Advances in molecular genetic studies of attention deficit hyperactivity disorder in China

Qian GAO¹², Lu LIU¹², Qiujin QIAN¹²*, Yufeng WANG¹²*

Summary: Attention deficit hyperactivity disorder (ADHD) is a common psychiatric condition in children worldwide that typically includes a combination of symptoms of inattention and hyperactivity/impulsivity. Genetic factors are believed to be important in the development and course of ADHD so many candidate genes studies and genome-wide association studies (GWAS) have been conducted in search of the genetic mechanisms that cause or influence the condition. This review provides an overview of gene-association and pharmacogenetic studies of ADHD from mainland China and elsewhere that use Han Chinese samples. To date, studies from China and elsewhere remain inconclusive so future studies need to consider alternative analytic techniques and test new biological hypotheses about the relationship of neurotransmission and neurodevelopment to the onset and course of this disabling condition.

Keywords: ADHD, genetics, candidate gene studies, GWAS, China

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a highly prevalent childhood-onset neuropsychiatric condition, with an estimated worldwide-pooled prevalence of 5 to 12% in school-age children¹² and 2 to 5% in adults.³ On average 50% (32.8 to 84.1%) of children with ADHD continue to meet DSM-IV criteria for ADHD as adults.⁴ In China, reported prevalence ranges from 4.31 to 5.83%.⁵⁶ ADHD is characterized by age-inappropriate and impaired levels of inattention, hyperactivity and impulsivity. These three primary clinical characteristics may be expressed to different extents among children with ADHD, as reflected in the DSM-IV subclassification of ADHD into primarily inattentive (ADHD-I), primarily hyperactive/impulsive (ADHD-HI), and combined (ADHD-C) subtypes.⁷ The ratio of boys to girls with ADHD is between 3:1 and 9:1. ADHD is associated with prolonged dysfunction including low self-esteem, substance abuse, delinquency, and other types of psychological problems. These limitations cause a heavy burden to the individual, their families, and society.

ADHD is a complex condition caused by the interaction of genetic, social, and environmental factors.⁸ Adoption and twin studies have helped disentangled the genetic and environmental sources of transmission of ADHD. A review⁹ of 20 twin studies from the United States, Australia, Scandinavia, and the European Union reported a mean heritability estimate of 76%, indicating that ADHD is one of the most heritable psychiatric disorders. Molecular genetics studies suggest that ADHD is a multifactorial polygenic disorder with minor contribution from each individual susceptibility gene. Multiple neural pathways have been implicated in the development of ADHD including the dopaminergic, norepinephrinergic, serotonergic, and cholinergic pathways.¹⁰ Current findings from both candidate gene studies and genome-wide association studies (GWAS) have failed to find a major gene for ADHD.

The present review introduces the Chinese contribution to the molecular genetics of ADHD. Three English databases (PubMed, Embase, Google Scholar) and one Chinese database (CNKI) were searched for relevant
reports published prior to June 2014. The medical subject heading terms and/or text words used for the search were as follows: ‘attention deficit hyperactivity disorder’ or ‘ADHD’ or ‘ADD’ or ‘attention deficit’ or ‘hyperactivity’ or ‘hyperkinetic syndrome’ AND ‘genetic’ or ‘polymorphism’ or ‘gene’. Identified studies were selected if they were conducted in mainland China, Hong Kong, or Taiwan. The reference lists of selected studies were reviewed to identify any additional studies and additional papers from China not identified in the search but considered relevant by the authors. Based on these published reports, our review starts with an overview of candidate gene studies, considers ADHD endophenotypes, presents results from the first GWAS of ADHD in Chinese Han children, and concludes with a discussion of pharmacogenomics studies.

2. Candidate gene studies

2.1 Dopaminergic system (DA system)

The dopaminergic theory, proposed by Levy,[11] suggests that DA deficits in specific brain regions, such as cortical areas and the striatum, result in ADHD symptoms. Supporting evidence from animal model studies and from pharmacology, brain imaging, and genetic studies has made the dopaminergic theory the most popular theory about the genetic etiology of ADHD.[12]

2.1.1 Dopamine transporter genes (DAT, SLC6A3)

The dopaminergic theory about the neurobiology of ADHD led to the first gene association study for ADHD by Cook and colleagues.[13] They investigated a 40 bp variable number tandem repeats (VNTR) located in the 3' untranslated region (3'UTR) of the dopamine transporter gene (DAT1) in ADHD families. Using the family-based haplotype relative risk (HRR) measure, an association with the 10-repeat allele (10R) was detected.[13] Results of a meta-analysis of the association between the 10R allele of DAT1 and ADHD supported the hypothesis about the involvement of dopamine system genes in ADHD.[14] Chen and colleagues[15] also found evidence of increased transmission of the 10-repeat allele in a Taiwanese sample, but other studies in Chinese samples by Qian[16], Wang[17], and Cheuk[18] did not replicate these findings. Qian[16] found that long repeat alleles (11–12 repeats) were associated with ADHD. Qian also reported[19] no association between ADHD and the new polymorphism G352A/G in DAT1 exon 15 but did find a non-significant association (p=0.077) between ADHD and the 352G allele in a small (n=22) subsample of girls. Xu[20] found a significant association between the T allele of promoter polymorphism -67A/T and ADHD in the Taiwanese population and in combined samples from the United Kingdom and Taiwan. Shang and colleagues[21] screened 15 polymorphisms across the DAT1 gene and found significant associations between the inattentive subtype of ADHD and three haplotype blocks (intron 2 through intron 6, intron 8 through intron 11, and 3'UTR) and the haplotype rs27048 (C)/rs429699 (T).

2.1.2 The dopamine D4 receptor gene (DRD4)

LaHoste and colleagues[22] were the first to compare the frequency between ADHD cases and controls of a 48 bp VNTR located in exon 3, which encodes a receptor expressed primarily in the prefrontal cortex. They found an association between the 7-repeat allele (7R) and ADHD. This is the strongest and most consistently replicated molecular genetic finding in ADHD; it has been reported in Caucasian and several non-Caucasian populations.[23-28] However, Qian and her colleagues[15] did not find the 7R or longer repeats, but did report that long repeat genotypes and alleles ranging from 4 to 6 repeats may increase the risk for ADHD in Han Chinese children. A study from Hong Kong indicated that the 4-repeat allele was the predominant polymorphism in the population (84.4%) and that alleles with 4 to 7 repeats were significantly more frequent in children with ADHD.[29] In a meta-analysis that included both studies, the association between ADHD and the longer repeats was statistically significant in males (OR=1.70, 95% CI 1.20–2.40, p=0.003) and most closely associated with the ADHD-C subtype (OR=1.74, 95% CI 1.16–2.59, p=0.007).[29] Another small study in ADHD probands (n=32) observed an increase in prevalence of the 2R allele (33%) compared to controls (20%).[30] Another report based on a small ADHD sample (n=32) proposed that the observed increased prevalence of the 2R allele in Han Chinese ADHD probands (33%) compared to the prevalence of the 7R allele (20%) was still consistent with the 7R allele hypothesis of ADHD in European-ancestry children.[30] Zhao and colleagues did not find an association between DRD4 and ADHD, but did find that DRD4 was associated with the internalizing behaviors of ADHD.[31] A study by Guan[32] focusing on a 521 C/T in the promoter region of DRD4 indicated that the T allele and the TT genotype were more prevalent in children with ADHD with disruptive behavior disorder (DBD). Li[33] reported that carriers of the DRD4 rs16455 C allele were more likely to have persistent ADHD symptoms in adulthood. In a Taiwanese sample, researchers did not find an association between ADHD and two markers in the DRD4 gene – the exon 3 VNTR and a 5’ 120 bp duplication.[34]

Besides DRD4 and DAT1, Qian[35] also investigated the 241 A>G polymorphism of DRD2, which showed no significant difference between ADHD cases and controls even after stratification by gender or subtype; she also found no evidence of gene–gene interactions among dopamine candidate genes.[35] Guan and colleagues performed a comprehensive association analysis study screening 245 single nucleotide polymorphism (SNPs) of 23 candidate genes (including DRD1, DRD2, DRD3 and DRD4) in a sample of Han Chinese descent; they found that the rs7638876 of DRD3 was associated with ADHD-C (Normal p=0.037, Empirical p=0.293).[36]
Another study in Taiwan found no association between ADHD and the DRD2 TaqI A polymorphism.\[37\]

2.2 Noradrenergic system (NE system)
Although stimulant medications appear to act primarily by regulating dopamine levels in the brain, noradrenergic and serotonergic functions may also be affected by ADHD medications. After treatment with low-dose methylphenidate (MPH), NE efflux within the prefrontal cortex (PFC) increased by 280% and DA by 130%.\[38\] The presumed method of action of atomoxetine, an effective treatment for ADHD, is increased extracellular levels of norepinephrine and dopamine in PFC.\[39\] Among NE system genes, researchers have primarily focused on the noradrenaline transporter (NET1/SLC6A2) and on the adrenergic alpha receptors 2A and 2C (ADRA2A and ADRA2C).

