Electron energy spectrum and density of states for non-symmetric heterostructures in an in-plane magnetic field

A. Hernández-Cabrera and P. Aceituno
Dpto. Física Básica, Universidad de La Laguna, La Laguna, 38206-Tenerife, Spain

F.T. Vasko
Institute of Semiconductor Physics, NAS Ukraine, Pr. Nauki 41, Kiev, 03028, Ukraine

(Dated: March 23, 2022)

Modifications of spin-splitting dispersion relations and density of states for electrons in non-symmetric heterostructures under in-plane magnetic field are studied within the envelope function formalism. Spin-orbit interactions, caused by both a slow potential and the heterojunction potentials (which are described by the boundary conditions) are taken into account. The interplay between these contributions and the magnetic field contribution to the spin-splitting term in the Hamiltonian is essential when energy amount resulting from the Zeeman and spin-orbit coupling are of the same order. Such modifications of the energy spectra allow us to separate the spin-orbit splitting contributions due to a slow potential and due to the heterojunctions. Numerical estimates for selectively-doped heterojunction and quantum well with narrow-gap region of electron localization are performed.

PACS numbers: 72.25.-b, 73.21.-b

I. INTRODUCTION

Spin-orbit splitting of the energy dispersion relations for electrons in nonsymmetric quantum heterostructures has been theoretically considered during the past decades (see Ref. [1] for a review). In bulk materials spin-orbit interaction appears both due to a slow-variable potential (related to the lattice constant) and due to cubic and linear spin-dependent contributions to the effective Hamiltonian. Turning to the two-dimensional (2D) case, we can reduce the cubic contribution to a linear one after the replacement of the squared momentum by the quantized value due to confinement. It is still more important the fact that we have to take into account an additional spin-orbit splitting of the energy spectrum due to the interaction with abrupt heterojunction potentials (see Ref. [6] and discussion in Refs. [1,7]). Such contribution is of a radically different kind with respect to the listed above because contributions from both sides of a slow confinement potential compensate each other and, therefore, the spin-splitting of 2D states can not be obtained without a short-range potential contribution. To the best of our knowledge, the relative contributions from the bulk-induced mechanisms [2,3,4] and from the heterojunctions have not been clarified experimentally in spite of a set of existing theoretical calculations [5]. In this paper we have examined the effect of an in-plane magnetic field on the electron energy spectrum and density of states and we have found that magneto-induced modifications of these characteristics are essentially different from the 2D spin-orbit interaction and Zeeman splitting. In principle, this fact makes possible an experimental verification of the above discussed contributions of the spin-orbit interaction.

The effect of in-plane magnetic field on the energy spectrum in non-symmetric heterostructures occurs due to the Zeeman term in the electron Hamiltonian. This fact has been found in Ref. [8], shortly after initial considerations of the spin-orbit splitting in non-symmetric heterostructures (see Refs. [1,10,11]). A number of peculiarities in transport phenomena for 2D systems under an in-plane magnetic field were also discussed [11,12,13] and more complicated cases,

![Band diagrams for selectively-doped heterojunction (a) and quantum well (b). Dashed lines show electron ground state energy levels and thin curves correspond to wave functions; d is the QW’s width, $\Delta E_{c,v}$ are the band offsets, and m is the effective mass in the narrow-gap region, while m_b and m_\pm are the barrier effective masses.](image)

FIG. 1: Band diagrams for selectively-doped heterojunction (a) and quantum well (b). Dashed lines show electron ground state energy levels and thin curves correspond to wave functions; d is the QW’s width, $\Delta E_{c,v}$ are the band offsets, and m is the effective mass in the narrow-gap region, while m_b and m_\pm are the barrier effective masses.
such as quasi-1D transport or spin Hall effect (see Refs. 14,15 respectively) were recently considered. All this papers only take into account the mix between the Zeeman contribution and the effective 2D spin-orbit interaction. Here we perform the calculations based on the three-band Kane model16 with non-symmetric boundary conditions, which is valid for narrow-gap heterostructures, and with a slow potential described self-consistently (see typical band diagrams in Fig. 1). The analysis of magneto-induced modifications of 2D energy spectra and corresponding density of states is presented for typical parameters of InGaAs/InAlAs-selectively-doped heterojunctions, and InGaAs and InSb-based quantum wells (QWs).

The paper is organized as follows. In the next section we discuss the conduction \(c \)-band eigenstate problem and describe the electronic states in non-symmetric narrow-gap heterostructures using the boundary conditions for the wave functions at the interfaces in the parabolic approximation. In Sec. III we solve the 2D-eigenstate problem using the averaged transverse field approach. Numerical self-consistent calculations of the magneto-induced (caused by a magnetic field) modifications of the energy spectra and the density of states are presented in Sec. IV. Conclusions are given in the last section.

II. BASIC EQUATIONS

We start from the formulation of the eigenstate problem for the electronic state of the conduction \(c \)-band localized in the selectively-doped heterojunction or in the non-symmetric QW. All the above listed spin-dependent contributions are taken into account in the analysis. We also present the density of states which is connected to the photoluminescence excitation (PLE) intensity.

