Working memory- and anxiety-related behavioral effects of repeated nicotine as a stressor: the role of cannabinoid receptors

Tamaki Hayase

Abstract

Background: Like emotional symptoms such as anxiety, modulations in working memory are among the frequently-reported but controversial psychiatric symptoms associated with nicotine (NC) administration. In the present study, repeated NC-induced modulations in working memory, along with concurrently-observed anxiety-related behavioral alterations, were investigated in mice, and compared with the effects of a typical cognition-impairing stressor, immobilization stress (IM). Furthermore, considering the structural and functional contributions of brain cannabinoid (CB) receptors in NC-induced psychiatric symptoms including emotional symptoms, the interactive effects of brain CB receptor ligands (CB ligands) and NC and/or IM on the working memory- and anxiety-related behaviors were examined.

Results: Statistically significant working memory impairment-like behavioral alterations in the Y-maze test and anxiety-like behavioral alterations in the elevated plus-maze (EPM) test were observed in the groups of mice treated with 0.8 mg/kg NC (subcutaneous (s.c.) 0.8 mg/kg treatment, 4 days) and/or IM (10 min treatment, 4 days). In the group of mice treated with NC plus IM (NC-IM group), an enhancement of the behavioral alterations was observed. Among the CB type 1 (CB1) antagonist AM 251 (AM), the non-selective CB agonist CP 55,940 (CP), and the CB1 partial agonist/antagonist virodhamine (VD), significant recovering effects were provided by AM (0.2-2.5 mg/kg) and VD (5 mg/kg) against the working memory impairment-like behaviors, whereas significant anxiolytic-like effects (recoveries from both attenuated percentage of entries into open arms and attenuated percentage of time spent on open arms) were provided by VD (1–10 mg/kg) and CP (2 mg/kg) against the anxiety-like behaviors.

Conclusions: Although working memory impairment- and anxiety-like behavioral alterations were commonly induced in the NC, IM, and NC-IM groups and the therapeutic involvement of CB receptors was shown, there were discrepancies in the types of effective CB ligands between the working memory- and anxiety-related behaviors. The differential involvements of CB receptor subtypes and indirectly activated neurotransmitter systems may contribute to these discrepancies.

Keywords: Nicotine, Immobilization stress, Working memory, Anxiety, Cannabinoid, AM 251, CP 55,940, virodhamine
Background
Nicotine (NC) is the substance which sustains the addictive use of tobacco, and tobacco results in numerous harmful health effects and continues to be the leading cause of preventable death [1,2]. It has been reported that addicted tobacco users suffer from NC-induced cognitive impairments in some conditions of smoking, as well as modulated moods such as anxiety- and depression-related symptoms [3-5]. Cognitive impairments including deficits in working memory, a process for maintaining temporary active information [6], have been regarded as being among the representative symptoms of NC withdrawal observed in NC-dependent human and rodent models [3,7,8]. Furthermore, the direct neurotoxic effects of NC have also been reported depending on the treatment conditions such as dose, period and paradigm, and this neurotoxicity has been suggested to induce memory impairments, particularly at earlier periods in development [9-12]. However, in some clinical and experimental animal studies, cognitive improvements or absence of any effects have been demonstrated [13-17]. Negative, positive or no effects of NC have also been reported against the anxiety-related behaviors [18-20]. Working memory impairments have been reported for various stressors such as restraint stress (immobilization stress) in both humans and rodent models [21-23]. Like certain NC treatments, such stressors also induce and exacerbate the anxiety-like behavioral responses in rodent models [24,25]. Furthermore, it has been suggested that brain regions such as the medial prefrontal cortex, for which NC-induced modulations have been demonstrated [26,27], are concurrently involved in the development of stress-induced working memory impairments and anxiety [28-31]. However, there are only a few studies investigating the characteristic effects of NC as a stressor, particularly those on cognitive function [32,33].

A considerable number of studies have implicated the relationship between NC and stress. For example, in some rodent models, repeated or acute stress has been shown to aggravate the behavioral and neuronal effects of NC [34-36]. Recent human studies have shown some directly-exacerbated mood symptoms induced by stress in smokers [37,38]. However, against the behavioral and neuronal impairments caused by stress, antagonistic effects of subsequently administered NC have been shown in some rodent models [39-41]. With respect to cognitive function, NC has also been reported to block stress-induced impairments in several experimental conditions in rodents [41,42]. Nevertheless, the above-mentioned neurotoxic effects of NC which could lead to cognitive dysfunction [10-12] may be correlated with the possibility that NC and stress augment each other’s unfavorable effects on cognitive function.

In previous studies, a strong involvement of brain cannabinoid (CB) receptors, typically CB type 1 (CB1) receptors, was reported in the representative emotion-related behaviors (anxiety- and depression-like behaviors) induced by NC [18,43,44] and stress [45] in rodents. This is consistent with the prominent behavioral alterations induced by NC in CB1 knockout mice [46], and the overlapping distribution of CB1 receptors and nicotinic acetylcholine receptors (nAChRs) in some brain regions which supports functional interactions between these receptors [47,48]. Furthermore, recent reviews suggest that CB1 receptors contribute to deficits in memory including working memory by demonstrating that CB1 agonists impair memory formation and CB1 antagonists reverse these impairments [49,50]. However, there have been a limited number of studies on the direct contribution of brain CB receptors to the memory-related effects of NC [51,52]. The participation of CB1 receptors has also been reported in anxiety processes, but the roles of CB1 agonist are contradictory in that both anxiolytic-like and anxiogenic-like effects have been induced depending on the treatment conditions [53,54]. Against the NC-induced anxiety-related behaviors, inconsistent and contradictory effects of CB1 agonists and other CB ligands have also been demonstrated [18,43].

