Research Article

Implementation of a Heart Disease Risk Prediction Model Using Machine Learning

K. Karthick,1 S. K. Aruna,2 Ravi Samikannu,3 Ramya Kuppusamy,4 Yuvaraja Teekaraman,5 and Amruth Ramesh Thelkar6

1Department of Electrical and Electronics Engineering, GMR Institute of Technology, Rajam, Andhra Pradesh, India
2Department of Computer Science and Engineering, School of Engineering and Technology, CHRIST (Deemed to be University), Bangalore, Karnataka, India
3Department of Electrical Computer and Telecommunications Engineering, Botswana International University of Science and Technology, Palapye, Botswana
4Department of Electrical and Electronics Engineering, Sri Sairam College of Engineering, Bangalore City, India
5Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield S1 3JD, UK
6Faculty of Electrical & Computer Engineering, Jimma Institute of Technology, Jimma University, Ethiopia

Correspondence should be addressed to Yuvaraja Teekaraman; yuvarajastr@ieee.org
and Amruth Ramesh Thelkar; amruth.rt@gmail.com

Received 3 February 2022; Accepted 23 March 2022; Published 2 May 2022

Academic Editor: Deepika Koundal

Copyright © 2022 K. Karthick et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cardiovascular disease prediction aids practitioners in making more accurate health decisions for their patients. Early detection can aid people in making lifestyle changes and, if necessary, ensuring effective medical care. Machine learning (ML) is a plausible option for reducing and understanding heart symptoms of disease. The chi-square statistical test is performed to select specific attributes from the Cleveland heart disease (HD) dataset. Support vector machine (SVM), Gaussian Naive Bayes, logistic regression, LightGBM, XGBoost, and random forest algorithm have been employed for developing heart disease risk prediction model and obtained the accuracy as 80.32%, 78.68%, 80.32%, 77.04%, 73.77%, and 88.5%, respectively. The data visualization has been generated to illustrate the relationship between the features. According to the findings of the experiments, the random forest algorithm achieves 88.5% accuracy during validation for 303 data instances with 13 selected features of the Cleveland HD dataset.

1. Introduction

According to WHO data, heart disease is the leading cause of mortality globally, resulting in 17.9 million deaths annually [1]. The most behavioural risk factors for cardiovascular disease and stroke are unhealthy food, lack of physical activity, smoking, and alcohol drinking [1]. A heart attack occurs when the heart’s blood circulation is obstructed by arteries plaque build-up. A thrombus in an artery causes a stroke by impeding blood flow to the brain [2]. The symptoms are common to other illnesses and might be confused with indicators of ageing, making diagnosis difficult for practitioners.

Precision prediction and timely identification of cardiac disease are essential for improving patient survival rate. Because of the increased collection of medical data, practitioners now have a great opportunity to promote healthcare diagnosis. ML plays a vital role in many applications like text detection and recognition [3], early prediction [4], power quality disturbance detection [5], truck traffic classification [6], and agriculture [7]. ML has now become an essential tool in the healthcare sector to aid with patient diagnosis. The current methods for predicting and diagnosing cardiac disease are mostly dependent on practitioners’ evaluation of a patient’s medical history, signs, and physical assessment reports. Nowadays, information about patients with clinical
reports is widely accessible in databases in the healthcare field, and it is rising rapidly day by day. In this article, the UCI ML repository’s Cleveland HD dataset was utilized for developing the prediction model to heart disease. The machine is trained for learning patterns based on the features that are already present in the dataset. Classification is an effective ML approach for prediction. When properly trained with adequate data, classification is an effective supervised ML method for identifying disease [8]. The primary goal of this work is to employ contemporary ML techniques to construct the healthcare heart disease predictive model. The Cleveland HD dataset was subjected to SVM with radial basis function (RBF) kernel, Gaussian Naive Bayes, logistic regression, LightGBM, XGBoost, and random forest algorithm, and the best performing prediction model for early diagnosis of heart disease was found.

2. Related Work

Nave Bayes, random forest, PART, C4.5, and multilevel perceptron algorithm-based predictive model accuracy to HD dataset were determined to be in the range of 75.58%–83.17% [9]. Moreover, Nave Bayes algorithm has the highest accuracy as 83.17%, while other algorithms have less than 80% accuracy [9]. Kumar et al. discovered that the Random Woodland ML classifier had an 85 percent precision for cardiovascular disease [10].

