Bovine lactoferrin enhances the efficacy of levofloxacin-based triple therapy as first-line treatment of Helicobacter pylori infection: an in vitro and in vivo study

Antonio Francesco Ciccaglione1†, Mara Di Giulio2†, Silvia Di Lodovico2, Emanuela Di Campli2, Luigina Cellini2* and Leonardo Marzio1

1Digestive Sciences Unit, ‘G. d’Annunzio’ University, Pescara Civic Hospital, Via Fonte Romana 8, 65124, Pescara, Italy; 2Department of Pharmacy, ‘G. d’Annunzio’ University, Via dei Vestini, 66013, Chieti, Italy

*Corresponding author. Tel: +39-0871-3554560; Fax: +39-0871-3554562; E-mail: l.cellini@unich.it orcid.org/0000-0003-4068-9124
†These authors contributed equally to the work.

Received 5 July 2018; returned 17 September 2018; revised 24 October 2018; accepted 12 November 2018

Objectives: To evaluate the in vitro antimicrobial/antivirulence action of bovine lactoferrin and its ability to synergize with levofloxacin against resistant Helicobacter pylori strains and to analyse the effect of levofloxacin, amoxicillin and esomeprazole with and without bovine lactoferrin as the first-line treatment for H. pylori infection.

Methods: The bovine lactoferrin antimicrobial/antivirulence effect was analysed in vitro by MIC/MBC determination and twitching motility against six clinical H. pylori strains and a reference strain. The synergism was evaluated using the chequerboard assay. The prospective therapeutic trial was carried out on two separate patient groups, one treated with esomeprazole/amoxicillin/levofloxacin and the other with esomeprazole/amoxicillin/levofloxacin and the other with esomeprazole/amoxicillin/levofloxacin/bovine lactoferrin. Treatment outcome was determined with the [13C]urea breath test.

Results: In vitro, bovine lactoferrin inhibited the growth of 50% of strains at 10 mg/mL and expressed 50% bactericidal effect at 40 mg/mL. The combination of levofloxacin and bovine lactoferrin displayed a synergistic effect for all strains, with the best MIC reduction of 16- and 32-fold for levofloxacin and bovine lactoferrin, respectively. Bovine lactoferrin at one-fourth MIC reduced microbial motility significantly for all strains studied. In the in vivo study, 6 of 24 patients recruited had treatment failure recorded with esomeprazole/amoxicillin/levofloxacin (75% success, 95% CI 57.68%–92.32%), and in the group with esomeprazole/amoxicillin/levofloxacin/bovine lactoferrin, 2 out of 53 patients recruited had failure recorded (96.07% success, 95% CI 90.62%–101.38%).

Conclusions: Bovine lactoferrin can be considered a novel potentiator for restoring susceptibility in resistant H. pylori strains. Bovine lactoferrin added to a triple therapy in first-line treatment potentiates the therapeutic effect.

Introduction

Helicobacter pylori is involved in the development of chronic gastritis and peptic ulcer disease and has been linked to the pathogenesis of gastric lymphoma and gastric cancer; hence it is recommended that this infection should be cured whenever it is diagnosed.1-3 Clarithromycin, amoxicillin, metronidazole, tetracycline, rifabutin, ampicillin and fluoroquinolones have been used to treat H. pylori infection.4,5 This bacterial infection, however, has been shown to be challenging to cure. In fact, H. pylori may be resistant in various degrees to one or more of the above-mentioned antibiotics, even in subjects never treated specifically for the infection, and antibiotic resistance may be a key factor in treatment failure.6 This alarming phenomenon strongly supports the need to find novel strategies, such as the inclusion of an adjuvant aimed at enhancing the effectiveness of drugs commonly used in this specific therapy.7

Classical triple therapies with proton pump inhibitors, clarithromycin and amoxicillin or metronidazole are the mainstay of current treatment; the increasing resistance to clarithromycin, however, has reduced their effectiveness, with an eradication rate of <80% of treated cases.8,9 A recent consensus report suggests that a proton pump inhibitor/clarithromycin-containing triple therapy without prior susceptibility testing should be abandoned in those areas where the clarithromycin resistance rate is >15%.10 Resistance rates vary in different geographical areas and therefore the selection of therapeutic regimens needs to be adjusted...
according to the local resistance pattern, if this is known. In the region of Abruzzo, the latest data on resistance of *H. pylori* isolated from already-treated (once or several times) and never-treated patients, to amoxicillin, clarithromycin, metronidazole, levofloxacin, tetracycline and rifabutin are as follows: 1.02%, 72.44%, 34.69%, 42.85%, 2.63% and 1.20%, respectively. Consequently, the geographical prevalence of the *H. pylori* resistance profile should be the basis for the selection of first-line eradication therapy aimed at avoiding primary failure.

