In this paper, we introduce the Targeted Multiobjective Dijkstra Algorithm (T-MDA), a label setting algorithm for the One-to-One Multiobjective Shortest Path (MOSP) Problem. The T-MDA is based on the recently published Multiobjective Dijkstra Algorithm (MDA) and equips it with A*-like techniques. The resulting speedup is comparable to the speedup that the original A* algorithm achieves for Dijkstra’s algorithm. Unlike other methods from the literature, which rely on special properties of the biobjective case, the T-MDA works for any dimension. To the best of our knowledge, it gives rise to the first efficient implementation that can deal with large scale instances with more than two objectives. A version tuned for the biobjective case, the T-BDA, outperforms state-of-the-art methods on almost every instance of a standard benchmark testbed that is not solvable in fractions of a second.

Keywords: Multiobjective Shortest Path · Label Setting Algorithm · Dijkstra’s Algorithm · Heuristic Search · Dynamic Programming · Multicriteria Optimization

1 Introduction

The Multiobjective Shortest Path (MOSP) Problem is an extension of the classical Shortest Path Problem in which every arc bears a multidimensional vector of cost attributes. The multidimensional costs of a path are then the sum of the cost vectors along its arcs. If two paths \(p \) and \(q \) connect the same end nodes in the graph, \(p \) dominates \(q \) if the cost vector of \(p \) is not worse than the cost vector of \(q \) in any dimension and it is better than the cost vector of \(q \) in at least one dimension. A path is optimal, also called efficient, if it is not dominated by any other path connecting the same end nodes. The cost vector of an efficient path is called a non-dominated cost vector. In our setting, MOSP problems ask for a representative efficient path for every non-dominated cost vector; the number of these representatives can be exponential. Despite this principal intractability, MOSP problems arising from real world scenarios can often be solved efficiently, indeed, significant advances in this respect have been made in recent years. Sedeño-Noda and Colebrook [13] introduced the Biobjective Dijkstra Algorithm (BDA) for the Biobjective Shortest Path (BOSP) Problem that improved the known complexity bounds for this problem and is also efficient in practice. Maristany et al. [11]

The researches affiliated to the Zuse Institute Berlin conducted this work within the Research Campus MODAL - Mathematical Optimization and Data Analysis Laboratories -, funded by the German Federal Ministry of Education and Research (BMBF) (fund number 05M20ZBM).
introduced the Multiobjective Dijkstra Algorithm (MDA), which generalizes the BDA to the multidimensional case. Its running time and space complexity bounds improve the state of the art in theory and practice.

This article considers the One-to-One MOSP Problem, which aims at determining a complete set of optimal paths between two designated nodes in the input graph. One-to-One MOSP algorithms can be equipped with different pruning techniques that discard irrelevant paths early during the search (e.g., [13], [7], [13], [11]). In addition, the search can be guided towards the target. A first step in this direction was taken by Mandow and Pérez de la Cruz [9] [10], who extend the classical label-setting MOSP algorithm by Martins [12] with likewise classical A* techniques.

Using a property known as dimensionality reduction [13], it is possible to decide in constant time whether newly explored paths are efficient in the biobjective case. The algorithms considered in this paper store explored paths in a lexicographically sorted priority queue. Ulloa et al. [20] use a lazy queue management in conjunction with the dimensionality reduction property in their Biobjective A* (BOA*) algorithm that is again based on Martins’ algorithm. In Martins’ algorithm, the queue can contain exponentially many paths but all of them are guaranteed to be efficient. Paths are removed from the queue as soon as the algorithm explores a path that dominates them in what is called a merge operation. These operations are known to be costly in practice, which motivates the lazy queue management in the BOA* algorithm. There, the queue may contain dominated paths but thanks to the dimensionality reduction, these are discarded in constant time immediately after their extraction from the queue. Thus, unnecessary expansions of dominated paths are avoided. Combining this lazy path management with A* makes the BOA* algorithm competitive. Ahmadi et al.’s BOA* _enh_ algorithm improves this method further.

The first contribution in this paper is an extension of the MDA by the A* technique to obtain the Targeted Multiobjective Dijkstra Algorithm (T-MDA). We propose a variant that trades memory consumption for run time without harming the running time bounds, but improving practical performance. Indeed, and to the best of our knowledge, this version of the T-MDA is the first efficient implementation of a One-to-One MOSP algorithm that can deal with large scale instances such as road networks. The second contribution is the Targeted Biobjective Dijkstra Algorithm (T-BDA), a version of the T-MDA tuned for the Biobjective Shortest Path (BOSP) Problem. It outperforms state-of-the-art methods on a comprehensive benchmark set [18, 20, 1] unless the considered instance can be solved in fractions of a second.

The paper is structured as follows. In Section 2.1 we give a formal definition of the One-to-One Multiobjective Shortest Path Problem. We then proceed to describe the T-MDA algorithm, prove its correctness, and analyze its theoretical space and running time complexity bounds in Section 2.2. Furthermore, we discuss how to integrate the enhancements for BOSP problems that were discussed in [1] and [3] into the T-BDA in Section 3. Finally, in Section 4 we report on extensive computational results on different types of graphs for two and three dimensional MOSP problems.

2 The Targeted Multiobjective Dijkstra Algorithm

This section serves as an introduction to the Targeted Multiobjective Dijkstra Algorithm (T-MDA). This algorithm solves the One-to-One Multiobjective Shortest Path Problem described in Section 2.1. In Section 2.2 we introduce some concepts needed for the algorithm. In Section 2.3 we introduce the algorithm itself before proving its correctness in Section 2.4. Whenever we write \(x \leq y \) for vectors \(x, y \in \mathbb{R}^d, d \in \mathbb{N} \), we mean \(x_i \leq y_i \) for all \(i \in \{1, \ldots, d\} \).

2.1 One-to-One Multiobjective Shortest Path Problem

Consider a digraph \(G = (V, A) \). Given multidimensional arc cost vectors \(c_a \in \mathbb{R}^d_{\geq 0}, d \in \mathbb{N} \), for every arc \(a \in A \), the costs \(c(p) \) of a path \(p \) are defined as the sum of its arc costs, i.e., \(c(p) := \sum_{a \in p} c_a \). For a set \(P \) of paths, we use \(c(P) \) to refer to the set of costs of all paths in \(P \), i.e., \(c(P) := \{c(p) \mid p \in P\} \subseteq \mathbb{R}^d_{\geq 0} \). The following definition formalizes the notion of optimality to the multiobjective case.

Definition 1 (Dominance and Efficiency). Consider two nodes \(v, w \in V \) and two \(v\)-\(w \)-paths \(p \) and \(q \) in \(G \). Then, \(p \) dominates \(q \) if \(c_i(p) \leq c_i(q) \) for all \(i \in \{1, \ldots, d\} \) and there is a \(j \in \{1, \ldots, d\} \) s.t. \(c_j(p) < c_j(q) \). The path \(p \) is called efficient if there is no \(v\)-\(w \)-path in \(G \) that dominates it. Otherwise, \(p \) is called a dominated path. If \(p \) is efficient, its cost vector \(c(p) \) is called non-dominated. Otherwise it is called dominated.

Let \(P_{st} \) be the set of efficient \(s\)-\(t \)-paths in \(G \). In general, for any non-dominated cost vector in \(c(P_{st}) \), there can be multiple efficient paths in \(G \). In this paper, we want to find a minimal complete set of efficient \(s\)-\(t \)-paths, i.e., a set of \(s\)-\(t \)-paths such that for every non-dominated cost vector in \(c(P_{st}) \), the presented algorithms outputs exactly one efficient \(s\)-\(t \)-path.

Definition 2 (One-to-One Multiobjective Shortest Path Problem). Given a digraph \(G = (V, A) \), a source node \(s \in V \), a target node \(t \in V \) and \(d \)-dimensional arc costs vectors \(c_a \in \mathbb{R}^d_{\geq 0}, a \in A \), the One-to-One Multiobjective Shortest Path...
(MOSP) Problem is to find a minimal complete set of efficient s-t-paths. We denote a One-to-One MOSP instance by (G, s, t, c).

2.2 Heuristics and Dominance Bounds

The following definitions and results are a generalization of those valid for the single criteria Shortest Path Problem. Throughout this section, we assume that a d-dimensional One-to-One MOSP instance $I = (G, s, t, c)$ is given.

Definition 3 ((Admissible and Monotone) Heuristic). A multiobjective heuristic $\pi : V \mapsto \mathbb{R}^d_\geq$ is called an admissible and monotone heuristic for I, respectively, if

Admissibility:
1. $\pi(v) \leq c(p)$, $\forall v \in V$, p efficient v-t-path,

Monotonicity:
1. $\pi(t) = 0$, and
2. $\pi(u) \leq c_{uv} + \pi(v)$, $\forall (u, v) \in A$.

