Running head: LEA proteins and adaptation to water deficit

Corresponding author: Dr. Alejandra A. Covarrubias

Address: Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos 62250 México.

Telephone number: 00 (52) 777 329 1643

Email: crobles@ibt.unam.mx

Research area: Environmental Stress and Adaptation
Functional Analysis of the Group 4 Late Embryogenesis Abundant proteins reveals their relevance in the adaptive response during water deficit in *Arabidopsis thaliana*.

Yadira Olvera-Carrillo, Francisco Campos, José Luis Reyes, Alejandro Garchiarrubio and Alejandra A. Covarrubias*

Departamento de Biología Molecular de Plantas (Y.O.-C; F.C., J.L.R, A.A.C) and Departamento de Microbiología Molecular (A.G.), Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, 62250 México.
Footnotes:

1This work was partially funded by the Consejo Nacional de Ciencia y Tecnología (CONACyT) México (Grants No. 40603-Q and 50485-Q). Y.O.-C. was supported by a CONACyT PhD scholarship.

* Corresponding author; e-mail: crobles@ibt.unam.mx.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Alejandra A. Covarrubias (crobles@ibt.unam.mx).

[W] The online version of this article contains Web-only data.

[OA] Open Access articles can be viewed online without a subscription.
ABSTRACT

Late Embryogenesis Abundant (LEA) proteins accumulate to high levels during the last stages of seed development, when desiccation tolerance is acquired, and in vegetative and reproductive tissues under water deficit, leading to the hypothesis that these proteins play a role in the adaptation of plants to this stress condition. In this work, we obtained the accumulation patterns of the Arabidopsis group 4 LEA proteins during different developmental stages and plant organs in response to water deficit. We demonstrate that over-expression of a representative member of this group of proteins confers tolerance to severe drought in Arabidopsis plants. Moreover, we show that deficiency of LEA proteins in this group leads to susceptible phenotypes upon water limitation, during germination or in mature plants after recovery from severe dehydration. Upon recovery from this stress condition, mutant plants showed a reduced number of floral and axillary buds when compared to wild type plants. The lack of these proteins also correlates with a reduced seed production under optimal irrigation, supporting a role in fruit and/or seed development. A bioinformatic analysis of group 4 LEA proteins from many plant genera showed that there are two subgroups, originated through ancient gene duplication and a subsequent functional specialization. This study represents the first genetic evidence showing that one of the LEA protein groups is directly involved in the adaptive response of higher plants to water deficit, and it provides data indicating that the function of these proteins is not redundant to that of the other LEA proteins.
INTRODUCTION

Water deficit is a common environmental condition that leads to various responses that may help in the adaptation or adjustment of an organism to the stress. It is considered one of the most important environmental stresses influencing plant productivity (Bray, 1997; Morison et al., 2008). The adverse effects of this environmental stress need to be counteracted mainly because of the increasing soil desertification in cultivated and uncultivated regions. This fact demands for plants to tolerate drying periods and elevated salt concentrations in the soil, which may be accompanied by extreme temperatures. Also, the interest in understanding the mechanisms by which plants sense and respond to these environmental cues, account for the most important reasons to study in detail the responses that have been selected in plants to cope with water deficit.

The acquisition of desiccation tolerance during late stages of seed development is correlated with the induction of a set of small, highly hydrophilic proteins called Late Embryogenesis Abundant (LEA) proteins (Dure et al., 1989). These proteins are ubiquitous in plants and, although there are several classifications, we will follow that of Battaglia et al. (2008), where they are classified into seven groups on the basis of sequence similarity. Analysis of the protein sequences in these groups from different plant species defined distinctive motifs within groups (Dure, 1993; Battaglia et al., 2008). The number of members is different for each LEA protein group and varies according to the plant species. Most LEA proteins are hydrophilins, a set of proteins characterized by their biased amino acid composition, rich in glycines, and other small and/or charged residues, and their high hydrophilicity index (Garay-Arroyo et al., 2000). This amino acid composition promotes their flexible structure in solution, existing mainly as random coils, with the exception of the hydrophobic or atypical LEA proteins (Singh et al., 2005). Moreover, hydrophilic LEA proteins from groups 2, 3 and 4 show a prevalence of typical spectroscopic patterns of intrinsically unstructured proteins (IUP) with the occurrence of transitions from IUP to ordered conformations in the presence of helix promoting solvents or air drying (McCubbin et al., 1985; Russouw et al., 1995; Eom et al., 1996; Lisse et al., 1996; Ismail et al., 1999; Wolkers et al., 2001; Soulages et al., 2002; 2003; Goyal et al; 2003; Shih et al., 2004; Tolleter et al., 2007). Their high content of water-interacting residues facilitates the scavenging of water molecules, which is of special importance during developmental stages where a programmed desiccation of tissues takes place, as in the dry seed (Dure et al., 1989), or when cells experience changes in their water status (Colmenero-Flores et al., 1999). Remarkably, there is also an elevated induction in the expression of these proteins in vegetative
tissues after exposure to water deficit in basically all plants where they have been analyzed. In recent years, proteins with similar characteristics and expression patterns have also been detected to be induced in response to osmotic stress in bacteria and yeast (Stacy and Aalen, 1998; Garay-Arroyo et al., 2000), algae (Honjoh et al., 1995, 2000; Tanaka et al., 2004), nematodes (Solomon et al., 2000; Browne et al., 2004), rotifers (Tunnacliffe et al., 2005) and arthropods species (Menze et al., 2009).

One of the hypothesis regarding their function is that these proteins may act as protectors of macromolecules and/or some cellular structures during water deficit, by preferentially interacting with the available water molecules and providing a hydration shell to protect ‘target’s integrity and function (Bray, 1997; Garay-Arroyo et al., 2000; Hoekstra et al., 2001). The use of an in vitro dehydration assay, in which the activity of malate dehydrogenase (MDH) and lactate dehydrogenase (LDH) was measured in the presence or absence of a hydrophilic protein showed that plant hydrophilins (LEA proteins from group 2, 3 and 4), and hydrophilins from Sacharomyces cerevisiae and Escherichia coli were able to protect these enzymatic activities under low water availability conditions (Reyes et al., 2005). Similarly, in vitro assays using the same or other enzymes have been used to assess the protective capacities of LEA proteins under dehydration and cold (Hara et al., 2001; Honjoh et al., 2000; Bravo et al., 2003; Goyal et al., 2005; Grelet et al., 2005; Nakayama et al., 2007; Reyes et al., 2008). In some of these assays, the ratio of LEA protein to enzyme was 1:1 suggesting that the LEA protein protective activity is not only due to the formation of a preferential hydration shell, but also by an additional effect probably related to a direct interaction with their targets (Reyes et al., 2005; 2008).

There are many reports of LEA proteins expressed in transgenic plants under the control of regulated or constitutive promoters, showing tolerant phenotypes under drought, high salinity or freezing stress (Xu et al., 1996; Sivamani et al., 2000; NDong, et al., 2002; Chandra Babu et al., 2004; Puhakainen et al., 2004; Fu et al., 2007; Lal et al., 2007; Xiao et al., 2007; Dalal et al., 2009). Also, the heterologous expression in bacteria and yeast of some LEA proteins confers salt and freezing tolerance (Imai et al., 1996; Zhang et al., 2000; Liu and Zheng, 2005). However, this “gain-of-function” approach does not necessarily reflect their direct participation in the plant adjustment or adaptation to these stress conditions but rather their potential to confer tolerance when ectopically expressed. In contrast, the results of a “loss-of-function” approach will lead to a direct indication of the participation of a particular gene within this process. Even though there is a large extent of information regarding the different properties of LEA proteins, our knowledge concerning their role in plant adaptation to water limiting conditions is insufficient.
In this work we focus on the study of the group 4 LEA proteins of *Arabidopsis thaliana*. With only three genes in the genome (*AtLEA4-1*, *AtLEA4-2* and *AtLEA4-5*), the AtLEA 4 group is one of the smallest groups in *Arabidopsis* (Hundertmark and Hincha, 2008; Battaglia et al., 2008), which makes it accessible for a ‘loss-of-function’ analysis. The LEA 4 proteins are characterized by a high content of A, T and G amino acid residues, the latter highly represented in unstructured proteins. They have a conserved N-terminus domain of 70 - 80 residues, predicted to form amphipathic α-helices, and a less conserved C-terminus region with variable size and random coil structure (Dure, 1993). As other LEA proteins, the LEA 4 group is highly accumulated in all embryo tissues of dry seeds (Roberts et al., 1993). Recently, Wise (2002) performed a bioinformatics analysis and questioned the existence of a group 4 of LEA proteins as a distinct group of LEA proteins from group 3. The algorithm used the over/under representation of particular amino acids within small motifs in the protein, giving rise to a different classification for these proteins (Wise, 2003). In support of the original classification proposed by Dure et al. (1989) and because of the high sequence conservation within this group in plants, in the present work, we present genetic and functional evidence that group 4 of LEA proteins is indeed a distinct group conserved in the plant kingdom. The results reported here show that over-expression of one of the AtLEA 4 proteins in Arabidopsis leads to a tolerant phenotype compared to their wild type counterparts in their capability to endure severe water deficit, and that the reduction in the accumulation levels of these proteins leads to plants more sensitive to water limiting conditions than their wild type genotypes. All together, these data constitute the first direct evidence indicating that LEA 4 proteins are involved in the adaptive response of vascular plants to withstand water deficit.
RESULTS

AtLEA4 Group is Differentially Expressed during Embryogenesis and in Response to Water Deficit Treatments

To gain insight into the function of LEA proteins in the adaptation of vascular plants to water deficit, we carried out a functional analysis of the Arabidopsis LEA 4 protein family, because it is one of the three LEA protein groups with fewer members (two for group 1, three for group 4, and three for group 6) (Battaglia et al., 2008; Hundertmark and Hincha, 2008). These data were confirmed with a BLASTp analysis using a reported LEA 4 homologue from cotton as query (LEA D-113, NCBI Acc. No. M19406); it retrieved three proteins that conformed the Arabidopsis LEA 4 family, encoded in loci At1g32560, At2g35300 and At5g06760. In reference to their chromosomal location, we named the corresponding proteins: AtLEA4-1, AtLEA4-2 and AtLEA4-5 (Supplemental Fig. S1). As predicted by Dure (1993), the proteins in this group were conserved in the amino portion (AtLEA4-1: 1-78, AtLEA4-2: 1-74 and AtLEA4-5: 1-76) for which α-helix and “coiled-coils” structures were predicted to form in silico (Lupas et al., 1991; McGuffin et al., 2000). In contrast, their C-terminal region (AtLEA4-1: 79-134, AtLEA4-2: 75-97 and AtLEA4-5: 77-158; corresponding to a length of 56, 23 and 82 amino acids, respectively) showed a putative random coil structure (Supplemental Fig. S1). These proteins were predicted to be basic proteins (pI 8.65 - 9.67) with a molecular mass of 14.9, 10.5 and 16.2 kD for AtLEA4-1, AtLEA4-2 and AtLEA4-5, respectively.

The presence and abundance of a LEA transcript and the corresponding protein during a developmental stage or in response to stress in a plant organ can provide information about their sensitivity to different types of environmental adverse conditions, which can be useful in the elucidation of their function. Hence, we analyzed the LEA 4 group transcript and protein accumulation patterns during embryogenesis and in seedlings of Arabidopsis plants grown under optimal irrigation, and in plants subjected to water deficit treatments. The results from RT-PCR experiments using total RNA showed that, in agreement with available microarray data (Schmid et al., 2005; Winter et al., 2007; Hruz et al., 2008), transcripts of the AtLEA 4 family could be detected in flowers, and during embryo development, but the highest abundance was detected at the dry seed stage. After seed germination, their transcript levels showed a significant reduction (Fig. 1A).

