Research Article

Microalbuminuria and Glomerular Filtration Rate in Paediatric Visceral Leishmaniasis

Neena Verma,¹ Chandra Shekhar Lal,¹,² Vidyanand Rabidas,¹ Krishna Pandey,¹ Dharmendra Singh,¹ Sanjay Kumar,¹ Rakesh Bihari Verma,¹ and Pradeep Das¹

¹Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agam Kuan, Patna 800 007, India
²Laboratory of Clinical Biochemistry, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agam Kuan, Patna 800 007, India

Correspondence should be addressed to Chandra Shekhar Lal; drcslal@sify.com

Received 29 April 2013; Accepted 10 June 2013

Academic Editor: Subash Babu

Visceral leishmaniasis, caused by Leishmania donovani, is a serious form of leishmaniasis and fatal if untreated. Nearly half of the VL cases are children. There are very few studies of renal function in pediatric visceral leishmaniasis. The aim of this study was to evaluate renal dysfunction by studying glomerular filtration rate (GFR), microalbuminuria, and microscopic examination of urine. Laboratory analysis was performed on blood and urine samples of 40 parasitologically confirmed pediatric VL cases. Laboratory data of urine examination showed albuminuria in 10% (4/40), white blood cells in 20% (8/40), hematuria in 10% (4/40), microalbuminuria in 37.5% (15/40), and decreased GFR in 27.5% (11/40). Renal involvement was manifested in most of the pediatric VL cases. These findings may help clinicians in decision making for safe and suitable antileishmanial treatment particularly in childhood VL.

1. Introduction

The leishmaniases, an infectious disease endemic in tropical, Asian, and southern European countries, is caused by obligate intramacrophage protozoa and is transmitted through the bite of infected female sandflies. The disease phenotypes include visceral leishmaniasis (VL), post-kala-azar dermal leishmaniasis (PKDL), cutaneous leishmaniasis (CL), and mucosal leishmaniasis (ML). Visceral leishmaniasis (VL), caused by Leishmania donovani, is the most serious, mainly affects children, and is fatal if untreated. Nearly half of the VL cases occur in children (childhood or paediatric VL) [1]. The disease is prevalent over large areas of Bihar, India. VL is a febrile illness that is characterized by weight loss, pancytopenia, hepatosplenomegaly, and lymphadenopathy and can be complicated by acute renal damage [2–4]. Even though kala-azar nephropathy is still poorly understood, kidney dysfunction in this disease has been reported in several studies. Immune complex deposition, T cells, and adhesion molecules activation have been shown to be important mechanisms of injury in glomerulonephritis occurring in visceral leishmaniasis [5–9].

One of the first human studies about renal involvement in kala-azar was a cohort study of 50 patients with visceral leishmaniasis [10]. Proteinuria and/or microscopic haematuria or pyuria was observed in 51% of patients. Urinary protein excretion was elevated in 57% of patients, and in all of them, this was <1 g/24 h. Renal function was evaluated in 11 patients with visceral leishmaniasis, and results stated that 5 patients presented macroscopic haematuria and I developed acute nephritic syndrome [11], while urine examination showed proteinuria in 10 patients and haematuria and leukocyturia in 7 and 6 cases, respectively. In a cross-sectional study of 50 patients with chronic visceral leishmaniasis, a decreased glomerular filtration rate (GFR) in 28% of the cases is reported [12]. More recently, the presence of increased albumin excretion in 44% of patients [13] was
observed. The glomerular damage may manifest as mesangio-
proliferative or membranoproliferative glomerulonephritis
due to depositions of immune complexes in the glomeruli.
Moreover, tubulointerstitial nephritis may occur and consists
of tubular degeneration and inflammatory infiltration with
renal impairment [2, 5, 14–16]. Acute kidney injury had
been observed in children with visceral leishmaniasis [17].
Paediatric VL patients are found more in numbers in Bihar,
India, and studies examining nephrotoxicity in children are
scarce.

