The relationships of Cuspicephalus scarfi Martill and Etches, 2013 and Normannognathus wellnhoferi Buffetaut et al., 1998 to other monofenestratan pterosaurs

Mark P. Witton¹, ², Michael O’Sullivan¹, David M. Martill³
¹School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, PO1 3QL, UK
²E-mail: mark.witton@port.ac.uk

Key words: Cuspicephalus scarfi, Jurassic, Monofenestrata, Normannognathus wellnhoferi, Pterosauria, Wukongopteridae

Abstract

The evolution of pterodactyloid pterosaurs occurred in a ‘modular’ fashion with ‘pterodactyloid’-type crania and cervical vertebrae evolving in pterodactyloid sister taxa – early monofenestratan pterosaurs – before later postcervical modifications marked the development of the true pterodactyloid condition. This means of evolution creates problems for distinguishing isolated pterodactyloids from those of non-pterodactyloid monofenestratans, and has led to uncertainty over the affinities of two Late Jurassic monofenestratan between Darwinopterus and the Pterodactyloidea appear to form a monophyletic clade, the Monofenestra, named after the combined nasal and antorbital opening common to all members of this group (Lü et al., 2010). Another recent discovery, a privately-owned complete skeleton from the latest Kimmeridgian Painten Formation of Germany, apparently represents a grade of monofenestranat between Darwinopterus and the

Introduction

The origin of the Pterodactyloidea is currently a hot topic in pterosaur research. Whereas a clear morphological divide once separated pterodactyloids from other pterosaurs, new discoveries have revealed major stages of their early evolution. These include the purported earliest known member of the Pterodactyloidea (Andres et al., 2014) and ‘transitional’ taxa bridging pterodactyloid-like anatomy to earlier pterosaurs (Lü et al., 2010). Perhaps the most significant of these ‘transitional’ species is the Callovian-Oxfordian Tiaojishan Formation species Darwinopterus modularis Lü et al., 2010, a small pterosaur with anatomy ‘intermediate’ between that of pterodactyloids and their historically recognised sister group, the Rhamphorhynchidae (Lü et al., 2010). The anatomy of Darwinopterus is noted for its ‘modular’ nature, combining ‘pterodactyloid-grade’ head and neck anatomy with non-pterodactyloid postcervical features (Lü et al., 2010). Darwinopterus and the Pterodactyloidea appear to form a monophyletic clade, the Monofenestra, named after the combined nasal and antorbital opening common to all members of this group (Lü et al., 2010).
Pterodactyloidea (Tischlinger and Frey, 2014). As in *Darwinopterus*, its skull and neck possesses typical ‘pterodactyloid’ features while its postcranial skeleton, despite being relatively pterodactyloid-like, retains clear hallmarks of an earlier pterosaur bauplan. This specimen has not been named because of its lack of public access and, following Tischlinger and Frey (2014), is hereafter referred to as the ‘Painten Pro-pterodactyloid’.

Since *Darwinopterus* was described, a number of similar taxa have been identified from the Tiaojishan Formation. These include two other *Darwinopterus* species, *D. robustodens* Lü et al., 2011a and *D. linglongtaensis* Wang et al., 2010; as well as *Kunpengopterus sinensis* Wang et al., 2010, *Wukongopterus lii* Wang et al., 2009 and *Changchengopterus pani* Lü, 2009. These taxa are considered to form a clade, the *Wukongopteridae* (Wang et al., 2010), diagnosed by their combination of relatively derived pterodactyloid-like skulls and cervical vertebrae with more plesiomorphic, non-pterodactyloid-like postcervical anatomy (Wang et al., 2010, Hone, 2012; Andres et al., 2014). The purported early istiodactyloid *Archaeoistiodactylus linglongtaensis* Lü and Fucha, 2010 is also probably a wukongopterid (Martill and Etches, 2010; Witton, 2013) or a close relative of this group (Sullivan et al., 2014). It is highly likely that the Tiaojishan wukongopterids are oversplit (Lü et al., 2012; Witton, 2013).

The characterisation of non-pterodactyloid monofenestratans has solely used relatively complete skeletons unambiguously demonstrating their distinctive, ‘modular’ anatomy. Problems arise when applying these means of identifying wukongopterids to more fragmentary Jurassic pterosaur material, however. Non-pterodactyloid monofenestratan skeletons are distinctive, but their individual ‘modules’ are not strongly apomorphic, instead showing plesiomorphic anatomies which are very simi-

Fig. 1. A, MJML K1918, holotype skull of the long-snouted pterosaur *Cuspicephalus scarfi* Martill and Etches, 2013; B, MGCL 59’583, holotype of *Normannognathus wellnhoferi* Buffetaut et al., 1998. Scale bars represent 50 mm (A) and 10 mm (B).

Fig. 2. Simplified stratigraphic distribution of Monofenestratan groups at the Jurassic/Cretaceous boundary, and the stratigraphic position of the two species discussed herein, *Normannognathus wellnhoferi* and *Cuspicephalus scarfi*. Phylogeny largely based on Lü et al. (2010, 2012), but the position of the ‘Painten Pro-pterodactyloid’ is inferred from recent work by Tischlinger and Frey (2014). 1, Monofenestrata; 2, Pterodactyloidea. Abbreviations of geologic ages: Aal, Aalenian; Alb, Albian; Apt, Aptian; Bar, Barremian; Baj, Bajocian; Bat, Bathonian; Ber, Berriasian; Cal, Callovian; Hau, Hauterivian; Kim, Kimmeridgian; Oxf, Oxfordian; Tit, Tithonian; Val, Valanginian.
lar to those of other Jurassic pterosaur clades. This raises questions over how precisely incomplete monofenestran fossils can be classified if evidence of a combined pterodactyloid/non-pterodactyloid bauplan is absent: do they represent wukongopterids, pterodactyloids, or something else entirely? Lü et al. (2010) validated this concern when performing separate cladistic analyses of the cranial and cervical, and postcervical anatomy of Darwinopterus modularis. The head and neck ‘modules’ were found to nest deeply within the Pterodactyloidea while the postcervical module plotted as the sister taxon to the Rhamphorhynchidae (Lü et al., 2010). This problem has also been borne out in other studies where classifying isolated monofenestratan crania has proved challenging (Martill and Etches, 2013; also see below). The current diagnosis of Wukongopteridae, suggested by Wang et al. (2010), is of little help here because it is reliant on characteristics of relatively complete specimens. Most wukongopterid cranial characters provided by Wang et al. (2010) are plesiomorphic for the Monofenestra (‘confluent naris and antorbital fenestra; maxillary ramus of the jugal long, anteriorly projected and splint-like; free lateral nasal process’), and thus are of little significance without associated ‘non-pterodactyloid’-like postcrania. Other suggested cranial characters may be of questionable application to the group (‘quadrate inclined backwards for about 120°’; see Martill and Etches [2013] for contrasting measurements). Wukongopterid postcranial characters, relating to neck and forelimb bone length ratios, may be synapomorphic for the two recognised Germanodactylus species (sensu Kellner, 2003) or Dsungaripteroidea (sensu Unwin, 2003), and the generic status, and placement within Pterodactyloidea, of the other recognised Germanodactylus species (G. crisatus Pleninger, 1901 and G. rhampastinus Wellhofer, 1970) are also disputed (e.g. Maisch et al., 2004; Vidovic and Martill 2014). Irrespective of the outcome of these controversies, that Cuspicephalus has been likened to both pterodactyloids and basal monofenestratans validates the problems outlined above concerning to classifying fragmentary monofenestratans.

