Silver-catalyzed remote Csp3-H functionalization of aliphatic alcohols

Yuchao Zhu1, Kaimeng Huang1, Jun Pan1, Xu Qiu1, Xiao Luo1, Qixue Qin1, Jialiang Wei1, Xiaojin Wen1, Lizhi Zhang1 & Ning Jiao1,2

Aliphatic alcohols are common and bulk chemicals in organic synthesis. The site-selective functionalization of non-activated aliphatic alcohols is attractive but challenging. Herein, we report a silver-catalyzed δ-selective Csp3-H bond functionalization of abundant and inexpensive aliphatic alcohols. Valuable oximonitrile substituted alcohols are easily obtained by using well-designed sulphonyl reagents under simple and mild conditions. This protocol realizes the challenging δ-selective C–C bond formation of simple alkanols.
Aliphatic alcohols that are readily available and bulk chemicals serve as important building blocks for the construction of value-added molecules for organic chemists. However, the selective modification or functionalization of aliphatic alcohols on the carbon chain is very hard due to the inertness of Csp3–H bonds as well as the difficulties in the control of regioselectivity, and therefore remains a challenging issue. Since the original discoveries by Barton, the remote functionalization via 1,5-Hydrogen Atom Transfer (1,5-HAT) of alkoxyl radicals has been frequently applied in different transformations. However, these methods require a pre-activation of alcohols and the corresponding precursors, such as nitrite esters, peroxysulfates, hypohalites, N-alkoxyphthalimides, N-alkoxypyridine-2-thiones, and lead(IV) alkoxides, are sometimes hard to handle or prepare and usually need harsh conditions for the generation of alkoxyl radicals. Strategies for the direct activation of simple alcohols under mild conditions are highly desirable.

The direct generation of alkoxyl radicals from alcohols is attractive but more challenging as the bond dissociation energy of O–H bond is around 105 kcal mol\(^{-1}\). To address this problem, transition metal catalysis or photocatalysis were developed inducing \(\beta\)-scission reactions of tertiary alcohols. Hartwig and coworkers pioneeredly reported a direct \(\gamma\)-selective C–O bond formation of alcohols with the assistance of silicon reagents (Fig. 1b)\(^{36,37}\). Zhu and coworkers developed a novel intra-molecular heteroaryl migration of tertiary alcohols by photocatalysis\(^{38}\). With a cerium-based photocatalyst, Zuo and coworkers reported an elegant \(\delta\)-selective C–N bond formation reaction of primary alcohols enabled by a ligand-to-metal charge transfer excitation (Fig. 1c)\(^{39}\). To the best of our knowledge, the direct and selective inter-molecular C–C bond formation of simple alcohols via distal Csp3–H activation to afford corresponding oxime ether products is still unknown.

Herein, we describe a silver-catalyzed direct \(\delta\)-selective Csp3–H bond functionalization of simple and readily available alkanols under mild conditions (Fig. 1d). This reaction features the three-fold advantages: without the need of pre-activation, a simple Ag/oxidant system enables this selective Csp3–H functionalization of aliphatic alkanols; inert C–H bond activation with excellent regioselectivities and chemo-selectivities are achieved; the mild reaction conditions, broad substrate scope, and potential for further applications make this method attractive for the synthesis of valuable functionalized alcohols.

Results

Initial optimization of the reaction conditions. Oximes and oxime ethers have various synthetic applications and exist in multiple bioactive molecules. In recent years, the well-designed sulfonyl oxime ether reagents showed great reactivity in alkyl radical chemistry. Inspired by the recently developed silver-catalyzed radical reactions\(^{37,60}\) and our continues interest in developing radical reactions with sulfonyl reagents\(^{58,59}\), we envisioned that the sequence silver-catalyzed radical process would achieve the challenging C–H bond functionalization. To investigate our hypothesis, we initially chose \(\text{A}\) as the radical acceptor for the direct functionalization of the widely existed 1-octanol (1a). We tested several oxidants with AgNO\(_3\) (20 mol%) in CH\(_2\)CN/H\(_2\)O (1:1) under argon atmosphere at 50°C (Table 1, entries 1–4). To our delight, when Na\(_2\)S\(_2\)O\(_8\) was used as the oxidant, the oxime ether product 2a was obtained in 37% yield (Table 1, entry 3). K\(_2\)S\(_2\)O\(_8\) was a bit more efficient compared with

