A systematic review of the impacts of oral tetracycline class antibiotics on antimicrobial resistance in normal human flora

Robinson Truong1,2, Vincent Tang1, Troy Grennan3,4 and Darrell H. S. Tan1,2,5,6*

1Faculty of Medicine, University of Toronto, 1 King’s College Cir, Toronto, ON M5S 1A8, Canada; 2Centre for Urban Health Solutions, St. Michael’s Hospital, 209 Victoria St, Toronto, ON M5B 1T8, Canada; 3BC Centre for Disease Control, 655 West 12th Avenue, Vancouver, BC V5Z 4R4, Canada; 4Division of Infectious Diseases and Department of Medicine, University of British Columbia, 317–2194 Health Sciences Mall, Vancouver, BC V6 T 1Z3, Canada; 5Division of Infectious Diseases, St. Michael’s Hospital, 36 Queen St E, Toronto, ON M5B 1W8, Canada; 6Department of Medicine, St. Michael’s Hospital, 36 Queen St E, Toronto, ON M5B 1W8, Canada

*Corresponding author. E-mail: darrell.tan@gmail.com

Received 18 October 2021; accepted 17 January 2022

Objectives: There is interest in doxycycline as prophylaxis against sexually transmitted infections (STIs), but concern about antimicrobial resistance (AMR). We conducted a systematic review (CRD42021273301) of the impact of oral tetracycline-class antibiotics on AMR in normal flora.

Methods: We searched MEDLINE, EMBASE, the Cochrane Library (1940–2021) and conference proceedings (2014–2021) for randomized controlled trials in adults comparing daily oral tetracycline-class antibiotics to non-tetracycline controls. The primary outcome was AMR to tetracyclines; secondary outcomes included resistance to non-tetracyclines. Data were inappropriate for meta-analysis, so we analysed findings descriptively.

Results: Our search yielded 6265 abstracts of which 7 articles fulfilled inclusion criteria. Most were at moderate/high risk of bias, generally due to inadequate methodologic reporting. Studies used doxycycline, tetracycline, oxytetracycline or minocycline for 2–18 weeks. Most observed an increased burden of tetracycline resistance, including in subgingival (n = 3 studies), gastrointestinal (n = 2) and upper respiratory tract (n = 1) flora; one study of skin flora found no change in tetracycline-resistant Propionibacterium species after 18 weeks of oxytetracycline/minocycline. Four studies reassessed AMR at 2–50 weeks post-intervention and reported varying degrees of resistance. Three articles reported on the prevalence of non-tetracycline AMR after doxycycline prophylaxis, of which one found a transient increase among gastrointestinal Escherichia coli; the other two showed no difference from control.

Conclusions: Although the effects are modest and transient, limited data from small prospective studies may suggest that oral tetracyclines for 2–18 weeks increase resistance in subgingival, gastrointestinal and upper respiratory tract flora. STI prophylaxis trials should include AMR in commensal bacteria as study outcomes.

Introduction

Sexually transmitted infections (STIs), are a major global cause of morbidity and mortality.1,2 Rates of infectious syphilis have risen in the past two decades in Canada and in other developed countries.3 Canada’s rate of new syphilis infections has dramatically increased by 167% from 2008 to 2017.4 Increases have similarly been seen in chlamydia and gonorrhoea, with rates increasing 39% and over 96% respectively over the same interval.4 This surge of STI transmission poses a growing threat to public health, especially among cis- and transgender women, as well as gay, bisexual and other men who have sex with men (gbMSM).4

The limited success of existing STI prevention strategies and the increasing presence of antimicrobial resistance (AMR) in healthcare are augmenting this global public health risk. AMR is one of the major issues facing global health in the 21st century, with many first-line antibiotics becoming less effective against common pathogens, and few new antibiotics being developed.5 AMR presents a roadblock to treating increasingly resistant strains of organisms including Neisseria gonorrhoeae, Mycoplasma genitalium and Treponema pallidum, as well as other community-acquired pathogens.6,7

Doxycycline is an oral tetracycline antibiotic that has been widely used to treat community-acquired infections and as prophylaxis against malaria and as a treatment for acne.8–10

© The Author(s) 2022. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
The antibiotic disrupts bacterial protein synthesis by binding to the 30S ribosomal subunit in a wide range of Gram-positive and Gram-negative bacteria. Other tetracycline class antibiotics such as minocycline and tetracycline have also been used to treat a wide variety of infections. There is emerging interest in daily oral doxycycline for use as STI pre-exposure prophylaxis (PrEP), which is the regular use of certain medications by uninfected individuals to prevent infection before the exposure occurs, and post-exposure prophylaxis (PEP), which refers to preventative use immediately after an exposure. Preliminary data suggest doxycycline PEP and PrEP could be efficacious at preventing both syphilis and chlamydia among MSM.

To date, there have been only three small randomized studies demonstrating the potential efficacy of doxycycline STI prophylaxis, conducted among gbMSM from the US, France, and Canada, including a sub-study of the IPERGAY trial and two pilot studies. In the earliest pilot study, HIV-positive MSM (n = 30) either took 100 mg of doxycycline daily (PrEP) or were placed in an incentive-based financial (contingency management) control arm for remaining STI-free for 36 weeks. Participants in the PrEP arm were significantly less likely to test positive for N. gonorrhoeae, Chlamydia trachomatis or T. pallidum during the 48 weeks follow-up (OR = 0.27; CI: 0.09–0.83) when compared with the control arm (P = 0.02), although the absolute number of STI outcomes was low (6 versus 15 study visits with an STI in the two arms, respectively). In a sub-study of the IPERGAY trial of on-demand HIV PrEP, HIV-negative MSM (n = 232) were randomized to receive either 200 mg of doxycycline once within 24–72 h after sex (PEP) or no intervention. This study observed a lower rate of first STI occurrence in participants taking PEP than those in the control arm (HR = 0.53; P = 0.008, 95% CI: 0.33–0.85) over a median of 8.7 months, with 28 versus 45 observed STIs in the two arms, respectively. More recently, members of our team found that daily doxycycline 100 mg was associated with a significant reduction in bacterial STIs in a pilot trial among HIV-negative gbMSM (OR = 0.18, 95% CI = 0.05–0.68); limited sampling of the nares revealed some tetracycline resistance in Staphylococcus aureus in both arms but data were inadequate to draw statistically meaningful conclusions.

