Seed Moisture and Transplant Management Techniques Influence Sweet Corn Stand Establishment, Growth, Development, and Yield

Luther Waters, Jr.1, Rhoda L. Burrows2, Mark A. Bennett3, and John Schoenecker4

Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108

Abstract. A series of experiments exploring the effect of seed moisture and transplant management techniques was conducted with \textit{su} and \textit{sh2} sweet corn (\textit{Zea mays} L.). The use of seed and transplants in a progression of developmental stages from dry seed to moistened seed to 14-day-old transplants showed that moistened seed had no impact on plant growth and development. Use of transplants generally had little impact beyond decreasing percent survival and plant height. Increasing the age of transplants reduced the time to maturity and harvest. Increasing the size of the transplant container (paper pot) decreased the time to harvest for younger seedings, but had no other effects. Premoistened seed were successfully held at 10°C for up to 72 hours without damage following moisturization. Delays in irrigation of up to 2 days after planting moistened seed had no detrimental effects on sweet corn emergence and growth.

There is general consensus that growers of fresh market sweet corn are interested in the earliest possible maturity for optimal prices. In any location, suboptimal soil and air temperatures limit the earliest possible planting time; consequently, much research has been conducted on seed handling techniques and transplanting systems to shorten the period from planting to harvest.

One of the seed handling techniques employed has been manipulation of seed moisture before planting. Increasing the seed moisture content (via imbibition) before planting has been shown to improve earliness and uniformity of emergence (Bennett and Waters, 1987a; 1987b), increase postemergent seedling weights (Gubbels, 1975), and decrease susceptibility to chilling injury (Cal and Obendorf, 1972) and mechanical damage (Gatongi, 1982).

A more traditional approach to enhancing earliness has been the use of transplants. Transplanting sweet corn decreased time to harvest by 1 to 3 weeks, depending on the transplant age, in Massachusetts (Miller, 1972) and Tennessee (Wyatt and Mullins, 1989), and by 10 to 15 days in France (Ledent et al., 1980, 1981). Effects on yield and mature plant characteristics have varied, depending on age of transplants and time of transplanting. Grain yield responses ranged from being increased by transplanting for mid-season (Bockstaele et al., 1979) and late-season plantings (Lazim, 1985) to being equal to (Pendleton and Egli; 1969) or decreased (Carranza and Vicuna, 1978; Flood-Page, 1976; Wyatt and Mullins, 1989) in comparison to direct-seeding. Transplanting generally produced shorter plants with less dry matter and decreased leaf area (Carranza and Vicuna, 1978; Lazim, 1985; Ledent et al., 1980; 1981; Pendleton and Egli, 1969; Wyatt and Mullins, 1989). Ear length decreased in Massachusetts (Miller, 1972) and Tennessee (Wyatt and Mullins, 1989) but increased in Belgium (Bockstaele et al., 1979). Lazim (1985) found seeds produced by transplanted plants were consistently heavier than those of direct-seeded corn.

The objective of this research was to determine the potential usefulness of seed hydration treatments and transplant management on sweet corn plant growth and development, earliness, and yield. Two genotypes, \textit{su} and \textit{sh2}, both commercially important, were used because their respective stand establishment problems differ and are well known.

Materials and Methods

\textit{Stage of development.} Thiram-treated seeds of sweet corn \textit{‘Yankee Belle’} (Asgrow Seed Co., Nampa, Idaho), a \textit{shrunken}-2 (\textit{sh2}) type, and \textit{‘Banner’} (Rogers Bros. Seed Co., Nampa, Idaho), a \textit{normal sugary} (\textit{su}) type, were subjected to six preplant treatments: 1) Control (dry) seed; 2) seed moistened for 12 hr (=30% moisture), 3) 24 hr (=38% moisture) in vermiculite (Bennett and Waters, 1987a); or 4) transplanted 4 days after seeding (DAS), 5) 7 DAS, or 6) 14 DAS into 4 x 7.5-cm cylindrical paper pots (Lannen, Camrillo, Calif.). Treatments 1 through 3 were planted 5 cm deep with a cone planter at twice the desired population, then thinned after emergence to 25-cm in-row spacings; treatments 4 through 6 were transplanted 25 cm apart with a Lannen transplanter. All rows were 0.75 m apart. All treatments were planted or transplanted at the same time at each location and planting date.

