Cosmic Star Formation from the Milky Way and its Satellites

F.D.A. Hartwick
Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada, V8W 3P6

Abstract. We use observations and evolutionary models of local objects to interpret a recent determination of the star-formation history of the universe. By fitting the global star-formation rate, the model predicts the ratio of spheroid to disk mass of \(\sim 1 \), an intergalactic medium (IGM) whose mass is \(\sim 2.3 \) times the mass in stars, and whose metallicity is \(\sim 0.1 \) \(Z_\odot \).

1. Introduction

It is conventional to interpret observations of high-redshift galaxies using sophisticated galaxy evolution models. However, unless the observed spectra are of sufficiently high S/N, the resulting interpretations may not be unique (c.f. O’Connell 1996). On the other hand, deep color-magnitude diagrams of objects like globular clusters, dwarf spheroidals, and gas-rich systems such as the Galactic disk and the Magellanic Clouds in principle show us their complete star formation history (c.f. contributions in Leitherer et al. 1996 and this volume). To the extent that these systems can be considered representative of the universe as a whole (the mean density of the local group is close to that of the universe), we should be able to use them to deduce a global star-formation history.

2. The Cosmic Star-Formation History

The starting point for this work is the diagram of Madau et al. (1996) and an updated version of this diagram from Madau et al. (1998) which shows the cosmic star-formation rate (SFR) in units of \(M_\odot \) yr\(^{-1}\)vol\(^{-1}\) as a function of redshift \(z \). Very similar results had been derived previously by Pei & Fall (1995) by modelling the observed column densities of H I and their metallicities in damped Ly\(\alpha \) systems. Because we will use the results of stellar evolution calculations as input, it is convenient to transform the abscissa from \(z \) to lookback time by assuming a specific cosmological model. (The ordinate must also be modified slightly to take into account the model change.) The model assumed has \(H_0=70 \) km sec\(^{-1}\)Mpc\(^{-1}\), \(\Omega_0=0.2 \), \(\Omega_\Lambda=0.8 \), and \(t_0=14.91 \) Gyr. This transformed cosmic SFR with a rescaled ordinate is shown in Fig. 1.
Figure 1. The relative star-formation rate density of Madau et al. (1998) plotted as a function of lookback time.

3. Modelling the Cosmic Star-Formation Rate

Results from the CFRS (Lilly et al. 1998) tell us that while large disks show increases in SFR by factors of ~3 by $z=0.7$, the red (spheroid) components show no evolution. We shall interpret the above observations as ‘spheroids form early and disks form late’ (i.e. we consider the hump at ~10 Gyrs in Fig. 1 as predominately due to evolution of the spheroid component while the plateau at shorter lookback times to be due predominately to disk evolution).

In order to model the spheroid component we shall use the one-zone mass-loss chemical evolution model of Hartwick (1976) which has been shown to reproduce the metal abundance distribution of Galactic halo components quite well (e.g. Fig. 1 of Hartwick 1983). The model predicts a metal abundance (Z) distribution given by

$$\frac{dS}{d\log Z} = \ln 10 \times S_{tot} \times \left(\frac{Z}{P_{eff}}\right) \times e^{-Z/P_{eff}}$$ (1)

where P_{eff} is the effective yield and varies inversely as the star formation (mass loss) rate, S is the cumulative number of stars formed and $S_{tot} = S_{Z=\infty}$.

For a given age-metallicity relation (AMR), we can calculate the star-formation rate by taking the product of eqn 1 with the derivative of the AMR, $d\log Z/dt$. An AMR was constructed by assuming an age of 13 Gyrs for M92 ([Fe/H]$=−2.3$), 11 Gyrs for M5 ([Fe/H]$=−1.4$), and passing through [Fe/H]$=0$ at $t = 0$. The resulting expression (shown dashed in Fig. 5) is

$$\log \frac{Z}{Z_\odot} = 0.117531 \times \left(1 - e^{t_9/4.3}\right)$$ (2)
where t_9 is the lookback time in Gyrs.

