Supplemental Material
Table S1. PRISMA checklist for the meta-analysis.

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported section (top-level heading)
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	Both, title, abstract
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	Abstract
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	Introduction
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	Introduction
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	CRD42018096969
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	Data Sources and Search strategy, Study selection
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	Search strategy, Study selection
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	Data Sources and Search strategy, Suppl Table
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	Data Sources and Search strategy, Study selection
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	Data extraction
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	NA
PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported section # (top-level heading)
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Risk of bias (quality) assessment
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Statistical analysis
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis.	Statistical analysis
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Risk of bias (quality) assessment
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Statistical analysis
RESULTS			
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	Descriptions of Included Studies, flow chart (Fig.1)
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Descriptions of Included Studies, Table 1
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Study Quality and Publication Bias, Suppl tables
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	AF occurrence, Subgroup and meta-regression analyses, Figures 2 and 3, Suppl figures
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	AF occurrence, Subgroup and meta-regression analyses,
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	Study Quality and Publication Bias, Suppl figures and tables
----------------------------	----	--	---
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Subgroup and meta-regression analyses, Figure 4, Suppl figures and tables

DISCUSSION

Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	Discussion
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	Discussion
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	Conclusion

FUNDING

| Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. | Funding |

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: www.prisma-statement.org.
Table S2. Sensitivity analyses to evaluate the contribution of each study to the pooled estimation by excluding each of the studies one after the others.

Study	Atrial fibrillation odds-ratio with 95% confidence interval (CI) after removing the study	Weight of the study removed (%)
Paziaud et al. 2003	0.56, 95% CI 0.44-0.71	0.6
Gao et al. 2007	0.56, 95% CI 0.44-0.72	4.5
Boldt et al. 2008	0.57, 95% CI 0.45-0.72	3.5
Kim et al. 2009	0.56, 95% CI 0.45-0.71	0.6
Letsas et al. 2009	0.55, 95% CI 0.43-0.70	1.5
Brinkley et al. 2010	0.55, 95% CI 0.43-0.71	5.7
Dabrowski et al. 2010 (SPIR-AF)	0.57, 95% CI 0.45-0.73	5.1
Disertori et al. 2010 (GFFI-AF)	0.54, 95% CI 0.42-0.70	7.1
Lopes et al. 2010	0.54, 95% CI 0.42-0.69	3.5
Özaydin et al. 2010	0.57, 95% CI 0.45-0.73	3.3
Williams et al. 2011	0.57, 95% CI 0.45-0.72	3.1
Billota et al. 2012	0.55, 95% CI 0.43-0.71	0.9
Marchetti et al. 2012	0.56, 95% CI 0.44-0.72	3.9
Pretorius et al. 2012	0.53, 95% CI 0.42-0.68	6.4
Swedberg et al. 2012 (EMPHASIS-AF)	0.55, 95% CI 0.42-0.71	6.5
Tumasyan et al. 2012	0.54, 95% CI 0.42-0.70	4.5
Ito et al. 2013	0.56, 95% CI 0.44-0.72	5.4
Grigoryan et al. 2015	0.56, 95% CI 0.44-0.71	1.9
Simopoulos et al. 2015	0.55, 95% CI 0.43-0.71	6.8
Vukicevic et al. 2016	0.53, 95% CI 0.42-0.67	4.5
Bosone et al. 2017	0.59, 95% CI 0.47-0.74	5.5
Cikes et al. 2018 (TOPCAT)	0.53, 95% CI 0.42-0.67	7.4
Tsutsui et al. 2018 (J-EMPHASIS-HF)	0.54, 95% CI 0.43-0.69	1.6
Shavit et al. 2018	0.53, 95% CI 0.42-0.68	6.3

Asymmetric studies on the funnel plot indicate the largest and smallest trials.
Table S3. Sensitivity analyses to evaluate the contribution of asymmetric studies on the Funnel plot, of biggest trials (which had a weight percentage ≥5.0%) and of smaller trials (which had sample size <100 patients) to the pooled estimation.

Sensitivity analyses	Atrial fibrillation odds-ratio with 95% confidence interval (CI) after removing studies	Weight of the studies removed (%)
Removing of asymmetric studies on the Funnel plot\(^1,4,5,12,18,23\)	0.56, 95% CI 0.43-0.73	7.7
Removing of largest trials (which had a weight percentage \(≥5.0\%\))\(^6,7,8,14,15,17,19,21,22,24\)	0.49, 95% CI 0.32-0.75	62.2
Removing of smallest trials (which had sample size <100 patients)\(^1,4,5,11,12,13,18\)	0.61, 95% CI 0.46-0.80	17.9
Table S4. Risk of bias in randomized studies, based on the Cochrane Risk of Bias Tool for Randomized Controlled Trials.

Study	Random sequence generation	Allocation concealment	Selective outcome reporting	Other bias	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data
Billota et al. 2012	Unclear risk	Unclear risk	High risk	High risk	High risk	High risk	Unclear risk
Bosone et al. 2017	Unclear risk	High risk	Low risk	Low risk	Low risk	Low risk	Low risk
Dabrowski et al. 2010	Unclear risk	Unclear risk	Low risk	Low risk	High risk	Unclear risk	Low risk
Gao et al. 2007	Unclear risk	Unclear risk	Low risk	Low risk	Low risk	Unclear risk	Low risk
Grigoryan et al. 2015	Unclear risk	Unclear risk	High risk	Unclear risk	Low risk	Unclear risk	Low risk
Marchetti et al. 2012	Unclear risk	Unclear risk	High risk	High risk	Unclear risk	High risk	Unclear risk
Cikes et al. 2018	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Pretorius et al. 2012	Low risk	Low risk	Low risk	High risk	Low risk	Low risk	Low risk
Swedberg et al. 2012	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Tsutsui et al. 2018	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Tumasyan et al. 2012	Unclear risk	Unclear risk	High risk	Unclear risk	High risk	High risk	Unclear risk

- **High risk**
- **Low risk**
- **Unclear risk**
Table S5. Risk of bias in observational studies, based on The Risk Of Bias In Non-randomized Studies – of Interventions (ROBINS-I) assessment tool (version 19 September 2016 for cohort-type studies).