As an alternative to clarithromycin, many studies have examined levofloxacin and proton pump inhibitors as a first-line therapy for eradication of *H. pylori* infection. However, the eradication rates achieved with first-line levofloxacin-based treatments are not uniform and contrasting results have been reported. In regions of high clarithromycin resistance, bismuth-containing quadruple therapies are recommended for first-line therapy since bismuth may help to overcome the antibiotic resistance to clarithromycin when present. Bismuth salts, however, are not available in all countries; it is therefore useful to search for a valid substitute that may increase the effectiveness of a triple therapy regardless of the presence of *H. pylori* resistance to one or more antibiotics.

Recent data have called attention to the potential role of fermented milk and related whey proteins, such as bovine lactoferrin, as potential candidates for complementary therapy in settings of high antibiotic resistance or treatment failure.

Bovine lactoferrin is a glycoprotein with multiple antimicrobial, antiviral and antifungal properties and it is widely distributed in mucosal secretions, such as saliva, tears and seminal fluid. As Ellison et al., reported, the antimicrobial activity of bovine lactoferrin is due to the sequestering of iron, which is essential for microorganism growth, and also to a direct action on the outer membrane of Gram-negative bacteria that interferes with flagellar motility. Bovine lactoferrin has been shown to have antibacterial activity against *H. pylori* in vitro and in vivo. Clinical studies have demonstrated that when bovine lactoferrin is used as a single drug in *H. pylori*-positive patients it is able to reduce the production of urea, suggesting a capacity to suppress but not eliminate *H. pylori* colonization.

However, it has not been clarified whether bovine lactoferrin has a direct bactericidal effect on *H. pylori* or whether it potentiates the efficacy of a given antibiotic also in the presence of specific resistance.

The aim of this study was 2-fold: firstly to analyse the *in vitro* antimicrobial/antivirulence action of bovine lactoferrin alone and combined with levofloxacin against *H. pylori* clinical isolates previously shown to be resistant or MDR; and secondly to evaluate whether the inclusion of bovine lactoferrin in a triple therapy containing levofloxacin, amoxicillin and a proton pump inhibitor at full dosage for first-line treatment of *H. pylori* infection could increase the eradication rate in a geographical area where *H. pylori* has been shown to be resistant to levofloxacin in >40% of tested strains.

**Materials and methods**

**Effect of bovine lactoferrin on clinical *H. pylori* strains in vitro**

**Characterization of antimicrobial susceptibility and virulence factors**

Six *H. pylori* clinical strains were chosen for experiments. The reference *H. pylori* ATCC 43629 strain was included as a control. All strains studied were tested for their susceptibility profile to nine antibiotics commonly used in therapy (clarithromycin, metronidazole, ciprofloxacin, levofloxacin, moxifloxacin, tetracycline, amoxicillin, ampicillin and rifabutin) and for the main virulence factors.

Strains were recovered from –80°C and were cultured on non-selective medium containing Columbia agar base (Oxoid) with 10% (v/v) laked horse blood plus 1% (v/v) IsoVitalex (BBI, Microbiology System, Milan, Italy) and incubated in a micro-aerobic environment at 37°C for 3–5 days (GasPak, Oxoid). The bacterial suspensions were prepared in Brucella Broth (BB) (Biolife Italia, Milan, Italy) plus 2% FCS (Biolife), adjusted to an OD_{600} of 0.2, corresponding to ~1.8×10^7 cfu/mL, and used for the experiments.