Comparisons of a third potential non-pterodactyloid monofenestran, MGCL 59’583, are similar to those of Cuspicephalus. MGCL 59’583 represents the holotype jaw tips of Normannognathus wellnhoferi Buffetaut et al., 1998, from the Upper Kimmeridgian Argiles d’Ecqueville, Normandy, France (Fig. IB). This taxon has traditionally been likened to the pterodactyloid Germanodactylus (Buffetaut et al., 1998; Unwin, 2005) and sometimes considered part of the Germanodactylidae (Buffetaut et al., 1998; Unwin and Heinrich, 1999; Andres and Myers, 2013), a possibly paraphyletic (Unwin and Heinrich, 1999; Maisch et al., 2004) taxon comprising Normannognathus, Tendaguripterus recki Unwin and Heinrich, 1999, and Germanodactylus. However, Martill and Etches (2013) cast doubt on this identification, stating ‘[i]n the light of the discovery of non-pterodactyloid monofenestratans, the holotype and only specimen of Normannognathus (MGCL 59’583) can no longer be placed in Germanodactylidae with confidence, and should be regarded as Monofenestra indet.’ (p. 292).
Martill and Etches (2013) made no further elaboration on this point, but clear similarities between the crest morphology, jaw tips and dental alveoli of MGCL 59'583 and those of non-pterodactyloid monofenestratans are good cause for considering the affinities of Normannognathus open to question.

If Cuspicephalus and Normannognathus have affinities with germanodactylids, these pterosaurs represent some of the oldest pterodactyloid material known and certainly the oldest pterodactyloid crania (Fig. 2). If they represent wukongopterids or another form of non-pterodactyloid monofenestratan, they provide important new data on this poorly understood portion of pterosaur evolution. Because evidence presented for both possible identifications is either equivocal (Cuspicephalus) or in need of review (Normannognathus), we have attempted to resolve the phylogenetic placement of these poorly known taxa via detailed characterisation of non-pterodactyloid monofenestratan skulls. From this, we propose means to distinguish fragmentary skull material of early monofenestratan pterosaurs from those of early pterodactyloids, and apply our findings to Cuspicephalus and Normannognathus.

Institutional abbreviations

BSP, Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany; HGM, Henan Geological Museum, China; GPIT, Paläontologische Forschungs, Lehrund Schausammlung, Institut für Geowissenschaften, Universität Tübingen, Tübingen, Germany; IVPP, Institute of Vertebrate Palaeontology and Palaeoanthropology, Beijing, China; MGCL, Musée Géologique Cantonal de Lausanne, France; MJML, Museum of Jurassic Marine Life (The Etches Collection), Kimmeridge, Dorset, UK; NHMUK, Natural History Museum, London, UK; NMING, National Museum of Ireland, Dublin, YH, Yizhou Museum, Yixian, Liaoning Province, China; ZMNH, Zhejiang Museum of Natural History, Hanzhou, Zhejiang Province, China.

Fig. 3. Monofenestratan skulls. A, the wukongopterid Darwinopterus robustodens; B, likely pterodactyloid sister-taxon the ‘Painten Pro-pterodactyloid’; C, ctenochasmatoid Pterodactylus antiquus; D, azhdarchoid Tupuxuarid leonardi; E, early dsungaripteroid Germanodactylus rhamphastinus; F, ornithocheirid Ornithocheirus mesembrinus; G, early dsungaripteroid Germanodactylus cristatus. Scale bars represent 10 mm, except for D and F, which represent 100 mm. A, after Lü et al., 2011a; B, after Tischlinger and Frey, 2014; C and E, after Wellnhofer, 1970; D and F, after Witton, 2013.
Material and methods

Systematic declaration

Many aspects of pterosaur systematics remain contested. Key arguments include the relationships of major taxa, the diagnoses, names and content of many clades, methods to distinguish species and genera, and the number of valid species (e.g. Kellner, 2003, 2010; Unwin, 2003; Lü et al., 2010, 2011b; Andres and Meyers, 2013; Naish et al., 2013). The result is poor consensus on many components of pterosaur phylogeny, competing nomenclatural schemes with contradicting meanings for many established groups (e.g. compare Unwin, 2003; Kellner, 2003; Andres and Meyers, 2013) and multiple names for essentially identical clades (e.g. Novialoidea Kellner, 2003 vs. Breviquartossa Unwin, 2003). We are not the first authors to note these issues and the problems they create for modern pterosaur researchers (Naish et al., 2013; Geist et al., 2014): even basic discussion of pterosaur systematics now requires regular citation of the specific taxonomic scheme being followed (e.g. as in Andres and Meyers, 2013; Naish et al., 2013) or frequent mentions of conflicting interpretations (e.g. discussions in Witton, 2013). Pending resolution of these issues, and to ease readability, we follow other authors working in fields with controversial classifications by clearly stating the taxonomic scheme followed by the present article. Unless otherwise mentioned, we follow the nomenclature and taxonomy of Lü et al. (2010, 2012), Wang et al. (2010) and Andres et al. (2014) offer alternative schemes to those used here.

