Conventional large-dimensional latent factor model assumes the exposures to factors (factor loadings) are constant over time.

Observation: Asset prices’ exposures to the market (and other risk factors) are time-varying.

Example: Term-structure factor exposure is different in recessions and booms.

Figure: PCA Factor Loadings for Treasuries in Boom and Recession

(a) Level Factor (b) Slope Factor (c) Curvature Factor
This paper

Research Question:

1. Find latent factors and loadings that are state-dependent.
2. Test if factor model is state-dependent.

Key elements of estimator

1. Statistical factors instead of pre-specified (and potentially miss-specified) factors
2. Uses information from large panel data sets: Many cross-section units with many time observations
3. Factor structure can be time-varying as a general non-linear function of the state process
Contribution of this paper

Contribution

- **Theoretical**
 - PCA estimator combined with kernel projection for factors, state-varying factor loadings and common components
 - Inferential theory for estimators for \(N, T \to \infty \):
 - consistency
 - asymptotic normal distribution and standard errors
 - Test for state-dependency of latent factor model
 - Generalized correlation test statistic detects for which states model changes
 - Non-standard superconsistency

- **Empirical**
 - State-dependency of factor loadings in US Treasury securities
Literature (partial list)

- Large-dimensional factor models with constant loadings
 - Bai (2003): Distribution theory
 - Fan et al. (2013): Sparse matrices in factor modeling

- Large-dimensional factor models with time-varying loadings
 - Su and Wang (2017): Local time-window
 - Pelger (2018), Aït-Sahalia and Xiu (2017): High-frequency
 - Fan et al. (2016): Projected PCA

- Large-dimensional factor models with structural breaks
 - Stock and Watson (2009): Inconsistency
 - Breitung and Eickmeier (2011), Chen et al. (2014): Detection
The Model

State-varying factor model

- X_{it} is the observed data for the i-th cross-section unit at time t
- State variable S_t at time t

$$X_{it} = \Lambda_i(S_t) F_t + e_{it} \quad i = 1, \ldots N, t = 1, \ldots T$$

- N cross-section units (large), time horizon T (large)
- r systematic factors (fixed)
- Factors F, loadings $\Lambda(S_t)$, idiosyncratic components e are unknown
- Data X and state process S_t observed
Examples (with one factor) equivalent to multi-factor representation

- Loadings linear in state: \(\Lambda_i(S_t) = \Lambda_{i,1} + \Lambda_{i,2}S_t \)

\[
X_{it} = \underbrace{\Lambda_{i,1} F_t}_{F_{t,1}} + \underbrace{\Lambda_{i,2} (S_t F_t)}_{F_{t,2}} + e_{it}
\]

- Loadings nonlinear in discrete state: \(\Lambda_i(S_t) = g_i(S_t), \ S_t \in \{s_1, s_2\} \)

\[
X_{it} = \underbrace{g_i(s_1) \mathbb{1}_{\{s_t=s_1\}} F_t}_{\Lambda_{i,1}} + \underbrace{g_i(s_2) \mathbb{1}_{\{s_t=s_2\}} F_t}_{\Lambda_{i,2}} + e_{it}
\]

Our model

- Loadings nonlinear in non-discrete state: \(\Lambda_i(S_t) = g_i(S_t) \) with continuous distribution function for \(S_t \)

\(\Rightarrow \) Cumbersome/No multi-factor representation
The Model: Main Assumptions

Approximate state-varying factor model

- Systematic factors explain a large portion of the variance
- Idiosyncratic risk is nonsystematic: Weak time-series and cross-sectional correlation
- State: recurrent (infinite observations around the state to condition on) with continuous stationary PDF
- Factor Loadings: deterministic functions of the state and the functions are Lipschitz continuous (observations in the nearby state are useful)

\[\exists C, \| \Lambda_i(s + \Delta s) - \Lambda_i(s) \| \leq C |\Delta s| \]
The Model: Extension

