One-class land-cover classification using MaxEnt: the effect of modelling parameterization on classification accuracy

Ignacio C Fernández Corresp., 1, Narkis S Morales Corresp. 1

1 Centro de Modelación y Monitoreo de Ecosistemas, Facultad de Ciencias, Universidad Mayor, Santiago, Chile

Corresponding Authors: Ignacio C Fernández, Narkis S Morales
Email address: ignacio.fernandez@umayor.cl, narkis.morales@umayor.cl

Multiple-class land-cover classification approaches can be inefficient when the main goal is to classify only one or a few classes. Under this scenario one-class classification algorithms could be a more efficient alternative. Currently there are several algorithms that can fulfil this task, MaxEnt being one of the most promising. However, there is scarce information regarding parametrization for performing land-cover classification using MaxEnt. In this study we aimed to understand how MaxEnt parameterization affects the classification accuracy of four different land-covers (i.e. built-up, irrigated grass, evergreen trees and deciduous trees) in the city of Santiago de Chile. We also evaluated if MaxEnt manual parameterization outperforms classification results obtained when using MaxEnt default parameters setting. To accomplish our objectives, we generated a set of 25,344 classification maps (i.e. 6,336 for each assessed land-cover), which are based on all the potential combination of 12 different classes of features restrictions, four regularization multipliers, four different sample sizes, three training/testing proportions, and 11 thresholds for generating the binary maps. Our results showed that with a good parameterization, MaxEnt can effectively classify different land covers with \(\kappa \) values ranging from 0.68 for deciduous trees to 0.89 for irrigated grass. However, the accuracy of classification results is highly influenced by the type of land-cover being classified. Simpler models produced good classification outcomes for homogenous land-covers, but not for heterogeneous covers, where complex models provided better outcomes. In general, manual parameterization improves the accuracy of classification results, but this improvement will depend on the threshold used to generate the binary map. In fact, threshold selection showed to be the most relevant factor impacting the four land-cover classification accuracies. The number of sampling points for training the model also has a positive effect on classification results. However, this effect followed a logarithmic distribution, showing an improvement of \(\kappa \) values when increasing the sampling from 40 to 60 points, but showing only a marginal effect if more than 60 sampling points are used. In light of these results, we suggest testing different parametrization and thresholds.
until satisfactory kappa or other accuracy metrics are achieved. Our results highlight the huge potential that MaxEnt has as a tool for one-class classification, but a good understanding of the software settings and model parameterization is needed to obtain reliable results.
One-class land-cover classification using MaxEnt: the effect of modelling parameterization on classification accuracy

Ignacio C. Fernández* & Narkis S. Morales*

1Centro de Modelación y Monitoreo de Ecosistemas, Facultad de Ciencias, Universidad Mayor, Santiago, Chile.

*Corresponding authors:

Ignacio C. Fernández & Narkis S. Morales

José Toribio Medina 29, Región Metropolitana, Santiago, 8340589, Chile

Email address: ignacio.fernandez@umayor.cl, narkis.morales@umayor.cl

Abstract

Multiple-class land-cover classification approaches can be inefficient when the main goal is to classify only one or a few classes. Under this scenario one-class classification algorithms could be a more efficient alternative. Currently there are several algorithms that can fulfil this task, MaxEnt being one of the most promising. However, there is scarce information regarding parametrization for performing land-cover classification using MaxEnt. In this study we aimed to understand how MaxEnt parameterization affects the classification accuracy of four different land-covers (i.e. built-up, irrigated grass, evergreen trees and deciduous trees) in the city of Santiago de Chile. We also evaluated if MaxEnt manual parameterization outperforms classification results obtained when using MaxEnt default parameters setting. To accomplish our objectives, we generated a set of 25,344 classification maps (i.e. 6,336 for each assessed
land-cover), which are based on all the potential combination of 12 different classes of features restrictions, four regularization multipliers, four different sample sizes, three training/testing proportions, and 11 thresholds for generating the binary maps. Our results showed that with a good parameterization, MaxEnt can effectively classify different land covers with \textit{kappa} values ranging from 0.68 for deciduous trees to 0.89 for irrigated grass. However, the accuracy of classification results is highly influenced by the type of land-cover being classified. Simpler models produce good classification outcomes for homogenous land-covers, but not for heterogeneous covers, where complex models provided better outcomes. In general, manual parameterization improves the accuracy of classification results, but this improvement will depend on the threshold used to generate the binary map. In fact, threshold selection showed to be the most relevant factor impacting the four land-cover classification accuracies. The number of sampling points for training the model also has a positive effect on classification results. However, this effect followed a logarithmic distribution, showing an improvement of \textit{kappa} values when increasing the sampling from 40 to 60 points, but showing only a marginal effect if more than 60 sampling points are used. In light of these results, we suggest testing different parametrization and thresholds until satisfactory \textit{kappa} or other accuracy metrics are achieved. Our results highlight the huge potential that MaxEnt has as a tool for one-class classification, but a good understanding of the software settings and model parameterization is needed to obtain reliable results.
1. Introduction

Land-cover analysis has become a fundamental approach for understanding, modelling and monitoring the spatio-temporal patterns of ecosystems worldwide (Foley et al., 2005; Ellis et al., 2010; Pielke et al., 2011). Land-cover analysis relies on a variety of land classification techniques, mostly based on computational algorithms, that commonly use remote sensing images as a main input for discriminating among different land-cover classes (Rogan and Chen, 2003; Srivastava et al., 2012). These classification techniques are aimed at translating the data contained in the images into usable information, such as land-cover maps. However, as in any modelling procedures, the quality and usefulness of the final outcome will depend on the particular approach used for discriminating among classes of interest (Lu and Weng, 2007).

