Gender Differences in Endothelial Function and Coronary Vasomotion Abnormalities

Shigeo Godo, MD, PhD¹ and Hiroaki Shimokawa, MD, PhD¹

Abstract

Introduction: Structural and functional abnormalities of coronary microvasculature, referred to as coronary microvascular dysfunction (CMD), have been implicated in a wide range of cardiovascular diseases and have gained growing attention in patients with chest pain with no obstructive coronary artery disease, especially in females. The central mechanisms of coronary vasomotion abnormalities encompass enhanced coronary vasoconstrictive reactivity (ie, coronary spasm), reduced endothelium-dependent and -independent coronary vasodilator capacities, and increased coronary microvascular resistance. The 2 major endothelium-derived relaxing factors, nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) factors, modulate vascular tone in a distinct vessel size–dependent manner; NO mainly mediates vasodilatation of relatively large, conduit vessels, while EDH factors in small resistance vessels. Endothelium-dependent hyperpolarization–mediated vasodilatation is more prominent in female resistance arteries, where estrogens exert beneficial effects on endothelium-dependent vasodilatation via multiple mechanisms. In the clinical settings, therapeutic approaches targeting NO are disappointing for the treatment of various cardiovascular diseases, where endothelial dysfunction and CMD are substantially involved. Significance: In this review, we will discuss the current knowledge on the pathophysiology and molecular mechanisms of endothelial function and coronary vasomotion abnormalities from bench to bedside, with a special reference to gender differences. Results: Recent experimental and clinical studies have demonstrated distinct gender differences in endothelial function and coronary vasomotion abnormalities with major clinical implications. Moreover, recent landmark clinical trials regarding the management of stable coronary artery disease have questioned the benefit of percutaneous coronary intervention, supporting the importance of the coronary microvascular physiology. Conclusion: Further characterization and a better understanding of the gender differences in basic vascular biology as well as those in cardiovascular diseases are indispensable to improve health care and patient outcomes in cardiovascular medicine.

Keywords
coronary artery disease, coronary vasomotion abnormalities, endothelial function, endothelium, endothelium-dependent hyperpolarization, gender differences, nitric oxide

Introduction

Over the last 2 decades, we have seen a growing body of evidence that has revealed gender differences in coronary physiology and endothelial function in health and disease. Distinct gender differences have been identified in a wide range of cardiovascular diseases, such as heart failure, pulmonary hypertension, atherosclerotic vascular remodeling, spontaneous coronary artery dissection, and coronary functional abnormalities like vasospastic angina (VSA), as well as coronary structural and functional abnormalities like coronary microvascular dysfunction (CMD), have been implicated in a wide spectrum of cardiovascular diseases, including heart failure with preserved ejection fraction (HFrEF), a common and globally recognized form of heart failure that occurs more frequently in females. Moreover, CMD has gained increasing attention in view of its unexpectedly high prevalence and significant prognostic impact in patients with chest pain regardless of the presence or absence of epicardial obstructive coronary artery disease (CAD), especially in females.¹²,⁵,⁶,⁸–¹⁰

¹ Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan

Corresponding Author:
Hiroaki Shimokawa, Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
Email: shimo@cardio.med.tohoku.ac.jp
underlying mechanisms of CMD may be heterogeneous, including several structural and functional alterations. The central mechanisms of coronary vasomotion abnormalities are 3-fold: enhanced coronary vasoconstrictive reactivity (ie, coronary spasm) at epicardial and microvascular levels, reduced endothelium-dependent and -independent coronary vasodilator capacities, and increased coronary microvascular resistance, all of which can cause myocardial ischemia due to CMD and often coexist in various combinations even in the absence of obstructive CAD.

The term “ischemia and no obstructive coronary artery disease (INOCA)” has been coined for this clinical condition and is increasingly recognized as an important clinical entity, particularly in females.

In this review, we will give an outline of the pathophysiology and molecular mechanisms of endothelial function and coronary vasomotion abnormalities from bench to bedside with a special reference to gender differences.

Current Views on Ischemic CAD and Gender-Specific Considerations

Classically, atherosclerotic CAD was considered to be a predominantly male issue and the clinical impact of the disease burden in females is limited because previous randomized clinical trials of revascularization therapy exclusively enrolled male patients. A latest nationwide large-scale cohort study in the United States identified a total of 12,062,081 revascularization hospitalizations; female patients not only remained underrepresented, merely accounting for one-third of the total cohort, but also their trend to undergo percutaneous coronary intervention (PCI) and coronary artery bypass grafting continued to decrease. Moreover, as exemplified in the PROspective Multicentre Imaging Study for Evaluation of chest pain (PROMISE) trial, the prevalence of statin use was lower in female patients and they were less likely to be referred for coronary angiography compared with male counterparts. Female patients with ischemic heart disease (IHD) are characterized by atypical anginal symptoms (eg, dyspnea, fatigue, and
reduced activities of daily living), less prevalence of obstructive CAD on coronary angiography albeit suspected clinically, and lower rates of coronary revascularization. Although there have been marked reductions in cardiovascular disease mortality in females over the last decade, a recent large-scale retrospective cohort study showed that female patients have a higher mortality rate after PCI than male counterparts due to death from noncardiac causes, suggesting the need for gender-specific clinical care in the management of patients undergoing PCI.

The mechanisms underlying the gender differences in the characteristics of IHD appear to be multifactorial, including differences in sex hormone effects, autonomic regulation, and susceptibility to proatherogenic mediators, such as oxidative stress, endothelin-1, and angiotensin II. An autopsy study by Virmani et al. of patients who died suddenly of CAD demonstrated that postmenopausal females more frequently have a ruptured plaque than do premenopausal counterparts, indicating that estrogens play protective roles against plaque destabilization through an anti-inflammatory effect on atherosclerotic plaques. Considering that approximately 10 years are required for females to develop CAD to the same extent as males after menopause, the aforementioned protective effects of endogenous estrogens against the development of coronary atherosclerosis might be protracted in the late postmenopausal period, leading to more advanced coronary plaque characteristics in postmenopausal females. Moreover, recently published gender-specific analyses of longitudinal blood pressure measures over 40 years revealed that compared with males females develop a steeper increase in blood pressure as early as in their 20s that persists through the life course. This premature rise in blood pressure in females may affect the different presentation of various cardiovascular diseases between genders.

