SERRE FINITENESS AND SERRE VANISHING FOR NON-COMMUTATIVE \mathbb{P}^1-BUNDLES

ADAM NYMAN

Abstract. Suppose X is a smooth projective scheme of finite type over a field K, \mathcal{E} is a locally free \mathcal{O}_X-bimodule of rank 2, \mathcal{A} is the non-commutative symmetric algebra generated by \mathcal{E} and $\text{Proj}\mathcal{A}$ is the corresponding non-commutative \mathbb{P}^1-bundle. We use the properties of the internal Hom functor $\text{Hom}_{\mathcal{A}}(-,-)$ to prove versions of Serre finiteness and Serre vanishing for $\text{Proj}\mathcal{A}$. As a corollary to Serre finiteness, we prove that $\text{Proj}\mathcal{A}$ is Ext-finite. This fact is used in [3] to prove that if X is a smooth curve over $\text{Spec} K$, $\text{Proj}\mathcal{A}$ has a Riemann-Roch theorem and an adjunction formula.

Keywords: non-commutative geometry, Serre finiteness, non-commutative projective bundle.

1. INTRODUCTION

Non-commutative \mathbb{P}^1-bundles over curves play a prominent role in the theory of non-commutative surfaces. For example, certain non-commutative quadrics are isomorphic to non-commutative \mathbb{P}^1-bundles over curves [10]. In addition, every non-commutative deformation of a Hirzebruch surface is given by a non-commutative \mathbb{P}^1-bundle over \mathbb{P}^1 [9, Theorem 7.4.1, p. 29].

The purpose of this paper is to prove versions of Serre finiteness and Serre vanishing (Theorem 3.5 (1) and (2), respectively) for non-commutative \mathbb{P}^1-bundles over smooth projective schemes of finite type over a field K. As a corollary to the first of these results, we prove that such non-commutative \mathbb{P}^1-bundles are Ext-finite. This fact is used to prove that non-commutative \mathbb{P}^1-bundles over smooth curves have a Riemann-Roch theorem and an adjunction formula [3].

We now review some important notions from non-commutative algebraic geometry in order to recall the definition of non-commutative \mathbb{P}^1-bundle. We conclude the introduction by relating the results of this paper to Mori’s intersection theory.

If X is a quasi-compact and quasi-separated scheme, then $\text{Mod}X$, the category of quasi-coherent sheaves on X, is a Grothendieck category. This leads to the following generalization of the notion of scheme, introduced by Van den Bergh in order to define a notion of blowing-up in the non-commutative setting.

Definition 1.1. [8] A quasi-scheme is a Grothendieck category $\text{Mod}X$, which we denote by X. X is called a noetherian quasi-scheme if the category $\text{Mod}X$ is locally noetherian. X is called a quasi-scheme over K if the category $\text{Mod}X$ is K-linear.

If R is a ring and $\text{Mod}R$ is the category of right R-modules, $\text{Mod}R$ is a quasi-scheme, called the non-commutative affine scheme associated to R. If A is a graded
ring, \(\text{Gr} A \) is the category of graded right \(A \)-modules, \(\text{Tors} A \) is the full subcategory of \(\text{Gr} A \) consisting of direct limits of right bounded modules, and \(\text{Proj} A \) is the quotient category \(\text{Gr} A / \text{Tors} A \), then \(\text{Proj} A \) is a quasi-scheme called the non-commutative projective scheme associated to \(A \). If \(A \) is an Artin-Schelter regular algebra of dimension 3 with the same Hilbert series as a polynomial ring in 3 variables, \(\text{Proj} A \) is called a non-commutative \(\mathbb{P}^2 \).

The notion of non-commutative \(\mathbb{P}^1 \)-bundle over a smooth scheme \(X \) generalizes that of commutative \(\mathbb{P}^1 \)-bundle over \(X \). In order to recall the definition of non-commutative \(\mathbb{P}^1 \)-bundle, we review some preliminary notions. Let \(S \) be a scheme of finite type over \(\text{Spec} K \) and let \(X \) be an \(S \)-scheme. For \(i = 1, 2 \), let \(\text{pr}_i : X \times_S X \to X \) denote the standard projections, let \(\delta : X \to X \times_S X \) denote the diagonal morphism, and let \(\Delta \) denote the image of \(\delta \).

Definition 1.2. A coherent \(\mathcal{O}_X \)-bimodule, \(\mathcal{E} \), is a coherent \(\mathcal{O}_{X \times_S X} \)-module such that \(\text{pr}_i \mid \text{Supp} \mathcal{E} \) is finite for \(i = 1, 2 \). A coherent \(\mathcal{O}_X \)-bimodule \(\mathcal{E} \) is locally free of rank \(n \) if \(\text{pr}_i \mathcal{E} \) is locally free of rank \(n \) for \(i = 1, 2 \).