2.2.1 NET1
NET1 may be involved in the etiology of ADHD, but studies have yielded conflicting results.\[40-42\] The rs363039 of NET1 appears to be associated with ADHD-C (Normal p=0.018, Empirical p=0.267).\[36\] Wang and colleagues\[43\] reported that NET1 was probably a susceptibility gene of pure ADHD, especially for the pure ADHD-I subtype. Liu and colleagues\[44\] found that the rs3785143 of NET1 was associated with the comorbidity of oppositional defiant disorder (ODD) and ODD symptoms in ADHD probands,\[44\] a finding that has been replicated in three studies from other countries.\[45-47\]

2.2.2 ADRD2A, ADRA2C
Evidence from neurobiological, neuro-pharmacological, and animal models support suggestions that ADRD2A is a candidate gene of ADHD.\[48-50\] Wang\[51\] examined the association of the ADRA2A Mspl and Dral polymorphisms with ADHD in 268 nuclear families of Han Chinese, and found no biased transmission of alleles of either polymorphism; the mm genotype of the Mspl polymorphism was marginally related to lower ADHD symptom scores in ADHD cases (p=0.051), which was opposite to the findings in several Caucasian samples.\[52, 53\] On the other hand, Guan\[54\] reported a significant association between ADHD-C and the rs7682295 of ADRA2C (p<0.05).

2.3 Serotonergic system (5-HT system)
Serotonin has been shown to influence a variety of behaviors relevant to ADHD, including impulsivity, aggression, dis-inhibition, and attention, thus it is thought to play a causal role in ADHD.\[54-56\] The main candidate genes studied within the serotonergic system are those coding for the serotonin transporter (5-HTT/SLC6A4), the 1B and 2A serotonin receptors (HTR1B) and (HTR2A), and tryptophan hydroxylase (TPH2) genes. Additionally, there is some evidence of potential involvement of the genes for 2C serotonin receptors (HTR2C), the serotonin 4 receptor gene (HTR4), and the 1D serotonin receptors (HTR1D).

2.3.1 5-HTT/SLC6A4
Three polymorphisms of 5-HTT are well characterized: a 44 bp in/del promoter polymorphism (5-HTTLPR), a 16–17 bp VNTR polymorphism in intron-2 (STin2), and a SNP in the 3’-untranslated region. Li\[57\] found no association between the STin2 VNTR and ADHD, but did find preferential transmission of the S allele of the 5-HTTLPR polymorphism to probands with ADHD-C and trios with comorbid ADHD and learning disorder (LD). Zhao\[58\] observed an association between serotonin transporter promoter polymorphisms and some ADHD symptoms; ADHD cases homozygous for the short allele showed more withdrawn or somatic complaint scores than subjects with the long allele. Xu\[59\] found no association between 5-HTT polymorphisms and ADHD in samples from the United Kingdom and Taiwan.

2.3.2 HTR1, HTR2, HTR4, HTR5, HTR6
Studies about the association between ADHD and T102C of HTR2A in Chinese samples have been inconsistent.\[59-61\] Li and colleagues\[61\] investigated association between ADHD and several serotonin transporters (including HTR2A, HTR1B, HTR2C and HTR4); they found no association between ADHD and T102C and the G1438A of HTR2A, but they did find that polymorphisms of A1438G are related to functional remission in ADHD.\[62\] They also found significant over-transmission of the C-759T/G-697C haplotype within the HTR2C gene\[63\] and under transmission of the C83097T/G83198A haplotype in the HTR4 gene in Han Chinese cases, but there was no association between ADHD and markers in HTR5A or HTR6.\[64\] For HTR1D, the A allele of the 1236A>G polymorphism exhibited a significant preferential transmission to probands of ADHD-C\[64\] and the C allele of the 1350T>C polymorphism showed preferential transmission to probands with comorbid ADHD and DBD.\[65\] However, a family association study in a Taiwanese sample\[66\] did not replicate previous reports of the association between ADHD and the rs6295 of HTR1A.\[67\]

2.4 Enzyme system
Molecular studies have provided compelling evidence for the association of ADHD with genes that encode enzymes involved in the metabolism of catecholamine and serotonin.

2.4.1 Catechol-O-methyltransferase (COMT)
COMT catalyzes a major step in the degradation of dopamine, norepinephrine, and epinephrine; about 60% of the DA degradation in the PFC is performed by COMT.\[68\] The most popular marker for the COMT gene is the Val/Met functional SNP (rs4680). In spite of the
negative findings from a Hong Kong meta-analysis and a recent systematic review, this marker is currently the most actively researched SNP listed on the ADHD gene database (http://adhd.psych.ac.cn/). In China, Qian and colleagues did not find an association between COMT and ADHD but did find some sex-specific associations: compared to controls, the Met allele was preferentially transmitted to boys with ADHD and the Val allele was preferentially transmitted to girls with ADHD; they also found that male ADHD comorbid with ODD was associated with homozygosity of the high-activity Val allele, while the ADHD-I was associated with the low-activity Met allele. Other studies in Chinese samples also failed to identify a significant association between ADHD and COMT. Zhang and colleagues reported that the rs6267 of COMT was not associated with the susceptibility to ADHD but it was associated to some of the clinical characteristics of ADHD.

2.4.2 Tryptophan hydroxylase (TPH and TPH-2)

TPH is the rate-limiting enzyme in the synthesis of serotonin, and TPH polymorphisms have been associated with aggression and impulsivity. Two family-based studies in Chinese samples have examined the TPH gene in ADHD. One study of 69 Han Chinese trios found no association between ADHD and a SNP (A218C) in intron 7. Another study examined two SNPs among more than 350 Han Chinese youth with ADHD (including those with and without learning disability) and their families; neither SNP showed biased transmission individually, but a haplotype composed of the A-218 and G-6526 alleles appeared to be under-transmitted. These findings have been replicated in independent samples. Another study found two tagging SNPs that were associated with comorbid ADHD and tic disorder (TD) in a Chinese Han sample. In a Taiwanese sample, Hsu failed to replicate the result of a preferential transmission for two polymorphisms in TPH2’s regulatory region initially reported in German families with ADHD.

2.4.3 Dopamine beta-hydroxylase (DBH)

DBH catalyzes the primary enzyme responsible for conversion of DA to NE, and is found in sympathetic terminals, adrenal glands, and in the prefrontal cortex. Many studies have focused on a TaqI restriction polymorphism (rs2519152) of DBH, and two meta-analysis reported a significant association between rs2519152 and ADHD. Guo and colleagues also found that the A2 allele was a risk factor for ADHD, while the A -1021C>T polymorphism in the 5’ flanking region of DBH has been shown to account for as much as 50% of plasma DBH activity and to be associated with ADHD in the Han Chinese; Zhang and colleagues found the this polymorphism was associated with the ADHD-C subtype in male trios. Guan identified four statistically significant SNPs of DBH in ADHD-I and one statistically significant SNP (rs1076150) in ADHD-C. Using a much larger sample, Ji also found an association between three SNPs (including rs1076150) and ADHD-HI.

2.4.4 Monoamine oxidase A (MAOA)

MAOA also plays an important role in the metabolism of monoamine neurotransmitters including 5-HT, NE, and DA. A linkage study showed that ADHD might be in linkage with the MAOA gene. A small (n=86) study identified significant associations between two SNP MAOA polymorphisms and ADHD remission. Guan and colleagues observed nominal associations with all of the 12 SNPs of MAOA tested, among which 9 consecutive SNPs approached statistical significance with (p<0.02). The identified locations were identical to those reported in an IMAGE (International Multisite ADHD Genetics) study of 776 Caucasian families. Liu and colleagues assessed five SNPs in 1253 ADHD trios, and found that rs5905859, rs3027400, and rs1137070 were related to ADHD-HI trios, providing support for the association between MAOA and impulsivity. Using a Taiwanese sample, Xu replicated previously published findings from a Caucasian sample that the G-allele of 941G/T in MAOA was associated with ADHD.

