A poor man’s improvement on Zhang’s result: there are infinitely many prime gaps less than 60 million

T. S. Trudgian∗
Mathematical Sciences Institute
The Australian National University
timothy.trudgian@anu.edu.au
June 5, 2013

Consider a set $H = \{h_1, h_2, \ldots, h_{k_0}\}$, composed of distinct, non-negative integers, in which k_0 denotes a natural number. Call the set H admissible if $\nu_p(H) < p$ for every prime p, where $\nu_p(H)$ is the number of distinct residue classes modulo p that are covered by the elements h_i.

In [3, Thm. 1] Zhang shows that if $k_0 = 3.5 \times 10^6$ and H is admissible, then there are infinitely many positive integers n for which \(\{n + h_1, \ldots, n + h_{k_0}\}\) contains at least two primes. He follows this with three lines of deduction to prove the remarkable result

$$\lim \inf_{n \to \infty} (p_{n+1} - p_n) < 7 \times 10^7.$$

It is with this three-line deduction — the infinitely easier portion of Zhang’s paper — that this article is concerned. Given a value of k_0, how can one find an admissible set H for which the length of H, defined to be $h_{k_0} - h_1$, is small?

An upper bound for the length of H

Consider a set of k_0 primes

$H = \{p_{m+1}, p_{m+2}, \ldots, p_{m+k_0}\},$

where m is a non-negative integer to be determined momentarily; Zhang takes $m = k_0$. When is H an admissible set?

Consider primes $p \leq p_m$. Since $p_{m+i} \not\equiv 0 \pmod{p}$ for all $1 \leq i \leq k_0$, it follows that $\nu_p(H) \leq p - 1 < p$ for all $p \leq p_m$.

Now consider primes $p \geq p_{m+1}$. We should like to show that there is not enough room in the set to fill all of the residue classes modulo p. Therefore for

∗Supported by ARC Grant DE120100173.
primes $p \in \mathcal{H}$ we wish to show that $k_0 - 1 < p - 1$. It is sufficient to show that $p_{m+1} > k_0$. A quick computation shows that one may choose $m = 250, 150$. Therefore the maximal gap between primes in \{ $n + p_{m+1}, \ldots, n + p_{m+k_0}$ \} is

\[p_{m+k_0} - p_{m+1} = 59,874,594. \]

In 2013, between 30th May and 3rd June, a considerable amount of work was undertaken by Morrison, Tao, et al. \[2\] which not only improved on the method of exhibiting small gaps, but also improved on the value of k_0. To date, the smallest permissible value of k_0 is 341,640, which leads to a prime gap not exceeding 4,180,222.

An lower bound for the length of \mathcal{H}

The set $\{1, 2 \ldots, k_0\}$ cannot be admissible since, *inter alia*, both even and odd numbers are present. Therefore, at the very least, we must impose that our set be of the form $\{r_1, r_1 + 2, \ldots, r_1 + 2(k_0 - 1)\}$, where r_1 is either 1 or 0 modulo 2. Such a set has k_0 elements, and length $2(k_0 - 1)$. It may be that this set is not admissible; the point to note is that the minimal length of an admissible set must be bounded below by $2(k_0 - 1)$.

We may generalise this approach by noting that we can fill, at the most, $p_i - 1$ residue classes modulo p_i, for each p_i. At best, we may include $R_m = (p_1 - 1) \cdots (p_m - 1)$ integers modulo $M_m = p_1 \cdots p_m$, where m is an integer that we shall determine momentarily. For $1 \leq i \leq j \leq R_m$ let $r_i \leq r_j$ run through the R_m residues modulo M_m. Consider the sets

\[T = \{r_1, r_2, \ldots, r_{R_m}, \ldots, r_1 + (a-1)M_m, r_2 + (a-1)M_m, \ldots, r_{R_m} + (a-1)M_m\} \]

and

\[T' = \{r_1 + aM_m, \ldots, r_n + aM_m\}, \]

in which $1 \leq n \leq R_m$ and in which a is chosen such that $|T| < k_0$ and $|T \cup T'| \geq k_0$. It follows that $R_m a < k_0 \leq R_m (a+1)$, whence the length of $T \cup T'$ bounded below by

\[aM_m \geq M_m \left(\frac{k_0}{R_m} - 1 \right). \]

Given a value of k_0 one may choose the value of m maximising the right-side of (1). When $k_0 = 341,640$, one should choose $m = 6$, which gives a gap at least as large as 1,751,112.

Comparison of bounds

These bounds appear to be wasteful. Consider, for example, the data in \[3\] p. 832. There, conditional values of k_0 are given along with the corresponding minimal length of the k_0-tuple. Table 1 compares the results in \[3\], obtained by an exhaustive computational search, with the upper and lower bounds obtained here.

While the upper bound gives the correct answer for small values of k_0, it becomes increasingly profligate as k_0 increases; the lower bound appears to be ubiquitously impotent.
Table 1: Comparison of bounds for gaps between successive primes

k_0	Upper bound	Lower bound	Length in [4] p. 829, 832
6	16	12	16
10	32	24	32
12	46	30	42
65	364	189	336
193	1292	694	1204
1000	8424	4165	
10000	109152	45815	
341,640	5,005,362*	1,751,112	

*Note that, as mentioned on page 2, this has been improved to 4,802,222.

The method of searching by brute force, potentially another poor man’s improvement, appears to be next to hopeless. For, given k_0 distinct non-negative integers of size at most N, there are $\binom{N}{k_0}$ possible k_0-tuples. Even with the modest value of $N = 7 \times 10^6$ one faces the daunting prospect of searching for an admissible $(341,640)$-tuple amongst more than $10^{2.5} \times 10^5$ possible candidates.

I am grateful for Scott Morrison’s providing me with data for $k_0 = 341,640$, and for the interesting work undertaken by him, Terry Tao, and others in [2].

References

[1] D.A. Goldston, J. Pintz, and C.Y. Yildirim. Primes in tuples I. *Ann. Math.*, 170(2):819–862, 2009.

[2] S. Morrison. http://sbseminar.wordpress.com/2013/05/30 Website, 2013.

[3] Y. Zhang. Bounded gaps between primes. *Ann. Math.*, to appear.