Previous studies focused on functional and structural abnormalities of epicardial coronary arteries; however, those of coronary microvasculature have recently gained increasing attention in many clinical settings. The Women’s Ischemic Syndrome Evaluation (WISE) study funded by the National Heart, Lung, and Blood Institute was conducted to facilitate gender-specific research on IHD, yielding significant insight into the clinical characteristics of the disorder in females. One of the major findings of the WISE study was that the etiology of myocardial ischemia in female patients with chest pain who were found to have no obstructive CAD was attributed to the coronary microvasculature, and thus, the diagnostic evaluation of CMD and endothelial dysfunction is important using invasive or noninvasive coronary reactivity testing. Although the prevalence of CMD in this clinical entity has been shown to be not negligible in both genders, the assessment and diagnosis of functional rather than structural abnormalities in the coronary circulation should be considered in light of the lower prevalence of obstructive CAD and higher prevalence of CMD in females. In line with the findings from the WISE study, the results from the 2 landmark clinical trials regarding the management of stable CAD, the Objective Randomised Blinded Investigation with optimal medical Therapy of Angioplasty in stable angina (ORBITA) trial and the International Study of Comparative Health Effectiveness with Medical and Invasive Approaches (ISCHEMIA) trial, question the benefit of PCI and further support the importance of the coronary microvascular physiology, which PCI procedure could not improve. Although similar prognostic benefits of noninvasive computed tomography coronary angiography guided management for both female and male patients with suspected angina due to IHD, a comprehensive invasive assessment of coronary physiology is feasible and of diagnostic value to detect patients with endothelium-dependent or -independent CMD (Figure 2).

The emerging pressure-wire-based indices, instantaneous wave-free ratio (iFR) and fractional flow reserve (FFR), are currently the gold standard in assessing whether a coronary stenosis can induce myocardial ischemia amenable to revascularization in patients with stable CAD. A post hoc analysis of the DEFINE-FLAIR (Functional Lesion Assessment of Intermediate stenosis to guide Revascularization) study aimed to evaluate gender differences in procedural characteristics and clinical outcomes of iFR- and FFR-guided revascularization strategies. Female patients (n = 601) had a lower number of functionally significant lesions, a higher mean FFR value, and a comparable mean iFR value with a resultant lower rate of revascularization than male patients. Although an FFR-guided strategy was associated with a higher rate of revascularization than iFR-guided strategy in males (n = 1891), but not in females, there were no differences between the 2 strategies in 1-year major adverse cardiac events in both genders. These results suggest that a gender-specific cutoff value for FFR may be needed to better detect functionally significant lesions in female patients with obstructive CAD.

When assessed by reduced coronary flow reserve (CFR) and increased index of microcirculatory resistance (IMR), patients with CMD are associated with an increased risk of major adverse cardiovascular events and worse long-term outcomes. Although coronary microvascular function as evaluated by IMR is similar between genders, CFR has been shown to be lower in females because of a shorter resting mean transit time, an inverse correlate with absolute flow, and thus higher resting coronary flow than in males. Notably, a prospective 5-year follow-up study in patients with deferred coronary artery lesions (n = 434) showed better long-term clinical outcomes in female patients compared with male counterparts. These results again indicate that gender differences are important considerations when interpreting physiological indexes using resting coronary flow.

Gender Differences in Coronary Vasomotion Abnormalities

Vasospastic Angina and Coronary Microvascular Spasm

Along with endothelial dysfunction, endothelium-independent mechanisms represented by impaired coronary microvascular dilatation and enhanced coronary microvascular constriction
can cause CMD. Coronary artery spasms at both epicardial and microvascular levels have been implicated in a wide variety of IHD.16,36 The central mechanism in the pathogenesis of coronary artery spasm is Rho-kinase-induced myosin light chain phosphorylation with resultant vascular smooth muscle cells (VSMC) hypercontraction, whereas the role of endothelial dysfunction may be minimal.16,37 Intracoronary administration of a Rho-kinase inhibitor, fasudil, is effective not only for relieving severe coronary artery spasm refractory to nitrates or calcium-channel blockers but also for suppressing coronary microvascular spasm in patients with VSA and coronary microvascular spasm, respectively.38-40 We have previously demonstrated that estrogens downregulate Rho-kinase, while nicotine cancels the inhibitory effect of estrogens on inflammatory stimuli-induced Rho-kinase expression, which explains in part the increasing incidence of vasospastic disorders in postmenopausal females and smokers.31 In addition, enhanced epicardial and coronary microvascular spasms are associated with increased production of vasoconstrictive mediators, such as endothelin42 and serotonin,43 in patients with CMD. A potent vasoconstrictor peptide, endothelin-1, contributes to impaired coronary vasodilator responses toward CMD. Indeed, elevated plasma levels of endothelin-1 are associated with coronary microvascular endothelial dysfunction, as evaluated by the percentage fall in coronary vascular resistance after 10 minutes of rapid atrial pacing, in patients with chest pain and normal coronary arteriograms, in particular in females.44

Coronary reactivity testing using intracoronary acetylcholine (ACh) provocation is useful in inducing coronary artery spasm with high sensitivity and specificity in the cardiac catheterization laboratory (Figure 2). A high prevalence of ACh-induced coronary microvascular spasm has been reported in one-third of patients with stable chest pain and nonobstructive CAD.45,46 A consensus set of standardized diagnostic criteria for microvascular angina attributable to CMD including ACh-induced coronary microvascular spasm has been proposed by the Coronary Vasomotion Disorders International Study Group (COVADIS).47 The diagnostic value of these criteria has been validated by a recent randomized clinical trial.31 When performing ACh provocation test, it is important to note that gender differences exist in the prevalence of coronary vasomotion abnormalities and in the threshold dose of ACh required for a positive result; among patients with angina and nonobstructive CAD who undergo ACh provocation test, epicardial vasospasm and coronary microvascular spasm are more prevalent in female subjects with a higher sensitivity to ACh.4,5

