Livestock as a potential biological control agent for an invasive wetland plant

Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughout much of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in marshes. Here, we reveal that Phragmites may potentially be controlled by employing an affordable measure from its native European range: livestock grazing. Experimental field tests demonstrate that rotational goat grazing (where goats have no choice but to graze Phragmites) can reduce Phragmites cover from 100 to 20% and that cows and horses also readily consume this plant. These results, combined with the fact that Europeans have suppressed Phragmites through seasonal livestock grazing for 6000 years, suggest Phragmites management can shift to include more economical and effective top-down control strategies. More generally, these findings support an emerging paradigm shift in conservation from high-cost eradication to economically sustainable control of dominant invasive species.
Livestock as a Potential Biological Control Agent for an Invasive Wetland Plant

Brian R. Silliman¹,², Thomas Mozdzer³, Christine Angelini⁴, Jennifer E. Brundage⁵, Peter Esselink⁶,⁷, Jan P. Bakker⁶, Keryn B. Gedan⁸, Johan van de Koppel⁶,⁹, Andrew H. Baldwin⁵

¹ Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort NC 28516
² corresponding author
³ Department of Biology, Bryn Mawr College, Bryn Mawr, PA 19010
⁴ Department of Environmental Engineering, University of Florida, Gainesville, FL 32608
⁵ Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742
⁶ Community and Conservation Ecology, University of Groningen, PO Box 11103, 9700 CC Groningen, The Netherlands
⁷ PUCCIMAR Ecological Research and Consultancy, Boermarke 35, 9481 HD Vries, The Netherlands
⁸ Department of Biology, University of Maryland, College Park, MD 20742
⁹ Spatial Ecology Department, Royal Netherlands Institute for Sea Research (NIOZ), PO Box 140, 4400AC, Yerseke, The Netherlands;
Abstract: Invasive species threaten biodiversity and incur costs exceeding billions of US$. Eradication efforts, however, are nearly always unsuccessful. Throughout much of North America, land managers have used expensive, and ultimately ineffective, techniques to combat invasive Phragmites australis in marshes. Here, we reveal that Phragmites may potentially be controlled by employing an affordable measure from its native European range: livestock grazing. Experimental field tests demonstrate that rotational goat grazing (where goats have no choice but to graze Phragmites) can reduce Phragmites cover from 100 to 20% and that cows and horses also readily consume this plant. These results, combined with the fact that Europeans have suppressed Phragmites through seasonal livestock grazing for 6000 years, suggest Phragmites management can shift to include more economical and effective top-down control strategies. More generally, these findings support an emerging paradigm shift in conservation from high-cost eradication to economically sustainable control of dominant invasive species.
Introduction: Invasive species globally threaten biodiversity and, in the United States alone, incur costs to human economies estimated to exceed 120 billion US$ each year (Pimentel et al. 2005). Controlling the spread and reducing the impacts of invasive species are therefore foundational objectives of conservation science and policy (Kareiva and Marvier 2011). Historically, eradication of invasive species has been an ideal goal of management programs, but this has rarely been achieved on ecologically relevant spatial or temporal scales (Kettenring and Adams 2011). In the majority of cases, complete and permanent removal of these species is simply unrealistic (Sax et al. 2005). Consequently, the objectives of invasive species’ management are being recast to prioritize control and mitigation, rather than elimination, of invasive species’ impacts. In addition, conservation groups are becoming increasingly focused on finding solutions that not only achieve their goals but also bolster local economies (Kareiva and Marvier 2011). Win-win synergisms of this type, however, are rare. To ensure long-term efficacy of control-oriented programs, management strategies should be tailored to both local habitat requirements (i.e., duration, frequency and intensity of control measures) and community needs.

Invasive plants that form expansive monocultures are often key targets...
for management due to the direct, and usually negative, impact they have on ecosystem structure, function, and services (e.g., cordgrass: Neira et al. 2006, crested wheatgrass: Christian and Wilson 1999, reed canary grass: Lavergne and Molofsky 2004, Japanese stiltgrass: Flory and Clay 2010). In the United States, control of invasive plants has been attempted through herbicide application, mechanical removal (e.g., mowing, burning, excavation), or biological control programs that are often costly to implement, difficult to sustain over sufficient timescales, or may result in unintended, harmful consequences (e.g., spillover of herbicides, non-target impacts of arthropod control agents, landscape damage; see Kettenring and Adams 2011 for review). In Europe, however, farmers have been culling (whether intentionally or not) similarly ‘invasive’ plants long before such modern control techniques by deploying livestock to feed on dense vegetation. Grazing by large-bodied domestic herbivores, such as cows, horses, sheep, and goats, cannot only be effective in suppressing dominant plants (Esselink 2002), but can also result in reciprocal positive effects for humans by generating valuable goods, including meat, milk, leather, and wool to support local economies. In the United States, use of livestock to control invasive species has been largely restricted to terrestrial grasslands where this method has met with mixed success (e.g., DiTomasso 2000, Reiner and Craig 2011, but see Marty 2005 and Tesauro and Ehrenfeld 2007 for wetlands). Low species richness and discrete plant zonation exclusive to wetland ecosystems may allow for greater success and targeted control of invasive plants by livestock. New evidence from North American and
European marshes, which we document below, coupled with prior research on long-term grazing impacts on plant distribution in Europe, suggest that livestock can be a cost-effective tool for managing the impacts and spread of monoculture-forming invasive plants in wetlands, where monoculture-forming invasive plant species are common and drive large-scale ecosystem change (Zedler and Kercher 2004).

Under natural field settings, there is broad support for the ability of herbivores to suppress invasive plant success. Specifically, herbivores can reduce invasion success by limiting both invasive plant establishment and performance (Levine et al. 2004), with generalist native herbivores strongly suppressing invasive plants (Parker et al. 2006, Morrison & Hay 2011). Invasive herbivores, on the other hand, have opposite effects and can facilitate invasions by reducing the abundance of native species (Parker et al. 2006). This suggests that co-evolution/exposure of both herbivore and autotroph are important considerations when choosing an appropriate biocontrol agent. A novel management approach to maximize potential for success would attempt to control an invasive plant with an introduced herbivore (e.g. domestic livestock) that have a demonstrated effect in controlling the plants in their native range.

