Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition

Kaliyaperumal Ashokkumar1, Mahalingam Govindaraj2*, Adhimoolam Karthikeyan3, V. G. Shobhana2 and Thomas D. Warkentin4

1 Crop Improvement, Cardamom Research Station, Agricultural University, Pampadumpara, India, 2 Crop Improvement program, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India, 3 Subtropical Horticulture Research Institute, Jeju National University, Jeju, South Korea, 4 Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada

Globally, two billion people suffer from micronutrient deficiencies. Cereal grains provide more than 50% of the daily requirement of calories in human diets, but they often fail to provide adequate essential minerals and vitamins. Cereal crop production in developing countries achieved remarkable yield gains through the efforts of the Green Revolution (117% in rice, 30% in wheat, 530% in maize, and 188% in pearl millet). However, modern varieties are often deficient in essential micronutrients compared to traditional varieties and land races. Breeding for nutritional quality in staple cereals is a challenging task; however, biofortification initiatives combined with genomic tools increase the feasibility. Current biofortification breeding activities include improving rice (for zinc), wheat (for zinc), maize (for provitamin A), and pearl millet (for iron and zinc).

Biofortification is a sustainable approach to enrich staple cereals with provitamin A, carotenoids, and folates. Significant genetic variation has been found for provitamin A (96–850 µg and 12–1780 µg in 100 g in wheat and maize, respectively), carotenoids (558–6730 µg in maize), and folates in rice (11–51 µg) and wheat (32.3–89.1 µg) in 100 g. This indicates the prospects for biofortification breeding. Several QTLs associated with carotenoids and folates have been identified in major cereals, and the most promising of these are presented here. Breeding for essential nutrition should be a core objective of next-generation crop breeding. This review synthesizes the available literature on folates, provitamin A, and carotenoids in rice, wheat, maize, and pearl millet, including genetic variation, trait discovery, QTL identification, gene introgressions, and the strategy of genomics-assisted biofortification for these traits. Recent evidence shows that genomics-assisted breeding for grain nutrition in rice, wheat, maize, and pearl millet crops have good potential to aid in the alleviation of micronutrient malnutrition in many developing countries.

Keywords: biofortification, nutri-genomics, cereal, folate, provitamin A, lutein, zeaxanthin, human nutrition

INTRODUCTION

Micronutrient and vitamin-deficiency-induced malnutrition is widely prevalent in South Asia and sub-Saharan Africa, affecting approximately two billion people worldwide. In the human diet, more than 50% of total calories come from major cereals, including rice, wheat, and maize, in developing countries and more than 70% in Southeast Asia and Africa. The green revolution contributed
to remarkable increases in grain yield in these crops, which helped to prevent starvation in developing countries (Bouis and Welch, 2010). It is well known that cereal grains supply enough calories; however, these grains are inherently low in essential micronutrients, including carotenoids and folates (Bouis and Welch, 2010). The global production of rice is 769.4 m tons (from 167.2 m ha), wheat is 771.7 m tons (from 218.5 m ha), maize is 1134.7 m tons (from 197.2 m ha), and millet is 28.4 m tons (from 31.2 m ha) (Food and Agriculture Organization [FAO] et al., 2017), i.e., these crops play a critical role in food systems. Therefore, enhancing the nutritional quality of staple cereal crops is important for human health, particularly for resource-poor people in developing countries. Globally, 792.5 million people are malnourished, of which 780 million people live in developing countries (McGuire, 2015). Globally, two billion people suffer from hidden hunger due to inadequacies of micronutrients in their daily diet (Muthayya et al., 2013). Although major attention has been given to iron and zinc, in this review we also report on breeding efforts to improve concentrations of provitamin A, folate, and carotenoids.

Carotenoids are the second largest group of naturally occurring lipophilic pigments, following flavonoids, and at least 50 of them occur in plants. The most important carotenoids in food crops are β-carotene, α-carotene, β-cryptoxanthin, lutein, zeaxanthin, and lycopene. These carotenes are metabolized and converted to provitamin A (Davey et al., 2009). Humans are incapable of carotenoid biosynthesis, and we therefore depend on dietary carotenoid sources from plant-based foods (Fraser and Bramley, 2004). More than three million children in developing countries are affected by xerophthalmia, and 250,000–500,000 people become blind each year because of vitamin A deficiency (Food and Agriculture Organization [FAO] et al., 2017). The Recommended Dietary Allowance (RDA) of vitamin A for men and women is 900 and 700 µg Retinol Activity Equivalents (RAE)/day, respectively. For dietary provitamin A carotenoids, β-carotene, α-carotene, and β-cryptoxanthin RAEs have been set at 12, 24, and 24 µg, respectively (Institute of Medicine Food and Nutrition Board, 1998).

Folates act as cofactors in several metabolic functions, including the biosynthesis of nucleic acids and methylation of hormones, lipids, and proteins (Forges et al., 2007). Among many naturally occurring folates, cereal and pulse grains largely contain tetrahydrofolic acid (THF), 5-methyl-THF (5-MTHF), 10-formyl-THF (10-FTFH), and pteroylpolyglutamates (Jha et al., 2015; Ashokkumar et al., 2018b). Folate deficiency is a major problem for people from developing countries and can cause severe health issues, including impaired cognitive function, neural tube defects, and cardiovascular diseases (Ramos et al., 2005; McCully, 2007) as well as low birth weight, preterm delivery, and fetal growth retardation (Scholl and Johnson, 2000). Over 300,000 birth defects occur each year worldwide due to folate-deficiency-induced neural tube defects (Flores et al., 2014). Consumption of a folate-rich diet, fortification of foods with folic acid, and folic acid supplements can increase folate concentration in humans (Hefni et al., 2010). The RDA of folates is 400 µg for adults, 500 µg for lactating women, and 600 µg for pregnant women (Institute of Medicine Food and Nutrition Board, 1998).

Biofortification of staple crops through plant breeding and genomics integrated approaches is an effective strategy for delivering vitamins and nutrients to reduce micronutrient deficiencies in developing countries (Bouis, 2002; Welch and Graham, 2005). As urban development increasingly occupies fertile lands, the achievable agricultural production will be pushed toward marginal lands in developing countries. Enhancement of the nutritional value of staple crops through biofortification breeding might have a substantial impact on with their increased consumption worldwide. Increasing the availability of biofortified crops is a relatively straightforward approach to reach low-income people with limited access to healthy diets. Biofortification is a long-term, cost-effective, and sustainable approach to fight malnutrition in developing countries (Meenakshi et al., 2010). In the upcoming decades, the human population will increase in developing countries, and, with the altering climate conditions, food security will pose an increasing challenge (Das et al., 2013; Smith and Myers, 2018). Currently, the most common targeted micronutrients through biofortification breeding are iron, zinc, and carotenoids since these micronutrient deficiencies are common in children under the age of five and in pregnant and lactating women (Bouis and Welch, 2010). The World Health Organization (WHO) and Consultative Group on International Agricultural Research (CGIAR) aim to develop biofortified crops with enhanced nutrition (Bouis, 2000). To date, 36 biofortified varieties have been developed in maize, and these have reached 126,000 households in Zambia (Saltzman et al., 2017). The hybrid Pusa Vivek QPM nine Improved is the first biofortified maize variety in India with enhanced provitamin A. It was released in 2017 and is suitable for cultivation in nearly all states of India. Developing countries have included biofortification in their national agricultural nutrition strategies. For instance, India is the first country to prioritize biofortification and has set minimum standards for the release of pearl millet cultivars of 420 and 320 µg/100 g for iron and zinc, respectively. In this review, first major food sources and traits associated with carotenoids and folates have been discussed. In the next section, genetic variation and breeding strategies for enhancing the carotenoids and folates in major cereals (i.e., rice, wheat, maize, and pearl millet) have been summarized and discussed. In the final section we have discussed genomics integrated breeding and biofortification for carotenoids and folates as well as research gaps and future research directions.

IMPORTANT FOOD SOURCES OF CAROTENOIDS AND FOLATES

Folate is also referred to as vitamin B₉ and is involved in DNA and RNA synthesis. It is required to produce healthy red blood cells and is critical during periods of rapid growth, such as during pregnancy and fetal development. Carotenoids are essential for protecting eyes and bones and protecting against various types of cancer. Regular consumption of naturally available food sources can give a substantial quantity of folates, β-carotene, and macular carotenoids (lutein and zeaxanthin). However, the...
availability and affordability of such food sources are not possible in rural, poor, and remote areas in developing countries. The top ten food sources that are rich in (per 100 g) folates and carotenoids from earlier published reports and international food databases are summarized (Tables 1, 2 and Figure 1).

Table 1 summarizes the percentage of recommended dietary allowance (% RDA) of folate, which is calculated based on a 100 g serving of each crop type expressed for adults, pregnant women, and lactating women. β-carotene is the precursor of provitamin A, and it is predominantly accumulated in fruits and vegetables (Ashokkumar et al., 2018a). Ten major food crops with the highest concentration of β-carotene are presented in Table 2. Among them, kale or leafy cabbage, sweet potato, and carrot have the greatest concentration of β-carotene. Continuous availability and accessibility of these sources at affordable prices is challenging; improving the nutritional value of locally produced and available foods is an appropriate way to address this issue.