A. Three-band Kane model

The electronic states in narrow-gap heterostructures are described by the three-band Kane matrix Hamiltonian16

\[
\hat{\varepsilon}_z + (\hat{\mathbf{v}} \cdot \hat{\mathbf{p}}), \quad \hat{\mathbf{p}} = \hat{\mathbf{p}} = \frac{\hbar}{c} \mathbf{A},
\]

where the kinetic momentum, \(\hat{\mathbf{p}} \), contains the vector potential \(\mathbf{A} = (Hz, 0, 0) \), \(\mathbf{H} \parallel \mathbf{OY} \) is an in-plane magnetic field and \(\hat{\mathbf{p}} = (\mathbf{p}, \hat{\mathbf{p}}_z) \) is written in the \(\mathbf{p}, z \)-representation through the 2D momentum \(\mathbf{p} \). Here we have also introduced the diagonal energy matrix \(\hat{\varepsilon}_z \) whose elements determine the positions of the band extrema (the energy values \(\varepsilon_{c2}, \varepsilon_{h2}, \) and \(\varepsilon_{l2} \) correspond to electron, heavy- and light-hole extrema) and the interband velocity matrix \(\mathbf{v} \). The \(6 \times 6 \) Hermitian matrix \(\mathbf{v} \) is determined by the following non-zero matrix elements14:

\[
\begin{align*}
\v_{13}^x &= v_{26}^x = \mathcal{P}/\sqrt{2}, & \v_{15}^x &= -v_{24}^x = -\mathcal{P}/\sqrt{6}, \\
\v_{13}^y &= -v_{26}^y = -i\mathcal{P}/\sqrt{2}, & \v_{15}^y &= v_{24}^y = -i\mathcal{P}/\sqrt{6}, \\
\v_{14}^x &= v_{25}^x = \sqrt{2}/3\mathcal{P} & \text{and} \mathcal{P} \text{ is the characteristic interband velocity for the Kane model.}
\end{align*}
\]

Neglecting the small contributions from other bands we suppose in (1) that the inverse heavy hole effective mass is equal to zero. For such a case valence \(v \)-band components of the wave functions, \(\psi_{p_z}^{(3-6)} \), are expressed in terms of the \(c \)-band spinor with components \(\psi_{p_z}^{(1,2)} \) and the effective Schrödinger equation for this spinor takes the form (see Ref. 17 where the case \(H = 0 \) have been considered):

\[
\begin{bmatrix}
\varepsilon_{c2} - E - \frac{2}{3}\mathcal{P}^2 \left(\frac{\pi_x - \pi_y}{\varepsilon_{c2} - E} + \hat{p}_z \right) \\
\varepsilon_{c2} - E - \frac{2}{3}\mathcal{P}^2 \left(\frac{\pi_y - \pi_x}{\varepsilon_{c2} - E} + \hat{p}_z \right)
\end{bmatrix}
\begin{bmatrix}
\psi_{p_z}^{(1)} \\
\psi_{p_z}^{(2)}
\end{bmatrix}
= 0,
\]

where \(\pi_{\pm} = (\pi_x \pm i\pi_y) \) are the circular components of the in-plane momenta. For the sake of simplicity we have neglected here the strain effect due to lattice mismatch13 and used \(\varepsilon_{v2} \equiv \varepsilon_{h2} = \varepsilon_{l2} \). It is convenient to introduce in Eq. (3) the \(z \)-dependent effective mass, \(m_z \), the characteristc spin velocity, \(V_z \), and the effective \(g \)-factor, \(g_z \), according to the relations:

\[
m_z = -\frac{3}{4\mathcal{P}^2}(\varepsilon_{v2} - E), \quad V_z = \frac{\hbar}{4m_z} \frac{(d\varepsilon_{v2}/dz)}{\varepsilon_{v2} - E},
\]
\[g_z = \frac{m_z}{2m_z} \left[1 - z \frac{\langle d\varepsilon_{vz}/dz \rangle}{\varepsilon_{vz} - E} \right]. \]

(4)

In such definitions Eq. (3) may be rewritten as the spinor eigenvalue problem:

\[\begin{aligned}
\varepsilon_{cz} - E + \frac{(p_x - eHz/c)^2 + p_z^2}{2m_z} + \hat{p}_z \frac{1}{2m_z} \hat{p}_z \\
& - V_z [\sigma \times p]_z + \frac{g_z}{2} \mu_B H \hat{\sigma}_y \end{aligned} \]

\[\Psi_{pz} = 0, \]

(5)

where spinor \(\Psi_{pz} \) is determined by the components \(\psi_{pz}^{(1,2)} \), \(\mu_B \equiv |e|/m_e c \) is Bohr magneton, and \(\sigma \) is the Pauli matrix. The energy values of \(c \)- and \(v \)-band extrema for the narrow-gap (A) and wide-gap (B) regions take the forms:

\[\begin{aligned}
\varepsilon_{cz} &= U_z, & \varepsilon_{vz} &= -\varepsilon_g + U_z, & (A) \\
\varepsilon_{cz} &= \Delta E_c + U_z, & \varepsilon_{vz} &= -\varepsilon_g + \Delta E_v + U_z, & (B)
\end{aligned} \]

(6)

and the corresponding band diagrams for QW and selectively-doped heterojunction were shown in Fig.1. Here the energy is counted from the bottom of \(c \)-band, \(\varepsilon_g \) is the gap, \(\Delta E_c \) and \(\Delta E_v \) are the band offsets for \(c \)- and \(v \)-bands, correspondingly. Here the slow potential \(U_z \) should be determined from a self-consistent procedure. Thus, after substitution of (6) in Eq. (5) we have formulated the eigenstate problem for the spinor \(\Psi_{pz} \).

