i.e., physio-logging) have not seen the same exponential increase, even though physiological questions were at the origin of the use of data loggers in seminal work done by field physiologists such as Gerry Kooyman, Paul Ponganis, Warren Zapoli, and Patrick Butler (Butler and Woakes, 1979; Falke et al., 1985; Kooyman, 1985; Ponganis et al., 1991).

1Recent advances combine the logging and transmission of data using AI and machine learning approaches to process data on-board the logger and transmit either subsets of data or information derived from the primary data recorded.
The slower growth of the physio-logging field could be due to the commercial unavailability of physiological sensors, or that the available sensors were too large, based on static-technologies, or required specialized surgical training and extensive knowledge of the anatomy and physiology of the animal for successful implantation. Despite these challenges, studies using bio-sensing tools have renewed the interest in physio-logging and attempted to understand the physiology of an animal through inference from their behavior (Wilson et al., 2002; Hooker et al., 2009; Goldbogen et al., 2011, 2019b; Kolarevic et al., 2016; Foré et al., 2018b; Quick et al., 2020).

Physio-loggers have recently been used on farmed animals (livestock) to record physiological variables (e.g., body temperature, respiration and heart rates) in order to monitor water intake, the occurrence of diseases, energy expenditure in grazing activities, and effect of diet on body temperature under cold and warm conditions (Brosh et al., 2006; Eigenberg et al., 2008; AlZahal et al., 2011; Arias et al., 2011; Aharoni et al., 2013; Cantor et al., 2018). In the human arena – where early bio-telemetry approaches were born – technological advances such as movement sensors initially allowed anyone with a “smartphone” or “smartwatch” to assess their daily energy consumption, leading to the so-called “quantified health” movement (Scully et al., 2012). Indeed, subsequent development of non-invasive sensing (photoplethysmography) enabled new and exciting possibilities to track health and fitness in a large number of people (Dörr et al., 2019; Seshadri et al., 2020). In addition, recent developments in wearable medical and nanotechnology, with increased battery life, storage capacity and a range of sensors have increased our ability to study physiological function both non-invasively and continuously over months and years (Kang et al., 2016; Kaidarova et al., 2018, 2019; Lee et al., 2019; Lazaro et al., 2020). Thus, tools capable of measuring a range of important and informative physiological parameters are now available, and are continuously being improved and adapted to work on an increasing range of species. These developments will revolutionize the capacity to measure and assess the physiology of animals and humans over extended periods of time, which will allow a comprehensive evaluation of the physiological function of animals in their natural environment. This new era of physio-logging will enable long-term studies to better understand fundamental physiological function, health, welfare or well-being of animals and humans, as well as their responses to environmental and/or anthropogenic changes.

TECHNOLOGICAL DEVELOPMENT

Progress on medical sensing technology has increased significantly. A wide range of physiological monitoring technologies are now available and are setting the stage from which physiological bio-sensing could profit immensely. For instance, virtually anyone with a “smartphone” or “smartwatch” can now assess their daily calorie expenditure as sensors within the phone can estimate the number of steps taken or distance moved. Similarly, researchers have applied this principle to free-ranging animals and are able to derive an estimate of energy expended in the wild via a measure of dynamic body movements measured by animal-embarked accelerometers (Wilson et al., 2006, 2020; Gleiss et al., 2011) that correlates well with other direct measures of energy expended even in wild animals (Elliot et al., 2013; Jeanniard-Du-Dot et al., 2017; Hicks et al., 2020). Phonospirometry (i.e., the use of the breath sound to estimate respiratory flow) is being used to perform lung function testing in both humans and animals (Sumich and May, 2009; Larson et al., 2012; Sumich, 2021; Van Der Hoop et al., 2021). In addition, the ongoing development of wearable medical sensors that can detect glucose levels, estimate heart rate via waterproof ECG electrodes (Reyes et al., 2014; Noh et al., 2016) or assess blood flow/volume changes and/or blood oxygen saturation changes provide a particularly exciting avenue for future research (Bockstaele et al., 2014; McKnight et al., 2019, 2021a,b). These technological advancements open up enormous possibilities as they will enable investigating the physiological
function in freely moving, and even free-ranging animals, with minimal disturbances. Further, the development of fully bioresorbable microchip technologies capable of measuring a variety of physiological parameters (Kang et al., 2016) could offer opportunities to measure new, fine-scale physiological metrics in free-moving and free-ranging animals. Thus, long-term data sets on movement, married with physiological data could become available, contributing essential components to frameworks that assess the consequences of environmental and/or anthropogenic impacts such as Population Consequences of Disturbance (PCoD, Booth et al., 2014; Pirotta et al., 2018), as well as to develop a fundamental understanding of the physiology of a diverse range of species.

