Dilatonic AdS-Kerr Solution to AdS/CFT Correspondence

Alexander BURINSKII

NSI Russian Academy of Science, B. Tulskaya 52, Moscow 113191, RUSSIA

Abstract

We consider the AdS_5 solution deformed by a non-constant dilaton interpolating between the standard AdS (UV region) and flat boundary background (IR region). We show that this dilatonic solution can be generalized to the case of a non-flat boundaries provided that the metric of the boundaries satisfies the vacuum Einstein field equations.

As an example, we describe the case when the four-dimensional boundaries represent the Kerr space-time.

\[\text{e-mail : grg@ibrae.ac.ru}\]
The recently discovered remarkable AdS/CFT correspondence between higher-dimensional classical supergravity and quantum gauge theory on the boundary (bulk/boundary correspondence) [1] gives a new insight to the understanding of strongly coupled gauge theories. In particular, the $AdS_5 \times S^5$ vacua of type-IIB supergravity correspond to the four-dimensional Super Yang Mills theory on the boundary. This stimulated attempts to get the description of running gauge coupling of Yang-Mills theory and QCD-confinement in the frames of type-0 superstring theory [2, 3, 4]. In another approach [5, 6, 7, 8, 9], the attempts to reproduce similar QCD-effects were based on the non-supersymmetric background solutions of type-IIB string theory which can be obtained due to the deformation of $AdS_5 \times S^5$ vacuum by a non-constant dilaton breaking the supersymmetry and conformal symmetry. The exact solution of a such sort was first given in [10] and we shall follow the notations of this work. Starting with ten-dimensional dilatonic gravity and the solution with topology of $AdS_5 \times S^5$, one can integrate out five coordinates of the sphere S^5 and obtain [10, 9] effective action for AdS_5 background

$$S = - \int d^5x \sqrt{-g} \left(R - \Lambda - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right),$$

and the equations for metric g and dilaton field ϕ

$$R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R + \Lambda g_{\mu\nu} - \frac{1}{2} \left(\partial_\mu \phi \partial_\nu \phi - \frac{1}{2} g_{\mu\nu} g^{\rho\sigma} \partial_\rho \phi \partial_\sigma \phi \right) = 0,$$

$$\partial_\mu \left(\sqrt{-g} g^{\mu\nu} \partial_\nu \phi \right) = 0.$$

Assuming that solutions for g and ϕ depend only on coordinate $y \equiv x^5$, the following ansatz for metric was proposed

$$ds^2 = \sum_{\mu, \nu=0}^d g_{\mu\nu} dx^\mu dx^\nu = f(y) dy^2 + g(y) \sum_{i,j=0}^{d-1} \eta_{ij} dx^i dx^j,$$

where η_{ij} is the metric of Minkowski background. As it was shown in [10, 9], the solution of these equations can be given in five dimensions by functions

$$g = y$$

and

$$f = \frac{3}{y^2 \left(\lambda^2 + \frac{c^2}{2y^4} \right)}.$$
where $\lambda^2 = -\Lambda$ is positive. The main peculiarity of this solution is the appearance of two boundaries corresponding to different limiting values of the dilaton. This solution interpolates between conformal AdS background (weak coupling regime, $y \to \infty$) and flat space at singular value of dilaton $\phi \to 6^{1/2} \ln y$ (strong coupling regime, $y \to 0$).

The aim of this note is to attract attention to the possibility of the generalization of this solution for non-flat four-dimensional boundaries. We shall show that any metric of the form

$$ds^2 = g_{\mu\nu} dx^\mu dx^\nu = f(y) dy^2 + g(y) \hat{g}_{ik} dx^i dx^k$$

represents the solution of dilatonic gravity equations (2) and (3) provided that the boundary metric \hat{g}_{ik} satisfies the vacuum Einstein equations. This result is also valid for a d-dimensional boundary of AdS_{d+1}. As an example we consider in more details $d=4$ case when the four-dimensional boundary represents the Kerr geometry.

Let us consider $d+1$-dimensional metric (7) where \hat{g}_{ik} is a d-dimensional boundary metric, $\mu, \nu, \ldots = 0, 1, \ldots d$, and $i, k, \ldots = 0, 1, \ldots d - 1$. In the matrix notations we have

$$g_{\mu\nu} = \begin{pmatrix} g(y) \hat{g}_{ik} & 0 \\ 0 & f \end{pmatrix},$$

while the contravariant form of this metric is given by

$$g^{\mu\nu} = \begin{pmatrix} g(y)^{-1} \hat{g}^{ik} & 0 \\ 0 & f^{-1} \end{pmatrix},$$

where \hat{g}^{ik} is the contravariant form of the corresponding d-dimensional metric. The expressions for the connection coefficients $\Gamma_{\nu\lambda}^\mu$ are given in Appendix. For the Ricci curvature tensor we have

$$R_{dd} = -d \left(\frac{g''}{2g} + (\frac{g'}{2g})^2 + \frac{g'g''}{4fg} \right),$$

$$R_{id} = 0,$$

$$R_{ik} = \hat{R}_{ik} + g_{ik} \left[\frac{g'^2}{4f^2} - \frac{g''}{2f} + (2 - d) \frac{(g')^2}{4fg} \right].$$