One of the most common techniques for land-cover classification is based on the Maximum Likelihood (ML) algorithm, which is a supervised parametric pixel-based algorithm that is available in most of current GIS or GIS-capable platforms, such as QGIS, ArcGIS and R. The ML classification assumes that pixel values from a given layer will be normally distributed, therefore each pixel can be classified into a given class based on the maximum likelihood to pertain to the probability density function generated by the samples from that class (Strahler, 1980). Nevertheless, because ML is based on parametric statics, it has shown to be outperformed by newer non-parametric algorithms that do not require the assumption of any a-priori particular distribution or number of parameters, such as Neural Network and Support Vector Machines (Khatami, Mountrakis and Stehman, 2016). Also, ML-based classifications often require to train the algorithm on every single class covering the study area, implying that
many times resources and efforts will be placed on classifying classes that are not relevant for
the study objectives (Sanchez-Hernandez, Boyd and Foody, 2007; Li and Guo, 2010; Deng et al.,
2018). In fact, multi-class oriented classifiers, such as ML, may attempt to optimize the
classification accuracy of all cover classes rather than focusing on increasing the accuracy of the
target class (Sanchez-Hernandez, Boyd and Foody, 2007). Therefore, the use of one-class
classification algorithms could provide a more efficient alternative than multi-classes
approaches when the objective is classifying only one or a few classes of interest (Deng et al.,
2018).

Among one-class classification algorithms, MaxEnt is probably one of the most used
nowadays. MaxEnt is a maximum entropy algorithm-based software that was originally
developed to be used for species distribution modelling (Phillips and Dudík, 2008; Elith et al.,
2011). Nevertheless, its built-in algorithm can be easily used for one-class classification of a
variety of land-use or -cover types. For example, MaxEnt has been used for mapping urban
land-use classes in California (Li and Guo, 2010), urban land in China (Lin et al., 2014), cover of
invasive plant species in Colorado (Evangelista et al., 2009) and California (Skowronek, Asner
and Feihauer, 2017), and conservation habitats (Stenzel et al., 2014) and raised bogs in
Southern Germany (Mack et al., 2016). The increasing popularity of MaxEnt for one-class land-
cover classification is probably due to the fact that is a freely available software
(https://biodiversityinformatics.amnh.org/open_source/maxent), has shown as good or better
performance than other one-class classification methods (e.g. Li & Guo, 2010, Mack et al.,
2016), and comes with default parameters settings that facilitates its operation (Mack and
Waske, 2017).
Nevertheless, while the availability of predefined default parameters may have
promoted MaxEnt massification, the use of this feature can also result in suboptimal land-cover
classification outcomes. For example, recent studies from species distribution modelling show
that MaxEnt default parameters seldom generate optimal outcomes (Shcheglovitova and
Anderson, 2013; Syfert, Smith and Coomes, 2013; Morales, Fernández and Baca-González,
2017). In relation of using MaxEnt default parameter for land-cover classification, the few
published studies of which we are aware, also report that MaxEnt tend to produce better
classification outcomes when users select the optimal parameters (Mack and Waske, 2017;
Skowronek et al., 2018).

There are several default parameters that are modifiable in MaxEnt. The two main
modifiable parameters are feature classes (FC) and regularization multiplier (RM). FC
corresponds to a set of mathematical transformation of the different covariates used in the
model, while RM refers to a numerical parameter that reduces or increases the smoothness of
the model (Elith et al., 2011; Merow, Smith and Silander, 2013). Other additional settings, such
as sample size (SS), test percentage (TP) and binary threshold (BT), could also influence the final
classification outcome. SS refers to the number of samples used for building the model.

Although MaxEnt seems to be only slightly sensitive to sample size, larger sample sizes has
shown to produce better modeling results (Wisz et al., 2008). TP refers to the proportion (or
percentage) of the sample size used for testing the model, which will be the inverse of the
proportion used for training. Therefore, TP can affect the model results by indirectly modifying
the model sample size. BT corresponds to the specific threshold value used for transforming the
continuous probabilistic outputs values into a binary (positive/negative) classification results.
The chosen threshold will largely affect the classification results, nevertheless finding an optimal BT for land-cover classification is still one of the main challenges for using MaxEnt as a one-class classification algorithm (Mack et al., 2016; Mack and Waske, 2017).

Even though MaxEnt has shown promising results as a tool for one-class classification, there is still a big knowledge gap regarding how classification results are affected by the parameter settings used for modeling. Thus, in this work we aim to: (1) assess the effects of five different parameter settings (i.e. FC, RM, SS, TP, BT) combinations on MaxEnt-based land-cover classification outcomes; (2) evaluate if these effects depend on the land-cover under analysis; (3) identify potential best parameter setting combination for different land-cover classes and compare its classification accuracy with the outcomes of a default parameter setting classification.

