Integrated Genomic Analyses of Ovarian Carcinoma

The Cancer Genome Atlas Research Network

Summary

The Cancer Genome Atlas (TCGA) project has analyzed mRNA expression, miRNA expression, promoter methylation, and DNA copy number in 489 high-grade serous ovarian adenocarcinomas (HGS-OvCa) and the DNA sequences of exons from coding genes in 316 of these tumors. These results show that HGS-OvCa is characterized by TP53 mutations in almost all tumors (96%); low prevalence but statistically recurrent somatic mutations in 9 additional genes including NF1, BRCA1, BRCA2, RB1, and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three miRNA subtypes, four promoter methylation subtypes, a transcriptional signature associated with survival duration and shed new light on the impact on survival of tumors with BRCA1/2 and CCNE1 aberrations. Pathway analyses suggested that homologous recombination is defective in about half of tumors, and that Notch and FOXM1 signaling are involved in serous ovarian cancer pathophysiology.

Background

Ovarian cancer is the fifth leading cause of cancer death among women in the U.S., with 21,880 new cases and 13,850 deaths predicted for 2010. Most deaths are of patients presenting with advanced stage, high grade serous ovarian cancer (HGS-OvCa) (~70%). The standard of care is aggressive surgery followed by platinum/taxane chemotherapy. After therapy, platinum resistant cancer recurs in approximately 25% of patients within 6 months and overall 5-year survival is 31%. Approximately 13% of HGS-OvCa is attributable to germline mutations in BRCA1 or BRCA2, while a smaller percentage can be accounted for by other germline mutations. However, most ovarian cancer can be attributed to a growing number of somatic aberrations.

The lack of successful treatment strategies led TCGA to comprehensively measure genomic and epigenomic abnormalities on clinically annotated HGS-OvCa samples in order to identify molecular abnormalities that influence pathophysiology, affect outcome, and constitute therapeutic targets. Microarray analyses produced high resolution measurements of mRNA expression, microRNA expression, DNA copy number, and DNA promoter region methylation for 489 HGS-OvCa while massively parallel sequencing coupled with hybrid affinity capture provided whole exome DNA sequence information for 316 of these samples.
corresponding normal DNA (Methods S1, Table S1.1). Patients reflected the age at
diagnosis, stage, tumor grade, and surgical outcome of individuals diagnosed with HGS-
OvCa. Clinical data were current as of August 25, 2010. HGS-OvCa specimens were
surgically resected before systemic treatment but all patients received a platinum agent and
94% received a taxane. The median progression-free and overall survival of the cohort is
similar to previously published trials11,12. Twenty five percent of the patients remained free
of disease and 45% were alive at the time of last follow-up, while 31% progressed within 6
months after completing platinum-based therapy. Median follow up was 30 months (range 0
to 179). Samples for TCGA analysis were selected to have > 70% tumor cell nuclei and <
20% necrosis.

Coordinated molecular analyses using multiple molecular assays at independent sites were
carried out as listed in Table 1. Data are available at http://tcga.cancer.gov/dataportal in two
tiers. Tier one datasets are openly available, while tier two datasets include clinical or
 genomomic information that could identify an individual hence require qualification as
described at http://tcga.cancer.gov/dataportal/data/access/closed/.

Mutation analysis

Exome capture and sequencing was performed on DNA isolated from 316 HGS-OvCa
samples and matched normal samples for each individual (Methods S2). Capture reagents
targeted ~180,000 exons from ~18,500 genes totaling ~33 megabases of non-redundant
sequence. Massively parallel sequencing on the Illumina GAIx platform (236 sample pairs)
or ABI SOLiD 3 platform (80 sample pairs) yielded ~14 gigabases per sample (~9×109
bases total). On average, 76% of coding bases were covered in sufficient depth in both the
tumor and matched normal samples to allow confident mutation detection (Methods S2,
Figure S2.1). 19,356 somatic mutations (~61 per tumor) were annotated and classified in
Table S2.1. Mutations that may be important in HGS-OvCa pathophysiology were identified
by (a) searching for non-synonymous or splice site mutations present at significantly
increased frequencies relative to background, (b) comparing mutations in this study to those
in COSMIC and OMIM and (c) predicting impact on protein function.

