Indices of inseparability and refined ramification breaks

Kevin Keating
Department of Mathematics
University of Florida
Gainesville, FL 32611
USA
keating@ufl.edu

May 11, 2014

Abstract

Let K be a finite extension of \mathbb{Q}_p which contains a primitive pth root of unity ζ_p. Let L/K be a totally ramified $((\mathbb{Z}/p\mathbb{Z})^2)$-extension which has a single ramification break b. In [2] Byott and Elder defined a “refined ramification break” b_* for L/K. In this paper we prove that if $p > 2$ and the index of inseparability i_1 of L/K is not equal to $p^2b - pb$ then $b_* = i_1 - p^2b + pb + b$.

1 Introduction

Let K be a finite extension of \mathbb{Q}_p, let L/K be a finite Galois extension, and let π_L be a uniformizer for L. For simplicity we assume that L/K is a totally ramified extension of degree p^n for some $n \geq 1$. The (lower) ramification breaks of L/K are the integers $v_L(\sigma(\pi_L) - \pi_L) - 1$ for $\sigma \in \text{Gal}(L/K)$, $\sigma \neq \text{id}_L$. The extension L/K has at most n distinct ramification breaks; if there are fewer than n breaks then L/K may be viewed as having degenerate ramification data.

There have been several attempts to supply the “missing” ramification data in the cases where L/K has fewer than n breaks. The indices of inseparability i_0, i_1, \ldots, i_n of L/K were defined by Fried [6] in characteristic p and by Heiermann [7] in characteristic 0. The indices of inseparability determine the ramification breaks of L/K in all cases. As for the opposite direction, if L/K has n distinct ramification breaks then the breaks determine the indices of inseparability, but if L/K has fewer than n breaks then the indices of inseparability are not completely determined by the breaks. Thus the indices of inseparability give extra information about the extension L/K which can be viewed as the missing ramification data.
In [1, 2], Byott and Elder described an alternative method for supplying missing ramification data by defining refined lower ramification breaks for extensions with fewer than n ordinary breaks. Suppose L/K is a totally ramified $(\mathbb{Z}/p\mathbb{Z})^2$-extension with a single (ordinary) ramification break b. Then L/K has one refined break b^*, which is computed in [2] under the assumption that K contains a primitive pth root of unity. Byott and Elder also showed that the Galois module structure of \mathcal{O}_L determines b^* in certain cases.

In this paper we study the relationship between the index of inseparability i_1 of L/K and the refined ramification break b^*. In particular, when $p > 2$ and $i_1 \neq p^2b - pb$ we give a formula which expresses b^* in terms of i_1. Our approach is based on the methods given in [8] for computing i_1 in terms of the norm group $N_{L/K}(L^\times)$. We relate these methods to the Byott-Elder formula for b^* using Vostokov’s formula [9] for computing the Kummer pairing $\langle \cdot, \cdot \rangle_p : K^\times \times K^\times \to \mu_p$. The calculations are simplified somewhat through the use of the Artin-Hasse exponential series $E_p(X)$.

The author would like to thank the referee for writing a very careful and thorough review of this paper.

Notation

- K = finite extension of \mathbb{Q}_p.
- K_0/\mathbb{Q}_p = maximum unramified subextension of K/\mathbb{Q}_p.
- v_K = valuation on K normalized so that $v_K(K^\times) = \mathbb{Z}$.
- $e = v_K(p)$ = absolute ramification index of K.
- $\mathcal{O}_K = \{\alpha \in K : v_K(\alpha) \geq 0\}$ = ring of integers of K.
- $\mathcal{M}_K = \{\alpha \in K : v_K(\alpha) \geq 1\}$ = maximal ideal of \mathcal{O}_K.
- $\mathbb{F}_q \cong \mathcal{O}_K/\mathcal{M}_K$ = residue field of K.
- $U^c_K = 1 + \mathcal{M}_K^c$ for $c \geq 1$.
- K^{ab} = maximal abelian extension of K.
- L/K = totally ramified $(\mathbb{Z}/p\mathbb{Z})^2$-subextension of K^{ab}/K with one ramification break b.
- π_L = uniformizer for L.
- $\pi_K = N_{L/K}(\pi_L)$ = uniformizer for K.
- ζ_n = primitive nth root of unity in K^{ab}.
- $\mu_n = \langle \zeta_n \rangle$.
- $\mathbb{Z}_p^2 = \mathbb{Z}_p[\mu_{p^2-1}]$.

2 The Artin-Hasse exponential series and truncated exponentiation

In this section we study the relation between the Artin-Hasse exponential series and the “truncated exponentiation” polynomials of Byott-Elder. We also use the Artin-Hasse exponential series to obtain a new version of a formula from [8] for the index of inseparability i_1 of a $(\mathbb{Z}/p\mathbb{Z})^2$-extension with a single ramification break.
The Artin-Hasse exponential series is defined by

\[E_p(X) = \exp \left(X + \frac{1}{p} X^p + \frac{1}{p^2} X^{p^2} + \cdots \right), \]

(2.1)

where \(\exp(X) \in \mathbb{Q}[[X]] \) is the usual exponential series. Let \(\mu \) denote the Möbius function. Then by Lemma 9.1 in [5, I] we have

\[E_p(X) = \prod_{p \mid c} \left(1 - X^c \right)^{-\mu(c)/c}. \]

Thus the coefficients of \(E_p(X) \) lie in \(\mathbb{Z}_{(p)} = \mathbb{Q} \cap \mathbb{Z}_p \). For each \(i \geq 1 \) the power series \(E_p(X) = 1 + X + \cdots \) induces a bijection from \(\mathcal{M}_K^i \) onto \(U_K^i \). For \(\kappa, \lambda \in \mathcal{M}_K \) we have \(E_p(\kappa) \equiv E_p(\lambda) \) (mod \(\mathcal{M}_K^i \)) if and only if \(\kappa \equiv \lambda \) (mod \(\mathcal{M}_K^i \)). Let \(\Lambda_p : U_K^1 \to \mathcal{M}_K \) denote the inverse of the bijection from \(\mathcal{M}_K \) to \(U_K^1 \) induced by \(E_p(X) \). Then for \(u, v \in U_K^1 \) we have \(\Lambda_p(u) \equiv \Lambda_p(v) \) (mod \(\mathcal{M}_K^i \)) if and only if \(u \equiv v \) (mod \(\mathcal{M}_K^i \)).

Let \(\psi(X) \in \mathbb{K}[[X]] \) and \(\alpha \in K \). The \(\alpha \) power of \(1 + \psi(X) \) is a series in \(K[[X]] \) defined by

\[(1 + \psi(X))^\alpha = \sum_{n=0}^{\infty} \binom{\alpha}{n} \psi(X)^n, \]

where

\[\binom{\alpha}{n} = \frac{\alpha(\alpha-1)(\alpha-2)\ldots(\alpha-(n-1))}{n!}. \]

Motivated by this formula, Byott and Elder [1, 1.1] defined truncated exponentiation by

\[(1 + \psi(X))^{[\alpha]} = \sum_{n=0}^{p-1} \binom{\alpha}{n} \psi(X)^n. \]

Thus \((1+X)^{[\alpha]} \) is a polynomial with coefficients in \(K \); if \(\alpha \in \mathcal{O}_K \) then the coefficients of \((1+X)^{[\alpha]} \) lie in \(\mathcal{O}_K \). For \(u \in U_K^1 \) define \(u^{[\alpha]} \) to be the value of \((1+X)^{[\alpha]} \) at \(X = u - 1 \).

Lemma 2.1 Let \(\alpha \in K \). Then \(E_p(X)^{[\alpha]} \equiv E_p(\alpha X) \) (mod \(X^p \)).

