Clinical Features and Management of Neutrophilic Asthma

Nightingale Syabbalo

Professor of Medicine and Physiology, Copperbelt University, Kitwe, Zambia

Abstract

Asthma is a chronic inflammatory airway disease with several distinct phenotypes, characterized by different immunopathological pathways, clinical presentation, severity of the disease and response to treatment. The phenotypes of asthma include eosinophilic, neutrophilic, mixed granulocytic and paucigranulocytic asthma. Approximately 3.6-10% of patients with asthma have severe refractory disease, which is uncontrolled on high doses of inhaled corticosteroids and long-acting β2-agonists. Some of these individuals with severe disease suffer from neutrophilic phenotype. Neutrophilic asthma is a severe and persistent disease, with frequent exacerbations and hospitalizations. It is characterized by the presence of high levels of neutrophils in the lungs and airways and fixed airflow obstruction. The T Helper 17 lymphocytes (Th17) cytokines, Interleukin-17 (IL-17) and IL-17F play an important role in the pathogenesis of neutrophilic asthma. IL-17 plays a key role in the immunophysiology of neutrophilic asthma by expressing the secretion of chemoattractant cytokines, chemokines, adhesion molecules and growth factors which lead to the recruitment and activation of neutrophils. Activated neutrophils release multiple proteinases, cytokines, chemokines and reactive oxygen species which cause airway epithelial cell injury, inflammation, hyperresponsiveness and airway remodeling. Neutrophilic asthma is unresponsive to high dose inhaled corticosteroids and to novel monoclonal antibody therapies. There is need for targeted precision biology and other treatment modalities for patients with neutrophilic asthma, such as long-acting phosphodiesterase 4 inhibitors, macrolide antibiotics and bronchial thermoplasty.

Keywords: Airway smooth muscle; Bronchial thermoplasty; Macrolides; Neutrophilic asthma

Introduction

Asthma is a significant public health problem, affecting more than 358 million individuals globally [1] and its prevalence has been increasing during the last 40 years [1-3]. It is the most common chronic respiratory disease in children in the developed countries [4] and its prevalence is steadily increasing in the developing world [5].

Asthma is a chronic inflammatory airway disease with several distinct phenotypes, characterized by different immunopathological pathways, clinical presentation, severity of the disease and response to treatment [6-11]. The phenotypes of asthma include eosinophilic, neutrophilic, mixed granulocytic and paucigranulocytic asthma [7].

Patients with eosinophilic asthma have an eosinophil count ≥3% [12-14], whereas patients with neutrophilic asthma have elevated sputum neutrophil count between ≥261% [14] and ≥64% [15], depending on the study. Mixed granulocytic phenotype is characterized by increase in both eosinophils (>3%) and neutrophils (>61% or >64%) [15]. Paucigranulocytic phenotype embraces patients with very few eosinophils (<3%) and neutrophils (<61% or <64%) in induced sputum [15]. Non-eosinophilic asthma is the term used to classify patients with low eosinophil numbers (<3%), which include neutrophilic asthma and paucigranulocytic phenotype [7].

Approximately 3.6-10% of patients with asthma have severe refractory disease, which is uncontrolled despite treatment with high-dose Inhaled Corticosteroids (ICS) and Long-Acting β2-Agonists (LABA) [16-19]. Neutrophilic asthma is the most common phenotype in adult patients presenting with acute severe asthma, whereas eosinophilic asthma is the most common phenotype in children with acute severe asthma [20]. However, paucigranulocytic asthma is the most common phenotype in both adults and children in patients with stable asthma [21].

The definition, evaluation and treatment of severe refractory asthma has been refined and continues to be updated [19,22-24]. The American Thoracic Society (ATS) guidelines on the definition of severe refractory asthma is based on two major and seven minor criteria for the diagnosis of severe refractory asthma [22]. The criteria for established diagnosis of refractory asthma include fulfilling one, or both major criteria and at least two minor criteria [21]. The ATS criteria for the diagnosis of severe refractory asthma are given in table 1.

Major criteria	Minor criteria
Need for high-dose inhaled corticosteroids	Need for additional daily treatment with controller medication (long-acting β2-agonist, leukotriene receptor antagonist, theophylline)
Asthma symptoms needing short-acting β2-agonists use on a daily or near daily basis	Asthma symptoms needing short-acting β2-agonist use on a daily or near daily basis
Persistent airway obstruction (FEV1 <80% predicted, diurnal peak flow variability <20%, predicted)	Persistent airway obstruction (FEV1 <80% predicted, diurnal peak flow variability <20%, predicted)
One or more urgent care visit for asthma	One or more urgent care visit for asthma
Three or more oral steroid bursts per year	Three or more oral steroid bursts per year
Prompt deterioration with ≥25% reduction in oral or inhaled corticosteroids	Prompt deterioration with ≥25% reduction in oral or inhaled corticosteroids
Near fatal asthma event in the past	Nearest asthma event in the past

Table 1: American thoracic society criteria for severe/refractory asthma.
Clinical Features of Neutrophilic Asthma

Neutrophilic asthma is an adult-onset disease which usually starts after 12 years. It is the most common phenotype in adult patients presenting with acute severe asthma compared with eosinophilic asthma [20]. However, eosinophilic asthma is the most common phenotype in children presenting with acute severe asthma [20], but paucigranulocytic phenotype is the most common phenotype in both adults and children with stable asthma [21].

Neutrophilic phenotype is characterized by severe persistent asthma [25-28], with frequent exacerbations, although the exacerbations are not as severe as those encountered in patients with eosinophilic asthma [29,30]. Patients with neutrophilic asthma have frequent urgent visits to emergency rooms, hospitalization and intubation [31]. This phenotype of asthma has been associated with sudden-onset fatal asthma in about 23% of the patients [32]. Furthermore, patients with severe bronchial neutrophilia are more likely to be admitted to hospital for noninfectious status asthmaticus [33].

Neutrophilic asthma is worse at night with frequent nocturnal attacks [34]. Martin et al. [34], found a greater than three-fold increase in the number of granulocytes in Bronchoalveolar lavage (BAL) fluid at 04:00 hr compared with 16:00 hr. Patients with neutrophilic asthma may require chronotherapy with intensification of treatment at night or treatment with long-acting anti-asthma agents [35]. Furthermore, neutrophilic asthma is typically associated with a worse quality of life and has a poor prognosis [7,18,19,28,36].

Neutrophilic asthma is characterized by a high neutrophil count in induced sputum ranging from 40% to 76% of sputum cells [30,32-34], or a neutrophil count of 500 × 10⁴/ml. Additionally, patients with neutrophilic asthma have less sputum eosinophil count which has been quoted to be between less than 1.9% and 3% by various authors [7,31,37,38].

Increased neutrophils in sputum has been associated with severe persistent asthma [7,23,26], fixed airway obstruction [36,39-42], with very low Forced Expired Volume in 1 second (FEV₁) [39,40] and post-bronchodilator FEV₁ [43]. Shaw and colleagues [43], have reported that both patients with eosinophilic asthma and neutrophilic asthma had low pre-bronchodilator FEV₁, but only patients with neutrophilic asthma had lowest post-bronchodilator FEV₁, indicating persistent airflow limitation. Furthermore, patients with neutrophilic asthma are less atopic [42-44] and have less responsiveness to methacholine challenges compared with patients with eosinophilic asthma [41,42,44].

Patients with neutrophilic asthma are unresponsive to LABA and high dose ICS [37,45,46] and the newly introduced targeted biologics [16,47]. There are no specific biomarkers for the diagnosis of neutrophilic asthma. Currently, there are specific biomarkers, such as exhaled Nitric Oxide (FeNO), serum periostin and dipetidyl peptide 4 for phenotyping asthma, which are useful for the diagnosis and targeted treatment of Th2-driven eosinophilic inflammation [8,16,48-50]. The clinical and diagnostic features of neutrophilic asthma are shown in table 2.

Airway Remodeling in Neutrophilic Asthma

The pathophysiological feature of neutrophilic asthma is airway hyperresponsiveness and airway remodeling, which is associated with persistent fixed airway obstruction. There is a strong association between neutrophilic airway inflammation and progression of airflow limitation in patients with neutrophilic asthma [51]. Airway remodeling and bronchoconstriction in asthma involves structural changes, such as airway smooth muscle hyperplasia and hypertrophy; subepithelial basement membrane thickening and fibrosis; extracellular matrix protein deposition; hypertrophy of the submucous glands, goblet cell hyperplasia; thickening and shedding of the epithelium; and neangiogenesis (Table 3) [52-60]. Airway smooth muscle hypertrophy, hyperplasia and changes in phenotype of ASM is considered the main factor involved in airway hyper responsiveness [61].
of pro-inflammatory cytokines (IL-1β, IL-8, IL-5, IL-6, IL-8, IL-10 and IL-11); chemokines (crocotaxins and Gro-α); growth factors (EGF-1, FGF, PDGF; VEGF and IGF-1); and angiogenic factors (angiogenin and angiopoietin) [58,67,68]. In addition, ASM cells from asthmatic patients have a distinct hyper reactive "primed" phenotype, which is characterized by increased release of pro-inflammatory cytokines, chemokines and growth factors [56,68]. These mediators act in an autocrine or paracrine fashion and amplify airway inflammation, AHR and remodeling [56].

