Genetic Virulence Profile of Enteroaggregative Escherichia coli Strains Isolated from Danish Children with Either Acute or Persistent Diarrhea

Hebbelstrup Jensen, Betina; Poulsen, Anja; Hebbelstrup Rye Rasmussen, Stig; Struve, Carsten; Engberg, Jørgen H; Friis-Møller, Alice; Boisen, Nadia; Jønsson, Rie; Petersen, Randi F; Petersen, Andreas Munk; Krogfelt, Karen A

Published in:
Frontiers in Cellular and Infection Microbiology

DOI:
10.3389/fcimb.2017.00230

Publication date:
2017

Document Version
Publisher’s PDF, also known as Version of record

Citation for published version (APA):
Hebbelstrup Jensen, B., Poulsen, A., Hebbelstrup Rye Rasmussen, S., Struve, C., Engberg, J. H., Friis-Møller, A., ... Krogfelt, K. A. (2017). Genetic Virulence Profile of Enteroaggregative Escherichia coli Strains Isolated from Danish Children with Either Acute or Persistent Diarrhea. DOI: 10.3389/fcimb.2017.00230
Genetic Virulence Profile of Enteroaggregative *Escherichia coli* Strains Isolated from Danish Children with Either Acute or Persistent Diarrhea

Betina Hebbelstrup Jensen 1*, Anja Poulsen 2, Stig Hebbelstrup Rye Rasmussen 3, Carsten Struve 1, Jørgen H. Engberg 4, Alice Friis-Møller 5, Nadia Boisen 1, Rie Jønsson 1, Randi F. Petersen 1, Andreas M. Petersen 1, 2, 5 and Karen A. Krogfelt 1*

1 Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark, 2 Department of Gastroenterology, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark, 3 Department of Political Sciences and Public Management, University of Southern Denmark, Odense, Denmark, 4 Department of Clinical Microbiology, Slagelse Hospital, Slagelse, Denmark, 5 Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark

Enteroaggregative *Escherichia coli* (EAEC) is frequently found in diarrheal stools worldwide. It has been associated with persistent diarrhea, weight loss, and failure to thrive in children living in developing countries. A number of important EAEC virulence genes are identified; however, their roles in acute and persistent diarrhea have not been previously investigated. The aim of this study was to identify specific EAEC virulence genes associated with duration and type of diarrhea in Danish children. We aimed to improve the current diagnostics of EAEC and enable targeting of strains with an expected severe disease course. Questionnaires answered by parents provided information regarding duration of diarrhea and presence of blood or mucus. A total of 295 EAEC strains were collected from children with acute (≤7 days) and persistent diarrhea (≥14 days) and were compared by using multiplex PCR targeting the genes *sat*, *sepA*, *sigA*, *pet*, *astA*, *aatA*, *aggR*, *aaIC*, *aap*, *agg3/4C*, *ORF3*, *aafA*, *aggA*, *agg3A*, *agg4A*, and *agg5A*. Furthermore, the distribution of EAEC genes in strains collected from cases of bloody, mucoid, and watery diarrhea was investigated. The classification and regression tree analysis (CART) was applied to investigate the relationship between EAEC virulence genes and diarrheal duration and type. Persistent diarrhea was associated with strains lacking the *pic* gene (*p* = 0.002) and with the combination of the genes *pic*, *sat*, and absence of the *aggA* gene (*p* = 0.05). Prolonged diarrhea was associated with the combination of the genes *aatA* and *astA* (*p* = 0.03). Non-mucoid diarrhea was associated with strains lacking the *aatA* gene (*p* = 0.004). Acute diarrhea was associated with the genes *aggR*, *aap*, and *aggA* by individual odds ratios. Resistance toward gentamicin and ciprofloxacin was observed in 7.5 and 3% of strains, respectively. Multi-drug resistance was observed in 38% of strains. Genetic host factors have been associated with...
an increased risk of EAEC-associated disease. Therefore, we investigated a panel of risk factors in two groups of children—EAEC-positive and EAEC-negative—to identify additional factors predisposing to disease. The duration of breastfeeding was positively correlated with the likelihood of belonging to the EAEC-negative group of children.

Keywords: enteroaggregative Escherichia coli, EAEC, childhood diarrhea, virulence factors, risk factors

INTRODUCTION

Enteroaggregative Escherichia coli (EAEC) is an established pathotype within the group of diarrheagenic E. coli (DEC), which also includes the enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), and verocytotoxin-producing E. coli (VTEC). EAEC is associated with diarrhea, failure to thrive, weight loss, and stunted growth in children living in developing countries (Steiner et al., 1998; Albert et al., 1999; Lima et al., 2000; Medina et al., 2010; Hebbelstrup Jensen et al., 2014). EAEC-positive children were seen to have increased levels of fecal lactoferrin and Il-1β, regardless of the presence of gastrointestinal symptoms in a Brazilian study (Steiner et al., 1998). This indicates a considerable inflammation potential of EAEC and severe illness, which may also be present in children in industrialized countries. EAEC has been associated with childhood diarrhea in Germany, England and America (Huppertz et al., 1997; Jenkins et al., 2006; Vernachio et al., 2006). Furthermore, several outbreaks of EAEC have been reported in children in Serbia, Japan and Korea (Cobelić et al., 1996; Harada et al., 2007; Shin et al., 2015).

Persistent diarrhea was described in EAEC-infected children (Bhan et al., 1989), which may result in considerable loss of electrolytes and impaired absorption of micronutrients. Several genetic host factors have been associated with an increased susceptibility toward EAEC infection including single nucleotide polymorphisms (SNPs) in the interleukin-8 promoter region (Jiang et al., 2003) and in the CD14 gene (Mohamed et al., 2011). However, only few general risk factors associated with EAEC infection have been investigated (Hebbelstrup Jensen et al., 2014). Susceptibility testing of EAEC strains has revealed a considerable resistance toward antibiotics, which includes resistance toward ciprofloxacin (Aslani et al., 2011), multi-drug resistance (Khoshvaght et al., 2014), and extended-spectrum beta-lactamases (Güiral et al., 2011), which is a cause for concern. The pathogenic potential of EAEC in children in industrialized countries warrants further research and the role of EAEC virulence factors in acute and persistent diarrhea needs clarification.

The gold standard for the identification of EAEC is by the HEp-2 cell assay. This test is performed in reference laboratories only; it requires cell culture facilities and is time-consuming (Hebbelstrup Jensen et al., 2014). This method is depend on recognition of the so-called “stacked-brick” appearance by special trained personnel and it has been observed to be subject to inter-observer variability (Hebbelstrup Jensen et al., 2014). In addition, this phenotypical assay does not distinguish between pathogenic and non-pathogenic strains. Molecular techniques have been developed to detect pathogenic EAEC strains, and various gene targets have been used. It was originally suggested that EAEC could be detected by the master regulator aggR (Morin et al., 2013), which led to a general classification of EAEC based on the presence of the aggR gene into typical and atypical strains (Morin et al., 2013), but not all diarrheagenic EAEC strains possessed the aggR gene (Jenkins et al., 2007). Conventionally, the genes aggR, aatA, and aap are used as initial detection for the EAEC virulence plasmid encoding the master regulator, a secretion system and the dispersin protein, respectively (Vial et al., 1988). In addition, the chromosomal gene aaiC is frequently used for diagnosis of EAEC. The aaiC gene is encoded on a genomic island encoding a type VI secretion system (Dudley et al., 2006). The ORF3 gene encodes a cryptic protein and it was the most frequently detected EAEC virulence gene in children in Mali (Boisen et al., 2012). In spite of these research findings, no consensus has been reached on which EAEC genes are unambiguously pathogenic.

