The definition of holonomic measures

Rodolfo Ríos-Zertuche

November 11, 2014

A mi tía Angelines y a nuestra amiga Simone

Abstract

We consider certain Borel measures on a direct sum of several copies of the tangent bundle of a smooth manifold. We show that those that can be approximated by closed submanifolds coincide with those whose integrals of exact differential forms vanish.

1 Introduction

In this paper we consider certain Borel measures on the direct sum T^nM of n copies of the tangent bundle of a smooth manifold M. We distinguish two classes of such measures. First, those for which the integrals of exact forms vanish. Second, those that can be approximated by measures induced by embeddings of closed submanifolds (or, more precisely, by embeddings of parameterized CW-complexes without boundary). Our main result Theorem 1 which states that these two classes coincide. We give precise definitions in Section 2, where we also state our result. Section 3 is devoted to the proof of the theorem.

The $n = 1$ case of this result was proved by Bangert [1] and Bernard [2]. The author saw a letter by Mather [6] in which an idea similar to Bangert’s was sketched. Our proof of that case is different to theirs.

As explained in Section 2.1 our proof can be adapted to prove a similar statement in which the submanifolds are allowed to have a boundary contained in certain subsets of M.

Acknowledgements. I am deeply indebted to Gonzalo Contreras for suggesting the problem treated in this paper to me, and for numerous conversations on the subject. I am also deeply indebted to John N. Mather and Matilde Martínez for numerous discussions on this topic.
2 Setting and statement of results

Riemannian structure. Throughout, we fix a compact, oriented C^∞ manifold M, without boundary, of dimension $d \geq 1$. Denote by TM its tangent bundle, and by T^nM the direct sum bundle

$$T^nM = TM \oplus \cdots \oplus TM.$$

The dimension of T^nM is $d(n + 1)$. We will refer to its elements as

$$(x, v_1, v_2, \ldots, v_n),$$

where $x \in M$ and $v_i \in T_x M$. Sometimes for brevity we will write v instead of (v_1, \ldots, v_n).

We will use the word smooth to refer to C^∞ functions. The space of smooth, real-valued, compactly supported functions on T^nM will be denoted $C^\infty_c(T^nM)$.

We fix a Riemannian metric g on M, together with its Levi-Civita connection. We denote $|v| = \sqrt{g(v, v)}$ for $v \in T_x M$ and we extend this norm to T^nM by letting

$$|(v_1, v_2, \ldots, v_n)| = \sqrt{|v_1|^2 + |v_2|^2 + \cdots + |v_n|^2}.$$

We will denote by $\Omega^k(M)$ the space of smooth differential k-forms on M. We will often consider these forms as smooth functions on T^nM. We also define the projection $\pi : T^nM \to M$ by

$$\pi(x, v_1, \ldots, v_n) = x.$$

Mild measures. We let \mathcal{P}_n be the space of subpower functions, that is, the space of real-valued, continuous functions $f \in C^0(T^nM)$ such that

$$\sup_{(x,v)\in T^nM} \frac{|f(x,v)|}{1 + |v|^n} < +\infty.$$

Note that all differential n-forms on M belong to \mathcal{P}_n when regarded as functions on T^nM. We endow \mathcal{P}_n with the supremum norm and its induced topology.

A signed, Borel measure μ on T^nM is mild if

$$\int_{T^nM} 1 + |(v_1, \ldots, v_n)|^n \, d|\mu| < +\infty,$$
where $|\mu| = \mu^+ + \mu^-$ is the absolute value of the measure with Hahn decomposition $\mu = \mu^+ - \mu^-$, for positive measures μ^+ and μ^-. We denote the space of mild measures by \mathcal{M}_n. We define the mass $M(\mu)$ of $\mu \in \mathcal{M}_n$ to be

$$M(\mu) = \int_{T^nM} \text{vol}_n(v_1, v_2, \ldots, v_n) d|\mu|(x, v_1, \ldots, v_n).$$

The space \mathcal{M}_n is naturally embedded in the dual space \mathcal{P}_n^* and we endow it with the topology induced by the weak* topology on \mathcal{P}_n^*. This topology is metrizable on \mathcal{M}_n. We can give a metric by picking a sequence of functions $\{f_i\}_{i \in \mathbb{N}} \subset \mathcal{C}_c^\infty(T^nM)$ that are dense in \mathcal{P}_n and letting

$$\text{dist}_{\mathcal{M}_n}(\mu_1, \mu_2) = M(\mu_1 - \mu_2) + \sum_{k=1}^{\infty} \frac{1}{2^k \sup |f_k|} \left| \int |f_k| d\mu_1 - \int |f_k| d\mu_2 \right|. \quad (1)$$

Cellular complexes. An n-dimensional cell (or n-cell) γ is a smooth map

$$\gamma : D \subseteq \mathbb{R}^n \rightarrow M,$$

where D is a subset of \mathbb{R}^n homeomorphic to a closed ball, together with a choice of coordinates $t = (t_1, t_2, \ldots, t_n)$ on D. A chain of n-cells is a formal linear combination of the form

$$a_1 \gamma_1 + a_2 \gamma_2 + \cdots + a_k \gamma_k$$

for real numbers a_1, a_2, \ldots, a_k and n-cells $\gamma_1, \gamma_2, \ldots, \gamma_k$.

Let $\gamma : D \subseteq \mathbb{R}^n \rightarrow M$ be an n-cell. Denote by $d\gamma$ the differential map associating, to each element in D, an element in T^nM. Explicitly, if we have coordinates $t = (t_1, t_2, \ldots, t_n)$ on D, then

$$d\gamma(t) = \left(\gamma(t), \frac{\partial \gamma}{\partial t_1}(t), \frac{\partial \gamma}{\partial t_2}(t), \ldots, \frac{\partial \gamma}{\partial t_n}(t) \right).$$

This map depends on our choice of coordinates t.