2. Material and Methods

Study area

We developed our study within the metropolitan area of Santiago, Chile (33.4489° S, 70.6693° W). Santiago is the capital and largest urban area of Chile, harboring an estimated population of 5.3 million inhabitants (Instituto Nacional de Estadísticas, 2018). The urban area covers a surface of 875 km² (de la Barrera and Henríquez, 2017), with an elevation ranging from 450 to 1000 m above sea level. The climate within the study area is classified as Mediterranean, with marked colder temperatures and rainy periods during winter months, and warmer and dry
period during summer (Luebert and Pliscoff, 2006). Historical annual precipitations average ~340 mm, with more than 88% falling from May to September, and less than 2% precipitates during the three warmest months (December to February). Seasonal variations in temperatures and precipitation generate noticeable phenological changes in Santiago’s urban vegetation, making it feasible to discriminate among different vegetation types from airborne or spaceborne images (Fernandez and De la Barrera, 2018).

Remote sensing layers

To perform the land-cover classification we used Sentinel-2 mission satellite images with 0% cloud cover, representing vegetation conditions of summer (March 06, 2016) and winter (August 02, 2016) for the study area. To increase the resolution of our analysis, from the set of summer and winter Sentinel-2 images, we only used bands with a native resolution of 10m/pixel (i.e. red, green, blue, NIR). Based on these bands, we also calculated the Normalized Difference Vegetation Index (NDVI) for summer and winter. We also generated an additional layer based on the arithmetic difference between the summer and winter NDVI (i.e. seasonal difference of NDVI). Even though MaxEnt is regarded to be only slightly sensitive to potential over-parameterization issues (Warren and Seifert, 2011), it is recommended to minimize correlation among predictor variables (Merow, Smith and Silander, 2013). Therefore, we performed a Pearson correlation analysis for the 11 layers (i.e. red, green, blue, and NIR, for summer and winter, and the three NDVI layers), and we kept only those layers with correlations smaller than 0.8. After this analysis we ended up with seven layers: Red (summer/winter), NIR
(summer/winter), NDVI (summer/winter) and the seasonal difference of NDVI. All remote-sensing layers procedures were done in QGIS 2.18 Las Palmas (www.qgis.org).

Land-cover classification (Maxent modelling)

We assessed Maxent one-class classification performance by focusing on four main land-cover types present in Santiago: (1) Built-up infrastructure, represented by roads and other paved structures, houses, buildings and commercial infrastructure. (2) Irrigated grass, mostly associated to private and public lawns, sport fields and other summer irrigated grasses. (3) Evergreen trees, related to native and exotic urban shrubs and trees with all-year around leaves and photosynthetic activity. (4) Deciduous trees, mostly winter deciduous exotic shrubs and trees planted on residential gardens, streets and urban parks.

To perform the classification modelling we started by selecting 100 ground-true points for each land-cover class by using very-high resolution images (<1m/pixel) available through Google Earth. Because potential spatial mismatches between Google and Sentinel images due to georeferencing and resolution differences, we only selected points that were within a 5 m radius of the type of land-cover under analysis (i.e. minimum size 1 pixel). Each set of points was doubled checked independently by each author. To assess the effect of MaxEnt parametrization on land-cover classification, we generated a set of 25,344 classification maps (i.e. 6,336 for each of the four assessed land-covers), which are based on all the potential combination of the five analyzed parameters (Table 1). These combinations included first, 12 different types of restrictions (“feature class”) in the modelling stage based on the combination
of lineal (L), hinge (H), quadratic (Q), threshold (T) and product (P). We used all the
computational possible combinations of these features. Second, four regularization multipliers
(i.e. 0.25, 1, 3 and 5). Third, four different sample sizes (i.e. 40, 60, 80 and 100). For the later,
samples smaller than 100 were randomly sampled from the original 100 sampling points.
Fourth, three different percentages of testing proportion to validate the model (i.e. 10, 30, 50).
Fifth, 11 binary thresholds for generating the final binary classification maps: Fixed cumulative
value 1 threshold (FC1); fixed cumulative value 5 threshold (FC5); fixed cumulative value 10
threshold (FC10); 10 percentile training presence threshold (10PTP); balance training omission,
predicted area and threshold value threshold (BTOPA); equate entropy of thresholded and
original distributions threshold (EETOD); equal test sensitivity and specificity threshold (ETeSS);
equal training sensitivity and specificity threshold (ETrSS); maximum test sensitivity plus
specificity threshold (MTeSPS); minimum training presence threshold (MTP); maximum training
sensitivity plus specificity threshold (MTrSPS) (Table 1). All MaxEnt models were run using the
random seed feature and replicated 10 times, and we used the average values of these
replicates as the modeling outcomes. Background points were set to default (maximum 10000
points). All modelling procedures were performed using MaxEnt 3.4.1
(https://biodiversityinformatics.amnh.org/open_source/maxent). Application of thresholds and
generation of final binary maps were done in R version 3.5.1 (www.r-project.org).

Classification Accuracy
We evaluated the accuracy of the classification result by estimating the kappa coefficient. To calculate kappa, we randomly sampled 1000 points within a quadrant of 16 x 16 km, which is the largest square that can be drawn within the convoluted shape of Santiago. We decided to use this quadrant to avoid potential undesirable effects of choosing sampling points outside Santiago’s urbanized area and to reduce the size of files to increase the efficiency of the computational processes. Each of these 1000 points were visually classified into built-up, irrigated grass, evergreen trees, deciduous trees and “other class” by using very-high resolution images through Google Earth. If a sampling point fell on mixed land-cover (e.g. transition between two or more land covers) we moved the point to the closest single-land cover surface representing the dominant land-cover from the original location. We considered mixed land-covers all points falling in locations with more than one land-cover within a 5 m radius. All points were double checked by the authors. We then used the 1000 sampling points to build four different testing layers (one for each assessed land-cover) based on positive and negative labels for each land-cover. We used these testing layers to calculate the kappa coefficient for each classification result based on the proportion of true positive, false positive, true negative and false negative, following the formula shown in Fielding and Bell (1997).