Since \(\Delta E_c \geq \varepsilon_g \) in narrow-gap heterostructures, then the weak underbarrier penetration of wave function takes place for the electronic states with \(E \ll \varepsilon_g \) (parabolic band approximation). Because of this, one can neglect the longitudinal motion for the underbarrier region, \(z < 0 \) for the single heterojunction case shown in Fig.1(a), where the solutions take the form:

\[\Psi_{pz} \approx \Psi_{pz=0} e^{\kappa z}, \quad z < 0. \]

(7)

Here \(\hbar \kappa = \sqrt{2m_b \Delta E_c} \) and \(\kappa^{-1} \) determines the scale of the underbarrier penetration of wave functions. We have also used in Eq. (7) the continuity conditions for eigenfunctions \(\Psi_{pz} \) at heterojunctions. Since \(V_z \) in Eq. (4) is proportional to \(\langle d\varepsilon_{vz}/dz \rangle \), then the integration (5) over heterojunction produces additional contributions to the boundary condition for flows. Such contributions are proportional to the band offset at the heterojunction \(\Delta E_v \). Eliminating the underbarrier contributions from such equation by the use of the explicit expression (7) we obtain the third kind boundary conditions:

\[(\hat{p}_z \Psi_{pz})|_{z=0} - i P_o \Psi_{pz=0} - i \chi [\sigma \times p]_z \Psi_{pz=0} = 0. \]

(8)

Here the momenta \(P_o = \hbar \kappa m/m_b \) characterizes the underbarrier penetration and the parameter \(\chi \) determines the spin-orbit coupling due to the abrupt potential of the heterojunction

\[\chi = \frac{2m_b}{\hbar} \int_{-\delta}^{\delta} dz V_z \simeq \frac{\Delta E_v}{2\varepsilon_g} \]

(9)

and the right-side part is written for the approximation \(m_b \simeq m \).

B. Eigenstate problem

In the parabolic approximation, we describe the \(c \)-band electronic states using the above introduced spinor \(\Psi_{pz} \). Below we consider not very strong magnetic fields \((\hbar \omega_c \ll v_F \hbar/d) \), where \(v_F \) is the Fermi velocity and \(\omega_c \) is the cyclotron frequency) when \((p_x - eHz/c)^2 \) in Eq. (5) is replaced by \(p_z^2 \) and the isotropic kinetic energy is given by \(\varepsilon_p \equiv (p_x^2 + p_y^2)/(2m) \) and includes the effective mass \(m \). Considering the low-doped structure case (if \(\varepsilon_g \gg \varepsilon_F \)) we rewrite the Schrödinger equation (5) for the narrow-gap region in the form:

\[\left(\varepsilon_p + \frac{\hat{p}_z^2}{2m} + U_z + \hat{W}_z \right) \Psi_{pz} = E \Psi_{pz}, \]

\[\hat{W}_z = -V_z [\sigma \times p]_z + \frac{g_\|}{2} \mu_B H \hat{\sigma}_y \]

(10)
where \(U_z \) is the self-consistent potential, as given in Eq. (14) below, and the effective mass is \(z \)-independent. The spin velocity \(V_z \) and the \(z \)-dependent contribution to the \(g \)-factor are proportional to the transverse electric field \(dU_z/dz \):

\[
V_z \simeq -\frac{\hbar}{4m_\sigma g} \frac{dU_z}{dz}, \quad g_z \simeq \frac{m_\sigma}{2m} \left(1 + \frac{z}{\varepsilon_g} \frac{dU_z}{dz} \right).
\]

(11)

For the selectively-doped heterojunction case we consider Eq. (10) for the \(z > 0 \) region with the boundary conditions (8) and with \(\Psi_{pz} \rightarrow \infty = 0 \). For the case of a QW of width \(d \), one can eliminate the underbarrier contributions in analogy to Eqs. (7-9) and, in addition to Eq. (10) for the region \(|z| < d/2 \), the following third kind boundary conditions should be used:

\[
(\hat{p}_z \Psi_{pz})|_{z=\pm \frac{d}{2}} + iP_{z\pm} \Psi_{p\pm \frac{d}{2}} + i\chi_{\pm} [\sigma \times p]_z \Psi_{p\pm \frac{d}{2}} = 0.
\]

(12)

Here momenta \(P_{z\pm} = \sqrt{2m_{\pm} \Delta E_{z\pm}} (m/m_{\pm}) \) determine the scale of the under-barrier penetration of wave functions; the different values of \(\Delta E_{z\pm} \) and \(m_{\pm} \) take into account the differences of band offsets and effective masses, as it is shown in Fig. 1(b). The parameters \(\chi_{\pm} \simeq \Delta E_{z\pm} \Delta E_{g} \) determine the spin-orbit coupling due to the abrupt potential of the heterojunction according to Eq. (9). When \(m_{+} = m_{-} \), which corresponds to the symmetric case, we will take \(P_{z\pm} = P_{z} \) and \(\chi_{\pm} = \chi \), as we can see from (9).

Thus, both interface potentials, which determine the spin-dependent contributions to (12), and the in-trawl field, which determines the spin velocity \(V_z \) in (11), are responsible for the spin-splitting of energy spectra. Since the Zeeman spin-splitting term only appears in the Eq. (10), the mentioned magneto-induced modifications of electron states due to these two contributions are different.

The self-consistent numerical procedure for the eigenstate problem (10) involves the potential \(U_z \), which is obtained from the Poisson equation in the following form:

\[
U_z = \frac{4\pi e^2}{\epsilon} \int_{-\infty}^{z} dz' (z - z') [n_D(z') - n_e(z')]
\]

(13)

Here \(n_D(z) \) is the 3D concentration of donors and \(\epsilon \) is the dielectric permittivity that we have supposed as uniform across the heterostructure. The electron density distribution is introduced through the electron dispersion relations \(E_{\sigma p} \) according to:

\[
n_e(z) = \sum_{\sigma} \int d\mathbf{p} \frac{\Psi^{(\sigma)}_{pz}}{(2\pi\hbar)^2} \cdot \Psi^{(\sigma)}_{p\sigma} \theta(\varepsilon_F - E_{\sigma p}),
\]

(14)

where \(\Psi^{(\sigma)}_{pz} \) denotes the Hermitian conjugate of \(\Psi^{(\sigma)}_{pz} \) and \(\sigma = \pm 1 \) refers to the two possible spin orientations. The Heaviside function, \(\theta(x) \), appears here for the zero-temperature case. The Fermi energy, \(\varepsilon_F \), is expressed through the total electron density, \(n_{\text{tot}} \), defined as \(n_{\text{tot}} = \int dz n_e(z) \). Thus, \(\varepsilon_F \) depends on \(H \) for the fixed concentration case.

