ON WIENER NORM OF SUBSETS OF \mathbb{Z}_p OF MEDIUM SIZE

S. V. KONYAGIN 1, I. D. SHKREDOV 2

Abstract.

We give a lower bound for Wiener norm of characteristic function of subsets A from \mathbb{Z}_p, p is a prime number, in the situation when $\exp\left((\log p/ \log \log p)^{1/3}\right) \leq |A| \leq p/3$.

1 Introduction

We consider the abelian group $G = \mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$, where p is a prime number. Denote the Fourier transform of a complex function on G to be a new function

$$\hat{f}(\gamma) = \frac{1}{p} \sum_{x \in G} f(x) e_p(x\gamma),$$

where $e_p(u) = \exp(2\pi i u/p)$ (we note that e_p is correctly defined for $u \in \mathbb{Z}_p$). It is known that the function f can be reconstructed from \hat{f} by the inverse Fourier transform

$$f(x) = \sum_{\gamma \in \mathbb{Z}_p} \hat{f}(\gamma) e_p(-x\gamma). \tag{1}$$

We define the Wiener norm of a function f as

$$\|f\|_{A(G)} = \|f\|_{A} = \|\hat{f}\|_{1} = \sum_{\gamma \in \mathbb{Z}_p} |\hat{f}(\gamma)|.$$

By χ_S, $S \subset G$ denote the characteristic function of some set S.

In this note we discuss the problem of estimation from below the Wiener norm of χ_A for $A \subset \mathbb{Z}_p$ in terms of p and $|A|$.

1The first author is supported by grant RFBR 14-01-00332 and grant Leading Scientific Schools N 3082.2014.1

2The second author is supported by grant mol_a_ved 12–01–33080.
If \(x \in A \), then, by (1), we have
\[
1 = \left| \sum_{\gamma \in \mathbb{Z}_p} \hat{f}(\gamma) e_p(-x\gamma) \right| \geq \sum_{\gamma \in \mathbb{Z}_p} |\hat{f}(\gamma)|.
\]
Thus, we get a trivial estimate for Wiener norm of any nonempty \(A \subset \mathbb{Z}_p \)
\[
\| \chi_A \|_A \geq 1.
\]
(2)
Next we observe that because of
\[
\| \chi_{\mathbb{Z}_p \setminus A} \|_A = \| \chi_A \|_A + (1 - 2|A|/p)
\]
it is sufficient to consider the case \(|A| < p/2 \). It is easy to see that if \(A \subset \mathbb{Z}_p \) is an arithmetic progression with
\[
2 \leq |A| < p/2
\]
then
\[
\| \chi_A \|_A \asymp \log |A|.
\]
It is commonly believed that for any \(A \) satisfying (3) there is the same lower bound
\[
\| \chi_A \|_A \gg \log |A|.
\]
(4)
The first nontrivial lower bound for \(\| \chi_A \|_A, |A| < p/2 \), in some range was established in[2]:
\[
\| \chi_A \|_A \gg \frac{|A|}{p} \left(\frac{\log p}{\log \log p} \right)^{1/3}.
\]
This estimate was improved by T. Sanders [7] for \(|A| < p/2, \ |A| \gg p \). As was shown in [4], the results of [7] imply the following.

Theorem 1 Let \(p \) be a prime number, \(A \subset \mathbb{Z}_p \), \(0 < \eta = |A|/p < 1/2 \). If \(\eta \geq (\log p)^{-1/4}(\log \log p)^{1/2} \) then
\[
\| \chi_A \|_A \gg \left(\log p \right)^{1/2} \left(\log \log p \right)^{-1/2} \eta^{3/2} \left(1 + \log \left(\eta^2 (\log p)^{1/2} (\log \log p)^{-1} \right) \right)^{-1/2},
\]
and if \(\eta < (\log p)^{-1/4}(\log \log p)^{1/2} \) then
\[
\| \chi_A \|_A \gg \eta^{1/2} \left(\log p \right)^{1/4} \left(\log \log p \right)^{-1/2}.
\]
Our interest to study Wiener norm of large subsets of \mathbb{Z}_p was inspired by the paper of V.V. Lebedev [5] on quantitative variants of Beurling–Helson theorem.

