Adult physical inactivity prevalence in the Muslim world: Analysis of 38 countries

David Kahan *

School of Exercise and Nutritional Sciences, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-7251, USA

Abstract

Objective. Physical inactivity surveillance informs policy and treatment options toward meeting the World Health Organization’s (WHO) goal of a 10% reduction in its prevalence by 2025. We currently do not know the aggregate prevalence for Muslim-majority countries, many of which have extremely high rates of comorbidities associated with physical inactivity.

Method. Based on data for 163,556 persons in 38 Muslim countries that were collected by the Global Physical Activity Questionnaire and the International Physical Activity Questionnaire, unweighted and weighted physical inactivity prevalence estimates were calculated. I used two-proportion Z tests to determine gender and ethnic differences within the sample and between the sample and 94 non-Muslim countries and odds ratios to determine the magnitude of significant differences.

Results. Total physical inactivity prevalence was 32.3% (95% CI: 31.9, 32.7). Prevalence among males and females was 28.8% and 35.5%, respectively. Prevalence among non-Arabs and Arabs was 28.6% and 43.7%, respectively. Females and Arabs were more likely physically inactive than their respective counterparts [OR = 1.36 (1.33, 1.39) and OR = 1.94 (1.90, 1.98)]. Muslim countries were more likely physically inactive [OR = 1.23 (1.22, 1.25)] than non-Muslim ones, which was primarily due to the influence of Arabs [OR = 2.01 (1.97, 2.04)], and in particular female Arabs [OR = 2.22 (2.17, 2.27)].

Conclusion. Physical inactivity prevalence in the Muslim world is higher than non-Muslim countries and the difference is primarily due to higher rates among Arabs.

© 2015 The Author. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Physical inactivity among adults threatens global public health as it is a prime behavioral risk factor associated with major non-communicable diseases such as coronary heart disease, type 2 diabetes, and breast and colon cancer (Lee et al., 2012). Its long-term impacts increasingly burden national economies (World Economic Forum, 2011). Decreasing its prevalence is paramount toward decreasing premature mortality and restoring healthy populations. In its most recent iteration of a global action plan for the prevention of non-communicable diseases, the World Health Organization (2013) established voluntary global targets to reduce physical inactivity by 10%. Contained in the report is an imperative to monitor determinants of non-communicable disease, which include physical inactivity.

The WHO maintains a global health data observatory (http://www.who.int/gho/database/en/), which emanated from its 2002–2004 conduct of the World Health Survey of 70 countries. Located in it are the risk factor prevalence values by country for physical inactivity – based on the International Physical Activity Questionnaire (IPAQ). The WHO also provides complementary data through country STEPS reports (http://www.who.int/chp/steps/reports/en/), which resulted from the uniform measurement of physical activity using the Global Physical Activity Questionnaire (GPAQ) (http://www.who.int/chp/steps/Instrument_at_a_glance.pdf?ua=1). These data have been subsequently analyzed according to various geographic permutations.

Hallal et al. (2012) performed the largest analyses to date of the WHO observatory dataset and estimated that adult (i.e., aged ≥15 years) physical inactivity among 122 countries is 31.1%. Analyses of data subsets have revealed physical inactivity prevalence of 17.7% among 51 countries worldwide (Guthold et al., 2008), while in 22 African countries, 20.9% did not meet WHO minimum recommendations for physical activity (i.e., 600 MET-minutes per week) (Guthold et al., 2011). The International Prevalence Study (Bauman et al., 2009) surveyed physical activity among 20 countries using the IPAQ and found that physical inactivity prevalence ranged between 6.9% (China) to 43.0% (Belgium). Results of the Special Eurobarometer Wave 58.2 of 15 European Union countries revealed that physical inactivity prevalence ranged between 19.3% (Netherlands) and 43.1% (France) (Sjöström et al., 2006). Dumith et al. (2011) merged the aforementioned data sets and found physical inactivity prevalence among 76 countries of 17.4%. Ranasinghe et al. (2013) reviewed 11 research studies and 11 STEPS surveys conducted in 6 South Asian countries.
over 8 years and found that physical inactivity prevalence ranged between 5.5% (Nepal) and 58.6% (Bhutan).

