On q–fractional derivatives of Riemann–Liouville and Caputo type

Miomir S. Stanković
Department of Mathematics, Faculty of Occupational Safety
E-mail: miomir.stankovic@gmail.com

Predrag M. Rajković
Department of Mathematics, Faculty of Mechanical Engineering
E-mail: pedja.rajk@yahoo.com

Sladjana D. Marinković
Department of Mathematics, Faculty of Electronic Engineering
E-mail: sladjana@elfak.ni.ac.yu

University of Niš, Serbia

Abstract. Based on the fractional q–integral with the parametric lower limit of integration, we define fractional q–derivative of Riemann–Liouville and Caputo type. The properties are studied separately as well as relations between them. Also, we discuss properties of compositions of these operators.

Mathematics Subject Classification: 33D60, 26A33.

Key words: Basic hypergeometric functions, q–integral, q–derivative, fractional integral, fractional derivative.

1 Introduction

The fractional differential equations (FDE), as generalizations of integer-order ones, are used in describing various phenomena in the science, especially in physics, chemistry and material science, because of their ability to describe memory effects [5]. Today there are a number of concepts with different definitions of fractional integrals and derivatives and their applications in various mathematical areas (see, for example [8].

At the first moment, it was considered that it exists unique definition of fractional derivative until some confusion appeared in the conclusions. Now, we know that there are two basic types: Riemann-Liouville and Caputo fractional derivative. Hence two types of FDE are in use with very important difference in initial conditions: the first one requires initial conditions for fractional derivatives; on the contrary, the second one for integer order derivatives.
Many of continuous scientific problems have their discrete versions. A way of the treatment is from the point of view of q–calculus (see, for example [4]). W.A. Al-Salam [2] and R.P Agarwal [1] introduced several types of fractional q–integral operators and fractional q–derivatives, always with the lower limit of integration equal 0.

However, in some considerations, such as solving of q–differential equation of fractional order with initial values in nonzero point, it is of interest to allow that the lower limit of integration is variable. In our paper [9], we succeed to generalize this theory in that direction.

In continuation, our purpose in this paper is to define two types of the fractional q–derivatives based on the fractional q–integrals with the parametric lower limit of integration.

2 Preliminaries

In the theory of q–calculus (see [6]), for a real parameter $q \in \mathbb{R}^+ \setminus \{1\}$, we introduce a q–real number $[a]_q$ by

\[
[a]_q := \frac{1 - q^a}{1 - q} \quad (a \in \mathbb{R}) .
\]

The q–analog of the Pochhammer symbol (q–shifted factorial) is defined by:

\[
(a; q)_0 = 1 , \quad (a; q)_k = \prod_{i=0}^{k-1} (1 - aq^i) \quad (k \in \mathbb{N} \cup \{\infty\}) .
\]

Its natural expansion to the reals is

\[
(a; q)_\alpha = \frac{(a; q)_{\infty}}{(aq^\alpha; q)_{\infty}} \quad (a \in \mathbb{R}) . \tag{1}
\]

Also, q–binomial coefficient is given by

\[
\left[\alpha\right]_q^k = \frac{(q^{-\alpha}; q)_k}{(q; q)_k} \frac{(-1)^k q^{\alpha k}}{q^{\binom{k}{2}}} \quad (k \in \mathbb{N}, \; \alpha \in \mathbb{R}) . \tag{2}
\]

2
The following formulas (see, for example, [6], [3] and [9]) will be useful:

\[
(a; q)_n = (q^{1-n}/a; q) \frac{(-1)^n}{a^n} q^{n(\frac{q}{a})}; \tag{3}
\]

\[
(bq^{-n}; q)_n = \frac{(q/a; q)_n}{(q/b; q)_n}; \tag{4}
\]

\[
(b/a; q)_\alpha = \sum_{n=0}^{\infty} (-1)^n \frac{\alpha}{n} q^{\binom{n}{2}} \frac{b^n}{a^n}; \tag{5}
\]

\[
\left(\frac{a}{q}\right)_{\alpha+n} = \left(\frac{aq}{q}\right)_{\alpha} \quad (n \in \mathbb{N}; a, b, q, \alpha \in \mathbb{R}); \tag{6}
\]

\[
\frac{(\mu q^k; q)_\alpha}{(\mu q; q)_\alpha} = \frac{(\mu q^k; q)_k}{(\mu q; q)_k} \quad (\mu, \alpha \in \mathbb{R}^+); \tag{7}
\]

\[
(q^{k-n}; q)_\alpha = 0 \quad (k, n \in \mathbb{N}_0, k \leq n). \tag{8}
\]

The next result will have an important role in proving the semigroup property of the fractional q–integral.

Let us denote

\[
S(\alpha, \beta, \mu) = \sum_{n=0}^{\infty} \frac{(\mu q^{1-n}; q)_{\alpha-1} (q^{1+n}; q)_{\beta-1} q^n}{(q; q)_{\alpha-1} (q; q)_{\beta-1}} q^\alpha. \tag{9}
\]

In the paper [9], the next lemma is proven.

Lemma 1 For $\mu, \alpha, \beta \in \mathbb{R}^+$, the following identity is valid

\[
S(\alpha, \beta, \mu) = \frac{(\mu q; q)_\alpha}{(q; q)_\alpha}. \tag{10}
\]

The q–gamma function is defined by

\[
\Gamma_q(x) = \frac{(q; q)_x}{(q^x; q)_x} (1-q)^{1-x} \quad (x \in \mathbb{R} \setminus \{0, -1, -2, \ldots\}). \tag{11}
\]

Obviously,

\[
\Gamma_q(x+1) = [x]q \Gamma_q(x), \quad \Gamma_q(x) = (q; q)_{x-1}(1-q)^{1-x}. \tag{12}
\]

The q–hypergeometric function [6] is defined as

\[
\phi_1 \left(\begin{array}{c}
\scriptstyle a, b \\
\scriptstyle c
\end{array} | q; x \right) = \sum_{n=0}^{\infty} \frac{(a; q)_n (b; q)_n}{(c; q)_n (q; q)_n} x^n.
\]

The q–derivative of a function $f(x)$ is defined by

\[
(D_q f)(x) = \frac{f(x) - f(qx)}{x - qx} \quad (x \neq 0), \quad (D_q f)(0) = \lim_{x \to 0} (D_q f)(x),
\]
and \(q \)-derivatives of higher order:

\[
D_0^0 f = f , \quad D_0^n f = D_q(D_q^{n-1} f) \quad (n = 1, 2, 3, \ldots) .
\] (13)

For an arbitrary pair of functions \(u(x) \) and \(v(x) \) and constants \(\alpha, \beta \in \mathbb{R} \), we have linearity and product rules

\[
D_q(\alpha u(x) + \beta v(x)) = \alpha(D_q u)(x) + \beta(D_q v)(x),
\]

\[
D_q(u(x) \cdot v(x)) = u(qx)(D_q v)(x) + v(x)(D_q u)(x) .
\]