Remark 1. As in the single objective case, a monotone heuristic is always admissible.

Throughout the paper, we only consider monotone and admissible heuristics. For the sake of brevity, we refer to them just as heuristics from now on. The notation π to refer to the heuristics is motivated by the dual linear program of the single criteria Shortest Path Problem. There, the set of feasible solutions corresponds to the set of monotone heuristics, often denoted by π. According to the notation from this field, the reduced costs of an arc $(u, v) \in A$ are $\bar{c}_{uv} := c_{uv} + \pi(v) - \pi(u)$. For an s-v-path p, $v \in V$, we have

$$\sum_{a \in p} \bar{c}(a) = c(p) + \pi(v) - \pi(s)$$

and since all relevant paths in this paper start at the source node s of a given MOSP instance, the constant term $\pi(s)$ can be ignored. Thus, we define

$$\bar{c}(p) := c(p) + \pi(v).$$

Lemma 4. Let π be a heuristic for I. For every arc $a \in A$, we have $\bar{c}(a) \geq 0$.

Proof. The statement follows directly from the monotonicity of π.

The following is a trivial consequence of the last lemma and is used in the proofs from Section 2.4.

Corollary 5. Let π be a heuristic for I. Assume that node u comes before node v along any simple path p in G starting at s. Then,

$$\bar{c}(p_{su}) \leq \bar{c}(p_{sv}).$$

Deciding whether partial solutions can become efficient solutions is particularly difficult at the beginning of an algorithm since little information about the set of efficient solutions is known a priori. The following definition describes cost vectors that act as a threshold to prevent MOSP algorithms from processing paths that can not be extended towards the target node to produce an efficient s-t-path.

Definition 6 (Dominance bound). A dominance bound for I is a vector $\beta \in \mathbb{R}^d$ s.t. there is no efficient s-t-path that is dominated by β.

In Section 2.3, we assume that a heuristic and a dominance bound are part of the input of the described algorithm. In Section 2.4, we describe how to find heuristics and dominance bounds for any One-to-One MOSP instance in a preprocessing stage.

2.3 The Algorithm.

The T-MDA is an adaptation of the label-setting Multiobjective Dijkstra Algorithm (MDA) [11]. Since it is a One-to-One MOSP algorithm, the T-MDA does not need to store efficient s-v-paths for intermediate nodes $v \in V \setminus \{s, t\}$ if these paths are provably not extendable to become efficient s-t-paths. Moreover, the T-MDA is designed with practical performance in mind. Given the MDA’s running time and space complexity, we found that in the T-MDA, we can increase the space complexity without harming the theoretical running time bound but achieving better results in practice. The details of this trade-off are discussed in Section 2.5.
The input of the $\mathbf{\text{T-MDA}}$ is a d-dimensional MOSP instance (G, s, t, c), a heuristic π, and dominance bound β_t. The paths in the priority queue Q used in the algorithm are sorted in lexicographically (lex.) non-decreasing order w.r.t. \bar{c}.

Definition 7 (\succeq_{lex}). Given two cost vectors $x, y \in \mathbb{R}^d$, x is lexicographically smaller than y if the first cost component $j \in \{1, \ldots, d\}$, in which both vectors differ, fulfills $x_j < y_j$. In this case, we write $x \succeq_{\text{lex}} y$. For paths p and q, we say that p is lex. smaller than q if $\bar{c}(p) \prec_{\text{lex}} \bar{c}(q)$. We use \succeq_{lex} canonically.

The output of the $\mathbf{\text{T-MDA}}$ is a minimal complete set of efficient s-t-paths. Let $v \in V$ and consider two efficient s-v-paths p and q with $\bar{c}(p) = \bar{c}(q)$. By Definition 1, p and q do not dominate each other. However, if the $\mathbf{\text{T-MDA}}$ algorithm already found and stored p, q can be discarded when it is processed. Thus, a reflexive binary relation is needed to check dominance and/or equivalence of cost vectors. We use the following notation to stress the importance of these checks in our algorithms.

Definition 8 (Dominance or Equivalence Operator \preceq_D). Consider $x, y \in \mathbb{R}^d$ and $\mathcal{X} \subseteq \mathbb{R}^d$. We write $x \preceq_D y$ if $x \leq y$ and $\mathcal{X} \preceq_D y$ if there exists a $z \in \mathcal{X}$ such that $z \preceq_D y$.

For ease of notation, from now on we say that a path p dominates a path q if $c(p) \preceq_D c(q)$.

Algorithm 1: Multiobjective Dijkstra Algorithm

Input: MOSP instance $\mathcal{I} = (G, s, t, c)$, heuristic π for \mathcal{I}, dominance bound β_t for \mathcal{I}.

Output: Minimal complete set $\mathcal{P}_\mathcal{I}$ of efficient s-t-paths.

1. Priority Queue $Q \leftarrow \emptyset$; // Q is sorted according to the \bar{c} values of the contained paths.
2. $\forall (u, v) \in A$: Promising explored s-v-paths via $v \in V \setminus \mathcal{P}_{uv} \leftarrow \emptyset$;
3. $\forall v \in V$ $\setminus \{s, t\}$ Efficient Paths $\mathcal{P}_{sv} \leftarrow \emptyset$;
4. $p_{\text{init}} \leftarrow ()$;
5. $Q \leftarrow Q$ insert(p_{init});
6. while $Q \neq \emptyset$ do
7. $p \leftarrow Q$ extractMin() ;
8. $w \leftarrow \text{head}(p)$; // head returns the last node of p. If $p = p_{\text{init}}$, it returns s.
9. $\mathcal{P}_{sv} \leftarrow (\mathcal{P}_{sv}, p)$;
10. $p_{\text{new}} \leftarrow \text{nextQueuePath}(p, N \mathcal{Q} \mathcal{P}, \delta^-(v), \mathcal{P}, \beta_t)$;
11. if $p_{\text{new}} \neq \text{NULL}$ then Q insert(p_{new});
12. if $v == t$ then continue;
13. for $w \in \delta^+(v)$ do $Q \leftarrow \text{propagate}(p, w, Q, \mathcal{P}, N \mathcal{Q} \mathcal{P}, \beta_t)$;
14. return $\mathcal{P}_\mathcal{I}$;

We proceed with the description of the $\mathbf{\text{T-MDA}}$ (Algorithm 1). It distinguishes two types of s-v-paths for any node $v \in V$. The set \mathcal{P}_{sv} contains already found efficient s-v-paths, which we call *permanent paths*. Let p be an s-v-path with $(u, v) \in A$ as its last arc. It is an *explored path* if its s-v-subpath is already permanent and p itself has already been considered by the algorithm without having been able to definitively decide whether p is a relevant subpath of an efficient s-t-path. The sets of explored and permanent paths are always disjoint. This means that whenever an explored path is made permanent or finally discarded, it is no longer regarded as an explored path.

The $\mathbf{\text{T-MDA}}$ uses a priority queue Q to store a lex. minimal explored s-v-path for any $v \in V$.

Definition 9 (Queue paths). An s-v-path q is called *queue path* for v if

i. q is an explored path (i.e., not permanent but the subpath until its penultimate node is permanent),
ii. the cost vector $c(q)$ is not dominated by any cost vector in $c(\mathcal{P}_{sv})$,
iii. the cost vector $\bar{c}(q)$ is not dominated by any cost vector in $c(\mathcal{P}_{st})$, and
iv. q is lex. minimal w.r.t. \bar{c} among all explored s-v-paths.

Other explored s-v-paths that are not queue paths, are stored in a list called $\text{nextQueuePath}(N \mathcal{Q} \mathcal{P})$. There is such a list for every arc in the graph. At any iteration of the $\mathbf{\text{T-MDA}}$ for $(u, v) \in A$, $N \mathcal{Q} \mathcal{P}_{uv}$ stores already explored s-v-paths whose last arc is (u, v) and that are, at the moment, not queue paths for v. The data structures of the $\mathbf{\text{T-MDA}}$ are initialized in the first lines:

Line 1 The priority queue Q contains at most one queue path for every node $v \in V$ during the algorithm’s execution; it is initially empty. The paths in Q are lex. sorted w.r.t. \bar{c}.

4
Line[2] For any \((u,v) \in A\), the list \(\mathcal{NP}_uv\) stores explored \(s\)-\(v\)-paths whose last arc is \((u,v)\) and that are not the queue path for \(v\). These lists are initially empty.

Line[3] The lists of permanent \(s\)-\(v\)-paths \(\mathcal{P}_{sv}\). These lists are initially empty.