Western blot experiments showed that AtLEA4-1 protein accumulated abundantly in flowers and immature siliques (Fig. 1B). Unexpectedly, in dry seeds during stratification and germination the 14.9 kD AtLEA4-1 protein was undetectable. Instead, a protein with an apparent higher molecular mass (AtLEA4-1-L) was specifically recognized by immunopurified LEA4-1 antibodies in dry or stratified seed protein
extracts. The accumulation level of AtLEA4-1-L protein was higher in dry than in stratified and in germinating seedlings. Although in the experiment shown in Figure 1B, the AtLEA4-1 protein was not detected in germinating seedlings (24 h after incubation at 25 °C), longer exposures allowed its detection at low levels (data not shown). Once the seeds have germinated, the AtLEA4-1-L protein disappears and the 14.9 kD LEA4-1 was detected again starting at 2 DAG (Fig. 1B). Regarding AtLEA4-2 and AtLEA4-5 proteins, they showed high accumulation levels during late embryogenesis and in dry seeds, followed by a gradual reduction in germinating seedlings (Fig. 1B). Western blot experiments using specific antibodies raised against AtLEA4-2 did not recognize a protein with the expected molecular mass (10.5 kD) instead, in all cases, they specifically detected a protein with a higher molecular mass (~30 kD, Fig. 1B). Similar results were obtained using antibodies from different sources. The fact that this band was not detected when the AtLEA4-2 transcript was silenced by an artificial microRNA (see below), and that this detection was competed with an AtLEA4-2 peptide (data not shown) demonstrated the specificity of this antibody.

AtLEA 4 group transcript and protein levels were also determined in two week-old seedlings incubated in liquid MS containing 100 μM ABA, 25% (w/v) polyethylene glycol 8000 (PEG), or NaCl (100, 150 or 200 mM) during 12 h. Results in Figure 2A showed that all three genes were responsive to water deficit imposed by PEG treatment; upon ABA and NaCl treatments the AtLEA4-5 gene showed to be the most responsive. Increasing concentrations of NaCl led to a gradual increase in the accumulation of AtLEA4-5 transcripts, whereas in the case of the AtLEA4-1 and AtLEA4-2, the accumulation of their transcripts was hardly detected (Fig. 2A). Regarding their protein levels, in agreement with their transcript accumulation patterns the three proteins of the family accumulate upon PEG treatment. However, in response to ABA and NaCl treatments some differences were observed between their transcript and protein accumulation patterns (Fig. 2B). Even though, the AtLEA4-1 and AtLEA4-2 transcripts were barely detected upon NaCl treatments, their responsiveness to this stress condition was evident by the accumulation of their proteins (Fig. 2B). This was not the case in response to ABA, where the accumulation levels of AtLEA4-1 and AtLEA4-2 proteins did not change upon ABA treatment (Fig. 2B). The fact that the AtLEA4-1 protein was detected in spite of the low levels of its transcript (Fig. 2) suggested the participation of post-transcriptional control mechanisms modulating the levels of this protein. As in the western blot experiments described above, the AtLEA4-2 protein was detected with an apparent higher molecular mass. Similar to AtLEA4-1 and AtLEA4-2 proteins, AtLEA4-5 protein accumulated in response to increasing NaCl concentrations; however, its accumulation levels were lower than those observed in
response to ABA, even though AtLEA4-5 transcript accumulated to similar levels as upon salt treatments. The conspicuous contrast between transcript and protein accumulation patterns in response to ABA again suggested the involvement of a posttranscriptional control for the adjustment of protein levels. Overall, these results demonstrated that the three members of the LEA 4 family were differentially expressed under normal developmental stages and upon stress treatments, suggesting that a functional diversification occurred in the course of evolution.

AtLEA4-5 Constitutive Expression Leads to Tolerance to Severe Drought in Arabidopsis Adult Plants

Arabidopsis plants were transformed by floral dipping using an *Agrobacterium* strain carrying a 35S::AtLEA4-5::NOS fusion, which led to the constitutive expression of the AtLEA4-5 gene (Fig. 3A). We selected AtLEA4-5 gene for over-expression analysis because it showed the strongest response to water deficit treatments as determined by its transcript and protein accumulation patterns among all three family members. Once the over-expression of the protein of interest was verified under control and drought conditions (Figs. 3A and 3B), five independent homozygous transgenic Arabidopsis lines were used to analyze their phenotype under optimal and limiting irrigation (see Materials and methods for details). These lines over-expressed the AtLEA4-5 protein under both growth conditions, showing higher accumulation levels than wild type even upon water deficit treatment (Fig. 3A and 3B). The phenotypic analysis of these overexpression lines showed that many characteristics throughout development were similar to those shown by WT (Fig. 8 and data not shown). To evaluate the contribution of the AtLEA4-5 protein to the tolerance of Arabidopsis plants to low water availability conditions, the selected transgenic lines were subjected to water deficit during germination and in the adult stage. During germination, the effect of high concentrations of NaCl (250 mM) and of high osmolarity imposed by mannitol (350 mM) was determined by monitoring germination (radicle emergence) up to 16 days. The transgenic homozygous lines over-expressing AtLEA4-5 protein did not show a significantly improved ability to germinate under these conditions, because their germination rate was similar to that observed for wild type seeds (OE 4-5, Fig. 5).

In the adult stage, two different experiments were carried out growing the plants in a substrate with low water retention. In order to evaluate the impact of the AtLEA4-5 over-expression on the production of buds after recovery from severe dehydration, plants at the flowering stage were subjected to water deficit by halting irrigation during 14 days, when the substrate water potential ($\Psi_{\text{substrate}}$) was approximately - 6.45 (-
0.57) MPa (Supplemental Fig. S2), after which, plants were rehydrated and allowed to recover during 10 days; at this point, axillary and floral buds were counted (see Material and methods for details). As shown in Figures 3C, 3D and Supplemental Figure S2, the transgenic lines over-expressing AtLEA4-5 protein showed a better recovery from this severe dehydration treatment as compared to wild type plants. Homozygous AtLEA4-5 over-producing lines showed not only recovery of vegetative tissues (e.g. rosette leaves), but also a higher number of axillary and floral buds contrasting with wild type plants that, even though were able to recover some of their rosette leaves, they were incompetent in bud maintenance (Figs. 3E, Supplemental Fig. S2 and Supplemental Table S1). Total biomass accumulation recorded at the end of the recovery period showed that four of the five 35S::AtLEA4-5::NOS lines presented a significant higher biomass when compared to wild type plants (Fig. 3D).

In an independent experiment, wild type and AtLEA4-5 over-expressing plants at the flowering stage were subjected to water deficit by halting irrigation during 10 days, when $\Psi_{\text{substrate}}$ was approximately - 4.62 (\pm 0.62) MPa, at this point complete plants were harvested to determine relative water content (RWC) (see Materials and methods for details). The results showed that plants over-expressing AtLEA4-5 protein exhibited a higher RWC upon water deficit when compared to wild type plants (Fig. 3C). These data support the conclusion that the overproduction of AtLEA4-5 protein confers tolerance to water limiting conditions to Arabidopsis plants as determined by RWC, biomass accumulation, and bud maintenance after recovery from severe dehydration.

AtLEA4-5 Insertion Mutant and PTGS Mutants in AtLEA4-1 and AtLEA4-2 Genes Show Sensitive Phenotypes in Response to Osmotic Stress During Germination and to Drought Treatments in Adult Plants

In this work we analyzed the phenotype of mutants affecting the three members of the LEA4 gene family in response to water deficit conditions. A non-autonomous Suppressor-mutator transposon insertion (dSpm, Tissier et al., 1999) in the promoter of AtLEA4-5 was obtained from the European Arabidopsis NASC stock centre (N122943). Southern blot experiments confirmed the dSpm transposon insertion site in the AtLEA4-5 gene promoter as described in the NASC database (Supplemental Fig. S3). To investigate whether this mutation affects the production of the corresponding protein, northern and western blot analyses were carried out. The results showed that this insertion led to a severe reduction in the levels of AtLEA4-5 transcript and protein when detected in dry seeds and roots from adult plants grown under water deficit as opposed to wild type plants (Fig. 4 A, B, C).
This mutant was used to analyze its phenotype during germination in media with or without NaCl (250 mM) or mannitol (350 mM), as well as in adult plants subjected to dehydration-rehydration treatments. As shown in Figure 5, mutant seeds were unable to withstand the stress treatments, because a significant reduction in their germination rate compared to that of wild type seeds was detected, thus indicating that AtLEA4-5 protein was necessary for optimal germination efficiency under water deficit. To evaluate the participation of the AtLEA4-5 protein in the ability of the plant to maintain the production of floral and axillary buds under water limitation, plants were grown under optimal irrigation conditions until bolting, and at this point they were subjected to a dehydration treatment until the $\Psi_{\text{substrate}}$ was approximately - 4.62 (± 0.62) MPa (note that the dehydration treatment in this experiment was less severe than that used with over-expressing lines); subsequently, plants were rehydrated during a 6-day recovery period (see Material and methods for details). After this time, axillary and floral buds were counted and then plants were harvested to determine total biomass accumulation. Results in Figure 6 showed that significant differences were detected in biomass accumulation after recovery from drought between mutant and wild type plants, and that the production of buds in the AtLEA4-5 mutants was affected by the dehydration-rehydration treatment when compared to wild type plants. In this case, wild type plants recovered some buds in contrast to the phenotype of wild type plants during the characterization of the 35S::AtLEA4-5::NOS, where the dehydration treatment was more severe (Supplemental Fig. S2 B and D). The lower severity of the dehydration-rehydration treatments for the experiments involving mutants of the AtLEA4 genes was necessary to be able to monitor the susceptibility of the mutant lines in comparison to wild type plants, which did not survive upon severe dehydration. To verify that the phenotype detected in the mutant plants was due to the absence of a AtLEA4-5 functional gene, complementation experiments were carried out by transforming the dSpm transposon insertion mutant with the 35S::AtLEA4-5::NOS construction (Fig. 4D). The phenotypic analysis of the transformed mutants performed in the T3 generation showed that the over-expressed AtLEA4-5 gene was able to complement the AtLEA4-5::dSpm mutant during germination under low water availability conditions (Fig. 5) and in adult plants after dehydration-rehydration treatments (Fig. 6). In this type of experiment, where the dehydration was not as severe as in the previous one used for the characterization of the AtLEA4-5 overexpressing lines (Col background, Fig. 3), there were no significant differences with the AtLEA4-5 gene complementation lines (Col, AtLEA4-5::dSpm background) and wild type plants (Figs. 5 and 6).
Because no mutants were available for the AtLEA4-1 and AtLEA4-2 genes, an artificial microRNA (a-miR) construct was used for their post-transcriptional silencing. The high homology between AtLEA4-1 and AtLEA4-2 genes allowed the design of an a-miR (a-miR 4-1/2) able to target both genes for silencing using a region of maximal nucleotide identity between both transcripts (Supplemental Fig. S4). The precursor of a-miR 4-1/2 was expressed under the control of the 35S promoter to favor an efficient silencing of the genes of interest. Those lines showing the highest a-miR accumulation were selected to validate the expected silencing. The mature a-miR 4-1/2 was detected by small RNA northern blot from various T3 lines using two week-old plants grown under optimal conditions (Fig. 7A). The results from western blot analyses using protein extracts from adult plants of the selected lines subjected to dehydration indicated that the designed a-miR was functional and able to silence the expression of both genes (Fig. 7B). Once confirmed that the silencing was functional, these lines were phenotypically characterized, applying the same treatments described above for the AtLEA4-5 insertion mutant. For the germination assays, the major effect was observed when seeds were germinated in the presence of NaCl (250 mM), where the silenced AtLEA4-1 and 4-2 mutant seeds showed 20% germination compared to 70% for wild type seeds. When mannitol (350 mM) was used no differences in the final germination percentage were detected; however, significant differences were observed between the silenced mutants and the wild type germination rates (Fig. 5). An increased susceptibility to dehydration was also detected in experiments using adult plants subjected to dehydration-rehydration, where mutants showed a significant reduction in the amount of buds when compared to wild type plants (Fig. 6 and Supplemental Table S2).

