Pathogenic Fungi and Bacteria from Homogenates and Commercial Beverages of *Auricularia polytricha*

Chishih Chu*, Chiawen Hsia, Jun-Yu Tsai

Department of Microbiology, Immunology, and Biopharmaceuticals, National Chiayi University, Taiwan (ROC)

*Corresponding author: cschu@mail.nctu.edu.tw

Received September 16, 2020; Revised October 18, 2020; Accepted October 25, 2020

Abstract *Auricularia polytricha* is an important edible and medicinal fungus in Taiwan. The cultivation environment and sterilization of the mushroom cultivation bag before cultivation may affect the fungal species that occur along the fruiting body for *Mucor irregularis*, *M. fusiformis*, and *Trichoderma longibrachiatum* and the stalk, for *Hypocrea koningii*, *Rhodotorula mucilaginosa*, and *Coprinus radians* from the stalk. The bacterial species associated with *A. polytricha* were also identified by PCR amplification, PCR-RFLP analysis, sequencing and BLASTn analysis. Bacterial species were identified as *Bacillus cereus*, *Pseudomonas tolaasii*, *Sphingomonas paucimobilis*, *Acinetobacter pittii*, and *Lysinibacillus fusiformis* in the homogenates after Pasteur sterilization. During a flavor test of 11 commercial drinks, the testers reported experiencing diarrhea. Bacterial examination of the drinks found that three samples were contaminated. Five bacterial species were identified as *Pantoea agglomerans*, *Serratia liquefaciens*, and *Pseudomonas psychrophila* in sample 275, *Cronobacter sakazakii* and *Pseudomonas azotoformans* in sample 684 and *Pseudomonas azotoformans* in sample 539, and more than one bacterial species occurred in two samples. In conclusion, pathogenic fungal and bacterial species were obtained from the fruiting bodies, stalks, homogenates, and drinks of *A. polytricha* after Pasteur sterilization. To prevent foodborne diseases from *A. polytricha*, sanitation procedures should be enforced during cultivation, processing and post-harvest storage.

Keywords: *Auricularia polytricha*, bacterium, fruiting body, fungus, pathogen, stalk

Cite This Article: Chishih Chu, Chiawen Hsia, Jun-Yu Tsai, “Pathogenic Fungi and Bacteria from Homogenates and Commercial Beverages of *Auricularia polytricha*.” *American Journal of Pharmacological Sciences*, vol. 8, no. 2 (2020): 26-30. doi: 10.12691/ajps-8-2-2.

1. Introduction

Auricularia polytricha is one of the main species of wood-ear fungi. Unlike the closely related species *A. auricula-judae*, *A. polytricha* contains a medullary layer in the fruiting body, has long velvety hairs and commonly lives on dead trees in broad-leaved forests located at lower altitudes. The stalk is often used as a fertilizer for plant growth, while its fresh and dried fruiting bodies are used for food. The polysaccharides from different medicinal fungal species differ in their physiological activity due to their different compositions of sugar types and chemicals, bonding chains, molecular weights, and branches and structures, especially their glycosidic linkages.

Recently, polysaccharides have been investigated for their functions in the activation of macrophages to secrete TNF-α and IL-6 to inhibit tumor growth [1] and to inhibit growth and promote apoptosis in adenocarcinomic human alveolar basal epithelial cells [2]. The purified (1,3)-β-D-glucans of enoki mushroom, *A. polytricha* and Hongxi mushroom can modulate immune responses and inhibit tumor cell growth [3,4]. The β-(1,6)(1,3)-β-D-glucans of *Agaricus blazei* Murill can stimulate lymphocyte T-cell subsets in mice [5]. Therefore, polysaccharides from different fungi can stimulate various immune functions.