The last step before the main loop of the algorithm begins is to insert the empty path \(p_{init}\) into \(Q\). The path \(p_{init}\) goes from \(s\) to itself with zero costs. The main loop finishes when \(Q\) is empty at the beginning of an iteration. Until then, every iteration performs three tasks:

i. Extraction of a path \(p\) from \(Q\) that is lex. minimal w.r.t. \(\bar{c}\). The path \(p\) is immediately added to the list \(\mathcal{P}_{sv}\) of permanent \(s\)-\(v\)-paths in Line[9]

ii. Assuming that \(p\) is an \(s\)-\(v\)-path, the search for a new queue path for \(v\) in \text{nextQueuePath}

iii. The propagation of \(p\) along the outgoing arcs of \(v\) in \text{propagate}

Even though \text{nextQueuePath} appears prior to \text{propagate} in the pseudocode of the T-MDA, we describe \text{propagate} first, since \text{nextQueuePath} returns an empty path (NULL) in the first iteration(s) of the T-MDA.

Propagation

The extracted \(s\)-\(v\)-path \(p\) is propagated along the arcs \((v,w) \in \delta^+(v)\). For such an arc \((v,w)\), we call the resulting path \(p_{new}^{vw} := p \circ (v,w)\). In case \(\bar{c}(p_{new}^{vw})\) is dominated by \(\beta_v\), by an element in \(c(\mathcal{P}_{sv})\), or by an element in \(c(\mathcal{P}_{uw})\), it is immediately discarded. Otherwise, it is a new explored \(s\)-\(w\) path and we have to distinguish whether it is a queue path for \(w\) or whether it is stored in \(\mathcal{NP}_pvw\). Three scenarios are possible:

Case 1: There is an \(s\)-\(w\)-path \(q \in Q\) with \(\bar{c}(q) \prec \bar{c}(p_{new}^{vw})\). Then, \(p_{new}^{vw}\) is appended to \(\mathcal{NP}_pvw\). In other words: \(p_{new}^{vw}\) is an explored path that can not yet be discarded or made permanent but it is currently not the lex. minimal, and hence most promising explored \(s\)-\(w\)-path.

Case 2: There is an \(s\)-\(w\)-path \(q \in Q\) with \(\bar{c}(p_{new}^{vw}) \prec \bar{c}(q)\). Then, \(p_{new}^{vw}\) is inserted via a \text{decreaseKey} operation into \(\mathcal{NP}_pvw\), where it replaces \(q\). Assume \((x,w) \in A\) is the last arc of \(q\). Subsequently, \(q\) is prepended to the list \(\mathcal{NP}_pxw\). This means that even though \(q\) is no longer in \(Q\), it might re-enter it later.

Case 3: There is no \(s\)-\(w\)-path in \(Q\). Then, \(p_{new}^{vw}\) is always inserted into \(Q\).

The procedure \text{propagate} returns the possibly updated priority queue \(Q\).

Procedure propagate

Input : \(s\)-\(v\)-path \(p\), node \(w \in \delta^+(v)\), priority queue \(Q\), permanent paths \(\mathcal{P}\), lists of promising explored paths \(\mathcal{NP}\), dominance bound \(\beta_v\).

Output: Updated priority queue \(Q\).

\begin{verbatim}
1 \(p_{new}^{vw} \leftarrow p \circ (v,w)\);
2 if \(c(\mathcal{P}_{sv}) \preceq \bar{c}(p_{new}^{vw})\) or \(\beta_v \preceq \bar{c}(p_{new}^{vw})\) then
3 return \(Q\);
4 if \(c(\mathcal{P}_{uw}) \nleq \bar{c}(p_{new}^{vw})\) then
5 if not \(Q\).contains \((w)\) then
6 \(Q\).insert \((p_{new}^{vw})\);
7 else
8 \(q \leftarrow Q\).getPath \((w)\);
9 if \(\bar{c}(p_{new}^{vw}) \prec \bar{c}(q)\) then
10 \(Q\).decreaseKey \((w, p_{new}^{vw})\);
11 \((x,w) \leftarrow \text{lastArc}(q)\);
12 \(\mathcal{NP}_{pxw}.\text{prepend}(q)\); // Insert \(q\) at the beginning of \(\mathcal{NP}_{pxw}\).
13 else
14 \(\mathcal{NP}_{pvw}.\text{append}(p_{new}^{vw})\); // Insert \(p_{new}^{vw}\) at the end of \(\mathcal{NP}_{pvw}\).
15 return \(Q\);
\end{verbatim}

Next queue path. A key invariant in the T-MDA is that at any point in time during the execution, \(Q\) contains at most one queue path for \(v\) for any node \(v \in V\). Thus, after \(p\) is extracted from \(Q\) in Line[7] there is no \(s\)-\(v\)-path in \(Q\). The procedure \text{nextQueuePath} aims to find a new queue path for \(v\). The search is performed among the paths in the lists \(\mathcal{NP}_{uw}\) of explored \(s\)-\(w\)-paths via \(u, u \in \delta^-(v)\). These lists are sorted in lex. increasing order w.r.t. \(\bar{c}\) (see Lemma[11]). Then, starting with the first path in each list, paths in \(\mathcal{NP}_{uw}\) are removed until the first path in the list fulfilling the queue path conditions (i)-(iii) is found or the list is emptied. Thus, \text{nextQueuePath} identifies at most one candidate
s-v-path via each predecessor node of u. The path \(p_{v}^{new} \) returned by the search is a lex. smallest one among these candidates (queue path condition (iv)), if there is any. Then, \(p_{v}^{new} \) is a queue path for v and is inserted into Q.

Procedure nextQueuePath

Input: s-v-path p, lists of promising explored paths \(NQP \), node set \(\delta^{-}(v) \), permanent paths \(P \), dominance bound \(\beta_{2} \).

Output: New queue path for v, if one exists.

1. \(p_{v}^{new} \leftarrow NULL \); \hspace{1cm} // Assume \(c(p_{v}^{new}) = [\infty]_{i=1}^{d} \).
2. for \(u \in \delta^{-}(v) \) do
3. for \(p_{w} \in NQP_{uv} \) do
4. if \(c(P_{sw}) \geq D \ c(p_{w}) \) or \(\beta_{2} \geq D \ c(p_{w}) \) then
5. \(NQP_{uv}.remove(p_{w}) \);
6. continue;
7. if not \(c(P_{sw}) \leq D \ c(p_{w}) \) and not \(c(p_{w}) \leq D \ c(p_{w}) \) then
8. if \(c(p_{w}) \prec_{lex} \ c(p_{v}^{new}) \) then \(p_{v}^{new} \leftarrow p_{w} \);
9. break;
10. return \(p_{v}^{new} \);

2.4 Correctness

The following remark is important for the proofs in this section.

Remark 2. For any \(v \in V \), the lex. order of two s-v-paths p and q is the same w.r.t. c and \(\bar{c} \):

\[
\bar{c}(p) \prec_{lex} \bar{c}(q) \iff c(p) + \pi(v) \prec_{lex} \bar{c}(q).
\]

The correctness of the T-MDA is proven in three steps. We begin by showing that the elements of the lists \(P_{sv} \), \(v \in V \) are sorted in lex. increasing order w.r.t. \(\bar{c} \) and w.r.t. c (Lemma 12). Then we proceed to prove that every path that is extracted from Q is efficient (Lemma 13). Finally, the correctness follows from Theorem 14. It states that the set \(P_{st} \) corresponds to a minimal complete set of efficient s-t-paths at the end of the algorithm.

Lemma 10. As long as the NQP lists of explored paths are sorted in lex. non-decreasing order w.r.t. \(\bar{c} \), the T-MDA extracts paths from Q in Line 7 in lex. non-decreasing order w.r.t. c.

Proof. Let \(p \) be the path extracted from Q in iteration \(l \in \mathbb{N} \) of the T-MDA. Assume that in a prior iteration \(k < l \), a path q is extracted from Q such that

\[
\bar{c}(p) \prec_{lex} \bar{c}(q).
\]

The T-MDA extracts a lex. minimal path from Q in every iteration. Thus, neither p nor any subpath of p can be in Q in iteration \(l \) since by Corollary 5, they are lex. smaller than p w.r.t. c and \(\bar{c} \). However, there must be at least one node \(j \in Q \) such that an s-j-path \(p'_{j} \) is in Q in iteration \(k \). Let \(j \in V \) be the last such node along p. By Corollary 5, we know that the s-j-subpath \(p_{j} \) of p is lex. smaller than p and we must have \(\bar{c}(p_{j}) \preceq_{lex} \bar{c}(p'_{j}) \). Otherwise, we would have

\[
\bar{c}(p_{j}) \prec_{lex} \bar{c}(p_{j}) \prec_{lex} \bar{c}(p) \prec_{lex} \bar{c}(q).
\]

Since \(p_{j} \) and q are in Q in iteration \(k \), this would contradict q’s extraction.