2.4.5 Monoamine oxidase B (MAOB)

MAOB preferentially metabolizes dopamine, while MAOA preferentially metabolizes serotonin and norepinephrine. Li and colleagues screened exons and the 5’ and 3’ flanking regions of the MAOB gene and found two novel polymorphisms (2276C>T and 2327C>T) that were closely associated with ADHD. However, Jiang conducted a transmission disequilibrium test (TDT) to assess the linkage between a VNTR polymorphism at the MAOA (CA) (n) or MAOB (GT) (n) locus, and found no significant linkage between ADHD and MAOB.

2.4.6 Dopamine decarboxylase (DDC)

Dopa decarboxylase catalyses the formation of functional dopamine through decarboxylation of a precursor tyrosine derivative and it participates in the synthesis of trace amine compounds that are believed to act as modulators of central neurotransmission. In a high-density screen, the rs6592952 of DDC was associated with ADHD-I trios, providing support for the association between MAOA and impulsivity. In linkage with the MAOA gene.

2.5 Genes of synaptic vesicle proteins

Psychiatric and neurological diseases are often characterized by the occurrence of aberrant synaptic formation, function, and plasticity, or by malformed dendritic spines. Dysfunctions in neuroplasticity mechanisms and in synapses may be involved in the pathophysiology of ADHD. A case-control study by Zhao reported a significant association between 1065G>T of Synaptosomal-associated protein 25
SNAP25) and ADHD. Guan assessed Synaptophysin (SYP), SNAP25, Syntaxin 1A (STX1A), Synaptotagmin I (SYT1), and Vesicle-associated membrane protein2 (VAMP2) in a high-density screen study; they found that the rs5906754 of SYP was associated with ADHD-I (a non-significant trend), and SNAP25 was significantly associated with ADHD-I (p<0.05). Liu replicated this result in a larger sample of Han Chinese subjects using both family-based and case-control methods.

2.6 Other candidate genes

Other candidate genes for ADHD studied include brain derived neurotrophic factor (BDNF), brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2), circadian locomotor output cycles kaput (CLOCK), Zinc finger protein 804A gene (ZNF804A), amphetamine-regulated transcript (CARTPT), and C-kinase-1 (PICK1) genes, Cholinergic receptor.

BDNF is a protein that supports survival of central nervous system neurons and stimulates growth and differentiation of developing neurons. Most genetic studies focused on the functional Val66-Met polymorphism (rs6265), which affects intracellular trafficking and activity-dependent secretion of BDNF. Cao and Li found that the rs6265 was associated with ADHD or its subtypes. However, Xu and colleagues failed to replicate these associations with Val66 in samples from the United Kingdom or Taiwan. Xu and colleagues also examined the 270C>T SNP in the 5’-noncoding region of intron1 and found significant over-transmission of the C270T allele in Taiwanese, but not British, ADHD families. Li and colleagues found a higher prevalence of the Val allele in females with ADHD compared to female controls and a non-significant lower plasma BDNF level in Val allele carriers than in Met/Met genotype carriers (p=0.071).

BAIAP2 is thought to be associated with cerebral asymmetry. A study by Liu and colleagues showed that BAIAP2 was associated with childhood ADHD – especially ADHD-I – in individuals of Han Chinese descent. The haplotype AAGG, which consists of rs4969239-rs4969358-rs6565531-rs8079626 was associated with ADHD children who had comorbid learning disorders.

Xu and colleagues found increased transmission of the T allele of the rs1801260 polymorphism of CLOCK in both Taiwanese and British ADHD cases, but they didn’t find significant associations between rs1344706 or ZNF804A and ADHD. Hsu and colleagues investigated the polymorphisms of CARTPT and PICK1, but they failed to identify any statistically significant associations between ADHD and the genotyped SNPs in the two genes.

3. Endophenotype

Endophenotypes may include neurophysiological, biochemical, neuroanatomical, cognitive, and neuropsychological (including configured self-report data) measures. Promising cognitive endophenotypes for ADHD include the intelligence quotient (IQ), executive function (EF), memory, and attention. Clarifying the relationships between these endophenotype measures and genetic variants of ADHD will help identify the brain functions affected by ADHD and help characterize the pathways from genes to behavior.

Executive function consists of response inhibition, working memory, cognitive shifting, planning, and verbal fluency. Studies by Shuai and Qian revealed that Chinese Han children with ADHD have impaired executive functioning in performance-based tests and in everyday life scenarios. Response inhibition is of particular interest to ADHD researchers because of its close association with the core symptoms of ADHD. Qian reported associations between COMT Val158Met in ADHD cases and measures of response inhibition (evaluated by Stroop), memory (evaluated by the Wechsler Memory Scale), and attention (evaluated by the Number Cancellation Test); Zhang found this polymorphism in ADHD cases was associated with the results of the Wisconsin Card Sorting Test (which assesses executive functioning).

There is a significant literature suggesting that IQ is highly heritable. Chinese researchers have examined the association between specific genes and IQ in individuals with ADHD. Qian found that the HTR2A -1438 A/G polymorphism and interaction between the STin2 VNTR and HTR2A -1438 A/G might be associated with IQ. She also found that MAOA-uVNTR, COMT Val158Met, and their interaction significantly predicted the IQ of boys with ADHD; they also reported an inverted U-shaped relationship between IQ in ADHD and the activity of dopamine.

4. Genome wide association studies

To date, the eight GWAS conducted for ADHD have been inconclusive; no genome-wide significant associations have been identified for any SNP. But the results from GWAS do suggest that genes playing a role in ADHD are related to the processes that enhance neuronal plasticity, including neuronal migration, cell adhesion, cell division, and signaling via the potassium channel-system. In China, Yang and colleagues first conducted GWAS in 1040 ADHD cases and 963 controls; they found no significant SNPs, but they did
find an increased burden of large, rare copy number variants (CNVs) in the ADHD subjects (p=0.038). Pathway analyses identified several genetically determined cellular components, including neuron projections and synaptic components; these findings support hypotheses about the neurodevelopmental pathophysiology for ADHD. However, given the evident complexity and heterogeneity of the etiological pathways to ADHD, very large samples of cases will need to be collected (possibly from collaborative international studies) and followed over time to identify the different clinical trajectories of specific types of genetic profiles. Considering the complex heterogeneity of ADHD, international collaboration is needed to obtain a larger sample.

5. Pharmacogenomic studies

Genetics has the potential to provide an invaluable contribution to the pharmacological management of ADHD. However, no pharmacogenetic study has yet identified genes that can predict the effectiveness and side effects of different ADHD medications. Most of pharmacogenetic investigations in ADHD have focused on response to methylphenidate (MPH), a first-line option in the psychopharmacologic treatment of ADHD. Yang and colleagues studied the reduction in ADHD-RS scores among 45 children and adolescents who received MPH at doses of 0.45 to 0.60 mg/kg per day; they reported a significant association between the SLC6A5 polymorphism G1287A and responsiveness to MPH (based on decreases in scores for hyperactivity and impulsiveness but not in scores for inattentiveness). However, these findings were not replicated by international researchers.

Atomoxetine is a norepinephrine reuptake inhibitor with demonstrated efficacy for the treatment of ADHD. Yang and colleagues evaluated the association between twelve SNPs in SLC6A2, ADRA2A, and ADRA2A and the response or remission status after atomoxetine treatment. The results suggested that DNA variants of both SLC6A2 and ADRA2A in the adrenergic neurotransmitter system might alter the response to atomoxetine.

Possible explanations of the inconsistent results of ADHD pharmacogenetic studies include differences in study design, medication dosing regimens, and outcome measures. Advances in ADHD pharmacogenetics can potentially identify novel, targeted treatments for different subgroups of patients; the use of such patient-specific treatments could substantially improve the efficacy and safety of ADHD treatment.