Comparative anatomy

Measurements and observation of the anatomy of Cuspidchatus scarfii MJML K1918 were made from the holotype specimen and data in Martill and Etches (2013), while measurements of Normannognathus wellnhoferi MGCL 59‘583 were obtained from a high-quality cast of the holotype and Buffetault et al. (1998). Data on Tiaojishan wukongopterids and the ‘Painten Pro-pterodactyloid’ were obtained from literature (Lü et al., 2010, 2011a, b; Wang et al., 2009, 2010; Tischlinger and Frey, 2014). Data on Germanodactylus specimens and other Jurassic pterodactyloids were obtained from specimens, referred material (casts and original specimens), literature (e.g. Wellnhofer, 1970) and photographs.

Results

Cranial characteristics of the Wukongopteridae

Although undeniably pterodactyloid-like, the skulls of wukongopterids lack synapomorphies of most major pterodactyloid clades (Fig. 3; Kellner, 2003; Unwin, 2003; Andres and Ji, 2008). For example, they lack the rounded and reclined posterior skull regions of ctenochasmatoids, the depressed orbits and edentulous jaws of azhdarchoids, and the unusual rostral anatomy and dentition of ornithocheirids (Kellner, 2003; Unwin, 2003; Andres and Ji, 2008). The wukongopterid skull most closely resembles those of early dsungaripteroids in overall skull proportions and shape, and particularly that of Germanodactylus rhamphastinus (Fig. 3E).

A number of similarities are present between wukongopterids and Germanodactylus. Both have striated cranial crests extending to the posterior region of the prenarial rostrum, generally with a gently sloping anterior margin. The crest of G. rhamphastinus differs here in terminating almost directly above the anterior margin of the nasoantorbital fenestra. This may reflect a genuine anatomical difference, but we are aware of the problems presented by poor preservation and historically erroneous preparation of pterosaur crests (Bennett, 2013a), as well as the current low number of G. rhamphastinus specimens (Bennett, 2006). The discovery of more specimens will clarify this morphology.

The anterior crests of wukongopterids and germanodactylids are relatively low compared to some pterosaurs. Each is lower than the height of the underlying prenarial rostrum, but the same crest portions of Cynchorhamphus and Dsungaripterus are as tall, if not taller, than the underlying rostrum (Young, 1973; Bennett, 2013b). The rostral indices (Martill and Naish, 2006) of sub-adult or older wukongopterids and Germanodactylus all plot within 3.04-5.07, with each group showing a wide range of values within this range (Martill and Etches, 2013). The preorbital skull length is rather short in G. cristatus (70% of jaw tip to squamosal length), but the value for G. rhamphastinus (78%) is very similar to those measured for wukongopterids (72-78%). Wukongopterid and Germanodactylus tooth spacing is relatively uniform, with a slight increase in spacing posteriorly. Wukongopterid and Germanodactylus inter-alveoli spacing is generally larger than corresponding alveolus length, although this is less apparent for G. cristatus than for G. rhamphastinus. Teeth occur under the anterior half of the nasoantorbital fenestra along a relatively straight
ventral skull margin in both wukongopterids and *Germanodactylus*.

In other respects wukongopterid crania differ markedly from skulls of both *Germanodactylus* species. Some distinctions concern characters which have previously suggested a close relationship between the Dsungaripteridae and *Germanodactylus* (Unwin, 2003), such as the expanded exoccipital processes of *Germanodactylus cristatus* (Unwin, 2003). This feature, unknown for any wukongopterid, is rarely discussed for *Germanodactylus* because it is poorly preserved in the holotype slab, BSP 1892 IV 1. However, a large exoccipital can clearly be seen in NMING:F15005, the counter-slab of the *G. cristatus* holotype (Fig. 4, also see Hone, 2010). It seems that expanded exoccipital processes are common to all dsungaripteroids (Unwin, 2003), although their presence in *G. rhamphastinus* cannot be evaluated because appropriate skull regions are not clearly preserved in any specimens we are aware of.

The orbits of wukongopterids are piriform, as they are in *Germanodactylus* and several other pterodactyloid lineages (see Lü et al., 2006 for a discussion of this character among the Pterodactyloidea). The anterodorsal region of their orbits are convex, this portion of their orbits being partially occupied by lacrimal and nasal bones. Orbits with similarly convex anterodorsal margins evolved repeatedly in pterosaurs, being present in rham-
phorhynchids, ctenochasmatoids, ornithocheirids and thalassodromids (e.g. Wellnhofer, 1970, 1975, 1987; Witton, 2013). They do not occur in either Germanodactylus species however. The nasal processes of many Jurassic monofenestratans are rather long (e.g. Germanodactylus, Cycnorhamphus, Pterodactylus; see Wellnhofer, 1970; Bennett, 2013b), but are relatively short in wukongopterids. Conversely, the anterior jugal process is suggested to be longer in some wukongopterids (e.g. D. linglongtaensis; Wukongopterus) than in Germanodactylus (e.g. Wang et al., 2009, 2010; Martill and Etches, 2013). Long anterior jugal processes may not be common to all wukongopterids however, being reportedly truncated in at least the holotype of D. modularis (Lü et al., 2010). We propose that this feature is variable within wukongopterids, or alternatively, that some interpretations of their jugal margins are erroneous. Cracks and marks interpreted as anterior margins of ‘short’ and ‘long’ jugal processes can be seen on many wukongopterid specimens, suggesting further investigation may be warranted to confirm their anterior jugal limits.

The nasoantorbital fenestra is longer with respect to jaw length in the Wukongopteridae than in other Jurassic monofenestratans (Fig. 5). Nasoantorbital openings are generally less than 40% of jaw length in ctenochasmatoids and the ‘Painten pro-pterodactyloid’, 43-48% of the jaw length in Germanodactylus, but 51-58% of the jaw length in wukongopterids. Such a value places wukongopterid nasoantorbital openings amongst the longest of any monofenestran, second only to istiodactylids and azhdarchoids (Kellner, 2003; Unwin, 2003; Witton, 2012). The dorsal margin of the wukongopterid preorbital rostrum, excluding the cranial crest, is concave, which contrasts with the straight dorsal margin of Germanodactylus rostra.