Currently, no published systematic analysis of physical inactivity prevalence among Muslim-majority countries exists. Existing literature is concentrated on Arab countries, which represent less than half of all Muslim nations. A review of adult physical activity among 5 countries of the Arabian Gulf region revealed physical inactivity prevalence as high as 61.0% and 73.7% for males and females, respectively (Mabry et al., 2009). These findings are of concern because heart disease and stroke – morbidities associated with physical inactivity – were two of the top five causes of death in Arab countries in 2010 regardless of income level (Abdul Rahim et al., 2014).

Islam considers health second in importance only to faith and holds that an individual, society, and the state share responsibilities for health promotion (Al-Khayat, 2004). This view is supported in the Tirmidhi Hadith, it is told that passage to heaven is partially contingent on accounting for how one safeguarded his or her health over a lifetime. Further, the Prophet Mohammed – whose behavior Muslims are to emulate – led a physically active life by engaging in running, horse racing, wrestling, archery, and swimming (Malik, n.d.). Exegetes such as these justify focusing physical activity health promotion efforts on behalf of the entire religion. To date, however, pan-Islamic physical inactivity data have not been reported. Doing so can potentially galvanize religion-specific agencies (e.g., Islamic Relief Worldwide, Organization of Islamic Cooperation) to fund efforts aimed at decreasing physical inactivity. Therefore the purpose of the current study was (a) to calculate prevalence of physical inactivity across all Muslim countries, (b) to compare prevalence by gender within and ethnicity between Muslim countries, and (c) to compare prevalence between Muslim and non-Muslim countries overall (i.e., religion), by gender, and by ethnicity.

Method

Sample

A country was considered Muslim if its Muslim population constituted ≥50% of its total 2010 population. Based on the Pew Research Religion and Public Life Project (www.pewforum.org/2011/01/27/table-muslim-population-growth-by-country), 47 countries met this criterion and included the Palestinian territories. As of August, 2014 physical inactivity prevalence data could not be located for the countries of Azerbaijan, Brunei, Djibouti, Kosovo, Kyrgyzstan, Somalia, Tajikistan, Turkmenistan, and Yemen. Thus, the final sample constituted 38 countries and was equally split between Arab (i.e., Arab League members) and non-Arab countries. A total of 94 non-Muslim countries comprised the comparative world sample (see Supplementary file for list) and included all countries for which age-standardized physical inactivity prevalence and sample sizes were reported.

Instruments

The IPAQ was piloted during 1998–1999, which resulted in multiple short (9 items) and long (27 items) versions of the questionnaire that could be administered by telephone or self-administration (Craig et al., 2003). Subsequently, a reliability and validity study was carried out in 2000 in English among 12 countries located in 6 continents (Craig et al., 2003). Results indicated that comparable data were obtained regardless of form length, administration mode, and reference periods (Craig et al., 2003). In the following years, the IPAQ (http://www.ipaq.ki.se/) was adapted for speakers of Arabic, Farsi, French, Malay, and Turkish. These languages along with English constitute official languages of 32 of the 38 countries in the study. Developers of the IPAQ “place great emphasis on developing and creating measures that have high levels of cultural equivalence so we can compare measures and results between countries” (http://www.ipaq.ki.se/cultural.htm). They recommend standardized procedures (e.g., 4 steps when translating and back-translating, 4 specific questions to ask after a person completes each item, 2 specific questions to ask at the end of the survey) in order to ensure conceptual, metric, and linguistic equivalence.

The GPAQ was conceptualized as drawing on the strengths of the IPAQ and consists of 19 questions that measure domain-specific physical activity (i.e., work, transport, leisure) (Bull et al., 2009). Measurement properties of the GPAQ were tested during 2003–2005 in 9 countries, 2 of which – Bangladesh and Indonesia – were also included in the present study (Bull et al., 2009). Pooled kappa coefficients of 0.73 and 0.68 were obtained for sedentary (i.e., physical inactivity) behavior in the work and leisure domains, respectively (Bull et al., 2009). Concurrent validity between GPAQ and IPAQ was also assessed. A correlation of 0.65 was obtained for sedentary behavior between the two instruments, which reflected the use of an identically-worded question with correlations higher for women than for men and for urban than for rural dwellers (Bull et al., 2009). Pooled kappa (0.22) for physical inactivity showed a low correlation between the two instruments although the percentage of agreement was high (85.2%) (Bull et al., 2009).

