The polymorphisms of chemokine gene in channel catfish (Ictalurus punctatus) and the associations with susceptibility/resistance to Edwardsiella ictaluri

Lei Gao1,2, Xiaoxi Du3, Hao Su1, Xianggang Gao1,2, Yunfeng Li1,2, Xiangbo Bao1,2, Weidong Liu1,2 and Chongbo He1,2*

*Correspondence: hechongbo@hotmail.com
1Liaoning Ocean and Fisheries Science Research Institute, Dalian 116023, China.
2Key Laboratory of Marine Fishery Molecular Biology of Liaoning Province, Dalian 116023, China.
3Institute of Life Sciences, Liaoning Normal University, Dalian 116081, China.

Abstract
Chemokines play a crucial role in the recruitment, activation and adhesion of immune effector cells to the foci of infection and injury under both homeostatic and inflammatory conditions. Identification of markers of chemokine genes associated with resistance to pathogens is necessary for the selective breeding of channel catfish. In the present study, the polymorphisms of genomic sequence of a CC chemokine, SCYA-115, were investigated in susceptible and resistant groups of channel catfish (Ictalurus punctatus). The polymorphisms in putative binding sites for transcription factor in promoter region were also investigated to explore their associations with susceptibility/resistance to Edwardsiella ictaluri. Thirty-five sites of SNPs and nine sites of ins-del polymorphisms were discovered in the complete sequence of SCYA-115. Among them, five SNP sites and one ins-del polymorphism were found in the region of binding sites for the transcription factor. The allele and genotype distributions were examined at these six polymorphisms. The results indicate that -820 T allele, -752 ins allele and -752 ins/del genotype were more prevalent in resistant group than that in susceptible group, which suggested that the carriers of these polymorphisms are more resistant to E. ictaluri. In addition, significant differences were found in haplotypes between susceptible and resistant groups. The results provide candidate markers for the selection of channel catfish with enhanced resistance to E. ictaluri.

Keywords: Chemokine, polymorphism, channel catfish ictalurus punctatus, disease resistance, disease susceptibility

Background
Chemokines, the superfamily of chemotactic cytokine, are small proteins produced by infected tissues in the early stages of infection [1,2]. They are responsible for the recruitment, activation and adhesion of various leukocytes to inflammatory foci under both homeostatic and inflammatory conditions [3,4]. Chemokines are divided into four subfamilies C, CC, CX3C and CX3C based on the arrangement of the first two conserved cysteine residues, which exist in the majority of chemokine structures [6,7]. CC chemokines, distinguished by adjacent cysteine residues in a conserved position, constitute the largest subfamily of chemokines with 24 CC chemokines identified from humans [3,6]. In teleost fish, researchers have identified 26, 18, 30, and 81 CC chemokines in channel catfish (Ictalurus punctatus), rainbow trout (Oncorhynchus mykiss), Atlantic salmon (Salmo salar) and zebrafish (Danio rerio), respectively [8-13]. Due to the diverse immune roles of CC chemokines, seven groups of CC chemokines were established in teleost fish through phylogenetic analysis and were named the CCL20 group, CCL27/28 group, MCP group, MIP group, CCL17/22 group, CCL19/21/25 group, and the Fish (specific) CC group [9]. CC chemokine polymorphisms, perhaps affecting the quality or quantity of these genes, are considered as the potential candidates for markers associated with susceptibility/resistance to pathogens, and may change the immune capacity of individuals to protect itself against infection [14]. In human, many studies have shown that chemokine polymorphisms influence the immune response and disease resistance [15,16]. For example, -403 A allele in promoter region of RANTES, a CC chemokine, is suggested to be a risk factor for HIV transmission and a protective factor for HIV progression [17]. Although advances have been achieved in the study of the identification of chemokine genes in teleost fish, there is very limited information in terms of the associations between chemokine polymorphisms and susceptibility/resistance to pathogenic organisms. Baoprasertkul et al., have found 14 types of cDNA sequences from a single...
F1 hybrid catfish (channel catfish × blue catfish), whereas its association with susceptibility/resistance to pathogens was not known [48].

