AN ANALOGUE OF COWLING-PRICE’S THEOREM FOR THE
Q-FOURIER-DUNKL TRANSFORM

Azzedine Achak, Radouan Daheh, Najat Safouane and El Mehdi Loualid

Abstract. The Q-Fourier-Dunkl transform satisfies some uncertainty principles in a similar way to the Euclidean Fourier transform. By using the heat kernel associated to the Q-Fourier-Dunkl operator, we have established an analogue of Cowling-Price, Miyachi and Morgan theorems on \mathbb{R} by using the heat kernel associated to the Q-Fourier-Dunkl transform.

Keywords: Cowling-Price’s theorem; Miyachi’s theorem; Uncertainty Principles; Q-Fourier-Dunkl transform.

1. Introduction

There are many theorems which state that a function and its classical Fourier transform on \mathbb{R} cannot simultaneously be very small at infinity. This principle has several versions which were proved by M.G. Cowling and J.F. Price [3] and Miyachi [6]. In this paper, we will study an analogue of Cowling-Price’s theorem and Miyachi’s theorem for the Q-Fourier-Dunkl transform. Many authors have established the analogous of Cowling-Price’s theorem in other various setting of harmonic analysis (see for instance [5]) The outline of the content of this paper is as follows. Section 2 is dedicated to some properties and results concerning the Q-Fourier-Dunkl transform. In Section 3 we give an analogue of Cowling-Price’s theorem, Miyachi’s theorem, and Morgan’s theorem for the Q-Fourier-Dunkl transform. Let us now be more precise and describe our results. To do so, we need to introduce some notations. Throughout this paper $\alpha > -\frac{1}{2}$. Notice that if $\alpha = -\frac{1}{2}$ then the space is the classical Lebesgue one, we can follow in this case the procedures for similar transforms, such as the Fourier transform (see for example [3, 6]).

\begin{equation}
Q(x) = \exp\left(-\int_0^x q(t)dt\right), \quad x \in \mathbb{R}
\end{equation}

Received January 06, 2018; accepted March 18, 2019

2010 Mathematics Subject Classification. Primary 42A38; Secondary 44A35, 34B30
where q is a C^∞ real-valued odd function on \mathbb{R}.

- $L^p_\alpha(\mathbb{R})$ the class of measurable functions f on \mathbb{R} for which $\|f\|_{p,\alpha} < \infty$, where
 \[
 \|f\|_{p,\alpha} = \left(\int_{\mathbb{R}} |f(x)|^p |x|^{2\alpha+1} dx \right)^{\frac{1}{p}}, \quad \text{if} \quad 1 < p < \infty,
 \]
 and $\|f\|_{\infty,\alpha} = \|f\|_{\infty} = \text{esssup}_{x \in \mathbb{R}} |f(x)|$.

- $L^p_Q(\mathbb{R})$ the class of measurable functions f on \mathbb{R} for which $\|f\|_{p,Q} = \|Qf\|_{p,\alpha} < \infty$, where Q is given by (1.1).

We consider the first singular differential-difference operator Λ defined on \mathbb{R}
\[
\Lambda f(x) = f'(x) + \left(\alpha + \frac{1}{2} \right) \frac{f(x) - f(-x)}{x} + q(x)f(x) \tag{1.2}
\]
where q is a C^∞ real-valued odd function on \mathbb{R}. For $q = 0$ we regain the Dunkl operator Λ_α associated with reflection group \mathbb{Z}_2 on \mathbb{R} given by
\[
\Lambda_\alpha f(x) = f'(x) + \left(\alpha + \frac{1}{2} \right) \frac{f(x) - f(-x)}{x}.
\]

1.1. Q-Fourier-Dunkl Transform

The following statements are proved in [1]

Lemma 1.1. 1. For each $\lambda \in \mathbb{C}$, the differential-difference equation
\[
\Lambda u = i\lambda u, \quad u(0) = 1
\]
admits a unique C^∞ solution on \mathbb{R}, denoted by Ψ_λ, given by
\[
\Psi_\lambda(x) = Q(x)e_\alpha(i\lambda x), \tag{1.3}
\]
where e_α denotes the one-dimensional Dunkl kernel defined by
\[
e_\alpha(z) = j_\alpha(iz) + \frac{z}{2(\alpha + 1)} j_{\alpha+1}(z) \quad (z \in \mathbb{C}),
\]
and j_α being the normalized spherical Bessel function of index α given by
\[
j_\alpha(z) = \Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^n (z^2/4)^n}{n! \Gamma(n+\alpha+1)} \quad (z \in \mathbb{C}). \tag{1.4}
\]