Study	Bias due to confounding	Bias in selection of participant	Bias in classification of interventions	Bias due to deviations from intended interventions	Bias due to missing data	Bias in measurement of outcomes	Bias in selection of the reported result	Overall bias
Boldt et al. 2008³	Low risk	Moderate risk	Moderate risk	Moderate risk	Low risk	Low risk	Low risk	Low risk
Brinkley et al. 2010⁶	Moderate risk	Moderate risk	Low risk	Low risk	Not interpretable	Low risk	Low risk	Low risk
Disertori et al. 2010⁸	Low risk	Moderate risk	Low risk	Low risk	Low risk	Low risk	Low risk	Low risk
Ito et al. 2013¹⁷	Low risk	Moderate risk	Low risk	Moderate risk	Low risk	Low risk	Low risk	Low risk
Kim et al. 2009⁴	Low risk	Moderate risk	Moderate risk	Serious risk	Low risk	Low risk	Low risk	Low risk
Letsas et al. 2009⁵	Moderate risk	Low risk	Serious risk	Serious risk	Low risk	Low risk	Low risk	Low risk
Lopes et al. 2010⁹	Moderate risk	Moderate risk	Moderate risk	Serious risk	Low risk	Low risk	Low risk	Low risk
Özaydin et al. 2010¹⁰	Low risk	Moderate risk	Moderate risk	Serious risk	Not interpretable	Serious risk	Low risk	Moderate risk
Paziaud et al. 2003¹	Moderate risk	Moderate risk	Serious risk	Serious risk	Low risk	Low risk	Low risk	Low risk
Shavit et al. 2018²⁴	Low risk	Moderate risk	Serious risk	Serious risk	Moderate risk	Low risk	Low risk	Low risk
Simopoulos et al. 2015¹⁹	Moderate risk	Moderate risk	Serious risk	Moderate risk	Low risk	Low risk	Low risk	Low risk
Vukicevic et al. 2016²⁰	Moderate risk	Moderate risk	Serious risk	Not interpretable	Low risk	Low risk	Low risk	Low risk
Williams et al. 2011¹¹	Moderate risk	Moderate risk	Serious risk	Moderate risk	Low risk	Low risk	Low risk	Moderate risk

Critical risk
Serious risk
Moderate risk
Low risk
Not interpretable
Figure S1. Funnel plot of standard error (log odds ratio) by odds ratio to evaluate publication bias for effect of MRAs on reducing atrial fibrillation occurrence.
Figure S2. Impact of mineralocorticoid receptor antagonists (MRAs) versus control in newly atrial fibrillation onset versus atrial fibrillation recurrence.

Study or Subgroup	MRA Events Total	Control Events Total	Weight	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
1.1 Newly Onset AF					
Bilotta et al. 2012	1 28	2 28	0.8%	0.48 [0.04, 5.64]	
Brinkley et al. 2010	30 71	58 100	5.5%	0.53 [0.11, 2.46]	
Cikes et al. 2018 (new onset AF patients)	43 480	42 460	6.8%	1.03 [0.66, 1.60]	
Gao et al. 2007	13 56	24 58	4.3%	0.41 [0.18, 0.92]	
Lopes et al. 2010	6 46	15 110	3.3%	0.95 [0.34, 2.62]	
Pretorius et al. 2012	38 147	40 147	6.2%	0.93 [0.56, 1.57]	
Shavit et al. 2018	30 99	51 177	6.1%	1.07 [0.63, 1.84]	
Simopoulos et al. 2015	40 132	90 200	6.6%	0.83 [0.33, 0.89]	
Swedberg et al. 2012	25 911	40 883	6.3%	0.59 [0.36, 0.99]	
Tsutsui et al. 2018	4 111	2 110	1.5%	2.02 [0.36, 12.26]	
Vukicevic et al. 2016	10 34	43 192	4.3%	1.44 [0.64, 2.35]	
Özaydin et al. 2010	4 69	46 200	3.1%	0.21 [0.07, 0.60]	
Subtotal (95% CI)	2166 2665	54.7%		0.73 [0.55, 0.96]	

Total events 244 453
Heterogeneity: Tau² = 0.10; Chi² = 20.43, df = 11 (P = 0.04); I² = 46%
Test for overall effect: Z = 2.27 (P = 0.02)

1.2 Recurrence of AF

Study or Subgroup	MRA Events Total	Control Events Total	Weight	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Boldt et al. 2008	5 40	38 108	3.3%	0.26 [0.10, 0.73]	
Bosone et al. 2017	13 98	78 191	5.3%	0.22 [0.12, 0.42]	
Cikes et al. 2018 (patients with AF history)	14 155	13 132	4.4%	0.91 [0.41, 2.01]	
Dabrowski et al. 2010	48 82	66 82	4.9%	0.34 [0.17, 0.69]	
Disertori et al. 2010	39 92	707 1350	6.9%	0.67 [0.44, 1.03]	
Grigoryan et al. 2015	3 21	6 21	1.8%	0.42 [0.09, 1.96]	
Ito et al. 2013	22 55	64 106	5.2%	0.44 [0.22, 0.85]	
Kim et al. 2009	0 5	48 69	0.6%	0.04 [0.00, 0.76]	
Letsas et al. 2009	2 6	26 66	1.4%	0.77 [0.13, 4.51]	
Marchetti et al. 2012	10 45	20 45	3.7%	0.36 [0.14, 0.89]	
Paziaud et al. 2003	0 21	12 75	0.6%	0.12 [0.01, 2.08]	
Turnasyan et al. 2012	21 34	68 101	4.3%	0.78 [0.35, 1.76]	
Williams et al. 2011	5 23	32 60	2.9%	0.24 [0.08, 0.74]	
Subtotal (95% CI)	677 2466	45.3%		0.42 [0.31, 0.59]	

Total events 182 1178
Heterogeneity: Tau² = 0.12; Chi² = 19.73, df = 12 (P = 0.07); I² = 39%
Test for overall effect: Z = 5.17 (P < 0.00001)

Total (95% CI) 2843 5071 100.0% 0.57 [0.45, 0.71]

Total events 426 1631
Heterogeneity: Tau² = 0.15; Chi² = 50.59, df = 24 (P = 0.001); I² = 53%
Test for overall effect: Z = 4.81 (P < 0.00001)
Test for subgroup differences: Chi² = 6.15, df = 1 (P = 0.01), I² = 83.7%
Figure S3. Impact of mineralocorticoid receptor antagonists (MRAs) on AF occurrence versus that of controls in the presence of HFrEF or not (defined as patients with LVEF ≤40% and class NYHA ≥2).

