Supporting Information

{BiW$_8$O$_{30}$} Exerts Antitumor Effect by Triggering Pyroptosis and Upregulating Reactive Oxygen Species

Di Jia*, Lige Gong*, Ying Li, Shu Cao, Weiming Zhao, Lijun Hao, Shasha Li, Bo Pang, Chunjing Zhang, Shuyan Li, Wei Zhang, Tianyi Chen, Limin Dong, Baibin Zhou,* and Dan Yang*

anie_202107265_sm_miscellaneous_information.pdf
anie_202107265_sm_cif.zip
Table of Contents

1. **Experimental Procedures** ... 3
 1.1 Measurements and Materials .. 3
 1.2 Synthesis of \{Bi_W_8\} and other compounds ... 3
 1.3 GSH activity of \{Bi_W_8\} ... 3
 1.4 Cell lines and cell culture ... 3
 1.5 MTT assay ... 3
 1.6 Transmission electron microscopy (TEM) observation ... 3
 1.7 Lactate dehydrogenase (LDH) release assay .. 3
 1.8 Adenosine triphosphate (ATP) assay ... 3
 1.9 Wound healing assay .. 4
 1.10 Transwell matrigel assay ... 4
 1.11 Reactive oxygen species measurement .. 4
 1.12 Intracellular glutathione measurement .. 4
 1.13 Microarray experiment and gene expression analysis Data preparation 4
 1.14 Reverse transcription and qRT-PCR ... 4

2. **Results and Discussion** .. 16
 2.1 The structural diagrams of \{Bi_W_8\} ... 16
 2.2 The characterization diagrams of \{Bi_W_8\} ... 20
 2.3 Calculation of IC_50 .. 22
 2.4 Effects of \{Bi_W_8\} on invasion and migration .. 26
 2.5 Effects of \{Bi_W_8\} on GSH .. 27
 2.6 Effects of \{Bi_W_8\} on transcriptome .. 28

3. **References** .. 30
1. Experimental Procedures

1.1 Measurements and Materials

IR spectra were recorded in the range of 400-4000cm⁻¹ on an Alpha Centaur FT/IR Spectrophotometer with pressed KBr pellets. The X-ray powder diffraction data was collected on a Bruker AXS D8 Advance diffractometer using Cu-Kα radiation (λ=1.5418 Å) in the 2θ range of 5-50° with a step size of 0.02°. Bi, W, Co and Na were analyzed on a PLASMA-SPEC (I) ICP atomic emission spectrometer. TG analyses were performed on a Perkin Elmer TGA7 instrument in flowing O₂ at a heating rate of 10°C/min. The UV-Vis absorption spectra were recorded using a JASCO V550 UV-Visible spectrophotometer (JASCO International Co., LTD., Tokyo, Japan). Glutathione, oxidized glutathione, glutathione reductase, Nicotinamide adenine dinucleotide phosphate (NADPH), glutathione peroxidase (GPX) and o-phthalaldehyde (OPA) were purchased from Sigma-Aldrich (Shanghai, China). Dynamic light scattering (DLS) and ζ-potential measurements were performed at room temperature with a Malvern Zetasizer nano Z (Malvern Instruments Ltd.). All common laboratory chemicals were reagent grade, purchased from commercial sources and used without further purification.

1.2 Synthesis of (BiW₈) and other compounds

Bi(NO₃)₃·5H₂O(1.0 mmol) dissolved in 1 mL of 6M HCl was added to a solution of Na₂WO₄·2H₂O(10.0 mmol) in 40 mL of deionized water and the mixture was heated to 90°C for about 30 min. Then, CoCl₂·6H₂O (2.0 mmol) dissolved in 4 mL water and 4-dimethylaminopyridine (1.0mmol) were added to the clear solution. The pH value of the solution was adjusted to 6.2 at room temperature by the addition of 1M HCl. The mixture was kept 90°C for about 1 h and then cooled to room temperature and filtered. The purple crystal was obtained after 10 days (Yield: 40.3% based on W). Anal. Calcd. For C₃H₃BiO₆W₈: C, 7.78%; H, 1.21%; N, 2.59; Co, 1.82%; Bi, 12.90; W, 51.10; Na, 1.42%. Found: C, 7.54; H, 1.86; N, 2.83; Co, 1.77; Bi, 13.32; W, 50.95; Na, 1.34%. Na₂[Bi₂O₂O₉]·19.5H₂O[1], Na₂[Bi₂O₅]·16H₂O[2] and Na₁₃[Bi₂W₂O₇(H₂O)₄]·34H₂O[3] were synthesized according to some literatures.

1.3 GSH activity of (BiW₈)

The catalytic activity of (BiW₈) was studied using the GR-coupled assay by following the decrease in the concentration of NADPH spectrophotometrically at 340 nm on JASCO V550 UV-Visible spectrophotometer under time drive mode. In a typical assay, the reactants were added in the following order, [BiW₈] (0-3mM), GSH (2 mM), NADPH (0.4 mM), GPX (2.0units), GR (1.7 units), H₂O₂ (240 μM) in 25 mM pH 7.4 phosphate buffer at 25 °C. The fluorescence spectra of [BiW₈](3mM), GSH(2mM), GSSG(2mM) and OPA(10mM) were studied using fluorescence analysis (JASCO FP6500, λex= 334. 4 nm, λem= 424 nm).

1.4 Cell lines and cell culture

The human umbilical vein endothelial cell lines HUVEC, human osteosarcoma cell lines MG63, human rhabdomyosarcoma cell lines RD, human liver cancer cell lines HepG2 and Hep3B, and human breast carcinoma cell lines MCF7 were purchased from the Chinese Academy of Sciences Cell Bank. HUVEC cells, MG63 cells, RD cells, HepG2 cells, Hep3B cells, and MCF7 cells were maintained in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin at 37°C and 5% CO₂ in a humidified incubator. Cells were divided into control group and experimental groups. Control groups were cultured under normal condition. Experimental groups were cultured with complete culture solution containing [BiW₈] in the concentration of IC₅₀ for 24 hours or 48 hours.

1.5 MTT assay

The cells were cultured in a medium containing different concentration of [BiW₈] and three raw materials (50 μmol/L, 100 μmol/L, 200 μmol/L and 400 μmol/L) for 24 hours and 48 hours. The cell proliferation was measured using a MTT dye absorbance assay (Beyotime, China). In brief, the culture medium with [BiW₈] were aspirated after incubations. The MTT reagent (5 mg/ml in PBS, 20 μL/well) and DMEM solution (80 μL/well) were added to each well and further incubated with cells at 37°C for 4 hours. The MTT solution was discarded, and added 150μL DMSO solution to each well for 10 minutes. The optical density (OD) of each well was measured using a microplate reader at 490nm.

1.6 Transmission electron microscopy (TEM) observation

The ultrastructural changes of cells before and after drug application were analyzed by TEM. Cells treated with [BiW₈] for 24h and 48h were collected into a mixture containing paraformaldehyde and 2.5% glutaraldehyde at 4°C for 2h, and then washed with 0.1mol/L phosphoric acid buffer for 3 times for 15 minutes. The solution was fixed with 1% osmium acid solution for 2h, washed with 0.1mol/L phosphoric acid rinse solution for 3 times for 15 minutes, immersed in ethanol dehydration, embedded in a mixture of acetone and embedded solution, and incubated at 37°C overnight. The samples were double stained with 3% uranium acetate and lead citrate and observed by TEM (Hitachi H-7650, Japan).

1.7 Lactate dehydrogenase (LDH) release assay

The cells were cultured in the 96-well plates and incubated with [BiW₈] at 37°C for 24 hours and 48 hours. The activity of LDH were detected by the Lactate dehydrogenase (LDH) release assay kit (Njicbio, Nanjing, China) and measured using a microplate reader at 490 nm.

1.8 Adenosine triphosphate (ATP) assay

Intracellular ATP activities were detected by Cell Titer-Glo Luminescent Cell Viability Assay Kit (Promega, USA). The Cells were added into the 96-well plates and treated with [BiW₈] for 24 hours and 48 hours. Cells after [BiW₈] incubations were treated with 100μL the detection solutions that contained firefly luciferases for 10 minutes and room temperature. The luminescent value of each
well was measured using a microplate reader.

1.9 Wound healing assay

For the wound healing assay, MG63 cells were inoculated in 6-well plate until they reached confluence. Create a linear wound with 200 μL pipette tips perpendicular to the bottom of the plate, and wash twice with phosphate buffer saline (PBS). Control cells were cultured under normal condition. Experimental cells were cultured with complete culture solution containing [BiW₈]. The wound healing was observed and photographed by using an inverted microscope at 0h, 24h and 48h.

1.10 Transwell matrigel assay

MG63 invasion was assayed by using Boyden chambers consisting of Transwell membrane filter inserts (Corning, USA). We coated the upper chambers with Matrigel (1:5, BD Biosciences, USA). Control cells were cultured under normal condition. Experimental cells were pretreated with [BiW₈] for 24 h. 1 x 10⁵ cells of control and experimental groups were seeded into 24-well Transwell chamber, respectively. Then, complete medium with 10% FBS was added to the lower layer of the chamber. After 24h and 48h of incubation, the chambers were removed, washed with PBS, fixed with formaldehyde, and stained with hematoxylin and eosin. Invading cells in the lower chambers were observed with a microscope. The numbers of invading cells were counted from five fields in a single chamber.

1.11 Reactive oxygen species measurement

Use Reactive Oxygen Species Assay Kit (Beyotime, China) to detect the contents of intracellular ROS. MG63 cells were treated with [BiW₈] for 24h, and added 1 mL of DCFH-DA (10 μmol/L). Then, the cells were cultured at 37°C for 20-30min. Fluorescence microscope (Nikon C2, Japan) was used for observation under green fluorescence at 488 nm excitation wavelength and 525 nm emission wavelength. Take photographs and analyze the results.

1.12 Intracellular glutathione measurement

The intracellular contents of T-GSH, GSSG and GSH in MG63 cells were detected by TOAL GlutathiOne/Imoxidized GlutathiOne Assay Kit (NJJCBIO, China). MG63 cells were cultured by [BiW₈] for 6h, 12h, 24h, 36h and 48h. The treated cell supernatant and reagents were mixed according to the experimental instructions and added into the 96-well plates. The absorbance value was measured at 405nm using a microplate reader.

1.13 Microarray experiment and gene expression analysis Data preparation

RNA isolation form MG63 cells in the control and experimental groups. Control cells were cultured under normal condition. Experimental cells were pretreated with [BiW₈] for 24 h. According to the manufacturer’s instructions, the total RNA of MG63 cells was extracted by using TRizol (Invitrogen, USA). RNA concentration and quality were determined with a NanoDrop Spectrophotometer. Microarray data were converted into recognizable format and annotated with software Genome Studio. The probes detected with p-value lower than 0.01 in at least one sample were accepted as significant and used for further analysis. The raw data were normalized using the quantile algorithm from the package limma of R.