Now assume \(X \) is smooth. If \(\mathcal{E} \) is a locally free \(\mathcal{O}_X \)-bimodule, then let \(\mathcal{E}^* \) denote the dual of \(\mathcal{E} \) [9, p. 6], and let \(\mathcal{E}^{*2} \) denote the dual of \(\mathcal{E}^{*1} \). Finally, let \(\eta : \mathcal{O}_\Delta \to \mathcal{E} \otimes_{\mathcal{O}_X} \mathcal{E}^* \) denote the counit from \(\mathcal{O}_\Delta \) to the bimodule tensor product of \(\mathcal{E} \) and \(\mathcal{E}^* \) [9, p. 7].

Definition 1.3. [9, Section 4.1] Let \(\mathcal{E} \) be a locally free \(\mathcal{O}_X \)-bimodule. The non-commutative symmetric algebra generated by \(\mathcal{E} \), \(\mathcal{A} \), is the sheaf-\(\mathbb{Z} \)-algebra generated by the \(\mathcal{E}^{*2} \) subject to the relations \(\eta(\mathcal{O}_\Delta) \).

A more explicit definition of non-commutative symmetric algebra is given in Section 2. We now recall the definition of non-commutative \(\mathbb{P}^1 \)-bundle.

Definition 1.4. [9] Suppose \(X \) is a smooth scheme of finite type over \(K \), \(\mathcal{E} \) is a locally free \(\mathcal{O}_X \)-bimodule of rank 2 and \(\mathcal{A} \) is the non-commutative symmetric algebra generated by \(\mathcal{E} \). Let \(\text{Gr} A \) denote the category of graded right \(A \)-modules, let \(\text{Tors} A \) denote the full subcategory of \(\text{Gr} A \) consisting of direct limits of right-bounded modules, and let \(\text{Proj} A \) denote the quotient of \(\text{Gr} A \) by \(\text{Tors} A \). The category \(\text{Proj} A \) is a non-commutative \(\mathbb{P}^1 \)-bundle over \(X \).

This notion generalizes that of a commutative \(\mathbb{P}^1 \)-bundle over \(X \) as follows. Let \(\mathcal{E} \) be an \(\mathcal{O}_X \)-bimodule on which \(\mathcal{A} \) acts centrally. Then \(\mathcal{E} \) can be identified with the direct image \(\text{pr}_i \mathcal{E} \) for \(i = 1, 2 \). If, furthermore, \(\mathcal{E} \) is locally free of rank 2 and \(\mathcal{A} \) is the non-commutative symmetric algebra generated by \(\mathcal{E} \), Van den Bergh proves [9, Lemma 4.2.1] that the category \(\text{Proj} A \) is equivalent to the category \(\text{Mod} \mathbb{P}_X (\text{pr}_i \mathcal{E}) \), where \(\mathbb{P}_X (_2) \) is the usual (commutative) projectivization.

One of the major problems in non-commutative algebraic geometry is to classify non-commutative surfaces. Since intersection theory on commutative surfaces facilitates the classification of commutative surfaces, one expects intersection theory to be an important tool in non-commutative algebraic geometry. Mori shows [3, Theorem 3.11] that if \(Y \) is a noetherian quasi-scheme over a field \(K \) such that

(1) \(Y \) is Ext-finite,

(2) the cohomological dimension of \(Y \) is 2, and

(3) \(Y \) satisfies Serre duality

then versions of the Riemann-Roch theorem and the adjunction formula hold for \(Y \). Let \(X \) be a smooth curve over \(\text{Spec} K \). In [6], we prove that a non-commutative
P1-bundle over X satisfies (2) and (3) above (see Section 4 for a precise statement of these results). In this paper we prove that a non-commutative P1-bundle over a projective scheme of finite type satisfies (1) (Corollary 3.6). We conclude the paper by stating the versions of the Riemann-Roch theorem and the adjunction formula which hold for non-commutative P1-bundles.

In what follows, K is a field, X is a smooth, projective scheme of finite type over Spec K, Mod\textsubscript{X} denotes the category of quasi-coherent O\textsubscript{X}-modules, and we abuse notation by calling objects in this category O\textsubscript{X}-modules.

Acknowledgment: We thank Izuru Mori for showing us his preprint [3] and for helping us understand the material in Section 4.

