Abstract: Discovery of microRNAs (miRNAs) twenty years ago, has advocated a new era of “Molecular Genetics”. About 2000 miRNAs are present, that regulate one third of the genome. MiRNAs dysregulated expression may contribute to several diseases including tumor growth. Their presence in body fluids, reflecting levels alteration in various cancers, merit circulating miRNAs as the “next generation biomarkers” for early stages tumor diagnosis and/or prognosis. Herein, we performed a comprehensive literature search focusing on the origin, biosynthesis and role of miRNAs and summarized the foremost studies centering on miRs value as non-invasive biomarkers in different non-communicable diseases, including various cancer types. Moreover, during chemotherapy many miRNAs were linked to multidrug resistance, via modulating numerous biological processes and/or pathways that will be highlighted as well.

Keywords: ncRNA; miR; NCDs; onco-miR; cancer; mTOR
non-invasive identification of various cancer types[10][11][12][13] considered as beneficial potential liquid biopsy.

2. Review Aims

2.1. In Part I, the review aims to briefly discuss “miRs biosynthetic pathways and down-stream effects upon binding target mRNA”.

2.2. In Part II, the review aims to highlight “the utility of circulating miRNAs as biomarkers for non-communicable diseases (NCDs) and a brief about their role in cancer growth or resistance to treatment”.

3. Review Methodology

An online search in the medical databases PUBMED and NCBI for the following terms: (“Circulating miRNA”) AND (“Health and diseases regulation of gene expression”) AND (“Role in Carcinogenesis”) AND (“Epigenetics”) AND (“Future promising biomarkers”) was done on September, 2020, with publication date limit since 2015. Priority was given to papers with higher empirical evidence methodology, including clinical guidelines, meta-analysis, randomized clinical studies, systematic review, original papers, and narrative reviews.

Part I.

4. MiRNAs Biogeny

MiRNAs biogenesis include various coordinated steps and specific cellular mechanisms[8]. Biogenesis of miRNA starts with post-transcriptional or co-transcriptional preparation of RNA polymerase II-III transcripts. Around 50% of the miRNAs recently identified are intragenic and are typically regulated from introns and some protein-coding gene exons. The remaining ones are intergenic, freely transcribed and guided according to their own promoters from a host gene[14]. MiRNAs could be translated as a single long transcript, named clusters[15]. Moreover, miRNAs biogenesis is categorized as either canonical or non-canonical.

4.1. Canonical miRNAs Biogeny Pathway

This is the main route by which miRNAs are developed, as shown in Figure (1). In this process, primary-miRNAs (pri-miRNAs) are transcribed from their genes by RNA polymerase II. Which is then handled by a microprocessor complex composed of DiGeorge Syndrome Critical Region 8 (DGCR8); an RNA-binding protein, Drosha, a Class 2 ribonuclease III enzyme into precursor-miRNAs (pre-miRNAs)[16]. In this process, DGCR8 identifies an N6-methyl adenylated GGAC and a different motif within the pri-miRNA[16], while Drosha begins processing inside the nucleus by cutting the stem-loop precursor[17].

For most of the double stranded RNAs (dsRNAs) which are involved in small-RNA production routes, pre-miRNA seems to be a signature motif. This signature is recognized by the Exportin-5 protein; that facilitates the release of pre-miRNAs to the cytoplasm, through nuclear pores, depending on a GTP-GDP gradient[17]. Exported pre-miRNA is transferred to another RNase-III enzyme in the cytoplasm, called Dicer. Dicer, the cytoplasmic RNase-III enzyme, cuts the pre-miRNA to a miRNA duplex, which is unwinded afterwards giving the “Fully Developed Functional miRNA” molecule.

In an ATP-dependent manner, the two strands defined from the resultant miRNA duplex, might be stacked into the protein family Argonaute (AGO) known as AGO1-4[18]. After miRNA duplex formation, one strand of the miRNA associates with an RNA-induced silencing complex (RISC) forming the “regulatory miRNA-RISC complex”. The choice of strands 5p or 3p is dependent on the thermodynamic stability at the 5’ untranslated regions (UTRs) at the 1-position of the nucleotide[19]. The unoccupied strand known as the
passenger strand is loosened by different components from the loaded strand, named the guide or leading strand, depending on complementarity[6].

![Figure 1: Canonical miRNAs Biogeny Pathway](image)

Figure 1: Canonical miRNAs Biogeny Pathway

[It is the primary route by which miRNAs are produced. In the nucleus, the gene is transcribed to generate primary miRNA (pri-miRNA) that is cleaved producing precursor miRNA (pre-miRNA), which is then exported to the cytoplasm to be broken, resulting in miRNA duplex. miRNA duplex links to RISC complex resulting in miRNA duplex unwinding to create a mature miRNA. Every mature miRNA binds to its target mRNA, resulting in silencing by cleavage, de-adenylation or repressing translation.]

4.2. Non-Canonical miRNAs Biogenic Pathway

Several non-canonical pathways have been illustrated to date, primarily Drosha/DGCR8-independent and dicer-independent pathways[6].

4.2.1. Drosha/DGCR8-Independent Non-Canonical MiRNAs Pathway

This pathway joins mRNA introns and their own transients to “mirtrons transcripts”. Drosha/DGCR8 is skipped at that stage of processing and these transcripts are, again, carried by the protein Exportin-1 to the cytoplasm[17].

4.2.2. Dicer-Independent miRNAs Biogenic Pathway

mRNAs could be dealt by Drosha/DGCR8 to form short heterogeneous RNA (shRNA). Since these transcripts are not lengthy to serve as dicer substrates, AGO2 protein leads in their cytoplasmic developmental steps[20], as previously mentioned.
5. **MiRNAs-Target Binding**

Via complementarity between unique sequences, which are 2-7 bases, from the 5' end of the miRNA and certain target mRNA sequences, recognized as "**miRNA Response Elements**" (MREs), the developed miRNA attaches to its target[21].

5.2. **MiRNA-Target Gene mRNA-Binding Types**

5.2.1. **Ideal Binding** where complete complementarity occurs when miRNA binds its target ORF resulting in an "**RNA Decay**" or

5.2.2. **Imperfect Binding** resulting in "**Post-Transcriptional Silencing**" via mRNA de-stabilization, de-capping, de-adenylation and translational repression[6],[22].

It is worthy to mention the fundamental multifaced aspect of miRNAs target binding, is that their suppressive role is not limited to one-mRNA, highlighting the "**One-mRNA Paradigm**" in which multiple mRNA targets can be achieved by one microRNA and multiple microRNAs can hit one mRNA[23].

5.3. **MiRNA-Target Gene(s) mRNA Silencing Mode(s)**

Depending on the degree of MREs complementarity, the target gene(s) mRNA silencing strategies, by miRNAs, could be attained either via target gene mRNA degradation or target gene mRNA translation repression.

5.3.1. **Target mRNA Decay**

MiRNA-induced silencing complex (miRISC) AGO proteins bind to the GW182 (a protein-containing glycine-tryptophan repeat) to enroll the “de-adenylase complex” and promote de-adenylation of the target gene mRNA poly(A) tail. With the aid of the catalytic de-capping protein-2 (DCP2), after de-adenylation, and in the presence of an additional de-capping activators, miRISC de-caps the de-adenylated gene mRNAs. In the presence of an enhancer of de-capping 4 (EDC4), DCP1 and additional de-capping cofactors, the decay of the target mRNA is aided by the cytoplasmic 5' to 3' exonuclease1 (Xrn1p)[24].

5.3.2. **Target mRNA Translation Repression**

miRNA-mediated target mRNA translational repression can occur before and after translational initiation step, through several mechanisms.

5.3.2.1. **miRISC ties to the target mRNA** at that point AGO protein interacts with the GW182. This interaction promotes the relocation of poly(A) binding protein from the 3’ poly(A)-tail and blocks its binding to the eukaryotic initiation factor 4 complex (eIF4G), interfering with the “translation-initiation step”[25].

5.3.2.2. **Repressing cap-structure recognition by eIF4F complex** where the AGO protein separates the eIF4A from the 5’ cap binding complex of the target mRNA and therefore, the ribosomal subunit will not be recruited or attached to the mRNA for translation initiation[25].

5.3.2.3. **miRNA can repress protein synthesis** after target mRNA translation initiation.

5.3.2.4. Additionally, miRISC could interferes with the targeted mRNA **elongation components**[25].

5.3.2.5. Finally, to ensure no escape from miR silencing effect, if the target mRNA was translated, miR-ISC could recruit **proteases** resulting in degradation of the nascent polypeptide chains[25].
5.4. MiRNA-Target Gene(s) Activation Mode

Activated targeted mRNA expression could be triggered by miRNAs[6], via AGO2 protein and fragile-x-mental retardation related protein-1, rather than GW182. This is achieved via MiR attachment on the target promoter, to induce RNA-Polymerase II recruitment followed by transcription activation[26]. Either “MiR-target gene(s) binding” resulted in an expression silencing or activation, these effects have been witnessed and recorded by researchers to be associated with various disease(s), that will be discussed in the current review Part II.

Part II.
6. MiRNAs Expression Alterations in Non-Communicable Diseases

6.2. MiRNAs Relation to Glucose Homeostasis

MiRNAs Effect on Adipogenesis, Metabolic Syndrome or Weight Control[27] MiRNAs may boost or inhibit mesenchymal stem cell adipogenic differentiation (Table 1). MiRs establish adipocyte differentiation, through directing adipogenesis-related transcription components and signal transduction pathways[28]. This could be mediated via AKT/mTOR signaling pathway, with an effect on glucose homeostasis and adipogenesis increment, characterized by the final up-regulation of adipogenic markers[29]. On the other hand, miRNAs would repress adipogenic differentiation via adipogenic factors down-regulation, together with a decreased triacylglycerol level[30].

6.2.1. MiRNAs Relation to Type 2 Diabetes Mellitus

As listed in Table 1, many miRNAs are linked to β-cells growth, insulin resistance or sensitivity, insulin production/secretion and insulin signaling, which can influence T2DM disease course[31]. Therefore, diabetes-related nephropathy or retinopathy is also affected by an altered microRNAs expression[32].

6.2.2. MiRNAs Lists in Cardiovascular Diseases

miRNAs regulate the cardiac progenitor cells differentiation and proliferation, controlling cardiac myocytes, endothelial cells, pacemaker cells, as well as smooth muscle cells function. Table 2 shows miRNAs lists dysregulated in various CVDs[33]. For example, miR-208a and miR-208b, encoded within alpha and beta-cardiac muscle myosin heavy chain genes, respectively, were found to be elevated in patients with acute myocardial infarction (AMI). Liu and his co-workers[34] demonstrated a significant predictive value for miR-208, miR-1 and miR-499 in AMI, higher than the traditional cardiac biomarkers, namely, TnT and CPK-MB.

6.3. MiRNAs List in Cerebrovascular Diseases

miRNAs are essential to the nervous system's improvement, with few miRNAs having function in developing ischemic cerebrovascular disorders incapacity[35]. Many miRNAs have been associated with post-stroke brain edema and post-stroke cell death, namely, apoptosis.[36]As listed in Table 3.