The expanded dentition of Germanodactylus is not mirrored in any wukongopterid. This is even the case in Darwinopterus robustodens, a species named for its relatively robust teeth (Lü et al., 2011a). Wukongopterids have a relatively slender, sharp, and pointed dentition generally similar to that of pterodactyloids like Pterodactylus and Haopterus (Wellnhofer, 1970; Wang and Lü, 2001). Wukongopterid teeth are also mostly evenly sized, whereas those of Germanodactylus expand markedly from the jaw tip with the broadest teeth at the midpoint of the toothrow (Wellnhofer, 1970). The larger teeth of wukongopterids are, like virtually all toothed pterosaurs, found towards the front of the jaw. Wukongopterid toothrows extend to the end of the jaws as they do in G. rhamphastinus and most non-dsun-garipteroid monofenestratans. Germanodactylus crista-\textit{tus}, however, has edentulous jaw tips.

The first premaxillary tooth pair arrangement in wukongopterids is distinctive. These alveoli are situated on the anteroventral margin of the jaw, a condition which sees the anterior teeth over-biting the lower jaw (Wang et al., 2009, 2010). This is somewhat reminiscent of the anterior dentition of ornithocheirids (e.g. Well-\textit{h}ofer, 1987) and some ctenochasmatids (e.g. Howse and Milner, 1995), but the dentition and tooth arrangement of these pterosaurs is clearly demarked from wukongopterids and is very likely convergent. Wang et al. (2009, 2010) considered over-biting first premaxillary tooth pairs autapomorphic for Wukongopterus \textit{lii}, but other wukongopterids demonstrate an identical condition (e.g. Lü et al., 2010; Wang et al., 2010). This feature is likely characteristic of the Wukongopteridae rather than a single wukongopterid genus.

Our assessment suggests that wukongopterid skulls can be distinguished from other Jurassic monofenestratans by not only lacking the well-documented cranial synapomorphies of pterodactyloid clades, but also through a unique combination of characters:

1. Striated bony crest lower than the underlying prena-\textit{r}ial rostrum, with sloping anterior margin
2. Anterior crest terminates in the posterior region of the prenarial rostrum, closer to the anterior border of the nasoantorbital fenestra than the jaw tip
3. Reclined, but not sub-horizontal, occipital regions
4. Piriform orbit
5. Convex anterodorsal orbital margin
6. Short nasal process
7. Unexpanded exoccipital processes
8. Concave dorsal skull surface
9. Straight ventral skull surface
10. Nasoantorbital fenestra over 50% of jaw length
11. Small, equally sized alveoli
12. First alveolus pair located on anterior face of jaw, with mandible over-bitten by first premaxillary tooth pair
13. Regular tooth spacing
14. Interalveolar spacing generally greater than tooth length
15. Dentition extends under anterior half of the nasoan-\textit{t}orbital region
16. Relatively slender, sharply pointed conical teeth

The particularly long nasoantorbital fenestra appears to be the most characteristic feature of wukongopterid skulls even though, as noted above, large nasoantorbital fenestrae are not unique to the Wukongopteridae within Monofenestrata. Among Jurassic pterosaurs
Cranial characteristics of the ‘Painten pro-pterodactyloid’

Remarkably, the skull of the ‘Painten pro-pterodactyloid’ (Fig. 3B) bears several features considered characteristic of derived ctenochasmatoids, including a near-circular orbit, almost horizontal occipital region, and a rounded posterior skull (Kellner, 2003; Unwin, 2003; Tischlinger and Frey, 2014). The possession of these features in a taxon clearly demarked from the Pterodactyloidea by its postcranial form is quite striking, and complicates our understanding of early pterodactyloid evolution. More pertinent to this study, they also allow for easy distinction of the crania of the ‘Painten pro-pterodactyloid’ from monofenestran groups with mostly plesiomorphic skull anatomy, the wukongopterids and germanodactyliids.

Within Ctenochasmatoida, the skull of the ‘Painten pro-pterodactyloid’ is most similar to that of *Pterodactylus* (Fig. 3C). This occurs through its short nasoantorbital fenestra (Fig. 5), straight ventral skull margin, convex anterodorsal orbital margin, long nasal process, relatively short, pointed teeth and (as seen in juvenile *Pterodactylus*) concave dorsal skull margin. They are primarily differentiated by the very wide spacing and reduced number of teeth of the Painten specimen, as well as its procumbent anterior mandibular dentition (Tischlinger and Frey, 2014). The anterior premaxillary teeth, by contrast, are not procumbent. The regular alveolar spacing of the ‘Painten pro-pterodactyloid’ is a further distinguishing feature, contrasting with the posteriorly-increasing alveolar spacing of *Pterodactylus* and other Late Jurassic monofenestratans. The heavier construction of the prenarial rostrum and proportionally shorter, taller skull are also characteristic for the Painten specimen, but these features vary with ontogeny (e.g. Bennett, 1995, 2006, 2013a) and their taxonomic significance is questionable. Likewise, the absence of a striated crest in the Painten specimen might be a useful identifying feature given the propensity of crests in ctenochasmatoids (e.g. Wellnhofer, 1970; Dong, 1980; Bennett, 2013a), but could also reflect ontogenetic or individual variation (Lü et al., 2011b). Studies into the ontogenetic status of the ‘Painten pro-pterodactyloid’ will hopefully provide some insights into the diagnostic utility of these characters (see Bennett, 1993).

Thus the ‘Painten pro-pterodactyloid’ can be distinguished from other Jurassic monofenestratans by a combination of 13 character states:

1. Near-horizontal occipital region
2. Rounded posterior skull
3. Sub-circular orbit
4. Convex anterodorsal orbital margin
5. Concave dorsal skull surface
6. Straight ventral skull surface
7. Robust prenarial rostrum
8. Interalveolar spacing much greater than alveolus lengths
9. Consistent alveolus spacing
10. Dentition extends under anterior half of the nasoantorbital region
11. No anteriorly-facing premaxillary teeth at jaw tip
12. Relatively slender, sharply pointed conical teeth
13. Procumbent first and second pairs of mandibular teeth

Most of these characters are not diagnostic in isolation. However, some features of the dentition seem apomorphic. The combination of procumbent anterior mandibular teeth with vertical anterior premaxillary teeth is unique, as is the arrangement of the mandibular dentition, where only the anteriormost two tooth pairs are procumbent, while the remaining teeth are vertical.