Conventional amphotericin B (AmB) is the treatment of
choice for antileishmanial treatment in Bihar, India. This drug
possesses high antileishmanial efficacy, but it is associated
with a high risk of renal toxicity in addition to other side
effects (rigor, fever, malaise, anorexia, thrombophlebitis, and
bone marrow suppression) [18]. In addition to the poor
selectivity of amphotericin B between human cholesterol and
fungal ergosterol, other mechanisms seem to be involved in
the pathogenesis of renal toxicity of the drug [19]. In India,
liposomal amphotericin B showed lower rates of toxicity
than conventional amphotericin B or amphotericin B lipid
complex [20–23]. Hence, keeping in mind the selectivity
of amphotericin B with human cholesterol and hypocholes-
sterolemia in paediatric visceral leishmaniasis [24], we exam-
ined paediatric VL patients for glomerular involvement before
start of AmB treatment. This will be the first ever information
about renal injury in pediatric VL patients from this part of
India.

Kidney disease is mostly silent, common and harmful but
treatable. The only reason for requesting creatinine is to assess
kidney function. Routine reporting of estimated glomerular
filtration rate (GFR) alongside creatinine has proved to be a
useful tool for clinicians in the detection and management of
kidney injury. On the other hand, microalbuminuria (MA)
is considered as an early marker of glomerulonephritis and is
defined as a persistent elevation of albumin in urine of 30–
300 mg/day.

The aim of our study is to determine the prevalence of
renal injury in paediatric VL patients of Bihar, India, who
are mostly being treated in the endemic areas by AmB and
evaluate it according to GFR and microalbuminuria for the
purpose of early detection with regards to renal injury.

2. Materials and Methods

2.1. Patients and Samples. The observational study included
pediatric VL patients aged between 2 and 14 yrs that admitted
to the indoor ward of Rajendra Memorial Research Institute
of Medical Sciences (Indian Council of Medical Research)
Patna, India, for antileishmanial treatment by Amphotericin
B deoxycholate. Altogether, 40 subjects were selected for this
study after obtaining informed consent from each patient’s
next of kin. The serum, fresh urine and 24-hour urine,
samples were collected from 40 confirmed paediatric VL
patients microscopically positive for *Leishmania donovani*
parasite in splenic/bone marrow aspirate before onset of
antileishmanial treatment. Urine analysis, serum creatinine,
and urea were measured in all patients. The samples were kept
in refrigerator (2–8°C) until assayed.

2.2. Urine Analysis. Urine analysis was done on a fresh
morning sample of urine within one hour of collection
in a sterile dry container. Physical examination for colour,
appearance, and any sediment formation was done. Urine
was mixed properly and tested by URiSCAN urine strips (YD
Diagnostics, Republic of Korea) for chemical examination,
that is, bilirubin, urobilinogen, ketone, protein (albumin),
nitrite, glucose, pH, specific gravity, leukocytes, and blood as
per the procedure mentioned in the leaflet insert.

2.3. Microscopic Examination of Urine Sample. About 5 mL of
properly mixed urine sample was centrifuged in a centrifuge
tube for 5 min at 2,500 rpm. Supernatant was poured off,
and one drop of shaked deposit was placed on a glass slide
for microscopic examination under low and high power
objectives (10–15 fields) for the presence of white blood
cells (WBCs), erythrocytes (RBCs), casts (granular, hyaline,
cellular, etc.), epithelial cells, crystals, and so forth per high
power field.

2.4. Estimated Glomerular Filtration Rate (eGFR) Measure-
ment. eGFR was measured in children using Schwartz for-

dula. This employs the serum creatinine (mg/dL), the child's
height (cm), and a constant to estimate the glomerular
filtration rate:

\[
eGFR = \frac{k \times \text{Height}}{\text{Serum Creatinine}},
\]

where \(k \) is a constant that depends on muscle mass. For
infants and children of age 1 to 12 years, \(k = 0.55 \).

2.5. Microalbuminuria Measurement. A 24-hour urine sam-
ple was collected from the study subjects in clean plastic
containers with boric acid as preservative. The urine samples
were kept in the refrigerator till analysis. A commercial
turbidometric kit (Tulip Diagnostic, Goa, India) was used for
the measurement of MA. The company's instructions were
strictly adhered to. One mL of reagent buffer (polyethylene
glycol, Tris/HCL buffer, and sodium chloride) was pipette
into seven different test tubes (6 tubes for standard, 1 test
tube for sample), and 0.1 mL of standards (human serum
albumin) with different concentrations (5, 10, 20, 50, 100,
and 200 µg) and 0.1 mL of urine samples were added to
the test tubes. The tubes were thoroughly mixed, and the
initial absorbance was read spectrophotometrically against
340 nm. Anti-human albumin antibody (0.1 mL) was added;
the tubes were thoroughly mixed and incubated for 30
minutes. The final absorbance of each solution was read
spectrophotometrically at 340 nm, and the concentrations
were calculated from the constructed standard curve.

