Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Keywords: Viral infection, Viral disease, Antiviral therapy, Nucleic acid therapy, RNA interference, GalNAc conjugates.

The growing use of short-interfering RNA (siRNA)-based therapeutics for viral diseases reflects the most recent innovations in anti-viral vaccines and drugs. These drugs play crucial roles in the fight against many hitherto incurable diseases, the causes, pathophysiologies, and molecular processes of which remain unknown. Targeted liver drug delivery systems are in clinical trials. The receptor-mediated endocytosis approach involving the abundant asialoglycoprotein receptors (ASGPRs) on the surfaces of liver cells show great promise. We here review N-acetylgalactosamine (GalNAc)-siRNA conjugates that treat viral diseases such as hepatitis B infection, but we also mention that novel, native conjugate-based, targeted siRNA anti-viral drugs may also cure several life-threatening diseases such as hemorrhagic cystitis, multifocal leukoencephalopathy, and severe acute respiratory syndrome caused by coronaviruses and human herpes virus.

1. Introduction

RNA molecular biology has become a prominent feature of medical research in recent years. Genome functional analysis, RNA processing and stability screening, transcriptional assays, and translational biology, virology, and cancer approaches exploit small (15–20 nucleotide) non-coding RNAs that regulate the expression of entire genomes [1]. These RNAs are subdivided by their biological roles or origins; short interfering RNAs (siRNAs) and microRNAs (miRNAs) play unique and important roles in RNA interference mechanism (RNAi) pathways [2–4], activated when cells encounter a double-stranded RNA (dsRNA) that is often a sign of (possibly fatal) infection [5]. We evaluate the anti-viral efficacies reported in clinical trials of N-acetylglucosamine (GalNAc)-based siRNA treatments for several viral diseases including Hepatitis B. It is hoped that several targeting drug delivery systems will become available in the next few years.

2. RNAi mechanism

The RNAi mechanism was initially discovered as a form of miRNA-mediated silencing of the Caenorhabditis elegans genome [6]. A trigger RNA termed a long dsRNA or an miRNA primary transcript is cleaved and processed (by the RNase III enzymes Dicer and Drosha) into siRNAs with two-to-four-nucleotide overhangs on the 3′-ends of each strand [7, 8] (Fig. 1). Then, the siRNAs are embedded in an effector complex termed the RNA-induced silencing complex (RISC) within which the siRNAs are matched via their stable 5′-ends, and then hybridize with the target mRNA sequence guided by the catalytic RISC protein, a member of the argonaut family (Ago2); ATP-dependent mRNA cleavage follows [9–12].

Each siRNA is associated with an Ago2-family protein to form a sequence- specific gene-silencing ribonucleoprotein exhibiting specific base-pairing between the small (guide) RNA and its target mRNA sequence [13]. Recent studies on the molecular impacts of endogenous
RNAi mechanisms have paved the way for use of siRNAs as nucleic acid medicines for several incurable diseases [14–17]. Gene-targeting studies involving novel siRNAs have reduced immune activity after organ transfer and off-target serum stability and increased siRNA potency [18, 19]; it is possible to selectively control certain genes expressed in patients with serious genetic or viral diseases [20]. However, effective delivery of therapeutic siRNAs to target tissues remains challenging. Systemically injected nucleic acids must resist nuclease degradation in extracellular spaces, bypass renal clearance, evade sequestration by plasma proteins, avoid removal by the reticuloendothelial system, cross the capillary endothelium of the desired target cells via a paracellular or transcellular route, traverse the plasma membrane, escape the endolysosomal system prior to lysosomal degradation or re-export via exocytosis, and attain the required intracellular site of action. To date, most oligonucleotide therapeutics have focused on either local or liver delivery [21–24].

3. Viruses

The virosphere is continuing to expand rapidly; new viruses are identified every year [25,26]. The genetic-based classification of human virions is shown in Table 1. Although viral protein structures and associations are rather well-known, the effects of the environment and host replicative properties on viral infections remain poorly understood, as do the maintenance of protein structure and function over the course of evolution [28–32]. This convergent evolution of gene transfer has played key roles in distributing certain protein folding patterns throughout the orders of the phylogenetic tree, establishing pathologically distinct viruses. Viral pathogens have caused successive pandemics (Table 2) [29,33,34], SARS CoV-2 is an excellent example [46]. The RNAi mechanism giving rise to antiviral siRNAs was first discovered using the single-stranded negative-sense RNA respiratory syncytial virus (RSV), a human pneumovirus causing respiratory tract infections [47]. Great efforts were then made to develop siRNA-based viral vaccines against DNA and RNA viruses [48–51].