Traits Associated with Carotenoids and Folates

The growing food markets pay close attention to grain nutritional quality due to the mounting health concerns among consumers. Yellow to orange pigmented grain types are positively correlated with carotenoid concentration in maize (da Silva Messias et al., 2014). Carotenoids are located in amyloplasts in maize. Lutein is the major carotenoid present in the grains of wheat (Ramachandran et al., 2010), pulses (Ashokkumar et al., 2014, 2015), oilseeds (McGraw et al., 2001), and spices (Ashokkumar et al., 2020). The seeds of wild-type maize chiefly accumulate lutein, followed by zeaxanthin, xanthophyll, and trace amounts of β-carotene (Janick-Buckner et al., 1999). Lutein and zeaxanthin are the major carotenoids in millets, with lutein being the predominant in white millet, while zeaxanthin is the main carotenoid in red millet (McGraw et al., 2001). Similarly, the

TABLE 1 | Folate-rich food sources available worldwide.

Sl. No.	Food source	Concentration (µg/100 g)	% RDA	References		
			Adult	Pregnant	Lactating women	
1.	Mung bean, raw	626.0	156.5	104.3	125.2	USDA–ARS (2012)
2.	Chickpea, raw	470.7	117.7	78.5	94.1	Jha et al. (2015)
3.	Common bean, raw	191.7	47.9	32.0	38.3	Jha et al. (2015)
4.	Lentil, green, raw	156.5	39.1	26.1	31.3	Jha et al. (2015)
5.	Soybean, green, raw	165.0	41.3	27.5	33.0	USDA–ARS (2012)
6.	Spinach, cooked	146.0	36.5	24.3	29.2	USDA–ARS (2012)
7.	Broccoli, cooked	108.0	27.0	18.0	21.6	USDA–ARS (2012)
8.	Bread wheat, raw	85.0	21.3	14.2	17.0	USDA–ARS (2012)
9.	Rice, pigmented, raw	51.0	12.8	8.5	10.2	Ashokkumar et al. (2018b)
10.	Corn, sweet, white, raw	46.0	11.5	7.7	9.2	USDA–ARS (2012)

§The percentage of recommended dietary allowance (RDA) of folate concentration was calculated based on the serving of 100 g of each species. The United States (U.S.), Food and Nutrition Board, RDAs required 400 µg/day, 600 µg/day, and 500 µg/day for adult, pregnant and lactating women, respectively.

TABLE 2 | Rich food sources of provitamin A (µg/100 g)a.

Sl. No.	Food source	β-carotene (µg/100 g)	RAE (µg/day)	% RDA	Children (1–3 years)	Children (4–8 years)	Men (>19 years)	Women (>19 years)
1.	Kale or leaf cabbage, raw	9226	789.8	256.3	192.2	85.4	109.8	
2.	Sweet potato, raw	9180	765.0	255.0	191.3	85.0	109.3	
3.	Carrot, raw	8836	736.3	245.4	184.1	81.8	105.2	
4.	Squash, winter, butternut, raw	4226	352.2	114.7	88.0	39.1	50.3	
5.	Collards, raw	3323	276.9	92.3	69.2	30.8	39.6	
6.	Pepper, sweet, red, raw	2379	198.3	66.1	49.6	22.0	28.3	
7.	Melon, cantaloupe, raw	1595	132.9	44.3	33.2	14.8	19.0	
8.	Lettuce, romaine, raw	1272	106.0	35.3	26.5	11.8	15.1	
9.	Apricots	664	55.3	18.4	13.8	6.1	7.9	
10.	Peas, green, raw	432	36.0	12.0	9.0	4.0	5.1	

aSource: USDA–NCC Carotenoid Database for the US Foods-1998 published by Holden et al., 1999. §Recommended dietary allowance (RDA) for vitamin A was calculated based on daily value (DV) of retinol activity equivalents (RAE) µg/day from 100 g serving of each species. The United States (U.S.), RDAs required RAE 300 µg/day and 400 µg/day for children aged 1–3 years and 4–8 years, respectively; 900 µg/day and 700 µg/day for adult men and women, respectively. ‡RAE was calculated by 12 µg dietary β-carotene converted to 1 µg retinol (REA ratio 12:1).
yellow kernel color of maize was positively correlated with non-provitamin carotenoids lutein and zeaxanthin (Muthusamy et al., 2015). A red-pigmented rice grain variety accumulated two-fold higher folate concentration than that found in white rice grains (Ashokkumar et al., 2018b). Abscisic acid (ABA) accumulation in grains is one of the important traits associated with carotenoid concentration (Maluf et al., 1997). Sometimes, reducing the antinutrient factors, such as phytic acid, may enhance the nutritional quality and bioavailability of cereals (Bohn et al., 2008; Tamanna et al., 2013). This approach has been effectively used to enhance the nutrition of maize grown for animal feed (Raboy, 1996). The highest accumulation of total carotenoids in wheat grain was reported at 12–15 days after anthesis and thereafter the level of accumulation declined (Graham and Rosser, 2000).

GENETICS AND GENETIC VARIATION OF CAROTENOIDS AND FOLATES IN CEREALS

Genetic analysis of carotenoids offers expedient directions to breeders initiating further breeding events. However, limited information is available on the genetic control of carotenoid concentration in staple cereal crops (Table 3). Yellow pigment concentration (YPC) in wheat and β-carotene, α-carotene, β-cryptoxanthin, and provitamin A in maize endosperms are largely controlled by additive genetic variance (Elouafi et al., 2001; Halilu et al., 2016). These complex traits may be linked to genotype-dependent and environmental factors. Grain yield and carotenoid concentration were predominantly controlled by non-additive gene actions in maize (Halilu et al., 2016). Furthermore, earlier investigations reported that carotenoids and its related compounds were controlled by both additive and non-additive gene action in maize endosperm (Chander et al., 2008). Babu et al. (2013) noticed that partial dominant and partial recessive gene action was in play in maize for the genes LCYE-50TE and crtrB1-30TE, respectively. The superiority of additive gene action and non-additive gene action suggested the application of recurrent selection and heterosis breeding followed genetic improvement of a particular trait in cereal crops.

Heritability estimates are mainly used for the determination of genotypic proportion of the trait, which favors the estimation of the effect of selection. If a particular trait has a higher heritability value, that trait might be modified by proper selection

Crop	Trait	Gene effects	References
Wheat	Yellow pigment concentration	Additive	Clarke et al. (2006)
Wheat	β-carotene	Digenic epistasis (additive x dominance)	Santra et al. (2005)
Maize	β-carotene	Incompletely dominant	Hauge and Trost (1928)
Maize	Carotenoids	Additive	Kandianis et al. (2013)
Maize	β-carotene	Additive	Jittham et al. (2017)
Maize	Provitamin A	Non-additive	Hallu et al. (2016)
Pearl millet	β-carotene	Non-additive	Khangura et al., 1980
Sorghum	β-carotene	Additive	Fernandez et al. (2008)
methods. Conversely, lower heritability values indicated that those selection methods are not suitable for that particular trait. However, various researchers remarked that low to high heritability values were observed for carotenoids in maize. The heritability of YPC ranged from low (11%) to high (69%) in wheat (Elouafi et al., 2001; Clarke et al., 2006). Broad-sense heritability (H^2) was observed for lutein (61.49%), zeaxanthin (58.91%), and β-carotene (67.37%) in maize. Studies also noted narrow sense heritability (h^2) for lutein (19.00%) and zeaxanthin (18.09%) (Halliu et al., 2016). However, higher broad sense heritability was detected for lutein and zeaxanthin (Chander et al., 2008), and medium heritability values were observed for provitamin A (Wong et al., 2004). Genetic studies for gene action and heritability estimates are essential before initiating biofortification breeding programs for provitamin A and folates since heritability and gene action could be varied for different plant materials and environmental factors. Additionally, the investigation of gene action is imperative to design breeding programs.

In order to breed varieties with enhanced carotenoid and folate concentrations, information on the magnitude of genetic variation for carotenoids and folate in rice, wheat, maize, and pearl millet is needed. The variability for carotenoid and folate concentrations that have been recorded in the available genetic resources is summarized in Table 4. Genetic variation for β-carotene ranged from 96–850 μg/100 g in wheat, and 0.0–1780 μg/100 g in maize (Santra et al., 2005; Badakhshan et al., 2013; Muthusamy et al., 2014, 2015). In a study of 100 maize inbred lines, lutein and zeaxanthin concentrations ranged in the order of 20–1130 μg/100 g and 20–2000 μg/100 g, respectively. The highest lutein (1130 μg/100 g) and zeaxanthin (2000 μg/100 g) contents were recorded in two maize genotypes, namely, HP180-25 and CML161. According to Ortiz-Monasterio et al. (2007), 5–30% total carotenoids were provitamin A carotenoids while, β-carotene and β-cryptoxanthin were around 21 and 27% of the total concentrations of kernel carotenoids of yellow maize genotypes, respectively (Suwanno et al., 2014). These studies show that substantial genetic variability is present in the maize genetic resources for provitamin A and non-provitamin A concentrations of carotenoids, which could be used for the development of biofortified maize varieties/hybrids.

Pearl millet has limited concentrations of β-carotene, but a few accessions were identified with higher levels. For instance, genotype PT 6129 was high in β-carotene (241.7 μg/100 g), and such a line is useful to breed carotenoid rich varieties (Aarthy et al., 2011). Additionally, genetic variability is being explored in sorghum through the yellow endosperm lines which are available in the germplasm collections of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India. The β-carotene concentrations of sorghum lines ranged from 56–113 μg/100 g, six lines, namely, IS 7684, IS 7776, IS 24703, IS 24868, IS 24883, and IS 26886, having an average of 85 μg (Reddy et al., 2005).

