CENTIMETER EMISSION IN THE UY AUR SYSTEM

M. E. Contreras, 1 F. P. Wilkin 1, 2

Received 20th March 2022; accepted 20th March 2022

RESUMEN

Reportamos observaciones de continuo a 3.6 cm tomadas con el Ver y Large Array (VLA) del joven sistema binario UY Aur. La binaria está compuesta por una estrella T Tauri, UY Aur A, y una llamada “Compañera Infrarroja” (IRC), UY Aur B separadas por 0.′′89. UY Aur es un sistema interesante porque muestra características observacionales cuyo origen no se entiende del todo. Una de estas características es el índice espectral inusualmente bajo que se encuentra en la región del milimétrico. En nuestro estudio con el VLA, hemos detectado radiación continua centimétrica que coincide con las posiciones medidas a 1.3 y 2.7 mm y es consistente con la posición óptica de UY Aur. Concluimos que la emisión a 3.6 cm está asociada con el sistema binario. Más aún, sugerimos que la emisión centimétrica podría estar relacionada con un flujo bipolar previamente reportado.

ABSTRACT

We report 3.6 cm continuum observations taken with the Very Large Array (VLA) of the young binary system UY Aur. The binary consists of a T Tauri star, UY Aur A, and a so-called “infrared companion” (IRC), UY Aur B, separated by 0.′′89. UY Aur is an interesting system because it shows observational features whose origin is not well understood. One of them is the unusual low spectral index found in the millimeter region. In our VLA study, we have detected centimeter continuum radiation that coincides with the reported positions at 1.3 and 2.7 mm and is consistent with the optical position of UY Aur. We conclude that the 3.6 cm emission is associated with the binary system. Furthermore, we suggest that the centimeter emission might be related to a previously reported bipolar outflow.

Key Words: STARS: T TAUIR – STARS: BINARIES – STARS: INDIVIDUAL (UY AUR)

1. INTRODUCTION

The IRC system UY Aur was first reported as a visual double star by Joy & van Biesbroeck (1944). Later, based on an infrared speckle study Ghez, Neugebauer & Matthews (1993) and Leinert et al. (1993) confirmed that UY Aur is a binary system. Recently, Hartigan & Kenyon (2003) reported the main properties of a sample of subarcsecond binaries in the Taurus-Auriga cloud based on HST spectra. They report UY Aur as a binary system composed of two classical T Tauri stars of spectral types M0 and M2.5 for the primary (UY Aur A) and the secondary (UY Aur B) respectively, separated by 0.′′89 (~125 AU at 140 pc).

The system has been studied in detail in the infrared at J, H & K by Close et al. (1998). Using infrared adaptive optics, Close et al. detected a circumbinary disk of ~500 AU radius. In order to reproduce the spectral energy distribution of UY Aur A and B, they include in their models small inner disks around each star. The derived radii of the circumstellar disks are about 10 and 5 AU for components A and B, respectively. The Close et al. images also suggest that both inner disks are being fed by the outer circumbinary disk through thin streamers of material. In the millimeter region, both line emission (13CO) as well as continuum at 2.7 and 1.3 mm were reported by Duvert et al. (1998). They have imaged the emission from the circumbinary disk in the 13CO $J = 1 \rightarrow 0$ and $J = 2 \rightarrow 1$ transitions. Their spectral line observations agree well with the infrared adaptive optics circumbinary disk reported by Close et al. not only in position but in extent.
Regarding the suggested small circumstellar disks, Duvert et al. proposed that the 2.7 and 1.3 mm continuum emission can be attributed to partially resolved circumstellar disks around each star, with some possible contribution of free-free radiation.

In this work we report the first detection of centimetric emission at the position of UY Aur. We conclude that our 3.6 cm continuum detection is associated with the UY Aur system and we discuss a possible origin of it.