To an n-cell γ, we associate a measure γ^\ast on T^nM defined by

$$\int_{T^nM} f \, d\gamma^\ast = \int_D f(d\gamma(t)) \, dt,$$

where $dt = dt_1 \wedge \cdots \wedge dt_n$. Similarly, to a chain of n-cells $\alpha = \sum_{i=1}^k a_i \gamma_i$, we associate the measure α^\ast given by

$$\alpha^\ast = \sum_{i=1}^k a_i \gamma_i^\ast.$$
The measure \(\lambda \alpha \) is an element of \(\mathcal{M}_n \). We will say that a chain \(\alpha \) is a cycle if for all forms \(\omega \in \Omega^{n-1}(M) \),

\[
\int_{T^nM} d\omega \, d\lambda \alpha = 0.
\]

Theorem 1. Assume that \(1 \leq n \leq d \). Let \(\mu \in \mathcal{M}_n \) be a positive mild measure. Then the following conditions are equivalent:

(Hol) For all forms \(\omega \in \Omega^{n-1}(M) \),

\[
\int_{T^nM} d\omega \, d\mu = 0.
\]

(Cyc) There exists a sequence \(\{\alpha_k\}_{k \in \mathbb{N}} \) of cycles such that the induced measures \(\lambda \alpha_k \rightarrow \mu \) as \(k \rightarrow \infty \) in the topology induced by the distance \((1) \).

Most of the rest of the paper will be devoted to proving this result. A probability measure \(\mu \in \mathcal{M}_n \) that satisfies Conditions (Hol) and (Cyc) is said to be holonomic. The space of all holonomic measures is convex.

2.1 Relative holonomic measures

Since our proof of Theorem 1 relies on triangulations, it is easy to modify it in order to prove

Theorem 2. Assume that \(1 \leq n \leq d \). Let \(\mu \in \mathcal{M}_n \) and \(U \subset M \) be a closed set diffeomorphic to a union of simplices of a smooth triangulation of \(M \). Then the following conditions are equivalent:

1. For all forms \(\omega \in \Omega^{n-1}(M) \) such that \(\omega|_U = 0 \),

\[
\int_{T^nM} d\omega \, d\mu = 0.
\]

2. There exists a sequence \(\{\alpha_k\}_{k \in \mathbb{N}} \) of chains such that the boundaries \(\partial \alpha_k \) are contained in \(U \), and such that the induced measures \(\lambda \alpha_k \rightarrow \mu \) as \(k \rightarrow \infty \) in the topology induced by the distance \((1) \).

Remark 3. The boundaries \(\partial \alpha_k \) can either be defined as in singular homology (see for example [5, §2.1]), or alternatively one can interpret the condition that \(\partial \alpha_k \) be contained in \(U \) as meaning that

\[
\int d\omega \, d(\lambda \alpha_k) = 0
\]

for all \(\omega \in \Omega^n(M) \) such that \(\omega \) vanishes on \(U \).
A probability measure $\mu \in \mathcal{M}_n$ that satisfies the conditions in Theorem 2 is said to be holonomic relative to U. The space of all these measures is again convex.

3 Proof

This section is devoted to the proof of Theorem 1, which will be given in Section 3.6.

The idea of the proof is the following. The fact that Condition (Cyc) implies Condition (Hol) is an easy consequence of Stokes’s theorem, so we concentrate in the other implication.

We start with a positive measure μ that satisfies Condition (Hol). We prove in Section 3.1 that we may assume that the measure μ is a smooth density. In Section 3.2 we specify a family of triangulations T_k on M for $k \in \mathbb{N}$. Then in Section 3.3.1 we construct ‘base measures’ $\bar{\mu}_k$, which are approximations to our smooth density that are (in a sense) constant on each simplex of T_k; this is analogous to approximating a smooth function on \mathbb{R} with simple functions. In Section 3.3.2 we construct an n-chain β_k that is again (in a sense) constant on each simplex of T_k.

In Section 3.4 we derive a condition on the $(d-n)$-dimensional skeleton of T_k that in Section 3.5.1 allows us to construct cycles that contain the chains β_k, and whose mass M can be estimated. We work on the estimates for the mass in Sections 3.5.2 and 3.5.3. Finally, we put everything together in Section 3.6.

3.1 Smoothing

Lemma 4. Any measure μ in \mathcal{M}_n can be approximated arbitrarily well using a smooth density on $T^n M$. If μ is a probability measure that satisfies Condition (Hol) then it can be approximated by smooth probability densities that also satisfy Condition (Hol).

Proof. Denote the exponential map by $\exp_x : T_x M \to M$.

A mollifier $\psi \in C_0^\infty(\mathbb{R})$ is a function such that $\psi(x) = \psi(-x)$, $\int \psi = 1$, and $\psi \geq 0$.

Fix a set of smooth vector fields F_1, F_2, \ldots, F_ℓ on M such that for each $x \in M$ the vectors $F_1(x), \ldots, F_\ell(x)$ span all of $T_x M$. Note that $\ell \geq d = \dim M$.

5
Denote by $\phi^i: M \times \mathbb{R} \rightarrow M$ the flow of F_i:

$$\phi^i_0(x) = 0, \quad \frac{d\phi^i_s(x)}{ds} = F_i(\phi^i_s(x)), \quad s \in \mathbb{R}.$$

For fixed $s \in \mathbb{R}$, denote the derivative of the diffeomorphism ϕ^i_s by $d\phi^i_s: TM \rightarrow TM$. Extend it to a map $d\phi^i_s: T^n M \rightarrow T^n M$ by setting

$$d\phi^i_s(x, v_1, v_2, \ldots, v_n) = (\phi^i_s(x), d\phi^i_s v_1, \ldots, d\phi^i_s v_n).$$

For $f \in C_\infty_c(T^n M)$, we will denote by $P_i(f)$ the function given by

$$P_i(f)(x, v_1, v_2, \ldots, v_n) = \int_{T^n M} f \circ d\phi^i_s(x, v_1, \ldots, v_n) \psi(s) ds.$$

