Coinfection with *Pseudomonas aeruginosa* and *Aspergillus fumigatus* in cystic fibrosis

Karen Keown 1,2, Alastair Reid 1, John E. Moore 3, Clifford C. Taggart 2 and Damian G. Downey 2

Affiliations: 1 Royal Belfast Hospital for Sick Children, Belfast Health and Social Care Trust, Belfast, UK. 2 Wellcome Wolfson Centre for Experimental Medicine, Queen’s University Belfast, Belfast, UK. 3 Northern Ireland Public Health Laboratory, Dept of Bacteriology, Belfast City Hospital, Belfast, UK.

Correspondence: Damian G. Downey, Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT7 1NN, UK. E-mail: d.downey@qub.ac.uk

@ERSpublications

*A complex relationship exists between *P. aeruginosa* and *A. fumigatus* and is associated with worsened clinical disease in cystic fibrosis. Further study of organism interactions, longitudinal outcomes and therapeutic strategies is warranted.* https://bit.ly/2A161bh

Cite this article as: Keown K, Reid A, Moore JE, et al. Coinfection with *Pseudomonas aeruginosa* and *Aspergillus fumigatus* in cystic fibrosis. *Eur Respir Rev* 2020; 29: 200011 [https://doi.org/10.1183/16000617.0011-2020].

ABSTRACT

Objectives: Cystic fibrosis (CF) lung disease is characterised by mucus stasis, chronic infection and inflammation, causing progressive structural lung disease and eventual respiratory failure. CF airways are inhabited by an ecologically diverse polymicrobial environment with vast potential for interspecies interactions, which may be a contributing factor to disease progression. *Pseudomonas aeruginosa* and *Aspergillus fumigatus* are the most common bacterial and fungal species present in CF airways respectively and coinfection results in a worse disease phenotype.

Methods: In this review we examine existing expert knowledge of chronic co-infection with *P. aeruginosa* and *A. fumigatus* in CF patients. We summarise the mechanisms of interaction and evaluate the clinical and inflammatory impacts of this co-infection.

Results: *P. aeruginosa* inhibits *A. fumigatus* through multiple mechanisms: phenazine secretion, iron competition, quorum sensing and through diffusible small molecules. *A. fumigatus* reciprocates inhibition through gliotoxin release and phenotypic adaptations enabling evasion of *P. aeruginosa* inhibition. Volatile organic compounds secreted by *P. aeruginosa* stimulate *A. fumigatus* growth, while *A. fumigatus* stimulates *P. aeruginosa* production of cytotoxic elastase.

Conclusion: A complex bi-directional relationship exists between *P. aeruginosa* and *A. fumigatus*, exhibiting both mutually antagonistic and cooperative facets. Cross-sectional data indicate a worsened disease state in coinfected patients; however, robust longitudinal studies are required to derive causality and to determine whether interspecies interaction contributes to disease progression.

Introduction

Cystic fibrosis (CF) is the most common inherited lung disease worldwide, caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Resultant dysfunctional, or absent CFTR protein on the apical airway epithelial membrane, leads to anion depletion and reduction in the...
airway surface liquid, causing a triad of mucus stasis, chronic infection and inflammation in the CF airways. Over the past decade there has been much focus on the development of small molecule therapies that are capable of restoring CFTR function. While these therapies may be transformational for some people with CF, individual responses may be variable and improved CFTR function does not halt inflammation, eradicate microbial pathogens residing in the airways or reverse existing lung damage [1–4].

In addition to the traditional CF respiratory pathogens such as *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Haemophilus influenzae* and *Burkholderia cepacia complex*, recent metagenomic microbiome studies have identified a much more diverse airway microbial environment than was previously thought [5]. Rich communities of aerobic and anaerobic bacteria, viruses and fungi coinhabit the airways, with a dynamic composition and waning diversity as CF lung disease progresses [6, 7]. These new insights have led to the identification of novel pathogens such as *Ralstonia mannitolilytica*, *Prevotella* spp. and *Veillonella* spp. [5, 8, 9] and raised questions of how previously overlooked organisms and interspecies interactions may influence disease progression.

The Gram-negative bacterium *P. aeruginosa* contributes significantly to respiratory morbidity and mortality in CF lung disease [10]. The presence of several organisms cohabiting the CF airways has been shown to influence the virulence of *P. aeruginosa*, producing both gainful or inhibitory effects [11–17]. However, the potential for interspecies interactions is vast and we are at an early stage in our understanding of this novel aspect of pathogenesis in CF lung disease. Despite the demonstration of multiple direct and indirect organism interactions *in vitro*, it remains unclear whether these interactions are clinically significant and how they contribute to disease progression. Here we review the interaction of the most common bacterial and fungal species in the CF respiratory tract, *P. aeruginosa* and *A. fumigatus* [18–20], consider the clinical implications and future directions for management of polymicrobial infections in CF.

Epidemiology

Because of the physiological basis of the disease, acquisition of microbes occurs from the immediate environment *via* the upper gastrointestinal tract or the upper respiratory tract, through ingestion or inhalation, respectively. Aspiration of microbes may also occur from the gastrointestinal tract to the upper respiratory tract. Combinations of these routes of entry manifest in the presence of a diverse variety of bacteria and fungi in the sputum of CF patients. A comprehensive review on the microbiology of CF has been reported previously [21, 22].

P. aeruginosa and *A. fumigatus* represent the most dominant bacterial and fungal species, respectively, within the CF respiratory tract. Presently, there are 255 species described within the genus *Pseudomonas*, of which *P. aeruginosa* is the most prevalent in patients with CF. Despite the aggressive eradication protocols widely used in CF care, 60–70% of CF patients are intermittent or chronically colonised with *P. aeruginosa* by the age of 20 years [23, 24].

There are approximately 180 species of *Aspergillus* spp., of which *A. fumigatus* is the most common and clinically significant in patients with CF. The prevalence of *A. fumigatus* colonisation in CF patients is between 16% and 58% [25–28], with rising rates of isolation over the past decade [29]. A range of factors including *P. aeruginosa* eradication treatment, frequent courses of antibiotics, prolonged use of inhaled antibiotics, inhaled corticosteroids and the widespread use of azithromycin are related to the early acquisition and rising prevalence of *A. fumigatus* [29–32]. However, variation in diagnostic techniques and surveillance practices between centres is undoubtedly a contributory factor to both the increased and variable prevalence [33]. The use of nonculture-based diagnostic techniques, such as nucleic acid amplification technologies and matrix-assisted laser desorption/ionisation, have been shown to significantly improve detection of fungal organisms over conventional culture techniques [34, 35]; however, access to these technologies may be limited to specialist mycological laboratories [35].