In this paper, very useful examples are the \(q \)-derivatives of the next functions:

\[
D_q(x^\lambda(a/x; q)_\lambda) = [\lambda]_q x^{\lambda-1}(a/x; q)_{\lambda-1} ,
\] (14)

\[
D_q(a^\lambda(x/a; q)_\lambda) = -[\lambda]_q a^{\lambda-1}(qx/a; q)_{\lambda-1} ,
\] (15)

\[
D_q(x^\lambda) = [\lambda]_q x^{\lambda-1} .
\] (16)

The \(q \)-integral is defined by

\[
(I_{q,a} f)(x) = \int_a^x f(t) \, dq_t = x(1-q) \sum_{k=0}^{\infty} f(xq^k) q^k \quad (0 \leq |q| < 1),
\] (17)

and

\[
(I_{q,a}^n f)(x) = \int_a^x f(t) \, dq_t = \int_0^x f(t) \, dq_t - \int_0^a f(t) \, dq_t .
\] (18)

However, these definitions cause troubles in research as they include the points outside of the interval of integration (see [7]). In the case when the lower limit of integration is \(a = xq^n \), i.e., when it is determined for some choice of \(x, q \) and positive integer \(n \), the \(q \)-integral (18) becomes

\[
\int_{xq^n}^x f(t) \, dq_t = x(1-q) \sum_{k=0}^{n-1} f(xq^k) q^k .
\] (19)

As for \(q \)-derivative, we can define \(I_{q,a}^n \) operator by

\[
I_{q,a}^0 f = f , \quad I_{q,a}^n f = I_{q,a}(I_{q,a}^{n-1} f) \quad (n = 1, 2, 3, \ldots) .
\]

For \(q \)-integral and \(q \)-derivative operators the following is valid:

\[
(D_q I_{q,a} f)(x) = f(x) , \quad (I_{q,a} D_q f)(x) = f(x) - f(a) ,
\]

and, more generally,

\[
(D_q^n I_{q,a} f)(x) = f(x) \quad (n \in \mathbb{N}) ,
\] (20)

\[
(I_{q,a}^n D_q f)(x) = f(x) - \sum_{k=0}^{n-1} \frac{(D_q^k f)(a)}{[\lambda]_q^k} x^k(a/x; q)_k \quad (n \in \mathbb{N}) .
\] (21)

The formula for \(q \)-integration by parts is

\[
\int_a^b u(x)(D_q v)(x) \, dq_x = [u(x)v(x)]_a^b - \int_a^b v(qx)(D_q u)(x) \, dq_x .
\] (22)
3 The fractional q–integral

In all further considerations we assume that the functions are defined in an interval $(0, b)$ ($b > 0$), and $a \in (0, b)$ is an arbitrary fixed point. Also, the required q–derivatives and q–integrals exist and the convergence of the series mentioned in the proofs is assumed.

Definition 1 The fractional q–integral is

$$ (I_{q,a}^\alpha f)(x) = \frac{x^{-\alpha}}{\Gamma_q(\alpha)} \int_a^x (qt/x; q)_{\alpha-1} f(t) \, dq \, t \quad (a < x; \ \alpha \in \mathbb{R}^+) \quad (23) $$

Lemma 2 The fractional q–integral (23) can be written in the equivalent form

$$ (I_{q,a}^\alpha f)(x) = \int_a^x f(t) \, dq \, w_\alpha(x, t) \quad (\alpha \in \mathbb{R}^+) \quad (24) $$

where $w_\alpha(x, t)$ is the function defined by

$$ w_\alpha(x, t) = \frac{1}{\Gamma_q(\alpha + 1)} (x^\alpha - x^\alpha(t/x; q)_\alpha) \quad (\alpha \in \mathbb{R}^+) \quad (25) $$

Proof. It is enough to notice that the q–differential of $w_\alpha(x, t)$ over variable t is

$$ dq \, w_\alpha(x, t) = D_q w_\alpha(x, t) \, dq \, t = \frac{x^{-\alpha}(qt/x; q)_{\alpha-1}}{\Gamma_q(\alpha)} \, dq \, t \quad (26) $$

Using formula (25), the integral (23) can be written as

$$ (I_{q,a}^\alpha f)(x) = \frac{x^{-\alpha}}{\Gamma_q(\alpha)} \sum_{k=0}^{\infty} (-1)^k \left[\frac{\alpha - 1}{k} \right] q^{(k+1)/2} x^{-k} \int_a^x t^k f(t) \, dq \, t \quad (\alpha \in \mathbb{R}^+) \quad (27) $$

Putting $\alpha = 1$ in (27), we get q–integral (18).

The fractional integral (see, for example [8]) is the limiting case of (23) when q arises to 1, since

$$ \lim_{q \to 1} x^{\alpha-1}(qt/x; q)_{\alpha-1} = (x-t)^{\alpha-1} \quad (28) $$

Obviously, the next equality holds:

$$ (I_{q,a}^\alpha f)(a) = \frac{a^{-\alpha}}{\Gamma_q(\alpha)} \int_a^a (qt/a; q)_{\alpha-1} f(t) \, dq \, t = 0 \quad (28) $$

Lemma 3 For $\alpha \in \mathbb{R}^+$, the following is valid:

$$ (I_{q,a}^\alpha f)(x) = (I_{q,a}^{\alpha+1} D_q f)(x) + \frac{f(a)}{\Gamma_q(\alpha + 1)} x^{\alpha}(a/x; q)_\alpha \quad (a < x) \quad (29) $$
Proof. According to the formula (15), the q–derivative over the variable t is

$$D_q(x^\alpha(t/x;q)_\alpha) = -[\alpha]_q x^{\alpha - 1}(qt/x;q)_\alpha^{-1}.$$

Using the q–integration by parts (22), we obtain

$$
(I_{q,a}^\alpha f)(x) = -\frac{1}{[\alpha]_q \Gamma_q(\alpha)} \int_a^x D_q(x^\alpha(t/x;q)_\alpha) f(t)d_q t
= \frac{1}{\Gamma_q(\alpha + 1)} \left(x^\alpha(a/x;q)_\alpha f(a) + \int_a^x x^\alpha(qt/x;q)_\alpha (D_q f)(t)d_q t \right)
= (I_{q,a}^{\alpha + 1} D_q f)(x) + \frac{f(a)}{\Gamma_q(\alpha + 1)} x^\alpha(a/x;q)_\alpha . \tag{\Box}
$$

Lemma 4 For $\alpha, \beta \in \mathbb{R}^+$, the following is valid:

$$
\int_0^a (qt/x;q)_\beta^{-1} (I_{q,a}^\alpha f)(t)d_q t = 0 \quad (a < x) .
$$

Proof. Using formulas (8) and (19), for $n \in \mathbb{N}_0$, we have

$$
(I_{q,a}^\alpha f)(aq^n) = \frac{1}{\Gamma_q(\alpha)} \int_a^{aq^n} (aq^n)^{\alpha - 1} ((qu)/(aq^n);q)_{\alpha - 1} f(u)d_q u
= -a^\alpha(1-q) \frac{\Gamma_q(\alpha)}{\Gamma_q(\alpha)} \sum_{j=0}^{n-1} (q^n)^{\alpha - 1}(q^{j+1-n};q)_{\alpha - 1} f(aq^j)q^j = 0 .
$$