In terms of carotenoids in wheat seeds, lutein, zeaxanthin, and β-cryptoxanthin were predominant in the germ, while the endosperm had predominantly lutein, followed by β-cryptoxanthin and zeaxanthin (Table 5). For instance, the lutein concentration of wheat endosperm and germ varied significantly from 15.5 to 70.7 μg and 43.1 to 193.7 μg in 100 g, respectively (Adom et al., 2005; Masisi et al., 2015). The total carotenoids in wheat ranged from 170.1 to 227 μg/100 g in endosperm and 945 to 1029 μg/100 g in bran or germ (Ndolo and Beta, 2013). Interestingly, maize endosperm had substantial

TABLE 4 | Range of carotenoid and folate concentrations in the available genetic resources of major cereal grains.

Crop	Genotypes evaluated	Nutrient trait	Concentration (μg/100 g)	References
Rice	4 genotypes	Folate	11.0–51.0	Ashokkumar et al. (2018b)
Wheat	130 winter wheat genotypes	Folate	36.4–77.4	Piironen et al. (2008)
Wheat	20 spring wheat genotypes	Folate	32.3–74.1	Piironen et al. (2008)
Wheat	10 durum wheat	Folate	63.7–89.1	Piironen et al. (2008)
Wheat	82 wheat accessions	β-carotene	96.0–169.0	Badakhshan et al. (2013)
Wheat	5 genotypes	β-carotene	300.0–850.0	Santra et al. (2005)
Maize	12 inbred lines	Provitamin A	738.0–1359.0	Zunjare et al. (2018)
Maize	111 inbred lines	Total carotenoid	650.0–6730.0	Sivarani et al. (2013)
Maize	105 inbred lines	Lutein	20.0–1130.0	Muthusamy et al. (2015)
Maize	105 inbred lines	Zeaxanthin	20.0–2000.0	Muthusamy et al. (2015)
Maize	105 inbred lines	β-carotene	0.0–1500.0	Muthusamy et al. (2015)
Maize	105 inbred lines	β-cryptoxanthin	10.0–330.0	Muthusamy et al. (2015)
Maize	27 inbred lines	β-carotene	130.0–1780.0	Muthusamy et al. (2014)
Maize	64 inbred lines	Total carotenoids	558.0–390.0	Safawo et al. (2010)
Maize	64 inbred lines	β-carotene	12.0–474.0	Safawo et al. (2010)
Pearl millet	10 F₅ progeny lines	β-carotene	129.0–173.0	Jiji et al. (2017)
Pearl millet	10 F₅ progeny lines	Total carotenoids	329.0–810.0	Jiji et al. (2017)
Sorghum	11 genotypes	β-carotene	56.0–113.0	Reddy et al. (2005)
Sorghum	121 RILs	Lutein	8.0–83.0	Fernandez et al. (2008)
Sorghum	121 RILs	Zeaxanthin	6.1–102.0	Fernandez et al. (2008)
concentrations of zeaxanthin (1367.1 µg/100 g) and total carotenoids (1417.1–3135.2 µg/100 g).

Few studies have been conducted for the evaluation and identification of plant genetic resources for folate enhancement in cereal grains. This is likely due to the complexity, stability, and cost of folate concentration assays. Folate concentration was double in red-pigmented rice (Nootripathu) compared to non-pigmented rice genotypes (IR 20, N 22, and Pusa Basmati-1), and it ranged from 11 to 51 µg/100 g (Ashokkumar et al., 2018b). Piironen et al. (2008), assessed the total folate concentration in 160 genotypes of winter, spring, and durum wheat, and it ranged from 32.3 to 89.1 µg/100 g, with the greatest range evident in durum (63.7–89.1 µg/100 g). Their growing environments significantly influenced total folate concentration of winter wheat genotypes, more so than the genetic factors (Kariluoto et al., 2010). Variation for folates in maize, sorghum and pearl millet was not reported among the available genetic resources. Hence, further studies are needed to investigate the folate concentrations in grains of those major cereals. The rich sources of germplasm and their use for the genetic improvement and grain localization of carotenoids and in major cereal grains are described (Table 6).

BREEDING FOR INCREASED CAROTENOID AND FOLATE CONCENTRATION

The breeding strategies that are widely used to improve the carotenoid and folate concentrations in cereals are presented in Figure 2. Rice does not contain adequate amounts of

TABLE 5 | Grain localization of carotenoids and folates in major cereals.

Crop	Genotypes evaluated	Nutrient trait	Concentration (µg/100 g)	References
Wheat	5 genotypes	Lutein	36.9–70.7 µg/100 g	Adom et al. (2005)
Wheat	5 genotypes	Zeaxanthin	1.6–2.7 µg/100 g	Adom et al. (2005)
Wheat	5 genotypes	β-cryptoxanthin	3.5–4.4 µg/100 g	Adom et al. (2005)
Wheat	1 genotype	Lutein	15.5 µg/100 g	Masisi et al. (2015)
Wheat	1 genotype	Zeaxanthin	0.7 µg/100 g	Masisi et al. (2015)
Wheat	4 genotypes	Total carotenoids	171.0–227.1–845.1–987.1 µg/100 g	Nsolo and Beta (2013)
Maize	1 genotype	Lutein	136.9 µg/100 g	Masisi et al. (2015)
Maize	1 genotype	Zeaxanthin	1367.1 µg/100 g	Masisi et al. (2015)
Maize	4 genotypes	Total carotenoids	1417.1–3135.2 µg/100 g	Nsolo and Beta (2013)

TABLE 6 | Available genetic resources for carotenoids and folate improvement in major cereal grains.

Crop	Genotype	Nutrient trait	Concentration (µg/100 g)	RAE (µg/ day)	References
Rice	Nootripathu	Folates	51.0 µg/100 g	34.0 µg/day	Ashokkumar et al. (2018b)
Maize	HP704-22	Provitamin A	1605.0 µg/100 g	133.8 µg/day	Zunjare et al. (2018)
Maize	HP704-23	Provitamin A	1528.0 µg/100 g	127.3 µg/day	Zunjare et al. (2018)
Maize	HP465-41	Provitamin A	1550.0 µg/100 g	129.2 µg/day	Muthusamy et al. (2015)
Maize	HP465-30	Provitamin A	1510.0 µg/100 g	125.8 µg/day	Muthusamy et al. (2015)
Maize	HP190-25	Lutein	1130.0 µg/100 g	–	Muthusamy et al. (2015)
Maize	CML161	Zeaxanthin	2000.0 µg/100 g	–	Muthusamy et al. (2015)
Maize	HPLET-03-36	Total carotenoid	6730.0 µg/100 g	–	Sivarajani et al. (2013)
Maize	HPLET-03-37	Total carotenoid	6320.0 µg/100 g	–	Sivarajani et al. (2013)
Maize	HPLET-03-38	Total carotenoid	5990.0 µg/100 g	–	Sivarajani et al. (2013)
Maize	BLSB-RIL17	Total carotenoid	5700.0 µg/100 g	–	Sivarajani et al. (2013)
Maize	BLSB-RIL43	Total carotenoid	5670.0 µg/100 g	–	Sivarajani et al. (2013)
Maize	HPLET-03-41	Total carotenoid	5610.0 µg/100 g	–	Sivarajani et al. (2013)
Maize	BLSB-RIL95	Total carotenoid	5090.0 µg/100 g	–	Sivarajani et al. (2013)
Maize	UMI176	β-carotene	580.0 µg/100 g	48.3 µg/day	Safawo et al. (2010)
Pearl millet	PT 6129	β-carotene	241.7 µg/100 g	20.1 µg/day	Aarthy et al. (2011)
Pearl millet	PT 6129	Total carotenoid	699.0 µg/100 g	–	Jiji et al. (2017)
Sorghum	PI 585351	Total carotenoid	234.3 µg/100 g	–	Shen et al. (2017)

1 RAE was calculated by converting 12 µg of dietary β-carotene into 1 µg of retinol (REA ratio 12:1); 2 Recommended dietary allowance (RDA) for vitamin A was calculated based on daily value (DV) of retinol activity equivalents (RAE) µg/day from 100 g serving of each species. The United States (U.S.), RDAs required RAE 300 µg/day and 400 µg/day for children aged 1–3 years and 4–8 years, respectively; 900 µg/day and 700 µg/day for adults of both men and women, respectively.
FIGURE 2 | Breeding strategies for enhancing carotenoids and folates in cereals.

carotenoids (i.e., β-carotene), which the human body could convert into vitamin A. Conventional breeding strategies have not been successful in increasing the β-carotene contents in rice endosperm. This is due to the fact that there is no genotype/cultivar that can synthesize carotenoid in the endosperm of the seed and the available contents are very low. Tan et al. (2004) showed that brown rice contains carotene and/or lutein, but the polishing process considerably reduces its nutritional value. In this respect, genetic engineering offers opportunities to improve the levels of provitamin A in rice grain. The control of the expression of ferritin through its control on the glutelin promoter has been successful in increasing nutritional levels in the whole and polished grains of rice. Similar principles have been used in the development of golden rice (Datta et al., 2007; Paine et al., 2005; Ye et al., 2000). Currently, no rice genotype has been enhanced for β-carotene content through traditional breeding strategies. It is obvious that there is huge potential in the exploitation of genetic variability of the carotenoid content in rice grains. However, the bioavailability of β-carotene should be studied in greater depth. In the case of folates, very few attempts were made to characterize the folate profile in rice by screening the germplasm. Blancquaert et al. (2015) screened 12 rice cultivars and found a two-fold difference (up to 70 µg/100 g) in the total grain folate content. The natural range of folate concentrations was determined in 78 rice varieties and both in milled (up to 78 mg/100 g) and whole grains (up to 111 µg/100 g), the contents exhibited an eight-fold difference (Yu and Tian, 2018). In all diverse accessions of rice germplasms around the world, an even more extensive screening for folate would bring out higher levels of variation in folate contents. This could be utilized in breeding programs for enhancing the folate contents in rice.

