average Nusselt number \overline{Nu}

Rayleigh number Ra^*

upward natural convection

3mm uncertainty
1mm uncertainty
theory

3mm 20160811 $T_F = 22.8^\circ C$
1mm 20170702 $T_F = 21.5^\circ C$
Ra

Temperature, C

28
27.5
27
26.5
26
25.5
25
24.5
24
23.5
23
22.5
22
21.5
21
20.5
20
19.5
19
18.5
18
17.5
17
16.5
16
15.5
15
14.5
14
13.5
13
12.5
12
11.5
11
10.5
10
9.5
9
8.5
8
7.5
7
6.5
6
5.5
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0

Time, s

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

0
100000
200000

symbol	nominal	sensitivity	bias	uncertainty	component
\(\Delta T\) | 3.75K | 46.9%/K | 0.10K | 4.69% | LM35C differential
\(P\) | 101kPa | 0.0005%/Pa | 1.5kPa | 0.76% | MPXH6115A6U air pressure
\(C_{pt}\) | 4.69kJ/K | 0.032%/\(\text{J/K}\) | 47J/K | 1.50% | plate thermal capacity
\(C_S\) | 1.000 | −42.4% | 0.050 | 2.12% | side reuptake
\(C_B\) | 1.000 | −14.9% | 0.100 | 1.49% | back reuptake
\(L_c\) | 0.305m | 461%/m | 500um | 0.23% | characteristic-length
\(D_{Al}\) | 19.4mm | 1148%/m | 500um | 0.57% | metal slab thickness
\(D_{PIR}\) | 25.4mm | 1148%/m | 1.0mm | 1.15% | insulation thickness
\(D_g\) | 1.00mm | 1148%/m | 500um | 0.57% | air gap
\(\varepsilon_{XPS}\) | 0.470 | 34.7% | 0.010 | 0.35% | XPS emissivity
\(\varepsilon_{tp}\) | 0.890 | 41.7% | 0.015 | 0.63% | tape emissivity
\(\Omega_{tp}\) | 0.540 | 31.7% | 0.020 | 0.63% | tape coverage
\(\varepsilon_{rs}\) | 0.040 | 147% | 0.010 | 1.47% | rough surface emissivity
\(\varepsilon_{wt}\) | 0.900 | 65.9% | 0.025 | 1.65% | wind-tunnel emissivity

estimated measurement uncertainties of natural convection at \(\theta = -90.0\)
Temperature, C

symbol	nominal	sensitivity	bias	uncertainty	component
ΔT | 7.10K | 23.8%/K | 0.10K | 2.38% | LM35C differential
P | 101kPa | 0.0005%/Pa | 1.5kPa | 0.78% | MPXH6115A6U air pressure
C_{pt} | 4.69kJ/K | 0.030%/(J/K) | 47J/K | 1.41% | plate thermal capacity
C_S | 1.000 | -40.7% | 0.050 | 2.04% | side reuptake
C_B | 1.000 | -12.7% | 0.100 | 1.27% | back reuptake
L_c | 0.305m | 437%/m | 500um | 0.22% | characteristic-length
D_{Al} | 19.4mm | 964%/m | 500um | 0.48% | metal slab thickness
D_{PIR} | 25.4mm | 964%/m | 1.0mm | 0.96% | insulation thickness
D_g | 1.00mm | 964%/m | 500um | 0.48% | air gap
ϵ_{XPS} | 0.470 | 29.1% | 0.010 | 0.29% | XPS emissivity
ϵ_{tp} | 0.890 | 35.1% | 0.015 | 0.53% | tape emissivity
Ω_{tp} | 0.540 | 26.6% | 0.020 | 0.53% | tape coverage
ϵ_{rs} | 0.040 | 125% | 0.010 | 1.25% | rough surface emissivity
ϵ_{wt} | 0.900 | 55.5% | 0.025 | 1.39% | wind-tunnel emissivity

estimated measurement uncertainties of natural convection at $\theta = -90.0$
symbol	nominal	sensitivity	bias	uncertainty	component
ΔT | 10.4K | 15.8%/K | 0.10K | 1.58% | LM35C differential
P | 100kPa | 0.0005%/Pa | 1.5kPa | 0.79% | MPXH6115A6U air pressure
C_{pt} | 4.69kJ/K | 0.029%//(J/K) | 47J/K | 1.37% | plate thermal capacity
C_S | 1.000 | –39.7% | 0.050 | 1.99% | side reuptake
C_B | 1.000 | –11.5% | 0.100 | 1.15% | back reuptake
L_c | 0.305m | 423%/m | 500um | 0.21% | characteristic-length
D_{Al} | 19.4mm | 853%/m | 500um | 0.43% | metal slab thickness
D_{PIR} | 25.4mm | 853%/m | 1.0mm | 0.85% | insulation thickness
D_g | 1.00mm | 853%/m | 500um | 0.43% | air gap
ϵ_{XPS} | 0.470 | 25.8% | 0.010 | 0.26% | XPS emissivity
ϵ_{tp} | 0.890 | 31.2% | 0.015 | 0.47% | tape emissivity
Ω_{tp} | 0.540 | 23.5% | 0.020 | 0.47% | tape coverage
ϵ_{rs} | 0.040 | 113% | 0.010 | 1.13% | rough surface emissivity
ϵ_{wt} | 0.900 | 49.3% | 0.025 | 1.23% | wind-tunnel emissivity

estimated measurement uncertainties of natural convection at $\theta = -90.0$
symbol	nominal	sensitivity	bias	uncertainty	component
ΔT | 13.8K | 11.9%/K | 0.10K | 1.19% | LM35C differential
P | 101kPa | 0.0005%/Pa | 1.5kPa | 0.80% | MPXH6115A6U air pressure
C_{pt} | 4.69kJ/K | 0.029%/J/K | 47J/K | 1.35% | plate thermal capacity
C_B | 1.000 | −39.1% | 0.050 | 1.96% | side reuptake
C_B | 1.000 | −10.8% | 0.100 | 1.08% | back reuptake
L_c | 0.305m | 418%/m | 500um | 0.21% | characteristic-length
D_{Al} | 19.4mm | 812%/m | 500um | 0.41% | metal slab thickness
D_{PIR} | 25.4mm | 812%/m | 1.0mm | 0.81% | insulation thickness
D_g | 1.00mm | 812%/m | 500um | 0.41% | air gap
ϵ_{XPS} | 0.470 | 24.6% | 0.010 | 0.25% | XPS emissivity
ϵ_{tp} | 0.890 | 29.7% | 0.015 | 0.45% | tape emissivity
Ω_{tp} | 0.540 | 22.4% | 0.020 | 0.45% | tape coverage
ϵ_{rs} | 0.040 | 108% | 0.010 | 1.08% | rough surface emissivity
ϵ_{wt} | 0.900 | 47.0% | 0.025 | 1.18% | wind-tunnel emissivity