6. Summary and future directions in ADHD genetic research

This article reviewed the main molecular genetic studies about ADHD among Han Chinese samples in mainland China and elsewhere. Overall, the findings have been inconsistent and disappointing. There are several possible reasons for the failure of GWAS and candidate gene studies to identify high heritability genes associated with ADHD:

(a) ADHD may be result of the cumulative effect of multiple genetic factors with small individual effects that can only be identified in studies with very large sample sizes;
(b) ADHD may be caused by gene–gene and gene–environment interactions that are not being identified by current studies;
(c) genetic factors other than the SNPs investigated in most current studies (e.g., copy number variants, structural variants in DNA, etc.) may play important roles in the etiology of ADHD;
(d) current diagnostic criteria for the clinical identification of ADHD may not reflect the underlying biological and genetic subtypes of the condition; and
(e) the subjects studied in the different studies vary widely in age, ethnicity, gender, comorbidity, and diagnostic characteristics.

Clearly there needs to be a re-focusing of effort to move this field forward. The old methods are not generating much useful information so we should be actively trying new methods. More attention needs to be focused on the genetic correlates of other aspects of neuronal functioning that may prove more productive than the ‘usual suspects’ that have been the focus of attention in ADHD molecular genetic studies over the last 15 years: including processes such as cell division, adhesion and polarity, neuronal migration and plasticity, extracellular matrix regulation, and cytoskeletal remodeling. Studies that integrate genetic findings with imaging assessments of brain structure and function are needed to identify the changes in the brain that link genetic to behavioral changes. Longitudinal studies are needed to identify the genetic and environment factors that predict spontaneous recovery prior to adulthood versus a lifetime course of illness. Finally, the research culture and funding mechanisms that promote the conduct of large numbers of small-sample, underpowered studies – a problem that is particularly evident in China – needs to change. Large collaborative studies between centers that rigorously ensure standardization of procedures are essential to achieving the sample sizes needed to identify uncommon, but etiologically important, genetic variants.

Conflict of interest

The authors declare no conflict of interest.

Funding

Preparation of this manuscript was supported by the National Basic Research Development Program of China (Grant number: 973 program 2014CB846104), the National Natural Sciences Foundation of China (Grant number: 81071109; 81301171), and the Program for New Century Excellent Talents in University (Grant number: NCET-11-0013).
注意缺陷多动障碍在中国的分子遗传学研究进展

高倩, 刘璐, 钱秋谨, 王玉凤

概述：注意缺陷多动障碍（attention deficit hyperactivity disorder, ADHD）是全球常见的儿童精神障碍，通常包括注意力不集中和多动/冲动的症状。一般认为遗传因素在ADHD的发生和发展过程中起到重要作用，因此展开了很多针对该障碍遗传机制中病因或影响因素的候选基因研究和全基因组关联研究（GWAS）。本文就中国大陆开展的以及在其他地方开展的使用汉族华人群体的ADHA基因关联研究和药理学研究做了个综述。迄今为止，上述研究依然没有明确结论，所以将来的研究需要考虑其他的分析技术来验证这种致残性障碍发生和发展过程中神经传递和神经发育之间关联的新生物学假说。

关键词：注意缺陷多动障碍，遗传，候选基因研究，全基因组关联研究，中国

本文全文中文版从 2014 年 9 月 25 日起在 www.saponline.org 可供免费阅读下载

References

1. Biederman J, Faraone SV. Attention-deficit hyperactivity disorder. Lancet. 2005; 366(9481): 237-248. doi: http://dx.doi.org/10.1016/S0140-6736(05)66915-2
2. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and meta-regression analysis. Am J Psychiatry. 2007; 164(6): 942-948. doi: http://dx.doi.org/10.1176/appi.ajp.164.6.942
3. Neale BM, Medland SE, Ripke S, Asherson P, Franke B, Lesch KP, et al. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2010; 49(9): 884-897. doi: http://dx.doi.org/10.1097/00004583-201006080-00108
4. Lara C, Fayyad J, de Graaf R, Kessler RC, Aguilar-Gaxiola S, Angermeyer M, et al. Childhood predictors of adult attention-deficit/hyperactivity disorder: results from the World Health Organization World Mental Health Survey Initiative. Biol Psychiatry. 2009; 65(1): 46-54
5. Shen YC, Wang YF, Yang XL. An epidemiological investigation of minimal brain dysfunction in six elementary schools in Beijing. J Child Psychol Psychiatry. 1985; 26(5): 777-787
6. Hu YZ, W HR, Yu JQ. [Subtyping and inquiring for etiology of children ADHD aged 6 to 12 years]. Zhongguo Xiaojia Yi. 1998; 5: 321-324. Chinese
7. Yang L, Wang YF, Qian QJ, Biederman J, Faraone SV. DSM-IV subtypes of ADHD in a Chinese outpatient sample. J Am Acad Child Adolesc Psychiatry. 2004; 43(3): 248-250. doi: http://dx.doi.org/10.1097/00004583-200403000-00004
8. Thapar A, Cooper M, Eyre O, Langley K. How much have we learnt about the causes of ADHD? J Child Psychol Psychiatry. 2013; 54(1): 3-16. doi: http://dx.doi.org/10.1111/j.1469-7610.2012.02611.x
9. Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005; 57(11): 1313-1323. doi: http://dx.doi.org/10.1016/j.biopsych.2004.11.024
10. Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. Hum Genet. 2009; 126(1): 51-90. doi: http://dx.doi.org/10.1007/s00439-009-0694-x
11. Levy F. The dopamine theory of attention deficit hyperactivity disorder (ADHD). Aust N Z J Psychiatry. 1991; 25(2): 277-283. doi: http://dx.doi.org/10.3109/00048679109077746
12. Genro JP, Kieling C, Rohde LA, Hutz MH. Attention-deficit/hyperactivity disorder and the dopaminergic hypotheses. Expert Rev Neurother. 2010; 10(4): 587-601. doi: http://dx.doi.org/10.1586/ern.10.17
13. Cook EJ, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, et al. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet. 1995; 56(4): 993-998
14. Yang B, Chan RC, Jing J, Li T, Sham P, Chen RY. A meta-analysis of association studies between the 10-repeat allele of a VNTR polymorphism in the 3′-UTR of dopamine transporter gene and attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2007; 144B(4): 541-550. doi: http://dx.doi.org/10.1002/ajmg.b.30453
15. Chen CK, Chen SL, Mill J, Huang YS, Lin SK, Curran S, et al. The dopamine transporter gene is associated with attention deficit hyperactivity disorder in a Taiwanese sample. Mol Psychiatry. 2003; 8(4): 393-396. doi: http://dx.doi.org/10.1038/sj.mp.4001238
16. Qian Q, Wang Y, Zhou R, Yang L, Faraone SV. Family-based and case-control association studies of DRD4 and DAT1 polymorphisms in Chinese attention deficit hyperactivity disorder patients suggest long repeats contribute to genetic risk for the disorder. Am J Med Genet B Neuropsychiatr Genet. 2004; 128B(1): 84-89. doi: http://dx.doi.org/10.1002/ajmg.b.30079
17. Wang Y, Wang Z, Yao K, Tanaka K, Yang Y, Shirakawa O, et al. Lack of association between the dopamine transporter gene 3′ VNTR polymorphism and attention deficit hyperactivity disorder in Chinese Han children: case-control and family-based studies. Kobe J Med Sci. 2007; 53(6): 327-333
18. Cheuk DK, Li SY, Wong V. No association between VNTR polymorphisms of dopamine transporter gene and attention deficit hyperactivity disorder in Chinese children. Am J Med Genet B Neuropsychiatr Genet. 2006; 141B(2): 123-125. doi: http://dx.doi.org/10.1002/ajmg.b.30280
19. Qian QJ, Wang YF, Zhou RL, Yang L, Li J. [Association Studies of G352A Polymorphism of dopamine transporter gene in Han Chinese attention deficit hyperactivity disorder patients]. Beijing Da Xue Xue Bao. 2004; 6: 626-629. Chinese. doi: http://doi.med.wanfangdata.com.cn/10.3321/j.issn:1671-167X.2004.06.016
20. Xu X, Mill J, Sun B, Chen CK, Huang YS, Wu YY, et al. Association study of promoter polymorphisms at the dopamine transporter gene in Attention Deficit Hyperactivity Disorder. BMC Psychiatry. 2009; 9: 3. doi: http://dx.doi.org/10.1186/1471-244X-9-3

