On some realizable metabelian 5-groups

FOUAD ELMOUHIB (THE CORRESPONDING AUTHOR)
Department of Mathematics and Computer Sciences,
Mohammed First University, Oujda, Morocco,
Correspondence: fouad.cd@gmail.com

MOHAMED TALBI
Regional Center of Professions of Education and Training,
Oujda, Morocco
ksirat1971@gmail.com

ABDELMALEK AZIZI
Department of Mathematics and Computer Sciences,
Mohammed First University, Oujda, Morocco,
abdelmalekazizi@yahoo.fr

Abstract

Let G be a 5-group of maximal class and $\gamma_2(G) = [G, G]$ its derived group. Assume that the abelianization $G/\gamma_2(G)$ is of type $(5, 5)$ and the transfers $V_{H_1 \rightarrow \gamma_2(G)}$ and $V_{H_2 \rightarrow \gamma_2(G)}$ are trivial, where H_1 and H_2 are two maximal normal subgroups of G. Then G is completely determined with the isomorphism class groups of maximal class. Moreover the group G is realizable with some fields k, which is the normal closure of a pure quintic field.

Key words: Groups of maximal class, Metabelian 5-groups, Transfer, 5-class groups.

AMS Mathematics Subject Classification: 11R37, 11R29, 11R20, 20D15.

1 Introduction

The coclass of a p-group G of order p^n and nilpotency class c is defined as $cc(G) = n - c$, and a p-group G is called of maximal class, if it has $cc(G) = 1$. These groups have been studied by various authors, by determining there classification, the position in coclass graph and the realization of these groups. Blackburn’s paper [1], is considered as reference of the basic materials about these groups of maximal class. Eick and Leedhan-Green in [5] gave a classification of 2-groups. Blackburn’s classification in [1], of the 3-groups of coclass 1 implies that these groups exhibit behaviour similar to that proved for
2-groups. The 5-groups of maximal class have been investigated in detail in \[2\] \[3\] \[4\] \[5\] \[13\].

With an arbitrary prime \(p \geq 2 \), let \(G \) be a metabelian \(p \)-group of order \(|G| = p^n \) and \(cc(G) = 1 \), where \(n \geq 3 \). Then \(G \) is of maximal class and the commutator factor group \(G/\gamma_2(G) \) of \(G \) is of type \((p,p)\) \[11\], \[11\]. By \(G^{(n)}(z,w) \) we denote the representative of an isomorphism class of the metabelian \(p \)-groups \(G \), which satisfies the relations of theorem 2.1 with a fixed system of exponents \(a, w \) and \(z \).

In this paper we shall prove that some metabelian 5-groups are completely determined with the isomorphism class groups of maximal class, furthermore they can be realized.

For that we consider \(k = \mathbb{Q}(\sqrt[p]{p}, \zeta_5) \), the normal closure of the pure quintic field \(\Gamma = \mathbb{Q}(\sqrt[p]{p}) \), and also a cyclic Kummer extension of degree 5 of the 5th cyclotomic field \(k_0 = \mathbb{Q}(\zeta_5) \), where \(p \) is a prime number, such that \(p \equiv -1 (\text{mod } 25) \). According to \[6\], if the 5-class group of \(k \), denoted \(C_{k,5} \), is of type \((5,5)\), we have that the rank of the subgroup of ambiguous ideal classes under the action of \(\text{Gal}(k/k_0) = \langle \sigma \rangle \), denoted \(C^{(\sigma)}_{k,5} \), is rank \(C^{(\sigma)}_{k,5} = 1 \). Whence by class field theory the relative genus field of the extension \(k/k_0 \), denoted \(k^* = (k/k_0)^* \), is one of the six cyclic quintic extensions of \(k \).

By \(F_5^{(1)} \) we denote the Hilbert 5-class field of a number field \(F \). Let \(G = \text{Gal}\left((k^*)^{(1)}_5/k_0\right) \), we show that \(G \) is a metabelian 5-group of maximal class, and has two maximal normal subgroups \(H_1 \) and \(H_2 \), such that the transfers \(V_{H_1-\gamma_2(G)} \) and \(V_{H_2-\gamma_2(G)} \) are trivial. Moreover \(G \) is completely determined with the isomorphism class groups of maximal class. The theoretical results are underpinned by numerical examples obtained with the computational number theory system PARI/GP \[15\].