During harvest, physical separation can cause wounds at the bottom of the stalk, and further separation can cause wounds at the top of the stalk and the bottom of the fruiting body. Given the nutrients in the fungus and its high moisture levels, when the fruiting body and stalk are kept for over 12 hours before cool storage and processing, microbes can grow on these surfaces. Occasionally, *A. polytricha*-associated food poison has been reported. Therefore, incorrect storage and sterilization can allow microbes to proliferate and cause food toxicity. However, the fungal and bacterial species living on the fruiting body and stalk have seldom been investigated.

2. Fungal Species

Foodborne fungal infections are seldom found in humans, and the identification of species involved in fungemia in humans is a long process. Previously, we reported the fungal species from the fruiting bodies and the stalks identified by PCR amplification, sequencing, and sequencing comparison. The possible fungal species differed, with *Mucor irregularis*, *M. fusiformis*, and
Trichoderma longibrachiatum from the fruiting body and **Hypocre a koningii**, **Rhodotorula mucilaginosa**, and **C oprinellus radians** from the stalk [6]. This difference in fungal species may be due to incomplete sterilization of the mushroom cultivation bag before cultivation because fungal contamination of the stalk and environmental conditions may cause fungal infection of the fruiting body.

Fast-growing **Mucorales** can cause fungemia in humans. Several methods have been used to identify species such as **Mucor irregularis** by ITS sequence analysis and to perform genotyping by MLST and AFLP analysis [7]. However, sequence variations in the ITS region limit the application of these techniques to differentiate the following species: **Mucor circinelloides**, **M. flavus**, **M. piriformis**, and **Zygorhynchus moelleri** [8]. The evolution of parasitic **Trichoderma** occurs through horizontal gene transfer from fungi in **Ascomycota** such that they become generalist fungi capable of causing degradation of plants [10] and fungemia in humans [11]. Among **Trichoderma** species, **T. longibrachiatum** (26%), **T. citrinoviride** (18%), the **Hypocrea koningii** complex (15%), **T. bisetti** (12%) and **T. orientale** (11%) are the main species infecting the respiratory tract (40%), followed by deep tissue (30%) and superficial tissues (26%) [9]. On the other hand, **T. ovalisporum** and **T. koningiopsis** can be used in the biocontrol of plant fungal infections, and **T. reesei** has been as a model species for industrial cellulase production [12]. The marine fungus **Hypocre a koningii** PF04 from **Phakellia fusca** can synthesize the furan derivatives hypofurans A and B, the cyclopentenone derivatives hypocrenones A-C and 7 compounds with known antibacterial and antioxidant abilities (DPPH radical scavenging capacity) [13]. Clinical **Rhodotorula** spp. strains are resistant to caspofungin and may be not enough to eliminate microbial contamination.

3.2. Bacterial Species from **Auricularia polytricha** Homogenates after Pasteur Sterilization

PCR products were approximately 1,000 bp in size and PCR-RFLP analysis separated six strains into five genotypes (Figure 1). Sequencing and BLASTn analysis determined five bacterial species, including **Bacillus cereus**, **Pseudomonas tolaasii**, **Sphingomonas paucimobilis**, **Acinetobacter pittii**, and **Lysinibacillus fusiformis** (Table 1). These data indicate that Pasteur sterilization may be not enough to eliminate microbial contamination.

3.1. Identification of Bacterial Species

Bacterial identification was first performed with **Auricularia polytricha** by primer set U1/U2 (A), **EcoRI** digested PCR products (B), **AluI** digested PCR products (C), and **Sau3AI** digested PCR products. **M**: 100-bp size markers, **N**: negative control, **P**: positive control, 1: sample DP-1, 2: sample DP-2, 3: sample DP-3, 4: sample DP-4, 5: sample DP-5, and 6: sample DP-6.
Some of the identifies strains are related to human foodborne pathogens. The foodborne pathogen *B. cereus* survives in environmental soil and food to cause diarrhea in humans. *B. cereus* was not only found in milk [16] but also caused posttraumatic- and keratic-related endophthalmitis in humans [17]. Brown blotch disease (BBD) is the most devastating disease of *Pleurotus* spp. worldwide. *Pseudomonas tolaasii* is the most devastating disease of *Arabidopsis thaliana* cotyledons [19]. Therefore, *P. tolaasii* without BBD were selected from *P. pulmonarius* and *P. cf. floridanus* by inoculation of the pathogen on the mushroom pleureus (IMP) and on the spawned substrate (IMSS) [20].