Epidemiological studies indicate there is a wide variation in the prevalence of chronic co-infection with *P. aeruginosa* and *A. fumigatus* of 16–35% reported in the Irish CF population [36] and a recent meta-analysis showed a pooled prevalence of 15.8% with significant variation, ranging between 2.3% and 44.8% among CF patients [37]. Accurate estimation of the prevalence of *P. aeruginosa* and *A. fumigatus* co-infection poses several challenges due to inconsistent definitions relating to fungal disease, nonstandardised diagnostic techniques, sampling frequency and clinical interpretation of culture results between centres.

Clinical significance of *P. aeruginosa* and *A. fumigatus* in CF

It is well established that *P. aeruginosa* plays a central role in the progression of CF lung disease [24] and it is considered to be the primary pathogen leading to deterioration of lung function, hospitalisation and death in CF [24]. However, the role of *A. fumigatus* is less clearly defined. The ubiquitous environmental
A. fumigatus-related lung disease in CF

The hypersensitivity lung disease allergic bronchopulmonary aspergillosis (ABPA) affects up to 10% of people with CF [51]. Diagnostic criteria for ABPA were established in 2003 [27], and are based on a range of clinical, serologic and radiological parameters that continue to be in widespread use today. While there is some variation in management practices, there is consensus amongst clinicians that a diagnosis of ABPA has significant clinical implications that warrants treatment with systemic corticosteroids, with or without antifungal therapy [51, 52]. In addition to ABPA, Aspergillus-related lung disease may have other manifestations in people with CF. A classification system proposed by Baxter et al. [53] based on a cluster analysis in adults identified four distinct classes of Aspergillus-related lung disease in CF: ABPA, Aspergillus sensitisation, Aspergillus colonisation and Aspergillus bronchitis [53].

Aspergillus bronchitis refers to fungal infection which is confined to the bronchial tree, causing superficial mucosal invasion and symptoms of cough and increased mucus production and is distinguished from the other entities by qPCR and Aspergillus immunoglobulin-G alongside negative serological markers of allergic disease [53]. Its first description was based on a small group of CF patients who were nonresponsive to antimicrobial therapy, who chronically isolated *A. fumigatus* without ABPA and all of whom had a clinical response to antifungal treatment [48]. A proportion of patients exposed to *A. fumigatus* will become immunologically sensitised; these patients more commonly develop ABPA and the immunological response to the fungi may represent a spectrum of hypersensitivity disease. Several studies have shown that *Aspergillus* sensitisation without ABPA has been associated with poorer lung function in its own right [54–56].

While the above classification provides a useful clinical and research framework for *A. fumigatus* lung disease, the proposed biomarkers to differentiate between these clusters have yet to be prospectively validated. Further study of these subgroups, particularly *A. fumigatus*-colonised and bronchitis patients would be beneficial to understand which patients have inconsequential colonisation and which have active fungal infection. Furthermore, while the proposed classification separates hypersensitivity from nonhypersensitivity *Aspergillus* disease, it does not incorporate other manifestations including pulmonary aspergilloma [57] or invasive aspergillosis, which may rarely complicate CF lung disease [58].

Uncertainty around the significance of the chronic isolation of *A. fumigatus* is fuelled by conflicting evidence around its direct effect on progression of lung disease. Several studies show that it does not directly affect absolute FEV₁ [42, 43, 59]; however, a number of other studies indicate that it is independently associated with a lower and more accelerated decline in FEV₁ [25, 29, 60–62]. Additionally, it has been shown to be associated with more frequent pulmonary exacerbations [25], more advanced bronchiectasis on high-resolution computed tomography (HRCT) [63], elevated BAL neutrophil count [64] and persistent inflammation in a CF murine model [65, 66].
Survival of *P. aeruginosa* and *A. fumigatus* in CF airways

Over the course of chronic infections, *P. aeruginosa* displays a range of mechanisms, phenotypic and genetic adaptations which enable it to persist in the CF lung. Early in infection, *P. aeruginosa* releases virulence factors which enable it to overcome host defences and establish infection, they include toxic phenazines and rhamnolipids, which promote ciliary stasis [67], and proteases, including LepA, which activate nuclear factor (NF)-kB to increase inflammation [68]. Over time, *P. aeruginosa* maintains infection through release of immunosuppressing factors (exoproteins) such as the elastases LasA and LasB, which cleave the connective tissue protein elastin and the immune modulator surfactant protein D [69]. It also mutates into small-colony variants (SCVs), mucoid strains and forms impenetrable biofilms, which create a physical and chemical barrier against antimicrobial agents and the host immune system [70].

On exposure to *A. fumigatus*, alveolar macrophages recognise fungal surface antigens (galactomannan, β-d-glucan) through alveolar macrophage surface receptors such as Dectin-1 and Toll-like receptors. Recognition of *A. fumigatus* leads to production of proinflammatory cytokines through activation of the NF-kB and inflammasome pathways, triggering an influx of neutrophils, natural killer and T-cells to the site of infection. T-helper (Th) cells are differentiated into a predominant Th1 response with generation of tumour necrosis factor-α and interferon-γ.

A. fumigatus has a range of immune-evasion strategies to avoid clearance by the host protective responses, primarily through the release of secondary metabolites, including mycotoxins and, like *P. aeruginosa* it forms biofilms. Gliotoxin is the most abundant mycotoxin released by *A. fumigatus*, its action is through suppressing immune responses including NF-kB [71], macrophage phagocytosis [72], T-cell function [73] and neutrophil activation [74]. Furthermore, gliotoxin may impair the integrity of the epithelial cell wall and has been shown to kill lung epithelial cells *in vitro* [75].

