Complete Genome Sequences of 11 Bordetella pertussis Strains Representing the Pandemic ptxP3 Lineage

Marieke J. Bart,¹ a,b Han G. J. van der Heide,² a,b Anne Zeddeman,¹ a,b Kees Heuvelman,⁵ b Marjolein van Gent,² b Frits R. Mooi¹ a,b

Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Centre for Infectious Diseases Control (Cib), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands

Pathogen adaptation has contributed to the resurgence of pertussis. To facilitate our understanding of this adaptation we report here 11 completely closed and annotated Bordetella pertussis genomes representing the pandemic ptxP3 lineage. Our analyses included six strains which do not produce the vaccine components pertactin and/or filamentous hemagglutinin.

Bordetella pertussis is the causative agent of pertussis or whooping cough, a respiratory disease which is most severe in young unvaccinated infants. After the introduction of vaccination in the 1950s, there was a steep decline in disease incidence. However, in the 1990s pertussis resurged. The increase in notifications was initially attributed to increased awareness and improved diagnostics. However, later it became clear that the pertussis resurgence was mainly due to suboptimal vaccines and pathogen adaptation (1). Large shifts in the B. pertussis population resulted in antigenic divergence between circulating strains and vaccine strains (2–4). Further, in the 1980s, strains emerged with a novel allele for the pertussis toxin promoter ptxP3, replacing the resident ptxP1 strains. The ptxP3 strains produce more pertussis toxin than ptxP1 strains and therefore may suppress host immunity more efficiently (5–7). More recently, strains deficient in the vaccine components pertactin (Prn) and filamentous hemagglutinin (FHA) were detected (8–15). Loss of one or both of these antigens may confer a selective advantage in vaccinated populations (16, 17). Here we present the completely closed and annotated genome sequences of 11 B. pertussis isolates which represent the pandemic ptxP3 lineage and include six strains deficient in Prn and/or FHA.

Genomic DNA was isolated as described previously (18) and a 10-kb library was prepared. Sequencing was performed using a PacBio RS system with 6 single-molecule real-time (SMRT) cells per genome. The generated sequences were de novo assembled with HGAP (19) and trimmed and rotated by hand, resulting in a single circular contig for all genomes. B. pertussis genomes are highly similar and therefore RATT (20) was used to transfer annotations from B. pertussis Tohama I, CS, and 18323 (21–23). Afterward, sequenced genomes were manually checked for genes not present in the reference genomes.

The genomes comprised 4,100,705 to 4,111,557 bp and were predicted to have between 3,818 and 3,829 genes. Variation in the number of copies of the insertion sequence element IS481, which varied between 249 and 258 copies, was mainly responsible for the difference in gene numbers. The 11 strains were highly similar with respect to single nucleotide polymorphisms (SNPs) (n = 335) and small (up to 1,769 bp) insertions and deletions (n = 118). However, significant genome arrangements were observed, most likely mediated by insertion elements. Prn deficiency was caused by insertion of IS481 in the prn gene (strains B3582, B3629, and B3640), a 25-bp deletion in the prn gene (strain B3621), or C-to-T mutation resulting in a stop codon in the prn gene (strain B3658). In one strain (B3582), FHA-deficiency was caused by insertion of a G in a homopolymeric tract of 10 Gs, leading to a premature translational termination. In the other FHA-deficient strain (B3585), no mutations in the flaB gene, its promotor, or genes required for its surface expression were detected.

Comparisons of these strains and already published strains (18, 21, 22, 24) suggest that B. pertussis evolves not only by small mutations but also by major genome rearrangements which may affect gene regulation.

Nucleotide sequence accession numbers. The whole-genome shotgun projects have been deposited in DDBJ/ENA/GenBank under the accession numbers listed in Table 1. The versions described in this paper are the first versions.