Discussion

Cuspicephalus scarfi

Twelve of the 16 wukongopterid features listed above can be evaluated on the holotype of *Cuspicephalus scarfi*. Virtually all of them meet the conditions seen in wukongopterid skulls. These include a low striated crest terminating above the posterior region of the prenarial rostrum; reclined posterior skull face; piriform orbit; a nasoantorbital fenestra exceeding 50% of the jaw length (at least 54%; Fig 5); small, relatively uniformly-sized alveoli, and a toothrow terminating under the anterior end of the nasoantorbital fenestra. The dorsal margin of the rostrum is not entirely preserved, but it can be reconstructed as gently concave with fair confidence (Martill and Etches, 2013), and the ventral skull margin is straight. The exoccipital processes are unexpanded: they look relatively large on MJML K1918, but this is largely an artefact of distortion around the occipital region, and they are not as prominent as those of *Germanodactylus* or dsungaripterids. Only one feature of MJML K1918 is inconsistent with a wukongopterid
identification: the anterior alveoli of MJML K1918 are separated by less than one alveolus-length, although the spacing of the posterior alveoli is more typical of the wukongopterid condition. The status of the anterodorsal region of the orbit, the presence of anteriorly-facing premaxillary alveoli and the length of the nasal process cannot be confidently determined for MJML K1918. Martill and Etches (2013) indicated that the nasal process may be represented by a small, faint trace in MJML K1918, but its length cannot be accurately assessed. Nevertheless, we conclude that 11 of the 12 observable or inferable characters of Cuspidicephalus resemble a wukongopterid-like skull configuration and only one, alveolus spacing, shows a slightly different state.

In contrast, Cuspidicephalus does not possess characters clearly indicative of close relationships to other monofenestratan taxa, including the ‘Painten Pro-pterodactyloid’ and Germanodactylidae. MJML K1918 can be evaluated for nine characters provided here for the ‘Painten Pro-pterodactyloid’ skull but is congruous with only three (concave dorsal rostrum; straight ventral skull; dentition under nasoantorbital fenestra). Similarly, Cuspidicephalus differs from Germanodactylus in lacking a straight dorsal rostral margin and expanded exoccipital processes. Based on alveolus size, it also possessed more gracile teeth which increased in size anteriorly, not medi ally as in Germanodactylus. Martill and Etches (2013) argued that the shortness of the anterior jugal process suggested affinities with Germanodactylus but, as noted above, long anterior jugal processes may not be ubiquitous across the Wukongopteridae.

The Cuspidicephalus skull meets nearly all character conditions of wukongopterid pterosaurs, but lacks many defining characteristics of other Jurassic pterosaurs, supporting the suggested close relationship with Darwinopterus (Martill and Etches, 2013) and indicating placement elsewhere among the Monofenestra is unlikely. Furthermore, its possession of a feature unseen in Jurassic pterosaurs outside of wukongopterids – the especially elongate nasoantorbital fenestra – strongly suggests placement within Wukongopteridae. The differences it has with other wukongopterids – a proportionally long skull, higher tooth count and more condensed alveolus spacing at the jaw tip (Martill and Etches, 2013) – are not problematic for this identification: variable rostrum length and dental counts are typical within pterosaur clades. Indeed, greater rostrum length and tooth counts may be expected for a pterosaur of larger absolute size than its close relatives (see below). We thus consider a wukongopterid placement most likely for Cuspidicephalus: the significance of this is discussed below.

In being represented by less material than Cuspidicephalus, Normannognathus presents a much greater challenge for identification. Normannognathus can only be fully evaluated for nine of the features identified in our list of wukongopterid characteristics, with five positive comparisons. It can be compared with six characteristics of the ‘Painten Pro-pterodactyloid’, but none compare favourably.

Normannognathus bears a striated crest extending beyond the nasoantorbital region and terminating with an overturned leading edge. This crest is proportionally very tall – perhaps the tallest of any pterosaur when compared to the underlying rostrum height. We agree with Buffetaut et al. (1998) that the crest shape of Normannognathus is more reminiscent of Dsungaripterus than any other pterosaur, and it certainly differs from the condition in Germanodactylus, wukongopterids and the crestless ‘Painten Pro-pterodactyloid’ specimen. Only the ctenochasmatoid Huanhepterus quingyangensis offers a crest of similar height when compared to underlying rostral proportions (Dong, 1982). The proximity of the Normannognathus anterior crest margin to the nasoantorbital fenestra cannot be evaluated, nor is it clear from the dorsal and ventral rostral margins how the skull shape continued beyond the broken jaw tips. We see no reason to infer a short, Germanodactylus-like skull for Normannognathus any more than a much longer, lower skull akin to that of the ctenochasmatoids Feilongus (Wang et al., 2005) or Huanhepterus. MGCL 59°583 possesses a low, concave dorsal rostral margin but also a convex ventral surface, together forming an upturned jaw tip. The upturned jaw of MGCL 59°583 is genuine, but the specimen is slightly distorted and obliquely preserved, so this feature is not as pronounced as it may first appear (Buffetaut et al., 1998). Upturned jaws are known from Pteranodon, ctenochasmatoid, dsungaripterid and istiodactyloid pterodactyloids (e.g. Young, 1973; Bennett, 1996, 2001; Wang et al., 2005; Witton, 2012), but are not apparent in either wukongopterids or the ‘Painten Pro-pterodactyloid’. The rostrum of Normannognathus is rather more slender than that of the ‘Painten Pro-pterodactyloid’.

Some aspects of the MGCL 59°583 alveoli match the wukongopterid condition, being of approximately uniform size with the anterior pair situated on the anteroventral surface of the premaxilla. The spacing of the alveoli is generally tighter than those of wukongopterids however, surpassing even the spacing frequency of Cuspidicephalus. A solitary tooth is preserved in the mandible
of MGCL 59’583 but does not taper to a sharp point like the teeth of wukongopterids. Rather, it is relatively long and slender, more akin to the teeth of ctenochasmatids and certainly very different to the robust dentition seen in *Germanodactylus* and *Tendaguripterus*. This tooth projects anterolaterally from the alveolus in a ctenochasmatid manner, although additional discoveries are probably required to verify this as the *in vivo* condition and not post-mortem displacement. The alveolar spacing, positions and apparent dental orientations contrast markedly with the distinctive dentition of the ‘Painten Pro-pterodactyloid’.

