Focal brain inflammation and autism

Theoharis C Theoharides1,3,4,5*, Shahrzad Asadi1,2 and Arti B Patel1,6

Abstract

Increasing evidence indicates that brain inflammation is involved in the pathogenesis of neuropsychiatric diseases. Autism spectrum disorders (ASD) are characterized by social and learning disabilities that affect as many as 1/80 children in the USA. There is still no definitive pathogenesis or reliable biomarkers for ASD, thus significantly curtailing the development of effective therapies. Many children with ASD regress at about age 3 years, often after a specific event such as reaction to vaccination, infection, stress or trauma implying some epigenetic triggers, and may constitute a distinct phenotype. ASD children respond disproportionately to stress and are also affected by food and skin allergies. Corticotropin-releasing hormone (CRH) is secreted under stress and together with neurotensin (NT) stimulates mast cells and microglia resulting in focal brain inflammation and neurotoxicity. NT is significantly increased in serum of ASD children along with mitochondrial DNA (mtDNA). NT stimulates mast cell secretion of mtDNA that is misconstrued as an innate pathogen triggering an auto-inflammatory response. The phosphatase and tensin homolog (PTEN) gene mutation, associated with the higher risk of ASD, which leads to hyper-active mammalian target of rapamycin (mTOR) signalling that is crucial for cellular homeostasis. CRH, NT and environmental triggers could hyperstimulate the already activated mTOR, as well as stimulate mast cell and microglia activation and proliferation. The natural flavonoid luteolin inhibits mTOR, mast cells and microglia and could have a significant benefit in ASD.

Introduction

Focal brain inflammation

Increasing evidence indicates that brain inflammation is important in the pathogenesis of neuropsychiatric disorders [1,2]. Autism spectrum disorders (ASD) are pervasive neuro-developmental disorders characterized by varying degrees of deficiencies in social interactions, intelligence, and language, as well as the presence of stereotypic behaviors [3-6]. Recent results from the Centers of Disease Control in the USA indicate that as many as 1/80 children have ASD [7]. Many such children regress at about age 3 years, often after a specific event such as reaction to vaccination, infection [8,9], trauma [10,11], toxic exposures [12] or stress [13], implying the importance of some environmental triggers [14,15].

Increasing evidence points to some immune dysfunction/inflammation in ASD [16,17]. The markers of inflammation identified in the brain and cerebrospinal fluid (CSF) of many ASD patients include TNF, IL-6 and monocyte chemotactic protein 1 (MCP-1), the latter of which also is chemotactic for mast cells [18]. Pro-inflammatory cytokine mRNA (IL-1α, IL-1β, IL-6 and TNF-α) is increased in brain inflammation and has been associated with hippocampal and cerebral damage [8]. Mast cells are a rich source of IL-6 and TNF [19]. In fact, mast cells are the only immune cells that store pre-formed TNF and can release it rapidly upon stimulation [20].

Mast cells and cytokines such as IL-6 and TNF are also implicated in disruption of the blood–brain barrier (BBB) [21-23], which may be malfunctioning or leaky in ASD as evidenced by the presence of circulating auto-antibodies directed against the fetal brain proteins [24-27]. We had reported that the cytokine IL-33 synergizes with inflammatory neuropeptides to stimulate mast cells and result in increased vascular permeability [28]. IL-33 has been considered an alarmin, acting through mast cells to alert the innate immune system [29,30], and has recently been linked to brain inflammation [31-33].

We have also reported that neurotensin (NT) and corticotropin-releasing hormone (CRH), secreted under stress, synergistically stimulate mast cells, leading to
increase vascular permeability [34] and contribute to BBB disruption [35]. We further showed that NT stimulates mast cell secretion of vascular endothelial growth factor (VEGF) [36], which is also vasodilatory. NT also increases expression of CRH receptor-1 (CRHR-1) [37], activation of which by CRH increases allergic stimulation of human mast cells [38].

