Short Communication:
Growth performance, and blood profile of kampong chicken fed diets containing *Moringa oleifera* powder and liquid

DANUNG NUR ADLI
Department of Animal Nutrition, Faculty of Animal Science, Universitas Brawijaya. Jl. Pringgodani, Mtecan, Mojoroto, Kediri 64111, East Java, Indonesia. Tel./fax: +62-341-553513, *email: danungnuradi1994@gmail.com*

Manuscript received: 2 June 2020. Revision accepted: 2 September 2020.

Abstract. Adli DN. 2020. Short Communication: Growth performance, and blood profile of kampong chicken fed diets containing *Moringa oleifera* powder and liquid. *Asian J Agric* 4: 83-86. The research purpose is to carry out the possible effect of *Moringa oleifera* on Growth performance, and intestinal properties of Lohmann broiler. 80 one-day-old kampons were randomly allocated to 4 dietary treatments and 4 replicates of 5 birds per cage. Four treatments used for research were dietary with control (T0), basal diet + *M. oleifera* 80 g (T1), Drinking water + 2 mL/L *M. oleifera* (T2), and basal feed + *M. oleifera* 80 g+ drinking water 2 mL/L *M. oleifera* (T3). The results showed that using *M. oleifera* presented no significant difference (P < 0.05) on body weight gain at 1-35 days and intestinal properties. The microstructure didn't affect negatively to its structure. In conclusion, addition of *M. oleifera* does not impact growth performance, and but can reduce amount of glucose in kampong chicken.

Keywords: Blood biochemistry, Kampong chicken, performance

INTRODUCTION

Intensive poultry production systems demand a supply of high protein- and easily available in developing countries. However, during the last decade, dietary protein sources for livestock have become tremendously expensive and difficult to access, challenging researchers and farmers globally to seek alternative protein sources and increase the quality and availability of alternative livestock feeds (Adli et al. 2018).

Consequently, various forage trees and shrubs have been explored as potential protein sources, and special attention has been paid to the tree *Moringa oleifera*. *M. oleifera* were substances that provide a source of antioxidant for animals. The source of antioxidant was later called natural growth promoters (Adli et al. 2017).

Originating from the Indian sub-continent, *M. oleifera* is reputed for its adaptability to grow in all types of soils and to tolerate hot and dry conditions (Jet et al. 2014). The antibiotics are provided as a growth promoter; however, they cause bacterial resistance and residue in the carcass. Alternative feed additives, such as *M. oleifera*, have been the focus of many studies during the past five years due to their beneficial effect on feed efficiency. *M. oleifera* replaces the use of antibiotics because they are safer and act as a natural growth promoter (NGPs) in kampong chicken (Adli et al. 2018).

Moringa oleifera was a potential for natural growth promoters. The moringa can be used as feed additive in terms of non-nutritional value of poultry additive. (Jet et al. 2014). It contains negligible amounts of antinutritional factors, has a high crude protein (CP) content, significant amounts of vitamins A, B, and C in the foliage, and high amounts of polyphenols, resulting in significant antioxidative activity. *M. oleifera* is also called a miracle tree, since it provides a lot of chemical properties on its leaf. *M. oleifera* are economical trees that grow in tropical areas (Su and Chen 2020). *M. oleifera* acts as anti-bacterial, anti-oxidant, and anti-inflammatory (Auriem et al. 2019).

MATERIALS AND METHODS

Animals, housing, and experimental design

A total of 80 kampong chickens with initial body weight (BW) of 22.13±2.13 kg were used in an 8-weeks trial. Treatments were as follows with control (T0), basal diet + *M. oleifera* 80 g (T1), Drinking water + 2 mL/L *M. oleifera* (T2), and basal feed + *M. oleifera* 80 g+ drinking water 2 mL/L *M. oleifera* (T3). The house is set with temperature of 29°C and 65% humidity. Furthermore, it was set to 23 hours of light and 2 hours of darkness. Feed nutrients can be seen in Table 1.