Theorem 1 is nontrivial if our subset A is large, that is

$$|A|p^{-1}(\log p)^{1/2}(\log \log p)^{-1} \to \infty$$

(and of course $|A| < p/2$). For small A we proved in [4] a sharp estimate.

Theorem 2 Let p be a prime number, $A \subset \mathbb{Z}_p$, and

$$2 \leq |A| \leq \exp\left(\frac{(\log p/\log \log p)^{1/3}}{3}\right).$$

Then

$$\|\chi_A\|_A \gg \log |A|.$$

In this note we study the subsets $A \subset \mathbb{Z}_p$ of medium size. Our main result is the following assertion.

Theorem 3 Let p be a prime number, $A \subset \mathbb{Z}_p$,

$$\exp\left(\frac{(\log p/\log \log p)^{1/3}}{3}\right) \leq |A| \leq p/3.$$

Then

$$\|\chi_A\|_A \gg (\log(p/|A|))^{1/3}(\log \log(p/|A|))^{-1+o(1)}. $$

We observe that using arguments of Theorem 2 one can get analogous estimates for sets A slightly exceeding the bound indicated in the statement. However, the improvement is marginal. Moreover, it seems that by that way one cannot get a nontrivial estimate for rather large subsets, namely, such that $\log |A| \gg \log p$.

2 Comparison with the continuous case

We denote $e(u) = \exp(2\pi i u)$. For sets $B \subset \mathbb{Z}$ a continuous analog of (4) is a well-known fact. Namely, it was proved in [3] and [6] that if $B \subset \mathbb{Z}$, $2 \leq |B| < \infty$ then

$$\int_0^1 \left| \sum_{b \in B} e(bu) \right| du \gg \log |B|.$$
Moreover, in [6] the following stronger result was proved: if \(b_1 < \cdots < b_l \) are real numbers and \(c_j \) are arbitrary complex numbers then
\[
\int_0^1 \left| \sum_{j=1}^l c_j e(b_j u) \right| \, du \gg \sum_{j=1}^l \frac{|c_j|}{j}.
\] (5)

This inequality implies the following lemma.

Lemma 4 Let \(n \in \mathbb{N} \), \(B \subset [-2n, 2n] \subset \mathbb{Z} \), \(|B| \geq 2\), \(0 < \eta < 1/2 \), \(|B \cap [-n,n]| \geq (1-\eta)|B|\), \(c(b) \ (b \in B) \) are complex numbers with \(c(b) = 1 \) for \(b \in B \cap [-n,n] \). Then
\[
\int_0^1 \left| \sum_{b \in B} c(b)e(bu) \right| \, du \gg \min \left(\log \frac{1}{\eta}, \log |B| \right).
\]

Proof Let \(B = \{b_1 < \cdots < b_l\} \) where \(l = |B| \), and let \(B \cap [-n,n] = \{b_{l_1} < \cdots < b_{l_2}\} \). The polynomial \(\sum_{b \in B} c(b)e(bu) \) can be rewritten as \(\sum_{j=1}^{l_2} c_j e(b_j u) \) where \(c_j = 1 \) for \(l_1 \leq j \leq l_2 \). We denote
\[
S = \int_0^1 \left| \sum_{b \in B} c(b)e(bu) \right| \, du.
\]

By (5),
\[
S \gg \sum_{j=l_1}^{l_2} \frac{1}{j} \gg \log((l_2 + 1)/l_1).
\]

