Clustering using skewed multivariate heavy tailed distributions with flexible tail behaviour

Darren Wraith, Florence Forbes
INRIA, Laboratoire Jean Kuntzman, Mistis team
655 avenue de l’Europe, Montbonnot
38334 Saint-Ismier Cedex, France

February 23, 2014

Abstract

The family of location and scale mixtures of Gaussians has the ability
to generate a number of flexible distributional forms. It nests as particu-
lar cases several important asymmetric distributions like the Generalised
Hyperbolic distribution. The Generalised Hyperbolic distribution in turn
nests many other well known distributions such as the Normal Inverse
Gaussian (NIG) whose practical relevance has been widely documented
in the literature. In a multivariate setting, we propose to extend the stan-
dard location and scale mixture concept into a so called multiple scaled
framework which has the advantage of allowing different tail and skewness
behaviours in each dimension of the variable space with arbitrary correla-
tion between dimensions. Estimation of the parameters is provided via an
EM algorithm with a particular focus on NIG distributions. Inference is
then extended to cover the case of mixtures of such multiple scaled distri-
butions for application to clustering. Assessments on simulated and real
data confirm the gain in degrees of freedom and flexibility in modelling
data of varying tail behaviour and directional shape.

1 Introduction

A popular approach to identify groups or clusters within data is via a paramet-
ric finite mixture model (Fruwirth-Schnatter, 2006). While the vast majority
of work on such mixtures has been based on Gaussian mixture models (see e.g.
Fraley and Raftery, 2002), in many applications the tails of Gaussian distributions
are shorter than appropriate and the Gaussian shape is not suitable for
highly asymmetric data. A natural extension to the Gaussian case is to con-
sider families of distributions which can be represented as location and scale
Gaussian mixtures of the form,

\[p(y; \mu, \Sigma, \beta, \theta) = \int_0^\infty N_M(y; \mu + w\beta \Sigma, w\Sigma) f_W(w; \theta) \, dw, \]

where \(N_M(., \mu + w\beta \Sigma, w\Sigma) \) denotes the \(M \)-dimensional Gaussian distribution
with mean \(\mu + w\beta \Sigma \) and covariance \(w\Sigma \) and \(f_W \) is the probability distribution
of a univariate positive variable W referred to hereafter as the weight variable. The parameter β is an additional M-dimensional vector parameter for skewness. When $\beta = 0$ and W^{-1} follows a Gamma distribution $\mathcal{G}(\nu/2, \nu/2)$ \footnote{The Gamma probability density function is $\mathcal{G}(w; \alpha, \beta) = \frac{\beta^\alpha w^{\alpha-1}}{\Gamma(\alpha)} \exp(-\beta w)$} i.e. f_W is an Inverse Gamma distribution $\text{inv}\mathcal{G}(\nu/2, \nu/2)$ where ν denotes the degrees of freedom, we recover the well known multivariate t-distribution \cite{Kotz2004}. The weight variable W in this case effectively acts to govern the tail behaviour of the distributional form from light tails ($\nu \to \infty$) to heavy tails ($\nu \to 0$) depending on the value of ν (a form of robust tuning parameter).

In the more general case of, for example, allowing $\beta \neq 0$ and f_W being a Generalised Inverse Gaussian (GIG) distribution, we recover the family of Generalised Hyperbolic (GH) distributions \cite{Barndorff-Nielsen1997} which is able to represent a particularly large number of distributional forms. The GIG distribution depends on three parameters and is given by

$$f_W(w; \lambda, \gamma, \delta) = \frac{\gamma \delta}{2K_\lambda(\delta \gamma)} w^{-\lambda-1} 2^{-\lambda/2} \exp(-\frac{1}{2} (\delta^2/w + \gamma^2 w)),$$

where $K_r(x)$ is the modified Bessel function of the third kind of order r evaluated at x.\footnote{The modified Bessel function (see Appendix in Jorgensen \cite{Jorgensen1982}) is $K_r(x) = \frac{1}{2 \pi} \int_0^\infty y^{-\frac{r}{2}} \exp(-\frac{1}{2} x (y + y^{-1})) \, dy$.} Depending on the parameter choice for the GIG, special cases of the GH family include: the multivariate GH distribution with hyperbolic margins ($\lambda = 1$) \cite{Schmidt2006}; the Normal Inverse Gaussian ($\lambda = -1/2$) distribution \cite{Barndorff-Nielsen1982}; the multivariate hyperbolic ($\lambda = M+1/2$) distribution \cite{Barndorff-Nielsen1977}; the hyperboloid ($\lambda = 0$) distribution \cite{Jensen1981}; the hyperbolic skew-t ($\lambda = -\nu, \gamma = 0$) distribution \cite{Aas2005}; and the Normal Gamma ($\lambda > 0, \mu = 0, \delta = 0$) distribution \cite{Griffin2010} amongst others. For applied problems, the most popular of these forms appears to be the Normal Inverse Gaussian (NIG) distribution \cite{Barndorff-Nielsen1982, Protassov2004, Karlis2009}. It has been used extensively in financial applications, see Protassov \cite{Protassov2004}, Barndorff-Nielsen \cite{Barndorff-Nielsen1997} or Aas et al. \cite{Aas2005}, Aas and Hobaek Haff \cite{Aas2006} and references therein, but also in geoscience and signal processing \cite{Gjerde2011, Oigard2014}.

Another popular distributional form allowing for skewness and heavy or light tails includes different forms of the multivariate skew-t like the proposals of Sahu et al. \cite{Sahu2003}; Lee and McLachlan \cite{Lee2012}; Liu \cite{Liu2010} for skew-t distributions where skewness and covariance are separated and Azzalini and Dalla Valle \cite{Azzalini1996}; Basso et al. \cite{Basso2010}; Pyne et al. \cite{Pyne2009} for other formulations that do not share this separation property. Most of these distributional forms are also able to be represented as location and scale Gaussian mixtures.

Although the above approaches provide for great flexibility in modelling data of highly asymmetric and heavy tailed form, they assume f_W to be a univariate distribution and hence each dimension is governed by the same amount of tailweight. There have been various approaches to address this issue in the statistics literature for both symmetric and asymmetric distributional forms. In his work, Jones \cite{Jones2002} proposes a dependent bivariate t-distribution with
marginals of different degrees of freedom but the tractability of the extension to the multivariate case is unclear. Other distributions have been presented in chapters 4 and 5 of Kotz and Nadarajah (2004) but their formulations tend to be appreciably more complicated, often already in the expression of their probability density function. Increasingly, there has been much research on copula approaches to account for flexible distributional forms but the choice as to which one to use in this case and the applicability to (even) moderate dimensions is also not clear (Daul et al., 2003; Giordani et al., 2008; Demarta and McNeil, 2005).

In general the papers take various approaches whose relationships have been characterized in the bivariate case by Shaw and Lee (2008). However, most of these approaches suffer either from the non-existence of a closed-form pdf or from a difficult generalization to more than two dimensions. An alternative approach (Schmidt et al., 2006), which takes advantage of the property that Generalised Hyperbolic distributions are closed under affine-linear transformations, derives independent GH marginals but estimation of parameters appears to be restricted to density estimation, and not formally generalisable to estimation settings for a broad range of applications (e.g. clustering, regression, etc.). A more general approach outside of the GH distribution setting is outlined in (Ferreira and Steel, 2007b,a) with a particular focus on regression models using a Bayesian framework.

In this paper, we show that the location and scale mixture representation can be further explored and propose a so-called multiple scaled framework that is considerably simpler than those previously proposed with distributions exhibiting interesting properties. The approach builds upon, and develops further, previous work on scale mixture of Gaussians (Ferreira and Wraith, 2013) where the focus was on symmetric multiple scaled heavy tailed distributions. In this paper, we consider the more general case of including location in addition to scale in the multiple scaled framework. This generalisation provides a much wider variety of distributional forms, allowing different tail and skewness behavior in each dimension of the variable space with arbitrary correlation between dimensions. The key elements of the approach are similar to that in Forbes and Wraith (2013). The introduction of multidimensional weights and a decomposition of the matrix Σ in (1) is used to facilitate estimation and also allows for arbitrary correlation between dimensions. This principle was illustrated in the Supplementary Materials (one-page Appendix B) of Forbes and Wraith (2013) with the example of the NIG distribution. However, no details were given on the properties, estimation and application of these new location and scale representations. The content of this paper is therefore entirely new. Using the Generalised Hyperbolic distribution as an example, we present the more general case of multiple scaled Generalised Hyperbolic distributions for which we provide a number of properties in Sections 2.2 to 2.4.

The paper is outlined as follows. In Section 2, further details of the GH distribution and the particular case of the NIG distribution are briefly outlined, followed by details of the proposed new family of multiple scaled GH (and NIG) distributions. In Section 3 we outline an approach for maximum likelihood estimation of the parameters for the multiple scaled NIG distribution via the EM algorithm. In Section 4 we explore the performance of the approach on several simulated and real data sets in the context of clustering. Section 5 concludes with a discussion and areas for further research.
2 Multiple scaled Generalised Hyperbolic distributions

In this section we outline further details of the standard (single weight) multivariate GH distribution (Sect. 2.1) and then the proposed multiple scaled GH distribution (Sect. 2.2 to 2.4). As the NIG distribution appears to be the most popular case of the GH family in applications we also outline further details of this distribution and its multiple scaled form which will be used in Section 4 to assess the performance on simulated and real datasets.

