An overview of menopausal oestrogen–progestin hormone therapy and breast cancer risk

SA Lee*,1, RK Ross1 and MC Pike1

1Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Avenue, Topping Tower 4423, Los Angeles, CA 90033-0800, USA

Results from the Women's Health Initiative (WHI) trial support findings from observational studies that oestrogen–progestin therapy (EPT) use is associated with an increase in breast cancer risk. We conducted a meta-analysis using EPT-specific results from the Collaborative Group on Hormonal Factors in Breast Cancer (CGHFBC) pooled analysis and studies published since that report to obtain an overview of EPT use and breast cancer risk. We also assessed risk by histologic subtype of breast cancer, by schedule of the progestin component of EPT, and by recency of use. We estimate that overall, EPT results in a 7.6% increase in breast cancer risk per year of use. The risk was statistically significantly lower in US studies than in European studies — 5.2 vs 7.9%. There was a significantly higher risk for continuous-combined than for sequential EPT use in Scandinavian studies where much higher total doses of progestin were used in continuous-combined than in sequential EPT. We observed no overall difference in risk for lobular vs ductal carcinoma but did observe a slightly higher risk for current vs past EPT use.

British Journal of Cancer (2005) 92, 2049–2058. doi:10.1038/sj.bjc.6602617 www.bjcancer.com

© 2005 Cancer Research UK

Keywords: meta-analysis; hormone therapy; breast cancer

The Collaborative Group on Hormonal Factors in Breast Cancer (CGHFBC) (1997) pooled data from 51 epidemiologic studies to obtain an overall estimate of breast cancer risk associated with menopausal hormone therapy (HT) use. The risk estimate for oestrogen therapy (ET) use was based on large numbers of cases and controls, but the oestrogen–progestin therapy (EPT) result was not. Since then, a number of statistically powerful studies have evaluated EPT in relation to breast cancer risk. Some of these further evaluated differences in risk by schedule of progestin administration, that is, sequential vs continuous-combined use (Magnusson et al, 1999; Ross et al, 2000; Schaier et al, 2000; Newcomb et al, 2002; Porch et al, 2002; Weiss et al, 2002; Million Women Study, 2003; Olsson et al, 2003; Stahlberg et al, 2004), and in relation to histologic subtype of breast cancer (Schaier et al, 2000; Daling et al, 2002; Newcomb et al, 2002; Newcomer et al, 2003; Ursin et al, 2002; Weiss et al, 2002).

We conducted a meta-analysis of the results reported by the CGHFBC and studies published since that overview through March 2004 to provide a more precise estimate of the risk from EPT and how it is affected by schedule of progestin administration and histologic subtype.

MATERIALS AND METHODS

We used the Medline database to compile a list of studies subsequent to the CGHFBC report investigating the relationship between EPT and incident breast cancer risk using the Medical Subject Headings (MeSH): postmenopausal, oestrogen progestin therapy (or combined therapy), and breast cancer. For this analysis we did not include studies that presented results only for overall HT, nor did we include studies that only evaluated ET use, nor studies only evaluating breast cancer mortality. A total of 22 studies were identified for possible inclusion (Persson et al, 1996, 1997, 1999; Magnusson et al, 1999; Li et al, 2000, 2002, 2003; Moorman et al, 2000; Rockhill et al, 2000; Ross et al, 2000; Schaier et al, 2000; Chen et al, 2002; Daling et al, 2002; Kirsh and Kreiger, 2002; Newcomb et al, 2002; Newcomer et al, 2003; Porch et al, 2002; Ursin et al, 2002; Weiss et al, 2002; Chlebowski et al, 2003; Jernstrom et al, 2003; Million Women Study, 2003; Olsson et al, 2003; Stahlberg, 2004). As age at menopause is a critical factor in assessing HT use and breast cancer risk (Pike et al, 1998), we excluded those studies that did not adjust for age at menopause: this criterion excluded five studies (Persson et al, 1997; Moorman et al, 2000; Chen et al, 2002; Li et al, 2002, 2003). We also excluded three studies that did not have information on risk by duration of EPT use (Persson et al, 1996; Li et al, 2000; Newcomer et al, 2003), and the study of Olsson et al (2003) for reasons described in the Discussion section below. We further excluded two studies since the results were based on the same data incorporated into the CGHFBC report (Persson et al, 1999; Rockhill et al, 2000), and the study of Jernstrom et al (2003), because it only provided results for continuous-combined EPT use, and the reason for this was the greater observed effect with such use than with sequential use. Therefore, the results from 10 recent studies and from the CGHFBC pooled analysis were used to obtain an overall assessment of EPT and breast cancer risk (CGHFBC, 1997; Magnusson et al, 1999; Ross et al, 2000; Schaier et al, 2000;...
Kirsh and Kreiger, 2002; Newcomb et al., 2002; Porch et al., 2002; Weiss et al., 2002; Chlebowski et al., 2003; Stahberg et al., 2004).