Proof: We have \(E_p(X)^{[\alpha]} \equiv \exp(X)^\alpha \equiv \exp(\alpha X) \equiv E_p(\alpha X) \) (mod \(X^p \)). \qed

Proposition 2.2 Let \(i \geq 1 \), let \(u, v \in U_K^i \), and let \(\alpha \in \mathcal{O}_K \). Then

\[\Lambda_p(uv) \equiv \Lambda_p(u) + \Lambda_p(v) \pmod{\mathcal{M}_K^i}. \]

\[\Lambda_p(u^{[\alpha]}) \equiv \alpha \Lambda_p(u) \pmod{\mathcal{M}_K^i}. \]

Proof: Set \(\kappa = \Lambda_p(u) \) and \(\lambda = \Lambda_p(v) \). Then \(\kappa, \lambda \in \mathcal{M}_K^i \), so by equation (6) in [1, p. 52] we have

\[E_p(\kappa)E_p(\lambda) \equiv E_p(\kappa + \lambda) \pmod{\mathcal{M}_K^i}. \]

In addition, by Lemma 2.1 we get

\[E_p(\kappa)^{[\alpha]} \equiv E_p(\alpha \kappa) \pmod{\mathcal{M}_K^i}. \]

Applying \(\Lambda_p \) to these congruences gives the desired results. \qed

3
Corollary 2.3 Let $i \geq 1$. The scalar multiplication $\alpha \cdot u = u^{[\alpha]}$ induces an O_K-module structure on the group U_i^p / U_{i+1}^p. Furthermore, Λ_p induces an isomorphism of O_K-modules from U_i^p / U_{i+1}^p onto $\mathcal{M}_i^p / \mathcal{M}_i^{p+1}$.

Corollary 2.4 Let $u \in U_i^1$ and $\alpha \in \mathbb{Z}_p$. Then $u^\alpha \equiv u^{[\alpha]} \pmod{\mathcal{M}_i^p}$.

Proof: For $n \geq 1$ we have $\Lambda_p(u^n) \equiv n \Lambda_p(u) \equiv \Lambda_p(u^{[n]}) \pmod{\mathcal{M}_i^p}$. \qed

Corollary 2.5 Let $i \geq 1$ and let A be a subgroup of U_i^1 which contains U_{i+1}^p. Then $\Lambda_p(A)$ is a \mathbb{Z}_p-module.

Corollary 2.6 Let $i \geq 1$ and let A, B be subgroups of U_i^1 such that $U_{i+1}^p \subset B$. Then $\Lambda_p(AB) = \Lambda_p(A) + \Lambda_p(B)$.

Proof: We clearly have $\Lambda_p(AB) \supset \Lambda_p(A)$ and $\Lambda_p(AB) \supset \Lambda_p(B)$. Hence by Corollary 2.5 we get $\Lambda_p(AB) \supset \Lambda_p(A) + \Lambda_p(B)$. Let $a \in A, b \in B$. Then $\Lambda_p(ab) = \Lambda_p(a) + \Lambda_p(b) + m$ for some $m \in \mathcal{M}_i^p$. Let $b' \in U_i^1$ be such that $\Lambda_p(b') = \Lambda_p(b) + m$. Then $b \equiv b'$ (mod \mathcal{M}_i^p), so $b' \in B$. Hence $\Lambda_p(AB) \subset \Lambda_p(A) + \Lambda_p(B)$. We conclude that $\Lambda_p(AB) = \Lambda_p(A) + \Lambda_p(B)$. \qed

Let $\mathbb{Q}_{p^2} = \mathbb{Q}_p(\zeta_{p^2-1})$ denote the unramified extension of \mathbb{Q}_p of degree 2, and let \mathbb{Z}_{p^2} denote the ring of integers of \mathbb{Q}_{p^2}.

Corollary 2.7 Assume $\mu_{p^2-1} \subset K$ and let A be a subgroup of U_i^1 which contains U_{i+1}^p. Then $\Lambda_p(A)$ is a \mathbb{Z}_{p^2}-module if and only if A is stable under the map $a \mapsto a^{[\eta]}$ for every $\eta \in \mu_{p^2-1}$.

Proof: This follows from Proposition 2.2 and the fact that $\mathbb{Z}_{p^2} = \mathbb{Z}_p[\mu_{p^2-1}]$. \qed

Proposition 2.8 Let i, j be positive integers such that $pj \geq i$ and $e + \lceil \frac{i}{p} \rceil \geq i$, and let K_0/\mathbb{Q}_p be the maximum unramified subextension of K/\mathbb{Q}_p. Then $\Lambda_p((K^\times)^p \cap U_i^1) + \mathcal{M}_i^1$ is an O_{K_0}-module.

Proof: If $i \leq j$ then the claim is obvious, so we assume $i \geq j + 1$. Then

$$i \leq e + \left\lceil \frac{i-1}{p} \right\rceil \leq e + \frac{i+p-2}{p}.$$

It follows that $i \leq \frac{ep}{p-1} + \frac{p-2}{p-1}$, and hence that $i \leq \left\lceil \frac{ep}{p-1} \right\rceil$. By applying Corollary 2.6 with i replaced by j, $A = (K^\times)^p \cap U_i^1$, and $B = U_j^1$, we get

$$\Lambda_p((K^\times)^p \cap U_i^1 \cdot U_j^1) = \Lambda_p((K^\times)^p \cap U_j^1) + \mathcal{M}_K^1.$$

Hence by Corollary 2.5 we see that $\Lambda_p((K^\times)^p \cap U_j^1) + \mathcal{M}_K^1$ is a \mathbb{Z}_p-module. Let $u \in (K^\times)^p \cap U_j^1$ with $c = v_K(u-1) < i$. Then there is $\gamma \in \mathcal{M}_K$ such that $u = E_p(\gamma)^p$. Using (2.1) we get

$$u = \exp(p^2 \gamma + \gamma^p + \frac{1}{p^2} \gamma^{p^2} + \ldots) = \exp(p\gamma) \cdot E_p(\gamma^p).$$

4
Since \(c < \left[\frac{p}{p-1} \right] \) and \(c \) is an integer we have \(c < \frac{p}{p-1} \), so \(p \mid c \) and \(v_K(\gamma) = \frac{c}{p} \). Therefore \(v_K(p\gamma) = e + \frac{c}{p} \geq e + \left[\frac{c}{p} \right] \geq i \); and hence \(u \equiv E_p(\gamma^p) \pmod{\mathcal{M}_K^i} \). On the other hand, for each \(\gamma \in \mathcal{M}_K \) such that \(v_K(\gamma^p) \geq j \), the computations above show that \(E_p(\gamma^p) = E_p(\gamma^p) \cdot \exp(-p\gamma) \) lies in \((K^\times)^p \cap U_{K}^{j}) \cdot U_{K}^{i} \). It follows that

\[
\Lambda_p((K^\times)^p \cap U_{K}^{j}) + \mathcal{M}_K^i = \{ \gamma^p : \gamma \in \mathcal{M}_K, v_K(\gamma^p) \geq j \} + \mathcal{M}_K^i. \tag{2.2}
\]

Let \(q \) be the cardinality of the residue field of \(K \). Then \(\mu_{q-1} \subset \mathcal{O}_K \), so the right side of (2.2) is stable under multiplication by elements of \(\mu_{q-1} \). Since \(\mathcal{O}_{K_0} = \mathbb{Z}_p[\mu_{q-1}] \), the proposition follows.

3 Two invariants of \(L/K \)

Let \(L/K \) be a totally ramified \((\mathbb{Z}/p\mathbb{Z})^2\)-extension with a single ramification break \(b \). Then \(1 \leq b < \frac{p}{p-1} \) and \(p \nmid b \) (see for instance [3, p. 398]). In this section we define two further invariants of \(L/K \): the refined ramification break \(b_* \) and the index of inseparability \(i_1 \). We also show how \(i_1 \) can be computed in terms of the valuations of the coefficients of the minimum polynomial over \(K \) of a uniformizer for \(L \).

