ON PARTIAL SUMS OF NORMALIZED MITTAG-LEFFLER FUNCTIONS

DORINA RĂDUCANU

Abstract. This article deals with the ratio of normalized Mittag-Leffler function \(E_{\alpha,\beta}(z) \) and its sequence of partial sums \((E_{\alpha,\beta})_m(z)\). Several examples which illustrate the validity of our results are also given.

1. Introduction

Let \(\mathcal{A} \) be the class of functions \(f \) normalized by

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

which are analytic in the open unit disk \(\mathcal{U} = \{ z \in \mathbb{C} : |z| < 1 \} \).

Denote by \(\mathcal{S} \) the subclass of \(\mathcal{A} \) which consists of univalent functions in \(\mathcal{U} \).

Consider the function \(E_{\alpha}(z) \) defined by

\[
E_{\alpha}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + 1)}, \quad \alpha > 0, \quad z \in \mathcal{U},
\]

where \(\Gamma(s) \) denotes the familiar Gamma function. This function was introduced by Mittag-Leffler in 1903 [9] and is therefore known as the Mittag-Leffler function.

Another function \(E_{\alpha,\beta}(z) \), having similar properties to those of Mittag-Leffler function, was introduced by Wiman [19], [20] and is defined by

\[
E_{\alpha,\beta}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + \beta)}, \quad \alpha > 0, \quad \beta > 0, \quad z \in \mathcal{U}.
\]

During the last years the interest in Mittag-Leffler type functions has considerably increased due to their vast potential of applications in applied problems such as fluid flow, electric networks, probability, statistical distribution theory etc. For a detailed account of properties, generalizations and applications of functions \(\text{(1.2)} - \text{(1.3)} \) one may refer to [6], [7], [12], [16].

Geometric properties including starlikeness, convexity and close-to-convexity for the Mittag-Leffler function \(E_{\alpha,\beta}(z) \) were recently investigated by Bansal and Prajapati in [11]. Differential subordination results associated with generalized Mittag-Leffler function were also obtained in [14].

The function defined by \(\text{(1.3)} \) does not belong to the class \(\mathcal{A} \). Therefore, we consider the following normalization of the Mittag-Leffler function \(E_{\alpha,\beta}(z) \):

\[
E_{\alpha,\beta}(z) = \Gamma(\beta) z E_{\alpha,\beta}(z) = z + \sum_{n=1}^{\infty} \frac{\Gamma(\beta)}{\Gamma(\alpha n + \beta)} \frac{1}{\beta} z^{n+1}, \quad \alpha > 0, \quad \beta > 0, \quad z \in \mathcal{U}.
\]

Key words and phrases. analytic functions, partial sums, Mittag-Leffler function, univalent function
2010 Mathematics Subject Classification: 33E12, 30A10.
Note that some special cases of $E_{\alpha,\beta}(z)$ are:

$$
\begin{align*}
E_{2,1}(z) &= z \cosh \sqrt{z} \\
E_{2,2}(z) &= \sqrt{z} \sinh(\sqrt{z}) \\
E_{2,3}(z) &= 2[\cosh(\sqrt{z}) - 1] \\
E_{2,4}(z) &= 6[\sinh(\sqrt{z}) - \sqrt{z}] / \sqrt{z}.
\end{align*}
$$

(1.5)

Recently, several results related to partial sums of special functions, such as Bessel \[10\], Struve \[21\], Lommel \[2\] and Wright functions \[3\] were obtained.

Motivated by the work of Bansal and Prajapat \[1\] and also by the above mentioned results, in this paper we investigate the ratio of normalized Mittag-Leffler function $E_{\alpha,\beta}(z)$ defined by (1.4) to its sequence of partial sums

$$
\begin{align*}
(\mathbb{E}_{\alpha,\beta})_0(z) &= z \\
(\mathbb{E}_{\alpha,\beta})_m(z) &= z + \sum_{n=1}^{m} A_n z^{n+1}, \ m \in \{1, 2, \ldots\},
\end{align*}
$$

(1.6)

where

$$
A_n = \frac{\Gamma(\beta)}{\Gamma((\alpha n + \beta)\beta)}, \quad \alpha > 0, \ \beta > 0, \ n \in \mathbb{N}.
$$