We have \(l_2 - l_1 + 1 \geq (1 - \eta)l \). If \(\eta < 1/l \), then \(l_1 = 1 \), \(l_2 = l \), \(S \gg \log((l_2 + 1)/l_1) = \log l \) as required. If \(\eta \geq 1/l \), then we have
\[
l_1 \leq \eta l + 1 < 2\eta l.
\]

Hence,
\[
\log((l_2 + 1)/l_1) \geq \log((l_1 + (1 - \eta)l)/l_1) \geq \log((1 + \eta)/2\eta) \gg \log(1/\eta),
\]
and we again get the assertion of the lemma. \(\square \)

The discrete and continuous \(L^1 \)-norms of trigonometric polynomials can be compared by the following lemma.
Lemma 5 We have

\[\frac{1}{p} \sum_{\gamma \in \mathbb{Z}_p} \left| \sum_{|x| \leq p/3} c_x e_p(x\gamma) \right| \gg \int_0^1 \left| \sum_{|x| \leq p/3} c_x e(xu) \right| du. \]

See [11], chapter 10, Theorem 7.28.

One can deduce (4) from Lemma 5 provided that \(A \subset [-p/3, p/3] \) (this inclusion means that any residue \(a \in A \) has an integer representative from \([-p/3, p/3]\)) or if some non–degenerate affine image of \(A \) in \(\mathbb{Z}_p \) is contained in \([-p/3, p/3]\). This argument was used in the proof of Theorem 2.

Now let us define the de la Vallée-Poussin polynomials and means. For functions

\[F(\gamma) = \sum_{x \in \mathbb{Z}_p} c_x e_p(x\gamma), \quad G(\gamma) = \sum_{x \in \mathbb{Z}_p} d_x e_p(x\gamma) \]

we define their convolution

\[F * G(\gamma) = \sum_{x \in \mathbb{Z}_p} c_x d_x e_p(x\gamma). \]

It is easy to see that

\[F * G(\gamma) = \frac{1}{p} \sum_{\xi_1 + \xi_2 = \gamma} F(\xi_1)G(\xi_2). \]

Therefore,

\[\sum_{\gamma \in \mathbb{Z}_p} |F * G(\gamma)| \leq \frac{1}{p} \sum_{\gamma \in \mathbb{Z}_p} |F(\gamma)| \sum_{\gamma \in \mathbb{Z}_p} |G(\gamma)|. \tag{6} \]

Study of arbitrary trigonometric polynomials in \(\mathbb{Z}_p \) can be reduced to polynomials of small degree using de la Vallée-Poussin means. Define the de la Vallée-Poussin polynomial of order \(n \leq p/4 \) as

\[V_n(\gamma) = \sum_{|x| \leq n} e_p(x\gamma) + \sum_{n < |x| \leq 2n} \frac{2n - |x| + 1}{n + 1} e_p(x\gamma) \]

and the de la Vallée-Poussin mean for \(F \) of order \(n \leq p/4 \) as \(F * V_n \).

We need in the lemma.
Lemma 6 For \(n \leq p/4 \) the following inequality holds
\[
\sum_{\gamma \in \mathbb{Z}_p} |V_n(\gamma)| \leq 3p.
\]

The proof is contained in the proof of Theorem 7.28 of chapter 10 in [11].

Using Lemma 6 and (6) we obtain the following lemma.

Lemma 7 For \(n \leq p/4 \) the following inequality holds
\[
\sum_{\gamma \in \mathbb{Z}_p} \left| \sum_{|x| \leq n} c_x e_p(x\gamma) + \sum_{n < |x| \leq 2n} \frac{2n - |x| + 1}{n + 1} c_x e_p(x\gamma) \right| \leq 3 \sum_{\gamma \in \mathbb{Z}_p} \left| \sum_{|x| \leq p/2} c_x e_p(x\gamma) \right|.
\]

Combining Lemmas 7, 5, and 4 we get the following.

