Molecular basis of high-level ciprofloxacin resistance in *Neisseria gonorrhoeae* strains from Shandong Province, China

L.H. Zhao, S.P. Zhao
Department of Laboratory, Taian Central Hospital, Taian, P.R. China.

Submitted: October 29, 2011; Approved: July 2, 2012.

Abstract

In the study, the ciprofloxacin resistance rate was 100%. High-level ciprofloxacin resistance rate was 63.55%. Sixteen different mutation patterns involved in the formation of ciprofloxacin resistance were identified. The most prevalent were patterns P7 (25.2%), P8 (15.0%), P9 (11.2%), P1 (10.3%), and P5 (10.3%). All of the 107 *NG* isolates analyzed for mutations in the study have demonstrated a change of Ser-91\(\rightarrow\)Phe in the *gyrA* gene, and all except one have demonstrated a change in position 95 of the amino acid sequence. All of the 68 high-level QRNG isolates had double mutations in *gyrA* gene combined with a single or two mutations in *parC* gene. It is most important that a new mutation site of Ile-97\(\rightarrow\)Met in *gyrA* and a new mutation of Leu-106\(\rightarrow\)Ile in *parC* were found in the study, both leading to high-level ciprofloxacin resistance (MIC values, 8 \(\mu\)g/mL, 32 \(\mu\)g/mL, respectively). Therefore, we confirm that *gyrA* mutations are necessary for the fluoroquinolone resistance phenotype and *parC* mutations are correlated intimately with high-level fluoroquinolone resistance. In China fluoroquinolone resistance in *Neisseria gonorrhoeae* strains is very serious and the new mutation sites in the fluoroquinolone resistance-determining regions emerge more and more quickly. Hence, in China fluoroquinolones, which are used to treat *gonorrhoea* presently, should be substituted by a new antibiotic.

Key words: *Neisseria gonorrhoeae*, ciprofloxacin resistance, high-level, molecular analysis.

Introduction

Neisseria gonorrhoeae (*N. gonorrhoeae*) is the pathogen of gonorrhoea, one of the most common sexually transmitted diseases worldwide. In China, gonorrhoea is the second one of the sexually transmitted diseases, with a cumulative total of 119, 824 reported cases in 2009 (http://www.chinacdc.cn/en/, 2010). *Neisseria gonorrhoeae* urogenital infection leads to pelvic inflammatory disease and infertility. Therefore, it is very important for early detection and appropriate treatment of *N. gonorrhoeae* infection. In the face of widespread penicillin resistance, fluoroquinolones have been used as an effective antimicrobial agent for treatment of *N. gonorrhoeae* infection. However, presently fluoroquinolone-resistance in *N. gonorrhoeae* (QRNG) has emerged and increased rapidly in the United States, Western Europe, and Asia (Fiorito *et al.*, 2001; Bala *et al.*, 2003; Vereshchagin *et al.*, 2004; Yong *et al.*, 2004; http://www.who.int/en/, 2004; Xie *et al.*, 2006; Allen *et al.*, 2011; Angeliki *et al.*, 2011;). In China, the range of the rate of fluoroquinolone resistance is about 30% to 80%, depending on the regions studied (Su *et al.*, 2004; Liu *et al.*, 2006; Tu *et al.*, 2006).

Fluoroquinolone resistance in *N. gonorrhoeae* has been shown to be due to point mutations at Ser-91 and Asp-95 in the *gyrA* gene (Fiorito *et al.*, 2001). Besides this, *parC* mutation has also been involved in high-level fluoroquinolone resistance of *N. gonorrhoeae* (Lindback *et al.*, 2002), but *parC* mutations in isolation do not appear to be associated with antimicrobial resistance (Zhou *et al.*, 2004). Zafar Sultan shows that double alterations at Ser-91 and Asp-95 in *gyrA* plus a single or double *parC* alteration(s) play an important role in the development of high-level fluoroquinolone resistance in *N. gonorrhoeae* (Sultan *et al.*, 2004). Isolates with only *gyrA* mutations has lower MICs than those with mutations in both *gyrA* and *parC* gene (Wang *et al.*, 2006; Yang *et al.*, 2006).
In this study we investigated the occurrence of ciprofloxacin resistance among 107 isolates of *N. gonorrhoeae* collected from Shandong Province from 2007 to 2011, and analyzed the molecular basis of ciprofloxacin resistance in the *Neisseria gonorrhoeae* isolates from Shandong Province, China.

Materials and Methods

Bacterial strains

107 non-duplicate isolates of *N. gonorrhoeae* were collected from patients who attended sexually transmitted disease (STD) clinics in Tai’an between June 2007 and June 2011. The age range of the patients was from 18 to 51 years (mean, 29.6 years), and the ratio of male to female patients was 1.2:1. The swab specimens were isolated initially on Thayer-Martin agar plates, then subcultured onto chocolate agar plates in a 5% CO2 incubator at 35 °C for 24 h. The isolates were resistant to ciprofloxacin (MICs, ≥ 1 μg/mL) of: No. of highly resistant strains (%) of: 95 °C denaturation for 2 min, followed by 35 cycles of denaturation at 93 °C for 45 s, annealing at 54 °C for 55 s and extension at 72 °C for 60 s, with final extension at 72 °C for 3 min. The forward primer for amplification of the *parC* gene was 5’-CGC TTC CCA TAC TGA TTC CAA C-3’ and the reverse was 5’-TTG TGC TAC GCA ATC TCG GT-3’, leading to a product of 552 bp from position 18 to 569. The PCR mixtures were composed of 0.5 μL of each of primers (25 μM, each), 1.0 μL of *Ex-Taq* (5 U/μL) (TaKaRa Biotech., Dalian, China), 2.5 μL of 10LA PCR Buffer II (Mg2+ Free), 2.5 μL of MgCl2 (25 mM), 4 μL of dNTP mixtures (2.5 mM, each), 5 μL of template DNA, and 9.0 μL of the distilled water added to a final volume of 25 μL. The PCR for the *parC* gene was carried out as follows: 93 °C denaturation for 2 min, followed by 35 cycles of denaturation at 95 °C for 30 s, annealing at 52 °C for 60 s and extension at 72 °C for 60 s, with final extension at 72 °C for 2 min. The amplified fragments was purified by Genomic DNA Purification Kit (Promega Wizard, USA), and the PCR products were sent to Invitrogen Biotech.(Shanghai, China) for sequence analysis on an ABI373 automatic sequencer (Applied Biosystems, USA), and data were aligned with QRDR sequences for amino acids (aa) 91 to 95 of *gyrA* (GenBank accession number U08810) and aa 86 to 91 of *parC* (GenBank accession number U08907).

Results

Susceptibilities to ciprofloxacin

The ciprofloxacin susceptibilities of 107 Chinese gonococcal isolates were shown in Table 1. All of the 107 isolates were resistant to ciprofloxacin (MICs, ≥ 1 μg/mL). Of the 107 isolates tested, 68 isolates demonstrated high-level resistance to ciprofloxacin (MICs, ≥ 4 μg/mL).

Mutation patterns in the gyrA and parC genes

Table 2 showed the mutation patterns found in *gyrA* and *parC* genes in 107 ciprofloxacin-resistant isolates. Six-

Table 1 - Ciprofloxacin MICs for 107 Chinese *N. gonorrhoeae* isolates.

Agent	No. of strains with MIC (μg/mL) of:	No. of highly resistant strains (%)	MIC50	MIC90
Ciprofloxacin	0.015 0.03 0.06 0.125 0.5 1 2 4 8 16 32 64 128	68(63.55%)	4	16
teen different mutation patterns were characterized. Seven mutation sites were found on the gyrA gene, leading to seven amino acid changes. Twelve mutation sites were found on the parC gene, leading to nine amino acid changes. Three silent mutations in codons 104 (TAT to TAC), 129 (GCG to GCA), and 131 (CTC to CTG) of parC genes were detected. These silent mutations occurred in 60 QRNG strains (56.1%).

Discussion

Nowadays, in China, fluoroquinolones have been continually used to treat infections caused by N. gonorrhoeae despite widespread resistance. The continued use of fluoroquinolone antibiotics results in a substantial number of fluoroquinolone-resistant N. gonorrhoeae strains and raises the possibility that horizontal gene transfer is an important mechanism for the acquisition of resistance (Loubna et al., 2010).

In this study the ciprofloxacin resistance rate was 100%. High-level resistance to ciprofloxacin (MICs, ≥4 μg/mL) was 63.55% (Table 1). Therefore, this antibiotic should not be recommended for treatment of gonococcal infections in Shandong Province, China. In this study sixteen different mutation patterns involved in the formation of ciprofloxacin resistance were identified. The most prevalent were patterns P7 (25.2%), P8 (15.0%), P9 (11.2%), P1 (10.3%), and P5 (10.3%), which differed from those reported in other countries and regions (Vereshchagin et al., 2004; Yong et al., 2004; Angeliki et al., 2011). All of the 107 NG isolates analyzed in the study have demonstrated a change of Ser-91→Phe in the gyrA gene, and all except one have demonstrated a change in position 95 of the amino acid sequence. All of the 68 high-level QRNG isolates in the study had double mutations in position 91 and 95 in gyrA gene combined with a single or two mutations in parC gene (Table 2). It is most important that a new mutation site of Ile-97→Met in gyrA and a new mutation of Leu-106→Ile in parC were found in this study, both leading to high-level ciprofloxacin resistance (MIC values, 8 μg/mL, 32 μg/mL, respectively) (Table 2). If values, 8 μg/mL, 32 μg/mL, respectively) (Table 2). If the new mutation sites in the fluoroquinolone resistance-determining regions emerge more and more quickly, therefore, in China fluoroquinolones, which are used to treat gonorrhoea presently, should be substituted by a new antibiotics.

Table 2 - Alterations in gyrA and parC genes of 107 Chinese QRNG isolates.

Mutation Pattern	Amino acid substitution in:	No. of strains (%)	Cip MIC range (μg/mL)
gyrA	parC		
Ser-91 (TCC)	Asp-85 (GAC)	11 (10.3%)	1-2
Ala-92 (GCA)	Asn-91 (AAC)	5 (4.7%)	1-2
Asp-95 (GAC)	Asp-85 (GAC)	3 (2.8%)	1-2
Ile-97 (ATC)	Ala-92 (GCC)	5 (4.7%)	1-2
Glu-102 (CAA)	Ala-92 (GCC)	11 (10.3%)	1-2
parC			
Ser-87 (AGT)	Ile-86 (ATG)	2 (1.8%)	4-16
Ser-88 (TCC)	Arg-86 (CGT)	27 (25.2%)	4-32
Glu-91 (GAG)	Asn-91 (AAC)	16 (15.0%)	4-32
Leu-106 (TTA)	Ala-92 (GCC)	12 (11.2%)	4-32
P1	Phe (TTC)	1 (0.9%)	8 (7.5%)
P2	Phe (TTC)	1 (0.9%)	12
P3	Phe (TTC)	1 (0.9%)	16
P4	Phe (TTC)	1 (0.9%)	32
P5	Phe (TTC)	1 (0.9%)	8
P6	Ala (GCC)	1 (0.9%)	10
P7	Ala (GCC)	1 (0.9%)	16
P8	Ala (GCC)	1 (0.9%)	32
P9	Ala (GCC)	1 (0.9%)	8
P10	Ala (GCC)	1 (0.9%)	10
P11	Ala (GCC)	1 (0.9%)	12
P12	Ala (GCC)	1 (0.9%)	16
P13	Ala (GCC)	1 (0.9%)	32
P14	Ala (GCC)	1 (0.9%)	8
P15	Ala (GCC)	1 (0.9%)	10
P16	Ala (GCC)	1 (0.9%)	16

Abbreviations: Cip, ciprofloxacin; r, resistant; h, high-level resistant; Phe, Phenotype.
References

Allen VG, Farrell DJ, Rebbapragada A, Tan J, Tijet N, Perusini SJ, Towns L, Lo S, Low DE, Melano RG (2011) Molecular Analysis of Antimicrobial Resistance Mechanisms in Neisseria gonorrhoeae Isolates from Ontario, Canada. Antimicrob Agents Chemother 55:703-712.

Angeliki M, Eva T, Eirini S, Daniel G, Vivi M, Brian GS (2011) Analysis of emergence of quinolone-resistant gonococci in Greece by combined use of Neisseria gonorrhoeae multiantigen sequence typing and multilocus sequence typing. J Clin Microbiol 49:1196-1201.

Bala M, Ray K, Kumari S (2003) Alarming increase in ciprofloxacin- and penicillin-resistant Neisseria gonorrhoeae isolates in New Delhi, India. Sex Transm Dis 30:523-525.

Centers for Disease Control and Prevention (2005) Neisseria Gonorrhoeae Reference Strains for Antimicrobial Susceptibility Testing. Centers for Disease Control and Prevention, Atlanta, 10 pp.

Chinese Centre for Disease Control and Prevention (2010) The announcement of nation legal infectious disease epidemic situation in January, 2010 and 2009 year by the Mistry of Health, the People’s Republic of China. http://www.chinacdc.cn/en/.

Fiorito S, Galarza P, Pagano I, Oviedo C, Lanza A, Smayevsky J, Weltman G, Buscemi L, Sanjuan E (2001) Emergence of high level ciprofloxacin resistant Neisseria gonorrhoeae strain in Buenos Aires, Argentina. Sex Transm Infect 77:77.

Lindback E, Rahman M, Jalal S, Wretlind B (2002) Mutations in gyra, gyrB, parC, and parE in quinolone-resistant strains of Neisseria gonorrhoeae. APMIS 110:651-657.

Liu WB, Wang GJ, Jing L (2006) The antimicrobial susceptibility of Neisseria gonorrhoeae in Weihai. China J Lepr Skin Dis 22:204-206.

Zhou W, Du W, Cao H, Zhao J, Yang S, Shen Y, Zhang S, Du W, Zhang X (2004) Detection of gyra and parC mutations associated with ciprofloxacin resistance in Neisseria gonorrhoeae by use of oligonucleotide biochip technology. J Clin Microbiol 42:5819-5824.

All the content of the journal, except where otherwise noted, is licensed under a Creative Commons License CC BY-NC.