Pterional variable topography and morphology. An anatomical study and its clinical significance

Authors: K. Natsis, I. Antonopoulos, C. Politis, E. Nikolopoulou, N. Lazaridis, G. P. Skandalakis, D. Chytas, M. Piagkou

DOI: 10.5603/FM.a2020.0113

Article type: ORIGINAL ARTICLES

Submitted: 2020-07-06

Accepted: 2020-07-27

Published online: 2020-09-03

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed.
Pterional variable topography and morphology. An anatomical study and its clinical significance

Running head: Pterion anatomical study

K. Natsis¹, I. Antonopoulos², C. Politis³,⁴, E. Nikolopoulou², N. Lazaridis¹, G.P. Skandalakis², D. Chytas⁵, M. Piagkou²

¹Department of Anatomy and Surgical Anatomy, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Greece
²Department of Anatomy, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, Greece
³OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, Katholieke Universiteit Leuven
⁴Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven
⁵School of Medicine, European University of Cyprus, Engomi, Nicosia, Cyprus

Address for correspondence: Assoc. Professor Maria Piagkou, DDS, MD, MSc, PhD, Department of Anatomy, School of Medicine, Faculty of Health Sciences, National and Kapodistrian University of Athens, M. Asias 75, Street, 11527 Greece, tel: +30 210 7462427, fax: +30 210 7462398, Mob:+306984316353, e-mail: mapian@med.uoa.gr; piagkoumara@gmail.com

Abstract

Background: Pterion is the junction of the frontal, parietal, greater wing of the sphenoid and the squamous part of the temporal bone. The sphenoparietal, frontotemporal, stellate and epipteric pteria were described. The current study determines pterion topography, morphology (variant types’ frequency) and morphometry, as well as epipteric bones presence in dried skulls. Gender impact is underlined as well.

Materials and methods: Ninety Greek adult dried skulls were observed. The distances in between pterion and the zygomatic arch midpoint and in between pterion and the frontozygomatic suture were measured.
Results: The sphenoparietal pterion was the commonest (58.3%), following by the stellate (25%), epiperic (15.5%) and by the frontotemporal pterion (1.1%). Twenty-eight skulls (15.5%) had epiperic bones, further categorized as quadrissutural (35.7%), trisutural (57.1%), bisutural and multiple (3.57%). The mean distances between pterion and the midpoint of zygomatic arch were 4.13 ± 0.45 cm on the right and 4.09 ± 0.47 cm on the left side and between pterion and the frontozygomatic suture were 3.47 ± 0.61 cm on the right and 3.52 ± 0.65 cm on the left. Both distances were symmetrical. Male skulls showed slightly higher values on the left side for the distance pterion and midpoint of zygomatic arch.

Conclusions: Pterion is a commonly used neurosurgical landmark and thus in depth knowledge of the pteric area and its variants could be valuable. Recognition of the possible variability in pterion location, morphology and morphometry, as well as possible occurrence of epiperic bones may render pterional craniotomy safer among different population groups.

Key words: pterion, skull, zygomatic arch, frontozygomatic suture, epiperic bone, variation, anatomy

INTRODUCTION

Pterion, an H-shaped small circular area, is a point of convergence of the frontal (F), sphenoid (S), parietal (P), and squamous part of the temporal bone (T) (articulation of the coronal, sphenoparietal, squamosal, sphenofrontal, and sphenosquamosal sutures) [36]. It corresponds to the site of the anterolateral (sphenoidal) fontanelle which disappears approximately 3 months after birth [50]. Although the sutures contributing to pterion, exhibit a wide variability, their relationships are not yet elucidated. Variant sutural patterns in pterional area are the outcome of combination of various environmental and epigenetic factors [7, 55].

From the morphometric point of view, as the classical anatomical textbooks refer, the pterion is located approximately 3.0-3.5 cm behind the frontozygomatic suture (FZMS) and 4.0 cm above the midpoint of the zygomatic arch (MPZ) forming the temporal fossa floor [36, 50].
Pterion is a reference cranial landmark for the anterior branch of the middle meningeal artery, the Broca’s motor speech area, the insula, the stem of lateral sulcus and the anterior cisterns of the encephalon base [14, 16, 40]. In addition, age and gender determination in forensic and archeological cases could be based on pterion [29].

Although suboptimal pterion localization may compromise surgical access and therefore treatment outcome, studies focusing on pterion morphology and surgical anatomy are scarce. Knowledge of pterion location, presence and distribution of sutural bones convergence, the so-called epipteric bones (EBs), as well as different types of classified pteria are important to prevent complications when drilling burr pterional holes [46]. In such cases, (i.e. in a penetrating orbital injury) surgery should be minimally invasive, while gaining access to the sphenoid ridge and optic canal [59].

