A GENERALIZED AFFINE ISOPERIMETRIC INEQUALITY

WENXIONG CHEN∗, RALPH HOWARD†, ERWIN LUTWAK‡, DEANE YANG‡, AND GAOYONG ZHANG‡

ABSTRACT. A purely analytic proof is given for an inequality that has as a direct consequence the two most important affine isoperimetric inequalities of plane convex geometry: The Blaschke-Santaló inequality and the affine isoperimetric inequality of affine differential geometry.

1. Introduction.

In [3], Harrell showed how an analytic approach could be used to obtain a well-known Euclidean inequality of plane convex geometry – the Blaschke-Lebesgue inequality. In this article we show how a purely analytic approach can be used to establish the best known affine inequalities of plane convex geometry. To be precise, we will use a purely analytic approach to establish an analytic inequality that has as an immediately consequence both the affine isoperimetric inequality of affine differential geometry and the Blaschke-Santaló inequality. What’s more significant, we are able to remove the “convexity” assumption and thus establish an inequality with applications to the planar L_p Minkowski problem (see, e.g., [9], [10], [14], [15], [16]) with not necessarily positive data.

Let $C \subset \mathbb{R}^2$ be a compact convex set. Let S be the unit circle parameterized by

$$e(\theta) := (\cos \theta, \sin \theta).$$

Then $h = h_C : S \to \mathbb{R}$ defined by

$$h(\theta) := \max_{x \in C} e(\theta) \cdot x$$

is the support function of C.

The affine isoperimetric inequality of affine differential geometry states that if a plane convex figure has support function $h \in C^2(S)$, then

$$4\pi^2 \int_S h(h + h'') d\theta \geq \left(\int_S (h + h'')^{2/3} d\theta \right)^3$$

with equality if and only if the figure is an ellipse.

Date: September 22, 2018.

∗ Chen supported, in part, by NSF Grant DMS-0072328.
† Howard partially supported by ONR-DEPSCoR Contract # N000140310675.
‡ Lutwak, Yang, and Zhang supported, in part, by NSF Grant DMS-0104363.
The integral on the left is twice the area of the figure, while the integral on the right is the so-called affine perimeter of the figure.

The Blaschke-Santaló inequality states that if a convex figure is positioned so that its support function h is positive and

$$\int_{S} \sin \theta \frac{h(\theta)^3}{d\theta} = \int_{S} \cos \theta \frac{h(\theta)^3}{d\theta},$$

then

$$4\pi^2 \left(\int_{S} h^{-2} d\theta \right)^{-1} \geq \int_{S} (h + h'') d\theta,$$

with equality if and only if the figure is an ellipse.

The integral on the left is twice the area of the polar reciprocal of the figure.

In [7], it was shown that both inequalities (1.1) and (1.3) are encoded in the following inequality: If K and L are convex figures whose support functions are such that $h_L \in C^2(S)$ and h_K arbitrary then

$$4\pi^2 \left(\int_{S} (h_L + h''_L)h_K d\theta \right)^2 \geq \left(\int_{S} (h_L + h''_L)^{2/3} d\theta \right)^3 \int_{S} [h_K^2 - (h'_K)^2] d\theta$$

with equality if and only if K and L are homothetic ellipsoids.

Using this version of the inequality, we see that choosing $L = K$ in (1.2) immediately gives (1.1). To see how (1.4) gives (1.3) choose the figure L so that h_L satisfies the equation $h''_L + h_L = h_K^{-3}$.

In [7], it was shown that (1.4) is a consequence of (1.1) and the mixed area inequality. The aim of this paper is to establish an analytic inequality that extends inequality (1.4). Our proof of this new analytic inequality uses none of the tools of convex geometry. We are thus able to remove the “convexity” assumption, $h'' + h \geq 0$, from all the inequalities above.

2. The main inequality.

Let $H^1(S)$ be the Hilbert space of functions $u: S \rightarrow \mathbb{R}$ with the norm

$$\|u\|_{H^1} = \left(\int_{S} [u^2 + (u')^2] d\theta \right)^{\frac{1}{2}}.$$

Theorem 1 (Two Dimensional Analytic Affine Isoperimetric Inequality). Assume

i) F and h are non-negative 2π periodic functions that do not vanish identically.

ii) F is integrable on S and satisfies the orthogonality conditions

$$\int_{S} F(\theta) \cos \theta d\theta = 0 = \int_{S} F(\theta) \sin \theta d\theta.$$

iii) $h \in H^1(S)$.
Then
\[(\int_S F(\theta) h(\theta) d\theta)^2 \geq \frac{1}{4\pi^2} \left(\int_S F^{2/3} d\theta \right)^3 \left(\int_S [h^2 - (h')^2] d\theta \right). \]
Equality holds if and only if there exist \(k_1, k_2, a > 0 \), and \(\alpha \in \mathbb{R} \) such that
\[h(\theta) = k_1 \sqrt{a^2 \cos^2(\theta - \alpha) + a^{-2} \sin^2(\theta - \alpha)} \]
and \(F \) is given almost everywhere by
\[F(\theta) = k_2 (a^2 \cos^2(\theta - \alpha) + a^{-2} \sin^2(\theta - \alpha))^{-3/2}. \]

Remark 2.1. The functions \(h(\theta) \) of the form (2.3) are exactly support functions of the ellipses centered at the origin.

The main ingredient in the proof of Theorem 1 is a family of transforms, that leave a few key integrals invariant and which let us construct maximizing sequences. We will introduce the transforms and study their properties in Section 5. In Section 6, we prove the inequality. In Sections 3 we study some regularity results for support functions of planar convex sets. These regularity results are used in Section 4 to derive the affine isoperimetric inequality for general planar sets.

3. Function spaces associated with the inequality.

Because of the integral \(\int_S [h^2 - (h')^2] d\theta \) that appears in Theorem 1, the natural function space for the functions \(h \) in the theorem is \(H^1(S) \). Moreover in the geometric applications Theorem 1, a natural choice for the function \(h \) is to be a support function of a bounded convex set and \(H^1(S) \) contains all the support functions. The following characterizes the support functions of bounded convex sets.

Proposition 3.1. A continuous function \(h: S \to \mathbb{R} \) is the support function of a bounded convex set if and only if the second distributional derivative \(h'' \) satisfies \((h'' + h) \geq 0 \) as a distribution.

