Supplementary Information

Supplementary Figures

a

% Population

Bud Scars

b

Genome Copy Number

ACT1 | IntV | NTS2 | RDN58

Controls | rDNA

Young (0.8) | Old (16.3) | Old (22.5)

20 | 18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | 2 | 0

C

Normalized mRNA Level

SAS2 | SIR2

Young (0.9) | Old (15.3) | Old (21.8)

1.8 | 1.6 | 1.4 | 1.2 | 1.0 | 0.8 | 0.6 | 0.4 | 0.2 | 0 | 1
Supplementary Figure 1. Isolated old cells show increasing bud scars and rDNA copy numbers, but no change in SIR2 expression levels.

(a) An example of age distribution of isolated young and old cells from four rounds of progressive sorting. Bud scars were stained with Calcofluor and visualized by fluorescence microscopy. At least 50 cells from each fraction were counted for total number of bud scars. (b) Total genomic DNA was purified from whole cell extracts and copy number was quantified by real-time PCR with primers specific to ACT1 gene, an intergenic region on Chromosome V (IntV), non-transcribed region NTS2 and RDN58 gene on rDNA repeat. All signals were normalized to that of ACT1 gene and then to young cell levels. (c) Quantitative real-time PCR analysis of mRNA expression levels for SAS2 and SIR2 in young and old cells of strain BY4741. Real-time PCR primers are listed in Supplementary Table 4. Signals were normalized to ACT1 levels. Average bud scar counts are indicated in parenthesis.
Supplementary Figure 2. Examples of other histone modifications remaining unchanged in old cells.

Samples as in Fig. 1a were analyzed with other antibodies with details listed in Supplementary Table 3. Average bud scar counts are indicated in parenthesis.
Supplementary Figure 3. Specificity of key antibodies used in this study.

(a) Left: Whole cell extracts from strains carrying WT histone H4, H4K16A, H4K16R, or H4K16Q plasmids were analyzed by western blot and probed with antibodies against H4K16ac and H4. Right: H4 N-terminal peptide containing the first 30 amino acids (unmod) and corresponding K16 acetylated (H4K16ac) peptides were dot-blotted onto a PVDF membrane with the indicated amount and probed with H4K16ac and H4 antibodies. (b) Whole cell extracts from strains carrying WT H3 or H3K56R plasmids were analyzed by western blot and probed with antibodies against H3K56ac and Sir2. (c) Whole cell extracts from strains carrying WT H3 or H3K9R plasmids were analyzed by western blot and probed with antibodies against H3K9ac and histone H3. (d) Whole cell extracts from WT (BY4741) or sir2Δ strains were analyzed by western blot and probed with antibodies against Sir2 and H4.
Supplementary Figure 4. *ura3Δ* old cells are not sensitive to 5-FOA.

Identical silencing assay as in Fig. 2b for young and old cells of strains containing *ura3Δ*. The extent of silencing is expressed as the fraction of cells resistant to 5-FOA (n=3). Average bud scar counts are listed for the old cell samples. Error bars show standard deviations.
Supplementary Figure 5. Localized changes of H4K16 acetylation and histone levels when Sir2 is lost or inhibited.

Chromatin Immunoprecipitation was performed for wild-type (BY4741) and sir2Δ cells (n=3) with antibodies against (a) H4K16ac and (b) histone H4. Fold changes for sir2Δ compared to wild-type are indicated above the bars. The same analysis was carried out for wild-type (BY4741) cells with (WT+NAM) or without (WT-NAM) treatment of 5 mM nicotinamide (NAM) and sir2Δ cells with 5 mM nicotinamide (sir2Δ+NAM) (n=3) with antibodies against (c) H4K16ac and (d) histone H4. Fold changes for WT+NAM compared to WT-NAM are indicated above the bars. (e) Chromatin Immunoprecipitation was performed for wild-type (BY4741) cells with (WT+NAM) and without (WT-NAM) treatment of 5 mM nicotinamide (n=3) with antibodies against Sir2. The primer sets are shown in Fig. 1b. All error bars show standard deviations.
Supplementary Figure 6. Mutations of H4K16 does not affect availability of Sir2.

Western analysis with antibodies against Sir2 and H3 for cells bearing WT histone H4, H4K16R, or H4K16Q plasmids.
Supplementary Figure 7. H4K16Q mutation displaces Sir2 from its binding sites.