In the present study, using behavioral tests in mice (Y-maze and elevated plus-maze (EPM) test), the working memory- and anxiety-related behavioral alterations caused by NC were assessed and compared with those caused by immobilization stress (IM), a typical stressor. The interactions between the NC- and IM-induced behavioral effects were also examined. Furthermore, considering the possible involvement of brain CB receptors in these NC- and/or IM-induced memory- and anxiety-related behavioral alterations, the effects of selected CB ligands (the CB1 antagonist AM 251, the non-selective CB agonist CP 55,940, and the CB1 partial agonist/antagonist viroldamine) were evaluated against these behavioral alterations, as described in previous studies [43,51,52].

Methods
Animals
Based on previous studies on NC and stressor treatments [43,55], male ICR mice (80 ± 10 days old) (Shizuoka Laboratory Animal Center, Hamamatsu, Japan) were housed in a forced-air facility, which was maintained at 23°C and 50% relative humidity, with a 12 h/12 h light/dark cycle. The mice were kept separately in single transparent cages measuring 23.5 × 16.5 × 12 cm, and were allowed water and rodent chow ad libitum. The experiments described in this report were conducted in accordance with the “Guidelines for Animal Experiments” of the institution (updated in
2.5 mg/kg for AM, 0.5, 2 and 5 mg/kg for CP, and 1, 5
and diluted using a mixed solution of dimethylsulphoxide
and 10 mg/kg for VD. The CB ligands were dissolved
by themselves at the prescribed time point: 0.2, 1 and
2.5 mg/kg for AM, 0.5, 2 and 5 mg/kg for CP, and 1, 5
and 10 mg/kg for VD. The CB ligands were dissolved
and diluted using a mixed solution of dimethylsulphoxide
(DMSO) plus distilled water, and were administered in a
volume of 5 ml/kg, 60 min before each NC, IM or NC-
and IM treatment, considering the previously examined time
course of the effects of CB ligands against the NC- and/
or IM-induced working memory- and anxiety-related behaviors [43,58]. Since VD was provided in an ethanol
solution (Tocris Cookson Inc.), the ethanol was
evaporated immediately before use under nitrogen gas,
and the residue was re-suspended in the same mixed
DMSO/distilled water solution. In the NC- and IM-only
groups, a mixed vehicle solution of DMSO and distilled
water at the same ratio as the CB ligand solutions was
injected instead of the CB ligands. In the CB ligand-only
groups, the same volume of saline vehicle was injected
instead of the NC or IM treatment. In the control group
without any drug or stressor treatment (control group),
the mixed vehicle solution of DMSO and distilled water
was injected instead of the CB ligands, and then the
same volume of saline vehicle was injected instead of the
NC or IM treatment. The drug and stressor treatments
each experimental session were performed between 15 and 19 h of the light cycle.

Y-maze test
Based on previous studies [28,60,61], alterations in working
memory-related behaviors were examined in the Y-maze
test using a cardboard apparatus that consisted of three
enclosed arms 30 × 5 × 15 cm (length, width, and height)
which converged on an equilateral triangular center plat-
form (5 × 5 × 5 cm). After the number of spontaneous
alteration performance (SAP), which was defined as the
number of successive triplet entry performances into each
of the three arms without any repeated entries [28,60,61],
and the total number of entries into arms were evaluated
(8 min test periods), the rate of spontaneous alteration performance (SAP rate) (%) was calculated as a parameter for
the working memory-related behaviors. The total number
of entries into arms was assessed as a parameter
representing locomotor activity [60,61]. Considering the
previous data [58], the evaluations of these parameters
were performed at the 2 h time point after the last NC, IM
or NC-IM treatment. At the beginning of each experimental
session, each mouse was placed in the center platform
of the maze, facing all three arms immediately before the
session [58].

Elevated plus-maze (EPM) test
Based on previous studies [18,43,62-64], alterations in
anxiety-related behaviors were examined in the EPM test
using a cardboard apparatus that consisted of two op-
posite open arms 50 × 10 cm (length and width) and
two enclosed arms 50 × 10 × 30 cm (length, width, and
height), positioned 50 cm from the floor. After the num-er of entries into open arms, the time spent on open
arms (sec), and the total number of entries into arms
were evaluated (5 min test periods), the percentage of
entries into open arms and the percentage of time spent on open arms were calculated as parameters for the anxiety-related behaviors. The total number of entries into arms was assessed as a parameter representing locomotor activity [63]. Considering the previous data [43], the evaluations of these parameters were performed at the 2 h time point after the last NC, IM or NC-IM treatment. At the beginning of each experimental session, each mouse was placed diagonally in the center platform of the maze, facing both the open and enclosed arms [43].

Statistical analysis

The data were subjected to two-way analysis of variance (ANOVA) for both effects of NC and/or IM and effects of the CB ligands [65]. With respect to the experiments examining the effects of NC and/or IM, a 3 (0.3 mg/kg NC, 0.8 mg/kg NC versus vehicle) × 2 (IM versus vehicle) factorial design was used for the factors NC × IM treatment. With respect to the experiments examining the effects of the CB ligands, a 4 (NC, IM, NC-IM versus vehicle) × 4 (three doses of each CB ligand versus vehicle) factorial design was used for the factors NC and/or IM treatment × treatment using each CB ligand. For pairwise comparisons, Bonferroni post-hoc tests were performed [65]. All of the comparisons were performed using a statistical software package (“Excel Statistics” from Social Survey Research Information Co. Ltd. Inc., Tokyo, Japan). P values less than 0.05 were considered to be statistically significant.

Results

NC- and/or IM-induced working memory-related behavioral alterations in the Y-maze test

In the 0.8 mg/kg NC, IM and NC-IM groups, at the 2 h time point, behavioral alterations indicating working memory impairments, i.e. statistically significantly attenuated SAP rates (Figure 1), in spite of the absence of significant changes in the total numbers of entries into arms (Table 1), were observed in the Y-maze test. This is consistent with the results of the ANOVA revealing statistically significant main effects of NC (F(2, 54)=11.02, P<0.001) and IM (F(1, 54)=34.03, P<0.001). For the NC-IM groups, the SAP rates were significantly attenuated as compared to the NC and/or IM groups.

