Endorepellin evokes an angiostatic stress signaling cascade in endothelial cells*

Aastha Kapoor‡, Carolyn G. Chen† and Renato V. Iozzo‡

From the ‡Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107

Running Title: Endorepellin induces an anti-angiogenic stress pathway

†To whom correspondence should be addressed: E-mail: renato.iozzo@jefferson.edu.
ORCID: 0000-0002-7954-9113(AK); 0000-0003-4933-6544 (CC); 0000-0002-5908-5112 (RVI)

Keywords: Angiogenesis, stress signaling, PERK, eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor 4 (ATF4), growth arrest and DNA damage inducible GADD45α, proteoglycan, aortic ring assay, Tunicamycin, vascular endothelial growth factor 2 (VEGFR2)

Endorepellin, the C-terminal fragment of the heparan sulfate proteoglycan perlecan, influences various signaling pathways in endothelial cells by binding to VEGFR2. In this study, we discovered that soluble endorepellin activates the canonical stress signaling pathway consisting of PERK, eIF2α, ATF4 and GADD45α. Specifically, endorepellin evoked transient activation of VEGFR2 which in turn phosphorylated PERK at Thr980. Subsequently, PERK phosphorylated eIF2α at Ser51, thereby upregulating its downstream effector proteins ATF4 and GADD45α. RNAi-mediated knockdown of PERK or eIF2α abrogated the endorepellin-mediated upregulation of GADD45α, the ultimate effector protein of this stress signaling cascade. To functionally validate these findings, we utilized an ex vivo model of angiogenesis. Exposure of the aortic rings embedded in 3D fibrillar collagen to recombinant endorepellin for 2–4 h activated PERK and induced GADD45α. Similar effects were obtained with the established cellular stress inducer tunicamycin. Notably, chronic exposure of aortic rings to endorepellin for 7–9 days markedly suppressed vessel sprouting, an angiostatic effect that was rescued by blocking PERK kinase activity. Our findings unravel a mechanism by which an extracellular matrix protein evokes stress signaling in endothelial cells that leads to angiostasis.

Perlecan, one of the largest heparan sulfate proteoglycans (HSPG) of basement membranes and cell surfaces, plays a major role in both vasculogenesis and angiogenesis (1). For instance, morpholino-based knockdown of perlecan in zebrafish causes a profound disruption of all the vessels formed via angiogenesis from the dorsal aorta and other major blood vessels (2). In mice, the effect of global perlecan-knockdown is even more pronounced as the perlecan-null mice (Hspg2−/−) are embryonic lethal due to intrapericardial hemorrhage and malformation of coronary arteries and cardiac outflow tracts (3). Perlecan expression is finely regulated during cardiovascular development (4,5), and is one of the few extracellular matrix constituents expressed in both vascular and avascular matrices.

Perlecan is a modular proteoglycan composed of five domains that are involved in growth factor regulation, cancer, inflammation, lipid metabolism, basement membrane assembly, cell adhesion, and mechano-sensing among many other reported functions (6-16). The parent protein perlecan is pro-angiogenic due to the presence of three heparan sulfate chains covalently attached at its N-terminus, which act as a reservoir of growth factors. In contrast, the C-terminal module of perlecan, named endorepellin (17,18), is anti-angiogenic and inhibits cancer progression by interfering with the blood supply of the growing tumors (19-21).

Endorepellin interacts with VEGFR2 via its two proximal laminin-like globular (LG1/2) domains and to the α2β1 integrin via its terminal LG3 module, thereby evoking a dual receptor antagonism (22,23). Indeed, soluble endorepellin inhibits angiogenesis by interfering with several VEGFR2-evoked signaling pathways, primarily by evoking a transcriptional repression of hypoxia inducible factor-1 (HIF-1α) and vascular endothelial growth
Endorepellin induces an anti-angiogenic stress pathway

factor A (VEGFA) and concurrently inhibiting the nuclear factor of activated T-cells (NFAT1) (24). We recently discovered a link between endorepellin-induced inhibition of angiogenesis and autophagy in endothelial cells (20). In our quest to find novel autophagic targets for endorepellin through NanoString analysis (25), we discovered that the mRNA of growth arrest and DNA damage-inducible (GADD45α) protein was dynamically regulated by the endorepellin/VEGFR2 axis. This protein has been reported to have a dual role, one in activating autophagy and the other in inhibiting angiogenesis (25). As an angiogenic suppressor, GADD45α interacts with mammalian target of rapamycin (mTOR) and prevents signal transducer and activator of transcription 3 (Stat3) phosphorylation from driving VEGFA expression, thereby inhibiting angiogenesis (26). As an autophagy inducer, GADD45α inhibits mTOR and induces the levels of LC3-II, an autophagic marker (27).

GADD45α belongs to the canonical PERK/elicF2α/ATF4/GADD45α (PERK, PKR-like endoplasmic reticulum kinase; eICF2α, eukaryotic initiation factor 2α; ATF4, activating transcription factor 4) axis which is usually activated by external stresses such as exposure to UV light, nutrient deprivation, hypoxia or oxidative stress (28,29). Notably, ATF4 promotes skeletal muscle atrophy via a unique interaction with the transcriptional regulator C/EBPβ (30). All these external stimuli are known to trigger the unfolded protein response (UPR) which ultimately leads to stress activation in the cells (31,32). The stress pathway was originally considered to help the cells cope with stress stimuli by promoting survival. However, under prolonged stress, the survival mechanism can switch to cellular elimination via autophagic activation that can eventually lead to cell death. For instance, in glioblastoma cells, eICF2α phosphorylation can upregulate ATF4 levels that induce autophagy by mTORC1 inhibition, thereby causing cell death (33). Alternatively, ATF4 can lead to accumulation of transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP) and apoptotic induction by GADD34 activation in endothelial cells (34). Protein misfolding was originally understood to be essential for activating intracellular stress; however, more recent discoveries have shown that ligand-receptor interactions (i.e. estrogen receptor 1 with BHPI) also activate stress and cellular necrosis (35). Altogether, these reports suggest that the PERK/eICF2α/ATF4/GADD45α stress axis can be activated in cells without the accumulation of misfolded proteins.

Given that both endorepellin and GADD45α concurrently evoke autophagy and angiostasis, we hypothesized that the biological repertoire of endorepellin could include the activation of a stress-signaling pathway in vascular endothelial cells. We discovered that endorepellin evoked profound and sustained stress signaling both in vitro and ex vivo models of angiogenesis primarily by interacting with VEGFR2. Our studies highlight the role of endorepellin in inducing the stress pathway. This in turn would significantly curtail the generation of new vessels in the tumor matrix with clear implications in impeding cancer progression.

Results

Endorepellin induces GADD45α by evoking a stress signaling axis

To dissect the mechanism involved in endorepellin-evoked anti-angiogenic activity, we investigated GADD45α, a gene that was highly modulated in a NanoString analysis of endothelial cells exposed to recombinant endorepellin (25). The rationale is based on the fact that GADD45α increases in response to various stressors (28,36) and suppresses tumor angiogenesis by blocking the mTOR pathway (26) while concurrently inducing LC3 (37). Moreover, the GADD45α/mTOR interaction prevents Stat3 phosphorylation from driving VEGFA expression, thereby inhibiting angiogenesis (26). We performed time-course experiments using the same concentrations of endorepellin (200 nM) under nutrient-rich conditions as the NanoString studies (25). We discovered that endorepellin evoked a rapid and sustained increase in GADD45α (Fig. 1A,B). As GADD45α is known to be induced by ATF4 (38), we tested for ATF4 levels in parallel experiments. We found a significant induction of ATF4 that peaked at 3 h and declined thereafter (Fig. 1A, B).

ATF4 is known to be regulated by phosphorylation of eICF2α, the α-subunit of the eukaryotic initiation factor 2 (39). Phosphorylation of eICF2α at Ser51 results in global protein synthesis suppression and plays a key role in response to various stresses such as viral infection, buildup of misfolded proteins and starvation. Paradoxically, phosphorylation of eICF2α at Ser51 induces
transcription and translation of ATF4 (40). There are only four elf2α mammalian kinases (PERK, HRI, PKR, and GCN2) (29,39,41), all of which phosphorylate elf2α at Ser51, leading to similar downstream effects. In initial screenings, we found that human umbilical vein endothelial cells (HUVEC) predominantly express PERK, PKR and GCN2 (Fig. S1A). Thus, we tested PERK and found a time-dependent phosphorylation of PERK at Thr980 within its catalytic site (42) evoked by endorepellin (Fig. 1C,D). Moreover, we found sustained activation of elf2α at Ser51 (Fig. 1C, D). We note that activation of PERK occurred rapidly, peaking at 1 h, and preceding that of elf2α (Fig. 1C, D). We also saw a temporal phosphorylation of PERK by LG1/2 domains of endorepellin, but not LG3, thus mirroring the effect of endorepellin (Fig. S1C-F). As an internal positive control, we utilized tunicamycin, an antibiotic that inhibits N-linked glycosylation and induces the unfolded protein response (43) (Fig. S1B).