In Eastern North American marshes, the common reed, *Phragmites australis* (Cav.) Trin. ex Steud. has invaded with unrelenting success since its cryptic introduction during the 18th century from Europe (Chambers et al. 1999, Saltonstall 2002). *Phragmites*, which reaches average heights of >3m and generates dense layers of lignified litter, outcompetes native plants for...
light and often forms expansive, towering monocultures (Bertness et al 2002, Silliman and Bertness 2004, Meyerson et al. 2012). Introduced Phragmites is particularly successful in marshes along developed shorelines (Bertness et al. 2002, Silliman and Bertness 2004, King et al. 2007), and its rate of invasion is likely to increase in the future with predicted increases in anthropogenic N pollution and rising CO₂ concentrations (Bertness et al 2002, Mozdzer et al 2010, Mozdzer and Megenigal 2012, Mozdzer et al 2013). Where Phragmites has become established, native plant diversity declines precipitously (Silliman and Bertness 2004), ecosystem processes such as nitrogen cycling, methane emissions, and accretion change (e.g., Rooth et al. 2003, Windham & Ehrenfeld 2003, Mozdzer & Megenigal 2013), and once-expansive marsh vistas become obfuscated by this impenetrable grass.

The control of Phragmites has dominated marsh conservation efforts in the Northeastern US for the past 30 years (Hazelton et al. 2014). During this time, no cost-effective, long-term control measures have been found. For example, land managers and private organizations have treated over 80,000 hectares of marsh with herbicide over the past five years with limited success, despite costs that exceed $4.6 million per year (Martin and Blossey 2013). Similarly, mechanical removal techniques, such as mowing and burning, have proven to be uneconomical, given their high labor costs, and ineffective (Lee 1990, Cowie et al. 1992). While insect biocontrol has been investigated (Tewksbury et al. 2002, van Driesche et al. 2002), and specific biocontrol agents tested in laboratory conditions (e.g. Lambert et al. 2007), it is currently not an option available to land managers, in part because some
prospective control agents do greater damage to native strains of *Phragmites* than the invasive (e.g. Lambert et al. 2007).

As a facultative halophyte, *Phragmites* distribution is largely restricted by salinity in Europe and North America. *Phragmites* salinity tolerance may exceed normal seawater (~33ppt) (Chambers et al 2003), but its competitiveness increases with decreasing salinity in the high marsh elevations associated with freshwater seepage or in naturally brackish wetlands (Minchinton and Bertness 2003). However, within brackish marshes in Europe, *Phragmites* abundance is markedly limited. For instance, in the 400-km2 salt marshes of the Wadden Sea, *Phragmites* accounts for only 2.5% of vegetation coverage (Esselink et al 2009), a significant decrease from its historical extent. Although nutrient pollution has been attributed to *Phragmites* die back in Europe (van der Putten 1997), two primary reasons likely account for *Phragmites*’ reduced distribution in European brackish marshes: (1) seawall construction and land reclamation during the Middle Ages (c. A.D. 1000 – 1300), which caused major loss of brackish marshes with *Phragmites* (Schoute 1984) and (2) an extended history of livestock grazing in these marshes. For example, along the brackish coast of the microtidal Baltic, reed beds dominated by *Phragmites* were transformed into salt meadows from c. 4000 B.C. onwards, when human exploitation started (Vestergaard 1998). Likewise, in the Netherlands, marshes have been used as rangelands since Late Neolithic, *i.e.* 3500 B.C. (Zeiler 2006). In these heavily grazed European marshes, *Phragmites* is rare, but in areas where livestock grazing has been abandoned in recent times, *Phragmites* has become
dominant again (Dijkema 1990, Jutila 1999, Esselink et al. 2002, 2009). A recent study confirmed these observational results: specifically, in marshes still grazed by livestock, Phragmites has increased in relative abundance inside grazer exclusion cages but not in control, grazed areas (Milotic et al. 2010, Esselink unpub. data). It is unclear whether similar top-down control methods would be effective in mitigating the impacts of introduced Phragmites in North America, and, if so, which large grazers and deployment strategy would result in an ecologically effective and economically sustainable solution for both land managers and farmers.

Based on observational and experimental evidence revealing that top-down forces limit Phragmites in its native range in Europe, we explored the potential for livestock control of invasive Phragmites in North America, and, reciprocally, the nutritional benefit of Phragmites to livestock consuming it. Our specific objectives were: 1) to evaluate the ability of caged livestock to control invasive Phragmites and increase plant biodiversity in a small-scale experimental setting, 2) to test if various commercially reared livestock breeds will readily consume Phragmites, and 3) to investigate the nutritional value of Phragmites as livestock forage.

We tested the potential for livestock to control introduced Phragmites with a goat inclusion field experiment in a Phragmites-invaded North American marsh. As top-down control of invasive plants by free-ranging livestock can be hindered by alternative grazing options that could be superior in quality (Belovsky 1986, Vulink and Drost 1991a, Vulink 2001), we chose to conduct a pressed, grazing experiment in a marsh already
dominated by *Phragmites*. To evaluate the potential of additional top-down control agents besides goats and the nutritional benefits of *Phragmites* to livestock, we conducted no-choice feeding trials with cows and horses and, using data from past, unpublished studies, assessed whether livestock can digest *Phragmites* effectively and if *Phragmites* nutritional quality varies significantly over a growing season.

