PENCILS OF SMALL DEGREE ON CURVES ON UNNODAL ENRIQUES SURFACES

NILS HENRY RASMUSSEN AND SHENGTIAN ZHOU

Abstract. We use vector-bundle techniques in order to compute \(\dim W^1_d(C) \) where \(C \) is general and smooth in a linear system on an unnodal Enriques surface. We furthermore find new examples of smooth curves on Enriques surfaces with an infinite number of \(g_{\text{gon}}(C) \)'s.

1. Introduction

Let \(S \) be a smooth surface over \(\mathbb{C} \), and \(L \) a line-bundle on \(S \). Let \(W^r_d(C) \) be the Brill–Noether variety, parametrising complete \(g^r_s \)'s on \(C \) for \(s \geq r \). We will be concerned with finding the dimension of \(W^1_d(C) \) for small \(d \) when \(S \) is an unnodal Enriques surface.

The theory on the dimension of \(W^r_d(C) \) dates back to 1874, when Alexander von Brill and Max Noether made an incomplete proof stating that \(\dim W^r_d(C) = \rho(g,r,d) := g - (r + 1)(g - d + r) \) provided \(C \) is general of genus \(g \). It was first much later that strict proofs for this were presented ([KL72], [Kem71], [GH80]). In 1987, a new proof was constructed by Lazarsfeld ([Laz86]) involving use of vector-bundle techniques for curves on K3 surfaces, exploiting the fact that for any \(g \geq 2 \), a K3 surface with Picard group \(\mathbb{Z} \) with \(C \) a smooth genus \(g \) curve can be constructed. These vector-bundle techniques, which were also developed by Tuyting ([Tyu87]), were later used to study the gonality and Clifford index of any smooth curve on an arbitrary K3 surface ([CP95], [Knu03], [Knu09b], [AFL1]). These methods have also lately been applied in the case of Enriques surfaces and rational surfaces with an anticanonical pencil ([Knu01], [KL09], [Knu09a], [LC12]).

The dimension of \(W^1_d(C) \) was studied in [AFL1] and [LC12] because of a result by Aprodu in 2005 ([Apr05]), stating that if \(\dim W^1_d(C) = d - \text{gon}(C) \) for \(d \leq g - \text{gon}(C) + 2 \), then the Green and Green–Lazarsfeld conjectures are satisfied. These conjectures state that the Clifford index and gonality can be read off minimal free resolutions of \(\bigoplus_n H^0(C, \mathcal{O}_C(nK_C)) \) and \(\bigoplus_n H^0(C, \mathcal{O}_C(nA)) \) for \(\text{deg}(A) \gg 0 \), respectively (see [Gre84] and [GL87]).

In this article, we make an attempt at finding the dimension of \(W^1_d(C) \) when \(C \) is a smooth curve on an unnodal Enriques surface \(S \). A smooth surface over \(\mathbb{C} \) is an Enriques surface if \(h^1(S, \mathcal{O}_S) = 0 \), \(2K_S \sim 0 \) and \(K_S \sim 0 \). One defines

\[
\phi(L) := \min \{ L.E \mid E \in \text{Pic}(S), E^2 = 0, E \neq 0 \}
\]

and

\[
\mu(L) := \min \{ L.B - 2 \mid B \in \text{Pic}(S) \text{ with } B \text{ effective}, B^2 = 4, \phi(B) = 2, \text{ and } B \neq L \}.
\]

1991 Mathematics Subject Classification. 14H51, 14J28, 14J60.
By [KL09], the generic gonality for smooth curves in $|L|$, which we denote by k, is given by

$$k = \min \left\{ 2\phi(L), \mu(L), \left\lfloor \frac{L^2}{4} \right\rfloor + 2 \right\}.$$

Furthermore, $k = \mu(L) < 2\phi(L)$ precisely when:

- $L^2 = \phi(L)^2$ with $\phi(L) \geq 2$ and even, in which case $k = \mu(L) = 2\phi(L) - 2$; or
- $L^2 = \phi(L)^2 + \phi(L) - 2$ with $\phi(L) \geq 3$, $L \neq 2D$ for D such that $D^2 = 10$, $\phi(D) = 3$, in which case $k = 2\phi(L) - 1$ for $\phi(L) \geq 5$ and $k = 2\phi(L) - 2$ for $\phi(L) = 3, 4$.

If $(L^2, \phi(L)) = (30, 5), (22, 4), (20, 4), (14, 3), (12, 3)$ or $(6, 2)$, then $k = \left\lfloor \frac{L^2}{4} \right\rfloor + 2 = \phi(L) - 1$.

In all other cases, $k = 2\phi(L)$.

Our main result is the following:

Theorem 1.1. Let S be an unnodal Enriques surface, and let $|L|$ be an ample linear system with $L^2 \geq 2$ such that $k = 2\phi(L) < \mu(L)$. Then, for $k \leq d \leq g - k$ and C general in $|L|$,

$$\dim W^0_d(C) = d - k.$$

Remark 1.2. In the case where $L = n(E_1 + E_2)$ for $n \geq 3$ and $E_1.E_2 = 2$, we have $k = \mu(L) < 2\phi(L)$, by [KL09] Corollary 1.5 (a)]. In Example 5.1 we prove that there exists a sub-linear system $\mathfrak{d} \subseteq |L|$ of smooth curves such that for general $C \in \mathfrak{d}$, there exist infinitely many $g^1_{\text{gon}(C)}$'s. These curves are non-exceptional and are, as far as we know, new examples of curves with an infinite number of $g^1_{\text{gon}(C)}$’s.

Remark 1.3. A conjecture by Martens ([Mar84] Statement T, page 280) states that if $\dim W^1_{\text{gon}(C)}(C) = 0$, then $\dim W^1_d(C) = d - \text{gon}(C)$ for $d \leq g - \text{gon}(C) + 2$; and that if $\dim W^1_{\text{gon}(C)}(C) = 1$, then $\dim W^1_d(C) = d - \text{gon}(C) + 1$ for $d \leq g - \text{gon}(C) + 2$. We therefore expect that Theorem 1.1 is valid for $d \leq g - k + 2$, and hence that the Green and Green–Lazarsfeld conjectures are satisfied for the curves in question.

This paper is organised as follows: In Section 2 we introduce the basic results of Brill–Noether theory and the vector-bundles associated to the pairs (C, A), where $|A|$ is a g^1_d on C. In Section 3, we prove Theorem 1.1 in the case where the general vector-bundles are non-stable, while the stable case is covered in Section 4. We close with an example of a sub-linear system of curves with an infinite number of $g^1_{\text{gon}(C)}$’s in Section 5.

Acknowledgments. Thanks to Andreas Leopold Knutsen for introducing us to this subject, and for valuable comments and remarks.

2. Preliminaries

2.1. **Brill–Noether theory.** Let C be a smooth curve over \mathbb{C}, and let r and d be non-negative integers. Then there is a variety $W^r_d(C)$ that parametrises all complete g^r_d’s on C, for all $s \geq r$.

Let $|A|$ be a complete g^r_d on C, and let $\mu_{0,A} : H^0(C, \mathcal{O}_C(A)) \otimes H^0(C, \mathcal{O}_C(K_C - A)) \to H^0(C, \mathcal{O}_C(K_C))$ be the cup-product mapping. (This is known as the Petri map.) Then, from [ACGH85] IV, Proposition 4.2, we have

$$\dim T_{|A|} W^r_d(C) = \rho(g, r, d) + \dim \ker(\mu_{0,A}),$$

(1)
where $\rho(g, r, d) := g - (r + 1)(g - d + 1)$ is called the Brill–Noether Number, and also known as “the expected dimension of $W_d^r(C)$”.

Furthermore, if $|A|$ is base-point free and $h^0(C, \mathcal{O}_C(A)) = 2$, then the base-point free pencil trick (ACGH85, page 126) gives us

$$\ker \mu_{0,A} = H^0(C, \mathcal{O}_C(K_C - 2A)).$$

One defines the gonality of C to be the smallest d such that there exists a g^1_d on C, and denotes it by $\text{gon}(C)$. It is known that for any smooth curve C of genus g,

$$\text{gon}(C) \leq \left\lfloor \frac{g + 3}{2} \right\rfloor.$$ \hspace{1cm} (3)

For the general curve of genus g, we have equality in (3). Note that for curves on Enriques surfaces, since it is known that $\phi(C) \leq \sqrt{C^2} = \sqrt{2g - 2}$, the gonality is usually not maximal.

Let W be a component of $W_d^2(C)$ containing A. Then,

$$\text{dim ker } \mu_{0,A} = 0 \text{ and } d \leq g - \text{gon}(C) + 2, \text{ then dim } W \leq d - \text{gon}(C).$$ \hspace{1cm} (4)

Also, note that if the general g^1_d in W has base-points, then we can obtain these g^1_d’s by considering g^1_{d-1}’s and add base-points. It follows that

$$\text{if the general } g^1_d \text{ in } W \text{ have base-points, then dim } W \leq \text{dim } W^1_d(C) + 1.$$ \hspace{1cm} (5)

The following definition, which was introduced in Mar68, generalises the notion of gonality for a curve C:

Definition 2.1. Let C be a smooth curve of genus $g \geq 4$. The Clifford index of C is defined to be

$$\text{Cliff}(C) := \min\{\deg(A) - 2(h^0(C, \mathcal{O}_C(A)) - 1) \mid h^0(C, \mathcal{O}_C(A)) \geq 2 \text{ and } h^1(C, \mathcal{O}_C(A)) \geq 2\}.$$ \hspace{1cm} (6)

If A is a divisor on C satisfying $h^0(C, \mathcal{O}_C(A)) \geq 2$ and $h^1(C, \mathcal{O}_C(A)) \geq 2$, then one says that A contributes to the Clifford index of C, and A is then defined to have Clifford index $\text{Cliff}(A) := \deg(A) - 2(h^0(C, \mathcal{O}_C(A)) - 1)$.

