Hepatoblastoma in molecularly defined, congenital diseases

Gunther Nussbaumer | Martin Benesch

Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria

Correspondence
Gunther Nussbaumer, Division of Pediatric Hematology/Oncology, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria.
Email: g.nussbaumer@medunigraz.at

Abstract
Beckwith–Wiedemann spectrum, Simpson–Golabi–Behmel syndrome, familial adenomatous polyposis and trisomy 18 are the most common congenital conditions associated with an increased incidence of hepatoblastoma (HB). In patients with these genetic disorders, screening protocols for HB are proposed that include periodic abdominal ultrasound and measurement of alpha-fetoprotein levels. Surveillance in these children may contribute to the early detection of HB and possibly improve their chances of overall survival. Therefore, physicians must be aware of the high HB incidence in children with certain predisposing genetic diseases.

KEYWORDS
cancer predisposition, congenital diseases, hepatoblastoma, screening, surveillance

1 | INTRODUCTION

With an estimated incidence of about 1–2 per million children younger than 15 years, hepatoblastoma (HB) is the most common childhood liver malignancy (Feng et al., 2019). The etiology of HB is unknown, and only a few predisposing factors have been defined so far. While the influence of certain factors (e.g., maternal tobacco use during pregnancy or infertility treatment) has been controversially debated (Johnson et al., 2013; McLaughlin et al., 2006; Puumala et al., 2012), low birth weight (especially less 1500 g) is widely acknowledged as an independent risk factor for HB development (Heck et al., 2013; Tanimura et al., 1998). In addition, certain congenital conditions are known to be associated with an increased incidence of HB. This review was carried out to raise awareness regarding HB in children with specific genetic disorders, placing a specific focus on their genetic background and screening recommendations.

2 | METHODS

A systematic, two-step literature review was performed in PubMed/MEDLINE. In the first step, the following search term combinations were used to search the database: “(hepatoblastoma) AND (syndrome)” or “(hepatoblastoma) AND (congenital).” Case reports, clinical studies and reviews on hepatoblastoma in children with congenital diseases that were written in the English language and were published before October 31, 2021, were included. Only cases with molecularly confirmed alterations in disease-causing genes were considered. Cases that reported undetermined molecular findings, hepatic tumors other than HB, or failed to reference a histopathological work-up of the tumor were excluded. In the second step, the database was searched for additional reports and screening recommendations in English regarding HB in included genetic conditions.

Abbreviations: APC, adenomatous polyposis coli; AFP, alpha-fetoprotein; BWSp/BWS, Beckwith–Wiedemann spectrum/Beckwith–Wiedemann syndrome; FAP, familial adenomatous polyposis; GPC3, glypican-3; HB, hepatoblastoma; ICR, imprinting control region; ILO, isolated lateralized overgrowth; pUPD, paternal uniparental isodisomy; SGBS, Simpson–Golabi–Behmel syndrome; T18, trisomy 18.
3 | RESULTS

