Jour. Math. Anal. Appl., 258, N1, (2001), 448-456.
A.G. Ramm
Mathematics Department, Kansas State University,
Manhattan, KS 66506-2602, USA
ramm@math.ksu.edu

Abstract
A new approach to solving linear ill-posed problems is proposed. The approach consists of solving a Cauchy problem for a linear operator equation and proving that this problem has a global solution whose limit at infinity solves the original linear equation.

1 Introduction
Let A be a linear, bounded, injective operator on a Hilbert space H, and assume that A^{-1} is unbounded and that $\|A\| \leq \sqrt{m}$, where $m > 0$ is a constant. For example, A may be a compact injective linear operator. Consider the equation,

$$Au = f. \quad (1.1)$$

Assume that (1.1) is solvable, so that $f = Ay$ for a unique $y \in H$. Problem (1.1) is ill-posed since A^{-1} is unbounded. Equation (1.1) cannot be solvable for all $f \in H$ because if A is injective, linear, closed and $R(A) = H$, then A^{-1} must be bounded (by the Banach theorem). Let f_δ be given, such that

$$\|f_\delta - f\| \leq \delta \quad (1.2)$$

*key words: ill-posed problems, dynamical systems, operator equations in Hilbert spaces
†Math subject classification: 35R30, 47H17, 65J15
Equation (1.1) with \(f_\delta \) in place of \(f \) may have no solution, and if it has a solution \(u_\delta \) then it may be that \(\| u - u_\delta \| \) is large, although \(\delta > 0 \) is small. There is a large literature on ill-posed problems since they are important in applications. (See e.g. [1], [3]). In this paper a new approach to solving linear ill-posed problems is proposed. This approach consists of the following steps:

Step 1. Solve the Cauchy problem:

\[
\dot{u} = -[Bu + \varepsilon(t)u - F_\delta], \quad u(0) = u_0,
\]

(1.3)

where

\[
\dot{u} := \frac{du}{dt}, \quad B := A^*A, \quad F_\delta := A^*f_\delta, \quad ||F_\delta - F|| \leq \delta \sqrt{m}, \quad F = By,
\]

and

\[
\varepsilon(t) \in C^1[0, \infty); \quad \varepsilon(t) > 0; \quad \varepsilon(t) \searrow 0 \text{ as } t \to \infty; \quad \frac{|\dot{\varepsilon}(t)|}{\varepsilon^{5/2}(t)} \to 0 \text{ as } t \to \infty.
\]

(1.4)

One has \(||A^*(f_\delta - f)|| \leq \sqrt{m}\delta \), where we have used the estimate \(||A|| = ||A^*|| \leq \sqrt{m} \).

Examples of functions \(\varepsilon(t) \) satisfying (1.4) can be constructed by the formula:

\[
\varepsilon(t) = [c + \int_0^t h(s)ds]^{-\frac{3}{4}},
\]

where \(c > 0 \) is a constant, \(h(s) > 0 \) is a continuous function defined for all \(s \geq 0 \), such that \(h(s) \to 0 \) as \(s \to \infty \) and \(\int_0^\infty h(s)ds = \infty \). One has \(\frac{|\dot{\varepsilon}(t)|}{\varepsilon^{5/2}(t)} = \frac{2h(t)}{3} \to 0 \) as \(t \to \infty \). For example, \(\varepsilon(t) = \frac{1}{\log(t+2)} \) satisfies (1.4). If \(h(t) = \frac{1}{(2 + t) \log(2 + t)} \), then

\[
\varepsilon(t) = \frac{1}{(1 + \log \log(2 + t))^{\frac{3}{4}}}.
\]
This $\varepsilon(t)$ yields nearly fastest decay of $h(t)$ allowed by the restriction $\int_0^\infty h(s)ds = \infty$.

Step 2. Calculate $u(t_\delta)$, where $t_\delta > 0$ is a number which is defined by formula (1.9) below.

