INTRODUCTION

Free radicals are reactive and oxidize other molecules nearby such as proteins, DNA, lipids, and others. Free radicals can be inhibited by the presence of antioxidants. Antioxidants are substances that protect cells from free radical damage. Antioxidants inhibit and stabilize free radicals. Antioxidants are molecules that prevent the oxidation of other molecules. The human body has been able to produce an antioxidant commonly called endogenous antioxidant, but endogenous antioxidant alone is not enough and needed antioxidants from outside called exogenous antioxidants [1,2].

There are two sources of exogenous antioxidants, synthetic antioxidants, and natural antioxidants. One of the natural antioxidants is isoflavones or flavonoid derived from plant secondary metabolites [3,4]. Plants are rich in phenolic compounds and flavonoids which have been reported to exert multiple biological effects, such as antioxidant activity, free radical scavenging abilities, anti-inflammatory, and anti-carcinogenic [5]. Flavonoids are a class of secondary metabolites which are found mainly in nuts and seeds, and one of them is the soybean plant [6].

Soybean (Glycine max) has become a source of important nutrients since ancient times. Soybeans are easily processed and manufactured into various kinds of food. Soybean (G. max (L.) Merr) Ijen varieties used with Vitamin C as a comparison reported to reduce levels of lead in the blood and liver of male mice [7]. Depend on soybean seeds color, it is divided into two types, yellow and black soybean. Black soybeans have almost same potential of nutrients and result than yellow soybeans and even have a higher functional properties [8].

Flavonoid content of black soybean is 6 times higher than yellow soybeans (total flavonoid content of yellow and black soybean is 0.41 and 2.57 mg equivalent to catechins/gram, respectively), and the antioxidant activity is 15 times higher (DPPH scavenging capacity of yellow and black soybeans is 1.40 and 17.58 mol equivalent per gram, respectively) [9].

Tablet was a dosage form made as result of black soybean isoflavone optimization. Usually for the natural compound, included soybean has a high amount of moisture content (MC) that affects the flowability become poor, so the formulation will be the key to build the quality of the tablets. Granulation process was done by dry granulation technique to improve the flowability. Granulation is a technique used in the preparation of tablets, in which it involves particles enlargement by agglomeration [10].

Good flow properties needed, and the powder should be easily flows into the die first. [11]. The improvement also developed by changing the composition of glidant and disintegrant of the formula.

MATERIALS AND METHODS

Materials

The plant material used in this study is the soybean (G. max (L.) Merr) Detam II varieties, certified taken from UPBS (Seed Resources Management Unit) Balitkabi (Research Institute for Legumes and Tuber), Malang, East Java in August 2016.

Chemicals used in this study are sodium starch glycolate (SSG) (Primojel®), polyvinylpyrrolidone (PVP) K-30 p.g, lactose anhydrous...
p.g, silicon dioxide (Cab-O-Sil®), magnesium stearate p.g, and cellulose powder (Vitacel®).

Research tools
The tools used in this study were oven, blender, Retsch vibrator (0-42 759 Haan/Germany), a digital type analytical balance, drum mixer; tapping machine type PT TD200, MC tester, static, single punch tablet machine (Yung Chuan Industrial Co., Ltd. Taiwan), disintegration time test equipment (disintegration tester, Erweka type of QC-21), Monsanto hardness tester instruments friability tester (rolling and impact durability tester, Erweka type TA 100/TA 200), Oscillating granulator, a standard funnel, stopwatch, pipette drops, and vial.

Methods

Preparation of (G. max (L.) Merr.) Detam II varieties powder
Soybean (G. max (L.) Merr) Detam II varieties were cleaned and then dried directed to the air. Dry soybeans were grinded and homogenized using 30 mesh-sized sieve into a fine powder. The powder was then stored in an elkisator.

Preparation of (G. max (L.) Merr.) Detam II varieties granules
Soybean and cellulose powder was weighed in the required amount, and then, mixed with a Y-cone mixer until homogeneous. Each anhydrous lactose, PVP K30, Plasdone S 630, and SSG were weighed based on the formula, and then, mixed until homogeneous. The amount of the excipient based on the formula in Table 1. The mixture then compressed into slug and sieved with 16 mesh Oscillating granulator into granules. Physical characteristics of granules were then examined.

