Determination and Prevalence of Bacterial and Fungal Keratitis among Patients in Baghdad City

Zena K. Khalil, Alyaa M. Hadi and Saif S. Al-Kamil

Middle Technical University, Technical medical institute, Al-Mansur, Iraq.

http://dx.doi.org/10.22207/JPaM.12.3.49

(Received: 10 June 2018; accepted: 20 July 2018)

The study included 234 patients attended to then AL-Haithem hospital of ophthalmology in Baghdad city having microbial keratitis, at age of (18-81) years for the period from September 2017- April 2018. there were 147 (63%) patients with bacterial keratitis and 87 (37%) with fungal keratitis. Men with bacterial keratitis represented 60% (88) and women 40% (59), while men with fungal keratitis were 61% (53) and women 39% (34), the number of the patients with bacterial keratitis were 82(56%) and 51(59%) with fungal keratitis from Baghdad while the internally displaced were 62(44%) with bacterial and 36(41%) with fungal keratitis, the percentage of patients with bacterial keratitis and fungal keratitis were both (34%) at mean age of 73 ± 2.3 y. Most patients with bacterial keratitis recorded having diabetes mellitus(39%) while the diabetic with fungal keratitis represented (41%). The results revealed that gram positive bacteria was 102 (69%) and gram negative 45 (31%), S.aureus was the most common cause of bacterial keratitis(29%), followed by S.epidermidis 36(24%) then Streptococcus spp. 24(16%), Pseudomonas spp. 17 (12%), Proteus, spp. 13 (9%), Escherichia coli 9(6%) and Enterobacter spp 6(4%) while Aspergillus fumigates represented 26(30%) as the most common cause of fungal keratitis, Aspergillus flavus 19(22%), Aspergillus niger 16(18%), Pencillium spp 11(13%), Fusarium oxysporium. 8(9%), Fusarium solani 5(6%) and Candida spp 2(2%). S. aureus isolates were susceptible to Cloramphenicol and Ciprofloxacin (83%) while they were resistant to Clindamycin (57%). S.epidermidis isolates were susceptible to Cloramphenicol and Amikacin (86%). Streptococcus spp were susceptible to Tetracycline and Clindamycin (88%,83%). Pseudomonas spp showed their high susceptibility to Tetracycline(96%) followed by Cloramphenicol and Ciprofloxacin (88%) both each. Enterobacter spp were susceptible to Tetracycline and Gentamicin (100%) while E.coli were susceptible to Cloramphenicol (100%) followed by Ciprofloxacin and Gentamicin (89%) both, fungal isolates were susceptible to all types of antibiotics used in the study as (98%) of Aspergillus spp isolates were sensitive to Itraconazole (98%) Voriconazole, Amphotericin B and Natamycin (95%,93%,92%) respectively, Pencillium spp. were sensitive to Amphotericin B (100%) then Natamycin and Itraconazole (91%) both, Fusarium spp were sensitive to Natamycin and Itraconazole (100%) Candida isolates were sensitive (100%) to Amphotericin B, Natamycin and Voriconazole.

Keywords: Bacterial and fungal keratitis, Antibiotic susceptibility, Ibn Al-Haithem hospital of ophthalmology Baghdad, Iraq.

Microbial keratitis is defined as a corneal infection which caused by a range of non-viral pathogens, including bacteria, protists and fungi. It characterized by pain and corneal ulceration with tissue infiltration, the vision will be affected according to the size and location of the ulcer.

The climate and socio-economic factors play an important role in the prevalence of each causative organisms, fungal infection is the main cause of corneal blindness associated with agricultural injury. Saprophytic fungi reported as a causative agents and Candida albicans was considered pathogenic in 45.8% of keratitis. Hosted bacteria might infect the cornea, while the others can be found as normal flora on the lid margin.
The more virulent bacteria cause corneal destruction and it may be complete in 24-48 hours which will lead to ulceration, abscess, surrounding corneal edema and anterior segment inflammation.

Ocular surface disease such as trauma, surgery, topical steroid also increased wearing of contact lens and refractive surgery are additional risk factors. In Iraq, the common risky factors for microbial keratitis are corneal abrasions, and ocular surface disorders such as dry eye, trichiasis, old scars and most of them are sequels of cicatricial trachoma.

The study aimed to determine the prevalence of microbial keratitis infection causatives and determination the susceptibility of the isolates to the most common antibiotics used.