To address the mechanism of stress signaling induction by exogenous endorepellin, we blocked the VEGFR2 kinase with the small molecule inhibitor SU5416 (44,45) and found complete suppression of endorepellin-evoked PERK (Fig. 1E). Thus, it appears that VEGFR2 is directly involved in endorepellin biological activity, in agreement with our previous studies (20,24,45).

Next, we performed imaging and cell fractionation to ascertain whether GADD45α and its activator ATF4 would translocate into the nuclei of stressed endothelial cells as shown before in other cells (46,47). We discovered that endorepellin evoked a marked nuclear translocation of GADD45α at 4 h similar to that induced by tunicamycin (Fig. 1F,G). Cell fractionation studies followed by endorepellin treatment for 4 h showed that the trimeric form of GADD45α (68-72 kDa doublet, Fig. 1H) that was mainly observed in the nucleus under basal conditions as seen in other studies (46) was markedly increased by endorepellin (Fig. 1H). In contrast, the monomeric form of GADD45α (~22 kDa) did not appreciably change (Fig. 1H). In support of these findings, ATF4 levels and nuclear translocation were concurrently increased in HUVEC at 4 h (Fig. 1I,J). These findings were further validated in two other endothelial cell models, namely TeloHAEC (telomerase human aortic endothelial cells) and PAER2 (porcine aortic endothelial cells expressing VEGFR2) cells. Notably, we found an even faster induction of PERK phosphorylation with maximal activation at 30 min in TeloHAEC (Fig. S2A-C) compared to HUVEC where P-PERK peaked at 1 h (Fig. 1C). In PAER2 cells, the kinetics of PERK phosphorylation at Thr980 were similar to that of HUVEC (Fig. S2E-G). These biochemical data were corroborated by immunofluorescence studies which showed an upregulation of P-PERK and GADD45α in both TeloHAEC and PAER2 cells, together with nuclear translocation of GADD45α (Fig. S2C,G).

Collectively, our results provide the first evidence that endorepellin activates the PERK/elf2α/ATF4/GADD45α stress signaling pathway. This could be a dynamic nexus for endorepellin bioactivity connecting stress signaling and angiostasis.

PERK and elf2α are required for endorepellin-dependent stress axis induction

To confirm the biological relevance of PERK and elf2α in the endorepellin-mediated activation of stress signaling, we transiently depleted these two proteins via RNAi in HUVEC. We observed that PERK depletion (>80% knockdown) led to a significant abrogation of elf2α phosphorylation at Ser51 induced by either endorepellin or tunicamycin (Fig. 2A,B). Notably, even basal elf2α phosphorylation at Ser51 was suppressed by PERK depletion (Fig. 2A,B), further indicating a primary role of PERK as the key kinase regulating elf2α phosphorylation in vascular endothelial cells.

Next, we found that when elf2α was depleted (>90% knockdown), there was a marked suppression of GADD45α under basal conditions as well as endorepellin or tunicamycin treatments (Fig. 2C,D). Collectively, our results underscore the requirement of PERK as the major activator of the endorepellin-evoked stress axis in endothelial cells and provide a novel mechanistic insight into the sequential-activation of the PERK/elf2α/GADD45α axis by endorepellin.

Endorepellin activates the stress pathway in ex vivo angiogenic assays

To directly test whether the anti-angiogenic activity of endorepellin was associated with an induction of stress signaling, we performed ex vivo aortic ring assays in 3D Type I fibrillar collagen (48). Fully sprouted explanted aortic rings of C57BL/6J mice were subjected to an acute treatment with endorepellin or tunicamycin using the same in vitro
Endorepellin induces an anti-angiogenic stress pathway

For P-PERK induction, we used 2-h treatment, the time point at which we observed maximal PERK phosphorylation (cfr. Fig. 1C). For confocal imaging, we utilized the isoelectin IB4 that specifically binds to the galactosyl residues on endothelial cells (49,50) and antibodies against P-PERK at Thr<sup>980</sup>, which is considered a marker for its activation status (51-53). We found a marked increase of P-PERK evoked by endorepellin or tunicamycin (Fig. 3A). These effects could be clearly seen using the line-scanning tool, as described in the methods (Fig. 3B). Quantification of four independent experiments using three randomly selected aortic rings per mouse showed a significant induction of P-PERK measured as fluorescence intensity of the sprouted area normalized on the area occupied by the vascular sprouts (p<0.001, Fig. 3C, S3B). We confirmed the endothelial nature of the sprouts by staining with a second endothelial cell marker, CD31 (red), and counterstaining with P-PERK (green) (Fig. S3D). We obtained similar results as those shown for IB4 and P-PERK staining (see Fig. 3A).

To validate our confocal imaging studies, we next performed biochemical analysis of the rings treated with endorepellin or tunicamycin for 2 h. We first pooled two aortic rings per sample and removed the rings after solubilization with RIPA buffer. Thus, the protein extracts were composed exclusively of the sprouted endothelial cells growing in 3D collagen. In agreement with the confocal imaging studies, we found a marked induction of P-PERK at Thr<sup>980</sup> evoked by either treatment (Fig. 3D,E).

Next, we probed for GADD45α, the ultimate effector protein of the stress axis. Interestingly, we observed that GADD45α was not appreciably altered at 2 h (not shown) but markedly increased at 4 h of treatment with either endorepellin or tunicamycin (Fig 4A). Quantification of four independent experiments using three randomly selected aortic rings per mouse, showed a significant induction of GADD45α (p<0.001, Fig. 4B), as determined by fluorescence intensity of the sprouted area measured as described in the methods (Fig. S3B). In agreement with the confocal imaging, we found by immunoblotting that endorepellin or tunicamycin markedly induced GADD45α (Fig. 4C,D).

Collectively, these <i>ex vivo</i> functional assays corroborate the <i>in vitro</i> results and show a progressive activation of the stress-signaling pathway where PERK is first phosphorylated at Thr<sup>980</sup> followed by an increase in GADD45α levels.

To further investigate the specificity of endorepellin-evoked PERK activation, we utilized a small molecule inhibitor, GSK2665157, a cell permeable ATP competitive inhibitor of PERK (denoted as PERKi) (54). This small molecule is exquisitely specific for PERK with >100-fold selectivity for PERK over other eIF2α kinases (55) and an IC<sub>50</sub> of ~1 nM in various cells as shown by inhibition of PERK autophosphorylation, eIF2α phosphorylation, and ATF4 suppression (55). Oral administration of this PERKi results in tumor suppression and angiostasis (55), consistent with reduced tumor growth in Perk<sup>−/−</sup> mice (56). We found that the PERKi efficiently blocked the activity of endorepellin in a dose-dependent manner (Fig. 5A) with an IC<sub>50</sub> of ~10 nM (Fig. 5B). Notably, we observed a parallel reduction in the phosphorylation of downstream eIF2α at Ser<sup>51</sup> (Fig. 5A) with an IC<sub>50</sub> of ~1 nM (Fig. 5B). We also confirmed that GSK2665157 was a 1000-fold more potent in inhibiting PERK phosphorylation in HUVEC with an IC<sub>50</sub> of ~1 nM (Fig. 5A) as compared to another PERK inhibitor, AMG44, which was recently discovered and had an IC<sub>50</sub> of ~1000 nM in HUVEC (Fig. S3C).

Next, we performed functional aortic ring assays in 3D Type I collagen using the PERKi ±endorepellin. In these experiments, we added PERKi or endorepellin after three days when we detected the first sprouts. We added fresh PERKi (10 nM) or endorepellin (200 nM) every other day and continued the treatment for 9 days in total. At the end of the chronic treatment, we observed a drastic abrogation of ring sprouting in endorepellin-treated rings (Fig 5C) vis-à-vis the vehicle (p<0.001, Fig.5D). However, PERKi completely blocked the angiostatic activity of endorepellin (Fig. 5C,D). We acquired phase contrast images of the rings and calculated the radial distance of the sprouts by subtracting the background and highlighting sprouts using the threshold function in ImageJ. We then drew circles around the rings encompassing the edges of the sprouts and measured the radii (Fig. S3A). Next, we labeled the rings with IB4 and DAPI, and, using confocal laser scan microscopy, we obtained comparable qualitative (Fig. 5E) and quantitative (Fig. 5F) findings. Collectively, our results suggest that
Endorepellin induces an anti-angiogenic stress pathway

endorepellin-dependent inhibition of angiogenesis requires activation of the PERK-stress axis.