If C is hyperelliptic of genus 2 or 3, one defines $\text{Cliff}(C) = 0$; and if C is non-hyperelliptic of genus 3, one defines $\text{Cliff}(C) = 1$.

It was proved in CM91 Theorem 2.3 that $\text{Cliff}(C) \in \{k - 2, k - 3\}$, where $k = \text{gon}(C)$. We have $\text{Cliff}(C) = k - 2 = \left\lfloor \frac{g - 1}{2} \right\rfloor$ if C is general in \mathcal{M}_g for $g \geq 2$. If $\text{Cliff}(C) = k - 3$, then C is said to be exceptional.

2.2. Vector-bundle techniques. Let S be an Enriques surface, and let L be a line-bundle on S. One defines $W_d^1|L| := \{(C, A) \mid C \in |L|, A \in W_d^1(C)\}$, and $\pi : W_d^1|L| \rightarrow |L|$, the natural projection map, where $|L|$ denotes the smooth curves of $|L|$. Each fibre of π is isomorphic to $W_d^1(C)$.

Let W be an irreducible component of $W_d^1|L|$ such that π restricted to W dominates. By (3), we can assume that for general (C, A) in W, $|A|$ is base-point free. It thus makes sense to study the associated Lazarsfeld–Mukai vector bundles, $\mathcal{F}_{C,A}$ and $\mathcal{E}_{C,A}$ (see Laz86).

Let $A \in W_d^1(C) \setminus W_d^2(C)$ be base-point free. The vector-bundle $\mathcal{F}_{C,A}$ is defined by

$$\begin{array}{c}
0 \longrightarrow \mathcal{F}_{C,A} \longrightarrow H^0(S, \mathcal{O}_S(A)) \otimes \mathcal{O}_S \longrightarrow \mathcal{O}_S(A) \longrightarrow 0.
\end{array}$$ \hspace{1cm} (6)
One denotes the dual of \(\mathcal{F} \) by \(\mathcal{F}^\vee = \mathcal{E}_{C,A} \). Dualising (1), one gets
\[
0 \to H^0(S, \mathcal{O}_S(A))^\vee \otimes \mathcal{O}_S \to \mathcal{E}_{C,A} \to \mathcal{O}_C(K_C - A + K_S|C) \to 0.
\]

Note that because we are assuming \(d \leq g - \gon(C) \), then \(h^0(C, \mathcal{O}_C(K_C - A + K_S|C)) > 0 \), by Riemann–Roch. Hence, the vector-bundles \(\mathcal{E}_{C,A} \) are globally generated away from a finite set of points, those points being the possible base-points of \(\mathcal{O}_C(K_C - A + K_S|C) \). One has the following properties of \(\mathcal{E}_{C,A} \):
\[
\begin{align*}
&\cdot \ c_1(\mathcal{E}_{C,A}) = L \\
&\cdot \ c_2(\mathcal{E}_{C,A}) = d \\
&\cdot \ h^0(S, \mathcal{E}_{C,A}^\vee) = h^1(S, \mathcal{E}_{C,A}) = 0, h^2(S, \mathcal{E}_{C,A}) = 0 \\
&\cdot \ h^1(S, \mathcal{E}_{C,A}) = h^0(C, \mathcal{O}_C(A + K_S|C))
\end{align*}
\]

Given a vector-bundle \(\mathcal{E} \) of rank 2, with \(c_1(\mathcal{E}) = L, c_2(\mathcal{E}) = d \), and \(h^2(S, \mathcal{E}) = 0 \), and which is finitely generated away from a finite set of points, then given a two-dimensional subspace \(\Lambda \) in \(H^0(S, \mathcal{E}) \), the cokernel of \(\Lambda \otimes \mathcal{O}_S \to \mathcal{E} \) is isomorphic to \(\mathcal{O}_{C\Lambda}(B) \) for some \(C\Lambda \in |L| \), and where \(B \) is a torsion-free sheaf of rank 1 on \(C\Lambda \). If \(C\Lambda \) is smooth, then \(B \cong \mathcal{O}_{C\Lambda}(K_{C\Lambda} - A\Lambda + K_S|C\Lambda) \) for some \(|A\| \in W_d^1(C\Lambda) \), giving us an exact sequence
\[
0 \to \Lambda \otimes \mathcal{O}_S \to \mathcal{E} \to \mathcal{O}_{C\Lambda}(K_{C\Lambda} - A\Lambda + K_S|C\Lambda) \to 0.
\]

An important tool for us will be the following:

Proposition 2.2. Suppose that \(\mathcal{W} \) is a component of \(W_d^2|L| \) such that \(\pi : \mathcal{W} \to |L| \) dominates. Let \((C, A) \) be sufficiently general in \(\mathcal{W} \), and suppose that \(|A| \) is base-point free for these \(A \). Then there exists an exact sequence
\[
0 \to H^0(C, K_S|C) \to H^0(C, \mathcal{E}_{C,A}^\vee \otimes \mathcal{O}_C(K_C - A)) \to H^0(C, \mathcal{O}_C(K_C - 2A)) \to 0.
\]

In particular, \(h^0(C, \mathcal{E}_{C,A}^\vee \otimes \mathcal{O}_C(K_C - A)) = \dim \ker \mu_{0,A} \).

Proof. We follow the proof of [Par95, Theorem 2]. (See also [LC12, Proposition 3.2].)

Since \(|A| \) is base-point free and \(h^0(C, \mathcal{O}_C(A)) = 2 \), we have an exact sequence
\[
0 \to \mathcal{O}_C(2A) \to H^0(C, \mathcal{O}_C(A)) \otimes \mathcal{O}_C \xrightarrow{ev} \mathcal{O}_C(A) \to 0,
\]
where \(ev \) is the evaluation morphism.

The diagram
\[
\begin{array}{cccccc}
0 & \to & \mathcal{E}_{C,A}^\vee & \to & H^0(C, \mathcal{O}_C(A)) \otimes \mathcal{O}_S & \to & \mathcal{O}_C(A) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
0 & \to & \mathcal{O}_C(2A) & \to & H^0(C, \mathcal{O}_C(A)) \otimes \mathcal{O}_C & \to & \mathcal{O}_C(A) & \to & 0 \\
\end{array}
\]

yields a surjection \(\mathcal{E}_{C,A}^\vee|C \to \mathcal{O}_C(-A) \to 0 \), and since \(\bigwedge^2 \mathcal{E}_{C,A}^\vee|C = \mathcal{O}_C(-K_C + K_S|C) \), the kernel must be \(\mathcal{O}_C(A - K_C + K_S|C) \), and we get the sequence
\[
0 \to \mathcal{O}_C(A - K_C + K_S|C) \to \mathcal{E}_{C,A}^\vee|C \to \mathcal{O}_C(-A) \to 0.
\]
We tensor with \(\mathcal{O}_C(K_C - A) \) and get
\[
0 \to \mathcal{O}_C(K_S|C) \to \mathcal{E}_{C,A}|_C \otimes \mathcal{O}_C(K_C - A) \to \mathcal{O}_C(K_C - 2A) \to 0.
\]

Taking global sections gives us
\[
0 \to H^0(C, \mathcal{O}_C(K_S|C)) \to H^0(C, \mathcal{E}_{C,A}|_C \otimes \mathcal{O}_C(K_C - A)) \to H^0(C, \mathcal{O}_C(K_C - 2A))
\]
\[
\to H^1(C, \mathcal{O}_C(K_S|C)).
\]

Note that from \(\text{(2)} \) we have \(H^0(C, \mathcal{O}_C(K_C - 2A)) = \ker \mu_{0,A} \). Following an argument identical to \(\text{[Par95] Lemma 1} \), we have that the coboundary-map \(H^0(C, \mathcal{O}_C(K_C - 2A)) \to H^1(C, \mathcal{O}_C(K_S|C)) \) up to constant factors is equal to the map \(\mu_{1,A,S} : \ker_{0,A} \to H^1(C, \mathcal{O}_C(K_S|C)) \) which is given as follows:

The map \(\mu_{1,A,S} \) is the composition of the Gaussian map \(\mu_{1,A} : H^0(C, \mathcal{O}_C(K_C - 2A)) \to H^0(C, \mathcal{O}_C(2K_C)) \) with the transpose of the Kodaira–Spencer map \(\delta_{C,S}^\vee : H^0(C, \mathcal{O}_C(2K_C)) \to (T_C|L)^\vee = H^1(C, N_{C,S}^\vee \otimes \mathcal{O}_C(K_C)) = H^1(C, \mathcal{O}_C(K_S|C)) \).