Patients and Methods

This study was conducted in Ibn Al-Haitham hospital of ophthalmology in Baghdad. A total of 234 patients attended the hospital from September 2017- April 2018, the patient’s agreement was taken and information documented directly including the socio-demographic characters, age, and history of any disease.

The slit Lamp method was used to record the size and depth of the ulcer and the stromal suppuration. Height of hypopyon if present was also recorded.

The scraping was divided into two ports bacterial and fungal detection, blood agar (HiMedia, India), chocolate agar, brain heart-infusion agar (Saluca/Germany), MacConkey agar (BDH/England), Sabaroud agar (Biolife / Italy) and Gram reaction. After incubation, positive microbial cultures were further biochemical reaction were done to identified the species as most Staphylococcus spp. and Pseudomonas spp. were identified by API system (bio Merieux).

Lacto phenol–cotton blue stain was used for examination of hyphae and spore morphological identification under the microscope.

Antibiotic susceptibility

Antibiotic susceptibility was monitored with the disk diffusion assay (Kirby–Bauer), the zone of inhibition was interpreted according to NCCLS guidelines.

The following antibiotics were tested Erythromycin (15 µg), Clarithromycin (15 µg), Chloramphenicol (30 µg), Clindamycin (2 µg), Tetracycline, (30 µg), Doxycycline (30 µg), Amikacin (30 µg), Gentamicin (10 µg), Ciprofloxacin (5 µg), Ceftriaxone (30 µg) supplied by HiMedia Lab.(India), reference strains of “Staphylococcus aureus ATCC25923, E. coli ATCC25922 and Pseudomonas aeruginosa ATCC27853” were used as a control. Antifungal drugs susceptibility was tested by using CLSI M38-A2 BMD method. The fungal isolates were tested for susceptibility to four antifungal agents: amphotericin B, natamycin, Itraconazole and voriconazole, “ Candida krusei ATCC 6258 and C. parapsilosis ATCC 22019” were used as a controls.

Statistical Analysis

Chi-square test for statistical analysis. A P value <0.05 was used for finding the significance difference between the groups and correlated t-test was used to find the relation between the variables within the same group by using spss program.

RESULTS

Out of 234 patients having microbial keratitis, there were 147 (63%) patients with bacterial keratitis and 87 (37%) with fungal keratitis as shown in figure 1. Men with bacterial keratitis represented 60% (88) and women 40% (59), while men with fungal keratitis were 61% (53) and women 39% (34) as shown in figure 2. The results revealed that the number of the patients with bacterial keratitis were 82(56%) and 51(59%) with fungal keratitis from Baghdad while the internally displaced were 62(44%) and 36(41%) with both bacterial and fungal keratitis, there was a significant differences between the two group as shown in table 1.

The results showed that the highest percentage of patients with bacterial keratitis and fungal keratitis were both (34%) at mean age of 73 ± 2.3 y while the lowest percentage of patients with bacterial keratitis was (18%) and with fungal keratitis (15%) at mean age of 25.5± 1.4 y as showed in table 2. Most patients with bacterial keratitis recorded having diabetes mellitus(39%) and the rest of them having arthritis and hypertension (31% ,30%) while the diabetic with fungal keratitis represented (41%) followed by arthritis and hypertension (35%,24%) as showed in table 3.
The results revealed that gram positive bacteria was 102 (69%) while gram negative 45 (31%), \textit{S.aureus} was the most common cause of bacterial keratitis42(29%), followed by \textit{S.epidermidis} 36(24%) then \textit{Streptococcus} spp. 24(16%) , \textit{Pseudomonas} spp. 17 (12%) , \textit{Proteus}, spp. 13 (9%) , \textit{Escherichia coli} 9(6%) and \textit{Enterobacter} spp 6(4%) while \textit{Aspergillus fumigates} represented 26(30%) as the most common cause of fungal keratitis , \textit{Aspergillus flavus} 19(22%), \textit{Aspergillus niger} 16(18%) , \textit{Pencillium} spp 11(13%) , \textit{Fusarium oxysporium}. 8(9%), \textit{Fusarium solani} 5(6%) and \textit{Candida} spp 2(2%) as shown table 4.

