Carbon nanotubes on partially depassivated n-doped Si(100)-(2×1):H substrates

Salvador Barraza-Lopez, Peter M. Albrecht, and Joseph W. Lyding
1. School of Physics, Georgia Institute of Technology, Atlanta GA, 30332.
2. Department of Electrical and Computer Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana IL, 61801.

(Dated: June 17, 2009)

We present a study on the mechanical configuration and the electronic properties of semiconducting carbon nanotubes supported by partially depassivated silicon substrates, as inferred from topographic and spectroscopic data acquired with a room-temperature ultrahigh vacuum scanning tunneling microscope and density-functional theory calculations. A mechanical distortion and doping for semiconducting carbon nanotubes on Si(100)-(2×1):H with hydrogen-depassivated stripes up to 100 Å wide are ascertained from both experiment and theory. The results presented here point towards novel and local functionalities of nanotube-semiconductor interfaces.

PACS numbers: 73.22.-f, 81.07.-b, 68.37.Ef, 68.43.-h

The modifications of the intrinsic electronic and thermal properties of single-walled carbon nanotubes (SWNTs) due to their interaction with the semiconducting surface by which they are supported have been the focal point of a sizeable number of experimental [1, 2, 3, 4, 5, 6, 7, 8, 9] and theoretical [4, 10, 11, 12, 13] studies in recent years due to the technological interest in hybrid SWNT-semiconductor devices. Dry contact transfer (DCT) [2] allows for the in situ deposition of SWNTs from solid sources onto technologically relevant surfaces, such as Si(100) [2, 3, 4, 5, 8, 9] and the (110) surfaces of GaAs and InAs [2], forming an atomically pristine interface. Comprehensive studies of semiconducting SWNTs (s-SWNTs) on Si(100) and Si(100)-(2×1):H at the density-functional theory (DFT) level have been reported [4, 12]. The adsorption properties of s-SWNTs and metallic SWNTs (m-SWNTs) of similar diameter on Si(100) are remarkably different [12]. This holds for ∼10 Å-diameter SWNTs with varying chiralities. Unlike m-SWNTs on Si(100), no covalent bonds are formed at the interface between Si(100) and s-SWNTs. (In recent studies of a (10,0) semiconducting SWNT on Si(100), covalent bonds between the s-SWNT and Si surface atoms were artificially induced [13].) Si-C covalent bonding for SWNTs grown on Si was asserted only for a subset of the population based upon micro-Raman imaging [2], suggesting that both the electronic character of the SWNT and the local termination of the Si surface markedly influence the degree of nanotube-substrate interaction. When SWNTs are placed on the inert monohydride Si(100)-(2×1):H surface [2], the respective electronic characteristics of the nanotube and the surface are preserved and charge transfer is largely suppressed [3, 11]. In contrast, a shift of the Fermi level away from the nanotube midgap position has been experimentally observed for SWNTs supported by metallic surfaces (Au(111) [14] and Ag(100) [15]), unpassivated III-V compound semiconductors (GaAs(110) and InAs(110) [3]) and an ultrathin insulating film (NaCl(100)/Ag(100) [16]). Faithful to experimental conditions, our computational studies included dopants within the Si(100) slab. Ultrahigh vacuum scanning tunneling microscope (UHV-STM) based nanolithography on hydrogen-passivated Si(100) enables the definition of patterns of reactive de-passivated Si [16, 17] with possible consequences for the adhesion and electronic properties of the adsorbed SWNTs [3, 8, 9]. In this Letter, we report on the properties of isolated s-SWNTs interfaced with nanoscale regions of selectively de-passivated Si as determined from room-temperature UHV-STM measurements and DFT calculations.