Study or Subgroup	MRA Events	Control Events	Weight	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
1.1.3 HFrEF					
Boldt et al. 2008	5	40	108	5.4% 0.26 [0.10, 0.73]	
Brinkley et al. 2010	30	71	50	10.3% 0.53 [0.29, 0.98]	
Marchetti et al. 2012	10	45	20	13.5% 0.59 [0.29, 0.98]	
Simopoulos et al. 2015	60	132	20	13.3% 0.53 [0.33, 0.85]	
Swedberg et al. 2012	25	911	40	12.4% 0.59 [0.36, 0.99]	
Tsutsui et al. 2018	4	111	2	2.3% 2.02 [0.38, 11.25]	
Williams et al. 2011	5	23	32	4.7% 0.24 [0.08, 0.74]	
Subtotal (95% CI)	1333	1506	54.8% 0.49 [0.37, 0.66]		

Total events 119 280
Heterogeneity: Tau² = 0.02; Chi² = 6.75, df = 6 (P = 0.34); I² = 11%
Test for overall effect: Z = 4.79 (P < 0.00001)

1.1.4 No HFrEF					
Bosone et al. 2017	13	98	78	9.7% 0.22 [0.12, 0.42]	
Dabrowski et al. 2010	48	82	66	8.9% 0.34 [0.17, 0.69]	
Grigoryan et al. 2015	3	21	6	2.7% 0.42 [0.09, 1.96]	
Ito et al. 2013	22	55	64	9.5% 0.44 [0.22, 0.85]	
Letsas et al. 2009	2	6	26	2.2% 0.77 [0.13, 4.51]	
Pretorius et al. 2012	38	147	40	12.2% 0.93 [0.56, 1.57]	
Subtotal (95% CI)	409	613	45.2% 0.45 [0.26, 0.76]		

Total events 126 280
Heterogeneity: Tau² = 0.25; Chi² = 13.04, df = 5 (P = 0.02); I² = 62%
Test for overall effect: Z = 2.96 (P = 0.003)

Total (95% CI) 1742 2119 100.0% 0.47 [0.36, 0.61]
Total events 245 560
Heterogeneity: Tau² = 0.09; Chi² = 19.84, df = 12 (P = 0.07); I² = 40%
Test for overall effect: Z = 5.45 (P < 0.00001)
Test for subgroup differences: Chi² = 0.10, df = 1 (P = 0.75), I² = 0%
Figure S4. Impact of mineralocorticoid receptor antagonists (MRAs) on AF occurrence versus that of controls in full-text published versus meetings abstracts or unpublished studies.

Study or Subgroup	MRA Events	Control Events	Total Events	Weight	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
2.2.1 Full-text published						
Bilotta et al. 2012	1	28	28	0.9%	0.48 [0.04, 5.64]	
Boldt et al. 2008	5	40	45	3.5%	0.26 [0.10, 0.73]	
Bosone et al. 2017	13	98	111	5.5%	0.22 [0.12, 0.42]	
Cikes et al. 2018	57	615	672	7.4%	1.00 [0.68, 1.47]	
Dabrowski et al. 2010	48	82	130	5.1%	0.34 [0.17, 0.69]	
Di Sertori et al. 2010	39	92	131	7.1%	0.67 [0.44, 1.03]	
Gao et al. 2007	13	58	71	4.5%	0.41 [0.18, 0.92]	
Ito et al. 2013	22	55	77	5.4%	0.44 [0.22, 0.85]	
Kim et al. 2009	5	48	53	0.6%	0.04 [0.00, 0.76]	
Letsas et al. 2009	2	26	28	1.5%	0.77 [0.13, 4.51]	
Paziaud et al. 2003	0	21	21	0.6%	0.12 [0.01, 2.08]	
Pretrouis et al. 2012	38	147	185	6.4%	0.93 [0.56, 1.57]	
Simopoulos et al. 2015	40	132	172	6.8%	0.53 [0.33, 0.85]	
Swedberg et al. 2012	25	911	936	6.5%	0.59 [0.36, 0.99]	
Tsutsui et al. 2018	4	111	115	1.6%	2.02 [0.36, 11.25]	
Williams et al. 2011	5	23	28	3.1%	0.24 [0.08, 0.74]	
Özyaydin et al. 2010	4	69	73	3.3%	0.21 [0.07, 0.60]	
Subtotal (95% CI)	2493	4325	6818	69.8%	0.48 [0.36, 0.65]	
Total events						
316	1370					

Heterogeneity: Tau² = 0.18, Chi² = 38.19, df = 16 (P = 0.001); I² = 58%
Test for overall effect: Z = 4.86 (P < 0.00001)

2.2.2 Meetings abstracts or unpublished studies						
Brinkley et al. 2010	30	71	101	5.7%	0.53 [0.29, 0.98]	
Grigoryan et al. 2015	3	21	24	1.9%	0.42 [0.09, 1.96]	
Lopes et al. 2010	6	46	52	3.5%	0.95 [0.34, 2.62]	
Marchetti et al. 2012	10	45	55	3.9%	0.36 [0.14, 0.89]	
Shavit et al. 2018	30	99	130	6.3%	1.07 [0.63, 1.84]	
Turnasian et al. 2012	21	34	55	4.5%	0.78 [0.35, 1.76]	
Vukovic et al. 2016	10	34	44	4.5%	1.44 [0.64, 3.25]	
Subtotal (95% CI)	350	746	1096	30.2%	0.76 [0.53, 1.10]	
Total events						
110	261					

Heterogeneity: Tau² = 0.07; Chi² = 8.65, df = 6 (P = 0.19); I² = 31%
Test for overall effect: Z = 1.43 (P = 0.15)

| **Total (95% CI)** | 2843 | 5071 | 100.0% | 0.55 | [0.44, 0.70] | |
| **Total events** | 426 | 1631 | | | | |

Heterogeneity: Tau² = 0.16; Chi² = 50.53, df = 23 (P = 0.0008); I² = 54%
Test for overall effect: Z = 4.85 (P < 0.00001)
Test for subgroup differences: Chi² = 3.72, df = 1 (P = 0.05), I² = 73.1%
Figure S5. Impact of mineralocorticoid receptor antagonists (MRAs) on AF occurrence versus that of controls regarding the risk of bias of studies (evaluated by omitting studies judged to be at least at a high or serious risk of bias).