NT is a vasoactive peptide originally isolated from the brain [39], but also found in the gut where it has been implicated in inflammation [40], and in increased intestinal permeability in rodents [41]. NT is also increased in the skin following acute stress, stimulates skin mast cells and increases vascular permeability in rodents [42]. NT stimulates rodent peritoneal mast cells to secrete histamine and elevates histamine plasma levels through activation of specific NT receptors (NTR) [43-45]. Moreover, NT is rapidly degraded by mast cell proteases [34,46] implying tight regulation of its activity.

Mast cells are hemopoietic-derived tissue immune cells responsible for allergies, but also implicated in immunity [47] and inflammation [18]. Mast cells can produce both pro- and anti-inflammatory mediators [48] and may have immuno-modulatory functions [47,49-51]. It is, therefore, of interest that allergic-like reactions are common in ASD children [52,53] implying activation of mast cells by non-allergic triggers [17]. The richest source of mast cells in the brain is the diencephalon [54] that regulates behavior, while the highest concentration of NTR is in the Broca area [55], which regulates language, known to be lost in many children with ASD. Mast cells are responsible for eliciting neutrophil infiltration that promotes inflammation [56]. Mast cell-microglial interactions are important in neuroinflammatory diseases [57,58]. Microglia are the innate brain immune cells that are increasingly implicated in a number of neuropsychiatric diseases [59]. In fact, abnormal microglial growth and activation was recently reported in the brain of ASD patients [60,61]. Microglia

| Table 1 Neurotensin actions relevant to autism spectrum disorder (ASD) pathogenesis |
|---|-------------------------|
| Effect | Result |
| Activation and proliferation of microglia | Brain inflammation |
| Activation of mast cells | Blood–brain-barrier disruption and inflammation |
| Disruption of gut-blood barrier | Leaky gut and inflammation |
| Mast cell stimulation, especially in the subgroup of ASD patients with allergic symptoms | Augmentation of allergic symptoms |
| Extracellular secretion of mitochondrial components that act as innate pathogens | Inflammation |
| Stimulation of glutamate receptors | Neuronal damage |
| Direct neurotoxicity | Neuronal damage |

Figure 1 Diagrammatic representation of how stimulation of mast cells and microglia could lead to multiple effects that contribute brain inflammation and the pathogenesis and symptoms of autism. MCP, monocyte chemotactic protein.
express NTR3, activation of which leads to their proliferation [62].

NT has additional actions that are relevant to ASD (Table 1): it induces intestinal secretion and mobility [63], stimulates glial cell proliferation [64], and can facilitate seizures through activation of glutamate receptors [65]. In fact, the glutamate receptor mGluR5 was reported to be overactive in fragile X mice [66,67], a condition associated with high risk of ASD. In other words, NT could contribute to ASD pathogenesis through different mechanisms (Figure 1).

There is also support for increased oxidative stress [68] and some mitochondrial (mt) defects at least in subgroups of patients with ASD [69]. We showed that mtDNA is significantly increased in the serum of young autistic children [70], who also had significantly increased serum level of NT [71]; this triggers mast cells to secrete mtDNA [38] that acts as innate pathogen to stimulate mast cells [72] and other immune cells, leading to auto-inflammation [73]. Moreover, mtDNA can cause neuronal degeneration and altered behavior [74]. We believe that ASD originate from immune perinatal insults [75,76] that activate ASD susceptibility genes leading to focal encephalitis (Table 2).

Epigenetic activation of ASD susceptibility genes

In spite of the fact that almost 100 gene mutations have been identified in patients with ASD [77,78], they do not explain more than a few percent of ASD cases [6]. High risk for developing ASD has been associated with mutations leading to decreased phosphatase and tensin homolog (PTEN) and tuberous sclerosis protein 1 and 2 (TSC1/2) [77]. These proteins are upstream inhibitors of the mammalian target of rapamycin (mTOR) [77,79], which leads to microglia and mast cell proliferation [80,81]. Activation of susceptibility genes is being increasingly invoked to explain ASD [7,82]. A recent paper reported that offspring of maternal immune activation in mice led to increased IL-6 and IL-17, and contributed to ASD-related behaviors [9]; repopulation of control irradiated mice with bone marrow derived from affected mothers did not induce those effects suggesting the contribution of some epigenetic environmental influences.

