Supplementary material for
“Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data”

BY DONGLIN ZENG, FEI GAO AND D. Y. LIN

Department of Biostatistics, University of North Carolina, Chapel Hill, NC 27599-7420, USA
dzeng@bios.unc.edu fgao@live.unc.edu lin@bios.unc.edu

S.1. INCREASE OF THE LIKELIHOOD OVER EM ITERATIONS

We wish to show that the likelihood increases at each iteration of the EM algorithm. Let O denote the random variables $(W_{ijk}, \xi_{ijk}, b_i) (i = 1, \ldots, n; j = 1, \ldots, J_i; k = 1, \ldots, K; q = 1, \ldots, m_k)$ with $t_{kj} < R_{ijk}^*$, and let χ denote the parameters θ and λ_{kq}’s. Clearly, the joint density of O conditional on $(X_{ijk}, Z_{ijk}) (i = 1, \ldots, n; j = 1, \ldots, J_i; k = 1, \ldots, K)$, denoted by $f(O; \chi)$, with respect to a dominating measure is the exponential of expression (5).

Let D consist of the maximum monitoring time for each subject such that the sum of W_{ijkq} over t_{kj} less than or equal to the monitoring time remains zero. Clearly, observing $(A_{ijk} = 0, B_{ijk} > 0 : i = 1, \ldots, n; j = 1, \ldots, J_i; k = 1, \ldots, K)$ is equivalent to observing $D = (L_{ijk} : i = 1, \ldots, n; j = 1, \ldots, J_i; k = 1, \ldots, K)$, so the likelihood for D conditional on the covariates and monitoring times is the same as $L_n(\theta, A)$. Let $\chi^{(l)}$ denote the estimate of χ at the lth iteration in the EM algorithm. By definition, $\chi^{(l+1)}$ maximizes $E^{(l)} \{ \log f(O; \chi)/|D| \}$, where $E^{(l)}$ is the expectation under the conditional density with parameter value $\chi^{(l)}$. Because $E^{(l)} \{ \log f(O; \chi)/|D| \}$ is strictly concave in χ and $\chi^{(l+1)}$ is obtained by the one-step Newton-Raphson method, we see that $E^{(l)} \{ \log f(O; \chi^{(l+1)})/|D| \} \geq E^{(l)} \{ \log f(O; \chi^{(l)})/|D| \}$. Thus,

$$E^{(l)} \{ \log f(O|D, \chi^{(l+1)})/|D| \} + \log P^{(l+1)}(D) \geq E^{(l)} \{ \log f(O|D, \chi^{(l)})/|D| \} + \log P^{(l)}(D),$$

where $f(O|D, \chi^{(l)})$ is the conditional density of O given D with parameter value $\chi^{(l)}$, and $P^{(l)}$ pertains to $L_n(\theta, A)$ with parameter value $\chi^{(l)}$. Since

$$E^{(l)} \{ \log f(O|D, \chi^{(l)})/|D| \} - E^{(l)} \{ \log f(O|D, \chi^{(l+1)})/|D| \}$$

is the Kullback-Leibler distance between $f(O|D, \chi^{(l)})$ and $f(O|D, \chi^{(l+1)})$, which is non-negative, we conclude that $\log P^{(l+1)}(D) \geq \log P^{(l)}(D)$. That is, the likelihood is non-decreasing after each iteration of the EM algorithm.

S.2. ADDITIONAL SIMULATION STUDIES

S.2.1. Clustered Multiple-Events Data

To further evaluate the performance of the proposed methods, we conducted a series of simulation studies with clustered multiple-events data by combining the simulation schemes for clustered data and multiple events described in §5. Specifically, we considered model (1) with $K = 2$, $A_1(t) = \log(1 + 0.5t)$, $A_2(t) = 0.5t$, and J_i being 1, 2 and 3 with probabilities 0.2, 0.7 and 0.1, respectively. We set $b_i = (b_{i1}, b_{21}, \ldots, b_{2J_i})^T$, where b_{i1} is the cluster-specific random effect, and b_{2j} ($j = 1, \ldots, J_i$) are subject-specific random effects. We chose Z_{ijk} such
that $b_1^T Z_{ijk} = b_{i1} + b_{i2j}$, which is the sum of the cluster-specific random effect and the subject-specific random effect. We generated b_{i1} and b_{i2j} independently from $N(0, \sigma_1^2)$ and $N(0, \sigma_2^2)$, respectively, where $\sigma_1^2 = 0.5$ and $\sigma_2^2 = 0.8$. In this case,

$$\Sigma_i(\gamma) = \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_2^2 \end{bmatrix},$$

which is a $(J_i + 1) \times (J_i + 1)$ matrix, and $\gamma = (\sigma_1^2, \sigma_2^2)^T$. We generated two independent regression parameters for the first event cluster-level covariates, the first being $\text{Ber}(0.5)$ and the second being $\text{Un}(0,1)$. We set the regression parameters for the first event (β_{11}, β_{12}) to $(0.5, -0.5)$ and those of the second event (β_{21}, β_{22}) to $(0.4, 0.2)$. We adopted the class of logarithmic transformations indexed by parameter r_k ($k = 1, 2$). We generated five potential examination times for each subject, the first being $\text{Un}(0,1)$, and the gap between any two successive examination times being $0.1 + \text{Un}(0,1)$. We assumed that the study ended at time 5, beyond which no examinations occurred. As shown in Table S.2, the proposed methods continue to perform well.

