A review of the effects of Berberis vulgaris and its major component, berberine, in metabolic syndrome

Jamshed Tabeshpour 1, 2, Mohsen Imenshahidi 1, Hossein Hosseinzadeh 1, 3*

1Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
2Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
3Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

ARTICLE INFO

Article type: Review article

Article history:
Received: May 3, 2016
Accepted: Jun 30, 2016

Keywords:
Berberis vulgaris
Berberine
Cardiovascular disease
Diabetes
Dyslipidemia
Hypertension
Metabolic syndrome

ABSTRACT

Metabolic syndrome (MetS), characterized by a cluster of metabolic abnormalities including hypertension, obesity, type 2 diabetes mellitus (T2DM) and dyslipidemia, is a well-known cardiovascular risk factor (CWF). Cardiovascular disease (CVD) represents a massive healthcare burden worldwide. In recent years, with regard to the adverse effects of synthetic drugs, increasing attention has been paid by researchers to herbal medicines for a variety of disorders such as CVD. A large body of literature supports different pharmacological actions of Berberis vulgaris (B. vulgaris) and its active component, berberine (BBR), such as antidiabetic, antiobesity, hypotensive and hypolipidemiac properties that could be interesting in the management of MetS associated with high CVD risk. Numerous preclinical in vitro and in vivo studies support all these effects. In this review, we evaluated the most related original articles to discover the role of B. vulgaris on various constituents of MetS and CVD comprising dyslipidemia, obesity, high blood pressure and high blood glucose. This review suggests a potential role of B. vulgaris and BBR in the managing of MetS; nevertheless more investigations, especially reliable clinical trials, need to be accomplished to evaluate their effectiveness.

Introduction

Metabolic syndrome (MetS), also described as ‘insulin resistance syndrome’ (1), ‘syndrome X’ (2), ‘hypertriglycerideemic waist’ (3) and ‘the deadly quartet’ (4) characterized by a cluster of metabolic abnormalities including hypertension, obesity, insulin resistance and dyslipidemia, is a well-known risk factor for type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) (5). On the word of the International Diabetes Federation (IDF) (6) and the American Heart Association/National Heart, Lung, and Blood Institute (7), manifestation of any 3 of 5 risk factors establishes a diagnosis of MetS (8). Criteria for clinical diagnosis of the MetS are shown in Table 1.

Statistics show that 20–25% of adults are suffering from MetS in the world and its presence should be considered as an indicator of long-term risk (9). So, it is a life-threatening disease and seems to be of vital importance to reach an appropriate remedy. Present and future trends in CVD mortality will require growing attention in the 21st century. Therefore, preventive strategies should be considered to decrease the future CVD burden (10) and nowadays there is a rising demand for plant bio-resources in the management of chronic diseases such as MetS, instead of synthetic drugs, to avoid adverse effects (11). Furthermore, traditional medicinal plants are often cheaper and more locally available (12). It is a fact that one quarter of all medical prescriptions are formulations based on plant-derived synthetic analogs, and as stated by the WHO, 80% of the world’s population; mainly those of developing countries; trust in plant-derived medicines for their healthcare (11). A number of plants and/or their constituents such as Vitis vinifera (Grapes) (13), Nigella sativa (14), rutin (15) and Allium sativum (Garlic) (16) have shown beneficial effects in the treatment of MetS.

In line with this, “zereshk” which is the Persian name for Berberis vulgaris (B. vulgaris), is extensively cultivated in Iran (typically in Birjand and Qaen cities), central and southern Europe and the northeastern of the United States (17-19). The fruit of B. vulgaris (Figure 1) has long scarlet colored berries (20) which are oblong, slightly curved, about 0.5 inches long and edible (21).

B. vulgaris has played an important role in herbal therapy for more than 2500 years. Russian therapists have utilized it for treatment of inflammations, high...
blood pressure, and abnormal uterine bleeding (21). Different parts of this plant including fruits, leaves and roots, have been used in traditional medicine for a long time (22). For instance its dried leaf and stem bark are utilized as antiedema and antihypertensive in varicose veins, respectively. In gastrointestinal system, dried root is used as choleretic, laxative, antidiarrheal, anti-hepatitis, anti-hemorrhoid, and also its fruit is used in treatment of painful menstruation, whooping cough, hepatic malfunctions (23). Numerous investigations have earlier indicated that B. vulgaris has further medicinal properties such as antihyperglycemic, hypolipidemic, antioxidant, anticholinergic, anticancer, antipyretic, antihistaminic, antimicrobial, hypnotic, jumping and locomotion decreasing activities, and also reduction in the acquisition and reinstatement of morphine-induced conditioned place preference (24-27), which confirm the traditional use of this plant in Ayurveda and Chinese medicine (28).

B. vulgaris contains isoquinoline alkaloids such as berberine (BBR) (29); acanthine, bargustanine, berbamine, berlambine, palmatine and secondary metabolites such as aesculetin, ascorbic acid, caffeic acid, pectin and tannin (23, 30).

BBR, a type of isoquinoline alkaloid with a long history of medicinal application, is the major active component of B. vulgaris (31). Recent studies have proved that BBR exhibits several pharmacological activities such as antioxidant, anti-inflammatory, antidiarrheal, antimicrobial and anti-tumor activity (32-35). Furthermore, BBR has a broad range of therapeutic potential uses including lowering blood glucose, adjusting blood lipids, increasing insulin sensitivity and consequently ameliorating insulin resistance (23) (Figure 2).

In this review, we illustrate the most related clinical trials, animal and in vitro studies to comprehend the role of B. vulgaris and its major active component, BBR, in treatment of various constituents of MetS including dyslipidemia, hyperglycemia, hypertension and obesity. Although the reported biological results indicate that
this plant is a highly promising cardiovascular protective agent, more investigations need to be done to establish its effectiveness and in vivo cardioprotective effects, specifically in humans.

Search strategy
This review was carried out by means of the databases of Scopus, PubMed and Google Scholar. All the above databases were searched from the available date of inception until the latest issue up to May 2016. The search words contained MetS, CVD, dyslipidemia, obesity, hypertension, diabetes, B. vulgaris and BBR. All articles which included reports of the effect of B. vulgaris and BBR on MetS were taken into account. The reference lists of the included articles were also explored to identify additional studies.