Interactions between *P. aeruginosa* and *A. fumigatus*

Inhibition by *P. aeruginosa*

In CF, *P. aeruginosa* inhibits *A. fumigatus* through a range of different mechanisms and to a greater extent than in non-CF isolates [76]. The primary inhibitory mechanism is through the release of the virulence factors, phenazines. These include pyocyanin (PYO), phenazine-1-carboxamide, 1-hydroxyphenazine (1-HP) and phenazine-1-carboxylic acid (PCA), which promote *P. aeruginosa* growth and are toxic to surrounding bacteria, fungi and mammalian cells [77]. Phenazines inhibit the growth of *A. fumigatus* through the generation of reactive oxygen species (ROS) and reactive nitrogen species, which damage the mitochondrial ultrastructure of *A. fumigatus* hyphae [78]. In addition to causing oxidative stress to the lung, PYO is directly toxic to cilia, upregulates interleukin (IL)-8 activity, causes cellular senescence [78–82] and inactivates α1-antitrypsin, an important component of the endogenous antiprotease shield, contributing to protease/antiprotease imbalance within the lung. PYO is regulated by the *P. aeruginosa* quorum sensing (QS) system [77] and levels have been directly correlated with prognosis [83] and frequency of pulmonary exacerbations [84].

The QS system allows bacteria to sense each other and to regulate physiological activities such as virulence, motility and biofilm formation through small diffusible signalling molecules, which modulate the pathogenicity of microorganisms found in the CF respiratory tract. The role of the QS in *A. fumigatus* inhibition was demonstrated recently by Sass et al. [85] in *P. aeruginosa* QS knockout strains, showing that *A. fumigatus* growth was significantly higher than when in direct co-culture with wild-type *P. aeruginosa* and inhibition was demonstrated recently by SASS by *P. aeruginosa* via QS. Furthermore, the viability of conidia and *A. fumigatus* biofilm mass was reduced by diffusible and heat-soluble molecules released by *P. aeruginosa*, which are structurally similar to QS molecules[86], though the effect was less pronounced in established mixed-species biofilms [80, 85, 86].

The QS system also controls the production of the *P. aeruginosa* virulence molecules, rhamnolipids. These induce *A. fumigatus* production of an extracellular matrix that inhibits *A. fumigatus* growth by altering cell wall architecture [87]. *P. aeruginosa* also secrete the interkingdom signalling molecules alkylhydroxyquinolones [88], produced in response to increasing density of bacterial cells, which influence gene expression, phenazine secretion [80] and have been shown to disrupt *A. fumigatus* biofilm integrity [88].

In addition to intermicrobial signals and the release of redox-active toxins, nutrient competition is a further mechanism of *P. aeruginosa* inhibition of *A. fumigatus* growth. Iron is a central micronutrient for the survival of both *P. aeruginosa* and *A. fumigatus*, with a particular role in biofilm formation [89]. *P. aeruginosa* produces the siderophore, pyoverdine [90], which captures iron from the environment and stores it. Through iron deprivation, pyoverdine has a substantial antifungal activity [78, 85, 86]. Sass et al. [90] have shown that *P. aeruginosa* mutants lacking pyoverdine have less inhibitory capacity for *A. fumigatus* growth, indicating the importance of pyoverdine as a means of *A. fumigatus* inhibition.
Similarly, the production of siderophores has also been shown to be increased in the presence of other competing bacterial organisms, including S. aureus [91] and Burkholderia spp. [92]. Denial of iron to A. fumigatus is also the mechanism of inhibition by the P. aeruginosa-produced bacteriophage Pf4 [93]. This endogenous phage inhibits the metabolic activity of A. fumigatus biofilms and was more pronounced against preformed A. fumigatus biofilm rather than biofilm formation, while conidial growth was unaffected. The authors also demonstrated that the inhibition of A. fumigatus metabolism by Pf4 could be overcome with supplemental ferric iron, again demonstrating the central role this micronutrient in bacterial–fungal competition.

Reciprocal antagonism by A. fumigatus
Despite a range of antagonistic mechanisms and fungicidal properties of P. aeruginosa, A. fumigatus manages to survive in CF airways in close proximity to P. aeruginosa within the shared ecosystem of the CF airways. Investigation of the antifungal properties of P. aeruginosa has shown that P. aeruginosa clinical isolates fail to completely inhibit A. fumigatus [85, 94]. These findings illustrate that A. fumigatus has the ability to counteract antagonistic actions of P. aeruginosa and that the relationship may shift between antagonism and cooperation.

Variation in the inhibitory capacity of P. aeruginosa has been demonstrated though several studies. Mowat et al. [86] showed that once filamentous A. fumigatus biofilms have been produced, the inhibitory capacity of P. aeruginosa is significantly restricted through small diffusible and heat stable molecules. The antifungal capacity of P. aeruginosa also diminishes as A. fumigatus condita transition into hyphae as their walls become impermeable to P. aeruginosa metabolites and the antibacterial mycotoxin, gliotoxin, is released [72, 95, 96]. This was demonstrated in the Galleria mellonella infection model, indicating that P. aeruginosa and A. fumigatus exert mutual antagonism within shared biofilms [96].

As a further line of defence against the antifungal effects of P. aeruginosa, A. fumigatus produces its own siderophores, allowing it to preserve iron, a vital capability for survival in iron-scarce conditions, such as during pulmonary exacerbations or advanced lung disease. The central role of these siderophores was confirmed using A. fumigatus mutant strains lacking the SidA gene, which exhibited less capacity to preserve A. fumigatus biofilms than A. fumigatus wild type when exposed to the toxic phenotype pyoverdine [90].

Toxic phenazines produced by P. aeruginosa, inhibit A. fumigatus in high concentrations through production of reactive oxygen and nitrogen species; however, concentrations of PYO and PCA occur in the range of 1–100 µM in CF sputum samples, these concentrations have been demonstrated to be to be subinhibitory to A. fumigatus [78]. Furthermore, in the presence of low concentrations of phenazines in CF airways, iron bioavailability is enhanced, thereby sustaining A. fumigatus biofilms. A. fumigatus has also been shown to have the ability to bio-transform phenazines into alternative forms with more favourable properties, including PCA conversion to 1-HP, which induces A. fumigatus siderophore production [80]. These findings demonstrate the complex interplay between these organisms and how A. fumigatus has mechanisms to evade antagonism by P. aeruginosa.