1.13.1 Identification of differentially expressed genes (DEGs).

|Fold change| > 1.5 and adj. P < 0.05 were set as the cut-offs to screen out differentially expressed genes (DEGs).

1.13.2 Heatmaps and volcano plots analysis.

Clustered heatmaps and volcano plots of the control and experimental groups were generated using the package ggplot2 of R.

1.13.3 Enrichment analysis of DEGs.

Functional enrichment analysis of DEGs was performed by DAVID (The Database for Annotation, Visualization and Integrated Discovery) to identify GO categories in by their biological processes (BP), molecular functions (MF), or cellular components (CC). The DAVID database was also used to perform pathway enrichment analysis with reference from KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. False discovery rate (FDR) < 0.05 was used as the cut-off.

1.14 Reverse transcription and qRT-PCR

According to the manufacturer’s instructions, the total RNA of MG63 cells was extracted by using TRizol (Invitrogen, USA). 1μg total RNA was used as a cDNA synthesis template using PrimeScript RT Reagent Kit (Roche, Switzerland). Real-time quantitative PCR was performed on triplicate samples in a reaction mix of SYBR Green (Roche, Switzerland) with CFX96 Touch Real-Time PCR Detection System (Bio-Rad, USA). The levels of total RNA were normalized to GAPDH. The indicated genes was normalized to the endogenous or exogenous reference control by using the 2^(-ΔΔCt) method. Sequences of the primers used for qRT-PCR in this study are listed in Table S1.
Table S1. Sequences of primers used for qRT-PCR

POMs	Forward (5' → 3')	Reverse (5' → 3')
GSDME	GAAGAAGCCAGGAGATGGGAGT	ACGTGCGATTGCTAGAAG
TXNIP	CTCGCTGCAAGGCGTGGAG	TGGCTCTCAGAAGAGCCTG
NLRP3	AAAGAATGGAGATGCGAAG	AAGCCTGCTGCTCTCTGT
IL-18	TCACCAGGTCAGTGTGTC	TCCGGAGTGCAAGTGTGTC
GSTM1	TGTCTGGTCTGAGTGGGTC	CGTCCGATCTGCTTGCCTTC
GSTT2B	TCACGAGAATCTCCTTCTC	TGGCTCTGCTGCTCTCTG
GPX1	CAGTGGCCTGATGACCTCTG	GAGGGCCGCTGCTGCTG
GPX8	TACCTAGGCTGAGAAGAACGTC	GGCTCGGATCTGCCAAATGTC
PARP1	CGGAGTCTCCTGATAGCTC	TTTCCTCAAACATGGGCGAC
NTHL1	CGCGGAAAGACACAGACGT	CTGATGACAGCTTGAGAC
MSH2	AGGCCATCAAGGAGATGGT	GGAATCCAGAAACCACTCCCA
POLD1	ATCCAGAATTCTGACCTTCCG	RGACAGCGGCTGTAGAG
POLE2	TGAGAGCGCAATCTGCTAC	TCAATGACAGTCGACGTCAT
RPA3	AGTCATATTCTGACAAAGCC	TCTTCAACAGGCGGCTTCCATCA
XRCC1	TCAAGACAGACACTAGGA	TGAAAGAGAGGGCTGCTAGA
LIG1	GAAGAGGCTGATCCTAAGCAG	ACTCTCGGAGAACCTTCATT
GAPDH	ACCAGAGAGTGATTGG	ACTACGTAGGATGCUTT

Table S2. Summarize all the manners of cancer cells death induced by POMs in recent studies.