Before being widely adopted as a standard prevention strategy against STIs, the clinical impact of doxycycline prophylaxis on AMR warrants more study. There is particular concern that such use could drive tetracycline class resistance in C. trachomatis and T. pallidum, since doxycycline is the preferred treatment for urogenital, rectal and possibly pharyngeal C. trachomatis infections and an important treatment alternative for syphilis infection among penicillin-allergic individuals. Similarly, prior data on long-term doxycycline as malaria prophylaxis have suggested potential associations with doxycycline resistance in nasal S. aureus isolates and colonization of the gastrointestinal tract with MDR coliforms, although these studies are severely limited by their observational designs. The importance of doxycycline as a treatment option for MRSA and concerns about changes in the diversity and resistome of enteric flora mean that these issues require further study. Additional clinical trials of tetracycline-based STI prophylaxis are currently underway in Canada, the USA, Australia, Kenya and France, providing critical opportunities to address these questions with prospective data.

To inform these efforts, a review of the available literature may be helpful in understanding how much the use of these antibiotics as PrEP may add to the existing threat of AMR. To address this question, we conducted a systematic review of randomized controlled trials on the impacts of oral tetracycline class antibiotics on the development of AMR in normal human flora. Because antibiotic resistance genes can be harboured on mobile genetic elements such as plasmids that may also encode resistance to other antibiotics, a secondary objective was to investigate impact on resistance to non-tetracycline class antibiotics. We also examined impact on STI incidence.

Methods

We performed a systematic review using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. The protocol was registered on PROSPERO (CRD42021273301).

Eligibility criteria

We included randomized controlled trials (1940–2021) that compared the impact of daily oral tetracycline class antibiotics versus a non-tetracycline control (placebo, no antibiotic use or alternative oral antibiotics) on the acquisition of tetracycline class AMR in normal flora among adults. We included studies that had at least one of the following outcomes for each tested bacterium and antibiotic: emergence of antimicrobial resistance genes, changes in MIC by any conventional method (e.g. Etest, Kirby–Bauer disc diffusion) or changes in reported tetracycline class antibiotic susceptibility (e.g. from susceptible to intermediate and/or resistant). We considered normal flora (specifically, bacteria that live in/on the human host without causing disease) at any anatomic site. Because antibiotic controls are expected to have different impacts on host flora AMR compared with placebo or non-antibiotic controls, we stratified results according to these two types of controls. We did not include studies that contained combination antibiotic therapy for the intervention.

Search strategy

We developed an electronic database search strategy with the help of a health science librarian. Search terms were identified using synonyms, free text terms and subheadings related to tetracycline terms and clinical trial terms. We maximized sensitivity by not incorporating search terms related to our study outcomes, anticipating that many studies may have examined AMR as a secondary outcome only. The full search strategy is included in Appendix S1 (available as Supplementary data at JAC-AMR Online).

Information sources

We searched MEDLINE, EMBASE and the Cochrane Library electronic databases on 1 February 2021. We also searched conference proceedings from 2014 to 2021 from the following meetings: Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), IDSA Annual Meeting, Infectious Disease Week, European Congress of Clinical Microbiology & Infectious Diseases (ECCMID) and the American Society of Microbiology (ASM). The reference lists of eligible studies were also used to identify articles of potential relevance. Clinical trials were also identified through the databases of ClinicalTrials.gov and the ISRCTN. There were no restrictions imposed on publication language.

Selection of studies

Search results were compiled and imported into Covidence, an online program that helps in reviewing articles for systematic reviews. Two independent reviewers (R.T., V.T.) assessed all identified abstracts and
publications that appeared to meet the inclusion criteria. Any disagreements during the review were resolved by consensus. Where consensus could not be reached, a third reviewer (D.H.S.T.) resolved the issue. For any study that lacked information required for proper assessment, we made three attempts to contact the study authors by e-mail.

Data extraction
Data were extracted independently by each reviewer onto a data collection form. The primary outcome was the change in AMR measures (resistance genes, MIC and/or susceptibility) from baseline to follow-up between the intervention and comparator groups, per tested bacterial species and antibiotic. Secondary outcomes were changes in resistance to non-tetracycline antibiotics, using the same metrics as our primary outcome, and the incidence of bacterial STIs (syphilis, chlamydia and gonorrhoea).

Assessment of risk of bias
We assessed the risk of bias among included studies using a rubric we developed from the consolidated standards of reporting trials (CONSORT) reporting checklist regarding critical methodologic features of randomized trials. We prioritized an analysis of individual components of the included studies, particularly: randomization, allocation concealment, blinding of outcome assessment and attrition (Table 1). The intended purpose of these assessments was to explain any heterogeneity in results, and to perform sensitivity analyses if applicable. Quality assessors were not blinded to the articles for feasibility reasons.