2 PRELIMINARY

Let \(G \) be a metabelian \(p \)-group of order \(p^n \), \(n \geq 3 \), with abelianization \(G/\gamma_2(G) \) is of type \((p,p)\), where \(\gamma_2(G) = [G,G] \) is the commutator group of \(G \). The subgroup \(G^p \) of \(G \), generated by the \(p \)-th powers is contained in \(\gamma_2(G) \), which therefore coincides with the Frattini subgroups \(\phi(G) = G^p/\gamma_2(G) = \gamma_2(G) \).

According to the basis theorem of Burnside, the group \(G \) can thus be generated by two elements \(x \) and \(y \), \(G = \langle x, y \rangle \). If we declare the lower central series of \(G \) recursively by

\[
\begin{align*}
\gamma_1(G) &= G \\
\gamma_j(G) &= [\gamma_{j-1}(G), G] \quad \text{for } j \geq 2,
\end{align*}
\]

Then we have Kaloujnine’s commutator relation \([\gamma_j(G), \gamma_l(G)] \subseteq \gamma_{j+l}(G) \), for \(j, l \geq 1 \), and for an index of nilpotence \(c \geq 2 \) the series

\[
G = \gamma_1(G) \supset \gamma_2(G) \supset \ldots \supset \gamma_{c-1}(G) \supset \gamma_c(G) = 1
\]

becomes stationary.

The two-step centralizer

\[
\chi_2(G) = \{ g \in G \mid [g, u] \in \gamma_4(G) \text{ for all } u \in \gamma_2(G) \}
\]

of the two-step factor group \(\gamma_2(G)/\gamma_4(G) \), that is the largest subgroup of \(G \) such that \([\chi_2(G), \gamma_2(G)] \subset \gamma_4(G) \). It is characteristic, contains the commutator subgroup \(\gamma_2(G) \). Moreover \(\chi_2(G) \) coincides with
G if and only if $n = 3$. For $n \geq 4$, $\chi_2(G)$ is one of the $p + 1$ normal subgroups of G.

Let the isomorphism invariant $k = k(G)$ of G, be defined by $[\chi_2(G), \gamma_2(G)] = \gamma_{n-k}(G)$, where $k = 0$ for $n = 3$ and $0 \leq k \leq n - 4$ if $n \geq 4$, also for $n \geq p + 1$ we have $k = \min\{n - 4, p - 2\}$.

$k(G)$ provides a measure for the deviation from the maximal degree of commutativity $[\chi_2(G), \gamma_2(G)] = 1$ and is called defect of commutativity of G.

With a further invariant e, it will be expressed, which factor $\gamma_j(G)/\gamma_{j+1}(G)$ of the lower central series is cyclic for the first time \cite{12}, and we have $e + 1 = \min\{3 \leq j \leq m | 1 \leq |\gamma_j(G)/\gamma_{j+1}(G)| \leq p\}$.

In this definition of e, we exclude the factor $\gamma_2(G)/\gamma_3(G)$, which is always cyclic. The value $e = 2$ is characteristic for a group G of maximal class.

2.1 On the 5-class group of maximal class

Let G be a metabelian 5-group of order 5^n, $n \geq 4$, such that $G/\gamma_2(G)$ is of type $(5, 5)$, then G admits six maximal normal subgroups $H_1, ..., H_6$, which contain the commutator group $\gamma_2(G)$ as a normal subgroup of index 5. We have that $\chi_2(G)$ is one of the groups H_i. We fix $\chi_2(G) = H_1$. We have the following theorem

Theorem 2.1. Let G be a metabelian 5-group of order 5^n, $n \geq 4$, with the abelianization $G/\gamma_2(G)$ is of type $(5, 5)$ and $k = k(G)$ its invariant defined before. Assume that G is of maximal class, then G can be generated by two elements, $G = \langle x, y \rangle$, be selected such that $x \in G \setminus \chi_2(G)$ and $y \in \chi_2(G) \setminus \gamma_2(G)$.

Let $s_2 = [y, x] \in \gamma_2(G)$ and $s_j = [s_{j-1}, x] \in \gamma_j(G)$ for $j \geq 3$. Then we have:

1. $s^5_j s^1_{j+1} s^1_{j+2} s^5_{j+3} s^3_{j+4} = 1$ for $j \geq 2$.
2. $x^5 = s^w_{n-1}$ with $w \in \{0, 1, 2, 3, 4\}$.
3. $y s^2_{2} s^3_{3} s^5_{4} s^5_{5} = s^z_{n-1}$ with $z \in \{0, 1, 2, 3, 4\}$.
4. $[y, s_2] = \prod_{i=1}^{k} s^a_{n-i}$ with $a = (a_{n-1}, ..., a_{n-k})$ exponents such that $0 \leq a_{n-i} \leq 4$.