For virulence factor genotyping, the genomic DNA was extracted with the QIAamp DNA Mini Kit (Qiagen, Germany) according to the manufacturer’s instructions. The DNA was stored at –20°C until use. PCRs were performed in a 2700 Thermocycler (PE Applied Biosystems) for the analysis of cagA, iceA1 and vacA s/mi1 status according to previous studies by our group. The PCR was prepared in a total volume of 25 μL containing 2.5 μL of 10× PCR buffer, 1.5 mM MgCl₂, 200 mM (each) deoxynucleotide triphosphates (dNTPs), 2 U of AmpliTag DNA polymerase, 20 mM each primer (Primm, Milan, Italy) and 50 ng of *H. pylori* DNA. For the analysis of the cagA region, primers D008 and R008, which yielded a fragment of 298 bp, were used. For the analysis of the iceA region, primers iceA1-F and iceA1-R, which yielded a fragment of 600 bp, were used. For the analysis of the vacA/s region, primers VA1-F and VA1-R, which yielded a fragment of 259 bp for the s1 variant and a fragment of 286 bp for the s2 variant, were used. For the analysis of the vacA/m region, primers VAG-F and VAG-R, which yielded a fragment of 567 bp for the m1 variant and a fragment of 642 bp for the m2 variant, were used. For the analysis of the vacA/s region, primers VAC-F1, CR1 and CR2, which yielded a fragment of 426 bp for the s1 variant and a fragment of 432 bp for the s2 variant, were used.

The PCR products were examined by electrophoresis in 2% (w/v) agarose gel at 100 V for 30 min. Gels were stained with ethidium bromide and photographed.

**Determination of MIC and MBC of bovine lactoferrin**

The in vitro antimicrobial activity of bovine lactoferrin (Sigma-Aldrich) was assessed by the broth microdilution method according to CLSI guidelines. Bovine lactoferrin was diluted to obtain a concentration from 2.5 to 320 mg/mL. MIC values were measured by determining the lowest concentration of bovine lactoferrin that gave complete inhibition of colony formation on agar plates. Each determination was performed in triplicate.

**Chequerboard titration analysis**

To understand the *in vitro* effect/synergism of bovine lactoferrin and levofloxacin, the chequerboard titration method was applied to assess the activity of the combination of these substances. Test tubes containing a sub-MIC concentration of bovine lactoferrin from 0.31 to 20 mg/mL and sub-MIC concentration of levofloxacin from 0.03 to 1 mg/L, respectively, in PBS were prepared and put in 96-well plates for the chequerboard configuration. The overnight bacterial inocula were prepared in BB plus 2% FCS, refreshed in the same medium and adjusted to OD_{600} 0.12 (~5×10^6 cfu/mL) for the experiments. The plates were incubated for 3 days at 37°C under micro-aerobic conditions. After incubation, reduction of the OD_{600} value was evaluated with respect to the controls and cfu/mL values were determined. The chequerboard test was used as the basis to calculate a fractional inhibitory concentration (FIC) index according to the following formulas: FIC A = MIC A + B/MIC A; FIC B = MIC B + A/MIC B; and FIC index = FIC A + FIC B. The MIC A + B value is the MIC of compound A in the presence of compound B, and vice versa for MIC B + A. FIC index values were interpreted as Odds synergy (<0.5), antagonism (>4.0) and no
Table 1. Antimicrobial susceptibility panel and virulence markers of H. pylori clinical strains

| Strain   | CLR | MTZ | LVX | MXF | CIP | RFB | TET | AMP | AMX | cagA | iceA1 | vacA  |
|----------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-------|-------|
| 9F/13    | S   | S   | S   | S   | S   | S   | S   | S   | S   | +    | +     | s1m1i1 |
| 10A/13   | R   | R   | R   | R   | R   | S   | S   | S   | S   | +    | –     | s1m1i1 |
| 2A/12    | R   | R   | R   | R   | S   | S   | S   | S   | S   | +    | +     | s1m1i1 |
| 10A/11   | R   | S   | R   | R   | S   | S   | S   | S   | S   | +    | –     | s1m1i1 |
| 11F/11   | R   | S   | R   | R   | S   | S   | S   | S   | S   | +    | –     | s1m1i1 |
| 3A/13    | R   | S   | R   | R   | S   | S   | S   | S   | S   | +    | +     | s1m1i1 |
| ATCC 43629 | S  | S   | S   | S   | S   | S   | S   | S   | S   | +    | –     | s1m1i1 |

CLR, clarithromycin; MTZ, metronidazole; LVX, levofloxacin; MXF, moxifloxacin; CIP, ciprofloxacin; RFB, rifabutin; TET, tetracycline; AMP, ampicillin; AMX, amoxicillin; S, susceptible; R, resistant.

Motility assay

Motility of H. pylori strains was assayed using semi-solid medium consisting of BB, sterile 10% FCS, sterile 10% horse blood and 0.4% bacteriological agar. Ten microlitres was inoculated on the surface of the agar with a sterile tip. Plates were incubated at 37°C under micro-aerophilic conditions. Diameters of the spreading H. pylori cells were measured after 7–10 days. The statistical significance of differences between diameters of untreated and treated samples was evaluated using Student’s t-test. Probability levels of <0.05 were considered statistically significant.

