Respiratory Mononuclear Phagocytes in Human Influenza A Virus Infection: Their Role in Immune Protection and As Targets of the Virus

Sindhu Vangeti, Meng Yu and Anna Smed-Sörensen

Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden

Emerging viruses have become increasingly important with recurrent epidemics. Influenza A virus (IAV), a respiratory virus displaying continuous re-emergence, contributes significantly to global morbidity and mortality, especially in young children, immunocompromised, and elderly people. IAV infection is typically confined to the airways and the virus replicates in respiratory epithelial cells but can also infect resident immune cells. Clearance of infection requires virus-specific adaptive immune responses that depend on early and efficient innate immune responses against IAV. Mononuclear phagocytes (MNPs), comprising monocytes, dendritic cells, and macrophages, have common but also unique features. In addition to being professional antigen-presenting cells, MNPs mediate leukocyte recruitment, sense and phagocytose pathogens, regulate inflammation, and shape immune responses. The immune protection mediated by MNPs can be compromised during IAV infection when the cells are also targeted by the virus, leading to impaired cytokine responses and altered interactions with other immune cells. Furthermore, it is becoming increasingly clear that immune cells differ depending on their anatomical location and that it is important to study them where they are expected to exert their function. Defining tissue-resident MNP distribution, phenotype, and function during acute and convalescent human IAV infection can offer valuable insights into understanding how MNPs maintain the fine balance required to protect against infections that the cells are themselves susceptible to. In this review, we delineate the role of MNPs in the human respiratory tract during IAV infection both in mediating immune protection and as targets of the virus.

Keywords: emerging, virus, influenza, respiratory, monocyte, dendritic cell, macrophage

Abbreviations: AMϕ, alveolar macrophage; ARDS, acute respiratory distress syndrome; BAL, bronchoalveolar lavage; CM, classical monocyte; DC, dendritic cell; IAV, influenza A virus; IFN, interferon; IM, intermediate monocyte; IMϕ, interstitial macrophage; ISG, interferon-stimulated gene; LRT, lower respiratory tract; MDC, myeloid dendritic cell; MNP, mononuclear phagocyte; Mo-DC, monocyte-derived dendritic cell; Mϕ, macrophage; NCM, non-classical monocyte; PDC, plasmacytoid dendritic cell; RE, respiratory epithelium; tipDC, TNF/iNOS-producing dendritic cell; URT, upper respiratory tract.
INTRODUCTION

Emerging viruses including influenza viruses, contribute significantly to human morbidity and mortality. Influenza is one of the oldest diseases known to mankind, with historical reports of influenza outbreaks dating as far back as 1173 (1). Still, influenza viruses are considered emerging/re-emerging viruses due to their capacity to dramatically change and cause epidemics with high mortality rate (2–5).

There are two forms of influenza: seasonal and pandemic. Seasonal influenza epidemics are caused by influenza A and B viruses and seasonal strains undergo mutations referred to as antigenic drift. For influenza A viruses (IAVs) antigenic drift is typically more pronounced each season, while it is more gradual for influenza B (6–9). Seasonal influenza epidemics contribute heavily to global disease burden and to deaths associated with lower respiratory tract (LRT) infections. 3–5 million cases of severe illness and 290–650,000 deaths annually are estimated, especially in young children, immunocompromised, and elderly people (10–13). The clinical picture of IAV infection is broad, ranging from mild/no symptoms, to viral pneumonia, severe respiratory failure, or acute respiratory distress syndrome. IAV infection results in increased susceptibility to secondary bacterial infections, which also contribute to mortality (14–16). In addition, circulating IAV strains can, at unpredictable intervals, cause influenza pandemics when the virus undergoes more dramatic genetic changes known as antigenic shift. Four pandemics have occurred in the past century: the 1918 Spanish flu, the 1957 Asian flu, the 1968 Hong Kong flu, and the 2009 Swine flu. Influenza pandemics are usually characterized by higher mortality than seasonal epidemics, often in age groups that are not typically at risk for influenza infections (17–23).

The nature and severity of influenza disease are influenced by the properties of the virus, host genetics, pre-existing immunity, and the immune response generated to varying extents—their relative contributions remaining incompletely understood (24–30). Highly pathogenic strains, like the Spanish flu, induce massive immune responses, suggesting that too potent antiviral immune responses are pathogenic rather than protective and that immunopathology is central in influenza (19, 31–37). Still, robust immune responses against IAV are required to control and clear infection (38–40). Mononuclear phagocytes (MNPs)—monocytes, monocyte-derived macrophages, a functionally distinct population of MDPs—are important in IAV infection as they are capable of limiting virus release; sensing and phagocytosing pathogens; clearing virus and apoptotic cells; releasing cytokines to mediate inflammation; directing leukocyte traffic; cytosing pathogens; clearing virus and apoptotic cells; releasing cytokines to attract other leukocytes; and can differentiate into mo-DCs and Mφs (51, 52, 58, 64–66). IMs are more frequent in the airways, as opposed to non-classical monocytes (NCMs: CD14+CD16−) (51, 52, 58, 64–66). IMs are more frequent in the airways, as opposed to blood, where CMs are in abundance; while NCMs seem to be the rarest monocyte subset (51, 58–60). CMs are the first cells to migrate out of blood to infiltrate sites of inflammation, release chemokines to attract other leukocytes; and can differentiate into mo-DCs and Mφs (67, 68). IMs represent a population of differentiating monocytes that have been reported to expand during inflammation and/or infection (79–82). NCMs have been attributed with patrolling functions, debris removal, promoting wound healing (64, 81), and to some extent, TLR3 mediated type I interferon (IFN) production (69). Mo-DCs are an interesting subset that transiently arises in tissues from (primarily classical) monocytes recruited to the site of inflammation (46). In comparison to monocytes, DCs are rare in blood, and rarer still in the airways. Subsets of CD11c-expressing myeloid DCs (MDCs); CD11c+ MDCs, CD141+ MDCs, and more recently, langerin+ MDCs (with variable CD1a expression), as well as CD123+ plasmacytoid DCs (PDCs) have been described in the human respiratory tract (51, 57–60, 70–72). MDCs are excellent
antigen-presenting cells, CD141+ MDCs specialize in cross presentation via MHC I; and PDCs excel at type I IFN-mediated antiviral protection.