Analysis
The expected key measures of effect size from each study were the emergence of antimicrobial resistance genes, changes in MIC by any conventional method (e.g. Etest, Kirby-Bauer disc diffusion) or changes in tetracycline class antibiotic susceptibility. Our intention had been to meta-analyse any such quantitative findings using DerSimonian random-effects models, but the variability with which outcomes were found to be reported led us to descriptively report the findings instead.

Results
Study selection
The search strategy detected 9890 articles through MEDLINE, EMBASE and Cochrane, of which 6265 were distinct articles after deduplication (Figure 1). Through abstract screening, 122 publications appeared to meet our inclusion criteria. After full-text review, 115 articles were excluded because they did not contain our primary outcome of interest (n = 62), did not contain our intervention of interest (n = 26), were incomplete or did not have available results (n = 11), did not contain our comparator groups.
of interest (n=6), were not randomized controlled trials (n=6), were duplications of studies (n=3), or did not address our population of interest (n=1). Of the seven included articles, all reported on the burden of resistant isolates and antibiotic susceptibility, and three investigated resistance to non-tetracyclines.23,33–38 No conference proceedings, unpublished listings in online clinical trial databases or studies in eligible reference lists were relevant. None of the seven included studies investigated the emergence of resistance genes or STI incidence.

Study characteristics

The study participants came from the USA (n=3), UK (n=2), Kenya (n=1) or Thailand (n=1). The sample sizes ranged from 20 to 253. The age of participants varied greatly, from 18 to 83. The duration of treatment ranged from 2–18 weeks, with five interventions using doxycycline (total daily dose 100–200 mg/day), one using tetracycline (1000 mg/day) and one using both oxytetracycline (1000 mg/day) and minocycline (100 mg/day) as separate intervention groups. Tetracycline class antibiotics were compared with placebo (n=3), non-antibiotic controls (n=3), nothing (n=1) or a combination of placebo and alternative antibiotics (n=1). The timing of final AMR assessment varied from 3 days to 12 months since the start of treatment. The AMR outcomes were ascertained by inoculation of samples onto plates containing tetracyclines (n=4), by disc diffusion (n=2) and by Etest (n=1).

Assessment of risk of bias

We assessed all included studies to be at either moderate or high risk of bias (Table 2), most often because inadequate reporting made the risk of bias unclear for one or more criteria. For instance, many studies did not report their method of randomization (n=4) or explain their concealment of treatment allocation (n=7). Reporting regarding the blinding of outcome assessment for included studies was also highly variable, with most articles having an unclear risk of bias for this criterion. The attrition in...
Studies evaluating the impact of oral tetracyclines on antibiotic resistance in human flora

Burden of tetracycline-resistant isolates in subgingival, gastrointestinal and skin flora

All seven articles evaluated the impact of oral tetracyclines on outcomes relating to the burden of tetracycline-resistant isolates (Table 3). All articles also suggested evidence of varying levels of tetracycline resistance at baseline for both the intervention and comparator arm. In general, five studies suggested that oral tetracycline use was associated with an increased burden of tetracycline-resistant isolates in the assessed normal flora. Specifically, all three studies that investigated subgingival flora (n = 20 each) demonstrated a relatively small increase in the percentage of isolates resistant to tetracyclines during 2 weeks of antibiotic therapy. One study saw that there was an increase in subgingival sites harboring Streptococcus sanguis isolates resistant to tetracyclines, though this was no longer observed at 90 days. Interestingly, Rodrigues et al. saw a decrease in the percentage of sites harbouring tetracycline-resistant Porphyromonas gingivalis isolates, but no changes in the percentage of sites harbouring tetracycline-resistant Aggregatibacter actinomycescomitans or Tannerella forsythia isolates at 12 months.

Two studies demonstrated an increase in tetracycline-resistant commensal Escherichia coli in the gastrointestinal tract, based on cultures of stool specimens. However, Sack et al. reported that the number of both commensal and pathogenic E. coli isolates resistant to tetracycline returned to baseline 2 weeks after taking 100 mg (200 mg on Day 1) of doxycycline daily for 3 weeks. Surprisingly, one study in skin flora demonstrated no increase in tetracycline-resistant propionibacteria isolates in the groups that took either 1000 mg of oxytetracycline daily or 100 mg of minocycline daily for 18 weeks, compared with the placebo group.

Only one article evaluated the impact of oral tetracyclines on tetracycline MICs. Brill et al. illustrated that the MIC of the upper respiratory flora significantly increased by a factor of 3.74 in individuals who took 100 mg of doxycycline daily for 13 weeks, compared with those who took placebo. It was also demonstrated that those who took this doxycycline regimen were 5.77 times more likely (95% CI: 1.40–23.74, P = 0.02) to have doxycycline-resistant isolates than individuals who took the placebo.

Studies evaluating the impact of oral tetracyclines on resistance to non-tetracycline antibiotics

Three of the seven included studies evaluated the impact of oral tetracyclines on outcomes relating to non-tetracycline antibiotics (Table 4). Overall, these studies demonstrated that oral tetracyclines had negligible effects on non-tetracycline resistance in Propionibacterium (Cutibacterium) species from skin swabs and commensal E. coli in the gastrointestinal tract. However, one 1978 study among Peace Corps volunteers showed a transient increase in multiply resistant commensal and pathogenic E. coli in stool isolates after 3 weeks of doxycycline compared with no intervention, with a return to baseline 2 weeks after treatment.

