Zero modes and low-energy resolvent expansion for three dimensional Schrödinger operators with point interactions

Raffaele Scandone

Abstract We investigate the low-energy behavior of the resolvent of Schrödinger operators with finitely many point interactions in three dimensions. We also discuss the occurrence and the multiplicity of zero energy obstructions.

1 Introduction and main results

A central topic in quantum mechanics is the study of quantum systems subject to very short-range interactions, supported around a submanifold of the ambient space. A relevant situation occurs when the singular interaction is supported on a set of points in the Euclidean space \(\mathbb{R}^d \). This leads to consider, formally, operators of the form

\[
-\Delta + \sum_{y \in Y} \mu_y \delta_y(z),
\]

where \(Y \) is a discrete subset of \(\mathbb{R}^d \), and \(\mu_y, y \in Y \), are real coupling constants.

Heuristically, \(\text{(1)} \) can be interpreted as the Hamiltonian for a non-relativistic quantum particle interacting with “point obstacles” of strengths \(\mu_y \), located at \(y \in Y \).

From a mathematical point of view, Schrödinger operators with point (delta-like) interactions have been intensively studied, since the first rigorous realization by Berezin and Faddeev \([5] \), and subsequent characterizations by many other authors \([2, 3, 16, 17, 8, 23] \) (see the surveys \([11, 3] \), the monograph of Albeverio, Gesztesy, Høegh-Krohn, and Holden \([4] \), and references therein for a thorough discussion).

In this work we focus on the case of finitely many point interactions in three dimensions. Our aim is to provide a detailed spectral analysis at the bottom of the continuous spectrum, i.e. at zero energy. A similar analysis has been done in \([6] \)
for the two dimensional case, with application to the L^p-boundedness of the wave operators.

We start by recalling some well-known facts on the construction and the main properties of Schrödinger operators with point interactions.

We fix a natural number $N \geq 1$ and the set $Y = \{y_1, \ldots, y_N\} \subseteq \mathbb{R}^3$ of distinct centers of the singular interactions. Consider

$$T_Y := (-\Delta) \left| C_0^\infty(\mathbb{R}^3 \setminus \{Y\}) \right.$$ (2)

as an operator closure with respect to the Hilbert space $L^2(\mathbb{R}^3)$. It is a closed, densely defined, non-negative, symmetric operator on $L^2(\mathbb{R}^3)$, with deficiency index N. Hence, it admits an N^2-real parameter family of self-adjoint extensions. Among these, there is an N-parameter family of local extension, denoted by

$$\{ -\Delta_{\alpha,Y} \mid \alpha = (\alpha_1, \ldots, \alpha_N) \in (\mathbb{R} \cup \{\infty\})^N \},$$ (3)

whose domain of self-adjointness is qualified by certain local boundary conditions at the singularity centers.

The self-adjoint operators $-\Delta_{\alpha,Y}$ provide rigorous realizations of the formal Hamiltonian [1], the coupling parameters $\alpha_j, j = 1, \ldots, N$, being now proportional to the inverse scattering length of the interaction at the center y_j. In particular, if for some $j \in \{1, \ldots, N\}$ one has $\alpha_j = \infty$, then no actual interaction is present at the point y_j, and in practice things are as if one discards the point y_j. When all $\alpha_j = \infty$, one recovers the Friedrichs extension of T_Y, namely the self-adjoint realization of $-\Delta$ on $L^2(\mathbb{R}^3)$. Owing to the discussion above, we may henceforth assume, without loss of generality, that α runs over \mathbb{R}^N.

We review the basic properties of $-\Delta_{\alpha,Y}$, from [4, Section II.1.1] and [26] (see also [11, 9, 18, 12]). We introduce first some notations.

For $z \in \mathbb{C}$ and $x, y, y' \in \mathbb{R}^3$, set

$$\mathcal{G}_z^x := \frac{e^{iz|x-y|}}{4\pi|x-y|}, \quad \mathcal{G}_z^{y'y} := \begin{cases}
\begin{array}{ll}
\frac{e^{i|z|y'-y'}}{4\pi|y-y'|} & \text{if } y' \neq y \\
0 & \text{if } y' = y,
\end{array}
\end{cases} \quad (4)$$

and

$$\Gamma_{\alpha,Y}(z) := \left(\alpha_j - \frac{iz}{4\pi} \right) \delta_{j,k} - \mathcal{G}_z^{y'y_k} \right)_{j,k=1,\ldots,N}. \quad (5)$$

The function $z \mapsto \Gamma_{\alpha,Y}(z)$ has values in the space of $N \times N$ symmetric, complex valued matrices and is clearly entire, whence $z \mapsto \Gamma_{\alpha,Y}(z)^{-1}$ is meromorphic in \mathbb{C}. It is known that $\Gamma_{\alpha,Y}(z)^{-1}$ has at most N poles in the open upper half-plane \mathbb{C}^+, which are all located along the positive imaginary semi-axis. We denote by \mathfrak{e}^+ the set of such poles. Moreover, we denote by \mathfrak{e}^0 the set of poles of $\Gamma_{\alpha,Y}(z)^{-1}$ on the real line. Observe that \mathfrak{e}^0 is finite and symmetric with respect to $z = 0$. Actually, either $\mathfrak{e}^0 = \emptyset$ or $\mathfrak{e}^0 = \{0\}$. This follows by a generalization of the Rellich Uniqueness Theorem [29, Theorem 2.4], valid for a large class of compactly supported perturbations of
the Laplacian, introduced by Sjöstrand and Zworski in [30]. For an introduction to the classical theory of the Rellich Uniqueness Theorem, we refer to the monograph of Lax and Phillips [22]. More recently, the absence of non-zero real poles for $\Gamma^{-1}_{\alpha,Y}$ has been proved through different techniques by Galtbayar-Yajima [14], and by the author in collaboration with Michelangeli [24].

