Fuzzy Logic for Automatically Performance Assessment using CIOWA Model

Mufadhol Mufadhol1*, Siswanto Siswanto1, Maya Utami Dewi2
1 Department of Computer System, STEKOM Semarang, Jl. Majapahit 605, Semarang
2 Department of Computer Engineering, STEKOM Semarang, Jl. Majapahit 304, Semarang
*Corresponding Author: masyong29@gmail.com

Abstract
STEKOM is an institution accommodating almost 500 employees, always evaluates their performance and giving awards to achievement every year's completed. Fuzzy logic is very suitable to be used in performance appraisal because it can process complex and variatif data, as well as uncertain to be valid data. One of the models in fuzzy logic is the Consistency Induced Ordered Weighted Averaging method system by reducing the operator Averaging Mean and assigning a consistency index value used to analyze fuzzy preference relationships, then using the results of the analysis in the preference aggregation process. This article will explain how to apply the Consistency Induced Ordered Weighted Averaging model in fuzzy logic to assess the performance of STEKOM employees by assigning weight to each attribute and variable, then from the weights and variables will be rated according to the value obtained so that the decision will be taken as a solution in giving awards and promotions to employees that can meet the principles of fairness, equality and appropriateness.

Keywords: Fuzzy, automatically, performance, assessment, CIOWA

1. Introduction
Performance assessment is one of the decision-making processes undertaken by corporate leaders by considering several criteria with a view to rewarding the employee’s work [1]. The decision-making process in the assessment is done by considering several alternative solutions that will be the final decision result, the assessment alternatives can be the final value of the employee along with the rank order or the final result of the rules and assessment guidelines that can be used to assess employee performance results [2]. The problems that arise are multi attribute data and the existence of uncertain data and will be used in the assessment of the performance of the work which can affect in decision making. To overcome this problem, it can use Fuzzy Multi Attribute Decision Making concept and hereinafter referred to as FMADM which is part of fuzzy logic [3], this is caused by the concept of FMADM in fuzzy logic which has tolerance to data that is not exact or uncertain. The decision-making process can be done in a more flexible framework and one of them is directed to the ability to simulate a decision-making process with a vague consistency [4].

In giving awards or promotion positions, STEKOM as an institution that accommodates nearly 500 employees during this performance appraisal by manual process. The error of assigning a value to an attribute and error in the calculation manually can happen, thus affecting the determination of the final decision result. The Consistency Induced Ordered Weighted Averaging model hereinafter referred to as CIOWA in fuzzy logic or FMADM can be a solution to solve errors the. CIOWA in FMADM will give weight to each attribute used to measure employee performance based on predetermined criteria [5]. If each decision maker has the same degree and degree of importance, the CIOWA operator will be reduced to the Averaging Mean operator. Each decision maker will be given the authority to have a consistency index value obtained by analyzing the fuzzy preferences relation then using the results of the analysis on the preference aggregation process [6]. The decision making process can be seen as Figure 1. Many criteria are considered in the assessment of employee performance in STEKOM, ranging from the quality and quantity of work, knowledge of the type of work, responsibilities in work, cooperation between employees in one department and one another, networking, initiative and innovation, discipline of work, integrity up to concern for safety and work safety. Each of the criteria will be assigned a value based on the specified weight, from the weighting
and the value will be found some alternative solutions for the employee’s performance appraisal. Some of these alternative solutions will be ranked based on the highest value through the FMADM process by using the CIOWA model, so that a best solution will be found from several emerging solution alternatives. From this solution decision makers or leaders STEKOM will determine the rewards that are tailored to the performance appraisal as well as promotion of office to employees.

![Figure 1. Decision Making Process](image)

2. Research Method

The Research and Development method [7] becomes an option in developing this employee performance appraisal system, as it involves directing several leaders from different departments as decision makers.

2.1 Fuzzy Logic

The basis of fuzzy logic is the fuzzy set theory. In fuzzy set theory, the role of membership degree or membership function is the main characteristic of reasoning in fuzzy logic. Fuzzy logic is one of the components of soft computing [8].

Variable fuzzy: In this research, fuzzy variable that will be used in employee performance appraisal system is employees.