2. OBSERVATIONS

Our 3.6 cm observations were made with the Very Large Array (VLA) of the NRAO on 2002 October 9th. The array was in the C configuration giving an angular resolution of \(\sim 2.3" \) and a total on-source integration time of \(\sim 51 \) minutes was obtained. The amplitude and phase calibrators were 0137+331 and 0443+346, respectively. The bootstrapped flux density for 0443+346 was 0.615 \(\pm 0.001 \) Jy.

The data reduction was performed using the Astronomical Image Processing System (AIPS) software of the NRAO. We have followed standard VLA procedures for editing, calibrating and imaging. Figure 1 shows a natural weight CLEANed map of the UY Aur region. In this map two radio sources were detected at a 6-\(\sigma \) level. We will refer to these sources as Sources 1 and 2. The peak of Source 1 is located very close to the UY Aur position. Flux densities and source positions were obtained using the AIPS IMFIT procedure. The apparent elongation of Source 1 is not real but it is due to beam deconvolution. Actually, the position angle of both Source 1 and the beam is the same: P.A. = 177°. Besides, small structures present in Source 1 (Fig. 2) are not reliable since they are just at a 2-\(\sigma \) level above rms-noise. Thus, since neither Source 1 nor Source 2 are spatially resolved, we have only determined integrated flux densities and source positions (see Table 1) from a 2D-Gaussian fit to each source.

TABLE 1

Source	\(\alpha(2000) \)	\(\delta(2000) \)	\(S_{3.6\text{cm}} \)
	h m s	° ′ ″	[mJy]
1	04 51 47.37	30 47 13.3	0.12\(\pm 0.03 \)
2	04 51 51.93	30 47 00.4	0.11\(\pm 0.03 \)

Note. Absolute position errors are \(\sim 0.2" \).
corrected for proper motion the position of UY Aur according to Jones & Herbig (1979). The resulting position for UY Aur coincides with that of our Source 1 to within $0'.34$, which according to Duvert et al. (1998) is less than the 1-2σ uncertainty in the optical position and proper motion. Since the main component of the binary (UY Aur A) is the brightest star in the system at optical and infrared wavelengths, we have assumed that the coordinates given in the HBC catalog belong to UY Aur A. Once the position of UY Aur A is fixed, we have derived the second component position relative to it (see Fig. 2) by taking a binary separation of $0'.894$ and a position angle of 228.8° (Brandeker, Jayawardhana & Najita 2003). On the one hand, our centimeter detection coincides with the position of UY Aur to within $0'.34$ and on the other hand it is consistent with the peak positions of the 1.3 and 2.7 mm emission reported by Duvert et al. to within $0'.2$. Besides, although the low flux of our detection, it is consistent with the lowest centimetric emission of 0.1 mJy present in almost all outflow sources (Reipurth et al. 2004). Therefore, we conclude that our detected 3.6 cm emission is associated with the UY Aur binary system.

Regarding the spectral index, we have obtained a least squares fit to the millimeter and centimeter fluxes. The resulting spectral index, $\alpha = 1.66$, is consistent with that reported by Duvert et al. They have suggested that this low value may be a combination of normal dust emission and free-free radiation from a stellar wind or a jet. However, since both emissions follow a power law distribution (~ 2 for dust radiation and 0.6 for a stellar wind), it is not possible to sum them and still obtain a single power law distribution over such a long range of wavelength without a significant bend. Thus, a satisfactory fit to the observations as the result of combining two such distributions could not be obtained. Although the 3.6 cm flux may originate in free-free radiation, its low value clearly demonstrates that free-free emission is not contaminating the mm flux and does not explain the mm index. Then, the fact that the same low
index is maintained over a large wavelength range might be fortuitous or might be entirely due to thermal dust emission.

