V-Region and Class Specific RT-PCR Amplification of Human Immunoglobulin Heavy and Light Chain Genes from B-Cell Lines

B. A. WATKINS, A. E. DAVIS, S. FIORENTINI & M. S. REITZ JR
Laboratory of Tumor Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA

We have designed and tested primers that amplify complete human kappa and lambda light chain genes, and human Fd fragments from gamma, mu and alpha heavy chain genes. These primers were tested for efficiency and specificity on monoclonal sources of human immunoglobulin RNA, obtained from human B-cell lines of known immunoglobulin gene expression. Analysis of the sequences derived from these B-cells confirms the specificity of the PCR primers and the extent of somatic mutation seen in different B-cell malignancies supports existing concepts for differing aetiologies in the tumours concerned.

INTRODUCTION

The production of combinatorial antibody libraries in bacteria is based on the efficient cloning of active immunoglobulin genes into bacterial expression vectors. This is usually achieved by using the polymerase chain reaction (PCR) to amplify complementary DNA (cDNA) of the active immunoglobulin genes with primers containing restriction sites which enables directional cloning into bacterial expression vectors [1-5]. The complexity and representation of the library achieved depends largely on the ability of the primers used to amplify a broad spectrum of immunoglobulin variable region genes. Increased representation within a library can also be achieved by increasing the number of classes of immunoglobulin genes included. In designing primers for repertoire cloning, we decided to examine the specificity of PCR primers used for the amplification of human active human immunoglobulin V-region genes, and to extend the number of immunoglobulin classes included. In order to be compatible with existing Fab phage display vectors [2, 3], primers were designed to amplify the major \(V_\kappa \) and \(V_\lambda \) gene families as intact light chains, and to amplify \(V_H \) gene families as Fd fragments from IgG, IgM and IgA. To test these primers we amplified and cloned several light and heavy chain immunoglobulin genes from clonal populations of B-cells. As a source of clonal B-cell populations to test our primers, we selected B-cell lines from a Burkitt’s lymphoma (Daudi) [6], two multiple myelomas (RPMI 8226 [7] and IM-9 [8]), an undifferentiated B-cell lymphoma (MC116) [9] and in vitro Epstein–Barr Virus (EBV) transformed B-cells (Dakiki) [10].

MATERIALS AND METHODS

Cell culture. Cell lines RPMI 8226 (CCL 155), IM-9 (CCL 159), Daudi (CCL 213), Dakiki (TIB 206) and MC116 (CRL 1649) were obtained from ATCC (Rockville, MD, USA) and grown in RPMI 1640, supplemented with 25\(^{\mu}\)g/ml Gentamicin, 2 mM L-Glutamine and 20% FBS. Each cell line was grown until the number of cells exceeded \(10^8 \), at which point they were harvested, washed once in PBS, and then used for the preparation of RNA.

RNA extraction and cDNA synthesis. Total cellular RNA was extracted using standard techniques [11]. Briefly, \(10^6-10^8 \) cells from each cell line were dissolved by homogenization in 10\(\mu \)l 4M guanidine thiocyanate supplemented with 0.1% sarcosine and 80\(\mu \)l beta-mercaptoethanol. DNA was then sheared by 10 passes through a 21 gauge needle, followed by 10 passes through a 25 gauge needle. This cellular homogenate was then loaded onto a cesium chloride cushion (density = 1.62 g/ml), and centrifuged at 300,000 \(\times \)g for 16 h/20°C in a Beckman Ti50 rotor. Total RNA was recovered as a pellet, washed with ethanol, resuspended in 500\(\mu \)l DEPC-treated water, precipitated with 50\(\mu \)l of 3M sodium acetate and 1 l of ethanol, resuspended in a final volume of 300\(\mu \)l and quantified by absorbance at 260 nm. Typical yields were 1–4\(\mu \)g/lul for a total of 300 \(\mu \)g to 1.2 mg from \(10^8 \) cells. 5–25\(\mu \)g of total RNA was denatured by incubation at room temperature (23°C) for 5 min with 1 mM methyl
Table 1. Primers used for PCR amplification of human immunoglobulin genes