The results of antibiotic susceptibility showed that \textit{S. aureus} isolates were susceptible to Cloramphenicol and Ciprofloxacin (83%) followed by Doxycycline (81%) and Amikacin (74%) then Gentamycin , Erythromycin and Tetracycline (69%,64%,62%), while they were resistant to Clindamycin (57%) .\textit{S.epidermidis} isolates were susceptible to Cloramphenicol and Amikacin (86%) then Erythromycin and Doxycycline (83%) followed by Clindamycin ,

Table 1. Distribution of the patients with bacterial ocular infection according to the Socio-demographic characters

Socio-demographic characters	Patients with bacterial keratitis	Patients with fungal keratitis
Baghdad	82(56%)	51(59%)
IDP	62(44%)	36(41%)
Total	147(100%)	87(100%)

IDP internally displaced persons, p value (< 0.05)

Table 2. Distribution of bacterial and fungal keratitis according to age group

Age/years	Mean±SD	Number of patients with bacterial keratitis %	Number of patients with fungal keratitis %
18-33	25.5±0.4	26(18%)	13(15%)
34-49	41.5±0.6	32(22%)	20(23%)
50-65	57.5±0.1	38(26%)	24(28%)
66-81	73.5±0.3	51(34%)	30(34%)

p value (< .05)

Fig. 1. Distribution of microbial keratitis among the patients
Ciprofloxacin and Gentamycin (81%, 78%, 75%) respectively as shown in table 5.

Streptococcus spp isolates were susceptible to Tetracycline and Clindamycin (88%, 83%) then Cloramphenicol (79%) followed by Erythromycin and Doxycycline (75%) both as shown in table 6.

Pseudomonas spp isolates showed their high susceptibility to Tetracycline (96%) followed by Cloramphenicol and Ciprofloxacin (88%) both and Amikacin, Doxycycline and Gentamycin (82%) each of them as shown in table 7.

The results showed that *Enterobacter spp* isolates were susceptible to Tetracycline and Gentamicin (100%) followed by Ciprofloxacin (83%) while *E. coli* isolates were susceptible to Cloramphenicol (100%) followed by Ciprofloxacin and Gentamicin (89%) both and they were resistant to Amikacin and Tetracycline (56%) both as shown in table 8.

Proteus spp isolates were susceptible to Cloramphenicol and Tetracycline (92%) followed by Ciprofloxacin (85%) and Ceftriaxone and Gentamicin (77%) as shown in table 9.

Antifungal susceptibility test showed that (98%) of *Aspergillus spp* isolates were sensitive to Itraconazole (98%), Voriconazole, Amphotericin B and Natamycin (95%, 93%, 92%) respectively, *Pencillium spp.* isolates were sensitive to Amphotericin B (100%) then Natamycin and Itraconazole (91%) both followed by Voriconazole (82%), as shown in table 10.

Fusarium spp isolates were sensitive to Natamycin and Itraconazole (100%) then Amphotericin B and Voriconazole (92%) both as shown in table 11.

The results revealed that *Candida* isolates were sensitive mostly to all types of the antibiotics were used in the study as showed in table 12.

Table 3. Relation between the number of patients with microbial keratitis and history of disease

History of disease	Number of patients with bacterial keratitis	Number of Patients with fungal keratitis
Diabetes mellitus	57(39%)	36(41%)
Arthritis	46(31%)	30(35%)
Hypertension	44(30%)	21(24%)
Total	147(100%)	87(100%)

p value (< 0.05)
DISCUSSION

Our study revealed that patients with bacterial keratitis were represented (63%) from the total patients with microbial keratitis, men represented the highest levels (60%) while fungal keratitis patients were (37%) and men represented (61%) of them. The relatively highest percentage of males with microbial keratitis as a compression with females seen almost closely to some other studies. According to the socio-demographic characters, the number of patients with microbial keratitis from Baghdad represented (57%) while the internally displaced were (43%) and this might be related to unsuitable health conditions or inappropriate life issues.

