Zone center phonons of the orthorhombic RMnO$_3$ (R = Pr, Eu, Tb, Dy, Ho) perovskites
HC Gupta* and Upendra Tripathi

Address: 1Physics Department, Indian Institute of Technology, Hauz Khas, New Delhi, India and 2Physics Department, Amity University, Noida, UttarPradesh, India

Email: HC Gupta* - hcgupta@physics.iitd.ernet.in; Upendra Tripathi - t_upendra1974@yahoo.co.in
* Corresponding author

Abstract
A short range force constant model (SRFCM) has been applied for the first time to investigate the phonons in RMnO$_3$ (R = Pr, Eu, Tb, Dy, Ho) perovskites in their orthorhombic phase. The calculations with 17 stretching and bending force constants provide good agreement for the observed Raman frequencies. The infrared frequencies have been assigned for the first time.

PACS Codes: 36.20.Ng, 33.20.Fb, 34.20.Cf

Introduction
Until recently the RMnO$_3$ perovskites (R = rare earth elements) have been the object of research mainly as parent materials of mixed valence manganites exhibiting colossal magnetoresistivity (CMR) [1-4]. In the past few years, however, there is an increased interest in the complex relationships among the lattice distortions, magnetism, dielectric, and transport properties of undoped RMnO$_3$ [5-10]. All RMnO$_3$ perovskites show a distortion of MnO$_6$ octahedra due to orbital ordering characteristic of the John-Teller effect of Mn$^{3+}$ cations [11-15]. An investigation of infrared and Raman frequencies will be quite useful in describing the details of such properties. Practically, very limited information is available on the infrared and Raman scattering of orthorhombic RMnO$_3$. Martin Carron et al. [11] studied the behavior of Raman phonons through the transition from static to dynamic Jahn-Teller order in stoichiometric RMnO$_3$ samples (R = La, Pr, Y). Also Martin Carron et al. [12] studied orthorhombic RMnO$_3$ (R = Pr, Nd, Eu, Tb, Dy, Ho) manganites for their Raman phonons as a function of the rare earth ions and temperature. They had assigned only some of the Raman modes. They correlated the frequencies of three most intense modes of orthorhombic samples, with some structural parameters such as Mn-O...
bond distances, octahedral tilt angle and Jahn-Teller distortion. Further rationalization of the Raman spectra of orthorhombic RMnO$_3$ (R = Pr, Nd, Tb, Ho, Er) and different phases of Ca- or Sr-doped RMnO$_3$ compounds as well as cation deficient RMnO$_3$ were made by Martin Carron et al. [13]. Their assignment of the peaks related to octahedral tilt were in good agreement with the other authors but the assignment of peak to an antisymmetric stretching associated with the Jahn-Teller distortion was doubtful. Wang Wei-Ran et al. [14] measured Raman active phonons in orthorhombic RMnO$_3$ (R = La, Pr, Nd, Sm) compounds and they also assigned three main Raman peaks. Recently, the polarized Raman spectra of orthorhombic RMnO$_3$ (R = Pr, Nd, Eu, Gd, Tb, Dy, Ho) series at room temperature were studied by Iliev et al. [15] where they had assigned the observed frequencies to nine Raman modes. Their study shows that the variations of lattice distortions with radius of rare earth atoms affect significantly both the phonon frequencies and the shape of some of Raman modes. To our knowledge, the theoretical investigations of phonons, using the normal coordinate analysis in the orthorhombic NdMnO$_3$ has first been made by Gupta et al. [16].

In the present study, the theoretical investigations of phonons in the orthorhombic RMnO$_3$ have been made using the normal coordinate analysis. It has been observed that a total of 17 inter-atomic force constants, which include 8 bending force constants, are enough to obtain a good agreement between theory and experiment for the Raman frequencies. The assignments of infrared frequencies along with their corresponding eigen vectors observing the atomic displacements in the respective vectors have been made for the first time. There is always some scope of more precise infrared experiments to verify these theoretical values.

Theory

The structure of stoichiometric RMnO$_3$ shown in Fig. 1, described at room temperature by the Pbnm space group (Z = 4), can be considered as orthorhombically distorted superstructure of ideal perovskites. In the Pbnm structure the atoms occupy four non equivalent atomic sites of them only the Mn site is a center of symmetry [17]. The distortion of the orthorhombic perovskites characterized by the tilting angle of the MnO$_6$ octahedra progressively increases from Pr to Er due to simple steric factors. Additionally, all of the perovskites show a distortion of the MnO$_6$octahedra due to orbital ordering characteristic of the Jahn-Teller of the Mn$^{3+}$ cations. Structural data of EuMnO$_3$ is very recent because of its high neutron absorption and they are perfectly correlated with the other members of RMnO$_3$ series [18].

