Genome-wide analysis of autophagy-related genes in *Medicago truncatula* highlights their roles in seed development and response to drought stress

Mingkang Yang, Liping Wang, Chumin Chen, Xu Guo, Chuanglie Lin, Wei Huang* & Liang Chen

Autophagy is a highly conserved process of degradation of cytoplasmic constituents in eukaryotes. It is involved in the growth and development of plants, as well as in biotic and abiotic stress response. Although autophagy-related (ATG) genes have been identified and characterized in many plant species, little is known about this process in *Medicago truncatula*. In this study, 39 ATGs were identified, and their gene structures and conserved domains were systematically characterized in *M. truncatula*. Many cis-elements, related to hormone and stress responsiveness, were identified in the promoters of MtATGs. Phylogenetic and interaction network analyses suggested that the function of MtATGs is evolutionarily conserved in *Arabidopsis* and *M. truncatula*. The expression of MtATGs, at varied levels, was detected in all examined tissues. In addition, most of the MtATGs were highly induced during seed development and drought stress, which indicates that autophagy plays an important role in seed development and responses to drought stress in *M. truncatula*. In conclusion, this study gives a comprehensive overview of MtATGs and provides important clues for further functional analysis of autophagy in *M. truncatula*.

Autophagy is an evolutionarily conserved degradation process in eukaryotes, which is involved in material and energy homeostasis through recycling of damaged cytoplasmic constituents and unwanted cellular materials. In *Arabidopsis*, more than 30 autophagy-related genes (ATGs) have been identified via homology-based cloning using yeast ATGs. They are involved in different stages of autophagosome formation, including phagophore induction, cargo capture, vesicle expansion and closure, and delivery of the vesicles to the vacuole. ATGs are functionally classified into four core functional groups namely the ATG1 kinase complex, PI3K complex, ATG9 recycling complex, and two ubiquitin-like conjugation systems. To date, ATGs have been characterized in many plant species including *Arabidopsis thaliana*, rice (*Oryza sativa*), maize (*Zea mays*), tobacco (*Nicotiana tabacum*), and wheat (*Triticum aestivum*).

Previous studies have indicated that autophagy is broadly involved in the growth and development of plants. It has been reported that autophagy-defective mutants show accelerated leaf senescence in *Arabidopsis*. The *Osatg7* mutant showed complete sporophytic male sterility and reduced pollen germination activity, which suggests that autophagy plays critical roles in pollen development in rice. Increasing evidence highlights the crucial role of autophagy in starch and lipid metabolism in plants. Moreover, autophagy, as a quality control mechanism, mediates the degradation of cellular components and contributes to cellular homeostasis, which is necessary for plants to survive various abiotic and biotic stresses, such as nutrient deficiencies and heat, hypoxia, salt, and drought stresses.

Medicago truncatula is a model plant for genetic research on legumes that interact with rhizobia to develop nodules for nitrogen fixation. Despite its agronomical importance, the production of *M. truncatula* is threatened by abiotic stresses including high salt and drought stresses. To facilitate our understanding of the mechanism and function of autophagy in *M. truncatula*, it is necessary to first identify all the MtATGs. Based on the identification of MtATGs, further functional studies are required to elucidate the roles of autophagy in *M. truncatula*.
complete genome sequence of *M. truncatula* [23,24], herein, we provide a comprehensive description of *MtATGs*, including their genome-wide identification, characterization, and expression analysis. The results of this study lay the foundation for future research on the molecular mechanism of autophagy in *M. truncatula*.

Materials and methods

Identification of MtATGs. The identification of putative MtATGs was conducted using a bidirectional BLAST analytical strategy, and was performed using the BLASTP program that is integrated into the BioEdit software. First, the protein sequences of published autophagy-related genes in *Arabidopsis* were used to search against *M. truncatula* proteome sequences (MedtrA17.4.0) with the E-value cutoff at 1 × e−5. Then, all output *M. truncatula* protein sequences were aligned back to *Arabidopsis* proteome sequences. Only the *M. truncatula* genes that shared the highest similarities to the *AtATGs* in the second BLAST analysis were considered putative *MtATGs*. To further verify that the candidate genes are indeed *MtATGs*, the protein domain architectures were analyzed in the Pfam database (http://pfam.xfam.org) [25]. The chemical features of the *MtATG* proteins, including their molecular weights and theoretical isoelectric points, were obtained using the online tool ExPASy (http://cdd.expasy.org/compute_pi/). Subcellular localization of *MtATGs* was predicted using the CELLO system (http://cello.life.nctu.edu.tw). The gene and protein structures of *MtATGs* were extracted from the annotation file of the *M. truncatula* genome (MedtrA17.4.0) and visualized with the integrating bioinformatic analysis toolkit Tbtools [26].

Chromosomal location and gene duplication analysis. *MtATGs* were mapped to the chromosomes based on their physical positions in the *M. truncatula* genome (MedtrA17.4.0). To investigate the synteny of related genome regions in *M. truncatula*, putative orthologous genes were identified using the BLASTP program, and the results were used to generate a synteny map with the MCScanX program [27]. The genome locations of *MtATGs* and the duplicated gene pairs were visualized using Tbtools [26].