The proof of this proposition is elementary, and is left to the reader.

We now describe the smallest function space that contains the support functions of convex sets. Let \(D \) be the set of \(2\pi \) periodic functions \(u \) such that the distributional derivative \(u'' \) is a signed measure. The total variation \(\|\mu\|_{TV} \) of a signed measure \(\mu \) on \(S \) is its norm as a linear functional on \(C(S) \). That is
\[\|\mu\|_{TV} := \sup \left\{ \int_S \phi(\theta) d\mu(\theta) : \phi \in C(S), |\phi(\theta)| \leq 1 \right\}. \]
The standard norm on \(D \) is \(\|h\|_{L^\infty} + \|h''\|_{TV} \), but, for geometric reasons, we use the equivalent norm
\[\|h\|_D := \|h\|_{L^\infty} + \|h'' + h\|_{TV}. \]
The space \mathcal{D} can also be defined as the functions h on S that are absolutely continuous and such that the first derivative h' is of bounded variation. As functions of bounded variation are bounded this implies all elements of \mathcal{D} are Lipschitz. Therefore the imbedding $\mathcal{D} \subset C^\alpha(S)$ is compact for $\alpha \in (0, 1)$, where $C^\alpha(S)$ is the space of Hölder continuous functions.

Theorem 3.2. The space $\mathcal{D}(S)$ contains all the support functions of bounded convex sets. Moreover every element of $\mathcal{D}(S)$ is a difference of two support functions. Thus $\mathcal{D}(S)$ is the smallest function space containing all the support functions. More precisely if $f \in \mathcal{D}$ there are support functions $h_1, h_2 \in \mathcal{D}$ with $f = h_1 - h_2$ and

$$\|h_1'' + h_1\|_{TV}, \|h_2'' + h_2\|_{TV} \leq 3\|f'' + f\|_{TV}.$$

Proof. We have already seen that \mathcal{D} contains all the support functions of bounded convex sets. Let $f \in \mathcal{D}(S)$. Then $f'' + f$ is a signed measure. We now claim that we can write $f'' + f = \mu_+ - \mu_-$ where μ_+ and μ_- are non-negative measures with the extra conditions that

$$\int_S \cos \theta \, d\mu_+ = \int_S \cos \theta \, d\mu_- = \int_S \sin \theta \, d\mu_+ = \int_S \sin \theta \, d\mu_- = 0$$

and

$$\|\mu_+\|_{TV}, \|\mu_-\|_{TV} \leq 3\|f'' + f\|_{TV}.$$

To start let $f'' + f = \nu_+ - \nu_-$ be the Jordan decomposition (cf. [11, p. 274]) of $f'' + f$. Then ν_+ and ν_- are non-negative measures and $\|f'' + f\|_{TV} = \|\nu_+\|_{TV} + \|\nu_-\|_{TV}$. From the definition of the second distributional derivative (which is formally just integration by parts)

$$\int_S (f'' + f) \cos \theta \, d\theta = -\int_S f \cos \theta \, d\theta + \int_S f \cos \theta \, d\theta = 0$$

and likewise $\int_S (f'' + f) \sin \theta \, d\theta = 0$. Using this in $f'' + f = \nu_+ - \nu_-$ gives

$$\int_S \cos \theta \, d\nu_+ = \int_S \cos \theta \, d\nu_-, \quad \int_S \sin \theta \, d\nu_+ = \int_S \sin \theta \, d\nu_-.$$

Set

$$a := \frac{1}{\pi} \int_S \cos \theta \, d\nu_+ = \frac{1}{\pi} \int_S \cos \theta \, d\nu_-,$$

$$b := \frac{1}{\pi} \int_S \sin \theta \, d\nu_+ = \frac{1}{\pi} \int_S \sin \theta \, d\nu_-.$$

Let $C > 0$, to be chosen shortly, and set

$$\mu_+ = \nu_+ + (C - a \cos \theta - b \sin \theta) \, d\theta,$$

$$\mu_- = \nu_- + (C - a \cos \theta - b \sin \theta) \, d\theta.$$

There is an α so that $a \cos \theta + b \sin \theta = \sqrt{a^2 + b^2} \cos(\theta + \alpha)$. Thus if $C := \sqrt{a^2 + b^2}$ the measures μ_+ and μ_- are non-negative. Using that in
Then coefficients of \(\sin \) and \(\cos \) vanish.

\[
\int_S \cos \theta \, d\mu_+ = \int_S \cos \theta \, d\nu_+ + \int_S \cos \theta(C - a \cos \theta - b \sin \theta) \, d\theta = 0
\]

and likewise all the other conditions of (3.2) hold. As \(\|f'' + f\|_{TV} = \|\nu_+\|_{TV} + \|\nu_-\|_{TV} \) we have \(\min \{\|\nu_+\|_{TV}, \|\nu_-\|_{TV}\} \leq \frac{1}{2}\|f'' + f\|_{TV} \). The formulas for \(a \) imply

\[
|a| \leq \min \left\{ \frac{1}{\pi} \int_S \cos \theta \, d\nu_+(\theta), \frac{1}{\pi} \int_S \cos \theta \, d\nu_-(\theta) \right\} \leq \frac{1}{\pi} \min \{\|\nu_+\|_{TV}, \|\nu_-\|_{TV}\} \leq \frac{1}{2\pi}\|f'' + f\|_{TV}.
\]

Likewise \(|b| \leq (2\pi)^{-1}\|f'' + f\|_{TV} \). Using this in the definition of \(C \) gives \(C \leq \sqrt{2}(2\pi)^{-1}\|f'' + f\|_{TV} \). As \(\mu_+ \) and \(\mu_- \) are non-negative measures their total variation is just their total mass. Thus

\[
\|\mu_\pm\|_{TV} = \int_S 1 \, d\mu_\pm = \int_S 1 \, d\nu_\pm + \int_S (C - a \cos \theta - b \sin \theta) \, d\theta = \|\nu_\pm\| + 2\pi C \leq (1 + \sqrt{2})\|f'' + f\|_{TV} \leq 3\|f'' + f\|_{TV}.
\]

This shows that (3.3) holds.

