MINI-REVIEW

Acanthamoeba in Southeast Asia – Overview and Challenges

Chooseel Bunsuwansakul¹, Tooba Mahboob², Kruawan Hounkong³, Sawanya Laohaprapahan¹, Sukhuma Chitpornpan³, Sirirum Javjit⁴, Atipat Yasiri⁵, Sahapat Barusrux¹, Kingkan Bunuuepuech¹, Nongyao Sawangjaroen⁶, Cristina C. Salibay⁷, Chaleunphon Kaewjia⁸, Maria de Lourdes Pereira⁹, Veeranoot Nissapatorn¹*¹

¹School of Allied Health, Southeast Asia Water Team (SEA Water Team) and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand; ²Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; ³Department of Microbiology, Princess of Naradhiwas University, Narathiwat, Thailand; ⁴School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand; ⁵School of Energy and Environment, University of Phayao, Phayao, Thailand; ⁶Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand; ⁷Department of Microbiology, Prince of Songkla University, Songkhla, Thailand; ⁸College of Science and Computer Studies, De La Salle University-Dasmarias, Dasmarias City, Cavite, Philippines; ⁹Faculty of Medical Technology, Rangsit University, Pathum Thani, Thailand; ¹⁰Department of Medical Sciences & CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal

Abstract: Acanthamoeba, one of free-living amoebeae (FLA), remains a high risk of direct contact with this protozoan parasite which is ubiquitous in nature and man-made environment. This pathogenic FLA can cause sight-threatening amoebic keratitis (AK) and fatal granulomatous amoebic encephalitis (GAE) though these cases may not commonly be reported in our clinical settings. Acanthamoeba has been detected from different environmental sources namely; soil, water, hot-spring, swimming pool, air-conditioner, or contact lens storage cases. The identification of Acanthamoeba is based on morphological appearance and molecular techniques using PCR and DNA sequencing for clinico-epidemiological purposes. Recent treatments have long been ineffective against Acanthamoeba cyst, novel anti-Acanthamoeba agents have therefore been extensively investigated. There are efforts to utilize synthetic chemicals, lead compounds from medicinal plant extracts, and animal products to combat Acanthamoeba infection. Applied nanotechnology, an advanced technology, has shown to enhance the anti-Acanthamoeba activity in the encapsulated nanoparticles leading to new therapeutic options. This review attempts to provide an overview of the available data and studies on the occurrence of pathogenic Acanthamoeba among the Association of Southeast Asian Nations (ASEAN) members with the aim of identifying some potential contributing factors such as distribution, demographic profile of the patients, possible source of the parasite, mode of transmission and treatment. Further, this review attempts to provide future direction for prevention and control of the Acanthamoeba infection.

Key words: Acanthamoeba, clinico-epidemiology, medicinal plant, molecular, nanotechnology, Southeast Asia

INTRODUCTION

Acanthamoeba spp. is one of pathogenic free-living amoebeae (FLA) along with Naegleria fowleri, Balamuthia mandrillaris, and Sappinia sp. which are potential to cause rare infection in central nervous system. These protozoan parasites are mostly found in natural soil and water bodies and immunocompro-

mised patients as the main target [1]. Recently, Acanthamoeba spp. are recognized as increasing threat against contact lens wearers and healthy individuals also take some risks on amoebic keratitis (AK) [2]. Understanding on Acanthamoeba infections is therefore crucial but still limited in ASEAN countries even though studies on anti-Acanthamoeba agent do exist. Herein, an overview of Acanthamoeba was put in a nutshell as well as challenges on recent issues to encounter against this amoeba in our regional ASEAN countries including Brunei Darussalam, Cambodia, Indonesia, Lao People’s Democratic Republic (PDR), Malaysia, Myanmar, the Philippines, Singapore, Thailand, and Vietnam.
ORIGIN OF ACANTHAMOEBA

Acanthamoeba spp. is a centrosome-bearing, single-celled, flattened naked amoeba in Order Acanthopodida, Class Centramoebida, Phylum Discosea, Amoebozoa clade in Amorphean domain of Eukaryotic organisms [3]. Term “Acanth” in Greek means spike representing prominent sub-pseudopodia while “amoeba” means alteration like their appearance. The bacteria-phagocytosing protozoa is one of clinical FLA ubiquitous in nature soil and water bodies as well as man-made environment as a secondary decomposer. Ubiquity is implied by presence of antibodies in healthy individuals [4]. *Acanthamoeba* sp. was first recognized as contaminant of *Cryptococcus pararoseus* culture by Castellani in 1930 and named as *Hartmannella castellanii* and then a year later, *Acanthamoeba* spp. because of its double-walled cyst with irregular ectocyst appearance which is different from round and smooth cyst wall of *Hartmannella* spp. [5].

BRIEF BIOLOGY OF ACANTHAMOEBA

Acanthamoeba spp. appears in 2 forms of life cycle: trophozoite (25-40 µm) and cyst (13-20 µm). Trophozoite is an infective stage with amoeboid locomotion whilst cyst is a dormant stage against harsh environment such as temperature and pH imbalance, malnutrition, or presence of anti-Acanthamoeba agents [6]. One third of strength of cyst wall might come from polymer of glycosidic linkages between saccharides while another 2/3 are protein and other components, respectively [7]. Furthermore, the protist acts as potential reservoir or vector of human-pathogenic bacteria, fungi, or viruses while endosymbiont and Acanthamoeba-resistant organisms also are identified [8-10]. Recently, more than 25 species were recorded in NCBI taxonomy database and 20 genotypes were published which T4 is a major genotype associated with human infections [9,11]. For cultivation, xenic culture is obtained by using non-nutrient (Page’s amoeba saline) or PYG (peptone 0.05%, yeast extract 0.05%, glucose 0.1%) agar coated with living or killed bacteria (e.g., *Escherichia coli*) at 25-28°C in the dark for 2-3 days for trophozoite proliferation and 1-2 weeks for encystment while PYG (peptone 2%, yeast extract 0.5%, glucose 0.5%) agar was used for axenic culture [12]. Culture in PYG medium at 4°C would be convenient method for long-term preservation at least 1-4 years [13].

EPIDEMIOLOGY OF ACANTHAMOEBA IN ASEANS

FLA, especially *Acanthamoeba* spp., occur worldwide and have a variety of habitats. Many studies have recorded the wide distribution in soil and water, with differing range of thermal tolerance (Table 1). They have been isolated in untreated natural freshwaters, like lakes, ponds, hot springs and waterfalls [14-17]; and brackish, seawaters, and ocean sediments [18]. They were also isolated from treated waters like domestic water systems, swimming pools, hydrotherapy pools, remedial spas, tap water and drinking water [14,16,19,20]. Unconventional water sources like sewage and aquaria were not spared with the presence of amoebas [18].

Aside from water, *Acanthamoeba* spp. were also present in different types of soils such as agricultural, garden and mining [21-23]. Acanthamoeba genotypes of infected cats and dogs were matched with dry soil and dust. [24]. Acanthamoeba-infected individuals can also be a source of the isolates of organism through sinuses, brain and corneal and skin specimens [22,25-27] and even in necrotic tissues [18].

The presence of *Acanthamoeba* spp. has impacted for the last decades because of the increasing cases of a rare condition AK, a severe infection of the eye cornea associated with intense pain. This has been observed in contact lens wearer population [28]. It is believed that the cause of infection is due to the exposure of the eye to the Acanthamoeba-contaminated contact lens solutions. Acanthamoeba isolated from contact lens storage cases were confirmed [29]. Further, the usual spread of the contaminant is due to poor hygiene and maintenance of the lens; and exposure to contaminated water (swimming pool or other recreational waters) while wearing contact lenses.