NC- and/or IM-induced anxiety-related behavioral alterations in the EPM test

In the NC, IM and NC-IM groups, at the 2 h time point, anxiety-like behavioral alterations, i.e. statistically significantly attenuated percentage of entries into open arms (Figure 2a) and significantly attenuated percentage of time spent on open arms (Figure 2b), in spite of the absence of significant changes in the total numbers of entries into arms (Table 1), were observed in the EPM test. This is consistent with the results of the ANOVA revealing statistically significant main effects of NC (F(2, 54)=195.21, P<0.001 for the percentage of entries into open arms and F(2, 54)=70.18, P<0.001 for the percentage of time spent on open arms) and IM (F(1, 54)=104.38, P<0.001 for the percentage of entries into open arms and F(1, 54)=46.89, P<0.001 for the percentage of time spent on open arms). For the NC-IM groups, the parameter values were significantly attenuated as compared to the IM group, which is consistent with the results of the ANOVA revealing significant interactions between the NC and IM treatments for each parameter value (F(2, 54)=91.17, P<0.001 for the percentage of entries into open arms and F(2, 54)=18.90, P<0.001 for the percentage of time spent on open arms).

Table 1 Total number of entries into arms in experiments examining the effects of NC and/or IM (experiments shown in Figures 1 and 2)

	Y-maze test (Figure 1)	EPM test (Figure 2)
Control group	47.1 ± 8.3	63.2 ± 12.4
NC 0.3 group	51.2 ± 8.4	59.1 ± 12.3
NC 0.8 group	43.7 ± 8.5	58.5 ± 11.9
IM group	44.5 ± 8.2	60.8 ± 12.1
NC 0.3-IM group	49.0 ± 8.6	56.5 ± 12.0
NC 0.8-IM group	43.2 ± 8.6	55.0 ± 11.7

Figure 1 Working memory-related behavioral alterations (SAP rate (%)) caused by repeated nicotine (NC) and/or immobilization stress (IM) in the Y-maze test. The values at the 2 h time point after the last NC (0.3 or 0.8 mg/kg, s.c.) or IM treatment are shown as means ± S.D. (n=10 for each group). aa (p<0.01): significant attenuation as compared to the control group; bb (p<0.01): significant attenuation as compared to the NC group; cc (p<0.01): significant attenuation as compared to the IM group.
Effects of CB ligands against NC (0.8 mg/kg)- and/or IM-induced working memory-related behavioral alterations in the Y-maze test

For the 0.8 mg/kg NC, IM and 0.8 mg/kg NC-IM groups, at the 2 h time point, statistically significant recoveries from the impairments in working memory-related behavioral alterations, i.e. recoveries from the attenuated SAP rates, in spite of the absence of significant changes in the total numbers of entries into arms (Table 2), were observed in the groups co-treated with AM (Figure 3a). This is consistent with the results of the ANOVA revealing statistically significant main effects of AM (F(3, 144)=11.20, P<0.001) for the SAP rate. Furthermore, in the groups co-treated with 5 mg/kg VD, significant recoveries from the behavioral alterations were also observed (Figure 3c), which is consistent with the results of the ANOVA revealing statistically significant main effects of VD (F(3, 144)=11.74, P<0.001) for the SAP rate. In each CB ligand-only group, no significant alterations as compared to the control group were observed for each parameter value under the present experimental conditions.

Effects of CB ligands against NC (0.8 mg/kg)- and/or IM-induced anxiety-related behavioral alterations in the EPM test

For the 0.8 mg/kg NC, IM and 0.8 mg/kg NC-IM groups, at the 2 h time point, statistically significant recoveries from the anxiety-like behavioral alterations, i.e. recoveries from both attenuated percentage of entries into open arms and attenuated percentage of time spent on open arms, in spite of the absence of significant changes in the total numbers of entries into arms (Table 3), were observed in the groups co-treated with VD (1–10 mg/kg) (Figure 4c). This is consistent with the results of the ANOVA revealing statistically significant main effects of VD (F(3, 144)=205.84, P<0.001 for the percentage of entries into open arms and F(3, 144)=58.29, P<0.001 for the percentage of time spent on open arms) and significant interactions of the VD versus NC and/or IM treatments (F(9, 144)=18.88, P<0.001 for the percentage of entries into open arms and F(9, 144)=5.58, P<0.001 for the percentage of time spent

Table 2 Total number of entries into arms in experiments examining the effects of CB ligands in the Y-maze test (experiments shown in Figure 3)

	Control	NC 0.3	NC 0.8	IM	NC 0.3-IM	NC 0.8-IM
(a) AM group						
Control group	47.1 ± 8.3	43.7 ± 8.5	44.5 ± 8.2	43.2 ± 8.6		
AM 0.2 group	46.9 ± 8.3	44.0 ± 8.6	45.1 ± 8.2	43.7 ± 8.6		
AM 1 group	46.6 ± 8.3	44.5 ± 8.5	45.5 ± 8.3	44.1 ± 8.6		
AM 2.5 group	46.2 ± 8.3	45.0 ± 8.6	46.0 ± 8.3	44.6 ± 8.6		
(b) CP group						
Control group	47.1 ± 8.3	43.7 ± 8.5	44.5 ± 8.2	43.2 ± 8.6		
CP 0.5 group	46.8 ± 8.3	43.5 ± 8.6	44.2 ± 8.4	43.0 ± 8.7		
CP 2 group	46.5 ± 8.4	43.4 ± 8.6	44.0 ± 8.5	42.8 ± 8.8		
CP 5 group	46.1 ± 8.4	43.2 ± 8.7	43.7 ± 8.5	42.6 ± 8.9		
(c) VD group						
Control group	47.1 ± 8.3	43.7 ± 8.5	44.5 ± 8.2	43.2 ± 8.6		
VD 1 group	46.8 ± 8.4	43.9 ± 8.6	44.8 ± 8.3	43.5 ± 8.7		
VD 5 group	46.5 ± 8.4	44.2 ± 8.7	45.1 ± 8.4	43.7 ± 8.8		
VD 10 group	46.2 ± 8.5	44.4 ± 8.8	45.4 ± 8.5	43.9 ± 8.9		
on open arms). Furthermore, in the groups co-treated with 2 mg/kg CP, significant recoveries in both entries into and time spent on open arms were also observed (Figure 4b), which is consistent with the results of the ANOVA revealing statistically significant main effects of CP (F(3, 144)=206.08, P<0.001 for the percentage of entries into open arms and F(3, 144)=47.32, P<0.001 for the percentage of time spent on open arms) and significant interactions of the CP versus NC and/or IM treatments (F(9, 144)=20.61, P<0.001 for the percentage of entries into open arms and F(9, 144)=4.50, P<0.001 for the percentage of time spent on open arms). In each CB ligand-only group, no significant alterations as compared to the control group were observed for each parameter value under the present experimental conditions.

