Abstract

Canonical quantization of general relativity does not yield a unique quantum theory for gravity. This is in part due to operator ordering ambiguities. In this paper we investigate the role of different operator orderings on the question of whether a big bang or big crunch singularity occurs. We do this in the context of the mini-superspace model of a Friedmann-Lemaître-Robertson-Walker universe with Brown-Kuchař dust. We find that for a certain class of operator orderings such a singularity is eliminated without having to impose boundary conditions.

1 Introduction

Probably the most conservative approach to quantum gravity is canonical quantum gravity, which arises from applying the usual quantization techniques to general relativity. In canonical quantum gravity the state is given by a wave functional $\Psi((3)g, \phi)$ on 3-metrics $(3)g$ and some matter degrees of freedoms, say a scalar field ϕ. The wave equation is not dynamical, since time is absent from it, but amounts to “constraints” on the wave functions. These constraints are the diffeomorphism constraint and the Hamiltonian constraint $\hat{H}\psi = 0$, also called the Wheeler-DeWitt equation. Due to operator ordering ambiguities in the quantization process, many different forms of these constraints can be obtained, resulting in different quantum theories for gravity. A choice of operator ordering that is often made (mostly in the context of mini-superspace models) is to take the Laplace-Beltrami operator with respect to the DeWitt metric on superspace $[1,2]$. But other choices remain open, especially in the absence of experimental guidance. The choice of operator ordering may have effect on the physical content of the theory $[3-5]$. In this paper, we investigate the effect on the possible presence of cosmological singularities.

According to general relativity, singularities like a big bang or big crunch singularity are generically unavoidable. This is the content of the Penrose–Hawking singularity theorems. This is usually taken as a signal that the classical theory breaks down and it is hoped for that a quantum theory for gravity will eliminate such singularities. This has been investigated in simplified models, called mini-superspace models, which arise from applying the

*Instituut voor Theoretische Fysica, KU Leuven
†Centrum voor Logica en Analytische Wijsbegeerte, KU Leuven
usual quantization techniques to symmetry-reduced general relativity by assuming homogeneity and isotropy. However, there is the question what exactly should be meant by space-time singularities in the context of quantum gravity. In general relativity, singularities arise when geodesics cannot be smoothly extended. In quantum gravity this notion does no longer make sense, since there is no actual metric field. There is only the wave functional on 3-metrics. Different criteria have been proposed for a singularity. Examples include: that the metric has support on singular 3-metrics, that it is peaked on singular 3-metrics, that the expectation of the scale factor vanishes (see e.g. [6–14]). Even though these criteria may shed some light on the issue of singularities, none of these seems completely satisfactory. For example, demanding that the wave function be zero on singular metrics is often viewed as sufficient for singularity avoidance [6,14]. However, the set of singular metrics is often of measure zero so the amplitude of the wave function at those configurations seems of no relevance. Alternatively, it should perhaps be specified at which rate the wave function vanishes near singularities [15]. For some of these criteria, the question whether or not the singularities are eliminated also hinges on how the problem of time is dealt with (see for example [8]).

In this paper, we consider a different criterion, namely that space-time singularities do not occur iff there is no quantum (probability) flux into singular metrics. To appreciate this criterion and to contrast it with the alternative prevailing viewpoints, it is useful to consider the following example: In classical mechanics the Coulomb potential \(-Z e^2/r\) is singular at \(r = 0\) and classically a particle can reach this singularity and its motion cannot be continued thereafter. Is this singularity eliminated in quantum mechanics? In the case of the Dirac equation with the Coulomb potential, the ground state is given by

\[
\psi_0(r) \sim (2mZ\alpha r)^{\sqrt{1-Z^2\alpha^2}-1}e^{-mZ\alpha r}.
\]

(1)