21. Shang CY, Gau SS, Liu CM, Hwu HG. Association between the dopamine transporter gene and the inattentive subtype of attention deficit hyperactivity disorder in Taiwan. Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35(2): 421-428. doi: http://dx.doi.org/10.1016/j.pnpbp.2010.08.016

22. LaHoste GJ, Swanson JM, Wigal SB, Glabe C, Wigal T, King N, et al. Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol Psychiatry. 1996; 1(2): 121-124

23. Fararone SV, Mick E. Molecular genetics of attention deficit hyperactivity disorder. Psychiatr Clin North Am. 2010; 33(1): 159-180. doi: http://dx.doi.org/10.1016/j.pbi.2004.11.024

24. Li D, Sham PC, Owen MJ, He L. Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet. 2006; 15(14): 2276-2284. doi: http://dx.doi.org/10.1038/hmg/dd152

25. Ballon N, Leroy S, Roy C, Bourdel MC, Olie JP, Charles-Nicolas A, et al. Polymorphisms TaqI A of the DRD2, Ball of the DRD3, exon III repeat of the DRD4, and 3’ UTR VNTR of the DAT: association with childhood ADHD in male African-Caribbean cocaine dependents? Am J Med Genet B Neuropsychiatr Genet. 2007; 144B(8): 1034-1041. doi: http://dx.doi.org/10.1002/ajmg.b.30540

26. Bhaduri N, Das M, Sinha S, Chattopadhyyay A, Gangopadhyay PK, Chaudhuri K, et al. Association of dopamine D4 receptor (DRD4) polymorphisms with attention deficit hyperactivity disorder in Indian population. Am J Med Genet B Neuropsychiatr Genet. 2006; 141B(1): 61-66. doi: http://dx.doi.org/10.1002/ajmg.b.30225

27. Cheuk DK, Wong V. Meta-analysis of association between a catechol-O-methyltransferase gene polymorphism and attention deficit hyperactivity disorder. Behav Genet. 2006; 36(5): 651-659. doi: http://dx.doi.org/10.1007/s10519-006-9076-5

28. Yang JW, Jang WS, Hong SD, Ji YI, Kim DH, Park J, et al. A case-control association study of the polymorphism at the promoter region of the DRD4 gene in Korean boys with attention deficit-hyperactivity disorder: evidence of association with the -521 C/T SNP. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32(1): 243-248. doi: http://dx.doi.org/10.1016/j.pnpbp.2007.08.016

29. Cheuk DK, Li SY, Wong V. Exon 3 polymorphisms of dopamine D4 receptor (DRD4) gene and attention deficit hyperactivity disorder in Chinese children. Am J Med Genet B Neuropsychiatr Genet. 2006; 141B(8): 907-911. doi: http://dx.doi.org/10.1002/ajmg.b.30397

30. Leung PW, Lee CC, Hung SF, Ho TP, Tang CP, Kwong SL, et al. Dopamine receptor D4 (DRD4) gene in Han Chinese children with attention-deficit/hyperactivity disorder (ADHD): increased prevalence of the 2-repeat allele. Am J Med Genet B Neuropsychiatr Genet. 2005; 133B(1): 54-56

31. Zhao AL, Su LY, Luo XR, Huang CX, Gao XP. [Association analysis of dopamine D4 receptor gene polymorphism with ADHD and related symptomatology]. Zhongguo Xing Wei Yi Xue Ke Xue. 2005; 3: 199. Chinese. doi: http://doi.med.wanfangdata.com.cn/10.3760/cma.j.issn.1674-6554.2005.03.003

32. Guan LL, Wang YF, Li J, Wang B, Yang L, Qian QJ. [Association analysis of dopamine D4 receptor gene polymorphism and attention deficit hyperactivity disorder with/without disruptive behavior disorder]. Beijing Da Xue Xue Bao. 2007; 3: 233-236. Chinese

33. Li Y, Baker-Ericzen M, Ji N, Chang W, Guan L, Qian Q, et al. Do SNPs of DRD4 gene predict adult persistence of ADHD in a Chinese sample? Psychiatry Res. 2013; 205(1-2): 143-150. doi: http://dx.doi.org/10.1016/j.psychres.2012.08.016

34. Brookes KJ, Xu X, Chen CK, Huang YS, Wu YY, Asherson P. No evidence for the association of DRD4 with ADHD in a Taiwanese population within-family study. BMC Med Genet. 2005; 6: 31. doi: http://dx.doi.org/10.1186/1471-2350-6-31

35. Qian Q, Wang Y, Li J, Yang L, Wang B, Zhou R, et al. Evaluation of potential gene-gene interactions for attention deficit hyperactivity disorder in the Han Chinese population. Am J Med Genet B Neuropsychiatr Genet. 2007; 144B(2): 200-206. doi: http://dx.doi.org/10.1002/ajmg.b.30422

36. Guan L, Wang B, Chen Y, Yang L, Li J, Qian Q, et al. A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder: suggesting multiple susceptibility genes among Chinese Han population. Mol Psychiatry. 2009; 14(5): 546-554. doi: http://dx.doi.org/10.1038/mp.2009.321

37. Huang YS, Lin SK, Wu YY, Chao CC, Chen CK. A family-based association study of attention-deficit/hyperactivity disorder and dopamine D2 receptor TaqI A alleles. Chang Gung Med J. 2003; 26(12): 897-903

38. Berridge CW, Devilbiss DM, Andrzejewski ME, Arnsten AF, Kelley AE, Schmeichel B, et al. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry. 2006; 60(10): 1111-1120. doi: http://dx.doi.org/10.1016/j.biopsych.2006.04.022

39. Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacol. 2002; 27(5): 699-711. doi: http://dx.doi.org/10.1016/S0893-133X(02)00346-9

40. Kim CH, Waldman ID, Blakely RD, Kim KS. Functional gene variation in the human norepinephrine transporter: association with attention deficit hyperactivity disorder. Ann N Y Acad Sci. 2008; 1129: 256-260. doi: http://dx.doi.org/10.1196/annals.1417.023

41. Xu X, Hawi Z, Brookes KJ, Anney R, Bellgrove M, Franke B, et al. Replication of a rare protective allele in the noradrenaline transporter gene and ADHD. Am J Med Genet B Neuropsychiatr Genet. 2008; 147B(8): 1564-1567. doi: http://dx.doi.org/10.1002/ajmg.b.30872
42. Hawi Z, Matthews N, Barry E, Kirley A, Wagner J, Wallace RH, et al. A high density linkage disequilibrium mapping in 14 noradrenergic genes: evidence of association between SLC6A2, ADRA1B and ADHD. Psychopharmacology (Berl). 2013; 225(4): 895-902. doi: http://dx.doi.org/10.1007/s00213-012-2875-x

43. Wang Y, Liu L, Qian QJ, Li HM, Wang YF. [Association between NET1 and pure attention-deficit/hyperactivity disorder]. Zhongguo Xin Li Wei Sheng Za Zhi. 2014; 2: 114-120. Chinese. doi: http://dx.med.wanfangdata.com.cn/10.3969/j.issn.1000-6729.2014.02.006

44. Liu L, Cheng J, Li H, Yang L, Qian Q, Wang Y. The possible involvement of genetic variants of NET1 in the etiology of attention-deficit/hyperactivity disorder comorbid with oppositional defiant disorder. J Child Psychol Psychiatry. 2014. Epub 2014 Jun 19. doi: http://dx.doi.org/10.1111/jcpp.12278

45. Brookes K, Xu X, Chen W, Zhou K, Neale B, Lowe N, et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry. 2006; 11(10): 934-953. doi: http://dx.doi.org/10.1038/sj.mp.4001869

46. Genro JP, Roman T, Rohde LA, Hutz MH. The Brazilian contribution to Attention-Deficit/Hyperactivity Disorder molecular genetics in children and adolescents. Genet Mol Biol. 2012; 35(4 suppl): 932-938

47. Xu X, Hawi Z, Brookes KJ, Anney R, Bellgrove M, Franke B, et al. Replication of a rare protective allele in the noradrenaline transporter gene and ADHD. Am J Med Genet B Neuropsychiatr Genet. 2008; 147B(8): 1564-1567. doi: http://dx.doi.org/10.1002/ajmg.b.30872

