Electron Exchange Coupling for Single Donor Solid-State Spin Qubits

C.J. Wellarda, L.C.L. Hollenberga, F. Parisolia,b, L. Kettlec, H.-S. Goand, J.A.L. McIntosha and D.N. Jamiesona

Centre for Quantum Computer Technology,a
School of Physics, University of Melbourne,a Victoria 3010, AUSTRALIA.
Department of Physics,b University of Bologna, Bologna 40126, ITALY
University of Queensland, QLD 4072, AUSTRALIAc
University of New South Wales,d Sydney NSW 2052, AUSTRALIA.

(Dated: November 3, 2018)

Inter-valley interference between degenerate conduction band minima has been shown to lead to oscillations in the exchange energy between neighbouring phosphorus donor electron states in silicon1,2. These same effects lead to an extreme sensitivity of the exchange energy on the relative orientation of the donor atoms, an issue of crucial importance in the construction silicon-based spin quantum computers. In this article we calculate the donor electron exchange coupling as a function of donor position incorporating the full Bloch structure of the Kohn-Luttinger electron wavefunctions. It is found that due to the rapidly oscillating nature of the terms they produce, the periodic part of the Bloch functions can be safely ignored in the Heitler-London integrals as was done by Koiller \textit{et al}1,2, significantly reducing the complexity of calculations. We address issues of fabrication and calculate the expected exchange coupling between neighbouring donors that have been implanted into the silicon substrate using an 15keV ion beam in the so-called ‘top down’ fabrication scheme for a Kane solid-state quantum computer. In addition we calculate the exchange coupling as a function of the voltage bias on control gates used to manipulate the electron wavefunctions and implement quantum logic operations in the Kane proposal, and find that these gate biases can be used to both increase and decrease the magnitude of the exchange coupling between neighbouring donor electrons. The zero-bias results reconfirm those previously obtained by Koiller \textit{et al}2.

PACS numbers: 03.67.Lx, 71.55.Ch, 85.30.De

I. INTRODUCTION

Solid state systems have emerged as a promising candidate for the construction of a large scale quantum computer (QC). In particular spin based architectures take advantage of the relatively long spin dephasing times of donor electrons or nuclei in silicon. Single qubit operations are performed by tuning the spin Zeeman energy to be resonant with an oscillating field which drives the transition while neighbouring qubits are coupled via the electron exchange interaction, whether it be directly in the case of electron-spin proposals3, or indirectly in the case of nuclear spin quantum computers.

In this work we concentrate on the Kane4 concept of single phosphorus donor nuclear spin qubits embedded in a silicon substrate, which is a leading candidate in the search for a scalable QC architecture. The Kane architecture (shown in Fig. 1) calls for the placement of phosphorus donors at substitutional (face-centred cubic (fcc)) sites in the host silicon matrix, with inter-donor spacings of order 200Å. Quantum logic operations on the nuclear-spin qubits are implemented through coherent control of the donor electron wavefunctions which are coupled to the donor nuclei through the contact hyperfine interaction. This control of the electron wavefunctions is achieved through application of voltage biases to control gates placed on the substrate surface above (A-gate), and between (J-gate) the phosphorus donors, which create electrostatic potentials within the device thus altering the form of the electron wavefunctions.

In a recent paper, Koiller, Hu and Das Sarma (KHD)1 presented theoretical evidence for oscillations in the electron-mediated exchange coupling as a function of inter-donor separation, and a strong dependence of this coupling on the relative orientation of the two donors with respect the structure of the silicon substrate. They calculate the exchange coupling using an approximate version of the Heitler-London formalism and by essentially ignoring the periodic part of the Bloch wavefunctions in the expression for the donor electron wavefunctions. In this article we eliminate both these approximations, by calculating the exchange coupling in the full Heitler-London formalism and by including the full Bloch structure of the donor electron wavefunction. We show that while the first approximation breaks down for small donor separations, as discussed by KHD themselves2, the second approximation, that of ignoring the periodic part of the Bloch functions, is in excellent agreement with the full calculations regardless of the donor orientation.

This paper is organised as follows. In section II we review the calculation of the valence electron wavefunctions for phosphorus donors in silicon, in the Kohn-Luttinger effective mass formalism. In section III we discuss the Heitler-London formalism used to calculate the exchange coupling between neighbouring donor electrons, and we show that
the Bloch functions can be written in the form
\[\Phi_H = G \]
for silicon. The coefficients \(F \) control gate biases. These calculations provide some useful estimates, however more detailed calculations are required, using realistic models of the device due to the J-gate bias is calculated using a commercial software package specifically designed for the modelling of semiconductor devices. Donor wavefunctions are obtained by direct diagonalisation, and the Heitler-London formalism is used to determine the exchange coupling for various gate biases and donor separations oriented in the silicon [100] direction.

