aged 19–64 years targeted by the high-risk recommendation issued by the Advisory Committee on Immunization Practices (ACIP) in 2012.

Methods. Uptake was evaluated from October 2012 through October 2016 in two statistically de-identified databases: Optum Clininformatics® Data Mart (CDM), consisting of administrative health claims, and the Optum-Humana Electronic Health Record (EHR) database, which includes EHR data from providers, primarily integrated delivery networks in the United States to cover the continuum of care. Eligibility for the recommendation was determined between October 2011 and October 2016 and served as the index event. Post-index PCV13 uptake was evaluated using prescription and administration codes. Patients with PCV13 prior to the recommendation were excluded to minimize misclassification of PCV13 status. Uptake was calculated using a Kaplan–Meier estimator, with separate estimates for the period before and after the 2014 ACIP age-based recommendation for all adults aged ≥26 years.

Results. Uptake of PCV13 was lower among 678,888 patients in the CDM vs. 571,993 patients in the EHR dataset, with <15% of recommended high-risk patients receiving PCV13 in the 4 years following publication of the recommendation. Vaccination among 19- to 64-year-old high-risk patients accelerated after the October 2014 publication of the recommendation for all adults aged ≥26 years. This was consistent in both CDM and EHR databases (Table 1).

Conclusion. Uptake of PCV13 among high-risk adults aged 19–64 years in the US has been very low. Some of the PCV13 vaccination among high-risk patients may have been driven by spillover from the subsequent age-based recommendation for adults aged ≥26 years.

Table 1. KM Estimates at the End of the Study with 95% CI

Uptake Rate	95% CI
her	0.042, 0.041–0.043
2012–2014	
2014–2016	0.082, 0.079–0.084
CDM (claims)	0.017–0.019
2014–2016	0.048, 0.046–0.052

Disclosures. All authors: Employee and Shareholder, Salary.

1439. The Cost-Effectiveness of Vaccinating Adults at Increased Risk of Pneumococcal Disease Against Pneumococcal Disease in The Netherlands

Mark Rozenbaum, PhD, MBA; Pfizer; Capelle aan den IJssel, The Netherlands

Session: 146. Pneumococcal Vaccines

Friday, October 5, 2018: 12:30 PM

Background. There is currently no data on the age- and risk-group-specific cost-effectiveness of the 13 valent pneumococcal vaccine (PCV13) compared with the 23 valent polysaccharide vaccine (PPV23). The aim of this study was to evaluate the cost-effectiveness of vaccinating these specific groups against pneumococcal disease.

Methods. A previously published and independently validated (by The Dutch National Health-Care Institute) age- and risk-group-specific Markov-type model was used to compare the cost-effectiveness of PCV13 vaccination vs. PPV23 vaccination of all adults at increased risk of pneumococcal disease (i.e., adults with underlying disease and those ≥25 years). Efficacy estimates for PCV13 were extrapolated from the Community-Acquired Pneumonia Immunization Trial in Adults (CAPiTA). Efficacy estimates for PPV23 were based on systematic literature reviews and other published data.

Results. At list price (€68.56 for PCV13 and €19.99 for PPV23), vaccination of all adults at increased risk of pneumococcal disease resulted in an ICER of €20,186/QALY, while vaccinating those with chronic medical conditions (moderate risk) and immunocompromising conditions (high risk) resulted in an ICER of <€10,000/QALY. Large differences in ICERs between age- and risk-groups were observed (Table 1). Vaccinating high-risk individuals with PCV13 was cost-saving for those aged less than 65 years of age compared with PPV23 while vaccinating those aged 85 years and older with PCV13 was cost-effective with an ICER of €50,486/QALY. Vaccinating moderate risk individuals was highly cost-effective (<€20,000/QALY), while vaccinating those with low-risk of pneumococcal infection was cost-effective (<€50,000/QALY). However, within risk groups the ICER differed significantly between age groups. Sensitivity analysis showed that a proportional decrease in list price, such as common in national vaccination programs, decreased the ICER disproportionately in favor of PCV13.

Conclusion. Vaccination all adults with PCV13 is cost effective compared with PPV23. There is a large variation in the cost-effectiveness between age and risk groups. Targeting individuals with underlying diseases aged less than 85 years would provide most value for money.

Table. Incremental cost-effectiveness ratios (a sacrificed QALY) of vaccinating adults at increased risk of pneumococcal disease with PCV13 compared to PPV23 at list prices (PCV13 €68.56 and PPV23 €19.99).

Age group	Median length of stay (days)
Low-risk individuals	3.20
Moderate risk individuals	3.50
High-risk individuals	3.80
All adults without specific risk factors	4.10

Disclosures. M. Rozenbaum, Pfizer: Employee and Shareholder, Salary.

