Effects of amorphous and crystalline MoO₃ coatings on the Li-ion insertion behavior of a TiO₂ nanotube anode for lithium ion batteries†

Dongsheng Guan, Jianyang Li, Xianfeng Gao and Chris Yuan*

Amorphous and crystalline MoO₃ coatings are synthesized on anodic TiO₂ nanotube arrays by electrodeposition, as a self-standing, binder-free anode material in Li-ion batteries for enhancing the Li-ion insertion performance. The amorphous MoO₃ layer is uniform and conformal with a thickness of 10 nm, and is converted into crystalline nanoparticles via thermal treatment. Our results show that both the coated TiO₂ nanotubes deliver much higher areal capacities than bare nanotubes or a dense crystalline α-MoO₃ film, while the crystalline α-MoO₃ coating greatly increases the areal capacity of TiO₂ nanotubes compared to the amorphous. The results are obtained at 1340 μA h cm⁻² initial capacity for nanotubes with a crystalline coating, 977 μA h cm⁻² for those with an amorphous coating and 342 μA h cm⁻² for the bare ones. The significant enhancement is due to a combination of MoO₃ with high specific capacity and TiO₂ nanotube arrays with large surface area allowing uniform MoO₃ deposition and rapid ionic transfer. Crystalline α-MoO₃ is better than amorphous MoO₃ and the coating medium is discussed in terms of chemical state, crystal defects, capacitive contributions and the charge–discharge kinetics in coated TiO₂ nanotube electrodes.

Introduction

Rechargeable lithium-ion batteries (LIBs) have drawn tremendous interest in the past decades due to their high energy density, light weight, low self-discharge and long lifespan.¹ At present, graphite is the most commonly-used anode material in commercial LIBs, but its drawback of easy formation of lithium dendrites, hinders the development of compact LIBs with higher operation voltage, larger power density and better cell safety.² TiO₂ is a promising alternative to graphite because of its high safety and good cyclability, low self-discharge rates and small volume change (<3%).³ It is also attractive owing to its abundant resource, low cost, chemical stability and harmless properties. Self-organized TiO₂ nanotube arrays formed by anodic oxidation could serve as an excellent host for electrons and Li⁺ ions, and their tight contact with the metallic substrate allows electrons to be collected directly and efficiently.⁴ However, the Li-ion insertion performance of anatase TiO₂ nanotubes (~168 mA h g⁻¹) is poor and needs to be improved. Several methods have been proposed for using surface modifications with metal⁺⁺⁺ or other anode materials such as SnO₂,⁵ Cu₆Sn₅,⁶ NiO,⁷ Co₃O₄,⁸ Fe₂O₃,⁹ etc.

Besides TiO₂, orthorhombic α-MoO₃ is also an excellent anode material for LIBs, with a high theoretical capacity of 1111 mA h g⁻¹, almost three times that of the graphite.¹⁰ Recently we reported α-MoO₃ deposited TiO₂ nanotube composites showing good Li-ion storage capacities and stable cycling performances.¹¹ α-MoO₃ can be obtained by crystallization of amorphous MoO₃ that is well-known for its excellent electrochromic behavior during the insertion/desorption process of ions including Li⁺ and H⁺.¹² Although electroinsertion behaviors of amorphous and crystalline MoO₃ are reported,¹³,¹⁴ impacts of metal oxidation states and morphological evolution of MoO₃ coatings on Li-ion insertion of MoO₃-deposited TiO₂ nanotubes have not been investigated yet. It remains unclear if ordered TiO₂ nanotubes are qualified to act as a robust substrate to MoO₃ for its better performance in thin-film electrochromic devices and electrochemical batteries. Hence, we propose synthesis of amorphous MoO₃ coatings onto highly-oriented TiO₂ nanotubes by employing a controllable and facile electrodeposition method. Evolution of the surface coating is studied in detail in terms of morphological features, chemical state and electrochemical kinetics.