Discussion

Given emerging interest in doxycycline as STI pre- and post-exposure prophylaxis, we conducted a systematic review of randomized trials evaluating the impact of oral tetracyclines on antimicrobial resistance in normal flora. We found that oral tetracyclines increased resistance to tetracycline class antibiotics in the subgingival, gastrointestinal and upper respiratory flora, but not in skin flora, when compared with non-tetracycline exposed controls. Conversely, oral tetracyclines had no significant effect on resistance to other non-tetracycline class antibiotics in commensal E. coli and propionibacteria (now renamed cutibacteria). There were no articles that investigated the emergence of resistance genes, or STI incidence as a secondary outcome. Due to the heterogeneity of reported outcomes, results could not be meta-analysed.

While not surprising, these observations are relevant to ongoing debates about the potential role of STI prophylaxis because tetracyclines are widely used in the treatment and prevention of a variety of common conditions, in addition to STI management. For example, doxycycline is a recommended first-line agent in the outpatient management of
Table 3. Impact of tetracyclines on burden of resistant isolates and antibiotic susceptibility

Study characteristics	Results										
Study population											
N											
Intervention(s)	Comparator(s)**	Follow-up	Age method	antibiotic susceptibility test method	Outcome of interest						
Studies in subgingival flora											
Feres 1999	33 and Feres 2002	34c									
Adult patients with periodontitis, USA	20	SRP + DOX (200 mg PO on Day 1, then 100 mg daily PO for the next 13 days)	SRP 3, 7, 14, 17, 21, 28 and 90 days	Inoculation onto plates containing 4 mg/L DOX	% isolates resistant to DOX in plaque	Increase at 3, 7, 14, 17 and 21 days	Minimal change over 90 days	P, 0.05	↑		
					No increase at 28 and 90 days	Minimal change over 90 days	NOD	↑			
					Increase over 90 days (P, 0.01)	Minimal change over 90 days	OD	↑			
					Increase over 90 days (P, 0.01)	Minimal change over 90 days	OD	↑			
					Increase over 90 days (P, 0.01)	Minimal change over 90 days	OD	↑			
Rodrigues 2004	35	Adult patients with periodontitis, USA	20	SRP + TET (500 mg twice daily PO for 2 weeks)	SRP 1 week, 3, 6 and 12 months post-treatment	Inoculation onto plates containing 4 mg/L DOX	% isolates resistant to TET in plaque	Increase at 1 week and 6 months	Minimal change over 12 months	P, 0.05	↑
					No increase at 3 and 12 months	Minimal change over 12 months	NOD	↑			
					No increase in proportion (%) of sites with resistant P. gingivalis in plaque	Decrease over 12 months (P, 0.05)	Minimal change over 12 months	OD	↓		
					No increase in proportion (%) of sites with resistant T. forsythia in plaque	Minimal change over 12 months	Minimal change over 12 months	OD	↓		
					No increase in proportion (%) of sites with resistant A. actinomycetemcomitans in plaque	Minimal change over 12 months	Minimal change over 12 months	OD	↓		
Studies in gastrointestinal flora											
Sack 1978	Peace Corps volunteers, Kenya	39	DOX 100 mg twice daily PO on Day 1, then daily PO for 3 weeks	Nothing for 3 and 5 weeks	Disc diffusion with 30 μg TET	% commensal E. coli and pathogenic E. coli isolates resistant to TET in stool	Increase at 3 weeks (21 → 100)	Increase at 3 weeks (6.1 → 25)	OD	↑	
					Decrease at 5 weeks (100 → 39)	Decrease at 5 weeks (25 → 23)	NOD	↑			

Systematic review 6 of 12
Study	Subjects	Intervention	Outcome	Change	Change	Difference	Significance	
Arthur 1990\(^{23}\)	US soldiers, Thailand	DOX 100 mg PO for 5 weeks + placebo Drox for 5 weeks	Disc diffusion with % individuals with TET-resistant non-ETEC isolates in stool	Increase at 5 weeks	Increase at 5 weeks	Difference at 5 weeks	Significance	
		Oral melfoquine weekly for 5 weeks	30 μg TET	(76 → 99)	(69 → 86)	(P=0.01)		
		Placebo melfoquine weekly						
		250 mg weekly for 5 weeks + placebo DOX daily						
Studies in skin flora	Ozolins 2004\(^{17}\)	Oxytetracycline 500 mg twice daily PO for 18 weeks and 5% benzoyl peroxide topical cream twice daily	Placebo daily PO 18 weeks	No change over 18 weeks	No change over 18 weeks	No difference		
	Patients with acne vulgaris, UK	MIN 100 mg daily PO for 18 weeks	Inoculation onto plates containing 5 mg/L TET	Change in mean growth score for prevalence of TET-resistant propionibacteria in skin swab	No change over 18 weeks	Minimal change over 18 weeks	No difference	
		Oxytetracycline 500 mg twice daily PO for 18 weeks		No change over 18 weeks	No change over 18 weeks	No difference		
	Patients with chronic bronchitis and COPD, UK	Placebo daily PO 13 weeks	Etest	Factor change in MIC\(_{100}\) in sputum	NR	NR	3.74, \(P=0.01\), 95% CI: 1.46–9.58	
		DOX 100 mg daily PO for 13 weeks		OR for DOX-resistant isolates in sputum	NR	NR	5.77, \(P=0.02\), 95% CI: 1.40–23.74	
Studies in upper respiratory tract flora	Brill 2015\(^{18}\)	DOX 100 mg daily PO for 13 weeks	Etest	Factor change in MIC\(_{100}\) in sputum	NR	NR	3.74, \(P=0.01\), 95% CI: 1.46–9.58	
	Patients with chronic bronchitis and COPD, UK	Placebo daily PO 13 weeks		OR for DOX-resistant isolates in sputum	NR	NR	5.77, \(P=0.02\), 95% CI: 1.40–23.74	

DOX, doxycycline; ETEC, enterotoxigenic E. coli; MIN, minocycline; NOD, no observable difference; NR, exact values not reported; OD, observable difference; PO, oral; SRP, scaling root planning; TET, tetracycline.