Proof. See \cite{11}, Theorem 2 for $p = 5$. \hfill \Box

The six maximal normal subgroups $H_1, ..., H_6$ are arranged as follow:

$H_1 = \langle y, \gamma_2(G) \rangle = \chi_2(G)$, $H_i = \langle xy^{i-2}, \gamma_2(G) \rangle$ for $2 \leq i \leq 6$. The order of the abelianization of each H_i, for $1 \leq i \leq 6$, is given by the following theorem.

Theorem 2.2. Let G, H_i and the invariant k as before. Then for $1 \leq i \leq 6$, the order of the commutator factor groups of H_i is given by:

1. If $n = 2$ we have : $|H_i/\gamma_2(H_i)| = 5$ for $1 \leq i \leq 6$.
2. If $n \geq 3$ we have : $|H_i/\gamma_2(H_i)| = 5^2$ for $2 \leq i \leq 6$, and $|H_1/\gamma_2(H_1)| = 5^{n-k-1}$

Proof. See \cite{111}, Theorem 3.1 for $p = 5$. \hfill \Box
Lemma 2.1. Let \(G \) be a 5-group of order \(|G| = 5^n, n \geq 4\). Assume that the commutator group \(G/\gamma_2(G) \) is of type \((5,5)\). Then \(G \) is of maximal class if and only if \(G \) admits a maximal normal subgroup with factor commutator of order \(5^2 \). Furthermore \(G \) admits at least five maximal normal subgroups with factor commutator of order \(5^2 \).

Proof. Assume that \(G \) is of maximal class, then by theorem 2.2 we conclude that \(G \) has five maximal normal subgroups with the order of commutator factor is \(5^2 \) if \(n \geq 4 \), and has six when \(n = 3 \). Conversely, Assume that \(cc(G) \geq 2 \), the invariant \(e \) defined before is greater than 3, and since each maximal normal subgroup \(H \) of \(G \) verify \(|H/\gamma_2(H)| \geq 5^e \) we get that \(|H/\gamma_2(H)| > 5^2\). \(\square \)

2.2 On the transfer concept

Let \(G \) be a group and let \(H \) be a subgroup of \(G \). The transfer from \(G \) to \(H \) can be decomposed as follows: Also we note \(\bar{V} \) instead of \(V_{G \rightarrow H} \).

\[
\begin{array}{ccc}
G & \rightarrow & H/\gamma_2(H) \\
\downarrow & & \downarrow \bar{V} \\
G/\gamma_2(G) & \rightarrow & H/\gamma_2(H)
\end{array}
\]

Figure 1: Transfer diagram

Definition 2.1. Let \(G \) be a group, \(H \) be a normal subgroup of \(G \), and let \(g \in G \) such that, \(f \) is the order of \(gH \) in \(G/H \), \(r = \frac{|G:H|}{f} \) and \(g_1, ..., g_r \) be a representative system of \(G/H \), then the transfer from \(G \) to \(H \), noted \(V_{G \rightarrow H} \), is defined by:

\[
V_{G \rightarrow H} : G/\gamma_2(G) \rightarrow H/\gamma_2(H) \\
g/\gamma_2(G) \rightarrow \prod_{i=1}^{r} g_i^{-1} g^l g_i \gamma_2(H)
\]

In the special case that \(G/H \) is cyclic group of order 5 and \(G = \langle h, H \rangle \), then the transfer \(V_{G \rightarrow H} \) is given as:

1. If \(g \in H \); then \(V_{G \rightarrow H}(g\gamma_2(G)) = g^{1+h+h^2+h^3+h^4} \gamma_2(H) \)

2. \(V_{G \rightarrow H}(h\gamma_2(G)) = h^5\gamma_2(H) \)

3 MAIN RESULTS

In this section we investigate the purely group theoretic results to determine the invariants of metabelian 5-group of maximal class developed in theorem 2.1. Furthermore we show that a such metabelian 5-group is realized by the Galois group of some fields tower.
3.1 Invariants of metabelian 5-group of maximal class

In this paragraph, we keep the same hypothesis on the group G and the generators $G = \langle x, y \rangle$, such that $x \in G \setminus \chi_2(G)$ and $y \in \chi_2(G) \setminus \gamma_2(G)$. The six maximal normal subgroups of G are as follows: $H_1 = \chi_2(G) = \langle y, \gamma_2(G) \rangle$ and $H_i = \langle xy^{i-2}, \gamma_2(G) \rangle$ for $2 \leq i \leq 6$.