To motivate the definition of \(b_* \) we first reformulate the definition of \(i(\sigma) \) for \(\sigma \in \text{Gal}(L/K) \). It is easily seen that

\[
i(\sigma) = \min\{v_L(\sigma(\alpha) - \alpha) - v_L(\alpha) : \alpha \in \mathcal{O}_L, \alpha \neq 0\}.
\]

Thus \(i(\sigma) \) may be viewed as the valuation of the operator \(\sigma - 1 \) on \(\mathcal{O}_L \). Now let \(\sigma_1, \sigma_2 \) be generators for \(\text{Gal}(L/K) \cong (\mathbb{Z}/p\mathbb{Z})^2 \). Since \(b \) is the unique ramification break of \(L/K \), for \(i = 1, 2 \) we have \(\sigma_i(\pi_L) = \beta_i \) with \(v_L(\beta_i) = b + 1 \). Let \(\delta \in \mu_{q-1} \) be such that \(\beta_1/\beta_2 \equiv \delta \pmod{\mathcal{M}_L} \). Then

\[
\sigma_2^{-\delta} = \sum_{n=0}^{p-1} \binom{-\delta}{n} (\sigma_2 - 1)^n
\]

is an element of the group ring \(\mathcal{O}_{K_0}[\text{Gal}(L/K)] \). We define

\[
b_* = \min\{v_L(\sigma_1 \circ \sigma_2^{-\delta}(\alpha) - \alpha) - v_L(\alpha) : \alpha \in \mathcal{O}_L, \alpha \neq 0\}.
\]

Thus \(b_* = i(\sigma_1 \circ \sigma_2^{-\delta}) \) is the valuation of the operator \(\sigma_1 \circ \sigma_2^{-\delta} - 1 \) on \(\mathcal{O}_L \). It is proved in [2] that \(b_* \) does not depend on the choice of generators \(\sigma_1, \sigma_2 \) for \(\text{Gal}(L/K) \).

We now define the indices of inseparability of \(L/K \), following Heiermann [4]. Let \(\pi_L \) be a uniformizer for \(L \). Then \(\pi_K = N_{L/K}(\pi_L) \) is a uniformizer for \(K \), and there are unique \(c_h \in \mu_{q-1} \cup \{0\} \) such that

\[
\pi_K = \sum_{h=0}^{\infty} c_h \pi_L^{h+p^2}.
\]
For $0 \leq j \leq 2$ set
\[
\begin{align*}
i_j^* &= \min\{h \geq 0 : c_h \neq 0, \ v_p(h + p^2) \leq j\} \\
i_j &= \min\{i_j^* + p^2 e : j \leq j' \leq 2\}.
\end{align*}
\]
Then i_j^* may depend on the choice of π_L, but i_j does not (see [7, Th. 7.1]). Furthermore, we have $0 = i_2 < i_1 \leq i_0$. The relation between the indices of inseparability and the ordinary ramification data of L/K is given by [7, Cor. 6.11]. In particular, we have $i_0 = p^2 b - b$.

As in [8] we let
\[
g(X) = X^{p^2} + a_1 X^{p^2 - 1} + \cdots + a_{p^2 - 1} X + a_{p^2}
\]
be the minimum polynomial for π_L over K. Then by [8, (3.5)] we get
\[
\begin{align*}
i_1 &= \min\{(p^2 v_K(a_i) - i : 1 \leq i \leq p^2 - 1) \cup \{i_2 + p^2 e\}\} \\
&= \min\{(p^2 v_K(a_{p^2}) - p i : 1 \leq i \leq p - 1) \cup \{i_2 + p^2 e, i_0\}\} \\
&= \min\{(p^2 v_K(a_{p^2}) - p i : 1 \leq i \leq p - 1) \cup \{p^2 e, p^2 b - b\}\}.
\end{align*}
\]
For $j > p^2$ write $j = p^2 u + i$ with $1 \leq i \leq p^2$ and set $a_j = \pi_{K}^k a_i$. Then $v_K(a_{p^2 + i}) = v_K(a_{p^2}) + c$, so for every $l \geq 0$ we have
\[
i_1 = \min\{(p^2 v_K(a_{p^2}) - p i : l < i \leq l + p, p \nmid i) \cup \{p^2 e, p^2 b - b\}\}. \quad (3.1)
\]
Let $H = N_{L/K}(L^\times)$ be the subgroup of K^\times which is associated to the abelian extension L/K by class field theory. Since b is the only ramification break of L/K we have $U_K^{b+1} \leq H$ and
\[
U_K^b / (H \cap U_K^b) \cong K^\times / H \cong \text{Gal}(L/K). \quad (3.2)
\]
Theorem 3.1 Let $p > 2$, let L/K be a totally ramified $(\mathbb{Z}/p\mathbb{Z})^2$-extension with a single ramification break $b \geq 1$, and set $H = N_{L/K}(L^\times)$. If $\mu_{p-1} \not\subseteq K$ let $k = b$; otherwise let k be the smallest nonnegative integer such that $\Lambda_p(H \cap U_K^{k+1})$ is a \mathbb{Z}_p^2-module. Then
\[
i_1 = \min\{p^2 b - pk, p^2 e, p^2 b - b\}.
\]
Proof: Let $i \geq 1$ satisfy $p \nmid i$. Then by [8, (3.25)] we have
\[
N_{L/K}(E_p(r^{\pi_L^i})) \equiv E_p(\pi_K^{i} r^{p^2}) \cdot E_p(-i a_p r^p - i a_i r) \pmod{\mathcal{M}_K^{b+1}).
\]
By [8, Lemma 3.2] we have
\[
\begin{align*}
v_K(a_i) &\geq b - \frac{b - i}{p^2} = 0 - \frac{1}{p^2} \left(1 - \frac{1}{p^2} \right) b + \frac{1}{p^2} \cdot i \\
v_K(a_{p^2}) &\geq b - \frac{pb - pi}{p^2} = 0 - \frac{1}{p^2} \left(1 - \frac{1}{p} \right) b + \frac{1}{p} \cdot i. \quad (3.3)
\end{align*}
\]
Hence if \(i \leq b \) then \(v_K(a_i) \geq i \) and \(v_K(a_{pi}) \geq i \), with strict inequalities if \(i < b \). It follows that
\[
N_{L/K}(E_p(r \pi_L^i)) \equiv E_p(\beta_i(r)) \pmod{\mathcal{M}^{b+1}_K},
\]
with \(\beta_i(r) = \pi^i_K r p^i - i a_{pi} r^p - i a_i r \). In addition, we have \(v_K(\beta_i(r)) \geq i \), with equality if \(i < b \) and \(r \neq 0 \).

Since \(\Lambda_p(H \cap U^{k+1}_K) = \mathcal{M}^{b+1}_K \) we have \(k \leq b \). We claim that \(v_K(a_{pi}) \geq b + 1 \) for all \(i \geq k + 1 \) such that \(p \nmid i \). If \(k = b \) this follows from (3.3). Let \(k < b \) and suppose the claim is false. Let \(h \geq k + 1 \) be maximum with the property that \(p \nmid h \) and \(v_K(a_{ph}) \leq b \). Since \(a_{p(h+p)} = \pi_K a_{ph} \) we see that a maximum \(h \) exists, and that \(v_K(a_{ph}) = b \). Since \(H \cap U^{k+1}_K \supset U^{b+1}_K \), it follows from (3.4) and Corollary 2.6 that \(E_p(\beta_h(r)) \in H \cap U^{k+1}_K \) for all \(r \in \mu_{q-1} \cup \{0\} \). By the definition of \(k \), \(\Lambda_p(H \cap U^{k+1}_K) \) is a \(\mathbb{Z}_{p^2} \)-module. Hence for every \(r \in \mu_{q-1} \) and \(\eta \in \mu_{p^2} \),
\[
\eta \beta_h(r) - \beta_h(\eta r) = h a_{ph} r^p (\eta^p - \eta)
\]
lies in \(\Lambda_p(H \cap U^{k+1}_K) \). Since every coset of \(\mathcal{M}^{b+1}_K \) in \(\mathcal{M}^b_K \) is represented by an element of this form, and
\[
\Lambda_p(H \cap U^{k+1}_K) \supset \Lambda_p(U^{b+1}_K) = \mathcal{M}^{b+1}_K,
\]

it follows that \(\Lambda_p(H \cap U^{k+1}_K) \supset \mathcal{M}^b_K \). Hence \(H \supset E_p(\mathcal{M}^b_K) = U^b_K \), which contradicts (3.2). This proves our claim, so we have
\[
p^2 b - pk \leq p^2 v_K(a_{pi}) - pi
\]
for all \(i \) such that \(k < i \leq k + p \) and \(p \nmid i \).