This is a convolution in the horizontal direction F_i. Also, for $f \in C_\infty_c(T^n M)$ we let $V(f)$ be the convolution in the vertical direction,

$$V(f)(x, v_1, \ldots, v_n) = \int_{T^n M} dw_1 \psi(|w_1 - v_1|) \int_{T^n M} dw_2 \psi(|w_2 - v_2|) \ldots \int_{T^n M} dw_n \psi(|w_n - v_n|) f(x, w_1, w_2, \ldots, w_n).$$

For $f \in C_\infty_c(T^n M)$, we will denote

$$\psi \ast f = P_1 P_2 \cdots P_l V(f).$$

Note that $\psi \ast f$ is a C^∞ function even if f is only measurable. Moreover, if the diameter of the support of ψ is sufficiently small, and if f is an exact form on M, i.e. $f(x, v_1, \ldots, v_n) = d\omega_\psi(v_1, \ldots, v_n)$ for some $\omega \in \Omega_{n-1}^\omega(M)$, then $\psi \ast d\omega$ is the exact form $d(\psi \ast \omega)$. To see this, note first that by linearity of ω on each entry $V(d\omega) = d\omega$. Also, for s small enough, ϕ^i_s is a diffeomorphism and hence

$$P_i(d\omega) = \int \psi(s) d\phi^i_s d\omega ds = d \left[\int \psi(s) d\phi^i_s \omega ds \right] = d(P_i \omega).$$

Now let μ be a probability measure on $T^n M$. We define the convolution $\psi \ast \mu$ by duality, setting

$$\int_{T^n M} f d(\psi \ast \mu) = \int_{T^n M} (\psi \ast f) d\mu.$$

Then $\psi \ast \mu$ is a smooth density (see for example [4, §5.2]), and in the topology of \mathcal{M}_n,

$$\psi \ast \mu \rightarrow \mu \quad \text{as} \quad \text{diam supp } \psi \rightarrow 0.$$
Also, if μ satisfies Condition (Hol), then

$$\int_{T^n M} d\omega \, d(\psi \ast \mu) = \int_{T^n M} d(\psi \ast \omega) \, d\mu = 0,$$

so $\psi \ast \mu$ also satisfies Condition (Hol).

3.2 Triangulations

A triangulation $T = (K, h)$ of M is a simplicial complex K homeomorphic to M together with a homeomorphism $h : K \to M$. When talking about such a triangulation T, we will speak indistinctly of a simplex $U \subseteq K$ and of its image $h(U) \subseteq M$. In other words, we will ignore K as a topological space, and we will instead think of the triangulation as being ‘drawn’ directly on M.

We fix a sequence of triangulations $\{T_k\}_{k \in \mathbb{N}}$ on M such that:

- **T1. (Successive refinements)** For $k > 1$, T_k is a refinement of T_{k-1}.

 For each simplex V in T_k, $k \geq 1$, we denote by $U(V)$ the simplex of dimension d of T_1 in which V is contained. (This is ambiguous for the simplices of dimension less than d, but any choice will work, so we assume that this choice has been made for each simplex V once and for all.)

- **T2. (Finite)** T_k has finitely many simplices.

- **T3. (Charted)** For each simplex U of dimension d of T_1, there is a chart $\varphi_U : N_U \subseteq M \to \mathbb{R}^d$ (for N_U some neighborhood of U) such that the image $\varphi_U(U)$ is the standard simplex with vertices at the origin and at the vectors of the standard basis of \mathbb{R}^d.

 For brevity, we will denote $\varphi_U(V)$ by φ_V for all simplices V in the triangulations T_k, $k \geq 1$.

- **T4. (Affine)** For every simplex V in T_k, $\varphi_V(V)$ is contained in a translate of a vector space $Y(V) \subset \mathbb{R}^d$ of dimension $\dim V$.

- **T5. (Nondegeneracy)** All simplices of T_k are non-degenerate. In other words, if a simplex V has dimension m, then also $\text{vol}_m V > 0$.

- **T6. (Vanishing diameter)**
 $$\lim_{k \to \infty} \text{diam } T_k = 0.$$
Existence of triangulations on manifolds is discussed in great detail for example in [8]. A triangulation \(T_1 \) satisfying T2–T5 always exists. To obtain all other refinements \(T_k \) of \(T_1 \), one successively refines the standard simplex \(\varphi_U(U) \) (for \(U \) a simplex in \(T_1 \)) making sure that the rules T2–T5 are respected every time. It can be seen by induction on \(k \) that this is possible. One can take a refinement that respects T2–T5. Ensuring overall compliance with T6 is easy. Then one pulls the resulting triangulation back to \(M \) using the charts \(\varphi_U \).

We will denote by \(E^k_m \) the \(m \)-dimensional skeleton of the triangulation \(T_k \).

3.3 The base measure and its approximation

3.3.1 Construction of the base measure

In Section 3.2 we specified the triangulations \(T_k, k \in \mathbb{N} \), and we introduced the notation \(\varphi_V \).

Let \(\mu \) be a smooth density in \(\mathcal{M}_n \). We will define base measures \(0 \leq \bar{\mu}_k \leq \mu \) depending on the triangulations \(T_k \) such that \(\bar{\mu}_k \to \mu \) as \(k \to \infty \). Roughly speaking, the measure \(\bar{\mu}_k \) is the largest density, constant on a constant section of \(T^n M \) in the interior of each \(d \)-dimensional simplex \(U \) of \(T_k \). Our goal here is not to produce measures that satisfy Condition (Hol).

For a simplex \(V \) of dimension \(d \) in the triangulation \(T_k \), we take the chart \(\varphi_V \) and extend it to a trivialization of \(T^n M \), \(d\varphi_V : T^n M \to \mathbb{R}^{(n+1)d} \), by setting

\[
d\varphi_V(x,v_1,v_2,\ldots,v_n) = (\varphi_V(x),d\varphi_V(v_1),\ldots,d\varphi_V(v_n)).
\]

Let \(m \) denote Lebesgue measure on \(\mathbb{R}^{(n+1)d} \) and let \(\rho \) be the Radon-Nikodym derivative of the pushforward measure \((d\varphi_V)_*\mu = \rho m \) on \(\mathbb{R}^{(n+1)d} \).