Colonization of the gut is accomplished by adhesion facilitated by the EAEC aggregative adhesion fimbiae (AAFs) with five variants AAF/I—AAF/V (Czechzulin et al., 1997; Shamir et al., 2010; Jønsson et al., 2015; Nezariieh et al., 2015). An important pathogenic trait of EAEC is the formation of biofilm (Hicks et al., 1996), which is in general associated with persistent infection (Costerton et al., 1999). Biofilm formation has been associated with the genes aatA, aggR, pic, sepA, and sigA (Mohamed et al., 2007; Mendez-Arancibia et al., 2008; Nezariieh et al., 2015) and the AAFs (Czechzulin et al., 1997; Shamir et al., 2010; Jønsson et al., 2015; Nezariieh et al., 2015). The genes sat and the pet are toxins that causes considerable damage to the intestinal epithelium (Eslava et al., 1998; Taddei et al., 2005). In a Brazilian study investigating childhood diarrhea, the toxin gene astA was associated with acute diarrhea, and the CVD432 probe (corresponding to the aatA gene) was associated with persistent diarrhea (Pereira et al., 2007).

The role of EAEC in childhood diarrhea in Denmark has only been investigated sparsely (Olesen et al., 2005; Hebbelstrup Jensen et al., 2016b). To date a number of EAEC virulence genes have been identified, inducing adhesion, cytotoxicity, mucosal inflammation, and immune evasion (Hebbelstrup Jensen et al., 2014). The aim of this study was to investigate the clinical manifestations and risk factors for EAEC infection in Danish children with diarrhea. Specific EAEC virulence genes (Table 1) were investigated for an association with diarrheal type and duration. Improvement of the current diagnostics of EAEC could be achieved by targeting EAEC genes with an expected protracted course of disease. Furthermore, identification of specific EAEC genes associated with diarrheal type would contribute to the general understanding of the pathophysiological mechanisms of EAEC.
In the period between January 2011 and October 2013, 295 eligible for inclusion in the study. Children originated from children with diarrhea, who had been consulting their general practitioner or who had been hospitalized. Children with EAEC positive stool samples and no co-infections were included in the EAEC-positive group. The EAEC-negative group of children aged 0–6 years, who were included in a cohort study, we had conducted in the period between 2009 and 2013 (Hebbelstrup Jensen et al., 2016a,b; Jokelainen et al., 2017). In that study, we had investigated the incidence and pathological significance of EAEC in Danish children in municipal daycare in the Copenhagen area. Each child had been observed for a 1 year period with registration of gastrointestinal symptoms and submission of stool samples. We included children in the EAEC-negative group from the cohort at their first point of observation. Six EAEC-positive children were excluded from the EAEC-negative group, where two children had reports of diarrhea or vomiting. In the remaining 155 EAEC-negative children, 34 had reports of diarrhea. From the 34 children with diarrhea the following pathogens were detected: norovirus (n = 7), sapovirus (n = 4), rotavirus (n = 3), adenovirus and AEEC (n = 2), sapovirus and norovirus (n = 1). AEEC, EPEC, VTEC, and C. difficile were each detected in one child (Table 2). No pathogens were detected in 13 children with diarrhea in the EAEC-negative group. The characteristics of the EAEC-positive and the EAEC-negative groups are presented in Table 3.

Microbiological Analysis

Stool samples were analyzed for the enteropathogens as a part of the routine diagnostics at the participating Departments of Clinical Microbiology. Culturing of the stool samples was performed by using the SSi selective enteric medium (Blom et al., 1999) for detection of Salmonella spp., Yersinia spp., Shigella spp., Vibrio spp. Aeromonas spp., and E. coli spp. For identification of Campylobacter spp. and C. difficile the modified charcoal cefoperazone deoxycholate agar medium was used (Hutchinson and Bolton, 1984). The microbiological analysis included PCR for detection of ETEC, VTEC, EPEC, EIEC, AEEC, Aeromonas spp., and C. difficile (Persson et al., 2007, 2008, 2015). E. coli colonies with different morphology were handpicked and were sub-cultured on MacConkey agar. To diagnose EAEC, the genes aatA (dispersin transporter protein), aggR (transcription activator), and aaiC (secreted protein) were targeted by PCR at the Department of Bacteria, Parasites, and Fungi, at Statens Serum Institut (Boisen et al., 2012). Detection of one of these genes was considered diagnostic of EAEC. Initial screening for EAEC was performed at the Departments of Clinical Microbiology at Slagelse Hospital and Copenhagen University Hvidovre Hospital by PCR targeting the aggR gene. EAEC positive strains were forwarded to the Danish National Reference Center at Statens Serum Institut for further characterization as described below. In selected cases, the treating physician had requested microbiological analysis for enteric viruses or parasites.

Number of genes detected (%)	Description	Function
aap 67 (77)	Dispersin	Anti-aggregation
aggR 65 (75)	Transcription activator	Major regulator
aggA 14 (16)	Fimbrial subunit for AAF/I	Adhesion
aafA 6 (7)	Fimbrial subunit for AAF/II	Adhesion
agg3A 6 (7)	Fimbrial subunit for AAF/III	Adhesion
agg4A 10 (12)	Fimbrial subunit for AAF/IV	Adhesion
agg5A 17 (20)	Fimbrial subunit for AAF/V	Adhesion
agg3/4C 30 (35)	Usher	Adhesion
astA 21 (27)	Aggregative heat-stable toxin	Toxin
astC 58 (67)	Type VI secretion system	Secreted protein
ORF3 65 (75)	Cryptic protein	Unknown
pet 9 (10)	Plasmid encoded toxin	Toxin
pic 45 (62)	Serine protease precursor	Toxin
sat 25 (29)	Secreted auto-transporter protein	Toxin
sspA 21 (24)	Serine protease auto-transporter toxin	Toxin
sigA 3 (3)	Protease-like homolog	Toxin

MATERIALS AND METHODS

Study Population

In the period between January 2011 and October 2013, we conducted a multi-center study to identify children with diarrhea and EAEC detected in stool samples. The participating diagnostic units in the study were the Department of Bacteria, Parasites and Fungi, Statens Serum Institut, and the Departments of Clinical Microbiology at Slagelse Hospital and Copenhagen University Hvidovre Hospital in Denmark. At Copenhagen University Hvidovre Hospital, only patients suffering from travelers’ diarrhea were investigated for EAEC. The stool samples originated from children with diarrhea, who had been consulting their general practitioner or who had been hospitalized. Children with EAEC positive stool samples and no co-infections were eligible for inclusion in the study.