2. Preliminaries

Before we prove Serre finiteness and Serre vanishing, we review the definition of non-commutative symmetric algebra and the definition and basic properties of the internal Hom functor \textit{Hom}_{Gr\mathcal{A}}(-,-) on Gr\mathcal{A}.

Definition 2.1. Let \mathcal{E} be a locally free \mathcal{O}_X-bimodule. The non-commutative symmetric algebra generated by \mathcal{E} is the sheaf-\mathbb{Z}-algebra \mathcal{A} = \bigoplus_{i,j \in \mathbb{Z}} A_{ij} with components

\begin{itemize}
 \item A_{ii} = \mathcal{O}_\Delta,
 \item A_{i,i+1} = \mathcal{E}^{i*},
 \item A_{ij} = A_{i,i+1} \otimes \cdots \otimes A_{j-1,j} / R_{ij} for j > i + 1, where R_{ij} \subset A_{i,i+1} \otimes \cdots \otimes A_{j-1,j} is the \mathcal{O}_X-bimodule

 \[\sum_{k=i}^{j-2} A_{i,i+1} \otimes \cdots \otimes A_{k-1,k} \otimes \mathcal{Q}_k \otimes A_{k+2,k+3} \otimes \cdots \otimes A_{j-1,j},\]

 and \mathcal{Q}_k is the image of the unit map \mathcal{O}_\Delta \rightarrow A_{i,i+1} \otimes A_{i+1,i+2}, and
 \item A_{ij} = 0 if i > j
\end{itemize}

and with multiplication, \mu, defined as follows: for i < j < k,

\[A_{ij} \otimes A_{jk} = \frac{A_{i,i+1} \otimes \cdots \otimes A_{j-1,j} \otimes A_{j,j+1} \otimes \cdots \otimes A_{k-1,k}}{R_{ij}} \approx \frac{A_{i,i+1} \otimes \cdots \otimes A_{k-1,k}}{R_{ij} \otimes A_{j,j+1} \otimes \cdots \otimes A_{k-1,k} + A_{i,i+1} \otimes \cdots \otimes A_{j-1,j} \otimes R_{jk}}\]

by [5 Corollary 3.18]. On the other hand,

\[R_{ik} \cong R_{ij} \otimes A_{j,j+1} \otimes \cdots \otimes A_{k-1,k} + A_{i,i+1} \otimes \cdots \otimes A_{j-1,j} \otimes R_{jk} + A_{i,i+1} \otimes \cdots \otimes A_{j-2,j-1} \otimes \mathcal{Q}_{j-1} \otimes A_{j+1,j+2} \otimes \cdots \otimes A_{k-1,k}.\]

Thus there is an epi \mu_{ijk} : A_{ij} \otimes A_{jk} \rightarrow A_{ik}.

If i = j, let \mu_{ijk} : A_{ij} \otimes A_{ik} \rightarrow A_{ik} be the scalar multiplication map \mathcal{O}_\mu : \mathcal{O}_\Delta \otimes A_{ik} \rightarrow A_{ik}. Similarly, if j = k, let \mu_{ijk} : A_{ij} \otimes A_{jj} \rightarrow A_{ij} be the scalar multiplication map \mu_{ij}. Using the fact that the tensor product of bimodules is associative, one can check that multiplication is associative.

Definition 2.2. Let Bimod\mathcal{A} - \mathcal{A} denote the category of \mathcal{A} - \mathcal{A}-bimodules. Specifically:
• an object of $\text{Bimod}\mathcal{A} - \mathcal{A}$ is a triple

$$(C = \{C_{ij}\}_{i,j \in \mathbb{Z}}, \{\mu_{ijk}\}_{i,j,k \in \mathbb{Z}}, \{\psi_{ijk}\}_{i,j,k \in \mathbb{Z}})$$

where C_{ij} is an \mathcal{O}_X-bimodule and $\mu_{ijk} : C_{ij} \otimes A_{jk} \to C_{ik}$ and $\psi_{ijk} : A_{ij} \otimes C_{jk} \to C_{ik}$ are morphisms of \mathcal{O}_{X_2}-modules making C an \mathcal{A}-\mathcal{A} bimodule.

• A morphism $\phi : C \to D$ between objects in $\text{Bimod}\mathcal{A} - \mathcal{A}$ is a collection $\phi = \{\phi_{ij}\}_{i,j \in \mathbb{Z}}$ such that $\phi_{ij} : C_{ij} \to D_{ij}$ is a morphism of \mathcal{O}_{X_2}-modules, and such that ϕ respects the \mathcal{A}-\mathcal{A}-bimodule structure on C and D.