Natural genetic variability is very low for β-carotene contents in wheat grains. Lutein is the most common carotenoid in tetraploid wheat grains, whereas hexaploid wheat grains contain minimal levels of total carotenoids (Abdel-Aal el et al., 2007; Lachman et al., 2013). The durum wheat variety HI 8627 with high provitamin A was released by IARI, India, in 2005. The “Yellow pigment” is primarily caused by lutein, which is one of the significant factors in the enhancement of quality traits. Both lutein and anthocyanins are antioxidants in nature, which provokes a lot of interest in the research community. Black grained wheat cultivars and colored wheat cultivars are already being exploited in many breeding programs around the globe and they are rich in protein and selenium (Li et al., 2006). The purple wheat cultivar Indigo, which was released in Austria in 2006 (Eticha et al., 2011), the purple wheat cultivar PS Karkulka of Slovakia in 2014, and purple, blue, and black white lines of India in 2017 (Garg et al., 2016) are major sources of carotenoids in wheat breeding. Poutanen et al. (2008) evaluated the genetic variation for folates in the Health Grain wheat diversity screen with whole and milled wheat grains. Around 150 varieties of hexaploid, diploid, and tetraploid wheat showed two-fold variation in folate content (up to 77 µg/100 g) in whole grains (Piironen et al., 2008; Ward et al., 2008). Environmental effects cause variations in folate contents indicating low heritability and high G × E interactions in diverse varieties (Shewry et al., 2010). Induced chemical or physical mutagens could be utilized to identify mutants with greater folate contents.

Most of the breeding programs targeted to improve the provitamin A in maize aims at developing high yielding, provitamin A-enriched maize cultivars that fetch profit for the farmers and also promise customer preference and may ensure the effective reduction of vitamin A deficiency (Bouis and Welch, 2010). The simultaneous improvement of provitamin A carotenoids and grain yield is easily attainable. This is due to the weak correlation between provitamin A and agronomic performance. Other factors, like the relatively high heritability...
of the trait, the mode of inheritance (additive genetic effects), and the genetic control of provitamin A, are also accountable (Suwarno et al., 2014; Menkir et al., 2018; Ortiz-Covarrubias et al., 2019). So far, the enhancement of provitamin A is mostly focused on the selection of β-carotene content. A target of 1500 µg/100 g β-carotene equivalents was set for breeders beyond which there occurs an increasingly marked effect on the human health (Hotz and McClafferty, 2007). Around 1,500 genotypes were screened for their carotenoid contents by various researchers, resulting in about 200–300 µg/100 g in their profiles (Ortiz-Monasterio et al., 2007). Among these germplasms, only a few lines of the temperate zones contained target level in their seeds (Menkir et al., 2008). In the meantime, the tropical and sub-tropical inbred lines possessed very low levels of provitamin A when compared to the reference cultivars (Menkir et al., 2008). The necessity and the initiation of searching for novel sources of favorable alleles to boost provitamin A concentration to new levels. Taleon et al. (2017) and Sowa et al. (2017) emphasized the application of breeding for provitamin A carotenoids that would increase β-cryptoxanthin rather than β-carotene, as β-carotene has lower stability, while β-cryptoxanthin ensures higher bioavailability and bioefficacy to β-carotene (Schmaelzle et al., 2014; Menkir et al., 2018). Breeding programs with this vision have already been initiated, resulting in inbreds that are being used in the improvement of new hybrids and synthetics. So far, most of the pearl millet breeding programs are targeted for improving grain iron and zinc concentration and yield related traits. Limited breeding efforts have been made thus far to explore the genetic variation of carotenoids and folates in pearl millet. The current circumstances demand carotenoid- and folate-rich donor lines for pearl millet breeding, and large numbers of germplasms must therefore be screened.

Typically, plant breeders use bi-parental populations for identification of QTL and development of varieties for the traits of interest. Many varieties developed of rice, wheat, maize, and pearl millet are based on single crosses between two parents. However, a higher number of parents and initial crosses will lead to a better dissection of complex traits. Thus, breeders recently introduced new experimental design namely multiparent populations, which provide significant benefits for genetic and QTL studies in plants. One of the most popular multiparent populations is the multiparent advanced generation intercross (MAGIC) population. The major goal of constructing MAGIC populations is to encourage intercrossing and shuffling of the genome into a single line (Huang et al., 2012; Holland, 2015). It is a diverse population with high recombination, thus providing excellent breeding materials to genetic and QTL mapping studies for complex traits such as carotenoids and folates. MAGIC populations have identified multiple loci and demonstrated the genetic complexity of the grain micronutrients (Fe and Zn), cooking quality, and agronomic traits (Holland, 2015; Descalsota et al., 2018; Ponce et al., 2018) in rice. Similarly, genetic properties of the MAGIC populations have also been detected in maize and wheat, and their benefits in detecting the complex traits have been confirmed by many researchers (Huang et al., 2012; Verbyla et al., 2014; Holland, 2015; Chen et al., 2016; Butrón et al., 2019). However, no study has been published that investigates carotenoids and folates using a MAGIC population design in cereals. ICRISAT has been developing a MAGIC population for various traits, including grain micronutrients (unpublished). Thus, it is a highly prioritized research area in which to work in the future for cereal-based national and international research organizations.

GENOMICS-ENABLED BREEDING APPROACHES FOR IMPROVING CAROTENOIDS AND FOLATES

Genomics research in cereals has substantially improved our knowledge of the QTLs GENOMICS-ENABLED BREEDING APPROACHES FOR IMPROVING CAROTENOIDS AND FOLATES
Ashokkumar et al. Biofortified Cereal Crops for Human Nutrition

FIGURE 3 | Biosynthesis of carotenoids and Folates in plants. (A) Carotenoids biosynthesis and subsequent influential of phytohormones and provitamins. Footnotes: The first committed step in carotenoid biosynthesis is the condensation of two molecules of Geranylgeranyl diphosphate (GGPP) by phytoene synthase (PSY) to form phytoene (C40). The colorless phytoene is subsequently desaturated to give zeta-carotene and lycopene. Desaturation of phytoene occurs by two enzymes, phytoene desaturase (PDS) and zeta-carotene desaturase (ZDS), which are required to form lycopene. A major branch point occurs after lycopene synthesis when cyclization mediated by the enzymes lycopene-b-cyclase (LCYB) and lycopene-3-cyclase (LCYE) gives rise to α-carotene and β-carotene. α-carotene is acted upon by a β-ring hydroxylase to form zeinoxanthin, which is then hydroxylated by a ϵ-ring hydroxylase to produce lutein. β-carotene can be hydroxylated by β-carotene hydroxylase (CRTRB) in a two-step reaction to zeaxanthin, with β-cryptoxanthin as an intermediate product. Zeaxanthin can be epoxidized to violaxanthin, and a set of light- and dark-controlled reactions, known as the xanthophyll cycle, rapidly optimize the concentration of violaxanthin and zeaxanthin in the cell through the action of zeaxanthin epoxidase (ZEP) and violaxanthin de-epoxidase (VDE), respectively, via antheraxanthin. Violaxanthin undergoes synthesis by the enzyme neoxanthin synthase to form neoxanthin and as precursor of the plant hormone abscisic acid. (B) Biosynthetic pathway of folates (Adapted by DellaPenna, 2007). Footnotes: The pteridine pathway leading to hydroxymethyldihydropterin (HMDHP) is shown in blue, the pathway leading to p-aminobenzoate is shown in green, and steps localized in the mitochondria are in black. Open circles indicate possible transporters. Red arrows indicate the two enzymes GTP-cyclohydrolase I (GCHI) and aminodeoxychorismate synthase (ADCS). DHN, dihydromonapterin; -P, monophosphate; -PP, pyrophosphate; -PPP, triphosphate; DHM, dihydromonapterin.

wheat (Jaiswal et al., 2017), maize (Sharopova et al., 2002) and pearl millet (Senthilvel et al., 2008). Thus, MAB in cereals has become standard procedure and many researchers are pursuing these markers. Capitalizing on the genome-wide marker data, linkage-map-based QTL mapping, genome-wide association studies (GWAS), and genomic selection (GS) have become powerful tools to dissect the QTL and investigate trait-allele associations in cereals. To date, several QTLsgenes associated with carotenoids and folates in cereals were identified using linkage-map-based QTL mapping and GWAS. In particular, GWAS effectively pinpoints the genes that play a key role in the biosynthesis of carotenoids and their accumulation, and to find out the variation in the alleles at the concerned loci that are related to the biosynthesis of carotenoids in maize and wheat (Yan et al., 2010; Colasuonno et al., 2017). However, the nutritional traits like carotenoids and folates are quantitative and governed by minor QTLs that are responsible for the large phenotypic variation, including epistatic interactions. In this case, GS can capture both minor effects of QTL and epistatic interaction effects, so it could be a highly useful strategy in trait genetic gains of crop breeding programs. GS determines the genetic potential of an individual based upon the genomic estimated breeding values (GEBVs) instead of identifying the specific QTL (Robertson et al., 2019). In the process of enhancing various complex traits, genomic selection has been used in cereals and other commercial crops. Still, the benefits of GS have not been utilized for the improvement of folates and carotenoids in cereals. This should provoke interest among the researchers working for upgrading the nutritional status of the major cereal crops in developing countries. So far, many QTLsgenes associated with carotenoids (provitamin A, lutein, and zeaxanthin) and folates have been identified in major cereals (i.e., rice, maize, and wheat). However, all of these QTLsgenes are not equally effective in the production of carotenoids and folates. Therefore, some of the important QTLsgenes that are identified so far are summarized and discussed here.