The density of states is given by the standard formula:

\[
\rho_e = \sum_{\sigma} \int d\mathbf{p} \frac{\Psi^{(\sigma)}_{pz}}{(2\pi\hbar)^2} \delta(\varepsilon - E_{\sigma p}).
\]

(15)

In order to analyze \(\rho_e \) one needs to solve the above-formulated eigenstate problem and to perform the integrations in Eq. (15). The density of states is connected to PLE intensity for the case of near-edge transitions, \(I_{\text{PLE}} \). Since the interband matrix element \(v_{ce} \) do not depend on the in-plane quantum numbers, one obtains:

\[
I_{\text{PLE}} \sim \sum_{\lambda_c,\lambda_v} |\mathbf{e} \cdot v_{ce}|^2 \delta(\varepsilon_{\lambda_c} - \varepsilon_{\lambda_v} - \hbar\omega) \sim \rho_e \Delta \omega,
\]

(16)

where \(\mathbf{e} \) is the polarization vector, \(\Delta \omega = \omega - \overline{\gamma}_g / \hbar \) and \(\overline{\gamma}_g \) is the gap energy, which is renormalized due to the confinement effect.

III. ANALYTICAL CONSIDERATION

Before the numerical consideration we perform a simplified calculation of the eigenstate problem using the uniform transverse field approximation \(U_z \simeq eF_{\perp} z \) which is valid for non-doped QWs under an external modulating field \(F_{\perp} \); for heavy-doped structures \(F_{\perp} \) implies an averaged self-consistent transverse field.
A. Average field approach

A simplification of the eigenstate problem (10) appears due to the \(z \)-independent spin-orbit perturbation when \(\hat{W}_z \) in Eq. (10) becomes

\[
\hat{W} = \varepsilon [\hat{\sigma} \times \hat{p}]_z + w_H \hat{\sigma}_y
\]

(17)

with the averaged across structure characteristic spin velocity \(\nu \simeq |e| F_z \hbar/(4 m_\sigma g) \) and the Zeeman splitting \(w_H = (g/2) \mu_\sigma H \), where the \(z \)-dependent correction to the \(g \)-factor is neglected. The fundamental solutions \(\Psi_{pz}^{(\sigma)} \) for the Eq. (10), with the spin-dependent contribution (17), can be factorized as products of functions \(\Psi_{pz}^{(\sigma)} \) and \(\varphi_z^{(k\sigma)} \). Here the spinors \(\Psi_{pz}^{(\sigma)} \) for \(\sigma = \pm 1 \) are determined from the eigenstate problem:

\[
(e + \hat{W}) \Psi_{pz}^{(\sigma)} = \varepsilon_{z\sigma} \Psi_{pz}^{(\sigma)},
\]

(18)

whose solutions are given by:

\[
\begin{align*}
\Psi_{pz}^{(+1)} &= \frac{1}{\sqrt{2}} \left[\begin{array}{c} 1 \\ \nu p_+ + w_H \end{array} \right], \\
\Psi_{pz}^{(-1)} &= \frac{1}{\sqrt{2}} \left[\begin{array}{c} 1 \\ \nu p_- + w_H \end{array} \right], \\
\varepsilon_{z\sigma} &= \varepsilon_p + \sigma w_p, \\
w_p &= \sqrt{(\nu p_x + w_H)^2 + (\nu p_y)^2},
\end{align*}
\]

(19)

where \(p_\pm = p_x \pm ip_y \) and the energy values \(\varepsilon_{z \sigma} \) describe the mix between internal spin-orbit interaction and Zeeman spin splitting.

The two \(z \)-dependent fundamental solutions \(\varphi_z^{(k\sigma)} \) (labeled below by \(k = a, b \)) are determined from the equation

\[
\left(\frac{\hat{p}_z^2}{2m} + \epsilon F_z z \right) \varphi_z^{(k\sigma)} = (E - \varepsilon_{z\sigma}) \varphi_z^{(k\sigma)},
\]

(20)

written for the narrow-gap region.

The general spinor solution \(\Psi_{pz} \) is expressed through these fundamental solutions according to

\[
\Psi_{pz} = \Psi_{pz}^{(+1)} \left(A_+ \varphi_z^{(a,+1)} + B_+ \varphi_z^{(b,+1)} \right) + \Psi_{pz}^{(-1)} \left(A_- \varphi_z^{(a,-1)} + B_- \varphi_z^{(b,-1)} \right)
\]

(21)

where the coefficients \(A_\pm, B_\pm \) are determined from the boundary conditions (12) or from (8) and the requirements \(\Psi_{pz=\infty} = 0 \).