2.6. Serum Creatinine and Urea Measurement. Serum cre-
atinine and urea were assayed according to Jaffe Kinetic
and Urease-GLDH Kinetic methods following protocol of
commercial kit (LABKIT, Spain), respectively.
Ethics approval was obtained from ethics committee of the institute and was in accordance with the 1975 Helsinki Declaration on Human Rights, as revised in Edinburgh 2000.

3. Results

All of the study patients revealed within normal range serum urea and creatinine levels at the time of admission. The routine urinalysis showed albuminuria in 10% (4/40) and increased pus cells (WBCs) in 20% (8/40) of VL cases before treatment with AmB (Figure 1). Hematuria was observed in 10% (4/40) patients. However, 15/40 (37.5%) of the study pediatric VL patients had detectable MA before treatment. The estimated GFR (eGFR) ranged between 60 and 89 mL/min/1.73 m2 in 27.5% (11/40) pediatric VL patients before treatment.

The normal reference range of eGFR in pediatric group ranged between 92.3 and 122.5 mL/min/1.73 m2.

4. Discussion

Amphotericin B nephrotoxicity in children is a known complication. We investigated renal impairment in children suffering from VL before onset of Amphotericin B. In Sudanese VL patients, the renal injuries are mostly of glomerular in nature. The presence of this renal abnormality could be attributed to infiltration by infected macrophages and/or deposition of immune complexes in the glomeruli. The present study showed that renal maculopurulent can be predictive for the development of de novo renal function impairment in pediatric VL cases.

The presence of significant microalbuminuria in 37.5% of VL patients with normal serum urea and creatinine was indicative of renal glomerular damage. However, in our present study, normal serum urea and creatinine levels probably point to the crudeness of these tests as indicators of renal damage. Another cross-sectional study of Lima Verde et al. on 50 VL patients has reported decreased GFR in 28% of the cases, and our study reported decreased GFR in 27.5% of pediatric VL patients which indicates evidence of renal damage [12]. These abnormalities in glomerular filtration, urinary concentration, and acidification might be consistently associated with the chronic form of VL. Further, decreased GFR could be related to fluid loss, hypotension, and immunological glomerular damage. Since in this part of India the treatment is mostly being done by AmB in disease-endemic districts and drug combination therapy for VL is the trend worldwide, more sensitive investigations like eGFR, MA, and thorough microscopic examinations are needed to differentiate from early renal damage before start of chemotherapy.

In conclusion, glomerular involvement is the main renal injury in pediatric VL patients. The eGFR, MA, and microscopic examination maybe helpful in prediction of early renal damage. These parameters can provide an understanding of kidney injury and help treating doctors in decision making for safe and suitable antileishmanial treatment in pediatric group of patients.

Conflict of Interests

The authors declare that they have no conflict of interests.

Authors’ Contribution

Neena Verma and Chandra Shekhar Lal contributed equally and treated as first author.

Acknowledgments

The authors wish to thank Mrs. Rakhi Kumari and Mr. Naresh Kumar Sinha, Technical Assistants, and Mr. Sudarshan Prasad, Lab Technician, for their valuable contribution in laboratory works.

References

[1] S. K. Bhattacharya, D. Sur, and J. Karbwang, “Childhood visceral leishmaniasis,” Indian Journal of Medical Research, vol. 123, no. 3, pp. 353–356, 2006.
[2] A. M. El Hassan and E. A. G. Khalil, “Post-kala-azar dermal leishmaniasis: does it play a role in the transmission of Leishmania donovani in the Sudan?” Tropical Medicine and International Health, vol. 6, no. 9, pp. 734–744, 2001.
[3] E. E. Zijlstra and A. M. el-Hassan, “Leishmaniasis in Sudan. Visceral leishmaniasis,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 95, supplement 1, pp. S27–S58, 2001.
[4] E. A. G. Khalil, E. E. Zijlstra, P. A. Kager, and A. M. El Hassan, “Epidemiology and clinical manifestations of Leishmania donovani infection in two villages in an endemic area in eastern Sudan,” Tropical Medicine and International Health, vol. 7, no. 1, pp. 35–44, 2002.
[5] A. Sartori, A. Viana de Oliveira, and M. C. Roque-Barreira, “Immune complex glomerulonephritis in experimental kala-azar,” Parasite Immunology, vol. 9, no. 1, pp. 93–103, 1987.
[6] T. de Brito, S. Hoshino Shimizu, and V. Amato Neto, “Glomerular involvement in human kala azar. A light, immunofluorescent, and electron microscopic study based on kidney biopsies,”
[7] A. Poli, F. Abramo, F. Mancianti, M. Nigro, S. Pieri, and A. Bionda, “Renal involvement in canine leishmaniasis. A light-microscopic, immunohistochemical and electron-microscopic study,” *Nephron*, vol. 57, no. 4, pp. 444–452, 1991.