Then $t_\delta \to \infty$ as $\delta \to 0$ and satisfies the inequality:

$$\|u(t_\delta) - y\| \leq \eta(\delta) \to 0 \text{ as } \delta \to 0,$$

(1.5)

for a certain function $\eta(\delta) > 0$. If $\delta = 0$, so that $F_\delta = By$, then Step 2 yields the relation

$$\lim_{t \to \infty} \|u(t) - y\| = 0.$$

(1.6)

The foregoing approach is justified in Section 2. Our basic results are formulated as follows.

Theorem 1.1. Assume that equation (1.1) is uniquely solvable, (1.4) holds, and $\delta = 0$. Then for any u_0, problem (1.3), with $F = By$ replacing F_δ, has a unique global solution and (1.6) holds.

By global solution we mean the solution defined for all $t > 0$.

Theorem 1.2. Assume that equation (1.1) is uniquely solvable, (1.4) holds, and $\delta > 0$. Then for any u_0 problem (1.3) has a unique global solution $u(t)$ and there exists a $t_\delta \to \infty$ as $\delta \to 0$, such that $\|u(t_\delta) - y\| \to 0$ as $\delta \to 0$. The number t_δ is defined by formula (1.9).

Let y solve (1.1). Then $By = F := A^* f$ and $\|B\| \leq m$. If

$$\phi(\beta) := \phi(\beta, y) := \beta \left\| \int_0^m \frac{dE_\lambda y}{\lambda + \beta} \right\|,$$

(1.7)

where E_λ is the resolution of the identity of the selfadjoint operator B, $E_{\lambda-0} = E_\lambda$, $\beta(\delta)$ is the minimizer of the function

$$h(\beta, \delta) := \phi(\beta) + \frac{\delta}{2\beta^2}$$

(1.8)

on $(0, \infty)$, (see formula (2.20) and Remark 2.3 below), and

$$\eta(\delta) := h(\beta(\delta), \delta), \quad \varepsilon(\delta) = \beta(\delta),$$

(1.9)
then \(t_\delta \to \infty \) as \(\delta \to 0 \), \(\eta(\delta) \to 0 \) as \(\delta \to 0 \), and

\[
\lim_{\delta \to 0} \| u(t_\delta) - y \| = 0. \tag{1.10}
\]

Because \(B \) is injective, zero is not an eigenvalue of \(B \), so, for any \(y \in H \), one has \(\| \int_0^s dE_\lambda y \| \to 0 \) as \(s \to 0 \). Therefore \(\phi(\beta, y) \to 0 \) as \(\beta \to 0 \), for any fixed \(y \). From (2.15) (see below) one gets

\[
\| u(t_\delta) - y \| < \eta(\delta) + g_\delta(t_\delta) \to 0 \text{ as } \delta \to 0, \tag{1.11}
\]

where \(g_\delta(t) \) is given by the right-hand side of (2.12) with \(||f_\delta|| \) replacing \(||f|| \).

Remark 1.1. Theorem 1.2 shows that solving the Cauchy problem (1.3) and calculating its solution at a suitable time \(t_\delta \) yields a stable solution to ill-posed problem (1.1) and this stable approximate solution satisfies the error estimate (1.11).

For nonlinear ill-posed problems a similar approach is proposed in [1].

2 Proofs

2.1 Proof of Theorem 1.1

We start with a simple, known fact: if equation (1.1) is solvable, then it is equivalent to the equation

\[
Bu = A^* f = By \tag{2.1}
\]

Indeed, if \(Ay = f \), then apply \(A^* \) and get (2.1). Conversely, if (2.1) holds, then \((B(u - y), u - y) = \| A(u - y) \|^2 = 0 \), thus \(Au = Ay \) and \(u = y \), so (1.1) is solvable and its solution is the solution to (2.1). Therefore we will study equation (2.1). The operator \(B = A^* A \) is selfadjoint and nonnegative, that is, \((Bu, u) \geq 0 \). Let \(E_\lambda \) be its resolution of the identity.