For \((x,v) \in \mathbb{R}^{d(n+1)} \) with \(x \in \varphi_V(V) \), we let

\[
\tilde{\rho}_k(x,v) = \inf_{y \in \varphi_V(V)} \rho(y,v).
\]

Note that \(v \) is the same on both sides of the equation, and the dependence of the right-hand-side on \(x \) comes from the choice of \(V \). Also, this is ambiguous when \(x \) lies in a simplex of dimension \(< d \). This ambiguity happens only on a set of \(m \)-measure zero, so we may just ignore it, as it will not affect the rest of our argument. We let

\[
\bar{\mu}_k|_{T^n V} = d\varphi_V^*(\tilde{\rho}_k m).
\]
This completely determines $\bar{\mu}_k$ on the whole bundle $T^n M$. Also, $\rho_k \to \rho$ uniformly on compact sets, because ρ is smooth and $\text{diam} \, T_k \to 0$ by $T6$.

Similarly, $M(\bar{\mu}_k - \mu) \to 0$. Hence $\text{dist} \, M(\bar{\mu}_k, \mu) \to 0$ as $k \to \infty$.

3.3.2 Construction of the approximation

For each $k \in \mathbb{N}$, we will construct a chain β_k whose induced measure $\bar{\omega}_k$ will approximate the base measure $\bar{\mu}_k$ very well. We do this in the following steps.

Step 1. On each d-dimensional simplex V of T_k, we sample the distribution $\bar{\rho}_k m$ to get a finite sequence of points $p^V_1, \ldots, p^V_{\ell_V} \in \mathbb{R}^d(\mathbb{N} + 1)$. We may assume that the following conditions are true for these points:

A1. Each point p^V_i is in the interior of $\varphi_V(V)$.

A2. Write p^V_i as $(x, v_1, \ldots, v_n) \in \mathbb{R}^d \times \cdots \times \mathbb{R}^d = (\mathbb{R}^d)^{n+1}$. Let Π^V_i be the plane

$$
\Pi^V_i = \{x + t_1v_1 + t_2v_2 + \cdots + t_nv_n : t_i \in \mathbb{R}\} \subseteq \mathbb{R}^{(n+1)}.
$$

We assume that Π^V_i intersects all the simplices $W \subseteq \partial \varphi_V(V)$ of dimension $\text{dim} W \geq d - n$ transversally.

A3. For a $(d - n)$-dimensional simplex $W \subset E^{k}_{d-n}$, let V_1 and V_2 be two d-dimensional simplices adjacent to W. Let $A_i, i = 1, 2$, be the set of points of the form $\Pi^V_i \cap W$. We assume that there is a finite partition of W by disjoint, convex sets U_1, \ldots, U_m with $\text{diam} \, U_i < a(k)$ such that each of them contains at least one point in A_1, and

$$
\frac{|\bar{\mu}_k(V_2) - \#U_i \cap A_2|}{|\bar{\mu}_k(V_1) - \#U_i \cap A_1|} < a(k), \tag{2}
$$

where $a : \mathbb{N} \to \mathbb{R}$ is an asymptotically-vanishing function that will be specified at the end of Section 3.3.2.

Note that the measure

$$
\sum_{V \subset E^{k}_{d}} \frac{1}{\ell_V} \sum_{i} \varphi^+_V \delta_{p^V_i} \tag{3}
$$

is a good approximation of $\bar{\mu}_k$. Compliance with item A3 can be achieved by increasing the number of points, thus making the sample more dense.

9
Step 2. Let V be a d-dimensional simplex in T_k. Let $\gamma_i^V : D_i^V \subseteq \mathbb{R}^n \to \mathbb{R}^d$ be the solution to the equations

$$\gamma_i^V (0, 0, \ldots, 0) = x, \quad \frac{\partial \gamma_i^V}{\partial t_j} = v_j, \quad i = 1, \ldots, n.$$ \hspace{1cm} (4)

Assume that the domain D_i^V of γ_i^V is the largest closed subset of \mathbb{R}^n such that γ_i^V remains within $\varphi_V(V)$. Note that image $\gamma_i^V = \gamma_i^V(D_i^V) \subset \Pi_i^V$, so by A2 this image also intersects the simplices in the boundary of the standard simplex $\partial(\varphi_V(V))$ transversally.

We let

$$\beta_k = \sum_{V \subseteq E_d} \frac{1}{\ell_V} \sum_i \frac{1}{|D_i^V|} (d\varphi_V)^* \gamma_i^V.$$

When we consider the measure β_k, this is like taking the measure in equation (3) and spreading the mass of each point along a simplex determined by its velocity vectors v_1, \ldots, v_n. Since $\mu_k|_V$ is ‘constant’ for each such set of velocity vectors, β_k is in fact a very natural approximation to μ_k. Note that we divide by the n-dimensional Lebesgue measure of the domain, $|D_i^V|$, in order to normalize and obtain the correct weights.

3.4 Conditions on the boundary

We say that a sequence of simplices V_1, \ldots, V_ℓ of a triangulation is properly nested if $V_i \subset \partial V_{i-1}$ and $\dim V_i = d - i$.

Let V be a simplex in a triangulation T of M. For x in V, let

$$u_V(x) = \text{dist}(x, \partial V).$$

If the triangulation T is reasonably nice, u_V can then be extended to all of M in such a way that u_V will be smooth on the interiors of the simplices of ∂V. In our case, this can be done because the triangulation satisfies T3–T5. There is some ambiguity in the choice of the extension, but it is immaterial in our argument.