2.1 Multivariate Generalised Hyperbolic distribution

As mentioned previously the Generalised Hyperbolic distribution can be represented in terms of a location and scale Gaussian mixture. In the statistics literature, the representation is also often referred to as a normal mean-variance mixture. Using notation equivalent to that of Barndorff-Nielsen (1997) Section 7 and Protassov (2004), the multivariate GH density takes the following form

\[
p(y; \mu, \Sigma, \beta, \lambda, \gamma, \delta) = \frac{1}{(2\pi)^{-M/2} |\Sigma|^{-1/2} \alpha} \exp\left(-\frac{1}{2\alpha} q(y)\right) K_{M+1}^{\frac{-M}{2}}(q(y)\alpha) \]

where \(\lambda \geq 0\) and \(q(y)\) and \(\alpha\) are given by

\[
q(y)^2 = \delta^2 + (y - \mu)^T \Sigma^{-1} (y - \mu), \quad \gamma^2 = \alpha^2 - \beta^T \Sigma \beta \geq 0. \]

The parameters \(\beta\) and \(\mu\) are column vectors of length \(M (M \times 1\) vector). An alternative (hierarchical) representation of the multivariate GH distribution (which is useful for simulation) can be seen as,

\[
Y | W = w \sim N_M(\mu + w \Sigma \beta, w \Sigma) \quad W \sim GIG(\lambda, \gamma, \delta) \]

By setting \(\lambda = -1/2\) in the GIG distribution we recover the Inverse Gaussian (IG) distribution,

\[
f_W(w; \gamma, \delta) = \frac{\delta}{w^{3/2}} \sqrt{2\pi} \exp(-\frac{1}{2}(\delta^2/w + \gamma^2 w)) \]

which (when used as the mixing distribution) leads to the NIG distribution

\[
p(y; \mu, \Sigma, \beta, \gamma, \delta) = \frac{1}{(2\pi)^{-M/2} |\Sigma|^{-1/2} \alpha} \exp\left(-\frac{1}{2\alpha} q(y)\right) K_{M+1}^{\frac{-M}{2}}(q(y)\alpha) \]

where \(\lambda \geq 0\) and \(q(y)\) and \(\alpha\) are given by

\[
q(y)^2 = \delta^2 + (y - \mu)^T \Sigma^{-1} (y - \mu), \quad \gamma^2 = \alpha^2 - \beta^T \Sigma \beta \geq 0. \]
where α and q are defined as in definitions \([5]\) and \([11]\).

Using the parameterisation of \([\text{Barndorff-Nielsen, 1997}]\), an identification problem arises as the distributions $\mathcal{G}\mathcal{H}(\mu, \Sigma, \beta, \lambda, \gamma, \delta)$ and $\mathcal{G}\mathcal{H}(\mu, k^2 \Sigma, \beta, \lambda, k\gamma, \delta/k)$ are identical for any $k > 0$. For the estimation of parameters, this problem can be solved by constraining the determinant of Σ to be 1.

2.2 Multiple Scaled Generalised Hyperbolic distribution (MSGH)

As mentioned in the Introduction, most of the work on multivariate location and scale mixture of Gaussians has focused on studying different choices for the weight distribution \(f_W\) (see e.g. \[\text{Eltoft et al., 2006}]\). Surprisingly, little work to our knowledge has focused on the dimension of the weight variable \(W\) which in most cases has been considered as univariate. The difficulty in considering multiple weights is the interpretation of such a multidimensional case. The extension we propose consists then of introducing the parameterization of the scale matrix into $\Sigma = DAD^T$, where D is the matrix of eigenvectors of Σ and A a diagonal matrix with the corresponding eigenvalues of Σ. The matrix D determines the orientation of the Gaussian and A its shape. Such a parameterization has the advantage to allow an intuitive incorporation of the multiple weight parameters. We propose to set the scaled covariance in (1) to $D\Delta_w AD^T$, where $\Delta_w = \text{diag}(w_1, \ldots, w_M)$ is the $M \times M$ diagonal matrix whose diagonal components are the weights \(\{w_1, \ldots, w_M\}\). The generalization we propose is therefore to define

$$p(y; \mu, D, A, \beta, \theta) = \int_0^\infty \cdots \int_0^\infty N_M(y; \mu + D\Delta_w AD^T \beta, D\Delta_w AD^T) \times f_w(w_1 \ldots w_M; \theta) \, dw_1 \ldots dw_M,$$ \(9\)

where $\Delta_w = \text{diag}(w_1, \ldots, w_M)$, and the weights are assumed to be independent i.e. $f_w(w_1, \ldots, w_M; \theta) = f_{W_1}(w_1; \theta_1) \ldots f_{W_M}(w_M; \theta_M)$. Equation \(9\) can be equivalently written as

$$p(y; \mu, D, A, \beta, \theta) = \prod_{m=1}^M \int_0^\infty N_1([D^T(y - \mu)]_m; w_mA_m[D^T \beta]_m, w_mA_m) \times f_{W_m}(w_m) \, dw_m,$$ \(10\)

where $[D^T(y - \mu)]_m$ denotes the mth component of vector $D^T(y - \mu)$ and A_m the mth diagonal element of the diagonal matrix A (or equivalently the mth eigenvalue of Σ).

If we set $f_{W_m}(w_m)$ to a GIG distribution $\mathcal{G}\mathcal{I}\mathcal{G}(w_m; \lambda_m, \gamma_m, \delta_m)$, it follows that our generalization (MSGH) of the multivariate GH distribution with $\lambda = [\lambda_1, \ldots, \lambda_M]^T$, $\gamma = [\gamma_1, \ldots, \gamma_M]^T$ and $\delta = [\delta_1, \ldots, \delta_M]^T$ as M-dimensional vec-
Identifiability can be guaranteed by adding that all modified Bessel function of order 1.

For example, in a bivariate setting potentially each dimension to follow a particular case of the GH distribution family.

In contrast to the standard multivariate GH distribution, constraining the determinant (or equivalently all \(\gamma_m\)’s) are equal. In practice, we will therefore assume that for all \(m = 1 \ldots M\), \(\delta_m = \delta\).

2.3 Identifiability issues

In contrast to the standard multivariate GH distribution, constraining the determinant of \(A\) to be 1 is not enough to ensure identifiability in the MSGH case. Indeed, assuming the determinant \(|A| = 1\), if we set \(A' = A'\delta', \gamma'\) so that \(A_m' = \frac{k^2_m A_m}{\delta_m'} = \frac{\delta_m}{k^2_m} A_m'\) and \(\gamma_m' = k_m \gamma_m\), for all values \(k_1 \ldots k_m\) satisfying \(\prod_{m=1}^M k^2_m = 1\), it follows that the determinant \(|A'| = 1\) and that the \(MSGH(y, \mu, D, A', \beta, \lambda, \gamma, \delta)\) and \(MSGH(y, \mu, D, A, \beta, \lambda, \gamma, \delta)\) expressions are equal. Identifiability can be guaranteed by adding that all \(\delta_m\)’s (or equivalently all \(\gamma_m\)’s) are equal. In practice, we will therefore assume that for all \(m = 1 \ldots M\), \(\delta_m = \delta\).
2.4 Some properties of the multiple scaled GH distributions

The MSGH distribution (as defined in (11)) provides for very flexible distributional forms. For illustration, in the bivariate case, several contour plots of the multiple scaled NIG (i.e. for all m, $\lambda_m = -1/2$) are shown in Figure 1 and compared with the standard multivariate NIG. In this two-dimensional setting, we use for D a parameterisation via an angle ξ so that $D_{11} = D_{22} = \cos \xi$ and $D_{21} = -D_{12} = \sin \xi$, where D_{md} denotes the (m,d) entry of matrix D. Similar to the standard NIG the parameter β measures asymmetry and its sign determines the type of skewness. For the standard NIG the contours are not necessarily elliptical and this is also the case with the multiple scaled NIG. In the case of the multiple scaled NIG additional flexibility is provided by allowing the parameter γ to be a vector of dimension M instead of a scalar. Keeping all δ_m's equal to the same δ, this vectorisation of γ effectively allows each dimension to be governed by different tail behaviour depending on the values of γ (see below).

Other multiple scaled and standard GH distributions are then also illustrated in Figure 1. As shown in Figure 1(g) and (i), changing λ_m values does not change much the shape of the contours but larger values of λ_m tend to produce heavier tails.

2.4.1 Mean and covariance matrix

Using the moments of the GIG distribution (see Jorgensen, 1982), i.e., if W follows a $GIG(\lambda, \gamma, \delta)$ distribution, for all $r \in \mathbb{Z}_+$,

$$E[W^r] = \left(\frac{\delta}{\gamma}\right)^r K_{\lambda+r}(\delta \gamma),$$

it follows from representation (12) that when Y follows a multiple scaled GH distribution,

$$E[Y] = E[E[Y|W]] = \mu + D E[\Delta W] A D^T \beta$$

$$= \mu + D \text{diag} \left(\frac{\delta_m K_{\lambda_m+1}(\delta_m \gamma_m)}{\gamma_m} \right) A D^T \beta,$$

where for short, we denoted by $\text{diag}(u_m)$ the M-dimensional diagonal matrix whose diagonal components are \{u$_1$, ..., u$_M$\}.

