The Challenge of Conserving Amphibian Megadiversity in Madagascar

Franco Andreone*, Angus I. Carpenter, Neil Cox, Louis du Preez, Karen Freeman, Samuel Furrer, Gerardo García, Frank Glaw, Julian Glos, David Knox, Jörn Köhler, Joseph R. Mendelson, III, Vincenzo Mercurio, Russell A. Mittermeier, Robin D. Moore, Nirhy H. C. Rabibisoa, Herilala Randriamahazo, Harison Randrianasolo, Noromalala Rasoamampionona Raminosoa, Olga Ravooahangimalala Ramilijaona, Christopher J. Raxworthy, Denis Vallan, Miguel Vences, David R. Vieteis, Ché Weldon

Frogs from Madagascar constitute one of the richest groups of amphibian fauna in the world, with currently 238 described species; caecilians and salamanders are absent [1]. Several frog radiations of the island are species-rich and parallel lemurs and tenrecs in their astonishing morphological and ecological diversity. According to the Global Amphibian Assessment (GAA), Madagascar ranks as the country with the 12th highest amphibian species richness [2,3] (see also http://www.globalamphibians.org), but this is likely an underestimate, because an additional 182 candidate species have been identified since [1]. Diversity is concentrated in rainforests and can locally reach over 100 species. Impressively, 100% of the autochthonous species and 88% of the genera are strictly endemic to Madagascar and its inshore islands [1]. Most of these species belong to two radiations of astonishing ecomorphological and reproductive diversity, the mantellids and the scaphiophrynine plus cophyline microhylids [4,5] (Figure 1).

So far, no extinctions of amphibian species have been reported from Madagascar, and chytridiomycosis, a threat for amphibians globally [6,7], has not been detected [8]. Of 220 species assessed by the World Conservation Union (IUCN), nine are listed as Critically Endangered, 21 Endangered, and 25 Vulnerable [3]. This proportion of 25% threatened species is higher than the per-country average of 12%, but lower than that detected globally (32%) and those in various other amphibian hot spots such as Sri Lanka (63%), Mexico (54%), Ecuador (37%), or Colombia (30%) [2].

At first glance, it might seem paradoxical to advocate amphibian conservation actions for a place where catastrophic declines have not yet been detected. However, we argue here that the unique combination of three factors qualifies Madagascar as a top priority for amphibian conservation: (a) an endemic, diverse amphibian fauna, as yet unaffected by emergent diseases, exists; (b) heavy anthropogenic pressures are put on the remaining primary vegetation and amphibian populations; and (c) a strong commitment of the national government to improve conserving biodiversity is present. In other words, Madagascar represents a tractable opportunity to apply what has been learned from the devastated amphibian faunas of areas such as the Neotropics and Australia. In Madagascar, amphibian conservation efforts have the possibility of being pro-active, rather than reactive, or simply post-mortem.

Extinctions of Malagasy amphibians have not yet been detected: in fact, all historically described species have been observed during the past 15 years [3], most in the past 5 years. New populations of rare species are discovered at a constant pace, even if some of them are in small forest fragments. Over 500 frog specimens of almost 90 species sampled from most of Madagascar’s biogeographic regions and elevational zones tested negative for amphibian chytrid infection using both histological and molecular techniques [8]. So far, no amphibian

Citation: Andreone F, Carpenter AI, Cox N, du Preez L, Freeman K, et al. (2008) The challenge of conserving amphibian megadiversity in Madagascar. PLoS Biol 6(5): e118. doi:10.1371/journal.pbio.0060011

Copyright: © 2008 Andreone et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abbreviations: ASG, Amphibian Speciality Group

Franco Andreone is with the Museo Regionale di Scienze Naturali di Torino (MRST), Torino, Italy. Angus I. Carpenter is with the Centre for Ecology and Conservation, University of East Anglia, Norwich, United Kingdom. Neil Cox is with the IUCN/SSC Ci/CABS Biodiversity Assessment Unit, Arlington, Virginia, United States of America. Louis du Preez and Ché Weldon are with the School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom. Karen Freeman is with the Madagascan Fauna Group, Saint Louis Zoo, St. Louis, Missouri, United States of America. Samuel Furrer is with the Zoo Zurich, Zurich, Switzerland. Gerardo García is with the Durrell Wildlife Conservation Trust, Trinity, Jersey, Channel Islands, United Kingdom. Frank Glaw is with the Zoologische Staatssammlung München, Munich, Germany. Julian Glos is with the Department of Animal Ecology and Conservation, University of Hamburg, Hamburg, Germany. David Knox is with Conservation International, Kirstenbosh Botanical Gardens, Clarendon, South Africa. Jörn Köhler is with the Department of Natural History – Zoology, Hessisches Landesmuseum Darmstadt, Darmstadt, Germany. Joseph R. Mendelson, III, is with the Department of Herpetology, Zoo Atlanta, Atlanta, Georgia, United States of America. Vincenzo Mercurio is with the Department of Ecology and Evolution, J. W. Goethe University and Research Institute and Natural History Museum Senckenberg, Section Herpetology, Frankfurt, Germany. Russell A. Mittermeier and Robin D. Moore are with Conservation International, Arlington, Virginia, United States of America. Nirhy H. C. Rabibisoa and Harison Randrianasolo are with Conservation International, Antananarivo, Madagascar. Herilala Randriamahazo is with the Wildlife Conservation Society, Antananarivo, Madagascar. Noromalala Rasoamampionona Raminosoa and Olga Ravooahangimalala Ramilijaona are with the Département de Biologie Animale, Université d’Antananarivo, Antananarivo, Madagascar. Christopher J. Raxworthy is with the American Museum of Natural History, New York, United States of America. Denis Vallan is with the Natur-Museum Luzern, Luzern, Switzerland. Miguel Vences is with the Zoological Institute, Technical University of Braunschweig, Braunschweig, Germany. David R. Vieteis is with the Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, California, United States of America.