We obtain lower bounds on ratios like

$$
\Re\left\{ \frac{E_{\alpha,\beta}(z)}{(E_{\alpha,\beta})_m(z)} \right\}, \quad \Re\left\{ \frac{(E_{\alpha,\beta})_{m}(z)}{E_{\alpha,\beta}(z)} \right\}, \quad \Re\left\{ \frac{E'_{\alpha,\beta}(z)}{(E_{\alpha,\beta})'_{m}(z)} \right\}, \quad \Re\left\{ \frac{(E_{\alpha,\beta})'_m(z)}{E'_{\alpha,\beta}(z)} \right\}.
$$

Several examples will be also given.

Results concerning partial sums of analytic functions may be found in \[4\], \[8\], \[11\], \[13\], \[17\], \[18\] etc.

2. Main results

In order to obtain our results we need the following lemma.

Lemma 2.1. Let $\alpha \geq 1$ and $\beta \geq 1$. Then the function $E_{\alpha,\beta}(z)$ satisfies the next two inequalities:

$$
|E_{\alpha,\beta}(z)| \leq \frac{\beta^2 + \beta + 1}{\beta^2}, \ z \in \mathbb{U}
$$

(2.1)

$$
|E'_{\alpha,\beta}(z)| \leq \frac{\beta^2 + 3\beta + 2}{\beta^2}, \ z \in \mathbb{U}.
$$

(2.2)

Proof. Under the hypothesis we have $\Gamma(n + \beta) \leq \Gamma(\alpha n + \beta)$ and thus

$$
\frac{\Gamma(\beta)}{\Gamma(\alpha n + \beta)} \leq \frac{\Gamma(\beta)}{\Gamma(n + \beta)} = \frac{1}{(\beta)_n}, \ n \in \mathbb{N},
$$

(2.3)

where

$$
(x)_n = \begin{cases}
1 & n = 0 \\
1 & x(x+1)\ldots(x+n-1) & n \in \mathbb{N}
\end{cases}
$$

is the well-known Pochhammer symbol.

Note that

$$
(x)_n = x(x+1)_{n-1}, \ n \in \mathbb{N}
$$

(2.4)

and

$$
(x)_n \geq x^n, \ n \in \mathbb{N}.
$$

(2.5)
Making use of (2.3) - (2.5) and also of the well-known triangle inequality, for \(z \in \mathcal{U} \), we obtain

\[
|E_{\alpha, \beta}(z)| = \left| z + \sum_{n=1}^{\infty} \frac{\Gamma(\beta)}{\Gamma(\alpha n + \beta)} z^{n+1} \right| \leq 1 + \sum_{n=1}^{\infty} \frac{\Gamma(\beta)}{\Gamma(\alpha n + \beta)} \leq 1 + \sum_{n=1}^{\infty} \frac{1}{(\beta)_n}
\]

and thus, inequality (2.1) is proved.

Using once more the triangle inequality, for \(z \in \mathcal{U} \), we obtain

\[
(2.6) \quad |E'_{\alpha, \beta}(z)| = \left| 1 + \sum_{n=1}^{\infty} \frac{(n+1)\Gamma(\beta)}{\Gamma(\alpha n + \beta)} z^n \right| \leq 1 + \sum_{n=1}^{\infty} \frac{n\Gamma(\beta)}{\Gamma(\alpha n + \beta)} + \sum_{n=1}^{\infty} \frac{\Gamma(\beta)}{\Gamma(\alpha n + \beta)}
\]

For \(\beta \geq 1 \) we have

\[
(2.7) \quad \frac{n}{(\beta)_n} = \frac{n}{\beta(\beta+1)_{n-1}} = \frac{n}{\beta(\beta+1)_{n-2}(\beta+n-1)} \leq \frac{1}{\beta(\beta+1)_{n-2}}.
\]

Taking into account inequalities (2.3) - (2.5) and (2.7), from (2.6), we obtain

\[
|E'_{\alpha, \beta}(z)| \leq 1 + \frac{\sum_{n=1}^{\infty} \frac{n}{(\beta)_n}}{\sum_{n=1}^{\infty} \frac{1}{(\beta)_n}} \leq 1 + \frac{1}{\beta} + \frac{1}{\beta} \sum_{n=2}^{\infty} \frac{1}{(\beta+1)_{n-2}} + \frac{1}{\beta} \sum_{n=1}^{\infty} \frac{1}{(\beta+1)_{n-1}}
\]

and thus, inequality (2.2) is also proved.