Channel catfish is one of the most important aquaculture species worldwide, accounting for approximately 444,937 tons of the production and 675,342,000 dollars of the profit, respectively [18]. Nevertheless, catfish production suffered massive financial losses due to pathogen spread and breakouts such as enteric septicemia of catfish (ESC), caused by a Gram-negative intracellular bacterium Edwardsiella ictaluri [2]. Given that CC chemokines play an important role in innate immunity, it is worthy to investigate the associations of polymorphisms of CC chemokines with the susceptibility/resistance to ESC. In the present study, the sequence of CC chemokine SCYA-115 gene (hereinafter referred to as SCYA-115), the expression of which was significantly upregulated upon bacterial infection, was employed from GenBank to amplify the corresponding genomic sequence in channel catfish [19]. The aim of this work was to (a) identify the polymorphisms of SCYA-115 genomic sequence; (b) determine the variation of putative binding sites for transcription factor; (c) test the relation between the polymorphisms and susceptibility/resistance to ESC. This research will provide potential markers and contribute greatly to selective breeding of resistant channel catfish to ESC.

Materials and Methods

Animals and DNA extraction

All experimental fish, 2-3-year-old channel catfish, were collected from catfish farms (Hubei province in China). The fish selected for resistance to ESC for three generations were categorized as resistant group, and the fish random sampled without selective breeding were categorized as susceptible group. When exposed to E. ictaluri, the survival rate of fish in resistant group was significantly higher than that in susceptible group (data not shown). The muscle tissues of each fish were removed and kept at -20°C until DNA isolation.

About 100 mg muscle tissues of each fish was homogenized in 500 mL buffer containing 100 mmol L⁻¹ EDTA, 10 mmol L⁻¹ Tris–HCl, 1% SDS and 0.1 mg mL⁻¹ proteinase K. The mixture was incubated at 55°C for 2.5 h. And then, DNA was extracted with phenol, phenol/chloroform (1:1), and chloroform/isooamy alcohol (24:1), and precipitated with two volumes of ice-chilled absolute ethanol. After washing twice with 75% ethanol, the DNA pellet was dried and resuspended in sterile water with a concentration of 50 ng/μL, and stored in -20°C.

Identification of polymorphic loci in SCYA-115

Apairof gene specific primers, SCYA-115p1 (5’-AGG-GAATGGGTTGTTC-3’) and SCYA-115p2 (5’-CTGGTTTTATTTGC-CGTAT-3’) was designed using Primer Premier 5.0 software (Premier Biosoft International, Palo Alto, CA) based on the sequence of SCYA-115 (GenBank accession No. DQ173289). They were used to amplify a 3496-bp fragment of the gene sequence. PCR reaction was performed in a thermal cycler (Applied Biosystems) in 50 μL reaction volume containing 2.5ng of DNA template, 2 μL of each primer (10 μmol L⁻¹), 5 μL of 10 LA PCR buffer (Mg²⁺ Plus), 8 μL of dNTP Mixture (2.5 mmol L⁻¹), 30.5 μL of sterile water and 0.5μL (5U μL⁻¹) of LA Taq polymerase (TakaRa). The PCR temperature profile was as follows: 95°C for 5 min; 35 cycles of 94°C for 45 s, 55°C for 45 s and 72°C for 3.5 min; a further 8 min elongation at 72°C.

The PCR products were detected by electrophoresis on 1% agarose gels and the fragments were excised and purified. The objective fragments were then cloned into PMDI8-T vector, transformed into Escherichia coli JM109, and three clones were sequenced for each fragment using an ABI PRISM 3500 DNA Analyzer. The sequence alignments of SCYA-115 were performed using program MEGA 4.0 and polymorphisms were detected from the alignments of different individuals.

Association analysis between polymorphisms and susceptibility/resistance to ESC

Twenty-five more individuals of each susceptible and resistant group were sampled and DNA was extracted for the analysis of the associations between polymorphisms and susceptibility/resistance. Another pair of primers, SCYA-115p3 (5’-AGGGATGGGTTTTC-3’) and SCYA-115p4 (5’-TGACCGAGGTTCG-3’) was designed to amplify a 510-bp fragment of the promoter sequence, which was showed to have SNP or ins/del in the putative binding sites for transcription factor. The PCR reaction and DNA sequence analysis were performed as described above.