However, the disease has also been reported in non-contact lens wearers [18,26,27]. This further affirms the possible contamination through direct contact to contaminated water and soil. The wide dispersal of *Acanthamoeba* onto the environment is due to the wind dispersal of its resistant form, the cysts. Likely that indoor ventilation system, blowing fan, air diffuser and other furniture contaminated with Acanthamoeba can be a cause of spreading indoor [30]. Thus, individuals who are not contact lens wearers but have been constantly exposed to dust particles and soil are also at high risk of infection [25]. It is also important to note that exposure to *Acanthamoeba* can be as simple as accidental splash of contaminated water to the face or bruised skin [14], making a fast and easy transmission.
Table 1. Distribution of environmental Acanthamoeba spp. in Southeast Asia

Country	Type of samples	No. of sample	Positive culture	Acanthamoeba spp. morphology	References
Thailand	Water		FLA	Acanthamoeba spp.	
	Water samples	95	51.58% (49/95)	18.95% (18/95)	Nacapunchai et al. (2001) [23]
	Hot spring water	69	37.68% (25/69)	13% (9/69)	Lekkla et al. (2005) [17]
	Freshwater pond and irrigation canals	84	ND	19.05% (16/84)	Nuprasert et al. (2010) [59]
	Flood water	7	100% (7/7)	14.29% (1/7)	Wannasan et al. (2013) [60]
	Freshwater pond in public parks	300	ND	35% (105/300)	Buppan et al. (2018) [61]
	Water-logged fields	2	100% (2/2)	100% (2/2)	
	Ditches	4	100% (4/4)	NF	
	Paddy fields	6	100% (6/6)	16.67% (1/6)	
	Fish farms	10	50% (5/10)	10% (1/10)	
	Large pond	6	50% (3/6)	NF	
	Natural water	63	ND	15.87% (10/63)	Thammaratana et al. (2016) [15]
	Air		FLA	Acanthamoeba spp.	
	Outdoor air	103	ND	41.7% (43/103)	Yaicharoen et al. (2007) [63]
	Indoor air	64	ND	18.1% (37/64)	
	Soil		FLA	Acanthamoeba spp.	
	Soil swab samples	120	69.17% (83/120)	33.33% (40/120)	Nacapunchai et al. (2001) [23]
	Water-logged fields	2	100% (2/2)	50% (1/2)	Wannasan et al. (2009) [62]
	Ditches	4	75% (3/4)	50% (2/4)	
	Paddy fields	6	100% (6/6)	NF	
	Fish farms	10	50% (5/10)	NF	
	Large pond	6	66.7% (4/6)	16.67% (2/6)	
Malaysia	Water		FLA	Acanthamoeba spp.	
	Domestic tap water	42	ND	2.4% (1/42)	Anisah et al. (2003) [64]
	Swimming pools in Kuala Lumpur	840	54.4% (457/840)	46.19% (388/840)	Int et al. (2010) [32]
	Recreational anthropogenic lake A	7	ND	100% (7/7)	Onichandran et al. (2013) [16]
	Recreational anthropogenic lake B	6	ND	100% (6/6)	
	Tap water	181	29.8% (54/181)	24.9% (45/181)	Gabriel et al. (2019) [65]
	Recreational places	57	66.7% (38/57)	70.2% (40/57)	
	Water dispenser units	3	33.3% (1/3)	66.7% (2/3)	
	Filtered water	4	75% (3/4)	NF	
	Drain water	1	100% (1/1)	NF	
	Paddy fields	4	50% (2/4)	100% (4/4)	
	Drinking water treatment	61	90.2% (55/61)	18.03% (7/11)	Richard et al. (2016) [20]
	Water samples	15	ND	100% (15/15)	Basher et al. (2018) [24]
	Swabs (rocks and stones)	15	ND	73.33% (7/11)	

(Continued to the next page)
Country	Type of samples	No. of sample	Positive culture	Acanthamoeba spp. morphology	References
Soil	Wet soil	15	ND	100% (15/15)	ND ND ND
	Children playgrounds (Dry soil)	15	ND	100% (15/15)	ND ND ND
Other	Indoors wall surface	20	ND	100% (20/20)	ND ND ND
	Outdoor wall surface	20	ND	100% (20/20)	ND ND ND
	Air conditioners in KM	87	ND	23% (20/87)	NF 71.43% (15/21) 28.57% (6/21) Chan et al. (2011) [66]
Vietnam	River	10	ND	30% (3/10)	ND ND ND
	Swimming pools	4	ND	50% (2/4)	ND ND ND
	Pond	3	ND	66.67% (2/3)	ND ND ND
	Lake	6	ND	33.33% (2/6)	ND ND ND
	Tap water	3	ND	33.33% (1/3)	ND ND ND
	Rain/tap tank	2	ND	NF	ND ND ND
	Water dispenser	2	ND	50% (1/2)	ND ND ND
	Well	1	ND	100% (1/1)	ND ND ND
	Spring	1	ND	NF	ND ND ND
	Mineral	1	ND	NF	ND ND ND
	Water	3	ND	100% (3/3)	ND ND ND
Vietnam	Soil	10	ND	100% (10/10)	ND ND ND
	Soil	4	ND	100% (4/4)	ND ND ND
Others (Lao PDR, Myanmar, and Singapore)	Soil	1	359 small sub unit rDNA Sequences of Amoebae	5.95%	ND ND ND
	Mining soil	1		4.76%	ND ND ND
	Treated water in Lao PDR	9	11.11% (1/9)	NF	ND ND ND
	Untreated water in Lao PDR	22	4.55% (1/22)	4.55% (1/22)	ND ND ND
	Treated water in Yangon	11	18.18% (2/11)	NF	ND ND ND
	Untreated water in Yangon	31	16.13% (5/31)	9.68% (3/31)	ND ND ND
	Treated water in Singapore	6	NF	NF	ND ND ND
	Untreated water in Singapore	15	NF	NF	ND ND ND

ND, Not detected; NF, Not found.
Ironically, with the many studies proving the presence of *Acanthamoeba* in different environmental media (soil, water and air), the dearth of information in Southeast Asian (ASEAN) countries is quite a concern, considering that the varying climatic conditions of the region is a favorable habitat for this organism which has an unusual geographic distribution [31].

The ASEAN countries’ tropical condition, favorite tourist destinations during summer, consists of beaches, falls, and lakes are among the popular areas where more people involve with these outdoor activities. The congestion can increase risk of contamination with *Acanthamoeba* especially when the environment is dry during summer and dust particles can be easily spread. Likewise, resorts with swimming pools are occupied the entire summer with local and foreign tourists. Since resorts gain profit only during this time of the year, owners tend to maximize the use of the swimming pools which may compromise the proper cleanup of the swimming facility. This poses the risk to the swimmers, adding to the fact that *Acanthamoeba* can also be resistant to disinfectants [26,32].

The detection of *Acanthamoeba* in soil, water and air in other countries in ASEAN (Fig. 1), confirms that a continual contamination of the environment persists, and this poses a risk
to people dependent on the soil and water for domestic activities, agricultural and farming occupation, and even for recreation. The lack of information in some countries (Cambodia and Brunei) does not mean the absence of Acanthamoeba-contaminated environment. Albeit, this may result to the inability of one country to control the spread of possible diseases associated with Acanthamoeba considering that this amoeba may also harbor pathogenic bacteria or fungi.

CLINICAL SIGNIFICANCE AND DIAGNOSIS

Potential pathogenicity of Acanthamoeba was first observed in monkey kidney cell in vitro as well as intracerebral/intraspinal inoculation in monkeys and intravenous/intranasal inoculation in mice [33,34]. First patient was recognized as GAE in 1972 and a year later, AK [35,36]. Acanthamoeba spp. are therefore considered as rare potential pathogen causing cutaneous lesions, sinusitis, AK, GAE, and disseminated form in human and prefer individuals with underlying diseases or immunocompromised host but AK was frequently reported in immunocompetent patients especially, contact lens wearers [37].