All data were obtained from three independent experiments performed at least in triplicate.

Therapeutic trial of bovine lactoferrin in conjunction with levofloxacin, amoxicillin and a proton pump inhibitor

This prospective study was performed in two separate groups of patients in two pilot studies that were carried out simultaneously. One group was treated with esomeprazole, amoxicillin and levofloxacin (Group A) and the other group with esomeprazole, amoxicillin, levofloxacin and bovine lactoferrin (Group B).

For this study, 50 subjects were required for each pilot study. An effective therapy was defined as a PP cure rate of ≥90% and rates of ≤80% were prospectively deemed unacceptable. Initially the plan was to evaluate 30 patients, and the study would have been stopped at any time in each group during recruitment if ≥6 patients experienced failure [urea breath test (UBT) positive], since it became clear that a cure rate of at least 80% would be impossible to achieve. On the other hand, if at the end of recruitment of the 30 patients a cure rate ≥93% was achieved, the study was considered concluded and no further recruitment was necessary. Otherwise, the study would continue until 50 patients had completed the study. Success was assessed by the $^{13}$C-UBT 2 months after the end of treatment.

Ethics

All eligible patients agreed to participate in the study. Fifteen patients were excluded according to the following criteria: age <18 or >80 years; treatment with proton pump inhibitors (omeprazole, lansoprazole, pantoprazole, rabeprazole, esomeprazole), H2 blockers (ranitidine, nizatidine, cimetidine, famotidine, roxatidine) and/or antibiotics during the 4 weeks before the start of the study; gastrointestinal malignancy; severe concomitant diseases; and previous gastric surgery. All patients enrolled in the study were affected by chronic dyspepsia without alarm symptoms. Only patients >55 years underwent an upper endoscopy before admission to the study. Patients with active gastric and/or duodenal ulcer or gastric neoplasia were excluded. Patients were randomly assigned to each treatment using a computer-generated list.

Study protocol

Patients included in Group A were treated with esomeprazole (40 mg twice daily), amoxicillin (1 g twice daily) and levofloxacin (500 mg twice daily) and patients included in Group B were treated with the same drugs and dosage as Group A with the addition of bovine lactoferrin (200+100 mg/day). Esomeprazole, amoxicillin and levofloxacin were administered before breakfast and dinner, and bovine lactoferrin, which expresses its major effect at pH 6.0, was given orally 2 h after breakfast (200 mg) and 2 h after dinner (100 mg), when esomeprazole was capable of reducing gastric acidity. The two groups were treated with these therapeutic agents for 10 days.

H. pylori eradication was defined as a negative result for the UBT performed at least 8 weeks after the end of treatment with a delta-over-base-line value ≤5.

Patient selection

From January 2015 to December 2016, of the 92 consecutive UBT H. pylori-positive patients never treated for the infection, 77 were included in the study. The UBT was performed with citric acid and 75 mg of $^{13}$C-urea within 10 days prior to the start of the study.

Statistical analysis

Statistical evaluation was carried out using χ² analysis. A P value of ≤0.05 was considered statistically significant.
Results

In vitro test of bovine lactoferrin against clinical H. pylori strains

The antimicrobial susceptibility panel and the main virulence markers of the H. pylori strains used in the experiments are shown in Table 1. Five out of six clinical strains displayed a resistance profile with at least four drug resistances; among them, two clinical strains (H. pylori 10A/13 and H. pylori 2A/12) showed an MDR profile with resistance to three classes of antibiotics. All detected strains were cagA+, the iceA1 allelic type was found in three strains and the main vacA genotype allelic combination was s1m1i1. No correlation was detected between antibiotic resistance profiles and virulence markers.

Figure 1. Chequerboard assays and isobolograms for evaluation of synergism between bovine lactoferrin (BLF) and levofloxacin (LVX) combinations against H. pylori strains. The calculation of the best BLF and LVX combination and the FIC index is displayed. FIC index values were interpreted as follows: synergy (FIC index ≤ 0.5); antagonism (> 4.0); and no interaction (> 0.5–4.0). Shading shows visible bacterial growth.
The MICs and MBCs of bovine lactoferrin for *H. pylori* strains are shown in Table 2. Specifically, bovine lactoferrin inhibited all strains tested, with MIC values ranging from 5 to 20 mg/mL and MBC values ranging from 40 to 160 mg/mL. When bovine lactoferrin was tested in association with levofloxacin against the *H. pylori* strains the MIC values of levofloxacin fell significantly to a range of 0.03–0.25 mg/L, whereas for bovine lactoferrin the range was 0.31–2.5 mg/mL. Synergy was detected in all tested strains (FIC index ≤ C20/0.5) (Figure 1).