Let \mathbb{B} denote the full subcategory of $\text{Bimod}\mathcal{A} - \mathcal{A}$ whose objects $C = \{C_{ij}\}_{i,j \in \mathbb{Z}}$ have the property that C_{ij} is coherent and locally free for all $i, j \in \mathbb{Z}$.

Let $\text{Gr}\mathcal{A}$ denote the full subcategory of \mathbb{B} consisting of objects C such that for some $n \in \mathbb{Z}$, $C_{ij} = 0$ for $i \neq n$ (we say C is left-concentrated in degree n).

Definition 2.3. [6 Definition 3.7] Let C be an object in \mathbb{B} and let \mathcal{M} be a graded right \mathcal{A}-module. We define $\text{Hom}_{\text{Gr}\mathcal{A}}(C, \mathcal{M})$ to be the \mathbb{Z}-graded \mathcal{O}_X-module whose kth component is the equalizer of the diagram

$$
\begin{array}{ccc}
\Pi(M_i \otimes C_{ki}^*) & \xrightarrow{\alpha} & \Pi(M_j \otimes C_{kj}^*) \\
\beta \downarrow & & \gamma \\
\Pi(\Pi(M_j \otimes A_{ij}^*) \otimes C_{ki}) & \xrightarrow{\delta} & \Pi(\Pi(M_j \otimes (C_{ki} \otimes A_{ij})^*)
\end{array}
$$

where α is the identity map β is induced by the composition

$$
\mathcal{M}_i \xrightarrow{\eta} \mathcal{M}_i \otimes A_{ij} \otimes A_{ij}^* \xrightarrow{\mu} \mathcal{M}_j \otimes A_{ij}^* ,
$$

γ is induced by the dual of

$$
\mathcal{C}_{ki} \otimes A_{ij} \xrightarrow{\mu} \mathcal{C}_{kj} ,
$$

and δ is induced by the composition

$$(\mathcal{M}_j \otimes A_{ij}^*) \otimes C_{ki}^* \to \mathcal{M}_j \otimes (A_{ij}^* \otimes C_{ki}^*) \to \mathcal{M}_j \otimes (C_{ki} \otimes A_{ij})^*$$

whose left arrow is the associativity isomorphism and whose right arrow is induced by the canonical map [6 Section 2.1]. If C is an object of $\text{Gr}\mathcal{A}$ left-concentrated in degree k, we define $\text{Hom}_{\text{Gr}\mathcal{A}}(C, \mathcal{M})$ to be the equalizer of Π.

Let $\tau : \text{Gr}\mathcal{A} \to \text{Tors}\mathcal{A}$ denote the torsion functor, let $\pi : \text{Gr}\mathcal{A} \to \text{Proj}\mathcal{A}$ denote the quotient functor, and let $\omega : \text{Proj}\mathcal{A} \to \text{Gr}\mathcal{A}$ denote the right adjoint to π. For any $k \in \mathbb{Z}$, let $e_k\mathcal{A}$ denote the right \mathcal{A}-module $\bigoplus_{i \geq k} \mathcal{A}_{i}$. We define $e_k\mathcal{A}_{\geq k+n}$ to be the sum $\bigoplus_{i \geq 0} e_k\mathcal{A}_{i+n+k}$ and we let $A_{\geq n} = \bigoplus_{k} e_k\mathcal{A}_{\geq k+n}$.

Theorem 2.4. If \mathcal{M} is an object in $\text{Gr}\mathcal{A}$ and C is an object in \mathbb{B}, $\text{Hom}_{\text{Gr}\mathcal{A}}(C, \mathcal{M})$ inherits a graded right \mathcal{A}-module structure from the left \mathcal{A}-module structure of C, making $\text{Hom}_{\text{Gr}\mathcal{A}}(-, -) : \mathbb{B}^{\text{op}} \times \text{Gr}\mathcal{A} \to \text{Gr}\mathcal{A}$ a bifunctor.