Chromatin Immunoprecipitation was performed for strains carrying WT histone H4, H4K16R, or H4K16Q plasmids with antibodies against Sir2 and analyzed by real-time PCR with primers shown in Fig. 1b.
Supplementary Figure 8. H3K9 mutations do not significantly affect the replicative lifespan.

Replicative lifespan analysis for strains carrying WT histone H3, H3K9R, or H3K9Q plasmids with MLS in parenthesis.
Supplementary Figure 9. Replicative lifespan for HST3 or HST4 deletion strains.

Replicative lifespan analysis for yeast strains WT (MATα 140 cells, MATα 40 cells), hst3Δ (MATα 120 cells, MATα 40 cells), hst4Δ (MATα 120 cells, MATα 40 cells), and hst3Δ hst4Δ (MATα 119 cells) with mean lifespan in parenthesis. The p-values for hst3Δ, hst4Δ, and hst3Δ hst4Δ compared to WT were 1.8×10^{-26}, 1.2×10^{-5}, 1.0×10^{-52}, respectively.
Supplementary Figure 10. Both R and Q mutations to H3K56 result in sensitivity to DNA damaging agents.

Strains bearing wild-type or mutant histone H3-H4 plasmids were 10-fold serial-diluted and plated on YPD, YPD containing 0.02% MMS, and YPD containing 0.02% H₂O₂.
Supplementary Figure 11. Deletion of SIR2, but not SGS1, causes changes to telomere chromatin.

ChIP analysis for wild-type, sir2Δ, and sgs1Δ cells with antibodies against H4K16ac (a) and H4 (b). Error bars show standard deviations (n=3).
Supplementary Figure 12. Replicative lifespan for H4K16 mutants in sgs1Δ background.

Replicative lifespan analysis for yeast strains containing integrated WT histone H4, H4K16R, or H4K16Q in sgs1Δ backgrounds with mean lifespan in parenthesis (n=24, each). The p-values for sgs1Δ+H4K16R and sgs1Δ+H4K16Q compared to sgs1Δ+H4WT were 7.6×10^{-3} and 1.7×10^{-3}, respectively.

Supplementary Information
Supplementary Tables

Supplementary Table 1. H4K16ac and histone occupancy change more dramatically at X elements of telomeres in old cells.

	TEL-X	Other Sir2	ACT1
H4K16ac, Old/Young	3.08±0.44	2.49±0.21	1.96
H3, Young/Old	6.52±1.07	3.53±0.69	3.30
H4, Young/Old	5.67±0.79	3.95±1.46	4.47
Sir2, Young/Old	13.71±2.28	12.27±3.44	2.09

ChIP analysis with primers for XC and XR elements of telomeres TEL5R, TEL6L, TEL6R, TEL7L, TEL9L, TEL9R, TEL10R, TEL11L, and TEL15R, as well as other Sir2 sites (NTS2, RDN58, and HMLα1) and ACT1 control, using another set of age-sorted cells with average bud scar counts of 0.5 for young and 18.6 for old cells. Average fold changes between young and old cells are shown with margins estimated with 90% confidence intervals.
Supplementary Table 2. List of strains used in this study.

Figure Name	Strain Name	Genotype	Source	Note
Figure 1a	W1588-4C	MATα RAD5 leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15	R. Rothstein	W303 with RAD5
Figure 1c	BY4741	MATα his3Δ1 leu2Δ0 met15Δ0 ura3Δ0	Invitrogen	
Figure 2b	FEP100-10	MATα leu2Δ1 ura3-52 can1-1 ade2Δ, URA3_TELXIL position 1	Ref. 26	
	FEP180	MATα ura3Δ851 leu2Δ1 his3Δ200 lys2Δ202 URA3_TELXIL position 2	Ref. 26	
	FEP184	MATα ura3Δ851 leu2Δ1 his3Δ200 lys2Δ202 URA3_TELXIL position 3	Ref. 26	
	FEP193	MATα ura3Δ851 leu2Δ1 his3Δ200 lys2Δ202 URA3_TELXIL position 4	Ref. 26	
	FEP210b	MATα ura3Δ851 leu2Δ1 his3Δ200 lys2Δ202 URA3_TELXIL position 5	Ref. 26	
Figure 3a	BY4741	See Figure 1c	Invitrogen	
	BY4742	MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0	Invitrogen	
	YKO6568	BY4741 sas2Δ::kanMX4	Invitrogen	
	YKO16568	BY4742 sas2Δ::kanMX4	Invitrogen	
Figure 3b	BY4741	See Figure 1c	This work	
	YWD250	BY4741 sas2Δ::kanMX4	This work	
	YWD400	BY4741 LEU2::SIR2	This work	
	YWD450	BY4741 LEU2::SIR2 sas2Δ::kanMX4	This work	
Figure 3cdef	BY4741	See Figure 1c	This work	
	YWD250	See Figure 3b	This work	
Figure 4ab	YWD120	MATα his3-200 leu2Δ1 ura3-52 trp1Δ63 lys2-128 (hht1-hhf1)Δ::LEU2 (hht2-hhf2)Δ::HIS3 pRM204[CEN TRP1 HHT2-HHF2]	This work	From FY1716
	YWD123	MATα his3-200 leu2Δ1 ura3-52 trp1Δ63 lys2-128 (hht1-hhf1)Δ::LEU2 (hht2-hhf2)Δ::HIS3 pWD23[HHT2-hhf2(K16R) TRP1 CEN]	This work	From FY1716
	YWD125	MATα his3-200 leu2Δ1 ura3-52 trp1Δ63 lys2-128 (hht1-hhf1)Δ::LEU2 (hht2-hhf2)Δ::HIS3 pWD25[HHT2-hhf2(K16Q) TRP1 CEN]	This work	From FY1716