![Figure 2](https://example.com/figure2.png)

Table 2 Key pathologic processes in ASD*

Change	Pathologic processes
↑	Allergic-like symptoms
↑	Anti-brain protein auto-antibodies
↑	Food intolerance
↑	Brain and gut inflammatory markers
↑	High anxiety and response to stress
↓	Oxidative stress
↓	Glutathione
↓	Methylation, sulfation

*Not present all ASD children.

Figure 2 Diagrammatic representation of the mTOR pathway, how it may lead to increased risk of autism and the inhibitory effect of luteolin. mTOR, mammalian target of rapamycin; PTEN, phosphatase and tensin homolog; AKT, protein kinase B.
Stimulation of mTOR in subjects with overactive mTOR due to gene mutations, leading to low PTEN, would contribute to a form of epigenetic signal.

Novel treatments

Behavioral interventions are the most common treatment approaches [83], but do not address the core ASD symptoms [84, 85]. Psychotropic drugs are used much too often in ASD [86-88]. Such drugs include antipsychotic medications [89], the newer atypical compounds [90, 91] risperidone [92, 93] and aripiprazole [94] for obsessive-compulsive symptoms, aggression and self-injury, as well as methylphenidate for hyperactivity [95]. However, two recent reviews concluded that there is insufficient evidence to support any benefit of psychotropic drugs [96] or selective serotonin re-uptake inhibitor (SSRIs) [97] in ASD. In fact, the SSRI citalopram may actually be detrimental [98], especially in children [99]. Moreover, a recent paper reported that citalopram administration perinatally altered cortical network function and led to ASD-like behaviors in rodents [100].

Rapamycin and its analogs are mTOR inhibitors [101] and are being tried for treatment of ASD [102-105] (Figure 2). Our preliminary results (not shown) indicate for the first time that the natural flavonoid luteolin [106] is more potent that rapamycin in its ability to inhibit human mast cell TNF release (Figure 2). A previous report also indicated that flavonoid-related epigallocatechin gallate (EGCG) is an mTOR inhibitor [107]. Luteolin may not only inhibit mTOR, but also has additional beneficial effects in brain inflammation. It inhibits oxidative stress [106], inflammation [106], mast cell degranulation [108], mast cell cytokine release [38], thimerosal-induced inflammatory mediator release [109], microglial activation and proliferation [110-112], and auto-immune T cell activation [113, 114]. Luteolin is also protective against methylmercury-induced mitochondrial damage [115], is neuroprotective [116] and mimics brain-derived neurotrophic factor (BDNF) [117], which was recently associated with autistic-like-behavior in mice [118]. Finally, luteolin could reverse ASD-like behavior in mice [53], and was recently shown to have significant benefit in children with ASD [38, 119].

Conclusions

The prevalence of ASD continues to rise, but there is no clinically effective drug for the core ASD symptoms. Unfortunately, the lack of distinct pathogenesis and biomarkers makes it difficult to develop effective treatments. Stimulation of mTOR, which is already activated due to PTEN mutations, by NT, CRH and/or IL-33, could serve as novel targets for drug development. NTR and CRHR-1 antagonists could, therefore, be used in ASD, along with luteolin.

Abbreviations

ASD: autism spectrum disorders; BBB: blood–brain barrier; BDNF: brain-derived neurotrophic factor; CSF: cerebrospinal fluid; CRH: corticotropin-releasing hormone; EGCG: epigallocatechin gallate; IL: interleukin; MCP: monocyte chemotactic protein; mTOR: mammalian target of rapamycin; mt: mitochondrial; NT: neurotensin; NTR: neurotensin receptor; PTEN: phosphatase and tensin homolog; SSRI: selective serotonin re-uptake inhibitor; TNF: tumor necrosis factor; TSC1/2: tuberous sclerosis protein 1 and 2; VEGF: vascular endothelial growth factor.

Competing interests

The authors declare they have no competing interests.