Let \(w(z) \) be an analytic function in \(\mathcal{U} \). In the sequel, we will frequently use the following well-known result:

\[
\Re \left\{ \frac{1+w(z)}{1-w(z)} \right\} > 0, \quad z \in \mathcal{U} \quad \text{if and only if} \quad |w(z)| < 1, \quad z \in \mathcal{U}.
\]

Theorem 2.1. Let \(\alpha \geq 1 \) and \(\beta \geq \frac{1+\sqrt{5}}{2} \). Then

\[
(2.8) \quad \Re \left\{ \frac{E_{\alpha, \beta}(z)}{(E_{\alpha, \beta})_m(z)} \right\} \geq \frac{\beta^2 - \beta - 1}{\beta^2}, \quad z \in \mathcal{U}
\]

and

\[
(2.9) \quad \Re \left\{ \frac{(E_{\alpha, \beta})_m(z)}{E_{\alpha, \beta}(z)} \right\} \geq \frac{\beta^2}{\beta^2 + \beta + 1}, \quad z \in \mathcal{U}.
\]

Proof. From inequality (2.1) we get

\[
1 + \sum_{n=1}^{\infty} A_n \leq \frac{\beta^2 + \beta + 1}{\beta^2}, \quad \text{where} \quad A_n = \frac{\Gamma(\beta)}{\Gamma(\alpha n + \beta)}, \quad n \in \mathbb{N}.
\]

The last inequality is equivalent to

\[
\frac{\beta^2}{\beta + 1} \sum_{n=1}^{\infty} A_n \leq 1.
\]

In order to prove the inequality (2.8), we consider the function \(w(z) \) defined by

\[
\frac{1+w(z)}{1-w(z)} = \frac{\beta^2}{\beta + 1} \frac{E_{\alpha, \beta}(z)}{(E_{\alpha, \beta})_m(z)} - \frac{\beta^2 - \beta - 1}{\beta + 1}
\]
or

\begin{equation}
(2.10) \quad \frac{1 + w(z)}{1 - w(z)} = \frac{1 + \sum_{n=1}^{m} A_n z^n + \frac{\beta^2}{\beta + 1} \sum_{n=m+1}^{\infty} A_n z^n}{1 + \sum_{n=1}^{m} A_n z^n}.
\end{equation}

From (2.10), we obtain

\begin{equation}
\begin{aligned}
\frac{1}{1 + w(z)} &= \frac{\beta^2}{\beta + 1} \sum_{n=m+1}^{\infty} A_n z^n \\
\frac{1}{1 - w(z)} &= 2 + 2 \sum_{n=1}^{m} A_n z^n + \frac{\beta^2}{\beta + 1} \sum_{n=m+1}^{\infty} A_n z^n
\end{aligned}
\end{equation}

and

\begin{equation}
|w(z)| < \frac{\beta^2}{\beta + 1} \sum_{n=m+1}^{\infty} A_n.
\end{equation}

The inequality $|w(z)| < 1$ holds true if and only if

\begin{equation}
\frac{2\beta^2}{\beta + 1} \sum_{n=m+1}^{\infty} A_n \leq 2 - 2 \sum_{n=1}^{m} A_n
\end{equation}

which is equivalent to

\begin{equation}
(2.11) \quad \sum_{n=1}^{m} A_n + \frac{\beta^2}{\beta + 1} \sum_{n=m+1}^{\infty} A_n \leq 1.
\end{equation}

To prove (2.11), it suffices to show that its left-hand side is bounded above by

\begin{equation}
\frac{\beta^2}{\beta + 1} \sum_{n=1}^{\infty} A_n
\end{equation}

which is equivalent to

\begin{equation}
\frac{\beta^2 - \beta - 1}{\beta + 1} \sum_{n=1}^{m} A_n \geq 0.
\end{equation}

The last inequality holds true for $\beta \geq \frac{1 + \sqrt{5}}{2}$.