Two different algorithms (Methods S2) identified 9 genes (Table 2) for which the number of
non-synonymous or splice site mutations was significantly above that expected based on
mutation distribution models. Consistent with published results13, \textit{TP53} was mutated in 303
of 316 samples (283 by automated methods and 20 after manual review), \textit{BRCA1} and
\textit{BRCA2} had germline mutations in 9% and 8% of cases, respectively, and both showed
somatic mutations in an additional 3% of cases. Six other statistically recurrently mutated
genes were identified; \textit{RB1}, \textit{NF1}, \textit{FAT3}, \textit{CSMD3}, \textit{GABRA6}, and \textit{CDK12}. CDK12 is involved
in RNA splicing regulation14 and was previously implicated in lung and large intestine
tumors15,16. Five of the nine CDK12 mutations were either nonsense or indel, suggesting
potential loss of function, while the four missense mutations (R882L, Y901C, K975E, and
L996F) were clustered in its protein kinase domain. \textit{GABRA6} and \textit{FAT3} both appeared as
significantly mutated but did not appear to be expressed in HGS-OvCa (Supplemental
Figure S2.1) or fallopian tube tissue so it is less likely that mutation of these genes plays a
significant role in HGS-OvCa.

\textit{Nature}. Author manuscript; available in PMC 2011 December 30.
Mutations from this study were compared to mutations in the COSMIC17 and OMIM18 databases to identify additional HGS-OvCa genes that are less commonly mutated. This yielded 477 and 211 matches respectively (Table S2.4) including mutations in \textit{BRAF} (N581S), \textit{PIK3CA} (E545K and H1047R), \textit{KRAS} (G12D), and \textit{NRAS} (Q61R). These mutations have been shown to exhibit transforming activity so we believe that these mutations are rare but important drivers in HGS-OvCa.

We combined evolutionary information from sequence alignments of protein families and whole vertebrate genomes, predicted local protein structure and selected human SwissProt protein features (Methods S3) to identify putative driver mutations using CHASM19,20 after training on mutations in known oncogenes and tumor suppressors. CHASM identified 122 mis-sense mutations predicted to be oncogenic (Table S3.1). Mutation-driven changes in protein function were deduced from evolutionary information for all confirmed somatic missense mutations by comparing protein family sequence alignments and residue placement in known or homology-based three-dimensional protein structures using Mutation Assessor (Methods S4). Twenty-seven percent of missense mutations were predicted to impact protein function (Table S2.1).

Copy number analysis

Somatic copy number alterations (SCNAs) present in the 489 HGS-OvCa genomes were identified and compared with glioblastome multiforme data in Figure 1a. SCNAs were divided into regional aberrations that affected extended chromosome regions and smaller focal aberrations (Methods S5). A statistical analysis of regional aberrations (Methods S5)21 identified 8 recurrent gains and 22 losses, all of which have been reported previously22 (Figure 1b and Table S5.1). Five of the gains and 18 of the losses occurred in more than 50\% of tumors.

GISTIC21,23 (Methods S5) was used to identify recurrent focal SCNAs. This yielded 63 regions of focal amplification (Figure 1c, Methods S5, Table S5.2) including 26 that encoded 8 or fewer genes. The most common focal amplifications encoded \textit{CCNE1}, \textit{MYC}, and \textit{MECOM} (Figure 1c, Methods S5, Table S5.2) each highly amplified in greater than 20\% of tumors. New tightly-localized amplification peaks in HGS-OvCa encoded the receptor for activated C-kinase, \textit{ZMYND8}; the p53 target gene, \textit{IRF2BP2}; the DNA-binding protein inhibitor, \textit{ID4}; the embryonic development gene, \textit{PAX8}; and the telomerase catalytic subunit, \textit{TERT}. Three data sources: \url{http://www.ingenuity.com/}, \url{http://clinicaltrials.gov} and \url{http://www.drugbank.ca} were used to identify possible therapeutic inhibitors of amplified, over-expressed genes. This search identified 22 genes that are therapeutic targets including \textit{MECOM, MAPK1, CCNE1} and \textit{KRAS} amplified in at least 10\% of the cases (Table S5.3).