II. THE DONOR ELECTRON WAVE FUNCTION

Although the qubits of the Kane quantum computer are encoded by the nuclear spins, it is the donor electron which mediates both single and coupled gate operations. Therefore, the crucial element in the quantum description of the device is the donor electron wave function. Initial attempts to describe the operation of the device, particularly in response to external time dependent gate potentials which complicate the situation considerably, have focused on effective hydrogenic-type approximations for the donor electron wave function, or the use of simplified potentials. These calculations provide some useful estimates, however more detailed calculations are required, using realistic models of both the donor electron wavefunction and the potentials induced inside the device by the application of control gate biases.

In going beyond the effective hydrogenic treatment of the ground-state electron wave function for phosphorus donors in silicon it is recognised that the underlying crystal structure of the silicon must have an effect. The wavefunction is thus expanded in the basis of the Bloch functions for silicon,

\[\Psi(r) = \int F(k)\phi_k(r)dk. \]

The coefficients \(F(k) \) are obtained by substituting the above form into the Schrödinger equation, with the Hamiltonian \(H = H_0 - U(r) \), where \(H_0 \) is the Hamiltonian for the pure silicon crystal and \(U(r) \) is the donor-potential for phosphorus. The Bloch functions can be written in the form \(\phi_k(r) = e^{ik\cdot r}u_k(r) \), where \(u_k(r) \) is a function that shares the periodicity of the lattice, and can be expanded in a basis of plane waves with wave-vectors equal to the reciprocal lattice vectors for silicon \(G \), \(u_k(r) = \sum_G A_k(G)e^{iG\cdot r} \). The result is that the Schrödinger equation can be written as

\[EF(k) = E^0_F(k) + \sum_{G,G'} A^*_{k',G'}A_{k,G}U(r)e^{i(k-k')\cdot r}e^{i(G-G')\cdot r}F(k')dk' \]

\[= E^0_F(k) + \sum_{G,G'} A^*_{k',G'}A_{k,G}\tilde{U}(k + G - k' - G')F(k')dk', \]

where \(\tilde{U}(r) \) is a suitably averaged donor potential.
where $\tilde{U}(k) = \int U(r)e^{-ir \cdot k} dr$ is the Fourier transform of the impurity potential. The E_k^0 are the eigenenergies of the Bloch functions $\phi_k(r)$, for the pure silicon lattice. We make the approximation that due to the increased energies of the higher bands, only conduction band states contribute to the impurity wavefunction. Further, in silicon there are six degenerate conduction band minima, located along the (100) directions in k-space, 85% of the way between the centre (Γ point), and the zone boundary (X point). Because of the reduced energies in these regions the envelope functions can be expressed as a sum of functions localised around each of the conduction band minima $F(k) = \sum_\mu F_\mu(k)$.

In the effective-mass treatment\cite{8,9,10} the Bloch energies are expanded to second order around the conduction band minima $E_k^0 \approx \frac{\hbar^2}{2} \left(\frac{k_x^2}{m_\perp} + \frac{k_y^2}{m_\parallel} \right)$, where k_\perp is the component of $k - k_\mu$ perpendicular to k_μ and k_\parallel is the parallel component. The m_\perp, m_\parallel are effective masses and the inequality of these two values reflects the anisotropy of the conduction band minima. An additional approximation is made whereby only the terms with $G = G'$ in the potential term of the Schrödinger equation are included. The assumption is that $U(k - k' + G - G') << U(k - k')$ for $G \neq G'$. This approximation is well satisfied for a Coulombic potential $U(k) = 1/(\kappa \pi^2 |k|^2)$, with $\kappa = 11.9$ the dielectric constant for silicon, and with the reciprocal lattice vectors of magnitude $|G| = n2\pi/d$, where n is an integer and $d = 5.43 \text{Å}$ is the lattice spacing for silicon. Another way of viewing the approximation is that the terms $e^{i(G-G') \cdot r}$ in the first line of Eq. 2 oscillate on a scale sufficiently short compared to variations in $U(r)$, that they average the integrand to zero. We will show in the next section that the same approximation allows us to ignore the periodic part of the Bloch functions in the donor electron wavefunctions when performing Heitler-London integrations.