We use the same method to prove inequality (2.9). Consider the function $w(z)$ given by

\begin{equation}
1 + w(z) = \frac{\beta^2 + \beta + 1 \left(E_{\alpha,\beta} \right)_{m}(z) - \frac{\beta^2}{\beta + 1}}{\beta + 1}.
\end{equation}

From the last equality we obtain

\begin{equation}
\begin{aligned}
w(z) &= \frac{-\frac{\beta^2 + \beta + 1}{\beta + 1} \sum_{n=m+1}^{\infty} A_n z^n}{2 + 2 \sum_{n=1}^{m} A_n z^n - \frac{\beta^2 - \beta - 1}{\beta + 1} \sum_{n=m+1}^{\infty} A_n z^n}
\end{aligned}
\end{equation}
and
\[|w(z)| < \frac{\beta^2 + \beta + 1}{\beta + 1} \frac{\infty}{n=m+1} A_n \]
\[\frac{2 - 2 \sum_{n=1}^{m} A_n - \frac{\beta^2 - \beta - 1}{\beta + 1} \infty}{n=m+1} A_n. \]

Then, \(|w(z)| < 1\) if and only if
\[(2.12) \quad \frac{\beta^2}{\beta + 1} \frac{\infty}{n=m+1} A_n + \frac{m}{n=1} A_n \leq 1. \]

Since the left-hand side of (2.12) is bounded above by
\[\frac{\beta^2}{\beta + 1} \frac{\infty}{n=1} A_n \]
we have that the inequality (2.9) holds true. Now, the proof of our theorem is completed.

In the next theorem we consider ratios involving derivatives.

Theorem 2.2. Let \(\alpha \geq 1 \) and let \(\beta \geq \frac{3 + \sqrt{17}}{2} \). Then
\[(2.13) \quad \Re \left\{ \frac{E_{\alpha,\beta}'(z)}{(E_{\alpha,\beta})_m(z)} \right\} \geq \frac{\beta^2 - 3\beta - 2}{\beta^2}, \quad z \in \mathcal{U} \]
and
\[(2.14) \quad \Re \left\{ \frac{(E_{\alpha,\beta})'_m(z)}{E_{\alpha,\beta}'(z)} \right\} \geq \frac{\beta^2}{\beta^2 + 3\beta + 2}, \quad z \in \mathcal{U}. \]

Proof. From (2.2) we have
\[1 + \sum_{n=1}^{\infty} (n + 1)A_n \leq \frac{\beta^2 + 3\beta + 2}{\beta^2}, \quad \text{where} \quad A_n = \frac{\Gamma(\beta)}{\Gamma(\alpha n + \beta)}, \quad n \in \mathbb{N}. \]
The above inequality is equivalent to
\[\frac{\beta^2}{3\beta + 2} \sum_{n=1}^{\infty} (n + 1)A_n \leq 1. \]
To prove (2.13), define the function \(w(z) \) by
\[\frac{1 + w(z)}{1 - w(z)} = \frac{\beta^2}{3\beta + 2} \frac{E_{\alpha,\beta}'(z)}{(E_{\alpha,\beta})'_m(z)} - \frac{\beta^2 - 3\beta - 2}{3\beta + 2} \]
which gives
\[w(z) = \frac{\frac{\beta^2}{3\beta + 2} \sum_{n=m+1}^{\infty} (n + 1)A_n z^n}{2 + 2 \sum_{n=1}^{m} (n + 1)A_n z^n + \frac{\beta^2}{3\beta + 2} \sum_{n=m+1}^{\infty} (n + 1)A_n z^n}. \]
and

\[|w(z)| < \frac{\beta^2}{\beta^2 + 3\beta + 2} \sum_{n=m+1}^{\infty} (n + 1)A_n \]

The condition \(|w(z)| < 1\) holds true if and only if

\[\sum_{n=1}^{m} (n + 1)A_n + \beta^2 \sum_{n=m+1}^{\infty} (n + 1)A_n \leq 1. \quad (2.15) \]

The left-hand side of \((2.15)\) is bounded above by

\[\frac{\beta^2}{\beta^2 + 3\beta + 2} \sum_{n=1}^{m} (n + 1)A_n \]

if \(\frac{\beta^2 - 3\beta - 2}{\beta^2 + 3\beta + 2} \sum_{n=1}^{m} (n + 1)A_n \geq 0\)

which holds true for \(\beta \geq \frac{3 + \sqrt{17}}{2}\).