Protein sequence alignment and analysis of the phylogenetic relationship. The phylogenetic analysis of *MtATGs* was performed using the MEGA7 software [28]. The amino acid sequences of *MtATGs* and *AtATGs* in different gene families were aligned independently using the ClustalW algorithm with the default parameters. An unrooted phylogenetic tree was constructed with the neighbor-joining statistical method, and the following parameters were used: uniform rates are used as rates among sites, gaps/missing data are treated as pairwise deletion, and the bootstrap analysis was performed with 1000 replicates to obtain a support value for each branch.

Identification of cis-elements. The 1.5 kb genomic DNA sequence upstream of the initiation codon of each *MtATG* was retrieved from the *M. truncatula* genome (MedtrA17.4.0). The assumed cis-elements of *MtATGs* were predicted using the PlantCARE web servers (http://bioinformatics.psb.ugent.be/webtools/plantcare/html) [29].

Construction of the protein–protein interaction (PPI) network. The PPI networks were constructed using the STRING database (http://www.string-db.org). A total of 39 *MtATGs* were selected as input, and the PPI network of the *MtATGs* was constructed with a medium confidence (0.4).

Analysis of the expression profiles using microarray data. The *M. truncatula* microarray data were downloaded from the MtGEA v3 database (https://mtgea.noble.org/v3/) [30]. Expression values were normalized using the z-score method, and plotted using GraphPad Prism 8.

Plant materials and growth conditions. *Medicago truncatula* (cv. Jemalong A17) seeds were scarified with sulfuric acid, and vernalized on wetted filter paper at 4 °C for 7 days. Seedlings were grown in a greenhouse at 24 °C, 16-h light/8-h dark cycle, with humidity ranging from 60 to 80%. Different plant tissues (roots, stems, leaves, petioles, buds, flowers, and pods) were harvested from multiple plants. Material for the seed development was collected from pods at 5 different stages. For drought stress, 7-day-old seedlings were transferred by withholding watering for 2 days. For mannitol treatment, 2-weeks-old seedlings were transferred to liquid 1/2 MS medium supplemented with 300 mM mannitol for additional 2 days. All plant samples were frozen immediately in liquid nitrogen after harvest and stored at −80 °C until use. Plant material collections in this study complied with all institutional, national, and international guidelines and legislation.

RNA isolation and quantitative PCR (qPCR) analysis. Total RNA was extracted with TRIzol reagent (Invitrogen) according to the manufacturer's instructions. The isolated RNA was reverse transcribed using ReverTra Ace qPCR RT Master Mix with gDNA Remover Kit (TOYOBO). qPCR was performed using the CFX Connect Real-Time PCR System (Bio-Rad) with the SYBR Premix ExTag Mix (Takara). *MtACTIN* (Medtr2g008050) was used as a reference gene. Three technical replicates were used for each reaction. The gene-specific primers for the qPCR analysis are listed in Supplementary Table S4.

Protein blotting analysis. Western blotting analysis of ATG8 lipidation was performed as previously described [26]. 2-weeks-old seedlings were ground in liquid nitrogen and homogenized in ice-cold RIPA buffer (50 mM Tris–HCl pH8.0, 150 mM NaCl, 1% NP-40, 0.5% Sodium Deoxycholate, 0.5% PVPP, 0.1% SDS). After centrifuged for 15 min at 12,000g, the supernatant fraction was transferred to a new microcentrifuge tube, and
eletrophoresis with 15% SDS-PAGE supplemented with 6 M Urea. Anti-ATG8a antibodies (ab77003, Abcam) were used in the immunoblotting analysis.

Monodansylcadaverine (MDC) staining and microscopy. MDC staining was performed as previously described. Briefly, lateral roots of M. truncatula were detached and stained with 0.75 mM MDC for 1 h. The root cells were observed using LSM 780 inverted microscope (Carl Zeiss) with a DAPI-specific filter.

Results

Genome-wide identification of ATGs in M. truncatula. To identify MtATGs, the BLASTP algorithm was employed in searches against M. truncatula proteome sequences (MedtrA17_4.0) using the amino acid sequences of A. thaliana ATGs (AtATGs) as queries. A total of 39 MtATGs were identified in M. truncatula (Table 1, Supplementary Tables S1, S2). The lengths of the MtATGs ranged from 62 amino acids to 3768 amino acids. Most of the MtATGs (MtATG2, MtATG3, MtATG4, MtATG5, MtATG6, MtATG7, MtATG10, MtATG11, MtATG12, MtATG101, MtVPS15, and MtVPS34) contained a single member. A few of them (MtATG1, MtATG8, MtATG9, MtATG13, MtATG16, and MtATG18) contained multiple members, ranging from two to