We claim that there is a function \(h_+ \) so that \(h''_+ + h_+ = \mu_+ \). To see this expand \(\mu_+ \) in a Fourier series and use the equations (3.2) to see that the coefficients of \(\sin \) and \(\cos \) vanish.

\[
\mu_+ = \frac{a_0}{2} + \sum_{k=2}^{\infty} (a_k \cos(k\theta) + b_k \sin(k\theta)).
\]

Then \(h_+ \) is given explicitly by

\[
h_+(\theta) = \frac{a_0}{2} + \sum_{k=2}^{\infty} \frac{a_k \cos(k\theta) + b_k \sin(k\theta)}{1 - k^2}.
\]

The formulas \(a_k = \pi^{-1} \int_S \cos(k\theta) \, d\mu_+(\theta), b_k = \pi^{-1} \int_S \sin(k\theta) \, d\mu_+(\theta) \) imply that \(|a_k|, |b_k| \leq \frac{1}{2}\|\mu_+\|_{TV} \). Therefore the series defining \(h_+ \) converges uniformly and thus \(h_+ \) is continuous. Likewise there is a continuous function \(h_- \) with \(h''_- + h_- = \mu_- \). As \(\mu_+ \) and \(\mu_- \) are non-negative measures and formal differentiation of Fourier series corresponds to taking distributional derivatives, both \(h_+ \) and \(h_- \) are support functions.

Let \(y = f_+ - (h_+ - h_-) \). Then \(y'' + y = 0 \). This implies \(y = \alpha \cos \theta + \beta \sin \theta \) for some constants \(\alpha \) and \(\beta \). Thus \(f = (h_+ + \alpha \cos \theta + \beta \sin \theta) - h_- \). But \(\alpha \cos \theta + \beta \sin \theta \) is the support function of the point \((\alpha, \beta) \). So \((h_+ + \alpha \cos \theta + \beta \sin \theta) \) is a support function, and \(f \) is a difference of support functions as
required. Letting $h_1 = h_+ + \alpha \cos \theta + \beta \sin \theta$ and $h_2 = h_-$ then $f = h_1 - h_2$ and for $i = 1, 2$ and by $\|h''_i + h_i\|_{TV} = \|\mu_\pm\| \leq 3\|f'' + f\|_{TV}$. \hfill \qed

4. The affine isoperimetric inequality for arbitrary planar convex sets.

If h is a support function, then h is Lipschitz and therefore absolutely continuous. Therefore the distributional derivative h' of h is just the classical derivative which exists almost everywhere. As h is a support function then by Proposition 3.1 the second distributional derivative h'' is a measure and therefore h' is of bounded variation. By a theorem of Lebesgue, the function h' will be differentiable (in the classical sense) almost everywhere. Denote this derivative of h' by Dh' to distinguish it from the distributional derivative. In what follows we will denote classical derivatives of a function f by Df. As the first distributional derivative of h agrees with the classical derivative we have $Dh' = D^2h$ so that Dh' is the second classical derivative.

Recall, by a theorem of Alexandrov, a convex function on an n dimensional space, and thus a support function, has a generalized second derivative, called the Alexandrov second derivative, almost everywhere and in the one dimensional case the Alexandrov second derivative is just D^2h.

Various authors \cite{6, 13, 8, 17} have extended the definition of affine arc length (and more generally higher dimensional affine surface area) from convex sets with C^2 boundary to general convex sets. It was eventually shown all these definitions are equivalent see i.e. \cite{11} and, for two dimensional convex sets, are given in terms of the support function by

$$\int_S (D^2h + h)^{2/3} d\theta.$$

The following is the general form of the affine isoperimetric inequality in the plane.

Theorem 4.1. Let K be a compact convex body in the plane with area A and affine perimeter Ω. Then

$$\Omega \leq 8\pi^2 A \tag{4.1}$$

with equality if and only if K is an ellipse.

The proof of this Theorem is based on our Theorem \cite{11} and the following result which compares the distributional and classical derivatives of a support function.

Proposition 4.2. Let $h: S \to \mathbb{R}$ be the support function of a bounded convex set. Then distribution $h'' + h$ is of the form

$$h'' + h = (D^2h + h) d\theta + d\mu \tag{4.2}$$

where $d\theta$ is Lebesgue measure, the function $D^2h + h$ is in $L^1(S)$ and μ is a non-negative measure that is singular with respect to Lebesgue measure (i.e. there is a set N of Lebesgue measure zero with $\mu(S \setminus N) = 0$).
The proof of the Proposition is elementary and is left to the reader.

Proof of Theorem 4.1. Let h_o be the support function of a planar convex body K. In the proof of Lemma 6.3 we will see that it is possible to choose a_o and b_o so that $h(\theta) := h_o(\theta) + a_o \cos \theta + b_o \sin \theta$ is positive on S and

\[(4.3) \quad \int_S \frac{\cos \theta}{h^3(\theta)} \, d\theta = \int_S \frac{\sin \theta}{h^3(\theta)} \, d\theta = 0.\]

Using the relation between $D^2 h + h$ and $h'' + h$ given by Proposition 4.2 we have

\[
\int_S h(D^2 h + h) \, d\theta \leq \int_S h(h'' + h) \, d\theta.
\]

This observation, preceded by Hölder’s inequality, gives,

\[(4.4) \quad \left(\int_S (D^2 h + h)^{2/3} \, d\theta \right)^3 \leq \left(\int_S \frac{d\theta}{h^2} \right)^2 \left(\int_S h(h'' + h) \, d\theta \right)^2.
\]

In Theorem 1 take $F = h^{-3}$. Then (4.3) shows that conditions (2.1) are satisfied. Therefore

\[
\left(\int_S \frac{d\theta}{h^2} \right)^3 \left(\int_S h(h'' + h) \, d\theta \right) = \left(\int_S \frac{d\theta}{h^2} \right)^3 \left(\int_S \left[h^2 - (h')^2 \right] \, d\theta \right)
\]

\[(4.5) \quad \leq 4\pi^2 \left(\int_S \frac{d\theta}{h^2} \right)^2.
\]

Combining (4.3) and (4.5) and using the fact that $D^2 h + h = D^2 h_o + h_o$ and $\int_S h(h'' + h) \, d\theta = \int_S h_o(h''_o + h_o) \, d\theta$ gives

\[
\left(\int_S (D^2 h_o + h_o)^{2/3} \, d\theta \right)^3 \leq 4\pi^2 \int_S h_o(h''_o + h_o) \, d\theta.
\]

This is the affine isoperimetric inequality for K.