The experiment was conducted at two Univ. of Minnesota locations: the Southern Experiment Station at Waseca on a Webster clay loam soil (fine-silty over sandy, mixed, mesic, Typic Hapludoll) and at Becker on a Hubbard loamy sand soil (sandy, mixed Udorthentic Haploboroll). One planting (26 Apr. 1985) was made at Becker with two-row plots, 0.76 x 20.6 m, and 1.5 m between plots and four replications in a randomized complete-block design. Two plantings (29 Apr. and 24 May 1985) were made at Waseca with three-row plots; otherwise, the study was the same as at Becker. Experiments in both locations were fertilized according to soil test results and commercial recommendations. Weeds and pests were controlled as required, using commercial recommendations.

Data collected were dates of emergence (Waseca only), 80% silk, and harvest; stand count; ear height, weight, length, number, and tip unfilled length; and plant height, weight, and stalk diameter at ear height. Harvest maturity was determined visually.
Size vs. age. Thiram-treated seed of ‘Yankee Belle’ were planted 2.5 cm deep into a medium of 1 sand : 1 peat : 1 vermiculite (by volume) in cylindrical paper pots 4.5 cm deep x 2.5, 3, 75, or 5 cm in diameter and grown in a greenhouse for 1.5, 2.5, or 3.5 weeks before transplanting into the field. Seedling heights for all container sizes were 0 to 1 cm, 7 to 10 cm, and 12 to 16 cm at 1.5, 2.5, and 3.5 weeks, respectively. The seedlings were transplanted into fields with a Lannen transplanter at the Waseca Station on 7 May 1985 and at Becker on 10 May 1985. Field plots at both locations consisted of single 7.6-m rows on 0.76-m centers with plants 25 cm apart. A split-plot experimental design with four replications was used, with age of the seedlings at transplanting as main plots and paper pot size as subplots. Plot management and data collected were the same as in the preceding experiment.

Holding of moistened seed. Thiram-treated seeds of ‘Yankee Belle’ and ‘Banner’ were moistened in vermiculite (as described under “Stage of Development”) for 24 hr, then held at 10°C for 0, 1, or 3 days before planting in the field. Seed moisture levels at planting averaged 39%, 44%, and 48% after 0, 1, and 3 days holding, respectively. The moistened treatments were staggered for planting all treatments on the same day. The experiment was conducted at two locations: Waseca (see Stage of Development) planted 1 June 1985; and at St. Paul, Minn., planted 14 June 1985 on a Waukegan silty loam soil (fine-silty, mixed, mesic, Typic Hapludoll).

The experimental design at St. Paul was a split plot, with holding time as the main plot and the two cultivars as subplot factors. At Waseca, a randomized complete block was used. Both locations had nine replications. A cone seeder was used to plant 60 seed per single-row plot (7.6 x 0.76 m) at a depth of 5 cm. After emergence, stands were thinned to 30 plants per row. At Waseca, in addition to variation in holding time, irrigation delays of 1, 2, or 4 days after planting were tested on seed moistened for 24 hr. Plot management and data collection were the same as in Expt. 1.

Results and Discussion

Stage of development. The treatments in this experiment represent a progression of developmental stages at planting, from nongerminated dry seed to seedlings of a relatively advanced stage of growth. Due to the great differences in the plant responses between ‘Yankee Belle’ and ‘Banner’, the data were analyzed separately. Generally, the response of ‘Yankee Belle’

Table 1. Effects of seed moistening or transplanting on ‘Banner’ (Stu) and ‘Yankee Belle’ (sh2) sweet corn growth and yield, as influenced by early or late planting dates, Waseca, Minn.

Planting date	Treatment	Interval to Emergence (days)	Plant ht (cm)	Ear ht (cm)	Plant wt (g)	Ear length (cm)	Tip unfill (cm)	Plants (no./plot)	Ears (no./plot)	Yield (Mg/ha⁻¹)		
Early Seed	Dry	11.3	79	100	220	79	700	20.4	1.8	32	30.3	18.6
12 hr	10.0	78	99	214	68	696	20.9	2.0	31	26.5	16.1	
24 hr	10.0	78	99	223	75	677	20.5	2.7	31	29.3	17.3	
Seeding 4 DAS	9.7	79	99	212	61	921	21.1	1.3	25	27.3	18.0	
7 DAS	76	97	198	69	721	21.1	1.5	29	26.5	16.8		
14 DAS	74	95	200	61	520	21.2	1.4	31	30.3	18.8		
Late Seed	Dry	7.3	72	93	227	83	538	19.2	1.2	34	37.0	19.0
12 hr	6.5	71	93	223	77	530	19.4	0.5	33	30.5	16.4	
24 hr	5.5	71	92	222	78	531	18.8	0.6	31	34.3	18.4	
Seeding 4 DAS	4.0	70	91	227	74	659	20.5	0.5	26	28.8	18.0	
7 DAS	67	88	217	74	609	19.8	1.0	28	30.3	16.8		
14 DAS	64	86	204	68	513	20.7	1.1	29	33.8	18.8		
Early Seed	Dry	11.3	69	90	183	46	778	21.2	1.7	22	21.8	14.2
12 hr	11.3	69	90	186	50	713	21.1	2.3	23	26.0	16.0	
24 hr	11.0	68	89	180	43	779	21.0	1.9	24	26.0	15.8	
Seeding 4 DAS	13.5	70	92	174	46	989	22.0	1.8	12	15.3	9.7	
7 DAS	68	89	177	39	813	21.0	2.5	23	25.8	16.4		
14 DAS	64	86	166	27	756	20.2	2.0	27	27.8	16.4		
Late Seed	Dry	8.3	60	81	182	55	620	21.5	2.7	28	25.5	13.5
12 hr	7.3	61	82	181	53	651	20.7	3.5	30	24.5	12.1	
24 hr	7.3	60	81	182	54	548	21.1	4.1	26	26.5	13.9	
Seeding 4 DAS	4.8	60	81	179	52	727	21.7	2.3	17	22.3	12.7	
7 DAS	59	80	197	47	870	21.6	3.2	22	20.5	12.1		
14 DAS	55	76	172	43	744	21.9	2.9	27	25.5	14.9		