The chequerboard model and isobolograms for the combination of bovine lactoferrin and levofloxacin to define the synergy and to calculate the FIC index are shown in Figure 1. Synergy (FIC index ≤ C20/0.5) was detected in all strains tested, with a reduction of 4- to 16-fold in the MIC for levofloxacin. The best combinations of bovine lactoferrin and levofloxacin for each strain are indicated in Figure 1. For the *H. pylori* 11F/11 resistant strain, the FIC value was 0.09, with a reduction in the MICs of bovine lactoferrin and levofloxacin of 16- and 32-fold, respectively. Antagonism was not observed.

The loss of *H. pylori* ATCC 43629 and 2A/12 motility in the presence of bovine lactoferrin at sub-MIC values is shown in Figure 2. When treated with bovine lactoferrin at one-fourth and one-eighth MICs, all strains studied displayed a smaller diameter of growth on soft agar in comparison with the untreated strains. Specifically, the reduction was significant at one-fourth of the MIC of bovine lactoferrin (*P*, 0.05).

**Table 2.** Antibacterial activity of bovine lactoferrin against *H. pylori* strains

| Strain     | MIC (mg/mL) | MBC (mg/mL) |
|------------|-------------|-------------|
| 9F/13      | 5           | 40          |
| 10A/13     | 20          | 80          |
| 2A/12      | 10          | 60          |
| 10A/11     | 20          | 40          |
| 11F/11     | 20          | 80          |
| 3A/13      | 10          | 40          |
| ATCC 43629 | 20          | 160         |

**Table 3.** Summary of study data

|                      | Group A | Group B |
|----------------------|---------|---------|
| Therapeutic trial:   | 40 mg ESO, 1000 mg AMX, 500 mg LVX (all twice daily) | 40 mg ESO, 1000 mg AMX, 500 mg LVX, 100 mg BLF (all twice daily) |
| Number of patients   | 24      | 53      |
| Gender, n (%)        |         |         |
| female               | 16 (66.6) | 32 (60.3) |
| male                 | 8 (33.4) | 21 (39.7)a |
| Age, years, mean (range) | 48 (23–70) | 50 (20–75)a |
| Smoking habit, n/N (%) |        |         |
| female               | 9/16 (56.2) | 21/32 (65.6) |
| male                 | 3/8 (37.5) | 10/21 (47.6)a |
| Alcohol use ≤ 30 g/week, n/N (%) |        |         |
| female               | 8/16 (50) | 20/32 (62.5) |
| male                 | 6/8 (75)  | 16/21 (76.1)a |
| Dyspepsia, n/N (%)   | 7/24 (29.1) | 16/53 (30.1)a |
| Gastritis, n/N (%)   | 4/7 (57.1) | 10/16 (62.5)a |
| Duodenitis, n/N (%)  | 2/7 (28.5) | 5/16 (31.2)a |
| Oesophagitis (Los Angeles, grade A), n/N (%) | 1/7 (14.2) | 3/16 (18.7)a |

ESO, esomeprazole; AMX, amoxicillin; LVX, levofloxacin; BLF, bovine lactoferrin.

aNot significant versus Group A (χ² analysis).

levofoxacin of 16- and 32-fold, respectively. Antagonism was not observed.

The loss of *H. pylori* ATCC 43629 and 2A/12 motility in the presence of bovine lactoferrin at sub-MIC values is shown in Figure 2. When treated with bovine lactoferrin at one-fourth and one-eighth of MICs, all strains studied displayed a smaller diameter of growth on soft agar in comparison with the untreated strains. Specifically, the reduction was significant at one-fourth of the MIC of bovine lactoferrin (*P* < 0.05).

**Therapeutic trial**

Patient characteristics are summarized in Table 3. In Group A, after recruitment of 24 patients who completed the treatment and returned for follow-up, six failures (UBT positive) were recorded. At this point recruitment was halted as it was judged to be impossible to exceed the 80% success rate even if recruitment had continued up to 30 cases. The cure rate in this group was 75% in ITT and PP analyses (95% CI 57.68%–92.32%).

