Derivatives with respect to the order of the Bessel function of the first kind

J. Sesma *
Departamento de Física Teórica, Facultad de Ciencias, 50009, Zaragoza, Spain

January 21, 2014

Abstract
An explicit expression of the k-th derivative of the Bessel function $J_\nu(z)$, with respect to its order ν, is given. Particularizations for the cases of positive or negative integer ν are considered.

1 Introduction
Along this paper we use the notation

$$ G^{(k)}(t) \equiv \frac{d^k}{dt^k} \frac{1}{\Gamma(t)} , \quad P^{(k)}_m(t) \equiv \frac{1}{k!} \frac{d^k}{dt^k} (t)_m , \quad Q^{(k)}_m(t) \equiv \frac{1}{k!} \frac{d^k}{dt^k} \frac{1}{(t)_m} , $$

(1)

to refer to the derivatives of the reciprocal gamma function and of the Pochhammer and reciprocal Pochhammer symbols.

Our purpose is to provide with a closed expression for the k-th derivative of the Bessel function $J_\nu(z)$ with respect to its order ν, that we assume to be real. From the ascending series definition [7, Eq. 10.2.2]

$$ J_\nu(z) = \left(\frac{z}{2}\right)^\nu \sum_{m=0}^{\infty} \frac{(-z^2/4)^m}{m! \Gamma(\nu+1+m)} , $$

(2)

one obtains immediately, with the notation introduced in (1),

$$ \frac{\partial}{\partial \nu} J_\nu(z) = J_\nu(z) \ln(z/2) + \left(\frac{z}{2}\right)^\nu \sum_{m=0}^{\infty} G^{(1)}(\nu+1+m) \frac{(-z^2/4)^m}{m!} , $$

(3)

*Email: javier@unizar.es
an expression that can be found in all treatises dealing with Bessel functions. (See, for instance, [7 Eq. 10.15.1].) Derivation, \(k \)-1 times, with respect to \(\nu \) gives a recurrence relation

\[
\frac{\partial^k}{\partial \nu^k} J_{\nu}(z) = \ln(z/2) \left(\frac{\partial^{k-1}}{\partial \nu^{k-1}} J_{\nu}(z) \right) + (z/2)^\nu \sum_{m=0}^{\infty} \left[\frac{(-z^2/4)^m}{m!} \right] \\
\times \sum_{l=1}^{k} \binom{k-1}{l-1} G^{(l)} (\nu+1+m) (\ln(z/2))^{k-l},
\] (4)

which would allow one to compute the successive derivatives to get the \(k \)-th one. We suggest, however, a procedure to obtain directly such \(k \)-th derivative, without need of computing the lower ones. As auxiliary for the main result, we consider, respectively in Sections 2, 3 and 4, explicit expressions for the symbols defined in Eqs. (1). Then, in Section 5, the \(k \)-th derivative of \(J_{\nu}(z) \) with respect to \(\nu \) is discussed. The possibility of extending the resulting expressions to the case of complex \(\nu \) is discussed in Section 6.

2 Derivatives of the reciprocal gamma function

We start with the series expansion [7 Eq. 5.7.1]

\[
\frac{1}{\Gamma(t)} = \sum_{j=1}^{\infty} c_j t^j,
\] (5)

convergent in the whole complex \(t \)-plane. Term by term derivation gives

\[
G^{(k)}(t) = \sum_{j=k}^{\infty} c_j \frac{j!}{(j-k)!} t^{j-k},
\] (6)

an expansion also convergent in the whole plane. Nevertheless, its convergence becomes slower and slower as \(k \) or \(|t| \) increase. It is not recommended, for numerical computation, unless \(|t| < 1 \). For large values of \(|t| \) it is preferable to use the asymptotic expansion obtained, in a former paper [1, Appendix B], by application of the saddle point method [10 Sec. 3.6.3] to the Hankel contour representation of the reciprocal Gamma function.

The expressions of the derivatives of the Bessel function, to be given below, contain \(G^{(k)}(1+\varepsilon) \), which can be calculated by using

\[
G^{(k)}(1+\varepsilon) = \sum_{j=0}^{\infty} c_{j+k+1} (j+1) k \varepsilon^j,
\] (7)

whenever \(|\varepsilon| < 1 \).

