Research Letter | Diabetes and Endocrinology

Association of Continuous Glucose Monitoring Use and Hemoglobin A₁c Levels Across the Lifespan Among Individuals With Type 1 Diabetes in the US

Joshua M. Weinstein, MPP; Anna R. Kahkoska, MD, PhD

Introduction

Type 1 diabetes (T1D) affects individuals of all ages, including a growing population of older adults.¹ Small, remote continuous glucose monitoring (CGM) devices²,³ are now recommended as the standard for glucose monitoring for T1D.² However, few studies have examined age, the probability of CGM use, and the association of CGM use with glycemic control across the lifespan.

Methods

This cross-sectional study used data from the national T1D Exchange Registry (2017-2018) for individuals aged 10 to 85 years. This registry includes data from patients with T1D at 80 US clinics nationwide,⁴ which are collected through medical record extraction and patient questionnaires. The University of North Carolina Institutional Review Board deemed this study exempt from review owing to the use of deidentified data. Informed consent was obtained from each participant (or by a parent or guardian if aged <18 years) by the original investigators. The study followed the STROBE reporting guideline.

We fit a generalized additive model⁵ estimating the probability of CGM use with age specified as a penalized spline, and we controlled for health insurance, sex, annual household income, race and ethnicity, education level, and insulin delivery method. We included race and ethnicity variables owing to well-documented disparities in diabetes treatments and outcomes among Black and Hispanic individuals. We present results as the fitted probability of CGM use across age. We then fit a linear regression model estimating hemoglobin A₁c (HbA₁c) levels by CGM use, age, age squared, and interaction of CGM use and age, controlling for the same covariates as described. We used the inverse probability of treatment weights and included the same covariates in both the propensity score and HbA₁c outcome models for a doubly robust approach. We imputed missing covariates for HbA₁c modeling using multivariate imputation via chained equations.

We used 2-sided hypothesis tests with a significance threshold of \(P < .05 \). Data were modeled using R version 4.1.0 (R Foundation for Statistical Computing) and Stata 16.1 (StataCorp).

Results

Our sample included 19,261 patients aged 10 to 85 years (mean [SD] of 27.58 [17.65] years) with T1D (Table). Of these individuals, 9,745 (50.59%) were female and 9,478 (49.21%) were male; sex was unknown for 38 (0.20%). The mean (SD) HbA₁c level was 8.57% (1.81%) (to convert to a proportion of total hemoglobin, multiply by 0.01), and 5,779 patients (30.00%) reported CGM use.

The adjusted probability of CGM use decreased in adolescence, increased afterward until approximately age 40, remained relatively constant until age 60, and then decreased until age 75 (Figure). CGM use was associated with lower HbA₁c levels across age compared with nonuse, but this association waned with increased age. The adjusted mean difference in HbA₁c levels among CGM users relative to nonusers was −0.70% at age 10 years (ie, 0.70% lower among users), which
decreased to −0.62% at 20, −0.55% at 30, −0.48% at 40, −0.41% at 50, −0.34% at 60, −0.27% at 70, −0.20% at 80, and −0.16 at 85 years.

Discussion

This cross-sectional study found that CGM use varied across age, with the highest adjusted probability occurring in middle adulthood. Furthermore, the probability of CGM utilization decreased with increasing age in older adulthood, reflecting the barriers that Medicare patients face regarding

Characteristic	Patients* Overall (N = 19,261)	By CGM use Nonusers (n = 13,482)	Users (n = 5,779)
Age, mean (SD), y	27.58 (17.65)	26.64 (17.36)	29.77 (18.13)
Hemoglobin A1c, mean (SD)b	8.57 (1.81)	8.86 (1.89)	7.90 (1.37)
Sex			
Female	9745 (50.59)	6723 (49.87)	3022 (52.29)
Male	9478 (49.21)	6713 (49.94)	2745 (47.50)
Unknown	38 (0.20)	26 (0.19)	12 (0.21)
Race and ethnicityc			
American Indian or Alaska Native	84 (0.44)	70 (0.52)	14 (0.24)
Asian	205 (1.06)	140 (1.04)	65 (1.12)
Black non-Hispanic	1045 (5.43)	945 (7.01)	100 (1.73)
Hispanic or Latino	1563 (8.11)	1258 (9.33)	305 (5.28)
Native Hawaiian or other Pacific Islander	27 (0.14)	24 (0.18)	3 (0.05)
White non-Hispanic	15,696 (81.49)	10,555 (78.29)	5141 (88.96)
Multiple races or ethnicities	518 (2.69)	401 (2.97)	117 (2.02)
Unknown	123 (0.64)	89 (0.66)	34 (0.59)
Health insurance			
Private	13,813 (71.71)	8936 (66.28)	4877 (84.39)
Public or single service	4458 (23.15)	3778 (28.02)	680 (11.77)
Uninsured	196 (1.02)	167 (1.24)	29 (0.50)
Unknown	794 (4.12)	601 (4.46)	193 (3.34)
Annual household income, $			
≤35 000	2608 (13.54)	2210 (16.39)	398 (6.89)
35 001-50 000	1634 (8.48)	1267 (9.40)	367 (6.35)
50 001-75 000	2378 (12.35)	1677 (12.44)	701 (12.13)
≥75 001	7431 (38.58)	4470 (33.16)	2961 (51.24)
Unknown	5210 (27.05)	3858 (28.62)	1352 (23.40)
Educational attainment			
Less than high school	930 (4.83)	776 (5.76)	154 (2.66)
High school diploma	2295 (11.92)	1900 (14.09)	395 (6.84)
Some college but no degree	3458 (17.95)	2709 (20.09)	749 (12.96)
Associate degree	1961 (10.18)	1442 (10.70)	519 (8.98)
Bachelor’s degree	5159 (26.78)	3230 (23.96)	1929 (33.38)
Graduate, doctorate, or professional degree	3977 (20.65)	2280 (16.91)	1697 (29.36)
Unknown	1481 (7.69)	1145 (8.49)	336 (5.81)
Insulin modality			
Combination insulin pump and manual daily injections	220 (1.14)	145 (1.08)	75 (1.30)
Insulin pump	11,976 (62.18)	7217 (53.53)	4759 (82.35)
Manual daily injections	7026 (36.48)	6089 (45.16)	937 (16.21)
Unknown	39 (0.20)	31 (0.23)	8 (0.14)