3.60% combined bias uncertainty

estimated measurement uncertainties of natural convection at $\theta = -90.0$
20170702T154332Z – natural Convection – Roughness=1.04mm; T=21.5+03.7°C; −90.00°
k=0.0258, Ra_U=159845, h=3.66W/(K.m^2), U=0.340W/K, Nu=10.79, Pr=0.710

symbol	nominal	sensitivity	bias	uncertainty	component
ΔT | 3.66K | 43.3%/K | 0.10K | 4.33% | LM35C differential
P | 101kPa | 0.0005%/Pa | 1.5kPa | 0.78% | MPXH6115A6U air pressure
C_{pt} | 4.24kJ/K | 0.031%(J/K) | 42J/K | 1.32% | plate thermal capacity
C_{S} | 1.000 | −39.6% | 0.050 | 1.98% | side reuptake
C_{B} | 1.000 | −15.0% | 0.100 | 1.50% | back reuptake
L_{c} | 0.305m | 404%/m | 500um | 0.20% | characteristic-length
D_{Al} | 19.4mm | 725%/m | 500um | 0.36% | metal slab thickness
D_{PIR} | 25.4mm | 725%/m | 1.0mm | 0.73% | insulation thickness
D_{g} | 1.000mm | 725%/m | 500um | 0.36% | air gap
ε_{XPS} | 0.470 | 65.2% | 0.010 | 0.65% | XPS emissivity
ε_{rs} | 0.040 | 146% | 0.010 | 1.46% | rough surface emissivity
ε_{wt} | 0.900 | 43.4% | 0.025 | 1.08% | wind-tunnel emissivity

5.64% combined bias uncertainty

estimated measurement uncertainties of natural convection at \theta = -90.0
estimated measurement uncertainties of natural convection at $\theta = -90.0$°
20170702T234939Z – natural Convection – Roughness=1.04mm; T=21.4+10.4°C; −90.00°
k=0.0261, Ra_U=425861, h=4.99W/(K.m²), U=0.465W/K, Nu=14.59, Pr=0.709

estimated measurement uncertainties of natural convection at $\theta = -90.0$
Ra

Time, s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

k=0.0262, Ra_U=543459, h=5.37W/(K.m²), U=0.499W/K, Nu=15.60, Pr=0.709

20170703T014525Z – natural Convection – Roughness=1.04mm; T=21.5+13.7°C; −90.00°

symbol nominal sensitivity bias uncertainty component

\(\Delta T\) 13.7K 11.0%/K 0.10K 1.10% LM35C differential

\(P\) 101kPa 0.0005%/Pa 1.5kPa 0.81% MPXH6115A6U air pressure

\(C_{pt}\) 4.24kJ/K 0.029%//(J/K) 42J/K 1.22% plate thermal capacity

\(C_S\) 1.000 −36.2% 0.050 1.81% side reuptake

\(C_B\) 1.000 −10.7% 0.100 1.07% back reuptake

\(D_{Al}\) 19.4mm 502%/m 500um 0.25% metal slab thickness

\(D_{FIR}\) 25.4mm 502%/m 1.0mm 0.50% insulation thickness

\(D_g\) 1.00mm 502%/m 500um 0.25% air gap

\(\epsilon_{XPS}\) 0.470 45.1% 0.010 0.45% XPS emissivity

\(\epsilon_{rs}\) 0.040 106% 0.010 1.06% rough surface emissivity

\(\epsilon_{wt}\) 0.900 30.4% 0.025 0.76% wind-tunnel emissivity

3.19% combined bias uncertainty

estimated measurement uncertainties of natural convection at \(\theta = -90.0\)
vertical plate natural convection

\[\frac{1}{2} \left(\frac{\text{average Nusselt number} \; Nu}{\text{Rayleigh number} \; Ra'} \right)^{1/3} \]

ext 20160212 \(T_F = 18.7^\circ \text{C} \)

opp 20160913 \(T_F = 21.2^\circ \text{C} \)

opp 20170430 \(T_F = 18.0^\circ \text{C} \)

aid 20201222 \(T_F = 18.2^\circ \text{C} \)
estimated measurement uncertainties of natural convection at $\theta = -0.0$
symbol	nominal	sensitivity	bias	uncertainty	component
ΔT	10.7K	21.7%/K	0.10K	2.17%	LM35C differential
P	99.4kPa	0.007%/Pa	1.5kPa	1.06%	MPXH6115A6U air pressure
C_{pt}	4.69kJ/K	0.042%(J/K)	47J/K	1.96%	plate thermal capacity
C_V	1.000	-14.2%	0.100	1.42%	vertical reuptake
L_c	0.305m	591%/m	500um	0.30%	characteristic-length
D_{Al}	19.4mm	1126%/m	500um	0.56%	metal slab thickness
D_{PIR}	25.4mm	603%/m	1.0mm	0.60%	insulation thickness
D_g	1.00mm	573%/m	500um	0.29%	air gap
k_{PIR}	23.0 mW/K·m	0.48%/mW/K·m	1.2 mW/K·m	0.55%	PIR thermal conductivity
ϵ_{XPS}	0.470	34.0%	0.010	0.34%	XPS emissivity
ϵ_{tp}	0.890	40.9%	0.015	0.61%	tape emissivity
Ω_{tp}	0.540	31.1%	0.020	0.62%	tape coverage
ϵ_{rs}	0.040	144%	0.010	1.44%	rough surface emissivity
ϵ_{wt}	0.900	65.5%	0.025	1.64%	wind-tunnel emissivity