To be continued on next page
Strain Name	Genotype	Source	Note
Figure 4c			
YWD120	See Figure 4ab		
YWD156	MATa his3-200 leu2Δ1 ura3-52 trp1Δ63 lys2-128 (hht1-hhf1)Δ::LEU2 (hht2-hhf2)Δ::HIS3 pWD43[hht2(K56R)-HHF2, TRP1, CEN]	This work	From FY1716
YWD157	MATa his3-200 leu2Δ1 ura3-52 trp1Δ63 lys2-128 (hht1-hhf1)Δ::LEU2 (hht2-hhf2)Δ::HIS3 pWD45[hht2(K56Q)-HHF2, TRP1, CEN]	This work	From FY1716
Figure 4d			
BY4741	See Figure 1c		
BY4742	See Figure 3a	Invitrogen	
YKO1490	BY4741 rtt109Δ::kanMX4		
YKO11490	BY4742 rtt109Δ::kanMX4	Invitrogen	
Figure 5a			
YWD1000	MATa his3-200 leu2Δ1 ura3-52 trp1Δ63 lys2-128 (hht1-hhf1)Δ::LEU2	This work	From FY1716
YWD1116	YWD1000 HHT2-hhf2(K16R)	This work	
YWD1117	YWD1000 HHT2-hhf2(K16Q)	This work	
YWD1200	YWD1000 sir2Δ::kanMX4	This work	
YWD1276	YWD1000 sir2Δ::kanMX4 HHT2-hhf2(K16R)	This work	
YWD1277	YWD1000 sir2Δ::kanMX4 HHT2-hhf2(K16Q)	This work	
Figure 5b			
YWD1400	YWD1000 leu2Δ::SIR2-natMX4	This work	
YWD1476	YWD1000 leu2Δ::SIR2-natMX4 HHT2-hhf2(K16R)	This work	
YWD1477	YWD1000 leu2Δ::SIR2-natMX4 HHT2-hhf2(K16Q)	This work	
Figure 5c			
YWD1500	YWD1000 fob1Δ::natMX4	This work	
YWD1576	YWD1000 fob1Δ::natMX4 HHT2-hhf2(K16R)	This work	
YWD1577	YWD1000 fob1Δ::natMX4 HHT2-hhf2(K16Q)	This work	
Figure 5d			
BY4742	See Figure 3a	Invitrogen	
LF796	BY4742 sir3::URA3	This work	
LF797	BY4742 LEU2::SIR2	This work	
LF798	BY4742 sir3::URA3 LEU2::SIR2	This work	
Figure 5e			
BY4741	See Figure 1c	Invitrogen	
YKO7110	BY4741 sir3Δ::kanMX4	Invitrogen	
YWD381	BY4741 sir4Δ::hphMX4	This work	
Supplementary Table 3. List of antibodies used in this study.