Discussion

NC- and/or IM-induced working memory- and anxiety-related behavioral alterations

In the NC group using repeated treatments of 0.8 mg/kg NC, as well as in the IM group, behavioral alterations suggestive of working memory impairments were observed in the Y-maze test (attenuated SAP rate) (Figure 1). However,

Table 3 Total number of entries into arms in experiments examining the effects of CB ligands in the EPM test (experiments shown in Figure 4)

(a) AM group		NC	IM	NC-IM
Control group	63.2 ± 12.4	58.5 ± 11.9	60.8 ± 12.1	55.0 ± 11.7
AM 0.2 group	62.7 ± 12.6	58.9 ± 12.0	61.1 ± 12.3	55.5 ± 12.1
AM 1 group	62.4 ± 12.9	59.4 ± 12.2	61.5 ± 12.4	56.2 ± 12.4
AM 2.5 group	61.9 ± 13.1	59.9 ± 12.6	61.7 ± 12.7	57.5 ± 12.7

(b) CP group		NC	IM	NC-IM
Control group	63.2 ± 12.4	58.5 ± 11.9	60.8 ± 12.1	55.0 ± 11.7
CP 0.5 group	62.6 ± 12.7	58.3 ± 12.0	60.6 ± 12.3	54.8 ± 12.1
CP 2 group	62.1 ± 12.8	58.0 ± 12.1	60.3 ± 12.4	54.7 ± 12.3
CP 5 group	61.5 ± 13.0	57.8 ± 12.2	60.0 ± 12.5	54.6 ± 12.5

(c) VD group		NC	IM	NC-IM
Control group	63.2 ± 12.4	58.5 ± 11.9	60.8 ± 12.1	55.0 ± 11.7
VD 1 group	62.6 ± 12.6	58.8 ± 12.1	61.0 ± 12.4	54.9 ± 12.2
VD 5 group	62.3 ± 12.8	59.2 ± 12.2	61.3 ± 12.4	55.9 ± 12.4
VD 10 group	61.7 ± 13.0	59.5 ± 12.6	61.5 ± 12.7	56.9 ± 12.7
in the NC group using repeated treatments of 0.3 mg/kg NC, in spite of the appearance of anxiety-like behavioral alterations similar to the IM group (Figure 2), the absence of overt working memory-related behavioral alterations (a slightly increased SAP rate) was observed in the Y-maze test (Figure 1). Previous studies have shown that brain serotonergic and cholinergic systems play crucial roles in mediating anxiety-related behavioral responses [66-68]. In addition to these systems, several neuroendocrine responses (e.g. secretion of corticosterone, norepinephrine, etc.) have been reported to participate in the control of anxiety-like behaviors [69,70]. Similar modifications in these responses were observed between NC and IM [71], and may contribute to their anxiogenic-like effects in the present study (Figure 2). On the other hand, the NC-induced impairments in working memory, unlike the IM-induced impairments, occurred with a limited range of doses (Figure 1). It has been reported that modifications in working memory (both ameliorations and impairments) can occur due to even minuscule changes in prefrontal dopamine (DA) levels [72]. Therefore, the working memory-related behaviors in the NC groups may be correlated with characteristic but subtle alterations in nAChR-mediated prefrontal DA release, which was controlled by specific nAChR subtypes (e.g. alpha7 nAChRs) [73]. In addition to DA release, the release of other neurotransmitters such as glutamate has been implicated in the NC-induced working memory processes [74].

With respect to the interactions between NC and IM in the NC-IM group, both NC and IM enhanced each other’s effects on the working memory- and anxiety-related behavioral alterations in the Y-maze and EPM tests. Although the relationship between stressors such as IM and NC remains controversial as mentioned above (i.e. ”antistress” effects of NC have also been reported depending on the conditions), synergistic effects like those observed in previous studies [34-36] were provided by the NC plus IM treatment in the present experimental model. An augmented increase in secreted hypothalamic-pituitary-adrenal (HPA) hormones and/or immediate early gene expression was demonstrated in those studies [35,36]. Furthermore, the involvement of these molecular changes has also been reported for working memory- and anxiety-related behaviors [75-78]. However, further analyses are needed to elucidate the

Figure 4 Effects of cannabinoid receptor ligands (CB ligands) on the anxiety-related behavioral alterations caused by repeated nicotine (NC) and/or immobilization stress (IM) in the elevated plus-maze (EPM) test. Data of percentages of entries into open arms and time spent on open arms are presented for groups of mice co-treated with AM (a), CP (b) and VD (c). The values at the 2 h time point after the last NC (0.8 mg/kg, s.c.) or IM treatment are shown as means ± S.D. (n=10 for each group). The abbreviations of the co-administered CB ligands with each i.p. dose (mg/kg) are noted in the text. The data for the control, NC, IM, and NC plus IM (NC-IM) groups without any CB ligand co-treatments, as well as the CB ligand-only groups, are also shown. * (p<0.05), ** (p<0.01): significant attenuation as compared to the control group; + (p<0.05), ++ (p<0.01): significant increase as compared to the NC, IM, or NC plus IM (NC-IM) group without any CB ligand co-treatments.
mechanisms underlying these complex interactions between NC and IM.