There was high percentage of patients with microbial keratitis at mean age of 73.5±0.3 and gradually decreases and these thinning are different in other study in Baghdad, as the patients group (41-59) years were the most microbial keratitis infected with a percentage of (30.20%), while the lowest infected (≤ 60) year with a percentage of (17.80%) and another study in south India they found that the age range of 41-60 years was more affected, this may be due to choosing of the common causes of infection. The patients with bacterial keratitis recorded with diabetes mellitus were (39%) and the rest were having arthritis and hypertension (31%,30%) while the diabetic with fungal keratitis were (41%) followed by arthritis and hypertension (35%,24%) and these results disagree with other findings depending on the age and other chronic disease due to health style (food and environment). The results revealed that gram positive bacteria was 102 (69%) and gram negative 45 (31%), S.aureus was the most common cause of bacterial keratitis, followed by S.epidermidis 36(24%) then Streptococcus spp. 24(16%), Pseudomonas spp. 17 (12%), Proteus spp. 13(9%), Escherichia coli 9(6%) and Enterobacter spp 6(4%) while the most common causes of fungal keratitis were Aspergillus fumigates 26(30%), Aspergillus flavus 19(22%), Aspergillus niger 16(18%), Pencillium spp 11(13%), Fusarium

Table 4. Profile of isolated bacteria and fungi from patients with keratitis

Types of isolated bacteria	Number(%)	Types of isolated fungi	Number(%)
S.aureus	42(29%)	Aspergillus fumigatus	26(30%)
S.epidermidis	36(24%)	Aspergillus flavus	19(22%)
Streptococcus spp.	24(16%)	Aspergillus niger	16(18%)
Pseudomonas spp.	17(12%)	Pencillium spp.	11(13%)
Proteus spp.	13(9%)	Fusarium oxysporium	8(9%)
Escherichia coli	9(6%)	Fusarium solani	5(6%)
Enterobacter spp.	6(4%)	Candida spp	2(2%)
Total	147(100%)	Total	87(100%)

Table 5. Antibiotic sensitivity and resistance of S. aureus and S.epidermidis isolates.

Antibiotics	MIC (µg/ml)	S. aureus n=42	S. epidermidis n=36
	50 90	S I R	50 90
Erythromycin	0.25 64	27(64%) 2(5%)	13(31%) 0.25 64
Cloramphenicol	0.25 64	35(83%) 2(5%)	5(12%) 0.12 64
Clindamycin	0.06 64	16(38%) 2(5%)	24(57%) 0.06 32
Tetracycline	1 4	26(62%) 1(2%)	15(36%) 1 4
Amikacin	0.12 32	31(74%) 1(2%)	10(24%) 0.25 16
Gentamycin	0.25 8	29(69%) 2(5%)	11(26%) 0.25 16
Ciprofloxacin	8 8	35(83%) 2(5%)	5(12%) 8 8
Doxycycline	0.12 16	34(81%) 2(5%)	6(14%) 0.12 16

J PURE APPL MICROBIOL, 12(3), SEPTEMBER 2018.
oxysporium, 8(9%), Fusarium solani 5(6%) and Candida spp 2(2%) , these were agreed with other study in Baghdad as gram-positive isolates were (81.1%) from the total cases and Staphylococcus spp. was the most common isolates, Pseudomonas spp. was the first among gram-negative isolates. Other study conducted in Ibn Al-Hiatham Teaching Eye Hospital at 2003, found that Pseudomonas spp. was the most common bacterial isolates, followed by Staphylococcus spp. and fungal growth was detected in 13 cases. Other study founded coagulase negative staphylococci were the most common may be related to the variation to different climatic conditions, socioeconomic variables.

Another study found that the fungal growth represented (18.7%), and Aspergillus spp. was 42 (56.8%) followed by Fusarium spp. 20 (27%), Pencillium spp. 4 (5.4%), Scopulariosis spp. 2 (2.7%), Geotrichum spp. 1 (1.4%), Alternaria spp. 1 (1.4%) and Candida spp. 4 (5.4%). Other investigation found that the prevalence of fungal keratitis in Iraq the most common fungus isolated were Pseudo

Table 6. Antibiotic sensitivity and resistance of Streptococcus spp isolates

Antibiotics	MIC (µg/ml)	Streptococcus spp. n=24
	50	90
Erythromycin	0.12	64
Clarithromycin	0.25	64
Cloramphenicol	0.25	64
Clindamycin	0.12	64
Tetracycline	0.12	64
Doxycycline	0.25	64
Ciprofloxacin	1	2
Ceftriaxone	0.5	4

Table 7. Antibiotic sensitivity and resistance of Pseudomonas spp isolates

Antibiotics	MIC (µg/ml)	Pseudomonas spp. n=17
	50	90
Amikasin	8	32
Cloramphenicol	1	2
Tetracycline	8	32
Doxycycline	1	2
Ciprofloxacin	1	16
Gentamicin	2	8

Table 8. Antibiotic sensitivity and resistance of Enterobacter spp and E.coli isolates