In the case that the transfers from two subgroups H_i and H_j to $\gamma_2(G)$ are trivial, we can determine completely the 5-group G.

Proposition 3.1. Let G be a metabelian 5-group of maximal class of order 5^n, $n \geq 4$. If the transfers $V_{\chi_2(G)\rightarrow \gamma_2(G)}$ and $V_{H_2\rightarrow \gamma_2(G)}$ are trivial, then $n \leq 6$ and $\gamma_2(G)$ is of exponent 5. Furthermore:

- If $n = 6$ then $G \sim G_6^{(1,0)}$ where $a = 0$ or 1.
- If $n = 5$ then $G \sim G_5^{(5)}$ where $a = 0$ or 1.
- If $n = 4$ then $G \sim G_0^{(4)}(0,0)$.

Proof. Assume that $n \geq 7$, then $\gamma_5(G) = \langle s_5, \gamma_6(G) \rangle$, because G is of maximal class and $|\gamma_5(G)/\gamma_6(G)| = 5$. By [1], lemma 3.3] we have $y^5 s_5 \in \gamma_6(G)$, thus $\gamma_5(G) = \langle s_5, \gamma_6(G) \rangle = \langle y^5 s_5 s_5^5, \gamma_6(G) \rangle = \langle y^5, \gamma_6(G) \rangle$, and since $V_{\chi_2(G)\rightarrow \gamma_2(G)}(y) = y^5 = 1$, because the transfers are trivial by hypothesis, we get that $\gamma_5(G) = \gamma_6(G)$, which is impossible, whence $n \leq 6$ and According to [1], lemma 3.2] $\gamma_2(G)$ is of exponent 5.

If $n = 6$, we have $V_{\chi_2(G)\rightarrow \gamma_2(G)}$ and $V_{H_2\rightarrow \gamma_2(G)}$ are trivial, so by theorem 2.1] we obtain $x^5 = s_5^w = 1$ which imply $w = 0$, because $0 \leq w \leq 4$. Since $\gamma_2(G)$ is of exponent 5, we have $s_5^2 = 1$ and by theorem 2.1] the relation $s_4^5 5_6^5 5_7^5 5_8^5 s_5 = 1$ gives $s_5^2 = 1$, also $s_3^5 5_6^5 5_7^5 5_8^5 s_7 = 1$ gives $s_3^5 = 1$. We replace in $y^5 s_2^1 5_3^1 5_4^1 5_5 s_5 = s_5^2$ and we get $s_5 = s_5^z$, whence $z = 1$. We have $[\chi_2(G), \gamma_2(G)] \subset \gamma_6-k(G) \subset \gamma_4(G)$ then $6 - k \geq 4$, and $0 \leq k \leq 2$, thus $[y, s_2] = s_4^{a_0}$, $a = (\alpha, \beta)$. If $k = 0$, then $a = 0$ and $G \sim G_0^{(6)}(1,0)$, if $k = 1$ then $a = 1$ and $G \sim G_0^{(6)}(1,0)$ and if $k = 2$ then $G \sim G_0^{(6)}(1,0)$.

If $n = 5$, we have $[\chi_2(G), \gamma_2(G)] \subset \gamma_5-k(G) \subset \gamma_4(G)$ then $5 - k \geq 4$, and $0 \leq k \leq 1$. We have $s_5^4 = 1$, $s_2^5 = s_3^5 = 1$ and $[y, s_2] = s_4^w$. the relation $y^5 s_2^1 5_3^1 5_4^1 5_5 s_5 = s_4^z$ imply $s_4^z = 1$ so $z = 0$. As $n = 6$ we obtain $w = 0$. If $k = 0$ then $G \sim G_0^{(5)}(0,0)$ and if $k = 1$ $G \sim G_0^{(5)}(0,0)$.

If $n = 4$, Since $[\chi_2(G), \gamma_2(G)] \subset \gamma_5-k(G) \subset \gamma_4(G)$ we have $4 - k \geq 4$, and $k = 0$, thus $[y, s_2] = 1$, i.e $a = 0$. By the same way in this case we have $w = z = 0$, therefore $G \sim G_0^{(4)}(0,0)$.

Proposition 3.2. Let G be a metabelian 5-group of maximal class of order 5^n. If the transfers $V_{H_2\rightarrow \gamma_2(G)}$ and $V_{H_i\rightarrow \gamma_2(G)}$, $3 \leq i \leq 6$, are trivial, then we have:

- If $n = 5$ or 6 then $G \sim G_0^{(5,0)}(0,0)$.
- If $n \geq 7$ then $G \sim G_0^{(5)}(0,0)$.