Fig. 1 The remote site-selective functionalization reactions of aliphatic alcohols. a Traditional indirect strategy to alkoxyl radical. b Alcohol-directed \(\gamma\) C–O bond formation. c Visible light promoted intra-molecular migration and \(\delta\)-selective C–N bond formation. d This work: Ag-catalyzed direct \(\delta\)-selective C–C bond functionalization.
Na$_2$S$_2$O$_8$ (40%, Table 1, entry 4). The yield of 2a based on the recovered starting materials increased to 71% when acetonitrile/H$_2$O (1:1) was employed as solvents (Table 1, entry 5). The reaction is unable to carry out without silver catalyst (Table 1, entry 6). Moreover, the solubility of silver salts is vital in this reaction as the insoluble AgI was inefficient (Table 1, entry 7). Other metal catalysts, including CuCl$_2$, FeCl$_2$, and MnBr$_2$ did not show efficiency (Table 1, entries 8–10). Other solvents such as PhCF$_3$/H$_2$O or DMSO/H$_2$O were inactive (Table 1, entries 11–12). Furthermore, the substituted aryl sulfonyl reagent (B, C) as well as the alkyl sulfonyl reagent D are not more effective compared with reagent A (Table 1, entries 13–15).

The δ-selective functionalization of primary alkanols. With the optimized reaction conditions in hand, we started to investigate the substrate scope of this transformation. The frequently used alkanols (1a–b) reacted well to afford the corresponding oxime ether products in moderate yields (2a–b). Moreover, multiple function groups such as the halogen and azido groups are tolerated (2c–e). To our delight, better yields are obtained in the reaction of alkanols bearing an oxygen atom at the ε position, owing to the higher stability and stronger nucleophilicity of α-oxygen carbon-centered radicals than typical alkyl radicals (2f–i).

Notably, when we explored the aryl group substituted alkanols, the active benzylic C–H bond remained untouched in this transformation (2j–l), highlighting the excellent regioselectivity and chemo-selectivity of the present transformation. Furthermore, the five-membered, six-membered, and the four-membered ring substituted alcohols reacted well to afford the corresponding oxime ethers with 51–64% yields (2m–p).

Despite the secondary carbon–hydrogen functionalization, the tertiary carbon–hydrogen is also compatible in this protocol. The alcohol 1q containing a tertiary carbon–hydrogen bond afforded 2q in a little bit low yield. We suppose that the steric hindrance of 1q blocked the radical addition process of carbon radical to sulfonxy reagent (Table 2).

The δ-selective functionalization of substituted alkanols. With the aforementioned results in hand, we next explored more special alkanols under the optimized conditions (Table 3). The 2-butoxyethanol and 2-ethoxyethanol reacted well to afford 2r and 2s in moderate yields, respectively. The 2-methoxyethanol derivative 2t could be isolated in 33% yield, as the primary alkyl radical is unstable compared to secondary alkyl radicals. Besides the primary alkanols, the secondary alcohol 1u is compatible in our conditions producing 2u with 2:1 of diastereoisomers. Moreover, the γ-substituted alcohol 1v afforded 2v in moderate yield. Unfortunately, the β-substituted alcohol 1w was inactive because of the gem-dimethyl effect (2w).

Further application of functionalized alkanols. The oximoni-trile fragment in the functionalized products is an important precursor of amidoxime which are key motifs of some fungicides, insecticides, and other bioactive compounds (Fig. 2)46. By a zinc-mediated reduction, the oxime can transform into the corresponding amine product 4 (Fig. 2)61. Through further operation, 4 could transform into tetroxazoles, oxadiazoles, and even amino acid derivatives, which are valuable motifs in bioactive molecules and drugs62,63.