The lemma follows from considering a commutative diagram
\[
\begin{array}{ccc}
0 & \to & \mathcal{O}_C(K_S|C) \\
| & & | \\
\| & \overline{=} & \| \\
0 & \to & \mathcal{O}_C(K_S|C) \\
| & & | \\
0 & \to & \mathcal{E}_{C,A}|_C \otimes \mathcal{O}_C(K_C - A) \\
| & & | \\
\| & \overline{=} & \| \\
0 & \to & \mathcal{O}_C(K_C - 2A) \\
| & & | \\
\| & \overline{=} & \| \\
0 & \to & \Omega_S^1 \otimes \mathcal{O}_C(K_C) \\
| & & | \\
\| & \overline{=} & \| \\
0 & \to & \mathcal{O}_C(2K_C) \\
\end{array}
\]

where \(\mu_{1,A} \) is found by considering \(s \) on the global sections level, and \(\delta_{C,S}^\vee \) is the coboundary map \(H^0(C, \mathcal{O}_C(2K_C)) \to H^1(C, \mathcal{O}_C(K_S|C)) \).

In \(\text{[Par95] page 197} \), it is argued that
\[
\text{Im}(d\pi_{C,A}) \subset \text{Ann}(\text{Im}(\mu_{1,A,S})).
\]

We also have a natural inclusion
\[
\text{Ann}(\text{Im}(\mu_{1,A,S})) \subset H^1(C, \mathcal{O}_C(K_S|C))^\vee,
\]
and the latter has dimension \(g - 1 \).

Since by assumption \(\pi \) dominates \(|L| \), then by Sard’s lemma, \(d\pi_{C,A} \) is surjective for general \(\langle C, A \rangle \), and so \(\text{Im}(d\pi_{C,A}) \) also has dimension \(g - 1 \).

It follows that \(\text{Ann}(\text{Im}(\mu_{1,A,S})) = H^1(C, \mathcal{O}_C(K_S|C))^\vee \), and so \(\text{Im}(\mu_{1,A,S}) = 0 \). Hence, the sequence
\[
0 \to H^0(C, \mathcal{O}_C(K_S|C)) \to H^0(C, \mathcal{E}_{C,A}|_C \otimes \mathcal{O}_C(K_C - A)) \to H^0(C, \mathcal{O}_C(K_C - 2A)) \to 0
\]
is exact. \(\square \)

We will prove the main theorem by considering the case where the general \(\mathcal{E}_{C,A} \)'s are \(\mu_L \)-stable and non-\(\mu_L \)-stable.

Definition 2.3. Given a line-bundle \(L \) on a surface \(S \), a vector-bundle \(\mathcal{E} \) is said to be \(\mu_L \)-stable if for any sub-vector bundle \(\mathcal{E}' \) of rank \(0 < \text{rk}(\mathcal{E}') < \text{rk}(\mathcal{E}) \), we have
\[
\frac{c_1(\mathcal{E}')L}{\text{rk}(\mathcal{E}')} < \frac{c_1(\mathcal{E})L}{\text{rk}(\mathcal{E})}.
\]
A vector-bundle E is said to be non-μ_L-stable if there exists a sub-vector bundle E' of rank $0 < \text{rk}(E') < \text{rk}(E)$ satisfying

$$\frac{c_1(E').L}{\text{rk}(E')} \geq \frac{c_1(E).L}{\text{rk}(E)}.$$

2.3. Assumptions. Throughout the article, we will be using the following assumptions:

(13) \hspace{0.5cm} \bullet \hspace{0.5cm} \dim W^1_{d-1}(C) = d - 1 - k \text{ for } C \text{ general in } |L| \text{ (by induction).}
(14) \hspace{0.5cm} \bullet \hspace{0.5cm} \text{The general } g^1_a \text{'s are base-point free for general } (C, A) \text{ in a component}
(15) \hspace{0.5cm} \bullet \hspace{0.5cm} k \geq 3 \text{ (since linear growth is always satisfied for hyperelliptic curves. This implies that } L^2 \geq 4)
(16) \hspace{0.5cm} \bullet \hspace{0.5cm} \text{and } \mathcal{W} \text{ is a component of } W^1_d[L] \text{ such that } \pi : \mathcal{W} \to |L| \text{ dominates}
(17) \hspace{0.5cm} \bullet \hspace{0.5cm} \text{and for general } C \in |L| \text{ the fibre over } C \text{ has dimension } \dim W^1_d(C)

3. The case where the $E_{C,A}$'s are non-μ_L-stable

In this section, we will assume that for general $(C, A) \in \mathcal{W}$, the vector-bundles $E_{C,A}$ are non-μ_L-stable. The main result of this section is Proposition 3.9, where we do a parameter count of all possible non-μ_L-stable vector-bundles that satisfy the properties of $E_{C,A}$.

We start by recalling two results, one from $[KL07]$ and one from $[KL09]$, which we will be using several times throughout this section:

Theorem 3.1 ($[KL07]$ Theorem, case of Enriques surfaces). Let S be an Enriques surface, and $O_S(D)$ a line-bundle on S such that $D > 0$ and $D^2 \geq 0$. Then $H^1(S, O_S(D)) \neq 0$ if and only if one of the following occurs:

(i) $D \sim nE$ for $E > 0$ nef and primitive with $E^2 = 0$, $n \geq 2$ and $h^1(S, O_S(D)) = \lfloor \frac{n}{2} \rfloor$;
(ii) $D \sim nE + KS$ for $E > 0$ nef and primitive with $E^2 = 0$, $n \geq 3$ and $h^1(S, O_S(D)) = \lfloor \frac{n-1}{2} \rfloor$;
(iii) there is a divisor $\Delta > 0$ such that $\Delta^2 = -2$ and $\Delta.D \leq -2$.

Note that since the Enriques surfaces in question in our article are assumed to be unmodal, then part (iii) of Theorem 3.1 cannot occur.

Lemma 3.2 ($[KL09]$ Lemma 2.12). Let $L > 0$ be a line bundle on an Enriques surface S with $L^2 \geq 0$. Then there is an integer n such that $1 \leq n \leq 10$ and, for any $i = 1, \ldots, n$, there are primitive divisors $E_i > 0$ with $E_i^2 = 0$ and integers $a_i > 0$ such that

$$L \equiv a_1E_1 + \cdots + a_nE_n$$

and one of the following intersection sets occurs:

(i) $E_i.E_j = 1$ for $1 \leq i < j \leq n$.
(ii) $n \geq 2$, $E_1.E_2 = 2$ and $E_i.E_j = 1$ for $2 \leq i < j \leq n$ and for $i = 1$, $3 \leq j \leq n$.
(iii) $n \geq 3$, $E_1.E_2 = E_1.E_3 = 2$ and $E_i.E_j = 1$ for $3 \leq i < j \leq n$, for $i = 1$, $4 \leq j \leq n$ and for $i = 2$, $3 \leq j \leq n$.
The following proposition is crucial to our result. The fact that we can assume that the vector-bundles are contained in a short-exact sequence as in (15), where \(M.L \geq N.L \), will eventually ensure that the dimensions of extensions of various \(\mathcal{O}_S(M) \) and \(\mathcal{O}_S(N) \otimes I_\xi \) is small enough to give us the desired result (see Lemma 3.7).

Proposition 3.3. Suppose \(\mathcal{E}_{C,A} \) is non-\(\mu_L \)-stable. Then there exist line-bundles \(\mathcal{O}_S(M) \) and \(\mathcal{O}_S(N) \), and a 0-dimensional subscheme \(\xi \), such that \(\mathcal{E}_{C,A} \) sits inside an exact sequence (18)

\[
0 \to \mathcal{O}_S(M) \to \mathcal{E}_{C,A} \to \mathcal{O}_S(N) \otimes I_\xi \to 0,
\]

satisfying the following conditions:

(a) We have \(M + N \sim C \), \(\text{length}(\xi) = d - M.N \), and \(|N| \) is non-trivial and base-component free (implying that \(h^0(S, \mathcal{O}_S(N)) \geq 2 \)). Furthermore, \(h^2(S, \mathcal{O}_S(M - N)) = 0 \) and \(h^0(S, \mathcal{O}_S(N - M)) = 0 \), unless \(M \sim N + K_S \) or \(M \sim N \), respectively.

(b) We have \(h^2(S, \mathcal{O}_S(M)) = 0 \) and \(h^0(S, \mathcal{O}_S(M)) \geq 2 \).

(c) We have \(h^1(S, \mathcal{O}_S(M)) = 0 \).

(d) We have \(N|_C \geq A \).

(e) If \(\xi \neq \emptyset \), then \(h^1(S, \mathcal{O}_S(N)) = 0 \) and \(N^2 > 0 \).

Note that the points where \(\mathcal{E}_{C,A} \) is not globally generated lie along the curve \(C \).

Proof. Since \(\mathcal{E}_{C,A} \) by assumption is non-\(\mu_L \)-stable, there exists a line bundle \(\mathcal{O}_S(M) \) of slope \(\geq g - 1 \) on \(C \) that injects into \(\mathcal{E}_{C,A} \). We can assume that the injection is saturated, and so we obtain the sequence (15). Note that since \(M.C \geq g - 1 \), then \(N.C \leq g - 1 \).