Fig. 1 summarizes the experimental observations; reproducible results were obtained for several unique single-wall carbon nanotubes on partially de-passivated Si(100)-(2×1):H. De-generately n-type doped Si(100) substrates (As, 10¹⁹ cm⁻³) were employed, and subjected to UHV H-passivation [2]. Isolated HiPco SWNTs [18] were deposited by DCT. The STM was operated at room temperature in constant-current mode with the bias voltage (V) applied to the substrate and the electrochemically etched W tip grounded through a current (I) preamplifier. Partial surface de-passivation, as seen in the filled-states topograph of Fig. 1(a), was achieved with the methods described in Refs. [8] and [16]. Fig. 1(b) depicts the relative STM height along the top of the SWNT, as indicated by the blue line in Fig. 1(a). When the SWNT is on the H-passivated substrate [2] the height fluctuations are of the order of 0.2 Å, and they are directly related to the underlying honeycomb lattice of the SWNT. The dip in the apparent SWNT height stressed by the horizontal red line, beyond the 0.2 Å fluctuations, correlates with the location where the SWNT traverses the de-passivated stripe (brighter region) in Fig. 1(a). Similar trends were reported before [8]. Given that the substrate is degenerately n-doped, in the absence of a mechanical deformation, one would anticipate the negative charging of the Si surface states within the de-passivated region [19] and a protrusion, rather than a dip, in the height profile: to maintain...
constant current, the tip should retract due to the higher density of states of the Si dangling bonds. Hence the data in Fig. 1(b) provides evidence for a slight conformal deformation (of the order of 0.5 Å) of the SWNT along the depassivated region. In a subsequent STM scan, the absolute current vs. bias was recorded ([−2, +2] V, ∆V = 20 mV) along the blue line in Fig. 1(c). In Fig. 1(c), we notice the apparent widening of the s-SWNT as the STM tip moves away from the depassivated region (the region within the two dashed vertical lines). This was previously observed and is consistent with the fact that the substrate acts as a covalent bond acceptor. The dI/dV characteristics for the SWNT shown in Fig. 1(d) are consistent with those of a s-SWNT, as determined in Ref. 4. In Fig. 1(e), the absolute tunneling current is also evident. (e) Absolute tunneling current plot along the axis of the SWNT (blue line in Fig. 1(c)). Spatial resolution: 2.5 Å.) To the right of the vertical dashed white line the tube sits on the depassivated stripe. The white traces in the profile signal a current of 1 pA, (close to the edge of the valence and conduction bands). Horizontal dotted lines serve as guide to the eye. The midgap energy (also shown) depicts a slight n-doping of the SWNT in the section on top of the depassivated substrate.

FIG. 1: (color online) (a) UHV-STM image (−2 V, 100 pA) of a SWNT interfaced with a partially depassivated Si(100)-(2×1):H substrate. Darker (brighter) areas on the substrate indicate hydrogen passivation (depassivation), with the SWNT seen as a horizontal white feature. (b) STM constant-current height profile along the SWNT (blue line in (a)) revealing a sub-0.5 Å depression. Spectral data were subsequently acquired along the blue line in (c). The residual mechanical instability of the nanotube on H-Si to the right of the second vertical line manifests as a broadening of the apparent width of the SWNT. (d) Semilogarithmic differential conductance profile (acquired on the SWNT over the Si(100)-(2×1):H area) indicates the SWNT is semiconducting; see Ref. 4. The n-type alignment of the substrate d-doping of the SWNT in the section on top of the depassivated substrate.

TABLE I: Parameters of the structural deformation on the SWNT (Å).

Parameter	Undoped	n-doped
φz max	8.59 (3.0%)	8.60 (3.1%)
φz min	8.11 (−2.8%)	8.13 (−2.5%)
φy max	8.63 (3.5%)	8.47 (1.6%)
φy min	8.09 (−3.0%)	8.22 (−1.4%)
Δσ min	2.69	2.75
Δσ max	1.96	1.94

Calculations are performed for a (8,4) SWNT (diameter: 8.30 Å and length L0 = 11.29 Å). The supercell has six Si monolayers. The lowermost layer is passivated with H in the dihydride configuration. The most Si layer is also H passivated, but in the monohydride configuration. The area spanned by the supercell is 43.21 × 21.61 Å². The supercell employed contains 1024 atoms when both Si surfaces are passivated with hydrogen, and 1012 atoms when a stripe of depassivated Si is formed. The SIESTA code is employed in the local density approximation (LDA) for exchange-correlation as parametrized by Perdew and Zunger. The supercell used contains 1024 atoms when both Si surfaces are passivated with hydrogen, and 1012 atoms when a stripe of depassivated Si is formed. The SIESTA code is employed in the local density approximation (LDA) for exchange-correlation as parametrized by Perdew and Zunger. The supercell used contains 1024 atoms when both Si surfaces are passivated with hydrogen, and 1012 atoms when a stripe of depassivated Si is formed.
The reason for the distortion is that the SWNT bends towards surface depassivated Si atoms; to relieve the most stress, this vertical elongation is accompanied by a horizontal elongation at the edges of the unit cell. The Si atoms in the depassivated section also protrude to the substrate, and as a result the SWNT becomes larger than experimental values in magnitude, the DFT results are consistent with a mechanical distortion of the SWNT caused by the substrate.

No corrections for basis set superposition error were added either. More details of the calculations can be found in Ref. 12. Commensurability of the system required a non-negligible longitudinal contraction of the SWNT by 3.8%. As seen in the inset in Fig. 2, this entails a reduction of 30% in the semiconducting gap, and an increase in diameter by 0.75% to minimize the additional forces caused by the longitudinal contraction.