2. For all $x \in \mathbb{R}$, $\lambda \in \mathbb{C}$ and $n = 0, 1, \ldots$ we have
\[
|\frac{\partial^n}{\partial \lambda^n} \Psi_\lambda(x)| \leq Q(x)|x|^n e^{\lambda|x|}. \tag{1.5}
\]
In particular
\[
|\Psi_\lambda(x)| \leq Q(x)e^{\lambda|x|}. \tag{1.6}
\]
3. For all $x \in \mathbb{R}$, $\lambda \in \mathbb{C}$, we have the Laplace type integral representation

$$\Psi_{\lambda}(x) = a_{\alpha} Q(x) \int_{-1}^{1} (1 - t^2)^{\alpha - \frac{1}{2}} (1 + t) e^{i\lambda xt} dt,$$

where $a_{\alpha} = \frac{2\Gamma(\alpha + 1)}{\sqrt{\pi} \Gamma(\alpha + \frac{1}{2})}$.

Definition 1.1. The Q-Fourier-Dunkl transform associated with Λ for a function in $L^1_Q(\mathbb{R})$ is defined by

$$F_Q(f)(\lambda) = \int_{\mathbb{R}} f(x) \Psi_{-\lambda}(x) x^{2\alpha + 1} dx.$$

Theorem 1.1.

1. Let $f \in L^1_Q(\mathbb{R})$ such that $F_Q(f) \in L^1(\mathbb{R})$. Then for almost all $x \in \mathbb{R}$ we have the inversion formula

$$f(x) (Q(x))^2 = m_{\alpha} \int_{\mathbb{R}} F_Q(f)(\lambda) \Psi_{\lambda}(x)|\lambda|^{2\alpha + 1} d\lambda,$$

where

$$m_{\alpha} = \frac{1}{2^{2(\alpha + 1)}(\Gamma(\alpha + 1))^2}.$$

2. For every $f \in L^2_Q(\mathbb{R})$, we have the Plancherel formula

$$\int_{\mathbb{R}} |f(x)|^2 (Q(x))^2 |x|^{2\alpha + 1} dx = m_{\alpha} \int_{\mathbb{R}} |F_Q(f)(\lambda)|^2 |\lambda|^{2\alpha + 1} d\lambda.$$

3. The Q-Fourier-Dunkl transform F_Q extends uniquely to an isometric isomorphism from $L^2_Q(\mathbb{R})$ onto $L^2(\mathbb{R})$.

The heat kernel $N(x,s)$, $x \in \mathbb{R}$, $s > 0$, associated with the Q-Fourier-Dunkl transform is given by

$$N(x,s) = m_{\alpha} \frac{e^{-\frac{x^2}{4s}}}{(2s)^{\alpha + \frac{1}{2}} Q(x)}.$$

Some basic properties of $N(x,s)$ are the following:

- $N(x,s) Q^2(x) = m_{\alpha} \int_{\mathbb{R}} e^{-sy^2} \Psi_{y}(x)|y|^{2\alpha + 1} dy$.
- $F_Q(N(.,s))(x) = e^{-sx^2}$.

we define the heat functions W_l, $l \in \mathbb{N}$ as

$$Q^2(x) W_l(x,s) = \int_{\mathbb{R}} y^l e^{-\frac{y^2}{4s}} \Psi_{y}(x)|y|^{2\alpha + 1} dy.$$
The intertwining operators associated with a Q-Fourier-Dunkl transform on the real line is given by

\[X_Q(f)(x) = a_\alpha Q(x) \int_{-1}^{1} f(tx)(1 - t^2)^{\alpha - \frac{1}{2}} dt, \]

its dual is given by

\[t^\alpha X_Q(f)(y) = a_\alpha \int_{\mathbb{R}} f(x) Q(x) \text{sgn}(x)(x^2 - y^2)^{\alpha - \frac{1}{2}} (x + y) dx \]