Chain primer	Sequence	Specificity
1a	AGA TGT GAGCTG CAG ATG ACC CAG TCT CC	V_{H}1&V_{H}4
1b	CAG TGG GAGCTG GTG ATG ACT CAG TCT CC	V_{H}2&V_{H}6
1c	ACC GGA GAGCTG GTG TGG ACG TCT CC	V_{H}3&V_{H}5
2	GCC GCG TCTAGA ACT AAT CTC CCC TGT TGA AGC TCT TGG TGA CGG GCG AAC TCA G	Cx
Light 3a	GCC ATC GAGCTG TCT GTG CTT ACT CAG CC	V_{L}1
3b	TCC TGG GAGCTG TCT GCC CTT ACT CAG CC	V_{L}2
3c	TCT GTG GAGCTG TAT GTG CTT ACT CAG CC	V_{L}3
3d	TCT GTG GAGCTG TCT GAG CTT ACT CAG GA	V_{L}4
3e	TCC AAT GAGCTG ACT GTG GTC ACT CAG GA	V_{L}5
4	GCC GCG TCTAGA CTA AGA ACA TTC TGC AGG GGC CA	V_{H}I&V_{H}5
5a	G GTC CTG CTCAGA TGC CAG TGT CAG TCT CC	V_{H}2
5b	G GTC CTG CTCAGA TGC CAG TGT CAG TCT CC	V_{H}3
5c	G GTC CTG CTCAGA TGC CAG TGT CAG TCT CC	V_{H}4
5d	G GTC CTG CTCAGA TGC CAG TGT CAG TCT CC	V_{H}4-21
5e	G GTC CTG CTCAGA TGC CAG TAT CTA CAG CAG TGG GG	V_{H}6
Heavy 5f	T GTC CTG CTCAGA GTA CAG TCT CAG CAG TCA GG	IgG
6a	CAG ACT ACTAGT CTT GTG CAC CTT GTG GTT CTT	IgG
6b	GTG ACT ACTAGT ACA AGA TTT GGC GTC AAC T	IgM
6c	CTC AGC ACTAGT TGG TAG AGC GAC CTT GCT	IgA
6d	CAG ACT ACTAGT TGG GCA GCG CAC ACT CAC AT	

Restriction sites inserted for cloning are underlined.

Cloning. PCR products were separated by electrophoresis through a 1.5% agarose gel. Bands at approximately 650 bp were isolated using with DEAE paper [11], then digested with the appropriate restriction enzymes and cloned into pBluescript-II KS- (Stratagene, La Jolla, CA, USA) using standard techniques [11]. Clones containing inserts were sequenced using standard dideoxy techniques [11]. The heavy chain Fd fragment derived from cell line Dakiki was initially refractory to cloning. Post restriction digestion analysis of the PCR product revealed bands of approximately 500bp and 150bp. This Fd fragment was then cloned in two parts, as an Xho-I/Spe-I fragment of 140bp, and as an Spe-I/Spe-I fragment of 510bp, demonstrating that the additional Spe-I site was in the V_{H} region, which was confirmed by sequencing.

Database homology searches. The sequences described in this report were compared with the December 1994 update of genbank and EMBL databases. Genbank has assigned the following accession numbers to the sequences described in this report: Cell line IM-9; IgG Fd: U07985; \(\kappa \) chain: U07989; Cell line RPMI 8226; A Chain: U07992. Cell line Dakiki, IgA Fd: U07986. Cell line Daudi; IgM Fd: U07987, \(\kappa \) chain: U07990. Cell line MC116; IgM Fd: U07988, \(\lambda \) chain: U07991.

RESULTS

Immunoglobulin light chains

We were able to amplify four active light chain genes from the 5 B-cell lines tested, the sequences of which are shown in Table 2. Kappa light chains were amplified from cell lines Daudi and IM-9 with the V_{K1} primer alone, and sequencing
Table 2. Active immunoglobulin light chain V-J region genes from B-cell lines Daudi, IM-9, MC116 and RPMI 826

	FR1	CDR1
Daudi	GAG CTG AGT ACC CAG TCT CCA TCC TCT TGG GCA GGA AGA GGT ACC ACT ACT TCC	GCG GCA GCT CAT AAC ATT ACC AAC ATT TTT TTA AGT
IM-9	
Table 3. Heavy chain VDJ-region sequences from B-cell lines Dakiki, IM-9, MC116 and Daudi

