Commentary: Comparison of the Protective Effects of Individual Components of Particulated trans-Sialidase (PTCTS), PTC and TS, against High Cholesterol Diet-Induced Atherosclerosis in Rabbits

Maria de Lourdes Higuchi*

Faculdade de Medicina, Hospital das Clínicas, Instituto do Coração, Universidade de São Paulo, São Paulo, Brazil

Keywords: microvesicles, atherosclerosis, components of particulated trans-sialidase, anti-oxidant natural nanoparticles, PTCTS

A Commentary on

Comparison of the Protective Effects of Individual Components of Particulated trans-Sialidase (PTCTS), PTC and TS, against High Cholesterol Diet-Induced Atherosclerosis in Rabbits by Garavelo, S. M., Higuchi, M. L., Pereira, J. J., Reis, M. M., Kawakami, J. T., Ikegami, R. N., et al. (2017). BioMed. Res. Int. 2017, 1–12.

In this comment we develop the concept that atherosclerosis is an inflammatory process, aggravated with the presence of infectious agents, such as Coxsackie B virus, HIV, H.pilori, CMV, Mycoplasma pneumoniae, and Chlamydophila pneumoniae and pathogenic archaea. We also develop hypothesis about how PTCTS works, a new natural nutricosmetic produced by nanoparticles derived from orchid flowers, transialidase, and thermal water, which had a strong anti-oxidant effect. In previous work, published BioMed Research International, we demonstrated that serum extracellular vesicles containing Mycoplasma pneumoniae lipoproteins increased with cholesterol enriched diet, and they decreased with administration of oral PTCTS (experimental work approved by the Ethics Committee of the School of Medicine of University of Sao Paulo). The hypothesis is that, PTCTS would remove pathogenic archaea, the symbiotic microbe responsible for maintenance of other bacteria growing. Then, removing archaea, the macrophages would re-establishes their capacity of killing intra-cellular microbes, decreasing atherosclerotic plaques, in rabbits. Now we intend to initiate human clinical trials to determine safety and efficacy of oral PTCTS in humans.

Aging cells and organisms accumulate increased levels of nuclear DNA damaged by oxidants (1). Numerous pathogens have been identified as contributing factors to the chronic inflammatory state of atherosclerosis such as Coxsackie B virus, HIV, H.pilori, CMV (2, 3). In this general comment we develop the concept about mechanism of PTCTS works, a new anti-oxidant natural nanoparticles (PTCTS) for decreasing the amount of atherosclerotic plaques, possibly due to removal of infectious agents (4).

Mycoplasma pneumoniae and Chlamydophila pneumoniae (5) were found in human atherosclerotic plaques, and increased levels of anti-Chlamydophila pneumoniae and anti-Mycoplasma pneumoniae antibodies were seen after acute myocardial infarction (6, 7). Extracellular vesicles are membrane-coated vesicles, may play a role in endothelial dysfunction, platelet activation and free radical production, classified as microvesicles (0.1 to 1 µm) or exosomes.
(<0.1 μm), having procoagulant and proinflammatory properties according to their lipid and protein compositions (8, 9). Microvesicles isolated from human atherosclerotic lesions are highly thrombogenic (10–12). Increased levels of circulating microvesicles in Metabolic Syndrome patients induced in vitro endothelial cells studies, NO reduction and superoxide anion production (13), suggesting that microvesicles may be participating on LDL oxidation to generate inflammation and activation of the immune system.

Human coronary arteries with unstable plaques are richer in microvesicles, sometimes containing archaeal DNA, suggesting a possible infectious etiology (14).

Archaea are primitive microorganisms producing collagenase and inflammation, reducing metals such as Fe and Mn (15, 16). Archaeal superoxide dismutases, would neutralize the oxidative capacity of macrophages in the fight against infectious agents (17, 18).

We found greater number of such microvesicles, which had greater quantity of oxLDL and collagenases, on unstable plaque than on normal artery or on stable plaque (19).

PTCTS cosmetic gel was efficient in treatment of lesions by radio dermatitis, with no undesirable side effects (20). The Nutricosmetic with PTCTS, combining transialidase enzyme with nanoparticles derived from orchid extracts, was able to remove archaea. This nutricosmetic agent in experimental work with atherosclerotic rabbits lead to reduction of inflammation in plaques in parallel with removal of microvesicles from serum arteries, without side effects (4, 21).

Nutricosmetics are considered nutritional supplements based on bioactive compounds that have antioxidant, anti-inflammatory, and PTCTS would also remove different infectious agents. In addition to prevent skin aging and strengthening hair and nails, nutricosmetics act in a systemic way, contributing to a better quality of life and well being, under the premise of a healthy body inside and beautiful on the outside. The objective is preventing aging, capillary fall, (22) and atherosclerosis, being necessary the development of human clinical trials to determine efficacy and safety in healthy and atherosclerotic individuals.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and has approved it for publication.

ACKNOWLEDGMENTS

This work was supported by Grant no. 2012/12656-5 from FAPESP (Fundacao de Amparo a Pesquisa do Estado de Sao Paulo).