Another feature of airway remodeling in asthma is deposition of Extracellular Matrix (ECM) protein in the reticular basement region, lamina propria and submucosa, which contributes to airway wall thickening and airflow obstruction. It is also accompanied by increase in the numbers of airway resident cells, such as fibroblasts, myofibroblasts and ASM cells [62,67-69]. There is an increase in ECM deposition around ASM cells and within the muscle bundle in patients with asthma [66,67]. The ECM proteins contain higher proteoglycans and elastic fibers [66,67] and the composition of the proteins is different compared with non-asthmatic subjects [70]. Extracellular matrix proteins and mediators released by mast cells, T lymphocytes and ASM cells may modulate ASM phenotype and functions, including proliferation, migration and contraction [71,72].

Severe refractory asthma is histopathologically characterized by thickening and fibrosis of the Subepithelial Reticular Membrane (SRM) in both adults and children with asthma [69,73-77]. Payne et al. [77] have demonstrated that SRM thickening is already present in children with difficult asthma and to a similar extent to that seen in adults with asthma. In addition they found that SRM thickening is not associated with age, symptom duration, lung function, or concurrent eosinophilic airway inflammation [77]. Thus, SRM thickening and fibrosis can occur in different phenotypes of severe refractory asthma. Thickening of the subepithelial reticular basement membrane is due to increased deposition of collagen I and III, tenascin, fibronectin, versican, laminin and fibronectin [73,74], produced mainly by fibroblasts [75] and to a less extent myofibroblasts [76]. The increase in subepithelial basement membrane thickness has been shown to correlate with ASM hypertrophy [76] and the severity of airflow limitation [78]. The thickening in SRM may contribute to unresponsiveness to corticosteroids [79].

The airway epithelium provide a physical protective barrier against inhaled micro-organisms, allergens and pollutants. Severe asthma, including the neutrophilic asthma is characterized by epithelial thickening, shedding, destruction of ciliated cells, goblet cell, exposure of neuronal terminals, secretion of ‘alarmin’ cytokines (IL-25, IL-33, TSLP) and upregulation of growth factors [80-82]. The extent of epithelial injury parallels with increasing AHR and severity of the disease [83,84].

There is an increase in numbers and branching of blood vessels in the Airways of patients with asthma due to neangiogenesis [58,85-87], mediated by overexpression of Vascular Endothelial Growth Factor (VEGF), angiopeptin and angiogenin [88,89]. Increased release of pro-inflammatory mediators in the Airways may lead to vasodilatation and edema which may perpetuate airway narrowing. Neovascularization has been shown to correlate with airflow limitation and bronchial hyperresponsiveness [89-91], hence contributing to severity of asthma. The pathophysiological features of airway remodeling in neutrophilic asthma are summarized in table 3.

Treatment of Severe Neutrophilic Asthma

Severe refractory asthma has classically been treated using stepwise guidelines of increasing drugs and dosages depending on the severity of the disease, such as the Global Initiative for Asthma (GINA) guidelines [1]. The GINA strategy recommends intensification of the treatment according to the severity of the disease, based on the treatment required to control and reduce symptoms and exacerbations. The GINA classic guidelines has five levels of treatments constituting increasing treatment according to severity. Steps 1 to 3 are classified as mild-moderate asthma and steps 4 and 5 include patients with moderate-severe disease. The current paradigm recommends use of relief SABA and ICS/LABA as needed at step 1. The step-wise guidelines recommend treatment with ICS at step 2, followed by increasing the dosage of ICS up to 800 μg/day and adding a long-acting β2-agonist to achieve control at step 3. In patients with severe asthma, steps 4 and 5, the dosage of ICS is increased up to 2000 μg/day and therapeutic alternatives, such as Leukotriene Receptor Antagonists (LTRA), slow-release theophyllines, or Long-Acting Muscarinic Antagonist (LAMA) are added to the regimen [1]. Table 4 lists the drugs used to treat asthma.

Despite treatment according to guidelines, monitoring adherence and adequate inhaler technique, a significant proportion of asthma patients do not achieve adequate control of asthma symptoms with the standard care treatment [1,92]. Between 49% and 53% of adults receiving treatment adequately have poorly controlled asthma [93,94] and up to 64% of adolescent patients have asthma that is inadequately controlled by the currently available therapies [95]. Table 4 shows the list of drugs available for the treatment of asthma.

Neutrophilic asthma is a difficult to treat phenotype, because it is unresponsive to high-dose ICS and LABA [37,45,46] and to the current anti-interleukin antagonists targeted against eosinophilic asthma [96-100].

Treatment of neutrophilic asthma requires novel anti-inflammatory agents and therapeutic strategies targeted against airway smooth muscle hypertrophy and airway remodeling, such as phosphodiesterase 4 inhibitors, macrolide antibiotics and bronchial thermoplasty.

Biologies for Neutrophilic Asthma

Interleukin-17 and its associated cytokines, IL-17F, IL-23, IL-22 and IL-8 play a key role in the pathogenesis of neutrophilic asthma [101]. However, most clinical trials using biologics targeted against IL-17, IL-8 and IL-23 have not been very encouraging. Busse et al. [102] in a randomized, placebo-controlled phase IIa trial of brodalumab, a monoclonal antibody against IL-17 receptor, in patients with moderate-to-severe asthma, reported that brodalumab did not result in any statistically significant benefit in terms of ACQ scores, FEV1, or use of rescue Short-Acting β-Agonists (SABA).

Blockade of IL-8 receptor CXCR2 also produced temperate results. Nair et al. [103] in a randomized, double-blind, placebo-controlled trial of SCH52713, a selective CXCR2 antagonist in asthmatic patients, noted significant reduction in sputum and blood eosinophil counts. SCH527123 was associated with significantly less exacerbations, but no improvement in lung function (FEV1). In a larger, multicenter, dose finding trial, O’Byrne et al. [104] investigated AZD5069, a selective CXCR2 antagonist, in patients
with uncontrolled asthma receiving medium-to-high dose ICS and LABA. In their clinical trial, they did not find significant benefits in the rates of exacerbations, ACQ-5 and FEV1. Thus, combined blockade of CXCR2 and CXCR1 may be more effective approach in targeting the neutrophil chemoattractant IL-8 [105]. Risankizumab a humanised IgG monoclonal antibody that target the p19 subunit of IL-23 is in phase 2 clinical trials [106]. Brodalumab (Siliq), secukinumab (Cosenyx) and risankizumab (Skyrizi) have been approved in several countries and are excellent drugs for the treatment of plaque psoriasis. Table 5 list the interleukin antagonists for the treatment of eosinophilic and neutrophilic asthma.

PDE genes [107]. The PDE4 isoenzymes are encoded by a family of four different genes (PDE4A-4D), which specifically hydrolyze the 3’5’ phosphodiester bond of cAMP to yield 5’Adenosine Monophosphate (5’-AMP) [10,109]. PDE4B isoenzyme is associated with bronchodilatation and anti-inflammatory effects, while PDE4D is associated with gastrointestinal side effects, such as nausea and vomiting, due to its high presence in the vomiting center in the brain [110,111].

Inhibition of PDE-4 leads to increase in the intracellular levels of cAMP and subsequent modulation of inflammatory responses and maintenance of the immune balance [112]. Therefore, PDE4 inhibitors are effective therapeutic strategy for the treatment of inflammatory respiratory diseases, characterized by airway remodeling and bronchoconstriction. Increase in the levels of cAMP can activate downstream phosphorylation pathways [113], which leads to relaxation of airway smooth muscle cells, bronchodilatation; and suppression of airway inflammation.

PDE4 is the most studied subfamily and pharmacological research has wielded several pharmacological agents for the treatment of many chronic inflammatory diseases, such as asthma, Chronic Obstructive Pulmonary Disease (COPD), [113-115] psoriasis [116], atopic dermatitis [117], inflammatory bowel disease [118] and neuropsychiatric disorders [119].

Patient with inflammatory diseases have higher expression of PDE4 than healthy individuals [120]. Inhibition of PDE4 results in increase in intracellular cAMP and subsequent activation of PKA, cyclic nucleotide-gated ion channels and Epac1/2. These signaling pathways are involved in the regulation of pro-inflammatory and anti-inflammatory cytokine synthesis [121]. In vitro inhibition of PDE4 has been shown to decrease expression of cell surface markers in many inflammatory cells, such as T cells and decreased release of cytokines, such as TNF-α, IL-1β and IL-10 in many types of cells [122,123]. In vivo inhibition of PDE4 also leads to a broad spectrum of effects, such as inhibition of cell trafficking and cytokine and chemokine release from inflammatory cells, such as neutrophils, eosinophils, and mast cells.