The entire system shown in Fig. 2 was relaxed employing only the Γ point until individual forces did not exceed 0.04 eV/Å. Because of periodic boundary conditions, the hydrogen stripe appears along the SWNT axis multiple times. This is to be contrasted with experiment, where a single stripe is fabricated. The SWNT displays a periodic distortion: it appears oblate with its minor axis parallel to the SWNT axis. Only the lower half of the SWNT is shown for clarity. Side: The side view of the system, showing in red the location of the phosphorous (n-type) dopant. Horizontal dashed lines serve to indicate distortion in the SWNT. Maximum distortion in SWNT occurs at x_1 and x_2. Inset: The (8,4) SWNT was contracted by 3.8% (blue vertical line) in order to be placed on top of the Si substrate. This implied a 30% reduction of its gap and a 0.75% increase in diameter to compensate longitudinal compression.

The band structure of a 2-unit-cell long (8,4) SWNT in the absence of compression, and the corresponding band structure of a SWNT with the parametric distortion as in Eq. (1). An ever slight reduction of the semiconducting gap is seen, as well as the breaking of the degeneracy in the points highlighted by horizontal arrows, also present in (a) when doping is present. (d) Schematic view of the parametric distortion (the distortion seen is larger than that in Eq. (1) for clarity).
value than the one found in experiment may be due to the fact that in calculations the depassivated strip repeats infinitely along the nanotube’s length. Discrepancies may also be due to the approximations in the calculations. (The change in the nanotube band gap of about 10 meV lays within our precision in computing the PDOS). A similar calculation was performed for the case when the substrate was undoped. In that case the band edges remained in their original positions even when the depassivated strip was present: The band edges in this latter case were at -4.69 ± 4.69 eV and -5.32 ± 5.33 eV on the full H-passivated (partially depassivated) systems.

The mechanical distortion in the SWNT and its relation to the electronic band structure can be understood by introducing a parametric distortion along the x and z directions to an uncompressed, isolated SWNT:

$$y = y_0 [1 + 0.04 \cos(\pi x_0/L_0)],$$

$$z = z_0 [1 + 0.07 \sin(\pi x_0/L_0)].$$

(x_0, y_0, z_0) are the coordinates of an undistorted, uncompressed SWNT. Eq. (1) implies a periodicity in the x direction over two SWNT unit cells, aimed to reduce the local distortion for C atoms, while keeping a relatively small supercell. The dissimilar amplitude of the modulation along the y and z directions is responsible for the lifting of the degeneracy at k—points, highlighted by horizontal arrows in Fig. 3(a), n-doping and Fig. 3(c). This parametric distortion results in a modest reduction of the semiconducting gap, also consistent with results from full-scale calculations (Fig. 3(a)). Fig. 3(d) schematically depicts the shape of the SWNT after a distortion as that shown in Eq. (1) is applied. The distortion also results in a shift of the nanotube’s conduction and valence band edges away from the Γ—point, as is the case in Fig. 3(a).

In conclusion, it has been shown from STM data and DFT calculations that partial depassivation of degenerately n—doped Si(100)-(2×1):H produces a mechanical distortion within an adsorbed s-SWNT that slightly modifies the magnitude of the semiconducting gap, and produces minor modifications to the band structure of the nanotube. More importantly, the partial depassivation allows for a slight local doping of the SWNT adsorbed on this substrate. We expect that an increase in the area of the clean stripe will result in a further population of electronic states at the Si(100)-SWNT interface, until the behavior described in Ref. [12] is recovered. We thank M. Kuroda, N. A. Romero and K. Ritter for discussions. Calculations were performed on the Turing cluster and the Intel-64 Abe cluster at U of I. Support by the NCSA (grants TG-PHY090002 and TG-PHY090034) is acknowledged.