(1.12) \[t^\alpha X_Q \] can be written as

\[t^\alpha X_Q(f)(y) = a_\alpha \int_{\mathbb{R}} f(x) Q(x) d\nu_y(x), \]

where

\[d\nu_y(x) = a_\alpha \chi_{\{|x| \geq |y|\}} \text{sgn}(x)(x^2 - y^2)^{\alpha - \frac{1}{2}} (x + y) dx \]

and \(\chi_{\{|x| \geq |y|\}} \) denote the characteristic function with support in the set \(\{x \in \mathbb{R} / |x| \geq |y|\} \).

Proposition 1.1. If \(f \in L^1_Q(\mathbb{R}) \) then \(t^\alpha X_Q(f) \in L^1(\mathbb{R}) \) and \(\| t^\alpha X_Q(f) \|_1 \leq \| f \|_{1,Q} \).

For every \(f \in L^1_Q(\mathbb{R}) \)
(1.13) \[F_Q = \mathcal{F} \circ t^\alpha X_Q(f), \]

where \(\mathcal{F} \) is the usual Fourier transform defined by

\[\mathcal{F}(f)(\lambda) = \int_{\mathbb{R}} f(x)e^{-i\lambda x} dx. \]

2. **Cowling-Price’s Theorem for the Q-Fourier-Dunkl Transform**

Theorem 2.1. Let \(f \) be a measurable function on \(\mathbb{R} \) such that

\[\int_{\mathbb{R}} e^{apx^2} Q^p(x)|f(x)|^p |x|^{2\alpha + 1} dx < \infty \]

and

\[\int_{\mathbb{R}} e^{bq\xi^2} |\mathcal{F}_Q(f)(\xi)|^q (1 + |\xi|)^{m} d\xi < \infty, \]

for some constants \(a, b > 0, \ k > 0, \ m > 1 \) and \(1 \leq p, r \leq +\infty \).

i) If \(ab > \frac{1}{4} \), then \(f = 0 \) almost everywhere.
ii) If \(ab = \frac{1}{2} \), then \(f(x) = P(x)N(x, b) \) where \(P \) is a polynomial with
\[\deg P \leq \min \{ \frac{k}{p} + \frac{2\alpha + 1}{p'}, \frac{m-1}{r} \} \]
Especially, if
\[k \leq 2\alpha + 2 + p \min \{ \frac{k}{p} + \frac{2\alpha + 1}{p'}, \frac{m-1}{r} \} \]
then \(f = 0 \) almost everywhere. Furthermore, if \(m \in]1, 1 + \tau \] and \(k > 2\alpha + 2 \), then \(f \) is a constant multiple of \(N(\cdot, b) \).

iii) If \(ab < \frac{1}{2} \), then for all \(\delta \in]b, \frac{1}{2}a[\) all functions of the form \(f(x) = P(x)N(x, \delta) \) satisfy (2.1) and (2.2).

Proof. It follows from (2.1) that \(f \in L^q_Q \) and \(F_Q(f)(\xi) \) exists for all \(\xi \in \mathbb{R} \). Moreover, it has an entire holomorphic extension on \(\mathbb{C} \) satisfying for some \(s > 0 \),
\[|F_Q(f)(\xi)| \leq Ce^{\frac{a\pi^2}{4}}(1 + |Im\xi|)^s. \]

By (1.1) we have for all \(z = \xi + i\eta \in \mathbb{C} \),
\[(2.3) \quad |F_Q(f)(\xi)| \leq \int_\mathbb{R} |f(x)||\Lambda(\xi)(x)||x|^{2\alpha + 1} \, dx \leq e^{\frac{a\pi^2}{4}} \int_\mathbb{R} e^{a\pi^2} Q(x) |f(x)| (1 + |x|)^{\frac{1}{2}} e^{-a(x - \frac{\pi}{2})^2} |x|^{2\alpha + 1} \, dx. \]

