Transcriptional activation and localization of expression of *Brassica juncea* putative metal transport protein *BjMTP1*

Balasubramaniam Muthukumar, Bakhtiyor Yakubov and David E Salt*

Address: Department of Horticulture and Landscape Architecture, 625 Agricultural Mall Drive, Purdue University, West Lafayette, IN 47907-1392 USA

Email: Balasubramaniam Muthukumar - muthukum@purdue.edu; Bakhtiyor Yakubov - byakubov@purdue.edu; David E Salt* - dsalt@purdue.edu

* Corresponding author

Abstract

Background: Metal hyperaccumulators, including various Thlaspi species, constitutively express the putative metal transporter *MTP1* to high levels in shoots. Here we present data on the transcriptional regulation and localization of expression of the homologous gene *BjMTP1* in *Brassica juncea*. Though *B. juncea* lacks the ability to hyperaccumulate metals, its relatively high biomass, rapid growth and relatedness to true metal hyperaccumulating plants makes it a promising starting point for the development of plants for phytoremediation. Our goal in this study is to determine the transcriptional regulation of *MTP1* in order to start to better understanding the physiological role of *MTP1* in *B. juncea*.

Results: Steady-state mRNA levels of *BjMTP1* were found to be enhanced 8.8, 5.9, and 1.6-fold in five-day-old *B. juncea* seedlings after exposure to Ni$^{2+}$, Cd$^{2+}$ or Zn$^{2+}$, respectively. This was also reflected in enhanced GUS activity in *B. juncea* seedlings transformed with *BjMTP1* promoter::GUSPlus after exposure to these metals over a similar range of toxicities from mild to severe. However, no increase in GUS activity was observed after exposure of seedlings to cold or heat stress, NaCl or hydrogen peroxide. GUS expression in Ni$^{2+}$ treated seedlings was localized in roots, particularly in the root-shoot transition zone. In four-week-old transgenic plants *BjMTP1* promoter activity also primarily increased in roots in response to Ni$^{2+}$ or Cd$^{2+}$ in plants transformed with either GUS or mRFP1 as reporter genes, and expression was localized to the secondary xylem parenchyma. In leaves, *BjMTP1* promoter activity in response to Ni$^{2+}$ or Cd$^{2+}$ spiked after 24 h then decreased. In shoots GUS expression was prominently present in the vasculature of leaves, and floral parts.

Conclusion: Our studies establish that a 983 bp DNA fragment upstream of the *BjMTP1* translational start site is sufficient for the specific activation by Ni$^{2+}$ and Cd$^{2+}$ of *BjMTP1* expression primarily in roots. Activation of expression by both metals in roots is primarily localized to the xylem parenchyma cells. This study is the first to identify specific Ni$^{2+}$ and Cd$^{2+}$ transcriptional regulation and tissue localization of *BjMTP1*.

Published: 18 June 2007

BMC Plant Biology 2007, 7:32 doi:10.1186/1471-2229-7-32

This article is available from: http://www.biomedcentral.com/1471-2229/7/32

© 2007 Muthukumar et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background

Plant Cation Diffusion Facilitator (CDF) family members have been suggested to be involved in metal ion transport, and implicated in metal resistance in plants [1]. However, the physiological role of these transporters is not well understood. AtMTP1 (ZAT) from Arabidopsis thaliana was the first member of the CDF family to be characterized in plants [2]. When ectopically over expressed in A. thaliana AtMTP1 confers enhanced resistance to Zn2+, and increased Zn2+ accumulation in roots [2]. Enhanced Zn2+ resistance and accumulation was attributed to increased vacuolar sequestration of Zn2+. More recent evidence has established that AtMTP1 is predominantly localized at the tonoplast membrane in both root and shoot tissue in A. thaliana [3,4]. Consistent with a role in Zn2+ transport into the vacuole, reduction in expression of AtMTP1 leads to increased sensitivity to Zn2+, but not Co2+, Cd2+, Ni2+ or Mn2+ [3,4]. Reduced expression of AtMTP1 also leads to decreased accumulation of Zn2+ in shoots [4]. Reconstruction of AtMTP1 in proteoliposomes, and expression of the AtMTP1 cDNA in Xenopus oocytes has provided direct evidence that AtMTP1 is competent to transport Zn2+ but not Cd2+ or Co2+ [4,5]. To date all studies have found that AtMTP1 expression is not modulated by exposure to elevated Zn2+, Cd2+, Co2+, Cu2+, Fe2+ or Mn2+ [2,4]. Expression of AtMTP1 in A. thaliana occurs throughout the plant, though transcript levels are higher in roots than shoots in young seedlings, and expression is higher in the inflorescences [4]. However, little is known about tissue-specific expression patterns of AtMTP1. Such information is critical if we are to integrate the currently available data into a model describing how MTP1 functions within the physiological context of the whole plant.

Homologues of AtMTP1 have been found in other plant species including the hyperaccumulators Thlaspi goesingense [6], Thlaspi caerulescens [7] and Arabidopsis halleri [8]. It has been suggested that the constitutively higher shoot expression of MTP1 in these hyperaccumulators is involved in metal hyperaccumulation [6,7], and recent genetic evidence supports this hypothesis [8]. However, the role of the MTP1 protein in hyperaccumulation is still unknown. In the Zn2+ hyperaccumulator A. halleri AhMTP1 appears to be localized at the tonoplast membrane when transiently expressed as an AhMTP1::GFP fusion in A. thaliana protoplasts [8]. Similar localization has also been observed for an MTP1 homologue from poplar [9]. However, in a similar experiment with TgMTP1 from the Zn2+/Ni2+ hyperaccumulator T. goesingense the GFP fusion protein was found to localize to the plasma membrane when transiently expressed in A. thaliana protoplasts derived from shoot tissue [10]. Resolution of this interesting difference awaits further comparative studies.

Brassica juncea is an amphidiploid plant, resulting from the hybridization of the crop Brassicas Brassica nigra and Brassica campestris (syn. Rapa; [11]). It contains the conserved genomes of both of its diploid parents [12], and is self compatible, unlike other crop Brassica species. Due to its rapid growth and large biomass B. juncea has been considered as a possible plant for use in the phytoextraction process, for the removal of pollutant metals from soils by their accumulation into harvestable above ground biomass [13]. The relatedness of B. juncea to numerous hyperaccumulators in the Brassicaceae family, and its ability to be self fertilized makes B. juncea a potentially good recipient organism for the bioengineering of a practical phytoextraction plant using genetic material derived from natural hyperaccumulator species [14]. However, such promise has yet to be realized.

