Draft Genome Sequences of Three *Ochrobactrum* spp. Isolated from Different Avian Hosts in Pakistan

Poonam Sharma,a Lindsay F. Killmaster,a Jeremy D. Volkening,b Stivalis Cardenas-Garcia,a Abdul Wajid,c Shaqfat Fatima Rehmani,d Asma Basharat,d Patti J. Miller,a Claudio L. Afonsoa

aExotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, Georgia, USA
bBASE2BIO, Oshkosh, Wisconsin, USA
cDepartment of Biotechnology, Virtual University of Pakistan, Lahore, Pakistan
dQuality Operations Laboratory (QOL), University of Veterinary and Animal Sciences, Lahore, Pakistan

ABSTRACT Here, we present the draft genome sequences of three *Ochrobactrum* sp. strains with multidrug-resistant properties, isolated in 2015 from a pigeon and two chickens in Pakistan.

Ochrobactrum spp. are Gram-negative, rod-shaped bacilli that belong to the family *Brucellaceae* and inhabit diverse niches, including water, soil, plants, and animals (1–3). Some species are regarded as emerging human opportunistic pathogens, with *Ochrobactrum anthropi* and *Ochrobactrum intermedium* being the most frequently studied species causing infections in immunocompromised patients (4–6).

There are few reports on the isolation of *Ochrobactrum* spp. from avian hosts. *Ochrobactrum gallinacea* has been isolated from chicken feces in Germany (7), and *Ochrobactrum anthropi* and *Ochrobactrum pecoris* have been isolated from the cecal contents of commercial turkeys (8). More recently, *Ochrobactrum intermedium* and *Ochrobactrum tritici* were recovered from broiler chickens (9), and a novel species has been reported in Nigeria (10).

Here, we present the draft genome sequences of three multidrug-resistant *Ochrobactrum* isolates from a pigeon and chickens that were coinfected with Newcastle disease virus. The distance between these and other members of the genus *Ochrobactrum* cannot be resolved using the 16S rRNA phylogeny (11), and therefore we examined the *rpoB* and *dnaK* sequences to distinguish the new isolates. The maximum similarity levels with *rpoB* and *dnaK* were 94.7% and 95.3%, with *O. anthropi* ATCC 49687 (GenBank accession no. CP008820) (12) and *O. anthropi* (GenBank accession no. LT671861), respectively, which distinguish these strains from other *Ochrobactrum* species. The average nucleotide identity among these isolates was 99.99% and varied between 96.96% and 97.05% with the five novel *Ochrobactrum* spp. recently reported from Nigeria (10, 13). This 3 to 4% of genomic variation supports the finding that the Pakistani isolates belong to a novel avian *Ochrobactrum* sp. (10).

Oral swabs were plated onto Farrell’s agar medium for purification as previously reported (10). Genomic DNA isolates were extracted using the blood and tissue genomic DNA extraction kit (Qiagen, Germantown, MD). Extracted DNA was quantified using the Qubit double-stranded DNA (dsDNA) high-sensitivity (HS) assay kit (Life Technologies, Inc., Waltham, MA). The libraries were prepared using the Nextera XT DNA library preparation kit and Nextera XT index primers (Illumina, San Diego, CA). The concentrations of the libraries were checked using the Qubit DNA HS assay kit in a Qubit fluorometer (Thermo Fisher Scientific, USA), and the fragment size distribution was checked using the Bioanalyzer 2100 with an Agilent high-sensitivity DNA kit (Agilent Technologies, Santa Clara, CA). The generated libraries were sequenced using the Nextera XT cluster generation kit on an Illumina HiSeq 2500.
ACKNOWLEDGMENTS

We thank Dawn Williams-Coplin and Tim Olivier for their technical assistance.

This work was supported by the USDA CRIS grant 6612-32000-072-00D.

The mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture or any of the authors.

REFERENCES

1. Lebuhn M, Achouak W, Schloter M, Berge O, Meier H, Barakat M, Hartmann A, Heulin T. 2000. Taxonomic characterization of *Ochrobactrum* sp. isolates from soil samples and wheat roots, and description of *Ochrobactrum tritici* sp. nov. and *Ochrobactrum gignonense* sp. nov. Int J Syst Evol Microbiol 50:2207–2223. https://doi.org/10.1099/0.0207713-50-6.2000.