6.4. MiRNAs in the Oncology field

6.4.1. Onco-miR or Tumor Suppressor miR; a Coin with Two Faces

Being a multifactorial player, miRNA in the oncology field represents a coin with two faces, either oncogenic or tumor suppressor[37], as listed in Table 4. miRNAs that can hit/suppress various mediators of the oncogenic signaling pathways, is known as a tumor suppressor mediator[38][39][40]. On the contrary, the miRNA that aims the cell-cycle checkpoint proteins or the fundamental tumor suppressor proteins, is nominated the oncogenic miRNA or an onco-miR[41].
Table 1: MiRNAs List in relation to Glucose Homeostasis; Adipogenesis, Metabolic Syndrome, and Type 2 D.M

Metabolic Disease	miRNAs Effect	miRNAs List
Obesity & Metabolic Syndrome	Adipogenesis promoting	miR-26b[42], miR-103[43], miR-146b, miR-148a[44], miR-199a, miR-181, miR-320[28]
	Anti-adipogenic	miR-33b, miR-93[45], miR-125a, miR-193a/b[46], miR-194, miR-363, miR-709[27]
Type 2 D.M	ß-cells development	miR-197-3p, miR-9-5p, miR-9-3p, miR-99a-3p, miR-124a, miR-135a, miR-138, miR-149, miR-342-3p, miR-375, miR-106b, miR-222[47][48][49][50][51][52][53]
	Insulin sensitivity/resistance	miR-31, miR-127, miR-302c3p, miR-373, miR-518b, miR-520c-3p, miR-200, miR-7[54][55][56][57][51]
	Insulin production/secretion	miR-29, miR-221, miR-222, miR-103, miR-107, miR-223[58] miR-320, miR-126, miR-103, miR-107[59][31] Let-7 family[60] miR-375, miR-9, miR-7, miR-124a, miR-96, miR-124, miR-184, miR-29a[47][51]
	Insulin signaling	miR-7, miR-1, miR-133a/b miR-206, miR-128a, miR-330, miR-223[61][62][63] miR-144

Table 2: MiRNAs Lists associated with different Cardiovascular Diseases

Cardiovascular Disease(s)	miRNAs List	
Acute Myocardial Infarction	miR-208a/b, miR-1, miR-133a/b, miR-499[34], miR-328, miR-134, miR-1291, miR-663b, miR-22[64], miR-126[65]	
Heart Failure	miR-423-5p, miR-22, miR-320a, miR-92b[33], miR-21[66]	
Atrial Fibrillation	miR-133b, miR-328[20], miR-499[67], miR-126[68]	
Hypertension	miR-34a, miR-21[69], miR-23b, miR-191, miR-451, miR-126-3p, miR-26a-5p, miR-107[70]	
Cerebrovascular Disease(s)	miRNA Regulatory Effect	miRNAs List
---------------------------	-------------------------	-------------
Stroke	Up regulation	miR-125b-2, miR-422a, miR-488, miR-627[71], miR-290[72], miR-124, miR-27a, miR-10a, miR-182, miR-200b[73], miR-298, miR-106b-5p, miR-4306[74]
	Down regulation	let-7f, miR-126, miR-1259, miR-142-3p, miR-15b, miR-186, miR-519e, miR-768-5p[35], miR-320e, miR-320d[35]
Alzheimer’s	Up regulation	miR-146a[75], miR-361-5p, miR-30e-5p, miR-93-5p, miR-15a-5p, miR-143-3p, miR-106b-5p, miR-101-3p, miR-424-5p, miR-106a-5p, miR-18b-5p, miR-3065-5p, miR-20a-5p, miR-582-5p[76]
	Down regulation	miR-31, miR-93, miR-143, miR-146a[75], miR-1306-5p, miR-342-3p, miR-15b-3p[76]
Parkinson’s	Up regulation	miR-331-5p[77], miR-137-3p, miR-124-3p[78], miR-30a/b-5p[79]
	Down regulation	miR-29a/c-3p, miR-19a/b-3p[80]
Table 4: miRNAs Lists associated with Various Types of Cancer and their effects either oncogenic or tumor suppressor

Cancer Type	miRNA Role	miRNAs List
Leukemia	Oncogenic	miR-128a, miR-128b, miR-150, miR-181b-5p, miR-423-3p, miR-486-5p, miR-92b-3p[81]
	Tumor Suppressor	miR-15a, miR-16-1[82], miR-495
Breast	Oncogenic	miR-128[83], miR-10b, miR-373[37], miR-520c, mir-21, mir-155
	Tumor Suppressor	mir-125a/b, miR-142[84], miR-124-3p[85], miR-101, miR-204-5p[86], miR-491-5p[87], miR-491-5p[87], miR-206[88], miR-152[89], miR-142-3p[90]
Gastric	Oncogenic	miR-23a[91], miR-27a[92], miR-223[93], miR-106a[94], miR-106b-25 cluster, miR-107[95]
	Tumor Suppressor	miR-145, miR-143[96], miR-9[97], miR-34b[98], miR-124a, miR-335, miR-218, miR-484[99]
HCC	Oncogenic	miR-182-5p[100], miR-106b-3p, miR-101-3p, miR-1246[101], miR-221, miR-224
	Tumor Suppressor	miR-34a, miR-199a[102], miR-200a
Prostate	Oncogenic	miR-141 and miR-21[103], miR-125b[104]
	Tumor Suppressor	miR-145, miR-143[105]
Pancreatic	Oncogenic	miR-132, miR-212, miR-122-5p, miR-125b-5p, miR-192-5p, miR-193b-3p, miR-221-3p, miR-27b-3p[106], miR-222[66], miR-181a/b/d[107], miR-155, miR-103, miR-107
	Tumor Suppressor	miR-125b-5p[106], miR-34a, miR-96, miR-221
Ovarian	Oncogenic	miR-16, miR-939[108], miR-21, miR-27a, miR-26a/b, miR-103, miR-182, miR-223, miR-205[109], miR-206, miR-195, miR-10b, miR-7, miR-429[110]
	Tumor Suppressor	miR-145, miR-125b, miR-211[111], miR-25, miR-377, miR-432, miR-124a, miR-436, miR-302a[112]
Uterine	Oncogenic	miR-15b[113]
Leioymoma	Tumor Suppressor	miR-29a/b/c, miR-197, miR-200c[113]
Thyroid	Oncogenic	miR-129-1, miR-146b, mir-183, mir-197[114], miR-146b[115]
	Tumor Suppressor	miR-338-3p[116], miR-497[117]
Colorectal	Oncogenic	miR-1246, miR-1308, miR135b-5p, miR-183-5p, miR-18a-5p, miR18b-5p, hsa-miR-21-5p, miR-223-3p, miR-224-5p, miR-503-5p[118]
	Tumor Suppressor	miR-1-3p, miR-133b, miR-143-3p, miR145-5p, miR-150-5p, miR-195-5p, miR215-5p, miR-375, miR-378-3p, miR-497-5p[118]
Melanoma	Oncogenic	miR-195[119], miR-210[120]
	Tumor Suppressor	miR-193a, miR-33a[121]miR-let-7b/c
Pituitary adenoma	Oncogenic	miR-128a, miR-155, miR-516a-3p, miR-372, miR-181b-5p, miR-181d, miR-191-3p, miR-598[122]
	Tumor Suppressor	miR-34a[123], miR-3676-5p, miR-383[122]
Osteosarcoma	Oncogenic	miR-504[124], miR-149[125]
Neuroblasto ma	Oncogenic	miR-181a/b[126], miR-1268, miR-1303[127], miR-1308, miR-1908, miR-198, miR-513b-5p, miR-548h, miR-580
	Tumor Suppressor	miR-513, miR-548a/f-5p, miR-323-5p, miR-342[128], miR-639, miR-640, miR-641, miR-662, miR-34a[129], miR-16, miR-15a/b[130]
Lung non- small cell	Oncogenic	miR-25[131], miR-7, miR-34a, miR-328-3p[132], miR-499a[133]
	Tumor Suppressor	miR-451[134], miR-214
Bladder	Oncogenic	miR-222, miR-452, miR-6724-5p, miR-1185-1-3p, miR-6831-5p[135]
	Tumor Suppressor	miR-143, miR-99a-5p[136], miR-6087, miR-3960, miR-1343-5p[135]
Cervical	Oncogenic	miR-31[137], miR-19a/b, miR-145[138],miR-155[139],miR-125a[140]
	Tumor Suppressor	miR-34a[141], miR-886-5p[142]

6.4.2. MiRNAs Involvement in Carcinogenesis via mTOR Signaling

In different types of cancer, the mechanistic target of rapamycin (mTOR); a conserved serine/threonine kinase enzyme involved in cell metabolism, could be hyperactive, leading to an abnormal cell proliferation
and eventually cancer[143]. An association was observed between miRNA(s) and the mTOR pathway during cancer growth[143].

6.4.2.1. mTOR Signaling Pathway link to miRNA Biogenesis

Targeted Raptor mutation, a fundamental component of mTORC1 type, may affect increments in miRNA biogenesis[144]. On the other hand, Mdm2-dependent ubiquitination of Drosha, an RNase assigned to pri-miRNA formation to give pre-miRNA, therefore, mTOR activation widely suppresses miRNA biogenesis[144]. Few specific miRNA(s)-related to cancer are known to be regulated by mTOR signaling, as sketched in Figure (2).

However, many miRNAs have been documented to target various mTOR signaling stages in different types of cancer, as shown listed in Table 5.

Figure 2: mTOR route Controls the Expression Levels of some miRNAs

[Through Mdm2-dependent pathway and Drosha decaying, mTOR governs some miRNAs synthesis.]
miRNAs List	Targeted Gene(s)	Cancer Type	Effect
miR-7[145]	AKT, PlK	HCC	Proliferation, Invasion
miR-99	mTOR, AKT	Endometrial, NSCLC, Cervical Breast Pancreatic HCC, Esophageal, Bladder	Proliferation, Invasion, Apoptosis, Cell Cycle, Autophagy, Tumor Formation
miR-101[143]	EZH2, mTOR	HCC, Osteosarcoma	Proliferation, Invasion, Cell Cycle
miR-122[150]	PlK	Breast	Proliferation
miR-149[143]	mTOR, AKT	Cervical Gioma, HCC	Proliferation
miR-193a-3p/5p[151][152][153]	mTOR, PlK	NSCLC	Proliferation, Migration, Epithelial Mesenchymal Transition (EMT)
miR-204[154]	mTOR	NSCLC	Metastasis
miR-155[143]	AKT, S6K1, Rictor	Cervical Nasopharyngeal Breast	Autophagy
miR-214[155][156]	AKT	Renal	Proliferation
miR-218[157][158][159]	PlK, AKT, mTOR	Colorectal OSCC, Cervical HCC	Tumorogenesis Progression, Invasion, Migration Metastasis
miR-125a[160]	mTOR	Glioma, Endometrial HCC	Proliferation
miR-199a[161]	mTOR	Glioma, Endometrial HCC	Proliferation
miR-22[162]	mTOR	Suprarenal epithelioma	Metastasis
miR-93[163][164][165][166]	PTEN	Osteosarcomas, Ovarian Breast	Proliferation, Migration, Invasion, Inhibiting Apoptosis
miR-532-5p[167]	mTOR	Gastric	Proliferation, Metastasis
miR-451[168]	mTOR, AMPK	Colon	Proliferation, Migration
miR-205[169]	PTEN	NSCLC	Proliferation, Angiogenesis
miR-96[170][171][172]	mTOR, PRAS40	Prostatic Breast Pancreatic	Proliferation, Metastasis
miR-634[173]	mTOR	Cervical	Proliferation, Metastasis, Apoptosis
miR-21	TSC	Gastric	Proliferation,
6.4.3. MiRNAs and Multidrug Resistance in Cancer Therapy

Over decades, the significant clinical obstacle to successful cancer treatment is multidrug resistance (MDR), arising from ATP binding cassette (ABC) drug transporter(s) dysregulation, apoptosis or autophagy machinery surrender, redox homeostasis imbalance, as well as drug dysregulated metabolism and drug target alterations[182]. Several manuscripts addressed miRNAs role in MDR[183][184][185] Therefore, miRNAs might be potential targets for preventing chemotherapy MDR. Differences in miRNAs expression pattern in drug-resistant cancer cells relative to drug-sensitive cells[182], have been reported. miRNAs list to regulate MDR by stressing on a specific cellular-signaling pathway or transporters is summarized in Table 6.

Table 6: miRNAs List involved in Multi Drug Resistance highlighting their regulatory function(s) and the MDR targets

Regulation of Target	miRNAs List
MDR Transporters	
ABCB1/MDR1	miR-302c, miR-3664[186], miR-873[187], miR-381, miR-495, miR-223, miR-203a, miR-200c[188], miR-508-5p[189]
ABCG2/BCRP	miR-328, miR-519, miR-520, miR-181a, miR-487a, miR-519c, miR-212[190]
ABCC1/MRP1	miR-326, miR-1291, miR-508-5p[191]
p53	miR-125a/b, miR-140[192], miR-122, miR-34
CDK6	miR-34a, miR-139-5p[193], miR-143[194], miR-503, miR-1271
BCL2	miR-15b, miR-16, miR-21, miR-497, miR-200bc/429, miR-1915, miR-214, miR-195[195], miR-205
BCL-XL	miR-574-3p
MCL-1	miR-101[196]
BIM	miR-494
BAX	miR-365
Caspase-3	miR-30 b/c, miR-21
PTEN	miR-21, miR-22, miR-221, miR-214, miR-19a/b, miRNA-17-5p, miR-222[197]
7. Conclusion

7.1. One abundant class of ncRNAs is miRs. MiRs are involved in the pathogenesis as well as detection of various NCDs, including different cancer types. Moreover, miRNAs are linked to mTOR signaling pathway, a fundamental pathway of MDR and/or carcinogenesis. Current evidence indicates that in most diseases, including the NCDs, miRNAs and mTOR binding do happen.

7.2. Recommendations

Being ideal biomarkers for predicting chemotherapy response, miRs would be possible goals for future drug design to solve MDR. Additionally, combining miRNAs detection together with the mTOR signaling route components, being related to SNPs, would draw the complete picture concerning miRNAs as viable targets for evaluating and prognosticating NCDs.