Discussion

Classical pathways evoked by a protracted activation of the unfolded protein response and ER stress are known to interfere with angiogenesis (57). Specifically, the PERK/βF2α/ATF4/GADD45α pathway, a major ER stress signaling axis can generate angi-modulatory and angiostatic cues (57). While this axis is usually activated under stressful stimuli such as osmotic/oxidative stress, irradiation or nutrient deprivation, it may also be activated in the absence of external stresses (58). In this study, we present endorepellin-mediated activation of this stress axis through ligand-receptor interaction, in the absence of external stress. We provide a working model summarizing our current findings regarding the mechanism of action for endorepellin-evoked endothelial cell stress (Fig. 6). According to this model, endorepellin engages the ectodomain of VEGFR2 via LG1/2 globular domains, thereby acting as a partial agonist and evoking phosphorylation of the RTK Tyr1175, a key residue from which the canonical phospholipase C-γ cascade originates (59). Phosphorylation of VEGFR2 at Tyr1175 is necessary for stress-activation since the downstream signaling is completely abrogated by inhibiting VEGFR2 kinase activity with SU5416 (44,45). The signal emanating from VEGFR2 causes activation of the stress-sensing kinase PERK at Thr980. PERK activation subsequently leads to βF2α phosphorylation at Ser51, enhanced translation of ATF4 and upregulation of GADD45α (Fig. 6). Both ATF4 and GADD45α translocate into the nucleus where presumably a number of anti-angiogenic and pro-autophagic genes are induced. Ultimately, endorepellin-mediated activation of the stress axis causes inhibition of angiogenesis.

The path to our current study was paved by the identification of GADD45α as one of the targets of endorepellin in endothelial cells, as discovered by NanoString analysis (25). As GADD45α is a part of the stress axis and was modulated by endorepellin in endothelial cells, we hypothesized that GADD45α may affect angiogenesis. We found that GADD45α upregulation inhibits angiogenesis. These data are in congruence with a previous study which showed that GADD45α inhibits tumor angiogenesis in mice injected with transformed mouse embryonic fibroblasts (26). Interestingly, though we saw an upregulation of GADD45α and upstream stress axis proteins upon endorepellin treatment, we report downregulation of GADD45α mRNA evoked by endorepellin. The plausible causes of this observation may be mRNA degradation by miRNA which may act on surplus GADD45α being formed. Notably, a GADD45α-repressing miRNA, miR-362-5p, promotes the malignancy of chronic myelocytic leukemia cells (60). Another possibility is that there is a simultaneous stabilization of GADD45α, which usually requires an accessory protein such as S7 ribosomal protein to prevent its ubiquitination and degradation (61). In future studies, it would be interesting to unravel how the endorepellin/VEGFR2 interaction leads to stabilization of GADD45α in endothelial cells that could help in a better understanding of vascular stress.

A critical observation of our current study was a sustained nuclear translocation of GADD45α evoked by soluble endorepellin. Previous studies have shown that nuclear GADD45α interacts with proliferating cell nuclear antigen (PCNA), protein 21 (p21Waf1) and cell division control 2 (Cdc2), playing a role in DNA repair as a checkpoint protein to prevent a severely damaged cell from proliferating (28). More recently, a novel role of GADD45α has been reported in causing DNA demethylation (62). Specifically, GADD45α recruits demethylase TET1 at the promoter of the powerful transcription factor TCF21 (62). This bioactivity provides an explanation for the mechanism of epigenetic regulation by GADD45α. We hypothesize that GADD45α may play a direct role in demethylating anti-angiogenic and pro-autophagic gene promoters. Especially important are genes that are known to be controlled by differential methylation including paternally expressed gene 3 (Peg3) which is differentially methylated in paternal and maternal alleles (63). Notably, we have discovered that Peg3 is a master regulator of autophagy (64) and is markedly induced at both the mRNA and protein level in endothelial cells exposed to endorepellin (45). Moreover, we found that overexpression of Peg3 concurrently evokes transcriptional upregulation of pro-autophagic Beclin 1 and anti-angiogenic thrombospondin 1 (65).

To unravel the mechanism of action of endorepellin-induced activation of the canonical PERK/βF2α/ATF4/GADD45α stress axis, we
Endorepellin induces an anti-angiogenic stress pathway

performed inhibitory studies on PERK, the most upstream molecule of the stress axis. We used two independent approaches to inhibit PERK action: we knocked-down total PERK using RNAi or we blocked PERK phosphorylation with a specific kinase small molecule inhibitor. Notably, both genetic and pharmacological inhibitors of PERK markedly suppressed the downstream stress-signaling pathway. These results were further validated by knockdown of eIF2α which also efficiently blocked the downstream effectors of this stress axis. Use of PERK inhibitors required a careful selection of the most efficient inhibitory molecule from the cohort of available drugs. Of the two most recently reported PERK inhibitors, GSK2656157 and AMG44, we selected GSK2656157 (55,66). While GSK2656157 is the most extensively studied PERK inhibitor and tumor repressor (55), with an IC₅₀ ~1 nM (55) and kinase inhibition, AMG44 has a higher specificity for PERK. Unfortunately, the IC₅₀ for AMG44 is ~84 nM which is eight times that of GSK2656157 making GSK2656157 the more effective inhibitor (66). To confirm these findings, using both inhibitors in dose-response studies in HUVEC revealed a greater difference in their efficiencies, with GSK2656157 having a 1000-fold higher capability of inhibiting PERK phosphorylation (IC₅₀ ~1 nM) compared to AMG44 (IC₅₀ ~1000 nM). Since the advantages of GSK2656157 outweighed that of AMG44, we used GSK2656157 to block PERK phosphorylation and study its impact on angiogenesis. We feel that overall our results support a high degree of specificity for GSK2656157 since we had the same effects by suppressing PERK with a pool of three to five PERK-specific siRNAs.

We note that the mode of activation of PERK determines its ultimate mechanism of action. For instance, VEGFA-based PERK activation leads to induction of angiogenesis (58), while endorepellin-based PERK induction causes angiostasis. This opposing effect could in part be attributed to allosteric inhibition of VEGFA by endorepellin (20). This response could also be due to the differential binding of VEGFA and endorepellin to VEGFR2. Indeed, VEGFA binds VEGFR2 at Ig₂-3 on the ectodomain, whereas endorepellin binds at Ig₃-5 (20,22). This raises a strong possibility that they may evoke distinct VEGFR2-phosphorylation signatures, leading to activation of diverse downstream signaling pathways. Stress-axes are comprised of mainly three pathways, PERK, IRE1 and ATF6. Notably, VEGF simultaneously activates two of these stress pathways—PERK (eIF2α) and ATF6 (58)–in contrast to endorepellin that activates the former. However, we cannot exclude the possibility that endorepellin may also be involved in the ATF6 pathway.

A novel and unique aspect of our study is the combination of biochemical and confocal imaging assays performed on the sprouted capillary-like vessels emanated from aortic rings grown in a 3D collagen network. This ex vivo assay is a very useful model to study angiogenesis, insofar as the sprouts emerging from the aorta are purely endothelial in nature with only a minute layer of pericytes supporting the sprouting vessels (67). This allowed us to efficiently dissect the angiogenic vessels and the effects of soluble endorepellin, tunicamycin and PERK inhibitor. We successfully demonstrated endorepellin-based activation of stress axis in the rings and concurrent abrogation of sprouting by performing imaging and biochemical analysis, thus providing robust evidence of protracted stress inhibiting angiogenesis in the mouse system.

One of the limitations of the aortic ring assay is the lack of blood flow through the newly formed vessels which is essential for hemodynamic and mechanochanical functions (67). However, as our current study focuses only on endorepellin effect on the formation of neo-vessels and activation of stress proteins, the absence of blood flow does would not have a negative impact on our results. Another challenge concerning aortic ring assay is the reliable quantification of neo-vessel formation. There are different techniques that have been previously described (68-70). These methods mainly include counting the sprouts or evaluating the branching patterns. However, counting the number of sprouts can be challenging especially if the sprouts are numerous and densely packed. A hurdle with quantifying branching pattern is inconsistency in network formation, which may lead to erroneous calculations. To circumvent these issues, we modified the quantification process by using fluorescently-labeled rings (marked with either IB4 or CD31) to trace the area of vascularization or sprouting and compared the angiogenic footprint between different conditions. As our approach excludes the ring area and exclusively focuses on the newly-formed vessel sprouts and branches, it is very sensitive in
Endorepellin induces an anti-angiogenic stress pathway

obtaining detailed information. The margin of error is also primarily reduced due to digital processing and quantification of fluorescence and not manual evaluation of phase contrast images.