Effects on lipid profile
Dyslipidemia is commonly known as an important cardiovascular risk factor (CVRF) with large randomized trials representing significant benefit of lipid modifying therapy in the management of CVD (36). Dyslipidemia is chiefly known as a triad of low HDL-C together with increases in triglycerides (TGs) and LDL (low-density lipoprotein) (37). In animal studies, hypercholesterolemic (HCh) rats which were fed by 30 mg/kg/day of BBR for six weeks showed reduced serum levels of TG and total cholesterol (TC). BBR caused significant increase in cardiac fatty acid transport protein-1, fatty acid transport proteins, fatty acid beta-oxidase, as well as peroxisome proliferator-activated receptor γ (PPARγ), but decrease in PPARα mRNA and protein expression (38). Treatment of hyperlipidemic (HL) hamsters with BBR reduced serum cholesterol by 40% and LDL-C by 42%, with a 3.5-fold rise in hepatic LDLR (low-density lipoprotein receptor) mRNA and a 2.6-fold rise in hepatic LDLR protein (39). In a study, it was indicated that because the mechanism of BBR (stabilization of the LDLR mRNA) differs from that of statins, the combination of BBR and BBR monotherapy is more effective than that of the simvastatin or BBR monotherapy (40).

In another study, BCh rats which received the alcoholic extract of B. vulgaris at minimum (75 mg/kg), moderate (150 mg/kg), and maximum (300 mg/kg) doses by intraperitoneal (IP) injection for three weeks, showed a decrease in serum levels of ALT (alanine transaminase) and ALP (alkaline phosphatase) through antioxidant properties of the plant (41). The mechanism of lowering blood cholesterol levels through inhibiting the intestinal absorption and further by interfering with intraluminal cholesterol micellization and decreasing enteroocyte cholesterol uptake and secretion, was indicated in a study in which rats received 50, 100, and 150 mg/kg of BBR by gavage for 8 weeks (42). Furthermore, HFD rats treated with 200 mg/kg/d of BBR remarkably decreased the mRNA levels encoding carnitine palmitoyltransferase-1α (CPT-1α), microsomal triglyceride transfer protein (MTP) and LDLR in the liver (43).

In vitro study also showed that BBR increased the LDLR mRNA and protein levels in a time- and dose-dependent manner and exhibits lipid-lowering effects by up-regulating LDLR expression in HepG2 cells (44).

Clinical studies also indicated the beneficial effects of this plant on dyslipidemia in human beings. Oral administration of BBR (0.5 g twice per day) in 32 HCh patients for 3 months reduced serum cholesterol by 29%, TGs by 35% and LDL-C by 25% compared to the control subjects (39). In another study, subjects on the BBR therapy were given 0.5 g of BBR hydrochloride orally twice a day for 3 months and it significantly lowered blood cholesterol, TG, LDL-C, ALT and AST, but increased HDL compared to the control subjects (45). Besides, decrease in TC (19.2%), TG (16.3%) and LDL-C (17.4%) compared to the control subjects was observed in a clinical study which BBR tablets (500 mg) were administered orally to HCh patients daily for 6 months (46). In several clinical studies, BBR has shown reduction in serum levels of TC, TG and LDL levels. Nevertheless, HDL level showed increase in some and no significant change in some other studies (47, 48).

The proposed mechanisms of protective effects of B. vulgaris and BBR on dyslipidemia may be associated with increase in hepatic LDLR mRNA and hepatic LDLR protein (39), a significant increase in adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and activity (49) (Table 2).

Effects on obesity
The increasing prevalence of obesity is associated with many diet-related chronic diseases including T2DM, CVD, stroke and hypertension (50). BBR successfully decreased body weight, fasting blood glucose (FBG), postprandial blood glucose (PBG), fasting insulin (FI) and homeostasis model assessment (HOMA IR) in obese rats fed on high fat diet (52). In a study, insulin resistance was developed by feeding the female rats a high fat diet (HFD) for six weeks, then treating them with B. vulgaris extract (0.2 g/Kg body weight) or vitamin A (128 μg/Kg/day) for two weeks. Co-administration of vitamin A and B. vulgaris extracts reduced body weight, blood glucose level, insulin, and retinol binding protein4 (RBP4) expression before, during and after HFD period (51). In another study when HFD-induced obese mice were treated with 0.75, 1.5 and 3 mg/kg/day (IP) of BBR for 36 days, it was demonstrated that BBR reduced mouse weight gain, food intake and serum glucose, TC and TC levels accompanied with a down-regulation of PPARγ expression and an up-regulation of globin transcription factor 3 (GATA-3) expression (52).

In a clinical trial which was conducted on 80 patients (case and control groups), a significant decrease was observed in weight, TG and cholesterol in patients who
received two capsules (750 mg) containing *B. vulgaris* extract every day for 3 months (53).

Effects on high blood pressure

Hypertension is also one of the main CVRFs (54), which leads to increase in incidence of myocardial infarction and cerebrovascular disease, as well as heart failure and chronic renal disease (55).

Hypotensive effects of BBR have been observed in different animal models. In a study, the delay of the onset and attenuation of the severity of hypertension as well as amelioration of hypertension-induced renal damage were observed following the administration of BBR [per os (p.o.), 100 mg/kg/d body weight] to spontaneously hypertensive rats. Furthermore, BBR could inhibit the activities of renin-angiotensin system and pro-inflammatory cytokines interleukin 6 (IL-6), IL-17 and IL-23, which are involved in the pathophysiology of hypertension (56). Besides, intravenous (IV) administration of *B. vulgaris* (17–33 mg/100g) significantly reduced the rat arterial blood pressure (57). In another study, IV infusion of BBR (10 mg/kg/in one hr) to rats lowered the blood pressure in a dose-dependent manner and a significant hypotensive effect was followed by bradycardia (58). The results of an experiment on rats also suggested that BBR has a hypotensive effect, via the inhibition of angiotensin-converting enzyme and direct release of NO/cGMP in the vascular tissues (59). In a dog ischemic heart failure model, IV administration of BBR, increased cardiac output; and decreased left ventricular end diastolic pressure and systemic vascular resistance (60).

Examination of hemodynamic parameters in humans revealed similar results with increased cardiac index and left ventricular ejection fraction, decreased systemic and pulmonary vascular resistance and left ventricular end-diastolic pressures (61). BBR also showed hypotensive effect in combination therapy. In a clinical study, a nutraceutical composition including policosanol, red yeast rice extract, BBR, folic acid and coenzyme Q10 with *Orthosiphon stamineus* was administered to grade I essential hypertensive patients for a month and an antihypertensive effect along with lipid lowering effect was revealed (62).