\(^{a}\)Unless otherwise specified, values are mean ± SD or median (IQR).

\(^{b}\)Arrows indicate the direction of effect on burden of resistant isolates or antibiotic susceptibility.

\(^{c}\)Studies by Feres et al. 2002\(^{34}\) and Feres et al. 1999\(^{33}\) have the same study sample.
Table 4. Change in prevalence of non-tetracycline antimicrobial resistance before and after tetracycline exposure

Study characteristics	Results		
Studies in gastrointestinal flora			
Sack36	Peace Corps volunteers, Kenya		
1978	DOX 100 mg twice daily PO on Day 1, then daily PO for 3 weeks		
39	Nothing		
3 and 5 weeks	% isolates of non-ETEC and ETEC in stool with resistance to multiple antibiotics		
STR, sulphonamide, AMP	NR	NR	OD at 3 weeks, but NOD at 5 weeks
Arthur23	US soldiers, Thailand		
1990	DOX 100 mg PO for 5 weeks + placebo mefloquine weekly		
253	Oral mefloquine 250 mg weekly for 5 weeks + placebo DOX daily		
5 weeks	Proportion of individuals with non-ETEC strains resistant to ≥2 antibiotics in stool		
AMP, CHL, ERY, GEN, KAN, neomycin, STR, SXT	Increase at 5 weeks (79% → 93%)		
NOD ↔			
Studies in skin flora			
Ozolins2004	Patients with acne vulgaris, UK		
2004	Oxytetracycline 500 mg twice daily PO for 18 weeks		
391	Placebo daily PO and 5% benzoyl peroxide topical cream twice daily		
18 weeks	Change in mean growth score for prevalence of resistant propionibacteria in skin swab		
ERY, CLI	No increase over 18 weeks (−0.1, P = 0.362)		
NOD ↔	No increase over 18 weeks (−0.5, P < 0.001)		
MIN 100 mg daily PO for 18 weeks			

AMP, ampicillin; CHL, chloramphenicol; CLI, clindamycin; DOX, doxycycline; ERY, erythromycin; GEN, gentamicin; KAN, kanamycin; MIN, minocycline; NR, exact values not reported; NOD, no observable difference; OD, observable difference; STR, streptomycin; SXT, trimethoprim/sulfamethoxazole.

^aArrows indicate the direction of effect on resistance.
community-acquired pneumonia, and is a useful oral agent for skin, soft tissue and some orthopaedic infections due to its activity against MRSA.\(^4\) Several tetracyclines (doxycycline, minocycline, sarecycline) are used in the management of moderate-to-severe acne vulgaris, due to their activity against *Cutibacterium acnes* and relative lipophilicity, which facilitates concentration in sebaceous glands.\(^4\) Newer agents such as tigecycline and omadacycline have broad-spectrum activity, and have been approved by the US FDA for the treatment of skin and soft tissue infections, community-acquired pneumonia and, in the case of tigecycline, complicated intra-abdominal infections as well.\(^4\) Doxycycline is also effective in the prevention and treatment of Lyme disease, leptospirosis, tick-borne relapsing fever and malaria.\(^4\)

Of all these clinical indications, concerns about STI prophylaxis-induced AMR may be most salient to infections of the respiratory, gastrointestinal and integumentary systems, since these conditions can arise from normal flora. It is noteworthy in this regard that for each of these particular organ systems we identified only one or two studies that reported on the AMR impacts of tetracyclines. Three other studies focused on subgingival flora in periodontitis patients. While these may be relevant to respiratory tract infections whose pathophysiology relates to micro-aspiration of oral flora, the generalizability of these studies to the general population is less certain. Given the paucity of available data, an important lesson from our review for the design of STI prophylaxis trials is thus to consider incorporating AMR monitoring among normal flora from multiple anatomic sites.

Of note was the varying burden of tetracycline resistance in normal flora present at baseline in all seven studies. Since data on prior antibiotic exposure among study participants were generally lacking, it is unclear whether this phenomenon was due to previous tetracycline use (as might be expected given that study populations included patients with periodontitis, acne vulgaris and COPD) or due to naturally occurring resistance (as has been observed among some Indigenous American groups with no prior exposure to commercial antibiotics).\(^4\) Regardless of the cause, this observation is consistent with AMR surveillance studies showing that tetracycline resistance is not uncommon in clinical isolates. For instance, recent surveillance studies on selected European countries found that tetracycline resistance was prevalent in 66.9% and 44.9% of ESBL-producing *E. coli* and *Klebsiella* species, respectively.\(^4\) In another study, global tetracycline resistance was found to be 8.7% and 24.3% for MRSA and *Streptococcus pneumoniae*, respectively.\(^4\)

Potential impacts of doxycycline prophylaxis on tetracycline resistance in STI pathogens remain unclear. In the IPERGAY sub-study of doxycycline PEP, investigators assessed for AMR resistance in *C. trachomatis and T. pallidum* for molecular markers of doxycycline resistance have generally been negative.\(^4\) Surprisingly, although our systematic review did identify randomized trials comparing long-term doxycycline to other agents for malaria prophylaxis, none reported on AMR consequences. A potential reason is that many of these studies were conducted before the more recent era of heightened AMR awareness. Yet more recent trials evaluating long-term tetracyclines for acne treatment have also failed to study this issue, despite sometimes acknowledging AMR concerns.\(^4\) Several clinical trials of doxycycline-based STI prophylaxis are currently underway, and it will be important that they rigorously assess for unintended consequences on AMR.\(^4\) The inclusion of both pre- and post-exposure prophylaxis intervention arms within these trials means that data will be forthcoming on the relative impacts on resistance outcomes of consistent (in the case of daily PrEP) versus sporadic (in the case of PEP) use. However, it is important that potential future findings of adverse AMR consequences do not unintentionally limit this particular clinical indication for the same drug. This concern is particularly salient given existing discourses regarding syphilis PrEP-related stigma, including within gbMSM communities themselves.\(^4\) AMR measures warrant inclusion as secondary outcomes in all clinical trials examining the long-term use of an antibacterial drug, regardless of the primary indication.