Statistical analysis

The promoter region of SCYA-115 was analyzed by TFSEARCH program (http://www.cbrc.jp/research/db/TFSEARCH.html) to predict putative binding sites for transcription factor located at the polymorphisms [14]. The predicted amino acid sequences of SCYA-115 were analyzed using Primer Premier 5.0 software. RepeatMasker (http://www.repeatmasker.org/cgi-bin/WEBRepeatMasker) was used to determine the presence and types of repetitive sequences in SCYA-115 genomic DNA sequence [20]. The allele and genotype frequencies were determined by direct counting. SHEsis (http://analysis.bio-x.cn) was used to estimate haplotype frequency and linkage disequilibrium. The associations between the polymorphisms and susceptibility/resistance to ESC were analyzed with chi-square test (χ² test) in SPSS 17.0 software (SPSS, Inc., Chicago, IL). Further analysis was performed, for the polymorphism loci having significant associations with the susceptibility/resistance to ESC, using a stepwise binary logistic regression to determine the risk/protection factor. The quality of genotype data for each polymorphism was determined by testing for Hardy-Weinberg equilibrium using HWE program [49]. P value less
Table 1. Repetitive elements in the genomic sequence of SCYA-115.

Score diverged bp (%)	Deleted bp (%)	Inserted bp (%)	Begin	End	Repeat Class/family
213	3.9	0.0	0.0	144	183 (CA)n Simple_repeat
318	16.0	1.0	0.0	1766	1865 L-155 XT LINE/L1
593	19.4	0.5	0.0	1782	2003 IMPR_01 Satellite
29	48.3	0.0	0.0	2030	2258 (TG)n Simple_repeat
22	62.1	0.0	0.0	2273	2301 AT_rich Low_complexity
283	24.2	0.8	0.7	3346	3450 Tc1-4Ory DNA/TcMar-Tc1

The scores were derived from RepeatMasker.

than 0.05 was considered statistically significant.

Results

The polymorphisms of genomic DNA sequence and repetitive sequences scan

Thirty-five sites of SNPs and nine sites of ins-del polymorphisms were identified in SCYA-115 by the alignments of genomic DNA sequence from different individuals (Figure 1). They were deposited in GenBank with accession No. KC533705-KC533714. Among the polymorphisms detected, only one synonymous SNP, C to T transition, was found in exon.

Several types of repetitive sequences were found in the SCYA-115 genomic sequence (Table 1). One simple repeat located in promoter region. Several consensus elements of binding sites for transcription factor were identified in the promoter region of SCYA-115, including C/EBPb, Oct-1, NF-kap and AP-1. These sites were responsible for regulation of immune reactions, suggesting the role of SCYA-115 in immune response. Moreover, classical TATA box and GATA were also found in the promoter region.

Polymorphisms in promoter region of SCYA-115

Eleven SNP sites and three ins-del polymorphisms were found to locate in promoter region. With screening the putative binding sites for transcription factor by TFSEARCH analysis, five SNP sites and one ins-del polymorphisms were found in the region of binding sites (Figure 2). At locus -820, a putative binding site for C/EBPb was found in A allele, while putative binding sites for GATA-1, GATA-2, S8 and Nkx-2 were found in T allele. At locus -752 and -742, there were putative binding sites for GATA-1, GATA-2 and GATA-3 in ins-C haplotype, and GATA-2 and GATA-3 in ins-T haplotype, but no binding sites for
transcription factor was found in del-C or del-T haplotype. At locus -514, the putative binding site for CdxA was found in both A allele and G allele. At locus -413 and -408, there were putative binding sites for CdxA and Oct-1 in both A-T haplotype and A-C haplotype, and CdxA, Oct-1 and S8 in both T-T haplotype and T-C haplotype.