Nonfermenting Gram-negative *S. paucimobilis* can cause pseudobacteremia, including septic arthritis and osteomyelitis through contaminated distilled water, hemodialysis fluids and drug solutions [21]. The carbapenem-resistant *Acinetobacter calcoaceticus- Acinetobacter baumannii* complex isolates are important pathogens in hospital-acquired infections. The carbapenem-resistant *A. pittii* can secrete the small peptide toxin, tolassin, which can be a target for species identification [18], to cause BBD of cultivatable mushrooms and chlorotic symptoms and growth arrest of *Arabidopsis thaliana* [19]. Therefore, *P. tolaasii* without BBD were selected from *P. pulmonarius* and *P. cf. floridanus* by inoculation of the pathogen on the mushroom pleureus (IMP) and on therowned substrate (IMSS) [20].

3.3. Bacterial Species from Commercial Beverages of *Auricularia polytricha*

Among the 11 commercial drinks of *A. polytricha* tested for flavor and examined for microbial contamination, some of the testers drank samples 539, 684, and 275 and reported diarrhea the next day. Microbial amounts differed among these three samples (Table 2). Three strains were collected from each sample: CD257-1, CD257-2, and CD257-3 from sample 275; CD684-1, CD684-3, and CD684-4 from sample 684; and CD539-1, CD539-2, and CD539-3 from sample 539. PCR-RFLP analysis separated five genotypes with three genotypes in sample 275, 2 genotypes in sample 684, and one genotype in sample 539. The microbial species were *Pantoea agglomerans*, *Serratia liquefaciens*, and *Pseudomonas psychrophila* in sample 275, *Cronobacter sakazakii* and *Pseudomonas azotoformans* in sample 684 and *Pseudomonas azotoformans* in sample 539. These results demonstrated that multiple microbial species are involved in contamination and sterilization processes are important to avoid microbial contamination.

The plant-associated bacterium *P. agglomerans* is an opportunistic pathogen that infects plants during agricultural and gardening practices, as well as infecting children via play, and in general causes human infection through contaminated medical equipment or fluids causing clinical septic arthritis, synovitis, endophthalmitis, periostitis, endocarditis and osteomyelitis in hospitalized and immunodeficient patients. Furthermore, *P. agglomerans* can infect vertebrate animals to cause equine abortion and placentitis and a hemorrhagic disease in dolphin fish (*Coryphaena hippurus*) in addition to causing diseases in many cultivable plants, such as cotton, sweet onion, rice, maize, sorghum, bamboo, walnut, an ornamental plant called Chinese taro (*Alocasia cucullata*), and a grass called onion couch (*Arrhenatherum elatius*). Additionally, closely related species of *P. agglomerans* were reported to cause bacterial blight disease in edible *Pleurotus eryngii* mushrooms cultivated in China. On the other hand, *P. agglomerans* can produce herbicidal, pantocins, microin, agglomerins, andrimid, phenazine, and other compounds that prevent and/or treat human and animal diseases, combat plant pathogens, promote plant growth and bioremediate the environment [26]. Among its beneficial effects, *P. agglomerans* can be an antagonist of many plant pathogenic bacteria and fungi as a biocontrol agent to decrease pesticide doses. The diverse mechanisms by which this organism promotes plant growth include nitrogen fixation, phytohormone production, phytate degradation and phosphate solubilization in soil. Furthermore, *P. agglomerans* can form biofilms to prevent the penetration of harmful industrial contaminants into deeper soil layers and produces hydrogen from waste. Therefore, *Pantoea* spp. are potentially used in many biotechnological areas [27].