The Group of EAEC-Positive Children

In the period between January 2011 and October 2013, 295 children tested positive for EAEC at the three participating Departments of Clinical Microbiology (Figure 1). From the 295 children, 89 (30%) were excluded due to co-infection with one or several additional enteric pathogens. Among co-infections, the most frequently detected were the attaching-and-effacing E. coli (AEEC; n = 24), rotavirus (n = 12), ETEC (n = 12), and C. difficile (n = 10). From the remaining 206 EAEC-positive children, the parents of 50 children had no phone number listed, could not be contacted, did not speak Danish, or did not live in Denmark and were excluded. We included 156 children positive for EAEC only in the EAEC-positive group.
to diagnose the cause of diarrhea. Only samples without detection of other pathogens were included in the study.

Characterization of EAEC Strains

Further, characterization of the EAEC strains collected was performed by additional PCR targeting the genes *sat*, *sepA*, *pic*, *sigA*, *pet*, *astA*, *aap*, *agg3/4C*, *agg3A*, *aafA*, *aggA*, *agg4A*, and *agg5A* as previously described (Boisen et al., 2012; Jønsson et al., 2015) with modifications. The characterization involved detection of the serine proteases autotransporters of Enterobacteriaceae (SPATEs) including *sat* (secreted autotransporter toxin), *sepA* (*Shigella* extracellular protein), *pic* (serine protease precursor), *sigA* (IgA protease homolog), *pet* (plasmid encoded protein), and the *astA* gene (enteroaggregative *Escherichia coli* heat-stable toxin). Furthermore, included in the characterization were, *aap* (dispersin), ORF3 (open reading frame encoding cryptic protein), and *aggA* (fimbral subunit for AAF/I), *aafA* (fimbral subunit for AAF/II), *agg3A* (fimbral...
TABLE 2 | Diarrhea was reported from 34 children in the EAEC-negative group and 21 children were diagnosed with an enteric pathogen.

Microorganism	%	(No. #)
ENTERIC MICROORGANISMS IN THE EAEC-NEGATIVE GROUP WITH DIARRHEA (N = 34)		
Norovirus	21	(7)
Sapovirus	4	(4)
Rotavirus	9	(3)
Adenovirus + AEEC	6	(2)
Sapovirus + Norovirus	3	(1)
AEEC	3	(1)
EPEC	3	(1)
C. difficile	3	(1)
VTEC	3	(1)

No microorganism was detected in 13 children with diarrhea.

Antimicrobial Agent Susceptibility Testing

Susceptibility toward antibiotics was investigated by using the disk diffusion method according to the Clinical and Laboratory Standards Institute, CLSI, guidelines (Clinical Laboratory Standards Institute, 2011), where 0.5 McFarland standard on Müller-Hinton II agar plates (BBLTM, US) was used. Susceptibility toward antibiotics was assessed by using the EUCAST breakpoints from the CLSI guidelines (www.EUCAST.org) using the Neo-Sensitabs™ (Rosco Diagnostica A/S, Taastrup, Denmark): gentamicin 10 µg (GEN10), cefotaxime 30 µg (CTX30), cefoxitin 30 µg (CFO30), trimethoprim 5 µg (TRIM5), sulfonamides 240 µg (SULFA), aztreonam 30 µg (AZT30), mecillinam 10 µg (MEC10), tetracycline 30 µg (TET30), chloramphenicol 30 µg (CLR30), nalidixan 30 µg (NAL30), nitrofurantoin 100 µg (NI100), piperacillin 100 µg (PIPRA), and ciprofloxacin 5 µg (CIPR5). Multi-drug resistance was defined as acquired resistance toward three or more antibiotics from different antibiotic classes tested (Magiorakos et al., 2012).

Questionnaires

When EAEC was the only pathogen detected by the microbiological analysis, the children’s parents were contacted by telephone by a medical doctor and were interviewed using a questionnaire. The parents of the children in the EAEC-negative group had answered the same questionnaire. The questionnaire inquired about gastrointestinal symptoms and exposures, including foreign travel, use of antibiotics, and contact with sick animals. In addition, information regarding birth-weight, breastfeeding, infant colic, and pet ownership was inquired.

Ethics

The study was carried out in accordance with The National Committee on Health Research Ethics with written informed consent for the parents of the children.
consent from all parents or guardians. All parents or guardians gave written informed consent in accordance with the Declaration of Helsinki and the study was approved by The National Committee on Health Research Ethics, protocol number (H-A-2008-111).

Statistics
We performed a CART analysis using the Chi-Squared Automatic Interaction Detection (CHAID) growth method with a minimum of five cases for each parent and child node. We used likelihood ratio tests to identify statistically significant branching points between specific EAEC virulence genes and duration of diarrhea. Associations were considered statistically significant, when \(p < 0.05 \). The \(p \)-values were Bonferroni corrected to account for multiple testing. We present two CART trees: One where the duration of diarrhea is treated as an interval level construct and one where we treat it as a categorical construct distinguishing between acute diarrhea and persistent diarrhea, respectively. Furthermore, we investigated whether we could find a significant association between EAEC genes and watery diarrhea, bloody diarrhea or mucoid diarrhea.

To identify risk factors associated with EAEC infection, we compared the EAEC-positive group of children with the EAEC-negative group of children. For these analyses, we used independent samples \(t \)-tests for the interval level constructs, such as age and birth weight, and a difference of proportions test for the categorical constructs, such as gender and pet ownership. In addition, we performed a logistic regression to assess the effect of breastfeeding on the risk of EAEC infection.

Finally, the odds ratios were calculated for each individual EAEC gene in the group of children with acute and persistent diarrhea provided with a 95% confidence interval and \(p \)-values, by using Fisher's exact test. For data analysis, we used SPSS version 23.0 software for Windows (SPSS Inc., USA). The study was approved by the Danish Data Protection Agency, protocol number (2013-41-2338).

RESULTS

Annual Prevalence of EAEC in Children with Diarrhea in Denmark
To investigate the prevalence of EAEC in childhood diarrhea in Denmark in general, we examined the annual prevalence of all conventional enteropathogens in stool samples submitted for routine microbiological analysis, at the Department of Bacteria, Parasites and Fungi at Statens Serum Institut. In the period from June 2011 until June 2012, a total of 1,360 children aged \(\leq 11 \) years were examined (Table 4). The percentages of children, who tested positive for bacterial pathogens, were as follows: AECC (11%; \(n = 146 \)), EAEC (6.7%; \(n = 91 \)), EPEC (2.6%; \(n = 36 \)), Campylobacter spp. (2.4%; \(n = 32 \)), Salmonella spp. (1.3%; \(n = 18 \)), ETEC (0.7%; \(n = 9 \)), VTEC (0.7%; \(n = 9 \)), Yersinia spp. (0.2%; \(n = 2 \)), EIEC (0.1%; \(n = 1 \)), and Shigella spp. (0.1%; \(n = 1 \)). During this 1 year period, EAEC was the second most prevalently detected enteric pathogen in Danish children with diarrhea.