By Hölder inequality we have
\[|F_Q(f)(\xi + i\eta)| \leq e^{\frac{a\pi^2}{4}} \left(\int_\mathbb{R} e^{a\pi^2} Q(x)^{\frac{1}{p'}} |f(x)|^{\frac{1}{p'}} |x|^{2\alpha + 1} \, dx \right)^{\frac{1}{p'}} \left(\int_\mathbb{R} \frac{1}{(1 + |x|)^k} \frac{e^{-a(x - \frac{\pi}{2})^2}}{x} \, dx \right)^{\frac{1}{p'}} \]
according to (2.1) we get that
\[|F_Q(f)(\xi + i\eta)| \leq Ce^{\frac{a\pi^2}{4}} \left(\int_\mathbb{R} (1 + |x|)^{\frac{1}{p'}} e^{-a(x - \frac{\pi}{2})^2} |x|^{2\alpha + 1} \, dx \right)^{\frac{1}{p'}} \leq Ce^{\frac{a\pi^2}{4}} \left(\int_0^\infty (1 + |x|)^{\frac{1}{p'}} + 2\alpha + 1 e^{-a(x - \frac{\pi}{2})^2} \, dx \right)^{\frac{1}{p'}} \leq Ce^{\frac{a\pi^2}{4}} (1 + |\eta|)^{\frac{1}{2} + \frac{2\alpha + 1}{p'}}. \]

If \(ab = \frac{1}{2} \), then
\[|F_Q(f)(\xi + i\eta)| \leq Ce^{\frac{a\pi^2}{4}} (1 + |\eta|)^{\frac{1}{2} + \frac{2\alpha + 1}{p'}.} \]

We put \(g(z) = e^{b\pi z} F_Q(f)(z) \), then
\[|g(z)| \leq Ce^{b(Re z)^2} (1 + |Im z|)^{\frac{s}{2} + \frac{2\alpha + 1}{p'}}. \]

It follows from (2.2) that
\[\int_\mathbb{R} \frac{|g(z)|^r}{(1 + |\xi|)^m} \, d\xi < \infty. \]
Lemma 2.1. Let h be an entire function on \mathbb{C} such that

$$|h(z)| \leq Ce^{a|\text{Re}z|^2}(1 + |\text{Im}z|)^l$$

for some $l > 0$, $a > 0$ and

$$\int_{\mathbb{R}} \frac{|h(x)|^r}{(1 + |x|)^m} |P(x)| dx < \infty$$

for some $r \geq 1$, $m > 1$ and P is a polynomial with degree m. Then h is a polynomial with $\deg h \leq \min\{l, m - \frac{M - 1}{r}\}$ and if $m \leq r + M + 1$, then h is a constant.

From this Lemma, g is a polynomial, we say P_b with $\deg P_b \leq \min\{kp + 2\alpha + 1, \frac{m - 1}{q}\}$.

Then $F_Q(f)(x) = P_b(x)e^{-bx^2}$ then,

$$f(x) = Q_b(x)N(x, b)$$

where $\deg P_b = \deg Q_b$. Therefore, nonzero f satisfies (1.10) provided that

$$k > 2\alpha + 2 + p \min\left\{\frac{kp}{p} + \frac{2\alpha + 1}{q}, \frac{m - 1}{r}\right\}.$$

If $m < r + 1$, by Lemma 1 we have g as a constant and $F_Q(f)(x) = Ce^{-bx^2}$ and $f(x) = CN(x, b)$. If $m > 1$ and $k > 2\alpha + 2$, these functions satisfy (2.1) and (2.2), which proves (ii).

If $ab > \frac{1}{4}$, then we can find positive constants a_1 and b_1 such that $a > a_1 = \frac{1}{3b_1} > \frac{4}{3b}$. Then f and $F_Q(f)$ also satisfy (2.2) with a and b replaced by a_1 and b_1 respectively. Then $F_Q(f)(x) = P_{b_1}(x)e^{-b_1x^2}$. $F_Q(f)$ cannot satisfy (2.2) unless $P_{b_1} = 0$, which implies that $f = 0$, this proves (i). If $ab < \frac{1}{4}$, then for all $\delta \in]b, \frac{1}{4b}[,$ the functions of the form $f(x) = P(x)N(x, \delta),$ where P is a polynomial on \mathbb{R}, satisfy (2.1) and (2.2). This proves (iii).