Duvert et al. (1998) proposed that the millimeter emission originates in the circumstellar region, actually in the small circumstellar disks, one around each component of the binary. The low spectral index in this region could be explained by circumstellar flat-disk models of D’Alessio, Calvet & Hartmann (2001) where they show that disks whose spectral index is smaller than 2 are flat and the observed millimeter emission is due to optically thick and cold material. But what about the origin of our centimeter emission? The centimeter emission might originate in a stellar wind or an ionized jet as Duvert et al. (1998) have suggested. This last possibility might be supported by a kinematic study of Hirth et al. (1994). They deduce the existence of a bipolar, high velocity flow at a P.A. = 40° (P.A. = 220°) associated with UY Aur. Then, our 3.6 cm emission may be related to this outflow. If the 3.6 cm flux is due to free-free emission, from our single wavelength observation it is not possible to distinguish between emission from a jet and a stellar wind. However, since our radio detection falls along the same power law distribution obtained from the millimeter observations (see inset of Fig. 2), we cannot discard the possibility that it might be the long wavelength continuation of the thermal dust emission. Further observations at higher resolution and additional wavelengths are needed.

4. SUMMARY

We report for the first time VLA continuum emission at 3.6 cm associated with the binary IRC system UY Aur. Surprisingly, our centimetric emission follows closely the low spectral index obtained in the millimeter region. This low index might be explained by a flat, optically thick and cold circumstellar disk, in this case one or both of the two small circumstellar disks. On the other hand, if the 3.6 cm emission is due to free-free radiation, it may be related to the bipolar outflow reported by Hirth et al. (1994). However, from our single observation it is not possible to distinguish between free-free emission from a jet or a stellar wind. Radio centimeter observations at other wavelengths and/or with higher resolution are required to further clarify the origin of the radio continuum emission.

We thank Luis F. Rodríguez and Paola D’Alessio for their valuable comments on this work. We acknowledge financial support from DGAPA-PAPIIT and CONACyT-Ciencias Básicas. F.P.W. also was supported by the NSF International Researchers Fellowship Program.

REFERENCES

Brandeker, A., Jayawardhana, R. & Najita, J. 2003, AJ, 126, 2009
Close, L.M., Dutrey, A., Roddier, F., Guilloteau, S., Roddier, C., Duvert, G., Northcott, M., Ménard, F., Graves, J.E. & Potter, D. 1998, ApJ, 499, 883
D’Alessio, P., Calvet, N. & Hartmann, L. 2001, ApJ, 553, 321
Dutrey, A., Guilloteau, S., Duvert, G., et al. 1996, A&A, 309, 493
Duvert, G., Dutrey, A., Guilloteau, S., Ménard, F., Schuster, K., Prato, L. & Simon, M. 1998, A&A, 332, 867
Ghez, A.M., Neugebauer, G. & Matthews, K. 1993, AJ, 106, 2005
Hartigan, P. & Kenyon, S.J. 2003, ApJ, 583, 334
Herbig, G. & Bell, K.R. 1988, *Lick Obs. Bull.*, No. 1111
Hirth, G.A., Mundt, R. & Solf, J. 1997, A&AS, 126, 437
Jones, B.F. & Herbig, G.H. 1979, AJ, 84, 1872
Joy, A.H. & van Biesbroeck, G. 1944, PASP, 56, 123
Leinert, C., Zinnecker, H., Weitzel, N., Christou, J., Ridgway, S. T., Jameson, R., Haas, M. & Lenzen, R. 1993, A&A, 278, 129
Reipurth, B., Rodríguez, L.F., Anglada, G. & Bally, J. 2004, AJ, 127, 1736
Windhorst, R.A., Fomalont, E.B., Partridge, R.B. & Lowenthal, J.D. 1993, ApJ, 405, 498
M. E. Contreras: Centro de Radioastronomía y Astrofísica, UNAM Campus Morelia, Apdo.Postal 3-72 (Xangari), 58089 Morelia, Michoacán, México (m.contreras@astrosmo.unam.mx).

F. P. Wilkin: Department of Physics and Astronomy, Union College, Schenectady, NY, 12308, USA (wilkinf@union.edu).