In the human respiratory system, the upper respiratory tract (URT) is comprised of the nasal cavity, sinuses, and the pharynx (Figure 1A). The LRT including the trachea, bronchi,
bronchioles, and alveoli, is typically divided into the proximal conducting zone and the distal respiratory zone (Figure 1A) (83). The LRT accounts for a larger cumulative surface area and consequently higher likelihood of pathogen–immune cell interactions. However, it is the URT that is initially involved in prevention of pathogen entry (83). MNP distribution in the URT, especially at steady state, also remains poorly characterized. Recent studies have shown Mϕs, CMs, MDCs, and PDCs in the nasal cavities (84, 85); CMs in the sinuses; CMs, MDCs, and PDCs in the nasopharynx (43, 44); CD1c+ MDCs in nasal tissue (86); and Mϕs, CMs, and several DC subsets (PDC, CD1c+, CD141+, CD207+, slan+, Axl+, and CD4+) have been described in human tonsils (73–76). What is evident, however, is that the relative distribution of MNP subsets at steady state varies greatly across the different compartments of the respiratory tract (51, 87). For example, in blood, monocytes greatly outnumber all other MNP subsets, whereas in tonsils, PDCs are the most abundant MNP subset. In BAL, AMϕs make up almost 95% of all cells, but IMs are more frequent than DCs. In lung tissues, both alveolar and interstitial Mϕs can be found at different frequencies. Monocytes and MDCs are also present at greater frequencies than PDCs (Figure 1B). The immunological map of the human respiratory tree is becoming more detailed (Figure 1C), enabling a better understanding of how the respiratory immune system changes during disease including respiratory viral infections like IAV.

MNP s: Innate Immune Responders in IAV Infection

Respiratory MNPs function as mucosal sentinels and come into play rapidly after onset of IAV infection. Monocytes and DCs resident in the nasopharyngeal mucosa can rapidly sense the presence of IAV and elicit an early response featuring a predominance of monocyte-recruiting chemokines like CCL2, CCL17, CX3CL1, and MCP3 (45, 88, 89). Mϕs, that are abundant in the LRT, are less likely to be involved in uncomplicated human IAV infections, when the virus typically remains localized in the URT. However, when the virus spreads lower toward the lungs, not uncommon among pandemic IAV strains, Mϕs are likely central in the innate immune response.

The diverse functional capacity of monocytes translates into their involvement in several aspects of immunity to IAV, as depicted in Figure 2. Most B cells in the URT are activated by IAV and recruit monocytes (115–118). Unhindered AMϕ-associated cytokinemia can result in devastating consequences for patients, ranging from delayed recovery to fatal lung pathology (116). Several factors control the extent of Mϕ involvement, two of the most likely contributors being IAV subtype/strain and Mϕ phenotype (90, 105, 113, 114, 118–120, 134) (Figure 1C). For example, Mϕ cytokine production differs across H5N1 and pandemic/seasomal H1N1 strains (119). The protective and pathologic roles of MNP subsets during IAV infection have also been summarized in Figure 2B. Macrophages contribute during IAV infection by clearing cell debris, chemokine and cytokine production to modulate inflammation, recruitment of other MNPs, and to restore subsequent tissue homeostasis (Figure 2A) (105, 113). AMϕs are of particular importance when the infection reaches the LRT, where the AMϕs are in vast abundance. Severe influenza with LRT pathology is often accompanied by AMϕ involvement (114–118). Unhindered AMϕ-associated cytokinemia can result in devastating consequences for patients, ranging from delayed recovery to fatal lung pathology (116). Several factors control the extent of Mϕ involvement, two of the most likely contributors being IAV subtype/strain and Mϕ phenotype (90, 105, 113, 114, 118–120, 134) (Figure 1C). For example, Mϕ cytokine production differs across H5N1 and pandemic/seasomal H1N1 strains (119). The protective and pathologic roles of MNP subsets during IAV infection have also been summarized in Figure 2B.