Preparation of (G. max (L.) Merr.) Detam II varieties tablets
Dried granules were mixed with magnesium stearate and silicon dioxide using a drum mixer for 3 min. After the flowability was examined, granules then compressed into tablets. Tablet results had 13 mm diameter and 650 mg tablet weight. Physical characteristics of tablets were measured at time interval of 0, 4, 7, 14, 21, and 28 days.

Granules evaluation

MC
MC value could be expressed by the measurement of dry granules weight and terms good for that 3–5% MC. The MC was calculated with the following formula:

\[MC = \frac{Wa-Wb}{Wb} \times 100\% \]

Where Wa means wet granule weight and Wb is the weight of dry granule.

The particle size distribution
Siever was prepared from the biggest to the smallest pan in size range of 10–20% [13], but they have a normal size distribution with the major fraction is in the 300–600 μm shown in Figure 2. particle size. The example of the particle size distribution curve was shown in Figure 2. for Formula 1 until 3.

Compressibility
Real density value determined by weighed amount of powder, then poured into a measuring glass until readable volume obtained (V0). Weighed amount of granules putted on volumenometer and tapped, and constant volume obtained recorded as V1. Good compressibility range was 5–25%.

Flowability
Some granules inserted into the funnel which is closed in the bottom. After the funnel opened, the time required for the granules pass through the funnel and the angle of repose recorded. Maximum flow time of 100 g granule was 10 s, and the angle of repose must be inside the range of 25–40° based on Table 2.

Tablet evaluation

Weight uniformity
Weight uniformity test done by weighing 10 tablets one by one, and the average weight of each tablet calculated. The tablet acceptance value should not be greater than or equal to 15% based on the Indonesian Pharmacopoeia V [12].

Hardness
The hardness of the tablet was measured using a Monsanto hardness tester with 20 samples. Each tablet was placed one by one then rotated slowly and precisely until the tablet broke and showed the hardness value on the scale. Hardness requirement generally at least 4 kg.

Friability
Friability was measured using a friability tester. Samples taken as many as 10 tablets were randomly assigned to tablets with a weight above 650 mg. Tablet cleaned one by one and weighed using the analytical balance. The tablet is then inserted into the testing device with a rotation speed of 25 rpm for 4 min. Then, the tablet removed and cleaned from dust. The tablets were weighed and the friability calculated using the following equation:

\[% \text{Friability} = \frac{Wa-Wb}{Wa} \times 100\% \]

Where Wa is tablet weight before rotated and Wb is the final tablet weight.

Disintegration time
Each tablet was inserted in the basket, and then, the friability tester was started at medium temperature 37±2°C. Disintegration time required for testing six tablets should not be ≥15 min.

RESULT AND DISCUSSION

Identification of soybean seed powder (G. max (L.) Merr) Detam II varieties
The organoleptic results of soybean (G. max (L.) Merr) powder Detam II varieties were a yellow with black spots coarse powder, slightly sweet, and have a distinctive odor of soybeans. 1 kg of crushed soybeans resulted 950 g soy powder and manufactured into tablets. Organoleptic results of the product shown in Figure 1. MC of the powders was also identified to determine the initial water content in soybean powder, and the amount obtained was 6.11%.

Granules evaluation

Particle size distribution
Particle size distribution showed that all of the formulas had the amount of fines below the requirements of 10–20% [13], but they have a normal size distribution with the major fraction is in the 300–600 μm shown in Figure 2. particle size. The example of the particle size distribution curve was shown in Fig. 2 for Formula 1 until 3.

Fig. 1: (a) Soybean (Glycine max L. Merr) Detam II varieties seed, (b) soybean (G. max L. Merr) Detam II varieties powder, (c) soybean (G. max L. Merr) Detam II varieties tablet
The granules are taken as much as 5 g (replication 3 times for each formula) and tested moist content. Obtained results for the three formulas meet the requirements, which shown in Table 3 and Table 4. Under the terms, good moist content was between 3% and 5% [14].