Strengths of our systematic review include our restriction to randomized controlled trials, our use of a deliberately broad search strategy in order to maximize sensitivity and our rigorous assessment of the risk of bias in each included study.

A few limitations also warrant mention, and may offer lessons for ongoing STI prophylaxis trials. First, we deemed all the included articles to be at moderate to high risk of bias overall, usually due to the inadequate reporting of methodologies. These inconsistencies may in part relate to the era in which they were conducted; all but one were published prior to the current CONSORT statement in 2010, and several were published even before the first iteration of CONSORT in 1996.\(^4\) Second, there was significant heterogeneity in how outcomes were reported, which precluded meta-analysis. Ongoing STI prophylaxis trials have the opportunity to harmonize the definition of AMR endpoints, which could facilitate meta-analysis of resistance data in the future. Third, the interventions and AMR assessments in our systematic review only extend out to 18 and 50 weeks, respectively. The impacts of longer-term tetracycline use on AMR have not been rigorously evaluated and may represent another important opportunity for ongoing studies.

Importantly, the acceptability of doxycycline prophylaxis against STIs appears to be good. In a cross-sectional survey in gbMSM attending Toronto and Vancouver STI clinics, willingness to use was 44.1% for PrEP and 60.1% for PEP.\(^4\) In online studies, 52.7%–75.8% of Australian gbMSM said they would be prepared to use STI PrEP, while 84% of American gbMSM expressed interest in STI PEP.\(^4\) The numerically higher interest in PEP in these studies is of interest, as the decreased burden of drug compared with PrEP could theoretically mitigate AMR risk. Yet community members themselves have also voiced concerns about the potential for STI prophylaxis to drive AMR, emphasizing the importance of generating high-quality evidence on this question.\(^4\)
Previous systematic reviews have unequivocally demonstrated that greater antibiotic consumption is associated with greater bacterial resistance to antibiotics.61,62 Accordingly, we hypothesized that oral tetracyclines would directly increase tetracycline resistance in normal human flora. Our systematic review of randomized controlled trials generally confirmed this to be the case, but the limited number of included studies demonstrates a gap in our knowledge. Given the potential for normal flora to serve as a resistome reservoir for pathogenic bacteria,63 STI prophylaxis and other trials of long-term antibiotic use should include careful evaluation of these important AMR outcomes. Such findings would need to be weighed against any potential STI prevention benefits in determining whether and how doxycycline prophylaxis should be added to the toolkit of prevention strategies. Ultimately, a modest increase in resistance among uncommon pathogens may be deemed acceptable if the STI prevention benefits of doxycycline prophylaxis are large.

Acknowledgements
We would like to acknowledge David Lightfoot for assisting with the search strategy and literature search.

Funding
This work was supported by an Early Researcher Award from the Government of Ontario. D.H.S.T. is supported by a Tier 2 Canada Research Chair in HIV Prevention and STI Research.

Transparency declarations
D.H.S.T.’s institution has received investigator-initiated research grants from Abbvie, Gilead and Viiv Healthcare. D.H.S.T. is a Site Principal Investigator for clinical trials sponsored by GlaxoSmithKline. T.G.’s institution has received investigator-initiated research grants from Gilead and Merck. All other authors: none to declare.

Author contributions
All contributing authors have seen and approved the final submitted version of the manuscript. The contribution of work is as follows: D.H.S.T. and T.G. conceived the study question; D.H.S.T. designed the protocol with R.T.; R.T. and V.T. conducted database searches and screened and selected eligible articles for inclusion; R.T. and D.H.S.T. wrote the original draft of the manuscript; all authors provided input and approved the final version of the manuscript.

Supplementary data
Appendix S1 is available as Supplementary data at JAC-AMR Online.

