Correlation-sharing for detection of differential gene expression

Robert Tibshirani ∗
Larry Wasserman †
February 2, 2008

Abstract

We propose a method for detecting differential gene expression that exploits the correlation between genes. Our proposal averages the univariate scores of each feature with the scores in correlation neighborhoods. In a number of real and simulated examples, the new method often exhibits lower false discovery rates than simple t-statistic thresholding. We also provide some analysis of the asymptotic behavior of our proposal. The general idea of correlation-sharing can be applied to other prediction problems involving a large number of correlated features. We give an example in protein mass spectrometry.

∗Dept. of Health Research & Policy, and Department of Statistics, Stanford University, Stanford, CA 94305. Email: tibs@stat.stanford.edu.
†Department of Statistics, Carnegie Mellon University, Pittsburgh, PA. Email: larry@stat.cmu.edu.
1 Introduction

We consider methods for detecting differentially expressed genes in from a set of microarray experiments. Consider the simple case of \(m \) genes measured across two experimental conditions. A number of authors have proposed methods for detecting differential gene expression, including \(?\), \(?\) and \(?\). \(?\) presents an interesting, more general approach.

One widely used approach to this problem is as follows. We compute a two-sample t-statistic \(T_i \) for each gene, and then call a gene significant if \(|T_i|\) exceeds some threshold \(c \). Various values of \(c \) are tried, using permutations of the sample labels to estimate the false discovery rate (FDR) for the procedure for each \(c \). A threshold \(c \) is finally chosen based on the estimates of FDR and other considerations, such as the ballpark number of significant genes that is desirable. This recipe roughly describes the strategy used, for example, in the Significance of Microarrays (SAM) procedure (\(?\)).

In this paper we propose a simple method for potentially improving on the thresholded t-statistic approach defined above. The idea is to exploit correlation among the genes. In a sense this general idea is not new, and exploratory methods based on clustering have been proposed (e.g. \(?\)). These methods require choices like the clustering metric and linkage, and hence are somewhat subjective. The proposal presented here is much simpler, and hence it is easier to analyze and assess its performance.

We start with t-statistics computed for each gene. Then we assign to each gene a score \(r_i \) equal to the average of all t-statistics for genes having correlation at least \(\rho(i) \) with that gene, choosing the best value of \(\rho(i) \in [0,1] \) to maximize the average. Finally, we call a gene significant if \(|r_i|\) exceeds some threshold \(c \). The idea is that differentially expressed genes are likely to co-exist in a pathway, and hence will be correlated in our data. Hence use of the
score \(r_i \) might provide a more accurate test of significance than that based on \(t_i \). We call this approach “correlation sharing.” Note that the choice \(\rho(i) = 1 \) yields no sharing, giving \(r_i = t_i \). Hence the correlation-sharing method contains the thresholded t-statistic approach as a special case.

As a motivating example, we generated data with 1000 genes and 30 samples. The first 50 genes \(i \in P = \{1, 2, \ldots, 50\} \) are generated as

\[
X_{ij} = Z_{ij} + 0.75 \cdot I(j > 15)
\]

with \(Z_{ij} \sim N(0,1) \) and \(\text{corr}(Z_i, Z_{i'}) = 0.8 \), where \(Z_i = (Z_{i1}, \ldots Z_{in}) \) The remaining genes \(x_{ij}, i > 50 \) were generated as \(N(0,1) \). The outcome variable \(Y_j \) equaled 2 for \(16 \leq j \leq 30 \) and 1 otherwise.

Figure 1 shows the t-statistics (top panel) and correlation-shared t-statistics (bottom panel). We see that in the bottom panel the scores for the first 50 genes are magnified. This leads to improved detection of the differentially expressed genes, as we show in the next section.