Brassica juncea have been shown to accumulate heavy metals, though B. juncea is not a hyperaccumulator [15-17]. However, there are no reports available that attribute a specific role of BjMTP1 in metal accumulation in B. juncea. Here we report that both Ni2+ and Cd2+ induce transcriptional activation of BjMTP1 in whole seedlings, as well as root and shoot tissue of mature plants, where as Zn2+ has very little effect on BjMTP1 expression. We establish that a 983 bp DNA fragment upstream of the BjMTP1 translational start site is sufficient for this regulation, and that expression in roots is specifically localized to the xylem parenchyma cells. This study is the first to identify transcriptional regulation and tissue localization of BjMTP1. However, further work is needed to understand the functional role of BjMTP1 in B. juncea’s response to Ni2+ and Cd2+.

Results

MTP1 sequences from B. juncea and its parents

Using AtMTP1 primers MTP1 homologues were amplified from B. juncea and its two parents B. nigra and B. campestris (GenBank accession numbers EF128447, EF128446 and EF128445, respectively). All Brassica sequences showed 80% similarity to AtMTP1, and all were devoid of introns similar to AtMTP1. Brassica nigra and B. campestris MTP1 showed 97% and 95% similarity to the B. juncea MTP1 sequence, respectively. A phylogenetic analysis of plant MTP1 sequences revealed that all Brassica MTP1 sequences fall into a monophyletic clade, with MTP1 from B. juncea being equally related to MTP1 from both its parents [see Additional file 1]. Isolation of the DNA sequence upstream of BjMTP1 (see below) revealed that the next gene is Z5’ of BjMTP1 (see below) revealed that the next gene upstream of BjMTP1 is 88% similar to the A. thaliana gene locus At2g46790. At2g46790 is the next upstream gene to AtMTP1 in A. thaliana. Such results show that synteny is conserved within the region of MTP1 between B. juncea and A. thaliana, and provides further strong evidence that
the MTP sequence identified in *B. juncea* is the *B. juncea* homologue of AtMTP1.

Isolation and characterization of BjMTP1 promoter

A two-step genome walking technique was used to isolate DNA 5' of the *B. juncea* MTP1 translational start site. As a first step a 1,561 bp PCR product was amplified from the Dral genomic DNA library and cloned. To isolate additional upstream sequence further genome walking was performed using the PvuII genomic DNA library giving a new 1,721 bp PCR product. Sequence analysis of this 1,721 bp DNA fragment indicated it contains not only the remaining sequence 5' of BjMTP1 but also partial sequence of the next gene upstream of BjMTP1 which showed 88% similarity to the *A. thaliana* gene locus At2g46790 (unknown protein). The 1,561 bp and 1,721 bp DNA fragments were compared and a contiguous 1,786 bp fragment determined. The complete 5' upstream region (1,786 bp), as well as the 1,561 bp fragment, were amplified from the *B. juncea* genomic DNA and the PCR products used for all further analysis. A 983 bp DNA fragment 5' of BjMTP1 translational start site was predicted to contain the majority of the regulatory elements within the complete 1,786 bp upstream region, and was therefore also amplified and used for further experiments.

Transcriptional activation of BjMTP1 by various metal ions

Total RNA was isolated from dark grown seven-day-old *B. juncea* seedlings which had been treated with either 5 µM Cd2+, 25 µM Ni2+ or 75 µM Zn2+ for 48 h, treatments that also produced maximal GUS activity in transgenic plants expressing a GUS report gene (see below). These three metals were chosen for this study based on the fact that the hyper accumulators that are known to have constitutively elevated MTP1 expression hyperaccumulator Cd, Ni or Zn. BjMTP1 mRNA were quantified using real time quantitative RT-PCR (qRT-PCR) and normalized to *BjACTIN2* as an internal control. Steady-state levels of BjMTP1 mRNA were found to be increased after exposure of seedlings to Cd2+ or Ni2+ when compared to the level of expression in the untreated control plants (Figure 1). Cd2+ and Ni2+ treatment caused a 5.9 and 8.8 fold increase in BjMTP1 transcript levels, respectively, compared to untreated control seedlings. Conversely, Zn2+ treated seedlings showed only a minor 1.6-fold increase in BjMTP1 mRNA.

Analysis of the transcriptional competency of the BjMTP1 promoter region

A 983 bp DNA fragment, originating upstream of the BjMTP1 translational start site, was constructed as a transcriptional fusion with the GUSPlus reporter gene [p(1.0)BjMTP1::GUSPlus]. Five-day-old dark grown seedlings stably transformed with p(1.0)BjMTP1::GUSPlus were treated with varying concentrations of Ni2+, Cd2+ and Zn2+ for 48 h and GUS activity measured (Figure 2). GUS activity was observed to peak at 25 µM Ni2+, 5 µM Cd2+ and 75 µM Zn2+, with increases in GUS activity of 3.0, 2.3 and 1.3-fold, respectively (Figure 2A–C). The metal concentrations used in this assay spanned a range from moderately to severely toxic, with the highest concentrations of each metal causing complete loss of turger in the seedlings. To assess the level of toxicity at the end of this 48 h assay rates of K+ leakage from the seedlings were measured. All metal treatments caused an increase in K+ leakage peaking at 10 µM Cd2+, and 100 µM Ni2+ and Zn2+, after which leakage rates dropped and this was associated with a lose of both seedling turger and GUS activity (Figure 2A–C). Histochemical GUS staining of both Cd2+ and Ni2+ treated seedlings demonstrated that the GUS protein product of the p(1.0)BjMTP1::GUSPlus construct is localized mainly in the roots, showing strong expression at the root-shoot transition zone (Figure 2D). In the untreated transgenic seedlings, there was no observable GUS staining (Figure 2D).