For the covariance matrix, we get,

$$\text{Var}[Y] = E[\text{Var}[Y|W]] + \text{Var}[E[Y|W]]$$

$$= D E[\Delta W] A D^T + D A \text{Var}[\Delta W] D^T \beta A D^T$$

$$= D \text{diag} \left(\frac{\delta_m A_m K_{\lambda_m+1}(\delta_m \gamma_m)}{\gamma_m} \right) \left(1 + \frac{\delta_m}{\gamma_m} [D^T \beta]_{im}^2 A_m \right)$$

$$\times \left(\frac{K_{\lambda_m+2}(\delta_m \gamma_m)}{K_{\lambda_m+1}(\delta_m \gamma_m)} - \frac{K_{\lambda_m+1}(\delta_m \gamma_m)}{K_{\lambda_m}(\delta_m \gamma_m)} \right) D^T$$

For details of the mean and variance for the multiple scaled NIG distribution see Appendix A.
Figure 1: Top and middle panels: contour plots of bivariate multiple scaled NIG $(\lambda_1 = \lambda_2 = -1/2)$ distributions (solid lines) with $\mu = [0, 0]^T$ and $\delta = \{1, 1\}$. The difference with the standard multivariate NIG (red dashed lines) is illustrated with univariate δ and γ values taken as the first respective component of the bivariate δ and γ. The (a-d) panels correspond to the same Σ built from $A = \text{diag}(3/2, 2/3)$ and $\xi = \pi/4$ with (a) $\beta = [2, 2]^T$, $\gamma = [1, 1]^T$, (b) $\beta = [0, 5]^T$, $\gamma = [2, 2]^T$, (c) $\beta = [0, -5]^T$, $\gamma = [2, 2]^T$ and (d) $\beta = [0, -5]^T$, $\gamma = [2, 10]^T$. The (e,f) panels correspond to $\Sigma = I_2$ with (e) $\beta = [-2, 2]^T$, $\gamma = [1, 1]^T$, (f) $\beta = [0, -5]^T$, $\gamma = [1, 1]^T$. Bottom panels: contour plots of various multiple scaled (solid lines) and standard (red dashed lines) GH distributions all with $\Sigma = I_2$, $\beta = [1, 1]^T$, $\gamma = [2, 2]^T$, $\delta = [1, 1]^T$ and (g) $\lambda = [-1/2, 2]^T$, (h) $\lambda = [-2, 2]^T$, (i) $\lambda = [2, -1/2]^T$.

8
Tail dependence is determined by the limit of\[\chi\]
slightly complicated form with some dependency on the skewness parameter
\(GH\) and the standard \(GH\) is that in the case of a diagonal scale matrix
\(\Sigma\)
distribution (Azzalini and Dalla Valle, 1996) do not share this separation property.

A quantile dependent measure of dependence with
\(\chi\) multivariate \(GH\) as given in (3),

This dependency is also present in the variance, recalled below, of the standard
\(t\) variance is provided in the case of the skew
\(Sahu\) et al. (2003). Interestingly, other parameterisations of the skew-

A notable difference between the covariance structure of the multiple scaled
\(GH\) and the standard \(GH\) is that in the case of a diagonal scale matrix \(\Sigma\),
variates of the multiple scaled \(GH\) are independent of each other. Interestingly,
this is not the case for the standard multivariate \(GH\) where the same latent
factor \(W\) is shared across dimensions, and this effectively acts to induce some
degree of dependency between dimensions (although they may be uncorrelated).

The tail behaviour of the multiple scaled \(GH\) is similar to the \(GH\) with
tails governed by a combined algebraic and exponential form equivalent to
\(\delta\)exp\((\gamma, m)\)\(\chi\) with \(\delta, \gamma, m\) tend to infinity with \(\delta, \gamma, m\) tending to 1, the distribution tends to the multivariate Gaussian \(N(\mu, \Sigma)\).

A difference between the tail behaviour of the \(GH\) and the multiple scaled
\(GH\) can also be seen in measures of the tail dependency (Coles et al., 1999).

In applications, strong tail dependence is important for modelling the
dependency/association of potentially extreme events (e.g. in finance, meteorology).

In Figure 2 we compare the tail dependency of the Gaussian, \(t\)-distribution,
standard \(GH\) and multiple scaled \(GH\) using a \(\chi(q)\) plot (Coles et al., 1999)
and simulated values from each distribution with
\(\mu = [0, 0]^T\), \(\Sigma = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}\)
equivalently \(A = diag(3/2, 1/2)\) and \(\xi = \pi/4\), \(\beta = [0, 0]^T\), \(\gamma = \delta = [1, 1]^T\) (or \(\nu = 1\) and \(\lambda = [-1/2, -1/2]^T\) (NIG). The function \(\chi(q)\) can be interpreted as a
quantile dependent measure of dependence with \(\chi(q) = 0\) indicating independence
and \(\chi(q) = 1\) perfect dependence (For further details see Appendix D).
Tail dependence is determined by the limit of \(\chi(q)\) when \(q\) tends to 1.

From Figure 3 we see that the multiple scaled NIG has stronger tail
dependence than the standard NIG. By comparison (and for reference), it is
Figure 2: Comparison of tail dependence using $\chi(q)$. X-axis: quantiles levels. Y-axis: Estimate of $\chi(q)$, dashed lines indicate the 95% confidence interval. Gaussian distribution (Green), Standard NIG distribution (black), Multiple scaled NIG distribution (blue), t distribution (Red)

well known that the Gaussian distribution has no tail dependence, and the t-distribution has a stronger tail dependence than both the Gaussian and the standard NIG.

2.4.2 Characteristic function

Denote by ϕ_Y the characteristic function of a random vector Y. It follows from (14) that, $\forall t \in \mathbb{R}^M$, $\phi_Y(t) = E[\exp(it^T Y)] = E[E[\exp(it^T Y)|W]] = \exp(it^T \mu) \prod_{m=1}^{M} \phi_{W_m}(u_m(t))$.

where $u_m(t) = \begin{bmatrix} A_1/2 D^T t \end{bmatrix}_m ([A^{1/2} D^T \beta]_m + \frac{i}{2} [A^{1/2} D^T t]_m)$ and ϕ_{W_m} is the characteristic function of W_m.

In the Generalised Hyperbolic case ϕ_{W_m} is the characteristic function of a 1-dimensional $\mathcal{GIG}(\lambda_m, \gamma_m, \delta_m)$ distribution, which is

$$\phi_{W_m}(t) = \left(\frac{\gamma_m}{\gamma_m - 2it} \right)^{\lambda_m} K_{\lambda_m} \left(\frac{\delta_m \sqrt{\gamma_m^2 - 2it}}{K_{\lambda_m}(\delta_m \gamma_m)} \right).$$ (19)

The particular case of the multiple scaled NIG follows easily by setting $\lambda_m = -1/2$, which permits a simpler form

$$\phi_{W_m}(t) = \exp(\delta_m \gamma_m - \delta_m \sqrt{\gamma_m^2 - 2it}).$$ (20)

The characteristic function is useful in practice for the computation of marginals as detailed in the next section.
Using (12), marginals are easy to sample from but computing their pdfs involves, in general, numerical integration. An efficient and simple algorithm to compute such marginal pdfs in most cases can be derived according to Shephard (1991). The derivation in Shephard (1991) is based on the inversion formula of the characteristic function which in the univariate case is:

\[
f_Y(y) = \frac{1}{2\pi} \int_0^\infty \left(\exp(iyt)\phi_Y(-t) + \exp(-ity)\phi_Y(t) \right) dt \quad (21)
\]

using the hermitian property of characteristic functions \(\phi_Y(t) = \overline{\phi_Y(t)}\) (the over line means the complex conjugate).

As an illustration, Figure 3 shows plots of the pdf of some 1-D marginals and a comparison with 1-D NIG distributions. From Figure 3 we can see that the marginals of the proposed multiple scaled NIG (MSNIG) distribution deviate slightly from the standard NIG distribution according to the specification of \(\Sigma\). The marginals of the MSNIG distribution are exactly 1-D standard NIG distributions in the diagonal scale matrix case.

For marginals of dimension greater than 1, we can also easily derive the characteristic function and use a simple multidimensional inversion formula. Let \(I\) be a subset of \(\{1, \ldots, M\}\) of size \(I\) and write \(Y_I = \{Y_m, m \in I\}\) and \(t_I = \{t_m, m \in I\}\). The characteristic function of the marginal variable \(Y_I\) is

\[
\phi_{Y_I}(t_I) = \prod_{m \in I} \exp(it_m\mu_m) \prod_{d=1}^M \phi_{W_d}(u_d(t_I)) , \quad (22)
\]
with \(u_d(t) = \left(\sum_{m \in I} t_m[D^{1/2}]_{nd} [A^{1/2} D^T \beta]_d \right) + \frac{i}{2} \left(\sum_{m \in I} t_m[D^{1/2}]_{nd} \right)^2. \)

It follows that the density of \(Y_I \) via the multidimensional inversion formula (see e.g. Shephard (1991)) is:

\[
 f_{Y_I}(y_I) = (2\pi)^{-I} \prod_{i=1}^{I} \int_{-\infty}^{\infty} \exp(-it_I^T y_I) \phi_{Y_I}(t_I) \, dt_I \tag{23}
\]

When \(I = 2 \), and decomposing \(\mathbb{R}^2 \) into four quadrants,

\[
 f_{Y_2}(y_I) = 2 (2\pi)^{-2} \int_{0}^{\infty} \int_{-\infty}^{\infty} \text{Re}(\exp(-it_2^T y_I)) \phi_{Y_2}(t_2) \, dt_2. \tag{24}
\]

This formula also generalizes easily in higher dimensions.

For illustration, Figure 4 shows the bivariate marginal \([Y_1, Y_2]^T \) for a 3 dimensional \([Y_1, Y_2, Y_3]^T \) following a MSNIG distribution with \(\mu = [0,0,0]^T \), \(\gamma = \delta = [3,3,3]^T \), \(\beta = [-6,2,2]^T \) and \(\Sigma \) so that its diagonal entries are 1 and other entries are 0.5. It is clear from the shape of the contours that this bivariate marginal takes a slightly different shape to a bivariate standard NIG distribution.

