N-Formyl Peptide Receptors in Human Neutrophils Display
Distinct Membrane Distribution and Lateral Mobility when Labeled
with Agonist and Antagonist

Birgitta Johansson, Matthias P. Wymann, Kajsa Holmgren-Peterson, and Karl-Eric Magnusson
Department of Medical Microbiology, Faculty of Health Sciences, University of Linköping, S-581 85 Linköping, Sweden

Abstract. Receptors for bacterial N-formyl peptides are instrumental for neutrophil chemotactic locomotion and activation at sites of infection. As regulatory mechanisms for signal transduction, both rapid coupling of the occupied receptor to cytoskeletal components, and receptor lateral redistribution, have been suggested (Jesaitis et al., 1986, 1989).

To compare the distribution and lateral diffusion of the nonactivated and activated neutrophil N-formyl-peptide receptor, before internalization, we used a new fluorescent N-formyl-peptide receptor antagonist, tert-butyloxycarbonyl-Phe(D)-Leu-Phe(D)-Leu-Phe-OH (Boc-FLFLF, 0.1-1 μM), and the fluorescent receptor agonist formyl-Nle-Leu-Phe-Nle-Tyr-Lys (fnLLFnLYK, 0.1-1 μM). Fluorescent Boc-FLFLF did not elicit an oxidative burst in the neutrophil at 37°C, as assessed by chemiluminescence and reduction of p-nitroblue tetrazolium chloride, but competed efficiently both with formyl-methionyl-leucyl-phenylalanine (fMLF) and fnLLFnLYK. It was not internalized, as evidenced by confocal microscopy and acid elution of surface bound ligand.

The lateral mobility characteristics of the neutrophil fMLF receptor were investigated with the technique of FRAP. The diffusion coefficient (D) was similar for antagonist- and agonist-labeled receptors (D ≈ 5 × 10⁻⁹ cm²/s), but the fraction of mobile receptors was significantly lower in agonist- compared to antagonist-labeled cells, ~40% in contrast to ~60%.

This reduction in receptor mobile fraction was slightly counteracted, albeit not significantly, by dihydrocytochalasin B (dhcB, 5 μM).

To block internalization of agonist-labeled receptors, receptor mobility measurements were done at 14°C. At this temperature, confocal microscopy revealed clustering of receptors in response to agonist binding, compared to a more uniform receptor distribution in antagonist-labeled cells. The pattern of agonist-induced receptor clustering was less apparent after dhcB treatment.

To summarize, this work shows that activated N-formyl peptide receptors aggregate and immobilize in the plane of the neutrophil plasma membrane before internalization, a process that is affected, but not significantly reversed, by cytochalasin. The results are consistent with a model where arrested receptors are associated mainly with a cytochalasin-insensitive pool of cytoskeletal elements.

The neutrophil granulocyte has a distinguished capacity to sense and actively move along a concentration gradient of chemotactic peptide excreted by invading bacteria (Zigmond, 1977; Gallin, 1988). When the neutrophil arrives at the site of infection, high concentrations (0.1-1 μM) of chemotactic peptide lead to cellular arrest, degranulation and activation of neutrophil bactericidal systems, e.g., production of oxidative metabolites (Snyderman and Pike, 1984; Gallin, 1988; Omann and Sklar, 1988).

The neutrophil receptor for chemotactic bacterial N-formyl peptides, the f-Met-Leu-Phe (fMLF) receptor (Schiffman, 1975; Becker, 1979; Snyderman and Pike, 1984; Boulay, 1990a,b) and its complex signal transducing system has been studied intensively (Snyderman and Uging, 1988; Jesaitis and Allen, 1988). The signal has been proposed to be G-protein-dependent (Jesaitis et al., 1989; Särndahl et al., 1989; Bommikanti et al., 1992), and to include activation of phospholipase C (Martin, 1989) and protein kinase C (Helf-

1. Abbreviations used in this paper: Boc-FLFLF, tert-butyloxycarbonyl-Phe(D)-Leu-Phe(D)-Leu-Phe-OH; dhcB, dihydrocytochalasin B; fMLF, formyl-methionyl-leucyl-phenylalanine; fnLLFnLYK, formyl-Nle-Leu-Phe-Nle-Tyr-Lys; KRG, Krebs-Ringer glucose phosphate buffer containing 10 mM glucose and 1 mM Ca²⁺ and Mg²⁺, pH 7.3; NBT, p-nitroblue tetrazolium chloride.
Phosphates and diacylglycerols (Berridge, 1987), and cal-
man et al., 1983; Nishizuka, 1986), formation of inositol-
phosphates and diacylglycerols (Berridge, 1987), and cal-
cium mobilization (Lew, 1989; Baggioni and Wymann, 1990).