Proof. If $n = 5$ or 6, by [1], theorem 1.6] we have $[\chi_2(G), \gamma_2(G)] = 1$ and $[\chi_2(G), \gamma_2(G)] \subset \gamma_4(G)$ elementary, and $(\gamma_2(\chi_2(G)))^5 = 1$ and $\prod_{j = 2}^{3} [\gamma_j(G), \gamma_4(G)] = 1$, we conclude that $(xy)^5 = x^5 y^5 s_2^1 5_3^1 5_4^1 5_5 s_5$ and we have $y^5 s_2^1 5_3^1 5_4^1 5_5 s_5 = s_4^w - 1$ then $(xy)^5 = x^5 s_4^w - 1$ and since $V_{H_2\rightarrow \gamma_2(G)}$ and $V_{H_i\rightarrow \gamma_2(G)}$ are trivial then $(xy)^5 = x^5 = s_4^w - 1 = s_4^w - 1 = 1$, thus $z = w = 0$. Since $[\chi_2(G), \gamma_2(G)] = \gamma_n-k \subset \gamma_4(G)$ we have $n - k \geq 4$, whence $0 \leq k \leq 2$ because $n = 5$ or 6 then $G \sim G_0^{(5)}(0,0)$.
If \(n \geq 7 \), according to corollary page 69 of [1] we have, \((\gamma_j(\chi_2(G)))^5 = \gamma_{j+4}(G)\) for \(j \geq 2 \), and since \(y^5 s_2^{10} s_3^{10} s_4^5 s_5 = s_{n-1}^z \) we obtain:

\[
y^5 = s_{n-1}^z s_5^{-1} s_4^{-1} s_3^{-10} s_2^{-10} \equiv s_{n-1}^z s_5^{-1} \mod \gamma_6(G)
\]

because \(s_5^2 \in \gamma_6(G) \), \(s_3^5 \in \gamma_6(G) \) and \(s_4^3 \in \gamma_6(G) \), and since \(n \geq 7 \) we have \(s_{n-1} \in \gamma_6(G) \), therefor \(V = V_{H_3 \to \gamma_4(G)}(y) \equiv s_5^{-1} \mod \gamma_6(G) \). Thus \(\text{Im}(V) \subset \gamma_5(G) \), In fact \(\text{Im}(V) = \gamma_5(G) \), and also we have \(y \notin \ker(V) \) and \(\forall f \geq 2 \ y^k s_f \notin \ker(V) \). The kernel of \(V \) is formed by elements of \(\gamma_2(G) \) of exponent 5, its exactly \(\gamma_{n-4}(G) \), and since \(G \) is of maximal class then the rank of \(\gamma_2(G) \) is 2 and \(\gamma_2(G) \) admits exactly 25 elements of exponent 5, these elements form \(\gamma_{n-4}(G) \). We conclude that \(|\chi_2(G)/\gamma_2(\chi_2(G))| = |\gamma_{n-4}(G)| \times |\gamma_5(G)| = 5^4 \times 5^{n-5} = 5^{n-1} = |\chi_2(G)| \), whence \(\chi_2(G) \) is abelian because \(\gamma_2(\chi_2(G)) = 1 \), consequently \([y, s_2] = 1 \), thus \(a = 0 \). As the cases \(n = 5 \) or \(6 \) we obtain \((xy)^5 = x^5 s_{n-1}^z \), therefor \(z = w = 0 \), hence \(G \sim G^{(n)}_0(0,0) \).

In the case when \(V_{H_i \to \gamma_2(G)} \) and \(V_{H_j \to \gamma_2(G)} \), \(4 \leq i \leq 6 \) are trivial, according to [1], theorem 1.6] we have \((xy^\mu)^5 = x^5 (y^5 s_2^{10} s_3^{10} s_4^5 s_5)^\mu = s_{n-1}^{w+\mu z} \) with \(\mu = 2, 3, 4 \), then we can admit the same reasoning to prove the result.

\[\square\]

Proposition 3.3. Let \(G \) be a metabelian 5-group of maximal class of order \(5^n \). If the transfers \(V_{H_i \to \gamma_2(G)} \) and \(V_{H_j \to \gamma_2(G)} \), where \(i, j \in \{3, 4, 5, 6\} \) and \(i \neq j \), are trivial, then we have: \(G \sim G^{(n)}_0(0,0) \).