We make another observation: If (1.4) holds, then

\[
\int_0^\infty \varepsilon(t) dt = \infty. \tag{2.2}
\]

Indeed, (1.4) implies

\[
-\frac{\ddot{\varepsilon}}{\varepsilon^2} \leq c,
\]
where \(c = \text{const} > 0 \), so
\[
\frac{d}{dt} \frac{1}{\varepsilon(t)} \leq c,
\]
\[
\frac{1}{\varepsilon(t)} - \frac{1}{\varepsilon(0)} \leq ct,
\]
\[
\frac{1}{\varepsilon(t)} \leq c_0 + ct,
\]
and
\[
\varepsilon(t) \geq \frac{1}{c_0 + ct}.
\]
Formula (2.2) follows from the foregoing inequality.

Consider the problem
\[
Bw + \varepsilon(t)w - F = 0, \quad F := A \ast f = By.
\]
(2.3)
Since \(B \geq 0 \) and \(\varepsilon(t) > 0 \), the solution \(w(t) \) of (2.3) exists, is unique and admits the estimate
\[
\|w\| \leq \|(B + \varepsilon(t))^{-1}F\| \leq \frac{\|F\|}{\varepsilon(t)}.
\]
(2.4)
If \(F = A \ast f \), then (see Remark 2.3 below) one gets:
\[
\|w\| \leq \|(B + \varepsilon(t))^{-1}F\| = \|(B + \varepsilon(t))^{-1}A \ast f\| \leq \frac{\|f\|}{2\varepsilon(t)}.
\]
(2.4’)
Differentiate (2.3) with respect to \(t \) (this is possible by the implicit function theorem) and get
\[
[B + \varepsilon(t)]\dot{w} = -\dot{\varepsilon}w, \quad \|
\dot{w}\| \leq \frac{|\dot{\varepsilon}|}{\varepsilon} \|w\| \leq \frac{|\dot{\varepsilon}(t)|}{\varepsilon(t)} \|F\|,
\]
(2.5)
where (2.4) was used.
Using (2.4) yields:
\[
\|
\dot{w}\| \leq \frac{|\dot{\varepsilon}|}{\varepsilon} \|w\| \leq \frac{|\dot{\varepsilon}(t)|}{2\varepsilon(t)} \|f\|.
\]
(2.5’)

6
Denote
\[z(t) := u(t) - w(t). \quad (2.6) \]

Subtract (2.3) from (1.3) (with \(F \) in place of \(F_\delta \)) and get
\[\dot{z} = -\dot{w} - [B + \varepsilon(t)]z, \quad z(0) = u_0 - w(0). \quad (2.7) \]

Multiply (2.7) by \(z(t) \) and get
\[(\dot{z}, z) = -(\dot{w}, z) - (Bz, z) - \varepsilon(t)(z, z). \quad (2.8) \]

Denote
\[\|z(t)\| := g(t) \quad (2.9) \]

Then the inequality \((Bz, z) \geq 0\) and equation (2.8) imply:
\[g\dot{g} \leq \|\dot{w}\|g - \varepsilon(t)g^2. \quad (2.10) \]

Because \(g \geq 0 \), it follows from (2.10) and (2.5') that
\[\dot{g} \leq \|f\| \frac{|\dot{\varepsilon}(t)|}{2\varepsilon^2(t)} - \varepsilon(t)g(t), \quad g(0) = \|u_0 - w_0\|, \quad (2.11) \]
so
\[g(t) \leq e^\int_0^t \frac{|\dot{\varepsilon}(s)|}{2\varepsilon^2(s)} ds \left[g(0) + \int_0^t e^{\int_0^\tau \frac{|\dot{\varepsilon}(s)|}{2\varepsilon^2(s)} ds} d\tau \|f\| \right]. \quad (2.12) \]

Assumption (1.4) (the last one in (1.4)) and (2.12) imply (use L'Hospital's rule) that
\[\|u(t) - w(t)\| := g(t) \to 0 \text{ as } t \to +\infty. \quad (2.13) \]

The existence of the global solution to (1.3) is obvious since equation (1.3) is linear and the operator \(B \) is bounded.