In this work, ordered anatase TiO₂ nanotubes were synthesized by potentiostatic anodization and subsequent thermal treatment. Electrodeposition of MoO₃ was performed on these nanotube arrays and bare Ti foils to obtain amorphous coatings that are transformed into the crystalline phase upon annealing. We compared the effects of amorphous and crystalline MoO₃ coatings on the Li-ion intercalation capacity of TiO₂ nanotubes.
Our results demonstrate that these TiO$_2$ nanotubes could be an excellent substrate in thin film MoO$_3$ electrodes for high performance LIBs.

Results and discussion

Fig. 1 presents SEM images of bare and MoO$_3$-coated TiO$_2$ nanotubes. The top-view (Fig. 1a) and cross-sectional images (Fig. S1†) show well-ordered TiO$_2$ nanotubes (B-TN) with the top end open at an average inner diameter of ~110 nm and a length up to 9 µm. It can be seen from the inset of this figure that the hollow tubes are directionally arrayed with individual and smooth walls. Apparently, their inner and outer walls provide large surface area which offers numerous sites for MoO$_3$ deposition in order to form an effective hybrid structure. Fig. 1b gives SEM images of TiO$_2$ nanotubes coated with 8 deposition cycles of MoO$_3$ (AMO-TN). Compared to B-TN, their walls are thickened as evidenced by open entrances showing a reduced inner diameter of ~90 nm. In addition, their tube walls remain smooth with a uniform coating layer in a thickness of ~10 nm, and the precipitates there are believed to contain various molybdenum oxides.\(^{15,19}\) On the other hand, the coating layer is roughened after heat treatment, thanks to spontaneous origination of particles anchored on the tube walls (CMO-TN, Fig. 1c). The tubular structure survives, leaving a narrower entrance and lower porosity, because the walls of TiO$_2$ nanotubes are further thickened and the pore size is mostly 50 nm. Fig. 1d presents an oxide film (400MO) formed by electrodeposition of molybdenum oxides directly on Ti. Edged particles with a size up to hundreds of nanometers are aggregated to yield a dense film only with a few cracks. They are polycrystalline with an orthorhombic crystal structure (α phase).\(^{15}\)

As a result, it is understood that the hollow nanotubes not only work as a support for MoO$_3$ deposition, but offer numerous channels to let electrolytes readily infiltrate and Li$^+$ ions rapidly transfer in a fast charge-discharge process, which is likely to achieve better Li-ion insertion behaviour of TiO$_2$ anodes in LIBs. MoO$_3$-deposited TiO$_2$ nanotubes are examined by TEM as well. Fig. 2a shows nanotubes from AMO-TN with a conformal coating layer of ~9.4 nm thickness on their outer wall. It is assumed that such a coating also exists on inner walls since the pores are quite wider than the tube gaps as shown in Fig. 1a, and thus electrolytes can easily access the inner walls for deposition. It is proved by reducing the inner diameter of TiO$_2$ nanotubes from 110 nm to 90 nm and to 30 nm, as the deposition cycles of amorphous MoO$_3$ increase from zero to 8 and to 16 (Fig. 1a and b and S2a†). Direct deposition of MoO$_3$ inside the nanotube is also reported in previous work.\(^{17,28}\) Upon heating many α-MoO$_3$ nanoparticles are further viewed on both the inner and outer walls due to the crystallization process (Fig. S2b†). The particles could be seen in Fig. 2b as well. When compared, there are fewer particles in Fig. 2a, suggesting the growth of α-MoO$_3$ particles on CMO-TN rather than AMO-TN and B-TN. In addition, co-existence of polycrystalline α-MoO$_3$ and anatase TiO$_2$ is also confirmed by indexing these spots in a selected area electron diffraction ring pattern of CMO-TN, as seen in Fig. 2b. Three rings consisting of the spots are examined. With their diameters, we obtain an interplanar spacing of ~0.355 nm for the anatase TiO$_2$ (101) plane, 0.271 nm for the α-MoO$_3$ (101) plane and ~0.185 nm for the α-MoO$_3$ (002) plane, but a great amount of interplanar spacings of anatase TiO$_2$ and α-MoO$_3$ are too close to index other spots readily in the pattern. An EDX analysis is also made from TEM observation to claim the presence of Mo, Ti and O elements. An EDX quantitative analysis of Ti (59.14 at%) and Mo (12.67 at%) in the nanotubes provides an elemental ratio of 27.8 wt% for α-MoO$_3$ in CMO-TN, which is quite close to 26.7 wt% of the mass ratio obtained by weighing samples.