Methods: To experimentally test the hypothesis that livestock can suppress *Phragmites* monocultures in North American marshes and promote the recovery of native plants, we established randomly located replicated (n=4) goat enclosures (8.5m x 40m) made out of wire fencing, a single-strand of electrical wire, and metal stakes in a *Phragmites*-dominated freshwater marsh in the Beltsville Agricultural Research Center in Beltsville, Maryland, USA. Two domestic goats (IACUC number 103453) were stocked in each of the enclosures (a stocking rate of 58.8 goats/ha), which were paired with ungrazed control plots (also 8.5m x 40m) for three treatment periods of 2-4 weeks, beginning mid September 2008, late May 2009, and late August 2009. Two goats per enclosure were used because, first, goats are social animals and solitary confinement might alter their well-being and grazing behavior, and second, because >2 goats would result in too rapid consumption of available plants for grazing (pers. Comm., W.Hare, Veterinarian, USDA Beltsville Agricultural Research Center). Goats were left in enclosures until *Phragmites* was completely consumed within at least one of the four enclosures to maximize the duration of grazing and preventing...
starvation of goats. *Phragmites* was allowed to re-sprout and grow to a height of about 1.5 m before applying the next round of grazing. This approach was implemented to allow potential colonization of native plants and maximize depletion of belowground resources of *Phragmites* (i.e., a level of grazing pressure in excess of that typical of standard rotational grazing practices was intended). *Phragmites* stem density and height of the five tallest stems were measured before and after each grazing period in four 1-m² quadrats spaced systematically at 4, 8, 12, and 16 m along the center line of each grazed and control plot (total = 32 quadrats). Percent cover and plant species richness and diversity were determined in a 100-m² (5m x 20m) “module” centered within each grazed and control plot (Peet et al. 1998; Gurevich et al. 2006). Plants that were seedlings or lacking flowering or fruiting material, but that could be distinguished as separate species, were identified as “morphospecies” and used in calculations of richness and diversity. Nativity (native or introduced) was determined using the USDA PLANTS database for plants identified to species level, or for taxa where all species were native or introduced. Comparisons between grazed and ungrazed plots were made using mixed model repeated measures ANOVA (n=4) using the MIXED procedure of SAS 9.2 (SAS Institute, Cary, North Carolina), with each pair of grazed and ungrazed plots treated as a block, after checking assumptions of homogeneity of variances and normality. Stem density and stem height from the four 1-m² quadrats within each plot were averaged to generate a single value for each grazed and control plot prior to analysis. Simple effect slices were used to test for significant grazing effects for each sampling date, and
the Kenward-Roger method used to calculate denominator degrees of
freedom (which can result in fractional ddf).

To explore whether *Phragmites* could be restricted by other domestic
livestock species in addition to goats, we conducted no-choice feeding trials
in August of 2011 with freshly cut 30-cm sections of *Phragmites* stems and
leaves from established reed stands (>2m in diameter). To do so, we offered
a 30-cm section of *Phragmites* stem to 20 individual horses and cows and
counted the number of individuals who fully consumed the section after 30
seconds.

To explore the nutritional quality of *Phragmites* relative to five other
common marsh plants, we present data here from a past, unpublished study
that asked this question and measured temporal variation in leaf quality of
six marsh plants over a growing season. Specifically, both crude-protein and
energy content were assessed based on sampling of the top five leaves of
each species at each sampling date. Samples with a fresh weight of > 200 –
300 g were collected every 3–4 weeks throughout the 1992 grazing season
(~ end of May – mid September) from a brackish salt marsh in Dollard Bay
(53°16’N, 7°10’E), the Netherlands (Marsh Section 3 of the study area in
Esselink et al. 2000). Crude protein content was calculated by multiplying the
nitrogen content by a factor 6.25 (Allen 1989). The *in-vitro* digestible dry
matter content (DDM) was used as parameter for the energy content of the
plant material from the animal perspective. DDM was measured according to
Tilley and Terry (1963).
Results: By the end of our livestock enclosure experiment, goats had strongly suppressed *Phragmites* growth, reducing stem density by ~50% (29 to 14 stems m\(^{-2}\); Fig. 1a), stem height by ~60% (3.9 to 1.4 m; Fig. 1b), and percent cover five-fold (from 94% to 21%; Fig. 1c). In grazed plots, *Phragmites* resprouted from rhizomes or colonized from adjacent ungrazed plots, but never attained the stem density, height, or cover of that in ungrazed plots, except in spring of the second growing season during early shoot emergence (Fig. 1). Concomitant with the strong decline of *Phragmites* was a marked and significant increase in plant species richness and Shannon-Weiner diversity index by the end of the experiment (~100% & 400% respectively, Fig. 2a, b). At the end of the experiment, goat-grazed plots contained a total of 36 taxa (22 confirmed native species, 8 indeterminate, and 6 introduced taxa), while ungrazed plots contained only 20 taxa (12 native species, 2 indeterminate, and 6 introduced taxa), all of which were at low abundance relative to *Phragmites*. Important native species that colonized (from seeds in the seed bank or dispersed to the site) included *Alisma subcordatum, Epilobium coloratum, Leersia oryzoides, Mimulus ringens, Penthorum sedoides, Polygonum punctatum, and Ranunculus sceleratus*. A complete list of species found in grazed and ungrazed plots is included in Table S1.

In our no-choice feeding trials, both horses and cows readily ate *Phragmites* (20 out of 20 individuals for both species ate the 30cm stem section offered). In comparison with five other marsh plant species, nutritional quality of *Phragmites* was intermediate (Figure 3a). It must be
noted that North American introduced \textit{Phragmites} was introduced from Europe, and we do not expect there to be any differences in tissue quality. Plants described in Figure 3a have congeneric representation in North American wetlands, and serve as our proxy for comparable nutritional quality. Throughout the 4-month grazing season in the Dollard salt marshes, crude-protein content in \textit{Phragmites} leaves was surprisingly high. The energy content of \textit{Phragmites} leaves, on the contrary, was lower than in other common plant species, and dropped markedly during the course of the grazing season (Fig. 3b); after ~ mid-July it fell below the level of maintenance requirement for cattle (ARC 1980, Van Soest 1982). These values for digestible dry matter were within the range found by a larger survey of Dutch plant species palatability to cattle, which found \textit{Phragmites} to be an important natural forage species (Bokdam and Wallis de Vries 1992).

\textbf{Discussion}

Our results and those of others in Europe indicate that controlling invasive \textit{Phragmites} in North America via purposeful livestock grazing has a high potential to suppress its impact on native plant communities. Our feeding trial from The Netherlands, together with evidence from livestock-removal and comparative studies in European marshes (Esselink et al 2002), suggest that livestock strongly restrict \textit{Phragmites} distribution and facilitate the growth of shorter grasses and forbs in its native habitat. These results, in combination with our goat enclosure experiment in the U.S., indicate \textit{Phragmites} is also likely susceptible to top-down control by livestock in
Eastern North America. Furthermore, the short-term duration of our goat inclusion periods (3, < 1 month deployments over 1 year), affordable infrastructure (wire fences), and limited number of animals (2 goats per 340-m² plot) needed to reduce *Phragmites* cover, imply that livestock has the potential to offer an effective, pesticide-free solution for managers trying to regulate this invasive plant, and likely other invasive plants that form vast monocultures. The conclusion that goat grazing could be an economically sustainable, win-win invasive plant control solution is also supported by the fact that livestock can persist over short time periods (i.e. weeks to months) on *Phragmites*-based diets without detriment to their health.

