Function of gaseous hydrogen sulfide in liver fibrosis

Jae-Ho Lee & Seung-Soon Im*
Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea

Over the past few years, hydrogen sulfide (H₂S) has been shown to exert several biological functions in mammals. The endogenous production of H₂S is mainly mediated by cystathionine β-synthase, cystathionine γ-lyase and 3-mercaptopyruvate sulfur transferase. These enzymes are broadly expressed in liver tissue and regulates liver function by working on a variety of molecular targets. As an important regulator of liver function, H₂S is critically involved in the pathogenesis of various liver diseases, such as non-alcoholic steatohepatitis and liver cancer. Targeting H₂S-generating enzymes may be a therapeutic strategy for controlling liver diseases. This review described the function of H₂S in liver disease and summarized recent characterized role of H₂S in several cellular process of the liver. [BMB Reports 2022; 55(10): 481-487]

INTRODUCTION
Hydrogen sulfide (H₂S), well known as a poisonous gas with an unpleasant odour, is produced primarily during the breakdown of proteins in plants and animals (1-3). H₂S is a signaling molecule that is actively synthesized within tissues and is involved in the regulation of vascular tone (4, 5), neuromodulation (6, 7), cell protection (8-10), inflammation (11, 12), and apoptosis (13, 14). Recently, new data on H₂S metabolism and function in animals and humans have been collected under the influence of various endogenous and exogenous factors, including drugs (15, 16).

The liver is one of the most important organs to produce and remove H₂S (17). Endogenous H₂S is involved in the pathogenesis of many liver diseases and affects processes, such as hepatic lipid and glucose metabolism, oxidative stress, mitochondrial bioenergetics, fibrosis, cirrhosis, hepatoprotection, and deregulation of hepatotoxicity (18, 19). In addition, endogenous and exogenous H₂S may play an important role in the development of liver tumors (20, 21). The synthesis and clearance of H₂S in the liver is mainly governed by hepatocytes (17). It is a major source of extracellular matrix (ECM) in hepatic fibrosis and hepatocellular carcinoma (HCC) (22). This review focuses on the major and alternative H₂S metabolism and its regulation in the liver.

UNDERSTANDING OF H₂S METABOLISM
H₂S is a colorless, flammable gas with a characteristic odor of rotten eggs. It occurs naturally in volcanic gases, natural gas, and some well water, and is also produced when bacteria decompose organic matter in the absence of oxygen (23). H₂S is toxic to humans and can result in death from acute exposure to large amounts of H₂S (＞500 ppm) (24). H₂S was considered both a toxic molecule and an environmental hazard until discovered to be endogenously produced (1). The production of H₂S by three enzymes like cystathionine β-synthetase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfur transferase (MPST) (25-28) has been widely studied (Fig. 1). Endogenous H₂S is produced by enzymatic activity and is also released from intracellular sulfur stores (29). In most organ, CBS and CSE are mainly responsible for H₂S production (29).

They manage individually from L-cysteine to produce H₂S, L-serine and ammonium (30). Although found throughout the body, the discovery of CBS in the brain has led to consensus that it is a major H₂S-generating enzyme that affects nerve signaling (31). However, CBS has been identified in tissues throughout the body and is thought to regulate overall H₂S production (32). Located primarily in mitochondria, MPST enzymatically generates H₂S from α-ketoglutarate and L-cysteine through metabolic interactions with cysteine aminotransferase (33). CBS, CSE and MPST are mainly expressed in the liver and kidney (34). CBS and CSE metabolize cysteine and/or homocysteine to release H₂S (35), while MPST metabolizes cysteine and 3-mercaptopyruvic acid (3-MP) produced by the action of cysteine aminotransferase (CAT) on α-ketoglutaric acid (36, 37). MPST requires a cofactor to decrease the persulfate intermediate formed between the MPST cysteine residue and the sulfide provided by 3-MP (36). Recent data have found that thioredoxin and dihydrolipoic acid are endogenous reduction cofactors which promote H₂S release from MPST (38).