The outline of this paper is as follows. Section 2 defines correlation-sharing. In section 3 we discuss the concept of residual correlation, and its impact on correlation-sharing. We apply our method to four microarray cancer datasets. The skin data is examined more closely in section 4. Some asymptotic results for correlation sharing are given in section 6. Section 5 applies the method to a different kind of data—protein mass spectra. Finally in section 7 we discuss the application of correlation sharing to other kinds of response variables, and computational issues.
2 Correlation sharing

Let X be the $m \times n$ matrix of expression values, for m genes and n samples. We assume that the samples fall into two groups $j = 1$ and 2. We start with the standard (unpaired) t-statistic

$$T_i = \frac{\bar{x}_{i2} - \bar{x}_{i1}}{s_i}$$

Here \bar{x}_{ij} is the mean of gene i in group j and $s_i = $ pooled within group standard deviation of gene i.

Let x_i denote the ith row of X. Define $C_\rho(i) = \{ k : \text{corr}(x_i, x_k) \geq \rho \}$, the indices of the genes with correlation at least ρ with gene x_i. Then we define

$$u_i = \max_{0 \leq \rho \leq 1} \text{ave}_{j \in C_\rho(i)} |T_j|$$

$$r_i = \text{sign}(T_i) \cdot u_i$$

We call this the “correlation-shared” t-statistic. The method calls significant all genes having $|r_i| > c$, and estimates the false discovery rate (FDR) of the resultant gene list by permutations. We vary c and examine the estimated FDR.

Figure 2 shows the results for correlation sharing applied to the simulated data from model (1). As the threshold is varied, the number of genes called significant and the number of false positive genes and false negative genes all change. We see that correlation sharing generally yields fewer false positive and false negative genes than the t-statistic.

We can also think of correlation-sharing as a method for supervised clustering. Let $\hat{\rho}(i)$ be the maximizing correlation for gene i, from definition (3). Then the set of genes with indices $C_{\hat{\rho}(i)}(i)$ is an adaptively chosen cluster, selected to maximize the average “signal” around gene i. Unlike with most standard clustering methods, the clusters $C_{\hat{\rho}(i)}(i)$ are overlapping,
rather than mutually disjoint. We examine these clusters in some examples later in this paper.

As a second example, we changed the data generation so that the first 50 genes had no correlation, before the group effect was added. Figure 3 shows that the advantage of correlation sharing has disappeared.

3 Residual correlation among non-null and null genes

The previous example suggests that a key assumption in for our proposal is that the correlation between the non-null genes is higher than that for the null genes.

We need to say precisely what we mean by “correlation”. Suppose for a set of non-null genes \(P \), the expression is \(\beta \) units higher in group \(Y_j = 2 \) than it is in group \(Y_j = 1 \):

\[
x_{ij} = \beta \cdot I(Y_j = 2) + \varepsilon_{ij} \text{ for } i \in P
\]

\[
= \varepsilon_{ij} \text{ for } i \notin P
\]

(4)

Let \(x_i = (x_{i1}, x_{i2}, \ldots, x_{in}) \). Then even if the errors \(\varepsilon_{ij} \) are all independent of one another, we have \(\text{corr}(x_i, x_{i'}) > 0 \) for \(i, i' \in P \). That is, the treatment effect induces an overall correlation between the genes in \(P \). However we would expect that the t-statistic would capture all of the information needed to decide if a gene is in \(P \).

Instead, we assume that there is residual correlation among the genes in \(P \):

\[
\text{corr}(\varepsilon_i, \varepsilon_{i'}) > 0; \text{ for } i, i' \in P
\]

(5)

where \(\varepsilon_i = (\varepsilon_{i1}, \ldots, \varepsilon_{in}) \).

For the simulated data of Figure 3, the estimated residual correlation is the correlation between genes, after having removed the estimated effect of treatment. Specifically, the
residual correlation is \(\text{corr}(x_i^*, x_i^{*'}) \) where \(x_i^* = x_{ij} - \hat{x}_{ij} \). For the two sample case, for example, \(\hat{x}_{ij} = \bar{x}_{i2} - \bar{x}_{i1} \), \(\bar{x}_{ik} \) equaling the average of \(x_{ij} \) for samples in group \(k \).