Table 2. The microbial contamination for commercially available beverage of *Auricularia polytricha*

Code	Total Aerobic Microbial Count	Total Yeasts and Molds Count	Code	Total Aerobic Microbial Count	Total Yeasts and Molds Count
941	0	0	517	0	0
386	0	0	842	0	0
425	0	0	539	5.8x10^3	1.9x10^3
463	0	0	684	TNTC	5.3x10^3
796	0	0	275	TNTC	TNTC
616	0	0			

TNTC: Too small to count.
could degrade the polymers to hydrophilic compounds [35]. The combination of fluazifop-P-butyl > diclofop-methyl quizalofop-P-ethyl efficiency of different AOPP herbicides was in the order CyB as a carbon source for growth. The catalytic Cronobacter and ability of these organisms to cause human disease [31]. response mechanisms and virulence factors can reveal the pathogens linked with life-threatening infections in potato tubers in metal-polluted soils [29].

Cronobacter as a psychrophile formula as a reservoir to infect humans. Therefore, stress extremely arid environments, such as powdered infant C. sakazakii opportunistic foodborne pathogen to bile salts and disinfectants [30]. Furthermore, the biofilms, and their active efflux pumps promote resistance exopolysaccharides may contribute to the formation of efficiently attach to and invade epithelial cell lines. Their Serratia species [28]. Although Serratia species are common environmental organisms, S. marcescens and S. liquefaciens have been reported to be responsible for numerous outbreaks and opportunistic nosocomial infections and are usually well identified in the clinical laboratory, with 16S rRNA gene sequencing often being employed for less common Serratia species [29]. S. liquefaciens CL-1 could increase tuber dry weight by 46% and reduce metal uptake of potato tubers in metal-polluted soils [29]. Cronobacter spp. (Enterobacter sakazakii) are regarded as opportunistic pathogens linked with life-threatening infections in neonates with symptoms of necrotizing enterocolitis, bacteremia, and meningitis with fatality rates of 50-80%. Cronobacter spp. may survive in macrophage cells and efficiently attach to and invade epithelial cell lines. Their exopolysaccharides may contribute to the formation of biofilms, and their active efflux pumps promote resistance to bile salts and disinfectants [30]. Furthermore, the opportunistic foodborne pathogen C. sakazakii survives in extremely arid environments, such as powdered infant formula as a reservoir to infect humans. Therefore, stress response mechanisms and virulence factors can reveal the ability of these organisms to cause human disease [31].

Pseudomonas gessardii, P. psychrophila, P. psychrophila and P. fluorescens are the dominant spoilage bacteria isolated from spoiled chicken meat [32]. A facultative psychrophile P. psychrophila MTCC12324 isolated from the Ny-Alesund in the Arctic consisted of enzymes involved in polysaturated fatty acid biosynthesis, mRNAs, and other cold-inducible proteins that enhanced its survival through cold adaptation. In particular, the amino acid residues of CmIDH and PpIDH may be involved in the thermal properties of this organism [33]. A drought-resistant P. azotoformans strain ASS1 significantly improved the accumulation of the total sugars in grapevine feeding plants against abiotic stresses and promoting plant growth and survival in semiarid ecosystems and accelerating the removal of Cu, Zn and Ni metals, potentially protecting polypropylene (PP) [36].

4. Conclusion

In the process of purifying the polysaccharides from the fruiting bodies and stalks of A. polytricha, we identified different fungal species, and some of these fungal species can infect humans. Furthermore, five bacterial species were identified in homogenates of A. polytricha after Pasteur sterilization. Furthermore, three of eleven commercial beverages made with A. polytricha caused diarrhea and were contaminated with five bacterial species, and two samples harbored more than one bacterial species. Therefore, sterilization precautions against microbial infection should be considered during storage, processing and eating to prevent possible food toxicity.

Acknowledgements

This research was supported in Grants 107AS-1.2.5-S-a9, 108AS-1.2.6-S-a9, 109AS-1.2.4-S-a3 from the Council of Agriculture, Executive Yuan, ROC (Taiwan).