Both EDX and XPS techniques are employed to analyze the elemental distribution and chemical states of the deposited TiO$_2$ nanotubes. Fig. 3a shows the EDX mapping of AMO-TN in which elements including Mo, Ti and O are detected and well distributed in the TiO$_2$ nanotube film, suggesting formation of a uniform molybdenum oxide coating on TiO$_2$ nanotube arrays.
A detailed XPS analysis reveals that the as-formed coating contains MoV oxides and MoVI oxides, since the Mo3d5/2 peak at 232.0 eV and the Mo3d3/2 peak at 235.2 eV correspond to MoV, and the Mo3d5/2 peak at 233.1 eV and the Mo3d3/2 peak at 236.2 eV ($\Delta E = 3.1$ eV) correspond to MoVI (Fig. 3b). The fraction of MoVI is as high as 50% in the amorphous coating, based on the area ratio of 1 : 1 between MoVI peaks and MoV peaks. Upon annealing, the XPS peak shape shifting to high energies is in line with a-MoO$_3$ (Fig. 3c). The area ratio between the two peaks (3d5/2 : 3d3/2) was almost 3 : 2, as expected for the coatings on CMO-TN which are dominantly composed of MoVI. A tiny peak at 234 eV tells us that a trace amount of molybdenum species (MoO$_x$) in lower oxidation states may reside. As for the O1s peak, a slight shift (0.5 eV) to a lower energy is observed (Fig. 3d), which is in agreement with previous studies. The peak shift is attributed to elimination of OH$^-$ groups and oxidation of MoV ions in the coating on annealing. Our results indicate a uniform coating composed of MoV and MoVI oxides on TiO$_2$ nanotubes after electrodeposition, which turns to be an a-MoO$_3$-predominant film right after annealing at 450 °C. In

Fig. 1 SEM images of (a) B-TN, (b) AMO-TN, (c) CMO-TN and (d) 400MO.

Fig. 2 (a) TEM images of AMO-TN, (b) TEM image of CMO-TN and an electron diffraction pattern taken from these nanotubes with distinguishable Miller indices of anatase TiO$_2$ (T(101)) and a-MoO$_3$ (M(101), M(002)).
summary, these results demonstrate that the MoO$_3$-coated TiO$_2$ nanotube arrays have been successfully achieved by a facile electrodeposition in molybdenum salt solutions.

Anodic TiO$_2$ nanotubes are found to be in anatase phase after annealing at 450 °C by XRD and Raman.14,21 Fig. 4 describes XRD patterns of MoO$_3$-coated TiO$_2$ nanotubes. Typical diffraction peaks for anatase TiO$_2$ are observed, including the (101) peak at 2θ = 25.3° and the (200) peak at 2θ = 47.9°. Diffraction peaks of Ti are also found in both patterns, as evidenced by the (101) peak at 2θ = 40.0°.

There are no XRD peaks found for molybdenum metal or oxides in the pattern of AMO-TN, suggesting deposition of amorphous MoO$_3$ layers onto anatase TiO$_2$ nanotubes. After heat treatment, the amorphous coating is gradually transformed to nanoparticles in the crystalline (α) phase, as evidenced by peaks (020), (040) and (021) of α-MoO$_3$ at 2θ = 12.6°, 25.4° and 27.4°, respectively.

Based on above analyses, it is confirmed that electrodeposition and crystallization of α-MoO$_3$ on anodic TiO$_2$ nanotube arrays results in a hybrid nanostructure. Fig. 5 vividly illustrates the morphological evolution of TiO$_2$ nanotubes with MoO$_3$ coatings. Initially, the formed nanotubes are well-arrayed on the Ti substrate by anodization and are then converted into anatase by annealing (Fig. 5a). Owing to electrodeposition of MoO$_3$, both the inner and outer walls of nanotubes are wrapped with a layer of amorphous MoO$_3$ to achieve a core–shell structure (Fig. 5b). Heat treatment induces crystallization within the amorphous layer, producing an amount of α-MoO$_3$ nanoparticles (Fig. 5c) and yielding a TiO$_2$ nanotube supported α-MoO$_3$ nanoparticle electrode.