GISTIC also identified 50 focal deletions (Figure 1d). The known tumor suppressor genes \textit{PTEN}, \textit{RB1}, and \textit{NF1} were in regions of homozygous deletions in at least 2\% of tumors. Importantly, \textit{RB1} and \textit{NF1} also were among the significantly mutated genes. One deletion contained only three genes, including the essential cell cycle control gene, \textit{CREBBP}, which has 5 non-synonymous and 2 frameshift mutations.

\textit{Nature}. Author manuscript; available in PMC 2011 December 30.
mRNA and miRNA expression and DNA methylation analysis

Expression measurements for 11,864 genes from three different platforms (Agilent, Affymetrix HuEx, Affymetrix U133A) were combined for subtype identification and outcome prediction. Individual platform measurements suffered from limited, but statistically significant batch effects, whereas the combined data set did not (Methods S11, Figure S11.1). Analysis of the combined dataset identified ~1,500 intrinsically variable genes (Methods S6) that were used for NMF consensus clustering. This analysis yielded four clusters (Methods S6, Figure 2a). The same analysis approach applied to a publicly available dataset from Tothill et al., also yielded four clusters. Comparison of the Tothill and TCGA clusters showed a clear correlation (Methods S6, Figure S6.3). We therefore conclude that at least four robust expression subtypes exist in HGS-OvCa.

We termed the four HGS-OvCa subtypes Immunoreactive, Differentiated, Proliferative and Mesenchymal based on gene content in the clusters (Methods S6) and on previous observations. T-cell chemokine ligands, CXCL11 and CXCL10, and the receptor, CXCR3, characterized the Immunoreactive subtype. High expression of transcription factors such as HMGA2 and SOX11, low expression of ovarian tumor markers (MUC1, MUC16) and high expression of proliferation markers such as MCM2 and PCNA defined the Proliferative subtype. The Differentiated subtype was associated with high expression of MUC16 and MUC1 and with expression of the secretory fallopian tube maker SLPI, suggesting a more mature stage of development. High expression of HOX genes and markers suggestive of increased stromal components such as for myofibroblasts (FAP) and microvascular pericytes (ANGPTL2, ANGPTL1) characterized the Mesenchymal subtype.

Elevated DNA methylation and reduced tumor expression implicated 168 genes as epigenetically silenced in HGS-OvCa compared to fallopian tube controls. DNA methylation was correlated with reduced gene expression across all samples (Methods S7). AMT, CCL21 and SPARCL1 were noteworthy because they showed promoter hypermethylation in the vast majority of the tumors. Curiously, RAB25, previously reported to be amplified and over-expressed in ovarian cancer, also appeared to be epigenetically silenced in a subset of tumors. The BRCA1 promoter was hypermethylated and silenced in 56 of 489 (11.5%) tumors as previously reported (Figure S7.1). Consensus clustering of variable DNA methylation across tumors identified four subtypes (Methods S7, Figure S7.2) that were significantly associated with differences in age, BRCA inactivation events, and survival (Methods S7). However, the clusters demonstrated only modest stability.

Survival duration did not differ significantly for transcriptional subtypes in the TCGA dataset. The Proliferative group showed a decrease in the rate of MYC amplification and RB1 deletion, whereas the Immunoreactive subtype showed an increased frequency of 3q26.2 (MECOM) amplification (Table S6.2, Figure S6.4). A moderate, but significant overlap between the DNA methylation clusters and gene expression subtypes was noted (p<2.2*10^-16, Chi-square test, Adjusted Rand Index = 0.07, Methods S7, Table S7.6).

A 193 gene transcriptional signature predictive of overall survival was defined using the integrated expression data set from 215 samples. After univariate Cox regression analysis,
108 genes were correlated with poor survival, and 85 were correlated with good survival (p-value cutoff of 0.01, Methods S6, Table S6.4). The predictive power was validated on an independent set of 255 TCGA samples as well as three independent expression data sets. Each of the validation samples was assigned a prognostic gene score, reflecting the similarity between its expression profile and the prognostic gene signature (Methods S6, Figure 2c). Kaplan-Meier survival analysis of this signature showed statistically significant association with survival in all validation data sets (Methods S6, Figure 2d).