4. Role of siRNAs in viral disease

siRNAs can be delivered to cells by viral and non-viral vectors. Synthetic siRNAs against the Influenza-A virus, incorporated in a lentiviral vector and driven by the polymerase U6 promotor, exhibited preventive and therapeutic effects when given intranasally to mice [52–54]. A synthetic siRNA against the coxsackievirus delivered to HeLa cells via oligofectamine-mediated transfection reduced viral replication [55,56].
Table 1
Classification of virus based on their genetic integrity for human specific virions [27].

Type	Order/class/family	Family/subfamily	Genera	Species	Prominently disease-causing genus	Viral sp.	Disease	Host			
ssDNA											
1.	Parvoviridae	Densovirinae	8	17	–	–	–	–			
					Erythroparvirus	Erythrovirus B19	–	Erythema infectiosum, Defective viruses	–		
					Dependoparvovirus	Adeno-associated dependoparvovirus A 2(AAV2)	–	–			
								Insects, shrimps and chordates	–		
		Hamaparvovirinae	5	13	–	–	–	–			
		Parvovirinae	10	> 50	–	–	–	–			
					Erythroparvirus	Erythrovirus B19	–	Erythema infectiosum, Defective viruses	–		
					Dependoparvovirus	Adeno-associated dependoparvovirus A 2(AAV2)	–	–			
								Insects, shrimps and chordates	–		
2.	Circoviridae	–	2	> 50	Circovirus	Porcine circovirus	–	Post weaning multi systemic wasting syndrome	–		
					Cyclovirus	Human associated cyclovirus	–	Respiratory and neurological infections in humans	–		
								Mammals, birds and insects	–		
3.	Anelloviridae	–	14	> 50	Alpha, Beta, Gamma and the tatorquevirus	Torquevirus	–	May be associated with hepatitis, pulmonary diseases, hematologic disorders, myopathy and lupus	–		
								Humans and other primates	–		
dsDNA		Papovaviricetes	52	> 50	First papillomavirinae	> 100 sp.	–	HPV – 1			
		Papillomaviridae	52	> 50	Alpha, beta, delta and gamma polymavirinae	BK, JC and SV40 viruses	–	Aves, humans and other primates	–		
		Polyomaviridae	4	> 50	Human adenovirus	Serotypes	–	Humans			
		Adenoviridae	5	> 50	Mastadeno virus	Human adenovirus, Serotypes	–	–			
		Herpesviridae	4	13	Alloherpesvirida	–	–	–			
		Herpesviridae	13	> 50	Betaherpesvirida	Cytomegalovirus, Rossello virus	–	HHV5, HHV6	–		
								Human, monkeys	–		
		MalacoHerpesvirida	2	2	–	–	–	–			
		Chordopoxviridae	18	> 50	Orthopoxvirus	Vaccinia virus, Variola virus	–	–			
								Smallpox, Respiratory diseases and Skin lesions	–		
								Humans and mammals	–		
RT Viruses		Hepadnaviridae	–	5	Orthohepadnavirus	Hepatitis B virus	–	Hepatitis, Hepatocellular carcinoma, AIDS, Malignancies,			
		Retroviridae	6	49	Lentivirus,alpharetrovirus, deltaretrovirus	Human immunodeficiency virus 1 and 2, Avian leksosis virus, Bovine leukemia virus	–	HHV5, HHV6	–		
								Human, monkeys	–		
		Spumaretrovirinae	5	19	Simiispumavirus	Simian foamy virus	–	Life-long persistent infections	–		
								Humans and mammals	–		
dsRNA		Reoviridae	9	> 50	Orthoreovirus	Mammalian orthoreovirus	–	Respiratory tract disease, gastroenteritis, biliary atresia	–		
								Mammals	–		
ssRNA		Coronaviridae	1	1	–	–	–	Mainly respiratory diseases (pneumonia) and gastroenteritis	–		
		Letovirinae	4	> 50	Alphaacoronavirus, Betacoronavirus, Gammacorovirus, Delactacorovirus	CoV Strains	–	Vertebrates	–		
		Orthocoronavirina	4	> 50	Enteroviruses	Poliovirus	–				
						Foot-and-mouth disease virus	–	Paralysis (non-polio, polio-type), Hand-foot-and-mouth disease	Human and Mammals	Mammals	
		Picornaviridae	63	> 50	Aphthoviruses	Rhinovirus	–	Acute febrile respiratory tract infection	Aquatic birds, Human, Pig, Horse, Seals	Humans and rodents	
						Foot-and-mouth disease virus	–				
		Orthomyxoviridae	7	9	Influenza A virus	H1N1	–	Acute febrile respiratory tract infection	Aquatic birds, Human, Pig, Horse, Seals	Humans and rodents	
		Orthomyxoviridae	7	9	Influenza A virus	H1N1	–	Acute febrile respiratory tract infection	Aquatic birds, Human, Pig, Horse, Seals	Humans and rodents	
		Bunyaviridae	7	45	Hantaanorthohantavirus	Hantavirus	–	hemorrhagic fever, renal syndrome, pulmonary syndrome	Humans and mammals	Mammals	
		Bunyaviridae	7	45	Hantaanorthohantavirus	Hantavirus	–	hemorrhagic fever, renal syndrome, pulmonary syndrome	Humans and mammals	Mammals	
		Mononegavirales	14	> 50	Rubulavirus	Measles morbillivirus, Mumps rubulavirus	–	Measles and mumps	Humans, Apes, Pigs, Dogs		
		Paranyxoviridae	14	> 50	Rubulavirus	Measles morbillivirus, Mumps rubulavirus	–	Measles and mumps	Humans, Apes, Pigs, Dogs		
		Rhabdoviridae	30	> 50	Lysavirus	Rabies lyssavirus	–	Fatal encephalitis	Humans and mammals	Human, cattle, rodents, birds	
		Pneumoviridae	2	5	Metapneumovirus, Orthopneumovirus	Human respiratory syncytial virus	–	Respiratory tract diseases			