2
3 Derivatives of the Pochhammer symbol \((t)_m\) with respect to its argument

As \((t)_m\) is a polynomial of degree \(m\) in \(t\), derivatives of order greater than \(m\) vanish,

\[
P^{(k)}_m(t) = 0 \quad \text{for} \quad k > m .
\]

For the nontrivial case of \(k \leq m\), the \(P^{(k)}_m(t)\) can be computed by means of the recurrence relation

\[
P^{(k)}_{m+1}(t) = (t + m) P^{(k)}_m(t) + P^{(k-1)}_m(t), \quad k > 0,
\]

with starting values

\[
P^{(k)}_0(t) = \delta_{k,0}, \quad P^{(0)}_m(t) = (t)_m.
\]

Explicit expressions for \(P^{(k)}_m(t)\) can be found easily. From the generating function of the Pochhammer symbols [6, Sec. 6.2.1, Eq. (2)]

\[
\sum_{m=0}^{\infty} (t)_m (-z)^m / m! \equiv {}_1F_0(t; -z) = (1 + z)^{-t}, \quad |z| < 1,
\]

one obtains by derivation, \(k\) times, with respect to \(t\)

\[
\sum_{m=0}^{\infty} k! P^{(k)}_m(t) (-z)^m / m! = (-1)^k (1 + z)^{-t} [\ln(1 + z)]^k, \quad |z| < 1.
\]

The term \(P^{(k)}_m(t)\) can be isolated in this way

\[
P^{(k)}_m(t) = \frac{(-1)^{k-m}}{k!} \frac{\partial^m}{\partial z^m} \left((1 + z)^{-t} [\ln(1 + z)]^k\right)\bigg|_{z=0}
\]

\[
= \frac{(-1)^{k-m}}{k!} \sum_{l=0}^{m} \binom{m}{l} \left(\frac{\partial^l}{\partial z^l} (1 + z)^{-t} \left(\frac{d^{m-l}}{d z^{m-l}} [\ln(1 + z)]^k\right)\right)\bigg|_{z=0} .
\]

Now we make use of the trivial result

\[
\frac{\partial^l}{\partial z^l} (1 + z)^{-t} \bigg|_{z=0} = (-1)^l (t)_l
\]

and of the generating relation of the Stirling numbers of the first kind [7] Eq. 26.8.8,

\[
[\ln(1 + z)]^k = k! \sum_{n=k}^{\infty} s(n, k) z^n / n!, \quad |z| < 1,
\]

to obtain the explicit expression

\[
P^{(k)}_m(t) = (-1)^{m-k} \sum_{l=0}^{m-k} (-1)^l \binom{m}{l} s(m-l, k) (t)_l \quad \text{for} \quad m \geq k .
\]
An alternative expression, in terms of generalized Bernoulli polynomials \[2, 3, 9\],

\[
P_m^{(k)}(t) = (-1)^{m-k} \binom{m}{k} B_{m-k}^{(m+1)}(1-t).
\]

(17)

can be obtained from a recent paper by Coffey \[5, \text{Eq. (2.5)}\].

For the particular case of \(t = 0 \), Eq. (16) gives

\[
P_0^{(k)}(0) = \delta_{k,0}, \quad P_m^{(0)}(0) = \delta_{m,0} ,
\]

(18)

\[
P_0^{(k)}(0) = (-1)^{m-k} s(m,k) \quad \text{for} \quad m \geq k > 0.
\]

(19)

In the case of \(t = 1 \), use of the property \[7, \text{Eq. 26.8.20}\]

\[
s(n+1,k+1) = n! \sum_{j=k}^{n} \frac{(-1)^{n-j}}{j!} s(j,k)
\]

(20)

allows one to obtain, from Eq. (16),

\[
P_m^{(k)}(1) = (-1)^{m-k} s(m+1,k+1).
\]

(21)

4 Derivatives of the reciprocal Pochhammer symbol \(1/(t)_m\) with respect to its argument

For numerical implementation of the derivatives of the reciprocal Pochhammer symbol with respect to its variable, one may use the recurrence relations

\[
Q_{m+1}^{(k)}(t) = \left(Q_m^{(k)}(t) - Q_{m+1}^{(k-1)}(t) \right) / (t + m),
\]

(22)

with initial values

\[
Q_0^{(k)}(t) = \delta_{k,0} , \quad Q_0^{(0)}(t) = 1/(t)_m ,
\]

(23)