Recall that \(p_{j} \) is an explored s-j-path but it is not the queue path for \(j \) in iteration \(k \). We discuss the different cases that could lead to \(p'_{j} \) being in Q instead of \(p_{j} \) and conclude that none of them can actually happen.

Case 1: The path \(p_{j} \) is replaced by \(p'_{j} \) in Q in a decreaseKey operation in Line 10 of propagate. This can not happen since \(p_{j} \) is lex. smaller than \(p'_{j} \) and decreaseKey operations only happen if the lex. check in Line 9 succeeds.

Case 2: During the iteration wherein \(p_{j} \) is explored for the first time, \(p'_{j} \) is in Q. In this situation, a decreaseKey operation is triggered in Line 10 of propagate to replace \(p'_{j} \) with \(p_{j} \) in Q. After this happens, \(p_{j} \) only leaves Q if it is either extracted or if a newly explored s-j-path is lex. smaller (cf. Case 1.). Thus, \(p'_{j} \) can not be extracted from Q prior to \(p_{j} \).

Case 3: In some iteration prior to iteration \(k \), an s-j-path \(p''_{j} \) is extracted from Q and a new queue path for \(j \) is searched in nextQueuePath. Let \((i, j) \in A \) be the last arc of \(p_{j} \) and \((i', j) \in A \) the last arc of \(p'_{j} \). We can assume that \(p_{j} \) and \(p'_{j} \) are in the lists NQP_{ij} and NQP_{i'j} respectively and are considered as queue path candidates during
the search. Since \(p_j' \) is in \(Q \) during iteration \(k \) and \(p_j \) is extracted from \(Q \) in an iteration before the \(l \)th, but after the \(k \)th (if not, \(p \) would not be extracted in iteration \(l \)), both \(s-j \)-paths are neither dominated at \(\mathcal{P}_{s_j} \) w.r.t. \(c \) nor at \(\mathcal{P}_{st} \) w.r.t. \(\bar{c} \) (Line [3] of nextQueuePath). Otherwise, they would be permanently discarded in Line [5] of nextQueuePath. Recall that the new queue path \(p_j^{new} \) for node \(j \) computed by the search is lex. minimal among the queue path candidates in the \(NQP \) list. Given that the lex. ordering of the \(NQP \) lists is assumed in the statement from the lemma, it can not happen that \(p_j^{new} = p_j' \) at the end of the search if \(p_j \) is in \(NQP_{ij} \) as assumed.

We conclude that the existence of the explored path \(p_j \) avoids \(p_j' \) or any other \(s-j \)-path that is lex. greater than \(p_j \) from being in \(Q \) in iteration \(k \). However, there must be an \(s-j \)-path in \(Q \) during this iteration. This implies that \(q \) would not be extracted from \(Q \) since the \(s-j \)-path in \(Q \) is lex. smaller.

Lemma 11. If paths are extracted from \(Q \) in Line [7] of the T-MDA in lex. non-decreasing order w.r.t. \(\bar{c} \), the \(NQP \) lists of explored paths remain sorted in lex. non-decreasing order w.r.t. \(\bar{c} \).

Proof. Clearly, as long as the \(NQP \) lists contain at most one element, they are sorted. Let the current iteration be the first one wherein a second path is added to an \(NQP \) list, say \(NQP_{vw} \), \((v, w) \in A \). There are two ways in which this can occur.

Case 1: A new \(s-w \)-path \(q \) is prepended to \(NQP_{vw} \) in Line [12] of propagate. The path \(q \) was in \(Q \) until the current iteration and is now replaced by a newly explored path \(p_{vw}^{new} \) s.t. \(c(p_{vw}^{new}) \triangleq c(q) \) (Line [9] of propagate). Let \(q' \) be the \(s-v \)-path that is already in \(NQP_{vw} \). Since \(q' \) is not lex. smaller than \(q \), \(q' \) is already in \(NQP_{vw} \) at the beginning of the current iteration. This follows from the fourth queue path condition. Thus, adding \(q \) at the beginning of \(NQP_{vw} \) does not alter its ordering.

Case 2: A newly explored \(s-w \)-path \(p_{vw}^{new} \) is appended to \(NQP_{vw} \) in Line [14] of propagate. By construction, \((v, w) \) is the last arc of \(p_{vw}^{new} \) and of the path \(q' \), the \(s-w \)-path via \(v \) that is already in \(NQP_{vw} \). Note that the \(s-v \)-subpath \(p \) of \(p_{vw}^{new} \) is extracted from \(Q \) in the current iteration. Since the \(NQP \) lists were sorted until the current iteration, Lemma [10] guarantees that paths are extracted from \(Q \) in lex. non-decreasing order w.r.t. \(\bar{c} \). As a consequence, the \(s-v \)-subpath \(q''_v \), of \(q' \) must have been extracted prior to \(p \) and \(\bar{c}(q''_v) \triangleq c(p) \). This implies \(\bar{c}(q''_v) \triangleq c(p) \) and since both \(s-v \)-subpaths are expanded along the same arc \((v, w) \) to obtain \(q' \) and \(p_{vw}^{new} \), we have \(\bar{c}(q') \triangleq c(p_{vw}^{new}) \). Thus, adding \(p_{vw}^{new} \) after \(q' \) to the list \(NQP_{vw} \) does not alter the ordering of the list.

An induction over the number of elements in the \(NQP \) lists proves the lemma.

The last two lemmas show that the ordering of the \(NQP \) lists and of the priority queue \(Q \) influence each other. We can combine both statements to obtain the following key lemma for the correctness of the T-MDA.

Lemma 12. Let \(p \) be a path extracted in Line [7] of Algorithm [17] Then, for all paths \(q \) that were extracted from prior to \(p \) we have

\[\bar{c}(q) \triangleq c(p) \]

Proof. Lemma [10] trivially holds until the first iteration wherein an \(NQP \) list gets a second path. Then, Lemma [11] guarantees that this path is inserted correctly into its \(NQP \) list, which then satisfies the condition of Lemma [10] to guarantee that in the upcoming iterations, paths are still extracted in lex. non-decreasing order w.r.t. \(\bar{c} \). Repeating these arguments until the last iteration of the T-MDA proves the lemma.

As a consequence of the last lemma, the permanent \(s-v \)-paths in \(\mathcal{P}_{sv} \) are also sorted in lex. non-decreasing order w.r.t. \(\bar{c} \) and w.r.t. \(c \). To finally prove the correctness of Algorithm [11] we still need to show that all permanent paths are efficient (Lemma [13]) and that the list \(\mathcal{P}_{st} \) corresponds to a minimal complete set of efficient \(s-t \)-paths at the end of the T-MDA (Theorem [14]).

Lemma 13. Consider a node \(v \in V \). Any \(s-v \)-path \(p \) extracted from \(Q \) in Line [7] of the T-MDA is an efficient \(s-v \)-path.

Proof. Assume \(p \) is the first path extracted from \(Q \) that is not efficient, i.e., there exists an efficient \(s-v \)-path \(p' \) that dominates \(p \). Then \(p' \) has to be lex. smaller than \(p \).

Case 1: \(p' \) is extracted from \(Q \). Following Lemma [12] it is extracted prior to \(p \). After its extraction \(p' \) is added to \(\mathcal{P}_{sv} \) and there is no other \(s-v \)-path in \(Q \). For any new queue path candidate for \(v \), the dominance checks in Line [4] of propagate and Line [7] of nextQueuePath make sure that it is not dominated by any path in \(\mathcal{P}_{sv} \). Thus, \(p \) can not become a queue path for \(v \) and consequently, it is never extracted from \(Q \).
Case 2: \(p' \) is not extracted from \(Q \). Since \(p' \) is an efficient \(s\text{-}v \)-path, all its subpaths are efficient. Hence, the only reason why \(p' \) is not extracted from \(Q \) is because the reduced costs \(\tilde{c} \) a subpath of \(p' \) (it can be \(p' \) itself) are dominated by the cost vector of a path in \(P_{st} \) s.t. the subpath is not added to \(Q \). However, since \(p' \) dominates \(p \), we have
\[
\tilde{c}(p') = c(p') + \pi_v \leq c(p) + \pi_v = \tilde{c}(p),
\]
which implies that \(\tilde{c}(p) \) is also dominated by the same cost vector in \(P_{st} \). This contradicts the insertion of \(p \) into \(Q \) and consequently its extraction.

\[\square\]

Theorem 14. At the end of Algorithm 1, the set \(P_{st} \) is a minimal complete set of efficient \(s\text{-}t \)-paths.