In Group B, 30 patients were initially recruited and 28 completed the study, whereas 2 patients were lost to follow-up. Two failures (UBT positive) and 26 successful eradictions (UBT negative) were recorded with a success rate in PP analysis of 92.8%. Since a 93% success rate was not achieved as specified in the protocol, recruitment continued up to 53 patients (Figure 3). The final analysis in this group showed that 49 of the 53 patients recruited showed successful eradication, with a cure rate of 92.45% (95% CI 86.52%–100.38%) by ITT and 49/51 of (96.07%, 95% CI 90.62%–101.38%) by PP analysis.
The $\chi^2$ analysis of the Group A and Group B eradication rates showed a significant difference ($P = 0.0058$).

**Adverse effects**

Adverse events occurred in four patients from Group A (16.6%) and eight patients from Group B (15.09%) and were represented by diarrhoea [2 (8.3%) and 3 (5.6%), respectively], abdominal pain [1 (4.1%) and 3 (5.6%)], and nausea [1 (4.1%) and 2 (3.7%)]. These adverse effects did not induce a discontinuation of the treatment.

**Discussion**

This study demonstrates that bovine lactoferrin in vitro inhibits the growth and motility of *H. pylori*. When used in combination with levofloxacin against *H. pylori* strains resistant to levofloxacin and other antibiotics, bovine lactoferrin at sub-MIC values restores the effectiveness of the antibiotic through a synergistic action.

In vivo, bovine lactoferrin achieves a therapeutic gain of 21% when added to a triple therapy with a proton pump inhibitor, levofloxacin and amoxicillin in a group of patients living in a geographical area where *H. pylori* resistance to levofloxacin is >40% of tested strains.

Bovine lactoferrin can improve the potency of traditional antimicrobial regimens by fighting antimicrobial resistance through the reduction of flagellar motility and consequently microbial colonization. Our data are in line with a recent study that emphasized an innovative strategy of using natural bioactive substances capable of synergizing with antibiotics and also expressing anti-virulence activity to combat antibiotic resistance and bacterial virulence.41

The use of natural compounds combined with antibiotics represents an important strategy to tackle the antibiotic resistance...
phenomenon. The synergistic action obtained reduces the MIC of levofloxacin, restoring the efficacy of the antimicrobial drug.

Bovine lactoferrin could also exert an antimicrobial effect against *H. pylori* in vitro and in vivo by inhibition of its growth at pH 6. In addition, the antibacterial activity of bovine lactoferrin may be attributed to its ability to bind iron with great affinity and prevent its utilization by the bacteria.

The evidence that deferexamine, another iron chelator, inhibits *H. pylori* growth may support this hypothesis. Additional properties of bovine lactoferrin that may explain its antibacterial activity include immune-modulatory activity, antioxidant activity and a significant inhibitory effect on the in vivo attachment of *H. pylori* to the stomach, associated with a reduction in bacterial number and inflammation. It has also been shown that recombinant human lactoferrin can bind and disrupt some bacterial cell membranes, and when it is co-administered with amoxicillin against Gram-negative bacteria it increases its efficacy, as found in animal models. Furthermore, in a recent study Yuan et al. examined the effectiveness of recombinant human lactoferrin isolated from transgenic goats as a treatment for *H. pylori* in vitro and in vivo. For the in vitro experiments, the results revealed that recombinant human lactoferrin not only inhibited the growth of *H. pylori*, but also suppressed the expression of two major virulence factors, cagA and vacA.

It has been shown that levofloxacin in combination with amoxicillin and proton pump inhibitors can be an effective regimen for first-line anti-*H. pylori* treatment. In a meta-analysis, it has been observed that levofloxacin-based first-line therapy and standard therapy have equivalent efficacy and safety profiles for eradication of *H. pylori*. However, *H. pylori* resistance to levofloxacin has clearly increased in recent years; this may explain why the triple therapy that includes this antibiotic has reduced therapeutic efficacy. Bovine lactoferrin has already been shown to possibly potentiate the efficacy of a triple therapy that included antibiotics other than levofloxacin for the treatment of *H. pylori* infection. In a study by de Bortoli et al., the addition of bovine lactoferrin to a triple therapy with esomeprazole, amoxicillin and clarithromycin increased the success rate by 16% (ITT and PP analysis). In a similar study adding bovine lactoferrin to a therapy with rabeprazole, increased the success rate by 16% (ITT and PP analysis). In a similar study adding bovine lactoferrin to a therapy with rabeprazole, increased the success rate by 16% (ITT and PP analysis).

eradication rates were obtained in patients with *H. pylori* strains susceptible to all antibiotics, indicating that factors other than in vitro antibiotic susceptibility, such as biofilm *H. pylori* production, may influence eradication rates. However, we believe that the randomized allocation of patients to the two groups would have overcome this weakness to some extent.

