Hypersensitivity to Aeroallergens in Patients with Nasobronchial Allergy

Jagoda Balaban¹, Radojka Bijelic², Snjezana Milicevic³

Department of Dermatovenerology, Clinical Center of Banja Luka, Bosnia and Herzegovina¹
Health Center, Banja Luka, Bosnia and Herzegovina²
Urology Clinic, Clinical Center of Banja Luka, Banja Luka, Bosnia and Herzegovina³

Corresponding author: Jagoda Balaban, MD, Ph.D. Department of Dermatovenerology, Clinical Center of Banja Luka, B&H. E-mail: jagoda.balaban@yahoo.com

ABSTRACT

Background. Aeroallergens are the most common causes of allergy. Aim. The aim of this study was to determine hypersensitivity to aeroallergens in patients with nasobronchial allergy. Methods. This retrospective population study included 2254 patients with nasobronchial allergy, from late adolescents to adults. Their response to aeroallergens was assessed by skin prick tests. Results. More patients had rhinitis (72.7%), than asthma (27.6%). Although majority of patients were female, allergy is more common in men than in women (p<0.05). Both groups of patients had the greatest number of positive skin prick tests for Dermatophagoides pteronyssinus (27.5%) and weed pollens (21.9%), followed by grass (18.3%) and tree pollens (10.1%). Ragweed is the most common positive weed pollen in both groups, more in patients with rhinitis (p<0.05). Both groups of patients had the greatest number of positive skin prick tests for Dermatophagoides pteronyssinus (27.5%) and weed pollens, followed by grass and tree pollens, and they are more common positive in patients with rhinitis than asthma. Conclusions. More patients with nasobronchial allergy have rhinitis than asthma. Skin prick tests are usually positive for Dermatophagoides pteronyssinus and weed pollens, followed by grass and tree pollens, and they are more common positive in patients with rhinitis than asthma.

Key words: nasobronchial allergy, rhinitis, asthma, aeroallergens.

1. INTRODUCTION

Allergic diseases are amongst most common chronic disorders worldwide (1). Allergic rhinitis and asthma are both chronic heterogeneous disorders, with overlapping epidemiology of prevalence, health care costs and in quality of life (2). These two clinical entities are observed over time as separate diseases. Epidemiological and clinical evidence, as well as experimental observations have suggested a link between rhinitis and asthma leading to a definition of allergic rhino-bronchitis or united airways diseases and the concept of “one airway one disease”. Both are inflammatory disorders with a similar pathophysiology and both share some treatment approaches.

Aeroallergens are the most common causes of nasobronchial allergy (3). Most important of them are pollens, dust mites, and animal products (4). Plant pollens are one of the most common outdoor allergens. House dust mites Dermatophagoides pteronyssinus (Df p) and Dermatophagoides farinae are the most common indoor aeroallergens all over the word. Other aeroallergens animal origin, which are often described as a cause of respiratory allergies are cockroach, feathers and animal hair (5).

Clinical epidemiological and pathophysiological studies suggest a strong functional and immunological relationship between the nose and bronchi and survey results report that pollens, especially grass pollens are the major cause of respiratory allergies worldwide (6, 7). The aim of this study was to determine hypersensitivity to the most common aeroallergens among our patients with nasobronchial allergy and to determine whether there are differences in hypersensitivity between rhinitis and asthma.

2. PATIENTS AND METHODS

The study is a retrospective, population analysis of the results of skin prick tests to aeroallergens in patients with nasobronchial allergy. The study included 2254 patients, aged from late adolescence (from 16 years of age) to adults, who were tested at the Department of Dermatovenerology, Clinical Centre of Banja Luka, during ten years period. Ambulatory patients, who were referred by family doctors, otolaryngologist, dermatologists, or pulmonologists were subjects of testing.