NMF consensus clustering of miRNA expression data identified three subtypes (Figure S6.5). Interestingly, miRNA subtype 1 overlapped the mRNA Proliferative subtype and miRNA subtype 2 overlapped the mRNA Mesenchymal subtype (Figure 2d). Survival duration differed significantly between iRNA subtypes with patients in miRNA subtype 1 tumors surviving significantly longer (Figure 2e).

Pathways influencing disease

Several analyses integrated data from the 316 fully analyzed cases to identify biology that contributes to HGS-OvCa. Analysis of the frequency with which known cancer-associated pathways harbored one or more mutations, copy number changes, or changes in gene expression showed that the RB1 and PI3K/RAS pathways were deregulated in 67% and 45% of cases, respectively (Figure 3A, Methods S8). A search for altered subnetworks in a large protein-protein interaction network using HotNet identified several known pathways (Methods S9) including the Notch signaling pathway, which was altered in 23% of HGS-OvCa samples (Figure 3B).

Published studies have shown that cells with mutated or methylated BRCA1 or mutated BRCA2 have defective homologous recombination (HR) and are highly responsive to PARP inhibitors. Figure 3C shows that 20% of HGS-OvCa have germine or somatic mutations in BRCA1/2, that 11% have lost BRCA1 expression through DNA hypermethylation and that epigenetic silencing of BRCA1 is mutually exclusive of BRCA1/2 mutations (P = 4.4x10^-4, Fisher’s exact test). Univariate survival analysis of BRCA status (Figure 3C) showed better overall survival (OS) for BRCA mutated cases than BRCA wild-type cases. Interestingly, epigenetically silenced BRCA1 cases exhibited survival similar to BRCA1/2 WT HGS-OvCa (median OS 41.5 v. 41.9 months, P = 0.69, log-rank test, Methods S8, Figure S8.13B). This suggests that BRCA1 is inactivated by mutually exclusive genomic and epigenomic mechanisms and that patient survival depends on the mechanism of inactivation. Genomic alterations in other HR genes that might render cells sensitive to PARP inhibitors (Methods S8, Figure S8.12) discovered in this study include amplification or mutation of EMSY (8%), focal deletion or mutation of PTEN (7%); hypermethylation of RAD51C (3%), mutation of ATM/ATR (2%), and mutation of Fanconi Anemia genes (5%). Overall, HR defects may be present in approximately half of HGS-OvCa, providing a rationale for clinical trials of PARP inhibitors targeting tumors these HR-related aberrations.

Comparison of the complete set of BRCA inactivation events to all recurrently altered copy number peaks revealed an unexpectedly low frequency of CCNE1 amplification in cases.
with BRCA inactivation (8% of BRCA altered cases had \textit{CCNE1} amplification v. 26% of BRCA wild type cases, FDR adjusted $P = 0.0048$). As previously reported\cite{39}, overall survival tended to be shorter for patients with \textit{CCNE1} amplification compared to all other cases ($P = 0.072$, log-rank test, Methods, S8 Figure S8.14A). However, no survival disadvantage for \textit{CCNE1}-amplified cases ($P = 0.24$, log-rank test, Methods S8, Figure S8.14B) was apparent when looking only at BRCA wild-type cases, suggesting that the previously reported \textit{CCNE1} survival difference can be explained by the better survival of BRCA-mutated cases.

Finally, a probabilistic graphical model (PARADIGM\cite{40}) searched for altered pathways in the NCI Pathway Interaction Database\cite{41} identifying the \textit{FOXM1} transcription factor network (Figure 3d) as significantly altered in 87% of cases, Methods S10, Figures S10.1-3). \textit{FOXM1} and its proliferation-related target genes; \textit{AURB}, \textit{CCNB1}, \textit{BIRC5}, \textit{CDC25}, and \textit{PLK1}, were consistently over-expressed but not altered by DNA copy number changes, indicative of transcriptional regulation. \textit{TP53} represses \textit{FOXM1} following DNA damage\cite{42}, suggesting that the high rate of \textit{TP53} mutation in HGS-OvCa contributes to \textit{FOXM1} overexpression. In other datasets, the \textit{FOXM1} pathway is significantly activated in tumors relative to adjacent epithelial tissue\cite{43-45} (Methods S10, Figure S10.4) and is associated with HGS-OvCa (Methods S10, Figure S10.5)\cite{22}.