In invaded areas, *Phragmites* outcompetes native plants for light and space due to its height, dense canopy, thick litter, and rapidly growing rhizomes, and these advantages drive its rapid expansion and dominance across marshes (Bertness et al. 2002, Silliman and Bertness 2004, Mozdzer & Zieman 2010, Minchinton, Farwnsorh and Farnsworth and Meyerson 2004, Holdredge et al. 2010). Our results and prior studies from Europe indicate that domestic livestock can reduce the competitive advantage of *Phragmites* through a combination of eating down or trampling live stems, breaking up the litter mat, and severing rhizomes with their hooves (Turner 1987). Combined, these activities can increase the light availability to native plants, reduce belowground competition for nutrients, and thus provide opportunities for recolonization of native plants, estuarine nekton, and even endangered turtles (Angradi et al. 2001, Tesauro 2002, Hunter et al. 2006, Tesauro and Ehrenfeld 2007, Tesauro 2002). In disrupting *Phragmites* growth, livestock
also have the potential to reduce seed set, an important mechanism of expansion of *Phragmites* in North America (McCormick et al. 2010). By removing the primary mechanisms of *Phragmites* competitive exclusion (i.e. its height and litter), livestock may not only facilitate recovery of native plants and dependent faunal communities (e.g. invertebrates, arthropod herbivores), but also restore coastal ecosystem services. However, we must caution that introduction of livestock to invaded marshes in North America will not lead to a complete return to the pre-invasion marsh structure. Instead, we suspect that an alternative state will be induced (Hobbs & Norton 1996). Such an alternative state may be characterized by a reduced *Phragmites* dominance and an increased abundance of native plants and fauna. Livestock grazing, however, is not without its own effects on ecosystem characteristics, affecting soil bulk density, soil organic matter, mineralization rate (Schrama et al. 2013), invertebrate abundance, and others. Comparative, multi-year trials are needed to assess grazing impacts and to determine the best regimen of grazers for *Phragmites* control, ecosystem integrity, and livestock production.

Context-dependency of grazer control and next steps

Evidence from our study coupled with other livestock and large grazer manipulative experiments (Tesauro 2002, Sturm 2007, URS 2005) suggest that the efficacy of livestock control of *Phragmites* in North America will be context-dependent and contingent both on the grazing regime and the background cover of *Phragmites*. Specifically, these studies suggest that
livestock can control _Phragmites_ when its cover is high and livestock are forced to graze in those areas (Fig. 4). For example, when _Phragmites_ is dominant and grazers are enclosed in these areas as in our experiment and a 2-year study in New Jersey, USA that manipulated goats and sheep in small (0.8 ha), un-replicated pens (Tesauro 2002), livestock were effective at reducing _Phragmites_ from ~ 100% to < 50% cover. In contrast, when _Phragmites_ is uncommon and livestock are free-roaming (i.e., grazers not forced to eat _Phragmites_ only), horses and deer in Maryland increased _Phragmites_ abundance relative to grazer exclusion plots (Sturm 2007). Similarly, goats released into a larger (0.8 ha) _Phragmites_-invaded tidal marsh in New Jersey did not reduce _Phragmites_ cover and consumed other marsh plants to a greater degree (URS 2005). These findings suggest that if livestock are released into mixed marsh plant communities where alternative food choices are abundant (i.e., _Phragmites_ is uncommon) large grazers have the potential to facilitate _Phragmites_ invasion, and thus be counterproductive to management objectives. This conclusion is supported by our nutritional content study (Fig. 3) and those of others (e.g. Vulink & Drost 1991b) that indicate _Phragmites_ has a lower nutritional value relative to other common marsh plants and thus would not likely be preferred by grazers if given a choice.

Based on these conclusions, we suggest preliminary guidance for applications of livestock for invasive plant control (Table 1) and recommend future directions for research. Our grazing experiment, in which grazing had stronger effects in early summer than late summer, as well as our
assessment of a decline in Phragmites’ nutritional value through time, indicate that the timing of grazer implementation may be critical for the success of livestock control programs as young stems have higher nutritional quality (Fig 3) and grazing on young Phragmites’ stems in early spring is more effective at reducing future regrowth and promoting native plant recovery (Karunaratne et al 2004). Future research should address whether springtime or early summer grazing has stronger impact on Phragmites and other monoculture forming invasive plants. Looking forward, the next step in determining the potential for livestock to control Phragmites and facilitate the recovery of native plants, animals and pre-invasion soil properties is to test these ideas at larger scales and over multiple years to compare to reference wetlands without grazer control of invasive plants and those using other invasive species control techniques.

Finally, prior to application, it is critical to investigate the potential for livestock grazing impacts on non-target organisms and ecosystem processes. Decisions about the placement and timing of grazers should incorporate local site knowledge to avoid priority seasons and habitat areas for nesting birds and other possibly sensitive taxa or conservation targets. Further research could also identify the effects of short periods of grazing on critical wetland ecosystem processes such as soil compaction and surface elevation accretion, and examine the possibility that invasive plant seeds remain viable during livestock gut passage and are unwittingly dispersed to other sites. Although inter-site variation and inter-annual differences make the synthesis of experimental findings from different decades and continents
difficult, we find the consistent palatability of *Phragmites* to a diverse set of commercially important grazers in Europe and North America inspiring to pursue livestock grazing as a invasive species management tool. Other effective methods may be found by looking across ecosystems and continents for scenarios where dominant plants, whether purposefully or not, are being controlled using measures that involve and benefit local communities.

For monoculture-forming plants invading softer, lower elevations of marshes, such as *Spartina alterniflora*, on the West Coast of the US and China or *Cuelerpa* in soft-sediment intertidal expanses throughout the world, domestic livestock are not likely an option for management. However, other economically sustainable, but currently overlooked, rotational top-down control methods may work for these species, such as systematic human harvesting of invasive plants to be used as livestock feed or biofuel.

Evidence from European marshes that a top-down restoration strategy will work

Restoration of coastal marshes presently dominated by *Phragmites* has not been practiced widely in Europe, except for in the Baltics. There, a comparison of uninterruptedly managed (seasonal summer grazing), abandoned (no grazing) and restored (i.e., summer grazing re-introduced after abandonment) sites in coastal marshes revealed that plant biomass in restored sites rapidly changed back to the level of managed marshes (Sammul et al 2012) and *Phragmites* cover decreased significantly. Plant
species composition remained different, but typical coastal grassland species colonized and increased in abundance in restored sites (Sammul et al. 2012). The response of soil properties to the re-introduction of grazing evolved more slowly. In abandoned sites for instance, organic matter content and C/N ratio were significantly higher and bulk density significantly lower than in uninterruptedly managed sites. In the five-year old restored sites, however, all soil variables still did not differ from abandoned sites, implying that the results of grazer-driven restoration may be slow for some variables. In addition, return of tall-growing *Phragmites* is likely if management intensity wanes. Sammul et al (2012) conclude that *Phragmites* can indeed be suppressed in sites where it is dominant, but considering the slow response of soil properties, long-lasting periods of livestock-enhanced restoration should be planned in order to reach pre-abandonment environmental conditions.