Authors’ contributions

TCT, SA, and AP conceived and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Aspects of the work discussed were funded in part by the Autism Research Institute, the National Autism Association, Safe Minds, and Theta Biomedical Consulting and Development Co. Inc. (Brookline, MA).

Author details

1Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Molecular Physiology and Pharmacology, Tufts University School of Medicine, Suite J304, 136 Harrison Avenue, Boston, MA 02111, USA. 2Department of Pharmacy, Tufts Medical Center, Boston, MA 02111, USA. 3Department of Biochemistry, Tufts University School of Medicine, Boston, MA, USA. 4Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA. 5Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA. 6Graduate Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.

Received: 22 January 2013 Accepted: 15 March 2013

References

1. Theoharides TC, Zhang B, Conti P: Decreased mitochondrial function and increased brain inflammation in bipolar disorder and other neuropsychiatric diseases. J Clin Psychopharmacol 2011, 31(6):65–68.
2. Hagberg H, Gressens P, Mallard C: Inflammation during fetal and neonatal life: implications for neurologic and neuropsychiatric disease in children and adults. Ann Neural 2012, 11:444–457.
3. Fombonne E: Epidemiology of pervasive developmental disorders. Pediatr Res 2009, 65:591–598.
4. Johnson CP, Myers SM: Identification and evaluation of children with autism spectrum disorders. Pediatrics 2007, 120:1183–1215.
5. McPartland J, Vollmar FR: Autism and related disorders. Handb Clin Neural 2012, 106:407–418.
6. Abrahms BS, Geschwind DH: Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 2006, 9:341–355.
7. Williams SC: Genetics: searching for answers. Nature 2012, 491:54–56.
8. Honig M, Weissenbock H, Harscrot N, Lipkin W: An infection-based model of neurodevelopmental damage. Proc Natl Acad Sci USA 1999, 96:12102–12107.
9. Hisao EV, McBride SW, Chow J, Mazmanian SK, Patterson PH: Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc Natl Acad Sci USA 2012, 109:12776–12781.
10. Brenner S, Reddy A, Augustyn M: Diagnosis and management of autism in childhood. BMJ 2011, 343:d6238.
11. Rapin I, Tuchman RF: What is new in autism? Curr Open Neurol 2008, 21:43–149.
12. Deth R, Muratore C, Benzecry J, Power-Charnitsky VA, Waly M: How environmental and genetic factors combine to cause autism: a redox/methylation hypothesis. Neurotoxology 2008, 29:190–201.
13. Lanni KE, Schupp CW, Simon D, Corbett BA: Verbal ability, social stress, and anxiety in children with autistic disorder. Autism 2012, 16:123–138.
14. Herbert MR: Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol 2010, 23:103–110.
15. Goines PE, Ashwood P: Cytokine dysregulation in autism spectrum disorders (ASD): Possible role of the environment. *Neurotoxical Teratol* 2012. doi:10.1016/j.ntt.2012.07.006.

16. Onore C, Careaga M, Ashwood P: The role of immune dysfunction in the pathophysiology of autism. *Brain Behav Immun* 2012, 26:383–392.

17. Theoharides TC, Angelidou A, Alysandratos KD, Zhang B, Asadi S, Francis K, Torriani E, Kalogeromitros D: Mast cell activation and autism. *Biochim Biophys Acta* 1822, 2012:34–41.

18. Theoharides TC, Alysandratos KD, Angelidou A, Delvanis DA, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D: Mast cells and inflammation. *Biochim Biophys Acta* 1822, 2010:21–33.

19. Nortby K: Mast cells and de novo angiogenesis: angiogenic capability of individual mast-cell mediators such as histamine, TNF, IL-8 and bFGF. *Inflamm Med* 1997, 46(Suppl):1157–1167.

20. Zhang B, Weng Z, Sismanopoulos N, Asadi S, Therianou A, Alysandratos KD, Angelidou A, Shirihai O, Theoharides TC: Mitochondria distinguish granule‐stored from de novo synthesized tumor necrosis factor secretion in human mast cells. *Int Arch Allergy Immunol* 2012, 159(1):23–33.