The average absolute residual correlation for the non-null genes (the first 50 genes) equaled 0.47, while that for the null genes was 0.15, and the correlation between the non-null and null genes was also 0.15.

Is there residual correlation in real microarray data? Biologically, genes will be correlated if they are in the same pathway. However if that pathway is not active in the experimental conditions under study, the genes in the pathway will not show large correlation. And the same genes will tend to be null, i.e. will not differentially expressed in the experiment. The opposite should be true for differentially expressed genes.

To see if this assumption is reasonable in practice, we examine four microarray datasets: the skin data taken from [1], and Duke breast cancer data taken from [2], the BRCA data taken from [3] and the non-Hodgkins lymphoma data from [4]. These are summarized in Table 1.

The false discovery rates of both the t-statistic and correlation-shared statistics depend on the total number of genes input into the corresponding procedure. Hence for fairness (and computational speed) we started with the 2000 genes having largest overall variance in each case.

To examine residual correlation, we computed the two-sample t-statistics \(T_i \) for each gene. Then we computed the average absolute residual correlation for genes satisfying \(|T_i| > c|\), with \(c \) varying from the 99th to the 75 quantiles of the \(|T_i|\) values. In the lymphoma data the outcome is survival time; hence we instead computed the Cox’s partial likelihood score statistic for each gene (see section 7).

The results are shown in Figure 4. For the skin and lymphoma datasets data, the non-
null genes have higher correlation with each other than they have with the null genes, and also higher than that within the null-genes. But for the Duke and BRCA2 datasets, this is not the case.

For the same four datasets, Figure 5 shows the estimated number of false positive genes is plotted against the number of genes called significant, for both the t-statistic and correlation shared t-statistic. Correlation sharing exhibits lower FDR for all datasets except the Duke data, where neither method does much as all.

4 Skin data example

We examine more closely the results for the skin data shown in the top left panel of Figure 5. There are 12,625 genes and 58 patients: 44 normal patients and 14 with radiation sensitivity.

Figure 6 illustrates how correlation sharing can magnify the effect of a gene (#1127 chosen as an example). The figure shows all genes having correlation at least 0.5 with gene # 1127. Its raw t-statistic is about 2.0 Notice that the genes most correlated with gene # 1127 have greater scores than this gene. In particular, gene #1127 has correlation > 0.6 with a gene having score about 4.7. Hence our procedure averages the scores of these two genes to produce a new score of about 3.8.

Figure 8 shows the correlation-shared score versus the t-statistic score. Setting the cutoffs so that each method yields 100 significant genes, there are 13 genes which are called by each method and not called by the other. The red points represent the genes that are called significant by correlation-sharing but not by the t-statistic. Many of these genes are highly correlated with each other, and hence they boost up each other’s score.

In Figure 9 we do another test of our procedure. We randomly divided the samples
into equal-sized training and test sets. We computed the t-statistic and correlation sharing statistics on the training set, and also evaluated on the test set. For each trial cutpoint applied to the training set scores, we counted the number of genes with scores above or below this cutpoint in the test set. Genes above the cutpoint in the training set but below it in the test set were considered “false positives”, and conversely for false negatives. The results in Figure 9 show that correlation sharing has fewer false negatives for the same number of false positives.

5 Example: protein mass spectrometry

This example (taken from (?)) consists of the intensities of 3160 peaks on 20 patients: 10 healthy patients and 10 with Kawasaki’s disease. They were measured on a SELDI protein mass spectrometer.

Figure 10 shows that correlation sharing offers a mild improvement in the false positive rate.

For the 50 peaks having the top scores, 19 of these peaks were given neighborhoods of more than a single feature by the correlation sharing procedure. The smallest correlation chosen for neighborhood averaging was 0.7. Now in this example, each peak has an associated m/z (mass over charge) location: this was not used in the correlation-sharing procedure, but we can look posthoc at the these values within each averaging neighborhood. Figure 11 shows the location of the each of the 19 peaks (horizontal axis) and the chosen neighbors (vertical axis). The corresponding neighborhood correlation is indicated along the top of the plot. We see that most often, the selected neighbors are close to the target peak. But in some cases, they can be very far apart. Some biological insights might emerge from examination
of these groups of peaks.

