Ultrafast spot-profile LEED of a charge-density wave phase transition

Cite as: Appl. Phys. Lett. 118, 221603 (2021); https://doi.org/10.1063/5.0052603
Submitted: 31 March 2021 • Accepted: 18 May 2021 • Published Online: 03 June 2021

G. Storeck, K. Rossnagel and C. Ropers

COLLECTIONS

Paper published as part of the special topic on Charge-Density-Wave Quantum Materials and Devices

ARTICLES YOU MAY BE INTERESTED IN

Structural dynamics of incommensurate charge-density waves tracked by ultrafast low-energy electron diffraction
Structural Dynamics 7, 034304 (2020); https://doi.org/10.1063/4.0000018

Chiral charge density waves induced by Ti-doping in 1T-TaS₂
Applied Physics Letters 118, 213105 (2021); https://doi.org/10.1063/5.0052240

Light-induced reorganization of charge density wave stacking in 1T-TaS₂
Applied Physics Letters 118, 253104 (2021); https://doi.org/10.1063/5.0053824

Interfaces: how they make or break a nanodevice

Zurich Instruments
Ultrafast spot-profile LEED of a charge-density wave phase transition

Cite as: Appl. Phys. Lett. 118, 221603 (2021); doi: 10.1063/5.0052603
Submitted: 31 March 2021 · Accepted: 18 May 2021 · Published Online: 3 June 2021

G. Storeck,1,2 K. Rossnagel,3,4 and C. Ropers1,2,a)

AFFILIATIONS
14th Physical Institute, Solids and Nanostructures, University of Göttingen, Göttingen 37077, Germany
2Max Planck Institute for Biophysical Chemistry (MPIBPC), Göttingen, Am Fassberg 11, 37077 Göttingen, Germany
3Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
4Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany

Note: This paper is part of the APL Special Collection on Charge-Density-Wave Quantum Materials and Devices.

Author to whom correspondence should be addressed: claus.ropers@mpibpc.mpg.de

ABSTRACT
We investigate the optically driven phase transition between two charge-density wave (CDW) states at the surface of tantalum disulfide (1T-TaS2). Specifically, we employ a recently improved ultrafast low-energy electron diffraction setup to study the transition from the nearly commensurate to the incommensurate (IC) CDW state. The experimental setup allows us to follow transient changes in the diffraction pattern with high momentum resolution and 1-ps electron pulse duration. In particular, we trace the diffraction intensities and spot profiles of the crystal lattice, including main and CDW superstructure peaks, as well as the diffuse background. Harnessing the enhanced data quality of the instrumental upgrade, we follow the laser-induced transient disorder in the system and perform a spot-profile analysis that yields a substantial IC-peak broadening for very short time scales followed by a prolonged spot narrowing.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0052603

Charge-density waves (CDW) emerge in materials with considerable anisotropy and electron-lattice interaction.1 As a result, CDW materials undergo a symmetry-breaking phase transition into a new ground state that is characterized by a modulation of the charge density, a periodic distortion of the crystal lattice (PLD), and the formation of an electronic gap. Many studies investigated the interdependence of electronic and lattice degrees of freedom and the characteristic collective modes2–5 in the time domain using ultrafast techniques. For example, these works focused on the initial gap quench followed by coherent amplitude oscillations,6–11 the dynamics of the periodic lattice distortion via diffractive techniques,12–16 and the emergence as well as the transition between different CDW states.17–23 An important aspect is the amount of disorder in the system introduced by CDW fluctuations and dislocation-type topological defects after photo-excitation.16,24–27 Sensitive structural probes are ideal tools to capture this disorder as they provide access to transient changes of long-range order.

In this work, we study the ultrafast structural dynamics at the surface of 1T-TaS2 using ultrafast low-energy electron diffraction (ULEED). Specifically, we revisited the phase transition between the NC and IC CDW states, which we investigated previously,22,23 and provide data from a recently upgraded experimental setup. We employ ULEED to trace the optically induced phase transition and the subsequent relaxation dynamics. High momentum resolution at the 1-ps timescale combined with large scattering efficiency yields clear time-dependent traces of peak intensities and spot profiles. This allows us to track the energy relaxation pathways in the presence of transient structural disorder in the system.