Further features of interest in MGCL 59’583 are the midline grooves on the occlusal surfaces of the upper jaw and mandibular symphysis. The symphyseal trough is wider and deeper than the groove of the upper jaw, which is relatively shallow and only clearly seen at the jaw tip. Among toothed pterosaurs, midline jaw grooves are well documented in ornithocheirids and lonchodectids (e.g. Unwin, 2001), but are poorly known in other groups. For Jurassic monofenestratans at least, this reflects the frequent lateral crushing of pterosaur skulls. Nevertheless, the germanodactylid *Tendaguripterus* lacks a mandibular groove (Unwin and Heinrich, 1999), as do dsungaripterids (e.g. Young *et al.*, 1973). The Jurassic ctenochasmatoid *Gnathosaurus macrurus* bears a symphyseal trough (Howse and Milner, 1995). The status of jaw grooves in wukongopterids and the ‘Painten Pro-pterodactyloid’ remains unknown.

Normannognathus possesses a mosaic of monofenestratan features with conflicting phylogenetic signals, preventing confident referral to any specific monofenestratan clade, including the Germanodactylidae. Buffetaut *et al.* (1998) referred *Normannognathus* to this group because of its crest morphology, similar tooth distribution to *G. rhamphastinus* and the possible close relationship of *Germanodactylus* to *Dsungaripterus*, which *Normannognathus* resembles by its upturned jaw and crest size. However, these features are now recognised as widely distributed across the Monofenestrata, and no

Table 1. Skull and wing bone lengths (mm) of complete wukongopterids from the Tiaojishan Formation, used in wingspan estimation of MJML K1918. McIV, metacarpal IV.

Taxon	Specimen	Skull	Hum	Ul	McIV	I	II	III	IV	Wingspan
Darwinopterus linlongtaensis	IVP V16049	119.2	40.4	58	23.6	46.2	50.7	53.2	53.6	651.4
Kunpengopterus sinensis	IVP V16047	106.9	36.2	59.2	23	54.2	58	59.2	48.8	677.2
Darwinopterus robustodens	HGM 41HII-0309A	175	50	80	30	65	75	75	67	884
Darwinopterus modularis	YH-2000	140	44	64	26	48	55	59	53	698

Fig. 6. Life reconstructions of wukongopterid pterosaurs showing size range across the group with extant avian for scale. A, *Darwinopterus robustodens*, the largest Tiaojishan Formation wukongopterid with a 884 mm wingspan; B, *Cuspicephalus scarfi*, with a projected wingspan of 1.2 m; C, European robin, *Erithacus rubecula* (wingspan c., 200 mm).
longer exclusively indicate a close relationship with *Germanodactylus*. Indeed, we do not find any features on MGCL 59583 which unambiguously indicate *Germanodactylid* affinities and, to the contrary, find much of its anatomy inconsistent with this placement.

What *Normannognathus* represents remains difficult to ascertain, however. It remains a valid genus due to its unique assemblage of characters, but placing it within an existing pterosaur group is problematic. It differs from wukongopterids as much as it resembles them, bears no features of the ‘Painten Pro-pterodactyloid’ or clear synapomorphies of any major pterodactyloid clade. The constituent components of *Normannognathus* anatomy – steeply terminating, relatively tall striated crests; slightly upturned, shallow rostra with slender, anteriorly directed teeth and symphyseal troughs – occur in several ctenochasmatoids including *Huanhepterus* (Dong, 1982); *Cycnorhamphus suevicus* (Bennett, 2013a), *Aurorazhdarcho micronyx* (Bennett, 2013b), *Feilongus youngi* (Wang et al., 2005) and *Gnathosaurus macrurus* (Howse and Milner, 1995). *Normannognathus* may therefore have affinities with the Ctenochasmatidae, but more complete remains are required to make a confident assessment of its systematic position. At present it may be best considered Monofenestrata incertae sedis.

Significance of Cuspicephalus scarfi interpreted as a wukongopterid

The suggestion that wukongopterid skulls can be distinguished from those of other early monofenestratans without associated postcranial material bodes well for further research into this group. However, their low number of cranial synapomorphies proves limiting when considering especially fragmentary monofenestratan crania, as evidenced by difficulties resolving the affinities of *Normannognathus*. We hope the comparisons made here will be useful in future assessments of Jurassic monofenestratan material, such as the fragmentary crania from the Purbeck Limestone, Kimmeridge Clay and Morrison formations.

The occurrence of a wukongopterid in Kimmeridgian deposits of the southern UK expands the stratigraphic and geographic range of this group significantly. Presently, all wukongopterids are known from the upper Oxfordian or Lower Callovian Tiaojishan Formation of northeast China. *Cuspicephalus scarfi* extends the wukongopterid stratigraphic range into the Kimmeridgian, being the youngest wukongopterid by at least 5 million years, and expands the geographic range of the group to Europe. This makes wukongopterid palaeobiogeography comparable to that of other Middle and Late Jurassic pterosaur lineages, most of which are distributed across multiple continents or even cosmopolitan in their distribution (see Barrett et al., 2008 and Witton, 2013 for recent overviews of pterosaur palaeobiogeography).

Cuspicephalus further offers new insights into wukongopterid disparity. It is the first wukongopterid to obviously differ from the *Darwinopterus*-like taxa of the Tiaojishan Formation, animals which are so morphologically similar that Lü et al. (2011b) suggest they represent a single taxon. The skull of *Cuspicephalus* is proportionally longer and lower than any Tiaojishan form, its teeth more numerous and tightly packed at the jaw tip. This presumably reflects ecological differentiation from the Chinese wukongopterids, perhaps allowing for greater reach during foraging and manipulating relatively small or slippery prey. Moreover, *Cuspicephalus* is also considerably larger than its relatives. At 326 mm long, the skull of *Cuspicephalus* is much longer than those of its fellow wukongopterids and also one of the largest Jurassic pterosaur skulls known. Only the Morrison Formation scaphognathine *Harpactognathus gentryii* is estimated to have a skull of comparable length (280-300 mm; Carpenter et al., 2003). By contrast, the largest Tiaojishan wukongopterid skull (HGM 41HIII-0309A; the osteologically mature holotype of *Darwinopterus robustodens*) is 175 mm long (Fig. 3A), 53% of the skull length of *Cuspicephalus*. A regression of skull length against wingspan of complete Tiaojishan wukongopterids (Table 1) shows that their skull length scales with negative allometry to wingspan (n = 4, r² = 0.7997), predicting a wing spread of 1.2 m for *Cuspicephalus*. This is 35% greater than the 884 mm estimated for *D. robustodens* (Fig. 6) and, while smaller than the predicted 1.8-2.5 m wingspans of the largest Jurassic pterosaurs, such as *Harpactognathus* and *Rhamphorhynchus*, still brings wukongopterids into a new size class of pterosaurs.

