Multi-Product Economic Inventory Policy with Time Varying Power Demand, Shortages and Complete Backordering

Sandeep Kumar¹, Mukesh Kumar², Manoj Sahni³,*

¹Department of Mathematics, Graphic Era Hill University, Dehradun, Uttarakhand, India
²Department of Mathematics, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
³Department of Mathematics, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India

Received December 4, 2020; Revised January 30, 2021; Accepted February 24, 2021

Abstract The present article elaborates a multi-product economic inventory model in which multiple items are considered with demand, which depends on time, abides power law, shortages, and complete backordering. The rate of production is greater than the rate of demand for each item. This type of demand pattern is accessible to various kinds of practical problems in the present modern era. In this paper, the production rate is assumed to be directly proportional to the rate of demand. In real situations, demand is always dependent on the price of any product, so it is also assumed that demand is depleted linearly with the price. This paper aims to fulfill the requirement of products and maximize the overall profit in any organization. Optimal values of involved costs, price, re-order point, and scheduling period are also calculated. In this work, the objective is to maximize the total profit and optimize production quantity. Optimization methods are used to obtain the maximum profit. Shortages are permitted and completely backordered. Total cost and production quantity models for deteriorating items have been developed. The study is validated with a numerical example, and sensitive analysis of the optimal solutions concerning main parameters is carried out using the software Mathematica. The tables are also shown for optimal values of the present model.

Keywords Inventory, Power Demand, Lot Size, Multi-Items, Shortages, Backordering

1. Introduction

In practical situations, customers' demand depends on time, and hence researchers presented some varying time models. Barbosa and Friedman [1] proposed a time-varying model for decaying items. Silver and Peterson [2] concludes that retail-level sales are proportional to displayed inventory, and more quantity of presented products will attract more customers to purchase. Mitra et al. [3] suggested a pattern of demand that varies with time. Baker and Urban [4] presented an EOQ model involving a demand pattern for a stock of power. After few years, Mandal and Phaujdar [5] studied a policy for decaying items with the demand which depends on stock. Sarkar et al. [6] presented a time and price-dependent production model in the environment of reliability and inflation. Urban [7] studied periods of an inventory model, unlike the demand of stock time by a given quantity. Alfares [8] presented a policy where the demand relates to the inventory level and cost of holding, which relates to the period of storage. Datta and Pal [9] studied a fixed demand inventory policy with
inventory-level dependent demand for some fixed level and a non-variable rate of demand for the cycle (left) with an infinite time horizon. Lee and Wu [10] elaborated a policy optimal order quantity for decaying products with power demand and shortages. Singh et al. [11] introduced an EOQ model for decaying products with shortages and power pattern demand. Pal et al. [12] analyzed periods of an inventory distinct from the inventory demand by a known amount. Hwang and Hahn [13] introduced an inventory model of production for decaying items. Many researchers used holding cost always constant, but in some cases time-dependent holding cost is used. Singh and Mishra [14] introduced an EOQ scheme for perishable items with power pattern demand. Sicilia et al. [15] presented an optimum policy for lot size having demand of power pattern and production, which is directly proportional to demand rate.

Demand is always price dependent, so the price is one of the factors for any organization. Tripathi et al. [16] presented a system with a power pattern withholding cost and stock-related demand for two types of a business environment. Chaudhuri and Ray [17] introduced the money time value by studying an inventory policy with the stock-induced demand rate. Giri, Goswami, and Chaudhuri [18] studied a production model for perishable items with the influence of shortages. Banerjee and Sharma [19] studied an inventory policy with the price and time-dependent seasonal demand. Later again, Banerjee [20] introduced a combined economic lot-size system and supposed that lot-for-lot shipment scheme followed by the supplier with the retailer”. In continuation, Goyal [21] analyzed Banerjee’s policy by taking a batch having a number of same-shaped shipments, but the batch production had to be completed before the starting of shipment. Liu et al. [22] presented a joint investment policy for decaying products with quality and price-dependent demand. Hill [23] introduced an optimal lot-sizing inventory model of two-stage and inventory batching schemes. Zhu [24] introduced a dynamic replacement and production model by using random price-sensitive demand. Teng et al. [25] presented an increasing payment scheme. Goyal and Chang [26] introduced a model of ordering-transfer to obtain the retailer’s optimal order amount and per order number of shifting from the warehouse. Yang and Wee [27] introduced an inventory policy of multi-lot-size production for decaying products. Heydari and Gholamian [28] presented a mixed integer probabilistic model by considering METRIC stochastic relation in a problem of location-routing. Hsieh et al. [29] presented the effect of shortages and delays in payment. Sarkar [30] presented sustainable ordering policies for non-instantaneous decaying products under carbon emission and multi-trade-credit-policies. Kumar et al. [31] in 2020 has developed a manufacturing reliabilily inventory model in which demand depends on advertising, time, and selling price.