![Figure 4: \([Y_1, Y_2]^T\) distribution when \([Y_1, Y_2, Y_3]^T\) follows a multiple scaled trivariate NIG distribution with \(\mu = [0,0,0]^T\), \(\gamma = \delta = [3,3,3]^T\), \(\beta = [-6,2,2]^T\) and \(\Sigma\) so that its diagonal entries are 1 and other entries are 0.5. Contours are superimposed on points sampled from the distribution using equation (12).](image)

3 Maximum likelihood estimation of parameters

In this section, for illustration we outline an EM approach to estimate the parameters of the multiple scaled NIG distribution as it appears to be the most
popular case of the GH family used in applications especially in finance. As noted also by (Protassov, 2004; Barndorff-Nielsen, 1997), for the GH distribution it can be very difficult to show a significant difference between different values of λ due to the flatness of the likelihood and computational difficulties arise in some cases where the likelihood can be infinite. For these reasons we outline the particular case of allowing all λ_m’s to be fixed but we note that it is relatively straightforward to extend our proposed approach to the more general case. Also for identifiability reasons, we set all δ_m’s to the same δ value so that the parameters to estimate in the multiple scaled NIG case are $\Psi = \{\mu, D, A, \beta, \gamma, \delta\}$ with $|A| = 1$.

Estimation of most of the parameters for the multiple scaled NIG distribution is relatively straightforward but the separate estimation of D and A requires an additional minimization algorithm based on the Flury and Gautschi algorithm (Flury, 1984; Flury and Gautschi, 1986). Similar difficulties are also encountered in Gaussian model-based clustering (Celeux and Govaert, 1995) for some of the proposed models.

Let us consider an i.i.d sample $y = \{y_1, \ldots, y_N\}$ of the multiple scaled NIG distribution defined in (13). As in the standard NIG distribution case (Karlis, 2002), a convenient computational advantage of the EM approach is to view the weights as an additional missing variable W. The observed data y are seen as being incomplete and additional missing weight variables $W_1 \ldots W_N$ with for $i \in \{1 \ldots N\}$, $W_i = [W_i \ldots W_i M]^T$ are introduced. These weights are defined so that $\forall i \in \{1 \ldots N\}$:

$$Y_i | W_i = w_i \sim N_M(\mu + D \Delta_w, AD^T \beta, D \Delta_w, AD^T)$$

where $\Delta_w_i = \text{diag}(w_{i1}, \ldots, w_{iM})$.

As a way of circumventing the restriction that the determinant $|A| = 1$ in the M-step, representation (25) above can be rewritten equivalently as,

$$Y_i | W_i = w_i \sim N_M(\mu + D \Delta_w, \tilde{A} D^T \tilde{\beta}, D \Delta_w, \tilde{A} D^T)$$

where

$$\tilde{A} = \delta^2 A$$
$$\tilde{\beta} = D \tilde{A} D^T \beta$$
$$\tilde{\gamma} = \delta \gamma$$

and \tilde{A} is now a general (positive definite) diagonal matrix. Note that in the location term in the definition above (26), $D \Delta_w, D^T \tilde{\beta} = D \Delta_w, \tilde{A} D^T \beta$.

3.1 E step

At iteration (r) with $\psi^{(r)}$ being the current parameter value, the E-step leads to the computation for all $i = 1, \ldots, N$, of the missing variables posterior distributions $p(w_i | y_i; \psi^{(r)})$. It consists then of calculating $p(w_i | y_i; \psi^{(r)}) \propto p(y_i | w_i; \psi^{(r)}) p(w_i; \psi^{(r)})$ which can be shown (see Appendix of Karlis and Santourian).
2009) to follow a Generalised Inverse Gaussian distribution (see definition (2)).

In our case, and assuming the \(W_i \)'s are independent we have,

\[
p(w_i | y_i; \psi^{(r)}) = \prod_{m=1}^{M} \mathcal{GI}(w_{im}; -1, \hat{\alpha}_m^{(r)}, \phi_{im}^{(r)}),
\]

where

\[
\phi_{im}^{(r)} = \sqrt{1 + \frac{[D^{(r)T}(y_i - \mu^{(r)})]_m^2}{\tilde{A}_m^{(r)}}}
\]
\[
\hat{\alpha}_m^{(r)} = \sqrt{\tilde{\gamma}_m^{(r)^2} + \frac{[D^{(r)T}\tilde{\beta}^{(r)}]_m^2}{\tilde{A}_m^{(r)}}}
\]

As all moments of a Generalised Inverse Gaussian distribution exist (see [13]), it follows that we have closed form expressions for the following quantities needed in the E-step,

\[
s^{(r)}_{im} = E[W_{im} | y_i; \psi^{(r)}] = \frac{\phi_{im}^{(r)} K_0(\phi_{im}^{(r)} \hat{\alpha}_m^{(r)})}{\hat{\alpha}_m^{(r)} K_1(\phi_{im}^{(r)} \hat{\alpha}_m^{(r)})}
\]
\[
t^{(r)}_{im} = E[W_{im}^{-1} | y_i; \psi^{(r)}] = \frac{\hat{\alpha}_m^{(r)} K^{-2}_1(\phi_{im}^{(r)} \hat{\alpha}_m^{(r)})}{\phi_{im}^{(r)} K^{-1}_1(\phi_{im}^{(r)} \hat{\alpha}_m^{(r)})}.
\]

Note that equivalently \(K_{-1} = K_1 \) and \(K_{-2} = K_2 \). The Bessel function can be numerically evaluated in most statistical packages. All computations in this paper were undertaken using R [Team, 2011].

3.2 M step

For the updating of \(\psi \), the M-step consists of two independent steps for \(\mu, D, \tilde{A}, \tilde{\beta} \) and \(\tilde{\gamma} \),

\[
(\mu, D, \tilde{A}, \tilde{\beta})^{(r+1)} = \arg \max_{\mu, D, A, \beta} \sum_{i=1}^{N} E[\log p(y_i | W_i; \mu, D, \tilde{A}, \tilde{\beta}) | y_i, \psi^{(r)}] \quad (28)
\]
\[
= \arg \max_{\mu, D, A, \beta} \left\{ \sum_{i=1}^{N} -\frac{1}{2} \log |\tilde{A}| - \frac{1}{2} (y_i - \mu - DS^{(r)} D^T \tilde{\beta})^T \right.
\]
\[
\left. \times D \tilde{A}^{-1} T^{(r)} D^T (y_i - \mu - DS^{(r)} D^T \tilde{\beta}) \right\}
\]

and

\[
\tilde{\gamma}^{(r+1)} = \arg \max_{\tilde{\gamma}} \sum_{i=1}^{N} \sum_{m=1}^{M} E[\log p(W_{im} | \tilde{\gamma}_m, 1) | y_i, \psi^{(r)}] \quad (29)
\]
\[
= \arg \max_{\tilde{\gamma}} \left\{ \sum_{i=1}^{N} \sum_{m=1}^{M} \tilde{\gamma}_m - \frac{1}{2} \tilde{\gamma}_m^2 s^{(r)}_{im} \right\}
\]
where \(T_i^{(r)} = \text{diag}(t_{i1}, \ldots, t_{iM}) \) and \(S_i^{(r)} = \text{diag}(s_{i1}, \ldots, s_{iM}) \) and ignoring constants.

The optimization of these steps leads to the following update equations.

Updating \(\mu \). It follows from (28) that for fixed \(D \) and \(A \) (ignoring constants)

\[
\mu^{(r+1)} = \arg \min_{\mu} \left\{ \sum_{i=1}^{N} (y_i - \mu - DS_i^{(r)}D^T \beta)^T D \tilde{A}^{-1} T_i^{(r)} D^T (y_i - \mu - DS_i^{(r)}D^T \beta) \right\}
\]

which by fixing \(D \) to the current estimation \(D^{(r)} \), leads to

\[
\mu^{(r+1)} = \left(\sum_{i=1}^{N} T_i^{(r)} D^{(r)T} \right) \left(\sum_{i=1}^{N} S_i^{(r)} \right)^{-1} \left(\sum_{i=1}^{N} T_i^{(r)} D^{(r)T} Y_i \right) - \sum_{i=1}^{N} y_i \left(\sum_{i=1}^{N} S_i^{(r)} \right)^{-1}
\]

Updating \(\beta \). To update \(\beta \) we have to minimize the following quantity,

\[
\beta^{(r+1)} = \arg \min_{\beta} \left\{ \sum_{i=1}^{N} (y_i - \mu - DS_i^{(r)}D^T \beta)^T D \tilde{A}^{-1} T_i^{(r)} D^T (y_i - \mu - DS_i^{(r)}D^T \beta) \right\}
\]

which by fixing \(D \) and \(\mu \) to their current estimations \(D^{(r)} \) and \(\mu^{(r+1)} \), leads to

\[
\beta^{(r+1)} = D^{(r)T} \left(\sum_{i=1}^{N} S_i^{(r)} \right)^{-1} \sum_{i=1}^{N} (y_i - \mu^{(r+1)})
\]

Updating \(D \). Using the equality \(x^T S x = \text{trace}(Sxx^T) \) for any matrix \(S \), it follows that for fixed \(A \) and \(\mu \), \(D \) is obtained by minimizing

\[
D^{(r+1)} = \arg \min_{D} \left\{ \sum_{i=1}^{N} \text{trace}(D^{(r)T} \tilde{A}^{(r)-1} D^T V_i) + \sum_{i=1}^{N} \text{trace}(D S_i^{(r)} \tilde{A}^{(r)-1} D^T B_i) - 2 \sum_{i=1}^{N} \text{trace}(D \tilde{A}^{(r)-1} D^T C_i) \right\}
\]

where \(V_i = (y_i - \mu^{(r+1)})(y_i - \mu^{(r+1)})^T, B_i = \tilde{\beta}^{(r+1)T}, C_i = (y_i - \mu^{(r+1)}) (\tilde{\beta}^{(r+1)})^T \).