MNP s and Respiratory Epithelium (RE): Mucosal Barriers and Targets of IAV Infection

During IAV infection, the virus is largely confined to the airways, where the RE is primarily targeted (13, 106, 142–147). The RE and MNPs have an important functional dichotomy—both are targets of the virus and also capable of...
Human mononuclear phagocytes (MNPs) play a multitude of roles to mediate immune protection during influenza A virus (IAV) infection.

(A) MNPs subsets have many overlapping functions. Macrophages (Mφs) clear up cell debris and release cytokines. Monocytes and dendritic cells (DCs) can also release cytokines and present antigens to initiate adaptive responses.

(i) Following IAV infection of respiratory epithelium, Mφs, monocytes, and DCs respond to the virus and cell debris, launching potent cytokine responses (TNFα, IL-6, IL-12p40, and IL-10), including interferon (IFN)α. Induction of interferon-stimulated genes (ISGs) promotes an antiviral state in bystander cells, protecting them from infection.

(ii) The antigens taken up by monocytes/DCs are processed and presented via MHC I and II to CD8+ and CD4+ T cells, respectively. Antigen-specific CD8+ T cells perform effector functions via cytotoxic granule- and FasL-mediated caspase-dependent apoptosis. Antigen-specific CD4+ T cells mature into subsets with specific functions. Th1 cells primarily produce IFNγ, IL-2, and TNFβ; and aid CD8+ T cell proliferation. Th2 cells on the other hand, produce IL-4, IL-5, and IL-13 and assist B cells, especially during antibody class switching, promoting production of neutralizing antibodies. Induction of broadly neutralizing antibodies against all strains of influenza virus remains a challenge in the field of influenza immunology (45, 57, 75, 76, 96–106).

(B) The table summarizes the individual functions of MNP subsets that can protect against IAV infection, but also contribute to pathology. Most MNP subsets are susceptible to IAV infection, as demonstrated by in vitro studies. As a consequence of IAV infection, MNP function can be directly affected, prompting them to respond in a protective or pathologic fashion (25, 37, 42–45, 73, 75, 76, 91, 102–105, 107–127).

Normal function	Protective	Pathologic	Susceptibility of MNP subset to infection	Effect of IAV infection on MNP function
phagocytose and clear cell debris, produce cytokines, restore homeostasis	+ clear debris from cytotoxic effects of IAV	cause cytokine storm that leads to fatal lung pathology and death, especially during pandemic influenza	IAV replication can be productive or abortive, dependent on IAV strain and host factors; demonstrated in vitro	Augmented phagocytic capabilities, strong cytokine responses
rapidly infiltrate site of inflammation, produce cytokines & chemokines, recruit other immune cells, differentiate into mo-DCs	+ recruit other innate cells to promote inflammation, differentiate into mo-DCs	sustained inflammatory state that causes irreversible damage to respiratory mucosal barrier integrity	IAV infection drives differentiation into mo-DCs, demonstrated in vitro	Positive feedback loop maintains inflammation in pathologic manner or efficient antigen uptake and presentation by mo-DCs
cross present antigens i.e. necrotic cells via CLEC9A	+ contribute to CD8+ T effector response	–	subvert IAV infection; attributed to RAB15-dependent antiviral pathway	Upregulate CD14 and CLEC9A, may promote CD8 responses
–	+ initiate CD4+ T cell responses	–	IAV infection results in cytotoxic effects, impaired ability to cross-present antigens	Rapidly apoptose causing impaired function or TNFβ/NOS producing subset contributes to severe pathology
–	–	–	refractory to infection; attributed to MxA and RAB15 pathways	Rapidly apoptose, dysregulate IFN response in pregnant women or sustain IFN response (contribute to cytokine storm)

Frontiers in Immunology | www.frontiersin.org July 2018 | Volume 9 | Article 1521

5
immune functions to limit infection (25). The epithelial tight junctions constitute a mechanical barrier against the exterior and secrete antiviral molecules. The RE senses IAV via TLRs and RIG-I; with RIG-I signaling concentrated at the tight junctions, resulting in type I and type III interferon-mediated antiviral protection (106). Chemokines secreted from the RE aid neutrophil and MNP recruitment to the site of infection, enhancing innate protection. While potently responding to IAV, the RE is also highly susceptible to the cytopathic effects of IAV infection (Figure 2A). Loss of mucosal barrier integrity promotes bacterial adherence, contributing to secondary bacterial infections and lung pathology often associated with severe IAV infection (118, 147–149).

Mononuclear phagocytes are well located in the human respiratory mucosa to be targeted by the virus upon entry (135), and the endocytic and migratory properties of MNPs are likely favorable to viral infection and dissemination (120, 134). In vitro IAV infection of human Mφs and DCs has been shown to result in productive infection with release of infectious particles (119–121) but has also been reported to result in abortive infection (42, 108, 121, 122), the contrast being discussed in great detail in Ref. (42). Which of these alternatives prevail in clinical cases, and what host factors determine their own fate, are questions that are yet to be answered. In addition, the negative implications of IAV infection, from an immunological perspective, they may be more pronounced for MNPs than for epithelial cells as MNPs are central in establishing a protective, specific immune response.