The current study underlines morphological variability of the bones forming pterional area, taking into consideration variant distribution of EBs, their frequency and relationship with pterion sutures. A terminology of the EBs is proposed. Exact pterion location in relation to FZMS and MPZ was also recorded. Both morphological and morphometric observations were analyzed taking into account laterality, gender and age as well.

MATERIALS AND METHODS

Ninety (49 male and 41 female) Greek adult dried skulls from the osseous collections of the Department of Anatomy and Surgical Anatomy of the Aristotle University and the Department of Anatomy of the National and Kapodistrian University were investigated on the right and left sides (R and L) (180 sides). Exclusion criteria included children skulls, unknown gender and age skulls, damaged and deformed skulls and skulls with pathology and trauma affecting measurement landmarks. Thus, 180 (98 male and 82 female) pteria were subdivided in 3 age groups: 20–39 years (46 pteria), 40–59 years (40 pteria), over 60 years of age (94 pteria) to examine age effect in pterion topography, morphology and morphometry. All skulls were derived from body donation, before death, after written informed consent.

Pterion morphology: Various pteria frequencies were recorded and all pteria were classified into 4 types, based on Murphy’s classification [37]. Sphenoparietal (SP), frontotemporal (FT), stellate (St) and epipteric (E) pteria appear in Figure 1A, B, C and D, respectively. A circle was drawn to locate the adjacent bones forming pterion area.
Epipletic bones number and distribution: Skulls with E pterion (EBs) were further classified having as a guide the number of sutures converging to the EB. A novel epipletic terminology, based on the number and name (frontal-F, parietal-P, temporal-T, and sphenoidal-S) of sutures articulating with EB, is proposed:

1. A single EB articulating with 4 sutures (FPTS) (a typical quadrisutural EB) *(Fig. 2A)*
2. A single EB articulating with 3 sutures (trisutural EB) was further subclassified as superior (FPT) *(Fig. 3A)*, inferior (FTS) *(Fig. 3B)*, anterior (FPS) *(Fig. 3C)*, and posterior (PTS) *(Fig. 3D)*.
3. An EB articulating with two sutures (PS or ST) (bisutural EB) *(Fig. 2B)* and
4. Several EBs or multiple (in the form of multiple fragments) *(Fig. 2C)*.

Pterion morphometry: Two distances, in between pterion center and MPZ and pterion center and FZMS were bilaterally measured using a digital caliper *(Mitutoyo, ABSOLUTE 500-196-20 Digital Caliper, 0.001 mm accuracy)* *(Fig. 4)*. The study was conducted in accordance to the Ethical Committee standards and with the 1964 Helsinki declaration and its later amendments. Measurements’ reliability was assessed by examining the interobserver and intraobserver reliabilities using interclass and intraclass correlation coefficient. The *intraclass correlation coefficient* was interpreted as poor if it was less than 0.4; as marginal when it was between 0.4 and 0.75; and as good when it was greater than 0.75. Descriptive statistics were evaluated for pterion morphometric measurements and their statistical distribution was analyzed. Data normality was evaluated with Kolmogorov–Smirnov test. Wilcoxon signed ranks test was applied to investigate side asymmetry, Mann–Whitney *U* test and *t* test for gender dimorphism, and Kruskal–Wallis and one-way ANOVA tests to evaluate correlation with age. For all analyses, *p* value < 0.05 was considered statistically significant. Statistical analysis was carried out using IBM SPSS Statistics for Windows, version 21.0.

RESULTS

Pterion morphology: All pteria types (SP, FT, St and E) were identified *(Fig. 5)*. SP pterion was the predominant type (58.3%, 105 skulls), St the second most common (25%, 45 skulls) following by the E (15.5%, 28 skulls) and the FT type (1.1%, 2 skulls on the R). Pterional symmetry was detected (57 skulls, 63.3%) (SP in 43, St in 10 and E in 4 skulls). In asymmetrically pairing skulls, the commonest pterion types were the SP-St (16.7%, 15 skulls) and the SP-E (12 skulls). Age and gender had no significant impact on pterion type *(Table 1)*.
Epipetric bone morphology: Twenty-eight skulls (15.5%) with EBs were further classified as quadrilsutural (FPTS) (Fig. 6A) (35.7%, 10 skulls, 1 skull bilaterally and 9 skulls unilaterally- 5L and 4R), trisutural (Fig. 6B) (57.1%, 16 skulls unilaterally-11L and 5R), bisutural (3.57%, 1 skull on the L) (Fig.6C) and multiple EBs (3.57%, 1 skull on the L) (Fig. 6D).