Distribution of EAEC Virulence Genes
From the 156 EAEC-positive children, 25 children had unknown duration of diarrhea, and in the remaining group of children, 87 EAEC strains were available for subsequent multiplex PCR analysis. The distribution of EAEC virulence genes were \(sat \) (29%), \(sepA \) (24%), \(pic \) (52%), \(sigA \) (3%), \(pet \) (10%), \(astA \) (31%), \(aggR \) (75%), \(aatA \) (93%), \(aacI \) (67%), \(aap \) (77%), \(ORF3 \) (75%), \(agg3/4c \) (35%), \(agg3A \) (7%), \(aafA \) (7%), \(aggA \) (16%), \(agg4A \) (12%), and \(agg5A \) (20%). The distribution of EAEC genes in children with acute and persistent diarrhea is presented in Table 5.

Significance of EAEC Virulence Genes in Disease
To assess the association between EAEC genes in acute and persistent diarrhea, we performed a CART tree analysis. This analysis clusters the genes in a stepwise manner according to the investigated categories. With each branch, a statistical significance between the absence and/or presence of a gene further divides the tree into new branches and provides a discrimination between acute and persistent diarrhea, respectively. Five outliers with reports of diarrhea lasting 200 days or longer were removed from the analysis leaving 83 observations. From the 83 observations, 27 EAEC strains were collected from children with acute diarrhea, 45 strains from children with persistent diarrhea. Eleven children had diarrhea lasting 8–13 days. First, we present the results from the CART tree, where we treat duration of diarrhea as a categorical construct using the categories acute and persistent. EAEC strains lacking the \(pic \) gene were more likely to cause persistent diarrhea (\(\geq 14 \) days), \(p = 0.002 \) (Figure 2). EAEC strains possessing the genes \(pic \), \(sat \) but lacking the \(aggA \) gene were also more likely to cause persistent diarrhea, \(p = 0.05 \). When duration of diarrhea in days is treated as an interval level construct, we found the absence of the \(aatA \) gene to be associated with highly prolonged diarrhea (mean duration = 74 days) compared to the grand mean in the sample of 29 days (Figure 3). Presence of the genes \(aatA \) and \(astA \) was associated with slightly prolonged diarrhea (mean duration = 38 days; \(p = 0.03 \)).
We calculated the individual odds ratios for EAEC virulence genes in cases of acute and persistent diarrhea. By this analysis, we found the genes pic, aggR, aap, and aggA to be associated with acute diarrhea (Table 5).

Furthermore, the CART analysis was used to investigate any statistically significant association between EAEC virulence genes and watery, mucoid, and/or bloody diarrhea, respectively. Only the absence of the aatA gene was a significant predictor and was associated with not having mucoid diarrhea, \(p = 0.004 \) (Figure 4).

Clinical Manifestations Associated with EAEC Infection

Parents of children infected with EAEC were interviewed by a medical doctor and symptoms were registered (Table 6). Fever was reported for 35% of the EAEC-positive children and was usually \(\leq 39^\circ \)C. Other clinical presentations associated with EAEC infection were abdominal cramping (55%), reduced appetite (52%), vomiting (39%), and weight loss (39%). The median number of passing diarrheal stools was 6.5 per day at disease maximum. Different categories of diarrhea was reported among EAEC cases, including mixed watery and mucoid diarrhea (\(n = 74, 47\% \)), watery diarrhea (\(n = 56, 36\% \)), mucoid diarrhea only (\(n = 15, 10\% \)), and bloody diarrhea (\(n = 10, 6\% \)).

EAEC Infection and Risk Factors

To identify factors associated with an increased risk or protective effect against EAEC infection we compared age, gender, pet-ownership, contact with sick animals, the use of antibiotics, infant colic, and birth-weight between EAEC-positive children and EAEC-negative children. The only statistically significant difference between the two groups was the duration of breastfeeding. The children in the EAEC-negative group had been breastfeed significantly longer compared with the children in the EAEC-positive group (\(p < 0.00 \); see Table 3). We performed a logistic regression to assess the relationship between EAEC status and the duration of breastfeeding. To illustrate the relationship between duration of breastfeeding and having EAEC infection in a more understandable metric, we graphed the relationship in Figure 4.

Antibiotic Resistance in EAEC Strains

Susceptibility testing toward antibiotics was performed for 134 EAEC strains. In general, a high level of resistance toward antibiotics was observed, and multi-drug resistance was seen in 38\% (\(n = 51 \)) of the EAEC strains (Figure 6). From the multi-drug resistant strains, 35 (69\%) were collected from children with reports of foreign travel. Multidrug-resistant EAEC strains were collected from children, who had visited Asia (\(n = 7, 57\% \)), Northern Europe (\(n = 6, 27\% \)), southern Europe (\(n = 1, 14\% \)), Africa (\(n = 20, 59\% \)), and the Middle East (\(n = 1, 14\% \)). Resistance toward broad-spectrum antibiotics was detected in

TABLE 4 The annual prevalence of bacterial microorganisms in children suffering from diarrhea was investigated at Statens Serum Institut (SSI) in the period between June 2011 until June 2012.

Microorganism	%	(No. #)
ANNUAL PREVALENCE OF ENTERIC PATHOGENS AT SSI		
AECC	11	(146)
EAEC	6.7	(91)
EPEC	2.6	(38)
Campylobacter spp.	2.4	(32)
Salmonella spp.	1.3	(18)
ETEC	0.7	(9)
VTEC	0.7	(9)
Yersinia spp.	0.2	(2)
Shigella spp.	0.1	(1)

TABLE 5 The distribution of EAEC genes detected in cases of acute and persistent diarrhea.

EAEC genes	Acute diarrhea \(N = 27 \)	Persistent diarrhea \(N = 45 \)	Odds ratio*	Confidence interval	\(P \)-value
sat	7 (26)	15 (33)	0.7	(0.22; 1.82)	0.60
sepA	7 (26)	10 (22)	1.23	(0.40; 3.72)	0.78
pic	21 (78)	18 (40)	5.25	(1.77; 15.45)	0.00
sigA	1 (4)	1 (2)	1.69	(0.10; 28.22)	1.00
pet	3 (11)	6 (13)	0.81	(0.20; 3.73)	1.00
astA	7 (26)	17 (38)	0.58	(0.22; 1.76)	0.44
astA	27 (100)	41 (91)	0.95	(0.38; 1.00)	0.29
aggR	26 (96)	32 (71)	10.56	(1.30; 86.15)	0.01
aac	22 (81)	28 (62)	2.67	(0.85; 8.38)	0.12
aap	27 (100)	33 (73)	0.73	(0.61; 0.87)	0.00
ORF3	24 (89)	33 (73)	2.91	(0.74; 11.45)	0.14
agg3/4C	12 (44)	14 (31)	1.77	(0.66; 4.75)	0.31
agg3A	3 (11)	3 (7)	1.75	(0.11; 0.36)	0.67
aaA	1 (4)	5 (11)	0.31	(0.03; 2.78)	0.40
aggA	9 (33)	5 (11)	4	(1.17; 13.64)	0.03
agg4A	4 (15)	2 (4)	3.74	(0.64; 21.98)	0.19
agg5A	6 (22)	9 (20)	1.14	(0.38; 3.66)	1.00

The odds ratio was calculated and two-sided \(p \)-values were considered statistically significant, when \(p < 0.05 \), using Fisher’s exact test. The genes aggR, pic, aap, and aggA were individually associated with acute diarrhea, \(p < 0.05 \).