After the substitution of the solution (21) for \(\varphi_z^{(k\sigma)} = 0 \), which corresponds to the boundary condition at \(z \to \infty \), into (8) and the multiplication of this system by \(\Psi_{pz}^{(\sigma)} \) on the left side we rewrite the boundary condition at \(z = 0 \) as follows:

\[
\begin{align*}
P_+ A_+ + \chi \Psi_{pz}^{(+1)+} \left[\begin{array}{c} 0 \\ p_- \\ 0 \\ p_+ \\ 0 \end{array} \right] \Psi_{pz=0} &= 0, \\
P_- A_- + \chi \Psi_{pz}^{(-1)+} \left[\begin{array}{c} 0 \\ -p_- \\ 0 \\ p_+ \\ 0 \end{array} \right] \Psi_{pz=0} &= 0,
\end{align*}
\]

(22)

with \(\mathcal{P}_\pm \equiv (\hat{p}_z + iP_y) \varphi_z^{(a\pm)} \big|_{z=0} \). In order to calculate the proportional to \(\chi \) contributions we use here the solutions of the spin-dependent eigenstate problem (19). Thus, Eq. (22) can be transformed with the use of the relations

\[
\begin{align*}
\Psi_{pz}^{(+1)+} \left[\begin{array}{c} 0 \\ p_- \\ 0 \\ p_+ \\ 0 \end{array} \right] \Psi_{pz}^{(\sigma)} &= \frac{\sigma \nu p_x + w_H p_x}{iw_p}, \\
\Psi_{pz}^{(+1)+} \left[\begin{array}{c} 0 \\ p_- \\ 0 \\ p_+ \\ 0 \end{array} \right] \Psi_{pz}^{(-1)+} &= -\frac{w_H p_y}{vp_x + \sigma w_H},
\end{align*}
\]

(23)

to a simple linear system for \(A_\pm \). The dispersion relation, \(E_{z\sigma p} \), is determined from the zero determinant requirement.
A similar transformation of the boundary conditions (12) for QWs, after substitution on (21), permit us to rewrite the boundary condition at \(z = \pm d/2 \) in the form:

\[
(\hat{p}_z \mp iP_{\pm}) \left(A_{\pm} \varphi_{z \pm} + B_{\pm} \varphi_{z \mp} \right) \bigg|_{z = \pm \frac{d}{2}} + \chi \Psi_{\pm}^{(\pm)} \cdot \begin{bmatrix} 0 & -p_+ \\ p_- & 0 \end{bmatrix} \Psi_{\pm} = 0,
\]

Thus, we have obtained a linear system for \(A_{\pm} \) and \(B_{\pm} \) and, therefore, \(E_{\sigma p} \) is obtained from the solvability condition for this system.

B. 2D model

First, let us consider the case of a heterostructure without spin-orbit contributions from heterojunctions, \(\chi = 0 \), when the dispersion relation is given by Eq. (19). For the zero magnetic field case, \(w_H = 0 \), the energy \(w_p \) is replaced by \(v_p \) and \(\varepsilon_{\pm p} \) in Eq. (19) is transformed to the isotropic dispersion relation \(\varepsilon_{\sigma p} = \varepsilon_p + \alpha |\mathbf{v}| \). For this case the density of states was considered in Ref. 7. If \(w_H \neq 0 \), the dispersion relation (19) becomes anisotropic as it is shown in Fig. 2 (a). We have used in this figure the dimensionless magnetic field \(h = w_H/m\mathbf{v}^2 \). In order to represent a general case, valid for any structure, we have also used dimensionless energy axis.

For the case of the strong magnetic field, when \(w_p \) is replaced by \(w_H \), the Zeeman splitting effect appears to be dominant in the dispersion relation: \(\varepsilon_{\pm p} \approx \varepsilon_p \pm w_H \). The spin-orbit splitting is mainly manifested as a shift of the dispersion paraboloids towards higher (lower) \(p_x \) values for \(\sigma = +1(-1) \), respectively. On the other hand, Zeeman splitting is shown as a displacement to higher (lower) energy values depending on \(\sigma \). The anisotropy of the dispersion relation \(\varepsilon_{\sigma p} \) appears to be essential for the region around the cross-point, \(\varepsilon_c = \frac{w_H^2}{2m\mathbf{v}^2} \).

After the shift \(p_x \to p_x - w_H/m\mathbf{v} \) and the integration over \(p \) with the use of the \(\delta \)-function, the density of states is transformed from Eq. (15) into the integral with respect to the cosine of the in-plane angle, \(\zeta = \cos \theta \):

\[
\frac{\rho_\sigma}{\rho_{2D}} = \frac{1}{2\pi} \sum_\sigma \int_{-1}^{1} \frac{d\zeta}{\sqrt{1 - \zeta^2}}
\]
\[\frac{\theta(v_{\sigma\zeta}^2 - 1 + 2\varepsilon/hw_H)}{\sqrt{v_{\sigma\zeta}^2 - 1 + 2\varepsilon/hw_H}} \sum_{\pm} E_{\pm} \theta(E_{\pm}). \]

Here \(E_{\pm} = \nu_{\sigma\zeta} \pm \sqrt{v_{\sigma\zeta}^2 - 1 + 2\varepsilon/hw_H} \) and \(\nu_{\sigma\zeta} = \zeta - \sigma/h \). A straightforward integration for the above-cross-point region \(\varepsilon > \varepsilon_c \) gives as the exact relation: \(\rho_c = \rho_{2D} \), while for the below-cross-point region \(\varepsilon < \varepsilon_c \) we plot \(\rho_c/\rho_{2D} \) versus dimensionless energy \(2\varepsilon/m\nu^2 \) for different fields \(h \). Figure 2(b) shows this density of states for different dimensionless magnetic fields. Two points deserve special attention. First, the typical \(\varepsilon^{-1/2} \) singularity around \(\varepsilon = 0 \), which occurs for \(h = 0 \), tends to disappear with increasing field. Second, abrupt steps corresponding to the filling of each level are shifted with the field intensity indicating a delay in the filling caused by the Zeeman splitting. It should be noted that the lowest (\(\sigma = -1 \)) level seems to be overfilled for low magnetic fields, i.e., \(\rho_c/\rho_{2D} > 1/2 \). Electrons equally distribute between levels for magnetic fields higher than \(h = 10 \).