Growth performance

The kampong chickens were individually weighed at the beginning of the experiment, and every week thereafter until the end of the experiment. The gain in body weight (BWG) of birds per week was calculated as the difference between the initial and end weight at a given week (7 days, 14 days, 21 days, 28 days, and 35days). Feed intake was calculated basis of feed offered and remain. As basis mortalities set calculated during experimental.
Table 1. Experimental diet

Feed nutrient	Starter (1-28 days)	Finisher (29-56 days)
Maize	57.11	69.66
Dehulled soybean meal	36.53	26.65
L-Lysine	0.1	0.1
DL-methionine	0.55	0.55
Dicalcium phosphate	1.67	1.55
Limestone	1.13	1.02
Salt	0.3	0.3
Soy oil	2.81	0.06
Vitamin premix*	0.05	0.05
Mineral premix**	0.05	0.05
Choline	0.1	0.1
**	**100.4	**100.09

Dry matter (%) 87.00 87.00
ME (Kcal/kg) 3050 3150
Ash (%) 9.00 9.00
Crude protein (%) 22.00 18.00
Fat (%) 6.00 6.00
Crude fiber (%) 3.00 2.50
Ca 1.00% 0.95%
P 0.70% 0.75%
Copper (ppm) 30 50
Zinc (ppm) 120 120

Blood biochemistry

Blood data was taken at 21, 28, and 56 days of age. The blood non-EDTA tubes and allowed to clot for one hour, at room temperature. Blood samples were immediately centrifuged using the cryogenic centrifuge (Hettich Universal 320R, Germany) for 15 min at 3000 rpm to obtain serum and further: glutamic oxaloacetic transaminase; GPT: glutamic pyruvic transaminase; TP: total protein, ALB: Albumin; GLB: globulin; A/G: albumin/ globulin ratio; TGL: triglyceride; TCHOL: total cholesterol; BUN: blood urea nitrogen; GLC: glucose (Adli, et al. 2019).

Data analyses

Data were statistically analyzed using GLM procedure of SAS University version 4.0 red hat (64-bit) with code encryption algorithm http://localhost:10080/SASStudio/38/index license owned by Danung Adli and the difference among treatment means (p<0.05) were determined using Duncan’s multiple range tests. Code algorithm in SAS as follows:

Data Q1;
Set pre.Q1;
Run;
Proc ANOVA data=Q1;
 Title ‘one-way anova with a Moringa oleifera on one factor’;
 Class calib;
 Model shape_1shape_2 shape_3 shape 4= calib/nouni;
(Widiyawati 2020).

RESULTS AND DISCUSSION

Growth performance

Data on comparison M. oleifera leaf and liquid in feed is shown in Table 2. Giving Red M. oleifera leaves and liquid doesn’t improve (p > 0.05) on FI, FCR, and BWG. The feed intake increase may be due to correlating with body weight and body weight gain when both of these variable growth increase the feed intake will also increase. Compared with Adli and Sjofjan (2020) who stated that the use of MRF gave significant difference (P < 0.05) on body weight gain at 21 d and 35 d compared than control (877 g (MRF 400 g/tonne (21 d); 50 g/tonne (35d)) vs 819 g control). The result is due to the rearing condition, the kampong chicken will increase the body weight gain when the environment bedding is clean (Adli and Sjofjan 2020). Additionally, the bodyweight of poultry would be determined by the consumption of feed with a balanced energy and protein content. In the past, the use of plants in monogastric diets was restricted because of some negative aspects of feed intake and nutrient utilization attributed to phytochemical composition that varies greatly due to variety, location, and climate. The mortality result in Table 2 showed the use of MRF combination with probiotic liquid acidifier on treatment (T2 and T3) gives no significant differences (P > 0.05) reduces to 1.31% compared to control 3.94%. In earnest, the effect on growth performance may not be consistent, for instance, in several cases where plant extracts have been used, FI and FCR were not changed, although a positive effect on BW, BWG, organ weight, and/or energy utilization was reported (Sjofjan et al. 2019).