Table 4: Standard drugs used for the treatment of asthma.

Inhaled β2-agonist	Carinolbig, budesonide, beclometasone, formoterol, fluticasone, mometasone, salmeterol, formoterol, albuterol, terbutaline, pirbuterol
Short-acting (salmeterol, formoterol)	--
Long-acting (salbutamol, budesonide)	--
New long-acting (indacaterol, olodaterol, vilanterol)	--
Combination of LABA and inhaled corticosteroids	--
Salmetrol and fluticasone (Advair Diskus)	--
Forntometrol and budesonide (Symbicort)	--
Vilanterol and fluticasone	--
Triple combo (Vilanterol, fluticasone and umeclidium)	--
Cromones	--
Cromlyn sodium, nedocromil sodium	--
Inhaled anti-cholinergics	--
Short-acting (ipratropium bromide)	--
Long-acting (oxitropium bromide, isoxsuprnone)	--
New long-acting (umeclidium bromide, glycopyrrolate)	--
Corticosteroids	--
Betamethasone dipropionate	--
Budenolide, fluticasone, flunisaline	--
Ciclesonide, mometasone	--
Oral methylxanthines	--
Rapid release theophyllines	--
Sustained release theophyllines (Theo-24, Theocron, Uniphyl)	--
Phosphodiesterase (PDE)-4 inhibitor (roflumilast)	--
Leukotriene receptor antagonists	--
Montelukast, pranlukast	--
Cinalukast, zafirlukast	--
5-lipoxygenase inhibitors	--
Zileuton	--
Novel therapies	--
Anti-TNF therapy, e.g., infliximab, etanercept	--
Prostaglandin D2 receptor antagonists, e.g., leuprolide, senaprost	--
Protein kinase c-41, Lyn, and Fyn inhibitors, e.g., maftinib, smatnub	--

Table 5: Monoclonal antibodies, and interleukin antagonists and their target.

Agent	Target	Indication	Stage of Development
Omalizumab	IgE	EA	Marketed 2003
Mepolizumab	IL-5	EA	Marketed 2015
Reslizumab	IL-5	EA	Marketed 2016
Benralizumab	IL-5R	EA	Marketed 2017
Dupilumab	IL-47/IL-13	EA	Marketed 2018
Tezepelumab	TSLP	EA	Marketed 2018
Pitrakinra	IL-47/IL-13	EA	II
Lebrizumab	IL-13	EA	III
Trolokinumab	IL-13	EA	III
Fizzakinumab	IL-22	EA	II
Brodalumab	IL-17RA	NA	II
Secukinumab	IL-17A	NA	II
Risankizumab	IL-23	NA	II

Abbreviations:
- EA: Eosinophilic Asthma, NA: Neutrophilic Asthma; IL: Interleukin; TSLP: Thymic Stromal Lymphopoietin

Long-Acting Phosphodiesterase 4 Inhibitors

Non-selective Phosphodiesterase (PDE) inhibitors, such as theophylline have been used for the treatment of asthma and COPD for several decades. PDE enzymes metabolize the second intracellular messengers, including Adenosine Monophosphate (cAMP) and cyclic Guanosine Phosphate (cGMP), which play important roles in intracellular signaling in the regulation of multiple cellular metabolisms [107,108]. The PDE superfamily of enzymes contains 11 gene families (PDE1 to PDE11), most of which contain several
macrophages and T cells [124]. In addition, PDE inhibitors promote apoptosis of these cells [122,125]. Animal studies have shown that roflumilast reduced accumulation of neutrophils in Bronchoalveolar Lavage (BAL) fluid following exposure of cigarette smoke in guinea pig and mice [126,127]. Cortijo, et al. [128], have also reported that roflumilast prevented bleomycin-induced infiltration of neutrophils and macrophages in mice lungs.

In vitro study has shown that roflumilast and its active metabolite roflumilast N-oxide inhibited neutrophil secretion of IL-8, Leukotriene B4 (LTB4), Matrix Metalloproteinase-9 (MMP-9) and neutrophil elastase [122,129]. PDE4 inhibitors have also been reported to inhibit Interleukin-4 (IL-4) and IL-13 generation by human basophils [130]. Furthermore, roflumilast and roflumilast N-oxide reduced lipopolysaccharide-induced release of chemokines (CCL2, CCL3, CCL4 and CXL10) and TNF-α from human lung macrophages in a dose-dependent fashion [131].

Roflumilast has been reported to suppress secretion of TNF-α from epithelial cells and exerts antiinflammatory and immunomodulatory effects [132]. PDE4 inhibitors, such as cilomilast and roflumilast have been shown to decrease MUC5AC expression induced by Epidermal Growth Factor (EGF) [133] and roflumilast has been reported to improve ciliary function and mucociliary clearance [134]. In vitro study have shown that roflumilast antagonized profibrotic activity of fibroblasts stimulated by TGF-β [135,136]. Hence, PDE4 inhibitors have the potential to prevent progressive subepithelial basement membrane fibrosis and pulmonary fibrosis [135].

Phosphodiesterase 4 inhibitors are appropriate as add-on therapy for patients with neutrophilic asthma, because they suppress immune cell trafficking, activation and degranulation. They also suppress the release of cytokines, chemokines and growth factors which promote subepithelial membrane fibrosis, ASM cell proliferation, ASM hypertrophy and airway remodeling [122]. Long-acting selective PDE4 inhibitors, such as roflumilast have been shown to significantly reduce airway hyper responsiveness [137], which is a key feature of neutrophic asthma. Oral roflumilast 500 μg morning or evening has been shown be beneficial as add-on treatment for fixed airflow limitation in patients with increased ASM mass, AHR and airway remodeling [138]. Similarly, clinical trials have documented that roflumilast improves symptom control, exacerbations, lung function and quality of life [139-141].

Roflumilast helps improve efficacy of other anti-inflammatory agents and bronchodilators, such as corticosteroids, LABA and LTRA. Roflumilast and its active derivative roflumilast N-oxide have been shown to enhance activity of the glucocorticoid receptor activity and glucocorticoid-dependent gene transcription in peripheral blood mononuclear cell of asthmatic patients compared with control [139]. The combination of roflumilast and fluticasone significantly reduced AHR compared with roflumilast dosage alone [138].

Roflumilast can be used as an add-on treatment to ICS and LABA and/or LTRA therapies [141] and is beneficial in reducing gradual decline in lung function associated with increase in ASM hypertrophy and airway remodeling. The GINA guidelines [1], recommends addition of slow-release theophyllines, including the long-acting PDE-4 inhibitor roflumilast for the treatment of asthma at step 3. Roflumilast (Daliresp) is the only approved long-acting selective PGE4-inhibitor for the treatment COPD and asthma and was approved for these indications by the European Union (EU) in 2010 and in the USA in 2011. It has better selectivity and tolerance.

Macrolide Antibiotics

Patients with neutrophilic asthma are unresponsive to corticosteroids [142], anti-IgE and anti-interleukin Monoclonal Antibody (mAb) therapies targeting eosinophilic asthma. Thus, there is need for alternative anti-inflammatory therapies for patients suffering from neutrophilic asthma [143].

Macrolides have a macrocyclic lactone ring, whose size and features have been modified from the 14 carbon structure of erythromycin in order to develop newer agents such as clarithromycin and roxitromycin, or the 15 carbon structure to produce azithromycin [144]. They are derived from the product of the microbial order Actinomycetales (Saccharopolyspora erythrae, formerly Streptomycyces erythrae).

Macrolide antibiotics, such as Erythromycin (ERM), Azithromycin (AZM), Clarithromycin (CAM) and Roxithromycin (RXM) and new ketolide antibiotic telithromycin have antibacterial, antiviral and anti-inflammatory effects. They are mostly used to treat infections caused by Chlamydia pneumonia and Mycoplasma pneumonia, especially respiratory and genitourinary infections. They now constitute part of guideline-recommended therapy in community acquired pneumonia. Azithromycin and clarithromycin are also used to treat legionellosis.

Chlamydia pneumonia and Mycoplasma pneumoniae may play an important role in the pathogenesis of neutrophilic asthma [145]. Moreover, atopic subjects have increase frequencies of detection of C pneumonia in nasal aspirate sampling, independent of symptoms compared with healthy volunteers [146]. Similarly, asthmatic patients are more likely to harbor M pneumonia in their airways [147]. There is cumulative evidence suggesting infections with Chlamydophila pneumoniae and or Mycoplasma pneumoniae might play a role in the pathogenesis of different phenotypes of asthma, including neutrophilic asthma. Treatment of these atypical bacteria may be gratifying in preventing severe exacerbations associated with these microbes.

