【文献調査】
Disease Ontology: a backbone for disease semantic integration

三島 康平 廣安 知之
2015年07月24日

1 タイトル
疾患オントロジー：疾患セマンティック統合のための考え方

2 著者
Lynn M. Schriml, Cesar A, Suvarna N, etc.

3 出典
Nucleic Acids Research, 2012, Vol. 40, Databases issue

4 アブストラクト
疾患オントロジー（以下 DO）データベース（http://disease-ontology.org）は、遺伝や発育、後天的など
の疾患に関する8043の総合的な知識ベースを表現している。DOウェブブラウザは、グラフデータベースを用い
ることにより、速さや効率、堅牢性を兼ね備えている。Luceneを用いた、フルテキストのコンテキスト検索機能
には、名前や同義語、定義やD OIDなど複合ブール検索文字列との相互参照（外部参照）を照会することができる。
DOセマンティックは、MexhやICD、NCIのシソーラスの統合及びSNOMED CTやOMIM疾患特異的用語
と識別子の大規模なクロスマッピングを通じて、疾患や医療語彙を統合している。DOは、生物医学オントロジ
ー、実験因子オントロジー、インフルエンザオントロジーのヒト疾患の標準表現として、主な生物医学データベース,
およびDO、MeSHやOMIMとの存在論のクロスマッピングソースとして、利用されている。DOプロジェクトは、ヒト疾患の
レンズを通して、医療データの知識の中で有効に活用されているオープンソースのツールに組み込まれている。
DOのWebブラウザは、生物医学の知識をクロスマッピングし、特にDOの拡張関係と論理的な定義表現を統合する。

5 参考文献
[1] Rupprecht,C.E., Smith,J.S., Fekadu,M. and Childs,J.E. (1995) The ascension of wildlife rabies: a cause for
public health concern or prevention? Emerg. Infect. Dis., 1, 107?114.
[2] Osborne,J.D., Flatow,J., Holko,M., Lin,S.M., Kibbe,W.A., Zhu,L.J., Danila,M.I., Feng,G. and Chisholm,R.L.
(2009) Annotating the human genome with Disease Ontology. BMC Genomics, 10, S1?S6.
[3] Du,P., Feng,G., Flatow,J., Song,J., Holko,M., Kibbe,W.A. and Lin,S.M. (2009) From disease ontology to
disease-ontology lite: statistical methods to adapt a general-purpose ontology for the test of gene-ontology
associations. Bioinformatics, 25, i63?i68.
[4] Ceusters,W. and Smith,B. (2010) Toward an ontological treatment of mental disease. J. Biomed. Semantics,
1, 10.
[5] Scheuermann,R.H., Ceusters,W. and Smith,B. (2009) Toward an ontological treatment of disease and diag-

1
nosis. Summit Translat. Bioinforma., 2009, 116?120.

[6] 2010 年の遺伝子オントロジー：拡張と改良
Gene Ontology Consortium. (2010) The Gene Ontology in 2010: extensions and refinements. Nucleic Acids Res., 38, D331?D335.

[7] 疾患からデータやその逆の流れを容易にする
Twigger,S.N., Shimoyama,M., Bromberg,S., Kwitek,A.E., Jacob,H.J. and RGD,Team. (2007) The Rat Genome Database, update 2007 easing the path from disease to data and back again. Nucleic Acids Res., 35, D658?D662.

[8] 免疫エピトープデータベース 2.0
Vita,R., Zarebski,L., Greenbaum,J.A., Emami,H., Hoof,I., Salimi,N., Damle,R., Sette,A. and Peters,B. (2010) The immune epitope database 2.0. Nucleic Acids Res., 38, D854?D862.

[9] ヒト遺伝子アノテーションに適用されたコミュニティインディジェンス
Huss,J.W., Lindenbaum,P., Martone,M., Roberts,D., Pizarro,A., Valafar,F., Hogenesch,J.B. and Su,A.I. (2010) The Gene Wiki: community intelligence applied to human gene annotation. Nucleic Acids Res., 38, D633?D639.

[10] マイクロアレイとバイスルーブット配列決定に基づく機能的ゲノミクス実験のアーカイブ
Parkinson,H., Sarkans,U., Kolesnikov,N., Abeygunawardena,N., Burdett,T., Dylag,M., Emam,I., Farne,A., Hastings,E., Holloway,E. et al. (2011) ArrayExpress update an archive of microarray and high-throughput sequencing-based functional genomics experiments. Nucleic Acids Res., 39, D1002?D1004.

[11] 神経科学のための総合的なオントロジー構築
Bug,W.J., Ascoli,G.A., Grethe,J.S., Gupta,A., Fennema- Notestine,C., Laird,A.R., Larson,S.D., Rubin,D., Shepherd,G.M., Turner,J.A. et al. (2008) The NIFSTD and BIRNLex vocabularies: building comprehensive ontologies for neuroscience. Neuroinformatics, 6, 175?194.