Proof. By Lemma 13 it is clear that \(P_{st} \) contains only efficient \(s\text{-}t \)-paths. Let \(c_t \) be a non-dominated point.

First, we discard that \(P_{st} \) may contain two paths \(p \) and \(p' \) with \(c(p) = c(p') = c_t \). W.l.o.g., assume that \(p \) is added to \(P_{st} \) first. Then, whenever \(p' \) is processed as a candidate to enter \(Q \), the dominance checks in Line 4 of propagate or in Line 7 of nextQueuePath would fail since the dominance relation \(\preceq_D \) is irreflexive. Thus, \(p' \) is not inserted into \(P_{st} \).

Assume that at the end of the T-MDA there is no path \(p \in P_{st} \) such that \(c(p) = c_t \). Since \(c_t \) is a non-dominated point, there exists at least one \(s\text{-}t \)-path \(p \) in \(Q \) with costs \(c_t \). Then, at the end of the T-MDA there is exactly one arc \((i, j) \in C \) such that the \(s\text{-}i \)-subpath \(p_{si} \) of \(p \) is in the corresponding set \(P_{si} \) and there is no \(s\text{-}j \)-path in \(P_{sj} \) with costs \(c(p_{sj}) \), where \(p_{sj} \) is the \(s\text{-}j \)-subpath of \(p \). The extreme case is \(i = s \). Since the heuristic \(\pi \) is admissible, we have
\[
\tilde{c}(p_{sj}) = c(p_{sj}) + \pi_s = c(p_{si}) + c_{ij} + \pi_j \leq c_t.
\]

Thus, since \(c_t \) is a non-dominated point, \(c(P_{st}) \preceq_D c(p_{si}) + c_{ij} + \pi_j \) is not true. This implies that the pruning conditions checked in Line 2 of propagate and in Line 5 of nextQueuePath do not avoid that \(p_{sj} = p_{si} \circ (i, j) \) is inserted into \(Q \). Finally, since \(p \) is an efficient \(s\text{-}t \)-path, \(p_{sj} \) is also an efficient \(s\text{-}j \)-path by subpath optimality. As a consequence of Lemma 13 the dominance checks in Line 4 of propagate and in Line 7 of nextQueuePath do not prevent \(p_{sj} \) from being processed unless there is a different \(s\text{-}j \)-path in \(P_{sj} \) with equivalent costs. In any case, this is a contradiction to the existence of a pair of nodes \(i \) and \(j \) as described earlier.

\[\square\]

2.5 Complexity of the searches for new queue paths

Let \(n \) and \(m \) be the number of nodes and arcs in \(G \), respectively. Additionally, we set \(N \) to be the total number of extracted paths during the T-MDA and \(N_{\text{max}} := \max_{v \in V} |P_{sv}| \) the maximum cardinality of a list of permanent paths at the end of the algorithm.

Up until now, we could ignore the mandatory question of how paths should be stored efficiently. If \(p \) is an \(s\text{-}v \)-path and \((u, v) \) its last arc, \(p \) can be uniquely encoded as a tuple that stores \(p' \)s end node \(v \) and (a reference to) the tuple encoding the \(s\text{-}u \)-subpath of \(p \). The possibility to store paths using these tuples, often called labels, allows us to assume that a path’s memory consumption in the T-MDA algorithm is \(O(1) \). Given a path’s label, the path itself can be reconstructed recursively after the algorithm terminates. Since the T-MDA algorithm only outputs simple paths, this can be achieved in \(O(n) \) time per path.

In the original exposition of the MDA, there are no \(NQP \) lists for arcs \((u, w) \in A \). Thus, in the propagate routine of the MDA, a new explored \(s\text{-}w \)-path \(p_{new} \) is ignored if there is a lex. smaller queue path for \(w \) in \(Q \). But \(p_{new} \) is not discarded forever; the next time \(s\text{-}w \)-path is extracted from \(Q \), a subroutine called nextCandidatePath iterates over the permanent paths of the predecessors of \(w \) and expands these paths along the incoming arcs of \(w \). During these expansions the path \(p_{new} \) is rebuilt and reconsidered as a candidate queue path for \(w \).

The MDA works correctly as described in the last paragraph. To enhance its performance, an index \(\text{lastProcessedPath}_{uw} \in [0, |P_{su}|) \) for every arc \((u, v) \in A \) tells the nextCandidatePath searches at which path in the list \(P_{sv} \) of permanent \(s\text{-}v \)-paths it shall start generating new candidate queue paths for \(w \). Thus, these indices correspond to the beginning of the \(NQP \) lists in the T-MDA.

Both methods are different regarding the resulting space complexity bound. The storage of \(\text{lastProcessedPath}_{uw} \) indices uses \(O(\min) \) space. As already mentioned, the \(NQP \) lists avoid having to repeat the extension of explored paths from their permanent predecessor paths. Thus, for every node \(v \in V \), we do not only store its permanent paths in the list \(P_{sv} \), for each outgoing arc \((v, w) \) of \(v \), the \(NQP \) list stores the expansions of the permanent \(s\text{-}u \)-paths towards \(w \) that are still not dominated. In the worst case, these are the expansions of all paths in \(P_{sv} \). Thus, if \(N_{\text{max}} \) is the maximum cardinality of a list of permanent paths, the \(NQP \) lists require an additional storage space of \(O(mN_{\text{max}}) \).
Table 1: Computing an ideal point out of the results of the σ-lexicographic t-to-all Dijkstra queries dictated by a set of preprocessing orders Σ.

Σ	$c(T_\sigma(v))$
$\sigma = (1, 2, 3)$	$(4, 7, 3)$
$\sigma = (2, 1, 3)$	$(8, 2, 4)$
$\sigma = (3, 1, 2)$	$(5, 3, 2)$
$c^\sigma(v, t) = (4, 2, 4)$	

Using the NQP lists has no impact on the running time bounds for the original MDA or the T-MDA. In the original MDA exposition the explored paths need to be expanded from the permanent predecessor paths in every call to $nextCandidatePath$. The required sums to build the new cost vectors can be neglected when analyzing the running time. The NQP lists need to remain sorted, but as shown in Lemma [11] their ordering can be maintained by always prepending or appending new paths to the lists. Thus, there is no extra computational effort required to sort the lists.

In contrast to the One-To-All scenario, it is not possible to design an algorithm for the One-to-One MOSP Problem that runs in polynomial time w.r.t. to the input size and the output size of any given instance (cf. [2]). Still, it is worth noting that the running time bounds derived in [18] and [11] for the MDA are still valid for the new T-MDA despite of the increased memory consumption caused by the NQP lists. In the biobjective case ($d = 2$), the T-MDA runs in $O(N\log n + N_{\text{max}}m)$ (see Section 3). For the multiobjective case ($d > 2$), the running time bound is $O(dN_{\text{max}}(n \log n + N_{\text{max}}m))$.

2.6 Obtaining Heuristics and Dominance Bounds

The T-MDA requires a heuristic π and a dominance bound β_t as part of its input. In this section we show how to obtain both for a d-dimensional One-To-One MOSP instance (G, s, t, c).

For a set $X \subseteq \mathbb{R}^d$ let X^* be the set of non-dominated vectors in X. Then, the ideal point of X

$$x^* := \left(\min_{x \in X} x_1, \ldots, \min_{x \in X} x_d \right)$$

is a lower bound on the values of the non-dominated vectors in X^* (cf. [3]). For ease of exposition, we introduce the following concept.

Definition 15 (Set of Preprocessing Orders). A set $\Sigma \subset \mathbb{N}^d$ is called a set of preprocessing orders if

1. $|\Sigma| = d$
2. All elements in Σ are permutations of $(1, \ldots, d)$.
3. For every $i \in \{1, \ldots, d\}$ there is exactly one permutation vector $\sigma \in \Sigma$ s.t. $\sigma_1 = i$.

For any $v \in V$, we denote the set of efficient v-t-paths in G by P_{vt}. Moreover, given a permutation σ of $(1, \ldots, d)$, we call a t-to-all σ-lexicographic Dijkstra query a run of the classical one-to-all Dijkstra Algorithm [6] on the reversed digraph of G rooted at t if it processes the explored paths in lex. non decreasing order w.r.t. σ. The query finds a reversed shortest path tree T_σ. We denote the unique (reversed) v-t-path in T_σ by $T_\sigma(v)$ for every $v \in V$. $T_\sigma(v)$ is a shortest v-t-path w.r.t. the σ_1th cost component of the arc cost vectors c_a, $a \in A$. The following statement is clear:

Theorem 16. The ideal points $c_{v,t}^\sigma$ of all sets $c(P_{vt})$ can be computed by running a σ-lexicographic t-to-all Dijkstra query for every $\sigma \in \Sigma$.