Gene name	Locus ID	Length (aa)	MW (kDa)	PI	Subcellular localization	Chromosome location
MtATG1a	Medtrg024100	696	77.38	5.69	Nuclear	chr8:8817813.8824200
MtATG1b	Medtrg019410	737	82.03	7.13	Nuclear	chr4:6057862.6065974
MtATG1c	Medtrg095620	290	32.87	7.09	Extracellular	chr3:4369826.43692334
MtATG2	Medtrg086370	1975	216.66	5.07	Nuclear	chr4:33827078.33844760
MtATG3	Medtrg036265	310	35.27	4.5	Cytoplasmic	chr4:13052245.13057301
MtATG4	Medtrg018230	487	53.82	5.04	Chloroplast	chr7:3099369.30998401
MtATG5	Medtrg076920	361	41.14	4.31	Nuclear	chr5:32086624.32813118
MtATG6	Medtrg018770	509	58.07	6.45	Nuclear	chr3:5165817.5174556
MtATG7	Medtr0030540	698	76.88	5.38	Plasma membrane	scaffold003:305853.310747
MtATG8a	Medtrg023430	120	13.72	9.3	Mitochondrial	chr2:8277496.8280062
MtATG8b	Medtrg037225	120	14.13	7.82	Nuclear	chr4:13715664.13717673
MtATG8c	Medtrg048510	120	13.89	9.29	Cytoplasmic	chr4:17207135.17210565
MtATG8d	Medtrg082830	108	12.37	7.51	Cytoplasmic	chr2:37163050.37165850
MtATG8e	Medtrg101090	122	14.06	8.76	Cytoplasmic	chr4:41752327.41755124
MtATG8f	Medtrg086310	121	14.10	8.18	Cytoplasmic	chr3:38625116.38626390
MtATG8g	Medtrg123760	118	13.82	9.74	Nuclear	chr4:51007802.51010377
MtATG8h	Medtrg095640	62	7.09	9.1	Extracellular	chr7:38739885.38740615
MtATG9a	Medtrg096880	893	103.32	6.56	Plasma membrane	chr7:38799346.38805558
MtATG9b	Medtrg070160	866	99.95	6.7	Plasma membrane	chr1:30830518.30837261
MtATG10	Medtrg010140	235	27.01	4.77	Extracellular	chr8:2577226.2579513
MtATG11	Medtrg130370	1154	129.95	5.9	Nuclear	chr4:54307709.54314660
MtATG12	Medtrg020500	124	10.59	9.07	Plasma membrane	chr8:7198866.7202464
MtATG13a	Medtrg068710	584	65.58	9.42	Nuclear	chr5:29098184.29092600
MtATG13b	Medtrg095570	633	70.29	8.72	Nuclear	chr3:43671041.43677624
MtATG13c	Medtrg093050	583	65.62	8.73	Nuclear	chr3:38885014.38889871
MtATG16a	Medtrg075400	509	55.88	6.65	Nuclear	chr3:34315943.34318708
MtATG16b	Medtrg104380	514	56.74	6.21	Nuclear	chr4:43185561.43189052
MtATG16c	Medtrg060750	364	46.66	4.66	Nuclear	chr4:1115999.1117649
MtATG18a	Medtrg083230	385	42.67	7.83	Plasma membrane	chr1:37037962.37041428
MtATG18b	Medtrg130190	372	40.38	7.64	Nuclear	chr4:54209571.54215694
MtATG18c	Medtrg108520	418	45.73	7.44	Plasma membrane	chr7:44026127.44029925
MtATG18d	Medtrg088855	354	39.70	9.2	Plasma membrane	chr1:39776324.39778721
MtATG18e	Medtrg093590	415	46.14	7.95	Plasma membrane	chr3:42763022.42768303
MtATG18f	Medtrg082770	901	98.20	6.87	Nuclear	chr2:34727900.34734357
MtATG18g	Medtrg089110	967	105.32	6.11	Nuclear	chr1:40103141.40108943
MtATG18h	Medtrg082300	913	99.63	5.95	Nuclear	chr1:36587909.36569198
MtATG101	Medtrg079240	218	25.48	6.43	Cytoplasmic	chr8:33765931.33771318
MtVPS15	Medtrg088835	1536	171.92	6.9	Plasma membrane	chr6:33989403.33999113
MtVPS34	Medtrg034120	808	92.65	6.47	Cytoplasmic	chr5:14747697.14758501

Table 1. Information related to ATGs and their encoded proteins in Medicago truncatula.
eight in different groups (three in the MtATG1 family, eight in the MtATG8 family, two in the MtATG9 family, three in the MtATG13 family, three in the MtATG16 family, and eight in the MtATG18 family) (Table 1).

The chromosomal distribution of MtATGs determined using the TBtools software is shown in Fig. 1. In total, 38 MtATGs were found to be distributed across all eight chromosomes except for MtATG7, which could not be mapped to any chromosome according to data from MedtrA17_4.0 (Fig. 1). The number of MtATGs located on each chromosome varies dramatically. Chromosome 4 (Chr4) contains the maximum number (11) of MtATGs, whereas chromosome 6 has only one MtATG gene. Gene duplication is important for adaptation of plants to adverse and complex environments. In M. truncatula, 7 pairs of MtATGs were predicted to be segmentally duplicated. As shown in Fig. 1, these 7 pairs of duplicated MtATGs (MtATG8c and MtATG8d, MtATG8g and MtATG8f, MtATG9a and MtATG9b, MtATG13b and MtATG13c, MtATG16a and MtATG16b, MtATG18a and MtATG18c, MtATG18d and MtATG18e) are distributed across chromosomes 1, 2, 3, 4, 7, and 8. These duplications may have led to the expansion of MtATG families in M. truncatula.