Dakiki	IM-9	MC116	Daudi
FR1			
Dakiki			
IM-9			
MC116			
Daudi			
FR2			
Dakiki			
IM-9			
MC116			
Daudi			
FR3			
Dakiki			
IM-9			
MC116			
Daudi			
CDR3			
Dakiki			
IM-9			
MC116			
Daudi			
FR4			
Dakiki			
IM-9			
MC116			
Daudi			

Upper 4 rows of each stanza show the DNA sequences, the lower 4 show the deduced amino-acid sequences. Dots indicate homology, dashes indicate bases or amino acids that are not represented in that sequence.
confirmed that both V-region genes were from the V_{\lambda} family. PCR amplification of lambda light chains using cDNA from MC116 RNA as a template gave positive reactions for V_{\lambda} and V_{\lambda,3}, with the reaction for V_{\lambda} being considerably stronger than that for V_{\lambda,3}. Using cDNA from RPMI 8226 RNA as a template, positive reactions were obtained with primers for V_{\lambda} and V_{\lambda,2}, with the reaction for V_{\lambda,2} being stronger than that for V_{\lambda,2}. Sequence analysis of both sequences revealed that they belonged to the V_{\lambda,2} family. The greater amplification using a V_{\lambda} primer was therefore surprising and we failed to amplify immunoglobulin light chain from cDNA derived from Dakiki RNA. A positive PCR signal was obtained with primers designed to amplify only the Cl region and a positive signal corresponding to a full length lambda transcript was obtained on a northern blot probed with a C_{\lambda} probe. Additional primers were synthesized corresponding to variants of V_{\lambda} and V_{\lambda,4}, but these also failed to amplify the full length lambda transcript. We conclude from these observations that the lambda light chain expressed in cell line Dakiki is significantly different at the site of our S' V_{\lambda} PCR primers than any of the primers tested thus far.

The Daudi kappa chain contains a J_{\kappa4} sequence and the IM-9 light chain uses a J_{\kappa1} J-region. Cell lines MC-116 and RPMI8226 both utilize J_{\kappa2} derived J-regions and C_{\kappa2} constant regions.

Comparison of the nucleotide sequences showed that the comparison for the Daudi V_{\kappa} region differed from the previously reported sequence [12] at three nucleotides, one of which resulted in an amino acid change (A to D change at a.a. 56). We have sequenced three clones of the Daudi V_{\kappa} from three separate cDNA syntheses; all three clones have the same sequence, indicating that the observed divergence from the previously reported sequence was real. It is not known whether these differences reflect sequencing error in the original report, or on-going somatic mutation in the cell line.

The Daudi V_{\kappa} gene shows the greatest homology to germline gene L11 [13], with which it was only 84.6% identical. Comparison with rearranged V_{\kappa} genes indicated that the Daudi V_{\kappa} region shared less than 90% with all sequences on the database. The IM-9 V_{\kappa} gene was 96.3% identical to germline V_{\kappa} gene L12 [14], and 94.9% identical to germline gene H_{\kappa}H102 [15]. The MC116 V_{\kappa} region was highly homologous (89–96%) to many rearranged V_{\kappa} genes, but was most closely related to one germline V_{\kappa} sequence (DPL13) [16], with which it shared 96% homology.

The RPMI8226 V_{\kappa2} gene showed 91.4% identity to the same germline V_{\kappa2} gene to which the V_{\kappa3} gene cloned from cell line MC116 (DPL13) [16] was most closely related. Given the limited homology of the RPMI8226 V_{\kappa2} gene to DPL13, it is possible that this gene is related to a previously undescribed germline V_{\kappa2} gene. The RPMI8226 V_{\kappa2} gene was, however, completely identical to a rearranged V_{\kappa2} gene (V_{\kappa2},001) [17]. It is remarkable that two rearranged genes from separate B-cell lines should have identical V_{\kappa2},J_{\kappa2} sequences, particularly when the V_{\kappa} sequence concerned has diverged from the nearest known germline gene by almost 9% (25 altered nucleotides), possibly indicating cross-contamination of the two cell lines.