Physical inactivity definition and data sources

The WHO defines physical inactivity prevalence as the “percent of defined population attaining less than 5 × 30 min of moderate activity per week, or less than 3 × 20 min of vigorous activity per week, or equivalent” (http://apps.who.int/gho/indicatorregistry/App_Main/view_indicator.aspx?iid=2381). Age-standardized values for males, females, and total population ≥15 years old were extracted from the WHO Global Health Observatory Data Repository (http://apps.who.int/gho/data/node.main.A893?lang=en). These values represent self-reported and aggregated domestic, occupational, transportation, and leisure-time domains of physical activity using the IPAQ (Craig et al., 2003), GPAQ (Bull et al., 2009), or a similar instrument. When a value was not reported for a particular country, the WHO STEPS country reports were consulted for physical inactivity prevalence (http://www.who.int/chp/steps/reports/en/). For countries not listed in either source, electronic searches were conducted of population-based surveys of physical inactivity in PubMed and in a country’s pertinent governmental websites. Subsequently, estimates were obtained for Afghanistan (Islam and Rasooly, 2012), Albania (Shapo et al., 2004), Morocco (Najdi et al., 2011), and Uzbekistan (Mishra et al., 2006). Data for non-Muslim countries were extracted from the same sources as well as from relevant publications (Guthold et al., 2008; Bauman et al., 2009).

Data analysis

Individual country unweighted prevalence data were entered into IBM SPSS Statistics 21. Weighted physical inactivity prevalence was calculated for the Muslim sample by the formula:

$$p = \sum_{i=1}^{38} p_k w_k$$

where p_k = prevalence estimate of adult physical inactivity of a country (whether that be male, female, total) multiplied by w_k, which is the quotient of $N_k = \text{adult population of the country (i.e., male, female, total)}$ divided by $N = \text{total adult population across all 38 countries (i.e., male, female, total)}$. Values for a country’s adult male, female, and total populations (ages 15–64) represented 2014 estimates found in the World Factbook (http://www.cia.gov). Results were then added across countries to yield an overall prevalence estimate. The same procedures were used to calculate non-Muslim physical inactivity prevalence.
To construct confidence intervals, the variance of physical inactivity prevalence \(p \) was first determined by the formula:

\[
\text{Var}(p) = \sum_{k=1}^{38} \frac{w_k^2 p_k(1-p_k)}{n_k}
\]

(2)

where \(n_k \) = the size of the adult sample drawn from a particular country. The result obtained in formula 2 was used to generate 95% confidence intervals:

\[
95\% \text{ CI} = p \pm 1.96 \sqrt{\text{Var}(p)}.
\]

(3)

To compare differences in weighted physical inactivity prevalence by gender, ethnicity, and religion two-tailed two-proportion Z-tests were conducted with a significance level set at \(P < 0.05 \). The magnitude of significant differences was assessed by calculating odds ratios.

Results

Table 1 displays the demographic characteristics of the national samples and unweighted physical inactivity prevalence values. Mean sample size and mean percent of males comprising the total sample of 163,556 persons were \(4304.1 \pm 4713.4 \) persons and \(47.6 \pm 6.6\% \), respectively. Mean unweighted prevalence estimates of physical inactivity across Muslim countries (Table 1) were \(32.8 \pm 18.2\% \), \(41.7 \pm 20.5\% \), and \(37.4 \pm 19.1\% \) for males, females, and total, respectively.