In this study, we developed an inventory model based on demand pattern i.e., power demand, and it defines that type of demand, which varies with the rate of change in the form of a power function. This kind of demand pattern is used in situations of the high demand of products at the starting of the cycle or at the ending of the cycle.

2. Notations and Assumptions

2.1. Notations

In the present study the following notations are used:

- \(N\): Number of products in the system
- \(T\): Period of scheduling
- \(Q_i\): Quantity of production for product \(i\)
- \(W_i\): Quantity of demand for inventory cycle for product \(i\)
- \(d_i\): Average demand for product \(i\) and given as \(d_i = W_i/T\)
- \(r_i\): Point of reorder for product \(i\)
- \(u_i, v_i, \lambda_i\): constants
- \(B_i\): as the constant of proportionality
- \(l_i\): Length of period of production for product \(i\)
- \(p_i\): Price of selling for product \(i\) (per unit)
- \(c_i\): Cost of unit production for product \(i\) (per unit)
- \(\mu_i\): Set up cost of production for product \(i\) (per replenishment)
- \(x_i\): Per unit per unit time cost of unit backlogging for product \(i\)
- \(y_i\): Per unit per unit time cost of unit carrying for product \(i\)
- \(s_i\): Per unit revenue of sales for product \(i\)
- \(C1_i\): Per unit time cost of production for product \(i\)
- \(C2_i\): Per unit time set up cost for product \(i\)
- \(C3_i\): Per unit time backordering cost for product \(i\)
- \(C4_i\): Per unit time holding cost for product \(i\)
- \(TP_i(p_i, r_p, T)\): Per unit time total profit for product \(i\)
- \(\Omega(p^*, r^*, T)\): Total profit for the whole inventory system

2.2. Assumptions

In the present study the following assumptions are summarized in whole study:

1. Shortages are permitted and completely backordered.
2. Infinite planning horizon.
3. Inventory system with multi-products.
4. Rate of demand is less than the rate of production for every product.
5. The rate of production \(P_i(t)\) is assumed as directly proportional to the rate of demand \(W_i(t)\) for each product \(i\) at time \(t\) \((0 \leq t \leq l_i)\) and given as \(P_i(t) = 2_1 W_i(t)\) with \(2_1 > 1\).
6. The rate of demand is time related which depletes with price in linear way with time and obeys a power
pattern. Thus, the rate of demand can be assumed as follows:

\[W_i(t) = (u_i - v_i) \frac{\mu_i}{\lambda_i} (t/T)^{1/\lambda_i - 1}, \quad (0 \leq t \leq T) \]
where \(0 < \lambda_i < \infty, u_i > 0, v_i > 0 \)

3. Mathematical Modeling and Solution of the Problem

In this study we consider a manufacturing industry which produces \(N \) types of products. There is an average demand \(d_i \) for each product and is related to time which depletes with price in linear way and obeys a power pattern. It is required to please the requirement of customers and also to optimize the overall profit at the same time. The pattern of inventory begins from \(s \) units of the total inventory at time \(t = 0 \) and simultaneously the production starts at the initial time with rate of production \(P_i(t) \) at time \(t_{i1} \) which goes to zero and proceeds until \(t = l_i \) for each item \(i \). In the same direction the replenishment quantity \(W_i \) is produced. During the cycle \([0, l_i] \) the stock level of any product \(i \) increases with rate \(P_i(t) - W_i(t) \). Later the stock level depletes up to \(t = t_{2i} \) as per demand. The demand will be backlogged during the interval \([t_{2i}, T] \). Suppose \(I_1(t) \) and \(I_2(t) \) the levels of inventory for any item \(i \) in the intervals \([0, l_i] \) and \([l_i, t] \) respectively. In this study there are three decision variables (i) Price, (ii) Size of back order, and (iii). Scheduling period. The modeling of the present study is as follows:

The demand during the period \([0, T] \), which is a scheduling period is given as

\[\int_0^T W_i dt = \int_0^T (u_i - v_i p_i) \frac{d_i}{\lambda_i} (t/T)^{1/\lambda_i - 1} dt + (u_i - v_i p_i) d_i T \]
(1)

The whole system associated with this model can be given as follows.

\[\frac{dI_{1}(t)}{dt} = P_1(t) - W_1(t) = (\beta_i - 1)W_1(t) = (\beta_i - 1)(u_i - v_i p_i) \frac{d_i}{\lambda_i} (t/T)^{1/\lambda_i - 1} \]
\[I_1(0) = r_i, \quad 0 \leq t \leq l_i \]
(2)

\[\frac{dI_{2}(t)}{dt} = -W_i(t) = -(u_i - v_i p_i) \frac{d_i}{\lambda_i} (t/T)^{1/\lambda_i - 1} \]
\[I_2(T) = r_i, \quad l_i \leq t \leq T \]
(3)

Using the boundary conditions \(I_1(0) = I_2(T) = r_i \), the solution of equations (2) and (3) are given as

\[I_1(t) = r_i + (\beta_i - 1)(u_i - v_i p_i) d_i T (t/T)^{1/\lambda_i - 1}, \quad 0 \leq t \leq l_i \]
\[I_2(t) = r_i + (\beta_i - 1)(u_i - v_i p_i) d_i T (t/T)^{1/\lambda_i - 1}, \quad 0 \leq t \leq l_i \]
(4)

\[I_1(t) = r_i + (u_i - v_i p_i) d_i T - (u_i - v_i p_i) d_i T (t/T)^{1/\lambda_i}, \quad l_i \leq t \leq T \]
(5)

A lot size production cycle is completed at \(t = l_i \). By solving equations (4) and (5), the level of maximum inventory can be determined, which is given as follows:

\[I_i = T / \beta_i \]
(6)

\[I_i(l_i) = r_i + \frac{1}{\beta_i}(u_i - v_i p_i) d_i T \]
(7)

The lot size \(Q_i \) can be determined as follows,

\[Q_i = \int_0^T P_i(t) dt = \int_0^T (\beta_i - 1)(u_i - v_i p_i) \frac{d_i}{\lambda_i} (t / T)^{1/\lambda_i - 1} dt + (u_i - v_i p_i) d_i T \]
(8)

As we had assumed that demand of period of scheduling is the same as lot quantity. So, it can be assumed that \(I_i(l_i) \geq 0 \) and \(r_i > 0 \). Assume that at time \(t = t_{2i} \) the level of inventory goes to zero during the period of production. Using the condition \(I_i(t_{2i}) = 0 \) to find \(t_{2i} \) from equation (4), we have

\[t_{2i} = \left(\frac{s_i}{(\beta_i - 1)(u_i - v_i p_i) d_i T} \right)^{1/\lambda_i} \]
(9)

Now, we calculate the four assumed costs for each product \(i \) by considering the fact that the mean number of runs of production is \(\frac{1}{T} \).

The revenue of sales for product \(i \) is

\[R_S_i = p_i \frac{Q_i}{T} = (u_i - v_i p_i) p_i d_i \]
(11)

The cost of production for product \(i \) is

\[C_1 = c_i \frac{Q_i}{T} = (u_i - v_i p_i) c_i d_i \]
(12)

The set-up cost for product \(i \) is

\[C_2 = \frac{r_i}{T} \]
(13)

The Backordering or Shortage Cost

\[C_3_i = \frac{x_i}{T} \left[\int_0^{t_{2i}} \left(r_i + (\beta_i - 1)(u_i - v_i p_i) d_i T (t/T)^{1/\lambda_i - 1} \right) dt + \int_{t_{2i}}^T \left(r_i + (u_i - v_i p_i) d_i T - (u_i - v_i p_i) d_i T (t/T)^{1/\lambda_i - 1} \right) dt \right] \]
(14)
On simplification, we have

$$C_3 = \left[\frac{(r_i + (u_i - v_i) p_i) d_i T_i^{k+1}}{\lambda_i + 1} - \left(\frac{(u_i - v_i) p_i}{\lambda_i + 1} \right) \right] y_i$$