Macrolides and ketolides have been shown to have both in vitro and in vivo anti-inflammatory activity, including suppression of neutrophil inflammation, which makes them relevant to respiratory conditions associated with airway neutrophilia, such as neutrophilic asthma and atypical bacterial infection.

Treatment with macrolides, such as erythromycin and azithromycin has been shown to reduce neutrophil counts and Bronchoalveolar Lavage (BAL) fluid Interleukin-8 (IL-8) levels in patients with panbronchiolitis [146], bronchiolitis obliterans syndrome (BOS [148,149]) and asthma [150]. The clinical improvement in these conditions occur in the absence of active bacterial colonization, thus confirming the immunomodulatory effects of macrolides.

Several studies have reported that treatment with AZM, CAM and RXM decrease eosinophil and neutrophil numbers, inhibit neutrophil migration and oxidative burst activity and mediator release. Consequently, there is a decrease in the concentrations of neutrophil elastase, metalloproteinase-9, IL-8, IL-6, IL-1β, TNF-α and Eosinophil Cationic Protein (ECP) [143,150-155].
Simpson et al. [143], have shown that clarithromycin in patients severe refractory asthma reduced neutrophil count and sputum IL-8 levels, although they did not observe any change in lung function or asthma control [143]. The Azithromycin for prevention of exacerbations in severe asthma (AZISAST) randomized, placebo-controlled trial in patients with severe asthma with history of severe exacerbations, despite receiving high-dose ICS and LABA, studied the effect of AZM on asthma exacerbations [156]. Azithromycin (250 mg daily three times per week) as add-on treatment in patients with noneosinophilic asthma, defined by normal blood eosinophil counts and normal FeNO, resulted in significantly fewer severe exacerbations during 26-week period compared with controls [156]. Azithromycin significantly reduced severe exacerbations and lower respiratory tract infection in non-eosinophilic asthma phenotype by approximately 67% compared to 38% in placebo group. AZM was ineffective in reducing exacerbations in patients with eosinophilic asthma, who tended to have more exacerbations on AZM treatment [156].

The second randomized double-blinded, placebo-controlled trial (AMAZES) compared add-on azithromycin (500 mg three times per week) with placebo for 48 weeks in patients with symptomatic asthma despite medium-to-high dose ICS and LABA [157]. Treatment with add-on azithromycin significantly reduced the incidence of medium and severe exacerbation by 1.07 versus 1.86 per person-year, for AZM and placebo, respectively. AZM treatment was also associated with an improvement in Asthma Quality of Life Questionnaire (AQoL) scores in both groups of patients with eosinophilic and noneosinophilic asthma phenotypes [157].

The Telithromycin, Chlamydiophila and Asthma (TELCICAST) multicenter, randomized, double-blind, placebo-controlled study in 278 patients with moderate-to-severe asthma reported significantly greater improvement in symptoms and lung function in patients receiving telithromycin, 800 mg once daily, for 10 days compared with placebo [158]. Patients receiving telithromycin had improvement in symptoms at the end of treatment by 51% versus 29% in the placebo treated patients. The FEV1 improved by 0.63 L in telithromycin-treated patients versus 0.29 L in placebo-treated [158].

The Azithromycin Against Placebo in Exacerbations of Asthma (AZALEA) study investigated the effectiveness of azithromycin treatment as add-on to standard therapy for adult patients with exacerbation [159]. In the AZALEA clinical trial, addition of azithromycin 500 mg daily for 3 days to the standard treatment resulted in no statistically significant clinical improvement, including symptoms and quality of life scores and FEV1 [159].

This large trial in the UK had challenges in the recruitment of subjects, because there was widespread use of antibiotics in the 31 centers enrolled for the study. The study was therefore underpowered because a large number of patients (2044) were excluded because they were already taking antibiotics for their exacerbation [159].

It is possible that the population randomized was not representative of the larger population, because more than 2000 other patients were excluded from the study for other reasons [159].

From the above studies, different macrolides including the dosages of the specific drugs may influence the immunomodulatory and immunosuppressive response to macrolide antibiotics. Selection and exclusion of asthmatic patients, including phenotypes may also influence outcome of the effects of different macrocyclic lactone ring macrolides, including the 16-membered (spiramycin, jasamycin and midecamycin) [144].

Macrolides and ketolides have proven anti-inflammatory and immunomodulatory effects via activation or inhibition of immunopathological pathways. Macrolides have the ability to alter intracellular signaling, particularly through inhibition of TNF-kB activation and expression of activator protein-1 [160,161].

Azithromycin has been reported to significantly reduced Nuclear Factor-κB (NF-κB) expression, Tumor Necrosis Factor Alpha (TNF-α) RNA levels and TNF-α secretion in a CF-derived airway epithelial cell line [162]. Treatment of Bronchopulmonary Dysplasia (BPD) with AZM has been shown to suppress TNF-α-stimulated NF-κB activation in tracheal aspirate cells from premature infants with the reduction in Interleukin-6 (IL-6) and IL-8 secretion compared to control levels [163].

Macrolides have several immunomodulatory effects in numerous cells via modulation of intracellular signaling of multiple pathways, including intracellular Ca2+ regulation, Mitogen-Activated Protein Kinase (MAPK) signaling pathways and modulation of transcription factor function [164]. The anti-inflammatory effects of macrolides include reduction of cytokine expression, reduction of adhesion molecule expression on inflammatory cells, reduction of chemical mediator release and Reactive Oxygen Species (ROS) and increased apoptosis and efferocytosis [164]. Shinkai, et al. [165] have suggested that macrolides might suppress IL-8 and extracellular signal-regulated kinase related to neutrophil chemotaxis and migration.

Neutrophilic asthma is nonresponsive to corticosteroids. Corticosteroid-resistance is associated with airway hyperresponsiveness and decreased Histone Deacetylase 2 (HDAC2) activity and expression [166]. HDAC2 has been shown to inhibit inflammatory protein coding genes such as granulocyte macrophage colony stimulating factor or cyclooxygenase 2, promoted by IL-1β, TNF-α and NFkB kinase [166]. Macrolides reverse corticosteroid insensitivity by restoring the HDAC activity, via inhibiting Phosphoinositide 3 Kinase (PI3K) pathway [167] and by attenuating TNF-α and IL-17 immune responses [168].

Mucus hypersecretion and plugging is one of the characteristic features of COPD and severe refractory asthma, including the neutrophilic phenotype. Macrolides have also been shown to reduce mucus secretion and ion transport in the airways and increase mucociliary function of epithelial cells [169].

Macrolides such as AZM and CAM and telithromycin are suitable as add-on treatment to ICS and LABA in patients with neutrophilic asthma. Clarithromycin has been shown as an effective add-on therapy in prednisone-dependent patients with asthma [170]. However, the use of long-term macrolides particularly in patients on high-dose ICS carries its own risks, such as adverse reactions, including diarrhea, cholestasis, tinnitus and torsades de pointes ventricular tachycardia. It may also a promote antibiotic resistance against macrolides, ketolides, tetracyclines and other related antibiotics [157,171-173].
Bronchial Thermoplasty

Corticosteroids are the mainstay of asthma treatment; however, they do not suppress ASM hyperplasia and hypertrophy which is one of the histopathological features of severe asthma responsible for airway hyperresponsiveness [174]. One of the strategies for the treatment of severe asthma is to target airway smooth muscle hypertrophy, using bronchial thermoplasty, a non-pharmacological procedure aimed at reducing airway smooth muscle mass [175,176].

Bronchial Thermoplasty (BT) is a bronchoscopic treatment for subjects aged 18 and above with severe persistent asthma not responding to high-dose ICS and LABA. Selection and preparation of patients for BT is very important and the procedure should be performed by experienced pulmonologists or bronchoscopists [176-179].

Patients for BT should be in an optimal stable condition, without any asthma exacerbation or respiratory infection for at least 2 weeks. In addition to their standard medical treatment for severe asthma they should be pre-treated with prednisolone 50 mg/day for 3 days before BT, on the day of BT and the day after bronchial thermoplasty [179]. Patients with low FEV1 <80% should have the procedure postponed until their lung function improves. Before the procedure, all patients should be pre-treated with nebulized salbutamol and/or ipratropium bromide [179].

Bronchial thermoplasty is performed under moderate-to-deep sedation or general anesthesia [176-179]. At bronchoscopy a special catheter with a basket design is inserted through the instrument channel which delivers radiofrequency energy generated by a Radiofrequency (RF) generator (Alair™ Bronchial Thermoplasty System) to the airway wall [180,181].