POMs	Cell line	Death patterns	Ref.												
1 (NH₄)₂H₂[PtMoO₄]₂·nH₂O	S180	nasopharyngeal cancer KB	Not mentioned [4]												
2 K₂H₂[ThAs₆W₆O₄]₁₄	B16	Not mentioned	Not mentioned [5]												
3 K₃[MoO₄]₂	H22	Not mentioned	Not mentioned [5]												
4 (NH₄)[MoO₄]	HL-60	Not mentioned	Not mentioned [5]												
5 K₃[MoO₄]₂	Rectum cancer	Not mentioned	Not mentioned [5]												
6 (NH₄)[MoO₄]₂	Meth A	Not mentioned	Not mentioned [5]												
7 [CH₃NH][H₂][MoO₄]·2H₂O·6H₂O	Meth A	Not mentioned	Not mentioned [5]												
8 [CH₃NH][H₂][MoO₄]·2H₂O·6H₂O	CO-4	Not mentioned	Not mentioned [5]												
9 [CH₃NH][MoO₄][MoO₄]·2H₂O·6H₂O	CO-4	Not mentioned	Not mentioned [5]												
10 [NH₄][MoO₄]₂	CO-4	Not mentioned	Not mentioned [5]												
11 Na₂[MoO₄]₂	CO-4	Not mentioned	Not mentioned [5]												
12 [NH₄][MoO₄]₂	MX-1	Not mentioned	Not mentioned [5]												
13 α-KH₂[CaH₂O₃Sn]₃SiW₁₁O₃₉	SSMC-7721	Not mentioned	Not mentioned [5]												
14 β-KH₂[CaH₂O₃Sn]₃SiW₁₁O₃₉	SSMC-7721	Not mentioned	Not mentioned [5]												
15 α-KH₂[CaH₂O₃Sn]₃SiW₁₁O₃₉	SSMC-7721	Not mentioned	Not mentioned [5]												
16 β-KH₂[CaH₂O₃Sn]₃SiW₁₁O₃₉	SSMC-7721	Not mentioned	Not mentioned [5]												
17 α-KH₂[CaH₂O₃Sn]₃SiW₁₁O₃₉	SSMC-7721	Not mentioned	Not mentioned [5]												
18 β-KH₂[CaH₂O₃Sn]₃SiW₁₁O₃₉	SSMC-7721	Not mentioned	Not mentioned [5]												
19 α-KH₂[CaH₂O₃Sn]₃SiW₁₁O₃₉	SSMC-7721	Not mentioned	Not mentioned [5]												
20 β-KH₂[CaH₂O₃Sn]₃SiW₁₁O₃₉	SSMC-7721	Not mentioned	Not mentioned [5]												
21 α-KH₂[CaH₂O₃Sn]₃SiW₁₁O₃₉	SSMC-7721	Not mentioned	Not mentioned [5]												
22 β-KH₂[NC₃H₇]₆[SiW₁₁O₃₉]	SSMC-7721	Not mentioned	Not mentioned [5]												
23 K₃[CaH₂O₃Sn]₂PW₁₈O₄₃	SSMC-7721	Not mentioned	Not mentioned [5]												
Entry	Reaction	Reference	Organism	Cell Line	Notation										
-------	--------------------------------------	------------	-----------	------------	------------										
24	K_d(C(H_O)Sn)PW(O)	SSMC-7721	HeLa	Not mentioned	[10]										
25	K_d[(C(H)Sn)PW(O)Os]	SSMC-7721	HeLa	Not mentioned	[10]										
26	α-K_d[(q-C(H)Ti)SiW(O)Os]	SSMC-7721	HeLa	Not mentioned	[10]										
27	β-K_d[(q-C(H)Ti)SiW(O)Os]	SSMC-7721	HeLa	Not mentioned	[10]										
28	α-K_d[(q-C(H)Ti)GeW(O)Os]	SSMC-7721	HeLa	Not mentioned	[11]										
29	K_d[(C(H)O)Sn]PW(O)	SSMC-7721	HeLa	Not mentioned	[11]										
30	K_d[(C(H)O)Sn]PW(O)Os	SSMC-7721	HeLa	Not mentioned	[11]										
31	K_d[(C(H)O)Sn]PW(O)Os	SSMC-7721	HeLa	Not mentioned	[11]										
32	K_d[(C(H)O)Sn]PW(O)Os	SSMC-7721	HeLa	Not mentioned	[11]										
33	(HAla)(HeO)PW(O)MoO	HeLa	PC-3m	Not mentioned	[13]										
34	γ-[(C(H)O)(Ni)H][(C(H)O)Sn]HW(O)	SSMC-7721	HeLa	Not mentioned	[14]										
35	γ-[(C(H)O)(Ni)H][(C(H)O)Sn]HW(O)	SSMC-7721	HeLa	Not mentioned	[14]										
36	γ-[(C(H)O)(Ni)H][(C(H)O)Sn]HW(O)	SSMC-7721	HeLa	Not mentioned	[14]										
37	γ-[(TBA)N]C(H)Ti)SiW(O)	SSMC-7721	HeLa	Not mentioned	[14]										
38	γ-[(TBA)N]C(H)Ti)SiW(O)	SSMC-7721	HeLa	Not mentioned	[14]										
39	[(C(H)O)H]_2[(q-C(H)Ti)GeW(O)Os]	SSMC-7721	HeLa	Not mentioned	[15]										
40	[(C(H)O)H]_2[(q-C(H)Ti)GeW(O)Os]	SSMC-7721	HeLa	Not mentioned	[15]										
41	[(C(H)O)H]_2[(q-C(H)Ti)GeW(O)Os]	SSMC-7721	HeLa	Not mentioned	[15]										
42	α-K_d[(C(H)O)Sn]SiW(O)	SSMC-7721	HeLa	Not mentioned	[15]										
43	β-K_d[(C(H)O)Sn]SiW(O)	SSMC-7721	HeLa	Not mentioned	[15]										
44	α-K_d[(C(H)O)Sn]SiW(O)	SSMC-7721	HeLa	Not mentioned	[16]										
45	β-K_d[(C(H)O)Sn]SiW(O)	SSMC-7721	HeLa	Not mentioned	[16]										
46	α-K_d[(C(H)O)Sn]SiW(O)	SSMC-7721	HeLa	Not mentioned	[16]										
47	β-K_d[(C(H)O)Sn]SiW(O)	SSMC-7721	HeLa	Not mentioned	[16]										
48	K_d[(q-C(H)Ti)CoW(O)Os]	HeLa	HL-60	Not mentioned	[17]										
49	K_d[H_2]CoTiW(O)Os	SSMC-7721	HeLa	Not mentioned	[17]										
50	α- and β-Ge(Ti)W(O)	SSMC-7721	HeLa	Not mentioned	[17]										
51	[(C(H)O)Sn]GeW(O)Os	SSMC-7721	HeLa	Not mentioned	[17]										
52	[(C(H)O)Sn]GeW(O)Os	SSMC-7721	HeLa	Not mentioned	[17]										
53	[(C(H)O)Sn]GeW(O)Os	SSMC-7721	HeLa	Not mentioned	[17]										
54	[SnTiW(O)Os]L-EPE	HeLa	HL-60	Not mentioned	[18]										
55	[SnTiW(O)Os]L-EPE	HeLa	HL-60	Not mentioned	[18]										
56	K_d[Sn]TiW(O)Os	SSMC-7721	HeLa	Not mentioned	[18]										
57	K_d[Sn]TiW(O)Os	SSMC-7721	HeLa	Not mentioned	[18]										
58	[(CoTiW(O)Os]SEP	HeLa	HL-60	Not mentioned	[19]										
59	K_d[CoTiW(O)Os]	HeLa	HL-60	Not mentioned	[19]										
60	K_d[CoTiW(O)Os]	HeLa	HL-60	Not mentioned	[19]										
61	K_d[(q-C(H)Ti)P(Si)Os]	SSMC-7721	HeLa	Not mentioned	[20]										
62	(TBA)N[(q-C(H)Zr)P(Si)Os]	SSMC-7721	HeLa	Not mentioned	[20]										
63	K_d[(q-C(H)O)Sn]P(Si)W(O)	SSMC-7721	HeLa	Not mentioned	[20]										
No.	Chemical Formula	Cells	Growth Inhibition	Source											
-----	------------------	-------	-------------------	--------											
64	K4[(CH3O)2Sn]PF6	HeLa	Not mentioned	[20]											
65	(C2H2N3)H[BF4]	SMMC-7721	HeLa	Not mentioned	[20]										
66	5-FU (C4H4F3O2)	SMMC-7721	Not mentioned		[21]										
67	K4[BW10O42]	SMMC-7721	Not mentioned		[21]										
68	[CoTiW10O38]LEP	SMMC-7721	Not mentioned		[22]										
69	K4[Co2TiW10O4]	SMMC-7721	Not mentioned		[22]										
70	[n5-C5H4Ti]C6W11O39-LEP	SMMC-7721	Not mentioned		[23]										
71	K4[Si2TiW10O4]	SMMC-7721	Not mentioned		[23]										
72	[SiTiW10O4]LEP	SMMC-7721	Not mentioned		[24]										
73	K4[SiTiW10O4]	SMMC-7721	Not mentioned		[24]										
74	[NH4Pr][MoO4]	AsPC-1	apoptosis	[25]											
75	[NH4Pr][MoO4]	KB	Not mentioned	[26]											
76	[NH4Ho][CoMoO4]	KB	Not mentioned	[26]											
77	[NH4Ho][PMoO4]	KB	Not mentioned	[26]											
78	[NH3Ho][NMnO4]	KB	Not mentioned	[26]											
79	[NH3Ho][RhMoO4]	KB	Not mentioned	[26]											
80	Na2[PMoO4]	KB	Not mentioned	[26]											
81	Na2[SiMoO4]	KB	Not mentioned	[26]											
82	Na2[GeMoO4]	KB	Not mentioned	[26]											
83	Na2[AsMoO4]	KB	Not mentioned	[26]											
84	Na2[PMoO4]	KB	Not mentioned	[26]											
85	Na2[SiMoO4]	KB	Not mentioned	[26]											
86	Na2[AsMoO4]	KB	Not mentioned	[26]											
87	Na2[PMoO4]	KB	Not mentioned	[26]											
88	Na2[AsMoO4]	KB	Not mentioned	[26]											
89	Na2[PMoO4]	KB	Not mentioned	[26]											
90	Na2[PW2O7]	KB	Not mentioned	[26]											
91	Na2[PMoO4]	KB	Not mentioned	[26]											
92	K3[LiV3O8]	KB	Not mentioned	[26]											
93	Pr3[LiV3O8]	KB	Not mentioned	[26]											
94	K3[Mo3O8]	KB	Not mentioned	[26]											
95	K3[PMo4]	KB	Not mentioned	[26]											
96	(Horn)[H2O]2[PMo5O14]	HeLa	PC-3m	Not mentioned	[27]										
97	(Horn)[SiMo4O12]	HeLa	PC-3m	Not mentioned	[27]										
98	(Horn)[GeMo4O12]	HeLa	PC-3m	Not mentioned	[27]										
99	Na2[Ca(H2O)2(HLw2O42)]	SHEP-SF	KCN	Not mentioned	[28]										
100	(H2m)2[WO4(OH)]2[Zn(H2O)2]Na2[H2O]2[BiW2O5(O)]	SHEP-SF	KCN	Not mentioned	[28]										
101	NaNi[NH3][Mo6(H2O)3(SbW6O30)]	SHEP-SF	KCN	Not mentioned	[28]										
102	NaNi[NH3][Mo6(H2O)3(SbW6O30)]	SHEP-SF	KCN	Not mentioned	[28]										
103	NaNi[NH3][Mo6(H2O)3(SbW6O30)]	SHEP-SF	KCN	Not mentioned	[28]										
104	LPVO [(NH4)(HCl)2(HCl)(NH4)[V2O7]]	SHEP-SF	KCN	Not mentioned	[28]										
105	[NH4Pr][MoO4]	M-45	apoptosis	[30]											
106	[NH4Pr][MoO4]	M-45	apoptosis	[30]											
107	Na2[MoO4][μ-H2O]	MCF-7	Hep-G2	[31]											
			HeLa	[31]											
			Hep-2	[31]											
			SW-620	[31]											
			WI-38	[31]											
108	Na₂MoO₄(glyglyO)₂·15H₂O	MCF-7	Hep-G2	HeLa	Hep-2	SW-620	WI-38	Not mentioned	[31]	[31]	[31]	[31]	[31]	[31]	[31]
109	Na₂MoO₄(glyglyO)₂·12H₂O	MCF-7	Hep-G2	HeLa	Hep-2	SW-620	WI-38	Not mentioned	[31]	[31]	[31]	[31]	[31]	[31]	[31]
110	[Hmorph]₄[Mo₆O₁₅(OH)₃(metO₃)·4H₂O	MCF-7	Hep-G2	HeLa	Hep-2	SW-620	WI-38	Not mentioned	[31]	[31]	[31]	[31]	[31]	[31]	
111	[Hmorph]₄[Mo₆O₁₅(OH)₃(metO₃)·4CH₃OH	MCF-7	Hep-G2	HeLa	Hep-2	SW-620	WI-38	Not mentioned	[31]	[31]	[31]	[31]	[31]	[31]	
112	[Hmorph]₄[MoO₃(OH)₃(alhO₃)	MCF-7	Hep-G2	HeLa	Hep-2	SW-620	WI-38	Not mentioned	[31]	[31]	[31]	[31]	[31]	[31]	
113	(C₆H₅)₃N(CH₃O)(H₂)₃(OSiW₅(OH))	PC-3m	Not mentioned	[32]											
114	(C₆H₅)₃O₂(H₂)₂P₂Z₃M₀₆O₄₂	PC-3m	Not mentioned	[32]											
115	K₃Na₃SiW₁₂O₄₃	S180	leucocytoma	Not mentioned	[33]										
116	(C₆H₅)₃N(CH₃O)(H₂)₃(OSiW₅(OH))	S180	leucocytoma	Not mentioned	[33]										
117	(C₆H₅)₃N(CH₃O)(H₂)₂P₂Z₃M₀₆O₄₂	S180	leucocytoma	Not mentioned	[33]										
118	(C₆H₅)₃N(CH₃O)(H₂)₃(OSiW₅(OH))	S180	leucocytoma	Not mentioned	[33]										
119	(C₆H₅)₃N(CH₃O)(H₂)₂P₂Z₃M₀₆O₄₂	S180	leucocytoma	Not mentioned	[33]										
120	(C₆H₅)₃N(CH₃O)(H₂)₂P₂Z₃M₀₆O₄₂	S180	leucocytoma	Not mentioned	[33]										
121	(C₆H₅)₃N(CH₃O)(H₂)₂P₂Z₃M₀₆O₄₂	S180	leucocytoma	Not mentioned	[33]										
122	(C₆H₅)₃N(CH₃O)(H₂)₂P₂Z₃M₀₆O₄₂	HL-60	K-562	Not mentioned	[34]										
123	[TBA]₃[MoO₃(OH)₆]-[NC₆H₅-CH₄-N₃]-	K-562	Not mentioned	[35]											
124	[TBA]₃[MoO₃(OH)₆]-[NC₆H₅-CH₄-N₃]-	K-562	Not mentioned	[35]											
125	[TBA]₃[MoO₃(OH)₆]-[NC₆H₅-CH₄-N₃]-	K-562	Not mentioned	[35]											
126	[St₅Th₄W₆O₃₂]·2H₂O	H₂O	H₂O	Not mentioned	[36]										
127	K₃[H₂(N₃)₃W₄O₁₃]	H₂O	H₂O	Not mentioned	[36]										
128	α-K₃[H₂(N₃)₃W₄O₁₃]	H₂O	H₂O	Not mentioned	[36]										
129	[(CH₃)₃NH]₃[CH₃(OH)₃(N₃)₃][Mo(VI)₃O₃]	AsPC-1	AsPC-1	MKN-45	[37]	[37]	[37]								
130	[P₂Mo₆O₃₂]²⁺	Protein kinase CK2	Not mentioned	[38,51]											
131	K₃[P₂Mo₆O₃₂]-14H₂O	breast cancer MCF-7	Not mentioned	[39]											
132	[Ni(C₅H₅N)₃][MoO₃(OH)₆]-7H₂O	breast cancer MCF-7	Not mentioned	[40]											
133	Na₂[V₃O₈]	SMCC-7721	SK-OV-3	Not mentioned	[41]										
134	Na₂C₁₀H₁₈O₁₀	Hep-A-22	SMCC-7721	Not mentioned	[41]										