H₂S is an endogenous signaling molecule in mammals (39). Accumulating evidence suggests that H₂S plays an important role in liver physiology and pathophysiology (40-42). Dysregu-
sulfide levels is unclear. Liver H2S levels were previously reported within the low nanomolar to mid-micromolar range (17 nM-144 μM) (51). Reactive oxygen species (ROS), a by-product of normal aerobic cell metabolism, are important signaling molecules in many cell functions, such as immune response, apoptosis and cell survival (52-54). Recent studies have shown that treatment with relatively low concentrations of H2S donors such as NaHS, Na2S or GYY4137 (50 mg/kg) may decrease ROS levels and cytochrome P450 2E1 activity and increase glutathione levels and antioxidant enzymes (50, 55). These results indicate that relatively low levels of H2S can protect against oxidative stress in the liver. Mitochondria is a major organelle whose shape supports and functions in many cellular processes (56). The main role of mitochondrial H2S is to regulate the production of energetic molecules like adenosine triphosphate (57). During the metabolism of glucose, lipids and proteins in the liver (58), 3-MP, the substrate for the MPST, stimulates mitochondrial H2S production and enhances liver mitochondrial electron transport at low concentrations (59, 60). In addition, low levels of H2S induces a significant increase in hepatic mitochondrial function (61). Moreover, H2S acts on mitochondrial proteins via a posttranslational modification designated as sulfhydration or persulfidation (62, 63). Sulfhydration of the ATP Synthase F1 Subunit Alpha (ATP5A1) at Cys244 and 294 was reported to increase its activity (64). Sulfhydration of ATP5A1 was upregulated in response to burn injury and decreased in mice lacking CSE implicating a role for CSE-derived H2S in the process (64). These results indicate that endogenous H2S regulates physiologically in mitochondrial electron transport.

The liver is important for the maintenance of blood glucose homeostasis by the uptake of glucose in the postprandial state and its conversion to triglycerides and glycogen, and the production of glucose in the post-absorption state by gluconeogenesis and glycogenogenesis (65, 66). Deficiencies in the mechanism by which insulin and glucose regulate glycogen metabolism in the liver disrupt blood glucose homeostasis, leading to metabolic disorders such as diabetes and glycogen storage (67, 68). CSE activity has been shown to be low in the liver of type 1 diabetic rats and in peripheral blood mononuclear cells of type 1 diabetic patients, indicating that H2S is involved in glucose regulation (69). Recent studies have shown that CSE knockout mice have a reduced rate of glycolysis. This can be reversed with NaHS management (70, 71).

Non-alcoholic fatty liver disease (NAFLD) is caused by the accumulation of lipids in the liver and may increase the risk of hepatocellular carcinoma and end-stage liver disease (72, 73). Many risk factors, such as diabetes, obesity, hyperlipidemia, and certain drug regimens are associated with the development of NAFLD (74). H2S has been shown to alleviate development of fatty liver in obese mice through its antioxidant capacity and promotion of lipid metabolism (40, 75). In a recent study, in NAFLD mouse model, the activation of sterol regulatory element binding protein-1c directly upregulates mir-216a transcription, which reduces CSE-H2S signaling and
ULK1-stimulated autophagy, indicating that loss of sterol regulatory element binding protein-1c prevents the development of hepatic steatosis through activation of H₂S-mediated autophagy flux in a high fat diets-induced NAFLD model (76, 77). Recent study has shown that administration of NaHS reduces the accumulation of lipids such as total cholesterol and triglycerides through down-regulation of fatty acid synthase and up-regulation of carnitine palmitoyl transferase-1 in the liver of high-fat diet (HFD)-induced obese mice (40). Collectively, H₂S may alleviate liver cell damage in various ways in the pathogenesis of liver disease (Fig. 1).