CONSEQUENCES OF IAV INFECTION OF MNPs

Mononuclear phagocyte susceptibility to IAV infection can impair their many functions. For example, MDCs are crucial for T cell activation but they are also readily susceptible to IAV infection, impairing their ability to present antigens via both the direct presentation and cross presentation pathways (46, 121, 150). Most seasonal and low-pathogenic IAV strains infect respiratory human Mφs and DCs but replication is typically abortive and therefore skews in favor of host defense (120). However, highly pathogenic strains of IAV can overcome this barrier and productively infect Mφs and DCs, which in turn can impact viral amplification, dissemination, as well as pathogenicity and immunogenicity (123). Primary human monocytes exposed to H5N1 or highly pathogenic avian influenza strains in vitro exhibit a reduced antiviral response, as a consequence of impaired NF-κB signaling (91, 114, 115). In a murine model of IAV infection, CCR2+ inflammatory monocytes accumulate in lungs (92, 94). Impaired virus clearance by MNPs triggers IFN-mediated recruitment of CCR2+ monocytes inflammatory in a positive-feedback loop, resulting in severe lung pathology (92) (Figure 2B).

Impaired MNP responses have also been observed in IAV patients. Peripheral blood monocytes and to some extent PDCs, exhibit attenuated IFN responses indicating dysregulation at a systemic level, in particular in infants and the elderly, two of the largest risk groups for severe influenza disease (151–153). Human PDCs that potently produce large amounts of type I IFN, in response even to low doses of IAV, can rapidly undergo apoptosis when exposed to high doses of the virus (25, 124). Possibly related to that, it has been reported that pregnant women, a risk group for influenza, have fewer PDCs in circulation that are also less efficient at IFN production, which could contribute to more severe IAV disease during pregnancy (125) (Figure 2B).

As undesirable as depressed MNP function is, excessive activation of MNPs can also be equally dangerous, by contributing to IAV-induced immune pathology leading to fatal respiratory distress. Human monocyte-derived pro-inflammatory Mφs exposed to IAV in vitro exhibit augmented phagocytic capability and strong cytokine responses (119). While this can encourage adaptive responses, it also contributes to the cytokine storm that is a hallmark of severe influenza disease (37, 126). Prolonged IFN signaling can also destroy alveolar epithelium and contribute to development of secondary bacterial infections, the most common complication associated with influenza infections (93). TNF/iNOS-producing DCs, a subset of inflammatory DCs, accumulate in the LRT and promote CD8+ T cell responses in an IAV mouse model, but are also positively correlated with higher lethality (123). However, in vitro, human CD8+ T cells can rapidly induce mono-ocyte differentiation into tip-DCs that in turn prime naïve CD4+ T cells and promote protective Th1 responses (154) (Figure 2B).

Not all respiratory MNP–IAV interactions have adverse implications. Virus-induced human in vitro mo-DCs express both CLEC9A and CD141, as do blood CD141+ MDCs. But uniquely, mo-DCs express CD141 on the cell surface and CLEC9A intracellularly (91). CD141+ DCs can efficiently prime and drive CD8+ T cell proliferation, while CLEC9A is linked to antigen uptake. CD141+ MDCs also subvert IAV infection by resisting virus entry in a RAB-15 dependent manner, instead relying on uptake of apoptotic virus-infected CD1c+ MDCs (other cells) as a source of antigens (127) (Figure 2B). Virus-induced CD141+ DCs also exhibit type I IFN secretion and upregulate ISGs (tetherin, viperin, and IFITM3) and RIG-I/MDA5, suggesting an important protective role for them during infection; despite poor expression of co-stimulatory molecules (CD40, CD86, and HLA-DR), weaker pro-inflammatory cytokine expression, and impaired ability to activate naïve CD4+ T cells (46). Induction of CD141+ DCs could therefore be employed in vaccination/therapeutic strategies. To summarize, while IAV infection of MNP compromises some aspects of innate protection, biological redundancy due to the overlapping functions of MNP subsets can likely prevent loss of essential immune responses.

CONCLUDING REMARKS

Respiratory MNPs are important in the immune responses to IAV infection. At the same time, MNP susceptibility to IAV infection poses an interesting immunological challenge. Several key questions still remain to be further addressed to understand this dichotomy better. Does compromised MNP function result in altered innate immune responses? Do altered innate immune responses subsequently impair efficient induction of adaptive responses, ultimately contributing to increased host morbidity...
and mortality? If on the other hand, robust, unchecked innate responses lead to prolonged inflammation, causing irreparable damage to the host, is there a commonality in host responses across the various demographic factors affected by influenza? To answer these questions, and delineate the role of respiratory MNPs in human IAV infection, it will be critical to detail the function of the different MNP subsets—for example, functional assessment of sorted cells from the respiratory system and performing RNA sequencing or epigenetic analyses. Prospective studies of human IAV patients where detailed analyses of tissue samples can be correlated to clinical parameters are likely required to fully understand how MNPs contribute to disease severity.