Table 2 displays weighted physical inactivity prevalence for the total Muslim population and stratified separately by gender, ethnicity, and their interaction. The prevalence of physical inactivity overall was 32.3%. Prevalence estimates significantly differed between genders and ethnicities, respectively, with females being 1.36 times more likely than males and Arabs being 1.94 times more likely than non-Arabs of being physically inactive. Prevalence estimates significantly differed within gender between ethnic groups. Specifically, Arab males and females were 1.73 and 2.15 times, respectively, more likely than their non-Arab counterparts of being physically inactive.

Table 3 displays the global physical inactivity prevalence estimates for 94 non-Muslim countries for the total population and stratified separately by gender and ethnicity, and compares prevalence estimates between non-Muslim and Muslim countries via odds ratios. The global prevalence of physical inactivity overall was 27.9% with male prevalence lower than female prevalence by 4.7%. Prevalence estimates significantly differed between non-Muslim and Muslim countries overall (i.e., religion), by gender, by ethnicity, and by ethnicity-gender interaction. In order of magnitude, Arab females, Arabs, Arab males, females, Muslim countries, males, non-Arabs, and non-Arab females were 2.22, 2.01, 1.74, 1.26, 1.23, 1.17, 1.06, and 1.03 times, respectively, more likely to be physically inactive than their counterparts in the global sample. The prevalence of physical inactivity among non-Muslim Arab males was not statistically different compared to non-Muslim males.

Discussion

This study represents the first compendium of physical inactivity prevalence data specifically aggregated for Muslim countries. It is incomplete at present because data are not currently available for 9 countries: 4 former Soviet republics, 2 war-torn countries (Kosovo, Somalia), Yemen and oddly, Brunei, which is ranked the 4th richest by 2014 GDP per capita. It is important that these countries—perhaps under the aegis of international Islamic NGOs—soon conduct and disseminate the results of physical inactivity surveillance.

Ethnic, gender, and ethnicity-gender interaction disparities were noted for physical inactivity prevalence between subgroups. Arabs were almost twice more likely physically inactive than non-Arabs and this difference was even higher between Arab and non-Arab females.
and Donnelly, 2013) identified that prevalence among Arabs is concerning. Benjamin and Donnelly (Benjamin et al., 2014; Benjamin and Donnelly, 2013; Badran and Laher, 2011; Dumith et al., 2011; Ranasinghe et al., 2013) compared to non-Arabs (difference = 5.3%). According to the WHO's Global Burden of Disease Study 2013 data from the Global Burden of Disease Study 2013 (Ng et al., 2014), prevalence of obesity in excess of 70% (Ng et al., 2014). High prevalence among Arabs of co-morbidities considered potential determinants of physical activity (Bauman et al., 2012) may partly account for the observed gender gap. Specifically, analysis of extracted comparative diabetes prevalence 2013 data from the International Diabetes Federation's atlas (http://www.idf.org/atlasmap/atlasmap) reveals a significant (P < 0.001) difference in unweighted prevalence between the Arab (13.3 ± 6.0%) and non-Arab (5.9 ± 3.2%) countries included in the present study. Additionally, analysis of extracted overweight and obesity prevalence data from the Global Burden of Disease Study 2013 (Ng et al., 2014) reveals significant differences (P = 0.001) in unweighted prevalence between Arab (59.3 ± 16.8%) and non-Arab (34.2 ± 15.4%) males and between Arab (66.9 ± 12.2%) and non-Arab (40.0 ± 15.2%) females from countries included in the present study. Additional correlates of physical inactivity – especially sociocultural ones – may also account for the prevalence gap between Arab countries and non-Muslim countries. The GPAQ and IPAQ instruments, which were used to collect data reported by the WHO and others (Bauman et al., 2009; Sjöström et al., 2006) typically underestimate moderate-to-vigorous physical activity (Bull et al., 2009; Herrmann et al., 2013). Thus, the prevalence estimates presented in the study should be cautiously interpreted; physical inactivity prevalence may be higher. The data collection period across countries spanned 10 years (see Table 1). Changes in physical inactivity over such an extended time period are inevitable. For example, among Mexican adults, physical inactivity prevalence increased by 6.0% from 2006 to 2012 (Medina et al., 2013). Correction of this limitation would require complex forecasting models of physical inactivity trends. Ideally, all countries should conduct national surveillance studies at predetermined common intervals with funding assistance provided to those countries without adequate economic resources. With such a heterogeneous mix of countries, sampling procedures and survey administration protocol were not conducted uniformly, which affected the accuracy of the aggregated prevalence estimates (World Health Organization Regional Office for Europe, 2010). Researchers have previously acknowledged factors such as differential interpretation of questions and understanding of physical activity intensity as a limitation when making comparisons across countries (Guthold et al., 2008). Weighted response rates, however, were similar between Arab (92.2%) and non-Arab (93.5%) Muslim countries and prevalence estimates for Muslim countries as a whole and for subgroups seem plausible juxtaposed to the extant literature. In conclusion, non-Arab Muslim countries were found to be about as physically inactive as non-Muslim countries and both were more active than Arab countries. Arab women, in particular, were identified as a vulnerable subgroup. Arab countries should prioritize the formulation of national policies and invest in the creation of active living environments that allow female citizens to be more physically active and still conform to socio-cultural mores and religious doctrine.