In a second analysis, breast cancer risk by histologic subtype (lobular vs ductal) was evaluated in relation to EPT use. Four of the 10 studies had information on histology (Schairer et al., 2000; Daling et al., 2002; Newcomb et al., 2002; Ursin et al., 2002); Ursin et al. (2002) used data from the study of Ross et al. (2000) and Daling et al. (2002) from the study of Weiss et al. (2002). No information was available by histologic subtype from the CGHFBC report.

In a third analysis, we assessed breast cancer risk by progestin schedule (sequential, i.e. oestrogen given alone during the first part of a monthly cycle followed by oestrogen combined with a progestin for the remainder of the cycle with possibly a short hormone-free interval, vs continuous-combined, i.e. oestrogen and progestin always administered together during a cycle). No information was available by progestin schedule from the CGHFBC report.

As so few studies provided information on past HT use, we were limited in our ability to assess the difference in risk by recency of use. Of the 11 studies included in the overall analysis, four studies presented results comparing risk for past vs current HT use (Magnusson et al., 1999; Ross et al., 2000; Newcomb et al., 2002; Porch et al., 2002; Weiss et al., 2002; Million Women Study, 2003; Stahberg et al., 2004). However, two of these seven studies did not assess duration of use in relation to schedule and were omitted from this analysis (Newcomb et al., 2002; Porch et al., 2002).

As so few studies provided information on past HT use, we were limited in our ability to assess the difference in risk by recency of use. Of the 11 studies included in the overall analysis, four studies presented results comparing risk for past vs current HT use (Magnusson et al., 1999; Ross et al., 2000; Newcomb et al., 2002; Porch et al., 2002; Weiss et al., 2002; Million Women Study, 2003; Stahberg et al., 2004). However, two of these seven studies did not assess duration of use in relation to schedule and were omitted from this analysis (Newcomb et al., 2002; Porch et al., 2002).

RESULTS

The studies included in at least one of the three analyses conducted to evaluate EPT and breast cancer risk are given in Appendix A. A summary table of the general characteristics and overall findings for each study are presented in Appendix B. As is apparent in the summary table, the effect of EPT use by duration of use in these various studies was evaluated in a wide variety of ways with categorical cutoffs, as well as per year of use.

EPT and breast cancer risk

The overall summary of the studies included in this meta-analysis (all histologic subtypes combined) showed a weighted average OR of 1.076 (95% confidence interval (CI) = 1.070, 1.082) for EPT use, with some evidence of heterogeneity, $P_{het} = 0.074$ (Table 1, Figure 1). A funnel plot showed no evidence of publication bias. The OR for the US studies was 1.052 (95% CI = 1.036, 1.068); for the European studies it was 1.079 (95% CI = 1.073, 1.083); and for the Scandinavian studies was 1.089 (95% CI = 1.065, 1.114): the difference between the US studies and the European studies was highly statistically significant ($P = 0.002$) (Table 1).

EPT by sequential vs continuous-combined schedules and breast cancer risk

Sequential EPT use was associated with a lower OR than continuous-combined EPT use (Table 2). The best estimate of the overall difference between the ORs was -0.015 (95% CI = -0.030, 0.000), $P_{diff} = 0.054$. The most obvious difference between the continuous-combined and sequential schedules was seen in the two Scandinavian studies (Magnusson et al., 1999; Stahberg et al., 2004) in which the difference in ORs was -0.065 (95% CI = -0.115, -0.015), $P_{diff} = 0.010$. In the remaining studies the average OR difference was -0.010 (95% CI = -0.026, 0.006), $P_{diff} = 0.23$; this figure essentially reflects the Million Women Study for at least some further period until censoring time. Therefore, an additional duration of use should be added for current hormone users in the cohort studies considered (CGHFBC, 1997; Schairer et al., 2000; Porch et al., 2002; Million Women Study, 2003; Stahberg et al., 2004). For example, in the cohort study of Porch et al. (2002), they reported ORs of 1.11 and 1.76 for <5 and ≥ 5 years of EPT use. We considered these categories as referring to 2.5 and 7.5 years of EPT use. Using these duration figures, we estimated OR as 1.079. But the ORs of 1.11 and 1.76 do not relate to 2.5 and 7.5 years of use, but to this amount of use plus the mean duration of use after recruitment to the study until the end of follow-up. The mean length of follow-up in this study was 5.9 years and assuming that current users of EPT remained users during follow-up, this changes the values to be used in estimating OR, from 2.5 and 7.5 years to 5.45 (2.5 plus the midpoint of the average follow-up, i.e. 5.9/2 or the average exposure during follow-up) and 10.45 (7.5 + 5.9/2) years, respectively. This changes our estimate of OR, from 1.079 to 1.052, a 34% decline in our estimate of excess risk. This is, of course, a slight exaggeration of the change since some current users at baseline will stop use during follow-up. For all cohort studies included in the analysis, we calculated risk per year of use based on this conservative method. We applied this method to all prospective studies reporting risk for current EPT use except for the study by Schairer et al. (2000), in which this adjustment had already been applied.