The following facts are known.

Proposition 1

(i) The domain of $-\Delta_{\alpha,Y}$ has the following representation, for any $z \in \mathbb{C}^+ \setminus \mathbb{D}^+$:

$$\mathcal{D}(-\Delta_{\alpha,Y}) = \left\{ g = F_z + \sum_{j,k=1}^{N} (\Gamma_{\alpha,Y}(z)^{-1})_{jk} F_z(\mathcal{G}^y_j), F_z \in H^2(\mathbb{R}^3) \right\}. \quad (6)$$

Equivalently, for any $z \in \mathbb{C}^+ \setminus \mathbb{E}^+$,

$$\mathcal{D}(-\Delta_{\alpha,Y}) = \left\{ g = F_z + \sum_{j=1}^{N} c_j \mathcal{G}^y_j \left| \begin{array}{c} F_z \in H^2(\mathbb{R}^3) \\ (c_1, \ldots, c_N) \in \mathbb{C}^N \\ \left(\begin{array}{c} F_z(y_1) \\ \vdots \\ F_z(y_N) \end{array} \right) = \Gamma_{\alpha,Y}(z) \left(\begin{array}{c} c_1 \\ \vdots \\ c_N \end{array} \right) \end{array} \right. \right\}. \quad (7)$$

At fixed z, the decompositions above are unique.

(ii) With respect to the decompositions (6)-(7), one has

$$(-\Delta_{\alpha,Y} - z^2) g = (-\Delta - z^2) F_z. \quad (8)$$

(iii) For $z \in \mathbb{C}^+ \setminus \mathbb{D}^+$, we have the resolvent identity

$$(-\Delta_{\alpha,Y} - z^2)^{-1} - (-\Delta - z^2)^{-1} = \sum_{j,k=1}^{N} (\Gamma_{\alpha,Y}(z)^{-1})_{jk} |\mathcal{G}^y_j \rangle \langle \mathcal{G}^y_k| \cdot (9)$$

(iv) The spectrum $\sigma(-\Delta_{\alpha,Y})$ of $-\Delta_{\alpha,Y}$ consists of at most N non-positive eigenvalues and the absolutely continuous part $\sigma_{ac}(-\Delta_{\alpha,Y}) = [0, \infty)$, the singular continuous spectrum is absent.

Parts (i) and (ii) of Proposition 1 above originate from [17] and are discussed in [4] Theorem II.1.1.3, in particular (7) is highlighted in [11]. Part (iii) was first proved in [16, 17] (see also [4] equation (II.1.1.33)). Part (iv) is discussed in [4] Theorem II.1.1.4, where it is stated that $\sigma_p(-\Delta_{\alpha,Y}) \subset (-\infty, 0)$. An errata at the end of the monograph (see also [13, 15]) specifies that a zero eigenvalue embedded in the continuous spectrum can actually occur: in fact for every $N \geq 2$ one can find a configuration Y of the N centers, and coupling parameters $\alpha_1, \ldots, \alpha_N$ such that $0 \in \sigma_p(-\Delta_{\alpha,Y})$ – see the discussion in Section [4].

Next, let us discuss in detail the spectral properties of $-\Delta_{\alpha,Y}$, whose resolvent is characterized by (9) as an explicit rank-N perturbation of the free resolvent. For negative eigenvalues, the situation is well-understood [4] Theorem II.1.1.4.
Proposition 2 There is a one to one correspondence between the poles $i\lambda \in \mathcal{E}^+$ of $\Gamma_{\alpha,Y}(z)^{-1}$ and the negative eigenvalues $-\lambda^2$ of $-\Delta_{\alpha,Y}$, counting the multiplicity. The eigenfunctions associated to the eigenvalue $-\lambda^2 < 0$ have the form
\[\psi = \sum_{j=1}^{N} c_j \varphi_{i\lambda}^j, \]
where $(c_1, \ldots, c_N) \in \text{Ker} \Gamma_{\alpha,Y}(i\lambda) \setminus \{0\}$.

Our main purpose is to analyze the spectral behavior of $-\Delta_{\alpha,Y}$ at $z = 0$, and more generally when z approaches the real line. The starting point is a classical version of the Limiting Absorption Principle for the free Laplacian. Given $\sigma > 0$, we consider the Banach space
\[B_\sigma := \mathcal{B}(L^2(\mathbb{R}^3, \langle x \rangle^{2+\sigma} dx); L^2(\mathbb{R}^3, \langle x \rangle^{-2-\sigma} dx)), \]
where $\langle x \rangle := \sqrt{1+|x|^2}$, and $\mathcal{B}(X;Y)$ denotes the space of linear bounded operators from X to Y. We have the following result [1, 21, 19].

Proposition 3 (Limiting Absorption Principle for $-\Delta$) Let $\sigma > 0$. For any $z \in \mathbb{C}^+$, we have $(-\Delta - z^2)^{-1} \in B_\sigma$. Moreover, the map $\mathbb{C}^+ \ni z \mapsto (-\Delta - z^2)^{-1} \in B_\sigma$ can be continuously extended to the real line.