Set \(m = \min\{p^2 b - pk, p^2 e, p^2 b - b\} \). Suppose \(m = p^2 b - b \). Then \(k \leq \frac{b}{p} \), so by the preceding paragraph we have \(v_K(a_{pi}) \geq b + 1 \) for all \(i > \frac{b}{p} \) such that \(p \nmid i \). Hence by (3.1) we get
\[
\begin{align*}
i_1 &= \min\{p^2 v_K(a_{pi}) - pi \mid \frac{b}{p} < i \leq \frac{b}{p} + p, p \nmid i\} \cup \{p^2 e, p^2 b - b\} \\
&= p^2 b - b.
\end{align*}
\]

Suppose \(m = p^2 e \). Then \(k \leq p(b - e) \), so \(v_K(a_{pi}) \geq b + 1 \) for all \(i > p(b - e) \) such that \(p \nmid i \). Hence by (3.1) we have
\[
\begin{align*}
i_1 &= \min\{p^2 v_K(a_{pi}) - pi \mid p(b - e) < i < p(b - e) + p\} \cup \{p^2 e, p^2 b - b\} \\
&= p^2 e.
\end{align*}
\]

Suppose \(m = p^2 b - pk \) with \(p^2 b - pk < \min\{p^2 e, p^2 b - b\} \). We claim that \(p \nmid k \). In fact if \(p \mid k \) then \(k < b < \frac{pe}{p-1} \), so we have
\[
H \cap U^k_K = ((K^\times)^p \cap U^k_K) \cdot (H \cap U^{k+1}_K).
\]

Since \(pk \geq b + 1 \) and \(H \cap U^{k+1}_K \supset U^{b+1}_K \) it follows from Corollary 2.6 that
\[
\Lambda_p(H \cap U^k_K) = \Lambda_p((K^\times)^p \cap U^k_K) + \Lambda_p(H \cap U^{k+1}_K).
\]

\[
7
\]
Since \(p^2b - pk < p^2e \) we have \(e + \frac{k}{p} \geq b + 1 \). Therefore by Proposition 2.8 we see that \(\Lambda_p((K^*)p \cap U^k_K) + \mathcal{M}^{b+1}_K \) is an \(O_{K_0} \)-module. Furthermore, \(\Lambda_p(H \cap U^{k+1}_K) \) is a \(\mathbb{Z}_p \)-module by the definition of \(k \). Since \(\mathbb{Z}_p \subset O_{K_0} \) and \(\Lambda_p(H \cap U^{k+1}_K) \supset \mathcal{M}^{b+1}_K \), it follows from (3.6) that \(\Lambda_p(H \cap U^{k}_K) \) is a \(\mathbb{Z}_p \)-module. This contradicts the definition of \(k \), so \(p \nmid k \).

Suppose \(a_{pk} \in \mathcal{M}^{b+1}_K \). Then for every \(\eta \in \mathcal{M}^{b-1}_K \) and \(r \in \mathcal{M}^{q-1}_K \) we have

\[
\eta \beta_k(r) \equiv \beta_k(\eta r) \pmod{\pi^{b+1}_K}. \tag{3.7}
\]

If \(\mathcal{M}^{b-1}_K \subset \mathcal{M}^{b+1}_K \) this implies \(\eta \beta_k(r) \in \Lambda_p(H \cap U^{k}_K) \). Since \(\Lambda_p(H \cap U^{k+1}_K) \) is a \(\mathbb{Z}_p \)-module it follows that \(\Lambda_p(H \cap U^{k+1}_K) \) is a \(\mathbb{Z}_p \)-module, contrary to assumption. Therefore \(a_{pk} \notin \mathcal{M}^{b+1}_K \) in this case. If \(\mathcal{M}^{b-1}_K \not\subset \mathcal{M}^{b+1}_K \) then \(k = b \) and it follows from (3.7) that the set

\[
S = \{ r \in \mathcal{M}^{q-1}_K \cup \{0\} : \beta_b(r) \equiv 0 \pmod{\mathcal{M}^{b+1}_K} \}
\]

is stable under multiplication by elements of \(\mathcal{M}^{b-1}_K \). Hence \(S = \{0\} \). Since

\[
\beta_b(r + r') \equiv \beta_b(r) + \beta_b(r') \pmod{\mathcal{M}^{b+1}_K}
\]

for \(r, r' \in \mathcal{M}^{q-1}_K \cup \{0\} \) this implies that every coset of \(\mathcal{M}^{b+1}_K \) in \(\mathcal{M}^{b}_K \) is represented by \(\beta_b(r) \) for some \(r \in \mathcal{M}^{q-1}_K \cup \{0\} \). It follows that \(\Lambda_p(H \cap U^{b}_K) = \mathcal{M}^{b}_K \), a contradiction.

Hence \(a_{pk} \notin \mathcal{M}^{b+1}_K \) in this case as well.

Since \(p \nmid k + p \), by (3.5) we have \(\pi_K a_{pk} = a_{p(k+p)} \in \mathcal{M}^{b+1}_K \). Thus \(v_K(a_{pk}) = b \). Using (3.1) and (3.5) we get

\[
i_1 = \min \left\{ \{p^2 v_K(a_{pi}) - pi : k \leq i < k + p, p \nmid i\} \cup \{p^2e, p^2b - b\} \right\}
\]

\[
= p^2b - pk.
\]

We conclude that \(i_1 = m \) in every case. \(\square \)

Remark 3.2 Suppose \(\mathcal{M}^{b-1}_K \subset \mathcal{M}^{b+1}_K \). Then it follows from Corollary 2.3 and class field theory that all values of \(k \) such that \(b/p < k \leq b \) and \(p \nmid k \) can be realized by extensions \(L/K \) satisfying the conditions of Theorem 3.1.

Remark 3.3 Using Theorem 3.1 we obtain the bounds \(p^2b - pb \leq i_1 \leq p^2b - b \). These inequalities can also be derived from Corollary 6.11 in [7]. It follows from these bounds that the condition \(i_1 > p^2b - pb \) is equivalent to \(i_1 \neq p^2b - pb \).

4 Kummer theory

Let \(p > 2 \) and let \(K \) be a finite extension of \(\mathbb{Q}_p \) which contains a primitive \(p \)th root of unity \(\zeta_p \). Let \(K^{ab} \) be a maximal abelian extension of \(K \) and let \(L/K \) be a totally ramified \(\mathbb{Z}/p\mathbb{Z}^2 \)-subextension of \(K^{ab}/K \) with a single ramification break \(b \). In [2], Byott and Elder gave a method for computing the refined ramification break \(b_0 \) of \(L/K \) in terms of Kummer theory. In this section we use Vostokov’s formula for the Kummer pairing to express \(b_0 \) in terms of the index of inseparability \(i_1 \), under the assumption that \(i_1 \) is
not equal to \(p^2b - pb\). The proof is based on a symmetry relation involving the Kummer pairing and truncated exponentiation.