3.1 Overgrowth syndromes: Beckwith–Wiedemann spectrum and Simpson–Golabi–Behmel syndrome

The Beckwith–Wiedemann spectrum (BWSp) encompasses the conventional Beckwith–Wiedemann syndrome (BWS; OMIM #130650) with or without (epi-)genetic changes as well as more subtle phenotypes, including isolated lateralized overgrowth (ILO; OMIM #235000), with a confirmed molecular abnormality at chromosome region 11p15.5 (Brioude et al., 2018; Kalish, Biesecker, et al., 2017). Genes at this locus comprising CDKN1C, IGF2, and H19 are involved in growth control and cell-cycle progression. These genes are physiologically expressed in a parent-of-origin specific, so-called imprinted manner due to the epigenetic status at their corresponding imprinting control region (ICR). In BWS, alterations at 11p15.5 are detectable in up to 80% of affected individuals (Weksberg et al., 2010). The most frequent pathogenetic anomalies include (epi-)genetic changes at ICR-1 (controls H19 and IGF2; 5% prevalence) or ICR-2 (controls CDKN1C; 50% prevalence), paternal uniparental isodisomy (pUPD; 20% prevalence) and pathogenic variants in CDKN1C (5% prevalence) (Choufani et al., 2013). During their infancy and early childhood, affected individuals are predisposed to develop embryonal tumors, especially Wilms’ tumor and HB, and, consequently, screening is recommended (Cohen, 2005). The risk of tumor development correlates significantly with the molecular subgroup, as children with the pUPD subtype, which is also frequently present in ILO, have the highest risk to develop HB (Çöktü et al., 2020; Mussa, Russo, et al., 2016; Shuman et al., 2006). Therefore, recent screening recommendations for BWSp include HB surveillance strategies that have been adapted according to the underlying molecular subgroup, whereas the exact risk stratification as well as diagnostic modalities are still under discussion. Specific recommendations based on each molecular subtype are summarized in Table 1. In contrast, the American Association for Cancer Research has continued to recommend uniform screening in BWSp until more clarity is available regarding HB incidence in the particular genetic subtype (Kalish, Doros, et al., 2017). However, individuals at risk of HB undergo hepatic ultrasound at least every 3 months in the first years of life. The significance of periodically measuring the serum AFP levels is controversial considering the elevated AFP values in children with BWSp and their variable decrease in the first 2 years of life (Duffy et al., 2019), although several case reports have indicated that serial AFP level measurements and tumor screening in children with BWSp are beneficial (Clericuzio et al., 2003; Kim et al., 2017; Mussa et al., 2011; Zarate et al., 2009). When hepatic surveillance can be discontinued is also still unclear. A recent study confirmed that HB rarely occurs in children with BWSp older than 30 months of age; therefore, these children are significantly younger when diagnosed as compared with unselected cases (Mussa, Duffy, Carli, Ferrero, & Kalish, 2019).

Differential diagnoses of BWS include the Simpson–Golabi–Behmel syndrome (SGBS; OMIM #312870), a rare overgrowth syndrome caused by alterations in the gene for glypican-3 (GPC3) at

TABLE 1	Risk-stratified surveillance recommendations for HB in BWSp based on molecular subgroups.		
(Brioude et al., 2018)	HB screening	Hepatic ultrasound* and duration	AFP screening
BWS w/o molecular evidence	No	No	No
ICR-1	No	No	No
ICR-2	No	No	No
11p15 pUPD	Yes	Every 3 months till 7 yrs	No
CDKN1C-mutation	No	No	No
(Maas et al., 2016)	HB screening	Hepatic ultrasound* and duration	AFP screening
BWS w/o molecular evidence	Yes	Every 3 months till 4 yrs	No
ICR-1	No	No	No
ICR-2	No	No	No
11p15 pUPD	Yes	Every 3 months till 4 yrs	No
CDKN1C-mutation	facultative	Every 3 months till 4 yrs	No
(Mussa, Molinatto, et al., 2016)	HB screening	Hepatic ultrasound* and duration	AFP screening
BWS w/o molecular evidence	Not mentioned	Not mentioned	Not mentioned
ICR-1	No	No	No
ICR-2	No	No	No
11p15 pUPD	Yes	Every 3 months till 5 yrs	Yes
CDKN1C-mutation	No	No	No

Abbreviations: w/o, without; yrs, years of age.

*Explicit ultrasound imaging of the liver for detection of HB.
chromosome band Xq26 (Pilia et al., 1996). Due to its phenotypical similarities with BWS, molecular investigations of the GPC3 gene may be considered, if 11p15.5 alterations in male individuals with overgrowth syndrome are not detectable (Knopp et al., 2015). SGBS is associated with an increased risk of embryonal tumors: In addition to reports of Wilms’ tumors, several case reports of HB in molecular-verified SGBS have been published (Buonuomo et al., 2005; Kosaki et al., 2014; Li et al., 2001; Mateos et al., 2013; Shimojima et al., 2016). Notably, all cases occurred in children younger than 19 months of age, but no genotype–phenotype correlation has been established yet due to the rarity of HB in SGBS. Respective surveillance recommendations in SGBS resemble screening protocols for children with BWSp, including abdominal ultrasound and serum AFP screening every 3 months till at least the 4th year of age (Brioude et al., 2019; Kalish, Doros, et al., 2017; Lapunzina, 2005).