Upon activation, there is compelling biochemical evi-
dence of a redistribution of receptors from membrane do-
rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
mains rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
Nishizuka, 1986), formation of inositol-

To investigate the lateral mobility characteristics and dis-
tribution of the neutrophil formyl peptide receptor indepen-
dently of receptor activation, a new fluorescent receptor
antagonist was synthesized, viz. fluoresceinated terbutyl-

Upon activation, there is compelling biochemical evi-
dence of a redistribution of receptors from membrane do-
rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
mains rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
Nishizuka, 1986), formation of inositol-

To investigate the lateral mobility characteristics and dis-
tribution of the neutrophil formyl peptide receptor indepen-
dently of receptor activation, a new fluorescent receptor
antagonist was synthesized, viz. fluoresceinated terbutyl-

Upon activation, there is compelling biochemical evi-
dence of a redistribution of receptors from membrane do-
rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
mains rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
Nishizuka, 1986), formation of inositol-

To investigate the lateral mobility characteristics and dis-
tribution of the neutrophil formyl peptide receptor indepen-
dently of receptor activation, a new fluorescent receptor
antagonist was synthesized, viz. fluoresceinated terbutyl-

Upon activation, there is compelling biochemical evi-
dence of a redistribution of receptors from membrane do-
rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
mains rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
Nishizuka, 1986), formation of inositol-

To investigate the lateral mobility characteristics and dis-
tribution of the neutrophil formyl peptide receptor indepen-
dently of receptor activation, a new fluorescent receptor
antagonist was synthesized, viz. fluoresceinated terbutyl-

Upon activation, there is compelling biochemical evi-
dence of a redistribution of receptors from membrane do-
rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
mains rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
Nishizuka, 1986), formation of inositol-

To investigate the lateral mobility characteristics and dis-
tribution of the neutrophil formyl peptide receptor indepen-
dently of receptor activation, a new fluorescent receptor
antagonist was synthesized, viz. fluoresceinated terbutyl-

Upon activation, there is compelling biochemical evi-
dence of a redistribution of receptors from membrane do-
rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
mains rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
Nishizuka, 1986), formation of inositol-

To investigate the lateral mobility characteristics and dis-
tribution of the neutrophil formyl peptide receptor indepen-
dently of receptor activation, a new fluorescent receptor
antagonist was synthesized, viz. fluoresceinated terbutyl-

Upon activation, there is compelling biochemical evi-
dence of a redistribution of receptors from membrane do-
rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
mains rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
Nishizuka, 1986), formation of inositol-

To investigate the lateral mobility characteristics and dis-
tribution of the neutrophil formyl peptide receptor indepen-
dently of receptor activation, a new fluorescent receptor
antagonist was synthesized, viz. fluoresceinated terbutyl-

Upon activation, there is compelling biochemical evi-
dence of a redistribution of receptors from membrane do-
rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
mains rich in G-proteins to areas depleted of G-proteins but
rich in cytoskeletal elements, preferably actin (Jesaitis et al.,
Nishizuka, 1986), formation of inositol-
bile receptors, was determined according to Jacobson et al. (1976). The SLOW-FRAP protocol used allowed us to first measure the fluorescence in the spot before bleaching (F0), bleach (150-300 ms) and then sample the recovery of fluorescence in the bleached spot at time intervals of increasing length (e.g., from 1 to 10 s with a final measurement, F∞, at 60 s).

To avoid cell locomotion and prevent internalization of the fMLF-receptor (Sklar et al., 1984), glass-adherent cells were kept at 14°C during the experiments using a temperature-regulated microscope stage.

Confocal Microscopy

A Sarastro 1000 microscope (Molecular Dynamics, Sunnyvale, CA) (Aslund et al., 1987; Carlsson and Aslund, 1987) equipped with an Argon laser and a x100, high numeric aperture (1.4) objective (Nikon, Japan) was used.