Effects on high glucose level

T2DM, a serious, complex metabolic disorder and one of the most common chronic diseases, is an independent CVRF (63-65). The antidiabetic and hypoglycemic effects of *B. vulgaris* and BBR have been described by several clinical, *in vivo* and *in vitro* scientific investigations (32, 33, 66). Many human studies have supported the antidiabetic effect of this plant. For example, in two different diabetic situation (the newly diagnosed T2DM and poorly controlled T2DM patients) who received 0.5 g/three times a day (t.i.d.) of BBR (orally for 3 months) showed decrease in HbA1c, FBG, PBB, TG, TC, LDL-C, and the authors presented BBR as a potent oral hypoglycemic agent with beneficial effects on lipid metabolism (32). In another clinical study on T2DM patients who were treated with *B. vulgaris* fruit extract (3 g/d) orally for 3 months, reduction in glucose, insulin, TG, TC, LDL-C and apolipoprotein B was indicated (67). In a clinical trial on T2DM patients, BBR was suggested as an ideal medicine with a mechanism different from metformin and rosiglitazone and demonstrated the effect of BBR on increasing insulin receptor mRNA in humans and its relationship with the glucose-lowering effect (68). In another human study, patients who received BBR (0.5 g/twice a day for three months), biomarkers such as TG, TC and LDL-C markedly decreased (69). Also it has been shown that consumption of 1 g/d of BBR in T2DM and DL (dyslipidemic) patients (for 3 months) reduced free fatty acids (64) that can be considered as a mechanism for the antidiabetic effect of BBR.

Furthermore, in a meta-analysis, the effect and safety of BBR in the treatment of T2DM, hyperlipidemia and hypertension on 2569 patients was investigated. This study indicated that BBR has comparable therapeutic effect on T2DM, hyperlipidemia and hypertension with no serious side effect (70).

Besides, *in vivo* studies have demonstrated this effect. In an animal study, 50 and 100 mg/kg of BBR was intraperitoneally injected to streptozotocin (STZ)-diabetic rats for 4 weeks and decrease in FBG, hepatic gluconeogenesis, glucose 6-phosphatase (G6Pase), weight gain, plasma TG and phosphoenolpyruvate carboxykinase was observed. But glucose tolerance and AMPK activity increased (71). This effect was also observed with a different mechanism in non-obese diabetic mice which were treated orally with BBR (200 mg/kg for 2 weeks) and inhibition of T helper17 (Th17) cell differentiation by activating extracellular signal-regulated kinase1/2 (ERK1/2), inhibition of Th1 cell differentiation by inhibiting p38 mitogen-activated protein kinase (MAPK) and c-jun N-terminal kinase (JNK) activation, was observed (33). In another animal study, BBR (150, 300 mg/kg for 4 months) was IP injected to HCh and T2DM rats and the results showed an increase in insulin expression, β-cell regeneration, antioxidant enzyme activity; and decrease in lipid peroxidation (72). Another mechanism which has been stated on the antidiabetic effect of this plant could be a reduction in FBG and malondialdehyde (MDA), and increase in superoxide dismutase (SOD) and catalase (CAT) activity by treating T2DM mice with BBR (100 mg/kg/d for 2 weeks) (73). The antidiabetic effect of BBR was also demonstrated in astudy on mice, accomplished by Zhang *et al* (74). In this study, up-regulated expression of glucose transporter 4 (GLUT4), MAPK14, MAPK8, PPARα,
uncoupling protein 2, and hepatic nuclear factor 4α (HNF4α); and down-regulated expression of PPARγ, CCAAT/enhancer-binding protein (C/EBP), PPARγ coactivator 1α (PGC1α) and resistin (which moderates glucose and lipid metabolism), was observed (74). Besides, in adipose and muscle cell, several research projects demonstrated that BBR may stimulate glucose uptake into cell through up-regulating GLUT1 expression and inhibiting RBP4, which can act as an effective insulin sensitizing function (63). BBR treatment in STZ-diabetic rats significantly increases glucagon levels in plasma and intestine through promoting glucagon-like peptide-1 (GLP-1) secretion, accompanied with an increase of proglucagon mRNA expression. Furthermore, BBR raises insulin levels in plasma and pancreas as well as β-cell number in pancreas (75). On GLP-1 receptor activation, adenyl cyclase (AC) is activated, and cyclic adenosine monophosphate (cAMP) is generated, leading to activation of second messenger pathways and closure of ATP-dependent potassium channels. Increased intracellular potassium causes depolarization, and calcium influx through the voltage-dependent calcium channels occurs. This intracellular calcium increase stimulates the migration and exocytosis of the insulin granules and lowers the blood glucose (76).

In an experiment which was performed on rat H9c2 cardiomyocyte cell line, BBR (5–20 μM) could increase AMPK activity, glucose consumption and glucose uptake by these cells (77). In another experiment on MCF7, HepG2 and Caco-2 cell lines, the ethanolic extract of B. vulgaris and BBR caused the inhibition of α-glucosidase enzyme activity which verifies this effect (66). BBR (50μ M) also indicated an escalation of insulin sensitizing activity and glucose-stimulated insulin secretion and proliferation; and a diminution of TG in 3T3-L1 adipocytes (78). A proposed mechanism for BBR (0.02- 20 μg/ml) could be a reduction in sucrase, maltase and disaccharidase activity; and the inhibition of α-glucosidase according to an experiment on Caco-2 cell line which lead to reduction in intestinal absorption of glucose (79). The stimulation of palmitate resulted in IL-6 and tumor necrosis factor-α (TNF-α) production in HepG2 cells, and antibody-neutralizing assay further confirms that IL-6 and TNF-α are involved in the development of insulin resistance. BBR effectively inhibits IL-6 and TNF-α production in a concentration-dependent manner, demonstrating its anti-inflammatory activity in hepatocytes (80). BBR augments glucose metabolism through stimulation of glycolysis, which is related to inhibition of glucose oxidation in mitochondria. BBR-induced AMPK activation is likely a result of mitochondria inhibition that escalates the AMP/ATP ratio (81). The improving effect of BBR on obesity, T2DM and dyslipidemia has been shown through stimulating of AMPK. BBR suppresses pro-inflammatory responses through AMPK activation in macrophages. In adipose tissue of obese db/db mice, BBR considerably down-regulated the expression of pro-inflammatory genes such as IL-1β, IL-6, TNFα, monocyte chemoattractant protein-1 (MCP-1), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Constantly, BBR inhibited lipopolysaccharide (LPS)-induced expression of pro-inflammatory genes including IL-1β, IL-6, iNOS, MCP-1, COX-2, and matrix metalloprotease-9 in peritoneal macrophages and RAW 264.7 cells. Upon various pro-inflammatory signals such as LPS, free fatty acids, and hydrogen peroxide, BBR suppressed the phosphorylation of MAPKs, such as p38, ERK, and JNK, and the level of reactive oxygen species in macrophages (82). BBR also has significant antimicrobial activity against several microbes through inhibiting the assembly function of filamenting temperature-sensitive mutant Z (FtZ), an essential cell division protein, which results in the cessation of bacterial cell division. Acting topically in the gastrointestinal tract and poorly absorbed, BBR might modulate gut microbiota without systemic anti-infective activity (83), and this could be another mechanism for the anti-diabetic effect of BBR (Figure 3).