Can the quantum particle fall into the singularity of the Coulomb potential? There is no actual point-particle like in classical mechanics, just the wave function. The wave function is non-zero at the origin. It even diverges. So according to some of the proposed notions of a singularity, the singularity is not eliminated. But quantum mechanically, according to the Born rule, the wave function merely determines a probability amplitude to find the particle somewhere upon detection. The probability (with respect to the measure \(\psi^*\psi d^3x\)) to find the particle at one particular point, including the singularity, is always zero. So merely considering the quantum mechanical probability distribution is not helpful. However, what seems more relevant is whether the probability density flows into or out of the singularity, i.e., whether the probability flux into the singularity is zero or not. If there is a decreased change over time to find the particle outside the singularity, it seems natural to conclude that the particle might have ended up in the singularity. If there is no flux into or out of the classical singularity, then the singularity is avoided quantum mechanically. Concretely, in this context this condition means that:

\[
\lim_{R \to 0} \oint_{C_R} d\sigma(x)|n_\mu(x)|j^\mu(x)| = 0,
\]

(2)

where \(C_R\) is the cylinder with radius \(R\) and normal field \(n_\mu\) centered around the line \(r = 0\) in space-time and \(j^\mu = \bar{\psi}\gamma^\mu\psi\) is the Dirac current. (The absolute value is taken so that the result is meaningful, see [8].)

One might worry that the integral in (2) is not finite because it involves an integration over an unbounded surface \(C_R\). It might therefore be worth considering alternative criteria like demanding that (2) holds for appropriate segments of \(C_R\) or that \(\lim_{R \to 0} \sup_{x \in C_R} |n_\mu(x)|j^\mu(x)| = 0\).
no incoming and no outgoing flux.) For any state, the condition is actually satisfied since the L_2-norm of the wave function is preserved. So in this case the notion ties together with the unitarity of the quantum dynamics.

When it comes to quantum gravity, there is no immediate probability distribution that could be used to formulate a Born rule, even in the case of mini-superspace models, due to the constraint-nature of the theory. Nevertheless, there is a conserved current and we can consider whether there is flux into singular metrics. As a no-singularity criterion we now consider the condition that there is no flux into singular metrics. An advantage is that we do not need to consider a Hilbert space or deal with the problem of time. Another advantage is that the no-flux criterion can be naturally written in coordinate-free language using differential forms. Namely, in the case of an n-dimensional mini-superspace, the local conservation of the current J yields that J is most naturally thought of as an instance of a closed $(n-1)$-form. The flux of such a form through co-dimension-1 surfaces $\partial \Omega$ (encompassing the singular metrics) is intrinsically defined by the integral $\int_{\partial \Omega} J$.

In the next Section, we will consider a particular mini-superspace model corresponding to a Friedmann-Lemaître-Robertson-Walker (FLRW) universe with dust, where the dust is described by the Brown and Kuchař method [18]. In this example, it turns out that the chosen operator ordering plays a crucial role in whether or not singularities occur.

2 Mini-superspace with dust

In the Brown-Kuchař description [18, 19], dust is described by a matter fluid determined by the rest mass density ρ and a 4-velocity field U^μ which can be parametrized by certain (non-canonical) scalar fields. The classical action including gravity is

$$S = \frac{1}{2} \int d^4x \sqrt{-g} \rho \left(g^{\mu\nu} U_\mu U_\nu - 1 \right) + \frac{1}{16 \pi G} \int d^4x \sqrt{-g} R,$$

where G is the gravitational constant, $g_{\mu\nu}$ is the 4-metric and R is the Ricci scalar. Assuming spatial homogeneity and isotropy, the metric is given by the FLRW metric

$$ds^2 = N(t)^2 dt^2 - a(t)^2 d\Omega^2,$$

where $N > 0$ is the lapse function, a the scale factor, and $d\Omega^2$ is the spatial line-element on 3-space. We assume that there is no spatial curvature and that 3-space is compact, with co-moving volume V. Because of the symmetry, the dust field U^μ can be parametrized by a single scalar field $T = T(t)$ as $U_\mu = \partial_\mu T$. The effective classical Lagrangian is given by

$$L = V \left[\frac{1}{2} Na^3 \left(\frac{T^2}{N^2} - 1 \right) - \frac{1}{2N\kappa^2} a \dot{a}^2 \right],$$

2In Bohmian quantum gravity there is an actual metric and actual matter degrees of freedom, like a scalar field, and the integral curves of the conserved current form the possible trajectories. So in this case the classical notion of singularity can be employed and singularities are typically avoided when there is no flux through the singularities. Similarly, in the context of non-relativistic quantum mechanics, the $|\psi|^2 d^3x$-probability for a particle to run into the singularity of the Coulomb potential is zero [16, 17].