If equality holds, then the equality conditions of Theorem 1 imply h is the support function of an ellipse centered at the origin. Thus $h_o = h - a \cos \theta - b \sin \theta$ is the support function of an ellipse centered at $(-a, -b)$. \square

5. A FAMILY OF TRANSFORMS.

Let S be the unit circle in \mathbb{R}^2 with coordinate θ as above. For each $\lambda \in (0, \infty)$, let

\[
\psi(\theta) = \sqrt{\lambda^2 \cos^2 \theta + \frac{1}{\lambda^2} \sin^2 \theta}.
\]

Define on S a family of mappings

\[
m(\theta) = \int_0^\theta \frac{dt}{\psi(t)}.
\]
When $\lambda = 1$, this is the identity map. For $0 \leq \theta < \frac{\pi}{2}$ it is easy to verify that

\begin{equation}
(5.1) \quad m_\lambda(\theta) = \arctan \left(\frac{1}{\lambda^2} \tan \theta \right).
\end{equation}

For any measurable function u on S, define the transform

\begin{equation}
(T_\lambda u)(\theta) = u(m_\lambda(\theta))\psi_\lambda(\theta).
\end{equation}

Lemma 5.1. Let u and v be measurable functions on S for which the integrals below exist. Then

(i) The mappings $m_\lambda(\cdot)$ each leave four points fixed:

\begin{align*}
m_\lambda(0) &= 0, & m_\lambda \left(\frac{\pi}{2} \right) &= \frac{\pi}{2}, & m_\lambda(\pi) &= \pi, & m_\lambda \left(\frac{3\pi}{2} \right) &= \frac{3\pi}{2}.
\end{align*}

(ii) The transforms leave the following integrals invariant:

\begin{align}
(5.2) & \quad \int \frac{d\theta}{(T_\lambda u)^2} = \int \frac{d\theta}{u^2}, \\
(5.3) & \quad \int \frac{T_\lambda u}{(T_\lambda v)^3} d\theta = \int \frac{u}{v^3} d\theta, \\
(5.4) & \quad \int_S \{ (T_\lambda u)^2 - [(T_\lambda u)']^2 \} d\theta = \int_S [u^2 - (u')^2] d\theta, \\
(5.5) & \quad \int \frac{\cos \theta}{(T_\lambda u)^3} d\theta = \frac{1}{\lambda} \int \frac{\cos \theta}{u^3(\theta)} d\theta, \\
(5.6) & \quad \int \frac{\sin \theta}{(T_\lambda u)^3} d\theta = \lambda \int \frac{\sin \theta}{u^3(\theta)} d\theta.
\end{align}

Here “\int” represents the integral with respect to $d\theta$ on any of the intervals $[0, \frac{\pi}{4}]$, $[\frac{\pi}{4}, \pi]$, $[\pi, \frac{3\pi}{4}]$, $[\frac{3\pi}{4}, 2\pi]$, or $[0, 2\pi]$. For (5.2), (5.3), (5.5), and (5.6) u and v can be any measurable functions for which the integrals converge. In (5.4), $u \in H^1(S)$.

Proof. (i) From (5.1), one can see that $m_\lambda(0) = 0$, $m_\lambda \left(\frac{\pi}{2} \right) = \frac{\pi}{2}$. Since the integrand is symmetric about $\theta = \frac{\pi}{2}$ on $[0, \pi]$, and is π-periodic, in follows that π and $\frac{3\pi}{2}$ are also fixed points of m_λ.

(ii) We verify invariance for the integrals on the interval $[0, \frac{\pi}{4}]$. Then by the results in (i) and the symmetry of $\psi_\lambda(\theta)$, $\cos \theta$, and $\sin \theta$, the invariance of the integrals on the other intervals follows.

Equations (5.2) and (5.3) are direct consequences from the substitution $\tilde{\theta} = m_\lambda(\theta)$.
As \(C^2(S) \) is dense in \(H^1(S) \) it is enough to verify \(\text{(5.4)} \) in the case \(u \in C^2(S) \). After integrating by parts, we only need to show

\[
\int_S T_\lambda u[T_\lambda u + (T_\lambda u)''] d\theta = \int_S u(u + u'') d\theta.
\]

We employ the fact that \(\psi_\lambda \) is a solution of the equation \(\text{(5.7)} \)

\[
\psi_\lambda'' + \psi_\lambda = \frac{1}{\psi_\lambda^3}.
\]

It follows from \(\text{(5.7)} \) and a straightforward calculation that

\[
T_\lambda u[T_\lambda u + (T_\lambda u)''] = u(m_\lambda(\theta))[u(m_\lambda(\theta)) + u''(m_\lambda(\theta))]
\frac{1}{\psi_\lambda^2(\theta)}.
\]

Again using the change of variable \(\bar{\theta} = m_\lambda(\theta) \), we see \(\text{(5.4)} \) holds.

To obtain \(\text{(5.5)} \) and \(\text{(5.6)} \), we write \(\tan \theta = \lambda^2 \tan \bar{\theta} \). It follows that

\[
\cos \theta \psi_\lambda(\theta) = \frac{1}{\sqrt{\lambda^2 + 1}} = \frac{1}{\lambda \cos \bar{\theta}},
\sin \theta \psi_\lambda(\theta) = \frac{1}{\sqrt{\frac{\lambda^2}{\tan^2 \theta} + 1}} = \lambda \sin \bar{\theta}
\]

and another application of the substitution \(\bar{\theta} = m_\lambda(\theta) \) completes the proofs of \(\text{(5.5)} \) and \(\text{(5.6)} \). \(\square \)

Remark 5.2. Let \(u \) be a positive continuous function on \(S \), then the integral of \(d\theta \) is independent of \(\lambda \). It is not hard to check that as \(\lambda \to \infty \) the mass of \(d\theta/(T_\lambda u)^2 \) concentrates about the points \(\pi/2 \) and \(3\pi/2 \) and when \(\lambda \to 0 \) the mass concentrates about 0 and \(\pi \).

