МОДЕЛИРОВАНИЕ ПОВЕРХНОСТНЫХ ТЕПЛОВЫХ ВОЛН В ДВУМЕРНОМ ПРИБЛИЖЕНИИ

Л. А. Максимова, Я. Н. Павлюченков, В. В. Акимкин
Институт астрономии Российской академии наук

Теоретические модели предсказывают, что затенение звездного излучения неоднородностями на поверхности протопланетного диска может вызывать самозарождающиеся волны, бегущие по направлению к звезде. Однако при моделировании этого процесса обычно используется 1+1D-подход, ключевые приближения которого — вертикальное гидростатическое равновесие диска и вертикальная диффузия ИК-излучения — могут искажать картину. В данной работе представлена двумерная radiационная гидродинамическая модель эволюции аксиально-симметричного газопылевого диска. Ключевым выводом нашей работы является то, что учет двумерной гидродинамики и диффузии ИК излучения подавляет самопроизвольное возникновение и развитие тепловых волн, наблюдавшихся в 1+1D-приближении. Поиск возможности существования поверхностных тепловых волн необходимо продолжить, исследуя проблему для различных параметров протопланетных дисков.

SIMULATION OF THERMAL SURFACE WAVES IN A PROTOPLANETARY DISK IN A TWO-DIMENSIONAL APPROXIMATION

L. A. Maksimova, Ya. N. Pavlyuchenkov, V. V. Akimkin
Institute of Astronomy, Russian Academy of Sciences

Theoretical models predict that the obscuration of stellar radiation by irregularities on the surface of a protoplanetary disk can cause self-generating waves traveling towards the star. However, this process is traditionally simulated using the 1+1D approach, the key approximations of which—vertical hydrostatic equilibrium of the disk and vertical diffusion of IR radiation—can distort the picture. This article presents a two-dimensional radiative hydrodynamic model of the evolution of an axially symmetric gas and dust disk. The key conclusion of our work is that taking into account two-dimensional hydrodynamics and diffusion of IR radiation suppresses the spontaneous generation and development of thermal waves observed in the 1+1D approximation.

Введение

В протопланетных дисках реализуются условия для возникновения самых разнообразных динамических неустойчивостей, развитие которых может влиять как на наблюдательные проявления, так и на общую эволюцию дисков. Одной из них является неустойчивость, связанная с затенением звездного излучения поверхностными неоднородностями диска [1]. Эта неустойчивость обусловлена положительной обратной связью между углом вхождения излучения звезды в атмосферу диска и его прогревом. Многие теоретические модели показывают, что малое локальное искажение поверхности диска может провоцировать зарождение волн, бегущих к центральной звезде [2, 3].

Однако в основе 1+1D-подхода, использованного в нашей статье [4], как и в большинстве других работ по этой проблеме, лежит несколько ключевых приближений, которые
могут существенно искажать реальную картину. Такими приближениями являются: 1) отсутствие диффузии теплового излучения в радиальном направлении; 2) гидростатическое равновесие в вертикальном направлении и отсутствие газодинамических эффектов в радиальном направлении. Постепенный отказ от этих предположений важен для обоснования реалистичности тепловых волн в реальных дисках.

Целью данной работы является учет процессов динамики газа и диффузии ИК-излучения в возбуждении поверхностных тепловых волн. Это исследование проводилось с помощью полностью двумерной радиационной гидродинамической модели.

Аксиально-симметричная модель протопланетного диска

Для моделирования эволюции газопылевого диска мы используем комбинацию конечно-разностных методов для гидродинамики и переноса излучения, адаптированных для сферической системы координат (СК). Вся расчетная область разделена на ячейки, внутри которых значения физических величин предполагаются постоянными.