Conflict of interest statement

The authors declare that there are no conflicts of interests.
Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.pmedr.2014.12.007.

References

Abdul Rahim, H.F., Sibai, A., Khader, Y., et al., 2014. Non-communicable diseases in the Arab world. Lancet 383, 356–367.

Al-Khayat, M.H., 2004. Health as a Human Right in Islam. World Health Organization Regional Office for the Eastern Mediterranean, Cairo.

Badran, M., Laher, I., 2011. Obesity in Arabic-speaking countries. J. Obes. http://dx.doi.org/10.1155/2011/886430.

Bauman, A., Bull, F., Chey, T., et al., 2009. The international prevalence study on physical activity: results from 20 countries. Int. J. Behav. Nutr. Phys. Act. 6, 21. http://dx.doi.org/10.1186/1479-588X-6-21.

Bauman, A.E., Reis, R.S., Sallis, J.F., Wells, J.C., Loos, R.J.F., Martin, B.W., 2012. Correlates of physical activity: why are some people physically active and others not? Lancet 380, 258–271.

Benjamin, K., Donnelly, T.T., 2013. Barriers and facilitators influencing the physical activity of Arabic adults: a literature review. Avicenna 8, http://dx.doi.org/10.5339/avi.2013.8.

Bull, F.C., Maslin, T.S., Armstrong, T., 2009. Global Physical Activity Questionnaire (GPAQ): nine country reliability and validity study. J. Phys. Act. Health 6, 790–804.

Craig, C.L., Marshall, A.L., Sjöström, M., et al., 2003. International Physical Activity Questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 35, 1381–1395.

Dumith, S.C., Hallal, P.C., Reis, R., Kohl III, H.W., 2011. Worldwide prevalence of physical inactivity and its association with human development index in 76 countries. Prev. Med. 53, 24–28.

Guthold, R., One, T., Strong, K.L., Chatterji, S., Morabia, N., 2008. Worldwide variability in physical inactivity: a 51-country survey. Am. J. Prev. Med. 34, 486–494.

Guthold, R., Louzani, S.A., Riley, L.M., et al., 2011. Physical activity in 22 African countries: results from the World Health Organization STEPwise approach to chronic disease risk factor surveillance. Am. J. Prev. Med. 41, 52–60.

Hallal, P.C., Andersen, L.B., Bull, F.C., Guthold, R., Haskell, W., Ekelund, U., 2012. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet 380, 247–257.

Herrmann, S.D., Heumann, K.J., Der Ananian, C.A., Ainsworth, B.E., 2013. Validity and reliability of the Global Physical Activity Questionnaire (GPAQ). Meas. Phys. Educ. Exerc. Sci. 17, 221–235.

Islam, S.K., Rasooly, M.H., 2012. Prevalence and risk factors associated with obesity among adult Kabul citizens (Afghanistan). 2012. Iran J. Diabetes Obes 4, 152–161.