The holding or carrying cost is

$$C_4 = \left[\frac{(r_i) d_i T_i^{k+1}}{\lambda_i + 1} - \left(\frac{(u_i - v_i) p_i}{\lambda_i + 1} \right) \right] y_i$$

On integrating, we have

$$\int C_4 = \left[\frac{(r_i + (u_i - v_i) p_i) d_i T_i^{k+1}}{\lambda_i + 1} - \left(\frac{(u_i - v_i) p_i}{\lambda_i + 1} \right) \right] y_i$$

Now we can calculate the total profit for the product i as follows:

$$TP_i(p_i, r_i, T) = RS_i - C_1_i - C_2_i - C_3_i - C_4_i$$

$$= (u_i - v_i p_i) d_i T_i - \left(\frac{(u_i - v_i) p_i}{\lambda_i + 1} \right) y_i$$

Now define the functions p^*, r^*, T^* and determine the total profit of inventory as follows:

$$\Omega(p^*, r^*, T) = \sum_{i=1}^{N} TP_i(p_i, r_i, T)$$

The essential conditions to optimize the total profit are as follows:

$$\frac{\partial \Omega(p^*, r^*, T)}{\partial r_i} = 0, \quad \frac{\partial \Omega(p^*, r^*, T)}{\partial p_i} = 0 \quad \text{and} \quad \frac{\partial \Omega(p^*, r^*, T)}{\partial T} = 0$$

Using the condition, the optimal length cycle which is given as

$$T^* = \left[\frac{\sum_{i=1}^{N} \mu_i}{\sum_{i=1}^{N} \mu_i \left(\frac{(u_i - v_i) p_i}{\lambda_i + 1} \right) \left(x_i + y_i \right)} \right]^{1/\lambda}$$

where z_i is a new variable defined as

$$z_i = \frac{(u_i - v_i) p_i d_i T_i}{(\beta_i - 1)^{k+1}}$$

$$+ \left(\frac{(u_i - v_i) p_i}{\lambda_i + 1} \right) \frac{y_i}{\lambda_i + 1}$$

Also, the optimal lot quantity (r_i^*) and the optimal re-order point (Q_i^*) are given as follows:

$$r_i^* = -\frac{(u_i - v_i) p_i d_i T_i}{(\beta_i - 1)^{k+1}}$$

$$Q_i^* = (u_i - v_i) p_i d_i T_i$$

Now the condition to optimize the TPF (total profit function)

$$\Omega(\bar{p}, \bar{r}, T^*) > \Omega(\bar{p}, \bar{r}, T) \quad \text{for any} \quad r_1^*, r_2^*, \ldots, r_N^*, T^*$$

i.e., $\Omega(\bar{p}, \bar{r}, T^*)$ for any $r_1^*, r_2^*, \ldots, r_N^*, T^*$ is given as

$$\frac{\partial \Omega(\bar{p}, \bar{r}, T^*)}{\partial r_i} = -v_i d_i T_i \left(\frac{x_i + y_i}{\lambda_i + 1} \right) + \left(\frac{(u_i - v_i) p_i}{\lambda_i + 1} \right) \frac{x_i}{\lambda_i + 1}$$

$$\frac{\partial \Omega(\bar{p}, \bar{r}, T^*)}{\partial p_i} = \left(\frac{y_i}{\lambda_i + 1} \right)$$

4. Process of Finding the Optimal Values

It is difficult to solve the equation (23) as it is complex and time consuming also. So, an alternate process is used to obtain the optimal values of \bar{p}, \bar{r}, T and Ω. The optimal values are obtained using the iterative method.

Step 1: For every item i, $p_i = c_i$, where $c_i < \frac{u_i}{v_i}$

If $T > T^*$ then $\Omega(\bar{p}, \bar{r}, T^*)$, otherwise there is no required solution.