The associations between polymorphisms in promoter region and susceptibility/resistance to ESC
The associations between polymorphisms in promoter region and susceptibility/resistance to ESC was investigated by examining the distributions of polymorphisms in six loci (-820 A-T SNP, -752 ins/del, -742 C/T SNP, -514 A/G SNP, -413 A-T SNP and -408 C/T SNP) of susceptible and resistant groups. With the analysis of HWE, the genotypic frequency of allele was demonstrated to be in the Hardy-Weinberg equilibrium ($P>0.05$) at each of the six loci (Table 2).

At locus -820, the T allele frequency was 51.67% in susceptible group, while 70.00% in resistant group (Table 2). χ^2-test showed a significant difference in its frequency distribution between the two groups ($P=0.040$). While no significant difference was found among the frequency of three genotypes, including A/A, A/T and T/T. The locus of -820 A/T was proved to be significantly associated with the susceptibility/resistance to ESC in allele analysis, and T allele was suggested to be the protection factor on resistance to ESC through the analysis of logistic regression (OR=2.18, $B=0.78$, $P=0.041$ for A allele).

At locus -752, the ins allele frequency was 13.33% in susceptible group, while 28.33% in resistant group. The ins/del genotype frequency was 20.00% in susceptible group, while 50.00% in resistant group (Table 2). χ^2-test revealed a significant difference in the frequency distribution of both allele and genotype between the two groups ($P=0.043$ for allele frequency; $P=0.049$ for genotype frequency). The locus of -752 ins/del was proved to be significantly associated with the susceptibility/resistance to ESC in both allele and genotype analysis. Ins allele and ins/del genotype were suggested to be the protection factors on resistance to ESC (OR=0.39, $B=-0.94$, $P=0.047$ for ins allele; $B=-1.41$, $P=0.017$ for ins/del genotype).

The rest of polymorphic loci, including -742 C/T, -514 A/G, -413A/T and -408 C/T, had no significant difference in the frequency distribution of neither allele nor genotype between susceptible and resistant groups (Table 2).

In addition, the statistical analysis strongly suggested the presence of linkage disequilibrium between the two polymorphic loci -820 A/T and -752 ins/del (D'=1.000, r2=0.409) (Figure 3). The haplotype of T-ins was even not observed in the present study. With the analysis performed at haplotype level, significant differences were found in haplotypes between susceptible and resistant groups (Table 3). The A-del haplotype was suggested to be the risk factor with OR as high as 31.77.

Discussion
In the recent years, the aquaculture industry of catfish has suffered massive financial losses due to the spread and breakouts of ESC. The selective breeding for disease-resistant strains is regarded as an effective approach contributing to an increase in survival during pathogen challenge. Molecular markers in the immune-related genes, such as MHC class IIB, MHC class IIB, TLR3, TLR22, Mx2 and MDA5, have been extensively identified in teleost fish, and served as an important role in selective breeding [21-26]. For example, the polymorphisms of MBL in zebrafish were demonstrated to be associated with susceptibility/resistance to *Listonella anguillarum* [27]. Possible associations of particular MDA5
Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

Allele	OR (95% CI)	P (OR=1)	B (P)	Wald
T/T	-	-	-	-

OR= odds ratio; B indicated partial regression coefficient in logistic regression

The distributions in susceptible and resistant groups were significantly different (P<0.05).

alleles and genotypes with susceptibility/resistance to grass carp reovirus were reported in grass carp [23]. However, there is very limited information in terms of the polymorphisms of immune-related genes in catfish. In the present study, SCYA-115 chemokine was chosen as the candidate gene for analysis. SCYA-115 was demonstrated
to be the one of seven chemokines, the expression levels of which were significantly upregulated upon ESC infection, and the promoter region of SCYA-115 has been better sequenced for subsequent analysis [19]. Thirty-five sites of SNPs and nine sites of ins-del polymorphisms were found in the genomic sequence, and five SNP sites and one ins-del polymorphisms of them located in the region of putative binding sites for transcription factor. Results from statistical analysis suggested that -820 T allele was more prevalent in resistant group than that in susceptible group (P=0.040), which indicated that -820 T carrier would be more resistant and -820 T could be a genetic protection factor in ESC infection. At locus -752, both ins allele and ins/del genotype were showed to be more prevalent in resistant group than that in susceptible group (P=0.043; P=0.049). It could be expected that -752 ins allele and ins/del genotype are also protection factors in ESC infection. Major progresses of recent studies in the chemokine polymorphisms are concentrated in human, while the explorations in teleost fish have only just begun [17,28-32]. To our knowledge, this is the first study demonstrating the associations between the chemokine polymorphisms and susceptibility/resistance to pathogens in catfish.