We have \(M + N \sim C \), \(\text{length}(\xi) = d - M.N \) and \(|N| \) base-point free because of (8) and (9), and the fact that \(\mathcal{E}_{C,A} \) is globally generated away from a finite set of points. We have \(N \) non-trivial because otherwise, \(M.N = 0 \), implying that \(\xi \neq \emptyset \), and this would imply that \(h^0(S, \mathcal{O}_S(N) \otimes I_\xi) = 0 \), which contradicts \(\mathcal{E}_{C,A} \) being globally generated away from a finite set.

We have \(h^2(S, \mathcal{O}_S(M - N)) = 0 \) and \(h^0(S, \mathcal{O}_S(N - M)) = 0 \) by the Nakai–Moishezon criterion, using that \(L \) by assumption is ample, and that \(M.L \geq N.L \).

We now show part (b). Since \(M.C \geq g - 1 \), then since \(L \) is ample, \(-M + K_S \) cannot be effective. It follows that \(h^0(S, \mathcal{O}_S(-M + K_S)) = 0 \), and this equals \(h^2(S, \mathcal{O}_S(M)) \) by Serre duality.

To prove that \(h^0(S, \mathcal{O}_S(M)) \geq 2 \), by part (a), we have \(M.N \leq d \leq g - k < g - 1 \), and this gives us \(g - 1 \leq M.C = M^2 + M.N < M^2 + g - 1 \), yielding \(M^2 > 0 \). The result now follows from Riemann–Roch.

Part (c) follows from the fact that \(M^2 > 0 \) (proven in part (b)) together with Theorem 3.1.

To prove (d), note that by tensoring (15) with \(\mathcal{O}_S(-M) \) and taking global sections, we get \(h^0(S, \mathcal{E}_{C,A} \otimes \mathcal{O}_S(-M)) \geq 1 \). Rewrite (1) as

\[
0 \to \mathcal{O}_S^{\otimes 2} \to \mathcal{E}_{C,A} \to \mathcal{O}_C(C|_C - A) \to 0,
\]
tensor with \(\mathcal{O}_S(-M) \) and take global sections. This gives us an injection \(H^0(S, \mathcal{E}_{C,A} \otimes \mathcal{O}_S(-M)) \hookrightarrow H^0(C, \mathcal{O}_C(N|_C - A)) \), proving that \(N|_C - A \geq 0 \).

As for (e), suppose that \(h^1(S, \mathcal{O}_S(N)) > 0 \). By Theorem 3.1 it follows that \(N^2 = 0 \). From (d), we then have \(d \leq N.C = N(M + N) = M.N \), contradicting part (a), which states that \(d = M.N + \text{length}(\xi) \).

\(\square \)

The following lemma gives us an upper bound on \(h^0(S, \mathcal{E}) \), because of (15).
Lemma 3.4. Suppose that for general \((C, A) \in W\), the associated vector-bundle \(E_{C,A}\) is non-\(\mu_L\)-stable, so that we have a short-exact sequence as in Proposition 3.3 where \(M\) and \(N\) are fixed. Then, for general \((C, A)\), we have \(h^1(S, E_{C,A}) \leq 2\) and \(h^1(S, O_S(N) \otimes I_{C,A}) \leq 2\).

Proof. Note that from (17), we are assuming that \(\pi : W \to |L|\) dominates, and that for general \(C \in |L|\), the fibre over \(C\) has dimension \(W^3_d(C)\).

Suppose \(h^1(S, O_S(N) \otimes I_C) \geq 3\). Then taking cohomology of (18), we get a surjection \(H^1(S, E_{C,A}) = H^1(S, O_S(N) \otimes I_C) \to 0\), implying that \(h^1(S, E_{C,A}) \geq 3\).

By (11), \(h^1(S, E_{C,A}) = h^0(C, O_C(A + KS|_C))\), giving us \(W^3_d(C)\) dimensions of \(g^2_s\)’s, which is impossible.

The following lemma is necessary for the proof of Proposition 3.8 where we prove that \(M.N \geq k - 1\). This lemma is (in the Enriques surface case) an improvement of a similar result in [AF11], where it is shown that \(M|_C\) contributes to the Clifford index. By using \(M|_C\) instead of \((M + E)|_C\) in Proposition 3.8, we would only obtain \(M.N \geq k - 2\).

Lemma 3.5. Suppose we have a sequence as in Proposition 3.3 with \((M - N)^2 \geq 0\). If there exists a primitive elliptic curve \(E\) such that \((M - N).E > 0\) and \(h^0(S, O_S(N - E + KS)) \geq 2\), then \((M + E)|_C\) contributes to \(\text{Cliff}(C)\).

Proof. By (15), we have \(k \geq 3\), and so there exist line-bundles on \(C\) that contribute to \(\text{Cliff}(C)\).

We show that \(h^i(C, O_S(M + E)|_C) \geq 2\) for \(i = 0, 1\).

Consider the exact sequence
\[
(19) \quad 0 \to O_S(-C) \to O_S \to O_C \to 0
\]
tensored with \(O_S(M + E)\), giving us
\[
0 \to O_S(-N + E) \to O_S(M + E) \to O_S(M + E)|_C \to 0.
\]
Because \(h^0(S, O_S(N)) \geq 2\) by Proposition 3.3, we must have \(h^0(S, O_S(-N + E)) = 0\). By the same proposition, it follows that \(h^0(S, O_S(M + E)) \geq 2\), and so also \(h^0(C, O_S(M + E)|_C) \geq 2\), as desired.

We have \(h^1(C, O_S(M + E)|_C) = h^0(C, O_C(K_C - M|_C - E|_C)) = h^0(C, O_S(C + KS - M - E)|_C) = h^0(C, O_S(N - E + KS)|_C)\). By considering the sequence (19) tensored with \(O_S(N - E + KS)\), we get
\[
0 \to O_S(-M - E + KS) \to O_S(N - E + KS) \to O_S(N - E + KS)|_C \to 0.
\]
Since \(h^0(S, O_S(M)) \geq 2\) by Proposition 3.3, \(h^0(S, O_S(-M + KS)) = 0\), and so \(H^0(C, O_S(N - E + KS)) \to H^0(C, O_S(N - E + KS)|_C)\). We have \(h^0(S, O_S(N - E + KS)) \geq 2\) by assumption, and so \(h^0(C, O_S(N - E + KS)|_C) \geq 2\) as well. \(\square\)

In the following proposition, we obtain a connection between \(M.N\) and the generic gonality in \(|L|\). This is used when we make the parameter count of extensions of \(O_S(M)\) and \(O_S(N) \otimes I_{C,A}\) in the proof of Proposition 3.9.

Here we use that the general curves in \(|L|\) are non-exceptional. This is a consequence of [KL13] Corollary 1.2, where we find that the Clifford index for the general curve in \(|L|\) is \(k - 2\).

Note that Proposition 3.6 in the case of \(N^2 = 4\), is the only place where we use the assumption that \(\mu(L) > 2\phi(L)\).

Proposition 3.6. Suppose that for general \((C, A)\) in \(W\), the vector-bundle \(E_{C,A}\) is non-\(\mu_L\)-stable. Suppose furthermore that \(\mu(L) > 2\phi(L) = k\). Then \(M.N \geq k - 1\).
Proof. Suppose first that \((M - N)^2 \leq 0\). Then \(2M.N \geq M^2 + N^2\), and so \(2g - 2 = (M + N)^2 = M^2 + 2M.N + N^2 \leq 4M.N\), yielding \(M.N \geq \frac{g - 1}{2}\). Since \(k \leq \frac{g}{2}\) by assumption (10), the result follows.

Now suppose \((M - N)^2 > 0\).

We start by considering three special cases, namely \(N^2 = 0\), \(N^2 = 2\), and \(N^2 = 4\) with \(\phi(N) = 2\).

Special case 1. If \(N^2 = 0\), then we know from Proposition 3.3 that \(d \leq N.C = N.(M + N) = M.N\), and so it follows in particular that \(k - 1 \leq M.N\).

Special case 2. If \(N^2 = 2\), note that by Theorem 3.1 \(h^1(S, \mathcal{O}_S(N)) = 0\), so that \(h^0(S, \mathcal{O}_S(N)) = \frac{1}{2}N^2 + 1 = 2\). Since \(E_S\) is globally generated away from a finite set of points, then so must \(|\mathcal{O}_S(N) \otimes \mathcal{I}_\xi|\), and so all points of \(\xi\) must be along base-points of \(|N|\) (or else \(\dim |\mathcal{O}_S(N) \otimes \mathcal{I}_\xi| \leq 0\)). Since \(E_S\) is globally generated outside of \(C\), this implies that the base-points of \(|N|\), and hence also the points of \(\xi\), must lie along \(C\). However, \(h^1(S, \mathcal{O}_S(N) \otimes \mathcal{I}_\xi)\) indicates (in this particular case) how many points of \(\xi\) that lie along base-points of \(|N|\), and by Lemma 3.4 it follows that \(\text{length}(\xi) \leq 2\).

If \(d > k\), then this yields \(2 \geq \text{length}(\xi) = d - M.N > k - M.N\), which leads to \(M.N \geq k - 1\).

If \(d = k\), then note that since \(h^0(C, \mathcal{O}_S(N)) \geq 2\), then \(N.C \geq k + \text{length}(\xi)\), or else we get a contradiction on the gonality of \(C\). But this gives us \(N.C = N^2 + M.N = 2 + M.N \geq k + k - M.N\), yielding \(M.N \geq k - 1\).