Table 1: Formula Detam II varieties soybean tablet

Material	Function	Formula	I	II	III	VI	VII
Detam II black soybean powder	Active substance	200 mg	200 mg	200 mg	200 mg	200 mg	
SSG	Disintegrant (%)	4	4	4	4	4	
Magnesium stearate	Lubricants (%)	2	2	2	0.5	1	
Polyvinylpyrrolidone (PVP K30)	Internal phase binder (%)	2	2	2	2	2	
Silicon dioxide	External phase binder (%)	2	2	2	2	2	
	Glidant (%)	0.1	0.5	1	1	1	

SSG: Sodium starch glycolate

Table 2: Relationship of flow property and angle of repose

Flow property	Angle of repose (°)
Excellent	25–30
Good	31–35
Fair - aid not needed	36–40
Passable - may hang up	41–45
Poor - must agitate, vibrate	46–55
Very poor	56–65
Very, very poor	>66

Table 3: MC of soybean seeds (G. max (L.) Merr) Detam II varieties

Wb average (g)	Wa average (g)	% MC
4.753	5.062	6.11

MC: Moisture content, G. max: Glycine max

Table 4: MC of granules

Formula	% MC
I	3.06
II	2.51
III	3.21
IV	2.56
V	3.13

MC: Moisture content

The granules are taken as much as 5 g (replication 3 times for each formula) and tested moist content. Obtained results for the three formulas meet the requirements, which shown in Table 3 and Table 4. Under the terms, good moist content was between 3% and 5% [14].

Compressibility

All of the formula did not meet the requirement shown in Table 5 [15]. This condition could be due to lack of the amount of fines, so the small particles did not fill cavities between particles. Based on the compressibility value, it can caused the dense of tablet form became less.

Table 5: Compressibility of granules

Formula	% Compressibility	Requirement of compressibility of 5–25%
I	38.20	Did not meet the requirement
II	31.46	Did not meet the requirement
III	36.04	Did not meet the requirement
IV	33.85	Did not meet the requirement
V	38.19	Did not meet the requirement

Table 6: Flowability of granules

Formula	T (s)	Angle of repose (°)
I	11.3	41.30
II	8.57	38.44
III	7.50	34.56
IV	9.57	34.77
V	9.50	36.24

Flowability

Flowability of 100 g granules was good shown in Table 6, and most of all formula could flow not more than 10 s. The value of the angle of repose must be between 25° and 40° to show good flowability [15]. Formulas I, II, and III determined the improvement of glidant composition in the formula.

Table 7: Organoleptic properties of Detam II soybean tablet

The organoleptic test results of the soybean tablet obtained that the tablets are round white with black spots with a slightly sweet taste and a distinctive smell of soybeans.

Table 8: Tablet weight uniformity

The uniformity test result of 10 unit tablets must be lower than 15%. Tablets from all of the formulas met the requirements.
shown in Table 7. Fair flowability helped the granule to enter the compression dies even there was a deviation also from target weight of 0.650 g.

Table 7: Tablet weight uniformity

Formula	The average weight ± SD (g)	Requirements value (%)	Uniformity of weight value admission requirements ≤ 15% (Depkes RI, 2014)
I	0.6504±0.0133	0.03	Meet the requirements
II	0.6494±0.0103	0.02	Meet the requirements
III	0.6501±0.0183	0.04	Meet the requirements
IV	0.6480±0.0124	0.03	Meet the requirements
V	0.6434±0.0081	0.02	Meet the requirements

SD: Standard deviation

Table 8: Tablet hardness

Days	Formula	The average of hardness ± SD (kg)	Requirements of tablet hardness at least 4 kg (Troy, 2006)
0	I	1.35±0.34	Did not meet the requirement
	II	1.25±0.35	Did not meet the requirement
	III	1.6±0.32	Did not meet the requirement
	IV	4.12±0.10	Meet the requirement
	V	2.90±0.07	Did not meet the requirement
4	I	1.35±0.24	Did not meet the requirement
	II	1.05±0.16	Did not meet the requirement
	III	1±0.00	Did not meet the requirement
	IV	3.92±0.09	Did not meet the requirement
	V	2.45±0.50	Did not meet the requirement
7	I	1.3±0.35	Did not meet the requirement
	II	1.4±0.35	Did not meet the requirement
	III	1±0.00	Did not meet the requirement
	IV	2.15±0.53	Did not meet the requirement
	V	2.00±0.47	Did not meet the requirement
14	I	1.25±0.26	Did not meet the requirement
	II	0.87±0.21	Did not meet the requirement
	III	0.67±0.24	Did not meet the requirement
	IV	1.83±0.21	Did not meet the requirement
	V	1.59±0.44	Did not meet the requirement
21	I	1.45±0.37	Did not meet the requirement
	II	1.4±0.32	Did not meet the requirement
	III	1.3±0.48	Did not meet the requirement
	IV	2.15±0.24	Did not meet the requirement
	V	1.80±0.35	Did not meet the requirement
28	I	0.75±0.24	Did not meet the requirement
	II	1±0.00	Did not meet the requirement
	III	0.57±0.12	Did not meet the requirement
	IV	1.98±0.18	Did not meet the requirement
	V	1.35±0.27	Did not meet the requirement