\section*{Discussion}

This TCGA study provides the first large scale integrative view of the aberrations in HGS-OvCa. Overall, the mutational spectrum was surprisingly simple. Mutations in \textit{TP53} predominated, occurring in at least 96% of HGS-OvCa while BRCA1/2 were mutated in 22% of tumors due to a combination of germline and somatic mutations. Seven other significantly mutated genes were identified, but only in 2-6% of HGS-OvCa. In contrast, HGS-OvCa demonstrates a remarkable degree of genomic disarray. The frequent SCNAS are in striking contrast to previous TCGA findings with glioblastoma\cite{46} where there were more recurrently mutated genes with far fewer chromosome arm-level or focal SCNAS (Figure 1A). A high prevalence of mutations and promoter methylation in putative DNA repair genes including HR components may explain the high prevalence of SCNAS. The mutation spectrum marks HGS-OvCa as completely distinct from other OvCa histological subtypes. For example, clear-cell OvCa have few \textit{TP53} mutations but have recurrent \textit{ARID1A} and \textit{PIK3CA}\cite{47-49} mutations; endometrioid OvCa have frequent \textit{CTNNB1}, \textit{ARID1A}, and \textit{PIK3CA} mutations and a lower rate of \textit{TP53}\cite{48,49} while mucinous OvCa have prevalent \textit{KRAS} mutations\cite{50}. These differences between ovarian cancer subtypes likely reflect a combination of etiologic and lineage effects, and represent an opportunity to improve ovarian cancer outcomes through subtype-stratified care.

Identification of new therapeutic approaches is a central goal of the TCGA. The ~50% of HGS-OvCa with HR defects may benefit from PARP inhibitors. Beyond this, the commonly deregulated pathways, RB, RAS/PI3K, FOXM1, and NOTCH, provide opportunities for therapeutic attack. Finally, inhibitors already exist for 22 genes in regions of recurrent amplification (Methods S5, Table S5.3), warranting assessment in HGS-OvCa where the target genes are amplified. Overall, these discoveries set the stage for approaches to

\textit{Nature. Author manuscript; available in PMC 2011 December 30.}
treatment of HGS-OvCa in which aberrant genes or networks are detected and targeted with therapies selected to be effective against these specific aberrations.

Methods Summary

All patient specimens were obtained under appropriate IRB consent. DNA and RNA were collected from samples using the Allprep kit (Qiagen). We used commercial technology for capture and sequencing of exomes from whole genome amplified tumor and normal DNAs. DNA sequences were aligned to Human NCBI build 36; duplicate reads were excluded from mutation calling. Validation of mutations occurred on a separate whole genome amplification of DNA from the same tumor. Data is submitted to dbGaP under accession number PHS000178. Significantly mutated genes were identified by comparing to expectation models based on the exact measured rates of specific sequence lesions. CHASM \(^{20}\) and MutationAssessor (Methods S4) were used to identify functional mutations. GISTIC analysis of the CBS segmented Agilent 1M feature copy number data was used to identify recurrent peaks comparing to the results from the other platforms to identify likely platform specific artifacts. Consensus clustering approaches were used to analyze mRNA, miRNA, and methylation subtypes as well as predictors of outcome using previous approaches\(^{46}\). HotNet \(^{33}\) was used to identify portions of the protein-protein interaction network that have more events than expected by chance. Networks that had a significant probability of being valid were evaluated for increased fraction of known annotations. PARADIGM\(^{40}\) was used to estimate integrated pathway activity to identify portions of the network models differentially active in HGS-OvCa.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Jacqueline Palchik, Anika Mirick, and Julia Zhang for administrative coordination of TCGA activities. This work was supported by the following grants from the United States National Institutes of Health: U54HG003067, U54HG003079, U54HG003273, U24CA126543, U24CA126544, U24CA126546, U24CA126551, U24CA126554, U24CA126561, U24CA126563, U24CA143840, U24CA143882, U24CA143731, U24CA143835, U24CA143845, U24CA143858, U24CA144025, U24CA143882, U24CA143866, U24CA143867, U24CA143848, U24CA143843, and R21CA135877.