The subcellular localization of the MtATGs was predicted using the CELLO system (http://cello.life.nctu.edu.tw). Most of the MtATGs were predicted to localize to the nucleus, plasma membrane, and cytoplasm, followed by extracellular space, chloroplast, and mitochondria (Table 1, Supplementary Figure S1). Furthermore, some MtATG families exhibited different subcellular localization. For example, MtATG8 proteins were predicted to be mainly cytoplasmic or nuclear, but were also found to localize to the mitochondria and extracellular space (Table 1). The prediction was the same for MtATG18 family members, which were localized to both the plasma membrane and nucleus (Table 1). Taken together, the diverse subcellular localization of MtATGs implies that they have distinct functions.

Figure 1. Chromosomal distribution and gene duplication of MtATGs. The genome locations of MtATGs were retrieved from the M. truncatula genome annotation (MedtrA17_4.0) except for MtATG7. The duplications between MtATGs were analyzed by the MCScanX program and linked with black lines.
Phylogenetic analysis of MtATGs. To evaluate the evolutionary relationships of MtATGs, we conducted a phylogenetic analysis using the amino acid sequences of the multi-member subfamilies (MtATG1, MtATG8, MtATG9, MtATG13, MtATG16, and MtATG18) and their orthologs from Arabidopsis. As shown in Fig. 2, members of the MtATG1 and MtATG13 families were clustered in two branches (Fig. 2A, B). There are two ATG9s and three ATG16s in M. truncatula, whereas only one ATG9 and ATG16 in Arabidopsis (Fig. 2C, D). ATG8 plays a central role in autophagy by promoting autophagosome formation and cargo recruitment. As in Arabidopsis, eight MtATG8 members were clustered into two distinct groups in M. truncatula: MtATG8a, MtATG8b, MtATG8c, MtATG8d, and MtATG8e were grouped into clade I, whereas MtATG8f, MtATG8g, and MtATG8h were clustered in clade II (Fig. 2E). MtATG8 proteins showed high identity with ATG8 proteins from Arabidopsis, except for MtATG8h, in which half of the amino acids from the N-terminus were absent (Supplementary Figure S2). The C-terminal glycine residue in ATG8, which is exposed upon protease cleavage by ATG4, is essential for the conjugation of ATG8 to phosphatidylethanolamine. However, MtATG8h did not contain the C-terminal glycine residue. This result indicates that MtATG8h might function in other biological processes independent of autophagy. In addition, one MtATG8 member of clade II, MtATG8f, had a C-terminal extension after the Gly residue, whereas the MtATG8 members of clade II lack the C-terminal extension (Supplementary Figure S2). Eight MtATG18 members were also clustered in two branches like the MtATG8 family
members (Fig. 2F). Clade I of MtATG18 family consisted of MtATG18a, MtATG18b, MtATG18c, MtATG18d, and MtATG18e, whereas clade II was made up of MtATG18f, MtATG18g, and MtATG18h (Fig. 2F).

Analyses of gene structures and distribution of conserved domains. Gene structure is closely related to the expression pattern and function divergence of members of multigene families. Gene structure analysis revealed that all the MtATGs contain introns, with the number of exons ranging from 2 to 17 (Fig. 3A). In addition, similar exon–intron patterns and the same number of exons were observed in some ATG subfamilies, such as MtATG1a/b, MtATG8a/c/d/e/f/g, MtATG13a/b/c, MtATG18a/c/d/e, and MtATG18g/h (Fig. 3A). The similar gene structures suggest functional redundancy among these genes. However, differences in exon–intron patterns and exon numbers were also seen within some subfamilies, such as MtATG1t, MtATG8b/h, and MtATG18b/f (Fig. 3A).

The conserved domains of MtATGs were detected using the Pfam database\(^2^5\). In general, the composition of the conserved domains in MtATGs is comparable to that in Arabidopsis. Furthermore, members of the same MtATG family have similar domains. For example, all three MtATG1 proteins contain a protein kinase domain (Pkinase) at their N-terminus (Fig. 3B). In addition, almost all MtATG8 proteins (except MtATG8h) are similar in length and have identical ATG8 domains (Fig. 3). A similar phenomenon was also observed in the MtATG9 and MtATG13 subfamilies. However, exceptions were also found in the MtATG16 and MtATG18 subfamilies. All the MtATG16 family proteins have a C-terminal WD40 domain, but lack an N-terminal ATG16 domain in MtATG16c (Fig. 3B). MtATG18 proteins contain the WD40 domain except for MtATG18b and MtATG18h, but members of clade II (MtATG18f/g/h) have a C-terminal BCAS3 domain that is absent in members of clade I (Fig. 3B). The differences in the gene structure and conserved domains may be related to functional divergence among the different gene products within some MtATG families.