Statistical analysis of the meat quality is presented in Table 3. Shows M. oleifera leaf and liquid in feed on the on-serum blood biochemistry were not significantly different (P > 0.05) but the results on Glutamic oxaloacetic transaminase (GOT) at 21 days began to reduce. The treatment was better compared to control (219.20 (T1), 200.10 (T2), and 215.30 (T3) vs. 243.30 U/L). Melesse et al., (2017) stated the criteria GOT were at the number less than 40 U/L. The result of the GOT may be due to M. oleifera content. Ogbe and Affiku (2020) stated M. oleifera may reduce content of anti-stress substances. The dietary treatment of feed additives depends on dose, frequency, and time rearing in vivo (Adli and Sjofjan 2020).

Based on Table 3, the use of M. oleifera was not significantly different (p > 0.05) on total protein. In the beginning, it is hard to reduce but more stable compared to control. Moreki and Gabanakgosi (2014) stated M. oleifera can’t help to reduce total protein in a short amount of time in animals, but it will help with longer amounts of time.

The result may be due to the treatment that cannot help to reduce the amount of blood content on the heart. The serum of blood biochemistry was indicator of positive or negative results of treatment. (Sjofjan et al. 2019). Factors that affect heart weight are broiler body weight, age, broiler activity, and gender. Banjo (2012) stated the high fiber of M. oleifera made the additive stay more in intestinal of chicken. To reduce crude fiber, it needs to be reduced in the fiber with liquid content of substances (Sjofjan et al. 2019).
Table 2. Effect of *Moringa oleifera* on the body weight, body weight gain, feed intake, feed/gain, and mortality of kampong chicken

Day	T0	T1	Treatments1	T2	T3	SEM
Bodyweight, g/bird						
1	33.12	33.15	33.15	33.08	0.11	
28	421.33	412.13	404.39	405.12	17.40	
48	888.11	825.11	720.2	713.102	17.40	
56	889.12	883.12	812.11	715.15	10.40	
Bodyweight gain, g/bird						
1-21	674.64	670.05	671.98	668.98	42.55	
1-28	1001.12b	1138.73a	1128.63a	1192.09a	47.70	
28-48	1525.10	1537.10	1574.70	1486.90	65.20	
1-56	1856.90	1842.70	1878.40	1786.60	167.20	
Feed intake, g/bird						
1-21	909.80	979.10	855.40	807.30	21.06	
1-28	1874.60	2018.40	1822.90	1727.80	53.70	
28-48	2264.70	2414.40	2273.40	2102.00	70.00	
1-56	2668.60	2810.80	2690.10	2499.00	76.80	
Feed/gain, g/bird						
1-21	1.33	1.49	1.22	1.22	0.09	
1-28	1.73	1.72	1.54	1.44	0.23	
28-48	1.52	1.58	1.54	1.49	0.37	
1-56	1.48	1.54	1.50	1.44	0.14	
Mortality, (%)						
1-56	5.94	2.26	2.26	2.26	2.26	

Note: Mean values not sharing the same superscripts in a row differ significantly (P < 0.05)

Table 3. Effect of *Moringa oleifera* on the serum blood biochemistry kampong chicken at 56 days of age

Item	T0	T1	Treatments1	T2	T3	SEM
GOT (U/L)	219.20	200.10	215.30	243.30	121.1	
GPT (U/L)	3.00	1.75	2.00	2.75	0.97	
TP (g/dL)	2.97	2.97	2.92	2.95	0.29	
ALB (g/dL)	1.27	1.27	1.17	1.22	0.16	
GLB (g/dL)	1.70	1.70	1.77	1.70	0.18	
(A/G)	0.77	0.77	0.67	0.72	0.11	
TGL (mg/dL)	32.25	30.25	30.50	29.00	5.66	
TCHOL (mg/dL)	128.50	128.75	114.50	123.50	12.38	
BUN (mg/dL)	0.97	0.47	0.62	0.47	0.32	
GLC (mg/dL)	251.00	205.00	213.75	227.00	29.10	