Let, for $\varepsilon > 0$,

$$u_V^\varepsilon(x) = \begin{cases}
 u_V(x)/\varepsilon, & \text{if } |u_V(x)| < \varepsilon, \\
 -1, & \text{if } u_V(x) < -\varepsilon \\
 1, & \text{if } u_V(x) > \varepsilon
\end{cases}$$

Finally, let \bar{u}_V^ε be a smoothed version of u_V^ε, such that the amount of smoothing tends to 0 as $\varepsilon \to 0$. This can be obtained, for example, by
convolving as in Section 3.1 and ensuring that one uses mollifiers ψ such that $\text{diam supp } \psi < \varepsilon^2$.

Let $C = \{V_1 \supset \cdots \supset V_n\} \subseteq T_k$ be a set of n properly nested simplices. Observe that the form

$$\omega_\varepsilon = d\bar{u}_V \wedge d\bar{u}_V \wedge \cdots \wedge d\bar{u}_V$$

is exact.

Let ν be a measure on $T^n M$. Let $C = \{V_1 \supset V_2 \supset \cdots \supset V_\ell\}$ be properly nested simplices in some triangulation of M. Let

$$B_\varepsilon(C) = \{x \in M : |u_V(x)| \leq \varepsilon, i = 1, 2, \ldots, \ell\}.$$

Define the measure ν^C by

$$\int f \, d\nu^C = \lim_{\varepsilon \to 0^+} \frac{1}{\varepsilon^\ell} \int_{B_\varepsilon(C)} f \, d\nu, \quad (5)$$

where $f \in C_C^\infty(T^n M)$.

Observe that

$$\lim_{\varepsilon \to 0^+} \int \omega_\varepsilon \, d\mu = \int d\bar{u}_V \wedge d\bar{u}_V \wedge \cdots \wedge d\bar{u}_V \, d\mu^C.$$

Since the left-hand-side vanishes when μ satisfies Condition (Hol), we get

Lemma 5. If the smooth density $\mu \in \mathcal{M}_n$ satisfies Condition (Hol), then for every $k \in \mathbb{N}$ and for every properly nested sequence of simplices $C = \{V_1 \supset V_2 \supset \cdots \supset V_n\}$ of the triangulation T_k, we have

$$\int_{T^n M} d\bar{u}_V \wedge d\bar{u}_V \wedge \cdots \wedge d\bar{u}_V \, d\mu^C = 0. \quad (6)$$

3.5 Closing up the base measure

3.5.1 Inductive construction of cycles

In this section we inductively construct n-dimensional cycles η_k that contain the chains β_k that approximate the base measure $\bar{\mu}_k$. Our starting point will be a measure ν_0^C corresponding to a fictitious n-chain η_0^C that will help us guess what the 0-dimensional intersections of η_k with the skeleton E^{k}_{d-n} should be.
The 0-dimensional chain. Recall that the chain β_k was constructed in Section 3.3.2. It is a linear combination of n-cells $\varphi_i^*\gamma_i^Y$, determined by the equations (4). For each $k > 0$, we let $\tilde{\beta}_k$ be the chain that results from extending the domain of the n-cell γ_i^Y (still respecting (4)) to an open set very slightly larger than its original domain D_i^Y, so that it now intersects the skeleton E_{d-1}^k of T^k. By property A2, this intersection is transversal.

Then, for properly-nested simplices $C = \{V_1 \supset \cdots \supset V_\ell\}$ the measure $\wedge \tilde{\beta}_k^C$ defined in equation (5) reflects the way the boundary of β_k intersects ∂V_ℓ.

For a point p in $T^n M$ such that $\pi(p) \in V_\ell$, and for a set of n properly nested simplices $C = \{V_1 \supset \cdots \supset V_n\}$ let

$$W(p, C) = du_{V_1} \wedge du_{V_2} \wedge \cdots \wedge du_{V_n}(p),$$

where the functions u_{V_i} are as in Section 3.4. Observe that if C and C' are two sets of n properly nested simplices that differ only in the ℓth simplex, $\ell < n$, and the corresponding simplices V_ℓ and V'_ℓ are adjacent, then

$$W(p, C) = -W(p, C')$$

because $du_{V_\ell} = -du_{V'_\ell}$ at p.

For each k, we pick a finite set of points $\{p_i^k\} \subset T^n M$, and weights $r_i^k \in \mathbb{R}_+$ such that Conditions U1–U4 below are true. We want to construct a measure η_0^k that will capture the way in which our cycles will ultimately intersect the skeleton E_{d-n}^k. This measure will be the starting point for the full construction of the cycles. Crucially, at each point in its support η_0^k carries information about the k-dimensional subspace that will eventually turn out to be the intersection of our cycles η^n_k with the skeleton E_{d-n}^k. We will imagine that there is an n-chain whose (degenerate) cells are the points $\{\pi(p_i)\} \subseteq M$, so that η_0^k is given by

$$\eta_0^k = \sum_i r_i^k \pi(p_i^k),$$

and parameterized so that

$$\wedge \eta_0^k = \sum_i r_i^k \delta_{p_i^k}.$$

Strictly speaking, such a chain η_0^k does not exist, but the measure $\wedge \eta_0^k$ does, and this is the object we need.

The conditions are:
U1. The projection $\pi(p_k^i)$ of each point p_k^i on M is contained in the $(d-n)$-dimensional skeleton E_{d-n}^k of the triangulation T_k.

U2. We require the points in the support of $\tilde{\beta}_k^C$ to be contained in $\{p_k^i\}_i$, and the corresponding weights r_k^i to be at least as large as the weights these points have in the measure $\tilde{\beta}_k^C$.

U3. For each set of n properly nested simplices $C = \{V_1 \supset \cdots \supset V_n\} \subseteq T^k$,

$$\sum_i W(p_i^k, C) r_i^k = 0,$$

where the sum is taken over all i such that $\pi(p_i)$ is in V_n.

U4. The measure η_{k}^0 approximates the restriction of μ to the skeleton E_{d-n}^k:

$$\text{dist}_{\#} \left(\sum_C \mu^C, \sum_C \eta_{k}^0 C \right) \leq \frac{1}{k},$$

where the sums are taken over all sets C of n properly nested simplices of T^k.