3. Mathematical Formulas

4. Miyachi’s Theorem for the Q-Fourier-Dunkl Transform

Theorem 4.1. Let f be a measurable function on \mathbb{R} such that

$$(4.1) \quad e^{ax^2}f \in L^p_Q(\mathbb{R}) + L^r_Q(\mathbb{R})$$

and

$$(4.2) \quad \int_{\mathbb{R}} \log^+ \frac{|F_Q(f)(\xi)e^{b\xi^2}|}{\lambda} d\xi < \infty,$$

for some constants $a, b, \lambda > 0$ and $1 \leq p, r \leq +\infty$.

(i) if \(ab > \frac{1}{4} \) then \(f = 0 \) almost everywhere.
(ii) if \(ab = \frac{1}{4} \) then \(f = cN(.,b) \) with \(|c| \leq \lambda \).
(iii) if \(ab > \frac{1}{4} \) then for all \(\delta \in]b, \frac{1}{4}[\), all functions of the form \(f(x) = P(x)N(x, \delta) \), where \(P \) is a polynomial on \(\mathbb{R} \) satisfy (2.1) and (2.2).

To prove this result, we need the following lemmas.

Lemma 4.1. [5] Let \(h \) be an entire function on \(\mathbb{C} \) such that

\[
|h(z)| \leq Ae^{B|Rez|^2},
\]

and

(4.3) \[
\int_{\mathbb{R}} \log^+ |h(y)|dy < \infty,
\]

for some constants \(A \) and \(B \). Then \(h \) is a constant.

Lemma 4.2. Let \(r \in [1, +\infty[, a > 0 \). Then for \(g \in L^r_Q(\mathbb{R}) \) there exist \(c > 0 \) such that

\[
\| e^{ax^2} tX_Q(e^{-ay^2}g) \|_r \leq c \| g \|_{r,Q}.
\]

Proof. From the hypothesis, it follows that \(e^{-ay^2} \) belongs to \(L^r_Q(\mathbb{R}) \). Then by Proposition 1.1, \(tX_Q(e^{-ay^2}g) \) is defined almost everywhere on \(\mathbb{R} \). Here we consider two cases:

i) If \(r \in [1, +\infty[\) then

\[
\| e^{ax^2} tX_Q(e^{-ay^2}g) \|_r \leq \int_{\mathbb{R}} e^{arx^2} \left(\int_{\mathbb{R}} Q(y)e^{-ay^2}|g(y)|\nu_x(y)^r dy \right)^{\frac{1}{r'}} dx
\]

\[
\leq \int_{\mathbb{R}} e^{arx^2} \left(\int_{\mathbb{R}} |Q(y)g(y)|^r \nu_x(y)^r dy \right)^{\frac{1}{r'}} \left(\int_{\mathbb{R}} e^{-ar'y^2} \nu_x(y)^r dy \right)^{\frac{1}{r'}} dx
\]

where \(r' \) is the conjugate exponent for \(r \). Since

(4.4) \[
\int_{\mathbb{R}} e^{-ry^2} \nu_x(y) = Ce^{-rx^2},
\]

for \(r > 0 \) it follows from (4.4) that

\[
\| e^{ax^2} tX_Q(e^{-ay^2}g) \|_r \leq C \int_{\mathbb{R}} tX_Q(|g'|)(x)dx,
\]

\[
= C \int_{\mathbb{R}} |g'(x)||x|^{2\alpha+1}dx < \infty.
\]

ii) If \(r = \infty \) then it follows from (4.4) that

\[
\| e^{ax^2} tX_Q(e^{-ay^2}g) \|_r \leq e^{ax^2} tX_Q(e^{-ay^2})(x)||g||_{Q,\infty}
\]