We compared the classification accuracy of the different combinations through integrated violin-boxplot graphs for the kappa coefficient, which facilitates the visual comparison of differences on data distribution, interquartile and median values. All classification accuracy procedures and graphs were done in R version 3.5.1.

Comparison of default parameter vs best parameters settings
We defined the best combination of parameter for each land-cover type by looking at the kappa’s median values of the violin-boxplots of feature classes, regularization multipliers, sample size and test percentage (See Figs. 1, 2, 3 and 4). Based on this result, we decided to use a SS of 100 sampling points and a TP of 10% for all classification models (i.e. default and best parameter settings), only modifying those parameters directly related to the modeling process, which are the FC and RM. Therefore, for the default parameter setting models we used the “autofeature” FC with a RM of 1, whereas for the best parameter setting we used the FC and RM showing the highest median kappa for each land-cover type (See Figs. 1 and 2). Using these parameters, we ran 30 replicates for each classification model in MaxEnt. To generate the final binary maps in R, we did not select a specific binary threshold because we did not know the effect of this parameter on the default setting models results. Instead, we compared modeling results by using all the BT provided in MaxEnt. We used a conventional student t-test to evaluate statistically significant differences between the default and best parameter settings for each land-cover type and binary threshold.

3. Results

Parameterization effects on classification accuracy

Results show that changing the feature classes can have an important effect on the final land-cover classification accuracy, and that these effects change depending on the land-cover that is
being classified (Fig. 1). For example, while for built-up land cover the L and Q features produced the highest kappa (measured as kappa’s median value), these same features produced the poorest results for the three vegetated covers (i.e. irrigated grass, evergreen trees and deciduous trees). Furthermore, the FC for which the kappa median was largest, fluctuated for the four land-covers: L for built-up, LQPTH for irrigated grass, QP for evergreen trees and QH for deciduous trees, with median kappa’s of 0.695, 0.693, 0.577 and 0.528, respectively. There are also important differences in the variability (i.e. density distribution) of kappa results associated to the different FC. For example, based on the differences between the first and third quartile, built-up, evergreen trees and deciduous trees covers show the largest dispersion of kappa values for T, Q, and TQ, but for irrigated grass all FC show very large dispersion, except for L and Q (See Fig. 1).

Modifying the regularization multiplier could also have important effect on classification results, but as our results show, these effects could considerably differ depending on the land-cover type being classified (Fig. 2). While for built-up, increasing the RM from 0.25 to 1 seems to slightly improve classification results, the opposite pattern is observed for the three vegetated covers. In addition, while further increases (> 1) in RM do not improve classification outcomes for built-up cover, they do improve the classification for vegetated covers, as is shown by the consistent increase in kappa with larger RM. Among the three vegetated covers assessed in this work, irrigated grass cover showed by far the largest response to changes in RM (Fig. 2).

Changes in sample size show only a slight effect on classification results (Fig. 3).

Although there are some differences between the four assessed land-covers, there is a
consistent pattern showing that the lowest SS (i.e. 40 samples) generated the poorest
classification results. For all assessed land covers, increasing the SS from 40 to 60 improved the
classification. However, results show that increases in SS above 60 samples do not necessarily
generate large improvements on classification results (Fig. 3).

Changing the test percentage for validating the model has only weak effects on
classification results. In fact, results show that for built-up cover this setting seems to not affect
the median value of kappa nor the kappa´s median distribution, whereas for evergreen trees
and deciduous trees it is observable a slight, but consistent decrease in classification results as
TP increase to 50% (Fig. 4). The larger effect of TP is shown for irrigated grass cover, which is
consistent with the results shown for changes in the SS setting.

The selection of binary threshold values is the setting that had the largest effects on
classification results among the five assessed settings (Fig. 5). Using one BT instead of another
could greatly affect the classification results. For example, depending on the selected threshold,
kappa´s median for irrigated grass cover could range from 0.134 to 0.811 (Fig. 5b). The effect of
BT on classification shows similar patterns for irrigated grass, evergreen trees and deciduous
trees, but not for built-up cover. For instance, while for built-up cover the FC1 threshold
generated one of the best classification results (kappa´s median = 0.766), for the three
vegetated covers this same threshold produced the worst results. At the other hand, 10PTP
produced the best classification results for irrigated grass and evergreen trees, and the second
best for deciduous trees, but produced poor classification results for built-up cover (Fig. 5).

Default parameter vs best parameters setting classification accuracy
The comparison of the models produced using the default parameter setting for FC and RM with those using the identified best parameters (defined as FC and RM having the largest kappa median for each land-cover type, i.e. FC=L, RM=1 for built-up; FC=LQPTH, RM=0.25 for irrigated grass; FC=QP, RM=0.25 for evergreen trees; FC=QH, RM=0.25 for deciduous trees; See Figs. 1 and 2) show that the identified best parameter setting does not always outperform the classification accuracy of the default setting model (Fig. 6). Considering the four assessed land-cover types and the 11 thresholds, the best parameters outperformed the default parameters in 23 out of the 44 classification result comparisons (53.3%), while the identified best parameter was outperformed by the default parameter in 11 cases (25.0%). In 10 comparisons (22.7%) there were no statistical differences between both parameters settings (Fig. 6). The difference in classification results between the default and identified best parameters is highly dependent on the land-cover under analysis and the threshold used for generating the binary maps. For example, for evergreen trees, in 9 out of 11 comparison the best parameter setting outperformed the default model and for no threshold the default model resulted in better classification. On the other hand, for irrigated grass the default model outperformed the identified best parameter setting in five out of 11 comparisons, while the opposite results were obtained 6 times (Fig. 6). In general, BT selection has a much larger effect than parameter settings in classification results.