8. Author Contributions:
Mahmoud MM.; Data curation, Original draft preparation and Rewriting, Sanad EF.; Rewriting and Reviewing, Hamdy NM.; Conceptualization, Supervision, Editing, Rewriting, Reviewing

9. Funding: This research received no external funding

10. Conflicts of Interest: The authors declare no conflicts of interest

List of abbreviations

Abbreviation	Full Form
ABCB1	ATP Binding Cassette Subfamily B Member 1
ABCC1	ATP Binding Cassette Subfamily C Member 1
ABCG	ATP binding cassette super-family G member
AGO	Argonaute
AMI	Acute myocardial infarction
AMPK	Adenosine-5-monophosphate-activated protein kinase
ATG5	Autophagy related 5
BCL-XL	B-cell lymphoma-extra large
MRE	MiRNA response elements
MRPI	Multidrug resistance-associated protein 1
mTOR	Mechanistic target of rapamycin
NCDs	Non communicable diseases
ncRNAs	Noncoding RNAs
NSCLC	Non small-cell lung carcinoma
ORF	Open reading frame
OncomicR	Oncogenic miRNA
Abbreviation	Full Form
-------------	-----------
BCL2	B-cell lymphoma 2
BCRP	Breast cancer resistant protein
CDK6	Cyclin-dependent kinase 6
CRC	Colorectal cancer
CYP	Cytochrome P450
CVD	Cardiovascular diseases
DCP	De-capping protein
DGCGR8	Drosha-DiGeorge syndrome-critical region gene 8
DPD	Dihydropyrimidine dehydrogenase
dsRNA	Double stranded RNAs
EDC4	Enhancer of de-capping 4
eIF4G	Eukaryotic initiation factor 4
ERK	Extracellular signal-regulated kinase
GSH	Glutathione
GST	Glutathione S-transferases
HCC	Hepatocellular carcinoma
MAPK	Mitogen-activated protein kinase
MDR	Multidrug resistance
miRNA	MicroRNA
PD	Parkinson’s Disease
PDCD4	Proapoptotic factors programmed cell death 4
PI3K	Phosphoinositide 3- kinase
PPARγ	Peroxisome Proliferator-activated Receptor γ
Pre-miRNAs	Primary miRNAs
Pri-miRNAs	Primary miRNAs
PTEN	Phosphatase and tensin homolog
Rictor	Rapamycin-insensitive companion of mTOR
RISCs	RNA-induced silencing complex
S6K1	Ribosomal protein S6 kinase beta 1
shRNAs	Short heterogenous RNAs
siRNA	Small interfering RNA
snoRNAs	Small nucleolar RNAs
snRNAs	Small nuclear RNAs
TS	Thymidylate synthase
UTR	Untranslated Region

References

1. Feinberg, M.W.; Moore, K.J. MicroRNA Regulation of Atherosclerosis. Circ. Res. 2016, 118, 703–720. https://doi.org/10.1161/CIRCRESAHA.115.306300.
2. Spadafora, C. A LINE-1-Encoded Reverse Transcriptase-Dependent Regulatory Mechanism Is Active in Embryogenesis and Tumorigenesis. Ann NY Acad Sci 2015, 1341, 164–171.
3. Wang, J.; Chen, J.; Sen, S. MicroRNA as Biomarkers and Diagnostics. J. Cell. Physiol. 2016, 231, 25–30. https://doi.org/10.1002/jcp.23056.
4. Hombach, S.; Kretz, M. Non-coding RNAs: Classification, Biology and Functioning. In Non-coding RNAs in colorectal cancer; Springer, 2016; pp. 3–17. https://doi.org/10.1007/978-3-319-42059-2_1.
5. Hao, C.; Yang, S.; Xu, W.; Shen, J.K.; Ye, S.; Liu, X.; Dong, Z.; Xiao, B.; Feng, Y. MiR-708 Promotes Steroid-Induced Osteonecrosis of Femoral Head, Suppresses Osteogenic Differentiation by Targeting SMAD3. Sci. Rep. 2016, 6, 22599. https://doi.org/10.1038/srep22599.
6. O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. (Lausanne). 2018, 9, 402. https://doi.org/10.3389/fendo.2018.00402.
7. Catalanotto, C.; Cogoni, C.; Zardo, G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int. J. Mol. Sci. 2016, 17, 1712. https://doi.org/10.3390/ijms17101712.
8. de Rie, D.; Abugessaisa, I.; Alam, T.; Arner, E.; Arner, P.; Ashoor, H.; Åström, G.; Babina, M.; Bertin, N.; Burroughs, A.M.; et al. An Integrated Expression Atlas of MiRNAs and Their Promoters in Human and Mouse. Nat. Biotechnol. 2017, 35, 872–878. https://doi.org/10.1038/nbt.3947.
9. Wang, J.; Samuels, D.C.; Zhao, S.; Xiang, Y.; Zhao, Y.-Y.; Guo, Y. Current Research on Non-Coding Ribonucleic Acid (RNA).
10. Kai, K.; Dittmar, R.L.; Sen, S. Secretory MicroRNAs as Biomarkers of Cancer. *Semin. Cell Dev. Biol.* **2018**, *78*, 22–36 https://doi.org/10.1016/j.semcdb.2017.12.011.

11. Armand-Labit, V.; Pradines, A. Circulating Cell-Free MicroRNAs as Clinical Cancer Biomarkers. *Biomol. Concepts* **2017**, *8*, 61–81.

12. ElKhouly, A.M.; Youness, R.A.A.; Gad, M.Z.Z. MicroRNA-486-5p and MicroRNA-486-3p: Multifaceted Pleiotropic Mediators in Oncological and Non-Oncological Conditions. *Non-coding RNA Res.* **2020**, *5*, 11–21 https://doi.org/10.1016/j.ncrna.2020.01.001.

13. Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. MiRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. *Cells* **2020**, *9*, 276 https://doi.org/10.3390/cells9020276.

14. Vishnoi, A.; Rani, S. MiRNA Biogenesis and Regulation of Diseases: An Overview. In *MicroRNA Profiling*; Springer, 2017; pp. 1–10 https://doi.org/10.1007/978-1-4939-6524-3_1.

15. Oliveto, S.; Mancino, M.; Manfrini, N.; Biffo, S. Role of MicroRNAs in Translation Regulation and Cancer. *World J. Biol. Chem.* **2017**, *8*, 45 https://doi.org/10.4331/wjbc.v8.i1.45.

16. Alarcón, C.R.; Lee, H.; Goodarzi, H.; Halberg, N.; Tavazoie, S.F. N 6-Methyladenosine Marks Primary MicroRNAs for Processing. *Nature* **2015**, *519*, 482–485.

17. Kim, Y.-K.; Kim, B.; Kim, V.N. Re-Evaluation of the Roles of DROSHA , Exportin 5 , and DICER in MicroRNA Biogenesis. *Proc. Natl. Acad. Sci.* **2016**, *113*, E1881–E1889 https://doi.org/10.1073/pnas.1602532113.

18. Hansen, T.B.; Venø, M.T.; Jensen, T.I.; Schaefer, A.; Damgaard, C.K.; Kjems, J. Argonaute-Associated Short Introns Are a Novel Class of Gene Regulators. *Nat. Commun.* **2016**, *7*, 11538 https://doi.org/10.1038/ncomms11538.

19. Hammond, S.M. An Overview of MicroRNAs. *Adv. Drug Deliv. Rev.* **2015**, *87*, 3–14 https://doi.org/10.1016/j.addr.2015.05.001.

20. Seok, H.; Ham, J.; Jang, E.-S.; Chi, S.W. MicroRNA Target Recognition: Insights from Transcriptome-Wide Non-Canonical Interactions. *Mol. Cells* **2016**, *39*, 375–381 https://doi.org/10.14348/molcells.2016.0013.

21. Pisarello, M.J.L.; Loarca, L.; Ivanics, T.; Morton, L.; LaRusso, N. MicroRNAs in the Cholangiopathies: Pathogenesis, Diagnosis, and Treatment. *J. Clin. Med.* **2015**, *4*, 1688–1712 https://doi.org/10.3390/jcm4091688.

22. Issler, O.; Chen, A. Determining the Role of MicroRNAs in Psychiatric Disorders. *Nat. Rev. Neurosci.* **2015**, *16*, 201–212 https://doi.org/10.1038/nrn3879.

23. Bracken, C.P.; Scott, H.S.; Goodall, G.J. A Network-Biology Perspective of MicroRNA Function and Dysfunction in Cancer. *Nat. Rev. Genet.* **2016**, *17*, 719–732 https://doi.org/10.1038/nrg.2016.134.

24. Iwakawa, H.; Tomari, Y. The Functions of MicroRNAs: MRNA Decay and Translational Repression. *Trends Cell Biol.* **2015**, *25*, 651–665 https://doi.org/10.1016/j.tcb.2015.07.011.

25. Khan, S.; Ayub, H.; Khan, T.; Wahid, F. MicroRNA Biogenesis, Gene Silencing Mechanisms and Role in Breast, Ovarian and Prostate Cancer. *Biochimie* **2019**, *167*, 12–24 https://doi.org/10.1016/j.biochi.2019.09.001.

26. Mohammadi, A.; Mansoori, B.; Baradaran, B. The Role of MicroRNAs in Colorectal Cancer. *Biomed. Pharmacother.* **2016**, *84*, 705–713 https://doi.org/10.1016/j.biopha.2016.09.099.

27. Arner, P.; Kulyté, A. MicroRNA Regulatory Networks in Human Adipose Tissue and Obesity. *Nat. Rev. Endocrinol.* **2015**, *11*, 276–288 https://doi.org/10.1038/nrendo.2015.25.
28. Iacomino, G.; Siani, A. Role of MicroRNAs in Obesity and Obesity-Related Diseases. *Genes Nutr.* 2017, 12, 23 [https://doi.org/10.1186/s12263-017-0577-z].

29. Hamam, D.; Ali, D.; Kassem, M.; Aldahmash, A.; Alajez, N.M. MicroRNAs as Regulators of Adipogenic Differentiation of Mesenchymal Stem Cells. *Stem Cells Dev.* 2015, 24, 417–425 [https://doi.org/10.1089/scd.2014.0331].

30. Das, S.; Mohamed, I.N.; Teoh, S.L.; Thevaraj, T.; Ku Ahmad Nasir, K.N.; Zawawi, A.; Salim, H.H.; Zhou, D.K. Micro-RNA and the Features of Metabolic Syndrome: A Narrative Review. *Mini-Reviews Med. Chem.* 2020, 20, 626–635 [https://doi.org/10.2174/138955752066620122124445].

31. He, Y.; Ding, Y.; Liang, B.; Lin, J.; Kim, T.-K.; Yu, H.; Hang, H.; Wang, K. A Systematic Study of Dysregulated MicroRNA in Type 2 Diabetes Mellitus. *Int. J. Mol. Sci.* 2017, 18, 456 [https://doi.org/10.3390/ijms18030456].

32. Barutta, F.; Bellini, S.; Mastrocola, R.; Bruno, G.; Gruden, G. MicroRNA and Microvascular Complications of Diabetes. *Int. J. Endocrinol.* 2018, 2018, 1–20 [https://doi.org/10.1155/2018/6890501].

33. Schulte, C.; Karakas, M.; Zeller, T. MicroRNAs in Cardiovascular Disease - Clinical Application. *Clin. Chem. Lab. Med.* 2017, 55, 687–704 [https://doi.org/10.1515/ccm-2016-0576].

34. Liu, X.; Fan, Z.; Zhao, T.; Cao, W.; Zhang, L.; Li, H.; Xie, Q.; Tian, Y.; Wang, B. Plasma MiR-1, MiR-208, MiR-499 as Potential Predictive Biomarkers for Acute Myocardial Infarction: An Independent Study of Han Population. *Exp. Gerontol.* 2015, 72, 230–238 [https://doi.org/10.1016/j.exger.2015.10.011].

35. Volný, O.; Kašičková, L.; Coufalová, D.; Cimfllová, P.; Novák, J. microRNAs in Cerebrovascular Disease. In *Advances in experimental medicine and biology*; United States, 2015; Vol. 888, pp. 155–195 [https://doi.org/10.1007/978-3-319-22671-2_9].

36. Vasudeva, K.; Munshi, A. MiRNA Dysregulation in Ischaemic Stroke: Focus on Diagnosis, Prognosis, Therapeutic and Protective Biomarkers. *Eur. J. Neurosci.* 2020, 52, 3610–3627 [https://doi.org/10.1111/ejn.14695].

37. Youness, R.A.; Gad, M.Z. Long Non-Coding RNAs: Functional Regulatory Players in Breast Cancer. *Non-coding RNA Res.* 2019, 4, 36–44 [https://doi.org/10.1016/j.ncca.2019.01.003].

38. Ahmed Youness, R.; Amr Assal, R.; Mohamed Ezzat, S.; Zakaria Gad, M.; Abdel Motaal, A. A Methoxylated Quercetin Glycoside Harnesses HCC Tumor Progression in a TP53/MiR-15/MiR-16 Dependent Manner. *Nat. Prod. Res.* 2020, 34, 1475–1480 [https://doi.org/10.1080/14786419.2018.1509326].