The Kummer pairing \(\langle , \rangle_p : K^\times \times K^\times \to \mu_p\) is defined by \(\langle \alpha, \beta \rangle_p = \sigma_{\beta}(\alpha^{1/p})/\alpha^{1/p}\), where \(\alpha^{1/p} \in K^{ab}\) is any \(p\)th root of \(\alpha\) and \(\sigma_\beta\) is the element of \(\text{Gal}(K^{ab}/K)\) that corresponds to \(\beta\) under class field theory. The Kummer pairing is \(\mathbb{Z}\)-bilinear and skew-symmetric, with kernel \((K^\times)^p\) on the left and right (see for instance Proposition 5.1 in [5, IV]). For \(1 \leq i \leq \frac{pe}{p-1}\) the orthogonal complement of \(U_K^i\) with respect to \(\langle , \rangle_p\)

\[(U_K^i)^\perp = (K^\times)^p \cdot U_K^{i-1} + 1\] (see [3, §1]).

Recall that \(K_0/\mathbb{Q}_p\) is the maximum unramified subextension of \(K/\mathbb{Q}_p\). In [9] Vostokov gave a formula for computing \(\langle , \rangle_p\) in terms of residues of elements of

\[K_0 \{\{X\} \} = \left\{ \sum_{n=\infty}^{\infty} a_n X^n : a_n \in K_0, \lim_{n \to -\infty} v_{K_0}(a_n) = \infty, \exists m \forall n v_{K_0}(a_n) \geq m \right\}.

The set \(K_0 \{\{X\} \}\) has an obvious operation of addition, and the conditions on the coefficients imply that the natural multiplication on \(K_0 \{\{X\} \}\) is also well-defined. These operations make \(K_0 \{\{X\} \}\) a field. Let \(\mathcal{O}_{K_0} \{\{X\} \}\) denote the subring of \(K_0 \{\{X\} \}\) consisting of series whose coefficients lie in \(\mathcal{O}_{K_0}\). Also let \(\text{Res}(\psi(X))\) denote the coefficient of \(X^{-1}\) in \(\psi(X) \in K_0 \{\{X\} \}\).

For each \(\alpha \in U_K^1\) choose \(\tilde{\alpha}(X) \in \mathcal{O}_{K_0}[[X]]\) so that \(\tilde{\alpha}(0) = 1\) and \(\tilde{\alpha}(\pi_K) = \alpha\). Of course there are many series \(\tilde{\alpha}(X)\) with this property, but for our purposes it will not matter which we choose. Let \(\phi : K_0 \to K_0\) be the \(p\)-Frobenius map and define \(\tilde{\alpha}^\Delta(X) = \tilde{\alpha}^\phi(X^p)\) and \(l(\tilde{\alpha}) = \log(\tilde{\alpha}) - p^{-1}\log(\tilde{\alpha}^\Delta)\), where

\[\log(1 + \psi(X)) = \psi(X) - \frac{1}{2}\psi(X)^2 + \frac{1}{3}\psi(X)^3 - \ldots\]

for \(\psi(X) \in XK_0[[X]]\). By Proposition 2.2 in [5, VI] we have \(l(\tilde{\alpha}) \in X\mathcal{O}_{K_0}[[X]]\).

Let \(\alpha, \beta \in U_K^1\). Following [3] p. 241 we define

\[\Phi_{\alpha, \beta}(X) = \frac{\tilde{\alpha}'}{\tilde{\alpha}} \cdot l(\tilde{\beta}) - \frac{(\tilde{\beta}^\Delta)'}{p\tilde{\beta}^\Delta} \cdot l(\tilde{\alpha}).\]

Then \(\Phi_{\alpha, \beta}(X) \in \mathcal{O}_{K_0}[[X]]\). Let \(s(X) = \tilde{\zeta}_p(X^p) - 1\). Then by Proposition 3.1 in [3, VI], \(s(X)\) is a unit in \(\mathcal{O}_{K_0} \{\{X\} \}\). Since \(p > 2\) and \(\alpha, \beta \in U_K^1\), by Theorem 4 in [3, VII] we have

\[\langle \alpha, \beta \rangle_p = \zeta_p^{\text{Tr}_{K_0/\mathbb{Q}_p}(\text{Res}(\Phi_{\alpha, \beta}/s))} \quad (4.1)\]

Theorem 4.1 Let \(p > 2\) and let \(K\) be a finite extension of \(\mathbb{Q}_p\) which contains a primitive \(p\)th root of unity. Let \(i, j\) be positive integers such that \(i + pj > \frac{pe}{p-1}\) and \(pi + j > \frac{pe}{p-1}\). Let \(\alpha \in U_K^i\), \(\beta \in U_K^j\), and \(\eta \in \mathcal{O}_{K_0}\). Then \(\langle \alpha^{[\eta]}, \beta \rangle_p = \langle \alpha, \beta^{[\eta]} \rangle_p\).

Proof: By the linearity and continuity of the Kummer pairing we may assume that \(\alpha = E_p(u\pi_K^i), \beta = E_p(v\pi_K^j), \tilde{\alpha}(X) = E_p(uX^c),\) and \(\tilde{\beta}(X) = E_p(vX^d)\) with \(u, v \in \mu_{q-1},\)
c \geq i, and \ d \geq j. It follows from (2.1) that \(l(\tilde{\alpha}(X)) = uX^c \) and \(l(\tilde{\beta}(X)) = vX^d \). Using (2.1) and Lemma 2.1 we get
\[
\frac{\tilde{\alpha}'(X)}{\tilde{\alpha}(X)} \equiv cuX^{c-1} \pmod{X^{pc-1}}
\]
\[
\frac{\tilde{\beta}'(X)}{p\tilde{\beta}(X)} \equiv 0 \pmod{X^{pd-1}}
\]
\[
\frac{(\tilde{\alpha}(X)^{[\eta]})'}{\tilde{\alpha}(X)^{[\eta]}} \equiv c(\eta u)X^{c-1} \pmod{X^{pc-1}}
\]
\[
l(\tilde{\beta}(X)^{[\eta]}) \equiv \eta vX^d \pmod{X^{pd}}.
\]

Note that \(\tilde{\alpha}(X)^{[\eta]}, \tilde{\beta}(X)^{[\eta]} \) are elements of \(1 + X\mathcal{O}_{K_0}[[X]] \) such that \(\tilde{\alpha}(\pi_K)^{[\eta]} = \alpha^{[\eta]}, \tilde{\beta}(\pi_K)^{[\eta]} = \beta^{[\eta]} \). Hence we may take \(\tilde{\alpha}^{[\eta]}(X) = \tilde{\alpha}(X)^{[\eta]} \) and \(\tilde{\beta}^{[\eta]}(X) = \tilde{\beta}(X)^{[\eta]} \). Using the computations from the preceding paragraph and the lower bounds for \(i + pj \) and \(pi + j \) we get
\[
\Phi_{\alpha,\beta}(X) \equiv \frac{\tilde{\alpha}'}{\tilde{\alpha}} \cdot l(\tilde{\beta}) \pmod{X^{pe}}
\]
\[
\Phi_{\alpha^{[\eta]},\beta}(X) \equiv c(\eta u)uX^{c+d-1} \pmod{X^{pc}} \quad (4.2)
\]
\[
\Phi_{\alpha,\beta^{[\eta]}}(X) \equiv cu(\eta v)X^{c+d-1} \pmod{X^{pc}} \quad (4.3)
\]