6 Asymptotic Analysis

In this section we show that, under appropriate conditions, correlation sharing improves power. More specifically, we show that for null genes, U_i has similar behavior to T_i, while for nonnull genes, U_i tends to be stochastically larger than T_i. For simplicity, we focus on a one-sample, one-sided test. We denote by X_{ik} the measurement for gene i in sample k. Let $T_i = n^{-1} \sum_{k=1}^n X_{ik}$ denote the test statistic for gene i and assume that $X_{ik} \sim N(\beta_i, \sigma^2)$ where $\beta_i = 0$ for null genes and that $\beta_i > 0$ for non-nulls. Let $\rho(i, j) = \text{corr}(X_{ik}, X_{jk})$ denote the true residual correlation between gene i and gene j, $\hat{\rho}(i, j)$ denote the estimated residual correlation.

The correlation-shared statistic is

$$U_i = \max_{\rho} \frac{1}{|C_{\rho}(i)|} \sum_{j \in C_{\rho}(i)} T_j$$ \hspace{1cm} (6)

where $C_{\rho}(i) = \left\{ j : \hat{\rho}(i, j) \geq \rho \right\}$. \hspace{1cm} (7)

Throughout this section we make a small modification to the statistic which simplifies the analysis: we restrict the maximization in the definition of U_i to be over correlation neighborhoods no larger than K, where K is some fixed integer.

Recall that there are m genes and n observations. We require both m and n to grow in the asymptotic analysis. Typically, m is much larger than n so, to keep the asymptotics realistic, we allow n to grow very slowly relative to m. Specifically, we assume:

Assumption (A1) : $n \equiv n(m) > C \log m$ for some sufficiently large $C > 0$. \hspace{1cm} (8)
Let \mathcal{P} denote the nonnull genes and let $\mathcal{N} = \mathcal{P}^c$ denote the null genes. We will also need the following:

Assumption (A2): There exist $0 < \delta < 1$ such that

$$0 = \max_{i \in \mathcal{N}} \rho(i, j) = \max_{i, j \in \mathcal{N}} \rho(i, j) < \delta = \min_{i, j \in \mathcal{P}} \rho(i, j).$$

(9)

Thus we make the strong assumption that there is positive residual correlation among the non-null genes, but no residual correlation among the null genes or between the non and non-null genes. This simplifies our analysis. Later, we will relax this assumption.

Lemma 1. Assume that (A1) holds. Fix $\epsilon > 0$. Then, for all large m,

$$\max_{i, j} |\hat{\rho}(i, j) - \rho(i, j)| < \epsilon \quad a.s.$$

(10)

and

$$\max_i |T_i - \beta| < \epsilon \quad a.s.$$

(11)

That is, $\hat{\rho}(i, j) = \rho(i, j) + o(1)$, uniformly over i, j, a.s. and $T_i = \beta + o(1)$, uniformly over i, a.s.

Proof of Lemma 1. Kalisch and Bühlmann (2005) show that,

$$\mathbb{P}(|\hat{\rho}(i, j) - \rho(i, j)| > \epsilon) \leq c_1(n - 1) \exp \left\{ -(n - 3) \log((4 + \epsilon^2)/(4 - \epsilon^2)) \right\}$$

(12)

for some $c_1 > 0$. So,

$$\mathbb{P}(\max_{i, j} |\hat{\rho}(i, j) - \rho(i, j)| > \epsilon)$$

$$\leq 2m^2 c_1 (n - 1) \exp \left\{ -(n - 3) \log((4 + \epsilon^2)/(4 - \epsilon^2)) \right\} \leq \frac{1}{m^\beta}$$

(13)
where
\[\beta = \frac{C}{2} \log\left(\frac{(4 + \epsilon^2)/(4 - \epsilon^2)}{4 - \epsilon^2} \right) - \frac{\log(4c_1) - \log C - \log \log m}{\log m} - 2 > 0. \] (15)

For \(C \) sufficiently large, \(\beta > 1 \). The first result then follows from the Borel-Cantelli Lemma.