Therefore, it may be concluded that the 10 day quadruple therapy consisting of esomeprazole, amoxicillin, levofloxacin and bovine lactoferrin can be generally used as the first-line treatment of *H. pylori* infection, including those regions where *H. pylori* expresses high resistance to fluoroquinolones.

Acknowledgements

We thank Laurino Grossi for his useful contribution to this study and Mrs Catherine Hlywka for reviewing the English style of the manuscript.

Funding

This study was supported by internal funding and Fondo di Ateneo per la Ricerca (FAR 2017) held by Leonardo Marzio and Luigina Cellini.

Transparency declarations

None to declare.

References

1. Ford AC, Gurusamy KS, Delaney B et al. Eradication therapy for peptic ulcer disease in *Helicobacter pylori*-positive people. Cochrane Database Syst Rev 2016; issue 4; CD003840.
2. Kuo SH, Cheng AL. *Helicobacter pylori* and mucosa-associated lymphoid tissue: what’s new. *Hematol Soc Hematol Educ Program* 2013; 2013: 109–17.
3. Bornschein J, Malfertheiner P. *Helicobacter pylori* gastritis and gastric cancer. *Dig Dis* 2014; 32: 249–64.
4. Diaconu S, Predescu A, Moldoveanu A et al. *Helicobacter pylori* infection: old and new. *J Med Life* 2017; 10: 112–7.
5. De Francesco V, Bellesia A, Ridola L et al. First-line therapies for *Helicobacter pylori* eradication: a critical reappraisal of updated guidelines. *Ann Gastroenterol* 2017; 30: 373–9.
6. Vakil N. *H. pylori* treatment: new wine in old bottles? *Am J Gastroenterol* 2009; 104: 26–30.
7. Kaur I. Novel strategies to combat antimicrobial resistance. *J Infect Dis Ther* 2016; 4: 2–6.
8. Kim JS, Park SM, Kim BW. Sequential or concomitant therapy for eradication of *Helicobacter pylori* infection: a systematic review and meta-analysis. *J Gastroenterol Hepatol* 2015; 30: 1338–45.
9. Calvet X, Lopez-Lorente M, Cubells M et al. Two-week dual vs. one-week triple therapy for cure for *Helicobacter pylori* infection in primary care: a multi-centre, randomized trial. *Aliment Pharmacol Ther* 1999; 13: 781–6.
10. Malfertheiner P, Megraud F, O’Morain CA et al.; European Helicobacter and Microbiota Study Group and Consensus panel. Management of *Helicobacter pylori* infection—the Maastricht V/Florence Consensus Report. *Gut* 2017; 66: 38–9.
11. Perez Aldana L, Kato M, Nakagawa S et al. The relationship between consumption of antimicrobial agents and the prevalence of primary *Helicobacter pylori* resistance. *Helicobacter* 2002; 7: 306–9.
Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut 2013; 62: 34–42.

De Francesco V, Giorgio F, Hassan C et al. Worldwide H. pylori antibiotic resistance: a systematic review. J Gastrointestin Liver Dis 2010; 19: 409–14.

Megraud F. H. pylori antibiotic resistance: prevalence, importance and advances in testing. Gut 2004; 53: 1374–84.

Boyanova L, Mitov I. Geographic map and evolution of primary Helicobacter pylori resistance to antibacterial agents. Expert Rev Anti Infect Ther 2010; 8: 59–70.

Di Giulio M, Di Campi E, Di Bartolomeo S et al. In vitro antimicrobial susceptibility of Helicobacter pylori to nine antibiotics currently used in Central Italy. Scand J Gastroenterol 2016; 3: 263–9.

Huang JQ, Hunt RH. Treatment after failure. The problem of ‘non-responders’. Gut 1999; 45: 140–4.

Cuadrado-Lavin A, Salinces-Caviedes JR, Carrascosa MF et al. Levofoxacin versus clarithromycin in a 10 day triple therapy regimen for first-line Helicobacter pylori eradication: a single-blind randomized clinical trial. J Antimicrob Chemother 2012; 67: 2254–9.