General case. Now suppose \(M \geq N\), \(N^2 \geq 4\) and \((M - N)^2 > 0\). If \(N^2 = 4\), we suppose that \(\phi(N) \neq 2\). We first show that there exists an elliptic curve \(E\) such that the conditions of Lemma 3.3 are satisfied.

By Lemma 3.2 \(M - N = a_1 E_1 + \cdots + a_m E_m\) for some elliptic curves \(E_i\) satisfying \(E_i, E_j > 0\) for \(i \neq j\), and integers \(a_i > 0\). Since \((M - N)^2 > 0\), we must have \(m \geq 2\), and so \((M - N).E > 0\) for any elliptic curve \(E\).

Applying Lemma 3.2 again, we see that there exist positive integers \(b_i\) and elliptic curves \(E'_i\) satisfying \(1 \leq E'_i, E'_j \leq 2\) for \(i \neq j\), such that \(M \equiv b_1 E'_1 + \cdots + b_m E'_m\). This implies that \(N - (b_1 E'_1 + \cdots + b_m E'_m)\) is linearly equivalent to either 0 or \(K_S\). If \(h^0(S, \mathcal{O}_S(N - E)) = 1\), where \(E < N\), the only way this can happen is that \(N - E\) is linearly equivalent to a stationary elliptic curve or a sum of two elliptic curves \(E''_1, E''_2\) satisfying \(2E''_1 \sim 2E''_2\). But the first case implies \(N^2 \leq 4\) with \(\phi(N) = 2\), which is a contradiction; and in the second case, \(N \sim E + E''_1 + E''_2\) such that \(h^0(S, \mathcal{O}_S(N - E''_i)) \geq 2\) for \(i = 1, 2\), so that Lemma 3.3 can still be applied.

It follows that there exists an elliptic curve \(E\) such that \((M + E)|_C\) contributes to \(\text{Cliff}(C)\). By [KL13, Corollary 1.2], the general curve \(C\) in \(|L|\) has Clifford index \(k - 2\). Recalling from
the proof of Lemma 3.3 that \(H^0(S, \mathcal{O}_S(M + E)) \hookrightarrow H^0(C, \mathcal{O}_C(M + E)) \), we get
\[
k - 2 = \text{Cliff}(C)
\leq \text{Cliff}((M + E)|_C) = (M + E).C - 2(h^0(C, \mathcal{O}_C(M + E)) - 1)
\leq M.(M + N) + E.C - (M + E)^2
= M.N + E.C - 2M.E
= M.N + E.M + E.N - 2M.E
= M.N - E.(M - N)
\leq M.N - 1,
\]
as desired. \(\Box\)

The two following lemmas are used in the proof of Proposition 3.9. The first one gives a parameter space for the extensions of \(\mathcal{O}_S(M) \) and \(\mathcal{O}_S(N) \otimes \mathcal{I}_\xi \), and is the second place in this article where we use the assumption that \(L \) is ample. The second lemma is important when we count the dimensions of possible pairs \((C, A)\) that can arise from the same vector-bundle \(\mathcal{E} \).

Lemma 3.7. Suppose \(\mathcal{O}_S(M) \) and \(\mathcal{O}_S(N) \) are two line-bundles on \(S \) satisfying \(M.L \geq N.L \), and let \(\xi \) be a non-empty zero-dimensional subscheme on \(S \) of length \(\ell > 0 \). Then all isomorphism-classes of extensions of \(\mathcal{O}_S(M) \) and \(\mathcal{O}_S(N) \otimes \mathcal{I}_\xi \) are parametrised by
\[
\mathbb{P}Ext^1(\mathcal{O}_S(N) \otimes \mathcal{I}_\xi, \mathcal{O}_S(M)) \cong \mathbb{P}H^1(S, \mathcal{O}_S(N - M + K_S) \otimes \mathcal{I}_\xi)^\vee,
\]
which has dimension
\[
\ell + h^1(S, \mathcal{O}_S(M - N)) - h^2(S, \mathcal{O}_S(M - N)) - 1.
\]

Proof. The isomorphism classes of extensions of \(\mathcal{O}_S(M) \) and \(\mathcal{O}_S(N) \otimes \mathcal{I}_\xi \) are parametrised by \(\mathbb{P}Ext^1(\mathcal{O}_S(N) \otimes \mathcal{I}_\xi, \mathcal{O}_S(M)) \cong \mathbb{P}H^1(S, \mathcal{O}_S(N - M + K_S) \otimes \mathcal{I}_\xi)^\vee \), by [Fru98] pages 36 and 39.

To find an expression for \(h^1(S, \mathcal{O}_S(N - M + K_S) \otimes \mathcal{I}_\xi) \), we tensor the exact sequence
\[
0 \to \mathcal{I}_\xi \to \mathcal{O}_S \to \mathcal{O}_S(\mathcal{I}_\xi) \to 0
\]
with \(\mathcal{O}_S(N - M + K_S) \) and take global sections, yielding
\[
0 \to H^0(S, \mathcal{O}_S(N - M + K_S) \otimes \mathcal{I}_\xi) \to H^0(S, \mathcal{O}_S(N - M + K_S)) \to \mathbb{C}^\ell
\to H^1(S, \mathcal{O}_S(N - M + K_S) \otimes \mathcal{I}_\xi) \to H^1(S, \mathcal{O}_S(N - M + K_S)) \to 0.
\]
We have \(h^0(S, \mathcal{O}_S(N - M + K_S) \otimes \mathcal{I}_\xi) = 0 \) because \((N - M + K_S).L \leq 0 \) by assumption, and using that \(L \) is ample together with the Nakai–Moishezon criterion.

The result now follows by Serre duality. \(\Box\)

Lemma 3.8. Suppose \(\mathcal{E} \) is an extension of \(\mathcal{O}_S(M) \) and \(\mathcal{O}_S(N) \otimes \mathcal{I}_\xi \) so that we have a sequence as in Proposition 3.3 Then \(h^0(S, \mathcal{E} \otimes \mathcal{E}^\vee) \geq h^0(S, \mathcal{O}_S(M - N)) \).

Proof. If \(M \neq N \) or \(M \sim N + K_S \), we have \(h^0(S, \mathcal{O}_S(M - N)) \leq 1 \), so there is nothing to prove. So assume that \(M \geq N \).

Tensor the sequence
\[
0 \to \mathcal{O}_S(M) \to \mathcal{E} \to \mathcal{O}_S(N) \otimes \mathcal{I}_\xi \to 0
\]
with \(\mathcal{O}_S(M - N) \).

We have
\[
h^0(S, \mathcal{O}_S(M - N) \otimes \mathcal{I}_\xi) = 0
\]
by Serre duality. Then
\[
h^0(S, \mathcal{E} \otimes \mathcal{E}^\vee) \geq h^0(S, \mathcal{O}_S(M - N)) \]
by \mathcal{E}^\vee. Taking global sections, we see that $h^0(S, \mathcal{E} \otimes \mathcal{E}^\vee) \geq h^0(S, \mathcal{E}^\vee \otimes \mathcal{O}_S(M))$. By Serre duality, we have $h^0(S, \mathcal{E}^\vee \otimes \mathcal{O}_S(M)) = h^2(S, \mathcal{E} \otimes \mathcal{O}_S(-M + K_S))$. It thus suffices to prove that $h^2(S, \mathcal{E} \otimes \mathcal{O}_S(-M + K_S)) \geq h^0(S, \mathcal{O}_S(M - N))$.

Tensoring $\mathcal{O}_S(-M + K_S)$. Taking cohomology, we get

$$H^2(S, \mathcal{E} \otimes \mathcal{O}_S(-M + K_S)) \to H^2(S, \mathcal{O}_S(N - M + K_S) \otimes I_\xi) \to 0.$$

So we have $h^2(S, \mathcal{E} \otimes \mathcal{O}_S(-M + K_S)) \geq h^2(S, \mathcal{O}_S(N - M + K_S) \otimes I_\xi)$.

But if we consider

$$0 \to I_\xi \to \mathcal{O}_S \to O_\xi \to 0$$

tensored with $\mathcal{O}_S(N - M + K_S)$ and take cohomology, we see that $h^2(S, \mathcal{O}_S(N - M + K_S) \otimes I_\xi) = h^2(S, \mathcal{O}_S(N - M + K_S))$, which by Serre duality equals $h^0(S, \mathcal{O}_S(M - N))$. The result follows.

We are now ready to state and prove the main result of this section.

Proposition 3.9. Suppose that for general (C, A) in W, the vector-bundles $\mathcal{E}_{C,A}$ are non-μ_L-stable, and suppose that $\mu(L) > 2\phi(L) = k$. Then $\dim W \leq g - 1 + d - k$.

Proof. By assumption, for general (C, A) in W, $\mathcal{E}_{C,A}$ sits inside an exact sequence as in Proposition 6.3. We prove the proposition by making a parameter-count of all pairs (C, A) such that $\mathcal{E}_{C,A}$ is non-μ_L-stable, making a similar construction as the one done in [AFT11, Section 3] in the case of non-simple vector-bundles on K3-surfaces.

We divide this proof into three cases. We first consider the case where the vector-bundles $\mathcal{E}_{C,A}$ are indecomposable with $\ell > 0$, followed by the indecomposable case when $\ell = 0$. Finally, we consider the case where the $\mathcal{E}_{C,A}$’s are decomposable.