Furthermore

1. $\tau(-) \cong \lim_{n \to \infty} \text{Hom}_{\text{Gr}\mathcal{A}}(A/A_{\geq n}, -)$,
2. If \mathcal{F} is a coherent, locally free \mathcal{O}_X-bimodule,

$$
\text{Hom}_{\text{Gr}\mathcal{A}}(\mathcal{F} \otimes e_k\mathcal{A}, -) \cong (-)_k \otimes \mathcal{F}^*
$$

and
(3) If L is an O_X-module and M is an object of $\text{Gr} \mathcal{A}$,

$$\text{Hom}_{O_X}(L, \text{Hom}_{\text{Gr} \mathcal{A}}(e_k \mathcal{A}, M)) \cong \text{Hom}_{\text{Gr} \mathcal{A}}(L \otimes e_k \mathcal{A}, M).$$

Proof. The first statement is [6, Proposition 3.11], (1) is [6, Proposition 3.19], (2) is [6, Theorem 3.16(4)] and (3) is a consequence of [6, Proposition 3.10]. □

By Theorem 2.4 (2), $\text{Hom}_{\text{Gr} \mathcal{A}}(-, M)$ is $F \otimes e_k \mathcal{A}$-acyclic when F is a coherent, locally free O_X-bimodule. Thus, one may use the resolution [9, Theorem 7.1.2] to compute the derived functors of $\text{Hom}_{\text{Gr} \mathcal{A}}(A/A_{\geq 1}, -)$. By Theorem 2.4(1), we may thus compute the derived functors of τ:

Theorem 2.5. The cohomological dimension of τ is 2. For $i < 2$ and L a coherent, locally free O_X-module,

$$R^i \tau(L \otimes e_k \mathcal{A}) = 0$$

and

$$(R^2 \tau(L \otimes e_k \mathcal{A}))_{l-2-i} \cong \begin{cases}
L \otimes Q_{l-2} \otimes A_{l-2-i} & \text{if } i \geq 0, \\
0 & \text{otherwise}.
\end{cases}$$

Proof. The first result is [6, Corollary 4.10], while the remainder is [6, Lemma 4.9]. □

3. SERRE FINITENESS AND SERRE VANISHING

In this section let I denote a finite subset of $\mathbb{Z} \times \mathbb{Z}$. The proof of the following lemma is straightforward, so we omit it.

Lemma 3.1. If M is a noetherian object in $\text{Gr} \mathcal{A}$, πM is a noetherian object in $\text{Proj} \mathcal{A}$ and M is locally coherent.

Lemma 3.2. If M is a noetherian object in $\text{Gr} \mathcal{A}$, $R^i \tau M$ is locally coherent for all $i \geq 0$.

Proof. The module $O_X(j) \otimes e_k \mathcal{A}$ is noetherian by [6, Lemma 2.17] and the lemma holds with $M = \bigoplus_{(j,k) \in I} O_X(j) \otimes e_k \mathcal{A}$ by Theorem 2.3.

To prove the result for arbitrary noetherian M, we use descending induction on i. For $i > 2$, $R^i \tau M = 0$ by Theorem 2.5 so the result is trivial in this case. Since M is noetherian, there is a finite subset $I \subset \mathbb{Z} \times \mathbb{Z}$ and a short exact sequence

$$0 \rightarrow R \rightarrow \bigoplus_{(j,k) \in I} O_X(j) \otimes e_k \mathcal{A} \rightarrow M \rightarrow 0$$

by [6, Lemma 2.17]. This induces an exact sequence of \mathcal{A}-modules

$$\ldots \rightarrow (R^i \tau(\bigoplus_{(j,k) \in I} O_X(j) \otimes e_k \mathcal{A}))_l \rightarrow (R^i \tau M)_l \rightarrow (R^{i+1} \tau R)_l \rightarrow \ldots$$

The left module is coherent by the first part of the proof, while the right module is coherent by the induction hypothesis. Hence the middle module is coherent since X is noetherian.

Corollary 3.3. If M is a noetherian object in $\text{Gr} \mathcal{A}$, $R^i(\omega(-)_{k})(\pi M)$ is coherent for all $i \geq 0$ and all $k \in \mathbb{Z}$.

Proof. Since \((-)_k : \text{Gr}A \rightarrow \text{Mod}X\) is an exact functor, \(R^i(\omega(-)_k)(\pi M) \cong R^i\omega(\pi M)_k\).

Now, to prove \(\omega(\pi M)_k\) is coherent, we note that there is an exact sequence in \(\text{Mod}X\)

\[
0 \rightarrow \tau M_k \rightarrow M_k \rightarrow \omega(\pi M)_k \rightarrow (R^1\tau M)_k \rightarrow 0
\]

by [6] Theorem 4.11. Since \(M_k\) and \((R^1\tau M)_k\) are coherent by Lemma 3.1 and Lemma 3.2 respectively, \(\omega(\pi M)_k\) is coherent since \(X\) is noetherian.