The idea is that $\{p_k^i\}_i \cap \pi^{-1}(V_n)$ should be a very good sample of the measure μ^C. The set of points and weights can be found as follows. Start with the points in the support of $\tilde{\beta}_k^C$, with the weights they inherit from β_k. Then by further sampling the measure μ^C, and invoking the fact that it satisfies the conclusion of Lemma 5, a solution for the condition in item U3 is guaranteed to exist. Note that the condition in item U3 is essentially a rephrasing of the conclusion of Lemma 5 adapted to $\eta_{k}^0 C$. Taking a sufficiently large sample of μ^C, one can also guarantee that item U4 will be satisfied.

The higher-dimensional chains. For every set of $n+1$ properly nested simplices $C = \{V_1 \supset \cdots \supset V_{n+1}\}$, we let η_k^C denote the 0-dimensional chain

$$\eta_k^C = \sum_i (\text{sgn} W(p_i^k, C)) r_i^k \pi(p_i^k)$$

where the sum is taken over all indices i such that p_i^k is contained in V_{n+1}.

13
For every set $C = \{ V_1 \supset \cdots \supset V_{n-j} \} \subseteq T_k$ of $n-j$ properly nested simplices, $1 \leq j < n$, $\tilde{\beta}_k$ induces an j-dimensional chain β^C_k on ∂V_{n-j} that satisfies, for all $\omega \in \Omega^j(M)$,
\[
\int_{\beta^C_k} \omega = \int_{\partial V_{n-j}} \omega \wedge du_{V_1} \wedge du_{V_2} \wedge \cdots \wedge du_{V_{n-j}} \, d\tilde{\beta}_k.
\]
Observe that the chain β^C_k is in general not unique, but any choice will do for our purposes. We also let $\beta^\emptyset_k = \beta_k$.

For sets of properly nested simplices
\[
C' = \{ V_1 \supset \cdots \supset V_{n-j-1} \} \subset C = \{ V_1 \supset \cdots \supset V_{n-j} \},
\]
we refine the chain $\beta^C'_{k}$ so that each of its $(j+1)$-dimensional cells intersects only one of the $(d-n+j+1)$-dimensional simplices of the boundary ∂V_{n-j-1}. We then let β^C_k be the part of $\beta^C'_{k}$ that is contained in V_{n-j}. In other words,
\[
\beta^C_k = \sum_{V \subset \partial V_{n-j}} \beta^C'_{k \cup \{ V \}}.
\]

We proceed to construct, inductively on $j = 0, 1, \ldots, n-1$, $(j+1)$-dimensional cycles η^C_k corresponding to each set of $n-j$ properly nested simplices $C = \{ V_1 \supset \cdots \supset V_{n-j} \} \subseteq T_k$, such that:

E1. The cells of η^C_k are contained in $V_{n-j} \subseteq E^k_{d-n+j+1} \subseteq M$.

E2. We require that β^C_k be contained in η^C_k, in the sense that all the cells of β^C_k appear in η^C_k with coefficients of magnitude greater or equal to those they have in β^C_k.

If $j = n-1$, $C = \{ V_1 \}$ and η^C_k contains precisely the cells of β_k that are contained in V_1, and with exactly the same parameterization for each cell.

E3. We have
\[
\partial \eta^C_k = \sum_{V \subset \partial V_{n-j}} \eta^C_{k \cup \{ V \}},
\]

where the sum is taken over all simplices in the boundary of V_{n-j}.

E4. If C and C' are sets of $n-j$ properly nested simplices of T_k that only differ in the ℓ-th simplex, $1 \leq \ell < n-j$, and the corresponding simplices V_ℓ and V'_ℓ are adjacent, then
\[
\eta^C_k = -\eta^{C'}_k.
\]
This should hold in the sense that the induced functionals on $\Omega^{j+1}(M)$ (i.e., the induced currents) must be equal.

E5. If $C' = \{ V_1 \supset \cdots \supset V_{n-j-1} \} \subseteq T_k$ is not empty,
\[
\sum_{V \subset \partial V_{n-j-1}} \partial \eta_{C' \cup \{V\}} = 0,
\]
where the sum is taken over all simplices in the boundary of V_{n-j-1}. If C' is empty, then the same equation should hold, but now taking the sum over all simplices V of dimension d in T_k.

E6. The cells of η_k^C that are not inherited from $\tilde{\beta}_C$ are almost M-mass minimizing, in a sense that will be specified at the end of Section 3.5.3.

E7. If $j = n - 1$, the cells of η_k^C that are not inherited from $\tilde{\beta}_C$ are parameterized with very high speed (and thus the induced total measure $\int_{C'(T^n M)}$ is very small), in a sense that will be specified in Section 3.6.

First we show how to create the 1-chain η_k^C corresponding to the case in which C contains n properly nested simplices. We start with $\tilde{\beta}_C$, which will provide for compliance with item E2. By U2, the boundary of $\tilde{\beta}_C$ is also contained in $\sum_{V \subset \partial V_{n-1}} \eta_{C' \cup \{V\}}$. So what we do, in order to comply with E1 and E3, is that we connect the remaining dots in $\sum_{V \subset \partial V_{n-1}} \eta_{C' \cup \{V\}}$ with curves contained in V_{n-1} in the way prescribed by the weights of the dots; because of property U3 this is possible. By taking very short curves, we ensure compliance with E6. Because of identity (7), the construction of $\eta_{C' \cup \{V\}}$ ($V \subset \partial V_{n-1}$) immediately implies E4. Property E5 also follows from the identity (7).

Now assume that we have η_k^C for $j = m - 1$, and let us construct it for $j = m$, $m > 1$. Let $C = \{ V_1 \supset \cdots \supset V_{n-m} \} \subseteq T_k$. For each simplex $V \subset \partial V_{n-m}$, we are assuming that there exists $\eta_k^{C \cup V}$ that satisfies E1. To close these up, we again start with $\tilde{\beta}_C$ (whence complying with E2) and we add cells of dimension $m+1$ contained in V_{n-m} (complying with E1) so that property E3 will hold; this is possible because V_{n-m} has trivial homology and because $\sum_{V \subset \partial V_{n-1}} \eta_{C' \cup \{V\}}$ is a cycle as it satisfies E5. Properties E4 and E6 for $j = m$ follow from property E3 for $j = m - 1$. Compliance with property E6 can be attained by choosing an almost mass-minimizing set of $(m+1)$-cells. Property E7 can be achieved by adjusting the parameterization of the cells involved.