Conclusion

The use of herbal drugs as complementary medicine is prevalent and gaining worldwide popularity. Many drugs are derived directly from plants; while the others are chemically modified natural products. The original research articles published so far have confirmed the pharmacological potential of *B. vulgaris* and its active component, BBR, which possess remarkable *in vitro* and *in vivo* (clinical studies, in lesser extent) anti-diabetic, hypolipidemic, hypotensive and antiobesity effects against MetS. Based on the current review, it can be concluded that *B. vulgaris* may exhibit promise as a medication for modulating different constituents of MetS including T2DM, dyslipidemia, hypertension and obesity, and consequently CVD. However, more clinical trials need to be done for establishing the therapeutic effectiveness of *B. vulgaris* and BBR.

Conflict of interest

None to be declared.
Figure 3. Main mechanisms of berberine on glucose metabolism

MAPK= mitogen-activated protein kinase; ERK= extracellular signal-regulated kinase; JNK= c-Jun N-terminal kinase; STAT3= signal transducer and activator of transcription 3; Th= T helper cells; PKC= protein kinase C; InsR= insulin receptor; IR= insulin resistance; MDA= malondialdehyde; SOD= superoxide dismutase; CAT= catalase; GSH= glutathione; G6Pase= glucose-6-phosphatase; AMPK= adenosine monophosphate-activated protein kinase; GLUT4= glucose transporter 4; PPARα= peroxisome proliferator-activated receptor α; UCP2= uncoupling protein 2; HNF4α= hepatic nuclear factor 4α; C/EBP= CCAAT enhancer-binding protein; PGC1α= PPARγ coactivator 1α; GLP-1= glucagon-like peptide 1; AC= adenylyl cyclase; cAMP= cyclic adenosine monophosphate; ATP= adenosine triphosphate; RBP4= retinol binding protein 4; IL-6= interleukin 6; TNFα= tumor necrosis factor; iNOS= inducible nitric oxide synthase; CDX2= cytochrome oxidase-2; FtsZ= filamenting temperature-sensitive mutant Z; ROR= retinoic acid related orphan receptors.

Table 2. Summary of the effects of Berberis vulgaris and berberine in metabolic syndrome

Pharmacological effects	Results	Study protocol	Compound	References
Antioxidant activity			B. vulgaris extracts (300 mg/kg)	(84)
Hypolipidemic effects			B. vulgaris extracts (300 mg/kg)	(84)
↓ Cholesterol, TG, LDL	In vivo, rats (IP for 21 days)	B. vulgaris extracts (300 mg/kg)	(84)	
↓ TC, TG, LDL-C, HDL	Human, T2DM patients (p.o. for 2 months)	BBR (0.3 g t.i.d.)	(47)	
↓ Serum cholesterol and dietary cholesterol absorption rate	In vivo, rats (p.o. for 8 weeks)	BBR (50, 100, and 150 mg/kg twice a day)	(42)	
↓ Intestinal absorption of acetyl-CoA-choline	in vitro, Caco-2 cells	BBR (5, 10, and/or 15 μg/ml)	(47)	
↓ Weight gain, TG, LDL-C, TG, ALT, AST, FI	In vivo, HFD rats (p.o. for 16 weeks)	BBR (200 mg/kg/d)	(43)	
↓ TC, TG, LDL-C, HDL	Human, HL and IGT patients (p.o. for 13 months)	BBR (0.2 g t.i.d.)	(48)	
↓ TC, TG, LDL-C, HDL	Human, HL patients (p.o. for 2 months)	BBR (0.4 g t.i.d.)	(48)	
↓ TC, TG, LDL-C, HDL	Human, T2DM patients (p.o. for 3 months)	BBR (0.5 g t.i.d.)	(86)	
↓ Serum cholesterol, TG, HDL	Human	BBR (0.5 g twice a day)	(39)	
Berberis vulgaris and metabolic syndrome

Metabolic Syndrome Effects	Study Details
LDL-C ↓ Serum cholesterol, LDL-C and ↑ hepatic LDLR mRNA, hepatic LDLR protein	Human, HCh patients (p.o. for 3 months) HLD hamsters (p.o. for 10 days) BBR (50 mg/kg/d)
J-Cholesterol, TG ↓ LDL, TG, cholesterol, cholesteryl ester and hepatic fatty acid levels	In vitro, HepG2 cells in vivo, hamsters (p.o. for 10 days) BBR (0-15 μg/ml) (49)
JLDL, TG, cholesteryl, cholesteryl ester and hepatic fatty acid levels	Human, HLD hamsters (p.o. for 10 days) BBR (100 mg/kg/day)
JTG, cholesteryl, LDL-C ↑ HDL-C	Human, HL patients (p.o. for 3 months) BBR hydrochloride (0.5 g twice a day) (45)
JBody weight, TG, serum cholesterol, FBG, ALT, AST ↓	Human, patients with non-alcoholic fatty liver disease (p.o. for 3 months) Aqueous extracts of B. vulgaris (750 mg capsules twice a day) (53)
JALP, ALT, cholesterol ↑ HDL-C	In vitro, HepG2 cells (p.o. for 3 months) Alcoholic extract of B. vulgaris (0-15 μg/ml) (41)
JThe hepatic LDLR expression	In vitro, HepG2 cells (p.o. for 3 months) BBR (15 μM) (44)
JWeight gain, food intake, serum glucose, TG, TC and PPARγ expression, ↑GATA-3 expression	In vivo, mice (IP for 36 days) BBR (0.75, 1.5, 3 mg/kg/day) (52)
JSBP, IL-6, IL-17, IL-23, angiotensin II and aldosterone ↓	In vivo, HT rats (p.o.) BBR (100 mg/kg/d) (56)
JBP	In vivo, rats (IV for 1 week) Aqueous extracts of B. vulgaris (17-33 mg/100 g) (57)
JSBP, DBP, HR ↓	In vivo, rats (IV) BBR (10, 100 μg/ml) (58)
Hypotensive effects	In vivo, rats (IV) BBR (0.1, 100 μM) (59)
ACE inhibition ↓ MAP ↓ NOx, and cGMP	Human, grade 1 essential HT patients (for 1 month) BBR (87)
JSBP, DBP ↑ Cardiac contractility and coronary flow	In vivo, dogs (IV) BBR (2 to 4 μg/ml) (62)
JCardiac contractility and coronary flow	In vivo, NOD mice (p.o. for 2 weeks) BBR (200 mg/kg) (33)
Inhibition of Th17 differentiation by activating ERK1/2, inhibition of Th1 differentiation by inhibiting p38 MAPK and JNK activation	In vitro, mouse CD4+ T cells
Antidiabetic effects	Human, newly diagnosed T2DM patients, poorly controlled type 2 diabetes (p.o. for 3 months) BBR (0.5 g t.i.d.) (32)
JHbA1c, FBG, TG, TC, LDL-C	Human, T2DM and DL patients (p.o. for 3 months) BBR (1 g/d) (64)
JHbA1c, FBG, TG, TC, LDL-C	Human, T2DM patients B. vulgaris fruit extract (3) (67)