The discovery of activation of the stress pathway by endorepellin is important because the effector molecule GADD45α is the convergence point for various pathways (28). For instance, GADD45α is known to inhibit mTOR and may have a role in evoking autophagy in endothelial cells thereby leading to angiostasis (26). GADD45α could be the connector protein between the two processes, induction of autophagy and suppression of angiogenesis, which we have proposed in our previous studies (20,45). It would be very interesting to evaluate the role of GADD45α in enabling the crosstalk between these two pathways. Our current study has reinforced previous findings that endorepellin induces a broad activation of many anti-angiogenic pathways. We previously showed that endorepellin inhibits the PI3K/PDK1/Akt and PKC/JNK/AP1 axes which subsequently inhibit HIF1α and AP1-based VEGFA promoter activation, thereby inhibiting angiogenesis (24). Additionally, we recently discovered that endorepellin induces autophagic degradation of hyaluronan synthase 2 (HAS2), the major producer of pro-angiogenic and pro-inflammatory hyaluronan. This, in turn, evokes dynamic interaction of HAS2 and ATG9A and downstream angiogenic inhibition in vascular endothelia (71). Thus, endorepellin could evoke multiple pathways in endothelial cells emanated from its interaction with VEGFR2, which would synergistically block angiogenesis.

Endorepellin-based shotgun activation of these pathways ensures a failsafe inhibition of angiogenesis, making it a very viable candidate for combinatorial treatment. Over-activation of stress in the vasculature using endorepellin could be used to enhance susceptibility of endothelial cells towards antiangiogenic drugs. Notably, hyper-activation of the stress axis in myeloma cells evoked by proteasome inhibitors enhances susceptibility to chemotherapy (72). Even though endorepellin does not target cancer cells directly, the concept of stress hyper-activation to make cells susceptible to annihilation by drugs could be applied in the antiangiogenic paradigm.

Collectively, our findings posit endorepellin as an activator of cellular stress that simultaneously inhibits angiogenesis and evokes autophagy. Given this information, endorepellin may prove to be a protein-based therapeutic for overcoming drug-resistance against angiogenic inhibitors and thus improve cancer therapy. Furthermore, we believe that subsequent investigation will add more extracellular matrix proteins to the list of stress-activators and bring to surface many more key players associated with the stress axis. Thus, we furnish an additional meaningful function to endorepellin’s already extensive repertoire and further underscore the importance of the extracellular matrix in improving cancer therapy.

Experimental procedures

Cells and materials

Human umbilical vein endothelial cells (HUVEC) were procured from Lifeline Cell Technology (Frederick, MD) and maintained in basal media, supplemented with Vasculife EnGS LifeFactors Kit (Lifeline Cell Technology). HUVEC were cultured in cell culture dishes treated with 0.2% gelatin (Thermo Fisher Scientific, Waltham, MA) and were used within the first four passages. In all experiments excluding the knockdown experiments, HUVEC were cultured to full confluence for 2 days to make them quiescent. Telomerase – Human Aortic Endothelial Cells (TeloHAEC) were procured from American Type Cell Cultures (ATCC, Manassas, VA) and grown in Endothelial Cell Growth Medium – 2 (EGM-2 SingleQuot Kit Supplements and Growth Factors, Lonza, Walkersville, MD). Porcine aortic endothelial cells expressing VEGFR2 (PAER2) were described before (73,74). They were cultured in DMEM media (Gibco, Gaithersburg, MD) with 10% FBS, 1% PenStrep containing G418 (250 µg/ml) (Thermo Fisher Scientific, Waltham, MA) as the antibiotic selection agent. HeLa and EBNA cells were grown in DMEM with 10% FBS and 1% PenStrep. Primary rabbit monoclonal antibodies against PERK (D11A8), eIF2α (D7D3), ATF4 (D4B8), GADD45α (D17E8) and GAPDH (14C10) were obtained from Cell Signaling Technologies (CST, Danvers, MA) and rabbit monoclonal for P-eIF2α (ab32157) from Abcam (Cambridge, MA).

Primary rabbit monoclonal antibody against P-PERK at Thr980 (CST 3179) was obtained from Cell Signaling Technologies. Primary mouse monoclonal antibody against α-tubulin (TU-02), HRI (sc-11998), PKR (sc-6282) and GCN2 (sc-1160) were purchased from Santa Cruz Biotechnology. Mouse monoclonal antibody...
against CD31 was obtained from BD Pharmingen (553370). For immunoblots, all primary antibodies were used at 1:1000 dilution except GAPDH which was used at 1:1000. Secondary antibodies were used at 1:4000 dilutions. For immunofluorescence studies, primary antibodies were used at a concentration of 1:200 and secondary at a dilution of 1:400. HRP-conjugated goat anti-rabbit secondary antibody (AP307P) was obtained from Millipore (Billerica, MA) and HRP-conjugated goat anti-mouse secondary antibody (W4021) was obtained from Promega (Madison, WI), Alexa Fluor 488 goat anti-mouse (A11001), Alexa Fluor 568 goat anti-mouse (A11004), Alexa Fluor 488 donkey anti-rabbit (A21206) and Alexa Fluor 488 goat anti-rabbit (A11008) secondary antibodies were obtained from Thermo Fisher. Isolectin GS-IB4 Alexa Fluor 594 (I21413) was obtained from Thermo Fisher and used at a dilution of 1:400. Recombinant human endorepellin, LG1/2 and LG3 were produced and purified in the laboratory as previously described (17,45). Tunicamycin was obtained from Sigma (T7765), PERK inhibitor II - GSK2656157 (504651) from Millipore, AMG'44 from Tocris (5517), and SU5416 from Calbiochem (676487).

**Nuclear fractionation and immunoblotting**

HUVEC (~10^6 cells) which had been treated with vehicle or endorepellin for 4 h were harvested and spun down at 500 g for 5 mins. Pelleted cells were washed in PBS and fractionation was performed using NE-PER Nuclear and Cytoplasmic Extraction Reagents (78833, Thermo Scientific). The nuclear pellets were washed twice with PBS to remove any cytoplasmic contaminants before extraction. To perform western blotting, following treatment, endothelial cells were lysed using RIPA buffer (50 mM TRIS-HCl, 50 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton-X 100, 0.5% Sodium Deoxycholate, 1 mM sodium orthovanadate, 0.5% SDS, 1 μg/ml leupeptin, 1 μg/ml Aprotinin, 1 mM PMSF, 100 μM TPCK, and 1 EDTA-free protease inhibitor tablet) for 20 min while rocking on ice. Proteins were separated on an SDS-PAGE gel, transferred to the nitrocellulose membrane (Bio-Rad), incubated with the appropriate antibodies, and visualized using SuperSignal West Pico Chemiluminescence substrate (Thermo Scientific) and an Image Quant LAS-4000 (GE Healthcare).

**Immunofluorescence and confocal laser microscopy**

HUVEC (~5 x 10^4 cells) were grown on gelatin-coated four-chambered slides (Thermo Fisher Scientific) and given stipulated treatments, following which the cells were briefly washed with PBS and fixed with 4% (w/v) paraformaldehyde for 20 min on ice (75). Cells were blocked in 1% bovine serum albumin (BSA) for one h, washed thrice in PBS, incubated with primary antibodies for one h, washed thrice in PBS (76), and then incubated with secondary antibodies for one h, as described before (77,78). Stained cells were mounted using a hard-set mounting medium containing DAPI (Vector Labs, Burlingame, CA) and sealed with a coverslip. Immunofluorescence images were captured using 63x objective on a LEICA DM5500B microscope installed with the Leica Application suite v1.8 software (Leica Microsystems, Frankfurt, Germany). For higher-resolution images, confocal microscopy was used, and images were captured using a 63x, 1.3 oil-immersion objective of a Zeiss LSM-780 confocal laser-scanning microscope equipped with the Zen Imaging Software. Images were acquired as single optical sections of 1 μm, collected with the pinhole set to 1 Airy Unit for all channels. Post-acquisition images were analyzed/processed using ImageJ and Photoshop CS6 (Adobe Systems).

**siRNA-mediated knockdown**

Individual transient knockdowns of PERK and eIF2α were achieved in HUVEC using siRNA specific for PERK (sc-36213) or eIF2α (sc-35272). Scrambled siRNA (sc-37007) was used as the negative control. HUVEC (~2 x 10^5 cells per well) were seeded in 6-well plates to achieve ~80% confluence after attachment and transfected with 100 pM siScr or siPERK or siEIf2α and 10 μl Lipofectamine RNAiMax (Life Technologies) diluted in 150 μl serum-free Opti-MEM media (Gibco), overnight. Following day, media containing siRNA was aspirated and cells were incubated in 250 μl/well Lifeline Cell Technology media containing 4% FBS and 1% PenStrep for one day. On day two, 4% media was replaced with 2% FBS containing media. On day 4, we started respective treatments with vehicle (PBS), endorepellin (200 nM) or tunicamycin (10 μg/ml). siRNA-mediated knockdown of PERK or eIF2α was verified by immunoblotting. Cell lysates were further analyzed.
Endorepellin induces an anti-angiogenic stress pathway

by immunoblotting for proteins downstream of PERK and eIF2α.