Study or Subgroup	MRA	Control	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
	Events	Total Events	Total Weight	
2.2.1 Studies with high/serious risks of bias				
Bilotta et al. 2012	1 26	2 26	1.8%	0.48 [0.04, 5.64]
Bosone et al. 2017	13 98	7 89	9.0%	0.22 [0.12, 0.42]
Dabrowski et al. 2010	48 82	66 82	8.6%	0.34 [0.17, 0.69]
Grigoryan et al. 2015	3 21	6 21	3.8%	0.42 [0.09, 1.96]
Kim et al. 2009	5 48	69 48	1.4%	0.04 [0.00, 0.76]
Letsas et al. 2009	2 6	26 6	3.1%	0.77 [0.13, 4.51]
Lopes et al. 2010	6 46	15 110	6.3%	0.95 [0.34, 2.62]
Marchetti et al. 2012	10 45	20 45	7.0%	0.36 [0.14, 0.89]
Paziouda et al. 2003	0 21	12 75	1.4%	0.12 [0.01, 2.08]
Preterius et al. 2012	38 147	40 147	10.0%	0.93 [0.56, 1.57]
Shavit et al. 2018	30 99	51 177	9.9%	1.07 [0.63, 1.84]
Simopoulos et al. 2015	40 132	90 200	10.5%	0.53 [0.33, 0.85]
Tumasyan et al. 2012	21 34	68 101	7.8%	0.78 [0.35, 1.76]
Vukicevic et al. 2016	10 34	43 192	7.7%	1.44 [0.64, 3.25]
Williams et al. 2011	6 23	32 60	5.8%	0.24 [0.08, 0.74]
Özaydin et al. 2010	4 69	46 200	6.0%	0.21 [0.07, 0.60]
Subtotal (95% CI)	890 1764	100.0%	0.51 [0.36, 0.74]	

Total events 231 643
Heterogeneity: Tau² = 0.27; Chi² = 37.34, df = 15 (P = 0.001); I² = 60%
Test for overall effect: Z = 3.60 (P = 0.0003)

2.2.2 Studies with moderate or low risks of bias

Study or Subgroup	MRA	Control	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
	Events	Total Events	Total Weight	
Boldt et al. 2008	5 40	38 108	6.7%	0.26 [0.10, 0.73]
Brinkley et al. 2010	30 71	58 100	13.3%	0.53 [0.29, 0.98]
Cikes et al. 2018	57 615	55 592	20.3%	1.00 [0.68, 1.47]
Disertori et al. 2010	39 92	70 705	18.9%	0.67 [0.44, 1.03]
Gao et al. 2007	13 58	24 58	9.5%	0.41 [0.18, 0.92]
Ito et al. 2013	22 55	64 106	12.2%	0.44 [0.22, 0.85]
Swedberg et al. 2012	25 911	40 883	16.3%	0.59 [0.36, 0.99]
Tsutsui et al. 2018	4 111	2 110	2.7%	2.02 [0.36, 11.25]
Subtotal (95% CI)	1953 3307	100.0%	0.61 [0.45, 0.82]	

Total events 195 988
Heterogeneity: Tau² = 0.07; Chi² = 12.55, df = 7 (P = 0.08); I² = 44%
Test for overall effect: Z = 3.30 (P = 0.0010)

Test for subgroup differences: Chi² = 0.46, df = 1 (P = 0.50), I² = 0%
Figure S6. Impact of mineralocorticoid receptor antagonists (MRAs) on AF occurrence versus that of controls regarding the funding sources.

Study or Subgroup	MRA Events	Control Events	Total Events	M-H, Random, 95% CI	Odds Ratio	Odds Ratio
2.2.1 Studies with industry fundings						
Cikes et al. 2018	57	615	55 592	44.1%	1.00 [0.68, 1.47]	
Kim et al. 2009	0	0	5 69	4.6%	0.04 [0.00, 0.76]	
Swedberg et al. 2012	25	911	40 883	39.8%	0.59 [0.36, 0.99]	
Tsutsui et al. 2018	4	111	2 110	11.5%	2.02 [0.36, 11.25]	
Subtotal (95% CI)	1642	1654	100%	0.76 [0.39, 1.47]		
Total events	86	145				

Heterogeneity: Tau² = 0.22; Chi² = 7.66, df = 3 (P = 0.05); I² = 61%
Test for overall effect: Z = 0.82 (P = 0.41)