Plants stably transformed with p(1.0)BjMTP1::GUSPlus were also grown in hydroponic culture for four weeks and transferred to medium of the same composition with the addition of 50 µM Ni2+. Root and shoot samples were taken over a 96 h time course and both Ni2+ accumulation and GUS activity measured. Ni2+ accumulated in both
roots and shoots almost linearly with time, with roots accumulating Ni2+ at approximately 10 times the rate of the shoots (Figure 3A). In root samples, GUS enzyme activity increased linearly as the Ni2+ exposure time increased, with a 3.2 fold increase in GUS activity after 48 h Ni2+ treatment compared to basal expression (0 h), or to untransformed control plants (Figure 3B). In shoots, the overall GUS activity was less than in the roots. Interestingly, in shoots GUS activity only transiently increased after 24 h exposure, compared to untransformed plants, after which GUS activity decreased to levels observed at 0 h exposure (Figure 3B), even though Ni2+ accumulation in shoots continued (Figure 3A). Similar results for both root and shoot expression were also obtained with plants stably transformed with p(1.0) BjMTP1::EYFP (yellow fluorescent protein) (data not shown), and p(1.0) BjMTP1::mRFP1 (red fluorescent protein) (Figure 4). A comparison of total tissue Ni2+ accumulation and GUS activity revealed a strong positive correlation between the level of Ni2+ accumulation and GUS activity in roots (Figure 3C). In order to test whether the induction process is reversible, after 48 h Ni2+ treatment plants were transferred to nutrient solution lacking Ni2+. After a further 48 h recovery GUS activity in roots was observed to return to that observed at 0 h exposure (Figure 3B). Histochemo-

tical GUS analysis of roots from four-week old plants, after 48 h Ni2+ treatment, demonstrated clear GUS expression throughout the main root (Figure 3D). After 48 h Ni2+ treatment GUS expression was not detected in the stem. GUS expression was, however, observed in the vasculature of the leaves (Figure 3E) and in the vascular tissues of the anthers and the stigma (Figure 3F) after 24 hr Ni2+ exposure.

The regulatory competency of the 983 bp, 1,561 bp and 1,786 bp DNA sequences upstream of the BjMTP1 transgenic plants containing
P(1.0) BjMTP1::GUSPlus (A) ICP-MS analysis of Ni in T2 transgenic plants containing
P(1.0) BjMTP1::GUSPlus after exposure to 50 \mu M Ni2+ in 0.1 \times Hoagland’s nutrient media. After 48 h exposure plants were transferred to 0.1 \times Hoagland’s without Ni2+ (arrow) and Ni2+ accumulation monitored for a further 48 h.

Symbols represent roots (squares), and shoots (triangles). (B) GUS enzyme activity (nmole of 4-methyl umbelliferone min-1 mg-1 total protein) measured during the same treatment and time frame as in (A). Symbols represent roots (squares), and shoots (triangles) of plants homozygous for the transgene, and roots (circles) and shoots (diamonds) from control plants identified by PCR as null segregants for the transgene. (C) GUS enzyme activity and Ni2+ accumulation, from roots exposed to 50 \mu M Ni2+ for 48 h (data from A and B). Data represents the average (± SD) of three independent replicate samples for both GUS activity and Ni accumulation. GUS activity visualized by histochemical staining in roots (D), leaves (E) and floral organs (F) from plants exposed to 50 \mu M Ni2+ for 48 h (roots and floral organs) or 24 h (leaves). a stigma, b anther.
mRFP1 accumulation after 48 h Ni2+ exposure but significant induction of mRFP1 accumulation was observed for the promoter GUS construct. mRFP1 expression in plants transformed with pCaMV35S::mRFP1 was constant at all time points and tissues after Ni2+ exposure. Similar mRFP1 expression was also obtained when plants were exposed to 5 µM Cd2+ for 48 h and allowed to recover from Cd2+ exposure for a further 48 h. mRFP1 accumulated rapidly in roots after Cd2+ exposure to levels equivalent to expression driven by pCaMV35S (Figure 4C). Removal of plants from the Cd2+ containing nutrient solution caused a rapid drop in mRFP1 accumulation, with mRFP1 levels returning to those observed prior to Cd2+ exposure, after 48 h recovery (Figure 4C). Again, all three-promoter sizes gave similar responses. Cd2+ treatment also produced a transient accumulation of mRFP1 in shoots after 24 h exposure (Figure 4D), as observed during Ni2+ exposure (Figure 4B). Unlike Ni2+ and Cd2+ exposure, Zn2+ treatment produced no significant alteration in mRFP1 accumulation in either root or shoot tissue (Figure 4E &4F). Elemental analysis of the nutrient solutions during the Ni2+, Cd2+ and Zn2+ experiments confirmed that concentrations of Ni2+, Cd2+ and Zn2+ did not vary significantly in the solution during the course of the experiments (data not shown).

Figure 4
Expression of mRFP driven by varying sized BjMTP1 promoter sequences in response to Ni2+, Cd2+ and Zn2+ treatment. 48 h metal treated T2 homozygous and null plants were transferred to 0.1× Hoagland’s medium with out added metals (arrow) and the accumulation was measured again after 48 h. Metal induced mRFP1 expression and recovery responses were measured by their relative emission fluorescence at 607 nm. Data represents the average (± SD) of three independent replicate samples. Symbols represent null plants (X), CaMV35S promoter: mRFP1 (squares), p (1.0) BjMTP1::mRFP1 (triangles), p (1.6) BjMTP1:mRFP1 (diamonds) and p (1.8) BjMTP1::mRFP1 (circles).

Response of the 983 bp promoter element to other abiotic stresses
The 983 bp promoter region, which was found to be sufficient for expression in response to Cd2+ and Ni2+, was also tested for its ability to activate transcription when seedlings were exposed to other abiotic stresses including cold, heat, NaCl and H2O2. Five-day-old B. juncea seedlings stably transformed with p (1.0) BjMTP1::GUSPlus were exposed to a cold (4°C) or heat (37°C) shock, and also 100 mM NaCl, or H2O2 (5 mM, 10 µM, 100 µM 500 µM and 1 mM) after which GUS activity was assayed. There were no significant increases in GUS activity compared to the untreated seedlings for any of the treatments (Table 1).
Table 1: Different abiotic stress responses of 983 bp promoter element of BjMTP1

Different stress treatments	GUS activity (nmoles of 4 -methyl umbelliferrone min^-1 mg^-1 protein)
Cold shock control	81.01 ± 3.89
Cold shock	87.7 ± 4.61
Heat shock control	84.55 ± 3.13
Heat shock	85.21 ± 6.46
NaCl stress control	99.1 ± 5.71
100 mM NaCl stress	98.38 ± 8.92
H₂O₂ control	91.46± 3.07
50 µM H₂O₂ stress	96.16± 0.68

Five-day-old dark grown seedlings stably transformed with p1.0BjMTP1::GUS plus were incubated at 4°C for 4 h (cold shock), 37°C for 2 h (heat shock), 100 mM NaCl (24 h) and 50 µM H₂O₂ (24 h) and GUS activity measured. Data represents the average (± SD) of three independent replicate samples.