SD: Standard deviation

Disintegration time

Disintegration time of all formulas met the requirement which is <15 min. The result in Table 10 showed that higher hydrophobic excipients added in the external phase of the formula affect the disintegration time. The disintegration of tablets needed longer time resulted by improvement of hydrophobic external phase composition. Faster disintegration time could aid the absorption of drugs in the body.

CONCLUSION

Formulation of Detam II variety soybean tablets with several concentration of silicon dioxide and magnesium stearate was done in this research. Evaluation obtained some data about particle size distribution, MC, flow properties, weight uniformity, friability, hardness, and disintegration time. Soybean powder had poor compressibility, poor flowability, and hygroscopic properties, so dry granulation method was chosen to get tablet dosage form. Flow properties of the granules became better for Formulas II and III by adding the concentration of silicon dioxide as glidant. The formulations also showed a good uniformity of weight, size, MC, friability, and disintegration time. On the other hand, reducing the lubricant composition until 0.5% of the formula made differences in friability.
hardness, and disintegration time better than another formula. Too much lubrication affected the antibonding effect that increases the friability and reduces the crushing strength of the tablet. The other important problem of soybean powder that must be solved was the hygroscopic characteristic that reduces the physical characteristics of tablets. Formulation of Detam II varieties soybean tablet must
be consider about the amount of adsorbent and humidity value of production room.

REFERENCES
1. Hamid A. Antioxidants: Its medicinal and pharmacological applications. Afr J Pure Appl Chem 2010;4:142-51.
2. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci 2008;4:89-90.
3. Yulia R, Christyaningsih J, Irmasari V. The antioxidant substances profile of Glycine max L. merr. var. Detam II ultrasonic extract. Res J Pharm Biol Chem Sci 2015;6:502-8.
4. Astuti S. Isoflavon kedelai dan potensinya sebagai penangkap radikal bebas. J Teknol Ind Hasil Pertanian 2008;13:127-31.
5. Pavithra S, Manibala J, Ramachandran J. Evaluation of in-vitro antioxidant and fibrinolytic activity of flavonoid-rich fraction from the whole plant of wedelia Chinensis. Asian J Pharm Clin Res 2016;9:234-9.
6. Sen S, Chakraborty R, Sridhar C, Reddy YS, De B. Free radicals, antioxidants, diseases and phytoedicines: Current status and future prospect. Int J Pharm Sci Rev Res 2010;3:94.
7. Christyaningsih J, Yulia R. The effects Glycine max L. Merr on Lipid peroxidation and kidney’s histopathology in lead intoxication mice. Res J Pharm Biol Chem Sci 2015:6:1204-10.
8. Jeong JH, Jo YN, Kim JH, Eun JD, Dae-Ok K, Jin HH. Black soybean extract protects against TMT-induced cognitive defects in mice. J Med Food 2014;17:83.
9. Xu BJ, Chang SK. A comparative study on phenolic profiles and antioxidant of legumes as affected by extraction solvents. J Food Sci 2007;72:159-66.
10. Salih OS, Nief RA. Effect of natural and synthetic polymers on the properties of candesartan cilexetil matrix tablet prepared by dry granulation. Asian J Pharm Clin Res 2016;9:161-70.
11. Qiu YH, Chen YS, Zhang GG, Yu L, Mantri RV. Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice. London: Elsevier; 2017 209,561.
12. Departemen Kesehatan Republik Indonesia. Direktorat Jenderal Pengawas Obat dan Makanan, Farmakope Indonesia V. Jakarta: Departemen Kesehatan Indonesia; 2014.
13. Troy DB. Remington: The Science and Practice of Pharmacy. 21st ed. Baltimore: Lippincott Williams & Wilkins; 2006. p. 893, 916-7.
14. Hadisoewigyo L, Fudholi A. Sediaan Solida. Yogyakarta: Pustaka Pelajar; 2013.
15. United States Pharmacopeia (USP). The United State Pharmacopoeial Convention. 37th ed. United States: The United States Pharmacopeia (USP); 2014.