21. Galli SJ: New concepts about the mast cell. *N Engl J Med* 1993, 328:257–265.

22. Theoharides TC, Doyle R: Autism, gut–blood barrier and mast cells. *J Clin Psychopharmac* 2008, 28:479–483.

23. Kim KS, Wiss CA, Cross AS, Opal SM: Modulation of blood–brain barrier permeability by tumor necrosis factor and antibody to tumor necrosis factor in the rat. *Lymphokine Cytokine Res* 1992, 11:293–298.

24. Rossi CC, Van de Water J, Rogers SJ, Arnal D: Detection of plasma autoimmune antibodies to brain tissue in young children with and without autism spectrum disorders. *Brain Behav Immun* 2011, 25:1123–1135.

25. Braunsweg W, Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Croen LA, Pessah IN, Van de Water J: Autism: maternally derived antibodies specific for fetal brain proteins. *Neurotoxicology* 2008, 29:226–231.

26. Braunsweg W, Duncanson P, Boyce R, Hansen R, Ashwood P, Pessah IN, Hertz-Picciotto I, Van de Water J: Behavioral correlates of maternal antibody status among children with autism. *J Autism Dev Disord* 2012, 42(7):1435–1445.

27. Braunsweg W, Van de Water J: Maternal autoantibodies in autism. *Arch Neurol* 2012, 69:659–669.

28. Theoharides TC, Zhang B, Kempuraj D, Tagen M, Vasiadi M, Angelidou A, Alysandratos KD, Kalogeromitros D, Asadi S, Stavrianes N, Peterson E, Leeman S, Conti P: IL-33 augments substance P–induced VEGF secretion from human mast cells and is increased in psoriatic skin. *J Invest Dermatol* 2012, 132(6):1349–1352.

29. Vasiadi M, Ashwood P, Weng Z, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D, Theoharides TC: Serum neurotensin (NT) is increased in psoriasis and NT induces VEGF release from human mast cells. *Br J Dermatol* 2012, 166:1349–1352.

30. Kogan MD, Blumberg SJ, Schieve LA, Boyle CA, Perrin JM, Ghandour RM, Singh GK, Strickland BB, Trevathan E, van Dyck PC: Maternal autoantibodies in autism. *Brain Behav Immun* 2009, 23:1335–1349.

31. Goines PE, Ashwood P, Weng Z, Sismanopoulos N, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D: Mast cell activation and autism. *Biochim Biophys Acta* 1822, 2012:34–41.

32. Leeman S, Conti P: The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel target for acute, cytokine-driven inflammation. *Proc Natl Acad Sci USA* 2008, 105(12):4453–4458.

33. Lunderius-Andersson C: Mast cells as sensors of cell injury through IL-33 signaling. *J Immunol* 2007, 179(9):5413–5420.

34. Kobayashi H, Ishizuka T, Okumura M, Zhang B, Asadi S, Vasiadi M, Weng Z, Miniati A, Kalogeromitros D, Theoharides TC: Brief report: “allergic symptoms” in children with autism spectrum disorders. More than meets the eye? *J Autism Dev Disord* 2011, 41:1579–1585.

35. Piconeen S, Costanza M, Musio S, Tripodo C, Poliani PL, Gri G, Burroccu A, Petroni P, Gorzanelli A, Colombo MP, Pedrotti R: Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient Kit W–/– mice. *Lab Invest* 2011, 91:627–641.

36. Kogon MD, Blumberg SJ, Scheive LA, Boyle CA, Perrin JM, Ghoudary MN, Singh GK, Strickland BB, Trevathan E, van Dyck PC: Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US, 2007. *Pediatrics* 2009, 123(5):1403–1407.