6. Proof of the main inequality.

6.1. Some lemmas.

Lemma 6.1. If \(\{u_k\} \) is a bounded sequence in \(H^1(S) \), then there exists a subsequence (still denoted by \(\{u_k\} \)) and \(u_o \in H^1(S) \), such that \(u_k \to u_o \) in the weak topology of \(H^1(S) \),

\[
\text{(6.1)} \quad u_k \to u_o \quad \text{in } C^\beta(S) \quad \text{for all } \beta < \frac{1}{2}.
\]

This implies

\[
\text{(6.2)} \quad \limsup_{k \to \infty} \int_S [u_k^2 - (u'_k)^2] d\theta \leq \int_S [u_o^2 - (u'_o)^2] d\theta.
\]

Moreover, if \(u_o(\theta_0) = 0 \) at some point \(\theta_0 \), then for \(\delta > 0 \)

\[
\text{(6.3)} \quad \int_{\theta_0}^{\theta_0+\delta} \frac{d\theta}{u_o^2} = \infty \quad \text{and} \quad \int_S \frac{d\theta}{u_k^2} \to \infty \quad \text{as} \quad k \to \infty.
\]
Lemma 6.2. Assume \{u_k\} is a bounded sequence in \(H^1(S)\) with \(u_k > 0\), \(u_k \rightharpoonup u_o \in H^1(S)\) in the weak topology,

\[
\int_S \frac{\cos \theta}{u_k^3} d\theta = 0 = \int_S \frac{\sin \theta}{u_k^3} d\theta,
\]
and that \(u_o\) has at least one zero. Then, viewing the zeros of \(u_o\) as a subset of \(S \subset \mathbb{R}^2\),

\[
(0, 0) \in \text{convex hull of the zeros of } u_o.
\]
If \(u_o\) has three or more zeros then

\[
\int_S [u_k^2 - (u'_k)^2] d\theta < 0 \quad \text{for sufficiently large } k.
\]

Lemma 6.3. Suppose the inequality (2.2) holds under the stronger conditions:

i) \(F\) is measurable and positive on \(S\) and \(h \in H^1(S)\) is positive;

ii) \(F\) satisfies the orthogonality conditions (2.1) and \(h\) satisfies orthogonality conditions

\[
\int_S \frac{\cos \theta}{h^3} d\theta = 0 = \int_S \frac{\sin \theta}{h^3} d\theta.
\]

Then the same inequality (2.2) holds without the orthogonality conditions (6.7) on \(h\) and the strict positivity of \(F\).

Proof of Lemma [6.3]. That there is a \(u_o \in H^1(S)\) and a subsequence with \(u_k \rightharpoonup u_o\) in the weak topology follows from the weak compactness of the closed balls in a Hilbert space. Then (6.1) is a direct consequence of the compact Sobolev imbedding of \(H^1(S)\) into \(C^\beta(S)\) for any \(\beta < \frac{1}{2}\). To prove (6.2) use the fact that the norm of a Hilbert space is lower semi-continuous with respect to weak convergence and thus \(\liminf_{k \to \infty} \int_S [u'_k]^2 d\theta \geq \int_S [u_o']^2 d\theta\). From (6.1) \(\lim_{k \to \infty} \int_S u_k^2 d\theta = \int_S u_o^2 d\theta\). Together these imply (6.2).

Assume that \(u_o\) vanishes at \(\theta_0\). Then by the Sobolev imbedding \(H^1(S) \subset C^\frac{1}{2}(S)\), or an elementary Hölder inequality argument, \(u_o \in C^\frac{1}{2}(S)\) and therefore \(|u_o(\theta)| = |u_o(\theta) - u_o(\theta_0)| \leq C \sqrt{\theta - \theta_0}\) which implies the divergence of the integral \(\int_{\theta_0}^{\theta_0 + \delta} u_o^{-2} d\theta\). As \(u_k \rightharpoonup u_o\) uniformly this implies the second part of (6.3) and completes the proof of the Lemma.

Proof of Lemma [6.2]. Because the imbedding of \(H^1(S)\) into \(C^\beta(S)\) is compact for \(\beta \in [0, 1/2]\) the weak convergence \(u_k \rightharpoonup u_o\) implies \(\{u_k\}\) converges to \(u_o\) uniformly. By Lemma 6.1 the integral \(\int_S u_o^{-2} d\theta\) diverges and therefore \(\int_S u_k^{-3} d\theta\) also diverges. Thus \(\int_S u_k^{-3} d\theta \to \infty\) as \(k \to \infty\). Let \(c_k := (\int_S u_k^{-3} d\theta)^{-1}\). Then \(c_k u_k^{-3}(\theta) d\theta\) is a probability measure on \(S\) and the conditions (6.4) imply the center of mass of this measure is \((0, 0)\). But as \(k \to \infty\) the masses of the measures \(c_k u_k^{-3}(\theta) d\theta\) concentrate at the zeros of \(u_0\). This implies (6.5).
If u_o has three or more zeros, then the convex hull property (6.6) implies there are three zeros $\theta_1, \theta_2, \theta_3$ of u_o such that

(6.8) The zeros $\theta_1, \theta_2, \theta_3$ of u_o are not on an arc of length less than π.

We will show this implies

(6.9) $\int_S [u_o^2 - (u'_o)^2] \, d\theta < 0$.

Which, by (6.2) of Lemma 6.1, implies (6.6).

To see (6.9), we write the integral in three parts:

(6.10) $\int_S [u_o^2 - (u'_o)^2] \, d\theta = \left\{ \int_{\theta_1}^{\theta_2} + \int_{\theta_2}^{\theta_3} + \int_{\theta_3}^{\theta_4} \right\} [u_o^2 - (u'_o)^2] \, d\theta = I_1 + I_2 + I_3$.

From (6.8), we see that lengths of intervals of integration in (6.10) are all less than or equal to π, and at least two of them are strictly less than π. But, [2, p. 185], if $\theta_{i+1} - \theta_i \leq \pi$, then $u_o(\theta_i) = u_o(\theta_{i+1}) = 0$ implies $\int_{\theta_i}^{\theta_{i+1}} [u_o^2 - (u'_o)^2] \, d\theta < 0$ unless $\theta_{i+1} - \theta_i = \pi$ and $u_o = C \sin \theta$ on $[\theta_i, \theta_{i+1}]$. This proves (6.9) and completes the proof of the lemma.