\[
= C||g||_{Q,\infty}.
\]
Lemma 4.3. Let $r, p \in [1, +\infty]$ and let f be a measurable function on \mathbb{R} such that
\begin{equation}
 e^{ax^2}f \in L_Q^p(\mathbb{R}) + L_Q^r(\mathbb{R})
\end{equation}
for some $a > 0$. Then for all $z \in \mathbb{C}$, the integral
\[
 F_Q(f)(z) = \int_{\mathbb{R}} f(x)\Lambda_{z,Q}(-x)|x|^{2\alpha+1}dx
\]
is well defined. $F_Q(f)(z)$ is entire and there exists $C > 0$ such that for all $\xi, \eta \in \mathbb{R}$,
\begin{equation}
 |F_Q(f)(\xi + i\eta)| \leq Ce^{\frac{\eta^2}{4a}}.
\end{equation}
Proof. From (5) and Hölder’s inequality we have the first assertion. For (4.6) using (4.5) we have $f \in L_Q^1(\mathbb{R})$ and $tX_Q(f) \in L^1(\mathbb{R})$. For all $\xi, \eta \in \mathbb{R}$,
\[
 F_Q(f)(\xi + i\eta) = \int_{\mathbb{R}} tX_Q(f)(x)e^{-ix(\xi+i\eta)}dx
\]
\[
 |F_Q(f)(\xi + i\eta)| \leq e^\frac{\pi^2}{4} \int_{\mathbb{R}} e^{ax^2} \left| tX_Q(f)(x) \right| e^{-ax^2 + x\eta - \frac{\alpha^2}{4}}dx
\]
\[
 \leq e^\frac{\pi^2}{4} \int_{\mathbb{R}} e^{ax^2} \left| tX_Q(f)(x) \right| e^{-a(x-\frac{\eta}{2})^2}dx.
\]
From (4.5) we can deduce that there exists $u \in L_Q^p(\mathbb{R})$ and $v \in L_Q^r(\mathbb{R})$ such that
\[
 f(x) = e^{-ax^2}u(x) + e^{-ax^2}v(x),
\]
by Lemma 4 we have
\[
 \int_{\mathbb{R}} e^{ax^2} \left| tX_Q(f)(x) \right| e^{-a(x-\frac{\eta}{2})^2}dx \leq C \left(\|u\|_{p,Q} + \|v\|_{r,Q} \right) < \infty,
\]
which proves the Lemma.

Proof of Theorem

- If $ab > \frac{1}{4}$. Let h be a function on \mathbb{C} defined by
\[
 h(z) = e^{\frac{\pi^2}{4}F_Q(f)(z)}.
\]
h is entire function on \mathbb{C}, it follows from (4.6) that
\begin{equation}
 \forall \xi \in \mathbb{R}, \forall \eta \in \mathbb{R} \ |h(\xi + i\eta)| \leq Ce^{\frac{\pi^2}{4}}.
\end{equation}
On the other hand, we have

\[
\int_{\mathbb{R}} \log^+ |h(y)| \, dy = \int_{\mathbb{R}} \log^+ \left| \frac{e^{by^2} \mathcal{F}_Q(f)(y)}{\lambda} \right| \, dy \\
\leq \int_{\mathbb{R}} \log^+ \left| \frac{e^{by^2} \mathcal{F}_Q(f)(y)}{\lambda} \right| \, dy + \int_{\mathbb{R}} \lambda e^{(\frac{a}{4} - b)y^2} \, dy
\]

because \(\log^+(cd) \leq \log^+(c) + d \) for all \(c, d > 0 \). Since \(ab > \frac{1}{4} \), (2.2) implies that

\[
\int_{\mathbb{R}} \log^+ |h(y)| \, dy < \infty.
\]

A combination of (4.7), (4.8) and Lemma 3 shows that \(h \) is a constant and

\[
\mathcal{F}_Q(f)(y) = Ce^{-\frac{y^2}{4}a}.
\]

Since \(ab > \frac{1}{4} \), (2.2) holds whenever \(C = 0 \) and the injectivity of \(\mathcal{F}_Q \) implies that \(f = 0 \) almost everywhere.

- If \(ab = \frac{1}{4} \). We deduce from previous case that \(\mathcal{F}_Q(f) = Ce^{-\frac{y^2}{4}a} \). Then (2.2) holds whenever \(|C| \leq \lambda \). Hence \(f = CN(a, b) \) with \(|C| \leq \lambda \).

- If \(ab < \frac{1}{4} \). If \(f \) is a given form, then \(\mathcal{F}_Q(f)(y) = Q(y)e^{-by^2} \) for some \(Q \).