Risk estimates reported in the study by Magnusson et al. (1999) were converted to risks per year of use since the ORs reported in the study excluded never users of EPT. This was done in order for these estimates to be comparable to the relative risks reported in the other studies.
EPT and lobular vs ductal breast cancer risk

Two of the four studies evaluating the difference in risk between lobular and ductal breast carcinoma found no difference by histology while the other two studies observed a slightly increased risk for lobular carcinoma (Table 3). The overall difference in risk (at one year) by histologic subtype was 0.019 (95% CI = −0.033, 0.071), $P_{\text{diff}} = 0.47$.

Current/recent use vs total lifetime use and breast cancer risk

Only three studies (Magnusson et al, 1999; Weiss et al, 2002; Million Women Study, 2003) reported results comparing risk for past vs current HT use. Pooled estimates for these three studies showed that the difference in ORs was $−0.067$ (95% CI = $−0.081$, $−0.053$), $P_{\text{diff}} < 0.001$ (Table 4). In the study by Weiss et al (2002), the only study to report risk separately for past and current EPT use, the difference was $−0.100$ (−0.166, −0.034), $P_{\text{diff}} = 0.003$.

As another way to assess potential difference in risk by recency of use, we calculated pooled estimates for those studies reporting relative risks among current/and or recent EPT use (CGHFBC, 1997; Schairer et al, 2000; Porch et al, 2002; Chlebowski et al, 2003; Million Women Study, 2003; Stahlberg et al, 2004) and compared them to pooled estimates for the studies reporting risk for lifetime EPT use (Magnusson et al, 1999; Ross et al, 2000; Kirsh and Kreiger, 2002; Newcomb et al, 2002; Weiss et al, 2002). The pooled estimate (data not shown) for the studies assessing current/recent use was slightly higher (OR = 1.077, 95% CI = 1.071, 1.083) than the pooled estimate for studies reporting lifetime EPT use (OR = 1.053, 95% CI = 1.034, 1.072), and this difference was statistically significant, $P_{\text{diff}} = 0.019$. This difference remained significant even after excluding the Scandinavian studies (Magnusson et al, 1999; Stahlberg et al, 2004): the weighted average OR for current/recent use was 1.076 (95% CI = 1.070, 1.082) and 1.049 (95% CI = 1.028, 1.070) for lifetime use, $P_{\text{diff}} = 0.017$.

DISCUSSION

The literature evaluating EPT and breast cancer risk is generally very consistent; all studies reported an increased risk of breast cancer with increasing duration of EPT use. The overall evidence showed a statistically significant increased risk of 7.6% per year of use. The risk was statistically significantly lower in US studies than in European studies -- 5.2 vs 7.9%.

The US figure should probably be increased slightly since the results we used for the WHI trial (Chlebowski et al, 2003) are almost certainly an underestimate of the true effect in that trial. We used the result obtained from their intent-to-treat analysis. The results from their drug-as-taken analysis was double that obtained from the intent-to-treat analysis. The WHI trial result has, however, only a small effect on the overall risk for US studies as it is associated with a wide CI. The results of the Scandinavian study of Stahlberg et al (2004) are likewise likely to be an underestimate, although to a smaller extent than with the WHI, as the authors only adjusted for age at menopause as <55 and ≥55 years.

The overall within-study difference between sequential vs continuous/combined EPT was $−0.015$ (95% CI = $−0.036$, 0.000), $P_{\text{diff}} = 0.51$. This difference was due to the two Scandinavian studies (Magnusson et al, 1999; Stahlberg et al, 2004) where the risk was $−0.065$ (95% CI = $−0.115$, $−0.015$), $P_{\text{diff}} = 0.010$. This difference was also supported by the results of the Scandinavian study reported by Jernstrom et al (2003), which we excluded earlier since the authors only presented results for continuous/combined EPT use; the authors reported their results in this manner because of the greater observed effect for continuous/combined than for sequential EPT use.

In the US, the most common form of sequential EPT provides 5–10 mg of medroxyprogesterone acetate (MPA) per day for 10 days per 28-day cycle, whereas subjects assigned to receive continuous/combined EPT are typically given 2.5 mg of MPA every day. The total doses for sequential and continuous/combined

Table 1 Odds ratios per year of use (ORs) of oestrogen–progestin therapy and breast cancer risk

Study	Case users	OR1 (95% CI)
Randomised trial		
WHI (2003)*	199	1.080 (1.004, 1.167)
Prospective studies		
Stahlberg* (2004)	95	1.097 (1.068, 1.127)
MWS* (2003)**	1891	1.077 (1.071, 1.084)
Porch* (2002)	164	1.052 (1.022, 1.084)
Schairer* (2000)$^{*+}$	75	1.060 (0.998, 1.150)
Case–control studies		
Kirsh* (2002)$^{*+,c}$	43	1.15 (1.01, 1.33)
Newcomb* (2002)c	215	1.04 (1.01, 1.08)
Weiss* (2002)	195	1.065 (1.019, 1.114)
Ross* (2000)$^{*+}$	425	1.044 (1.014, 1.077)
Magnusson (1999)*	399	1.104 (1.073, 1.136)
Pooled studies		
CGHFBC (1997)$^{*+}$	194	1.058 (0.996, 1.124)
Summary	Pooled estimate	
All studies	1.076 (1.070, 1.082)	$P_{\text{meta}} = 0.074$
US studies1, 4, 9, 11	1.052 (1.036, 1.068)	$P_{\text{meta}} = 0.87$
European studies2, 3, 10	1.079 (1.073, 1.085)	$P_{\text{meta}} = 0.12$
Scandinavian studies2, 10	1.089 (1.065, 1.114)	$P_{\text{meta}} = 0.32$