*When no gene was represented (value \(= 0 \)) in the categories acute or persistent diarrhea, the relative risk ratio was calculated instead of the odds ratio i.e., for the genes atA and aap.

EAEC, enteroaggregative Escherichia coli; sat, secreted autotransporter toxin; sepA, Shigella extracellular protein; pic, serine protease precursor; sigA, I gA protease homolog; pet, plasmid encoded protein; astA, enterogregarogenic Escherichia coli heat-stable toxin; aaiC, dispersin transporter protein; aggR, transcription activator; sigA, secreted protein; aaic, aaic dispersin; ORF3, open reading frame encoding cryptic protein; agg3/4C, assembly unit for AAF/III-V; agg3A, fimbrial subunit for AAF/III; aggA, fimbrial subunit for AAF/V; agg4A, fimbrial subunit for AAF/V; agg5A, fimbrial subunit for AAF/V.
The CART tree analysis shows the affiliations between EAEC genes and acute diarrhea ≤ 7 days compared with persistent diarrhea ≥ 14 days. \(N \) is the number of children. The number 0 in each branch indicates the absence of a gene and the number 1 indicates the presence of a gene. The EAEC genes included in the analysis were sat, pic, sepA, sigA, pet, astA, aap, aaIC, aggR, aatA, ORF3, agg3/4C, agg3A, aafA, aggA, agg4A, and agg5A. Each branch in the CART tree terminates in a “node,” which represents a specific combination of genes, or absence of genes, statistically significant in the categories of acute and persistent diarrhea. Persistent diarrhea was associated with EAEC strains lacking the pic gene. EAEC strains possessing the pic and sat genes, but lacking the aggA gene were associated with persistent diarrhea.
FIGURE 3 | The CART tree analysis shows the affiliations between EAEC genes and duration of diarrhea treated as continuous data. N is the number of children. The number 0 in each branch indicates the absence of a gene and the number 1 indicates the presence of a gene. The EAEC genes included in the analysis were sat.

(Continued)
EAEC strains collected from 14 children with reports of foreign travel, which included resistance against ciprofloxacin in 4 strains and resistance against gentamicin in 10 strains.

Hospitalization of EAEC Infected Children

Twenty-three (15%) of the 156 EAEC-positive children with diarrhea were hospitalized. Ten of the hospitalized children were treated with different antibiotics, including broad-spectrum penicillin (n = 3), macrolides (n = 2), and cefuroxime (n = 1). For three children the antibiotics used were unknown. Enteric parasites were examined for in 10 of 23 hospitalized children and enteric viruses in seven hospitalized children. Thirteen hospitalized children (57%) had a history of foreign travel within a period of 2 months prior to examinations, where traveling to Egypt was reported from eight children, while two children had visited Turkey. One child had either visited Ethiopia, Somalia, or Pakistan. The genetic profile of the strains collected from hospitalized children did not differ statistically significantly from other strains (data not shown).

DISCUSSION

EAEC is an acknowledged common diarrheal pathogen, but the identification of a sole and causative pathogenic EAEC trait remains inconclusive. A large number of virulence factors and combinations hereof, have been associated with clinical illness in epidemiologic studies (Hebbelstrup Jensen et al., 2014). It is plausible that the host immunity and exposure...
The endemic presence of EAEC plays an important role in EAEC pathogenicity, therefore, the combination of virulence genes in EAEC provides the necessary variety for local disease. The mosaic nature of EAEC genomes described today seems to enhance our idea that EAEC pathogenicity is very dependent on the host and its environment.

In this study, we have characterized a number of EAEC strains collected from children with acute and persistent diarrhea. The EAEC strains were characterized in respect of classical EAEC virulence genes and antibiotic resistance profiles. We found the absence of the pic gene to be associated with persistent diarrhea, \(p = 0.02 \). On the other hand, the combination of the genes pic and sat and absence of the aggA gene was associated with persistent diarrhea, \(p = 0.05 \) (Figure 2). The pic gene has mucinolytic activity, it causes hemagglutination and serum resistance (Henderson et al., 1999). Pic is a protease, which is secreted by EAEC and Shigella flexneri (Henderson et al., 1999) and it has been shown to play a key role in the colonization and growth of EAEC in mucus in a mouse model (Harrington et al., 2009). The combination of the genes pic, sepA, and agg4A has been associated with the formation of strong biofilm (Nezarieh et al., 2015). Biofilm formation is a key pathogenic trait for the development of persistent infection (Costerton et al., 1999) and the formation of biofilm is what separates EAEC from other diarrheagenic E. coli pathotypes. The sat gene has been shown to cause intestinal damage with fluid accumulation and villus necrosis in a rabbit ileal loop model (Taddei et al., 2005). Sat was one of the most prevalent genes detected in children with diarrhea in an Iranian study (Nezarieh et al., 2015). The aggA gene encodes a subunit of the aggregative fimbria type I, which has been shown to elicit an immunogenic response in a mouse vaccination study (Bouzari et al., 2010). It could be speculated that the children were partly protected from antibodies toward the aggregative fimbria type I, due to previous exposure resulting in a shortened span of disease.

EAEC strains with the combination of the attA and astA genes were associated with prolonged diarrhea \(p = 0.03 \) (Figure 3). The attA gene is a key EAEC gene and it encodes part of an outer membrane transport system involved in translocation of the dispersin protein. The attA gene corresponds to a part of the EAEC virulence plasmid pCVD432 (Baudry et al., 1990). It was one of the first genes targeted by PCR to diagnose EAEC (Nishi et al., 2003). The genes attA and pic are both present in the prototype EAEC strain 042, which has been associated with diarrhea in a volunteer study (Nataro et al., 1995). The attA gene has been associated with the formation of biofilm (Mohamed et al., 2007), which is characterized by a thick mucus layer in the intestine and predisposes to persistent infection (Costerton et al., 1999). The astA gene encodes the EAST-1 toxin, and it was one of the first virulence factors associated with diarrheagenic EAEC strains (Ménard and Dubreuil, 2002), but astA is not restricted to EAEC (Savarino et al., 1996). The EAST-1 toxin has been shown to elicit a secretory response in a rabbit ileal model (Savarino et al., 1991). It could be speculated that this response induces an inflammatory response with protracted disease manifestations. Thus, in combination, the attA and astA genes could be responsible for prolonged inflammation and formation of biofilm in the intestine resulting in prolonged diarrhea.