REFERENCES

1. Hirsch A. Handbook of Geographical and Historical Pathology. London: The New Sydenham Society (1883).
2. Potter CW. A history of influenza. J App Microbiol. (2001) 91:572–9. doi:10.1046/j.1365-2672.2001.01492.x
3. Dunn JJ, Miller MB. Emerging respiratory viruses other than influenza. Clin Lab Med (2014) 34(2):409–30. doi:10.1016/j.cll.2014.02.011
4. Hui DS, Zumla A. Emerging respiratory tract viral infections. Curr Opin Pulm Med (2015) 21(3):284–92. doi:10.1097/MCP.0000000000000153
5. Gao GF. From “XIV to “ZIKV: attacks from emerging and re-emerging pathogens. Cell (2018) 172(6):1157–9. doi:10.1016/j.cell.2018.02.025
6. Bedford T, Suchard MA, Lerney P, Dudas G, Gregory V, Hay AJ, et al. Integrating influenza antigenic dynamics with molecular evolution. Elife (2014) 3:e01914. doi:10.7554/eLife.01914
7. Drake JW. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci U S A (1993) 90:4171–5. doi:10.1073/pnas.90.9.4171
8. Drake JW, Holland JJ. Mutation rates among RNA viruses. Proc Natl Acad Sci U S A (1996) 93(24):13910–3. doi:10.1073/pnas.93.24.13910
9. Chen H, Deng Q, Ng SH, Lee RT, Maurer-Stroh S, Zhai W. Dynamic convergent evolution drives the passage adaptation across 48 years’ history of H3N2 influenza evolution. Mol Biol Evol (2016) 33(12):3133–43. doi:10.1093/molbev/msw190
10. WHO. The Top 10 Causes of Death – Fact Sheet No. 310. 2014. Geneva: WHO (2017). Available from: http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
11. Russell CA, Kasson PM, Donis RO, Riley S, Dunbar J, Rambaut A, et al. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet Infect Dis (2018) 19(12):587–96. doi:10.1016/s1473-3099(18)30089-5
12. Summers JA, Stanley J, Baker MG, Wilson N. Risk factors for death from pandemic influenza in 1918-1919: a case-control study. Influenza Other Respir Viruses (2014) 8(3):329–38. doi:10.1111/irv.12228

AUTHOR CONTRIBUTIONS

SV and MY performed the literature review. SV designed the figures. SV, MY, and AS-S organized and wrote the manuscript. SV and AS-S edited the manuscript.

FUNDING

This work was supported by grants to AS-S from the following sources: the Swedish Research Council, the Swedish Foundation for Strategic Research, the Swedish Heart-Lung Foundation, and Karolinska Institutet.

7
the 1918 influenza virus. *Nature* (2007) 445(7125):319–23. doi:10.1038/nature05495

36. Price AJ, Sette A, Chisari FV, Penna A, Lefever M, De Carli M, et al. Natural variants of cytosolic epitopes are T-cell receptor antagonists for antiviral cytotoxic T cells. *Nature* (1994) 369:407–10. doi:10.1038/369407a0

37. Berdal JE, Mollnes TE, Waehre T, Olstad OK, Halvorsen B, Ueland T, et al. Excessive innate immune response and mutant D222G/N in severe A (H1N1) pandemic influenza. *J Infect* (2011) 63(4):308–16. doi:10.1016/j.jinf.2011.07.004

38. Sridhar S, Begom S, Bermingham A, Hoschler K, Adamson W, Carman W, et al. van de Sandt CE, Hillaire ML, Geelhoed-Mieras MM, Osterhaus AD, et al. Human lung mononuclear cells. *Nature* (2007) 445(7125):319–23. doi:10.1038/nature05495

39. Reichman RC, Pons VG, Murphy BR, Caplan EA, Dolin R. Cell-mediated antiviral cytotoxic T cells. *Nature* (1994) 369:407–10. doi:10.1038/369407a0

40. Lichtner M, Mastroianni CM, Rossi R, Russo G, Belvisi V, Marocco R, et al. Severe H7N9 infection in lungs of mice with lethal influenza virus infection. *J Immunol* (2017) 198(4):1616–26. doi:10.4049/jimmunol.1601770

41. Baharom FRG, Blomberg A, Smed-Sörensen A. Human lung mononuclear cells. *Nature* (2007) 445(7125):319–23. doi:10.1038/nature05495

42. Reichman RC, Pons VG, Murphy BR, Caplan EA, Dolin R. Cell-mediated antiviral cytotoxic T cells. *Nature* (1994) 369:407–10. doi:10.1038/369407a0

43. Baharom F, Thomas S, Rankin G, Lepzien R, Pourazar J, Behndig AF, et al. Blood monocytes and their subsets in the context of pathologically reduced HLA-DR expression and morphometric estimation of diffusion capacity. *Respir Physiol* (1978) 32:121–40. doi:10.1016/S0034-5687(78)90104-4

44. J Exp Med (2017) 198(3):1183–201. doi:10.4049/jimmunol.1600777

45. Yu YR, Hotten DE, Malakhau Y, Volker E, Ghio AJ, Noble PW, et al. Flow cytometric analysis of myeloid cells in human blood, bronchoalveolar lavage, and lung tissues. *Am J Respir Cell Mol Biol* (2016) 54(1):13–24. doi:10.1165/rcmb.2015-0146OC

46. Patel VI, Metcalf JP. Identification and characterization of human dendritic cell subsets in the steady state: a review of our current knowledge. *J Immunol* (2014) 84(4):833–47. doi:10.1161/01.imj.2016-000072