QTLs AND CANDIDATE GENES FOR CAROTENOIDS AND FOLATES

(a) Rice
QTL and genes have recently been identified for folate contents in rice through mapping studies, but in the case of carotenoids, no such information is available. In experiments with recombinant
inbred lines and backcrossed lines of milled rice, several major QTLs were identified to be associated with a higher level of folate. Dong et al. (2013) identified three QTLs, qQTF-3-1, qQTF-3-2, and qQTF-3-3, located on chromosome 3, which contributed 7.8, 11.1–15.8, and 25.3% of the variation in folate concentration. Three genes are associated with these QTLs, i.e., a rice homologue of plastidial folate transferase of Arabidopsis, a rice homologue of human folate hydrolase, and the serine hydroxymethyl transferase gene. When these newly identified QTLs associated with high folate are used in the synthesis of commercial varieties with high folate concentrations, there will be a larger wealth of knowledge about folate and its metabolism, regulation, and accumulation in grains (Yu and Tian, 2018).

(b) Wheat

Genetic analyses based on molecular markers have mapped major QTL for YPC on chromosome 7. Minor QTLs, associated with YPC, were detected on almost all chromosomes of the wheat genome. Some of these QTLs are stable, and they may be suitable for MAS in breeding programs. Two major QTLs were on chromosomes 3A and 7A, with 13 and 60% of the phenotypic variance, respectively (Parker et al., 1998). The QTLs on chromosome 7A found to be closely related to an AFLP marker Xwua26-7A.4 on chromosome 7A with 12.9–37.6% of phenotypic variance in five different wheat accessions is very limited; almost no information is available on individual carotenoid compounds, namely, lutein, α-carotene zeaxanthin, β-cryptoxanthin, and β-carotene, were present on the same genomic regions of chromosomes 2A, 3B, 5A, and 7A. A single locus called Lute, controlling the lutein esterification on the short arm of chromosome 7D in wheat (Ahmad et al., 2015). The syntenic region of the rice genome contained a GDSL-like lipase gene. The sequences of wheat that are similar to this gene were mapped at the same locus of Lute. Folate variation in wheat accessions is very limited; almost no information is available on the folate QTLs and genes in wheat. Thus, researchers are trying to

TABLE 7 | QTLs/Genes associated with carotenoids and folate concentrations in rice, wheat, maize, and pearl millet.

Crop	Nutrient	QTL/gene	Chromosome	References
Rice	Folate	qQTF-3-1, qQTF-3-2 and qQTF-3-3	3	Dong et al. (2013)
Wheat	Carotenoid	Lute	7	Ahmad et al. (2015)
Wheat	Provitamin A	Psy-B1	7	Pozniak et al. (2007)
Wheat	Provitamin A	Psy-A1	7	He et al. (2008)
Wheat	Provitamin A	QYpc-1A, QYpc-1B, QYpc-4A, and QYpc-7A	1A, 1B, 4A, and 7A	Zhang et al. (2009)
Wheat	Provitamin A	TaZds-A1	2A	Dong et al. (2012)
Wheat	Provitamin A	AO1, AO2, and AO3	2, 5, and 7	Colasuonno et al. (2017)
Maize	Folate	q5-FTHFa and q5-FTHFb	5	Guo et al. (2018)
Maize	Provitamin A	icyE	6	Harjes et al. (2008)
Maize	Provitamin A	crtbB1	10	Yan et al. (2010)
Maize	Provitamin A	crtbB3	2	Vallabhanieni and Wurtzel (2009); Zhou et al. (2012)
Maize	Provitamin A	Y1/PSY1	6	Buckner et al. (1996)
Maize	Provitamin A	PDS	1	Li et al. (1996);
Maize	Provitamin A	ZDS	7	Chen et al. (2010); Matthews et al. (2003)
Maize	Lutein	qtf/umc1447-umc1692-umc2373	5	Chander et al. (2008)
Maize	Lutein	Qtf/phi091–atf2	7	Chander et al. (2008)
Maize	Lutein	qlut1-1 and qlut6-1	1 and 6	Chander et al. (2008)
Maize	Zeaxanthin	qZp/phi30870–umc1553	1	Chander et al. (2008)
Maize	Zeaxanthin	qZp/phi115–umc1735	8	Chander et al. (2008)
Maize	Zeaxanthin	ZEP1	1	Vallabhanieni and Wurtzel (2009); Zhou et al. (2012)
Maize	Zeaxanthin	qzea8-1, and qzea10-1	6, 8, and 10	Jittham et al. (2017)
Maize	Zeaxanthin	PS1/LC1B	5	Singh et al. (2003)
Sorghum	β-carotene	Bc-1.1, Bc-2.1, Bc-2.2, Bc-2.3, Bc-10b.1	1, 2, 10b	Fernandez et al. (2008)
to identify novel QTLs and markers that are closely associated with folate for marker-assisted breeding in wheat.

(c) Maize
Several QTLs and genes related to carotenoids (provitamin A, lutein, and zeaxanthin) and folates have been reported in maize using different mapping approaches. *Yellow 1 (Y1)* gene encoding *PSY1* (phytoene synthase1) and is positioned on chromosome 6 in maize (Buckner et al., 1996). The gene *PSY1* was studied through association mapping in two different populations of maize. This gene has two alleles that are responsible for the differences in total carotenoids. Further, QTL mapping was carried out in one segregating population and lines that are polymorphic for genomic regions within *PSY1* were studied for expression analysis. Two functional sites that are concerned with the total carotenoid concentration of maize contributed 7 and 8% of the genetic variation (Fu et al., 2013).

Phytoene desaturase (*PDS*) and zeta-carotene desaturase are the enzymes that desaturate phytomeno into lycopene. Lycopene is the first pigment that is produced in maize (Li et al., 1996). *PDS* is associated with viviparous 5 (*vp5*) that was mapped on chromosome 1. It was found that ζ-carotene isomerase (*Z−ISO*) was encoded by locus *y9* (Chen et al., 2010) and located on chromosome 7. Without the presence of Z−ISO, no provitamin A carotenoids could be synthesized in the endosperm (Matthews et al., 2003; Chen et al., 2010). Furthermore, 30 QTLs for carotenoid composition were also identified (Wong et al., 2004; Chander et al., 2008). A few of these are tightly linked to the biosynthetic pathway of *y1* or *y9* (Li et al., 2007) and are also associated with β-carotene, zeaxanthin, and lutein in maize. Lycopene epsilon cyclase (*lcyE*) on chromosome 8 (Harjes et al., 2008) and β-carotene hydroxylase enzyme (*crtRB1*) also known as *BCH2* and *HYD3*, on chromosome 10 (Yan et al., 2010) have the most significant effect on provitamin A concentrations in the maize grains. As per Harjes et al. (2008), the gene *LcyE*, causes different variation in of concentration of carotenoids because of its four alleles affect β—branches of the biosynthesis pathway of carotenoids. Three polymorphisms were identified in the gene *crtRB1*, which controlled the variations in carotenoids (Yan et al., 2010). There was a 5.2-fold increase in the carotenoid concentrations in the haplotypes, which possessed the favorable alleles of *crtRB1-50 TE* and *crtRB1-30 TE*. The gene *crtRB1* was identified to have a much greater effect on the concentrations of provitamin A than that of *LcyE* (Babu et al., 2013).

The gene *crtRB3*, which encodes the α-carotene hydroxylase enzyme (also called *BCH1*), is a major role player in the metabolic pathway of carotenoids in maize (Vallabhaneni and Wurtzel, 2009; Zhou et al., 2012). On chromosome 2, there is a QTL locus cluster that is associated with carotenoids (Table 7). The gene, *crtRB3*, was mapped on this QTL locus cluster. Eighteen polymorphic sites within *crtRB3* that are closely linked to the QTL cluster were found through candidate—gene association analysis using 126 diverse inbred lines of yellow maize. Significant effects on the level of α-carotene were noticed (from 8.7 to 34.8%) among the two populations.

![FIGURE 4](https://www.frontiersin.org/articles/10.3389/fagen.2020.00414/full#fig4)

FIGURE 4 | The proposed schema for developing biofortified cereal crops with enhanced nutrients (e.g., folates).
SNPs, SNP1343 (in the 5’ untranslated region) and SNP2172 (in the second intron), with 1.7- to 3.7-fold differences. Recently, four QTLs namely, qbc1-1, qbc5-1, qbc6-1, and qbc10-1 were mapped by Jittham et al. (2017) on three chromosomes (1, 5, and 6) of maize for β-carotene with 5.04 to 17.03 % phenotypic variation.

Zeaxanthin and lutein are the other major carotenoids that are found in maize. But, only a few QTLsgenes that are associated with zeaxanthin and lutein have been identified so far. The Ps1 locus located on chromosome 5 was encoding LCYB. This locus is considered essential for the accumulation of zeaxanthin in maize (Singh et al., 2003). ZEPI is one of the major genes in the metabolic pathway of carotenoids in maize (Zhou et al., 2012). It controls the gene zeaxanthin epoxidase (Vallabhaneni and Wurtzel, 2009). Three QTLs, namely, qzea6-1, qzea8-1, and qzea10-1, explaining 12.5%, 6.7%, and 19.4% of phenotypic variation in zeaxanthin, are found on chromosomes 6, 8, and 10 of maize, respectively (Jittham et al., 2017). Jittham et al. (2017) identified two lutein QTLs that are mapped on chromosomes 1 and 6. They are designated as qlut1-1 and qlut6-1, explaining 9.1 and 28.9 of phenotypic variation.