Putative regulatory elements in the BjMTP1 promoter region

A search for putative regulatory DNA elements within the 983 bp promoter region of BjMTP1 was performed using the PLACE [18] and PlantCARE databases [19] (Figure 5). DNA regulatory motifs such as the CCAAT boxes, ABRE (Abscisic Acid Response Element), bZIP, G box, and several pathogen responsive elements such as W box, EIRE, SEBF motif, GCC box, G box coupler and MYB core elements were found. However, no known metal regulatory elements such as MREs which are known to mediate Zn²⁺ and Cd²⁺ specific transcriptional activation of metallothionine genes in mammals were found [20-22]. Considering that AtMTP1 appears not to be regulated by Cd²⁺ [4] and BjMTP1 is (Figure 1, 2, 3, 4), we compared the 983 bp BjMTP1 promoter region with a similar region of the A. thaliana AtMTP1 sequence upstream of the transcriptional start site (357 15 bp to 36698 bp of A. thaliana chromosome 2 clone F19D11). Even though both promoter regions had many known regulatory elements in common, namely bZIP, G box, W box, EIRE box and MYB core element, the BjMTP1 promoter region also has several unique regulatory elements, namely ABRE and pathogen related SEBF motif, GCC box and G box coupler elements (Figure 5). The core sequence of the metal regulatory element [MRE-TGCRNC [22]] found in mammals (mouse), is present in the full 1786 bp upstream region of BjMTP1 with a single base pair difference (TGCACTG). However, because this motif is not present in the 983 bp promoter region sufficient for Cd²⁺ and Ni²⁺ regulation (Figure 2, 3, 4), this MRE is unlikely to play a role in the Cd²⁺ and Ni²⁺ transcriptional regulation of BjMTP1.

Localization of BjMTP1 expression to root xylem parenchyma

Our results demonstrate that a 983 bp region upstream of the translational start site of BjMTP1 is sufficient to drive strong root expression of GUS and mRFP1 in response to Cd²⁺ or Ni²⁺ treatment (Figure 2, 3, 4). However, in order to help understand the function of BjMTP1, it is also important to identify which root tissues are expressing BjMTP1 during the response to Cd²⁺ or Ni²⁺ exposure. Sections from the main root and intact lateral roots of four-week-old B. juncea plants expressing mRFP1 in response to Ni²⁺ were analyzed by epifluorescence and light microscope (Figure 6). Sections were taken from the top of the main root as well as 1.5 cm from the root tip, and the morphology of the roots examined (Figure 6A &6B). The main root has clearly undergone secondary growth. The epidermis found in the primary roots has been replaced in 4-week-old roots by periderm produced by the cork cambium. Within the periderm lies the pericycle, and the cambial zone which gives rise to the secondary phloem and secondary xylem. The secondary xylem parenchyma, produced by vascular cambium, was observed surrounding the secondary xylem vessels. The presence of diarch xylem at the center of the root section is a characteristic of the Brassicaceae family (personal communication G. Myer, South Dakota State University). Sections taken 1.5 cm from the tip of the main root were observed to have simi-
lar root architecture to sections taken from the top of the root. After exposure to Ni$^{2+}$ mRFP1 fluorescence was observed to be specifically localized in the secondary xylem parenchyma tissues that surround the secondary xylem (Figure. 6C &6D). Fluorescence from mRFP1 was also present in the periderm (Figure. 6C) but no significant fluorescence was observed in other root tissues. In the lateral roots, mRFP1 fluorescence was clearly evident in the vascular region (Figure. 6E and 6F). After Ni$^{2+}$ exposure no fluorescence was observed in roots from plants identified as null segregants for the reporter construct even after longer (6 s) exposures, compared to the shorter (100 ms) exposure for Ni$^{2+}$-treated transgenic plants [see Additional file 2]. Cd$^{2+}$ treated roots gave an equivalent expression pattern to that of Ni$^{2+}$ treated plants [see Additional file 2]. In both Ni$^{2+}$ and Cd$^{2+}$ treated roots there was no difference in the pattern of mRFP1 accumulation between sections taken from the top of the main root and its tip. Furthermore, mRFP1 expression was localized in the secondary xylem parenchyma tissues when expressed from the 983, 1,561 or 1,786 bp promoter regions. The strong accumulation of mRFP1 observed in the vascular tissue of intact lateral roots (Figure. 6E &6F) is also consistent with the secondary xylem parenchyma localization observed in the root cross-sections. Cross-sections of roots prepared from Ni$^{2+}$ exposed plants transformed with the GUSplus reporter gene also revealed strong GUS expression in the secondary xylem parenchyma surrounding the secondary xylem (Figure. 6G), similar to that observed for mRFP1 expression (Figure. 6C &6D). Secondary xylem parenchyma localization was also observed in plants expressing a EYFP reporter driven by the 983 bp promoter region [see Additional file 2].

Discussion

Here we establish that mRNA levels of BjMTP1 in *B. juncea* are transcriptionally regulated in response to Cd$^{2+}$ and Ni$^{2+}$, with maximal expression in the root xylem parenchyma cells. We identify a 983 bp DNA fragment, within the total 1,786 bp DNA sequence upstream of the BjMTP1 translational start site, which is sufficient for this transcriptional regulation, which appears specific to stress induced by Cd$^{2+}$ and Ni$^{2+}$. BjMTP1 promoter activity in response to Ni$^{2+}$, Cd$^{2+}$ and Zn$^{2+}$ was assessed at concentrations that span a similar range of toxicities from mild to serve. Over these similar ranges of metal-induced stress only Ni$^{2+}$ and Cd$^{2+}$ were observed to elicit a transcriptional response from the BjMTP1 promoter, with Zn$^{2+}$ induced stress having no significant effect. Other forms of abiotic stress including cold, heat or NaCl also produced no significant transcriptional response. Transcriptional activation of BjMTP1 promoter by Cd$^{2+}$ and Ni$^{2+}$ is also not an indirect response to oxidative stress, since this promoter region is not activated by direct exposure to H$_2$O$_2$.