ANALYTICAL DEVELOPMENT

The collection of long-term and/or high-resolution data sets is likely to result in analytical challenges. For example, ECG collection sampled at 200 Hz over a whole year results in 6.3 billion data points. While ECG could be reduced to instantaneous heart rate (iHR) (Sakamoto et al., 2021), normal statistical tools, such as comparison of means or medians are not applicable and are likely to result in erroneous conclusions. More sophisticated analytical methods, including signal processing or time-series analysis, will have to be developed and introduced to deal with a growing number of studies that focus on physiological function and eco-physiology. There has recently been a rapid growth in analytical techniques in bioinformatics, where new tools and databases have been developed to handle the large data sets that result from sequencing the genome of various species and to evaluate gene networks and differential changes in molecular products. A similar exponential growth has been seen within data processing methods based on Artificial Intelligence (AI) and Machine Learning (ML). These methods are used in several different fields today, especially when data sets are too large and/or complex to handle through conventional means, and it is likely that they prove useful for processing datasets from biosensors. Although many AI/ML methods are “a black box,” in the sense that they do not describe the mechanistic links between input and output (e.g., environmental and/or anthropogenic changes and sensor output in this case), they could be useful for compressing and condensing large data sets and identifying unknown relationships between inputs and measured features (Rasheed et al., 2020).

CONCLUSION

In the last 40 years, the field of bio-sensing has provided important information about the ecology and behavior of wild animals, largely focusing on describing where they go and what they do there. Animal tracking studies have substantially improved the knowledge of movement patterns and drivers of movement in marine, terrestrial and avian species. However, the rapid development and miniaturization of bio-sensing electronics capable of measuring a raft of physiological variables present innovative and exciting tools that will revolutionize this field of research and usher in a new era of physio-logging. These technologies will allow us to comprehensively evaluate how and why animals make the journeys they do (e.g., bar-headed geese flying over the Himalayas, Cuvier’s beaked whales diving to 3000 m for over 3 h; Hawkes et al., 2013; Quick et al., 2020). Such studies will provide a foundation for understanding how animals may respond to alterations in the environment and the physiological boundaries for survival. Physio-logging can also provide the necessary tools for conservation management, which will contribute toward reducing the impacts of anthropogenic disturbances on species, communities and even ecosystems. For example, assessment of stress levels, such as measuring corticosterone or heart rate may help evaluate the impact of anthropogenic disturbance (Miksis et al., 2001). Furthermore, physio-logging is also likely to provide an important diagnostic tool for evaluating the well-being and welfare of farmed terrestrial and aquatic animals. These technologies can provide a unique opportunity for health monitoring via an “animal-eye” view of the conditions that farmed animals experience in human care on a day-to-day basis, enabling a better understanding of how to address the challenges faced by industries attempting to produce a profitable, ethical and environmentally sustainable product (Berckmans, 2004; Fore et al., 2018a; Brijs et al., 2021). Many of the responses evaluated in these managed settings could also be translated to wild animals given the clear link between physiology and welfare (Gregory, 2004; Baird et al., 2016; Fore et al., 2018a; Svendsen et al., 2021). Finally, physio-logging is likely to promote improved health and wellness in humans, where early detection of disease allows improved treatment outcome.