Patients were tested by skin prick test, which is used worldwide as an assured and rapid method for allergy screening. The results were interpreted by the standard method for test (3). We tested two series of allergens. In the first series there were seven allergens: Df p, weed pollen mixture, grass pollen mixture, tree pollen mixture, feathers, animal dander and cockroach (Blatella germanica). Second series contained 16 individual pollen allergens, that follow. Patients who tested positive for the grass pollen mixture, were further tested for: cocksfoot (Dactylis glomerata), meadow grass (Poa pratensis), rye-grass (Lolium perenne), timothy (Phleum pratense), cultivated...
wheat (*Triticum aestivum*) and corn (*Zea mays*). Patients who tested positive for the weed pollen mixture, were further tested for: ragweed (*Ambrosia elatior*), mugwort (*Artemisia vulgaris*), sorrel (*Rumex acetosella*), black mustard (*Brassica nigra*), elder (*Sambucus nigra*), linden (*Corylus avellana*), plantain (*Plantago lanceolata*), rue-grass (*Rue-grass*), and wall pellitory (*Parietaria officinalis*). Patients who tested positive for the tree pollen mixture were further tested for: birch (*Betula verrucosa*), hazel (*Corylus avellana*), elder (*Sambucus nigra*), linden (*Tilia cordata*) and ash (*Fraxinus americana*). According to the diagnosis, patients were divided in the two groups: Rhinitis and Asthma.

3. STATISTICAL ANALYSIS

In order to perform the necessary statistical tests we used the statistical software package SPSS for Windows (version 13). For the analysis of the data, descriptive and inferential statistics methods where used. From descriptive statistical parameters the mean value and measures of variation were used, which describe the main characteristics of the data in a quantitative sense. From inferential statistical methods Student’s *t*-test, Person χ2 test were used. The limit value of the existence of a statistically significant difference was set at *p*<0.05.

4. RESULTS

The total sample of our study included 2254 patients with nasobronchial allergy, 1376 (61%) women, and 848 (39%) men. The difference between number of female and male patients was statistically significant (*t* test; *p*<0.01). Rhinitis had 1634, and asthma 620 patients. Almost three times more patients, had allergic rhinitis than asthma (*t* test; *p*<0.01). In the Rhinitis group were 957 (58.6%) were female and 677 (41.4%) were male patients, mean age was 45.7±16.1. In the Asthma group 419 (67.6%) were women and 201 (32.4%) were men, mean age 45.68±16.1. In both group there were more male patients (*t* test; *p*<0.01).

Of all the patients, highest recorded number of positive prick tests was *Df p* (27.5%) and weed pollens (21.9%), followed by grass (18.3%) and tree pollens (10.1%). Although there were more females than male patients in our total sample (*p*<0.001), results show that the number of positive prick tests, according to all allergens was larger in male patients (χ2 test, *p*<0.05). The patients with allergic rhinitis have a higher number of positive skin prick tests to *Df p*, and all pollen mixtures, than patients with asthma (χ2 test, *p*<0.05). For cockroaches, feathers and animal hair, determined by a small number of positive skin prick

Allergens	All positive prick tests (%)	Sex	P-value	Allergic disease	P-value		
	Male (%)	Female (%)		Rhinitis (%)	Asthma (%)		
Weed pollen mixture	27.5	35.3	22.5	<0.001	28.9	23.9	0.020
Grass pollen mixture	21.9	28.6	17.6	<0.001	23.3	18.2	0.012
Tree pollen mixture	18.3	24.2	14.6	<0.001	19.8	14.5	0.005
Cockroach	10.1	12.2	8.8	0.011	11.1	7.6	0.018
Feather mixture	3.3	2.4	1.2	0.056	3.3	3.3	1.000
Animal hair mixture	1.7	5.7	1.9	0.005	3.0	3.4	0.735

Table 1. Positive skin prick tests in the total sample, by the sex of patients and type of allergic disease. *Dermatophagoides pteronyssinus

Weed pollens	All positive prick tests (%)	Positive prick tests by disease group	P-value			
	Male (%)	Female (%)		Rhinitis (%)	Asthma (%)	
Ragweed	28.9	30.9	23.2	0.022		
(**Ambrosia elatior**)	11.3	11.6	10.5	0.719		
Mugwort	3.2	4.0	1.2	0.049		
(**Artemisia vulgaris**)						
Wall pellitory	0.6	0.7	0.4	0.096		
(**Parietaria officinalis**)						
Plantain	8.1	8.5	6.6	0.405		
(**Plantago lanceolata**)						

Table 2. Positive skin prick tests to weed pollens

Grass pollens	All positive prick tests (%)	Positive prick tests by disease group	P-value			
	Male (%)	Female (%)		Rhinitis (%)	Asthma (%)	
Cocksfoot	14.4	15.3	11.7	0.209		
(**Dactylis glomerata**)						
Rue-grass	12.0	13.0	9.2	0.155		
(**Lolium perenne**)						
Timothy	7.5	8.7	4.2	0.032		
(**Phleum pratense**)						
Meadow grass	14.3	14.9	12.6	0.439		
(**Poa pratensis**)						
Wheat	10.2	10.8	8.4	0.337		
(**Triticum aestivum**)						
Corn, Maize	6.5	7.2	4.6	0.209		
(**Zea mays**)						

Table 3. Positive skin prick tests to grass pollens

Tree pollens	All positive prick tests (%)	Positive prick tests by disease group	P-value			
	Male (%)	Female (%)		Rhinitis (%)	Asthma (%)	
Hazel	5.7	6.2	4.4	0.406		
(**Corylus avellana**)						
Birch	7.3	7.6	6.6	0.730		
(**Betula verrucosa**)						
Elder	0.9	1.1	0.4	0.620		
(**Sambucus nigra**)						
Linden	1.0	1.4	0.0	*		
(**Tilia cordata**)						
Ash	2.4	2.8	1.3	0.302		
(**Fraxinus americana**)						

Table 4. Positive skin prick tests to tree pollens. *not applicable
Hypersensitivity to Aeroallergens in Patients with Nasobronchial Allergy

5. DISCUSSION

Results of skin prick test for individual weed pollens in the total sample and by group of disease show that they were mostly positive to ragweed (28.9%), then followed by mugwort (11%) and plantain (8.1%). The lowest number of positive tests were sheep sorrel and parietaria. More patients with allergic rhinitis than with asthma had positive skin reactions. Both groups of patients had more positive skin reactions to ragweed and sheep sorrel (χ² test, p<0.05). Other weed pollens showed no statistically significant difference between the two groups of patients (Table 2).

In the total sample tested to six individual, grass pollens showed highest number of positive tests to cocksfoot (14.4%) and meadow grass (14.3%). This was followed by rue-grass (12%) and wheat (10.2%). The lowest number of positive tests was for timothy grass and maize. Patients with rhinitis had more positive tests for cocksfoot (15.3%), but the patients with asthma for meadow grass (12.6%). There was no statistically significant difference for grass pollens between the two groups of patients, except for timothy grass (χ² test, p<0.032), in Rhinitis group. (Table 3).

In the total sample of patients, the highest number of positive tests, was to birch pollen (7.3%), then hazel (5.7%), while for the other tree pollens, there were a small number of positive skin reactions. Both groups of patients had the highest positive tests for birch, but without statistically significant difference, as for the other tree pollens (Table 4).

6. CONCLUSION

More patients with nasobronchial allergy have rhinitis than asthma. Although majority of patients were female, allergy is more common in men, than in women. *Dermatophagoides pteronyssinus* and weed pollens are the most common aeroallergens for both groups of patients. They are followed by grass and tree pollens. Small number of patient have allergy for animal hair, feathers and cockroach. The rhinitis group of patients had the greatest number of positive skin prick tests for house dust mite and all pollens, than the asthma group. Ragweed is the most common weed pollen for both group of patients. Cocksfoot is the most common grass pollen in rhinitis group, and meadow and in asthma group of patients. Birch is the most common tree pollen for both groups of patients.
CONFLICT OF INTEREST: NONE DECLARED

REFERENCES

1. Sing AB, C Mathur C. An aerobiological perspective in allergy and asthma. Asia Pac Allergy. 2012; 2(3): 210-222.
2. Canonica GW, Compalati E. Minimal persistent inflammation in allergic rhinitis: implications for current treatment strategies. Clin Exp Immunol. 2009; 158(3): 260-271.
3. Prasad R, Verma SK, Dua R, Kant S, Kushwaha RAS, Agarwal SP. A study of skin sensitivity to various allergens by skin prick test in patients of nasobronchial allergy. Lung India. 2009; 26(3): 70-73.
4. Rasool R, Shera IA, Nissar S, Shah ZA, Nayak N, Siddiqui MA, et al. Role of skin prick test in allergic disorders: a prospective study in Kashmiri population in light of review. Indian J Dermatol. 2013; 58(1): 12-17.
5. Kämpe M, Stolt I, Lampinen M, Janson C. Patients with allergic rhinitis and allergic asthma share the same pattern of eosinophil and neutrophil degranulation after allergen challenge. Clin Mol Allergy. 2011; 9: 3.
6. Anandan C, Gupta R, Simpson CR, Fischbacher C, Sheikh A. Epidemiology and disease burden from allergic disease in Scotland: analyses of national databases. J R Soc Med. 2009; 102: 431-442.
7. Voll-Aanerud M, Eagan T, Plana E, Omenaas E, Bakke P, Svanes K. Allergenic pollen and pollen allergy in Europe. Allergy. 2007; 62(9): 976-990.
8. Mahesh PA, Kummeling I, Hénaux L, Cundall H, et al. Proving the concept: pilot study: prevalence of grass pollen and clinical symptoms in Ciudad Real, Spain. J Investig Allergol Clin Immunol. 2007; 17(4): 205-208.
9. Schocker F, Lüttkopf D, Müller U, Thomas P, Vieths S, Becker WM. IgE binding to unique hazelnuts allergen: identification of the main allergen P. pentlandica pollen, Pla l 1. Toxicol Lett. 2007; 171(1): 29-34.
10. Piotrowska A. Comparison of alnus, corylus and betula pollen in Lublin (Poland). Ann Agric Environ Med. 2004; 11(2): 228-232.
11. Calabozo B, Barber D, Polo F. Purification and characterization of the main allergen Prantagia lanceolata pollen, P1A. Clin Exp Allergy. 2001; 31(2): 322-330.
12. de Benito Rica V, Menchaca Riesco JM, Rubio del Val MC, Sánchez Alonso Y, Rodríguez Lázaro B, Soto Torres J. Identification of the allergic taxa of pollen in patients with pollinosis to determine the risk season. Allergol Immunopathol (Madr). 2004; 32(4): 228-232.
13. Cosmes Martín PM, Moreno Ancillo A, Domínguez Noche C, Gutiérrez Vivas A, Belmonte Soler J, Rouré Nolla JM. Sensitization to Castanea sativa polleninosis in northern Extremadura (Spain). Allergol Immunopathol (Madr). 2005; 33(3): 145-150.
14. Frati F, Scorrati S, Puccinelli P, David M, Hilaire C, Capece M, et al. Development of a sublingual allergy vaccine for grass polleninosis. Drug Des Devel Ther. 2010; 4: 99-105.
15. Schocker F, Lüttkopf D, Müller U, Thomas P, Vieths S, Becker WM. IgE binding to unique hazelnuts allergen: identification of the main allergen P. pentlandica pollen, Pla l 1. Toxicol Lett. 2007; 171(1): 29-34.
16. Calabozo B, Barber D, Polo F. Purification and characterization of the main allergen Prantagia lanceolata pollen, P1A. Clin Exp Allergy. 2001; 31(2): 322-330.
17. Bousquet P, Wzionek M, Kornek J, Jakubowska D, Trynka G, et al. Role of skin prick test in allergic disorder: a prospective study in Kashmiring population in light of review. Indian J Dermatol. 2013; 58(1): 12-17.
18. Kämpe M, Stolt I, Lampinen M, Janson C. Patients with allergic rhinitis and allergic asthma share the same pattern of eosinophil and neutrophil degranulation after allergen challenge. Clin Mol Allergy. 2011; 9: 3.
19. Anandan C, Gupta R, Simpson CR, Fischbacher C, Sheikh A. Epidemiology and disease burden from allergic disease in Scotland: analyses of national databases. J R Soc Med. 2009; 102: 431-442.
20. Voll-Aanerud M, Eagan T, Plana E, Omenaas E, Bakke P, Svanes K. Allergenic pollen and pollen allergy in Europe. Allergy. 2007; 62(9): 976-990.
21. Cosmes Martín PM, Moreno Ancillo A, Domínguez Noche C, Gutiérrez Vivas A, Belmonte Soler J, Rouré Nolla JM. Sensitization to Castanea sativa polleninosis in northern Extremadura (Spain). Allergol Immunopathol (Madr). 2005; 33(3): 145-150.
22. Frati F, Scorrati S, Puccinelli P, David M, Hilaire C, Capece M, et al. Development of a sublingual allergy vaccine for grass polleninosis. Drug Des Devel Ther. 2010; 4: 99-105.
23. Bousquet P, Wzionek M, Kornek J, Jakubowska D, Trynka G, et al. Role of skin prick test in allergic disorder: a prospective study in Kashmiring population in light of review. Indian J Dermatol. 2013; 58(1): 12-17.
24. Kämpe M, Stolt I, Lampinen M, Janson C. Patients with allergic rhinitis and allergic asthma share the same pattern of eosinophil and neutrophil degranulation after allergen challenge. Clin Mol Allergy. 2011; 9: 3.
25. Anandan C, Gupta R, Simpson CR, Fischbacher C, Sheikh A. Epidemiology and disease burden from allergic disease in Scotland: analyses of national databases. J R Soc Med. 2009; 102: 431-442.
26. Voll-Aanerud M, Eagan T, Plana E, Omenaas E, Bakke P, Svanes K. Allergenic pollen and pollen allergy in Europe. Allergy. 2007; 62(9): 976-990.
27. Bozek A, Besser S, Jarzab J. Asthma in the elderly - estimation of natural disease course. Pol Arch Wewn. 2005; 114(5): 1079-1083.
28. Schlager D, Wietzerbin I, Rabe KF. Co-sensitization of roof roach and dust mite allergens among adults in Estonia. Int Arch Allergy Immunol. 2007; 142(3): 210-222.
29. Calabozo B, Barber D, Polo F. Purification and characterization of the main allergen Prantagia lanceolata pollen, P1A. Clin Exp Allergy. 2001; 31(2): 322-330.
30. de Benito Rica V, Menchaca Riesco JM, Rubio del Val MC, Sánchez Alonso Y, Rodríguez Lázaro B, Soto Torres J. Identification of the allergic taxa of pollen in patients with pollinosis to determine the risk season. Allergol Immunopathol (Madr). 2004; 32(4): 228-232.
31. Cosmes Martín PM, Moreno Ancillo A, Domínguez Noche C, Gutiérrez Vivas A, Belmonte Soler J, Rouré Nolla JM. Sensitization to Castanea sativa polleninosis in northern Extremadura (Spain). Allergol Immunopathol (Madr). 2005; 33(3): 145-150.
32. Frati F, Scorrati S, Puccinelli P, David M, Hilaire C, Capece M, et al. Development of a sublingual allergy vaccine for grass polleninosis. Drug Des Devel Ther. 2010; 4: 99-105.
33. Bousquet P, Wzionek M, Kornek J, Jakubowska D, Trynka G, et al. Role of skin prick test in allergic disorder: a prospective study in Kashmiring population in light of review. Indian J Dermatol. 2013; 58(1): 12-17.
34. Kämpe M, Stolt I, Lampinen M, Janson C. Patients with allergic rhinitis and allergic asthma share the same pattern of eosinophil and neutrophil degranulation after allergen challenge. Clin Mol Allergy. 2011; 9: 3.
35. Anandan C, Gupta R, Simpson CR, Fischbacher C, Sheikh A. Epidemiology and disease burden from allergic disease in Scotland: analyses of national databases. J R Soc Med. 2009; 102: 431-442.
36. Voll-Aanerud M, Eagan T, Plana E, Omenaas E, Bakke P, Svanes K. Allergenic pollen and pollen allergy in Europe. Allergy. 2007; 62(9): 976-990.
37. Bozek A, Besser S, Jarzab J. Asthma in the elderly - estimation of natural disease course. Pol Arch Wewn. 2005; 114(5): 1079-1083.
38. Schlager D, Wietzerbin I, Rabe KF. Co-sensitization of roof roach and dust mite allergens among adults in Estonia. Int Arch Allergy Immunol. 2007; 142(3): 210-222.