37. Angelidou A, Alysandratos KD, Asadi S, Zhang B, Francis K, Vasiadi M, Kalogeromitros D, Theoharides TC: Mast cell-glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide. *Philos Trans R Soc Lond B Biol Sci* 2012, 367(1532):3325–3332.
lines: expression of cytokines and chemokines. Neurobiol Dis 2001, 8:1057–1068.
60. Morgan JT, Chana G, Abramson I, Semenderefi K, Courchesne E, Everall IP: Abnormal microglial-neuronal spatial organization in the dorsolateral prefrontal cortex. Brain Res 2012, 1456:72–81.
61. Rodriguez JL, Kern JH: Evidence of microglial activation in autism and its possible role in brain underconnectivity. Neurogen Glia Biol 2011, 7:205–213.
62. Martin S, Dicou E, Vincent JP, Mazella J: Neurotensin and the neurotensin receptor-3 in microglial cells. J Neurosci Res 2005, 81:322–326.
63. Riegler M, Castagliulo I, Wang C, Wik M, Sogokouli T, Wenz E, Matthews JB, Pohtoulakis C: Neurotensin stimulates Cl(−) secretion in human colonic mucosa in vitro: role of adenosine. Gastroenterology 2000, 119:448–357.
64. Martin, S, Vincent JP, Mazella J: Involvement of the neurotensin receptor-3 in the neurotensin-induced migration of human microglia. J Neurosci 2003, 23:1198–1205.
65. Ghanizada A: Targeting neurotensin as a potential novel approach for the treatment of autism. J Neuroinflammation 2010, 7:58.
66. Bear MF, Dolen G, Osterweil E, Nagarajan N: Fragile X: translation in action. Neuropsychopharmacology 2008, 33:84–87.
67. Michalon A, Sidorov M, Ballard TM, Ozmen L, Spooren W, Wettstein JG, Jaeschke G, Bear MF, Lindemann L: Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neurosci 2012, 174:49–56.
68. Rossignol DA, Frye RE: A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 2012, 17(4):389–401.
69. Rossignol DA, Frye RE: Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis. Mol Psychiatry 2012, 17:290–314.
70. Zhang B, Angelidou A, Alysandratos KD, Vasiadi M, Francis K, Asadi S, Theoharides A, Sideri K, Lykouras L, Kalogeromitros D, Theoharides TC: Mitochondrial DNA and anti-mitochondrial antibodies in serum of autistic children. J Neuroinflammation 2010, 7:80.
71. Angelidou A, Francis K, Vasiadi M, Alysandratos K-D, Zhang B, Theoharides A, Sideri K, Lykouras L, Kalogeromitros D, Theoharides TC: Neurotensin is increased in serum of young children with autistic disorder. J Neuroinflammation 2010, 7:48.
72. Zhang B, Alysandratos KD, Angelidou A, Asadi S, Sismanopoulos N, Delivanis DA, Weng Z, Minciati A, Vasiadi M, Katsarou-Katsari A, Miao B, Leeman SE, Lykouras L, Kalogeromitros D, Theoharides TC: Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: relevance to atop dermatitis. J Allergy Clin Immunol 2011, 127:1522–1531.
73. Zhang B, Asadi S, Weng Z, Sismanopoulos N, Theoharides TC: Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory activities. PLoS ONE 2012, 7(12):e56976.
74. Lauritzen KH, Moldestad O, Eide L, Carlson H, Nesse G, Storm JF, Mansuy IM, Bergersen LH, Kluangland A: Mitochondrial DNA toxicity in forebrain neurons causes apoptosis, neurodegeneration, and impaired behavior. Mol Cell Biol 2010, 30:1357–1367.
75. Angelidou A, Asadi S, Alysandratos KD, Karagkouni A, Kouremanbas S, Theoharides TC: Perinatal stress, brain inflammation and risk of autism: Review and proposal. BMC Pediatr 2012, 12:89.
76. Theoharides TC, Kumpuraj D, Redwood L: Autism: an emerging ‘neuroimmune disorder’ in search of therapy. Exp Opin Pharmacother 2009, 10:2127–2143.
77. Aldinger KA, Plummer JT, Qiu S, Levitt P: SnapShot: genetics of autism. Neuron 2011, 72:619.
78. Betancur C: Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting. Brain Res 2011, 1380:62–77.
79. Zhou J, Parada LF: PTEN signaling in autism spectrum disorders. Curr Opin Neurobiol 2012, 22(5):873–879.
80. Smrz O, Kim MS, Zhang S, Mock BA, Smrzova S, Dubois W, Simkoava O, Marc I, Wilson TM, Metcalfe DD, Gillfian AM: mTORC1 and mTORC2 differentially regulate homeostasis of neoplastic and non-neoplastic human mast cells. Blood 2011, 118:6803–6813.
81. Shang YC, Chong ZZ, Wang S, Maiase K: Erythropoietin and Wnt1 govern pathways of mTOR, Apat-1, and XIAP in inflammatory microglia. Curr Neurovasc Res 2011, 8:270–285.
106. Middleton E Jr, Kandaswami C, Theoharides TC: The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease and cancer. Pharmacol Rev 2000, 52:673–751.