Fuzzy Set: In the crisp set in fuzzy logic, the value of the membership of an item x in a set A and often written with the term A [x] can be determined using the formula [9]:

\[\mu_A(x) = \begin{cases} 0; & x \leq a \\ \frac{x-a}{b-a}; & a < x < b \\ 1; & x \geq b \end{cases} \]

Thus the variable employees in the fuzzy set has 5 values, namely: less once, less, enough, good, and excellent. As shown in Figure 2.
2.2 Fuzzy Multi Attribute Decision Making

Fuzzy Multi Attribute Decision Making, which in short with the term FMADM, is a combination of fuzzy logic and multi attribute decision making [12]. Fuzzy in multi attribute decision making is used to treat the attributes of an alternative that can not be presented completely and contains an element of uncertainty or inconsistency. In general, FMADM has a goal that can be classified into two types, firstly selecting alternatives with attributes that have the best and second characteristics will classify an alternative based on a specific role [13]. FMADM resolves the problem by performing rankings, after the process of converting fuzzy data to crisp data. If fuzzy is given data in linguistic form, then data must first be converted to fuzzy form, then converted again crisp number [14].

2.3 Consistency Induced Ordered Weighted Averaging (CIOWA) Model

Consistency Induced Ordered Weighted Averaging model called CIOWA is problem solving if every decision maker has the same degree of importance and is often referred to as homogeneous GDM. In such circumstances, the I-IOWA operator will be directed into an Averaging Mean (AM) operator. Each decision maker has a consistency index value obtained by analyzing the fuzzy preferences relation they provide, then using the result of that analysis on the preference aggregation process. The consistency problem is defined as a transitive additive, using the transitive additive characteristic can be established a consistent fuzzy relation relationship of the fuzzy preference relation is inconsistent [15], using the formula:

$$p_{ij} = \left\{ \begin{array}{ll}
p_{ij} & \\
\frac{P_{i+1}}{1-P_{ij}} + P_{i+1+j} + \ldots + P_{i+1+j} \left(\frac{i+j}{2} \right) - \frac{1}{2} \end{array} \right. ; i+j > i+j$$

Reliable fuzzy preference relationships, \bar{p} obtained from $\bar{p} = (\bar{p})$, distance between p^k and \bar{p}. The distance between can be used as a measure of matrix consistency p^k obtained from:

$$C1^k = d(p^k, \bar{p}^k) = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} (p_{ij}^k - \bar{p}_{ij}^k)^2}$$

When value $1-C1^k$ getting closer to 1, indicates that the information provided by the decision maker to k, e^k, more consistent.

3. Results and Analysis

In this section, it is explained the results of research and at the same time is given the comprehensive discussion. Results can be presented in figures, graphs, tables and others that make the reader understand easily [2], [5]. The discussion can be made in several sub-chapters.

3.1 Assessment Criteria and Matching Level

The Employee performance appraisal will be conducted by involving many criteria so that the results will be obtained optimally and fair. The criteria used based on the data obtained from STEKOM will then be processed and will produce data in the form of degree of compatibility of each criterion that has been determined from each assessor. The rankings of
employee performance appraisal results that have been ranked from the highest to the lowest will be based on the sum of weighted attributes that have been calculated with the concept of Fuzzy Multi Attribute Decision Making (FMADM) with problem solving using Consistency Induced Ordered Weighted Averaging (CIOWA) model [16]. The criteria for assessment in the employee performance appraisal used will be adjusted to the STEKOM's interests: Quality of Work (C1), Quantity of Work (C2), Knowledge of Employment (C3), Responsibility (C4), Cooperation (C5), Network Work (C6), Initiative (C7), Work Discipline (C8), Intergritas (C9), Concern for safety and security (C10).

3.2 Importance Rating and Matching Rating

The level of importance for criterion will be determined based on the weighted value assigned to the number and the matching of rating on alternative (assessor) for each criterion is: Very Less (VL)=1, Less (L)=2, Enough (E)=3, Good (G)=4 and Very Good (VG)=5. As in figure 3.

![Figure 3. Graph of weight Level](image)

And for its importance rating to be used as the standard of the expected assessment of each criterion is: Very Low (VL) = 1, Low (L) = 2, Medium (M) = 3, High (H) = 4, Very High (VH) = 5. The weight value can be seen in figure 4.

![Figure 4. Standard of the Expected Assessment](image)

Based on the criteria and rating of each alternative fit (employee) on each criteria that have been determined, then the weighting of each of the criteria that have been converted with numbers. The criteria used in employee performance appraisal are as follows:

a) Quality of Work (C1), is the ability to complete its work in accordance with the quality standard that has been determined with interest rating: Very High (VH). Like in the table 1.