To construct a triple mutant affecting the production of the three members of the AtLEA4 group and because both mutants, dSpm insertion in AtLEA4-5 and a-miR 4-1/2, are resistant to BASTA, we generated a different mutant affecting the expression of AtLEA4-5, containing kanamycin as the selection marker. To this end, we obtained a silencing mutant using RNA interference (RNAi) against AtLEA4-5 by the expression of the AtLEA4-5 open reading frame sequence arranged as an inverted repeat, under the control of the 35S promoter (RNAi 4-5). Some of the transgenic lines containing this construct showed lower levels of expression than wild type plants under the tested conditions (mutant lines 3, 4 and 5, Fig. 7C and Supplemental Fig. S5); however, because silencing was stable just in T1 and T2 generations, all experiments with these lines were carried out using T2 homozygous plants. In this generation we selected independent transgenic lines showing different levels of reduction in the AtLEA4-5 protein accumulation (lines 3-5, Fig. 7C), which were phenotypically characterized prior
to the generation of the triple mutant. Analyses were carried out using Arabidopsis adult plants subjected to dehydration treatment until \(\Psi_{\text{substrate}} = -4.62 \ (\pm 0.62) \) was achieved under greenhouse conditions. The results from these analyses showed that RNAi 4-5 silenced lines accumulated less biomass, recovered less number of buds after six days of plant re-hydration and produced a lower total seed number per plant than wild type plants (Supplemental Table S1 and Fig. S5). Homozygous T\(_2\) RNAi 4-5 silenced plants (Mutant line 3 in Fig. 7C) were crossed with homozygous T\(_2\) a-mir 4-1/2 silenced plants (Mutant lines 3 and 4 in Fig. 7B), choosing those lines where the silencing of the corresponding transcripts was more efficient. From the products of this cross containing both silencing constructs (a-mir 4-1/2 and RNAi 4-5), we selected those lines that showed the lower protein levels in the F\(_2\) generation for further characterization (Supplemental Fig. S6). Two independent lines were subjected to dehydration-rehydration treatments as those applied for the phenotypical analyses described above. The results showed a significant lower dry biomass and lower recovery of buds after dehydration-rehydration in those plants affected in the production of the group 4 LEA proteins, compared to wild type plants grown in the same pot (Fig. 6A and 6B). As for the RNAi 4-5 silenced plants, the silencing was functional only in F\(_1\) and F\(_2\) generations: some homozygous F\(_3\) lines showed wild type protein levels as well as wild type phenotype upon dehydration-rehydration treatments (data not shown). Because RNA interference was not effective in reducing AtLEA4-5 protein accumulation in seeds, none of the lines containing the RNAi 4-5 construct were used for phenotypical characterization during germination.

Because the three protein members of LEA group 4 accumulated to high levels in dry seeds, we analyzed the effect that their lower levels could have on seed production under optimal growth conditions. To this end, individual seedlings of the different lines used in this study were grown in pots containing soil (Metromix) under optimal irrigation until senescence. Seeds were collected from each plant and the dry biomass of seeds was determined. The comparison of their seed biomass showed that the absence of AtLEA4-5 protein, the low levels of AtLEA4-1 and AtLEA4-2 proteins, or of the complete protein family led to a lower seed biomass than wild type plants even when grown during their complete life cycle under optimal growth conditions (Fig. 8). Higher AtLEA4-5 protein levels obtained when AtLEA4-5 was overexpressed did not confer any advantage on this phenotype when compared to wild type plants (Fig. 8).

Structural and phylogenetic analysis of group 4 LEA proteins points to an early gene duplication that gave rise to two distinct subgroups with arguably divergent functions.
In a previous work, we showed that group 4 LEA proteins can be defined based on sequence similarity (Battaglia et al., 2008). In that work, we reported the identification of two subgroups, where the proteins differed in the length of their carboxy terminus. Five sequence motifs were identified, three of which were common to all proteins, while the other two were present only in the longer proteins. In the present work, we report a more thorough analysis, starting with a collection of 74 LEA group 4 proteins from angiosperms, gymnosperms and bryophyta. A multiple sequence alignment showed a broadly conserved amino region, and a much more variable carboxy region, where sequence repetitions and rearrangements were common (data not shown). Given that such variability confounds the creation of a correct multiple alignment for the carboxy region, to describe the motif structure of the group 4 LEA proteins we used MEME, a motif discovery tool that does not rely on alignments (Bailey and Gribskov, 1998). Ten motifs were discovered. MEME is sensitive to the starting collection of sequences, so the new motifs do not match precisely those reported previously. Thus, we will not refer to the previous nomenclature. Motifs 1, 2 and 4 are almost universally distributed, being present in 70, 74 and 66 of the 77 proteins, respectively. The actual prevalence of motif 4 could be higher, because, being the leftmost motif, it could easily be lost during cDNA construction. Motifs 6 and 7, although distinct, must be divergent variants of the same motif, because they are related in sequence, occupy equivalent positions in the proteins, and are mutually exclusive: proteins have either motif 6 (35 proteins) or motif 7 (32 proteins). Motif 5 is also very common; it is present in 46 proteins, where it usually lies near the C-terminus, and sometimes it is present more than once per protein. Motifs 3, 9 and 10 appear in 13, 7 and 12 proteins, respectively. When present, they appear in proteins that have motif 7 and never in association with those that have motif 6 (Supplemental Table S3 and Supplemental Fig. S7). Motif 8 is only present in the three proteins from lettuce. It might be related to motif 3 because it has a similar size, occupies a similar position in the proteins and, like motif 3, it is only present in proteins that carry motif 7. However, motif 3 and 8 are not similar in sequence.

The Pfam (listed as LEA_1, PFAM 03760) alignment that defines this family encompasses motifs 4, 1, 2 and either motif 6 or 7, in that order. We called this region of the proteins “the main conserved block” (MCB). Because there are no gaps between the four motifs and the region has the same length in all proteins, the MCB could be easily aligned. We used the MCB to reconstruct the phylogeny of the family. Although none of several methods achieved high reliability for all branches (something we impute to having many sequences and relatively few alignment columns) the resulting best trees from all strategies were very similar and they are generally consistent with the species phylogeny, except for a deep branching which probably indicates a very
ancient gene duplication (a representative tree is shown in Fig. 9). The deepest divide was found between proteins having motif 6 and those having motif 7, showing a bootstrap value of 62/100 with neighbor joining, and 80/100 with Fitch, but bootstrap values became 99/100 if we ignored the wheat LEA, which has a very poor motif 6 (MAST e-value = 0.00037, see Supplemental Table S3 for the sequences used and motif presence). This divide was also the most reliable with a maximum likelihood approach (Proml; bootstrap was 34/100, and 96/100 if the wheat LEA is ignored). The divide was not an artifact of the great difference in sequence between motif 6 and 7, because the same divide and similar bootstrap values were obtained using motif 2 alone, instead of the whole MCB. In general, motif 2 was informative of the evolutionary history of the complete proteins, indicating that it represents the defining core of group 4 LEA proteins, and that throughout evolution the acquisition and loss of the other motifs has not been rampant. The presence of proteins with either motif 6 or motif 7, which allowed to predict the associated “accessory motifs”, together with the finding that the deepest dichotomy in the phylogenetic tree was clearly attributable to the presence of either of these two motifs indicate that group 4 LEA proteins should be divided in two subgroups, 4A or 4B, according to the occurrence in a protein of motif 6 or motif 7. Because both subgroups were found within and outside the angiosperms (4A exists in several conifers, while 4B was present in the moss Physcomitrella patens) the gene duplication must have predated the evolution of seed plants. Furthermore, the side-to-side persistence of both subgroups, after hundreds of millions of years, in broadly distributed taxons, suggests that the duplication gave rise to functional divergence in such a way that one subgroup cannot be substituted for the other. This acquisition of specialized sub-functions would explain why the expression of the two Arabidopsis proteins from subgroup 4A (AtLEA4-1 and AtLEA4-2) overlapped only partially with the expression of the one from subgroup 4B (AtLEA4-5).

DISCUSSION

The high conservation of LEA protein families in the plant kingdom and the high correlation between their abundance and water deficit conditions denote a relevant role for these proteins in this environment. Even though circumstantial evidence have suggested the participation of these proteins in the adaptation of higher plants to low water availability, no direct genetic evidence on this regard had been reported. In this work, we analyzed the group 4 LEA genes and provide data showing that they participate in the adaptive response to this environmental stress in Arabidopsis plants, throughout their life cycle.
Even though there is some information regarding the transcript accumulation patterns for the group 4 LEA genes in Arabidopsis (Delseny et al., 2001; Hoth et al., 2002; Seki et al., 2002; Oono et al., 2003; Schmid et al., 2005; Winter et al., 2007; Hruz et al., 2008), we were interested in knowing their accumulation under the growth conditions and developmental stages relevant for this work, as well as to have information on the correlation between the abundance of a transcript and its corresponding protein. Our results and those reported previously agree in that the highest accumulation for all group 4 LEA transcripts occurs at the desiccation tolerance acquisition stage during seed development and up to 2 DAG seedlings. Also, our results concur that AtLEA4-5 transcript is the one that reaches the highest abundance in most stress conditions tested, in particular in response to hyperosmotic, drought and ABA treatments, when compared with the other two members of the family. The two genes that showed the highest similarity, AtLEA4-1 and AtLEA4-2, also showed a high correlation in their transcript accumulation patterns, suggesting similar functions, in agreement with our phylogenetic analysis, which localized both genes in the same clade or subgroup (see below).

Transcript levels contrasted with protein abundance in mature flowers and during seedling development in the case of AtLEA4-1, where protein levels are similar to those accumulated in seeds, even though low transcript abundance was detected. Interestingly, we found that, in dried and stratified seeds, AtLEA4-1 protein migrated with an apparent higher molecular mass suggesting that under severe dehydration this protein experiences a post-translational modification or conformational changes. Unexpectedly, in the case of AtLEA4-2, we were unable to detect the protein in the predicted molecular mass (10.5 kD), instead we specifically detected a protein with a higher molecular mass, whose accumulation pattern correlates with that obtained for its transcript. A possible explanation for this observation is that, in contrast to AtLEA4-5 and AtLEA4-1, secondary structure prediction analysis suggests the lowest percentage of random coil (20% of the protein) for AtLEA4-2, indicating that the higher structural order in this protein could favor the formation of homo- or hetero-oligomers. In some cases (Figs. 1B and 2B), instead of one band, two bands were detected, suggesting the formation of two types of oligomers due to preferential interactions. Notice that all the members of AtLEA4 protein family are predicted to form “coiled-coil” structures (Lupas et al., 1991), involved in protein-protein interactions, reinforcing a hypothesis where these proteins may interact with each other and/or with other protein partners in the cell. In the case of AtLEA4-2, most of its residues (80%) are predicted to be involved in the formation of “coiled-coils”, supporting the existence of strong interactions between AtLEA4-2 monomers.
The analysis of the protein accumulation patterns for the different members of this family suggests the participation of post-transcriptional control mechanisms to modulate protein levels as has been suggested for other LEA proteins (Colmenero-Flores et al., 1999). One example of this situation is evident in the case of AtLEA4-5 transcript/protein upon ABA and salt treatments (Fig. 2), where transcript accumulation levels are similar for both conditions whereas protein levels in response to ABA are much higher than in response to NaCl, indicating that ABA may be involved in a putative post-transcriptional regulation of this transcript.

To gain insight into the role of this LEA gene family in plant adaptation to water deficit conditions, we carried out a phenotypic analysis of Arabidopsis plants deficient in the gene products of this family. Arabidopsis mutants unable to synthesize AtLEA4-5 protein showed that it plays a relevant role in the adjustment of the plant to hyperosmotic (350 mM mannitol) and high salt (250 mM NaCl) conditions during germination, where they showed lower germination rate and efficiency. The absence of this protein also affected the ability of Arabidopsis plants to recover from the drought treatments applied to plants in adult stage. Mutant plants not only showed a significantly lower biomass accumulation, but also a reduced capacity to produce axillary and floral buds when compared to wild type plants. In agreement with this, the deficiency of AtLEA4-5 led to low seed production upon water limitation (see Supplemental Material). A similar effect was observed in those plants where AtLEA4-1 and AtLEA4-2 were silenced using a specific artificial microRNA indicating that there is not redundancy in their participation under these adverse environments. This interpretation was further supported by the results obtained from plants where the three genes of the family were silenced (RNAi 4-5 X a-miR 4-1/2). These plants with undetectable or low levels of the three proteins showed a lower reduction in biomass accumulation and also in the production of axillary and floral buds in response to drought treatments.