Folates are quantitative or polygenic traits typically controlled by several small effect QTLs. However, two major effect QTLs namely, q5−F−THFa and q5−F−THFb, explaining 26.7 and 14.9% of the folate variation were identified in maize (Guo et al., 2019) on chromosome 5 by whole-exome sequencing and F3 kernelfolate profiling. A unique correlation between the folate and the expression of the conserved genes of folate biosynthesis and metabolism was reported in the kernels of maize (Lian et al., 2015). Naqvi et al. (2009) and Liang et al. (2019) stated that the molecular understanding of the genetic networks of folates in grains is unclear even when successful increments have been made through transgenic experiments in maize.

BIOFORTIFICATION OF CAROTENOIDS AND FOLATES IN CEREAL GRAINS

Biofortification is the process of increasing the natural content of bioavailable nutrients in plants. It is a successful and cost-effective method that associates nutritious agriculture with human health, can be efficient and more maintainable than the delivery of food supplements. Major tools in biofortification include conventional breeding, modern biotechnology, and agronomic practices (Figure 4). As mentioned above, carotenoids and folates are essentials for the human diet. Thus, biofortification of major cereal crops with carotenoids and folates may assist in easing micronutrient deficiencies in humans. Existing evidence recommends that genetic biofortification by breeding and modern biotechnology could be appropriate for increasing folates and pro-vitamin A carotenoids, and an agronomic strategy could be effective for Zn. Conventional breeding-based biofortification is the most successful approach to develop micronutrients rich crops, and several important food crops have been targeted for fortification by conventional breeding. So far, many more studies have been conducted to improve the provitamin A concentration and a few targeted at folate. Biofortification in maize has been attempted in many different ways. For instance, improvement of single or group of micronutrient (s) (single biofortification) and diverse micronutrients (double biofortification), including (i) the incorporation of favorable alleles of cortRB1 and lcyE into popular elite genotype by MAB and transgenic approaches to increase the amount of provitamin A concentration and (ii) the development of genotypes with cortRB1 and lcyE and o2 alleles to increase the essential amino acids and provitamin A concentration by MAB (Hossain et al., 2019). In the recent decades, CIMMYT, Mexico, and IITA, Nigeria, developed and released many provitamin A varieties and hybrids (i.e., GV662A, GV664A, and GV665A, Ife maize hyb-3, and Ife maize hyb-4, Sammaz 38, Sammaz 39, and CSIR-CRI Honampa) in African countries (Dhliwayo et al., 2014; Simpungwe et al., 2017; Andersson et al., 2017). IARI released four provitamin A hybrids viz., HM4, HM8, and Vivek Hybrid-27 [which possessed provitamin A as high as 2170 µg/100 g (in freshly harvested grains) with a 8.5-fold maximum change] in India. The hybrid, “Pusa Vivek QPM 9 Improved,” which was developed through MAB, contains higher provitamin A (815 µg/100 g) even after storing for 2 months with higher levels of tryptophan, 0.74% and lysine, 2.67% (Muthusamy et al., 2014; Yadava et al., 2017). This hybrid was developed by the introgression of the cortRB1 allele into a o2-based hybrid. In a similar manner, four popular QPM hybrids namely HQPM1, HQPM4, HQPM5, and HQPM7 were developed by...
pyramiding crrB1 and lcyE to improve the concentration of provitamin A (Hossain et al., 2019). Despite the success stories, conventional or marker-assisted breeding suffers due to the lack of genetic variation in micronutrient traits within the species or closely related species. In this context, transgenic technologies are an alternative to conventional breeding and useful to improve the genotypes by creating variations in targeted metabolic pathways. The concentration of provitamin A in rice was improved through transgenic methods. Over-expression of PSY, CrtI and β-icy from daffodil, Erwinia uredovora and maize facilitated an increase in provitamin A concentration in rice lines (Ye et al., 2000; Beyer et al., 2002; Paine et al., 2005). In particular, PSY from maize increased provitamin A concentration up to 3700 µg/100 g (Paine et al., 2005). Similarly, the contents of β-carotene increased to 1000 µg/100 g in the Hi-II maize line through the over-expression of crrB and crtI genes from Erwinia herbicola (Aluru et al., 2008). Likewise, five genes, namely, psyl, crrl, lycb, bch, and crtW, were used to develop transgenic maize genotypes that contained 6000 µg/100 g of β-carotene (Zhu et al., 2008; Naqvi et al., 2009). The over expression of psyl from maize and crrl or CrtB from the bacteria enhanced provitamin A to 496 µg/100 g and 321 µg/100 g of seed dry weight in wheat (Cong et al., 2009; Wang et al., 2014). Likewise, five genes, namely, psyl, c rtl, lycb, bch, and crtW, were used to develop transgenic maize genotypes that contained 6000 µg/100 g of β-carotene (Zhu et al., 2008; Naqvi et al., 2009). Despite the success of transgenic technologies, the main drawback to biofortified transgenic crops is their public acceptance and extensive regulatory processes required before they get clearance for cultivation and consumption by humans.

CONCLUSION AND FUTURE PROSPECTS

The growing world population requires many key nutrients and vitamins that can be delivered through staple foods. Advancing genomic tools can play an important role in accelerating genetic enhancement of these vitamins and minerals through biofortification in major cereal grains. Bioavailable vitamins or nutrients bred into varieties can be made available to resource-poor people generation after generation by their cultivation and regular consumption. The surplus production brings better livelihoods through marketing to other regions. Crop breeding requires substantial genetic variability and diagnostic markers to handle traits in segregating early generations. Nutrient-dense germplasm resources are essential to the breeding of adequate carotenoids and folates for fulfilling daily dietary requirements. National and international organizations have made excellent research progress in this direction to incorporate carotenoids into cereal crops. High throughput phenotyping tools (XRF, HPLC, and LC-MS/MS) are being developed and will be made accessible to partners at various organizations. These methods are cost effective for analyzing large sets of germplasm. The diagnostic markers play a key role in discarding low vitamin/nutrient materials. Integrating MAB creates the opportunity to introduce/track the QTL that are associated with nutritional quality into popular varieties. A survey of wild and cultivated accessions demonstrated noticeable variations in the carotenoid and folate concentration and the possibility to identify novel sources for alleles to be used to broaden the present gene pool. So far, substantial genetic variation has been exhibited only in the genetic resources of maize for provitamin A. Other major cereals, like rice, wheat, and pearl millet commercial or elite lines, lack sufficient concentration of provitamin A to achieve global target levels. Almost no folate research has been done in major cereal crops. Biofortification based breeding has been demonstrated as a successful of enhance the micronutrients in cereals. However, new breeding designs, such as MAGIC populations and GS, also need to be explored on parallel to maximize the genetic understanding and identification of QTLs and genes for complex traits such as carotenoids and folates. Hence, greater prospects await with the use of these technologies in nutrition breeding. On the other hand, where inadequate genetic variability exists within the cultivated germplasms and primary gene pools, then the transgenic technology may be an option for enhancing carotenoids and folates in cereals but has limited scope for acceptance in most of the developing countries. Genetic gain for yield alone may not be appropriate to feed the growing population, but concurrently achieving nutrition traits genetic gains is a sustainable approach. Government programs are required to create public awareness for the adoption of biofortified varieties by farmers through increased consumer acceptance. Moreover, research coordination is required between agriculture and nutritional experts for strengthening the target level of carotenoids and folates, their retention after cooking, storage, processing, and consumption of prospective concentrations in the target population. Therefore, with the available genetic resources and genomic tools, breeding investment should be made and optimized for increasing vitamins and nutrients in staple food crops besides increasing sustainable yields.

AUTHOR CONTRIBUTIONS

MG and KA conceptualized the manuscript. KA, MG, AK, and VS wrote the manuscript. MG and TW edited and updated the manuscript.

FUNDING

This work was partially supported by HarvestPlus program of CGIAR to the corresponding author (MG).

ACKNOWLEDGMENTS

The authors thank editors and reviewers for their detailed suggestions for improving the manuscript.
REFERENCES

Aarthy, T., Sumathi, P., Senthil, N., Ravendran, M., Vellaikumar, S., and Veerabadhiran, P. (2011). “Screening of high carotene and its segregating generation through HPLC for developing mapping population for enhanced carotene”, in Proceedings of the World Congress on Biotechnology, Hyderabad, 381.

Abdel-Aal el, S. M., Young, J. C., Rabalaki, I., Hucl, P., and Freege Reid, I. (2007). Identification and quantification of seed carotenoids in selected wheat species. J. Agric. Food Chem. 55, 787–794. doi: 10.1021/jf062764p

Adom, K. K., Sorrells, M. E., and Liu, R. H. (2005). Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem. 53, 2297–2306. doi: 10.1021/jf048456d

Ahmad, F. T., Mather, D. E., Law, H., Li, M., Yousif, S., Chalmers, K. J., et al. (2015). Improvement of provitamin A carotenoids in rice through metabolic engineering. J. Agric. Food Chem. 63, 10498–10504. doi: 10.1021/acs.jafc.5b02328

Babu, R., Rojas, N. P., Gao, S., Yan, J., and Pixley, K. (2013). Validation of the BMY-biofortification strategy for reducing micronutrient malnutrition in the global South. Crop Sci. 53, 520–532.

Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G. L., D’Amore, R., Allen, A. M., et al. (2012). Analysis of the bread wheat genome using whole—genome shotgun sequencing. Nature 491, 705–710. doi: 10.1038/nature11650

Bouis, H. E., and Welch, R. M. (2010). Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global South. Crop Sci. 50, S53–S60.