3.2 | Familial adenomatous polyposis

Familial adenomatous polyposis (FAP; OMIM #175100) is an autosomal-dominant cancer predisposition syndrome caused by an inactivating germline mutation in the adenomatous polyposis coli (APC) tumor suppressor gene. This mutation leads to the development of innumerable colorectal adenomatous polyps and, subsequently, intestinal carcinomas. Various extraintestinal manifestations, such as neoplasms of soft and hard tissue or the central nervous system, have been associated with FAP (Groen et al., 2003). In addition, several case reports have confirmed that children with pathogenic germline APC variants have a significant risk of developing HB (Alkhour et al., 2010; Augustyn & Wallerstein, 2009; Cetta et al., 1997; Evers et al., 2012; Rosina et al., 2021; Sanders & Furman, 2006; Thomas et al., 2003). The main clinical characteristics as well as the prognosis of individuals with HB and FAP does not seem to differ from those of patients with sporadic HB (Trobaugh-Lotario et al., 2018). Still, no generally accepted consensus exists regarding screening for FAP in patients with HB or vice versa (Achatz et al., 2017). In up to 14% of children with presumptively sporadic HB, however, an APC germline mutation is present (Aretz et al., 2006; Yang et al., 2018). Since an HB diagnosis may precede an FAP diagnosis by many years, genetic testing may provide an opportunity to initiate colorectal carcinoma surveillance in a timely manner. Therefore, several authors have recommended screening for APC gene mutations in all patients with HB, even if they do not have a strong family history or other stigmata of FAP (e.g., hypertrophy of the retinal pigment epithelium) (Lazzareschi et al., 2009; Trobaugh-Lotario et al., 2018; Yang et al., 2018). In contrast, approximately 2.5% of individuals with a pathogenic germline APC variant develop HB. Genotype–phenotype correlations have so far failed to identify specific APC mutations that predispose individuals with FAP toward developing HB (Giardiello et al., 1996; Hirschman et al., 2005). The surveillance of affected children includes periodically conducting abdominal sonography and measuring the serum AFP until they are 5 years of age (Aretz et al., 2006; Kennedy et al., 2014).

3.3 | Trisomy 18

Trisomy 18 (T18) is the second most common autosomal trisomy syndrome after trisomy 21. Although the phenotype varies in individuals, the constitutional presence of an additional chromosome 18 results in various malformations, including congenital heart defects. These malformations contribute markedly to morbidity and mortality in these children (Cereda & Carey, 2012). Consequently, infant mortality is high, and only 8–13% of affected children survive the first year of life according to published cohorts (Nelson et al., 2016; Wu et al., 2013). Intensive care, including sophisticated surgery, has improved the prognosis and life expectancy of selected individuals significantly (Kosiv et al., 2017). However, a growing body of evidence indicates that these children are at risk of developing HB. To date, about 50 cases of HB in T18 have been reported, representing the most frequent malignancy in these infants (Farmakis et al., 2019; Satgé et al., 2016). The female gender seems to confer a survival advantage in T18, and females are markedly predominant among children with T18 and HB. (Meyer et al., 2016; Nelson et al., 2016; Satgé et al., 2016). As liveborn children may be at risk of developing HB, authors of a recent review proposed that abdominal ultrasounds and serial AFP level measurements should be performed every 3 months up until at least the 4th year of age, taking into consideration the lack of validated, age-correlated AFP levels in children with T18 (Farmakis et al., 2019).

3.4 | Single case reports

In addition to previously mentioned genetic conditions, which are characterized by an increased incidence of HB, several case reports have been published on HB in individuals with various congenital diseases (Table 2). The significance of the association between HB and these conditions is still undetermined.

4 | DISCUSSION

Only a few molecularly defined diseases have been associated with a high risk of developing HB, but the contribution of these underlying genetic alterations to tumorigenesis is still incompletely understood. In unselected HB, aberrant Wnt/beta-catenin signaling is commonly present and a hallmark of this entity (Eichenmüller et al., 2014). The nuclear level of beta-catenin, which is encoded by the CTNNB1 gene, is regulated precisely by several feedback mechanisms controlling proliferation and differentiation in embryogenesis and hepatic development. Genetic alterations that affect this pathway can cause either the enhancement of beta-catenin activation or its restrained inhibition. This, in turn, results in an imbalance in signaling, which may direct the cell state toward malignant proliferation (Armengol et al., 2011). Somatic mutations in the CTNNB1 gene are common in unselected HB (Jeng et al., 2000; Koch et al., 1999). Interestingly, the APC protein is part of the beta-catenin degradation complex and, consequently, acts as a negative regulator. Mutations in the tumor
TABLE 2 Additional case reports of hepatoblastoma in molecularly confirmed genetic disorders.