(continued on next page)
Table 1 (continued)

Type	Order/class/ family	Family/subfamily	Genera	Species	Prominently disease-causing genus	Viral sp.	Disease	Host
Filoviridae			6	11	Ebola virus	Zaire ebolavirus	Hemorrhagic fever	Rats, Humans, primates
16. Unassigned	Deltaivirus	1	1	1	Hepatitis delta virus	HDV	Hepatitis	Human, snakes, Birds

Table 2

The major virus-based flu pandemics and their impact on history.

Name of the pandemic	Year	Deaths	First outbreak	Virus or Serotype	Refs.
Spanish Flu	1918–1920	20–50 million	United States in 1918	Influenza	[35]
Asian Flu	1957–1958	2 million	China in 1956	H2N2 subtype of the Influenza A virus	[36]
Hon-Kong Flu	1968–1969	1 million	Hong Kong in 1968	H3N2 strain of the Influenza A virus	[37]
Russian Flu	1977–1978	1.5 million	Northern China in 1977	Influenza A virus - H1N1 strain	[38]
Asiatic Flu	1989–1992	1 million	Bakundang of the Russian Empire in 1989	Influenza A virus subtype H2N2	[39]
SARS CoV	2002–2004	> 1000	Guangdong province of southern China in 2002	SARS coronavirus of the CoV Strains	[40]
HIV/AIDS Pandemic	2001–2012	36 million	Democratic Republic of the Congo in 1976	HIV	[41]
Swine Flu	2009–2010	12,469	United States in 2009	H1N1 influenza virus	[42]
Ebola outbreak	2018–2020	> 29,000	North Kivu Province	Zaire ebolavirus	[43]
SARS CoV 2	2019	847,986	Wuhan, Hubei Province, China in 2020	Respiratory Syncytial Virus - Coronavirus	[44]
Middle East respiratory syndrome	2020	2562 with 881 associated	Saudi Arabia in 2020	MERS CoV of the CoV Strains	[45]

siRNAs developed against CoV-SARS (pSUPER and pSilent1-U6) transfected to cells with the aid of lipofectamine inhibited N gene expression; similarly, siRNA Pbs/U6 given intratracheally to mice reduced viral replication [57,58]. A synthetic siRNA against the same RNA virus given intranasally to monkeys reduced infection and symptoms [59,60]. Similarly, a Pcdna3/U6 siRNA against the food-and-mouth-disease virus (FMDV) transfected into BHK21 cells using lipofectamine inhibited viral protein 1 expression and reduced viral replication [61,62]. In terms of DNA viruses, synthetic siRNAs against human papilloma virus (HPV) and hepatitis B virus (HBV) reduced viral numbers and inhibited S protein production in several in vitro studies using differentiating keratinocytes. Fucose compounds in HPV were targeting lipofectamine-transfected at short time intervals into Hep-G2 cells and ameliorated the effects of viral infection [63–71].