Neutrophils, isolated and prepared as for FRAP measurements, were transported on ice and were, for the study, kept at 14 or 37°C, using a temperature-regulated (Peltier-type) microscope stage (Detrona AB, Linköping, Sweden). Cells were chosen randomly in white light and optical sectioning made in fluorescent light (488 nm line). To localize the cells after low pH elution of ligand, pictures were made using the white light source of the microscope.

Statistical Methods

Estimates of p-values were obtained using t test (Kirkwood, 1991). A significant difference between two means has a two-sided p-value <0.05.

Results

Receptor Specificity and Capacity of the Antagonist and Agonist to Activate an Oxidative Burst

The N-formyl peptide receptor specificity of fluoresceinated fnLLFnLYK is well established (Niedel et al., 1979). Incidentally, this compound is a more potent activator of the neutrophil oxidative burst than fMLF (Sklar et al., 1985; Table I and Fig. 1).

Preservation of the receptor specificity of the antagonist Boc-FLFLF (Freer et al., 1980) after FITC-conjugation was shown in two ways. First, a rapid, distinct reduction of the oxidative response was observed after addition of fluoresceinated Boc-FLFLF to either fMLF- or fnLLFnLYK-stimulated cells at maximal chemiluminescence (Fig. 1). Second, addition of a 10-fold excess of fMLF to cells labeled with 0.1 µM of the fluoresceinated antagonist obliterated cell-associated fluorescence at 14°C (Fig. 2).

Fluorescent Boc-FLFLF (0.1 µM) induced no chemiluminescence and no reduction of NBT at 37°C, confirming the antagonistic nature of the labeled compound (Table I and Fig. 1).

Reduction of NBT in glass-adherent cells further revealed that no activation of the neutrophil oxidase occurred in glass-adherent cells at 14°C in response to 0.1 µM fnLLFnLYK, fMLF or PMA, respectively (Table I).

Table I. Production of Oxidative Metabolites in Glass-adherent Human Neutrophils Measured as Reduction of p-Nitroblue Tetrazolium Chloride

Stimulus	Temperature	
	14°C	37°C
none	-	-
Boc-FLFLF 0.1 µM	-	-
fMLF 0.1 µM	-	+ (+)
fnLLFnLYK 0.1 µM	-	+ +
fnLLFnLYK 0.1 µM + dhcB 5 µM	-	+ +
PMA 0.1 µM	+ +	+ +

Glass-adherent human neutrophils were subjected to 100 µl of 0.1 µM Boc-FLFLF, fnLLFnLYK, fMLF, or PMA (positive control) together with 0.85 mg/ml p-nitroblue tetrazolium chloride (NBT) and incubated at the desired temperature for 30 min. DhcB-treated cells were preincubated with 5 µM dhcB for 10 min at 37°C. The reaction was stopped by addition of 4% paraformaldehyde (PFA) at 4°C. The degree of activation of the respiratory burst was estimated from the percentage of blue cells due to formazan formation (NBT-positive cells). ++++, >95% positive cells; ++, 50-95% positive cells; ++, <5% positive cells. At least 200 cells were counted for each preparation.

N-formyl Peptide Receptor Distribution and Internalization

For neutrophils fluorescently labeled with the receptor antagonist Boc-FLFLF (0.1 µM) an almost uniform membrane distribution of N-formyl peptide receptors was observed. The receptor distribution did not significantly change when the temperature was increased from 14 to 37°C, and no internalization was detected (Figs. 4, 5, and 6).

A strikingly different lateral distribution of the receptor was seen at 14°C in cells fluorescently labeled with 0.1 µM of the receptor agonist fnLLFnLYK. It was evident that the agonist induced a lateral clustering of the receptors in the neutrophil plasma membrane at temperatures suboptimal for oxidase activation and N-formyl peptide receptor internalization (Figs. 4 and 5). At 37°C, receptor internalization was obvious in agonist-labeled cells (Fig. 6).

Neutrophils pretreated with and maintained in 5 µM dihydrocytochalasin B (dhcB) still displayed a patchy distribution of agonist-labeled receptors at 14°C. However, the receptor clusters in dhcB-treated cells (Fig. 4, g-i) appeared less well developed compared to cells not treated with dhcB, which displayed a less diffuse, but more highly punctate...
Lateral Mobility Characteristics of the N-formyl Peptide Receptor

Around 60% of the receptors for fMLF appeared laterally mobile in neutrophils labeled with antagonist, i.e., 40% of the receptors were immobile. The mobile fraction of receptors, R, decreased significantly, to $\sim 40\%$, in cells labeled with the agonist fnLLFnLYK.