Step 2: For every item i, $p_i = p_j + e$ and $p_j = p_j$ for each $i \neq j$. Then determine best economic period of scheduling (\hat{r}_i^*, T_i^*) (say) and the function of total profit $\Omega(\bar{p}, \bar{r}, T^*)$.

Step 3: Select the item k with the following conditions

a) It is possible to determine T_k^*.

b) $p_k < \frac{u_k}{v_k}$ then $p_k < \frac{u_k}{v_k}$.

c) $\Omega(\bar{p}, \bar{r}, T_k^*) > \Omega(\bar{p}, \bar{r}, T^*)$ and $\Omega(\bar{p}, \bar{r}, T_k^*) > \Omega(\bar{p}, \bar{r}, T_j^*)$ for each $j \neq k$.

If these conditions work properly then the best solutions are T^*, Ω^* and reach to the step 4.

Step 4: If $p_k = p_k + e$ and $p_j = p_j$ for each $j \neq k$. Then $T^* = T_k^*$ and $\Omega(\bar{p}, \bar{r}, T^*) = \Omega(\bar{p}, \bar{r}, T^*)$, thus
we return to the step 2.

Step 5: End.

5. Numerical Verification of the Study

Here the present study is verified by a numerical example. Taking an inventory model for a unique item with the following input values of the parameters as:

\[\mu = 102, x = 4.8, y = 4.2, d = 1180, u = 106, \]

\[v = 2, c = 11, \beta = 1.5, \] and the power pattern index \(\lambda = 3. \)

The results with these parameters are as follows:

\[z^* = 0.16542, T^* = 0.7435, Q^* = 3372.5, \]

\[r^* = -568.215, p^* = 29, \] and \(TP^* = 949845. \)

*Optimal schemes of the present model considering many combinations of the parameters \(\beta \) and \(c \) are presented in Table 1.

*Optimal schemes of the present model considering many combinations of the parameters \(\lambda \) and \(c \) presented in Table 2.

*Optimal schemes of the present model considering the distinct value of \(u \) presented in Table 3.

Table 1. Optimal schemes of the present model considering many combinations of the parameters \(\beta \) and \(c \).

Rate of production	Cost of production	\(z^* \)	\(T^* \)	\(r^* \)	\(Q^* \)	\(p^* \)	\(\Omega^* \)
1.2	12	0.065324	0.1602	-475.7654	7271.4	30	957430
	16		0.1765	-452.8765	6674.2	34	755674
	20		0.1834	-410.6373	6245.5	36	545626
	24		0.1940	-378.8675	5688.2	38	395423
	28		0.2542	-365.7654	5188.1	40	251674
1.4	12	0.143562	0.0932	-578.7654	4274.2	30	947430
	16		0.0985	-562.6277	3963.6	34	745674
	20		0.1123	-512.6546	3963.2	36	542677
	24		0.1176	-478.8075	3286.6	38	385423
	28		0.1256	-437.8754	2784.6	40	241674
1.6	12	0.163865	0.0712	-582.4562	3486.3	30	942654
	16		0.0784	-534.6675	3024.5	34	742897
	20		0.0832	-485.7688	2865.6	36	537646
	24		0.0965	-446.7634	2576.8	38	378964
	28		0.1426	-423.7654	2254.8	40	237644
1.8	12	0.180544	0.0675	-564.7654	3215.4	30	937430
	16		0.0712	-512.8727	2856.2	34	735674
	20		0.0782	-475.3772	2675.8	36	532677
	24		0.0864	-421.6543	2365.4	38	375423
	28		0.0975	-378.7654	2163.6	40	241674
2.0	12	0.182345	0.0642	-543.8764	2898.0	30	927430
	16		0.0674	-498.8756	2765.8	34	725674
	20		0.0732	-470.6543	2615.5	36	512677
	24		0.0812	-410.2345	2286.0	38	367323
	28		0.0876	-385.3565	2046.6	40	232474

Table 2. Optimal schemes of the present model considering many combinations of the parameters \(\lambda \) and \(c \).

