Supplementary Material

A Two-way Proteome Microarray Strategy to Identify Novel Mycobacterium tuberculosis-human Interactors

Tingming Cao¹#, Lingna Lyu¹#, Hongyan Jia¹, Jinghui Wang¹, Fengjiao Du¹, Liping Pan¹, Zihui Li¹, Aiying Xing¹, Jing Xiao¹, Yu Ma¹, Zongde Zhang¹*

1 Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China.

These authors contributed equally to this work.

* Correspondence: Corresponding Author: zzd417@ccmu.edu.com
1 Supplementary Figures and Tables

1.1 Supplementary Figures

Supplementary Figure 1. *Mtb* SP-unique, CP-unique and SP-CP-common interactors screened on human proteome microarray. (A) *Mtb* SP-unique interactors (green), (B) *Mtb* CP-unique interactors (red) and (C) *Mtb* SP-CP-common interactors were showed with their SNR≥2.0. The colors shades represent the numerical value.
Supplementary Figure 2. NRF1 and SMAD2 are potential *Mtb* interactors. Potential *Mtb* interactors NRF1 and SMAD2 were set as representative proteins for further study. The SNR and images were shown. Experiments were performed in two replicates.

Protein	Image	SNR532	Image	SNR647
NRF1	![Image](image1.png)	6.53	![Image](image2.png)	8.98
SMAD2	![Image](image3.png)	4.24	![Image](image4.png)	5.90

Supplementary Figure 3. Purification of His tagged Rv0577, Rv3153, Rv2117 and Rv2423. His tagged *Mtb* proteins were purified and detected by SDS-PAGE followed by coomassie brilliant blue staining.

Supplementary Figure 4. PPI based on the experimental validation. Network plot was visualized by Cytoscape software. Nodes depict proteins (rectangle: human proteins, ellipse: *Mtb* proteins) by various colors and edges represent interactions.
1.2 Supplementary Tables

Table S1 The host interacting proteins with *Mtb* that have been identified from previous studies.

Host Protein Name	Mtb binding partners	Uniprot ID	Method	Reference
TRIM27	PtpA	P14373	Y2H	Wang J. et al., 2016, *Sci Rep*
IL8	Rv3248c,Rv0296c,Rv1018c	P10145	AP/MS	Wang J. et al., 2015, *Nat Immunol*
Ub	PtpA		Y2H	Dziadek B. et al., 2016, *Plos One*
β2M	ESAT-6	P61769	Y2H	Sreejit G. et al., 2014, *Plos Pathog*
Hrs	EsxH,EsxG	O14964	Y2H	Mehra A. et al., 2013, *Plos Pathog*
DUSP16/MKP-7	Eis	Q9BY84	acetylation assays *in vitro*	Kim K.H. et al., 2012, *PNAS*
TLR2	Rv0577	O60603	Pulldown	Byun E.H. et al., 2012, *FASEB J*
V-ATPase	PtpA	Q15904	Pulldown	Wong D. et al., 2011, *PNAS*
Rab5/Rab7	NdkA	P20339/P51149	Pulldown	Sun J. et al., 2010, *Plos One*
ALO17	Rv3655c	Q63HN8	Pulldown	Danelishvili L. et al., 2010, *Plos One*
PSF	Rv3654c	P23246	Pulldown	Danelishvili L. et al., 2010, *Plos One*
VPS33B	PtpA	Q9H267	substrate trapping	Bach H. et al., 2008, *Cell Host Microbe*
Coronin-1A	LpdC	P31146	Pulldown and 2D-gel	Deghmane A-E. et al., 2007, *J Cell Sci*
PI3P	SapM	Q13496	phosphatase assay *in vitro*	Vergne I. et al., 2005, *PNAS*
Ingenuity Canonical Pathways	-log(p-value)	Ratio	Molecules	
---	---------------	-------	---	
TGF-β Signaling	3.47	0.046	SMAD2, MAPK3, SMAD4, HNF4A	
Transcriptional Regulatory Network in Embryonic Stem Cells	2.94	0.0556	CDX2, HNF4A, FOXD3	
Role of NANOG in Mammalian Embryonic Stem Cell Pluripotency	2.92	0.0328	MAPK3, CDX2, SMAD4, FOXD3	
Osteoarthritis Pathway	2.89	0.0236	SMAD2, GLIS2, PPARD, SMAD4, SLC39A8	
Melatonin Signaling	2.59	0.0417	RORA, MAPK3, MAP2K5	
Ephrin B Signaling	2.57	0.0411	MAPK3, ACP1, GNB1L	
Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes	2.46	0.0375	SMAD2, MAPK3, SMAD4	
IL-22 Signaling	2.43	0.0833	MAPK3, STAT5B	
Role of JAK family kinases in IL-6-type Cytokine Signaling	2.39	0.08	MAPK3, STAT5B	
Antiproliferative Role of TOB in T Cell Signaling	2.36	0.0769	SMAD2, SMAD4	
PPARα/RXRα Activation	2.31	0.0222	SMAD2, MAPK3, SMAD4, STAT5B	
Sirtuin Signaling Pathway	2.29	0.0171	PCK2, MAPK3, NDUFB6, LDHA, NFE2L2	