No.	Quality of Work	Value
1.	Very Less	1
2.	Less	2
3.	Enough	3
4.	Good	4
5.	Very Good	5

Table 1. Rating of Quality Match of Results of Work
b) *Quantity of Work (C2)*, is the ability to produce or complete work according to the given work load has an interest rating: Very High (VH). According to table 2.

No.	Quantity of Work	Value
1.	Very Less	1
2.	Less	2
3.	Enough	3
4.	Good	4
5.	Very Good	5

Table 2. Rating Match Quantity of Work Results

c) *Knowledge about Work (C3)*, is the employee’s knowledge of his duties and work, has an interest rating: Very High (VH). Like table 3.

No.	Knowledge of the Hasik Work	Value
1.	Very Less	1
2.	Less	2
3.	Enough	3
4.	Good	4
5.	Very Good	5

Table 3. Rating of Occupational Knowledge Match

d) *Responsibility (C4)*, is the responsibility of the employee to the task that has become his work and has an interest rating: High (H). Like table 4.

No.	Responsible	Value
1.	Very Less	1
2.	Less	2
3.	Enough	3
4.	Good	4
5.	Very Good	5

Table 4. Rating Match of Responsibility

e) *Cooperation (C5)*, is the ability to work collectively with colleagues with an interest rating: High (H). As in the table 5.

No.	Cooperation	Value
1.	Very Less	1
2.	Less	2
3.	Enough	3
4.	Good	4
5.	Very Good	5

Table 5. Rating Match of Cooperation

f) *Networking (C6)*, is an understanding of all organizations related to their respective ministries of interest rating: High (H). Seen in table 6.

No.	Networking	Value
1.	Very Less	1
2.	Less	2
3.	Enough	3
4.	Good	4
5.	Very Good	5

Table 6. Rating Match of Networking

Fuzzy Logic for Automatically Performance Assessment using CIOWA Model... (Mufadhol et all).

g) **Initiative (C7)**, is the ability to express ideas of importance rating: High (H). According to table 7.

No.	Initiative	Value
1.	Very Less	1
2.	Less	2
3.	Enough	3
4.	Good	4
5.	Very Good	5

h) **Discipline of work (C8)**, is the understanding and implementation of company regulations has an interest rating: High (H). As shown in table 8.

No.	Discipline of Work	Value
1.	Very Less	1
2.	Less	2
3.	Enough	3
4.	Good	4
5.	Very Good	5

i) **Integrity (C9)**, is the desire to keep the values that exist in the company has an interest rating: High (H). In accordance with table 9.

Table 9. Rating of Integrity Match

No.	Integrity	Value
1.	Very Less	1
2.	Less	2
3.	Enough	3
4.	Good	4
5.	Very Good	5

j) **Caring for safety and security (C10)**, is a concern for the implementation of work safety while maintaining a work culture that has become a workplace culture of rating importance: High (H). Like table 10.

Table 10. Rating of Safety and Security

No.	Safety and Security	Value
1.	Very Less	1
2.	Less	2
3.	Enough	3
4.	Good	4
5.	Very Good	5

3.3 Calculation Process of Problem Solving

The determination and calculation of each attribute with the concept of FMADM by using the Consistency Induced Ordered Weighted Averaging (CIOWA) method which will be used as a reference in making a decision is to find the Ci value, to determine the matching of each alternative on each criterion, make the decision based on the criteria (Ci), then perform the matrix normalization based on the equation which is adjusted to the type of attribute so that a normalized matrix R will be obtained. The final result is obtained from the ranking process that is by summing the matrix multiplication of normalized R with the weight vector to obtain the largest value chosen as the best alternative (Ai) as the last solution [17], previously mentioned that there are several criteria that will be used in the process of employee performance appraisal which will be used as a reference in decision making. Each value assigned by each alternative in each criterion is a match value (the largest value is best), then all given criteria are assumed to be profit criteria. So the equations used are:
\[C_l^k = d(p^k, \hat{p}^k) = \sum_{i=1}^{n} \sum_{j=1}^{n} (p_{ij}^k - \hat{p}_{ij}^k)^2 \]

Where \(R_{ij} \) is the normalized performance rating of alternative \(A_1 \) on attribute \(C_j \); \(i = 1, 2, \ldots, m \) and \(j = 1, 2, \ldots, n \).