IV. NUMERICAL RESULTS

Here we perform numerical calculations based on the simplified consideration outlined in Sec. II.B, as well as the self-consistent solution of the eigenstate problem of Sec. II.A. The correspondent level-splitting at the Fermi energy level in a selectively-doped heterojunction and the densities of states in QWs are described.

A. Selectively-doped heterojunction

The eigenfunction of Eq. (20) for \(z > 0 \) is written through the Airy \(Ai \)-function, \(Ai[z/l_\perp - (E - \varepsilon_{\sigma p})/\varepsilon_{\perp}] \) with \(l_\perp = \sqrt{h^2/2m|\varepsilon| F_{\perp}} \) and \(\varepsilon_{\perp} = (h/l_\perp)^2/2m \), if the zero boundary condition at \(z \rightarrow \infty \) is applied. After substitution of this function into the system (22), one obtains the dispersion equation in the form:

\[
\det \left[\begin{array}{c} P_+ - i\chi \frac{w_H p_a}{w_\sigma} \phi_{0}^{(a,+)} \\
- i\chi \frac{w_H p_a}{w_\sigma} \phi_{0}^{(a,-)} \\
- i\chi \frac{w_H p_a}{w_\sigma} \phi_{0}^{(a,+)} \\
+ i\chi \frac{w_H p_a}{w_\sigma} \phi_{0}^{(a,-)} \\
\end{array} \right] = 0.
\]

(26)

After calculating this determinant and introducing the dimensionless function \(K(x) \equiv -Ai'(x)/Ai(x) \) one transforms Eq. (26) into

\[
\left[\frac{P_{o,\perp}}{h} + K \left(\frac{\varepsilon_{\perp} \varepsilon_{\perp} - E}{\varepsilon_{\perp}} \right) - v_s \frac{\nabla p^2 + w_H p_x}{\varepsilon_{\perp} w_p} \right] \times \left[\frac{P_{o,\perp}}{h} + K \left(\frac{\varepsilon_{\perp} \varepsilon_{\perp} - E}{\varepsilon_{\perp}} \right) + v_s \frac{\nabla p^2 + w_H p_x}{\varepsilon_{\perp} w_p} \right] \]

\[
- \left(\frac{v_s w_H p_a}{\varepsilon_{\perp} w_p} \right)^2 = 0,
\]

(27)

where \(v_s = \chi \varepsilon_{\perp} l_\perp / h \) is the spin velocity due to the interface contribution. The spin-dependent dispersion relation, \(E_{\sigma p} \), is given by the roots of this equation.

Let us consider the 2D approach, when \(E \) is around the ground energy level, \(\varepsilon_o \), determined by the equation: \(P_{o,\perp}/h + K(\varepsilon_o/\varepsilon_{\perp}) = 0 \). Expanding \(K[(\varepsilon_{\sigma p} - E)/\varepsilon_{\perp}] \) over \(E - \varepsilon_o - \varepsilon_{\perp} \) one can transform Eq. (27) into a quadratic equation and the dispersion relation takes the form \(E_{\sigma p} \approx \varepsilon_o + \varepsilon_{\perp} + \sigma \Delta E_p \), where the splitting \(\Delta E_p \) of the energy spectrum is given by

\[
\Delta E_p = \sqrt{\left(w_p - \frac{\nabla p^2 + w_H p_x}{w_p} \right)^2 + \left(\frac{\nabla_s w_H p_y}{w_p} \right)^2}.
\]

(28)

with the heterojunction-induced spin velocity, \(\nabla_s = v_s K(-\varepsilon_o/\varepsilon_{\perp}) \), and the internal spin velocity, \(\nabla \), introduced in Eq. (17). In Fig. 3 we plot these dispersion relations for the same parameters used in Fig. 2(a). As in Fig. 2(a), we have used dimensionless energy and momenta to represent a general case. Comparing Fig. 2(a) with Fig. 3 we can see the effect of the interface contribution as an enhancement of the splitting between parabolas \(\sigma = \pm 1 \).

For high electron concentration the approach of Eq. (28) is no longer valid. In order to obtain \(E \) for this case we need to solve Eq. (10) together with Eq. (13) by means of a self-consistent approach. To do that we have used the
FIG. 3: (Color online) Energy dispersion relations calculated with equation (28) for $\nu_s = \nu$ for different magnetic fields h. Solid, dashed and dot-dashed curves corresponds to the dimensionless momenta $p_y / m \nu = 0$, 0.25, and 1, respectively.

FIG. 4: (Color online) Dispersion relations calculated numerically for different magnetic field H and $n_{2D} = 10^{12}$ cm$^{-2}$. Solid line: $p_y = 0$. Dashed line: $p_y = 0.25$ mν. Dot-dashed line: $p_y = m \nu$.

Transfer Matrix Method20. Figure 4 shows dispersion relations obtained in this way for In$_{0.8}$Al$_{0.2}$As/In$_{0.52}$Ga$_{0.48}$As with the electron density $n_{2D} = 10^{12}$ cm$^{-2}$, which corresponds to a Fermi energy $\epsilon_F = 209$ meV. Using the standard parameters21 one obtains $\chi = 0.303$ and $\nu = 1.13 \times 10^6$ cm/s, so that dimensionless field $h = 1$ corresponds to $H = 0.23$ T. Thus, we can compare panel for $h = 1$ in Fig.3 with panel for $H = 0.23$ T in Fig. 4. We can see that numerically calculated results show a similar behavior than approximation (28), although, for the material under consideration, splitting is qualitatively less and shift along momentum is larger in Fig. 4.