Using current values \(\mu^{(r+1)}, \beta^{(r+1)} \) and \(A^{(r)} \), the parameter \(D \) can be updated using an algorithm derived from Flury and Gautschi (see Celeux and Govaert [1992]) which is outlined in Appendix B.
Updating \tilde{A}. To update \tilde{A} we have to minimize the following quantity

$$
\tilde{A}^{(r+1)} = \arg\min_{\tilde{A}} \left\{ \sum_{i=1}^{N} \text{trace}(D^{(r+1)}T_i^{(r)} \tilde{A}^{-1} D^{(r+1)}T_v) + N \log |\tilde{A}| \right\}
$$

where $M_i = T_i^{(r)1/2} D^{(r)1/2} V_i D^{(r+1)} T_i^{(r)1/2} + S_i^{(r)1/2} D^{(r+1)} B_i D^{(r+1)} S_i^{(r)1/2} - D^{(r+1)T}(C_i + C_i^T)D^{(r+1)}$ and M_i is a symmetric positive definite matrix.

We can use the following corollary (see Corollary A-2 in Celeux and Govaert 1995) with $S = \sum_{i=1}^{N} M_i$.

Corollary 3.2: The $M \times M$ diagonal matrix \mathbf{A} minimizing trace($\mathbf{S}A^{-1}$) + $c \log |\mathbf{A}|$ where \mathbf{S} is a $M \times M$ symmetric definite positive matrix and α is a positive real number is $\mathbf{A} = \text{diag}(\mathbf{S})$.

By setting D and μ to their current estimations $D^{(r+1)}$ and $\mu^{(r+1)}$ we then get,

$$
\tilde{A}^{(r+1)} = \frac{\text{diag}(\mathbf{S})}{N} \quad (32)
$$

where

$$
\mathbf{S} = \sum_{i=1}^{N} (T_i^{(r)1/2} D^{(r+1)} V_i D^{(r+1)} T_i^{(r)1/2} + S_i^{(r)1/2} D^{(r+1)} B_i D^{(r+1)} S_i^{(r)1/2} - D^{(r+1)T}(C_i + C_i^T)D^{(r+1)}.) \quad (33)
$$

Equivalently, for all m

$$
\tilde{A}_{m}^{(r+1)} = \frac{1}{N} \sum_{i=1}^{N} \left(|D^{(r+1)T}(y_i - \mu^{(r+1)})|_{m}^{2} \lambda^{(r)}_{i,m} + |D^{(r+1)T}(\tilde{y}^{(r+1)})|_{m}^{2} \lambda^{(r)}_{i,m} \right. \quad (34)
$$

$$
- 2 |D^{(r+1)T}(y_i - \mu^{(r+1)})|_{m} |D^{(r+1)T}(\tilde{y}^{(r+1)})|_{m}
$$
Updating $\tilde{\gamma}$. It follows from (29) that to update $\tilde{\gamma}$ we have to minimize,

$$
\tilde{\gamma}^{(r+1)}_m = \arg \min_\gamma \left\{ \sum_{i=1}^N \sum_{m=1}^M \frac{1}{2} \gamma_{m,m}^{(r)} - \gamma_m \right\}
$$

which for all $m = 1, \ldots, M$ leads to,

$$
\tilde{\gamma}^{(r+1)}_m = \frac{N}{\sum_{i=1}^N s(r)_{im}}.
$$

Updating constrained $\tilde{\gamma}$. Similar updating equations can be easily derived when $\tilde{\gamma}$ is assumed to be equal for several dimensions. If we assume that for all m, $\tilde{\gamma}_m = \gamma$ then

$$
\tilde{\gamma}^{(r+1)} = \frac{NM}{\sum_{i=1}^N \sum_{m=1}^M s(r)_{im}}
$$

It is also quite easy to extend the above equation to the case where $\tilde{\gamma}$ is assumed to be equal for only some of the dimensions. For either case, model choice criteria could be used to justify the appropriateness of the assumed parameter space for $\tilde{\gamma}$.

Eventually, to transform the estimated parameters back to their original form we can take $\delta = |\tilde{A}|^{1/2}$, $\gamma_m = \tilde{\gamma}_m / \delta$, $\beta = D\tilde{A}^{-1}D^T\beta$ and $A = \tilde{A}/|\tilde{A}|^{1/M}$.

3.3 Mixture of multiple scaled NIG distributions

The previous results can be extended to cover the case of K-component mixture of multiple scaled NIG distributions. With the usual notation for the proportions $\pi = \{\pi_1, \ldots, \pi_K\}$ and $\psi_k = \{\mu_k, D_k, A_k, \beta_k, \gamma_k, \delta_k\}$ for $k = 1, \ldots, K$, we consider,

$$
p(y; \phi) = \sum_{k=1}^K \pi_k MSNIG_2(y; \mu_k, D_k, A_k, \beta_k, \gamma_k, \delta_k)
$$

where k indicates the kth component of the mixture and $\phi = \{\pi, \psi\}$ with $\psi = \{\psi_1, \ldots, \psi_K\}$ the mixture parameters. In the EM framework, an additional variable Z is introduced to identify the missing class labels, where $\{Z_1, \ldots, Z_N\}$ define the component of origin of the data $\{y_1, \ldots, y_N\}$. In the light of the characterization of multiple scaled distributions, an equivalent modelling is: $\forall i \in \{1, \ldots, N\}$, $Y_i|W_i = w_i, Z_i = k \sim N_d(\mu_k + D_k \Delta_w, A_k D_k^T \beta_k, D_k \Delta_w, A_k D_k^T)$ and $W_i|Z_i = k \sim IG(\gamma_k, \delta_k) \otimes \cdots \otimes IG(\gamma_{MK}, \delta_k)$, where $\Delta_w = \text{diag}(w_{i1}, \ldots, w_{iM})$. Inference using the EM algorithm with two sets of missing variables $Z = \{Z_1, \ldots, Z_N\}$ and $W = \{W_1, \ldots, W_N\}$ to fit such mixtures, is similar to the individual ML estimation (see Appendix C).

As the results of the EM algorithm can be particularly sensitive to initial values ([Karlis and Xekalaki, 2003]), for the results to follow we used a number of approaches to generate different initial values for parameters, including the use of random partitions, k-means and trimmed k-means ([Garcia-Escudero and Gordaliza, 1999]). Often the most successful strategy found was by estimating μ_k, D_k and
using the results from a trimmed k-means clustering (with $\beta_k = 0$) and setting $\gamma_{km} = \delta_k = 1$ for all $k = 1 \ldots K$ and $m = 1 \ldots M$. The computational speed of the EM algorithm for the MSNIG distribution is comparable to the standard NIG case with the exception that the update of D can be slow for high dimensional applications as the Flury and Gautschi algorithm involves sequentially updating every pair of column vectors of D. A more global approach to the update of D has been proposed recently by Browne and McNicholas (2012) which has the potential to significantly speed up the computation time.

4 Applications of multiple scaled NIG distributions

In this section we use simulated data and present applications of the multiple scaled NIG distribution on two real datasets to demonstrate its flexibility in analysing skewed multivariate data.

4.1 Simulated data

For this example, we simulated data from a mixture of MSNIG distributions and assessed the classification performance of the MSNIG compared to the standard NIG. The classification performance of the MSNIG compares favourably to the standard NIG with the MSNIG better able to capture the heavy tails of the two clusters. For details see Appendix A of the Supplementary Materials.

4.2 Petroleum data

This data consists of 655 petroleum samples collected from the Montrose quadrangle of Western Colorado. The samples consist of log-concentration readings for a number of chemical elements, and are part of a multivariate dataset originally described by Cook and Johnson (1981). The dataset is often used to compare and contrast different copula approaches (Genest and Rivest, 1993). For ease of analysis and presentation we concentrate on two of the elements Cobalt (Co) and Uranium (U). Figure 5 provides a scatterplot of the data overlaid with contour lines for the standard NIG (red dashed) and multiple scaled NIG (blue) displayed. From the contour lines we can see that the multiple scaled NIG provides a better fit to the data and this is also evidenced by significantly higher likelihood and BIC estimates for the multiple scaled NIG ($L = 207.5$, BIC = -387) compared to the standard NIG ($L = 168.4$, BIC = -334).