Our results are consistent with the observation in *A. thaliana* that the homologue AtMTP1 is also not regulated by Zn$^{2+}$ [2-4,8]. However, our observation that BjMTP1 expression is transcriptionally regulated by Cd$^{2+}$ and Ni$^{2+}$ is not consistent with that observed in *A. thaliana*, where AtMTP1 mRNA levels are unaffected by Cd$^{2+}$ [4]. Our results suggest that rather than being a house-keeping gene involved in Zn$^{2+}$ homeostasis as has been suggested in *A. thaliana*, in *B. juncea* BjMTP1 may be involved in the dynamic regulation of Zn homeostasis as part of the plant’s response to Cd$^{2+}$ and Ni$^{2+}$ induced stress. We emphasize that our data does not suggest that the function of BjMTP1 is to transport Cd$^{2+}$ or Ni$^{2+}$, for which we have no evidence. However, increased expression of BjMTP1 under Cd$^{2+}$ or Ni$^{2+}$ stress may be required to adjust Zn homeostasis as a response to the stress imposed by exposure to Cd$^{2+}$ or Ni$^{2+}$. This is supported by our observation that expression of BjMTP1 promoter is dynamically regu-
lated in response to these metals, rapidly increasing after exposure to Cd$^{2+}$ and Ni$^{2+}$, and rapidly returning back to basal levels after these metals are removed from the growth medium.

Though expression of the BjMTP1 promoter in response to Cd$^{2+}$ and Ni$^{2+}$ is highest in roots, expression was also observed in the vascular tissue of leaves, anthers and in the stigma. Expression of BjMTP1 in these tissues suggests that the BjMTP1 protein may also be involved in the plants response to Cd$^{2+}$ and Ni$^{2+}$ stress in leaves and inflorescences. Though transcriptional activation of the 983 bp promoter region in roots by Cd$^{2+}$ or Ni$^{2+}$ occurs nearly in a linear fashion with time of exposure and accumulation, shoot activation appears transient. After 24 h of metal exposure transcription of BjMTP1 reaches a maximum and then declines to baseline expression after 48 h. Such transient expression is intriguing considering that over the same time frame Ni$^{2+}$ accumulates linearly in shoots. The different expression patterns of BjMTP1 promoter in roots and shoots imply that this protein plays different roles in the plant's coordinated response to Cd$^{2+}$ and Ni$^{2+}$ exposure, though what these roles are remain unclear at this time.

In five-day-old seedlings of B. juncea expression of BjMTP1 promoter in response to Cd$^{2+}$ and Ni$^{2+}$ occurs throughout the seedlings, though is especially localized to the root and shoot-root transition zone. Though the reasons for stronger expression BjMTP1 promoter in the shoot-root transition zone are not known, this type of expression pattern has been observed previously for several proteins, including naphthylphthalamic acid (NPA) associated amino peptidases, glutathione S-transferase ATGSTF2, the auxin transporter PIN2, and PGP4 an ABC type transporter [23-26].

When compared to A. thaliana, the unique elements present in the BjMTP1 promoter region, including ABRE, SEBF motif, GCC box and G box coupler elements all have known functions in ABA signaling [27] or pathogen related stress [28-30]. However, none of these promoter elements have been established to play a role in signaling Cd$^{2+}$ or Ni$^{2+}$ stress. The elements responsible for regulation of BjMTP1 expression in response to Cd$^{2+}$ and Ni$^{2+}$ remain to be identified. This study is the first to identify transcriptional regulation and tissue localization of BjMTP1. However, further work is needed to understand the functional role of BjMTP1 in B. juncea's response to Ni$^{2+}$ and Cd$^{2+}$.

Conclusion

Here we conclude that a 983 bp DNA fragment upstream of the BjMTP1 translational start site is sufficient for the specific activation by Ni$^{2+}$ and Cd$^{2+}$ of BjMTP1 expression primarily in roots. Activation of expression by both metals in roots is primarily localized to the xylem parenchyma cells. This study is the first to identify specific Ni$^{2+}$ and Cd$^{2+}$ transcriptional regulation and tissue localization of BjMTP1 and supports the conclusion that BjMTP1 is involved in the response of B. juncea to Ni$^{2+}$ and Cd$^{2+}$ exposure.

Methods

Plant material

Indian mustard (Brassica juncea) seeds (accession no. 426308) were obtained from the North central regional plant introduction station (Ames, IA) Brassica juncea seeds (30 seeds) were germinated and grown in 800 mL of continuously aerated distilled water as described in [16]. Seedlings were maintained in the dark at 21°C for 5 days, and the water changed on every third day. Brassica juncea plants were also grown hydroponically in 8 L of aerated 0.1× Hoagland's medium [31], changed weekly, for four weeks with 16 h light (150 µmol m$^{-2}$ s$^{-1}$) at 25°C. All transgenic plants used in the study were homozogous for the transgene.

Cloning of MTP1 genomic DNA

Genomic DNA was isolated from 10-day-old B. juncea, B. nigra and B. campestris seedlings using a DNeasy plant mini kit (Qiagen, Valencia, CA). Taking advantage of the fact that AtMTP1 contains no introns, we isolated full length BjMTP1 cDNA by PCR using 5'-ATGGAGTCT-TCAAGTCCCCC- 3' (forward primer) and 5'-TAGACGGCTGATTGTAT-3' (reverse primer) primers based on the AtMTP1 sequences. After obtaining genomic sequences 5′ of BjMTP1 by genome walking (see below) BjMTP1, BnMTP1 and BcMTP1 genomic DNAs were reamplified using forward primer 5′-ATGGCGTAT-TCAAGCCCCCAAGG- 3′ and reverse primer 5′-GCTCTAGAGCGCTGATTGTATGG -3′ designed based on the sequence of BjMTP1. Conditions used in all the PCR reactions are as follows: initial denaturation 94°C followed by 30 cycles of 94°C 30 sec, 55°C 40 sec, 72°C 1 min and 30 sec and final extension at 72°C for 10 min. PCR products was cloned into the pGEM T-Easy vector system and sequenced using Big dye terminator v 3.0 method (Applied Biosystems Foster city, CA) with universal M13 primers.

Analysis of BjMTP1 mRNA expression in five day old seedlings

For metal treatment five-day-old dark grown seedlings were transferred to distilled water containing 25 µM Ni$^{2+}$, 75 µM Zn$^{2+}$ or 5 µM Cd$^{2+}$ and incubated for a further 48 h in the dark with aeration. After metal treatment seedlings were washed in distilled water before proceeding to further analysis. Three independent replicate samples were used for all analyses. Metal concentrations were chosen
based on the concentrations that produced the maximal increase in GUS activity in transgenic *B. juncea* containing a *BjMTP1* promoter::GUS construct (see below).