One further approximation is necessary, $A_{k',G} \approx A_{k,G}$, which coupled with the relation $\sum_G |A_{k,G}|^2 = 1$ gives the effective mass Schrödinger equation

$$\frac{\hbar^2}{2} \left(\frac{k_x^2}{m_\perp} + \frac{k_y^2}{m_\parallel} \right) \sum_\mu F_\mu(k) + \int \tilde{U}(k - k') \sum_\mu F_\mu(k')dk' = E \sum_\mu F_\mu(k).$$

In the standard effective mass treatment the so-called valley-orbit terms, which couple the envelope functions at different conduction band minima are ignored, and we are left with six independent equations, one for each minimum. With a Coulombic impurity potential the solutions are non-isotropic hydrogenic wavefunctions of the form

$$F_{\pm z}(r) = \exp \left[-\sqrt{(x^2 + y^2)/a_\perp + z^2/a_\parallel} \right]/\sqrt{6\pi a_\perp a_\parallel},$$

where $F_\mu(r) = \int F_\mu(k - k_\mu)e^{i k \cdot r} dk$, and we have used the example of the envelope function localised around the z-minima of the conduction band. The Kohn-Luttinger\cite{8,9} form for the electron wavefunction of a donor situated at any position R is then given by

$$\Psi(r-R) = \sum_\mu F_\mu(r-R)e^{i k_\mu \cdot (r-R)} u_\mu(r),$$

where the periodic part of the Bloch function is independant of the position of the substitutional impurity. The values $a_\perp = 25.09 \text{Å}, a_\parallel = 14.43 \text{Å}$, are the effective Bohr radii, and are determined variationally\cite{11,12,13}.

It is well known that the valley orbit coupling does contribute to the the energy of the states, particularly if the donor potential is not Coulombic as is the case in the immediate vicinity of the donor nucleus. The consequence of this is that the donor electron binding energy given by this wave function is $E = 28.95 \text{meV}$, significantly lower than the experimental value of $E = 45.5 \text{meV}\cite{12,13}$. This discrepancy is thought to arise from the deviation of the donor potential from a purely Coulombic potential as well as the effect of a non-static dielectric constant in silicon\cite{13}. It is expected however that at distances of more than approximately an effective Bohr radius from the donor nucleus, the donor potential should be approximately Coulombic and so Eq. 5 will provide a good description of the true donor electron in this region. Thus the Kohn-Luttinger form of the donor-electron wavefunction should be adequate for the purposes of calculating exchange energies for donor separations in the range considered in this article.

A plot of the donor electron wave function along three directions of high symmetry, calculated using effective Bohr radii as determined by Koiller \textit{et al.}, is shown in Fig. 2 for a donor placed at a substitutional lattice site. The coefficients $A_{k,G}$ were calculated using the simple local empirical pseudopotential method as outlined in reference\cite{12,13}, and a basis of 125 states. This method accurately reproduces the electronic band structure for silicon, particularly in the region of interest for this calculation, the lowest conduction bands, as obtained using more complicated non-local pseudo-potential techniques. The donor electron wave functions obtained in this manner clearly display oscillations produced by the interference between the Bloch functions located at the different conduction band minima. The wavefunctions are real, and in the [111] direction slightly asymmetric, the asymmetry being a consequence of the presence of the
FIG. 2: The solid line shows Kohn-Luttinger wave function for a phosphorus donor electron in silicon, plotted along directions of high symmetry within the crystal. The dotted line shows an isotropic 1s hydrogenic wave function, with an Bohr radius of 20.13 Å.

In the [111] orientation the silicon atoms are nor evenly spaced, and so the neighbouring silicon atom on one side of the phosphorus donor is much closer than that on the other side. Superimposed over the donor wave function is an isotropic 1s hydrogenic envelope with a Bohr radius of 20.13 Å, reflecting the effect of the superposition of the non-isotropic envelope functions F_{μ}.

III. THE HEITLER LONDON FORMALISM

The two electron Hamiltonian for a system of two donors separated by a vector \mathbf{R}, in effective Rydberg units is:

$$H = -\frac{\hbar^2}{2m^2} \nabla_1^2 - \frac{\hbar^2}{2m^2} \nabla_2^2 - \frac{e^2}{4\pi \epsilon r_1} - \frac{e^2}{4\pi \epsilon |\mathbf{R} - r_1|}$$

$$- \frac{e^2}{4\pi \epsilon r_2} - \frac{e^2}{4\pi \epsilon |\mathbf{R} - r_2|} + \frac{e^2}{4\pi \epsilon |r_1 - r_2|}$$

$$+ \frac{e^2}{4\pi \epsilon \mathbf{R}} + V_{Si}(r_1, r_2).$$

(6)