In the continuation, we will give an analogue of Hardy’s theorem \([?]\) for the Q-Fourier-Dunkl transform.

Theorem 4.2. Hardy Let \(N \in \mathbb{N} \). Assume that \(f \in L^2_Q(\mathbb{R}) \) is such that

\[
|f(x)| \leq M e^{-\frac{x^2}{4a}} \text{ a.e. }, \forall y \in \mathbb{R}, |\mathcal{F}_Q(f)(y)| \leq M(1 + |y|)^N e^{-by^2},
\]

for some constants \(a > 0, b > 0 \) and \(M > 0 \). Then,

i) If \(ab > \frac{1}{4} \), then \(f = 0 \) a.e.

ii) If \(ab = \frac{1}{4} \), then the function \(f \) is of the form

\[
f(x) = \sum_{|\sigma| \leq N} a_\sigma W_\sigma \left(\frac{1}{4a}, x \right) \text{ a.e. }, a_\sigma \in \mathbb{C}.
\]

iii) If \(ab < \frac{1}{4} \), there are infinitely many nonzero functions of \(f \) satisfying the conditions (4.9).

Proof. The first condition of (4.9) implies that \(f \in L^1_Q(\mathbb{R}) \). So by Proposition 1.1, the function \(^tX_Q(f) \) is defined almost everywhere. By using the relation (1.13), we deduce that for all \(x \in \mathbb{R} \),

\[
| ^tX_Q(f)(x)| \leq M_0 e^{-ax^2},
\]
where M_0 is a positive constant. So
\begin{equation}
|\mathcal{T}_Q(f)(x)| \leq M_0 (1 + |x|)^N e^{-ax^2},
\end{equation}

On the other hand from (1.13) and (4.9) we have for all $x \in \mathbb{R}$,
\begin{equation}
|\mathcal{F}(\mathcal{T}_Q(f))(y)| \leq M(1 + |y|)^N e^{-b|y|^2},
\end{equation}
The relations (4.10) and (4.11) show that the conditions of Proposition 3.4 of [2], p.36, are satisfied by the function $\mathcal{T}_Q(f)$. Thus we get:
i) If $ab > \frac{1}{4}$, $\mathcal{T}_Q(f) = 0$ a.e. Using (1.13) we deduce
\[
\forall y \in \mathbb{R}, \mathcal{F}_Q(f)(y) = \mathcal{F} \circ (\mathcal{T}_Q(f))(y) = 0.
\]
Then by the injectivity of \mathcal{F}_Q we have $f = 0$ a.e.

ii) If $ab = \frac{1}{4}$, then $\mathcal{T}_Q(f)(x) = P(x)e^{-ax^2}$, where P is a polynomial of degree lower than N. Using this relation and (1.13), we deduce that
\[
\forall x \in \mathbb{R}, \mathcal{F}_Q(f)(y) = \mathcal{F} \circ \mathcal{T}_Q(f)(y) = \mathcal{F}(P(x)e^{-ax^2})(y).
\]
but
\[
\forall x \in \mathbb{R}, \mathcal{F}(P(x)e^{-ax^2})(y) = S(y)e^{-\frac{a}{4}x^2},
\]
with S a polynomial of degree lower than N.
Thus from (1.11), we obtain
\[
\forall x \in \mathbb{R}, \mathcal{F}_Q(f)(y) = \mathcal{F}_Q \left(\sum_{|s| < \frac{N-1}{2}} a_s W_s(\frac{1}{4a}, x) \right)(y).
\]
The injectivity of the transform \mathcal{F}_Q implies
\[
f(x) = \sum_{|s| \leq N} a_s W_s(\frac{1}{4a}, x) \text{ a.e.}
\]

iii) If $ab < \frac{1}{4}$, let $t \in [a, \frac{1}{4}]$ and $f(x) = Ce^{-tx^2}$ for some real constant C, these functions satisfy the conditions (4.9).

In the next part, we will give an analogue of Morgan’s theorem [7] for the Q-Fourier-Dunkl transform.