39. Shaalan, Y.M.; Handoussa, H.; Youness, R.A.; Assal, R.A.; El-Khatib, A.H.; Linscheid, M.W.; El Tayebi, H.M.; Abdelaziz, A.I. Destabilizing the Interplay between MiR-1275 and IGF2BPs by Tamarix Articulata and Quercetin in Hepatocellular Carcinoma. *Nat. Prod. Res.* 2018, 32, 2217–2220 [https://doi.org/10.1080/14786419.2017.1366478].

40. Rahmoon, M.A.; Youness, R.A.; Gomaa, A.I.; Hamza, M.T.; Waked, I.; El Tayebi, H.M.; Abdelaziz, A.I. MiR-615-5p Depresses Natural Killer Cells Cytotoxicity through Repressing IGF-1R in Hepatocellular Carcinoma Patients. *Growth Factors* 2017, 35, 76–87 [https://doi.org/10.1080/08977194.2017.1354859].

41. Frixa, T.; Donzelli, S.; Blandino, G. Oncogenic MicroRNAs: Key Players in Malignant Transformation. *Cancers (Basel).* 2015, 7, 2466–2485 [https://doi.org/10.3390/cancers7040904].

42. Li, G.; Ning, C.; Ma, Y.; Jin, L.; Tang, Q.; Li, X.; Li, M.; Liu, H. MiR-26b Promotes 3T3-L1 Adipocyte Differentiation Through Targeting PTEN. *DNA Cell Biol.* 2017, 36, 672–681 [https://doi.org/10.1089/dna.2017.3712].

43. Li, M.; Liu, Z.; Zhang, Z.; Liu, G.; Sun, S.; Sun, C. MiR-103 Promotes 3T3-L1 Cell Adipogenesis through AKT/MTOR Signal Pathway with Its Target Being MEF2D. *Biol. Chem.* 2015, 396, 235–244 [https://doi.org/10.1515/bch-2014-0241].

44. Shi, C.; Zhang, M.; Tong, M.; Yang, L.; Pang, L.; Chen, L.; Xu, G.; Chi, X.; Hong, Q.; Ni, Y.; et al. MiR-148a Is Associated with Obesity and Modulates Adipocyte Differentiation of Mesenchymal Stem Cells through Wnt Signaling. *Sci. Rep.* 2015, 5, 9930 [https://doi.org/10.1038/srep09930].
45. Cioffi, M.; Vallespinos-Serrano, M.; Trabulo, S.M.; Fernandez-Marcos, P.J.; Firment, A.N.; Vazquez, B.N.; Vieira, C.R.; Mulero, F.; Camara, J.A.; Cronin, U.P.; et al. MiR-93 Controls Adiposity via Inhibition of Sirt7 and Tbx3. *Cell Rep.* **2015**, *12*, 1594–1605. https://doi.org/10.1016/j.celrep.2015.08.006.

46. Belarbi, Y.; Mejhert, N.; Lorente-Cebrián, S.; Dahlman, I.; Arner, P.; Rydén, M.; Kulyté, A.; Kulyte, A. MicroRNA-193b Controls Adiponectin Production in Human White Adipose Tissue. *J. Clin. Endocrinol. Metab.* **2015**, *100*, E1084–E1088. https://doi.org/10.1210/jc.2015-1530.

47. Tattikota, S.G.; Rathjen, T.; Hausser, J.; Khedkar, A.; Kabra, U.D.; Pandey, V.; Sury, M.; Wessels, H.-H.; Mollet, I.G.; Eliasson, L.; et al. MiR-184 Regulates Pancreatic β-Cell Function According to Glucose Metabolism. *J. Biol. Chem.* **2015**, *290*, 20284–20294. https://doi.org/10.1074/jbc.M115.658625.

48. Coskun, E.; Ercin, M.; Gezginci-Oktayoglu, S. The Role of Epigenetic Regulation and Pluripotency-Related MicroRNAs in Differentiation of Pancreatic Stem Cells to Beta Cells. *J. Cell. Biochem.* **2018**, *119*, 455–467. https://doi.org/10.1002/jcb.26203.

49. Samandari, N.; Mirza, A.H.; Nielsen, L.B.; Kaur, S.; Hougaard, P.; Fredheim, S.; Mortensen, H.B.; Pociot, F. Circulating MicroRNA Levels Predict Residual Beta Cell Function and Glycaemic Control in Children with Type 1 Diabetes Mellitus. *Diabetologia* **2017**, *60*, 354–363. https://doi.org/10.1007/s00125-016-4156-4.

50. LaPierre, M.P.; Stoffel, M. MicroRNAs as Stress Regulators in Pancreatic Beta Cells and Diabetes. *Mol. Metab.* **2017**, *6*, 1010–1023. https://doi.org/10.1016/j.jolmet.2017.06.020.

51. Sebastiani, G.; Valentini, M.; Grieco, G.E.; Ventriglia, G.; Nigi, L.; Mancarella, F.; Pellegrini, S.; Martino, G.; Sordi, V.; Piemonti, L.; et al. MicroRNA Expression Profiles of Human iPSCs Differentiation into Insulin-Producing Cells. *Acta Diabetol.* **2017**, *54*, 265–281. https://doi.org/10.1007/s00592-016-0955-9.

52. Bai, C.; Gao, Y.; Li, X.; Wang, K.; Xiong, H.; Shan, Z.; Zhang, P.; Wang, W.; Guan, W.; Ma, Y. MicroRNAs Can Effectively Induce Formation of Insulin-Producing Cells from Mesenchymal Stem Cells. *J. Tissue Eng. Regen. Med.* **2017**, *11*, 3457–3468. https://doi.org/10.1002/term.2259.

53. Engelmann, I.; Alidjinou, E.K.; Bertin, A.; Bossu, J.; Villenet, C.; Figeac, M.; Sane, F.; Hober, D. Persistent Coxsackievirus B4 Infection Induces MicroRNA Dysregulation in Human Pancreatic Cells. *Cell. Mol. Life Sci.* **2017**, *74*, 3851–3861. https://doi.org/10.1007/s00018-017-2567-0.

54. Vienberg, S.; Geiger, J.; Madsen, S.; Dalgaard, L.T. Micro RNAs in Metabolism. *Acta Physiol.* **2017**, *219*, 346–361. https://doi.org/10.1007/s00429-017-1675-8.

55. Grieco, F.A.; Sebastiani, G.; Juan-Mateu, J.; Villate, O.; Marroqui, L.; Ladrrière, L.; Tugay, K.; Regazzi, R.; Bugliani, M.; Marchetti, P.; et al. MicroRNAs MiR-23a-3p, MiR-23b-3p, and MiR-149-5p Regulate the Expression of Proapoptotic BH3-Only Proteins DP5 and PUMA in Human Pancreatic β-Cells. *Diabetes* **2017**, *66*, 100–112. https://doi.org/10.2337/db16-0592.

56. Sims, E.K.; Lakhter, A.J.; Anderson-Baucum, E.; Kono, T.; Tong, X.; Evans-Molina, C. MicroRNA 21 Targets BCL2 MRNA to Increase Apoptosis in Rat and Human Beta Cells. *Diabetologia* **2017**, *60*, 1057–1065. https://doi.org/10.1007/s00125-017-4237-z.

57. Anuradha, R.; Saraswati, M.; Kumar, K.G.; Rani, S.H. Apoptosis of Beta Cells in Diabetes Mellitus. *DNA Cell Biol.* **2014**, *33*, 743–748. https://doi.org/10.1089/dna.2014.2352.

58. Hubal, M.J.; Nadler, E.P.; Ferrante, S.C.; Barberio, M.D.; Suh, J.-H.J.; Wang, J.; Dohm, G.L.; Pories, W.J.; Mietus-Snyder, M.; Freishatt, R.J.; et al. Circulating Adipocyte-Derived Exosomal MicroRNAs Associated with Decreased Insulin Resistance after Gastric Bypass. *Obesity* **2017**, *25*, 102–110. https://doi.org/10.1002/oby.21709.

59. Vivacqua, A.; Marco, P. De; Belfiore, A.; Maggiolini, M.; De Marco, P.; Belfiore, A.; Maggiolini, M. Recent Advances on the Role of MicroRNAs in Both Insulin Resistance and Cancer. *Curr. Pharm. Des.* **2017**, *23*, 3658–3666. https://doi.org/10.2174/13816128236617062105123.

60. Martínez-Sanchez, A.; Nguyen-Tu, M.-S.; Rutter, G.A. DICER Inactivation Identifies Pancreatic β-Cell “Disallowed” Genes Targeted by MicroRNAs. *Mol. Endocrinol.* **2015**, *29*, 1067–1079. https://doi.org/10.1210/me.2015-1059.
61. Wu, H.; Zhang, T.; Pan, F.; Steer, C.J.; Li, Z.; Chen, X.; Song, G. MicroRNA-206 Prevents Hepatosteatosis and Hyperglycemia by Facilitating Insulin Signaling and Impairing Lipogenesis. *J. Hepatol.* 2017, 66, 816–824. https://doi.org/10.1016/j.jhep.2016.12.016.

62. Gu, T.T.-T.; Song, L.; Chen, T.-Y.T.; Wang, X.; Zhao, X.-J.X.; Ding, X.-Q.X.; Yang, Y.Y.-Z.; Pan, Y.; Zhang, D.D.-M.; Kong, L.L.-D. Fructose Downregulates MiR-330 to Induce Renal Inflammatory Response and Insulin Signaling Impairment: Attenuation by Morin. *Mol. Nutr. Food Res.* 2017, 61, 1600760 https://doi.org/10.1002/mnfr.201600760.

63. Lima, T.I.; Araujo, H.N.; Menezes, E.S.; Sponton, C.H.; Araújo, M.B.; Bomfim, L.H.M.M.; Queiroz, A.L.; Passos, M.A.; e Sousa, T.A.; Hirabara, S.M.; et al. Role of MicroRNAs on the Regulation of Mitochondrial Biogenesis and Insulin Signaling in Skeletal Muscle. *J. Cell. Physiol.* 2017, 232, 958–966. https://doi.org/10.1002/jcp.25645.

64. Wang, Y.U.; Chang, W.; Zhang, Y.; Zhang, L.; Ding, H.; Qi, H.; Xue, S.; Yu, H.; Hu, L.; Liu, D. Circulating MiR-22-5p and MiR-122-5p Are Promising Novel Biomarkers for Diagnosis of Acute Myocardial Infarction. *J. Cell. Physiol.* 2019, 234, 4778–4786.

65. Potus, F.; Ruffenach, G.; Dahou, A.; Thebault, C.; Breuils-Bonnet, S.; Tremblay, È.; Nadeau, V.; Paradis, R.; Graydon, C.; Wong, R.; et al. Downregulation of MicroRNA-126 Contributes to the Failing Right Ventricle in Pulmonary Arterial Hypertension. *Circulation* 2015, 132, 932–943 https://doi.org/10.1161/CIRCULATIONAHA.115.016382.

66. Li, Z.; Tao, Y.; Wang, X.; Jiang, P.; Li, J.; Peng, M.; Zhang, X.; Chen, K.; Liu, H.; Zhen, P.; et al. Tumor-Secreted Exosomal MiR-222 Promotes Tumor Progression via Regulating P27 Expression and Re-Localization in Pancreatic Cancer. *Cell. Physiol. Biochem.* 2018, 51, 610–629 https://doi.org/10.1159/000495281.

67. da Silva, A.M.G.; de Araújo, J.N.G.; de Oliveira, K.M.M.; de Sousa, J.C.V.; Filho, A.A. de Rezende, A.A.; Hirata, M.H.M.H.; et al. Circulating MiRNAs in Acute New-Onset Atrial Fibrillation and Their Target MRNA Network. *J. Cardiovasc. Electrophysiol.* 2018, 29, 1159–1166. https://doi.org/10.1111/jce.13612.

68. Shen, N.-N.; Zhang, C.; Li, Z.; Kong, L.-C.; Wang, X.-H.; Gu, Z.-C.; Wang, J.-L. MicroRNA Expression Signatures of Atrial Fibrillation: The Critical Systematic Review and Bioinformatics Analysis. *Exp. Biol. Med.* 2020, 245, 42–53 https://doi.org/10.1177/1535370219890303.

69. Hijmans, J.G.; Diehl, K.J.; Bammert, T.D.; Kavlich, P.J.; Lincenberg, G.M.; Greiner, J.J.; Stauffer, B.L.; DeSouza, C.A. Association between Hypertension and Circulating Vascular-Related MicroRNAs. *J. Hum. Hypertens.* 2018, 32, 440–447 https://doi.org/10.1038/s41371-018-0061-2.