Effects of cannabinoid (CB) ligands

Consistent with the previous studies described above [18,43,49,50,52], the NC- and/or IM-induced working memory impairment-like behaviors were antagonized by the CB1 antagonist AM (Figure 3a), and the anxiety-like behaviors were antagonized by the CB agonist CP (Figure 4b). Furthermore, VD, a mixed CB1 ligand with partial agonist plus antagonist activities [79], provided recovering effects against the impaired behaviors related to both working memory and anxiety (Figure 3c, 4c). Similarities in some neuronal responses such as prefrontal DA responses have been observed in the immunohistochemical studies between the effects of NC, stressors, and CB1 agonists [21,80-82]. These similarities may result in the CB1 antagonist-induced recoveries in the working memory-related behavioral alterations. On the other hand, against the NC- and/or IM-induced anxiety-related behavioral alterations, only the CB1 ligands acting at least partially as agonists exerted any anxiolytic-like effects. Although the mechanisms underlying these discrepancies in the effects of CB ligands have not been elucidated, anxiolytic-like effects of CB agonists have been shown under several different conditions [83,84]. Furthermore, certain doses of CB1 agonists have been reported to be able to activate the neurotransmission systems related to anti-anxiety (e.g., GABAergic and serotonergic systems) at the molecular level [53,83,84]. Therefore, it could be predicted that the antagonistic effects against the anxiety-like behaviors were provided at least indirectly by way of agonistic activity on CB1 receptors.

Against both working memory- and anxiety-related behavioral alterations, the CB1 partial agonist/antagonist VD exerted some recovering effects (Figure 3c, 4c). These recovering effects were observed equally in the NC, IM and NC-IM groups. For the behavioral alterations related to working memory impairments, the recovering effects of VD did not exceed those of the CB1 antagonist AM, which could be predicted considering the partial CB1 agonistic effects of VD. On the other hand, for the behavioral alterations related to anxiety, the recovering effects of VD exceeded those of the CB agonist CP. These results could not be predicted considering the above-mentioned anxiolytic-like effects of the CB1 agonists without any antagonistic effects. However, contrary to the present results, there are experimental data showing anxiogenic-like or anti-anxiolytic effects provided by high doses of CB agonists including CP [53,54,85]. The involvement of an abnormal release of anxiety-related neurotransmitters has been reported for those effects [53,54]. Unlike CP, VD possesses CB1 antagonistic potential for counteracting anti-anxiolytic effects as an agonist (high doses), and thus may function as an effective anxiolytic-like ligand. Furthermore, recent studies suggest the possibility that CB2 receptors, the CB receptors initially defined as peripheral receptors, may contribute to anti-anxiolytic effects [86,87]. CB2 receptors are distributed over several regions of the central nervous system [87] and the non-selective CB agonist CP seems to provide agonistic effects as well as against CB1 receptors. With respect to the effects of AM and VD, agonistic effects on the GPR55 receptor subtype, a newly-identified G protein coupled CB receptor subtype, have also been reported [88-91]. Although the behavioral roles of GPR55 receptors have not been investigated, it is possible that GPR55 distributed in the brain [89] may participate in cognitive processes such as working memory. Furthermore, in vitro studies demonstrated that VD acted as a partial agonist on GPR55 receptors and provided antagonistic effects at high concentrations [91], whereas only full agonistic effects have been reported for AM [88-90]. On the other hand, on CB1 receptors, both VD and AM provided antagonistic effects at high concentrations [79,89]. These characteristic effects of the partial agonist/antagonist VD as a GPR55 antagonist at high concentrations may be correlated with its limited and non-dose-dependent ameliorating effects against working memory impairments, i.e. only 5 mg/kg VD, but not a lower (1 mg/kg) or higher (10 mg/kg) dose, was effective. In addition to GPR55, the existence of other yet-to-be-cloned CB receptors has been suggested in memory-related brain regions such as the hippocampus [92]. There may be some contributions of these receptors to the AM- and VD-derived attenuating effects against the NC- and/or IM-induced working memory impairments.

Conclusions

The present study demonstrated working memory impairment- and anxiety-like behaviors induced by NC, IM and NC-IM treatments in mice. Mutual synergistic effects for NC plus IM were observed for both types of behavioral alterations. In the present study, the involvement of endocannabinoid system was also shown in the processes of working memory and anxiety. However, between the working memory- and anxiety-related behavioral alterations, discrepancies in the types of effective CB ligands were observed: the CB1 antagonist AM was the most effective against the working memory impairment-related behaviors, whereas the CB1 partial agonist/antagonist VD was the most effective against the anxiety-related behaviors. Since the presence of new CB receptor subtypes such as GPR55 receptors has been clarified recently and the interactions with each CB ligand have been suggested, further research
into the therapeutic contributions of each CB receptor subtype is expected.

Competing interests
The author declares that there are no potential competing interests.

Authors’ contributions
TH designed the study, carried out all experiments and statistical analyses, and prepared the manuscript.

Acknowledgments
I thank the staffs of Shimizu Laboratory Supplies Co. Ltd. for the technical assistance. I also thank Dr. Yoshiko Yamamoto and Dr. Keiichi Yamamoto, Yamamoto Research Institute of Legal Medicine, for the advice related to the data analysis.