Analysis of cis-elements in the promoter regions of MtATGs. Cis-elements regulate genes through interactions with their corresponding transcription factors. To further understand the gene regulation network of MtATGs, cis-elements were identified using the online tool PlantCARE\(^2^9\). Ninety-two putative cis-elements
were found among MtATG promoters (Supplementary Table S3). Among these, the TATA-box and CAAT-box are the most common cis-elements. Many of the identified cis-elements, such as ABRE (abscisic acid-related), TCA-element (salicylic acid-related), TCCACCT-motif and TGACG-motif (MeJA-related), TGA-element (auxin-related), TATC-box, and P-box and GARE-motif (gibberellin-related), are involved in hormone responsiveness (Fig. 4). Among these, cis-elements that respond to MeJA and ABA were found to be the most abundant. In addition, some stress-related elements are mainly related to anaerobic (ARE), defense (STRE and TC-rich repeats), drought (MBS), low temperature (LTR), and wound (WUN-motif) stresses (Fig. 4). The diversity of cis-elements in the promoter regions of MtATGs provided evidence for their potential biological functions in response to phytohormone, abiotic and biotic stresses.

Analysis of the protein–protein interaction network of MtATGs. To investigate the protein–protein interaction (PPI) between MtATGs, all the 39 MtATGs were submitted to the STRING (Search Tool for the Retrieval of Interacting Genes database) website. Twenty-two MtATGs were found to form a complex interaction network that can be divided into four major modules according to the functional classification in Arabidopsis (Fig. 5). In the first module, MtATG1a, MtATG11, MtATG101, and three MtATG13 members (MtATG13a, MtATG13b, MtATG13c) interact with each other and function as the ATG1 kinase complex. The second module consists of two members of the PI3K complex, MtATG6 and MtVPS34, MtATG2 and six MtATG18 family members (MtATG18a, MtATG18b, MtATG18c, MtATG18f, MtATG18g, and MtATG18h), making up the third module, play a role in autophagic membrane recruitment. The last module, composed of MtATG4, MtATG5, MtATG12, and four MtATG8 members (MtATG8a, MtATG8d, MtATG8f, and MtATG8g), serves as the ubiquitin-like conjugation system. This interaction pattern of MtATGs is similar to that of Arabidopsis, suggesting that ATGs are possibly evolutionarily conserved in Arabidopsis and M. truncatula.
Expression patterns of MtATGs in different tissues and during seed development. To investigate the possible roles of MtATGs in the growth and development of plants, the expression patterns of their genes in different tissues and during different stages of seed development were determined. All the MtATGs were expressed in the tested tissues, indicating that autophagy is critical for growth and development of plants (Fig. 6A). However, MtATGs showed significantly distinct tissue-specific expression patterns in different tissues. Specifically, the expression levels of many MtATGs, such as MtATG4, MtATG8b, MtATG8g, MtATG9a, MtATG13a, MtATG13c, MtATG18b, MtATG18c, MtATG18e, MtATG18h, MtATG101, VPS15, and VPS34, were significantly higher in roots than in other tissues (Fig. 6A). In addition, some MtATGs (MtATG1a, MtATG11, MtATG2, MtATG7, MtATG9b, MtATG10, and MtATG11) were highly expressed in leaves, whereas others (MtATG3, MtATG8a, MtATG8c, MtATG8f, and MtATG11) were highly expressed in flowers (Fig. 6A). The results revealed that different MtATGs might function in different tissues. To validate the results of the microarray data, the expression profiles of several MtATGs (MtATG1a, MtATG2, MtATG4, MtATG5, MtATG8a, and

Figure 5. Protein–protein interaction network of MtATGs. The associations among proteins are derived from various channels: textmining, experiments, databases, coexpression, neighborhood, gene fusion, and co-occurrence. The thickness of the lines indicates the strength of data support.
MtATG18b) were inspected by qPCR. Most of the selected genes were highly expressed in roots, which was very similar to those of microarray analysis (Fig. 6B).

Consistent with previous studies, most of the MtATGs were upregulated during seed development (Fig. 7A). In particular, MtATG2, MtATG3, MtATG4, MtATG5, MtATG6, MtATG13a, and MtATG18b, were highly expressed in the late stage of seed development (Fig. 7A). In contrast, a few MtATGs, including MtATG7 and MtATG8b, were downregulated after pollination (Fig. 7A). To validate the results of the microarray data, seeds were collected from pods at 5 different stages of seed developmental (Fig. 7B). As shown in Fig. 7C, the expression levels of five selected genes (MtATG2, MtATG4, MtATG5, MtATG8a, and MtATG18b) were considerably increased, only MtATG4 showed no gene expression change during seed development. These results were very similar to those of microarray analysis, and indicate that autophagy is essential for seed development in M. truncatula.

Expression of MtATGs in response to drought stress. To investigate the putative roles of autophagy in the response of M. truncatula to drought stress, the expression profiles of MtATGs were analyzed using microarray data from the MtGEA database\(^5,36\). Generally, most MtATGs were upregulated after drought treatment (Fig. 8A). Specifically, 26 of 34 MtATGs (e.g., MtATG11, MtATG8d, MtATG9a, and MtATG18b) were continuously upregulated when plants were subjected to drought stress by withholding watering, and the transcripts of MtATGs rapidly dropped to their basal levels after resuming the watering (Fig. 8A). Interestingly, MtATG8g showed an opposite trend: the expression level of MtATG8g dramatically decreased under drought stress compared with other MtATGs (Fig. 8A). To validate the results of the microarray data, six genes (MtATG1a, MtATG2, MtATG4, MtATG5, MtATG8a, and MtATG18b) were selected for independent validation by qPCR. The expression levels of most of the selected genes were significantly higher after 2 days of drought treatment (Fig. 8B). To examine autophagy activity under drought stress, antibodies against ATG8 protein...
by western blotting. ATG8 proteins are lipidated with phosphatidylethanolamine (PE) to promote autophagosome formation in response to drought treatment, whereas no changes in the level of ATG8-PE were detected under control condition (Fig. 8C). Furthermore, MDC staining showed that the number of autophagosomes was significantly increased after drought treatment (Fig. 8D). These results suggested that autophagy might play a crucial role in M. truncatula response to drought stress.