Strains lacking the attA gene were associated with non-mucoid diarrhea, \(p = 0.00 \) (Figure 4). A wide range of EAEC genes have been associated with increased secretion of mucus, such as pic (Navarro-Garcia et al., 2010) and pet (Navarro-Garcia et al., 1998). The combination of the attA, aggR, astA, and aap genes has been associated with gross mucus and leukocytes in stools from patients with diarrhea compared with healthy controls, \(p < 0.05 \) (Cennimo et al., 2009). Collectively, our results suggest that the pathophysiology of EAEC enteric infection involves a complex and dynamic modulation of several virulence genes.

The CART analysis suggested the sat and astA genes for virulent EAEC strains with persistent disease manifestations. Strains, with the aggA gene in different combinations with other EAEC genes were associated with less-pathogenic EAEC strains, with shorter duration of disease. Suggesting that the fimbriae themselves might not be the sole cause for disease. The odds ratio for the individual EAEC genes between acute and persistent diarrhea suggested an association between the genes aap, aggR, pic and aggA, and acute diarrhea (Table 5).

In two other studies where the CART analysis was applied (Boisen et al., 2012; Lima et al., 2013), it was found that virulent EAEC strains in Mali harbored the EAEC heat-stable toxin 1 (EAST-1 enterotoxin), and the flagellar type H33 correlated with diarrhea. A Brazilian study (Lima et al., 2013), identified trait clusters in EAEC strains (isolated genes or in combination), which correlated with both children with diarrhea (pet and aafA) and healthy children (agg4A and ORF61). In Ghana, it was found that the presence of the aaf gene was significantly associated with diarrhea, even though the attA was the most prevalent gene among the EAEC isolates tested (Opintan et al., 2010). These
findings suggest that EAEC infection involves a complex and
dynamic modulation of several virulence genes for the bacteria
in combination with its endemic presence in the population and
the immunity present in the population.

The variation of the EAEC genetic repertoire in relation to
disease determined in Danish strains, as well as from different
populations of distinct geographical regions of the world,
confirms again the genetic heterogeneity of EAEC (Huppertz
et al., 1997; Glandt et al., 1999; Sarantuya et al., 2004; Huang et al.,
2007; Oundo et al., 2008). Furthermore, it is very possible that
since many of the virulence genes and antibiotic resistance genes
are encoded on plasmids, the dynamic horizontal acquisition and
loss of genetic traits can be explained by the favoring of the variety
of genetic profiles found in EAEC strains.

In order to investigate general predisposing factors associated
with EAEC infection, we compared children with and without
EAEC. Previous studies have shown that infant colic predisposes
to gastrointestinal diseases later in life (Collado et al., 2012).
Although EAEC is not generally considered to be transmitted
through animals it has been isolated from animals (Puño-
Sarmiento et al., 2013), and we investigated if having a pet could
pose a risk for EAEC infection. None of the factors investigated
were represented more frequently in the EAEC-positive group,
however, prolonged breastfeeding was discovered to be strongly
associated with the EAEC-negative group of children (Table 3
and Figure 5). It is known that breastfeeding is protective toward
infectious diarrhea (Molbak et al., 1994). Here, we observed a
protective effect of breastfeeding against EAEC infection beyond
the age of weaning. Only three (2%) children in the EAEC-
negative group and nine (6%) in the EAEC-positive group were
still breastfed while included in the study (Table 3). In the period
prior to inclusion in the study, more children had been breastfed
in the EAEC-negative group compared to the EAEC-positive
(94 vs. 80%). Immunological components in the breast
milk such as immunoglobulins, lactoferrin, and lymphocytes
have been shown to be crucial for the development of the
immune system (Hanson, 1999). Furthermore, benefits in term
of long-term protection against infections have previously been
observed with prolonged breastfeeding (Hanson, 2004). A health
bias in the EAEC negative group could be speculated to effect
the analysis since resourceful parents may be more likely to
attend such a study. On the other hand, the groups were very
comparable in many other aspects (Table 3), and the children
were recruited within the same geographical area and in the same
period in time.

Examination for enteric viruses was performed for 23 (15%)
of the EAEC-positive children. It has been shown, that enteric
viruses are highly prevalent in diarrheal episodes in this age
group (Olesen et al., 2005) and this could be a confounding
factor in the children in our study, who lacked examinations
for enteric viruses. However, gastrointestinal viruses often causes
acute diarrhea with a high diarrheal output, which was not the
clinical manifestations of disease in the majority of children in
this study (Table 6). Enteric parasites were examined for in 53
(34%) of the EAEC-positive children. Parasitic infection is mostly
associated with traveler's diarrhea in Denmark, which 51% of the
children in this study suffered from. Therefore, parasitic infection
may be a confounding factor for the 17% of the children with
reports of travel in this study.

Hospitalization was reported for 23 (15%) of the EAEC-
positive children and was mainly seen in children at the age of
≤2 years. It is well-known, that very young children are
more susceptible to dehydration caused by infectious diarrhea
(Ramaswamy and Jacobson, 2001), and it has been described for
other diarrheagenic E. coli pathotypes, such as EPEC (Essers et al.,
2000). We did not discover any particular EAEC virulence gene
to be associated with hospitalization.

The EAEC-positive children had more reports of foreign
travel within a period of 2 months prior to examination, when
compared to the EAEC-negative group of children (51 vs. 16%;
Table 3). However, the majority of the included children were
recruited from Copenhagen University Hvidovre Hospital, where
only patients suffering from travelers' diarrhea were investigated
for EAEC (Figure 1). EAEC was diagnosed in all categories of
diarrhea at SSI, and a total of 48 children were included from this
site. From the 48 children diagnosed at SSI, 14 (29%) had reports
of foreign travel. Other studies have shown a strong association
between foreign travel and EAEC-associated diarrhea in children
(Huppertz et al., 1997; Denno et al., 2012).

We detected a high level of antibiotic resistance among
the EAEC strains, which considerably limited the treatment
possibilities in diarrheal cases. Resistance toward gentamicin
was observed in 10 (7.5%) of the EAEC strains and resistance
toward ciprofloxacin in 4 (3%) of the EAEC strains (Figure 6).
An Indian study showed a high level of resistance toward
ciprofloxacin in 63.4% (n = 40) of strains tested (Raju and
Ballal, 2009) this phenomenon is mostly described in cases
of travelers’ diarrhea (Vila et al., 2001). Gentamicin resistance
in EAEC strains is rarely reported and only in low levels
(Khoshvaght et al., 2014; Hebbelstrup Jensen et al., 2016b).
Multidrug-resistance was most frequently detected in cases of
travelers’ diarrhea (69 vs. 31%). Yet, multidrug-resistance in
EAEC strains is reported in several other studies (Sang et al.,
1997; Raju and Ballal, 2009; Aslani et al., 2011; Hebbelstrup

![FIGURE 5](image-url) | The duration of breastfeeding was positively correlated with the
likelihood of belonging to the EAEC-negative group of children with 95% confidence intervals.
Jensen et al., 2016b) in both industrialized and developing countries, which is a major cause for concern. However, the efficacy of antibiotics in the treatment of EAEC infection remains to be determined and it should be restricted to the severe cases only. The vast majority of EAEC gastrointestinal infections should be treated with fluid and electrolyte replacement similar to infectious diarrhea in general. However, all strains in this study were susceptible to mecillinam and piperacillin-tazobactam, which must be regarded as the drugs of choice in this study were susceptible to mecillinam and piperacillin-tazobactam, which must be regarded as the drugs of choice in the few selected cases of EAEC-associated diarrhea that requires treatment.