Proof of Lemma 6.3. We assume that the inequality [2,2] holds under the assumptions i) and ii) of Lemma 6.3. We first claim that for each positive function $h \in C^2(S)$, there exists an $h_o(\theta) = a_o \cos \theta + b_o \sin \theta + h(\theta)$ that satisfies the orthogonality conditions (6.7). To see this minimize the function

$$f(a, b) = \int_S \frac{1}{(a \cos \theta + b \sin \theta + h(\theta))^2} \, d\theta$$

for any real numbers a and b, such that $a \cos \theta + b \sin \theta + h(\theta) > 0$ for all θ. It is obvious that $f(a, b)$ is bounded from below by zero. Let $\{h_k(\theta) = a_k \cos \theta + b_k \sin \theta + h(\theta)\}$ be a minimizing sequence. From $h_k(t) > 0$, one can easily see that $\{a_k\}$ and $\{b_k\}$ are bounded, and hence there exist subsequences converging to some $a_0, b_0 \in \mathbb{R}$. Then (a_0, b_0) is a minimizer of f.

Moreover, from Lemma 6.1, we can see that $h_o(\theta) = a_o \cos \theta + b_o \sin \theta + h(\theta) > 0$. (Otherwise h_o has a zero and (by Lemma 6.1) $\int_S h_o^{-2} \, d\theta = \infty$, contradicting that h_o is a minimizer.) Consequently, at (a_o, b_o), we have $\partial f/\partial a = 0 = \partial f/\partial b$. This implies the orthogonality conditions (6.7) on h_o.

We now show that if inequality [2,2] holds for $h_o = a_o \cos \theta + b_o \sin \theta + h(\theta)$, then it is also holds for h. By the orthogonality conditions (2.1) on F.

(6.11) $\int_S F(\theta) h_o(\theta) \, d\theta = \int_S F(\theta) h(\theta) \, d\theta$,

and if h is of class C^2 we can use use integration by parts and the fact that both $\sin \theta$ and $\cos \theta$ are in the kernel of the differential operator $d^2/d\theta^2 + 1$ to get

$$\int_S [h_o^2 - (h'_o)^2] \, d\theta = \int_S h_o(h''_o + h_o) \, d\theta$$
\begin{align*}
\int_{\mathcal{S}} \left(h'' + h \right) \, d\theta &= \int_{\mathcal{S}} \left(h^2 - (h')^2 \right) \, d\theta.
\end{align*}

This will also hold for $h \in H^1(\mathcal{S})$ by approximating by C^2 functions. So if (2.2) holds for h_0 and F, then (6.11) and (6.12) show it holds for h and F.

To see that inequality (2.2) holds also for non-negative continuous functions F and non-negative $h \in H^1(\mathcal{S})$, we let
\begin{align*}
F_\varepsilon &= F + \varepsilon \\
h_\varepsilon &= h + \varepsilon.
\end{align*}
Then obviously, for each $\varepsilon > 0$, both F_ε and h_ε are positive, and F_ε satisfies the orthogonality conditions (2.1). Therefore inequality (2.2) holds for F_ε and h_ε. Take the limit as $\varepsilon \to 0$ to see that (2.2) is also holds for F and h.

Finally the extensions to F non-negative and measurable follows by approximating F by positive functions satisfying the orthogonality conditions (2.1) and taking limits.

\section*{6.2. Outline of the Proof}
Let
\begin{align*}
G &= \left\{ v : v > 0, \int_{\mathcal{S}} \frac{1}{v^3} d\theta < \infty, \int_{\mathcal{S}} \frac{1}{v^3} \cos \theta \, d\theta = 0 = \int_{\mathcal{S}} \frac{1}{v^3} \sin \theta \, d\theta \right\}
\end{align*}
and let
\begin{align*}
\tilde{G} &= \{ u \in G : u \in H^1(\mathcal{S}) \}.
\end{align*}
Define on $\tilde{G} \times G$,
\begin{align*}
I(u, v) &= \frac{\left\{ \int_{\mathcal{S}} \frac{1}{v^3} d\theta \right\}^3 \left\{ \int_{\mathcal{S}} [u^2 - (u')^2] d\theta \right\}}{\left\{ \int_{\mathcal{S}} \frac{1}{v^3} d\theta \right\}^2}.
\end{align*}
It is obvious that for any constants t and s, we have
\begin{align*}
I(tu, sv) &= I(u, v).
\end{align*}
To prove the theorem, it is equivalent to show that
\begin{align*}
I(u, v) &\leq 4\pi^2 \quad \forall (u, v) \in \tilde{G} \times G.
\end{align*}
and the equality holds if and only if
\begin{align*}
\lambda^2 \cos^2 \theta + \frac{1}{\lambda^2} \sin^2 \theta
\end{align*}
and
\begin{align*}
\lambda^2 \cos^2 \theta + \frac{1}{\lambda^2} \sin^2 \theta
\end{align*}
with any non-negative constants k_1, k_2, and $\lambda > 0$.

First, we show that there exists a constant $C < \infty$, such that
\begin{align*}
I(u, v) &\leq C \quad \forall (u, v) \in \tilde{G} \times G.
\end{align*}
It is done by applying the family of transforms and by using a contradiction argument.
Then we study a maximizing sequence \(\{(u_k, v_k)\} \) of the functional \(I(u, v) \). Usually, such a sequence may be unbounded. However thanks to the family of transforms, we are able to convert it into a new sequence which converges to a maximum \((u_0, v_0) \) in \(\tilde{G} \times G \). Finally, we use the well-known classification results on the solutions of the corresponding Euler-Lagrange equations to arrive at the conclusion of the theorem.

6.3. The Proof. Part I.

In this part, we show that there exists a constant \(C < \infty \), such that

\[
I(u, v) \leq C, \quad \forall (u, v) \in \tilde{G} \times G.
\]

We argue by contradiction. Suppose in contrary, there exists a sequence \(\{ (\tilde{u}_k, v_k) \} \) in \(\tilde{G} \times G \), such that \(I(\tilde{u}_k, v_k) \to \infty \), as \(k \to \infty \).

Let \(u_k = \frac{\tilde{u}_k}{\|\tilde{u}_k\|} \), then

\[
\|u_k\| = 1, \quad \text{and} \quad I(u_k, v_k) \to \infty.
\]

Here and in the rest of the paper, for convenience of writing, we use \(\{ (u_k, v_k) \} \) to denote the sequence itself or one of its subsequences.