Note: Mean values not sharing the same superscripts in a row differ significantly (P < 0.05)

Based on Table 4, the use of *M. oleifera* was not significantly different (p > 0.05) on total cholesterol, blood urea nitrogen, and glucose. Compared to control, TCHOL was at 114.50 (T2) and 123.50 (T3) with SEM 12.38. The total cholesterol was at the same time lower with glucose due to surface area of *M. oleifera*. The key absorption was spread to blood area of body (Sjofjan et al. 2020). Additionally, to Abdulsalam et al. (2015), *M. oleifera* is much better to provide antioxidant compared to other leaves.

In conclusion, addition of *Moringa oleifera* does not impact growth performance, and but can reduce amount the amount of glucose in kampong chicken.

ACKNOWLEDGEMENTS

The authors are grateful to the local farmers to develop the research on Cibubur, West Java, Indonesia and the Ministry of Education for funding the PKM-P 2014. There was no conflict of interest regarding this subject.

REFERENCES

Abdulsalam, S., Yahaya, MS, and Yakasai, MA. 2015. Performance of broiler chickens fed on *Moringa oleifera* leaf meal supplemented poultry feed. Nigeria Agric J 46 (1): 139-146.

Adli DN, Sjofjan O, Mashudi M. 2017. Dried of poultry waste urea molasses block (dpw-umb) as potential for feed supplementation. J Agric 17 (2): 144-149. DOI: 10.17969/agripet.v17i2.8391.
Adli DN, Sjofjan O, Mashudi M. 2018. Nutrient content evaluation of dried poultry waste urea-molasses block (dpw-umb) on proximate analysis. Jurnal Ilmu-Ilmu Peternakan 28 (1): 84-89. DOI: 10.21776/ub.jip.2018.028.01.09.

Adli DN, Sjofjan O, Mashudi M. 2019. Nutrient content evaluation of dried of poultry waste urea-molasses block (dpw-umb) on proximate analysis. Jurnal Ilmu dan Teknologi Peternakan 6 (2): 72-76.

Adli DN, Sjofjan O, Natsir MH, Nuningtyas YF, Sholikah N, Marbun A C 2020 The effect of replacing maize with fermented palm kernel meal in poultry diets. GL J Anim Sci R 2(3): 86. DOI: 10.5713/ajas.15.0642.

Natsir MH, Sjofjan O, Umam K, Manab A, Widodo E. 2010. Effects of liquid and encapsulated lactic acid in kampong chicken diets on performance, intestinal characteristics and intestinal microflora. J Poult Sci 47: 240-243. DOI: 10.2141/gpsa.090999.

Ogbe AO, Affiku JP. 2020. Proximate study, mineral and anti-nutrient composition of Moringa oleifera leaves harvested from Lafia, Nigeria: potential benefits in poultry nutrition and health. J Microbiol Biotechnol Food Sci 9 (4): 296-308.

Pagua HM, Pagua RQ, Balca C, Flores RC. 2014. Utilization and evaluation of Moringa oleifera L. as poultry feed. APCBEE Procedia 8: 343-347.

Sjofjan O, Adli DN, Natsir MH, Kasumaningtyaswati A. 2020. Pengaruh kombinasi tepung kunyit (Curcuma domestica Val.) dan probiotik terhadap penampilan usus ayam pedaging. Jurnal Nutrisi Ternak Tropis dan Ilmu Pakan 8: 343-347.

Moreki, J C, and Gabanakgosi, K. 2014. Potential use of Moringa oleifera in poultry diets. Gl J Anim Sci Res 2 (2): 109-115.

Melesse, A, Aleme T, Banerjee S, Brehun K. 2017. The effect of the partial substitution of roasted soybean seed with graded levels of sweet potato (Ipomoea batatas) leaf meal on growth performances and carcass components of broiler chickens. Asian Australasian J Anim Sci. DOI: 10.5713/ajas.15.0642.