Immunoglobulin heavy chains

Four immunoglobulin heavy chain Fd fragments were successfully amplified and cloned, the sequences of which are shown in Table 3. An IgGl Fd fragment was cloned from IM-9, an IgA1 Fd fragment was cloned from Dakiki, and IgM Fd fragments were cloned from cell lines Daudi and MC116. No attempt was made to amplify Fd fragments from cell line RPMI 8226 on the basis of previous reports of light chain expression only [7]. The active VH domains from cell lines Daudi, Dakiki and IM-9 are from the V_{H1} family, while that from cell line MC116 is from the V_{H1} family. Under the conditions employed, there was little cross-recognition of V_{H} regions by primers designed to amplify different V_{H} regions. Using cDNA derived from Dakiki, we obtained specific amplification with primers 5c and 6d (V_{H3}/IgA), using cDNA from IM-9, amplification was only observed with primers 5c and 6a (V_{H3}/IgG), and using cDNA derived from Daudi amplification was only seen with primers 5c and 6c (V_{H3}/IgM). Only in the case of MC116 was some reactivity seen with primers 5c and 6d on a V_{H1} template, in addition to amplification with primers 5a and 6d. Primers 6a and 6b both amplified an IgG1 Fd fragment from IM-9 derived cDNA with primer 5c. Both PCR products were cloned and sequenced, and both were identical, with the exception of the 3' end where the clone obtained using primer 6b contained the N-terminal part of the IgG1 hinge as expected. Analysis of J-gene usage showed that three of the four heavy chains cloned (Daudi, Dakiki and MC116) contained J_{H4} related J-regions, while the IM-9 heavy chain contained a J_{H1} related sequence.

The V_{H3} gene from cell line Daudi was most closely related to human germline gene DP53 [18]/H11 [19], showing 84% homology, but was almost as related (80–82% homologous) to germline genes DP87 [20], DP58 [18], HHG19 [21] and DP54 [18], as well as numerous rearranged genes. The V_{H3} gene cloned from IM-9 was 94.6% identical to germline gene DP31 [18] and not closely related to any other germline V_{H} gene. The Dakiki V_{H3} gene was 93% homologous to three germline genes DP47 [18], V-B19.7 [22] and VH26 [23], and was more than 90% homologous to many rearranged V_{H3} gene sequences. The V_{H1} gene cloned from MC116 was closely related to several germline genes: it showed 97.3% and 96.9% identity to germline genes DP75 and DP8, respectively [18], and more than 90% identical to two other germline genes, as well as five rearranged genes.

DISCUSSION

We have designed oligonucleotide PCR primers which allow amplification of human kappa and lambda light chains, and

© 1995 Blackwell Science Ltd, Scandinavian Journal of Immunology, 42, 442–448
alpha, gamma and mu heavy chain Fd fragments. The kappa light chain primers were efficient in amplifying $V_{\kappa 1}$ containing kappa chain genes, and are similar to previously described primers [5, 24]. We were able to amplify two of the three lambda light chains we attempted, but not necessarily with the primers predicted, indicating that further work may be required to optimize the site and/or design of V_{λ} primers. Amplification of heavy chain Fd fragments was specific, both for class of heavy chain and for family of V_H region. We had tried without success to amplify the active heavy chain Fd fragments with previously described V_H region primers [5], and arrived at the present V_H region sequences by trial and error. The strategy used in the placement of the Xho-1 site, region sequences by trial and arrived at the present V_H region primer sequences are similar, V_H and the overall V_H region primer sequences are similar, although not identical, to recently published V_H region primers [25].

The primers we described have been designed to be compatible with previously described vectors for the display of Fab fragments on the surface of filamentous phage. While we have improved the primers available to work with these vectors and expanded the number available to include both IgM and IgA, there are some additional questions that have arisen. Specifically, the discovery of an internal Spe-I restriction site in one of four heavy chain variable region genes we cloned clearly indicates that any Spe-I site containing genes would clearly not be represented in an antibody library constructed using Spe-I. This, in turn, suggests that the use of Spe-I for antibody library construction is less than ideal. An additional question exists regarding the feasibility of cloning of IgM Fd genes and their expression as Fab fragments, due to the lack of a simple hinge in IgM. While it has been demonstrated that such a molecule can be expressed using a flexible linker to join the heavy and light chains [26], it may also be possible to modify the IgM reverse primer (6c in Table 1) to encode the sequence PCP (as with the IgA primer 6d) in place of PLP, thereby allowing the Fd fragment to covalently link to the light chain. We have tested such a primer and found it to amplify IgM Fd fragments with the same efficiency as primer 6c.