In the standard Heitler-London approximation, one assumes that the lowest energy two electron wavefunction of the two-donor system is simply a correctly symmetrised superposition of single electron wavefunctions centred around each of the two donors

$$\Psi_{\pm}(r_1, r_2) = \frac{1}{\sqrt{2}} \left(\Psi(r_1 - \mathbf{R}/2) \Psi(r_2 + \mathbf{R}/2) \pm \Psi(r_1 + \mathbf{R}/2) \Psi(r_2 - \mathbf{R}/2) \right),$$

(7)

where the two donors are located at positions $\pm \mathbf{R}/2$. This approximation is asymptotically exact and should hold for separations greater than the effective Bohr radii, $|\mathbf{R}| >> a_{\perp}, a_{\parallel}$. The anti-symmetry of the fermion wavefunction then tells us that the exchange splitting, the difference in energies between the spin singlet and triplet spin states, is simply equal to the difference in energy between the states Ψ_{\pm}, that is $E_{\text{triplet}} - E_{\text{singlet}} = E_- - E_+$.
FIG. 3: Calculated exchange couplings as a function of donor separations along three high symmetry directions. In each case we plot with a solid line the results obtained when the periodic part of the Bloch function, \(u(r) \), is included, a dashed line indicates the results obtained with \(u(r) = 1 \). In each plot these lines cannot be separately resolved. The dotted line gives the results obtained when using the approximations of KHD and the dotted-dashed line gives the exchange coupling calculated using a 1s hydrogenic orbital with an effective Bohr radius of 20.13\,\text{Å}. The \(*\) denote the positions of lattice sites.

In this article we present our results in terms of the exchange, or \(J \) coupling, in the exchange term of the effective spin Hamiltonian, \(J \sigma_x^1 \sigma_x^2 \), which is common to the quantum computing literature. We make this decision despite the observation that it is the exchange splitting, the energy difference between the single and triplet states, that is most commonly presented in the solid-state literature. These quantities are related by the expression \(J = (E_{\text{triplet}} - E_{\text{singlet}})/4 \).

In the Heitler-London formalism the exchange coupling can be expressed in terms of matrix elements of the Hamiltonian one can rewrite this as:

\[
J(R) = \frac{1}{2} S(R)^2 (I_1(R) - I_2(R))/(1 - S(R)^4),
\]

where the overlap integrals are given explicitly by:

\[
I_1(R) = \int d^3r_1 d^3r_2 \Psi^*(r_1 + R/2)\Psi^*(r_2 - R/2)H \Psi(r_1 + R/2)\Psi(r_2 - R/2),
\]

\[
I_2(R) = \int d^3r_1 d^3r_2 \Psi^*(r_1 + R/2)\Psi^*(r_2 - R/2)H \Psi(r_2 + R/2)\Psi(r_1 - R/2),
\]

\[
S(R) = \int d^3r \Psi(r + R/2)^*\Psi(r - R/2).
\]

Computation of these expressions using the Kohn-Luttinger wave function without approximation is rather tedious, given the large number reciprocal lattice vectors it is necessary to sum over to evaluate the periodic part of the Bloch functions for each of the six Bloch states in the donor electron wavefunction. We have used an adaptive Monte-Carlo quadrature program to evaluate all overlap integrals, taking due care to obtain reasonable precision.

In Fig. 3 we plot the exchange energy as a function of donor separation in each of the major lattice directions. For comparison the result using an isotropic hydrogenic wave function is also given. We compare our results with those obtained using the method of KHD in their original paper\(^1\), who used two major approximations in order to
make the calculation more tractable, some of which are discussed in detail in references24,17. First, the Heitler-London expression for the exchange energy is approximated by the Coulomb exchange integral alone, an approximation that is asymptotically quite good, however it is this approximation that is responsible for the difference between our result and that obtained by KHD in reference1. In reference1, the authors have used the complete form for the Heitler-London expression, and obtained results that match those presented here.

The other approximation made is to effectively ignore the contribution of the periodic part of the Bloch functions $u_\mu(r) = 1$; this is an excellent approximation as can be seen from the figures in which it is almost impossible to distinguish between the results obtained in this approximation and those for which the detailed Bloch structure was included. The ability to ignore the periodic part of the Bloch structure in the computation of the Heitler-London integrals significantly reduces the complexity of the calculation by eliminating the sums over reciprocal lattice vectors. It is worth examining this approximation in more detail as we find it is effectively the same approximation as is made in effective mass formalism to obtain the Kohn-Luttinger form for the donor electron wavefunction.