The first part of (6.17) implies that

\[
J(u_k) = \int_S [u_k^2 - (u'_k)^2] \, d\theta \text{ is bounded},
\]

Therefore from the second part, we must have

\[
u_k(\theta) \to 0, \quad \text{for some} \ \theta.
\]

Otherwise, if \(\{ u_k \} \) is bounded away from zero, then by the H"older inequality

\[
\int_S \frac{1}{v^2} \, d\theta \leq \left(\int_S \frac{u}{v^3} \, d\theta \right)^{2/3} \left(\int_S \frac{1}{u^2} \, d\theta \right)^{1/3}
\]
we would arrive at the boundedness of

\[
\left(\int_S \frac{1}{v_k^2} \, d\theta \right)^3 \left(\int_S \frac{u_k}{v_k^3} \, d\theta \right)^{-2}.
\]

This, together with (6.18), contradicts with the second part of (6.17).

Without loss of generality we assume that \(J(u_k) > 0 \) for all \(k \). We have shown that \(u_0 \) has at least one zero and therefore by the convex hull property of Lemma 6.2 the point \((0, 0) \) is in the convex hull of the zeros of \(u_0 \). This implies that \(u_0 \) has at least two zeros. If \(u_0 \) has three or more zeros then (6.6) of Lemma 6.2 implies that \(J(u_k) < 0 \) which is not the case. Thus \(u_0 \) has exactly two zeros.

As \(u_0 \) has exactly two zeros, the convex hull property (6.5) implies the two zeros must be antipodal, say they are at \(\theta = \frac{\pi}{2} \) and \(\frac{3\pi}{2} \). Obviously, at
these two points, $u_k^{-2} \to \infty$. For each u_k, pick a point p_k near $\pi/2$, such that
\begin{equation}
\int_{p_k - \frac{\pi}{2}}^{p_k} \frac{1}{u_k^2} \, d\theta = \int_{p_k}^{p_k + \frac{\pi}{2}} \frac{1}{u_k^2} \, d\theta.
\end{equation}
Then, $p_k \to \pi/2$. For a number $\delta > 0$ (to be concrete $\delta = \pi/4$ will work), let
\begin{align*}
D_1^k &= \{ \theta : p_k - \frac{\pi}{2} \leq \theta \leq p_k - \delta \}, \\
D_2^k &= \{ \theta : p_k + \delta \leq \theta \leq p_k + \frac{\pi}{2} \}.
\end{align*}
$D_k = D_1^k \cup D_2^k$.

We will apply the family of transforms T_λ introduced in Section 5. We say that the family of transforms T_λ in Lemma 6.1 are centered at $\pi/2$, and write $T_\lambda = T_\lambda_{\pi/2}$. Similarly, one can define transforms centered at any point q, and denote them by $T_{\lambda,q}$.

By Lemma 5.1 and Remark 5.2 for each u_k, one can choose a transform $T_k = T_{\lambda_k,p_k}$, such that
\begin{equation}
\int_{B_\delta(p_k)} (T_k u_k)^2 \, d\theta = \int_{D_k} (T_k u_k)^2 \, d\theta,
\end{equation}
where $B_\delta(p_k) = (p_k - \delta, p_k + \delta)$. Let $w_k = \|T_k u_k\|_{H^1}^{-1} T_k u_k$. Then $\|w_k\|_{H^1} = 1$ and we can apply Lemma 6.1 to the sequence $\{w_k\}$ and find a subsequence, still denoted by $\{w_k\}$, and a $w_0 \in H^1(S)$ such that $w_k \to w_0$ in the weak topology of H^1 and $w_k(\theta) \to w_0(\theta)$ in C_β for all $\beta < \frac{1}{2}$.

If w_0 has no zeros, then by (5.2) in Lemma 5.1 and (6.20), $I(u_k,v_k)$ is bounded, and we are done.

Therefore, we may assume that w_0 has at least one zero. By the convex hull property of Lemma 6.2
\begin{equation}
(0,0) \in \text{convex hull of the zeros of } w_0.
\end{equation}
This implies that w_0 has at least two zeros and if w_0 has three or more zeros then Lemma 6.2 implies $J(w_k) < 0$ for large k, which, by (5.1) of Lemma 5.1 again would contradict with the assumption that $J(u_k) > 0$. Therefore w_0 has exactly two zeros and by the convex hull property (6.23) these zeros are antipodal. Let the zeros be θ_0 and θ_1 and we can assume that $\theta_0 \in [0,\pi]$. Then $\int_0^\pi w_0^{-2} \, d\theta = \infty$ (by (6.23)), $w_k \to w_0$ uniformly, and $p_k \to \pi/2$ imply
\begin{equation}
\int_{p_k - \frac{\pi}{2}}^{p_k + \frac{\pi}{2}} \frac{d\theta}{w_k^2} \to \infty.
\end{equation}
From (6.21), (6.22) and the properties of the transforms, we also have
\begin{equation}
\int_{p_k - \frac{\pi}{2}}^{p_k} \frac{d\theta}{w_k^2} = \int_{p_k}^{p_k + \frac{\pi}{2}} \frac{d\theta}{w_k^2},
\end{equation}
and
\begin{equation}
\int_{B_\delta(p_k)} \frac{d\theta}{w_k^2} = \int_{D_k} \frac{d\theta}{w_k^2}.
\end{equation}
Now (6.24), (6.25), and (6.26) imply that the integrals of \(w_k - \frac{2}{k} \) on all the four sets
\[[p_k - \frac{\pi}{2}, p_k], \quad [p_k, p_k + \frac{\pi}{2}], \quad B_\delta(p_k), \quad \text{and} \quad D_k \]
approach infinity. Therefore \(w_\alpha\) has at least one zero on each of the following sets
\[(6.27) \quad [0, \frac{\pi}{2}], \quad [\frac{\pi}{2}, \pi], \quad B_\delta(\frac{\pi}{2}), \quad \text{and} \quad [0, \pi] \setminus B_\delta(\frac{\pi}{2}). \]
From this we see that \(w_\alpha\) has at least two zeros on the closed upper half circle. As the two zeros of \(w_\alpha\) are antipodal they must be 0 and \(\pi\). But as \(B_\delta(\pi/2)\) also contains a zero this implies that \(w_\alpha\) has three zeros, a contradiction.

Part II.

In part I, we have shown that
\[I(u, v) \leq C < \infty \quad \forall \ (u, v) \in \tilde{G} \times G. \]
To obtain the least possible value of the constant \(C\), we consider a maximizing sequence \(\{(\tilde{u}_k, v_k)\}\) with \(\|\tilde{u}_k\| = 1\).