ROLE OF H₂S IN LIVER FIBROSIS

Several studies have been reported on the use of H₂S in hypoxic injury (78, 79), most of which show beneficial effects of H₂S treatment in models of cardiac arrest (80), lung (81), intestinal (82), renal (83), and cardiac ischemia (84). Fibrogenesis formation in chronic liver disease can disrupt liver functional units and blood flow, leading to cirrhosis of the liver and even life-threatening clinical outcomes (85, 86). In the pathological process of hepatic fibrosis, it is widely known that activated hepatic stellate cells (HSC) are fundamental to the development of ECM in the stroma (87). Recent evidence suggests that inactivation of HSC is an essential mechanism by which H₂S inhibits liver fibrosis (88). However, current report shows that the generation of H₂S is increased during HSC activation, and that exogenous H₂S promotes HSC proliferation and induces the expression of HSC fibrosis makers (89). Furthermore, conflicting results have also been reported depending on the concentration or type of H₂S donor used. Based on the H₂S release rate, H₂S release donors are classified as either fast (NaHS, Na₂S) or slow (GYY4137; ADT-OH) release donors, often giving contrasting results (90, 91). For example, some studies have reported pro-inflammatory and anti-apoptotic properties of H₂S, and shown that H₂S increases mitochondrial bioenergetics and promotes cell proliferation (64, 92, 93). Therefore, there is still a large gap in our understanding of the actual impact of H₂S on HSC and liver fibrosis.

The CCl₄-induced hepatic fibrosis model tends to suppress protein expression of both CSE and H₂S content (94). Suggestion for a protective function for H₂S in liver fibrosis is supported by the understanding that CBS deficiency accelerates fibrosis associated with hepatic steatosis (95). Similarly, gene knockout of CSE exacerbates liver fibrosis by triggering an inflammatory response and decreasing H₂S production, indicating a potential role of the H₂S system in liver fibrosis (96). Supplementation of NaHS ameliorates hepatic fibrosis in CCl₄-treated mice (50). Likewise, in CCl₄-treated mice, GYY4137 increased nuclear factor erythroid 2-related factor 2 signaling pathway, improved liver function, reduced liver fibrosis, and decreased hepatic oxidative stress (97). Exercise significantly enhances H₂S level and increases levels of CBS, CSE and MPST in HFD-fed mice (98).

H₂S reduces the intracellular redox environment and reduces damage from oxidative stress (99). Given the important role of oxidative stress in the development of fibrosis, it is reasonable to suspect that the endogenous H₂S-producing enzyme pathway suppresses the development of fibrosis by its antioxidant activity (100). Extrinsic H₂S inhibits Fe-NTA-induced elevated intracellular ROS levels and HSC cell proliferation (94), weakens CCl₄-induced increase of hepatic malondialdehyde levels, reduces hepatic glutathione levels, and collagen in liver tissue. It is associated with inhibition of phosphorylated p38 mitogen-activated protein kinase and activation of the phospho-AKT signaling pathway (101).

Inflammation has been reported to be in the early stages of the onset of fibrosis, causing cell apoptosis, fibroblast proliferation, and ECM deposition, ultimately leading to irreversible fibrous damage (102). Treatment with H₂S significantly reduces the infiltration of inflammatory cells, inducible nitric oxide synthase, tumor necrosis factor-α, It down-regulates pro-inflammatory cytokines like interleukin (IL)-6, and inhibits IL-8, and the progression of fibrosis (18, 103-105). Although CCl₄-induced liver cirrhosis rats showed significantly higher levels of antifibrosis of H₂S. TNF-α, NF-κB, MAPKs, NFR2, SIRT1, SIRT3, GSH, TGF-β1/SMAD, PI3K, AKT, and autophagy are involved in the process of antifibrosis of H₂S. TNF-α tumor necrosis factor-alpha; NFκB: nuclear factor-kappa B; MAPK: mitogen-activated protein kinase; NFR2: nuclear factor erythroid 2-related factor 2; SIRT1: sirtuin 1; SIRT3: sirtuin 3; GSH: glutathione; TGF-β1: transforming growth factor beta 1; SMAD: suppressor of mothers against decapentaplegic; PI3K: phosphoinositide 3-kinase.