The Heitler-London integrals are all of the form

$$ I = \int \Psi^* (r_1 - R/2) \Psi^* (r_2 + R/2) V(r_1, r_2) \Psi (r_2 - R/2) \Psi (r_1 + R/2) dr_2 dr_1 $$

$$ = \int \sum_{\alpha, \beta, \gamma, \delta} \sum_{i, j, l, m} F_i (r_1 - R/2) F_j (r_2 + R/2) F_i (r_2 - R/2) F_m (r_1 + R/2) V(r_1, r_2) $$

$$ \times e^{i (k_i + k_m - k_j - k_\delta) \cdot R/2} e^{i (k_i - k_j) \cdot r_1} e^{i (k_m - k_\delta) \cdot r_2} $$

$$ \times A_{k_i, G_{\alpha}} A_{k_j, G_{\beta}} A_{k_m, G_{\delta}} e^{i (G_{\alpha} - G_{\beta}) \cdot r_1} e^{i (G_{\beta} - G_{\delta}) \cdot r_2} dr_1 dr_2. \tag{10} $$

The various potentials represented in the above expression as $V(r_1, r_2)$ are all impurity potentials of a similar nature to those encountered in the effective mass formalism, and so we expect that they are sufficiently slowly varying that we can safely ignore the rapidly oscillating terms in the above integrand, in exactly the same manner. This immediately gives

$$ I = \int \sum_{i, j} F_i (r_1 - R/2) F_j (r_2 + R/2) F_i (r_2 - R/2) F_i (r_1 + R/2) V(r_1, r_2) e^{i (k_i + k_m - k_j - k_\delta) \cdot R/2} dr_1 dr_2. \tag{11} $$

which is equivalent to setting $u_\mu(r) = 1$ in Eq.10 The “rapidly oscillating” terms include the exponentials containing the values of k at the conduction band minima, which are separated by a minimum magnitude of $\delta k = 2\sqrt{2} \times 0.85\pi/d$. This separation is sufficiently large to allow us to ignore terms except those for which $i = m, l = j$. Since $\sum_G A_{k, G} A_{k, G} = 1$, this allows us to ignore the periodic part of the Bloch functions in the Heitler-London Integrals.

IV. FABRICATION

The observed extreme sensitivity of the exchange coupling on the relative orientation of the two phosphorus donors sets stringent requirements on the placement of donors for any quantum computer architecture that is reliant on the exchange interaction to couple qubits. In this section we discuss these implications for the construction of a Kane nuclear spin quantum computer.

Fabrication of the Kane solid-state quantum computer is being pursued along two parallel paths18. In the so called “bottom up” approach, individual phosphorus donors are effectively placed with atomic precision on a phosphorus surface by application of phosphine gas to a hydrogen terminated silicon surface in which individual hydrogen atoms have been removed at the proposed donor site using a scanning-tunnelling microscope tip. The hydrogen mono-layer is then removed and the surface overgrown with phosphorus19. Although this approach has not been fully developed, it is likely that it will be able to produce an array of donors located at precise fcc substitutional sites, to within a few lattice spaces. Small displacements are inevitable however and can have dramatic effects on the exchange coupling between the donors. This is illustrated in Fig.4 where we show a plot of the exchange coupling as a function of the magnitude of the displacement $|\delta|$ of the second phosphorus dopant from its desired position at a fcc substitutional site a distance of 200.91Å, in the [100] direction, from the first dopant. These dopants have been displaced by no more than four fundamental lattice spacings on either of the two fcc lattices that make up the silicon matrix, however the exchange coupling varies by more than an order of magnitude emphasising the need for precise placement.

The second approach, known as the the top down approach calls for the implantation if the phosphorus donors into the silicon using an ion beam of phosphorus ions incident on the substrate20. The precision of such a technique in the placement of dopants is fundamentally limited by the phenomenon known as “straggling”, whereby the implanted ions scatter from the nuclei of the host silicon atoms. Simulations of this process for a beam of 15keV phosphorus
FIG. 4: Calculated exchange couplings for donors at fcc lattice sites that are displaced by a vector δ from their ideal separation of 200.91Å in the [100] direction. The couplings are plotted as a fraction of the expected exchange coupling $J(200.91\text{Å}) = 0.18\mu\text{eV}$.

FIG. 5: A plot of the logarithm of the integrated probability for the exchange coupling between donor electrons for donors implanted 200Å apart in the [100] direction, using a 15keV phosphorus ion beam. The donors are assumed to take a substitutional fcc lattice site.

Ions implanted into silicon, an energy appropriate for an implantation depth of approximately 200Å into the silicon substrate, give a roughly Gaussian distribution for the final position of the dopant with a variance of about 90Å in the transverse direction, and 100Å in the longitudinal direction. Using these data, for two dopants implanted 200Å apart in the [100] direction, we have calculated the distribution of exchange couplings between the donor electrons, assuming that after thermal annealing the phosphorus donors take up a position on a fcc substitutional site. Fig. 5 shows a plot the integrated probability, $\int_{-\infty}^{\infty} P(J)dJ'$, that is the probability that the exchange coupling greater than a value J, for two dopants implanted in the manner just described.