It follows from Proposition 3.1 in [5 VI] that the image of \(s(X) \in \mathcal{O}_{K_0}\{X\}^\times \) in \((\mathcal{O}_{K_0}/\mathcal{M}_{K_0})(\langle X \rangle) \cong \mathbb{F}_q(\langle X \rangle) \)
has X-valuation \(\frac{pe}{p-1} \). Therefore by (4.2) and (4.3) we have
\[
\frac{\Phi_{\alpha^{[\eta]},\beta}(X) - \Phi_{\alpha,\beta^{[\eta]}}(X)}{s(X)} = \gamma(X) + p\delta(X)
\]
for some \(\gamma(X) \in \mathcal{O}_{K_0}[[X]] \) and \(\delta(X) \in \mathcal{O}_{K_0}\{X\} \). It follows that
\[
\text{Res} \left(\frac{\Phi_{\alpha^{[\eta]},\beta}(X)}{s(X)} \right) \equiv \text{Res} \left(\frac{\Phi_{\alpha,\beta^{[\eta]}}(X)}{s(X)} \right) \pmod{\mathcal{M}_{K_0}}.
\]

Therefore by (4.1) we get \(\langle \alpha^{[\eta]}, \beta \rangle_p = \langle \alpha, \beta^{[\eta]} \rangle_p \). \(\square \)

Corollary 4.2 Let \(K, i, j \) satisfy the hypotheses of Theorem 4.1. Let \(A \) be a subgroup of \(U_K^i \) such that \(A \) contains \(U_K^{pa} \) and \(\Lambda_p(A) \) is a \(\mathbb{Z}_{p^2} \)-module. Then \(\Lambda_p(A^\perp \cap U_K^j) \) is a \(\mathbb{Z}_{p^2} \)-module.

Proof: Let \(\alpha \in A \). By Corollary 2.7 we have \(\alpha^{[\eta]} \in A \) for every \(\eta \in \mu_{p^{2-1}} \). Hence for \(\beta \in A^\perp \cap U_K^j \) we see that \(\langle \alpha, \beta^{[\eta]} \rangle_p = \langle \alpha^{[\eta]}, \beta \rangle_p = 1 \). Since this holds for every \(\alpha \in A \) we
get $\beta^{[v]} \in A^1 \cap U^j_K$. Since $pj \geq \frac{pe}{p-1} - i + 1$ we have $A^1 \cap U^j_K \supset U^pj_K$. Therefore it follows from Corollary 2.7 that $\Lambda_p(A^1 \cap U^j_K)$ is a \mathbb{Z}_{p^2}-module.

Recall that $H = N_{L/K}(L^\times)$ is the subgroup of K^\times that corresponds to L/K under class field theory, and let $R = (L^\times)^p \cap K^\times$ denote the subgroup of K^\times that corresponds to L/K under Kummer theory. Then R contains $(K^\times)^p$, and it follows from the basic properties of the Kummer pairing that $R = H^\perp$ and $H = R^\perp$. Furthermore, $R/(K^\times)^p$ and K^\times/H are both elementary abelian p-groups of rank 2. Let $R_0 = R \cap U^{pe-1}_{K^p}$. Since the only ramification break of L/K is b we see that $R = R_0 \cdot (K^\times)^p$ and

$$R_0/((K^\times)^p \cap U^{pe-1}_{K^p}) \cong R/(K^\times)^p$$

(cf. [3]).

For $a \in \mathcal{O}_K$ we let $\overline{a} = a + \mathcal{M}^{\frac{pe}{p-1} - b+1}_K$ denote the image of a in $\mathcal{O}_K/\mathcal{M}^{\frac{pe}{p-1} - b+1}_K$. Then $\overline{R_0} \cong R/(K^\times)^p$ is an elementary abelian p-group of rank 2. Let $1 + \rho_1, 1 + \rho_2$ be elements of R_0 such that $1 + \rho_1, 1 + \rho_2$ generate $\overline{R_0}$. Then $\nu_K(\rho_1) = \nu_K(\rho_2) = \frac{pe}{p-1} - b$. Let $\theta \in \mu_{q-1}$ be such that $\theta \equiv \rho_2/\rho_1 \pmod{\mathcal{M}_K}$. Then $\theta \not\in \mu_{p-1}$ and

$$(1 + \rho_1)^{[\theta]} \equiv 1 + \rho_2 \pmod{\mathcal{M}^{\frac{pe}{p-1} - b+1}_K}.$$

Let $s \leq \frac{pe}{p-1}$ be maximum such that $(1 + \rho_1)^{[\theta]} \in R_0 \cdot U^s_K$, and set $t = \frac{pe}{p-1} - s$. Then by [2, Prop. 10] we have

$$b_s = pb - \max\{pt - b, (p^2 - 1)b - p^2e, 0\}. \quad (4.4)$$

Lemma 4.3 Let $p > 2$ and assume that K contains a primitive pth root of unity. Let L/K be a totally ramified $(\mathbb{Z}/p\mathbb{Z})^2$-subextension of K^{ab}/K with a single ramification break b. Then the following are equivalent:

1. $\theta \in \mu_{p^2-1}$.
2. $\Lambda_p(R_0) + \mathcal{M}^{\frac{pe}{p-1} - b+1}_K$ is a \mathbb{Z}_{p^2}-module.
3. $\Lambda_p(H \cap U^b_K)$ is a \mathbb{Z}_{p^2}-module.
4. $i_1 > pb - p^2b$.

Proof: To prove the equivalence of the first two statements we note that $\overline{\Lambda_p(1 + \rho_1)}$ and $\overline{\Lambda_p(1 + \rho_2)} = \theta \cdot \overline{\Lambda_p(1 + \rho_1)}$ generate the rank-2 elementary abelian p-group $\Lambda_p(R_0)$. Hence θ lies in μ_{p^2-1} if and only if $\Lambda_p(R_0)$ is a vector space over \mathbb{F}_{p^2}, which holds if and only if $\Lambda_p(R_0) + \mathcal{M}^{\frac{pe}{p-1} - b+1}_K$ is a \mathbb{Z}_{p^2}-module. The equivalence of statements 3 and 4 follows from Theorem 3.1. To prove the equivalence of statements 2 and 3 we observe that if $\Lambda_p(R_0) + \mathcal{M}^{\frac{pe}{p-1} - b+1}_K$ is a \mathbb{Z}_{p^2}-module then it follows from Corollary 4.2 that

$$\Lambda_p((R_0 \cdot U^{pe-1}_{K^p})^\perp \cap U^b_K) = \Lambda_p(H \cap U^b_K)$$
is a \mathbb{Z}_p^2-module. Conversely, if $\Lambda_p(H \cap U_K^s)$ is a \mathbb{Z}_p^2-module then it follows from Corollary 4.2 that

\[
\Lambda_p((H \cap U_K^s)^{-1} \cap U_K^{\frac{p-1}{p^s}-b}) = \Lambda_p(R_0 \cdot U_K^{\frac{p-1}{p^s}-b+1}) = \Lambda_p(R_0) + \mathcal{M}_K^{\frac{p-1}{p^s}-b+1}
\]
is a \mathbb{Z}_p^2-module.

For the rest of this paper we restrict our attention to extensions L/K which satisfy the conditions of Lemma 4.3. Our goal is to compute b_s in terms of i_1 for this class of extensions. The following proposition will allow us to make a connection between $\Lambda_p(R_0)$ and the definition of s.

Proposition 4.4 Let L/K be an extension which satisfies the conditions of Lemma 4.3 and let i satisfy $1 \leq i \leq p(\frac{|\rho|}{p-1} - b)$ and $i \leq p(\frac{|\rho|}{p-1} - [\frac{1}{p}])$. Then $(1 + \rho_1)^{[i]} \in R_0 \cdot U_K^i$ if and only if $\Lambda_p(R_0) + \mathcal{M}_K^i$ is a \mathbb{Z}_p^2-module.