S.2.2. Comparisons with Chen et al. (2009)

We used the simulation code kindly provided by Dr. M. H. Chen. Specifically, we generated two failure times T_1 and T_2 with hazard functions $0.04 t_1 e^{\beta X + b_1}$ and $0.02 t_2 e^{\beta X + b_2}$, respectively, where X is $\text{Ber}(0.5)$, and b_1 and b_2 are $N(0, 0.01)$. We generated a sequence of potential examination times s_j ($j = 1, \ldots, J$), where $J = 10$, and s_j was chosen as the average of the j/J quantiles of the distribution functions for the two failure times. We let the actual examination time be uniform over $\{s_1, \ldots, s_J\}$. We considered $n = 100$ or 200 and $\beta = -0.25$, 0 or 0.25 and generated 10,000 replicates for each combination.

We evaluated the proposed method and the parametric method of Chen et al. (2009). For the latter, we used Dr. Chen’s code, which sets the initial values in the algorithm to the true parameter values. Both algorithms converged in all replicates, and the results are summarized in Table S.3. Both the proposed and Chen et al. (2009)’s estimators are slightly biased when n is small but the bias decreases as n increases. There are some outliers in Chen et al. (2009)’s parameter estimates, the absolute values being greater than 1 in approximately 0.3% of the replicates. As a result, the standard error of Chen et al. (2009)’s estimator is considerably larger than that of the proposed estimator. If we use instead the robust standard error based on median absolute deviation, then Chen et al. (2009)’s estimator appears more efficient than the proposed estimator, as it should be since it is a parametric estimator.

In practice, the true parameter values are unknown. Thus, we also evaluated Chen et al. (2009)’s algorithm with our initial values. We found that the algorithm failed to converge within 1,000 iterations or produced zero standard error estimates in approximately 20% of the replicates.

S.2.3. Comparisons with Chen et al. (2014)

We used the simulation code provided by Dr. M. H. Chen. Specifically, we generated two failure times T_1 and T_2 with cumulative hazard functions $0.1 t_1 e^{\beta_1 X + b_1}$ and $0.2 t_2 e^{\beta_2 X + b_2}$, respectively, where X is $\text{Ber}(0.5)$, and b_1 and b_2 are $N(0, 0.16)$ with correlation 0.25. We generated a sequence of potential examination times s_j ($j = 1, \ldots, J$), where $J = 5$, and s_j was chosen as the average of the j/J quantiles of the distribution functions for the two failure times. At each potential examination time, each subject was observed with probability 0.8. We considered...
The class of functions \{f \in \mathcal{M} : \text{Chen et al. (2014)’s algorithm converged to non-NA estimates}\}.

Chen et al. (2014)’s algorithm converged in all replicates, whereas the algorithm of Chen et al. (2014) sometimes converged to NA values. Table S.4 summarizes the simulation results based on the replicates in which Chen et al. (2014)’s algorithm converged to non-NA estimates. Chen et al. (2014)’s estimator tends to have slightly smaller standard error than the proposed estimator. This is not surprising since the former assumes that the examinations occur at a common set of time points for all study subjects and thus only needs to estimate the survival probabilities at those fixed time points. Chen et al. (2014)’s estimator tends to have larger bias than the proposed estimator. The slight bias by the proposed estimator is likely due to the fact that the simulated dependence structure is not the same as the one assumed by the model. We also examined Chen et al. (2014)’s algorithm with our initial values and found that approximately 40% of the replicates have NA estimates.

S.3. SOME USEFUL LEMMAS

Lemma 1. Under Conditions 1–6, the class \(\mathcal{M} \) is Glivenko-Cantelli.

Proof. For any \(\beta_1, \beta_2 \in \mathcal{B}, A_1, A_2 \in \mathcal{L}, k \in \{1, \ldots, K\} \) and \(t \in [0, \tau_k] \),

\[
Q_{jk}(t, b; \beta_1, A_{1k}) - Q_{jk}(t, b; \beta_2, A_{2k}) = \exp \left[-G_k \left\{ \Lambda_k(\tau_k)F_{1k}(t, X_{jk}, Z_{jk}, b) \right\} \right] - \exp \left[-G_k \left\{ \Lambda_k(\tau_k)F_{2k}(t, X_{jk}, Z_{jk}, b) \right\} \right],
\]

where

\[
F_{lk}(t, X_{jk}, Z_{jk}, b) = \frac{t^\beta e_{\tau}^{\gamma X_{jk}(s) + b^T Z_{jk}(s)}d\Lambda_k(s)}{\Lambda_k(\tau_k)}, \quad l = 1, 2.
\]

The class of functions \(\{e^{\beta^T X_{jk}(s) + b^T Z_{jk}(s)} : \beta \in \mathcal{B}\} \), with \(X_{jk}, Z_{jk} \) and \(b \) as random variables, is a VC class with VC-index \(V \). Thus, \(\mathcal{F}_k = \{F_{lk}(t, X_{jk}, Z_{jk}, b) : \beta \in \mathcal{B}, A_l \in \mathcal{L}\} \) is a convex hull of the VC class, with the \(L_2(\mathcal{P}) \)-bracketing number \(O \left(\exp \left(\epsilon^{-2V/(V+2)} \right) \right) \).