In the case of electron spin quantum computers where it is the exchange energy that directly couples neighbouring qubits, a coupling of 50µeV corresponds to a gate time of the order of 10GHz. The top down approach can in this case produce qubits coupled by extremely fast gates with a very high probability. In nuclear spin quantum computers however the exchange interaction only mediates the inter-qubit coupling and the resulting gates are slower. The original Kane proposal calls for an adiabatic implementation of a controlled-NOT gate that requires a exchange coupling of approximately $50\mu\text{eV}$4,21. Additional proposals exist for non-adiabatic implementations22,23 for which controlled-NOT gates can be accurately implemented with a lower exchange coupling. Fig. 5 shows the probability that the bare exchange coupling for implanted donors being greater than 50µeV, is about 6%. What is more important than the bare coupling however is the values of the exchange coupling that can be achieved with the application of J-gate biases.

We note that KHD have performed calculations that suggest a method for overcoming the strong dependence of the the exchange coupling on the donor orientation2. They calculate the exchange coupling, in the same approximations as discussed earlier, for phosphorus donor electrons in uni-axially strained silicon. The strain is a product of the the silicon host being fabricated on a layer of Si$_{1-\delta}$Ge$_\delta$, and is found to suppress the oscillations in the coupling for donors that lie within a plane perpendicular to the direction of the uni-axial strain. The coupling remains highly sensitive to displacements away from this plane.
the energies such that the unperturbed ground-state energy gives the experimentally observed value of 45 of 140 states, which includes all states with principle quantum number up to and including direct numerical diagonalisation of the Hamiltonian in the presence of the electrostatic potential. We use a basis for example the six degenerate conduction band minima and determines the direction of the anisotropy of the envelope function, \(k \) due to their rapidly oscillating nature average to zero unless \(\mu \).

The orthonormality of this basis is enforced by the equality of the potentials, which results from interference between the terms localised at the six minima. They model the potential produced inside the device by the control gate as one-dimensional potential of the form \(V_J(x) = \mu \frac{(x-R/2)^2}{(R/2)^2} \times 30\text{meV} \), where \(x \) is the distance along the direction between the two donors which are situated at \(z = \pm R/2 \), as defined in Fig. 1.

In our calculation we compute the potential produced inside the device due to the application of a voltage bias to a metallic \(J \)-gate by numerical solution of the Poisson equation using a commercial package, TCAD, designed for the semiconductor industry. In Fig. 6 we plot the potential parallel to the inter-donor axis, for several values of the \(z \)-coordinate, mimicking a very long electrode. The dashed line is the one-dimensional potential used by Fang et al with \(\mu = 0.15 \) and shifted to match our potential at \(x, z = 0 \).

V. EXTERNAL CONTROL OF THE EXCHANGE COUPLING

Inherent in the Kane proposal for a solid state quantum computer is the ability to control the exchange coupling of neighbouring donor electrons through the application of voltage biases to a control \(J \)-gate placed on the substrate surface between the position of the phosphorus donors, as illustrated in Fig. 1. In this section we calculate the effect on the exchange coupling on the \(J \)-gate bias. Some results have been reported on similar calculations. Fang et al used an unrestricted Hartree-Fock method, which avoids some of the approximations inherent in the Heitler-London approach, to calculate the exchange coupling between phosphorus donor electrons as a function of a simplified electric potential. They use a trial wavefunction of the form \(\Psi(r) = F(r) \phi_{k_\mu}(r) \), including only one of the six degenerate conduction band minima, with a spherical envelope function, that is one of the same form as Eq. 4, but with \(a_\perp = a_\parallel = 20\text{Å} \). As a result of their single minimum approximation they cannot possibly reproduce the oscillatory nature of the coupling which results from interference between the terms localised at the six minima. They model the potential produced inside the device by the control gate as one-dimensional potential of the form \(V_J(x) = \mu \frac{(x-R/2)^2}{(R/2)^2} \times 30\text{meV} \), where \(x \) is the distance along the direction between the two donors which are situated at \(x = \pm R/2 \), as defined in Fig. 1.

In our calculation we compute the potential produced inside the device due to the application of a voltage bias to a metallic \(J \)-gate by numerical solution of the Poisson equation using a commercial package, TCAD, designed for the semiconductor industry. In Fig. 6 we plot the potential parallel to the inter-donor axis, for several values of the \(z \)-coordinate, mimicking a very long electrode. The dashed line is the one-dimensional potential used by Fang et al with \(\mu = 0.15 \) and shifted to match our potential at \(x, z = 0 \).