70. Yang, X.; Niu, X.; Xiao, Y.; Lin, K.; Chen, X. MiRNA Expression Profiles in Healthy OSAHS and OSAHS with Arterial Hypertension: Potential Diagnostic and Early Warning Markers. *Respir. Res.* 2018, 19, 194 https://doi.org/10.1186/s12931-018-0894-9.

71. Dewdney, B.; Trollope, A.; Moxon, J.; Thomas Manapurathe, D.; Biros, E.; Golledge, J.; Manapurathe, D.T.; Biros, E.; Golledge, J. Circulating MicroRNAs as Biomarkers for Acute Ischemic Stroke: A Systematic Review. *J. Stroke Cerebrovasc. Dis.* 2018, 27, 522–530 https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.058.

72. Li, P.; Teng, F.; Gao, F.; Zhang, M.; Wu, J.; Zhang, C. Identification of Circulating MicroRNAs as Potential Biomarkers for Detecting Acute Ischemic Stroke. *Cell. Mol. Neurobiol.* 2015, 35, 433–447 https://doi.org/10.1007/s10571-014-0139-5.

73. Stary, C.M.; Xu, L.; Sun, X.; Ouyang, Y.-B.; White, R.E.; Leong, J.; Li, J.; Xiong, X.; Giffard, R.G. MicroRNA-200c Contributes to Injury From Transient Focal Cerebral Ischemia by Targeting Reelin. *Stroke* 2015, 46, 551–556 https://doi.org/10.1161/STROKEAHA.114.007041.

74. Kim, J.-M.; Jung, K.-H.; Chu, K.; Lee, S.K.S.-T.; Ban, J.; Moon, J.; Kim, M.; Lee, S.K.S.-T.; Roh, J.-K. Atherosclerosis-Related Circulating MicroRNAs as a Predictor of Stroke Recurrence. *Transl. Stroke Res.* 2015, 6, 191–197 https://doi.org/10.1007/s12975-015-0390-1.

75. Dong, H.; Li, J.; Huang, L.; Chen, X.; Li, D.; Wang, T.; Hu, C.; Xu, J.; Zhang, C.C.-Y.C.; Zen, K.; et al. Serum MicroRNA Profiles Serve as Novel Biomarkers for the Diagnosis of Alzheimer’s Disease. *Dis. Markers* 2015, 2015, 1–11
76. Cheng, Á; Doecke, J.D.; Sharples, R.A.; Vilemagne, V.L.; Fowler, C.J.; Rembach, A.; Martins, R.N.; Rowe, C.C.; Macaulay, S.L.; Masters, C.L.; et al. Prognostic Serum MiRNA Biomarkers Associated with Alzheimer’s Disease Shows Concordance with Neuropsychological and Neuroimaging Assessment. *Mol. Psychiatry* 2015, 20, 1188–1196. https://doi.org/10.1038/mp.2014.127.

77. Ding, H.; Huang, Z.; Chen, M.; Wang, C.; Chen, X.; Chen, J.; Zhang, J. Identification of a Panel of Five Serum MiRNAs as a Biomarker for Parkinson’s Disease. *Parkinsonism Relat. Disord.* 2016, 22, 68–73. https://doi.org/10.1016/j.parkreldis.2015.11.014.

78. Li, N.; Pan, X.; Zhang, J.; Ma, A.; Yang, S.; Ma, J.; Xie, A. Plasma Levels of MiR-137 and MiR-124 Are Associated with Parkinson’s Disease but Not with Parkinson’s Disease with Depression. *Neurol. Sci.* 2017, 38, 761–767. https://doi.org/10.1007/s10072-017-2841-9.

79. Schwienbacher, C.; Foco, L.; Picard, A.; Corradi, E.; Serafin, A.; Panzer, J.; Zanigni, S.; Blankenburg, H.; Facheris, M.F.; Giannini, G.; et al. Plasma and White Blood Cells Show Different MiRNA Expression Profiles in Parkinson’s Disease. *J. Mol. Neurosci.* 2017, 62, 244–254. https://doi.org/10.1007/s12031-017-0926-9.

80. Mushtaq, G.; H Greig, N.; Anwar, F.; A Zamzami, M.; Choudhry, H.; M Shaik, M.; A Tamargo, I.; A Kamal, M. MiRNAs as Circulating Biomarkers for Alzheimer’s Disease and Parkinson’s Disease. *Med. Chem. (Los. Angeles).* 2016, 12, 217–225.

81. Wallaert, A.; Van Loocke, W.; Hernandez, L.; Taghon, T.; Speleman, F.; Van Vlierberghe, P. Comprehensive MiRNA Expression Profiling in Human T-Cell Acute Lymphoblastic Leukemia by Small RNA-Sequencing. *Sci. Rep.* 2017, 7, 7901. https://doi.org/10.1038/s41598-017-08148-x.

82. Pekarsky, Y.; Croce, C.M. Role of MiR-15/16 in CLL. *Cell Death Differ.* 2015, 22, 6–11. https://doi.org/10.1038/cdd.2014.87.

83. Hironaka-Mitsuhashi, A.; Otsuka, K.; Gailhouste, L.; Sanchez Calle, A.; Kumazaki, M.; Yamamoto, Y.; Fujiwara, Y.; Ochiya, T.; Calle, A.S.; Kumazaki, M.; et al. MiR-1285-5p/ TMEM194A Axis Affects Cell Proliferation in Breast Cancer. *Cancer Sci.* 2020, 111, 395–405. https://doi.org/10.1111/cas.14287.

84. Jin, F.; Wang, Y.; Li, M.; Zhu, Y.; Liang, H.; Wang, C.; Wang, F.; Zhang, C.-Y.; Zen, K.; Li, L. MiR-26 Enhances Chemosensitivity and Promotes Apoptosis of Hepatocellular Carcinoma Cells through Inhibiting Autophagy. *Cell Death Dis.* 2018, 8, e2540–e2540. https://doi.org/10.1038/cddis.2016.461.

85. Wang, Y.; Chen, L.; Wu, Z.; Wang, M.; Jin, F.; Wang, N.; Hu, X.; Liu, Z.; Zhang, C.-Y.; Zen, K.; et al. MiR-124-3p Functions as a Tumor Suppressor in Breast Cancer by Targeting CBL. *BMC Cancer* 2016, 16, 826. https://doi.org/10.1186/s12885-016-2862-4.

86. Hong, B.S.; Ryu, H.S.; Kim, N.; Kim, J.J.-I.; Lee, E.; Moon, H.-G.H.; Kim, K.K.Y.K.H.; Jin, M.-S.; Kwon, N.H.; Kim, S.; et al. Tumor Suppressor MicroRNA-204-5p Regulates Growth, Metastasis, and Immune Microenvironment Remodeling in Breast Cancer. *Cancer Res.* 2019, 79, canres.0891.2018. https://doi.org/10.1158/0008-5472.CAN-18-0891.

87. Hui, Z.; Yiling, C.; Wenting, Y.; XuQun, H.; ChuanYi, Z.; Hui, L. MiR-491-5p Functions as a Tumor Suppressor by Targeting JMJD2B in ERα-Positive Breast Cancer. *FEBS Lett.* 2015, 589, 812–821. https://doi.org/10.1016/j.febslet.2015.02.014.

88. Yin, K.; Yin, W.; Wang, Y.; Zhou, L.; Liu, Y.; Yang, G.; Wang, J.; Lu, J. MiR-206 Suppresses Epithelial Mesenchymal Transition by Targeting TGF-β Signaling in Estrogen Receptor Positive Breast Cancer Cells. *Oncotarget* 2016, 7, 24537–24548. https://doi.org/10.18632/oncotarget.8233.

89. Ge, S.; Wang, D.; Kong, Q.; Gao, W.; Sun, J. Function of MiR-152 as a Tumor Suppressor in Human Breast Cancer by Targeting PIK3CA. *Oncol. Res. Featur. Preclin. Clin. Cancer Ther.* 2017, 25, 1363–1371. https://doi.org/10.3727/096504017X14878536973557.

90. Mansoori, B.; Mohammadi, A.; Ghasabi, M.; Shirjang, S.; Dehghan, R.; Montazeri, V.; Holmskov, U.; Kazemi, T.; Duijf, P.; Gjerstorff, M.; et al. MiR-142-3p as Tumor Suppressor MiRNA in the Regulation of Tumorigenicity, Invasion and Migration...
of Human Breast Cancer by Targeting Bach-1 Expression. *J. Cell. Physiol.* 2019, 234, 9816–9825 https://doi.org/10.1002/jcp.27670.

91. Hu, X.; Wang, Y.; Liang, H.; Fan, Q.; Zhu, R.; Cui, J.; Zhang, W.; Zen, K.; Zhang, C.-Y.; Hou, D.; et al. MiR-23a/b Promote Tumor Growth and Suppress Apoptosis by Targeting PDCD4 in Gastric Cancer. *Cell Death Dis.* 2017, 8, e3059–e3059 https://doi.org/10.1038/cddis.2017.447.

92. Zhou, L.; Liang, X.; Zhang, L.; Yang, L.; Nagao, N.; Wu, H.; Liu, C.; Lin, S.; Cai, G.; Liu, J. MiR-27a-3p Functions as an Oncogene in Gastric Cancer by Targeting BTG2. *Oncotarget* 2016, 7, 51943–51954 https://doi.org/10.18632/oncotarget.10460.

93. Wang, J.; Lv, W.; Lin, Z.; Wang, X.; Bu, J.; Su, Y. Hsa_circ_0003159 Inhibits Gastric Cancer Progression by Regulating MiR-223-3p/NDRG1 Axis. *Cancer Cell Int.* 2020, 20, 57 https://doi.org/10.1186/s12935-020-1119-0.

94. Hou, X.; Zhang, M.; Qiao, H. Diagnostic Significance of MiR-106a in Gastric Cancer. *Int. J. Clin. Exp. Pathol.* 2015, 8, 13096.

95. Wang, S.; Ma, G.; Zhu, H.; Lv, C.; Chou, H.; Tong, N.; Wu, D.; Qiang, F.; Gong, W.; Zhao, Q.; et al. MiR-107 Regulates Tumor Progression by Targeting NFI in Gastric Cancer. *Sci. Rep.* 2016, 6, 36531 https://doi.org/10.1038/srep36531.

96. Wei, C.; Du, F.; Sun, L.; Li, T.; Li, T.; Min, Y.; Nie, A.; Wang, X.; Geng, L.; Lu, Y.; et al. MiR-143 and MiR-145 Inhibit Gastric Cancer Cell Migration and Metastasis by Suppressing MYO6. *Cell Death Dis.* 2017, 8, e3101–e3101 https://doi.org/10.1038/cddis.2017.493.

97. Fan, Y.; Shi, Y.; Lin, Z.; Huang, X.; Li, J.; Huang, W.; Shen, D.; Zhuang, G.; Liu, W. MiR-9-5p Suppresses Malignant Biological Behaviors of Human Gastric Cancer Cells by Negative Regulation of TNFAIP8L3. *Dig. Dis. Sci.* 2017, 64, 2823–2829 https://doi.org/10.1007/s10620-017-5626-2.

98. Jafari, N.; Abediankenari, S. MicroRNA-34 Dysregulation in Gastric Cancer and Gastric Cancer Stem Cell. *Tumor Biol.* 2017, 39, 101042831770165 https://doi.org/10.1177/1010428317701652.

99. Zare, A.; Ahadi, A.; Larki, P.; Omrani, M.D.; Zali, M.R.; Alamdari, N.M.; Ghaedi, H. The Clinical Significance of MiR-335, MiR-124, MiR-218 and MiR-484 Downregulation in Gastric Cancer. *Mol. Biol. Rep.* 2018, 45, 1587–1595 https://doi.org/10.1007/s11033-018-4278-5.

100. Cao, M.-Q.; You, A.-B.; Zhu, X.-D.; Zhang, W.; Zhang, Y.-Y.; Zhang, S.-Z.; Zhang, K.; Cai, H.; Shi, W.-K.; Li, X.-L.; et al. MiR-182-5p Promotes Hepatocellular Carcinoma Progression by Repressing FOXO3a. *J. Hematol. Oncol.* 2018, 11, 1–12 https://doi.org/10.1186/s13045-018-0555-y.

101. Moshiri, F.; Salvi, A.; Gramantieri, L.; Sangiovanni, A.; Guerrero, P.; De Petro, G.; Bassi, C.; Lupini, L.; Sattari, A.; Cheung, D.; et al. Circulating MiR-106b-3p, MiR-101-3p and MiR-1246 as Diagnostic Biomarkers of Hepatocellular Carcinoma. *Oncotarget* 2018, 9, 15350–15364 https://doi.org/10.18632/oncotarget.24601.