For AK, poor sanitation of contact lens wearer is a potential risk and corneal trauma seem required before trophozoite infection as well as eye secretion after contact lens wore might be preferred by Acanthamoeba [38,39]. Onset of AK is days to weeks with symptoms of tormenting eye pain, redness, photophobia, stromal infiltration leading to sight-threatening condition which are similar and misdiagnosed to Herpes simplex, bacterial or fungal keratitis [39,40]. AK is confirmed by presence of trophozoite with large nucleolus and contractile vacuoles as well as pseudopodia and transparent protrusions of Acanthamoeba from corneal scrapings or biopsies under direct microscopy with several stains. Encystment on non-nutrient agar (NNA) and nucleic acid amplification testing are further investigated for species identification and genotyping, respectively. Taxonomic identification mainly investigated by cyst morphology under microscope [41] and a hypervariable sequence part of 18S small subunit rDNA gene called ASA.S1 by Acanthamoeba-specific primers: JDP1 and JDP2 (amplicon size 467 bps for Neff strain of A. castellanii accession number M13435.1) [42]. Extended or almost complete of 18S rDNA amplicon size provide better solution for genotyping [11,42]. Pathogen broad-spectrum and most effective anti-Acanthamoeba agents against two forms, 0.02% polyhexamethylene biguanide (PHMB) or chlorhexidine, still need antibacterial, antifungal, or aromatic diamidines combination because of resistance of cyst form and PHMB is toxic to human corneal cells [40].

For GAE, a very rare condition, is opportunistic and fatal infection with onset of weeks to months mostly in immunocompromised patients, especially HIV/AIDS patients through skin breaks, respiratory tract, and olfactory epithelium. GAE patient will encounter with neurological signs such as confusion, headache, and stiff neck as well as psychological change, e.g. irritability generally like other brain infections due to effect of edema, necrosis, and hemorrhages in infected part of brain [43]. To confirm GAE, microscopy and culture from CSF remain gold standard methods used after neuroimaging detection of brain lesions while indirect immunofluorescence on tissue and multiplex real-time PCR assay are available [44]. Late/missed diagnosis, blood-brain barrier crossing of antimicrobial, drug side effects, drug combination are still an issue on GAE treatment and only few patients were cured [45,46].

There are many reports on Acanthamoeba infection in ASEAN countries (Table 2). Most infections are AK with contact lens while cases of GAE is rare. Notably, Acanthamoeba can be involved with gastric ulcer and sinusitis and found from nasal swab from healthy individuals and corneal swab from infected animal (Table 2). Undeniably, exposure to soil and contaminated water are potential risk but underlying disease might be another one factor for the infections. Misdiagnosis and delay in diagnosis are common among patients leading to permanent vision blurriness because of injured cornea or deeper layers for AK and death for GAE. These problems are still insolvable till date. Rapid and accurate prognosis is therefore an urgent need for Acanthamoeba infection.

CURRENT CHALLENGES AND FUTURE PERSPECTIVES

Contact with Acanthamoeba spp. is common. Immunocompromised patients should realize this risk and avoid exposure to, especially, natural soil and water bodies even though it is a rare disease but GAE is fatal and AK is vision-threatening [6]. Moreover, no specifically therapeutic course is available for Acanthamoeba spp. infections, in case of GAE. However, commercial drugs for AK are highly toxic due to prolonged treatment duration as well as diagnosis and combination of treatments depends on medical expertise of physician and availability of resources [6,47]. The statement diagnostic is challenge that a new molecular technology can be used in Acan-
Table 2. Examples of *Acanthamoeba* infection cases in Southeast Asia

Ethnicity/Gender	Age (yr)	Clinical sample	Diagnostic method	Condition (Genotype)	Potential history of patients	Treatment	Status after treatment	Status after references
Singaporean male	28	Corneal scraping	Microscopy and culture	AK with *Pseudomonas aeruginosa*	Hit with polyvinyl/chloride pipe, *Before diagnosis*: cefazolin and gentamicin; *After diagnosis*: topical cycloplegics; topical 0.1% hexamidine, 0.02% chlorohexidine, and transplantation	Vision blurriness	Alive with altered mental status	Lim et al. (2018) [68]
Adults and juveniles (48/200 felines and 8/25 canines (56/225 naturally-infected animal) in Malaysia)	-	Corneal swabs	Microscopy, culture, and partial 18S rDNA sequencing	AK (T4)	Dry soil and dust (strain-matched partial 18S rDNA sequence)	-	-	Basher et al. (2018) [24]
Indonesian female	32	Corneal scraping	Microscopy and culture	AK	Monthly disposable soft contact lens wearer for 1 year with tap water to rinse contact lens and case in many occasions	Improved vision blurriness	Alive with altered mental status	Muslim et al. (2018) [19]
Thai female	58	Brain abscess	CT scan, Microscopy, and PCR on partial 18S rDNA sequencing	GAE	Farmer with pulmonary tuberculosis history, Raynaud’s phenomenon, mild myositis, and high antinuclear antibody (speckle type)	Metronidazole and Prednisolone	Loss of follow-up	Wera-Asawapati et al. (2017) [22]
Indonesian male	2	Cerebrospinal fluid	CT scan and microscopy	GAE	Drowning survivor	Intravenous ceftazidime, metronidazole, fluconazole and rifampicin	Alive with altered mental status	Gunawan et al. (2016) [69]
Filipino male	76	Corneal scraping	Microscopy, culture, and partial 18S rDNA sequencing	AK (T4)	Non-contact lens wearer	Chlorhexidine	Corneal scar	Buerano et al. (2014) [27]
12/180 Filipinos	-	Nasal swab	Microscopy, culture, and partial 18S rDNA sequencing	-(T5, 54, T11)	Street sweeper (4/44), Garbage collector (2/37), Garbage sorter (0/16), Landscaper (1/37), Bioreactor laborer (0/4), foremen and supervisors (0/3), and students (1/70)	-	-	Cruz and Rivera (2014) [25]
22 cases in Siriraj hospital, Thailand (1996-2006)	48.3±14.5 for 8 non-contact lens wearers, 30.6±15.3 for 12 contact lens wearers	Corneal scraping	Microscopy and culture	AK	Contact lens wearer with lack of hygiene	Chlorhexidine, polyhexamethylenguanidine or propamidine	Improved vision blurriness and loss of follow-up for some patients	Wanachiwanswin et al. (2012) [70]

(Continued to the next page)
Ethnicity/Gender	Age (yr)	Clinical sample	Diagnostic method	Condition (Genotype)	Potential history of patients	Treatment	Status after treatment	References
9/103 infective keratitis patients with eye surgery	-	-	-	AK	Polymyxin B, chlorhexidine, propamidine isethionate, and transplantation.	Improved vision blurriness	Anshu et al. (2009) [71]	
22 Chinese, 8 Malay, 5 Indian, 7 others (2005-2007 in Singapore)	<20 years-old=13, 21-40 years-old=25, 41-60 years-old=4	Corneal scraping, biopsy, and keratoplasty specimen	Microscopy and culture	AK	Suboptimal hygiene practices	0.02% topical polyhexamethylene biguanide, 0.02% chlorohexidine, 0.1% hexamidine, 0.1% propamidine isethionate, and transplantation.	Vision blurriness	Por et al. (2009) [72]
3 Filipinos		Corneal scraping	Microscopy	AK	Non-contact lens wearer	0.1% topical diclofenac sodium and atropine drops.	Vision blurriness in 2/3 patients	Agahan et al. (2009) [73]
3 AK patients/127 microbial keratitis eyes (2001-2004) in Ramathibodi Hospital, Thailand	Mean age 40±22 for all 127 microbial keratitis patients	Corneal scraping	Microscopy and culture	AK	Contact lens wearers			Sirikul et al. (2009) [74]
Chinese female	13	Corneal scraping	Microscopy and culture	AK	Rigid gas-permeable contact lens wearer	Before diagnosis; Acanthamoebic agents: 0.02% topical polyhexamethylene biguanide, 0.02% chlorohexidine, 0.1% hexamidine, and transplantation. After surgery: 0.1% topical dexamethasone phosphate, 0.5% levofloxacin, same Acanthamoebic agents, and topical preservative-free steroids.	Improved vision blurriness	Parthasarathy and Tan (2007) [75]
Thai female	-	Biopsy and autopsy	Microscopy	GAE	Swimming in a dam	Caldwell-Luc operation, Intravenous amphotericin B, oral ketoconazole, and amoxicillin/clavulanic acid	Cured	Sripanth (2005) [76]
Thai male	36	Nasal exudate	Microscopy and culture	Ameobia co-infection sinusitis (Nagehria sp. and Acanthamoeba sp.)	Diving in a natural pond			Sukthana et al. (2005) [77]
Singaporean female	39	Corneal scraping	Microscopy and culture	AK	Contact lens wearer with multipurpose disinfectant solution	Miscellaneous: Occulentum Acyclovir, Guttia Chloramphenicol, and 0.12% Guttia Prednisolone; After diagnosis: 0.1% gutt propamidine isethionate, 0.02% gutt polyhexamethylene biguanide, and laser In Situ keratomileusis (LASIK) for Myopia	Improved vision blurriness and nearsightedness	Lim and Wei (2004) [78]
Malaysian male	28	Corneal scraping	Microscopy and culture	AK	Construction worker eye washed with water from opemink after sand and dust strucked in the eye	Topical Propamidine isethionate, Chlorohexidine 0.02% and fortified Gentamycin		Kamel et al. (2003) [79]