Example 17. Table [1] shows how the ideal point for $c(P_{vt})$ is built after running $d = 3$ lexicographic Dijkstra queries, one for each element of a set of preprocessing orders Σ.

The following statement makes clear why we need the ideal points of the sets $c(P_{vt})$.

Proposition 18. The node potential $\pi(v) := c_{v,t}^\sigma$, $v \in V$, is a heuristic.

Furthermore, we can use the results of the lexicographic Dijkstra queries to construct a dominance bound. The following theorem holds for:

$$\beta_t := \left(\max_{\sigma \in \Sigma} c_1(T_\sigma(s)) + \varepsilon, \ldots, \max_{\sigma \in \Sigma} c_d(T_\sigma(s)) + \varepsilon \right)$$

and $\varepsilon > 0$.

Targeted Multiobjective Dijkstra Algorithm
Theorem 19. \(\beta_t \) is a dominance bound, i.e., there is no efficient \(s\text{-}t \)-path \(p \) that is dominated by \(\beta_t \).

Proof. Assume the statement is false and let \(p \) be an efficient \(s\text{-}t \)-path dominated by \(\beta_t \). Then, for any \(i \in \{1, \ldots, d\} \)
\[
c_i(p) > \beta_{t,i} = \max_{\sigma \in \Sigma} c_i(T_\sigma(s))
\]
and, for fixed \(\omega \in \Sigma \),
\[
\max_{\sigma \in \Sigma} c_i(T_\sigma(s)) > c_i(T_\omega(s)).
\]
The construction of \(\beta_t \) does not imply that there is an \(s\text{-}t \)-path in \(G \) with costs \(\beta_t \). However, \(T_\omega(s) \) is an \(s\text{-}t \)-path in \(G \) and
\[
c_i(p) > c_i(T_\omega(s))
\]
implies that \(p \) is a dominated path, which contradicts the assumption. \(\square \)

The following example explains why we need to add \(\varepsilon \) to every dimension of \(\beta_t \) to obtain a feasible bound.

Example 20. Suppose the graph \(G \) only contains the nodes \(s \) and \(t \) and an arc connecting both. Regardless of the chosen set of preprocessing orders \(\Sigma \), we have \(\max_{\sigma \in \Sigma} c(T_\sigma(s)) = c(s,t) \) and \(c(s,t) \) is the cost of the only efficient \(s\text{-}t \)-path in \(G \). Hence,
\[
\left(\max_{\sigma \in \Sigma} c_1(T_\sigma(s)), \ldots, \max_{\sigma \in \Sigma} c_d(T_\sigma(s)) \right) \preceq_D c(s,t)
\]
holds and would invalidate Theorem 19.

All in all, \(d \) lexicographic Dijkstra queries are enough to compute a heuristic and a dominance bound for any One-to-One MOSP instance. The heuristic is used to influence the ordering of the paths in \(Q \) to guide the search towards the target node. Moreover, \(\pi \) and \(\beta_t \) are used in Line 22 of Propagate and Line 20 of NextQueuePath to apply pruning techniques that discard provably irrelevant paths before they are further expanded. For a path \(p \), the dominance check \(c(P_{st}) \preceq_D c(p) \) is called pruning by target efficient set and the check \(\beta_t \preceq_D c(p) \) is called pruning by dominance bound.

3 Enhancements for the biobjective case

The \(T\)-BDA is the biobjective version of the \(T\)-MDA. Even though the \(T\)-MDA solves any Biobjective Shortest Path (BOSP) instance, multiple enhancements that we discuss in this section give rise to a more efficient biobjective algorithm with respect to both theory and practice. The pseudocode of the \(T\)-BDA is in Appendix A.

To build a heuristic and an upper-bound as described in Section 2.2 a set of preprocessing orders \(\Sigma \) is needed. The only possible set of preprocessing orders in the biobjective case is \(\Sigma = \{(1,2), (2,1)\} \). Then, for every \(v \in V \), the two \(\sigma\)-lexicographic t-to-all Dijkstra queries compute \(v\text{-}t \)-paths \(T_{(1,2)}(v) \) and \(T_{(2,1)}(v) \) with costs
\[
c(T_{(1,2)}(v)) = (\pi_1(v), \beta_{v,2}) \quad \text{and} \quad c(T_{(2,1)}(v)) = (\beta_{v,1}, \pi_2(v)).
\]
In this context, the resulting points \(\pi(v) \) and \(\beta_v \) are the ideal point and the nadir point (cf. [8]) of \(c(P_{sv}) \), respectively.

As noted in Section 2.5, the time complexity bound of the BDA, the biobjective version of the MDA is better than the bound for the general biobjective case. The reason for this is the so called dimensionality reduction (cf. [13]) that allows dominance checks in constant time.

Theorem 21. For a node \(v \in V \) let the lists \(P_{sv} \) of permanent \(s\text{-}v \)-paths be sorted in lex. increasing order. Consider an \(s\text{-}v \)-path \(p \) that is lex. greater than every path in \(P_{sv} \). Then, \(c(P_{sv}) \preceq_D c(p) \) can be checked in constant time in the biobjective case.

Proof. Let \(q \) be the last path in \(P_{sv} \) and recall that \(P_{sv} \) contains only efficient \(s\text{-}v \)-paths. Since \(p \) is lex. greater than \(q \), we have \(c(q) \preceq_D c(p) \) if and only if \(c_2(q) \leq c_2(p) \). Moreover, if \(q \) does not dominate \(p \), then no other path \(q' \in P_{sv} \) does, since \(q' \) is lex. smaller than \(q \) and thus \(c_2(q') \geq c_2(q) \). \(\square \)

Theorem 21 is ubiquitous in the remainder of this section. In the \(T\)-BDA pseudocode and its implementation we only set \(\gamma_{sv}^* = c_2(p) \) every time an \(s\text{-}v \)-path \(p \) is extracted from \(Q \) (Line 10) rather than updating \(P_{sv} \) as in Line 9 of the \(T\)-MDA. Thus, \(\gamma_{sv}^* \) is a scalar set to the second cost component of thelex. greatest \(s\text{-}v \)-path extracted so far. The second cost component of new explored \(s\text{-}v \)-paths is then compared with \(\gamma_{sv}^* \) to decide in constant time whether they are dominated by any efficient \(s\text{-}v \)-path that was extracted before during the \(T\)-BDA.
Targeted Multiobjective Dijkstra Algorithm

Moreover, in order to be able to store all efficient paths that are found in the biggest instances used in the biobjective experiments from Section 4, we decided to design the \(T\)-BDA without using the \(NQP\) lists described in Section 2.3. Instead, the original version of the nextCandidatePath routine (cf. [18, 11]) described in Section 2.5 is used since it is less memory consuming. Consider a node \(v \in V\) and an extracted \(s\)-\(v\)-path \(p\). In the \(T\)-MDA, the extensions of \(p\) along the outgoing arcs of \(v\) are only added to the \(NQP\) lists in propagate if they are not dominated. The \(T\)-BDA mirrors this behavior by only adding an extracted path \(p\) to \(P_{sv}\) if its expansion in propagate2d is successful along at least one outgoing arc of \(v\). If all expansions are dominated, then it is guaranteed that \(p\) is not a subpath of any new queue path for a neighbor of \(v\) and is no longer needed in the \(T\)-BDA.

Remark 3. A naive pseudocode and implementation of the \(T\)-BDA does not require the scalars \(\gamma^*_v\). Every extracted \(s\)-\(v\)-path can be added to \(P_{sv}\) directly after its extraction like in the \(T\)-MDA and dominance checks can be assumed to implicitly access the second cost component of the last path in \(P_{sv}\) only. However, we found that in practice, storing extracted paths that are not successfully propagated has a negative impact on the running time of nextCandidatePath2d.

Thus, we decided to present the \(T\)-BDA using the additional scalars \(\gamma^*_v\) and make extracted paths permanent in Line 26 of the \(T\)-BDA only after a successful propagation. Then, the nextCandidatePath2d searches do less iterations that only expand unpromising paths.

For any node \(v \in V\), every \(s\)-\(v\)-path \(p\) extracted from \(Q\) during the \(T\)-BDA is guaranteed to be an efficient \(s\)-\(v\)-path. However, \(c(p)\) could be dominated at \(c(P_{sv})\). In this case, it is not necessary to propagate \(p\) along the outgoing arcs of \(p\). Including an extra dominance check after nextQueuePath in the \(T\)-MDA did not improve the algorithm’s performance. However, since dominance is checked in constant time in the biobjective case, Line 14 in the \(T\)-BDA aborts an iteration if the reduced costs of an extracted path are dominated at \(c(P_{sv})\).