Separation of means within planting date and cultivar by Fisher’s protected LSD, \(P = 0.05 \).

Seed: planted dry or after 12 or 24 hr of imbibition; seedlings: transplanted 4, 7, or 14 days after seeding (DAS).
Table 2. Effects of seed moistening or transplanting on ‘Banner’ (su) and ‘Yankee Belle’ (sh2) sweet corn growth and yield, Becker, Minn.

Cultivar	Treatment	Days to 80% silking	Days to harvest	Plant ht (cm)	Plant wt (g)	Stalk diam (cm)	Ear length (cm)	Tip unfill/plot	Ear diam (cm)	Ear (no./plot)
Banner	Dry	87 b	109 a	95 a	689 abc	2.4 bc	20.2 bcd	1.6 d	4.3 ab	51.5 ab
	12 hr	88 b	108 b	91 bc	617 cd	2.5 ab	19.6 d	2.1 bc	4.4 a	52.0 a
	24 hr	87 b	107 ab	92 b	758 a	2.5 b	20.1 bcd	1.7 cd	4.3 ab	48.5 ab
	4 DAS	82 a	102 bc	88 ed	662 bc	2.6 ab	20.7 ab	1.8 bcd	4.2 bcd	43.3 b
	7 DAS	82 a	104 abc	86 de	601 cde	2.7 a	19.8 cd	1.0 e	4.3 ab	50.8 ab
	14 DAS	81 a	100 ed	83 f	553 def	2.3 c	20.2 bcd	1.1 e	4.3 ab	50.8 ab
Yankee Belle	Dry	77 bc	95 ed	82 b	503 e	2.2 b	20.3 a	2.5 b	3.8 ef	47.0 a
	12 hr	77 c	99 abcd	79 c	519 de	2.2 b	20.6 a	2.3 bc	4.0 de	50.8 a
	24 hr	78 c	100 abc	83 b	551 cde	2.4 a	20.3 a	2.1 bcd	4.1 ed	50.8 a
	4 DAS	82 d	101 a	83 ab	723 ab	2.4 a	21.0 a	1.8 de	4.3 abc	34.0 b
	7 DAS	74 ab	95 ed	72 d	365 f	1.9 c	20.4 a	2.3 bc	3.7 f	45.5 a
	14 DAS	73 a	94 d	71 d	356 f	1.9 c	20.7 a	3.1 a	3.7 f	44.5 a

Separation within columns and within cultivars by Fisher’s protected LSD, P = 0.05.

Table 3. Influence of age at transplanting and paper pot size on number of days from seeding to harvest for ‘Yankee Belle’ (sh2) sweet corn, Waseca, Minn.

Analysis of variance	df	MS	F	P value
Age	1	75.9	78.0	<0.001
Error	6	0.97		
Paper pot size	1	17.7	13.8	<0.001
Age x size	4	5.4	4.2	0.014
Error	18	1.29		

Table 4. Influence of age at transplanting on plant growth and development and yield of ‘Yankee Belle’ (sh2) sweet corn, at Waseca, Minn.