We have previously demonstrated the gender differences in the characteristics and outcomes of patients with VSA.3,48 For example, gender is one of the significant prognostic factors in patients with VSA; the younger age (<50 years) is significantly associated with worse outcomes in females, but not in males.3 This is also confirmed in Caucasian patients with VSA, using a prospective international multicenter cohort consisting of 1,339 Japanese patients and 118 Caucasian patients with the disease.48

Endothelial Dysfunction

Endothelial Modulation of Vascular Tone: EDRFs

The endothelium plays a crucial role in modulating the tone of underlying VSMC by synthesizing and releasing EDRFs in an
autocrine and paracrine manner.16,17 These endothelial-derived mediators include vasodilator PGs (e.g., prostacyclin [PGI\textsubscript{2}]), NO, and EDH factors, as well as endothelium-derived contracting factors (EDCFs)16,17 (Figure 1). Endothelial dysfunction is characterized by reduced production and/or action of EDRFs, serving not only as the hallmark of atherosclerotic cardiovascular diseases but also as one of the major pathogenetic mechanisms of CMD.49-51

Vessel Size-Dependent Contribution of NO and EDH Factors

Endothelium-derived NO and EDH factors, regardless of sex or species, modulate vascular tone in a distinct vessel size–dependent fashion, that is, endothelium-derived NO predominantly regulates vasodilation of relatively large, conduit vessels (e.g., aorta and epicardial coronary arteries), while EDH factor-mediated responses are the major mechanisms of endothelium-dependent vasodilatation of resistance arteries (e.g., arterioles and coronary microvessels; Figure 1).16,52,53 Although NO is one of the important mediators of microvascular flow-mediated dilation (FMD) among various EDRFs, including the products of cyclooxygenase,54 and EDH factors such as hydrogen peroxide,55 it has been widely accepted that EDH-mediated responses rather than NO are the predominant mechanism of endothelium-dependent vasodilatation in resistance arteries. For example, the predominant effect of intracoronary nitroglycerin (an NO donor) is on the epicardial coronary arteries with only limited effects on the coronary microcirculation and resistance vessels.56 Thus, EDH factor-mediated vasodilation is a vital mechanism especially in microcirculations, where blood pressure and organ perfusion are determined in response to demand fluctuation in the body. On the other hand, vasodilator PGs in general play a small but constant role, irrespective of vessel size. This vessel size–dependent contribution of NO and EDH factors in endothelium-dependent vasodilation is well preserved from rodents to humans, maintaining a physiological balance between them.16,17 Moreover, such redundant mechanisms in endothelium-dependent vasodilation are advantageous for the proper maintenance of vascular tone and endothelial function under pathological conditions, where one of the EDRF-mediated responses is hampered in favor of a vasoconstrictor, procoagulant, proliferative, and pro-inflammatory state. Indeed, in various pathological conditions with atherosclerotic risk factors, NO-mediated relaxations are easily impaired, while EDH factor-mediated responses are fairly preserved or even enhanced to serve as a compensatory vasodilator system.53,57 Multifaceted mechanisms are involved in the enhanced EDH factor-mediated responses in small resistance vessels, including negative interactions between NO and several EDH factors.58 Refer to extensive reviews for more detailed information on the regulatory mechanisms of NO-mediated responses.59-61

Endothelium-Dependent Hyperpolarization Factors: The Predominant Mechanism of Vasodilatation in Small Arteries

In 1988, Feletou and Vanhoutte62 and Chen et al63 independently demonstrated the existence of endothelium-derived, non-NO, nonprostanoid relaxing mediators, unforeseen EDH factors. By definition, the contribution of EDH factors is determined only after the blockade of both vasodilator PGs and NO. The EDH factors cause hyperpolarization and subsequent relaxation of underlying VSMC with resultant vasodilatation of small resistance vessels, finely regulating blood pressure and organ perfusion instantaneously to meet changing physiological demands in vivo.17 The nature of EDH factors varies depending on the vascular bed, vessel size, and species, including epoxyeicosatrienoic acids (EETs), metabolites of arachidonic P450 epoxygenase pathway,64,65 electrical communication through gap junctions,66 potassium ions,67 and, as we demonstrated, endothelium-derived hydrogen peroxide (H\textsubscript{2}O\textsubscript{2})68 (Figure 3). Several EDH factors regulate vascular tone in the coronary circulation. For instance, EETs take part in EDH-mediated relaxations in bovine,64 porcine,65 and human coronary arteries69; potassium ions in porcine70 and bovine71 coronary arteries; and H\textsubscript{2}O\textsubscript{2}, at physiologically low concentrations, in human,72 porcine,73 and canine coronary arteries.74-76 Coronary vascular resistance is mostly determined by the pre-arterioles (>100 μm in diameter) and arterioles (<100 μm), where EDH factor-mediated responses become more prominent than NO-mediated relaxations. Considering that H\textsubscript{2}O\textsubscript{2} has potent vasodilator properties in coronary resistance vessels, impaired H\textsubscript{2}O\textsubscript{2}-mediated vasodilatation may lead to CMD. Further comprehensive information on the role of EDH factors is available elsewhere.77,78

Although EDH factor-mediated responses are the major mechanism of endothelium-dependent vasodilatation in resistance arteries, EDH-mediated vasodilatation is more predominant in female resistance arteries.79-86 Mechanistically, a major female sex hormone, 17β-estradiol, enhances the activity of intermediate conductance calcium-activated potassium channels in endothelial cells and that of the senescence-associated proteins, silent information regulator T1, and adenosine monophosphate-activated protein kinase (AMPK) to augment EDH-mediated responses.84,85,87,88 An indirect activator of AMPK, metformin, improves endothelial dysfunction as evaluated by digital reactive hyperemia index (RHI) in patients with polycystic ovary syndrome.89

