Decoherence in circuits of small Josephson junctions

J.P. Pekola and J.J. Toppari

Department of Physics, University of Jyväskylä, P.O. Box 35 (Y5), FIN-40351, Jyväskylä, Finland

We discuss dephasing by the dissipative electromagnetic environment and by measurement in circuits consisting of small Josephson junctions. We present quantitative estimates and determine in which case the circuit might qualify as a quantum bit. Specifically, we analyse a three junction Cooper pair pump and propose a measurement to determine the decoherence time τ_{φ}.

The rate at which phase coherence is lost is an important factor in deciding whether a system qualifies as a quantum bit. Until now there exist very few experimental tests or theoretical arguments to determine this time in proposed quantum bits based on small Josephson junctions (squbits), and moreover only a lower bound of ~ 5 ns has been determined so far. In this letter we estimate quantitatively the dephasing time τ_{φ} caused by the electromagnetic environment in single- and multijunction Josephson circuits both at zero and at non-zero temperatures. This dephasing is induced by the same fundamental processes which cause the decoherence in a squbit, thus yielding a direct measure of the decoherence time of a squbit. Based on our analysis we determine certain limiting factors for the realisation of a successful squbit experiment, and as a concrete example we investigate the three junction Cooper pair pump in which the coherent nature of the charge transport induces deviations from the accurate quantized transfer. We demonstrate that the crossover at $f = f_C$ as a function of the pumping frequency f from incoherent to coherent charge transport yields a direct measure of $\tau_{\varphi} \approx 1/f_C$. We also discuss the limitations in implementing the so-called quasiparticle traps often used to suppress single electron effects in Cooper pair transistors and Cooper pair boxes.

We start by relating the dephasing rate of the Josephson junction circuit under consideration to the impedance of the electromagnetic environment that it is imbedded in. By dephasing we mean the deviation of the Josephson phase $\varphi(t)$ across the junction circuit from its initial value $\varphi(0)$. Specifically we are interested in the rms value of the phase deviation $\sqrt{\langle (\Delta \varphi)^2 \rangle} = \sqrt{\langle (\varphi(t) - \varphi(0))^2 \rangle}$. Voltage fluctuations induced by dissipative circuit elements result in the phase-phase correlation function $J(t) = \langle [\varphi(t) - \varphi(0)] [\varphi(0)] \rangle$ [8], which, based on the fluctuation-dissipation theorem, can be expressed in the form

$$J(t) = 2 \int_0^\infty \frac{d\omega}{\omega} \frac{\text{Re} Z_{\text{r}}(\omega)}{R_K} \left\{ \coth \left(\frac{\hbar \omega}{2k_B T} \right) [\cos(\omega t) - 1] - i \sin(\omega t) \right\},$$

where $Z_{\text{r}}(\omega)$ is the impedance seen by the circuit/junction whose phase fluctuations we want to determine, and $R_K = \hbar/e^2 \approx 25.8$ kΩ is the resistance quantum. It is straightforward to see that $\langle (\Delta \varphi)^2 \rangle$ and $J(t)$ are related by

$$\langle (\Delta \varphi)^2 \rangle = -2\text{Re} J(t).$$

Other possible sources of decoherence besides the dissipative environment will not be discussed here.

FIG. 1. Schematic views of two circuits studied quantitatively. a) An N-junction array with purely resistive electromagnetic environment. b) A three junction Cooper pair pump with a purely resistive environment in biasing and in gate lines.

First we consider the case of an array of N superconducting tunnel junctions. In the following analysis the array is assumed to be homogeneous, $C_1 = C_2 = \cdots = C_N \equiv C$, and the electromagnetic environment to be purely resistive $Z(\omega) = R_e$ as shown in Fig. 1a. (Figure 1b refers to the three junction Cooper pair pump to be discussed later.) These simplifications make results more transparent, but it is straightforward to generalise the present method also to other circuits with an arbitrary environment, $Z(\omega)$. With the assumptions mentioned we obtain for the total resistance seen by the array $Z_{\text{r}}(\omega) = R_e/(1 + i\omega \tau)$, where $\tau = R_e C/N$. The real part of this can be written in form