The case where the general $\mathcal{E}_{C,A}$’s are indecomposable with $\ell > 0$. Fix a line-bundle $\mathcal{O}_S(N)$ such that $|N|$ is base-component free, and which satisfies the following conditions: $(L - N).L \geq N.L$, $d \geq (L - N).N$, and $d - (L - N).N \leq h^0(S, \mathcal{O}_S(N))$. Set $M := L - N$ and $\ell := d - M.N$. Note that these conditions imply that $h^1(S, \mathcal{O}_S(M)) = 0$, $h^0(S, \mathcal{O}_S(M)) \geq 2$ and $h^2(S, \mathcal{O}_S(M)) = 0$.

Let $\mathcal{P}_{N,e}$ be the family of vector-bundles that are extensions of $\mathcal{O}_S(M)$ and $\mathcal{O}_S(N) \otimes I_\xi$ where ξ is a zero-dimensional subscheme of length ℓ. For $0 \leq i \leq 2$ (see Lemma 3.4), define

$$\mathcal{P}_{N,e,i} := \{[\mathcal{E}] \in \mathcal{P}_{N,e} | h^2(S, \mathcal{E}) = 0, h^1(S, \mathcal{E}) = i\},$$

and \mathcal{E} is globally generated away from a finite set of points.$\}$

We can think of $\mathcal{P}_{N,e,i}$ as extensions of $\mathcal{O}_S(M)$ and $\mathcal{O}_S(N) \otimes I_\xi$ where ξ imposes $\ell - i$ conditions on $|N|$. Note that this puts restrictions on the dimensions of possible ξ’s that can be considered. Whereas the Hilbert scheme $S^{[\ell]}$ parametrises all possible ξ’s of length ℓ, the ξ’s that impose $\ell - i$ conditions on $|N|$ can be found by considering elements η of $S^{[\ell-i]}$ and add base-points of $|\mathcal{O}_S(N) \otimes I_\eta|$. Since \mathcal{E} is globally generated away from a finite set of points, then $|\mathcal{O}_S(N) \otimes I_\xi|$ is base-component free, and so there are only a finite set of base-points in $|\mathcal{O}_S(N) \otimes I_\xi|$.

(* It follows that there are at most $2\ell - 2i$ dimensions of ξ’s in $S^{[\ell]}$ that impose $\ell - i$ conditions on $|N|$.

Still following the construction of [AFT11, Section 3], we let $\mathcal{G}_{N,e,i}$ be the Grassmann bundle over $\mathcal{P}_{N,e,i}$ classifying pairs $([\mathcal{E}], \Lambda)$ with $[\mathcal{E}] \in \mathcal{P}_{N,e,i}$ and $\Lambda \in \text{Gr}(2, h^0(S, \mathcal{E}))$. (Note that $h^0(S, \mathcal{E}) = h^0(S, \mathcal{O}_S(M)) + h^0(S, \mathcal{O}_S(N)) - \ell + 1$, and is thus constant.)
By assumption, we have a rational map

\[h_{N,\ell,i} : \mathcal{G}_{N,\ell,i} \to \mathcal{W}_d^1(\{L\}) \]

given by \(h_{N,\ell,i}(\mathcal{E}, \Lambda) := (C_A, A_\Lambda) \) (see sequence (12)). The dimension of each fibre of \(h_{N,\ell,i} \) is found by finding the dimension of all surjections \(\mathcal{E} \to \mathcal{O}_C(K_{DA} - A_\Lambda + K_S|C_A) \) and subtract the dimension of all morphisms from \(\mathcal{O}_C(K_{DA} - A_\Lambda + K_S|C_A) \) to itself (which is 1).

By Proposition 3.6, all extensions of single \(P \) and \(g \) is construct the same family \(P \) there can only be finitely many different \(2 \) dim bounded by \(\geq 1 + 2 \).

By Lemma 3.8, this is \(\geq h^0(S, \mathcal{O}_S(M - N)) - 1 \).

Letting \(e \) be \(h^0(S, \mathcal{E}) \) for any vector-bundle \(\mathcal{E} \) in \(\mathcal{P}_{N,\ell,i} \), we conclude that \(\dim \mathcal{W}_d^1|L| \) is bounded by \(\dim \mathcal{P}_{N,\ell,i} + \dim \text{Gr}(2, e) - h^0(S, \mathcal{O}_S(M - N)) + 1 \).

By (a) combined with Lemma 3.7 and using that \(\ell = d - M.N \), we have \(\dim \mathcal{P}_{N,\ell,i} \leq 2\ell - 2i + \ell + h^1(S, \mathcal{O}_S(M - N)) - h^2(S, \mathcal{O}_S(M - N)) = 1 = 3d - 3M.N - 2i + h^1(S, \mathcal{O}_S(M - N)) - h^2(S, \mathcal{O}_S(M - N)) - 1 \). We furthermore have \(\dim \text{Gr}(2, e)^2 = 2\ell - 2 = 2e - 4 = 2(\chi(S, \mathcal{E}) + 2i - 4 = 2(g + 1 - d) + 2i - 4 = 2g - 2d + 2i - 2 \).

This gives us in total

\[
\dim \mathcal{W} \leq 3d - 3M.N - 2i - \chi(S, \mathcal{O}_S(M - N)) - 1 + 2g - 2d + 2i - 1
= 2g - 3M.N + d - 2 - \chi(S, \mathcal{O}_S(M + N)) + 2M.N
= 2g - M.N + d - 2 - g = g - 2d + d - M.N.
\]

By Proposition 3.6, \(M.N \geq k - 1 \), and it follows that

\[
\dim \mathcal{W} \leq g - 1 + d - k.
\]

The case where the general \(\mathcal{E}_{C,A} \)'s are indecomposable with \(\ell = 0 \).

In this case, we also construct the same family \(\mathcal{P}_{N,\ell,i} = \mathcal{P}_{N,0,i} \) of vector-bundles as in the previous case. By [129], all extensions of \(\mathcal{O}_S(M) \) and \(\mathcal{O}_S(N) \) are parametrised by \(\mathbb{P}H^1(S, \mathcal{O}_S(N - M + K_S)|\mathbb{P}^N = \mathbb{P}H^1(S, \mathcal{O}_S(M - N)) \). As in the previous case, we consider the same family of vector-bundles \(\mathcal{P}_{N,0,i} \), where \(i \leq 2 \), together with the grassmannian bundle \(\mathcal{G}_{N,0,i} \). This gives us the bound

\[
\dim \mathcal{W}_d^1|L| \leq h^1(S, \mathcal{O}_S(M - N)) - 1 + \dim \text{Gr}(2, e) - h^0(S, \mathcal{O}_S(M - N)) + 1,
\]

where \(e = h^0(S, \mathcal{E}) \) for the extensions \(\mathcal{E} \) with \(h^1(S, \mathcal{E}) = i \).

Since there are no indecomposable extensions of \(\mathcal{O}_S(M) \) and \(\mathcal{O}_S(N) \) when \(M \sim N + K_S \) (since then \(h^1(S, \mathcal{O}_S(M - N)) = 0 \), we can by Proposition 3.3 (a) assume that \(h^2(S, \mathcal{O}_S(M - N)) = 0 \). We have, as before, \(\dim \text{Gr}(2, e) = 2g - 2d + 2i - 2 \), and \(\chi(\mathcal{O}_S(M - N)) = g - 2M.N \).

Note that \(\ell = d - M.N \), we have \(d = M.N \) in this case. It follows that

\[
\dim \mathcal{W}_d^1|L| \leq -\chi(\mathcal{O}_S(M - N)) + 2g - 2d + 2i - 2 + 1 = -g + 2M.N + 2g - 2d + 2i - 1 = g - 1 + 2i.
\]

Now, if \(i = 0 \), we are done. So suppose \(i > 0 \). Since \(h^1(S, \mathcal{O}_S(M)) = 0 \) (by Proposition 3.3), it follows that \(h^1(S, \mathcal{O}_S(N)) = i \), and so by Theorem 3.1 \(N^2 = 0 \). But then, \(N.C = N.M = d \), and since \(N|C \geq A \) (by Proposition 3.3), it follows that these vector-bundles only yield one single \(g_d^1 \) for each curve \(C \).

The case where the general \(\mathcal{E}_{C,A} \)'s are decomposable.

Now suppose \(\mathcal{E}_{C,A} \) is decomposable for general \((A, C) \). In that case, we must have \(\ell = 0 \), and so \(M.N = d \). Note also that there can only be finitely many different \(\mathcal{E}_{C,A} \) in this case, and so we will here show that the
image of the map $f_{E} : \text{Gr}(h^{0}(S, \mathcal{E}), 2) \rightarrow \mathcal{W}_{d}^{1}|L|$ is of dimension at most $g - 1$, thus implying that $\dim W_{d}^{1}(C) = 0$ (given the assumptions in the proposition).

As argued in the indecomposable case, we have

$$\dim \im f_{E} = 2(h^{0}(S, \mathcal{E}) - 2) - h^{0}(S, \mathcal{E} \otimes \mathcal{E}^{\vee}) + 1.$$

Since \mathcal{E} is decomposable, we have $\mathcal{E} \otimes \mathcal{E}^{\vee} \cong \mathcal{O}_{S}^{\mathbb{Z}} \oplus \mathcal{O}_{S}(M - N) \oplus \mathcal{O}_{S}(N - M)$.