Cooperation
The antagonistic and counter-antagonistic mechanisms enable both organisms to coexist; however, beyond tolerance of each other, cooperative, virulence-enhancing effects have also been demonstrated. As A. fumigatus infection is found in many CF patients following P. aeruginosa infection [97], it is likely that P. aeruginosa facilitates the establishment and growth of A. fumigatus. As described, one mechanism facilitating this is the sub-bacteriostatic airway concentrations of phenazines, which induce A. fumigatus growth through increasing iron bioavailability [78].

Volatile organic compounds released by P. aeruginosa can communicate at a distance with A. fumigatus, without direct contact with the effect of promoting fungal growth [98]. The compound dimethyl sulphide mediates this effect through communication in the gas phase, thus P. aeruginosa may create an environment which is conducive to inhabitation by A. fumigatus and precipitate fungal growth once infection is established. It has been shown that the phenazine 1-HP is able to chelate iron [78] thereby contributing to iron starvation in A. fumigatus. However, it has also been shown that the iron chelating activity of 1-HP induces the transcription of genes for adaptation to iron starvation in A. fumigatus, demonstrating the adaptive capability of A. fumigatus in the presence of P. aeruginosa [78, 99].

P. aeruginosa also gains from the presence of A. fumigatus. In the Galleria mellonella insect model, Rice et al. [96] showed that P. aeruginosa had enhanced killing capacity when pre-exposed to A. fumigatus larvae. Within in vitro-mixed P. aeruginosa and A. fumigatus biofilms, P. aeruginosa displayed increased antimicrobial resistance, when compared to P. aeruginosa in monomicrobial biofilms, likely due to altered permeability of the biofilm extracellular matrix, however the same was not observed of A. fumigatus.
antifungal susceptibility, which showed no difference between mixed and monomicrobial biofilms [100]. This work indicates that co-presence of *A. fumigatus* may accelerate phenotypic adaptations and genetic mutations in *P. aeruginosa*, thereby enhancing virulence of the organism.

Relationship dynamics over time and disease course

As we have described, the relationship between *P. aeruginosa* and *A. fumigatus* is complex with potential for both inhibitory and cooperative interactions (figure 1). Mutual antagonism allows each organism to coexist despite the hostile conditions of the CF airways, theoretically maintaining balance by preventing proliferation of either organism. However, in a cooperative state, enhanced virulence of these organisms may contribute to disease progression.

The factors influencing shifts between antagonism and cooperation in the co-infection state are not clear. Severity of CF lung disease may be one of the factors determining the nature of species interaction. In hypoxic, anaerobic conditions, the inhibitory effect of phenazines on both planktonic and biofilm forms of *A. fumigatus* is diminished [101]. Regional ventilation inhomogeneity exists in the CF lung where mucus impaction and bronchiectasis occur. These findings indicate that advancing lung disease or pulmonary exacerbation may favour *A. fumigatus* growth. A further example of the variation of inhibition in different infection stage was demonstrated in *P. aeruginosa* SCVs, which showed variation in inhibitory capacity towards *A. fumigatus* which is directly related to levels of pyoverdine production [102].

FIGURE 1 Interactions between *Pseudomonas aeruginosa* and *Aspergillus fumigatus*. Inhibition is shown by red arrows. 1) Phenazines inhibit *A. fumigatus* growth through generation of reactive oxygen and nitrogen species (ROS and RNS, respectively) which damage *A. fumigatus* mitochondrial ultrastructure. 2) Pyoverdine and bacteriophage Pf4. 3) *P. aeruginosa* quorum sensing system (QS). 4) Phenazine 1-hydroxyphenazine (1-HP) chelates iron, contributing to *A. fumigatus* iron deprivation. 5) *A. fumigatus* siderophores compete with *P. aeruginosa* siderophores for iron. 6) Gliotoxin (GT), a primary mycotoxin released by *A. fumigatus*. Regulation is shown by black arrow. 7) QS signalling controls phenazine release. Stimulation is shown by green arrows. 8) Subinhibitory phenazine levels promote *A. fumigatus* iron availability. 9) Volatile organic compounds (VOCs) released by *P. aeruginosa* stimulate *A. fumigatus* growth. 10) *P. aeruginosa* phenotypic adaptations influenced by *A. fumigatus*, including antimicrobial resistance (AMR). PYO: pyocyanin; PCA: phenazine-1-carboxylic acid; PCN: phenazine-1-carboxamide; AHQ: alkylhydroxyquinolones; RHL: rhamnolipids.

https://doi.org/10.1183/16000617.0011-2020
The nature of the interspecies relationship may also vary between planktonic and biofilm forms of infection. This was demonstrated through the finding that pyoverdine production by *P. aeruginosa* in biofilms is higher than in the planktonic state [76, 103]. However, several studies have demonstrated that while *P. aeruginosa* can inhibit *A. fumigatus* biofilm formation, its inhibition is rather ineffective on established biofilms [76, 86]. In monomicrobial *A. fumigatus* biofilms, metabolic activity of the fungus progressively wanes as germinating conidia transition to hyphae and form mature filamentous biofilms [86]. This lower metabolic state desensitises *A. fumigatus* to *P. aeruginosa* phenazines, whose action is concentrated in metabolically active sites. Other conditions including host immunity, comorbidity and exogenous factors, such as the use of antibiotics or corticosteroids, may influence interspecies interaction; however, these factors have yet to be evaluated.

Host immunity and inflammation

It is known that co-infection with *P. aeruginosa* and *S. aureus* has an additive effect on endobronchial inflammation. Furthermore, an intensifying degree of inflammation has been observed with rising number of species in polymicrobial infections [104]. However, effects of cross-kingdom polymicrobial infection on airway inflammation have not been examined. Although ineffective clearance of bacterial pathogens by CFTR defective phagocytes and other immune mechanisms have been well demonstrated [39, 40, 105], only a few studies have examined the immune responses of CFTR defective immune cells to *A. fumigatus* and other fungal pathogens [38, 106, 107].