The proof of \((2.14)\) follows the same pattern. Consider the function \(w(z)\) given by

\[1 + w(z) = \frac{\beta^2 + 3\beta + 2}{\beta^2 + 3\beta + 2} \left(\frac{E_{\alpha,\beta}''(z)}{E_{\alpha,\beta}'(z)} \right) - \frac{\beta^2}{3\beta + 2} \]

\[= \frac{1 + \sum_{n=1}^{m} (n + 1)A_n z^n - \beta^2 \sum_{n=m+1}^{\infty} (n + 1)A_n z^n}{1 + \sum_{n=1}^{\infty} (n + 1)A_n z^n}. \quad (2.16) \]

From \((2.16)\), we can write

\[w(z) = \frac{-\beta^2 + 3\beta + 2}{3\beta + 2} \sum_{n=m+1}^{\infty} (n + 1)A_n z^n \]

\[2 + 2 \sum_{n=1}^{m} (n + 1)A_n z^n - \beta^2 \sum_{n=m+1}^{\infty} (n + 1)A_n z^n \]

and

\[|w(z)| < \frac{\beta^2}{\beta^2 + 3\beta + 2} \sum_{n=m+1}^{\infty} (n + 1)A_n \]

\[2 - 2 \sum_{n=1}^{m} (n + 1)A_n - \beta^2 \sum_{n=m+1}^{\infty} (n + 1)A_n \]

The last inequality implies that \(|w(z)| < 1\) if and only if

\[\frac{2\beta^2}{3\beta + 2} \sum_{n=m+1}^{\infty} (n + 1)A_n \leq 2 - 2 \sum_{n=1}^{m} (n + 1)A_n \]

or equivalently

\[\sum_{n=1}^{m} (n + 1)A_n + \frac{\beta^2}{3\beta + 2} \sum_{n=m+1}^{\infty} (n + 1)A_n \leq 1. \quad (2.17) \]
It remains to show that the left-hand side of (2.17) is bounded above by
\[
\frac{\beta^2}{3\beta + 2} \sum_{n=1}^{\infty} (n + 1)A_n.
\]
This is equivalent to
\[
\frac{\beta^2 - 3\beta - 2}{3\beta + 2} \sum_{n=1}^{m} (n + 1)A_n \geq 0 \text{ which holds true for } \beta \geq \frac{3 + \sqrt{17}}{2}.
\]
Now, the proof of our theorem is completed. \(\square\)

3. Examples

In this section we give several examples which illustrate our theorems.

A result involving the functions \(E_{2,2}(z)\) and \(E_{2,3}(z)\), defined by (1.5), can be obtained from Theorem 2.1 by taking \(m = 0, \alpha = 2, \beta = 2\) and \(m = 0, \alpha = 2, \beta = 3\), respectively.

Corollary 3.1. The following inequalities hold true:
\[
\Re \left\{ \frac{\sinh(\sqrt{z})}{\sqrt{z}} \right\} \geq \frac{1}{4} = 0.25 \quad \Re \left\{ \frac{\sqrt{z}}{\sinh(\sqrt{z})} \right\} \geq \frac{4}{7} \approx 0.57
\]
and
\[
\Re \left\{ \frac{\cosh(\sqrt{z}) - 1}{z} \right\} \geq \frac{5}{18} \approx 0.28 \quad \Re \left\{ \frac{z}{\cosh(\sqrt{z}) - 1} \right\} \geq \frac{18}{13} \approx 1.38.
\]

Setting \(m = 0, \alpha = 2\) and \(\beta = 4\) in Theorem 2.1 and Theorem 2.2 respectively, we obtain the next result involving the function \(E_{2,4}(z)\), defined by (1.5), and its derivative.