The Alair™ catheter electrode delivers targeted radiofrequency energy to bronchial airway wall and results in reduction of the hypertrophied airway smooth muscle mass which is responsible for bronchoconstriction [178-186]. The procedure also decreases subepithelial fibrosis, extracellular matrix, submucous glands, airway nerve endings, epithelial cells and neuroendocrine cells [176,178,179,185,187]. Bronchial thermoplasty may lead to functional denervation, thus, reducing sensory neural axonal reflex bronchoconstriction [187].

Bronchial thermoplasty is given over three bronchoscopy sessions at approximately 3-week intervals, one for each lower lobe and one for both upper lobes [178,179,182]. Radiofrequency electrical energy delivered by a Radiofrequency (RF) generator (Alair™ Bronchial Thermoplasty system) is applied to the airways distal to the mainstem bronchi between 3 and 10 mm in diameter throughout the tracheobronchial tree, except the right middle lobe [179,182,183,186]. In practice, 40-70 RF activations are delivered in the lower lobes and between 50 and 100 activations in the upper lobes combined depending on the patient’s size and airway caliber [179]. Traditionally, the Right Middle Lobe (RML) is typically avoided due to concerns about the right middle lobe syndrome [179]. The right is usually not treated because it has a narrow, more horizontal orifice and RF energy could lead to post-procedure inflammation, obstruction and atelectasis of the right middle lobe (syndrome). Otherwise, the lingula is treated.

The Alair™ Bronchial Thermoplasty System (Boston Scientific, Natick, MA, USA) uses continuous feedback to tightly control the degree of tissue heating to avoid bronchial perforation, scorching and stenosis [179,180,186]. The Alair™ catheter delivers radiofrequency energy in order to warm the airway wall to a targeted temperature of 65°C, which reduces the ASM mass by approximately 50% after 3-6 weeks after the procedure [179, 182,186].

Patients should be screened adequately to confirm a correct diagnosis of asthma (including phenotyping), verify the criteria for severe refractory asthma despite adherence to appropriate pharmacological and non-pharmacological therapies, review and address co-morbidities that could affect asthma control, such as obesity, gastroesophageal reflux disease, post-nasal drip and obstructive sleep apnea [176].

Bronchial thermoplasty requires proper preparation and management of patients pre- and post-thermoplasty. It also requires identification of the right patients, implementation of proper BT technique and intense post-procedural care and follow-up [176]. The procedure should be performed meticulously to avoid bronchoconstriction, airway edema and bleeding. Minor radiological features occur following BT and a chest X-ray should be performed after the procedure.

Bronchial thermoplasty is a safe and effective procedure, however, it is associated with a short-term increase in asthma-related symptoms such as cough and sputum production, exacerbations and hospital admissions for asthma during the treatment phase [176,179,188]. Occasionally, bronchiectasis [189], atelectasis [190] and rarely pneumothorax and lung cysts [191], have been observed as complications following the bronchial thermoplasty. One case report describes hemoptysis associated with bronchial nodule which resolved by the third session of bronchial thermoplasty [192]. Table 6 lists the complications of bronchial thermoplasty.

Several randomized controlled trials and prospective multicenter studies in Australia, Canada, France, Japan, Netherlands, Spain, UK and USA in patients with severe persistent asthma have documented improvement in asthma control, fewer exacerbations and hospitalization and better quality of life score which persist up to 5 years following bronchial thermoplasty [178,179,181,191-195].

Table 6: Complications of Bronchial Thermoplasty.

Complication
Worsening of asthma control
Hospital re-admissions
Severe exacerbations
Cough with sputum production
Hemoptysis
Acute CT peripheral bronchial consolidation
Nasopharyngitis
Pulmonary infection
Lung abscess
Central bronchiectasis
Upper lobe atelectasis
Collapse of airway by mucus plugging
Pulmonary cysts and pneumothorax

The Alair™ Bronchial Thermoplasty System (Boston Scientific, Natick, MA, USA) uses continuous feedback to tightly control the degree of tissue heating to avoid bronchial perforation, scorching and stenosis [179,180,186]. The Alair™ catheter delivers radiofrequency energy in order to warm the airway wall to a targeted temperature of 65°C, which reduces the ASM mass by approximately 50% after 3-6 weeks after the procedure [179, 182,186].

Patients should be screened adequately to confirm a correct diagnosis of asthma (including phenotyping), verify the criteria for severe refractory asthma despite adherence to appropriate pharmacological and non-pharmacological therapies, review and address co-morbidities that could affect asthma control, such as obesity, gastroesophageal reflux disease, post-nasal drip and obstructive sleep apnea [176].

Bronchial thermoplasty requires proper preparation and management of patients pre- and post-thermoplasty. It also requires identification of the right patients, implementation of proper BT technique and intense post-procedural care and follow-up [176]. The procedure should be performed meticulously to avoid bronchoconstriction, airway edema and bleeding. Minor radiological features occur following BT and a chest X-ray should be performed after the procedure.

Bronchial thermoplasty is a safe and effective procedure, however, it is associated with a short-term increase in asthma-related symptoms such as cough and sputum production, exacerbations and hospital admissions for asthma during the treatment phase [176,179,188]. Occasionally, bronchiectasis [189], atelectasis [190] and rarely pneumothorax and lung cysts [191], have been observed as complications following the bronchial thermoplasty. One case report describes hemoptysis associated with bronchial nodule which resolved by the third session of bronchial thermoplasty [192]. Table 6 lists the complications of bronchial thermoplasty.

Several randomized controlled trials and prospective multicenter studies in Australia, Canada, France, Japan, Netherlands, Spain, UK and USA in patients with severe persistent asthma have documented improvement in asthma control, fewer exacerbations and hospitalization and better quality of life score which persist up to 5 years following bronchial thermoplasty [178,179,181,191-195].
The first randomized unblinded clinical trial (Asthma Intervention Research [AIR] 1) in 112 patients with moderate-to-severe asthma was done by Cox and colleagues [196]. Patients treated with BT showed a significant reduction in mild exacerbations as compared with baseline, whereas there were no changes in the frequency of exacerbations in the control group. Additionally, there was a significant improvement in asthma control assessed by the Asthma Control Questionnaire and quality of life assessed by the Asthma Quality of Life Questionnaire in the BT-treated patients compared with controls [196]. However, there were no differences in FEV1 or airway hyperresponsiveness (defined as a provocative concentration of methacholine required to lower the FEV1 by 20% [PC20]) or less than 8 mg/mL [196].

The second randomized clinical unblinded trial was the Research in Severe Asthma (RISA) trial [197]. This trial which studied 32 patients with severe asthma for the safety and efficacy of BT, reported a significant improvement in the asthma control, quality of life, rescue medication use and pre-bronchodilator FEV1 in BT-treated subjects compared with control. The beneficial effects of BT persisted even after reduction in the dosages of ICS and OCS [197].

The largest randomized double-blind sham-controlled trial was the Asthma Intervention Research 2 (AIR2) trial in 297 patients with severe asthma which compared BT with a sham procedure [198]. The AIR2 trial reported significant improvement in AQLQ scores, reduced frequency of severe exacerbations and decreased emergency department visits and days lost from work or school in the year after bronchial thermoplasty compared with treatment with sham procedure [198].

Chupp, et al. [199] compared the outcome of BT after a follow-up of 3 years in 190 PAS2 (Post-FDA Approved Clinical Trial Evaluating Bronchial Thermoplasty in Severe Persistent Asthma) subjects with 190 bronchial thermoplasty-treated subjects in the AIR2 trial at 3 years of follow-up. At year 3 after BT, the percentage of PAS2 subjects with severe exacerbations, emergency department visits and hospitalizations significantly decreased by 45%, 55% and 40% respectively [199], resembling the AIR2 results [198]. The PAS2 study showed similar improvements in asthma control after BT compared with the AIR2 trial despite enrolling subjects who had poorer asthma control [199]. After 3-year follow-up, PAS2 subjects were able to significantly reduce their mean ICS dose to 2070 μg/day, whereas, the AIR2 subjects significantly reduced their mean ICS to 1841 μg/day [199]. Previous observational studies on the effectiveness of bronchial thermoplasty for severe asthma have reported reductions in exacerbations and/or a step-down in treatment in 50-75% of patients undergoing the procedure [192-194,197].

A systemic review of the long-term safety of BT in the AIR, RISA and AIR2 trials demonstrated no long-term decline in FEV1, no change in the number of emergency room visits or hospitalization for adverse respiratory events [200]. The reduction in exacerbations seen in the first year after remained stable for up to 3 years [176,201-203] and follow-up CT scans performed on the subgroup of the treated patient cohort demonstrated no evidence of bronchiectasis of bronchial stenosis [203]. Recently, Chaudhuri, et al. [204] have reported that after 10 years post-thermoplasty the AQLQ scores and frequency of severe exacerbation were comparable to those recorded 1 year after bronchial thermoplasty. This suggests that the beneficial effects of bronchial thermoplasty may be sustained for up to 10 years or longer.