Received: 14 July 2012 Accepted: 31 January 2013 Published: 9 February 2013

References
1. Zarocostas J: WHO report warns deaths from tobacco could rise beyond eight million a year by 2030. BMJ 2008, 336:299.
2. WHO report on the global tobacco epidemic. 2011 [http://www.who.int/tobacco/global_report/2011/en/]
3. Heishman SJ: Behavioral and cognitive effects of smoking: relationship to nicotine addiction. Nicotine Tob Res 1999, 1(Suppl 2):143–147.
4. Anstey KJ, von Sanden C, Salim A, O’Kearney R: Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol 2007, 166:367–378.
5. Llewellyn DJ, Lang IA, Langa KM, Naughton F, Matthews FE: Exposure to secondhand smoke and cognitive impairment in non-smokers: national cross sectional study with cotinine measurement. BMJ 2009, 338:b646.
6. Khan ZU, Muly EC: Molecular mechanisms of working memory. Behav Brain Res 2011, 219:329–341.
7. Xu J, Mendrek A, Cohen MS, Monterosso J, Rodriguez P, Simon SL, Brody A, Jarvik M, Domier CP, Olmstead R, Ernst M, London ED: Rodent models of nicotine withdrawal syndrome. Handb Exp Pharmacol 2009, 192:401–434.
8. Park S, Knopick C, McGurk S, Meltzer HY: Nicotine impairs spatial working memory while leaving spatial attention intact. Neuropsychopharmacology 2000, 22:200–209.
9. Jacobsen UK, Krystal JA, Menaif YZ, Westerveld M, Frost SJ, Pugh KR: Effects of smoking and smoking abstinence on cognition in adolescent tobacco smokers. Biol Psychiatry 2005, 57:56–66.
10. Swan GE, Lessov-Schlaggar CN: The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychol Rev 2007, 17:259–273.
11. Toledano A, Alvarez M, Toledano-Diaz A: Diversity and variability of the effects of nicotine on different cortical regions of the brain - therapeutic and toxicological implications. Curr Nerv Syst Agents Med Chem 2010, 10:180–206.
12. Faulds J, Stapleton J, Swettenham J, Bell N, McSorley K, Russell MA: Cognitive performance effects of subsequent nicotine in smokers and never-smokers. Psychopharmacology (Berl) 1996, 127:31–38.
13. Phillips S, Fox P: An investigation into the effects of nicotine gum on short-term memory. Psychopharmacology (Berl) 1998, 140:429–433.
14. Rezvani AH, Levin ED: Cognitive effects of nicotine. Biol Psychiatry 2001, 49:258–267.
15. Ernst M, Heishman SJ, Spurgeon L, London ED: Smoking history and nicotine effects on cognitive performance. Neuropsychopharmacology 2001, 25:313–319.
16. Kleykamp BA, Jennings JM, Blank MD, Eissenberg T: The effects of nicotine on attention and working memory in never-smokers. Psychol Addict Behav 2005, 19:433–438.
17. Balero GN, Aso E, Maldonado R: Role of the cannabinoid system in the effects induced by nicotine on anxiety-like behaviour in mice. Psychopharmacology (Berl) 2006, 184:504–513.
18. Caldarone BJ, King SL, Picciotto MR: Sex differences in anxiety-like behavior and locomotor activity following chronic nicotine exposure in mice. Neurosci Lett 2008, 439:187–191.
19. Kupferschmidt D, Funk D, Erb S, Le AD: Age-related effects of acute nicotine on behavioural and neuronal measures of anxiety. Behav Brain Res 2010, 213:288–292.
20. Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T: Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci 2000, 20:1568–1574.
21. Shansky RM, Rubinow K, Berenon A, Arensten A: The effects of sex and hormonal status on restraint-stress-induced working memory impairment. Behav Brain Funct 2006, 2:8.
22. Schoofs D, Preuss D, Wolf OT: Psychosocial stress induces working memory impairments in an n-back paradigm. Psychoneuroendocrinology 2008, 33:643–653.
23. MacNeil G, Sela Y, McIntosh J, Zacharko RM: Anxiogenic behavior in the light–dark paradigm following intraventricular administration of cholecystokinin-85, restraint stress, or uncontrollable footshock in the CD-1 mouse. Pharmacol Biochem Behav 1997, 58:737–746.
24. Chotiwat C, Harris RB: Increased anxiety-like behavior during the post-stress period in mice exposed to repeated restraint stress. Horm Behav 2006, 50:489–495.
25. Middleton LS, Cass WA, Dwoision LP: Nicotinic receptor modulation of dopamine transporter function in rat striatum and medial prefrontal cortex. J Pharmacol Exp Ther 2004, 308:367–377.
26. Jung S, Rossi S, Verzosa S, Hashim A, Lonow R, Cooper T, Sershen H, LaGa A: Nicotine-induced changes in neurotransmitter levels in brain areas associated with cognitive function. Neuropsych Res 2004, 29:1779–1792.
27. Wall PM, Messier C: Concurrent modulation of anxiety and memory. Behav Brain Res 2000, 109:239–241.
28. Blanco E, Castilla-Ortega E, Miranda R, Begeaga A, Arias JL, Santín LB: Effects of medial prefrontal cortex lesions on anxiety-like behaviour in restrained and non-restrained rats. Behav Brain Res 2009, 201:338–342.
29. Goldwater DS, Pavlides C, Hunter RG, Bloss BL, Hof PR, McEwen BS, Morrison JH: Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience 2009, 164:798–808.
30. Parrott AC: Does cigarette smoking cause stress? Am Psychol 1999, 54:817–820.
31. Parrott AC, Kaye FJ: Daily upssets, hassles, stresses and cognitive failures: in cigarette smokers, abstinence smokers, and non-smokers. Behav Pharmacol 1999, 10:633–649.
32. Kita T, Okamoto M, Kubo K, Tanaka T, Nakashima T: Enhancement of sensitization to nicotine-induced ambulatory stimulation by psychological stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 1999, 23:893–903.
33. Lutfy K, Brown MC, Neto N, Amirouche O, Tran R, Angelh A, Friedman TC: Repeated stress alters the ability of nicotine to activate the hypothalamic-pituitary-adrenal axis. J Neurochem 2006, 99:1321–1327.
34. Schlitz CA, Kelley AE, Landry CF: Acute stress and nicotine cues interact to unviel locomotor arousal and activity-dependent gene expression in the prefrontal cortex. Biol Psychiatry 2007, 61:127–135.
35. Chids E, de Wit H: Hormonal, cardiovascular, and subjective responses to acute stress in smokers. Psychopharmacology (Berl) 2009, 203:1–12.
36. Kotlyar M, Droke D, Thuras P, Hatsukami DK, Brauer L, Adlon DE, AlAli M: Effect of stress and bupropion on craving, withdrawal symptoms, and mood in smokers. Nicotine Tob Res 2011, 13:492–497.
37. Minowa K, Pawlik R, Takada Y, Takada A: Nicotine attenuates stress-induced changes in plasma amino acid concentrations and locomotor activity in rats. Brain Res Bull 2000, 51:83–88.
38. Hsu HR, Chen TY, Chen MH, Chen HH: Acute effects of nicotine on restraint stress-induced anxiety-like behavior, c-Fos expression, and corticosterone release in mice. Eur J Pharmacol 2007, 566:244–241.
39. Andreassen JT, Henningsen K, Bate S, Christiansen S, Wilborg O: Nicotine reverses anhedonic-like response and cognitive impairment in the rat chronic mild stress model of depression: comparison with sertraline. J Pharmacol Exp Ther 2011, 338:1134–1141.
40. Aleisa AM, Alzoubi KH, Gerges NZ, Alkadhi KA: Nicotine blocks stress-induced impairment of spatial memory and long-term potentiation of the hippocampal CA1 region. Int J Neuropsychopharmacol 2006, 9:417–426.
41. Hayase T: Chronologically overlapping occurrences of nicotine-induced anxiety- and depression-related behavioral symptoms: effects of anxiolytic and cannabinoid drugs. BMC Neurosci 2007, 8:76.