The participation of this gene family in the plant response to water limitation was also supported by the results obtained from the over-expression of the AtLEA4-5 gene that showed a higher production of axillary and floral buds compared to wild type plants, when plants were subjected to severe dehydration-rehydration treatments. An additional observation from these experiments was that plants over-producing AtLEA4-5 protein showed a higher ability to restore their tissues after rehydration (see Supplemental Material). These results indicated that the over-production of AtLEA4-5 protein is able to confer a higher tolerance to severe drought treatment (>85% substrate water loss).
Interestingly, we found that even under optimal irrigation conditions, the seed biomass from the different mutants (dSpm 4-5; amiR 4-1/2; RNAi 4-5; triple silenced) was lower than that of wild type plants maybe due to a protecting role of these proteins on the plant machinery needed for optimal fruit and/or seed development. Also, it should be considered the presumed protective role that these proteins may have on the meristematic regions or primordia (in agreement with their effect on the number of floral and axillary buds under water deficit), which would be relevant for the formation of inflorescences and consequently in the total number of seeds. Because the determination of seed size by thousand seed weight (data not shown) indicates that none of the mutants affect this phenotype, the possibility that inefficient seed filling is responsible of lower seed biomass in the different mutants could be discarded. Plants overproducing AtLEA4-5 did not show a higher seed biomass under optimal irrigation suggesting that during normal seed development higher levels than those present in wild type seeds are not required for a successful seed production.

The in silico analysis of the known group 4 LEA proteins confirmed the proposal by Battaglia et al. (2008) that group 4 LEA proteins can be defined through sequence conservation, which is a much stronger criteria than amino acid properties (Wise, 2003; Wise and Tunnacliffe, 2004), and that the group is formed by two subgroups, each characterized by different sequence motifs. Motifs 1, 2, 4 and 6/7 are so broadly distributed that they could be the signature of the group. However, only 52 out of the 77 sequences included in this work have all four motifs. If we were to choose a single motif as signature of the group, that would probably be motif 2, not only because it is present in most sequences, but also because its phylogeny is informative of the phylogeny of the complete proteins. By super-imposing the NCBI taxonomy of the organisms on the phylogeny of group 4 LEA proteins we concluded that the two subgroups originated from a very early duplication that predated the branching of monocots and dicots, because the two types of proteins can be found in both taxons. Outside the flowering plants, subgroup 4A is represented by all five sequences from moss, while subgroup 4B is represented by the six ESTs from conifers. It is tempting to suggest that 4B is older than 4A, because 4B is present in vascular and non-vascular plants, while 4A proteins are absent from the completely sequenced genome of Physcomitrella. However, 4A sequences could be found in non-vascular plants as more species are examined. On the other hand, it is significant that many genera have members from both subgroups. These include Allium, Hordeum, Oryza and Zea, among monocots (MAIZE1 lacks motif 6, but a phylogeny based on motif 2 places it in subgroup 4A), and Arachis, Medicago, Glycine, Brassica, Arabidopsis, Ipomoea and Populus among the dicots. This observation strongly suggests that the initial
duplication gave rise to functional divergence or sub-functionalization. A reasonable hypothesis is that, in protecting other proteins or cellular structures, both subgroups have similar mechanism but different targets; a prediction supported by both subgroups sharing a common core (formed by motifs 4, 1 and 2, and either motif 6 or 7, two motifs that are clearly related) but differing in the presence of additional motifs, that could be involved in specificity. In the case of Arabidopsis, the two group 4A proteins (AtLEA4-1 and AtLEA4-2) have similar patterns of expression that differ from that of the group 4B protein (AtLEA4-5). Our experimental observations correlate well with the conclusion from the bioinformatic analysis, because dissimilar patterns are what would be expected for proteins whose functions have diverged.

Since the first recognition of several families of these hydrophilic and flexible proteins in cotton embryos by Dure et al. (1989), the focus of the research on LEA proteins has been mostly directed to the constitutive or regulated expression in plants to test their protective effect on the survival of vegetative tissues during the first stages in development (for a recent review see Battaglia et al., 2008). For group 4 LEA proteins few examples of functional analysis have been reported; that is the case of the over-expression of a close homologue to AtLEA4-5 from Brassica napus (BnLEA4-1), which led to increased tolerance in seedlings (Dalal et al., 2009). Regarding a loss of function approach, only one study has been reported for a gene in this family in Arachis hypogaea, where transient virus induced silencing of the homologue gene in tobacco plants led to an apparent enhanced susceptibility to low moisture in vegetative tissues (Senthil-Kumar and Udayakumar, 2006). In contrast to these studies and others (for a recent review see Battaglia et al., 2008) in this work we addressed the role of a complete LEA gene family on the adaptation of higher plants to drought and desiccation using a genetic approach, where we correlate the presence and abundance of the members of this family with the plant adjustment to stress in most developmental stages of their life cycle. We also showed that their specific induction and high abundance is necessary, but not sufficient to adapt to drought stress, suggesting that each LEA gene has evolved to help in the adaptative process of higher plants depending on the developmental stage or particular tissues as well as stress type and severity. These results also support the idea that there is not functional redundancy among the different LEA protein groups. All together, the genetic and phylogenetic evidence presented in this work strongly support the essential role that group 4 LEA proteins play in the adaptative process to water deficit in higher plants. Furthermore, we include a phenotypical analysis that considers the impact of drought on Arabidopsis plants at the adult stage, focusing on the survival and/or recovery of reproductive organs. This type of analysis allowed us to assign to these proteins a role
in the protection of reproductive organs, a property relevant for the offspring rather than for the vegetative tissues, and consequently important from the evolutionary and agronomic point of view.

MATERIALS AND METHODS

Plant Material and Growth Conditions

Wild type *Arabidopsis thaliana* (Columbia) seeds were germinated in MS 1X: Murashige & Skoog salt mixture (4.3 g/L, Caisson Laboratories Inc., North Logan, UT, USA), 1% sucrose (Research Organics, Cleveland, OH, USA), 0.5 g/L MES (Research Organics). Seeds were surface sterilized with absolute ethanol for 2 minutes, washed with a 40% sodium hypochlorite + 0.02% Triton X-100 (Sigma, St. Louis, MO, USA) solution for 8 minutes, and rinsed thoroughly with distilled water 5 times. Seeds were sowed in Petri dishes containing solid MS medium, stratified for 4 days at 4ºC in darkness and transferred to a culture room at 25ºC, 60-65% relative humidity and 16h/8h photoperiod with white light at 60-80 μE m² s⁻¹ intensity, until used as indicated.

For the expression pattern analyses of group 4 LEA transcripts and proteins from embryogenesis to seedling establishment, wild type seeds were germinated in MS 1X, after ten days of growth *in vitro* they were transferred to 3x3x3” pots containing Metromix 200 (Hummert Int., St. Louis, MO, USA) and kept under optimal irrigation with nutrient solution (5mM KNO₃, 2.5mM KH₂PO₄ pH 5.6, 2mM MgSO₄, 2mM Ca(NO₃)₂, 50 μM Fe-EDTA, micronutrients solution {70 μM H₃BO₃, 14 μM MnCl₂, 0.5 μM CuSO₄, 1 μM ZnSO₄, 0.2 μM NaMoO₄, 10 μM NaCl, 0.01 μM CoCl₂}) until adult stage. To follow embryogenesis from early stages through the end of seed development, flowers were marked at the day of anthesis and siliques were collected at intervals until dry seeds were obtained, as follows: buds and flowers at anthesis, 1-5 days post-anthesis (DPA), 6-10 DPA, 11-15 DPA, 16-20 DPA, and dry seeds. Seeds were sown in MS 1X and collected at intervals during stratification (3 days at 4ºC), germination (radicle emergence) and seedling establishment at 2 days after germination (DAG), 5 DAG, 8 DAG and 11 DAG. Plants were maintained in a growth room at 21ºC, relative humidity of 70%, 16h/8h photoperiod with white light at 60 μE m² s⁻¹ intensity.

Water Deficit Treatments

The expression pattern analyses of group 4 LEA transcripts and proteins were carried out at different developmental stages as indicated. Some experiments were performed using two week-old seedlings grown *in vitro* in MS 1X and subjected to
water deficit treatments by transferring them to Petri dishes with 15 ml liquid MS supplemented with PEG-8000 (25% w/v, Research Organics) or NaCl (100-200 mM). Also, a treatment using 100 μM ABA (Sigma) was included. Seedlings were incubated in a culture room at 25°C for 12 h with constant shaking. Germination experiments were carried out in MS media supplied with NaCl (100-250 mM, J.T. Baker, Mexico), or 350 mM mannitol (Sigma).

Phenotypic analyses were carried out during germination or in adult plants as described in the text. Germination experiments were conducted under optimal conditions (MS 1X) or under stress by adding 100-250 mM NaCl (J.T. Baker) or 350 mM mannitol (Sigma). Dehydration and re-hydration experiments were carried out in adult plants at their reproductive stage, for which 10-12 day seedlings (germinated in vitro in MS 1X) were transplanted to 3x3x3” pots with Turface (Hummert Int.), an inert clay substrate. Since the substrate is inert and has low water retention, plants were kept under field capacity [Ψ_{substrate} = - 0.455 (± 0.70) MPa] using nutrient solution and distilled water, and maintained like that until the beginning of the drought experiments (or until the end of the experiment in the case of control plants). Because the low water retention of this type of substrate, withholding watering leads to a faster and more severe water deficit than that in standard soil such as Metromix 200. Drought was imposed by halting irrigation after flowering, when plants were between 4 to 6 week-old (dehydration/rehydration treatment). Rotation of the pots within each tray during the course of the drought experiments was performed to allow even water loss in all pots. For the phenotypical characterization of the loss-of-function mutants, a mild drought treatment was applied by withholding watering from 10 to 12 days under light greenhouse conditions and controlled temperature until water loss in each pot led to Ψ_{substrate} = - 4.617 (± 0.619) MPa. A more severe stress was applied when AtLEA4-5 over-expressing transgenic lines were characterized, where the substrate water loss was followed up to 14 days after the irrigation was stopped, when Ψ_{substrate} = - 6.447 (± 0.574) MPa. The variation of days to achieve the required water loss from the substrate depended on the relative humidity of the season; therefore, we conducted drought experiments only in the dry season of the year, where the relative humidity is below 50% (March-April-May). Pots were then re-hydrated with nutritive solution and left to recover 6-10 days, after that period we determined the percentage of survival by the number of plants showing recovery of vegetative tissues (rosette leaves), and the number of buds per plant (floral and axillar).
Total plant biomass was weighed separately after drying whole plants in paper bags for 48 hours at 80 °C. Sample tissues were frozen in liquid nitrogen and kept at -70°C until their use for RNA and/or protein extraction.

Substrate water potential ($\Psi_{substrate}$) was determined with a Dew Point microvoltmeter ($n=10$, ±SD), following the manufacturer's instruction manual (model HR-33T, Wescor, Logan, UT).

Relative water content (RWC) during drought experiments was calculated as $(RWC = (F_W-D_W)/(T_W-D_W))$, where F_W is the fresh weight of adult plants, using leaf discs from rosette leaves of adult plants or whole adult plants, T_W is the turgid weight after floating for 8-24 h in distillate water and D_W is the dry weight after oven drying in paper bags at 80 °C for 48 h (Tezara et al., 2002).

Statistical analyses

The germination experiments included three replicates (plates) with 100 seeds per replicate. The data were accumulated over time and fit to sigmoidal dose-response curves with variable slope, $(Y = Bottom + ((Top-Bottom)/ (1 + 10^{(LogEC50-X)/Hillslope})), also called four-parameter logistic equation. Bottom is the Y value at the bottom plateau (constrained to zero); Top is the Y value at the top plateau; LogEC50 is the X value when the response is halfway between Bottom and Top; Hillslope describes the steepness of the curve. The null hypothesis was that two curve fit parameters (Hillslope and LogEC50) from each data set were the same. For the water deficit treatments, the experimental design included three replicates (pots) with 4-6 plants in each replicate. The dehydration/rehydration experiments were analyzed by one-way ANOVA, significant differences between groups were searched through Dunnnett's or Tukey's multiple comparisons post-tests. Bartlett's test for equal variances showed no significant differences (P<0.05) within each group, thus one-way ANOVA could be applied in all cases. The null hypothesis was that there were not significant differences in the means between groups. All the statistical analyses and curve fitting were performed using Prism 5 for Mac OS X (GraphPad Software, Inc., La Jolla, CA).