Antibiotics	MIC (µg/ml)	Enterobacter spp n=6	E.coli n= 9	
	50	90	50	90
Amikacin	8	32	3(50%)	1(17%)
Cloramphenicol	1	2	2(33%)	16
Tetracycline	8	32	0	
Doxycycline	1	2	3(50%)	1(17%)
Ciprofloxacin	1	16	0	
Gentamicin	2	8	0	

J PURE APPL MICROBIOL, 12(3), SEPTEMBER 2018.
was *Aspergillus* spp, then *Fusarium* spp, *Candida albicans* and *Scopulariopsis* spp. Our results revealed that gram positive and negative bacterial isolates were susceptible to the most antibiotics used as *S. aureus* isolates were susceptible to Cloramphenicol and Ciprofloxacin (83%), followed by Doxycycline (81%), while they were resistant to Clindamycin (57%) *S. epidermidis* isolates were susceptible to Cloramphenicol and Amikacin (86%). *Streptococcus* spp isolates were susceptible to Tetracycline and Clindamycin (88%, 83%). *Pseudomonas* spp isolates showed their high susceptibility to Tetracycline (96%) followed by Cloramphenicol and Ciprofloxacin (88%) and

Table 9. Antibiotic sensitivity and resistance of *Proteus* spp isolates

Antibiotics	MIC (µg/ml)	*Proteus* spp n=13			
	50	90	S	I	R
Ceftriaxone	0.12	64	10 (77%)	2(15%)	1(8%)
Cloramphenicol	0.25	64	12(92%)	1(8%)	0
Tetracycline	8	8	12(92%)	1(8%)	0
Ciprofloxacin	16	16	11(85%)	1(8%)	1(8%)
Gentamicin	0.12	64	10(77%)	2(15%)	1(8%)

Table 10. Antibiotic sensitivity and resistance of *Aspergillus* spp and *Penicillium* spp isolates

Antifungal	MIC (µg/ml)	*Aspergillus* spp n=61	*Penicillium* spp n=11					
	50	90	S	I	R	S	I	R
Amphotericin B	2	4	57(93%)	1(2%)	3(5%)	11(100%)	0	0
Natamycin	32	32	56(92%)	2(3%)	3(5%)	10(91%)	1(9%)	0
Itraconazole	0.125	0.25	60(98%)	1(2%)	0	10(91%)	1(9%)	0
Voriconazole	0.25	0.5	58(95%)	1(2%)	2(3%)	9(82%)	2(18%)	0

Table 11. Antibiotic sensitivity and resistance of *Fusarium* spp

Antifungal	MIC (µg/ml)	*Fusarium* spp n=13			
	50	90	S	I	R
Amphotericin B	2	4	12(92%)	1(8%)	0
Natamycin	32	32	13(100%)	0	0
Itraconazole	0.125	0.25	13(100%)	0	0
Voriconazole	0.25	0.5	12(92%)	1(8%)	0

Table 12. Antibiotic sensitivity and resistance of *Candida* spp isolates

Antifungal	MIC (µg/ml)	*Candida* spp n=2			
	50	90	S	I	R
Amphotericin B	2	4	2(100%)	0	0
Natamycin	32	32	2(100%)	0	0
Itraconazole	0.125	0.25	1(50%)	1(50%)	0
Voriconazole	0.25	0.5	2(100%)	0	0
these were agreed with other studies in China and Iran\(^{26-27}\). \textit{Enterobacter spp} isolates were susceptible to Tetracycline and Gentamicin (100%) while \textit{E.coli} isolates were susceptible to Cloramphenicol (100%) but they were resistant to Amikacin and Tetracycline (56%) both, however, \textit{Proteus spp} isolates were susceptible to Cloramphenicol and Tetracycline (92%) and theses findings were recorded in many other studies\(^{28-29}\). fungal isolates and Tetracycline (92%) and theses findings were

- **Proteus** (100%) but they were resistant to Amikacin
- **E.coli** to Tetracycline and Gentamicin (100%) while

common practice of self medication. \textit{E.coli} was the highest gram positive bacterial isolates recorded in many other studies\(^{28-29}\). fungal isolates showed high susceptibility as \textit{Aspergillus spp} isolates were sensitive to Itraconazole (98%) , Voriconazole then Amphotericin B and Natamycin (95%,93% ,92%) respectively , \textit{Pencillium spp}. isolates were sensitive to Amphotericin B (100%) then Natamycin and Itraconazole (91%) both while \textit{Fusarium spp} isolates were sensitive to Natamycin and Itraconazole (100%) then Amphotericin B and Voriconazole (92%) both and \textit{Candida} isolates were sensitive to the most antibiotics that used in the study ,these results were matching to many other results in the same field\(^{30-31}\).