Acknowledgements

We thank Sandra Chapman and Lorna Steel for access to NHMUK specimens, and Steve Etches for access to specimens in his care. Stephen Vidovic and David Hone are thanked for kindly providing photographs of *G. rhamphastinus* and the *G. cristatus* counter-slab. Chris Bennett and an anonymous referee are thanked for constructive comments provided in peer review. DMM thanks David Unwin for making images available of *Darwinopterus* available before their publication and Helmut Tischlinger for discussions on the ‘Painten Pro-pterodactyloid’.
References

Andres B, Ji Q. 2008. A new pterosaur from the Liaoning Province of China, the phylogeny of the Pterodactyloidea, and the convergence in their cervical vertebrae. *Palaeontology* 51: 453-469.

Andres B, Myers TS. 2013. Lone Star Pterosaurs. *Earth and Environmental Science Transactions of the Royal Society of Edinburgh* 103: 383-398.

Andres B, Howard L, Steel L. 2011a. Owen’s pterosaurs, old fossils shedding light on new clades. P. 4 in: Forrest R, ed., SVPCA, 59th Annual Symposium of Vertebrate Palaeontology and Comparative Anatomy, Abstracts of Presentations.

Andres B, Howard L, Steel L. 2011b. Pterosaurs, modules, and the origin of the Pterodactyloidea. *Journal of Vertebrate Paleontology* 31(A): 62.

Andres B, Clark J, Xu X. 2014. The earliest pterodactyloid and the origin of the group. *Current Biology* 24: 1011-1016.

Barrett PM, Butler RJ, Edwards NP, Milner AR. 2008. Pterosaur distribution in space and time: an atlas. *Zitteliana* B28: 61-107.

Bennett SC. 1993. The ontogeny of *Pteranodon* and other pterosaurs. *Paleobiology* 19: 92-106.

Bennett SC. 1995. A statistical study of *Rhamphorhynchus* from the Solnhofen Limestone of Germany: year-classes of a single large species. *Journal of Paleontology* 66: 569-586.

Bennett SC. 1995. Year-classes of pterosaurs from the Solnhofen Limestone of Germany: taxonomic and systematic implications. *Journal of Vertebrate Paleontology* 16: 432-444.

Bennett SC. 2001. The osteology and functional morphology of the Late Cretaceous pterosaur *Pteranodon*. *Palaeontographica Abteilung A* 260: 1-153.

Bennett SC. 2006. Juvenile specimens of the pterosaur *Ger-manodactylus cristatus*, with a review of the genus. *Journal of Vertebrate Paleontology* 26: 872-878.

Bennett SC. 2013a. New information on body size and cranial display structures of *Pterodactylus* antiquus, with a revision of the genus. *Paläontologische Zeitschrift* 87: 269-289.

Bennett SC. 2013b. The morphology and taxonomy of the pterosaur *Cynorhamphus*. *Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen* 267: 23-41.

Buffetaut E, Lepage J, Lepage G. 1998. A new pterodactyloid from the Kemmeridgian of the Cape de la Héve (Normandy, France). *Geological Magazine* 135: 719-722.

Carpenter K, Unwin DM, Cloward K, Miles C, Miles C. 2003. A new scaphognathine from the upper Jurassic Morrison Formation of Wyoming, USA. Pp. 45-54 in: Buffetaut E, Mazin JM, eds, *Evolution and Palaeobiology of Pterosaurs*, Geological Society Special Publication 217.

Dong Z. 1982. A new pterosaur (*Huanhepterus qingyangensis* gen. et sp. nov.) from Ordos, China. *Vertebrata PalAsiatica* 20: 115-121.

Geist NR, Hillenius WJ, Frey E, Jones TD, Elgin RA. 2014. Breathing in a box: Constraints on lung ventilation in giant pterosaurs. *The Anatomical Record* 297: 2233-2253.

Hone DW. 2010. A short note on modifications to nineteenth century pterosaur specimens held in the National Museum of Ireland–Natural History, Dublin. *Geological Curator* 9: 261-265.

Hone DW. 2012. Pterosaur research: recent advances and a future revolution. *Acta Geologica Sinica-English Edition* 86: 1366-1376.

Howse SCB, Milner AR. 1995. The pterodactyloids from the Purbeck Limestone Formation of Dorset. *Bulletin of the Natural History Museum, London* 51: 73-88.

Kellner AWA. 2003. Pterosaur phylogeny and comments on the evolutionary history of the group. Pp. 105-137 in: Buffetaut E, Mazin JM, eds, *Evolution and Palaeobiology of Pterosaurs*, Geological Society Special Publication 217.

Kellner AWA. 2010. Comments on the Pteranodontidae (Pterosauria, Pterodactyloidea) with the description of two new species. *Anais da Academia Brasileira de Ciências* 82: 1063-1084.

Lü JC. 2009. A new non-pterodactyloid pterosaur from Qinglong County, Hebei Province of China. *Acta Geologica Sinica* 83: 189-199.

Lü JC, Fucha X. 2010. A new pterosaur (*Pterosaurus*) from the Middle Jurassic Tiaojishan Formation of western Liaoning, China. *Global Geology* 13: 113-118.

Lü JC, Jin X, Unwin DM, Zhao L, Azuma Y, Ji Q. 2006. A new species of *Huaxiapterus* (*Pterosauria*: Pterodactyloidea) from the Lower Cretaceous of Western Liaoning, China with comments on the systematics of tapejarid pterosaurs. *Acta Geologica Sinica* 80: 315-326.

Lü JC, Unwin DM, Jin X, Liu Y, Ji Q. 2010. Evidence for modular evolution in a long-tailed pterosaur with a pterodactyloid skull. *Proceedings of the Royal Society B* 277: 383-389.