2.2.2 Studies with academic/institutional/government fundings

Study or Subgroup	MRA Events	Control Events	Total Events	M-H, Random, 95% CI	Odds Ratio	Odds Ratio
Bilota et al. 2012	1	28	2 28	1.0%	0.48 [0.04, 5.64]	
Boldt et al. 2008	5	40	38 108	4.0%	0.26 [0.10, 0.73]	
Bosone et al. 2017	13	98	78 191	6.6%	0.22 [0.12, 0.42]	
Brinkley et al. 2010	30	71	58 100	6.9%	0.53 [0.29, 0.98]	
Dabrowski et al. 2010	48	82	66 82	6.1%	0.34 [0.17, 0.69]	
Disertori et al. 2010	39	92	70 1350	8.7%	0.67 [0.44, 1.03]	
Gao et al. 2007	13	58	24 58	5.3%	0.41 [0.18, 0.92]	
Grigoryan et al. 2015	3	21	6 21	2.2%	0.42 [0.09, 1.96]	
Ito et al. 2013	22	55	64 106	6.4%	0.44 [0.22, 0.85]	
Letsas et al. 2009	2	6	26 66	1.7%	0.77 [0.13, 4.51]	
Lopes et al. 2010	6	46	15 110	4.0%	0.95 [0.34, 2.62]	
Marchetti et al. 2012	10	45	20 45	4.6%	0.36 [0.14, 0.89]	
Paziaud et al. 2003	0	21	12 75	0.7%	0.12 [0.01, 2.08]	
Preterius et al. 2012	38	147	40 147	7.6%	0.93 [0.56, 1.57]	
Shavit et al. 2018	30	99	51 177	7.6%	1.07 [0.83, 1.38]	
Simopoulos et al. 2015	40	132	90 200	8.3%	0.53 [0.33, 0.85]	
Turmasyan et al. 2012	21	34	68 101	5.3%	0.78 [0.35, 1.76]	
Vukicevic et al. 2016	10	34	43 192	5.3%	1.44 [0.84, 2.55]	
Williams et al. 2011	5	23	32 60	3.6%	0.24 [0.08, 0.74]	
Özaydin et al. 2010	4	69	46 200	3.8%	0.21 [0.07, 0.60]	
Subtotal (95% CI)	1201	3417	100%	0.52 [0.40, 0.67]		
Total events	340	1486				

Heterogeneity: Tau² = 0.15; Chi² = 38.06, df = 19 (P = 0.006); I² = 50%
Test for overall effect: Z = 5.02 (P < 0.00001)

Test for subgroup differences: Chi² = 1.08, df = 1 (P = 0.30), I² = 7.5%
Figure S7. Impact of mineralocorticoid receptor antagonists (MRAs) on AF occurrence versus that of controls among the MRAs used (spironolactone, eplerenone, canrenone or unspecified MRA).

Study or Subgroup	MRA Events	MRA Total	Control Events	Control Total	Odds Ratio M-H, Random, 95% CI	
2.2.1 Spironolactone						
Brinkley et al. 2010	30	71	58	100	5.7%	0.53 [0.29, 0.98]
Cikes et al. 2018	57	615	55	592	7.4%	1.00 [0.88, 1.17]
Dabrowski et al. 2010	48	82	66	82	5.1%	0.34 [0.17, 0.69]
Gao et al. 2007	13	58	24	58	4.5%	0.41 [0.18, 0.92]
Grigoryan et al. 2015	3	21	6	21	1.9%	0.42 [0.09, 1.96]
Kim et al. 2009	0	5	48	69	0.6%	0.04 [0.00, 0.76]
Letsas et al. 2009	2	6	26	66	1.5%	0.77 [0.13, 4.51]
Lopes et al. 2010	6	46	15	110	3.5%	0.95 [0.34, 2.62]
Paziaud et al. 2003	0	21	12	75	0.6%	0.12 [0.01, 2.08]
Pretorius et al. 2012	38	147	40	147	6.4%	0.93 [0.56, 1.57]
Shavit et al. 2018	30	99	51	177	6.3%	1.07 [0.63, 1.84]
Turnasyan et al. 2012	21	34	68	101	4.5%	0.78 [0.35, 1.76]
Vukicevic et al. 2016	10	34	43	192	4.5%	1.44 [0.64, 3.25]
Williams et al. 2011	5	23	32	60	3.1%	0.24 [0.08, 0.74]
Özyaydın et al. 2010	4	69	46	200	3.3%	0.21 [0.07, 0.60]
Subtotal (95% CI)	1331	2050	58.9%	0.62 [0.45, 0.86]		
Total events	287	590				
Heterogeneity: Tau² = 0.19; Chi² = 31.10, df = 14 (P = 0.005); I² = 55%						
Test for overall effect: Z = 2.90 (P = 0.004) |

2.2.2 Eplerenone						
Ito et al. 2013	22	55	64	106	5.4%	0.44 [0.22, 0.85]
Swedberg et al. 2012	25	911	40	883	6.5%	0.59 [0.36, 0.99]
Tsutsumi et al. 2018	4	111	2	110	1.6%	2.02 [0.36, 11.25]
Subtotal (95% CI)	1077	1099	13.5%	0.58 [0.35, 0.96]		
Total events	51	106				
Heterogeneity: Tau² = 0.06; Chi² = 2.72, df = 2 (P = 0.26); I² = 26%						
Test for overall effect: Z = 2.11 (P = 0.04) |

2.2.3 Canrenone						
Bilotta et al. 2012	1	28	2	28	6.9%	0.48 [0.04, 5.64]
Bosone et al. 2017	13	98	75	191	5.5%	0.22 [0.12, 0.42]
Subtotal (95% CI)	126	219	6.3%	0.23 [0.12, 0.44]		
Total events	14	80				
Heterogeneity: Tau² = 0.00; Chi² = 0.36, df = 1 (P = 0.55); I² = 0%						
Test for overall effect: Z = 4.53 (P < 0.00001) |

2.2.4 MRA non specified						
Boldt et al. 2008	5	40	38	108	3.5%	0.26 [0.10, 0.73]
Díseri et al. 2010	39	92	70	1350	7.1%	0.67 [0.44, 1.03]
Marchetti et al. 2012	10	45	20	45	3.9%	0.36 [0.14, 0.89]
Simopoulos et al. 2015	40	132	90	200	6.8%	0.53 [0.33, 0.85]
Subtotal (95% CI)	309	1703	21.3%	0.52 [0.37, 0.73]		
Total events	94	855				
Heterogeneity: Tau² = 0.02; Chi² = 3.68, df = 3 (P = 0.30); I² = 19%						
Test for overall effect: Z = 3.85 (P = 0.0001) |

Total (95% CI) | 2843 | 5071 | 100.0% | 0.55 [0.44, 0.70] | |
Total events | 426 | 1631 | | | |
Heterogeneity: Tau² = 0.16; Chi² = 50.53, df = 23 (P = 0.0008); I² = 54%
Test for overall effect: Z = 4.85 (P < 0.00001)
Test for subgroup differences: Chi² = 7.50, df = 3 (P = 0.06), I² = 60.0%
Figure S8. Impact of mineralocorticoid receptor antagonists (MRAs) on AF occurrence versus that of controls in the following subgroups: newly postoperative atrial fibrillation (POAF) onset, AF recurrence after electrical cardioversion, and AF recurrence after catheter ablation.