Specificity	Source	Catalog #	Applications in this work
H2AS129ph	Abcam	Ab15083	WB
H3	Abcam	Ab1791	WB, ChIP
H3K4me1	Millipore	07-436	WB
H3K4me2	Millipore	07-030	WB
H3K4me3	Abcam	Ab8580	WB
H3K9ac	Abcam	Ab4441	WB
H3S10ph	Millipore	05-817	WB
H3K14ac	Millipore	06-911	WB
H3K56ac	Shilatifard	N/A	WB
H3K79me2	Abcam	Ab3594	WB
H3K79me3	Abcam	Ab2621	WB
H4	Abcam	Ab31827	WB, ChIP
H4	Millipore	05-858	WB, ChIP
H4S1ph	Berger, G&D, 2006	N/A	WB
H4K12ac	Abcam	Ab1761	WB
H4K16ac	Millipore	07-329	WB, ChIP
H4K16ac	Active Motif	39167	WB, ChIP
Htz1	Abcam	Ab4626	WB
Sir2	Santa Cruz	sc-25753	WB, ChIP

N/A: Not applicable
Supplementary Table 4. List of real-time PCR oligos used in this study.

Location	Oligo Name	Oligo Sequence
ACT1	ACT1-RF	TCGTTCACATTTACGCTGTT
	ACT1-R	CGGCCAAATCGATATTCTCAA
HML	HML-Alpha1RF	TCAATATTATTCGACCACCTCAAGAAAG
	HML-Alpha1R	CGCTTATCTGTGAATTTGGATTT
RDN1	NTS2-1RF	CGGATCGGGGCGATAAT
	NTS2-1R	GCCAAATGCATACGTAATGTG
	RDN58-1RF	GCCAAATGCATACGTAATGTG
	RDN58-1R	GCCAAATGCATACGTAATGTG
SAS2	SAS2-qPCRF	GGAGCCGCGTTATTTTCA
	SAS2-qPCR	TGAAGCAGTAGTACAAAGAA
SIR2	SIR2-qPCRF	GTGCAGTGCCATGGCTCTT
	SIR2-qPCR	TCTCACCAGGTAGTTTCAA
TEL5R	TEL5R-YPF	CGTTTGTTGAGACGAGACGAT
	TEL5R-YP	TGTAGACATACGTTGATTTT
	TEL5R-XRF	TGGAGTTGAGATGGTAAATGG
	TEL5R-XR	CATCCATCTTCTACTTCTCA
	TEL5R-XCF	CCGTGAGTGGAGATGGTAG
	TEL5R-XCR	TCCGATACTCCCTACTCTT
TEL6L	TEL6L-XRF	TGAGTACAAATGCACCCAT
	TEL6L-XR	CCCCTCATCCTGTCTCTCA
	TEL6L-XR	GTGAGGTTGAGATGGTAATGG
TEL6R	TEL6R-F	TGAGGCCATTTCCGTGTA
	TEL6R-R	CCCAGTCTCATTCCCATCAA
	TEL6R-0.2kbF	CCTTTTTGATATAACTTACGAGGAT
	TEL6R-0.2kbR	TCCGAACGCATTCTCCAGAGGAT
	TEL6R-3.6kbF	TCTCGGTGAACGGATGCA
	TEL6R-3.6kbR	CAGCAAAAACCCCGATGA
	TEL6R-20kbF	GCTTGCGTTCGCAAT
	TEL6R-20kbR	GCAGGCCGCCAGACTCTA
TEL7L	TEL7L-XRF	AACCACCATCCATCTCTTACTTACTACTA
	TEL7L-XR	AGAACAACAGTACAGTGAGTAGGACATG
	TEL7L-XCF	TTAGACTAATATGCACCCACATCA
	TEL7L-XCR	TGGGTAAATGGCAACAGGGTAG
TEL9L	TEL9L-XRF	CGAGGCCGCCAGACCTT
	TEL9L-XR	TCCTGTGTTGACGAGATTTAG
	TEL9L-XRF	TCCTGTTGACGAGATTTAG

To be continued on next page
Supplementary Table 4, continued

Location	Oligo Name	Oligo Sequence
TEL9R	TEL9R-XC-RT-F	TGGGTAAATGGCACAGGGTATAG
	TEL9R-XC-RT-R	AAATCAGTACAAATGCACCTCACTCA
	TEL9R-XR-RT-F	TGGTTGATAGTACGAGAGATGGAT
	TEL9R-XR-RT-R	CCACTTTGTTACCCCTGTTCCATTC
TEL10R	TEL10R-XC-RT-F	TGGGTAAATGGCACAGGGTATAG
	TEL10R-XC-RT-R	TGGAGTTGATATGGTAATGGG
	TEL10R-XR-RT-F	CACCACCATCCACCTCTCTACTTACT
	TEL10R-XR-RT-R	TGGAGTTGATATGGTAATGGG
TEL11L	TEL11L-XC-RT-F	CACTAAAACTACGATGCACTACACA
	TEL11L-XC-RT-R	TGGGTAAATGGCACAGGGTATAG
	TEL11L-XR-RT-F	GTCTCAAAACCTACCTACATTAC
	TEL11L-XR-RT-R	TGGGACTGAGTAGAGATGGAATG
TEL15R	TEL15R-XC-RT-F	GCTGAGGCAAGTGCCTTAAG
	TEL15R-XC-RT-R	GGGCATCTCCACTTCATCA
	TEL15R-XR-RT-F	CAACTGGTGAGTAGAAACACAG
	TEL15R-XR-RT-R	CATATCCACACTCCACACACTT
Supplementary Table 5. List of Mean Lifespan (MLS) and p-values for replicative lifespan analysis in this study.