(Continued to the next page)
Table 2. Continued

Ethnicity/Gender	Age (yr)	Clinical sample	diagnostic method	Condition (Genotype)	Potential history of patients	Treatment	Status after treatment	References
Chinese male	24	Corneal scraping	Microscopy and culture	AK	Non-disposable soft contact lens wearer and no contact lens when swim in lake/pool	Before diagnosis: gutt spersadexoline; After diagnosis: 0.1% gutt propamidine isethionate, and gutt tobramycin	Stromal scar	Cheng et al. (2000) [79]
Malay male	26	Corneal scraping	Microscopy and culture	AK	Non-disposable soft contact lens wearer	Before diagnosis: tetracycline ointment and neosporin eyedrops; After diagnosis: 0.1% gutt propamidine isethionate	Stromal scar	Cheng et al. (2000) [79]
Thai female	58	Corneal scraping	Microscopy, culture and mtDNA-RFLP	AK	Left eye injured by straw fragment and dirt cleaned off from her face using water in a jar near her home after digging in the garden on the outskirts	Before diagnosis: antimicrobial eye drops and ointment; 1% trifluorothymidine eye drops and acyclovir eye ointment; After diagnosis: ketoconazole eye drops, neosporin, polymyxin, neomycin, gramicidin, propamidine isethionate eye drops, dibromopropamidine isethionate eye ointment, and transplantation.	Recurrence necessitating evisceration	Jongwutiwes et al. (2000) [80]
Thai male	30	Corneal scraping	Microscopy, culture, and mtDNA-RFLP	AK	Splashing fish pond water to left eye injured by tiny piece of bamboo	Before diagnosis: miconazole and neosporin eye drops; After diagnosis: propamidine isethionate eye drops, and dibromopropamidine isethionate eye ointment	Vision blurriness	Jongwutiwes et al. (2000) [80]
Thai female	57	Corneal scraping	Microscopy, culture, indirect immunofluorescence testing, and isoenzyme analysis	AK	Pond water for washing	Before diagnosis: spersapolymyxin eyedrops, cefazolin and gentamicin subconjunctival injection, topical neomycin sulfate, polymyxin B, and gramicidin; After diagnosis: 0.006% chlorhexidine hydrochloride with antidiarrhea for recurrence	Improved vision blurriness with cataract	Kosrirukvongs et al. (1999) [81]
Thai male	36	Corneal scraping	Microscopy, culture, indirect immunofluorescence testing, and isoenzyme analysis	AK	Dust	Before diagnosis: topical neomycin sulfate, polymyxin B, and gramicidin; After diagnosis: 0.006% chlorhexidine solution	Loss of follow-up but no recurrence	Kosrirukvongs et al. (1990) [81]
Thai female	33	Corneal scraping	Microscopy, culture, indirect immunofluorescence testing, and isoenzyme analysis	AK	Daily-wear soft contact lenses	Before diagnosis: fortified cefazolin, gentamicin, neomycin, topical tobramycin, topical neomycin sulfate, polymyxin B, and gramicidin; After diagnosis: 0.006% chlorhexidine solution	Improved vision blurriness	Kosrirukvongs et al. (1990) [81]
Thai male	74	Corneal scraping	Microscopy, culture, indirect immunofluorescence testing, and isoenzyme analysis	AK	Plant root exposure	Before diagnosis: antibiotics and plant root, topical neomycin sulfate, polymyxin B, and gramicidin; After diagnosis: 0.006% chlorhexidine solution and 1% topical clotrimazole eyedrops Note: non-compliance	Enucleation	Kosrirukvongs et al. (1990) [81]
Ethnicity/Gender	Age (yr)	Clinical sample	Diagnostic method	Condition (Genotype)	Potential history of patients	Treatment	Status after treatment	References
------------------	---------	-----------------	-------------------	----------------------	-----------------------------	-----------	-----------------------	------------
Thai female	65	Corneal scraping	Microscopy, culture, indirect immunofluorescence testing, and isoenzyme analysis	AK	Unknown	Before diagnosis: topical neomycin sulfate, polymixin B, and gramicidin; After diagnosis: cefazolin and gentamicin eye drops for *P. aeruginosa* as well as chlorhexidine for *Acanthamoeba* sp.	Vision blurriness with cataract before diagnosis; topical neomycin sulfate, polymyxin B, and gramicidin as well as chlorhexidine for *Acanthamoeba* sp. after diagnosis; topical neomycin sulfate, polymyxin B, and gramicidin as well as chlorhexidine for *Acanthamoeba* sp.	Kosrirukwongs et al. (1990) [81]
Malaysian female	40	Corneal scraping	Microscopy	AK with *P. aeruginosa* and *E. coli*	Contact lens wearer	Before diagnosis: Zovirax®; After diagnosis: gentamycin and homatropin eye drops, neosporin, miconazole eyedrops and Brolene® (0.1% Propamidine isethionate)	-	Kamel and Norazah (1995) [82]
Thai female	26	Brain autopsy	Microscopy and indirect immunofluorescence test	GAE	Worker	-	Death	Sangruchi et al. (1994) [83]
Thai male	20	Brain autopsy	Microscopy and indirect immunofluorescence test	GAE	Farmer	-	Death	Sangruchi et al. (1994) [83]
Thai female	42	Biopsy	Radiography and microscopy	Proliferated gastric ulcer with gastric acanthamoebiasis and sepsis from operative site with *E. coli* and *K. pneumoniae*	Immunocompetent patients	Venesection and rapid fluid replacement, antibiotics, gastrojejunostomy, and parenteral ampicillin, gentamicin, and metronidazole	Death	Thamprasert et al. (1993) [84]

AK, Acanthamoeba keratitis; GAE, Granulomatous amoebic encephalitis; -, Not mentioned in the published paper.
Table 3. Anti-Acanthamoeba agents and nanoparticles in ASEAN studies