Total RNA from metal exposed seedlings was isolated using the RNeasy mini kit (Qiagen, Valencia, CA) using the DNase digestion step to reduce DNA contamination. cDNA was reverse transcribed using 4 µg of total RNA and 200 U Superscript III reverse transcriptase (Invitrogen, CA) primed with 100 ng of random hexamers (Invitrogen life technologies, Carlsbad, CA), and the cDNA diluted to 2.6 ng/µL.1 Real time quantitative PCR was done as previously described [32]. *BjACTIN2* was used as a normalization control for the relative quantification of transcript levels. Since the *B. juncea* ACTIN2 gene sequence was not available, *A. thaliana* ACTIN2 primers (forward primer-5’-AAGATCTGGCAATCACACTTTC- 3’, reverse primer-5’-TAGTCAACAGCAGAAGAGGA- 3’) were used to amplify a ~529 bp homolog from *B. juncea*. For qRT-PCR primers were designed to generate ~100 bp products using Primer Express v.2.0 software (Applied Biosystems, Foster City, CA, USA). Primers used for qRT-PCR were as follows: *BjACTIN2* forward primer-5’-GAGGATGGAATGTCGTATTGCGGAGGAA- 3’; reverse primer- 5’-GTCGCTATTACGTTCTTCCCAAT- 3’. *BjMTP1* forward primer-5’-TGCGGCTTCTCAGATCTCAA- 3’; reverse primer-5’-GGT- 3’. *BjMTP1* expression was analyzed using the SDS software (Applied Biosystems Foster city, CA) with universal M13 primers. DNA sequences were analyzed by BlastN [34] and known regulatory elements identified using PLACE [18] and Plant-CARE [19]. Putative eukaryotic promoter analysis was done using BGDP, a neural network eukaryotic promoter prediction program [35]. *BjMTP1* promoter sequence has been submitted to Genbank (#EF128447).

GUSPlus gene was PCR amplified from pCambia 1305.1 binary vector using high fidelity Platinum
TAQ DNA polymerase (Invitrogen life technologies, Carlsbad, CA) and gene specific primers complementary to the *GUSPlus* gene. The sense and antisense primers contained engineered EcoRI and BamHI sites, respectively. The *GUSPlus* primers used were: GUSPlus-5’-CCGGATCCATGGTACGAGATTTGGTAT- 3’, GUSPlus EcoRI -5’-CCGAATTCACACGGTATGATGATGATGATGCTAGC- 3’. PCR products were cloned into pGEM T-Easy vector. The cloned PCR products were chemically transformed into *E. coli* DH5α, positive clones digested with BamHI and EcoRI and the released cDNAs cloned into the CaMV35S cassette-pUC19 [36] using the same restriction enzyme sites. The insertion of the cDNA product in the correct orientation was confirmed by PCR using promoter specific and 3SSs Polya tail specific primers (5’-ATAAGAAATGCAGGCAATACGATACGATGATGATT- 3’) and further confirmed by sequencing. Using unique EcoRV sites the entire promoter cassettes were cloned into pGreen 0229 binary vector containing the *bar* gene as a selectable marker. mRFPI [37] was directly isolated from the pRSET B vector and cloned into CaMV35S cassette using BamHI-EcoRI sites.
Based on the previously identified sequence information, different sizes of BjMTP1 promoter regions were PCR amplified using high fidelity platinum Taq DNA polymerase with 5’ PstI-3’ BamHI promoter specific primers. The primers used were Bj 983 bp 5’ PstI-5’-AACTGCAGAGTT-TCCATTTTGTTCGTGCIAAAAT-3’, Bj 1561 bp 5’ PstI-5’-AACTGCAGTGGACTGAAGTCCGGAATGAA-GAGAAA-3’, Bj 1786 bp 5’ PstI-5’-AACTGCAGACAGACAAAAAGCTTTTCCTGATCTCCGGGA-3’ and Bj rev BamHI-5’-CGGGATCTCTGAAAATCAGATGAGGAA-3’. The PCR amplified BjMTP1 promoter regions were cloned into pCR-XL-TOPO vector. Positive clones containing PCR-XL-TOPO: BjMTP1 promoter regions were digested with PstI and BamHI and the released DNA cloned into pGreen 0229 containing specific reporter gene cassettes outlined above, after removing the CaMV35S promoter from the vector by PstI-BamHI digestion. All the cloned promoter regions (983 bp, 1,561 bp and 1,786 bp) contained the respective 5’ UTR of the BjMTP1 gene and all the constructs contained only the start codon from their respective reporter genes. The ligated constructs were transformed into E. coli DH5α. Positive clones were identified by PCR using a combination of promoter specific and reporter gene specific primers and further confirmed by sequencing. All the pGreen constructs were mixed with pSoup plasmid DNA and transformed into electro competent disarmed Agrobacterium tumefaciens GV3101. Positive clones were selected by colony PCR.

Plant transformation and regeneration

Transgenic *B. juncea* plants were obtained by tissue culture based on a previously established protocol (personal communication Thomas Leustek, Rutgers University). Briefly, petioles were excised from cotyledons of five-day-old *in vitro* grown seedlings on agar solidified half strength MS medium [38] and cultured in MS medium with 3 % (w/v) sucrose, 2.5 g L⁻¹ Gelrite, 2 mg L⁻¹ 6-benzylaminopurine, and 0.1 mg L⁻¹ naphthalene acetic acid under a 16 hour photoperiod (100 µmol m⁻² s⁻¹) at 25°C for 2 days. Petioles were transformed with *A. tumefaciens* GV3101 harboring pGreen 0229 containing BjMTP1 promoter reporter gene constructs. Agrobacterium tumefaciens strain GV3101 carrying the pGreen vectors were grown for 48 h in 30 mL liquid YEP medium containing 1 g L⁻¹ yeast extract, 5 g L⁻¹ beef extract, 5 g L⁻¹ bacto-peptone, 5 g L⁻¹ sucrose, 0.5 g L⁻¹ MgSO₄, 7H₂O and 100 mg L⁻¹ kanamycin in a 28°C shaker at 250 rpm until the culture reached an OD₆₀₀ of 0.7. Bacteria were harvested by centrifugation and the bacterial pellet resuspended in 30 mL MS liquid medium. Petioles were incubated with the *A. tumefaciens* suspension for 20 min, blotted dry using sterile filter paper and transferred to freshly prepared tobacco (BY2 cell line) feeder layer plates. After 48 h incubation in the dark, petioles were rinsed in medium containing MS salt, 3% (w/v) sucrose, and 500 mg L⁻¹ carbencillin for 40 min. The petioles were cultured on MS medium containing 2 mg L⁻¹ TDZ and 0.1 mg L⁻¹ IAA with 500 mg L⁻¹ carbencillin for three to four weeks under 16 h photoperiod (100 µmol m⁻² s⁻¹). Roots were induced from regenerated shoots in solid MS medium containing 2 mg L⁻¹ indole-3-butyr acid. Plantlets were later transferred to soil for further growth. Putative transformants were selected based on their ability to grow in regeneration medium containing 3 mg L⁻¹ glufosinate ammonium (active ingredient of Basta). Transformants were also analyzed for the presence of the introduced DNA constructs using PCR. T2 and T3 homozygous lines were selected by spraying BASTA (8 mg L⁻¹) on 15-day old plants with fully expanded first leaves (total of 4 applications on every third day), and further confirmed by PCR.