Figure	Strain A	Strain B	p-value
Fig. 3a	sas2Δ (32.4, n=105)	WT (26.7, n=125)	6.5×10^{-4}
Fig. 3b	SIR2-OE (31.4, n=39)	WT (24.2, n=20)	0.03
Fig. 4a	H4K16R (15.6, n=50)	H4WT (17.8, n=50)	0.234
	H4K16Q (11.7, n=50)	H4WT (17.8, n=50)	0.002
Fig. 4c	H3K56R (9.2, n=50)	H3WT (17.8, n=50)	9.0×10^{-6}
	H3K56Q (8.7, n=50)	H3WT (17.8, n=50)	2.4×10^{-6}
Fig. 4d	rtt109Δ (10.1, MATα n=45, MATα n=40)	WT (30.1, MATα n=25, MATα n=40)	1.33×10^{-21}
Fig. 5a	WT+H4K16R (30.4, n=120)	WT+H4WT (37.0, n=120)	2.0×10^{-6}
	WT+H4K16Q (24.6, n=120)	WT+H4WT (37.0, n=120)	1.7×10^{-19}
	sir2Δ+H4K16R (14.6, n=120)	sir2Δ+H4WT (15.0, n=120)	0.93
	sir2Δ+H4K16Q (13.6, n=110)	sir2Δ+H4WT (15.0, n=120)	0.053
Fig. 5b	SIR2-OE+H4K16R (32.7, n=120)	SIR2-OE+H4WT (38.5, n=130)	1.4×10^{-5}
	SIR2-OE+H4K16Q (25.0, n=120)	SIR2-OE+H4WT (38.5, n=130)	8.0×10^{-17}
Fig. 5c	fob1Δ+H4K16R (31.1, n=120)	fob1Δ+H4WT (37.0, n=120)	4.7×10^{-4}
	fob1Δ+H4K16Q (28.0, n=120)	fob1Δ+H4WT (37.0, n=120)	1.7×10^{-8}
Fig. 5d	SIR2-OE (31.2, n=160)	WT (24.1, n=200)	6.4×10^{-8}
	SIR2-OE sir3Δ (24.1, n=200)	WT (24.1, n=200)	1.0
	SIR2-OE sir3Δ (31.2, n=160)	SIR2-OE sir3Δ (24.1, n=200)	7.3×10^{-8}
	sir3Δ (21.8, n=160)	SIR2-OE sir3Δ (24.1, n=200)	8.5×10^{-3}
Fig. 5e	sir3Δ (19.2, n=40)	WT (29.1, n=40)	2.4×10^{-5}
	sir4Δ (21.0, n=40)	WT (29.1, n=40)	1.3×10^{-4}
Supp. Fig. 8	H3K9R (14.9, n=50)	H3WT (17.8, n=50)	0.11
	H3K9Q (21.3, n=50)	H3WT (17.8, n=50)	0.34
Supp. Fig. 9	hst3Δ (MATα n=120, MATα n=40)	WT (28.3, MATα n=140, MATα n=40)	1.8×10^{-26}
	hst4Δ (MATα n=120, MATα n=40)	WT (28.3, MATα n=140, MATα n=40)	1.2×10^{-5}
	hst3Δ hst4Δ (MATα n=119)	WT (28.3, MATα n=140, MATα n=40)	1.0×10^{-52}
Supp. Fig. 12	sgs1Δ+H4K16R (7.5, n=24)	sgs1Δ+H4WT (10.2, n=24)	7.6×10^{-3}
	sgs1Δ+H4K16Q (5.9, n=24)	sgs1Δ+H4WT (10.2, n=24)	1.7×10^{-4}

MLS and the number of cells analyzed (n) are listed in parenthesis.