Chemicals	Nanotechnology	Anti-Acanthamoeba activity against	References
Cyclic samarium complexes		IC₅₀ = 6.5 µg/ml against Acanthamoeba keratitis isolate	Kusrini et al. (2018; Indonesia) [85]
[Sm(Pic)₂(18C₆)] (Pic)		IC₅₀ = 0.7 µg/ml against Acanthamoeba keratitis isolate	Kusrini et al. (2018; Indonesia) [85]
Acyclic samarium complexes		IC₅₀ = 7 µg/ml against Acanthamoeba keratitis isolate	Kusrini et al. (2016; Indonesia) [86]
Terbium complex [Tb(NO₃)₃(OH₂)₉](18C₆)		IC₅₀ = 2.6 µg/ml against Acanthamoeba keratitis isolate	Kusrini et al. (2016; Indonesia) [86]
Tb(NO₃)₃.6H₂O in CH₃CN		IC₅₀ = 1.2 µg/ml against Acanthamoeba keratitis isolate	Kusrini et al. (2016; Indonesia) [86]
18C₆ in CH₃CN		IC₅₀ = 0.7 µg/ml against Acanthamoeba keratitis isolate	Kusrini et al. (2018; Indonesia) [85]
Phosphanegold (I) thiolates		No effect on viability, growth, cellular differentiation, and extracellular proteolytic activities against A. castellanii (ATCC50492)	Siddiqui et al. (2017; Malaysia) [87]
3% DMSO		Encystation induction and excystation inhibition against A. castellanii (ATCC50492)	Siddiqui et al. (2016; Malaysia) [88]
Carbonyl Thiourea derivatives		IC₅₀ = 2.39-8.77 µg/ml against A. castellanii (CCAP 1501/2A) and 3.74-9.30 µg/ml against A. polyphaga (CCAP 1501/3A)	Ibrahim et al. (2014; Malaysia) [89]
Commercial fusaric acid		No effect on viability, growth, cellular differentiation, and extracellular proteolytic activities against A. castellanii (ATCC50492)	Boonman et al. (2012; Thailand) [90]
Betadine® solution	SCC = 0.04% dilution after 24 hr against Acanthamoeba keratitis isolate	-	Roongruangchai et al. (2011; Thailand) [91]
Virkon® solution	SCC = 0.25% dilution after 24 hr against Acanthamoeba keratitis isolate	-	Roongruangchai et al. (2010; Thailand) [92]
Plant products			
Hesperidin, commercial flavonoid from Citrus sp.	Silver nanoparticles stabilized by gum acacia	Encystation and excystation inhibition against A. castellanii (ATCC50492)	Anwar et al. (2019; Malaysia) [93]
Naringin, commercial flavonoid from Citrus sp.	Gold nanoparticles stabilized by gum tragacanth	Encystation and excystation inhibition against A. castellanii (ATCC50492)	Anwar et al. (2019; Malaysia) [93]
Periglaucine A from Pericampylus glaucus	(DL-lactide-co-glycolide) Poly	C₅₀/Cₐ₅₀ = 100 against A. triangularis from environmental water sample	Mahboob et al. (2018; Malaysia) [94]
Betulinic acid from Pericampylus glaucus	(DL-lactide-co-glycolide) Poly	C₅₀/Cₐ₅₀ = 10 against A. triangularis from environmental water sample	Mahboob et al. (2018; Malaysia) [94]
Periglaucine A from Pericampylus glaucus	(DL-lactide-co-glycolide) Poly	C₅₀/Cₐ₅₀ = 8.5 against A. triangularis from environmental water sample	Mahboob et al. (2017; Malaysia) [95]
Betulinic acid from Pericampylus glaucus	(DL-lactide-co-glycolide) Poly	C₅₀/Cₐ₅₀ = 3.75 against A. triangularis from environmental water sample	Mahboob et al. (2017; Malaysia) [95]

(Continued to the next page)
Table 3. Anti-Acanthamoeba agents and their effects

Anti-Acanthamoeba agents	Nanotechnology	Anti-Acanthamoeba activity against	References	
Cysts	**Trophozoites**			
Cinnamic acid from *Cinnamomum cassia*	Gold nanoparticles	Encystation inhibition against *A. castellanii* (ATCC 50492)	Significantly enhanced anti-Acanthamoeba activity against *A. castellanii* (ATCC 50492) when compared with cinnamic acid alone	Anwar et al. (2018; Malaysia) [96]
Ethyl acetate, water, butanol fractions from *Lonicera japonica*	-	-	Significant anti-Acanthamoeba effect against *A. triangularis* trophozoites by ethyl acetate (most potent fraction) and cyst: trophozoites ratio reduction by commercial chlorogenic acid (major constituent in *L. japonica*)	Mahboob et al. (2016; Malaysia) [97]
Pouzolzia indica methanolic extract fraction 2	-	MCC = 1: 4 dilution after 24 hr against Acanthamoeba keratitis isolate	-	Roongruangchai et al. (2011; Thailand) [91]
Pouzolzia indica methanolic extract fraction 3	-	MCC = 1: 8 dilution after 24 hr against Acanthamoeba keratitis isolate	-	Roongruangchai et al. (2010; Thailand) [92]
Supernatants from bacteria isolated from cockroach gut: *Serratia marcescens* and *Escherichia coli* from Madagascar cockroach; two *Klebsiella* spp., *Citrobacter* sp., *Bacillus* sp., *Streptococcus* sp. from Dubia cockroach	-	-	Significant anti-Acanthamoeba effect against *A. castellanii* (ATCC 50492)	Akbar et al. (2019; Malaysia) [98]
Effective microorganisms (EM™)	-	Undiluted, 1:2, 1:4, 1:6 dilution of EM resulted in lower than 40% viable cysts	-	Sampaotong et al. (2016; Thailand) [99]
Fusaric acid from *Fusarium fujikuroi* species complex Tlau3 isolated from *Thunbergia laurifolia*	-	-	IC₅₀ = 0.31 μm against Acanthamoeba keratitis isolate	Boonman et al. (2012; Thailand) [90]
Dehydrofusaric acid from *Fusarium fujikuroi* species complex Tlau3 isolated from *Thunbergia laurifolia*	-	-	IC₅₀ = 0.34 μm against Acanthamoeba keratitis isolate	Boonman et al. (2012; Thailand) [90]
Drugs				
Nystatin, Fluconazole, and Amphotericin B	Gold nanoparticles	-	Enhanced anti-Acanthamoeba activity at 10 μM (Amphotericin B > Fluconazole > Nystatin) against *A. castellanii* (ATCC 50492)	Anwar et al. (2019; Malaysia) [100]
Nystatin, Fluconazole, and Amphotericin B	Silver nanoparticles	-	Enhanced anti-Acanthamoeba activity at 10 μM against *A. castellanii* (ATCC 50492)	Anwar et al. (2018; Malaysia) [101]
Diazepam (Valium), Phenobarbitone (Luminal), and Phenytoin (Dilantin)	And their silver nanoparticles	Anti-Encystation activity (Diazepam and Phenobarbitone activity enhanced with silver nanoparticles and anti-cyst activity (Phenobarbitone and Phenytoin activity enhanced with silver nanoparticles) against *A. castellanii* (ATCC 50492)	Anti-Acanthamoeba activity observed and enhanced activity with silver nanoparticles against *A. castellanii* (ATCC 50492)	Anwar et al. (2018; Malaysia) [102]
Diclofenac sodium and Indomethacin (NSAIDs)	-	Encystation inhibition of A. castellanii (ATCC 50492)	Growth affected but not viability of *A. castellanii*	Siddiqui et al. (2016; Malaysia) [103]

(Continued to the next page)
Table 3. Continued

Anti-Acanthamoeba agents	Nanotechnology	Cysts	Trophozoites	References
Acetaminophen (NSAIDs)	-	No effects on encystation inhibition of A. castellanii (ATCC 50492)	No effects on growth of A. castellanii (ATCC 50492)	Siddiqui et al. (2016; Malaysia) [103]
Bortezomib (proteasome inhibitor)	-	Encystation inhibition against A. castellanii	Static effect on growth but not viability of A. castellanii (ATCC 50492)	Siddiqui et al. (2016; Malaysia) [104]
Lactacystin and active form as clasto-lactacystin β-lactone (proteasome inhibitors)	-	Encystation inhibition and encystation inhibition	No effects on growth and viability of A. castellanii (ATCC 50492)	Siddiqui et al. (2016; Malaysia) [104]
Artesunate (Antimalaria)	-	Presence of cytocidal effect on Acanthamoeba polyphaga-like amoebae were isolated from natural water courses at concentrations of 500-700 μg/ml	Dose-dependent growth inhibition (5-700 μg/ml) against Acanthamoeba polyphaga-like amoebae were isolated from natural water courses	Nacapunchai et al. (2003; Thailand) [105]
Metronidazole	-	No effects (5-1,000 μg/ml)	No effects (5-1,000 μg/ml)	Nacapunchai et al. (2003; Thailand) [105]

Animal products

		Anti-Acanthamoeba activity against A. castellanii (ATCC 50492)	Anti-Acanthamoeba activity against A. castellanii (ATCC 50492)	References
Crocodile (Crocodylus palustris) serum	-	I_{50} = 0.615-0.876 μg/ml against clinical A. castellanii	I_{50} = 0.615-0.876 μg/ml against clinical A. castellanii	Siddiqui et al. (2017; Malaysia) [106]
Sea sponge crude methanol extracts (Aaptos aaptos) from different localities	-	Anti-Acanthamoeba activity against A. castellanii	Anti-Acanthamoeba activity against A. castellanii	Nakissah et al. (2012; Malaysia) [107]

IC, Inhibition concentration; CC, Cytotoxicity concentration; MCC, Minimal cysticidal concentration; -, Not mentioned in the published paper.
doi.ac.th/pharm/search.asp: March 13, 2019). It is therefore noteworthy to strongly recommend for more research works that should be further explored on the plants-based medicinal therapy for severe or deadly infections with *Acanthamoeba* spp.