As we enter a new age in the study of physiology of animals and humans living in complex environments, the Physio-logging journal aims to provide a forum where scientists, and conservation practitioners among others, can share knowledge on how modern sensing technology and analytical approaches can be used to understand physiological function and health of animals and humans.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

REFERENCES

Aharoni, Y., Dolev, A., Henkin, Z., Yehuda, Y., Ezra, A., Ungar, E. D., et al. (2013). Foraging behavior of two cattle breeds, a whole-year study: I. Heat production, activity, and energy costs. *J. Anim. Sci.* 91, 1381–1390. doi: 10.2527/jas.2012-5400

AlZahal, O., AlZahal, H., Steele, M. A., Van Schaik, M., Kyriazakis, I., Duffield, T. F., et al. (2011). The use of a radiotelemetric ruminal bolus to detect body temperature changes in lactating dairy cattle. *J. Dairy Sci.* 94, 3568–3574. doi: 10.3168/jds.2010-3944

Andrews, R. D., Costa, D. P., Leboeuf, B. J., and Jones, D. R. (2000). Breathing frequencies of northern elephant seals at sea and on land.
revealed by heart rate spectral analysis. Respir. Physiol. 123, 71–85. doi: 10.1016/S0034-5687(00)00168-7
Arias, R. A., Mader, T. L., and Parkhurst, A. M. (2011). Effects of diet type and metabolizable energy intake on tympanic temperature of steers fed during summer and winter seasons. J. Anim. Sci. 89, 1574–1580. doi: 10.2527/jas.2010-2975
Baird, B. A., Kuhar, C. W., Darweesh, A. A., Nemet, J., et al. (2016). Program animal welfare: using behavioral and physiological measures to assess the well-being of animals used for education programs in zoos. Appl. Anim. Behav. Sci. 176, 150–162. doi: 10.1016/j.applanim.2015.12.004
Berckmans, D. (2004). “Automatic on-line monitoring of animals by precision livestock farming,” in Proceedings of the ISAH Conference on Animal Production in Europe: The Way Forward in a Changing World, Vol. 1 (St-Saint-Malo), 27–31.
Berenbrink, M. (2021). The role of myoglobin in the evolution of mammalian diving capacity - The August Krogh principle applied in molecular and evolutionary physiology. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 252:110843. doi: 10.1016/j.cbpa.2021.110843
Berker, H. (1967). Physiological adjustments to deep diving in the pacific green turtle (Chelonia mydas agassizii). Comp. Biochem. Physiol. 21, 507–524. doi: 10.1016/0010-4667(67)90448-3
Blawas, A. M., Nowacek, D. P., Allen, A., Rocho-Levine, J., and Fahlman, A. (2021). Respiratory sinus arrhythmia and submerision bradycardia in bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 224. doi: 10.1242/jeb.234096
Bockstael, R., Ryckeboer, E., Hattusas, N., De Koninck, Y., Muneeb, M., and Verstuyft, S. (2014). “Glucose sensing by means of silicon photonics,” in Proc.SPIE. San Francisco, CA.
Booth, C., Donovan, C., King, S., and Schick, R. (2014). A protocol for implementing the interim Population Consequences of Disturbance (PCoD) approach: quantifying and assessing the effects of UK offshore renewable energy developments on marine mammal populations. Scot. Mar. Freshw. Sci. 5:90. doi: 10.7489/1486-1
Börger, L., Bijleveld, A. I., Fayet, A. L., Machovsky-Capuska, G. E., Patrick, S. C., Frost, A. R., Schofield, C. P., Beaulah, S. A., Mottram, T. T., Lines, J. et al. (2019). Overall dynamic body acceleration work: on the theory of acceleration tensions. Science 79, 283–300. doi: 10.1126/science.aax9044