$$\text{Re} Z_{\text{r}}(\omega) = \frac{R_e}{1 + \omega^2 \tau^2}.$$

Inserting this into Eq. (1) and using the result for $J(t)$ when $\text{Re} Z_{\text{r}}(\omega)$ assumes the Lorentzian form of Eq. (3)
where \(\gamma \approx 0.57721 \) is Euler’s constant. In the case of non-zero temperature we consider only the long time \((\pi k_B T/\hbar) \gg 1\) limit which is relevant in most cases, except in the limit of large \(R_e \). At a realistic measurement temperature, e.g. \(T = 50 \) mK, the result is valid in the range \(t > 50 \) ps, which is the region we are interested in. Long time expansion yields

\[
\left\langle (\Delta \phi)^2 \right\rangle \approx 4 \frac{R_e}{R_K} \left[\frac{\pi k_B T}{\hbar} t - \ln \left(\frac{2\pi k_B T}{\hbar} \right) \right].
\]

The long time expansion is valid only at non-zero temperatures and therefore Eq. (4) cannot be recovered from Eq. (3) in the limit of \(T \to 0 \).

We can also apply the same method to an individual (the \(t \)th) junction to find the phase fluctuations \(\left\langle (\Delta \phi_i)^2 \right\rangle \) across it. With the same assumptions as before, we get for the single junction \(\text{Re}Z_{t,i}(\omega) = \text{Re}Z_0(\omega)/N^2 \). This immediately yields the relation \(\sum_i \sqrt{\left\langle (\Delta \phi_i)^2 \right\rangle} = \sqrt{\left\langle (\Delta \phi)^2 \right\rangle} \), which can be shown to hold also with an arbitrary electromagnetic environment \(Z(\omega) \) in series with the array.

If we define the dephasing time \(\tau_\varphi \) as the value of \(t \) for which \(\left\langle (\Delta \phi)^2 \right\rangle = (\pi/2)^2 \), we obtain for zero temperature:

\[
\tau_\varphi = \tau \exp \left(\frac{\pi^2 R_K h}{16 R_e} - \gamma \right), \quad (T = 0).
\]

Dropping out the small constant terms in Eq. (6) we can write the result at finite temperature in the form:

\[
\tau_\varphi \approx \frac{\pi}{16} \frac{h}{k_B T} R_e \ , \quad (T > 0).
\]

![FIG. 2. The dephasing time, \(\tau_\varphi \), for a three junction array as a function of the series resistance \(R_e \) of the electromagnetic environment. The array is assumed to be homogeneous with junction capacitances of 1.0 fF. The zero temperature curve forms a high resistance envelope of the curves corresponding to finite temperatures. Finite temperature curves are obtained from Eq. (3) and shown only over their range of validity.](image)

In the previous analysis we considered an array of Josephson junctions without gates connected capacitively to the islands. These capacitances together with the impedance of the gate lines, \(Z_{gi} \), also affect decoherence and should be taken into account. Therefore a quantitative analysis was also applied to the symmetric \((C_1 \equiv C, C_{gi} \equiv C_g)\) and \((Z_{gi} \equiv R_g)\) with all \(i \) three junction Cooper pair pump which includes gate lines connected to the islands, as shown in Fig. 1b. The total impedance seen by the array is

\[
Z_{t}(\omega) = \frac{R_e}{1 + i\omega R_e (6N+C+3g)/(6N+C+2g)}.
\]

where \(g^{-1} = R_g + 1/(i\omega C_g) \) is the impedance of the gate line and \(\tau = R_{gi} C/3 \). The explicit expression for \(\tau_\varphi \) from \(\text{Re}Z_t(\omega) \) does not assume a simple form but can be calculated numerically. Figure 2 shows the influence of the gate lines to the dephasing time as a function of \(R_g \) with several different values of \(R_e \). In the case of disconnected gate lines \((R_g \to \infty)\) \(\tau_\varphi \) naturally approaches the value of the array without gates, as seen from the figure. In the limit of vanishing \(R_g \) we also recover the result of an array by replacing \(C \) by the effective capacitance \(C_{\text{eff}} = C\left(\frac{C+C_g/2}{C+C_g/3}\right) \) in Eq. (3). The influence of dissipation in the gate lines on the dephasing rate is counterintuitive at the first sight: gate lines, even resistive ones, make the dephasing time longer than in an array without gates (Fig. 3). The reason behind this is twofold. Firstly, in our estimates we are interested in the fluctuations of the total phase difference across the array \(\varphi \), not in those of the individual phases \(\varphi_i \). Because of the series connection with additive phase differences, each gate line induces an exactly...
opposite, i.e. a cancelling fluctuation in the neighbouring junctions. Thus the noise of the gate resistors does not contribute to the noise in \(\varphi \). On the other hand, the gate lines decrease the impedance seen by the whole array, and this way the noise in the total phase also decreases. The longest dephasing time is therefore obtained with non-resistive gate lines. Due to the anticorrelated fluctuations in \(\varphi \), the sum rule for \(\langle (\Delta \varphi)^2 \rangle \), verified earlier for an \(N \) junction array without gates, does not hold anymore.

