Splitting of the Landau levels by magnetic perturbations and Anderson transition in 2D-random magnetic media

Nicolas Dombrowski1,2, François Germinet1 and Georgi Raikov2

1 Département de Mathématiques, Université de Cergy-Pontoise, CNRS UMR 8088, F-95000 Cergy-Pontoise, France
2 Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile

E-mail: nicolas.dombrowski@u-cergy.fr, germinet@math.u-cergy.fr and graikov@mat.puc.cl

Received 20 May 2010
Published 9 November 2010
Online at stacks.iop.org/JPhysA/43/474017

Abstract
In this paper we consider a Landau Hamiltonian perturbed by a random magnetic potential of Anderson type. For a given number of bands, we prove the existence of both strongly localized states at the edges of the spectrum and dynamical delocalization near the center of the band in the sense that wave packets travel at least at a given minimum speed. We provide explicit examples of magnetic perturbations that split the Landau levels into full intervals of spectrum.

PACS numbers: 73.43.−f, 71.23.−k, 71.55.Jv

Dedicated to the memory of Pierre Duclos (1948–2010)

1. Introduction
Over the past two decades in physics literature, a lot of attention has been paid to random magnetic fields in two dimensions, see e.g. [AHK, BSK, Fu, V] and the references therein. The occurrence of localized states under the sole effect of a random magnetic field has been recurrently predicted by the theory, or computed at the band edges. It has then been a challenging issue to provide evidence of the existence of extended states in a 2D electron gas (2DEG) submitted to random magnetic fields. It is commonly admitted that there are no such extended states in a 2DEG with random electric potentials in the absence of a constant perpendicular magnetic field (but no mathematical proofs so far!). As far as random magnetic fields are concerned, the issue is harder to settle for subtler effects seem to play a role. For instance, while the computations of [AHK] were favorable to the occurrence of extended states, the ones from [BSK] were indicating their non-existence.
In quantum Hall systems, namely a 2DEG submitted to a transverse constant magnetic field, localized states are responsible for the celebrated plateaux of the quantum Hall effect. In the case where the Hall conductance is discontinuous, non-trivial transport has been proved to take place in [GKS1] for electric disorder (see also [BeES, GKS2, GKM]). In this paper, we provide a similar picture but with magnetic disorder. The random magnetic potential is shown to create both strongly localized states at the edges of the spectrum and dynamical delocalization near the center of the band in the sense that wave packets travel at least at a given minimum speed.

Mathematically, to prove the occurrence of Anderson localization due to random magnetic potentials only is not an easy task, mainly because of the lack of monotonicity of the eigenvalues as functions of the random variables. Very few preliminary results are available. Recently, Ghribi, Hislop and Klopp [GhHK] proved localization for random magnetic perturbations of a periodic magnetic potential in dimension $d \geq 2$ (see also [KNNY] for a particular discrete model). They exploit the Wegner estimate obtained in [HK] together with results of Ghribi [Gh] in order to start a multiscale analysis. In [U], Ueki extended [HK] to prove localization for some 2D-magnetic perturbation of the Landau Hamiltonian at the very bottom of the spectrum (below the first Landau level).

In this paper we consider 2D-random magnetic perturbations of the Landau Hamiltonian, and prove a transition between dynamical localization and dynamical delocalization inside an arbitrary number of bands. For our model, the phenomenon is thus similar to that arising for random electric potentials [GKS1, GKS2, GKM]. The proof of localization exploits the Wegner estimate of Hislop and Klopp [HK], revisited by Ghribi, Hislop and Klopp [GhHK], together with a simple weak disorder argument to start the multiscale analysis, provided some information on the location of the spectrum that we address in a separate argument. Then dynamical localization follows from [GK1, GK2] together with the full set of equivalent properties defining the region of complete localization [GK3, GK4]. Delocalization is proved along the lines of [GKS1]; in particular, the Hall conductance is quantized, constant in the region of localization and jumps by one as a Landau level is crossed. To the best of our knowledge, this is the first 2D-random purely magnetic model for which such a transition has been established mathematically.

If the theory of Anderson localization developed over the past years for a continuum random Schrödinger operator applies, it remains to prove that it does not lead to an empty result, namely that the interval where states are shown to be localized does intersect the spectrum. Obtaining detailed enough information about the location of the almost spectrum of the random Hamiltonian is again more challenging with non-monotonic perturbations of order 1 such as the magnetic ones. In particular, in our setting, the issue reduces to the proof that the Landau level does split as a periodic magnetic perturbation is turned on and that the corresponding spectrum contains an open interval. In [DSS], Dinaburg, Sinai and Soshnikov considered small periodic electric perturbations of the Landau Hamiltonian and proved that the low Landau levels split into a set of positive Lebesgue measures. Gruber addressed the same issue in [Gr] but for magnetic perturbations. In this paper, we exhibit an explicit family of small periodic magnetic perturbations for which the splitting gives rise to a full interval of spectrum. This is achieved by a direct computation using the translation invariance of our potential in one direction. Such examples are then good enough to be randomized and used as random magnetic fields.

This paper is organized as follows. In section 2 we introduce the model and state the main results. In section 3 we construct explicit examples for which the low Landau levels split into intervals as the magnetic perturbation is turned on. In section 4 we prove our main result, theorem 2.2. The appendix contains some technical trace-class estimates used in this proof.
2. Main results

Let \(A = (A_1, A_2) \in L^2_{\text{loc}}(\mathbb{R}^2, \mathbb{R}^2) \) be a magnetic potential. Define the operator \(H(A) \) as the self-adjoint operator generated in \(L^2(\mathbb{R}^2) \) by the closure of the quadratic form

\[
\int_{\mathbb{R}^2} \| \nabla u + Au \|^2 \, dx, \quad u \in C_0^\infty(\mathbb{R}^2).
\]

The magnetic field generated by \(A \) is

\[
B(x) := \frac{\partial A_2}{\partial x_1}(x) - \frac{\partial A_1}{\partial x_2}(x), \quad x = (x_1, x_2) \in \mathbb{R}^2.
\]

In the case of a constant magnetic field \(B > 0 \), introduce the magnetic potential \(A_0 := (0, Bx_1) \) which generates \(B \). It is well known that the spectrum of \(H(A_0) \) consists of the so-called Landau levels \((2j - 1)B, j \in \mathbb{N} := \{1, 2, \ldots\} \), and each Landau level is an eigenvalue of \(H(A_0) \) of infinite multiplicity. The operator \(H(A_0) \) is called the Landau Hamiltonian. From now on, the symbol \(B \) stands for the magnetic strength of \(H(A_0) \).

Let us introduce the random magnetic potential

\[
A_{\omega}(x) = \sum_{\gamma \in \mathbb{Z}^2} \omega_{\gamma} v_{\gamma}(x),
\]

where \(v_{\gamma}(x) = (v_1(x - \gamma), v_2(x - \gamma)) \), \(\gamma \in \mathbb{Z}^2 \), \(x \in \mathbb{R}^2 \), with \(v_1 \) and \(v_2 \) being the two given \(C^1(\mathbb{R}^2, \mathbb{R}) \) compactly supported functions, normalized so that \(\| \sum_{\gamma \in \mathbb{Z}^2} v_{\gamma} \|_{\infty} = 1 \); the random variables \((\omega_{\gamma})_{\gamma \in \mathbb{Z}^2} \) are independent and identically distributed, supported on \([-1, 1]\), with the common density

\[
\rho_{\eta}(s) = C_\eta \eta^{-1} \exp(-|s|\eta^{-1})\chi_{[-1,1]}(s), \quad \eta > 0,
\]

where \(C_\eta = (2(1 - e^{-\eta^{-1}}))^{-1} \) is the normalization constant (note that \(\frac{1}{2} \leq C_\eta \leq 1 \) for \(\eta \in [0, 1] \)). The support of \(\rho_{\eta} \) is \([-1, 1]\) for all \(\eta > 0 \), but as \(\eta \) gets small, the disorder becomes weaker in the sense that for most \(\gamma \) the coupling \(\omega_{\gamma} \) is small. We may speak of a diluted random model (see [GKS1, GKM] for a similar type of randomness). We denote by

\[
H_{B, \lambda, \omega, \eta} := H(A_0 + \lambda A_{\omega, \eta}), \quad \lambda > 0,
\]

the corresponding magnetic random operator and will consider small values of the coupling constant \(\lambda \).