Treatment with 5 μM dhcB did not significantly affect the receptor distribution (Fig. 4, d-f). Moreover, at 37°C, along with large fluorescent clusters, agonist-labeled cells showed more internal diffuse fluorescence (Fig. 6 d) compared to cells treated with dhcB (Fig. 6 g).

Table II. Lateral Mobility at 14°C of the N-formyl Peptide Receptor in Individual Human Neutrophils Labeled with Antagonistic and Agonistic Fluorescent Peptides

Receptor label	$D \times 10^{-10} \text{ cm}^2/\text{s}$	R	$\%$	
Boc-FLFLF		5.4 ± 0.3	63 ± 3	(5.2) (65)
0.1 μM		4.7 ± 0.5	57 ± 5*	(4.8) (57)
fnLLFnLYK		5.5 ± 0.3	40 ± 3*	(6.0) (38)
0.1 μM + dhcB 5 μM		5.6 ± 0.3	44 ± 2	(5.6) (46)

* $p < 0.001$. Glass-adherent human neutrophils were fluorescently labeled at 4°C with either a N-formyl peptide receptor antagonist (Boc-FLFLF) or an agonist (fnLLFnLYK). Measurements of receptor lateral mobility were done at 14°C using the FRAP technique. The effect of 5 μM dihydrocytochalasin B (dhcB) on the lateral mobility of the agonist-labeled fMLF-receptor was also assessed. D is the diffusion coefficient, R the fraction of mobile receptors. Mean values are given ± SEM with median values in parenthesis. n is the number of cells. Two-sided p-values were obtained with t test.

Figure 3. Lateral mobility of antagonist and agonist-labeled N-formyl peptide receptor in individual neutrophils, effect of cytochalasin. Diffusion constant, D, and mobile fraction, R, of the N-formyl peptide (fMLF) receptors in individual human neutrophils measured with fluorescence recovery after photobleaching (FRAP) at 14°C. Neutrophils were labeled at 4°C with 1 or 0.1 μM of receptor antagonist (Boc-FLFLF) or 0.1 μM of receptor agonist (fnLLFnLYK). The agonist-labeled cells in the last lane were further treated with 5 μM dihydrocytochalasin B (dhcB). Solid line indicates mean value (Table II).
size of the mobile fraction in agonist-labeled cells (Table II). However, there was evidence of a shift in the distribution of R values of the cytochalasin-treated cells towards the mean value of antagonist-treated cells (Fig. 3). This effect was even more evident from the median values (Table II).

The lateral diffusion coefficient (D) of the mobile fraction of N-formyl peptide receptors was similar regardless of whether the cells had been labeled with receptor agonist or antagonist, and was found to be around 5×10^{-10} cm2/s. The diffusion constant was not significantly affected by dhcB treatment (Table II, Fig. 3).

Discussion

This is, to our knowledge, the first conclusive study of the N-formyl peptide receptor distribution and lateral mobility in the neutrophil membrane (compare Bültmann et al., 1987; McKay et al., 1991), using FRAP and confocal microscopy.
Moreover, and in contrast to the agonist fnLLFnLYK (Niedel et al., 1979; Sklar et al., 1982, 1984; Seligmann et al., 1984; Walter and Marasco, 1987; Bültmann et al., 1987; Schmitt and Bültmann, 1990), the antagonist Boc-FLFLF (Freer et al., 1980) has not previously been used as a fluorescent receptor label.

The combination of Boc-FLFLF and fnLLFnLYK provided a straightforward way to follow the effects of activation on the N-formyl peptide receptor lateral mobility and distribution. An advantage with these small-sized labels was also that they would, theoretically, not by themselves restrain receptor lateral diffusion.

FnLLFnLYK is a potent inducer of the neutrophil respiratory burst, both in cells in solution (Sklar et al., 1982; Fig. 1) and cells attached to glass (Table I). At 37°C it is rapidly internalized together with the N-formyl peptide receptor. Below 15°C, internalization is blocked (Sklar et al., 1984; Figs. 4 and 5). At this temperature, there is also no activation of the neutrophil oxidase, resulting in production of oxidative metabolites (Jesaitis et al., 1986; Table I).