For the second result, apply Mill’s inequality:
\[\mathbb{P}(\max_i |T_i - \beta_i| > \epsilon) \leq m e^{-n\epsilon^2/2\sigma^2}. \] (16)

The result follows from assumption (8) and the Borel-Cantelli Lemma. ■

Lemma 2. Assume (A1) and (A2). Then, for all \(\rho > \delta \) and each \(i \in \mathcal{P} \),
\[C_\rho(i) \cap \mathcal{N} = \emptyset \quad \text{a.s.} \] (17)

for all large \(m \). Also, for every \(i \in \mathcal{N} \),
\[C_\rho(i) \cap \mathcal{P} = \emptyset \quad \text{a.s.} \] (18)

for all \(\rho > 0 \). Thus, there are no nulls in the correlation neighborhoods \(C_\rho(i) \) of a non-null gene, except possibly for small \(\rho \). Similarly, there are no nonnulls in the correlation neighborhoods \(C_\rho(i) \) of a null gene.

6.1 The Oracle Statistic

To understand the behavior of the correlation sharing statistic, it is helpful to first consider an oracle version of the statistic based on the true correlations. Let
\[\kappa_i = \max_\rho \left\{ \frac{1}{|\nu_\rho(i)|} \sum_{j \in C_\rho(i)} T_j \right\} \] (19)

where \(\nu_\rho(i) = \left\{ j : \rho(i,j) \geq \rho \right\} \). (20)
Let us fix some nonnull gene \(i \in \mathcal{P} \) and without loss of generality, take \(i = 1 \). Without loss of generality, label the genes so that

\[
\rho(1, 2) > \rho(1, 3) > \cdots > \rho(1, m).
\]

Then,

\[
\kappa_1 = \max_r \frac{1}{r} \sum_{i=1}^{r} T_i = \max_r \frac{1}{r} \sum_{i=1}^{r} \sum_{j=1}^{n} X_{ij}
\]

\[
= \max_r \frac{1}{r} \sum_{i=1}^{r} \frac{1}{n} \sum_{j=1}^{n} (\beta_i + \epsilon_{ij}) = \max_r \left(\beta(r) + \frac{1}{rn} \sum_{i=1}^{r} \sum_{j=1}^{n} \epsilon_{ij} \right)
\]

\[
= \max_r \left(\overline{\beta}(r) + Z(r) \right)
\]

where

\[
\overline{\beta}(r) = \frac{1}{r} \sum_{i=1}^{r} \beta_i
\]

is the Cesaro average and \(Z(\cdot) \) is a mean zero Gaussian process with covariance kernel

\[
J(r, s) = \sigma^2 \sum_{j=1}^{r} \sum_{k=1}^{s} \rho(j, k).
\]

The distribution of \(\kappa_1 \) is thus the distribution of the maximum of a noncentered, nonstationary Gaussian process.

If \(\overline{\beta}(r) \) is strongly peaked around some value \(r_* \), then

\[
\kappa_1 \approx \overline{\beta}(r_*) + Z(r_*) \equiv V_* \sim N(\overline{\beta}(r_*), J(r_*, r_*)).
\]

Hence,

\[
P(\kappa_1 > t) \approx P(V_* > t).
\]

In particular, suppose that \(\rho(1, i) = \rho \) for \(i \in \mathcal{P} \) and \(\rho(1, i) = 0 \) for \(i \in \mathcal{N} \). Then,

\[
V_* \sim N \left(\overline{\beta}(r_*), \frac{1+2\rho}{r_*n} \right)
\]
and so
\[
P(\kappa_1 > t) \geq P\left(\chi^2_1(\pi) > \frac{r_* n t^2}{1 + 2\rho}\right)
\]
where \(\chi^2_1(\pi)\) is a noncentral \(\chi^2_1\) with noncentrality parameter
\[
\pi = \frac{n r_* \bar{\beta}(r_*)}{1 + 2\rho}.
\]
(31)