The important point is that \hat{R}_{ik} represents Ricci curvature of d-dimensional boundary with the metric \hat{g}_{ik} and the connections $\hat{\Gamma}_{ik}^l$. Similarly, the scalar curvature is

$$R = g^{-1} \hat{R} + \frac{d}{4f} \left[2 \frac{f'g'}{fg} - 4 \frac{g''}{g} + (3 - d) \left(\frac{g'}{g} \right)^2 \right].$$
Finally, the expressions for the Einstein tensor are given by \(G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R \) and are as follows:

\[
G_{dd} = \frac{d(d-1)}{8} (\frac{d'}{g})^2, \quad (14)
\]

\[
G_{id} = 0, \quad (15)
\]

\[
G_{ik} = \hat{G}_{ik} + g_{ik} \left[\frac{(d-1)(d-4)(g')^2}{8fg} - \frac{(d-1)f'g'}{4f^2} + \frac{(d-1)g''}{2f} \right]. \quad (16)
\]

When the d-dimensional metric \(\hat{g}_{ik} \) satisfies the vacuum Einstein field equations \(\hat{G}_{ik} = 0 \), the components \(\hat{G}_{ik} \) drop out of the equations (2) and (3). As a result we come exactly to differential equations for functions \(f \) and \(g \) given in the paper [9] and to the expressions (5) and (6). Therefore, in the solutions (4), (5) and (6) the d-boundary metric \(\eta_{ik} \) can be replaced by any metric \(\hat{g}_{ik} \) satisfying the vacuum Einstein equations.

As an example let us now consider the partial case \(d = 4 \) and the Kerr boundary metric \(\hat{g}_{ik} \) in the Kerr-Schild form

\[
\hat{g}_{ik} = \eta_{ik} + 2hk_{i}k_{k}, \quad (17)
\]

where \(h \) is the harmonic scalar function

\[
h = mr/(r^2 + a^2 \cos^2 \theta), \quad (18)
\]

and \(m \) is the mass parameter. This is an important solution of the vacuum Einstein equations describing the field of rotating black holes and modelling the gravitational field of spinning particle [11, 12]. Besides, this form allows one to get a simple comparison with the Minkowskian case.

The vector field \(k_{i}(x) \) is tangent to the principal null congruence and it is determined by the 1-form

\[
k_{i}dx^{i} = \frac{\sqrt{2}}{1 + Y\bar{Y}}[du + \bar{Y}d\zeta + Yd\bar{\zeta} - Y\bar{Y}dv], \quad (19)
\]

where

\[
2^{\frac{1}{2}}\zeta = x + iy, \quad 2^{\frac{1}{2}}\bar{\zeta} = x - iy,
\]

\[
2^{\frac{1}{2}}u = z + t, \quad 2^{\frac{1}{2}}v = z - t, \quad (20)
\]
are the Cartesian null coordinates, and $Y(x) = e^{i\phi} \tan \frac{\theta}{2}$ is the projective angular coordinate. The field k_i is null in respect to Minkowski metric, $k_i k_k \eta^{ik} = 0$, as well as regarding the metric \hat{g}_{ik}

$$k_i k_k \hat{g}^{ik} = 0. \quad (21)$$

One can build the five dimensional field $k^\mu = (k^i, 0)$ which will obviously be the null field with respect to the full five-dimensional metric as well

$$k^\mu k^\nu g_{\mu\nu} = 0. \quad (22)$$

Therefore, the five-dimensional Kerr-AdS metric takes the form

$$ds^2 = f(y) dy^2 + g(y) [\eta_{ik} + 2hk_i k_k] dx^i dx^k, \quad (23)$$

where functions $f(y)$, $g(y)$ and h are given by (14), (15) and (18), and vector field k_i is determined by expressions (19) and (20).

In the region of parameters corresponding to spinning particles the black hole horizons disappear and a region of the rotating disk-like source is opened. The structure of this source should possess some properties of OCD-confinement and represents an old problem. The predicted exotic properties of the matter of this source [12] do not allow to construct them in four dimensions from a known sort of classical matter. The conjectured AdS/CFT correspondence gives a new approach to this problem and stimulates consideration of new models, in particular, of a bag-like models resembling the cosmic bubble models. In this case the bag-like source based on the supersymmetric domain wall models [13] can contain the AdS-region of a false vacuum inside the bag separated from the true vacuum of the outer region by a thin domain wall. As a field model, the supersymmetric version of $U(1) \times U(\tilde{1})$ Witten model [14] seems the most appropriate, since it provides the long range electromagnetic field out of core. A hypothetical mechanism of the formation of the bag-like Kerr source can be connected with a phase transition governed by the value of dilaton near the core.

The AdS-BH solution of another sort was considered in [15].

Acknowledgement

I am thankful to Sergei Odintsov for paying my attention to this area and for useful discussions.