Aortic ring assay
For all animal-based experiments, instructions were followed as per the Guide for Care and Use of Laboratory Animals and the Institutional Animal Care and Use Committee of Thomas Jefferson University. Thoracic aortae from 6-7-week-old wild-type C57/BL6 mice (Jackson Laboratories) were surgically isolated, cleaned off the fibro-adipose tissue, and sectioned serially into 0.5-1 mm rings. Rings were sandwiched between two 3-D collagen type I gel layers (1 mg/ml) in 48-well plate and incubated in EGM-2 media (Lonza) at 37°C, as described elsewhere (48,79). Following the initial sprouting, i.e., three days after embedding, the rings were given either acute or chronic treatment. For immediate measurement of stress induction, rings were treated acutely (2-4 h) with vehicle (PBS) or endorepellin (200 nM) or tunicamycin (10 μg/ml). They were subsequently processed for immunofluorescence or western blotting. For observing long-term effects of the reagents on sprouting, the rings were grown over 10 days with alternative day treatments of vehicle (PBS) or endorepellin (200nm) or tunicamycin (10 μg/ml) or PERKi. The rings were then processed for immunofluorescence or western blotting.

Processing the aortic ring data
Sprouting of the rings was measured as the radial distance using the low-magnification (5X) phase-contrast images (79). We subtracted the background and highlighted the sprouts using the threshold function. Then, we manually encircled the edges of the sprouts and measured the radii (Fig. S3A).

During the immunofluorescence analyses the rings were labeled with IB4, CD31, P-PERK and GADD45α and Z-stack images of the rings were captured with Zeiss LSM780 NLO confocal/multiphoton microscope and the images were analyzed using ImageJ software. Two methods of analyses were used: fluorescence of the traced-out sprouts (79) and intensity profile of the sprouts, both using ImageJ. Briefly, fluorescence intensity was uniformly normalized across all conditions using the threshold function, and regions of interest outlining the sprouts were selected using the polygon drawing tool. We then measured the integrated intensity of the traced areas (Fig. S3B) and normalized on the frame areas. Normalized fluorescence intensity of each protein was plotted as the mean fluorescence intensity. IB4 or CD31 expression was also used to quantify the extent of sprouting in the rings. We also performed line-scanning analyses of protein levels in the sprouts using the profile plot tool from ImageJ. A line was drawn along the sprout and fluorescence intensity measured along the length.

Quantification and statistical analysis
The immunoblots were analyzed by scanning densitometry using ImageJ software. Statistical significance was calculated by two-tailed, unpaired Student’s t-test. One-way ANOVA was performed on data with multiple groups. All experiments contained herein were conducted at least three times and the mean differences were considered significant at p<0.05.

The abbreviations used are: ATF4, activating transcription factor; BHPI, 3,3-bis(4-hydroxyphenyl)-7-methyl-1,3-dihydro-2H-indol-2-one; CD31 or PECAM-1, platelet endothelial cell adhesion molecule; Cdc2, cell division control 2; CHOP, CCAAT-enhancer-binding protein homologous protein; eIF2α, eukaryotic initiation factor 2; ER stress, endoplasmic reticulum stress; GADD45α, growth arrest and DNA damage-inducible protein α; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GCN2, general control non-derressible 2; HAS2, hyaluronan synthase 2; HEK-293-EBNA, human embryonic kidney 293 Epstein-Barr nuclear antigen; HIF-1α, hypoxia inducible factor-1α; HRI, heme-regulated inhibitor; HSPG, heparan sulfate proteoglycans; HUVEC, human umbilical vein endothelial cells; LC3, microtubule associated light chain 3; LG, laminin G-like domains; miR, microRNA; mTOR, mammalian target of rapamycin; NFAT1, nuclear factor of activated T-cells; p21Waf1 protein 21; PAER2, porcine aortic endothelial cells expressing VEGFR2; PCNA, proliferating cell nuclear antigen; Peg3, paternally expressed gene 3; PERK, PKR-like endoplasmic reticulum kinase; PERKi, GSK2656157, a cell-permeable ATP competitive inhibitor of PERK; PI3K/PDK1/Akt, phosphoinositide 3-kinase/ phosphoinositide-dependent protein kinase-1/protein kinase B; PKC/JNK/AP1, protein kinase C/ c-Jun N-terminal kinase/activator protein1; PKR, protein kinase R; RIPA, radio immunoprecipitation assay buffer;
Endorepellin induces an anti-angiogenic stress pathway

RNAi, RNA interference; RTK, receptor tyrosine kinase; siScr, small interfering scrambled RNA; Stat3, signal transducer and activator of transcription 3; TCF21, transcription factor 21; TeloHAEC, telomerase immortalized human aortic endothelial cells; TET1, tet methyl cytosine dioxygenase 1; UPR, unfolded protein response; VEGFA, vascular endothelial growth factor A; VEGFR2, VEGF receptor 2.

This work was supported in part by National Institutes of Health Grants RO1 CA39481 and RO1 CA47282 (to R. V. I.). Carolyn Chen was supported in part by NIH training grant T32 AR052273.

Author contributions—A.K. and R.V.I. designed the study; A.K., C.G.C., and R.V.I. wrote the manuscript and analyzed the data. A.K. performed most of the experiments. C.G.C. contributed to some of the experiments.

Acknowledgements—We thank L. Claesson-Welsh for providing the PAE-VEGFR2 cells, M. Mongiat for providing LG1/2 in the initial stages of this work, S. Buraschi for help with immunostaining and T. Neill for critical reading of the manuscript.

Disclosure – The authors declare no competing financial interests.

Declaration – All the data are contained in this manuscript.

References

1. Sparro, G., Galdenzi, G., Eleuteri, A. M., Angeletti, M., Schroeder, W., and Fioretti, E. (1997) Isolation and N-terminal sequence of multiple forms of granulins in human urine. Protein Expr. Purif. 10, 169-174
2. Zoeller, J. J., McQuillan, A., Whitelock, J., Ho, S.-Y., and Iozzo, R. V. (2008) A central function for perlecan in skeletal muscle and cardiovascular development. J. Cell Biol. 181, 381-394
3. Costell, M., Gustafsson, E., Aszódi, A., Mörgelin, M., Bloch, W., Hunziker, E., Addicks, K., Timpl, R., and Fässler, R. (1999) Perlecan maintains the integrity of cartilage and some basement membranes. J. Cell Biol. 147, 1109-1122
4. Cohen, I. R., Grässel, S., Murdoch, A. D., and Iozzo, R. V. (1993) Structural characterization of the complete human perlecan gene and its promoter. Proc. Natl. Acad. Sci. U. S. A. 90, 10404-10408
5. Handler, M., Yurchenco, P. D., and Iozzo, R. V. (1997) Developmental expression of perlecan during murine embryogenesis. Dev. Dyn. 210, 130-145
6. Cohen, I. R., Murdoch, A. D., Naso, M. F., Marchetti, D., Berd, D., and Iozzo, R. V. (1994) Abnormal expression of perlecan proteoglycan in metastatic melanomas. Cancer Res. 54, 5771-5774
7. Iozzo, R. V. and Cohen, I. (1993) Altered proteoglycan gene expression and the tumor stroma. Experientia 49, 447-455
8. Fuki, I., Iozzo, R. V., and Williams, K. J. (2000) Perlecan heparan sulfate proteoglycan. A novel receptor that mediates a distinct pathway for ligand catabolism. J. Biol. Chem. 275, 25742-25750
9. Iozzo, R. V. (2005) Basement membrane proteoglycans: from cell to tissue. Nat. Rev. Mol. Cell Biol. 6, 646-656
10. Gubbiotti, M. A., Neill, T., and Iozzo, R. V. (2017) A current view of perlecan in physiology and pathology: A mosaic of functions. Matrix Biol 57-58, 285-298
11. Farach-Carson, M. C. and Carson, D. D. (2007) Perlecan - a multifunctional extracellular proteoglycan scaffold. Glycobiology 17, 897-905
12. Farach-Carson, M. C., Warren, C. R., Harrington, D. A., and Carson, D. D. (2014) Border patrol: Insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol. 34, 64-79
Endorepellin induces an anti-angiogenic stress pathway

13. Schaefer, L., Tredup, C., Gubbiotti, M. A., and Iozzo, R. V. (2017) Proteoglycan neofunctions: regulation of inflammation and autophagy in cancer biology. FEBS J. 284, 10-26