Study or Subgroup	MRA	Control	Odds Ratio				
	Events	Total	Events	Total	Weight	M-H, Random	95% CI
1.1.6 Newly Onset POAF							
Pretorius et al. 2012	38	147	40	147	23.1%	0.93 [0.56, 1.57]	
Shavit et al. 2019	30	99	51	177	22.7%	1.07 [0.63, 1.84]	
Simopoulos et al. 2015	40	132	90	200	24.3%	0.53 [0.33, 0.85]	
Vukicevic et al. 2016	10	34	43	192	17.0%	1.44 [0.64, 3.25]	
Özyaydın et al. 2010	4	69	46	200	12.9%	0.21 [0.07, 0.60]	
Subtotal (95% CI)	481	916	100.0%	0.74 [0.45, 1.23]			
Total events	122	270					
Heterogeneity: Tau² = 0.21; Chi² = 12.81, df = 4 (P = 0.01); I² = 69%							
Test for overall effect: Z = 1.15 (P = 0.25)							
1.1.7 AF recurrence after electrical cardioversion							
Boldt et al. 2008	5	40	48	69	4.8%	0.26 [0.10, 0.73]	
McAlpine 2012	10	45	20	45	49.7%	0.38 [0.14, 0.89]	
Pazaud et al. 2003	0	21	12	75	5.1%	0.12 [0.01, 2.08]	
Subtotal (95% CI)	110	297	100.0%	0.27 [0.14, 0.51]			
Total events	15	118					
Heterogeneity: Tau² = 0.00; Chi² = 2.38, df = 3 (P = 0.50); I² = 0%							
Test for overall effect: Z = 3.99 (P < 0.0001)							
1.1.8 AF recurrence after catheter ablation							
Ito et al. 2013	22	55	64	106	87.6%	0.44 [0.22, 0.85]	
Letsas et al. 2009	2	6	26	66	12.4%	0.77 [0.13, 4.51]	
Subtotal (95% CI)	64	172	100.0%	0.47 [0.25, 0.87]			
Total events	24	90					
Heterogeneity: Tau² = 0.00; Chi² = 0.34, df = 1 (P = 0.56); I² = 0%							
Test for overall effect: Z = 2.38 (P = 0.02) |
Figure S9. Impact of mineralocorticoid receptor antagonists (MRAs) on AF occurrence versus that of controls in POAF and no-POAF studies.

Study or Subgroup	MRA Events	Control Events	Total Events	Weight	Odds Ratio M-H, Random, 95% CI	Odd Ratio M-H, Random, 95% CI
2.2.1 No-POAF studies						
Bilotta et al. 2012	1	28	28	1.1%	0.48 [0.04, 5.64]	
Boldt et al. 2008	5	40	38	108	4.6%	0.26 [0.10, 0.73]
Bosone et al. 2017	13	98	78	191	7.6%	0.22 [0.12, 0.42]
Brinkley et al. 2010	30	71	58	100	8.0%	0.53 [0.29, 0.98]
Cikes et al. 2018	57	615	55	592	10.7%	1.00 [0.68, 1.47]
Dabrowski et al. 2010	48	82	66	82	7.1%	0.34 [0.17, 0.69]
Disertori et al. 2010	39	92	70	1350	10.2%	0.67 [0.44, 1.03]
Gao et al. 2007	13	58	24	58	6.1%	0.41 [0.18, 0.92]
Grigoryan et al. 2015	3	21	6	21	2.5%	0.42 [0.09, 1.96]
Ito et al. 2013	22	55	64	106	7.4%	0.44 [0.22, 0.85]
Kim et al. 2009	0	5	5	48	69	0.8%
Letsas et al. 2009	2	6	26	66	2.0%	0.77 [0.13, 4.51]
Lopes et al. 2010	6	46	15	110	4.6%	0.95 [0.34, 2.62]
Marchetti et al. 2012	10	45	20	45	5.3%	0.36 [0.14, 0.89]
Paziaud et al. 2003	0	21	12	75	0.8%	0.12 [0.01, 2.08]
Swedberg et al. 2012	25	911	40	883	9.2%	0.59 [0.36, 0.99]
Tsutsui et al. 2018	4	111	2	110	2.1%	2.02 [0.36, 11.25]
Turmasyan et al. 2012	21	34	68	101	6.1%	0.78 [0.35, 1.76]
Williams et al. 2011	5	23	32	60	4.1%	0.24 [0.08, 0.74]
Subtotal (95% CI)	2362	4155	100.0%	0.50 [0.38, 0.65]		

Total events: 304 | 1361

Heterogeneity: Tau² = 0.14; Chi² = 33.69, df = 18 (P = 0.01); I² = 47%

Test for overall effect: Z = 5.12 (P < 0.00001)

2.2.2 POAF studies

Study or Subgroup	MRA Events	Control Events	Total Events	Weight	Odds Ratio M-H, Random, 95% CI	Odd Ratio M-H, Random, 95% CI	
Pretorius et al. 2012	38	147	40	147	23.1%	0.93 [0.56, 1.57]	
Shavit et al. 2018	30	99	51	177	22.7%	1.07 [0.63, 1.84]	
Simopoulos et al. 2015	40	132	90	200	24.3%	0.53 [0.33, 0.85]	
Vukicevic et al. 2016	10	34	43	192	17.0%	1.44 [0.64, 3.25]	
Özyaydın et al. 2010	4	69	46	200	12.9%	0.21 [0.07, 0.60]	
Subtotal (95% CI)	481	916	100.0%	0.74 [0.45, 1.23]			

Total events: 122 | 270

Heterogeneity: Tau² = 0.21; Chi² = 81.81, df = 4 (P = 0.01); I² = 69%

Test for overall effect: Z = 1.15 (P = 0.25)

Test for subgroup differences: Chi² = 1.93, df = 1 (P = 0.16); I² = 48.1%
Figure S10. AF occurrence rate in the control group was significantly calibrated to predict the positive effect of MRA therapy on AF occurrence (panel A).