References
1 WHO. The Top 10 Causes of Death 2020. https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death.
2 WHO. Report on Sexually Transmitted Infection Surveillance 2018. https://apps.who.int/iris/bitstream/handle/10665/277258/9789241565691-eng.pdf?ua=1.
3 Fenton KA, Breban R, Vardavas R et al. Infectious syphilis in high-income settings in the 21st century. Lancet Infect Dis 2008; 8: 244–53.
4 Report on Sexually Transmitted Infections in Canada, 2017. Public Health Agency of Canada. 2019.
5 Burnham CD, Lees J, Nordmann P et al. Diagnosing antimicrobial resistance. Nat Rev Microbiol 2017; 15: 697–703.
6 Unemo M, Jensen JS. Antimicrobial-resistant sexually transmitted infections: gonorrhoea and Mycoplasma genitalium. Nat Rev Urol 2017; 14: 139–52.
7 Beale MA, Marks M, Sahi SK et al. Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages. Nat Commun 2019; 10: 3255.
8 Newton PN, Chauilet J-F, Brockman A et al. Pharmacokinetics of oral doxycycline during combination treatment of severe falciparum malaria. Antimicrob Agents Chemother 2005; 49: 1622–5.
9 Cao T, Tan ES-T, Chan YH et al. Anti-pruritic efficacies of doxycycline and erythromycin in the treatment of acne vulgaris: a randomized single-blinded pilot study. Indian J Dermatol Venereol Leprol 2018; 84: 458–60.
10 Bhamari S, Kim G. Use of oral doxycycline for community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infections. J Clin Aesthet Dermatol 2009; 2: 45–50.
11 Chapro I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbial Mol Biol Rev 2001; 65: 232–60.
12 Huang V, Cheung CM, Kaatz GW et al. Evaluation of dalbavancin, tigecycline, minocycline, tetracycline, teicoplanin and vancomycin against community-associated and multidrug-resistant hospital-associated meticillin-resistant Staphylococcus aureus. Int J Antimicrob Agents 2010; 35: 25–9.
13 Grant JS, Stafylis C, Celum C et al. Doxycycline prophylaxis for bacterial sexually transmitted infections. Clin Infect Dis 2020; 70: 1247–53.
14 Bolan RK, Beymer MR, Weiss RE et al. Doxycycline prophylaxis to reduce incident syphilis among HIV-infected men who have sex with men who continue to engage in high-risk sex: a randomized, controlled pilot study. Sex Transm Dis 2015; 42: 98–103.
15 Molina J-M, Charreau I, Chidiac C et al. Post-exposure prophylaxis with doxycycline to prevent sexually transmitted infections in men who have sex with men: an open-label randomised substudy of the ANRS IPERGAY trial. Lancet Infect Dis 2018; 18: 308–17.
16 Grennan T. Daily doxycycline in MSM on PrEP for prevention of sexually transmitted infections. Conference on Retroviruses and Opportunistic Infections (CROI) 2021.
17 WHO. WHO Guidelines for the Treatment of Treponema pallidum (Syphilis). 2016. https://www.who.int/reproductivehealth/publications/rts/syphilis-treatment-guidelines/en/.
18 Kong FY, Tabrizi SN, Law M et al. Azithromycin versus doxycycline for the treatment of genital chlamydia infection: a meta-analysis of randomised controlled trials. Clin Infect Dis 2014; 59: 193–205.
19 Dombrowski JC, Wierzbicki MR, Newman LM et al. Doxycycline versus azithromycin for the treatment of rectal chlamydia in men who have sex with men: a randomized controlled trial. Clin Infect Dis 2021; 73: 824–31.
20 Manavi K, Hettiarachchi N, Hodson J. Comparison of doxycycline with azithromycin in treatment of pharyngeal chlamydia infection. Int J STD AIDS 2016; 27: 1303–8.
21 Vento TJ, Calvano TP, Cole DW et al. Staphylococcus aureus colonization of healthy military service members in the United States and Afghanistan. BMC Infect Dis 2013; 13: 325.
22 Vento TJ, Cole DW, Mende K et al. Multidrug-resistant Gram-negative bacteria colonization of healthy US military personnel in the US and Afghanistan. BMC Infect Dis 2013; 13: 68.
23 Arthur JD, Echeverria P, Shanks GD et al. A comparative study of gastrointestinal infections in United States soldiers receiving doxycycline or mefloquine for malaria prophylaxis. Am J Trop Med Hyg 1990; 43: 608–13.

24 Lesens O, Haus-Chemyl R, Dubrous P et al. Methicillin-resistant, doxycycline-resistant Staphylococcus aureus, Cote d’Ivoire. Emerg Infect Dis 2007; 13: 488–90.

25 Tenofovir/Emtricitabine with Doxycycline for Combination HIV and Syphilis Pre-exposure Prophylaxis in HIV-Negative MSM (DuDHS). https://ClinicalTrials.gov/show/NCT02844634.

26 Oral Doxycycline for the Prevention of Syphilis in Men Who Have Sex With Men (DaDHS). https://ClinicalTrials.gov/show/NCT02864550.

27 Impact of the Daily Doxycycline Pre-Exposure Prophylaxis (PrEP) on the Incidence of Syphilis, Gonorrhoea and Chlamydia (Syphilis). https://ClinicalTrials.gov/show/NCT03709459.

28 Evaluation of Doxycycline Post-Exposure Prophylaxis to Reduce Sexually Transmitted Infections in PrEP Users and HIV-Infected Men Who Have Sex With Men. https://ClinicalTrials.gov/show/NCT03980223.

29 Doxycycline PEP for Prevention of Sexually Transmitted Infections Among Kenyan Women Using HIV PrEP (dPEP-KE). https://ClinicalTrials.gov/show/NCT04050540.

30 Liberati A, Altman DG, Tetzlaff J et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009; 6: e1000100.

31 Menza TW, Hughes JP, Celum CL et al. Prediction of HIV acquisition among men who have sex with men. Sex Transm Dis 2009; 36: 547–55.

32 Schulz KF, Altman DG, Moher D et al. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC Med 2010; 8: 18.

33 Feres M, Haffajee AD, Goncalves C et al. Systemic doxycycline administration in the treatment of periodontal infections (II). Effect on antibiotic resistance of subgingival species. J Clin Periodontal 1999; 26: 784–92.

34 Feres M, Haffajee AD, Allard K et al. Antibiotic resistance of subgingival species during and after antibiotic therapy. J Clin Periodontal 2002; 29: 724–35.

35 Rodrigues RMJ, Goncalves C, Souto R et al. Antibiotic resistance profile of the subgingival microbiota following systemic or local tetracycline therapy. J Clin Periodontal 2004; 31: 420–7.

36 Sack DA, Kaminsky DC, Sack RB et al. Prophylactic doxycycline for travelers’ diarrhea. Results of a prospective double-blind study of Peace Corps volunteers in Kenya. N Engl J Med 1978; 298: 758–63.