Brotz, J., Cozzi, B., Manley, M., Jabas, S., Malik, M., Blawas, A., et al. (2020a). Conditioned variation in heart rate during static breath-holds in the bottlenose dolphin (Tursiops truncatus) Frontiers. Physiology 11:60418. doi: 10.3389/fphys.2020.60418
Bühl, A., Miedler, S., Marti-Bonmati, L., Ferrero Fernandez, D., Muñoz Caballero, P., Arenarez, J., et al. (2020b). Cardiorespiratory coupling in cetaceans; a physiological strategy to improve gas exchange? J. Exp. Biol. 223:226365. doi: 10.1242/jeb.226365
Fahlman, A., Miedler, S., Rocho-Levine, J., Jabos, A., Arenarez, J., Marti-Bonmati, L., et al. (2019). Re-evaluating the significance of the dive response during voluntary surface apneas in the bottlenose dolphin, Tursiops truncatus. Sci. Rep. 9:613. doi: 10.1038/s41598-019-45064-8
Fahlman, A., Svärd, C., Rosen, D. A. S., Jones, D. R., and Trites, A. W. (2008). Metabolic costs of foraging and the management of O2 and CO2 stores in Steller sea lions. J. Exp. Biol. 211, 3573–3580. doi: 10.1242/jeb.02655
Falke, K. J., Hill, R. D., Qvist, J., Schneider, R. C., Guppy, M., Liggins, G. C., et al. (1985). Seal lung collapse during free diving: evidence from arterial nitrogen tensions. Science 259, 556–557. doi: 10.1126/science.4023700
Føre, M., Frank, K., Norton, T., Svendsen, E., Alsfredsen, J. A., Dempster, T., et al. (2018a). Precision fish farming: a new framework to improve production in aquaculture. Biosyst. Eng. 173, 176–193. doi: 10.1016/j.biosystemseng.2017.10.014
Føre, M., Svendsen, E., Alsfredsen, J. A., Uglen, I., Bloecher, N., Sweir, H., et al. (2018b). Using acoustic telemetry to monitor the effects of crowding and delousing procedures on farmed Atlantic salmon (Salmo salar). Aquaculture 495, 757–765. doi: 10.1016/j.aquaculture.2018.06.060
Frøseth, G., Butler, P. J., Woakes, A. J., Fahlman, A., Kuntz, G., Le Maho, Y., et al. (2004). Heart rate and energetics of free-ranging killer kings (Pantodentys patagonicus). J. Exp. Biol. 207, 3917–3926. doi: 10.1242/jeb.01232
Frost, A. R., Schofield, C. P., Beaulah, S. A., Motttram, T. T., Lines, J. A., and Withes, C. M. (1997). A review of livestock monitoring and the need for integrated systems. Comp. Electron. Agric. 17, 139–159. doi: 10.1016/S0168-1699(96)01301-4
Gleiss, A. C., Wilson, R. P., and Shepard, E. L. C. (2011). Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods Ecol. Evol. 2, 23–33. doi: 10.1111/j.2041-210X.2010.00057.x
Goldbogen, J. A., Cade, D. E., Calambokidis, J., Czapkyni, M. F., Fahlbusch, J., Friedlaender, A. S., et al. (2019a). Extreme bradycardia and tachycardia in the world's largest animal. Proc. Natl. Acad. Sci. U. S. A. 116, 25329–32. doi: 10.1073/pnas.1914273116
Goldbogen, J. A., Cade, D. E., Wisniewska, D. M., Potvin, J., Segre, P. S., Savoca, M. S., et al. (2019b). Why whales are big but not bigger: physiological drivers of body size. Science 366, 1367–1372. doi: 10.1126/science.aax9044
Goldbogen, J. A., Calambokidis, J., Olson, E., Potvin, J., Pyenson, N. D., Schorr, G., et al. (2011). Mechanics, hydrodynamics and energetics of blue whale lung feeding: efficiency dependence on krill density. J. Exp. Biol. 214, 131–146. doi: 10.1242/jeb.048157
Grahn, A., Olsson, C., Pitsillides, K., Nelson, H. E., Cech, J. J., and Axelsson, M. (2020a). Effects of feeding on thermoregulatory behaviours and gut blood flow in white sturgeon (Acipenser transmontanus) using biotelemetry in combination with standard techniques. J. Exp. Biol. 213, 3198–3206. doi: 10.1242/jeb.043570
Gregory, N. G. (2004). *Physiology and Behaviour of Animal Suffering*. Oxford: Blackwell Science.