Proof. Assume that \(H_i = \langle xy^\mu_1, \gamma_2(G) \rangle \) and \(H_j = \langle xy^\mu_2, \gamma_2(G) \rangle \) where \(\mu_1, \mu_2 \in \{1, 2, 3, 4\} \) and \(\mu_1 \neq \mu_2 \). According to [1], theorem 1.6] we have already prove that \((xy^\mu_1)^5 = s_{n-1}^{w+\mu_1 z} \) and \((xy^\mu_2)^5 = s_{n-1}^{w+\mu_2 z} \). Since \(V_{H_i \to \gamma_2(G)} \) and \(V_{H_j \to \gamma_2(G)} \) are trivial, we obtain \(s_{n-1}^{w+\mu_1 z} = s_{n-1}^{w+\mu_2 z} = \) therefor \(w + \mu_1 z = w + \mu_2 z \equiv 0(\mod 5) \) and since 5 does not divide \(\mu_1 - \mu_2 \) we get \(z = 0 \) and at the same time \(w = 0 \). To prove \(a = 0 \) we admit the same reasoning as proposition 3.2.

\[\square\]

3.2 APPLICATION

Through this section we denote by:

- \(p \) a prime number such that \(p \equiv -1(\mod 25) \).
- \(k_0 = \mathbb{Q}(\xi_5) \) the 5\(^{th} \) cyclotomic field, \((\xi_5 = e^{2\pi i/5}) \).
- \(k = k_0(\sqrt[5]{p}) \) a cyclic Kummer extension of \(k_0 \) of degree 5.
- \(C_{k,5} \) the 5-ideal class group of \(k \).
- \(k^* = (k/k_0)^* \) the relative genus field of \(k/k_0 \).
- \(F_5^{(1)} \) the absolute Hilbert 5-class field of a number field \(F \).
- \(G = \text{Gal}\left((k^*)_5^{(1)}/k_0\right) \).

We begin by the following theorem.
Theorem 3.1. Let $k = \mathbb{Q}(\sqrt[5]{\gamma}, \zeta_5)$ be the normal closure of a pure quintic field $\mathbb{Q}(\sqrt[5]{\gamma})$, where p a prime congruent to -1 modulo 25. Let k_0 be the the 5th cyclotomic field. Assume that the 5-class group $C_{k,5}$ of k, is of type $(5,5)$, then $Gal(k^*/k_0)$ is of type $(5,5)$, and two sub-extensions of k^*/k_0 admit a trivial 5-class number.

Proof. By $C_{k,5}^{(\sigma)}$ we denote the subgroup of ambiguous ideal classes under the action of $Gal(k/k_0) = \langle \sigma \rangle$.

According to [3], theorem 1.1, in this case of the prime p we have rank $C_{k,5}^{(\sigma)} = 1$, and by class field theory, since $[k^* : k] = |C_{k,5}^{(\sigma)}|$, we have that k^*/k is a cyclic quintic extension, whence $Gal(k^*/k_0)$ is of type $(5,5)$.

Since $p \equiv -1(\text{mod } 25)$, then p splits in k_0 as $p = \pi_1\pi_2$, where π_1, π_2 are primes of k_0. By [7], theorem 5.15 we have explicitly the relative genus field k^* as $k^* = k(\sqrt[5]{\pi_1^{a_1}\pi_2^{a_2}}) = k(\sqrt[5]{\pi_1\pi_2}, \sqrt[5]{\pi_1^{a_1}\pi_2^{a_2}})$ with $a_1, a_2 \in \{1, 2, 3, 4\}$ such that $a_1 \neq a_2$. Its clear that the extension k^*/k_0 admits six sub-extensions, where k is one of them, and the others are $k_0(\sqrt[5]{\pi_1^{a_1}\pi_2^{a_2}})$, $k_0(\sqrt[5]{\pi_1^{a_1+1}\pi_2^{a_2+1}})$, $k_0(\sqrt[5]{\pi_1^{a_1+2}\pi_2^{a_2+2}})$, $k_0(\sqrt[5]{\pi_1^{a_1+3}\pi_2^{a_2+3}})$ and $k_0(\sqrt[5]{\pi_1^{a_1+4}\pi_2^{a_2+4}})$. Since $a_1, a_2 \in \{1, 2, 3, 4\}$, we can see that the extensions $L_1 = k_0(\sqrt[5]{\pi_1})$ and $L_2 = k_0(\sqrt[5]{\pi_2})$ are sub-extensions of k^*/k_0.

In [7, section 5.1], we have an investigation of the rank of ambiguous classes of $k_0(\sqrt[5]{\gamma})/k_0$, denoted t. We have $t = d + 4^* - 3$, where d is the number of prime divisors of x in k_0, and 4^* an index defined as [7, section 5.1]. For the extensions L_i/k_0, $(i = 1, 2)$, we have $d = 1$ and by [7, theorem 5.15] we have $4^* = 2$, hence $t = 0$.

By $h_5(L_i)$, $(i = 1, 2)$, we denote the class number of L_i, then we have $h_5(L_1) = h_5(L_2) = 1$. Otherwise $h_5(L_i) \neq 1$, then there exists an unramified cyclic extension of L_i, denoted F. This extension is abelian over k_0, because $[F : k_0] = 5^2$, then F is contained in $(L_i/k_0)^*$ the relative genus field of L_i/k_0. Since $[(L_i/k_0)^* : L_i] = 5^t = 1$, we get that $(L_i/k_0)^* = L_i$, which contradicts the existence of F. Hence the 5-class number of L_i, $(i = 1, 2)$, is trivial.

In what follows, we denote by L_1 and L_2 the two sub-extensions of k^*/k_0, which verify theorem 3.1. and by \tilde{L} the three remaining sub-extensions different to k. Let $G = Gal((k^*)^{(1)}_5/k_0)$, we have $\gamma_2(G) = Gal((k^*)^{(1)}_5/k^*)$, then $G/\gamma_2(G) = Gal(k^*/k_0)$ is of type $(5,5)$, therefore G is metabelian 5-group with factor commutator of type $(5,5)$, thus G admits exactly six maximal normal subgroups as follows:

$$H = Gal((k^*)^{(1)}_5/k), H_{L_i} = Gal((k^*)^{(1)}_5/L_i), (i = 1, 2), \tilde{H} = Gal((k^*)^{(1)}_5/\tilde{L})$$

With $\gamma_2(G)$ is one of them.

Now we can state our principal result.

Theorem 3.2. Let $G = Gal((k^*)^{(1)}_5/k_0)$ be a 5-group of order 5^n, $n \geq 4$, then G is a metabelian of maximal class. Furthermore we have:

- If $\chi_2(G) = H_{L_i}(i = 1, 2)$ then: $G \sim G_0^{(n)}(z, 0)$ with $n \in \{4, 5, 6\}$ and $a, z \in \{0, 1\}$.
- If $\chi_2(G) = \tilde{H}$ then: $G \sim G_0^{(n)}(0, 0)$ with $n = 5$ or 6.

$G \sim G_0^{(n)}(0, 0)$ with $n \geq 7$ such that $n = s + 1$ where $h_5(\tilde{L}) = 5^s$.

Proof. Let $G = Gal((k^*)^{(1)}_5/k_0)$ and $H = Gal((k^*)^{(1)}_5/k)$ its maximal normal subgroup, then $\gamma_2(H) = Gal((k^*)^{(1)}_5/k^{(1)}_5)$, therefor $H/\gamma_2(H) = Gal(k^{(1)}_5/k) \simeq C_{k,5}$, and as $C_{k,5}$ is of type $(5,5)$ by hypothesis...
we get that $|H/\gamma_2(H)| = 5^2$. Lemma 3.1 imply that G is a metabelian 5-group of maximal class, generated by two elements $G = \langle x, y \rangle$, such that, $x \in G \setminus \chi_2(G)$ and $y \in \chi_2(G) \setminus \gamma_2(G)$. Since $\chi_2(G) = \langle y, \gamma_2(G) \rangle$, we have $\chi_2(G) \neq H$. Otherwise we get that $|H/\gamma_2(H)| = 5^2$ which contradict theorem 2.1.

According to theorem 3.1 we have $h_5(L_1) = h_5(L_2) = 1$ then the transfers $V_{H_{L_i} \to \gamma_2(G)}$ are trivial. If $\chi_2(G) = H_{L_i}$ the results are nothing else than proposition 3.1. If $\chi_2(G) = \tilde{H}$ and $n = 4$ then $\gamma_4(G) = 1$ and $[\chi_2(G), \gamma_2(G)] = \gamma_2(\tilde{H})$, also $[\chi_2(G), \gamma_2(G)] = \gamma_4(G) = 1$ then $\chi_2(\tilde{H}) = 1$, whence \tilde{H} is abelian. Consequently $\tilde{H}/\gamma_2(\tilde{H}) = C_{L,5}$, so $h_5(\tilde{L}) = |\tilde{H}| = 5^3$ because its a maximal subgroup of G. Since \tilde{L} and k have always the same conductor, we deduce that $h_5(k)$ and $h_5(\tilde{L})$ verify the relations $5^5h_L = uh_1^4$ and $5^5h_k = uh_1^4$, given by C. Parry in [14], where u is a unit index and a divisor of 5^6. Using the 5-valuation on these relations we get that $h_5(\tilde{L}) = 5^8$ where s is even, which contradict the fact that $h_5(\tilde{L}) = 5^2$, hence $n \geq 5$.