Polymorphisms in promoter region of various genes have been extensively demonstrated to be associated with disease resistance in some species [33-36]. In the present study, two polymorphic loci, including -820 T allele, -752 ins allele and -752 ins/del genotype, were identified to be significantly associated with disease resistance, probably due to the effects on transcription and splicing process [37-39]. In -820 T allele, four extra putative binding sites for transcription factor, including GATA-1, GATA-2, S8 and Nkx-2, were detected, while carrying T allele resulted in abolition of the binding site C/EBPb. In -752 ins allele, three members of GATA family, including GATA-1, GATA-2 and GATA-3, were detected compared to del allele. GATA-zinc finger transcription factor, a positive cis-regulatory element, was traditionally thought to play critical roles in development and differentiation in both vertebrates and invertebrates. However, accumulating evidences have suggested its crucial roles in regulating immune responses in recent years. GATA factors were suggested to be responsible for regulating a systemic induction of antimicrobial peptides in Drosophila in response to systemic infection [40-43].

The roles of Nkx-2 and C/EBPb in immune responses have also been identified, and C/EBP is demonstrated to influence both basal and inducible activities of the Interleukin-8 promoter in response to stimulation with IL-1β [44-46]. Consequently, the extra putative binding sites for transcription factor might affect the transcription of SCYA-115, and consequently influence the susceptibility/resistance phenotype of channel catfish to ESC infection. In addition, the strong linkage disequilibrium between the two polymorphic loci -820 A/T and -752 ins/del might be another reason for the associations between both loci and the susceptibility/resistance to ESC. However, the missing of binding site C/EBPb could not explain the elevated resistance to ESC, and further studies are needed.

In both susceptible and resistant groups, no T-ins haplotype (-820A-752) was observed, which suggested that T-ins haplotype might have been eliminated by natural selection for disruption the crucial binding site or affect splice process [23]. Furthermore, increasing evidences showed that intronic genetic variations even a single point mutation can cause deleterious implications for gene splicing [23,47]. Further work is warranted to screen the associations between polymorphisms in intron and susceptibility/resistance to pathogens, and investigate the possible mechanisms of all these associations.

Conclusions
In summary, polymorphisms of SCYA-115 genomic sequence, especially in putative binding sites for transcription factor, were investigated, and significant associations between two polymorphism loci and disease susceptibility/resistance were established in channel catfish. The results may provide candidate markers for the selection of disease resistant individuals of channel catfish.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
LG performed polymorphic identification and statistical analysis, and drafted the manuscript. XD performed polymorphic identification. HS, XG, YL, XB and WL participated in the coordination of the study. CH conceived the study, participated in its design and coordination.

Acknowledgements
This work was supported by National Natural Science Foundation of China (No.30972246), China Agriculture Research System (No.CARS-50-204) and Liaoning Ocean and Fisheries Research Program (No.200801).

Publication history
Received: 24-Dec-2012 Revised: 04-Feb-2013 Accepted: 04-Mar-2013 Published: 08-Mar-2013

References
1. Zhu Y, Nie L, Zhu G, Xiang LX and Shao JZ: Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts. Dev Comp Immunol 2013, 39:39-62. | Article | PubMed

Table 3. Haplotype distribution of -820 A/T and -752 ins/del in susceptible and resistant groups.