Further incentives for integrating top-down control into invasive species management

While we have specifically focused on the control of an invasive plant as a management objective, this control has ancillary benefits and indirectly addresses multiple conservation targets. In addition to offering a solution for management of invasive plants that form expansive, hard-to-eradicate monocultures, livestock control programs can have reciprocal, positive impacts on local economies. Specifically, as is done in Europe, farmers could potentially receive payment for their services in controlling invasive species,
and resources (e.g. fencing, transportation of livestock) to engage in such programs. At the same time, conservation groups and government organizations will receive more cost-effective and ecologically friendly tools to manage problematic invasive plants. Several instances of companies offering services of goats and other livestock to control *Phragmites* in urban wetlands in New York City, tidal wetlands in the Chesapeake Bay (e.g. Eco-Goats), and riverbank wetlands in the U.S. mid-west suggest that these ventures are marketable. More data are needed to confirm the short- and long-term sustainability of these business models. In many arenas, win win solutions of economic gains in controlling invasives are often criticized with the argument that at some point the invasive species is going to be needed to maintain the economic model based upon it. In our proposed scenario using goat control of an invasive plant, however, we do not believe this will ever be the case as goats will likely always have more invasive to graze in the area (e.g. Kudzu) and, even when invasive plants have been locally suppressed, goats can still provide numerous benefits to their owners (e.g. dairy and meat production).

Beyond the target site where grazing is implemented, control of *Phragmites* reduces propagule pressure (McCormick et al. 2010) and interrupts positive feedbacks reducing spread to un-invaded sites (Hazelton et al 2014). In addition, this approach provides an alternative treatment option when herbicide use is unacceptable or infeasible or where reduced *Phragmites* biomass and some native cover is an acceptable goal.
This general framework, designed to link invasive species management with the production of useable goods and benefit of local economies can also be applied to other systems where invasive species threaten ecosystem services (Tulbure et al 2007, Levin 2006). By identifying, and then harnessing the positive effects of grazers, coastal managers could potentially fulfill their conservation goals with significant reduction in cost. Overall, a shift in invasive species management from eradication to mitigation of invasive species impacts is creating opportunities for the implementation of new strategies, including the use of atypical top-down control agents.

Acknowledgements

The manuscript benefited from comments of Sip van Wieren on an earlier draft of the manuscript.
References

Allen, SE. 1989. Chemical analysis of ecological materials. 2nd Ed. Blackwell Scientific Publications, Oxford. 368 pp.

Angradi TR, Hagan SM, Able KW. 2001. Vegetation type and the intertidal macroinvertebrate fauna of a brackish marsh: *Phragmites* vs. *Spartina*. Wetlands 21: 75-92.

ARC. 1980. The nutrient requirements of ruminant livestock. London. Report no.

Belovsky GE. 1986. Optimal Foraging and Community Structure - Implications for a Guild of Generalist Grassland Herbivores. Oecologia 70: 35-52.

Bertness MD, Ewanchuk PJ, Silliman BR. 2002. Anthropogenic modification of New England salt marsh landscapes. Proceedings of the National Academy of Sciences of the United States of America 99: 1395-1398.

Bokdam J, Wallis de Vries, MF 1992. Forage quality as a limiting factor for cattle grazing in isolated Dutch nature reserves. Conservation Biology 6:399-408.

Chambers RM, Meyerson LA, Saltonstall K. 1999. Expansion of *Phragmites australis* into tidal wetlands of North America. Aquatic Botany 64: 261-273.
Chambers RM, Osgood DT, Bart DJ, Montalto F. 2003. *Phragmites australis* invasion and expansion in tidal wetlands: Interactions among salinity, sulfide, and hydrology. *Estuaries* 26: 398-406.

Christian JM, Wilson SD. 1999. Long-term ecosystem impacts of an introduced grass in the northern Great Plains. *Ecology* 80: 2397-2407.

Cowie NR, Sutherland WJ, Ditlhogo MKM, James R. 1992. The effects of conservation management of reed beds II. The flora and litter disappearance. *Journal of Applied Ecology* 29: 277-284.

Dijkema KS. 1990. Salt and brackish marshes around the Baltic Sea and adjacent parts of the North-Sea - their vegetation and management. *Biological Conservation* 51: 191-209.

DiTomaso JM. 2000. Invasive weeds in rangelands: Species, impacts, and management. *Weed Science* 48: 255-265.

Esselink P, Zijlstra W, Dijkema KS, van Diggelen R. 2000. The effects of decreased management on plant-species distribution patterns in a salt marsh nature reserve in the Wadden Sea. *Biological Conservation* 93: 61-76.

Esselink P, Fresco LFM, Dijkema KS. 2002. Vegetation change in a man-made salt marsh affected by a reduction in both grazing and drainage. *Applied Vegetation Science* 5: 17-32.

Esselink P, Petersen J, Arens S, Bakker JP, Bunje J, Dijkema KS, Hecker N, Hellwig U, Jensen AV, Kers AS, Körber P, Lammerts EJ, Lüerssen G, Marencic H, Stock M, Veeneklaas RM, Vreeken M, Wolters M. 2009. Salt marshes. In: Marencic H, de Vlas J (eds) *Quality Status Report 2009. Wadden Sea Ecosystems* 25: 1–54.
Farnsworth EJ, Meyerson LA. 2003. Comparative ecophysiology of four wetland plant species along a continuum of invasiveness. Wetlands 23: 750-762.

Flory SL, Clay K. 2010. Non-native grass invasion alters native plant composition in experimental communities. Biological Invasions 12: 1285-1294.

Gurevich J, Scheiner SM, Fox GA. 2006. The ecology of plants. Sunderland, MA: Sinauer.

Hazelton E, Mozdzer TJ, Burdick D, Kettenring KM, Whigham DF. 2014. *Phragmites australis* management in the United States: 40 years of management and outcomes. AoB Plants.