By Proposition 3.3, we either $M \sim N + K_{S}$ or $h^{2}(S, \mathcal{O}_{S}(M - N)) = 0$.

If $M \sim N + K_{S}$, then both $M^{2} > 0$ and $N^{2} > 0$, and so $h^{1}(S, \mathcal{E}) = h^{1}(S, \mathcal{O}_{S}(M)) + h^{1}(S, \mathcal{O}_{S}(N)) = 0$, by Theorem 3.1. In this case, we have $h^{0}(S, \mathcal{E}) = g - d + 1$ and $d = M.N = \frac{g - d}{2}$, and so

$$\dim \im f_{E} = 2g - 2 \cdot \frac{g - 1}{2} - 3 - h^{0}(M - N) - h^{0}(N - M) \leq g - 2.$$

If $h^{2}(S, \mathcal{O}_{S}(M - N)) = 0$, then let $i = h^{1}(S, \mathcal{E})$. As in the case where the \mathcal{E}‘s are indecomposable with $\ell = 0$, we also here get $N^{2} = 0$ if $i > 0$, and hence that $N|_{C} = A$. We thus get one single g_{d}^{1} for each curve C.

Now suppose $i = 0$. This implies that $h^{0}(S, \mathcal{E}) = g - d + 1$, and so

$$\dim \im f_{E} \leq 2(g - d - 1) - h^{0}(S, \mathcal{O}_{S}(M - N)).$$

Using Riemann–Roch together with the assumption that $h^{2}(S, \mathcal{O}_{S}(M - N)) = 0$, we get $h^{0}(S, \mathcal{O}_{S}(M - N)) \geq \frac{1}{2}C^{2} - 2M.N + 1 = g - 2M.N = g - 2d$, which gives us

$$\dim \im f_{E} \leq g - 3.$$

\square

4. THE CASE WHERE THE $\mathcal{E}_{C, A}$‘S ARE μ_{L}-STABLE

In this section, we cover the cases where $\mathcal{E}_{C, A}$ is μ_{L}-stable for general (C, A) in \mathcal{W}. It is here not possible to do a parameter count in order to obtain a suitable bound, but we prove here instead that $\dim \ker(\mu_{0, A}) \leq 2$, yielding that $\dim W_{d}^{1}(C) = d - k$ for $d \leq g - k$ for the curves in question.

Note that, by Assumption (17), we cannot have $h^{0}(C, \mathcal{O}_{C}(A + K_{S}|_{C})) \geq 3$ for general (C, A) in \mathcal{W}, since otherwise, by subtracting points, we would have more than $\dim W_{d}^{1}(C)$ dimensions of g_{d}^{1}‘s, which is impossible. In the following propositions, we therefore only need to consider the cases where $h^{0}(C, \mathcal{O}_{C}(A + K_{S}|_{C})) = 2$ or ≤ 1, respectively.

Proposition 4.1. Suppose that $\mathcal{E}_{C, A}$ is μ_{L}-stable, and that $h^{0}(C, \mathcal{O}_{C}(A + K_{S}|_{C})) = 2$, for general (C, A) in \mathcal{W}. Then $\dim \mathcal{W} \leq g - 1 + d - k$.

Proof. If $h^{0}(C, \mathcal{O}_{C}(A + K_{S}|_{C})) = 2$ for the general pairs (C, A) in \mathcal{W}, then by (5), we can assume that $\mathcal{O}_{C}(A + K_{S}|_{C})$ is also base-point free for general A, and so these pairs $(C, A + K_{S}|_{C})$ define vector-bundles $\mathcal{E}_{C, A + K_{S}|_{C}}$. If these vector-bundles are non-μ_{L}-stable for general (C, A) in \mathcal{W}, then by Proposition 3.3 we get at most $g - 1 + d - k$ dimensions of pairs $(C, A + K_{S}|_{C})$, and so there must also be at most that many dimensions of pairs (C, A). So suppose the vector-bundles are μ_{L}-stable.

The vector-bundles $\mathcal{E}_{C, A + K_{S}|_{C}}$ lie inside a sequence

$$0 \rightarrow H^{0}(S, \mathcal{O}_{S}(A + K_{S}|_{C}))^{\vee} \otimes \mathcal{O}_{S} \rightarrow \mathcal{E}_{C, A + K_{S}|_{C}} \rightarrow \mathcal{O}_{C}(K_{C} - A) \rightarrow 0.$$
Now, tensoring this sequence with $\mathcal{E}^\vee_{C,A}$ and taking global sections, we get

$$0 \rightarrow H^0(S,\mathcal{E}^\vee_{C,A} \otimes \mathcal{O}_S(K_S)) \rightarrow H^0(S,\mathcal{E}^\vee_{C,A+K_S} \otimes \mathcal{E}^\vee_{C,A}) \rightarrow H^0(C,\mathcal{O}_C(K_C - A) \otimes \mathcal{E}^\vee_{C,A}) \rightarrow H^1(S,\mathcal{E}^\vee_{C,A}) \rightarrow H^1(S,\mathcal{E}^\vee_{C,A} \otimes \mathcal{O}_S(K_S)) \rightarrow \cdots$$

Since $h^0(S,\mathcal{E}^\vee_{C,A}) = h^1(S,\mathcal{E}^\vee_{C,A}) = 0$, then by Proposition 2.2, $h^0(S,\mathcal{E}^\vee_{C,A+K_S} \otimes \mathcal{E}^\vee_{C,A}) = \dim \ker \mu_{0,A}$.

Now, suppose first that $\mathcal{E}_{C,A} \cong \mathcal{E}_{C,A+K_S}$. Since we are assuming stability, then it follows that the vector-bundles are simple, and so $h^0(S,\mathcal{E}_{C,A} \otimes \mathcal{E}^\vee_{C,A}) = 1$, and it follows that $\dim \ker \mu_{0,A} = 1$. By (1), $\dim W^1(C) = -g + 2d - 1$, and by putting $d \leq g - k$, we have $\dim W^1(C) = d - k - 1$.

Now assume that $\mathcal{E}_{C,A} \not\cong \mathcal{E}_{C,A+K_S}$. Since both $\mathcal{E}_{C,A}$ and $\mathcal{E}_{C,A+K_S}$ are μ_L-stable, then (noting that $\mu_L(\mathcal{E}_{C,A}) = \mu_L(\mathcal{E}_{C,A+K_S})$), we have $h^0(S,\mathcal{E}_{C,A+K_S} \otimes \mathcal{E}^\vee_{C,A}) = 0$, and so $\dim \ker \mu_{0,A} = 0$, and $\dim W^1(C) = d - k$ by (1) and (1).

Proposition 4.2. Suppose that $\mathcal{E}_{C,A}$ is μ_L-stable, and that $h^0(C,\mathcal{O}_S(A + K_S|C)) \leq 1$, for general (C,A) in W. Then $\dim \ker \mu_{0,A} \leq 2$. It follows that if $d \leq g - k$, then $\dim W \leq g - 1 + d - k$.

Proof. Tensoring the sequence (7) by $\mathcal{E}^\vee_{C,A} \otimes \mathcal{O}_S(K_S)$ and taking cohomology, one gets

$$0 \rightarrow H^0(S,\mathcal{E}^\vee_{C,A} \otimes \mathcal{O}_S(K_S)) \rightarrow H^0(S,\mathcal{E}^\vee_{C,A+K_S} \otimes \mathcal{O}_S(K_S)) \rightarrow H^1(C,\mathcal{E}^\vee_{C,A+K_S} \otimes \mathcal{O}_C(K_C - A)) \rightarrow H^1(S,\mathcal{E}^\vee_{C,A} \otimes \mathcal{O}_S(K_S)) \rightarrow \cdots$$

We have $H^0(S,\mathcal{E}^\vee_{C,A} \otimes \mathcal{E}^\vee_{C,A} \otimes \mathcal{O}_S(K_S)) = 0$ by the stableness assumption, and so it follows that $H^0(C,\mathcal{E}^\vee_{C,A+K_S} \otimes \mathcal{O}_C(K_C - A))$ injects into $H^1(S,\mathcal{E}^\vee_{C,A} \otimes \mathcal{O}_S(K_S)) \otimes \mathcal{O}_S(K_S)) \rightarrow H^1(S,\mathcal{E}^\vee_{C,A} \otimes \mathcal{O}_S(K_S)) \otimes \mathcal{O}_S(K_S)) \rightarrow H^1(S,\mathcal{E}^\vee_{C,A} \otimes \mathcal{O}_S(K_S)) \otimes \mathcal{O}_S(K_S)) \rightarrow \cdots$.

By (11), it follows that if $d \leq g - k$, then $\dim W = -g + 2d$. By putting $d \leq g - k$, the result follows.

Remark 4.3. It is interesting to note that the same result can be obtained by considering the moduli-space M of μ_L-stable vector-bundles of rank 2 with $c_1 = L$ and $c_2 = d$ on S. It is known (see e.g. [Kim06, Remark, page 768]) that the dimension of the tangent space at E is given by

$$\dim T_E M = 4c_2 - c_1^2 - 3 + h^2(S,\mathcal{E} \otimes \mathcal{E}^\vee).$$

Since $h^2(S,\mathcal{E} \otimes \mathcal{E}^\vee) = 0$ in our case, it follows that the dimension is given by $4d - L^2 - 3 = 4d - 2g - 1$.