Owing to the resolvent formula (9), and observing that for any $z \in \mathbb{C}^+ \cup \mathbb{R}$ the projectors $|\varphi_{i\lambda}^j \rangle \langle \varphi_{i\lambda}^k|$ belong to B_σ, it is easy to deduce that also $-\Delta_{\alpha,Y}$ satisfies a Limiting Absorption Principle.

Proposition 4 (Limiting Absorption Principle for $-\Delta_{\alpha,Y}$) Let $\sigma > 0$. For every $z \in \mathbb{C}^+ \setminus \mathcal{E}^+$, we have $(-\Delta_{\alpha,Y} - z^2)^{-1} \in B_\sigma$. Moreover, the map
\[\mathbb{C}^+ \setminus \mathcal{E}^+ \ni z \mapsto (-\Delta_{\alpha,Y} - z^2)^{-1} \in B_\sigma \]
can be continuously extended to $\mathbb{R} \setminus \mathcal{E}^0$.

Our main result is a resolvent expansion in a neighborhood of $z = 0$, which in view of the previous discussion is the only possible singular point on the real line for the map $z \mapsto (-\Delta_{\alpha,Y} - z^2)^{-1} \in B_\sigma$.

Theorem 1 In a (real) neighborhood of $z = 0$, we have the expansion
\[(-\Delta_{\alpha,Y} - z^2)^{-1} = \frac{R_{-2}}{z^2} + \frac{R_{-1}}{z} + R_0(z), \]
where $R_{-2}, R_{-1} \in B_\sigma$ and $z \mapsto R_0(z)$ is a continuous B_σ-valued map. Moreover, $R_{-2} \neq 0$ if and only if zero is an eigenvalue for $-\Delta_{\alpha,Y}$.

Remark 1 For Schrödinger operators of the form $-\Delta + V$, the Limiting Absorption Principle and the analogous of Theorem 1 can be proved under suitable short-range
assumptions on the scalar potential V (see e.g. the classical papers \cite{[1],19}). In this case, moreover, it is well-known that $R_{-1} \neq 0$ if and only if there exists a generalized eigenfunction at $z = 0$ (a zero-energy resonance for $-\Delta + V$), namely a function $\psi \in L^2(\mathbb{R}^3, (x)^{-1-\sigma} \, dx) \setminus L^2(\mathbb{R}^3)$, for any $\sigma > 0$, which satisfies $(-\Delta + V)\psi = 0$ as a distributional identity on \mathbb{R}^3. As it will be clear from the proof of Theorem 1, a similar characterization holds true also for $-\Delta_{\alpha,Y}$ (see Remark 2).

2 Asymptotic for $\Gamma_{\alpha,Y}(z)^{-1}$ as $z \to 0$

We fix $N \geq 1$, $\alpha \in \mathbb{R}^N$ and $Y \subseteq \mathbb{R}^3$, and we set $\Gamma(z) := \Gamma_{\alpha,Y}(z)$.

We shall use the notation $O(z^k)$, $k \in \mathbb{Z}$, to denote a meromorphic $M_N(\mathbb{C})$-valued function whose Laurent expansion in a neighborhood of $z = 0$ contains only terms of degree $\geq k$. In particular, $O(1)$ denotes an analytic map in a neighborhood of $z = 0$. We also write $\Theta(z^k)$ to denote a function of the form $A z^k$, with $A \in M_N(\mathbb{C}) \setminus \{0\}$.

In a neighborhood of $z = 0$, we can expand

$$\Gamma(z) = \Gamma_0 + z \Gamma_1 + z^2 \Gamma_2 + O(z^3).$$

Explicitly, we have

$$(\Gamma_0)_{jk} = a_j \delta_{jk} - \Theta_0^{Y_j}, \quad (\Gamma_1)_{jk} = (4\pi i)^{-1}, \quad (\Gamma_2)_{jk} = (8\pi)^{-1} |y_j - y_k|.$$

In particular, Γ_0, Γ_2 are real symmetric matrices, while Γ_1 is skew-Hermitian, i.e. $\Gamma_1^* = -\Gamma_1$. Our aim is to characterize the small z behavior of $\Gamma(z)^{-1}$. Preliminary, we recall the following useful result due to Jensen and Nenciu \cite{[20]}.

Lemma 1 \textbf{(Jensen-Nenciu)} Let A be a closed operator in a Hilbert space \mathcal{H} and P a projection, such that $A + P$ has a bounded inverse. Then A has a bounded inverse if and only if

$$B = P - P(A + P)^{-1}$$

has a bounded inverse in $P\mathcal{H}$, and in this case

$$A^{-1} = (A + P)^{-1} + (A + P)^{-1} P(B \mid P\mathcal{H})^{-1} P(A + P)^{-1}.$$

We can state now the main result of this Section.

Proposition 5 \textbf{In a neighborhood of} $z = 0$ \textbf{we have the Laurent expansion}

$$\Gamma(z)^{-1} = A_{-2} \frac{1}{z^2} + A_{-1} \frac{1}{z} + O(1),$$

where $A_{-2}, A_{-1} \in M_N(\mathbb{C})$. Moreover,

(i) $A_{-2} \neq 0$ if and only if $\text{Ker} \Gamma_0 \cap \text{Ker} \Gamma_1 \neq \{0\}$,

(ii) $A_{-1} \neq 0$ if and only if $\text{Ker} \Gamma_0 \not\subseteq \text{Ker} \Gamma_1$.