47. Iwasaki A. Mucosal dendritic cells. *Annu Rev Immunol* (2007) 25:381–418. doi:10.1146/annurev.immunol.25.022106.141634

48. Fathi M, Johansson A, Lundborg M, Orre L, Skold CM, Camner P. Functional and morphological differences between human alveolar and interstitial macrophages. *Exp Mol Pathol* (2001) 70(2):77–82. doi:10.1006/expm.2000.2344

49. Thomas GD, Hamers AAJ, Nakao C, Marcovecchio P, Taylor AM, McSkimming C, et al. Human blood monocyte subsets: a new gating strategy defined using cell surface markers identified by mass cytometry. *Arterioscler Thromb Vasc Biol* (2011) 31(8):1548–58. doi:10.1161/ATVBAHA.111.309145

50. Ziegler-Heitbrock L. Blood monocytes and their subsets: established features and open questions. *Front Immunol* (2015) 6:423. doi:10.3389/fimmu.2015.00423

51. Abeles RD, McPhail MJ, Sowter D, Antoniades CG, Vergis N, Vijay GK, et al. CD14, CD16 and HLA-DR reliably identifies human monocytes and their subsets in the context of pathologically reduced HLA-DR expression by CD14(hi)/CD16(neg) monocytes: expansion of CD14(hi)/CD16(pos) monocytes in acute liver failure. *Clin Immunol* (2017) 193(6):614–26. doi:10.1164/rccm.201507-1376OC

52. Spengler JM, Feuer H, Bartsch W. The surfactant system of the adult lung – ultrastructure and morphometric estimation of diffusion capacity. *Respir Physiol* (1978) 32:121–40. doi:10.1016/S0034-5687(78)90104-4

53. Pulendran B, Tang H, Denning TL. Division of labor, plasticity, and crosstalk between dendritic cell subsets. *Curr Opin Immunol* (2008) 20(1):61–7. doi:10.1016/j.coi.2007.10.009

54. Gehr P, Bachofen M, Weibel E. The normal human lung – ultrastructure and morphometric estimation of diffusion capacity. *Respir Physiol* (1978) 32:121–40. doi:10.1016/S0034-5687(78)90104-4

55. Hamm H, Fabel H, Bartsch W. The surfactant system of the adult lung – physiology and clinical perspectives. *Clin Invest* (1992) 70:637–57. doi:10.1172/JCI970627