2. Tripathi AK, Verma SC, Choudhury SP, Lebuhn M, Gattinger A, Schloter M. 2006. *Ochrobactrum onyase* sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 56: 1677–1680. https://doi.org/10.1099/ijs.0.63934-0.

3. Kämpfer P, Huber B, Busse HJ, Scholz HC, Tomaso H, Hotzel H, Melzer F. 2011. *Ochrobactrum peciosis* sp. nov., isolated from farm animals. Int J Syst Evol Microbiol 61:2278–2283. https://doi.org/10.1099/ijs.0.027631-0.

4. Vaidya SA, Citron DM, Fine MB, Murakami G, Goldstein EJC. 2006. Pelvic abscess due to *Ochrobactrum anthropi* in an immunocompetent host: case report and review of the literature. J Clin Microbiol 44:1184–1186. https://doi.org/10.1128/JCM.44.3.1184-1186.2006.

5. Cieslak TJ, Drabick CJ, Robb ML. 1996. Pyogenic infections due to *Ochrobactrum anthropi*. Clin Infect Dis 22:845–847. https://doi.org/10.1093/clinids/22.5.845.

6. Aujoulat F, Roman-Bertrand S, Masnou A, Marchandin H, Jumas-Bilak E. 2014. Niches, population structure and genome reduction in *Ochrobactrum* intermedium: clues to technology-driven emergence of pathogens. PLoS One 9:e83376. https://doi.org/10.1371/journal.pone.0083376.

7. Kämpfer P, Buczolits S, Albrecht A, Busse H-J, Stackebrandt E. 2003. Towards a standardized format for the description of a novel species (of an established genus): *Ochrobactrum gallinicae* sp. nov. Int J Syst Evol Microbiol 53:893–896. https://doi.org/10.1099/ijs.0.02710-0.

8. Eladawy H, Holtez H, Tomaso H, Neubauer H, Hafez HM. 2012. Isolation and characterization of *Ochrobactrum anthropi* and *Ochrobactrum pectoris* from caecal content of commercial turkeys. Vet Microbiol 155: 349–354. https://doi.org/10.1016/j.vetmic.2011.09.001.

9. Alonso CA, Kwabugge YA, Anyanwu MU, Torres C, Chah KF. 2017. Diversity of *Ochrobactrum* species in food animals, antibiotic resistance phenotypes and polymorphisms in the *blaOCH* gene. FEMS Microb Lett 364. https://doi.org/10.1093/femsle/fnx178.

10. Sharma P, Killmaster L, Volkening JD, Cardenas-Garcia S, Shittu I, Meseko CA, Sulaiman IK, Joannis TM, Miller PJ, Afonso CL. 2018. Draft genome sequences of five novel *Ochrobactrum* spp. isolated from different avian hosts in Nigeria. Genome Announc 6:e00063-18. https://doi.org/10.1128/genomeA.00063-18.

11. Teysier C, Marchandin H, Jean-Pierre H, Masnou A, Dusart G, Jumas-Bilak E. 2007. *Ochrobactrum pseudointermedium* sp. nov., a novel member of the family *Brucellaceae*, isolated from human clinical samples. Int J Syst Evol Microbiol 57:1007–1013. https://doi.org/10.1099/ijs.0.64483-0.

12. Chevreux B, Wetter T, Suhai S. 1999. Genome sequence assembly using trace signals and additional sequence information, p 45–56. In Computer
science and biology, Proceedings of the German Conference on Bioinformatics, GCB ’99. GCB, Hannover, Germany.

Goecks J, Nekrutenko A, Taylor J. Galaxy Team. 2010. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86. https://doi.org/10.1186/gb-2010-11-8-r86.

Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44: 6614–6624. https://doi.org/10.1093/nar/gkw569.

Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, Rolain JM. 2014. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 58:212–220. https://doi.org/10.1128/AAC.01310-13.