Proof If \(I_0 = \Gamma(0) \) is non-singular, then \(\Gamma(z)^{-1} \) is analytic in a sufficiently small neighborhood of \(z = 0 \). Assume now that \(I_0 \) is singular. Let us distinguish two cases:

Case 1: \(\text{Ker} I_0 \cap \text{Ker} I_1 = \{0\} \). Let us set \(\Gamma_{\leq 1}(z) := I_0 + zI_1 \), and observe that for \(z \) small enough, \(z \neq 0 \), the matrix \(\Gamma_{\leq 1}(z) \) is non-singular. Suppose indeed that \(\Gamma_{\leq 1}(z)v = 0 \) for some \(v \in \mathbb{C}^N \). If \(I_0v \neq 0 \), then for small \(z \) we also have \(\Gamma_{\leq 1}(z)v \neq 0 \), a contradiction. Hence \(I_0v = 0 \), which for \(z \neq 0 \) implies \(I_1v = 0 \), and using the hypothesis \(\text{Ker} I_0 \cap \text{Ker} I_1 = \{0\} \) we deduce that \(v = 0 \). Observe also that for \(z \) small enough, \(z \neq 0 \), the matrix \(\Gamma(z) \) is non-singular, with \(\Gamma(z)^{-1} = \Gamma_{\leq 1}(z)^{-1} + O(1) \).

In order to invert \(\Gamma_{\leq 1}(z) \), we use the Jensen-Nenciu Lemma. Let \(P : \mathbb{C}^N \to \mathbb{C}^N \) be the orthogonal projection onto \(\text{Ker} I_0 \). Since \(I_0^* = I_0 \), we have that \(I_0 + P \) is non-singular, whence the same is \(\Gamma_{\leq 1}(z) + P \) for small \(z \), with \((\Gamma_{\leq 1}(z) + P)^{-1} = O(1) \). More precisely,

\[
(\Gamma_{\leq 1}(z) + P)^{-1} = [I + z(I_0 + P)^{-1}I_1]^{-1}[I_0 + P]^{-1}
= [I - z(I_0 + P)^{-1}I_1][I_0 + P]^{-1} + O(z^2). \tag{13}
\]

By Lemma 1 we get

\[
\Gamma_{\leq 1}(z)^{-1} = (\Gamma_{\leq 1}(z) + P)^{-1} + (\Gamma_{\leq 1}(z) + P)^{-1}P \left((P - P(\Gamma_{\leq 1}(z) + P)^{-1}P) \mid P \mathbb{C}^N \right)^{-1} P(\Gamma_{\leq 1}(z) + P)^{-1}. \tag{14}
\]

Observe that \((I_0 + P)^{-1}P = P \), and since \(I_0^* = I_0 \) we also have \(P(I_0 + P)^{-1} = P \). Using these relations and \(\text{(13)} \), we compute

\[
P - P(\Gamma_{\leq 1}(z) + P)^{-1}P = zP\Gamma_1P + O(z^2).
\]

Substituting into \(\text{(14)} \) we obtain

\[
\Gamma_{\leq 1}^{-1}(z) = (\Gamma_{\leq 1}(z) + P)^{-1}
+ (\Gamma_{\leq 1}(z) + P)^{-1}P \left((zP\Gamma_1P \mid P \mathbb{C}^N)^{-1} + O(1) \right) P(\Gamma_{\leq 1}(z) + P)^{-1}
= z^{-1}P(\Gamma_1P \mid P \mathbb{C}^N)^{-1}P + O(1) = \Theta(z^{-1}) + O(1). \tag{15}
\]

Case 2: \(\text{Ker} I_0 \cap \text{Ker} I_1 \neq \{0\} \). We start by proving that \(\text{Ker} I_1 \cap \text{Ker} I_2 = \{0\} \). Since \(I_2 \) is real symmetric, and \(I_1 \) is purely imaginary and skew-symmetric, it is sufficient to show that the quadratic form associated to \(I_2 \) is strictly negative on

\[
(\text{Ker} I_1 \cap \mathbb{R}^N) \setminus \{0\} = \{v \in \mathbb{R}^N \setminus \{0\} \mid v_1 + \ldots + v_N = 0 \}.
\]

To this aim, we prove preliminary that for any \(v \in \mathbb{R}^N \), with \(v_1 + \ldots + v_N = 0 \),