For bounded Borelian functions \(f \), the maps \(\omega \to f(H_{B, \lambda, \omega, \eta}) \) are measurable. It follows from standard ergodicity arguments that the spectrum is almost surely deterministic as well as its pp, sc and ac components (see e.g. [KM, CFKS, St]). We denote by \(\Sigma_{B, \lambda} \) the almost sure spectrum of \(H_{B, \lambda, \omega, \eta} \). (It does not depend on \(\eta > 0 \) since by construction the support of \(\rho_{\eta} \) is independent of \(\eta > 0 \).) It is easy to see that \(\Sigma_{B, \lambda} \) is contained in a union of intervals

\[
\Sigma_{B, \lambda} \cap (-\infty, (2j - 1)B + B] \subset \bigcup_{j=1}^{J} \mathcal{I}_j(B, \lambda)
\]

for some constant \(C < \infty \) (see lemma 4.4 below). As a consequence, for any integer \(J \in \mathbb{N} \), the first \(J \) intervals \(\mathcal{I}_j(B, \lambda), \ j = 1, \ldots, J \), are disjoint for \(\lambda \) small enough.

\[\text{3 Here and in what follows we write } a \lesssim b \text{ if there exists a constant } c \text{ such that } a \leq cb.\]
More precisely, for any $B \in (0, \infty)$ there exists λ_* such that for any $j \leq J$ and any $\lambda \in (0, \lambda_*)$, we have $I_j(B, \lambda) \cap I_{j+1}(B, \lambda) = \emptyset$, that is $b_j(B, \lambda) < a_{j+1}(B, \lambda)$. We denote by $\mathbb{G}_j(B, \lambda) = (b_j(B, \lambda); a_{j+1}(B, \lambda))$ the jth gap of the spectrum. We say that the couple (B, λ) satisfies the the disjoint band condition if we have
\begin{equation}
\mathbb{G}_j(B, \lambda) \neq \emptyset \quad \text{for any } j \leq J.
\end{equation}

It follows from (2.2) that the disjoint band condition is satisfied if $\lambda \lesssim \sqrt{B/J}$.

Definition 2.1. The region of strong dynamical localization for $H_{B, \lambda, \omega, \eta}$ is denoted by $\mathcal{Z}^{\text{SDL}}_{(B, \lambda, \omega)} \subset \mathbb{R}$, and is defined as the set of $E \in \mathbb{R}$ such that there exists an interval $I \ni E$ satisfying
\begin{equation}
\mathbb{E}\left\{ \sup_{t \in \mathbb{R}} \left\| (\chi) \cdot e^{-i(\psi H_{B, \lambda, \omega} - \chi I}(H_{B, \lambda, \omega}) \chi_0 \right\|_2^2 \right\} < \infty
\end{equation}
for any $p > 0$. Here, $\| \cdot \|_2$ denotes the Hilbert–Schmidt norm, χ_I is the characteristic function of I and χ_0 is the characteristic function of the unit square centered at the origin.

Strong dynamical localization is known to characterize the so-called region of complete localization, where many localization properties turn out to be equivalent [GK3, GK4]. In particular, this region coincides with the set of energies where the bootstrap multiscale analysis of [GK1] applies.

Theorem 2.2. Fix $J \in \mathbb{N}$. Let $H_{B, \lambda, \omega, \eta}$ be the Hamiltonian described above, satisfying the disjoint band condition (2.3). Then there exists $\kappa_J > 0$ (depending on B and J) and $\Lambda = \Lambda(B, J) > 0$, such that for any $\lambda \in (0, \Lambda]$ and $\eta \in (0, c_{B, J} \lambda \log |\lambda|^{-2}]$; for all $j = 1, \ldots, J$, the Hamiltonian $H_{B, \lambda, \omega, \eta}$ exhibits strong dynamical localization, namely for any interval I satisfying
\begin{equation}
I \subset \Sigma_{B, \lambda} \cap (\{a_j(B, \lambda), (2j - 1)B - \kappa_J \lambda^2\}, \{b_j(B, \lambda), (2j - 1)B + \kappa_J \lambda^2\}),
\end{equation}
we have
\begin{equation}
I \subset \mathcal{Z}^{\text{SDL}}_{(B, \lambda, \omega)}.
\end{equation}

Moreover, for all $j = 1, \ldots, J$, there exists a dynamical Anderson transition $\tilde{E}_j(B, \lambda, \eta) \in \Sigma_{B, \lambda} \cap (\{2j - 1)B - \kappa_J \lambda^2\}, (2j - 1)B + \kappa_J \lambda^2\}$. More precisely, there exists at least one energy $\tilde{E}_j(B, \lambda, \eta) \in \Sigma_{B, \lambda} \cap (\{2j - 1)B - \kappa_J \lambda^2\}, (2j - 1)B + \kappa_J \lambda^2\}$, such that for every non-negative $X \in C_0^\infty(\mathbb{R})$ with $X \equiv 1$ on some open interval containing $E_j(B, \lambda)$, and for all $p > 0$, we have
\begin{equation}
\frac{1}{T} \int_0^T \mathbb{E}\left\{ \left\| (\chi) \cdot e^{-i(\tilde{E}_j H_{B, \lambda, \omega} - \chi \tilde{E}_j)(H_{B, \lambda, \omega}) \chi_0 \right\|_2^2 \right\} \ e^{-\frac{t}{T}} \ dt \geq C_{p, X} T^{\frac{1}{2} - \delta},
\end{equation}
for all $T \geq 0$ with $C_{p, X} > 0$.

Remark 2.3. A priori, it is not obvious that there exist non-empty intervals I satisfying (2.5).

In the proof of theorem 3.1 below we construct a family of random potentials ω_{η} and constant magnetic fields B for which such intervals exist and provide an estimate of their size.

Remark 2.4. One may compare theorem 2.2 to [GKS1, corollary 2.4] where the only disorder parameter is the dilution coefficient η (see [GKM] as well). In [GKS1, corollary 2.4], the random potential is an electric one, and, with the notations of this paper, the authors consider the case $\lambda = 1$ and η small. Then localization is proved up to a distance $O(\eta \log \eta)$ from the Landau levels, while here we get to a distance $O(\lambda^{3/2}) = o(\eta^{3/2})$, for any $\varepsilon > 0$, if we take $\eta = e_{B, J} \lambda \log |\lambda|^{-2}$. Such a better bound is due to the combined effect of both parameters λ and η.

4
3. Splitting of the Landau levels

Recall that B denotes the constant scalar magnetic field generated by the magnetic potential A_0 of the Landau Hamiltonian $H(A_0)$, and $\Sigma_{B,\lambda}$ denotes the almost sure spectrum of the operator $H_{B,\lambda,\omega,\eta} = H(A_0 + \lambda A_\omega)$.

Theorem 3.1. Fix $J \in \mathbb{N}$. Then there exist random magnetic potentials A_ω of the form (2.1) with $v = (v_1, v_2)$ described explicitly in (3.25), and $\tilde{\kappa}_J > 0$ and $\tilde{\lambda}_J > 0$, such that for any B in the set $M_J = M_J(A_\omega) \subseteq (0, \infty)$ described explicitly in (3.23), we have

$$\left[(2j - 1)B - \tilde{\kappa}_j \lambda, (2j - 1)B + \tilde{\kappa}_j \lambda\right] \subset \Sigma_{B,\lambda}, \quad j = 1, \ldots, J,$$

provided $\lambda \in (0, \tilde{\lambda}_J]$.

Remark 3.2. It follows from (2.2) and theorem 3.1 that the edges of the almost sure spectrum satisfy

$$\tilde{\kappa}_J (B) \lambda \leq (a_j (B, \lambda) - (2j - 1)B), \quad (b_j (B, \lambda) - (2j - 1)B) \leq C \sqrt{jB} \lambda,$$

for all $j = 1, \ldots, J$, all $\lambda \in (0, \tilde{\lambda}_J)$ and $\eta > 0$.

Remark 3.3. The complement of the set M_J is always finite. Moreover, remark 3.8 below provides a simple sufficient condition that $M_J = (0, \infty)$; informally, this is the generic condition that the periodic function a appearing in (3.3) has sufficiently many non-vanishing Fourier coefficients.