Mechanistic studies. Several experiments were investigated to gain the mechanistic insight of this transformation. When stoichiometric amount of TEMPO (Fig. 3a) or BHT (Fig. 3b) was added to the reaction mixture under standard conditions,
Table 2 AgNO₃-catalyzed δ-selective functionalization of primary alkanols

R	PhO₂S⁻CN	NOBn	AgNO₃ (20 mol%)	K₂S₂O₅ (1.5 equiv)	Acetone/H₂O (1:1)	50 °C, 24 h, Ar
H	PhO₂S⁻CN	NOBn	2a, 55% (71%)			
			2b, 60% (63%)			
			2c, 51% (65%)			
			2d, 46% (66%)			
			2e, 50% (60%)			
			2f, 60%			
			2g, 57%			
			2h, 63%			
			2i, 60% (65%)			
			2j, 53% (62%)			
			2k, 45% (56%)			
			2l, 48% (60%)			
			2m, 56% (67%)			
			2n, 64% (74%)			
			2o, 51% (61%)			
			2p, 64% (75%)			
			2q, 34% (51%)			

Standard conditions: see entry 5, Table 1. Yields shown are isolated products

*Yield based on recovered alcohols

*Diastereoselectivity was determined by ¹H NMR

*Acetone/H₂O (0.6 mL/0.6 mL) was used

Table 3 AgNO₃-catalyzed δ-selective functionalization of substituted alkanols

R¹X	R²OH	AgNO₃ (20 mol%)	K₂S₂O₅ (1.5 equiv)	Acetone/H₂O (1:1)	50 °C, 24 h, Ar
H					

Standard conditions: see entry 5, Table 1. Yields shown are isolated products

*Yield based on recovered alcohols
respectively, no oxime ether product was detected with the recovery of the substrate 1a. These results indicated that this silver-catalyzed transformation may undergo a radical pathway. Then, we studied the effect of the hydroxyl group. The 1-Octane 5 cannot transform to the corresponding selective functionalized product 6 under standard reaction conditions (Fig. 3c). Furthermore, the reaction of 1-methoxyoctane 7 and reagent A afforded no oxime ether product 8 (Fig. 3d). These results supported that the hydroxyl group in the alkanols is essential for the initiation of this transformation.

To be emphasized, when 2-methyl-1-butanol 9 was tested, N-(benzyloxy)-2-methylbutanimidoyl cyanide 10 was obtained in 27% yield (Fig. 4). This transformation involves an alkoxyl radical-induced β-scission process20, which alternatively supports the direct alkoxyl radical generation from alcohols enabled by the current silver/oxidant catalysis.

Based on the aforementioned experimental results, the possible mechanism was proposed in Fig. 5. Initially, AgNO₃ is oxidized to AgII. Then, intermediate I formed by coordination of alcohols 1 to AgII undergoes a homolytic cleavage process to afford alkoxyl radical II and regenerate AgI. Subsequently, the intermediate II undergoes 1,5-HAT to afford carbon radical III which is then trapped by sulphonyl reagent A to afford radical intermediate IV. The followed fragmentation produces δ-selective functionalized alkanol 2 with the release of sulfonyl radical V. Finally, the sulfonyl radical is transformed to benzenesulfonic acid51.

Discussion
In summary, we have developed a AgNO₃-catalyzed δ-selective functionalization of aliphatic alcohols via Csp³-H bond cleavage under mild conditions without pre-activation of the alcohol substrates. This atom-economical and easy handled strategy has been applied to various primary and secondary alkanols affording valuable oximonitrile substituted products with high chemoselectivity. Mechanistic studies indicate the reaction undergoes an alkoxyl radical-mediated 1,5-HAT process. We anticipate that this discovery could inspire the development of the transformation of common aliphatic alcohols and Csp³-H functionalization.
Methods

