A recently discovered family of proteins that function as copper chaperones transport copper to proteins that either require it for their function or are involved in its transport. In *Enterococcus hirae* the copper chaperone function is performed by the 8-kDa protein CopZ. This paper describes the NMR structure of apo-CopZ, obtained using uniformly 15N-labeled CopZ overexpressed in *Escherichia coli* and NMR studies of the impact of Cu(I) binding on the CopZ structure. The protein has a βαββαβ fold, where the four β-strands form an antiparallel twisted β-sheet, and the two helices are located on the same side of the β-sheet. A sequence motif GM-CXXC in the loop between the first β-strand and the first α-helix contains the primary ligands, which bind copper(I). Binding of copper(I) caused major structural changes in this molecular region, as manifested by the fact that most NMR signals of the loop and the N-terminal part of the first helix were broadened beyond detection. This effect was strictly localized, because the remainder of the apo-CopZ structure was maintained after addition of Cu(I). NMR relaxation data showed a decreased correlation time of overall molecular tumbling for Cu(I)-CopZ when compared with apo-CopZ, indicating aggregation of Cu(I)-CopZ. The structure of CopZ is the first three-dimensional structure of a cupro-protein for which the metal ion is an exchangeable substrate rather than an integral part of the structure. Implications of the present structural work for the *in vivo* function of CopZ are discussed, whereby it is of special interest that the distribution of charged residues on the CopZ surface is highly uneven and suggests preferred recognition sites for other proteins that might be involved in copper transfer.

Two key elements of copper homeostasis are the CPx-type heavy metal ATPases, which transport copper across cell membranes (1, 2), and the copper chaperones, which mediate intracellular copper transport (3, 4). This paper describes studies of the CopZ copper chaperone of *Enterococcus hirae*, which belongs to a family of small 8-kDa proteins that are highly conserved between species. CopZ is encoded by the cop-operon (5–7), which appears to be both essential and sufficient for copper homeostasis in this organism. It encodes, in addition to CopZ, a copper import and a copper export CPx-type ATPase, CopA and CopB, respectively, and a copper-responsive repressor, CopY. CopZ has recently been shown to donate copper(I) to CopY in vitro (8).

Copper chaperones homologous to CopZ have also been described for yeast (Atx1), plants (CCH), and humans (HAH1) (3, 9, 10). A related bacterial protein, MerP, has a similar role in mercury transport (11). All these proteins possess the putative metal-binding site GMXCXXC, suggesting a universal mechanism of metal binding and transfer. The CXXC motif and other sequence features of heavy metal chaperones are also present in the N-terminal domains of CPx-type copper and cadmium ATPases (12), in the N-terminal domains of mercuric reductases (13), and, in multiple copies, in metallothioneins (14). Typically, one or two such motifs are present in bacterial and yeast proteins (15), whereas up to six closely similar motifs are present in mammalian copper ATPases (2, 16). Involvement of the cysteine residues of the conserved GMXCXXC motif in metal ion binding of MerP and cadmium ATPase suggested by mutational analysis (11, 17, 18) was directly evidenced by the NMR solution structure of the bacterial mercury chaperone, MerP, and the fourth chaperone-like metal-binding domain of the Menkes copper ATPase, MNKr4 (19, 20). However, MerP binds mercury(II), which has different coordination properties from those of cobalt(I), and the structure of MNKr4 was determined with bound silver(I), which is not the natural ligand of this protein. In this paper, to gain further insight into the structural basis of the function of copper chaperones, we solved the NMR structure of apo-CopZ and investigated the effects of Cu(I) binding on the structure of CopZ with a variety of NMR techniques.