The year of publication of the study was not significantly calibrated to predict a positive MRA effect on AF occurrence (panel B).
Figure S11. Atrial fibrillation occurrence comparing mineralocorticoid receptor antagonists (MRAs) therapy versus controls using a fixed effect model.

Study or Subgroup	MRA Events	Control Events	Total Events	Weight	Odds Ratio M-H, Fixed, 95% CI	Odds Ratio M-H, Fixed, 95% CI
2.2.1 Randomized placebo-controlled trials						
Cikes et al. 2018	57	615	55	592	0.89%	1.00 [0.68, 1.47]
Gao et al. 2007	13	58	24	58	3.6%	0.41 [0.18, 0.92]
Grigoryan et al. 2015	3	21	6	21	1.0%	0.42 [0.09, 1.96]
Pretorius et al. 2012	38	147	40	147	5.7%	0.93 [0.56, 1.57]
Swedberg et al. 2012	25	911	40	883	7.6%	0.58 [0.36, 0.99]
Tsutsui et al. 2018	4	111	2	110	0.4%	2.02 [0.36, 11.25]
Subtotal (95% CI)	**1863**	**1811**	**1811**	**28.2%**	**0.79 [0.62, 1.01]**	
Total events	140	167				
Heterogeneity: Chi² = 7.31, df = 5 (P = 0.20); I² = 32%						
Test for overall effect: Z = 1.87 (P = 0.06)						

| **2.2.2 Randomized controlled trials** |
Biotta et al. 2012	1	28	2	28	0.4%	0.48 [0.04, 5.64]
Bosone et al. 2017	13	98	76	191	8.9%	0.22 [0.12, 0.42]
Dabrowski et al. 2010	48	82	66	82	5.3%	0.34 [0.17, 0.69]
Marchetti et al. 2012	10	45	20	45	3.0%	0.36 [0.14, 0.89]
Tumayan et al. 2012	21	34	68	101	2.5%	0.78 [0.35, 1.76]
Subtotal (95% CI)	**327**	**447**		**26.1%**	**0.35 [0.24, 0.50]**	
Total events	93	234				
Heterogeneity: Chi² = 5.80, df = 4 (P = 0.21); I² = 31%						
Test for overall effect: Z = 3.70 (P < 0.00001)						

| **2.2.3 Prospective observational studies** |
Boldt et al. 2008	5	40	36	108	3.5%	0.26 [0.10, 0.73]
Disertori et al. 2010	39	92	707	1350	10.0%	0.67 [0.44, 1.03]
Kim et al. 2009	0	5	48	69	1.4%	0.04 [0.00, 0.76]
Letsas et al. 2009	2	6	26	66	0.6%	0.77 [0.13, 4.51]
Shavit et al. 2018	30	99	51	177	4.9%	1.07 [0.63, 1.84]
Özaydin et al. 2010	4	69	46	200	4.3%	0.21 [0.07, 0.60]
Subtotal (95% CI)	**311**	**1970**		**24.7%**	**0.58 [0.44, 0.77]**	
Total events	80	916				
Heterogeneity: Chi² = 14.70, df = 5 (P = 0.01); I² = 66%						
Test for overall effect: Z = 3.72 (P = 0.00002)						

| **2.2.4 Retrospective observational studies** |
Brinkley et al. 2010	30	71	56	100	5.4%	0.53 [0.29, 0.98]
Ito et al. 2013	22	55	64	106	5.1%	0.44 [0.22, 0.85]
Lopes et al. 2010	6	46	15	110	1.5%	0.95 [0.34, 2.62]
Paziau et al. 2003	0	21	12	75	1.1%	0.12 [0.01, 2.08]
Simopoulos et al. 2015	40	132	90	200	9.6%	0.53 [0.33, 0.85]
Vukicevic et al. 2016	10	34	43	192	1.8%	1.44 [0.64, 3.25]
Williams et al. 2011	5	23	32	60	2.7%	0.24 [0.08, 0.74]
Subtotal (95% CI)	**382**	**843**		**27.1%**	**0.55 [0.42, 0.73]**	
Total events	113	314				
Heterogeneity: Chi² = 10.19, df = 6 (P = 0.12); I² = 41%						
Test for overall effect: Z = 4.22 (P < 0.0001)						

| **Total (95% CI)** | **2843** | **5071** | **100.0%** | **0.59 [0.51, 0.67]** | |
| Total events | 426 | 1631 | | | | |
| Heterogeneity: Chi² = 50.53, df = 23 (P = 0.0008); I² = 54% |
| Test for overall effect: Z = 7.43 (P < 0.00001) |
| Test for subgroup differences: Chi² = 13.97, df = 3 (P = 0.003), I² = 78.5% |
Supplemental References:

1. Paziaud O, Piot O, Rousseau J, Copie X, Lavergne T, Guize L, Le Heuzey JY. External electrical cardioversion of atrial arrhythmia: predictive criteria of success. *Ann Cardiol Angeiol (Paris)* 2003;52:232–8.

2. Gao X, Peng L, Adhikari CM, Lin J, Zuo Z. Spironolactone reduced arrhythmia and maintained magnesium homeostasis inpatients with congestive heart failure. *J Card Fail* 2007;13:170–7.

3. Boldt L-H, Rolf S, Huemer M, Parwani AS, Luft FC, Dietz R, Haverkamp W. Optimal heart failure therapy and successful cardioversion in heart failure patients with atrial fibrillation. *Am Heart J* 2008;155:890–5.

4. Kim SK, Pak H-N, Park JH, Ko KJ, Lee JS, Choi JI, Kim YH. Clinical and serological predictors for the recurrence of atrial fibrillation after electrical cardioversion. *Europace* 2009;11:1632–8.

5. Letsas KP, Weber R, Bürkle G, Mihas CC, Minners J, Kalusche D, Arentz T. Pre-ablative predictors of atrial fibrillation recurrence following pulmonary vein isolation: the potential role of inflammation. *Europace* 2009;11:158–63.

6. Brinkley D, Chen J. Poster PO4-12: Effect of spironolactone on atrial fibrillation in patients with heart failure. *Heart Rhythm* 2010;7:S262.