Discussion
In this study, 39 ATGs were identified in M. truncatula. These ATGs are similar to orthologous genes in Arabidopsis. For example, phylogenetic analysis revealed that ATG families in M. truncatula are very similar to those in Arabidopsis. In addition, the PPI network analysis shows that the interaction pattern of MtATGs is also similar to that of ATGs in Arabidopsis. These results indicate that the autophagy pathway is highly conserved across different plant species. However, the number of members in some ATG families differs among plant species. For example, the ATG8 family contains eight genes in M. truncatula, but nine in Arabidopsis, seven in rice, and thirteen in wheat. In addition, the gene structure and conserved domains of some MtATG families, such as MtATG16 and MtATG18 subfamilies, also differ from those of other plants. Furthermore, different types of
cis-elements were identified in the promoters of MtATGs in the same gene family. These results suggest that M. truncatula may have species-specific autophagy mechanism. Hence, it is necessary to illustrate the conserved and specific functions of MtATGs in future studies.

Autophagy has been shown to play crucial roles in the growth and development of plants. In this study, we found that all ATGs were expressed in the tested tissues of M. truncatula, but their expression levels varied among different tissues. The tissue-specific expression of MtATGs suggests that different functions are required in different tissues. Seed development consists of embryo morphogenesis and seed maturation. In rice, autophagy has been shown to be involved in the regulation of starch and sugar metabolism during seed maturation. In Norway spruce (Picea abies), autophagy is also involved in embryogenesis in which it regulates vacuolar cell death of the embryo suspensor. Furthermore, autophagy plays an important role in microspore embryogenesis in Brassica napus. The seed weight in autophagy-defective mutants of Arabidopsis and maize was reported to...
be lower than in the wild-type plants. In the present study, we found that most of the MtATGs were induced during seed development and were highly expressed at the late stage of seed development, which indicates that autophagy is necessary for seed development in M. truncatula. Overall, autophagy plays crucial roles in the growth and development of plants through a pathway that is conserved across different species.

Autophagy has been demonstrated to promote plant survival by maintaining cellular homeostasis under drought stress. In A. thaliana, the transcriptional level of ATG18a was rapidly upregulated by mannitol treatment. In O. sativa, the expression levels of OsATG6 genes were also induced by drought stress. Moreover, ATG genes were upregulated by drought stress in many other plant species, such as barley, pepper, apple, and banana. Besides changes in gene expression, the Arabidopsis autophagy-defective mutants (atg5, atg7, and RNAi-ATG18a) showed more sensitivity to drought treatment than the wild type. Inhibition of autophagy by 3-MA or knockdown of ATG6 sensitized wheat seedlings to drought stress. Furthermore, virus-induced gene silencing of ATG8d or ATG18h significantly reduced drought tolerance in tomato. However, overexpression of MdATG5 or MdATG18a enhanced tolerance to drought stress in apple trees. In addition, overexpression of SiATG8a from foxtail millet improved drought tolerance in Arabidopsis. Recently, it was reported that autophagy improves drought tolerance in M. truncatula through degradation of the aquaporin MtiPIP2;7, which interacts with the cargo receptor MtCAS3.

Consistent with previous studies, our results reveal that the promoter of many MtATGs contain the drought-related MBS cis-element. Furthermore, the transcriptional levels of most of the MtATG genes, especially those of the MtATG8 family, significantly increased after drought treatment. The lipidation of ATG8 protein and accumulation of autophagosome are enhanced in M. truncatula with the cargo receptor MtCAS3. Consistent with previous studies, our results reveal that the promoter of many MtATGs contain the drought-related MBS cis-element. Furthermore, the transcriptional levels of most of the MtATG genes, especially those of the MtATG8 family, significantly increased after drought treatment. The lipidation of ATG8 protein and accumulation of autophagosome are enhanced in M. truncatula during drought stress. Our findings indicate that autophagy is largely induced by drought stress in M. truncatula, and can be considered an adaptive response under drought stress.

Conclusion

This study provided comprehensive analysis of ATGs in M. truncatula. In total, 39 ATGs were identified in M. truncatula. Members of the same ATG family showed similar gene structure and conserved domains. Analysis of cis-elements implied that MtATGs have potential biological functions in response to phytohormone, abiotic and biotic stresses. Phylogenetic and interaction network analyses suggested that the function of MtATGs is evolutionarily conserved in Arabidopsis and M. truncatula. The expression pattern of MtATGs indicates that autophagy possibly participates in seed development and plays an important role in plant responses to drought stress. In conclusion, this study gives a detailed overview of MtATGs and their expression patterns. The results obtained in this study provide useful information for further functional characterization of autophagy in M. truncatula.