ACKNOWLEDGMENTS

This work is under the project entitled of “Medicinal under-exploited Thai native plants against *Acanthamoeba*, *Leishmania donovani*, and *Plasmodium falciparum* – Toward South East Asia collaboration initiative (Grant No. 040226) supported by The Royal Patronage of Her Royal Highness Princess Maha Chakri Sirindhorn”. We are also grateful to the Project CICECO-Aveiro Institute of Materials, FCT Ref. UID/CTM/50011/2019.

CONFLICT OF INTEREST

The authors declare no conflict of interest related to this study.

REFERENCES

1. Trabelsi H, Dendana F, Sellami A, Sellami H, Cheikhrouhou F, Neji S, Makni F, Ayadi A. Pathogenic free-living amoebae: epidemiology and clinical review. Pathol Biol 2012; 60: 399-405.
2. Juarez MM, Tartara LI, Cid AG, Real JP, Bermudez JM, Rajal VB, Palma SD. *Acanthamoeba* in the eye, can the parasite hide even more? Latest developments on the disease. Cont Lens Anterior Eye 2018; 41: 245-251.
3. Adl SM, Bass D, Lane CE, Lukes J, Schoch CI, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P, Čepička I, Chistyakova L, Del Campo J, Dunthorn M, Edwards B, Eglt V, Guillou L, Hamp L, Heiss AA, Hoppenrath M, James TY, Karnkowski A, Karpov S, Kim E, Kolisko M, Kudryavtsev A, Lahr DJG, Lara E, Le Gall I, Lynn DH, Mann DG, Massana R, Mitchell EAD, Morrow C, Park JS, Pawlowski JW, Powell MJ, Richter DJ, Ruecket S, Shadwick I, Shimano S, Spiegel FW, Tortuella G, Youssef N, Zlatogursky V, Zhang Q. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol 2019; 66: 4-119.
4. Cursons RT, Brown TJ, Keys EA, Moriarty KM, Till D. Immunity to pathogenic free-living amoebae: role of humoral antibody. Infect Immun 1980; 29: 401-407.
5. Khan NA. *Acanthamoeba* Biology and pathogenesis. University of Nottingham, UK. Caister Academic Press. Act Parasit 2009; 54: 1230-2821.
6. Marciano-Cabral E, Cabral G. *Acanthamoeba* spp. as agents of disease in humans. Clin Microbiol Rev 2003; 16: 273-307.
7. Anwar A, Khan NA, Siddiqui R. Combating *Acanthamoeba* spp. cysts: what are the options? Parasit Vectors 2018; 11: 26.
8. Scheid P, Schwarzenberger R. *Acanthamoeba* spp. as vehicle and reservoir of adenoviruses. Parasitol Res 2012; 111: 479-485.
9. Siddiqui R, Khan NA. Biology and pathogenesis of *Acanthamoeba*. Parasit Vectors 2012; 5: 6.
10. Guimaraes AJ, Gomes KX, Cortines JR, Peralta JM, Peralta RH. *Acanthamoeba* spp. as a universal host for pathogenic microorganisms: One bridge from environment to host virulence. Microbiol Res 2016; 193: 30-38.
11. Corsaro D, Walochnik J, Köhlsler M, Rott MB. *Acanthamoeba* misidentification and multiple labels: redefining genotypes T16, T19, and T20 and proposal for *Acanthamoeba micheli* sp. nov. (genotype T19). Parasitol Res 2015; 114: 2481-2490.
12. Schuster FL. Cultivation of pathogenic and opportunistic free-living amebae. Clin Microbiol Rev 2002; 15: 342-354.
13. Axelsson-Olsson D, Olofsson J, Ellström P, Waldenström J, Olsen B. A simple method for long-term storage of *Acanthamoeba* species. Parasitol Res 2009; 104: 935-937.
14. Majid MA, Mahboob T, Mong BG, Jaturas N, Richard RL, Tian-Chye T, Phimphila A, Mahaphonh P, Aye KN, Aung WL, Chua J, Ziegler AD, Yusiri A, Sawangjaroen N, Lim VA, Nissapatorn V. Pathogenic waterborne free-living amoebae: An update from selected Southeast Asian countries. PLoS One 2017; 12: e0169448.
15. Thammaratana T, Laummaunwai P, Boonmara T. Isolation and identification of *Acanthamoeba* species from natural water sources in the northeastern part of Thailand. Parasitol Res 2016; 115: 1705-1709.
16. Onichandran S, Kumar T, Lim VA, Sawangjaroen N, Andiappan H, Saliboy CC, Chye TT, Ithoi I, Dungca JZ, Sulaiman WY, Ling LY, Nissapatorn V. Waterborne parasites and physico-chemical assessment of selected lakes in Malaysia. Parasitol Res 2013; 112: 4185-4191.
17. Lekkla A, Sutthikornchai C, Bovornkiti S, Sukthana Y. Free-living ameba contamination in natural hot springs in Thailand. Southeast Asian J Trop Med Public Health 2005; 36: 5.
18. Visvesvara GS, Stehr Green JK. Epidemiology of free-living ameba infections. J Protozool 1990; 37: 25s-33s.
19. Muslim F, Sitompul R, Edwar L. *Acanthamoeba keratitis*: a challenge in diagnosis and the role of amniotic membrane transplant as an alternative therapy. Med J Indones 2018; 27: 299-303.
20. Richard R, Ithoi I, Abd Majid M, Wan Sulaiman W, Tan T, Nissapatorn V, Lim Y. Monitoring of waterborne parasites in two drinking water treatment plants: a study in Sarawak, Malaysia. Int J Environ Res Public Health 2016; 13: 641.
21. Denet E, Coupaut-Goutaland B, Nazaret S, Pelandakis M, Favre-Bonté S. Diversity of free-living amoebae in soils and their associated human opportunistic bacteria. Parasitol Res 2017; 116: 3151-3162.
22. Wara-Asawapati S, Intapan PM, Chotmongkol V. *Acanthamoeba* Brain abscess confirmed by molecular identification. Am J Trop Med Hyg 2017; 97: 307.
23. Nacapunchai D, Kino H, Ruangsittichai C, Sruwichai P, Ishih A,
Terada M. A brief survey of free-living amebae in Thailand and Hamamatsu district, Japan. Southeast Asian J Trop Med Public Health 2001; 32: 179-182.

24. Bashar MHA, Ithoi I, Mahmud R, Abdul salam AM, Foead AI, Dawal S, Atroosh WM, Nissapatom V, Abdullah WO. Occurrence of *Acanthamoeba* genotypes in Central West Malaysian environments. Acta Trop 2018; 178: 219-228.

25. Cruz AR, Rivera WL. Genotype analysis of *Acanthamoeba* isolated from human nasal swabs in the Philippines. Asian Pac J Trop Med 2014; 7 (suppl): 74-78.

26. Mohamed Kamel AG, Faridah H, Yusof S, Norazah A, Nakisah MA. A case of non-contact lens related *Acanthamoeba* keratitis in Malaysia. Malays J Microbiol 2005; 1: 58-60.

27. Buerano CC, Trinidad AD, Fajardo LS, Cua IY, Badig MO, Natividad FF. Isolation of *Acanthamoeba* genotype T4 from a non-contact lens wearer from the Philippines. Trop Med Int Health 2014; 42: 145-147.

28. Ibrahim YW, Boase DL, Cree IA. Factors affecting the epidemiology of *Acanthamoeba* keratitis. Ophthalmic Epidemiol 2007; 14: 53-60.

29. Rivera WL, Adao DE. Identification of the 18S-ribosomal-DNA genotypes of *Acanthamoeba* isolates from the Philippines. Ann Trop Med Parasitol 2008; 102: 671-677.

30. Ooi SS, Mak JW, Chen DK, Ambu S. The correlation of *Acanthamoeba* from the ventilation system with other environmental parameters in commercial buildings as possible indicator for indoor air quality. Ind Health 2017; 55: 35-45.