3.4 Weight and Preference Matches

The preferable value for each alternative (Vi) is given as an example for the Employee Performance Appraisal Process by Employee Name Djarot, and as the first appraiser (A1) = Mufadhol, second appraiser (A2) = Siswanto, and third appraiser (A3) = Maya. This performance appraisal will be completed using the FMADM concept with the CIOWA method on STEKOM and the three assessors have assigned the following values, such as table 11:

Table 11. Rating of Matching in alternative Criterion

Alternative	Rating result									
	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
A1	G	E	E	G	G	G	E	G	VG	G
A2	G	G	E	E	E	E	E	G	G	E
A3	VG	G	G	G	G	G	G	C	G	G

Where the Management has determined the weight of preference (Standard Value) which is the interest rating as follows, seen in table 12:

Table 12. Rating of Interests of each criteria

Criteria	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
Importance Rating	VH	VH	VH	H	H	H	H	H	H	H

3.5 Fuzzy Preference Matrix

The CIOWA model in FMADM requires that the matrix value of the fuzzy preferences be consistent. A consistent matrix is required in determining the sum and matrix values normalized by the weighted vector to obtain the largest value selected as the best alternative as a solution [18]. Matrix formed from match table in employee performance appraisal as described in figure 5, as follows:

\[P^1 = \begin{bmatrix} 4 & 3 & 3 & 4 & 4 & 3 & 4 & 5 & 4 \\ 4 & 4 & 3 & 3 & 3 & 3 & 4 & 4 & 3 \\ 5 & 4 & 4 & 4 & 3 & 3 & 4 & 4 & 3 \end{bmatrix} \]

Figure 5. Matrix of Matching Table

From the matrix can be done normalization matrix \(P^1 \) as follows:

\[
\begin{align*}
\hat{p}_{11}^1 &= 4, \quad \hat{p}_{12}^1 = \hat{p}_{21}^1 = 3, \quad \hat{p}_{13}^1 = \hat{p}_{31}^1 = 3, \quad \hat{p}_{14}^1 = \hat{p}_{41}^1 = 4, \quad \hat{p}_{15}^1 = \hat{p}_{51}^1 = 4, \quad \hat{p}_{16}^1 = \hat{p}_{61}^1 = 4, \\
\hat{p}_{21}^1 &= 4, \quad \hat{p}_{22}^1 = 3, \quad \hat{p}_{23}^1 = \hat{p}_{32}^1 = 4, \quad \hat{p}_{24}^1 = \hat{p}_{42}^1 = 3, \quad \hat{p}_{25}^1 = \hat{p}_{52}^1 = 3, \quad \hat{p}_{26}^1 = \hat{p}_{62}^1 = 4, \\
\hat{p}_{31}^1 &= 3, \quad \hat{p}_{32}^1 = 3, \quad \hat{p}_{33}^1 = \hat{p}_{43}^1 = 3, \quad \hat{p}_{34}^1 = \hat{p}_{44}^1 = 4, \quad \hat{p}_{35}^1 = \hat{p}_{45}^1 = 3, \quad \hat{p}_{36}^1 = \hat{p}_{46}^1 = 3, \\
\hat{p}_{41}^1 &= 4, \quad \hat{p}_{42}^1 = 3, \quad \hat{p}_{43}^1 = 4, \quad \hat{p}_{44}^1 = 3, \quad \hat{p}_{45}^1 = 4, \quad \hat{p}_{46}^1 = 3, \quad \hat{p}_{47}^1 = \hat{p}_{57}^1 = 3, \quad \hat{p}_{48}^1 = \hat{p}_{58}^1 = 3, \\
\hat{p}_{51}^1 &= 3, \quad \hat{p}_{52}^1 = 3, \quad \hat{p}_{53}^1 = 3, \quad \hat{p}_{54}^1 = 3, \quad \hat{p}_{55}^1 = 3, \quad \hat{p}_{56}^1 = 4, \quad \hat{p}_{57}^1 = \hat{p}_{67}^1 = 4, \\
\hat{p}_{61}^1 &= 4, \quad \hat{p}_{62}^1 = 4, \quad \hat{p}_{63}^1 = 3, \quad \hat{p}_{64}^1 = 3, \quad \hat{p}_{65}^1 = 3, \quad \hat{p}_{66}^1 = 4, \quad \hat{p}_{67}^1 = \hat{p}_{77}^1 = 4, \\
\hat{p}_{71}^1 &= 3, \quad \hat{p}_{72}^1 = 3, \quad \hat{p}_{73}^1 = 3, \quad \hat{p}_{74}^1 = 3, \quad \hat{p}_{75}^1 = 3, \quad \hat{p}_{76}^1 = 4, \quad \hat{p}_{77}^1 = \hat{p}_{87}^1 = 4, \\
\hat{p}_{81}^1 &= 4, \quad \hat{p}_{82}^1 = 4, \quad \hat{p}_{83}^1 = 3, \quad \hat{p}_{84}^1 = 3, \quad \hat{p}_{85}^1 = 3, \quad \hat{p}_{86}^1 = 4, \quad \hat{p}_{87}^1 = \hat{p}_{97}^1 = 4, \\
\hat{p}_{91}^1 &= 4, \quad \hat{p}_{92}^1 = 4, \quad \hat{p}_{93}^1 = 3, \quad \hat{p}_{94}^1 = 3, \quad \hat{p}_{95}^1 = 3, \quad \hat{p}_{96}^1 = 4, \quad \hat{p}_{97}^1 = \hat{p}_{107}^1 = 4 \\
\hat{p}_{101}^1 &= 4, \quad \hat{p}_{102}^1 = 4, \quad \hat{p}_{103}^1 = 3, \quad \hat{p}_{104}^1 = 3, \quad \hat{p}_{105}^1 = 3, \quad \hat{p}_{106}^1 = 4, \quad \hat{p}_{107}^1 = \hat{p}_{117}^1 = 4 \end{align*} \]
Thus, a consistent relation of fuzzi preferences can be obtained through a preferential relation fuzzy p^1 so it can be searched for value p^1 use:

\begin{align*}
\hat{p}^1_2 &= p^1_2 = 4 \\
\hat{p}^1_3 &= p^1_3 = 3 \\
\hat{p}^1_4 &= p^1_3 + p^1_{13} + \frac{1 + 1 - 3}{2} = 3 + 3 - 0.5 = 5.5 \\
\hat{p}^1_5 &= p^1_2 + p^1_{13} + p^1_{24} + \frac{1 + 1 - 4}{2} = 3 + 3 + 4 - 1 = 9 \\
\hat{p}^1_6 &= p^1_3 = 4 \\
\hat{p}^1_7 &= p^1_6 = 4 \\
\hat{p}^1_8 &= p^1_3 + p^1_{13} + \frac{1 + 1 - 3}{2} = 3 + 3 - 0.5 = 5.5 \\
\hat{p}^1_9 &= p^1_8 + p^1_{13} + p^1_{24} + \frac{1 + 1 - 8}{2} = 4 + 3 + 4 - 3 = 8 \\
\hat{p}^1_{10} &= p^1_9 = 5 \\
\hat{p}^1_{11} &= p^1_{10} = 4 \\
\hat{p}^1_{12} &= 1 - p^1_2 = 1 - 3 = 2 \\
\hat{p}^1_{13} &= p^1_{12} = 4 \\
\hat{p}^1_{14} &= p^1_{13} = 3 \\
\hat{p}^1_{15} &= p^1_{14} + p^1_{24} + \frac{2 + 1 - 4}{2} = 3 + 4 - 0.5 = 6.5 \\
\hat{p}^1_{16} &= 1 - p^1_{11} = 1 - 4 = 3 \\
\hat{p}^1_{17} &= p^1_{15} = 3 \\
\hat{p}^1_{18} &= p^1_{16} + p^1_{24} + \frac{2 + 1 - 8}{2} = 4 + 4 - 2.5 = 5.5 \\
\hat{p}^1_{19} &= p^1_{16} = 4 \\
\hat{p}^1_{20} &= p^1_{20} = 3 \\
\hat{p}^1_{21} &= 1 - p^1_3 = 1 - 3 = 2 \\
\hat{p}^1_{22} &= 1 - p^1_{13} = 1 - 3 = 2 \\
\hat{p}^1_{23} &= p^1_{22} = 4 \\
\hat{p}^1_{24} &= 1 - p^1_2 = 1 - 4 = 3 \\
\hat{p}^1_{25} &= 1 - p^1_1 = 1 - 3 = 2 \\
\hat{p}^1_{26} &= p^1_{24} = 4 \\
\hat{p}^1_{27} &= 1 - p^1_3 = 1 - 4 = 3 \\
\hat{p}^1_{28} &= 1 - p^1_{15} = 1 - 3 = 2 \\
\hat{p}^1_{29} &= p^1_{28} = 4 \\
\hat{p}^1_{30} &= p^1_6 = 4 \\
\end{align*}