Hobbs RJ, Norton DA. 1996. Towards a conceptual framework for restoration ecology. Restoration Ecology 4: 93-110.

Holdredge C, Bertness MD, von Wettberg E, Silliman BR. 2010. Nutrient enrichment enhances hidden differences in phenotype to drive a cryptic plant invasion. Oikos 119: 1776-1784.

Hunter KL, Fox DA, Brown LM, Able KW. 2006. Responses of resident marsh fishes to stages of *Phragmites australis* invasion in three mid Atlantic estuaries. Estuaries and Coasts 29: 487-498.

Jutila H. 1999. Effect of grazing on the vegetation of shore meadows along the Bothnian Sea, Finland. Plant Ecology 140: 77-88.

Kareiva P, Marvier M. 2010. Conservation science: balancing the needs of people and nature. Greenwood Village, Colorado: Roberts and Company.
Karunaratne S, Asaeda T, Yutani K. 2004. Shoot regrowth and age-specific rhizome storage dynamics of *Phragmites australis* subjected to summer harvesting. Ecological Engineering 22: 99-111.

Kettenring KM, Adams CR. 2011. Lessons learned from invasive plant control experiments: a systematic review and meta-analysis. Journal of Applied Ecology 48: 970-979.

King RS, Deluca WV, Whigham DF, Marra PP. 2007. Threshold effects of coastal urbanization on *Phragmites australis* (common reed) abundance and foliar nitrogen in Chesapeake Bay. Estuaries and Coasts 30: 469-481.

Lambert, A.M., Winiarski, K., and R.A. Casagrande. 2007. Distribution and impact of exotic gall flies (Lipara sp.) on native and exotic *Phragmites australis*. Aquatic Botany 86:163–170.

Lavergne S, Molofsky J. 2004. Reed canary grass (*Phalaris arundinacea*) as a biological model in the study of plant invasions. Critical Reviews in Plant Sciences 23: 415-429.

Lee SY. 1990. Net aerial primary productivity, litter production and decomposition of the reed *Phragmites communis* in a nature-reserve in Hong-Kong - management implications. Marine Ecology Progress Series 66: 161-173.

Levin SA. 2006. Learning to live in a global commons: socioeconomic challenges for a sustainable environment. Ecological Research 21: 328-333.

Martin, L.J. and B. Blossey. 2013. The runaway weed: Costs and failures of *Phragmites australis* management in the USA. Estuaries and Coasts 36:626-632.
Marty JT. 2005. Effects of cattle grazing on diversity in ephemeral wetlands. Conservation Biology 19: 1626-1632.

McCormick MK, Kettenring KM, Baron HM, Whigham DF. 2010. Extent and reproductive mechanisms of *Phragmites australis* spread in brackish wetlands in Chesapeake Bay, Maryland (USA). Wetlands 30: 67-74.

Meyerson LA, Saltonstall K, Chambers RM. 2012. *Phragmites australis* in eastern North America: a historical and ecological perspective. In Silliman BR, Bertness MD, Strong D, eds. Anthropogenic Modification of North American Salt Marshes.

Milotic T, Erfanzadeh R, Petillon J, Maelfait JP, Hoffmann M. 2010. Short-term impact of grazing by sheep on vegetation dynamics in a newly created salt-marsh site. Grass and Forage Science 65: 121-132.

Minchinton TE, Bertness MD. 2003. Disturbance-mediated competition and the spread of *Phragmites australis* in a coastal marsh. Ecological Applications 13: 1400-1416.

Morrison WE, Hay ME. 2011. Herbivore Preference for Native vs. Exotic Plants: Generalist Herbivores from Multiple Continents Prefer Exotic Plants That Are Evolutionarily Naïve. PLoS ONE 6(3): e17227.

TJ Mozdzer, J Brisson, ELG Hazelton. 2013. Physiological ecology and functional traits of North American native and Eurasian introduced *Phragmites australis* lineages AoB Plants 5, plt048.
Mozdzer TJ, Megonigal JP. 2012. Jack-and-master trait responses to elevated CO2 and N: A comparison of native and introduced *Phragmites australis*. Plos One 7 (10): e42794.

Mozdzer TJ, Zieman JC, McGlathery KJ. 2010. Nitrogen uptake by native and invasive temperate coastal macrophytes: Importance of dissolved organic nitrogen. Estuaries and Coasts 33: 784-797.

Neira C, Grosholz ED, Levin LA, Blake R. 2006. Mechanisms generating modification of benthos following tidal flat invasion by a *Spartina* hybrid. Ecological Applications 16: 1391-1404.

Peet RK, Wentworth TR, White PS. 1998. A flexible, multi-purpose method for recording vegetation composition and structure. Castanea 63: 262-274.

Pimentel D, Zuniga R, Morrison D. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52: 273-288.

Reiner R, Craig A. 2011. Conservation easements in California blue oak woodlands: Testing the assumption of livestock grazing as a compatible use. Natural Areas Journal 31: 408-413.

Rooth, J., Stevenson, J.C., and J.C. Cornwell. 2003. Increased sediment accretion rates following invasion by *Phragmites australis*: the role of litter. Estuaries 26:475-483.

Saltonstall K. 2002. Cryptic invasion by a non-native genotype of the common reed, *Phragmites australis*, into North America. Proceedings of the National Academy of Sciences of the United States of America 99: 2445-2449.
Sammul M, Kauer K, Koster T. 2012. Biomass accumulation during reed encroachment reduces efficiency of restoration of Baltic coastal grasslands. Applied Vegetation Science 15: 219-230.

Sax, D.F., Stachowicz, J.J., and Gaines, S.D., editors. 2005. Species Invasions: Insights into Ecology, Evolution and Biogeography. Sinauer, Sunderland, MA.

Schoute JFT. 1984. Vegetation horizons and related phenomena: a palaeoecological-micromorphological study in the younger coastal Holocene of the northern Netherlands (Schildmeer area). Strauss and Cramer. 270 p.

Schrama M, Heijning P, Bakker JP, Berg MP, Olff H. 2013. Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands. Oecologia 172: 231-243.

Silliman BR, Bertness MD. 2004. Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conservation Biology 18: 1424-1434.

Sturm M. 2007. Assessment of the effects of feral horses, sika deer and white-tailed deer on Assateague Island’s forest and shrub habitats. Berlin, MD 21811: Assateague Island National Seashore.