CONCLUSION

Persistent diarrhea was associated with EAEC strains without the pic gene, and with strains with the combination of the genes pic and sat and absence of the aggA gene. The combination of the aatA and astA genes was associated with prolonged diarrhea. Acute diarrhea was associated with the genes aggR, aap, and aggA by individual odds ratios. Strains lacking the aatA gene were associated with non-mucoid diarrhea. Breastfeeding was seen to be protective against EAEC infection beyond the age of weaning.

AUTHOR CONTRIBUTIONS

KK, AMP, JE acquired the funding for this research. BH and AP performed the interviews of participating parents. SH performed the statistical analysis and performed critical appraisal. CS, RJ, AMP, NB, JE and RP were responsible for the microbial analysis performed. BH, CS, NB, RJ were responsible for the interpretation of the microbial analysis performed. All authors contributed to the writing of this manuscript and all authors approved of the final draft. All authors take responsibility for the integrity and the accuracy of this research and the interpretation hereof.

FUNDING

This work was partly supported by The Danish Council for Strategic Research, Innovation and Higher Education (grant number 2101-07-0023) to KK and by the Regional Department of Research in the Zealand Region (grant number 12-000095/jun 2014) to JE.

ACKNOWLEDGMENTS

The authors wish to thank our colleagues at Statens Serum Institut, Steffen L. Jørgensen for handling of the study material, Hengameh Chloé Mirsepasi-Lauridsen for establishing a database for the study, and Michala Tved Sørensen for performing the PCR characterization of the EAEC strains. Thank you Marian Jørgensen for the critical appraisal and Gitte I. Jensen for the laboratory assistance. We also wish to thank Dorthe Rejkjær and Weam Bashir for performing resistance profiling.

REFERENCES

Albert, M. J., Faruque, A. S., Faruque, S. M., Sack, R. B., and Mahalanabis, D. (1999). Case-control study of enteropathogens associated with childhood diarrhea in Dhaka, Bangladesh. J. Clin. Microbiol. 37, 3458–3464.

Aslani, M. M., Alikhani, M. Y., Zavari, A., Yousefi, R., and Zamani, A. R. (2011). Characterization of enteroaggregative Escherichia coli (EAEC) clinical isolates and their antibiotic resistance pattern. Int. J. Infect. Dis. 15, e136–e139. doi: 10.1016/j.ijid.2010.10.002

Baudry, B., Savarino, S. J., Vial, P., Kaper, J. B., and Levine, M. M. (1990). A sensitive and specific DNA probe to identify enteroaggregative Escherichia coli, a recently discovered diarrheal pathogen. J. Infect. Dis. 161, 1249–1251. doi: 10.1093/infdis/161.6.1249

Bhan, M. K., Raj, P., Levine, M. M., Kaper, J. B., Bhandari, N., Srivastava, R., et al. (1989). Enteroaggregative Escherichia coli associated with persistent diarrhea in a cohort of rural children in India. J. Infect. Dis. 159, 1061–1064. doi: 10.1093/infdis/159.6.1061

Blom, M., Meyer, A., Gerner-Smidt, P., Gaarslev, K., and Espersen, F. (1999). Evaluation of Statens Serum Institut enteric medium for detection of enteric pathogens. J. Clin. Microbiol. 37, 2312–2316.

Bouzari, S., Dashti, A., Jafari, A., and Oloomi, M. (2010). Immune response and virulence characteristics of enteroaggregative Escherichia coli at an urgent care clinic in the USA: a case-control study. J. Med. Microbiol. 59, 403–407. doi: 10.1099/jmm.0.005793-0

Cennimo, D., Abbas, A., Huang, D. B., and Chiang, T. (2009). The prevalence and virulence characteristics of enteroaggregative Escherichia coli at an urgent-care clinic in the USA: a case-control study. J. Med. Microbiol. 58, 403–407. doi: 10.1099/jmm.0.005793-0

Clinical and Laboratory Standards Institute, CLSI (2011). Performance Standards for Antimicrobial Susceptibility Testing: Twenty-First Informational Supplement. M100-S21. 31 No. 1. Wayne, PA: Clinical and Laboratory Standards Institute.

Cobeljic, M., Miljkovic-Selimovic, B., Paunovic-Todosijevic, D., Velickovic, Z., Lepsanovic, Z., Zec, N., et al. (1996). Enteroaggregative Escherichia coli associated with an outbreak of diarrhoea in a neonatal nursery ward. Epidemiol. Infect. 117, 11–16. doi: 10.1017/S0950268800001072

Boisen, N., Scheutz, F., Rasko, D. A., Redman, J. C., Persson, S., Simon, J., et al. (2012). Genomic characterization of enteroaggregative Escherichia coli from children in Mali. J. Infect. Dis. 205, 431–444. doi: 10.1093/infdis/jir757

Bouzari, S., Dashti, A., Jafari, A., and Oloomi, M. (2010). Immune response against adhesins of enteroaggregative Escherichia coli immunized by three different vaccination strategies (DNA/DNA, Protein/Protein, and DNA/Protein) in mice. Comp. Immunol. Microbiol. Infect. Dis. 33, 215–225. doi: 10.1016/j.cimid.2008.10.002

Cennimo, D., Abbas, A., Huang, D. B., and Chiang, T. (2009). The prevalence and virulence characteristics of enteroaggregative Escherichia coli at an urgent-care clinic in the USA: a case-control study. J. Med. Microbiol. 58, 403–407. doi: 10.1099/jmm.0.005793-0

Clinical and Laboratory Standards Institute, CLSI (2011). Performance Standards for Antimicrobial Susceptibility Testing: Twenty-First Informational Supplement. M100-S21. 31 No. 1. Wayne, PA: Clinical and Laboratory Standards Institute.