Very simple explicit expressions of the \(Q_m^{(k)}(t)\) can be easily obtained from the relation \[8, \text{Eq. 4.2.2.45}\]

\[
\frac{1}{(t)_m} = \sum_{l=0}^{m-1} \frac{(-1)^l}{l! (m - 1 - l)!} \frac{1}{t + l}, \quad m > 0 ,
\]

(24)

provided \(t \) is different from a nonpositive integer, \(-n\), such that \(0 \leq n < m \). Direct derivation with respect to \(t \) in this equation gives

\[
Q_0^{(k)}(t) = \delta_{k,0}, \quad Q_m^{(k)}(t) = (-1)^k \sum_{l=0}^{m-1} \frac{(-1)^l}{l! (m - 1 - l)!} \frac{1}{(t + l)^{k+1}}.
\]

(25)
For the particular case of $t = 1$, this expression admits a more concise form in terms of modified generalized harmonic numbers, $\hat{H}^{(k)}_m$, defined by

$$\hat{H}^{(k)}_0 \equiv \delta_{k,0}, \quad \hat{H}^{(k)}_m \equiv \sum_{j=1}^{m} (-1)^{j-1} \binom{m}{j} \frac{1}{j^k}, \quad m \geq 1, \quad (26)$$

not to be confused with the generalized harmonic numbers,

$$H^{(k)}_m \equiv \sum_{j=1}^{m} \frac{1}{j^k}, \quad m \geq 1, \quad (27)$$

though

$$\hat{H}^{(1)}_m = H^{(1)}_m \equiv H_m \quad \text{for} \quad m \geq 1. \quad (28)$$

Besides the explicit expression (26), the recurrence relation

$$\hat{H}^{(k)}_{m+1} = \hat{H}^{(k)}_m + \frac{1}{m+1} \hat{H}^{(k-1)}_m, \quad m \geq 0, \quad k \geq 1, \quad (29)$$

with the starting values

$$\hat{H}^{(k)}_0 = \delta_{k,0}, \quad \hat{H}^{(0)}_m = 1, \quad (30)$$

may be used to calculate the $\hat{H}^{(k)}_m$. With that notation, Eq. (25) gives

$$Q^{(k)}_m(1) = \frac{(-1)^k}{m!} \hat{H}^{(k)}_m. \quad (31)$$

5 Derivatives of $J_\nu(z)$ with respect to ν

We proceed to obtain our expression for the k-th derivative of $J_\nu(z)$ with respect to ν. To avoid unnecessary complications in the resulting formulas, we assume $k \neq 0, 1$, i.e., $k = 1, 2, \ldots$.

Let us denote by N the nearest integer to ν, and define ε by

$$\nu = N + \varepsilon, \quad |\varepsilon| \leq 1/2. \quad (32)$$

We distinguish two possible ranges of values of N.

5.1 $N \geq 0$

The ascending series in Eq. (2) can be written in the form

$$J_\nu(z) = (z/2)^\nu \frac{1}{\Gamma(1+\varepsilon)} \sum_{m=0}^{\infty} \frac{(-z^2/4)^m}{m!(1+\varepsilon)^m m + N}. \quad (33)$$
Derivation, \(k \) times, with respect to \(\nu \) gives, with the notation introduced in (1),

\[
\frac{\partial^k}{\partial \nu^k} J_\nu(z) = k! \left(\frac{z}{2} \right)^\nu \sum_{m=0}^{\infty} \frac{(-z^2/4)^m}{m!} \times \sum_{k_1=0}^{k} \frac{[\ln(z/2)]^{k_1}}{k_1!} \sum_{k_2=0}^{k-k_1} \frac{G^{(k_2)}(1+\epsilon)}{k_2!} Q^{(k-k_1-k_2)}_{m+N}(1+\epsilon),
\]

where \(G^{(k_2)}(1+\epsilon) \) is given in Eq. (7) and, according to Eq (25),

\[
Q_0^{(k)}(1+\epsilon) = \delta_{k,0}, \quad Q^{(k)}_{m+N}(1+\epsilon) = \sum_{j=1}^{m+N} \frac{(-1)^{k+j-1}}{(j-1)! (m+N-j)!} \frac{1}{(\epsilon+j)^{k+1}}.
\]