Received: 18 June 2021; Accepted: 8 November 2021
Published online: 25 November 2021

References

1. Xia, T. et al. Heterologous expression of ATG8c from soybean confers tolerance to nitrogen deficiency and increases yield in Arabidopsis. PLoS ONE 7, e37217. https://doi.org/10.1371/journal.pone.0037217 (2012).
2. Thompson, A. R. & Vierstra, R. D. Autophagic recycling: Lessons from yeast help define the process in plants. Curr. Opin. Plant Biol. 8, 165–173. https://doi.org/10.1016/j.pbi.2005.01.013 (2005).
3. Yoshimoto, K., Takano, Y. & Sakai, Y. Autophagy in plants and phytopathogens. FEBS Lett. 584, 1350–1358. https://doi.org/10.1016/j.febslet.2010.01.007 (2010).
4. Liu, Y. & Bassham, D. C. Autophagy: Pathways for self-eating in plant cells. Annu. Rev. Plant Biol. 63, 215–237. https://doi.org/10.1146/annurev-arplant-042811-105441 (2012).
5. Li, F. & Vierstra, R. D. Autophagy: A multifaceted intracellular system for bulk and selective recycling. Trends Plant Sci. 17, 526–537. https://doi.org/10.1016/j.tplants.2012.05.006 (2012).
6. Xia, K. et al. Genowe-wide identification, classification, and expression analysis of autophagy-associated gene homologues in rice (Oryza sativa L.). DNA Res. 18, 363–377. https://doi.org/10.1093/dnares/dsr024 (2011).
7. Li, F. et al. Autophagic recycling plays a central role in maize nitrogen remobilization. Plant Cell 27, 1389–1408. https://doi.org/10.1105/tpc.15.00158 (2015).
8. Zhou, X. M. et al. A comprehensive, genome-wide analysis of autophagy-related genes identified in tobacco suggests a central role in autophagy in plant response to various environmental cues. DNA Res. 22, 245–257. https://doi.org/10.1093/dnares/dsv012 (2015).
9. Yue, W. et al. Genome-wide sequence and expression analysis of autophagy gene family in bread wheat (Triticum aestivum L.). J. Plant Physiol. 229, 7–21. https://doi.org/10.1016/j.jpph.2018.06.012 (2018).
10. Hanakoa, H. et al. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol. 129, 1181–1193. https://doi.org/10.1104/pp.110.161024 (2002).
11. Kurosawa, T. et al. OsATG7 is required for autophagy-dependent lipid metabolism in rice postmeiotic anther development. Autophagy 10, 878–888. https://doi.org/10.4161/autophagy.28279 (2014).
12. Wang, Z. et al. DNA damage contributes to leaf starch degradation. Plant Cell 25, 1383–1399. https://doi.org/10.1105/tpc.112.108993 (2013).
13. Farquharson, K. L. Autophagy contributes to plant lipid homeostasis. Plant Cell 31, 1427–1428. https://doi.org/10.1105/tpc.19.00306 (2019).
14. Huang, X. et al. Genetic analyses of the Arabidopsis ATG1 kinase complex reveal both kinase-dependent and independent autophagic routes during fixed-carbon starvation. Plant Cell 31, 2973–2995. https://doi.org/10.1105/tpc.19.00666 (2019).
15. Suttangkakul, A., Li, F., Chang, T. & Vierstra, R. D. The ATG1/ATG13 protein kinase complex is both a regulator and a target of autophagic recycling in Arabidopsis. Plant Cell 23, 3761–3779. https://doi.org/10.1105/tpc.111.090993 (2011).
16. Chung, T., Phillips, A. R. & Vierstra, R. D. ATG8 lipidation and ATG8-mediated autophagy in Arabidopsis require ATG12 expressed from the differentially controlled ATG12A AND ATG12B loci. Plant J. 62, 483–493. https://doi.org/10.1111/j.1365-313X.2010.04166.x (2010).
17. Thompson, A. R., Doelling, J. H., Suttangkakul, A. & Vierstra, R. D. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol. 138, 2097–2110. https://doi.org/10.1104/pp.105.060673 (2005).
30. He, J. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced...21. Young, N. D. & Udvardi, M. Translating Medicago truncatula genomics to crop legumes. Curr. Opin. Plant Biol. 12, 193–201. https://doi.org/10.1016/j.plnt.2008.11.005 (2009).

de Lorenzo, L. et al. A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell 21, 668–680. https://doi.org/10.1105/tpc.108.065976 (2009).

32. Shin, J. H., Yoshimoto, K., Ohsumi, Y., Jeon, J. S. & An, G. OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol. Cells Plant Physiol. 36, 33–44. https://doi.org/10.1038/s41477-018-0286-7 (2018).

33. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–d432. https://doi.org/10.1093/nar/gky995 (2019).

34. Chen, C. et al. TBTools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 13, 1194–1202. https://doi.org/10.1016/j.molp.2020.06.009 (2020).

35. Zhang, J. Y. LEAFY COTYLEDONs: Old genes with new roles beyond seed development. Plant Cell Environ. 42, 917–927. https://doi.org/10.1111/pcen.13404 (2019).

36. Zhou, J. et al. Novel features of...monocotyledonous plants. Int. J. Mol. Sci. 15, 2063–2076. https://doi.org/10.3390/ijms15112063 (2014).