Estimated measurement uncertainties of natural convection at $\theta = -0.0$
symbol	nominal	sensitivity	bias	uncertainty	component
ΔT | 3.64K | 72.1%/K | 0.10K | 7.21% | LM35C differential
T_{bb} | 294K | 0.430%/K | 0.50K | 0.21% | radiative temperature
P | 101kPa | 0.0007%/Pa | 1.5kPa | 1.01% | MPXH6115A6U air pressure
C_{pt} | 4.69kJ/K | 0.048%//(J/K) | 47J/K | 2.27% | plate thermal capacity
C_V | 1.000 | -17.6% | 0.100 | 1.76% | vertical reuptake
L_c | 0.305m | 681%/m | 500um | 0.34% | characteristic-length
D_{Al} | 19.4mm | 1628%/m | 500um | 0.81% | metal slab thickness
D_{PIR} | 25.4mm | 962%/m | 1.0mm | 0.96% | insulation thickness
D_g | 1.00mm | 923%/m | 500um | 0.46% | air gap
k_{PIR} | 23.0mW/Km | 0.610%/mW/Km | 1.2mW/Km | 0.70% | PIR thermal conductivity
ϵ_{XPS} | 0.470 | 49.2% | 0.010 | 0.49% | XPS emissivity
ϵ_{tp} | 0.890 | 58.9% | 0.015 | 0.88% | tape emissivity
Ω_{tp} | 0.540 | 44.9% | 0.020 | 0.90% | tape coverage
ϵ_{rs} | 0.040 | 202% | 0.010 | 2.02% | rough surface emissivity
ϵ_{wt} | 0.900 | 94.7% | 0.025 | 2.37% | wind-tunnel emissivity

estimated measurement uncertainties of natural convection at $\theta = -0.0$
Temperature, °C

Ra

symbol	nominal	sensitivity	bias	uncertainty component
ΔT | 7.20K | 34.2%/K | 0.10K | 3.42% | LM35C differential
P | 101kPa | 0.0007%/Pa | 1.5kPa | 1.02% | MPXH6115A6U air pressure
C\text{pt} | 4.69kJ/K | 0.045%(J/K) | 47J/K | 2.10% | plate thermal capacity
C\text{V} | 1.000 | −16.4% | 0.100 | 1.64% | vertical reuptake
L\text{c} | 0.305m | 634%/m | 500um | 0.32% | characteristic-length
D\text{Al} | 19.4mm | 1359%/m | 500um | 0.68% | metal slab thickness
D\text{FR} | 25.4mm | 776%/m | 1.0mm | 0.78% | insulation thickness
D\text{g} | 1.00mm | 743%/m | 500um | 0.37% | air gap
k\text{PIR} | 23.0 mW K\text{m}^{-1} | 0.534%/m W | 1.2 mW K\text{m}^{-1} | 0.61% | PIR thermal conductivity
\text{ε}_{\text{XPS}} | 0.470 | 41.1% | 0.010 | 0.41% | XPS emissivity
\text{ε}_{\text{tP}} | 0.890 | 49.3% | 0.015 | 0.74% | tape emissivity
Ω\text{tP} | 0.540 | 37.5% | 0.020 | 0.75% | tape coverage
\text{ε}_{\text{rs}} | 0.040 | 172% | 0.010 | 1.72% | rough surface emissivity
\text{ε}_{\text{wt}} | 0.900 | 79.0% | 0.025 | 1.98% | wind-tunnel emissivity

estimated measurement uncertainties of natural convection at θ = −0.0
20160912T115846Z – natural Convection – Roughness=3.00mm; T=21.5+10.5°C; +0.00°
k=0.0261, Ra_V=28016675, h=3.59W/(K.m²), U=0.334W/K, Nu=41.95, Pr=0.709

symbol	nominal	sensitivity	bias	uncertainty	component
ΔT | 10.5K | 22.7%/K | 0.10K | 2.27% | LM35C differential
P | 102kPa | 0.0007%/Pa | 1.5kPa | 1.03% | MPXH6115A6U air pressure
C_{pt} | 4.69kJ/K | 0.043%/J/K | 47J/K | 2.01% | plate thermal capacity
C_V | 1.000 | −15.7% | 0.100 | 1.57% | vertical reuptake
L_c | 0.305m | 608%/m | 500um | 0.30% | characteristic-length
D_{AI} | 19.4mm | 1211%/m | 500um | 0.61% | metal slab thickness
D_{PIR} | 25.4mm | 674%/m | 1.0mm | 0.67% | insulation thickness
D_g | 1.00mm | 643%/m | 500um | 0.32% | air gap
k_{PIR} | 23.0 mW/Km | 0.493%/mW/Km | 1.2 mW/Km | 0.57% | PIR thermal conductivity
ϵ_{XPS} | 0.470 | 36.0% | 0.010 | 0.37% | XPS emissivity
ϵ_{tp} | 0.890 | 44.1% | 0.015 | 0.66% | tape emissivity
Ω_{tp} | 0.540 | 33.4% | 0.020 | 0.67% | tape coverage
ϵ_{rs} | 0.040 | 155% | 0.010 | 1.55% | rough surface emissivity
ϵ_{wt} | 0.900 | 70.5% | 0.025 | 1.76% | wind-tunnel emissivity

estimated measurement uncertainties of natural convection at $\theta = -0.0$
20160913T033648Z – natural Convection – Roughness=3.00mm; T=21.9+13.9°C; +0.00°
k=0.0263, Ra_V=35634045, h=3.85W/(K.m²), U=0.358W/K, Nu=44.64, Pr=0.708

symbol	nominal	sensitivity	bias	uncertainty	component
ΔT | 13.9K | 16.8%/K | 0.10K | 1.68% | LM35C differential
P | 101kPa | 0.0007%/Pa | 1.5kPa | 1.04% | MPXH6115A6U air pressure
C_{pt} | 4.69kJ/K | 0.042%/(J/K) | 47J/K | 1.96% | plate thermal capacity
C_V | 1.000 | -15.3% | 0.100 | 1.53% | vertical reuptake
L_c | 0.305m | 595%/m | 500um | 0.30% | characteristic-length
D_{Al} | 19.4mm | 1135%/m | 500um | 0.57% | metal slab thickness
D_{PIR} | 25.4mm | 628%/m | 1.0mm | 0.63% | insulation thickness
D_g | 1.00mm | 599%/m | 500um | 0.30% | air gap
k_{PIR} | 23.0mW/K·m | 0.465%/mW/K·m | 1.2mW/K·m | 0.53% | PIR thermal conductivity
ϵ_{XPS} | 0.470 | 34.3% | 0.010 | 0.34% | XPS emissivity
ϵ_{tp} | 0.890 | 41.3% | 0.015 | 0.62% | tape emissivity
Ω_{tp} | 0.540 | 31.3% | 0.020 | 0.63% | tape coverage
ϵ_{rs} | 0.040 | 146% | 0.010 | 1.46% | rough surface emissivity
ϵ_{wt} | 0.900 | 66.0% | 0.025 | 1.65% | wind-tunnel emissivity

