EVALUATION METABOLIC SYNDROME IN POLYCYSTIC OVARIAN SYNDROME IN REPRODUCTIVE AGE GROUP WOMEN

1Dr. Kumari Shilpa, 2Dr. Seema Prasad, 3Dr. Sumedha Singh, 4Sabuhi Romana

1Senior Resident, Department of Obstetrics & Gynaecology, DMCH, Laheriasarai
2Prof. & Head, Department of Obstetrics & Gynaecology, DMCH, Laheriasarai
3Junior Resident, Department of Obstetrics & Gynaecology, DMCH, Laheriasarai
4Junior Resident, Department of Obstetrics & Gynaecology, DMCH, Laheriasarai

Article Info: Received 22 A 2021; Accepted 28 September 2021
DOI: https://doi.org/10.32553/ijmbs.v5i10.2267
Corresponding author: Dr. Kumari Shilpa
Conflict of interest: No conflict of interest.

Abstract

Background: The disorder can be morphological (polycystic ovaries) or predominantly biochemical (hyperandrogenemia). Hyperandrogenism, a clinical hallmark of PCOS, can cause inhibition of follicular development, microcysts in the ovaries, anovulation, and menstrual changes

Objectives: To study the risk factors for developing metabolic syndrome in PCOS.

Material and Methods: This is Prospective study, total 100 patients, department of obs and Gynae, women of reproductive age group (15-45yrs) attending OPD at Darbhanga medical college and Hospital Laheriasarai, Bihar. Conclusion: This study helps in recognition of this high-risk group and aid in the enforcement of preventive strategies including therapeutic lifestyle modifications and risk factor management. This will have a promising impact on women’s health and will prevent or delay the onset of varying cardiometabolic complications in PCOS.

Keywords: PCOS, metabolic syndrome,

Introduction

PCOS was first identified in 1935 by Stein and Leventhal who noticed a condition among seven women characterized by irregular menstruation, obesity, and hirsutism, acne in addition to cysts on the woman's ovaries1. Polycystic ovary syndrome (PCOS) is a complex condition characterized by elevated androgen levels, menstrual irregularities, and/or small cysts on one or both ovaries2. Insulin resistance (IR) appears to be important in the pathogenesis of PCOS and subsequent metabolic syndrome. The prevalence of metabolic syndrome in PCOS is 40-50%3, and is associated with long-term consequences such as cardiovascular disease (CVD), diabetes type II, cancers, sleep apnoea and psychological problems. The term ‘Metabolic Syndrome’ (syndrome X, insulin resistance syndrome) is widely used in clinical practice and research, consisting of a constellation of multiple interrelated risk factors of metabolic origin, which arises due to underlying insulin resistance, which in turn promotes the development of atherosclerotic cardiovascular vascular disease. The major features of the metabolic syndrome include central obesity, hypertriglyceridemia, low levels of high-density lipoprotein (HDL) cholesterol, hyperglycaemia and hypertension. The aim of our study is to find out the prevalence of metabolic syndrome using the IDF criteria in women with PCOS reproductive age group so that appropriate lifestyle modifications, pharmacological and non-pharmacological intervention would help in combating and preventing the major deadly cardiovascular disease, stroke etc. Due to higher risk of metabolic syndrome in our ethnic population more stringent criteria of metabolic syndrome defined by the International Diabetes Federation (IDF) is used in our study.

Objectives: To study the risk factors for developing metabolic syndrome in PCOS

Review of Literature

Intense research and clinical studies have focused on unravelling the evolution of metabolic syndrome in PCOS. Multiple mechanisms have been proposed. Complex systematic interactions between the various components of metabolic syndrome Insulin resistance and its consequent hyperinsulinaemia, is one of the reason for the pathogenesis of PCOS. Insulin regulates metabolic and mitogenic pathways that function independent of each other12. This might explain the paradoxical insulin sensitivity patterns seen in different tissues, for example, resistance in peripheral tissues and retained sensitivity in the ovarian cortex. Metabolic inertia to insulin has been attributed to a
post-binding defect in the insulin signalling pathway caused by abnormal serine phosphorylation of the insulin receptor. There are rare causes of hyperinsulineaemia and hyperandrogenism that are congenital in origin. Peripheral insulin resistance associated with hyperandrogenism and acanthosis nigricans, known as “type A syndrome,” can be due to mutations of the insulin receptor gene, which leads to decreased numbers of insulin receptors in target tissues. Structured assessment for the early detection and management of metabolic syndrome, especially in women of reproductive age, would be of critical importance to the healthcare system. So that it can be applied in the clinical setting, this assessment would need to prioritise risks, standardise evaluation methods, and establish the frequency of further testing.