* To whom correspondence should be addressed.
E-mail: franco.andreone@regione.piemonte.it

The Perspective section provides experts with a forum to comment on topical or controversial issues of broad interest.
chytrid may have catastrophic effects assisted introduction of amphibian already compromised and populations confounding threat where habitats are and over-collecting may represent a demand in the international pet trade, species experience high levels of massifs in Madagascar [12]. Several to the summits of most of the major restricted to narrow elevations close for montane endemics, which are [11]. This is a particular problem to the edge of a drastic decline. Here we posit that unprecedented pro-active efforts of habitat protection and vigilance against pathogens may avert an otherwise predictable catastrophic loss of biodiversity. An important and timely opportunity for conservation in Madagascar exists since President Marc Ravalomanana announced at the Durban World Park Congress in 2003 a commitment to triple the surface of Madagascar’s network of protected areas. This declaration gave rise to the so-called Madagascar Action Plan, a political process which is generating strategies for development and conservation. Since 2003, the protected area network has nearly been doubled, and an opportunity exists now to protect small fragments of remaining habitat that are critical for many restricted-range endemic amphibians (Figure 2). A proposal for new candidate areas to protect, based on a high-resolution multi-taxonomic analysis of plants, invertebrates, mammals, reptiles, and amphibians, has been developed [14]. This study suggests that multi-taxonomic rather than single-taxon approaches are critical for identifying areas likely on the amphibian fauna. Hence, without intensive conservation efforts, Malagasy amphibians may be on the edge of a drastic decline. Here we posit that unprecedented pro-active efforts of habitat protection and vigilance against pathogens may avert an otherwise predictable catastrophic loss of biodiversity. Figure 1. Four Prominent Representatives of Madagascar’s Amphibians (A) Dyscaphus antongilii (Near Threatened), (B) Scaphiophryne gottlebei (Critically Endangered), (C) Boophis williamsi (Critically Endangered), (D) Mantella cowani (Critically Endangered).
rapid detection of possible declines or die-offs, amphibian monitoring in the Menabe region and in the Ranomafana National Park will be coordinated by the Durrell Wildlife Conservation Trust and by the Tropical Ecology Assessment and Monitoring Network (http://www.teaminitiative.org). A variety of amphibian species from Madagascar will be exposed in a South African lab to chytrid infection, to understand their susceptibility to chytridiomycosis. In collaboration with the Amphibian Ark initiative, an agreement has been reached for promoting tailored captive-breeding programs, and target species have been prioritized (http://zims.isis.org/aark/). The experiences acquired in these initial captive-breeding efforts will be crucial if amphibian chytrid reaches the island despite efforts to prevent its introduction. An immediate implementation of large-scale, captive-breeding efforts as an extension of the Amphibian Ark [7] (http://www.amphibianark.org) will become necessary in such a case to ensure survival of the bulk of the Malagasy amphibian species until protocols to induce resistance or inoculate frogs with bacterial antifungal peptides can be applied [7,22,23].

An amphibian action plan for Madagascar has now been developed that includes precise yearly budgets for future actions [24]. Unconventional funding sources are being explored, such as name auctions for undescribed species (http://www.biopat.de), which currently support a conservation program for the tomato frog, *Dyscophus antongilii*. However, significant investments from major conservation agencies will also be necessary to generate momentum. Madagascar may be the only worldwide amphibian diversity hot spot still in a pre-decline phase where intensive pro-active conservation measures are feasible, and where the impacts of climate change can be measured without the confounding influences of emergent diseases such as chytrid fungus [11,25]. This opportunity to preserve a globally significant and intact amphibian sanctuary should not be missed, yet ironically, its pre-decline status could actually hinder timely conservation action being taken. We thus advocate urgency rather than complacency towards implementing a comprehensive conservation initiative for the Malagasy amphibian fauna.