31. Joslin CE, Tu EY, McMahon TT, Passaro DJ, Stayner LT, Sugar J. Epidemiological characteristics of a Chicago-area *Acanthamoeba* keratitis outbreak. Am J Ophthalmol 2006; 142: 212-217.

32. Init I, Lau YL, Fadzliun AA, Foead AI, Neilson RS, Nissapatom V. Detection of free living amoebae, *Acanthamoeba* and *Naegleria*, in swimming pools, Malaysia. Trop Biomed 2010; 27: 566-577.

33. Cullerton CG, Smith JW, Minner JR. *Acanthamoeba*: observations on animal pathogenicity. Science 1958; 127: 1506.

34. Jahnes WG, Fullmer HM, Li CP. Free living amoebae as contaminants in monkey kidney tissue culture. Proc Soc Exp Biol Med 1957; 96: 484-488.

35. Jager BV, Stamm WP. Brain abscesses caused by free-living amoeba probably of the genus *Hartmannella* in a patient with Hodgkin’s disease. Lancet 1972; 300: 1343-1345.

36. Nagington J, Watson PG, Playfair TJ, McGill J, Jones B, Steele AM. Amoebic infection of the eye. Lancet 1974; 304: 1537-1540.

37. Schuster FL, Visvesvara GS. Free-living amoeba as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 2004; 34: 1001-1027.

38. Niederkorn JY, Alizadeh H, Leher H, McCulley JP. The pathogenesis of *Acanthamoeba* keratitis. Microbes Infect 1999; 1: 437-443.

39. Khan NA. *Acanthamoeba*: biology and increasing importance in human health. FEMS Microbiol Rev 2006; 30: 564-595.

40. Lorenzo-Morales J, Khan NA, Walochnik J. An update on *Acanthamoeba* keratitis: diagnosis, pathogenesis and treatment. Parasite 2015; 22: 10.

41. Page FC. A New Key to Freshwater and Soil Gymna-moebae with instructions for cultivation. Freshwater Biological Association. Cumbria, UK. 1988, pp 1-122.

42. Schroeder JM, Booton GC, Hay J, Nisiz IA, Seal DV, Markus MB, Fuerst PA, Byers TJ. Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of *Acanthamoeba* from humans with keratitis and from sewage sludge. J Clin Microbiol 2001; 39: 1903-1911.

43. Duggal SD, Rongpharip S, Duggal AK, Kumar A, Biswal I. Role of *Acanthamoeba* in granulomatous encephalitis: a review. J Infect Dis Immune Ther 2017; 1: 2.

44. Qvarnstrom Y, Visvesvara GS, Siriam R, da Silva AI. Multiplex real-time PCR assay for simultaneous detection of *Acanthamoeba* spp., *Balamuthia mandrillaris*, and *Naegleria fowleri*. J Clin Microbiol 2006; 44: 3589-3595.

45. Aichelburg AC, Walochnik J, Assadian O, Prosch H, Steuer A, Perneckzy G, Visvesvara GS, Aspöck H, Vetter N. Successful treatment of disseminated *Acanthamoeba* sp. infection with miltefosine. Emerg Infect Dis 2008; 14: 1743-1746.

46. Zamora A, Henderson H, Swiatlo E. *Acanthamoeba* encephalitis: a case report and review of therapy. Surg Neurol Int 2014; 5: 68.

47. Maycock NJ, Jayaowal R. Update on *Acanthamoeba* keratitis: diagnosis, treatment, and outcomes. Cornea 2016; 35: 713-720.

48. Carnt N, Robaei D, Minassian DC, Dart JK. *Acanthamoeba* keratitis in 194 patients: risk factors for bad outcomes and severe inflammatory complications. Br J Ophthalmol 2018; 102: 1431-1435.

49. Parija SC, Dinoop KP, Venugopal H. Management of granulomatous amebic encephalitis: Laboratory diagnosis and treatment. Trop Parasitol 2015; 5: 23-28.

50. Dua HS, Aralikatti A, Said DG. Rapid diagnosis of *Acanthamoeba* keratitis. Br J Ophthalmol 2009; 93: 1555-1556.

51. Petry F, Torzewski M, Bohl J, Wilhelm-Schwenkmezger T, Scheid P, Walochnik J, Michel R, Zöller I, Werhahn KJ, Bhakdi S, Lackner KJ. Early diagnosis of *Acanthamoeba* infection during routine cytological examination of cerebrospinal fluid. J Clin Microbiol 2006; 44: 1903-1904.

52. Bloch KC, Schuster FL. Inability to make a premortem diagnosis of *Acanthamoeba* species infection in a patient with fatal granulomatous amebic encephalitis. J Clin Microbiol 2005; 43: 3003-3006.

53. Khan NA. Granulomatous amoebic encephalitis: clinical diagnosis and management. Am J Infect Dis 2005; 1: 79-83.

54. Lindsay RG, Watters G, Johnson R, Ormonde SE, Snibson GR. *Acanthamoeba* keratitis and contact lens wear. Clin Exp Optom 2007; 90: 351-360.

55. Brown AC, Ross J, Jones DB, Collier SA, Ayers TL, Hoekstra RM, Backensen B, Roy SL, Beach MJ, Yoder JS, *Acanthamoeba* keratitis investigation team. Risk factors for *Acanthamoeba* keratitis-a multistate case–control study, 2008-2011. Eye Contact Lens
2018; 44 (suppl): 173-178.

56. Johnston SP, Sriram R, Qamstrom Y, Roy S, Verani J, Yoder J, Lorick S, Roberts J, Beach MJ, Visvesvara G. Resistance of Acanthamoeba cysts to disinfection in multiple contact lens solutions. J Clin Microbiol 2009; 47: 2040-2045.

57. Siddiqui R, Aqeel Y, Khan NA. The development of drugs against Acanthamoeba infections. Antimicrob Agents Chemother 2016; 60: 6441-6450.

58. Khan NA, Ong TY, Siddiqui R. Targeting brain-eating amoebae. ACS Chem Neurosci 2017; 8: 687-688.

59. Nuprasert W, Putapornpit C, Pariyakanon L, Jongwutiwes S. Identification of a novel T17 genotype of Acanthamoeba from environmental isolates and T10 genotype causing keratitis in Thailand. J Clin Microbiol 2010; 48: 4636-4640.

60. Wannasan A, Uparanukraw P, Songsangehun A, Morakote N. Potentially pathogenic free-living amoebae in some flood-affected areas during 2011 Chiang Mai flood. Rev Inst Med Trop Sao Paulo 2013; 55: 411-416.

61. Buppan P., Meeboon C., Klamsiri T., Promyuttana W., Koh S. Acanthamoeba, Balamuthia, Naegleria spp. in Water Samples from the Public Park of Thailand. J Res Unit Sci Technol Environ Learning 2018; 5: 36-45.

62. Wannasan A, Chaiwong P, Bunchoo M, Morakote N. Occurrence of thermotolerant Naegleria and Acanthamoeba in some natural water sources in Chiang Mai. Chiang Mai Med J 2009; 48: 117-124.

63. Yaicharoen R, Ngrenrangarmlet W, Thongmee P, Dansaman W. Survey of Acanthamoeba spp. in dust from Bangkok and suburban areas. Bull Chiang Mai Assoc Med Sci 2007; 40: 46.

64. Anish N, Yusof S, Rahimah I, Norhayati M. Isolation of Acanthamoeba spp. from domestic water tap. Trop Biomed 2003; 20: 87-89.

65. Gabriel S, Khan NA, Siddiqui R. Occurrence of free-living amoebae (Acanthamoeba, Balamuthia, Naegleria) in water samples in Peninsular Malaysia. J Water Health 2019; 17: 160-171.

66. Chan LL, Mak JW, Low YT, Koh TT, Ithoi I, Mohamed SM. Isolation and characterization of Acanthamoeba spp. from air-conditioners in Kuala Lumpur, Malaysia. Acta Trop 2011; 117: 23-30.

67. Onichadrnan S, Kumar T, Salibay CC, Dungca JZ, Tabo HA, Tabo N, Tan TC, Lim YA, Sawangjaroen N, Phiriysamith S, Andiappan H, Aandiappan H, Ithoi I, Lau YL, Nissapatorn V. Waterborne parasites: a current status from the Philippines. Parasit Vectors 2014; 7: 244.