Individually, both *P. aeruginosa* and *A. fumigatus*, are capable of inducing proinflammatory responses in the lung epithelium. Inhaled conidia can be cleared without evoking any immune response; however, in the transition into hyphae, proinflammatory cell surface constituents promote phagocyte activity [108]. This was demonstrated in a CF mouse model where *A. fumigatus* elicited hyperinflammatory responses in airway epithelial cells [107], with elevated percentages of macrophages, neutrophils and neutrophilic chemokines in BAL fluid within 24 h of exposure of CFTR$^{−/-}$ mutants to conidia. Furthermore, in that study, CFTR$^{−/-}$ mice were unable to effectively clear conidia by 6 h, in contrast to the complete clearance by wild-type mice. Further murine models have demonstrated release of IL-1β, exaggerated neutrophil response [66], and profound Th2 hyperinflammatory response to *A. fumigatus* antigens [109]. These findings illustrate the proinflammatory effects and dysregulated immune responses in response to *A. fumigatus*, and the effects of impaired innate antifungal immunity in Aspergillus infections in CF.

There is an intense, neutrophilic inflammation present in CF airways with abundant degranulating neutrophils overwhelming endogenous antiprotease mechanisms, thus causing a protease–antiprotease imbalance [110]. It has been shown that *A. fumigatus* enhances the production of *P. aeruginosa* cytotoxic elastase, adding to this imbalance and causing direct epithelial damage, mucociliary and CFTR dysfunction [111, 112]. However, REECE et al. [96] did not find elevation of IL-6 and IL-8 levels in co-cultures, compared to infection with *P. aeruginosa* alone, possibly related to the effect of mutual antagonism, suppression of immune responses by organisms or saturated pathways for cytokine production.

It has recently been shown that the fungal recognition receptor Dectin-1 is cleaved by elastase in BAL fluid, leading to under-detection of the arrival of fungal pathogens in the lung [113]. This work indicates for the first time that neutrophil derived proteases lead to *A. fumigatus* persistence and infection through inactivation of fungal receptors; the effects of other proteases has not been examined.

With clear inflammatory implications and likely contribution to protease–antiprotease imbalance, examination of inflammatory effects and a better understanding of the innate immune responses is needed to better understand how these pathogens and their interaction influence disease progression.

Should we treat *A. fumigatus* in coinfected patients?

Combined antimicrobial and antifungal treatment in patients chronically coinfected with *P. aeruginosa* and *A. fumigatus* has not been evaluated in clinical trials. BAXTER et al. [114] showed that the use of short-term i.v. antibiotics, administered during pulmonary exacerbation to target *P. aeruginosa*, reduced the quantities of both *P. aeruginosa* and *A. fumigatus* isolated in sputum at the end of treatment by PCR. The reason for this is unclear; however, the authors postulate that *P. aeruginosa* biofilms may protect and sustain *A. fumigatus* from host immunity and in provision of nutrients.

The benefits of use of antifungal therapies in *A. fumigatus* disease is unclear due to insufficient existing research. There is a single randomised controlled trial that evaluates the effect of eradicaton of *A. fumigatus* in 35 chronically infected patients with 24 weeks of itraconazole or placebo. The study found no improvement in frequency of pulmonary exacerbations or FEV$_1$ [115], which supports a conservative clinical management strategy. However, a major flaw of this study was failure to achieve therapeutic antifungal levels in the majority of patients.
Three further studies, all case-series or cohort studies without randomisation, have evaluated the effect of different azoles in CF patients chronically colonised with *A. fumigatus*. The first included a small number of people with CF with chronic *A. fumigatus* in their sputum (without serological evidence of ABPA) treated with voriconazole for a median of 22 weeks. There was no change in FEV$_1$ following antifungal treatment and serum drug levels were not tested in any of the patients [116]. In contrast to the above findings, two small studies using posaconazole [117] and itraconazole [118] showed that eradication of *A. fumigatus* in chronically colonised patients resulted in fewer pulmonary exacerbations, improved respiratory symptoms, lung function and in one study improvements were seen on HRCT [118].

The effect of treatment in *Aspergillus*-sensitised and *Aspergillus* bronchitis patients has received even less attention. Two small studies have evaluated the effect of antifungal therapy in *Aspergillus* bronchitis patients [48, 119]; both showed improved respiratory symptoms and improvement in lung function. In *Aspergillus*-sensitised patients, KANTHAN et al. [120] retrospectively compared two cohorts of sensitised children; the second cohort, who received more antifungal treatment had higher FEV$_1$ than the second cohort. However, this was a low-quality study comparing groups of patients from different time-points with variable rates of ABPA between the two cohorts. Even within ABPA, the role of antifungal therapy is unclear with variations in clinical practice amongst clinicians [52]. A systematic review of antifungal treatment in ABPA including four randomised controlled trials, showed that symptoms, frequency of pulmonary exacerbations and lung function all improved with antifungal treatment [121]. However, adverse effects were common, therefore recommendations for use of antifungals in ABPA is classed as “weak” by the British Society for Allergy and Clinical Immunology.

In the absence of clear data on the effectiveness, safety and tolerability of antifungal therapies in chronically infected patients and across the different *Aspergillus* phenotypes, clinicians have to weigh up the potential treatment gains against the significant and well-documented adverse effects of long-term treatment, including toxicity, drug interactions and the emerging issue ofazole resistance. Furthermore, to warrant such treatment, clinicians need to be certain about the clinical implications of *A. fumigatus* colonisation. Those coinfected with *A. fumigatus* and *P. aeruginosa* represent a particular subgroup of patients in whom complex mechanistic interactions appear to confer a worse disease state, in whom targeted antifungal treatment is likely to be beneficial.

Going forward, there is a need for robust longitudinal data and identification of biomarkers to separate “harmless” colonisation from those which have active *Aspergillus* infection. This needs to be followed by robust therapeutic antifungal trials to determine the optimal antifungal treatment across different subsets of patients (i.e. those with *Aspergillus* colonisation, bronchitis and sensitisation). Novel treatment strategies must also be evaluated, which may obviate the need for prolonged toxic antifungal treatment, including anti-inflammatory treatments and immunotherapeutic approaches. Although evaluation of a range of different anti-inflammatory therapies is ongoing in CF, in-depth characterisation of the inflammatory implications of this co-infection may identify potential pathways for targeted anti-inflammatory treatments. Recent preclinical evaluation of anakinra, the IL-1-receptor antagonist has shown potential in reducing inflammation through inhibition of IL-1b and correction of dysregulated inflammasome responses [66]. Finally, the effects of CFTR modulator treatments on polymicrobial infections warrants close evaluation, as a reduction in fungal colonisation has been observed following ivacaftor treatment in patients with G551D [122], likely due to complete or partial restoration of CFTR function in innate immune cells.