EXPERIMENTAL PROCEDURES

CopZ Overexpression and Purification—The copZ gene was amplified with the polymerase chain reaction, using TaqPlus (Stratagene, Inc.) and the primers 5′-gaacaaacagcgaacagatt and 5′-acatgtcactgcagtaata. The product was cut with *Nco*I and *Pst*I and ligated into pQE6 (Qiagen), cut with *Pst*I and partially cut with *Nco*I. The final construct, pDZ69, was verified by DNA sequencing. CopZ was overexpressed from pDZ69 in *Escherichia coli* BL21 (Stratagene), which was grown aerobically in a 1 liter fermenter at 35 °C using M9 medium, supplemented with 10 μg/ml of thiamin and containing 0.05% 15NH₄Cl as the sole nitrogen source. Cells were induced and extracts prepared as described (21). The extracts were diluted with an equal volume of water, made 10 mM in dithiothreitol, filtered through a Whatman cellulose filter, and loaded onto a 3 × 14-cm S-Sepharose column. CopZ was eluted with a 0–300 mM K₂SO₄ gradient in buffer A (50 mM Tris-SO₄, pH 7.4, 10 mM dithiothreitol). The CopZ fractions were pooled and concentrated to less than 5 ml with an Amicon YM3 membrane. Final purification was achieved by gel filtration on a 2 × 60-cm TSK G3000
column (Tosohaas) in buffer A. CopZ was finally concentrated by absorption on a 1 3 5-cm S-Sepharose column, followed by elution with buffer B (50 mM Tris-SO₄ at pH 7.4, 300 mM K₂SO₄, 100 mM dithiothreitol). If necessary, these fractions were further concentrated with Millipore Ultrafree-15 centrifugal concentrators. The final CopZ fractions were stored under argon at -20 °C. The purity was greater than 95% as assessed by electrospray mass spectroscopy, amino acid analysis, and gel electrophoresis/silver staining. The N-terminal sequence of CopZ isolated from E. coli was AQ instead of MKQ as predicted from the gene sequence. When CopZ was expressed from the same plasmid in E. hirae, it had the expected N-terminal sequence MKQ. The reason for this disparity is currently under investigation. The amino acid numbering used in this work corresponds to CopZ with the truncated AQ N terminus.

Preparation of CopZ NMR Samples—Purified CopZ at a concentration of at least 10 mg/ml was dialyzed twice for two h against 250 volumes of buffer C (50 mM sodium phosphate, 10 μM Na₃S₄O₆, pH 7) in an anaerobic hood at room temperature. To prepare copper(I)-loaded CopZ, the protein was similarly dialyzed under anaerobic conditions twice for 2 h against buffer D (50 mM sodium phosphate, 10 μM Na₃S₄O₆, pH 7, 2% deuterated acetonitrile) and once for 1.5 h against buffer D containing 100 μM [CuI(CH₃CN)]ClO₄. Diazezy CopZ samples were filtered, supplemented with 5% D₂O, and sealed anaerobically in NMR tubes. The concentration of apo-CopZ was 1.3 mM and that of Cu(I)CopZ was 0.7 mM. Higher concentrations of Cu(I)CopZ could not be maintained in solution. The samples were stable for several months at 15 °C.

NMR Spectroscopy and NMR Structure Calculation—NMR spectra were acquired on BRUKER DRX500, DRX600, and DRX750 spectrometers equipped with (1H/13C/15N) triple resonance probes with pulsed field gradients. All NMR spectra were recorded at 288 K (apo-CopZ is unstable at higher temperatures). The NMR data were processed with the XWinNMR software and the spectral analysis was done with XEASY (22). Homonuclear two-dimensional 2QF-COSY, 1 3QF-COSY, TOCSY (50 and 90 ms mixing time), and NOESY (50 ms mixing time) spectra as well as three-dimensional 15N-resolved [1H,1H] TOCSY (mixing time, 50 ms) and 15N-resolved NOESY (mixing time 50 ms) spectra were used to obtain the sequential assignments (23). Side chain resonances were assigned using two-dimensional 2QF-, 3QF-COSY (24, 25), and TOCSY spectra. A natural abundance [13C,1H]-COSY spectrum