General procedure for the functionalization of alkanols. AgNO₃ (6.8 mg, 0.04 mmol), K₂S₂O₈ (81 mg, 0.3 mmol), and reagent PhSO₂C(CN)=NOBn (A) (120 mg, 0.4 mmol) were added to a 20 mL Schlenk tube under Ar. Aliphatic alcohols (1.2 mmol) was added via syringe, followed by addition of acetone (1.0 mL), H₂O (1.0 mL). The formed mixture was stirred at 50°C under Ar for 24 h. After cooling to room temperature, the mixture was diluted with water (10 mL) and extracted with EA (3 x 10 mL). The combined extracts were washed with a saturated solution of NaCl (15 mL), dried over MgSO₄, and evaporated in vacuo. The residue was purified by chromatography on silica gel (PE/EA = 5:1) to afford product 2.

Data availability

All data that support the findings of this study are available in the online version of this paper in the accompanying Supplementary Information (including experimental procedures, compound characterization data).

Received: 5 March 2018 Accepted: 30 May 2018
Published online: 06 July 2018

References

1. Luk, H. T., Mondelli, C., Ferre, D. C., Stewart, J. A. & Perez-Ramirez, J. Status and prospects in higher alcohols synthesis from syngas. Chem. Soc. Rev. 46, 1358–1368 (2017).

2. Stefane, B. & Pozgan, F. Metal-catalyzed transfer hydrogenation of ketones. Top. Curr. Chem. 374, 1–67 (2016).

3. Chen, X., Engle, K. M., Wang, D. H. & Yu, J. Q. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 48, 5094–5115 (2009).

4. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

5. Newhouse, T. & Baran, P. S. If C-H bonds could talk: selective C-H bond functionalization. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).

6. Vamagiuchi, J., Yamaguchi, A. D. & Itami, K. C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

7. Barton, D. H. R., Beaton, J. M., Geller, L. E. & Pechet, M. M. A new photochemical reaction. J. Am. Chem. Soc. 82, 2640–2641 (1960).

8. Barton, D. H. R. & Beaton, J. M. A synthesis of aldosterone acetate. J. Am. Chem. Soc. 82, 2641–2641 (1960).

9. Barton, D. H. R., Beaton, J. M., Geller, L. E. & Pechet, M. M. A new photochemical reaction 1. J. Am. Chem. Soc. 83, 4076–4083 (1961).

10. Czecovic, Z. & Green, M. M. Formation of remote double-bonds by ferrous sulfate cupric acetate promoted decomposition of alkyl hydroperoxides. J. Am. Chem. Soc. 96, 3000–3002 (1974).

11. Czecovic, Z. & Dimitrijevic, L., Djokic, G. & Srnic, T. Remote functionalization by ferrous ion cupric ion induced decomposition of alkyl hydroperoxides. Tetrahedron 35, 2021–2026 (1979).

12. Czecovic, Z. & Cvetkovic, M. Functionalization of the delta-carbon atom by the ferrous ion induced decomposition of alkyl hydroperoxides in the presence of cupric ion. Tetrahedron Lett. 23, 3791–3794 (1982).

13. Too, P. C., Tray, Y. L. & Chiba, S. Copper-catalyzed aerobic aliphatic C-H activation/C-C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 55, 15141–15157 (2016).

14. Yaila, H. G., Wang, H., Tarantino, K. T., Orbe, H. S. & Knowles, R. R. Catalytic ring-opening of cyclic alcohols by PCET activation of strong O-H bonds. J. Am. Chem. Soc. 138, 10794–10797 (2016).

15. Guo, J. et al. Photocatalytic C-C bond cleavage and amination of cycloalkanols by ceric(III) chloride complex. Angew. Chem. Int. Ed. 55, 15319–15322 (2016).

16. Jia, K., Pan, Y. & Chen, Y. Selective carbonyl-C(sp3) bond cleavage to vinyl azides: synthesis of pyridine and 2-azabicyclo[3.3.1]non-2-en-1-ol derivatives. J. Am. Chem. Soc. 131, 12570–12572 (2009).