4.14% combined bias uncertainty

estimated measurement uncertainties of natural convection at $\theta = -0.0$
estimated measurement uncertainties of natural convection at $\theta = -0.0$
20170501T003012Z - natural Convection - Roughness=1.04mm; T=18.2+07.0°C; +0.00°
k=0.0258, Ra_V=20358262, h=3.07W/(K.m²), U=0.285W/K, Nu=36.32, Pr=0.709

symbol	nominal	sensitivity	bias	uncertainty	component
ΔT	7.03K	32.1%/K	0.10K	3.21%	LM35C differential
P	102kPa	0.0007%/Pa	1.5kPa	1.02%	MPXH6115A6U air pressure
C_{pt}	4.24kJ/K	0.045%/kJ	42J/K	1.90%	plate thermal capacity
C_V	1.000	-15.3%	0.100	1.53%	vertical reuptake
L_c	0.305m	567%/m	500μm	0.28%	characteristic-length
D_{Al}	19.4mm	919%/m	500μm	0.46%	metal slab thickness
D_{PIR}	25.4mm	339%/m	1.0mm	0.34%	insulation thickness
k_{PIR}	23.0mW/m²	0.531%/m²	1.2mW/m²	0.61%	PIR thermal conductivity
ϵ_{XPS}	0.470	37.7%	0.010	0.38%	XPS emissivity
ϵ_{tp}	0.550	45.6%	0.015	0.68%	tape emissivity
ϵ_{rs}	0.040	165%	0.010	1.65%	rough surface emissivity
ϵ_{wt}	0.900	56.0%	0.025	1.40%	wind-tunnel emissivity

estimated measurement uncertainties of natural convection at $\theta = -0.0$
Symbol	Nominal	Sensitivity	Bias	Uncertainty	Component
ΔT	10.5K	20.8%/K	0.10K	2.08%	LM35C differential
P	101kPa	0.0007%/Pa	1.5kPa	1.03%	MPXH6115A6U air pressure
C_{pt}	4.24kJ/K	0.043%(J/K)	42J/K	1.83%	plate thermal capacity
C_V	1.000	-14.7%	0.100	1.47%	vertical reuptake
L_c	0.305m	548%/m	500um	0.27%	characteristic-length
D_{Al}	19.4mm	819%/m	500um	0.41%	metal slab thickness
D_{PIR}	25.4mm	286%/m	1.0mm	0.29%	insulation thickness
k_{PIR}	23.0mW/Km	0.489%/mW	1.2mW/Km	0.56%	PIR thermal conductivity
ϵ_{XPS}	0.470	33.6%	0.010	0.34%	XPS emissivity
ϵ_{tp}	0.550	40.8%	0.015	0.61%	tape emissivity
ϵ_{rs}	0.040	149%	0.010	1.49%	rough surface emissivity
ϵ_{wt}	0.900	49.9%	0.025	1.25%	wind-tunnel emissivity

Estimated measurement uncertainties of natural convection at $\theta = -0.0$
symbol	nominal	sensitivity	bias	uncertainty	component
ΔT | 14.4K | 15.0%/K | 0.10K | 1.50% | LM35C differential
P | 101kPa | 0.0007%/Pa | 1.5kPa | 1.04% | MPXH6115A6U air pressure
C_{pt} | 4.24kJ/K | 0.042%/J/K | 42J/K | 1.78% | plate thermal capacity
C_V | 1.000 | −14.2% | 0.100 | 1.42% | characteristic-length
L_c | 0.305m | 536%/m | 500um | 0.27% | metal slab thickness
D_{Al} | 19.4mm | 761%/m | 500um | 0.38% | insulation thickness
D_{PIR} | 25.4mm | 259%/m | 1.0mm | 0.26% | PIR thermal conductivity
k_{PIR} | 23.0 mW/K·m | 0.460%/mW/K·m | 1.2 mW/K·m | 0.53% | PIR thermal conductivity
ϵ_{XPS} | 0.470 | 31.2% | 0.010 | 0.31% | XPS emissivity
ϵ_{tp} | 0.550 | 37.9% | 0.015 | 0.57% | tape emissivity
ϵ_{rs} | 0.040 | 140% | 0.010 | 1.40% | rough surface emissivity
ϵ_{wt} | 0.900 | 46.4% | 0.025 | 1.16% | wind-tunnel emissivity

estimated measurement uncertainties of natural convection at $\theta = -0.0$
symbol nominal sensitivity bias uncertainty component
\(\Delta T \) 3.84K 66.6%/K 0.10K 6.66% LM35C differential
\(T_{bb} \) 292K 0.417%/K 0.50K 0.21% radiative temperature
\(P \) 101kPa 0.0007%/Pa 1.5kPa 1.00% MPXH6115A6U air pressure
\(C_{pt} \) 4.24kJ/K 0.052%(J/K) 42kJ/K 2.21% plate thermal capacity
\(C_v \) 1.000 -16.4% 0.100 1.64% vertical reuptake
\(L_c \) 0.305m 664%/m 500um 0.33% characteristic-length
\(D_{AI} \) 19.4mm 1565%/m 500um 0.78% metal slab thickness
\(D_{PIR} \) 25.4mm 909%/m 1.0mm 0.91% insulation thickness
\(D_g \) 1.00mm 871%/m 500um 0.44% air gap
\(k_{PIR} \) 23.0mW/Km 0.602%/mW 1.2mW/Km 0.69% PIR thermal conductivity
\(\epsilon_{XPS} \) 0.470 47.3% 0.010 0.47% XPS emissivity
\(\epsilon_{tp} \) 0.890 56.6% 0.015 0.85% tape emissivity
\(\Omega_{tp} \) 0.540 43.2% 0.020 0.86% tape coverage
\(\epsilon_{rs} \) 0.040 194% 0.010 1.94% rough surface emissivity
\(\epsilon_{wt} \) 0.900 90.9% 0.025 2.27% wind-tunnel emissivity