For any constant \(M_\Lambda \), if \(\Lambda_{1k}(\tau_k) > M_\Lambda \) and \(\Lambda_{2k}(\tau_k) > M_\Lambda \), then

\[
|Q_{jk}(t, b; \beta_1, A_{1k}) - Q_{jk}(t, b; \beta_2, A_{2k})| \leq \exp \left[-G_k \left\{ \Lambda_k(\tau_k)F_{1k}(t, X_{jk}, Z_{jk}, b) \right\} \right] + \exp \left[-G_k \left\{ \Lambda_k(\tau_k)F_{2k}(t, X_{jk}, Z_{jk}, b) \right\} \right] - 2 \exp \left\{ -G_k \left(M_\Lambda e^{-\tilde{M}/\|b\|} \right) \right\}.
\]

If \(\Lambda_{1k}(\tau_k) \leq M_\Lambda \) and \(\Lambda_{2k}(\tau_k) \leq M_\Lambda \), then

\[
|Q_{jk}(t, b; \beta_1, A_{1k}) - Q_{jk}(t, b; \beta_2, A_{2k})| \leq \max_{F \in \mathcal{F}_k, A \in \mathcal{L}, \Lambda_k(\tau_k) \leq M_\Lambda} \left(\exp \left[-G_k \left\{ \Lambda_k(\tau_k)F(t, X_{jk}, Z_{jk}, b) \right\} \right] G_k \left\{ \Lambda_k(\tau_k)F(t, X_{jk}, Z_{jk}, b) \right\} \right) \times \left\{ |F_{1k}(t, X_{jk}, Z_{jk}, b) - F_{2k}(t, X_{jk}, Z_{jk}, b)| M_\Lambda + F_{2k}(t, X_{jk}, Z_{jk}, b) |\Lambda_k(\tau_k) - \Lambda_{2k}(\tau_k)| \right\} \times \left(|M_\Lambda | F_{1k}(t, X_{jk}, Z_{jk}, b) - F_{2k}(t, X_{jk}, Z_{jk}, b)| + e^{\tilde{M}/\|b\|} |\Lambda_k(\tau_k) - \Lambda_{2k}(\tau_k)| \right) \right\}.
\]
In the remaining scenario, we assume, without loss of generality, that $\Lambda_{1k}(\tau_k) \leq M_A$ and $\Lambda_{2k}(\tau_k) > M_A$. Then

\[
|Q_{jk}(t, b; \beta_1, \Lambda_{1k}) - Q_{jk}(t, b; \beta_2, \Lambda_{2k})| \\
\leq |\exp[-G_k \{\Lambda_{1k}(\tau_k)F_k(t, X_{jk}, Z_{jk}, b)\}] - \exp[-G_k \{M_A F_{1k}(t, X_{jk}, Z_{jk}, b)\}]| \\
+ |\exp[-G_k \{M_A F_{1k}(t, X_{jk}, Z_{jk}, b)\}] - \exp[-G_k \{\Lambda_{2k}(\tau_k)F_{2k}(t, X_{jk}, Z_{jk}, b)\}]| \\
\leq_{F \in F_k, A \in L, \Lambda_{1k}(\tau_k) \leq M_A} \exp[-G_k \{\Lambda_{1k}(\tau_k)F(t, X_{jk}, Z_{jk}, b)\}] G'_k \{\Lambda_{1k}(\tau_k)F(t, X_{jk}, Z_{jk}, b)\} \\
\times \left\{ e^{\tilde{M} + \tilde{M}\|b\|}|\Lambda_{1k}(\tau_k) - M_A| + 2 \exp \left\{ -G_k \left(M_A e^{\tilde{M} - \tilde{M}\|b\|} \right) \right\} \right\}.
\]

Because there exist M_A/ϵ ϵ-brackets to cover $[0, M_A]$, the above results imply that there exists $O \left\{ \exp \left(e^{-2V/(V+2)} \right) \right\} \times M_A/\epsilon$ brackets

\[
\{F_{1k}(t, X_{jk}, Z_{jk}, b), F_{2k}(t, X_{jk}, Z_{jk}, b)\} \times \{\Lambda_{1k}(\tau_k), \Lambda_{2k}(\tau_k)\}
\]

such that

\[
|Q_{jk}(t, b; \beta_1, \Lambda_{1k}) - Q_{jk}(t, b; \beta_2, \Lambda_{2k})| \\
\leq_{F \in F_k, A \in L, \Lambda_{1k}(\tau_k) \leq M_A} \max \left\{ \exp[-G_k \{F(t, X_{jk}, Z_{jk}, b)\Lambda_{k}(\tau_k)\}] G'_k \{F(t, X_{jk}, Z_{jk}, b)\Lambda_{k}(\tau_k)\} \right\} \\
\times \left\{ M_A e^{\tilde{M} + \tilde{M}\|b\|} M_A \right\} \epsilon + 2 \exp \left\{ -G_k \left(M_A e^{-\tilde{M} - \tilde{M}\|b\|} M_A \right) \right\}.
\]