[8] J. R. Weisinger, A. Pinto, and G. A. Velazquez, “Clinical and histological kidney involvement in human Kala-azar,” *American Journal of Tropical Medicine and Hygiene*, vol. 27, no. 2, pp. 357–359, 1978.

[9] F. A. Costa, J. L. Guerra, S. M. M. S. Silva, R. P. Klein, I. L. Mendonça, and H. Goto, “CD4+ T cells participate in the nephropathy of canine visceral leishmaniasis,” *Brazilian Journal of Medical and Biological Research*, vol. 33, no. 12, pp. 1455–1458, 2000.

[10] M. Dutra, R. Martinelli, and E. M. de Carvalho, “Renal involvement in visceral leishmaniasis,” *American Journal of Kidney Diseases*, vol. 6, no. 1, pp. 22–27, 1985.

[11] N. Salgado Filho, T. M. Ferreira, and J. M. Costa, “Involvement of the renal function in patients with visceral leishmaniasis (kala-azar),” *Revista da Sociedade Brasileira de Medicina Tropical*, vol. 36, no. 2, pp. 217–221, 2003.

[12] F. A. Lima Verde, F. A. Lima Verde, I. A. Lima Verde, G. B. Silva Jr., E. F. Daher, and E. M. Lima Verde, “Evaluation of renal function in human visceral leishmaniasis (kala-azar): a prospective study on 50 patients from Brazil,” *Journal of Nephrology*, vol. 20, no. 4, pp. 430–436, 2007.

[13] F. A. A. Lima Verde, F. A. Lima Verde, E. de Francesco Daher, G. M. dos Santo, A. S. Neto, and E. M. Lima Verde, “Renal tubular dysfunction in human visceral leishmaniasis (Kala-azar),” *Clinical Nephrology*, vol. 71, no. 5, pp. 492–500, 2009.

[14] G. Efraatiadis, E. Boura, P. Giomalis et al., “Renal involvement in a patient with visceral leishmaniasis,” *Nephrology Dialysis Transplantation*, vol. 21, no. 1, pp. 235–236, 2006.

[15] A. B. Libório, N. A. Rocha, M. J. C. Oliveira et al., “Acute kidney injury in children with visceral leishmaniasis,” *Pediatric Infectious Disease Journal*, vol. 31, no. 5, pp. 451–454, 2012.

[16] M. Navarro, J. Bonet, J. Bonal, and R. Romero, “Secondary amyloidosis with irreversible acute renal failure caused by visceral leishmaniasis in a patient with aids,” *Nefrologia*, vol. 26, no. 6, pp. 745–746, 2006.

[17] D. E. Varlam, M. M. Siddiq, L. A. Parton, and H. Rüssmann, “Apoptosis contributes to amphotericin B-induced nephrotoxicity,” *Antimicrobial Agents and Chemotherapy*, vol. 45, no. 3, pp. 679–685, 2001.

[18] S. Sundar, H. Mehta, A. V. Suresh, S. P. Singh, M. Rai, and H. W. Murray, “Amphotericin B treatment for Indian visceral leishmaniasis: conventional versus lipid formulations,” *Clinical Infectious Diseases*, vol. 38, no. 3, pp. 377–383, 2004.

[19] S. Sundar, T. K. Jha, C. P. Thakur, M. Mishra, V. P. Singh, and R. Buffels, “Single-dose liposomal amphotericin B in the treatment of visceral leishmaniasis in India: a multicenter study,” *Clinical Infectious Diseases*, vol. 37, no. 6, pp. 800–804, 2003.

[20] C. S. Lal, A. Kumar, S. Kumar et al., “Hypcholesterolemia and increased triglyceride in pediatric visceral leishmaniasis,” *Clinica Chimica Acta*, vol. 382, no. 1-2, pp. 151–153, 2007.