For an assumed value of $P_{\text{eff}} = -1.0$ and $S_{\text{tot}} = 3.9 \times 10^{10} \, M_\odot$, the resulting SFR is shown in Fig. 2. Note that the maximum SFR of $\sim 10 \, M_\odot \, \text{yr}^{-1}$ (which depends only on the value of S_{tot} and the AMR slope) is in the range of values deduced by Steidel et al. (1996) for the $z > 3$ ‘UV-dropout’ galaxies.

For the disk component we are guided by the SFR derived recently for the Galactic disk by Rocha-Pinto & Maciel (1997) which is shown in Fig. 3. For ease of computation we have adopted the relation shown by the two straight line segments. (Note the increase in SFR by a factor of ~ 3.4 between $t = 0$ and $t = 9$ Gyrs.)

The disk SFR of Fig. 3 can now be added to the spheroid SFR component of Fig. 2 and compared with the cosmic SFR of Fig. 1. This is shown in Fig. 4. Given the simplicity of the model, the agreement seems quite remarkable! We should emphasize that the composite galaxy modelled above is not expected to exist as a single object in nature. Rather, if the universe contained only one galaxy that is what it might look like!

4. Discussion and Predictions

As indicated above, the star-formation rate of each component was chosen to fit the relative SFR of Fig. 1. In doing so the model makes several predictions. The value of S_{tot} required to match the observed SFR implies a total baryon mass of $18.5 \times 10^{10} \, M_\odot$ and a total mass of long-lived stars and remnants of $3.1 \times 10^{10} \, M_\odot$. Integrating the assumed disk SFR of Fig. 3 yields a stellar mass of $2.5 \times 10^{10} \, M_\odot$. Allowing an additional 10% of the disk mass in gas we calculate the ratio of spheroid to disk mass of 1.1. Schechter & Dressler (1987) have determined this ratio observationally and find it to be ~ 1. Further, the ratio of total baryon mass to mass in stars is 3.3. Equating this ratio to $\Omega_{\text{baryon}}/\Omega_{\text{stars}}$ and
assuming $\Omega_{\text{stars}}=0.003$ (Persic & Salucci 1992) we find $\Omega_{\text{baryon}}=0.01$ compared to $\Omega_{\text{BBN}}=0.03$. Thus, the model predicts an alleviation of the ‘dark baryon problem’ by putting 2.3 times the mass in stars into the IGM as metal-enriched gas. Fig. 5 shows how the enrichment of the IGM is expected to vary as a function of lookback time. Note that the present metallicity of the IGM is predicted to be $0.1 Z_\odot$ (assuming that it is well mixed).

How robust are these results? The cosmological model dependence is expected to be small, amounting basically to an expansion or contraction of the abscissae in Figs. 1-5. However drastic changes to the original Madau et al. (1998) cosmic star-formation rate will have an appreciable effect. For example, if recent suggestions (Hughes et al. 1998) of a factor of 5 increase in SFR at redshift $z \sim 3$ are confirmed, then the spheroid contribution would have to rise substantially and increase the derived spheroid to disk ratio upsetting the already good agreement with available observations. However, if the dust-enshrouded star-formation component is more nearly evenly distributed in redshift, then our results should remain valid, requiring only a change in normalization.