Iran J Basic Med Sci, Vol. 20, No. 5, May 2017
Tabeshpour et al	Berberis vulgaris and metabolic syndrome

Effect	Model/Condition	Treatment
↓FBG, serum insulin, HbA1c, TG, ALT	Human, T2DM patients (p.o. for 2 months)	BBR (1 g/d) (68)
↓Insulin expression, β-cell regeneration and lipid peroxidation	In vivo, HCh rats with T2DM (IP for 4 months)	BBR (150, 300 mg/kg) (72)
↓FBG, MDA, SOD and CAT activity	In vivo, T2DM mice (for 2 weeks)	BBR (100 mg/kg/d) (73)
↑Glucagon in plasma and intestine, and proglucagon mRNA expression	In vivo, STZ-diabetic rats (p.o. for 5 weeks)	BBR (120 mg/kg/d) (75)
↑AMPK activity, glucose consumption and glucose uptake	In vitro, rat H9c2 cardiomyocyte cells (for up to 24 hr)	BBR (5–20 μM) (77)
↑Insulin sensitizing activity and glucose-stimulated insulin secretion and proliferation	In vitro, 3T3-L1 adipocytes	BBR (50 μM) (78)
↓Sucrase, maltase and disaccharidase activity inhibition of α-glucosidase	In vitro, Caco-2 cells	BBR (0.02–20 μg/mL) (79)
↓FBG, insulin sensitivity, ↑glucose consumption	In vitro, HepG2 cells in vivo, mice with T2DM (p.o.)	BBR (7.5 μg/mL) (88)
↓FBG, PBG, HOMA-IR, ↑glucose consumption	In vivo, obese rats (p.o. for 5 weeks)	BBR (125 mg/kg twice a day) (81)
↓Body weight, adipose tissue mass and FBG	In vivo, obese and diabetic mice (IP for 3 weeks)	BBR (5 mg/kg) (89)
↓Body weight and plasma TG	In vivo, high-fat-fed rats (p.o. for 2 weeks)	BBR (380 mg/kg)
↓TG, free fatty acids and adipocyte differentiation	In vitro, 3T3-L1 cells	BBR (75 or 150 mg/kg twice a day)
Antidiabetic and hypolipidemic effects	B. vulgaris extract (0.2 g/kg) (51)	
↓FBG, TC, TG	In vivo, obese and diabetic mice (IP for 4 weeks)	BBR (250 mg/kg/day) (74)

Effect	Model/Condition	Treatment
↓FBG, serum insulin, HbA1c, TG, ALT	Human, T2DM patients (p.o. for 2 months)	BBR (1 g/d) (68)
↓Insulin expression, β-cell regeneration and lipid peroxidation	In vivo, HCh rats with T2DM (IP for 4 months)	BBR (150, 300 mg/kg) (72)
↓FBG, MDA, SOD and CAT activity	In vivo, T2DM mice (for 2 weeks)	BBR (100 mg/kg/d) (73)
↑Glucagon in plasma and intestine, and proglucagon mRNA expression	In vivo, STZ-diabetic rats (p.o. for 5 weeks)	BBR (120 mg/kg/d) (75)
↑AMPK activity, glucose consumption and glucose uptake	In vitro, rat H9c2 cardiomyocyte cells (for up to 24 hr)	BBR (5–20 μM) (77)
↑Insulin sensitizing activity and glucose-stimulated insulin secretion and proliferation	In vitro, 3T3-L1 adipocytes	BBR (50 μM) (78)
↓Sucrase, maltase and disaccharidase activity inhibition of α-glucosidase	In vitro, Caco-2 cells	BBR (0.02–20 μg/mL) (79)
↓FBG, insulin sensitivity, ↑glucose consumption	In vitro, HepG2 cells in vivo, mice with T2DM (p.o.)	BBR (7.5 μg/mL) (88)
↓FBG, PBG, HOMA-IR, ↑glucose consumption	In vivo, obese rats (p.o. for 5 weeks)	BBR (125 mg/kg twice a day) (81)
↓Body weight, adipose tissue mass and FBG	In vivo, obese and diabetic mice (IP for 3 weeks)	BBR (5 mg/kg) (89)
↓Body weight and plasma TG	In vivo, high-fat-fed rats (p.o. for 2 weeks)	BBR (380 mg/kg)
↓TG, free fatty acids and adipocyte differentiation	In vitro, 3T3-L1 cells	BBR (75 or 150 mg/kg twice a day)
Antidiabetic and hypolipidemic effects	B. vulgaris extract (0.2 g/kg) (51)	
↓FBG, TC, TG	In vivo, obese and diabetic mice (IP for 4 weeks)	BBR (250 mg/kg/day) (74)
Berberis vulgaris and metabolic syndrome