To calculate the effect of the applied potential on the electron we expand the wavefunction as follows:

\[
\Psi(r-R/2, V_J) = \sum_{n,l,m} c_{n,l,m} V_J(r) \sum_{\mu} F^{n,l,m}_{\mu}(r-R/2)e^{ik_\mu \cdot (r-R/2)},
\]

where the \(F^{n,l,m}_{\mu}(r-R/2) \) are non-isotropic hydrogenic envelope functions defined by Faulkner. The \(\mu \) is a label for the six degenerate conduction band minima and determines the direction of the anisotropy of the envelope function, for example \(F^{n,l,m}_{\pm z}(r) = F^{n,l,m}(x, y, \gamma z) \), is the hydrogenic function with a Bohr radius \(a = a_\perp \), and \(\gamma = a_\parallel/a_\perp \). The orthonormality of this basis is enforced by the terms which appear in the matrix elements and due to their rapidly oscillating nature average to zero unless \(k_\mu = k_\nu \). The coefficients \(c_{n,l,m} \) are determined by direct numerical diagonalisation of the Hamiltonian in the presence of the electrostatic potential. We use a basis of 140 states, which includes all states with principle quantum number up to and including \(n = 7 \), and we re-scale the energies such that the unperturbed ground-state energy gives the experimentally observed value of 45.5meV for phosphorus donors in silicon.

FIG. 6: Potential produced inside the device by a voltage bias of 1V applied to a metallic \(J \)-gate. Here \(x \) is the inter-donor axis, the donors are located at \(x = \pm 100\text{Å} \) and at \(z = 0 \). The potential is independent of the \(y \)-coordinate, mimicking a very long electrode. The dashed line is the one-dimensional potential used by Fang et al with \(\mu = 0.15 \) and shifted to match our potential at \(x, z = 0 \).
FIG. 7: Exchange coupling as a function of donor separation for donors oriented along the [100] direction and various J-gate biases.

FIG. 8: Exchange coupling as a function of J-gate bias for donors at fcc lattice sites separated by 200.91 Å in the [100] direction.

The donor electron wavefunctions obtained in this way are then used in the Heitler-London formalism to calculate the electron exchange energy, as a function of both the donor separation, and applied J-gate bias. The results are plotted in Fig. 7 for donor separations from 80-120 Å in the [100] direction. We see that application of a positive bias will tend to increase the exchange coupling, while a negative bias decreases the strength of the coupling. It is also worth noting that the relative increase in the exchange coupling produced by a given bias increases with the donor separation. Also the change in coupling is strongest at the peaks, the application of a positive bias enhances the oscillations in the exchange coupling whereas a negative bias of magnitude 1 V inverts the oscillations such that points that were originally at peaks become troughs.

The range of separations shown in these plots is far less than the approximately 200 Å donor separation called for in the original Kane proposal—we have plotted values over range for ease of comparison with our previous results, and more particularly those of KHD. In Fig. 8 we plot the exchange coupling as a function of the J-gate bias for donors separated by 200.91 Å in the [100] direction. At this separation a 1 V J-gate bias can increase the the exchange coupling by over two orders of magnitude up to a value of approximately 30 µeV. The exchange coupling can also be reduced via application of a negative bias.

Although it is difficult to compare our results with those of Fang et al due to the different potentials, the shift of an order of magnitude obtained for separation of 200 Å and a bias of 1 V is greater than the shift they predict. For a value of $\mu = 0.15$ Fang et al predict a shift of less than an order of magnitude. This discrepancy can in part be attributed to the $1 - D$ approximation for the gate potential which does not account for the fact that the magnitude of the potential increases as the J-gate is approached from below (in the z-direction). We note that it may not be possible to apply voltages much greater than one volt to these nano-scale devices without exceeding the breakdown fields of the various materials involved.²⁵
VI. DISCUSSION AND CONCLUSIONS

In agreement with the approximations implicit in the calculations of donor electron exchange energy of Koiller et al, we show explicitly that the periodic part of the Bloch functions in the donor electron wavefunctions can be ignored in the Heitler-London integrals, greatly reducing the complexity of the calculation. This has allowed the calculation of the intrinsic exchange coupling for a large number of donor pairs distributed according to the probability distribution for donors implanted 200Å apart by 15keV ion beams. In this manner we have determined the probability distribution of the exchange coupling for the top-down approach for the fabrication of a Kane solid-state quantum computer.