Material and methods

This is Prospective study, total 100 patients, department of obs and Gynae, women of reproductive age group (15-45yrs) attending OPD at Darbhanga medical college and Hospital Laheriasarai, Bihar.

Collection of Data - Women attending OPD at DMCH Darbhanga Bihar were selected. Detailed history including menstrual, obstetric and medical history were taken. General & systemic examination done. Age, height, weight, BMI, waist circumference.

Inclusion criteria

Age group 15 – 45yrs, those diagnosed clinically, biochemically and sonographically as PCOS.

Exclusion criteria

Women younger than 15 yr old & older than 45yrs. Women who are on medications affecting the sex hormones from 6 months prior to study onset.

Statistical analysis:

Data was entered into Microsoft excel data sheet and was analyzed using SPSS 22 version software. Categorical data was represented in the form of Frequencies and proportions. Chi-square test or Fischer’s exact test (for 2x2 tables only) was used as test of significance for qualitative data.

Result

Table 1: Distribution of subjects according to metabolic syndrome
Frequency
NO
YES
Total

Table 2: Distribution of subjects according to age group and metabolic syndrome
Metabolic syndrome
<25yrs
26-30yrs
31yrs & above
Total

P value 0.049, there was a statistically significant difference found between age group and metabolic syndrome.

Table 3: Comparison of Height, weight, Waist circumference, BMI according to Metabolic syndrome
Metabolic syndrome
Mean
Height(cm)
Weight(kg)
BMI
Waist Circumference(cm)
There was a statistically significant difference found between metabolic syndrome and no metabolic syndrome with respect to weight, waist circumference, BMI. There was no statistically significant difference found between metabolic syndrome and no metabolic syndrome with respect to height.

Table 4: Comparison of lipid profile according to metabolic syndrome

Metabolic syndrome	No Metabolic syndrome	P Value			
Mean	SD	Mean	SD		
S.TGL (mg/dl)	125.83	28.80	108.19	12.87	<0.001
S.HDL (mg/dl)	45.86	6.00	54.85	4.32	<0.001
S.LDL (mg/dl)	104.48	19.65	91.86	9.78	<0.001
T.CHOL (mg/dl)	163.07	27.67	158.36	12.39	0.251

There was a statistically significant difference found between metabolic syndrome and no metabolic syndrome with respect to serum TGL, serum HDL, serum LDL.

There was no statistically significant difference found between metabolic syndrome and no metabolic syndrome with respect to total cholesterol.

Table 4: Comparison of FBS, SBP, DBP according to Metabolic syndrome

Metabolic syndrome	No Metabolic syndrome	P Value			
Mean	SD	Mean	SD		
FBS (mg/dl)	109.85	22.52	92.25	20.11	<0.001
SBP (mm Hg)	130.34	11.26	119.46	8.16	<0.001
DBP (mm Hg)	85.76	8.71	77.08	6.06	<0.001

There was a statistically significant difference found between metabolic syndrome and no metabolic syndrome with respect to FBS, SBP, and DBP.

Discussion

The sample size in the present study is 100. These are 100 women who are diagnosed to have the polycystic ovarian syndrome, but had different presenting complaints. Of the 100 the most common problem is menstrual irregularity (81% had menstrual irregularity in terms of oligomenorrhea and amenorrhea as their presenting complaint). Primary infertility was the presenting complaint in 45%, secondary infertility in 10%, hirsutism in 21% and acanthosis in 17%. Prevalence of metabolic syndrome in our study was 41%. Age group from 15 to 45 years were included in the study. We have grouped the study population into 3 categories based on age, Group 1: ≤25 years, Group 2: 26-30 years, Group 3: ≥31 years. The prevalence was 26.8% in age Group 1, 41.5% in age group 2 and 31.7% in age Group 3. Of the 100 PCOS patients studied, 12 patients belonged to Class III and 88 belonged to class IV socioeconomic status. Metabolic syndrome was more prevalent in the class III socioeconomic PCOS population (91.6% in contrast to 34% in class IV socioeconomic PCOS population). Sedentary lifestyle is the probable contributory factor in class III population. The difference is statistically significant with a P value of <0.001.

BMI:

The prevalence of metabolic syndrome increases as BMI increases in the PCOS population. The mean BMI among the metabolic syndrome is 31.79 and among no metabolic syndrome is 23.80. Out of 41 metabolic syndrome patients in PCOS 3 parameters were present in 26 (63.4%) patients, 4 were present in 13 patients, 5 were present in 2. The most common pattern involved is along with increased waist circumference, low serum HDL and fasting hyperglycemia and the second most common is increased waist circumference along with fasting hyperglycemia and systolic and diastolic hypertension. The major lipoprotein disturbance in metabolic syndrome and is low serum HDL cholesterol level. The cutoff for metabolic syndrome is <50 mg/dl. Of the 41 PCOS 31 patients had serum HDL <50 mg/dl. The mean HDL value in metabolic syndrome group is 45.86 mg/dl and in non metabolic syndrome group it is 54.85 mg/dl, which is statistically significant with a P value of <0.001.