Lemma 8 Let \(B \subset \mathbb{Z}_p, \ n \leq p/6, \ 0 < \eta < 1/2. \) Assume that \(|B \cap [-2n, 2n]| \geq 2 \) and
\[
|B \cap [-n, n]| \geq (1 - \eta)|B \cap [-2n, 2n]|.
\]
Then
\[
\|\hat{\chi}_B\|_1 \gg \min \left(\log \frac{1}{\eta}, \log |B \cap [-2n, 2n]| \right).
\]

3 Balog–Szemerédi–Gowers theorem, Freiman’s theorem, and structure of sets with small Wiener norm

Given an arbitrary set \(Q \subset \mathbb{Z}_p \) and \(k \in \mathbb{N} \), denote the quantity \(T_k(Q) \) as the number of solutions to the equation
\[
x_1 + \cdots + x_k = x'_1 + \cdots + x'_k
\]
with \(x_1, \ldots, x_k, x'_1, \ldots, x'_k \in Q \). Note that for \(T_2(Q) \) is commonly called the additive energy of \(Q \) (see, e.g. [10]). We have
\[
T_k(Q) = p^{2k-1} \sum_{\gamma} |\hat{\chi}_Q(\gamma)|^{2k}.
\]

The following lemma is a particular case of Lemma 4 from [4].
Lemma 9 Let \(Q \subseteq A \subseteq \mathbb{Z}_p \), \(\|\chi_A\|_A \leq K \), \(k \in \mathbb{N} \). Then
\[
T_k(Q) \geq \frac{|Q|^{2k}}{|A|^{K^{2k-2}}}.
\]
In particular,
\[
T_2(A) \geq \frac{|A|^3}{\|\chi_A\|^2_A}. \tag{7}
\]
For subsets \(A, B \) of an ambient additive abelian group their sum and difference are defined in a natural way:

\[
A \pm B = \{a \pm b : a \in A, b \in B\}.
\]
The following result is the current version of the Balog– Szemerédi– Gowers theorem [9] (see also [1]).

Lemma 10 If \(G \) is an additive abelian group, \(A \) is a nonempty finite subset of \(G \), \(T_2(A) \geq |A|^3/L \), then there exists \(A' \subset A \) such that \(|A'| \gg |A|/L \) and
\[
|A' - A'| \ll L^4|A'|. \tag{8}
\]
Next, it is known that
\[
|A'||A' + A'| \leq |A' - A'|^2
\]
(see Corollary 6.29 from [10]). Hence, (8) implies the inequality
\[
|A' + A'| \ll L^8|A'|. \tag{9}
\]

Another important ingredient from Additive Combinatorics is Freiman’s theorem. Define a generalized arithmetic progression (GAP) as a subset of \(\mathbb{Z}_p \) of the form
\[
P = P(x_0; x; w) = \left\{ x_0 + \sum_{i=1}^{d} v_i x_i : 0 \leq v_i < w_i (i = 1, \ldots, d) \right\}
\]
where \(x = (x_1, \ldots, x_d) \in \mathbb{Z}_p^d \), \(w = (w_1, \ldots, w_d) \in \mathbb{N}^d \). We will assume that all \(x_i \) are not equal to zero. The dimension of \(P \) is \(d \) and the size of \(P \) is \(\prod_{i=1}^{d} w_i \). The following result is the current version of the Freiman’s theorem [7].
Lemma 11 If B is a nonempty subset of \mathbb{Z}_p, $|B + B| \leq M|B|$, $M \geq 2$, then there is a GAP P of dimension at most $\log^{3+o(1)} M$ and size at most $|B|$ such that $$|B \cap P| \geq |B| \exp \left(-\log^{3+o(1)} M \right).$$

Applying subsequently (7), Lemma 8 with (9), and Lemma 11 we get

Lemma 12 For any $\varepsilon > 0$ and $K \geq K(\varepsilon)$ if A is a nonempty subset of \mathbb{Z}_p with $\|\chi_A\|_A \leq K$ and

$$d_\varepsilon = d_\varepsilon(K) = \log^{3+\varepsilon} K \tag{10}$$

then there exists a GAP P of dimension at most d_ε and size at most $|A|$ such that $$|A \cap P| \geq |A| e^{-d_\varepsilon}.$$

Our immediate purpose is to put some multiplicative translate of a set with small Wiener norm into a small segment of \mathbb{Z}_p. To do it, recall Blichfeld’s lemma ([10], Lemma 3.27).