References

1. Reaven GM. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595-1607.
2. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14: 173-193.
3. Lemieux I, Pascot A, Couillard C, Lamarche Bt, Tchernof A, Alméras N, et al. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men. Circulation 2000; 102: 179-84.
4. Kaplan NM. The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med 1989; 149: 1514-1520.
5. Grundy SM, Hansen B, Smith SC, Cleeman JI, Kahn RA, American Heart Association, National Heart, Lung, and Blood Institute, American Diabetes Association. Clinical management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Arterioscler Thromb Vasc Biol 2004; 109: 551-56.
6. Alberti KGM, Zimmet P, Shaw J, Group IETFC. The metabolic syndrome—a new worldwide definition. The Lancet 2005; 366: 1059-1062.
7. Grundy S, Cleeman J, Daniels S, Donato K, Eckel R, Franklin B, et al. American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an

| metabolic triad | Insulin resistance, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14: 173-193.
3. Lemieux I, Pascot A, Couillard C, Lamarche Bt, Tchernof A, Alméras N, et al. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men. Circulation 2000; 102: 179-84.
4. Kaplan NM. The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med 1989; 149: 1514-1520.
5. Grundy SM, Hansen B, Smith SC, Cleeman JI, Kahn RA, American Heart Association, National Heart, Lung, and Blood Institute, American Diabetes Association. Clinical management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Arterioscler Thromb Vasc Biol 2004; 109: 551-56.
6. Alberti KGM, Zimmet P, Shaw J, Group IETFC. The metabolic syndrome—a new worldwide definition. The Lancet 2005; 366: 1059-1062.
7. Grundy S, Cleeman J, Daniels S, Donato K, Eckel R, Franklin B, et al. American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an

References

1. Reaven GM. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595-1607.
2. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14: 173-193.
3. Lemieux I, Pascot A, Couillard C, Lamarche Bt, Tchernof A, Alméras N, et al. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men. Circulation 2000; 102: 179-84.
4. Kaplan NM. The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med 1989; 149: 1514-1520.
5. Grundy SM, Hansen B, Smith SC, Cleeman JI, Kahn RA, American Heart Association, National Heart, Lung, and Blood Institute, American Diabetes Association. Clinical management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Arterioscler Thromb Vasc Biol 2004; 109: 551-56.
6. Alberti KGM, Zimmet P, Shaw J, Group IETFC. The metabolic syndrome—a new worldwide definition. The Lancet 2005; 366: 1059-1062.
7. Grundy S, Cleeman J, Daniels S, Donato K, Eckel R, Franklin B, et al. American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an
American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005; 112:2735-2752.
8. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JJ, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009; 120:1640-45.
9. Mamalutty N, Thent ZC, Sapri SR, Sahruddin NN, Mohd Yusof MR, Haji Suhaimi F. The establishment of metabolic syndrome model by induction of fructose drinking water in male wistar rats. Biomed Res Int 2014; 2014: 263897.
10. O’Flaherty M, Buchan I, Capewell S. Contributions of treatment and lifestyle to declining CVD mortality: why have CVD mortality rates declined so much since the 1960s? Heart 2013; 99: 159-162.
11. Gurib-Fakim A. Medicinal plants: Traditions of yesterday and a drugs of tomorrow. Mol Aspects Med 2006; 27:1-93.
12. Shrivastava R, Agrawal R, Parveen Z. A review on therapeutic applications of Nigella sativa. J Chem Pharm Sci 2011; 1: 241-248.
13. Akaberı M, Hosseinizadeh H. Grapes (Vitis vinifera) as a potential candidate for the therapy of the metabolic syndrome. Phytother Res 2016: 30: 540-556.
14. Razavi BM, Hosseinizadeh H. A review of the effects of Nigella sativa L. and its constituent, thymoquinone, in metabolic syndrome. J Endocrinol Invest 2014; 37: 1031-1040.
15. Hosseinizadeh H, Nassiri-Asl M. Review of the effects of rutin based on metabolic function in patients with metabolic syndrome. Iran J Basic Med Sci, Vol. 20, No. 5, May 2017
16. Imanshahidi M, Hosseinizadeh H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother Res 2008; 22: 999-1012.
17. Hajizadeh M, Rajaei Z, Shafiee S, Alavinehjad A, Samarghandian S, Ahmadi M. Effect of barberry fruit (Berberis vulgaris) on serum glucose and lipids in streptozotocin-diabetic rats. Pharmacolonline 2011; 1: 809-817.
18. Potdar D, Hirwani RR, Dhulap S. Phyto-chemical and pharmacological applications of Berberis aristata. Fitoterapia 2012; 83: 817-830.
19. Nassiri-Asl M, Hosseinizadeh H, Mortazavi SR. Effects of Berberis vulgaris fruit extracts and its active component, berberine, on morphine dependence, hypnosis and locomotor activity in mice. Pharmacolonline 2007; 1: 190-202.
20. Imenshahidi M, Qaredashi R, Hashemzaei M, Hosseinizadeh H. Inhibitory effect of Berberis vulgaris aqueous extract on acquisition and reinstatement effects of morphine in conditioned place preferences (CPP) in mice. Jundishapur J Nat Pharm Prod 2014; 9: 1-6.e16145.
21. Mohammadi A, Sabekkar A, Kermani T, Zhilaeem M, Tavallae S, Ghayour Mobarhan M. Berberine administration and pro-oxidant-antioxidant balance in patients with metabolic syndrome. Iran Red Crescent Med J 2014; 16:e16786.
22. Govral LM, Grishkovets VI. Alkaloids of some species of the genus Berberis introduced into the Crimeea. Chem Nat Compd 1999; 35: 223-4.
23. Amin AH, Subbaiah TV, Abbasi KM. Berberine sulfate: antimicrobial activity, bioassay, and mode of action. Can J Microbiol 1969; 15: 1067-76.
24. Ni W-J, Ding H-H, Tang L-Q. Berberine as a promising anti-diabetic nephropathy drug: An analysis of its effects and mechanisms. Eur J Pharmacol 2015; 760: 103-12.
25. Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metab Clin Exp 2008; 57: 712-7.
26. Cui G, Qin X, Zhang Y, Gong Z, Ge B, Zang YQ. Berberine differentially modulates the activities of ERK, p38 MAPK, and JNK to suppress Th17 and Th1 T cell differentiation in type 1 diabetic mice. J Biol Chem 2009; 284; 28420-9.
27. Freile ML, Giannini F, Pucci G, Sturino A, Rodero L, Pucci O, et al. Antimicrobial activity of aqueous extracts and of berberine isolated from Berberis heterophylla. Fitoterapia 2003; 74: 702-5.
28. Wang N, Feng Y, Zhu M, Tsang C-M, Man K, Tong Y, et al. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: The cellular mechanism. J Cell Biochem 2010; 111: 1426–36.
29. Goff DC, Jr., Bertoni AG, Kramer H, Bonds D, Blumenthal RS, Tsai MV, et al. Dyslipidemia prevalence, treatment, and control in the Multi-Ethnic Study of Atherosclerosis (MESA): gender, ethnicity, and coronary artery calcification. Circulation 2006; 113: 647-56.
30. Gulati OP. Pycnogenol® in metabolic syndrome and related disorders. Phytother Res 2015; 29: 949-68.
31. Dong S-F, Hong Y, Liu M, Hao Y-Z, Yu H-S, Liu Y, et al. Berberine attenuates cardiac dysfunction in hyperglycemic and hypercholesterolemic rats. Eur J Pharmacol 2011; 660: 368-74.
39. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 2004; 10: 1344-51.