The ULEED technique is part of a wider family of stroboscopic pump-probe schemes which provide access to laser-induced nonequilibrium dynamics on surfaces1–5,22,28,29 or thin films.30 In our setup, the in situ cleaved sample is optically excited by a fs-laser pulse (wavelength 1030 nm center wavelength, 200 fs duration, 100 kHz repetition rate, 100 μm pump spot diameter) and probed by a low-energy electron pulse (100 eV electron energy, 1 ps duration, 10 μm electron beam size) at a controlled time delay Δt [Fig. 1(b)]. By sweeping the pump-probe delay, we record a series of diffraction patterns mapping the entire dynamical process (see the supplementary material for a movie file). The time-dependent redistribution of electron diffraction intensity gives a detailed insight into the excitation and relaxation pathways of the structure. In order to achieve ultrafast temporal
resolution at such electron energies, the development of a miniaturized photoelectron source, the microgun16,31 [Fig. 1(a), left], was an essential element, providing 1 ps electron pulses at a 150 m working distance in the sample plane [Fig. 1(a), right].

Tantalum disulfide is a van der Waals material that consists of weakly interacting S-Ta-S stacks [Fig. 1(d)]. In the 1T polytype, the sulfur atoms are octahedrally coordinated around the sulfur atoms33 [Fig. 1(d)]. The material properties of 1T-TaS$_2$ are known to be multi-faceted, featuring charge order,34,35 electron correlation effects,36–38 orbital texture,39,40 and different types of stacking order.41–43 Multiple temperature-dependent charge-density wave states34 [Fig. 1(c)] emerge at a temperature of below 543 K, each introducing a characteristic superstructure in the system. The orientation and size of the corresponding CDW unit cell change with temperature and lead to CDW phases of different symmetry, namely the incommensurate (IC), trigonal and commensurate phase (C) [Fig. 1(c)].44 In this work, we focus on the NC and IC phases whose unit cells are rotated by approximately 12° with respect to each other.21,22 Each CDW phase features a characteristic PLD which is probed via electron diffraction. Moreover, it is important to note that the PLD affects both the displacements of tantalum and sulfur atoms, however, to a different extent concerning the respective directions and magnitudes2,25 [Fig. 1(c)]. Commonly the prominent in-plane displacements of tantalum atoms are depicted, leading to clusters of 13 atoms, called “Star of David” formations (NC and C phase).33 For the sulfur atoms, however, the situation is reversed, since the out-of-plane displacements are significantly larger than the in-plane displacements2,32 [Figs. 1(e) and 1(f)]. This is important because, at the applied electron energy of 100 eV, ULEED primarily probes the lighter sulfur atoms and is also more sensitive to out-of-plane changes due to diffraction in backscattering.45

In the following, we show the experimental results of the ultrafast structural NC-IC phase transition at the surface of 1T-TaS$_2$ employing ULEED. The recorded diffraction patterns in both phases exhibit bright main lattice peaks that are each surrounded by six first-order CDW superlattice peaks, labeled by $Q_{\text{NC}} = IC$ [Figs. 2(a) and 2(b)]. In the NC phase, also higher-order spots are visible pointing to a stronger and more anharmonic structural modulation.46 By pumping the room-temperature phase using a fs-laser pulse (2.7 mJ/cm2 fluence), NC peaks are strongly suppressed within a few picoseconds, while IC spots appear on the line connecting main lattice peaks corresponding to the unit cell rotation of approximately 12° [Figs. 2(a) and 2(b)]. Figure 2(c) shows in more detail the time traces for spot intensities and the diffuse background. The fast drop of NC spot intensity (blue line) is paralleled by a transient increase in the main lattice peak (black line), and a rapid increase in diffuse background (gray line) and IC spot intensity (red line). The increase in the main lattice peak intensity indicates the transient loss of CDW order driving the system toward the high-symmetry metallic phase.12,16,27 For longer time delays, the main lattice intensity (black) mirrors the diffuse background curve.
which gives insight into the relaxation path of structural modes. Similar observations were made for the laser-induced structural dynamics starting from the IC state and in the absence of a phase transition. The main lattice and the diffuse background show a trend reversal after approximately 100 ps indicating Debye–Waller-type suppression and subsequent cooling of the system. In contrast, the IC spot intensity (red) exhibits a continuous increase over the entire delay range of up to 1.5 ns. With the given repetition rate of 100 kHz, the system returns to its initial state within 10 s, the time between two pump cycles. Optically pumping the sample at this repetition rate results in a minor cumulative increase in the sample’s base temperature by a few Kelvin. Figures 2(d) and 2(f) show the time-dependent spot profiles and cutouts for several time delays. IC spot analysis (see methods in the supplementary material) yields azimuthal (black) and radial (gray) widths [Fig. 2(e)]. Normalized to long delay times, the spot widths show a significant increase for early times, pointing to a substantial disorder in the system, followed by a steady narrowing over longer time scales. While this agrees with our previous observations, we additionally find slightly different relaxations for the correlations in radial and azimuthal direction. This potentially points to an intermediate transient hexatic phase in the material which is defined by a specific translational and orientational order of the 2D CDW lattice. In impurity-doped NbTa1−xS2, a hexatic phase emerges and leads to a significant azimuthal broadening in reciprocal space.

