GE vs GM: Efficient side-channel security evaluations on full cryptographic keys

CHES 2022

Anca Rădulescu, PG Popescu and Marios Choudary

Leuven, 21 September 2022
Thanks Christ, the UPB team and Virgil Gligor from CMU

(The UPB campus – left: our Church; right: the rector offices)
Side-channel attack security evaluations

Images from https://medium.com/@charles.guillemet/ledger-donjon-3e04e0ce49a9

SCA evaluations necessary:

- During product manufacturing to assess security of products
- For governments, to establish some required standards
- For security industry (e.g. automotive, banking) to ensure that third-party products (e.g. smartcards) have a sufficient level of security
- To obtain a uniform level of security certification (e.g. Common Criteria EAL4+)
SCA security evaluation tools for short data (e.g. key byte)

- Commonly used security level estimation metrics: Success Rate (SR), Guessing Entropy (GE) aka Rank
- Less common (yet...): Massey’s Guessing Entropy (GM)
- A mess of guessing entropy measures and notations
 - 1994: James Massey proposes $E[G]$
 - 1997: Christian Cachin terms it ‘Guessing Entropy’ $E[G(X)]$ and present conditional version $E[G(X|y)]$
 - 2007: Köpf and Basin use the conditional guessing entropy in the context of side-channel attacks
 - 2009: FX Standaert et al. present (empirical) Guessing Entropy in framework for SCA evaluations
- Bigger problem: GE and GM both run in $O(N \log N)$
 - Do not directly scale for large keys (impractical for $N > 2^{16}$)
 - We need special methods for full-key security evaluations
Two main approaches for full-key security evaluations:

- **Key enumeration for large keys** ([Charvillon et al. 2012, Poussier et al. 2016])
- **Security level estimation for large keys:**
 - Empirical Guessing Entropy (Rank) estimation ([Charvillon et al. 2013, Glowacz et al. 2015, Zhang et al. 2020])
 - Massey’s Guessing Entropy (GM) bounds ([Choudary and Popescu 2017])
SCA security evaluation tools for full keys (e.g. 128-bit AES key, 4096-bit RSA key)

Our main goal – comparing full-key SCA evaluation tools:

- **FSE’15 rank estimation** [Glowacz et al. 2015]
 - One of the fastest GE estimation methods to date
 - Works well up to 256 key bytes, with good precision

- **GM bounds** [Choudary and Popescu 2017]
 - Mathematical, rigorous bounds for GM
 - Fastest and most scalable full-key evaluation method to date
 - Works with 1024-byte keys and beyond

- **GEEA rank estimation** [Zhang et al. 2020]
 - One of the newest methods for GE estimation on large keys
 - Lower STD than FSE’15
GM vs GE computation

\[
\text{(Massey’s)GM} = \frac{1}{N} \sum_{q=1}^{N} \sum_{i=1}^{|S|} i \cdot P(k_i|X = X_q)
\]

\[
\text{(Empirical)GE} = \frac{1}{N} \sum_{q=1}^{N} \{\text{rank of } k* \text{ in experiment } q\}
\]

\[
(P(k_1|X_q) \geq \ldots \geq P(k_i|X_q) = P(k*|X_q) \geq \ldots \geq P(k_{|S|}|X_q))
\]

Observations:

- Same complexity (need to sort all the list of probabilities)
- Both dependent on acquired datasets \((X_q)\)
- Different use of probabilities
- GE requires knowledge of correct key, GM does not
GM vs GE simple example

\[\text{GM} \quad 3.63 \quad \text{GE} \quad 3 \]

\[\text{GM} \quad 3.63 \quad \text{GE} \quad 4 \]

\[\text{GM} \quad 3.63 \quad \text{GE} \quad 5 \]
GM vs GE simple example

\[\begin{align*}
\text{GM} & \quad 3.63 & \quad 3.63 & \quad 3.63 \\
\text{GE} & \quad 3 & \quad 4 & \quad 5 \\
\rightarrow & \text{GE provides actual (empirical) estimation of rank} \\
\rightarrow & \text{GM is generally a lower bound for GE [KB’07]}
\end{align*} \]
Experimental datasets

- We used three different datasets:
 - *Simulated* dataset (Hamming weight of AES S-box output mixed with Gaussian noise): \(x_i = \text{HW}(S\text{-box}(k \oplus p_i)) + r_i \)
 - *XMEGA* dataset (AVR XMEGA AES engine)
 - *SoC* dataset (ChipWhisperer-Lite with STM32F303 32-bit ARM)

- We used Template Attacks to obtain lists of probabilities for each AES key byte \((p_1, p_2, \ldots, p_{256})\)
On the utility of GM

Observation 1: GM is generally a lower bound for GE
→ Can be used to confirm security is above a certain threshold

Observation 2: we may combine both measures to determine the quality of a leakage model

GM close to GE → good model (e.g. in Simulated dataset)
GM departs from GE → bad model (e.g. in SoC dataset)
We focus on the three representative methods

- FSE’15 (Glowacz et al. 2015)
- GM Bounds (Choudary and Popescu 2017)
- GEEA (Zhang et al. 2020).
Introduction

GM vs GE

Full key evaluation tools

Precision analysis on 128-bit data (16-byte results)

XMEGA

SoC

Simulated

Guessing Entropy (LOG2)

FSE

FSE-STD

FSE+STD

GMLB

GMLB-STD

GMLB+STD

GMUB

GMUB-STD

GMUB+STD

GEEA

GEEA-STD

GEEA+STD

Median STD

FSE’15 1.84
GM Bounds 0.74
GEEA 0.56

FSE 2.67
GMLB 2.89
GMUB 2.22
GEEA 1.77

Anca Rădulescu, PG Popescu and Marios Choudary
Scalability and usability analysis on larger data (128 bytes)

Guessing Entropy (log2) for SoC

- FSE
- GMLB
- GMUB
- GEEA

nr attack traces
Scalability and computation analysis on large data (16/128/1024-byte results)

	16 bytes	128 bytes	1024 bytes
FSE’15	29/60/172	1027/5336/4689	Not practical
GM Bounds	1/1/1	2/6/6	40
GEEA (M = 10^4, 10^6)	17/18/26	432/415/473	Not practical
Overall analysis and usability guidelines

- FSE’15:
 - Good approximation of GE
 - Works well for up to 256 key bytes
 - Slow computation for large keys
Overall analysis and usability guidelines

- **FSE’15:**
 - Good approximation of GE
 - Works well for up to 256 key bytes
 - Slow computation for large keys

- **GM Bounds:**
 - Guaranteed, tight bounds for GM
 - (Typically) Lower bound for GE/FSE
 - Can be used with very large keys
Overall analysis and usability guidelines

- **FSE’15:**
 - Good approximation of GE
 - Works well for up to 256 key bytes
 - Slow computation for large keys

- **GM Bounds:**
 - Guaranteed, tight bounds for GM
 - (Typically) Lower bound for GE/FSE
 - Can be used with very large keys

- **GEEA:**
 - High accuracy (low STD)
 - Deviates from GE/FSE within similar computation time
 - Needs more analysis to provide some guarantees
Overall analysis and usability guidelines

Conclusions:

- Use GM Bounds for a very fast security evaluation (lower bound) – works with very large keys
 https://gitlab.cs.pub.ro/marios.choudary/gmbounds
- Use FSE’15 or other GE estimation algorithm for accurate estimate of key rank
- (Optionally) Use a key enumeration algorithm to output list of keys in decreasing probability

Greetings from the UPB (GM Bounds) Team
GM Bounds (log2) on 1024-byte key (SoC data)
GEEA with varying amount of data (SoC, 16 bytes)

- GEEA computation on large keys uses random selection of subkey computations (comparison vectors)
- Needs very large M (large computation) to approach GE/FSE
- May not be able to follow GE within given computing power