Fig. 6 displays cycling performances of MoO$_3$ film, bare and deposited TiO$_2$ nanotubes over 10 electrochemical cycles at a large current density of 800 μA cm$^{-2}$ (compared to the commonly-used current density of 50–200 μA cm$^{-2}$)12,14 in a potential range of 0.05–3.0 V versus Li/Li$^+$. Clearly, a capacity drop occurs after the initial cycle for all anodes, probably due to some fractions of Li$^+$ ions becoming trapped inside the oxide from irreversible formation of a molybdenum bronze such as Li$_{12}$Mn$_{10}$O$_{2}$ or due to decomposition of organic solvent to form a SEI layer on the surface of the electrodes.15 Later, the charge–discharge capacities tend to stabilize. Apparently, all TiO$_2$ nanotube films deliver significantly higher areal capacities (330–1300 μA h cm$^{-2}$) than the dense pure MoO$_3$ film (~100 μA h cm$^{-2}$), indicating a porous structure truly superior to a dense one for electrode materials. In addition, areal capacities of both MoO$_3$-coated TiO$_2$ nanotubes are larger than that of the bare one. For example, CMO-TN exhibits an initial charge capacity of 1340 μA h cm$^{-2}$ and a final charge capacity of 1136 μA h cm$^{-2}$ over 10 cycles, more than three times that of B-TN (342 μA h cm$^{-2}$ and 319 μA h cm$^{-2}$). Additionally,
AMO-TN shows an initial charge capacity of 977 \(\mu \text{A h cm}^{-2} \) and a final charge capacity of 905 \(\mu \text{A h cm}^{-2} \), greater than B-TN but lower than CMO-TN. Specific capacities of these \(x \)-MoO\(_3\) and TiO\(_2\) anodes are obtained as well, among which CMO-TN delivers the highest and B-TN gives the lowest due to an intrinsically low capacity of anatase TiO\(_2\) (~168 m\(\text{A h g}^{-1} \)).

Typical specific charge capacities are 430 m\(\text{A h g}^{-1} \) for CMO-TN, 340 m\(\text{A h g}^{-1} \) for 400MO, 290 m\(\text{A h g}^{-1} \) for AMO-TN and 150 m\(\text{A h g}^{-1} \) for B-TN (Fig. S3†). Obviously, the porous MoO\(_3\)/TiO\(_2\) nanotube hybrid structure is surely able to provide better Li-ion insertion properties than a dense \(x \)-MoO\(_3\) film electrode (400MO) and even a conventional \(x \)-MoO\(_3\) powder electrode (with binder and conductive carbon black) showing capacities of ~125 m\(\text{A h g}^{-1} \) with similar current and potential parameters for battery testing, mostly due to full utilization of nanosized \(x \)-MoO\(_3\) and rapid Li-ion transfer inside a porous electrode.\(^{13,18}\) Moreover, CMO-TN with both more areal and specific capacity than 400MO highlights nanoparticles superiority to submicron particles deposited onto TiO\(_2\) nanotube arrays for the first time. That is, it has been reported that NiO or Co\(_2\)O\(_4\) particles in submicron size deposited to anodic TiO\(_2\) nanotubes could improve their areal capacity rather than specific capacity compared to pure NiO or Co\(_2\)O\(_4\) films made by same electrode-deposition, since they are too large to spread effectively on the inner and outer walls of the nanotubes.\(^{11}\) It is also worth pointing out that CMO-TN and AMO-TN anodes deliver higher areal capacities than B-TN and better rate stability than 400MO within a wide current range from 200 to 1000 \(\mu \text{A cm}^{-2} \) (Fig. S4†). In brief, the remarkable improvement in Li-ion intercalation capacities of TiO\(_2\) nanotube arrays is attributed to the addition of MoO\(_3\) with high specific capacity onto host TiO\(_2\) material.\(^{14}\) It is also found that crystalline \(x \)-MoO\(_3\) nanoparticles are capable of accommodating more Li\(^+\) ions than amorphous MoO\(_3\) layers based on a comparison between AMO-TN and CMO-TN. The discrepancy is related to the crystal structure and chemical states of molybdenum oxides, capacitive factors and electrochemical kinetics.\(^{13,18}\) Additionally, the TiO\(_2\) tubular structure plays an important role in this capacity boost as well. It allows uniform MoO\(_3\) deposition onto nanotubes and rapid mass transport within the electrode, favourable for \(x \)-MoO\(_3\) coatings to exert its Li-ion insertion/desertion nature at high rates.