By Condition 6,

\[
\max_{F \in F_k, A \in L, \Lambda_{1k}(\tau_k) \leq M_A} \left\{ \exp[-G_k \{F(t, X_{jk}, Z_{jk}, b)\Lambda_{k}(\tau_k)\}] G'_k \{F(t, X_{jk}, Z_{jk}, b)\Lambda_{k}(\tau_k)\} \right\} = O_P(1).
\]

It also follows from Condition 6 that

\[
|Q_{jk}(t, b; \beta_1, \Lambda_{1k}) - Q_{jk}(t, b; \beta_2, \Lambda_{2k})| \leq O_P \left(M_A + e^{\tilde{M} + \tilde{M}\|b\|} \right) \epsilon + 2O_P(M_A^{-1/r_{x0}}).
\]

We choose $M_A = e^{-r_{x0}/(r_{x0}+1)}$ such that

\[
|Q_{jk}(t, b; \beta_1, \Lambda_{1k}) - Q_{jk}(t, b; \beta_2, \Lambda_{2k})| \leq O_P \left(e^{1/(r_{x0}+1)} + e \right) (1 + e^{\tilde{M} + \tilde{M}\|b\|}).
\]

We redefine ϵ as $e^{r_{x0}+1}$ such that there exist $O \left\{ e^{-2(r_{x0}+1)} \exp \left(e^{-2V(r_{x0}+1)/(V+2)} \right) \right\} \epsilon$-brackets to cover $Q_{jk} = \{Q_{jk}(t, b; \beta, \Lambda_k) : \beta \in B, A \in L \}$ in $L_2(\mathbb{P})$. Therefore, the class Q_{jk} is Glivenko-Cantelli for any $j = 1, \ldots, J, k = 1, \ldots, K$, implying that \mathcal{M} is Glivenko-Cantelli.

Lemma 2. Under Conditions 1–6, the class $\mathcal{M}^* = \{m(\theta, A) : \theta \in \Theta, A \in \mathcal{L}^*\}$ is Donsker, where $\mathcal{L}^* = \{A : A \in \mathcal{L}, \max_{1 \leq k \leq K} \Lambda_k(\tau_k) \leq M_A\}$, and M_A is a finite constant.

Proof. For any $\beta_1, \beta_2 \in B, \Lambda_1, \Lambda_2 \in \mathcal{L}^*, k \in \{1, \ldots, K\}$ and $t \in [0, \tau_k],$

\[
Q_{jk}(t, b; \beta_1, \Lambda_{1k}) - Q_{jk}(t, b; \beta_2, \Lambda_{2k}) \\
\leq O_P(1) \left\{ M_A |F_{1k}(t, X_{jk}, Z_{jk}, b) - F_{2k}(t, X_{jk}, Z_{jk}, b)| + e^{\tilde{M} + \tilde{M}\|b\|}|\Lambda_{1k}(\tau_k) - \Lambda_{2k}(\tau_k)| \right\}.
\]

Thus, there exist $O \left\{ \exp \left(e^{-2V/(V+2)} \right) \right\} \times M_A/\epsilon$ ϵ-brackets

\[
\{F_{1k}(t, X_{jk}, Z_{jk}, b), F_{2k}(t, X_{jk}, Z_{jk}, b)\} \times \{\Lambda_{1k}(\tau_k), \Lambda_{2k}(\tau_k)\},
\]

such that

\[
|Q_{jk}(t, b; \beta_1, \Lambda_{1k}) - Q_{jk}(t, b; \beta_2, \Lambda_{2k})| \leq O \left(M_A + e^{\tilde{M} + \tilde{M}\|b\|} \right) \epsilon.
\]
Therefore,

\[\|Q_{jk}(t; b; \beta_1, \Lambda_{1k}) - Q_{jk}(t; b; \beta_2, \Lambda_{2k})\|_{L_2(\mathbb{P})} \leq O(\epsilon). \]

That is, the bracket number for \(M^* \) is

\[N_{[]} (\epsilon, M^*, L_2(\mathbb{P})) = O \left\{ \exp \left(\epsilon^{-2V/(V+2)} \right) \right\} \times M_A / \epsilon. \]

The bracketing integral is finite, so \(M^* \) is Donsker.