At 15°C the N-formyl peptide receptor nevertheless undergoes an activation-specific change in ligand affinity (Jesaitis and Allen, 1988) and there is evidence that the receptors shift from areas rich in G-proteins to membrane domains in

Figure 5. Acid elution of membrane-bound ligand at 14°C in human neutrophils labeled with antagonist and agonist to the N-formyl peptide receptor, effect of cytochalasin. Glass-adherent human neutrophils, mounted in KRG₉₅₅₅, were examined in the confocal microscope at 14°C after labeling at 4°C with 0.1 μM receptor antagonist (Boc-FLFLF; a–b), or 0.1 μM receptor agonist (fnLLFnLYK; c–f). The cells in e–f were preincubated, and maintained, in 5 μM dihydrocytochalasin B (dhcB) during labeling and examination. a, c, and e were recorded using the white light source of the confocal microscope. b, d, and f show the corresponding confocal fluorescence image to a, c, and e, respectively. Bar, 5 μm.
close contact with cytoskeletal elements, preferably actin (Jesaitis et al., 1989; Klotz, K. N., D. Siemsen, and A. J. Jesaitis. 1991. J. Cell Biol. 115:3a. [Abstr.]). In this study we observed a distinct clustering of N-formyl peptide receptors at 14°C induced by the receptor agonist FnLLFnLYK (Fig. 4). This finding was paralleled by a significant reduction of the fraction of mobile receptors, R, in the membrane (Table II, Fig. 3).

This reduction of R was reversed, albeit not significantly, towards the R values of antagonist-labeled cells (Table II, Fig. 3) by dihydrocytochalasin B (dhcB), which normally blocks actin polymerization (Lin et al., 1977, 1982). In addition, the receptor clusters formed in dhcB-treated cells at 14°C appeared less well developed compared to agonist-labeled controls (Fig. 4). Moreover, at 37°C dhcB-treated cells displayed less internal diffuse fluorescence than controls (Fig. 6).

These findings could suggest that dhcB has an effect on the internalization rate of the agonist-labeled receptor and possibly on the rate of formation of clusters. They would be in accordance with the results reported by Jesaitis and Allen (Jesaitis and Allen, 1988), where formation of receptor high affinity Triton X-100 insoluble complexes was slowed, but not completely inhibited, by dhcB-treatment. The kinetics of

Figure 6. Distribution of antagonist and agonist-labeled N-formyl peptide receptors in human neutrophils at 37°C, effect of cytochalasin. Acid elution of membrane-bound ligand. Glass-adherent human neutrophils were examined in the confocal microscope at 37°C after labeling at 4°C with 0.1 μM receptor antagonist (Boc-FLFLF; a-c), or 0.1 μM receptor agonist (fnLLFnLYK; d-i). The cells in g-i were preincubated, and maintained in 5 μM dihydrocytochalasin B (dhcB) during labeling and examination. b-c, e-f and h-i show cells mounted in KRGort3.5. b, e, and h were recorded using the white light source of the confocal microscope. c, f, and i show the corresponding confocal fluorescence images to b, e, and h, respectively. Bar, 5 μm.
cluster formation and receptor internalization under different circumstances remains to be examined in a separate study.

We found that the diffusion constant, \(D \), of the mobile fraction of receptors was \(\approx 5 \times 10^{-9} \text{ cm}^2/\text{s} \) at 14°C (Table II, Fig. 3), which is typical for an intrinsic membrane protein (Jacobson, 1983). The diffusion constant was not significantly influenced by receptor occupation with active ligand (Table II, Fig. 3). This suggests that the proposed interaction between activated N-formyl peptide receptors and the cytoskeleton, turning off the signal (Jesaitis et al., 1986), is an all-or-nothing effect, immobilizing receptors completely.

Incidentally, when discussing the relationship between receptor mobility and cellular activation, Jesaitis and Allen (1988) assumed a theoretical N-formyl peptide receptor diffusion constant of between 1 and \(10 \times 10^{-9} \text{ cm}^2/\text{s} \). We can now substantiate these calculations, by assigning a value, \(\approx 5 \times 10^{-9} \text{ cm}^2/\text{s} \), to the rate of diffusion of the neutrophil N-formyl peptide receptor.

Taken together, the results indicate that before receptor internalization, and in the absence of activation of the neutrophil oxidase, N-formyl peptide receptors occupied by active ligand are laterally redistributed, aggregated and immobilized in the neutrophil plasma membrane by a process apparently affected by, but not entirely dependent on, actin polymerization.