Bouis, H. E. (2001). Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 22, S31–S40. doi: 10.1177/156482651103215105

Bouis, H. E., and Welch, R. M. (2010). Biofortification— a sustainable agricultural strategy for reducing micronutrient malnutrition in the global South. Crop Sci. 50, S53–S60.
Ashokkumar et al. Biofortified Cereal Crops for Human Nutrition

Eticha, F., Grausgruber, H., Siebenhandl-ehn, S., and Berghofer, E. (2011). Some agronomic and chemical traits of blue aleurone and purple pericarp wheat (Triticum L.). J. Agric. Sci. Technol. 1, 48–58.

Fernandez, M. G. S., Hamblin, M. T., Li, L., Rooney, W. L., Tuinstra, M. R., and Kresovich, S. (2008). Quantitative trait loci analysis of endosperm color and carotenoid concentration in sorghum grain. Crop Sci. 48, 1732–1743.

Flores, A. L., Vellozzi, C., Valencia, D., and Sniezek, J. (2014). Global burden of neural tube defects, risk factors, and prevention. Indian J. Community Health 26, 3–5.

Food and Agriculture Organization [FAO], International Fund for Agricultural Development, UNICEF, World Food Programme, and WHO (2017). The State of Food Security and Nutrition in the World 2017: Building Resilience for Peace and Food Security. Available online at: http://www.fao.org/3/a-i7695e.pdf

(accessed August 5, 2019).

Forges, T., Monnier-Barbarino, P., Alberto, J. M., Guéant-Rodriguez, R. M., Daval, J. L., and Guéant, J. L. (2007). Impact of folate and homocysteine metabolism on human reproductive health. Hum. Reprod. Update 13, 225–238. doi: 10.1093/humupd/dml063

Fraser, P. D., and Bramley, P. M. (2004). The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43, 228–265. doi: 10.1016/j.plipres.2003.10.002

Fu, Z. Y., Chai, Y. C., Zhou, Y., Yang, X. H., and Warburton, M. L. (2013). Natural carotenoid concentration in sorghum grain.

Garg, M., Chawla, M., Chunduri, V., Kumar, R., Sharma, S., Sharma, N. K., Graham, R. D., and Rosser, J. M. (2000). Carotenoids in staple foods: their potential among tropical and temperate maize germplasm.

Halilu, A. D., Ado, S. G., Aba, A. D., and Usman, I. S. (2016). Genetics of carotenoid concentration in sorghum grain.

He, X. Y., Zhang, Y. L., He, Z. H., Wu, Y. P., Xiao, Y. G., Ma, C. X., et al. (2008). Genetic variation in the sequence of PSY1 and frequency of favorable polymorphisms for maize carotenoid composition and concentrations in two maize populations. Theor. Appl. Genet. 126, 2879–2895. doi: 10.1007/s00122-013-1719-5

Karlulo, S., Edelmann, M., and Piriron, V. (2010). Effects of environment and genotype on folate concentrations in wheat in the health in the health diversity screen. J. Agric. Food Chem. 10, 9324–9331. doi: 10.1021/jf100251s

Khangura, B. S., Gill, K. S., and Phil, P. S. (1980). Combining ability analysis of beta-carotene, total carotenoids and other grain characteristics in pearl millet. Theor. Appl. Genet. 56, 91–96. doi: 10.1007/BF00264433

Lachman, J., Hamouz, K., Musilová, J., Hejtmanková, K., Kotíková, Z., Pazderů, K., et al. (2013). Effect of peeling and three cooking methods on the content of selected phytochemicals in potato tubers with various colour of flesh. Food Chem. 138, 1189–1197. doi: 10.1016/j.foodchem.2012.11.114

Li, F. Q., Murillo, C., and Wurtzel, E. T. (2007). Maize Y9 encodes a product essential for 15-cis-zeta-carotene isomerization. Plant Physiol. 144, 1181–1189. doi: 10.1104/pp.107.098996

Li, W., Beta, T., Sun, S., and Corke, H. (2006). Protein characteristics of Chinese black-grained wheat. Food Chem. 98, 463–472.

Li, Z. H., Matthews, P. D., Burr, B., and Wurtzel, E. T. (1996). Cloning and characterization of a maize cDNA encoding phytoene desaturase, an enzyme of the carotenoid biosynthetic pathway. Plant Mol. Biol. 30, 269–279. doi: 10.1007/bf00200213

Lian, T., Guo, W., Chen, M., Li, J., Liang, Q., Liu, F., et al. (2015). Genome-wide identification and transcriptional analysis of folate metabolism-related genes in maize kernels. BMC Plant Biol. 15:204. doi: 10.1186/s12870-015-0578-2

Liang, Q., Wang, K., Liu, X., Riaz, B., Jiang, L., Wan, X., et al. (2019). Improved folate accumulation in genetically modified maize and wheat. J. Exp. Bot. 70, 1539–1551. doi: 10.1093/jxb/ery453

Maluf, M. P., Saab, I. N., and Sachs, M. M. (1997). The viviparous 12 maize mutant is deficient in abscisic acid, carotenoids, and chlorophyll synthesis. J. Exp. Bot. 48, 1259–1268.

Masisi, K., Diehl-Jones, W. L., Gordon, J., Chapman, D., Moghadasian, M. H., and Beta, T. (2015). Carotenoids of aleurone, germ, and endosperm fractions of barley, corn and wheat differentially inhibit oxidative stress. J. Agric. Food Chem. 63, 2715–2724. doi: 10.1021/acs.jafc.0c058606

Matthews, P. D., Luo, R., and Wurtzel, E. T. (2003). Maize phytoene desaturase and zeta carotene desaturase catalyze a poly Z desaturation pathway: Implications for genetic engineering of carotenoid concentration among cereal crops. J. Exp. Bot. 54, 2215–2230. doi: 10.1093/jxb/erg235

McCouch, S. R., Teytelman, L., Xu, Y., Lobos, K. B., Clare, K., Walton, M., et al. (2002). Development and mapping of 2,240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9, 199–207.

McCully, K. S. (2007). Homocysteine, vitamins, and vascular disease prevention. Am. J. Clin. Nutr. 86, 1563S–1568S. doi: 10.1093/ajcn/87.4.1069

McGraw, K. J., Hill, G. E., Stradi, R., and Parker, R. S. (2001). The influence of carotenoid acquisition and utilization on the maintenance of species-typical plumage pigmentation in male American goldfinches (Carduelis tristis) and
northern cardinals (Cardinalis cardinalis), Physiol. Biochem. Zool. 74, 843–852. doi: 10.1086/323797

McGuire, S. (2015). FAO, IFAD, and WFP. The state of food insecurity in the world 2015: meeting the 2015 international hunger targets: taking stock of uneven progress, Rome: FAO. Adv. Nutr. 6, 623–624. doi: 10.3945/an.115.09936

Meenakshi, V. J., Johnson, N. L., Manyong, V. M., DeGroot, H., Javelosa, J., Yanggen, D. R., et al. (2010). How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev. 38, 64–75.

Menkir, A., Liu, W., White, W. S., Mazlya-Dixon, B., and Rockefeller, T. (2008). Carotenoid diversity in tropical-adapted yellow maize inbred lines. Food Chem. 109, 521–529. doi: 10.1016/j.foodchem.2008.01.002

Menkir, A., Palacios-Rojas, N., Alamu, O., Dias, P., Maria, C., Dhliwayo, T., et al. (2018). Vitamin A Biofortified Maize. Exploiting Native Genetic Variation for Nutrient Enrichment. Biofortification No. 2 (February, 2018). Bonn: CIMMYT.

Muthamilarasan, M., and Prasad, M. (2016). “Role of genomics in enhancing nutrition concentration of cereals,” in Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits, Vol. 2, eds J. M. Al-Khayri, S. M. A., 9:e113583. doi: 10.1371/journal.pone.0113583

Muthasamy, V., Hossain, F., Thirunavukkarasu, N., Choudhary, M., Saha, S., Bhat, J. S., et al. (2014). Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele. PLoS One 9:e113583. doi: 10.1371/journal.pone.0113583

Muthasamy, V., Hossain, F., Thirunavukkarasu, N., Saha, S., Agrawal, P. K., Guleria, S. K., et al. (2015). Genetic variability and inter-relationship of kernel carotenoids among indigenous and exotic maize (Zea mays L.) inbreds. Cereal Res. Commun. 43, 567–578.

Naqvi, S., Zhu, C., Farre, G., Ramesar, K., Bassie, L., Breitenbach, J., et al. (2009). Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc. Natl. Acad. Sci. U.S.A. 106, 7762–7767. doi: 10.1073/pnas.0901412106

Ndolo, V. U., and Beta, T. (2013). Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels. Food Chem. 139, 663–671. doi: 10.1016/j.foodchem.2013.01.014

Ortiz-Covarrubias, Y., Dhliwayo, T., Palacios-Rojas, N., Ndhlilea, T., Magorokosho, C., Aguilar-Rincon, V. H., et al. (2019). Effects of drought and low nitrogen stress on provitamin A carotenoid content of biofortified maize hybrids. Crop Sci. 59, 2521–2532. doi: 10.2135/cropsci2019.02.0100

Ortiz-Monasterio, J. I., Palacios-Rojas, N., Meng, E., Pixley, K., Trethowan, R., and Pe’ ra, R. J. (2007). Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J. Cereal Sci. 46, 293–307.