Remark 3.4. In the construction of the potential A_ω within the proof of theorem 3.1 we assume that the function a appearing in (3.3) is given and describe the set of admissible fields $B \in (0, \infty)$ for which theorem 3.1 holds true. Of course, we could start with an arbitrary given B, and construct afterward (a family) of 1-periodic $a \in C^1(\mathbb{R}; \mathbb{R})$ for which theorem 3.1 is valid.

Proof of theorem 3.1. The main idea of the proof is to construct an appropriate periodic magnetic potential A_{per} such that for every $\lambda > 0$, any given Landau level splits into an interval of positive length of the spectrum $\sigma(H(A_0 + \lambda A_{\text{per}}))$ of the operator $H(A_0 + \lambda A_{\text{per}})$. After that, using ideas of [KM], we show that

$$\sigma(H(A_0 + \lambda A_{\text{per}})) \subset \Sigma_{B,\lambda},$$

which implies (3.1). First, we construct A_{per}. Let $a \in C^1(\mathbb{R}; \mathbb{R})$ be a 1-periodic function whose derivative does not vanish identically. Evidently, a is bounded on \mathbb{R}. Set

$$A_{\text{per}}(x) = (0, a(x_1)), \quad x = (x_1, x_2) \in \mathbb{R}^2. \quad (3.3)$$

Let \mathcal{F} be the partial Fourier transform with respect to x_2, i.e.

$$(\mathcal{F}u)(x_1, k) := (2\pi)^{-1/2} \int_{\mathbb{R}} e^{-ikx_2} u(x_1, x_2) \, dx_2.$$

Then we have

$$\mathcal{F}H(A_0 + \lambda A_{\text{per}}) \mathcal{F}^* = \int_{\mathbb{R}} \tilde{h}_\lambda(k) \, dk,$$

where

$$\tilde{h}_\lambda(k) := -\frac{d^2}{dx_1^2} + (Bx_1 + \lambda a(x_1) - k)^2, \quad k \in \mathbb{R}. \quad (3.4)$$
is the self-adjoint operator in $L^2(\mathbb{R})$, essentially self-adjoint on $C_0^\infty(\mathbb{R})$. In (3.4) change the variable $x_1 = t + k/B$, $t \in \mathbb{R}$. Then the operator $\hat{h}_j(k)$ is unitarily equivalent to
\[h_j(k) := -\frac{d^2}{dt^2} + (Bt + \lambda a(t + k/B))^2, \quad k \in \mathbb{R}. \]
Note that we have
\[h_j(k) = h_0 + v_j(k), \quad \text{(3.5)} \]
where
\[h_0 := -\frac{d^2}{dt^2} + B^2 t^2 \quad \text{(3.6)} \]
and
\[v_j(t; k) := 2Bt\lambda a(t + k/B) + \lambda^2 a(t + k/B)^2. \quad \text{(3.7)} \]
Since $B^2 t^2 + v_j(t; k) \to \infty$, as $t \to \pm \infty$, the spectrum of the operator $h_j(k)$ is discrete and simple. Let $\{E_j(k; \lambda)\}_{j=1}^\infty$ be the increasing sequence of its eigenvalues. Since the operators $h_j(k)$ and $\tilde{h}_j(k)$ are unitarily equivalent, of course, $\{E_j(k; \lambda)\}_{j=1}^\infty$ is also the increasing sequence of the eigenvalues of $\tilde{h}_j(k)$. Applying an appropriate infinite-dimensional version of [K, chapter 2, theorem 5.16] to the operator $\hat{h}_j(k)$, we easily find that the functions E_j, $j \in \mathbb{N}$, are the real analytic functions with respect to k and λ (see also the first footnote of [K, p. 117]). Moreover, $E_j(\cdot; \lambda)$, $j \in \mathbb{N}$, are B-periodic for any $\lambda \in \mathbb{R}$. It is well known that
\[\sigma(H(A_0 + \lambda A_{\text{per}})) = \bigcup_{j \in \mathbb{N}} \bigcup_{k \in [0, B)} \{E_j(k; \lambda)\}. \quad \text{(3.8)} \]
Further,
\[E_j(k; 0) = (2j - 1)B, \quad j \in \mathbb{N}, \quad \text{(3.9)} \]
i.e. the eigenvalues $E_j(k; 0)$ coincide with the Landau levels and are independent of $k \in \mathbb{R}$. Let φ_j, $j \in \mathbb{N}$, be the real eigenfunctions of the harmonic oscillator h_0 which satisfy $h_0\varphi_j = (2j - 1)B\varphi_j$ and $\int_{\mathbb{R}} \varphi_j(t)^2 \, dt = 1$. We recall that
\[\varphi_j(t) = \varphi_j(t; B) = \frac{B^{1/4}}{\sqrt{(j - 1)!2^{j-1}\sqrt{\pi}}} \mathcal{H}_{j-1}(\sqrt{B}t) e^{-Bt^2/2}, \quad j \in \mathbb{N}, \quad t \in \mathbb{R}, \quad \text{(3.10)} \]
where
\[\mathcal{H}_q(t) := e^{t^2/2} \left(\frac{d}{dt} - t \right)^q e^{-t^2/2}, \quad q \in \mathbb{Z}_+ := \{0, 1, \ldots\}, \quad \text{(3.11)} \]
are the Hermite polynomials. Fix $j \in \mathbb{N}$. Now, the so-called Feynman–Hellmann formula implies
\[\frac{\partial E_j(k; \lambda)}{\partial \lambda} = 2B \int_{\mathbb{R}} a(t + k/B) t \psi_j(t)^2 \, dt, \quad k \in \mathbb{R}. \quad \text{(3.12)} \]
Assume that for some $k_\lambda \in [0, B)$ we have
\[\frac{\partial E_j(k; \lambda)}{\partial \lambda} < 0, \quad \frac{\partial E_j(k_\lambda; 0)}{\partial \lambda} > 0. \quad \text{(3.13)} \]
Taking into account relations (3.13) and (3.9), as well as the continuity of $\frac{\partial E_j(k_\lambda; \lambda)}{\partial \lambda}$ with respect to λ, we find that there exist $\kappa_j > 0$ and $\lambda^*_j > 0$ such that
\[E_j(k_\lambda; \lambda) - (2j - 1)B < -\kappa_j \lambda, \quad E_j(k_\lambda; \lambda) - (2j - 1)B > \kappa_j \lambda, \quad \text{(3.14)} \]
provided that \(\lambda \in (0, \lambda^*_j) \). Combining (3.12) and (3.13) with (3.14) and (3.8), we obtain the following

Lemma 3.5. Fix \(B > 0 \) and \(j \in \mathbb{N} \). Assume that for some \(k_\pm \in [0, B) \) we have

\[
\int_{\mathbb{R}} a(t + k_\pm/B) t \varphi_j(t)^2 \, dt < 0, \quad \int_{\mathbb{R}} a(t + k_\pm/B) t \varphi_j(t)^2 \, dt > 0. \tag{3.15}
\]

Then there exist \(x_j > 0 \) and \(\lambda^*_j > 0 \) such that

\[[(2j - 1)B - x_j \lambda, (2j - 1)B + x_j \lambda] \subset \sigma(H(A_0 + \lambda \mathbf{A}_{\text{per}})), \]

provided that \(\lambda \in (0, \lambda^*_j) \).

Next we establish criteria which guarantee the existence of \(k_\pm \) for which inequalities (3.15) hold true.