Robustness to noise in state process

- State process is observed with noise:
 \[X_t = \Lambda(S_t) F_t + \mathcal{E}_t F_t + e_t = \Lambda(S_t) F_t + \psi_t + e_t \]

- Under weak conditions noise can be treated like idiosyncratic noise.
 \[\Rightarrow \text{All results hold!} \]

Missing relevant states

- Assume loadings depend on multiple states but we only condition on a subset of them.
- State-varying factor model explains strictly more variance than constant loading model.
 \[\Rightarrow \text{More parsimonious representation even under misspecification.} \]
The Model: Intuition

Intuition for Estimation

- **Constant loadings:**
 Loadings are principal components of covariance matrix

 \[
 \text{Cov}(X_t) = \Lambda \text{Cov}(F_t)\Lambda^\top + \text{Cov}(e_t).
 \]

- **State-varying loadings:**
 Loadings for \(S_t = s \) are principal components of covariance matrix conditioned on the state \(S_t = s \):

 \[
 \text{Cov}(X_t|S_t = s) = \Lambda(s)\text{Cov}(F_t|S_t = s)\Lambda(s)^\top + \text{Cov}(e_t|S_t = s).
 \]

\[\Rightarrow\] Intuition: Estimate conditional covariance matrix \(\text{Cov}(X_t|S_t = s) \) with kernel projection and apply PCA to it.
The Model: Nonparametric Estimation

Objective function and nonparametric estimation

The estimators minimize mean squared error conditioned on state:

$$\hat{F}^s, \hat{\Lambda}(s) = \arg\min_{F^s, \Lambda(s)} \frac{1}{N T(s)} \sum_{i=1}^{N} \sum_{t=1}^{T} K_s(S_t)(X_{it} - \Lambda_i(s)' F_t)^2$$

- Kernel function $K_s(S_t) = \frac{1}{h} K\left(\frac{S_t - s}{h}\right)$ (e.g. $K(u) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{u^2}{2}\right\}$)
- $T(s) = \sum_{t=1}^{T} K_s(S_t)$, $\frac{T(s)}{T} \xrightarrow{p} \pi(s)$ (stationary density of $S_t = s$)
- Bandwidth parameter h determines local “state window”
The Model: Nonparametric Estimation

Nonparametric estimation

- Project square root of kernel on the data and factors
 \[X_{it}^s = K_s^{1/2}(S_t)X_{it} \quad F_t^s = K_s^{1/2}(S_t)F_t \]

- PCA solves optimization problem
 \[\hat{F}_s, \hat{\Lambda}(s) = \arg \min_{F^s, \Lambda(s)} \frac{1}{NT(s)} \sum_{i=1}^N \sum_{t=1}^T (X_{it}^s - \Lambda_i(s)'F_t^s)^2 \]

⇒ Apply PCA to conditional covariance matrix

- \(\hat{F}^s \) are the eigenvectors corresponding to top \(k \) eigenvalues of estimated conditional covariance matrix \(\frac{1}{NT(s)}(X^s)'X^s \)

- \(\hat{\Lambda}(s) \) are coefficients from regressing \(X^s \) on \(\hat{F}^s \)
The Model: Nonparametric Estimation

Major challenge: Bias term

\[X^s_t = \Lambda(S_t)F^s_t + e^s_t = \sum_{t=1}^T \hat{F}^s_t + e^s_t + (\Lambda(S_t) - \Lambda(s))F^s_t. \]

- \[\Delta X^s_{it} = \Lambda_i(S_t)F^s_t - \Lambda_i(s)F^s_t = O_p(h) \]
- Kernel bias complicates problem and lowers convergence rates