135	(C₆H₅)₃N(CH₃O)(H₂)₃(OSiW₅(OH))	H₂O	H₂O	Not mentioned	[42,43]										
136	[H₂O][C₆H₅N(CH₃O)(H₂)₃(OSiW₅(OH))	H₂O	H₂O	Not mentioned	[43]										
137	Na₂[H₂W₁₂O₄₀]	B16-F10	MCA-38	Not mentioned	[44]										
138	K₃[H₃N(CH₃O)(phen)]	K-562	K-562	Not mentioned	[45]										
139	K₂[Na₃(C₆H₅O)(phen)]	K-562	K-562	Not mentioned	[45]										
140	K₂[Na₃(C₆H₅O)(phen)]	K-562	K-562	Not mentioned	[45]										
141	K₂[Na₃(C₆H₅O)(phen)]	K-562	K-562	Not mentioned	[45]										
Entry	Formula	Topics	Cell Lines												
-------	---------	--------	------------												
142	(NH₃)[MoO₃]	NCI-H460, MCF-7, SF-268	Not mentioned												
143	Li₄[MoV₂O₇(H₂O)₆]PC(C₂H₅NH₃)₃	NCI-H460, MCF-7, SF-268	Not mentioned												
144	Li₄[MoV₂O₇(H₂O)₆]PC(C₂H₅NH₃)₃	NCI-H460, MCF-7, SF-268	Not mentioned												
145	Li₄[MoV₂O₇(H₂O)₆]PC(C₂H₅NH₃)₃	NCI-H460, MCF-7, SF-268	Not mentioned												
146	Na₄H₂[Mo₄V₄O₁₆(C₅H₇NO)₃]PC(C₂H₅NH₃)₃	NCI-H460, MCF-7, SF-268	Not mentioned												
147	H₂[men]₃[V₁₂O₄]	A-549, P388, L-02	Not mentioned												
148	H₂[en]₃[V₁₂O₄]	A-549, P388, L-02	Not mentioned												
149	Na₄K₃[Sn(C₃H₇OH)₃][Sn(C₃H₇OH)₃]PC(C₂H₅NH₃)₃	cervical cancer HeLa	Not mentioned												
150	K₃[MoF₆]	HeLa	Not mentioned												
151	[En]₂[SiW₁₈O₆₄]·CMC	HeLa	Not mentioned												
152	[En]₂[SiW₁₈O₆₄]·CMC	HeLa	Not mentioned												
153	[En]₂[SiW₁₈O₆₄]·CMC	HeLa	Not mentioned												
154	H₂[SiW₁₈O₆₄]	HeLa	Not mentioned												
155	PPA	HeLa	Not mentioned												
156	[Cu₂P₂O₇][H₂O]	HeLa	Not mentioned												
157	[Cu₂P₂O₇][H₂O]	HeLa	Not mentioned												
158	Na₂[C₅C₆H₄N₃]	KB, MCF-7, PC-3, A-549	Apoptosis												
159	Na₂[C₅C₆H₄N₃]	KB, MCF-7, PC-3, A-549	Apoptosis												
160	[Cr(C₃H₇OH)₂]₄[Mo₄O₄]	Hep-G2, MCF-7, SK-OV-3	Not mentioned												
161	[Sn(C₃H₇OH)₂]₄[Mo₄O₄]	Hep-G2, MCF-7, SK-OV-3	Not mentioned												
162	[Sn(C₃H₇OH)₂]₄[Mo₄O₄]	Hep-G2, MCF-7, SK-OV-3	Not mentioned												
163	K₂[PC(W₁₂O₄₃)]	Hep-G2, MCF-7, SK-OV-3	Apoptosis												
164	[Cr(C₃H₇OH)₂][PW₁₂O₄₃]	PC-3, HeLa, Hep-G2	Not mentioned												
165	[HPPA]₃[CdPW₄]	PC-3, HeLa, Hep-G2	Not mentioned												
166	[HPPA]₃[CdPW₄]	PC-3, HeLa, Hep-G2	Not mentioned												
167	H₂[PC(W₁₂O₄₃)]	PC-3, HeLa, Hep-G2	Not mentioned												
168	K₂[Cr(C₃H₇OH)₂][PW₁₂O₄₃]	HeLa	Not mentioned												
169	[Cr(C₃H₇OH)₂][PW₁₂O₄₃]·CMC	HeLa	Not mentioned												
170	K₂[Cr(C₃H₇OH)₂][PW₁₂O₄₃]	HeLa	Not mentioned												
171	[MoO₃]₃[η¹-p-carboxylatole]	H22, BGC-823	Not mentioned												
172	[NH₃]₃[Mo₄O₄]	H22, BGC-823	Not mentioned												
173	[NH₃]₃[Mo₄O₄]	H22, BGC-823	Not mentioned												
174	K₃H₁[(η-Bu-NH₂)₃]GeW₆O₃₆	H22, H22, SW-620, MGC-803, A-549, MM-231, Hep-G2	Not mentioned												
L-62	NCI-H460	MCF-7	SF-268												
---	---	---	---												
175	Rh₂₀[NH₄]₂[(MoO₄)O(O)PC(CH₂NH₃)OPO₄]₂	Not mentioned	[59]												
176	(NH₄)₂[(MoO₄)O(O)PC(CH₂NH₃)OPO₄]₂	Not mentioned	[60]												
177	Rh₂₀[NH₄]₂[(MoO₄)O(O)PC(CH₂H₅)OPO₄]₂	Not mentioned	[60]												
178	Na₂[Rh₂O₃(OH)₃(O)PC(CH₂H₅)OPO₄]₂	Not mentioned	[60]												
179	Na₂[V₂O₅(H₂O)]₂[(MoO₄)O(O)PC(CH₂H₅)OPO₄]₂	Not mentioned	[60]												
180	(NH₄)₂[Rh₂O₃(OH)₃(O)PC(CH₂H₅)OPO₄]₂	Not mentioned	[60]												
181	(NH₄)₂[K₉[(V₂O₅(H₂O)]₂[(MoO₄)O(O)PC(CH₂H₅)OPO₄]₂	Not mentioned	[60]												
182	Na₂[V₄O₅]	Not mentioned	[60]												
183	[Cu₂(Enro)₂(H₂O)]₂[Mo₃(OH)₆]Mo₃O₆	SGC-7901	Not mentioned	[61]											
184	[Cu₂(PPA)₂][Mo₃(OH)₆]Mo₃O₆	SGC-7901	Not mentioned	[61]											
185	[Cu₂(Norf)(H₂O)]₂[Mo₃(OH)₆]Mo₃O₆	SGC-7901	Not mentioned	[61]											
186	[Cu₂(Enro)(H₂O)]₂[Mo₃(OH)₆]Mo₃O₆	SGC-7901	Not mentioned	[61]											
187	Na₂[H₂W₁₀O₴]	H₂-157	HEC	HEC	HEC	[62]									
188	Na₂[H₂W₁₀O₴]	H₂-157	HEC	HEC	[62]										
189	[Cu₂(Norf)(H₂O)]₂[Mo₃(OH)₆]Mo₃O₆	Not mentioned	[61]												
190	Na₂[H₂W₁₀O₴]	H₂-157	HEC	HEC	[62]										
191	Na₂[H₂W₁₀O₄]	H₂-157	HEC	HEC	[62]										
192	(C₂H₄F₂N₅O₂H₂)[PW₁₂O₄]	HeLa	HEP-G2	HEK-293	[63]										
193	K₉[(C₂H₄F₂N₅O₂H₂)[PW₁₂O₄]	HeLa	HEP-G2	HEK-293	[63]										
194	[Cu₂(Norf)(H₂O)]₂[Mo₃(OH)₆]Mo₃O₆	Not mentioned	[61]												
195	[Cu₂(Norf)(H₂O)]₂[Mo₃(OH)₆]Mo₃O₆	Not mentioned	[61]												
196	[Cu₂(Norf)(H₂O)]₂[Mo₃(OH)₆]Mo₃O₆	Not mentioned	[61]												
197	5-FU (C₂H₄F₂N₅O₂)	HeLa	HEP-G2	HEK-293	[63]										
198	[Cu₂(Norf)(H₂O)]₂[Mo₃(OH)₆]Mo₃O₆	Not mentioned	[61]												
199	Na₂[K₉[β-SiC₅W₁₀O₄][OH]₂(H₂O)]₂	SMMC-7721	SK-OV-3	Not mentioned	[64]										
200	(TBA)₃[p+−(C₃H₇)₄]PW₁₀O₄	HL-60	B16	Not mentioned	[65]										
201	K₀[(C₂H₄F₂N₅O₂H₂)[Sm(PW₁₀)]₂	HeLa	HEP-G2	HEK-293	Apoptosis	[66]									
202	K₀[(C₂H₄F₂N₅O₂H₂)[Er(PW₁₀)]₂	HeLa	HEP-G2	HEK-293	Apoptosis	[66]									
203	K₀[(C₂H₄F₂N₅O₂H₂)[Pr(SiW₁₀O₄)]	HeLa	HEP-G2	HEK-293	Not mentioned	[67]									
204	K₀[(C₂H₄F₂N₅O₂H₂)[Sm(SiW₁₀O₄)]	HeLa	HEP-G2	HEK-293	Not mentioned	[67]									
205	(Mn₂OsO₆)[(OClO)₃(C₂H₆)]	MCF-7	MDA-MB-231	MCF-10A	Not mentioned	[68]									
206	(Mn₂OsO₆)[(OClO)₃(C₂H₆)]	MCF-7	MDA-MB-231	MCF-10A	Not mentioned	[68]									
207	(Mn₂OsO₆)[(OClO)₃(C₂H₆)]	MCF-7	MDA-MB-231	MCF-10A	Not mentioned	[68]									
208	(Mn₂OsO₆)[(OClO)₃(C₂H₆)]	MCF-7	MDA-MB-231	MCF-10A	Not mentioned	[68]									
	MCF-10A	MCF-7	MDA-MB-231	Not mentioned											
---	---------	-------	-------------	---------------	---										
209	[MnMoO₄(OCH₃CNHCH₃(OH)₃)]⁺	MCF-7	MDA-MB-231	MCF-10A	Not mentioned										
210	[MnMoO₄(OCH₃CNHCH₃(OH)₃)]⁺	MCF-7	Not mentioned	MCF-10A	Not mentioned										
211	[{Cu(En)}(OH)₂][SiW₄O₁₄]	SGC-7901	Not mentioned	SMMC-7721	Not mentioned										
212	[{Cu(Norf)₃}][SiW₄O₁₄]	SGC-7901	Not mentioned	SMMC-7721	Not mentioned										
213	H₂[Na(En)]{SiW₄O₁₄}	SGC-7901	Not mentioned	SMMC-7721	Not mentioned										
214	K₁₀[(n-pentafluorophenyl)C₁₀H₄]	MCF-7	Not mentioned	HEK-293	Not mentioned										
215	K₁₀[(n-pentafluorophenyl)C₁₀H₄]	MCF-7	Not mentioned	HEK-293	Not mentioned										
216	K₀[(n-pentafluorophenyl)C₁₀H₄]	MCF-7	Not mentioned	HEK-293	Not mentioned										
217	(Him)₃[{W(OH)}₃(Mn(H₂O)₃][Na(H₂O)₃](BiW₁₂O₄₀)]	SGC-7901	Apoptosis	Not mentioned											
218	(CoTi₇W₄O₃₀)@TMC	Hel-a	Not mentioned												
219	Kₓ[CoTi₇W₄O₃₀]	Hel-a	Not mentioned												
220	(P₂W₁₆(Nb₂O₉)₉)@TMC	Hel-a	Not mentioned												
221	Kₓ[P₂W₁₆(Nb₂O₉)₉]	Hel-a	Not mentioned												
222	α-[Na₅(AsW₆O₁₉)]	K-562	Not mentioned												
223	Naₓ[Ca₄H₄O₁₂(α-AsW₆O₁₉)]	K-562	Not mentioned	Hep-G2	Not mentioned										
224	Naₙ[(Ca₄H₄O₁₂)(α-AsW₆O₁₉)]	K-562	Apoptosis	Hep-G2	Not mentioned										
225	[{Cu[PPA]₃}][H₂PMo₆O₁₆]	SGC-7901	Not mentioned												
226	[{Cu[PPA]₃}][H₂PMo₆O₁₆]	SGC-7901	Not mentioned												
227	H₂[PMo₆O₁₆]	SGC-7901	Not mentioned												
228	Naₙ[PMo₆O₁₆]	SGC-7901	Not mentioned												
229	Kₓ[(CH₃N′CH₂COO)₃]₁[(VO₃)₂]	MCF-7	Not mentioned	A-549	Not mentioned										
230	[{[(CH₃)₂N′CH₂COOH]·[(VO₃)₂]}],[(CH₃)₂N′CH₂COO]⁺	MCF-7	A-549	MCF-10A	Not mentioned										
231	[{Cu(H₂O)₃}[Mo₃Os₆(µ₆-O)]	MCF-7	A-549	Not mentioned											
232	[{Zn(H₂O)₃}[Mo₃Os₆(µ₆-O)]	MCF-7	Not mentioned	Hep-G2	Not mentioned										
233	[{Co(H₂O)₃}[Mo₃Os₆(µ₆-O)]	MCF-7	Not mentioned	Hep-G2	Not mentioned										
234	[{Cr(H₂O)₃[lys]₀}[Mo₃Os₆]	MCF-7	Not mentioned	Hep-G2	Not mentioned										
235	[{Zn(H₂O)₃}[Mo₃Os₆[lys]₁]	MCF-7	Not mentioned	Hep-G2	Not mentioned										
236	[{Cr(H₂O)₃}[Mo₃Os₆[lys]₁]	MCF-7	Not mentioned	Hep-G2	Not mentioned										
237	Naₓ[Mo₃Os₆[lys]₁]	MCF-7	Not mentioned	Hep-G2	Not mentioned										
238	Naₓ[Mo₃Os₆[lys]₁]	MCF-7	Not mentioned	Hep-G2	Not mentioned										
239	AnNP₇Tyr@ H₂PW₁₆O₃₀	A-549	Not mentioned												
240	AnNP₇Tyr@ H₂PW₁₆O₃₀	A-549	Not mentioned												
241	[{Bi₃L₆NO₃}₂(CH₃CH₃O)₃] (HL = 2-acetylpyridine N(4)-phenylthiosemicarbazone)	Hept0₂	Apoptosis												
242	(TBA)₃[Mo₃Os₆(O₅)(NC₃H₄-C₆H₅)]	K-562	Not mentioned												
243	(TBA)₃[Mo₃Os₆(O₅)(NC₃H₄-C₆H₅)]	MCF-7	Not mentioned												
244	(TBA)₃[Mo₃Os₆]	K-562	Not mentioned	MCF-7	Not mentioned										
245	[TeW₁₂O₴₀]⁻	HeLa	Not mentioned	Vero	Not mentioned										
246	Naₓ[TeW₁₂O₴₀]	HeLa	Not mentioned	Vero	Not mentioned										
247	[Na₉PW₁₆SO₄₁₆]⁻	HeLa	Not mentioned	Vero	Not mentioned										
248	[Ni₉(Na₉PW₁₆SO₄₁₆)]⁻	HeLa	Not mentioned	Vero	Not mentioned										
249	[VₓO₁₆]⁻	HeLa	Not mentioned	Vero	Not mentioned										
250	Naₓ[VₓO₁₆]	HeLa	Not mentioned	Vero	Not mentioned										
251	Naₓ[TeW₁₂O₴₀]	HeLa	Not mentioned	Vero	Not mentioned										
252	M₁₂[Na₉PW₁₆SO₄₁₆]	HeLa	Not mentioned	Vero	Not mentioned										
253	Naₓ[VₓO₁₆]	HeLa	Not mentioned	Vero	Not mentioned										
254	[Co₃H₃O₃Ni₃(W₄O₁₄)]·SEP	MCF-7	Not mentioned	HEK-293	Not mentioned										
No.	Formula	Cell Lines	Apoptosis	Ref.											
-----	---------	------------	-----------	------											
255	K₃[CoCl₃(OH)₂SiW₁₆O₅₆]	MCF-7	Not mentioned	[82]											
256	[Co(H₂O)₆]Cl₂EP	MCF-7	Not mentioned	[82]											
257	K₂[Co(H₂O)₆]2EP	MCF-7	Not mentioned	[82]											
258	(Him)₂[(W(OH)₃)₃Co₂H₄O₇]Na₂H₄O₇·10H₂O	HT-29	Apoptosis	[83]											
259	(chlorin)₂[SiMo₇O₃4]	A-549	Not mentioned	[84]											
260	Na₂[SiMo₇O₃₄]	MCF-7	Not mentioned	[85]											
261	Na₂[MoO₄]	SK-OV-3	Not mentioned	[85]											
262	Na₂[(Na₂Si₃O₇)(Co₃O₇)](Mo₆O₂₃(NO₃)₀)·23H₂O	Hep-G2	Not mentioned	[85]											
263	Zn₃PM₆₃O₃₈·23H₂O	SGC-7901	Not mentioned	[86]											
264	K₃[Na₂(Cu₂H₃O₇)₈(P₈O₇)]	MG-63	Apoptosis	[87]											
265	(NH₄)_₄[(MoV)₃MoV₆₃O₆₄(H₂O)₉]·(MoVO₄CH₃COO)₉	Hep-G2	Apoptosis	[88]											
266	(NH₄)_₄[(MoV)₃MoV₆₃O₆₄(H₂O)₉]·(MoVO₄CH₃COO)₉	Hep-G2	Apoptosis	[88]											
267	(CH₃NH₃)₃[(CH₃NH₃)₃[(MoV)₃MoV₆₃O₆₄(H₂O)₉]·(MoVO₄CH₃COO)₉	Hep-G2	Apoptosis	[88]											