\[\text{FIG. 1. The NMR structure of apo-CopZ. Panel } a, \text{ ribbon-drawing of the apo-CopZ conformer with the lowest residual DYANA target function value. The regular secondary structure elements are } \alpha_1 (14–24) \text{ and } \alpha_2 (51–59) \text{ in red and yellow, and } \beta_1 (2–7), \beta_2 (28–34), \beta_3 (39–44), \text{ and } \beta_4 (64–67) \text{ in blue. This figure and all other structure models were prepared with the program MOLMOL (46). Panel } b, \text{ stereo view of an all-heavy atom presentation of apo-CopZ in the same orientation as in panel } a. \text{ The backbone is drawn in green, the best-defined side chains with an average global heavy atom displacement below 0.6 Å in blue, and the other side chains in red. Panels } c \text{ and } d, \text{ surface electrostatic potential distribution of apo-CopZ. The view in panel } c \text{ was obtained starting with the view in panel } a \text{ through subsequent counterclockwise rotations by } 20° \text{ about a horizontal axis and by } 30° \text{ about a vertical axis; panel } d \text{ was generated from panel } c \text{ by a } 180° \text{ rotation about a vertical axis. Red denotes negatively charged regions, blue denotes positively charged regions. In panels } c \text{ and } d \text{ the residues are indicated that account for the electrostatic surface potential.} \]

The abbreviations used are: 2QF-COSY, double quantum filtered correlation spectroscopy; 3QF-COSY, triple quantum filtered COSY; NOE, nuclear Overhauser effect; NOESY, NOE spectroscopy; TOCSY, total correlation spectroscopy; r.m.s.d., root mean square deviation.
Characterization of the energy-minimized NMR structure of apo-CopZ

NMR spectra were recorded with an aqueous solution containing 1.3 mM of CopZ, pH 7, T = 15 °C. The input for the structure calculation consisted of 993 NOE upper distance limits (201 intraresidual, 277 sequential, 218 medium range, 297 long range) and 323 dihedral angle constraints (97 for φ, 73 for ψ, 100 for χ1, 53 for χ2). The average residual target function value for the 20 best DYANA conformers before energy minimization was 1.67 ± 0.30 Å.

Quantity	20 Conformers
Number ≥ 0.1 Å	1.7 ± 1.3
Maximum (Å)	0.11 ± 0.01
Number ≥ 2.5 α	2.0 ± 2.0
Maximum (°)	5.85 ± 0.01

AMBER energies (kcal mol⁻¹)

- Total: -2374 ± 93
- van der Waals: -187 ± 10
- Electrostatic: -2717 ± 99

R.m.s.d. from ideal geometry

- Bond lengths (Å): 0.0076 ± 0.0002
- Bond angles (°): 2.13 ± 0.05
- Peptide bonds (°): 8.1 ± 0.6

R.m.s.d. to the average coordinates (Å)

N,C,C’ (2–67)	0.46 ± 0.05
N,C,C’ (2–7, 14–24, 28–34, 39–45)	0.32 ± 0.06
50–59, 64–67	0.94 ± 0.06

Heavy atoms (2–67)

| 50–59, 64–67 | 0.85 ± 0.08 |

Cross-peak volumes of NOESY spectra were converted to distance upper mass limits (201 intraresidual, 277 sequential, 218 medium range, 297 long range) and 323 dihedral angle constraints (97 for φ, 73 for ψ, 100 for χ1, 53 for χ2). The average residual target function value for the 20 best DYANA conformers before energy minimization was 1.67 ± 0.30 Å.