Strain	Accession no.	Isolation yr	Country	ptxP type	fim3 type	Prn*	FHA*
B1838	CP011440	1999	Netherlands	3	2	+	+
B1865	CP011441	1999	Netherlands	3	2	+	+
B3405	CP011442	2010	Netherlands	3	1	+	+
B3582	CP011443	2009	Sweden	3	2	−	−
B3585	CP011444	2009	Sweden	3	1	+	−
B3621	CP011401	2008	France	3	2	−	+
B3629	CP011400	2009	France	3	2	−	+
B3640	CP011445	2010	Netherlands	3	1	−	−
B3658	CP011446	2009	Norway	3	1	−	−
B3913	CP011447	2012	Netherlands	3	1	+	+
B3921	CP011448	2012	Netherlands	3	1	+	+

*+, strain produces Prn and/or FHA; −, strain does not produce Prn and/or FHA.

1-2, with respect to single nucleotide polymorphisms (SNPs) (n = 335) and small (up to 1,769 bp) insertions and deletions (n = 118). However, significant genome arrangements were observed, most likely mediated by insertion elements. Prn deficiency was caused by insertion of IS481 in the prn gene (strains B3582, B3629, and B3640), a 25-bp deletion in the prn gene (strain B3621), or C-to-T mutation resulting in a stop codon in the prn gene (strain B3658). In one strain (B3582), FHA-deficiency was caused by insertion of a G in a homopolymeric tract of 10 Gs, leading to a premature translational termination. In the other FHA-deficient strain (B3585), no mutations in the flaB gene, its promotor, or genes required for its surface expression were detected.

Comparisons of these strains and already published strains (18, 21, 22, 24) suggest that B. pertussis evolves not only by small mutations but also by major genome rearrangements which may affect gene regulation.

Nucleotide sequence accession numbers. The whole-genome shotgun projects have been deposited in DDBJ/ENA/GenBank under the accession numbers listed in Table 1. The versions described in this paper are the first versions.

TABLE 1 Characteristics of the 11 B. pertussis strains

Strain	Accession no.	Isolation yr	Country	ptxP type	fim3 type	Prn*	FHA*
B1838	CP011440	1999	Netherlands	3	2	+	+
B1865	CP011441	1999	Netherlands	3	2	+	+
B3405	CP011442	2010	Netherlands	3	1	+	+
B3582	CP011443	2009	Sweden	3	2	−	−
B3585	CP011444	2009	Sweden	3	1	+	−
B3621	CP011401	2008	France	3	2	−	+
B3629	CP011400	2009	France	3	2	−	+
B3640	CP011445	2010	Netherlands	3	1	−	−
B3658	CP011446	2009	Norway	3	1	−	−
B3913	CP011447	2012	Netherlands	3	1	+	+
B3921	CP011448	2012	Netherlands	3	1	+	+

*+, strain produces Prn and/or FHA; −, strain does not produce Prn and/or FHA.
REFERENCES

1. Mooi FR, Van Der Maas NAT, De Melker HE. 2014. Pertussis resurgence: waning immunity and pathogen adaptation—two sides of the same coin. Epidemiol Infect 142:685–694. http://dx.doi.org/10.1017/S0950268813000071.

2. Lamm C, Octavia S, Bahrame Z, Sintchenko V, Gilbert GL, Lan R. 2012. Selection and emergence of pertussis toxin promoter ptxP3 allele in the evolution of Bordetella pertussis. Infect Genet Evol 12:492–495. http://dx.doi.org/10.1016/j.meegid.2012.01.001.

3. Van Gent M, Bart MJ, van der Heide HGI, Heuvelman KJ, Mooi FR. 2012. Small mutations in Bordetella pertussis are associated with selective sweeps. PLoS One 7:e46407. http://dx.doi.org/10.1371/journal.pone.0046407.

4. Bart MJ, Harris SR, Advani A, Arakawa Y, Bottero D, Bouchez V, Cassiday PK, Chiang C, Dalby T, Fry NK, Gaillard ME, van Gent M, Guiso N, Hallander HO, Harvill ET, He Q, van der Heide HGI, Heuvelman K, Hobzob DF, Kamachi K, Karataev GI, Lan R, Lutynska A, Maharjan RP, Mertsa J, Miyamura T, Octavia S, Preston A, Quail MA, Sintchenko V, Stefanelli P, Tondella ML, Tsang RS, Xu Y, Yao SM, Zhang S, Parkhill J, Mooi FR. 2014. Global population structure and evolution of Bordetella pertussis and their relationship with vaccination. mBio 5:e01074-14. http://dx.doi.org/10.1128/mBio.01074-14.