Haplotype	Haplotype frequency %	Chi2	Pearson’s P	OR (95% CI)	
	Susceptible individuals				
A ins	13.33	0.493	0.043*	0.39 (0.15-0.99)	
A del	35.00	0.226	0.00000024	31.77 (4.10-245.91)	
T del	51.67	0.423	0.040	0.46 (0.22-0.97)	

OR= odds ratio.
*The distributions in susceptible and resistant groups were significantly different (P<0.05).
17. McDermott, DH, MJ Beecrofta, CA Kleebergerc, FM Al-Sharifd, WER
16. Reiche EM, Bonametti AM, Voltarelli JC, Morimoto HK and Watanabe
13. Peatman E, Bao B, Baoprasertkul P and Liu Z: Constitutive expression of three novel catfish CC Chemokines: homostatic chemokines in teleost fish. Mol Immunol 2005, 42:1355-66. | Article | PubMed

5. DeVries ME, Kelvin AA, Xu L, Ran L, Robinson J and Kelvin DJ: Characterization of 23 CC chemokine genes and analysis of their expression in channel catfish (Ictalurus punctatus). Dev Comp Immunol 2006, 30:783-96. | Article | PubMed

7. He, C, Y Mu, Z Wang, Z Zhou, W Liu: Phylogenetic analysis of CC chemokine genes of fish. Journal of Fishery Sciences of China 2006, 13:119-127. | Article | PubMed

8. Liu, L, Fujiki K, Dixon B and Sundick RS: Cloning of a novel rainbow trout (Oncorhynchus mykiss) CC chemokine with a fractalkine-like stalk and a TNF decoy receptor using cDNA fragments containing AU-rich elements. Cytokine 2002, 17:71-81. | Article | PubMed

9. Peatman E and Liu Z: Evolution of CC chemokines in teleost fish: a case study in gene duplication and implication for immune diversity. Immunogenetics 2007, 59:613-23. | Article | PubMed

10. Bao B, Peatman E, Peng X, Baoprasertkul P, Wang G and Liu Z: Characterization of 23 CC chemokine genes and analysis of their expression in channel catfish (Ictalurus punctatus). Dev Comp Immunol 2006, 30:783-96. | Article | PubMed

11. Nomiyama H, Hieshima K, Osada N, Kato-Unoki Y, Otsuka-Ono K, Takegawa S, Izawa T, Yoshizawa A, Kikuchi Y, Tanase S, Miura R, Kusuda J, Nakao M and Yoshie O: Extensive expansion and diversification of the chemokine gene family in zebrafish: identification of a novel chemokine subfamily CX. BMC Genomics 2006, 9:222. | Article | PubMed

12. He C, Peatman E, Baoprasertkul P, Kucuktas H and Liu Z: Multiple CC chemokines in channel catfish and blue catfish as revealed by analysis of expressed sequence tags. Immunogenetics 2004, 56:379-87. | Article | PubMed

13. Peatman E, Bao B, Baoprasertkul P and Liu Z: In silico identification and expression analysis of 12 novel CC chemokines in catfish. Immunogenetics 2005, 57:409-19. | Article | PubMed

14. Li, L, Zhao J, Wang L, Qiu L, Zhang H, Dong C, Cong M and Song L: The polymorphism of lysozyme gene in Zhikong scallop (Chlamys farreri) and its association with susceptibility/resistance to Listonella anguillarum. Fish Shellfish Immunol 2009, 27:136-42. | Article | PubMed

15. Ghilardi G, Biondi ML, TA Torre, A Battaglioni L and Scorza R: Breast cancer progression and host polymorphisms in the chemokine system: role of the macrophage chemotractant protein-1 (MCP-1) -2518 G allele. Clin Chem 2005, 51:452-5. | Article | PubMed

16. Reiche EM, Bonametti AM, Voltarelli JC, Morimoto HK and Watanabe MA: Genetic polymorphisms in the chemokine and chemokine receptors: impact on clinical course and therapy of the human immunodeficiency virus type 1 infection (HIV-1). Curr Med Chem 2007, 14:1235-34. | Article | PubMed

17. McDermotta, DH, MJ Becaert, CA Kleeberger, FM Al-Sharif, WER Ollierd, PA Zimmerman, BA Boatin, SF Leitmanb, R Detelsg, AH Hajeerd, PM Murphyb: Chemokine RANTES promoter polymorphism affects risk of both HIV infection and disease progression in the Multicenter AIDS Cohort Study. AIDS 2000, 14:2671-2678. | Article | PubMed