From the other side, according to the definition of q–integral, we have

$$
\int_0^a (qt/x;q)_\beta^{-1} (I_{q,a}^\alpha f)(t)d_q t = a(1-q) \sum_{n=0}^{\infty} (aq^{n+1}/x;q)_{\beta - 1} (I_{q,a}^\alpha f)(aq^n)q^n ,
$$

what is obviously equal to zero . \(\Box\)

Theorem 5 Let $\alpha, \beta \in \mathbb{R}^+$. The q–fractional integration has the following semigroup property

$$
(I_{q,a}^\alpha I_{q,a}^\beta f)(x) = (I_{q,a}^{\alpha + \beta} f)(x) \quad (a < x) .
$$

Proof. By previous lemma, we have

$$
(I_{q,a}^\alpha I_{q,a}^\beta f)(x) = \frac{x^\beta - 1}{\Gamma_q(\beta)} \int_0^x (qt/x;q)_{\beta - 1} (I_{q,a}^\alpha f)(t)d_q t,
$$

i.e.,

$$
(I_{q,a}^\alpha I_{q,a}^\beta f)(x) = \frac{x^\beta - 1}{\Gamma_q(\alpha) \Gamma_q(\beta)} \int_0^x (qt/x;q)_{\beta - 1} t^{\alpha - 1} \int_0^t (qu/t;q)_{\alpha - 1} f(u)d_q u
- \frac{x^\beta - 1}{\Gamma_q(\alpha) \Gamma_q(\beta)} \int_0^x (qt/x;q)_{\beta - 1} t^{\alpha - 1} \int_0^a (qu/t;q)_{\alpha - 1} f(u)d_q u .
$$
Since, as it was proven in the paper [1], the equality
\[(I_{\beta, q}^\alpha \Gamma_{\beta}^0 f)(x) = (I_{\alpha, q}^{\alpha+\beta} f)(x)\]
is valid, we conclude that
\[(I_{\beta, q,a}^\alpha \Gamma_{\beta}^0 f)(x) = (I_{\alpha, q,a}^{\alpha+\beta} f)(x)\]

Furthermore, we can write
\[(I_{\beta, q,a}^\alpha \Gamma_{\beta}^0 f)(x) = (I_{\alpha, q,a}^{\alpha+\beta} f)(x) + x^{\alpha+\beta-1} \frac{\Gamma_q(\alpha) \Gamma_q(\beta)}{\Gamma_q(\alpha+\beta)} \int_0^\infty (qt/x; q)_{\beta-1} t^{\alpha-1} \int_0^a (qu/t; q)_{\alpha-1} f(u) du .\]

wherefrom
\[(I_{\beta, q,a}^\alpha \Gamma_{\beta}^0 f)(x) = (I_{\alpha, q,a}^{\alpha+\beta} f)(x) + a(1-q) \sum_{j=0}^\infty c_j f(aq^j) q^j ,\]

with
\[c_j = \frac{x^{\alpha+\beta-1} (aq^{j+1}/x; q)_{\alpha+\beta-1}}{\Gamma_q(\alpha+\beta)} - \frac{x^{\alpha+\beta-1} (1-q) \sum_{n=0}^\infty (q^{n+1}; q)_{\beta-1} q^{n(\alpha-1)} (aq^{j+1-n}/x; q)_{\alpha-1} q^n)}{\Gamma_q(\alpha) \Gamma_q(\beta)} .\]

By using formulas (7) and (11), we get
\[c_j = ((1-q)x)^{\alpha+\beta-1}\]
\[\times \left\{ \frac{(aq^{j+1}/x; q)_{\alpha+\beta-1}}{(q; q)_{\alpha+\beta-1}} - \sum_{n=0}^\infty \frac{(q^{n+1}; q)_{\beta-1}}{(q; q)_{\beta-1}} \frac{(aq^{j+1-n}/x; q)_{\alpha-1}}{(q; q)_{\alpha-1}} q^n \right\} .\]

Putting \(\mu = q^j a/x\) into (10), we see that \(c_j = 0\) for all \(j \in \mathbb{N}\), which completes the proof. □

Corollary 6 For \(\alpha \geq n \ (n \in \mathbb{N})\) the following is valid:
\[(D_q^n I_{\alpha, q,a}^n f)(x) = (I_{\alpha, q,a}^{\alpha-n} f)(x) \quad (a < x).\]

Proof. The statement follows from Theorem 5 and property (20). □
4 The fractional q–derivative of Riemann–Liouville type

On the basis of fractional q–integral, we can define q–derivative of real order.

Definition 2 The fractional q–derivative of Riemann–Liouville type is

$$
(D_{q,a}^\alpha f)(x) = \begin{cases}
(I_{q,a}^{-\alpha} f)(x), & \alpha \leq 0 \\
(D_q^{[\alpha]} I_{q,a}^{[\alpha]-\alpha} f)(x), & \alpha > 0,
\end{cases}
$$

(29)

where $[\alpha]$ denotes the smallest integer greater or equal to α.

Notice that $(D_{q,a}^\alpha f)(x)$ has subscript a to emphasize that it depends on the lower limit of integration used in definition (29). Since $[\alpha]$ is a positive integer for $\alpha \in \mathbb{R}^+$, then for $(D_q^{[\alpha]} f)(x)$ we apply definition (19).

According to definition and (29), we can easily prove that

$$
(D_{q,a}^\alpha f)(a) = 0 \quad (\forall \alpha \in \mathbb{R} \setminus \mathbb{N}_0).
$$

(30)

Theorem 7 For $\alpha \in \mathbb{R}$, the following is valid:

$$
(D_q D_{q,a}^\alpha f)(x) = (D_{q,a}^{\alpha+1} f)(x) \quad (a < x).
$$

Proof. According to the formula (19), the statement is true for $\alpha \in \mathbb{N}_0$. For others, we will consider three cases.

For $\alpha \leq -1$, according to Theorem 5 we have

$$
(D_q D_{q,a}^\alpha f)(x) = (D_q I_{q,a}^{-\alpha} f)(x) = (D_q I_{q,a}^{1-\alpha} f)(x)
$$

$$
= (D_q I_{q,a}^{-\alpha-1} f)(x) = (I_{q,a}^{-(\alpha+1)} f)(x) = (D_{q,a}^{\alpha+1} f)(x).
$$

In the case $-1 < \alpha < 0$, i.e., $0 < \alpha + 1 < 1$, we obtain

$$
(D_q D_{q,a}^\alpha f)(x) = (D_q I_{q,a}^{-\alpha} f)(x) = (D_q I_{q,a}^{1-(\alpha+1)} f)(x) = (D_{q,a}^{\alpha+1} f)(x).
$$

At last, if $\alpha = n + \varepsilon$, $n \in \mathbb{N}_0$, $0 < \varepsilon < 1$, then $\alpha + 1 \in (n + 1, n + 2)$, so we get

$$
(D_q D_{q,a}^\alpha f)(x) = (D_q D_{q,a}^{\alpha+1} f)(x) = (D_q I_{q,a}^{1-\varepsilon} f)(x) = (D_{q,a}^{\alpha+1} f)(x).
\square
$$