To prove (1.6) it is sufficient to prove that
\[\|w(t) - y\| \to 0 \text{ as } t \to +\infty. \quad (2.14) \]
Indeed, if (2.14) holds then (2.13) and (2.14) imply:

\[\| u(t) - y \| \leq \| u(t) - w(t) \| + \| w(t) - y \| \to 0 \text{ as } t \to \infty. \]

(2.15)

We now prove (2.14). One has:

\[\| w(t) - y \| = \left\| \int_0^m \frac{\lambda}{\lambda + \varepsilon(t)} dE_\lambda y - \int_0^m dE_\lambda y \right\| = \left\| \int_0^m \frac{\varepsilon(t)}{\lambda + \varepsilon(t)} dE_\lambda y \right\|. \]

(2.16)

Thus

\[\| w(t) - y \| = \phi(\varepsilon(t), y), \]

(2.17)

where \(\phi(\varepsilon, y) := \phi(\varepsilon) \) is as defined in (1.7). Since \(B \) is injective, the point \(\lambda = 0 \) is not an eigenvalue of \(B \). Therefore

\[\lim_{\varepsilon \to 0} \phi(\varepsilon) = 0, \]

(2.18)

by the Lebesgue dominant convergence theorem.

Thus (2.14) follows and Theorem 1.1 is proved.

\[\Box \]

\section{2.2 Proof of Theorem 1.2}

The proof is quite similar to the above, so we indicate only the new points. Equation (2.3) is now replaced by the equation

\[Bw + \varepsilon(t)w - F_\delta = 0. \]

(2.19)

Estimates (2.4), (2.4), (2.5), (2.5) and (2.13) hold with \(F_\delta \) and \(f_\delta \) in place of \(F \) and \(f \), respectively. The main new point is the estimate of \(w(t) - y \):

\[\| w(t) - y \| = \left\| \int_0^m \frac{dE_\lambda F_\delta}{\lambda + \varepsilon(t)} - \int_0^m dE_\lambda y \right\| = \left\| \int_0^m \frac{dE_\lambda(F_\delta - F)}{\lambda + \varepsilon(t)} \right\| + \phi(\varepsilon(t)) \leq \phi(\varepsilon(t)) + \frac{\delta}{2\varepsilon^2(t)}, \]

(2.20)

where \(\| f - f_\delta \| \leq \delta \) and estimate (2.4') was used.
If $\beta(\delta)$ is the minimizer of the function (1.8), then

$$h(\beta(\delta), \delta) := \eta(\delta) \to 0 \text{ as } \delta \to 0; \quad \beta(\delta) \to 0 \text{ as } \delta \to 0.$$ \hspace{1cm} (2.21)

The latter relation in (2.21) holds because $\phi(\beta) \to 0$ as $\beta \to 0$.

Since $\varepsilon(t) \searrow 0$ as $t \to \infty$, one can find the unique t_δ such that

$$\varepsilon(t_\delta) = \beta(\delta) \to 0 \text{ as } \delta \to 0.$$ \hspace{1cm} (2.22)

Thus

$$\|w(t_\delta) - y\| \leq \eta(\delta) \to 0 \text{ as } \delta \to 0.$$ \hspace{1cm} (2.23)

The function $\eta(\delta) = \eta(\delta, y)$ depends on y because $\phi(\varepsilon) = \phi(\varepsilon, y)$ does (see formula (1.7)).

Combining (2.23), (2.13) and (2.15) one gets the conclusion of Theorem 1.2. \hfill \Box

Remark 2.1. We also give a proof of (2.14) which does not use the spectral theorem.