\[
\langle I_2v, v \rangle := (8\pi)^{-1} \sum_{1 \leq j, k \leq N} |y_j - y_k| |v_j v_k| \leq 0. \tag{16}
\]
The key point is to use the so called averaging trick. By rotational and scaling invariance, we can see that there exists a positive constant c such that, for any $y \in \mathbb{R}^3$,
\[
\int_{S^2} |\langle w, y \rangle| dw = c|y|.
\]
It follows that
\[
(8\pi)^{-1} \sum_{1 \leq j,k \leq N} |y_j - y_k| v_j v_k = (8\pi c)^{-1} \int_{S^2} \sum_{1 \leq j,k \leq N} |\langle w, y_j - y_k \rangle| v_j v_k dw, \quad (17)
\]
and then it is sufficient to prove that, for a fixed $w \in S^2$,
\[
\sum_{1 \leq j,k \leq N} |\tilde{y}_j - \tilde{y}_k| v_j v_k \leq 0,
\]
where we set $\tilde{y}_j := \langle w, y_j \rangle$ for $j = 1, \ldots, N$. We have
\[
\sum_{1 \leq j,k \leq N} |\tilde{y}_j - \tilde{y}_k| v_j v_k = 2 \sum_{1 \leq j,k \leq N} \max\{\tilde{y}_j - \tilde{y}_k, 0\} v_j v_k
\]
\[= 2 \int_{t \in \mathbb{R}} \sum_{1 \leq j,k \leq N} [\tilde{y}_k < t < \tilde{y}_j] v_j v_k, \quad (18)
\]
where we use the Iverson bracket notation $[P]$, which equals 1 if the statement P is true and 0 if it is false. So it is enough to prove that, for almost every $t \in \mathbb{R}$,
\[
\sum_{\tilde{y}_k < t < \tilde{y}_j} v_j v_k \leq 0.
\]
For every $t \in \mathbb{R} \setminus \{\tilde{y}_1, \ldots, \tilde{y}_N\}$, define $J_t := \{j \mid \tilde{y}_j > t\}$, $K_t := \{k \mid \tilde{y}_k < t\}$. We have
\[
\sum_{\tilde{y}_k < t < \tilde{y}_j} v_j v_k = \sum_{j \in J_t, k \in K_t} v_j v_k = \left(\sum_{j \in J_t} v_j \right) \left(\sum_{k \in K_t} v_k \right) = -\left(\sum_{j \in J_t} v_j \right)^2 \leq 0, \quad (19)
\]
where we use, in the last equality, the hypothesis $v_1 + \ldots + v_N = 0$.

Assume now that we have the equality in (16), for a suitable vector $v \in \mathbb{R}^N$ with $v_1 + \ldots + v_N = 0$. It follows from the identity (17) that for almost every $w \in S^2$
\[
\sum_{1 \leq j,k \leq N} |\langle w, y_j - y_k \rangle| v_j v_k = 0. \quad (20)
\]
In particular, we can choose $w \in S^2$ satisfying (20), and such that the quantities $\tilde{y}_j = \langle w, y_j \rangle$ are pairwise distinct, say $\tilde{y}_1 > \tilde{y}_2 > \ldots > \tilde{y}_N$. Owing to (18)-(19), we deduce that
\[
\sum_{\tilde{y}_k < t < \tilde{y}_j} v_j v_k = 0, \quad (21)
\]
for every \(t \) in a full-measure set \(\mathcal{T} \subset \mathbb{R} \). In particular, choosing \(t_1, \ldots, t_{n-1} \in \mathcal{T} \), with \(t_n \in (\tilde{y}_{n+1}, \tilde{y}_n) \) for \(n = 1, \ldots, N - 1 \), we obtain from (21) and (19) that

\[
\sum_{j=1}^{n} v_j = 0 \quad \forall n \in \{1, \ldots, N\}.
\]

This implies \(v = 0 \), concluding the proof that \(\text{Ker} \Gamma_1 \cap \text{Ker} \Gamma_2 = \{0\} \).

Now, let us set \(\Gamma_{\leq 2}(z) := \Gamma_{\leq 1}(z) + z^2 \Gamma_2 \). Arguing as in Case 1, and using the property \(\text{Ker} \Gamma_1 \cap \text{Ker} \Gamma_2 = \{0\} \), we deduce that for \(z \) small enough, \(z \neq 0 \), the matrix \(\Gamma_{\leq 2}(z) \) is non-singular. In particular, for \(z \neq 0 \) small enough, also \(\Gamma(z) \) is non-singular, with \(\Gamma(z)^{-1} = \Gamma_{\leq 2}(z)^{-1} + O(1) \).

In order to invert \(\Gamma_{\leq 2}(z) \), we use the Jensen-Nenciu Lemma. Let \(P : \mathbb{C}^N \to \mathbb{C}^N \) be the orthogonal projection onto \(\text{Ker} \Gamma_0 \cap \text{Ker} \Gamma_1 \). Owing to the relations \(\Gamma_0^* = \Gamma_0 \), \(\Gamma_1^* = -\Gamma_1 \), we deduce that for \(z \) small enough \(\Gamma_{\leq 1}(z) + P \) is non-singular, with

\[
(\Gamma_{\leq 1}(z) + P)^{-1} = \begin{cases}
\Theta(z^{-1}) + O(1) & \text{Ker} \Gamma_0 \not\subseteq \text{Ker} \Gamma_1 \\
O(1) & \text{Ker} \Gamma_0 \subseteq \text{Ker} \Gamma_1
\end{cases}.
\]

(22)

For small \(z \), also \(\Gamma_{\leq 2}(z) + P \) is non-singular, with

\[
(\Gamma_{\leq 2}(z) + P)^{-1} = (\Gamma_{\leq 1}(z) + P)^{-1} + O(1).
\]

With similar computations as in Case 1, we get

\[
\Gamma_{\leq 2}(z)^{-1} = (\Gamma_{\leq 2}(z) + P)^{-1} + z^{-2}P(\Gamma_2 P \upharpoonright \mathbb{C}^N)^{-1}P + O(1)
\]

\[
= \begin{cases}
\Theta(z^{-2}) + \Theta(z^{-1}) + O(1) & \text{Ker} \Gamma_0 \not\subseteq \text{Ker} \Gamma_1 \\
\Theta(z^{-2}) + O(1) & \text{Ker} \Gamma_0 \subseteq \text{Ker} \Gamma_1
\end{cases}.
\]