Gudadhe et al. [11] described the framework for predicting the heart disease using SVM and obtained the accuracy as 80.41%. Kahrmani and Allahverdi [12] combined fuzzy and crisp values in health data and attained accuracy rates of 84.24% to Pima Indian diabetes dataset and 86.8% for the Cleveland HD dataset, respectively. Various ML classification models [13–17] could be used to improve intelligence. Kahrmani and Allahverdi [12] established the artificial and fuzzy-based model to the Pima Indian diabetes dataset and the Cleveland HD dataset and found 84.24% and 86.8% accuracy, respectively. Olaniyi et al. [18] established a prediction model and achieved an accuracy of 85% using feedforward multilayer perceptron (MLP) and 87.5% using SVM on the UCI ML datasets. Polat et al. [19] have employed K-nearest neighbour algorithm and an artificial immune recognition framework and achieved 87% accuracy on the Cleveland dataset. On a Cleveland dataset, Detrano et al. [20] achieved 77% using the logistic regression algorithm. Saw et al. [21] have implemented the improved logistic regression classification model for heart disease dataset. The fast decision tree and C4.5 tree have been employed for HD prediction [22]. As a result of the proposed model’s initial phase, trees and features have been extracted. The genetic and fuzzy logic-based approach
Figure 1: Visualization of features of the Cleveland heart dataset.

- **(a) Sex**
 - Male: 68.0%
 - Female: 32.0%

- **(b) Chest pain type**
 - Chest pain type: 1: 7.6%
 - Chest pain type: 2: 16.5%
 - Chest pain type: 3: 28.4%
 - Chest pain type: 4: 47.5%

- **(c) Fasting blood sugar level**
 - Fasting blood sugar > 120 mg/dL: 8.2%
 - Fasting blood sugar ≤ 120 mg/dL: 91.8%

Figure 2: Heat map of subset attributes.
The person's maximum heart rate achieved

Serum cholesterol in mg(dl)

Resting blood pressure in mmHg

Figure 3: Continued.
has been proposed [23] which is a hybrid model to instantly
generate the rules using a fitness function, appropriate
genetic operators, and a rule encoding method.

In this article, SVM with RBF kernel, Gaussian Naive
Bayes, logistic regression, LightGBM, XGBoost, and random
forest algorithms were employed to evaluate the classification
accuracy on UCI ML repository’s Cleveland HD dataset
[24]. The data visualization has also been done to illustrate
the relationship between the features.

3. Materials and Methods

3.1. Data. The UCI ML repository’s Cleveland HD dataset
was used in this investigation [24]. As indicated in Table 1,
a subset of 13 attributes were utilized in prediction of heart
disease with 303 data instances. Table 1 describes about
the attributes and its description that were used in the pro-
posed classification model. The clinical variables that were
considered to be essential were given under attribute column
in Table 1, and it is chosen based on the chi-square (chi2)
feature selection method [25]. To develop the heart risk pre-
diction model, the remaining 61 attributes of the dataset
were excluded to improve the accuracy of the model. Except
for null, all other target values from 1 to 4 were considered
as risk of cardiovascular disease for developing the model.
The classification model consists of two classes, namely,
class 0 and 1. The target values 1 to 4 have been changed
as 1 during preprocessing.

3.2. Feature Selection. The statistical overview of subset attri-
butes is shown in Table 2 for 303 instances. The count shows
us how many nonempty rows are there in a feature. The
value of “mean” indicates the feature’s average value. The
value of “std” reflects the feature’s standard deviation. The
“min” indicates the feature’s minimal value. The 25%, 50%,
and 75% are the percentile/quartile of each feature. The
maximum value of the attribute is indicated by “max.”

Statistical tests will be useful in determining which attri-
butes are having the most powerful relationship with the
performance variable. The “SelectKBest” class in Python’s
scikit-learn library is utilized to choose a distinct attribute
in a statistical test set. For nonnegative characteristics in this
dataset, the statistical chi-square (chi^2) test was used to pick
13 of the best features.