68. Lim BX, Koh VI, Ray M. Microbial characteristics of post-traumatic infective keratitis. Eur J Ophthalmol 2018; 28: 13-18.

69. Gunawan PI, Idarto A, Saharsa D. Acanthamoeba infection in a drowning child. Ethiopi J Health Res 2016; 26: 289-292.

70. Wanachiwanawin D, Booranapong W, Kosriukvongs P. Clinical features of Acanthamoeba keratitis in contact lens wearers and non-wearers. Southeast Asian J Trop Med Public Health 2012; 43: 549.

71. Anshu A, Parthasarathy A, Mehta JS, Htoo HM, Tan DT. Outcomes of therapeutic deep lamellar keratoplasty and penetrating keratoplasty for advanced infectious keratitis: a comparative study. Ophthalmol 2009; 116: 615-623.

72. Por YM, Mehta JS, Chua JL, Koh TH, Khor WB, Fong AC, Lim JW, Heng WJ, Loh RS, Lim I, Tan DT. Acanthamoeba keratitis associated with contact lens wear in Singapore. Am J Ophthalmol 2009; 148: 7-12.

73. Agahan AL, Lim RB, Valenton MJ. Successful treatment of Acanthamoeba keratitis without anti-amoebic agents. Ann Acad Med Singapore 2009; 38: 175-176.

74. Sirikul T, Prabprutalatong T, Smathivat A, Chuck RS, Vongthongseri A. Predisposing factors and etiologic diagnosis of ulcerative keratitis. Cornea 2008; 27: 283-287.

75. Parthasarathy A, Tan DT. Deep lamellar keratoplasty for Acanthamoeba keratitis. Cornea. 2007; 26: 1021-1023.

76. Siriphan C. Amphizoic amoebae: pathogenic free-living protozoa; review of the literature and review of cases in Thailand. J Med Assoc Thai 2005; 88: 701-707.

77. Sukhthana Y, Rigunti M, Siriphan C, Kusolsuk T, Chintrakarn C, Kulpaditharom B. An exotic sinusitis. Trans R Soc Trop Med Hyg 2005; 99: 555-557.

78. Lim L, Wei RH. Laser in situ keratomileusis treatment for myopia after Acanthamoeba keratitis. Eye Contact Lens 2004; 30: 103-104.

79. Cheng CL, Ling ML, Lim I. A case series of Acanthamoeba keratitis in Singapore. Singapore Med J 2000; 41: 550-553.

80. Jongwutiwes S, Pariyakanon L, Charoenkorn M, Yagita K, Endo T. Heterogeneity in cyst morphology within isolates of Acanthamoeba from keratitis patients in Thailand. Trop Med Inter Health 2000; 5: 335-340.

81. Kosriukvongs P, Wanachiwanawin D, Visvesvara GS. Treatment of Acanthamoeba keratitis with chlorhexidine. Ophthalmol 1999; 106: 798-802.

82. Kamel AM, Norazah A. First case of Acanthamoeba keratitis in Malaysia. Trans R Soc Trop Med Hyg 1995; 89: 652.

83. Sangruchi T, Martinez AJ, Visvesvara GS. Spontaneous granulomatous amebic encephalitis: report of four cases from Thailand. Southeast Asian J Trop Med Public Health 1994; 25: 309.

84. Thanprasert K, Khunamormpong S, Morakote N. Acanthamoeba infection of peptic ulcer. Ann Trop Med Parasitol 1993; 87: 403-405.

85. Kusrini E, Hashim F, Gunawan C, Mann R, Azmi WN, Amin NM. Anti-amoebic activity of acyclic and cyclic-samarium complexes on Acanthamoeba. Parasitol Res 2018; 117: 1409-1417.

86. Kusrini E, Hashim F, Azmi WN, Amin NM, Estuningtyas A. A novel antiamoebic agent against Acanthamoeba sp.-A causative agent for eye keratitis infection. Spectrochim Acta A Mol Biol Spectrosc. 2016; 153: 714-721.

87. Siddiqui R, Aqeel Y, Khan NA. The effects of phosphategold (I) thiolates on the biological properties of Acanthamoeba castellanii belonging to the T4 genotype. J Negat Results Biomed 2017; 16: 6.

88. Siddiqui R, Aqeel Y, Khan NA. The use of dimethyl sulfoxide in
contact lens disinfectants is a potential preventative strategy against contracting *Acanthamoeba* keratitis. Cont Lens Anterior Eye 2016; 39: 389-393.

89. Ibrahim M, Mohd Yusof M, Amin N. Anti-amoebic properties of carbonyl thiourea derivatives. Molecules 2014; 19: 5191-5204.

90. Boonman N, Prachya S, Boonmee A, Kittakoop P, Wiyakrutta S, Srribolmas N, Warit S, Dharmkrong-At Chusattayanond A. In vitro acanthamoebicidal activity of fusaric acid and dehydrofurassic acid from an endophytic fungus *Fusarium* sp. Tlau3. Plancta Med 2012; 78: 1562-1567.

91. Roongruangchai J, Sookkua T, Kummalue T, Roongruangchai K. *Pouzolzia indica* methanolic extract fraction 2 and povidone-iodine induced changes in the cyst of *Acanthamoeba* spp.: light and electron microscopic studies. J Med Assoc Thai 2011; 92: 1492.

92. Roongruangchai K, Kummalue T, Sookkua T, Roongruangchai J. Comparison of *Pouzolzia indica* methanolic extract and Virkon® against cysts of *Acanthamoeba* spp. Southeast Asian J Trop Med Public Health 2010; 41: 776.

93. Anwar A, Masri A, Rao K, Rajendran K, Khan NA, Shah MR, Siddiqui R. Antimicrobial activities of green synthesized gum-stabilized nanoparticles loaded with flavonoids. Sci Rep 2019; 9: 3122.

94. Mahboob T, Navaz M, Tian-Chye T, Samudi C, Wiart C, Nissapatorn V. Preparation of poly (dl-lactide-co-glycolide) nanoparticles encapsulated with perglucosine A and betulinic acid for in vitro anti-*Acanthamoeba* and cytotoxicity activities. Pathogens 2018; 7: 62.

95. Mahboob T, Azlan AM, Shipton FN, Boonroumkaew P, Azman NS, Sekaran SD, Ithoi I, Tan TC, Samudi C, Wiart C, Nissapatorn V. *Acanthamoeba* bioactivity of perglucosine A and betulinic acid from *Pericampylus glaucus* (Lam.) Merr. in vitro. Exp Parasitol 2017; 183: 160-166.

96. Anwar A, Siddiqui R, Shah MR, Khan NA. Gold nanoparticle conjugation enhances antiacanthamoebic properties of *Lonicera japonica* Thunb. and its major constituent chlorogenic acid in vitro. Asian Pac J Trop Med 2016; 9: 866-871.

97. Siddiqui R, Lakhundi S, Iqbal J, Khan NA. Silver nanoparticle conjugation affects antiacanthamoebic activities of amphotericin B, nystatin, and fluconazole. Parasitol Res 2018; 117: 265-271.

98. Siddiqui R, Saleem S, Khan NA. The effect of peptidic and non-peptidic proteasome inhibitors on the biological properties of *Acanthamoeba castellanii* belonging to the T4 genotype. Exp Parasitol 2016; 168: 45-50.

99. Siddiqui R, Jeyamogan S, Ali SM, Abbas F, Sagathevan KA, Khan NA. Crocodiles and alligators: antiamoebic and antitumor compounds of crocodiles. Exp Parasitol 2016; 168: 16-24.

100. Nacapunchai D, Phadungkul K, Kaewcharus S. In vitro effect of artesunate against *Acanthamoeba* spp. Southeast Asian J Trop Med Public Health 2003; 33: 49-52.

101. Siddiqui R, Jeyamogan S, Ali SM, Abbas F, Sagathevan KA, Khan NA. Crocodiles and alligators: antiamoebic and antitumor compounds of crocodiles. Exp Parasitol 2017; 183: 194-200.