4.3 Lymphoma data

To further illustrate some of the differences between the standard NIG and multiple scaled NIG we examine a clustering problem for a lymphoma data set recently analysed by Lee and McLachlan (2012). The data consists of a subset of data originally presented and collected by Maier et al. (2007). In Maier et al. (2007) blood samples from 30 subjects were stained with four fluorophore-labeled antibodies against $CD4$, $CD45RA$, $SLP76(pY128)$, and $ZAP70(pY292)$ before and after an anti-$CD3$ stimulation. In the first example we will look at
Table 1: Estimated parameters for MSNIG and NIG on the Petroleum data (Co v. U)

Parameters	MSNIG	NIG
μ	(0.96,0.35)	(0.99,0.46)
β	(2.73,13.57)	(2.10,5.25)
D	(0.06,−0.99)	
A	diag(1.08,0.93)	
Σ	-	$\begin{pmatrix} 0.51 & -0.01 \\ -0.01 & 1.97 \end{pmatrix}$
γ	(8.17,14.69)	8.77
δ	0.28	0.33
Log-like	207.6	168.4

Figure 5: Scatterplot of petroleum data (Co v. U). Right panel: Comparison of standard NIG (red, dashed line) versus MSNIG (blue).
clustering a subset of the data containing the variables CD4 and ZAP70 (Figure 6), which appear to be bimodal and display an asymmetric pattern. In particular, one of the modes appears to show both strong correlation between the two variables and substantial skewness.

Of interest in this example is to compare the goodness of fit from fitting mixtures of standard NIG and multiple scaled NIG distributions. For comparison, we also present the results of fitting using mixtures of skew-normal (Lachos et al., 2010) and skew-t distributions using two types of formulation: one in which there is some separation between skewness and tail behaviour and referred to as unrestricted (Sahu et al., 2003; Lee and McLachlan, 2012; Lin, 2010) and one with no such separation (Azzalini and Dalla Valle, 1996; Basso et al., 2010; Pyne et al., 2009). Estimation of the parameters for these distributions was undertaken using the R package mixsmsn (Cabral et al., 2012) and for the unrestricted skew-t case using R code available on: http://www.maths.uq.edu.au/~gjm/mix_soft/EM.

Figures 6 (a) to (d) show the separate contour lines (of each component) from fitting mixtures of: standard NIG (Karlis and Santourian, 2009) (a); unrestricted Skew-t (Sahu et al., 2003; Lee and McLachlan, 2012; Lin, 2010) (b); Skew-t (Azzalini and Dalla Valle, 1996; Basso et al., 2010; Pyne et al., 2009) (c); and multiple scaled NIG (d). Likelihood values and estimates of the BIC for the different approaches are also provided in Table 2. As we can see from Figure 6 there is quite a difference in the goodness of fit between the approaches. In particular, we see a clear difference in the fitted results between the standard NIG and multiple scaled NIG with the latter providing a closer fit to the data. Similar results to the standard NIG are obtained for the no separation Skew-t (c) and Skew-normal (Lachos et al., 2010) (not shown) approaches. Interestingly the fitted results of the unrestricted Skew-t (b) and the multiple scaled NIG (d) appear to be similar. BIC values for these two approaches are also similar (MSNIG = 47,175, unrestr. Skew-t = 47,103) but with more support for the unrestricted Skew-t.

Table 2: Results for Lymphoma dataset

Model	Example 1 (CD4 v. ZAP70)	Example 2 (CD45 v. CD4)		
	Log-likelihood	BIC	Log-likelihood	BIC
MSNIG	-23,545	47,175	-16,444	33,046
NIG	-23,842	47,691	-16,573	33,289
Skew-t (Unrestr.)	-23,492	47,103	-16,540	33,310
Skew-t	-23,868	47,874	-16,561	33,385
Skew-normal	-23,762	47,663	-16,573	33,410

As noted by Lee and McLachlan (2012) a possible reason for the difference in the results between the unrestricted Skew-t (e.g. Sahu et al., 2003) and the skew-normal and Skew-t (e.g. Azzalini and Dalla Valle, 1996) is the differing degree of dependency between the skewness parameter and the covariance for the different approaches. As mentioned previously, in the skew-t formulation of Sahu et al. (2003) there is some separation between the skewness parameter and the covariance, which is not the case for the other formulations of the skew-t...
and skew-normal approaches.

We now consider a second example to highlight further differences between the standard NIG and multiple scaled NIG in a clustering context using the same dataset. In this example we look at a subset of the dataset containing the variables $CD45$ and $CD4$, which also appear to be highly multimodal and asymmetric in shape. The fitted results from a mixture model with four components are shown in Figure 7 with contour lines representing the fitted density of each component (see also results in Table 2). From the fitted results we can see a better fit from the multiple scaled NIG (BIC = 33,046) compared to the standard NIG (BIC = 33,289). The better fit appears to come from the increased flexibility of the multiple scaled NIG to represent non-elliptical shapes. The fitted results for the Skew-t and unrestricted Skew-t do not appear to be better.
than for the standard NIG (BIC = 33,385 and 33,310, respectively). Similar results to the Skew-t are found for the Skew-normal (not shown).

Figure 7: Lymphoma data, CD45 v. CD4. Fitted contour lines for: (a) Skew-t; (b) Unrestricted Skew-t; (c) Standard NIG; and (d) Multiple scaled NIG.

5 Conclusion

We have proposed a relatively simple way to extend location and scale mixture distributions, such as the multivariate generalised hyperbolic distribution (GH), to allow for different tail behaviour in each dimension. In contrast to existing approaches, the approach has the advantage of: a closed form density; allowing arbitrary correlation between dimensions; and applicability to high dimensional spaces. Estimation of the parameters of the multiple scaled GH (including the important multiple scaled NIG as a particular case) is also relatively straightforward using the familiar EM algorithm and various properties of the family.
are well defined. Assessments of the performance of the proposed model on simulated and real data suggest that the extension provides a considerable degree of freedom and flexibility in modelling data of varying tail behaviour and directional shape.

For future research, parsimonious models could be considered using special decompositions of the scale matrix such as in the model-based clustering approach of Celeux and Govaert (1995) and Fraley and Raftery (2002), which would be straightforward to generalize to multiple scaled distributions. Similarly, for very high dimensional data, other parsimonious models could also be considered with a special modelling of the covariance matrix such as in the High Dimensional Data Clustering (HDDC) framework of Bouveyron et al. (2007).

Although we have illustrated the approach on clustering examples, the multiple scaled NIG is applicable to other contexts including, for example, regression modelling, outlier detection and modelling of spatial data (Forbes et al., 2010).
Appendices

Appendix A: Multiple Scaled Normal Inverse Gaussian distribution (MSNIG)

In the case of the MSNIG where $W_m \sim \mathcal{IG}(\lambda_m = -1/2, \gamma_m, \delta_m)$, expressions (16) and (17) simplify into

$$E[Y_{MSNIG}] = \mu + DE[\Delta W]AD^T \beta$$

$$= \mu + D \text{diag}\left(\frac{\delta_1}{\gamma_1}, \ldots, \frac{\delta_M}{\gamma_M}\right)AD^T \beta$$

(36)

$$\text{Var}[Y_{MSNIG}] = D \text{diag}\left(\frac{\delta_1}{\gamma_1}, \ldots, \frac{\delta_M}{\gamma_M}\right)AD^T$$

$$+ D \text{diag}\left(\frac{\delta_1}{\gamma_1}[D^T \beta]^2_1, \ldots, \frac{\delta_M}{\gamma_M}[D^T \beta]^2_M\right)AD^T$$

$$= D \text{diag}\left(\frac{\delta_m A_m}{\gamma_m}\right)\left(1 + \frac{[D^T \beta]^2_m A_m}{\gamma_m^2}\right)D^T$$

(38)
Appendix B: Algorithm for computing $D^{(r+1)}$

The goal is to minimize with respect to D the following quantity, where \tilde{A}, μ and β have been fixed to current estimations namely $\tilde{A}^{(r)}$, $\mu^{(r+1)}$ and $\beta^{(r+1)}$,

$$D^{(r+1)} = \arg \min_D f(D)$$

where

$$f(D) = \sum_{i=1}^{N} \text{trace}(D T_i^{(r)} \tilde{A}^{-1(r)} D^T V_i) + \sum_{i=1}^{N} \text{trace}(D S_i^{(r)} \tilde{A}^{-1(r)} D^T B_i)$$

$$- 2(\sum_{i=1}^{N} \text{trace}(D \tilde{A}^{-1} D^T C_i))$$

where $V_i = (y_i - \mu^{(r+1)}) (y_i - \mu^{(r+1)})^T$, $B_i = (\beta^{(r+1)} \beta^{(r+1)})^T$, $C_i = (y_i - \mu^{(r+1)}) (\beta^{(r+1)} \beta^{(r+1)})$. Similarly to [Celeux and Govaert 1995, see Appendix 2], we can derive from [Flury and Gautschi 1986] the algorithm below.

Step 1. We start from an initial solution $D^0 = [d_1^0, \ldots, d_M^0]$ where the d_m^0’s are M-dimensional orthonormal vectors.

Step 2. For any couple $(l, m) \in \{1, \ldots, M\}^2$ with $l \neq m$, the couple of vectors (d_l, d_m) is replaced with (δ_l, δ_m) where $\delta_l = [d_l, d_m]v_1$ and $\delta_m = [d_l, d_m]v_2$ with v_1 and v_2 two orthonormal vectors of \mathbb{R}^2 such that v_1 is the eigenvector associated to the smallest eigenvalue of the matrix

$$M = \sum_{i=1}^{N} (\frac{t_i^{(r)}}{A_l^{(r)}} - \frac{t_i^{(r)}}{A_m^{(r)}}) [d_l, d_m]^T V_i [d_l, d_m] + \sum_{i=1}^{N} (\frac{s_i^{(r)}}{A_l^{(r)}} - \frac{s_i^{(r)}}{A_m^{(r)}}) [d_l, d_m]^T B_i [d_l, d_m]$$

$$- 2 \sum_{i=1}^{N} (\frac{1}{A_l^{(r)}} - \frac{1}{A_m^{(r)}}) [d_l, d_m]^T C_i [d_l, d_m]$$

Step 2 is repeated until it produces no decrease of the criterion $f(D)$.