In the particular case of \(\nu \) being a nonnegative integer, \(\nu = n \geq 0 \), Eq. (34) becomes, in terms of the modified generalized harmonic numbers defined in (26),

\[
\left. \frac{\partial^k}{\partial \nu^k} J_\nu(z) \right|_{\nu=n} = k! \left(\frac{z}{2} \right)^n \sum_{m=0}^{\infty} \frac{(-z^2/4)^m}{m! (m+n)!} \times \sum_{k_1=0}^{k} \frac{[\ln(z/2)]^{k_1}}{k_1!} \sum_{k_2=0}^{k-k_1} (-1)^{k-k_1-k_2} c_{k_2+1} H_{m+n}^{(k-k_1-k_2)}.
\]

Expressions for the first derivative can be found in the bibliography. Besides the familiar expressions given in, for instance, Sect. 10.15 of Ref. [7], alternative closed forms can be found in a paper by Brychkov and Geddes [4]. Our Eqs. (34) and (36) become, for \(k = 1 \),

\[
\frac{\partial}{\partial \nu} J_\nu(z) = \left(\ln(z/2) - \psi(1+\epsilon) \right) J_\nu(z) + \frac{(z/2)\nu}{\Gamma(1+\epsilon)} \sum_{m=0}^{\infty} \frac{(-z^2/4)^m}{m!} \sum_{j=1}^{m+N} \frac{(-1)^j}{(j-1)! (m+N-j)!} \frac{1}{(\epsilon+j)^2},
\]

where \(\psi \) represents the digamma function and the last sum is understood to be zero if \(m+N = 0 \). In the case of integer \(\nu = n \geq 0 \) we have

\[
\left. \frac{\partial}{\partial \nu} J_\nu(z) \right|_{\nu=n} = \left(\ln(z/2) + \gamma \right) J_n(z) - \left(z/2 \right)^n \sum_{m=0}^{\infty} \frac{(-z^2/4)^m}{m! (m+n)!} H_{m+n}^{(1)}.
\]

where \(\gamma \) represents the well known Euler-Mascheroni constant.
5.2 \(\bar{N} < 0 \)

Instead of Eq. (33) we have now

\[
J_\nu(z) = \frac{1}{\Gamma(1+\varepsilon)} \left[\sum_{m=0}^{-N-1} \frac{(-z^2/4)^m}{m!} (-1)^{N-m} \frac{1}{(1+\varepsilon)^{m+N}} \right] \] \hspace{1cm} (39)

Derivation with respect to \(\nu \) gives

\[
\frac{\partial^k}{\partial \nu^k} J_\nu(z) = k! \left(\frac{z}{2} \right)^\nu \sum_{k_1=0}^{k} \frac{[\ln(z/2)]^{k_1}}{k_1!} \sum_{k_2=0}^{k-k_1} \frac{G^{(k_2)}(1+\varepsilon)}{k_2!} \left[\sum_{m=0}^{-N-1} \frac{(-z^2/4)^m}{m!} (-1)^{N-m+k-k_1-k_2} \mathcal{P}_{-N-m}^{(k-k_1-k_2)} (-\varepsilon) \right. \\
+ \left. \sum_{m=-N}^{\infty} \frac{(-z^2/4)^m}{m!} \mathcal{Q}_{m+N}^{(k-k_1-k_2)} (1+\varepsilon) \right], \] \hspace{1cm} (40)

with \(\mathcal{P}_{-N-m}^{(k-k_1-k_2)} (-\varepsilon) \) given by Eqs. (16) or (17) and \(\mathcal{Q}_{m+N}^{(k-k_1-k_2)} (1+\varepsilon) \) by Eq. (35). In the particular case of \(\nu \) being a negative integer, \(\nu = -n, n > 0 \), this equation turns into

\[
\left. \frac{\partial^k}{\partial \nu^k} J_\nu(z) \right|_{\nu=-n} = k! \left(\frac{z}{2} \right)^{-n} \sum_{k_1=0}^{k} \frac{[\ln(z/2)]^{k_1}}{k_1!} \sum_{k_2=0}^{k-k_1} c_{k_2+1} \left[\sum_{m=0}^{-n-1} \frac{(-z^2/4)^m}{m!} s(n-m, k-k_1-k_2) \right. \\
+ \left. (-1)^{k-k_1-k_2} \sum_{m=-n}^{\infty} \frac{(-z^2/4)^m}{m! (m-n)!} \hat{\beta}_{m-n}^{(k-k_1-k_2)} \right]. \] \hspace{1cm} (41)