\[
\frac{I}{2eJ} \approx 1 - \frac{E_J}{E_C} \cos(\varphi). \tag{9}
\]

Here \(I \) is the current induced by operating the gates and \(f \) is the frequency at which the system makes a wind around a degeneracy node of the charging energy, i.e. the frequency of the harmonic gate voltages \(V_{g1} \). (The two gate voltages are phase-shifted by \(\pi/2 \).) The pumped charge per cycle, \(Q = I/f \), is related but not equal to the geometric phase (Berry’s phase) \(\pi \) accumulated during one cycle along the closed path on the gate plane \((V_{g1}, V_{g2}) \). Contrary to the pump in the normal state \(\text{[14]} \), the coherent adiabatic Josephson pump lacks the ability to pump single charges virtually free of errors, and the relative deviations, \(\approx -9E_J/E_C \cos(\varphi) \), from the quantized transport are large even for very small values of \(E_J/E_C \): for example, they can be as large as 9\% for \(E_J/E_C = 0.01 \). Yet, if the gates are operated slow enough, which means \(f \ll 1/\tau_\varphi \), the \(\cos(\varphi) \) term averages over \(\langle \cos(\varphi) \rangle = 0 \) during one cycle or during the integration time of the measurement, and the pumping becomes accurate. Another limit comes from the Landau-Zener band crossing, which sets an upper limit for the operation frequency \(f_{LZ} \approx E_J^2/(\hbar E_C) \). For typical \(E_J = 0.1 \) meV and \(E_C = 1 \) meV we obtain \(f_{LZ} \approx 10 \) GHz.

Based on these limitations we expect the following dependence of the pump performance at different frequencies (Fig. 4).

![FIG. 3](image)

FIG. 3. The difference between the dephasing time, \(\tau_\varphi \), in the three junction Cooper pair pump (Fig. 1b) and the three junction array without gate lines (Fig. 1a) as a function of resistance, \(R_g \), in the gate lines. Capacitances used in the calculations are \(C_1 = C_2 = C_3 = 0.1 \) fF and \(C_{g1} = C_{g2} = 0.01 \) fF. \(T = 30 \) mK.

A multijunction Josephson pump provides an interesting testground for quantum coherence \([2]\) and, on the other hand, it may eventually qualify as a metrologically accurate current standard when coherence is suppressed by a very dissipative environment \([12]\). Here we discuss the three junction pump (Fig. 1b) whose characteristics are determined by the two energies \(E_J \), the Josephson coupling energy, and \(E_C \), the charging energy. In the ideally coherent adiabatic regime, the phase across the array, \(\varphi \), is constant and no Landau-Zener band crossing occurs \([3]\), and the optimum charge transfer through the array attains an approximate value (in the lowest order in \(E_J/E_C \)) \([2]\)

\[
\frac{I}{2eJ} \approx 1 - \frac{E_J}{E_C} \cos(\varphi). \tag{9}
\]

Here \(I \) is the current induced by operating the gates and \(f \) is the frequency at which the system makes a wind around a degeneracy node of the charging energy, i.e. the frequency of the harmonic gate voltages \(V_{g1} \). (The two gate voltages are phase-shifted by \(\pi/2 \).) The pumped charge per cycle, \(Q = I/f \), is related but not equal to the geometric phase (Berry’s phase) \(\pi \) accumulated during one cycle along the closed path on the gate plane \((V_{g1}, V_{g2}) \). Contrary to the pump in the normal state \(\text{[14]} \), the coherent adiabatic Josephson pump lacks the ability to pump single charges virtually free of errors, and the relative deviations, \(\approx -9E_J/E_C \cos(\varphi) \), from the quantized transport are large even for very small values of \(E_J/E_C \): for example, they can be as large as 9\% for \(E_J/E_C = 0.01 \). Yet, if the gates are operated slow enough, which means \(f \ll 1/\tau_\varphi \), the \(\cos(\varphi) \) term averages over \(\langle \cos(\varphi) \rangle = 0 \) during one cycle or during the integration time of the measurement, and the pumping becomes accurate. Another limit comes from the Landau-Zener band crossing, which sets an upper limit for the operation frequency \(f_{LZ} \approx E_J^2/(\hbar E_C) \). For typical \(E_J = 0.1 \) meV and \(E_C = 1 \) meV we obtain \(f_{LZ} \approx 10 \) GHz.