In order to describe the dynamics in the incommensurate phase, we proposed a model based on the kinetics of dislocation-like CDW defects. After photoexcitation, a high density of phase singularities of the CDW order parameter leads to strong disorder and substantially broadened diffraction peaks. Incommensurate long-range order emerges over time as pairs of CDW defects annihilate. From pulse-to-pulse, the generation and annihilation process of CDW defects take different realizations precluding an exact microscopic reproducibility. The ensemble dynamics and transient changes of crystalline symmetry, however, are consistent and reversible. In the pump-probe configuration, over many pulses, we form the incoherent sum over many realizations, measuring a pattern with regular diffraction peaks and well-defined widths.

In conclusion, we applied our improved ULEED setup to the surface of 1T-TaS2 in order to study the ultrafast structural dynamics of the NC-IC CDW phase transition. With high momentum resolution at the 1 ps time regime, diffraction spot analysis yields substantial broadening of IC peaks indicating strong disorder in the system after the phase transition. Referring to our previous study, we attribute this to the kinetics of dislocation-like CDW defects. More generally, ULEED technique facilitates ultrafast structural probing of monolayers and superstructures and, due to the backscattering geometry, is particularly sensitive to out-of-plane displacements. In the future, the approach will allow for the investigation of a wide range of low-dimensional non-equilibrium phenomena, including topological phase transitions, the formation of light-induced metastable phases, and coherently controlled surface transformations.

See the supplementary material for a methods section and a movie of the measured diffraction images showing the structural phase transition between the NC and IC CDW state and emerging broadening of CDW peaks.

This work was funded by the European Research Council (ERC Starting Grant “ULEED,” ID: 639119) and the Deutsche Forschungsgemeinschaft (SFB-1073, Project No. A05). We thank K. Hanff for help with sample preparation.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES

1. G. Gruner, *Density Waves in Solids*, Frontiers in Physics (Addison-Wesley Pub. Co., Advanced Book Program, Reading, MA, 1994), Vol. 89.
2. A. W. Overhauser, "Observability of charge-density waves by neutron diffraction," *Phys. Rev. B*, 3, 3173 (1971).
3. P. Lee, T. Rice, and P. Anderson, "Conductivity from charge or spin density waves," *Solid State Commun.* 14, 703–709 (1974).
4. W. L. McMillan, "Collective modes of a charge-density wave near the lock-in transition," *Phys. Rev. B*, 16, 4655–4658 (1977).
5. G. F. Giuliani and A. W. Overhauser, "Structure factor of a charge-density wave," *Phys. Rev. B*, 23, 3737–3743 (1981).
6. Demas, M. Biljakovic, and D. Mihailovic, "Single Particle and collective excitations in the one-dimensional charge density wave solid K0.3MoO3 probed in real time by femtosecond spectroscopy," *Phys. Rev. Lett.*, 83, 800–803 (1999).
7. H. Yasui, M. B. Brey, and T. H. Ohkubo, "Femtosecond spectroscopy of a charge-density wave in the Mott insulator 1T-TaS2," *Phys. Rev. Lett.*, 85, 187401 (2010).
8. Perez, P. A. Loukakos, M. Lisowski, U. Bovensiepen, M. Wolf, H. Berger, S. Biermann, and A. Georges, "Femtosecond dynamics of electronic states in the Mott insulator 1T-TaS2 by time resolved photoelectron spectroscopy," *New J. Phys.*, 10, 053019 (2008).
9. H. Y. Liu, I. Gierz, J. C. Petersen, S. Kaiser, A. Simoncig, A. L. Cavalleri, C. Cacho, L. E. C. Turcu, S. Springate, F. Frassetto, L. Pollet, S. S. Dhesi, Z. A. Xu, T. Cuk, R. Merlin, and A. Cavalleri, "Possible observation of parametrically amplified coherent phonons in K0.3MoO3 using time-resolved extreme-ultraviolet angle-resolved photoemission spectroscopy," *Phys. Rev. B*, 88, 045104 (2013).
10. J. C. Petersen, S. Kaiser, N. Dean, A. Simoncig, H. Y. Liu, A. L. Cavalleri, C. Cacho, Ian L. C. Turcu, S. Springate, F. Frassetto, L. Pollet, S. S. Dhesi, H. Berger, and A. Cavalleri, "Clocking the melting transition of charge and lattice order in 1T-TaS2 with ultrafast extreme-ultraviolet angle-resolved photoemission spectroscopy," *Phys. Rev. Lett.*, 107, 177402 (2011).
11. P. Perez, P. A. Loukakos, M. Lisowski, U. Bovensiepen, H. Berger, S. Biermann, P. S. Cornaglia, A. Georges, and M. Wolf, "Time evolution of the electronic structure of 1T-TaS2 through the insulator-metal transition," *Phys. Rev. Lett.*, 97, 067402 (2006).
12. M. Eichberger, H. Schafer, M. Krumova, M. Beyer, J. Demsar, H. Berger, G. Moriena, G. Scaini, and R. J. D. Miller, "Snapshots of cooperative atomic motions in the optical suppression of charge density waves," *Nature* 468, 799–802 (2010).
13. N. Erasmus, M. Eichberger, K. Haupt, I. Bodohov, G. Kassier, R. Birnur, H. Berger, J. Demsar, and H. Schoerwar, "Ultrafast dynamics of charge density waves in 4P-TaSe2 probed by femtosecond electron diffraction," *Phys. Rev. Lett.*, 109, 167402 (2012).
14. C. Lauth, L. Cario, B. Corraze, E. Janod, T. Huber, G. Lantz, S. Boulafta, A. Ferrer, S. Mariager, J. Johnson, S. Gruebe, A. Lubcke, G. Ingold, P. Beaud, S. Johnson, and S. Ravy, "X-ray study of femtosecond structural dynamics in the 2D charge density wave compound 1T-TaS2," *Physica B*, 460, 100–104 (2015).
15. A. R. T. Van, Z. Tand, S. D. Mahanti, K. Chang, C. Y. Ruan, C. D. Malliakas, and M. G. Kanatzidis, "Structure dynamics of two-dimensional charge density waves in CeTe3 investigated by ultrafast electron crystallography," *Phys. Rev. B*, 87, 075145 (2012).
16. G. Score, J. G. Horstmann, T. Diekmann, S. Vogelgesang, G. von Witte, S. V. Yalunin, K. Rossnagel, and C. Ropers, "Structure and nonequilibrium heat transfer of a physisorbed molecular layer on graphene," *Adv. Mater.* 23, 100473 (2020).
17. G. Score, J. G. Horstmann, H. Bockmann, B. Wit, F. urtz, G. Storeck, and C. Ropers, "Coherent control of a surface structural phase transition," *Nature* 583, 232–236 (2020).