Genetic condition	Affected chromosome locus/gene	Sex	Weight at birth	Age at diagnosis of HB	AFP at presentation	HB histology
ARPKD (Kummerfeld et al., 2010)	PKHD1	M	830 G	18 months	1702 kU/l	Mixed epithelial type
ARPKD (Luoto et al., 2014)	PKHD1	M	N/A	5 years	6553	N/A
ARPKD (Kadakia et al., 2017)	PKHD1	F	N/A	18 months	800	Pure fetal epithelial type
Cardio-facio-cutaneous syndrome (Al-Rahawan et al., 2007)	MEK1	M	“10th percentile”	35 months	2966	Mixed epithelial type
DiGeorge syndrome (Scattone et al., 2003)	22q11.2	M	3700 G	“perinatal”	460.347	Mixed epithelial type
DiGeorge syndrome (McDonald-McGinn et al., 2006)	22q11.2	M	N/A	3 months	N/A	Mixed type^b
DiGeorge syndrome (McDonald-McGinn et al., 2006)	22q11.2	M	N/A	15 months	N/A	Mixed epithelial + mesenchymal type
DiGeorge syndrome (Rosina et al., 2021)	22q11.21	M	2600 G	N/A	266.4	Fetal epithelial type
Fanconi anemia (Kopic et al., 2011)	FANCD1/BRCA2 + gain chr. 3q	F	1900 G	4¼ years	103,512	Mixed epithelial + mesenchymal type
Fragile-X syndrome (Wirojanan et al., 2008)	FMR1	M	4167 G	2 years	N/A	N/A
Kagami–Ogata syndrome (Kagami et al., 2015)	pUPD(14)	N/A	N/A	13 months	N/A	Mixed epithelial type
Kagami–Ogata syndrome (Horii et al., 2012)	pUPD(14)	F	2558 G	7 months	43,963	“well-differentiated”
Li–Fraumeni syndrome (Toguchida et al., 1992)	p53	F	N/A	3 months	N/A	N/A
McCune–Albright syndrome (Johansen et al., 2019)	GNAS	M	N/A	5 years	5700 kU/l	Embryonal type
MECP2 duplication syndrome (Trobaugh-Lotario et al., 2016)	MECP2	M	1194 G	2 years	12,199	Mixed epithelial type
Noonan syndrome (Yoshida et al., 2008)	PTPN11	M	N/A	1 month	142,000	Mixed epithelial type
Osteopathia striata with cranial sclerosis (Fujita et al., 2014)	WTX	F	3138 G	32 months	557	N/A
Prader–Willi syndrome (Hashizume et al., 1991)	Chr. 15	M	1856 G	17 months	23,564	“poorly differentiated HB”
Rubinstein–Taybi syndrome (Milani et al., 2016)	CREBBP	F	2885 G	11 months	N/A	Mixed epithelial type
Sotos syndrome (Kato et al., 2009)	NSD1	M	2876 G	21 months	84,000	N/A
Trisomy 9p (partial) (Schnater et al., 2005)	Chr. 9p	M	3550 G	3 months	338,520	Epithelial type
Trisomy 13 (Shah et al., 2014)	Chr. 13	F	2990 G	15 months	55,300	Mixed epithelial + mesenchymal type
Wolf–Hirschhorn syndrome (Bayhan et al., 2017)	Chr. 4	F	1220 G	2½ years	53,997	Epithelial type

Abbreviations: ARPKD, Autosomal recessive polycystic kidney disease; Chr, chromosome; F, female; G, gram; M, male; N/A, not available.
^ng/ml if not other specified.
^No specification.
^This patient had a mutation of the APC gene additionally.