Fig. 2. Endogenous and exogenous production of H₂S in the liver and its effects on liver fibrosis. H₂S plays a complex role in the development of fibrosis. Besides as a reducer to directly scavenge reactive oxygen species, exogenous (NaHS, GYY4137) or endogenous H₂S utilizes its inhibitory effect on fibrosis by anti-inflammation and suppression of fibroblasts activation. Many signaling pathways, such as TNF-α, NF-κB, MAPKs, NFR2, SIRT1, SIRT3, GSH, TGF-β1/SMAD, PI3K, AKT, and autophagy are involved in the process of antifibrosis of H₂S. TNF-α tumor necrosis factor-alpha; NFκB: nuclear factor-kappa B; MAPK: mitogen-activated protein kinase; NFR2: nuclear factor erythroid 2-related factor 2; SIRT1: sirtuin 1; SIRT3: sirtuin 3; GSH: glutathione; TGF-β1: transforming growth factor beta 1; SMAD: suppressor of mothers against decapentaplegic; PI3K: phosphoinositide 3-kinase.
of serum inflammation-inducing cytokines. Co-administration of NaHS resulted in a significant reduction in these cytokines, along with the alleviated collagen fibers of the liver (50).

Recent studies have shown that organ fibrosis is associated with a decrease in autophagy (106, 107). Autophagy is involved in a complex regulatory pathway in hepatic fibrosis, and its fibrosis-promoting effect depends on the activation of HSC but has antifibrotic properties through indirect hepatic protection and anti-inflammatory properties (108). Given the important role of autophagy in the pathogenesis of fibrosis and the regulatory function of H2S for autophagy and fibrosis, extrinsic or endogenous H2S is mediated by targeting by autophagy or autophagy-related signaling pathways (21, 109). It is rational and interesting to assume that it may inhibit the development of fibrosis. Overall, these observations suggest that an endogenous H2S is mediated by targeting of autophagy or autophagy, and a future. In addition, although endogenous H2S production or low exogenous H2S may lead to the development of liver fibrosis, exposure to large amounts of H2S may inhibit the development of fibrosis. Therefore, targeting H2S-producing enzymes may be a promising strategy for managing liver disorders.

CONCLUSION

This review summarizes and describes the recent literature on the role of H2S in several liver diseases. Defect in endogenous H2S production is associated with NASH. And because H2S may serve as a double-edged sword in such liver disorder, additional studies need to resolve these discrepancies in the future. In addition, although endogenous H2S production or low exogenous H2S may lead to the development of liver fibrosis, exposure to large amounts of H2S may exhibit anti-fibrosis properties. Therefore, targeting H2S-producing enzymes may be a promising strategy for managing liver disorders.

ACKNOWLEDGEMENTS

This study was supported by the Korea Research Foundation and the NRF grant funded by the Korea Government (MSIP) (NRF-2021R1A4A1029238).

CONFLICTS OF INTEREST

The authors have no conflicting interests.