3.1 Shortcuts to Target

The larger \(P_{sv}\) becomes, the more likely it is that a newly explored path \(p\) is discarded using the pruning by target efficient set. Thus, finding efficient \(s\)-\(t\)-paths in early iterations is crucial to discard irrelevant paths early.

The following shortcut techniques are discussed in [3] and in [11]. In [3] the Constrained Shortest Path problem is solved using the Pulse Algorithm. In [11] a label-setting algorithm for BOSP problems that is based on the classical algorithm by Martins [12] is presented. We show how shortcuts can be included in the \(T\)-BDA and explain the theoretical drawbacks of this technique in a general multiobjective scenario.

For any \(v \in V\), let \(p\) be an \(s\)-\(v\)-path extracted from \(Q\). \(p\) can be concatenated with the path \(T_{(1,2)}(v)\) computed during the \((1,2)\)-lexicographic \(t\)-to-all Dijkstra query in the preprocessing stage to obtain an \(s\)-\(t\)-path \(p_{st}\). Using \(Q\), we have

\[
\begin{align*}
c(p_{st}) = (c_1(p) + \pi_1(v), c_2(p) + \beta_{v,2}) = (c_1(p), c_2(p) + \beta_{v,2})
\end{align*}
\]

(3)

If \(p_{st}\) is not dominated by any path in \(P_{st}\), it can be added to \(P_{st}\) (see Lines [17, 23] of Algorithm 2).

Remark 4 (Overtaking via shortcut). Lemma [12] guarantees that paths are extracted from \(Q\) in lex. non decreasing order w.r.t. \(c\). The first cost component of the path \(p_{st}\) is consistent with this ordering but the second cost component is not since we add \(\beta_{v,2}\) rather than \(\pi_2(v)\) to \(c_2(p)\) (see (3)). Thus, an explored path \(q\) with \(c_1(p_{st}) = c_1(q)\) and \(c_2(p_{st}) > c_2(q)\) could exist when \(p_{st}\) is made permanent. Concerning the order in which paths are made permanent dictated by Lemma [12], \(p_{st}\) has overtaken \(q\).

Example 22 (Overtaken \(s\)-\(t\)-paths can be dominated). Consider the BOSP instance in Figure 1. We have \(\pi(v) = (2, 2), \beta_v = (3, 4),\) and \(\pi(w) = (1, 2)\). The path \(q = (s, w)\) has costs \(c(q) = (2, 2)\) and \(c(q) = (3, 4)\). The path \(p = (s, v)\)
has costs $c(p) = (1, 1)$ and $\bar{c}(p) = (3, 3)$. p and q are added to Q during the first iteration of the T-BDA. Since $\bar{c}(p) <_{lex} \bar{c}(q)$, p is extracted prior to q. The corresponding shortcut $p_{st} = p \circ T_{(1,2)}(v)$ has costs $(3, 5)$ and is added to P_{st} since the only path therein has costs $(1, 10)$. In the iteration after p’s extraction, the path q is extracted. The path $q \circ T_{(1,2)}(w)$ has costs $(3, 4)$ and dominates p_{st}. Thus, $q \circ T_{(1,2)}(w)$ has to replace p_{st} in P_{st}.

Correcting the erroneous addition of shortcut paths to P_{st} as described in Example 22 is done in constant time in the bijective scenario. A shortcut path $p_{st} = p \circ T_{(1,2)}(v)$ is only added to P_{st} if it is not dominated by any path therein. Thus, the addition of p_{st} can only be unwanted if in a later iteration an s-t-path that dominates p_{st} is found. Since p_{st}’s first cost component is consistent with the order in which the T-BDA extracts explored paths from Q, p_{st} can only be dominated by an s-t-path with $c_1(q) = c_1(p_{st})$ and $c_2(q) < c_2(p_{st})$. Thus, before adding an s-t-path q to P_{st}, the T-BDA checks if q dominates the last path in P_{st}. If so, the last path in P_{st} is replaced by q. Otherwise, q is appended to P_{st} (see Lines 17–23 of Algorithm 2). Note that since $T_{(1,2)}(t) = (t)$ and $c(T_{(1,2)}(t)) = (0, 0)$, an s-t-path extracted from Q in the T-BDA can be concatenated with $T_{(1,2)}(t)$ without altering the path and can thus be treated as a shortcut path to make it permanent in Lines 17–23.

Further iterations of the T-BDA can be avoided if the first cost components of the ideal point $\pi(v)$ and the nadir point β_v of $c(P_{st})$ coincide. In this case, if $p \circ T_{(1,2)}(v)$ is an efficient s-t-path, then it is guaranteed that no further efficient s-t-path can be built via v. Hence, p does not need to be further expanded along the outgoing arcs of v (cf. Line 23 of Algorithm 2).

Remark 5 (Shortcuts in a multiobjective scenario). In a general multiobjective scenario, the wrong addition of overtaking paths to P_{st} comes at a higher costs. In the worst case, the newly extracted path $q’$ has to be compared to all paths $q \in P_{st}$ such that $c_1(q) = c_1(q’)$. There is no known a priori bound for the number of such paths in P_{st} and thus, the complexity of the deletion of dominated paths in P_{st} is in $O(dN_{max})$.

3.2 Bidirectional Search in Parallel

For a BOSP instance (G, s, t, c), the instance introduced in the following definition swaps the roles of s and t and the roles of the first and second arc cost components.

Definition 23 (Reversed BOSP instance). Consider a BOSP instance $\mathcal{I} = (G, s, t, c)$. Let \overline{G} be the reversed digraph of G and for any arc $a \in A$ let $\overline{c}_a := (c_{a,2}, c_{a,1})$ be the cost vector of a with swapped cost components. The BOSP instance $\overline{\mathcal{I}} := (\overline{G}, t, s, \overline{c})$ is called the reversed BOSP instance of \mathcal{I}.

Recall that the output P_{st} of the T-BDA is a minimal complete set of efficient s-t-paths and that the paths therein are sorted in lex. increasing order. The following statement is clear.

Proposition 24. The lists $c(P_{st})$ and $c(P_{ts})$ put out by the T-BDA after solving \mathcal{I} and $\overline{\mathcal{I}}$, respectively, contain the same cost vectors but in reversed order.

Similar to how it is done in Algorithm 2, we propose a bidirectional framework to solve a BOSP instance \mathcal{I}. It is This framework is run in parallel: two T-BDA searches run simultaneously to partially solve \mathcal{I} and $\overline{\mathcal{I}}$. The T-BDA solving \mathcal{I} is called the forward search and the T-BDA solving $\overline{\mathcal{I}}$ is called the backward search. To better understand this method, consider the paths’ costs vectors of both \mathcal{I} as well as $\overline{\mathcal{I}}$ in a single c_1-c_2-Cartesian coordinate system. Then, the forward search finds efficient s-t-paths from the upper left to the lower right corner and the backward search finds efficient reversed s-t-paths from the lower right to the upper left corner. W.l.o.g., suppose that the T-BDA solving \mathcal{I} makes an s-t-path p with costs $c(p)$ permanent. If the T-BDA solving $\overline{\mathcal{I}}$ already found a t-s-path with costs $\overline{c}(p)$, the whole search can stop since the union of the sets P_{st} and P_{ts} now builds a minimal complete set of efficient s-t-paths. The resulting parallelized bidirectional BOSP algorithm is called Bidirectional-Targeted-BDA (BT-BDA).

Besides the described stopping condition, both searches in the BT-BDA do not require further modifications other than two more lexicographic Dijkstra queries in the preprocessing phase. Moreover, the forward search and the backward search need to share β_t, π, and $\overline{\pi}$ to enhance their performance.

s-to-all Dijkstra queries during preprocessing Since the roles of s and t are exchanged and the ordering of the cost components in \mathcal{I} and $\overline{\mathcal{I}}$ is reversed, two s-to-all lexicographic Dijkstra queries have to be performed in the preprocessing phase to determine the heuristic $\overline{\pi}$ as well as the shortcuts for the backward search. The dominance bound computed in these queries coincides with β_t.