Theorem 8 For $\alpha \in \mathbb{R} \setminus \mathbb{N}_0$, the following is valid:

$$
(D_{q,a}^\alpha D_q f)(x) = (D_{q,a}^{\alpha+1} f)(x) - \frac{f(a)}{\Gamma_q(-\alpha)} x^{-\alpha-1}(a/x; q)_{-\alpha-1} \quad (a < x).
$$

Proof. Let us consider two cases. If $\alpha < 0$, then, with respect to Lemma 3 and formulas (14) and (20), the following holds:

$$
(D_{q,a}^{\alpha+1} f)(x) = (D_q D_{q,a}^\alpha f)(x) = (D_q I_{q,a}^{\alpha} f)(x)
$$

$$
= D_q \left((I_{q,a}^{-\alpha+1} D_q f)(x) + \frac{f(a)}{\Gamma_q(-\alpha + 1)} x^{-\alpha}(a/x; q)_{-\alpha} \right)
$$

$$
= (D_q I_{q,a}^{1-\alpha} D_q f)(x) + \frac{f(a)}{\Gamma_q(-\alpha + 1)} [-\alpha]_q x^{-\alpha-1}(a/x; q)_{-\alpha-1}
$$

$$
= (D_{q,a} D_q f)(x) + \frac{f(a)}{\Gamma_q(-\alpha)} x^{-\alpha-1}(a/x; q)_{-\alpha-1}.
$$
If \(\alpha > 0 \), there exist \(n \in \mathbb{N}_0 \) and \(\varepsilon \in (0, 1) \), such that \(\alpha = n + \varepsilon \). Then, applying

the similar procedure, we get

\[
(D_{q,a}^{\alpha+1} f)(x) = (D_q D_{q,a}^{\alpha} f)(x) = (D_q D_{q,a}^{n+1} I_{q,a}^{1-\varepsilon} f)(x)
\]

\[
= D_{q}^{n+2} \left((I_{q,a}^{2-\varepsilon} D_q f)(x) + \frac{f(a)}{\Gamma_q(2-\varepsilon)} x^{1-\varepsilon}(a/x; q)_{1-\varepsilon} \right)
\]

\[
= (D_q^{n+1} D_q I_{q,a} I_{q,a}^{1-\varepsilon} D_q f)(x) + \frac{f(a)}{\Gamma_q(2-\varepsilon)} D_q^{n+2} (x^{1-\varepsilon}(a/x; q)_{1-\varepsilon})
\]

\[
= (D_q^{n+1} I_{q,a}^{1-\varepsilon} D_q f)(x) + \frac{f(a)}{\Gamma_q(-\varepsilon-n)} (x^{-\varepsilon-n-1}(a/x; q)_{-\varepsilon-n-1})
\]

\[
= (D_{q,a}^{\alpha} D_q f)(x) + \frac{f(a)}{\Gamma_q(-\alpha)} x^{-\alpha-1}(a/x; q)_{-\alpha-1}.
\]

Corollary 9 The semigroup property for fractional \(q \)-derivative of Riemann–Liouville type is not valid, i.e., in general

\[
(D_{q,a}^{\alpha} D_{q,a}^{\beta} f)(x) \neq (D_{q,a}^{\alpha+\beta} f)(x).
\]

Example 1 Notice that from

\[
D_{q,a}^{n+\varepsilon} \left(x^{\varepsilon-1}(a/x; q)_{\varepsilon-1} \right) = 0 \quad (n \in \mathbb{N}_0; \ 0 < \varepsilon < 1)
\]

we have two different conclusions. From one side, it is true

\[
\lim_{\varepsilon \to 1} D_{q,a}^{n+\varepsilon} \left(x^{\varepsilon-1}(a/x; q)_{\varepsilon-1} \right) = 0 = (D_q^{n+1} 1)(x) = D_q^{n+1}(x^{1}(a/x; q)_0).
\]

But, from the other side, it is

\[
\lim_{\varepsilon \to 0} D_{q,a}^{n+\varepsilon} \left(x^{\varepsilon-1}(a/x; q)_{\varepsilon-1} \right) = 0 \neq D_q^{n}(x^{-1}(a/x; q)_{-1}).
\]

So, we conclude that the mapping \(\alpha \mapsto D_{q,a}^{\alpha} f \) is not continuous from the right side over variable \(\alpha \).

5 The fractional \(q \)-derivative of Caputo type

If we change the order of operators, we can introduce another type of fractional \(q \)-derivative.

Definition 2 The the fractional \(q \)-derivative of Caputo type is

\[
(\alpha D_{q,a}^{\alpha} f)(x) = \begin{cases}
(I_q^{-\alpha} f)(x), & \alpha \leq 0 \\
(I_q^{[\alpha]} - \alpha D_q^{[\alpha]} f)(x), & \alpha > 0.
\end{cases}
\]
Theorem 10 For $\alpha \in \mathbb{R} \setminus \mathbb{N}_0$ and $a < x$, the following is valid:

$$(\ast D_{q,a}^{\alpha+1} f)(x) - (\ast D_{q,a}^\alpha D_q f)(x) = \begin{cases} \frac{f(a)}{\Gamma_q(-\alpha)} x^{-\alpha-1}(a/x; q)_{-\alpha-1}, & \alpha \leq -1, \\ 0, & \alpha > -1. \end{cases}$$

Proof. As in Theorem 1 we will consider three cases. For $\alpha < -1$, according to Lemma 3 we have

$$(\ast D_{q,a}^{\alpha+1} f)(x) = (I_{q,a}^{-\alpha-1} f)(x) = (I_{q,a}^{-\alpha} D_q f)(x) + \frac{f(a)}{\Gamma_q(-\alpha)} x^{-\alpha-1}(a/x; q)_{-\alpha-1}$$

In the case $-1 < \alpha < 0$, i.e., $0 < \alpha + 1 < 1$, we obtain

$$(\ast D_{q,a}^{\alpha+1} f)(x) = (I_{q,a}^{-\alpha} D_q f)(x) = (\ast D_{q,a}^\alpha D_q f)(x)$$

Finally, if $\alpha = n + \varepsilon$, $n \in \mathbb{N}_0$, $0 < \varepsilon < 1$, then $\alpha + 1 \in (n + 1, n + 2)$, so we get

$$(\ast D_{q,a}^{\alpha+1} f)(x) = (I_{q,a}^{1-\varepsilon} D_q^{n+2} f)(x) = (I_{q,a}^{1-\varepsilon} D_q^{n+1} D_q f)(x) = (\ast D_{q,a}^\alpha D_q f)(x). \square$$

Theorem 11 For $\alpha \in \mathbb{R} \setminus \mathbb{N}_0$ and $a < x$, the following is valid:

$$(D_q \ast D_q^\alpha f)(x) - (\ast D_{q,a}^{\alpha+1} f)(x) = \begin{cases} 0, & \alpha < -1, \\ \frac{(D_q^\alpha f)(a)}{\Gamma_q([\alpha] - \alpha)} x^{[\alpha] - \alpha-1}(a/x; q)_{[\alpha]-\alpha-1}, & \alpha > -1. \end{cases}$$

Proof. At first, let $\alpha < 0$. Using Lemma 3, Theorem 10, and formulas 14 and 20, we get

$$(D_q \ast D_q^\alpha f)(x) = (D_q I_{q,a}^{-\alpha} f)(x)$$

$$= (D_q I_{q,a}^{-\alpha+1} D_q f)(x) + \frac{f(a)}{\Gamma_q(-\alpha + 1)} D_q \left(x^{-\alpha}(a/x; q)_{-\alpha}\right)$$

$$= (\ast D_{q,a}^\alpha D_q f)(x) + \frac{f(a)}{\Gamma_q(-\alpha)} x^{-\alpha-1}(a/x; q)_{-\alpha-1}$$

The required equalities are valid both for $\alpha < -1$ or $-1 < \alpha < 0$, according to Lemma 10.