14. Karamanos, N. K., Piperigkou, Z., Theocharis, A. D., Watanabe, H., Franchi, M., Baud, S., Brezillon, S., Gotte, M., Passi, A., Vigetti, D., Ricard-Blum, S., Sanderson, R. D., Neill, T., and Iozzo, R. V. (2018) Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem. Rev. 118, 9152-9232

15. Theocharis, A. D., Skandalis, S. S., Neill, T., Multhaupt, H. A., Hubo, M., Frey, H., Gopal, S., Gomes, A., Afratis, N., Lim, H. C., Couchman, J. R., Filmus, J., Ralph, D. S., Schaefer, L., Iozzo, R. V., and Karamanos, N. K. (2015) Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochim. Biophys. Acta 1855, 276-300

16. Neill, T., Schaefer, L., and Iozzo, R. V. (2015) Decoding the matrix: Instructive roles of proteoglycan receptors. Biochemistry 54, 4583-4598

17. Mongiat, M., Sweeney, S., San Antonio, J. D., Fu, J., and Iozzo, R. V. (2003) Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J. Biol. Chem. 278, 4238-4249

18. Bix, G., Fu, J., Gonzalez, E.,Macro, L., Barker, A., Campbell, S., Zutter, M. M., Santoro, S. A., Kim, J. K., Höök, M., Reed, C. C., and Iozzo, R. V. (2004) Endorepellin causes endothelial cell disassembly of actin cytoskeleton and focal adhesions through the α2β1 integrin. J. Cell Biol. 166, 97-109

19. Bix, G., Castello, R., Burrows, M., Zoeller, J. J., Weech, M., Iozzo, R. A., Cardi, C., Thakur, M. T., Barker, C. A., Camphausen, K. C., and Iozzo, R. V. (2006) Endorepellin in vivo: targeting the tumor vasculature and retarding cancer growth and metabolism. J. Natl. Cancer Inst. 98, 1634-1646

20. Goyal, A., Gubbiotti, M. A., Chery, D. R., Han, L., and Iozzo, R. V. (2016) Endorepellin-evoked autophagy contributes to angiostasis. J. Biol. Chem. 291, 19245-19256

21. Poluzzi, C., Iozzo, R. V., and Schaefer, L. (2016) Endostatin and endorepellin: A common route of action for similar angiostatic cancer avengers. Adv. Drug Deliv. Rev. 97, 156-173

22. Goyal, A., Pal, N., Concannon, M., Paulk, M., Doran, M., Poluzzi, C., Sekiguchi, K., Whitelock, J. M., Neill, T., and Iozzo, R. V. (2011) Endorepellin, the angiostatic module of perlecan, interacts with both the α2β1 integrin and vascular endothelial growth factor receptor 2 (VEGFR2). J. Biol. Chem. 286, 25947-25962

23. Willis, C. D., Poluzzi, C., Mongiat, M., and Iozzo, R. V. (2013) Endorepellin laminin-like globular repeat 1/2 domains bind Ig3-5 of vascular endothelial growth factor(VEGF) receptor 2 and block pro-angiogenic signaling by VEGFA in endothelial cells. FEBS J. 280, 2271-2294

24. Goyal, A., Poluzzi, C., Willis, A. C., Smythies, J., Shellard, A., Neill, T., and Iozzo, R. V. (2012) Endorepellin affects angiogenesis by antagonizing diverse VEGFR2- evoked signaling pathways: transcriptional repression of HIF-1α and VEGFA and concurrent inhibition of NFAT1 activation. J. Biol. Chem. 287, 43543-43556

25. Neill, T., Andreuzzi, E., Wang, Z.-X., Peiper, S. C., Mongiat, M., and Iozzo, R. V. (2018) Endorepellin remodels the endothelial transcriptome toward a pro-autophagic and pro-mitophagic gene signature. J. Biol. Chem. 293, 12137-12148

26. Yang, F., Zhang, W., Li, D., and Zhan, Q. (2013) Gadd45a suppresses tumor angiogenesis via inhibition of the mTOR/STAT3 protein pathway. J. Biol. Chem. 288, 6552-6560

27. Holczer, M., Banhegyi, G., and Kapuy, O. (2016) GADD34 Keeps the mTOR Pathway Inactivated in Endoplasmic Reticulum Stress Related Autophagy. PLoS. One. 11, e0168359

28. Liebermann, D. A. and Hoffman, B. (2008) Gadd45 in stress signaling. J. Mol. Signal. 3, 15
Endorepellin induces an anti-angiogenic stress pathway

29. Wek, R. C., Jiang, H. Y., and Anthony, T. G. (2006) Coping with stress: eIF2 kinases and translational control. Biochem. Soc. Trans. 34, 7-11

30. Ebert, S. M., Bullard, S. A., Basisty, N., Marcotte, G. R., Skopec, Z. P., Dierdorff, J. M., Al-Zougbi, A., Tomcheck, K. C., DeLau, A. D., Rathmacher, J. A., Bodine, S. C., Schilling, B., and Adams, C. M. (2020) Activating transcription factor 4 (ATF4) promotes skeletal muscle atrophy by forming a heterodimer with the transcriptional regulator C/EBPβ. J. Biol Chem. 295, 2787-2803

31. Walter, P. and Ron, D. (2011) The unfolded protein response: From stress pathway to homeostatic regulation. Science. 334, 1081-1086

32. Wek, R. C. and Cavener, D. R. (2007) Translational control and the unfolded protein response. Antioxid. Redox. Signal. 9, 2357-2371

33. Salazar, M., Carracedo, A., Salanueva, I. J., Hernandez-Tiedra, S., Lorente, M., Egia, A., Vazquez, P., Blazquez, C., Torres, S., Garcia, S., Nowak, J., Fimia, G. M., Piacentini, M., Ceconi, F., Pandolfi, P. P., Gonzalez-Feria, L., Ivovanna, J. L., Guzman, M., Boya, P., and Velasco, G. (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J. Clin. Invest 119, 1359-1372

34. Marciniak, S. J., Yun, C. Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H. P., and Ron, D. (2004) CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066-3077

35. Livezey, M., Huang, R., Hergenrother, P. J., and Shapiro, D. J. (2018) Strong and sustained activation of the anticipatory unfolded protein response induces necrotic cell death. Cell Death. Differ. 25, 1796-1807

36. Liebermann, D. A., Tront, J. S., Sha, X., Mukherjee, K., Mohamed-Hadley, A., and Hoffman, B. (2011) Gadd45 stress sensors in malignancy and leukemia. Crit Rev. Oncog. 16, 129-140

37. Ebert, S. M., Dyle, M. C., Kunkel, S. D., Bullard, S. A., Bongers, K. S., Fox, D. K., Dierdorff, J. M., Foster, E. D., and Adams, C. M. (2012) Stress-induced skeletal muscle Gadd45a expression reprograms myonuclei and causes muscle atrophy. J. Biol. Chem. 287, 27290-27301

38. Adams, C. M., Ebert, S. M., and Dyle, M. C. (2017) Role of ATF4 in skeletal muscle atrophy. Curr. Opin. Clin. Nutr. Metab Care 20, 164-168

39. Donnelly, N., Gorman, A. M., Gupta, S., and Samali, A. (2013) The eIF2α kinases: their structures and functions. Cell Mol. Life Sci. 70, 3493-3511

40. Vattem, K. M. and Wek, R. C. (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl. Acad. Sci. U. S. A 101, 11269-11274

41. Proud, C. G. (2005) eIF2 and the control of cell physiology. Semin. Cell Dev. Biol 16, 3-12

42. Su, Q., Wang, S., Gao, H. Q., Kazemi, S., Harding, H. P., Ron, D., and Koromilas, A. E. (2008) Modulation of the eukaryotic initiation factor 2 alpha-subunit kinase PERK by tyrosine phosphorylation. J. Biol Chem. 283, 469-475

43. Xu, C., Bailly-Maitre, B., and Reed, J. C. (2005) Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest 115, 2656-2664

44. Fong, T. A. T., Shawver, L. K., Sun, L., Tang, C., App, H., Powell, T. J., Kim, Y. H., Schreck, R., Wang, X., Risau, W., Ullrich, A., Hirth, K. P., and McMahon, G. (1999) SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 59, 99-106

45. Poluzzi, C., Casulli, J., Goyal, A., Mercer, T. J., Neill, T., and Iozzo, R. V. (2014) Endorepellin evokes autophagy in endothelial cells. J. Biol. Chem. 289, 16114-16128
Endorepellin induces an anti-angiogenic stress pathway

46. Kovalsky, O., Lung, F. D., Roller, P. P., and Fornace, A. J., Jr. (2001) Oligomerization of human Gadd45α protein. *J. Biol. Chem.* 276, 39330-39339