Expand \(a \) into a Fourier series

\[
a(t) = \sum_{l \in \mathbb{Z}} \alpha_l e^{2\pi i lt}, \quad t \in \mathbb{R}, \tag{3.16}
\]

with the Fourier coefficients

\[
\alpha_l = \overline{a_{-l}} := \int_0^1 a(t) e^{-2\pi i lt} \, dt, \quad l \in \mathbb{Z}.
\]

Note that \(a \in C^1(\mathbb{R}) \) implies \(\{\alpha_l\}_{l \in \mathbb{Z}} \in \ell^1(\mathbb{Z}) \). Moreover, by the assumption that the derivative of \(a \) does not vanish identically, there exists at least one non-vanishing Fourier coefficient \(\alpha_l \) with \(l \in \mathbb{N} \). Further, we have

\[
F_j(k) := F_j(k; B) := \int_{\mathbb{R}} a(t + k/B) t \varphi_j(t; B)^2 \, dt
\]

\[
= -2 \sum_{l=1}^{\infty} |\alpha_l| I_j(2\pi|l|; B) \sin \left(\frac{2\pi kl}{B} + \arg \alpha_l \right), \quad k \in \mathbb{R}, \quad j \in \mathbb{N}, \tag{3.17}
\]

where

\[
I_j(s; B) := \int_{\mathbb{R}} \sin(st) t \varphi_j(t; B)^2 \, dt, \quad s \in \mathbb{R}.
\]

Evidently, \(F_j \) is a \(B \)-periodic real analytic function of zero mean value. The existence of \(k_\pm \in [0, B) \), for which inequalities (3.15) hold true, is equivalent to the fact that \(F_j \) does not vanish identically, which on its turn is equivalent to the existence of \(l \in \mathbb{N} \) for which

\[
\alpha_l I_j(2\pi|l|; B) \neq 0. \tag{3.18}
\]

Remark 3.6. A condition which guarantees the splitting of the Landau levels into spectral bands of positive length, similar to (3.18), was obtained in [Be, chapter 4]. Note, however, that in [Be] the Landau Hamiltonian perturbed by a periodic electric potential was considered.

Let us now make condition (3.18) more explicit. Fix \(j \in \mathbb{N} \). Simple calculations yield

\[
I_j(s; B) = B^{-1/2} I_j(sB^{-1/2}; 1), \quad s \in \mathbb{R}, \tag{3.19}
\]

and

\[
I_j(s; 1) = \frac{-1}{(j - 1)! 2^{j-1} \sqrt{\pi}} \frac{d}{ds} \int_{\mathbb{R}} e^{isr} e^{-r^2} H_{j-1}(r)^2 \, dr, \quad s \in \mathbb{R}. \tag{3.20}
\]

Applying [GrRy, equation (7.377)] (see also [Be, lemma 2.2.2]), we get

\[
\frac{1}{q^{12} \sqrt{\pi}} \int_{\mathbb{R}} e^{isr} e^{-r^2} H_q(r)^2 \, dr = L_j(s^2/2) e^{-s^2/4}, \quad s \in \mathbb{R}, \quad q \in \mathbb{Z}_+, \tag{3.21}
\]
where
\[\mathcal{L}_q(\xi) := \frac{1}{q!} \xi^q \frac{d^q}{d\xi^q} (\xi^q e^{-\xi}), \quad \xi \in \mathbb{R}, \quad q \in \mathbb{Z}_+, \]
are the Laguerre polynomials. Therefore,
\[I_j(s; 1) = \mathcal{P}_j(s) e^{-s^2/4}, \quad s \in \mathbb{R}, \]
where
\[\mathcal{P}_j(s) := \frac{s}{2} (\mathcal{L}_{j-1}(s^2/2) - 2 \mathcal{L}'_{j-1}(s^2/2)) \]
and \(\mathcal{L}'_q(\xi) = \frac{d\mathcal{L}_q(\xi)}{d\xi}, \xi \in \mathbb{R}, q \in \mathbb{Z}_+ \). Obviously, \(\mathcal{P}_j, j \in \mathbb{N} \), is an odd polynomial of degree \(2j - 1 \). Hence, \(\mathcal{P}_j \) has at most \(j - 1 \) distinct positive real roots.

Now for \(a \in C^1(\mathbb{R}; \mathbb{R}) \), recalling (3.16), set
\[\mu_{j,l} := \{ s \in (0, \infty) | \mathcal{P}_j(2\pi ls) \neq 0 \}, \quad l \in \mathbb{N}. \]
Evidently, the complement in \((0, \infty) \) of \(\mu_{j,l} \) contains no more than \(j - 1 \) points. Put
\[M_j := \left\{ \beta \in (0, \infty) | \beta^{-1/2} \in \bigcup_{l \in \mathbb{N} | \alpha_l \neq 0} \mu_{j,l} \right\}. \]
Relations (3.19)–(3.22) imply that the inclusion \(B \in M_j \) holds if and only if at least one of the coefficients
\[\alpha_l I_j(2\pi l; B) = B^{-1/2} \alpha_l I_j(2\pi l B^{-1/2}; 1), \quad l \in \mathbb{N}, \]
in (3.18) does not vanish, i.e. the inclusion \(B \in M_j \) is equivalent to the existence of \(k_{\pm} \in [0, B) \) for which (3.15) is fulfilled.

Moreover, \(B \) is the complement of \(M_j \), \(j \in \mathbb{N} \), in \((0, \infty) \), if and only if \(\mathcal{P}_j(2\pi l B^{-1/2}) = 0 \) for each \(l \in \mathbb{N} \) such that \(\alpha_l \neq 0 \). Thus, a simple sufficient (but not necessary) condition which guarantees \(M_j = (0, \infty) \) is that the function \(a \) has at least \(j \) non-vanishing Fourier coefficients \(\alpha_l \) with \(l \in \mathbb{N} \).

Thus, we obtain the following.

Lemma 3.7. Fix \(j \in \mathbb{N} \) and let \(a \in C^1(\mathbb{R}; \mathbb{R}) \) be given. Then inequalities (3.15) hold for some \(k_{\pm} \in [0, B) \) if and only if \(B \in M_j \).

Now we are in position to prove theorem 3.1. Fix \(J \in \mathbb{N} \) and set
\[\tilde{\lambda}_j := \min_{l=1, \ldots, j} \lambda_j, \quad \tilde{k}_j = \min_{l=1, \ldots, j} \kappa_j \]
and
\[M_J := \bigcap_{j=1}^J M_j. \tag{3.23} \]

Remark 3.8. Evidently, the complement of the set \(M_j \) in \((0, \infty) \) is always finite and generically empty. Similar to \(M_j \), a simple sufficient (but not necessary) condition which guarantees \(M_J = (0, \infty) \) is that the function \(a \) has at least \(J \) non-vanishing Fourier coefficients \(\alpha_l \) with \(l \in \mathbb{N} \) (see (3.16)).

Then lemmas 3.5–3.7 imply that
\[[(2j - 1)B - \tilde{k}_j \lambda, (2j - 1)B + \tilde{k}_j \lambda] \subset \sigma(H(A_0 + \lambda A_{\mu})_J), \quad j = 0, \ldots, J, \tag{3.24} \]
provided that \(\lambda \in (0, \tilde{\lambda}_J) \).
Let $\zeta \in C^\infty_0(\mathbb{R}; \mathbb{R})$ satisfy $0 \leq \zeta(t) \leq 1$ and $\sum_{m \in \mathbb{Z}} \zeta(t - m) = 1, t \in \mathbb{R}$. Define A_ω as in (2.1) with
\[
v_1 = 0, \quad v_2(x) = a(x_1)\zeta(x_1)\zeta(x_2), \quad x = (x_1, x_2) \in \mathbb{R}^2. \tag{3.25}\]
Evidently, $A_\omega \in C^1(\mathbb{R}^2; \mathbb{R}^2)$ and
\[
\|A_\omega\|_{L^\infty(\mathbb{R}^2)} + \|\nabla A_\omega\|_{L^\infty(\mathbb{R}^2)} < \infty,
\]
for each realization of the random variables $(\omega_\gamma)_{\gamma \in \mathbb{Z}^2}$. Note that if $\tilde{\omega}$ is the periodic realization of the random variables with $\tilde{\omega}_\gamma = 1$, for each $\gamma \in \mathbb{Z}^2$, then we have $A_\omega = A_{\text{per}}$, the magnetic potential A_{per} being defined in (3.3). Applying a magnetic version of [KM, theorem 4], we find that (3.2) holds true. Finally, the combination of (3.2) and (3.24) yields (3.1).

4. Proof of theorem 2.2

4.1. First part: localization

To prove strong dynamical localization, we perform the bootstrap multiscale analysis of [GK1]. As is well known, multiscale analysis in this context requires two main ingredients: a Wegner estimate and an initial scale estimate. We will use small enough constants appearing in the Wegner estimate as well as in the multiscale analysis will grow as $\lambda \to 0$. Since λ will have to be chosen small enough depending on those constants, precise versions of the Wegner estimate and of the initial scale estimate are required.