References

1. Jemal A, Siegel R, Xu J, Ward E. Cancer Statistics, 2010. CA Cancer J Clin.
2. Koonings PP, Campbell K, Mishell DR Jr. Grimes DA. Relative frequency of primary ovarian neoplasms: a 10-year review. Obstet Gynecol. 1989; 74:921–926. [PubMed: 2685680]
3. Seidman JD, et al. The histologic type and stage distribution of ovarian carcinomas of surface epithelial origin. Int J Gynecol Pathol. 2004; 23:41–44. [PubMed: 14668549]
4. Miller DS, et al. Phase II evaluation of pemetrexed in the treatment of recurrent or persistent platinum-resistant ovarian or primary peritoneal carcinoma: a study of the Gynecologic Oncology Group. J Clin Oncol. 2009; 27:2686–2691. [PubMed: 19332726]
5. Jemal A, et al. Cancer statistics, 2009. CA Cancer J Clin. 2009; 59:225–249. [PubMed: 19474385]
6. Pal T, et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer. 2005; 104:2807–2816. [PubMed: 16284991]

Nature. Author manuscript; available in PMC 2011 December 30.
7. Risch HA, et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst. 2006; 98:1694–1706. [PubMed: 17148771]
8. Bast RC Jr. Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nat Rev Cancer. 2009; 9:415–428. [PubMed: 19461667]
9. Gnarke A, et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nature biotechnology. 2009; 27:182–189.
10. Hodges E, et al. Hybrid selection of discrete genomic intervals on custom-designed microarrays for massively parallel sequencing. Nature protocols. 2009; 4:960–974. [PubMed: 19478811]
11. Bookman MA, et al. Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a Phase III Trial of the Gynecologic Cancer Intergroup. J Clin Oncol. 2009; 27:1419–1425. [PubMed: 19224846]
12. Muggia FM, et al. Phase III randomized study of cisplatin versus paclitaxel versus cisplatin and paclitaxel in patients with suboptimal stage III or IV ovarian cancer: a gynecologic oncology group study. J Clin Oncol. 2000; 18:106–115. [PubMed: 10623700]
13. Ahmed AA, et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 221:49–56. [PubMed: 20229506]
14. Chen HH, Wang YC, Fann MJ. Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Molecular and cellular biology. 2006; 26:2736–2745. [PubMed: 16537916]
15. Ding L, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008; 455:1069–1075. [PubMed: 18948947]
16. Aldred MA, Trembath RC. Activating and inactivating mutations in the human GNAS1 gene. Human mutation. 2000; 16:183–189. [PubMed: 10980525]
17. Forbes, SA., et al. Current protocols in human genetics / editorial board, Jonathan L. Haines … [et al. 2008. The Catalogue of Somatic Mutations in Cancer (COSMIC); p. 11Chapter 10, Unit 10
18. McKusick VA. Mendelian Inheritance in Man and its online version, OMIM. American journal of human genetics. 2007; 80:588–604. [PubMed: 17357067]
19. Carter H, et al. Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res. 2009; 69:6660–6667. [PubMed: 19654296]
20. Carter H, Samayoa J, Hruban RH, Karchin R. Prioritization of driver mutations in pancreatic cancer using cancer-specific high-throughput annotation of somatic mutations (CHASM). Cancer biology & therapy. 10
21. Beroukhim R, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 463:899–905. [PubMed: 20164920]
22. Etemadmoghadam D, et al. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin Cancer Res. 2009; 15:1417–1427. [PubMed: 19193619]
23. Beroukhim R, et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A. 2007; 104:20007–20012. [PubMed: 18077431]
24. Verhaak RG, et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 17:98–110. [PubMed: 20129251]
25. Tothill RW, et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 2008; 14:5198–5208. [PubMed: 18698038]
26. Dubeau L. The cell of origin of ovarian epithelial tumours. Lancet Oncol. 2008; 9:1191–1197. [PubMed: 19038766]
27. Cheng KW, et al. The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers. Nat Med. 2004; 10:1251–1256. [PubMed: 15502842]
28. Esteller M, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000; 92:564–569. [PubMed: 10749912]