RESULTS

NMR Structure of apo-CopZ—The polypeptide fold of apo-CopZ consists of a strongly twisted four-stranded antiparallel β-sheet and two α-helices that are both located on the same side of the β-sheet (Fig. 1a). The axes of the two helices are at an angle of about 45°. α1 runs approximately parallel to β2 and β3, whereas α2 is aligned parallel to β1 and β3. The two presumed copper binding residues, Cys-11 and Cys-14, are located in a loop between β1 and α1, and Cys-14 is actually the first residue of α1. The amino acid side chains form a well ordered core with 19 residues having smaller average global displacements than 0.6 Å (Fig. 1b). The cysteines 11 and 14 of the CCX motif, which form the core of the metal-binding site, adopt conformations that do not represent a pre-formed copper-binding site, so that metal binding will require major side chain structural rearrangement. The surface side chains form a remarkably uneven distribution of positive and negative charges; Glu-3, and the five Asp and Glu residues in the peptide segment 45–66, and the C-terminal carboxylate form a large negative surface patch (see Fig. 1c). On the opposite surface relative to the aforementioned negative patch, a ring of positive charges is formed by 6 Lys residues in the segment 29–39 and the 2 arginines of helix α2.

As can be seen from Table I, the structure of apo-CopZ is very well defined. For the secondary structure elements r.m.s.d. of 0.32 Å was calculated for the backbone heavy atoms, and when the somewhat less well ordered regions 35–38 and 8–13 were included, the r.m.s.d. increased to 0.46 Å. The high precision of the structure determination is clearly reflected in the bundle of 20 best conformers shown in Fig. 2. Fig. 3a shows that there is a high density of medium range NOEs in the two helical regions, and the β-sheet topology is well supported by numerous

![Fig. 2. Bundle of the 20 best energy-refined conformers of apo-CopZ. β-sheet regions are colored blue and α-helices are red. The orientation of the molecule is the same as in Fig. 1a.](image-url)
interstrand NOEs (Fig. 4). 83% of the \((\phi, \psi)\)-pairs in apo-CopZ were found to be within the most favored regions of the Ramachandran plot and 13% within the additionally allowed regions (calculated with PROCHECK-NMR, Ref. 35).

Structure Rearrangement upon Interaction of apo-CopZ with Cu(I)—Throughout the entire \(\beta\)-sheet and the helix \(\alpha_2\), there are only small changes in backbone chemical shifts upon interaction of apo-CopZ with Cu(I) (Fig. 5), which indicates that no major structural changes of the backbone took place in these regions. A larger impact of the addition of Cu(I) is seen in the polypeptide segment 9–22, which is either manifested by larger chemical shift variations or, for the residues 11–20, by the fact that most NMR signals could not be observed after addition of Cu(I), possibly because of line-broadening due to conformational exchange processes. In any case, a strong impact of Cu(I) addition on the apo-CopZ structure is primarily restricted to
the residues 9–22, which include the presumed Cu(I) ligands (11, 17, 18). Outside this segment there is one outstanding Hα chemical shift change in each of the two loops that connect the helix α2 with the β-sheet.

To obtain additional data that could be used to further characterize possible dynamic processes implicated by the disappearance of most 1H NMR lines for the residues 11–20, the relaxation times T_1 and T_2 of 15N and the 15N{1H}-NOEs of both apo-CopZ and Cu(I)-CopZ were measured. Plots of the relaxation data versus the sequence (Fig. 6) show that the T_1 values throughout the structured part of the protein were significantly longer for Cu(I)-CopZ than for apo-CopZ, whereas the T_2 values were significantly shorter for Cu(I)-CopZ. For the structured part of the protein the increase of the T_1/T_2 ratio is a direct measure for decreased overall rotational tumbling of the molecule. The average T_1/T_2 ratio for apo-CopZ was 3.7 ± 0.2, which for a spherical particle corresponds to an overall rotational correlation time of $\tau_R = 6.2 ± 0.3$ ns (36), whereas for Cu(I)-CopZ the average T_1/T_2 ratio of 8.1 ± 0.9 corresponds to a $\tau_R = 10.2 ± 0.6$ ns. The observed increase of the rotational correlation time of Cu(I)-CopZ when compared with apo-CopZ, and the concomitant reduced overall mobility are indicative of self-aggregation of Cu(I)-CopZ.