The spin splitting of the dispersion relations at Fermi energy is directly connected to the Shubnikov-de Haas (SdH) oscillations. Since ΔE_p is nearly isotropic over p-plane, we have also calculated $\Delta E = \Delta E_p|_{p=p_F}$ for different magnetic fields, see Fig. 5. Following Refs. 12,13 the spin splitting is related to the modulation of the SdH oscillation amplitude according to $\cos(\pi m \Delta E / |e| H)$. For the structure under consideration, experimental value13 is $\Delta E = 11.4$ meV for $H = 0.8$ T and $n_{2D} = 10^{12}$ cm$^{-2}$, which corresponds to $\Delta E = 9.86$ meV, calculated numerically for the same magnetic field and density. Figure 5 shows a very slight dependence of ΔE on the magnetic field for $\chi = 0.303$ being stronger this dependence for the case $\chi = 0$. Thus, interface contributions should be detectable through the SdH oscillations amplitude.
FIG. 5: The level splitting energy, ΔE vs magnetic field for $\chi = 0.303$ and $\chi = 0$. Note that the upper ΔE is almost H-independent.

\[\Delta E = \begin{cases} 10.0 & \text{for } \chi = 0.303 \\ 9.5 & \text{for } \chi = 0 \end{cases} \]

\[H (T) \]

FIG. 6: (Color online) (a) Dispersion laws for InGaAs/InAlAs QW under different magnetic fields. $p_y = 0$ (solid line) and $p_y = n \mathcal{W}$ (dashed line). (b) Density of states for $H = 0$ (solid line), 0.5 T (dashed line), 1 T (dot line), and 2.5 T (dot-dashed line).

B. QW under field F_\perp

Next, we consider the non-doped symmetric QW (with $P_\pm = P_\circ$ and $\chi_\pm = \chi$) subjected to a transversal field F_\perp, when the eigenstate functions of Eq. (20), $\varphi_{\pm}^{(a,b)}$, are written through the Ai- and Bi-functions. The system (24) gives the dispersion relations equation as the determinant of a 4×4 matrix, which differs from Eq. (26) due to the replacement of P_\pm and φ_{\circ}^\pm by the 2×2 matrices:

\[\hat{P}_\sigma = \begin{bmatrix} P_\circ^{(a\sigma)} & P_\circ^{(b\sigma)} \\ P_\circ^{(b\sigma)} & P_\circ^{(a\sigma)} \end{bmatrix}, \quad \hat{\varphi}_\sigma = \begin{bmatrix} \varphi_{d/2}^{(a\sigma)} & \varphi_{d/2}^{(b\sigma)} \\ \varphi_{-d/2}^{(a\sigma)} & \varphi_{-d/2}^{(b\sigma)} \end{bmatrix} \]

where $P_\circ^{(a\sigma)} \equiv \left(\hat{P}_{\circ} \varphi_{\pm}^{(k,\pm 1)} \right)_{z=\pm d/2} \pm i P_\circ \varphi_{\pm}^{(k,\pm 1)}$. Once again, after the expansion near the ground energy, ε_\circ, one can transform the determinant in a similar way to transformations of Eqs. (26, 27). Numerical solutions of these equations for InGaAs- and InSb-based QWs are represented in Figs. 6(a) and 7(a). We have considered 100 A wide InGaAs- and InSb-based QWs using the parameters of Refs. 21, 22. We have also applied a field of 120 kV/cm, which corresponds
FIG. 7: (Color online) (a) Dispersion relations for InSb/InAlSb QW under different magnetic fields. $p_y = 0$ (solid line) and $p_y = m\nabla$ (dashed line). (b) Density of states for $H = 0$ T (solid line), 0.25 T (dashed line), 0.5 T (dotted line), and 1 T (dot-dashed line).

Comparing Figs. 6(a) and 7(a) with Fig. 4 we can see that, for similar spin velocities and magnetic fields, the splitting between levels is bigger whereas the shift in the p_x direction is smaller for the QW case with respect to the selectively-doped structure. Thus, the effect of interface contribution seems to be more pronounced for the QW case. This effect is enhanced as the width of the wells diminishes. Due to the greater spin velocities of InGaAs and InSb-based QWs, caused by the different effective masses and energy gaps, it is necessary to use lesser magnetic fields to get a similar effect. Both for QWs and selectively doped structures, interface contributions are opposite to the intrinsic spin-orbit coupling effect.

Since the density of states is proportional to the PLE intensity ρ_ε, as shown in Eq. (16), it is interesting to study the shape of ρ_ε, shown in Figs. 6(b) and 7(b). The effect of the interfaces is manifested in ρ_ε as a delay in the quenching of the $\varepsilon^{-1/2}$-singularity corresponding to the zero-field case. Although the singularity no longer exists for $H \neq 0$, a peak still remains at the energy value of the bands anticrossing. For the case which includes interface contributions, this peak gets wider and ρ_ε tends slower to ρ_{2D} for high energy limit. Thus, the PLE technique is of great interest to analyze the interface contributions. It should be notice that $\sigma = \pm 1$ levels becomes equally filled for magnetic fields beyond 5 T.

V. CONCLUSION

In this paper we have examined the electron states in narrow-gap non-symmetric heterostructures under an in-plane magnetic field. The eigenstate problem was formulated in the framework of the three-band Kane model with non-symmetric boundary conditions. We have found that the mechanisms of mixing between the Zeeman term in the Hamiltonian and the two kinds of spin-orbit coupling contributions (from a slow field and from heterojunctions) are essentially different. Numerical estimates for typical parameters of InGaAs/InAlAs and InSb/InAlSb structures demonstrate the essential magneto-induced modifications of the energy spectra under magnetic field strength of the order of Tesla.