Bronchial thermoplasty has a long-term safety profile and may be considered for patients with predominant chronic airflow obstruction and patients who do not respond to anti-IgE, anti-interleukin biologics, or macrolides [176,205,206]. Patients with neutrophilic phenotype of asthma are suitable candidates for bronchial thermoplasty because they have excessive ASM hypertrophy, hyperplasia and hyper responsiveness. They are also unresponsive to treatment with high-dose ICS, LABA, LTRA and interleukin antagonists targeted against eosinophilic asthma.

The US Food and Drug Administration (FDA) approved BT in 2010 as a safe procedure indicated for the treatment of severe persistent asthma in patients 18 years and older, that is not controlled with high-dose ICS and LABA [180]. It is also approved in several EU countries, Australia, Canada, Japan, UK and USA.

The GINA guideline recommends bronchial thermoplasty for the treatment of severe corticosteroid-resistant asthma at step 5 [1]. The British guideline on the management of asthma states that bronchial thermoplasty can be considered for the treatment of adult patients (aged 18 and over) with severe asthma who have poorly controlled asthma despite optimal therapy [207].

Conclusion

Neutrophilic asthma is a phenotype of asthma that is severe and persistent, with frequent exacerbations and hospitalizations. It is characterized by the presence of high levels of neutrophils in the lungs and airways, fixed airflow obstruction and low FEV1. Histopathologically, it is characterized by ASM hyperplasia and hypertrophy, increase in ECM proteins and subepithelial basement membrane fibrosis, which all lead to fixed airflow limitation. Neutrophilic asthma is unresponsive to high-dose ICS, LABA and LTRA and to interleukin antagonist targeted against eosinophilic asthma. This phenotype of asthma requires specific therapeutic interventions aimed at prevention and reducing airway remodeling, such as novel anti-inflammatory agents, including long-acting PDE 4 inhibitors and macrolide antibiotics; and reduction of ASM mass which is the main cause of severe bronchoconstriction, by bronchial thermoplasty.

Conflicts of Interest

The author reports no conflicts of interest in this manuscript.

References

1. Global Initiative for Asthma (2018) Global strategy for asthma manage- ment and prevention. Global Initiative for Asthma, Kolding, Denmark.
2. Global Asthma Network (2014) Theglobal asthma report. Global Asthma Network, Auckland, New Zealand.
3. Masoli M, Fabian D, Holt S, Beasley R (2004) The global burden of asthma: Executive summary of the GINA Dissemination Committee re- port. Allergy 59: 469-478.
4. Asher MI, Montefort S, Bjorksten B (2006) Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis and eczema in childhood: ISAAC Phase One and three repeat multi-country cross-sectional surveys. Lancet 368: 733-743.
45. Wenzel SE, Szefler SJ, Leung DY, Sloan SI, Rex MD, et al. (1997) Bronchodilator evaluation of severe asthma. Persistent inflammation associated with high-dose glucocorticoids. Am J Respir Crit Care Med 156: 737-743.

46. Pavord ID, Brightling CE, Woltman G, Wardlaw AL (1999) Non-eosinophilic asthma corticosteroid unresponsiveness. Lancet 353: 2213-2214.

47. Syabbalo N (2020) Neutrophilic asthma: A complex phenotype of asthma. J Lung Respir Physiol 7: 18-24.

48. Yan XC, Woodruff PG (2016) Biomarkers in severe asthma. Immunol Allergy North Am 36: 547-557.

49. Schleich F, Sophie, D, Renaud L (2016) Biomarkers in the management of difficult asthma. Curr Top Med Chem 16: 1561-1573.

50. Kim H, Ellis AK, Fischer D, Noseworthy M, Olivenstein R, et al. (2017) Asthma biomarkers in the age of biologics. Allergy Asthma Clin Immunol 13: 48.

51. Choi JS, Jang AS, Park JS, Park SW, Paik SH, et al. (2012) Role of neutrophils in persistent airway obstruction due to refractory asthma. Respir Med 107: 322-329.

52. Ebina M, Takahashi T, Chiba T (1993) Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A 3-D morphometric study. Am Rev Respir Dis 148: 720-726.

53. Niimi A, Matsumoto H, Amitani R, Nakano Y, Mishima M, et al. (2000) Airway wall thickness in asthma assessed by computed tomography. Relation to clinical indices. Am J Respir Crit Care Med 162: 1518-1523.

54. Munakata M (2006) remodeling and airway smooth muscle in asthma. Allergol Int 55: 235-245.

55. Girodet PO, Ozier A, Trian T, Marthan R, Berger P, et al. (2011) The pivotal role of airway smooth muscle in asthma pathophysiology. J Allergy 742710.

56. Ozier A, Allard B, Bara I, Girodet P-O, Trian T, et al. (2011) The pivotal role of airway smooth muscle in asthma pathophysiology. J Allergy 742710.

57. Cui S, Hoffman EA, Wenzel SE, Castro M, Fain S (2017) National Heart, Lung and Blood Institute’s Severe Asthma Research Programme. Quantitative computed tomography imaging-based clustering differentiates asthma subgroups into distinct clinical phenotypes. J Allergy Clin Immunol 69: 6749-30146.

58. Keglowich LF, Borger P (2015) the three A’s in asthma: Airway smooth muscle hypertrophy and hyperplasia. Eur Respir J 46: 1174-1184.

59. James AL, Elliot JG, Carroll ML, Mauad T, Bai TR, et al. (2012) Airway smooth muscle hypertrophy and hyperplasia in asthma. Am J Respir Crit Care Med 11: 145.

60. Pepe C, Foley S, Shannon J, Lemiche C, Olivenstein R, et al. (2005) Differences in airway remodeling between subjects with severe and moderate asthma. J Allergy Clin Immunol 116: 544-559.

61. Zuyderduyn S, Sukkar MB, Fust A, DhalIWal S, Burgess JK (2008) Treating asthma means treating airway smooth muscle cells. Eur Resp J 32: 265-274.

62. Bara I, Ozier A, J-M Tunon de Lara R, Marthan R, Berger P (2010) Pathophysiology of bronchial smooth muscle remodeling in asthma. Eur Resp J 36: 1174-1184.

63. James AL, Elliot JG, Carroll ML, Mauad T, Bai TR, et al. (2012) Airway smooth muscle hypertrophy and hyperplasia in asthma. Am J Respir Crit Care Med 11: 145.

64. Kaminska M, Fole S, Maghini K, Coxxon H, Ghezzi H, et al. (2009) Airway remodeling in subjects with or without chronic persistent airflow obstruction. J Allergy Clin Immunol 124: 45-51.

65. Roth M, Johnson PR, Borger P, Bihl MP, Rudiger JJ, et al. (2004) Dysfunctional interaction of C/EBPα and the glucocorticoid receptor in asthmatic bronchial smooth-muscle cells. N Engl J Med 351: 560-674.

66. Damera G, Tliha O, Panettieri RA (2009) Airway smooth muscle as an immunomodulatory cell. Pulm Pharmacol Ther 22: 353-359.

67. Hirzt SJ (2003) Regulation of airway smooth muscle cell immunomodulatory function: Role in asthma. Respir Physiol Neurobiol 137: 309-326.

68. Hough KP, Curtiss ML, Trevo J, Deshane JS, Thannickal VJ, et al. (2020) Airway remodeling in asthma. Front Med.

69. Araujo BB, Dollnikoff M, Silva LF, Mauad T, James A, et al. (2008) Extracellular matrix components and regulators in the airway smooth muscle in asthma. Eur Respir J 32: 61-69.

70. Bugeueret H, Berger P, Vernejoux JM, Dubuisson L, Marthan R, et al. (2007) Inflammation of bronchial smooth muscle in allergic asthma. Thorax 62: 8-15.

71. Bai TR, Cooper J, Koelmeyer T, pare DP, Weir TD (2000)The effect of age and duration of disease on airway structure in fatal asthma. Am J Respir Crit Care Med 162: 663-669.

72. Roche WR, Beasley R, Williams JH, Holgate ST (1989) Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1: 520-524.

73. Reeves SR, Kolstad T, Lien TY, Elliot M, Ziegler SF, et al. (2014) Asthmatic airway epithelial cells differentially regulate fibroblast expression of extracellular matrix components. J Allergy Clin Immunol 134: 663-670.

74. Brewer CE, Howarth PH, Dukanjovic R, Wilson J, Holgate ST, et al. (1990) Myofibroblasts and subepithelial fibrosis in bronchial asthma. AM J Respir Crit Care Med 137: 520-571.

75. James AL, Maxwell PS, Pearce-Pinto G, Elliot JG, Carroll NG (2002) The relationship of reticular basement membrane thickness to airway remodeling in asthma. Am J Respir Crit Care Med 166: 1590-1595.