Hawkes, L. A., Balachandran, S., Babayar, N., Butler, P. J., Chua, B., Douglas, D. C., et al. (2013). The paradox of extreme high-altitude migration in bar-headed geese *Anser indicus*. *Proc. R. Soc. B Biol. Sci.* 280:20122114. doi: 10.1098/rspb.2012.2114

Hicks, O., Kato, A., Angelier, F., Wisniewski, D. M., Hambly, C., Speakman, J. R., et al. (2020). Acceleration predicts energy expenditure in a fat, flightless, diving bird. *Sci. Rep.* 10:21493. doi: 10.1038/s41598-020-78025-7

Hooker, S. K., Baird, R. W., and Fahlan, A. (2009). Could beaked whales get the bends? Effect of diving behaviour and physiology on modelled gas exchange for three species: *Ziphius cavirostris*, *Mesoplodon densirostris* and *Hyperoodon ampullatus*. *Respir. Physiol. Neurobiol.* 167, 235–246. doi: 10.1016/j.resp.2009.04.023

Hurley, J. A., and Costa, D. P. (2001). Standard metabolic rate at the surface and during trained submersions in adult California sea lions (*Zalophus californianus*). *J. Exp. Biol.* 204, 3273–3281.

Hussey, N. E., Kessel, S. T., Aarestrup, K., Cooke, S. J., Cowley, P. D., Fisk, A. T., et al. (2015). Aquatic animal telemetry: A panoramic window into the underwater world. *Science* 348:1255642. doi: 10.1126/science.1255642

Jeanniard-Du-Dot, T., Trites, A. W., Arnould, J. P. Y., Speakman, J. R., and Guinet, C. (2017). Activity-specific metabolic rates for diving, transiting, and resting at sea can be estimated from time-activity budgets in free-ranging marine mammals. *Ecol. Evol.* 7, 2989–2976. doi: 10.1002/ece3.2546

Kairarova, A., Khan, M. A., Marengo, M., Swanepeol, L., Przybylsa, A., Muller, C., et al. (2019). Wearable multifunctional printed graphene sensors. *npj Flex. Electron.* 3:15. doi: 10.1038/s41528-019-0061-5

Kairarova, A., Marengo, M., Marinaro, G., Geraldini, N., Duarte, C. M., and Kosel, J. (2018). Flexible and biofueling independent salinity sensor. *Adv. Mater. Interfaces* 5:801110. doi: 10.1002/admi.201801110

Kang, S. K., Murphy, R. K., Hwang, S. W., Lee, S. M., Harburg, D. V., Krueger, N. A., et al. (2016). Bioreosorbable silicon electronic sensors for the brain. *Nature* 530, 71–76. doi: 10.1038/nature16492

Kolarevic, J., Aas-Hansen, Ø., Espmark, Å., Baeverfjord, G., Terjesen, B. F., and Mortola, J. P. (2009). Extreme hypoxic tolerance and blood oxygen depletion in diving elephant seals. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 297, R927–R939. doi: 10.1152/ajpregu.00247.2009

Kairarova, A., Marengo, M., Marinaro, G., Geraldini, N., Duarte, C. M., and Kosel, J. (2018). Flexible and biofueling independent salinity sensor. *Adv. Mater. Interfaces* 5:801110. doi: 10.1002/admi.201801110

Kang, S. K., Murphy, R. K., Hwang, S. W., Lee, S. M., Harburg, D. V., Krueger, N. A., et al. (2016). Bioreosorbable silicon electronic sensors for the brain. *Nature* 530, 71–76. doi: 10.1038/nature16492

Kolarevic, J., Aas-Hansen, Ø., Espmark, Å., Baeverfjord, G., Terjesen, B. F., and Mortola, J. P. (2009). Extreme hypoxic tolerance and blood oxygen depletion in diving elephant seals. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 297, R927–R939. doi: 10.1152/ajpregu.00247.2009