40. Kong W-J, Wei J, Zuo Z-Y, Wang Y-M, Song D-Q, You X-F, et al. Combination of simvastatin with berberine improves the lipid-lowering efficacy. Metabolism 2008; 57: 1029-37.

41. Taheri S, Zarei A, Changizi Ashtiyani S, Rezaei A, Zaeheiri S. Evaluation of the effects of hydroalcoholic extract of Berberis vulgaris root on the activity of liver enzymes in male hypercholesterolemic rats. Avicenna J Phytomed 2012; 2: 153-61.

42. Wang Y, Yi X, Ghanam K, Zhang S, Zhao T, Zhu X. Berberine decreases cholesterol levels in rats through multiple mechanisms, including inhibition of cholesterol absorption. Metabolism 2014; 63: 1167-77.

43. Chang X, Yan H, Fei J, Jiang M, Zhu H, Lu D, et al. Berberine reduces methylation of the MTTP promoter and alleviates fatty liver induced by a high-fat diet in rats. J Lipid Res 2010; 51: 2504-15.

44. Zhou Y, Cao S, Wang Y, Xu P, Yan J, Bin W, et al. Berberine metabolites could induce low density lipoprotein receptor up-regulation to exert lipid-lowering effects in human hepatoma cells. Fitoterapia 2014; 92: 230-7.

45. Zhao W, Xue R, Zhou Z-X, Kong W-J, Jiang J-D. Reduction of blood lipid by berberine in hyperlipidemic patients with chronic hepatitis or liver cirrhosis. Biomed Pharmacother 2008; 62: 730-1.

46. Mazza A, Lenti S, Schiavon L, Zuin M, D’Avinio M, Ramazzina E, et al. Nutraceuticals for serum lipid and blood pressure control in hypertensive and hypercholesterolemic subjects at low cardiovascular risk. Adv Ther 2015; 32: 680-90.

47. Zhu L, Li H. Therapeutic efficacy of combined Berberine and Glipizide on type 2 diabetes. J Clin Res 2007; 1: 20.

48. Shanobin J, Lirong T, Yi S. Interventional effect of berberine liposome on impaired glucose tolerance accompanied with hyperlipemia. J Pract Tradit Chin Med 2007; 8: 008.

49. Brusq J-M, Ancellin N, Grondin P, Guillard R, Martin S, Saintillan Y, et al. Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine. J Lipid Res 2006; 47: 1281-8.

50. Grover SA, Kaouache M, Rempel P, Joseph L, Dawes M, Lau DCW, et al. Years of life lost and healthy life-years lost from diabetes and cardiovascular disease in overweight and obese people: a modelling study. Lancet Diabetes Endocrinol 2015; 3: 114-22.

51. El-Sayed MM, Ghareeb DA, Talat HA, Sarhan EM. High fat diet induced insulin resistance and elevated retinol binding protein 4 in female rats; treatment and protection with Berberis vulgaris extract and vitamin A. Pak J Pharm Sci 2013; 26: 1189-95.

52. Hu Y, Davies GE. Berberine inhibits adipogenesis in high-fat diet-induced obesity mice. Fitoterapia 2010; 81: 358-66.

53. Iloon Kashkooli R, Najafi SS, Sharif F, Hamedi A, Hoseini A, A, Nafaji Kalyani M, et al. The effect of Berberis vulgaris extract on transaminase activities in non-alcoholic fatty liver disease. Hepat Mon 2015; 15: e25067.

54. World Health Organization. Prevention of cardiovascular disease: guideline for assessment and management of cardiovascular risk 2007.

55. Psaty BM, Smith NL, Siscovick DS, et al. Health outcomes associated with antihypertensive therapies used as first-line agents: A systematic review and meta-analysis. JAMA 1997; 277: 739-45.

56. Guo Z, Sun H, Zhang H, Zhang Y. Anti-hypertensive and renoprotective effects of berberine in spontaneously hypertensive rats. Clin Exp Hypertens 2015; 37: 32-9.

57. Fatehi-Hassanabad Z, Jafarzadeh M, Tarhini A, Fatehi M. The antihypertensive and vasodilator effects of aqueous extract from Berberis vulgaris fruit on hypertensive rats. Phytother Res 2005; 19: 222-5.

58. Chun YT, Yip TT, Lau KL, Kong YC, Sankawa U. A biochemical study on the hypotensive effect of berberine in rats. General Pharmacology: The Vascular System 1979; 10: 177-82.

59. Kang DG, Sohn EJ, Kwon EK, Han JH, Oh H, Lee HS. Effects of berberine and Glipizide on angiotensin-converting enzyme and NO/cGMP system in vessels. Vascul Pharmacol 2002; 39: 281-6.

60. Huang WM, Yan H, Jin JM, Yu C, Zhang H. Beneficial effects of berberine on hemodynamics during acute ischemic left ventricular failure in dogs. Chin Med J 1992; 105: 1014-9.

61. Marin-Neto JA, Madel BC, Seches AL, Gallo Junior L. Cardiovascular effects of berberine in patients with severe congestive heart failure. Clin Cardiol 1988; 11: 253-60.

62. Trimmerco V, Cimmino C, Santoro M, Pagnano G, Manzi M, Piglia A, et al. Nutraceuticals for blood pressure control in patients with high-normal or grade 1 hypertension. High Blood Press Cardiovasc Prev 2012; 19: 117-22.

63. Pang B, Zhao L-H, Zhou Q, Zhao T-Y, Wang H, Gu C-J, et al. Application of berberine on treating type 2 diabetes mellitus. Int J Endocrinol 2015; 2015: 12.

64. Gu Y, Zhang Y, Shi X, Li X, Hong J, Chen J, et al. Effect of traditional Chinese medicine berberine on type 2 diabetes based on comprehensive metabolomics. Talanta 2010; 81: 766-72.

65. García-Fontana B, Morales-Santan S, Díaz Navarro C, Rozas-Moreno P, Genilloud O, Vicente Pérez F, et al. Metabolomic profile related to cardiovascular disease in patients with type 2 diabetes mellitus: A pilot study. Talanta 2016; 148: 135-43.