3We take $\hbar = c = 1$.

3
where $\kappa = \sqrt{4\pi G/3}$. The corresponding classical equations of motion are

$$\dot{T}^2 = N^2, \quad \frac{d}{dt}(a^3 \rho) = 0, \quad \frac{\dot{a}^2}{N^2 a^2} = 2\kappa^2 \rho, \quad \frac{d}{dt} \left(\frac{\dot{a}^2}{N} \right) = \frac{3}{2} \frac{\ddot{a}^2}{N}. \quad (6)$$

The lapse function is an arbitrary function of time, which relates to the time reparameterization invariance. In the gauge $N = 1$, so that t is cosmic time (i.e., the proper time for an observer moving with the expansion of the universe), we can write these equations as

$$T = t + t_0, \quad \frac{d}{dt}(a^3 \rho) = 0, \quad \frac{\dot{a}^2}{a^2} = 2\kappa^2 \rho, \quad \frac{\ddot{a}}{a} = -\kappa^2 \rho. \quad (7)$$

Without loss of generality we can put the constant $t_0 = 0$, so that the matter field T just equals cosmic time. The resulting equations are the familiar ones for dust, which leads to the following evolution of the scale factor:

$$a(t) = (c_1 t + c_2)^{2/3}, \quad \text{with } c_1, c_2 \text{ constant.} \quad \text{So, classically, there is always a big bang or big crunch singularity, when } a = 0, \text{ obtained at } t = -c_2/c_1. \quad (8)$$

Canonical quantization of this classical theory yields the Wheeler-DeWitt equation

$$\hat{H}\psi := i\frac{\partial T}{\partial T} \psi - \frac{1}{2M} \frac{1}{a^{m+1}} \partial_a (a^m \partial_a \psi) = 0, \quad (9)$$

where $\psi = \psi(a, T)$ and hence ψ is independent of time t, and $M = V/\kappa^2$. The variable m corresponds to a choice of operator ordering. The choice $m = -1/2$ correspond to using the Laplace-Beltrami operator corresponding to the DeWitt metric on mini-superspace [19]. Other operator orderings have been considered in for example [20].

There is a conservation equation

$$\partial_T j_T + \partial_a j_a = 0, \quad (11)$$

where

$$j_T = -|\psi|^2 a^{m+1}, \quad j_a = \frac{1}{2M} a^m \text{Im}(\psi^* \partial_a \psi). \quad (12)$$

Avoidance of the singularity now means that there is no flux through $a = 0$ in the half-plane determined by $a \in \mathbb{R}^+, T \in \mathbb{R}$ [3]. In other words [6]

$$\lim_{a \to 0} \int_{-\infty}^{+\infty} dT \, |j_a(a, T)| = 0. \quad (14)$$

\textbf{4}Of course, more general operator orderings could be considered, such as

$$i \frac{1}{w(a, \tau)} \partial_\tau (w(a, \tau) \phi) + \frac{1}{2M a f(a, \tau)} \partial_a (f(a, \tau) \partial_a \phi) = 0, \quad (10)$$

which is still a local constraint.

\textbf{5}We use the convention that $\mathbb{R}^+ := (0, +\infty)$.