Pterion morphometry: The mean distances (pterion-MPZ) and (pterion-FZMS) were symmetrical (R 4.13±0.45cm, L 4.09±0.47cm) and (R 3.47±0.61cm, L 3.52±0.65cm). No gender dimorphism was detected for all measured distances, except for the mean distance (pterion –FZMS) on the L (males 3.65±0.72 versus females 3.37±0.51cm, p=0.039) (Table 2). No statistically significant difference was detected for both measurements among different age groups (Table 3). Intraclass correlation coefficient (ICC) for the interobserver and intraobserver reliabilities was 0.892 and 0.901 for pterion-MPZR, 0.879 and 0.845 for pterion-MPZL, 0.908 and 0.897 for pterion-FZMSR and 0.867 and 0.856 for pterion-FZMSL, respectively.

DISCUSSION

Pterion morphology: Pterion variable morphology is classified into SP, FT, St and E types and has been extensively studied among different populations (Table 4). In depth knowledge of pterion type and location could be an extremely useful tool in neurosurgerical procedures, skull identification and forensics. Yasargil (1975) first introduced the pterional approach and its extension [58]. Pterional approach achieves more accurate and safer outcomes for sellar or suprasellar lesions, brain arterial circulation and lateral sulcus, as well as for aneurysms of the distal internal carotid artery, as the conventional craniotomy was replaced from mini-craniotomy and to contemporary keyhole surgery [12]. Although classical anatomical textbooks describe St pterion as the typical pattern, this pterion was found with a frequency of 25% in the current study, while the predominant pterion was the SP (58.3%), similarly to all the other studies summarized in Table 4. In Asians, the SP pterion frequency ranged between 71.7% and 93.55% and among them Indians have the highest frequencies (69.25%-93.5%) [Southern (80-93.55%) and Western Indians (91.7%) showed higher frequencies compared to Northern (71.7-89.2%)], while Koreans have the lowest (76.5%) [26]. Kenyans had the lowest reported frequency (66%) [38]. The high frequency of SP pterion could be a result of evolution [28], given that it is the commonest type in primates [8, 47].
The second commonest pterion type is the FT [54], with a varying incidence among different populations: Nigerians (10.1% and 23.6%) [46], Northern Indians (10%) [62], Turkish (10%) [40] and Kenyans 15% [38]. In the current study, the frequency of FT pterion was significantly lower (2.2% on the R), whereas no skull was found with a FT pterion on the L. However, the frequency is similar to those of Indian (Western [31] and Southern [36]) populations. In the present study, St pterion was the second most common type on the R (30%) and L (20%). The frequency of the E type of Pt is similar to that reported in Indians (11.8%) [8] and Kenyans (12%) [38].

Epipteric bone morphology: Ranke (1898) proposed the most suitable hypothesis concerning the EBs occurrence. He supported that an EB appears in case of fusion failure of the postero-superior border of the greater sphenoidal wing (via its separate ossification center) with the rest part of the greater wing, during the 4th month of the intrauterine life. The EBs occurrence and laterality is variable among different populations, as the result of genetic and epigenetic factors combination [45, 9]. In the current study, among the 28 skulls with EBs (31.1%), trisutural EBs were found in 16 skulls, (17.7%), quadrissutural in 10 skulls (11.1%), bisutural and multiple EBs in a single skull (1.11%) per each, on the L. Among Indian populations, a wide range of EBs frequency was reported ranging between 2.5% to 24% in Northern [42] and Karnataka Indians [5]. Saxena et al. (2003) found the lowest frequency of EBs in Nigerians (3.79%), contrariwise to the present study reporting the highest frequency of 31.1% [46]. Neurosurgeons should be aware of EBs occurrence and variant distribution, since their presence when making burr holes over the pterional area may lead to complications.

In such cases caution must be made, as the most anterior point of junction of four bones may be mistaken to be the pterion center resulting in orbital penetration. High index of suspicion is required from both radiologists and neurosurgeons, since in pterional trauma the EBs may be mistaken as skull fracture in x-rays [9, 62].

Pterion morphometry: The mean distances (pterion-MPZ) and (pterion-FZMS) in different populations are summarized in Table 5. In the present study, the mean (pterion-MPZ) distance was 4.13 ± 0.45 cm on the R and 4.09 ± 0.49 cm on the L, similarly to Nigerian (4.02±0.05cm on the R and 4.01±0.03cm on the L) [53] and Turkish population (4.05±0.39cm on the R and 3.85±0.25 cm on the L) [40] (4.0±0.40cm on the R and 3.98±0.40 cm on the L) [3]. A lower mean distance has been reported in Australian (3.4 ± 4.0cm) [30] and Anatolian (3.8 ± 0.4 cm) populations [22]. However, a higher mean
distance has been reported in Indians (4.52±0.32cm on the R and 4.45±0.35cm on the L) [10].