Meir, J. U., Champagne, C. D., Costa, D. P., Williams, C. L., and Pongais, P. J. (2009). Extreme hypoxic tolerance and blood oxygen depletion in diving elephant seals. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 297, R927–R939. doi: 10.1152/ajpregu.00247.2009

Meir, J. U., and Pongais, P. J. (2010). Blood temperature profiles of diving elephant seals. *Physiol. Biochem. ZooL.* 83, 531–540. doi: 10.1016/j.physzool.2008.06.001

Noh, Y., Bales, J., Reyes, B., Molignano, J., Clement, A. L., Pins, G. D., et al. (2016). A copper-mesh CB/PDMS electrode for underwater ECG monitoring: comparison with a commercial electrodes in fresh, salt, and chlorinated water. *Ann. BME* 44, 2464–2479. doi: 10.1007/s10439-015-1528-8

Olsen, C. R., Hale, F. C., and Elser, R. (1969). Mechanics of ventilation in the pilot whale. *Respir. Physiol.* 7, 137–149. doi: 10.1016/0034-5687(69)90001-2

Patel, D., and Tarakji, K. G. (2021). Smartwatch diagnosis of atrial fibrillation in patient with embolic stroke of unknown source: a case report. *Circ Cardiovasc. Health J.* 12, 84–87. doi: 10.1161/cvedhj.2021.01.001

Pedersem, M. B., Fahlan, A., Borque-Espinosa, A., Madsen, P. T., and Jensen, F. H. (2020). Whistling is metabolically cheap for communicating bottlenose dolphins (*Tursiops truncatus*). *J. Exp. Biol.* 223:121948. doi: 10.1242/jeb.219448

Piotto, E., Booth, C. G., Costa, D. P., Fleishman, E., Kraus, S. D., Lusseau, D., et al. (2018). Understanding the population consequences of disturbance. *Ecol. Evol.* 8, 9934–9946. doi: 10.1002/ece3.4458

Pongais, P. J., Kooyman, G. L., and Zornow, M. H. (1991). Cardiac output in swimming California sea lions, *Zalophus californianus*. *Physiol. Zool.* 64, 1296–1306. doi: 10.1086/physzool.64.5.3015624

Pongais, P. J., Kooyman, G. L., Zornow, M. H., Castellini, M. A., and Croll, D. A. (1990). Cardiac output and stroke volume in swimming harbor seals. *J. Exp. Biol.* 160, 473–482. doi: 10.1242/BF00258974

Quick, N. J., Cioffi, W. R., Shearer, J. M., Fahlan, A., and Read, A. J. (2020). Extreme diving in mammals: first estimates of behavioural aerobic dive limits in Curvier’s beaked whales. *J. Exp. Biol.* 223:jeb222109. doi: 10.1242/jeb.222109

Rasheed, A., San, O., and Kavmsdal, T. (2020). Digital twin: values, challenges and enablers from a modeling perspective. *IEEE Access* 8, 21980–22012. doi: 10.1109/ACCESS.2020.2970143

Reed, J. Z., Chambers, C., Fedak, M. A., and Butler, P. J. (1994). Gas exchange of captive freely diving grey seals (*Halichoerus grypus*). *J. Exp. Biol.* 191, 1–18.

Reed, J. Z., Chambers, C., Hunter, J. C., Lockyer, C., Kastelein, R., Fedak, M. A., et al. (2000). Gas exchange and heart rate in the harbour porpoise, *Phocoena phocoena*. *J. Exp. Biol.* 203, 1–10. doi: 10.1007/jepb.2000.050001

Reyes, B. A., Posada-Quintero, H. F., Bales, J. R., Clement, A. L., Pins, G. D., Swiston, A., et al. (2014). Novel electrodes for underwater ECG monitoring. *IEEE Trans. Biomed. Eng.* 61, 1863–1876. doi: 10.1109/TBME.2014.2307939