Chemically modified siRNAs targeting the Zaire ebolavirus (ZEBOV) prevented the synthesis of the viral polymerase, and proteins 24 and 35, in rhesus macaques [49]. TKM-100201 and TKM-130803 siRNAs against ZEBOV target the mRNAs encoding the polymerase-L membrane-associated viral protein 24 and the polymerase cofactor of viral protein 35 specific to the West African Makona strains when delivered via nanoparticles. However, the Phase II clinical trial results were poor, and the trial was terminated early [72,73]. The FDA-approved (in 2028 and 2019) nucleic acid therapeutics based on antisense oligonucleotides include pegaptanib, mipomersen, eteplirsen, defibrotide, nusinersen, inotersen, patisiran, and givosiran [35,72].

5. GalNAc-siRNA conjugates: a leading way for siRNA based antiviral therapeutics

siRNA-based treatments may be very valuable, but delivery remains problematic. Injected siRNAs may be degraded by nucleases in plasma, immune cells, and the kidney [74–78], greatly reducing the half-lives. Free siRNA does not readily cross cell membranes, given its negative charge and high molecular weight [79]. Occasionally, siRNAs may trigger non-specific side-effects. Nano-carriers and endosome-based delivery systems have been developed. Also, siRNAs have been modified via addition or removal of sugars, bases, or overhangs, and substitution of uridine residues [80–82]. GalNAc-siRNA conjugate is a trimer that binds firmly to a major hepatocellular protein, the asialoglycoprotein receptor (ASGPR) [83]. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry was used to assess the chemical integrity of GalNAc-siRNA conjugates. In preclinical studies, these conjugates successfully entered the livers of both rodents and nonhuman primates and are now the subjects of several clinical trials (Table 3) [84]. Effects are evident when the trimer level exceeds 6 μg/mg ASGPR.

The liver constitutes one-third of the total reticuloendothelial mass of the human body, playing major roles in defense against a wide range of microorganisms [87]. Liver integrity is compromised by microbial pathogens that cause acute liver failure, hepatic fibrosis, and cirrhosis [88]. Hepatitis B is one such pathogen [89,90]. It was earlier considered that the infection was incurable, but it can now be eradicated using nucleic-based anti-viral drugs (NUCs) including lamivudine, telbivudine, adeovir, entecavir (ETV), tenofovir and tenofovir disoproxil (TDF), and tenofovir alafenamide (TAF) [91–97]. RNAi-based drugs may treat several severe viral infections (including EBOLA infections) for which effective drugs and vaccines are lacking. GalNAc-siRNA conjugates bind to the approximately 10⁶ ASGPR molecules on the sinusoidal cellular membrane of a hepatocyte. The conjugates are then endocytosed and accumulate in clathrin-coated pits [98]. When the pH falls, the conjugates are released into the cellular lumen and return to the cell surface [84]. Soon thereafter, the sialyl-GalNAc linkers are removed from siRNA, triggering transactivation of the RNA-binding protein and RNAi activity within cells (Fig. 2).

The first-generation drugs (the two synthetic siRNAs of ARC-520) [99] were delivered as GalNAc conjugates to patients with chronic HBV infection; the preclinical study of Arrowhead Pharmaceuticals is now entering the clinical phase. ARC-520 was well-tolerated in healthy volunteers (trials NCT02452528, NCT01872065, and NCT02604212) [100]. The drug targets the common regions at the 3' UTR ends of HBV transcripts from episomal DNA; the drug is linked to a dynamic poly-conjugate (DPC) that facilitates cellular uptake by protecting it from degradation when given intravenously [101,102].