Abbreviation: CGM, continuous glucose monitoring.

* Unless noted otherwise, data are presented as No. (% of patients). Percentages have been rounded and therefore may not total 100.

b To convert to a proportion of total hemoglobin, multiply by 0.01.

c The T1D Exchange Registry collects participant data through medical record extraction and questionnaires administered at care visits. Clinic staff contacted patients by phone to ascertain missing information. It is likely that some of the race and ethnicity data were obtained through self-report, whereas others may have been obtained through clinician notes in medical records.
CGM coverage. The clinically significant differences in HbA1c levels (>0.50%) among CGM users and nonusers among youth and adult populations underscore the need to identify age-related barriers to CGM use. Decreases in HbA1c differences over the lifespan suggest that adolescence is partly associated with higher HbA1c levels as well as possible survivorship bias, because older individuals with T1D may have better glycemic control regardless of CGM use. There are likely benefits to CGM use among older adults not reflected in the HbA1c outcome (eg, reduced hypoglycemia).

Limitations of this study include the cross-sectional design, which precludes causal inference. In addition, the predominance of non-Hispanic White individuals limits the generalizability of the findings to other racial and ethnic groups. Future work should explore patterns in CGM use and severe hypoglycemia, diabetic ketoacidosis, and health care utilization over the lifespan.
Conflict of Interest Disclosures: Mr Weinstein reported being employed by the MITRE Corporation in the months before drafting this manuscript. No other disclosures were reported.

Funding/Support: This work was supported by grant KL2TR002490 from the National Center for Advancing Translational Sciences (Dr Kahkoska).

Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Disclaimer: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The source of the data is the T1D Exchange Registry, but the analyses, content, and conclusions presented herein are solely the responsibility of the authors and have not been reviewed or approved by T1D Exchange Registry.

Additional Contributions: We thank John Buse, MD, PhD, Division of Endocrinology, Department of Medicine, University of North Carolina Diabetes Center, North Carolina Translational and Clinical Sciences Institute, University of North Carolina, for his contributions to these analyses and the manuscript. No financial compensation was provided for these contributions.

REFERENCES
1. Kirkman MS, Briscoe VJ, Clark N, et al. Diabetes in older adults. Diabetes Care. 2012;35(12):2650-2664. doi:10.2337/dc12-1801
2. Chehregosha H, Khamseh ME, Malek M, Hosseinpanah F, Ismail-Beigi F. A view beyond HbA1c: role of continuous glucose monitoring. Diabetes Ther. 2019;10(3):853-863. doi:10.1007/s13300-019-0619-1
3. Maiorino MI, Signoriello S, Maio A, et al. Effects of continuous glucose monitoring on metrics of glycemic control in diabetes: a systematic review with meta-analysis of randomized controlled trials. Diabetes Care. 2020;43(5):1146-1156. doi:10.2337/dc19-1459
4. Beck RW, Tamborlane WV, Bergenstal RM, Miller KM, DuBose SN, Hall CA; T1D Exchange Clinic Network. The T1D Exchange Clinic Registry. J Clin Endocrinol Metab. 2012;97(12):4383-4389. doi:10.1210/jc.2012-1561
5. Wood SN. Generalized Additive Models: An Introduction With R. Chapman and Hall/CRC; 2017. doi:10.1201/9781315370279
6. Miller KM, Beck RW, Foster NC, Maahs DM. HbA1c levels in type 1 diabetes from early childhood to older adults: a deeper dive into the influence of technology and socioeconomic status on HbA1c in the T1D Exchange Clinic Registry findings. Diabetes Technol Ther. 2020;22(9):645-650. doi:10.1089/dia.2019.0393

Downloaded From: https://jamanetwork.com/ on 07/29/2022