Conclusion

It is clear that *P. aeruginosa* and *A. fumigatus* interact through a range of mechanisms, producing a variably competitive and cooperative relationship, enabling organisms to coexist and thrive in a shared habitat. However, there are many gaps in our understanding of how this relationship evolves over time and disease state and crucially, the clinical implications of this interaction. There is an urgent need for standardisation of terminology, definitions and culture techniques in relation to fungal infection in CF, to enable robust longitudinal studies to be performed and to explore novel therapeutic strategies. Furthermore, clinically accessible biomarkers are needed to identify those most significantly affected by direct targeted treatment in co-colonised patients.

Conflict of interest: None declared.

References

1. Rowe SM, Heltshe SL, Gonska T, et al. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. *Am J Respir Crit Care Med* 2014; 190: 175–184.
2. Bernarde C, Keravec M, Mounier J, et al. Impact of the CFTR-potentiatior ivacaftor on airway microbiota in cystic fibrosis patients carrying a G551D mutation. *PLoS One* 2015; 10: e0124124.
Brody A, Nagle S, Hug C, et al. S93 Effect of lumacaftor/ivacaftor on total, bronchiectasis, and air trapping computed tomography (CT) scores in children homozygous for 508del-cfr: exploratory imaging substudy. *Thorax* 2017; 72: A57.

Sawicki GS, McKone EF, Pasta DJ, et al. Sustained benefit from ivacaftor demonstrated by combining clinical trial and cystic fibrosis patient registry data. *Am J Respir Crit Care Med* 2015; 192: 836–842.

Fodor AA, Klem ER, Gilpin DF, et al. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations. *PLoS One* 2012; 7: e45001.

Cox MJ, Allgayer M, Taylor B, et al. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients. *PLoS One* 2010; 5: e11044.

Lim YW, Evangelista JS 3rd, Schmieder R, et al. Clinical insights from metagenomic analysis of sputum samples from patients with cystic fibrosis. *J Clin Microbiol* 2014; 52: 425–437.

Coman I, Bilodeau I, Lavoie A, et al. *Ralstonia mannitolilytica* in cystic fibrosis: a new predictor of worse outcomes. *Respir Med Case Rep* 2016; 20: 48–50.

Boutin S, Graeber SY, Weitnauer M, et al. Comparison of microbiomes from different niches of upper and lower airways in children and adolescents with cystic fibrosis. *PLoS One* 2015; 10: e0116029.

Gomez MI, Prince A. Opportunistic infections in lung disease: *Pseudomonas* infections in cystic fibrosis. *Curr Opin Pharmacol* 2007; 7: 244–251.

DeVault JD, Kimbara K, Chakraborty AM. Pulmonary dehydration and infection in cystic fibrosis: evidence that ethanol activates alginate gene expression and induction of mucoidy in *Pseudomonas aeruginosa*. *Mol Microbiol* 1990; 4: 737–745.

Armbruster CR, Wolter DJ, Mishra M, et al. *Staphylococcus aureus* protein a mediates interspecies interactions at the cell surface of *Pseudomonas aeruginosa*. *mBio* 2016; 7: e00538.

Duan K, Dammel C, Stein J, et al. Modulation of *Pseudomonas aeruginosa* virulence by host microflora through interspecies communication. *Mol Microbiol* 2003; 50: 1477–1491.

Korogaonkar A, Trivedi U, Rumbaugh KP, et al. Community surveillance enhances *Pseudomonas aeruginosa* virulence during polymicrobial infection. *Proc Natl Acad Sci USA* 2013; 110(29): 10597–10604.

Costello A, Reen FJ, O’Gara F, et al. Inhibition of co-colonizing cystic fibrosis-associated pathogens by *Pseudomonas aeruginosa* and *Burkholderia multivorans*. *Microbiology (Reading, Engl)* 2014; 160: 1474–1487.

Brand A, Barnes JD, Mackenzie KS, et al. Cell wall glycans and soluble factors determine the interactions between the hypheae of *Candida albicans* and *Pseudomonas aeruginosa*. *FEMS Microbiol Lett* 2008; 287: 48–55.

Kaur J, Pethani BP, Kumar S, et al. *Pseudomonas aeruginosa* inhibits the growth of *Scedosporium aurantiacum*, an opportunistic fungal pathogen isolated from the lungs of cystic fibrosis patients. *Front Microbiol* 2015; 6: 686.

Chotirmall SH, Mirkovic B, Lavelle GM, et al. Immunovaccine *Aspergillus* virulence factors. *Mycopathologia* 2014; 178: 363–370.

Nagano Y, Millar BC, Johnson E, et al. Fungal infections in patients with cystic fibrosis. *Rev Med Microbiol* 2007; 18: 11–16.

Pieth M, Carrere J, Cimon B, et al. Occurrence and relevance of filamentous fungi in respiratory secretions of patients with cystic fibrosis—a review. *Med Mycol* 2009; 47: 387–397.

Hauser AR, Jain M, Bar-Meir M, et al. Clinical significance of microbial infection and adaptation in cystic fibrosis. *Clin Microbiol Rev* 2011; 24: 29–70.

Lyczak JB, Cannon CL, Pier GB. Lung infections associated with cystic fibrosis. *Clin Microbiol Rev* 2002; 15: 194–222.

Hart CA, Winstanley C, Persistent and aggressive bacteria in the lungs of cystic fibrosis children. *Br Med Bull* 2002; 61: 81–96.

Emerson J, Rosenfeld M, McNamara S, et al. *Pseudomonas aeruginosa* and other predictors of mortality and morbidity in young children with cystic fibrosis. *Pediatr Pulmonol* 2002; 34: 91–100.

Amin R, Dupuis A, Aaron SD, et al. The effect of chronic infection with *Aspergillus fumigatus* on lung function and hospitalization in patients with cystic fibrosis. *Chest* 2010; 137: 171–176.

Skov M, McKay K, Koch C, et al. Prevalence of allergic bronchopulmonary aspergillosis in cystic fibrosis in an area with a high frequency of atopy. *Respir Med* 2005; 99: 887–893.

Stevens DA, Cross BB, Kurup VP, et al. Allergic bronchopulmonary aspergillosis in cystic fibrosis—state of the art: Cystic Fibrosis Foundation Consensus Conference. *Clin Infect Dis* 2003; 37: Suppl. 3, S225–S264.