Tesauro J. 2002. The effects of livestock grazing on the bog turtle (Clemmys muhlenbergii). Rutgers University, New Brunswick, NJ.

Tesauro J, Ehrenfeld D. 2007. The effects of livestock grazing on the bog turtle [Glyptemys (= Clemmys) muhlenbergii]. Herpetologica 63: 293-300.

Tewksbury, L., Casagrande, R., Blossey, B., Häfliger, P., and M. Schäwrzlander. 2002. Potential for biological control of Phragmites australis in North America. Biological Control 23: 191-212.
Tilley JM, Terry RA. 1963. A two stage technique for the in-vitro digestion of forage crops. Journal of the British Grassland Society 18: 104-111.

Tulbure MT, Ghioca DM, Whigham CA. 2007. Comparative ecology of native and non-native Phragmites australis (common reed) genotypes. Society of Wetland Scientists. Sacramento, CA.

Turner MG. 1987. Effects of grazing by feral horses, clipping, trampling, and burning on a Georgia salt-marsh. Estuaries 10: 54-60.

URS. 2005. Phragmites control alternatives assessment report. Wayne, New Jersey: Prepared for PSEG Services Corporation Estuary Enhancement Program.

Van Driesche, R., Blossey, B., Hoddle, M., Lyon, S., Reardon, R., 2002, Biological control of invasive plants in the eastern United States, USDA Forest Service Publication FHTET-2002-04, 413 p.

Van Soest PJ. 1982. Nutritional ecology of the ruminant. Corvallis, Oregon: O&B Books Inc.

Vestergaard P. 1998. Vegetation ecology of coastal meadows in Southeastern Denmark. Opera Botanica 134: 5-69.

Vulink JT. 2001. Hungry herds. Management of temperate lowland wetlands by grazing. Van Zee tot Land 66: 1-385.

Vulink JT, Drost HJ. 1991a. Nutritional characteristics of cattle forage plants in the eutrophic nature reserve Oostvaardersplassen, the Netherlands.

Netherland Journal of Agricultural Science 39: 263-272.

—. 1991b. A causal-analysis of diet composition in free ranging cattle in reed-dominated vegetation. Oecologia 88: 167-172.
Windham L, Ehrenfeld JG. 2003. Net impact of a plant invasion on nitrogen-cycling processes within a brackish tidal marsh. Ecological Applications 13: 883-896.

Windham L, Meyerson LA. 2003. Effects of common reed (*Phragmites australis*) expansions on nitrogen dynamics of tidal marshes of the northeastern US. Estuaries 26: 452-464.

Zedler, J.B. and S. Kercher. 2004. Causes and consequences of invasive plants in wetlands: Opportunities, opportunists, and outcomes. Critical Reviews in Plant Sciences, 23(5):431–452.

Zeiler JT. 2006. Mammals. In: Louwe Kooijmans LP, Jongste PFB, eds. Schipluiden. A Neolithic settlement on the Dutch North Sea coast c. 3500 cal BC. Analecta Praehistorica Leidensia 37/38: 375-420.

Table 1. Management Considerations

Based on our experimental findings, we find that livestock grazing for control of invasive plants holds great potential to reduce invasive plant biomass, increase plant diversity, and support livestock production. For effective control and to avoid negative impacts of over-grazing, we recommend:

1. High-intensity, short-duration, rotational grazing. Grazers will be most effective in dense, monotypic stands that are common in the establishment and spread phases of invasions. Periods without grazers are likely very important in allowing native plants to establish (Fig. 2) and for the health of grazing livestock (Fig. 3b).
2. Small scale enclosures to concentrate feeding on the dominant, invasive plant (Fig. 4). In the case of *Phragmites*, the high digestible dry matter content of other wetland plant species (Fig. 3a) suggests that livestock permitted to graze freely might prefer other available plants.

3. The incorporation of grazing into a long-term management scheme. Grazing will not eradicate an invasive plant, but will release native plants from invasive dominance temporarily. Therefore, grazing may have to occur throughout many years, and possibly indefinitely.

4. Species-specific grazing windows. Time grazing events to suppress dominant plant invaders (i.e. early in the growing season) and limit clonal regrowth while providing adequate windows for native plants recolonization.

5. Landscape considerations. Grazing is unlikely to be effective in soft-sediment environments, such as low elevation marshes, where trampling effects may overwhelm native plant recovery. Grazers will be most effective on firm soils, such as those in the high marsh and at the upland marsh ecotone, where *Phragmites* invasions begin.
Figure 1. Effect of goats on three measures of *Phragmites australis* abundance from July 2008 – October 2009. Values are mean ± SE for 4 replicate enclosures (grazed) and control (ungrazed) plots. Stem density and height were determined in 1-m² plots and percent cover was determined in 100-m² plots. Arrows indicate the initiation of grazing periods; for cover (1c), the third grazing period falls between the last two measurement points.

Results of repeated measures ANOVA are given within each panel for effects of grazing (G), date (D), and their interaction (GxD). +P<0.1, *P<0.05, **P<0.01, ***P<001, and ****P<0.0001. Asterisks above plotted points denote a significant grazing effect for that sampling date (P< 0.05, simple effect of grazing by date); P-value given for the last stem density comparison, where P was between 0.05 and 0.1.

Figure 2. Changes in plant species richness (a) and Shannon-Weaver diversity (b) throughout the experiment in response to rotational goat grazing. Values are means ± SE for 4 replicate enclosures (grazed) and controls (ungrazed). Arrows indicate grazing period between sampling events; the third grazing period falls between the last two measurement points. An asterisk indicates a significant difference between grazed and ungrazed plots on a particular date (P<0.05, simple effect of grazing by date). Also presented are results of repeated measures ANOVA for effects of grazing (G), date (D), and their interaction (GxD). *P<0.05, **P<0.01, ***P<001, and ****P<0.0001.
Figure 3. (A) Comparison of nutritional quality among six potential food plants in the cattle-grazed Dollard salt marshes, Netherlands. Figure shows the *in vitro* digestible dry-matter (DDM) content plotted with the crude-protein content (mean ± SD) in young leaf tissue (five top leaves) during the grazing season (3rd decade of May – mid September). (B) Fall of forage quality (i.e., energy content) in leaf tissue of primary shoots of *Phragmites* in the Dollard salt marshes, Netherlands, during the grazing season based on the *in vitro* digestible dry-matter content in leaf tissue and compared with the level that cattle require for maintenance (after ARC 1980 & Van Soest 1982).