25
Appendix C: Mixture setting and estimation

Denote the parameters of the mixture in the equivalent parameterization by $\phi = \{\pi, \psi\}$ with $\psi = \{\psi_1, \ldots, \psi_K\}$ the mixture parameters with $\psi_k = \{\mu_k, D_k, A_k, \beta_k, \gamma_k\}$ for $k = 1 \ldots K$. For mixtures the EM algorithm iterates over the following two steps.

E-step

We denote by $\tau_{ik}^{(r)}$ the posterior probability that y_i belongs to the kth component of the mixture given the current estimates of the mixture parameters $\phi^{(r)}$,

$$
\tau_{ik}^{(r)} = \frac{\pi_k^{(r)} M_{NM}(y_i; \psi_k^{(r)})}{p(y_i; \phi^{(r)})} \quad (39)
$$

The conditional expectation of the complete data log-likelihood $Q(\phi, \phi^{(r)})$ decomposes into three parts

$$
Q(\phi, \phi^{(r)}) = Q_1(\pi; \phi^{(r)}) + Q_2(\gamma; \phi^{(r)}) + Q_3(\mu, D, A, \beta; \phi^{(r)}) \quad (40)
$$

with

$$
Q_1(\pi; \phi^{(r)}) = \sum_{i=1}^N \sum_{k=1}^K \tau_{ik}^{(r)} \log \pi_k \quad (41)
$$

$$
Q_2(\gamma; \phi^{(r)}) = \sum_{i=1}^N \sum_{k=1}^K \tau_{ik}^{(r)} \sum_{m=1}^M E_{W_{im}} [\log T_{\gamma}(W_{im}; \gamma_k, 1)|y_i, \phi^{(r)}] \quad (42)
$$

and

$$
Q_3(\gamma; \phi^{(r)}) = \sum_{i=1}^N \sum_{k=1}^K \tau_{ik}^{(r)} E_W [\log N_M(\mu_k + D_k \Delta_w A_k D_k^T \beta_k, D_k \Delta_w A_k D_k^T)|Z_i = k, y_i, \phi^{(r)}] \quad (43)
$$

$$
= \sum_{i=1}^N \sum_{k=1}^K \tau_{ik}^{(r)} E_{W_i} [-\frac{1}{2}(y_i - \mu_k - D_k \Delta_w A_k \beta_k) \Delta^{-1}_w D_k^T] \times (y_i - \mu_k - D_k \Delta_w A_k \beta_k)|Z_i = k, y_i, \phi^{(r)}] - \frac{1}{2} \log |\hat{A}_k|
$$

ignoring constants.

Similarly to the E-step in Section 3.1 the quantities required for the E-step are given by,

$$
s_{ikm}^{(r)} = E[W_{im} | Z_i = k, y_i; \phi^{(r)}] = \frac{\phi_{ikm}^{(r)} K_0(\hat{\phi}_{ikm}^{(r)}, \hat{\alpha}_{km}^{(r)})}{\hat{\alpha}_{km}^{(r)} K_{-1}(\hat{\phi}_{ikm}^{(r)}, \hat{\alpha}_{km}^{(r)})} \quad (44)
$$

$$
t_{ikm}^{(r)} = E[W_{im}^{-1} | Z_i = k, y_i; \phi^{(r)}] = \frac{\hat{\alpha}_{km}^{(r)} K_{-2}(\hat{\phi}_{ikm}^{(r)}, \hat{\alpha}_{km}^{(r)})}{\phi_{ikm}^{(r)} K_{-1}(\hat{\phi}_{ikm}^{(r)}, \hat{\alpha}_{km}^{(r)})} \quad (45)
$$

ignoring constants.
where

\[\phi_{ikm}^{(r)} = \frac{1}{1 + \frac{[D_{ik}^{(r)}(y_i - \mu_k^{(r)})]^2}{A_{km}^{(r)}}} \]

\[\alpha_{km}^{(r)} = \frac{\gamma^{2(r)}_{km} + \frac{[D_{ik}^{(r)} \tilde{\beta}_k^{(r)}]^2}{\tilde{A}_{km}^{(r)}}}{\gamma^{2(r)}_{km}} \]

M-step

Updating the \(\pi_k \)'s. The update of \(\pi \) is standard: for \(k \in \{1, \ldots, K\} \), \(\pi_k^{(r+1)} = \frac{n_k}{N} \) where \(n_k = \sum_{i=1}^{N} \tau_{ik}^{(r)} \).

Updating the \(\mu_k \)'s. It follows from the expression of \(Q_3 \) that for \(k \in \{1, \ldots, K\} \), fixing \(D_k \) to the current estimation \(D_k^{(r)} \), leads for all \(m = 1, \ldots, M \) to

\[
\mu_{km}^{(r+1)} = \left(\frac{\sum_{i=1}^{N} \tau_{ik} T_{ik}^{(r)} D_{ik}^{(r)T}}{n_k} - n_k \left(\sum_{i=1}^{N} \tau_{ik} S_{ik}^{(r)} \right)^{-1} \right)^{-1} \left(\sum_{i=1}^{N} \tau_{ik} T_{ik}^{(r)} D_{ik}^{(r)T} \mu_k^{(r)} - \sum_{i=1}^{N} \tau_{ik} y_i \left(\sum_{i=1}^{N} \tau_{ik} S_{ik}^{(r)} \right)^{-1} \right)
\]

where \(T_{ik}^{(r)} = \text{diag}(t_{ik1}^{(r)}, \ldots, t_{ikM}^{(r)}) \) and \(S_{ik}^{(r)} = \text{diag}(s_{ik1}^{(r)}, \ldots, s_{ikM}^{(r)}) \).

Updating the \(\beta_k \)'s. Similarly, it follows from the expression of \(Q_3 \) that for \(k \in \{1, \ldots, K\} \), fixing \(D_k \) and \(\mu_k \) to their current estimation \(D_k^{(r)} \) and \(\mu_k^{(r)} \), leads to

\[
\tilde{\beta}_k^{(r+1)} = D_k^{(r)} \left(\sum_{i=1}^{N} \tau_{ik} S_{ik}^{(r)} \right)^{-1} D_k^{(r)T} \left(\sum_{i=1}^{N} \tau_{ik} (y_i - \mu_k^{(r+1)}) \right)
\]

Updating the \(D_k \)'s

The parameter \(D_k \) is obtained by minimizing

\[
D_k^{(r+1)} = \arg \min_{D_k} \left(\sum_{i=1}^{N} \text{trace}(D_k T_{ik}^{(r)} A_k^{(r)-1} D_k^T V_{ik}) + \sum_{i=1}^{N} \text{trace}(D_k S_{ik} A_k^{(r)-1} D_k^T B_{ik}) - 2 \sum_{i=1}^{N} \text{trace}(D_k A_k^{(r)-1} D_k^T C_{ik}) \right)
\]

where \(V_{ik} = \tau_{ik} (y_i - \mu_k^{(r+1)}) (y_i - \mu_k^{(r+1)})^T, B_{ik} = \tau_{ik} \tilde{\beta}_k^{(r+1)} \tilde{\beta}_k^{(r+1)T} \) and \(C_{ik} = \tau_{ik} (y_i - \mu_k^{(r+1)}) \tilde{\beta}_k^{(r+1)T} \).

The parameter \(D_k \) can be updated using an algorithm derived from Flury and Gautschi (see Flury and Gautschi [1986] and Appendix B).

Updating the \(A_k \)'s. We have to minimize the following quantity:

\[
A_k^{(r+1)} = \arg \min_{A_k} \left(\sum_{i=1}^{N} M_{ik} A_k^{(r+1)} + 2 \log(\det(A_k)) \right)
\]
where \(M_{ik} = T_{ik}^{(r+1)/2}D_{ik}^{(r+1)T}V_{ik}D_{ik}^{(r+1)/2} + S_{ik}^{(r+1)/2}D_{ik}^{(r+1)T}B_{ik}D_{ik}^{r+1/2} - D_{ik}^{r+1T}(C_{ik} + C_{ik}^{T})D_{ik}^{r+1} \) is a symmetric positive definite matrix and \(\alpha_k = \sum_{i=1}^{N} \gamma_{ik}^{(r)} \)

Using Corollary 3.2 (see Section 3) leads for all \(m = 1, \ldots, M \) to

\[
\tilde{A}_{km}^{(r+1)} = \frac{1}{N} \sum_{i=1}^{N} \tau_{ik}^{(r)} \left(|D_{ik}^{(r+1)T}(y_i - \mu_{k}^{(r+1)})|^2 + |D_{ik}^{(r+1)T}\beta_{k}^{(r+1)}|^2 m \right)
- 2|D_{ik}^{(r+1)T}(y_i - \mu_{k}^{(r+1)})|m|D_{ik}^{(r+1)T}\beta_{k}^{(r+1)}|
\]

Updating the \(\tilde{g}_k \)'s. To update \(\tilde{g}_k \) we have to minimize,

\[
\tilde{g}_k^{(r+1)} = \arg \min_{\tilde{g}_k} \left\{ \sum_{i=1}^{N} \tau_{ik}^{(r)} \sum_{m=1}^{M} \frac{1}{2} \tilde{A}_{km}^{(r)} \tilde{g}_{km} - \tilde{g}_km \right\}
\]

which leads for all \(m = 1, \ldots, M \) to

\[
\tilde{g}_km^{(r+1)} = \frac{n_k}{\sum_{i=1}^{N} \tau_{ik} \delta_{km}}
\]

To transform the estimated parameters back to the original ones, \(\delta_k = |\tilde{A}_k|^{|\tilde{x}_k|}, \gamma_{km} = \tilde{g}_{km}/\delta_k, \beta_k = D_k^{-1}D_k^{(r+1)T}\beta_k, A_k = A_k/|A_k|^{1/2} \)

Appendix D: Tail dependence

Using Coles et al. (1999) and the R package ‘evd’ (Team, 2011), we assume that the data are i.i.d. random vectors with common bivariate distribution function \(G \), and we define the random vector \([X,Y]^T \) to be distributed according to \(G \).