In the present study, the pterion was detected behind FZMS up to 3.51cm in males and up to 3.39cm in females. This slight difference may be explained by the larger male skulls. The mean distance (pterion-FZMS) was 3.47 ± 0.61 cm on the R and 3.52 ± 0.65 cm on the L. The highest mean values were reported in Indians [10] (3.93 ± 0.37cm on the R and 3.80 ± 0.40cm on the L) and the lowest in Australians (2.6 ± 4.0cm on the R and 2.5 ± 4.0 cm on the L) [30] and Nigerians (2.74 ± 0.07cm on the R and 2.74 ± 0.06 cm on the L) [53]. Since significant differences were observed for pterion-MPZ and pterion-FZMS distances among various studies’ populations, the pterion topography may vary due to epigenetic, environmental factors and evolution [10, 21].

Pterion could be safely used as a surface landmark in neurosurgical approaches and interventions [40], even in neonates [14]. Its clinical importance derives from the fact that it overlies the anterior (frontal) branch of the middle meningeal artery, which is the most frequent source of acute traumatic epidural hematoma [30]. The knowledge of pterional typical anatomy, as well as its variants is important to neurosurgeons during pterional craniotomy, especially during extradural haematoma evacuation [49]. If the ophthalmic artery originates from the frontal branch of the middle meningeal artery [27, 48], pterional craniotomy could cause ophthalmic artery occlusion, which may end up in blindness [48]. Pterion is also used in various neurosurgical approaches treating anterior and middle skull base lesions [33], such as anterior and posterior cerebral circulation lesions, middle cerebral artery or upper basilar complex aneurysms, optic nerve and sellar and parasellar area lesions, sphenoidal wing, cavernous sinus, orbit, anterior and medial temporal lobe, midbrain, and posterior-inferior frontal lobe tumors, as well as cerebral tumors [4, 12, 15, 17, 57-61].

Information obtained from the current study may be of significant value in preoperative planning and perioperative navigation. Furthermore, recognition of the possible variants in location, morphology and morphometry of the pterion, as well as EBs occurrence may render pterional craniotomy safer among different population groups.

CONCLUSIONS

All pteria types were found in the current study and SP pterion was the predominant one, while FT was the less frequently observed. Pterional symmetry existed in the majority of cases, while gender and age had no significant impact on pterion type. EBs
were observed in 15.5% of the skulls, and in the majority of the cases were tri- and quatrisutural. The distances of the pterion from MPZ and FZMS were symmetrical and gender dimorphism was found only in pterion-FZMS distance on the L. Information obtained from the current study may be of significant value in preoperative planning and perioperative navigation. Such data are especially mandatory to achieve the optimum craniotomy when neuronavigation is not available. Based on osseous landmarks, the neurosurgeon should be familiar with the sutural junctions, as well as with EBs variants which may be complicate the orientation. Furthermore, recognition of possible variants in pterion location, morphology and morphometry, as well as possible EBs occurrence may render pterional craniotomy safer among different population groups.

Conflict of interest: All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest (personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Acknowledgments: The authors wish to thank all those who donated their bodies and tissues for the advancement of education and research. Authors are also grateful to the donors’ families.

Abbreviations: sphenoparietal (SP), frontotemporal (FT), stellate (St), epipteric (E), epipteric bones (EBs), right side (R), left side (L), zygomatic arch midpoint (MPZ), frontozygomatic suture (FZMS)

REFERENCES

1. Adejuwon SA, Olopade FE, Bolaji M. Study of the Location and Morphology of the Pterion in Adult Nigerian Skulls. ISRN Anatomy. 2013. DOI: 10.5402/2013/403937
2. Agarwal AK, Singh PJ, Gupta SC, Gupta CD. Pterion formation and its variations in the skulls of Northern India. Anthropol Anz. 1988; 38(4):265-269
3. Aksu F, Akyer SP, Kale A, Geylan S, Gayretli O. The Localization and Morphology of Pterion in Adult West Anatolian Skulls. J Craniofac Surg. 2014; 25(4):1488-1491
4. Al-Mefty O. Supraorbital-pterional approach to skull base lesions. Neurosurgery. 1987;21:474–7
5. Annam S, Bajpe R. A prospective anatomic study of epipteric bones in dry human skulls of Karnataka, Int J Biomed Adv Res. 2016;7(6): 262-264.
6. Apinhasmit W, Chempoopong S, Chaisuksunt V, Thiraphatthanavong P, Phasukdee N. Anatomical Consideration of Pterion and Its Related References in Thai Dry Skulls for Pterional Surgical Approach. J Med Assoc Thai. 2011; 94(2):205-214
Asala SA, Mbajiorgu FE. Epigenetic variation in the Nigerian skull: sutural pattern at the pterion. East Afr. Med. J. 1996; 73(7):484-6

Ashley-Montagu M. The anthropological significance of the pterion in the Primates. Am J Phys Anthropol. 1933;18:159-336

Bellary SS, Steinberg A, Mirzayan N et al. Wormian Bones: A Review. Clin Anat. 2013; 26(8):922-927

Bhargavi C, Saralaya V, Kishan K. Pterion: A site for neurosurgical approach. Int J Biomed Res. 2011; 2(12):588-594

Broek A. On pteric sutures and pteric bones in the human skull. Kon Acad Wetenesch Amsterdam. Proc Sect Sci. 1914; 6:634-639.