Effects of Estrogens on Endothelium-Dependent Vasodilatation

Endothelium-dependent vasodilatation is more pronounced in arteries from premenopausal female than in male animals and humans, while endothelial dysfunction is less prominent in premenopausal females than in males and postmenopausal females.90,91 Multiple mechanisms are involved in the protective effects of estrogens on endothelium-dependent
vasodilatation. For example, endothelial production and release of NO can be augmented by estrogens in a pleiotropic manner. Oral administration of tetrahydrobiopterin, an essential cofactor of NOS and a scavenger of oxygen-derived free radicals, improves FMD in estrogen-deficient postmenopausal females but has no effect in premenopausal females. Activation of endothelial estrogen receptor α by estrogens also enhances the production of PGI₂ as well as EDH-mediated responses. Estrogens also reduce the production of oxidative stress and an endogenous inhibitor of endothelial nitric oxide synthase (eNOS), asymmetric dimethylarginine, with a resultant increase in NO bioavailability. Moreover, estrogens reduce the production of EDCF by endothelial cyclooxygenase-1 and vascular smooth muscle thromboxane receptors. Furthermore, estradiol induces subcellular translocation of eNOS to stimulate NO production in vascular endothelium, suggesting a possible mechanism for postmenopausal endothelial dysfunction. Taken together, it is highly possible that these beneficial effects of estrogens on endothelial function as well as the braking effect of them on EDCF-mediated responses help to protect premenopausal females against the development of atherosclerotic cardiovascular diseases.

Clinical Implications and Therapeutic Approaches

Endothelial Function as a Surrogate of Vascular Risk

The assessment of endothelial function has been utilized as an excellent surrogate marker of future cardiovascular events in many clinical settings. Endothelial dysfunction is manifested as reduced production and/or action of EDRFs. Although EDH factor-mediated vasodilation can be temporarily enhanced to compensate for impaired NO-mediated responses in the early stage of atherosclerotic conditions, after prolonged exposure to atherosclerotic risk factors, this compensatory role of EDH factor-mediated responses is finally disrupted to cause metabolic disturbance. Endothelial dysfunction, as determined by impaired FMD of the brachial artery or digital RHI in peripheral arterial tonometry, is associated with future cardiovascular events in patients with CAD and 1 standard deviation decrease in FMD or RHI is associated with doubling of cardiovascular event risk. Moreover, patients with coronary vasomotion abnormalities are often complicated with peripheral endothelial dysfunction, where CMD manifests as systemic vascular dysfunction beyond the heart. It may be speculated that...

Figure 3. Endothelium-dependent hyperpolarization factors AMPKα₁ indicates α₁-subunit of AMP-activated protein kinase; CaM, calmodulin; CaMKKβ, Ca²⁺/CaM-dependent protein kinase β; cAMP, cyclic AMP; cGMP, cyclic GMP; COX, cyclooxygenase; EETs, epoxyeicosatrienoic acids; eNOS, endothelial NO synthase; EOX, epoxygenase; HETEs, hydroxyeicosatetraenoic acids; H₂O₂, hydrogen peroxide; IP₃, inositol trisphosphate; I/R, ischemia–reperfusion injury; Kᵩ, calcium-activated potassium channel; KᵢR, inwardly rectifying potassium channel; LOX, lipoxygenase; LTs, leukotrienes; NO, nitric oxide; ONOO⁻, peroxynitrite; PGI₂, prostacyclin; PKG1, 1₂-subunit of protein kinase G; PLA₂, phospholipase A₂; PLC, phospholipase C; SOD, superoxide dismutase.
female patients may benefit more from early aggressive medical management aimed at improving endothelial function and risk factors upon detection of endothelial dysfunction.

Role of H$_2$O$_2$ as an EDH Factor in the Pathophysiology of CAD

As discussed above, previous studies focused on structural and functional abnormalities of “epicardial” coronary arteries in patients with CAD because they are easily visible on coronary angiography and amenable to PCI procedure. However, CMD has attracted increasing attention as a novel therapeutic and research target in patients with IHD. It is conceivable that impaired H$_2$O$_2$/EDH factor-mediated vasodilatation is involved in the pathogenesis of CMD, given its potent vasodilator properties in coronary resistance vessels where EDH factor-mediated responses surpass NO-mediated relaxations. We have recently demonstrated that CMD caused by impaired H$_2$O$_2$/EDH factor is associated with cardiac diastolic dysfunction in eNOS-knockout mice. It seems essential to maintain physiological balance between NO and EDH factor-mediated vasodilatation with modest antioxidant capacity and the pleiotropic effects on endothelial function by enhancing NO-mediated vasodilatation with modest antioxidant capacity.

Lessons From Clinical Trials Targeting NO: Too Much NO to Relax?

Although standard medications for the treatment of CAD share the pleiotropic effects on endothelial function by enhancing NO-mediated vasodilatation with modest antioxidant capacity, including angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and statins, the effects of isosorbide-5-mononitrate are unexpectedly neutral in patients with residual microvascular ischemia despite successful PCI. Likewise, despite the high prevalence and pathophysiological relevance of CMD in patients with HFrEF, the results of systemic and long-term administrations of inorganic nitrite for those patients are neutral or even harmful in randomized clinical trials. These lines of evidence suggest that it is important to turn our attention to avoid excessive NO supplementation. Although tachyphylaxis may be one of the reasons why nitrite derivatives are not effective vasodilators in the treatment of various cardiovascular diseases, an alternative explanation for such “paradox” of NO-targeted therapy may be nitrosative stress induced by an excessive amount of supplemental NO, again suggesting the importance of physiological balance between NO and EDH factors in endothelium-dependent vasodilatation. Further research is needed to address how to modulate CMD to improve clinical outcomes of patients with the disorder and whether decision-making under consideration of gender-specific characteristics in the coronary physiology and endothelial function benefits them.