Theorem 4.3. Morgan. Let $1 < p < 2$ and r be the conjugate exponent of p. Assume that $f \in L^2_Q(\mathbb{R})$ satisfies
\begin{equation}
\int_{\mathbb{R}} e^{\frac{a}{2}|x|^p} |f(x)||x|^{2a+1}dx < +\infty, \text{ and } \int_{\mathbb{R}} e^{\frac{b}{2}|y|^r} |\mathcal{F}_Q(f)(y)|dy < +\infty,
\end{equation}
for some constants $a > 0$, $b > 0$.
Then if $ab > |\cos(\frac{2\pi}{n})|^\frac{2}{p}$, we have $f = 0$ a.e.
Proof. The first condition of (4.12) implies that $f \in L^1_Q(\mathbb{R})$. So by Proposition 1.1, the function $t^\alpha X_Q(f)$ is defined almost everywhere. By using the relation (4.12) and Proposition 1.1, we deduce that:

$$\int_{\mathbb{R}} |t^\alpha X_Q(f)(x)| e^{\frac{2\pi}{p}|x|^p} dx \leq \int_{\mathbb{R}} e^{\frac{2\pi}{p}|x|^p} |f(x)||x|^{2\alpha+1} dx < +\infty.$$

So

$$\int_{\mathbb{R}} |t^\alpha X_Q(f)(x)| e^{\frac{2\pi}{p}|x|^p} dx < +\infty \tag{4.13}$$

On the other hand, from (1.13) and (4.12) we have:

$$\int_{\mathbb{R}} e^{\frac{2\pi}{p} |y|^p} |\mathcal{F}_Q(f)(y)| dy = \int_{\mathbb{R}} e^{\frac{2\pi}{p} |y|^p} |\mathcal{F}(t^\alpha X_Q(f))(y)| dy < +\infty. \tag{4.14}$$

The relations (4.13) and (4.14) are the conditions of Theorem 1.4, p.26 of [2], which are satisfied by the function $t^\alpha X_Q(f)$. Thus we deduce that if $ab > |\cos(\frac{\pi}{2})|^\frac{1}{2}$ we have $t^\alpha X_Q(f) = 0$ a.e. Using the same proof as in the end of Theorem 4, we have obtained $f(y) = 0$, a.e. $y \in \mathbb{R}$. \hfill \square

Acknowledgments The authors are deeply indebted to the reviewers for providing constructive comments and helps in improving the contents of this article.

REFERENCES

1. E. A. Al Zahrani and M. A. Mourou: The Continuous Wavelet Transform Associated with a Dunkl Type Operator on the Real Line. Advances in Pure Mathematics. 3(2013), 443–450.
2. A. Bonami and B. Demange and P. Jaming: Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoamericana 19 (2002), 22–35.
3. M. G. Cowling and J. F. Price: Generalizations of Heisenberg inequality, Lecture Notes in Math. 992. Springer, Berlin (1983), 443–449.
4. G. H. Hardy: A theorem concerning Fourier transform. J. London Math. Soc. 8 (1933), 227–231.
5. H. Mejjaoli, and M. Salhi: Uncertainty principles for the Weinstein transform, Czechoslovak Mathematical Journal, 61 (136) (2011), 941–974.
6. A. Miyachi: A generalization of theorem of Hardy, Harmonic Analysis Seminar held at Izunagaoka, Shizuoka-Ken, Japan (1997), 44–51.
7. G. W. Morgan: A note on Fourier transforms. J. London Math. Soc. 9 (1934), 188-192.

Achak Azzedine
Faculty of Science Ain Chock
Department of Mathematics and Informatics
University of Hassan II, Casablanca 20100, Morocco
achakachak@hotmail.fr

Radouan Daher
Faculty of Science Ain Chock
Department of Mathematics and Informatics
University of Hassan II, Casablanca 20100, Morocco
r.daher@fsac.ac.ma

Najat Safouane
Faculty of Science Ain Chock
Department of Mathematics and Informatics
University of Hassan II, Casablanca 20100, Morocco
safouanenajat@live.fr

El Mehdi Loualid
Faculty of Science Ain Chock
Department of Mathematics and Informatics
University of Hassan II, Casablanca 20100, Morocco
mehdi.loualid@gmail.com