Figure 4. Pictures of impacts of no-choice goat grazing in the *Phragmites*-dominated experimental wetland.
Figure 1.

(a) **Height (m)**

- **Ungrazed**
- **Grazed**

G: \(F_{1,50} = 5.57^{+} \)
D: \(F_{3,10} = 4.36^{*} \)
G\times D: \(F_{3,17} = 5.11^{**} \)

(b) **Stem density (#/m)**

G: \(F_{1,6,1} = 29.87^{***} \)
D: \(F_{3,18,1} = 16.36^{****} \)
G\times D: \(F_{3,18} = 8.83^{***} \)

(c) **Cover (%)**

G: \(F_{1,6} = 29.72^{**} \)
D: \(F_{4,24} = 3.93^{*} \)
G\times D: \(F_{4,24} = 11.07^{****} \)
Figure 2.

![Graph showing species richness and distribution between grazed and ungrazed plots.]

- **Grazed**
- **Ungrazed**

Statistical Analysis:
- **G:** $F_{1,3} = 2.88$
- **D:** $F_{4,124} = 9.58^{****}$
- **GxD:** $F_{4,124} = 5.84^{**}$

Species richness per 100 m:
- **G:** $F_{1,3} = 2.59$
- **D:** $F_{4,124} = 4.81^{**}$
- **GxD:** $F_{4,124} = 6.83^{***}$
Figure 3

A)

B)
Figure 4.

A)

B)
Figure 1

Goat Grazing Impacts on Phragmites

Figure 1. Effect of goats on three measures of *Phragmites australis* abundance from July 2008 – October 2009. Values are mean ± SE for 4 replicate enclosures (grazed) and control (ungrazed) plots. Stem density and height were determined in 1-m² plots and percent cover was determined in 100-m² plots. Arrows indicate the initiation of grazing periods; for cover (1c), the third grazing period falls between the last two measurement points. Results of repeated measures ANOVA are given within each panel for effects of grazing (G), date (D), and their interaction (GxD). +P<0.1, *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001. Asterisks above plotted points denote a significant grazing effect for that sampling date (P<0.05, simple effect of grazing by date); P-value given for the last stem density comparison, where P was between 0.05 and 0.1.
Figure 1.

a. Stem density (#/m²)

G: $F_{1,5.60} = 5.57^*$
D: $F_{2.15} = 4.36^*$
GxD: $F_{2,17.9} = 5.11^{**}$

b. Height (m)

G: $F_{1,10.1} = 29.87^{****}$
D: $F_{3.18.1} = 16.36^{****}$
GxD: $F_{3.18.1} = 8.83^{****}$

c. Cover (%)

G: $F_{1.8} = 29.72^{**}$
D: $F_{4.24} = 3.93^*$
GxD: $F_{4.24} = 11.07^{****}$
Figure 2

Goat Grazing Impacts on Plant Diversity

Figure 2. Changes in plant species richness (a) and Shannon-Weaver diversity (b) throughout the experiment in response to rotational goat grazing. Values are means ± SE for 4 replicate enclosures (grazed) and controls (ungrazed). Arrows indicate grazing period between sampling events; the third grazing period falls between the last two measurement points. An asterisk indicates a significant difference between grazed and ungrazed plots on a particular date (P<0.05, simple effect of grazing by date). Also presented are results of repeated measures ANOVA for effects of grazing (G), date (D), and their interaction (GxD). *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001.
Figure 2.

(a) Species richness (per 100-m² plot) for grazed and ungrazed conditions. G: $F_{1,3} = 2.88$, $G = F_{4,24} = 9.58^{****}$, **GxD: $F_{4,24} = 5.84^{**}$**.

(b) Species diversity (H). G: $F_{1,3} = 2.59$, $G = F_{4,24} = 4.81^{**}$, **GxD: $F_{4,24} = 6.83^{***}$**.
Management Considerations

Based on our experimental findings, we find that livestock grazing for control of invasive plants holds great potential to reduce invasive plant biomass, increase plant diversity, and support livestock production. For effective control and to avoid negative impacts of over-grazing, we recommend:
Table 1. Management Considerations

Based on our experimental findings, we find that livestock grazing for control of invasive plants holds great potential to reduce invasive plant biomass, increase plant diversity, and support livestock production. For effective control and to avoid negative impacts of over-grazing, we recommend:

1. High-intensity, short-duration, rotational grazing. Grazers will be most effective in dense, monotypic stands that are common in the establishment and spread phases of invasions. Periods without grazers are likely very important in allowing native plants to establish (Fig. 2) and for the health of grazing livestock (Fig. 3b).

2. Small scale enclosures to concentrate feeding on the dominant, invasive plant (Fig. 4). In the case of Phragmites, the high digestible dry matter content of other wetland plant species (Fig. 3a) suggests that livestock permitted to graze freely might prefer other available plants.

3. The incorporation of grazing into a long-term management scheme. Grazing will not eradicate an invasive plant, but will release native plants from invasive dominance temporarily. Therefore, grazing may have to occur throughout many years, and possibly indefinitely.

4. Species-specific grazing windows. Time grazing events to suppress dominant plant invaders (i.e. early in the growing season) and limit
clonal regrowth while providing adequate windows for native plants recolonization.

5. Landscape considerations. Grazing is unlikely to be effective in soft-sediment environments, such as low elevation marshes, where trampling effects may overwhelm native plant recovery. Grazers will be most effective on firm soils, such as those in the high marsh and at the upland marsh ecotone, where *Phragmites* invasions begin.
Figure 3

Marsh Plant Nutritional Value

Figure 3. (A) Comparison of nutritional quality among six potential food plants in the cattle-grazed Dollard salt marshes, Netherlands. Figure shows the in vitro digestible dry-matter (DDM) content plotted with the crude-protein content (mean ± SD) in young leaf tissue (five top leaves) during the grazing season (3rd decade of May – mid September). (B) Fall of forage quality (i.e., energy content) in leaf tissue of primary shoots of Phragmites in the Dollard salt marshes, Netherlands, during the grazing season based on the in vitro digestible dry-matter content in leaf tissue and compared with the level that cattle require for maintenance (after ARC 1980 & Van Soest 1982).
Figure 3

A)

B)
Figure 4

Images of Goat Grazing Impacts

Figure 4. Pictures of impacts of no-choice goat grazing in the *Phragmites*-dominated experimental wetland.
Figure 4.

A)

B)