29. Bonome T, et al. A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res. 2008; 68:5478–5486. [PubMed: 18593951]
30. Dressman HK, et al. An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J Clin Oncol. 2007; 25:517–525. [PubMed: 17290060]
31. Creighton CJ, et al. Insulin-like growth factor I activates gene transcription programs strongly associated with poor breast cancer prognosis. J Clin Oncol. 2008; 26:4078–4085. [PubMed: 18757322]
32. Keshava Prasad TS, et al. Human Protein Reference Database--2009 update. Nucleic Acids Res. 2009; 37:D767–772. [PubMed: 18988627]
33. Vandin, F.; Upfal, E.; Raphael, BJ. Algorithms for Detecting Significantly Mutated Pathways in Cancer; 14th International Conference on Research in Computational Molecular Biology; 2010 Springer. p. 506-521.
34. Choi JH, et al. Jagged-1 and Notch3 juxtacrine loop regulates ovarian tumor growth and adhesion. Cancer Res. 2008; 68:5716–5723. [PubMed: 18632624]
35. Farmer H, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005; 434:917–921. [PubMed: 15829967]
36. Fong PC, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009; 361:123–134. [PubMed: 19553641]
37. Veeck J, et al. BRCA1 CpG island hypermethylation predicts sensitivity to poly(adenosine diphosphate)-ribose polymerase inhibitors. J Clin Oncol. 28:e563–564. author reply e565-566. [PubMed: 20679605]
38. Mendes-Pereira AM, et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med. 2009; 1:315–322. [PubMed: 20049735]
39. Nakayama N, et al. Gene amplification CCNE1 is related to poor survival and potential therapeutic target in ovarian cancer. Cancer. 116:2621–2634. [PubMed: 20336784]
40. Vaske CJ, et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. 26:i237–245. [PubMed: 20529912]
41. Schaefer CF, et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009; 37:D674–679. [PubMed: 18832364]
42. Barsotti AM, Prives C. Pro-proliferative FoxM1 is a target of p53-mediated repression. Oncogene. 2009; 28:4295–4305. [PubMed: 19749794]
43. Tone AA, et al. Gene expression profiles of luteal phase fallopian tube epithelium from BRCA mutation carriers resemble high-grade serous carcinoma. Clin Cancer Res. 2008; 14:4067–4078. [PubMed: 18593983]
44. Myatt SS, Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 2007; 7:847–859. [PubMed: 17943136]
45. Wang IC, et al. Deletion of Forkhead Box M1 transcription factor from respiratory epithelial cells inhibits pulmonary tumorigenesis. PLoS One. 2009; 4:e6609. [PubMed: 19672312]
46. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008; 455:1061–1068. [PubMed: 18772890]
47. Ho ES, et al. p53 mutation is infrequent in clear cell carcinoma of the ovary. Gynecol Oncol. 2001; 80:189–193. [PubMed: 11161858]
48. Wiegand KC, et al. ARID1A mutations in endometriosi-associated ovarian carcinomas. N Engl J Med. 2010; 363:1532–1543. [PubMed: 20942669]
49. Kuo KT, et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol. 2009; 174:1597–1601. [PubMed: 19349352]
50. Cuatrecasas M, Villanueva A, Matias-Guiu X, Prat J. K-ras mutations in mucinous ovarian tumors: a clinicopathologic and molecular study of 95 cases. Cancer. 1997; 79:1581–1586. [PubMed: 9118042]
Figure 1. Genome copy number abnormalities
(a) Copy-number profiles of 489 HGS-OvCa, compared to profiles of 197 glioblastoma multiforme (GBM) tumors. Copy number increases (red) and decreases (blue) are plotted as a function of distance along the normal genome. (b) Significant, focally amplified (red) and deleted (blue) regions are plotted along the genome. Annotations include the 20 most significant amplified and deleted regions, well-localized regions with 8 or fewer genes, and regions with known cancer genes or genes identified by genome-wide loss-of-function screens. The number of genes included in each region is given in brackets. (c) Significantly amplified (red) and deleted (blue) chromosome arms.
Figure 2. Gene and miRNA expression patterns of molecular subtype and outcome prediction in HGS-OvCa