Statement of Competing Interests

Authors declared no conflict of interest.

References

1. Yu, J., Sun, R., Zhao, Z., and Wang, Y. “Auricularia polytricha polysaccharides induce cell cycle arrest and apoptosis in human lung cancer A549 cells,” Int J Biol Macromol, 6. 67-71. Apr.2014.

2. Yu, M., Xu, X., Qing, Y., Luo, X., Yang, Z., and Zheng, L, “Isolation of an anti-tumor polysaccharide from Auricularia polytricha (jew’s ear) and its effects on macrophage activation,” Eur. Food Res. Technol. 228, 477. Oct.2009.

3. Misaki, A., Kakuta, M., Sasaki, T., Tanaka, M., and Miyaji, H, “Studies on interrelation of structure and antitumor effects of polysaccharides: antitumor action of periodate-modified, branched (1→3)-β-D-glucan of Auricularia auricula-judae, and other containing (1→3) glycosidic linkages,” Carbohydr Research, 92(1). 115-129. May.1981.

4. Mizuno, T., Sakai, T., and Chihara, G, “Health foods and medicinal usages of mushrooms,” Food Rev Int, 11(1). 69-81. Nov.1995.
Arabidopsis Trichoderma for the clinically relevant species of the emerging fungus Fothergill, A.W., Wiederhold, N.P., and Guarro, J, "Phylogeny of during the processing," J Agr For, National Chiayi University 17(1):63-74. Apr. 2020.

Shao, J., Wan, Z., Li, R., and Yu, J, "Species identification and delineation of pathogenic Mucorales by Matrix-Assisted Laser Desorption Ionization—Time of Flight Mass Spectrometry, J Clin Microbiol 56(4). e01886-17. April.2018.

Khush, G., Hisa, C., Tsai, J-Y, “Differences in fungal species between fruit body and stalk of Auricularia polytrichca (jew's ear) during the processing,” J Agr For, National Chiayi University 17(1):63-74. Apr. 2020.

Lu, X.L., Najafzadeh, M.J., Dolatabadi, S., Ran, Y.P., van den Ende Gerrits, Shen, Y.N., Li, C.Y., Li, Y., Hao, F., Zhang, Q.O, Li, R.Y., Hu, Z.M., Lu, G.X., Wang, J.G., Jie, Y., Yang, S., and Lu, W.D., and de Hoog, G.S, "Taxonomy and epidemiology of Mucor irregularis, agent of chronic cutaneous mucormycosis," Persoonia, 30. 48-56. Jun. 2013.

Shao, J., Wan, Z., Li, R., and Yu, J, "Species identification and delineation of pathogenic Mucorales by Matrix-Assisted Laser Desorption Ionization—Time of Flight Mass Spectrometry, J Clin Microbiol 56(4). e01886-17. April.2018.

Druzhinina, I.S, Chenthamara, K., Zhang, J., Atanasescu, L., Yang, D., Miao, X., Rahimi, M.J., Grujic, M., Cai, F., Pourmehdi, S., Salim, K.A., Pretzer, C., Kopchinskiy, A.G., Henrissat, B., Kuo, A., Hundle, H., Wang, M., Aerts, A., Salamov, A., Lipzen, A., LaButti, K., Barry, K., Grigoriev, I.V., Shen, Q, and Kubicek, C.P, "Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts," PLos Genetics, 14(4). e1007322. April. 2018.

Kubicek, C.P, Steindorf, A.S., Chenthamara, K., Manganiello, G., Henrissat, B., Zhang, J., Cai, F., Kopchinskiy, A.G., Kubicek, E.M., Kuo, A., Baroncelli, R., Sarrocco, S., Noronha, E.F., Vannacci, G., Shen, Q, Grigoriev, I.V., and Druzhinina, I.S, "Evolution and comparative genomics of the most common Trichoderma species," BMC Genomics, 20(1). 485. Jun.2019.