Kahan, D., 2011. Arab American college students’ physical activity and body composition: reconciling Middle East–West differences using the sociocological model. Res. Q. Exerc. Sport 82, 118–128.

Lachat, C., Ochere, S., Roberfroid, D., et al., 2011. Diet and physical activity for the prevention of noncommunicable diseases in low- and middle-income countries: a systematic policy review. PLoS Med. http://dx.doi.org/10.1371/journal.pmed.1001465.

Lee, I.-M., Shimra, E.J., Lobelo, F., Puska, P., Blair, S.N., Katzmarzyk, P.T., 2012. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380, 219–229.

Mabry, R.M., Reeves, M.M., Eaking, E.G., Owen, N., 2009. Evidence of physical activity participation among men and women in the countries of the Gulf Cooperation Council: a review. Obes. Rev. 11, 457–464.

Malik, M.Z., d. Importance of physical fitness in the light of Seerat-e-Tayyibah. Jihat ul-Islam [Internet]. 2010–11 [cited 2014 Aug 6];4(1):2–7. Available from:. pu.edu.pk/images/journal/jihat-ul-islam/PDF/1-importance%20of%20fitness%20settled20/by%20hanvi.pdf.

Medina, C., Janssen, I., Campos, I., Barquera, S., 2013. Physical inactivity prevalence trends among Mexican adults: results from the National Health and Nutrition Survey (ENSANUT) 2006 and 2012. BMC Public Health 13, 1063.

Mishra, V., Arnold, F., Semenov, G., Hong, R., Mukuria, A., 2006. Epidemiology of obesity and hypertension and related risk factors in Uzbekistan. Eur. J. Clin. Nutr. 60, 1355–1366.

Musaijer, A.O., Al Hazzaa, H.M., Kilani, H.A., 2011. Strategy to combat obesity and to promote physical activity in Arab countries. Diabetes Metab. Syndr. Obes. 4, 89–97.

Najdi, A., El Achhab, Y., Nejjari, C., Norat, T., Zidouh, A., El Rhazi, K., 2011. Correlates of physical activity in Morocco. Prev. Med. 52, 355–357.

Ng, M., Fleming, T., Robinson, M., et al., 2014. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet http://dx.doi.org/10.1016/S0140-6736(14)60460-8.

Ranasinghe, C.D., Ranasinghe, P., Jayawardena, R., Misra, A., 2013. Physical activity patterns among South-Asian adults: a systematic review. Int. J. Behav. Nutr. Phys. Act. 10, 116. http://dx.doi.org/10.1186/1479-5868-10-116.

Sallis, J.F., Owen, N., 2008. Ecological models of health behavior. In: Glanz, K., Rimer, B.K., Viswanath, K. (Eds.), Health Behavior and Health Education: Theory, Research, and Practice, 4th ed. Jossey-Bass, San Francisco, CA, pp. 465–486.

Shapo, L., Pomerlau, J., McKee, M., 2004. Physical inactivity in a country in transition: a population-based survey in Tirana City, Albania. Scand. J. Public Health 32, 60–67.

Shulav, K., Weissblueth, E., Brezis, M., Araida, A., Dipietro, L., 2009. Individual and sociocultural correlates of physical activity among Arab and Jewish college students in Israel. J. Phys. Act. Health 6, 306–314.

Sjöström, M., Oja, P., Hagströmer, M., Smith, B.J., Bauman, A., 2011. Correlates of physical activity in the primary school setting. Prev. Med. 52, 355–357.

World Economic Forum, 2011. From burden to best buys: reducing the economic impact of non-communicable diseases in low- and middle-income countries. [cited 2014 Aug 11]. Available from:. http://www.weforum.org/EconomicsOfNCD.

World Health Organization, 2011. Global Status Report on Noncommunicable Diseases 2010. WHO Press, Geneva.

World Health Organization, 2013. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020. WHO Press, Geneva.

World Health Organization Regional Office for Europe, 2010. Report on the workshop on integration of data on physical activity patterns. [cited 2014 Aug 12]. Available from:. http://ec.europa.eu/health/nutrition_physical_activity/docs/implementation_report_a1d_en.pdf.