37. Niu, D. & He, Y. Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones activated autophagy in transgenic apple. Front. Plant Sci. 11, 312. https://doi.org/10.3389/fpls.2020.00312 (2019).

38. Zhai, Y. Apple autophagy-related protein MdATG3s afford tolerance to multiple abiotic stresses. Plant Cell Rep. 37, 545–557. https://doi.org/10.1007/s00299-018-2504-2 (2019).

39. Wang, P. et al. The APG8/12-activating enzyme APG7 is required against oxidative stresses in rice. Mol. Cells 27, 67–74. https://doi.org/10.1007/s10059-006-0006-2 (2009).

40. Minina, E. A. Autophagy during drought: function, regulation, and potential application. Plant J. 104, 503–513. https://doi.org/10.1111/tpj.13519 (2018).

41. Corral-Martínez, P., Parra-Vega, V. & Seguí-Simarro, J. M. Novel features of Brassica napus embryogenic microspores revealed by high pressure freezing and freeze substitution: evidence for massive autophagy and excretion-based cytoplasmic clearing. J. Exp. Bot. 64, 3061–3075. https://doi.org/10.1093/jxb/eru151 (2013).

42. Guiboileau, A. et al. Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol. 194, 732–740. https://doi.org/10.1111/nph.14084 (2013).

43. Zhang, Y. et al. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering. Plant Cell Environ. 37, 2553–2576. https://doi.org/10.1111/pce.12328 (2014).

44. Liu, D., Se, Z., Dong, J. & Wang, T. An expression database for roots of the model legume Medicago truncatula under salt stress. BMC Genomics 10, 517. https://doi.org/10.1186/1471-2164-10-517 (2009).

45. Liu, Y. M., Xiong, Y. & Bassham, D. C. Autophagy is required for tolerance of drought and salt stress in plants. Plant Cell 126, 30200 (2002).

46. Rana, R. M., Dong, S., Ali, Z., Huang, J. & Zhang, H. S. Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones activated autophagy in transgenic apple. Plant Cell Environ. 36, 814. https://doi.org/10.1111/j.1365-313X.2012.04084.x (2012).

47. Zhai, Y. et al. Dehydrin MtCAS31 promotes autophagic degradation under drought stress. Autophagy, a conserved mechanism for protein degradation, responds to heat, and other abiotic stresses in Capsicum annuum L. Plant Physiol. 173, 3073–3085. https://doi.org/10.1104/pp.117.307333 (2017).

48. Zhai, Y. et al. Mitochondrial alternative oxidase-dependent autophagy involved in ethylene-mediated drought tolerance in Solanum lycopersicum. Plant Biotechnol. J. 16, 2063–2076. https://doi.org/10.1111/pbi.12399 (2018).

49. Sun, X. et al. Improvement of drought tolerance by overexpressing MdATG18a is mediated by modified antioxidant system and activated autophagy in transgenic apple. Plant Biotechnol. J. 16, 545–557. https://doi.org/10.1111/pbi.12794 (2018).

50. Li, B., Liu, G., Wang, Y., Wei, Y. & Shi, H. Overexpression of banana ATG8f modulates drought stress resistance in Brassica napus. Plant Cell Environ. 31, 111052. https://doi.org/10.1111/pce.13402 (2018).

51. Zhou, J. et al. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet. 9, e1003196. https://doi.org/10.1371/journal.pgen.1003196 (2013).

52. Wang, P., Sun, X., Jia, X. & Ma, F. Apple autophagy-related protein MdATG5s afford tolerance to multiple abiotic stresses. Plant Sci. 247, 51–64. https://doi.org/10.1016/j.plantsci.2016.12.003 (2017).

53. Li, B., Gao, Q., Liu, G., Zhang, J. & Niu, D. Overexpression of apple ATG6G10a and ATG6G10b improves drought tolerance in Arabidopsis. Plant Sci. 194, 917–927. https://doi.org/10.1016/j.plantsci.2013.07.003 (2013).

54. Xie, H. et al. MDA185 induces drought tolerance by improving the antioxidant defenses and promoting starch degradation in apple. Plant Cell Environ. 31, 3676–3687. https://doi.org/10.1111/j.1365-313X.2012.04084.x (2012).

55. Jia, X. et al. MdATG5s induces drought tolerance by improving the antioxidant defenses and promoting starch degradation in apple. Plant Cell Environ. 31, 3676–3687. https://doi.org/10.1111/j.1365-313X.2012.04084.x (2012).

56. Zhai, Y. et al. Dehydrin MtCAS31 promotes autophagic degradation under drought stress. Autophagy 16, 862–877. https://doi.org/10.1002/ajp.22656 (2020).
Acknowledgements
This work was supported by Natural Science Foundation of Guangdong Province (2021A1515012148), and National Natural Science Foundation of China (31700236).

Author contributions
L.C. conceived and designed the study. M.Y., L.W., and C.C. performed bioinformatics analysis. X.G. and C.L. prepared all the figures and tables. M.Y., W.H., and L.C. wrote the paper. All the authors have read and agreed to the published version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-02239-6.

Correspondence and requests for materials should be addressed to W.H. or L.C.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021