REFERENCES

1. Beauchamp RO Jr, Bus JS, Popp JA, Boreiko CJ and Andjelkovich DA (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13, 25-97
2. Wang R (2002) Two’s company, three’s a crown: can H2S be the third endogenous gaseous transmitter? FASEB J 16, 1792-1798
3. Aroca A, Gotor C and Romero LC (2018) Hydrogen sulfide signaling in plants: emerging roles of protein persulfidation. Front Plant Sci 9, 1369
4. Dombkowski RA, Russell MJ and Olson KR (2004) Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am J Physiol Regul Integr Comp Physiol 286, 678-685
5. Wojcicka G, Jamroz-Wisniewska A, Atanasova P, Chadakov GN, Chylinska-Kula B and Beltowski J (2011) Differential effects of statins on endogenous H2S formation in perivascular adipose tissue. Pharmacol Res 63, 68-76
6. Abe K and Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16, 1066-1071
7. Kimura H (2002) Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26, 13-19
8. Li L, Rose P and Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51, 169-187
9. Xiao Q, Ying J, Xiang L and Zhang C (2018) The biologic effect of hydrogen sulfide and its function in various diseases. Medicine (Baltimore) 97, e13065
10. Han Y, Shang Q, Yao J and Ji Y (2019) Hydrogen sulfide: a gaseous signaling molecule modulates tissue homeostasis: implications in ophthalmic diseases. Cell Death Dis 10, 293
11. Whitman M and Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4, 13-32
12. Bhatia M and Gaddam RR (2021) Hydrogen sulfide as an endogenous regulator of vascular smooth muscle. Comp Physiol 286, 678-685
13. Norris EJ, Culberson CR, Sanyal AJ, Orenstein JM, Anderson RC, Li Y, Ouyang Z and Mooney CS (2018) Hydrogen sulfide: mechanistic insights and therapeutic potential. J Adv Res 9, 68-76
14. Abe K and Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16, 1066-1071
15. Wang SS, Chen YH, Chen N et al (2017) Hydrogen sulfide exposure induces apoptosis and necroptosis through IncRNA3037/miR-15a/BCL2-A20 signaling in broiler trachea. Sci Total Environ 699, 134296
16. Arif MS, Yasmeen T, Abbas Z et al (2020) Role of exogenous and endogenous hydrogen sulfide (H2S) on functional traits of plants under heavy metal stresses: a recent perspective. Front Plant Sci 11, 545453
17. Norris EJ, Culberson CR, Narasimhan S and Clemens MG (2011) The liver as a central regulator of hydrogen sulfide. Shock 36, 242-250
18. Wu DD, Wang DY, Li HM, Guo JC, Duan SF and Ji XY (2019) Hydrogen sulfide as a novel regulatory factor in liver health and disease. Oxid Med Cell Longev 2019, 3831713
19. Sun HJ, Wu ZY, Nie XW, Wang XY and Bian JS (2021) Implications of hydrogen sulfide in liver pathophysiology: mechanistic insights and therapeutic potential. J Adv Res 27, 127-135
20. Hellmich MR and Szabo C (2015) Hydrogen sulfide and cancer. Handb Exp Pharmacol 230, 233-241
21. Wang SS, Chen YH, Chen N et al (2017) Hydrogen sulfide promotes autophagy of hepatocellular carcinoma cells through the PI3K/Akt/mTOR signaling pathway. Cell Death Dis 8, e2688
22. Filliol A and Schwabe RF (2019) Contributions of fibroblasts, extracellular matrix, stiffness, and mechanosensing to hepatocarcinogenesis. Semin Liver Dis 39, 315-333

23. Malone Rubright SL, Pearce LL and Peterson J (2017) Environmental toxicology of hydrogen sulfide. Nitric Oxide 71, 1-13

24. Doujaiji B and Al-Tawfiq JA (2010) Hydrogen sulfide exposure in an adult male. Ann Saudi Med 30, 76-80

25. Ahmad A, Gero D, Olah G and Szabo C (2016) Effect of endotoxemia in mice genetically deficient in cystathionine-gamma-lyase, cystathionine-beta-synthase or 3-mercapto-4-pyruvate sulfurtransferase. Int J Mol Med 38, 1683-1692

26. Tao B, Wang R, Sun C and Zhu Y (2017) 3-Mercapto-4-pyruvate sulfurtransferase, not cystathionine beta-synthase nor cystathionine gamma-lyase, mediates hypoxia-induced migration of vascular endothelial cells. Front Pharmacol 8, 657

27. Ahmad A, Druzhyna N and Szabo C (2019) Effect of 3-mercapto-4-pyruvate sulfurtransferase deficiency on the development of multorgan failure, inflammation, and wound healing in mice subjected to burn injury. J Burn Care Res 40, 148-156

28. Augsburger F and Szabo C (2020) Potential role of the 3-mercapto-4-pyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway in cancer cells. Pharmacol Res 154, 104083