The total number of irreducible representations for RMnO$_3$ are

$$= 7A_g + 7B_{1g} + 5B_{2g} + 5B_{3g} + 8A_u + 8B_{1u} + 10B_{2u} + 10B_{3u}$$
There are four Raman active species, A_{g}, B_{1g}, B_{2g} and B_{2g}, three infrared active species B_{1u}, B_{2u} and B_{3u} and inactive species A_{u}.

In the present paper, an attempt has been made to study the zone center phonons in RMnO_3 ($R = \text{Pr, Eu, Tb, Dy, Ho}$) for the first time using SRFCM. We have used nine valence force constants $K_1(\text{Mn-O2})$, $K_2(\text{Mn-O1})$, $K_3(\text{Mn-O2})$, $K_4(\text{R-O1})$, $K_5(\text{R-O2})$, $K_6(\text{R-O1})$, $K_7(\text{R-O2})$, $K_8(\text{R-O1})$, $K_9(\text{R-O2})$; and eight bending force constants $H_1(\text{O1-R-O1})$, $H_2(\text{O1-R-O1})$, $H_3(\text{O1-R-O1})$, $H_4(\text{O1-R-O2})$, $H_5(\text{O1-R-O2})$, $H_6(\text{O2-R-O2})$, $H_7(\text{O2-R-O2})$ and $H_8(\text{O2-R-O2})$ at various inter-atomic distances and angles as shown in Table 1 (only for PrMnO$_3$).

![Figure 1](image)

Figure 1
The structure of Orthorhombic RMnO_3 ($R = \text{Pr, Nd, Eu, Gd, Tb, Dy, Ho}$) compounds at room temperature, belonging to Pbnm space group. The structure has four formulae unit with R atoms, Mn atoms and O atoms (O1 and O2).

Table 1: Force constant, Coordination number, Inter-atomic Distances (Å) and Angles (deg) and Force constant values (N/cm) for Orthorhombic PrMnO_3

Force constant	K_1	K_2	K_3	K_4	K_5	K_6	K_7	K_8	K_9	H_1	H_2	H_3	H_4	H_5	H_6	H_7	H_8		
Coord. Number. Distance/ Angle	8	8	8	4	8	4	8	4	8	8	8	8	8	4	4	8	8	7	8
Force constant values	1.91	1.95	2.21	2.36	2.40	2.48	2.62	3.17	3.52	89	67	110	90	56	66	160	120		

Force constant	K_1	K_2	K_3	K_4	K_5	K_6	K_7	K_8	K_9	H_1	H_2	H_3	H_4	H_5	H_6	H_7	H_8
Coord. Number. Distance/ Angle	0.597	0.535	0.950	0.456	0.019	0.311	0.382	0.335	0.598	0.432	0.413	0.404	0.373	0.338	0.329	0.136	0.022
Results and Discussions

A systematic variation in the most of the force constants is seen throughout the series. It was interesting to observe that although, the interatomic distances for K1 and K3 between Mn and O2 atoms remain nearly unchanged from Pr to Ho but the force constant exhibited a uniform increase. This behaviour can be related to the increase in distortion of MnO6 octahedra. Further, as shown in Table 1 the force constant K3 (0.950 N/cm) is quite large when compared with the similar force constant obtained in studies of NdNiO3 [19] and NdGaO3 [20] (0.620 N/cm). A similar kind of behaviour of large force constant between Mn and O2 atoms was observed in pyrochlore manganates [21]. This may be one of the possible reasons of associated CMR properties of manganese compounds. To account for a drastic change in resistivity and a low critical temperature in such materials, it should be noted that the double exchange model must be combined with the effect of the Jahn-Teller distortion of MnO6 octahedra [22]. This effect promotes carrier localization and dresses charge carriers via cloud of phonons. It is in this respect where the large interatomic force between Mn and O2 atoms plays an important role, being a part of the distortion of the MnO6 octahedra. The force constants between R and O1 atoms, K4 and K6 increase with decrease of R-O1 distance almost uniformly throughout the series. The force constant K8 (R-O1) changes by a small amount as the R-O1 distance also shows the similar behavior. The force constants K5, K7 and K9 also show a uniform increase. Although force constant K5 is very

Modes	*Pr	Pr	*Eu	Eu	*Tb	Tb	*Dy	Dy	*Ho	Ho
A_g	491	491	501	501	509	509	513	513	520	520
B_{1g}	607	607	610	610	612	612	614	614	615	615
B_{2g}	627	611	621	621	624	624	617	617		
B_{3g}	400	429	432	432	432	432	454	454		

Table 2: *Observed [15] and Calculated Raman Wave Numbers (cm⁻¹) for Orthorhombic RMnO₃ (R = Pr, Eu, Tb, Dy, Ho)
small but K9 shows comparatively a large value. The bending force constants H1-H4 show a very small change in force constant values while H7 and H8 exhibit uniformly increasing values.