Lemma 13 Let $\Gamma \subset \mathbb{R}^d$ be a lattice of full rank, and let V be an open set in \mathbb{R}^d such that $\text{mes}(V) > \text{mes}(\mathbb{R}^d/\Gamma)$. Then there exist distinct $x, y \in V$ such that $x - y \in \Gamma$.

Let $P = P(x_0; x; w)$ be the GAP from Lemma 12, let

$$\alpha_i = \frac{(|A|/p)^{1/d}}{w_i}$$

for $i = 1, \ldots, d$, $\delta > 0$ be a small number,

$$V_\delta = \prod_{i=1}^d (-\delta, \alpha_i + \delta) \subset \mathbb{R}^d.$$

We observe that

$$\text{mes}(V_\delta) > \prod_{i=1}^d \alpha_i = \frac{|A|}{p} \prod_{i=1}^d w_i^{-1} \geq \frac{1}{p}.$$

Let Γ be the lattice

$$\Gamma = \mathbb{Z}^d + \frac{x}{p} \mathbb{Z}.$$

8
Then Γ is a union of p translates of Z^d. Consequently, $\text{mes}(\mathbb{R}^d/\Gamma) = 1/p$.

Now we can apply Lemma 13 and conclude that there exist distinct $x, y \in V_\delta$ such that $x - y \in \Gamma$. Tending δ to 0 we see that there are distinct points

$$x, y \in V_0 = \prod_{i=1}^{d}[0, \alpha_i]$$

with $x - y \in \Gamma$. Equivalently, putting

$$Z_p^* = Z_p \setminus \{0\}$$

and denoting by $|z|$, $z \in Z_p$ the minimal absolute value of a representative of z in Z, we see that there exists $q \in Z_p^*$, $q < p$ such that for $i = 1, \ldots, d$ the following holds $|qx_i| \leq p \alpha_i$.

For any $x \in P$ we have

$$|q(x - x_0)| = \left| q \sum_{i=1}^{d} v_i x_i \right| < \sum_{i=1}^{d} w_i |q x_i| \leq \sum_{i=1}^{d} w_i \alpha_i = dp(|A|/p)^{1/d}.$$

So, we get the following structural property of sets with small Wiener norm.

Lemma 14 For any $\varepsilon > 0$ and $K \geq K(\varepsilon)$ if A is a nonempty subset of Z_p with $\|\chi_A\|_A \leq K$, d_ε is defined by (10),

$$m = \left[d_\varepsilon p \left(\frac{|A|}{p} \right)^{1/d_\varepsilon} \right],$$

then there exist $x_0 \in Z_p$ and $q \in Z_p^*$ such that for the set

$$B = q(A - x_0) = \{q(x - x_0) : x \in A\}$$

we have

$$|B \cap [-m, m]| \geq |A| e^{-d_\varepsilon}. $$
4 Upper estimates of $T_k(Q)$ for scattered Q

Let us formulate the main result of the section.