From (2.3) one gets

$$Bx + \varepsilon(t)x = -\varepsilon(t)y, \quad x(t) := w(t) - y.$$ \hspace{1cm} (2.24)

Thus $(Bx, x) + \varepsilon(x, x) = -\varepsilon(y, x)$. Since $(Bx, x) \geq 0$ and $\varepsilon > 0$, one gets

$$\langle x, x \rangle \leq |\langle y, x \rangle|, \quad \|x(t)\| \leq \|y\| = \text{const} < \infty.$$ \hspace{1cm} (2.25)

Bounded sets in H are weakly compact. Therefore there exists a sequence $t_n \to \infty$ such that

$$x_n := x(t_n) \rightharpoonup x_\infty, \quad n \to \infty$$ \hspace{1cm} (2.26)

where \rightharpoonup stands for the weak convergence. From (2.24) and (2.25) it follows that

$$Bx_n \to 0, \quad n \to \infty.$$ \hspace{1cm} (2.27)

A monotone hemicontinuous operator is weakly closed. This claim, which we prove below, implies that (2.26) and (2.27) yield $Bx_\infty = 0$. Because B is injective, $x_\infty = 0$, that is, $x(t_n) \to 0$. From (2.25) it follows that $\|x(t_n)\| \to 0$...
as \(n \to \infty \), because \((y, x(t_n)) \to 0\) as \(n \to \infty \), due to \(x(t_n) \to 0 \). By the uniqueness of the limit, one concludes that \(\lim_{t \to \infty} \|x(t)\| = 0 \), which is (2.14).

Let us now prove the claim.

We wish to prove that \(x_n \rightharpoonup x \) and \(Bx_n \to f \) imply \(Bx = f \) provided that \(B \) is monotone and hemicontinuous. The monotonicity implies \((Bx_n - B(x - \varepsilon p), x_n - x + \varepsilon p) \geq 0\) for all \(\varepsilon > 0 \) and all \(p \in H \). Take \(\varepsilon \to 0 \) and use hemicontinuity of \(B \) to get \((f - Bx, p) \geq 0 \) \(\forall p \in H \). Take \(p = f - Bx \) to obtain \(Bx = f \), as claimed.

The above argument uses standard properties of monotone hemicontinuous operators [2].

Remark 2.2. In (2.23) \(\eta(\delta) = O(\delta^{\frac{2}{3}}) \) is independent of \(y \) if \(y \) runs through a set \(S_a := S_{a,R} := \{ y : y = B^a h, \|h\| \leq R \} \), where \(R > 0 \) is an arbitrary large fixed number and \(a \geq 1 \). If \(0 < a < 1 \), then \(\eta(\delta) = O(\delta^{\frac{2a}{2a+1}}) \) as \(\delta \to 0 \), and this estimate is uniform with respect to \(y \in S_{a,R} \).

Consider, for example, the case \(a \geq 1 \). If \(y = B^a h \), then \(\phi(\varepsilon) \) in (2.20) can be chosen for all \(y \in S_{a,R} \) simultaneously. Using (1.7), one gets:

\[
\phi(\varepsilon) = \varepsilon \sup_{\|h\| \leq R} \left\| \int_0^m \frac{\lambda^a}{\lambda + \varepsilon} dE_\lambda h \right\| \leq \varepsilon m^{a-1} R,
\]

where \(a \geq 1 \) and \(\varepsilon \) is positive and small. For a fixed \(\delta > 0 \) one finds the minimizer \(\varepsilon(\delta) = O(\delta^{\frac{2}{3}}) \) of the function \(\frac{\delta}{2\varepsilon^{\frac{2}{3}}} + \varepsilon m^{a-1} R \) and the minimal value \(\eta(\delta) \) of this function is \(O(\delta^{\frac{2}{3}}) \).

If \(B \) is compact, then the condition \(y \in S_a \) means that \(y \) belongs to a compactum which is the image of a bounded set \(\|h\| \leq R \) under the map \(B^a \).

The case \(0 < a < 1 \) is left to the reader. It can be treated by the method used above.

Remark 2.3. It can be checked easily that

\[
A(A^* A + \varepsilon I)^{-1} = (AA^* + \varepsilon I)^{-1} A.
\]

This implies

\[
\|(B + \varepsilon I)^{-1} A f\|^2 = ((b + \varepsilon I)^{-2} b f, f) := J,
\]
where \(B := A^*A \) and \(b := AA^* \geq 0 \).