Proof: If $i \leq \frac{pe}{p-1} - b$ then both statements are certainly true, so we assume $i > \frac{pe}{p-1} - b$. If $\Lambda_p(R_0) + \mathcal{M}_K^i$ is a \mathbb{Z}_p^2-module then it follows from Proposition 2.2 that $(1 + \rho_1)^{[i]} \in R_0 \cdot U_K^i$. Conversely, suppose that $(1 + \rho_1)^{[i]} \in R_0 \cdot U_K^i$. Thanks to the upper bounds on i, the hypotheses of Proposition 2.8 are satisfied with $j = \frac{pe}{p-1} - b$. It follows that $\Lambda_p((K^\times)^p \cap U_K^{\frac{pe}{p-1}-b}) + \mathcal{M}_K^i$ is an O_{K_0}-module, and hence a \mathbb{Z}_p^2-module. By Proposition 2.2 we have $\theta \cdot \Lambda_p(1 + \rho_1) \in \Lambda_p(R_0) + \mathcal{M}_K^i$. Therefore the rank-2 elementary abelian p-group

\[
(\Lambda_p(R_0) + \mathcal{M}_K^i)/(\Lambda_p((K^\times)^p \cap U_K^{\frac{pe}{p-1}-b}) + \mathcal{M}_K^i)
\]
is generated by the cosets represented by $\Lambda_p(1 + \rho_1)$ and $\theta \cdot \Lambda_p(1 + \rho_1)$. Since $\theta \in [\mu_{p^2-1} \setminus \mu_{p-1}]$, it follows that (4.5) is a vector space over \mathbb{F}_p^2. We conclude that $\Lambda_p(R_0) + \mathcal{M}_K^i$ is a \mathbb{Z}_p^2-module. □

We now reformulate the Byott-Elder formula for b_s in terms of $\Lambda_p(R_0)$.

Theorem 4.5 Let L/K be an extension which satisfies the conditions of Lemma 4.3, let R be the subgroup of K^\times that corresponds to L/K under Kummer theory, and set $R_0 = R \cap U_K^{\frac{pe}{p-1}-b}$. Let $s' \leq \frac{pe}{p-1}$ be maximum such that $\Lambda_p(R_0) + \mathcal{M}_K^{s'}$ is a \mathbb{Z}_p^2-module and set $t' = \frac{pe}{p-1} - s'$. Then

\[
b_s = pb - \max\{pt' - b, (p^2 - 1)b - p^2e, 0\}. \tag{4.6}
\]

Proof: Recall that $t = \frac{pe}{p-1} - s$, where s is the smallest nonnegative integer such that $(1 + \rho_1)^{[i]} \in R_0 \cdot U_K^s$. Set

\[
M = \max\{pt - b, (p^2 - 1)b - p^2e, 0\}
\]

\[
M' = \max\{pt' - b, (p^2 - 1)b - p^2e, 0\}.
\]

12
By (4.4) we have \(b_* = pb - M \). Therefore to prove the theorem it suffices to show that \(M' = M \). We divide the proof into three cases, depending on the value of \(M \).

If \(M = (p^2 - 1)b - p^2e \) then \(t \leq p(b - e) \), and hence \((1 + \rho_1)[\theta] \in R_0 \cdot U_{K}^{\frac{pe}{p-1} - p(b-e)}\). Since \((p^2 - 1)b - p^2e \geq 0 \) we have

\[
 p \left(\frac{pe}{p-1} - b \right) = \frac{pe}{p-1} - p(b - e) \leq \frac{pe}{p-1} - \left\lfloor \frac{b}{p} \right\rfloor.
\]

Therefore by Proposition 4.4 we see that \(\Lambda_p(R_0) + \mathcal{M}_{K}^{\frac{pe}{p-1} - p(b-e)} \) is a \(\mathbb{Z}_p^2 \)-module. Hence \(t' \leq p(b-e) \), so \(M' = M \) in this case.

If \(M = 0 \) then \(t \leq \lfloor \frac{b}{p} \rfloor \) and hence \((1+\rho_1)[\theta] \in R_0 \cdot U_{K}^{\frac{pe}{p-1} - \lfloor \frac{b}{p} \rfloor} \). Since \((p^2 - 1)b - p^2e \leq 0 \) we have \(p(\frac{pe}{p-1} - b) \geq \frac{pe}{p-1} - \lfloor \frac{b}{p} \rfloor \). Therefore by Proposition 4.4 we see that \(\Lambda_p(R_0) + \mathcal{M}_{K}^{\frac{pe}{p-1} - \lfloor \frac{b}{p} \rfloor} \)

is a \(\mathbb{Z}_p^2 \)-module. Hence \(t' \leq \lfloor \frac{b}{p} \rfloor \), so \(pt' \leq b \). It follows that \(M' = M \) in this case.

If \(M = pt - b > \max \{(p^2 - 1)b - p^2e, 0\} \) then \(t > p(b - e) \) and \(t > \frac{b}{p} \). Hence \(s < p(\frac{pe}{p-1} - b) \) and \(s < \frac{pe}{p-1} - \lfloor \frac{b}{p} \rfloor \). Since \((1+\rho_1)[\theta] \in R_0 \cdot U_{K}^{e} \) and \((1+\rho_1)[\theta] \notin R_0 \cdot U_{K}^{e+1} \), it follows from Proposition 4.4 that \(\Lambda_p(R_0) + \mathcal{M}_{K}^{e} \) is a \(\mathbb{Z}_p^2 \)-module, but \(\Lambda_p(R_0) + \mathcal{M}_{K}^{e+1} \) is not. Therefore \(s' = s \), so \(M' = M \) in this case as well.

Now that we have formulas for computing \(b_* \) and \(i_1 \) in terms of \(\Lambda_p(R_0) \), we can determine the relationship between these two invariants.

Theorem 4.6 Let \(p > 2 \) and let \(K \) be a finite extension of \(\mathbb{Q}_p \) which contains a primitive \(p \)-th root of unity. Let \(L/K \) be a totally ramified \((\mathbb{Z}/p\mathbb{Z})^2 \)-extension with a single ramification break \(b \). Assume that the index of inseparability \(i_1 \) of \(L/K \) is not equal to \(p^2b - pb \). Then the refined ramification break \(b_* \) of \(L/K \) is given by \(b_* = i_1 - p^2b + pb + b \).

Proof: As above we let \(H \) denote the subgroup of \(K^\times \) that corresponds to the extension \(L/K \) under class field theory. By Theorem 3.1 we have

\[
i_1 = \min\{p^2b - pk, p^2e, p^2b - b\}, \quad (4.7)
\]

where \(k \) is the smallest nonnegative integer such that \(\Lambda_p(H \cap U_{K}^{k+1}) \) is a \(\mathbb{Z}_p^2 \)-module.

Let \(R \) be the subgroup of \(K^\times \) that corresponds to \(L/K \) under Kummer theory and set \(R_0 = R \cap U_{K}^{\frac{pe}{p-1} - b} \). Recall that \(R \) is equal to the orthogonal complement \(H^\perp \) of \(H \) with respect to the Kummer pairing \(\langle , \rangle_p \). In addition, since \(R = R_0 \cdot (K^\times)^p \) we have \(R_0^\perp = R_1^\perp = H \). As in Theorem 4.5 we let \(t' \) be the smallest nonnegative integer such that \(\Lambda_p(R_0) + \mathcal{M}_{K}^{\frac{pe}{p-1} - t'} \) is a \(\mathbb{Z}_p^2 \)-module.