Гидродинамический метод

Для описания динамической эволюции газопылевого диска мы используем стандартные уравнения газодинамики для невязкого газа, которые в дивергентной форме имеют вид:

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{U}) = 0 \tag{1}
\]

\[
\frac{\partial (\rho \mathbf{U})}{\partial t} + \nabla \cdot (\rho \mathbf{UU} + \mathbf{P}) = \rho \mathbf{f} \tag{2}
\]

\[
\frac{\partial E}{\partial t} + \nabla \cdot (\mathbf{U}(E + P)) = \rho \mathbf{f} \cdot \mathbf{U}, \tag{3}
\]

где \(\rho \) — объемная плотность; \(\mathbf{U} \) — скорость; \(\mathbf{P} \) — давление; \(\mathbf{f} \) — гравитационная сила на единицу массы; \(E = \frac{P}{\gamma - 1} + \frac{\rho U^2}{2} \) — полная энергия газа в единице объема; \(\gamma \) — показатель аднабата.

Для решения данной системы мы используем классический метод Годунова, подробное описание которого можно найти в разделе 3 книги [5]. В данном методе газодинамические потоки через границы ячеек находятся в результате решения задачи о распаде произвольного газодинамического разрыва. В используемой нами реализации задача о распаде разрыва решается точно с помощью метода биссектрис для возникающего нелинейного уравнения. Найденные потоки между ячейками используются для вычисления физических величин в ячейках на новом временном слое. Конечно-разностная схема реализована в рамках формализма, изложенного в статье [6].

Метод расчета переноса излучения

Для расчета тепловой структуры газопылевого диска мы используем обобщение нестационарной тепловой модели из работы [7] на двумерный случай. В модели учитывается нагрев среды прямым излучением звезды и диффузия теплового излучения. Соответствующая система уравнений имеет вид:

\[
\rho c_v \frac{\partial T}{\partial t} = c_P \kappa_T (E_t - aT^4) + s_*, \tag{4}
\]

\[
\frac{\partial E_t}{\partial t} = -c_P \kappa_T (E_t - aT^4) + \hat{\Lambda} E_t, \tag{5}
\]
где \(\rho \) — плотность газопылевой среды; \(c_V \) — удельная теплоемкость среды \([\text{эрг} \cdot \text{г}^{-1} \cdot \text{K}^{-1}]\); \(c \) — скорость света; \(\kappa_P \) \([\text{см}^2 \cdot \text{г}^{-1}]\) — истинный коэффициент поглощения ИК-излучения, усредненный по Планку (без вклада рассеяния, на единицу массы газопылевой среды); \(s_* \) \([\text{эрг} \cdot \text{см}^{-3} \cdot \text{г}^{-1}]\) — темп нагрева звездным излучением; \(T \) — температура среды; \(E_t \) — плотность энергии ИК-излучения. Уравнение (4) описывает изменение объемной тепловой энергии среды в результате поглощения и переизлучения теплового ИК-излучения (слагаемые \(c \rho \kappa_P E_t \) и \(c \rho \kappa_P T^4 \) соответственно), а также в результате поглощения прямого УФ-излучения звезды \((s_*) \). Уравнение (5) представляет собой моментное уравнение переноса излучения в эддингтоновском приближении и описывает изменение плотности энергии ИК-излучения в результате поглощения и переизлучения теплового ИК-излучения, а также в результате пространственной диффузии ИК-излучения, представленной оператором \(\hat{\Lambda} E_t \):

\[
\hat{\Lambda} E_t = -\text{div} \mathbf{F}_t = \text{div} \left(\frac{1}{\sigma} \text{grad} E_t \right),
\]

где \(\mathbf{F}_t \) — поток ИК-излучения; \(\sigma = 3 \rho \kappa_R / c \), \(\kappa_R \) \([\text{см}^2 \cdot \text{г}^{-1}]\) — коэффициент непрозрачности, усредненный по Росселланду (с учетом рассеяния, на единицу массы газопылевой среды).