Abbreviations: CI = confidence interval; OR = odds ratio; WHI = Women's Health Initiative; MWS = Million Women Study; CGHFBC = Collaborative Group on Hormonal Risk Factors in Breast Cancer. *Risk is based on current and/or recent use rather than total use. **Results included (or did not specifically exclude) women with unknown age at menopause due to simple hysterecmy. *+Calculated number of cases for women with known age at menopause: 80% of the total number of cases (n = 93). Includes mostly US studies.

Epidemiology
are therefore very close at approximately 75 and 70 mg respectively per cycle. In contrast, in Scandinavia, the total dose of the progestin is much higher with continuous-combined than with sequential EPT, at least for two commonly prescribed regimens using norethisterone acetate (NETA). In these regimens, the same very low daily progestin doses of progestin are used, so that total progestin doses are not that different. This would be in agreement with the results found by the Million Women Study (2003).

Some of the difference in the risks found between the US studies and the European studies are due to the higher risks found with sequential regimens in Scandinavia and likely due to higher total doses of progestin (as described above). The remainder may be due to the much greater use of NETA and norgestrel in Europe. Based on its effects in the endometrium (Dickey and Stone, 1976; Back et al., 1981; Stanczyk, 2002), the progestin dose of NETA as commonly prescribed is possibly 1.5–2.0 times the effective dose of progestin used in the US. There is also the possibility that the different types and doses of oestrogen used have different effects. Finally, some of the differences in risk may be due to a greater relative effect of HT use on breast cancer risk among leaner women. The women in the US studies in this meta-analysis are in general heavier than the women in the European studies, consistent with overall population demographics. In this meta-analysis we did not assess differences in risk by weight as only two studies evaluated risk with duration of EPT use (Schairer et al., 2000; Ursin et al., 2002) and the study of Ursin et al with much larger numbers found no differential effect of BMI; the others only gave results with duration of HT use (Magnusson et al., 1999), or with ever HT or EPT use (CGHFBCC, 1997; Newcomb et al., 2002; Ursin et al., 2002; Weiss et al., 2002; Million Women Study, 2003).

Table 2 Odds ratios per year of use (OR1s) of oestrogen–progestin therapy and breast cancer risk by progestin schedule

Study	Case users	OR1 (95% CI)	Case users	OR1 (95% CI)	Difference
Prospective studies					
Stahlberg et al (2004) ab	29	1.063 (1.024, 1.103)	20	1.137 (1.093, 1.182)	–0.074 (–0.134, –0.014)
MWS (2003) abc	1181	1.093 (1.083, 1.103)	631	1.106 (1.093, 1.120)	–0.013 (–0.030, 0.004)
Case-control studies					
Weiss (2002)	78	1.031 (0.966, 1.100)	166	1.087 (1.020, 1.159)	–0.056 (–0.153, 0.041)
Ross (2000) b	120	1.067 (1.025, 1.109)	105	1.017 (0.975, 1.062)	0.050 (0.010, 0.110)
Magnuson (1999) ab	102	1.088 (1.022, 1.158)	135	1.132 (1.072, 1.197)	–0.044 (–0.136, 0.048)
Summary					
All studies	Pooled estimate	1.089 (1.080, 1.098)	Pooled estimate	1.103 (1.092, 1.115)	–0.015 (–0.030, 0.000)
US studies	Pooled estimate	1.057 (1.022, 1.093)	Pooled estimate	1.038 (1.002, 1.076)	+0.020 (–0.031, 0.071)
European studies	Pooled estimate	1.091 (1.082, 1.110)	Pooled estimate	1.110 (1.098, 1.122)	–0.018 (–0.034, 0.002)
Scandinavian studies	Pooled estimate	1.070 (1.036, 1.104)	Pooled estimate	1.135 (1.100, 1.172)	–0.065 (–0.115, –0.015)

Abbreviations: CI = confidence interval; OR = odds ratio; WHI = Women’s Health Initiative; MWS = Million Women Study; CGHFBCC = Collaborative Group on Hormonal Risk Factors in Breast Cancer. *Risk was based on current and/or recent use rather than total use. **Risk included (or did not specifically exclude) women with unknown age at menopause due to simple hysterectomy.