Let $Q_L \subset \mathbb{R}^2$ be the square of side $L \in 6\mathbb{N}$ centered at the origin. Let χ_L denote the characteristic function of Q_L and Γ_L denote the characteristic function of the set $Q_{L-1} \setminus Q_{L-3}$. Further, let $H_{B,\lambda,\eta,\omega, L}$ be the operator $(-i\nabla^2 - A_\omega - \lambda A_{\text{per}})^2$ with appropriate boundary conditions, self-adjoint in $L^2(Q_L)$. For $z \in \mathbb{C} \times \sigma(H_{B,\lambda,\eta,\omega, L})$ set $R_{B,\lambda,\eta,\omega, L}(z) := (H_{B,\lambda,\eta,\omega, L} - z)^{-1}$.

A Wegner estimate for random magnetic perturbation has been proved in [HK, theorem 6.1]. Because of the above considerations, our analysis rather relies on the Wegner estimate obtained in [GhHK] and extended to the case of a random magnetic potential in [HK, theorem 1.2]. More precisely in our context [GhHK, theorem 4.1] reads

Theorem 4.1 [GhHK]. Let $E \in ((2j - 1)B, (2j + 1)B)$, $j \in \mathbb{N}$, be given and set $\delta = \text{dist}(E, \sigma(H(A_\omega)))$. Then there exists $\lambda_0 > 0$ and, for any $q \in (0, 1)$, a constant $Q_q < \infty$ such that for any $\epsilon \in (0, \delta/2)$, any $\lambda \leq \lambda_0 \min\{1, \delta^{1/2}\}$ and any $\eta > 0$, we have
\[
\mathbb{P}\left[\text{dist}(E, \sigma(H_{B,\lambda,\eta,\omega, L})) \leq \epsilon\right] \leq Q_w \epsilon^q L^2, \tag{4.1}\]
with $Q_w = Q_q(\eta \delta)^{-1}$.

Remark 4.2. The factor η^{-1} in (4.1) comes from the derivative of the probability distribution and [HK, equation (3.16)] (see also [U, equation 1]).

For the initial scale estimate, we need the following version of [GK2, theorem 2.4].

Theorem 4.3 [GK2, theorem 2.4]. Let $E \in ((2j - 1)B, (2j + 1)B)$, $j \in \mathbb{N}$, be given. Set $\delta := \text{dist}(E, \sigma(\lambda H))$. Given a Wegner estimate of the form (4.1), there exist $C_d, C_{d,q,j} < \infty$, so that if for $L \geq Cd\delta^{-1}$ we have
\[
\mathbb{P}\left(\|C_{d,q,j}B Q_w L^{\frac{3}{2}} \| \circ \Gamma_L R_{B,\lambda,\eta,\omega, L}(E) \chi_L \| < 1\right) \geq 1 - 2.10^{-5}, \tag{4.2}\]
then $E \in Z_{(B,\lambda,\eta)}^D$.\]
In (4.2) we already took into account that the constant γ that appears in [GK2, assumption SLI] is bounded by $C_4 \sqrt{(2j+1)B}$. This can be seen from [GK3, theorem A.1], since the magnetic perturbation is relatively bounded with respect to H_B with relative bound, say $\frac{1}{4}$.

We will take advantage of the following lemma which is a consequence of the resolvent identity (see [DGR, lemma 4.1]).

Lemma 4.4. Let $H(A_0)$ be the Landau Hamiltonian with constant magnetic filed B. Let $A \in C^1(\mathbb{R}^2)$ be such that $\|A\|_\infty \leq K_1 \sqrt{B}$ and $\|\text{div} A\|_\infty \leq K_2 B$. Then there exists a constant $0 < K_0 < \infty$ such that

$$\sigma(H(A_0 + A)) \cap [(2j - 1)B - B, (2j - 1)B + B]$$

$$\subset [(2j - 1)B - d_j(A, B), (2j - 1)B + d_j(A, B)],$$

(4.3)

for any j so that where $d_j(A, B) < B$, where $d_j(A, B) = K_0 \max(\|\text{div} A\|_\infty, \|A\|_\infty \sqrt{(j + 1)B})$.

The same conclusions hold for the finite volume operators, with the same constants, independent of the volume.

By the definition of the probability distribution, given $\eta \in [0, 1]$, we have $P(|\omega_0| \leq \alpha) \geq 1 - \exp(-\alpha \eta^{-1})$ (recall that the normalization constant of the probability distribution satisfies $\frac{1}{2} \leq C_0 \leq 1$). Now, for B given and $\lambda \leq \lambda_0$ (given by theorem 4.1), we note that the spectrum of $H_{B, \lambda, \eta, 0, L}$ satisfies

$$\begin{align*}
\mathbb{P}(\sigma(H_{B, \lambda, \eta, 0, L}) \subset \bigcup_{j=1}^J [B_j - C_j \lambda B^{1/2} \alpha, B_j + C_j \lambda B^{1/2} \alpha]) \\
\geq P(|\omega_j| \leq \alpha, \forall j \in \Lambda_L) \\
\geq 1 - \exp(-\alpha \eta^{-1}) L^2,
\end{align*}$$

(4.4)

(4.5)

(4.6)

with $0 < \alpha < B^{1/2}$.

Since we are working in spectral gaps, we use the Combes–Thomas estimate of [BCH, proposition 3.2] (see also the proof of [KJK, theorem 3.5] based on [BCH, lemma 3.1]), adapted to a finite volume as in [GK2, section 3].

Let $E \in \mathcal{I}_j(B)$ and assume that $|E - (2j - 1)B| \geq 2\delta$. We write $\delta = \kappa_j \lambda^2$ and choose κ_j so that the condition $\lambda \leq \lambda_0 \sqrt{\delta}$ in theorem 4.1 is satisfied, namely $\kappa_j \geq \lambda_0^{-2}$. We further use (4.6) with α such that $C_j \lambda \sqrt{B} \alpha = \delta$, that is $\alpha = C_{B, j} \kappa_j \lambda$.

We pick $q \in (0, 1)$ close to 1 and L such that $L > \lambda^{-1} \geq C_j \lambda^{-3/(6q)}$. (Hence, the assumption $L \geq C_j \delta^{-3/(16q)}$ in theorem 4.1 is fulfilled.)

Then, using (4.6) and the Combes–Thomas estimate, we conclude that condition (4.2) will be satisfied at the energy E if

$$\alpha \eta^{-1} \geq C_3 \log L,$$

(4.7)

$$C_{B, j} Q_q(\eta \delta)^{-1} L^{1/2} e^{-C_4 \sqrt{\delta} L} < 1,$$

(4.8)

where $C_3 < \infty$ and $C_4 > 0$. Recalling that $\delta = \kappa_j \lambda^2$, we choose $L / \log L \geq C_{B, j} \lambda^{-1} \log(\lambda \eta)^{-1}$ so that (4.8) holds and $\eta^{-1} \geq C_{B, j} \lambda^{-1} \log L$ so that (4.7) is satisfied. Since for η small enough $\eta^{-1} \gg \log \log \eta^{-1}$, these two conditions are compatible and $\eta \leq C_{B, j} \lambda \log \lambda^{-2}$ is sufficient. As a consequence (4.2) holds for all E so that $|E - (2j - 1)B| \geq 2\delta = 2\kappa_j \lambda^2$ and strong dynamical localization follows.
4.2. Second part: delocalization

We finish the proof of theorem 2.2 following the idea of [GKS1, GKS2] which consists in using the Hall conductance in order to prove the existence of delocalization energies. In [GKS1, GKS2], the authors considered a Landau Hamiltonian perturbed by a random electric perturbation and proved various properties of the Hall conductance, including the fact that it is integer valued in delocalization gaps. While both [GKS1] and [GKS2] can be generalized to the case of a random magnetic perturbation, we focus on [GKS1] since it provides a simpler proof which does not require the more involved technology of [GKS2].