In addition we have investigated the application of control gate biases to increase the exchange coupling between donor pairs using both realistic potentials and realistic donor electron wavefunctions. We find that as expected the exchange coupling can be increased by the application of a positive bias, and decreased with a negative bias. Over the range of donor separations investigated it was found that the relative increase of the exchange coupling produced by a given bias increases with the separation, and for donors separated by 200Å in the [100] direction a 1V bias can increase the coupling by over two orders of magnitude.

VII. ACKNOWLEDGEMENTS

This work was supported by the Australian Research Council and the Victorian Partnership for Advanced Computing Expertise Grants scheme. The authors would like to thank W. Haig (High Performance Computing System Support Group, Department Of Defence) for computational support. HSG would like to acknowledge the support of a Hewlett-Packard fellowship.

1. B. Koiller, X. Hu and S. Das Sarma, Phys. Rev. Lett. 88,027903(2002)
2. B. Koiller, X. Hu and S. Das Sarma, Phys. Rev. B. 66,115201(2002)
3. R. Vrijen, E. Yablonovitch, K.Wang, H.W. Jiang, A. Balandin, V. Roychowdhury, T. Mor and D. DiVincenzo, Phys. Rev. A 62,012306(2000)
4. B. Kane, Nature 393,133(1998)
5. C.J. Wellard, L.C.L. Hollenberg and C.I. Pakes, Nanotechnology 13,570(2002)
6. L.M. Kettle, H.-S. Goan, S.C. Smith, L.C.L. Hollenberg and C.J. Wellard, (unpublished).
7. A. Fang, Y.C. Chang and J. Tucker, Phys. Rev. B. 66,155331(2002)
8. W. Kohn and J.M. Luttinger, Phys. Rev. 97.883(1955)
9. W. Kohn, Solid State Physics Vol.5. (eds F. Seitz and D. Turnbull) (Academic Press, New York),257(1957)
10. S.T. Pantelides, Rev. Mod. Phys. 50,797(1978)
11. H. Fritzschke, Phys. Rev., 125, 1560(1962).
12. A. Faulkner, Phys. Rev. 184,713(1969)
13. R.L. Aggarwal and A.K. Ramdas, Phys. Rev. 140,A1246(1965)
14. S.T. Pantelides and C.T. Sah, Phys. Rev. B 10,621(1974)
15. M.L. Cohen and J.R. Chelikowsky, Electronic Structure and Optical Properties of Semiconductors (Springer-Verlag, Heidelberg) (1998)
16. J.C. Slater, Quantum Theory of Molecules and Solids: Electronic structure of molecules (McGraw-Hill, New York)(1963)
17. K. Andres, R.N. Bhatt, P. Gopalwin, T.M. Rice and R.E. Walstedt, Phys. Rev. B. 24,244(1981)
18. A.S. Dzurak, M.Y. Simmons, A.R. Hamilton, R.G. Clark, R. Brenner, T.M. Buehler, N.J. Curson, E. Guaja, R.P. McKinnon, L.D. Mack, M. Mitic, J.L. O’Brien, L. Oberbeck, D.J. Reilly, S.R. Schofield, F.E. Stanley, D.N. Jamieson, S. Prawer, C. Yang and G.J. Milburn Quantum Information and Computation 1, spec. issue.,82(2001)
19. J.L. O’Brien, S.R. Schofield, M.Y. Simmons, R.G. Clark, A.S. Dzurak, N.J. Curson, B.E. Kane, N.S. McAlpine, M.E. Hawley and G.W Brown, Phys. Rev. B 64,161401(2001)
20. R.G. Clark, C. Hammel, A. Dzurak, A. Hamilton, L. Hollenberg, D. Jamieson and C. Pakes, Los Alamos Science 27,284(2002)
21. A.G. Fowler, C.J. Wellard and L.C.L. Hollenberg, Phys. Rev. A. in press
22. C. Wellard, L.C.L. Hollenberg and H.C. Pauli, Phys. Rev. A 65, 032303/1(2002)
23. C.D. Hill and H.-S. Goan, Submitted to PRA, e-print [quant-ph/0305040] (2003).
24. Technology Computer Aided Design (Integrated Systems Engineering AG, Zurich).
25. C.I. Pakes, C.J. Wellard, D.N. Jamieson, L.C.L. Hollenberg, S. Prawer, A.S. Dzurak, A.R. Hamilton and R.G. Clark, Microelectronics Journal 33,1053(2002)
26. L.M. Kettle, H.-S. Goan, S.C. Smith, L.C.L. Hollenberg, C.I. Pakes and C.J. Wellard, (unpublished)