29. Cao X, Ding L, Xie ZZ et al (2019) A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid Redox Signal 31, 1-38

30. Shibuya N, Koike S, Tanaka M et al (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4, 1366

31. Polhemus DJ and Lefer DJ (2014) Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 114, 730-737

32. Murphy B, Bhattacharya R and Mukherjee P (2019) Hydrogen sulfide signaling in mitochondria and disease. FASEB J 33, 13098-13125

33. Pedre B and Dick TP (2021) 3-Mercapto-4-pyruvate sulfurtransferase: an enzyme at the crossroads of sulfane sulfur metabolism: deciphering communication from the liver. Mol Metab 44, 101138

34. Grant DM (1991) Detoxification pathways in the liver. J Inherit Metab Dis 14, 421-430

35. Melaram R (2021) Environmental risk factors implicated in liver disease: a mini-review. Front Public Health 9, 683719

36. Tan G, Pan S, Li J et al (2011) Hydrogen sulfide attenuates carbon tetrachloride-induced hepatotoxicity, liver cirrhosis and portal hypertension in rats. PLoS One 6, e25943

37. Mateus I and Prip-Buus C (2022) Hydrogen sulphide in liver glucose/lipid metabolism and non-alcoholic fatty liver disease. Eur J Clin Invest 52, e13680

38. Previte DM, O'Connor EC, Novak EA, Martins CP, Mollen KP and Piganelli JD (2017) Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation. PLoS One 12, e0175549

39. Snehzhina AV, Kurdyavtseva AV, Kardymon OL et al (2019) ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev 2019, 6175804

40. Peng HY, Lucas J, Ballard D et al (2021) Metabolic reprogramming and reactive oxygen species in T cell immunity. Front Immunol 12, 652687