There is, however, evidence of a cytochalasin-insensitive pool of actin in neutrophils (Cassimeris et al., 1990). Our results may indicate that this pool of actin, or other cytoskeletal components, are involved in receptor immobilization. Incidentally, there are recent data that suggest that the interaction between N-formyl peptide receptors and the neutrophil cytoskeleton is in fact mainly cytochalasin-insensitive (K. N. Klotz and A. J. Jesaitis, personal communication; Klotz, K. N., D. Siemsen, and A. J. Jesaitis. 1991. Cell Biol. 115:3a. [Abstr.]).

The response to N-formyl peptide in suspended neutrophils (Sklar et al., 1984; Jesaitis et al., 1986; Bengtsson et al., 1986; Jesaitis and Allen, 1988; Omann and Sklar, 1988; Jesaitis et al., 1989) might, in addition, differ from cells attached to glass. Cytokines, such as TNF and CSF-GM, actually fail to evoke an oxidative response in nonadherent cells (Nathan et al., 1987, 1989a,b). This absolute dependency on adherence is not true for the N-formyl peptide receptor, but modifications of the cellular response cannot be ruled out.

Finally, we anticipate that the method of receptor labeling outlined in this work, using pairs of fluorescent agonists and antagonists, is applicable to studies of lateral mobility and distribution of receptors in a variety of cell systems.

The financial support of the Swedish Society for Medical Research, the Gurdon Stålham Foundation, the Niels and Signe Virigin Foundation, the C. O. Lundberg Foundation, and the Lions Foundation is gratefully acknowledged. This project was also supported by the Swedish Research Council for Engineering Sciences, the Magn. Bergvall Foundation, the Crafoord Foundation, the Swedish Society against Rheumatism, the Prof. Nanna Svartz Fund, Östergötlands Läns Landstings Forskningsfond, the Åke Wiberg Foundation, King Gustaf Vih 80-year Foundation, the Swedish Medical Research Council (project No. 6251) and the Swiss National Science Foundation (Matthias P. Wyman; project no. 31-30889.91).

Matthias P. Wyman was the recipient of a postdoctoral fellowship from the Wenner-Gren Foundation.

Received for publication 30 December 1992 and in revised form 23 March 1993.

References

Åsland, N., A. Liljeberg, P. O. Forsgren, and S. Wahlsten. 1987. Three dimensional digital microscopy using the Phoibus scanner. Scanning. 9:227–235.

Axelrod, D. E. Koppel, J. Schlessinger, F. Elson, and W. W. Webb. 1976. Mobility measurement by analysis of fluorescence photobleaching recovery. Biophys. J. 16:1055–1069.

Baethner, R. L., L. A. Boxer, and J. Davis. 1976. The biochemical basis of nitroblue tetrazolium reduction ion normal human and chronic granuloma - tuous disea~ polymorphonuclear leukocytes. Blood. 48:309–313.

Beggioli, M., and M. P. Wyman. 1990. Turning on the respiratory burst. Trends Biochem. Sci. 15:69–72.

Becker, E. L. 1979. A multifunctional receptor on the neutrophil for synthetic chemotactic oligopeptides. J. Reticuloendothel Soc. 26:701–709.

Bengtsson, T., C. Dahlgren, O. Stendahl, and T. Andersson. 1991. Actin assembly and regulation of neutrophil function: effects of cytochalasin B and Tetracaine on chemotactic peptide-induced O2 production and degranulation. J. Leukocyte Biol. 49:236–244.

Bengtsson, T., O. Stendahl, and T. Andersson. 1986. The role of the cytosolic free Ca2+ transient for fMet-Leu-Phe-induced actin polymerization in human neutrophils. Eur. J. Cell Biol. 42:338–343.

Berridge, M. J. 1987. Insitol trisphosphate and diacylglycerol: two interacting second messengers. Annu. Rev. Biochem. 56:159–193.

Bonmukanti, R. K., G. M. Bokoch, J. O. Tolley, R. E. Schreiber, D. W. Siemsen, K. N. Klotz, and A. J. Jesaitis. 1992. Reconstitution of a physical complex between the N-formyl chemotactic receptor and G protein. J. Cell Biol. 267:7576–7581.

Boulay, F., M. Tardif, L. Brouillon, and P. Vignais. 1990a. Synthesis and use of a novel N-formyl peptide derivative to isolate a human N-formyl peptide receptor cDNA. Biochem. Biophys. Res. Commun. 168:1103–1109.