estimated measurement uncertainties of natural convection at \(\theta = -0.0 \)
20201222T211021Z – natural Convection – Roughness=1.04mm; T=17.9±0.1°C; ±0.00°
k=0.0258, Ra_V=19829276, h=2.98W/(K.m²), U=0.277W/K, Nu=35.31, Pr=0.708

symbol	nominal	sensitivity	bias	uncertainty	component
ΔT	7.06K	34.2%/K	0.10K	3.42%	LM35C differential
P	100.0kPa	0.0007%/Pa	1.5kPa	1.02%	MPXH6115A6U air pressure
Cₚₜ	4.24kJ/K	0.049%//(J/K)	42J/K	2.06%	plate thermal capacity
Cₐ	1.000	-15.4%	0.100	1.54%	vertical reuptake
Lₙ	0.305m	620%/m	500µm	0.31%	characteristic-length
Dₐₐ	19.4mm	1316%/m	500µm	0.66%	metal slab thickness
Dₚₚ	25.4mm	733%/m	1.0mm	0.73%	insulation thickness
Dₙ	1.00nm	700%/m	500µm	0.35%	air gap
kₚₚ	23.0µW/K·m	0.534%/µW/K·m	1.2µW/K·m	0.61%	PIR thermal conductivity
εₓₓₛ	0.470	39.8%	0.010	0.40%	XPS emissivity
εₜₚ	0.890	47.7%	0.015	0.72%	tape emissivity
Ωₜₚ	0.540	36.3%	0.020	0.73%	tape coverage
εᵣₛ	0.040	165%	0.010	1.65%	rough surface emissivity
εₜₑ	0.900	76.4%	0.025	1.91%	wind-tunnel emissivity

estimated measurement uncertainties of natural convection at $\theta = -0.0$
20201222T230047Z – natural Convection – Roughness=1.04mm; T=18.0+10.5°C; +0.00°
k=0.0259, Ra_V=28520204, h=3.33W/(K.m²), U=0.310W/K, Nu=39.27, Pr=0.708

symbol	nominal	sensitivity	bias	uncertainty	component
∆T	10.5K	22.4%/K	0.10K	2.24%	LM35C differential
P	100kPa	0.0007%/Pa	1.5kPa	1.03%	MPXH6115A6U air pressure
Cpt	4.24kJ/K	0.047%/(J/K)	42J/K	1.98%	plate thermal capacity
CV	1.00	-14.7%	0.100	1.47%	vertical reuptake
Lc	0.305m	597%/m	500μm	0.30%	characteristic-length
DAl	19.4mm	1184%/m	500μm	0.59%	metal slab thickness
DPIR	25.4mm	647%/m	1.0mm	0.65%	insulation thickness
Dg	1.00mm	616%/m	500μm	0.31%	air gap
kPIR	23.0mW/m	0.493%/mW/m	1.2mW/m	0.57%	PIR thermal conductivity
cXPS	0.470	35.8%	0.010	0.36%	XPS emissivity
ctP	0.890	43.0%	0.015	0.64%	tape emissivity
ΩtP	0.540	32.7%	0.020	0.65%	tape coverage
crs	0.040	150%	0.010	1.50%	rough surface emissivity
cwt	0.900	68.7%	0.025	1.72%	wind-tunnel emissivity

estimated measurement uncertainties of natural convection at θ = -0.0
Ra = 20000000
40000000

Time, s

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000

Temperature, C

20
24
28
32
36

symbol
ΔT
P
C_{pt}
C_V
L_c
D_{Al}
D_{P\text{IR}}
D_g
k_{P\text{IR}}
ε_{\text{XPS}}
ε_{\text{tp}}
Ω_{\text{tp}}
ε_{rs}
ε_{\text{wt}}
nominal
14.0 K
100 kPa
4.24 kJ/K
1.00
0.305 m
19.4 mm
25.4 mm
1.00 mm
23.0 mW/K·m
0.470
0.890
0.540
0.040
0.900
sensitivity
16.4% K⁻¹
0.0007 %/Pa
0.045 %/(J/K)
−14.3%
582 %/m
1101 %/m
596 %/m
567 %/m
0.463 %/m
33.3%
40.0%
30.4%
141%
64.0%
bias
0.10 K
1.5 kPa
0.100
500 µm
500 µm
500 µm
1.0 mm
500 µm
1.2 µW/K·m
0.010
0.015
0.020
0.010
0.025
uncertainty
0.10 K
1.5 kPa
42 J/K
0.100
500 µm
500 µm
500 µm
0.100
500 µm
0.10 K
0.010
0.015
0.020
0.010
0.025
component
LM35C differential
MPXH6115A6U air pressure
plate thermal capacity
vertical reuptake
characteristic-length
metal slab thickness
insulation thickness
air gap
PIR thermal conductivity
XPS emissivity
tape emissivity
tape coverage
rough surface emissivity
wind-tunnel emissivity
combined bias uncertainty

estimated measurement uncertainties of natural convection at θ = −0.0
average Nusselt number \overline{Nu}