Because traces of paramagnetic Cu(II) could strongly influence the results of the relaxation measurements, the NMR samples were checked for the presence of paramagnetic oxidized copper using EPR. No EPR signals above the background from the sample tube were detected in the Cu(I)-CopZ solutions used for the NMR studies (data not shown).

Dynamic Light Scattering Studies of CopZ Aggregation in the Presence and Absence of Cu(I)—Dynamic light scattering of apo-CopZ measured at 293 K yielded a hydrodynamic radius of 19.2 ± 0.8 Å for a spherical particle in a solvent with the viscosity of water. The corresponding value for Cu(I)-CopZ was found to be 25.9 ± 1.8 Å. The increase of 35 ± 15% lies within the range that could be expected from dimerization (37, 38). The experimental data showed sizeable variability, corresponding to confidence intervals of the order of ±7%, which probably reflects a wide distribution of sizes and/or shapes of the Cu(I)-CopZ aggregates.
The chemical shifts of the two molecules in molecular regions distant to residues 10 to 20. In Cu(I)-CopZ when compared with
crease in correlation time due to an increase in molecular mass
expected for the amino acid residues 11 to 20 could not be
the situation in MerP, where the structure of the loop in the
rearrangement. This is not the case in MNKv4, but resembles
without major side chain and possibly backbone structural
loop between the first
a three-coordinated copper(I).
In MNKv4, Ag\(^+\) instead of the implicated natural copper
substrate was used to solve the metal-bound structure. Ag(I)
preferentially forms bidentate complexes, and MNKv4 could
apparently accommodate Ag(I) without major rearrangements
(20). However, purified MNKv2 of the same enzyme was
demonstrated to bind Cu(I) with a stoichiometry of 1 copper/do-
main, and circular dichroism studies suggested that the bind-
ing or loss of copper did not cause substantial changes to the
secondary structure of the protein (39). By extended x-ray
asorption fine structure techniques, it was shown that
MNKv2-bound Cu(I) is in a mixed coordination with two and
three ligands, whereas Ag(I) is bound with two ligands, with all
ligands being sulfur. The identity of the third ligand in the
Cu(I)-MNKv2 complex remains unknown, but the presence of a
copper-copper scatter peak in the spectral data suggested
Cu(I)-thiolate bridge formation between different Cu(I)-mbd2
molecules (39, 40). Extended x-ray absorption fine structure
analysis of Cu(I)-Atx1, which is the yeast homologue of CopZ,
had similarly indicated that copper(I) is bound in a mixed two-
and three-coordinated fashion (41). This could be because of a
buffer thiolate forming the third ligand, but thiolate bridge
formation with another Atx1 molecule could not be excluded.

In the Cu(I)-CopZ structure, we rule out an involvement of
Met-9 as a third intramolecular copper ligand, because the
chemical shifts of both C\(^{\text{a}}\) and H\(^{\text{\beta}}\) did not change markedly upon
addition of Cu(I). In yeast Atx1, mutation of the corresponding
methionine to leucine did not affect the activity of the chaper-
one in vivo, supporting that this residue has no role in metal
binding (41). The fourth potential intramolecular sulfur ligand
in CopZ, Cys-55, seems not to be involved in copper binding
either, because the H\(^{\text{\text{\beta}}}\) NMR lines of Cys-55 were observable in
the spectra of both apo-CopZ and Cu(I)-CopZ, and there is no
corresponding cysteine in other CopZ-like chaperones. An in-
termolecular thiolate-bridge in the observed dimerization of
Cu(I)-CopZ would explain the origin of a third sulfur ligand.
We think that in vivo the third ligand could be glutathione, given
the high concentration of glutathione in cells (42) and the
known tendency of glutathione to bind Cu(I) (43).