In contrast, \(T_1\) has noncentrality parameter \(n \beta_1^2\). These heuristics imply that correlation sharing improves the power if
\[
r_* \bar{\beta}(r_*) > \beta_1^2, \quad \text{where } r_* = \arg\max_r \bar{\beta}(r).
\]
(32)

Figures 12 and 13 illustrate this analysis. The top plot in each figure is \(\bar{\beta}(r)\) and the bottom plot is the noncentrality as a function of the size \(r\) of the correlation neighborhood.

Figures 12 shows a least favorable case in which \(\beta_1 = 10\) and \(\beta_i = 1\) for \(i > 1, i \in P\). (In all cases we took \(\rho = .5\)). We call this least favorable since \(T_1\) has the largest mean; any averaging can only reduce its mean. Now, \(r_* = 1\) and \(T_1\) has noncentrality 50. The randomness of \(\hat{\rho}\) can lead to a correlation neighborhood larger than \(r_* = 1\). If so, the noncentrality parameter can be reduced as is evident from the steep decline of the curve in the second plot.

Figure 13 shows a more realistic case. Here we used a random effects model and took
\(\beta_i \sim N(3, 1)\). This makes \(\sum_r \beta_r\) a random walk. Correspondingly, \(\bar{\beta}(r)\) behaves like a random walk for small \(r\) but settles down to a constant for large \(r\). In this case, \(r_*\) tends to be small but the noncentrality grows rapidly. The result is a dramatic gain in noncentrality. Also, the gain is robust to the choice of \(r\).

Now consider a null gene \(i \in N\). Again take \(i = 1\). Then, by assumption (A2), \(\rho(1, j) = 0\) for all \(j > 1\). Hence, \(\nu_\rho(1) = \{1\}\) for all \(\rho > 0\) and \(\kappa_1 = T_1\) so the null distribution is unaffected by correlation sharing.
Let us now consider weakening (A2). Suppose we allow some small, nonzero correlation Δ among null genes. Change the definition of U_i to

$$U_i = \max_{|C_{\rho}(i)| \leq \kappa} \frac{1}{|C_{\rho}(i)|} \sum_{j \in C_{\rho}(i)} T_j$$

(33)

Now replace (A2) with:

Assumption (A2'):\[\min_{i \in \mathcal{P}} \rho(i, j) > \max_{i \in \mathcal{N}} \rho(i, j) \tag{34} \]

and

$$\max_{i \in \mathcal{N}} \rho(i, j) < \Delta. \tag{35}$$

The analysis for nonnull genes is virtually unchanged. For null genes, condition (A2') ensures that $\kappa_1 = T_1$. An interesting extension is to estimate Δ from the data. We leave this to future work.

6.2 Relationship Between U_i and the Oracle

The analysis in the previous section ignores the variability of the $\hat{\rho}(i, j)$'s. Now we relate κ_i to U_i.

First, under appropriate assumptions, we will show that for nonnull genes, U_1 is at least as large as κ_1. Suppose there exists a decreasing function $f : [0, 1] \rightarrow [0, 1]$ with $f(0) = 1$, such that

$$\rho(1, i) = f(i/m). \tag{36}$$

Suppose that f is a simple function, that is, f takes finitely many values $a_1 > a_2 > \cdots > a_k$. The level sets $\nu_\rho(1) = \{j : \rho(1, j) \geq \rho\}$ can only be of the form $\mathcal{A}_s = \{j : \rho(1, j) \geq a_s\}$.
for \(s = 1, \ldots, k \). Choose \(\epsilon > 0 \) small. By Lemma 1, \(\max_j |\hat{\rho}(1, j) - \rho(1, j)| < \epsilon \) a.s. Let
\(I = \{ \rho \in [0, 1] : \min_s |\rho - a_s| > \epsilon \} \). For all \(\rho \in I \), \(\nu_\rho(1) = C_\rho(1) \) a.s. Then, for all large \(m \),

\[
U_1 = \max_{\rho} \frac{1}{|C_\rho(1)|} \sum_{j \in C_\rho(1)} T_j \geq \max_{\rho \in I} \frac{1}{|C_\rho(1)|} \sum_{j \in C_\rho(1)} T_j
\]

