Whole Genome Sequencing Analysis of Nontyphoidal Salmonella enterica of Chicken Meat and Human Origin Under Surveillance in Sri Lanka

Tay, Moon Y F; Pathirage, Sujatha; Chandrasekaran, Lakshmi; Wickramasuriya, Uddami; Sadeepanie, Nirasha; Waidyarathna, Kaushalya D K; Liyanage, Liyanaralalage Dilini Chathurika; Seow, Kelyn L G; Hendriksen, Rene S.; Takeuchi, Masami T

Total number of authors: 11

Published in: Foodborne pathogens and disease

Link to article, DOI: 10.1089/fpd.2018.2604

Publication date: 2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Tay, M. Y. F., Pathirage, S., Chandrasekaran, L., Wickramasuriya, U., Sadeepanie, N., Waidyarathna, K. D. K., Liyanage, L. D. C., Seow, K. L. G., Hendriksen, R. S., Takeuchi, M. T., & Schlundt, J. (2019). Whole Genome Sequencing Analysis of Nontyphoidal Salmonella enterica of Chicken Meat and Human Origin Under Surveillance in Sri Lanka. Foodborne pathogens and disease, 16(7). https://doi.org/10.1089/fpd.2018.2604
Whole Genome Sequencing Analysis of Nontyphoidal
Salmonella enterica of Chicken Meat and Human Origin
Under Surveillance in Sri Lanka

Moon Y.F. Tay,1,2 Sujatha Pathirage,3 Lakshmi Chandrasekaran,1,2 Uddami Wickramasuriya,3 Nirasha Sadeepanie,3 Kaushalya D.K. Waidyaratna,3 Liyanaralalage Dilini Chaturika Liyanage,3 Kelyn L.G. Seow,1,2 Rene S. Hendriksen,4 Masami T. Takeuchi,5 and Joergen Schlundt1,2

Abstract
A total of 73 nontyphoidal Salmonella enterica isolates, 33 from raw chicken meat and 40 from routine clinical specimens, were collected between 2015 and 2017 from eight cities in Sri Lanka for a pilot study of whole genome sequencing for Salmonella surveillance. The isolates were characterized by conventional serotyping and whole genome sequencing. The raw sequenced data were assembled and analyzed to predict Salmonella serotypes, determine sequence type (ST) profiles of genome and plasmid, and identify plasmid replicon sequences and antimicrobial resistance (AMR) genes. The most common serovar isolated from chicken meat was Salmonella enterica serovar Agona of ST13 (n = 16), in contrast to Salmonella enterica serovar Enteritidis of ST11 (n = 21) in human. Salmonella enterica serovar Corvallis is the only serovar that was overlapping between human and chicken meat. The level of agreement between serotyping and serotype prediction results was 100%. Among the 33 chicken isolates, multidrug resistance (MDR) was observed in five isolates, including two Salmonella enterica serovar Kentucky ST314, which harbored six different classes of AMR determinants. Among the 40 human isolates, MDR was detected in two Salmonella enterica serovar Chester (ST2063) isolates containing five different antibiotic classes of AMR determinants. Out of 73 isolates, the only human Salmonella enterica serovar Typhimurium strain of ST36 was found to possess extended-spectrum beta-lactamase (ESBL) gene, blaCTX-M-15, and it was positive for ESBL production. In summary, this study identified S. enterica serovars that were dominating in chicken meat and human and showed the genomic differences among the chicken meat and human strains. It should be noted that the limited number of isolates and sampling at a different time period means that thorough source attribution is not possible. To the best of our knowledge, this is the first report on the use of whole genome sequencing analysis of nontyphoidal S. enterica isolated from chicken meat and human in Sri Lanka.