Rate of production	Cost of production	\(z^* \)	\(T^* \)	\(r^* \)	\(Q^* \)	\(p^* \)	\(\Omega^* \)
0.6	15	0.096542	0.0745	-310.542	3486.3	35	967415
	25	0.0834	-287.234	3024.5	39	543276	
1.0	15	0.176542	0.0756	-576.345	3565.6	35	976425
	25	0.0854	-498.456	2576.8	34	543286	
1.5	15	0.187642	0.0768	-724.865	3698.6	35	976445
	25	0.0878	-645.342	3286.0	40	543290	
2.0	15	0.176554	0.0785	-590.342	3576.6	35	976455
	25	0.0886	-512.452	3065.8	40	543298	

Table 3. Optimal schemes of the present model considering the distinct value of \(u \).

\(u \)	\(z^* \)	\(T^* \)	\(r^* \)	\(Q^* \)	\(p^* \)	\(\Omega^* \)
110	0.187342	0.0744	-554.123	3217.2	32	968072
210	0.0456	-865.345	4849.5	32	4966724	
310	0.0385	-1123.24	6028.2	32	1196500	

Table 4. Optimal schemes of the present model considering the distinct value of \(u \).
6. Conclusions and Future Scope

In the present study an inventory policy in a manufacturing system with time varying power pattern demand is presented. It is assumed that the rate of production varies with the rate of demand and the requirement of customers is bounded by price linearity. Multiple items are considered in the system of inventory. The shortages are permitted and completely backordered. Optimization methods are used to obtain the maximum profit and numerical verification is presented to illustrate the study. If the rate of production is a fixed parameter than an increment in unit production cost results decrement of total profit as well as economic lot whereas there is an increment in the optimal price and optimal length of inventory cycle. Similarly, if the powers demand index is fixed then an increment in unit production cost results a decrement in total profit as well as economic lot whereas the optimal price and optimal length of inventory cycle increase. It is also observed that the increment in rate of production results a slight decrement in total profit and decrement in both optimal lot size and scheduling period.

The present study can be extended by using it for obtaining products and shortages with partial backorder in an inventory system.

Acknowledgements

We are very grateful to experts for their appropriate and constructive suggestions to improve this manuscript.

REFERENCES

[1] L.C. Barbosa, M. Friedman. Deterministic inventory lot size models-A general root law, Management Science, Vol. 24, No. 8, 819-826, 1978.

[2] E.A. Silver, R. Peterson. Decision Systems for Inventory Management and Production Planning: Solutions Manual. 2nd Edn., John Wiley and Sons Australia, Limited, ISBN-10: 0471818143, 493, 1985.

[3] A. Mitra, J.F. Cox, R.R. Jesse Jr. A note on determining order quantities with a linear trend in demand, The Journal of the Operational Research Society, Vol. 35, No. 2, 141-144, 1984.

[4] R.C. Baker, T.L. Urban. A deterministic inventory system with an inventory-level-dependent demand rate. J. Operat. Res. Soc., Vol. 39: 823-831, 1988.

[5] B.N. Mandal, S. Phaujda. An inventory model for deteriorating items and stock-dependent demand rate. J. Operat. Res. Soc., Vol. 39, 823-831, 1989.

[6] B. Sarkar, P. Mandal, S. Sarkar. An EMQ model with price and time dependent demand under the effect of reliability and inflation, Applied Mathematics and Computation, Vol. 231, 414-421, 2014.

[7] T.L. Urban. Inventory models with the demand rate dependent on stock and shortage levels, Int. J. Product. Economic. Vol. 40, 21-28. 1995.

[8] H.K. Alfares. Inventory model with stock-level dependent demand rate and variable holding cost, Int. J. Product. Economic. Vol. 108, 259-265, 2007.

[9] T.K. Datta, and A.K. Pal. A note on an inventory model with inventory-level-dependent demand rate. J. Oper. Res. Soc., Vol. 41, 971-975, 1990.

[10] W.C. Lee, J.W. Wu. An EOQ model for items with Weibull distributed deterioration, shortages and power demand pattern, international Journal of information and Management Sciences, Vol-13, No.2, 19-34, 2002.

[11] T. J. Singh, S.R. Singh, R. Dutt. An EOQ model for perishable items with power demand and partial backlogging, International Journal of Production Economics, Vol. 15, No. 1, 65-72, 2009.

[12] S. Pal, A. Goswami, K.S. Chaudhuri. A deterministic inventory model for deteriorating items with stock-dependent demand rate. Int. J. Product. Econom. Vol. 32, 291-299, 1993.