Boulay, F., M. Tardif, L. Brouillon, and P. Vignais. 1990b. The human N-formyl peptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors. Biochemistry. 29:1123–1133.

Böyum, A. 1968. Isolation of mononuclear cells and granulocytes from human blood. Scand. J. Clin. Lab. Invest. 19:77–89.

Büllmann, B., C. Piertzyk, I. Melzner, and H. Frey. 1987. Lateral diffusion of chemotactic peptide receptors within the cytoplasmic membrane of human PMNs demonstrated by laser-scant microscopy. Adv. Biosci. 66:47–56.

Carlsson, K., and N. Åsland. 1987. Confocal imaging for 3D digital microscopy. Appl. Optics. 26:3232–3238.

Cassimeris, L., H. McNell, and S. H. Zigmund. 1990. Chemotactic-stimulated polymorphonuclear leukocytes contain two populations of actin filaments that differ in their spatial distribution and relative stabilities. J. Cell Biol. 110:1067–1075.

Dahlgren, C. 1987. Polymorphonuclear leukocyte chemiluminescence induced by formyl-methionyl-leucyl-phenylalanine and phorbol myristate acetate: effects of catalase and superoxide dismutase. Agents Actions. 21:104–112.

Freer, R. J., A. R. Day, J. A. Radding, E. Schiffman, S. Aswanikumar, H. J. Samter, D. W. Talmage, M. M. Frank, K. F. Austen, and H. N. Claman, A. J. Jesaitis, and R. A. Allen. 1989. Further studies on the structural requirements for chemotactic peptide chemoreceptors. Biochemistry. 19:2404–2410.

Gallin, J. I. 1988. The Neutrophil. In Immunological Diseases. 4th ed. M. Samter, D. W. Talmage, M. M. Frank, K. F. Austen, and H. N. Claman, A. J. Jesaitis, and R. A. Allen. 1989. Interactions and membrane traffic may regulate chemoattractant-induced superoxide production in human granulocytes. Biochem. Biophys. Res. Commun. 11:847–853.

Jacobson, K. 1983. Lateral diffusion in membranes. Cell Motil. 3:367–373.

Jesaitis, D. 1979. Interactions and membrane traffic may regulate chemoattractant-induced superoxide production in human granulocytes. J. Cell Biol. 49:236–244.

Jesaitis, A. J., and R. A. Allen. 1988. Activation of the neutrophil respiratory burst by chemotactic-stimulated polymorphonuclear leukocytes. J. Bioenerg. Biomembr. 20:679–707.

Jesaitis, A. J., O. Tolley, and R. A. Allen. 1986. Receptor-cytoskeleton interactions and membrane traffic may regulate chemotactic-stimulated superoxide production in human granulocytes. J. Biol. Chem. 261:3366–3369.

Jesaitis, A. J., O. Tolley, G. M. Bokoch, and R. A. Allen. 1989. Regulation of chemotactic receptor interaction with transducing proteins by organizational control in the plasma membrane of human neutrophils. J. Cell Biol. 109:2783–2790.

Johansson, B., T. Sundqvist, and K. E. Magnusson. 1987. Regulation of lateral diffusion of WGA-labelled glycoconjugates in human leucocytes; comparison between adult granulocytes and differentiating promyelocytic HL60 cells. Cell. Biol. Physiol. 10:233–244.

Kirkwood, B. R. 1991. Essentials of Medical Statistics. Blackwell Scientific Publications, London.
Lin, S., and C. E. Snyder, Jr. 1977. High affinity cytochalasin B binding to red cell membrane proteins which are unrelated to sugar transport. J. Biol. Chem. 252:5464-5471.

Lin, S., J. A. Wilkins, D. H. Cribbs, M. Grnmet, and D. C. Lin. 1982. Proteins and complexes that affect actin-filament assembly and interactions. Cold Spring Harbor Symp. Quant. Biol. 49:625-632.

Martin, T. F. J. 1989. Lipid hydrolysis by phospholipases C: enzymology and regulation by receptors and guanine nucleotides. In Inositol Lipids and Cell Signalling. R. H. Michell, A. H. Drummond, and C. P. Downes, editors. Academic Press, London.

McKay, D. A., J. R. Kusel, and P. C. Wilkinson. 1991. Studies of chemotactic factor-induced polarity in human neutrophils. Lipid mobility, receptor distribution and time-sequence of polarization. J. Cell Sci. 100:473-479.