10
If $\alpha > 0$, there exist $n \in \mathbb{N}_0$ and $\varepsilon \in (0, 1)$, such that $\alpha = n + \varepsilon$. Then, applying the similar procedure, we get

$$(D_q \ast D_q^\alpha f)(x) = (D_q I_q^{1-\varepsilon} D_q^{n+1} f)(x)$$

$$= (D_q I_q^{1-\varepsilon} D_q^{n+2} f)(x) + \frac{(D_q^{n+1} f)(a)}{\Gamma_q(2-\varepsilon)} D_q \left(x^{1-\varepsilon} (a/x; q)_{1-\varepsilon} \right)$$

$$= (D_q^{n+1} f)(x) + \frac{D_q^{n+1} f(a)}{\Gamma_q(n+1-\alpha)} x^{n-\alpha} (a/x; q)_{n-\alpha}. \quad \square$$

6 The fractional q–integrals and q–derivatives of some elementary functions

We will use previous results to evaluate fractional q–integrals and q–derivatives of some well-known functions in explicit form. Here, it is very useful to remind on q–form of Taylor theorem

$$f(x) = \sum_{k=0}^{\infty} \frac{(D_q f)(a)}{[k]_q!} x^k (a/x; q)_k$$

(32)

given by Jackson (see [3]). The next lemma will have crucial role in reaching of our goal.

Lemma 12 For $\alpha \in \mathbb{R}^+ \setminus \mathbb{N}_0$, $\lambda \in (1, \infty)$, the following is valid

$$I_q^{\alpha}(x^\lambda (a/x; q)_\lambda) = \frac{\Gamma_q(\lambda + 1)}{\Gamma_q(\lambda + 1 + \alpha)} x^{\lambda+\alpha} (a/x; q)_{\lambda+\alpha} \quad (a < x),$$

$$D_q^{\alpha}(x^\lambda (a/x; q)_\lambda) = \frac{\Gamma_q(\lambda + 1)}{\Gamma_q(\lambda + 1 - \alpha)} x^{\lambda-\alpha} (a/x; q)_{\lambda-\alpha},$$

$$\ast D_q^{\alpha}(x^\lambda (a/x; q)_\lambda) = \begin{cases}
0, & \lambda \in \mathbb{N}_0: \alpha > \lambda, \\
D_q^{\alpha}(x^\lambda (a/x; q)_\lambda), & \text{otherwise.}
\end{cases}$$

Proof. For $\lambda \neq 0$, according to the definition ([23]), we have

$$I_q^{\alpha}(x^\lambda (a/x; q)_\lambda) = \frac{x^{\alpha-1}}{\Gamma_q(\alpha)} \left(\int_0^\lambda (q t/x; q)_{\lambda-1} t^{\lambda-1} (a/t; q)_\lambda d_q t - \int_0^a (q t/x; q)_{\lambda-1} t^{\lambda-1} (a/t; q)_\lambda d_q t \right).$$

Also, the following is valid:

$$\int_0^a (q t/x; q)_{\lambda-1} t^{\lambda} (a/t; q)_\lambda d_q t = a^{\lambda+1}(1-q) \sum_{k=0}^{\infty} (aq^{k+1}/x; q)_{\alpha-1} q^{k\lambda}(q^{-k}; q)_\lambda q^k,$$
what vanishes because of (31). Therefrom, according to definition (17), we get
\[
\int_0^x (qt/x; q)_{\lambda-1} t^\lambda (a/t; q)_\lambda \, dt
\]
\[
= x^{\lambda+1} (1 - q) \sum_{k=0}^{\infty} (q^{1+k}; q)_{\lambda-1} \frac{1}{(q; q)_\lambda} \frac{a}{(xq^k; q)_\lambda} q^{(\lambda+1)k}.
\]
We notice presence of (9) in the previous formula, i.e.
\[
\int_0^x (qt/x; q)_{\lambda-1} t^\lambda (a/t; q)_\lambda \, dt
\]
\[
= (1 - q) x^{\lambda+1} (q; q)_{\lambda-1} (q; q)_\lambda S_\lambda (\lambda + 1, \alpha, a/(qx)).
\]
By using (10), we get
\[
\int_0^x (qt/x; q)_{\lambda-1} t^\lambda (a/t; q)_\lambda \, dt = (1 - q) \frac{(q; q)_{\lambda-1}(q; q)_\lambda}{(q; q)_{\lambda+\lambda}} x^{\lambda+1} (a/x; q)_{\lambda+\lambda},
\]
and applying (12), we obtain the required formula for \(I_{q,a}^\alpha \frac{1}{(q; q)_\lambda} \) when \(\lambda \neq 0 \).

In the case when \(\lambda = 0 \), using \(q \)-integration by parts (22), we have
\[
(I_{q,a}^\alpha 1)(x) = \frac{x^{\alpha-1}}{\Gamma_q(\alpha)} \int_a^x (qt/x; q)_{\alpha-1} dq dt = \frac{1}{\Gamma_q(\alpha)} \int_a^x D_q((t/x; q)_\alpha) (-\log q) \, dt.
\]
\[
= -\frac{1}{\Gamma_q(\alpha + 1)} \int_a^x D_q(x^\alpha (t/x; q)_\alpha) dt = -\frac{1}{\Gamma_q(\alpha + 1)} x^\alpha (a/x; q)_\alpha.
\]
The terms for \(q \)-derivatives can be obtained by applying definitions (29) and (30).

Corollary 13 For \(\alpha \in \mathbb{R}^+ \setminus \mathbb{N}_0 \), \(n \in \mathbb{N}_0 \), and \(a < x \), the following is valid:
\[
I_{q,a}^\alpha(x^n) = (1 - q)^\alpha \sum_{k=0}^{n} \binom{n}{k} a^{n-k}(q^{n-k+1}; q)_k \frac{x^{k+a}(a/x; q)_{k+a}}{(q; q)_{k+a}}.
\]
\[
D_{q,a}^\alpha(x^n) = (1 - q)^{-\alpha} \sum_{k=0}^{n} \binom{n}{k} a^{n-k}(q^{n-k+1}; q)_k \frac{x^{-\alpha}(a/x; q)_{k-\alpha}}{(q; q)_{k-\alpha}}.
\]
\[
\star D_{q,a}^\alpha(x^n) = (q^{n+1} - [\alpha]; q)_[\alpha] \Gamma_q(\alpha) \sum_{k=0}^{n} a^{n-k}(q^{n-k+1}; q)_k \frac{x^{\alpha}(a/x; q)_{k-\alpha}}{(q; q)_{k-\alpha}}.
\]
(Notice that \(\star D_{q,a}^\alpha(x^n) = 0 \) when \(\alpha > n \).