48. Connor DF, Fletcher KE, Swanson JM. A meta-analysis of clonidine for symptoms of attention-deficit-hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 1999; 38(12): 1551-1559. doi: http://dx.doi.org/10.1097/00004583-199912000-00017

49. Jain R, Segal S, Kollins SH, Khayrallah M. Clonidine extended-release tablets for pediatric patients with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2011; 50(2): 171-179. doi: http://dx.doi.org/10.1016/j.jaac.2010.11.005

50. Arnsten AF. Genetics of childhood disorders: XVIII. ADHD, Part 2: Norepinephrine has a critical modulatory influence on prefrontal cortical function. J Am Acad Child Adolesc Psychiatry. 2000; 39(9): 1201-1203. doi: http://dx.doi.org/10.1097/00004583-200009000-00022

51. Wang B, Wang Y, Zhou R, Li J, Qian Q, Yang L, et al. Possible association of the alpha-2A adrenergic receptor gene (ADRA2A) with symptoms of attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2006; 141B(2): 130-134. doi: http://dx.doi.org/10.1002/ajmg.b.30258

52. Park L, Nigg JT, Waldman ID, Nummy KA, Huang-Pollock C, Rappleye M, et al. Association and linkage of alpha-2A adrenergic receptor polymorphisms with childhood ADHD. Mol Psychiatry. 2005; 10(6): 572-580. doi: http://dx.doi.org/10.1038/sj.mp.4001605

53. Roman T, Schmitz M, Polanczyk GV, Eizirik M, Rohde LA, Hutz MH. Is the alpha-2A adrenergic receptor gene (ADRA2A) associated with attention-deficit/hyperactivity disorder? Am J Med Genet B Neuropsychiatr Genet. 2003; 120B(1): 116-120. doi: http://dx.doi.org/10.1002/ajmg.b.20018

54. Gainetdinov RR, Wetsel WC, Jones SR, Levin ED, Jaber M, Caron MG. Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science. 1999; 283(5400): 397-401. doi: http://dx.doi.org/10.1126/science.283.5400.397

55. Halperin JM, Newcorn JH, Schwartz ST, Sharma V, Siever LJ, Koda VH, et al. Age-related changes in the association between serotonergic function and aggression in boys with ADHD. Biol Psychiatry. 1997; 41(6): 682-689. doi: http://dx.doi.org/10.1016/S0006-3223(96)00168-0

56. Oades RD. Dopamine-serotonin interactions in attention-deficit hyperactivity disorder (ADHD). Prog Brain Res. 2008; 172: 543-565. doi: http://dx.doi.org/10.1016/S0079-6123(08)00926-6

57. Li J, Wang Y, Zhou R, Yang L, Zhang H, Wang B. [Association between transporter promoter gene polymorphism and attention deficit hyperactivity disorder with or without concomitant learning disorder]. Zhong Hua Jing Shen Ke Za Zhi. 2004; 4: 17-21. Chinese. doi: http://dx.doi.org/10.3760/j issn:1006-7884.2004.04.001

58. Zhao AL, Su LY, Zhang YH, Tang BS, Luo XR, Huang CX, et al. Association analysis of serotonin transporter promoter gene polymorphism with ADHD and related symptomatology. Int J Neurosci. 2005; 115(8): 1183-1191. doi: http://dx.doi.org/10.1080/00207450590914545

59. Cheng MD, Gao XP, Sun LY, Zhao AL. [Association of 5-HT2A receptor gene polymorphism with ADHD and related symptomatology]. Zhongguo Xue Xiao Wei Sheng Za Zhi. 2004; 14(3): 4-2. Chinese. doi: http://dx.doi.org/10.3760/cma.j.issn:1006-6554.2004.03.001

60. Hou X, Guan MJ, Wu T. [Association of 5-HT2A receptor polymorphism and attention deficit hyperactivity disorder in children]. Zhongguo Xue Xiao Wei Sheng Za Zhi. 2014; 1: 81-82. Chinese

61. Li J, Wang Y, Zhou R, Wang B, Zhang H, Yang L, et al. No association of attention-deficit/hyperactivity disorder with genes of the serotonergic pathway in Han Chinese subjects. Neuropsychobiology. 2006; 53(4): 239-248. doi: http://dx.doi.org/10.1159/000094945

62. Li J, Kang C, Wang Y, Zhou R, Wang B, Guan L, et al. Contribution of 5-HT2A receptor gene -1438A>G polymorphism to outcome of attention-deficit/hyperactivity disorder in adolescents. Am J Med Genet B Neuropsychiatr Genet. 2006; 141B(5): 473-476. doi: http://dx.doi.org/10.1002/ajmg.b.30320

63. Li J, Wang Y, Zhou R, Zhang H, Yang L, Wang B, et al. Association between polymorphisms in serotonin 2C receptor gene and attention-deficit/hyperactivity disorder in Han Chinese subjects. Neurosci Lett. 2006; 407(2): 107-111. doi: http://dx.doi.org/10.1016/j.neulet.2006.08.022
64. Li J, Zhang X, Wang Y, Zhou R, Zhang H, Yang L, et al. The serotonin 5-HT1D receptor gene and attention-deficit hyperactivity disorder in Chinese Han subjects. *Am J Med Genet B Neuropsychiatr Genet*. 2006; 141B(8): 874-876. doi: http://dx.doi.org/10.1002/ajmg.b.30364

65. Li J, Wang Y, Zhou R, Zhang H, Wang B, Yang L. [Association between serotonin in 1D gene polymorphism and attention deficit hyperactivity disorder comorbid or not comorbid disruptive behavior disorder]. *Beijing Da Xue Xue Bao (Yi Xue Ban)*. 2006; 5: 492-495. Chinese.

66. Hsu CD, Tsang RF, Liou YJ, Hong CJ, Tsai SJ. Family-based association study of tryptophan hydroxylase 2 and serotonin 1A receptor genes in attention deficit hyperactivity disorder. *Psychiatr Genet*. 2013; 23(1): 38. doi: http://dx.doi.org/10.1097/YPG.0b013e3283586378

67. Shim SH, Hwangbo Y, Kwon YJ, Jeong HY, Lee BH, Hwang JA, et al. A case-control association study of serotonin 1A receptor gene and tryptophan hydroxylase 2 gene in attention deficit hyperactivity disorder. *Prog Neuropsychopharmacol Biol Psychiatry*. 2010; 34(6): 974-979. doi: http://dx.doi.org/10.1016/j.pnpbp.2010.05.006

68. Cheuk DK, Wong V. Meta-analysis of association between a catechol-O-methyltransferase gene polymorphism and attention deficit hyperactivity disorder. *Behav Genet*. 2006; 36(5): 651-659. doi: http://dx.doi.org/10.1007/s10519-006-9076-5

69. Sun H, Yuan F, Shen X, Xiong G, Wu J. Role of COMT in ADHD: a systematic meta-analysis. *Mol Neurobiol*. 2014; 49(1): 251-261. doi: http://dx.doi.org/10.1007/s12035-013-8516-5

70. Zhang L, Chang S, Li Z, Zhang K, Du Y, Ott J, et al. ADHD gene: a genetic database for attention deficit hyperactivity disorder. *Nucleic Acids Res.* 2012; 40 (Database issue): D1003-D1009. doi: http://dx.doi.org/10.1093/nar/gkr992

71. Qian Q, Wang Y, Zhou R, Li J, Wang B, Glatt S, et al. Family-based and case-control association studies of catechol-O-methyltransferase in attention deficit hyperactivity disorder suggest genetic sexual dimorphism. *Am J Med Genet B Neuropsychiatr Genet*. 2003; 118B(1): 103-109. doi: http://dx.doi.org/10.1002/ajmg.b.10064

72. Qian QJ, Liu J, Wang YF, Yang L, Guan LL, Faraone SV. Attention Deficit Hyperactivity Disorder comorbid oppositional defiant disorder and its predominately inattentive type: evidence for an association with COMT but not MAOA in a Chinese sample. *Behav Brain Funct*. 2009; 5: 8. doi: http://dx.doi.org/10.1186/1744-9081-5-8

73. Jiang SD, Wu XD, Zhan Y, Tang GM, Qian YP, Wang DX. No association between attention-deficit hyperactivity disorder and catechol-o-methyltransferase gene in Chinese. *Acta Genetica Sinica*. 2005; 32(8): 784-788