Becker JW, Burke W, McDonald G, et al. Prevalence of allergic bronchopulmonary aspergillosis and atopy in adult patients with cystic fibrosis. *Chest* 1996; 109: 1536–1540.

Fillaux J, Bremont F, Murris M, et al. Aspergillus sensitization or carriage in cystic fibrosis patients. *Pediatr Infect Dis J* 2014; 33: 680–686.

Burns JL, Van Dalsen JM, Shawar RM, et al. Effect of chronic intermittent administration of inhaled tobramycin on respiratory microbial flora in patients with cystic fibrosis. *J Infect Dis* 1999; 179: 1190–1196.

Hodson ME, Gallagher CG, Govan JRW. A randomised clinical trial of nebulised tobramycin or colistin in cystic fibrosis. *Eur Respir J* 2002; 20: 658–664.

Harun SN, Holford NHG, Grimwood K, et al. *Pseudomonas aeruginosa* eradication therapy and risk of acquiring *Aspergillus* in young children with cystic fibrosis. *Thorax* 2019; 74: 740–748.

Borman AM, Palmer MD, Delhaes L, et al. Lack of standardization in the procedures for mycological examination of sputum samples from CF patients: a possible cause for variations in the prevalence of filamentous fungi. *Med Mycol* 2010; 48: Suppl. 1, S88–S97.

Nagano Y, Elborn JS, Millar BC, et al. Comparison of techniques to examine the diversity of fungi in adult patients with cystic fibrosis. *Med Mycol* 2010; 48: 166–176.

Schelenz S, Owens K, Guy R, et al. National mycology laboratory diagnostic capacity for invasive fungal diseases in 2017: evidence of sub-optimal practice. *J Infect* 2019; 79: 167–177.

Reece E, Segurado R, Jackson A, et al. Co-colonisation with *Aspergillus fumigatus* and *Pseudomonas aeruginosa* is associated with poorer health in cystic fibrosis patients: an Irish registry analysis. *BMC Pulm Med* 2017; 17: 70.

Zhao J, Cheng W, He X, et al. The co-colonization prevalence of *Pseudomonas aeruginosa* and *Aspergillus fumigatus* in cystic fibrosis: a systematic review and meta-analysis. *Microb Pathog* 2018; 125: 122–128.
Inhibition of fungal growth by Penner JC, Ferreira JA, Secor PR, Harrison F, Paul J, Massey RC, Weaver VB, Kolter R, Kim SH, Clark ST, Surendra A, Briard B, Bomme P, Lechner BE, Geissler A, Haun F, Frank DO, et al. Apoptosis induced by the fungal pathogen gliotoxin requires a triple phosphorylation of Bim by JNK. Cell Death Differ 2013; 20: 1317–1329.

Ferreira JA, Penner JC, Moss RB, et al. Inhibition of Aspergillus fumigatus and its biofilm by Pseudomonas aeruginosa is dependent on the source, phenotype and growth conditions of the bacterium. PLoS One 2015; 10: e0134692.

Dietrich LE, Price-Whelan A, Petersen A, et al. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 2006; 61: 1308–1321.

Briard B, Bomme P, Lechner BE, et al. Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci Rep 2015; 5: 8220.

Kerr JR, Taylor GW, Rutman A, et al. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. J Clin Pathol 1999; 52: 385–387.

Moree WJ, Phelan VV, Wu C-H, et al. Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc Natl Acad Sci USA 2012; 109: 13811.

O’Malley YQ, Abdalla MY, McCormick ML, et al. Subcellular localization of Pseudomonas pyocyanin cytotoxicity in human lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 284: L420–L430.

Muller M. Premature cellular senescence induced by pyocyanin, a redox-active Pseudomonas aeruginosa toxin. Free Radic Biol Med 2006; 41: 1670–1677.

Hunter RC, Klepac-Ceraj V, Lorenzi MM, et al. Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity. Am J Respir Cell Mol Biol 2012; 47: 738–745.

Fothergill JL, Mowat E, Ledson MJ, et al. Fluctuations in phenotypes and genotypes within populations of Pseudomonas aeruginosa in the cystic fibrosis lung during pulmonary exacerbations. J Med Microbiol 2010; 59: 472–481.

Sass G, Nazik H, Penner J, et al. Aspergillus-Pseudomonas interaction, relevant to competition in airways. Med Mycol 2019; 57: S228–S232.

Mowat E, Rajendran R, Williams C, et al. Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. FEMS Microbiol Lett 2010; 313: 96–102.

Briard B, Rasoldier V, Bomme P, et al. Dihannomolipid secreted from Pseudomonas aeruginosa modify anipungal susceptibility of Aspergillus fumigatus by inhibiting beta,3 glucan synthase activity. ISME J 2017; 11: 1578–1591.

Reen FJ, Phelan JP, Woods DF, et al. Harnessing bacterial signals for suppression of biofilm formation in the nosocomial fungal pathogen Aspergillus fumigatus. Front Microbiol 2016; 7: 2074–2074.

Kim SH, Clark ST, Surendra A, et al. Global analysis of the fungal microbiome in cystic fibrosis patients reveals loss of function of the transcriptional repressor Nrg1 as a mechanism of pathogen adaptation. PLoS Pathog 2015; 11: e1005308.

Sass G, Ansari SR, Dietl AM, et al. Intermicrobial interaction: Aspergillus fumigatus siderophores protect against competition by Pseudomonas aeruginosa. PLoS One 2019; 14: e0216085.

Harrison F, Paul J, Massey RC, et al. Interspecific competition and siderophore-mediated cooperation in Pseudomonas aeruginosa. ISME J 2008; 2: 49–55.

Weaver VB, Kolter R. Burkholderia spp. alter Pseudomonas aeruginosa physiology through iron sequestration. J Bacteriol 2004; 186: 2376–2384.

Penner JC, Ferreira JA, Secor PR, et al. P44 bacteriophage produced by Pseudomonas aeruginosa inhibits Aspergillus fumigatus metabolism via iron sequestration. Microbiology (Reading) 2016; 1583–1594.

Kerr J. Inhibition of fungal growth by Pseudomonas aeruginosa and Pseudomonas cepacia isolated from patients with cystic fibrosis. J Infect 1994; 28: 305–310.