The phase II trials (nos. NCT02577029, NCT02065336, and NCT02604199) revealed reduced HBsAg expression in patients taking nucleotide analogs [103,104]. The second-generation ARC-521 reduced
Table 3
GalNAc-siRNA conjugate based clinical studies, their targets, action and other details.

Drug	Condition	Target	Delivery/Mode	Phase	Status	Sponsors	Patents ID
ARC-520	Chronic HBV	Surface proteins	Intravenous	II	Terminated	Arrowhead Pharmaceuticals	NCT02452528, NCT01872065, NCT02604212
	infection		injections				
	HBV infection	Surface proteins	subcutaneously	II	Terminated	Arrowhead Pharmaceuticals	NCT02577029
		Viral RNA		I	Terminated	Alnylam Pharmaceuticals	NCT02655336, NCT02604199
DCR-HBVS	Hepatitis B	HBV gene	GalNAc-siRNA	I/II	–	Dicerna Pharmaceuticals	NCT03772249
		conjugate	conjugate				
ALN-HBV02	Hepatitis B	HBV gene	GalNAc-siRNA	I/II	–	Alnylam Pharmaceuticals	NCT03672188
(VIR-2218)		conjugate	conjugate				
AB-729	Hepatitis B	HBV gene	GalNAc-siRNA	Preclinical	–	Arbutus Biopharma Corporation	–
		conjugate	conjugate				
RBD1016	Hepatitis B	HBV gene	GalNAc-siRNA	Preclinical	–	Suzhou Ribo Life ScienceCo., Ltd	–
		conjugate	conjugate				
JNJ-3989	Hepatitis B	HNV viral proteins	GalNAc-siRNA	II	Completed/	Arrowhead/INJ	NCT03659947, NCT03982186, NCT04129554
(ARO-HBV)		conjugate	conjugate		Terminated		
ARB-1467	Hepatitis B	HBV gene	LNP	Ila	Completed	Arbutus Biopharma Corporation	NCT02631096
TKM-130803	Ebola virus	Viral proteins	Intravenous	II	Terminated	Arbutus Biopharma Corporation	PACTR201501000997429
	disease		infusion				
TKM-100201	Ebola virus	Viral proteins	Intravenous	I	Terminated	Arbutus Biopharma Corporation	NCT01518881
	disease		infusion				

Fig. 2. GalNAc-siRNA conjugate mediated gene silencing. 1. The GalNAc-siRNA binds to the ASGPR receptor molecule seen on the surface of the hepatocyte cellular membrane region firmly and enters the hepatocyte via the 2. endosome transfer by a process known as the endocytosis. 3. The sialyl-GalNAc linkers are degraded from the siRNA molecule and are transferred into the nucleus thereby provoking desired alterations in the target gene site. 4. The altered gene expression is then processed through the process of translation and the 5. target protein is achieved successfully. 6. The free ASGPR receptor molecules are then recycled back to their original form and replaced in the 7. Cellular membrane surface for further functions to be carried out.
the expression of HBsAg and viral DNA in a phase I trial (NCT02797522) [105]. Unfortunately, the trial was discontinued after lethal toxicity developed in non-human primates. Further studies showed that a GalNAc-conjugated siRNA targeting all HBV transcripts (JNJ-3989, formerly ARO-HBV) after subcutaneous administration exhibited fewer side-effects (trials NCT03982186, NCT04129554, and NCT03365947) [106,107]. The next-generation hepatitis B treatment uses a mouse adeno-associated virus (AAV)-LNA ASO-GalNAc conjugate; this reduces the level of membrane surface HBsAg to the lowest value found to date [108]. GalNAc-conjugated siRNAs targeting Epstein-Barr virus, cytomegalovirus, herpes simplex virus, parvovirus, adenovirus, and SARS-associated coronaviruses have been reported, but have not yet been tested in the SARS CoV-2 context [109-111].

GalNAc-siRNA conjugates are simpler, smaller, and more defined than the LNP formulations. GalNAc-siRNA is synthesized using a solid-state method and chemically defined via MS [112]. Initially a neo-glycopeptide (ah-GalNAc) was used to target a ligand composed of short, neutral, methyl phosphonate 8-mer oligonucleotides [113]. The linker length and sugar were then optimized, and a refined tris-galactoside structure used to deliver lipids and ASOs [114]. Recently, sequential conjugation of GalNAc residues via nucleoside linkages has increased drug potencies [115], enhancing hepatocyte oligonucleotide delivery to ~10-fold that of free systems in preclinical models [116].