74. Zhang XN, Ruan LM, Le YP, Zhang Y. [Association analysis between attention-deficit hyperactivity disorder and Val158Met polymorphism of catechol-o-methyltransferase gene]. *Zhonghua Yi Xue Yi Chuan Xue Za Zhi*. 2003; 20(4): 322-324. doi: http://dx.doi.org/10.3760/j.issn.1003-9406.2003.04.012

75. Xiong ZG, Hu XV, Xu HQ, Wang F, Shi SH. [Controlled study of polymorphism of catechol-O-methyltransferase gene on children with attention deficit hyperactivity disorder]. *Zhongguo Er Tong Biao Jiaonan*. 2013; 3: 222-223. Chinese

76. Gao XP, Su LY, Du YS, Li XR, Zhang XH. [Association Analysis Between Catechol-o-methyltransferase (COMT) Gene and Attention-deficit hyperactivity disorder]. *Zhongguo Lan Chuan Xin Li Xue Za Zhi*. 2006; 1: 94-97. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1005-3611.2006.01.035

77. Zhang YB, Luo XR, Liu X, Zhong Y, Zhu F, Chen LY. [Catechol-O-methyltransferase gene rs6267 polymorphism in children with attention deficit hyperactivity disorder]. *Zhongguo Dang Dai Er Ke Za Zhi*. 2011; 13(2): 127-130. Chinese.

78. Manuck SB, Flory JD, Ferrell RE, Dent KM, Mann JJ, Muldoon MF. Aggression and anger-related traits associated with a polymorphism of the tryptophan hydroxylase gene. *Biol Psychiatry*. 1999; 45(5): 603-614. doi: http://dx.doi.org/10.1016/S0006-3223(98)00375-8

79. Tang G, Ren D, Xin R, Qian Y, Wang D, Jiang S. Lack of association between the tryptophan hydroxylase gene A218C polymorphism and attention-deficit hyperactivity disorder in Chinese Han population. *Am J Med Genet*. 2001; 105(6): 485-488. doi: http://dx.doi.org/10.1002/ajmg.1471

80. Li J, Wang Y, Zhou R, Zhang H, Yang L, Wang B, et al. Association between tryptophan hydroxylase gene polymorphisms and attention deficit hyperactivity disorder in Chinese Han population. *Am J Med Genet B Neuropsychiatr Genet*. 2006; 141B(2): 126-129. doi: http://dx.doi.org/10.1002/ajmg.b.30260

81. Li J, Wang YF, Zhou RL, Yang L, Zhang HB, Wang B. [Association between tryptophan hydroxylase gene polymorphisms and attention deficit hyperactivity disorder with or without learning disorder]. *Zhonghua Yi Xue Za Zhi*. 2003; 83(24): 2114-2118. Chinese. doi: http://dx.doi.org/10.1002/ajmg.b.30260

82. Lasky-Su J, Neale BM, Franke B, Anney RJ, Zhou K, Mallier JB, et al. Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. *Am J Med Genet B Neuropsychiatr Genet*. 2008; 147B(8): 1345-1354. doi: http://dx.doi.org/10.1002/ajmg.b.30867

83. Sheehan K, Lowe N, Kirby A, Mullins C, Fitzgerald M, Gill M, et al. Tryptophan hydroxylase 2 (TPH2) gene variants associated with ADHD. *Mol Psychiatry*. 2005; 10(10): 944-949. doi: http://dx.doi.org/10.1038/sj.mp.4001698

84. Walitza S, Renner TJ, Dempflie A, Konrad K, Wewetzer C, Halbach A, et al. Transmission disequilibrium of polymorphic variants in the tryptophan hydroxylase-2 gene in attention-deficit/hyperactivity disorder. *Mol Psychiatry*. 2005; 10(12): 1126-1132. doi: http://dx.doi.org/10.1038/sj.mp.4001597

85. Zheng P, Li E, Wang J, Cui X, Wang L. Involvement of tryptophan hydroxylase 2 gene polymorphisms in susceptibility to tic disorder in Chinese Han population. *Behav Brain Funct*. 2013; 9: 6. doi: http://dx.doi.org/10.1186/1744-9081-9-6

86. Cubells JF, Zabetian CP. Human genetics of plasma dopamine beta-hydroxylase activity: applications to research in psychiatry and neurology. *Psychopharmacology (Berl)*. 2004; 174(4): 463-476. doi: http://dx.doi.org/10.1007/s00213-004-1840-8
Association study between the monoamine oxidase A gene polymorphism and attention-deficit/hyperactivity disorder. *J Med Genet B Neuropsychiatr Genet* 2000; 36(1): 28-31. Chinese. doi: http://dx.doi.org/10.1038/mp.2010.75

Zhao AL, Su LY, Jia FJ, Luo XR. [Association analysis between synaptosomal-associated protein 25 (SNAP25) gene and attention-deficit/hyperactivity disorder]. *Zhonghua Yi Xue Yi Chuan Xue Za Zhi*. 2001; 10(1): 69-72. Chinese. doi: http://dx.doi.org/10.1038/mp.2010.75

106. Cao YL, Tang CH, Li SJ, Chang X, Cu LT. [Association between gene polymorphism of brain-derived neurotrophic factor and Attention Deficit Hyperactivity Disorder]. *Xian Dai Sheng Wu Yi Xue Jin Zhan*. 2011; 2: 317-319. Chinese.
110. Liu L, Sun L, Li ZH, Li HM, Wei LP, Wang YF, et al. BAIAP2 exhibits association to childhood ADHD especially predominantly inattentive subtype in Chinese Han subjects. *Behav Brain Funct.* 2013; 9: 48. doi: http://dx.doi.org/10.1186/1744-9081-9-48

111. Li Z, Qian Q, Liu L, Li H, Yang L, Wang Y. [Association study of BAIAP2 gene polymorphisms and attention-deficit/ hyperactivity disorder comorbid learning disability]. Zhongguo Xin Li Wei Sheng Za Zhi. 2012; 6: 429-434. Chinese. doi: http://dx.doi.med.wanfangdata.com.cn/10.3969/j.issn.1000-6729.2012.06.007

112. Xu X, Breen G, Chen CK, Huang YS, Wu YY, Asherson P. Association study between a polymorphism at the 3'-untranslated region of CLOCK gene and attention deficit hyperactivity disorder. *Behav Brain Funct.* 2010; 6: 48. doi: http://dx.doi.org/10.1186/1744-9081-6-48

113. Xu X, Breen G, Luo L, Sun B, Chen CK, Paredes UM, et al. Investigation of the ZNF804A gene polymorphism with genetic risk for bipolar disorder in attention deficit hyperactivity disorder. *BMC Res. Notes.* 2013; 6: 29. doi: http://dx.doi.org/10.1186/1756-0500-6-29

114. Hsu CD, Tzang RF, Loh E, Liou YJ, Hong CJ, Tsai SJ. Family-based association study of cocaine- and amphetamine-regulated transcript (CARTPT) and protein interaction with C-kinase-1 (PICK1) genes in attention-deficit hyperactivity disorder. *Psychiatry Res.* 2012; 198(2): 334-335. doi: http://dx.doi.org/10.1016/j.psychres.2012.01.031

115. Doyle AE, Faraone SV, Seidman LJ, Willcutt EG, Nigg JT, Waldman ID, et al. Are endophenotypes based on measures of executive functions useful for molecular genetic studies of ADHD? *J Child Psychoh Psychiatry.* 2005; 46(7): 774-803. doi: http://dx.doi.org/10.1111/j.1469-7610.2005.01476.x

116. Qian Y, Shuai L, Cao Q, Chan RC, Wang Y. Do executive function deficits differentiate between children with attention deficit hyperactivity disorder (ADHD) and ADHD comorbid with oppositional defiant disorder? A cross-cultural study using performance-based tests and the behavior rating inventory of executive function. *Clin Neuropsychol.* 2010; 24(5): 793-810. doi: http://dx.doi.org/10.1080/13854040103749342

117. Shuai L, Chan RC, Wang Y. Executive function profile of Chinese boys with attention-deficit/hyperactivity disorder: different subtypes and comorbidity. *Arch Clin Neuropsychol.* 2011; 26(2): 120-132. doi: http://dx.doi.org/10.1093/arclin/acq101