Cheng WY, Lee HT, Sun MH, Shen CC. A pterion keyhole approach for the treatment of anterior circulation aneurysms. Minim Invasive Neurosurg. 2006;9:257–262

Eboh DEO, Obaroefe M. Morphometric Study of Pterion in Dry Human Skull Bones of Nigerians. Int J Morphol. 2014; 32(1):208-213

Ersoy M, Evliyaoglu C, Bozkurt MC, Konuksan B, Tekdemir I, Keskil IS. Epipteric bones in the pterion may be surgical pitfall. Minim Invasive Neurosurg. 2003; 46:364–5

Havaldar PP, Shruthi BN, Saheb SH, Henjarappa KS. Morphological Study on shapes of pterion. Int J Anat Res. 2015; 3(4):1555-58

Hendricks BK, Spetzler RF. Pterional Craniotomy for Anterior Temporal Artery to Middle Cerebral Artery Bypass: 2-Dimensional Operative Video [published online ahead of print, 2020 Mar 14]. Oper Neurosurg (Hagerstown) opaa053. doi:10.1093/ons/opaa053

Hussain-Saheb S, Haseena S, Prasanna LC. Unusual Wormian bones at Pterion-Three case reports. J Biomed Sci Res. 2010; 2(2):116-118

Ikedo T, Nakamura, M, Itoh M. Sex differences in the zygomatic angle in Japanese patients analyzed MRI with reference to Moire Fringe Patterns. Aesth Plast Surg. 1999;23: 349-353

Ilknur A, Mustafa KI, Sinan BA. Comparative Study of Variatio of the Pterion of Human Skulls from 13th and 20th Century Anatolia. Int J Morphol. 2009; 27(4):1291-1298

Kalthur SG, Vangara SV, Kiruba L, Dsoupza AS, Gupta C. Metrical and non-metrical study of the pterion in South Indian adult dry skulls with notes on its clinical importance. Marmara Med J. 2017;30:30-39

Khatri Chirag R, Gupta DS, Soni DJS. Study of pterion and incidence of epipcteric bones in dry human skulls of Gujarat. NIIRM. 2012;3(2): 57-60

Kumar S, Anurag Munjal S, Chauhan P, Chaudhary A, Kumar Jain S. Pterion its location and clinical implications- A study compared. J Evol Med Dent Sci. 2013;2(25):4599-4608

Lee UY, Park DK, Kwon SO, Paik DJ, Han SH. Morphological of the pterion in Korean. Korean J Phys Anthropol. 2001;14:281-289

Liu Q, Rhoton AL Jr. Middle meningeal origin of the ophthalmic artery. Neurosurgery 2001;49:401–406

Lovejoy CO, Meindl RS, Mensforth RP, Barton TJ. Multifactorial determination of skeletal age at death: a method a blind tests of its accuracy. Am J Phys Anthropol. 1985; 68:1-14

Ma S, Baillie LJM, Stringer MD. Reappraising the Surface Anatomy of the Pterion and Its Relationship to the Middle Meningeal Artery. Clin Anat. 2012; 25:330-339
31. Manjunath KY, Thomas IM. Pterion variants and epipteric ossicles in South Indian skulls. J Anat Soc India. 1993; 42:85-94

32. Matsumura G, Kida K, Ichikawa R, Kodama G. Pterion and Epipteric Bones in Japanese Adults and Fetuses, With Special Reference to Their Formation Variations. Kaibogaku Zasshi. 1991;66(5) 462-471

33. McLaughlin N, Cutler A, Martin NA. Technical nuances of temporal muscle dissection and reconstruction for the pterional keyhole craniotomy. J Neurosurg. 2013;118(2):309-314

34. Mishra HA, Mishra PP, Bezbaruah NK, Gupta P. Study of variations of bony pattern and presence of wormian bone at pterion in dry human skulls. Int J Biomed Res. 2014;5(11):668-70

35. Modasiya UP, Kanani SD. Study of pterion and asterion in adult human skulls of north Gujarat region. Ind J Clin Anat Physiol. 2018; 5(3):353-356

36. Moore KL & Dalley AF. Clinical Oriented Anatomy. 5th ed." Philadelphia, Lippincott Williams & Wilkins. 2006: 887-903

37. Murphy T. The pterion in the Australian aborigine. Am J Phys Anthropol. 1956;14(2):225–244. doi:10.1002/ajpa.1330140218