REFERENCES

1. Da Costa Silva D, Cerchiaro G, Honorio KM. Pathophysiologic relationships between oxidative stress and atherosclerosis. *Quim Nova*. (2011) 34:300–5. doi: 10.1590/S0100-40422011000200024
2. Morré SA, Stooker W, Lagrand WK, van den Brule AJ, Niessen HW. Microorganisms in the aetiology of atherosclerosis. *J Clin Pathol.* (2000) 53:647–54. doi: 10.1136/jcp.53.9.647
3. Dahal U, Sharma D, Dahal K. An unsettled debate about the potential role of archaea in human diseases. *Front Microbiol.* (2017) 2017:1–12. doi: 10.1155/2017/7212985
4. Garavelo SM, Higuchi ML, Pereira JJ, Reis MM, Kawakami JT, Ikegami RN, et al. Comparison of the protective effects of individual components of particulated trans-sialidase (PTCTS), PTC and TS, against high cholesterol diet-induced atherosclerosis in rabbits. *BioMed Res Int.* (2017) 2017:1–12. doi: 10.1155/2017/7212985
5. Higuchi ML, Reis MM, Sambiase NV, Palomin SA, Castelli JB, Gutierrez PS, et al. Coinfection with Mycoplasma pneumoniae and Chlamydia pneumoniae in ruptured plaques associated with acute myocardial infarction. *Arq Bras Cardiol.* (2003) 81:12–22. doi: 10.1590/S0066-782X2003000900001
6. Maia, I. L., Nicol, J. C., Machado, M. N., Maia, L. N., Takakura, I. T., and Rocha, P. R., et al. (2009). Prevalence of Chlamydia pneumoniae and Mycoplasma pneumoniae in different forms of coronary disease. *Arq Bras Cardiol.* 92:405–411. doi: 10.1590/S0066-782X2009000600005
7. Momiyama Y, Ohmori R, Taniguchi H, Nakamura H, Ohazu F. Association of Mycoplasma pneumoniae infection with coronary artery disease and its interaction with chlamydial infection. *Atherosclerosis* (2004) 176:139–44. doi: 10.1016/j.atherosclerosis.2004.04.019
8. Hugel B, Martinez MC, Kunzelmann C, Freysinnet JM. Membrane microparticles: two sides of the coin. *Physiology* (2005) 20:22–7. doi: 10.1152/physiology.00029.2004
9. Boulanger CM, Amabile N, Tedgui A. Circulating microparticles: a potential prognostic marker for atherosclerotic vascular disease. *Hypertension* (2006) 48:180–6. doi: 10.1161/10.HYP.0000231507.00962.55
10. Huber J, Vales A, Mitulovic G, Blumer M, Schmid R, Wittum JL, et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. *Arterioscler Thromb Vasc Biol.* (2002) 22:101–7. doi: 10.1161/01.HT.101.10525
11. Brodsky SV, Zhang F, Nasjetti A, Gollgorsky MS. Endothelium-derived microparticles impair endothelial function in vitro. *Am J Physiol Heart Circ Physiol.* (2004) 286:H1910–5. doi: 10.1152/ajpheart.01172.2003
12. Ridger VC, Boulanger CM, Angelillo-Scherrer A, Badimon L, Blanc-Brude O, Bochaton-Piallat ML, et al. Microvesicles in vascular homeostasis and diseases Position Paper of the European Society of Cardiology (ESC) Working Group on Atherosclerosis and Vascular Biology. *Thromb Haemost.* (2017) 117:1296–316. doi: 10.1160/TH16-12-0943
13. Agouni A, Lagrue-Lak AH, Ducleuze PH, Mostefai H, Draenet-Busson C, Leftheriotis G, et al. Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. *Am J Pathol.* (2008) 173:1210–9. doi: 10.2353/ajpath.2008.080228
14. Higuchi ML, Santos MH, Roggiero A, Kawakami JT, Bezerra HG, Canzian M. A role for archaeal organisms in development of atherosclerotic vulnerable plaques and myxoid matrices. *Clinics* (2006) 61:473–8. doi: 10.1590/S1807-59322006000500016
15. Lovley DR, Holmes DE, Nevin KP. Dissimilatory Fe(III) and Mn (IV) reduction. *Adv Microb Physiol.* (2004) 49:219–86. doi: 10.1101/si065-2991(04)49005-5
16. Kurzt DM Jr. Microbial detoxification of superoxide: the non-heme iron reductive paradigm for combating oxidative stress. *Acc Chem Res.* (2004) 37:902–8. doi: 10.1021/ar0200991
17. Cannio R, Florentino G, Morana A, Rossi M, Bartolucci S. Oxygen: friend or foe? Archaeal superoxide dismutases in the protection of intra- and extracellular oxidative stress. *Front Biosci.* (2000) 5:D768–79.
18. Srinivasan V, Morowitz HJ. Ancient genes in contemporary persistent microbial pathogens. *Biol Bull.* (2006) 210:1–9. doi: 10.2307/4134531
19. Ikegami RN, Kawakami JT, Abdalla DSP, Santos RD, Filho RK, Ramires JAF, et al. Infection and microparticles may cause complication of atherosclerotic plaques. *J Diabetes Metab.* (2015) 6:537–40. doi: 10.4172/2155-6156.1000537
20. Graziani SR, Van Eyll BM, Fristachi CE, Lourdes Higuchi M, Ikegami R, Ramires JA. Safety and efficacy of PTCTS cosmetic gel: study on human radiodermatitis lesions. *Case Rep Clin Med.* (2015) 4:327–33. doi: 10.4236/crcm.2015.410065

21. Garavelo SM, Pereira JJ, Wadt NSY, Reis MM, Ikegami RN, Kawakami JT, et al. Oral PTCTS (Particulated Transialidase) removes serum microparticles and decreases inflammation in atherosclerotic plaques of rabbits. *Adv Nanoparticles* (2015) 4:107–15. doi: 10.4236/anp.2015.44012

22. Neves K. Nutricosméticos - Beleza de dentro para fora. *Rev Cosmetic Toiletries Brasil* (2009) 21:18–23. Available online at: www.cosmeticsonline.com.br

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Higuchi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.