\textbf{6}In the Bohmian theory, the dynamics is given by

$$\dot{T} = N \frac{j_T}{|\psi|^2 a^{m+1}}, \quad \dot{a} = N \frac{j_a}{|\psi|^2 a^{m+1}}, \quad (13)$$

with N an arbitrary function of time [21]. This dynamics preserves the measure $|\psi(a, T)|^2 a^{m+1} da dT$ (which is no probability measure). In this case, the no-flux condition [13] implies that the $|\psi(a, T)|^2 a^{m+1} da dT$-measure of the set of “initial” configurations that start or end up with $a = 0$ is zero.
Using $x = \frac{2}{3}a^{3/2}$ and $\tau = -T$, the Wheeler-DeWitt equation (9) reduces to

$$i\partial_\tau \psi = -\frac{1}{2M} \frac{1}{x^n} \partial_x x^n \partial_x \psi,$$

(15)

with $n = 2m/3 + 1/3$. Since $a \in \mathbb{R}^+$, we have that $x \in \mathbb{R}^+$. Using the transformation $\psi = x^{-n/2}\phi/(2/3)^n$, we get

$$i\partial_\tau \phi = -\frac{1}{2M} \partial_x^2 \phi + \frac{c}{M} \frac{1}{x^2} \phi,$$

(16)

with $c = (n/2 - 1)n/2$. So we get the non-relativistic Schrödinger equation with a $1/x^2$ potential. We have that

$$j_a = j_x = \frac{1}{2M} \text{Im}(\phi^* \partial_x \phi),$$

(17)

with j_x the usual probability current associated with the Schrödinger equation (16), which satisfies

$$\partial_\tau |\phi(x, \tau)|^2 + \partial_x j_x(x, \tau) = 0.$$

(18)

The criterion that there be no flux into the big-bang configurations ($a = 0$) now reads

$$\lim_{x \to 0} \int_{-\infty}^{+\infty} d\tau |j_x(x, \tau)| = 0.$$

(19)

The form of the Schrödinger equation (16) suggests to look for a unitary dynamics on the Hilbert space $L^2(\mathbb{R}^+)$, with τ playing the role of time. A unitary dynamics will preserve the norm of ϕ, i.e.,

$$\|\phi(x, \tau)\|_2 = \left(\int_0^{+\infty} |\phi(x, \tau)|^2 \, dx \right)^{1/2}$$

(20)

is constant as a function of τ, i.e., $\partial_\tau \|\phi\|_2 = 0$. On the other hand, from the continuity equation (18) we have

$$\partial_\tau \|\phi(x, \tau)\|_2^2 = -\int_0^{+\infty} dx \partial_x j_x(x, \tau) = -\lim_{x \to 0} j_x(x, \tau)$$

(21)

(provided $\lim_{x \to +\infty} j_x(x, \tau) = 0$). Hence, $\lim_{x \to 0} j_x(x, \tau) = 0$ and there is no-flux in each finite τ-interval. This does not necessarily imply the no-flux condition (19), since there might still be flux for $|\tau|$ going to infinity. But we will not worry about this since already classically, $|\tau|$ to infinity corresponds to infinity proper cosmic time.

This being said, we will refrain from demanding a unitary dynamics. After all, time does not appear in the theory and promoting the variable τ to play the temporal role relies on a certain way to solve the problem of time. At this stage we do not want to commit ourselves to any solution to that problem. So, we want to regard (16) as a partial differential equation at face value. Requiring that solutions ϕ are square-integrable over the (x, τ) half-plane ($x > 0$) is too strong, but in order to preserve the possibility of a notion of (conditional) probability,

7 Similarly, a no-flux criterion might be formulated to avoid big rip singularities (which classically correspond to $a \to \infty$ in finite time).

8 In the Bohmian theory, $\lim_{x \to 0} j_x(x, \tau) = 0$ is enough to ensure that trajectories do not reach the singularity is finite cosmic proper time.
it remains natural to require that they are square-integrable over certain sections of the halfplane.

In the case \(c = 0 \), a \(L^2(\mathbb{R}^+) \)-integrability condition for \(\phi(.,\tau) \) does not yet accomplish ruling out flux through \(a = x = 0 \): the dynamics in this case can be seen as the restriction to the half-line of the free Schrödinger evolution over the whole line. For a generic solution of the latter problem, there will be flux through the origin. Extra boundary conditions need to be imposed to prohibit such a flux. (Requiring a unitary dynamics on the half-line yields the boundary condition \(\phi|_{x=0} = C\partial_x \phi|_{x=0} \), with \(C \in \mathbb{R} \cup \{\infty\} \). In this case, we have a again \(\lim_{x \to 0} j_x(x,\tau) = 0 \).)

In the case \(c > 0 \), the representation \([19]\) of the Schrödinger equation exhibits a repulsive potential term proportional to \(1/x^2 \). One might wonder whether this potential, which is in principle infinitely repelling at the origin, is sufficient to prohibit flux through \(a = x = 0 \). This appears to be indeed the case, under mild assumptions, when \(c \geq 3/2 \).

For example, if we require \(\phi \) and \(\hat{\hbar}\phi := -\frac{1}{2M} \partial_x^2 \phi + \frac{c}{M} \frac{1}{x^2} \phi \) to be in \(L^2(\mathbb{R}^+) \) then \(\phi = \mathcal{O}(x^{3/2}) \) and \(\partial_x \phi = \mathcal{O}(x^{1/2}) \) \([22]\) pp. 249-250], so that \(\lim_{x \to 0} j_x(x,\tau) = 0 \). (Clearly, for \(c = 0 \), the condition that \(\phi \) and \(\hat{\hbar}\phi \) are in \(L^2(\mathbb{R}^+) \) is not sufficient to guarantee no flux.) The condition on \(\psi \) could be even be weakened, but this will be discussed in future work.

That \(c \geq 3/2 \) relates to the fact that for those values are those for which \(\hat{\hbar} \) is essentially self-adjoint \([23]\). By virtue of Stone’s theorem, such essential self-adjointness corresponds to a situation where a unique unitary dynamics \(e^{-i\tau\hat{\hbar}} \) can be associated to the operator \(\hat{\hbar} \).

To conclude: by assuming a certain operator ordering together with a mild integrability condition can rule out any flux into singular configurations.

3 Conclusion

We investigated the role of operator orderings in the question of space-time singularities corresponding to a big bang or big crunch. We used the criterion that quantum mechanically there are space-time singularities if and only if there is quantum flux into singular 3-metrics. For a quantum mini-superspace model with dust, an operator ordering can be chosen in the quantization process such that big bang or big crunch singularities are avoided, without assuming any boundary conditions. This is because of the appearance of an effective potential which repells from the singularity. This potential falls off rapidly away from the singularity and hence merely seems to affect the quantum dynamics near the singularity. Effects away from the singularity, such as the appearance of an effective cosmological constant, described in \([24]\), are presumably unaffected by such alternative operator orderings. The situation is similar to that in loop quantum gravity where the quantum effects also cause a bouncing behaviour near the singularity \([9,13]\).

Perhaps singularities can similarly be avoided in other mini-superspace models (e.g. with a canonical scalar field) or in full quantum gravity. In view of the absence of experimental evidence for one or the other operator ordering, the criterion that singularities are prohibited can perhaps narrow down the possibilities.

\(^9\)This condition for example guarantees that \(\partial_x j_x = 2\text{Re}(i\psi^*\hat{\hbar}\psi) \) is integrable so that the argument concerning \([21]\) can be made in the first place.
4 Acknowledgments

It is a pleasure to thank Wojciech De Roeck, Detlef Dürr and Christian Maes for valuable discussions. WS is supported by the Research Foundation Flanders (Fonds Wetenschappelijk Onderzoek, FWO), Grant No. G066918N.

References

[1] T. Christodoulakis and J. Zanelli, “Operator Ordering in Quantum Mechanics and Quantum Gravity”, Nuovo Cimento B 93, 1-21 (1986).

[2] J.J. Halliwell, “Introductory lectures on quantum cosmology”, in Quantum Cosmology and Baby Universes, eds. S. Coleman, J.B. Hartle, T. Piran and S. Weinberg, World Scientific, Singapore, 159-243 (1991) and arXiv:0909.2566 [gr-qc].

[3] N. Kontoleon and D.L. Wiltshire, “Operator ordering and consistency of the wavefunction of the Universe”, Phys. Rev. D 59, 063513 (1999) and arXiv:gr-qc/9807075.

[4] R. Šteigl and F. Hinterleitner, “Factor ordering in standard quantum cosmology”, Class. Quantum Grav. 23, 3879-3893 (2006) and arXiv:gr-qc/0511149.