Ridgway, S. H., and Howard, R. (1979). Dolphin lung collapse and intramural circulation during free diving: evidence from nitrogen washout. *Science* 206, 1182–1183. doi: 10.1126/science.505001
Roguin, A. (2006). Rene Theophile Hyscinthe Laennec (1781-1826): the man behind the stethoscope. *Clin. Med. Res.*, 4, 230–235. doi: 10.3121/cmr.4.3.230

Ropert-Coudert, Y., Beaulieu, M., Hanuse, N., and Kato, A. (2009a). Diving into the world of biologging. *Endang. Species Res.*, 10, 21–27. doi: 10.3354/esr00188

Ropert-Coudert, Y., Brooks, L., Yamamoto, M., and Kato, A. (2009b). ECG response of koalas to tourists proximity: a preliminary study. *PloS ONE* 4:e7378. doi: 10.1371/journal.pone.0007378

Ropert-Coudert, Y., Wilson, R. P., Gremillet, D., Kato, A., Lewis, S., and Ryan, P. G. (2006). Electrocardiogram recordings in free-ranging dolphins reveal minimum difference in heart rate during flapping versus gliding flight. *Marine Ecol. Progr. Ser.* 328, 275–284. doi: 10.3354/meps328275

Rosen, D. S., and Trites, A.W. (2013). Resting metabolic rate of a mature male beluga whale (*Delphinapterus leucas*). *Aquat. Mammals* 39, 85–88. doi: 10.1578/AM.39.1.2013.85

Rutz, C., and Hays, G. C. (2009). New frontiers in biologging science. *Biol. Lett.* 5, 289–292. doi: 10.1098/rspb.2009.0889

Sakamoto, K. Q., Miyayama, M., Kinoshita, C., Fukushima, T., Ishihara, T., and Sato, K. (2021). “A non-invasive system to measure heart rate in hard-shelled sea turtles: Potential for field applications,” in *Philosophical Transaction of the Royal Society London B*. doi: 10.1098/rspb.2020.0222

Sakamoto, K. Q., Takahashi, A., Iwata, T., Yamamoto, T., Yamamoto, M., and Trathan, P. N. (2013). Heart rate and estimated energy expenditure of flapping and gliding in black-browed albatrosses. *J. Exp. Biol.* 216, 3175–3182. doi: 10.1242/jeb.079903

Scholander, P. F. (1940). Experimental investigations on the respiratory function in diving mammals and birds. *Hirundins Skrifter* 22, 1–131.

Scully, C. G., Lee, J., Meyer, J., Gorbach, A. M., Granquist-Fraser, D., Mendelson, Y., et al. (2012). Physiological parameter monitoring from optical recordings with a mobile phone. *IEEE Transac. Bio Med. Eng.* 59, 303–306. doi: 10.1109/TBME.2011.2163157

Seshadri, D. R., Davies, E. V., Harlow, E. R., Hsu, J. I., Knighton, S. C., Walker, T. A., et al. (2020). Wearable sensors for COVID-19: a call to action to harness our digital infrastructure for remote patient monitoring and virtual assessments. *Front. Dig. Health.* 2. doi: 10.3389/fdgth.2020.00008

Southwood, A. L., Andrews, R. D., Lutvcave, M. E., Paladino, F. V., West, N. H., George, R. H., et al. (1999). Heart rates and diving behavior of leatherback sea turtles in the eastern pacific ocean. *J. Exp. Biol.* 202, 1115–1125.