102. Lou, Z.; Gong, Y.; Zhou, X.; Hu, G. Low Expression of MiR-199 in Hepatocellular Carcinoma Contributes to Tumor Cell Hyper-proliferation by Negatively Suppressing XBP1. *Oncol. Lett.* 2018, 16, 6531–6539 https://doi.org/10.3892/ol.2018.9476.

103. Sharma, N.; Baruah, M.M. The MicroRNA Signatures: Aberrantly Expressed MiRNAs in Prostate Cancer. *Clin. Transl. Oncol.* 2019, 21, 126–144 https://doi.org/10.1007/s12094-018-1910-8.

104. Yin, H.; Sun, Y.; Wang, X.; Park, J.; Zhang, Y.; Li, M.; Yin, J.; Liu, Q.; Wei, M. Progress on the Relationship between MiR-125 Family and Tumorigenesis. *Exp. Cell Res.* 2015, 339, 252–260 https://doi.org/10.1016/j.yexcr.2015.09.015.

105. Ma, Z.; Luo, Y.; Qiu, M. MiR-143 Induces the Apoptosis of Prostate Cancer LNCap Cells by Suppressing Bcl-2 Expression. *Med. Sci. Monit.* 2017, 23, 359–365 https://doi.org/10.12659/MSM.899719.

106. Zhou, X.; Lu, Z.; Wang, T.; Huang, Z.; Zhu, W.; Miao, Y. Plasma MiRNAs in Diagnosis and Prognosis of Pancreatic Cancer: A MiRNA Expression Analysis. *Gene* 2018, 673, 181–193 https://doi.org/10.1016/j.gene.2018.06.037.

107. Pop-Bica, C.; Pintea, S.; Cojocneau-Petric, R.; Del Sal, G.; Piazza, S.; Wu, Z.-H.; Alencar, A.J.; Lossos, I.S.; Berindan-Neagoe,
108. Ying, X.; Li-ya, Q.; Feng, Z.; Yin, W.; Ji-hong, L. MiR-939 Promotes the Proliferation of Human Ovarian Cancer Cells by Repressing APC2 Expression. *Biomed. Pharmacother.* **2015**, *71*, 64–69 https://doi.org/10.1016/j.biopha.2015.02.020.

109. He, L.; Zhu, W.; Chen, Q.; Yuan, Y.; Wang, Y.; Wang, J.; Wu, X. Ovarian Cancer Cell-Secreted Exosomal MiR-205 Promotes Metastasis by Inducing Angiogenesis. *Theranostics* **2019**, *9*, 8206.

110. Meng, X.; Joosse, S.A.; Müller, V.; Trillsch, F.; Milde-Langosch, K.; Mahner, S.; Geffken, M.; Pantel, K.; Schwarzenbach, H. Diagnostic and Prognostic Potential of Serum MiR-7, MiR-16, MiR-25, MiR-93, MiR-182, MiR-376a and MiR-429 in Ovarian Cancer Patients. *Br. J. Cancer* **2015**, *113*, 1358–1366 https://doi.org/10.1038/bjc.2015.340.

111. Xia, B.; Yang, S.; Liu, T.; Lou, G. MiR-211 Suppresses Epithelial Ovarian Cancer Proliferation and Cell-Cycle Progression by Targeting Cyclin D1 and CDK6. *Mol. Cancer* **2015**, *14*, 57 https://doi.org/10.1186/s12943-015-0322-4.

112. Guo, T.; Yu, W.; Lv, S.; Zhang, C.; Tian, Y. MiR-302a Inhibits the Tumorigenicity of Ovarian Cancer Cells by Suppression of SDC1. *Int. J. Clin. Exp. Pathol.* **2015**, *8*, 4869.

113. Kim, Y.Y.J.; Kim, Y.Y.J.; Shin, J.H.; Kim, H.; Ku, S.-Y.; Suh, C.S. Variation in MicroRNA Expression Profile of Uterine Leiomyoma with Endometrial Cavity Distortion and Endometrial Cavity Non-Distortion. *Int. J. Mol. Sci.* **2018**, *19*, 2524 https://doi.org/10.3390/ijms19092524.

114. Sheikholeslami, S.; Shabani, N.; Shivaee, S.; Ravangar, S.M.; Yeganeh, M.; Hedayati, M.; Lotfi, J.; Gholami, H. Overexpression of Mir-129-1, MiR-146b, Mir-183, and Mir-197 in Follicular Thyroid Carcinoma and Adenoma Tissues. *Mol. Cell. Probes* **2020**, *51*, 101536 https://doi.org/10.1016/j.mcp.2020.101536.

115. Ramirez-Moya, J.; Wert-Lamas, L.; Santisteban, P. MicroRNA-146b Promotes PI3K/AKT Pathway Hyperactivation and Thyroid Cancer Progression by Targeting PTEN. *Oncogene* **2018**, *37*, 3369–3383.

116. Sui, G.-Q.; Fei, D.; Guo, F.; Zhen, X.; Luo, Q.; Yin, S.; Wang, H. MicroRNA-338-3p Inhibits Thyroid Cancer Progression through Targeting AKT3. *Am. J. Cancer Res.* **2017**, *7*, 1177.

117. Wang, P.; Meng, X.; Huang, Y.; Lv, Z.; Liu, J.; Wang, G.; Meng, W.; Xue, S.; Zhang, Q.; Zhang, P.; et al. MicroRNA-497 Inhibits Thyroid Cancer Tumor Growth and Invasion by Suppressing BDNF. *Oncotarget* **2017**, *8*, 2825–2834 https://doi.org/10.18632/oncotarget.13747.

118. Falzone, L.; Scola, L.; D’Angelo, A.; Biondi, A.; Di Cataldo, A.; Libra, M.; Candido, S. Integrated Analysis of Colorectal Cancer MicroRNA Datasets: Identification of MicroRNAs Associated with Tumor Development. *Aging (Albany NY)* **2018**, *10*, 1000 https://doi.org/10.18632/aging.101444.

119. Cirilo, P.D.R.; de Sousa Andrade, L.N.; Corrêa, B.R.S.; Qiao, M.; Furuya, T.K.; Chammas, R.; Penalva, L.O.F. MicroRNA-195 Acts as an Anti-Proliferative MiRNA in Human Melanoma Cells by Targeting Prohibitin 1. *BMC Cancer* **2017**, *17*, 750 https://doi.org/10.1186/s12885-017-3721-7.

120. Špaková, I.; Graier, W.F.; Rabajdová, M.; Dubayová, K.; Nagyová, V.; Mareková, M. Hypoxia Factors Suppression Effect on the Energy Metabolism of a Malignant Melanoma Cell SK-MEL-30. *Eur Rev Med Pharmacol Sci* **2020**, *24*, 4909–4920 https://doi.org/10.26355/eurrev_202005_21180. PMID: 32432754.

121. Zhou, J.; Xu, D.; Xie, H.; Tang, J.; Liu, R.; Li, J.; Wang, S.; Chen, X.; Su, J.; Zhou, X.; et al. MiR-33a Functions as a Tumor Suppressor in Melanoma by Targeting HIF-1α. *Cancer Biol. Ther.* **2015**, *16*, 846–855 https://doi.org/10.1080/15384402.2015.1030545.

122. Wu, S.; Gu, Y.; Huang, Y.; Wong, T.-C.; Ding, H.; Liu, T.; Zhang, Y.; Zhang, X. Novel Biomarkers for Non-Functioning Invasive Pituitary Adenomas Were Identified by Using Analysis of MicroRNAs Expression Profile. *Biochem. Genet.* **2017**, *55*, 253–267 https://doi.org/10.1007/s10528-017-9794-9.
123. Yang, Z.; Zhang, T.; Wang, Q.; Gao, H. Overexpression of MicroRNA-34a Attenuates Proliferation and Induces Apoptosis in Pituitary Adenoma Cells via SOX7. *Mol. Ther. - Oncolytics* **2018**, *10*, 40–47 https://doi.org/10.1016/j.omto.2018.07.001.

124. Cai, Q.; Zeng, S.; Dai, X.; Wu, J.; Ma, W. MiR-504 Promotes Tumour Growth and Metastasis in Human Osteosarcoma by Targeting TP53INP1. *Oncol. Rep.* **2017**, *38*, 2993–3000 https://doi.org/10.3892/or.2017.5983.

125. Xie, Z.; Xu, J.; Peng, L.; Gao, Y.; Zhao, H.; Qu, Y. MiR-149 Promotes Human Osteocarcinoma Progression via Targeting Bone Morphogenetic Protein 9 (BMP9). *Biotechnol. Lett.* **2018**, *40*, 47–55 https://doi.org/10.1007/s10529-017-2445-8.

126. Liu, X.; Peng, H.; Liao, W.; Luo, A.; Cai, M.; He, J.; Zhang, X.; Luo, Z.; Jiang, H.; Xu, L. MiR-181a/b Induce the Growth, Invasion, and Metastasis of Neuroblastoma Cells through Targeting ABI1. *Mol. Carcinog.* **2018**, *57*, 1237–1250 https://doi.org/10.1002/mc.22839.

127. Li, Z.; Xu, Z.; Xie, Q.; Gao, W.; Xie, J.; Zhou, L. MiR-1303 Promotes the Proliferation of Neuroblastoma Cell SH-SY5Y by Targeting GSK3β and SFRP1. *Biomed. Pharmacother.* **2016**, *83*, 508–513 https://doi.org/10.1016/j.biopha.2016.07.010.

128. Soriano, A.; Masanas, M.; Boloix, A.; Masiá, N.; París-Coderch, L.; Piskareva, O.; Jiménez, C.; Henrich, K.-O.; Roma, J.; Westermann, F.; et al. Functional High-Throughput Screening Reveals MiR-323a-5p and MiR-342-5p as New Tumor-Suppressive MicroRNA for Neuroblastoma. *Cell. Mol. Life Sci.* **2019**, *76*, 2231–2243 https://doi.org/10.1007/s00018-019-03041-4.

129. Cheng, X.; Xu, Q.; Zhang, Y.; Shen, M.; Zhang, S.; Mao, F.; Li, B.; Yan, X.; Shi, Z.; Wang, L.; et al. MiR-34a Inhibits Progression of Neuroblastoma by Targeting Autophagy-Related Gene 5. *Eur. J. Pharmacol.* **2019**, *850*, 53–63 https://doi.org/10.1016/j.ejphar.2019.01.071.

130. Chava, S.; Reynolds, C.P.; Pathania, A.S.; Golantia, S.; Poluektova, L.Y.; Coulter, D.W.; Gupta, S.C.; Pandey, M.K.; Challagundla, K.B. MiR-15a-5p, MiR-15b-5p, and MiR-16-5p Inhibit Tumor Progression by Directly Targeting MYCN in Neuroblastoma. *Mol. Oncol.* **2020**, *14*, 180–196 https://doi.org/10.1002/1878-0261.12588.

131. Ding, X.; Zhong, T.; Jiang, L.; Huang, J.; Xia, Y.; Hu, R. MiR-25 Enhances Cell Migration and Invasion in Non-Small-Cell Lung Cancer Cells via ERK Signaling Pathway by Inhibiting KLF4. *Mol. Med. Rep.* **2018**, *17*, 7005–7016 https://doi.org/10.3892/mmr.2018.8772.

132. Ma, W.; Ma, C.; Zhou, N.; Li, X.; Zhang, Y. Up-Regulation of MiR-328-3p Sensitizes Non-Small Cell Lung Cancer to Radiotherapy. *Sci. Rep.* **2016**, *6*, 1–9.

133. Wu, F.; Mo, Q.; Wan, X.; Dan, J.; Hu, H. NEAT1/Hsa-mir-98-5p/Mapk6 Axis Is Involved in Non-Small-cell Lung Cancer Development. *J. Cell. Biochem.* **2019**, *120*, 2836–2846 https://doi.org/10.1002/jcb.26442.

134. Liu, Y.; Li, H.; Li, L.H.; Tang, J.B.; Sheng, Y.L. Mir-451 Inhibits Proliferation and Migration of Non-Small Cell Lung Cancer Cells via Targeting LKB1/AMPK. *Eur Rev Med Pharmacol Sci* **2019**, *23*, 274–280.

135. Usuba, W.; Urabe, F.; Yamamoto, Y.; Matsuzaki, J.; Sasaki, H.; Ichikawa, M.; Takizawa, S.; Aoki, Y.; Niida, S.; Kato, K.; et al. Circulating MiRNA Panels for Specific and Early Detection in Bladder Cancer. *Cancer Sci.* **2019**, *110*, 408–419 https://doi.org/10.1111/cas.13856.

136. Tsai, T.-F.; Lin, J.-F.; Chou, K.-Y.; Lin, Y.-C.; Chen, H.-E.; Hwang, T.I.-S. MiR-99a-5p Acts as Tumor Suppressor via Targeting to MTOR and Enhances RAD001-Induced Apoptosis in Human Urinary Bladder Urothelial Carcinoma Cells. *Onco. Targets. Ther.* **2018**, *Volume 11*, 239–252 https://doi.org/10.2147/OTT.S114276.