38. Mwachaka PM, Hassanali J, Odula P. Sutural morphology of the pterion and asterion among adult Kenyans. Braz J Morphol Sci. 2009;26:4-7

39. Natekar PE, DeSouza FM, Natekar SP. Pterion: An anatomical variation and surgical landmark. Ind J Otol. 2011;17(2):83-85

40. Oguz O, Sanli SG, Bozkir MG, Soames RW. The pterion in Turkish male skulls. Surg Radiol Anat. 2004; 26:220–4

41. Praba AMA, Venkatramaniah C. Morphometric Study of different types of Pterion and its relation with middle meningeal artery in dry skulls of Tamil Nadu. JPBMS. 2012; 21(4):1-4

42. Prasad H, Bezbaruah NK, Mishra A, Mishra PP. Morphometric analysis of pterion: A clinic-anatomical study in north Indian dry skulls. Inn J Med Health Sci. 2015; 5(5):201-205

43. Ranke J. Der Stirnfortsatz der Schlafenschuppe bei den Primaten - Sitz, Mathem. Phys. Cl. Akad. Wiss. Munchen 1898;27: 227–270

44. Ruiz CR, Souza GC, Scherb TO, Nascimento S. Anatomical variations of pterion: analysis of the possible anatomical variations of pterion in human skulls. J Morphol Sci. 2016;33(4):200-204

45. Sanchez-Lara PA, Graham JM Jr, Hing AV, Lee J, Cunningham M. The morphogenesis of wormian bones: A study of craniosynostosis and purposeful cranial deformation. Am J Med Genet Part A. 2007; 143A(24):3243-3251

46. Saxena RC, Bilodi AK, Mane SS, Kumar A. Study of pterion in skulls of Awadh area--in and around Lucknow. Kathmandu Univ Med J. 2003; 1(1):32-3

47. Saxena SK, Jain SP, Chowdhary DS. A comparative study of pterion formation and its variations in the skulls of Nigerians and Indians. Anthropol Anz. 1988;46: 75–8

48. Shima K, Kawasaki T, Shimizu A, Takiguchi H, Chigasaki H. An ophthalmic artery occlusion after a craniotomy using the pterional approach: A report of three cases, one resulting in blindness. Jpn J Neurosurg. 1995;4:163–169

49. Shimizu S, Hagiwara H, Utsuki S, Oka H, Nakayama K, Fujii K. Bony tunnel formation in the middle meningeal groove: an anatomic study for safer pterional craniotomy. Minim Invasive Neurosurg. 2008;51:329–332

50. Standing S, Ellis H, Healy JC, Johnson D."Gray’s anatomy, 39th edn.,” Elsevier Churchill Livingstone. London. 2005: 442–471

51. Sudha R, Sridevi C, Ezhiilarasi M. Anatomical variations in the formation of pterion and asterion in south Indian population. Int J Cur Res Rev. 2013;5(09):92-101

52. Turazzi S, Cristofori L, Gambin R, Bricolo A The pterional approach for the microsurgical removal of olfactory groove meningiomas. Neurosurg. 1999;45:821–825

53. Ukoha U, Oranusi CK, Okafor JI, Udemezue OO, Anyabolu AE, Nwamarachi TC. Anatomic study of the pterion in Nigerian dry human skulls. Nigerian J Clinic Practice. 2013; 16(3)

54. Vasudha TK, Divya Shanthi D’Sa, Sadashivana Gowd. Study of morphology of pterion and its clinical implications. Int J Anat Res. 2017; 5(4.3):4674-78
55. Wang Q, Opperman LA, Havil LM, Carlson DS, Dechow PC. Inheritance of sutural pattern at the pterion in Rhesus Monkey skulls. Anat. Rec. Discov. Mol. Cell. Evol. Biol. 2006; 288:1042-9
56. Williams L, Bannister L, Berry M, Collins P, Dyson M, Dussek E. Gray’s Anatomy, London: 38th edn Churchill Livingston. 1988
57. Yasargil M. Interfascial pterional (frontotemporoparietal) craniotomy. Microneurosurg. 1984;1:217–20
58. Yasargil M, Fox J, Ray M. The operative approach to aneurysms of the anterior communicating artery. Adv Tech Stand Neurosurg. 1975;2:113–70
59. Yasargil MG, Antic J, Laciga R, Jain KK, Hodosh RM, Smith RD. Microsurgical pterional approach to aneurysms of the basilar bifurcation. Surg Neurol. 1976;6:83–91
60. Yasargil MG, Boehm WB, Ho RE. Microsurgical treatment of cerebral aneurysms at the bifurcation of the internal carotid artery. Acta Neurochir (Wien) 1978:41:61–72
61. Yasargil MG, Fox JL. The microsurgical approach to intracranial aneurysms. Surg Neurol. 1975;3:7–14
62. Zalawadia A, Vadgama J, Ruparelia S, Patel S, Rathod SP, Patel SV. Morphometric Study of pterion in dry skull of Gujarat Region. NJIRM. 2010; 1(14):25-29