41. Li L, Salto-Tellez M, Tan CH, Whitman M and Moore PK (2009) GYY4137, a novel hydrogen sulfide-releasing
molecule, protects against endotoxic shock in the rat. Free Radic Biol Med 47, 103-113
56. Xia M, Zhang Y, Jin K, Lu Z, Zeng Z and Xiong W (2019) Communication between mitochondria and other organelles: a brand-new perspective on mitochondria in cancer. Cell Biosci 9, 27
57. Brand MD, Orr AL, Perevoshchikova IV and Quinlan CL (2013) The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br J Dermatol 169 Suppl 2, 1-8
58. Degli Esposti D, Hamelin J, Bosselut N et al (2012) Mitochondrial roles and cytoprotection in chronic liver injury. Biochem Res Int 2012, 387626
59. Modis K, Coleta C, Erdelyi K, Papapetropoulos A and Szabo C (2013) Intramitochondrial hydrogen sulfide production by 3-mercaptopruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 27, 601-611
60. Jia J, Wang Z, Zhang M et al (2020) SQR mediates therapeutic effects of H2S by targeting mitochondrial electron transport to induce mitochondrial uncoupling. Sci Adv 6, eaaz5752
61. Paul BD, Snyder SH and Kashi K (2021) Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol 38, 101772
62. Shimizu Y, Polavarapu R, Eskla KL et al (2018) Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J Mol Cell Cardiol 116, 29-40
63. Mustafa AK, Gadalla MM, Sen N et al (2009) H2S signals through protein S-sulfhydration. Sci Signal 2, ra72
64. Modis K, Ju Y, Ahmad A et al (2016) S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacol Res 113, 116-124
65. Nuttall FQ, Ngo A and Cannon MC (2008) Regulation of hepatic glucose production and the role of gluconeogenesis in humans: is the rate of gluconeogenesis constant? Diabetes Metab Res Rev 24, 438-438
66. Cruz-Pineda WD, Parra-Rojas I, Rodriguez-Ruiz HA, Illades-Aguiar B, Matia-Garcia I and Garibay-Cerdenales OL (2022) The regulatory role of insulin in energy metabolism and leukocyte functions. J Leukoc Biol 111, 197-208
67. Han HS, Kang G, Kim JS, Choi BH and Koo SH (2016) Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med 48, e218
68. Irimia JM, Meyer CM, Szevich DM et al (2017) Lack of liver glycerone causes hepatic insulin resistance and steatosis in mice. J Biol Chem 292, 10455-10464
69. Manna P, Gungor N, McVie R and Jain SK (2014) Decreased cystathionine-gamma-lyase (CSE) activity in livers of type 1 diabetic rats and peripheral blood mononuclear cells (PBMC) of type 1 diabetic patients. J Biol Chem 289, 11767-11778
70. Untereiner AA, Wang R, Ju Y and Wu L (2016) Decreased gluconeogenesis in the absence of cystathionine gamma-lyase and the underlying mechanisms. Antioxid Redox Signal 24, 129-140
71. Li N, Wang MJ, Jin S et al (2016) The H2S donor NaHS changes the expression pattern of h2s-producing enzymes after myocardial infarction. Oxid Med Cell Longev 2016, 6492469
72. Dhamija E, Paul SB and Kedia S (2019) Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: an increasing concern. Indian J Med Res 149, 9-17
73. Rada P, Gonzalez-Rodriguez A, Garcia-Monzon C and Valverde AM (2020) Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis 11, 802
74. Raman M and Allard J (2006) Non alcoholic fatty liver disease: a clinical approach and review. Can J Gastroenterol 20, 345-349
75. Li M, Xu C, Shi J et al (2018) Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopruvate sulfurtransferase/hydrogen sulfide pathway. Gut 67, 2169-2180
76. Nguyen TTP, Kim DY, Lee YG et al (2021) SREBP-1c impairs ULK1 sulfhydration-mediated autophagic flux to promote hepatic steatosis in high-fat-diet-fed mice. Mol Cell 81, 3820-3832 e3827
77. Nguyen TTP, Kim DY, Im SS and Leon TI (2021) Impairment of ULK1 sulfhydration-mediated lipophagy by SREBF1/SREBP-1c in hepatic steatosis. Autophagy 17, 4489-4490
78. Lan A, Liao X, Mo L et al (2011) Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells. PLoS One 6, e25921
79. Hine C, Harputlugil E, Zhang Y et al (2015) Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160, 132-144
80. Minamishima S, Bougaki M, Sips PY et al (2009) Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 120, 888-896
81. Jiang T, Yang W, Zhang H, Song Z, Liu T and Lv X (2020) Hydrogen sulfide protects against hypoxia-induced injury through SIRT1 signaling pathway in type 2 diabetic rats. Front Physiol 11, 596
82. Liu H, Bai XB, Shi S and Cao YX (2009) Hydrogen sulfide protects against intestinal ischaemia-reperfusion injury in rats. J Pharm Pharmacol 61, 207-212