137. Zheng, W.; Liu, Z.; Zhang, W.; Hu, X. MiR-31 Functions as an Oncogene in Cervical Cancer. *Arch. Gynecol. Obstet.* **2015**, *292*, 1083–1089 https://doi.org/10.1007/s00404-015-3713-2.

138. Ma, L.; Li, L.-L. MiR-145 Contributes to the Progression of Cervical Carcinoma by Directly Regulating FSCN1. *Cell Transplant.* **2019**, *28*, 1299–1305 https://doi.org/10.1177/0963689719861063.

139. Li, N.; Cui, T.; Guo, W.; Wang, D.; Mao, L. MiR-155-5p Accelerates the Metastasis of Cervical Cancer Cell via Targeting
140. Xue, M.; Qin, X.; Wan, Y.; Wang, S.; Xue, M. MicroRNA-125a-5p Modulates Human Cervical Carcinoma Proliferation and Migration by Targeting ABL2. Drug Des. Devel. Ther. 2015, 10, 71 https://doi.org/10.2147/DDDT.S93104.

141. Geng, D.; Song, X.; Ning, F.; Song, Q.; Yin, H. MiR-34a Inhibits Viability and Invasion of Human Papillomavirus–Positive Cervical Cancer Cells by Targeting E2F3 and Regulating Survivin. Int. J. Gynecol. Cancer 2015, 25, 707–713 https://doi.org/10.1097/IGC.0000000000000399.

142. Xiang, P.; Liu, Y.; Liu, L.; Lin, Q.; Liu, X.; Zhang, H.; Xu, J.; Fang, B. The Biological Function and Clinical Significance of MiR-886-5p in Multiple Myeloma. Acta Haematol. 2019, 142, 208–216 https://doi.org/10.1159/000499620.

143. Zhang, Y.; Huang, B.; Wang, H.-Y.Y.; Chang, A.; Zheng, X.F.S.S. Emerging Role of MicroRNAs in MTOR Signaling. Cell. Mol. Life Sci. 2017, 74, 2613–2625 https://doi.org/10.1007/s00018-017-2485-1.

144. Ye, P.; Liu, Y.Y.; Chen, C.; Tang, C.; Wu, Q.; Wang, X.; Liu, C.-G.; Liu, X.; Liu, R.; Liu, Y.Y.; et al. An MTORC1-Mdm2-Drosha Axis for MiRNA Biogenesis in Response to Glucose- and Amino Acid-Deprivation. Mol. Cell 2015, 57, 708–720 https://doi.org/10.1016/j.molcel.2014.12.034.

145. Glover, A.R.; Zhao, J.T.; Gill, A.J.; Weiss, J.; Mugridge, N.; Kim, E.; Feeney, A.L.; Ip, J.C.; Reid, G.; Clarke, S.; et al. MicroRNA-7 as a Tumor Suppressor and Novel Therapeutic for Adrenocortical Carcinoma. Oncotarget 2015, 6, 36675–36688 https://doi.org/10.18632/oncotarget.5383.

146. Yu, S.S.; Zhang, C.C.; Dong, F.F.; Zhang, Y.Y. MiR-99a Suppresses the Metastasis of Human Non-Small Cell Lung Cancer Cells by Targeting AKT1 Signaling Pathway. J. Cell. Biochem. 2015, 116, 268–276 https://doi.org/10.1002/jcb.24965.

147. Li, W.; Chang, J.; Wang, S.; Liu, X.; Peng, J.; Huang, D.; Sun, M.; Chen, Z.; Zhang, W.; Guo, W.; et al. MicroRNA-99b-5p Suppresses Liver Metastasis of Colorectal Cancer by down-Regulating MTOR. Oncotarget 2015, 6, 24448–24462 https://doi.org/10.18632/oncotarget.4423.

148. Zhao, J.; Chen, F.; Zhou, Q.; Pan, W.; Wang, X.; Xu, J.; Ni, L.; Yang, H. Aberrant Expression of MicroRNA-99a and Its Target Gene MTOR Associated with Malignant Progression and Poor Prognosis in Patients with Osteosarcoma. Onco. Targets. Ther. 2016, 9, 1589 https://doi.org/10.2147/OTT.S102421.

149. Li, Y.; Zhang, Z.; Zhang, X.; Lin, Y.; Luo, T.; Xiao, Z.; Zhou, Q. A Dual PI3K/AKT/MTOR Signaling Inhibitor MiR-99a Suppresses Endometrial Carcinoma. Am. J. Transl. Res. 2016, 8, 719.

150. Yang, Y.M.; Lee, C.G.; Koo, J.H.; Kim, T.H.; Lee, J.M.; An, J.; Kim, K.M.; Kim, S.G. Gα12 Overexpressed in Hepatocellular Carcinoma Reduces MicroRNA-122 Expression via HNF4α Inactivation, Which Causes c-Met Induction. Oncotarget 2015, 6, 19055–19069 https://doi.org/10.18632/oncotarget.3957.

151. Jian, B.; Li, Z.; Xiao, D.; He, G.; Bai, L.; Yang, Q. Downregulation of MicroRNA-193-3p Inhibits Tumor Proliferation Migration and Chemoresistance in Human Gastric Cancer by Regulating PTEN Gene. Tumor Biol. 2016, 37, 8941–8949.

152. Shen, L.; Sun, C.; Li, Y.; Li, X.; Sun, T.; Liu, C.; Zhou, Y.; Du, Z. MicroRNA-199a-3p Suppresses Glioma Cell Proliferation by Regulating the AKT/MTOR Signaling Pathway. Tumor Biol. 2015, 36, 6929–6938 https://doi.org/10.1007/s13277-015-3409-z.

153. Yu, T.; Li, J.; Yan, M.; Liu, L.; Lin, H.; Zhao, F.; Sun, L.; Zhang, Y.; Cui, Y.; Zhang, F.; et al. MicroRNA-193a-3p and -5p Suppress the Metastasis of Human Non-Small-Cell Lung Cancer by Downregulating the ERBB4/PIK3R3/MTOR/S6K2 Signaling Pathway. Oncogene 2015, 34, 413–423 https://doi.org/10.1038/onc.2013.574.

154. Xia, Z.; Liu, F.; Zhang, J.; Liu, L. Decreased Expression of MiRNA-204-5p Contributes to Glioma Progression and Promotes Glioma Cell Growth, Migration and Invasion. PLoS One 2015, 10, e0132399 https://doi.org/10.1371/journal.pone.0132399.

155. Yu, X.; Luo, A.; Liu, Y.; Wang, S.; Li, Y.; Shi, W.; Liu, Z.; Qu, X. MiR-214 Increases the Sensitivity of Breast Cancer Cells to Tamoxifen and Fulvestrant through Inhibition of Autophagy. Mol. Cancer 2015, 14, 208 https://doi.org/10.1186/s12943-015-0480-4.
156. Das, F.; Dey, N.; Bera, A.; Kasinath, B.S.; Ghosh-Choudhury, N.; Choudhury, G.G. MicroRNA-214 Reduces Insulin-like Growth Factor-1 (IGF-1) Receptor Expression and Downstream MTORC1 Signaling in Renal Carcinoma Cells. *J. Biol. Chem.* 2016, 291, 14662–14676 https://doi.org/10.1074/jbc.M115.694331.

157. Lu, Y.; Zhang, L.; Waye, M.M.Y.; Fu, W.; Zhang, J. MiR-218 Mediates Tumorigenesis and Metastasis: Perspectives and Implications. *Exp. Cell Res.* 2015, 334, 173–182 https://doi.org/10.1016/j.yexcr.2015.03.027.

158. ZHANG, X.; Shi, H.; TANG, H.; FANG, Z.; CUI, S. MiR-218 Inhibits the Invasion and Migration of Colon Cancer Cells by Targeting the PI3K/Akt/MTOR Signaling Pathway. *Int. J. Mol. Med.* 2015, 35, 1301–1308 https://doi.org/10.3892/ijmm.2015.2126.

159. Tian, H.; HOU, L.; Xiong, Y.-M.; Huang, J.-X.; SHE, Y.-J.; BI, X.-B.; SONG, X.-R. MiR-218 Suppresses Tumor Growth and Enhances the Chemosensitivity of Esophageal Squamous Cell Carcinoma to Cisplatin. *Oncol. Rep.* 2015, 33, 981–989 https://doi.org/10.3892/or.2014.3657.

160. Chen, D.; Huang, X.; Lu, S.; Deng, H.; Gan, H.; Huang, R.; Zhang, B. MiRNA-125a Modulates Autophagy of Thyroiditis through PI3K/Akt/MTOR Signaling Pathway. *Exp. Ther. Med.* 2019, 17, 2465–2472 https://doi.org/10.3892/etm.2019.7256.

161. Callegari, E.; D’Abundo, L.; Guerriero, P.; Simioni, C.; Elamin, B.K.; Russo, M.; Cani, A.; Bassi, C.; Zagatti, B.; Giacomelli, L.; et al. MiR-199a-3p Modulates MTOR and PAK4 Pathways and Inhibits Tumor Growth in a Hepatocellular Carcinoma Transgenic Mouse Model. *Mol. Ther. Acids* 2018, 11, 485–493 https://doi.org/10.1016/j.omtn.2018.04.002.

162. Meng, C.; Zhao, Z.; Bai, R.; Zhao, W.; Wang, Y.; Xue, H.; Sun, L.; Sun, C.; Feng, W.; Guo, S. MicroRNA-22 Mediates the Cisplatin Resistance of Osteosarcoma Cells by Inhibiting Autophagy via the PI3K/Akt/MTOR Pathway. *Oncol. Rep.* 2020, 43, 1169–1186 https://doi.org/10.3892/or.2020.7492.

163. Chen, Q.; Qin, R.; Fang, Y.; Li, H. Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through MiR-93/PTEN/Akt Signaling Pathway. *Cell. Physiol. Biochem.* 2015, 36, 956–965 https://doi.org/10.1159/000430270.

164. Ohta, K.; Hoshino, H.; Wang, J.; Ono, S.; Iida, Y.; Hata, K.; Huang, S.K.; Colquhoun, S.; Hoon, D.S.B. MicroRNA-93 Activates c-Met/PI3K/Akt Pathway Activity in Hepatocellular Carcinoma by Directly Inhibiting PTEN and CDKN1A. *Oncotarget* 2015, 6, 3211–3224 https://doi.org/10.18632/oncotarget.3085.

165. Jiang, L.; Wang, C.; Lei, F.; Zhang, L.; Zhang, X.; Liu, A.; Wu, G.; Zhu, J.; Song, L. MiR-93 Promotes Cell Proliferation in Gliomas through Activation of PI3K/Akt Signaling Pathway. *Oncotarget* 2015, 6, 8286–8299 https://doi.org/10.18632/oncotarget.3221.

166. Kawano, M.; Tanaka, K.; Itonaga, I.; Ikeda, S.; Iwasaki, T.; Tsumura, H. MicroRNA-93 Promotes Cell Proliferation via Targeting of PTEN in Osteosarcoma Cells. *J. Exp. Clin. Cancer Res.* 2015, 34, 76 https://doi.org/10.1186/s13046-015-0192-z.

167. Wang, Y.P.; Liu, J.; Liu, D.; Wang, X.D.; Bian, A.M.; Fang, D.Z.; Hui, X.B. MiR-532-5p Acts as a Tumor Suppressor and Inhibits Glioma Cell Proliferation by Targeting CSF1. *Eur. Rev. Med. Pharmacol. Sci* 2019, 23, 8964–8970.

168. Du, J.; Liu, S.; He, J.; Liu, X.; Qu, Y.; Yan, W.; Fan, J.; Li, R.; Xi, H.; Fu, W.; et al. MicroRNA-451 Regulates Stemness of Side Population Cells via PI3K/Akt/MTOR Signaling Pathway in Multiple Myeloma. *Oncotarget* 2015, 6, 14993–15007 https://doi.org/10.18632/oncotarget.3802.

169. Zhuo, Z.; Yu, H. MiR-205 Inhibits Cell Growth by Targeting AKT-MTOR Signaling in Progesterone-Resistant Endometrial Cancer Ishikawa Cells. *Oncotarget* 2017, 8, 28042–28051 https://doi.org/10.18632/oncotarget.15886.

170. Zhang, W.; Qian, P.; Zhang, X.; Zhang, M.; Wang, H.; Wu, M.; Kong, X.; Tan, S.; Ding, K.; Perry, J.K.; et al. Autocrine/Paracrine Human Growth Hormone-Stimulated MicroRNA 96-182-183 Cluster Promotes Epithelial-Mesenchymal Transition and Invasion in Breast Cancer. *J. Biol. Chem.* 2015, 290, 13812–13829 https://doi.org/10.1074/jbc.M115.653261.