(a) Tumors from TCGA and Tothill et al. separated into four clusters, based on gene expression. (b) Using a training dataset, a prognostic gene signature was defined and applied to a test dataset. (c) Kaplan-Meier analysis of four independent expression profile datasets, comparing survival for predicted higher risk versus lower risk patients. Univariate Cox p-value for risk index included. (d) Tumors separated into three clusters, based on miRNA expression, overlapping with gene-based clusters as indicated. (e) Differences in patient survival among the three miRNA-based clusters.
Figure 3. Altered Pathways in HGS-OvCa
(a) The RB and PI3K/RAS pathways, identified by curated analysis and (b) NOTCH pathway, identified by HotNet analysis, are commonly altered. Alterations are defined by somatic mutations, DNA copy-number changes, or in some cases by significant up- or down-regulation compared to expression in diploid tumors. Alteration frequencies are in percentage of all cases; activated genes are red, inactivated genes are blue. (c) Genes in the HR pathway are altered in up to 49% of cases. Survival analysis of BRCA status shows divergent outcome for BRCA mutated cases (exhibiting better overall survival) than BRCA wild-type, and BRCA1 epigenetically silenced cases exhibiting worse survival. (d) The FOXM1 transcription factor network is activated in 87% of cases. Each gene is depicted as a multi-ring circle in which its copy number (outer ring) and gene expression (inner ring) are plotted such that each “spoke” in the ring represents a single patient sample, with samples sorted in increasing order of FOXM1 expression. Excitatory (red arrows) and inhibitory interactions (blue lines) were taken from the NCI Pathway Interaction Database. Dashed lines indicate transcriptional regulation.
Table 1
Characterization platforms used and data produced

Data Type	Platforms	Cases	Data Availability
DNA Sequence of exome	Illumina GAIIx,a,b	236	Protected
	ABI SOLiD,c	80	Protected
Mutations present in exome		316	Open
DNA copy number/genotype	Agilent 244K,e	97	Open
	Agilent 415K,d	304	Open
	Agilent 1M,f	539	Open
	Illumina 1MDUO,f	535	Open
	Affymetrix SNPs,g	514	Protected
mRNA expression profiling	Affymetrix U133A,a	516	Open
	Affymetrix Exon,b	517	Protected
	Agilent 244K,h	540	Open
Integrated mRNA expression		489	Open
miRNA expression profiling	Agilent,h	541	Open
CpG DNA methylation	Illumina 27K,i	519	Open
Integrative analysis		489	Open
Integrative analysis w/ mutations		309	Open

Production Centers: Broad Institute, Washington University School of Medicine, Baylor College of Medicine, Harvard Medical School, Memorial Sloan-Kettering Cancer Center, HudsonAlpha Institute for Biotechnology, Lawrence Berkeley National Laboratory, University of North Carolina, University of Southern California.

Additional data are available for many of these data types at the TCGA DCC.
Table 2
Significantly mutated genes in HGS-OvCa

Gene	Number of Mutations	Validated	Unvalidated
TP53	302	294	8
BRCA1	11	10	1
CSMD3	19	19	0
NF1	13	13	0
CDK12	9	9	0
FAT3	19	18	1
GABRA6	6	6	0
BRCA2	10	10	0
RB1	6	6	0

Validated mutations are those that have been confirmed with an independent assay. Most of them are validated using a second independent WGA sample from the same tumor. Unvalidated mutations have not been independently confirmed but have a high likelihood to be true mutations. An additional 25 mutations in TP53 were observed by hand curation.