Lü JC, Xu L, Chang H, Zhang X. 2011a. A new darwinopterid pterosaur from the Middle Jurassic of Western Liaoning, Northeastern China and its ecological implications. *Acta Geologica Sinica* 85: 507-514.

Lü JC, Unwin DM, Deeming DC, Jin X, Liu Y, Ji Q. 2011b. An egg-adult association, gender, and reproduction in pterosaurs. *Science* 331: 321-324.

Lü JC, Unwin DM, Zhou B, Chunling G, Shen C. 2012. A new rhamphorhynchid (*Pterosauria*: Rhamphorhynchidae) from the Middle/Upper Jurassic of Qinglong, Hebei Province, China. *Zootaxa* 3158: 1-19.

Maisch MW, Matzke AT, Sun G. 2004. A new dsungaripterid pterosaur from the Lower Cretaceous of the southern Junggar Basin, north-west China. *Cretaceous Research* 25: 625-634.

Martill DM, Naish D. 2006. Cranial crest development in the azhdarchoid pterosaur *Tupuxuara*, with a review of the genus and tapejarid monophyly. *Palaeontology* 49: 925-941.

Martill DM, Etches S. 2013. A monofenestratan pterosaur from the Lower Cretaceous of England and tapejarid monophyly. *Evolution and Palaeobiology of Pterosaurs*,

Maiisch MW, Matzke AT, Sun G. 2004. A new dsungaripterid pterosaur from the Lower Cretaceous of the southern Junggar Basin, north-west China. *Cretaceous Research* 25: 625-634.

Naish D, Simpson M, Dyke G. 2013. A new small-bodied azhdarchoid pterosaur from the Lower Cretaceous of England and its implications for pterosaur anatomy, diversity and phylogeny. *PLoS one* 8: e58451.

Pleninger F. 1901. Beiträge zur Kenntnis der Flugsaurier. *Palaeontographica* 48: 65-90.

Steel L. 2010. The pterosaur collection at the Natural History Museum, London, UK: history, overview, recent curatorial developments and exciting new finds. *Acta Geoscientifica Sinica* 31: 59-61.

Sullivan C, Wang Y, Hone DWE, Wang YQ, Xu X, Zhang F. 2014. The vertebrates of the Jurassic Daohugou Biota of Northeastern China. *Journal of Vertebrate Paleontology* 34: 243-280.

Tischlinger H, Frey E. 2014. Ein neuer Pterosaurier mit Mosaikmerkmalen basaler und pterodactyoider Pterosaurier aus dem
Ober-Kimmeridgium von Painen (Oberpfalz, Deutschland)
[A new pterosaur with mosaic characters of basal and ptero-
dactyloid Pterosauria from the Upper Kimmeridgian of
Painten (Upper Palatinate, Germany)]. Archaeopteryx 31: 1-13.
Unwin DM. 1996. The fossil record of Middle Jurassic Pterosaurs.
Pp. 291-304 in: Morales M, ed., The Continental Jurassic,
Museum of Northern Arizona Bulletin 60.
Unwin DM. 2001. An overview of the pterosaur assemblage from
the Cambridge Greensand (Cretaceous) of Eastern England.
Mitteilungen Museum für Naturkunde Berlin, Geowissen-
schaftlichen 4: 189-221.
Unwin DM. 2003. On the phylogeny and evolutionary history of
pterosaurs. Pp. 139-190 in: Buffetaut E, Mazin JM, eds, Evo-
lution and Palaeobiology of Pterosaurs, Geological Society Special Publication, 217.
Unwin DM. 2005. The Pterosaurs from Deep Time. Pi Press, New
York.
Unwin DM, Heinrich WD. 1999. On a pterosaur jaw from the
Upper Jurassic of Tendaguru (Tanzania). Mitteilungen aus
dem Museum Für Naturkunde in Berlin Geowissenschaftliche
Reihe 2: 121-134.
Vidovic SU, Martill DM. 2014. Pterodactylus scolopaciceps
Meyer, 1860 (Pterosauria, Pterodactyloidea) from the Upper
Jurassic of Bavaria, Germany: the problem of cryptic pterosaur
taxa in early ontogeny. PloS one 9: e10646.
Wang X, Lü JC. 2001. Discovery of a pterodactylid pterosaur from
the Yixian Formation of western Liaoning, China. Chinese
Science Bulletin 46: 1112-1117.
Wang X, Kellner AWA, Zhou Z, Campos DA. 2005. Pterosaur
diversity and faunal turnover in Cretaceous terrestrial ecosys-
tems in China. Nature 437: 875-879.
Wang X, Kellner AWA, Jiang S, Meng X. 2009. An unusual long-
tailed pterosaur with elongated neck from western Liaoning
of China. Anais da Academia Brasileira de Ciências 81:
793-812.
Wang X, Kellner AWA, Jiang S, Cheng X, Meng X, Rodrigues T.
2010. New long-tailed pterosaurs (Wukongopteridae) from
western Liaoning, China. Anais da Academia Brasileira de
Ciências 82: 1045-1062.
Wellnhofer P. 1970. Die Pterodactyloidea (Pterosauria) der
Oberjura-Plattenkalke Süddeutschlands. Bayerische Akade-
mie der Wissenschaften, Mathematisch-Wissenschaftlichen
Klasse, Abhandlungen 141: 1-133.
Wellnhofer P. 1975. Die Rhamphorhynchoidea (Pterosauria) der
Oberjura-Plattenkalke Süddeutschlands. Palaeontographica
A 148: 1-33, 132-186, 149: 1-30.
Wellnhofer P. 1987. New crested pterosaurs from the Lower
Cretaceous of Brazil. Mitteilungen der Bayerischen Staat-
sammlung für Paläontologie und Historische Geologie 27:
175-186.Witton MP. 2012. New insights into the skull of Is-
tiodactylus latidens (Ornithocheiroidea, Pterodactyloidea).
PLoS ONE 7: e33170.
Witton MP. 2013. Pterosaurs: Natural History, Evolution,
Anatomy. Princeton University Press.
Young CC. 1973. Pterosaurian fauna from Wuerho, Sinkiang. Pp.
18-34 in: Reports of paleontological expedition to Sinkiang
II, Kexue Chubanshe, Nanjing, China.

Received: 2 July 2014
Revised and accepted: 22 January 2015
Published online: 8 May 2015
Editor: M. Laurin