suppressor gene APC, as in FAP, may disinhibit the canonical Wnt signaling pathway and contribute to tumorigenesis of HB (Stamos and Weis, 2013). Furthermore, altered gene expression in the chromosomal region 11p15.5 has been observed in the development of sporadic HB as genetic and epigenetic changes in H19 and IGF2 are present in unselected HB resembling constitutional genetic findings in BWSp (Albrecht et al., 1994; Fukuzawa et al., 1999; Gray et al., 2000; Honda et al., 2008; Rumbajan et al., 2013). Likewise, Carrillo-Reixach et al. (2020) identified epigenetic modifications of the 14q32.2-32 locus as a new hallmark in a subgroup of HB. Accordingly, an increased HB incidence is assumed in Kagami–Ogata syndrome, a very rare imprinting disorder of the 14q32.2 region (Horii et al., 2012; Kagami et al., 2015). In addition, the GPC3 protein, which has been assumed to interact with the Wnt/beta-catenin pathway (Capurro et al., 2014; Song et al., 2005) and with IGF2 (Pilia et al., 1996; Xu et al., 1998), is also overexpressed in unselected HB (Toretsky et al., 2001; Zynger et al., 2008). However, the molecular mechanism by which GPC3 alterations contribute to the tumorigenesis of HB has not been fully elucidated.

Since the sex ratio is inverted in children with T18 and HB, an alternative molecular pathway in these cases might promote tumorigenesis. In cytogenetic analysis of unselected HB, trisomy, or at least gain of chromosome 18, are rarely seen (Tomlinson et al., 2005). Thus, it is still a matter of debate whether trisomy 18 contributes independently to the development of HB through the numeric aberration per se. In this regard, Pereira et al. (2012) reported HB in a girl with
mosaic T18, but her tumor cells did not harbor a third chromo-
some 18.

In general, the reported molecular similarities suggest the exis-
tence of a common genetic background between HB in unselected
patients and in children with congenital diseases. It is interesting to
note that children with overgrowth syndromes seem to be signifi-
cantly younger when diagnosed with HB as compared with patients
that lack this genetic predisposition, indicating that tumorigenesis has
an inherent molecular “head start” in these patients. However, as HB
only occurs in exceptional cases of patients with genetic conditions,
additional somatic driver mutations may be required for its manifesta-
tion. Some of the case reports may have overestimated the contri-
bution of the underlying genetic aberration to the development of HB,
and additional promoting factors must be reconsidered. As, for exam-
ple, low birth weight is recognized as an independent risk factor for
HB, it is difficult to evaluate the isolated impact of the genotype sepa-
rately, especially in single case studies.

Moreover, co-morbidities affect the treatment of HB in children
with underlying congenital diseases, and this has to be taken into
account. In particular, children with congenital diseases and HB might
experience unexpected and more severe side effects to cytotoxic
therapy, requiring reductions in the doses of cytotoxic drugs and in-
dividual treatment planning. In patients with certain conditions
(e.g., T18), the prognosis depends heavily on the morbidity caused by
the constitutive chromosomal aberration. Treatment strategies range
from providing comfort care to curative, multimodal treatment, includ-
ing liver transplantation (Fernandez et al., 2011; Inoue et al., 2018;
Kitanovski et al., 2009).

Surveillance might contribute to the early detection of HB in chil-
dren with the previously described congenital conditions, but the rec-
ommendations differ somewhat (e.g., in terms of the duration or
relevance of periodic AFP measurement). Despite these differences,
they all include regular abdominal screening in the first years of life. In
general, early-stage disease recognition in HB may result in less inva-
sive surgical approaches being taken and less toxic treatment modal-
ities being used, as well as resulting in improved survival rates (Allan
et al., 2013; Czauderna et al., 2016). Data on Wilms’ tumors in BWSp
disorders clearly indicate that tumors detected by surveillance are
more likely to be localized (Mussa, Duffy, Carli, Griff, et al., 2019).
Likewise, Trobaugh-Lotrario et al. (2014) observed superior overall
survival in BWS patients and higher frequency of low-stage HB identi-
fied by surveillance as compared with children who were not enrolled
in any screening. Although this study was retrospective and only
included a small number of patients, these findings underscore the
benefit of HB screening in congenital diseases.

5 | CONCLUSION

In conclusion, HB in the context of congenital conditions is a rare and
life-threatening condition. Therefore, screening protocols are rec-
ommended in patients with the most common genetic conditions, as
these are assumed to increase the chance of early diagnosis, when the
tumor is still focal and has not yet been systemically disseminated. Since
embryonal tumors tend to develop rapidly, short screening intervals are
crucial, but these require a high level of compliance from affected fami-
lies. Physicians need to be familiar with the increased incidence of HB
and the surveillance strategies that can be applied in predisposing genetic
diseases, including overgrowth syndromes, FAP and T18.

ACKNOWLEDGMENT

The authors thank Mrs. Sara Crockett for careful proofreading the
manuscript.

CONFLICT OF INTEREST

The authors declare that they have nothing to disclose in connection
with the submission of this article. This study was supported by the
Styrian Childhood Cancer Foundation (Steirische Kinderkrebshilfe).

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were cre-
ated or analyzed in this study.

ORCID

Gunther Nussbaumer https://orcid.org/0000-0003-0397-935X

REFERENCES

Achaz, M. I., Porter, C. C., Brugières, L., Druker, H., Frebourg, T.,
Foulkes, W. D., ... Plon, S. E. (2017). Cancer screening recommenda-
tions and clinical management of inherited gastrointestinal cancer syn-
dromes in childhood. Clinical Cancer Res, 23, e107–e114. https://doi.
org/10.1185/1078-0432.CCR-17-0790

Albrecht, S., von Schweinitz, D., Waha, A., Kraus, J. A., von Deimling, A., &
Pietsch, T. (1994). Loss of maternal alleles on chromosome arm 11p in
hepatoblastoma. Cancer Research, 54, 5041–5044.

Alkhouri, N., Franciosi, J. P., & Mamula, P. (2010). Familial adenomatous
polyposis in children and adolescents. Journal of Pediatric Gastroen-
tology and Nutrition, 51, 727–732. https://doi.org/10.1097/MPG.
ob013e3181e1a224

Allan, B. J., Parikh, P. P., Diaz, S., Perez, E. A., Neville, H. L., & Sola, J. E.
(2013). Predictors of survival and incidence of hepatoblastoma in the
paediatric population. The Official Journal of the International Hepato-
blasto Embryonic Tumor Association, 15, 741–746. https://doi.org/10.1111/
hpb.12112

Al-Rahawan, M. M., Chute, D. J., Sol-Church, K., Gripp, K. W.,
stacle, D. L., McDaniel, N. L., ... Waldron, P. E. (2007). Hepato-
blastoma and heart transplantation in a patient with cardio-facio-
cutaneous syndrome. American Journal of Medical Genetics Part A, 143,
1481–1488. https://doi.org/10.1002/ajmg.a.31819

Aretz, S., Koch, A., Uhlhaas, S., Friedl, W., Propping, P., von
Schweinitz, D., & Pietsch, T. (2006). Should children at risk for familial
adenomatous polyposis be screened for hepatoblastoma and children
with apparently sporadic hepatoblastoma be screened for APC
germ-line mutations? Pediatric Blood & Cancer, 47, 811–818. https://
doi.org/10.1002/pbc.20698

Armengol, C., Cairo, S., Fabre, M., & Buendia, M. A. (2011). Wnt signaling
and hepatocarcinogenesis: The hepatoblastoma model. The Interna-
tional Journal of Biochemistry & Cell Biology, 43, 265–270. https://doi.
org/10.1016/j.biocel.2009.07.012

Augustyn, A. M., & Wellerstein, R. (2009). The role of pediatricians in fami-
lies with a history of familial adenomatous polyposis. Clinical Pediatrics,
48, 623. https://doi.org/10.1177/009922809332681
of Cancer Research and Clinical Oncology, 145, 3115. https://doi.org/10.1074/jbc.M410090200

Mussa, A., Ferrero, G. B., Ceoloni, B., Basso, E., Chiesa, N., Crescenzo, A. D., Pepe, E., Silengo, M., & Sanzeti, L. (2011). Neonatal hepatoblastoma in a newborn with severe phenotype of Beckwith–Wiedemann syndrome. European Journal of Pediatrics, 170, 1407–1411. https://doi.org/10.1007/s00431-011-1455-0

Mussa, A., Molinatto, C., Baldassarre, G., Riberi, E., Russo, S., Larizza, L., Riccio, A., & Ferrero, G. B. (2016). Cancer risk in Beckwith–Wiedemann syndrome: A systematic review and meta-analysis outlining a novel (Epilogenotype specific Histotype targeted screening protocol. The Journal of Pediatrics, 176, 142–149. https://doi.org/10.1016/j.jpeds.2015.08.038

Mussa, A., Russo, S., de Crescenzo, A., Freschi, A., Calzari, L., Maitz, S., ... Ferrero, G. B. (2016). Epilogenotype–phenotype correlations in Beckwith–Wiedemann syndrome. European Journal of Human Genetics, 24, 183–190. https://doi.org/10.1038/ejhg.2015.88

Nelson, K. E., Rosella, L. C., Mahant, S., & Guttmann, A. (2016). Survival and surgical interventions for children with trisomy 13 and 18. JAMA, 316, 420–428. https://doi.org/10.1001/jama.2016.9819

Pereira, E. M., Marion, R., Ramesh, K. H., Kim, J. S., Ewart, M., & Ricafort, R. (2012). Hepatoblastoma in a mosaic trisomy 18 patient. Journal of Pediatric Hematology/Oncology, 34, 145–148. https://doi.org/10.1097/JPH.0b013e3182459ee8

Pilla, G., Hughes-Benzie, R. M., MacKenzie, A., Baybayan, P., Chen, E. Y., Huber, R., ... Schlessinger, D. (1996). Mutations in GPC3, a glycanic gene, cause the Simpson–Golabi–Behmel overgrowth syndrome. Nature Genetics, 12(3), 241–247. https://doi.org/10.1038/ng0396-241

Puurnala, S. E., Ross, A. J., Feusner, J. H., Tomlinson, G. E., Malogolowkin, M. H., Krailo, M. D., & Spector, L. G. (2012). Parental infertility, infertility treatment and hepatoblastoma: A report from the Children’s Oncology Group. Human Reproduction, 27, 1649–1656. https://doi.org/10.1093/humrep/des109

Rosina, E., Rinaldi, B., Silipigni, R., Bergamaschi, L., Gattuso, G., Signoroni, S., Guerrieri, S., Carnevali, A., Marchisio, P. G., & Milani, D. (2021). Incidental finding of APC deletion in a child: Double trouble or double chance?—A case report. Italian Journal of Pediatrics, 47, 31–37.

Rumbajani, J. M., Maeda, T., Souzaki, R., Mitsui, K., Higashimoto, K., Nakabayashi, K., ... Joh. K. (2013). Comprehensive analyses of imprinted differentially methylated regions reveal epigenetic and genetic characteristics in hepatoblastoma. BMC Cancer, 13, 608. https://doi.org/10.1186/1471-2407-13-608

Sanders, R. P., & Furman, W. L. (2006). Familial adenomatous polyposis in two brothers with hepatoblastoma: Implications for diagnosis and screening. Pediatric Blood & Cancer, 47, 851–854. https://doi.org/10.1002/pbc.20556

Satgé, D., Nishi, M., Sirvent, N., & Vekemans, M. (2016). A tumor profile in patients with Simpson–Golabi–Behmel syndrome. Human Genome Variation, 3, 16033. https://doi.org/10.1038/hgv.2016.33

Shuman, C., Smith, A. C., Steele, L., Ray, P. N., Clericiuzzo, C., Zackai, E., ... Weksberg, R. (2006). Constitutional UPD for chromosome 11p15 in individuals with isolated hemihyperplasia is associated with high tumor risk and occurs following assisted reproductive technologies. American Journal of Medical Genetics. Part A, 140, 1497–1503. https://doi.org/10.1002/ajmg.a.31323

Shong, H. H., Shi, W., Xiang, Y.-Y., & Films, J. (2005). The loss of Glypican-3 induces alterations in Wnt signaling. Journal of Biological Chemistry, 280, 2116–2125. https://doi.org/10.1074/jbc.M410090200

Stamos, J. L., & Weiss, W. I. (2013). The j-catenin destruction complex. Cold Spring Harbor Perspectives in Biology, 5, a007898. https://doi.org/10.1101/cshperspect.a007898

Tanimura, M., Matsui, I., Abe, J., Ikeda, H., Kobayashi, N., Ohira, M., Yokoyama, M., & Kaneko, M. (1998). Increased risk of hepatoblastoma among immature children with a lower birth weight. Cancer Research, 58, 3032–3035.

Thomas, D., Pritchard, J., Davidson, R., McKiernan, P., Grundy, R. G., & Goyet, J. V. (2003). Familial Hepatoblastoma and APC gene mutations: Renewed call for molecular research. European Journal of Cancer, 39, 2200–2204. https://doi.org/10.1016/S0959-8049(03)00618-X

Toguchida, J., Yamaguchi, T., Dayton, S. H., Beaughamp, R. L., Herrera, G. E., Ishizaki, K., ... Yandell, D. W. (1992). Prevalence and Spectrum of germline mutations of the p53 gene among patients with sarcoma. New England Journal of Medicine, 326, 1301–1308. https://doi.org/10.1056/NEJM199205143262001

Tomlinson, G. E., Douglass, E. C., Pollock, B. H., Finegold, M. J., ... Schlessinger, D. (2001). Glypican-3 expression in Wilms tumor and hepatoblastoma. Journal of Pediatric Hematology/Oncology, 23, 496–499.

Trocbaugh-Lotario, A., Martin, J., & López-Terrada, D. (2016). Hepatoblastoma in a male with MECP2 duplication syndrome. American Journal of Medical Genetics Part A, 170, 790–791. https://doi.org/10.1002/ajmg.a.37474

Trocbaugh-Lotario, A. D., López-Terrada, D., Li, P., & Feusner, J. H. (2018). Hepatoblastoma in patients with molecularly proven familial adenomatous polyposis: Clinical characteristics and rationale for surveillance screening. Pediatric Blood & Cancer, 65, e27103. https://doi.org/10.1002/pbc.27103

Trocbaugh-Lotario, A. D., Venkatramani, R., & Feusner, J. H. (2014). Hepatoblastoma in children with Beckwith–Wiedemann syndrome: Does it warrant different treatment? Journal of Pediatric Hematology/Oncology, 36, 369–373. https://doi.org/10.1097/MPH.0000000000000129

Weksberg, R., Shuman, C., & Beckwith, J. B. (2010). Beckwith–Wiedemann syndrome. European Journal of Human Genetics, 18, 8–14. https://doi.org/10.1038/ejhg.2009.106

Wirojanan, J., Kraff, J., Hawkins, D. S., Laird, C., Gane, L. W., Angkustsiri, K., Tassone, F., & Hagerman, R. J. (2008). Two boys with fragile X syndrome and hepatic tumors. Journal of Pediatric Hematology/Oncology, 30, 239–241.

Wu, J., Springett, A., & Morris, J. K. (2013). Survival of trisomy 18 (Edwards syndrome) and trisomy 13 (Patau syndrome) in England and Wales: 2004–2011. American Journal of Medical Genetics Part A, 161, 2512–2518. https://doi.org/10.1002/ajmg.a.36127

Xu, Y., Papageorgiou, A., & Polychronakos, C. (1998). Developmental regulation of the soluble form of insulin-like growth factor-II/mannose...
6-phosphate receptor in human serum and amniotic fluid. The Journal of Clinical Endocrinology and Metabolism, 83, 437–442. https://doi.org/10.1210/jcem.83.2.4537

Yang, A., Sisson, R., Gupta, A., Tiao, G., & Geller, J. I. (2018). Germline APC mutations in hepatoblastoma. Pediatric Blood & Cancer, 65, e26892. https://doi.org/10.1002/pbc.26892

Yoshida, R., Ogata, T., Masawa, N., & Nagai, T. (2008). Hepatoblastoma in a Noonan syndrome patient with a PTPN11 mutation. Pediatric Blood & Cancer, 50, 1274–1276. https://doi.org/10.1002/pbc.21509

Zarate, Y. A., Mena, R., Martin, L. J., Steele, P., Tinkle, B. T., & Hopkin, R. J. (2009). Experience with hemihyperplasia and Beckwith-Wiedemann syndrome surveillance protocol. American Journal of Medical Genetics. Part A, 149, 1691–1697. https://doi.org/10.1002/ajmg.a.32966

Zynger, D. L., Gupta, A., Luan, C., Chou, P. M., Yang, G.-Y., & Yang, X. J. (2008). Expression of glypican 3 in hepatoblastoma: An immunohistochemical study of 65 cases. Human Pathology, 39, 224–230. https://doi.org/10.1016/j.humpath.2007.06.006

How to cite this article: Nussbaumer, G., & Benesch, M. (2022). Hepatoblastoma in molecularly defined, congenital diseases. American Journal of Medical Genetics Part A, 188A: 2527–2535. https://doi.org/10.1002/ajmg.a.62767