Sumich, J. L. (2021). Why Baja? A bioenergetic model for comparing metabolic rates and thermoregulatory costs of gray whale calves (*Eschrichtius robustus*). *Mar. Mam. Sci.* 37, 10.1111/mms.12778

Sumich, J. L., and May, M. A. (2009). Scaling and remote monitoring of tidal lung volumes of young gray whales, *Eschrichtius robustus*. *Marine Mammal Sci.* 25, 221–228. doi: 10.1111/j.1748-7692.2008.00272.x

Svensens, E., Fore, M., Okland, F., Grans, A., Hedger, R. D., Alfredsen, J. A., et al. (2021). Heart rate and swimming activity as stress indicators for Atlantic salmon (*Salmo salar*). *Aquaculture* 531:735804. doi: 10.1016/j.aquaculture.2020.735804

Swain, D. L., Friend, M. A., Bishop-Hurley, G. J., Handcock, R. N., and Wark, T. (2011). Tracking livestock using global positioning systems - are we still lost? *Anim. Prod. Sci.* 51, 167–175. doi: 10.1071/AN10255

Takei, Y., Suzuki, I., Wong, M. K. S., Moss, S., Sato, K., et al. (2016). Development of an animal-borne blood sample collection device and its deployment for the determination of cardiovascular and stress hormones in phocid seals. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 311, R788–R796. doi: 10.1152/ajpregu.00211.2016

Thompson, D., and Fedak, M. A. (1993). Cardiac responses of grey seals during diving at sea. *J. Exp. Biol.* 174, 139–154.

Van Der Hoop, J. M., Fahlman, A., Jensen, F. H., Beedholm, K., Rocho-Levine, J., Wells, R. S., et al. (2021). Free-ranging bottlenose dolphins meet changing respiratory demands by breathing with a low but variable tidal volume. *Phil. Trans. B*. doi: 10.1098/rstb.2020.0428

Wassmer, T., Jensen, F. H., Fahlman, A., and Murray, D. L. (2020). Editorial: ecology and behaviour of free-ranging animals studied by advanced data-logging and tracking techniques. *Front. Ecol. Evol.* 8. doi: 10.3389/fevo.2020.00113

Williams, T. M., Friedl, W. A., and Haun, J. E. (1993). The physiology of bottlenose dolphins (*Tursiops truncatus*): heart rate, metabolic rate and plasma lactate concentration during exercise. *J. Exp. Biol.* 179, 31–46.

Wilmers, C. C., Nickel, B., Bryce, C. M., Smith, J. A., Wheat, R. E., and Yovovich, V. (2015). The golden age of bio-logging: how animal-billllored sensors are advancing the frontiers of ecology. *Ecology* 96, 1741–1753. doi: 10.1890/14-1041.1

Wilson, R., Steinfurth, A., Ropert-Coudert, Y., Kato, A., and Kurita, M. (2002). Lip-reading in remote subjects: an attempt to quantify and separate ingestion, breathing and vocalisation in free-living animals using penguins as a model. *Mar. Biol.* 140, 17–27. doi: 10.1007/s002270100659

Wilson, R. P., Börger, L., Holton, M. D., Scantlebury, D. M., Gómez-Laich, A., Quintana, F., et al. (2020). Estimates for energy expenditure in free-living animals using acceleration proxies: A reappraisal. *J. Anim. Ecol.* 89, 161–172. doi: 10.1111/1365-2656.13040

Wilson, R. P., White, C. R., Quintana, F., Halsey, L. G., Liebsch, N., Martin, G. R., et al. (2006). Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. *J. Anim. Ecol.* 75, 1081–1090. doi: 10.1111/j.1365-2656.2006.01127.x

Worthy, G. A. J., Worthy, T. A. M., Yokochi, P. K., and Dold, C. (2013). Basal metabolism of an adult male killer whale (*Orcinus orca*). *Mar. Mammal Sci.* 30, 1229–1237. doi: 10.1111/mms.12091

Yamamoto, M., Kato, A., Ropert-Coudert, Y., Kuwahara, T., Hayama, S., and Naito, Y. (2009). Evidence of dominant parasympathetic nervous activity of great cormorans (*Phalacrocorax carbo*). *J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol.* 195, 365–373. doi: 10.1007/s00359-009-0414-y

Conflict of Interest: AF was employed without salary by the company Global Diving Research Inc.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Fahlman, Aoki, Bale, Brijs, Chen, Drummond, Fere, Manteca, McDonald, McKnight, Sakamoto, Suzuki, Rivero, Ropert-Coudert and Wisniewska. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.