268	K₃[Na₂MoO₄]	SGC-7901	Not mentioned	[89]											
269	SK-OV-3	SGC-7901	Not mentioned	[89]											
270	[H₂en][Na₂[(Zn(en)₂H(en)][(Zn(en)₂(H₂O)][(P₈O₇)]	SGC-7901	Not mentioned	[89]											
271	K₃[Na₂MoO₄]	SGC-7901	Not mentioned	[89]											
272	(Cu(en)₃)₃[GeNH₃]₃[V₄O₉]·20H₂O	SC-1680	Gastric cancer	[90]											
273	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	MCF-7	Not mentioned	[91]											
274	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	MCF-7	Not mentioned	[91]											
275	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	MCF-7	Not mentioned	[91]											
276	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	MCF-7	Not mentioned	[91]											
277	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	MCF-7	Not mentioned	[91]											
278	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	MCF-7	Not mentioned	[91]											
279	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	MCF-7	Not mentioned	[91]											
280	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	MCF-7	Not mentioned	[91]											
281	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	MCF-7	Not mentioned	[91]											
282	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	MCF-7	Not mentioned	[91]											
283	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	MCF-7	Not mentioned	[91]											
284	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	MCF-7	Not mentioned	[91]											
285	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	MCF-7	Not mentioned	[91]											
286	β-Na₂[As₂W₁₈O₆₃]	HeLa	Not mentioned	[91]											
287	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	HeLa	Not mentioned	[91]											
288	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	HeLa	Not mentioned	[91]											
289	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	HeLa	Not mentioned	[91]											
290	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	HeLa	Not mentioned	[91]											
291	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	HeLa	Not mentioned	[91]											
292	[P₂W₁₈O₆₃]	HeLa	Apoptosis	[96]											
293	Na₂[MoO₃(C₆H₅NCH₂CH₃)(CH₃N(OPO₄))]	HeLa	Apoptosis	[96]											
No.	Formula/Type	Cell Line(s)	Effect	Reference											
-----	--------------	--------------	--------	-----------											
294	[TtPW6O19]-CT	HeLa, Vero	apoptosis	[96]											
295	K₄H₂[TtPW6O19]	HeLa, Vero	apoptosis	[96]											
296	[CoTiW11O38]-CT	HeLa, Vero	apoptosis	[96]											
297	K₂H₂[CoTiW₁₁O₃₈]	HeLa, Vero	apoptosis	[96]											
298	SiW₁₁O₃₉-FePt NP	Rat Primary Cortical Astrocytes	Not mentioned	[97]											
299	SiW₁₁O₃₉-FePt NP	Rat Primary Cortical Astrocytes	Not mentioned	[97]											
300	Pt⁴⁺-P516-DSPF-PEG2000	HT-29, HUVEC	apoptosis	[98]											
301	[PW₁₁O₃₉SiCH₃NH₃][Pt(NH₃)₂Cl₂]²⁺	HT-29, HUVEC	apoptosis	[98]											
302	Na₂[Pt₁₁O₃₉]	HT-29, HUVEC	apoptosis	[98]											
303	K₁₀(C₄H₉F₉N₃O₂)₂Er[PW₁₁O₃₉]	HeLa, Hep-G2, HEK-293	Not mentioned	[99]											
304	K₁₀[Er₂[PW₁₁O₃₉]]	HeLa, Hep-G2, HEK-293	Not mentioned	[99]											
305	K₁₀(C₄H₉F₉N₃O₂)₂Gd[PW₁₁O₃₉]	HeLa, Hep-G2, HEK-293	Not mentioned	[99]											
306	K₁₀[Gd₂[PW₁₁O₃₉]]	HeLa, Hep-G2, HEK-293	Not mentioned	[99]											
307	K₁₀(C₄H₉F₉N₃O₂)₂Dy[PW₁₁O₃₉]	HeLa, Hep-G2, HEK-293	Not mentioned	[99]											
308	K₁₀[Dy₂[PW₁₁O₃₉]]	HeLa, Hep-G2, HEK-293	Not mentioned	[99]											
309	(NH₃)₁₂[Co₉Sb₉O₁₅]	A2780, A2780cisR, OVGAR-3, SKOV-3, CT-26, HT-29, A-549, MCF-7, HEK-293	apoptosis	[100]											
310	(NH₃)₁₂[Co₉Sb₉O₁₅]	A2780, A2780cisR, OVGAR-3, SKOV-3, CT-26, HT-29, A-549, MCF-7, HEK-293	apoptosis	[100]											
311	(NH₃)₁₂[Na₉Sb₉W₃O₃₉]	A2780, A2780cisR, OVGAR-3, SKOV-3, CT-26, HT-29, A-549, MCF-7, HEK-293	apoptosis	[100]											
312	[Co₂(H₂O)SiMo₆O₁₅]-SEP	MCF-7, HEK-293, NHF	Not mentioned	[101]											
313	K₄[Co₂(H₂O)SiMo₆O₁₅]	MCF-7, HEK-293, NHF	Not mentioned	[101]											
314	[Co₂(H₂O)SiMo₆O₁₅]-LEP	MCF-7, HEK-293, NHF	Not mentioned	[101]											
315	K₄[SiCo₂(H₂O)Mo₆O₁₅]	MCF-7, HEK-293, NHF	Not mentioned	[101]											
316	(NH₃)₁₂[Fe₂(AsMo₆O₂₆)(H₂O)₂]	Hep-G2, Vero	Not mentioned	[102]											
317	(NH₃)₁₂[Fe₂(AsMo₆O₂₆)]	Hep-G2, Vero	Not mentioned	[102]											
318	K₄(AsMo₆O₂₆)(H₂O)₂	A-549	apoptosis and necrosis	[103]											
319	K₄(Na₉Mo₆O₁₅)	A-549	Not mentioned	[103]											
320	AuNP@POM	B16, Vero	apoptosis/necrosis	[104]											
321	(NH₃)₁₂[Na₉(As₂Mo₆O₂₆)]	B16, Vero	apoptosis/necrosis	[104]											
322	Na₂[CoPMO₆O₁₅]	B16	Not mentioned	[105]											
Reaction	[H][βliz][HMoF₄O₃]	SHSY5	SKOV-3	HeLa	HepG2	EVC-304	Not mentioned	[110]							
----------	---------------------	-------	-------	------	-------	---------	---------------	------							
335	[Na₂P₂MoO₆]	SHSY5	SKOV-3	HeLa	HepG2	EVC-304	Not mentioned	[110]							
336	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
337	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
338	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
339	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
340	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
341	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
342	[H][βliz][HMoF₄O₃]	SHSY5	SKOV-3	HeLa	HepG2	EVC-304	Not mentioned	[110]							
343	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
344	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
345	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
346	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
347	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
348	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
349	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
350	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
351	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
352	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
353	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
354	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
355	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
356	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
357	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
358	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
359	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
360	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
361	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
362	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
363	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
364	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
365	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
366	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
367	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
368	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
369	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
370	[Na₂P₂MoO₆]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
371	[K₂[GeMo₄O₁₃]]	HCT-116	SMMC-7721	HL-7702	HEP-G2	HEP-2	HEP-2	Not mentioned	[111]						
Compound	Cells (Effects)														
----------	----------------														
[AsMoO$_4$(O$_2$CCH$_2$NH$_3$)$_2$]@SiO$_2$	U937	apoptosis and necrosis	[119]												
Na$_2$Gd(WO$_4$)$_2$·CT	BEL-7402	Not mentioned	[120]												
Na$_2$Gd(WO$_4$)$_2$·CT + X-rays	BEL-7402	Not mentioned	[120]												
Na$_2$Gd(WO$_4$)$_2$·CT + siRNA	BEL-7402	Not mentioned	[120]												
Na$_2$Gd(WO$_4$)$_2$·CT + siRNA + X-rays	BEL-7402	Not mentioned	[120]												
[Ag(diz)$_2$][Ag(diz)$_2$·(AsMo$_4$O$_2$)]·H$_2$O	gastric cancer	SGC-7901	Not mentioned	[121]											
K$_2$(LiF:N$_2$O)$_2$·2SH$_2$O (FNdPW)	A549	apoptosis	[122]												
[PdWO$_4$]·CMC-PMMA	MCF-7, HeLa, Vero	Not mentioned	[123]												
K$_2$(P$_2$Mo$_5$O$_{18}$)	breast cancer 4T1	Not mentioned	[124]												
[Na$_2$Ni$_2$O$_4$·H$_2$O$_2$](imid)$_2$(Sh$_2$W$_2$O$_3$)$_2$	HeptG2, SMMC-7721, A549, H1299, AGS, BGC-823, HEK293T	in the S-phase and inducing cell apoptosis	[127]												
[Na$_2$Co$_2$O$_4$·H$_2$O$_2$](imid)$_2$(Sh$_2$W$_2$O$_3$)$_2$	AGS, BGC-823, HEK293T	in the S-phase and inducing cell apoptosis	[127]												
[Sh$_2$W$_2$O$_7$]	AGS, BGC-823, HEK293T	in the S-phase and inducing cell apoptosis	[127]												
[SB$_2$W$_3$]	AGS, BGC-823, HEK293T	in the S-phase and inducing cell apoptosis	[127]												
Imi = imidazole	AGS, BGC-823, HEK293T	in the S-phase and inducing cell apoptosis	[127]												
Cisplatin	AGS, BGC-823, HEK293T	in the S-phase and inducing cell apoptosis	[127]												
[Ag(p-H$_2$pyttz)$_2$][H$_2$SiMo$_5$O$_9$]+4H$_2$O	MDA-MB-231, CHO, MIA-PaCa-2, J82, HCT-8, HEK-293	mitochondrial apoptotic pathway	[128]												
[Cu(m-pyttz)$_2$(H$_2$O)$_2$][H$_2$SiMo$_5$O$_9$]	MDA-MB-231, CHO, MIA-PaCa-2, J82, HCT-8, HEK-293	mitochondrial apoptotic pathway	[128]												
5-FU	MDA-MB-231, CHO, MIA-PaCa-2, J82, HCT-8, HEK-293	mitochondrial apoptotic pathway	[128]												
H$_2$SiMo$_5$O$_9$	MDA-MB-231, CHO, MIA-PaCa-2, J82, HCT-8, HEK-293	mitochondrial apoptotic pathway	[128]												
[Na$_2$H$_2$O$_2$]$_2$[(Na$_2$H$_5$O)$_2$][Mn$_3$(bppy)$_3$](Sh$_2$W$_2$O$_3$)$_2$]·8H$_2$O (Mn\equivSh\equivW- bppy) (bppy = 1,3-bis(4-pyridyl) propane)	SGC-7901, HT-29, HeptG2, Hela, U2OS, Saos2, HMC	apoptosis	[129]												
VMOP-31	SMCC-7721	apoptosis	[130]												
Sh$_2$W$_3$	NSCLC	apoptosis	[131]												
NLP(Ph$_2$H$_2$N$_2$[NaP$_2$WO$_8$]$_{10}$)	HeptG2 cells, normal cells	Not mentioned	[132]												
PMA/adenine·[AuCl$_4$]$_2$	MDA-MB-231, PC-3, HaCaT	Not mentioned	[133]												
PMA/thymine·Ag$^+$	MDA-MB-231, PC-3, HaCaT	Not mentioned	[133]												
PMA/adenine·Ag$^+$	MDA-MB-231, PC-3	Not mentioned	[133]												
2. Results and Discussion