Table 3 Odds ratios per year of use (OR1s) of oestrogen–progestin therapy and breast cancer risk by histologic subtype

Study	Case users	OR1 (95% CI)		Case users	OR1 (95% CI)		Difference
Prospective studies							
Schairer (2000) ab	33	1.17 (1.02, 1.41)	26	1.17 (1.02, 1.41)		0.000 (–0.276, 0.276)	
Case-control studies							
Daling (2002)	44	1.096 (1.007, 1.193)	209	1.039 (0.99, 1.089)		0.057 (–0.048, 0.162)	
Newcomb (2002) *	32	1.04 (0.97, 1.11)	208	1.04 (1.00, 1.08)		0.000 (–0.109, 0.109)	
Ursin (2002)	46	1.060 (0.996, 1.128)	291	1.049 (1.016, 1.084)		0.011 (–0.063, 0.085)	
Summary	Pooled estimate	1.067 (1.026, 1.110)	Pooled estimate	1.046 (1.023, 1.069)	0.019 (–0.033, 0.071)		

Abbreviations: CI = confidence interval; OR = odds ratio; WHI = Women’s Health Initiative; MWS = Million Women Study; CGHFBCC = Collaborative Group on Hormonal Risk Factors in Breast Cancer. *Results included (or did not specifically exclude) women with unknown age at menopause due to simple hysterectomy. **Risk was based on current and/or recent use rather than total use. ***Risk among lean women, lobular/ductal vs ductal only, results included (or did not specifically exclude) women with unknown age at menopause due to simple hysterectomy.
Summary risk estimates by histology were higher for lobular than for ductal carcinoma; the OR difference was 0.019, but this was not statistically significant. Further data are needed on this issue.

Schairer et al (2000) reported much higher estimates than the other studies for both lobular (OR$_1 = 1.17$) and ductal carcinoma (OR$_1 = 1.17$). These risks compare to their overall result (Table 1) of an OR$_1$ of 1.076. The explanation is that the authors only provided results by histology among lean women, and in their study the effect of EPT on risk was much greater in lean women. Only the study by Weiss et al (2002) compared risk for current vs past EPT use. Their results suggest that risk for current EPT use is higher. The Million Women Study (2003) compared current HT use and past EPT use, and the study by Magnusson et al (1999) compared current and past HT use. The results from these two studies are difficult to interpret since HT use in past users includes proportionately more ET use. We found that recent EPT use was associated with a higher risk than lifetime EPT use, but this analysis was based on only a small number of studies.

The observed lower risk with past use may be due, at least in part, to the fact that duration of hormone use is not measured the same in current as in past hormone users. The actual duration of use within a duration category will tend to be longer in current than in past users (Ettinger et al, 2003), and, in cohort studies, duration of use is underestimated in current users since exposure is only assessed at baseline. Nondifferential misclassification of duration of use is also likely to be higher with past use, leading to a greater underestimate of the risk associated with past use. Four of the five studies reporting risk among current/recent users addressed the possibility that a screening bias could be a possible explanation for the observed lower risk among past users (Schairer et al, 2000; Porch et al, 2002; Rossouw et al, 2002; Chlebowski et al, 2003; Million Women Study, 2003). None found any evidence of this.

ACKNOWLEDGEMENTS

This work was supported by Grants CA14089 and CA54281 from the National Cancer Institute. We would like to thank Ms Peggy Wan for much computing assistance with this analysis.

REFERENCES

Back DJ, Bates M, Breckenridge AM, Hall JM, Maclver M, Orme ML, Park BK, Rowe PH (1981) The pharmacokinetics of levonorgestrel and ethynylestradiol in women – studies with Ovran and Ovranette. *Contraception* 23: 229–239

Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. *Biometrics* 50: 1088–1101

Chen CL, Weiss NS, Newcomb P, Barlow W, White E (2002) Hormone replacement therapy in relation to breast cancer. *JAMA* 287: 734–741

Chlebowski RT, Hendrix SL, Langer RD, Stefanick ML, Gass M, Lane D, Rodabough RJ, Gilligan MA, Cyr MG, Thomson CA, Khangkar J, Petrovitch H, McTiernan A (2003) Influence of estrogen plus progestin on breast cancer and mammaryography in healthy postmenopausal women: the Women's Health Initiative Randomized Trial. *JAMA* 289: 3243–3253

Collaborative Group on Hormonal Factors in Breast Cancer (1997) Breast cancer and hormone replacement therapy: collaborative reanalysis of all individual data on 51 epidemiological studies of 52 705 women with breast cancer and 108 411 women without breast cancer. *Lancet* 350: 1047–1059

Daling JR, Malone KE, Doody DR, Voigt LF, Bernstein L, Coates RJ, Marchbanks PA, Norman SA, Weiss LS, Ursin G, Berlin JA, Burkman RT, Deapen D, Polgar SG, McDonald JA, Simon MS, Strom BL, Wingo PA, Soares R (2002) Relation of regimen of combined hormone replacement therapy to lobular, ductal, and other histologic types of breast carcinoma. *Cancer* 95: 2455–2464

DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. *Control Clin Trials* 7: 177–188

Dickey RP, Stone SC (1976) Progestational potency of oral contraceptives. *Obstet Gynecol* 47: 106–112

Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. *Br Med J* 315: 629–634

Ettinger B, Grady D, Tosteson AN, Pressman A, Macer JL (2003) Effect of the Women's Health Initiative on women's decisions to discontinue postmenopausal hormone therapy. *Obstet Gynecol* 102: 1225–1232

Fleiss JL (1986) Analysis of data from multiclinic trials. *Control Clin Trials* 7: 267–275

Jernstrom H, Bendahl PO, Lidfeldt J, Nerbrand C, Agardh CD, Samsioe G (2003) A prospective study of different types of hormone replacement therapy and the risk of subsequent breast cancer. *The Scandinavian Women’s Health Cohort Study* (Sweden). *Cancer Causes Control* 14: 673–680

Kirsh V, Kreiger N (2002) Estrogen and estrogen–progestin replacement therapy and risk of postmenopausal breast cancer in Canada. *Cancer Causes Control* 13: 585–590

Li CI, Malone KE, Porter PL, Weiss NS, Tang MT, Cushing-Haugen KL, Daling JR (2003) Relationship between long durations and different regimens of hormone therapy and risk of breast cancer. *JAMA* 289: 3254–3263

Li CI, Weiss NS, Stanford JL, Daling JR (2000) Hormone replacement therapy in relation to risk of lobular and ductal breast carcinoma in middle-aged women. *Cancer* 88: 2570–2577

Li R, Gilliland FD, Baumgartner K, Samet J (2002) Hormone replacement therapy and breast carcinoma risk in Hispanic and non-Hispanic women. *Cancer* 95: 960–968

Magnusson C, Baron JA, Correia N, Bergstrom R, Adami HO, Persson I (1999) Breast-cancer risk following long-term oestrogen- and oestrogen–progestin-replacement therapy. *Int J Cancer* 81: 339–344
Appendix A

Studies evaluating oestrogen–progestin use and breast cancer risk. Studies included in each analysis are represented by an ‘×’ and studies excluded are marked by footnotes.

Study	Analysis 1	Analysis 2	Analysis 3	Analysis 4			
	Overall	Lobular	Ductal	Sequential	Continuous-combined	Past	Current
Randomised trials							
WHI1 (2003)	X						
Prospective studies							
Stahberg2 (2004)	X						
MWS5 (2003)	X						
Porch2 (2002)	X						
Schairer7 (2000)	X	X					
Case–control studies							
Kinsh6 (2002)	X						
Newcomb10 (2002)	X	X	X				
Weiss8 (2002)	X	X					
Daling13 (2002)	X	X					
Ross14 (2000)	X	X					
Ursin14 (2002)	X	X					
Magnussen10 (1999)	X	X					

Abbreviations: CI = confidence interval; OR = odds ratio; WHI = Women’s Health Initiative; MWS = Million Women Study; CGHFBCC = Collaborative Group on Hormonal Risk Factors in Breast Cancer. *Overall risk calculated from sequential and continuous-combined use. †Results by histologic subtype, not overall breast cancer risk (overall risk for Daling in Weiss and for Ursin in Ross). ‡Only results for one type of progestin schedule. §No results given for duration of EPT use. ¶Risk for ET or EPT use.