Recent clinical trials using GalNAc-siRNA conjugates have been performed by Alnylam, Arrowhead, and Dicerna Pharmaceuticals. Alnylam is evaluating six GalNAc-siRNA conjugates in three phase III trials that widely target liver diseases. The first clinical trial evaluated revusiran (ALN-TTRsc) that targets the transthyretin (TTR) protein in an effort to treat TTR-mediated amyloidosis (trial nos. D2, D1–64, D1–65).

6. Conclusion

siRNAs that target key signaling genes may not only improve drug efficiencies but also enhance drug uptake and distribution by the native receptors based therapeutic approaches at cellular levels influencing chemical modifications in delivery mechanisms. We have reviewed the role played by GalNAc conjugates in oligonucleotide-based therapeutic approaches that exhibit great potential in targeted drug delivery system. Recently, ASO conjugated to 5′ nucleic acids has been shown to be maximally amenable to solid-phase synthesis, and to target hepatocytes more effectively, being tested against various disease conditions and more novel drugs based on native cell and tissue specific conjugates are yet to come in the future. These challenges serve to be the major achievements of pharmaceutical industries in the upcoming era.

Funding

This research received no external funding.

CRediT authorship contribution statement

Arun Meyyazhagan: Conceptualization, Writing – review & editing, Coordinated the working group. Shamughavel Piramanyagama: Conceptualization, Writing – review & editing. Balamuralikrishnan Balasubramanian: Conceptualization, Writing – original draft, Selected bibliographic sources, Coordinated the working group. Writing – review & editing. Lokesh Thangamani: Writing – original draft. Karthika Pushparaj: Selected bibliographic sources. Figures. Murugesh Easwaran: Selected bibliographic sources, Writing – review & editing. Jeyakumar Natarajan: Selected bibliographic sources, Writing – review & editing. All authors have read and agreed to the published version of the manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors thank the DBT-Bioinformatics Centre at the Department of Bioinformatics, Bharathiar University for the computational facilities. Lokesh Thangamani acknowledge the financial support received through the award of ICMR-Senior Research Fellow (Award Letter No: BMI/11/01/2020). All the authors were grateful and extended their appreciation to the authorities for their support.