(37)

\[
= \max_{\rho \in I} \frac{1}{|\nu_\rho(1)|} \sum_{j \in C_\rho(1)} T_j \quad \text{a.s.} = \max_{\rho} \frac{1}{|\nu_\rho(1)|} \sum_{j \in C_\rho(1)} T_j
\]

(38)

\[
= \kappa_1
\]

(39)

so that \(U_1 \) is at least as large as \(\kappa_1 \).

Now we drop the assumption that \(f \) is simple and instead assume it is continuous and strictly decreasing. Similarly, assume there exists a continuous, integrable function \(g \) such that

\[
\beta_i = g(i/m).
\]

(40)

Suppose that \(\overline{g}(u) \equiv \frac{1}{s} \int_0^s g(u) du \) is maximized at some \(s_* > 0 \). Let \(c = f(s_*) \) and \(r = |\nu_c(1)| \). Then, a.s. for all large \(m \),

\[
\kappa_1 = \max_{\rho} \frac{1}{|\nu_\rho(1)|} \sum_{j \in \nu_\rho(1)} T_j = \max_{\rho} \frac{1}{|\nu_\rho(1)|} \sum_{j \in \nu_\rho(1)} \beta_j + o(1)
\]

(41)

\[
= \max_{r} \frac{1}{r} \sum_{j=1}^r \beta_j + o(1) = \max_{s} \frac{1}{s} \int_0^s g(u) du + o(1)
\]

(42)

\[
= \frac{1}{s_*} \int_0^{s_*} g(u) du + o(1) = \overline{g}(s_*) + o(1).
\]

(43)

Hence,

\[
\kappa_1 \approx \frac{1}{|\nu_c(1)|} \sum_{j \in \nu_c(i)} T_j = \frac{1}{r} \sum_{j: \rho(1,j) \geq c} T_j.
\]

(44)

Let \(R = |C_c(1)| \). From Lemma 1 and the assumptions on \(f \), \(R/m = r/m + o(1) \) a.s. and

\[
U_1 = \max_{\rho} \frac{1}{|C_\rho(1)|} \sum_{j \in C_\rho(1)} T_j \geq \frac{1}{|C_c(1)|} \sum_{j \in C_c(1)} T_j
\]

(45)
Thus, \(U_1 \geq \kappa_1 + o(1) \).

Now suppose that \(i = 1 \) is a null gene. Fix a small \(\epsilon > 0 \). Under (A2), we eventually, have

\[
|\{j > 1 : \hat{\rho}(1, j) > \epsilon\}| = 0
\]

and hence

\[
U_1 = \kappa_1 \ a.s.
\]

The same holds under (A2').

7 Other issues

Computation of the correlation shared statistic can be challenging when the number of features \(m \) is large. Brute force computation is \(O(m^2) \). In principle, a KD tree can be used to quickly find the neighbors of a given point with correlation at least \(\rho \). The building of the tree requires \(O(m \log m) \) computations, while the nearest neighbor search takes \(O(\log m) \) computations. Hence the nearest neighbor search for all points requires \(O(m \log m) \) computations. However, since the dimension of the feature space \((n) \) is large n these problems (at least 50 or 100), the KD tree approach is not likely to be effective in practice (J. Friedman, personal communication).
Hence we instead do a direct brute force computation, exploiting the sparsity of the set of pairs of points with large correlation. The resulting procedure is quite fast, requiring for example 2.7s on the proteomics example ($m = 3160, n = 20$).