Lemma 15 Let I, k, m, M be positive integers. Let also $Q = \bigcup_{i=1}^I Q_i \subseteq \mathbb{Z}$ be a set such that $Q_i \subseteq [-4^i m, -\frac{4^i m}{2}) \cup (\frac{4^i m}{2}, 4^i m]$, i runs over a subset of \mathbb{N} of cardinality I, and $|Q_i| = M$. Then

$$T_k(Q) \leq 2^{8k} k^k M^{2k-1}. \quad (11)$$

Proof of Lemma 15. First of all, put $Q^+ = Q \cap \{x : x \geq 0\}$ and $Q^- = Q \setminus Q^+$. Using Hölder inequality, one can easily obtain

$$T_k(Q) \leq 4^k \max\{T_k(Q^+), T_k(Q^-)\}$$

and, thus, we need in an appropriate upper bound for $T_k(Q^+), T_k(Q^-)$. Without loosing of generality, we bound just $T_k(Q^+)$, and, moreover, we write Q instead of Q^+.

Further, put $N_k(x) = |\{q_1 + \cdots + q_k = x : q_j \in Q\}|$. Clearly, $\sum_x N_k^2(x) = T_k(Q)$ and

$$\sum_x N_k(x) = |Q|^k = I^k M^k.$$

In view of the last identity it is sufficient to prove the following uniform estimate for $N_k(x)$.

Lemma 16 For any x, we have

$$N_k(x) \leq 2^{6k} k^k M^{k-1}.$$

Proof of the lemma. Take a vector $\vec{s} = (s_1, \ldots, s_b)$, $s_1 + \cdots + s_b = k$, and put

$$N_k^\vec{s}(x) = |\{q_1 + \cdots + q_k = x : \exists s_1 \text{ elements from } A_{i_1}, \ldots, \exists s_b \text{ elements from } A_{i_b}\}|,$$

where $i_1 < i_2 < \cdots < i_l$. Then

$$N_k(x) = \sum_{\vec{s}} N_k^\vec{s}(x) \cdot \frac{k!}{s_1! \ldots s_b!}. \quad (12)$$
Thus, we need to estimate \(N_k(\vec{s}) \) for any \(\vec{s} \). Because of
\[
N_k(\vec{s}) \leq \sum_{q_1 \in A_{i_1}} \cdots \sum_{q_b \in A_{i_{b-1}}} \delta_0(q_1 + \cdots + q_b - x) \leq \Delta_1(\vec{s}) \cdots \Delta_{b-1}(\vec{s}) M^{k-1},
\]
where \(\Delta_l(\vec{s}) \) is the number of choices for indices of sets \(A_{i_l} \), and \(\delta_0(z) \) is the function such that \(\delta_0(z) = 1 \) iff \(z = 0 \). We need to estimate the quantities \(\Delta_l(\vec{s}) \). Suppose that the sets \(A_{i_1}, \ldots, A_{i_{b-1}} \) are fixed and let us find an upper bound for the number of sets \(A_{i_l} \). Let \(z \) be the least integer number such that
\[
\sum_{j=1}^{l-1} s_j 4^j \leq \frac{s_l 4^{l+z}}{2}.
\]
Then the number of the sets \(A_{i_l} \) is bounded by \(z + 1 \). Indeed, without loosing of generality, we can suppose that \(i_j = j, j \in [l-1] \) and \(i_l = l + z' \), \(z' > z \). Then the set \(A_{i_l} \) is defined uniquely because otherwise we have a solution of the equation
\[
\mu_1 + \cdots + \mu_{l-1} + \mu_l = x = \mu'_1 + \cdots + \mu'_{l-1} + \mu'_l,
\]
where \(\mu_j, \mu'_j \in s_j A_{i_j}, j \in [l-1] \), and, similarly, \(\mu_l \in s_l A_{l+z'}, \mu'_l \in s_l A_{i_l}, i_l < l + z' \). If (15) takes place then
\[
\frac{s_l 4^{l+z}}{2} \leq \frac{s_l 4^{l+z'}}{2} < \mu'_l - \mu_l \leq \mu_1 + \cdots + \mu_{l-1} \leq \sum_{j=1}^{l-1} s_j 4^j
\]
with a contradiction. It follows that
\[
\Delta_l(\vec{s}) \leq \log(2 \sum_{j=1}^{l-1} s_j 4^{j-l}) + 1 \leq \log(2 \max_{1 \leq j \leq l-1} \{s_j 2^{j-l}\}) + 1.
\]
Let \(m_1 < m_2 < \cdots < m_t \) be the local maximums of the sequence \(\max_{1 \leq j \leq l-1} \{s_j 2^{j-l}\} \), \(l \in [b-1] \). Let also \(d_j \) be the number of appearing of the maximum \(m_j \). Then \(\sum_{j=1}^t d_j = k \). Further, by the construction of the sequence \(\max_{1 \leq j \leq l-1} \{s_j 2^{j-l}\} \), \(l \in [b-1] \) one can see that \(d_j \leq \log 2 s_j, j \in [t] \). Returning to (12), and having (13), we get
\[
N_k(x) \leq M^{k-1} \sum_{\vec{s}} \frac{k!}{s_1! \cdots s_b!} \cdot (\log 2 s_{m_1} + 1)^{d_1} \cdots (\log 2 s_{m_t} + 1)^{d_t} \leq
\]
\[
M^{k-1}e^k k! \sum_{s_{m_1}, \ldots, s_{m_t}} \prod_{j=1}^{t} \frac{(\log 2s_{m_j} + 1)^{\log 2s_{m_j}}}{s_{m_j}!} \leq
\]