Summary and Clinical Perspectives

In this review, we highlighted the pathophysiology and molecular mechanisms of endothelial function and coronary vasomotion abnormalities with a special reference to gender differences. Despite the high prevalence of CMD in patients with INOCA, those patients are often underestimated and offered no specific treatment or follow-up under the umbrella of “normal” coronary arteries, especially in females. On the contrary to this otherwise common practice, patients with CMD are predisposed to future coronary events and associated worse outcomes. Identifying CMD in this population may provide physicians with useful information for decision-making and risk stratification beyond conventional coronary risk factors. Given that “every cell has a sex” and hormonal status changes throughout life, consideration of gender differences should be implemented into both basic research and clinical practice in order to improve health care and patient outcomes; a good example of this practice is available elsewhere. A horizontally based gender-specific therapeutic strategy, as opposed to a vertical, hierarchical structure of the medical care for each organ, is indispensable and specialists in each field should bear the responsibility to account for sex as a biological variable to this end. In conclusion, further characterization and a better understanding of the gender differences in basic vascular biology as well as those in the pathophysiology, clinical presentation, and clinical outcomes of IHD can be an important gateway to precision medicine in cardiovascular diseases.

Acknowledgments

We appreciate the effort of the members of the Tohoku University Hospital Catheterization Laboratory.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported, in part, by the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Tokyo, Japan (16K19383 and 17K15983).

References

1. Lerman A, Sopko G. Women and cardiovascular heart disease: clinical implications from the Women’s Ischemia Syndrome Evaluation (WISE) study. Are we smarter? J Am Coll Cardiol. 2006;47(3 suppl):S59-S62. doi:10.1016/j.jacc.2004.10.083
2. Shaw LJ, Bairey Merz CN, Pepine CJ, et al. Insights from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study: part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized
diagnostic strategies. *J Am Coll Cardiol.* 2006;47(3 suppl): S4-S20. doi:10.1016/j.jacc.2005.01.072

3. Kawana A, Takahashi J, Takagi Y, et al. Gender differences in the clinical characteristics and outcomes of patients with vasospastic angina—a report from the Japanese Coronary Spasm Association. *Circ. J.* 2013;77(5):1267-1274. doi:10.1253/circj.cj-12-1486

4. Sueda S, Miyoshi T, Sasaki Y, Sakaue T, Habara H, Kohno H. Gender differences in sensitivity of acetylcholine and ergonovine to coronary spasm provocation test. *Heart Vessels.* 2016;31(3):322-329. doi:10.1007/s00380-014-0614-4

5. Aziz A, Hansen HS, Sechtem U, Prescott E, Ong P. Sex-related differences in vasomotor function in patients with angiina and unobstructed coronary arteries. *J Am Coll Cardiol.* 2017;70(19):2349-2358. doi:10.1016/j.jacc.2017.09.016

6. Miller VM. Universality of sex differences in cardiovascular outcomes: where do we go from here? *Eur Heart J.* 2020;41(17):1697-1699. doi:10.1093/eurheartj/ehaa310

7. Yang JH, Obokata M, Reddy YNV, Redfield MM, Lerman A, Borlaug BA. Endothelium-dependent and independent coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. *Eur J Heart Fail.* 2020;22(3):432-441. doi:10.1002/ejhf.1671

8. Reis SE, Holubkov R, Conrad Smith AJ, et al. Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: results from the NHLBI WISE study. *Am Heart J.* 2001;141(5):735-741. doi:10.1067/mhj.2001.114198

9. von Mering GO, Arant CB, Wessel TR, et al. Abnormal coronary vasomotion as a prognostic indicator of cardiovascular events in women: results from the National Heart, Lung, and Blood Institute-sponsored Women’s Ischemia Syndrome Evaluation (WISE). *Circulation.* 2004;109(6):722-725. doi:10.1161/01.cir.0000115525.92645.16

10. Murthy VL, Naya M, Taqueti VR, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. *Circulation.* 2014;129(24):2518-2527. doi:10.1161/circulationaha.113.008507

11. Lee BK, Lim HS, Fearon WF, et al. Invasive evaluation of patients with angina in the absence of obstructive coronary artery disease. *Circulation.* 2015;131(12):1054-1060. doi:10.1161/circulationaha.114.012634

12. Ford TJ, Yli E, Sidik N, et al. Ischemia and no obstructive coronary artery disease: prevalence and correlates of coronary vasomotion disorders. *Circ Cardiovasc Interv.* 2019;12(12):e008126. doi:10.1161/circinterventions.119.008126

13. Suda A, Takahashi J, Hao K, et al. Coronary functional abnormalities in patients with angina and nonobstructive coronary artery disease. *J Am Coll Cardiol.* 2019;74(19):2350-2360. doi:10.1016/j.jacc.2019.08.1056

14. Bairey Merz CN, Pepine CJ, Walsh MN, Fleg JL. Ischemia and no obstructive coronary artery disease (INOCA): developing evidence-based therapies and research agenda for the next decade. *Circulation.* 2017;135(11):1075-1092. doi:10.1161/circulationaha.116.024534

15. Pepine CJ, Ferdinand KC, Shaw LJ, et al. Emergence of nonobstructive coronary artery disease: a woman’s problem and need for change in definition on angiography. *J Am Coll Cardiol.* 2015;66(17):1918-1933. doi:10.1016/j.jacc.2015.08.876

16. Shimokawa H. 2014 Williams Harvey Lecture: importance of coronary vasomotion abnormalities—from bench to bedside. *Eur Heart J.* 2014;35(45):3180-3193. doi:10.1093/eurheartj/ehu427

17. Vanhouthe PM, Shimokawa H, Feletou M, Tang E. Endothelial dysfunction and vascular disease—a 30th anniversary update. *Acta Physiol.* 2017;219(1):22-96. doi:10.1111/apha.12646

18. Leung SW, Vanhouthe PM. Endothelium-dependent hyperpolarization: age, gender and blood pressure, do they matter? *Acta Physiol.* 2017;219(1):108-123. doi:10.1111/apha.12628

19. Alkhouri M, Alqahtani F, Kalra A, et al. Trends in characteristics and outcomes of patients undergoing coronary revascularization in the United States, 2003-2016. *JAMA Netw Open.* 2020;3(2):e1921326. doi:10.1001/jamanetworkopen.2019.21326