The proposal of this paper can be applied to outcome measures other than two-class problems. We have seen this earlier in the lymphoma example, where the outcome was survival time. Other response types that may arise include a multi-class or quantitative outcome. The modification to the correlation-sharing technique is simple: the t-statistic is simply replaced by a score that is appropriate for the outcome measure. For survival data, for example, we use the partial likelihood score statistic for each gene. This was illustrated in the lymphoma data of Table 1.

Correlation-sharing provides a recipe for supervised clustering of features. Hence one might use correlation-sharing as a pre-processing step, by averaging the given features in the prescribed clusters. Then these averaged features could be used as input into a regression or classification procedure. This is a topic for future study.

Acknowledgments We would like to thank John Storey for showing us a pre-preprint of his “optimal discovery procedure” paper. We would also like to thank Jerry Friedman for helpful discussions. Tibshirani was partially supported by National Science Foundation Grant DMS-9971405 and National Institutes of Health Contract N01-HV-28183.
Name	Description	# Samples	# Features	Source
Skin	Two classes	58	12,625	?
Duke breast cancer	Two classes	49	7097	?
BRCA	Two classes	15	3226	?
Lymphoma	Survival	240	7399	?

Table 1: Summary of datasets for Figure 4.

Figure 1: T-statistics and correlation-shared T-statistics for simulated example 1.
Figure 2: Results for example 1. Left panel: Number of false positive genes versus number of genes called significant. Right panel: Number of false negative genes versus number of genes called significant.
Figure 3: Results for example 2. Here the non-null genes have no correlation before the group effect is added.
Figure 4: Average absolute residual correlation as a function of the number of genes called significant by the T or F-statistics.
Figure 5: Results for four cancer datasets: plotted is the number of false positive genes versus the number of genes called, for the standard t-statistic (red) and the correlation-shared t-statistic (green). The broken line is the 45° line.
Figure 6: Skin data: a closer look at gene 1127
Figure 7: Skin data: correlation-shared score versus number of genes used in each gene average; horizontal lines are drawn at cutpoints that yield 100 significant genes. Note that most of the significant genes use no averaging, and none use a window of more than 10 genes.
Figure 8: Skin data: correlation-shared score versus t-statistic score. Broken lines are drawn at the cutoffs yielding 100 significant genes for each method. The red points are the genes that are significant by correlation-sharing but not by t-statistic.
Figure 9: Skin data test set results. Here we formed cutoff rules on the training set, and assessed genes in a separate test set. Shown are the number of false positive and negative genes in the test set, as the cutpoint is varied.
Figure 10: Results for protein mass spectrometry example
Figure 11: Protein mass spectrometry example: locations of neighbors of top 50 peaks, for those peaks that were given neighborhoods of more than a single feature. The maximizing correlations are indicated at the top of the plot (note that in some cases there are multiple target peaks shows near the same position.)
Figure 12: The non-centrality parameter as a function of neighborhood size; least favorable case. The top plot is the cumulative average $r^{-1} \sum_{j=1}^{r} \beta_j$ versus r. The bottom plot shows the noncentrality parameter versus r. The horizontal line shows the noncentrality parameter for T_1. For $1 < r \leq 80$, the noncentrality parameter for T_1 is larger than noncentrality parameter for U_1. Since the top plot is maximized at $r = 1$ we expect that the correlation neighborhood for U_1 should have r close to 1.
Figure 13: The non-centrality parameter as a function of neighborhood size; typical case. The top plot is the cumulative average $r^{-1} \sum_{j=1}^{r} \beta_j$ versus r. The bottom plot shows the non-centrality parameter versus r. The horizontal line near 0 shows the noncentrality parameter for T_1. The horizontal line near 100 shows the noncentrality parameter for U_1 when the correlation neighborhood is $r = 20$ corresponding to the maximum of the top plot. Not only is there a large gain in noncentrality, but the gain is robust to fluctuations in r.
Duke data

- T-statistic
- Correlation-sharing
Prostate data

called

#FP