Let us discuss some possibilities for the experimental verification of the energy spectra modifications obtained here. The magnetotransport measurements of Shubnikov-de Haas oscillations under nearly in-plane magnetic fields (when a quasi-classic quantization of the dispersion relations for the transverse component of the magnetic field is possible) provide a direct information about in-plane magneto-induced modifications of electron energy spectra. The results of Sec. IV A are in agreement with Ref. 13 but more measurements (for different in-plane fields and concentrations) are necessary in order to separate the intrinsic and junction-induced contributions. Another way of looking for these peculiarities of energy spectra is the mid-infrared PLE spectroscopy when interband transitions are modified under in-plane magnetic field. PLE intensity provides direct information of the energy spectra because it is directly connected to the density of states, as mentioned above. A comparison between SdH oscillations and PLE
measurements with a precision about 1 meV (it should be possible for a high-quality structure) provides more data on mechanisms of spin-orbit interaction in narrow-gap structures.

Thus, we have shown the essential modifications of the electron energy spectra in non-symmetric narrow-gap QWs under in-plane magnetic fields. We suggest that measurements of the magneto-induced contributions to optical and transport properties would be an useful method for an experimental verification of the heterojunction-induced contributions to the spin-orbit interaction in the narrow-gap heterostructures under investigation.

Acknowledgments

This work has been supported in part by Ministerio de Educación y Ciencia (Spain) and FEDER under the project FIS2005-01672.

* Electronic address: ajhernan@ull.es
† Electronic address: ftvasko@yahoo.com
1 W. Zawadzki and P. Pfeffer, Semicond. Sci. Technol. 19 R1 (2004).
2 V. F. Gantmakher and I. B. Levinson, Carrier Scattering in Metals and Semiconductors (North-Holland, Amsterdam, 1987).
3 G. Dresselhaus, Phys. Rev. 100, 580 (1955).
4 E.I. Rashba, Sov Phys. Sol. State 2, 1109 (1960); E.I. Rashba and V.I. Sheka, Sov. Phys. Solid State 3 1718 (1961).
5 M.I. Dyakonov, and V.Y. Kachorovskii, Sov. Phys. Semicond. 20 110 (1986).
6 F.T. Vasko, JETP Lett.30, 360 (1979).
7 F.T. Vasko and A.V. Kuznetsov, Electronic States and Optical Transitions in Semiconductor Heterostructures (Springer, New York, 1999).
8 A. Darr, J.P. Kotthaus and T. Ando, Proc. 13th Int. Conf. Phys. Semicond. Ed. F.G. Fumi (North-Holland, Amsterdam, 1976), p. 774; T. Ando, A.B. Fowler and F. Stern, Rev. Mod. Phys. 54, 437 (1982); D.A. Romanov, Phys. Solid State 35, 717 (1993).
9 F.T. Vasko and N.A. Prima, Sov. Phys. - Solid State, 25, 331 (1983).
10 F.T. Vasko and O. Keller. Phys. Rev. B 58, 15666 (1998).
11 W. Zawadzki and P. Pfeffer, Semicond. Sci. Technol. 19 R1 (2004).
12 V. F. Gantmakher and I. B. Levinson, Carrier Scattering in Metals and Semiconductors (North-Holland, Amsterdam, 1987).
13 G. Dresselhaus, Phys. Rev. 100, 580 (1955).
14 E.I. Rashba, Sov Phys. Sol. State 2, 1109 (1960); E.I. Rashba and V.I. Sheka, Sov. Phys. Solid State 3 1718 (1961).
15 M.I. Dyakonov, and V.Y. Kachorovskii, Sov. Phys. Semicond. 20 110 (1986).
16 F.T. Vasko. JETP Lett.30, 360 (1979).
17 F.T. Vasko and A.V. Kuznetsov, Electronic States and Optical Transitions in Semiconductor Heterostructures (Springer, New York, 1999).
18 A. Darr, J.P. Kotthaus and T. Ando, Proc. 13th Int. Conf. Phys. Semicond. Ed. F.G. Fumi (North-Holland, Amsterdam, 1976), p. 774; T. Ando, A.B. Fowler and F. Stern, Rev. Mod. Phys. 54, 437 (1982); D.A. Romanov, Phys. Solid State 35, 717 (1993).
19 P.Y. Yu and M. Cardona, Fundamentals of Semiconductors (3rd ed., Springer-Verlag, Berlin, 2001).
20 A. Hernández-Cabrera, P. Aceituno, and F.T. Vasko, Phys. Rev. B 60, 5698 (1999).
21 Following Refs. 11-13 and I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001), we use the data for In_{0.8}Al_{0.2}As/In_{0.52}Ga_{0.48}As structure: m = 0.041m_e, m_b = 0.2m_e, where m_e is the electron mass, factor g = −4.5, permittivity ǫ = 13.9, ∆E_c = 1268.6 meV, ∆E_v = 493.4 meV, and ε_g = 813 meV.
22 National Compound Semiconductor Roadmap: InSb, http://www.our.navy.mil/sci_tech/information (2005). Data for InSb/In_{0.8}Al_{0.2}Sb are m = 0.0142m_e, m_± = 0.0234m_e, ∆E_c = 220.0 meV, ∆E_v = 99.5 meV, ε_g = 246.6 meV, g = −48.5, ε = 16.1.
23 T.A. Liu, K.F. Huang, C.L. Pan, S. Ono, H. Ohtake, and N. Sarukura, Jap. J. Appl. Phys. part 2-Letters 40, L681 (2001).