The fact that \(R^i\omega(\pi M)_k\) is coherent for \(i > 0\) follows from Lemma 3.2 since, in this case,

\[
(2) \quad (R^i\omega(\pi M))_k \cong (R^{i+1}\tau M)_k
\]

by [6] Theorem 4.11. □

Lemma 3.4. For \(\mathcal{N}\) noetherian in \(\text{Gr}A\), \(R^1\omega(\pi \mathcal{N})_k = 0\) for \(k >> 0\).

Proof. When \(\mathcal{N} = \bigoplus_{(l,m) \in I} (\mathcal{O}_X(l) \otimes e_mA)\), the result follows from (2) and Theorem 2.5.

More generally, there is a short exact sequence

\[
0 \rightarrow \mathcal{R} \rightarrow \pi(\bigoplus_{(l,m) \in I} \mathcal{O}_X(l) \otimes e_mA) \rightarrow \pi \mathcal{N} \rightarrow 0
\]

which induces an exact sequence

\[
\cdots \rightarrow R^1\omega(\pi(\bigoplus_{(l,m) \in I} \mathcal{O}_X(l) \otimes e_mA)) \rightarrow R^1\omega(\pi \mathcal{N}) \rightarrow R^2\omega(\mathcal{R}) = 0.
\]

where the right equality is due to (2) and Theorem 2.5. Since the left module is 0 in high degree, so is \(R^1\omega(\pi \mathcal{N})\). □

Theorem 3.5. For any noetherian object \(\mathcal{N}\) in \(\text{Gr}A\),

1. \(\text{Ext}^i_{\text{proj}A}(\bigoplus_{(j,k) \in I} \pi(\mathcal{O}_X(j) \otimes e_kA), \pi \mathcal{N})\) is finite-dimensional over \(K\) for all \(i \geq 0\), and
2. for \(i > 0\), \(\text{Ext}^i_{\text{proj}A}(\bigoplus_{(j,k) \in I} \pi(\mathcal{O}_X(j) \otimes e_kA), \pi \mathcal{N}) = 0\) whenever \(j << 0\) and \(k >> 0\).

Proof. Let \(d\) denote the cohomological dimension of \(X\). Since \(\text{Ext}^i_{\text{proj}A}(-, \pi \mathcal{N})\) commutes with finite direct sums, it suffices to prove the theorem when \(I\) has only one element.

\[
\text{Hom}_{\text{proj}A}(\pi(\mathcal{O}_X(j) \otimes e_kA), \pi \mathcal{N}) \cong \text{Hom}_{\text{Gr}A}(\mathcal{O}_X(j) \otimes e_kA, \omega \pi \mathcal{N})
\]

\[
\cong \text{Hom}_{\mathcal{O}_X}(\mathcal{O}_X(j), \mathcal{H}om_{\text{Gr}A}(e_kA, \omega \pi \mathcal{N}))
\]

\[
\cong \text{Hom}_{\mathcal{O}_X}(\mathcal{O}_X(j), \omega(\pi \mathcal{N})_k)
\]

\[
\cong \Gamma(\mathcal{O}_X(-j) \otimes \omega(\pi \mathcal{N})_k)
\]

where the second isomorphism is from Theorem 2.4 (3), while the third isomorphism is from Theorem 2.4 (2). Thus,

\[
\text{Ext}^i_{\text{proj}A}(\pi(\mathcal{O}_X(j) \otimes e_kA), \pi \mathcal{N}) \cong R^i(\Gamma \circ (\mathcal{O}_X(-j) \otimes \omega(-)_k))\pi \mathcal{N}.
\]

If \(i = 0\), (1) follows from Corollary 3.3 and [1] III, Theorem 5.2a, p. 228. If \(0 < i < d + 1\), the Grothendieck spectral sequence gives us an exact sequence

\[
\cdots \rightarrow R^i(\Gamma \circ (\mathcal{O}_X(-j) \otimes \omega(\pi \mathcal{N})_k)) \rightarrow R^i(\Gamma \circ \mathcal{O}_X(-j) \otimes \omega(-)_k)\pi \mathcal{N} \rightarrow
\]
\[R^{i-1} \Gamma R^1 (\mathcal{O}_X(-j) \otimes \omega(-) \pi N) \rightarrow \ldots \]

Since \(\omega(\pi N)_k \) and \(R^1 (\mathcal{O}_X(-j) \otimes \omega(-) \pi N) \cong \mathcal{O}_X(-j) \otimes R^1 (\omega(-) \pi N) \) are coherent by Corollary 3.3, the first and last terms of (4) are finite-dimensional by [1, III, Theorem 5.2a, p.228]. Thus, the middle term of (4) is finite-dimensional as well, which proves (1) in this case. To prove (2) in this case, we note that, since \(\omega(\pi N)_k \) is coherent, the first module of (4) is 0 for \(j \ll 0 \) by [1, III, Theorem 5.2b, p.228]. If \(i > 1 \), the last module of (4) is 0 for \(j \ll 0 \) for the same reason. Finally, if \(i = 1 \), the last module of (4) is 0 since \(R^1 \omega(\pi N)_k = 0 \) for \(k \gg 0 \) by Lemma 3.4.