76. Payne DNR, Rogers AV, Adelroth E, Bandi V, Guntupalli KK, et al. (2003) Early thickening of the reticular basement membrane in children with difficult asthma. Am J Respir Crit Care Med 167: 78-82.

77. Bonsignore MR, Profita M, Gagliardi R, Riccobono L, Chiappara G, et al. (2015) Advances in asthma pathophysiology: Stepping forward from Maurizio Vignola experience. Eur Respir Rev 24: 30-39.

78. Bourdin A, Kleis S, Chakra M, Vachier I, Paganin F, et al. (2012) Limited short-term steroid responsiveness is associated with thickening of bronchial basement membrane in severe asthma. Chest; 14: 1504-1511.

79. Carroll N, Elliot J, Morton A, James A (1993) The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis 147: 405-410.

80. Laitinen LA, Heino M, Laitinen A, Kava T, Haahetla T (1985) Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis 131: 599-606.

81. Hackett TL, Knight DA (2007) the role of epithelial injury and repair in bronchial biopsies in asthma. An ultrastructural, quantitative study correlating with hyperreactivity. Chest 112: 45-52.

82. Jeffery PK, Wardlaw AJ, Nelson FC, Collins JV, Kay AB (1989) Bronchial biopsies in asthma. An ultrastructural, quantitative study correlation with hyperreactivity. Am Rev Respir Dis 140: 1145-1153.
121. Schafer PH, Truzzi F, Parton A, Wu L, Kosek J, et al. (2016) Phosphodiesterase 4 in inflammatory diseases: Effects of apremilast in psoriatic blood and in dermal myofibroblasts through the PDE4/CD271 complex. Cell Signal 28: 753-763.

122. Kawamatawong T (2017) Roles of roflumilast, a selective phosphodiesterase 4 inhibitor, in airway diseases. J Thorac Dis 9: 1144-1154.

123. Schafer P (2012) Apremilast mechanism of action and application to psoriasis and psoriatic arthritis. Biochem Pharmacol 83: 1583-1590.

124. Sanz MJ, Cortijo J, Morcillo EJ (2005) PDE inhibitors as new anti-inflammatory drugs: effects on cell trafficking and cell adhesion molecules expression. Pharmacol Ther 106: 269-297.

125. Sousa LP, Lopes F, Silva DM, Tavares LP, Vieira TA, et al. (2010) PDE4 inhibition drives resolution of neutrophilic inflammation by inducing apoptosis in a PKA-P38/akt-dependent and NF-kB-independent manner. J Leukoc Biol 87: 895-904.

126. Fitzgerald MF, Spicer D, McAulay AE, Wollin L, Beume R (2006) Roflumilast, a phosphodiesterase 4 inhibitor, improves ciliary motility and ciliated human bronchial epithelial cells compromized by cigarette smoke in vitro. BMC Pulm Med 8: 17-20.

127. Martorana PA, Lunghi B, Lucattelli M, De CG, Beume R, et al. (2008) Effect of roflumilast on inflammatory cells in the lungs of cigarette smoke-exposed mice. BMC Pulm Med 8: 63-63.

128. Cortijo J, Iranzo A, Milara X, Mata X, Cerda-Nicolas M, et al. (2009) Roflumilast, a phosphodiesterase 4 inhibitor, alleviates bleomycin-induced lung injury. Br J Pharmaco 156: 534-544.

129. Jones NA, Boswell-Smith V, Lever R (2005) The effect of selective phosphodiesterase 4 inhibitors on neutrophil function in vitro. Pulm Pharmacol Ther 18: 93-101.

130. Eskandari N, Wickramasinghe T, Peachell PT (2004) Effects of phosphodiesterase inhibitors on interleukin-4 and interleukin-13 generation from human basophils. R J Pharmaco 165: 177-1890.

131. Buenestado A, Grassin-Delyle S, Guitard F, Naline E, Faisy C, et al. (2012) Roflumilast inhibits the release of chemokines and TNF-α from human basophils. R J Pharmacol 142: 1265-1272.

132. Hatzelmann A, Morcillo EJ, Lungarella G, Adnot S, Sanjar S, et al. (2007) Phosphodiesterase inhibitors roflumilast and rolipram augment PGE2 inhibition of TGF-β1 in bronchial epithelial cells and in human bronchial epithelial cells. PLoS ONE 2(4): e417. doi: 10.1371/journal.pone.0000417.

133. Jones NA, Boswell-Smith V, Lever R (2005) Effects of phosphodiesterase 4 inhibitors on interleukin-4 and interleukin-13 generation from human basophils. R J Pharmaco 165: 177-1890.

134. Milara J, Armengot M, Banuls P, Tenor H, Beume R, et al. (2012) Roflumilast and superoxide anion production by polymorphonuclear leukocytes in patients with asthma. Br J Pharmaco 165: 177-1890.

135. Martin RJ, Kraft M, Chu HW, Berns EA, Cassell GH (2001) A link between chronic asthma and chronic infection J Allergy Clin Immunol 107: 595-601.

136. Sakito O, Kadota J, Kohno S, Abe K, Shirai R, et al. (1966) Interleukin 1 beta, tumor necrosis factor alpha and interleukin 8 in bronchoalveolar lavage fluid of patients with panbronchiolitis: a potential mechanism of macrolide therapy. Respiration 62: 42-48.

137. Verleden GM, Vanaudenaerde BM, Dupot LJ (2006) Azithromycin reduces airway epithelial inflammation in asthmatic children: A preliminary report. Allergy Asthma Proc 28: 194-198.

138. Bartam ED, Bousoquet J, Aubier M, Breidenbörger D, O’Byrne PM (2015) Roflumilast for asthma: efficacy findings in non-placebo-controlled comparator and dosing studies. Pulm Pharmacol Ther 35: 11-19.

139. Bardin P, Kanniess F, Gauvreau G, Breidenbörger D, Rabe KF (2016) Roflumilast for asthma: Efficacy findings in mechanism of action studies. Pulm Pharmacol Ther 35: 4-10.

140. Meltzer EO, Cherinsky P, Busse W, Ohta K, Bardin P, et al. (2015) Roflumilast for asthma: Efficacy findings in placebo-controlled studies. Pulm Pharmacol Ther 35: 20-27.

141. Meltzer EO, Cherinsky P, Busse W, Ohta K, Bardin P, et al. (2015) Roflumilast for asthma: Efficacy findings in placebo-controlled studies. Pulm Pharmacol Ther 35: 20-27.

142. Berry MA, Morgan A, Shaw DE, Parker D, Green RH, et al. (2007) Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax 62: 1043-1049.

143. Simpson J, Powell H, Boyle MJ, Scott RJ, Gibson PG (2008) Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med 177: 148-155.

144. Zuckerman JM (2004) Macrolide and ketolides: Azithromycin, clarithromycin, telithromycin. Inf Dis Clin North Am 18: 621-649.

145. Johnston SL, Martin RJ (2005) Chlamydophila pneumoniae and Mycoplasma pneumoniae: A role in asthma pathogenesis? Am J Respir Crit Care Med 172: 1078-1089.

146. Zhang S, Zhang Y, Wang Y, Qu Y (2012) Effect of clarithromycin on non-eosinophilic asthma. Thorax 62: 1043-1049.

147. Martin RJ, Kraft M, Chu HW, Berns EA, Cassell GH (2001) A link between chronic asthma and chronic infection J Allergy Clin Immunol 107: 595-601.

148. Sakito O, Kadota J, Kohno S, Abe K, Shirai R, et al. (1966) Interleukin 1 beta, tumor necrosis factor alpha and interleukin 8 in bronchoalveolar lavage fluid of patients with panbronchiolitis: a potential mechanism of macrolide therapy. Respiration 62: 42-48.

149. Verleden GM, Vanaudenaerde BM, Dupot LJ (2006) Azithromycin reduces airway epithelial inflammation in asthmatic children: A preliminary report. Allergy Asthma Proc 28: 194-198.

150. He J, Zhu N, Chen X (2009) Clinical impacts of azithromycin on lung function and cytokines for asthmatic patients. JMS 36: 719-722.

151. Fonseca-Aten M, Okada PJ, Bowlware KL, Chavez-Bueno S, Mejias A, et al. (2006) Effect of clarithromycin on cytokines and chemokines in children with an exacerbation of recurrent wheezing: A double-blind, randomized, placebo-controlled trial. Ann Allergy Asthma Immunol 97: 566-570.

152. Pattison GL, Peroni DG, Bodini A, Pigozzi R, Costella S, et al. (2007) Chlamydophila pneumonia: A role in asthma pathogenesis? Am J Respir Crit Care Med 172: 1078-1089.