17. Wang, Y.-F., Toh, K. K., Ng, E. P. J. & Chiba, S. Mn(III)-mediated formal [3 + 3]-annulation of vinyl azides and cycloalkanols: a divergent synthesis of azaheterocycles. J. Am. Chem. Soc. 133, 6411–6421 (2011).

18. Simmons, E. M. & Hartwig, J. F. Catalytic functionalization of unactivated primary C-H bonds directed by an alcohol. Nature 483, 70–73 (2012).

19. Li, D., Bries, M. & Hartwig, J. F. Iridium-catalyzed regioselective silylation of secondary alkyl C-H bonds for the synthesis of 1,3-dioles. J. Am. Chem. Soc. 136, 6586–6589 (2014).

20. Wu, X. et al. Tertiary-alcohol-directed functionalization of remote C(sp3)-H bonds by sequential hydrogen atom and heteroaryl migrations. Angew. Chem. Int. Ed. 57, 1640–1644 (2018).

21. Hu, A. et al. S-selective functionalization of alkanols enabled by visible-light-induced ligand-metal charge transfer. J. Am. Chem. Soc. 140, 1612–1618 (2018).

22. Mikhailova, A. I., Zaitsev, A. B. & Trofimov, B. A. Oximes as reagents. Russ. Chem. Rev. 75, 797–823 (2006).

23. Kobayashi, S. & Iwashita, H. Catalytic enantioselective addition to imines. Chem. Rev. 99, 1069–1094 (1999).

24. Kim, S., Lee, I. Y., Yoon, J. Y. & Oh, D. H. Novel radical reaction of phenylisulfonyl oxime ethers. A free radical acylation approach. J. Am. Chem. Soc. 118, 5138–5139 (1996).

25. Ryu, I. et al. New radical cascade reactions incorporating multiple one-carbon radical synths: a versatile synthetic methodology for vicinal singly and doubly acylated oxime ethers. J. Am. Chem. Soc. 121, 12190–12191 (1999).

26. Kim, S., Song, H. J., Choi, T. L. & Yoon, J. Y. Free radical acylation reactions with methanesulfonyl oxime ether. Angew. Chem. Int. Ed. 40, 2524–2526 (2001).

27. Kim, S. G. & Lim, C. J. Tin-free radical-mediated C-C bond formations with alkyl alky1 sulfones as radical precursors. Angew. Chem. Int. Ed. 41, 3265–3267 (2002).

28. Gaspar, B. & Carreira, E. M. Cobalt catalyzed functionalization of unactivated alkenes: regioselective reductive C-C bond forming reactions. J. Am. Chem. Soc. 131, 13214–13215 (2009).

29. Fang, G., Cong, X., Zanoni, G., Liu, Q. & Bi, X. H. Silver-based radical reactions: development and insights. Adv. Synth. Catal. 359, 1422–1502 (2017).

30. Zheng, Q. Z. & Jiao, N. Ag-catalyzed C-H/C-C bond functionalization. Chem. Soc. Rev. 45, 4590–4627 (2016).

31. Tan, X. et al. Silver-catalyzed decarboxylative trifluoromethylation of aliphatic carboxylic acids. J. Am. Chem. Soc. 139, 12430–12433 (2017).
Acknowledgements

This work is dedicated to Professor Xiyan Lu on the occasion of his 90th birthday. Financial support from the National Natural Science Foundation of China (21632001, 21772002), the National Basic Research Program of China (973 Program) (No. 2015CB856600), the National Young Top-Notch Talent Support Program, and Peking University Health Science Center (No. BMU20160541) are greatly appreciated. We thank Xiyu Hu in this group for reproducing the results of 2c and 2s.

Author contributions

Y.Z. and N.J. conceived and designed the experiments; Y.Z. carried out most of the experiments; Y.Z., K.H., J.P., X.Q., X.L., Q.Q., J.W., X.W., L.Z., and N.J. analyzed data; Y.Z. and N.J. wrote the paper; N.J. directed the project.

Additional information

Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-05014-w.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2018