If \(i = d + 1 \), the Grothendieck spectral sequence gives an isomorphism

\[R^{d+1} (\Gamma \circ (\mathcal{O}_X(-j) \otimes \omega(-) \pi N) \cong R^d \Gamma R^1 (\mathcal{O}_X(-j) \otimes \omega(-) \pi N). \]

In this case, (1) again follows from Corollary 3.3 and [1, III, Theorem 5.2a, p.228], while (2) follows from Lemma 3.4.

Corollary 3.6. If \(M \) and \(N \) are noetherian objects in \(\text{Gr}A \), \(\text{Ext}^i_{\text{proj}A}(\pi M, \pi N) \) is finite-dimensional for \(i \geq 0 \).

Proof. Since \(M \) is noetherian, there is an exact sequence

\[0 \rightarrow R \rightarrow \pi(\bigoplus_{(j,k) \in I} \mathcal{O}_X(j) \otimes e_k A) \rightarrow \pi M \rightarrow 0. \]

Since the central term is noetherian by Lemma 3.4, so is the \(R \). Since \(\text{Hom}_{\text{proj}A}(-, \pi N) \) is left exact, there are exact sequences

(4) \[0 \rightarrow \text{Hom}_{\text{proj}A}(\pi M, \pi N) \rightarrow \text{Hom}_{\text{proj}A}(\pi(\bigoplus_{(j,k) \in I} \mathcal{O}_X(j) \otimes e_k A), \pi N) \rightarrow \]

and, for \(i \geq 1 \),

(5) \[\rightarrow \text{Ext}^{i-1}_{\text{proj}A}(R, \pi N) \rightarrow \text{Ext}^i_{\text{proj}A}(\pi M, \pi N) \rightarrow \text{Ext}^i_{\text{proj}A}(\pi(\bigoplus_{(j,k) \in I} \mathcal{O}_X(j) \otimes e_k A), \pi N) \rightarrow \]

Since \(\pi \) commutes with direct sums, the right-hand terms of (4) and (5) are finite-dimensional by Theorem 3.3(1), while the left hand term of (5) is finite-dimensional by the induction hypothesis. \(\square \)

4. Riemann-Roch and Adjunction

Let \(X \) be a smooth projective curve, let \(A \) be the noncommutative symmetric algebra generated by a locally free \(\mathcal{O}_X \)-bimodule \(E \) of rank 2, and let \(Y = \text{Proj}A \). In this section, we state the Riemann-Roch theorem and adjunction formula for \(Y \). In order to state these results, we need to define an intersection multiplicity on \(Y \). This definition depends on the fact that \(Y \) has well behaved cohomology, so we begin this section by reviewing relevant facts regarding the cohomology of \(Y \).

Let \(\mathcal{O}_Y = \pi \text{pr}_2^* e_0 A \). By [1] Theorem 5.20, \(Y \) satisfies Serre duality, i.e., there exists an object \(\omega_Y \) in \(\text{Proj}A \), called the canonical sheaf on \(Y \), such that

\[\text{Ext}^{2-i}_{Y}(\mathcal{O}_Y, -) \cong \text{Ext}^i_Y(-, \omega_Y) \]

for all \(0 \leq i \leq 2 \). Furthermore, the canonical sheaf \(\omega_Y \) is noetherian [2].

By [1] Theorem 4.16, \(Y \) has cohomological dimension two, i.e.

(7) \[2 = \sup\{i | \text{Ext}^i_Y(\mathcal{O}_Y, M) \neq 0 \text{ for some noetherian object } M \text{ in } \text{Proj}A\}. \]

We write \(D: Y \rightarrow Y \) for an autoequivalence, \(-D: Y \rightarrow Y \) for the inverse of \(D \), and \(M(D) := D(M) \) for \(M \in Y \).
Definition 4.1. [3, Definition 2.3] A weak divisor on Y is an element $\mathcal{O}_D \in K_0(Y)$ of the form $\mathcal{O}_D = [\mathcal{O}_Y] - [\mathcal{O}_Y(-D)]$ for some autoequivalence D of Y.