Table 1. Pterion type frequency observed on the right (R) and left (L) sides of the skulls, combination types on asymmetrical skulls, gender (M-males, F-females) and age impact

Independent variables	Pterion Types				
Laterality	Sphenoparietal type (SP)	Frontotemporal type (FT)	Epipteric type (E)	Stellate type (S)	
Right side (R)	50 (55.5%)	2 (2.2%)	11 (12.2%)	27 (30%)	
Left side (L)	55 (61.1%)	-	17 (18.9%)	18 (20%)	
Total	105 (58.3%)	2 (1.1%)	28 (15.5%)	45 (25%)	

Combination types of pterion						
SP-SP	43 (47.8%)	15 (16.7%)	12 (13.3%)	10 (11.1%)	4 (4.44%)	2 (2.22%)
SP-S	15 (16.7%)	12 (13.3%)	-	10 (11.1%)	4 (4.44%)	-
SP-E	12 (13.3%)	-	10 (11.1%)	-	-	-
S-S	-	-	10 (11.1%)	-	-	-
E-E, SP-FT	4 (4.44%)	-	-	-	-	-
E-S	-	-	-	-	-	-

Gender	Type SP	Type FT	Type E	Type S					
	R	L	R	L	R	L	p value		
Males	30 (61.2%)	31 (63.26%)	1 (2.04%)	-	2 (4.08%)	10 (20.4%)	16 (32.65%)	8 (16.32%)	0.187, 0.829
Females	20 (48.78%)	24 (58.53%)	1 (2.43%)	-	9 (21.95%)	7 (17.07%)	11 (26.82%)	10 (24.39%)	-
Total	61 sides in M, 44 sides in F	1 side in M, 1 side in F	12 sides in M, 16 sides in F	24 sides in M, 21 sides in F	-	-	-	-	-
Table 2. Mean ± SD, minimum and maximum distances of pterion (Pt) to the midpoint of zygoma (MPZ) and to the frontozygomatic suture (FZMS) (cm) on the right (R) and left (L) sides of the skulls, male and female incidence

Value	Distances according to side	Distances according to gender										
	Pt-	Pt-MPZ	Pt-	Pt-MPZ	Pt-MPZ	Pt-MPZ	Pt-FZS	Pt-FZS	Pt-FZS			
	MPZ L	R	FZMS R	FZMS L	R	FZMS L	R	FZMS L	R			
Mean ± SD	4.13±0.45	4.1±0.4	3.47±0.61	3.52±0.65	4.19±0.44	4.12±0.55	4.04±0.46	4.07±0.42	3.51±0.62	3.65±0.73	3.43±0.59	3.37±0.51
Minimum	2.87	3.11	2.0	1.73	3.29	3.11	2.87	3.16	2.09	1.73	2.0	2.48
Maximum	5.32	5.7	4.81	5.2	5.32	5.7	5.2	5.1	4.63	5.2	4.81	4.78

p=0.608 (symmetry) p=0.471 (symmetry) p=0.133 right ANOVA, p=0.619 left ANOVA p=0.517 right ANOVA, p=0.039 left (gender dimorphism)

Table 3. Mean distances (cm) from the pterion to the midpoint of zygoma (MPZ) and to the frontozygomatic suture (FZMS) on the right (R) and left (L) sides of the skulls among the three age groups

N	Age groups	MPZ R	MPZ L	FZS R	FZS L	MPZ R	MPZ L	FZS R	FZS L
20-39		4.15±0.43	4.12±0.44	3.40±0.7	3.37±0.75	4.1±0.4	4.1±0.5	3.38±0.6	3.46±0.71
40-59		4.1±0.45	4.1±0.5	3.38±0.66	3.46±0.7	4.13±0.48	4.1±0.4	3.54±0.53	3.62±0.56
Over 60		4.13±0.48	4.1±0.4	3.54±0.53	3.62±0.56	3.54±0.53	3.62±0.56	3.54±0.53	3.62±0.56
Mean ± SD		4.1±0.4	4.1±0.5	3.54±0.53	3.62±0.56	4.1±0.4	3.54±0.53	3.62±0.56	3.54±0.53
Minimum		3.51	3.44	2.0	2.25	3.29	3.11	2.09	1.73
Maximum		5.2	5.1	4.81	4.69	4.73	4.93	4.32	4.90

p=0.916 right MPZ, p=0.522 right FZS, p=0.962 left MPZ and p=0.319 left FZS
Table 4. Comparative review of pterion types in different populations among several studies, arranged in order by year of publication