(23)

Expansion (12) is thus proved in any case. Moreover, statements (i) and (ii) easily follow from the discussion above. \(\square \)

3 Proof of the main Theorem

This Section is devoted to the proof of Theorem 1. Let us fix \(N \geq 1 \), \(\alpha \in \mathbb{R}^N \) and \(Y \subseteq \mathbb{R}^3 \), and set \(\Gamma(z) := \Gamma_{\alpha,Y}(z) \). Preliminary, observe that the low-energy expansion (11) follows by combining the resolvent formula (9) with the small \(z \) expansion (12) for \(\Gamma(z)^{-1} \). We prove now that \(R_{-2} \neq 0 \) if and only if \(0 \in \sigma(-\Delta_{\alpha,Y}) \), which in view of Proposition 5 part (i), is equivalent to prove that \(\text{Ker} \Gamma_0 \cap \text{Ker} \Gamma_1 \neq \{0\} \) if and only if \(0 \in \sigma(-\Delta_{\alpha,Y}) \).

Suppose first that there exists \(c = (c_1, \ldots, c_N) \neq 0 \in \text{Ker} \Gamma_0 \cap \text{Ker} \Gamma_1 \). We are going to show that the non-zero function
belongs to $\text{Ker}(-\Delta_{\alpha,Y})$. First of all, observe that the condition $\Gamma_1 c = 0$ is equivalent to $c_1 + \ldots + c_N = 0$, which implies $\psi \in L^2(\mathbb{R}^3)$.

Let us fix $z \in \mathbb{C}^+ \setminus \mathbb{R}^+$, and write

$$
\psi = F_z + N \sum_{j=1}^{N} c_j \xi_j,
$$

where

$$
F_z := \sum_{j=1}^{N} c_j (\xi_j - \xi_z).
$$

Observe that $F_z \in H^2(\mathbb{R}^3)$. Moreover, for every $k \in \{1, \ldots, N\}$,

$$
F_z(y_k) = \sum_{j=1}^{N} c_j (\xi(y_k)_j - \xi_z(y_k)) = \sum_{k=1}^{N} \Gamma(z)_{kj} c_j,
$$

where in the second equality we use that $\Gamma_0 c = \Gamma_1 c = 0$. By virtue of representation (7), we conclude that $\psi \in \mathcal{D}(-\Delta_{\alpha,Y})$. Moreover, formula (8) yields

$$
-\Delta_{\alpha,Y} \psi = (-\Delta - z^2) F_z + \lambda^2 2 \sum_{j=1}^{N} c_j \xi_j = \sum_{j=1}^{N} c_j \left[(-\Delta - z^2) \xi_j - \Delta \xi_j \right] = 0,
$$

which shows that $\psi \in \text{Ker}(-\Delta_{\alpha,Y})$.

Let us discuss now the opposite implication. To this aim, consider a function $\psi \in \text{Ker}(-\Delta_{\alpha,Y}) \setminus \{0\}$. For a fixed $z = i\lambda \in \mathbb{C}^+ \setminus \mathbb{R}^+$, we can write

$$
\psi = F_{i\lambda} + N \sum_{j=1}^{N} c_j \xi_{i\lambda}^j,
$$

for some non-zero $F_{i\lambda} \in H^2(\mathbb{R}^3)$, where

$$
c_j = \sum_{k=1}^{N} \Gamma(z)_{jk}^{-1} F_z(y_k).
$$

Observe that the c_j’s are necessarily independent of z, since $\xi_{i\lambda}^j \notin H^2(\mathbb{R}^3)$ for any j. Moreover, the condition $\psi \in L^2(\mathbb{R}^3)$ implies $c_1 + \ldots + c_n = 0$, namely $\Gamma_1 c = 0$. Owing to (8) and the representation (25), the relation $-\Delta_{\alpha,Y} \psi = 0$ is equivalent to

$$
-\Delta F_{i\lambda} = \lambda^2 \sum_{j=1}^{N} c_j \xi_{i\lambda}^j.
$$

(26)
We show now that \(\| F_i \|_{H^2} \to 0 \) as \(\lambda \downarrow 0 \), whence also \(F_{i\lambda} \to 0 \) as \(\lambda \downarrow 0 \), uniformly on compact subsets of \(\mathbb{R}^3 \). This implies
\[
\Gamma_0 c = \lim_{\lambda \downarrow 0} \Gamma(i\lambda)c = 0,
\]
and the identity
\[
\psi = \sum_{j=1}^N c_j \phi_j^\gamma,
\]
which conclude the proof.

In order to show that \(\| F_i \|_{H^2} \to 0 \) as \(\lambda \downarrow 0 \), we start with the estimate
\[
\| \Delta F_{i\lambda} \|_{L^2} = \| \lambda^2 \Delta (-\Delta + \lambda^2)^{-1} \psi \|_{L^2} \leq \lambda^2 \| \psi \|_{L^2}.
\]
(27)

Observe moreover that \(\hat{F}_{i\lambda}(p) = \lambda^2 (p^2 + \lambda^2)^{-1} \hat{\psi}(p) \). By dominate convergence we get \(\| F_{i\lambda} \|_{L^2} = o(1) \), which combined with (27) yields \(\| F_{i\lambda} \|_{H^2} = o(1) \), as desired.