Lemma 3. Under Conditions 1–7,

\[
E \left[\sum_{j=1}^J \sum_{k=1}^K \sum_{l=0}^{M_{jk}} \left(\hat{\Lambda}_k(U_{jkl}) - \Lambda_{0k}(U_{jkl}) \right)^2 \right] = O_P(n^{-2/3}) + O \left(\|\hat{\gamma} - \gamma_0\|^2 + \|\hat{\beta} - \beta_0\|^2 \right).
\]

Proof. By Theorem 1, \(\hat{A} \) is consistent for \(A_0 \). Thus, there exists a finite constant \(M_A \) such that \(\hat{\Lambda}_k(r_k) \leq M_A \) for \(k = 1, \ldots, K \). It follows that the function \(m(\hat{\theta}, \hat{A}) \) belongs to the Donsker class \(M^* \) given in Lemma 2. Define

\[
\psi(\delta) = \int_0^\delta \sqrt{1 + \log N_{[]} (\epsilon, M^*, L_2(\mathbb{P}))} \, d\epsilon,
\]

which is less than \(O(\delta^{1/2}) \). By Lemma 1.3 of van de Geer (2000) and the mean-value theorem,

\[
\mathbb{P} \left\{ m(\hat{\theta}, \hat{A}) - m(\theta_0, A_0) \right\} \leq -H^2 \left\{ (\hat{\theta}, \hat{A}), (\theta_0, A_0) \right\},
\]

where \(A \lesssim B \) means that \(A \leq cB \) for a positive constant \(c \), and \(H \{(\theta, A), (\theta_0, A_0)\} \) is the Hellinger distance

\[
H \{(\theta, A), (\theta_0, A_0)\} = \left[\int \left\{ L(\theta, A)^{1/2} - L(\theta_0, A_0)^{1/2} \right\}^2 \, d\mu \right]^{1/2},
\]

with respect to the dominating measure \(\mu \). By Theorem 3.4.1 of van der Vaart & Wellner (1996), there exists an \(r_n \) with \(r_n^2 \psi(1/r_n) \lesssim n^{1/2} \) such that \(H \{(\hat{\theta}, \hat{A}), (\theta_0, A_0)\} = O_P(1/r_n) \). In particular, we choose \(r_n \) in the order of \(n^{1/3} \) such that \(H \{(\hat{\theta}, \hat{A}), (\theta_0, A_0)\} = O_P(n^{-1/3}). \)

By the mean-value theorem,

\[
E \left(\left[\int_{b}^{J} \prod_{j=1}^{J} \prod_{k=1}^{K} \left\{ D_{jk}(U_{jkl}) \right\} \phi(b; \Sigma(\hat{\gamma})) \, db - \int_{b}^{J} \prod_{j=1}^{J} \prod_{k=1}^{K} \left\{ D_{jk}(U_{jkl}) \right\} \phi(b; \Sigma_0) \right\} \, db \right)^2 \leq O_P(n^{-2/3}).
\]
Applying the mean-value theorem again, we have
\[
O_P(n^{-2/3}) + O(1) \| \gamma - \gamma_0 \|^2 + O(1) \| \beta - \beta_0 \|^2
\]
\[
\geq E \left[\left(\int_{b} \prod_{j=1}^{J} \prod_{k=1}^{K} \{ D_{jk}(U_{jk}, b; \beta_0, \Lambda_k) \} \prod_{j=1}^{J} \prod_{k=1}^{K} \{ D_{jk}(U_{jk}, b; \beta_0, \Lambda_{0k}) \} \right)^2 \phi(b; \Sigma_0) db \right]^{1/2}
\]
\[
\geq c_0 E \left[\left(\sum_{j=1}^{J} \sum_{k=1}^{K} \int_{b} \prod_{j'=1}^{J} \prod_{k'=1, k' \neq k}^{K} D_{j'k'}(U_{j'k'}, b; \beta_0, \Lambda_{0k'}) \right) \sum_{l=0}^{M_{jk}} \Delta_{jkl} \int_{0}^{T_k} B_{jk}(t, U_{jkl}, U_{jkl, t+1}, b; \beta_0, \Lambda_{0k}) dg_k(t) \phi(b; \Sigma_0) db \right]^{1/2}
\]
for some positive constant \(c_0 \). We define a metric space \(\mathcal{V} \) which consists of all functions \(g = (g_1, \ldots, g_K)^2 \) in \(BV[0, \tau_1] \times \cdots \times BV[0, \tau_K] \), the space of bounded variation spaces \(BV[0, \tau_k] \) \((k = 1, \ldots, K)\), with \(g_k(0) = 0 \), and define a norm as
\[
\| g \|_1 = E \left[\sum_{j=1}^{J} \sum_{k=1}^{K} \sum_{l=0}^{M_{jk}} g_k(U_{jkl})^2 \right]^{1/2}
\]
In addition, we define a seminorm
\[
\| g \|_2 = E \left[\left(\sum_{j=1}^{J} \sum_{k=1}^{K} \int_{b} \prod_{j'=1}^{J} \prod_{k'=1, k' \neq k}^{K} D_{j'k'}(U_{j'k'}, b; \beta_0, \Lambda_{0k'}) \right) \sum_{l=0}^{M_{jk}} \Delta_{jkl} \int_{0}^{T_k} B_{jk}(t, U_{jkl}, U_{jkl, t+1}, b; \beta_0, \Lambda_{0k}) dg_k(t) \phi(b; \Sigma_0) db \right]^{1/2}
\]
If \(\| g \|_2 = 0 \) for some \(g \in \mathcal{V} \), then
\[
\sum_{j=1}^{J} \sum_{k=1}^{K} \int_{b} \prod_{j'=1}^{J} \prod_{k'=1, k' \neq k}^{K} D_{j'k'}(U_{j'k'}, b; \beta_0, \Lambda_{0k'}) \right) \sum_{l=0}^{M_{jk}} \Delta_{jkl} \int_{0}^{T_k} B_{jk}(t, U_{jkl}, U_{jkl, t+1}, b; \beta_0, \Lambda_{0k}) dg_k(t) \phi(b; \Sigma_0) db = 0
\]
with probability 1. For any \(j \in \{1, \ldots, J\}, k \in \{1, \ldots, K\} \) and \(l, j' \in \{0, \ldots, M_{j'k'}\} \) \((j' = 1, \ldots, J; k' = 1, \ldots, K)\), we evaluate the above equation at all possible values of \(\Delta_{jkl} \) with \((j', k') \in C_{j} = \{1, \ldots, j\} \times \{1, \ldots, k\} \) and \(l = l_{j'k'}, \ldots, M_{j'k'} \) and take the sum of the resulting equations. We then consider all possible values of \(\Delta_{jkl} \) with \((j', k') \notin C_{j} \) and \(l = 0, \ldots, M_{j'k'} \) and take the sum of the resulting equations to obtain
\[
\int_{b} \left\{ \prod_{j'=1}^{J} \prod_{k'=1}^{K} Q_{j'k'}(U_{j'k'}, b; \beta_0, \Lambda_{0k}) \right\} \sum_{j'=1}^{J} \sum_{k'=1}^{K} G_{k'} \left\{ \int_{0}^{T_k} U_{j'k'} e^{\beta_0 T} \Lambda_{j'k'}(t) + b_{j'k'} d\Lambda_{0k'}(t) \right\}
\]
This equality holds for any \(U_{j'k'} \). Thus, for any \(t' < t \) and \(1 \leq j' < j \leq J, 1 \leq k' < k \leq K \),