7. Dabrowski R, Borowiec A, Smolis-Bak E, Kowalik I, Sosnowski C, Kraska A, Kazimierska B, Wozniak J, Zareba W, Szwed H. Effect of combined spironolactone-β-blocker ± enalapril treatment on occurrence of symptomatic atrial fibrillation episodes in patients with a history of paroxysmal atrial fibrillation (SPIR-AF study). *Am J Cardiol* 2010;106:1609–14.

8. Disertori M, Lombardi F, Barlera S, Latini R, Maggioni AP, Zeni P, Di Pasquale G, Cosmi F, Franzosi MG; GISSI-AF Investigators. Clinical predictors of atrial fibrillation recurrence in the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico-Atrial Fibrillation (GISSI-AF) trial. *Am Heart J* 2010;159:857–63.

9. Lopes R, Lourenco P, Paulo C, Sousa A, Lebreiro A, Mascarenhas J, Silva S, Santos M, Silva H, Bettencourt P. Is there a role for spironolactone in atrial fibrillation prevention? *European Journal of Heart Failure Supplements* 2010;9:S145.

10. Ozaydin M, Varol E, Türker Y, Peker O, Erdoğan D, Doğan A, İbişim E. Association between renin-angiotensin-aldosterone system blockers and postoperative atrial fibrillation in patients with mild and moderate left ventricular dysfunction. *Anadolu Kardiyol Derg* 2010;10:137–42.

11. Williams RS, deLemos JA, Dimas V, Reisch J, Hill JA, Naseem RH. Effect of spironolactone on patients with atrial fibrillation and structural heart disease. *Clin Cardiol* 2011;34:415–9.

12. Bilotta F, Giovannini F, Aghilone F, Stazi E, Titi L, Zeppa IO, Rosa G. Potassium sparing diuretics as adjunct to mannitol therapy in neurocritical care patients with cerebral edema: effects on potassium homeostasis and cardiac arrhythmias. *Neurocrit Care* 2012;16:280–5.

13. Marchetti G, Roncuzzi R, Gambetti S, Poci M., Zaniboni A, Urbinati S. Electrical cardioversion at first episode of Atrial Fibrillation in patients with heart failure. ESC Congr. 2012 - P2365.

14. Pretorius M, Murray KT, Yu C, Byrne JG, Billings FT, Petracek MR, Greelish JP, Hoff SJ, Ball SK,
Mishra V, Body SC, Brown NJ. Angiotensin-converting enzyme inhibition or mineralocorticoid receptor blockade do not affect prevalence of atrial fibrillation in patients undergoing cardiac surgery. Crit Care Med 2012;40:2805–12.

15. Swedberg K, Zannad F, McMurray JJV, Krum H, Veldhuisen DJ van, Shi H, Vincent J, Pitt B; EMPHASIS-HF Study Investigators. Eplerenone and atrial fibrillation in mild systolic heart failure: results from the EMPHASIS-HF (Eplerenone in Mild Patients Hospitalization And Survival Study in Heart Failure) study. J Am Coll Cardiol 2012;59:1598–603.

16. Tumasyan L, Adamyk K, Chilingaryan A. Poster 853: Comparative efficacy of renin-angiotensin system modulators on sinus rhythm restoration in chronic heart failure patients with atrial fibrillation. Eur Heart J - Cardiovasc Imaging 2012;13:i143–65.

17. Ito Y, Yamasaki H, Naruse Y, Yoshida K, Kaneshiro T, Murakoshi N, Igarashi M, Kuroki K, Machino T, Xu D, Kunugita F, Sekiguchi Y, Sato A, Tada H, Aonuma K. Effect of eplerenone on maintenance of sinus rhythm after catheter ablation in patients with long-standing persistent atrial fibrillation. Am J Cardiol 2013;111:1012–8.

18. Grigoryan S, Hazarapetyan L. Acute Cardiovascular Care 2015 - P 224 The impact of spiro lactone therapy on recurrence and atrial structural remodeling in patients with paroxysmal atrial fibrillation. Eur Heart J Acute Cardiovasc Care 2015;4:89.

19. Simopoulos V, Tagarakis G, Hatziefthimiou A, Skoularigis I, Triposkiadis F, Trantou V, Tsilimingas N, Aidonidis I. Effectiveness of aldosterone antagonists for preventing atrial fibrillation after cardiac surgery in patients with systolic heart failure: a retrospective study. Clin Res Cardiol 2015;104:31–7.

20. Vukicevic MV, Putnik S, Potpara TS. GW27-e0978 The relationship between preoperative pharmacotherapy and incident postoperative atrial fibrillation in patients undergoing isolated coronary artery bypass grafting. J Am Coll Cardiol 2018;68:C120.

21. Bosone D, Costa A, Ghiotto N, Ramusino MC, Zoppi A, D’Angelo A, Fogari R. Effect of ramipril/hydrochlorothiazide and ramipril/canrenone combination on atrial fibrillation recurrence in hypertensive type 2 diabetic patients with and without cardiac autonomic neuropathy. Arch Med Sci 2017;13:550–7.

22. Cikes M, Claggett B, Shah AM, Desai AS, Lewis EF, Shah SJ, Anand IS, O’Meara E, Rouleau JL, Sweitzer NK, Fang JC, Saksena S, Pitt B, Pfeffer MA, Solomon SD. Atrial Fibrillation in Heart Failure With Preserved Ejection Fraction: The TOPCAT Trial. JACC Heart Fail 2018;6:689–97.

23. Tsutsui H, Ito H, Kitakaze M, Komuro I, Murohara T, Izumi T, Sunagawa K, Yasumura Y, Yano M, Yamamoto K, Yoshikawa T, Tsutamoto T, Zhang J, Okayama A, Ichikawa Y, Kanmuri K, Matsuzaki M, J-EMPHASIS-HF Study Group. Double-Blind, Randomized, Placebo-Controlled Trial Evaluating the Efficacy and Safety of Eplerenone in Japanese Patients With Chronic Heart Failure (J-EMPHASIS-HF). Circ J 2017;82:148–58.

24. Shavit L, Silberman S, Tauber R, Merin O, Bitran D, Fink D. Preoperative aldosterone receptor blockade and outcomes of cardiac surgery in patients with chronic kidney disease. Clin Nephrol 2018;89:187–95.