Nathan, C. F. 1987. Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J. Clin. Invest. 80:1550-1560.

Nathan, C. F. 1989a. Respiratory burst in adherent human neutrophils: triggering by colony stimulating factors CSF-GM and CSF-G. Blood. 73:301-306.

Nathan, C., S. Srimal, C. Farber, E. Sanchez, L. Kabbash, A. Asch, J. Gallit, and S. D. Wright. 1989b. Cytokine-induced respiratory burst of human neutrophils: dependence on extracellular matrix proteins and CD11/CD18. J. Cell. Biol. 109:1341-1349.

O'Shea, J. J., E. J. Brown, T. A. Gaither, T. Takahashi, and M. M. Frank. 1986. Studies and perspective of protein kinase C. Science (Wash. DC). 233:305-312.

Omori, M. G., and L. S. Sklar. 1988. Response of neutrophils to stimulus induction: differential sensitivity of cytoskeletal activation and oxidant production. J. Cell Biol. 107:951-958.

O'Shea, J. J., E. J. Brown, T. A. Gaither, T. Takahashi, and M. M. Frank. 1985. Tumor-promoting phorbol esters induce rapid internalization of the C3b receptor via a cytoskeleton-dependent mechanism. J. Immunol. 135:1325-1330.

Peters, R., A. Brunger, and K. Schulten. 1981. Continuous fluorescence microphotolysis: a sensitive method for study of diffusion processes in single cells. Proc. Natl. Acad. Sci. USA. 78:962-966.

Peters, R., J. Peters, K. H. Tews, and W. Bähr. 1974. A microfluorometric study of translational diffusion in erythrocyte membranes. Biochim. Biophys. Acta. 367:282-294.

Söndahl, E., M. Lindroth, T. Bengtsson, M. Fällman, J. Gustavsson, O. Stendahl, and T. Andersson. 1989. Association of ligand-receptor complexes with actin filaments in human neutrophils: a possible regulatory role for a G-protein. J. Cell Biol. 109:2791-2799.

Schiffman, E., B. Corcoran, and S. Wahl. 1975. N-formyl-methionyl peptides as chemoattractants for leukocytes. Proc. Natl. Acad. Sci. USA. 72:1059-1062.

Schmitt, M., and B. Büllmann. 1990. Fluorescent chemotactic peptides as tools to identify the f-Met-Leu-Phe receptor on human granulocytes. Biochem. Soc. Trans. 18:219-222.

Seligmann, B., T. M. Chused, and J. I. Gallin. 1984. Differential binding of chemoattractant peptide to subpopulations of human neutrophils. J. Immunol. 133:2641-2646.

Sklar, L. A., D. A. Finney, Z. G. Oades, A. J. Jesaitis, R. G. Painter, and C. G. Cochrane. 1984. The dynamics of ligand-receptor interactions. Real-time analysis of association, dissociation and internalization of an N-formyl peptide and its receptors on the human neutrophil. J. Biol. Chem. 259:5661-5669.

Sklar, L. A., P. A. Hyslop, Z. G. Oades, G. M. Omann, A. J. Jesaitis, R. G. Painter, and C. G. Cochrane. 1985. Signal transduction and ligand-receptor dynamics in the human neutrophil. Transient responses and occupancy-response relations at the formyl-peptide receptor. J. Biol. Chem. 260:11461-11467.

Sklar, L. A., A. J. Jesaitis, R. G. Painter, and C. G. Cochrane. 1982. Ligand/receptor internalization: a spectroscopic analysis and a comparison of ligand binding, cellular response, and internalization by human neutrophils. J. Cell. Biochem. 20:193-202.

Snyderman, R., and M. C. Pike. 1984. Chemoattractant receptors on phagocytic cells. Science. 225:257-281.

Snyderman, R., and R. J. Uihing. 1988. Phagocytic cells: stimulus-response coupling mechanism. In Inflammation. J. I. Gallin, I. M. Goldstein, and R. Snyderman, editors. Raven Press, New York.

Walter, R. J., and W. A. Marasco. 1987. Direct visualization of formyl-peptide receptor binding on rounded and polarized human neutrophils: cellular and receptor heterogeneity. J. Leuk. Biol. 41:377-391.

Zigmond, S. H. 1977. The ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J. Cell Biol. 75:606-616.