2It can be also expressed as $Y = (z - ia - \tilde{r})/(x - iy)$, where $\tilde{r} = r + ia \cos \theta$ is complex radial distance.
Appendix

The connection coefficients are (no summation over d)

\[
\Gamma_{dd}^d = \frac{f'}{2f}, \quad \Gamma_{id}^d = 0, \quad \Gamma_{di}^d = 0, \quad \Gamma_{ik}^d = -\frac{g'g_{ik}}{2f}, \quad \Gamma_{dk}^i = \Gamma_{kd}^i = -\frac{g'd}{2g}, \quad \Gamma_{dd}^i = 0, \quad \Gamma_{jk}^i = \tilde{\Gamma}_{jk}^i.
\]

Here $\tilde{\Gamma}_{jk}^i$ are connections to d-dimensional metric \hat{g}_{ik}.

We have also the relations

\[
\Gamma_{d\mu}^\mu = \Gamma_{\mu d}^\mu = \frac{f'}{2f} + d\frac{g'}{2g}, \quad \Gamma_{i\mu}^\mu = \Gamma_{\mu i}^\mu = \tilde{\Gamma}_{i\mu}^\mu, \quad \Gamma_{d\nu}^\mu \Gamma_{d\mu}^\nu = \left(\frac{f}{2f}\right)^2 + d\left(\frac{g'}{2g}\right)^2, \quad \Gamma_{iv}^\mu \Gamma_{k\mu}^v = \tilde{\Gamma}_{ij}^l \tilde{\Gamma}_{kl}^j - g_{ik}\left(\frac{g'}{2g}\right)^2, \quad \Gamma_{dd}^\mu \Gamma_{\nu\mu}^\nu = \frac{f}{2f} \left(\frac{f'}{2f} + d\frac{g'}{2g}\right), \quad \Gamma_{ik}^\mu \Gamma_{\nu\mu}^\nu = \tilde{\Gamma}_{ik}^l \tilde{\Gamma}_{lj}^i - g_{ik}\left(\frac{f'}{2f} + d\frac{g'}{2g}\right).
\]

References

[1] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253, [hep-th/9802150].
J. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231, [hep-th/9711200].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Phys. Lett. B428 (1998)105, [hep-th/9802109].

[2] I.R. Klebanov and A.A. Tseytlin, Asymptotic freedom and infrared behaviour in the type 0 string approach to gauge theories, [hep-th/9812089].
[3] J.A. Minahan, JHEP bf 9901(1999)020, hep-th/9811156; Asymptotic freedom and confinement from type 0 string theory, hep-th/9902074.

[4] G. Ferretti and D. Martelli, On the construction of gauge theories from non-critical type 0 strings, hep-th/9811208; E. Álvarez and C. Gómez, Non-critical confining strings and the renormalization group, hep-th/9902012.

[5] A. Kehagias and K. Sfetsos, Phys.Lett. B454(1999)270, hep-th/9902125.

[6] A. Kehagias and K. Sfetsos, Phys.Lett. B456(1999)22, hep-th/9903109.

[7] H. Liu and A.A. Tseytlin, D3-brane – D-instanton configuration and $\mathcal{N} = 4$ super YM theory in constant self-dual background, hep-th/9903091.

[8] R. de Mello Koch, A. Paulin-Campbell and J. P. Rodrigues, Non-holomorphic Corrections from Threebranes in F Theory, hep-th/9903029.

[9] S. Nojiri and S.D. Odintsov, Running gauge coupling and quark-antiquark potential from dilatonic gravity, hep-th/9904036. Curvature dependence of running gauge coupling and confinement in AdS/CFT correspondence, hep-th/9905200.

[10] S. Nojiri and S.D. Odintsov Phys. Lett. B449 (1999) 39, hep-th/9812017.

[11] Carter B., Phys. Rev. 174(1968) 1559
Burinskii A., Sov.Phys.JETP 39(1974) 193;
Sen A. Modern Phys. Lett. A 10(1995)2081; Nucl.Phys B46 (Proc.Suppl.) (1996)198;
Burinskii A., Phys.Lett. A 185(1994)441; Phys.Rev.D52(1995)5826;D57(1998)2392;
Class.Quant. Grav. 16 (1999) 3497, hep-th/9903032;
Dabholkar A., Gauntlett J., Harvey J. and Waldram D., Nucl. Phys. B 474(1996) 85;
[12] Israel W., Phys. Rev. D2 (1970) 641;
 López C.A., Phys. Rev. D30 (1984) 313;
 Burinskii A. Phys.Lett.B216 (1989) 123;

[13] Morris J.R. and Baseia D. Phys.Rev.D 54 (1996) 5217;
 Cvetic M., Griffies S. and Rey S.-J. Nucl.Phys.381 (1992) 301;

[14] Morris J.R., Phys.Rev.D 53 (1996) 2078;

[15] S. Nojiri and S.D. Odintsov, Running gauge coupling and quark-
 antiquark potential in non-SUSY gauge theory at finite temperature from
 IIB SG/CFT correspondence, hep-th/9906216;