References

[1] R.W. Carthew, E.J. Sontheimer, Origins and mechanisms of miRNAs and siRNAs, Cell 136 (2009) 642-655, https://doi.org/10.1016/j.cell.2009.01.025.
[2] R.C. Wilson, J.A. Doudna, Molecular mechanisms of RNA interference, Annu. Rev. Biophys. 42 (2013) 217-239, https://doi.org/10.1146/annurev-biophys-033012-134949.
[3] M.U. Kalikoon, M.T.Y. Lam, C.K. Glass, Non-coding RNAs as regulators of gene expression and epigenetics, Cardiovasc. Res. 90 (2011) 430–440, https://doi.org/10.1093/cvr/cvr997.
[4] P.J. Barbati, H.Y. Chang, Long noncoding RNAs: cellular address codes in development and disease, Cell 152 (2013) 1298–1307, https://doi.org/10.1016/j.cell.2013.02.012.
[5] A. Fire, S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, C.C. Mello, Potent and specific genetic interference by double-stranded RNA in caenorhabditis elegans, Cell 95 (1998) 661–672, https://doi.org/10.1016/S0092-8674(05)80020-0.
[6] R.C. Lee, R.L. Feinbaum, V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell 75 (1993) 843–854, https://doi.org/10.1016/0092-8674(93)90259-X.
[7] E. Bernstein, A.A. Caudy, S.M. Hammond, G.J. Hannon, Role for a bidentate bidentateribonucleosine in the initiation step of RNA interference, Nature 409 (2001) 363–366, https://doi.org/10.1038/35051310.
[8] D.H. Kim, M.A. Behlke, S.D. Rose, M.S. Chang, S. Choi, J.J. Rossi, Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy, Nat. Biotechnol. 23 (2005) 222–226, https://doi.org/10.1038/nbt1051.
[9] P.D. Zamore, T. Tuschl, P.A. Sharp, D.P. Bartel, RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals, Cell 101 (2000) 25–33, https://doi.org/10.1016/S0092-8674(00)00620-0.
[10] S. Chung, Y.J. Kim, S. Kim, H.O. Park, Y.C. Choi, Chemical modification of siRNAs to improve serum stability without loss of efficacy, Biochem. Biophys. Res. Commun. 342 (2006) 919–927, https://doi.org/10.1016/j.bbrc.2006.02.049.
[11] J.-J. Song, Crystal structure of argonauta and its implications for RISC slicer activity, Science 305 (2004) 1434–1437, https://doi.org/10.1126/science.1102314 (80-3).
[12] G. Meister, M. Landthaler, A. Patkaniovskya, V. Dorsett, G. Teng, T. Tuschl, Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs, Mol. Cell 15 (2004) 185–197, https://doi.org/10.1016/j.molcel.2004.07.007.
[13] G. Meister, T. Tuschl. Mechanisms of gene silencing by double-stranded RNA, Nature 431 (2004) 343–349, https://doi.org/10.1038/nature02873.
[14] Y.K. Oh, T.G. Park, siRNA delivery systems for cancer treatment, Adv. Drug Deliv. Rev. 61 (2009) 850–862, https://doi.org/10.1016/j.addr.2009.04.018.
[15] A. Pal, A. Ahmad, S. Khan, I. Sakabe, C. Zhang, U.N. Kasid, I. Ahmad, Systemic delivery of RafsilRNA using cationic cardiolipin liposomes silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate cancer, Int. J. Oncol. 26 (2005) 1087–1091, https://doi.org/10.3892/ijo.26.4.1087.
[16] C.N. Landen, A. Chavez-Reyes, C. Bucana, R.M. Deavers, G. Lopez-Berstein, A.K. Sood, Therapeutic Ephi2 gene targeting in vivo using neutral liposomal small interfering RNA delivery, Cancer Res. 65 (2005) 6910–6918, https://doi.org/10.1158/0008-5472.CAN-05-0330.
[17] M.A. Rubin, Targeted therapy of cancer: new roles for pathologists—prostate cancer, Mod. Pathol. 21 (Suppl. 2) (2008) S4–55S, https://doi.org/10.1038/modpathol.2008.111.
[18] J.K. Watts, G.F. Deleavey, M.J. Danha, Chemically modified siRNA: tools and applications, Drug Discov. Today 13 (2008) 842–855, https://doi.org/10.1016/j.drudis.2008.05.007.
[19] P. Guo, G. Cohen, N.M. Snod, J. Trebylee, S. Hoeprich, S. Guo, Y. Shu, Engineering rna for targeted siRNA delivery and medical application, Adv. Drug Deliv. Rev. 62 (2010) 650–666, https://doi.org/10.1016/j.addr.2010.03.008.
[20] W. Ho, X.Q. Zhang, X. Xu, Biomaterials in siRNA delivery: a comprehensive review, Adv. Healthc. Mater. 5 (2016) 2715–2731, https://doi.org/10.1002/adhm.201600418.
[21] C.S. Shemesh, R.Z. Yu, H.J. Gau, P.F. Seth, E.E. Swayze, F.C. Bennett, R.S. Geary, S.P. Henry, Y. Wang, Pharmacokinetic and pharmacodynamic investigations of ION-353382, a model antisense oligonucleotide: using alpha-2-macroglobulin.
[115] S. Matsuda, K. Keiser, J.K. Nair, K. Charisse, R.M. Manoharan, P. Kretschmer, C. G. Peng, A.V. Kel’in, P. Kandasamy, J.L.S. Willoughby, A. Liebow, W. Querbes, K. Yucius, T. Nguyen, S. Milstein, M.A. Maier, K.G. Rajeev, M. Manoharan, siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes, ACS Chem. Biol. 10 (2015) 1181–1187, https://doi.org/10.1021/cb501028c.

[116] T.P. Prakash, M.J. Graham, J. Yu, R. Carty, A. Low, A. Chappell, K. Schmidt, C. Zhao, M. Aghajan, H.F. Murray, S. Riney, S.L. Booten, S.F. Murray, H. Gau, J. Crosby, W.F. Lima, S. Guo, B.P. Monia, E.E. Swayze, P.P. Seth, NAR breakthrough article targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice, Nucleic Acids Res. 42 (2014) 8796–8807, https://doi.org/10.1093/nar/gku531.