Sandoval-Denis, M., Sutton, D.A., Cano-Lira, J.F., Gené, J., Fothergill, A.W., Wiederhold, N.P., and Guarro, J, "Phylogeny of the clinically relevant species of the emerging fungus Trichoderma and their antifungal susceptibilities," J Clin Microbiol 52(9). 2112-2125. Sep. 2014.

Samuels, G.J., Dodd, S.L., Lu, B.S., Petrini, O., Schroers, H.J., and Druzhinina, I.S, "The Trichoderma koningii aggregate species," Stud Mycol 65. 56 – 133. 2006.

Yockey, J., Andres, L., Carson, M., Ory, J.J., and Reese, A.J, "Cell envelope integrity and capsule expression of Rhodotorula mucilaginosa strains from clinical and environmental sources," mSphere, 4(3). e00166-19. Jun.2019.

Chen, F.-J., Huang, W.-C., Liao, Y.-C., Wang, H.-Y., and Li, J.-F., Kuo, S.-C., Larderade, T.L., Sytwu, H.K, “Molecular epidemiology of emerging carbapenem resistance in Acinetobacter nosocomialis and Acinetobacter pittii in Taiwan, 2010 to 2014,” Antimicrob Agents Chemother. 63(4). e02007-18. Mar 27.2019.

Gong, X., Tian, W., Han, J., Qiao, K., Zhao, L., Wang, H, “Highly efficient deproteinization with an am monifying bacteria Lysinibacillus fusiformis isolated from brewery spent diatomite,” J Biosci Bioeng, 127(3). 326-332. Mar.2019.

Mechri, S., Kriaa, M., Berrouina, M. B. E., Bennrad, M. O., Jaouadi, N. Z., Rokik, H., Bouaou, K., Bouanane-Darenfed, A., Chebbi, A., Sayadi, S., Chanhika, M., Bejar, S., Jaouadi, B, "Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C2509,” Int J Biol Macromol. 101. 383-397. Aug.2017.

Dutkiewicz, J., Mackiewicz, B., Lemieszek, M. K., Golec, M., Milanowski, I., "Pantoae agglomerans: a mysterious bacterium of evil and good. Part III. Deleterious effects: infections of humans, animals, and plants,” Ann Agric Environ Med. 23(2). 197-205. Jun 2.2016.

Dutkiewicz, J., Mackiewicz, B., Lemieszek M. K., Golec, M., Milanowski, I., "Pantoae agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects,” Ann Agric Environ Med. 23(2). 206-222. Jun. 2.2016.

Mahlen, S.D, “Serratia infections: from military experiments to current practice,” Clin Microbiol Rev. 24(4):755-91. Oct. 2011.

Cheng, C., Han, H., Wang, Y., He, L., Sheng, X, "Metal-immobilizing and urease-producing bacteria increase the biomass and reduce metal accumulation in potato tubers under field conditions,” Ecotoxicol Environ Saf. 203. 111017. Oct 15.2020.

Healy, B., Cooney, S., O’Brien, S., Iversen, C., Whyte, P. Nally, J., Callanan, J. J., Fanning, S, “Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen,” Foodborne Pathog Dis. 7(4). 339-350. 2010.

Feeney, A., Kropp, K. A., O’Connor, R, Slator, R. D, "Cronobacter sakazakii: stress survival and virulence potential in an opportunistic foodborne pathogen,” Gut Microbes. 5(6). 711-718. 2014.

Liu, S., Li, H., Hassan M. M., Zhu, J., Wang, A., Quyang, Q, Zareef, M., Chen, Q, "Amplification of Raman spectra by gold nanorods combined with chemometrics for rapid classification of four Pseudomonas,” Int J Food Microbiol. 304. 58-67. Sep 2.2019.

Nagai. S., Takada. Y., "Analysis of amino acid residues involved in the thermal properties of isocitrate dehydrogenases from a psychrophilic bacterium, Colwellia maris, and a psychrotrophic bacterium, Pseudomonas psychrophila,” J Biosci Bioeng. 129(3). 284-290. Mar.2020.