CONCLUSIONS

Keratitis was very clear among the patients with ocular bacterial infections. \textit{S. aureus} was the highest gram positive bacterial isolates followed by \textit{S.epidermidis} while gram negative dominant isolates were \textit{Pseudomonas spp}. \textit{Aspergillus spp} recorded high prevalence followed by \textit{Pencillium spp}. Gram positive and negative isolates as well fungal isolates were susceptible to the most common tested antibiotics which will support the treatment strategies and control the common practice of self medication.

REFERENCES

1. Zhang W, Yang H, Jiang L, Han L, Wang L. Use of potassium hydroxide, Giemsa and calcofluor white staining techniques in the microscopic evaluation of corneal scrapings for diagnosis of fungal keratitis. \textit{J Int Med Res.} 2010; \textbf{38}:1961–67. [PubMed]
2. Amrutha KB, Venkatesh D. Microbiological profile of Ulcerative Keratitis in a tertiary care hospital. \textit{Int J Res Health Sci} 2014; \textbf{2}: 599 03.
3. Sethi S, Sethi MJ, Iqba R. Causes of microbial keratitis in patients attending an eye clinic at Peshawar. \textit{Gomal J Med Sci} 2010; \textbf{8}:20 22.
4. Insan NG, Mane V, Chaudhary BL, Danu MS, Yadav A, Srivastava V. A review of fungal keratitis: Etiology and laboratory diagnosis. \textit{Int J Curr Microbiol App Sci} 2013; \textbf{2}: 307 14.
5. Itahashi, M. ; Higaki, S. ; Fukuda, M. and Shimomura, Y. Detection and Quantification of Pathogenic Bacteria and Fungi Using Real-Time Polymerase Chain Reaction by Cycling Probe in Patients With Corneal Ulcer. \textit{Arch Ophthalmol.} 2010; \textbf{5}: 535-40.
6. Hua, X.; Yuan, X. and Wilhelms, K. R. A fungal PH- responsive signaling pathway regulating Aspergillus adaptation and invasion into the cornea. IOVS 2010; 3:51.
7. Kumara,; Pandy, S.; Madan, M. ; Kavathia, G. Keratomycosis with Superbacterial Infection Due To Corticosteroid Abuse-A Case Report. \textit{J Clini Diag Res.} 2010; \textbf{4}:2918-21.
8. Fawzy, G.; Al-Taweel, A. and Melake, N. In Vitro Antimicrobial and Anti-Tumor Activities of Intracellular and Extracellular extracts of Aspergillus niger and Aspergillus flavus var. columnaris. \textit{J Pharm} 2011; 1:980-87.
9. Al-Yousaf, N. Microbial Keratitis in Kingdom of Bahrain: Clinical and Microbiology study. \textit{Middle East African J Ophthal.} 2009; \textbf{16}: 3-7.
10. Faiz Al-Shakarchi Initial therapy for suppurative microbial keratitis in Iraq. \textit{J Ophthalmol} 2007; \textbf{91}:1583–87.
11. Hemavathi, P. Sarmah, and P. Shenoy, Profile of microbial isolates in ophthalmic infections and antibiotic susceptibility of the bacterial isolates: a study in an eye care hospital, Bangalore. \textit{J Clini Diag Res} 2014; \textbf{8}: 23–25.
12. Shimizu Y, Toshida H, Honda R et al., Prevalence of drug resistance and culture-positive rate among microorganisms isolated from patients with ocular infections over a 4-year period. \textit{J Clini Ophthalm}, 2013; \textbf{7}: 695–02.
13. Willcox M, Sharma S, Naduvilath T.J, Sankaridurg P.R., Gopinathan U.and Holden B. A. External ocular surface and lens microbiota in contact lens wearers with corneal infiltrates during extended wear of hydrogel lenses, \textit{J Clini Ophthalm} 2011; \textbf{37}(2): 90–95.
14. Li Y."Microbial spectrum and resistance patterns of ocular infection in Tianjin Eye Hospital (2005–2009)," \textit{Shandong Medicine.} 2010; \textbf{50}: 65–66.
15. Giardini F., Grandi G. , De Sanctis U. et al., "In vitro susceptibility to different topical ophthalmic antibiotics of bacterial isolates from patients with conjunctivitis," \textit{Ocul Immunol Inflam.} 2011; \textbf{19}: 419–21.
16. Torres I. M., Bento E. B., Almeida L. D. , de S’a L. Z. and Lima E. M. , Preparation, characterization and in vitro antimicrobial activity of liposomal ceftazidime and cefepime
against Pseudomonas aeruginosa strains. *Brazilian J Micro* 2012; 43: 984–92.