18. FAO (Food and Agriculture Organization of the United Nations). | Website

19. Peatman E, Bao B, Peng X, Baoprasertkul P, Brady Y and Liu Z: Catfish CC chemokines: genomic clustering, duplications, and expression after bacterial infection with Edwardsiella icteralui. Mol Genet Genomics 2006, 275:297-309. | Article | PubMed

20. Li, L, Zhao J, Wang L, Qiu L and Song L: Genomic organization, polymorphisms and molecular evolution of the goose-type lysozyme gene from Zhikong scallop Chlamys farreri. Gene 2013, 513:40-52. | Article | PubMed

21. Chen SL, Zhang YX, Xu MY, Ji XS, Yu GC and Dong CF: Molecular polymorphism and expression analysis of MHC class II B gene from red sea bream (Chrysurphyis major). Dev Comp Immunol 2006, 30:407-18. | Article | PubMed

22. Dijkstra JM, Kiryu Y, Yoshiura Y, Kumanovics A, Kohara M, Hayashi N and Ototake M: Polymorphism of two very similar MHC class Ib loci in rainbow trout (Oncorhynchus mykiss). Immunogenetics 2006, 58:152-67. | Article | PubMed

23. Wang L, Su J, Yang C, Wan Q and Peng L: Genomic organization, promoter activity of grass carp MDAS and the association of its polymorphisms with susceptibility/resistance to grass carp reovirus. Mol Immunol 2012, 50:236-43. | Article | PubMed

24. Heng J, Su J, Huang T, Dong J and Chen L: The polymorphism and haplotype of TLR3 gene in grass carp (Chenopharyngodon idella) and their associations with susceptibility/resistance to grass carp reovirus. Fish Shellfish Immunol 2011, 30:45-50. | Article | PubMed

25. Su J, Heng J, Huang T, Peng L, Yang C and Li Q: Identification, mRNA expression and genetic structure of TLR22 and its association with GCRV susceptibility/resistance in grass carp (Chenopharyngodon idella). Dev Comp Immunol 2012, 36:450-62. | Article | PubMed

26. Wang L, Su J, Peng L, Heng J and Chen L: Genomic structure of grass carp Mx2 and the association of its polymorphisms with susceptibility/resistance to grass carp reovirus. Mol Immunol 2011, 49:359-66. | Article | PubMed

27. Jackson AN, McIver CA, Dawkins RL and Keating PI: Mannose binding lectin (MBL) copy number polymorphism in Zebrafish (D. rerio) and identification of haplotypes resistant to L. anguillarum. Immunogenetics 2007, 59:861-72. | Article | PubMed

28. Barcellos LF, Schito AM, Rimmler JB, Vittinghoff E, Shih A, Lincoln R, Callier S, Elkins MK, Goodkin DE, Haines II, Pericak-Vance MA, Hauser SL and Oksenberg JR: CC-chemokine receptor 5 polymorphism and age of onset in familial multiple sclerosis. Multiple Sclerosis Genetics Group. Immunogenetics 2000, 51:281-8. | Article | PubMed

29. McDermott DH, Halocop J, Schenke WH, Waclawiw MA, Merrell MN, Epstein N, Quyyumi AA and Murphy PM: Association between polymorphism in the chemokine receptor CXCR4 and coronary vascular endothelial dysfunction and atherosclerosis. Circ Res 2001, 89:401-7. | Article | PubMed

30. Szaiz C, Dubia J, Prohaszka Z, Kalina A, Szabo T, Nagy B, Horvath L and Czasz A: Involvement of polymorphisms in the chemokine system in the susceptibility for coronary artery disease (CAD). Inclusion of elevated Lp(a) and MCP-1: 2518 G/G genotype in CAD patients. Atherosclerosis 2001, 158:233-9. | Article | PubMed

31. Navratilova Z: Polymorphisms in CCL2&CCL5 chemokines/chemokine receptors genes and their association with diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Republic 2006, 150:191-204. | Article | PubMed
and measures of carcass merit. J Anim Sci 2005, 83:20-8. | Article | PubMed