18. M. Czudek, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schafer, and C. Ropers, "Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics," *Science* 345, 200–204 (2014).
19. G. Storeck, S. Vogelgesang, M. Sivis, S. Schafer, and C. Ropers, "Nonotip-based photomask micron for ultrafast LEED," *Struct. Dyn.* 4, 040420 (2017).
20. J. A. Spickermann, J. L. de Boer, A. Meetsma, G. A. Wiegens, and S. van Smalau, "X-ray-crystal structure refinement of the nearly commensurate phase of 1T-TaS2 in (3 x 2)-dimensional superspace," *Phys. Rev. B*, 56, 15735–15767 (1997).
21. K. Rossnagel, "On the origin of charge-density waves in select layered transition-metal dichalcogenides," *J. Phys.: Condens. Matter* 23, 213001 (2011).
22. C. B. Scruby, P. M. Williams, and G. S. Parry, "The role of charge density waves in structural transformations of 1T-TaS2," *Philos. Mag.* 51, 255–274 (1985).
23. W. Johnson, F. D. Salvo, and S. Mahajan, "Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides," *Adv. Phys.* 24, 117–201 (1975).
24. P. Fazekas and E. Tosatti, "Electrical, structural and magnetic properties of pure and doped 1T-TaS2," *Philos. Mag.* 59, 229–244 (1979).
25. P. Fazekas and E. Tosatti, "Charge carrier localization in pure and doped 1T-TaS2," *Physica B*, 99, 183–187 (1980).
26. B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tutuli, "From Mott state to superconductivity in 1T-TaS2," *Nat. Mater.* 7, 960–965 (2008).
27. J. Ritschel, J. Trincausk, K. Koepernik, B. Buchner, M. v. Zimmermann, H. Berger, Y. J. Joe, P. Abbamonte, and J. Geck, "Orbital textures and charge density waves in transition metal dichalcogenides," *Nat. Phys.* 11, 328–331 (2015).
40. Y. Chen, W. Ruan, M. Wu, S. Tang, H. Ryu, H.-Z. Tsai, R. Lee, S. Kahn, F. Liou, C. Jia, O. R. Albertini, H. Xiong, T. Jia, Z. Liu, J. A. Sobota, A. Y. Liu, J. E. Moore, Z.-X. Shen, S. G. Louie, S.-K. Mo, and M. F. Crommie, “Strong correlations and orbital texture in single-layer 1T-TaSe$_2$,” Nat. Phys. 16, 218–224 (2020).
41. K. Nakanishi and H. Shiba, “Theory of three-dimensional orderings of charge-density waves in 1T-TaX$_2$ (X: S, Se),” J. Phys. Soc. Jpn. 53, 1103–1113 (1984).
42. T. Ritschel, H. Berger, and J. Geck, “Stacking-driven gap formation in layered 1T-TaS$_2$,” Phys. Rev. B 98, 195134 (2018).
43. G. von Witte, T. Kißlinger, J. G. Horstmann, K. Rossnagel, M. A. Schneider, C. Ropers, and L. Hammer, “Surface structure and stacking of the commensurate (13x13)R13.9 charge density wave phase of 1T-TaS$_2$ (0001),” Phys. Rev. B 100, 155407 (2019).
44. R. E. Thomson, B. Burk, A. Zettl, and J. Clarke, “Scanning tunneling microscopy of the charge-density-wave structure in 1T-TaS$_2$,” Phys. Rev. B 49, 16889 (1994).
45. M. A. Van Hove, W. H. Weinberg, and C.-M. Chan, Low-Energy Electron Diffraction: Experiment, Theory and Surface Structure Determination, Softcover Reprint of the Hardcover, Springer Series in Surface Sciences (Springer, Berlin, 1986).
46. K. Nakanishi and H. Shiba, “Domain-like incommensurate charge-density-wave states and the first-order incommensurate-commensurate transitions in layered tantalum dichalcogenides. I. 1T-polytype,” J. Phys. Soc. Jpn. 43, 1839–1847 (1977).
47. H. Dai and C. M. Lieber, “Solid-hexatic-liquid phases in two-dimensional charge-density waves,” Phys. Rev. Lett. 69, 1576–1579 (1992).
48. R. R. Peterson and V. M. Kaganer, “Diffraction line profile of a two-dimensional hexatic,” Phys. Rev. Lett. 73, 102–105 (1994).
49. J. M. Kosterlitz, “Ordering, metastability and phase transitions in two-dimensional systems,” J. Phys. C 6, 1181–1203 (1973).
50. L. Stojchevska, I. Vaskivskyi, T. Mertelj, P. Kusar, D. Svetin, S. Brazovskii, and D. Mihailovic, “Ultrafast switching to a stable hidden quantum state in an electronic crystal,” Science 344, 177–180 (2014).