Fig. 7a shows galvanostatic discharge–charge plots of B-TN, AMO-TN and CMO-TN on the first two cycles at a current of 800 \(\mu \text{A cm}^{-2} \). It is observed that the charge–discharge capacity of the two deposited samples is fairly higher than that of bare one. Two voltage plateaus appear near 1.7 V and 2.1 V in the curves of the three anodes. The one at 1.7 V in the negative scan corresponds to Li-ion insertion into TiO\(_2\), while the other in the positive scan accords with Li-ion desertion from TiO\(_2\). The total reaction for Li-ion insertion to/extraction from TiO\(_2\) is described by:\(^{22}\)

\[
\text{TiO}_2 + x\text{Li}^+ + xe^- \leftrightarrow \text{Li}_x\text{TiO}_2
\]

(1)

For anatase TiO\(_2\), \(x \) could be up to 0.5 (\(\text{Li}_{0.5}\text{TiO}_2 \)), corresponding to a capacity of 168 mA h g\(^{-1} \).

As the cell is discharged below 1.0 V, the capacity of B-TN continues to rise slightly, as shown by a decline slope of its plot in Fig. 7a. Besides a little extra Li-ion insertion to TiO\(_2\), an important reason for the increment could be the decomposition of electrolyte components at the TiO\(_2\) electrodes in which Li\(^+\) ions may participate to cause a few irreversible capacities.\(^{23,24}\) In addition, more prolonged, slowly declining slopes below 0.7 V in the discharge plots are observed for both AMO-TN and CMO-TN, suggesting a large quantity of Li\(^+\) ions intercalated into the MoO\(_3\)-coated TiO\(_2\) nanotubes rather than the bare ones at low potentials. Such a difference is again confirmed by their differential capacity plots derived from this figure. Fig. 7b shows a pair of oxidation (at 2.08 V) and reduction peaks (at 1.7 V) in the charge–discharge process of TiO\(_2\), suggesting a one-stage lithiation mechanism in anatase TiO\(_2\) according to eqn (1). It is also seen that in the second cycle the reduction and oxidation peaks for B-TN are weakened, due to Li-ion loss in the previous cycle. However, the peak positions almost remain unchanged, showing good reversibility of the Li-ion insertion/desertion reaction on TiO\(_2\) nanotubes. On the contrary, the lithiation process in MoO\(_3\)-deposited samples appears greatly different. Fig. 7c displays the differential capacity curves of AMO-TN. In this figure, the peaks at 1.5 V and 2.11 V in the first cycle mainly corresponds to Li-ion insertion/desertion on TiO\(_2\). As the potential goes down to 0.05 V, the plot inclines distinctly and even produces a small peak at ~0.28 V, claiming more Li\(^+\) ions insert into AMO-TN than into B-TN. It indeed happens that Li\(^+\) ions are inserted into the amorphous MoO\(_3\) layer in the negative scan, because of much larger \(|dQ/dV| \) values for AMO-TN than for B-TN. The reduction peak shifts to 1.68 V in the second cycle, thanks to foregoing the activation process and reduced electrode polarization. Differential plots of CMO-TN are present in Fig. 7d where a pair of high reduction and oxidation peaks are seen at 1.59 V and 2.07 V in the first cycle, plus a sharp peak at 0.24 V. Li-ion insertion to \(x \)-MoO\(_3\) is believed to be involved in this event, since long discharge plateaus and corresponding reduction peaks appear at 0.42 V and 0.32 V for 400MO (Fig. S5†). Undoubtedly, \(|dQ/dV| \) values continue to rise for CMO-TN, a sign of increased storage of Li\(^+\) ions. As the battery testing proceeds, its reduction peak moves to 1.7 V but its oxidation peak remains unchanged, so AMO-TN displays a wider separation of reduction and oxidation peaks of TiO\(_2\) (0.43 V) than B-TN (0.38 V) and CMO-TN (0.37 V), probably due to larger electrode polarization from slower Li\(^+\) diffusion in the amorphous MoO\(_3\) coating.\(^{18}\) Additionally, it is worth pointing out that a broad plateau appears between 1 V and 2 V in the positive scan of AMO-TN and CMO-TN, suggesting a great number of Li\(^+\) ions extracted out of the MoO\(_3\) within the potential window, which is in accord with linearly increasing slopes of their charge plots in Fig. 7a. The plateau or slope is a typical electrochemical characteristic of MoO\(_3\) according to Fig. S5.† The differential capacity curves of the three samples within this potential window are enlarged and put as insets in Fig. 7b–d. The curve starts from 20 \(\mu \text{A h cm}^{-2} \) V\(^{-1} \) at 1 V and gradually goes up to 240 \(\mu \text{A h cm}^{-2} \) V\(^{-1} \) at 2 V for B-TN, but from 170 to 510 \(\mu \text{A h cm}^{-2} \) V\(^{-1} \) for AMO-TN, and from 260 to 740 \(\mu \text{A h cm}^{-2} \) V\(^{-1} \) for CMO-TN. Since TiO\(_2\) nanotubes serve as the
substrate for both amorphous and crystalline MoO₃ coatings, it confirms that \(\alpha \)-MoO₃ is able to accommodate more Li⁺ ions than amorphous MoO₃, which is in good agreement with previous literature.¹⁵,¹⁸