[1] T. Hertel, R. E. Walkup, and P. Avouris, Phys. Rev. B 58, 13870 (1998).
[2] P. M. Albrecht and J. W. Lyding, Appl. Phys. Lett. 83, 5029 (2003).
[3] P. M. Albrecht and J. W. Lyding, Small 3, 146 (2007).
[4] P. M. Albrecht, S. Barraza-Lopez, and J. W. Lyding, Nanotechnology 18, 095204 (2007).
[5] L. B. Ruppalt, P. M. Albrecht, and J. W. Lyding, J. Vac. Sci. Technol. B 22, 2005 (2004); L. B. Ruppalt and J. W. Lyding, Nanotechnology 18, 215202 (2007).
[6] A. Jensen, J. R. Hauptmann, J. Nygard, J. Sadowski, and P. E. Lindelof, Nano Lett. 4, 349 (2004); S. Stobbe, P. E. Lindelof, and J. Nygard, Semicond. Sci. Technol. 21, S10 (2006); C.-W. Liang and S. Roth, Nano Lett. 8, 1809 (2008).
[7] Y. M. You, T. Yu, J. Kasim, H. Song, X. F. Fan, Z. H. Ni, L. Z. Cao, H. Jiang, D. Z. Shen, J. L. Kuo, and Z. X. Shen, Appl. Phys. Lett. 93, 103111, (2008).
[8] P. M. Albrecht and J. W. Lyding, Nanotechnology 18, 125302 (2007).
[9] P. M. Albrecht, S. Barraza-Lopez, and J. W. Lyding, Small 3, 1402 (2007).
[10] W. Orellana, R. H. Miwa, and A. Fazzio, Phys. Rev. Lett. 91, 166802 (2003); Y.-H. Kim, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. 92, 176102 (2004); S. Berber and A. Oshiyama, Phys. Rev. Lett. 96, 105505 (2006); J.-Y. Lee and J.-H. Cho, Appl. Phys. Lett. 89, 023124 (2006); G. W. Peng, A. C. H. Huan, R. Q. Wu, L. Liu, and Y. P. Feng, Phys. Rev. B 74, 235416 (2006); W. Orellana, Appl. Phys. Lett. 92, 093109 (2008); L. Yan, Q. Sun, and Y. Jia, J. Phys.: Condens. Matter 20, 225016 (2008).
[11] R. H. Miwa, W. Orellana, and A. Fazzio, Appl. Phys. Lett. 86, 213111 (2005).
[12] S. Barraza-Lopez, P. M. Albrecht, N. A. Romero, and K. Hess, J. Appl. Phys. 100, 124304 (2006).
[13] D. Donadio and G. Galli, Phys. Rev. Lett. 99, 255502 (2007). Results of this work apply to metallic SWNTs, which do form covalent bonds to Si(100).
[14] J. W. G. Wilder, L. C. Venema, A. G. Rinszler, R. E. Smalley, and C. Dekker, Nature 391, 59 (1998); T. W. Odom et al., Nature 391, 62 (1998).
[15] H.-J. Shin, S. Clair, Y. Kim, and M. Kawai, Appl. Phys. Lett. 93, 233104 (2008).
[16] J. W. Lyding, T.-C. Shen, J. S. Hubacek, J. R. Tucker, and G. C. Abein, Appl. Phys. Lett. 64, 2010 (1994).
[17] T.-C. Shen, C. Wang, G. C. Abein, J. R. Tucker, J. W. Lyding, Ph. Avouris, and R. E. Walkup, Science 268, 1500 (1995).
[18] Carbon Nanotechnologies, Inc., Houston, Texas.
[19] M. Lastapis, M. Martin, D. Riedel, and G. Dujardin, Phys. Rev. B 77, 125316 (2008).
[20] The data is filtered below 1 pA, which is about a factor of two above the noise floor resulting from the tunneling preamplifier gain setting of 10⁵ V/A.
[21] S. Lee, G. Kim, H. Kim, B.-Y. Choi, J. Lee, B. W. Jeong, J. Ihm, Y. Kuk, and S.-J. Kahng, Phys. Rev. Lett. 95, 166402 (2005).
[22] J. E. Northrup, Phys. Rev. B 44, 1419 (1991).
[23] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).
[24] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048
The effect of axial strain σ on the electronic structure of SWNTs has been addressed before\cite{30,31}. We placed a (8,4) SWNT on a unit cell of dimensions $20\text{Å} \times 20\text{Å} \times (1+\sigma)L_0$ (σ varying from -5% to $+5\%$). Upon strain, the SWNT is let to relax until forces do not exceed 0.01 eV/Å. As a result, the SWNT diameter increases (decreases) as it is longitudinally compressed (elongated).

\begin{thebibliography}{99}
\bibitem{25} D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. \textbf{45}, 566 (1980).
\bibitem{26} M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. \textbf{92}, 246401 (2004).
\bibitem{27} R. Armiento and A. E. Mattsson, Phys. Rev. B \textbf{72}, 085108 (2005).
\bibitem{28} H. J. Monkhorst and J. D. Pack, Phys. Rev. B \textbf{13}, 5188 (1976).
\bibitem{29} R. Heyd, A. Charlier, and E. McRae, Phys. Rev. B \textbf{55}, 6820 (1997).
\bibitem{30} L. Yang and J. Han, Phys. Rev. Lett. \textbf{85}, 154 (2000).
\end{thebibliography}