Keywords: Salmonella enterica, CTX-M-15, whole genome sequencing, Sri Lanka, human, chicken meat, surveillance

Short Report/Case Study

Salmonella enterica, a common foodborne pathogen worldwide, has >2600 serovars that can cause infections of varying severity to human and animal. The nontyphoidal Salmonella (NTS) strains may be host generalist with broad host specificity that colonizes or infect a wide range of vertebrate animals or may be restricted to particular animal species (Feasey et al., 2012). NTS infections usually cause mild to moderate self-limiting gastroenteritis in young adults, and no antibiotic treatment is required. However, in ~6% of the gastroenteritis cases, bacteria may proceed to cause an
invasive extraintestinal disease leading to bacteremia and focal infection in the young, elderly, and immunocompromised humans, and ciprofloxacin and extended-spectrum cephalosporin are commonly prescribed to treat such invasive disease (Rowe et al., 1997). Globally, an increasing prevalence of ciprofloxacin and extended-spectrum cephalosporin resistance have been reported in clinical NTS strains (Crump et al., 2015), and it is thought to be associated with the use of fluoroquinolones and beta-lactams as a growth promoter in food-producing animals. NTS is transmitted through animal products (mainly through eggs, meats, and poultry products) and produce contaminated with animal feces and/or human sewage, and contact with animals and animal environment (Crump et al., 2015).

Ministry of Health in Sri Lanka reported an overall decreasing trend in the incidence of dysentery, enteric fever, and food poisoning for the period of 2007–2017 (MoH, 2018). The number of aforementioned foodborne illness cases that can be attributed to S. enterica in Sri Lanka is unknown. Similarly, the transmission pattern of S. enterica in Sri Lanka remains unclear, and there is no published data characterizing the molecular epidemiology of S. enterica in human and poultry production. In Sri Lanka, both fluoroquinolones and beta-lactams are used to treat human Salmonella infection and are banned for growth promotion purposes (personal communication from Dr. Palika Fernando, National AMR steering committee member, Head Department of Bacteriology, Veterinary Research Institute, Sri Lanka). Given the public health significance of Salmonella, this pilot cross-sectional genomic-based surveillance study is done to provide the NTS situation in humans and raw chicken meats from eight cities in Sri Lanka. It is important to note that this study is not designed to compare the prevalence between the different cities. On the contrary, this study aims to provide a molecular snapshot of genetic variability among the collected Salmonella strains.

A total of 73 nontyphoidal S. enterica isolates, 33 from raw chicken meat and 40 from clinical specimens (i.e., stool, blood, and joint fluid) were collected from eight cities in Sri Lanka, namely Abissawella, Badulla, Colombo, Galle, Jaffna, Kandy, Peradeniya, and Ragama between 2015 and 2017 (Table 1). Genomic DNA extraction, library construction, and sequencing were performed as previously described (Guo et al., 2019). Sequence data were deposited into GenBank under BioProject accession number PRJNA504925. GenBank accession numbers for individual isolates are listed in Table 1. De novo assembly of draft genome (Afgan et al., 2018), assessment of draft genome assembly quality (Gurvich et al., 2013), and genomic analyses (Larsen et al., 2012; Zankari et al., 2012; Carattoli et al., 2014; Zhang et al., 2015; Alikhan et al., 2018) were performed as previously described (Tay et al., 2019). Conventional serotyping according to Kauffman–White scheme was done in-house at the Enteric Reference Laboratory in Medical Research Institute with antisera purchased from S&A Reagents Lab Ltd., Part. (Thailand).

Genomic analyses showed that Salmonella enterica serovar Agona of ST13 (n = 16) and Salmonella enterica serovar Enteritidis of ST11 (n = 21) were the most prevalent serovars that were observed among chicken meat and human isolates, respectively. Salmonella enterica serovar Corvallis ST1541 is the only serovar that was overlapping between human and chicken meat in this study. There was 100% concordance between conventional serotyping by Kauffman–White scheme and genotypic serotype prediction by SeqSero (Zhang et al., 2015). Discrepancy was observed for four human isolates; they were serotyped to be Paratyphi B var java (henceforth Java) but were predicted to be Paratyphi B. They have identical serological formula and Java is considered a variant of Paratyphi B that can ferment d-tartrate, whereas Paratyphi B cannot due to a single nucleotide change in the start codon of the STM3356 gene (Malorny et al., 2003). Hence, when the draft genome of these four isolates were blasted against the STM3356 gene of Java strain NCTC5706 (GenBank accession number: LT571437.1), the start codon was ATG (data not shown). In addition, these isolates were phenotypically tested to be positive for d-tartrate fermentation (data not shown). Altogether, this indicates the isolates are able to ferment d-tartrate and they are indeed Paratyphi B var. Java, which tallies with the serotyping result. Hence, this suggests that additional genetic loci or alleles should be taken into consideration for prediction of a certain serotype from sequence data. More than two-thirds (50/73) of the isolates contained plasmid replicons. The commonly seen plasmid replicons were IncFII(S) andIncFIB(S), of sequence type [F-:A16:B22] and were found in 16 Salmonella Enteritidis strains. Among the chicken meat isolates, 87.9% (29/33) of them had at least one resistance gene and multidrug resistance (MDR; defined as resistance to three or more classes of antibiotics) was observed in 15.2% of them (5/33), including two Salmonella enterica serovar Kentucky ST314 strains, which harbored six different classes of antimicrobial resistance (AMR) determinants. In contrast, among the human isolates, 17.5% (7/40) of them had at least one resistance gene and only two isolates (5%, 2/40) were found to be MDR, which were both Salmonella enterica serovar Chester ST2063 strain that contained five AMR determinants, belonging to five different antibiotic classes. It is worth mentioning that out of 73 isolates, only one human isolate contained extended-spectrum beta-lactamase (ESBL) gene, blaconf07 As expected, when we performed the double-disc synergy test (Guo et al., 2019), the strain was tested to be positive for ESBL production. Among all the identified AMR genes, the most frequent resistance genotype was fosA7 and was found in all 16 Salmonella Agona (ST13) strains from different chicken meat samples. We did not test the phenotypic resistance of these isolates to fosfomycin, and hence we do not know if fosA7 gene confers phenotypic resistance to fosfomycin. When a whole genome single nucleotide polymorphism (SNP) analysis with CFASNP SNP Pipeline (Davis et al., 2015) that was installed on Galaxy-Trakr (https://www.galaxytrakr.org) (Afgan et al., 2018) was performed on the 16 Salmonella Agona isolates, the minimum and maximum SNP differences were 0 and 36, respectively (data not shown). Upon construction of the best-scoring maximum likelihood (ML) SNP tree with randomized accelerated ML (RAxML) using a GTRGAMMA model of evolution and default parameters (Stamatakis, 2014), it appears that some isolates are phylogenetically related due to 0 SNP difference, but they may not be epidemiologically related due to lack of information on sampling source.

The investigation has identified the S. enterica serovars that were dominating in chicken meat and human, and showed the genomics differences among the chicken meat
Laboratory identifier	Isolate	Sample type	Location	Sample isolation date	MLST^a	Serotyping^b	Predicted serotype(s)^f	Resistance genes^d	Point mutation relating to resistance^d	Plasmid replicons^e	pMLSTⁱ	GenBank accession	No. of Contigs (≥500 bp)^g	Total length (≥500 bp)^g
1 NAFTEC00025 SL_1_03	Raw chicken	Colombo	January 5, 2015	13	Agona	Agona	fosA7							
2 NAFTEC00026 SL_2_05	Raw chicken	Colombo	January 5, 2015	13	Agona	Agona	fosA7							
3 NAFTEC00027 SL_3_07	Raw chicken	Colombo	January 5, 2015	13	Agona	Agona	fosA7							
4 NAFTEC00028 SL_4_08	Raw chicken	Colombo	January 5, 2015	13	Agona	Agona	fosA7							
5 NAFTEC00029 SL_5_09	Raw chicken	Colombo	January 5, 2015	13	Agona	Agona	fosA7							
6 NAFTEC00030 SL_6_10	Raw chicken	Colombo	January 12, 2015	13	Agona	Agona	fosA7							
7 NAFTEC00031 SL_7_12	Raw chicken	Colombo	January 12, 2015	13	Agona	Agona	fosA7							
8 NAFTEC00032 SL_8_13	Raw chicken	Colombo	January 12, 2015	13	Agona	Agona	fosA7							
9 NAFTEC00033 SL_9_15	Raw chicken	Colombo	January 12, 2015	13	Agona	Agona	fosA7							
10 NAFTEC00034 SL_10_20	Raw chicken	Colombo	January 12, 2015	13	Agona	Agona	fosA7							
11 NAFTEC00035 SL_11_62	Raw chicken	Colombo	January 12, 2015	314	Kentucky	Kentucky	aph(6)-Id, tet(A), blmTEM-1B, qnrS1, sul3							
12 NAFTEC00036 SL_12_81	Raw chicken	Colombo	February 16, 2015	1541	Corvalis	Corvalis or Chailey	qepS1							
13 NAFTEC00037 SL_13_91	Raw chicken	Colombo	February 16, 2015	1541	Corvalis	Corvalis or Chailey	qepS1							
14 NAFTEC00038 SL_14_93	Raw chicken	Colombo	February 16, 2015	1541	Corvalis	Corvalis or Chailey	qepS1							
15 NAFTEC00039 SL_15_94	Raw chicken	Colombo	February 16, 2015	1541	Corvalis	Corvalis or Chailey	qepS1							
16 NAFTEC00040 SL_16_97	Raw chicken	Colombo	February 16, 2015	1541	Corvalis	Corvalis or Chailey	qepS1							
17 NAFTEC00041 SL_17_98	Raw chicken	Colombo	February 16, 2015	1541	Corvalis	Corvalis or Chailey	qepS1							
18 NAFTEC00042 SL_18_102	Raw chicken	Colombo	February 16, 2015	1541	Corvalis	Corvalis or Chailey	qepS1							
19 NAFTEC00043 SL_19_103	Raw chicken	Colombo	February 23, 2015	1541	Corvalis	Corvalis or Chailey	qepS1							

(continued)
Laboratory identifier	Isolate	Sample type	Location	Sample isolation date	MLST^a	Serotyping^b	Predicted serotype(s)^c	Resistance genes^d	Plasmid replicons^e	pMLST^f	GenBank accession	No. of Contigs (<500 bp)^g	Total length (<500 bp)^h
20 NAFTEC00044 SL_20_107 Raw chicken	Colombo	February 23, 2015	1541	Corvalis	Corvalis or Chailey	gyrS1	qnrS1	IncI1	ST-284	SMPG00000000	35	4984004	
21 NAFTEC00045 SL_21_109 Raw chicken	Colombo	February 23, 2015	13	Agona	Agona	fosA7				SMPI00000000	30	4838095	
22 NAFTEC00046 SL_22_111 Raw chicken	Colombo	February 23, 2015	31	Newport	Newport					SMPK00000000	20	4660707	
23 NAFTEC00047 SL_23_112 Raw chicken	Colombo	February 23, 2015	13	Agona	Agona	fosA7							
24 NAFTEC00048 SL_24_113 Raw chicken	Colombo	February 23, 2015	31	Newport	Newport								
25 NAFTEC00049 SL_25_114 Raw chicken	Colombo	February 23, 2015	13	Agona	Agona	fosA7							
26 NAFTEC00050 SL_26_115 Raw chicken	Colombo	February 23, 2015	1541	Corvalis	Corvalis or Chailey	gyrS1							
27 NAFTEC00051 SL_27_116 Raw chicken	Colombo	February 23, 2015	31	Newport	Newport								
28 NAFTEC00052 SL_28_117 Raw chicken	Colombo	February 23, 2015	314	Kentucky	Kentucky	aph(6)-Id, tet(A), blaTEM-1B, qnrS1, sul3, dfrA14			IncX1				
29 NAFTEC00053 SL_29_118 Raw chicken	Colombo	February 23, 2015	1541	Corvalis	Corvalis or Chailey	gyrS1							
30 NAFTEC00054 SL_30_119 Raw chicken	Colombo	February 23, 2015	314	Kentucky	Kentucky	aph(6)-Id, tet(A), blaTEM-1B, qnrS1, sul3, dfrA14			IncX1				
31 NAFTEC00055 SL_31_120 Raw chicken	Colombo	February 23, 2015	31	Newport	Newport								
32 NAFTEC00056 SL_32_126 Raw chicken	Colombo	March 2, 2015	314	Kentucky	Kentucky	aph(6)-Id, tet(A), blaTEM-1B, qnrS1, sul3, dfrA14			IncX1				
33 NAFTEC00057 SL_33_127 Raw chicken	Colombo	March 2, 2015	13	Agona	Agona	fosA7							
34 NAFTEC00058 SL_35_S91 Human (blood)	Colombo	July 11, 2016	1541	Corvalis	Corvalis or Chailey	gyrS1							
35 NAFTEC00059 SL_36_S106 Human (stool)	Jaffna	October 3, 2016	11	Enteritidis	Enteritidis								
36 NAFTEC00060 SL_37_S111 Human (stool)	Colombo	October 3, 2016	2063	Chester	Chester								
37 NAFTEC00061 SL_38_S112 Human (blood)	Colombo	February 25, 2016	365	Weltevreden	Weltevreden				IncFII(S)				

(continued)
Laboratory identifier	Isolate	Sample type	Location	Sample isolation date	MLST	Serotyping	Predicted serotype(s)	Resistance genes	Point mutation relating to resistance	Plasmid replicons	pMLST[^1]	GenBank accession	No. of Contigs (≥500 bp)	Total length (≥500 bp)
NAFTEC00062 SL_39_S118	Human (stool)	Jaffna	October 3, 2016	1541	Corvalis	Corvalis or Chailey	gyrS1				SMPY00000000	32	4855244	
NAFTEC00063 SL_40_S180	Human (blood)	Jaffna	October 13, 2016	11	Enteritidis	Enteritidis				IncFIB(S), IncFII(S)	SMZ00000000	25	4705099	
NAFTEC00064 SL_41_S215	Human (blood)	Jaffna	October 5, 2016	11	Enteritidis	Enteritidis				IncFIB(S), IncFII(S)	SMQ00000000	26	4705085	
NAFTEC00065 SL_42_S216	Human (blood)	Jaffna	October 5, 2016	3771	Weltevreden	Weltevreden	D87G		IncFIB(S), IncFII(S)	SMQ00000000	62	4916302		
NAFTEC00066 SL_43_S218	Human (blood)	Colombo	October 15, 2016	11	Enteritidis	Enteritidis				IncFIB(S), IncFII(S)	SMQ00000000	24	4707867	
NAFTEC00067 SL_44_S232	Human (stool)	Colombo	October 13, 2016	11	Enteritidis	Enteritidis				IncFIB(S), IncFII(S)	SMQ00000000	27	4738730	
NAFTEC00069 SL_46_S250	Human (blood)	Colombo	October 9, 2016	11	Enteritidis	Enteritidis	D87Y		IncFIB(S), IncFII(S)	SMQ00000000	25	4646372		
NAFTEC00070 SL_47_S271	Human (blood)	Galle	October 9, 2016	11	Enteritidis	Enteritidis	D87Y		IncFIB(S), IncFII(S)	SMQ00000000	23	4704679		
NAFTEC00071 SL_48_S290	Human (stool)	Ragama	October 24, 2016	43	Paratyphi B var java				Paratyphi B	SMQ00000000	24	4729267		
NAFTEC00073 SL_50_S294	Human (blood)	Colombo	October 24, 2016	11	Enteritidis	Enteritidis				IncFIB(S), IncFII(S)	SMQ00000000	37	4753025	
NAFTEC00074 SL_51_S295	Human (blood)	Colombo	October 24, 2016	11	Enteritidis	Enteritidis	IncFIB(S), IncFII(S)			SMQ00000000	25	4729886		
NAFTEC00076 SL_52_S304	Human (blood)	Ragama	November	11	Enteritidis	Enteritidis				IncFIB(S), IncFII(S)	SMQ00000000	24	4729267	
NAFTEC00077 SL_53_S307	Human (blood)	Colombo	November 7, 2016	287	Mountpleasant	Mountpleasant	fosA7				SMQM00000000	30	4645898	
NAFTEC00078 SL_55_S309	Human (blood)	Colombo	November 10, 2016	43	Paratyphi B var java	Paratyphi B					SMQN00000000	38	4753099	
NAFTEC00079 SL_57_S315	Human (blood)	Kandy	November 24, 2016	11	Enteritidis	Enteritidis	D87G		IncFIB(S), IncFII(S)	[F:A16:B22]	SMQ00000000	24	4707889	
NAFTEC00080 SL_58_S327	Human (stool)	Jaffna	November 29, 2016	3771	Weltevreden	Weltevreden	IncFIB(S)		[S1:A:-:B-]	SMQ00000000	68	4932856		
NAFTEC00081 SL_59_S329	Human (blood)	Colombo	November 30, 2016	3771	Weltevreden	Weltevreden	IncFIB(S)		[F:A16:B]	SMQ00000000	68	4916026		
NAFTEC00082 SL_61_S333	Human (blood)	Colombo	December	11	Enteritidis	Enteritidis	IncFIB(S), IncFII(S)		[F:A16:B22]	SMQ00000000	26	4705042		
NAFTEC00083 SL_62_S353	Human (blood)	Colombo	December	1541	Corvalis	Corvalis or Chailey					SMQT00000000	31	4894143	
NAFTEC00084 SL_63_S360	Human (blood)	Ragama	December	1602	Mbundaka	Mbundaka					SMQU00000000	36	4722738	
Laboratory identifier	Isolate ID	Sample type	Location	MLST	Serotyping	Predicted serotype(s)	Resistance genes	Plasmid replicons	pMLST	GenBank accession	No. of Contigs (≥500 bp)	Total length (≥500 bp)		
----------------------	------------	-------------	----------	------	------------	----------------------	------------------	-------------------	--------	-----------------	------------------------	-------------------------		
61 NAFTEC00085 SL_64_D94 Human (stool)	Colombo	December 30, 2016	2063 Chester Chester	aph(6)-Id, blaTEM-1B, qnrS1, sul3, dfrA14	IncX1	SMQV00000000	33	4586888						
62 NAFTEC00086 SL_65_D912 Human (stool)	Awissawella	December 30, 2016	2063 Chester Chester	aph(6)-Id, blaTEM-1B, qnrS1, sul3, dfrA14	IncX1	SMQW00000000	35	4587278						
63 NAFTEC00087 SL_66_D001 Human (stool)	Colombo	January 5, 2017	29 Stanley Stanley	E466D	IncFIB(S), IncFH(S)	[F-:A16:B22]	SMQX00000000	24	4633473					
64 NAFTEC00088 SL_67_S04 Human (stool)	Peradeniya	January 9, 2017	36 Typhimurium Typhimurium	IncFIB(S), IncFH(S)	SMQY00000000	26	4706648							
66 NAFTEC00090 SL_69_S11 Human (stool)	Jaffna	January 9, 2017	5309 Vancouver Vancouver	IncFIB(S), IncFH(S)	SMQW00000000	26	4723314							
67 NAFTEC00091 SL_70_W02 Human (stool)	Galle	February 13, 2017	11 Enteritidis Enteritidis	IncFIB(S), IncFH(S)	SMRE00000000	25	4705684							
68 NAFTEC00092 SL_71_W03 Human (stool)	Galle	February 13, 2017	11 Enteritidis Enteritidis	IncFIB(S), IncFH(S)	SMRE00000000	25	4705684							
69 NAFTEC00093 SL_72_S24 Human (stool)	Badulla	February 13, 2017	11 Enteritidis Enteritidis	IncFIB(S), IncFH(S)	SMRE00000000	25	4705684							
70 NAFTEC00094 SL_73_S41 Human (stool)	Galle	February 25, 2017	43 Paratyphi B Paratyphi B	IncFIB(S), IncFH(S)	SMRF00000000	38	4753322							
71 NAFTEC00095 SL_74_D64 Human (stool)	Kandy	February 13, 2017	43 Paratyphi B Paratyphi B	IncFIB(S), IncFH(S)	SMRG00000000	37	4753109							
72 NAFTEC00096 SL_75_D66 Human (stool)	Colombo	February 13, 2017	43 Paratyphi B Paratyphi B	IncFIB(S), IncFH(S)	SMRG00000000	37	4753109							
75 NAFTEC00099 SL_78_S58 Human (stool)	Colombo	February 13, 2017	11 Enteritidis Enteritidis	IncFIB(S), IncFH(S)	SMRG00000000	37	4753109							
76 NAFTEC00100 SL_79_S78 Human (stool)	Kandy	February 27, 2017	11 Enteritidis Enteritidis	IncFIB(S), IncFH(S)	SMRG00000000	37	4753109							
77 NAFTEC00101 SL_80_S79 Human (stool)	Kandy	February 27, 2017	11 Enteritidis Enteritidis	IncFIB(S), IncFH(S)	SMRG00000000	37	4753109							
79 NAFTEC00103 SL_82_D95 Human (stool)	Awissawella	February 27, 2017	11 Enteritidis Enteritidis	IncFIB(S), IncFH(S)	SMRG00000000	37	4753109							

*aUsing MLST v2.0.
*bPerformed serological identification according to Kauffman–White scheme.
*cUsing SeqSero v1.0.
*dUsing ResFinder v2.3 (minimum percentage identity of 90% and minimum length of 60%).
*eUsing PlasmidFinder 1.3 (minimum percentage identity of 95% and minimum length of 60%).
*fUsing pMLST v2.0.
*gUsing Quast v4.6.3.
*hIsolate with new ST being assigned by EnteroBase.
MLST, Multilocus sequence typing; ST, sequence type.
and human strains. Since it is a retrospective study, it is limited by the absence of adequate (≥50) and regular sampling at indicated cities/locations for a longer period of time (≥21 year), within the same time period for both chicken meat and human samples. Hence, it is not possible to draw any conclusion about the correlation between the clinical isolates and the chicken reservoir. Nevertheless, the generated data do provide very rough details about Salmonella serotypes and resistance traits in chicken meat and human in studied cites, and contribute to the design of sampling framework for prospective Salmonella and AMR surveillance.

Acknowledgments

This study was supported by funding from Nanyang Technological University (NTU) Research Initiative and conducted under the joint project of NTU Food Technology Centre (NAFTEC) and Food and Agriculture Organization of the United Nations (FAO), entitled “Towards better food safety management through the use of Next Generation Sequencing for foodborne pathogenic and antimicrobial resistance bacteria in a One Health context.”

Authors’ Contributions

M.Y.F.T. performed bioinformatics analysis, analyzed and interpreted the data, and drafted and coordinated the article writing. S.P. analyzed and interpreted the data, and contributed to article writing. L.C. performed bioinformatics analysis. U.W. did meat sampling and performed bacterial isolation and identification. N.S., K.D.K.W., and L.R.D.C.L. worked on the human isolates. K.L.G.S. performed DNA extraction. R.S.H., M.T.T., and J.S. contributed to article writing and provided scientific advice.

Disclosure Statement

No competing financial interests exist.

References

Afgan E, Baker D, Batut B, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res 2018;46:W537–W544.
Alikhan NF, Zhou Z, Sergeant MJ, Achtman M. A genomic overview of the population structure of Salmonella. PLoS Genet 2018;14:e1007261.
Carattoli A, Zankari E, Garcia-Fernandez A, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 2014;58:3895–3903.
Crump JA, Sjolund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 2015;28:901–937.
Davis S, Pettengill JB, Luo Y, et al. CPSAN SNP Pipeline: An automated method for constructing SNP matrices from next-generation sequence data. PeerJ Comput Sci 2015;1:e20.
Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. Invasive non-typhoidal salmonella disease: An emerging and neglected tropical disease in Africa. Lancet 2012;379:2489–2499.
Guo S, Tay MYF, Aung KT, et al. Phenotypic and genotypic characterization of antimicrobial resistant Escherichia coli isolated from ready-to-eat food in Singapore using disk diffusion, broth microdilution and whole genome sequencing methods. Food Control 2019;99:89–97.
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013;29:1072–1075.
Larsen MV, Cosentino S, Rasmussen S, et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 2012;50:1355–1361.
Malorny B, Bunge C, Helmuth R. Discrimination of d-tartrate-fermenting and -nonfermenting Salmonella enterica subsp. enterica isolates by genotypic and phenotypic methods. J Clin Microbiol 2003;41:4292–4297.
Ministry of Health. Weekly Epidemiological Report. Volume 2018. Sri Lanka: Epidemiology Unit, Ministry of Health, 2018.
Rowe B, Ward LR, Threlfall EJ. Multidrug-resistant Salmonella typhi: A worldwide epidemic. Clin Infect Dis 1997;24 Suppl 1:S106–S109.
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313.
Tay MYF, Adzitey F, Sultan SA, Tati JM, Seow KLG, and Schlundt J. Whole-Genome sequencing of nontyphoidal Salmonella enterica isolates obtained from various meat types in Ghana. Microbiol Res Anncrents 2019:8.
Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 2012;67:2640–2644.
Zhang S, Yin Y, Jones MB, et al. Salmonella serotype determination utilizing high-throughput genome sequencing data. J Clin Microbiol 2015;53:1685–1692.

Address correspondence to:
Moon Y.F. Tay, PhD
School of Chemical and Biomedical Engineering
Nanyang Technological University (NTU)
62 Nanyang Drive
Singapore 637459
Singapore

E-mail: moon.tay@ntu.edu.sg

Sujatha Pathirage, MD
Medical Research Institute (MRI)
PO Box 527
Dr. Danister Silva Mawatha
Colombo 00800
Sri Lanka

E-mail: chansujat@yahoo.com