A two-stage lithiation process has been proposed for MoO₃.²⁵ As the potential is above 1.25 V, the reaction of Li⁺ insertion into MoO₃ on the TiO₂ anode can be represented by:

\[
\text{MoO}_3 + x \text{Li}^+ + xe^- \leftrightarrow \text{Li}_x\text{MoO}_3
\]

(2)

For \(\alpha \)-MoO₃, \(x \) could be between 1 and 1.5 in the first stage, and Mo⁶⁺ is reduced to Mo⁵⁺ and further to Mo⁴⁺. \(\alpha \)-MoO₃ has an orthorhombic structure containing a group of regularly distorted MoO₆ octahedra. They share edges to form chains that are cross-linked through oxygen atoms to yield layers. Li⁺ ions are inserted into the interlayer spacing between these octahedral layers and intralayers.²⁶,²⁷ The second stage occurs at potentials below 0.7 V here, and the according reaction can be expressed by:

\[
\text{Li}_x\text{MoO}_3 + y\text{Li}^+ + ye^- \leftrightarrow \text{Mo} + 3\text{Li}_2\text{O}
\]

(3)

It can be seen from eqn (3) that in lower voltage regions Li⁺ ions react with the solid solution (LiₓMoO₃) to form Mo metal and Li₂O oxides. LiO is believed to be naturally irreversible, but the presence of nanosized Mo particles induces a reversible reaction of Li₂O during charging,¹³,²₅ and thus a huge loss of active material is prohibited.

It is understood from Fig. 7c and d that the two stages could occur in both amorphous and crystalline MoO₃ layers on TiO₂ nanotubes, despite different capacities of AMO-TN and CMO-TN. Several reasons are proposed to explain such discrepancies: first of all, the presence of molybdenum species in lower oxidation states in AMO-TN decreases chemical reactions of metal ion and Li⁺ ions according to eqn (2) and (3). Secondly, absorbed moisture and oxygen deficiencies in amorphous MoO₃ cause a huge Li⁺ ion loss when AMO-TN is subject to deep discharge conditions.¹⁵ Thirdly, distinct capacitive capabilities of MoO₃ are involved in the Li⁺ storage behaviors of AMO-TN and CMO-TN electrodes. Both crystalline and amorphous MoO₃ deliver redox pseudocapacitance but the former has a unique layered crystal structure in which extra Li⁺ ions can enter van der Waals gaps to create intercalation pseudo-capacitance.²₆,²₇ Hence, more capacitive contributions from \(\alpha \)-MoO₃ help CMO-TN to deliver larger Li⁺ storage capacities than AMO-TN at high rates. More importantly, the kinetics of Li⁺ ions at these oxide electrodes also play an important role in their electrochemical performance, which is studied by the electrochemical impedance spectroscopy (EIS) technique.