20. Pagidipati NJ, Coles A, Hemal K, et al. Sex differences in management and outcomes of patients with stable symptoms suggestive of coronary artery disease: insights from the PROMISE trial. *Am Heart J.* 2019;208:28-36. doi:10.1016/j.ahj.2018.11.002

21. Vaccarino V, Badimon L, Corti R, et al. Presentation, management, and outcomes of ischaemic heart disease in women. *Nat Rev Cardiol.* 2013;10(9):508-518. doi:10.1038/nrcardio.2013.93

22. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. *Circulation.* 2015;131(4):e29-e322. doi:10.1161/circ.0000000000000152

23. Raphael CE, Singh M, Bell M, et al. Sex differences in long-term cause-specific mortality after percutaneous coronary intervention: temporal trends and mechanisms. *Circ Cardiovasc Interv.* 2018;11(3):e006062. doi:10.1161/circinterventions.117.006062

24. Burke AP, Farb A, Malcom G, Virmani R. Effect of menopause on plaque morphologic characteristics in coronary atherosclerosis. *Am Heart J.* 2001;141(2 suppl):S58-S62. doi:10.1067/mhj.2001.109946

25. Ji H, Kim A, Ebinger JE, et al. Sex differences in blood pressure trajectories over the life course. *JAMA Cardiol.* 2020;5(3):19-26. doi:10.1001/jamacardio.2019.5306

26. Saka JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction and computed tomography coronary angiography-guided management in patients with stable chest pain. *Eur Heart J.* 2019;41(13):1337-1345. doi:10.1093/eurheartj/ehz903
43. Odaka Y, Takahashi J, Tsuburaya R, et al. Plasma concentration of serotonin is a novel biomarker for coronary microvascular dysfunction in patients with suspected angina and unobstructive coronary arteries. *Eur Heart J.* 2017;38(7):489-496. doi:10.1093/eurheartj/ehw448

44. Cox ID, Botker HE, Bagger JP, Sonne HS, Kristensen BO, Kaski JC. Elevated endothelin concentrations are associated with reduced coronary vasomotor responses in patients with chest pain and normal coronary angiograms. *J Am Coll Cardiol.* 1999;34(2):455-460. doi:10.1016/s0735-1097(99)00224-7

45. Mohri M, Koyanagi M, Egashira K, et al. Angina pectoris caused by coronary microvascular spasm. *Lancet.* 1998;351(9110):1165-1169. doi:10.1016/s0140-6736(97)07329-7

46. Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal Coronary Vasomotion in patients with stable angina and unobstructed coronary arteries). *J Am Coll Cardiol.* 2012;59(7):655-662. doi:10.1016/j.jacc.2011.11.015

47. Ong P, Camici PG, Beltrame JF, et al. International standardization of diagnostic criteria for microvascular angina. *Int J Cardiol.* 2018;250:16-20. doi:10.1016/j.ijcard.2017.08.068

48. Sato K, Takahashi J, Odaka Y, et al. Clinical characteristics and long-term prognosis of contemporary patients with vasospastic angina: ethnic differences detected in an international comparative study. *Int J Cardiol.* 2019;291:13-18. doi:10.1016/j.ijcard.2019.02.038

49. Camici PG, Crea F. Coronary microvascular dysfunction. *N Engl J Med.* 2007;356(8):830-840. doi:10.1056/NEJMra061889

50. Crea F, Camici PG, Baiery Merz CN. Coronary microvascular dysfunction: an update. *Eur Heart J.* 2014;35(17):1101-1111. doi:10.1093/eurheartj/ehu513

51. Camici PG, d’Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. *Rev Cardiovasc Med.* 2015;12(1):48-62. doi:10.1038/nrcardio.2014.160

52. Shimokawa H, Yasutake H, Fujii K, et al. The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation. *J Cardiovasc Pharmacol.* 1996;28(5):703-711. doi:10.1097/00005344-199611000-00014

53. Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A. Importance of endothelium-derived hyperpolarizing factor in human arteries. *J Clin Invest.* 1997;100(11):2793-2799. doi:10.1172/jci19826

54. Nohria A, Kinlay S, Buck JS, et al. The effect of salsalate therapy on endothelial function in a broad range of subjects. *J Heart Assoc.* 2014;3(1): e000609. doi:10.1161/jha.113.000609

55. Freed JK, Beyer AM, LoGiudice JA, Hockenberry JC, Guttermann DD. Ceramide changes the mediator of flow-induced vasodilation from nitric oxide to hydrogen peroxide in the human microcirculation. *Circ Res.* 2014;115(5):525-532. doi:10.1161/circresaha.115.303881