Vectors, Bacterial Strains and Plant Transformation

AtLEA4-5 constructions

AtLEA4-5 open reading frame (477 bp) was cloned into pBluescript KS+ (AmpR, Stratagene) from a cDNA library (leaf, flowers and siliques) using specific primers, which add Ncol and SalI restriction sites (5'-AAA CCA TGG AGT CGA TGA AAG AAA C-3'; 5'- GCG GTC GAC CCG TTT ATC CAG TAT ATC C-3'). This cDNA was used as template for random labeling of PCR fragments to make specific probe for hybridization.
in northern blot experiments. The vector was digested with Ncol/SalI to subclone into pBin35S-nos binary vector (kanamycinR, Bevan, 1984) to over-express the corresponding protein in bacteria and plant. This cDNA was also cloned into pHannibal RNAi vector (AmpR, CSIRO vectors) as inverted repeats separated by an intron (Xhol-KpnI fragment for sense orientation; BamHI-XbaI fragment for antisense orientation), in order to be transcribed as a stem-loop precursor and processed by the plant's RNAi machinery to silence the endogenous mRNAs of this gene. A 4 Kb NotI fragment containing RNAi construction for AtLEA4-5 was subcloned into pArt27 binary vector (kanamycinR, spectinomycinR; Gleave, 1992). From this transformation, T\textsubscript{3} homozygous lines were obtained; however, RNAi silencing was neither observed in dry seeds nor in vegetative tissues during dehydration. For this reason, homozygous RNAi-silenced T\textsubscript{2} lines, where silencing was evident, were used for their phenotypic characterization. To select those transgenic lines with the highest decrease in AtLEA4-5 protein levels compared to wild type, seedlings were subjected to osmotic stress using PEG 25%; from this screening three lines were selected for phenotypic analysis.

For AtLEA4-5 antibody production, AtLEA4-5 ORF was subcloned as Ncol/SalI fragment into pTRC99A vector (AmpR, Amann et al., 1988) to induce the over-production of the native recombinant protein in \textit{E. coli} (see antibodies section).

\textbf{AtLEA4-1 and AtLEA4-2 constructions}

AtLEA4-1 open reading frame (ORF, 406 bp) was isolated from cDNA from osmotic stressed \textit{Arabidopsis} plants using specific primers 5'-AAT CCA TG G AAT CGG CGA AAC AGA TAA GGC ATA TGGC-3' and 5'-GCC GTC GAC CGG ATT AGT AGT GAT GAT GAT TAT GAT-3'. AtLEA4-2 ORF (294 pb) was isolated from genomic DNA because the gene has no intron, using specific primers 5'-GCG GGA TCC CTC GAG ATG CAG TCG GCG AAG GAA AAG -3' and 5'-CGA TCT AGA GGT ACC GTT TTA GAT CTG TCC CGG CGG-3'). Both ORFs were cloned into entry vector pCRII-TOPO (AmpR KanR, Invitrogen, Carlsbad, CA) to obtain the PCR fragments used as probes in northern blot experiments. They were also cloned into pENTR/SD/D-TOPO (KanR, Invitrogen) using Gateway technology (Invitrogen); the AtLEA4-1, AtLEA4-2 GST translational fusions obtained after recombination with destination vector pDEST24 (AmpR, Invitrogen) were used for antibody production.

To overcome the lack of available mutants showing a significant decrease of AtLEA4-1 and AtLEA4-2 transcripts, an artificial microRNA (a-miR 4-1/2) was designed to post-transcriptionally silence the corresponding transcripts, using a single construction able to trigger silencing of both genes (Niu et al., 2006). Specific primers were designed to introduce PCR-based point mutations into a miRNA precursor (ath-
miR159a), to allow the production of a-miR 4-1/2 that specifically triggers the silencing of the desired genes instead of its original target (Niu et al., 2006). Primer sequences were: forward 5' ATA GAT CTT GAT CTG ACG ATG GAA GGA CAT GGC CAG ATC GGT CAA ACA TG 3', reverse 5' TTG ACC CGG GAT GGA CAT GGC CAG TAC AGC CAA AGA AG 3'. Mutated precursor was cloned into pENTR/SD/D-TOPO and recombined with binary vector pK2GW7 (spectinomycinR, kanamycinR, Karimi et al., 2002). Analysis of the transgenic plants containing the a-miR 4-1/2 precursor showed a constitutive expression of the mature a-miR 4-1/2 (5' UUU GGC UGU ACU GGC CAU GUC 3') until T₃ generation. The silencing of the AtLEA4-1 and AtLEA4-2 transcripts was determined by detection of the corresponding transcripts and/or proteins. Those lines that showed reduced or no accumulation of the AtLEA4-1 and AtLEA4-2 proteins were selected for further characterization.

Agrobacterium transformation

Electrocompetent *Agrobacterium tumefaciens* C58/pGV2260 (RifR AmpR) cells were electroporated with each construction and selective marker resistant clones were verified by colony PCR, using specific gene primers. Isolated colonies were cultured to transform wild type A. thaliana (Columbia) plants by the floral dipping method (Clough and Bent, 1998). T₀ seeds were plated in MS with kanamycin sulphate (50 mg/ml, Sigma) and/or BASTA (glufosinate-ammonium, 50-15 μg/ml, Finale, Aventis) until resistant plants were distinguished, transplanted to soil and self fertilized to obtain T₁ progeny. Insertion number was estimated in independent lines, germinating 200 T₁ seeds and selecting those with 3:1 resistant:sensitive segregation ratio. T₂ and/or T₃ lines were generated to obtain homozygous lines from plants transformed with each construct. The selected homozygous lines were confirmed to be 100% resistant to Kan (OE 4-5, RNAi 4-5), BASTA (dSpm 4-5, a-miR 4-1/2) or Kan+BASTA (triple mutant, Complementation of dSpm 4-5 mutant).

Transgene expression levels were verified in homozygous plants by RT-PCR and northern blot using specific primers for each transcript, protein levels were also confirmed by western blot using specific polyclonal antibodies for each protein of the group. Phenotypic characterization experiments were conducted in MS 1X (without Kan/BASTA) using only those transgenic lines which had been previously confirmed to be homozygous for each construct.

Genomic DNA extraction and Southern blot experiments

For PCR experiments quick mini-preparations of genomic DNA from Arabidopsis were obtained as described by Edwards et al. (1991). Genomic DNA was obtained by
large-scale extractions as described in Taylor et al. (1993). Southern blots were carried out using genomic DNA (40 μg) from wild type and mutant homozygous lines from the European Arabidopsis Stock Centre (NASC ID: N122943) digested with Clal, HindIII and BamHI, and separated by electrophoresis. Transfer and hybridizations were carried out following standard protocols under stringent conditions. AtLEA4-5 probe was obtained by random labeling with [α^{32}P] dCTP (3000 Ci mmol⁻¹) an 800 bp PCR product using specific primers for the AtLEA4-5 gene. After washing at high stringency conditions, membrane was exposed to Kodak film using an intensifying white screen (Amersham).

RNA extraction and northern blot experiments

Total RNA was extracted from flowers, immature siliques and dry seeds according to Vicent & Delseny (1999). Total RNA from control and drought stressed plants was extracted with Trizol (Invitrogen) according to manufacturer's instructions. Small RNAs-enriched preparations were also obtained with Trizol reagent omitting the washing step with 75% ethanol. Northern blot hybridizations were performed according to Sambrook et al. (1989). RNA (20 μg) from each sample was separated in formaldehyde-agarose gels, equilibrated with 10X SSC and transferred to nitrocellulose Hybond N+ (Amersham) membranes. Hybridizations were carried out following standard protocols. Probes were prepared by random labeling of PCR products from the corresponding gene fragments with [α^{32}P] dCTP (3000 Ci mmol⁻¹) and purified with Ilustra™ Microspin G-25 Columns (GE Healthcare). After washing at high stringency conditions, membranes were used to expose Kodak X-ray films from 1 to 3 days at -70 ºC. For microRNA detection, total RNA samples were resolved in 15% acrylamide-8M urea-TBE gels, blotted under semidynd conditions to nitrocellulose membranes and pre-hybridized with Ultra-Hyb Oligo solution (Ambion, TX). Hybridizations were performed at 42 ºC overnight and after two washes with 2X SSC, 0.1% SDS for 30 minutes, membranes were exposed to Kodak films. Antisense probes were labeled with 15 pmol [γ^{32}P] ATP (3000 Ci mmol⁻¹) and purified with mini Quick Spin columns (Roche, Indianapolis, IN).

RT-PCR

For semi-quantitative RT-PCR experiments, 1 μg of DNase I (1 U/μl, Invitrogen) treated total RNA was used. cDNA was synthesized with oligo dT (1μg/μl) with the sequence 24 [T] TVN, V= A/G/C, N=A/G/C/T, and Superscript III® Reverse Transcriptase (Invitrogen) following manufacturer’s instructions. Polyadenylated
sequences were amplified using Platinum® Taq DNA polymerase (Invitrogen) and specific primers to amplify the ORF of each gene. *AtLEA4-1* was amplified with primers 5’-AAT CCA TGG AAT CGG CGA AAC AGA TAA GCG ATA TGGC-3’ and 5’-GCG GTC GAC CGG ATT AGT AGT GAT GAT GAT TAT GAT-3’. *AtLEA4-2* was amplified with primers 5’-GCC GTC GAC CGG ATG CAG TCG GCG AAG GAA AAG-3’ and 5’-CGA TCT AGA GGT ACC GTT TTA GAT CTG TCC CGG CGG-3’. For *AtLEA4-5* amplification primers were 5’-GTA GGA TCC CTC GAG ATG CAG TCG ATG AAA GAA ACA GC3-’ and 5’-TCG TCT AGA GGT ACC CCG TTT ATC CAG TAT ATC CCC C-3’. For the semiquantitative PCR, the reaction mixture contained 0.8 μl of the cDNA preparation, 200 μM dNTPs, 1.5 mM MgCl₂, 0.2 μM of each primer, 2 μl 10X PCR buffer and 1 U Platinum® Taq DNA Polymerase. PCR conditions were 94 ºC for 5 min, followed by 25 cycles of 94 ºC for 30 s, 58-63 ºC (depending on the pair of oligonucleotides used) for 30 s, 70 ºC for 30 s, and 70 ºC for 5 min. *ACT 2* gene, used as the normalizing standard, was amplified with the oligonucleotide primers 5’-GTA TGT TGC CAT TCA GGC CGT TCT TTC TCT-3’ and 5’-CGA CCC GCA AGA TCA AGA CGA AGG A-3’.

Protein extraction and western blot

Total proteins from flowers, immature silique, dry seeds and vegetative organs were extracted as described by Hurkman and Tanaka (1986) with some modifications. Frozen tissues were homogenized in extraction buffer:phenol at 1:3 proportion (0.7 M sucrose, 0.5 M Tris, 30 mM HCl, 2% β-mercaptoethanol, 12 mg/ml PVPP polyvinyl-polypyrrolidone). Organic phase was extracted again with the same buffer:phenol proportion without PVPP and precipitated with 3 volumes of 0.1 M sodium acetate in methanol. Pellet was washed once with cold 80% acetone and solubilized in a buffer containing 20 mM Tris pH 8.0, 50 mM NaCl and 0.1% SDS. Proteins were quantified using Bradford assay with BioRad dye reagent. Total proteins (10-15 μg) were separated in 16.5 % polyacrylamide gels in 0.1 M Tris, 0.1 M tricine, 0.1 % SDS (Schägger and von Jagow, 1987). Proteins were transferred to nitrocellulose membranes (Hybond C, Amersham), washed with PBS 1X, blocked with 5% skimmed milk (in PBS 1X) and probed overnight with anti-*AtLEA4-5* (1:2000), anti-*AtLEA4-2* (1:2000) or anti-*AtLEA4-1* (1:1000) antibodies. Membranes were washed and incubated with secondary antibody (1:5000) (anti-rabbit horse radish peroxidase, Zymed) for 1 hour at room temperature, washed with PBS 1X and developed with peroxidase substrates from Supersignal West pico (Pierce). Membranes were exposed to X-ray films (Kodak).
Antibodies preparation

AtLEA4-5 antibodies were produced using native recombinant protein, whereas antibodies against AtLEA4-1 and AtLEA4-2 were obtained using GST fusion proteins. Recombinant proteins were purified from *E. coli* after induction with IPTG. For the purification of AtLEA4-5 native protein, pelleted cells were resuspended in ice-cold buffer containing Tris 20 mM, NaCl 50 mM, PMSF 1mM and lysed by sonication. After centrifugation, cleared supernatant was boiled 10 minutes and put in ice for 10 minutes. This step enriches boiling soluble proteins from bacteria, most of it being the recombinant protein (Jepson & Close, 1995). To obtain AtLEA4-1-GST and AtLEA4-2-GST fusion proteins, pelleted cells were resuspended in ice-cold PBS and sonicated three times. After addition of Triton X-100 (1% final concentration), cell debris were discarded and supernatant was incubated with glutathione-agarose beads (Sigma) and washed three times with cold PBS. Soluble fusion protein was obtained after boiling in SDS 10%.