[5] J. Haga and R.L. Maitra, SIGMA 13, 039 (2017) and arXiv:1612.05622 [math-ph].

[6] B.S. DeWitt, “Quantum Theory of Gravity. I. The Canonical Theory”, Phys. Rev. 160, 1113-1148, (1967).

[7] F. Lund, “Canonical Quantization of Relativistic Balls of Dust”, Phys. Rev. D 8, 3253-3259 (1973).

[8] M.J. Gotay and J. Demaret, “Quantum cosmological singularities”, Phys. Rev. D 28, 2402-2413 (1983).

[9] M. Bojowald, “Absence of a Singularity in Loop Quantum Cosmology”, Phys. Rev. Lett. 86, 5227-5230 (2001) and arXiv:gr-qc/0102069.

[10] C. Kiefer, Quantum Gravity, International Series of Monographs on Physics 124, Clarendon Press, Oxford (2004).

[11] A. Ashtekar, T. Pawlowski and P. Singh, “Quantum nature of the big bang”, Phys. Rev. Lett. 96, 141301 (2006) and arXiv:gr-qc/0602086.

[12] A. Ashtekar, T. Pawlowski and P. Singh, “Quantum nature of the big bang: An analytical and numerical investigation”, Phys. Rev. D 73, 124038 (2006) and arXiv:gr-qc/0604013.

[13] A. Ashtekar, A. Corichi and P. Singh, “Robustness of key features of loop quantum cosmology”, Phys. Rev. D 77, 024046 (2008) and arXiv:0710.3565 [gr-qc].

[14] C. Kiefer, “Can singularities be avoided in quantum cosmology?”, Ann. Phys. 19, 211-218 (2010).
[15] W.f. Blyth and C.J. Isham, “Quantization of a Friedmann universe filled with a scalar field”, *Phys. Rev. D* **11**, 768-778 (1975).

[16] K. Berndl, D. Dürr, S. Goldstein, G. Peruzzi and N. Zanghì, *Commun. Math. Phys.* **173**, 647-673 (1995) and [arXiv:quant-ph/9503013](https://arxiv.org/abs/quant-ph/9503013).

[17] S. Teufel and R. Tumulka, “Simple Proof for Global Existence of Bohmian Trajectories”, *Commun. Math. Phys.* **258**, 349-365 (2005) and [math-ph/0406030](https://arxiv.org/abs/math-ph/0406030).

[18] J.D. Brown and K.V. Kuchař, “Dust as a standard of space and time in canonical quantum gravity”, *Phys. Rev. D* **51**, 5600 (1995) and [arXiv:gr-qc/9409001](https://arxiv.org/abs/gr-qc/9409001).

[19] H. Maeda, “Unitary evolution of the quantum Universe with a Brown-Kuchar dust”, *Class. Quantum Grav.* **32**, 235023 (2015) and [arXiv:1502.06954](https://arxiv.org/abs/1502.06954).

[20] F. Amemiya and T. Kioke, “Gauge-invariant construction of quantum cosmology”, *Phys. Rev. D* **80**, 103507 (2009) and [arXiv:0910.4256](https://arxiv.org/abs/0910.4256) [gr-qc].

[21] N. Pinto-Neto and W. Struyve, “Bohmian quantum gravity and cosmology”, in *Applied Bohmian Mechanics: From Nanoscale Systems to Cosmology*, eds. Xavier Oriols Pladevall and Jordi Mompart, [arXiv:1801.03353](https://arxiv.org/abs/1801.03353) [gr-qc].

[22] D.M. Gitman, I.V. Tyutin and B.L. Voronov, *Self-adjoint Extensions in Quantum Mechanics*, Progress in Mathematical PHysics **62**, Springer, New York (2012).

[23] M. Reed and B. Simon, *Methods of modern mathematical physics II: Fourier Analysis, Self-Adjointness*, Academic Press, San Diego (1975).

[24] T. Demaerel, C. Maes and W. Struyve, “Cosmic acceleration from quantum Friedmann equations”, [arXiv:1901.09767](https://arxiv.org/abs/1901.09767) [gr-qc].