Fig. 7 gives Nyquist plots and their equivalent circuit for B-TN, 400MO, AMO-TN and CMO-TN are cells discharged and charged for ten battery cycles. In this circuit, \(R_s \) is the ohmic resistance from the electrolyte, polymer separator and electrodes, corresponding to the intercept of the depressed semicircle in the high-to-medium frequency region with the Z-real axis. The semicircle is related to the Li⁺ ion transfer process from the electrolyte into the TiO₂ anode. \(R_{ct} \) is the charge transfer resistance at the electrode/electrolyte interface, which could be inferred from the semicircle arc. The sloping line at the low
Paper

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

In summary, anatase TiO2 nanotube arrays have been synthesized by anodic oxidation of Ti in fluoride-containing EG electrolyte and annealing at 450 °C in air, for effective surface coating with MoO3 via electrochemical deposition, in order to greatly enhance the Li-ion intercalation properties of TiO2 anodes. The uniform layer of amorphous MoO3 on nanotubes is demonstrated by XRD, SEM and TEM. The as-deposited MoO3 coating is converted to the crystalline (α) phase upon thermal treatment. All TiO2 nanotubes deliver larger areal capacities than pure MoO3 film, partly due to high surface area and fast Li-ion kinetics in porous electrodes. In addition, Li-ion storage capacities of TiO2 nanotubes are increased by the as-formed amorphous MoO3 coatings, and further enlarged with a crystalline coating. The improved electrochemical property is due to the combination of MoO3 with high specific capacity and ordered TiO2 nanotubes with large surface area for efficient deposition and fast Li-ion kinetics. Despite larger Li-ion transfer resistance, α-MoO3 coated TiO2 nanotubes possess the advantages of crystalline α-MoO3 including more capacitive contributions and tighter chemical bonds with the TiO2 substrate to achieve the best Li-ion storage performance. Our results demonstrate that crystalline TiO2 nanotube arrays composited with transition oxides having more Li-ion storage capabilities could be a promising electrode material for high-performance LIBs.

Conclusions

In summary, anatase TiO2 nanotube arrays have been synthesized by anodic oxidation of Ti in fluoride-containing EG electrolyte and annealing at 450 °C in air, for effective surface coating with MoO3 via electrochemical deposition, in order to greatly enhance the Li-ion intercalation properties of TiO2 anodes. The uniform layer of amorphous MoO3 on nanotubes is demonstrated by XRD, SEM and TEM. The as-deposited MoO3 coating is converted to the crystalline (α) phase upon thermal treatment. All TiO2 nanotubes deliver larger areal capacities than pure MoO3 film, partly due to high surface area and fast Li-ion kinetics in porous electrodes. In addition, Li-ion storage capacities of TiO2 nanotubes are increased by the as-formed amorphous MoO3 coatings, and further enlarged with a crystalline coating. The improved electrochemical property is due to the combination of MoO3 with high specific capacity and ordered TiO2 nanotubes with large surface area for efficient deposition and fast Li-ion kinetics. Despite larger Li-ion

Fig. 8 Nyquist plots and the equivalent circuit of half cells containing B-TN, 400MO, AMO-TN and CMO-TN anodes measured at a potential of 1.7 V after ten electrochemical cycles.

Acknowledgements

Financial support from the University of Wisconsin System Applied Research program and the University of Wisconsin – Milwaukee Bradley and Hertz Catalyst Grant Programs are gratefully acknowledged.