Analysis of BjMTP1 promoter activity

For analysis of metal regulated promoter activity five-day-old dark grown seedlings were treated with various concentrations of Ni²⁺, Cd²⁺ and Zn²⁺ in distilled water for 48 h in the dark. For heat shock similar seedlings were incubated at 37°C for 2 h as described in [39]. Cold shock was given at 4°C for 4 h following the method of [40]. For salt treatment seedlings were treated with 100 mM NaCl as described in [41] for 24 h in the dark with aeration. Seedlings were also exposed to H₂O₂ at 5 μM, 10 μM, 50 μM, 100 μM, 500 μM and 1 mM H₂O₂ for 24 h, changing solutions every 12 h. For metal treatment in mature *B. juncea* four-week-old hydroponically grown plants were transferred to aerated 0.1 × Hoagland’s solution containing 50 μM Ni²⁺, 50 μM Zn²⁺ or 5 μM Cd²⁺. To maintain a constant Cd²⁺ concentration throughout the experiment the hydroponic media was replaced at 12 h intervals. Because of the higher initial concentration of Ni²⁺ and Zn²⁺ their concentrations were found to not significantly change during the experiment, as analyzed by ICP-MS (data not shown). For recovery experiments plants were transferred to aerated 0.1 × Hoagland’s solution lacking either Ni²⁺, Cd²⁺ or elevated Zn²⁺. Root and shoot samples were also analyzed for Ni²⁺ accumulation by ICP-MS. Three independent replicate samples were used for each analysis. For total GUS activity tissue samples were homogenized in liquid nitrogen and suspended in 200 μL of extraction buffer (50 mM NaHPO₄, pH 7.0, 2 mM DTT, 10 mM Na₂ EDTA, 0.1 % (w/v) sodium lauryl sarcosine and 0.1 % (v/v) Triton X-100; [42]) and the soluble protein fraction collected after centrifugation at 10,000 × g. Quantitative fluorometric analysis of GUS enzymatic activity was carried out according to [42]. Fluorescence was measured using a luminescence spectrometer (PerkinElmer model LS 55, Life and Analytical Sciences Boston, MA) after 60 min incubation with the GUS substrate. Each assay was performed using three independent replicate samples. Total protein content was determined using a BCA protein assay kit.
assay kit (Pierce Biotechnology, Rockford, IL). GUS activity data is expressed as nmoles of 4-methylumbelliferone(MU)min⁻¹ mg⁻¹ of extracted protein. Histochemical GUS analysis of B. juncea tissues was performed based on a standard protocol [43]. GUS localization was analyzed using an Olympus Vanox light microscope (Olympus America Inc. Melville, NY). For photography a SPOT-RT digital camera (Diagnostic instruments Sterling Heights, MI) attached to the microscope was used. For quantitative fluorometric assay of mRFP1 in tissue samples 100 mg fresh weight of tissue was homogenized in liquid nitrogen and suspended in 200 µL of the PBS buffer (10 mM potassium phosphate buffer, 140 mM NaCl, pH 7.4) containing 1 mM DTT, and the soluble protein fraction collected after centrifugation at 10,000 × g. The relative mRFP1 emission (607 nm) in the samples was measured using a luminescence spectrometer (model # LS 55 PerkinElmer Life and Analytical Sciences Boston, MA) after excitation at 584 nm. Each assay was performed using three independent replicate samples. For epifluorescence microscopy tissues were immediately incubated in PBS buffer and hand sections prepared for localization of mRFP1 expression. Epifluorescence was observed using Nikon E 800 compound microscope equipped with Rhodamine – Texas red (exciter λ 560 ± 20, dichroic λ Q 585 LP and emitter λ 610 LP) filter. For photography SPOT-RT digital camera attached to the microscope was used.

Metal Toxicity Measurements

Metal toxicity measurements were done using K⁺ leakage in five-day-old seedlings containing p(1.0)BjMTP1::GUS-Plus, following a method adapted from [44]. After metal treatment seedlings (n = 5) were removed and placed in 10 mL of distilled water for 60 min, the solution filtered through a 0.2 µm filter and K⁺ measured using ICP-MS. Untreated seedlings were used as a control. Seedlings used for K⁺ efflux were dried at 68°C for 48 h and K⁺ leakage expressed on a dry weigh basis.

Inductively Coupled Plasma – Mass Spectroscopy

Plant tissue sample were washed once in 18 MΩ, dried overnight at 90°C weighed and digested in concentrated HNO₃ acid (Omnitrace, EM) at 110°C for 4 h. Ni, Cd and Zn were quantified in the samples using an ICP-MS (Elan DRCE, PerkinElmer) following our published methods [45]. K concentration in K⁺-leakage assays were measured directly in the assay solution using ICP-MS (Elan DRCE, PerkinElmer).

Authors’ contributions

DES conceived the work and guided the experiments; BM was primarily responsible for carrying them out with BY contributing to the cloning. All authors have read and approved the final manuscript.

