Rotational thromboelastometry for diagnosing sudden hyperfibrinolysis immediately after cardiopulmonary bypass during cardiac surgery

Joung-Min Kim1, Chungsik Oh2, Ju-Won Kim1, Hyun Ju Jung1, and Tae-Yop Kim2

1Department of Anesthesiology and Pain Medicine, Uijongbu St. Mary’s Hospital, The Catholic University of Korea, Uijongbu, 2Department of Anesthesiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea

Coagulopathy is a frequent complication after prolonged use of cardiopulmonary bypass (CPB) and usually requires transfusion of various blood components, including red blood cells, fresh frozen plasma (FFP), and platelets in cardiac surgery [1]. Considering the risk of transfusion-related complications and postoperative morbidity and mortality [2], accurate and fast determination of the whole-blood coagulation profile and the etiology of any associated coagulopathy is necessary to avoid unnecessary transfusions and/or to minimize their size [3]. Standard laboratory-based tests (SLTs) do not accurately reflect the whole-blood coagulation profile and unable to carry out timely and effective management of concurrent coagulopathies due to their relatively long turnaround times. Thus, implementation of a reliable and predictive intraoperative point-of-care (POC) coagulation test enables to diagnose various types of coagulopathy in a much faster and customized manner and facilitates intraoperative coagulation management by avoiding unnecessary transfusions, prompt transfusion of essential component(s) for managing concurrent coagulopathies, and prevent consumptive coagulopathy due to delayed transfusion in massive bleeding.

A 74-year-old male underwent an elective graft interposition procedure for a dilated ascending aorta (diameter 5.5 cm). He had a history of aortic valve replacement surgery using a mechanical valve, and wrapping of the ascending aorta using a synthetic graft. He had been taking warfarin (5.5 mg/daily), which had been switched to heparin 2 days before surgery. At the time at which warfarin was discontinued, his activated partial thromboplastin time (aPTT) and prothrombin time (PT) were prolonged, and his PT international normalization ratio (INR) was high; by the time of surgery, they had all decreased but were still beyond their normal ranges.

During 130 min-CPB with moderate hypothermia (rectal temperature, 28°C), graft interposition of the dilated ascending aorta was undertaken using synthetic graft. After achieving stable cardiovascular performance, as indicated by hemodynamic parameters including blood pressure, heart rate, central venous pressure, pulmonary arterial pressure, the thermodilution cardiac index, mixed venous O2 saturation, and a routine transesophageal echocardiography examination. Immediately after weaning from CPB and protamine infusion, activated clotting time (ACT) and ROTEM (ROTEM, Tem International GmbH, Munich, Germany) assays including INTEM, EXTEM, FIBTEM, and APTEM were started as part of the routine coagulation management protocol at our institution. ACT was 144 s (the value before CPB was 167 s), and until 20 min after starting the ROTEM assays, the tracings of ROTEM assays showed the following patterns: a slight reduction in the α-angle in INTEM, EXTEM, and APTEM; prolonged clot formation time (CFT) in INTEM (67 s; reference value 30–110 s), EXTEM and APTEM (both 195 s; reference values 34–159 s in both); and slight reductions in the amplitudes at 10 min (A10) and 20 min (A20) of INTEM (39 and 41 mm; reference values 44–46 mm and 50–71 mm, respec-
Fig. 1. Changes in multiple rotational thromboelastometry (ROTEM) assays. (A-D) INTEM, EXTEM, and APTEM post-CPB show a slight reduction in α-angle (61°) and prolongations in CFT (67 s) in INTEM (reference values 70–83° and 30–110 s, respectively); a reduction in the α-angles (54° and 55°) and prolongation of CFT (195 and 200 s) in EXTEM and APTEM (reference values 63–83° and 34–159 s, respectively); slight reductions in A10 (39, 39, 39 mm) and A20 (41, 45, 49 mm) in INTEM, EXTEM, and APTEM (reference values 44–46 mm and 50–71 mm, 43–65 mm and 50–72 mm, and 43–65 mm and 50–72 mm, respectively); and maximum clot formation (MCF, 4–6 mm) in FIBTEM (reference value > 7 mm). Dramatic reductions of amplitudes (tails) suggesting hyperfibrinolysis with a slight deficiency of clotting factor, hypofibrinogemia, and thrombocytopenia were noted beyond 20 min after starting the ROTEM assays. An abrupt reduction of clot lysis indices at 30 min (CLI 30) in INTEM and EXTEM (38% and 24%; reference value 94–100%) and their further worsening at 45 min (CLI 45) in INTEM and EXTEM (4% and 2%; reference value 94–100%) were also noted. (E) After tranexamic acid (TA) administration, additional EXTEM assay showed restoration of normal clot lysis function, as indicated by normal CLI 30 and CLI 45, with continued clotting factor deficiency, hypofibrinogemia, and thrombocytopenia, as indicated by the reduced α-angle and prolonged CFT and reduced amplitude (A10 and A20). (F) After completion of transfusions with fresh frozen plasma (2 units), platelet concentrate (300 ml), cryoprecipitate (8 units) and cryoprecipitate (6 units), additional FIBTEM assay around 50 min after TA administration suggested hypofibrinogenemia (MCF < 7 mm). Post-CPB: immediately after weaning from cardiopulmonary bypass and protamine administration; TA-cryoprecipitate: after administering tranexamic acid (2 g) and cryoprecipitate (6 units); α-angle: tangent of the slope between 2 and 20 mm, CFT: clot formation time; A10 and A20: amplitudes 10 min and 20 min after the start of the assay; MCF: maximum clot firmness; CLI 30 and CLI 45: clot lysis indices (% of clot strength) remaining 30 min and 45 min after clotting time (CT).
ROTEm for hyperfibrinolysis

References

1. Bennett-Guerrero E, Zhao Y, O’Brien SM, Ferguson TB Jr, Peterson ED, Gammie JS, et al. Variation in use of blood transfusion in coronary artery bypass graft surgery. JAMA 2010; 304: 1568-75.

2. Hendrickson JE, Hillyer CD. Noninfectious serious hazards of transfusion. Anesth Analg 2009; 108: 759-69.

3. Koch CG, Li L, Duncan AI, Mihaljevic T, Loop FD, Starr NJ, et al. Transfusion in coronary artery bypass grafting is associated with reduced long-term survival. Ann Thorac Surg 2006; 81: 1650-7.

4. Geeraedts LM Jr, Demiral H, Schaap NP, Kamphuisen PW, Pompe JC, Frölke JP. 'Blind' transfusion of blood products in exsanguinating trauma patients. Resuscitation 2007; 73: 382-8.

5. Dzik WH. Predicting hemorrhage using preoperative coagulation screening assays. Curr Hematol Rep 2004; 3: 324-30.