66. Abd El-Wahab A, Gharabt B, Sarhan E, Abu-Serie M, El Demellawy M. In vitro biological assessment of Berberis vulgaris and its active constituent, berberine: antioxidant, anti-acetylcholinesterase, anti-diabetic and antiancer effects. BMC Complement Altern Med 2013; 13: 218.

67. Shidfar F, Ebrahimi SS, Hosseini S, Heydari I, Shidfar S, Hajhassani G. The Effects of Berberis vulgaris fruit extract on serum lipoproteins, apoB, apoA-I, homocysteine, glycemic control and total antioxidant capacity in type 2 diabetic patients. Iran J Pharm Res 2012; 11: 643-52.

68. Zhang H, Wei J, Xue R, Wu J-D, Zhao W, Wang Z-Z, et al. Berberine lowers blood glucose in type 2
diabetes mellitus patients through increasing insulin receptor expression. Metabolism 2010; 59: 285-92.
69. Zhang Y, Li X, Zou D, Liu W, Yang J, Zhu N, et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J Clin Endocrinol Metab 2008; 93: 2559-65.
70. Lan J, Zhao Y, Dong F, Yan Z, Zheng W, Fan J, et al. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. J Ethnopharmacol 2015; 161: 69-81.
71. Zhang M, Lv X, Li J, Meng Z, Wang Q, Chang W, et al. Sodium caprate augments the hypoglycemic effect of berberine via AMPK in inhibiting hepatic gluconeogenesis. Mol Cell Endocrinol 2012; 363: 122-30.
72. Zhou J, Zhou S, Tang J, Zhang K, Guang L, Huang Y, et al. Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats. Eur J Pharmaco 2009; 606: 262-8.
73. Chatuphonprasert W, Lao-ong T, Jarukamjorn K. Improvement of superoxide dismutase and catalase in streptozotocin-nicotinamide-induced type 2 diabetes in mice by berberine and glibenclamide. Pharm Biol 2014; 52: 419-27.
74. Zhang Q, Xiao X, Feng K, Wang T, Li W, Yuan T, et al. Berberine moderates glucose and lipid metabolism through multipathway mechanism. Evid Based Complement Alternat Med 2011; 2011: 10.
75. Lu S-S, Yu Y-L, Zhu H-J, Liu X-D, Liu L, Liu Y-W, et al. Berberine promotes glucagon-like peptide-1 (7-36) amide secretion in streptozotocin-induced diabetic rats. J Endocrinol 2009; 200: 159-65.
76. Cicero AF, Tartagni E. Antidiabetic properties of berberine: from cellular pharmacology to clinical effects. Hosp Pract 2012; 40: 56-63.
77. Chang W, Zhang M, Li J, Meng Z, Wei S, Du H, et al. Berberine improves insulin resistance in cardiomyocytes via activation of 5’-adenosine monophosphate-activated protein kinase. Metabolism 2013; 62: 1159-67.
78. Ko B-S, Choi SB, Park SK, Jang JS, Kim YE, Park S. Insulin sensitizing and insulinotropic action of berberine from Cotrditis rhizoma. Biol Pharm Bull 2005; 28: 1431-7.
79. Pan G-Y, Huang Z-J, Wang G-J, Fawcett JP, Liu X-D, Zhao X-C, et al. The antihyperglycaemic effect of berberine arises from a decrease of glucose absorption. Planta Med 2003; 69: 632-6.
80. Lou T, Zhang Z, Xi Z, Liu K, Li L, Liu B, et al. Berberine inhibits inflammatory response and ameliorates insulin resistance in hepatocytes. Inflammation 2011; 34: 659-67.
81. Yin J, Gao Z, Liu D, Liu Z, Ye J. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab 2008; 294:E148-E56.
82. Jeong HW, Hsu KC, Lee J-W, Ham M, Huh JY, Shin HJ, et al. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am J Physiol Endocrinol Metab 2009; 296:E955-E64.
83. Han J, Lin H, Huang W. Modulating gut microbiota as an anti-diabetic mechanism of berberine. Med Sci Monit Basic Res 2011; 17: RA164-RA7.
84. Changizi Ashtiyani S, Zarei A, Taheri S, Rezaei A, Golshan M, Ghafarzadegan R. A comparative study of hypolipidemic activities of the extracts of Melissa officinalis and Berberis vulgaris in rats. J Med Plant Res 2013; 12: 38-47.
85. Zheng B, Wei J, Jiang J, GONG H-h, ZHANG R-s. The therapeutic effects of combination of simvastatin with berberine on the patients with hyperlipemia. Acta Univ Med Nanjing (Nat Sci) 2009; 29: 1493-7.
86. Ye W. Clinical efficacy of berberine treatment of diabetes. Mod Hosp 2010; 10: 9-10.
87. JANG C-S. The action of berberine on mammalian hearts. J Pharmaco Exp Ther 1941; 71: 178-86.
88. Wong W-J, Zhang H, Song D-Q, Xue R, Zhao W, Wei J, et al. Berberine reduces insulin resistance through protein kinase C-dependent up-regulation of insulin receptor expression. Metabolism 2009; 58: 109-19.
89. Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, et al. Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 2006; 55: 2256-64.
90. Liu C, Wang Z, Song Y, Wu D, Zheng X, Li P, et al. Effects of berberine on amelioration of hyperglycemia and oxidative stress in high glucose and high fat diet-induced diabetic hamsters in vivo. Biomed Res Int 2015; 2015: 9.
91. Di Pierro F, Bellone I, Rapacioli G, Putignano P. Clinical role of a fixed combination of standardized Berberis aristata and Silybum marianum extracts in diabetic and hypercholesterolemic patients intolerant to statins. Diabetes Metab Syndr Obes 2015; 8: 89-96.
92. Chen G, Lu F, Xu L, Dong H, Yi P, Wang F, et al. The anti-diabetic effects and pharmacokinetic profiles of berberine in mice treated with Jiao-Tai-Wan and its compatibility. Phytotherapy Medicine 2013; 20: 780-86.
93. Dae P, Wang J, Lin L, Zhang Y, Wang Z. Renoprotective effects of berberine as adjuvant therapy for hypertensive patients with type 2 diabetes mellitus: Evaluation via biochemical markers and color Doppler ultrasonography. Exp Ther Med 2015; 10: 869-76.
94. Wang Y, Huang Y, Lam KSL, Li Y, Wong WT, Ye H, et al. Berberine prevents hyperglycaemia-induced endothelial injury and enhances vasodilatation via adenosine monophosphate-activated protein kinase and endothelial nitric oxide synthase. Cardiovasc Res 2009; 82: 484-92.

Tabeshpour