The \(\chi(q) \) plot is a plot of \(q \) in \((0,1)\) (interpreted as a quantile level) against empirical estimates of function

\[
\chi(q) = 2 - \log(p(F_X(X) < q, F_Y(Y) < q))/\log(q)
\]

where \(F_X \) and \(F_Y \) are the marginal distribution functions. The quantity \(\chi(q) \) is bounded by

\[
2 - \log(2q - 1)/\log(q) \leq \chi(q) \leq 1
\]

where the lower bound is interpreted as \(-\infty \) for \(q \leq 1/2 \) and zero for \(q = 1 \).

The function \(\chi(q) \) can be interpreted as a quantile dependent measure of dependence. In particular, the sign of \(\chi(q) \) determines whether the variables are positively or negatively associated at quantile level \(q \).

References

Aas, K., Hobaek Haff, I., 2005. Risk estimation using the multivariate normal inverse Gaussian distribution. Journal of Risk 8 (2), 39–60.

Aas, K., Hobaek Haff, I., Dimakos, X., 2005. The generalised hyperbolic skew Student’s t-distribution. Journal of Financial Econometrics 4 (2), 275–309.
Arellano-Valle, R., Bolfarine, H., Lachos, V., 2007. Bayesian inference for skew-normal linear mixed models. Journal of Applied Statistics 34 (6), 663–682.

Azzalini, A., Dalla Valle, A., 1996. The multivariate skew-normal distribution. Biometrika 83 (4), 715–726.

Barndorff-Nielsen, O., 1977. Exponentially Decreasing Distributions for the Logarithm of Particle Size. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 353 (1674), 401–419.

Barndorff-Nielsen, O., 1997. Normal inverse Gaussian distributions and stochastic volatility modelling. Scandinavian Journal of Statistics 24 (1), 1–13.

Barndorff-Nielsen, O., Kent, J., Sorensen, M., 1982. Normal variance-mean mixtures and z Distributions. International Statistics Review 50 (2), 145–149.

Basso, R., Lachos, V., Cabral, C., Ghosh, P., 2010. Robust mixture modelling based on scale mixtures of skew-normal distributions. Computational Statistics and Data Analysis 54, 2926–2941.

Bouveyron, C., Girard, S., Schmid, C., 2007. High dimensional data clustering. Computational Statistics and Data Analysis 52, 502–519.

Browne, R., McNicholas, P., 2012. Orthogonal Stiefel manifold optimization for eigen-decomposed covariance parameter estimation in mixture models. Statistics and Computing Published online.

Cabral, C., Lachos, V., Prates, M., 2012. Multivariate mixture modelling using skew-normal independent distributions. Computational Statistics and Data Analysis 56, 126–142.

Celeux, G., Govaert, G., 1995. Gaussian parsimonious clustering models. Pattern Recognition 28, 781–793.

Coles, S. G., Heffernan, J., Tawn, J. A., 1999. Dependence measures for extreme value analyses. Extremes 2, 339–365.

Cook, R., Johnson, M., 1981. A family of distributions for modeling nonelliptically symmetric multivariate data. Journal of the Royal Statistical Society, Series B 43, 210–218.

Daul, S., DeGiorgi, E., Lindskog, F., McNeil, A. J., 2003. The grouped t-copula with an application to credit risk. RISK 16, 73.

Demarta, S., McNeil, A. J., 2005. The t copula and related copulas. International Statistics Review 73, 111.

Eltoft, T., Kim, T., Lee, T.-W., 2006. Multivariate Scale Mixture of Gaussians Modeling. In: Rosca, J., Erdogmus, D., Principe, J., Haykin, S. (Eds.), Independent Component Analysis and Blind Signal Separation. Vol. 3889 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 799–806.

Ferreira, J. T. A. S., Steel, M. F. J., 2007a. Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers. Journal of Econometrics 137, 641–673.
Ferreira, J. T. A. S., Steel, M. F. J., 2007b. A new class of multivariate skew
distributions with applications to regression analysis. Statistica Sinica 17,
505–529.

Flury, B. N., 1984. Common Principal Components in K Groups. Journal of the
American Statistical Association 79 (388), 892–898.

Flury, B. N., Gautschi, W., 1986. An Algorithm for Simultaneous Orthogonal
Transformation of Several Positive Definite Symmetric Matrices to Nearly
Diagonal Form 7 (1), 169–184.

Forbes, F., Doyle, S., Garcia-Lorenzo, D., Barillot, C., Dojat, M., 13-15 May
2010. A Weighted Multi-Sequence Markov Model For Brain Lesion Segmenta-
tion. In: 13th International Conference on Artificial Intelligence and Statistics
(AISTATS10). Sardinia, Italy.

Forbes, F., Wraith, D., 2013. A new family of multivariate heavy-tailed distri-
butions with variable marginal amounts of tailweight: Application to robust
clustering. To appear in Statistics and Computing.

Fraley, C., Raftery, A. E., 2002. Model-Based Clustering, Discriminant Analysis,
and Density Estimation. Journal of the American Statistical Association 97,
611–631.

Fruwirth-Schnatter, S., 2006. Finite Mixture and Markov Switching Models.
Springer Series in Statistics.

Garcia-Escudero, L. A., Gordaliza, A., 1999. Robustness properties of k-
means and Trimmed k-means. Journal of the American Statistical Association
94 (447), 956–969.

Genest, C., Rivest, L., 1993. Statistical Inference Procedures for Bivari-
ate Archimedean Copulas. Journal of the American Statistical Association
88 (423), 1034–1043.

Giordani, R., Mun, X., Kohn, R., 2008. Flexible multivariate density estimation
with marginal adaptation (extended version). Unpublished working paper.

Gjerde, T., Eidsvik, J., Nyrrnes, E., Bruun, B., 2011. Positioning and Position
Error of Petroleum Wells. Journal of Geodetic Science 1, 158–169.

Griffin, J. E., Brown, P. J., 2010. Inference with normal-gamma prior distribu-
tions in regression problems. Bayesian Analysis 5 (1), 171–188.

Jensen, J. L., 1981. On the hyperboloid distribution. Scandinavian Journal of
Statistics 8 (4), 193–206.

Jones, M., 2002. A dependent bivariate t distribution with marginals on different
degrees of freedom. Statistics and Probability Letters 56 (2), 163–170.

Jorgensen, B., 1982. Statistical Properties of the Generalized Inverse Gaussian
Distribution. In: Lecture Notes in Statistics. Springer, New York.

Karlis, D., 2002. An EM type algorithm for maximum likelihood estimation of
the normal inverse Gaussian distribution. Statistics and Probability letters
57, 43–52.
Karlis, D., Santourian, A., 2009. Model-based clustering with non-elliptically contoured distributions. Statistics and Computing 19, 73–83.

Karlis, D., Xekalaki, E., 2003. Choosing initial values for the EM algorithm for finite mixtures. Computational Statistics & Data Analysis 41 (3-4), 577–590.

Kotz, S., Nadarajah, S., 2004. Multivariate t Distributions and their Applications. Cambridge.

Lachos, V., Ghosh, P., Arellano-Valle, R., 2010. Likelihood based inference for skew normal independent mixed models. Statistica Sinica 20, 303–322.

Lee, S., McLachlan, G., 2012. On the fitting of mixtures of multivariate skew t-distributions.

Lin, T., 2010. Robust mixture modelling using multivariate skew-t distribution. Statistics and Computing 20, 343–356.

Maier, L., Anderson, D., De Jager, P., Wicker, L., Hafler, D., 2007. Allelic variant in ctl4 alters t cell phosphorylation patterns. In: Proceedings of the National Academy of Sciences of the United States of America. Vol. 104. pp. 18607–18612.

Oigard, T. A., Hanssen, A., Hansen, R. E., 2004. The multivariate normal inverse Gaussian distribution: EM-estimation and analysis of synthetic aperture sonar data. In: XII European Signal Processing Conference, Eusipco. Vienna, Austria.

Protassov, R., 2004. EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions. Statistics and Computing 14, 67–77.

Pyne, S., Hu, X., Wang, K., 2009. Automated high-dimensional flow cytometric flow analysis. Proceedings of the National Academy of Sciences of the United States of America 106, 8519–8524.

Sahu, S., Dey, D. K., Branco, M., 2003. A new class of multivariate skew distributions with applications to Bayesian regression models. The Canadian Journal of Statistics 31, 129–150.

Schmidt, R., Hrycej, T., Stutzle, E., 2006. Multivariate distribution models with generalized hyperbolic margins. Computational Statistics and Data Analysis 50, 2065–2096.

Shaw, W. T., Lee, K. T. A., 2008. Bivariate Student distributions with variable marginal degrees of freedom and independence. Journal of Multivariate Analysis 99 (6), 1276–1287.

Shephard, N., 1991. From characteristic function to distribution function: a simple framework for the theory. Econometric theory 7 (4), 519–529.

Team, R. D. C., 2011. R: A language and environment for statistical computing. ISBN 3-900051-07-0, URL http://www.R-project.org/.