47. Weigel, P. H. (2015) Hyaluronan Synthase: The Mechanism of Initiation at the Reducing End and a Pendulum Model for Polysaccharide Translocation to the Cell Exterior. *Int. J. Cell Biol* 2015, 367579

48. Baker, M., Robinson, S. D., Lechertier, T., Barber, P. R., Tavora, B., D’Amico, G., Jones, D. T., Vojnovic, B., and Hodivala-Dilke, K. (2012) Use of the mouse aortic ring assay to study angiogenesis. *Nat. Protoc.* 7, 89-104

49. Ernst, C. and Christie, B. R. (2006) Isolectin-IB 4 as a vascular stain for the study of adult neurogenesis. *J. Neurosci. Methods* 150, 138-142

50. Benton, R. L., Maddie, M. A., Minnillo, D. R., Hagg, T., and Whittemore, S. R. (2008) Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse. *J. Comp Neurol.* 507, 1031-1052

51. Harding, H. P., Zhang, Y., and Ron, D. (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. *Nature* 397, 271-274

52. Shi, Y., Vattem, K. M., Sood, R., An, J., Liang, J., Stramm, L., and Wek, R. C. (1998) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. *Mol. Cell Biol* 18, 7499-7509

53. Harding, H. P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., and Ron, D. (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. *Mol. Cell* 6, 1099-1108

54. Atkins, C., Liu, Q., Minthorn, E., Zhang, S. Y., Figueroa, D. J., Moss, K., Stanley, T. B., Sanders, B., Goetz, A., Gaul, N., Choudhry, A. E., Alsaid, H., Jucker, B. M., Axten, J. M., and Kumar, R. (2013) Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. *Cancer Res.* 73, 1993-2002

55. Axten, J. M., Romeril, S. P., Shu, A., Ralph, J., Medina, J. R., Feng, Y., Li, W. H., Grant, S. W., Heeding, D. A., Minthorn, E., Mencken, T., Gaul, N., Goetz, A., Stanley, T., Hassell, A. M., Gampe, R. T., Atkins, C., and Kumar, R. (2013) Discovery of GSK2656157: An Optimized PERK Inhibitor Selected for Preclinical Development. *ACS Med. Chem. Lett.* 4, 964-968

56. Gupta, S., McGrath, B., and Cavener, D. R. (2009) PERK regulates the proliferation and development of insulin-secreting beta-cell tumors in the endocrine pancreas of mice. *PLoS. One.* 4, e8008

57. Binet, F. and Sapieha, P. (2015) ER Stress and Angiogenesis. *Cell Metab* 22, 560-575

58. Karali, E., Bellou, S., Stellas, D., Klinakis, A., Murphy, C., and Fotsis, T. (2014) VEGF Signals through ATF6 and PERK to promote endothelial cell survival and angiogenesis in the absence of ER stress. *Mol. Cell* 54, 559-572

59. Olsson, A.-K., Dimberg, A., Kreuger, J., and Claesson-Welsh, L. (2006) VEGF receptor signalling - in control of vascular function. *Nat. Rev. Mol. Cell Biol.* 7, 359-371

60. Yang, P., Ni, F., Deng, R. Q., Qiang, G., Zhao, H., Yang, M. Z., Wang, X. Y., Xu, Y. Z., Chen, L., Chen, D. L., Chen, Z. J., Kan, L. X., and Wang, S. Y. (2015) MiR-362-5p promotes the malignancy of chronic myelocytic leukaemia via down-regulation of GADD45alpha. *Mol. Cancer* 14, 190

61. Gao, M., Li, X., Dong, W., Jin, R., Ma, H., Yang, P., Hu, M., Li, Y., Hao, Y., Yuan, S., Huang, J., and Song, L. (2013) Ribosomal protein S7 regulates arsenite-induced GADD45alpha ubiquitination and degradation. *Nucleic Acids Res.* 41, 5210-5222
Endorepellin induces an anti-angiogenic stress pathway

62. Arab, K., Karaulanov, E., Musheev, M., Trnka, P., Schafer, A., Grummt, I., and Niehrs, C. (2019) GADD45A binds R-loops and recruits TET1 to CpG island promoters. Nat. Genet. 51, 217-223

63. Bretz, C. L., Frey, W. D., Teruyama, R., and Kim, J. (2018) Allele and dosage specificity of the Peg3 imprinted domain. PLoS. One. 13, e0197069

64. Buraschi, S., Neill, T., Goyal, A., Poluzzi, C., Smythies, J., Owens, R. T., Schaefer, L., Torres, A., and Iozzo, R. V. (2013) Decorin causes autophagy in endothelial cells via Peg3. Proc. Natl. Acad. Sci. U. S. A. 110, E2582-E2591

65. Torres, A., Gubbiotti, M. A., and Iozzo, R. V. (2017) Decorin-inducible Peg3 Evokes Beclin 1-mediated Autophagy and Thrombospondin 1-mediated Angiostasis. J. Biol Chem. 292, 5055-5069

66. Smith, A. L., Andrews, K. L., Beckmann, H., Bellon, S. F., Beltran, P. J., Booker, S., Chen, H., Chung, Y. A., D’Angelo, N. D., Dao, J., Dellamaggiore, K. R., Jaeckel, P., Kendall, R., Labitzke, K., Long, A. M., Materna-Reichert, S., Mitchell, P., Norman, M. H., Powers, D., Rose, M., Shaffer, P. L., Wu, M. M., and Lipford, J. R. (2015) Discovery of 1H-pyrazol-3(2H)-ones as potent and selective inhibitors of protein kinase R-like endoplasmic reticulum kinase (PERK). J. Med. Chem. 58, 1426-1441

67. Nicosia, R. F. (2009) The aortic ring model of angiogenesis: a quarter century of search and discovery. J. Cell Mol. Med. 13, 4113-4136

68. Blacher, S., Devy, L., Burbridge, M. F., Roland, G., Tucker, G., Noel, A., and Foidart, J. M. (2001) Improved quantification of angiogenesis in the rat aortic ring assay. Angiogenesis. 4, 133-142

69. Iqbal, F., Szaraz, P., Librach, M., Gauthier-Fisher, A., and Librach, C. L. (2017) Angiogenic potency evaluation of cell therapy candidates by a novel application of the in vitro aortic ring assay. Stem Cell Res. Ther. 8, 184

70. Van, V. E., De, R. H., Devy, L., Blacher, S., Munaut, C., Noel, A., Van, M. E., Van, R. I., Van, C. B., and Vanderkerken, K. (2002) Murine 5T multiple myeloma cells induce angiogenesis in vitro and in vivo. Br. J. Cancer 86, 796-802

71. Chen, C. G., Gubbiotti, M. A., Kapoor, A., Han, X., Yu, Y., Linhardt, R. J., and Iozzo, R. V. (2020) Autophagic degradation of HAS2 in endothelial cells: A novel mechanism to regulate angiogenesis. Matrix Biol, In Press

72. Tameire, F., Verginadis, I. I., and Koumenis, C. (2015) Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: Mechanisms and targets for therapy. Semin. Cancer Biol 33, 3-15

73. Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M., and Heldin, C.-H. (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 269, 26988-26995

74. Ito, N. and Claesson-Welsh, L. (1999) Dual effects of heparin on VEGF binding to VEGF receptor-1 and transduction of biological responses. Angiogenesis 3, 159-166

75. Chen, C., Kapoor, A., and Iozzo, R. V. (2019) Methods for monitoring matrix-induced autophagy. Methods Mol. Biol. 1952, 157-191

76. Goldoni, S., Owens, R. T., McQuillan, D. J., Shriver, Z., Sasisekharan, R., Birk, D. E., Campbell, S., and Iozzo, R. V. (2004) Biologically active decorin is a monomer in solution. J. Biol. Chem. 279, 6606-6612

77. Rudnicka, L., Varga, J., Christiano, A. M., Iozzo, R. V., Jimenez, S. A., and Uitto, J. (1994) Elevated expression of type VII collagen in the skin of patients with systemic sclerosis. J. Clin. Invest. 93, 1709-1715
Endorepellin induces an anti-angiogenic stress pathway

78. Alvarez, R. J., Sun, M. J., Haverty, T. P., Iozzo, R. V., Myers, J. C., and Neilson, E. G. (1992) Biosynthetic and proliferative characteristics of tubulointerstitial fibroblasts probed with paracrine cytokines. *Kidney Int.* **41**, 14-23