35. Yuan HY, Chen JJ, Lee MT, Wung JC, Chen YF, Charng MJ, Lu MJ, Hung CR, Wei CY, Chen CH, Wu JY and Chen YT: A novel functional VKORC1 polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 2005, 14:1745-51. | Article | PubMed

36. Lazzaro BP, Sceurman BK and Clark AG: Genetic basis of natural variation in D. melanogaster antibacterial immunity. Science 2004, 303:1873-6. | Article | PubMed

37. Alhopuro P, Ylisaukko-Oja SK, Koskinen WJ, Bono P, Arola J, Jarvinen HJ, Mecklin JP, Atula T, Kontio R, Makitie AA, Suominen S, Leivo I, Valtteristo P, Aaltonen LM and Aaltonen LA: The MDM2 promoter polymorphism SNP309T->G and the risk of uterine leiomyosarcoma, colorectal cancer, and squamous cell carcinoma of the head and neck. J Med Genet 2005, 42:694-8. | Article | PubMed Abstract | PubMed Full Text

38. Sun T, Gao Y, Tan W, Ma S, Shi Y, Yao J, Guo Y, Yang M, Zhang X, Zhang Q, Zeng C and Lin D: A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter is associated with susceptibility to multiple cancers. Nat Genet 2007, 39:605-13. | Article | PubMed

39. Hoogendoorn B, Coleman SL, Guy CA, Smith K, Bowen T, Buckland PR and O'Donovan MC: Functional analysis of human promoter polymorphisms. Hum Mol Genet 2003, 12:2249-54. | Article | PubMed

40. Shapira M, Hamlin BJ, Rong J, Chen K, Ronen M and Tan MW: A conserved role for a GATA transcription factor in regulating epithelial innate immune responses. Proc Natl Acad Sci U S A 2006, 103:14086-91. | Article | PubMed Abstract | PubMed Full Text

41. Kadaliyil L, Petersen UM and Engstrom Y: Adjacent GATA and kappa B-like motifs regulate the expression of a Drosophila immune gene. Nucleic Acids Res 1997, 25:1233-9. | Article | PubMed Abstract | PubMed Full Text

42. Tingvall TO, Roos E and Engstrom Y: The GATA factor Serpent is required for the onset of the humoral immune response in Drosophila embryos. Proc Natl Acad Sci U S A 2001, 98:3884-8. | Article | PubMed Abstract | PubMed Full Text

43. Senger K, Harris K and Levine M: GATA factors participate in tissue-specific immune responses in Drosophila larvae. Proc Natl Acad Sci U S A 2006, 103:15957-62. | Article | PubMed Abstract | PubMed Full Text

44. Sepulveda JL, Belagudi N, Nigam V, Chen CY, Nemir M and Schwartz RJ: GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol Cell Biol 1998, 18:3405-15. | Article | PubMed Abstract | PubMed Full Text

45. Kinoshita S, Akira S and Kishimoto T: A member of the C/EBP family, NF-IL6 beta, forms a heterodimer and transcriptionally synergizes with NF-IL6. Proc Natl Acad Sci U S A 1992, 89:1473-6. | Article | PubMed Abstract | PubMed Full Text

46. Wu GD, Lai EJ, Huang N and Wen X: Oct-1 and CCAAT/enhancer-binding protein (C/EBP) bind to overlapping elements within the interleukin-8 promoter. The role of Oct-1 as a transcriptional repressor. J Biol Chem 1997, 272:2396-403. | Article | PubMed

47. Pagani F and Baralle FE: Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 2004, 5:389-96. | Article | PubMed

48. Baoprasertkul P, Peatman E, Chen L, He C, Kucuktas H, Li P, Simmons M and Liu Z: Sequence analysis and expression of a CXCL chemokine in resistant and susceptible catfish after infection of Edwardsiella ictaluri. Dev Comp Immunol 2004, 28:769-80. | Article | PubMed

49. Zheng R, Zhou Y, Qin L, Jin R, Wang J, Lu J, Wang W, Tang S and Hu Z: Relationship between polymorphism of DC-SIGN (CD209) gene and the susceptibility to pulmonary tuberculosis in an eastern Chinese population. Hum Immunol 2011, 72:183-6. | Article | PubMed