\[
\leq M^{k-1}e^{2k} k! \left(\sum_s \frac{(\log 2s + 1)^{\log 2s}}{s^s} \right)^t \leq 2^{6k}k^k M^{k-1}
\]
as required. Thus, we have proved our lemma and, hence, Lemma 15. \(\Box\)

Remark 17 If one allows an additional multiplies of the form \((\log k)^k\) in bound (11) then the result follows immediately. Indeed, we can split our set \(A\) onto sets \(B_1, \ldots, B_r, r \sim \log k\) such that each \(B_j\) contains \(A_l\) with \(l \equiv j \pmod{r}\). Thus we lose exactly \((\log k)^k\) multiple but any set \(A_i\) in each \(B_j\) is defined uniquely, all \(\Delta_j(\vec{s}) = 1\) (see formulas (13), (14)), and, hence, \(T_k(B_j) \leq C^k k^k M^{k-1} |B_j|^k\), where \(C > 0\) is an absolute constant.

5 Proof of Theorem 3

We fix an arbitrary \(\varepsilon > 0\) and assume that

\[
\|\chi_A\|_A \leq K, \quad K_\varepsilon \leq K \leq (\log(p/|A|))^{1/3}(\log \log(p/|A|))^{-1-\varepsilon}. \quad (16)
\]

Our aim is to prove that (16) cannot hold provided that \(p/|A|\) exceeds some quantity depending on \(\varepsilon\). Since \(\varepsilon > 0\) is arbitrary, the theorem will follow.

We take \(x_0, q, m,\) and \(B\) accordingly with Lemma 14. Since

\[
\hat{\chi}_B(\gamma) = e_p(-qx_0\gamma)\hat{\chi}_A(q\gamma),
\]
we conclude that \(\|\chi_B\|_A = \|\chi_A\|_A\). Thus,

\[
\|\chi_B\|_A \leq K. \quad (17)
\]

Let \(l_0\) be the maximal positive integer \(l\) with \(2^lm < p/3\),

\[
D_l = \{b \in B : |b| \leq 2^lm\}, \quad 0 \leq l \leq l_0,
\]

\[
\eta = \exp(-CK)
\]
for a large constant C, and

$$M = \lceil \eta |A| e^{-d_\varepsilon} \rceil.$$

If for some $l \geq 1$ we have $|D_l \setminus D_{l-1}| < M$ then applying Lemma 8 to $n = 2^{l-1}m$ and taking into account the inequality $|D_l| \geq |D_0|$ and the lower bound for $|D_0|$ from Lemma 14 we find

$$\|\hat{\chi}_B\|_1 \gg \min \left(\frac{1}{\eta}, \log |D_0| \right).$$

Since

$$\log |D_0| \geq \log |A| - d_\varepsilon \gg (\log p / \log \log p)^{1/3} > K (\log \log p)^{2/3} > \log \frac{1}{\eta},$$

we see that

$$\|\hat{\chi}_B\|_1 \gg \log \frac{1}{\eta},$$

and we get contradiction with (17) provided that C is large enough.