Let Λ be the characteristic function of the interval $[\frac{1}{2}, \infty)$ and Λ_j be the multiplication operators given by $\Lambda_j(x) = \Lambda(x_j)$, $j = 1, 2$. For any orthogonal projection P such that $P[[P, \Lambda_1], [P, \Lambda_2]]$ is trace class, we set

$$\Theta(P) := \text{tr}[P[[P, \Lambda_1], [P, \Lambda_2]]] = \text{tr}[P\Lambda_1 P, P\Lambda_2 P].$$

Let P be an orthogonal projection on $L^2(\mathbb{R}^2)$ and ϕ_i be a smooth characteristic function of the unit square centered at $x \in \mathbb{R}^2$. Assume that we have

$$\|\phi_i P\phi_i\|_2 \leq K_\rho(x)^\xi(y)^\kappa e^{-|x-y|^\rho}$$

for any $x, y \in \mathbb{Z}^2$, (4.10)

with some $\xi \in [0, 1], \kappa > 0$ and $K_\rho < \infty$. By [GKS1], lemma 3.1 we have

$$|\Theta(P)| := \|P[[P, \Lambda_1], [P, \Lambda_2]]\|_1 \leq C_{\xi, \kappa} K_\rho^2,$$

where $\| \cdot \|_1$ is the trace-class norm. Then the so-called Hall conductance is well defined and is given by

$$\sigma_{\text{Hall}}(B, \lambda, \eta, E, \omega) = -2\pi i \Theta(P_{B, \lambda, \eta, E, \omega}).$$

Applying the ergodic theorem (see e.g. [GKS1]), we obtain

$$\sigma_{\text{Hall}}(B, \lambda, \eta, E) := E\Theta_{\text{Hall}, \omega}(B, \lambda, \eta, E, \omega) = \sigma_{\text{Hall}}(B, \lambda, \eta, E, \omega)$$

for P a.e ω. (4.13)

We proceed as in [GKS1] to get the existence of a delocalization energy near each Landau levels using a perturbative argument.

Lemma 4.5. Assume that $\lambda \lesssim \sqrt{BJ}/J$ so that the disjoint band condition (2.3) holds. Then $\sigma_{\text{Hall}}(B, \lambda, \eta, E)$ is constant in each connected component of $\Xi^{DL}_{(B, \lambda, \eta)}$. Moreover for any $j \leq J$, we have $\sigma_{\text{Hall}}(B, \lambda, \eta, E) = j$ whenever $E \in \Xi^{DL}_{(B, \lambda, \eta)} \cap (2j - 1)B, (2j + 1)B$.

Proof. The fact that $\sigma_{\text{Hall}}(B, \lambda, \eta, E)$ is constant in each connected component of $\Xi^{DL}_{(B, \lambda, \eta)}$ is a consequence of the strong localization properties of the eigenfunctions that hold in the region of strong dynamical localization. The argument follows from lemmas 3.1 and 3.2 of [GKS1] which are general results, independent of the particular form of the random perturbation.

The proof of the second assertion is standard and consists in starting with the zero disorder situation and energy E in the middle of a given gap $\mathcal{G}_j(B, 0)$, where the Hall conductance $\sigma_{\text{Hall}}(B, \lambda, \eta, E)$ is known to be equal to j (e.g. [AvSS, BeES]); then, increase the disorder parameter λ keeping E in $\mathcal{G}_j(B, \lambda)$ and show that the conductance remains constant; at last, use the fact that the Hall conductance $\sigma_{\text{Hall}}(B, \lambda, \eta, E)$ is constant when moving the energy E inside a region of dynamical localization.

The first step, namely increasing the disorder, is a perturbative argument which is performed here for magnetic perturbations along the lines of proof of [GKS1, lemma 3.3].

Pick $E = 2jB$, the middle of the gap $\mathcal{G}_j(B, 0)$. Since the gap remains open for sufficiently small $\lambda \geq 0$, we can write $P_\lambda = P_{B, \lambda, \eta, \omega, E}$ as an appropriate Riesz projection, apply the Combes–Thomas theory and obtain the estimate

$$\|\phi_i P_\lambda \phi_i\|_2 \leq K_1 e^{-K_2|x-y|}$$

for all $x, y \in \mathbb{Z}^2$ and $\lambda \in I$,
with some $K_1 > 0$ depending on η (cf [GKS1, equation (3.16)]). In particular, (4.10) holds true. Suppose now that the perturbation A_ω has a compact support. By lemma A.1 the operator $Q_{\lambda, \lambda'} := P_\lambda - P_0 - (P_{\lambda'} - P_0)$ is trace class for all $\lambda, \lambda' \in I$. Using the second form of $\Theta(P_\lambda)$ in (4.9) and expanding the difference $\Theta(P_\lambda) - \Theta(P_\lambda')$ in four terms with $P_\lambda = P_{\lambda'} + Q_{\lambda, \lambda'}$ as in [GKS1, equation (3.35)] yields $\Theta(P_\lambda) = \Theta(P_{\lambda'})$.

Next, we use an approximation argument considering ω^L, ω^L given by $\omega^L = \omega_1$, if $|i| \leq L$ and $\omega^L = 0$, otherwise, and $\omega^L \equiv \omega - \omega^L$ for any $L > 0$. With the obvious notations, we set $Q_{\lambda, \lambda'} := P_\lambda - P_{\lambda', L}$ (cf [GKS1, equation (3.36)]). Using an appropriate Combes–Thomas estimate (see e.g. [CG, lemma A.3]) and a smooth partition of unity $\{\phi_x\}_{x \in \mathbb{Z}^2}$, we find that

$$\|\phi_x Q_{\lambda, > L} \phi_y\| \leq C e^{-C(|x-y|+\max(L-|x,0|)+\max(L-|y,0|))}.$$ \hspace{1cm} (4.14)

Putting together (4.14) and (A.13), we obtain the estimate

$$\|\phi_x Q_{\lambda, > L} \phi_y\|_2 \leq \|\phi_x Q_{\lambda, > L} \phi_y\| + \|\phi_x Q_{\lambda, > L} \phi_y\|_1$$

$$\leq C e^{-C(|x-y|+\max(L-|x,0|)+\max(L-|y,0|))},$$

for all $x, y \in \mathbb{Z}^2$ and $L > 0$. Combining the fact that for any orthogonal projections $P_{\beta}, P_{\gamma}, P_{\eta}$, we have

$$\|P_{\beta}[[P_{\beta}, \Lambda_1], [P_{\gamma}, \Lambda_2]]\| \leq \sum_{x, y \in \mathbb{Z}^2} \|\phi_x [P_{\beta}, \Lambda_1] \phi_y \| \|\phi_y [P_{\gamma}, \Lambda_2] \phi_y \|_2,$$

with (4.15), and the dominated convergence theorem, we get that $\Theta(P_\lambda) - \Theta(P_{\lambda', L}) \rightarrow 0$. This ends the proof of the lemma.

We now finish the proof of theorem 2.2. Let us fix the couple $\{(B, \lambda)\}$ so that the disjoint band condition (2.3) is valid. Pick $j \leq J$. By virtue of lemma 4.5, it is not possible that $I_j(B, \lambda) \subset \Xi_{(B, \lambda, L_0)}$. As a consequence, there exists at least one energy $E_j(B, \lambda, \eta) \in I_j(B, \lambda)$ such that $E_j(B, \lambda, \eta) \notin \Xi_{(B, \lambda, L)}$. Next, because of (2.5) and (2.6), we have $E_j(B, \lambda, \eta) \subset [(2j - 1)B - \kappa_j \lambda^2, (2j - 1)B + \kappa_j \lambda^2]$.

Finally, to get the dynamical lower bound (2.7) near $E_j(B, \lambda, \eta)$, we apply [GK3, theorem 2.11]. We can indeed readily apply [GK3] to magnetic random perturbations: the bounds from [GK3, appendix A] are valid within our context since $H_{B, \lambda, \omega, \eta} - H(A_\omega)$ is relatively $H(A_\omega)$-bounded with relative bound < 1 and the proof of [GK3, theorem 2.11] itself works as well for magnetic perturbations.

Acknowledgments

The authors thank Alex Sobolev for providing the text of [Be]. ND and FG were supported in part by ANR 08 BLAN 0261. ND and GR were partially supported by Núcleo Científico ICM P07-027-F ‘Mathematical Theory of Quantum and Classical Magnetic Systems’. FG and GR were partially supported by the Chilean Science Foundation Fondecyt under grant 190467. GR thanks the Bernoulli Center, EPFL, Lausanne, for a partial support during his participation in the Programme ‘Spectral and Dynamical Properties of Quantum Hamiltonians’ in 2010.

Appendix. Trace estimates

Let $a = (a_1, a_2) \in L^2_{\text{loc}}(\mathbb{R}^2; \mathbb{R}^2)$. Introduce the self-adjoint operator $H_a := (-i \nabla - A_\alpha - \lambda a)^2$, $\lambda \geq 0$, where, as earlier, the magnetic potential A_α generates a constant magnetic field $B > 0$.