Cobeljic, M., Miljkovic-Selimovic, B., Paunovic-Todosijevic, D., Velickovic, Z., Lepsanovic, Z., Zec, N., et al. (1996). Enteroaggregative Escherichia coli associated with an outbreak of diarrhoea in a neonatal nursery ward. Epidemiol. Infect. 117, 11–16. doi: 10.1017/S0950268800001072
Morin, N., Santiago, A. E., Ernst, R. K., Guillot, S. J., and Nataro, J. P. (2013). Characterization of the AggR regulon in enteroaggregative Escherichia coli. Infect. Immun. 81, 122–132. doi: 10.1128/IAI.00676-12

Nataro, J. P., Deng, T., Cookson, S., Cravioto, A., Savarino, S. J., Guers, L. D., et al. (1995). Heterogeneity of enteroaggregative Escherichia coli virulence demonstrated in volunteers. J. Infect. Dis. 171, 465–468. doi: 10.1093/jid/171.2.465

Navarro-García, F., Eslava, C., Villassec, J. M., López-Revilla, R., Czezulin, J. R., Srinivas, S., et al. (1998). In vitro effects of a high-molecular-weight heat-labile enterotoxin from enteroaggregative Escherichia coli. Infect. Immun. 66, 3149–3154.

Navarro-García, F., Gutierrez-Jimenez, J., Garcia-Tovar, C., Castro, L. A., Salazar-Gonzalez, H., and Cordova, V. (2010). Pic, an autotransporter protein secreted by different pathogens in the Enterobacteriaceae family, is a potent mucus secretagogue. Infect. Immun. 78, 4101–4109. doi: 10.1128/IAI.0523-10

Nezariel, R., Shakibaie, M. R., Nave, H. H., Norouzi, A., Salajiegh, G., and Hayatbakhsh, M. (2015). Distribution of virulence genes, enterotoxin and biofilm formation among enteroaggregative Escherichia coli (EAEC) strains isolated from stools of children with diarrhea in South East Iran. Arch. Ped. Infect. Dis. 3e29745. doi: 10.5812/pedinfect.29745v2

Nishi, J., Sheikh, J., Mizuguchi, K., Luisi, B., Burland, V., Boutin, A., et al. (2003). Multidrug-resistant enteroaggregative Escherichia coli associated with persistent diarrhea in Kenyan children. Emerg Infect. Dis. 3, 373–374. doi: 10.3201/eid0903.030703

Navarro-García, F., Gutierrez-Jimenez, J., Garcia-Tovar, C., Castro, L. A., Salazar-Gonzalez, H., and Cordova, V. (2010). Pic, an autotransporter protein secreted by different pathogens in the Enterobacteriaceae family, is a potent mucus secretagogue. Infect. Immun. 78, 4101–4109. doi: 10.1128/IAI.0523-10

Nataro, J. P., Deng, T., Cookson, S., Cravioto, A., Savarino, S. J., Guers, L. D., et al. (1995). Heterogeneity of enteroaggregative Escherichia coli virulence demonstrated in volunteers. J. Infect. Dis. 171, 465–468. doi: 10.1093/jid/171.2.465

Persson, S., Olsen, K. E., Scheutz, F., Krogfelt, K. A., and General-Smidt, P. (2007). Identification of clinical Aeromonas Species by rpoB and gyrB sequencing. J. Clin. Microbiol. 45, 3149–3154. doi: 10.1128/JCM.00641-09

Raju, B., and Ballal, M. (2009). Multidrug resistant enteroaggregative Escherichia coli diarrhea in rural southern Indian population. Scand. J. Infect. Dis. 41, 105–108. doi: 10.1080/00365540802641856

Ramaswamy, K., and Jacobson, K. (2001). Infectious diarrhea in children. Gastroenterol. Clin. North. Am. 30, 611–624. doi: 10.1016/S0889-8553(05)70201-6

Shan, W. K., Oundo, J. O., Mwituria, J. K., Waiyaki, P. G., Yoh, M., Iida, T., et al. (1997). Multidrug-resistant enteroaggregative Escherichia coli strain causing diarrhea in Mongolian children. J. Clin. Microbiol. 42, 133–139. doi: 10.1128/JCM.42.1.133-139.2004

Savarino, S. J., Fasano, A., Robertson, D. C., and Levine, M. M. (1991). Enterotoaggregative Escherichia coli elaborate a heat-stable enterotoxin demonstrable in an in vitro rabbit intestinal model. J. Clin. Invest. 87, 1450–1455. doi: 10.1172/JCI115151

Savarino, S. J., McVeigh, A., Watson, J., Cravioto, A., Molina, J., Echeverria, P., et al. (1996). Enterotoaggregative Escherichia coli heat-stable enterotoxin is not restricted to enteroaggregative E. coli. J. Infect. Dis. 173, 1019–1022. doi: 10.1093/infdis/173.4.1019

Shamir, E. R., Warthan, M., Brown, S. P., Nataro, J. P., Guerrat, R. L., and Hoffman, P. S. (2010). Nitazoxanide inhibits biofilm production and hemagglutination by enteroaggregative Escherichia coli strains by blocking assembly of AafA fimbrae. Antimicrob. Agents Chemother. 54, 1526–1533. doi: 10.1128/AAC.01279-09

Shin, J., Oh, S. S., Oh, K. H., Park, J. H., Jang, E. J., Chung, G. T., et al. (2015). An outbreak of foodborne illness caused by enteroaggregative Escherichia coli in a high school, South Korea. Inj. J. Infect. Dis. 68, 514–519. doi: 10.7883/yoken.JID.2014.460

Steiner, T. S., Lima, A. A., Nataro, J. P., and Guerrant, R. L. (1998). Enterotoaggregative Escherichia coli produce intestinal inflammation and growth impairment and cause interleukin-8 release from intestinal epithelial cells. J. Infect. Dis. 177, 88–96. doi: 10.1086/s153809

Taldei, C. R., Fasano, A., Ferreire, A. J., Trabulsi, L. R., and Martinez, M. B. (2005). Secreted autotransporter toxin produced by a diffusely adhering Escherichia coli strain causes intestinal damage in animal model assays. FEMS Microbiol. Lett. 250, 263–269. doi: 10.1016/j.femsle.2005.07.013

Vernaccio, L., Vezina, R. M., Mitchell, A. A., Lesko, S. M., Paut, A. G., and Acheson, D. W. (2006). Diarrhea in American infants and young children in the community setting. Pediatr. Infect. Dis. J. 25, 2–7. doi: 10.1097/01.inf.0000195623.57945.87

Vial, P. A., Robins-Browne, R., Lior, H., Prado, V., Kaper, J. B., Nataro, J. P., et al. (1988). Characterization of enterohemorrhagic aggregative Escherichia coli, a putative agent of diarrheal disease. J. Infect. Dis. 158, 70–79. doi: 10.1093/infdis/158.1.70

Vila, J., Vargas, M., Ruiz, J., Espasa, M., Pujol, M., Corachan, M., et al. (2001). Susceptibility patterns of enteroaggregative Escherichia coli associated with traveller’s diarrhoea: emergence of quinolone resistance. J. Med. Microbiol. 50, 996–1000. doi: 10.1099/0022-1317-50-11-996

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Hebbelstrup Jensen, Poulsen, Hebbelstrup Rye Rasmussen, Strange, Enghoff, Friis-Møller, Boisen, Jønsson, Petersen, Petersen and Krogfelt. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.