Reply: We agree with Dr. Glasser that the intraocular penetration of topical fluorometholone is lower than that of other steroids. We performed a similar study in which we compared the effects of diclofenac and fluorometholone in preventing postoperative breakdown of the blood–aqueous barrier and cystoid macular edema.\(^1\) We also compared the above-mentioned effects of diclofenac and betamethasone.\(^2\)

We observed that diclofenac was more effective than the steroid and that betamethasone induced elevation in intraocular pressure in postoperative pseudophakic eyes. We based the design of the present study on these findings. The most essential reason for selecting fluorometholone as the control drug was its similarity in appearance to nepafenac; this enabled us to perform a double-masked scientific comparison. Placebos with no active antiinflammatory effects were not used for ethical reasons.

Dr. Glasser also pointed out that dividing the financial disclosure statement between the abstract and the footnote may mislead the readers. When we submitted this paper for review, the financial disclosure statement was not divided between the abstract and the footnote. Having been published as such was not our intention, but we believe it to be the journal’s guideline.—Kensaku Miyake, MD, Ichiro Ota, MD, Goichiro Miyake, MD, Jiro Numaga, MD, PhD

Editors’ Note: The sentence about additional disclosures was intended to alert the reader to the financial connections of the authors. However, we appreciate Dr. Glasser’s comment and will now include all disclosure information in the financial disclosure section of the abstract.

REFERENCES

1. Miyake K, Masuda K, Shirato S, Oshika T, Eguchi K, Hoshi H, Majima Y, Kimura W, Hayashi F. Comparison of diclofenac and fluorometholone in preventing cystoid macular edema after small incision cataract surgery: a multicentered prospective trial. Jpn J Ophthalmol 2000; 44:58–67
2. Asano S, Miyake K, Ota I, Sugita G, Kimura W, Sakka Y, Yabe N. Reducing angiographic cystoid macular edema and blood–aqueous barrier disruption after small-incision phacoemulsification and foldable intraocular lens implantation; multicenter prospective randomized comparison of topical diclofenac 0.1% and betamethasone 0.1%. J Cataract Refract Surg 2008; 34:57–63

Assessing the value of simulator training on residency performance

Many residency programs, including ours at the University of California San Francisco, have acquired surgical simulator technology without persuasive peer-reviewed evidence to quantify its value in improving resident education and outcomes. Studies such as the one by Belyea et al.\(^3\) attempting to document the value of simulator training are important because of the significant cost of the technology relative to the budgets of most residency programs. However, we are concerned that the study design and results do not adequately support the conclusions.

Belyea et al. conclude that their study is the first to show that simulation will “decrease intraoperative complications.” However, in Table 2, there is no statistical difference in the mean complication rate or severity (\(P = .443\) and \(P = .701\), respectively). The complication rates with and without simulator training are 0.04% and 0.06%, respectively. This is puzzling because half the third-year residents in each group (53% and 52%) had complications, and these rates do not seem consistent with only 592 total cases being performed.

As with any retrospective study, it is difficult to control for important confounding variables. For example, there was a difference in the operative experience of the 2 groups prior to initiation of the study—a mean of 12.2 cases in the nonsimulator group versus 16.8 cases in the simulator group. This 38% difference in live surgical experience at this critical juncture of the learning curve could explain some of the difference in outcomes. Similarly, experience gained from cases performed with other attending surgeons during the study period might have affected resident performance, but this information was not reported.

Finally, the study compared resident groups from different time periods. Aside from the required 2 hours spent on the simulator, access to other improved methods of surgical education (in or outside the residency program) could have elevated the performance of the later group. Specifically, it would be difficult to control for the value of other learning exercises during the third year of residency, such as reading textbooks or viewing teaching videos online or at meetings.

With so many variables affecting resident surgical performance, quantifying the potential benefits of expensive technology, such as the Eyesi simulator (VRmagic Holding AG), is an important but challenging task. We applaud the authors for carefully studying this issue, but we are concerned that their paper may overstate the clinical impact of the Eyesi surgical simulator in residency programs.

Ayman Naseri, MD
San Francisco, California, USA
David F. Chang, MD
Los Altos, California, USA