Downward natural convection

R_{a}

Ξ

3 mm uncertainty $0.341 + 0.550 \left(\frac{Ra}{\Xi} \right)^{1/5}$

1 mm uncertainty $0.682 + 0.844 \left(\frac{Ra}{\Xi} \right)^{1/6}$

$T_F = 22.2^\circ C$

$T_F = 21.4^\circ C$
symbol	nominal	sensitivity	bias	uncertainty	component
\(\Delta T \) | 3.59K | 120% /K | 0.10K | 12.03% | LM35C differential
\(T \) | 297K | 0.873% /K | 0.50K | 0.44% | LM35C temperature sensor
\(C_{pt} \) | 4.69kJ /K | 0.084% /（J /K） | 47J /K | 3.95% | plate thermal capacity
\(P \) | 101kPa | 0.0007% /Pa | 1.5kPa | 1.05% | MPXH6115A6U air pressure
\(\rho \) | 1.00mm | 319% /m | 500um | 1.07% | air gap
\(L_c \) | 0.305m | 1207% /m | 500um | 0.60% | characteristic-length
\(L_w \) | 0.21% | 422% /m | 500um | plate width
\(D_{Al} \) | 19.4mm | 3199% /m | 500um | 1.60% | metal slab thickness
\(D_{PIR} \) | 25.4mm | 2191% /m | 1.0mm | 2.19% | insulation thickness
\(D_g \) | 1.00mm | 2133% /m | 500um | 1.07% | air gap
\(L_m \) | 3.57mm | 676% /m | 500um | 0.34% | side metal strip width
\(k_{PIR} \) | 23.0 mW /K·m | 0.924% /mW /K·m | 1.2 mW /K·m | 1.06% | PIR thermal conductivity
\(k_{XPS} \) | 33.0 mW /K·m | 0.132% /mW /K·m | 1.7 mW /K·m | 0.22% | XPS thermal conductivity
\(\epsilon_XPS \) | 0.470 | 96.7% | 0.010 | 0.97% | XPS emissivity
\(\epsilon_{tp} \) | 0.890 | 116% | 0.015 | 1.74% | tape emissivity
\(\Omega_{tp} \) | 0.540 | 88.3% | 0.020 | 1.77% | tape coverage
\(\epsilon_{rs} \) | 0.040 | 408% | 0.010 | 4.08% | rough surface emissivity
\(\epsilon_b \) | 0.190 | 39.5% | 0.020 | 0.79% | back emissivity
\(\epsilon_{wt} \) | 0.900 | 192% | 0.025 | 4.80% | wind-tunnel emissivity
\(\theta \) | 90.0° | 1.26% /° | 0.50° | 0.63% | plate angle

estimated measurement uncertainties of natural convection at \(\theta = 90.0 \)
symbol	nominal	sensitivity	bias	uncertainty	component
T | 299K | 0.756%/K | 0.50K | 0.38% | LM35C temperature sensor
ΔT | 7.35K | 57.5%/K | 0.10K | 5.75% | LM35C differential
T_{bb} | 295K | 0.765%/K | 0.50K | 0.38% | radiative temperature
P | 101kPa | 0.0008%/Pa | 1.5kPa | 1.13% | MPXH6115A6U air pressure
C_{pt} | 4.69kJ/K | 0.081%/J/K | 47J/K | 3.82% | plate thermal capacity
L_c | 0.305m | 1166%/m | 500um | 0.58% | characteristic-length
L_w | 0.305m | 411%/m | 500um | 0.21% | plate width
D_{Al} | 19.4mm | 2850%/m | 500um | 1.42% | metal slab thickness
D_{PIR} | 25.4mm | 1891%/m | 1.0mm | 1.89% | insulation thickness
D_g | 1.00mm | 1836%/m | 500um | 0.92% | air gap
L_m | 3.57mm | 703%/m | 500um | 0.35% | side metal strip width
k_{PIR} | 23.0 mW/Km | 0.879%/mW/Km | 1.2 mW/Km | 1.01% | PIR thermal conductivity
k_{XPS} | 33.0 mW/Km | 0.125%/mW/Km | 1.7 mW/Km | 0.21% | XPS thermal conductivity
ϵ_{XPS} | 0.470 | 86.2% | 0.010 | 0.86% | XPS emissivity
ϵ_{tp} | 0.890 | 104% | 0.015 | 1.56% | tape emissivity
Ω_{tp} | 0.540 | 78.7% | 0.020 | 1.57% | tape coverage
ϵ_{rs} | 0.040 | 372% | 0.010 | 3.72% | rough surface emissivity
ϵ_b | 0.190 | 30.4% | 0.020 | 0.61% | back emissivity
ϵ_{wt} | 0.900 | 171% | 0.025 | 4.27% | wind-tunnel emissivity
θ | 90.0° | 1.31%/° | 0.50° | 0.66% | plate angle

estimated measurement uncertainties of natural convection at $\theta = 90.0$°
20160910T190723Z – natural Convection – Roughness=3.00mm; T=22.3+11.5°C; +90.00°
k=0.0262, Ra_D=3700641, h=1.70W/(K.m²), U=0.158W/K, Nu=9.87, Pr=0.709

symbol	nominal	sensitivity	bias	uncertainty	component
T	301K	0.692%/K	0.50K	0.35%	LM35C temperature sensor
ΔT	11.5K	36.4%/K	0.10K	3.64%	LM35C differential
T_{bb}	296K	0.708%/K	0.50K	0.35%	radiative temperature
P	101kPa	0.0008%/Pa	1.5kPa	1.17%	MPXH6115A6U air pressure
C_{pt}	4.69kJ/K	0.080%/(/J/K)	47J/K	3.75%	plate thermal capacity
L_c	0.305m	1148%/m	500nm	0.57%	characteristic-length
L_w	0.305m	406%/m	500nm	0.20%	plate width
D_{Al}	19.4mm	267%/m	500nm	1.34%	metal slab thickness
D_{PIR}	25.4mm	174%/m	1.0mm	1.74%	insulation thickness
D_{g}	1.00mm	1691%/m	500um	0.85%	air gap
L_m	3.57mm	719%/m	500nm	0.36%	side metal strip width
k_{PIR}	23.0 mW/Km	0.852%/(/mW)	1.2 mW/Km	0.98%	PIR thermal conductivity
k_{XPS}	33.0 mW/Km	0.122%/(/mW)	1.7 mW/Km	0.20%	XPS thermal conductivity
η_{XPS}	0.470	80.8%	0.010	0.81%	XPS emissivity
η_{tp}	0.890	97.8%	0.015	1.47%	tape emissivity
Ω_{tp}	0.540	73.8%	0.020	1.48%	tape coverage
η_{rs}	0.040	35.4%	0.010	3.54%	rough surface emissivity
η_{b}	0.190	25.3%	0.020	0.51%	back emissivity
η_{wt}	0.900	160%	0.025	4.00%	wind-tunnel emissivity
θ	90.0°	1.35%/°	0.50°	0.67%	plate angle