The calculated Raman frequencies in Table 2 agreed satisfactorily with the observed values [15]. The assignment of infrared frequencies as shown in Table 3 has been done for the first time. Still a precise experimental analysis of infrared frequencies is needed to verify the results of present calculations. The potential energy distribution (PED) for most of the force constant is found to be almost similar throughout the series. The PED showed that high wave numbers are dominated by stretching force constants involving Mn and O atoms and bending force constants having R and O atoms. Therefore, the symmetric stretching of the basal oxygens of the octahedra, around 610 cm⁻¹ (B1g symmetry); the asymmetric stretching at about 490 cm⁻¹ (A₅ symmetry) associated with the Jahn-Teller distortion is expected. The A₅ mode (324 cm⁻¹- 395 cm⁻¹) showing a drastic increase in frequency is purely a stretching mode dominated by K9 (R-O2). Most of the lower wave number modes have a convincing influence by R-O bending and stretching force constants. For all the compounds of the orthorhombic RMnO₃ series, we calculated the eigen vectors

Modes	Pr	Eu	Tb	Dy	Ho
B1u	608	611	612	614	617
	569	581	581	580	582
	485	492	509	514	516
	303	323	328	332	338
	205	213	214	214	223
	141	152	158	159	161
	133	135	142	144	143
	0	0	0	0	0
B2u	614	612	617	620	620
	571	582	582	580	580
	467	494	498	500	511
	389	395	406	417	410
	290	304	309	312	318
	223	229	232	234	235
	201	206	208	208	213
	177	176	180	179	178
	132	142	148	148	149
	0	0	0	0	0
B3u	535	538	551	558	562
	484	505	515	519	522
	431	458	463	465	474
	343	384	398	406	419
	315	320	318	316	315
	244	268	272	277	289
	181	181	185	184	184
	131	137	143	144	143
	106	115	118	120	122
	0	0	0	0	0
representing the displacements of various atoms. It was observed that for larger wave numbers, the displacement of O atoms is important whereas for smaller wave numbers, the displacement of R atoms dominates as given in Table 4 and Table 5 only for PrMnO₃. Vibrations of several atoms are involved in some middle order modes.
Table 5: Calculated Infrared Wave Numbers (cm⁻¹) of PrMnO₃ along with their Eigen-vector Lengths representing Atomic Displacements for various Atoms

Modes	Wave-numbers	Mn	Mn	Mn	Pr	Pr	O1	O1	O2	O2
B1u	606	-0.02	-0.02	0.01	-0.10	0.95	0.11	-0.06	0.25	
	569	0.02	-0.53	0.03	0.01	-0.10	0.84	-0.04	-0.02	
	485	0.08	-0.05	-0.27	-0.07	0.09	0.03	0.94	-0.16	
	303	-0.19	0.01	-0.17	-0.35	-0.26	0.02	0.12	0.86	
	205	0.95	0.01	0.20	-0.20	-0.05	-0.01	0.00	0.15	
	141	-0.24	-0.25	0.76	-0.48	-0.01	-0.17	0.17	-0.12	
	133	-0.07	0.81	0.23	-0.14	-0.04	0.50	0.08	-0.07	
	0	0.00	0.00	0.47	0.76	0.00	0.00	0.26	0.36	
B2u	614	-0.01	-0.03	0.00	0.07	0.04	0.02	0.93	-0.25	0.14
	571	0.02	-0.53	0.02	0.06	-0.06	0.00	-0.14	-0.01	0.83
	467	-0.01	-0.01	-0.03	-0.30	-0.22	0.21	0.88	0.03	0.18
	389	-0.04	0.00	0.10	-0.04	-0.07	0.96	0.01	0.19	0.01
	290	-0.27	0.01	-0.08	-0.10	0.03	-0.08	-0.24	-0.15	0.02
	223	-0.14	0.42	0.00	0.81	-0.32	0.01	-0.08	0.06	0.17
	201	0.93	0.10	0.19	0.06	-0.06	-0.01	-0.07	-0.05	0.03
	177	-0.20	0.04	0.97	-0.07	-0.03	-0.12	0.00	0.01	0.01
	132	-0.02	0.56	-0.08	-0.56	-0.46	-0.01	0.17	0.35	-0.10
	0	0.00	0.47	0.00	0.00	0.76	0.00	0.26	0.36	0.00
B3u	535	-0.25	0.07	-0.04	-0.21	-0.07	0.27	0.59	-0.49	0.46
	484	0.15	-0.05	0.10	-0.28	0.03	0.85	-0.21	-0.10	0.33
	431	-0.21	0.10	-0.04	-0.04	0.19	0.30	0.16	0.81	0.35
	343	-0.04	-0.53	0.02	-0.30	0.22	-0.14	0.57	0.15	-0.45
	315	0.05	0.82	-0.02	-0.12	0.13	-0.09	0.25	0.01	-0.31
	244	-0.25	-0.14	-0.01	0.21	-0.19	0.07	-0.16	-0.05	0.24
	181	-0.26	0.03	0.95	0.14	0.05	0.03	0.06	0.00	-0.07
	131	-0.06	-0.03	-0.06	0.12	0.93	0.00	-0.19	-0.24	0.15
	106	0.71	-0.06	0.29	-0.40	0.05	-0.15	0.02	0.06	0.41
	0	0.47	0.00	0.00	0.76	0.00	0.26	0.36	0.00	0.00