Million Women Study (2003) Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362: 419 – 427
Moorman PG, Kuwabara H, Millikan RC, Newman B (2000) Menopausal hormones and breast cancer in a biracial population. Am J Public Health 90: 966 – 971
Newcomb PA, Titus-Ernstoff L, Egan KM, Trentham-Dietz A, Baron JA, Storer BE, Willett WC, Stampfer MJ (2002) Postmenopausal estrogen and progestin use in relation to breast cancer risk. Cancer Epidemiol Biomarkers Prev 11: 593 – 600
Newcomer LM, Newcomb PA, Potter JD, Yasui Y, Trentham-Dietz A, Storer BE, Longnecker MP, Baron JA, Daling JR (2003) Postmenopausal hormone therapy and risk of breast cancer by histologic type (United States). Cancer Causes Control 14: 225 – 233
Olsson HL, Ingvar C, Bladstrom A (2003) Hormone replacement therapy containing progestins and given continuously increases breast carcinoma risk in Sweden. Cancer 97: 1387 – 1392
Persson I, Thurfjell E, Bergstrom R, Holmberg L (1997) Hormone replacement therapy and the risk of breast cancer: nested case–control study in a cohort of Swedish women attending mammography screening. Int J Cancer 72: 758 – 761
Persson I, Weiderpass E, Bergkvist L, Bergstrom R, Schairer C (1999) Risks of breast and endometrial cancer after estrogen and estrogen–progestin replacement. Cancer Causes Control 10: 253 – 260
Persson I, Yuen J, Bergkvist L, Schairer C (1996) Cancer incidence and mortality in women receiving estrogen and estrogen–progestin replacement therapy – long-term follow-up of a Swedish cohort. Int J Cancer 67: 327 – 332
Pike MC, Ross RK, Spicer DV (1998) Problems involved in including women with simple hysterectomy in epidemiologic studies measuring the effects of hormone replacement therapy on breast cancer risk. Am J Epidemiol 147: 718 – 721
Porch JV, Lee IM, Cook NR, Rexrode KM, Burin JE (2002) Estrogen–progestin replacement therapy and breast cancer risk: the Million Women Study. Cancer 100: 404 – 408
Ross RK, Paganini-Hill A, Wan PC, Pike MC (2000) Effect of hormone replacement therapy on breast cancer risk: estrogen vs estrogen plus progestin. J Natl Cancer Inst 92: 328 – 332
Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 288: 321 – 333
Rothman KJ, Greenland S (1998) Modern Epidemiology. Philadelphia: Lippincott-Raven
Schairer C, Lubin J, Troisi R, Sturgeon S, Brinton L, Hoover R (2000) Menopausal estrogen and estrogen–progestin replacement therapy and breast cancer risk. JAMA 283: 485 – 491
Stahberg C, Pedersen AT, Lyne E, Andersen ZJ, Keiding N, Hundrpay UA, Obel EB, Ottesen B (2004) Increased risk of breast cancer following different regimens of hormone replacement therapy frequently used in Europe. Int J Cancer 109: 721 – 727
Stanczyk FZ (2002) Pharmacokinetics and potency of progestins used for hormone replacement therapy and contraception. Rev Endoc Metab Disord 3: 211 – 224
Ursin G, Tseng CC, Paganini-Hill A, Enger S, Wan PC, Formenti S, Pike MC, Ross RK (2002) Does menopausal hormone replacement therapy interact with known factors to increase risk of breast cancer? J Clin Oncol 20: 699 – 706
Weiss JK, Burkan RT, Cushing-Haugen KL, Voigt LF, Simon MS, Daling JR, Norman SA, Bernstein L, Ursin G, Marchbanks PA, Strom BL, Berlin JA, Weber AL, Zuniga DR, Wingo PA, McDonald JA, Malone KE, Folger SG, Spiritas R (2002) Hormone replacement therapy regimens and breast cancer risk. Obstet Gynecol 100: 1148 – 1158

Women’s Health Study (United States). Cancer Causes Control 13: 847 – 854
Rockhill B, Colditz GA, Rosner B (2000) Bias in breast cancer analyses due to error in age at menopause. Am J Epidemiol 151: 404 – 408

Meta-analysis of oestrogen–progestin therapy and breast cancer
SA Lee et al

Epidemiology

British Journal of Cancer (2005) 92(11), 2049 – 2058
© 2005 Cancer Research UK
Appendix B

Studies evaluating oestrogen–progestin use and breast cancer risk: overall characteristics and main findings.

Study	Randomised trials	Prospective studies	Study population	Cases	Person-years	Mean follow-up (years)	Adjusted variables	Results	
1 WHI	Healthy postmenopausal women in the Women’s Health Initiative Trial			199	8506	5.6	Age, dietary modification, randomisation group	1.24 (1.01, 1.54) cumulative risk	
2 Stahlberg	Healthy postmenopausal women age 45+ in the Danish Nurse Cohort			139	7572	6.34	Age, hx of BBD, age at meno (<55 vs ≥55)	Sequential: <5 yr: 1.58 (0.79, 3.17) 5–9 yr: 2.47 (1.23, 4.95) 10+ yr: 2.18 (1.09, 4.33) Continuous-combined: <5 yr: 1.96 (0.72, 5.36) 5–9 yr: 4.96 (2.16, 11.39) 10+ yr: 6.78 (3.41, 13.48)	
3 MWS	Healthy women in the UK age 50–64 as part of the National Health Service Breast Screening Programme			4785	532 353	2.6	Age, time since meno, parity, AFFTP, family hx of breast cancer, BMI, region, deprivation index	Sequential: <1 yr: 1.45 (1.19, 1.78) 1–4 yr: 1.74 (1.60, 1.89) 5–9 yr: 2.17 (2.03, 2.33) ≥10 yr: 2.31 (2.08, 2.56)	
4 Porch	Healthy female postmenopausal professionals age 45+ in the Women’s Health Study			310	71 438	5.9	Age, age at meno, meno type, age at menarche, nulliparity, age at first preg, abortions/ miscarriages, AFFTP, OC, hx of BBD, use of mammo screening, family hx breast cancer, race, BMI, smoking, alcohol, exercise	<5 yr: 1.11 (0.81, 1.52) 5+ yr: 1.76 (1.29, 2.39) P\text{trend} = 0.0004	
5 Schairer	Healthy postmenopausal women in the Breast Cancer Detection Demonstration Project			~75	~15 727	10.2 (over three phases of follow-up)	Age, edu, BMI, age at meno, mammo screening	1.06 (1.00, 1.15) per year of use among known age meno	

Meta-analysis of oestrogen–progestin therapy and breast cancer

SA Lee et al

British Journal of Cancer (2005) 92(11), 2049 – 2058

© 2005 Cancer Research UK
Appendix B (Continued)