estimated measurement uncertainties of natural convection at θ = 90.0
symbol	nominal	sensitivity	bias	uncertainty	component
\(T \) | 303K | 0.660%/K | 0.50K | 0.33% | LM35C temperature sensor
\(\Delta T \) | 15.1K | 27.7%/K | 0.10K | 2.77% | LM35C differential
\(T_{bb} \) | 295K | 0.676%/K | 0.50K | 0.34% | radiative temperature
\(P \) | 100kPa | 0.008%/Pa | 1.5kPa | 1.20% | MPXH6115A6U air pressure
\(C_{pt} \) | 4.69kJ/K | 0.079%(J/K) | 47J/K | 3.72% | plate thermal capacity
\(L_c \) | 0.305m | 1139%/m | 500um | 0.57% | characteristic-length
\(L_w \) | 0.305m | 403%/m | 500um | 0.20% | plate width
\(D_{Al} \) | 19.4mm | 2576%/m | 500um | 1.29% | metal slab thickness
\(D_{PIR} \) | 25.4mm | 1664%/m | 1.0mm | 1.66% | insulation thickness
\(D_g \) | 1.00mm | 1612%/m | 500um | 0.81% | air gap
\(L_m \) | 3.57mm | 729%/m | 500um | 0.36% | side metal strip width
\(k_{PIR} \) | 2.30 mW/K·m | 0.836%/m·K | 1.2 mW | 0.96% | PIR thermal conductivity
\(\epsilon_{XPS} \) | 0.470 | 77.9% | 0.010 | 0.78% | XPS emissivity
\(\epsilon_{tp} \) | 0.890 | 94.3% | 0.015 | 1.42% | tape emissivity
\(\Omega_{tp} \) | 0.540 | 71.1% | 0.020 | 1.42% | tape coverage
\(\epsilon_{rs} \) | 0.040 | 344% | 0.010 | 3.44% | rough surface emissivity
\(\epsilon_b \) | 0.190 | 22.8% | 0.020 | 0.46% | back emissivity
\(\epsilon_{wt} \) | 0.900 | 154% | 0.025 | 3.85% | wind-tunnel emissivity
\(\theta \) | 90.0° | 1.37%/° | 0.50° | 0.69% | plate angle

estimated measurement uncertainties of natural convection at \(\theta = 90.0 \)°
Natural Convection Measurement Details

- **Temperature:**
 - \(T = 296 \text{K} \)
 - \(\Delta T = 3.65 \text{K} \)
 - \(T_{bb} = 295 \text{K} \)
 - \(P = 100 \text{kPa} \)
 - \(C_{pt} = 4.24 \text{kJ/K} \)
 - \(L_c = 0.305 \text{m} \)
 - \(L_w = 0.305 \text{m} \)
 - \(D_{Al} = 19.4 \text{mm} \)
 - \(D_{PIR} = 25.4 \text{mm} \)
 - \(D_g = 1.00 \text{mm} \)
 - \(L_m = 3.57 \text{mm} \)
 - \(k_{PIR} = 32.0 \text{mW/Km} \)
 - \(k_{XPS} = 33.0 \text{mW/Km} \)

- **Emissivity:**
 - \(\epsilon_{tp} = 0.890 \)
 - \(\Omega_{tp} = 0.540 \)
 - \(\epsilon_{rs} = 0.040 \)
 - \(\epsilon_b = 0.190 \)
 - \(\epsilon_{wt} = 0.900 \)
 - \(\theta = 90.0^\circ \)

- **Estimated Measurement Uncertainties:**
 - \(14.43\% \) combined bias uncertainty

Symbol Table:

Symbol	Nominal Value	Sensitivity	Bias	Uncertainty	Component
\(T \)	296K	0.877%/K	0.50K	0.44%	LM35C temperature sensor
\(\Delta T \)	3.65K	116%/K	0.10K	11.58%	LM35C differential
\(T_{bb} \)	295K	0.870%/K	0.50K	0.44%	radiative temperature
\(P \)	100kPa	0.0007%/Pa	1.5kPa	1.00%	MPXH6115A6U air pressure
\(C_{pt} \)	4.24kJ/K	0.092%/(J/K)	42J/K	3.88%	plate thermal capacity
\(L_c \)	0.305m	1183%/m	500um	0.59%	characteristic-length
\(L_w \)	0.305m	422%/m	500um	0.21%	plate width
\(D_{Al} \)	19.4mm	3204%/m	500um	1.60%	metal slab thickness
\(D_{PIR} \)	25.4mm	2198%/m	1.0mm	2.20%	insulation thickness
\(D_g \)	1.00mm	2140%/m	500um	1.07%	air gap
\(L_m \)	3.57mm	630%/m	500um	0.31%	side metal strip width
\(k_{PIR} \)	32.0mW/Km	0.922%/mW/Km	1.2mW/Km	1.06%	PIR thermal conductivity
\(k_{XPS} \)	33.0mW/Km	0.132%/mW/Km	1.7mW/Km	0.22%	XPS thermal conductivity
\(\epsilon_{XPS} \)	0.900	96.9%	0.010	0.97%	XPS emissivity
\(\epsilon_{tp} \)	0.890	116%	0.015	1.74%	tape emissivity
\(\Omega_{tp} \)	0.540	88.4%	0.020	1.77%	tape coverage
\(\epsilon_{rs} \)	0.040	405%	0.010	4.05%	rough surface emissivity
\(\epsilon_b \)	0.190	39.1%	0.020	0.78%	back emissivity
\(\epsilon_{wt} \)	0.900	192%	0.025	4.79%	wind-tunnel emissivity
\(\theta \)	90.0^\circ	1.18%/\^\circ	0.50^\circ	0.59%	plate angle

Combined Bias Uncertainty:

\[14.43\% \]

Notes:

- Estimated measurement uncertainties of natural convection at \(\theta = 90.0^\circ \)
symbol | nominal | sensitivity | bias | uncertainty | component
--- | --- | --- | --- | --- | ---
T | 298K | 0.770%/K | 0.50K | 0.38% | LM35C temperature sensor
ΔT | 7.15K | 57.8%/K | 0.10K | 5.78% | LM35C differential
T_{bb} | 295K | 0.773%/K | 0.50K | 0.39% | radiative temperature
P | 100kPa | 0.0007%/Pa | 1.5kPa | 1.06% | MPXH6115A6U air pressure
C_{pt} | 4.24kJ/K | 0.088%//(J/K) | 42J/K | 3.74% | plate thermal capacity
L_c | 0.305m | 1142%/m | 500um | 0.57% | characteristic-length
L_w | 0.305m | 412%/m | 500um | 0.21% | plate width
D_{Al} | 19.4mm | 2879%/m | 500um | 1.44% | metal slab thickness
D_{PIR} | 25.4mm | 1920%/m | 1.0mm | 1.92% | insulation thickness
D_g | 1.00mm | 1865%/m | 500um | 0.93% | air gap
L_m | 3.57mm | 653%/m | 500um | 0.33% | side metal strip width
k_{PIR} | 23.0mW/K\(m\) | 0.880%/mW/K\(m\) | 1.2mW/K\(m\) | 1.01% | PIR thermal conductivity
k_{XPS} | 33.0mW/K\(m\) | 0.126%/mW/K\(m\) | 1.7mW/K\(m\) | 0.21% | XPS thermal conductivity
ϵ_{XPS} | 0.470 | 87.1% | 0.010 | 0.87% | XPS emissivity
ϵ_{tp} | 0.890 | 105% | 0.015 | 1.57% | tape emissivity
Ω_{tp} | 0.540 | 79.5% | 0.020 | 1.59% | tape coverage
ϵ_{rs} | 0.040 | 371% | 0.010 | 3.71% | rough surface emissivity
ϵ_b | 0.190 | 30.6% | 0.020 | 0.61% | back emissivity
ϵ_{wt} | 0.900 | 172% | 0.025 | 4.30% | wind-tunnel emissivity
θ | 90.0° | 1.22%/° | 0.50° | 0.61% | plate angle

estimated measurement uncertainties of natural convection at $\theta = 90.0$
20220702T010304Z – natural Convection – Roughness=1.04mm; T=21.4+10.6°C; +90.00°
k=0.0261, Ra_D=3442698, h=1.61W/(K.m²), U=0.149W/K, Nu=9.39, Pr=0.710

symbol	nominal	sensitivity	bias	uncertainty	component
T	300K	0.715%/K	0.50K	0.36%	LM35C temperature sensor
ΔT	10.6K	38.7%/K	0.10K	3.87%	LM35C differential
T_{bb}	294K	0.723%/K	0.50K	0.36%	radiative temperature
P	100kPa	0.0007%/Pa	1.5kPa	1.10%	MPXH6115A6U air pressure
C_{pt}	4.24kJ/K	0.087%/KJK	42J/K	3.68%	plate thermal capacity
L_c	0.305m	1124%/m	500um	0.56%	characteristic-length
L_w	0.305m	407%/m	500um	0.20%	plate width
D_{Al}	19.4mm	2720%/m	500um	1.36%	metal slab thickness
D_{PIR}	25.4mm	1786%/m	1.0mm	1.79%	insulation thickness
D_g	1.00mm	1732%/m	500um	0.87%	air gap
L_m	3.57mm	666%/m	500um	0.33%	side metal strip width
k_{PIR}	23.0$mW/ K\cdot m$	0.856%/$mW/ K\cdot m$	1.2$mW/K\cdot m$	0.98%	PIR thermal conductivity
k_{XPS}	33.0$mW/ K\cdot m$	0.122%/$mW/ K\cdot m$	1.7$mW/K\cdot m$	0.20%	XPS thermal conductivity
e_{XPS}	0.470	82.2%	0.010	0.82%	XPS emissivity
ϵ_{tp}	0.890	99.2%	0.015	1.49%	tape emissivity
Ω_{tp}	0.540	75.1%	0.020	1.50%	tape coverage
ϵ_{rs}	0.040	355%	0.010	3.55%	rough surface emissivity
ϵ_b	0.190	26.3%	0.020	0.53%	back emissivity
ϵ_{wt}	0.900	162%	0.025	4.06%	wind-tunnel emissivity
θ	90.0°	1.25%/°	0.50°	0.62%	plate angle

estimated measurement uncertainties of natural convection at $\theta = 90.0$
symbol	nominal	sensitivity	bias	uncertainty	component
T | 302K | 0.676%/K | 0.50K | 0.34% | LM35C temperature sensor
ΔT | 14.5K | 28.1%/K | 0.10K | 2.81% | LM35C differential
T_{bb} | 295K | 0.687%/K | 0.50K | 0.34% | radiative temperature
P | 100kPa | 0.0008%/Pa | 1.5kPa | 1.13% | MPXH6115A6U air pressure
C_{pt} | 4.24kJ/K | 0.086%//(J/K) | 42J/K | 3.64% | plate thermal capacity
L_c | 0.305m | 1114%/m | 500um | 0.56% | characteristic-length
L_w | 0.305m | 403%/m | 500um | 0.20% | plate width
D_{Al} | 19.4mm | 2615%/m | 500um | 1.31% | metal slab thickness
D_{PIR} | 25.4mm | 1701%/m | 1.0mm | 1.70% | insulation thickness
L_m | 3.57mm | 677%/m | 500um | 0.34% | side metal strip width
k_{PIR} | 23.0 mW/K·m | 0.838%/mW/K·m | 1.2 mW/K·m | 0.96% | PIR thermal conductivity
ϵ_{XPS} | 0.470 | 79.1% | 0.010 | 0.79% | XPS emissivity
ϵ_{tp} | 0.890 | 95.5% | 0.015 | 1.43% | tape emissivity
Ω_{tp} | 0.540 | 72.2% | 0.020 | 1.44% | tape coverage
ϵ_{rs} | 0.040 | 344% | 0.010 | 3.44% | rough surface emissivity
ϵ_b | 0.190 | 23.1% | 0.020 | 0.46% | back emissivity
ϵ_wt | 0.900 | 156% | 0.025 | 3.90% | wind-tunnel emissivity
θ | 90.0° | 1.27%/° | 0.50° | 0.64% | plate angle

estimated measurement uncertainties of natural convection at $\theta = 90.0$