Remark 2 By Proposition 5(ii), there is a \(\Theta(z^{-1}) \) term in the expansion of \(\Gamma(z)^{-1} \) at \(z = 0 \) if and only if there exists \(c \in \mathbb{R}^n \) such that \(\Gamma_0 c = 0, \Gamma_1 c \neq 0 \). In this case, the function defined by (24) belongs to \(L^2(\mathbb{R}^3, (x^{-1} - \sigma \, dx) \setminus L^2(\mathbb{R}^3) \), for any \(\sigma > 0 \), and formally satisfies \(-\Delta_{\alpha,Y} \psi = 0 \), whence \(\psi \) can be interpreted as a zero energy resonance for \(-\Delta_{\alpha,Y} \). Hence, as anticipated in Remark 1, we have that \(\mathcal{R} \neq 0 \) in expansion (11) if and only if there exists a zero energy resonance, analogously to the case of classical Schrödinger operators.

4 Occurrence and multiplicity of zero energy obstructions

In this Section we discuss the occurrence and the multiplicity of obstructions at zero energy for the resolvent of \(-\Delta_{\alpha,Y} \), depending on the choice of the set \(Y \) of centers of interactions and the coupling parameters \(\alpha_1, \ldots, \alpha_N \).

In the single center case, it is easy to check that the only possible obstruction at \(z = 0 \) is a resonance, attained if and only if \(\alpha = 0 \). In general, for any \(N \) and for any given configuration of the centers, there exists a measure zero set of choices of the parameters \(\alpha_1, \ldots, \alpha_N \) which leads to a zero-energy resonance. By means of the discussion in Section 2 and Section 3, we can define the multiplicity of the zero-energy resonance as
\[
\rho_{\alpha,Y} \eqdef \dim (\ker \Gamma_0) - \dim (\ker \Gamma_0 \cap \ker \Gamma_1).
\]

We conjecture that, as \(N \) increases, one can find \(Y \) and \(\alpha \) such that \(\rho_{\alpha,Y} \) becomes arbitrarily large.

As anticipated in Section 1 when \(N = 2 \) we can find a simple zero eigenvalue by choosing \(\alpha_1 = \alpha_2 = -(4\pi d)^{-1} \), where \(d \) is the distance between the two centers. For \(N \geq 3 \), a zero eigenvalue occurs for specific geometric configurations of the
centers of interactions and for a measure zero set of choices of $\alpha_1, \ldots, \alpha_N$. Owing to the discussion in Section 2 and Section 3, the multiplicity of the zero eigenvalue is given by

$$e_{\alpha, Y} := \dim \text{Ker}(-\Delta_{\alpha, Y}) = \dim \left(\text{Ker} \Gamma_0 \cap \text{Ker} \Gamma_1\right).$$

Let us discuss now the maximal possible value for $e_{\alpha, Y}$ as the number of centers of interactions increases.

- $N = 3$. We can take Y as the vertices of an equilateral triangle of side-length one, and $\alpha_1 = \alpha_2 = \alpha_3 = -(4\pi)^{-1}$. With this choice we get $e_{\alpha, Y} = 2$.
- $N = 4$. We can take Y as the vertices of a regular tetrahedron of side-length one, and $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = -(4\pi)^{-1}$. With this choice we get $e_{\alpha, Y} = 3$.
- $N = 5$. Observe that we can not find five points in \mathbb{R}^3 with constant pairwise distances. It easily follows that the maximal value for $e_{\alpha, Y}$ is still three.

One could conjecture that for $N \geq 4$ the maximal value of $e_{\alpha, Y}$ is three. Nevertheless, it is also conceivable that for large N there exist complicated geometrical configurations which lead to a higher multiplicity. Such kind of mechanism is well-known in similar contexts. Consider, for example, the problem in combinatorics to determine the chromatic number of the unit distance graph on \mathbb{R}^3, that is the graph with vertices set $V = \mathbb{R}^3$ and edges set $E = \{(x, y) \in \mathbb{R}^3 \times \mathbb{R}^3 : |x - y| = 1\}$. Owing to the compactness principle by De Bruijn and Erdős [10] this is equivalent, under the axiom of choice, to determine the highest chromatic number of a finite graph embedded in \mathbb{R}^3 in such a way all its edges have length one. For a graph with N vertices, we have the following situation:

- $N = 3$. We can consider an equilateral triangle of side-length one, which has chromatic number three.
- $N = 4$. We can consider a regular tetrahedron of side-length one, which has chromatic number four.
- $N = 5$. The highest possible chromatic number is still four.
- $N = 14$. There is a configuration of 14 points in \mathbb{R}^3, the Moser-Raiskii spindle, with chromatic number five [28, 31].
- For large N, the highest possible chromatic number is known to be between 6 and 12 [25, 27, 7].

It is evident that there are similarities between the two problems, and it would be interesting to understand if they are actually related. In particular, one may take Y as the vertices of the Moser-Raiskii spindle and wondering whether there exists $\alpha = (\alpha_1, \ldots, \alpha_{14})$ such that $e_{\alpha, Y} = 4$.