4. Discussion
Results from our work add to previous studies showing the potential of MaxEnt to be used as a one-class land-cover classification method (e.g. Li and Guo, 2010; Amici, 2011; Lin et al., 2014; Stenzel et al., 2014), but also draw attention to the importance of selecting best parameters combinations to achieve good classification accuracies (Mack and Waske, 2017). While our main objective was to understand how MaxEnt parameterization may affect classification results, we were also able to test the capability of MaxEnt for one-class land-cover classification, which has never been tested in an entire urban area the size of Santiago.

Our classification accuracy shows kappa values above 0.6 for all the assessed land-covers - and even above 0.8 for built-up and irrigated grass. These kappa values are comparable to those obtained by Li and Guo (2010) using Maxent to classify similar land-covers in a urban plot in a residential area of California, and also to those obtained by Deng et al. (2018) using other state of the art classification algorithms to classify land covers in a similar urban setting in California. Thus, results from our study highlight the potential of MaxEnt and its built-in maximum entropy algorithm to be used for one-class classification in complex spatially heterogeneous settings, such as urban areas.

Parameterization effects on classification accuracy

Results from our work show that MaxEnt parameterization plays an important role on land-cover classification accuracy, and therefore is highly relevant for achieving good classification results. However, based in our results, is not clear if there are some specific feature classes that can provide higher quality classifications. On the contrary, it seems that the optimal feature
classes to use will depend on the intrinsic spatial variability of the layers used to build the
models. For example, in our study, the L and Q (i.e. lineal and quadratic) feature classes
generate among the best classification accuracy for built-up, but the poorest results for
vegetated covers. This result could be explained because the Q feature constrains the variation
of the predictor variable to that of the sampling points of each layer (See Elith et al., 2011;
Merow, Smith and Silander, 2013 for an explanation of MaxEnt features). Thus, the Q feature
may differentially affect the specificity of the resulting model depending on the true variance of
the population, benefiting classification results of spatially homogenous covers, such as built-
up, but weakening results for more heterogeneous covers, such as irrigated grass. A similar
interpretation could be made for the L feature, as this feature simply uses the mean of the
sampling points to estimate the conditions making a pixel suitable to be classified into a given
class. These results suggest that MaxEnt models based on simpler parameter combination could
be well suited for classifying land-covers with more homogenous reflectance behaviors, such as
built-up areas, while models of higher complexity would be needed for vegetated or other
more heterogeneous areas. This could be further supported by the results of the regularization
multiplier, that show that for vegetated land-covers accuracy increases if regularization
multiplier is reduced to fit more complex models, whereas built-up classification accuracy
benefits from larger regularization that smooths out the model fit.

While sample size may not be directly considered a model parameter, it is can have a
direct effect on MaxEnt behavior, particularly if default features are used. In fact, MaxEnt will
restrict the use of potential feature classes depending of the number of sampling points (Elith
et al., 2011; Merow, Smith and Silander, 2013), therefore models generated with a small
number of samples will be restricted in their complexity. This may explain why classification of
the three vegetated land-covers are more affected than built-up cover by the number of
sampling points used for training the model. Nevertheless, for the four land-covers, an effective
sampling size larger than ~80 seems to be optimal, which is consistent with the sampling size
threshold at which MaxEnt is set to use all potential FC (Elith et al., 2011).

A key result from our study was that the selection of the binary threshold for building
the classified maps is perhaps the most crucial factor related to the accuracy of the final
classification outcome. This threshold is not a MaxEnt modeling parameter, but rather a
posteriori decision that needs to be taken based on modeling results. While MaxEnt provides 11
potential thresholds (the 11 used in this study), the final decision on what threshold to use will
mostly depend on the researcher or group of researchers performing the classification.

Previous studies have pointed out to the difficulty and lack of information for finding an optimal
threshold to maximize the classification accuracy using MaxEnt (Li and Guo, 2010; Mack et al.,
2016; Mack and Waske, 2017), and based in our results it seems that this quest is still open. In
fact, none of the tested thresholds performed well for all the assessed land-covers, implying
that users will need to explore a set of thresholds to find one that produce optimal
classification accuracy for each land-cover.

Default parameter vs best parameters setting classification accuracy

There is increasing evidence that using best, instead of default parameters, could improve the
predictability of species distribution models produced through MaxEnt (Shcheglovitova and
Anderson, 2013; Morales, Fernández and Baca-González, 2017), and similar results have recently been found when using MaxEnt for land-cover classification (Mack and Waske, 2017). However, our results show that although in general best parameters outperformed the default parameters, for some land-covers and thresholds, default parameters can produce similar or even better classification results than the identified best parameters. Technically this sounds illogical, because a manually parameterized model can theoretically use the same parameters of the default model, and therefore if best model parameters are found, classification results should be at least equally good as the one obtained by the default model. Nevertheless, finding the best parameters combination is still a challenging task (Muscarella et al., 2014). For example, to find the optimal parameters combination for our study, we run thousands of models and selected each parameter based on the median value of resulting kappas, assuming that general central tendencies could be indicative of parameters performances. However, this approach ruled out potential parameters combinations that produced higher kappas (See supplementary material), which may help explaining why in our study for some comparisons the default parameter had better classification accuracies than the best model parameter.