http://www.biomedcentral.com/1471-2202/14/20

Page 9 of 11
44. Hayase T: Depression-related anhedonic behaviors caused by immobilization stress: a comparison with nicotine-induced depression-like behavioral alterations and effects of nicotine and/or “antidepressant” drugs. J Toxicol Sci 2011, 36:31–41.
45. Rebe CJ, Wotjak CT: Endocannabinoids and stress. Stress 2011, 14:384–397.
46. Castañé A, Valient E, Leduc D, Parmentier M, Maldonado R, Valverde O: Lack of CB1 cannabinoid receptors modifies nicotine behavioural responses, but not nicotine abstinence. Neuropharmacology 2002, 43:857–867.
47. Picciotto MR, Caldarone BJ, King SL, Zachariou V: Nicotinic receptor in the brain: Links between molecular biology and behavior. Neuropharmacology 2000, 22:451–465.
48. Viveros MP, Marco EM, Llorente R, Lamotte L: The role of the hippocampus in mediating emotional responses to nicotine and cannabinoids: a possible neural substrate for functional interactions. Behav Pharmacol 2007, 18:375–389.
49. Riedel G, Davies SN: Cannabinoid function in learning, memory and plasticity. Handb Exp Pharmacol 2005, 168:485–477.
50. Marsicano G, Laffénière P: Roles of the endocannabinoid system in memory-related and anxiogenic effects of nicotine: roles of CB1 cannabinoid receptors. J Pharmacol Exp Ther 2011, 335:1764–1790.
51. Viveros MP, Marco EM, File SE: Endocannabinoid system and stress and anxiety responses. Pharmacol Biochem Behav 2005, 81:331–342.
52. Moreira FA, Wolvtj CT: Cannabinoids and anxiety. Curr Top Behav Neurosci 2010, 4:219–245.
53. Hayase T, Yamamoto Y, Yamamoto K: Stress-related behavioral alterations accompanying cocaine toxicity: the effects of mixed opioid drugs. Nihon Arukoru Yakubutsu Igakkai Zasshi 2000, 66:482–484.
54. Committee on Animal Research of Kyoto University Faculty of Medicine: Guidelines for Animal Experiments of Kyoto University Faculty of Medicine. [http://www.kyoto-u.ac.jp/uni_int/kitei/reiki_honbun/w002RG00001169.html] (Japanese).
55. Armarino A, Gill M, Marti J, Pol O, Balsach J: Influence of various acute stressors on the activity of adult male rats in a holeboard and in the forced swim test. Pharmacol Biochem Behav 1991, 39:373–377.
56. Hayase T: Memory-related and anxiogenic effects of nicotine: roles of cannabinoid receptors. Nihon Arukoru Yakubutsu Igakkai Zasshi 2000, 66:482–484.
57. Yoshida T, Sakane N, Umekawa T, Kondo M: Stress: Effect of nicotine on sympathetic nervous system activity of mice subjected to immobilization stress. Physiol Behav 1994, 55:53–57.
58. Sarter M, Bodizszewicz G, Sephehrs DN: Attenuation of scopomine-induced impairment of spontaneous alteration behaviour by antagonist but not inverse agonist and agonist beta-carbolines. Psychopharmacology (Berl) 1988, 94:491–495.
59. Parada-Turska J, Turski WA: Excitatory amino acid antagonists and memory: effect of drugs acting at N-methyl-D-aspartate receptors in learning and memory tasks. Neuropharmacology 1990, 29:1111–1116.
60. Pellow S, Chopin P, File SE, Briel M: Validation of open-closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985, 14:149–167.
61. File SE, Aranko K: Sodium valporate and chloridiazepoxide in the elevated plus-maze test of anxiety in the rat. Neuropharmacology 1988, 27:82–86.
62. Prior H, Schwenger H, Marashi V, Sachser N: Exploration, emotionality, and hippocampal mossy fibers in nonaggressive AB/Gat and congenic highly aggressive mice. Hippocampus 2004, 14:135–140.
63. Alves SH, Pinheiro G, Motta V, Landeira-Fernandez J, Cruz AP: Anxiogenic effects in the rat elevated plus-maze of 5-HT(2C) agonists into ventral but not dorsal hippocampus. Behav Pharmacol 2004, 15:37–43.
64. File SE, Kenny PI, Cheeta S: The role of the dorsal hippocampal serotonergic and cholinergic systems in the modulation of anxiety. Pharmacol Biochem Behav 2000, 66:65–72.
65. Seth P, Cheeta S, Tucci S, File SE: Nicotinic–serotonergic interactions in brain and behaviour. Pharmacol Biochem Behav 2002, 71:795–805.
66. Hale MW, Sheikar A, Lowry CA: Stress-related serotonergic systems: implications for symptomatology of anxiety and affective disorders. Cell Mol Neurobiol 2012, 32:695–708.
67. Dallman MF, Akana SF, Strick AM, Sciblton KS, Pecoraro N, La Fleur SE, Houshyar H, Gomez F: Chronic stress-induced effects of corticosterone on brain: direct and indirect. Ann N Y Acad Sci 2004, 1018:141–150.