The \(q \)-exponential functions (see [4]) can be written like power series or, applying \(q \)-form of Taylor theorem (52), by
\[
e_q(x) = \sum_{n=0}^{\infty} \frac{x^n}{(q; q)_n} = e_q(a) \sum_{n=0}^{\infty} \frac{x^n(a/x; q)_n}{(q; q)_n} \quad (|x| < 1), \quad \text{(33)}
\]
\[
E_q(x) = \sum_{n=0}^{\infty} \frac{q^n}{(q; q)_n} x^n = E_q(a) \sum_{n=0}^{\infty} \frac{q^n(-a; q)_n}{(q; q)_n} \quad \text{(34)}
\]

12
Corollary 14 For \(\alpha \in \mathbb{R}^+ \setminus \mathbb{N}_0 \) and \(0 < a < x < 1 \), the following is valid:

\[
I_{q,a}^\alpha (e_q(x)) = (1 - q)^\alpha e_q(a) \sum_{n=0}^{\infty} \frac{x^{n+\alpha}(a/x; q)_{n+\alpha}}{(q; q)_{n+\alpha}},
\]

\[
D_{q,a}^\alpha (e_q(x)) = (1 - q)^{-\alpha} e_q(a) \sum_{n=0}^{\infty} \frac{x^{n-\alpha}(a/x; q)_{n-\alpha}}{(q; q)_{n-\alpha}},
\]

\[
* D_{q,a}^\alpha (e_q(x)) = (1 - q)^{-\alpha} e_q(a) \sum_{n=\lceil \alpha \rceil}^{\infty} \frac{x^{n-\alpha}(a/x; q)_{n-\alpha}}{(q; q)_{n-\alpha}}.
\]

Corollary 15 For \(\alpha \in \mathbb{R}^+ \setminus \mathbb{N}_0 \) and \(0 < a < x \), the following is valid:

\[
I_{q,a}^\alpha (E_q(x)) = (1 - q)^\alpha E_q(a) \sum_{n=0}^{\infty} \frac{q^{(2)}(x)}{(-a; q)_n} \frac{x^{n+\alpha}(a/x; q)_{n+\alpha}}{(q; q)_{n+\alpha}},
\]

\[
D_{q,a}^\alpha (E_q(x)) = \frac{E_q(a)}{(1 - q)^\alpha} \sum_{n=0}^{\infty} \frac{q^{(2)}(x)}{(-a; q)_n} \frac{x^{n-\alpha}(a/x; q)_{n-\alpha}}{(q; q)_{n-\alpha}},
\]

\[
* D_{q,a}^\alpha (E_q(x)) = \frac{E_q(a)}{(1 - q)^\alpha} \sum_{n=\lceil \alpha \rceil}^{\infty} \frac{q^{(2)}(x)}{(-a; q)_n} \frac{x^{n-\alpha}(a/x; q)_{n-\alpha}}{(q; q)_{n-\alpha}}.
\]

7 The relationship between fractional q–integrals and q–derivatives

It is very important to establish the connection between two types of the fractional q–derivatives.

Theorem 16 Let \(\alpha \in \mathbb{R}^+ \setminus \mathbb{N}_0 \) and \(a < x \). The connection between Caputo type and Riemann-Liouville type fractional integral is

\[
(D_{q,a}^\alpha f(x)) = (I_{q,a}^{\alpha-1} D_{q,a} f(x)) + \sum_{k=0}^{[\alpha]-1} \frac{(D_{q,a}^k f)(a)}{\Gamma(q(1 + k - \alpha))} x^{k-\alpha} (a/x; q)_{k-\alpha}
\]

Proof. Any \(\alpha \in \mathbb{R}^+ \setminus \mathbb{N}_0 \) we can write in the form \(\alpha = n + \varepsilon \), where \(\varepsilon \in (0, 1) \). We will prove the statement by mathematical induction over \(n \in \mathbb{N}_0 \).

At first, let \(n = 0 \), i.e., \(\alpha \in (0, 1) \). According to Lemma 3, we have

\[
(I_{q,a}^{1-\alpha} f)(x) = (I_{q,a}^{2-\alpha} D_{q,a} f)(x) + \frac{f(a)}{\Gamma(q(2 - \alpha))} x^{1-\alpha} (a/x; q)_{1-\alpha}
\]

\[
= (I_{q,a} (D_{q,a}^{\alpha} f))(x) + \frac{f(a)}{\Gamma(q(2 - \alpha))} x^{1-\alpha} (a/x; q)_{1-\alpha}.
\]

By q–deriving, we get

\[
(D_{q,a} I_{q,a}^{1-\alpha} f)(x) = (D_{q,a} I_{q,a} (D_{q,a}^{\alpha} f))(x) + \frac{f(a)}{\Gamma(q(2 - \alpha))} D_{q} (x^{1-\alpha} (a/x; q)_{1-\alpha}),
\]

13
and, with respect to \([14]\),
\[
(D^n_{q,a} f)(x) = (*D^n_{q,a} f)(x) + \frac{f(a)}{\Gamma_q(1 - \alpha)} x^{\alpha(a/x; q) - \alpha} .
\]

Suppose that the statement is valid for a real \(\alpha = n + \varepsilon, \varepsilon \in (0, 1)\), for a positive integer \(n \in \mathbb{N}\) and let us prove that it is valid for \(\alpha = n + 1 + \varepsilon\). Indeed, according to Theorem 17 the next equality is valid:
\[
(D_{q,a}^\alpha f)(x) = \left(D_q D_{q,a}^{n+\varepsilon} f\right)(x).
\]

With respect to the inductional assumption
\[
(D_{q,a}^{n+\varepsilon} f)(x) = (*D_{q,a}^{n+\varepsilon} f)(x) + \sum_{k=0}^{n} \frac{(D^k_q f)(a)}{\Gamma_q(1 + k - n - \varepsilon)} x^{k-n-\varepsilon(a/x; q)k-n-\varepsilon},
\]
and the formula \([14]\), we can write
\[
(D_{q,a}^\alpha f)(x)
= (D_q * D_{q,a}^{n+\varepsilon} f)(x) + \sum_{k=0}^{n} \frac{(D^k_q f)(a)}{\Gamma_q(1 + k - n - \varepsilon)} x^{k-n-\varepsilon(a/x; q)k-n-\varepsilon}
= (D_q * D_{q,a}^{n+\varepsilon} f)(x) + \sum_{k=0}^{n} \frac{(D^k_q f)(a)}{\Gamma_q(k - n - \varepsilon)} x^{k-n-1-\varepsilon(a/x; q)k-n-1-\varepsilon} .
\]