118. Qian G, Wang Y, Yang L, Liu Y. [Association study of Catechol-O-methyltransferase gene polymorphism and cognition function in attention deficit hyperactivity disorder boys in China]. Zhong Hua Jing Shen Ke Za Zhi. 2008; 41(4): 200-203. Chinese. doi: http://dx.doi.org/10.3321/j.issn.1000-7894.2008.04.003

119. Zhang YB, Lou XR, Liu X, Zhu Feng, Chen LY. [The association study of catechol-O-methyltransferase gene on the executive function of attention deficit hyperactivity disorder]. Zhongguo Shen Jing Jing Shen Ji Bing Za Zhi. 2010; 9: 521-524. Chinese. doi: http://dx.doi.org/10.3969/j.issn.1002-0152.2010.09.004

120. Ji N, Shuai L, Chen Y, Liu L, Li HM, Li ZH, et al. Dopamine beta-hydroxylase gene associates with Stroop color-word task performance in Han Chinese children with attention deficit/hyperactivity disorder. *Am J Med Genet B Neuropsychiatr Genet.* 2011; 156B(6): 730-736. doi: http://dx.doi.org/10.1002/ajmg.b.31215

121. Shang CY, Gau SS. Association between the DAT1 gene and spatial working memory in attention deficit hyperactivity disorder. *Int J Neuropsychopharmacol.* 2014; 17(1): 9-21. doi: http://dx.doi.org/10.1016/j.jiunp.2013.01.007

122. Plomin R. Genetics and general cognitive ability. *Nature.* 1999; 402(6761 Suppl): C25-C29

123. Qian QJ, Wang YF, Li J, Yang L, Guan LL, Chen Y, et al. [Influence of serotonin gene polymorphism on intelligence of children with attention deficit hyperactivity disorder]. Shi Yong Er Ke Lin Chuang Za Zhi. 2009; 6: 454-457. Chinese

124. Qian QJ, Wang YF, Li J, Yang L, Chen Y, Ji N, et al. [Gene–gene interaction between serotonin transporter gene and serotonin 2A receptor gene on the intelligence of Children with Attention Deficit Hyperactivity Disorder]. Shi Yong Er Ke Lin Chuang Za Zhi. 2010; 2: 133-136. Chinese

125. Qian QJ, Yang L, Wang YF, Zhang HB, Guan LL, Chen Y, et al. Gene–gene interaction between COMT and MAOA potentially predicts the intelligence of attention-deficit hyperactivity disorder boys in China. *Behav Genet.* 2010; 40(3): 357-365. doi: http://dx.doi.org/10.1007/s10519-009-9314-8

126. Qian QJ, Zhang HB, Wang YF, Yang L, Guan LL, Chen Y. [Study on the association of monoamine oxidase A gene polymorphism with intelligence of attention deficit hyperactivity disorder]. Zhongguo Shi Yong Er Ke Za Zhi. 2009; 24(01): 26-30. Chinese

127. Lesch KP, Timmesfeld N, Renner TJ, Halperin R, Roser C, Nguyen TT, et al. Molecular genetics of adult ADHD: converging evidence from genome-wide association and extended pedigree linkage studies. *J Neural Transm.* 2008; 115(11): 1573-1585. doi: http://dx.doi.org/10.1007/s00702-008-0119-3

128. Neale BM, Lasky-Su J, Anney R, Franke B, Zhou K, Maller JB, et al. Genome-wide association scan of attention deficit hyperactivity disorder. *Am J Med Genet B Neuropsychiatr Genet.* 2008; 147B(8): 1337-1344. doi: http://dx.doi.org/10.1002/ajmg.b.30866

129. Mick E, Todorov A, Smallay S, Hu X, Loo S, Todd RD, et al. Family-based genome-wide association scan of attention-deficit/hyperactivity disorder. *J Am Acad Child Adolesc Psychiatry.* 2010; 49(9): 898-905. doi: http://dx.doi.org/10.1016/j.jaac.2010.02.001

130. Neale BM, Medland S, Ripke S, Anney RJ, Asherson P, Buitelaar J, et al. Case-control genome-wide association study of attention-deficit/hyperactivity disorder. *J Am Acad Child Adolesc Psychiatry.* 2010; 49(9): 906-920. doi: http://dx.doi.org/10.1016/j.jaac.2010.06.007

131. Hinney A, Scherag A, Jarick I, Albayrak O, Putter C, Pechlinvan S, et al. Genome-wide association study in German patients with attention deficit/hyperactivity disorder. *Am J Med Genet B Neuropsychiatr Genet.* 2011; 156B(8): 888-897. doi: http://dx.doi.org/10.1002/ajmg.b.31246
132. Stergiakouli E, Hamshere M, Holmans P, Langley K, Zaharieva I, Hawi Z, et al. Investigating the contribution of common genetic variants to the risk and pathogenesis of ADHD. Am J Psychiatry. 2012; 169(2): 186-194. doi: http://dx.doi.org/10.1176/appi.ajp.2011.11040551

133. Yang L, Neale BM, Liu L, Lee SH, Wray NR, Ji N, et al. Polygenic transmission and complex neuro developmental network for attention deficit hyperactivity disorder: genome-wide association study of both common and rare variants. Am J Med Genet B Neuropsychiatr Genet. 2013; 162B(5): 419-430. doi: http://dx.doi.org/10.1002/ajmg.b.32169

134. Banaschewski T, Becker K, Scherag S, Franke B, Coghill D. Molecular genetics of attention-deficit/hyperactivity disorder: an overview. Eur Child Adolesc Psychiatry. 2010; 19(3): 237-257. doi: http://dx.doi.org/10.1007/s00787-010-0090-z

135. Stergiakouli E, Thapar A. Fitting the pieces together: current research on the genetic basis of attention-deficit/hyperactivity disorder (ADHD). Neuropsychiatr Dis Treat. 2010; 6: 551-560. doi: http://dx.doi.org/10.2147/NDT.S11322

136. Franke B, Neale BM, Faraone SV. Genome-wide association studies in ADHD. Hum Genet. 2009; 126(1): 13-50. doi: http://dx.doi.org/10.1007/s00439-009-0663-4

137. Froehlich TE, McGough JJ, Stein MA. Progress and promise of attention-deficit hyperactivity disorder pharmacogenetics. CNS Drugs. 2010; 24(2): 99-117. doi: http://dx.doi.org/10.2165/11530290-00000000-00000

138. Kieling C, Genro JP, Hutz MH, Rohde LA. A current update on ADHD pharmacogenomics. Pharmacogenomics. 2010; 11(3): 407-419. doi: http://dx.doi.org/10.2217/pgs.10.28

139. Yang L, Wang YF, Li J, Faraone SV. Association of norepinephrine transporter gene with methylphenidate response. J Am Acad Child Adolesc Psychiatry. 2004; 43(9): 1154-1158. doi: http://dx.doi.org/10.1097/01.chi.0000131134.63368.46

140. McGough JJ, McCracken JT, Loo SK, Manganiello M, Leung MC, Tietjens JR, et al. A candidate gene analysis of methylphenidate response in attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2009; 48(12): 1155-1164. doi: http://dx.doi.org/10.1097/CHI.0b013e3181bc72e3

141. Kool J, Boonstra AM, Vermeulen SH, Heister AG, Burger H, Buitelaar JK, et al. Response to methylphenidate in adults with ADHD is associated with a polymorphism in SLC6A3 (DAT1). Am J Med Genet B Neuropsychiatr Genet. 2008; 147B(2): 201-208. doi: http://dx.doi.org/10.1002/ajmg.b.30586

142. Micheelson D, Faries D, Wernicke J, Kelsey D, Kendrick K, Sallee FR, et al. Atomoxetine in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled, dose-response study. Pediatrics. 2001; 108(5): E83. doi: http://dx.doi.org/10.1542/peds.108.5.e83

143. Yang L, Qian Q, Liu L, Li H, Faraone SV, Wang Y. Adrenergic neurotransmitter system transporter and receptor genes associated with atomoxetine response in attention-deficit hyperactivity disorder children. J Neural Transm. 2013; 120(7): 1127-1133. doi: http://dx.doi.org/10.1007/s00702-012-0955-z

144. Wu Z, Yang L, Wang Y. Applying imaging genetics to ADHD: the promises and the challenges. Mol Neurobiol. 2014: 1-14. doi: http://dx.doi.org/10.1007/s12035-014-8683-z

(received: 2014-06-16; accepted: 2014-07-16)