Suppose \(i_1 = p^2b - b \). Then

\[
\Lambda_p((H \cap U_{K}^{\lfloor \frac{b}{p} \rfloor + 1})^\perp \cap U_{K}^{\frac{pe}{p-1} - b}) = \Lambda_p((R \cdot U_{K}^{\frac{pe}{p-1} - \lfloor \frac{b}{p} \rfloor}) \cap U_{K}^{\frac{pe}{p-1} - b}) = \Lambda_p(R_0 \cdot U_{K}^{\frac{pe}{p-1} - \lfloor \frac{b}{p} \rfloor}).
\]
Since $p\left(\frac{pe}{p-1} - b\right) \geq \frac{pe}{p-1} - \left\lfloor \frac{b}{p} \right\rfloor$, it follows from Corollary 2.6 that

$$\Lambda_p((H \cap U_{K}^{\left\lfloor \frac{b}{p} \right\rfloor + 1} \cap U_{K}^{\frac{pe}{p-1} - b}) = \Lambda_p(R_0) + \mathcal{M}_{K}^{\frac{pe}{p-1} - \left\lfloor \frac{b}{p} \right\rfloor}. \quad (4.8)$$

Since $\left\lfloor \frac{b}{p} \right\rfloor + 1 > \frac{b}{p} \geq p(b - e)$, we have

$$p \left(\left\lfloor \frac{b}{p} \right\rfloor + 1 \right) + \left(\frac{pe}{p-1} - b \right) > \frac{pe}{p-1} - 1.$$

Therefore by (4.8) and Corollary 4.2 with $A = H \cap U_{K}^{\left\lfloor \frac{b}{p} \right\rfloor + 1}$, $i = \left\lfloor \frac{b}{p} \right\rfloor + 1$, and $j = \frac{pe}{p-1} - b$ we see that $\Lambda_p(R_0) + \mathcal{M}_{K}^{\frac{pe}{p-1} - \left\lfloor \frac{b}{p} \right\rfloor}$ is a \mathbb{Z}_{p^2}-module. Hence $t' \leq 1 \frac{b}{p}$. Since $(p^2 - 1)b - p^2 e \leq 0$, it follows from Theorem 4.5 that $b_* = pb$ in this case.

Suppose $i_1 = p^2 e$. Then

$$\Lambda_p((H \cap U_{K}^{p(b-e)+1} \cap U_{K}^{\frac{pe}{p-1} - b}) = \Lambda_p((R \cdot U_{K}^{\frac{pe}{p-1} - p(b-e)}) \cap U_{K}^{\frac{pe}{p-1} - b})$$

$$= \Lambda_p(R_0 \cdot U_{K}^{\frac{pe}{p-1} - p(b-e)}).$$

Since $b > p(b - e)$ and $p\left(\frac{pe}{p-1} - b\right) = \frac{pe}{p-1} - p(b - e)$ it follows from Corollary 2.6 that

$$\Lambda_p((H \cap U_{K}^{p(b-e)+1} \cap U_{K}^{\frac{pe}{p-1} - b}) = \Lambda_p(R_0) + \mathcal{M}_{K}^{\frac{pe}{p-1} - p(b-e)}. \quad (4.9)$$

Since $p^2 b - b \geq p^2 e$ we have

$$(p(b - e) + 1) + \left(\frac{pe}{p-1} - b \right) > \frac{pe}{p-1} - 1$$

$$p(p(b - e) + 1) + \left(\frac{pe}{p-1} - b \right) > \frac{pe}{p-1} - 1.$$

Therefore it follows from (4.9) and Corollary 4.2 with $A = H \cap U_{K}^{p(b-e)+1}$, $i = p(b - e) + 1$, and $j = \frac{pe}{p-1} - b$ that $\Lambda_p(R_0) + \mathcal{M}_{K}^{\frac{pe}{p-1} - p(b-e)}$ is a \mathbb{Z}_{p^2}-module. Hence $t' \leq p(b - e)$. Since $(p^2 - 1)b - p^2 e \geq 0$, it follows from Theorem 4.5 that $b_* = p^2(e - b) + pb + b$ in this case.

Suppose $i_1 = p^2 b - pk < \min\{p^2 b - b, p^2 e\}$. Since $H \supset U_{K}^{b+1}$ we have $k \leq b$, so $R_0 \cdot U_{K}^{\frac{pe}{p-1} - k}$ is contained in $U_{K}^{\frac{pe}{p-1} - b}$. Hence

$$\Lambda_p((H \cap U_{K}^{b+1} \cap U_{K}^{\frac{pe}{p-1} - b}) = \Lambda_p((R \cdot U_{K}^{\frac{pe}{p-1} - k}) \cap U_{K}^{\frac{pe}{p-1} - b})$$

$$= \Lambda_p(R_0 \cdot U_{K}^{\frac{pe}{p-1} - k}).$$

Since $k > p(b - e)$ we have $p\left(\frac{pe}{p-1} - b\right) > \frac{pe}{p-1} - k$. Therefore by Corollary 2.6 we get

$$\Lambda_p((H \cap U_{K}^{b+1} \cap U_{K}^{\frac{pe}{p-1} - b}) = \Lambda_p(R_0) + \mathcal{M}_{K}^{\frac{pe}{p-1} - k}. \quad (4.10)$$
It follows from the inequalities $k > p(b - e)$ and $pk > b$ that
\[
\begin{align*}
k + p \left(\frac{pe}{p-1} - b \right) & > \frac{pe}{p-1}, \\
pk + \left(\frac{pe}{p-1} - b \right) & > \frac{pe}{p-1}.
\end{align*}
\]
Therefore by (4.10) and Corollary 4.2 with $A = H \cap U_K^{k+1}$, $i = k + 1$, and $j = \frac{pe}{p-1} - b$ we see that $\Lambda_p(R_0) + \mathcal{M}_{K}^{pe-k}$ is a \mathbb{Z}_{p^2}-module.

Suppose that $\Lambda_p(R_0) + \mathcal{M}_{K}^{pe-k+1}$ is also a \mathbb{Z}_{p^2}-module. Then by Corollary 4.2 with $A = R_0 \cdot U_K^{\frac{pe}{p-1}-k+1}$, $i = \frac{pe}{p-1} - b$, and $j = k$ we see that
\[
\Lambda_p((R_0 \cdot U_K^{\frac{pe}{p-1}-k+1}) \cap U_K^k) = \Lambda_p(H \cap (K^*)^p U_K^k \cap U_K^k)
\]
is a \mathbb{Z}_{p^2}-module. Since $k \geq 1$ this contradicts the definition of k. Hence $\Lambda_p(R_0 \cdot U_K^{\frac{pe}{p-1}-k+1})$ is not a \mathbb{Z}_{p^2}-module, so $t' = k$. Since $pk - b > \max{(p^2 - 1)b - p^2 e, 0}$ we get $b_* = pb - pk + b$ by Theorem 4.5. By comparing our formulas for b_* with (4.7) we find that $b_* = i_1 - p^2 b + pb + b$ in all three cases. \hfill \Box

Remark 4.7 If $i_1 = p^2 b - pb$ then b_* can take any of the values allowed by Theorem 5 in [2]. On the other hand, for a given b_* we have either $i_1 = p^2 b - pb$ or $i_1 = b_* + p^2 b - pb - b$.

References

[1] N. P. Byott and G. G. Elder, New ramification breaks and additive Galois structure, J. Théor. Nombres Bordeaux 17 (2005), 87–107.

[2] N. P. Byott and G. G. Elder, On the necessity of new ramification breaks, J. Number Theory 129 (2009), 84–101.

[3] C. S. Dalawat, Further remarks on local discriminants. J. Ramanujan Math. Soc. 25 (2010), 393–417.

[4] M. Demazure, Lectures on p-Divisible Groups, Lecture Notes in Mathematics 302.

[5] I. B. Fesenko and S. V. Vostokov, Local fields and their extensions, Amer. Math. Soc., Providence, RI, 2002.

[6] M. Fried, Arithmetical properties of function fields II, The generalized Schur problem, Acta Arith. 25 (1973/74), 225–258.

[7] V. Heiermann, De nouveaux invariants numériques pour les extensions totalement ramifiées de corps locaux, J. Number Theory 59 (1996), 159–202.

15
[8] K. Keating, Indices of inseparability for elementary abelian p-extensions, J. Number Theory 136 (2014), 233–251.

[9] Vostokov, S. V., On the explicit form of the reciprocity law (Russian), Dokl. Akad. Nauk SSSR 238 (1978), no. 6, 1276–1278; translated in Soviet Math. Dokl. 19 (1978), no. 1, 198–201.