Based on these limitations we expect the following dependence of the pump performance at different frequencies (Fig. 4).

![FIG. 4](image)

FIG. 4. A schematic presentation of the expected behaviour of the pumped current in a three junction Cooper pair pump as a function of the pumping frequency \(f \). Different curves refer to different values of the phase difference \(\varphi \) across the array.

1. \(f < \tau_\varphi^{-1} \equiv f_C \): \(I/2eJ \approx 1 \) because pumping is adiabatic but the phase is undetermined (\(\langle \cos(\varphi) \rangle = 0 \)). Yet at the lowest frequencies the current becomes very small to measure and the accuracy will be lost in practise.

2. \(f_C < f < f_{LZ} \): \(I/2eJ \approx 1 - 9E_J/E_C \cos(\varphi) \), pumping is adiabatic and coherent.

3. \(f > f_{LZ} \): \(I/2eJ \) decays because the condition for no band crossing is lost and charge transport does not follow the gating sequence adiabatically.

Since \(\tau_\varphi \) is presently expected to fall in the range \(\tau_\varphi \gg 5 \) ns, in a carefully designed experiment, we would have \(f_C \ll 200 \) MHz, yielding a clear separation of the three pumping regimes. In particular, if the decoherence time of a squbit and thus also \(\tau^{-1}_\varphi \) turns out to be of the order of 1 \(\mu \)s, which would allow quantum computation by Josephson qubits in this respect, \(\tau^{-1}_\varphi \) would give an experimentally convenient crossover frequency in the MHz range.

Our estimations of the decoherence time also bring up the issue of using so-called quasiparticle traps in single Cooper pair boxes and transistors. The parity effect

3
has been observed over the years in several experiments [17, 18]. It is the manifestation of pure Cooper pair effects (not necessarily coherent) in small superconducting islands. Up to now, using aluminium structures, parity effect manifested by a $2e$-periodic gate modulation, can be observed reliably only in Josephson junction circuits which are embedded in a resistive environment. Our estimates of τ_φ now set the limit of how dissipative the quasiparticle traps can be, in order not to destroy the coherent state of the qubits too fast.

To perform an experiment of Fig. 4 with distinct regimes one has to have a setup with long enough dephasing time $\tau_\varphi \geq 10$ ns. This means that the on-chip resistances should be very low, which limits the use of quasiparticle traps. It has already been shown by experiment that with high enough resistances in the biasing circuit the pumped current becomes accurate [19]. Combined with the fact that the parity effect, i.e. the quasiparticle free Cooper pair effect is very difficult to observe without quasiparticle traps, one needs to seek alternative measurement schemes of the pump. One way to avoid decoherence induced by a quasiparticle current is to fabricate an on-chip loop of a gated array terminated by an on-chip SET-electrometer [14]. The electrometer could then be used to measure the number of Cooper pairs pumped through the array into it. However, it turns out that in this case the pumped current is accurate ($I = 2ef$) due to charge conservation implied by the terminating classical capacitance.

Our suggestion is to realise the experiment shown in Fig. 4 by using a closed superconducting (phase) biasing circuit on the chip with an inductance in series. This way the terminating classical capacitance, $\text{Re}Z_f(\omega)$, vanishes. Further, gate lines do not induce any extra decoherence to the system, as shown before, and can therefore be as resistive as needed to filter the feed lines. Thus the major source of decoherence is the resistive impedance of the quasiparticle traps if needed. The pumped current can be measured by a SQUID ammeter inductively connected to the coil in the biasing circuit. This kind of setup might give a low enough decoherence rate.

In conclusion, we have presented a method to quantitatively estimate the decoherence time, τ_φ, due to dissipative electromagnetic environment in circuits consisting of small Josephson junctions. This method allows us, among other things, to discuss the suitability of the system in consideration as a quantum bit. We also suggest a direct measurement of τ_φ^{-1} as a crossover pumping frequency between coherent and incoherent pumping in the single Cooper pair pump.