3.3. Dataset Visualization. The data visualization of features
such as gender, chest pain category, and fasting blood sugar
level of the Cleveland heart dataset is shown in Figure 1.
Males are more likely than females to get heart disease,
according to this Cleveland dataset. The majority of individ-
uals with cardiovascular disease experience asymptomatic
chest discomfort.

Figure 2 depicts a heat map of the subset attributes,
which serves as an instant visual summary. Thalassemia is
a genetic disorder that causes people to have low haemoglo-
bin levels than normal. Haemoglobin allows erythrocyte to
transmit oxygen. Figure 3 illustrates the distribution of tha-
lach, chol, trestbps, and people count those who are su-
ffering from cardiovascular disease based on to their age. Cardio-
vascular disease is quite common in people over the age of
60, as well as adults aged 41 to 60. However, it is uncommon
in the 19-year to 40-year-old age category and extremely
uncommon in the 0-year to 18-year-old age category.

Figure 4 shows the correlation between attributes such as
Figure 4: Continued.
Figure 4: Continued.
Figure 4: Subset attribute correlation.

Figure 5: Pair plot.
thalach and chol, age and target, age and ca, thalach and CP, and oldpeak and exang with respect to target. Figure 5 shows the pair plot that is useful to quickly explore distributions and relationships between the attributes. In adult people, total cholesterol levels < 200 mg/dL are generally preferred. In the range 200-239 mg/dL, 240 mg/dL, and above, borderline are regarded to be high. A value of < 40 mg/dL is measured as a risk factor for HD. A level of 41 mg/dL to 59 mg/dL is considered borderline low. The maximal HDL level that may be measured is 60 mg/dL.

4. Proposed Machine Learning Classifiers

To evaluate the heart disease risk prediction, six ML classifiers were used: SVM with RBF kernel, Gaussian Naive Bayes, logistic regression, LightGBM, XGBoost, and random forest.

4.1. Support Vector Machine. The SVM [26] classifier with RBF kernel is a function that turns a nonlinear problem into a linear problem in a multidimensional space. The RBF kernel in SVM classification algorithm is defined as

\[K(x, x') = e^{-\gamma ||x - x'||^2}, \]

where \(||x - x'||^2 \) is the squared Euclidean distance between two feature vectors and \(\gamma \) is a scalar.

4.2. Gaussian Naive Bayes. Gaussian Naive Bayes is the classification algorithm, and here, the 13 features stochastically independent for every class \(c \) and the prediction are given as

\[
P(x_i \mid c) = \frac{1}{\sqrt{2\pi \sigma_{ij}^2}} e^{-\frac{1}{2}(x_i - \mu_{ij})^2 \sigma_{ij}^2}, \quad i = 1, 2, \ldots, 13 \text{ and } j = 0, 1, 2, 3&4,
\]

where \(\mu_{ij} \) is the mean and \(\sigma_{ij} \) is the root-mean square deviation of the dataset.

4.3. Logistic Regression. The logistic regression model is expressed as

\[
P(y = 1 \mid x) = p(\alpha, \beta) = \frac{e^{\alpha + X^T \beta}}{1 + e^{\alpha + X^T \beta}},
\]

where \(\alpha \) is intercept arguments, \(\beta \) is slope argument vector, and \(D_n = \{ (x_i, y_i), i = 1, 2, 3, \ldots, n \} \) is the independent data size of \(n \) with 303 data instances.
Machine learning classifiers - Model accuracy

Model	Test set accuracy	Training set accuracy
Random forest	88.5	100
XGBoost	75.77	99.58
LightGBM	77.04	98.76
Logistic regression	80.32	85.95
Gaussian naive bayes	78.68	86.77
Support vector machine	80.32	92.56

Test set

Training set

Figure 6: ML classification models—prediction accuracy.

Confusion matrix for SVM - Test set

Confusion matrix for Gaussian Naive Bayes - Test set

Confusion matrix for Logistic Regression - Test set

Confusion matrix for LightGBM - Test set

Confusion matrix for XGBoost - Test set

Confusion matrix for Random Forest - Test set

Figure 7: Confusion matrix.
Figure 8: Continued.
Figure 8: Performance of classification models—ROC curves.
4.4. LightGBM. The LightGBM [27] is a gradient-based boosting approach which makes use of tree-based learning methods. The pseudocode of the algorithm is given below.