Thus, it can be determined \hat{p}^1 resulting in a consistent new matrix, as shown in figure 6.

\[
\hat{p}^1 = \begin{bmatrix}
1 & 3 & 5.5 & 9 & 4 & 4 & 5.5 & 8 & 5 & 4 \\
2 & 4 & 3 & 6.5 & 3 & 3 & 3 & 5.5 & 4 & 3 \\
2 & 2 & 4 & 3 & 2 & 4 & 3 & 2 & 4 & 4
\end{bmatrix}
\]

Figure 6. New Matrix after Normalization
From the new matrix after the normalization process can be known value of \(CI^k \) to
determine the result of the calculation, so from the value \(CI^k \) the value is obtained 1\(\cdot CI^k \) =
(6.5, 5.5, 5.5, 4.3), because the value of 1\(\cdot CI^k \) getting closer 1, then the matrix can be said to be
consistent.

3.6 Final Calculation of Rating Weight
The latter value is the final solution of some solutions that are an alternative choice in
giving rewards and promotions to each employee based on performance during the assessment
process. The final calculation of rating can be applied online with internet management must be
optimal [19].

\[
W_1 = Q \left(\frac{6.5}{5 + 4 + 3 + 2} \right) = \frac{6.5}{14} = 0.567
\]

\[
w_2 = Q \left(\frac{6.5 + 5.5}{14} \right) - Q \left(\frac{6.5}{14} \right) = \frac{2.625}{14} = 0.248
\]

\[
w_3 = Q \left(\frac{6.5 + 5.5 - 4}{14} \right) - Q \left(\frac{6.5 + 5.5}{14} \right) = \frac{1.142}{14} = 0.038
\]

\[
w_4 = Q (1) - Q \left(\frac{6.5 + 5.5 + 5}{14} \right) = 1 - \frac{1.214}{14} = 0.294
\]

From the value of \(w \) this can be seen that \(w_1 \) has the greatest value, so it can be
concluded that \(W_1 \) is the first alternative that will be chosen from several alternatives found. For
further research, this method can be combined using expert systems using rule based
reasoning [20] and the system can be accessed by smartphone [21].

4. Conclusion
Fuzzy logic can be used to assess employee performance with the concept of Fuzzy
Multi Attribute Decision Making (FMADM) using the Consistency Induced Ordered Weighted
Averaging (CIOWA) method. Assessment criteria are done by weighting through interest rating
system and match rating so that a consistent matrix is obtained after a normalization process
occurs on the fuzzy preference matrix. The last value obtained is an information indicator that is
very important for the leader as a decision maker in determining the solution to give awards and
promotions. This employee performance appraisal is not done subjectively but is done
objectively through the CIOWA method, so that the final solution taken can be appropriate and
fair for all employees based on work performance.

Acknowledgements
This research is developed by Division of Research and Development team at
Computer System Engineering Department and in supervision by Research and Community
Service Institutions, STEKOM Semarang, Indonesia.

References
[1] T. Palm, “Performance Assessment and Authentic Assessment: A Conceptual Analysis of
the Literature”, Practical Assessment, Research and Evaluation, 2008, vol. 13(4), pp. 1-11.
[2] M. S. Pfaff, G. L. Klein, J. L. Drury, Ed., “Supporting Complex Decision Making Through
Option Awareness”, Journal of Cognitive Engineering and Decision Making, 2013, vol. 7(2),
pp. 155-178.
[3] A. Karami and R. Johannson, “Utilization of Multi Attribute Decision Making Techniques to
Integrate Automatic and Manual Ranking of Options”, Journal Of Information Science And
Engineering, 2014, vol. 30, pp. 519-534.
[4] D. R. Anamisa, A. Rachmad and R. Widiantuti, “Selection System of the Boarding House
Based on Fuzzy Multi Attribute Decision Making Method”, Journal of Theoretical and
Applied Information Technology, 2016, vol. 92(1), pp. 52-58.
[5] B. L. Chen, “Research on the Method of Talent Selection Based on Fuzzy Preference Relations”, *IEEE Xplore in the 17th International Conference on Industrial Engineering and Engineering Management*, Xiamen, China, October 2010.