An interesting finding from our study was the fact that threshold selection do not only affect the accuracy of classification results (Mack and Waske, 2017), but that a same threshold could differentially impact on the accuracy of different models (Fig. 6a). These findings show that just using the model performance information, such as AUC (Area Under the Curve), for evaluating the accuracy of a land-cover classification outcomes is not advisable.

Best parametrization practices
In the light of our results and other articles regarding the use of MaxEnt, we would like to highlight the importance of parameterizing MaxEnt for each model individually and avoid the temptation to use default parameter or previous studies parametrizations (Merow, Smith and Silander, 2013; Mack and Waske, 2017; Morales, Fernández and Baca-González, 2017). As a rule of thumb, a comparison of different models with different parametrization settings must be performed to determine the best model among all the evaluated parameters combinations. Ideally, selection of parameters combination to be tested should not be random, but rather on the specific objectives and land-cover under analysis. For example, for contrasting and homogenous land-cover such as paved areas, using combinations that generate simpler models could be an efficient approach. Whereas for less contrasting and heterogeneous land-covers, such as irrigated grass, it would be recommended to increase the number of tested combinations to include more complex models. There are several techniques available for selecting MaxEnt best models, including jackknife procedures based on the corrected Akaike information criterion (AICc) (Shcheglovitova and Anderson, 2013; Morales, Fernández and Baca-González, 2017), correlation analysis (Syfert, Smith and Coomes, 2013), fuzzy kappa statistics (Mestre et al., 2015) and software including specific algorithms for this objective (Warren, Glor and Turelli, 2010; Muscarella et al., 2014). Nevertheless, once the parametrization of the model is done, thresholds to generate binary maps still need to be chosen. As our results show, threshold selection could be one of the most important factors influencing the final classification accuracy. In this regard, we recommend not to use predefined thresholds or thresholds used in previous studies, but instead try a set of different thresholds and select the
one that gives the best outcome. A viable option could be using a set of different thresholds based on cumulative percentiles and select the generated model with the largest classification accuracy (Lin et al., 2014). Based in our results, percentiles between 1 and 10 seems to be a good testing ground, as best classification outcomes tend to be produced by thresholds within this percentile range. Nevertheless, further research is needed to better understand how variation in threshold values affects the accuracy of land-cover classification produced through MaxEnt.

5. Conclusion

Our results showed that MaxEnt can be a useful tool for single-class land-cover classification. However, the classification accuracy heavily depends on land-cover characteristics and parameters used for modelling. Based in these results, we suggest avoiding the temptation of using MaxEnt default parameterization features in heterogeneous layers, as manual parameterization could generate better land-classification accuracy outcomes. In addition, selection of optimal binary thresholds is key for increasing classification accuracy when using binary maps. Nevertheless, for this is still essential to use a classification accuracy metric for testing modelling results. In light of these results, we suggest testing different parametrization settings and thresholds until satisfactory kappa or other accuracy metrics are achieved. Finally, is also important to bear in mind that the reliability of the selected model will be also influenced by the accuracy metric used for classification testing. In this regard, for specific
classification tasks, it would be recommendable to use multiple accuracy metrics against which to compare the resulting models.

References

Amici, V. (2011) ‘Dealing with vagueness in complex forest landscapes: A soft classification approach through a niche-based distribution model’, *Ecological Informatics*, pp. 371–383. doi: 10.1016/j.ecoinf.2011.07.001.

Deng, X., Li, W., Liu, X., Guo, Q. and Newsam, S. (2018) ‘One-class remote sensing classification: One-class vs. Binary classifiers’, *International Journal of Remote Sensing*. Taylor & Francis, 39(6), pp. 1890–1910. doi: 10.1080/01431161.2017.1416697.

Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E. and Yates, C. J. (2011) ‘A statistical explanation of MaxEnt for ecologists’, *Diversity and Distributions*, 17(1), pp. 43–57. doi: 10.1111/j.1472-4642.2010.00725.x.

Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. and Ramankutty, N. (2010) ‘Anthropogenic transformation of the biomes, 1700 to 2000’, *Global Ecology and Biogeography*, 19, pp. 589–606. doi: 10.1111/j.1466-8238.2010.00540.x.

Evangelista, P. H., Stohlgren, T. J., Morisette, J. T. and Kumar, S. (2009) ‘Mapping invasive tamarisk (Tamarix): A comparison of single-scene and time-series analyses of remotely sensed data’, *Remote Sensing*, pp. 519–533. doi: 10.3390/rs1030519.

Fernandez, I. C. and De la Barrera, F. (2018) ‘Biodiversidad urbana, servicios ecosistémicos y planificación ecológica: un enfoque desde la ecología del paisaje’, in Figueroa, J. and Lazzoni, I. (eds) *Biodiversidad Urbana en Chile: Estado del arte y los desafíos futuros*. First. Santiago, Chile: Universidad Central de Chile, pp. 113–146.

Fielding, A. H. and Bell, J. F. (1997) ‘A review of methods for the assessment of prediction errors in conservation presence/absence models’, *Environmental Conservation*, 24, pp. 38–49.

Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. a, Kucharik, C. J., Monfreda, C., Patz, J. a, Prentice, I. C., Ramankutty, N. and Snyder, P. K. (2005) ‘Global consequences of land use’, *Science*, 309(570), pp. 570–574. doi: 10.1126/science.1111772.

Instituto Nacional de Estadísticas (2018) *Población por sexo y grupo de edad, Censo de Población y Vivienda 2017*. Available at: https://redatam-ine.ine.cl/redbin/RpWebEngine.exe/Portal?BASE=CENSO_2017&lang=esp (Accessed: 9 September 2018).

Khatami, R., Mountrakis, G. and Stehman, S. V. (2016) ‘A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research’, *Remote Sensing of Environment*. Elsevier Inc., 177, pp. 89–100. doi: 10.1016/j.rse.2016.02.028.

de la Barrera, F. and Henríquez, C. (2017) ‘Vegetation cover change in growing urban agglomerations in Chile’, *Ecological Indicators*. Elsevier, 81, pp. 265–273. doi: 10.1016/j.ecolind.2017.05.067.
Li, W. and Guo, Q. (2010) ‘A maximum entropy approach to one-class classification of remote sensing imagery’, International Journal of Remote Sensing, 31(8), pp. 2227–2235. doi: 10.1080/01431161003702245.

Lin, J., Liu, X., Li, K. and Li, X. (2014) ‘A maximum entropy method to extract urban land by combining MODIS reflectance, MODIS NDVI, and DMSP-OLS data’, International Journal of Remote Sensing, 35(18), pp. 6708–6727. doi: 10.1080/01431161.2014.960623.

Lu, D. and Weng, Q. (2007) ‘A survey of image classification methods and techniques for improving classification performance’, International Journal of Remote Sensing, 28(5), pp. 823–870. doi: 10.1080/01431160600746456.

Luebert, F. and Pliscoff, P. (2006) Sinopsis bioclimática y vegetacional de Chile, Biodiversidad. Santiago, Chile: Editorial Universitaria.

Mack, B., Roscher, R., Stenzel, S., Feilhauer, H., Schmidtlein, S. and Waske, B. (2016) ‘Mapping raised bogs with an iterative one-class classification approach’, ISPRS Journal of Photogrammetry and Remote Sensing, pp. 53–64. doi: 10.1016/j.isprsjprs.2016.07.008.

Mack, B. and Waske, B. (2017) ‘In-depth comparisons of MaxEnt, biased SVM and one-class SVM for one-class classification of remote sensing data’, Remote Sensing Letters. Taylor & Francis, 8(3), pp. 290–299. doi: 10.1080/2150704X.2016.1265689.

Merow, C., Smith, M. J. and Silander, J. A. (2013) ‘A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter’, Ecography, 36(10), pp. 1058–1069. doi: 10.1111/j.1600-0587.2013.07872.x.

Mestre, F., Pita, R., Paupério, J., Martins, F. M. S., Alves, P. C., Mira, A. and Beja, P. (2015) ‘Combining distribution modelling and non-invasive genetics to improve range shift forecasting’, Ecological Modelling. Elsevier B.V., 297, pp. 171–179. doi: 10.1016/j.ecolmodel.2014.11.018.

Morales, N. S., Fernández, I. C. and Baca-González, V. (2017) ‘MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review’, PeerJ, 5, p. e3093. doi: 10.7717/peerj.3093.

Muscarella, R., Galante, P. J., Soley-Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M. and Anderson, R. P. (2014) ‘ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for <scp>Maxent</scp> ecological niche models’, Methods in Ecology and Evolution, 5(11), pp. 1198–1205. doi: 10.1111/2041-210X.12261.

Phillips, S. and Dudík, M. (2008) ‘Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation’, Ecography, (31), pp. 161–175. doi: 10.1111/j.2007.0906-7590.05203.x.

Pielke, R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain, F., Goldewijk, K. K., Nair, U., Betts, R., Fall, S., Reichstein, M., Kabat, P. and de Noblet, N. (2011) ‘Land use/land cover changes and climate: Modeling analysis and observational evidence’, Wiley Interdisciplinary Reviews: Climate Change, 2(6), pp. 828–850. doi: 10.1002/wcc.144.

Rogan, J. and Chen, D. (2003) ‘Remote sensing technology for mapping and monitoring land-cover and land-use change’, Progress in Planning, 61(61), pp. 301–325. doi: 10.1016/S0305-9006(03)00066-7.

Sanchez-Hernandez, C., Boyd, D. S. and Foody, G. M. (2007) ‘One-class classification for mapping a specific land-cover class: SVDD classification of fenland’, IEEE Transactions on
Shcheglovitova, M. and Anderson, R. P. (2013) ‘Estimating optimal complexity for ecological
niche models: A jackknife approach for species with small sample sizes’, Ecological Modelling.
Elsevier B.V., 269, pp. 9–17. doi: 10.1016/j.ecolmodel.2013.08.011.

Skowronek, S., Asner, G. P. and Feilhauer, H. (2017) ‘Performance of one-class classifiers for
invasive species mapping using airborne imaging spectroscopy’, Ecological Informatics. Elsevier
B.V., 37, pp. 66–76. doi: 10.1016/j.ecoinf.2016.11.005.