The results of the theorem are exactly application of propositions 3.2, 3.3. According to proposition 3.2 if $n \geq 7$ we have $|\chi_2(G)| = 5^{n-1}$ and since $h_5(\tilde{L}) = |\tilde{H}/\gamma_2(\tilde{H})| = |\tilde{H}| = 5^{n-4} = 5^s$ we deduce that $n = s + 1$. □

4 Numerical examples

For these numerical examples of the prime p, we have that $C_{k,5}$ is of type $(5, 5)$ and rank $C_{k,5}^{(\sigma)} = 1$, which mean that k^* is cyclic quintic extension of k, then by theorem 3.2 we have a completely determination of G. We note that the absolute degree of $(k^*)_{5}^{(1)}$ surpass 100, then the task to determine the order of G is definitely far beyond the reach of computational algebra systems like MAGMA and PARI/GP.

Table 1: $k = \overline{\mathbb{Q}}(\sqrt[5]{p}, \zeta_5)$ with $C_{k,5}$ is of type $(5, 5)$ and rank $C_{k,5}^{(\sigma)} = 1$.

p	$p \pmod{25}$	$h_{k,5}$	$C_{k,5}$	rank ($C_{k,5}^{(\sigma)}$)
149	-1	25	(5, 5)	1
199	-1	25	(5, 5)	1
349	-1	25	(5, 5)	1
449	-1	25	(5, 5)	1
559	-1	25	(5, 5)	1
1249	-1	25	(5, 5)	1
1499	-1	25	(5, 5)	1
1949	-1	25	(5, 5)	1
1999	-1	25	(5, 5)	1
2099	-1	25	(5, 5)	1
References

[1] N.Blackburn, *On a special class of p-groups*, Acta Math. 100 (1958), 45-92.

[2] H.Dietrich, B.Eick, and D.Feichtenschlager. *Investigating p-groups by coclass with GAP*. Contemp. Math. AMS 470, 45-61, 2008.

[3] H.Dietrich. *Periodic patterns in the graph of p-groups of maximal class*. J. Group Theory 13, 851-871, 2010.

[4] H.Dietrich. *A new periodic pattern in the graph of p-groups of maximal class*. Bull. London Math. Soc. 42, 1073-1088, 2010.

[5] B.Eick and C.Leedham-Green, *Classification of prime-power groups by coclass*, Bull. London Math. Soc. 40, 274-288, 2008.

[6] F.Elmouhib, M.Talbi, and A.Azizi, *5-rank of ambiguous class groups of quintic Kummer extensions*, Accepted for publication in Proceedings-Mathematical Sciences.

[7] M.Kulkarni, D.Majumdar, B.Sury, *l-class groups of cyclic extension of prime degree l*, J. Ramanujan Math. Soc. 30, No.4 (2015), 413-454.

[8] C.R.Leedham-Green and S.McKay. *On the classification of p-groups of maximal class*. Quart. J. Math. Oxford Ser. (2) 35, 293-304, 1984.

[9] D.C.Mayer, *Transfers of metabelian p-groups*, Monatsh. Math. 166 (2012), no. 3-4, 467-495.

[10] D.C.Mayer, *The second p-class group of a number field*, Int. J. Number Theory 8 (2012), no. 2, 471-505.

[11] R.J.Miech, *Metabelian p-groups of maximal class*, Trans. Amer. Math. Soc. 152 (1970), 331-373.

[12] B.Nebelung, *Klassification metabelser 3-gruppen mit Faktorkommutatogruppe von typ (3,3) und anwendung auf das Kapitulationsproblem*, Thèse de doctorat (1989), Kolon.

[13] M.F.Newman. *Groups of prime-power order*. Groups Canberra 1989, 49-62, Lecture Notes in Math. 1456, Springer, Berlin, 1990.

[14] C. Parry, *Class number relations in pure quintic fields*, Symposia Mathematica. 15 (1975), 475-485.

[15] The PARI Group, PARI/GP, Version 2.4.9, Bordeaux, 2017, http://pari.math.u-bordeaux.fr