Sutton P, Newcombe NR, Waring P, et al. In vivo immunosuppressive activity of gliotoxin, a metabolite produced by human pathogenic fungi. Infect Immun 1994; 62: 1192–1198.

Reece E, Doyle S, Greally P, et al. Aspergillus fumigatus inhibits Pseudomonas aeruginosa in co-culture: implications of a mutually antagonistic relationship on virulence and inflammation in the CF airway. Front Microbiol 2018; 9: 1–14.

Paugam A, Baichen M-T, Demazes-Dufeu N, et al. Characteristics and consequences of airway colonization by filamentous fungi in 201 adult patients with cystic fibrosis in France. Med Mycol 2010; 48: S32–S36.

Briard B, Hedegott C, Latge JP. Volatile compounds emitted by Pseudomonas aeruginosa stimulate growth of the fungal pathogen Aspergillus fumigatus. mBio 2016; 7: e00219-16.

Phelan VV, Moree WJ, Aguilar J, et al. Impact of a transposon insertion in phzF2 on the specialized metabolite production and interkingdom interactions of Pseudomonas aeruginosa. J Bacterial 2014; 196: 1683–1693.

Manavathu EK, Vager DL, Vazquez JA. Development and antimicrobial susceptibility studies of in vitro monomicrobial and polymicrobial biofilm models with Aspergillus fumigatus and Pseudomonas aeruginosa. BMC Microbiol 2014; 14: 53–53.

Anand R, Clemens KV, Stevens DA. Effect of anaerobiosis or hypoxia on Pseudomonas aeruginosa inhibition of Aspergillus fumigatus biofilm. Arch Microbiol 2017; 199: 881–890.

Anand R, Moss RB, Sass G, et al. Small colony variants of Pseudomonas aeruginosa display heterogeneity in inhibiting Aspergillus fumigatus biofilm. Mycopathologia 2018; 183: 263–272.

Visaggio D, Pasqua M, Bonchi C, et al. Cell aggregation promotes pyoverdine-dependent iron uptake and virulence in Pseudomonas aeruginosa. Front Microbiol 2015; 6: 902–902.

Sagel SD, Gibson RL, Emerson J, et al. Impact of Pseudomonas and Staphylococcus infection on inflammation and clinical status in young children with cystic fibrosis. J Pediatr 2009; 154: 183–188.

Bruscia EM, Zhang PX, Satoh A, et al. Abnormal trafficking and degradation of TLR4 underlie the elevated inflammatory response in cystic fibrosis. J Immunol 2011; 186: 6990–6998.

Warris A, Bercusson A, Armstrong-James D. Aspergillus colonization and antifungal immunity in cystic fibrosis patients. Med Mycol 2019; 57: S118–S126.

Chaudhary N, Datta K, Askin FB, et al. Cystic fibrosis transmembrane conductance regulator regulates epithelial cell response to Aspergillus and resultant pulmonary inflammation. Am J Respir Crit Care Med 2012; 185: 301–310.
108 Goodridge HS, Wolf AJ, Underhill DM. Beta-glucan recognition by the innate immune system. *Immunol Rev* 2009; 230: 38–50.

109 Allard JB, Poynter ME, Marr KA, *et al.* *Aspergillus fumigatus* generates an enhanced Th2-biased immune response in mice with defective cystic fibrosis transmembrane conductance regulator. *J Immunol* 2006; 177: 5186–5194.

110 Twigg MS, Brockbank S, Lowry P, *et al.* The role of serine proteases and antiproteases in the cystic fibrosis lung. *Mediators Inflamm* 2015; 2015: 1–10.

111 Amitani R, Wilson R, Rutman A, *et al.* Effects of human neutrophil elastase and *Pseudomonas aeruginosa* proteinases on human respiratory epithelium. *Am J Respir Cell Mol Biol* 1991; 4: 26–32.

112 Smith K, Rajendran R, Kerr S, *et al.* *Aspergillus fumigatus* enhances elastase production in *Pseudomonas aeruginosa* co-cultures. *Med Mycol* 2015; 53: 645–655.

113 Griffiths JS, Thompson A, Stott M, *et al.* Differential susceptibility of Dectin-1 isoforms to functional inactivation by neutrophil and fungal proteases. *FASEB J* 2018; 32: 3385–3397.

114 Baxter CG, Rautemaa R, Jones AM, *et al.* Intravenous antibiotics reduce the presence of *Aspergillus* in adult cystic fibrosis sputum. *Thorax* 2013; 68: 652–657.

115 Aaron SD, Vandemheen KL, Freitag A, *et al.* Treatment of *Aspergillus fumigatus* in patients with cystic fibrosis: a randomized, placebo-controlled pilot study. *PLoS One* 2012; 7: 1–7.

116 Hilliard T, Edwards S, Buchdahl R, *et al.* Voriconazole therapy in children with cystic fibrosis. *J Cyst Fibros* 2005; 4: 215–220.

117 Patel D, Popple S, Claydon A, *et al.* Posaconazole therapy in children with cystic fibrosis and *Aspergillus*-related lung disease. *Med Mycol* 2019; 58: 11–21.

118 Coughlan CA, Chotirmall SH, Renwick J, *et al.* The effect of *Aspergillus fumigatus* infection on vitamin D receptor expression in cystic fibrosis. *Am J Respir Crit Care Med* 2012; 186: 999–1007.

119 Brandt C, Roehmel J, Rickerts V, *et al.* *Aspergillus* bronchitis in patients with cystic fibrosis. *Mycopathologia* 2018; 183: 61–69.

120 Kantham SK, Bush A, Kemp M, *et al.* Factors affecting impact of *Aspergillus fumigatus* sensitization in cystic fibrosis. *Pediatr Pulmonol* 2007; 42: 785–793.

121 Moreira AS, Silva D, Ferreira AR, *et al.* Antifungal treatment in allergic bronchopulmonary aspergillosis with and without cystic fibrosis: a systematic review. *Clin Exp Allergy* 2014; 44: 1210–1227.

122 Heltshe SL, Mayer-Hamblett N, Burns JL, *et al.* *Pseudomonas aeruginosa* in cystic fibrosis patients with G551D-CFTR treated with ivacaftor. *Clin Infect Dis* 2015; 60: 703–712.