56. Wolfschütz KR, Swan ZD, Bissel SJ, Hartman AL, Carney JP, O’Malley KJ, et al. Widespread virus replication in alveoli drives acute respiratory distress syndrome in aerosolized H5N1 influenza infection of macaques. *J Immunol* (2017) 198(4):1616–26. doi:10.4049/jimmunol.1601770
Lin KL, Suzuki Y, Nakano H, Ramsburg E, Gunn MD. CCR2
Hou W, Gibbs JS, Xiuju L, Brooke CB, Roy D, Modlin RL, et al. Influenza virus infection triggers rapid differentiation of human blood monocytes into dendritic cells. J Exp Med (2012) 209(4):635–50. doi:10.1084/jem.20111457
Pinilla-Vera M, Xiong Z, Zhao Y, Zhao J, Donahoe MP, Barge S, et al. Full spectrum of LPS activation in alveolar macrophages of healthy volunteers by whole transcriptomic profiling. PLoS One (2016) 11(7):e0159329. doi:10.1371/journal.pone.0159329
Ligeois M, Legrand C, Desmet CJ, Marichal T, Bureau F. The interstitial macrophage: a long-neglected piece in the puzzle of lung immunity. Cell Immunol (2018). doi:10.1016/j.cellimm.2018.02.001
Duan M, Hibs ML, Chen W. The contributions of lung macrophage and monocyte heterogeneity to influenza pathogenesis. Immunol Cell Biol (2017) 95(3):225–35. doi:10.1038/icb.2016.97
Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol (2011) 11(11):762–74. doi:10.1038/nri3070
Lee J, Tam H, Adler L, Lstad-Minnihan A, Macaubas C, Mellins ED. The MHC class II antigen presentation pathway in human monocytes differs by subset and is regulated by cytokines. PLoS One (2017) 12(8):e0183594. doi:10.1371/journal.pone.0183594
Kwissa M, Nakaya HI, Onlamoon N, Wrammert J, Villinger F, Perng GC, Lee J, Tam H, Adler L, Ilstad-Minnihan A, Macaubas C, Mellins ED. The contribution of nasal monocyte-derived dendritic cells and exudate macrophages on the nasal mucosal surface in provoked and naturally occurring infection. J Exp Med (2014) 209(5):1428–34. doi:10.1089/jem.20080201
Hallor S, Steinmueller M, von Wulffen W, Cakarova L, Pinto R, Pleschka S, Herold S, Steinmueller M, von Wulffen W, Cakarova L, Pinto R, Pleschka S, Helft J, Manicassamy B, Guermontre P, Hashimoto D, Silvin A, Agudo J, et al. Cross-presenting CD103+ dendritic cells are protected from influenza virus infection. J Clin Invest (2012) 122(11):4037–47. doi:10.1172/JCI60659
Lawrence CW, Braciile TJ, Activation, differentiation, and migration of naive virus-specific CD4+ T cells during pulmonary influenza virus infection. J Immunol (2004) 173(2):1209–18. doi:10.4049/jimmunol.173.2.1209
Lawrence CW, Ream RM, Braciile TJ. Frequency, specificity, and sites of expansion of CD8+ T cells during primary pulmonary influenza virus infection. J Immunol (2005) 174(9):5332–40. doi:10.4049/jimmunol.174.9.5332
Yu C, Becker C, Wang Y, Marshes F, Helft J, Leboeuf M, et al. Human CD1c+ dendritic cells drive the differentiation of CD103+CD8+ mucosal effector T cells via the cytokine TGF-beta. Immunity (2013) 38(4):818–30. doi:10.1016/j.immuni.2013.04.004
Hemont C, Neel A, Haslan M, Braude C, Josien R. Human blood mDC subsets exhibit distinct TRL repertoire and responsiveness. J Leukoc Biol (2013) 93(4):599–609. doi:10.1189/jlb.0912452
Kool M, Geurtsvankessel C, Muskens F, Madeira FB, van Nimwegen M, Kuipers H, et al. Facilitated antigen uptake and timed exposure to TLR ligands dictate the antigen-presenting potential of plasmacytoid DCs. J Leukoc Biol (2011) 90(6):1197–70. doi:10.4049/jlb.0610342
Matsui T, Connolly JE, Michnevitz M, Chaussabel D, Yu CI, Glaser C, et al. CD8 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J Immunol (2009) 182(11):6815–23. doi:10.4049/jimmunol.0802088
Haller K. Human MxA protein – an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res (2011) 31(1):79–87. doi:10.1089/jir.2010.0076
Sakabe S, lwatsuki-Horimoto K, Takano R, Nidom CA, Le M, Nagamura-Inoue T, et al. Cytokine production by primary human macrophages infected with highly pathogenic H5N1 or pandemic H1N1 2009 influenza viruses. J Gen Virol (2011) 92(Pt 6):1428–34. doi:10.1099/vir.0.030346-0
Short KR, Kasper J, van der Aa S, Andeweg AC, Zaarten-Bouthea F, Goeijenbier M, et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur Respir J (2016) 47(3):954–66. doi:10.1183/13993003.01282-2015
Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, Low D, et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity (2013) 38(5):970–83. doi:10.4049/jimmunol.1300411
Faith A, McDonal J, Peak E, Richards D, Caulfield J, Chevretton E, et al. Functional plasticity of human respiratory tract dendritic cells: GM-CSF enhances Th2 development. J Allergy Clin Immunol (2005) 116(5):1339–46. doi:10.1016/j.jaci.2005.08.002
Bogatki SJ, Guilhot-Delost M, Cappuccio A, Bichet JC, Chouchane-Mlik O, Donnadieu MH, et al. Multiple-checkpoint inhibition of thymic stromal lymphopoietin-induced TH2 response by TH17-related cytokines. J Allergy Clin Immunol (2012) 130(1):233–40.e5. doi:10.1016/j.jaci.2012.04.038
Di Puccchio T, Chatterjee B, Smed-Sorensen A, Clayton S, Palazzo A, Montes M, et al. Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I. Nat Immunol (2008) 9(5):551–7. doi:10.1038/nm1602
Fontenot JR, Gilliet M, Larsson M, Dasilva I, Munz C, Liu YJ, et al. Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood (2003) 101(9):3520–6. doi:10.1182/blood-2002-10-3063
Hallor O, Gao S, von der Malsburg A, Daumke O, Kochs G. Dynamin-like MxA GTPase: structural insights into oligomerization and implications for...
antiviral activity. *J Biol Chem* (2010) 285(37):28419–24. doi:10.1074/jbc.R110.145839

113. Wulff H, Andrews MP, Travanty EA, Zhou B, Phang T, Gao B, et al. Innate immune response of human alveolar macrophages during influenza A infection. *PLoS One* (2012) 7(3):e29879. doi:10.1371/journal.pone.0029879

114. Friessen J, Boergeling Y, Hrinics E, Ludwig S, Roth J, Viemann D. Highly pathogenic avian influenza viruses inhibit effective immune responses of human blood-derived macrophages. *J Leukoc Biol* (2012) 92(1):11–20. doi:10.1189/jlb.0911147

115. Friessen J, Viemann D, Börgeling Y, Schmolke M, Spiekermann C, Hrincius E, Ludwig S, Roth J, Viemann D. Concomitant resistance to viral infection and inflammatory response in human blood-derived macrophages. *PLoS Pathog* (2012) 8(4):e1002572. doi:10.1371/journal.ppat.1002572

116. Vu TK, Van der Brand J, van Riel D, Pantin-Jackwood M, Swayne DE. Comparative pathology of select agent influenza viruses in infections. *Vet Pathol* (2010) 47(5):893–914. doi:10.1377/v000985801307651

117. Guarner J, Falcon-Escobedo R. Comparison of the pathology caused by H1N1, H5N1, and H3N2 influenza viruses. *Arch Med Res* (2009) 40(8):655–61. doi:10.1016/j.arcmed.2009.10.001