By considering all possible injections $\Lambda \hookrightarrow H^0(S,\mathcal{E})$, as done in the proof of Proposition 3.9, we obtain $\dim W \leq 2d - 1$ using this approach, or equivalently, $\dim W^1(C) \leq 2d - g$. We have $2d - g \leq d - k$ precisely when $d \leq g - k$.

Proof of Theorem 1.1. Suppose that $\pi : W \rightarrow |L|$ dominates. From (5), we can assume that for general $(C,A) \in W$, we have that $|A|$ is base-point free. We can therefore for these (C,A) consider vector-bundles $\mathcal{E}_{C,A}$.
If for general \((C, A)\) in \(W\) we have \(\mathcal{E}_{C,A}\) non-\(\mu_L\)-stable, then by Proposition \([3.9]\) we have \(\dim W \leq g - 1 + d - k\). If for general \((C, A)\) in \(W\) we have \(\mathcal{E}_{C,A}\) \(\mu_L\)-stable, then we have the same bound by Propositions \([4.1]\) and \([4.2]\).

Since \(\dim |L| = g - 1\), the result follows. \(\square\)

5. Example of curves on Enriques surfaces with an infinite number of \(g^1_{\text{gon}(C)}\)’s

We here present an example of curves with an infinite number of \(g^1_{\text{gon}(C)}\)’s.

Example 5.1. Let \(S\) be any Enriques surface (which is possibly nodal). Let \(L = n(E_1 + E_2)\) for \(n \geq 3\), where \(E_1, E_2 = 2\), in which case, \(k = \mu(L)\) by \([\text{KL09}, \text{Corollary 1.5 (a)}]\). Then there exists a sub-linear system \(\mathfrak{d} \subseteq |L|\) of smooth curves such that for general \(C \in \mathfrak{d}\), there exist infinitely many \(g^1_{\text{gon}(C)}\)’s.

Indeed, let \(B = \mathcal{O}_S(E_1 + E_2)\), consider the map \(f_B : S \to \mathbb{P}^2\), and let \(\mathfrak{d} = f^*|\mathcal{O}_{\mathbb{P}^2}(n)|\). This is then a sub-linear system of \(|L|\), consisting of all curves that map 4–1 onto curves of \(|\mathcal{O}_{\mathbb{P}^2}(n)|\). By Bertini’s theorem, since this linear system is base-point free, the generic elements are smooth.

One constructs infinitely many \(g^1_{B,L-4}\)’s on a generic smooth curve \(C \in \mathfrak{d}\) in the following way: Let \(C = f^{-1}(C')\), where \(C'\) is smooth in \(\mathcal{O}_{\mathbb{P}^2}(n)\). Then \(C\) is also smooth. We let the \(g^1_{B,L-4}\)’s be \(f_B^*(\mathcal{O}_{C'}(1) \otimes \mathcal{O}_{C'}(-P))\), where \(P\) is any point on \(C'\). (On \(C\), this is the same as subtracting one point \(Q\) on \(B\) and noting that \(|B - Q|\) has three base-points \(f^{-1}(f(Q)) - Q\) that can also be subtracted.)

By \([\text{KL09}, \text{Corollary 1.6}]\), the minimal gonality is always at most 2 less than the generic gonality, and the generic gonality is given by \(B.L - 2\) by \([\text{KL09}, \text{Corollary 1.5}]\), so in our case, it follows that \(\text{gon}(C) = B.L - 4\). Since \(n \geq 3\), we are ensured that the \(g^1_{B,L-4}\)’s are distinct.

These \(g^1_{B,L-4}\)’s are, as far as we know, new examples of curves \(C\) with infinitely many \(g^1_{\text{gon}(C)}\)’s. The curves are furthermore non-exceptional.

These curves \(C\) are 4–1 coverings of plane curves, and the \(g^1_{\text{gon}(C')}\)’s are induced from the \(g^1_{\text{gon}(C')}\)’s. According to the Castelnuovo–Severi inequality (see e.g. \([\text{Kan84}]\)), whenever we have an \(m\)–1 covering from a curve \(C\) to a curve \(C'\), if \(g(C) > mg(C') + (m - 1)(d - 1)\), then any base-point free \(g^1_{\mathcal{E}}\) on \(C\) is induced by a base-point free linear system on \(C'\). In particular, if \(d = \text{gon}(C)\) and \(C'\) has infinitely many \(g^1_{\text{gon}(C')}\)’s, then \(C\) also has infinitely many \(g^1_{\text{gon}(C)}\)’s. However, in this example, \(g(C) \leq mg(C') + (m - 1)(d - 1)\).

Furthermore, by \([\text{CM91}, \text{Corollary 2.3.1}]\), any exceptional curve \(C\) has infinitely many \(g^1_{\text{gon}(C)}\)’s. However, by \([\text{KL13}, \text{Theorem 1.1}]\), the only exceptional curves \(C\) on Enriques surfaces are isomorphic to smooth plane quintics and satisfy \(C^2 = 10\). It follows that the curves in our example are non-exceptional.

References

[A11] A. Arbarello, M. Cornalba, P.A. Griffiths, and J. Harris, **Geometry of algebraic curves**, vol. 1, Springer Verlag, 1985.

[AF11] M. Aprodu and G. Farkas, **Green’s conjecture for curves on arbitrary K3 surfaces**, Compositio Math 147 (2011), 839–851.

[Apr05] M. Aprodu, **Remarks on syzygies of d-gonal curves**, Math. Res. Lett. 12 (2005), 387–400.

[CM91] M. Coppens and G. Martens, **Secant spaces and Clifford’s theorem**, Compositio Mathematica 78 (1991), 193–212.
[CP95] C. Ciliberto and G. Pareschi, Pencils of minimal degree on curves on a K3 surface, Journal für die reine und angewandte Mathematik 460 (1995), 14–36.

[Fri98] R. Friedman, Algebraic surfaces and holomorphic vector bundles, Springer Verlag, 1998.

[GH80] P. Griffiths and J. Harris, The dimension of the variety of special linear systems on a general curve, Duke Math. J 47 (1980), 233–272.

[GL87] M. Green and R. Lazarsfeld, Special divisors on curves on a K3 surface, Inventiones mathematicae 89 (1987), no. 2, 357–370.

[Gre84] M. Green, Koszul cohomology and the geometry of projective varieties (appendix by M. Green and R. Lazarsfeld), Journal of differential geometry 6 (1984), 125–171.

[Kan84] E. Kani, On Castelnuovo’s equivalence defect, Journal für die reine und angewandte Mathematik 352 (1984), 24–70.

[Kem71] G. Kempf, Schubert methods with an application to algebraic curves, Stichting Mathematisch Centrum, 1971.

[Kim06] H. Kim, Stable vector bundles of rank two on Enriques surfaces, J. Korean Math. Soc 43 (2006), no. 4, 765–782.

[KL72] S.L. Kleiman and D. Laksov, On the existence of special divisors, American Journal of Mathematics 94 (1972), no. 2, 431–436.

[KL07] A.L. Knutsen and A.F. Lopez, A sharp vanishing theorem for line bundles on K3 or Enriques surfaces, Proceedings of the American Mathematical Society 135 (2007), no. 11, 3495–3498.

[KL09] ———, Brill-Noether theory for curves on Enriques surfaces, I: the positive cone and gonality, Mathematische Zeitschrift 261 (2009), 659–690.

[KL13] ———, Brill-Noether theory of curves on Enriques surfaces, II. The Clifford index, arXiv preprint arXiv:1308.1074 (2013).

[Knu01] A.L. Knutsen, On kth-order embeddings of K3 surfaces and Enriques surfaces, manuscripta mathematica 104 (2001), no. 2, 211–237.

[Knu03] ———, Gonality and Clifford index of curves on K3 surfaces, Archiv der Mathematik 80 (2003), no. 3, 235–238.

[Knu09a] ———, On secant spaces to Enriques surfaces, Bulletin of the Belgian Mathematical Society-Simon Stevin 16 (2009), no. 5, 907–931.

[Knu99b] ———, On two conjectures for curves on K3 surfaces, International Journal of Mathematics 20 (2009), 1547–1560.

[Laz86] R. Lazarsfeld, Brill-Noether-Petri without degenerations, J. Diff. Geom. 23 (1986), 299–307.

[LC12] M. Lelli-Chiesa, Green’s conjecture for curves on rational surfaces with an anticanonical pencil, Mathematische Zeitschrift (2012), 1–12.

[Mar68] H.H. Martens, On the varieties of special divisors on a curve. II, Journal für die reine und angewandte Mathematik (Crelles Journal) 1968 (1968), no. 233, 89–100.

[Mar84] G. Martens, On dimension theorems of the varieties of special divisors on a curve, Mathematische Annalen 267 (1984), no. 2, 279–288.

[Par95] G. Pareschi, A proof of Lazarsfeld’s theorem on curves on K3 surfaces, J. Alg. Geom. 4 (1995), 195–200.

[Tyu87] A.N. Tyurin, Cycles, curves and vector bundles on an algebraic surface, Duke Math. J 54 (1987), no. 1, 1–26.

Nils Henry Rasmussen and Shengtian Zhou
nils.h.rasmussen@hit.no, shengtian.zhou@hit.no
Telemark University College, Dept. of Teacher Education
Lærerskolevegen 40, 3679 NOTODDEN, Norway