[6] K. Xu, J. Zhou, R. Gu and H. Qin, “The Compound Consistency Induced Ordered Weighted Averaging Operator and Its Application to Reservoir Operation”, *IEEE Xplore in the 7th International Conference on Fuzzy Systems and Knowledge Discovery*, Yantai, China, August 2010.

[7] M. Mufadhol, S. Siswanto, D. D. Susatyono and M. U. Dewi, “The Phenomenon of Research and Development Method in Research of Software Engineering”, *International Journal of Artificial Intelligence Research*, 2017, vol. 1(1), pp. 1-5.

[8] L. Pokorádi, “Application of Fuzzy Set Theory for Risk Assessment”, *Journal of KONBIN*, 2010, vol. 14, pp. 187-196.

[9] E. Trillas, I. G. Honrado, S. Guadarrama and E. Renedo, “Crisp sets as classes of discontinuous fuzzy sets”, *International Journal of Approximate Reasoning*, 2009, Vol. 50, pp. 1298–1305.

[10] M. Shenify and F. A. Mazarbhuiya, “The Expected Value of a Fuzzy Number”, *International Journal of Intelligence Science*, 2015, vol. 5, pp. 1-5.

[11] M. Othman, K. R. Mahamud and A. A. Bakar, “Fuzzy Evaluation Method Using Fuzzy Rule Approach in Multicriteria Analysis”, Yugoslav Journal of Operations Research, 2008, vol. 18 (1), pp. 95-107.

[12] D. F. Li, “Multi Attribute Decision Making Models and Methods Using Intuitionistic Fuzzy Sets”, *Journal of Computer and System Sciences*, 2005, vol. 70, pp. 73-85.

[13] J. Wang, Q. H. Chen, H. Y. Zhang, X. H. Chen and J. Q. Wang, “Multi Criteria Decision-Making Method Based on Type-2 Fuzzy Sets”, Filomat, 207, vol. 31(2), pp. 431–450.

[14] W. Deni, O. Sudana and A. Sasmita, “Analysis and Implementation Fuzzy Multi-Attribute Decision Making SAW Method for Selection of High Achieving Students in Faculty Level”, *International Journal of Computer Science Issues*, 2013, vol. 10(1), pp. 674-680.

[15] U. Dudziak and B. P. kala, “Intuitionistic fuzzy preference relations”, Proceedings of the 7th Conference of the European Society for Fuzzy Logic and Technology, EUSFLAT 2011 and French Days on Fuzzy Logic and Applications, LFA 2011, pp. 529-536, Aixles Bains, France, 2011.

[16] M. Peker, H. Gürüler, B. Sen and A. Istanbullu, “A New Fuzzy Logic Based Career Guidance System: WEB-CGS”, *Tehnicki vjesnik*, 2017, vol. 24(6), pp. 1863-1868.

[17] Z. Xu, “Ranking Alternatives Based on Intuitionistic Preference Relation”, *International Journal of Information Technology and Decision Making*, 2014, vol. 13(6), pp. 1259-1281.

[18] S. Nadaban and I. Dzitac, “Some Properties and Applications of Fuzzy Quasi Pseudo Metric Spaces”, *INFORMATICA*, 2016, vol. 27(1), pp. 141–159.

[19] M. Mufadhol, G. Aryotejo and A. Wibowo, “Netscan and Networx for Management Bandwidth and Traffic with Simple Routing. TELKOMNIKA Telecommunication Computing Electronics and Control, 2017, vol. 15(1), pp.464-470.

[20] M. Mufadhol, G. Aryotejo and D.Y. Kristiyanto, “Rule Based Reasoning Method for Safety Room by Means of Temperature Sensor and Motion Detector”, *International Journal of Advanced Science Letters*, 2017, vol.23(3), pp.2481-2483.

[21] A. Wibowo, G. Aryotejo and M. Mufadhol, “Accelerated Mobile Pages from JavaScript as Accelerator Tool for Web Service on E-Commerce in The E-Business”, *International Journal of Electrical and Computer Engineering*, 2018, vol.8(4), pp. 2399-2405.