4.5. XGBoost. XGBoost algorithm is adopted from [28] and the pseudocode of the algorithm is given below.

4.6. Random Forest. The random forest [29] constructs multiple decision trees and the pseudocode of the algorithm is given below.

5. Results and Discussion

The Cleveland HD dataset is split into training and testing set with a ratio of 80:20. The classification model accuracy is evaluated using the performance matrices from confusion matrix and it is expressed as

\[
\text{%Accuracy} = \frac{TP + TN}{TP + TN + FP + FN} \times 100, \tag{4}
\]

where TP stands for true positive, TN stands for true negative, FP stands for false positive, and FN stands for false negative. Table 3 gives testing set and training set accuracy in %. Table 3 gives testing set and training set accuracy in % for all six ML classifier models. Figure 6 depicts the accuracy of all models graphically. Figures 7 and 8 show the confusion matrix and receiver operating characteristic (ROC) curves for all six ML classification models. The validation indicates that the random forest algorithm provides better accuracy in prediction. The test set prediction accuracy of the random forest algorithm is 88.5% with ROC of 0.92 for the selected 13 attributes of the 303 data instances of the UCI ML repository’s Cleveland HD dataset. The area under the curve (AUC) is an indicator of a classifier’s ability to differentiate among classes and can be used to analyse the receiver operating characteristic (ROC) curve. The greater the AUC, the more accurate the model is at discriminating between favourable and unfavourable classes.

6. Conclusion

The six ML classification algorithms, namely, SVM with RBF kernel, Gaussian Naïve Bayes, logistic regression, LightGBM, XGBoost, and random forest, were applied to UCI ML repository’s Cleveland HD dataset, and the prediction model has been developed for cardiovascular disease. The random forest algorithm provides better accuracy as 88.5% followed by SVM, and logistic regression provides 80.32% accuracy for the selected 13 attributes using the chi-square distribution. In this classification model, totally 303 data instances have been used. In future, various heart disease datasets from health data repository can be combined, and the best performing classification model using contemporary machine learning models can be outlined.

Data Availability

The dataset is available in publicly accessible database.

Conflicts of Interest

The authors declare no conflict of interest.

Authors’ Contributions

Karthick was responsible for the conceptualization and data curation and wrote the original draft; Aruna was responsible for the investigation and methodology supervision; Ravi Samikannu carried out formal analysis; Ramya Kuppusamy and Yuvaraja Teekaraman wrote, reviewed, and edited the manuscript; Amruth Ramesh Thelkar carried out methodology validation.

References

[1] WHO link: https://www.who.int/health-topics/cardiovascular-diseases/#tab=tab_1.
[2] J. L. Quah, S. Yap, S. O. Cheah et al., “Knowledge of signs and symptoms of heart attack and stroke among Singapore residents,” BioMed Research International, vol. 2014, 2014.
[3] K. Karthick, S. K. Aruna, and R. Manikandan, “Development and evaluation of the bootstrap resampling technique based statistical prediction model for Covid-19 real time data: a data driven approach,” Journal of Interdisciplinary Mathematics, pp. 1–13, 2022.
[4] K. Kanagarathinam and K. Sekar, “Estimation of reproduction number and early prediction of 2019 novel coronavirus disease (COVID-19) outbreak in India using statistical computing approach,” Epidemiology and Health, vol. 42, 2020.
[5] K. Sekar, S. Kumar, and K. K, “Power quality disturbance detection using machine learning algorithm,” in 2020 IEEE International Conference on Advances and Developments in Electrical and Electronics Engineering (ICADEE), pp. 1–5, 2020.
[6] N. Tahaei, J. J. Yang, M. G. Chorzepa, S. S. Kim, and S. A. Durham, “Machine learning of truck traffic classification groups from weigh-in-motion data,” Machine Learning with Applications, vol. 6, p. 100178, 2021.
[7] V. Meshram, K. Patil, V. Meshram, D. Hanchate, and S. D. Ramkteke, “Machine learning in agriculture domain: a state-of-art survey,” Artificial Intelligence in the Life Sciences, vol. 1, p. 100010, 2021.
[8] S. Uddin, A. Khan, M. E. Hossain, and M. A. Moni, “Comparing different supervised machine learning algorithms for disease prediction,” BMC medical informatics and decision making, vol. 19, no. 1, p. 281, 2019.
[9] C. B. C. Latha and S. C. Jeeva, “Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques,” Informatics in Medicine Unlocked, vol. 16, p. 100203, 2019.
[10] N. K. Kumar, G. S. Sindhu, D. K. Prashanthi, and A. S. Sulthana, “Analysis and prediction of cardiovascular disease using machine learning classifiers,” in 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), pp. 15–21, 2020.
[11] M. Gudadhe, K. Wankhade, and S. Dongre, “Decision support system for heart disease based on support vector machine and artificial neural network,” in 2010 International Conference on Computer and Communication Technology (ICCCT), pp. 741–745, 2010.
[12] H. Kahramanli and N. Allahverdi, “Design of a hybrid system for the diabetes and heart diseases,” Expert systems with applications, vol. 35, no. 1-2, pp. 82–89, 2008.