2.1 The structural diagrams of \{BiW₈\}

Table S3. Crystal data and structure refinement for \{BiW₈\}

Compound	\(\text{[BiW}_8\text{]}\)
Formula	\(\text{Co}_3\text{H}_{38}\text{Bi}_2\text{Co}_2\text{N}_6\text{Na}_2\text{O}_{44}\text{W}_9\)
Mr	3241.01
Crystal. size, mm³	0.19 x 0.15 x 0.18
Crystal system	triclinic
Space group	\(\text{P} \cdot 1\)
a, Å	12.8345(3)
b, Å	13.0070(3)
c, Å	19.4287(5)
\(\beta\), deg	98.795(2)
\(V\) (Å³)	2997.03(13)
\(Z\)	2
\(D_{calcld, \text{Kg} \text{m}^{-3}}\)	3.592
\(\mu\)(MoKα), mm⁻¹	23.425
\(F\)(000), e	2864.0
\(\theta\) range, deg°	3.24 - 26.34
Reflections collected / unique / Rint	37943 / 23.425 / 0.0539
Data/restraints/parameters	13546 / 938 / 764
\(R1\) / \(wR2\) \((I \geq 2\sigma(I))\)	0.0449 / 0.1116
\(GoF (F^2)\)	1.036
\(\Delta \rho_{\text{f}}\) (max/min), e Å⁻³	5.399 / -4.567

Bond	Dist.	Bond	Dist.	Bond	Dist.
\(\text{Bi(1)-O(36)}\)	2.143(9)	\(\text{Bi(1)-O(38)}\)	2.150(9)	\(\text{Bi(1)-O(40)}\)	2.132(9)
Angle	(°)	Angle	(°)	Angle	(°)
-------	-----	-------	-----	-------	-----
Bi(2)-O(3)	1.762(10)	Bi(2)-O(9)	1.756(9)	Bi(2)-O(26)	2.116(9)
Bi(2)-O(30)	2.145(9)	Bi(2)-O(32)	1.964(9)	Bi(2)-O(34)	1.971(9)
W(1)-O(5)	1.866(9)	W(1)-O(11)	1.899(9)	W(1)-O(12)	1.994(10)
W(1)-O(16)	1.724(10)	W(1)-O(36)	2.244(9)	W(1)-O(41)	1.973(9)
W(2)-O(2)	1.857(10)	W(2)-O(2)	1.711(9)	W(2)-O(5)	2.016(8)
W(2)-O(29)	1.892(9)	W(2)-O(35)	1.927(10)	W(3)-O(38)	2.318(9)
W(3)-O(15)	1.732(9)	W(3)-O(28)	1.954(9)	W(3)-O(31)	1.932(9)
W(3)-O(34)	1.906(10)	W(3)-O(40)	2.234(9)	W(3)-O(42)	1.919(10)
W(4)-O(10)	1.907(10)	W(4)-O(28)	1.887(9)	W(4)-O(33)	1.964(9)
W(4)-O(35)	1.925(9)	W(4)-O(38)	2.301(9)	W(4)-O(44)	1.730(10)
W(5)-O(8)	1.736(10)	W(5)-O(11)	1.919(9)	W(5)-O(33)	1.919(8)
W(5)-O(40)	2.276(9)	W(5)-O(42)	1.942(9)	W(5)-O(43)	1.885(9)
W(6)-O(1)	2.083(9)	W(6)-O(4)	1.752(10)	W(6)-O(10)	2.030(10)
W(6)-O(26)	1.813(9)	W(6)-O(30)	1.805(9)	W(6)-O(38)	2.193(8)
W(7)-O(14)	1.717(10)	W(7)-O(29)	1.966(9)	W(7)-O(32)	1.905(9)
W(7)-O(36)	2.264(9)	W(7)-O(39)	1.908(9)	W(7)-O(41)	1.887(10)
W(8)-O(6)	1.960(10)	W(8)-O(12)	1.931(10)	W(8)-O(13)	1.706(10)
W(8)-O(36)	2.253(9)	W(8)-O(37)	1.872(9)	W(8)-O(39)	2.002(9)
W(9)-O(7)	1.728(9)	W(9)-O(27)	1.793(9)	W(9)-O(31)	1.967(9)
W(9)-O(37)	1.966(9)	W(9)-O(40)	2.244(8)	W(9)-O(43)	2.031(10)
Co(1)-O(4)	2.087(10)	Co(1)-O(6)	2.094(9)	Co(1)-O(17)	2.124(11)
Co(1)-O(18)	2.072(11)	Co(1)-O(19)	2.121(13)	Co(1)-O(27)	2.072(10)
Na(1)-O(1)	2.463(11)	Na(1)-O(17)	2.462(13)	Na(1)-O(20)	2.328(13)
Na(1)-O(20)	2.446(11)	Na(1)-O(21)	2.352(16)	Na(1)-O(22)	2.496(13)
Na(2)-O(3)	2.826(13)	Na(2)-O(6)	2.852(15)	Na(2)-O(19)	2.905(16)
Bond	Angle (°)	Bond	Angle (°)		
-----------------------------	-----------	-----------------------------	-----------		
O(20)-Na(1)-O(21)	172.5(5)	O(20)-Na(1)-O(22)	165.1(4)		
O(3)-Na(2)-O(6)	115.3(4)	O(3)-Na(2)-O(19)	143.2(5)		
O(6)-Na(2)-O(19)	65.3(4)	O(6)-Na(2)-O(19)	65.3(4)		

Symmetry transformations used to generate equivalent atoms:
#1: -x, -y, -z; #2: -x+1/2, -y+1/2, -z

Figure S1. The view of the basic units in \(\{\text{BiW}_8\} \) with 50% thermal ellipsoid

Figure S2. The 1-D chain of \(\{\text{BiW}_8\} \).
Figure S3. (a) The 2D structure for \{BiW₈\} (b) Simplified diagram of 2D structure for \{BiW₈\} (Some O atoms are omitted).