References
1. Kusters RM, Singleton J, Keen DA, McGreevy R, Hayes W, Physica B: 1989, 155:362.
2. von Helmholt R, Wecker J, Holzapfel B, Schultz L, Samwer K: Phys Rev Lett 1993, 71:2331.
3. Jin S, Tiefel TH, McCormack M, Fastnacht RA, Ramesh R, Chen LH: Science 1994, 64:413.
4. Tokura Y, Urushihara A, Moritomo Y, Arima T, Asamitsu A, Kido G, Furukawa N: Science 1994, 63:3931.
5. Munoz A, Casais MT, Alonso JA, Martinez-Lope MJ, Martinez JL, Fernandez-Diaz MT: Inorg Chem 2001, 40:1020.
6. Munoz A, Alonso JA, Casais MT, Martinez-Lope MJ, Martinez JL, Fernandez-Diaz MT: J Phys: Condensed Matter 2002, 14:3285.
7. Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y: Nature London 2003, 426:55.
8. Kimura T, Ishihara S, Shintani H, Arima T, Takahashi KT, Ishizaka K, Tokura Y: Phys Rev B 2003, 68:060403(R).
9. Goto T, Kimura T, Lawes G, Ramirez AP, Tokura Y: Phys Rev Lett 2004, 92:257201.
10. Dabrowski B, Kolesnik S, Baszczuk A, Chmaissem O, Maxwell T, Mais J: J Solid State Chem 2005, 178:629.
11. Martin Carron L, de Andres A: J Alloys and Compounds 2001, 323:417.
12. Martin Carron L, de Andres A, Martinez-Lope MJ, Casais MT, Alonso JA: J Alloys and Compounds 2001, 323:494.
13. Martin Carron L, de Andres A, Martinez-Lope MJ, Casais MT, Alonso JA: Phys Rev B 2002, 66:174303.
14. Wang Wei-Ran, Xu Da Peng, Su Wen Hui: Chin Phys Lett 2005, 22:705.
15. Iliev MN, Abrashev MV, Lavdieriere J, Jandl S, Gospodinov MM, Wang YQ, Sun YY: Phys Rev B 2006, 73:064302.
16. Gupta HC, Sharma V, Tripathi U, Rani N: J Phys Chem Solids 2005, 66:1314.
17. Alonso JA, Martinez-Lope MJ, Casais MT, Fernandez-Diaz MT: Inorg Chem 2000, 39:917.
18. Dabrowski B, Kolesnik S, Baszczuk A, Chmaissem O, Maxwell T, Mais J: J Solid State Chem 2005, 178:629.
19. Gupta HC, Singh MK, Tiwari LM: J Phys Chem Solids 2003, 64:531.
20. Rani N, Gohel VB, Gupta HC, Singh MK, Tiwari LM: J Phys Chem Solids 2001, 62:1003.
21. Brown S, Gupta HC, Alonso JA, Martinez-Lope Mj: Phys Rev B 2004, 69:054434.
22. Mills AJ, Littlewood PB, Shraiman BI: Phys Rev Lett 1995, 74:5144.