Интенсивность ультрафиолетового излучения, необходимая для вычисления функции нагрева \(s_* \), находится для каждой ячейки путем прямого интегрирования уравнения переноса излучения от звезды до рассматриваемого элемента среды вдоль радиального направления. В нашей модели объемная функция нагрева \(s^* \) \([\text{эрг} \cdot \text{см}^{-3} \cdot \text{г}^{-1}]\) звездным излучением вычисляется:

\[
s_* = \rho_m \kappa_{UV} \frac{L \exp(-\tau)}{4 \pi r_a^2} \left(1 - \exp\left(-\Delta \tau\right) \right) / \Delta \tau,
\]

где \(L \) — светимость звезды; \(\kappa_{UV} = \kappa_P(T_*) \) \([\text{см}^2 \cdot \text{г}^{-1}]\) — коэффициент поглощения звездного излучения; \(r_a \) — радиальное расстояние от звезды до внутренней границы ячейки; \(\tau \) — полная оптическая толщина на луче зрения от звезды до внутренней границы ячейки; \(\Delta \tau = \rho_m \Delta l \) — оптическая толщина самой ячейки вдоль луча; \(\Delta l \) — длина отрезка луча внутри ячейки; \(\rho_m = \frac{1}{4} \left(\rho_L + 2 \rho_i + \rho_R \right) \) — усредненная плотность вдоль луча.

Результаты моделирования

Результаты моделирования представлены на рисунке. Распределения плотности и температуры в полярном сечении диска выглядят гладкими, тепловая структура диска является стандартной для пассивного диска — атмосфера диска теплее экваториальных областей, присутствует слабый радиальный градиент температуры в экваториальной плоскости. Тепловые волны, распространяющиеся снаружи внутрь, в данной модели не возникают. Причиной этому является то, что возникающие поверхностные возмущения успевают разглаживаться динамически, прежде чем они успеют существенно прогреть нижележащие слои. Можно сделать глобальный вывод, что совместный учет двумерной гидродинамики и переноса теплового излучения подавляет формирование и распространение поверхностных тепловых волн в газопылевых дисках.

Заключение

Отметим, что полученные нами выводы не позволяют утверждать о принципиальной невозможности развития неустойчивости. Наши результаты лишь показывают отсутствие двумерных поверхностных волн в конкретных физических условиях, при которых они сами произвольно формировались в 1+1D-модели. Необходимо исследовать проблему для широкого интервала параметров газопылевых дисков.
Левая панель: эволюция экваториальной температуры в первые 300 лет. Правая панель: распределения плотности и температуры в полярном сечении диска на момент времени 200 лет

Исследование выполнено в рамках проекта «Исследование звезд с экзопланетами» по гранту Правительства РФ для проведения научных исследований, проводимых под руководством ведущих ученых (соглашение № 075-15-2019-1875).

Библиографические ссылки

[1] Watanabe Sei-ichiro, Lin D. N. C. Thermal Waves in Irradiated Protoplanetary Disks // Astrophys. J. — 2008. — Vol. 672, № 2. — P. 1183—1195. 0709.1760.

[2] Ueda Takahiro, Flock Mario, Birnstiel Tilman. Thermal Wave Instability as an Origin of Gap and Ring Structures in Protoplanetary Disks // Astrophys. J. Lett. — 2021. — Vol. 914, № 2. — P. L38. 2105.13852.

[3] Wu Yanqin, Lithwick Yoram. The Irradiation Instability of Protoplanetary Disks // Astrophys. J. — 2021. — Vol. 923, № 1. — P. 123. 2105.02680.

[4] Pavlyuchenkov Ya. N., Maksimova L. A., Akimkin V. V. Simulation of Thermal Surface Waves in a Protoplanetary Disk in 1+1D Approximation // Astronomy Reports. — 2022. — Vol. 66, № 4. — P. 321—329. 2203.06614.

[5] Kulikovskiy A. G., Pogorelov N. V., Semenov A. Yu. Matematicheskie voprosy chislennogo resheniya giperbolicheskikh system uravnenii. — Moskva : Fizmatlit, 2012.

[6] Abakumov M. V. Metod postroeniya raznostnykh skhem godunovskogo tipa v krivolineinykh koordinatakh i ego primurnie dlya sphericeshkikh koordinat // Prikladnaya matematika i informatika. — 2014. — Vol. 45. — P. 63—83.

[7] Vorobyov Eduard I., Pavlyuchenkov Yaroslav N. Improving the thin-disk models of circumstellar disk evolution. The 2+1-dimensional model // Astron. and Astrophys. — 2017. — Vol. 606. — P. A5. 1706.00401.