83. Sekijima M, Sahara H, Niki K et al (2017) Hydrogen sulfide prevents renal ischemia-reperfusion injury in CLAWN miniature swine. J Surg Res 129, 165-172
84. Elrod JW, Calvert JW, Morrison J et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104, 15360-15365
85. Takahashi H, Shigefuku R, Yoshiida Y et al (2014) Correlation between hepatic blood flow and liver function in alcoholic liver cirrhosis. World J Gastroenterol 20, 17065-17074
86. Iwakiri Y, Shah V and Rockey DC (2014) Vascular pathobiology in chronic liver disease and cirrhosis - current status and future directions. J Hepatol 61, 912-924
87. Coulouarn C and Clement B (2014) Stellate cells and the development of liver cancer: therapeutic potential of
targeting the stroma. J Hepatol 60, 1306-1309
88. Zhang F, Jin H, Wu L et al (2017) Dialyl trisulfide suppresses oxidative stress-induced activation of hepatic stellate cells through production of hydrogen sulfide. Oxid Med Cell Longev 2017, 1406726
89. Damba T, Zhang M, Buist-Horman M, van Goor H, Faber KN and Moshage H (2019) Hydrogen sulfide stimulates activation of hepatic stellate cells through increased cellular bio-energetics. Nitric Oxide 92, 26-33
90. Wedmann R, Bertlen S, Macinkovic I et al (2014) Working with “H₂S”: facts and apparent artifacts. Nitric Oxide 41, 85-96
91. Zheng Y, Ji X, Ji K and Wang B (2015) Hydrogen sulfide prodrugs—a review. Acta Pharm Sin B 5, 367-377
92. Xie X, Dai H, Zhuang B, Chai L, Xie Y and Li Y (2016) Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes. Biochem Biophys Res Commun 472, 437-443
93. Phillips CM, Zatarain JR, Nicholls ME et al (2017) Upregulation of cystathionine-beta-synthase in colonic epithelia reprograms metabolism and promotes carcinogenesis. Cancer Res 77, 5741-5754
94. Fan HN, Wang HJ, Yang-Dan CR et al (2013) Protective effects of hydrogen sulfide on oxidative stress and fibrosis in hepatic stellate cells. Mol Med Rep 7, 247-253
95. Robert K, Nehme J, Bourdon E et al (2005) Cystathionine beta synthase deficiency promotes oxidative stress, fibrosis, and steatosis in mice liver. Gastroenterology 128, 1405-1415
96. Ci L, Yang X, Gu X et al (2017) Cystathionine gamma-lyase deficiency exacerbates CCL1-Induced acute hepatitis and fibrosis in the mouse liver. Antioxid Redox Signal 27, 133-149
97. Zhao S, Song T, Gu Y et al (2021) Hydrogen sulfide alleviates liver injury through the S-sulfhydrated-kelch-like ECH-associated protein 1/nuclear erythroid 2-related factor 2/low-density lipoprotein receptor-related protein 1 pathway. Hepatology 73, 282-302
98. Wang B, Zeng J and Gu Q (2017) Exercise restores bioavailability of hydrogen sulfide and promotes autophagy influx in livers of mice fed with high-fat diet. Can J Physiol Pharmacol 95, 667-674
99. Scammahorn JJ, Nguyen ITN, Bos EM, Van Goor H and Joles JA (2021) Fighting oxidative stress with sulfur: hydrogen sulfide in the renal and cardiovascular systems. Antioxidants (Basel) 10, 373
100. Zhang S, Pan C, Zhou F et al (2015) Hydrogen sulfide as a potential therapeutic target in fibrosis. Oxid Med Cell Longev 2015, 593407
101. Fan HN, Wang HJ, Ren L et al (2013) Decreased expression of p38 MAPK mediates protective effects of hydrogen sulfide on hepatic fibrosis. Eur Rev Med Pharmacol Sci 17, 644-652
102. Wynn TA and Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Rev Med 18, 1028-1040
103. Li XH, Xue WL, Wang MJ et al (2013) H2S regulates endothelial nitric oxide synthase protein stability by promoting microRNA-455-3p expression. Sci Rep 7, 44807
104. Fouad AA, Hafez HM and Hamouda A (2020) Hydrogen sulfide modulates IL-6/STAT3 pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of methotrexate hepatotoxicity. Hum Exp Toxicol 39, 77-85
105. Zeng J, Lin X, Fan H and Li C (2013) Hydrogen sulfide attenuates the inflammatory response in a mouse burn injury model. Mol Med Rep 8, 1204-1208
106. Mao YQ and Fan WM (2015) Autophagy: a new therapeutic target for liver fibrosis. World J Hepatol 7, 1982-1986
107. Singh KK, Lovren F, Pan Y et al (2015) The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J Biol Chem 290, 2547-2559
108. Lucantoni F, Martinez-Cerezuela A, Gruevska A et al (2021) Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: are we there yet? J Pathol 254, 216-228
109. Lv S, Liu H and Wang H (2021) Exogenous hydrogen sulfide plays an important role by regulating autophagy in diabetic-related diseases. Int J Mol Sci 22, 6715