12
Denote by $P_{λ,E}$ the spectral projection of the operator $H_{λ}$ associated with the interval $(-∞, E)$, $E ∈ R$. We will say that $E ∈ R$ is in a spectral gap of the family $H_{λ}$, $λ ∈ [0, λ_0]$, with some $λ_0 > 0$, if there exist closed disjoint intervals J_- and J_+ such that

$$(-∞, E) \cap \bigcup_{λ \in [0, λ_0]} \sigma(H_{λ}) \subseteq J_-, \quad (E, ∞) \cap \bigcup_{λ \in [0, λ_0]} \sigma(H_{λ}) \subseteq J_+.$$

Lemma A.1. Assume that $a ∈ C^1(R^2; R^3)$ has a compact support. Let $E ∈ R$ is in a spectral gap of the family $H_{λ}$, $λ ∈ [0, λ_0]$ with some $λ_0 > 0$. Then the operator $P_{λ,E} - P_{0,E}$ is trace class for all $λ ∈ [0, λ_0]$.

Proof. Evidently, there exists a bounded contour $Γ$ such that J_- is contained in its interior, J_+ is contained in its exterior and there exists $s > 0$ such that dist $(Γ, σ(H_{λ})) > s$ for every $λ ∈ [0, λ_0]$. For $z ∈ C \setminus σ(H_{λ})$ write $R_{λ}(z) = (H_{λ} - z)^{-1}$. Then we have

$$P_{λ,E} - P_{0,E} = \frac{1}{2πi} \int_{Γ} R_{λ}(z)W_{0}(z) \, dz,$$

where

$$W = W_{λ} := H_{λ} - H_0 = 2λa · (-i∇ - A_0) + iλdiv a + λ^2|a|^2.$$

Let $ζ_0 ∈ C^∞_c(R^2; R)$ be a cut-off function, equal to 1 in the support of a. Then we have

$$R_{λ}(z)W_{0}(z) = ζ_{0}R_{λ}(z)W_{0}(z)ζ_{0} + R_{λ}(z)ζ_{1}S_{λ}R_{λ}(z)W_{0}(z)ζ_{0} + ζ_{0}R_{λ}(z)W_{0}(z)S_{λ}R_{λ}(z),$$

(2.2)

where

$$S_{λ} = [H_{λ}(z), ζ_{0}] = 2i∇ζ_{0} · (-i∇ - A_0 - λa) - Δζ_{0}, \quad λ ≥ 0,$$

and $ζ_1 ∈ C^∞_c(R^2; R)$ is a cut-off function, equal to 1 in the support of $ζ_0$. Obviously,

$$\left\| \int_{Γ} R_{λ}(z)ζ_{1}S_{λ}R_{λ}(z)W_{0}(z) \, dz \right\|_1 ≤ |Γ| sup_{z ∈ Γ} (∥R_{λ}(z)ζ_{1}∥_2 ∥S_{λ}R_{λ}(z)W∥_1 ∥ζ_{0}R_{0}(z)∥_2).$$

(2.3)

$$\left\| \int_{Γ} ζ_{0}R_{λ}(z)W_{0}(z)S_{λ}R_{λ}(z) \, dz \right\|_1 ≤ |Γ| sup_{z ∈ Γ} (∥ζ_{0}R_{λ}(z)∥_2 ∥W_{0}(z)S_{λ}∥_1 ∥ζ_{1}R_{0}(z)∥_2).$$

(2.4)

where $∥∥_1$ denotes the trace-class norm and $|Γ|$ is the length of $Γ$. Applying the Hilbert–Schmidt diamagnetic inequality (see e.g. [Si, theorem 2.13]) to the operators $ζ_jR_{λ}(-1)$, we find that

$$∥ζ_jR_{λ}(z)∥_2 = ∥R_{λ}(z)ζ_j∥_2 ≤ \frac{c_0}{(2π)^2} \int_{R^2} \frac{∥ζ_j∥^2_L^2(ξ)}{(|ζ_1|^2 + 1)^2} \, dξ,$$

$$j = 0, 1, \quad z ∈ Γ, \quad λ ∈ [0, λ_0],$$

with

$$c_0 := sup_{z ∈ Γ} sup_{z ∈ [0, λ_0]} sup_{E ∈ σ(H_{λ})} \frac{E + 1}{|E - z|}.$$

Similarly,

$$sup_{z ∈ Γ} ∥S_{λ}R_{λ}(z)W∥ < ∞, \quad sup_{z ∈ Γ} ∥W_{0}(z)S_{λ}∥ < ∞.$$
Further, set \(B_j := B(2j - 1), j \in \mathbb{N} \), and write \(R_0(z) = \sum_{j \in \mathbb{N}} (B_j - z)^{-1} \Pi_j \), where \(\Pi_j \) is the orthogonal projection onto \(\text{Ker} \ (H_0 - B_j) \). Put
\[
R^{-}_j(z) := \int_{(-\infty, \varepsilon)} (E - z)^{-1} d\rho_{x,E}, \quad z \in \mathbb{C} \setminus (-\infty, \varepsilon),
\]
\[
R^{+}_j(z) := \int_{(\varepsilon, \infty)} (E - z)^{-1} d\rho_{x,E}, \quad z \in \mathbb{C} \setminus (\varepsilon, \infty).
\]
By the Cauchy theorem,
\[
\frac{1}{2\pi i} \int \zeta_0 R_j(z) W R_0(z) \zeta_0 \, dz = \sum_{j \in \mathbb{N}, B_j \in \mathscr{J}} \left(\zeta_0 R^{-}_j(B_j) W \zeta_0 \Pi_j \zeta_0 - \sum_{j \in \mathbb{N}, B_j \in \mathscr{J}^-} \zeta_0 R^{+}_j(B_j) W \zeta_0 \Pi_j \zeta_0 \right).
\]
(A.5)
Let us estimate the trace-class norm of the first (infinite) sum on the rhs of (A.5). For each \(j \in \mathbb{N} \) such that \(B_j \in \mathscr{J}^- \), we have
\[
\zeta_0 R^{-}_j(B_j) W \zeta_0 \Pi_j \zeta_0 = \zeta_0 R^{-}_j(B_j) \left(H_0 + 1 \right)^2 R_j(-1) \zeta_0 \Pi_j \zeta_0 - \zeta_0 R^{-}_j(B_j) \left(H_0 - 1 \right)^2 R_j(-1) \zeta_0 \Pi_j \zeta_0.
\]
Therefore,
\[
\left\| \sum_{j \in \mathbb{N}, B_j \in \mathscr{J}^-} \zeta_0 R^{-}_j(B_j) W \zeta_0 \Pi_j \zeta_0 \right\|_1 \leq \left\| R_j(-1) \zeta_0 \Pi_j \zeta_0 \right\|_1 \leq \left\| R_j(-1) \zeta_0 \Pi_j \zeta_0 \right\|_1 + \left\| R_j(-1) \zeta_0 \Pi_j \zeta_0 \right\|_1 \sum_{j \in \mathbb{N}, B_j \in \mathscr{J}^-} \left\| R^{-}_j(B_j) \left(H_0 - 1 \right)^2 W \zeta_0 \Pi_j \zeta_0 \right\|_1.
\]
(A.6)
By the spectral theorem,
\[
\left\| \zeta_0 R^{-}_j(B_j) \left(H_0 + 1 \right)^2 \zeta_0 \Pi_j \zeta_0 \right\|_1 \leq \left\| \zeta_0 \Pi_j \zeta_0 \right\|_2 \leq c_2 j^{-1/4}
\]
(A.7)
with \(c_2 \) independent of \(j \). Next, [KoPu, lemma 3.1] implies
\[
\left\| \zeta_0 \Pi_j \zeta_0 \right\|_2 \leq c_2 j^{-1/4}
\]
(A.8)
with \(c_2 \) independent of \(j \). Putting together (A.6), (A.7) and (A.8), we conclude that there exists \(c_3 \) such that
\[
\left\| \sum_{j \in \mathbb{N}, B_j \in \mathscr{J}^-} \zeta_0 R^{-}_j(B_j) W \zeta_0 \Pi_j \zeta_0 \right\|_1 \leq c_3 \sum_{j \in \mathbb{N}} j^{-5/4} < \infty.
\]
(A.9)
Finally, we estimate the trace-class norm of the second (finite) sum on the rhs of (A.5). We have
\[
\left\| \sum_{j \in \mathbb{N}, B_j \in \mathscr{J}^-} \zeta_0 R^{+}_j(B_j) W \zeta_0 \Pi_j \zeta_0 \right\|_1 \leq \left\| \zeta_0 \Pi_j \zeta_0 \right\|_2 \sum_{j \in \mathbb{N}, B_j \in \mathscr{J}^-} \left\| R^{+}_j(B_j) W \right\| \left\| \zeta_0 \Pi_j \zeta_0 \right\|_1.
\]
Moreover,
\[
\left\| \zeta_0 \Pi_j \zeta_0 \right\|_1 = \left\| \Pi_j \zeta_0 \right\|_2^2 = \frac{B}{2\pi} \left\| \zeta_0 \right\|_{L^1_\mathbb{R}^2}^2, \quad j \in \mathbb{N},
\]
(see e.g. [FR, lemma 3.1]). Since the number of the Landau levels \(B_j \) lying on \(\mathscr{J}^- \) is finite and the operators \(R^{+}_j(B_j) W \) are bounded provided that \(B_j \in \mathscr{J}^- \), we get
\[
\left\| \sum_{j \in \mathbb{N}, B_j \in \mathscr{J}^-} \zeta_0 R^{+}_j(B_j) W \zeta_0 \Pi_j \zeta_0 \right\|_1 < \infty.
\]
(A.11)
Combining (A.1), (5.2), (A.3), (A.4), (A.9) and (A.11), we find that the operator $P_{\lambda, E} - P_{0, E}$ is trace class.