From the immunoglobulin sequences that we obtained from these B-cell lines, there are clearly differences in the extent to which the different genes have varied from known germline genes. We were also able to compare the extent of variation of V_H and V_L genes from the same B-cell line for three of the cell lines we used. The genes from MC116 (derived from an undifferentiated lymphoma) were closest to germline sequences. The V_H gene was closely related (97.3% and 96.9% identical) to two V_{H1} germline genes, and the V_{λ} gene was 96% homologous to a germline V_{λ} gene. Similarly, the V-region genes from multiple myeloma-derived cell-line IM-9 were 94.6% (V_{H3}) and 96.3% ($V_{\kappa1}$) homologous to the nearest germline genes. In contrast, the V region gene sequences from Burkitt’s lymphoma derived cell line Daudi were highly divergent from both germline and rearranged gene sequences. Both V_{H3} and $V_{\kappa1}$ genes were approximately 84% homologous to the nearest germline sequences, and almost equally distant from the most homologous rearranged genes. This lack of homology could indicate extensive somatic mutation, which would be unusual for a cell that had not undergone the class switching from IgM to IgG (or IgA) normally thought to be associated with somatic mutation of active immunoglobulin genes. A recent report has demonstrated ongoing intraclonal variation within a follicular lymphoma expressing an IgM immunoglobulin [27], thought to be due to ongoing somatic mutation driven by antigen. Although no such observation has been made in Burkitt’s lymphoma, it is clearly possible for extensive somatic mutation to occur in the absence of class switching. A possible alternative explanation is that the germline genes from which the Daudi sequences were derived have not yet been characterized.

Overall, the sequences derived from these B-cell malignancies support previous observations suggesting that Burkitt’s lymphomas are derived through malaria–parasite–antigen driven mechanisms [28] and that VDJ regions from multiple myelomas contain somatic mutations [29]. Our observations on the active immunoglobulin genes of MC116 suggest that undifferentiated B-cell lymphomas have limited somatic mutation of their immunoglobulin genes, which would argue against an antigen driven mechanism of transformation in these tumors. The extent to which both V_H and V_L genes show the same degree of divergence from the nearest germline V-region genes suggests that the mechanisms of somatic mutation that give rise to these changes act in parallel on both heavy and light chain variable region genes.

ACKNOWLEDGMENTS

We thank Robert C. Gallo for his support and encouragement and Linda Anderson for expert editorial assistance.

REFERENCES

1 Huse WD, Shastry L, Iverson SA et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 1989;246:1275–81.
2 Kang AS, Barbas CF, Janda KD, Benkovik SJ, Lerner RA. Linkage of recognition and replication functions by assembling combinatorial antibody Fab libraries along phage surfaces. Proc Natl Acad Sci USA 1991;88:4363–6.
3 Barbas CF, Kang AS, Lerner, RA, Benkovik, SJ. Assembly of combinatorial antibody libraries on phage surfaces: The gene III site. Proc Natl Acad Sci USA 1991;88:7978–82.
4 Barbas CF, Lerner RA. Combinatorial immunoglobulin libraries on the surface of phage (Phabs): Rapid selection of antigen specific clones. Methods: A companion to methods in enzymology 1991;2:119–24.
5 Persson MAA, Caothien RH, Burton DR. Generation of diverse high-affinity human monoclonal antibodies by repertoire cloning. Proc Natl Acad Sci USA 1991;88:2432–6.
Klein E, Klein G, Nadkarni JS, Nadkarni JJ, Wigzell H, Clifford P. Surface IgM-κ specificity on a Burkitt lymphoma cell in vivo and in derived cell cultures Cancer Res 1968;28:1300–10.

Matsuoka Y, Moore GE, Yagi Y, Pressman D. Production of free light chains of immunoglobulin by a hematopoietic cell line derived from a patient with multiple myeloma. Proc Soc Exp Biol(NY) 1968;125:1246–50.

van Boxel JA, Buell DN. IgD on cell membranes of human lymphoid cell lines with multiple immunoglobulin classes. Nature 1974;251:443–4.