56. Sudhir K, MacGregor JS, Barbant SD, et al. Assessment of coronary conduction and resistance vessel reactivity in response to nitroglycerin, ergonovine and adenosine: in vivo studies with simultaneous intravascular two-dimensional and Doppler
ultrasound. *J Am Coll Cardiol.* 1993;21(5):1261-1268. doi:10.1016/0735-1097(93)90255-y
57. Ozkor MA, Murrow JR, Rahman AM, et al. Endothelium-derived hyperpolarizing factor determines resting and stimulated forearm vasodilator tone in health and in disease. *Circulation.* 2011;123(20):2244-2253. doi:10.1161/circulationaha.110.990317
58. Shimokawa H, Godo S. Nitric oxide and endothelium-dependent hyperpolarization mediated by hydrogen peroxide in health and disease. *Basic Clin Pharmacol Toxicol.* 2020;127(2):92-101. doi:10.1111/bcpt.13377
59. Vanhoutte PM. How we learned to say NO. *Arterioscler Thromb Vasc Biol.* 2009;29(8):1156-1160. doi:10.1161/Atvaha.109.190215
60. Feletou M, Kohler R, Vanhoutte PM. Nitric oxide: orchestrator of endothelium-dependent responses. *Ann Med.* 2012;44(7):694-716. doi:10.3109/07853890.2011.585658
61. Vanhoutte PM, Zhao Y, Xu A, Leung SW. Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. *Circ Res.* 2016;119(2):375-396. doi:10.1161/circresaha.109.350189
62. Feletou M, Vanhoutte PM. Endothelium-dependent hyperpolarization of canine coronary smooth muscle. *Br J Pharmacol.* 1988;93(3):515-524. doi:10.1111/j.1476-5381.1988.tb10306.x
63. Chen G, Suzuki H, Weston AH. Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. *Br J Pharmacol.* 1988;95(4):1165-1174. doi:10.1111/j.1476-5381.1988.tb11752.x
64. Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. *Circ Res.* 1996;78(3):415-423. doi:10.1161/01.res.78.3.415
65. Fisslthaler B, Popp R, Kiss L, et al. Endothelium-derived hyperpolarizing factor in rat arteries. *Nature.* 1999;401(6752):493-497. doi:10.1038/46816
66. Griffith TM, Chaytor AT, Edwards DH. The obligatory link: role of gap junctional communication in endothelium-dependent smooth muscle hyperpolarization. *Pharmacol Res.* 2004;49(6):551-564. doi:10.1016/j.prhs.2003.11.014
67. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. K⁺ is an endothelium-derived hyperpolarizing factor in rat arteries. *Nature.* 1998;396(6708):269-272. doi:10.1038/24388
68. Matoba T, Shimokawa H, Nakashima M, et al. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. *J Clin Invest.* 2000;106(12):1521-1530. doi:10.1172/jci10506
69. Miura H, Guterman DD. Human coronary arteriolar dilation to arachidonic acid depends on cytochrome P-450 monooxygenase and Ca²⁺-activated K⁺ channels. *Circ Res.* 1998;83(5):501-507. doi:10.1161/01.res.83.5.501
70. Beny JL, Schaad O. An evaluation of potassium ions as endothelium-derived hyperpolarizing factor in porcine coronary arteries. *Br J Pharmacol.* 2000;131(5):965-973. doi:10.1038/sj.bjp.0703658
71. Nelli S, Wilson WS, Laidlaw H, et al. Evaluation of potassium ion as the endothelium-derived hyperpolarizing factor (EDHF) in the bovine coronary artery. *Br J Pharmacol.* 2003;139(5):982-988. doi:10.1038/sj.bjp.0705329
72. Miura H, Bosnjak JJ, Ning G, Saito T, Miura M, Guterman DD. Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. *Circ Res.* 2003;92(2):e31-e40. doi:10.1161/01.res.0000054200.44505.ab
73. Matoba T, Shimokawa H, Morikawa K, et al. Electron spin resonance detection of hydrogen peroxide as an endothelium-derived hyperpolarizing factor in porcine coronary microvessels. *Arterioscler Thromb Vasc Biol.* 2003;23(7):1224-1230. doi:10.1161/01.atv.0000078601.79536.6c
74. Yada T, Shimokawa H, Hiramatsu O, et al. Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. *Circulation.* 2003;107(7):1040-1045. doi:10.1161/01.cir.0000050145.25589.65
75. Yada T, Shimokawa H, Hiramatsu O, et al. Cardioprotective role of endogenous hydrogen peroxide during ischemia-reperfusion injury in canine coronary microcirculation in vivo. *Am J Physiol Heart Circ Physiol.* 2006;291(3):H1138-H146. doi:10.1152/ajpheart.00187.2006
76. Yada T, Shimokawa H, Hiramatsu O, et al. Important role of endogenous hydrogen peroxide in pacing-induced metabolic coronary vasodilation in dogs in vivo. *J Am Coll Cardiol.* 2007;50(13):1272-1278. doi:10.1016/j.jacc.2007.05.039
77. Feletou M. The Endothelium: Part 1: Multiple Functions of the Endothelial Cells-Focus on Endothelium-Derived Vasoactive Mediators. Morgan & Claypool Life Sciences Publishers. 2011.
78. Feletou M. The Endothelium: Part 2: EDHF-Mediated Responses “The Classical Pathway”. Morgan & Claypool Life Sciences Publisher. 2011.
79. Liu MY, Hattori Y, Fukao M, Sato A, Sakuma I, Kanno M. Alterations in EDHF-mediated hyperpolarization and relaxation in mesenteric arteries of female rats in long-term deficiency of oestrogen and during oestrous cycle. *Br J Pharmacol.* 2001;132(5):1035-1046. doi:10.1038/sj.bjp.0703899
80. Liu MY, Hattori Y, Sato A, Ichikawa R, Zhang XH, Sakuma I, Kanno M. Ovarioectomy attenuates hyperpolarization and relaxation mediated by endothelium-derived hyperpolarizing factor in female rat mesenteric artery: a concomitant decrease in connexin-43 expression. *J Cardiovasc Pharmacol.* 2002;40(6):938-948. doi:10.1177/0022049602040006-00016
81. Sakuma I, Liu MY, Sato A, et al. Endothelium-dependent hyperpolarization and relaxation in mesenteric arteries of middle-aged rats: influence of oestrogen. *Br J Pharmacol.* 2002;135(1):48-54. doi:10.1038/sj.bjp.0704444
82. Nawate S, Fukao M, Sakuma I, et al. Reciprocal changes in endothelium-derived hyperpolarizing factor- and nitric oxide-system in the mesenteric artery of adult female rats following ovarioectomy. *Br J Pharmacol.* 2005;144(2):178-189. doi:10.1038/sj.bjp.0706091
83. Morton JS, Jackson VM, Daly CJ, McGrath JC. Endothelium-dependent relaxation in rabbit genital resistance arteries is predominantly mediated by endothelial-derived hyperpolarizing factor in females and nitric oxide in males. *J Urol.* 2007;177(2):786-791. doi:10.1016/j.juro.2006.09.072
84. Chan MV, Bubb KJ, Noyce A, et al. Distinct endothelial pathways underlie sexual dimorphism in vascular auto-regulation. *Br J
90. Taddei S, Virdis A, Ghiadoni L, et al. Menopause is associated with endothelial function in porcine coronary arteries: a role for H2O2 and gap junctions. *Br J Pharmacol*. 2014;171(11):2751-2766. doi: 10.1111/bph.12595