1440. Potential Impact of Routine Use of 13-Valent Pneumococcal Conjugate Vaccine on Hospitalizations for Pneumonia among Older Adults in Canada

Jelena Vojicic, MD1; Stephanie Dion, PhD2; Raul E. Istriz, MD3; Craig Laferriere, PhD4; Maria Major, MPH5; Rajeev M. Nepal, PhD6; Jose A. Suaya, MD, PhD7 and John M. McLaughlin, PhD8; Pfizer Canada Inc., Kirkland, QC, Canada, Pfizer Vaccines, Collegeville, Pennsylvania, Pneumococcal Vaccines, WW Medicine Development & Scientific Affairs, Pfizer Inc, New York, New York

Session: 146. Pneumococcal Vaccines

Friday, October 5, 2018: 12:30 PM

Background. In Canada, 13-valent pneumococcal conjugate vaccine (PCV13) was licensed for the prevention of vaccine-type (VT) pneumonia in adults in July 2015. Herd effects stemming from the routine pediatric PCV13 program have historically led to reductions in VT disease in older adults, and there is currently no recommendation for a routine age-based PCV13 program for this age group. However, recent data suggest these indirect effects may have plateaued, leaving a persistent and substantial burden of potentially preventable pneumococcal disease in older adults. We evaluated the potential impact of PCV13 immunization program for Canadian adults aged ≥26 years on hospitalizations for community-acquired pneumonia (CAP).

Methods. We constructed a mathematical model based on Canada-specific burden of disease estimates and published estimates of PCV13 effectiveness and durability. We estimated the number of hospitalizations averted as the product of (i) the size of the Canadian population aged ≥26 years, (ii) the incidence of all-cause CAP, (iii) the proportion of CAP that is VT, (iv) PCV13 effectiveness, and (v) the duration of protection for PCV13 over a 5-year time horizon. We assumed that rates of all-cause CAP, the proportion of VT CAP, and PCV13 effectiveness remained constant over the future 5-year period. We assumed a 5% annual all-cause mortality rate in the overall population. We estimated hospital days averted as the product of hospitalizations averted and median length of stay. Model assumptions are summarized in Table 1.

Results. Based on model assumptions, PCV13 use in Canadian adults aged ≥26 years would lead to an annual rate reduction of 62 (11–77) hospitalizations per 100,000 persons, per year. This reduction, applied to the entire Canadian population of older adults, would avert an estimated 17,274 (5,665–71,677) hospitalizations and 38,192 (24,298–173,690) hospital days over a 5-year period.

Conclusion. Despite herd effects from the routine pediatric program, direct PCV13 immunization of older adults in Canada could result in considerable additional reduction in hospitalizations for pneumonia.

Table 1. Model Assumptions

Parameter	Value	Source
Population site	6,195,500	Statistics Canada
Annual all-cause CAP incidence	1692 per 100,000	Canadian Institute of Health Information Discase Abstract Database (2015)
Percentage of all-cause CAP caused by PCV13 serotypes	5%	LeBlanc et al. Vaccine, 2017; 35(26):3647-3654
PCV13 effectiveness against vaccination for VT-CAP	72 (95% CI: 62–81.9%)	McLaughlin et al. Clin Infect Dis. 2018; in press
Duration of PCV13 effectiveness	5 years (ie, no waning)	Patterson et al. Trivolis Vaccinol. 2016;5:92-96
Median length of hospital stay (pneumococcal CAP)	8 days	LeBlanc et al. Vaccine, 2017; 35(26):3647-3654

Disclosures. J. Vojicic, S. Dion, R. E. Istriz, C. Laferriere, M. Major, R. M. Nepal, and J. A. Suaya: Pfizer: Employee and Shareholder, Benefits and stock and Salary; J. M. McLaughlin, Pfizer: Employee, Salary.

1441. Doses of 13-Valent Conjugated Pneumococcal Vaccine (PCV13) for Patients With Multiple Myeloma (MM)

Hsin-Yun Sun, MD1; Aristine Cheng, MD2; Shang-Yi Huang, MD3; Su-Yuan Chang, MD4; Shing-Chin Chen, MD, PhD5; and Shih-Chwen Chang, MD, PhD6; Internal Medicine, Natl Taiwan Univ Hosp, Taipei, Taiwan, 1Medical Biotechnology and Laboratory Sciences, National Taiwan University College of Medicine, Taipei, Taiwan

Session: 146. Pneumococcal Vaccines

Friday, October 5, 2018: 12:30 PM

Background. Patients with MM are vulnerable to bacterial infection, especially invasive pneumococcal diseases. Vaccination with one-dose PCV13 is recommended, but their poor immunogenicity was observed. We aimed to assess whether two-dose PCV13 might help.

Methods. Patients with MM were randomized to receive one- or two-dose PCV13. The two doses were given 1 month apart. Measurements of antibody to the