Write $\eta_k = \eta_k^\emptyset$. We have proved:
Lemma 6. There is a sequence of cycles η_k that contain β_k and such that

$$M(\eta_k) - M(\beta_k)$$ \hspace{1cm} (8)

is as almost minimal (in the sense of $H[0]$, while respecting

$$\text{dist}_n \left(\sum C \mu^C, \sum C \eta_k^C \right) \leq \frac{1}{k},$$ \hspace{1cm} (9)

where the sums are taken over all sets C of n properly nested simplices of T_k. Also, the part of η_k^C that comes inherited from β_k satisfies $A[3]$.

By construction, equation (9) is exactly the same as the condition in $U[4]$.

3.5.2 Density lemma

For each set $C = \{V_1 \supset \cdots \supset V_{n-1}\} \subset T_k$ of properly nested simplices, in Section 3.5.1 the 1-dimensional chain η_k^C was constructed. Our goal in this section is to estimate the asymptotic behavior of its mass $M(\eta_k^C)$ as $k \to \infty$.

For a set $U \subset \mathbb{R}^m$, the diameter of U within U is defined to be

$$\text{diam}_U U = \sup_{x,y \in U} \inf_{\gamma} \text{arclength}(\gamma)$$

where the infimum is taken over all absolutely-continuous curves γ parameterized on all intervals $[a,b] \subseteq \mathbb{R}$ and such that $\gamma(a) = x$ and $\gamma(b) = y$.

Lemma 7. Let U be a path-connected, bounded open set in \mathbb{R}^m, $m \geq 1$. There is a number $\varepsilon_0 > 0$ such that if $0 < \varepsilon < \varepsilon_0$ and A and B are two finite subsets of U of equal cardinality, then the following is true. Assume that there is a finite partition of U by disjoint, path-connected sets U_1, \ldots, U_m with $\text{diam}_{U_i} U_i < \varepsilon$ such that each of them contains at least one point of A, and

$$\left| 1 - \frac{\# U_i \cap B}{\# U_i \cap A} \right| < \varepsilon^2.$$ \hspace{1cm} (10)

Then there is a 1-dimensional chain θ such that $\#\theta(U) = 1$, $M(\theta) < 2\varepsilon$, and

$$\partial \theta = \frac{1}{\# A} \left(\sum_{x \in A} x - \sum_{y \in B} y \right).$$ \hspace{1cm} (11)

Remark 8. Equation (11) should be interpreted in the sense of boundaries of singular homology (cf. [5, §2.1]).
Proof. Let
\[\varepsilon_0 = \frac{1}{2 \text{diam}_U U}. \]
Condition (10) implies that at least \((1 - \varepsilon^2)\# U_i \cap A\) points of \(A\) can be joined to points of \(B\) within \(U_i\). Since \(\text{diam}_U U_i < \varepsilon\), this can be done using curves \(\gamma\) of length smaller than \(\varepsilon\). Let \(\lambda_1\) be the chain formed by all those curves \(\gamma\), each parameterized at the right speed that its induced measure will be a probability, \(\|\gamma\|(TU) = 1\). The remaining \(\sim \varepsilon^2 \# U_i \cap A\) points of \(A\) (and a similar amount of points of \(B\)) need to be paired with points outside \(U_i\). Since \(\# A = \# B\), this is always possible, and it can be done using curves of length \(\leq \text{diam}_U U\). Let \(\lambda_2\) be the chain corresponding to these longer curves, again parameterized at a speed that will make the induced measure a probability.

We let \(\theta = (\lambda_1 + \lambda_2)/\# A\). It is clear then that \(\|\theta\|\) is a probability, and that (11) holds. We estimate
\[
M(\|\theta\|) = \frac{\text{arclength}(\lambda_1) + \text{arclength}(\lambda_2)}{\# A} \\
\leq \frac{\varepsilon(1 - \varepsilon^2)\# A + (\text{diam}_U U)\varepsilon^2 \# A}{\# A} \leq 2\varepsilon. \]

Let \(k \geq 1\) and let \(C\) be a set of properly nested simplices in \(T_k\). Decompose the chain \(\eta_k^C\) into the part of it that comes from \(\bar{\beta}_k^C\) and a remainder \(\zeta_k^C\),
\[
\eta_k^C = \bar{\beta}_k^C + \zeta_k^C.
\]

Fix \(k \in \mathbb{N}\) and a set \(C\) of \(n\) properly nested simplices. From the construction of \(\eta_k^C\), it follows that \(\zeta_k^C\) is formed from two types of components:

- Curves joining two points in the 0-chains \(\beta_k^C\); call the corresponding chain \(\zeta_{\text{short}}\).
- Curves joining points in various 0-chains \(\eta_k^{C'} (C' \supset C)\) that are not both already in \(\beta_k^C\); call the corresponding chain \(\zeta_{\text{long}}\).

Observe that as \(k \to \infty\), the first quotient in (2) behaves as
\[
\frac{\bar{\mu}_k(V_2)}{\mu_k(V_1)} \to 1
\]
since the triangulations \(T_k\) satisfy (16) and \(\mu\) is assumed to be a smooth density. So (2) tends to look like (10). It follows that if \(k\) is large, we can
apply Lemma 7 to a large subset of the points of $\partial \zeta_{\text{short}}$, with the conclusion that the part of ζ_{short} joining them has very small mass M. What remains of $\partial \zeta_{\text{short}}$ tends to have 0 weight, so the mass of the corresponding part of ζ_{short} also vanishes asymptotically.