Pai, J. A., Shippton, C. A., Chagger, S., Howells, R. M., Kennedy, M. J., Vernon, G., et al. (2005). Improving the nutritional value of golden click through increased pro-vitamin A content. Nat. Biotechnol. 23, 482–487. doi: 10.1038/Nbt108

Parker, G. D., Chalmers, K. J., Rathjen, A. J., and Langridge, P. (2008). The B73 maize genome: complexity, diversity, and dynamics. Science 320, 1112–1115. doi: 10.1126/science.1178534

Scholl, T. O., and Johnson, W. G. (2000). Folic acid: influence on the outcome of pregnancy. Am. J. Clin. Nutr. 71, 1295S–1303S. doi: 10.1111/j.1756-4662.2005.13016.x

Schnabl, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., et al. (2009). The B73 maize genome: complexity, diversity, and dynamics. Science 320, 1112–1115. doi: 10.1126/science.1178534

Shewry, P. R., Pironen, V., Lampi, A., Edelmann, M., Kariluoto, S., Nurmi, T., et al. (2010). Effects of genotype and environment on the content and composition of phytochemicals and dietary fiber components in rye in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 58, 9372–9383. doi: 10.1021/jf100553d

Singh, M., Lewis, P. E., Hardeman, K., Bai, L., Rose, J. K. C., Mazourek, M., Simpungwe, E., Dhliwayo, T., Palenberg, M., Taleon, V., Birol, E., Oparinde, A., et al. (2017). Orange maize in Zambia: crop development and delivery experience. Afr. J. Food Agric. Nutr. Dev. 17, 11973–11999.

Simpungwe, E., Dhliwayo, T., Palenberg, M., Taleon, V., Birol, E., Oparinde, A., et al. (2017). Orange maize in Zambia: crop development and delivery experience. Afr. J. Food Agric. Nutr. Dev. 17, 11973–11999.

Simpungwe, E., Dhliwayo, T., Palenberg, M., Taleon, V., Birol, E., Oparinde, A., et al. (2017). Orange maize in Zambia: crop development and delivery experience. Afr. J. Food Agric. Nutr. Dev. 17, 11973–11999.

Simpungwe, E., Dhliwayo, T., Palenberg, M., Taleon, V., Birol, E., Oparinde, A., et al. (2017). Orange maize in Zambia: crop development and delivery experience. Afr. J. Food Agric. Nutr. Dev. 17, 11973–11999.

Simpungwe, E., Dhliwayo, T., Palenberg, M., Taleon, V., Birol, E., Oparinde, A., et al. (2017). Orange maize in Zambia: crop development and delivery experience. Afr. J. Food Agric. Nutr. Dev. 17, 11973–11999.

Simpungwe, E., Dhliwayo, T., Palenberg, M., Taleon, V., Birol, E., Oparinde, A., et al. (2017). Orange maize in Zambia: crop development and delivery experience. Afr. J. Food Agric. Nutr. Dev. 17, 11973–11999.

Simpungwe, E., Dhliwayo, T., Palenberg, M., Taleon, V., Birol, E., Oparinde, A., et al. (2017). Orange maize in Zambia: crop development and delivery experience. Afr. J. Food Agric. Nutr. Dev. 17, 11973–11999.
Sowa, M., Yu, J., Palacios-Rojas, N., Goltz, S. R., Howe, J. A., Davis, C. R., et al. (2017). Retention of carotenoids in biofortified maize flour and β-cryptoxanthin-enhanced eggs after household storage. ACS Omega 2, 7320–7328. doi: 10.1021/acsometa.7b01202

Suwarno, W. B., Pizely, K. V., Palacios-Rojas, N., Kaeppeler, S. M., and Babu, R. (2014). Formation of heterotic groups and understanding genetic effects in a provitamin A biofortified maize breeding program. Crop Sci. 54, 14–24. doi: 10.2135/cropsci2013.02.0096

Taleon, V., Mugode, I., Cabrera-Soto, L., and Palacios-Rojas, N. (2017). Carotenoid retention in biofortified maize using different post-harvest storage and packaging methods. Food Chem. 232, 60–66. doi: 10.1016/j.foodchem.2017.03.158

Tamanna, S., Sayma, P., Sanjay, K., Alack, K. D., Aysha, F. M., Ali, S., et al. (2013). Concentration of some minerals and their bioavailability in selected popular rice varieties from Bangladesh. Int. J. Curr. Microbiol. Appl. Sci. 2, 35–43.

Tan, J., Baisakh, N., Oliva, N., Torizzo, L., Abrigo, E., Datta, K., et al. (2004). The screening of germplasm including those transgenic rice lines which accumulate β-carotene in their polished seeds for their carotenoid profile. Int. J. Food Sci. Technol. 40, 563–569.

USDA–ARS (2012). USDA National Nutrient Database for Standard Reference, RELEASE 25. Nutrient Data Laboratory Home Page. Available online at: http://www.ars.usda.gov/ba/bhnrc/ndl (accessed August 5, 2019).

Valibhaneni, R., and Wurtzel, E. T. (2009). Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm of maize. Plant Physiol. 150, 562–572. doi: 10.1104/pp.109.137402

Varshney, R. K., Hoisington, D. A., and Tyagi, A. K. (2006). Advances in cereal genomics and applications in crop breeding. Trends Biotechnol. 24, 490–499. doi: 10.1016/j.tibtech.2006.08.006

Varshney, R. K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P., et al. (2017). Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat. Biotechnol. 35, 969–976. doi: 10.1038/nbt.3943

Verbyla, A. P., George, A. W., Cavanagh, C. R., and Verbyla, K. L. (2014). Whole-genome QTL analysis for MAGIC. Theor. Appl. Genet. 127, 1753–1770. doi: 10.1007/s00122-014-2337-4

Wang, C., Zeng, J., Li, Y., Hu, W., Chen, L., Miao, Y., et al. (2014). Enrichment of provitamin A content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J. Exp. Bot. 65, 2545–2556. doi: 10.1093/jxb/eru138

Ward, J. L., Poutanen, K., Gebruers, K., Piironen, V., Lampi, A. M., Nyström, L., et al. (2008). The HEALTHGRAIN cereal diversity screen: concept, results, and prospects. J. Agric. Food Chem. 56, 9699–9709. doi: 10.1021/jf0809574

Welch, R. M., and Graham, R. D. (2005). Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops. J. Trace Elem. Med. Biol. 18, 299–307. doi: 10.1016/j.jtemb.2005.03.001

Wong, J. C., Lambert, R. I., Wurtzel, E. T., and Rocheford, T. R. (2004). QTL and candidate genes phytoene synthase and zeta-carotene desaturase associated with the accumulation of carotenoids in maize. Theor. Appl. Genet. 108, 349–359. doi: 10.1007/s00122-003-1436-4

Yadav, R. S., Hash, C. T., Bidinger, F. R., and Howarth, C. J. (1999). "QTL analysis and marker-assisted breeding of traits associated with drought tolerance in pearl millet," in Proceedings of the Workshop on Genetic Improvement of Rice for Water Limited Environments, 1-3 December 1998, eds O. Ito, J. O'Toole, and B. Hardy (Los Banos: International Rice research Institute), 211–223. doi: 10.1007/100122000008

Yadava, D. K., Choudhury, P. K., Hossain, F., and Kumar, D. K. (2017). Biofortified Varieties: Sustainable Way to Alleviate Malnutrition. New Delhi: Indian Council of Agricultural Research, 7–10.

Yan, J. B., Kandianis, C. B., Harjes, C. E., Bai, L., Kim, E. H., Yang, X. H., et al. (2010). Rare genetic variation at Zea mays crtRB1 increases β-carotene in maize grain. Nat. Genet. 42, 322–327. doi: 10.1038/ng.551

Ye, X. S., Al-Babili, A., Kloiti, J., Zhang, P., Lucca, P., Beyer, P., et al. (2000). Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid free) rice endosperm. Science 287, 303–305. doi: 10.1126/science.1068037

Yu, J., Hu, S., Wang, J., Wong, G. K., Li, S., Liu, B., et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79–92. doi: 10.1126/science.1068037

Yu, S., and Tian, L. (2018). Breeding major cereal grains through the lens of nutrition sensitivity. Mol. Plant 11, 23–30. doi: 10.1016/j.molp.2017.08.006

Zhang, L. P., Yan, J., Xia, X. C., He, Z. H., and Sutherland, M. W. (2006). QTL mapping for kernel yellow pigment concentration in common wheat. Acta Agron. Sin. 32, 41–45.

Zhang, Y. L., Wu, Y. P., Xiao, Y. G., He, Z. H., Zhang, Y., Yan, J., et al. (2009). QTL mapping for flour color components, yellow pigment concentration and polyphenol oxidase activity in common wheat (Triticum aestivum L.). Euphytica 165, 435–444.

Zhou, Y., Han, Y. J., Li, Z. G., Fu, Y., Fu, Z. Y., Yang, X., et al. (2012). ZmcrfR3B encodes a carotenoid hydroxylase that affects the accumulation of a-carotene in maize kernel. J. Integr. Plant Biol. 54, 260–269. doi: 10.1111/j.1744-7909.2012.01106.x

Zhu, C., Naqvi, S., Breitenbach, J., Gerhard, S., Paul, C., and Teresa, C. (2008). Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc. Natl. Acad. Sci. U.S.A. 105, 18232–18237. doi: 10.1073/pnas.0809737105

Zunjare, R. U., Hossain, F., Muthusamy, V., Baveja, A., Chauhan, H. S., Ibat, J. S., et al. (2018). Development of biofortified maize hybrids through marker-assisted stacking of β-carotene hydroxylase, lycopene cyclase and opaque2 genes. Front. Plant Sci. 9:178. doi: 10.3389/fpls.2018.00178

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Ashokkumar, Govindaraj, Karthikeyan, Shobhana and Warkentin. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.