153. Piacentini GL, Peroni DG, Bodini A, Pigozzi R, Costella S, et al. (2007) Chlamydophila pneumonia: A role in asthma pathogenesis? Am J Respir Crit Care Med 172: 1078-1089.

154. Martin RJ, Kraft M, Chu HW, Berns EA, Cassell GH (2001) A link between chronic asthma and chronic infection J Allergy Clin Immunol 107: 595-601.

155. Kamoi H, Kurihar N, Fujiwara H, Hirata K, Takeda T (1995) The macrophage, a role in asthma pathogenesis? Am J Respir Crit Care Med 172: 1078-1089.

156. Bateman ED, Goehring U-M, Richard F, Watz H (2016) Roflumilast combined with montelukast versus montelukast alone as add-on treatment in patients with moderate-to-severe asthma. J Allergy Clin Immunol 138: 142-149.

157. Berry MA, Morgan A, Shaw DE, Parker D, Green RH, et al. (2007) Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax 62: 1043-1049.

158. Bardin P, Kanniess F, Gauvreau G, Breidenbörger D, Rabe KF (2016) Roflumilast for asthma: Efficacy findings in non-placebo-controlled studies. Pulm Pharmacol Ther 35: 20-27.

159. Meltzer EO, Cherinsky P, Busse W, Ohta K, Bardin P, et al. (2015) Roflumilast for asthma: Efficacy findings in placebo-controlled studies. Pulm Pharmacol Ther 35: 20-27.

160. Meltzer EO, Cherinsky P, Busse W, Ohta K, Bardin P, et al. (2015) Roflumilast for asthma: Efficacy findings in placebo-controlled studies. Pulm Pharmacol Ther 35: 20-27.

161. Meltzer EO, Cherinsky P, Busse W, Ohta K, Bardin P, et al. (2015) Roflumilast for asthma: Efficacy findings in placebo-controlled studies. Pulm Pharmacol Ther 35: 20-27.
156. Brusselle GG, Vandertieche C, Jorgens P, Deman R, Slabynck H, et al. (2013) Azithromycin for prevention of exacerbations in severe asthma (AZISAST): A multicentre randomised double-blind placebo-controlled trial. Thorax 68: 322-329.

157. Gibson PG, Yang IA, Upham JW, Reynolds PN, Hodge S, et al. (2017) Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): A randomized, double-blind, placebo-controlled trial. Lancet 390: 659-668.

158. Johnston SL, Blasi F, Black PN, Martin RJ, Farrell DJ, et al. (2006) The effect of telithromycin in acute exacerbations of asthma. N Engl J Med 354: 1589-1600.

159. Johnston SL, Szegi M, Cross M, Brightling C, Chaudhuri R, et al. (2016) Azithromycin for acute exacerbations of asthma: The AZALEA randomized clinical trial. JAMA Int Med 176: 1630-1637.

160. Bosnar M, Čužić S, Božnjak B, Nujic K, Ergović G, et al. (2011) Azithromycin inhibits macrophage interleukin-1beta production through inhibition of activator protein-1 in lipopolysaccharide-induced murine pulmonary neutrophilia. In Immunopharmacol: 11: 424-434.

161. Cheung PS, Hosseini K (2010) Anti-inflammatory activity of azithromycin as measured by its NF-kappaB inhibitory activity. Ocul Immunol Inflamm 18: 32-37.

162. Cigana C, Assael BM, Melotti P (2007) Azithromycin selectively reduces necrosis factor alpha levels in cystic fibrosis airway epithelial cells. Antimicrob Agents Chemother 51: 975-981.

163. Aghai ZH, Kode A, Saslow JG, Nakhla T, Farhath S, et al. (2007) Azithromycin decreases peripheral blood eosinophils in patients with prednisone-dependent asthma. Chest 131:638-645.

164. Kanoh S, Rubin BK (2010) Mechanisms of action and clinical applicability of macrolides as immunomodulatory medications. Clin Microbiol Rev 23: 590-615.

165. Shinkai M, Henke MO, Rubin BK (2008) Macrolide antibiotics as immunomodulatory medications: Proposed mechanisms of action. Pharmacol Ther 117: 393-405.

166. Ito K, Herbert C, Siegle JS, Vuppusetty C, Hansbro N, et al. (2008) Steroid-resistant neutrophilic inflammation in a mouse model of an acute exacerbation of asthma. Am J Respir Crit Care Med 39: 543-550.

167. Essilfie AT, Horvat JC, Kim RY, Mayall MR, Pinkerton JW, et al. (2015) Macrolide therapy suppresses key features of experimental steroid-sensitive and steroid-insensitive asthma. Thorax 70: 458-467.

168. Kobayashi Y, Wada H, Rossios C, Takagi D, Charron C, et al. (2013) A novel macrolide/floroketolide, solithromycin (CEM-101), reverses corticosteroid insensitivity via phosphoinositide 3-kinase pathway inhibition. Br J Pharmacol 169: 1024-1034.

169. Barnes PJ (2013) Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 131: 683-645.

170. Garey KW, Gotfried MH, Khan II, Varma S, Danzinger LH (2000) Long-term clarithromycin decreases prednisone requirements in elderly patients with prednisone-dependent asthma. Chest118:1826-1827.

171. Hare KM, Singleton RJ, Grimwood K, Valery PC, Cheng AC, et al. (2013) Longitudinal nasopharyngeal carriage and antibiotic resistance of respiratory bacteria in indigenous Australian and Alaska native children with bronchiectasis. PLoS One 8: 70478.

172. 173. Idris SF, Chilvers ER, Haworth C, Meecon D, Condiffe AM (2008) Azithromycin therapy for neutrophilic airways disease: Myth or magic? Thorax.
194. Langton D, Sha J, Ing A, Fielding D, Wood E (2017) Bronchial thermo-
plasty in severe asthma in Australia. Intern Med J 47: 536-541.

195. Thomson NC, Chanez P (2017) How effective is bronchial thermoplasty
for severe asthma in clinical practice? Eur Respir J 50: 1701140.

196. Cox G, Thomson NC, Rubin AS, Niven RM, Corris PA, et al. (2007)
Asthma control during the year after bronchial thermoplasty. N Engl J
Med 356: 1327-1337.

197. Pavord ID, Cox G, Thomson NC, Rubin AS, Corris PA, et al. (2007)
Safety and efficacy of bronchial thermoplasty in symptomatic, severe
asthma. Am J Respir Crit Care Med 176: 1185-1191.

198. Castro M, Rubin AS, Laviolette M, Fiterman J, Lima MA, et al. (2010)
Effectiveness and safety of bronchial thermoplasty in the treatment of se-
vere asthma: A multicenter, randomized, double-blind, Sham-controlled
clinical trial. Am J Respir Crit Care Med 181: 116-124.

199. Chupp G, Laviolette M, Cohn L, McEvory C, Bansal S, et al. (2017)
Long-term outcomes of bronchial thermoplasty in subjects with severe
asthma: A comparison of 3-year follow-up results from two prospective
multicentre studies. Eur Respir J 50: 1700017.

200. Zhou JP, Feng Y, Wang Q, Zhou LN, Wan HY, et al. (2016) Long-term
efficacy and safety of bronchial thermoplasty in patients with moder-
ateto-severe persistent asthma: a systemic review and meta-analysis. J
Asthma 53: 94-100.

201. Pavord ID, Thomson NC, Niven RM, Corris PA, Chung KF, et al. (2013)
Safety of bronchial thermoplasty in patients with severe refractory asth-
ma. Ann Allergy Asthma Immunol 111: 402-407.

202. Thomson NC, Rubin AS, Niven RM, Corris PA, Siersted HC, et al.
(2011) Long-term (5 year) safety of bronchial thermoplasty: Asthma In-
tervention Research (AIR) trial. BMC Pulm Med 11: 8.

203. Wechsler ME, Laviolette M, Rubin AS, Fiterman J, Silva JRL, et al.
(2013) Bronchial thermoplasty: Long-term safety and effectiveness in
patients with severe persistent asthma. J Allergy Clin Immunol 132:
1295-1302.

204. Chaudhuri R, Rubin A, Fiterman JDC, Sunino K, Silva JRL, et al.
(2019) Ten-year follow-up of subjects who received bronchial thermo-
plasty (BT) in 3 randomized controlled studies (BT10+). Eur Respir Soc
Congr 54: 63.

205. d’Hooghe JNS, Hacken NHTT, Weersink EJM, Sterk PJ, Annema JT, et
al. (2018) Emerging understanding of the mechanism of action of bron-
chial thermoplasty in asthma. Pharmacol Ther181:101-107.

206. Mainardi AS, Castro M, Chupp G (2019) Bronchial theroplasty. Clin
Chest Med 40: 193-207.

207. Healthcare Improvement Scotland (2019) British guideline on the man-
agement of asthma. Healthcare Improvement Scotland, Edinburgh, UK.