Using the Theorem 11 we obtain
\[
(D_q * D_{q,a}^{n+\varepsilon} f)(x) = (*D_{q,a}^{n+1+\varepsilon} f)(x) + \frac{(D^1_q f)(a)}{\Gamma_q(1 - \varepsilon)} x^{-\varepsilon(a/x; q) - \varepsilon} .
\]

So,
\[
(D_{q,a}^\alpha f)(x) = (*D_{q,a}^{n+1+\varepsilon} f)(x) + \frac{(D^1_q f)(a)}{\Gamma_q(1 - \varepsilon)} x^{-\varepsilon(a/x; q) - \varepsilon}
+ \sum_{k=0}^{n} \frac{(D^k_q f)(a)}{\Gamma_q(k - n - \varepsilon)} x^{k-n-1-\varepsilon(a/x; q)k-n-1-\varepsilon}
= (*D_{q,a}^\alpha f)(x) + \sum_{k=0}^{n+1} \frac{(D^k_q f)(a)}{\Gamma_q(k - n - \varepsilon)} x^{k-n-1-\varepsilon(a/x; q)k-n-1-\varepsilon} ,
\]
what is finishing the proof. \(\square\)

Here, we will discuss behavior of compositions of previously defined operators.

Theorem 17 Let \(\alpha \in \mathbb{R}^+\). Then, for \(a < x\), the following is valid:
\[
(D_{q,a}^\alpha I_{q,a}^\alpha f)(x) = f(x) .
\]
Proof. With respect to Theorem 5 and the formulas (20) and (21), we have
\[
(D_q^α I_{q,a}^α f)(x) = (D_q^{[α]} I_{q,a}^{[α]} - α I_{q,a}^α f)(x) = (D_q^{[α]} I_{q,a}^{[α]} - α f)(x) \\
= (D_q^{[α]} I_{q,a}^α f)(x) = f(x). \quad \Box
\]

Theorem 18 Let \(α ∈ \mathbb{R}^+ \setminus \mathbb{N} \). Then
\[
(I_{q,a}^α D_q^α f)(x) = f(x) \quad (α < x).
\]

Proof. Let \(α ∈ (0, 1) \). Since, according to (21), we can write
\[
f(x) = (I_{q,a} D_q f)(x) + f(a),
\]
and, by using Theorem 5 and Lemma 12 we have
\[
(I_{q,a}^{1-α} f)(x) = (I_{q,a}^{1-α} I_{q,a} D_q f)(x) + f(a)(I_{q,a}^{1-α} 1)(x) \\
= (I_{q,a}^{2-α} D_q f)(x) + \frac{f(a)}{Γ_q(2-α)} x^{1-α(a/x; q)_{1-α}}.
\]

Applying \(D_q \) on both sides of equality, we obtain
\[
(D_q^α f)(x) = (D_q^{1-α} f)(x) \\
= (D_q^{2-α} D_q f)(x) + \frac{f(a)}{Γ_q(2-α)} D_q(x^{1-α(a/x; q)_{1-α}}) \\
= (I_{q,a}^{1-α} D_q f)(x) + \frac{f(a)}{Γ_q(1-α)} x^{-α(a/x; q)_{1-α}}.
\]

Now, again with respect to Theorem 5 and Lemma 12 the following is valid:
\[
(I_{q,a}^α D_q^α f)(x) = (I_{q,a}^α I_{q,a}^{1-α} D_q f)(x) + \frac{f(a)}{Γ_q(1-α)} I_{q,a}^α (x^{-α(a/x; q)_{1-α}}) \\
= (I_{q,a} D_q f)(x) + f(a) = f(x).
\]

Let \(α = n + ε, \) with \(n ∈ \mathbb{N}, 0 < ε < 1. \) Putting \(α → α - 1 \) and \(f → D_q^{α-1} f \) into Lemma 3 and applying Theorem 4 we get
\[
(I_{q,a}^{α-1} D_q^{α-1} f)(x) = (I_{q,a}α D_q^{α-1} D_q^{α-1} f)(x) + \frac{(D_q^{α-1} f)(a)}{Γ_q(α)} x^{α-1(a/x; q)_{α-1}} \\
= (I_{q,a}^α D_q^α f)(x) + \frac{(D_q^{α-1} f)(a)}{Γ_q(α)} x^{α-1(a/x; q)_{α-1}}.
\]

According to property (30), we conclude that
\[
(I_{q,a}^α D_q^α f)(x) = (I_{q,a}^{α-1} D_q^{α-1} f)(x).
\]

Repeating the last identity \(n \) times, we get
\[
(I_{q,a}^α D_q^α f)(x) = (I_{q,a}^{α-n} D_q^{α-n} f)(x) = (I_q^ε D_q^ε f)(x) = f(x),
\]
what is finishing the proof. \(\Box \)
Theorem 19 Let $\alpha \in \mathbb{R}^+ \setminus \mathbb{N}$. Then, for $a < x$, the following is valid:

$$(I_{q,a}^{\alpha} D_{q,a}^{\alpha} f)(x) = f(x) - \sum_{k=0}^{[\alpha]-1} \frac{(D_k f)(a)}{[k]_q!} x^{k}(a/x; q)_k .$$

Proof. With respect to Theorem 5 and the formulas (20) and (21), we have

$$(I_{q,a}^{\alpha} D_{q,a}^{\alpha} f)(x) = (I_{q,a}^{\alpha} I_{q,a}^{[\alpha]-\alpha} D_{q}^{[\alpha]} f)(x) = (I_{q,a}^{[\alpha]} D_{q}^{[\alpha]} f)(x)$$

$$= f(x) - \sum_{k=0}^{[\alpha]-1} \frac{(D_k^{[\alpha]} f)(a)}{[k]_q!} x^{k}(a/x; q)_k . \square$$

Theorem 20 Let $\alpha \in \mathbb{R}^+ \setminus \mathbb{N}$. Then, for $a < x$, the following is valid:

$$(I_{q,a}^{\alpha} D_{q,a}^{\alpha} f)(x) = f(x) .$$

Proof. Putting $f \mapsto I_{q,a}^{\alpha} f$ into Theorem 10 and using Theorem 18 Corollary 6 and formula (28), we get

$$(I_{q,a}^{\alpha} D_{q,a}^{\alpha} f)(x) = (D_{q,a}^{\alpha} I_{q,a}^{\alpha} f)(x) - \sum_{k=0}^{[\alpha]-1} \frac{(D_k^{[\alpha]} I_{q,a}^{\alpha} f)(a)}{[k]_q!(1+k-\alpha)} x^{k-\alpha}(a/x; q)_{k\alpha}$$

$$= f(x) - \sum_{k=0}^{[\alpha]-1} \frac{(D_{q,a}^{\alpha-k} f)(a)}{[k]_q!(1+k-\alpha)} x^{k-\alpha}(a/x; q)_{k\alpha} = f(x) . \square$$