FASTING HYPERGLYCEMIA Fasting plasma glucose of 100 mg/dl or more is the criteria for MS. 24 patients out of the 41 metabolic syndrome patients had fasting hyperglycemia accounting for 58.5%. Mean fasting glucose value in MS group is 109.85 and in the non MS group it is 92.25 with P value of < 0.001 which is statistically significant.

The waist circumference with ethnicity specific values ≥ 80 cm for south Asian women is taken as cut off for metabolic syndrome. The mean waist circumference in metabolic syndrome group is 96.29 cm and in PCOS population without metabolic syndrome it is 82.54 cm. There is a statistically significant difference found between metabolic syndrome and no metabolic syndrome with respect to waist circumference as p < 0.001.

The cut off for hypertension is SBP ≥ 130 and/or DBP ≥ 85 mm Hg. Mean systolic BP in MS group is 130.34 mm Hg.
and in non-MS group it is 119.46 mm Hg. Mean diastolic BP in MS group is 85.76 mmHg and in non MS group it is 77.08. Of the 41 metabolic syndrome patients, systolic hypertension was present in 18 patients and diastolic hypertension in 24 patients.

Conclusion

Metabolic syndrome is a neglected entity. Multiple mechanisms have been proposed for the evolution of metabolic syndrome in PCOS. In the present study, 41% of PCOS patients had Metabolic Syndrome. Healthy life style modification not only improves their menstrual and ovulatory symptoms, but also prevents the future cardiovascular and other morbid ailments. Lifestyle modification is the only universally accepted intervention.

References

1. SPEROFF’S CLINICAL GYNECOLOGIC ENDOCRINOLOGY AND INFERTILITY, 9th edition.
2. Umland EM, Weinstein LC, Buchanan EM. Menstruation related disorders. In: DiPiro JT, Talbert RL, Yee GC, et al. Pharmacotherapy: A Pathophysiologic Approach, 8th ed. New York: McGraw-Hill; 2011:1393.
3. Lin LH, Baracat MC, Gustavo AR, et al. Androgen receptor gene polymorphism and polycystic ovary syndrome. Int J Gynaecol Obstet 2013;120:115–118
4. 4 Bani Mohammad M, Majdi Seghinsara A. Polycystic Ovary Syndrome (PCOS), Diagnostic Criteria, and AMH. Asian Pacific Journal of Cancer Prevention. 2017;18(1): 17-21.
5. Norman RJ, Wu R, Stankiewicz MT. Polycystic ovary syndrome. Medical Journal of Australia. 2004; 180(3): 132-8.
6. Livadas S, Diamanti-Kandarakis E. Polycystic ovary syndrome: definitions, phenotypes and diagnostic approach. In Polycystic Ovary Syndrome2013;40:1-2.
7. Christensen SB, Black MH, Smith N, Martinez MM, Jacobsen SJ, Porter AH, Koebnick C. Prevalence of polycystic ovary syndrome in adolescents. Fertility and sterility. 2013; 100(2): 470-7.
8. Expert Panel on Detection Evaluation, and Treatment of High Blood Cholesterol in Adults, Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285:2486–97.
9. Grundy SM, Cleeman JI, Daniels SR, et al. American Heart Association; NationalHeart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005;112:2735–52
10. Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome–a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med J Br Diabet Assoc 2006;23:469–80.
11. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention, National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009;120:1640–5.
12. Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawat T, et al.
13. Insulin resistance differentially affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. J Clin Invest 2000; 105:311–20.
14. Alberti KGMM, Zimmet P, Shaw J. International Diabetes Federation: a consensus on type 2 diabetes prevention. Diabet Med 2007; 24:451–63.
15. 14. Jeffcoate’s Principles of Gynaecology, 8th Ed.
16. Escobar-Morreale HF, San Mill_an JL. Abdominal adiposity and the polycystic ovary syndrome. Trends EndocrinolMetab 2007; 18:266–72.
17. Aubuchon M, Jennifer A. Bickhaus, Gonzalez F. Obesity, metabolic dysfunction and inflammation in polycystic ovary syndrome. In: Pal Lubna, editor. Polycystic Ovary Syndrome. New York: Springer; 2014. p. 117–44.