Figure S4. (a) The 3D structure for \{BiW₈\} (b) Simplified diagram of 3D structure for \{BiW₈\} (Some O atoms are omitted)

Figure S5. Simplified diagram of 3D structure for \{BiW₈\} with other direction (Some O atoms are omitted).
Table S5. The hydrogen bonding and supramolecular interaction of \{BiW\}_8

Donor	H	Acceptor	D-H	H...A	D...A	D-H...A
N3	H1N	O35	0.86	2.29	2.9908(1)	138
N3	H1N	O33	0.86	2.26	2.9692(1)	140
N2	H2N	O3	0.86	2.03	2.8170(1)	152
N2	H2N	O15	0.86	2.56	3.0049(1)	113
C3	H3B	O2	0.96	2.57	3.5150(1)	168
C4	H4A	O15	0.93	2.46	3.1689(1)	133
C10	H10C	O2	0.96	2.51	3.4395(1)	162
C21	H21C	O11	0.96	2.52	3.4407(1)	161

2.2 The characterization diagrams of \{BiW\}_8

- Figure S6. IR spectra of compound \{BiW\}_8
- Figure S7. TG curve of \{BiW\}_8 compound
- Figure S8. XRD for compound \{BiW\}_8
Supporting Information

Figure S9. The stability of the \(\text{BiW}_8\) compound in PBS buffer was obtained via UV spectroscopy after 0, 24, and 48 h of incubation (pH=7.4) at 37°C.

Figure S10. The DLS test of compound 5 mM \(\text{BiW}_8\) in PBS buffer (pH=7.4) after 0 h incubation (pH=7.4) at 37°C.

Figure S11. The DLS test of compound 5 mM \(\text{BiW}_8\) in PBS buffer (pH=7.4) after 24 h incubation (pH=7.4) at 37°C.
Figure S12. The DLS test of compound 5 mM {BiW₈} in PBS buffer (pH=7.4) after 48 h incubation (pH=7.4) at 37°C.

2.3 Calculation of IC₅₀

To determine the effect of {BiW₈} on cell proliferation, the cell viabilities of one normal cell line (human umbilical vein endothelial cell line [HUVEC]) and five carcinoma cell lines (human osteosarcoma cell line, MG63; human rhabdomyosarcoma cell line, RD; human liver cancer cell lines, HepG2 and Hep3B; and human breast carcinoma cell line, MCF7) were measured via MTT assays. As shown in Figure S13, {BiW₈} caused nonlinear inhibition of cell growth.

Figure S13. MTT assay was performed to evaluate the cell viability after treated with the increased concentration (0, 50, 100, 200, and 400 μM) of {BiW₈} for 24 and 48 h. (a) HUVEC; (b) MG63; (c) RD; (d) Hep3B; (e) HepG2; (f) MCF7. Data are presented as the Mean ± SD. Statistical significances were determined by Student’s t-test. *p < 0.05.

As shown in the Figure S14, linear regression equation were applied to calculate the IC₅₀. When set the X is the logarithmic concentration of {BiW₈}, Y is the probit of cell inhibitory rate, and A and B are constants, we obtained the linear regression equation of Y=A×X+B. The log₁₀(IC₅₀) was obtained by setting the value of Y to 5. And the equation and IC₅₀ were list in Table S6.
Figure S14. MTT assay was performed to evaluate the cell viability after treated with the increased concentration (0, 50, 100, 200, and 400 μM) of \(\text{BiW}_8\) for 24 and 48 h. Linear regression equation were applied to calculate the IC\(_{50}\). The straight line was fitted to the log dose-inhibitory rate probit curve by regression analysis. And the equation and IC\(_{50}\) were list in Table S6.

Human cell lines	Time/h	Regression equation	\(\log_{10}(\text{IC}_{50})\)	\text{IC}_{50} / μM	\(R^2\)	95% confidence interval / μM
HUVEC	24	\(Y = 1.3594X + 0.9868\)	2.9522	895.8	0.9943	864.2-927.3
	48	\(Y = 1.4823X + 1.1733\)	2.5816	381.6	0.9512	352.4-403.9
MG63	24	\(Y = 2.0044X + 0.7809\)	2.1048	127.3	0.9948	117.7-145.1
	48	\(Y = 2.1270X + 1.1700\)	1.8007	63.2	0.9813	57.01-73.67
RD	24	\(Y = 1.4417X + 1.3425\)	2.5369	344.3	0.9911	335.1-371.6
	48	\(Y = 1.4230X + 1.8470\)	2.2156	164.3	0.9936	150.3-187.1
Hep3B	24	\(Y = 1.4698X + 1.0932\)	2.6580	455.0	0.9886	445.8-462.7
	48	\(Y = 1.6575X + 1.1269\)	2.3367	217.1	0.9960	198.5-231.2
The growth inhibition in MG63 cells treated with {BiW₈} and three raw materials (Na₂WO₄·2H₂O, CoCl₂·6H₂O, and dmap) for 24 and 48 h was measured. As shown in Figure S15, {BiW₈} and three raw materials caused nonlinear inhibition of cell growth.

As shown in the Figure S16, linear regression equation were applied to calculate the IC₅₀. When set the X is the logarithmic concentration of drug, Y is the probit of cell inhibitory rate, and A and B are constants, we obtained the linear regression equation of Y=A×X+B. The log₁₀ (IC₅₀) was obtained by setting the value of Y to 5. And the equation and IC₅₀ were list in Table S7.

![Figure S15. MTB assay analysis {BiW₈} and three raw materials treatment (0, 50, 100, 200, and 400 μM) against MG63 cells for (a) 24 and (b) 48 h. Data are presented as the mean ± SD. Statistical significances were calculated by Student’s t-test or two-way ANOVA, *** p < 0.001, **** p < 0.0001.](image)

![Figure S16. MTB assay analysis {BiW₈} and three raw materials treatment (0, 50, 100, 200, and 400 μM) against MG63 cells for 24 and 48 h. Linear regression equation were applied to calculate the IC₅₀. And the straight line was fitted to the log dose-inhibitory rate probit curve by regression analysis. (a) MG63 cells were treated with {BiW₈} for 24 h; (b) MG63 cells were treated with {BiW₈} for 48 h; (c) MG63 cells were treated with Na₂WO₄·2H₂O for 24 h; (d) MG63 cells were treated with Na₂WO₄·2H₂O for 48 h; (e) MG63 cells were treated with CoCl₂·6H₂O for 24 h; (f) MG63 cells were treated with CoCl₂·6H₂O for 48 h; (g) MG63 cells were treated with dmap for 24 h; (h) MG63 cells were treated with dmap for 48 h. Data are presented as the Mean ± SD. Statistical significances were determined by Student’s t-test. *p < 0.05.](image)
Table S7. The IC₅₀ values of drugs to MG63 cells

Drugs	Time/h	Regression equation	log₁₀(IC₅₀)	IC₅₀ / μM	R²	95% confidence interval / μM
(BiW₈)	24	Y = 2.0044X + 0.7809	2.1048	127.3	0.9948	117.7 - 145.1
	48	Y = 2.127X + 1.17	1.8007	63.2	0.9813	57.01 - 73.67
Na₂WO₄·2H₂O	24	Y = 0.7034X + 2.7867	3.0013	1003.0	0.9748	730.3 - 1377
	48	Y = 1.0435X + 2.4168	2.4755	298.9	0.999	266.3 - 356.9
CoCl·6H₂O	24	Y = 0.5473X + 2.7756	4.0643	11596.2	0.9498	5754 - 37813
	48	Y = 0.655X + 3.1583	2.8118	648.3	0.9603	411.9 - 992.4
dmap	24	Y = 1.357X + 1.5958	2.5629	365.5	0.9895	328.7 - 406.4
	48	Y = 1.3755X + 2.1609	2.0641	115.9	0.9578	110.3 - 166.1

Linear regression equation were applied to calculate the IC₅₀. According to the linear regression equation of Y = A×X + B, X is the logarithmic concentration of drugs, Y is the probit of cell inhibitory rate, and A and B are constants. log₁₀(IC₅₀) values were obtained by setting the value of Y to 5.

For further comparison, the growth inhibition in MG63 cells treated with (BiW₈) and three other POM drugs (Na₉[SbW₉O₃₃]·19.5H₂O, Na₆H₄[Bi₂W₁₀Co₂O₃₀(H₂O)₆·34H₂O, and Na₉[BiW₉O₃₃]·16H₂O) for 24 and 48 h was measured (Figure S16-17). At 24 h post-incubation, the IC₅₀ values of (BiW₈), Na₉[SbW₉O₃₃]·19.5H₂O, Na₉[BiW₉O₃₃]·16H₂O were 127.3, 912.7, 389.5, and 696.3 μM, respectively (Table S8). At 48 h post-incubation, their IC₅₀ values were 63.2, 398.8, 194.2, and 304.9 μM, respectively.

Figure S17. MTT assay analysis (BiW₈) and three POM drugs (0, 50, 100, 200, and 400 μM) against MG63 cells for (a) 24 and (b) 48 h. Data are presented as the mean ± SD. Statistical significances were calculated by Student’s t-test or two-way ANOVA, *p < 0.05 **p < 0.01 ***p < 0.001 ****p < 0.0001.
Supporting Information

Figure S18. MTT assay analysis (BiW₈) and three other POM drugs (0, 50, 100, 200, and 400 μM) against MG63 cells for 24 and 48 h. Linear regression equation were applied to calculate the IC₅₀. The straight line was fitted to the log dose-inhibitory rate probit curve by regression analysis. And the equation and IC₅₀ were listed in Table S8.

(a) MG63 cells were treated with BiW₈ for 24 h; (b) MG63 cells were treated with BiW₈ for 48 h; (c) MG63 cells were treated with Na₉[SbW₉O₃₃]·19.5H₂O for 24 h; (d) MG63 cells were treated with Na₉[SbW₉O₃₃]·19.5H₂O for 48 h; (e) MG63 cells were treated with Na₁₀[Bi₂W₂₀Co₂O₇₀(H₂O)₆]·41H₂O for 24 h; (f) MG63 cells were treated with Na₁₀[Bi₂W₂₀Co₂O₇₀(H₂O)₆]·41H₂O for 48 h; (g) MG63 cells were treated with Na₉[BiW₉O₃₃]·16H₂O for 24 h; (h) MG63 cells were treated with Na₉[BiW₉O₃₃]·16H₂O for 48 h. Data are presented as the Mean ± SD. Statistical significances were determined by Student's t-test. *p < 0.05.