\[
\int_0^t \left\{ \prod_{j'=1}^j \prod_{k'=1}^k Q_{j',k'}(t'; b; \beta_0, \Lambda_{0k'}) \right\} \sum_{j'=1}^j \sum_{k'=1}^k G_k' \left\{ \int_0^t e^{(T_{j'k'} + b')Z_{j'k'}(t)} d\Lambda_{0k'}(t) \right\} \times \int_0^t e^{(T_{j'k'} + b')Z_{j'k'}(t)} d\Lambda_{0k'}(t) \phi(b; \Sigma_0) db = 0.
\]

By Condition 8,

\[
G_k' \left\{ \int_0^t e^{(T_{j'k'} + b')Z_{j'k'}(s)} d\Lambda_{0k'}(s) \right\} \times \int_0^t e^{(T_{j'k'} + b')Z_{j'k'}(s)} d\Lambda_{0k'}(s) = 0
\]

for any \(j \in \{1, \ldots, J\} \), \(k \in \{1, \ldots, K\} \) and \(t \in [0, \tau_k] \). The term \(G_k' \left\{ \int_0^t e^{(T_{j'k'} + b')Z_{j'k'}(s)} d\Lambda_{0k'}(s) \right\} \) is bounded away from zero, such that \(\int_0^t e^{(T_{j'k'} + b')Z_{j'k'}(s)} d\Lambda_{0k'}(s) = 0 \) almost surely for any \(t \in [0, \tau_k] \). Therefore, \(g_k(t) = 0 \) for any \(t \in [0, \tau_k] \) and \(k \in \{1, \ldots, K\} \). This implies that \(\| \cdot \|_2 \) is a norm in \(V \). By the Cauchy-Schwarz inequality, for any \(g \in V \),

\[
\|g\|_2 \leq \left\{ \sum_{j=1}^J \sum_{k=1}^K M_{jk} \Delta_{jkl} \right\} \times \int_0^T \left\{ \prod_{j'=1}^j \prod_{k'=1}^k D_{j'k'}(U_{j'k'}, b; \beta_0, \Lambda_{0k'}) \right\} \times \left[\int_0^T B_{jkl}(t, U_{jkl}, U_{jkl,t+1}; b; \beta_0, \Lambda_{0k}) dt \phi(b; \Sigma_0) db \right]^2 \right\}^{1/2} \leq c_1 \|g\|_1,
\]

where \(c_1 \) is a finite constant. By the bounded inverse theorem in the Banach space, \(\|g\|_2 \geq c'_1 \|g\|_1 \) for some constant \(c'_1 \). Therefore,

\[
O_P(n^{-2/3}) + O(1) \| \gamma - \gamma_0 \|^2 + O(1) \| \hat{\beta} - \beta_0 \|^2 \geq c_0 c'_1 \left\{ \sum_{j=1}^J \sum_{k=1}^K M_{jk} \left\{ \hat{\Lambda_k}(U_{jkl}) - \Lambda_{0k}(U_{jkl}) \right\}^2 \right\}.
\]

The lemma thus holds.