Theorem: Consistency

Assume \(N, Th \to \infty \) and \(\delta_{NT,h}h \to 0 \) with \(\delta_{NT,h} = \min(\sqrt{N}, \sqrt{Th}) \):

\[
\begin{align*}
\delta^2_{NT,h} \left(\frac{1}{T} \sum_{t=1}^T \left\| \hat{F}^s_t - (H^s)^T F^s_t \right\|^2 \right) &= O_p(1) \\
\delta^2_{NT,h} \left(\frac{1}{N} \sum_{i=1}^N \left\| \hat{\Lambda}_i(s) - (H^s)^{-1} \Lambda_i(s) \right\|^2 \right) &= O_p(1)
\end{align*}
\]

for known full rank matrix \(H^s \)
Asymptotic Results

Limiting Distribution of Estimated Factors

Theorem (Factors)

Assume $\sqrt{Nh}/(Th) \to 0$, $Nh \to \infty$ and $Nh^2 \to 0$. Then

$$
\sqrt{N} \left(K_s^{-1/2}(S_t) \hat{F}_t - (H^s)'F_t \right)
$$

$$
= \left(V_r^s \right)^{-1} \left(\hat{F}_s'F^s \right) \frac{1}{T} \sqrt{N} \sum_{i=1}^{N} \Lambda_i(s)e_{it} + o_p(1)
$$

$$
\overset{D}{\to} N(0, (V^s)^{-1}Q^s_t(Q^s)'(V^s)^{-1})
$$

- Rotation matrix $H^s = \frac{\Lambda(s)'\Lambda(s)}{N} \left(F^s \right)^{\prime} \hat{F}^s \left(V_r^s \right)^{-1}$
- $K_s^{-1/2}(S_t) \hat{F}_t^s$ converges to some rotation of F_t at rate \sqrt{N}
- Efficiency mainly depends on asymptotic distribution of $\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \Lambda_i(s)e_{it}$
Asymptotic Results

Limiting Distribution of Estimated Factor Loadings

Theorem (Loadings)

Assume $\sqrt{Th}/N \to 0$, $Th \to \infty$, and $Th^3 \to 0$. Then

$$
\begin{align*}
\sqrt{Th} (\hat{\Lambda}_i(s) - (H^s)^{-1}\Lambda_i(s)) &= (V_r^s)^{-1}(\hat{F}^s)'F^s \Lambda(s)' \Lambda(s) \frac{\sqrt{Th}}{N} T(s) \sum_{t=1}^{T} F^s_t e^s_{it} + o_p(1) \\
& \overset{D}{\to} \mathcal{N}(0, ((Q^s)'^{-1} \Phi_i^s(Q^s)^{-1}))
\end{align*}
$$

- $\hat{\Lambda}_i(s)$ converges to some rotation of $\Lambda_i(s)$ at rate \sqrt{Th}
- Efficiency mainly depends on asymptotic distribution of $\frac{\sqrt{Th}}{T(s)} \sum_{t=1}^{T} F^s_t e^s_{it} = \frac{\sqrt{Th}}{T(s)} \sum_{t=1}^{T} K_s(S_t) F_t e_{it}$
Theorem (Common Components)

Assume $Nh \to \infty$, $Th \to \infty$, $Nh^2 \to 0$ and $Th^3 \to 0$. Then for each i

$$\delta_{NT,h}(\hat{C}_{it,s} - C_{it,s}) = \frac{\delta_{NT,h}}{\sqrt{N}} \Lambda_i(s)' \sum_{\Lambda(s)}^{-1} \left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \Lambda_i(s)e_{it} \right)$$

$$+ \frac{\delta_{NT,h}}{\sqrt{Th}} F_t' \sum_{F|s}^{-1} \left(\frac{\sqrt{Th}}{T(s)} \sum_{t=1}^{T} F_s^t e_{it}^s \right) + o_p(1)$$

- $\delta_{NT,h} = \min(\sqrt{N}, \sqrt{Th})$
- Define $C_{it,s} = F_t' \Lambda_i(s)$ and $\hat{C}_{it,s} = (\frac{\hat{F}_s^t}{K_{s}^{1/2}(S_t)})' \hat{\Lambda}_i(s)$
- If $N/(Th) \to 0$, $\Lambda_i(s)e_{it}$ dominates
- If $Th/N \to 0$, $F^s(t)e_{it}^s$ dominates
Generalized Correlation