Using an entire similar argument as in part I, we can show that there exists a family of transforms \(T_k = T_{\lambda_k, p_k}\), such that for \(u_k = \frac{T_k \tilde{u}_k}{\|T_k \tilde{u}_k\|}\), we have
\[u_k(\theta) \to u_\alpha(\theta) > 0, \quad \forall \theta \in [0, 2\pi]. \]

It follows from (6.20) that
\[(6.28) \quad I(u_k, v_k) \leq I(u_k, u_k). \]
Thus, \((u_\alpha, u_\alpha)\) is a maximum of \(I(u, v)\); and furthermore, it is in the interior of \(\tilde{G} \times \tilde{G}\). Therefore, we have
\[\frac{\partial I}{\partial u} \bigg|_{\tilde{G} \times \tilde{G}} (u_\alpha, u_\alpha) = 0. \]
Through a straightforward calculation, one can see that a constant multiple of \(u_\alpha\), still denoted by \(u_\alpha\), satisfies the following Euler-Lagrange equation
\[(6.29) \quad u''_\alpha(\theta) + u_\alpha(\theta) = \frac{1}{u_\alpha^3} + a \frac{\cos \theta}{u_\alpha^4} + b \frac{\sin \theta}{u_\alpha^4}. \]
To determine the constants \(a\) and \(b\), we multiply both sides of (6.29) by \(\cos \theta\) and \(\sin \theta\) respectively, then integrate over \([0, 2\pi]\) to obtain
\[(6.30) \quad a \int_S \frac{\cos^2 \theta}{u_\alpha^4} d\theta + b \int_S \frac{\sin \theta \cos \theta}{u_\alpha^4} d\theta = 0, \]
\[(6.31) \quad a \int_S \frac{\cos \theta \sin \theta}{u_\alpha^4} d\theta + b \int_S \frac{\sin^2 \theta}{u_\alpha^4} d\theta = 0. \]
Using the Hölder inequality, one can show that
\begin{equation}
\left| \int_S \cos^2 \theta \frac{d\theta}{u_0^4} - \int_S \sin \theta \cos \theta \frac{d\theta}{u_0^4} + \int_S \sin^2 \theta \frac{d\theta}{u_0^4} \right| > 0.
\end{equation}

Therefore the algebraic system (6.30) and (6.31) has only the trivial solution $a = b = 0$. Consequently, u_0 satisfies
\begin{equation}
\frac{d^2}{d\theta^2} u_0 + u_0 = \frac{1}{u_0^3}.
\end{equation}

Now by the well-known classification result for equation (6.33), we have
$$u_0(\theta) = \sqrt{\lambda^2 \cos^2 \theta + \frac{1}{\lambda^2} \sin^2 \theta}$$
for some constant λ.

Then, a straightforward calculation leads to
$$I(u_0, u_0) = 4\pi^2.$$

Finally, since in (6.20), the equality holds if and only if v is a constant multiple of u, we see that if (u_0, v_0) is a maximum of the functional $I(u, v)$, then v_0 must be a constant multiple of u_0.

This completes the proof of the theorem.

Acknowledgments: It is a pleasure to thank Steve Dilworth and Anton Schep for various references. We also thank Anton and Kostya Oskolkov for helpful comments regarding the exposition.

References

[1] G. Dolzmann and D. Hug, Equality of two representations of extended affine surface area, Arch. Math. (Basel) 65 (1995), no. 4, 352–356. MR 97c:52019
[2] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952, 2d ed. MR 13,727e
[3] Evans M. Harrell, II, A direct proof of a theorem of Blaschke and Lebesgue, J. Geom. Anal. 12 (2002), no. 1, 81–88. MR 1 881 292
[4] E. Hewitt and K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 32 #5826
[5] L. Hörmander, The analysis of linear partial differential operators. I, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1990, Distribution theory and Fourier analysis.
[6] Kurt Leichtweiss, Zur Affinoberfläche konvexer Körper, Manuscripta Math. 56 (1986), no. 4, 429–464. MR 87k:52011
[7] E. Lutwak, On the Blaschke-Santaló inequality, Discrete geometry and convexity (New York, 1982), New York Acad. Sci., New York, 1985, pp. 106–112. MR 87c:52018
[8] E. Lutwak, Extended affine surface area, Adv. Math. 85 (1991), no. 1, 39–68. MR 92d:52012
[9] E. Lutwak, The Brunn-Minkowski-Firey theory I: mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), 131–150.
[10] E. Lutwak, V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom. 41 (1995), 227–246.
A GENERALIZED AFFINE ISOPERIMETRIC INEQUALITY

[11] H. L. Royden, *Real analysis*, third ed., Macmillan Publishing Company, New York, 1988. MR 90g:00004

[12] L. A. Santaló, *Integral geometry and geometric probability*, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976, With a foreword by Mark Kac, Encyclopedia of Mathematics and its Applications, Vol. 1. MR 55 #6340

[13] C. Schütt and E. Werner, *The convex floating body*, Math. Scand. 66 (1990), 275–290.

[14] A. Stancu, *The discrete planar L0-Minkowski problem*, Adv. Math. 167 (2002), 160–174.

[15] A. Stancu, *On the number of solutions to the discrete two-dimensional L0-Minkowski problem*, Adv. Math. 180 (2003), 290–323.

[16] V. Umanskiy, *On solvability of the two dimensional Lp-Minkowski problem*, Adv. Math. 180 (2003), 176–186.

[17] E. Werner, *Illumination bodies and affine surface area*, Studia Math. 110 (1994), no. 3, 257–269. MR 95g:52010

Department of Mathematics, Yeshiva University, New York NY 10033, USA

E-mail address: wchen@yu.edu

URL: http://math.smu.edu/~wchen/

Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

E-mail address: howard@math.sc.edu

URL: www.math.sc.edu/~howard

Department of Mathematics, Polytechnic University, Brooklyn, NY 11201, USA

E-mail address: elutwak@duke.poly.edu

Department of Mathematics, Polytechnic University, Brooklyn, NY 11201, USA

E-mail address: dyang@duke.poly.edu

URL: http://www.math.poly.edu/~yang/

Department of Mathematics, Polytechnic University, Brooklyn, NY 11201, USA

E-mail address: gzhang@duke.poly.edu

URL: http://www.math.poly.edu/~g Zhang/