Table S2 Top twenty IPA pathways for *Mtb* interactors
Table S3 Top ten IPA “Diseases and Bio Functions” items for *Mtb* effectors

Diseases or Functions	Annotation	p-Value	Molecules	# Molecules
Acute Myeloid Leukemia Signaling	2.27	0.0323	MAPK3,STAT5B,MAP2K5	
PPAR Signaling	2.25	0.0316	PPARD,MAPK3,STAT5B	
Regulation of the Epithelial-Mesenchymal Transition Pathway	2.23	0.0212	SMAD2,MAPK3,SMAD4,MAP2K5	
Oncostatin M Signaling	2.13	0.0588	MAPK3,STAT5B	
DNA Methylation and Transcriptional Repression Signaling	2.13	0.0588	MTA2,MBD2	
Chronic Myeloid Leukemia Signaling	2.12	0.0283	MAPK3,SMAD4,STAT5B	
Mouse Embryonic Stem Cell Pluripotency	2.12	0.0283	MAPK3,SMAD4,FOXD3	
Glucocorticoid Receptor Signaling	2.03	0.0147	SMAD2,PCK2,MAPK3,SMAD4,STAT5B	

Gene Expression

- **Activation of DNA endogenous promoter**
 - p-Value: 2.54E-20
 - Molecules: ENTX,ZNF136
 - # Molecules: 39

- **Transcription of DNA**
 - p-Value: 1.61E-19
 - Molecules: OXB9,IKZF3,IKZF4,INSM1,IRF2,KLF11,KLF8,MAP2K5,MAPK3,MBD2,MTA2,NFE2L2,NRF1,OVO1,PPAR,D,RORA,SKOR2,SMAD2,SMAD4,OX10,SOX4,SP6,SRCAP,STAT5B,V
 - # Molecules: 42
Gene Expression Transcription of RNA 1.06E-16

Cell Death and Survival Necrosis 42

Gene Transactivation of RNA 0.000000

Cellular Movement Invasion of breast cancer cell lines 14

Cellular Movement Invasion of cells 18

Embryonic Development Patterning of rostrocaudal axis 6

Cellular Development, Cellular Cell proliferation of Growth and tumor cell lines Proliferation 24
n	ENTX
	BCL2L14,CDX2,FOXD3,FOXM1,GLO1,HNF4A,HOXB9,IRF2,KLF8,MAP2K5,MAPK3,MTA2,NFE2L2,NRF1,PARVA,PCK2,PPARD,SMAD2,SMA
Cell Death and Survival lines	Cell death of tumor cell lines 0.000010 ARVA,PCK2,PPARD,SMAD2,SMA
	D4,SOX10,SOX4,SRCA,STAT5B 23
Table S4 Top three networks in diseases and functions for *Mtb* interactors

Top network functions	Score	Focus Molecules
Gene Expression, Embryonic Development, Organismal Development	32	AKIRIN2, CDX2, BCL2L14, CYP39A1, FOXD3, HOXB4, HOXB9, MAP2K5, NFE2L2, PCK2, RORA, SF3B2, SK OR2, SMAD2, SMAD4, SRCAP
Cellular Assembly and Organization, Endocrine System Disorders, Gastrointestinal Disease	32	ACP1, DDX39B, GLO1, GNB1L, HNF4A, KLF11, LAPT M4A, NDUFB6, NRF1, OVL1, PARVA, SOX4, SOX10, STAT5B, ZNF410, ZNF557
Gene Expression, Carbohydrate Metabolism, Small Molecule Biochemistry	27	ARID3A, ESRRG, FOXM1, IKZF3, IKZF4, INSM1, IRF2, KAT14, LDHA, MAPK3, MBD2, MTA2, PPARD, VPS8

Table S5 Top five tox functions list for *Mtb* interactors identified

Name	p-value	overlap
TGF- Signaling	3.84E-04	4.4 %
Liver Proliferation	2.13E-03	2.1 %
Renal Necrosis/Cell Death	4.84E-03	1.3 %
PPAR/RXR Activation	5.20E-03	2.2 %
Mechanism of Gene Regulation by Peroxisome Proliferators via PPAR	5.67E-03	3.2 %
1.3 Supplementary Original Figures

Supplementary Original Figure 1. His pull-down of His-Rv0577 with endogenous NRF1. ** represented specific band, * represented non-specific band
Supplementary Original Figure 2. His pull-down of His-Rv0577, His-Rv3153, His-Rv2117 and His-Rv2423 with endogenous SMAD2. ** represented specific band
Supplementary Original Figure 3. Purification of His tagged Rv0577, Rv3153, Rv2117 and Rv2423.