Thus, it is enough to consider the case where $|D_l \setminus D_{l-1}| \geq M$ for all $l = 1, \ldots, l_0$. For each l with $l \equiv 0 \pmod{2}$ we take $S_l \subset D_l \setminus D_{l-1}$ with $|S_l| = M$. Define

$$Q = \bigcup_l S_l.$$

Now we are in position to use Lemma 15 with $k = [K]$ and the sets Q_i that are the sets S_l in another numeration ($I = \lfloor l_0/2 \rfloor$). Let us compare the upper estimate (11) for $T_k(Q)$ with the lower estimate from Lemma 9 taking into account that $|Q| = IM$. After simple calculations we obtain

$$\frac{|Q|}{|A|} I^{k-1} \leq K^{3k-2} 2^8 k$$

implying (because of $|Q|/|A| \leq \exp(\log^{3+\varepsilon} K)$)

$$I \ll K^3.$$ (18)

We have

$$I \geq l_0/2 - 1 \gg \log(p/m) \geq d_\varepsilon^{-1} \log(p/|A|) - \log d_\varepsilon.$$

Recalling (16) and (10) we see that

$$|I| \gg d_\varepsilon^{-1} \log(p/|A|) \gg \log(p/|A|)(\log \log(p/|A|))^{-3-\varepsilon}.$$

So, (18) does not agree with (16) as required.

\[\Box \]
References

[1] **J. Bourgain and M.Z. Garaev.** On a variant of sum-product estimates and explicit exponential sum bounds in prime fields // Math. Proc. Cambridge Philos. Soc., **146**:1, 1–21, 2009.

[2] **B.J. Green, S.V. Konyagin.** On the Littlewood problem modulo a prime // Canad. J. Math., **61**:1, 141—164, 2009.

[3] **S.V. Konyagin.** On a problem of Littlewood // Izvestiya of Russian Academy of Sciences, **45**:2, 243–265, 1981.

[4] **S.V. Konyagin, I.D. Shkredov.** Quantitative version of Beurling–Helson theorem // submitted.

[5] **V.V. Lebedev.** Absolutely convergent Fourier series. An improvement of Beurling–Helson theorem. // Funct. Anal. Appl., **46**:2, 52–65, 2012.

[6] **O.C. McGehee, L. Pigno, B. Smith.** Hardy’s inequality and the L^1 norm of exponential sums // Annals of Math., **113**, 613–618, 1981.

[7] **T. Sanders.** The Littlewood–Gowers problem // J. Anal. Math., **101**, 123–162, 2007.

[8] **T. Sanders.** The structure theory of set addition revisited // Bull. AMS, **50**:1, 93–127, 2013.

[9] **T. Schoen.** New bounds in Balog–Szemerédi–Gowers theorem // Combinatorica, accepted.

[10] **T. Tao, V. Vu.** Additive combinatorics / CUP, 2006.

[11] **A. Zygmund.** Triginometric series / V. 2, CUP, 2002.

S.V. Konyagin
Steklov Mathematical Institute,
ul. Gubkina, 8, Moscow, Russia, 119991
and
MSU,
Leninskie Gory, Moscow, Russia, 119992
konyagin@mi.ras.ru
I.D. Shkredov
Steklov Mathematical Institute,
ul. Gubkina, 8, Moscow, Russia, 119991
and
IITP RAS,
Bolshoy Karetny per. 19, Moscow, Russia, 127994
ilya.shkredov@gmail.com