171. Leung, W.K.C.C.; He, M.; Chan, A.W.H.H.; Law, P.T.Y.Y.; Wong, N. Wnt/β-Catenin Activates MiR-183/96/182 Expression in Hepatocellular Carcinoma That Promotes Cell Invasion. *Cancer Lett.* 2015, 362, 97–105
172. Chong, Z.Z. Targeting PRAS40 for Multiple Diseases. Drug Discov. Today 2016, 21, 1222–1231. https://doi.org/10.1016/j.drudis.2016.04.005.

173. Cong, J.; Liu, R.; Wang, X.; Jiang, H.; Zhang, Y. MiR-634 Decreases Cell Proliferation and Induces Apoptosis by Targeting MTOR Signaling Pathway in Cervical Cancer Cells. Artif. Cells, Nanomedicine, Biotechnol. 2016, 44, 1694–1701. https://doi.org/10.3109/21691401.2015.1080171.

174. Shi, J. Considering Exosomal MiR-21 as a Biomarker for Cancer. J. Clin. Med. 2016, 5, 42.

175. Fragni, M.; Bonini, S.A.; Bettinsoli, P.; Bodei, S.; Generali, D.; Bottini, A.; Spano, P.F.; Memo, M.; Sigala, S. The MiR-21/PTEN/Akt Signaling Pathway Is Involved in the Anti-Tumoral Effects of Zoledronic Acid in Human Breast Cancer Cell Lines. Naunyn. Schmiedebergs. Arch. Pharmacol. 2016, 389, 529–538. https://doi.org/10.1007/s00210-016-1224-8.

176. Li, X.; Zang, A.; Jia, Y.; Zhang, J.; Fan, W.; Feng, J.; Duan, M.; Zhang, L.; Huo, R.; Jiao, J.; et al. Triptolide Reduces Proliferation and Enhances Apoptosis of Human Non-Small Cell Lung Cancer Cells through PTEN by Targeting MiR-21. Mol. Med. Rep. 2016, 13, 2763–2768. https://doi.org/10.3892/mmr.2016.4844.

177. Kalogirou, C.; Schafer, D.; Krebs, M.; Kurz, F.; Schneider, A.; Riedmiller, H.; Kneitz, B.; Vergho, D. Metformin-Derived Growth Inhibition in Renal Cell Carcinoma Depends on MiR-21-Mediated PTEN Expression. Urol. Int. 2016, 96, 106–115. https://doi.org/10.1159/000441011.

178. Chen, J.; Xu, T.; Chen, C. The Critical Roles of MiR-21 in Anti-Cancer Effects of Curcumin. Ann. Transl. Med. 2015, 3.

179. Yu, X.; Li, R.; Shi, W.; Jiang, T.; Wang, Y.; Li, C.; Qu, X. Silencing of MicroRNA-21 Confers the Sensitivity to Tamoxifen and Fulvestrant by Enhancing Autophagic Cell Death through Inhibition of the PI3K-AKT-MTOR Pathway in Breast Cancer Cells. Biomed. Pharmacother. 2016, 77, 37–44. https://doi.org/10.1016/j.biopha.2015.11.005.

180. Xie, F.; Huang, Q.; Liu, C.H.; Lin, X.S.; Liu, Z.; Liu, L.L.; Huang, D.W.; Zhou, H.C. MiR-1271 Negatively Regulates AKT/MTOR Signaling and Promotes Apoptosis via Targeting PDK1 in Pancreatic Cancer. Eur Rev Med Pharmacol Sci 2018, 22, 678–686.

181. Vilquin, P.; Donini, C.F.; Villedieu, M.; Grisard, E.; Corbo, L.; Bachelot, T.; Vendrell, J.A.; Cohen, P.A. MicroRNA-125b Upregulation Confers Aromatase Inhibitor Resistance and Is a Novel Marker of Poor Prognosis in Breast Cancer. Breast Cancer Res. 2015, 17, 13. https://doi.org/10.1186/s13058-015-0515-1.

182. An, X.; Sarmiento, C.; Tan, T.; Zhu, H. Regulation of Multidrug Resistance by MicroRNAs in Anti-Cancer Therapy. Acta Pharm. Sin. B 2017, 7, 38–41. https://doi.org/10.1016/j.apsb.2016.09.002.

183. Geretto, M.; Pulliero, A.; Rosano, C.; Zhabayeva, D.; Bersimbaev, R.; Izzotti, A. Resistance to Cancer Chemotherapeutic Drugs Is Determined by Pivotal MicroRNA Regulators. Am. J. Cancer Res. 2017, 7, 1350–1371.

184. Bach, D.-H.; Hong, J.-Y.; Park, H.J.; Lee, S.K. The Role of Exosomes and MiRNAs in Drug-Resistance of Cancer Cells. Int. J. Cancer 2017, 141, 220–230. https://doi.org/10.1002/ijc.30669.

185. Si, W.; Shen, J.; Zheng, H.; Fan, W. The Role and Mechanisms of Action of MicroRNAs in Cancer Drug Resistance. Clin. Epigenetics 2019, 11, 25. https://doi.org/10.1186/s13148-018-0587-8.

186. Ghanbarian, M.; Afgar, A.; Yadegarazarzi, R.; Najafi, R.; Teimoori-Toolabi, L. Through Oxaliplatin Resistance Induction in Colorectal Cancer Cells, Increasing ABCB1 Level Accompanies Decreasing Level of MiR-302c-5p, MiR-3664-5p and MiR-129-5p. Biomed. Pharmacother. 2018, 108, 1070–1080. https://doi.org/10.1016/j.biopha.2018.09.112.

187. Wu, D.; Li, X.; Meng, X.-N.; Yan, J.; Zong, Z. MicroRNA-873 Mediates Multidrug Resistance in Ovarian Cancer Cells by Targeting ABCB1. Tumor Biol. 2016, 37, 10499–10506. https://doi.org/10.1007/s13277-016-4944-v.

188. Armada, A.; Gomes, B.C.; Viveiros, M.; Rueff, J.; Rodrigues, A.S. Regulation of ABCB1 Activity by MicroRNA-200c and
MicroRNA-203a in Breast Cancer Cells: The Quest for MicroRNAs’ Involvement in Cancer Drug Resistance. *Cancer Drug Resist.* 2019, 2, 897–911 https://doi.org/10.20517/cdr.2019.24.

189. Shang, Y.; Feng, B.; Zhou, L.; Ren, G.; Zhang, Z.; Fan, X.; Sun, Y.; Luo, G.; Liang, J.; Wu, K.; et al. The MiR27b-CCNG1-P53-MiR-508-5p Axis Regulates Multidrug Resistance of Gastric Cancer. *Oncotarget* 2016, 7, 538–549 https://doi.org/10.18632/oncotarget.6374.

190. To, K.K.W.; Leung, W.W.; Ng, S.S.M. Exploiting a Novel MiR-519c–HuR–ABCG2 Regulatory Pathway to Overcome Chemoresistance in Colorectal Cancer. *Exp. Cell Res.* 2015, 338, 222–231.

191. Pei, K.; Zhu, J.J.; Wang, C.E.; Xie, Q.L.; Guo, J.Y. MicroRNA-185-5p Modulates Chemosensitivity of Human Non-Small Cell Lung Cancer to Cisplatin via Targeting ABCC1. *Eur Rev Med Pharmacol Sci* 2016, 20, 4697–4704.

192. Liang, S.; Gong, X.; Zhang, G.; Huang, G.; Lu, Y.; Li, Y. MicroRNA-140 Regulates Cell Growth and Invasion in Pancreatic Duct Adenocarcinoma by Targeting IASPP. *Acta Biochim. Biophys. Sin. (Shanghai).* 2016, 48, 174–181 https://doi.org/10.1093/abbs/gmv127.

193. Li, Q.; Liang, X.; Wang, Y.; Meng, X.; Xu, Y.; Cai, S.; Wang, Z.; Liu, J.; Cai, G. MiR-139-5p Inhibits the Epithelial-Mesenchymal Transition and Enhances the Chemotherapeutic Sensitivity of Colorectal Cancer Cells by Downregulating BCL2. *Sci. Rep.* 2016, 6, 27157 https://doi.org/10.1038/srep27157.

194. Zhuang, M.; Shi, Q.; Zhang, X.; Ding, Y.Y.; Shan, L.; Shan, X.; Qian, J.; Zhou, X.; Huang, Z.; Zhu, W.; et al. Involvement of MiR-143 in Cisplatin Resistance of Gastric Cancer Cells via Targeting IGF1R and BCL2. *Tumor Biol.* 2015, 36, 2737–2745 https://doi.org/10.1007/s13277-014-2898-5.

195. Qu, J.; Zhao, L.; Zhang, P.; Wang, J.; Xu, N.; Mi, W.; Jiang, X.; Zhang, C.; Qu, J. MicroRNA-195 Chemosensitizes Colon Cancer Cells to the Chemotherapeutic Drug Doxorubicin by Targeting the First Binding Site of BCL2L2 MRNA. *J. Cell. Physiol.* 2015, 230, 535–545 https://doi.org/10.1002/jcp.24366.

196. HE, H.; TIAN, W.; Chen, H.; DENG, Y. MicroRNA-101 Sensitizes Hepatocellular Carcinoma Cells to Doxorubicin-Induced Apoptosis via Targeting Mcl-1. *Mol. Med. Rep.* 2016, 13, 1923–1929 https://doi.org/10.3892/mmr.2015.4727.

197. Zeng, L.-P.; Hu, Z.-M.; Li, K. MiR-222 Attenuates Cisplatin-Induced Cell Death by Targeting the PPP2R2A/Akt/MTOR Axis in Bladder Cancer Cells. *J. Cell. Mol. Med.* 2016, 20, 559–567 https://doi.org/10.1111/jcmm.12760.

198. Huang, N.; Wu, J.; Qiu, W.; Lyu, Q.; He, J.; Xie, W.; Xu, N.; Zhang, Y. MiR-15a and MiR-16 Induce Autophagy and Enhance Chemosensitivity of Camptothecin. *Cancer Biol. Ther.* 2015, 16, 941–948 https://doi.org/10.1080/15384047.2015.1040963.

199. Chatterjee, A.; Chattopadhyay, D.; Chakraborti, G. MiR-16 Targets Bcl-2 in Paclitaxel-Resistant Lung Cancer Cells and Overexpression of MiR-16 along with MiR-17 Causes Unprecedented Sensitization by Simultaneously Modulating Autophagy and Apoptosis. *Cell. Signal.* 2015, 27, 189–203 https://doi.org/10.1016/j.cellsig.2014.11.023.

200. Zhao, J.; Nie, Y.; Wang, H.; Lin, Y. MiR-181a Suppresses Autophagy and Sensitizes Gastric Cancer Cells to Cisplatin. *Gene* 2016, 576, 828–833 https://doi.org/10.1016/j.gene.2015.11.013.

201. Mu, W.; Hu, C.; Zhang, H.; Qu, Z.; Cen, J.; Qiu, Z.; Li, C.; Ren, H.; Li, Y.; He, X.; et al. MiR-27b Synergizes with Anticancer Drugs via P53 Activation and CYP1B1 Suppression. *Cell Res.* 2015, 25, 477–495 https://doi.org/10.1038/cr.2015.23.

202. Rieger, J.K.; Reutter, S.; Hofmann, U.; Schwab, M.; Zanger, U.M. Inflammation-Associated MicroRNA-130b Down-Regulates Cytochrome P450 Activities and Directly Targets CYP2C9. *Drug Metab. Dispos.* 2015, 43, 884–888 https://doi.org/10.1124/dmd.114.062844.

203. He, X.; Xiao, X.; Dong, L.; Wan, N.; Zhou, Z.; Deng, H.; Zhang, X. MiR-218 Regulates Cisplatin Chemosensitivity in Breast Cancer by Targeting BRCA1. *Tumor Biol.* 2015, 36, 2065–2075 https://doi.org/10.1007/s13277-014-2814-z.

204. Strumidło, A.; Skiba, S.; Scott, R.J.; Lubiriński, J. The Potential Role of MiRNAs in Therapy of Breast and Ovarian Cancers
Associated with BRCA1 Mutation. *Hered. Cancer Clin. Pract.* **2017**, *15*, 15 https://doi.org/10.1186/s13053-017-0076-7.

205. Chen, S.; Jiao, J.-W.; Sun, K.; Zong, Z.; Zhao, Y.; Chen, S.; Jiao, J.-W.; Sun, K.; Zong, Z. MicroRNA-133b Targets Glutathione S-Transferase π Expression to Increase Ovarian Cancer Cell Sensitivity to Chemotherapy Drugs. *Drug Des. Devel. Ther.* **2015**, *9*, 5225–5235 https://doi.org/10.2147/DDDT.S87526.