Author(s)	Year	Population	Sample N = skulls (sides)	Type of pterion	Sphenoparietal (%)	Frontotemporal (%)	Stellate (%)	Epipteric (%)
Murphy	1956	Australian	368		73.2	7.7	0.7	18.4
Agarwal et al.	1980	North Indian	450 (900 sides)		71.7	3.3	1.7	23.3
Saxena et al.	1988	Indian	72 (144)		82.6	2.8	1.4	13.2
Saxena et al.	1988	Nigerian	40 (80)		81.2	11.3	5.0	2.5
Manjunath et al.	1988	South Indian	172		93.5	3.5	2.9	17.3
Matsumura et al.	1991	Japanese	614		82.4	2.9	0.7	14.0
Asala and Mbaioju	1996	Nigerian	212		82.1	23.6	-	5.7
Lee et al.	2001	Korean	149		76.5	-	-	40.3
Saxena et al.	2003	North Indian	203		87.7	10.0	5.17	-
Ersoy et al.	2003	Turkish	300 (490 sides)		96.0	3.8	0.2	9.0
Oguz et al.	2004	Turkish	26 (52)		88.0	10.0	-	2.0
Mwachaka et al.	2009	Kenyan	50		66.0	15.0	7.0	12.0
Ilknur et al.	2009	Anatolian	28		89.2	3.6	3.6	3.6
Zalawadia et al.	2009	West. Indian	42		91.7	2.4	1.2	4.7
Hussain Saheb et al.	2010	Indian	125		69.25	17.35	9.7	3.7
Apinhasmit et al.	2011	Thais	268 (536)		81.2	1.1	0.4	17.3
Natekar et al.	2011	Indian	150 bones		85.3	8.0	10.6	51.4
Ma et al.	2012	Australian	76		78.4	5.2	-	16.4
Praba and Venkatramaniah	2012	Indian	50		74.0	3	9.0	14.0
Ukoha et al.	2012	Nigerian	56		75.3	19.5	1.7	3.6
Adejuwon et al.	2013	Nigerian	62		86.1	8.3	5.6	-
Kumar et al.	2013	Indian	40		86.25	11.25	2.5	-
Sudha et al.	2013	South Indian	150		80.0	3.0	5.3	11.3
Table 5. Comparative review of pterion (Pt) distances from the frontozygomatic suture (FZMS) and the midpoint of zygoma (MPZ) among different populations in several studies, in order by year of publication (in cm)

Author(s)	Year	Population	Sample N = skulls (sides)	Distances
Oguz et al. [8]	2004	Turkish male	26 (52)	3.3±0.39
Ilknur et al. [31]	2009	Anatolian	28	3.5±0.5
Mwachaka et al. [30]	2009	Kenyan	50	3.03±0.34*
Bhargavi et al. [52]	2011	Indian	70	3.93±0.37
Ma et al. [36]	2012	Australian	76	2.6±4.0
Ukoha et al. [38]	2012	Nigerian	56	2.74±0.07
Adejuwon et al. [39]	2013	Nigerian	62	3.15±0.67*
Aksu et al. [42]	2014	Anatolian	128	3.18±0.45*
Eboh and Obavoefe	2014	Nigerian	50	3.21±0.26*
Present study	2019	Greek	90	3.47±0.61*

*studies with modified measurements into cm from mm
Figure 1. The frequency of various types of pterion based on Murphy’s classification as modified accordingly, sphenoparietal (A), frontotemporal (B), stellate (C), and epipteric (D)

Figure 2. Classification of epipteric bones as quadrisutural (A), bisutural (B) and multiple (C)

Figure 3. Classification of the trisutural epipteric bones observed according to their location as superior (A), inferior (B), anterior (C) and posterior (D)

Figure 4. Distances from the pterion (Pt) center to the midpoint of zygoma (MPZ) and from the Pt center to the frontozygomatic suture (FZMS)

Figure 5. Depiction of various pterion types in Greek skulls, sphenoparietal (A), frontotemporal (B), stellate (C), and epipteric (D).

Figure 6A. Quadrisutural epipteric bones (red arrow), F-frontal bone, P-parietal bone, S-sphenoid bone and T-temporal bone.

Figure 6B. Trisutural epipteric bones according to their location [superior 1, posterior 2, inferior 3 (not found) and anterior 4]

Figure 6C. Bisutural epipteric bones in between patietal and sphenoid bones (PS) as well as in between sphenoid and temporal bones (ST)

Figure 6D. Multiple epipteric bones depicted with red arrows
3. INFERIOR WAS NOT FOUND

4. ANTERIOR (FPS)

1. SUPERIOR (FPT)

2. POSTERIOR (PTS)