References

Chen, M. H., Tong, X. & Sun, J. (2009). A frailty model approach for regression analysis of multivariate current status data. *Statist. Med.*, 28, 3424–3436.

Chen, M. H., Chen, L. C., Lin, K. H. & Tong, X. (2014). Analysis of multivariate interval censoring by Diabetic Retinopathy Study. *Commun. Statist. B*, 43, 1825–1835.

Van de Geer, S. A. (2000). *Empirical Processes in M-Estimation*. Cambridge: Cambridge University Press.

Van der Vaart, A. W. & Wellner, J. A. (1996). *Weak Convergence and Empirical Processes*. New York: Springer.
Table S1: Summary statistics for simulation studies with multiple events

$r_1 = r_2$	$n = 100$	$n = 200$	$n = 400$										
	Bias	SE	SEE	CP	Bias	SE	SEE	CP	Bias	SE	SEE	CP	
0	$\beta_{11} = 0.5$	0.031	0.340	0.329	95	0.016	0.231	0.227	95	0.009	0.160	0.159	95
	$\beta_{12} = -0.5$	-0.030	0.586	0.577	95	-0.016	0.399	0.395	95	-0.004	0.275	0.274	95
	$\beta_{21} = 0.4$	0.025	0.311	0.302	95	0.012	0.209	0.208	95	0.007	0.146	0.145	95
	$\beta_{22} = 0.2$	0.014	0.539	0.531	95	0.007	0.364	0.361	95	0.007	0.252	0.250	95
	$\sigma^2 = 0.5$	0.029	0.361	0.394	96	0.018	0.235	0.263	96	0.012	0.159	0.171	96
0.5	$\beta_{11} = 0.5$	0.031	0.400	0.389	95	0.015	0.273	0.268	95	0.009	0.189	0.187	95
	$\beta_{12} = -0.5$	-0.032	0.685	0.683	95	-0.017	0.469	0.467	95	-0.004	0.324	0.324	95
	$\beta_{21} = 0.4$	0.023	0.371	0.364	95	0.011	0.250	0.250	95	0.005	0.176	0.176	95
	$\beta_{22} = 0.2$	0.010	0.641	0.637	96	0.002	0.439	0.435	95	0.005	0.305	0.302	95
	$\sigma^2 = 0.5$	0.030	0.448	0.483	95	0.017	0.296	0.319	95	0.011	0.203	0.215	96
1	$\beta_{11} = 0.5$	0.033	0.459	0.448	95	0.016	0.312	0.308	95	0.009	0.215	0.214	95
	$\beta_{12} = -0.5$	-0.035	0.785	0.787	96	-0.019	0.535	0.536	95	-0.005	0.370	0.371	95
	$\beta_{21} = 0.4$	0.024	0.434	0.425	95	0.012	0.294	0.292	95	0.005	0.206	0.204	95
	$\beta_{22} = 0.2$	0.007	0.749	0.744	96	0.001	0.512	0.508	95	0.004	0.356	0.352	95
	$\sigma^2 = 0.5$	0.035	0.559	0.605	94	0.019	0.372	0.401	94	0.012	0.255	0.272	95

SE, SEE and CP stand for empirical standard error, mean standard error estimator and empirical coverage percentage of the 95% confidence interval, respectively. For σ^2, bias and SEE are based on the median instead of the means, and the confidence interval is based on the log transformation. Each entry is based on 10,000 replicates.
Table S2: Summary statistics for simulation studies with clustered multiple-events data

	$n = 100$		$n = 200$						
$r_1 = r_2$		Bias	SE	SEE	CP	Bias	SE	SEE	CP
0		0.022	0.293	0.285	95	0.010	0.202	0.198	95
$\beta_{11} = 0.5$		-0.023	0.505	0.508	95	-0.015	0.342	0.348	95
$\beta_{12} = -0.5$		0.019	0.275	0.269	95	0.010	0.189	0.187	95
$\beta_{21} = 0.4$		0.002	0.480	0.478	95	0.001	0.328	0.328	95
$\sigma^2_1 = 0.5$		0.013	0.243	0.311	98	-0.004	0.165	0.200	98
$\sigma^2_2 = 0.8$		0.042	0.307	0.367	96	0.020	0.206	0.237	96
0.5		0.020	0.327	0.325	95	0.008	0.227	0.225	95
$\beta_{11} = 0.5$		-0.022	0.571	0.577	95	-0.015	0.386	0.394	95
$\beta_{12} = -0.5$		0.016	0.309	0.309	95	0.008	0.216	0.213	95
$\beta_{21} = 0.4$		-0.001	0.542	0.546	95	0.000	0.371	0.373	95
$\sigma^2_1 = 0.5$		-0.026	0.283	0.367	98	-0.014	0.197	0.236	98
$\sigma^2_2 = 0.8$		0.041	0.382	0.451	95	0.023	0.264	0.295	96
1		0.020	0.362	0.365	95	0.008	0.252	0.251	95
$\beta_{11} = 0.5$		-0.024	0.637	0.646	95	-0.018	0.433	0.439	95
$\beta_{12} = -0.5$		0.016	0.349	0.350	95	0.009	0.241	0.241	95
$\beta_{21} = 0.4$		0.000	0.607	0.616	95	-0.002	0.419	0.420	95
$\sigma^2_1 = 0.5$		-0.038	0.330	0.433	98	-0.018	0.234	0.278	97
$\sigma^2_2 = 0.8$		0.044	0.470	0.556	94	0.023	0.327	0.368	95