Notes and references

1 J. M. Tarascon and M. Armand, Nature, 2001, 414, 359.
2 A. S. Arico, P. Bruce, B. Serosati, J. M. Tarascon and W. Van Schalkwijk, Nat. Mater., 2005, 4, 366.
3 A. R. Armstrong, G. Armstrong, J. Canales and P. G. Bruce, J. Power Sources, 2005, 146, 501.
4 H. T. Fang, M. Liu, D. W. Wang, T. Sun, D. S. Guan, F. Li, J. G. Zhou, T. K. Sham and H. M. Cheng, Nanotechnology, 2009, 20, 225701.
5 X. N. Luan, D. S. Guan and Y. Wang, J. Phys. Chem. C, 2012, 116, 14257.
6 H. S. Kim, S. H. Kang, Y. H. Chung and Y. E. Sung, Electrochem. Solid-State Lett., 2010, 13, A15.
7 D. S. Guan and Y. Wang, Ionics, 2013, 19, 879.
8 X. Q. Meng, J. Y. Yao, F. L. Liu, H. C. He, M. Zhou, P. Xiao and Y. H. Zhang, J. Alloys Compd., 2013, 552, 392.
9 L. G. Xue, Z. Wei, R. S. Li, J. L. Liu, T. Huang and A. S. Yu, J. Mater. Chem., 2011, 21, 3216.
10 L. L. Wang, S. C. Zhang and X. M. Wu, Chem. Lett., 2011, 40, 1428.
11 N. A. Kyeremateng, C. Lebouin, P. Knauth and T. Djeniziana, Electrochim. Acta, 2013, 88, 814.
12 L. Yu, Z. Y. Wang, L. Zhang, H. B. Wu and X. W. Lou, J. Mater. Chem. A, 2013, 1, 122.
13 G. Y. Zhao, N. Q. Zhang and K. N. Sun, J. Mater. Chem. A, 2013, 1, 221.
14 D. S. Guan, J. Y. Li, X. F. Gao and C. Yuan, J. Power Sources, 2014, 246, 305.
15 T. M. McEvoy and K. J. Stevenson, Langmuir, 2003, 19, 4316.
16 N. K. Shrestha, Y. C. Nah, H. Tsuchiya and P. Schmuki, Chem. Commun., 2009, 2008.
17 D. D. Yao, M. R. Field, A. P. O’Mullane, K. Kalantar-zadeh and J. Z. Ou, Nanoscale, 2013, 5, 10353.
18 C. V. Ramana, V. V. Atuchin, H. Groult and C. M. Julien, J. Vac. Sci. Technol., A, 2012, 30, 04D105.
19 M. L. Petrova, M. S. Bojinov and I. H. Gadjov, Bulg. Chem. Commun., 2011, 43, 60.
20 K. Lorenz, S. Bauer, K. Gutbrod, J. P. Guggenbichler, P. Schmuki and C. Zollfrank, Biointerphases, 2011, 6, 16.
21 D. S. Guan and Y. Wang, Nanoscale, 2012, 4, 2968.
22 D. S. Guan, C. Cai and Y. Wang, J. Nanosci. Nanotechnol., 2011, 11, 3641.
23 S. K. Jeong, M. Inaba, T. Abe and Z. Ogumi, J. Electrochem. Soc., 2001, 148, A989.
24 K. Tasaki, A. Goldberg, J. J. Lian, M. Walker, A. Timmons and S. J. Harrisc, J. Electrochem. Soc., 2009, 156, A1019.
25 P. Meduri, E. Clark, J. H. Kim, E. Dayalan, G. U. Sumanasekera and M. K. Sunkara, Nano Lett., 2012, 12, 1784.
26 B. C. Windom, W. G. Sawyer and D. W. Hahn, Tribol. Lett., 2011, 42, 301.
27 M. C. Rao, K. Ravindranadh, A. Kasturi and M. S. Shekhawat, Res. J. Recent Sci., 2013, 2, 67.
28 G. Y. Zhao, L. Zhang and K. N. Sun, J. Electroanal. Chem., 2013, 694, 61.
29 T. Brezesinski, J. Wang, S. H. Tolbert and B. Dunn, Nat. Mater., 2010, 9, 146.