18. Mehta S., Mansoor H., Khan S., Saranchuk P., and Isaakidis P. Ocular inflammatory disease and ocular tuberculosis in a cohort of patients co-infected with HIV and multidrugresistant tuberculosis inMumbai, India: a cross-sectional study. *BMJ Infect Dis*. 2013; 13: 225.

19. Chen X. and Adelman R. A., Microbial spectrum and resistance patterns in endophthalmitis: a 21-year (1988–2008) review in Northeast United States. *J Ocul Pharmacol and Ther*. 2012; 28: 329–34.

20. Jain R., Murthy S., and Motukupally S. R, ”Clinical outcomes of corneal graft infections caused by multi-drug resistant Pseudomonas aeruginosa,” *Cornea*, 2014; 33: 22–26.

21. Deren YT, Ozdek S, Kalkanci A, Akyürek N, Hasanreisolu B. Comparison of antifungal efficacies of moxifloxacin, liposomal amphotericin B, and combination treatment in experimental Candida albicans endophthalmitis in rabbits. *Can J Microbiol* 2010; 56: 1-7.

22. Sun B, Li ZW, Yu HQ, Tao XC, Zhang Y, Mu GY. Evaluation of the in vitro antimicrobial properties of ultraviolet A/riboflavin mediated crosslinking on Candida albicans and Fusarium solani. *Int J Ophthalmol* 2014; 7: 205-210.

23. Borkar DS. *Acanthamoeba*, fungal, and bacterial keratitis: a comparison of risk factors and clinical features. *Am J Ophthalmol* 2014; 157: 56-62.

24. Lalitha P, Sun CQ, Prajna NV, Karpagam R, Geetha M, O'Brien KS, Cevallos V, McLeod SD, Acharya NR, Lietman TM, Myotic Ulcer Treatment Trial Group. In vitro susceptibility of filamentous fungal isolates from a corneal ulcer clinical trial. *Am J Ophthalmol* 2014; 157: 318-26.

25. Qiu WY, Yao YF. Mycotic keratitis caused by concurrent infections of *Exserohilum mcginnisii* and *Candida parapsilosis*. *BMC Ophthalmol* 2013; 13: 37.

26. Mukherjee PK, Chandra J, Yu C, Sun Y, Pearlman E, Ghannoun MA. Characterization of fusarium keratitis outbreak isolates: contribution of biofilms to antimicrobial resistance and pathogenesis *Invest Ophthalmol Vis Sci*, 2012; 53 : 4450-7.

27. Choi KS, Yoon SC, Rim TH, Han SJ, Kim ED, Seo KY. Effect of voriconazole and ultraviolet-A combination therapy compared to voriconazole single treatment on Fusarium solani fungal keratitis. *J Ocul Pharmacol Ther* 2014; 30 : 381-6

28. Das S, Konar J. Bacteriological profile of corneal ulcer with references to Antibiotic susceptibility in a tertiary care hospital in West Bengal. *IOSR J Dent Med Sci* 2013; 11: 72 75.

29. Yoon KC, Jeong IY, Im SK, Chae HJ, Yang SY. Therapeutic effect of intracameral amphotericin B injection in the treatment of fungal keratitis. *Cornea*. 2007; 26:814–18. [PubMed]

30. Anane S, Ben Ayed N, Malek I, et al. Keratomycosis in the area of Tunis: epidemiological data, diagnostic and therapeutic modalities. *Ann Biol Clin* (Paris) 2010; 68: 441–47. [PubMed]

31. Anshu A, Parthasarathy A, Mehta JS, Htoon HM, Tan DT. Outcomes of therapeutic deep lamellar keratoplasty and penetrating keratoplasty for advanced infectious keratitis: a comparative study. *Ophthalmology*. 2009;116:615–23. [PubMed]