[13] H. Hwang, K.H. Hahn. An optimal procurement policy for items with an inventory-level-dependent demand rate and fixed lifetime. Eur. J. Operat. Res., Vol. 127, 537-545, 2000.

[14] S.S. Mishra., P.K. Singh. Partial backlogging EOQ model for queued customers with power demand and quadratic deterioration, computational approach, American Journal of Operation Research, Vol.3, No.2, 13-27, 2013.

[15] J. Sicilia, M. González-De-la-Rosa, J. Febles-Acosta, D. Alcaide-López-de-Pablo. Optimal policy for an inventory system with power demand, backlogged shortages and production rate proportional to demand rate, International Journal of Production Economics, Vol. 155, 163-171, 2014.

[16] R.P. Tripathi, S. Pareek, M. Kaur, Inventory models with power demand and inventory-induced demand with holding cost functions, American Journal of Applied Sciences, Vol. 14, No. 6, 607-613, 2017.

[17] J. Ray, K.S. Chaudhuri. An EOQ model with stock-dependent demand, shortage, inflation and time discounting. In. J. Product. Economic, Vol. 53, 171-180, 1997.

[18] B.C. Giri, A. Goswami, K.S. Chaudhuri An EOQ model for deteriorating items with time varying demand and costs. J. Oper. Res., Vol. 47, 1398-1405, 1996.

[19] S. Banerjee, A. Sharma, Optimal procurement and pricing policies for inventory models with price and time dependent seasonal demand, Mathematical and Computer Modelling, Vol. 51, No. 5-6, 700-714, 2010.

[20] A. Banerjee. A joint economic-lot-size model for purchaser and vendor. Decis. Sci., Vol. 17, 292-311, 1986.

[21] S.K. Goyal, A Joint economic-lot-size model for purchaser and vendor: A comment. Decis. Sci., Vol. 19, 236-241, 1988.
[22] G. Liu, J. Zhang W. Teng, Joint dynamic pricing and investment strategy for perishable foods with price quantity dependent demand, Annals of Operations Research, Vol.226, 913-929, 2005.

[23] R.M. Hill, On optimal two-stage lot sizing and inventory batching policies. Int. J. Product. Econom. Vol. 66, 149-158. 2000.

[24] S.X. Zhu. Dynamic replacement, production and pricing decisions in the face of supply disruption and random price-sensitive demand, International Journal of Production Economics, Vol.146, No.2, 612-619, 2013.

[25] J.T. Teng, I.P. Krommyada, K. Skouri, K.R. Lou A comprehensive extension of optimal ordering policy for stock-dependent demand under progressive payment scheme. Eur. J. Operat. Res., Vol. 215, 97-104, 2011.

[26] S.K. Goyal, C.T. Chang. Optimal ordering and transfer policy for an inventory with stock dependent demand. Eur. J. Operat. Res., Vol. 1996, 177-185, 2009.

[27] P.C. Yang, H.M. Wee. An integrated multi-lot-size production inventory model for deteriorating item. Comput. Operat. Res., Vol. 30, 671-682, 2003.

[28] M.R. Gholamian, M. Heydari. An inventory model with METRIC approach in location-routing-inventory problem, Advances in Production Engineering & Management, Vol. 12, No. 2, 115-126, 2017.

[29] Y. Chiu, S.P., Kuo, J.S. Chiu, S.W., Y.T. Hsieh. Effect of delayed differentiation on a multiproduct vendor-buyer integrated inventory system with rework, Advances in Production Engineering & Management, Vol. 11, No. 4, 2016.

[30] S. Tiwari, W. Ahmed, B. Sarkar Sustainable ordering policies for non-instantaneous deteriorating items under carbon emission and multi-trade-credit-policies, Journal of Cleaner Production, (SCIE), Vol. 240, 118 – 183. 2019.

[31] M. Kumar, A. Chauhan, S.J. Singh, M. Sahni, An Inventory Model on Preservation Technology with Trade Credits under Demand Rate Dependent on Advertisement, Time and Selling Price, Universal Journal of Accounting and Finance, Vol. 8, No. 3, 65-74, 2020.