Absence of Superconductivity in BeB₂
I. Felner
Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel

Abstract
The hexagonal BeB₂ compound has been prepared and found to be paramagnetic down to 5 K. The mixed (Mg,Be)B₂ system has the same Tₐₖ =39 K as pure MgB₂, indicating that Be does not replace the Mg atoms.

israela@vms.huji.ac.il

Introduction
The recent discovery¹ of superconductivity around Tₐₖ=39 K in the simple intermetallic compound MgB₂ is particularly surprising for many reasons. This Tₐₖ for MgB₂ is much higher than the highest Tₐₖ values reported for the A₁₅ intermetallic compound (Nb₃Ge Tₐₖ=23.2 K) and the borocarbides (YPd₂B₂C Tₐₖ=23 K). This material available from common chemical suppliers, has been known and structurally characterized since the mid 1950 is that of the well known AlB₂-type which can be viewed as an intercalated graphite structure with full occupation of interstitial sites centered in a hexagonal prism consisting of of B atoms². Our scanning tunneling microscopy measurements have shown that the tunneling spectra exhibit a BCS gap structure, suggesting that MgB₂ is a conventional BCS (s-wave) superconductor³.

In the search of similar intermetallic materials having high Tₐₖ values, BeB₂ is the first natural candidate, since lighter divalent Be atoms may help providing larger phonon frequencies while keeping similar electronic properties. The crystal structure of BeB₂ is similar although not identical, to MgB₂. An earlier report⁴ suggests that BeB₂ is hexagonal (the space group is probably P6/mmm) with the lattice parameters a=9.79(2) and c=9.55(2) Å, whereas the same space group and lattice parameters have been used⁵ to define BeB₃. These parameters have been optimized to a =2.87 and c=2.85 Å for all previous band calculations⁶ of BeB₂, indicating that the interatomic distances should be significantly smaller than those in MgB₂, due to the smaller size of Be atom. On the other hand, BeB₂ is reported to crystallize in the AlB₂ type structure⁷-⁸ similar to MgB₂, and other diboride compounds.

In this paper we report the magnetic properties of BeB₂ synthesized by arc melting. Magnetic studies show definitely that this compound is paramagnetic down to 5 K,
and that superconductivity is absent. In that respect this result is consistent with the prediction of J. E. Hirsh8, that the charge transfer from Be to B in BeB\textsubscript{2} is less than that from Mg to B in MgB\textsubscript{2}, and the Fermi level in BeB\textsubscript{2} is low, beyond the regime where superconductivity occurs. It appears that in the ternary (Mg,Be)B\textsubscript{2} compounds the Be atoms do not replace Mg.

Experimental details and results.

Intermetallic BeB\textsubscript{2} was prepared by melting the stoichiometric elements (99.9\% pure) in an arc furnace under an argon atmosphere. Precautions have been taken due to the highly toxicity of Be. Powder X-ray diffraction (XRD) measurements confirmed the crystal structure of the material (Fig. 1). The pattern was analyzed on the basis of a hexagonal structure and a least square fit of the observed peaks yields the unit cell parameters; a = 9.749(4) Å and c = 9.520(4) Å, in good agreement with ref. 4. The pattern contained a few unidentified extra peaks (less than 5\%). The dc magnetic measurements were performed in a Quantum Design superconducting quantum interference device magnetometer (SQUID), and Fig. 2 exhibits the curve measured at 500 Oe. The curve has the typical paramagnetic shape and adheres closely to the Curie-Weiss (CW) law: \(\chi = \chi_0 + C/(T - \theta) \), where \(\chi_0 \) is the temperature independent part of \(\chi \), \(C \) is the Curie constant, and \(\theta \) is the CW temperature. A fit of the CW law in the region of 5<K<150 K yields: \(\chi_0 = 1.4 \times 10^{-7} \text{emu/mol Oe} \), \(\theta = 0 \text{ K} \), and an effective moment, \(P_{\text{eff}} \) equal to 0.048\(\mu_B \). The isothermal magnetization up to 50 kOe is shown in the inset of Fig. 1. Based on these studies, our conclusion is that BeB\textsubscript{2} is paramagnetic.

Mg\textsubscript{1-x}Be\textsubscript{x}B\textsubscript{2} samples were also prepared by a solid state reaction as described in ref 3. Both magnetic and XRD studies indicate that Be does not enter the matrix, and the \(T_C = 39 \text{ K} \) which is obtained is similar that of pure MgB\textsubscript{2}.

Acknowledgments:

This research was supported by the Israel Academy of Science and Technology and by the Klachky Foundation for Superconductivity.

References

1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu, Nature 410, 63 (2001)
2. M.E. Jones and R.E. Marsh, J. Amer. Chem. Soc. 76, 1434 (1975)
3. A. Sharoni, I. Felner and O. Millo, Cond-Mat 0102325 (2001).
4. D.E. Sands, C.F. Cline A. Zalkin and C.L. Hoenig, Acta Cryst. 14, 309 (1961) See also JCPDS 13-0314
5. V.R. Mattes, K.F. Tebbe, H. Neidhard and H. Rethfeld, Z. Anorg. Allgem. Chem., 413, 1 (1975).
6. G. Satta, G. Profeta, F. Bernardint, A Continenza and s. Massidda, Cond-Mat 0102358 (2001).
7. M.S. Borovikova and V.V. Fesenko, J. Less Common Metals 117, 287 (1986).
8. J.E. Hirsh, Cond-Mat 0102115 (2001).
Fig. 1. XRD of BeB$_2$

Fig. 2. Magnetic susceptibility of BeB$_2$. The isothermal M(H) curve measured at 5 K, is shown in the inset.