68. Morlik DA, Barrella G, Cheevera DJ, Garcia AS, Hernandez A, Ma S, Pietro CD: Role of brain noradrenaline in the behavioral response to stress. Prog Neuropsychopharmacol Biol Psychiatry 2005, 29:1214–1224.
69. Morse DE: Neuroendocrine responses to nicotine and stress: enhancement of peripheral stress responses by the administration of nicotine. Psychopharmacology (Berl) 1998, 98:539–543.
70. Coors R, DEposito M: Inverted-U shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 2011, 69:113–125.
71. Livingstone PD, Sriivasan J, Keen AJ, Dawson LA, Gott C, Moretti M, Shoalb M, Wannagoc S: alpha? and non-alpha? nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex. Eur J Neurosci 2009, 29:559–560.
72. Timofeeva OA, Levin ED: Glutamate and nicotinic receptor interactions in working memory: importance for the cognitive impairment of schizophrenia. Neuroscience 2011, 195:21–36.
73. Issa AM, Rowe W, Gauthier S, Meaney MJ: Hypothalamic-pituitary-adrenal activity in aged, cognitively impaired and cognitively unimpaired rats. J Neurosci 1990, 10:3247–3254.
74. Weiss IC, Pryce CR, Jongen-Rêlo AL, Nanz-Bahr NL, Feldon J: Effect of social isolation on stress-related behavioural and neuroendocrine state in the rat. Behav Brain Res 2004, 152:279–295.
75. Troakes C, Ingram CD: Anxiety behaviour of the male rat on the elevated plus maze: associated regional increase in c-fos mRNA expression and modulation by early maternal separation. Stress 2009, 12:362–369.
76. Matsuo N, Yamanshi N, Ohita K, Takeo K, Tohama Y, Echigo M, Yamauchi S, Miyakawa T: Neural activity changes underlying the working memory deficit in alpha-CaMKII heterozygous knockout mice. Front Behav Neurosci 2009, 3:20.
77. Porter AC, Sauver MJ, Knieman MD, Becker GW, Berra MJ, Bao J, Nomikos GG, Canner P, Bystander MP, Leseel F, Felder CC: Characterization of a new endocannabinoid, virodhamine, with antagonist activity at the CB1 receptor. J Pharmacol Exp Ther 2002, 301:1020–1024.
78. George TP, Verrico CD, Routh RH: Effects of repeated nicotine pre-treatment on mesoprefrontal dopaminergic and behavioral responses to acute footshock stress. Brain Res 1998, 801:36–49.
79. Verrico CD, Jentsch JD, Routh RH: Persistent and anatomically selective reduction in prefrontal cortical dopamine metabolism after repeated, intermittent cannabinoid administration to rats. Synapse 2003, 49:61–66.
80. Viveros MP, Marco EM, File SE: Nicotinic and cannabinoids: parallels, contrasts and interactions. Neurosci Biobehav Rev 2006, 30:161–181.
81. Brada D, Limonta V, Malabarba L, Zani A, Sala M: S-HT1A receptors are involved in the anxiolytic effect of Deltah-tetrahydrocanabinol and AM 404, the anandamide transport inhibitor, in Sprague-Dawley rats. Eur J Pharmacol 2007, 555:156–163.
82. Haller J, Mätyás F, Soproni K, Varga B, Baray B, Németh B, Mikics E, Freund TF, Hájos N: Correlated species differences in the effects of cannabinoids ligands on anxiety and on GABAergic and glutamatergic synaptic transmission. Eur J Neurosci 2007, 25:2445–2456.
83. Genn RE, Tucci S, Marco EM, Viveros MP, File SE: Unconditioned and conditioned anxiogenic effects of the cannabinoid receptor agonist CP 55,940 in the social interaction test. Pharmacol Biochem Behav 2004, 77:567–573.
84. García-Gutiérrez MS, Manzanares J: Overexpression of CB2 cannabinoid receptors decreased vulnerability to anxiety and impaired anxiety-like action of alprazolam in mice. J Pharmacol Exp Ther 2011, 336:111–120.
85. García-Gutiérrez MS, García-Bueno B, Zoppi S, Leza JC, Manzanares J: Chronic blockade of cannabinoid CB2 receptors induces anxiolytic-like actions associated with alterations in GABA(A) receptors. Br J Pharmacol 2012, 165:951–964.
86. Pertwee RG: GPR55: a new member of the cannabinoid receptor clan? Br J Pharmacol 2007, 152:894–896.
91. Sharir H, Console-Bram L, Mundy C, Popoff SN, Kapur A, Abood ME: The endocannabinoids anandamide and virodhamine modulate the activity of the candidate cannabinoid receptor GPR55. J Neuroimmune Pharmacol 2012, 7:856–865.

92. de Fonseca FR, Schneider M: The endogenous cannabinoid system and drug addiction: 20 years after the discovery of the CB1 receptor. Addict Biol 2008, 13:143–146.

doi:10.1186/1471-2202-14-20

Cite this article as: Hayase: Working memory- and anxiety-related behavioral effects of repeated nicotine as a stressor; the role of cannabinoid receptors. BMC Neuroscience 2013 14:20.