37 Ozolins M, Eady EA, Avery AJ et al. Comparison of five antimicrobial regimens for treatment of mild to moderate inflammatory facial acne vulgaris in the community: randomised controlled trial. Lancet 2004; 364: 2188–95.

38 Brill SE, Law M, El-Emir E et al. Effects of different antibiotic classes on airway bacteria in stable COPD using culture and molecular techniques: a randomised controlled trial. Thorax 2015; 70: 930–8.

39 Metlay JP, Waterer GW, Long AC et al. Diagnosis and treatment of adults with community-acquired pneumonia, an official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 2019; 200: e45–67.

40 Stevens DL, Bisno AL, Chambers HF et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin Infect Dis 2014; 59: e10–52.

41 Baldwin H. Oral antibiotic treatment options for acne vulgaris. J Clin Aesthet Dermatol 2020; 13: 26–32.

42 Zhanel GG, Esquivel J, Zelenitsky S et al. Omadacycline: a novel oral and intravenous aminomethylcyclohexylcarboxylic antibiotic agent. Drugs 2020; 80: 285–313.

43 Eckmann C, Montravers P, Bassetti M et al. Efficacy of tigecycline for the treatment of complicated intra-abdominal infections in real-life clinical practice from five European observational studies. J Antimicrob Chemother 2013; 68 Suppl 2: i25–35.

44 Sutton D, Spry C. One Dose of Doxycycline for the Prevention of Lyme Disease: A Review of Clinical Effectiveness and Guidelines. Canadian Agency for Drugs and Technologies in Health 2019.

45 Chusri S, McNeil EB, Hortiwakul T et al. Single dosage of doxycycline for prophylaxis against leptospirosis during urban flooding in southern Thailand: a non-randomized controlled trial. J Infect Chemother 2014; 20: 709–15.

46 Binenbaum Y, Ben-Ami R, Baneth G et al. Single dose of doxycycline for the prevention of tick-borne relapsing fever. Clin Infect Dis 2020; 71: 1768–71.

47 Tan KR, Magill AJ, Parise ME et al. Doxycycline for malaria chemoprophylaxis and treatment: report from the CDC expert meeting on malaria chemoprophylaxis. Am J Trop Med Hyg 2011; 84: 517–31.

48 Clemente JC, Pehrsson EC, Blaser MJ et al. The microbiome of uncontacted Amerindians. Sci Adv 2015; 1: e1500183.

49 Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med 2016; 6: 0025387.

50 Jones RN, Flonta M, Guler N et al. Resistance surveillance program report for selected European nations (2011). Diagn Microbiol Infect Dis 2014; 78: 429–36.

51 Mendes RE, Farrell DJ, Soder HS et al. Update of the telavancin activity in vitro tested against a worldwide collection of Gram-positive clinical isolates (2013), when applying the revised susceptibility testing method. Diagn Microbiol Infect Dis 2015; 81: 275–9.

52 Borel N, Leonard C, Slade J et al. Chlamydial antibiotic resistance and treatment failure in veterinary and human medicine. Curr Clin Microbial Rep 2016; 3: 10–8.

53 Sanchez A, Maysich C, Malet I et al. Surveillance of antibiotic resistance genes in Treponema pallidum subspecies pallidum from patients with early syphilis in France. Acta Derm Venereol 2020; 100: adv00221.

54 Xiao Y, Liu S, Liu Z et al. Molecular subtyping and surveillance of resistance genes in Treponema pallidum DNA from patients with secondary and latent syphilis in Hunan, China. Sex Transm Dis 2016; 43: 310–6.

55 Giacani L, Ciccarese G, Puga-Salazar C et al. Enhanced molecular typing of Treponema pallidum subspecies pallidum strains from 4 Italian hospitals shows geographical differences in strain type heterogeneity, widespread resistance to macrolides, and lack of mutations associated with doxycycline resistance. Sex Transm Dis 2018; 45: 237–42.

56 Moore A, Green LJ, Bruce S et al. Once-daily oral saracysticine 1.5 mg/kg/day is effective for moderate to severe acne vulgaris: results from two identically designed, phase 3, randomized, double-blind clinical trials. J Drugs Dermatol 2018; 17: 987–96.

57 Nath R, Grennan T, Parry R et al. Knowledge and attitudes of syphilis and syphilis pre-exposure prophylaxis (PrEP) among men who have sex with men in Vancouver, Canada: a qualitative study. BMJ Open 2019; 9: e031239.

58 Begg C, Cho M, Eastwood S et al. Improving the quality of reporting of randomized controlled trials. The CONSORT statement. JAMA 1996; 276: 637–9.

59 Fusch S, Hull M, Ross P et al. High interest in syphilis pre-exposure and post-exposure prophylaxis among gay, bisexual and other men who have sex with men in Vancouver and Toronto. Sex Transm Dis 2020; 47: 224–31.

60 Spinelli MA, Scott HM, Vittinghoff E et al. High interest in doxycycline for sexually transmitted infection postexposure prophylaxis in a multicentre
survey of men who have sex with men using a social networking application. Sex Transm Dis 2019; 46: e32-4.

61 Costelloe C, Metcalfe C, Lovering A et al. Effect of antibiotic prescribing in primary care on antimicrobial resistance in individual patients: systematic review and meta-analysis. BMJ 2010; 340: c2096.

62 Bell BG, Schellevis F, Stobberingh E et al. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect Dis 2014; 14: 13.

63 Penders J, Stobberingh EE, Savelkoul PH et al. The human microbiome as a reservoir of antimicrobial resistance. Front Microbiol 2013; 4: 87.