Test for constancy: Generalized correlation test

Consider loadings in two states $\Lambda_1 = \Lambda(s_1)$ and $\Lambda_2 = \Lambda(s_2)$. Test for

$$\mathcal{H}_0 : \Lambda_1 = \Lambda_2 G$$
for some full rank square matrix G

$$\mathcal{H}_1 : \Lambda_1 \neq \Lambda_2 G$$
for any full rank square matrix G

- Generalized correlation, defined as ρ invariant of G
 $$\rho = \text{trace} \left\{ \left(\frac{\Lambda_1^T \Lambda_1}{N} \right)^{-1} \left(\frac{\Lambda_1^T \Lambda_2}{N} \right) \left(\frac{\Lambda_2^T \Lambda_2}{N} \right)^{-1} \left(\frac{\Lambda_2^T \Lambda_1}{N} \right) \right\}$$

- $\hat{\rho}$ estimated ρ and r is \#factors

- Equivalent to test $\mathcal{H}_0 : \rho = r$ and $\mathcal{H}_1 : \rho < r$
Generalized Correlation

Theorem: Generalized correlation test

Assume \(\sqrt{N/(Th)} \to 0, Nh \to \infty, Th \to \infty, \sqrt{Th}/N \to 0, Nh^2 \to 0 \) and \(NTh^3 \to 0 \):

\[
\sqrt{NTh}(\hat{\rho} - r - \hat{\xi}^\top \hat{b}) \overset{d}{\to} N(0, \Omega)
\]

- \(\hat{\xi}^\top b \) bias term with feasible estimates \(\hat{b} \) and \(\hat{\xi} \)
- feasible estimator for asymptotic covariance \(\hat{\Omega} \)
- \(h \in [1/T^{1/2}, 1/T^{3/4}] \): combinations of \(N \) and \(T \) exist to satisfy the rate conditions

\[\Rightarrow\] Superconsistent rate \(\sqrt{NTh} \) (corner case)
Empirical Applications

- US Treasury Securities Yields from 2001-07-31 to 2016-12-01: $N = 11$, $T = 2832$: 1, 3, 6 mo., 1, 2, 3, 5, 7, 10, 20, 30 yr.
- State: Log-normalized VIX
- Generalized correlation: $\hat{\rho}(\Lambda(Boom), \Lambda(Recession)) = 2.6352$
 \Rightarrow reject $\rho \approx 3$ for $\Lambda(Boom) \approx \Lambda(Recession)$

(a) Log-normalized VIX
(b) Proportion of variance explained
Empirical Applications

- Long term bonds have higher weights in the level factor in high VIX/recession

Figure: Factor Loading to the Level Factor (1st Factor)

(a) Log-normalized VIX

(b) Recession Indicator
Empirical Applications

- In high vix/recession: short term bonds more negative and long term bonds less positive

Figure: Factor Loading to the Slope Factor (2nd Factor)

(a) Log-normalized VIX

(b) Recession Indicator
Empirical Applications

- Minimum portfolio weight in the curvature factor shifts to shorter term bond in high vix/recession

Figure: Factor Loading to the Curvature Factor (3rd Factor)

(a) Log-normalized VIX

(b) Recession Indicator
Empirical Applications: Test Constancy of Loadings

- Loadings in low vix are different from loadings in high vix (red region)

Figure: Generalized Correlation Test of Estimated Loadings in Two States under Null Hypothesis (H_0: Loadings in Two States are Constant)
S&P500 Stock Returns

- Daily stocks returns (01/2004 to 12/2016): $N = 332$ and $T = 3253$
- State: Log-normalized VIX

⇒ Constant loading model needs roughly three more factors to explain the same variation in- and out-of-sample.