SE, SEE and CP stand for empirical standard error, mean standard error estimator and empirical coverage percentage of the 95% confidence interval, respectively. For σ^2, bias and SEE are based on the median instead of the means, and the confidence interval is based on the log transformation. Each entry is based on 10,000 replicates.

Table S3: Summary statistics for simulation studies comparing the proposed and Chen et al. (2009)’s methods

	Proposed	Chen et al. (2009)											
n	Bias	SE	RSE	SEE	CP	Bias	SE	RSE	SEE	CP	MSE		
100	0.25	0.046	0.288	0.284	0.282	0.954	0.085	0.045	0.297	0.267	0.256	0.942	0.090
	-0.003	0.284	0.274	0.279	0.951	0.081	0.027	0.309	0.256	0.254	0.943	0.096	
	-0.25	-0.051	0.286	0.282	0.283	0.955	0.085	0.022	0.322	0.259	0.261	0.946	0.104
200	0.25	0.029	0.184	0.181	0.184	0.952	0.035	0.019	0.203	0.176	0.176	0.945	0.041
	0.00	0.001	0.182	0.185	0.182	0.955	0.033	0.021	0.770	0.175	0.175	0.950	0.593
	-0.25	-0.028	0.186	0.187	0.186	0.953	0.035	0.018	0.231	0.181	0.181	0.945	0.054

SE, RSE, SEE, CP and MSE stand for standard error, robust standard error based on median absolute deviation, mean standard error estimator, coverage probability of the 95% confidence interval and mean squared error, respectively. Each entry is based on 10,000 replicates.
Table S4: Summary statistics for simulation studies comparing the proposed and Chen et al. (2014)’s methods

#rep	$\beta_1 = 0$	$\beta_2 = 0$	$\beta_1 = 0.5$	$\beta_2 = 0.5$	$\beta_1 = 1$	$\beta_2 = 0.5$	$\beta_1 = 0$	$\beta_2 = 0$	$\beta_1 = 0.5$	$\beta_2 = 0.5$	$\beta_1 = 1$	$\beta_2 = 0.5$			
	Bias	SE	SEE	CP	MSE	Bias	SE	SEE	CP	MSE	Bias	SE	SEE	CP	MSE
9918	0.001	0.259	0.254	0.950	0.067	0.001	0.254	0.244	0.943	0.064	0.000	0.230	0.220	0.945	0.053
9895	-0.001	0.238	0.236	0.955	0.057	0.000	0.230	0.220	0.945	0.053	-0.024	0.257	0.246	0.946	0.067
9913	-0.006	0.246	0.238	0.945	0.060	-0.028	0.235	0.224	0.937	0.056	-0.053	0.260	0.251	0.936	0.071
	-0.015	0.273	0.264	0.943	0.075	-0.053	0.260	0.251	0.936	0.071	-0.025	0.240	0.227	0.940	0.058
9976	-0.002	0.174	0.176	0.956	0.030	0.000	0.174	0.171	0.949	0.030	-0.024	0.165	0.161	0.944	0.025
9965	0.002	0.160	0.161	0.953	0.026	0.003	0.159	0.155	0.944	0.025	-0.034	0.179	0.172	0.936	0.033
9978	-0.023	0.180	0.177	0.944	0.033	-0.042	0.162	0.157	0.937	0.028	-0.064	0.182	0.175	0.920	0.037
	-0.027	0.165	0.163	0.947	0.028	-0.070	0.166	0.159	0.934	0.029	-0.037	0.166	0.159	0.934	0.029

SE, SEE, CP and MSE stand for standard error, mean standard error estimator, coverage probability of the 95% confidence interval and mean squared error, respectively. #rep is the number of replicates with non-NA estimates by Chen et al. (2014)’s method.

Fig. S1: Estimation of $\Lambda_1(t)$ for multiple events data. The solid and dashed curves pertain to the true values and mean estimates, respectively. Each estimate is based on 10,000 replicates.
Fig. S2: Estimation of $\Lambda_2(t)$ for multiple events data. The solid and dashed curves pertain to the true values and mean estimates, respectively. Each estimate is based on 10,000 replicates.
Fig. S3: Log-likelihood at the nonparametric maximum likelihood estimates as a function of r_1 and r_2 in the logarithmic families for the Atherosclerosis Risk in Communities Study.