Theorem 21 Let $\alpha \in \mathbb{R}$ and $\beta \in \mathbb{R}^+$. Then, for $a < x$, the following is valid:

$$(D_{q,a}^{\alpha} I_{q,a}^{\beta} f)(x) = (D_{q,a}^{\alpha-\beta} f)(x) .$$

Proof. Let $\alpha = n + \varepsilon$ and $\beta = m + \delta$, where $n > m$ and $\varepsilon, \delta \in [0,1)$ such $\varepsilon < \delta$. Then

$$(D_{q,a}^{\alpha} I_{q,a}^{\beta} f)(x) = (D_{q,a}^{n+1} I_{q,a}^{1-\varepsilon} I_{q,a}^{m+\delta} f)(x)$$

$$= (D_{q,a}^{n+1} I_{q,a}^{m+1+\delta-\varepsilon} f)(x)$$

$$= (D_{q,a}^{n+1} I_{q,a}^{m+1} I_{q,a}^{\delta-\varepsilon} f)(x)$$

$$= (D_{q,a}^{n-m} I_{q,a}^{\delta-\varepsilon} f)(x) .$$

From the other side

$$(D_{q,a}^{\alpha-\beta} f)(x) = (D_{q}^{[\alpha-\beta]} I_{q,a}^{[\alpha-\beta]-(\alpha-\beta)} f)(x) = (D_{q}^{n-m} I_{q,a}^{\delta-\varepsilon} f)(x) . \square$$

Theorem 22 Let $\alpha \in \mathbb{R} \setminus \mathbb{N}$ and $\beta \in \mathbb{R}^+$. Then, for $a < x$, the following is valid:

$$(I_{q,a}^{\beta} D_{q,a}^{\alpha} f)(x) = (D_{q,a}^{\alpha-\beta} f)(x) .$$
Applying the following identity holds:

\[(I_{q,a}^\beta D_{q,a}^\alpha f)(x) = (I_{q,a}^{\beta-\alpha} f)(x) = (D_{q,a}^{\alpha-\beta} f)(x) . \]

Let \(0 < \alpha \leq \beta\). Then, with respect to Theorem 5 and Theorem 18 we have

\[(I_{q,a}^\beta D_{q,a}^\alpha f)(x) = (I_{q,a}^{\beta-\alpha} I_{q,a}^\alpha D_{q,a}^\alpha f)(x) = (I_{q,a}^{\beta-\alpha} f)(x) = (D_{q,a}^{\alpha-\beta} f)(x) . \]

Finally, let \(\alpha > \beta\). According to Theorem 18 we can write

\[f(x) = (I_{q,a}^\alpha D_{q,a}^\alpha f)(x) = (I_{q,a}^{\alpha-\beta} D_{q,a}^\alpha f)(x) . \]

Applying \(D_{q,a}^{\alpha-\beta}\) on both sides of the last equality, we finish the proof. □

Notice that statement of Theorem 22 is not valid for \(\alpha \in \mathbb{N}\). In that case, the following identity holds:

\[(I_{q,a}^\beta D_{q,a}^n f)(x) = (D_{q,a}^{n-\beta} f)(x) - \sum_{k=0}^{n-1} \frac{(D_{q,a}^k f)(a)}{\Gamma_q(\beta - n + k + 1)} x^{\beta-n+k}(a/x; q)_{\beta-n+k} . \]

Indeed, if \(\alpha = n \leq \beta\), by using Theorem 5 formula (21) and Corollary 12 we get

\[(I_{q,a}^\beta D_{q,a}^n f)(x) = (I_{q,a}^{\beta-n} f)(x) - \sum_{k=0}^{n-1} \frac{(D_{q,a}^k f)(a)}{[k]_q!} I_{q,a}^{\beta-n}(x^k(a/x; q)_k) \]

\[= (D_{q,a}^{n-\beta} f)(x) - \sum_{k=0}^{n-1} \frac{(D_{q,a}^k f)(a)}{\Gamma_q(\beta - n + k + 1)} x^{\beta-n+k}(a/x; q)_{\beta-n+k} . \]

In similar way, by using Theorem 13 Theorem 18 Theorem 21 and Theorem 22 the next properties can be proven.

Theorem 23 Let \(\alpha \in \mathbb{R} \setminus \mathbb{N}\) and \(\beta \in \mathbb{R}^+\). Then, for \(a < x\), the following is valid:

\[(\star D_{q,a}^{\alpha} I_{q,a}^\beta f)(x) \]

\[= (\star D_{q,a}^{\alpha} f)(x) + \sum_{k=0}^{[\alpha-\beta]-1} \frac{(D_{q,a}^k f)(a)}{\Gamma_q(k - \alpha + \beta + 1)} x^{k-\alpha+\beta}(a/x; q)_{k-\alpha+\beta} . \]

\[(I_{q,a}^\beta \star D_{q,a}^{\alpha} f)(x) \]

\[= (I_{q,a}^\beta f)(x) - \sum_{k=[\alpha-\beta]}^{[\alpha]} \frac{(D_{q,a}^k f)(a)}{\Gamma_q(k - \alpha + \beta + 1)} x^{k-\alpha+\beta}(a/x; q)_{k-\alpha+\beta} . \]

Theorem 24 Let \(\alpha \leq c < x\) and \(\alpha \in \mathbb{R}^+ \setminus \mathbb{N}\). Then the following is valid:

\[(I_{q,c}^\alpha D_{q,a}^\alpha f)(x) = (I_{q,c}^{\alpha-[\alpha]+1} D_{q,a}^{\alpha-[\alpha]+1} f)(x) \]

\[- \sum_{k=1}^{[\alpha]} \frac{(D_{q,a}^{\alpha-k} f)(c)}{\Gamma_q(\alpha - k + 1)} x^{\alpha-k}(c/x; q)_{\alpha-k} . \]

17
Acknowledgements

This work was supported by Ministry of Science, Technology and Development of Republic Serbia, through the project No 144023 and No 144013.

References

[1] R.P. Agarwal, Certain fractional q–integrals and q–derivatives, Proc. Camb. Phil. Soc. 66 (1969), 365–370.

[2] W.A. Al-Salam, Some fractional q–integrals and q–derivatives, Proc. Edin. Math. Soc. 15 (1966), 135–140.

[3] W.A. Al-Salam, A. Verma, A fractional Leibniz q–formula, Pacific Journal of Mathematics 60, No 2 (1975), 1–9.

[4] G. Bangerezako, Variational calculus on q–nonuniform lattices, Journal of Mathematical Analysis and Applications, 306, No 1 (2005), 161–179.

[5] K. Diethelm, N.J. Ford, A.D. Freed, Yu. Luchko, Algorithms for the fractional calculus: A selection of numerical methods, Comput. Methods Appl. Mech. Engrg. 194 (2005) 743-773.

[6] G. Gasper, M. Rahman, Basic Hypergeometric Series, 2nd ed, Encyclopedia of Mathematics and its Applications 96, Cambridge University Press, Cambridge, 2004.

[7] H. Gauchman, Integral Inequalities in q–Calculus, Computers and Mathematics with Applications, 47 (2004), 281–300.

[8] I. Podlubny, Fractional Differential Equations (An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications), Academic Press, San Diego-Boston-New York-London-Tokyo-Toronto, 1999.

[9] P.M. Rajkovi ´c, S.D. Marinkovi ´c, M.S. Stankovi ´c, Fractional integrals and derivatives in q–calculus, Applicable Analysis and Discrete Mathematics, 1 (2007), 311–323.