Similarly, since $\bar{\mu}_k \rightarrow \mu$ as $k \rightarrow \infty$, and since the points $\{p_i^k\}_i$ are a sample of $\mu|_{E_k^{d-n}}$ (they satisfy (11)), the weight of $\partial \zeta_{\text{long}}$ vanishes asymptotically, and hence so does the mass of ζ_{long}.

We let the function a in A^3 decrease rapidly enough that the following lemma will hold as per the preceding argument.

Lemma 9. As $k \rightarrow \infty$,

$$\sum_C M(\zeta^C_k) \rightarrow 0 \quad \text{and} \quad \frac{\sum_C M(\eta^C_k)}{\sum_C M(\beta^C_k)} \rightarrow 1,$$

where the sums are taken over all sets C of $n-1$ properly nested simplices in T_k.

3.5.3 Isoperimetric inequality

In this section we want to find an upper bound for the mass difference (8).

Recall the isoperimetric inequality:

Proposition 10 (Federer [3 §4.2.10], [7 §5.3]). There is a constant $C_4 > 1$ such that if θ is an m-chain with $\partial \theta = 0$ and contained in a simplex V of some triangulation T_k and of diameter $\text{diam}_V V < 1$, then there exists an $(m+1)$-chain σ with $\partial \sigma = \theta$ contained in V and with mass bounded by

$$M(\sigma) \leq C_4 M(\theta)^{\frac{k+1}{k}}.$$

The original proposition is valid for chains θ in \mathbb{R}^d. It is true as stated because when we pullback a chain from \mathbb{R}^d to M via any of the functions φ_V, the modulus of continuity of these mappings is globally bounded. This in turn is true because there are only finitely many of them, and they have compact domains.

Let $k \geq 1$ and let V_1 be a d-dimensional simplex in T_k. Recall that the chains ζ^C_k were defined in Section 3.5.2. It follows from Lemma 9 and
Proposition 10 that we can take the cells in \(\zeta_k \) to be such that, as \(k \to \infty \),
\[
M(\zeta_k^{\{V_1\}}) \leq C_4 \sum_{V_2 \subset \partial V_1} M(\zeta_k^{\{V_1, V_2, V_3\}})^2 + \varepsilon_k^2 \\
\leq C_4^{1+\frac{2}{3}} \sum_{V_3 \subset \partial V_2} \sum_{V_2 \subset \partial V_1} M(\zeta_k^{\{V_1, V_2, V_3\}})^3 + \varepsilon_k^3 \\
\leq \cdots \leq C_4^{q_n} \sum_{V_{n-1} \subset \partial V_{n-2}} \cdots \sum_{V_2 \subset \partial V_1} M(\zeta_k^{\{V_1, V_2, \ldots, V_n\}})^{n-1} + \varepsilon_k^n \to 0,
\]
where \(q_n > 1 \) is some number depending only on \(n \), \(\varepsilon_k^\ell \) is arbitrarily small (it is the error we may get from not taking exactly the cell provided by Proposition 10 but one with slightly larger mass; we thus specify property E6 to mean that \(\varepsilon_k^\ell \to 0 \) as \(k \to \infty \) for all \(\ell \)), and the sums are taken over all simplices in the corresponding boundaries. We conclude

Lemma 11.
\[
|M(\eta_k) - M(\beta_k)| \to 0 \quad \text{as} \quad k \to \infty.
\]

3.6 Conclusion

Proof of Theorem 1. Let \(\mu \in \mathcal{M}_n \) be a positive measure. If \(\mu \) satisfies Condition (Cyc), it follows from Stokes's theorem that it also satisfies Condition (Hol).

To prove the other direction, assume that \(\mu \) satisfies Condition (Hol). By Lemma 4, we can assume that \(\mu \) is smooth. We can thus construct for \(k \geq 1 \) triangulations \(T_k \) as in Section 3.2, base measures \(\bar{\mu}_k \) as in Section 3.3.1, chains \(\beta_k \) approximating these as in Section 3.3.2, and cycles \(\eta_k \) as in Section 3.5.1 that contain \(\beta_k \). We have
\[
\text{dist}_\mathcal{M}(\mu, \eta_k) \leq \text{dist}_\mathcal{M}(\mu, \bar{\mu}_k) + \text{dist}_\mathcal{M}(\bar{\mu}_k, \lambda_k) + \text{dist}_\mathcal{M}(\lambda_k, \eta_k).
\]
The first two summands on the right-hand-side vanish asymptotically by construction. The last term, as per the definition of \(\text{dist}_\mathcal{M} \) in equation (1), has two parts: the mass difference, which tends to zero by Lemma 11, and the one involving the functions \(f_i \). The second one can be arranged to tend to zero by having the cells of \(\eta_k \) not present in \(\beta_k \) be parameterized at very high speeds, thus specifying property E7. We conclude that the measures induced by the cycles \(\eta_k \) indeed approximate \(\mu \), so \(\mu \) satisfies Condition (Cyc).

\[\square \]
References

[1] V. Bangert. Minimal measures and minimizing closed normal one-currents. *Geom. Funct. Anal.*, 9(3):413–427, 1999.

[2] Patrick Bernard. Young measures, superposition and transport. *Indiana Univ. Math. J.*, 57(1):247–275, 2008.

[3] Herbert Federer. *Geometric measure theory*. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.

[4] F. G. Friedlander. *Introduction to the theory of distributions*. Cambridge University Press, Cambridge, second edition, 1998. With additional material by M. Joshi.

[5] Allen Hatcher. *Algebraic topology*. Cambridge University Press, Cambridge, 2002.

[6] John N. Mather. Personal letter to G. Contreras and R. Iturriaga.

[7] Frank Morgan. *Geometric measure theory*. Elsevier/Academic Press, Amsterdam, fourth edition, 2009. A beginner’s guide.

[8] James R. Munkres. *Elementary differential topology*, volume 1961 of *Lectures given at Massachusetts Institute of Technology, Fall*. Princeton University Press, Princeton, N.J., 1966.