Corollary 3.2. The following inequalities hold true:
\[
\Re \left\{ \frac{\sinh(\sqrt{z}) - \sqrt{z}}{z \sqrt{z}} \right\} \geq \frac{11}{96} \approx 0.11 \quad \Re \left\{ \frac{z \sqrt{z}}{\sinh(\sqrt{z}) - \sqrt{z}} \right\} \geq \frac{32}{7} \approx 4.57
\]
and
\[
\Re \left\{ \frac{\sqrt{z} \cosh(\sqrt{z}) - \sinh(\sqrt{z})}{z \sqrt{z}} \right\} \geq \frac{1}{24} \approx 0.04 \quad \Re \left\{ \frac{z \sqrt{z}}{\sqrt{z} \cosh(\sqrt{z}) - \sinh(\sqrt{z})} \right\} \geq \frac{8}{5} = 1.6.
\]

Remark 3.1. If we consider \(m = 0\) in inequality (2.13), we obtain \(\Re \left\{ E'_{\alpha,\beta}(z) \right\} > 0\). In view of Noshiro-Warschawski Theorem (see [5]), we have that the normalized Mittag-Leffler function is univalent in \(U\) for \(\alpha \geq 1\) and \(\beta \geq \frac{3 + \sqrt{17}}{2}\).

References

[1] D. Bansal, J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ., 61(3)(2016), 338-350.
[2] M. Çağlar, E. Deniz, Partial sums of the normalized Lommel functions, Math. Inequal. Appl., 18(3)(2015), 1189-1199.
[3] M. Din, M. Raza, N. Yağmur, Partial sums of normalized Wright functions, arXiv:1606.02750v1 [math.CV], 2016.
[4] B. A. Frasin, Generalization of partial sums of certain analytic and univalent functions, Appl. Math. Lett., 21(2008), 735-741.
[5] A. W. Goodman, Univalent functions, vol. I, Mariner Publishing Company, Inc., 1983.
[6] R. Gorenflo, F. Mainardi, S. V. Rogosin, On the generalized Mittag-Leffler type function, Integral Transform. Spec. Funct., 7(1998), 215-224.
[7] I. S. Gupta, L. Debnath, Some properties of the Mittag-Leffler functions, Integral Transform. Spec. Funct., 18(5)(2007), 329-336.
8 DORINA RĂDUCANU

[8] L. J. Liu, S. Owa, On partial sums of the Libera integral operator, J. Math. Anal. Appl., 213(2)(1997), 444-454.

[9] G. M. Mittag-Leffler, Sur la nouvelle fonction $E_\alpha(x)$, C. R. Acad. Sci. Paris, 137(1903), 554-558.

[10] H. Orhan, N. Yağmur, Partial sums of generalized Bessel functions, J. Math. Inequal., 8(4)(2014), 863-877.

[11] S. Owa, H. M. Srivastava, N. Saitoh, Partial sums of certain classes of analytic functions, Int. J. Comput. Math., 81(10)(2004), 1239-1256.

[12] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19(1997), 7-15.

[13] V. Ravichandran, Geometric properties of partial sums of univalent functions, Math. Newslett., 22(3)(2012), 208-221.

[14] D. Răducanu, Differential subordinations associated with generalized Mittag-Leffler functions (submitted).

[15] T. O. Salim, Some properties relating to the generalized Mittag-Leffler function, Advances Appl. Math. Anal., 4(1)(2009), 21-30.

[16] A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 337(2007), 797-811.

[17] H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209(1997), 221-227.

[18] E. M. Silvia, On partial sums of convex functions of order α, Houston J. Math., 11(1985), 397-404.

[19] A. Wiman, Über den Fundamental satz in der Theorie der Funktionen $E_\alpha(x)$, Acta Math., 29(1905), 191-201.

[20] A. Wiman, Über die Nullstellen der Funktionen $E_\alpha(x)$, Acta Math., 29(1905), 217-134.

[21] N. Yağmur, H. Orhan, Partial sums of generalized Struve functions, Miskolc. Math. Notes (accepted.)

Faculty of Mathematics and Computer Science, ”Transilvania” University of Brașov
50091, Iuliu Maniu, 50, Brașov, Romania, e-mail: draducanu@unitbv.ro