Skowronek, S., Van De Kerchove, R., Rombouts, B., Aerts, R., Ewald, M., Warrie, J., Schiefer, F.,
Garzon-Lopez, C., Hattab, T., Honnay, O., Lenoir, J., Rocchini, D., Schmidtlein, S., Somers, B. and
Feilhauer, H. (2018) ‘Transferability of species distribution models for the detection of an
invasive alien bryophyte using imaging spectroscopy data’, International Journal of Applied
Earth Observation and Geoinformation. Elsevier, 68(February), pp. 61–72. doi:
10.1016/j.jag.2018.02.001.

Srivastava, P. K., Han, D., Rico-Ramirez, M. A., Bray, M. and Islam, T. (2012) ‘Selection of
classification techniques for land use/land cover change investigation’, Advances in Space
Research. COSPAR, 50(9), pp. 1250–1265. doi: 10.1016/j.asr.2012.06.032.

Stenzel, S., Feilhauer, H., Mack, B., Metz, A. and Schmidtlein, S. (2014) ‘Remote sensing of
scattered natura 2000 habitats using a one-class classifier’, International Journal of Applied
Earth Observation and Geoinformation, pp. 211–217. doi: 10.1016/j.jag.2014.05.012.

Strahler, A. H. (1980) ‘The use of prior probabilities in maximum likelihood classification of
remotely sensed data’, Remote Sensing of Environment, 10(2), pp. 135–163. doi:
10.1002/erv.2405.

Syfert, M. M., Smith, M. J. and Coomes, D. A. (2013) ‘The Effects of Sampling Bias and Model
Complexity on the Predictive Performance of MaxEnt Species Distribution Models’, PLoS ONE,
8(2). doi: 10.1371/journal.pone.0055158.

Warren, D. L., Glor, R. E. and Turelli, M. (2010) ‘ENMTools: a toolbox for comparative studies of
environmental niche models’, Ecography, 1(September 2009), pp. 607–611. doi:
10.1111/j.1600-0587.2009.06142.x.

Warren, D. L. and Seifert, S. N. (2011) ‘Ecological niche modeling in Maxent : the importance of
model complexity and the performance of model selection criteria’, Ecological Applications,
21(2), pp. 335–342. doi: 10.2307/29779663.

Wisz, M. S., Hijmans, R. J., Li, J., Peterson, A. T., Graham, C. H., Guisan, A., Elith, J., Dudík, M.,
Ferrier, S., Huettmann, F., Leathwick, J. R., Lehmann, A., Lohmann, L., Loiselle, B. A., Manion, G.,
Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M. C., Phillips, S. J., Richardson, K. S.,
Scachetti-Pereira, R., Schapire, R. E., Soberón, J., Williams, S. E. and Zimmermann, N. E. (2008)
‘Effects of sample size on the performance of species distribution models’, Diversity and
Distributions, 14(5), pp. 763–773. doi: 10.1111/j.1472-4642.2008.00482.x.
Table 1 (on next page)

Parameters used to generate the land-cover classification results

See methodological section for references to the acronym used in FC and BT columns.
Feature Class (FC)	Regul. Multiplier (RM)	Sample Size (SS)	Test Percentage (TP)	Binary Threshold (BT)
L	5.00	100	50	FC1
H	3.00	80	30	FC5
Q	1.00	60	10	FC10
T	0.25	40	10PTP	
LQ				BTOPA
PT				EETOD
QH				ETeSS
QP				ETrSS
TQ				MTeSPS
LQP				MTP
LQPT				MTrSPS
LQPTH				

Table 1. Parameters used to generate the land-cover classification results. See methodological section for references to the acronym used in FC and BT columns.
Figure 1

Violinplots of the *kappa* values obtained from the single land-cover maps generated through MaxEnt using the feature classes (FC) shown in the x-axis.

Each violinplot includes the combination of all the other tested parameters (See Table 1 for reference). Red dashed line is the median *kappa* value for all combinations.
Figure 2

Violinplots of the *kappa* values obtained from the single land-cover maps generated through MaxEnt using the regularization multipliers (RM) shown in the x-axis.

Each violinplot includes the combination of all the other tested parameters (See Table 1 for reference). Red dashed line is the median *kappa* value for all combinations.
Figure 3

Violinplots of the *kappa* values obtained from the single land-cover maps generated through MaxEnt using the sample size (SS) shown in the x-axis.

Each violinplot includes the combination of all the other tested parameters (See Table 1 for reference). Red dashed line is the median *kappa* value for all combinations.
Manuscript to be reviewed

- Built-Up
- Irrigated Grass
- Evergreen Trees
- Deciduous Trees
Figure 4

Violinplots of the kappa values obtained from the single land-cover maps generated through MaxEnt using the test percentage (TP) shown in the x-axis.

Each violinplot includes the combination of all the other tested parameters (See Table 1 for reference). Red dashed line is the median kappa value for all combinations.
Figure 5

Violinplots of the \(\kappa \) values obtained from the single land-cover maps generated through MaxEnt using the binary threshold (BT) shown in the x-axis.

Each violinplot includes the combination of all the other tested parameters (See Table 1 for reference). Red dashed line is the median \(\kappa \) value for all combinations.
Figure 6

Barplots comparing the average $kappa$ values obtained from the single land-cover maps generated through MaxEnt using the default vs best parameters settings.

Bars show the mean (±SE) $kappa$ value of 30 replicates after applying the 11 BT. All models were built using a SS of 100 and a TP of 10%. The best FC and RM parameter setting used for each land-cover type is shown in the figure legend. Statistically significant values are represented by p-values of *(<0.05), **(<0.01), ***(<0.001), ****(<0.0001), after applying a two-sided t-test for each comparison (i.e. default vs best parameter setting).