For \(k = 1 \), Eq. (40) becomes

\[
\frac{\partial}{\partial \nu} J_\nu(z) = (\ln(z/2) - \psi(1+\varepsilon)) J_\nu(z) \\
+ \frac{(z/2)^\nu}{\Gamma(1+\varepsilon)} \left[\sum_{m=0}^{-N-1} \frac{(-z^2/4)^m}{m!} (-N-m) B_{-N-m-1}^{(-N-m+1)} (1+\varepsilon) \right. \\
+ \left. \sum_{m=-N}^{\infty} \frac{(-z^2/4)^m}{m!} \sum_{j=1}^{m+N} \frac{(-1)^j}{(j-1)! (m+N-j)!} \frac{1}{(\varepsilon+j)^2} \right], \] \hspace{1cm} (42)

7
where $B_n^{(α)}(x)$ represents the generalized Bernoulli polynomial [2, 3, 9]. It may be written in terms of Stirling numbers of the first kind by using the relation

$$(-N-m) B_{-N-m-1}^{(-N-m+1)}(1+ε) = \sum_{j=0}^{−N−m−1} (j+1) s(-N-m, j+1) ε^j. \quad (43)$$

In the case of $ν$ being a negative integer, Eq. (42) gives

$$\frac{∂}{∂ν} J_ν(z) \bigg|_{ν=-n} = (\ln(z/2) + \gamma) J_{-n}(z) - (z/2)^{-n} \left[(-1)^n \sum_{m=0}^{n-1} \frac{(z^2/4)^m}{m! (n-m-1)!} + \sum_{m=n}^{∞} \frac{(-z^2/4)^m}{m! (m-n)!} \hat{H}_{m-n}^{(1)} \right]. \quad (44)$$

6 Extension to complex values of $ν$

The expressions of the derivatives of the reciprocal Gamma function and of the Pochhammer and reciprocal Pochhammer symbols given in sections 2 to 4 stay for complex values of their argument t. Therefore, our Eqs. (34), (37), (40) and (42) may be used safely for complex $ε$, i.e. complex $ν$, whenever $|\Im ν| \lesssim 1/2$.

As auxiliary integer N one should consider again the nearest to $ν$ one, in such a way that, instead of (32), one would have

$$ν = N + ε, \quad |\Re ε| \leq 1/2. \quad (45)$$

For large values of $\Im ν$, the given expressions are correct, but they are not useful from a computational point of view. The reason, as pointed out in Sect. 2, is the slow convergence of the series in the right hand side of (6) for large values of t.

Acknowledgements

This work has been supported by Departamento de Ciencia, Tecnología y Universidad del Gobierno de Aragón (Project E24/1) and Ministerio de Ciencia e Innovación (Project MTM2009-11154)

References

[1] J. Abad and J. Sesma, *Successive derivatives of Whittaker functions with respect to the first parameter*, Comput. Phys. Comm. 156 (2003), pp. 13–21.

[2] Yu.A. Brychkov, *On multiple sums of special functions*, Integral Transforms Spec. Funct. 21 (2010), pp. 877–884.

[3] Yu.A. Brychkov, *On some properties of the generalized Bernoulli and Euler polynomials*, Integral Transforms Spec. Funct. 23 (2012), pp. 723–735.
[4] Yu.A. Brychkov and K.O. Geddes, *On the derivatives of the Bessel and Struve functions with respect to the order*, Integral Transforms Spec. Funct. 16 (2005) 187–198.

[5] M.W. Coffey, *Series representations of the Riemann and Hurwitz zeta functions and series and integral representations of the first Stieltjes constant* [arXiv:1106.5146](http://arxiv.org/abs/1106.5146).

[6] Y.L. Luke, *The Special Functions and Their Approximations*, Academic Press, New York, 1969, Vol I.

[7] F.W.J. Olver, D.W. Lozier, R. Boisvert, and C.W. Clark, eds., *NIST Handbook of Mathematical Functions*, Cambridge Univ. Press, Cambridge, 2010. Available at http://dlmf.nist.gov/.

[8] A.P. Prudnikov, Yu.A. Brychkov and O.I. Marichev, *Integrals and Series*, Gordon and Breach, New York, 1986, Vol 1.

[9] H.M. Srivastava and P.G. Todorov, *An explicit formula for the generalized Bernoulli polynomials*, J. Math. Anal. Appl. 130 (1988), pp. 509–513.

[10] N.M. Temme, *Special Functions*, John Wiley & Sons, New York, 1996.