If copper(I) in CopZ adopts a three-coordinate structure, a
copper exchange mechanism could be envisioned as follows.
When Cu(I)-CopZ docks on a recipient molecule, the third
copper ligand (e.g. a second CopZ molecule or a small molecule)
could be replaced by a sulfur ligand of the recipient molecule
(41). Next, copper would be complexed by a second ligand of the
recipient molecule, with concomitant release of a CopZ ligand.
Finally, copper would be released from CopZ and remain bound
to the recipient molecule.

We have recently shown in vitro that Cu(I)-CopZ donates two
Cu(I)-ions to the copper-responsive repressor CopY of E. hirae.
Copper transfer displaced zinc(II) from CopY, which released
the repressor from the DNA-binding site. The transfer was
specific for CopZ, as Cu(I)-mbd2 was unable to donate copper to
CopY (8). This suggests that specific protein-protein interac-
tions between CopZ and the CopY repressor might be involved
in copper transfer. In this light, the distribution of charged
residues on the surface of CopZ is of interest. The clustering of
seven lysine residues in the \(\beta\)-strands 2 and 3, in positions 29,
generates a negatively charged surface area (Fig. 1c). These surface features are likely to play a role in molecular recognition for specific protein-protein interactions in the course of copper exchange. An example for such recognition sites is a clustering of basic residues on cytochrome c that interacts electrostatically with negatively charged residues on cytochrome c oxidase (44, 45). It is tempting to speculate that one of the charged faces of CopZ is required to interact with a copper donor, and the other one supports recognition of a copper acceptor, such as CopY. In this context it seems worth mentioning that the electrostatic potential on the surface of MerP is different from that of CopZ and that the function of this protein is also quite different. MerP scavenges mercury in the periplasmic space to donate it to MerT, which transports it through the membrane into the cytoplasmic space (17).

In the absence of direct information on how CopZ interacts with other proteins, knowledge of the structure of CopZ provides important clues with respect to possible interaction mechanisms for efficient copper chaperoning. In conjunction with the in vitro system for the measurement of copper transfer from CopZ to CopY, mechanistic models can now specifically be addressed.

Acknowledgments—We thank Thomas Weber and Sandra Krebs-Stoll for preparation and biochemical characterization of CopZ, and Charles Dameron and Peter Günter for helpful discussions. We are grateful to Stefan Uhau, M. Y., Wernimont, A. K., Pufahl, R. A., and O’Halloran, T. V. for the measurement of copper transfer from CopZ to CopY, mechanistic models can now specifically be addressed.