[13] A. Gupta, Anjum, S. Gupta, and R. Katarya, “InstaCovNet-19: a deep learning classification model for the detection of COVID-19 patients using chest X-ray,” Applied Soft Computing, vol. 99, p. 106859, 2021.

[14] I. H. Sarker, “Machine learning: algorithms, real-world applications and research directions,” SN COMPUT. SCI., vol. 2, no. 3, p. 160, 2021.

[15] Y. Pathak, P. K. Shukla, A. Tiwari, S. Stalin, S. Singh, and P. K. Shukla, “Deep transfer learning based classification model for COVID-19 disease,” Ing Rech Biomed, vol. 22, 2022.

[16] R. Muazu Musa, A. P. A. Majeed, Z. Taha, S. W. Chang, A. F. A. Nasir, and M. R. Abdullah, “A machine learning approach of predicting high potential archers by means of physical fitness indicators,” PLoS One, vol. 14, no. 1, p. e0209638, 2019.

[17] P. Kota, A. Madenahalli, and R. Guturi, “Heart disease classification comparison among patients and normal subjects using machine learning and artificial neural network techniques,” International Journal of Biosensors & Bioelectronics, vol. 7, no. 3, 2012.

[18] E. O. Olaniyi, O. K. Oyedotun, and K. Adnan, “Heart diseases diagnosis using neural networks arbitration,” International Journal of Intelligent Systems and Applications (IJISA), vol. 7, no. 12, pp. 75–82, 2015.

[19] K. Polat, S. Sahar, and S. Günes, “Automatic detection of heart disease using an artificial immune recognition system (AIRS) with fuzzy resource allocation mechanism and k-nn (nearest neighbour) based weighting preprocessing,” Expert Systems with Applications, vol. 32, no. 2, pp. 625–631, 2007.

[20] R. Detrano, A. Janosi, W. Steinbrunn et al., “International application of a new probability algorithm for the diagnosis of coronary artery disease,” The American journal of cardiology, vol. 64, no. 5, pp. 304–310, 1989.

[21] M. Saw, T. Saxena, S. Kaithwas, R. Yadav, and N. Lal, “Estimation of prediction for getting heart disease using logistic regression model of machine learning,” in 2020 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–6, 2020.

[22] R. El-Bialy, M. A. Salamay, O. H. Karam, and M. E. Khalifa, “Feature analysis of coronary artery heart disease data sets,” Procedia Computer Science, vol. 65, pp. 459–468, 2015.

[23] K. Mankad, P. S. Saja, and R. Akerkar, “Evolving rules using genetic fuzzy approach - an educational case study,” International Journal on Soft Computing (IJSC), vol. 2, no. 1, pp. 35–46, 2011.

[24] Heart disease dataset: https://archive.ics.uci.edu/ml/datasets/heart+Disease.

[25] T. M. Franke, T. Ho, and C. A. Christie, “The chi-square test: often used and more often misinterpreted,” American Journal of Evaluation, vol. 33, no. 3, pp. 448–458, 2012.

[26] Y. Zhang, “Support vector machine classification algorithm and its application,” in Information Computing and Applications, ICICA 2012, C. Liu, L. Wang, and A. Yang, Eds., Springer, Berlin, Heidelberg, 2012.

[27] G. Ke, Q. Meng, T. Finley et al., “LightGBM: a highly efficient gradient boosting decision tree,” Advances in Neural Information Processing Systems, vol. 30, pp. 3149–3157, 2017.