Acknowledgments: This work has been supported by the Academy of Finland under the Finnish Centre of Excellence Programme 2000-2005 (Project No. 44875, Nuclear and Condensed Matter Programme at JYFL) and EU (contract IST-1999-10673). We thank Klavs Hansen and Matias Aunola for many useful discussions.

[1] Y. Nakamura, Yu.A. Pashkin, and J.S. Tsai, Nature 396, 786 (1999); Y. Nakamura, Private communication.
[2] D.V. Averin, Solid State Commun. 105, 659 (1998).
[3] Yu. Makhlin, G. Schön, A. Shnirman, Nature 398, 305 (1999); G. Schön, A. Shnirman, Yu. Makhlin, cond-mat/9811029.
[4] A. Cottet, A. Steinbach, P. Joyez, D. Vion, H. Pothier, D. Esteve, and M.E. Huber, in the proceedings of Macroscopic Quantum Coherence and Computing, Naples, 14-17 June (2000), in print.
[5] J.P. Pekola, J.J. Toppari, M. Aunola, M.T. Savolainen, and D.V. Averin, Phys. Rev. B 60, R9931 (1999); M. Aunola, J.J. Toppari, and J.P. Pekola, Phys. Rev. B 62, 1296 (2000).
[6] P. Joyez, Le Transistor a une Paire de Cooper: Un Systeme Quantique Macroscopique, Academic Dissertation for the Degree of Doctor of Philosophy, University of Paris 6 (1995).
[7] H. Grabert, G.-L. Ingold, M.H. Devoret, D. Esteve, H. Pothier, and C. Urbina, Z. Phys. B 84, 143 (1991).
[8] G.-L. Ingold, and Yu.V. Nazarov, in Single Charge Tunneling, Coulomb Blockade Phenomena in Nanostructures, edited by H. Grabert, and M.L. Devoret (Plenum Press, New York, 1992).
[9] D.S. Golubev, and A.D. Zaikin, in Quantum Physics at Mesoscopic Scale, eds. D.C. Glattli, M. Sanquer and J. Tran Thanh Van (Frontieres, 1999).
[10] Yu.V. Nazarov, Sov. Phys. JETP 68, 561 (1989); M. H. Devoret, D. Esteve, H. Grabert, G.-L. Ingold, H. Pothier, and C. Urbina, Phys. Rev. Lett. 64, 1824 (1990).
[11] R. J. Schoelkopf, P. Wahlgren, A. A. Kozhevnikov, P. Delsing, and D. E. Prober, Science 280, 1238 (1998).
[12] A. B. Zorin, S. V. Lotkhov, H. Zangerle, and J. Niemeyer, J. Appl. Phys. 88, 2665 (2000); S. V. Lotkhov, S. A. Bogoslovsky, A. B. Zorin, J. Niemeyer, cond-mat/0001206.
[13] See, e.g., J.M. Ziman, Principles of the theory of solids, (Cambridge University Press, Cambridge, 1964).
[14] M.W. Berry, Proc. R. Soc. London, Ser. A 392, 45 (1984).
[15] G. Falcí, R. Fazio, G.M. Palma, J. Siewert, V. Vedral, Nature 407, 355 (2000).
[16] M.W. Keller, J.M. Martinis, N.N. Zimmerman, A.H. Steinbach, Appl. Phys. Lett. 69, 1804 (1996); M.W. Keller, J.M. Martinis, and R.L. Kautz, Phys. Rev. Lett. 80, 4530 (1998); M.W. Keller, A.L. Eichenberger, J.M. Martinis, and N.M. Zimmerman, Science 285, 1716 (1999).
[17] M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M. Tinkham, Phys. Rev. Lett. 69, 1997 (1992); M. T. Tuominen, J. M. Hergenrother, T. S. Tighe, and M. Tinkham, Phys. Rev. B 47, 11599 (1993).
[18] P. Lafarge, P. Joyez, D. Esteve, C. Urbina, and M. H. Devoret, Phys. Rev. Lett. 70, 994 (1993).
[19] A.B. Zorin, S.A. Bogoslovsky, S.V. Lotkhov, J. Niemeyer, in proceedings of Macroscopic Quantum Coherence and Quantum Computing (MQC2) Naples, edited by D. Averin, B. Ruggiero, and P. Silvestrini, (Plenum Publishers, New York, 2000).