REFERENCES

1. Lutsenko, S., and Kaplan, J. H. (1995) Biochemistry 34, 15607–15613
2. Solioz, M., and Vulpe, C. (1996) Trends Biochem. Sci. 21, 237–241
3. Lin, S. J., and Culotta, V. C. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 3784–3788
4. Lin, S. J., Pufahl, R. A., Dansc, A., O’Halloran, T. V., and Culotta, V. C. (1997) J. Biol. Chem. 272, 9215–9220
5. Odermatt, A., Suter, H., Kraf, R., and Solioz, M. (1992) Ann. N. Y. Acad. Sci. 671, 484–486
6. Odermatt, A., Suter, H., Kraf, R., and Solioz, M. (1993) J. Biol. Chem. 268, 12775–12779
7. Odermatt, A., and Solioz, M. (1995) J. Biol. Chem. 270, 4349–4354
8. Cobine, P., Wickramasinghe, W. A., Harrison, M. D., Weber, T., Solioz, M., and Dameron, C. T. (1999) FEBS Lett. 445, 27–30
9. Himelblau, E., Mira, H., Lin, S. J., Ciezowski Culotta, V., Penarrubia, L., and Amanino, R. M. (1998) Plant Physiol. 117, 1227–1234
10. Klomp, L. W., Lin, S. J., Yuan, D. S., Klausner, R. D., Culotta, V. C., and Gitlin, J. D. (1997) J. Biol. Chem. 272, 9221–9226
11. Silver, S., and Phung, L. T. (1996) Annu. Rev. Microbiol. 50, 753–789
12. Fu, D., Beeler, T. J., and Dunn, T. M. (1995) Yeast 11, 283–292
13. Griffin, H., Foster, T. J., Silver, S., and Misra, T. R. (1992) Proc. Natl. Acad. Sci. U. S. A. 84, 3112–3116
14. Kagi, J. H., and Schaffer, A. (1988) Biochemistry 27, 8509–8515
15. Silver, S., Nucifora, G., and Lang, L. T. (1993) Mol. Microbiol. 10, 7–12
16. Solioz, M. (1996) in Ion Pumps (Andersen, J. P., ed.) pp. 167–203, JAI Press Ltd., London.
17. Morby, A. P., Hobman, J. L., and Brown, N. L. (1995) Mol. Microbiol. 17, 25–35
18. Sahli, M., and Skarfstad, E. G. (1993) Biochem. Biophys. Res. Commun. 196, 683–688
19. Steele, R. A., and Opeela, S. J. (1997) Biochemistry 36, 6865–6885
20. Gitschier, J., Moffat, B., Reilly, D., Wood, W. I., and Fairbrother, W. J. (1998) Nat. Struct. Biol. 5, 47–54
21. Strausak, D., and Solioz, M. (1997) J. Biol. Chem. 272, 8932–8936
22. Bartels, C., Xia, T., Billich, M., Günter, P., and Wuthrich K. (1995) J. Biomol. NMR 6, 1–10
23. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids, John Wiley & Sons, Inc., New York
24. Piantini, U., Serensen, O. W., and Ernst, R. R. (1982) J. Am. Chem. Soc. 104, 6800–6801
25. Müller, N., Ernst, R. R., and Wuthrich, K. (1986) J. Am. Chem. Soc. 108, 6482–6492
26. Szyperski, T., Günter, P., Otting, G., and Wuthrich, K. (1992) J. Magn. Reson. 99, 552–560
27. Dix, P., Whitehead, B., Boelens, R., Kapstein, R., and Vuister, G. W. (1997) J. Biomol. NMR 10, 301–306
28. Farrow, N. A., Muhandiram, K., Singer, A. U., Pasca, S. M., Kay, C. M., Gish, G., Shoelson, S. E., Pawson, T., Forman-Kay, J. D., and Kay, L. E. (1994) Biochemistry 33, 5984–6003
29. Lounia, J., Oskarinen, K., Ingman, P., and Jokisaari, J. (1996) J. Magn. Reson. A 118, 50–54
30. Günter, P., Braun, W., and Wuthrich, K. (1991) J. Mol. Biol. 217, 517–530
31. Günter, P., Mumenthaler, C., and Wuthrich, K. (1997) J. Mol. Biol. 273, 283–298
32. Günter, P., Billich, M., Ohlenschläger, O., Brown, L. R., and Wuthrich, K. (1998) J. Biomol. NMR 12, 543–548
33. Luigini, P., Billich, M., Ohlenschläger, O., Braun, L. R., and Wuthrich, K. (1999) J. Biomol. NMR 14, 557–570
34. Hemmerich, P., and Sigwart, C. (1963) in Physikalische Chemie of the ETH in Zürich for recording and discussing the EPR spectra. We express gratitude to Stefan Umhau, M. Y., Wernimont, A. K., Pufahl, R. A., and O’Halloran, T. V. for the measurement of copper transfer from CopZ to CopY, mechanistic models can now specifically be addressed.

Note Added in Proof—After submission of the present report, the structure of the oxidized apo-form and the His-form of Atx1, the yeast homologue of CopZ, was published (Rosenzweig, A. C., Huffman, D. L., Hou, M. Y., Wernimont, A. K., Pufahl, R. A., and O’Halloran, T. V. (1999) Structure 7, 605–617).