79. Kapoor, A., Chen, C. G., and Iozzo, R. V. (2020) A simplified aortic ring assay: A useful *ex vivo* method to assess biochemical and functional parameters of angiogenesis. *Matrix Biol. Plus*, In Press 2020.
Figure 1. Endorepellin evokes phosphorylation of PERK/eIF2α and upregulation of ATF-4/GADD45α downstream of VEGFR2. A, representative immunoblots of time-course experiments of HUVEC treated with endorepellin (200 nM, ranging from 0-6 h) and probed for ATF4 and GADD45α. Data were obtained from endorepellin-treated HUVEC from three independent experiments (n=3) and were normalized to GAPDH. B, quantification of ATF4 and GADD45α from A; C, representative immunoblots of time-course experiments of HUVEC treated with endorepellin (200 nM, 0-6 h) and probed for P-PERKThr980, total PERK, P-eIF2αSer51 and total eIF2α. Data were acquired from three independent experiments (n=3) and were normalized to their respective total protein levels. D, quantification of P-PERKThr980 and P-eIF2αSer51 from C; one-way ANOVA was performed on all the data. E, immunoblots of time-course experiments of HUVEC pre-treated for 30 min with SU5416 (VEGFR2 kinase inhibitor, 30 μM) followed by addition of endorepellin ranging from 0-24 h. The last lane shows positive control, i.e. endorepellin alone for 2 h. α-tubulin served as the loading control. F, immunofluorescence images of HUVEC showing either cytoplasmic or nuclear distribution of GADD45α (red) seen with respect to DAPI (blue) after treatment with vehicle (PBS), endorepellin (200 nM) or tunicamycin (10 μg/ml) for 4 h. Note that nuclear localization of GADD45α is seen as a magenta hue in endorepellin or tunicamycin treated conditions due to the merging of red and blue tones in the nucleus. G, quantification of cells with nuclear localization of GADD45α from F. An average of 100 cells per treatment (vehicle or endorepellin or tunicamycin) were analyzed from five independent experiments. H, representative immunoblots of cell fractionation experiments of HUVEC treated for 3 h ±endorepellin (200 nM). The membranes were probed for lamin A/C to label nuclear fractions (Nu), GAPDH to label cytoplasmic fractions (Cy), and GADD45α. Note that only the nuclear fraction was enriched in the trimeric form of GADD45α and these levels were increased...
Endorepellin induces an anti-angiogenic stress pathway by exposure to endorepellin. I, immunofluorescence images of HUVEC treated with vehicle, endorepellin or tunicamycin for 4 h, and probed for filamentous actin (red) and ATF4 (green). The nuclei are outlined by dotted lines. J, quantification of cells with nuclear localization of ATF4 from I. An average of 500 cells per treatment (vehicle or endorepellin or tunicamycin) were analyzed from three independent experiments (n=3). All statistical analyses were calculated via One-way ANOVA (***, p<0.001).

Figure 2. Endorepellin-dependent PERK and eIF2α activation is essential for downstream GADD45α upregulation. A, representative immunoblots of HUVEC pre-treated with 100 pM scrambled siRNA (siScr) or with siRNA targeting PERK (siPERK) followed by treatment with endorepellin (200 nM) or tunicamycin (10 μg/ml). Lysates show RNAi-mediated knockdown of PERK (siPERK) and subsequent suppression of eIF2α phosphorylation. Treatment conditions are indicated in the bottom panel. B, quantification of PERK, and P-eIF2α from A, normalized on GAPDH for PERK or total protein level for P-eIF2α; data are from three independent biological experiments (n=3). C, representative immunoblots of HUVEC pre-treated with 100 pM scrambled siRNA (siScr) or with siRNA targeting eIF2α (siELF2α) followed by treatment with endorepellin (200 nM) or tunicamycin (10 μg/ml). Lysates show showing RNAi-mediated knockdown of eIF2α (siELF2α) and subsequent suppression of GADD45α levels. D, quantification of eIF2α and GADD45α from C normalized to GAPDH; data are from three independent experiments (n=3). Statistical significance was calculated via two-tailed unpaired Student’s t test (**, p<0.01). All statistical analyses were calculated via One-way ANOVA (***, p<0.001).
Endorepellin induces an anti-angiogenic stress pathway

Figure 3. Endorepellin activates PERK in sprouts of ex vivo aortic rings. A, representative confocal images of aortic rings following treatment with endorepellin (200 nM) or Tunicamycin (10 μg/ml) for 2 h. The endothelial cells in sprouts were visualized with isolectin IB4 (red), a marker for endothelial cells, and were counterstained with antibody against P-PERK<sup>Thr980</sup> (green). Insets show magnified sprouts stained for P-PERK<sup>Thr980</sup> expression in aortic ring sprouts corresponding to the yellow line traced along the enlarged image of sprouts in inset of A. C, quantification of the fluorescence intensity of PERK in the sprouted area from A; fluorescence intensity data are from a total of 12 vehicle, 9 endorepellin and 10 tunicamycin-treated aortic rings from 4 independent experiments (n=4). D, representative immunoblots of three pooled, sprouted blood vessels probed for P-PERK<sup>Thr980</sup> and total PERK. E, quantification of P-PERK<sup>Thr980</sup> levels over total PERK from D; three aortic rings were pooled together per condition (vehicle or endorepellin or tunicamycin) and repeated four times, therefore four independent experiments (n=4). We note, that the data are derived only from the newly formed sprouts as the aortic rings were removed before solubilization. All statistical analyses were calculated via One-way ANOVA (**, p<0.001).
**Endorepellin induces an anti-angiogenic stress pathway**

| A          | IB4 | GADD45α | Merged | Inset |
|------------|-----|---------|--------|-------|
| Vehicle    | ![Image](vehicle.png) | ![Image](gadd45a_veh.png) | ![Image](merged_veh.png) | ![Image](inset_veh.png) |
| Endorepellin| ![Image](endorepellin.png) | ![Image](gadd45a_endo.png) | ![Image](merged_endo.png) | ![Image](inset_endo.png) |
| Tunicamycin| ![Image](tunicamycin.png) | ![Image](gadd45a_tunic.png) | ![Image](merged_tunic.png) | ![Image](inset_tunic.png) |

**Figure 4. Endorepellin upregulates effector protein GADD45α in aortic rings.** A, representative confocal images of aortic rings following treatment with endorepellin (200 nM) or Tunicamycin (10 µg/ml) for 4 h. Sprouts were labeled with IB4 (red) and GADD45α (green). Inset shows magnified sprouts stained for IB4 (red), GADD45α (green) and DAPI (blue). B, Quantification of the fluorescence intensity of GADD45α for the sprouted area from A; fluorescence intensity data are from a total of 10 vehicle, 8 endorepellin and 8 tunicamycin-treated aortic rings from 4 independent experiments (n=4). C, representative immunoblots of three pooled, sprouted blood vessels probed for GADD45α. GAPDH was used as loading control. D, quantification of GADD45α levels normalized to GAPDH from C; data are from four independent biological experiments (n=4), with each condition comprised of three pooled sprouts. All statistical analyses were calculated via One-way ANOVA (***, p<0.001).
Endorepellin induces an anti-angiogenic stress pathway

Figure 5. PERK inhibition blocks endorepellin-dependent stress signaling and angiostasis in the aortic rings. A, representative immunoblots of dose-dependent experiments of HUVEC pre-treated with PERKi for 30 min followed by endorepellin (200 nM) exposure for 1 h and 30 min. Blots were probed for P-PERK and P-eIF2α; α-tubulin served as the loading control. B, quantification of P-PERK and P-eIF2α from A with normalization to their respective total protein; data from three independent biological experiments (n=3), plotted as mean ±SEM. One-way ANOVA was performed on the data. C, representative phase contrast images of aortic rings treated with endorepellin or endorepellin and PERKi for seven days in total after sprouting. D, quantification of the radial distance of the endorepellin or endorepellin and PERKi-treated sprouts from C. Phase contrast data are from 12 vehicle, 10 endorepellin and 10 endorepellin and PERKi-treated rings from four independent experiments (n=4). E, representative confocal images of aortic rings treated with endorepellin or endorepellin and PERKi-treated rings. Rings were labeled with IB4 (red) and DAPI (blue). F, quantification of fluorescence intensity of the sprouted area from E. Confocal data are from 8 vehicle, 8 endorepellin and 9 endorepellin and PERKi-treated rings from four
Endorepellin induces an anti-angiogenic stress pathway independent biological experiments (n=4). All statistical analyses were calculated via One-way ANOVA (***, p<0.001).

Figure 6. Working model elucidating the mechanism of endorepellin-based stress-activation via VEGFR2 and subsequent inhibition of angiogenesis. Please see the text for details.
Endorepellin evokes an angiostatic stress signaling cascade in endothelial cells
Aastha Kapoor, Carolyn G. Chen and Renato V. Iozzo

J. Biol. Chem. published online March 23, 2020

Access the most updated version of this article at doi: 10.1074/jbc.RA120.012525

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts