The Use of Recycled Aggregates on Mechanical Properties of Concrete: A Review

S. panda¹, T. Jena²

¹Research Scholar, Civil Engineering Department, SOA (Deemed to be University), Bhubaneswar, 751030, Odisha, India, E-mail: sonalinpanda07@gmail.com (Corresponding Author)

²Assistant Professor, Civil Engineering Department, SOA (Deemed to be University), Bhubaneswar, 751030, Odisha, India, E-mail: trilochanjena@soa.ac.in

Abstract: A number of studies on the mechanical characteristics, durability, and structural performance of recycled aggregate concrete (RAC) have been conducted. The implementation of the use of recycled aggregate in construction activities has been approved in developed European countries, as well as several other countries. We all know that concrete is the most common building material stuff from all across the world as well as concrete is the most widely used construction material in the world, and that it is employed in almost every form of civil engineering project. Engineering is a useful skill. As a group, they account for roughly 70-80 percent of the total components made of concrete. As a result, recycling aggregate for construction purposes will benefit both the environment and the construction industry. A study has been conducted in this paper based on previous studies conducted by many experts and their findings have been examined.

Keywords: Recycled aggregate concrete (RAC), Performance of recycled aggregate concrete, Durability, Structural performance

1. Introduction

Demolition waste is created from the destruction of noncurrent and digressive buildings that has useless concrete. Recycled concrete combination (RCA) is created by grouping and breaking down leftover concrete. This study focuses on coarse RCA, that the commonest variety of RCA. coarse combination derived from the first concrete. Once the mortar has been separated from the rock which will be reused. RA has been used in concrete production since 1945, throughout 2nd World war. Large range of concrete structures and their substantial demand for combination to switch them. For many years, civil engineers all round the world have most well-liked concrete as a construction material. it's suggested thanks to its superior performance, lower maintenance prices and a extended life per annum, smaller structures are razed so as to attain speedy urbanisation, and newer, larger structures are in-built their place. These materials that are destroyed (i.e., Concrete) is usually drop toward land and not repurposed. for any reason this approach has a control toward land fertility with the wave of property is additionally having a control on the development business round the world, industry, scientists, and engineers are operating along.

The characteristics of recycled combination vary. The recycled aggregate's quality is set by supported the standard of the fabric collected and its delivery to the collected and its delivery to the Plants. construction utilises five hundredth of natural resources, regarding forty you look after total energy is consumed, that successively produces waste that could be a total of fifty or so. Reusing waste materials will facilitate in preventing the assembly of Na. RCA on the opposite hand will assist in reducing the
results of building on these problems. Compressive strength is used as a key indicator of mechanical strength in the majority of concrete design codes and standards [e.g., Eurocode (BSI 2004); AS 3600 (AS 2009); ACI 318 (ACI 2011)]. The correlations between the compressive and elastic properties of RACs have been demonstrated. Other mechanical properties (Poon et al. 2007; de Brito) [22] which is used to predict the mechanical properties of other objects. (i.e., elasticity modulus, flexural strength, and splitting tensile strength) natural aggregate concretes (strength) and durability-related qualities (Thomas et al. 2014) [19][20] As a result, describing the relationships between the various parameters of RACs and their compressive strength using the code expressions that already exist. A review of the current literature on the subject was conducted. Only a few studies have been documented, according to RACs to date on the relative behaviour of similar concretes compressive strength was calculated using a variety of coarse recycled materials. Furthermore, these studies looked at only a few variables (such as the recycled aggregate replacement ratio and the aggregate to cement ratio), and no one has looked at the effect of coarse aggregate particle size on the behaviour of concretes with the same compressive strength but different amounts of recycled aggregates.

A. **Recycled combination Concrete**

Reuse could be a practice of repurposing, wasted materials to create new merchandise. Application of reused combination coming back from fabrication and explosion waste (FEWs) within the concrete producing is definitely a substantial step towards possible growth within the concrete business and reallocation of FEWs with the advancement of infrastructure, the utilization of natural combination is changing into a lot of and a lot of intense. Crushed, hierarchal inorganic particles are processed into reused combination. From the materials utilized in construction and demolition dust reused aggregates are created by reprocessing mineral waste materials (Figures 1 and 2), with construction and demolition waste being the foremost common supply. Concrete rubbish, that makes up the bulk of C&D trash, makes up the bulk of those wastes. Crushed concrete rubbish may be used as a substitute for natural coarse aggregates in concrete or as a sub-base or base layer in pavements once being separated from alternative C&D trash and sieved.

2. **Previous Study**

Paluri et al. (2021) [1] RA content (from zero to one hundred p.c) and steel fiber content (0 to one percent). The RCA’s hardened qualities were under normal concrete, that can be because of the presence of recent mortar on the RA. With the addition of SF, the compressive strength of RAC improved simply very little. Flexural strength and split enduriness each rise by 35-44% and 43-52%, severally. Liu et al. (2020) [2] Liu looked into the quantitative relationship between the content of recent mortar and also the performance of RA at the fabric level, and also the results disclosed that removal recent mortar to enhance RCA performance wasn’t simply a method to extend RCA application. Kazmi et al. (2020) [3] expressed that RAC mechanical performance was seen at bigger RCA replacement levels. However, once examination plain RAC to artificial fiber strengthened RAC, one29 p.c and 380 p.c increase in toughness index and fracture energy was reportable for 1 p.c fiber inclusion in RAC, severally, artificial fiber improves the post-cracking and mechanical performance of fiber strengthened RAC, creating the concrete additional ductile and energy absorbent.
Obzakkaloglu et al. (2018) [4] checked out the mechanical and sturdiness aspects of concrete created with RCA in a very type of sizes and contents. The findings show that compressive strength isn’t the most deciding part in RAC mechanical and sturdiness qualities. The scale and concentration of coarse combination were found to change totally different RAC mixes of identical comp strength.

Xiao et al. (2018) [5] investigated the failure behaviour and the influences on RCA contents on comp strength elastic modulus and peak and ultimate strain of RCA. Different concrete specimens were fabricated and tested with different RCA replacement 0 to 100 percent and un axial compression loading was applied in the specimen.

Prabhat Kumar et al. (2016) [6] investigated the prevailing literature add or order to realize a whole understanding of RCA, terminal from varied analysis that natural combination and recycle combination is used in a very quantitative relation of 80:20 and 70:30. The usage of recycled combination within the construction sector will facilitate to cut back the impact of waste on the surroundings by increasing the quantitative relation of recycled combination within the combine. It'll additionally encourage long growth.

Katrina MHz Nei et al. (2013). [7] investigated qualities of RCA, impacts of RCA use on concrete material properties, and RCA's large-scale impact on structural performance members and discovered that combination qualities are the foremost vital as a result of there's less mortar on the RCA, it's influenced by the leftover mortar that has connected to that. The RCA encompasses a higher density and consistency. RCA particles are having form with smaller size in L.A. abrasion and crushing tests, additional particles were broken off.

Okorie Austine Uche (2008),[8] investigates the impact of reused aggregate concrete (RCA) as a substitute for virgin coarse aggregate on the compressive strength of ordinary concrete and finds that using RCA instead of actual aggregate in structural concrete diminishes the concrete strength.

The several comparison of past studies is given table no 1 which is listed below.

Reference year	Test Results
2004[11]	Strength of RA concrete fabricated from ordinary concrete in a time period gap between 7 and 28 days has lower value than the same concrete made from NA by a value in the range of 20% to 25% whereas the same concrete manufactured from high performance concrete has better strength than NA within time-frame of 3 months. Concrete toughness made from RA equals to its counterpart built from NA.
2009[9]	A lower water cement ratio is required for a RAC mix than a NAC mix to achieve the same design compressive strength. The size of RA has an effect on compressive strength; the results suggest that 10 mm and 14 mm RA are better than 20 mm recycled aggregate.
2014[10]	Because of RCA contains mortar, their specific gravity, water absorption and Losangles abrasion, all indicate that they are of more lower quality than NCAs.

3. Aggregates used in the study

The key elements influencing the Recycled concrete aggregate (RCA) usage in construction industry include quality and availability of recycled aggregate. Stone aggregate in crushed form used for studying was procured from recycling factory which was set up to reduce waste generated by construction industry and provide an effective way to deal with use of recovered material. Trash collected is further processed into a variety of products, the most important of which is aggregate. Crushing, magnet separation of metals, manual removal of other impurities (plastic, wood, etc.) and classification of aggregate into different grades based on particle size are all part of the process. The plant generates five different grades, ranging from finest particle size (grade 5) to particle size measuring 63 mm (grade 3). Each grade generates different percentage which depends upon the
materials used in facility; nonetheless, grades 5, 4, 2, and 1 account for plant output’s 80%, ensuring grades are available to be used in construction sector.

4. Aggregates properties

This section compares and contrasts the qualities of RCAs and NAs. Understanding the change in aggregate property after being used in concrete which, can clarify the reason behind RCA’s differing performance with respect to fresh concrete NA. Aggregate density, porosity, and water absorption, as well as aggregate shape and gradation, and essential aggregate attributes, are covered.

4.1 Density, Porosity, and Water absorption

RCA’s distinct qualities including density, porosity and water-absorption qualities are affected by concrete’s residual adhering mortar. RCA has a lower density than NA because of the adhering mortar, which is having lower density with respect to underlying rock. RCA’s relative thickness determines aggregate (in saturated surface dry state) which is 7–9% less than NA. Bulk RCA densities measuring 2,394 and 2,890 kg/m3 were reported by Sagoe-Crentsil et al. (2001) [16] There is around a 17 percent difference between RCA and NA, when compared to aggregate, glued mortar might be light this results in a drop in density for the same volume. Porosity and water absorption are two aggregate features that are connected and residual mortar has also been blamed. In general, NA Because of its poor porosity, it has a low water absorption rate, but the porosity of glued mortar on RCA is higher, allowing for more airflow. NA accounts for 0.5–1% and RCA for 4–4.7% at surface dry condition, with a variation of up to 4.2 percent. Other research stated that RCA absorption was 5.6 and there were differences 4.9–5.2 percent, compared to 1.0 and 2.5 percent for NA absorption (Sagoe-Crentsil et al.2001;) [16] Density, porosity, and water absorption qualities of the aggregate are important factors for determination of correct solid mix. such features limit absorption capacity of aggregate to 5% of concrete structure, and as a result, frequent regulation of RCA in concrete mix is advisable.

4.2 Shape and Gradation

Concrete's workability is determined by aggregate shape. According to Exteberria et al. (2007) [12] RCA shape depends on RCA generation technique and crusher type. NA shape consists of smooth sides having angles. The plant-produced RCA was initially described as gritty in texture by Sagoe-Crentsil et al. (2001) [16] but later highlighted RCA’s shape having improved workability due to its spherical shape. The harsh edges of the original aggregate can be smoothed away with the leftover mortar on RCA. Thus, new mortar flows easily around aggregate. Concrete aggregate standards describe a gradation range within which aggregate must fall to be considered suitable for structural concrete. The RCA gradation curves (Figures 3 to 5) were determined to be within this defined range with the help of findings of Sagoe and Crentsil in (2001) [16] and Xu & Shayan in (2003) [17] This means that, per applicable criteria, RCA should have adequate gradation without any changes. The gradation curve of recycled coarse aggregate is shown in fig no 3 and the gradation curve of natural aggregate is shown in Fig 4.
Figure 3. Gradation Curve (Recycled Aggregate)

Figure 4. Gradation Curve (Natural Aggregate)
5. RCA Concrete Material Properties

Natural aggregate has distinct qualities than recycled aggregates; thereby controlling the functions of concrete mix which makes finished concrete’s unique performance behaviour. This section compares and contrasts the qualities of RCA concrete with those of normal NA concrete.

5.1 Compressive Strength

Recycled concrete aggregate (RCA) strength is depends on amount and quality of aggregate. when coarse aggregate’s proportion is replaced with RCA, water cement (w/c) ratio and adherent mortar present will affect the compressive strength of RCA. As per observations, coarse aggregate up to 25% to 30% is replaceable with RCA without compromising the actual strength only if the mix or w/c ratio has remained same. Exteberria et al. (2007) [12] discovered that while testing 25 percent of recycled concrete aggregate (RCA) performed equally like ordinary concrete having water cement (w/c) ratio identical with former. As part of investigation concrete made with 0 and 25 and 50 and 100 percent RCA mixes and it was found that up to 25% can be replaced without any crucial variation, with a different water cement ratio; however, to achieve the same strength RCA needs to have strength in the range of 50 to 100 percent, water cement ratio needs to be 4 to 10 % lower, this change will be the compressive strength. Kang et al. (2012) [13] provided sufficient proof that compressive strength reduction by 25% for that same mix with 50% RCA, and increases by 18% for that same mix with 15 to 30% of RCA. The RCA material test is given by kang et al.[13] which is listed in table no 2.

concrete	f_c (Mpa)	Reduction in f_c (%)	f_{ct} (MPa)	Reduction in f_{ct} (%)	f_r (MPa)	Reduction in f_r (%)
RCA 0%	38.6	-	3.3	-	10.2	-
RCA 15%	32.7	15	3	9	9.7	5
RCA 30%	31.7	18	2.7	18	9.0	12
RCA 50%	29.0	25	2.7	18	8.9	13

Table 2. RCA Material tests. (By Kang et al. 2012) [13]
Where, \(f_c \) is compressive strength; \(f_t \) is splitting tensile strength and \(f_r \) modulus of rupture. Yang et al. (2008) [14][15] suggested to increase aggregate’s water absorption capacity, by reducing its strength. At lower water absorption (relatively low RCA fraction), concrete compactness, showed inflated values. 60 to 80 percent conventional control concrete had relatively higher RCA fractions and absorption compressive strength. Since aggregate’s water storage capacity is higher, cement’s strength can be increased by new mortar’s excess absorption capacity.

If concrete source is stronger than the RCA concrete strength, making concrete which is stronger than conventional concrete makes more sense. While using RCA for structural concrete applications, strength determination is a must in order to confirm RCA’s capability to produce concrete of the necessary strength and w/c ratio.

5.2 Splitting Tensile Strength

Compressive strength’s minimal impact on RCA content than splitting tensile strength. RCA concrete’s splitting tensile strength is comparable to conventional concrete, according to several previous & recent experiments (e.g. Kang et. al. 2012).[13] When it came to tension, RCA concrete outperformed NA concrete in several circumstances. The improvement, as per study by Exteberria in (2007) [12] is attributable to greater mortar absorption which is linked to RA (recycled aggregate). This indicates good bonding between mortar and aggregate. Weak area created by remaining mortar generates compressive failure and, small amounts increase tensile capacity by smoothening transition between mortar and aggregate. Dividing tensile power improves concrete mix having low w/c ratio. It compares the tensile strength of RCA concrete mixes derived from two aggregate sources to NA mixes. Size of aggregate and time of dry mixing have no effect on tensile strength, samples with lower water cement ratios have better tensile strength than the samples with more water cement ratios.

5.3 Modulus of Rupture and Elasticity

It is a live of flexural strength, additionally known as modulus of elasticity, this is often accustomed calculate concrete stiffness, that is repeatedly anticipated victimisation compressive strength, however these links don’t apply to RCA concrete nor typical concrete. The section probes every modulus and therefore the manner RCA influence the noticeable characteristic. The normal relationship between compressive strength and modulus of rupture doesn’t adequately describe the modulus of rupture. once the water-cement magnitude relation was higher, the RCA concrete had the next modulus of snap than normal concrete, however once the water cement magnitude relation was lower, typical concrete had a lower modulus of rupture.

5.4 Durability

Concerns regarding RA’s longevity in concrete area unit roadblocks that stop RA from obtaining used in several applications. Chloride physical phenomenon, gas and water porousness, pervasion depth, and alkalescent mixture response area unit a number of the standards that would be utilized as semipermanent performance indicators for concrete materials.

5.4.1 Chloride permeability

In chlorine-salt surroundings, the chloride particle isn't solely the first explanation for reinforcement corrosion, however additionally one in all the foremost necessary variables influencing the adoption and use of recycled mixture concrete. NAC and RAC showed scattering contrast with varied water to cement ratios; Thomas and Bamforth (2004) [18][19][20]

5.4.2 Freezing and thawing resistance

Frost and De-frost resistance found that the state change and RAC’s de-frosting resistance equals to NAC which can be accustomed to building structures in colder temperatures.

5.4.3 Abrasion resistance

Reusable concrete mixture’s corrosive impedance was researched by L Sagoe (2001) [16] RCA’s corrosive resistance decreased in comparison with natural mixture, by roughly 12-tone system as studied by (Sagoe 2001)[16] for (NAC) concrete.
Level of substitution on the scraped area opposition of high-strength RAC and found that a careful style Abrasion obstruction was similar between strength RAC and thusly the same NAC.

5.4.4 Absorption

One of the principal indispensable downsides of exploitation is RCA in underlying cement is their high-water retention ability, that makes it extreme to manage the properties of contemporary cement and, therefore, influences the strength and toughness of solidified cement. (2007, Poon) [27] The retention of RAC with shifted RCA substance was concentrated by Kou and Poon (2012) [23] Thomas (2013) [19] and Olorunsogo and Padayachee (2002) [21] Investigations have proved the effect of mineral admixtures on water assimilation in RAC. debris concrete has displayed diminished water assimilation than Portland concrete cement for indistinguishable substantial style strength, especially for combinations molded completely of RCA.

5.4.5 Drying Shrinkage

Drying shrinkage increments malleable pressure, which can cause breaking, inner twisting, outward avoidance, and RAC’s strength to decay. A few examinations have led to decide the impact of the RCA substitution percentage on drying shrinkage. RAC shrank by 40 to 60 percent more than the same NAC, as per Hansen and Boegh (1985) [24] Expanded RCA ingestion causes an ascent in RCA shrinkage and creep. The higher the level of RCA added, the more shrinkage and creep there will be.

Conclusions

An investigation of recycled aggregate concrete’s mechanical properties was conducted. The following conclusion needs to be implemented.

The recycled aggregates are lighter, absorb more water, and have a large amount of old mortar in them. Contamination appears to have little effect on mechanical performance up to 28 days of age.

Reused aggregates have a long-life span. The porosity and high-water absorption of reused aggregates can have a crucial effect on concrete.

The characteristics of the ensuing RAC specimen are heavily influenced by the source of RA.

The characteristics and strength of the mix can be harmed by a higher ratio of recycled material.

The usage of recycled aggregate in the building industry can help to reduce the environmental impact of trash.

Overall, despite the fact that RCA is a lower-quality aggregate with a detrimental impact on concrete material qualities. Large-scale testing revealed that it is still being used to make structural concrete when seen as a whole structural member. RCA concrete beams are likely a feasible option for structural usage because their performance is still within normal criteria.

Acknowledgments

The author expresses their sincere gratitude to the SOA University.
References

[1] Paluri, Y., Mogili, S., Mudavath, H., & Noolu, V. (2021). Effect of fibres on the strength and toughness characteristics of recycled aggregate concrete. Materials Today: Proceedings, 38, 2537-2540.

[2] Bai, G., Zhu, C., Liu, C., & Liu, B. (2020). An evaluation of the recycled aggregate characteristics and the recycled aggregate concrete mechanical properties. Construction and building materials, 240, 117978.

[3] Kazmi, S. M. S., Munir, M. J., Wu, Y. F., Patnaikuni, I., Zhou, Y., & Xing, F. (2019). Influence of different treatment methods on the mechanical behavior of recycled aggregate concrete: A comparative study. Cement and concrete composites, 104, 103398.

[4] Ozbakkaloglu, T., Gholampour, A., & Xie, T. (2018). Mechanical and durability properties of recycled aggregate concrete: effect of recycled aggregate properties and content. Journal of Materials in Civil Engineering, 30(2), 04017275.

[5] Xiao, J. (2018). Recycled aggregate concrete. In Recycled aggregate concrete structures (pp. 65-98). Springer, Berlin, Heidelberg.

[6] Prabhat kumar, Abhishek Kumar, Mohd. Afaque Khan, "A review paper on experimental study for recycle concrete", Volume 3, Issue 3, pp. 1617-1619, 2016

[7] Katrina Mc Nei, Thomas H.K. Kang, "Recycled concrete aggregate: A Review", Volume 7, No.1, pp.61–69, March 2013

[8] Okorie Austine Uche, “Influence of Recycled Concrete Aggregate (RCA) on compressive strength of plain concrete” Continental J. Engineering Sciences, pp. 30-36, 2008.

[9] Gomes, M., & de Brito, J. “Structural concrete with incorporation of coarse recycled concrete and ceramic aggregates: durability performance,” Materials and Structures, 42(5), pp. 663-675, 2009.

[10] Jitender Sharma, Sandeep Singla, “Study of Recycled Concrete Aggregates”, Volume 13, pp. 123-125, July 2014.

[11] Katz, A. “Treatments for the improvement of recycled aggregate.” J. Mater. Civ. Eng. 16 (6): 597–603. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(597)2004

[12] Ext barrels, M., Va’squez, E., & Marí’, A. R. (2007). Influence of amount of recycled coarse aggregates and production process on properties of recycled aggregate concrete. Cement and Concrete Research, 37, 735–742.

[13] Kang, T. H.-K., Kim, W., Kwak, Y.-K., & Hong, S.-G. (2012) The choice of recycled concrete aggregates for flexural members. In Proceedings of 18th international association for bridge and structural engineering congress on innovative infrastructures, Seoul, Korea.

[14] Yang, S., and H. Lee. 2017. “Mechanical properties of recycled aggregate concrete proportioned with modified equivalent mortar volume method for paving applications.” Constr. Build. Mater. 136 (Apr): 9–17. https://doi.org/10.1016/j.conbuildmat.2017.01.029.

[15] Yang, X., Z. You, Z. Wang, and Q. Dai. 2016. “Review on heterogeneous model reconstruction of stone-based composites in numerical simulation.” Constr. Build. Mater. 117 (Aug): 229–243. https://doi.org/10.1016/j.conbuildmat.2016.04.135

[16] Sagoe-Crentsil, K. K., T. Brown, and A. H. Taylor. 2001. “Performance of concrete made with commercially produced coarse recycled concrete aggregate.” Cem. Concr. Res. 31 (5): 707–712. https://doi.org/10.1016/S0008-8846(00)00476-2.

[17] Xu, J., X. Zhao, Y. Yu, T. Xie, G. Yang, and J. Xue. 2019. “Parametric sensitivity analysis and modelling of mechanical properties of normal and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks.” Constr.BuildeMat.211(Jun):479491https://doi.org/10.1016/j.conbuildmat.2019.03.234.

[18] Huseien, G. F., J. Mirza, M. Ismail, and M. W. Hussin. 2016. “Influence of different curing temperatures and alkali activators on properties of GBFS geopolymer mortars containing fly ash and palm-oil fuelash.” Constr. Build. Mater. 125 (Oct): 1229–1240. https://doi.org/10.1016/j.conbuildmat.2016.08.153.

[19] Thomas, J., N. N. Thackavil, and P. M. Wilson. 2018a. “Strength and durability of concrete containing recycled concrete aggregates.” J. Build.Eng.19(Sep):349–36https://doi.org/10.1016/j.jobe.2018.05.007.
[20] Thomas, R. J., A. J. Fellows, and A. D. Sorensen. 2018b. “Durability analysis of recycled asphalt pavement as partial coarse aggregate replacement in a high-strength concrete mixture.” J. Mater. Civ. Eng. 30 (504018061. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002262

[21] Olorunsogo, F. T., and N. Padayachee. 2002. “Performance of recycled aggregate concrete monitored by durability indexes.” Cem. Concr. Res. 32 (2): 179–185. https://doi.org/10.1016/S0008-8846(01)00653-6.

[22] Poon, C. S., and D. Chan. 2006. “Paving blocks made with recycled concrete aggregate and crushed clay brick.” Constr. Build. Mater. 20(8): 569–575. https://doi.org/10.1016/j.conbuildmat.2005.01.044.

[23] Poon, C. S., Z. H. Shui, and L. Lam. 2004. “Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates.” Constr. Build. Mater. 18 (6): 461–468. https://doi.org/10.1016/j.conbuildmat.2004.03.005.

[24] Hansen, T. C., and H. Narud. 1983. “Strength of recycled concrete made from crushed concrete coarse aggregate.” Concr. Int. 5 (1): 79–83.

[25] Guo, H., C. Shi, X. Guan, J. Zhu, Y. Ding, T. C. Ling, H. Zhang, and Y. Wang. 2018. “Durability of recycled aggregate concrete—a review.” Cem. Concr. Compos. 89 (May): 251–259. https://doi.org/10.1016/j.cemconcomp.2018.03.008.

[26] Duan, Z. H., & Poon, C. S. (2014). Properties of recycled aggregate concrete made with recycled aggregates with different amounts of old adhered mortars. Materials & Design, 58, 19-29., 32, 657-662.

[27] Kou, S. C., Poon, C. S. and Chan, D., (2007). “Influence of fly ash as cement replacement on the properties of recycled aggregate concrete.” Journal of Materials in Civil Engineering, 19(9), 709-717.

[28] IS: 383-1970, Indian Standard Specification for Coarse and Fine aggregates from Natural Sources for Concrete, (Second Revision). Bureau of Indian Standards, New Delhi, India

[29] IS: 10262:2009, Concrete Mix Proportioning Guidelines. Bureau of Indian Standards, New Delhi, India.