Magrath IT, Freeman CB, Pizzo P et al. Characterization of lymphoma-derived cell lines: Comparison of cell lines positive and negative for Epstein-Barr Virus nuclear antigen J Natl Cancer Inst 1980;64:465–76.

Steinitz M, Klein G. EBV-Transformation of Surface IgA positive Human Lymphocytes. J Immunol 1980;125:194–6.

Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor University Press 1989.

Klobeck H-G, Combratigo G, Zachau HG. Immunoglobulin genes of the κ light chain from two human lymphoid cell lines are closely related. Nucleic Acids Research 1984;12:6995–7006.

Scott MG, Crimmins DL, McCourt D et al. Clonal characterization of the human IgG antibody repertoire to Haemophilus influenzae type b polysaccharide: IV The less frequently expressed Vλ are heterologous. J Immunol 1991;147:4007–13.

Huber C, Schable KF, Huber E et al. The Vκ sequences of the L chains and the repertoire of Vκ gene sequences in the human germ line. Eur J Immunol 1991;23:2868–75.

Bentley DL, Rabbitts TH. Human immunoglobulin variable region genes—DNA sequences of two Vκ genes and a pseudogene. Nature 1980;288:730–3.

Williams SC, Winter G. Cloning and sequencing of human immunoglobulin Vλ gene segments. Eur J Immunology 1993;23:1456–61.

Combratigo G, Klobeck H-G, Vλ and Jκ-Cλ gene segments of the human immunoglobulin λ light chain genes are separated by 14kb and rearrange by a deletion mechanism. Eur J Immunol 1991;21:1513–22.

Tomlinson IM, Walter G, Marks JD, Llewelyn MB, Winter G. The repertoire of human germline V₃ genes reveals about fifty groups of V₃ segments with different hypervariable loops. J Mol Biol 1992;227:776–98.

Rechavi G, Bienz B, Ram D et al. Organization and evolution of immunoglobulin V₃ gene subgroups. Proc Natl Acad Sci USA 1982;79:4405–9.

Tomlinson, IM, Cook, GP, Carter, NP et al. Human immunoglobulin V₃ and D segments on chromosome 15q112 and 16p112. Hum Mol Genet 1994;3:853–60.

Keuppers R, Fischer U, Rajewsky K, Gause A. Immunoglobulin heavy and light chain gene sequences of a human CD5 positive immunocytoma and sequences of four novel VλIII germline genes. Immunol Lett 1992;34:57–62.

Guillaume T, Rubinstein DB, Young F et al. Individual V₃ genes detected with oligonucleotide probes from the complementarity determining regions. J Immunol 1990;145:1343–45.

Matthyssens G, Rabbitts TH. Structure and multiplicity of gene for the human immunoglobulin heavy chain variable region. Proc Natl Acad Sci USA 1980;77:6561–5.

Marks JD, Tristem, M, Karpas, A, Winter G. Oligonucleotide primers for the polymerase chain reaction amplification of human immunoglobulin variable region genes and design of family specific oligonucleotide probes. Eur J Immunol 1991;21:985–91.

de Boer M, Chang S-Y, Eichinger G, Wong HC. Design and analysis of PCR primers for the amplification and cloning of human immunoglobulin Fab fragments. Hum Antibod Hybridomas 1994;5:57–64.

Hay BN, Sorge JA, Shopes B. Bacteriophage cloning and Escherichia coli expression of a human IgM Fab. Hum Antibod Hybridomas 1992;3:81–5.

Zhu D, Hawkins RE, Hamblin TJ, Stevenson FK. Clonal history of a human follicular lymphoma as revealed in the immunoglobulin variable region genes. Br J Haematol 1994;86:505–12.

Bakkus MHC, Heirman C, Riet IV, Camp BV, Thielemans K. Evidence that the multiple myeloma Ig heavy chain VDJ genes contain somatic mutations but show no intraclonal variation. Blood 1992;80:2326–35.

Magrath, I. The pathogenesis of Burkitt's lymphoma. Adv Cancer Res 1990;55:133–270.

Received 28 April 1995
Accepted in revised form 1 June 1995
This document is a scanned copy of a printed document. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material.