Age of seedlings (weeks)	No. plants/plot	Plant height (cm)	Plant weight (g)	Stalk diameter (cm)	Ear height (cm)	Ear diameter (cm)	Ear length (cm)	Yield (Mg·ha⁻¹)
1'	83 b	82 b	80 a	2.0 a	33.3 a	4.7 a	21.1 a	16.0 a
2	80 b	76 a	76 a	1.8 ab	23.2 a	4.4 b	20.3 a	16.1 a
3	77 a	76 a	77 a	1.7 b	16.7 c	4.5 b	19.5 b	12.0 b

Separation within rows and columns by Fisher’s protected LSD, P = 0.05.

Transplanting tended to reduce the number of plants surviving until harvest, plant height, and ear height at Waseca (Table 1). The effect of transplanting on plant height at Becker was not as consistent as at Waseca, but showed the same general trend (Table 2). Although the treatment effects on average plant weight were not consistent at either location, the strongest tendency was for the nonemerged (4 DAS) seedlings to give higher plant weights. The low plant populations of the 4 DAS treatment (Table 1) may account for some of the increase in plant weight.

Overall, the use of transplants in this experiment gave little response beyond decreasing percent survival and plant height. Even though the number of days to maturity was reduced in most cases for the 7 and 14 DAS treatments, the number of days of advantage was much less than the age of the seedling when transplanted; however, under adverse field conditions, transplanting may still be advantageous. This finding is consistent with other reports (Carranza and Vicuna, 1978; Flood-Page, 1976; Lendent et al., 1980, 1981; Miller, 1972; Pendleton and Egli, 1969), but few explanations are presented for this negative impact. In our opinion, a large part of the transplanting shock alluded to by others involves the nature of corn root system development. Kiesselbach (1980) has shown that the initial seminal roots of field corn grow in a nearly horizontal direction when soils are cool or cold, but vertically in warm soils, and that the loss of initial seminal roots can reduce grain yield.

Data were not collected on root development of the containerized seedling treatments, but it was noted that roots had not developed sufficiently by 4 DAS to maintain the root–soil mass...
intact during planting. Further, the primary and seminal roots that developed did not appear to “bind” to the media in the same way as root systems of other plants. The lack of root development may have been involved in the negative impact of the nonemerged seedling treatment (4 DAS) on various criteria. Observation of the corn roots in this and other studies shows that root hair development is less extensive than in dicotyledonous plants, which could account for the failure to bind to the media, resulting in breaking during handling. This breakage could contribute to the negative results generally found with sweet corn transplanting.

Size vs. age. Increasing the seedling age at the time of transplanting decreased the time to harvest by as much as 6 days at Waseca (Table 3). The 2- and 3-week treatments did not differ significantly, except within the smallest (2.5 cm) paper pots. Paper pot size had no effect on days to harvest for the 3-week-old transplants; however, the largest size decreased the time to harvest for both 1- and 2-week-old transplants. The medium-sized container also reduced time to harvest for 2-week-old seedlings. The response to treatments was similar for the number of days to silking.

Plant growth and yield generally decreased with increased age at the time of planting (Table 4). Since plant survival was greater for the 2- and 3-week-old transplants, some of the decrease in plant size and yield may be due to the greater plant density of those treatments. However, the 3-week-old transplants, which had a lower population than those 2 weeks old, also showed lower ear height and yield.

No significant effects of transplant age or paper pot size were noted at Becker; however, the 2-week-old seedlings generally gave the best response (data not presented). The generally superior performance of younger plants and the smaller paper pot sizes may relate to the root development phenomena discussed above. There was probably greater damage to roots of older plants in handling, with a commensurate increase in transplant shock. The smaller the paper pot size, the better the root mass held together in handling, thereby protecting the roots from breakage.

Holding of moistened seed. While the values for the two cultivars were different, storage of moistened sweet corn seed at 10C for up to 3 days appears feasible for both cultivars. Holding moistened ‘Banner’ seed for 1 or 3 days before planting decreased plant height at St. Paul and plant weight at Waseca, but had no significant effects on yield or earliness (Table 5). Moistened ‘Yankee Belle’ seed held for 3 days showed a slight decrease in stand establishment, and yields were greater at St. Paul, compared with the O- or l-day holding treatments. Some radicles had emerged from seeds held for 3 days.

Delaying irrigation until 4 days after planting tended to increase the days to emergence, silking, and harvest for both cultivars, compared to plots that were irrigated 1 to 2 days after planting (Table 6). These data suggest that delaying irrigation following the seeding of moistened sweet corn seed, regardless of the cultivar, may have minimal impact if the delay is only 1 or 2 days. Preplant irrigation, an often recommended practice, could further reduce any negative impact of irrigation delay on plant growth and development.