Table S8. The IC₅₀ values of drugs to MG63 cells

Drugs	Time/h	Regression equation	Log₁₀ (IC₅₀)	IC₅₀/μM	R²	95% confidence interval / μM
BiW₈	24	Y = 2.0044X+0.7809	2.1048	127.3	0.9948	117.7-145.1
BiW₈	48	Y = 2.1270X+1.1700	1.8007	63.2	0.9813	57.0-73.7
Na₉[SbW₉O₃₃]·19.5H₂O	24	Y = 0.7639X+2.7386	2.9603	912.7	0.9856	764.6-1439.3
Na₁₀[Bi₂W₂₀Co₂O₇₀(H₂O)₆]·41H₂O	24	Y = 0.6226X+3.3808	2.6008	398.8	0.9957	379.9-430.7
Na₉[Bi₂W₂₀Co₂O₇₀(H₂O)₆]·41H₂O	48	Y = 1.1498X+2.0214	2.5905	389.5	0.9817	383.2-412.6
Na₁₀[BiW₉O₃₃]·16H₂O	24	Y = 1.5239X+1.5131	2.2882	194.2	0.9997	185.7-236.7
Na₁₀[BiW₉O₃₃]·16H₂O	48	Y = 0.7312X+3.1836	2.4842	304.9	0.9707	281.5-351.5

Linear regression equation were applied to calculate the IC₅₀. According to the linear regression equation of Y=A×X+B, X is the logarithmic concentration of drugs, Y is the probit of cell inhibitory rate, and A and B are constants. log₁₀ (IC₅₀) values were obtained by setting the value of Y to 5.

2.4 Effects of (BiW₈) on invasion and migration

In the wound healing assay (Figure S19), the gap of the control group largely closed, and the wound was stationary at the centroid position (45.95% and 86.4% confluence at 24 and 48 h post-scratch, respectively), while the experimental group (10.36% and 26.77% confluence at 24 and 48 h post-scratch, respectively) failed to fill large portions of the scratch. This indicates that (BiW₈) reduced the migration ability of the MG63 cells.
Figure S19. Before and after treated with 127.3 μM {BiWs} for 24 and 48h, MG63 cells migration were analysed by the wound healing assay. (a) Representative phase-contrast microscopic images of the wound healing assay (magnification 40×, scale bars=200μm). (b) Quantification of the wound-healing assay. Data are presented as the mean ± SD of three independent experiments. Statistical significances were calculated by two-way ANOVA, **p < 0.01, ***p < 0.001.

In the Transwell Matrigel assay (Figure S20), the numbers of invading cells of the control group increased by more than four and seven times those of the experimental group after 24 and 48 h, respectively. This indicates that {BiWs} repressed the invasion ability of the MG63 cells.

Figure S20. Before and after treated with 127.3 μM {BiWs} for 24 and 48h, MG63 cells invasion were analysed by the Transwell Matrigel assay. (a) Representative phase-contrast microscopic images of the Transwell Matrigel assay (magnification 40×, scale bars=100μm). (b) Quantification of the Transwell Matrigel assay. Data are presented as the mean ± SD of three independent experiments. Statistical significances were calculated by two-way ANOVA, **p < 0.01, ***p < 0.001.

2.5 Effects of {BiWs} on GSH

Figure S21. (a) The absorbance changes of NADPH in different concentrations of {BiWs} (b) The relationship between the concentration of {BiWs} and the inhibition rate.
2.6 Effects of (BiW8) on transcriptome

We performed RNA sequencing in three biological replicates to compare global gene expression profiles. We first compared the gene expression profiles of MG63 cells incubated with 127.3 μM (BiW8) for 24 h as the experimental group and normal MG63 cells as the control group.

When the cutoff was set to a false discovery rate (FDR)<0.05, a total of 20 Gene Ontology (GO) terms of biological process (BP), 14 GO terms of cellular component (CC), and 9 GO terms of molecular function (MF) were identified (Figure S25a–c). These data indicate that (BiW8) altered the expression profiles of DEGs mostly located in the cell nuclei or cytoplasm with functions related to DNA repair, replication, transcription, energy, and enzymes. We performed further enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes (KEGG). When the cutoff was set to the top 3000 upregulated and downregulated DEGs, a total of 24 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched by 1739 DEGs (Figure S25d, 8) were obtained. Most of the 24 pathways could be summarized and classified into four functional categories: DNA repair/replication, glutathione metabolism, ECM-cell/cell-cell interactions, and signaling pathways in cancer.
Figure S25. GO term and KEGG pathway analysis for 3000 up- and downregulated DEGs (experimental group vs. control group). Top pathways with FDR< 0.05, -log FDR> 1.301 are shown: (a) biological process, (b) cellular component, (c) molecular function, and (d) KEGG pathway.

When the cutoff was to the top 3000 downregulated DEGs, 14 KEGG pathways were identified (Figure S26). These 14 KEGG pathways could be sorted with the abovementioned identical functional categories.

Figure S26. KEGG pathway analysis for 3000 downregulated DEGs (experimental vs. control group). Top pathways with FDR< 0.05, -log FDR> 1.301.
Table S9. DEGs in RNA-sequencing

Gene Name	FoldChange	Log2FoldChange	adj.p	Up/Down
APEX1	0.555536811	-0.848045585	5.14×10⁻²²	down
APEX2	0.441600567	-1.17918607	4.27×10⁻²⁵	down
EXO1	0.403608027	-1.308973227	5.87×10⁻³⁵	down
FEN1	0.291740538	-1.777242231	3.89×10⁻¹¹⁵	down
LIG1	0.088204608	-3.503902158	1.89×10⁻¹⁶	down
MSH2	0.225319167	-2.149958053	1.01×10⁻¹²	down
MSH3	0.511280157	-0.967814061	5.55×10⁻¹⁵	down
MUTYH	0.382067271	-1.388101419	6.10×10⁻⁹	down
NEIL2	0.526180922	-0.926391555	1.46×10⁻⁴	down
NTHL1	0.211546498	-2.240953292	1.04×10⁻³³	down
OGG1	0.476266855	-1.07015855	1.62×10⁻⁶	down
PARP1	0.206554402	-2.275406289	4.11×10⁻⁸	down
PCNA	0.146240994	-2.773580315	1.74×10⁻²⁰	down
POLD1	0.261441988	-1.935437731	1.52×10⁻⁸	down
POLD3	0.293376679	-1.769173902	1.50×10⁻⁷	down
POLE	0.402673611	-1.312317164	3.43×10⁻⁸	down
POLE2	0.244754198	-2.030594492	4.92×10⁻⁰	down
RPA1	0.315782593	-1.662969447	1.58×10⁻¹²	down
RPA3	0.285862457	-1.806606935	7.60×10⁻³⁸	down
UNG	0.245566517	-2.025814233	5.82×10⁻¹⁴	down
XRCC1	0.302848364	-1.723332476	3.74×10⁻⁵²	down
GSTA1	0.054767445	-4.190537612	9.47×10⁻²²	down
GSTA2	0.122829987	-3.025265284	2.86×10⁻⁸	down
GSTA4	0.585531707	-0.7721808	2.43×10⁻³	down
GSTK1	0.496422134	-1.010360654	1.27×10⁻¹⁴	down
GSTM1	0.498118936	-1.00543784	1.03×10⁻³⁸	down
GSTM2	0.407736822	-1.294289851	1.43×10⁻¹⁰	down
GSTM4	0.633515432	-0.658543332	2.48×10⁻¹⁰	down
GSTT2B	0.395136605	-1.339576592	3.97×10⁻¹⁰	down
GPX1	0.567733751	-0.816713584	2.42×10⁻²²	down
GPX2	0.161122328	-2.633771661	3.60×10⁻²	down
GPX7	0.81076994	-0.302635495	6.51×10⁻⁴	down
GPX8	0.635329722	-0.654225822	6.06×10⁻²	down
CASP3	1.950516553	0.963856242	1.25168×10⁻²⁷	up
CASP4	2.37326709	1.24693526	6.57×10⁻²⁷	up
CASP5	4.92755801	5.489528743	8.14×10⁻⁴	up
GSDMB	1.437232816	0.523293782	3.24×10⁻²	up
GSDME	2.029902366	1.021410338	2.11×10⁻⁸	up
IL16	3.590645223	1.844243113	1.30×10⁻⁶³	up
NLRP3	6.241318275	2.641850784	6.01×10⁻⁸	up
NLRC4	2.151562653	1.105384852	3.46×10⁻⁶	up
NLRP10	4.55175399	2.186422462	2.21×10⁻⁵	up
TXNIP	10.08182719	3.333685226	1.76×10⁻⁴	up

Experimental vs. control group, FoldChange>1.5 or <0.67, |Log2FoldChange|>0.58, adj.p<0.05.

3. References

[1] M. Bösing, I. Loose, H. Pohllmann, B. Krebs, Chem.Eur. J. 1997, 3, 1232–1237.
[2] B. Boter, T. Yamase, E. Ishikawa, Inorg. Chem. Commun. 2000, 3, 579–584.
[3] I. Loose, E. Droste, M. Bösing, H. Pohllmann, M. H. Dickman, C. Rosu, M. T. Pope, and B. Krebs, Inorg. Chem. 1999, 38, 2688–2694.
[4] S. X. Liu, Y. Y. Liu, E. W. Bang, Acta Chim. Sinica 1996, 54, 673–678.
[5] J. F. Liu, Y. G. Chen, L. Meng, J. Guo, Y. Liu, M. T. Pope, Polyhedron 1998, 17, 1541–1546.
[6] T. Yamase, H. Fujita, K. Fukushima, Inorg. Chem. Acta 1988, 151, 15–18.
[7] H. Fujita, T. Fujita, T. Sakurai, Y. Seto, Chemotherapy 1992, 40, 173–178.
[8] H. Fujita, T. Fujita, T. Sakurai, T. Yamase, Y. Seto, Tohoku J. Exp. Med. 1992, 168, 421–426.
[9] X. H. Wang, H. C. Dai, J. F. Liu, Polyhedron 1999, 18, 2293–2300.
[10] X. H. Wang, H.-C. Dai, J.-F. Liu, Transl. Met. Chem. 1999, 24, 600–604.
[11] X.-H. Wang, J.-F. Liu, Y.-G. Chen, Q. Liu, J.-T. Liu, M. T. Pope, Dalton Trans. 2000, 5, 1139–1142.
[12] X. H. Wang, J. F. Liu, J. Coord. Chem. 2000, 51, 73–82.
[13] Z. B. Han, E. B. Wang, G. Y. Luan, C. W. Hu, Y. F. Chang, J. Li, N. H. Hu, H. Q. Jia, Chem. Res. Chin. Univ. 2001, 17, 356–361.