Acknowledgments

The author acknowledges an anonymous referee for the useful suggestions, and for pointing out relevant references.
References

1. S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2 (1975), pp. 151–218.
2. S. Albeverio, J. E. Fenstad, and R. Hoegh-Krohn, Singular perturbations and non-standard analysis, Trans. Amer. Math. Soc., 252 (1979), pp. 275–295.
3. S. Albeverio and R. Figari, Quantum fields and point interactions, Rend. Mat. Appl. 39 (2018), 161–180.
4. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Texts and Monographs in Physics, Springer-Verlag, 2012.
5. F. A. Berezin and L. D. Faddeev, A Remark on Schrödinger’s equation with a singular potential, Doklady Akademii Nauk Ser. Fiz., 137 (1961), pp. 1011–1014 (In Russian); English translation: Sov. Math. Dokl., 2 (1961), pp. 372–375.
6. H. D. Cornean, A. Michelangeli, and K. Yajima, Two dimensional Schrödinger operators with point interactions: threshold expansions, zero modes and L^p-boundedness of wave operators, arXiv:1804.01297 (2018).
7. D. Coulson, A 15-colouring of 3-space omitting distance one, Disc. Math., 256 (2002), pp. 83–90.
8. L. Dabrowski and H. Grosse, On nonlocal point interactions in one, two, and three dimensions, J. Math. Phys., 26 (1985), pp. 2777–2780.
9. P. D’Ancona, V. Pierfelice, and A. Teta, Dispersive estimate for the Schrödinger equation with point interactions, Math. Methods Appl. Sci., 29 (2006), pp. 309–323.
10. N. G. de Bruin and P. Erdős, A colour problem for infinite graphs and a problem in the theory of relations, Nederl. Akad. Wetensch. Proc. Ser. A, 54 (1951), pp. 371–373.
11. G. Dell’Antonio, R. Figari, and A. Teta, A brief review on point interactions, in Inverse problems and imaging, vol. 1943 of Lecture Notes in Math., Springer, Berlin, 2008, pp. 171–189.
12. G. Dell’Antonio, A. Michelangeli, R. Scandone, and K. Yajima, L^p-Boundedness of Wave Operators for the Three-Dimensional Multi-Centre Point Interaction, Ann. Henri Poincaré, 19 (2018), pp. 283–322.
13. G. Dell’Antonio and G. Panati, A remark on the existence of zero-energy bound states for point interaction Hamiltonians, unpublished notes.
14. A. Galibay and K. Yajima, On the approximation by regular potentials of Schrödinger operators with point interactions, arXiv:1908.02936 (2019).
15. P. Grinevich and R. G. Novikov, Multipoint scatterers with zero-energy bound states, Theor. Math. Phys., 193 (2017), pp. 1675–1679.
16. A. Grossmann, R. Hoegh-Krohn, and M. Mebkhout, A class of explicitly soluble, local, many-center Hamiltonians for one-particle quantum mechanics in two and three dimensions, I, J. Math. Phys., 21 (1980), pp. 2376–2385.
17. ———, The one particle theory of periodic point interactions. Polymers, monomolecular layers, and crystals, Comm. Math. Phys., 77 (1980), pp. 87–110.
18. F. Iandoli and R. Scandone, Dispersive estimates for Schrödinger operators with point interactions in \mathbb{R}^3, in Advances in Quantum Mechanics: Contemporary Trends and Open Problems, A. Michelangeli and G. Dell’Antonio, eds., Springer INdAM Series, vol. 18, Springer International Publishing, pp. 187–199.
19. A. Jensen and T. Kato, Spectral properties of Schrödinger operators and time-decay of the wave functions, Duke. Math. J., 46 (1979), pp. 583–611.
20. A. Jensen and G. Nenciu, A unified approach to resolvent expansions at thresholds, Rev. in Mathe. Phys., 13 (2001), pp. 717–754.
21. S. T. Kuroda, Introduction to Scattering Theory, Lecture Notes, Matematisk Institute, Aarhus University (1978).
22. P. D. Lax and R. S. Phillips, Scattering theory, vol. 26, Academic press (1990).
23. A. Michelangeli and A. Ottolini, On point interactions realised as Ter-Martirosyan-Skornyakov Hamiltonians, Rep. Math. Phys., 79 (2017), pp. 215–260.
24. A. MICHELANGELI AND R. SCANDONE, On real resonances for three-dimensional Schrödinger operators with point interactions, arXiv:2002.07787 (2020).
25. O. NECHUSHTAN, On the space chromatic number, Disc. Math. 256 (2002), pp. 499–507.
26. A. POSILICANO, A Krein-like formula for singular perturbations of self-adjoint operators and applications, J. Funct. Anal., 183 (2001), pp. 109–147.
27. R. RADOIČIĆ AND G. TÓTH, Note on the Chromatic number of the Space, Disc. Comput. Geometry, Algorithms and Combinatorics, 25 (2003), pp. 695–698.
28. D. E. RAÍSKIL, The realization of all distances in a decomposition of the space \mathbb{R}^n into $n + 1$ parts, Mat. Zametki 7 (1970), pp. 319–323 (in Russian); English translation: Math. Notes 7 (1970), pp. 194–196.
29. J. SJÖSTRAND, Lectures on resonances (2002), sjostrand.perso.math.cnrs.fr/Coursgbg.pdf.
30. J. SJÖSTRAND AND M. ZWORSKI, Complex Scaling and the Distribution of Scattering Poles, Journ. Amer. Math. Soc., 4 (1991), pp. 729–769.
31. L. A. SZEKELEY AND N. C. WORMALD, Bounds on the measurable chromatic number on \mathbb{R}^n, Disc. Math., 75 (1-3) (1989), pp. 343–372.
32. J. ZORBAS, Perturbation of self-adjoint operators by Dirac distributions, J. Math. Phys., 21 (1980), pp. 840–847.