118. Nakajima N, Sato Y, Katano H, Hasegawa H, Kumasaka T, Hata S, et al. Visualization of early influenza A virus trafficking in human dendritic cells using STED microscopy. *Sci Transl Med* (2012) 4(104):199ra128. doi:10.1126/scitranslmed.3004153

119. Hoeve MA, Nash MA, Zbytnuik L, Lubkin A, Miller J, Malissen B, et al. Specified role of migratory dendritic cells in peripheral tolerance induction. *J Clin Invest* (2013) 123(2):844–54. doi:10.1172/JCI65260

120. Idoyaga J, Fiorese C, Zbytnuik L, Lubkin A, Miller J, Malissen B, et al. Visualization of early influenza virus trafficking in human alveolar macrophages infected with influenza H5N1 and H1N1 viruses. *J Virol* (2011) 85(14):6848–55. doi:10.1128/JVI.02200-10

121. Smed-Sorensen A, Chalouni C, Chatterjee B, Cohn L, Blattmann P, Thestrup-Pedersen P, et al. Innate and adaptive immunity – contrasting influenza and respiratory syncytial virus. *Front Immunol* (2018) 9(323):1–23. doi:10.3389/fimmu.2018.00323

122. Baharom F, Thomas OS, Lepzien R, Mellman I, Chalouni C, Smed-Sorensen A. Visualization of early influenza A virus trafficking in human dendritic cells and alveolar macrophages infected with influenza H5N1 and H1N1 viruses. *J Virol* (2011) 85(14):6848–55. doi:10.1128/JVI.02200-10

123. Friesenhagen J, Viemann D, Börgeling Y, Schmolke M, Spiekermann C, Hrincius E, Ludwig S, Roth J, Viemann D. Comparative pathology of select agent influenza viruses in infections. *Vet Pathol* (2010) 47(5):893–914. doi:10.1377/v000985801307651

124. Thomas JM, Pos Z, Reinboth J, Wang RY, Wang E, Frank GM, et al. Differential regulation of cellular redox state in alveolar epithelial cells and CD8 T cells from pregnant women show altered phenotype and function following H1N1/09 infection. *J Infect Dis* (2013) 208(7):1062–70. doi:10.1093/infdis/jit296

125. Wang J, Nath MA, Travanty EA, Zhou B, Phang T, Gao B, et al. Innate immune response of human alveolar macrophages during influenza A infection. *PLoS One* (2012) 7(3):e29879. doi:10.1371/journal.pone.0029879

126. Friessen J, Viemann D, Börgeling Y, Schmolke M, Spiekermann C, Kirschnek S, et al. Highly pathogenic influenza viruses inhibit inflammatory response in monocytes via activation of Rar-related orphan receptor RORα. *J Innate Immun* (2013) 5:305–18. doi:10.1186/00334670

127. Silvin A, Yu CI, Lahaye X, Imperatore F, Brault J-B, Cardinaud S, et al. Innate and adaptive immunity – contrasting influenza and respiratory syncytial virus. *Front Immunol* (2018) 9(323):1–23. doi:10.3389/fimmu.2018.00323

128. Ascough S, Paterson S, Chiu C. Induction and subversion of human protective immunity – contrasting influenza and respiratory syncytial virus. *Front Immunol* (2018) 9(323):1–23. doi:10.3389/fimmu.2018.00323

129. Muytjens K, Frenkel O, Roy RM, Cywes C, Godowski PJ, Wessels MR. The varieties of immunological experience: of pathogens, stress, and dendritic cell ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed state. *Annu Rev Immunol* (2013) 31:563–604. doi:10.1146/annurev-immunol-020711-074918

130. Poplack D, Traversky EA, Zhou B, Phang T, Gao B, et al. Innate immune response of human alveolar macrophages during influenza A infection. *PLoS One* (2012) 7(3):e29879. doi:10.1371/journal.pone.0029879

131. Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphopathic vessels. *Nat Rev Immunol* (2005) 5(8):617–28. doi:10.1038/nri1670
the response to R-848. *J Immunol* (2004) 173(7):4627–34. doi:10.4049/jimmunol.173.7.4627

152. Marr N, Wang TI, Kam SH, Hu YS, Sharma AA, Lam A, et al. Attenuation of respiratory syncytial virus-induced and RIG-I-dependent type I IFN responses in human neonates and very young children. *J Immunol* (2014) 192(3):948–57. doi:10.4049/jimmunol.1302007

153. Molony RD, Nguyen JT, Kong Y, Montgomery RR, Shaw AC, Iwasaki A. Aging impairs both primary and secondary RIG-I signaling for interferon induction in human monocytes. *Sci Signal* (2017) 10(509):1–11. doi:10.1126/scisignal.aan2392

154. Chong SZ, Wong KL, Lin G, Yang CM, Wong SC, Angeli V, et al. Human CD8(+) T cells drive Th1 responses through the differentiation of TNF/iNOS-producing dendritic cells. *Eur J Immunol* (2011) 41(6):1639–51. doi:10.1002/eji.201041022

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The handling Editor declared a shared affiliation, though no other collaboration, with the authors.

Copyright © 2018 Vangeti, Yu and Smed-Sörensen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.