For polyclonal antibody production, purified proteins were separated on polyacrylamide gels and stained with Coomasie blue, the band corresponding to the protein of interest was eluted from the gel, equilibrated with distilled water and emulsified with complete Freund’s adjuvant (Gibco, Grand Islands, NY) at 1:1 ratio, homogenized exhaustively and used to immunize New Zealand female rabbits, through multiple intradermal injections. Pre-immune serum was previously taken. The titer and specificity of the antibodies was monitored through inoculation protocol using dilutions of the purified recombinant proteins and protein extracts from dry seeds and from osmotic stressed plants. IgG fraction was precipitated from serum with saturated ammonium sulphate and stored at 4°C with 0.02% sodium azide. To verify the specific recognition of the antibodies for their own antigen, antibodies for each of the three group members were cross-tested with the purified recombinant proteins by western blot. As a negative control pre-immune serum was also used to incubate with membranes. Immunopurified antibodies were obtained by affinity purification according to Lillie and Brown (1987). Custom rabbit specific polyclonal antibodies against AtLEA4-2 were produced against a peptide corresponding to a non-conserved region between the members of this family (CSKEAQAKADLHQSK) (GenScript Corporation, Piscataway, NJ). This antibody specifically recognized a GST-AtLEA4-2 fusion protein produced in bacteria. To verify the antibody specificity competition experiments were carried out using increasing concentrations of the corresponding purified antigens (Recombinant AtLEA4-5, AtLEA4-2_GST and AtLEA4-2 peptide).
Bioinformatic Analyses

Homologues of AtLEA4-5 protein were searched in the NCBI EST (expressed sequence tags) database using BLAST algorithm (tBLASTn Protein query vs. EST database), selecting only ESTs corresponding to nearly complete ORFs (Open Reading Frames) for each protein. Additionally, we included five bryophyte sequences obtained from COSMOS database at www.cosmoss.org (computational biology resources for the moss Physcomitrella patens, Lang et al., 2005). In all, 77 sequences were analyzed after translating them in silico (the complete list, including the “short names” used in this work is shown in Supplemental Table 3). The predicted hydrophilicity, molecular mass and pI of the proteins of interest were verified using Kyte and Doolittle plots (1982) and Protean (Protein sequence analysis software, DNASTAR), respectively. Their predicted secondary structure was established using PSIPRED (Protein Structure Prediction Server, McGuffin et al., 2000) and COILS programs (Prediction of “coiled-coil” regions in proteins, Lupas et al., 1991).

Sequence motifs were inferred with MEME (Multiple Em for Motif Elicitation; Bailey and Gribskov, 1998; Bailey et al., 2006) from 72 group 4 LEA proteins (all but the five proteins from Physcomitrella patens) using default parameters. The model used was zoops (zero or one per sequence). Ten motifs were obtained, and these were searched using the MEME associated tool MAST (Motif Alignment & Search Tool; Bailey and Gribskov, 1998; Bailey et al., 2006) over the complete collection (this time including the moss proteins).

Multiple alignments were carried out with Clustalw (Larkin et al., 2007). Alignments were made with either the whole proteins, their “main conserved block” (MCB), which is the concatenation of motifs 4-1-2-6/7 found by MEME, or with motif 2 alone. All phylogenetic analyses were made with the Phylip suite of phylogenetic programs (Felsenstein, 2005). Bootstrapped data set were obtained with Seqboot using 100 repetitions. Distance matrices were obtained with ProtDist. Distance based phylogenies were made in parallel with Neighbor and Fitch. Maximum likelihood based phylogenies were built with Proml using the Jones-Taylor-Thornton model of amino acid change. Consensus trees were obtained with Consense. Trees were visualized and edited with ATV (A Tree Viewer, Zmasek and Eddy, 2001).

ACKNOWLEDGMENTS

We thank M. Rocha for critical reading of the manuscript and stimulating discussions, and to R. M. Solórzano and R. E. Quiroz for technical assistance. We are also grateful to the Oligonucleotides Synthesis, DNA Sequencing, Computer and Animal Facilities of
the Instituto de Biotecnología for providing us with the oligonucleotides, DNA sequences, for technical assistance and for the handle of rabbits, respectively. The European Arabidopsis Stock Center (NASC) kindly provided the seeds of the transposon insertion mutant in \textit{AtLEA4-5} gene.

Supplemental Data

The following material is available through the online version of this paper:

Supplemental Figure S1. Sequence similarity between group 4 LEA proteins in Arabidopsis and prediction of “coiled-coil” regions in these proteins.

Supplemental Figure S2. Phenotypic analysis of plants overexpressing \textit{AtLEA4-5} protein.

Supplemental Figure S3. Description of the transposon insertion mutant (dSpm 4-5) in the \textit{AtLEA4-5} gene.

Supplemental Figure S4. Design of artificial microRNA to silence \textit{AtLEA4-1} and \textit{AtLEA4-2} genes and construction of RNAi-triggered silencing for \textit{AtLEA4-5} gene.

Supplemental Figure S5. Protein reduction levels in PTGS single, double and triple mutants of \textit{AtLEA4} gene family subjected to drought

Supplemental Figure S6. Phenotypic analysis of \textit{T2} homozygous plants expressing an RNAi to silence \textit{AtLEA4-5} transcript after recovery from dehydration

Supplemental Figure S7. Conserved motifs and their arrangement in the LEA4 protein sequences from plants.

Supplemental Table S1. Phenotypic analysis of \textit{T3} homozygous adult plants overexpressing \textit{AtLEA4-5} protein (\textit{35S::AtLEA4-5::NOS}) during drought and after recovery from stress.

Supplemental Table S2. Phenotypic analysis of \textit{T4} homozygous transposon insertion mutant in \textit{AtLEA4-5} gene and of homozygous \textit{T2} PTGS mutants in \textit{AtLEA4} gene family during drought and after recovery from stress.

Supplemental Table S3. Taxonomic classification of the sequences used for motif search, sequence number and sequence name depicted in Figure 9.

LITERATURE CITED

Amann E, Ochs B, Abel KJ (1988) Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in \textit{Escherichia coli}. \textit{Gene} 69: 301-15

Bailey TL, Gribskov M (1998) Combining evidence using P-values: application to sequence homology searches. \textit{Bioinformatics} 14: 48-54
Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34: W369-W373

Battaglia M, Olivera-Carrillo Y, Garcìaarrubio A, Campos F, Covarrubias A (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148: 6-24

Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12: 8711-8721

Bravo LA, Gallardo J, Navarrete A, Olave N, Martinez J, Alberdi M, Close TJ, Corcuera LJ (2003) Cryoprotective activity of a cold-induced dehydrin purified from barley. Physiol Plant 118: 262-269

Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2: 48-54

Browne JA, Dolan KM, Tyson T, Goyal K, Tunnalcliffe A, Burnell AM (2004) Dehydration-specific induction of hydrophilic protein genes in the anhydrobiotic nematode Aphelenchus avenae. Eukaryot Cell 3: 966-975

Chandra Babu R, Zhang JS, Blum A, Ho T, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166: 855-862

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743

Colmenero-Flores JM, Moreno LP, Smith C, Covarrubias AA (1999) PvLEA-18, a member of a new late-embryogenesis-abundant protein family that accumulates during water stress and in the growing regions of well-irrigated bean seedlings. Plant Physiol 120: 93-103

Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotech 139: 137-145

Delseny M, Bies-Ethève N, Carles C, Hull G, Vicent C, Raynal M, Grellet F, Aspart L (2001) Late Embryogenesis Abundant (LEA) protein gene regulation during Arabidopsis seed maturation. J Plant Physiol 158: 419-427

Dure L (1993) Structural motifs in LEA proteins. In TJ Close, EA Bray, eds, Plant responses to cellular dehydration during environmental stress, The American Society of Plant Physiologists, Rockville, pp 91-103

Dure L, Crouch M, Harada JJ, Ho T, Mundy J, Quatrano RS, Thomas TL, Sung ZR (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12: 475-486

Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nuc Acid Res 19:1349
Eom J, Baker W, Kintanar A, Wurtele ES (1996) The embryo-specific EMB-1 protein of Daucus carota is flexible and unstructured. Plant Sci. 115: 17-24

Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

Fu D, Huang B, Xiao Y, Muthukrishnan S, Liang GH (2007) Overexpression of barley HVA1 gene in creeping bentgrass for improving drought tolerance. Plant Cell Rep 26: 467-477

Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275: 5668-5674

Gleave AP (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20: 1203-7

Goyal K, Tisi L, Baran A, Browne J, Burnell A, Zurdo J, Tunnacliffe A (2003) Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J Biol Chem 278: 12977-12984

Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388: 151-157.

Grelet J, Benamar A, Teyssier, E, Avelange-Macherel MH, Grunwald D, Macherel D (2005) Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137: 157-167

Hara M, Terashima S, Kuboi T (2001) Characterization and cryoprotective activity of cold responsive dehydrin from Citrus unshiu. J Plant Physiol 58: 1333-1339

Hoekstra F, Golovina E, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6: 431-438

Honjoh K, Yoshimoto M, Joh T, Kajiwara T, Miyamoto T, Hatano S (1995) Isolation and characterization of hardening-induced proteins in Chlorella vulgaris C-27: identification of late embryogenesis abundant proteins. Plant Cell Physiol 36: 1421-1430

Honjoh K, Matsumoto H, Shimizu H, Ooyama K, Tanaka K, Oda Y, Takata R, Joh T, Suga K, Miyamoto T, Lio M, Hatano S (2000) Cryoprotective activities of group 3 late embryogenesis abundant proteins from Chlorella vulgaris C-27. Biosci Biotechnol Biochem 64: 1656-1663

Hoth S, Morgante M, Sanchez JP, Hanafey MK, Tingey SV, Chua NH (2002) Genome-wide gene expression profiling in Arabidopsis thaliana reveals new
targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant.

J Cell Sci 115: 4891-900

Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Advances in Bioinformatics 420747 doi:10.1155/2008/420747

Hundertmark M, Hincha DK (2008) LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9: 118-139

Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81: 802-806

Imai R, Chang L, Ohta A, Bray EA, Takagi M (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170: 243-248

Ismail AM, Hall AE, Close TJ (1999) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120: 237-244

Jepson SG, Close TJ (1995) Purification of a maize dehydrin protein expressed in Escherichia coli. Protein Exp Purif 6: 632-636

Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193-195

Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105-132

Lal S, Gulyani V, Khurana P (2007) Overexpression of HVA1 gene from barley generates tolerance to salinity and water stress in transgenic mulberry (Morus indica). Transgenic Res 17: 651-663

Lang D, Eisinger J, Reski R, Rensing S (2005) Representation and high-quality annotation of the Physcomitrella patens transcriptome demonstrates a high proportion of proteins involved in metabolism among mosses. Plant Biol 7: 238-250

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2. Bioinformatics 23: 2947-2948.

Lillie SH, Brown SS (1987) Artifactual immunofluorescent labelling in yeast, demonstrated by affinity purification of antibody. Yeast 3: 63-70

Lisse T, Bartels D, Kalbitzer HR, Jaenicke R (1996) The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plantagineum
displays no defined three-dimensional structure in its native state. Biol Chem 377: 555-561

Liu Y, Zheng Y (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in *Escherichia coli*. Biochem Biophys Res Commun 331: 325-332

Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252: 1162-1164.

McCubbin WD, Kay CM, Lane B (1985) Hydrodynamic and optical properties of the wheat germ Em protein. Can J Biochem Cell Biol 63: 803-811

McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16: 404-405

Menze MA, Boswell L, Toner M, Hand SC (2009) Occurrence of mitochondria-targeted Late Embryogenesis Abundant (LEA) gene in animals increases organelle resistance to water stress. J Biol Chem 284: 10714-10719.