The results of these experiments indicate that preplant moisturization of seed is not detrimental and that sweet corn is not particularly sensitive to the often-cited problems of having to hold seed in a moistened condition before seeding or to a delay in irrigation after planting. The use of transplants, however, requires further research before it becomes an economically viable practice. Further research on transplant production and planting should probably focus on the characteristics of root development, with particular emphasis on the media used, the temperature of the media following seeding, and on modified handling practices to protect roots from damage.

Table 5. Influence of preplant holding (10C) duration of moistened ‘Yankee Belle’ (sh2) and ‘Banner’ (su) sweet corn seed.

Criterion	Duration (days)	St. Paul		Wasca					
	0	1	3	0	1	3	0	1	3
Stand count									
Days to silking	65	65	65	56	54	55			
Days to harvest	89	89	89	81	73	76			
Yield (Mg ha⁻¹)	15.0	15.0	14.7	8.5	9.3	11.5			
Ear diameter (cm)	4.0	4.0	4.0	3.8	3.8	3.5			
Ear length (cm)	19.7	19.8	19.7	20.0	19.9	21.3			
Plant height (cm)	94	93	76	87	84	76			
Plant weight (kg)	1.8	1.8	1.9	1.4	1.4	1.7			
Stalk diameter (cm)	2.5	2.4	2.5	2.2	2.2	2.1			
Tip unfill (cm)	0.7	0.8	0.6	1.9	2.3	0.8			

*Separation within rows by Fisher’s protected LSD at P = 0.05.

Table 6. Influence of delaying postplanting irrigation of moistened ‘Yankee Belle’ (sh2) and ‘Banner’ (su) sweet corn seed on growth criteria (Waseca).

Duration to growth criterion	1	2	4	1	2	4	1	2	4
Emergence	7.5	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.5
Silking	69	69	70	58	58	61			
Harvest	81	82	84	90	90	91			

*Separation within rows by Fisher’s protected LSD at P = 0.05.
Bennett, M.A. and L. Waters, Jr. 1987a. Seed hydration treatments for improved sweet corn germination and stand establishment. J. Amer. Soc. Hort. Sci. 112(1):45-49.

Bennett, M.A. and L. Waters, Jr. 1987b. Germination and emergence of high-sugar sweet corn is improved by presowing hydration of seed. HortScience 22(2):236–238.

Bockstaele, E. Van, T. Bahaeghe, and A. De Baets. 1979. Des cultures de mais associées a une culture derobée ou des cultures mixtes mais-legumineuses rendent-elles possible une production maximale de fourrages verts? Rev. Agr. 32(5):1111-1125.

Cal, J.P. and R.L. Obendorf. 1972. Imbibitional chilling injury in Zea mays L. altered by initial kernel moisture and maternal Darent. Crop Sci. 12:369-373.

de la Carranza, P.A. and L. Vicuna. 1978. Efecto de transplant de maiz a diferentes densidades de poblacion sobre la eficiencia del uso del agua bajo condiciones de temporal. Mexico, Univ. Auton. Agr. Antonion Narro: Res. Avarices 1978: Avarices de investigation 1978. p. 78.

Flood-Page, L. 1976. Maize research in Lancashire. Maize 1976 (Nov.):17.

Gatongi, I.N. 1982. Effects of mechanical injury upon corn (Zea mays L.) seed quality. MS Thesis, Mississippi State Univ., Mississippi State.

Gubbels, G.H. 1975. Emergence, seedling growth and yield of sweet corn after pregermination at high temperature. Can. J. Plant Sci. 55:995-999.

Kiesselbach, T.A. 1980. The structure and reproduction of corn. Univ. of Nebraska Press, Lincoln.

Lazim, M. El-H. 1985. Influence of date of planting, transplanting, and water stress on growth and yield of sunflower (Helianthus annuus L.), including comparisons with corn. PhD Diss., Cornell Univ., Ithaca, N.Y.

Ledent, J. F., R. Grogna, and A. Cruysmans. 1980. Effect of plastic mulching and seed transplantation on growth and development of forage maize, p. 79-82. In: E.S. Bunting (cd.). Production and utilization of the maize crop. Hereward and Stourdale Press, Ely, U.K.

Ledent, J. F., P. Legros, and T. Behaeghe. 1981. Le mais comme culture de fourrages grossiers. 6. Repiquage, paillage plastique, conditionnement de sol, enrobage avec un regulateur de croissance: Bilan de quelques expérimentations sur mais en Belgique. Rev. Agr. 34(3):603-619.

Miller, R.A. 1972. Forcing sweet corn. HortScience 7(4):424.

Pendleton, J.W. and D.B. Egli. 1969. Potential yield of corn as affected by planting date. Agron. J. 61:70-71.

Wyatt, J.E. and J.A. Mullins. 1989. Production of sweet corn transplants. HortScience 24(6):1039.