Additional material

Additional file 1
Dendrogram of plant MTP1 protein-coding DNA sequencealignments using Neighbor-Joining. A phylogenetic analysis showing the relationships between the plant MTP1 protein-coding DNA sequences.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2229-7-32-S1.ppt]

Additional file 2
Tissue localization of MTP1 expression in B. juncea. A microscopic analysis of root cross-sections and lateral roots from 4-week-old B. juncea transformed with p BJMTP1::mRFP1 or p BJMTP1::EYFP after exposure to 5 µM Cd²⁺ or 50 µM Ni²⁺ for 48 h.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-2229-7-32-S2.ppt]

Acknowledgements

This work was supported by the US Department of Energy (DE-FG02-01ER86135) and the Indiana 21st Century Research and Technology Fund. The authors wish to thank Brett Lahner for ICP-MS analysis and Thomas Leustek of Rutgers University for providing the regeneration/ transformation protocol for B. juncea. The authors also wish to thank Gerald Myers of SDSU for his help in B. juncea root anatomy, Roger Tsiens of UCSD for pRSETB (mRFP1) and Jeff Gustin, Thomas Sors and Elena Yakubova for their helpful advice. We would also like to thank Edenspace Systems Corporation for useful discussions.

References

1. Kramer U: MTP1 mops up excess zinc in Arabidopsis cells. Trends Plant Sci 2005, 10:313-315.
2. Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat HM, Verkleij JC, Hooykaas PJ: Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 1999, 119:1047-1056.
3. Kobae Y, Uemura T, Sato MH, Ohnishi M, Mimura T, Nakagawa T, Maeshima M: Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol 2004, 45:1749-1758.
4. Desbrosses-Fonrouge AG, Voigt K, Schroder A, Arrivault S, Thomine S, Kramer U: Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulation. FEBS letters 2005, 579:4165-4174.
5. Bloß T, Clemens S, Nies DH: Characterization of the ZAT1p zinc transporter from Arabidopsis thaliana in microbial model organisms and reconstituted proteoliposomes. Planta 2002, 214:783-791.
6. Persans MW, Nieman K, Salt DE: Functional activity and role of cation- efflux family members in Ni hyperaccumulation in Thlaspi Goesingense. Proc Natl Acad Sci USA 2001, 98:9995-10000.
7. Assuncao AGL, Martins PD, De Feliter S, Vooijs R, Schat H, Aarts MGM: Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi coerulescens. Plant Cell Environ 2001, 24:217-226.
8. Drager DB, Desbrosses-Fonrouge AG, Krach C, Chatterson AN, Meyer RC, Saumitou-Laprade P, Kramer U: Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with Zinc tolerance and account for high MTP1 transcript levels. Plant J 2004, 39:425-439.
9. Blaudez D, Kohler A, Martin F, Sanders D, Chalot M: Poplar metal tolerance protein I confers zinc tolerance and is an oligo-
meric vacuolar zinc transporter with an essential leucine zipper motif. Plant Cell 2003, 15:2911-2928.

10. Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE: The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 2004, 39:237-251.

11. Dorn EJ, Brandenburg WA, Raveling N, Jarvis CE: Lecitotyphication of Brassica rapa L., B. campestris and B. oleracea L. Taxis 1987, 36:625-634.

12. Axelsson T, Bowman CM, Sharpe AG, Lydiate DJ, Lagercrantz U: Amphidiploid Brassica juncea (2000). Genome 2003, 46:679-688.

13. Than PBAN, Motes V, Raskin I: Phytoextraction. The use of plants to remove heavy metals from soils. Environ Sci Technol 1995, 29:123-1238.

14. Salt DE, Smith RD, Raskin I: Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 1998, 49:643-668.

15. Salt DE, Pickering J, Prince RC, Gleba D, Dushenkov S, Smith R, Raskin I: Metal accumulation by aquacultured seedlings on Indian mustard. Environ Sci Technol 1997, 31:1636-1644.

16. Ebbs SD, Last SD, Bron P, Kornilov I, Raskin I: Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 1995, 109(4):1427-1433.

17. Salt DE, Pickering J, Prince RC, Gleba D, Dushenkov S, Smith R, Raskin I: Metal accumulation by aquacultured seedlings on Indian mustard. Environ Sci Technol 1997, 31:1636-1644.

18. Ebbs SD, Last SD, Bron P, Kornilov I, Raskin I: Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 1995, 109(4):1427-1433.

19. Salt DE, Pickering J, Prince RC, Gleba D, Dushenkov S, Smith R, Raskin I: Metal accumulation by aquacultured seedlings on Indian mustard. Environ Sci Technol 1997, 31:1636-1644.

20. Ebbs SD, Last SD, Bron P, Kornilov I, Raskin I: Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 1995, 109(4):1427-1433.

21. Koizumi S, Suzuki K, Ohya Y, Yamada H, Otsuka F: Cloning, chromosomal mapping and characterization of the mouse metal-regulatory-element-binding transcription factor MTF-1. Nucleic Acids Res 1994, 22:3167-3173.

22. Koizumi S, Suzuki K, Ohya Y, Yamada H, Otsuka F: Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem 1999, 259:635-642.

23. Koizumi S, Suzuki K, Ohya Y, Yamada H, Otsuka F: Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem 1999, 259:635-642.

24. Koizumi S, Suzuki K, Ohya Y, Yamada H, Otsuka F: Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem 1999, 259:635-642.

25. Koizumi S, Suzuki K, Ohya Y, Yamada H, Otsuka F: Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem 1999, 259:635-642.

26. Koizumi S, Suzuki K, Ohya Y, Yamada H, Otsuka F: Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem 1999, 259:635-642.

27. Koizumi S, Suzuki K, Ohya Y, Yamada H, Otsuka F: Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem 1999, 259:635-642.

28. Koizumi S, Suzuki K, Ohya Y, Yamada H, Otsuka F: Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem 1999, 259:635-642.

29. Koizumi S, Suzuki K, Ohya Y, Yamada H, Otsuka F: Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem 1999, 259:635-642.

30. Koizumi S, Suzuki K, Ohya Y, Yamada H, Otsuka F: Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem 1999, 259:635-642.

31. Koizumi S, Suzuki K, Ohya Y, Yamada H, Otsuka F: Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem 1999, 259:635-642.

32. Koizumi S, Suzuki K, Ohya Y, Yamada H, Otsuka F: Transcriptional activity and regulatory protein binding of metal-responsive elements of the human metallothionein-IIA gene. Eur J Biochem 1999, 259:635-642.

33. Livak JL, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25:402-408.

34. Livak JL, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25:402-408.

35. Livak JL, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25:402-408.

36. Livak JL, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25:402-408.

37. Livak JL, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25:402-408.

38. Livak JL, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25:402-408.

39. Livak JL, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25:402-408.

40. Livak JL, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 2001, 25:402-408.