91. Duckles SP, Miller VM. Hormonal modulation of endothelial NO production. *Biol Sex Differ*. 2010;459(6):841–851. doi:10.1007/s10557-013-6439-z

92. Miller VM, Garovic VD, Kantarci K, et al. Temporal changes in skeletal muscle capillary responses and endothelial-derived vasodilators in obesity-related insulin resistance. *Diabetes*. 2016;65(8):2249-2257. doi:10.2337/db15-1574

93. Ford TJ, Rocchiccioli P, Good R, et al. Systemic microvascular dysfunction in microvascular and vasoplastic angina. *Eur Heart J*. 2018;39(46):4086-4097. doi:10.1093/eurheartj/ehy529

94. Goetz RM, Thatte HS, Prabhakar P, Cho MR, Michel T, Golan DE. Estradiol induces the calcium-dependent translocation of endothelial nitric oxide synthase. *Proc Natl Acad Sci USA*. 1999;96(6):2788-2793. doi:10.1073/pnas.96.6.2788

95. Jobe SO, Ramadoss J, Wargin AJ, Magness RR. Estradiol-17β oestradiol counteracts oxidized LDL-induced asymmetric dimethylarginine production by cultured human endothelial cells. *Cardiovasc Res*. 2007;73(1):66-72. doi:10.1016/j.cardiores.2006.09.020

96. Goetz RM, Thatte HS, Prabhakar P, Cho MR, Michel T, Golan DE. Estradiol induces the calcium-dependent translocation of endothelial nitric oxide synthase. *Proc Natl Acad Sci USA*. 1999;96(6):2788-2793. doi:10.1073/pnas.96.6.2788

97. Matsuzawa Y, Kwon TG, Lennon RJ, Lerman LO, Lerman A. Prognostic value of flow-mediated vasodilation in brachial artery and fingertip artery for cardiovascular events: a systematic review and meta-analysis. *J Am Heart Assoc*. 2015;4(11): e002270. doi:10.1161/jaha.115.002270

98. Feletou M, Vanhoutte PM. EDHF: an update. *Clin Sci*. 2009;117(4):139-155. doi:10.1042/CS20090096

99. Chadderdon SM, Belcik JT, Bader L, et al. Temporal changes in skeletal muscle capillary responses and endothelial-derived vasodilators in obesity-related insulin resistance. *Diabetes*. 2016;65(8):2249-2257. doi:10.2337/db15-1574

100. Ford TJ, Rocchiccioli P, Good R, et al. Systemic microvascular dysfunction in microvascular and vasoplastic angina. *Eur Heart J*. 2018;39(46):4086-4097. doi:10.1093/eurheartj/ehy529

101. Goetz RM, Thatte HS, Prabhakar P, Cho MR, Michel T, Golan DE. Estradiol induces the calcium-dependent translocation of endothelial nitric oxide synthase. *Proc Natl Acad Sci USA*. 1999;96(6):2788-2793. doi:10.1073/pnas.96.6.2788
111. Talukder MA, Fujiki T, Morikawa K, et al. Endothelial nitric oxide synthase-independent effects of an ACE inhibitor on coronary flow response to bradykinin in aged mice. *J Cardiovasc Pharmacol*. 2004;44(5):557-563. doi:10.1097/00005344-200411000-00007

112. Tiefenbacher CP, Friedrich S, Bleeke T, Vahl C, Chen X, Niroomand F. ACE inhibitors and statins acutely improve endothelial dysfunction of human coronary arterioles. *Am J Physiol Heart Circ Physiol*. 2004;286(4): H1425-H1432. doi:10.1152/ajpheart.00783.2003

113. Satoh M, Fujimoto S, Arakawa S, et al. Angiotensin II type 1 receptor blocker ameliorates uncoupled endothelial nitric oxide synthase in rats with experimental diabetic nephropathy. *Nephrol Dial Transplant*. 2008;23(12):3806-3813. doi:10.1093/ndt/gfn357

114. Golino M, Spera FR, Manfredonia L, et al. Microvascular ischemia in patients with successful percutaneous coronary intervention: effects of ranolazine and isosorbide-5-mononitrate. *Eur Rev Med Pharmacol Sci*. 2018;22(19):6545-6550. doi:10.26355/eurrev_201810_16070

115. Redfield MM, Anstrom KJ, Levine JA, et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. *N Engl J Med*. 2015;373(24):2314-2324. doi:10.1056/NEJMoa1510774

116. Borlaug BA, Anstrom KJ, Lewis GD, et al. Effect of inorganic nitrite vs placebo on exercise capacity among patients with heart failure with preserved ejection fraction: the INDIE-HFpEF randomized clinical trial. *JAMA*. 2018;320(17):1764-1773. doi:10.1001/jama.2018.14852

117. Saito H, Godo S, Sato S, et al. Important role of endothelial caveolin-1 in the protective role of endothelium-dependent hyperpolarization against nitric oxide-mediated nitrative stress in microcirculation in mice. *J Cardiovasc Pharmacol*. 2018;71(2):113-126. doi:10.1097/fjc.0000000000000552

118. Schiattarella GG, Altamirano F, Tong D, et al. Nitrosative stress drives heart failure with preserved ejection fraction. *Nature*. 2019;568(7752):351-356. doi:10.1038/s41586-019-1100-z

119. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. *Circulation*. 2000;101(9):948-954. doi:10.1161/01.CIR.101.9.948

120. Institute of Medicine Committee on Understanding the Biology of Sex, Gender, Differences. The National Academies Collection: Reports funded by National Institutes of Health. In: Wizemann TM, Pardue ML, eds. *Exploring the Biological Contributions to Human Health: Does Sex Matter?* National Academies Press (US) Copyright 2001 by the National Academy of Sciences; 2001. doi:10.17226/10028

121. Legato MJ, Gelzer A, Goland R, et al. Gender-specific care of the patient with diabetes: review and recommendations. *Gend Med*. 2006;3(2):131-158. doi:10.1016/s1550-8579(06)80202-0