5. Mooi FR, Lou IOM, van Gent M, He Q, Bart MJ, Heuvelman KJ, de Gouw D, Hermans PWM, Bootsma HJ, Zomer A, Heuvelman K, Mooi FR, van Loo IHM, van Gent M, He Q, Mooi FR. 2014. Investigations into the emergence of pertactin-deficient Bordetella pertussis isolates in six European countries, 1996 to 2012. Euro Surveill 19. http://dx.doi.org/10.2807/1560-7917.ES2014.19.33.20881.

6. Martin SW, Pavloski L, Williams M, Weening K, DeBolt C, Qin X, Reynolds L, Kenyon C, Giambonne G, Kudish K, Miller L, Selvage D, Lee A, Skoff TH, Kamiya H, Cassidy PK, Tondella ML, Clark TA. 2015. Pertactin-negative Bordetella pertussis strains: evidence for a possible selective advantage. Clin Infect Dis 60:223–227. http://dx.doi.org/10.1093/cid/ciu788.

7. Hegerle N, Dore G, Guiso N. 2014. Pertactin-deficient Bordetella pertussis present a better fitness in mice immunized with an acellular pertussis vaccine. Vaccine 32:6597–6600. http://dx.doi.org/10.1016/j.vaccine.2014.09.068.

8. Bart MJ, Zeddeman A, van der Heide HGI, Heuvelman K, Mooi FR. 2014. Complete genome sequences of Bordetella pertussis isolates B1917 and B1920, representing two predominant global lineages. Genome Announc 2(6):e01301-14. http://dx.doi.org/10.1128/genomeA.01301-14.

9. Chin C, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. http://dx.doi.org/10.1038/nmeth.2474.

10. DeGill D, Dillon GP, Degraw WS, Berriman M. 2011. RATT: rapid annotation transfer Tool. Nucleic Acids Res 39:e57. http://dx.doi.org/10.1093/nar/gkq1268.

11. Parkhill J, Sebaihia M, Preston A, Murphy LD, Thomson N, Harris DE, Holden MTG, Churcher CM, Bentley SD, Mungall KL, Cerdeo-Tarraga AM, Temple L, James K, Harris B, Quail MA, Achtman M, Atkin R, Baker S, Basham D, Bason N, Cherevach I, Chillingworth T, Collins M, Cronin A, Davis P, Doggett J, Feltwell T, Goble A, Hamlin N, Hauser H, Holroyd S, Jagels K, Leather S, Moule S, Norberczak H, O’Neill S, Ormond D, Price C, Rabinowitz E, Rutter S, Sanders M, Saunders D, Seeger K, Sharp S, Simmonds M, Skelton J, Squares S, Stevens K, Unwin L. 2003. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiiseptica. Nat Genet 35:32–40. http://dx.doi.org/10.1038/ng1127.

12. Zhang S, Xu Y, Zhou Z, Wang S, Yang R, Wang J, Wang L. 2011. Complete genome sequence of Bordetella pertussis BS, a Chinese pertussis vaccine strain. J Bacteriol 193:4017–4018. http://dx.doi.org/10.1128/JB.01584-11.

13. Park J, Zhang Y, Buboltz AM, Zhang X, Schuster SC, Ahuja U, Liu M, Miller JF, Sebaihia M, Bentley SD, Parkhill J, Harvill ET. 2012. Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics 13:545. http://dx.doi.org/10.1186/1471-2164-13-545.

14. Boinett CJ, Harris SR, Langridge GC, Trainor EA, Merkel TJ, Parkhill J. 2015. Complete genome sequence of Bordetella pertussis D420. Genome Announc 3(4):e00842-15. http://dx.doi.org/10.1128/genomeA.00842-15.