References

1. Glaw F, Vences M (2007) A field guide to the amphibians and reptiles of Madagascar. 3rd edition. Cologne: Vences and Glaw Publishers.
2. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigue ASL, et al. (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306: 1783-1786.
3. Andreone F, Cadle JE, Cox N, Glo F, Nussbaum RA, et al. (2005) Species review of amphibian extinction risks in Madagascar: conclusions from the Global Amphibian Assessment. Conserv Biol 19: 1790-1802.
4. Van der Meijden A, Vences M, Hoegg S, Boistel R, Channing A, et al. (2007) Nuclear gene phylogeny of narrow-mouthed toads (Family: Microhylidae) and a discussion of competing hypotheses concerning their biogeographical origins. Mol Phylogenet Evol 44: 1017-1030.
5. Glo F, Vences M (2006) Phylogeny and genus-level classification of mantellid frogs. Org Divers Evol 6: 236-253.
6. Lips KR, Brens F, Brenes R, Reeve JD, Alford RA, et al. (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci U S A 103, 3165-3170.
7. Gewin V (2008) Riders of a modern-day ark. PLoS Biol 6(1): e24. doi:10.1371/journal.pbio.0060024.
8. Weldon C, du Preez L, Vences M (2008) Lack of detection of the amphibian chytrid fungus (*Batrachochytrium dendrobatidis*) in Madagascar. In: A conservation strategy for the amphibians of Madagascar. Monografia XLV, Museo Regionale di Scienze Naturali, Torino. In press.
9. Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403: 853-858.
10. Harper G, Steininger M, Tucker C, John D, Hawkins F (2007) Fifty years of deforestation and forest fragmentation in Madagascar. Environ Conserv 34: 325-333.
11. Raxworthy CJ, Pearson, RG, Rabihiosoa N, Rakotondrazafy AM, Ramamananjato JB, et al. (2008) Extinction vulnerability of tropical montane endemism from warming and up slope displacement: a preliminary appraisal for the highest massif in Madagascar. Global Change Biol. In press.
12. Raxworthy CJ (2008) Global warming and extinction risks for amphibians in Madagascar: a preliminary assessment of potential up slope displacement. In: A conservation strategy for the amphibians of Madagascar. Monografia XLV, Museo Regionale di Scienze Naturali, Torino. In press.
13. Rabemananjara FCE, Rasoamampionona Raminosoa N, Ravoahangimalala Ramilijaona O, Rakotondrozavony D, Andreoné F, et al. (2008) Malagasy poison frogs in the pet trade: a survey of levels of exploitation of species in the genus *Mantella*. In: A conservation strategy for the amphibians of Madagascar. Monografia XLV, Museo Regionale di Scienze Naturali, Torino. In press.
14. Kreemen C, Cameron A, Moulané A, Phillips S, Thomas SD, et al. (2008) Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320: 222-226.
15. Moore R (2007) A conservation strategy for the amphibians of Madagascar. Froglog 89: 1-2.
16. Mendelson JR III, Lips KR, Gagliardo BW, Rabb GB, Collins JP, et al. (2006) Confronting amphibian declines and extinctions. Science 315: 48.
17. Gosztonyi G, Collins JP, Moore R, Church DR, McKay JE, et al. (2007) Amphibian Conservation Action Plan. Gland: The World Conservation Union (IUCN).
18. Andreone F, editor (2008) A conservation strategy for the amphibians of Madagascar. Monografia XLV, Museo Regionale di Scienze Naturali, Torino. In press.

Figure 2. Habitat Fragments as Last Refuges for Amphibian Diversity

In many largely deforested areas of Madagascar, small habitat fragments remain, which harbor significant amphibian diversity, and may allow the survival of yet undiscovered range-restricted species. So far no amphibian extinctions have been detected for Madagascar. A survey of the pictured forest fragment west of Ambatondrazaka in 2008 yielded 12 frog species, one of which is new to science.
19. Jovanovic O, Rabemananjara F, Ramilijaona O, Andreone F, Glaw F, Vences M (2007) Frogs of Madagascar, genus Mantella. Washington (DC): Conservation International (Tropical Pocket Guide Series).

20. Andreone F, Bungard M, Freeman K (2007) Threatened amphibians of Madagascar. [also published in French, Italian, and Malagasy]. Museo Regionale di Scienze Naturali, Torino. Available at http://www.sahonagasy.org/docs/Threatened_amphibians_of_Madagascar.pdf. Accessed 3 April 2008.

21. Randrianiaina RD, Rabemananjara FCE, Ramilijaona N, Ravoahangimalala Ramilijaona O, Dolch R, et al., editors (2007) Ny Toro-Hay momba ny Amphibia sy ny Reptilia an’i Madagasikara. Available at http://www.gondwanaconservation.org/Toro-hay.pdf.

22. Woodhams DC, Vredenburg VT, Stice MJ, Simon MA, Billheimer D, et al. (2007) Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biol Conserv 138: 390-396.

23. Harris RN, James TY, Lauer A, Simon MA, Patel A. (2006) The amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth 3: 53-56.

24. Andreone F, Randriamahazo H, editors (2008) Sahonagasy Action Plan. Conservation strategies for the amphibians of Madagascar. Amphibian Specialist Group, Conservation International and Museo Regionale di Scienze Naturali, Torino. In press.

25. Lips KR, Diffendorfer J, Mendelson JR III, Sears MW (2008) Riding the wave: Reconciling the roles of disease and climate change in amphibian declines. PLoS Biol 6 (3): e72 doi:10.1371/journal.pbio.0060072.