5. How Do the Milky Way’s Satellites Fit into This Picture?

The above model does not differentiate between star formation taking place in one large object or in many smaller ones. Indeed, star formation followed by mass loss may also be effective if it takes place during collisions between large numbers of smaller objects. It is easily shown that if the collisions which suddenly heat and/or sweep out the gas are Poisson distributed about mean $Z=P_{\text{eff}}$, then the expected metallicity distribution is virtually identical to eqn (1). Furthermore, collisions are likely to initiate bursts of star formation as well as eventually to quench them. This picture appears to favor a hierarchical galaxy
formation process (e.g. Searle & Zinn 1978) whereby numerous small sub-units collapsed, began forming stars, then collided during assembly over an extended period of time. The gas removed by collisions between the building blocks would then either be lost to the IGM and/or settled down later to form the disk. The removal of gas might then be expected to leave an object resembling a dwarf spheroidal galaxy, if it could survive the sudden mass loss and potential tidal disruption. The large age spread observed from deep color-magnitude diagrams of individual dwarf spheroidal galaxies (e.g. Da Costa 1997) could be taken as evidence for the prolonged spheroid assembly seen in Fig. 2.

The Large Magellanic Cloud would appear to be a candidate for a massive leftover building block given that its most metal-poor clusters appear to be identical to those of the Galaxy (Olsen et al. 1998; Johnson et al. 1998). Such a picture would also allow a rationalization of the disk-like motions of the LMC clusters (Schommer et al. 1992) with the pressure-supported kinematics of the most metal-poor Galactic globular clusters.

Apparently the Magellanic Clouds have so far managed to avoid major mass loss by collision/star formation so that in the above scenario they would be considered relics, having remained relatively self-contained from the time of formation of the first stars. The other gas-rich dwarf irregular galaxies in the Local Group may be similar examples.

Acknowledgments. The author is most pleased to have participated in this celebration of Sidney van den Bergh's monumental contributions to astronomy. He also wishes to thank colleagues S. Gwyn, M. Hudson, J. Navarro, and D. Vandenberg for many useful discussions. Finally the author gratefully acknowledges continued support from NSERC.

Figure 4. The model spheroid component of Fig. 2 and the model disk component of Fig. 3 combined (solid line) compared to the observed relation (dashed) from Madau et al. (1998) in Fig. 1.
Figure 5. The predicted metallicity of the gas lost during spheroid star formation (solid line). A fixed fraction of this gas forms the disk while the rest becomes the IGM. Dashed line: the assumed age-metallicity relation of eqn 2.

References

Da Costa, G. S. 1997, in “The Nature of Elliptical Galaxies”, eds. M. Arnaboldi, G. S. Da Costa, & P. Saha, San Francisco: ASP, 116, 270
Hartwick, F. D. A. 1976, ApJ, 209, 418
Hartwick, F. D. A. 1983, Mem. del. Soc. Ast. It., 54, 51
Hughes, D., Serjeant, S., Dunlop, J., et al. 1998, Nature, 394, 241
Johnson, J. A., Bolte, M., Bond, H. E., et al. 1998, this volume
Leitherer, C., Fritze-v. Alvensleben, U., & Huchra, J., (eds) 1996, “From Stars to Galaxies”, San Francisco: ASP, 98
Lilly, S., Schade, D., Ellis, R., et al. 1998, ApJ, 500, 75
Madau, P., Ferguson, H. C., Dickinson, M. E., et al. 1996, MNRAS, 283, 1388
Madau, P., Pozzetti, L., & Dickinson, M. 1998, ApJ, 498, 106
O’Connell, R. W. 1996, in “From Stars to Galaxies”, eds. C. Leitherer, U. Fritze-v. Alvensleben, & J. Huchra, San Francisco: ASP, 98, 3
Olsen, K., Hodge, P. W., Mateo, M., et al. 1998, this volume
Pei, Y. C., & Fall, S. M. 1995, ApJ, 454, 69
Persic, M., & Salucci, P. 1992, MNRAS, 258, 14P
Rocha-Pinto, H. J., & Maciel, W. J. 1997, MNRAS, 289, 882
Schechter, P. L., & Dressler, A. 1987, AJ, 94, 563
Schommer, R. A., Suntzeff, N. B., et al. 1992, AJ,103, 447
Searle, L., & Zinn, R. 1978, ApJ, 225, 357
Steidel, C. C., Giavalisco, M., Pettini, M., et al. 1996, ApJ, 462, L17