□

Lemma A.2. Let $a \in C^1(\mathbb{R}^2; \mathbb{R}^2)$ with
\[
\|a\|_{L^\infty(\mathbb{R}^2)} + \|
abla a\|_{L^\infty(\mathbb{R}^2)} \leq K, \tag{A.12}
\]
with some $K < \infty$. Suppose that $E \in \mathbb{R}$ is in a spectral gap of the family H_λ, $\lambda \in [0, \lambda_0]$ with some $\lambda_0 > 0$. Let ϕ_x be a smooth characteristic function of the unit square centered at $x \in \mathbb{R}^2$. Then for any $x, y \in \mathbb{R}^2$, the operator $\phi_x P_{\lambda, E} \phi_y$ is trace class and we have
\[
\|\phi_x P_{\lambda, E} \phi_y\|_1 \leq C, \tag{A.13}
\]
with $C = C(K)$ independent of $x, y \in \mathbb{R}^2$, $\lambda \in [0, \lambda_0]$, and of a, satisfying (A.12).

The proof of the lemma is quite similar to the previous one so we omit the details and only note that the analogs of the bounds obtained in the proof of lemma A.1 remain uniform with respect to a, satisfying (A.12), and the norms $\|\xi_j\|_{L^p(\mathbb{R}^2)}$ of the cut-off functions, as well as the constant c_2 in (A.8), are invariant under translations of the supports of ξ_j.

References

[AHK] Avishai Y, Hatsugai Y and Kohomoto M 1993 Localization problem of a two-dimensional lattice in a random magnetic field Phys. Rev. B 47 9561–5
[AvSS] Avron J, Seiler R and Simon B 1994 Charge deficiency, charge transport and comparison of dimensions Commun. Math. Phys. 159 399–422
[BCH] Barbaroux J-M, Combes J-M and Hislop P D 1997 Landau Hamiltonians with unbounded random potentials Lett. Math. Phys. 40 355–69
[BSK] Batsch M, Schweitzer L and Kramer B 1998 Energy-level statistics and localization of 2d electrons in random magnetic fields Physica B 249 792–5
[Be] Beeken C B E 2002 Periodic Schrödinger operators in dimension two: constant magnetic fields and boundary value problems PhD Thesis University of Sussex
[BeES] Bellissard J, van Elst A and Schulz-Baldes H 1994 The noncommutative geometry of the quantum Hall effect J. Math. Phys. 35 5373–451
[CG] Combes J-M and Germinet F 2005 Edge and impurity effects on quantization of Hall currents Commun. Math. Phys. 256 159–80
[CFKS] Cycon H L, Froese R G, Kirsch W and Simon B 1987 Schrödinger Operators (Heidelberg: Springer)
[DDS] Dinaburg E I, Sinai Ya G and Soshnikov A B 1997 Splitting of the low Landau levels into a set of positive Lebesgue measure under small periodic perturbations Commun. Math. Phys. 189 559–75
[DGR] Dombrowski N, Germinet F and Raikov G 2010 Quantization of edge currents along magnetic barriers and magnetic guides arXiv:1005.2788
[FR] Fernández C and Raikov G 2004 On the singularities of the magnetic spectral shift function at the Landau levels Ann. Henri Poincaré 5 381–403
[Fu] Furusaki A 1999 Anderson localization due to random magnetic field in two dimension Phys. Rev. Lett. 82 604–7
[GK1] Germinet F and Klein A 2001 Bootstrap multiscale analysis and localization in random media Commun. Math. Phys. 222 415–48
[GK2] Germinet F and Klein A 2003 Explicit finite volume criteria for localization in continuous random media and applications Geom. Funct. Anal. 13 1201–38
[GK3] Germinet F and Klein A 2004 A characterization of the Anderson metal–insulator transport transition Duke Math. J. 124 309–50
[GK4] Germinet F and Klein A 2006 New characterizations of the region of complete localization for random Schrödinger operators J. Stat. Phys. 122 73–94
[GKM] Germinet F, Klein A and Mandy B 2009 Dynamical delocalization in random Landau Hamiltonians with unbounded random couplings Spectral and Scattering Theory for Quantum Magnetic Systems (Contemporary Mathematics vol 500) ed Ph Briet, F Germinet and G Raikov (Providence, RI: American Mathematical Society) pp 87–100
[GKS1] Germinet F, Klein A and Schenker J 2007 Dynamical delocalization in random Landau Hamiltonians Ann. Math. 166 215–44

[GKS2] Germinet F, Klein A and Schenker J 2009 Quantization of the Hall conductance and delocalization in ergodic Landau Hamiltonians Rev. Math. Phys. 21 1045–80

[Gi] Ghribi F 2007 Internal Lifshitz tails for random magnetic Schrödinger operators J. Funct. Anal. 248 387–427

[GiHK] Ghribi F, Hislop P D and Klopp F 2007 Localization for Schrödinger operators with random vector potentials Adventures in Mathematical Physics (Contemporary Mathematics vol 447) ed F Germinet and P D Hislop (Providence, RI: American Mathematical Society) pp 123–38

[Gr] Gruber M 2003 Positive measure spectrum for Schrödinger operators with periodic magnetic fields J. Math. Phys. 44 1584–95

[HK] Hislop P D and Klopp F 2002 The integrated density of states for some random operators with nonsign definite potentials J. Funct. Anal. 195 12–47

[K] Kato T 1966 Perturbation Theory for Linear Operators (Die Grundlehren der Mathematischen Wissenschaften vol 132) (New York: Springer)

[KM] Kirsch W and Martinelli F 1982 On the spectrum of Schrödinger operators with a random potential Commun. Math. Phys. 85 329–50

[KIK] Klein A and Koenig A 2001 A general framework for localization of classical waves: I. Inhomogeneous media and defect eigenmodes Math. Phys. Anal. Geom. 4 97–130

[KNY] Klopp F, Nakamura S, Nakano F and Nomura Y 2003 Anderson localization for 2D discrete Schrödinger operator with random vector potential Ann. Henri Poincaré 4 795–811

[KoPu] Korotyaev E and Pushnitski A 2004 A trace formula and high-energy spectral asymptotics for the perturbed Landau Hamiltonian J. Funct. Anal. 217 221–48

[Si] Simon B 2005 Trace Ideals and Their Applications (Mathematical Surveys and Monographs vol 120) 2nd edn (Providence, RI: American Mathematical Society)

[St] Stollmann P 2001 Caught by disorder: Bound States in Random Media (Boston, MA: Birkhauser)

[U] Ueki N 2008 Wegner estimate and localization for random magnetic fields Osaka J. Math. 45 565–608

[V] Vergés A 1998 Localization length in a random magnetic field Phys. Rev. B 57 870–878