Figure: Variation explained by state-varying and constant loading model.
S&P500 Stock Returns

Figure: Out-of-sample Sharpe ratio of mean-variance efficient portfolio based on latent factors of the state-varying and constant loading model.

⇒ State-varying factor models capture more pricing information than constant-loading factors
Methodology

- Estimators for latent factors, loadings and common components where loadings are state-dependent
- We combine large dimensional factor modeling with nonparametric estimation
- Asymptotic properties of the estimators
- Constancy test for estimated state-varying factor loadings

Empirical Results

- We discover the movements of factor loadings by state values in the US Treasury Securities and Equity Markets
- Promising empirical results in other data sets
Data Generating Process for Simulations

- We generate data from a one-factor model
 \[X_{it} = \Lambda_i(S_t)F_t + e_{it} \]

- Factor: \(F_t \sim N(0, 1) \)
- State: Ornstein–Uhlenbeck (OU) process (mean-reverting)
 \[S_t = \theta(\mu - S_t)d_t + \sigma dW_t, \text{ where } \theta = 1, \mu = 0.2, \text{ and } \sigma = 1 \]
 - stochastic volatility in financial data
- Loading: \(\Lambda_i(S_t) = \Lambda_{0i} + \frac{1}{2}S_t\Lambda_{1i} + \frac{1}{4}S_t^2\Lambda_{2i} + \frac{1}{8}S_t^3\Lambda_{3i}, \text{ where} \]
 \(\Lambda_{0i}, \Lambda_{1i}, \Lambda_{2i}, \Lambda_{3i} \sim N(0, 1) \)
- Idiosyncratic errors: IID/Heteroskedasticity/Cross sectional dependence
Simulation of CLT for Estimated Factors

\[
\sqrt{N}(\hat{\Gamma}_t^s)^{-1/2}(\hat{Q}^s)^{-1}\hat{V}_t^s \left(K_t^{-1/2}(S_t)\hat{F}_t^s - (H^s)'F_t\right) \overset{d}{\to} N(0, I_r)
\]

Figure: Comparison between simulated normalized factor distribution and standard normal distribution

![Histograms showing comparison between simulated and standard normal distributions for different sample sizes.](image)
Simulation of CLT for Estimated Loadings

\[\sqrt{T} \text{th} \left(\sqrt{\hat{\Phi}_i^s} \right)^{-1/2} \left(\hat{\mathcal{Q}}^s \right)' \left(\hat{\Lambda}_i(s) - (H^s)^{-1} \Lambda_i(s) \right) \xrightarrow{d} N(0, I_r) \]

Figure: Comparison between simulated normalized loading distribution and standard normal distribution
Simulation of CLT for Common Component

\[
\left(\frac{1}{N} \hat{V}_{it,s} + \frac{1}{Th} \hat{W}_{it,s} \right)^{-1/2} \left(\hat{C}_{it,s} - C_{it,s} \right) \xrightarrow{d} N(0, I_r)
\]

Figure: Comparison between simulated normalized common component distribution and standard normal distribution

[Graphs showing comparison for different values of N and T]
Simulation of CLT for Estimated Generalized Correlation

- Loading: constant with the state $\Lambda_i(S_t) = \Lambda_0i$
- $\sqrt{NT}h(\hat{\rho} - r - \hat{\xi}^T \hat{\beta})/(\hat{\Omega})^{1/2} \xrightarrow{d} N(0, 1)$

Figure: Comparison between simulated normalized estimated generalized correlation distribution and standard normal distribution
Recover Functional Form of Loadings vs. State

\[\Lambda_i(S_t) = \Lambda_{0i} + \frac{1}{2} S_t \Lambda_{1i} + \frac{1}{4} S_t^2 \Lambda_{2i} + \frac{1}{8} S_t^3 \Lambda_{3i} \]

Figure: Loading as a function of the State