Morison JI, Baker NR, Mullineaux PM, Davies WJ (2008) Improving water use in crop production. Philos Trans R Soc Lond B Biol Sci 363: 639-658

Nakayama K, Okawa K, Kakizaki T, Honma T, Itoh H, Inaba T (2007) Arabidopsis Cor15am is a chloroplast stromal protein that has cryoprotective activity and forms oligomers. Plant Physiol 144: 513-523

NDong C, Danyluk J, Wilson KE, Pocock T, Huner NP, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol 129: 1368-1381

Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic *Arabidopsis thaliana* confers virus resistance. Nat Biotechnol 24: 1420-1428

Notredame C, Higgins D, Heringa J (2000) T-Coffee: A novel method for multiple sequence alignments. J Mol Biol 302: 205-217

Oono Y, Seki M, Nanjo T, Narusaka M, Fujita M, Satoh R, Satou M, Sakurai T, Ishida J, Akiyama K, Iida K, Maruyama K, Satoh S, Yamaguchi-Shinozaki K, Shinozaki K (2003) Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca 7000 full-length cDNA microarray. Plant J 34: 868-887

Puhakainen T, Hess MW, Makela P, Svensson J, Heino P, Palva ET (2004) Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol 54: 743-753
Reyes JL, Rodrigo MJ, Colmenero-Flores JM, Gil, JV, Garay-Arroyo A, Campos F, Salamini F, Bartels D, Covarrubias AA (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28: 709-718

Reyes JL, Campos F, Wei H, Arora R, Yang Y, Karlson DT, Covarrubias AA. (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ 31: 1781-1790

Roberts JK, DeSimone NA, Lingle WL, Dure L 3rd (1993) Cellular concentrations and uniformity of cell-type accumulation of two LEA proteins in cotton embryos. Plant Cell 5: 769-780

Russouw PS, Farrant J, Brandt W, Maeder D, Lindsey GG (1995) Isolation and characterization of a heat-soluble protein from pea (Pisum sativum) embryos. Seed Sci Res 5: 137-144

Schägger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368-379

Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37: 501-506

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A laboratory manual 2nd Ed. CSHL Press, New York

Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31: 279-92.

Senthil-Kumar M, Udayakumar M (2006) High-throughput virus-induced gene-silencing approach to assess the functional relevance of a moisture stress-induced cDNA homologous to Lea4. J Exp Bot 57: 2291-2302

Shih MD, Lin SD, Hsieh JS, Tsou CH, Chow TY, Lin TP, Hsing YIC (2004) Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16. Plant Mol Biol 56: 689-703

Singh, S, Cornilescu CC, Tyler RC, Cornilescu G, Tonelli M, Lee MS, Markley JL (2005) Solution structure of a late embryogenesis abundant protein (LEA14) from Arabidopsis thaliana, a cellular stress-related protein. Protein Sci 14: 2601-2609

Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho TD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit
conditions in transgenic wheat constitutively expressing the barley HVA1 gene.
Plant Sci 155: 1-9

Solomon A, Salomon R, Paperna I, Glazer I (2000) Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat-stable protein. Parasitology 121: 409-416

Soulages JL, Kim K, Walters C, Cushman JC (2002) Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Plant Physiol 128: 822-832

Soulages JL, Kim K, Arrese EL, Walters C, Cushman JC (2003) Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure. Plant Physiol 131: 963-975

Stacy RAP, Aalen RB (1998) Identification of sequence homology between the internal hydrophilic repeated motifs of Group 1 late-embryogenesis-abundant proteins in plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis. Planta 206: 476-478

Tanaka S, Ikeda K, Miyazaka H (2004) Isolation of a new member of group 3 late embryogenesis abundant protein gene from a halotolerant green alga by a functional expression screening with cyanobacterial cells. FEMS Microbiol Lett 236: 41-45

Taylor BH, Manhart JR, Amasino RM (1993) Isolation and characterization of plant DNAs. In BR Glick, JE Thompson, eds, Methods in Plant Molecular Biology and Biotechnology, Ed 2. CRC Press, Boca Raton, FL, pp 37-47

Tezara W, Mitchell V, Driscoll SP, Lawlor DW (2002) Effects of water deficit and its interaction with CO₂ supply on the biochemistry and physiology of photosynthesis in sunflower. J Exp Bot 53: 1781-1791

Tissier A, Marillonnet S, Klmyuka V, Patela K, Torres MA, Murphy G, Jones J (1999) Multiple independent defective Suppressor-mutator transposon insertions in Arabidopsis: A Tool for Functional Genomics. Plant Cell 11: 1841-1852

Tolleter D, Jaquinod M, Mangavel C, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macherel MH, Macherel D (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19: 1580-1589

Tunnacliffe A, Lapinski J, McGee B (2005) A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 546: 315-321

Vicient CM, Delseny M (1999) Isolation of total RNA from Arabidopsis thaliana seeds. Anal Biochem 268: 412-413

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An
“Electronic Fluorescent Pictograph” Browser for Exploring and Analyzing Large-Scale Biological Data Sets. PLoS ONE 2(8): e718. doi:10.1371/journal.pone.0000718

Wise MJ (2002) The POPPs: clustering and searching using peptide probability profiles. Bioinformatics 18 Sup 1: S38-45

Wise MJ (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics 4: 52

Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544: 196-206

Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115: 35-46

Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110: 249-257

Zhang L, Ohta A, Takagi M, Imai R (2000) Expression of plant group 2 and group 3 lea genes in Saccharomyces cerevisiae revealed functional divergence among LEA proteins. J Biochem 127: 611-616

Zmasek CM, Eddy SR (2001) ATV: Display and manipulation of annotated phylogenetic trees. Bioinformatics 17: 383-384

FIGURE LEGENDS

Figure 1. Transcript and protein accumulation patterns of AtLEA4 gene family during embryogenesis, germination and seedling establishment. A) Semi-quantitative RT-PCR analysis of AtLEA4 transcripts using total RNA (2 μg) from flowers and buds, developing siliques, seeds and seedlings. ACT2 transcript was used as loading control. DPA: days post-anthesis, DAG: days after germination. B) Western blot analysis using specific antibodies against each of the AtLEA4 proteins and protein extracts (15 μg) from the same stages of development described in A. Molecular weight markers are indicated (MW). Arrowheads indicate higher molecular weight bands, which were recognized specifically by the corresponding antibodies. Reversible stain with Ponceau red after transfer is shown as loading reference. These results are representative of five independent experiments.
Figure 2. Transcript and protein expression patterns of **AtLEA4** gene family from seedlings after 12 hours treatments with ABA or abiotic stress. A) Northern blot analysis using specific probes for each **AtLEA4** transcript and total RNA (20 μg) from two week-old plants grown in vitro. Hybridization with 28S rRNA was used as loading control. B) Western blot analysis using specific antibodies for each AtLEA4 protein and total extracts (15 μg) from the same treatments as in A. Molecular weight markers are indicated (MW) and arrowheads show higher molecular weight bands, which were specifically recognized by the corresponding antibodies. Reversible stain with Ponceau red was used as loading reference. These results are representative of three independent experiments.

Figure 3. Phenotypic analysis of 35S::AtLEA4-5::NOS adult plants under dehydration and after recovery from drought. A) Western blot analysis using antibodies against AtLEA4-5 and total protein extracts (15 μg) from wild type (WT) and homozygous independent transgenic lines (2-7) under optimum irrigation. B) Western blot as in A using drought treated plants in the adult stage. Molecular weight markers (MW) are indicated. Reversible stain after transfer with Ponceau red is shown as loading reference. C) Relative water content of adult plants under irrigation or subjected to drought. One way ANOVA showed significant differences between groups for drought treated plants (P=0.0065). Bars indicate mean ±SE (n=3). D) Whole plant biomass under irrigation or after 10 days of recovery from severe drought. Significant differences were found between groups in the plant biomass recovered after stress (P=0.0007). Bars indicate mean ±SE (n=3). E) Number of floral and axillary buds per plant under irrigation (n=3) and after recovery from drought (n=9). Bars indicate mean ±SE. Significant differences between groups were found under irrigation (P<0.0001) and after recovery from stress (P=0.0033). Different letters above each bar indicate statistically significant differences using Dunnett’s post-tests (P<0.05).

Figure 4. Reduction in the expression levels of **AtLEA-5** transcript and its corresponding protein in the transposon insertion mutant (dSpm). A) Northern blot analysis using a specific probe for **AtLEA-5** and total RNA (10 μg) from dry seeds of wild type (WT) and dSpm mutant plants. Reversible stain with methylene blue after transfer was used as loading reference. B) Western blot analysis using specific antibodies against AtLEA4-5 and total protein extracts (10 μg) from dry seeds of WT and dSpm mutants. C) Western blot analysis using protein extracts from roots under
dehydration (5 μg) of WT and dSpm mutants. D) Western blot analysis using total protein extracts (10 μg) from adult plants under dehydration, showing WT, homozygous transgenic lines with constitutive expression of AtLEA4-5 protein in WT background (OE), transposon insertion in AtLEA4-5 gene (dSpm) and its complementation with a 35S::AtLEA4-5::NOS construction (Comp). For panels B-D reversible staining with Ponceau red after transfer was used as loading reference.

Figure 5. Accumulated germination percentage of wild type (WT) and AtLEA4 transgenic lines under optimal growth conditions or under stress. Germination was quantified by radicle emergence using seeds of homozygous lines plated on A) standard MS medium (control), B) MS with 0.35 M mannitol (osmotic stress) or C) MS with 0.25 M NaCl (ionic + osmotic stress). Transgenic lines used were: 35S::AtLEA4-5::NOS construction in WT background (OE 4-5) and 35S::AtLEA4-5::NOS construction in dSpm mutant background (dSpm Compl). Also, insertion mutant in AtLEA4-5 gene (dSpm 4-5), and double mutant in AtLEA4-1 and AtLEA4-2 genes silenced with an artificial microRNA construct (a-miR 4-1/2) were analyzed. Seeds were stratified for 3 days and incubated in a growth chamber at 25ºC for the indicated time. Error bars indicate standard error of three replicates (n= 300), which were fit to a sigmoidal dose-response curve. Significant differences between genotypes were found in three parameters of the curve fit (steepness of the curve, Y value at the top plateau and X value when the response is halfway between bottom and top) at P>0.0011 (A), P<0.0001 (B) and P<0.0001 (C).

Figure 6. Phenotypic analysis of adult plants with altered accumulation levels of AtLEA4 protein family. Seedlings grown in vitro for two weeks were transplanted to a low-water retention substrate and kept under optimum irrigation with nutrient solution until flowering, under greenhouse conditions. Wild type (WT) and homozygous lines were grown in the same pot. Dehydration was followed by loss of water from the substrate and pots were rotated in the tray every two days to maintain uniform water loss during drought treatment. A) Biomass of whole plants under control (well-irrigated plants) or after 6 days of recovery from stress. One-way ANOVA was applied for each treatment to compare the performance of the different lines. This analysis showed significant differences between lines after recovery from drought (P<0.0001). Bars indicate mean ±SE (n=8). B) Number of axillary and floral buds per plant under optimum irrigation (n=4) or after 6 days of recovery from stress (n=8). Significant differences between groups were found using one-way ANOVA under control (well irrigated plants, P=0.0095) and after recovery from stress (P<0.0001). Bars indicate
mean ±SE. Different letters show significant differences between bars (P<0.05) as indicated by Tukey’s post-tests. Homozygous lines were used in all experiments: transposon insertion in the *AtLEA4-5* gene (dSpm 4-5), PTGS single mutant with RNAi-directed silencing of *AtLEA4-5* gene (RNA 4-5), PTGS double mutants in *AtLEA4-1* and *AtLEA4-2* genes using an artificial microRNA (a-miR 4-1/2) and the resulting F₂ crosses from mutants of RNAi with a-miR (triple mutant). This figure also shows data from lines ectopically over-expressing *AtLEA4-5* protein (35S::*AtLEA4-5::NOS*) in WT (OE 4-5) or in *AtLEA4-5::dSpm* mutant backgrounds (Compl dSpm). The numbers in parenthesis indicate the homozygous line used for the phenotypic analysis as shown in previous figures.