We now define an intersection multiplicity on Y following [3]. Let \mathcal{M} be a noetherian object in $\text{Proj} \mathcal{A}$, and let $[\mathcal{M}]$ denote its class in $K_0(Y)$. We define, for \mathcal{O}_D a weak divisor on Y, a map $\xi(\mathcal{O}_D, -) : K_0(Y) \to \mathbb{Z}$ by

$$\xi(\mathcal{O}_D, [\mathcal{M}]) = \sum_{i=0}^{\infty} (-1)^i (\dim K \text{Ext}^i_Y(\mathcal{O}_Y, \mathcal{M}) - \dim K \text{Ext}^i_Y(\mathcal{O}_Y(-D), \mathcal{M})).$$

This map is well defined by (7) and Corollary 3.6. We define the intersection multiplicity of \mathcal{O}_D and \mathcal{M} by

$$\mathcal{O}_D \cdot \mathcal{M} := -\xi(\mathcal{O}_D, [\mathcal{M}]).$$

Finally, we define a map $\chi(-) : K_0(Y) \to \mathbb{Z}$ by

$$\chi([\mathcal{M}]) := \sum_{i=0}^{\infty} (-1)^i \dim K \text{Ext}^i_Y(\mathcal{O}_Y, \mathcal{M}).$$

Corollary 4.2. Let $Y = \text{Proj} \mathcal{A}$, let ω_Y denote the canonical sheaf on Y, and suppose \mathcal{O}_D is a weak divisor on Y. Then we have the following formulas:

1. (Riemann-Roch)

$$\chi(\mathcal{O}_Y(D)) = \frac{1}{2}(\mathcal{O}_D \cdot \mathcal{O}_D - \mathcal{O}_D \cdot \omega_Y + \mathcal{O}_D \cdot \mathcal{O}_Y) + 1 + p_a$$

where $p_a := \chi([\mathcal{O}_Y]) - 1$ is the arithmetic genus of Y.

2. (Adjunction)

$$2g - 2 = \mathcal{O}_D \cdot \mathcal{O}_D + \mathcal{O}_D \cdot \omega_Y - \mathcal{O}_D \cdot \mathcal{O}_Y$$

where $g := 1 - \chi(\mathcal{O}_D)$ is the genus of \mathcal{O}_D.

Proof. The quasi-scheme Y is Ext-finite by Corollary 3.6 has cohomological dimension 2 by [6, Theorem 4.16], and satisfies Serre duality with ω_Y by [6, Theorem 5.20]. Thus, Y is classical Cohen-Macaulay, and the result follows [3, Theorem 3.11].

In stating the Corollary, we defined the intersection multiplicity only for specific elements of $K_0(Y) \times K_0(Y)$. In order to define an intersection multiplicity on the entire set $K_0(Y) \times K_0(Y)$, one must first prove that Y has finite homological dimension. In [4, Section 6], Mori and Smith study noncommutative \mathbb{P}^1-bundles $Y = \text{Proj} \mathcal{A}$ such that \mathcal{A} is generated by a bimodule \mathcal{E} with the property that $\mathcal{E} \otimes \mathcal{E}$ contains a nondegenerate invertible bimodule. In this case, they use the structure of $K_0(Y)$ to prove that Y has finite homological dimension. They then compute various intersections on Y without the use of either the Riemann-Roch theorem or the adjunction formula. In particular, they prove that distinct fibers on Y do not meet, and that a fiber and a section on Y meet exactly once.

References

[1] R. Hartshorne, Algebraic Geometry, Springer-Verlag, 1977.
[2] I. Mori, private communication.
[3] I. Mori, Riemann-Roch like theorems for triangulated categories, J. Pure Appl. Algebra, to appear.
[4] I. Mori and S. P. Smith, The grothendieck group of a quantum projective space bundle, preprint.

[5] A. Nyman, The geometry of points on quantum projectivizations, \textit{J. Algebra}, 246 (2001) 761-792.

[6] A. Nyman, Serre duality for non-commutative \(P^1 \)-bundles, \textit{Trans. Amer. Math. Soc.}, to appear.

[7] M. van den Bergh, A translation principle for the four-dimensional Sklyanin algebras, \textit{J. Algebra}, 184 (1996) 435-490.

[8] M. Van den Bergh, Blowing up of non-commutative smooth surfaces, \textit{Mem. Amer. Math. Soc.}, 154 (2001).

[9] M. Van den Bergh, Non-commutative \(P^1 \)-bundles over commutative schemes, to appear.

[10] M. Van den Bergh, Non-commutative quadrics, in preparation.

Adam Nyman, Department of Mathematical Sciences, Mathematics Building, University of Montana, Missoula, MT 59812-0864