Hung IF, Chan P, Leung S et al. Clarithromycin-based triple therapy: a valid empirical first-line treatment for Helicobacter pylori infection. Aliment Pharmacol Ther 2003; 17: 238–43.

Molina-Infante J, Perez-Gallardo B, Fernandez-Bermejo M et al. Resistance: a systematic review. J Antimicrob Chemother 2014; 69(Suppl 1): 363–8.

Sachdeva A, Nagpal J. Meta-analysis: efficacy of bLF in Helicobacter pylori eradication. Aliment Pharmacol Ther 2009; 29: 720–30.

Sanchez L, Calvo M, Brock J. Biological role of lactoferrin. Phytother Res 2018; 32: 488–95.

Brown D. Antibiotic resistance breakers: can re purposed drugs fill the antibiotic discovery void? Nat Rev Drug Discov 2015; 14: 821–32.

Sachdeva A, Nagpal J. Meta-analytic expression of flagellar Genes in Helicobacter pylori. J Bacteriol 2014; 15: 2709–17.

Graham DY. Efficient identification and evaluation of effective Helicobacter pylori therapies. Clin Gastroenterol Hepatol 2009; 7: 145–8.

Dial EJ, Hall LR, Serna H et al. Antibiotic properties of bovine lactoferrin on Helicobacter pylori. Dig Dis Sci 1998; 43: 2750–6.

Marini E, Di Giulio M, Magi G et al. Currumin, an antibiotic resistance breaker against a multiresistant clinical isolate of Mycobacterium abscessus. Phytother Res 2018; 32: 488–95.

Ellisworth D, Walter K, Griffiths P et al. Siderophore production and iron-regulated envelope proteins of Helicobacter pylori. Zentralbl Bakteriol 1993; 280: 113–9.

Singh PK, Parsek MR, Greenberg EP et al. A component of innate immunity prevents bacterial biofilm development. Nature 2002; 417: 552–5.

Baldwin DA, Jenny ER, Aisen P. The effect of human serum transferrin and milk lactoferrin on hydroxyl radical formation from superoxide and hydrogen peroxide. J Biol Chem 1984; 259: 13391–4.

Bowdy TJ, Ashman O. Lactoferrin: milking ulcers? Dig Liver Dis 2003; 35: 691–3.

Miele S, Reddy R, Osato MS et al. Direct activity of recombinant, human lactoferrin against Helicobacter pylori. J Clin Microbiol 1996; 34: 2593–4.

Dial EJ, Romero JJ, Headon DR et al. Recombinant human lactoferrin is effective in the treatment of Helicobacter felis-infected mice. J Pharm Pharmacol 2000; 52: 1541–6.

Yuan Y, Wu Q, Cheng G et al. Recombinant human lactoferrin enhances the efficacy of triple therapy in mice infected with Helicobacter pylori. Int J Mol Med 2015; 36: 363–8.

Nista EC, Candelli M, Zocco MA et al. LEV-based triple therapy in first-line treatment for Helicobacter pylori eradication. Am J Gastroenterol 2006; 101: 1985–90.

Telakula S, Manxhuka-Kerliu S, Kraja B et al. The efficacy of LEV-based triple therapy first-line Helicobacter pylori eradication. Med Arch 2013; 67: 348–50.

Peadikayil MC, AlSohaibani FT, Alkhenizan AH. LEV-based first-line therapy versus standard first-line therapy for Helicobacter pylori eradication: meta-analysis of randomized controlled trials. PLoS One 2014; 9: e85620.

Marzio L, Cellini L, Amritrano M et al. Helicobacter pylori isolates from proximal and distal stomach of patients never treated and already treated show...
genetic variability and discordant antibiotic resistance. *Eur J Gastroenterol Hepatol* 2011; **23**: 467–72.

56 De Bortoli N,Leonardi G,Ciancia E et al. *Helicobacter pylori* eradication: a randomized prospective study of triple therapy versus triple therapy plus lactoferrin and probiotics. *Am J Gastroenterol* 2007; **102**: 951–6.

57 Di Mario F,Aragonà G,Dalì Bò N et al. Use of lactoferrin for *Helicobacter pylori* eradication. *Dig Liv Dis* 2003; **35**: 706–10.

58 Gisbert JP. “Rescue” regimens after *Helicobacter pylori* treatment failure. *World J Gastroenterol* 2008; **14**: 5385–402.