Prospective studies	Study population	Cases	Controls	Adjusted variables	Results
	Healthy postmenopausal women in Ontario, Canada	404c	403	Age, age at meno, type of meno, hx of BBD	1.15 (1.01, 1.33) per year of use
6 Kirsh⁶ (2002)	Healthy postmenopausal women from Massachusetts, New Hampshire, Wisconsin	4142	4418	Age at meno, type of meno, AFFTP, BMI, family hx breast cancer, edu, mammo screening hx, recent alcohol, hx of BBD, age at menarche, recent physical activity	1.04 (1.01, 1.08) per year of use
7 Newcomb⁷ (2002)	Healthy black and white postmenopausal women in Atlanta, Detroit, Los Angeles, Philadelphia, Seattle in the Contraceptive and Reproductive Experiences (CARE) Study	849	835	Age, race, study center, type of meno, age at meno	>0 to <6 mo: 0.59 (0.40, 0.87)
					6 mo to <2 yr: 0.82 (0.57, 1.18)
					2 to <5 yr: 1.33 (0.91, 1.95)
					5+ yr: 1.49 (1.05, 2.12)
8 Weiss⁸ (2002)		672	661	Sequential: (P<25 days/mo)	0.53 (0.26, 1.09)

Meta-analysis of oestrogen–progestin therapy and breast cancer
SA Lee et al

British Journal of Cancer (2005) 92(11), 2049–2058
© 2005 Cancer Research UK
Case–control studies	Cases	Population	Mean follow-up (years)	Adjusted variables	Results
Daling (2002)	108	835		Lobular: 6 mo to <2 yr: 1.11 (0.75, 1.65) 2 to <5 yr: 1.28 (0.95, 1.73) 5+ yr: 1.37 (1.06, 1.77)	
	635	835		Ductal: 6 mo: 0.7 (0.3, 1.5) 6 mo to 5 yr: 1.3 (0.7, 2.3) 5 yr+: 1.9 (1.0, 3.7)	
Ross (2000)	1298	1108		Type of meno, age at meno, age at menarche, family hx of breast cancer, history BBD, nulliparity, AFFTP, OCs, BMI, alcohol	Sequential: (P<entire cycle) 1.38 (1.13, 1.68) P<2-sided = 0.0015 Continuous-combined: (P = entire cycle) 1.09 (0.88, 1.35) P<2-sided = 0.44 Lobular: 1.34 (0.98, 1.83) per 5 yr of use P_trend = 0.06 Ductal: 1.27 (1.08, 1.50) per 5 yr of use P_trend = 0.004
Ursin (2002)	164	1637		Type and age at meno, age at menarche, family hx of breast cancer, hx of BBD, nulliparity, AFFTP, OCs, weight, alcohol	
Magnusson (1997)	2137	2481		Age, parity, AFFTP, age at meno, type of meno, BMI, height	
	1841	2272		Sequential: (P<16 days/mo) 1–24 mo: 1.58 (1.01, 2.46) 25–60 mo: 1.34 (0.71, 2.54) 60–120 mo: 2.43 (1.72, 3.44) >120 mo: 2.95 (1.84, 4.72)	
	1874	2322		Continuous-combined: (P>19 days/mo) 1–24 mo: 0.93 (0.63, 1.36) 25–60 mo: 1.26 (0.76, 2.09) 60–120 mo: 2.89 (1.66, 5.00) >120 mo: 5.36 (1.47, 19.56)	
	1828	2302		Past HT: (1–10 yr ago): 1–60 mo: 1.09 (0.76, 1.55) >60 mo: 1.22 (0.72, 2.08) (> >10 yr ago):	
Appendix B (Continued)

Case–control studies	Cases	Population	Mean follow-up (years)	Adjusted variables	Results
	2182c	2475			
Pooled analysis					
Study population*	Cases	Controls			
11 CGHFBC11 (1997)	12,611	23,866		Study, age at dx or pseudo dx, time since meno, BMI, parity, AFFTP	1–60 mo: 1.24 (0.90, 1.70)
					> 60 mo: 2.57 (1.28, 5.15)
					Current HT (<1 yr ago):
					1–60 mo: 1.52 (1.21, 1.92)
					> 60 mo: 2.68 (2.09, 3.42)

Abbreviations: WHI = Women's Health Initiative; MWS = Million Women Study; CGHFBC = Collaborative Group on Hormonal Risk Factors in Breast Cancer; OC = oral contraceptives; hx = history; BBD = benign breast disease; BMI = body mass index; preg = pregnancy; mammo = mammography; edu = education level; meno = menopause; AFFTP = age at first full-term pregnancy; dx = diagnosis; mo = month(s); yr = year(s); P = progestin; E = oestrogen; s.e. = standard error. a Risk was based on current and/or recent use rather than total use. b Number of cases and number of starting population/person-years/controls for the results presented in final column. c Results included (or did not specifically exclude) in situ breast cancer cases. d Authors provided population rather than person-years. e Results included (or did not specifically exclude) women with unknown age at menopause due to simple hysterectomy. f Risk among lean women.