Thus,
\[
J = \int_0^m s(s + \epsilon)^{-2}d(e_s f, f) \leq \frac{1}{4\epsilon}||f||^2,
\]
where \(e_s \) is the resolution of the identity corresponding to the selfadjoint operator \(b \). Therefore one gets the following estimate:
\[
||(B + \epsilon I)^{-1}A^*f|| \leq \frac{1}{2\sqrt{\epsilon}}||f||.
\]
This estimate was used to obtain estimates (2.4) and (2.5). For example, estimate (2.4) was replaced by the following one:
\[
||(B + \epsilon I)^{-1}F|| \leq \frac{1}{2\epsilon^{\frac{1}{2}}}||f||,
\]
and (2.5) can be replaced by the estimate:
\[
||\dot{w}|| \leq \frac{||\dot{\epsilon}||}{\epsilon}||w|| \leq \frac{|\dot{\epsilon}(t)|}{2\epsilon^{3/2}(t)}||f||.
\]

These estimates were used to improve the estimate for \(\eta(\delta) \) in the previous remark.

Estimate (2.4') was used by a suggestion of a referee. The author thanks the referee for the suggestion.

In fact, one can prove a stronger estimate than (2.4'), namely \(||w|| \leq ||y|| \). Indeed, multiply (2.3) by \(w - y \), use the nonnegativity of \(B \) and positivity of \(\epsilon \) and get \((w, w - y) \leq 0 \). Thus \(||w||^2 \leq ||w||||y|| \), and the desired inequality \(||w|| \leq ||y|| \) follows.

Appendix. Let us give an alternative proof of Theorem 1.2. Let \(u_\delta(t) \) solve (1.3), \(u(t) \) solve (1.3) with \(F_\delta \) replaced by \(F \), and \(u_\delta(t) \) and \(u(t) \) satisfy the same initial condition. Denote \(w_\delta := u_\delta(t) - u(t) \) and let \(||w_\delta|| := g_\delta(t) \). One has:
\[
\dot{w}_\delta = -[Bw_\delta + \epsilon(t)w_\delta - h_\delta], \quad w_\delta(0) = 0,
\]
where \(h_\delta := F_\delta - F, ||h_\delta|| < \sqrt{m}\delta := c\delta \). Multiply the above equation by \(w_\delta \) in \(H \), use the inequality \(B \geq 0 \) and get
\[
\dot{g_\delta} \leq -\epsilon(t)g_\delta + c\delta.
\]
Since \(g_\delta(0) = 0 \), this implies:

\[
g_\delta(t) \leq c_\delta \exp\left[- \int_0^t \epsilon(s) ds \right] \int_0^p \epsilon(s) ds dp \leq c \frac{\delta}{\epsilon(t)}.
\]

Thus

\[
||u_\delta(t) - y|| \leq ||u_\delta(t) - u(t)|| + ||u(t) - y|| \leq c \frac{\delta}{\epsilon(t)} + a(t),
\]

where \(a(t) := ||u(t) - y|| \to 0 \) as \(t \to \infty \). Define \(t_\delta \) as the minimal minimizer of the following function of \(t \) for a fixed \(\delta > 0 \):

\[
c_\frac{\delta}{\epsilon(t)} + a(t) = \min := \mu(\delta).
\]

Since \(a(t) \to 0 \) and \(\epsilon(t) \to 0 \) as \(t \to \infty \), one concludes that the minimal minimizer \(t_\delta \to \infty \) as \(\delta \to 0 \) and \(\mu(\delta) \to 0 \) as \(\delta \to 0 \). Theorem 1.2 is proved.

\[\square\]

References

[1] Airapetyan, R., Ramm, A.G., Dynamical systems and discrete methods for solving nonlinear ill-posed problems, Appl.Math.Rev.,Vol.1, World Sci. Publishers, (ed. G.Anastassiou), (2000), pp.491-536.

[2] Deimling, K., Nonlinear functional analysis, Springer Verlag, Berlin, 1985

[3] Engl, W., Hanke, M., Neubauer, A., Regularization of ill-posed problems, Kluwer, Dordrecht, 1996.

[4] Groetsch, C., Inverse problems in mathematical sciences, Vieweg, Braunschweig, 1993.