Figure 7. Post-transcriptional gene silencing *AtLEA4* genes using an artificial microRNA (a-miR 4-1/2) to silence *AtLEA4-1* and *AtLEA4-2* or RNAi to silence *AtLEA4-5* transcripts (RNAi 4-5). A) Northern blot using antisense probe of a-miR 4-1/2 and RNA (20μg) from homozygous transgenic seedlings grown under optimal conditions to confirm the constitutive expression of mature a-miR 4-1/2. Wild type (WT) and RNAi 4-5 lines (3 - 5) were used as controls. Reversible staining with methylene blue after transfer was used as loading reference. B) Western blot using specific antibodies for AtLEA4-1 and AtLEA4-2 proteins and total protein extracts (10 μg) from adult plants grown under drought to show their accumulation levels in WT and in homozygous silenced plants (2 - 4). F: flower, L: leaf, R: root. Arrows show the proteins migrating with the expected molecular mass for the corresponding monomer size, arrowhead shows the higher molecular mass band specifically detected with AtLEA4-2 antibodies. The selected lines for further phenotypic analysis were 3 and 4. C) Western blot using antibodies against AtLEA4-5 protein and total protein extracts (10 μg) from homozygous RNAi 4-5 seedlings (1 - 5) grown in vitro for two weeks and immersed in liquid MS, where they were treated for 8h without (C) or with 25% PEG solution (S, stress), showing different silencing levels. The selected lines for further phenotypic analyses were those showing the lower AtLEA4-5 protein accumulation (3, 4 and 5). Reversible staining with Ponceau red after transfer was used as loading reference in B and C.

Figure 8. Total seed production of *AtLEA4* single (RNAi 4-5, dSpm 4-5), double (a-mir 4-1/2) and triple mutants grown under optimal irrigation. Plants were germinated in vitro and transplanted to develop and set seeds under optimum irrigation conditions. Seeds from wild type (WT) and two independent homozygous lines from each construct used
in this study were harvested throughout the productive cycle until senescence. The transgenic lines overexpressing AtLEA4-5 gene in the dSpm mutant (dSpm 4-5) and wild type backgrounds (4-5 OE) are shown as controls. Bars indicate mean ± SE (n=5). The numbers in parenthesis show the lines selected from each construction (as indicated in Figures 4 and 7). Significant differences among genotypes were determined by one-way ANOVA (P<0.0001) statistical analysis. Different letters show significant differences between groups as indicated by Dunnett’s post-tests (P<0.05).

Figure 9. Consensus phylogenetic tree of LEA4 protein sequences from plants. The phylogenetic tree was obtained from analyses with several programs from the Phylip suite of phylogenetic programs. Bootstrapped data set were obtained with Seqboot using 100 repetitions. The reconstruction from 74 proteins and translated EST sequences showed two conserved subgroups that diverged before the appearance of vascular plants. AtLEA4-1 and AtLEA4-2 (closed arrowhead) belong to subgroup 4A, whereas AtLEA4-5 (open arrowhead) belongs to subgroup 4B. The numbers (1 - 0) next to each taxa indicate the presence of motifs, but their arrangement within the protein sequence is shown in supplemental material, where motif 10 corresponds to “0” in this figure.
Figure 1. Transcript and protein accumulation patterns of \textit{AtLEA4} gene family during embryogenesis, germination and seedling establishment. A) Semi-quantitative RT-PCR analysis of \textit{AtLEA4} transcripts using total RNA (2 μg) from flowers and buds, developing siliques, seeds and seedlings. \textit{ACT2} transcript was used as loading control. DPA: days post-anthesis, DAG: days after germination. B) Western blot analysis using specific antibodies against each of the \textit{AtLEA4} proteins and protein extracts (15 μg) from the same stages of development described in A. Molecular weight markers are indicated (MW). Arrowheads indicate higher molecular weight bands, which were recognized specifically by the corresponding antibodies. Reversible stain with Ponceau red after transfer is shown as loading reference. These results are representative of five independent experiments.
Figure 2. Transcript and protein expression patterns of AtLEA4 gene family from seedlings after 12 hours treatments with ABA or abiotic stress. A) Northern blot analysis using specific probes for each AtLEA4 transcript and total RNA (20 μg) from two week-old plants grown in vitro. Hybridization with 28S ribosomal transcript was used as loading control. B) Western blot analysis using specific antibodies for each AtLEA4 protein and total extracts (15 μg) from the same treatments as in A. Molecular weight markers are indicated (MW) and arrowheads show higher molecular weight bands, which were specifically recognized by the corresponding antibodies. Reversible stain with Ponceau red was used as loading reference. These results are representative of three independent experiments.
Figure 3. Phenotypic analysis of 35S::AtLEA4-5::NOS adult plants under dehydration and after recovery from drought. A) Western blot analysis using antibodies against AtLEA4-5 and total protein extracts (15 μg) from wild type (WT) and homozygous independent transgenic lines (2-7) under optimum irrigation. B) Western blot as in A using drought treated plants in the adult stage. Molecular weight markers (MW) are indicated. Reversible stain after transfer with Ponceau red is shown as loading reference. C) Relative water content of adult plants under irrigation or subjected to drought. One way ANOVA showed significant differences between groups for drought treated plants (P=0.0065). Bars indicate mean ±SE (n=3). D) Whole plant biomass under irrigation or after 10 days of recovery from severe drought. Significant differences were found between groups in the plant biomass recovered after stress (P=0.0007). Bars indicate mean ±SE (n=3). E) Number of floral and axillary buds per plant under irrigation (n=3) and after recovery from drought (n=9). Bars indicate mean ±SE. Significant differences between groups were found under irrigation (P<0.0001) and after recovery from stress (P=0.0033). Different letters above each bar indicate statistically significant differences using Dunnett's post-tests (P<0.05).
Figure 4. Reduction in the expression levels of AtLEA-5 transcript and its corresponding protein in the transposon insertion mutant (dSpm). A) Northern blot analysis using a specific probe for AtLEA-5 and total RNA (10 μg) from dry seeds of wild type (WT) and dSpm mutant plants. Reversible stain with methylene blue after transfer was used as loading reference. B) Western blot analysis using specific antibodies against AtLEA4-5 and total protein extracts (10 μg) from dry seeds of WT and dSpm mutants. C) Western blot analysis using protein extracts from roots under dehydration (5 μg) of WT and dSpm mutants. D) Western blot analysis using total protein extracts (10 μg) from adult plants under dehydration, showing WT, homozygous transgenic lines with constitutive expression of AtLEA4-5 protein in WT background (OE), transposon insertion in AtLEA4-5 gene (dSpm) and its complementation with a 35S::AtLEA4-5::NOS construction (Comp). For panels B-D reversible staining with Ponceau red after transfer was used as loading reference.
Figure 5. Accumulated germination percentage of wild type (WT) and AtLEA4 transgenic lines under optimal growth conditions or under stress. Germination was quantified by radicle emergence using seeds of homozygous lines plated on A) standard MS medium (control), B) MS with 0.35 M mannitol (osmotic stress) or C) MS with 0.25 M NaCl (ionic + osmotic stress). Transgenic lines used were: 35S::AtLEA4-5::NOS construction in WT background (OE 4-5) and 35S::AtLEA4-5::NOS construction in dSpm mutant background (dSpm Compl). Also, insertion mutant in AtLEA4-5 gene (dSpm 4-5) and double mutant in AtLEA4-1 and AtLEA4-2 genes silenced with an artificial microRNA construct (a-miR 4-1/2) were analyzed. Seeds were stratified for 3 days and incubated in a growth chamber at 25°C for the indicated time. Error bars indicate standard error of three replicates (n=300) which were fit to a sigmoidal dose-response curve. Significant differences between genotypes were found in three parameters of the curve fit (steepness of the curve, Y value at the top plateau and X value when the response is halfway between bottom and top) at P>0.0011 (A), P<0.0001 (B) and P<0.0001 (C).
Figure 6. Phenotypic analysis of adult plants with altered accumulation levels of AtLEA4 protein family. Seedlings grown in vitro for two weeks were transplanted to a low-water retention substrate and kept under optimum irrigation with nutrient solution until flowering, under greenhouse conditions. Wild type (WT) and homozygous lines were grown in the same pot. Dehydration was followed by loss of water from the substrate and pots were rotated in the tray every two days to maintain uniform water loss during drought treatment. A) Biomass of whole plants under control (well-irrigated plants) or after 6 days of recovery from stress. One-way ANOVA was applied for each treatment to compare the performance of the different lines. This analysis showed significant differences between lines after recovery from drought (P<0.0001). Bars indicate mean ±SE (n=8). B) Number of axillary and floral buds per plant under optimum irrigation (n=4) or after 6 days of recovery from stress (n=8). Significant differences between groups were found using one-way ANOVA under control (well irrigated plants, P=0.0095) and after recovery from stress (P<0.0001). Bars indicate mean ±SE. Different letters show significant differences between bars (P<0.05) as indicated by Tukey’s post-tests. Homozygous lines were used in all experiments: transposon insertion in the AtLEA4-5 gene (dSpm 4-5), PTGS single mutant with RNAi-directed silencing of AtLEA4-5 gene (RNA 4-5), PTGS double mutants in AtLEA4-1 and AtLEA4-2 genes using an artificial microRNA (a-miR 4-1/2) and the resulting F2 crosses from mutants of RNAi with a-miR (triple mutant). This figure also shows data from lines ectopically over-expressing AtLEA4-5 protein (35S::AtLEA4-5::NOS) in WT (OE 4-5) or in AtLEA4-5::dSpm mutant backgrounds (Compl dSpm). The numbers in parenthesis indicate the homozygous line used for the phenotypic analysis as shown in previous figures.
Figure 7. Post-transcriptional gene silencing of *AtLEA4* genes using an artificial microRNA (a-miR 4-1/2) to silence *AtLEA4-1* and *AtLEA4-2*, and RNAi to silence *AtLEA4-5* transcripts (RNAi 4-5). A) Northern blot using antisense probe of a-miR 4-1/2 and RNA (20 μg) from homozygous transgenic seedlings grown under optimal conditions to confirm the constitutive expression of mature a-miR 4-1/2. Wild type (WT) and RNAi 4-5 lines (3-5) were used as controls, where a-miRNAs do not accumulate. Reversible staining with methylene blue after transfer was used as loading reference. B) Western blot using specific antibodies for *AtLEA4-1* and *AtLEA4-2* proteins and total protein extracts (10 μg) from adult plants grown under drought to show their accumulation levels in Wt and in homozygous silenced plants (2-4). F: flower, L: leaf, R: root. Arrows show the proteins migrating with the expected molecular mass for the corresponding monomer size, arrowhead shows the higher molecular mass band specifically detected with *AtLEA4-2* antibodies. The selected lines for further phenotypic analysis were 3 and 4. C) Western blot using antibodies against *AtLEA4-5* protein and total protein extracts (10 μg) from homozygous RNAi 4-5 seedlings (1-5) grown in vitro for two weeks and immersed in liquid MS, where they were treated for 8h without (C) or with 25% PEG solution (S, stress), showing different silencing levels. The selected lines for further phenotypic analyses were those showing the lower *AtLEA4-5* protein accumulation (3, 4 and 5). Reversible staining with Ponceau red after transfer was used as loading reference in B and C.
Figure 8. Total seed production of *AtLEA4* single (RNAi 4-5, dSpm 4-5), double (a-mir 4-1/2) and triple mutants grown under optimal irrigation. Plants were germinated *in vitro* and transplanted to develop and set seeds under optimum irrigation conditions. Seeds from wild type (WT) and two independent homozygous lines from each construct used in this study were harvested during all productive cycle until senescence. The transgenic lines overexpressing *AtLEA4*-5 gene in the dSpm mutant (dSpm 4-5) and wild type backgrounds (4-5 OE) are shown as controls. Bars indicate mean ± SE (n=5). The numbers in parenthesis show the lines selected from each construction (as indicated in Figures 4 and 7). Significant differences among genotypes were determined by one-way ANOVA (P<0.0001) statistical analysis. Different letters show significant differences between groups as indicated by Dunnett’s post-tests (P<0.05).
Figure 9. Consensus phylogenetic tree of LEA4 protein sequences from plants. The phylogenetic tree was obtained from analyses with several programs from the Phylip suite of phylogenetic programs. Bootstrapped data set were obtained with Seqboot using 100 repetitions. The reconstruction from 74 proteins and translated EST sequences showed two conserved subgroups that diverged before the appearance of vascular plants. AtLEA4-1 and AtLEA4-2 (closed arrowhead) belong to subgroup 4A, whereas AtLEA4-5 (open arrowhead) belongs to subgroup 4B. The numbers (1 - 0) next to each taxa indicate the presence of motifs, but their arrangement within the protein sequence is shown in supplemental material, where motif 10 corresponds to “0” in this figure.