107. Van Aller GS, Carion JD, Tang W, Peng H, Zhao L, Copeland RA, Tummino PJ, Luo L: Epigallocatechin gallate (EGCG), a major component of green tea, is a dual phosphoinositide-3-kinase/mTOR inhibitor. Biochem Biophys Res Commun 2011, 406:194–199.

108. Kimata M, Shichijo M, Miura T, Serizawa I, Inagaki N, Nagai H: Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin Exp Allergy 2000, 30:501–508.

109. Asadi S, Zhang B, Weng Z, Angelidou A, Kempuraj D, Alysandratos KD, Theoharides TC: Luteolin and thiosalicylate inhibit HgCl₂ and thimerosal-induced VEGF release from human mast cells. Int J Immunopathol Pharmacol 2010, 23:1015–1020.

110. Dirscherl K, Karlstetter M, Ebert S, Kraus D, Hlawatsch J, Moehle C, Fuchshofer R, Langmann T: Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J Neuroinflammation 2010, 7:3.

111. Jang S, Dilger RN, Johnson RW: Luteolin inhibits microglia and alters hippocampal-dependent spatial working memory in aged mice. J Nutr 2010, 140:1892–1898.

112. Kao TK, Ou YC, Lin SY, Pan HC, Song PJ, Raung SL, Lai CY, Liao SL, Lu HC, Chen CJ: Luteolin inhibits cytokine expression in endotoxin/cytokine-stimulated microglia. J Nutr Biochem 2011, 22:612–624.

113. Kempuraj D, Tagen M, Iliopoulou BP, Clemons A, Vasiadi M, Boucher W, House M, Wolfberg A, Theoharides TC: Luteolin inhibits myelin basic protein-induced human mast cell activation and mast cell dependent stimulation of Jurkat T cells. Br J Pharmacol 2008, 155:1076–1084.

114. Verbeek R, Plomp AC, van Tol EA, van Noort JM: The flavones luteolin and apigenin inhibit in vitro antigen-specific proliferation and interferon-gamma production by murine and human autoimmune T cells. Biochem Pharmacol 2004, 68:621–629.

115. Franco JL, Posser T, Missau F, Pizzolatti MG, Dos Santos AR, Souza DO, Aschner M, Rocha JB, Dafre AL, Farina M: Structure-activity relationship of flavonoids derived from medicinal plants in preventing methylmercury-induced mitochondrial dysfunction. Environ Toxicol Pharmacol 2010, 30:272–278.

116. Chen HQ, Jin ZY, Wang XJ, Xu XM, Deng L, Zhao JW: Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation. Neurosci Lett 2008, 448:175–179.

117. Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, Wilson WD, Xiao G, Bianchi B, Sun YE, Ye K: A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci USA 2010, 107:2687–2692.

118. Sadakata T, Shinoda Y, Oka M, Sekine Y, Sato Y, Saruta C, Miwa H, Tanaka M, Itohara S, Furuchi T: Reduced axonal localization of a Caps2 splice variant impairs axonal release of BDNF and causes autistic-like behavior in mice. Proc Natl Acad Sci USA 2010, 107(51):21104–21109.

119. Theoharides TC, Asadi S, Panagiotidou S: A case series of a luteolin formulation (Neuroprotek®) in children with autism spectrum disorders. Int J Immunopathol Pharmacol 2012, 25:317–323.