[12] 生物医学インフォマティクスのための参照オントロジー ：解剖学の基礎的なモデル
Rosse,C. and Mejino,J.V.L. (2003) A reference ontology for biomedical informatics: the foundational model of anatomy. J. Biomed. Inform., 36, 478?500.

[13] ヒトの表現型オントロジー
Robinson,P.N. and Mundlos,S. (2010) The human phenotype ontology. Clin. Genet., 77, 525?534.

[14] 国立バイオテクノロジー情報センターのデータベース・リソース
Sayers,E.W., Barrett,T., Benson,D.A., Bryant,S.H., Canese,K., Chetvernin,V., Church,D.M., DiCuccio,M., Edgar,R., Federhen,S. et al. (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 37, D5?D15.

[15] ゲノメデータのための感染エージェント、地理空間監視病原体データベース
Schrirm,L.M., Arz,C., Nadendla,S., Ganapathy,A., Felix,V., Mahurkar,A., Phillippy,K., Gussman,A., Angiuoli,S., Ghedin,E. et al. (2010) GeMIInA, Genomic Metadata for Infectious Agents,a geospatial surveillance pathogen database. Nucleic Acids Res., 38, D754?D764.

[16] 複数種にわたる表現型のオントロジー結合
Mungall,C.J., Gkoutos,G.V., Smith,C.L., Haendel,M.A., Lewis,S.E. and Ashburner,M. (2010) Integrating phenotype ontologies across multiple species. Genome Biol., 11, R2.1.

[17] 細胞株のオントロジーおよび生物医学テキストにタグ付け細胞株名での利用
Sarnivijai,S., Ade,A.S., Athey,B.D. and States,D.J. (2007) The cell line ontology and its use in tagging cell line names in biomedical text. AMIA Annu. Symp. Proc., 11, 1103.

[18] 生物医学オントロジーの関係
Smith,B., Ceusters,W., Klagges,B., Ko? hler,J., Kumar,A., Lomax,J., Mungall,C., Neuhaus,F., Rector,A.L. and Rosse,C. (2005) Relations in biomedical ontologies. Genome Biol., 6, R46.

[19] MeSH の翻訳メタデータシステム：構造、インターフェースデザイン、および実装
Nelson,S.J., Schopen,M., Savage,A.G., Schulman,J. and Arbuk,N. (2004) The MeSH translation maintenance system: structure, interface design, and implementation. In: Fieschi,M. et al. (eds), Proceedings of the 11th World Congress on Medical Informatics. IOS Press, Amsterdam, San Francisco, CA, pp. 6769.

[20] WHO による国際分類疾患（ICD）の改訂プロセス：希少疾患の分類方式への組み込み
Ayme,S., Rath,A. and Bellet,B. (2010) WHO International Classification of Diseases (ICD) Revision Process:
incorporating rare diseases into the classification scheme: state of art. Orphanet J. Rare Dis., 5, P1.

[21] オンラインメンデル遺伝の新しい直面と挑戦
Amberger,J., Bocchini,C. and Hamosh,A. (2011) A new face and new challenges for Online Mendelian Inheritance in Man (OMIM?). Hum. Mutat., 32, 564?567.

[22] ガン関連の臨床および分子情報の統合セマンティックモデル
Sioutos,N., de Coronado,S., Haber,M.W., Hartel,F.W., Shaiu,W.L. and Wright,L.W. (2007) NCI Thesaurus: a semantic model integrating cancer-related clinical and molecular information. J. Biomed. Inform., 40, 30?43.

[23] MetaMap転送（MMtx）とUnified医療言語システム（UMLS）を用いた、生物医学データのマイニング
Osborne,J.D., Lin,S.M., Zhu,L.J. and Kibbe,W.A. (2007) Mining biomedical data using MetaMap Transfer (MMtx) and the Unified Medical Language System (UMLS). Methods Mol. Biol., 408, 153?169.

[24] 統制語彙のクエリのための軽量クロスプラットフォームツールであるオンタロジー検索サービス
Cote,R.G., Jones,P., Apweiler,R. and Hermjakob,H. (2006) The ontology lookup service, a lightweight cross-platform tool for controlled vocabulary queries. BMC Bioinformatics, 7, 97.

[25] 生物医学オントロジー推奨Webサービスの構築
Jonquet,C., Musen,M.A. and Shah,N.H. (2010) Building a biomedical ontology recommender web service. J. Biomed. Semantics, 1, S1.

[26] 遺伝子リストの注釈の可視化のためのバイオコンダクターメソッドのコレクション
Feng,G., Du,P., Krett,N.L., Tessel,M., Rosen,S., Kibbe,W.A. and Lin,S.M. (2010) A collection of bioconductor methods to visualize gene-list annotations. BMC Res. Notes, 3, 10.