Sharing bounds between searches The forward and the backward searches in the BT-BDA need to share information to check the stopping condition. This communication can also be beneficial when it comes to updating bounds. To
All algorithms are implemented in C++. We use the publicly available implementation of the BOA
This argument is symmetric concerning the updates in the backward search of the π
$\pi \leftarrow -$
Thus, increasing the value of π via a Hamiltonian cycle to ensure connectivity. Then, arcs between the nodes along the cycle are added randomly. The Road Networks
d from the DIMACS Implementation Challenge on Shortest Paths [4]. The original instances are two-dimensional: each
$[11]$: for each graph, 1 between 3
NetMaker- component lies in which interval and the actual value of the cost component was randomly set when the graphs were
1
3
arcs. These graphs have been used in multiple publications [19, 15, 16, 11]. In every such graph, all nodes are connected
4.1 Instance Description
NetMaker Instances $d = 3$ Netmaker graphs are synthetic graphs with 5000 to 30000 nodes and 29591 to 688398 arcs. These graphs have been used in multiple publications [19][15][16][11]. In every such graph, all nodes are connected via a Hamiltonian cycle to ensure connectivity. Then, arcs between the nodes along the cycle are added randomly. The arc costs are 3 dimensional and each cost component lies between 1 and 1000. For any arc there is a cost component between 1 and 333, a cost component between 334 and 666, and a cost component between 667 and 1000. Which cost component lies in which interval and the actual value of the cost component was randomly set when the graphs were first created. We group the NetMaker graphs into groups called NetMaker-n. Each group is defined by the number n of nodes of the graphs in it. Within each groups, graphs have varying number of arcs. We use the same s-t-pairs used in [11]: for each graph, 20 randomly generated s-t-pairs are considered.
Road Networks $d = 2$ and $d = 3$ We use the well known road networks of (parts of) the United States available from the DIMACS Implementation Challenge on Shortest Paths [4]. The original instances are two-dimensional: each
The T-MDA solves more instances than the MDA. On the smaller NY, BAY, and COL networks, the T-MDA solves almost all instances. The other instances can not be solved due to memory limitations. Table 3 is an overview of the results obtained for the NetMaker instances. The T-MDA and the MDA use the same pruning techniques to discard provably irrelevant subpaths of efficient s-t-paths early during the search. To do so, the dominance bound \(\beta_t \) and the front \(\mathcal{P}_{st} \) of already found efficient s-t-paths are used. The pruning using the dominance bound in Line 2 of `propagate` and in Line 5 of `nextQueuePath` is usually not very aggressive since the dominance bound is weak in most practical instances. Hence, to enhance the pruning techniques, it is crucial to add paths to \(\mathcal{P}_{st} \) as early as possible. Any path therein is a better dominance bound than \(\beta_t \). This is precisely what the heuristic \(\pi \) is used for: in the T-MDA, the first s-t-paths are extracted and added to \(\mathcal{P}_{st} \) much earlier than in the MDA because processing paths according to their reduced costs \(\bar{c} \) guides the search towards the target. This general remark explains the superiority of the T-MDA when compared with the MDA in our experiments.

Table 2 is an overview of the results obtained for the NetMaker instances. \(N_r \) denotes the cardinality of the solution set \(\mathcal{P}_{st} \) and gives a hint regarding the difficulty of the considered instances. Both algorithms solved all instances within the time limit. The implementation of the MDA is faster than the one used in [11]. This can be seen by looking at the NetMaker-5000 and the NetMaker-10000 instances. In [11], the MDA solved all instances from these groups but was slower than the current MDA implementation, even though a faster processor was used. Despite this improvement, the T-MDA is \(\times 2.16 \) to \(\times 3.88 \) faster on average than the MDA. The speedup increases with the size of the networks. On the biggest instances from the NetMaker-25000 and the NetMaker-30000 groups the maximum speedup is more than 2 orders of magnitude. The plots in Figure 4 to Figure 9 show how the running times of both algorithms in each group of NetMaker instances.

In Table 4 we summarize the comparison of the MDA and the T-MDA on road networks. If one of the algorithms does not solve an instance within the time limit, we set the corresponding solution time to the time limit (5h). Moreover, we only consider instances that were solved by at least one algorithm. As the size of the instances grows, the difficulties of both algorithms to solve a considerable percentage of the instances become apparent. On all considered networks, the T-MDA solves more instances than the MDA. On the smaller NY, BAY, and COL networks, the T-MDA solves almost all instances. The average speedup w.r.t. the MDA is more than one order of magnitude. In Figure 10 to Figure 12 it becomes clear that the speedup increases as the number of computed efficient paths grows. On the FLA, NE and LKS networks the T-MDA solves at most half of the considered instances but always more than the MDA. The average speedups are always greater than an order of magnitude, sometimes two orders of magnitude. As far as we know, the road networks E, W, and CTR are considered for the first time with 3 dimensional arc costs. The T-MDA solves 28/100 instances on the E network, 9/100 on the W network, and 5/100 on the CTR network. On each of these graphs, the number of solved instances least doubles the number of instances solved by the MDA. The other instances can not be solved due to memory limitations.

Grid Graphs \(d = 2 \)

We consider grid graphs of width \(x \in \mathbb{N} \) and height \(y \in \mathbb{N} \) where \(x \) and \(y \) assume the value of every multiple of 50 between 300 and 600. Every such grid graph (49 in total) has a source node \(s \) connected to all nodes in the leftmost column of the grid. Similarly, all nodes in the rightmost column of the grid are connected to a target node \(t \). All other nodes are connected to all their neighbors in the grid. These instances were already used in [17, 18].

4.2 MDA vs T-MDA

The T-MDA and the MDA use the same pruning techniques to discard provably irrelevant subpaths of efficient s-t-paths early during the search. To do so, the dominance bound \(\beta_t \) and the front \(\mathcal{P}_{st} \) of already found efficient s-t-paths are used. The pruning using the dominance bound in Line 2 of `propagate` and in Line 5 of `nextQueuePath` is usually not very aggressive since the dominance bound is weak in most practical instances. Hence, to enhance the pruning techniques, it is crucial to add paths to \(\mathcal{P}_{st} \) as early as possible. Any path therein is a better dominance bound than \(\beta_t \). This is precisely what the heuristic \(\pi \) is used for: in the T-MDA, the first s-t-paths are extracted and added to \(\mathcal{P}_{st} \) much earlier than in the MDA because processing paths according to their reduced costs \(\bar{c} \) guides the search towards the target. This general remark explains the superiority of the T-MDA when compared with the MDA in our experiments.

Table 2 is an overview of the results obtained for the NetMaker instances. \(N_r \) denotes the cardinality of the solution set \(\mathcal{P}_{st} \) and gives a hint regarding the difficulty of the considered instances. Both algorithms solved all instances within the time limit. The implementation of the MDA is faster than the one used in [11]. This can be seen by looking at the NetMaker-5000 and the NetMaker-10000 instances. In [11], the MDA solved all instances from these groups but was slower than the current MDA implementation, even though a faster processor was used. Despite this improvement, the T-MDA is \(\times 2.16 \) to \(\times 3.88 \) faster on average than the MDA. The speedup increases with the size of the networks. On the biggest instances from the NetMaker-25000 and the NetMaker-30000 groups the maximum speedup is more than 2 orders of magnitude. The plots in Figure 4 to Figure 9 show how the running times of both algorithms in each group of NetMaker instances.

In Table 4 we summarize the comparison of the MDA and the T-MDA on road networks. If one of the algorithms does not solve an instance within the time limit, we set the corresponding solution time to the time limit (5h). Moreover, we only consider instances that were solved by at least one algorithm. As the size of the instances grows, the difficulties of both algorithms to solve a considerable percentage of the instances become apparent. On all considered networks, the T-MDA solves more instances than the MDA. On the smaller NY, BAY, and COL networks, the T-MDA solves almost all instances. The average speedup w.r.t. the MDA is more than one order of magnitude. In Figure 10 to Figure 12 it becomes clear that the speedup increases as the number of computed efficient paths grows. On the FLA, NE and LKS networks the T-MDA solves at most half of the considered instances but always more than the MDA. The average speedups are always greater than an order of magnitude, sometimes two orders of magnitude. As far as we know, the road networks E, W, and CTR are considered for the first time with 3 dimensional arc costs. The T-MDA solves 28/100 instances on the E network, 9/100 on the W network, and 5/100 on the CTR network. On each of these graphs, the number of solved instances least doubles the number of instances solved by the MDA. The other instances can not be solved due to memory limitations.
Table 3: Overview of the results collected on NetMaker graphs of different sizes with \(d = 3\) cost components. Depending on the graph class, 200 to 240 \(s-t\)-pairs were randomly built. The number depends on the number of graphs in each class. \(N_t\) refers to the cardinality of the solution set, i.e., the cardinality of the set of cost vectors of efficient \(s-t\)-paths. All instances were solved by both algorithms before the time limit was reached.

Graph Size	Instances	\(N_t\)	T-MDA Inserted	T-MDA Time	MDA Inserted	MDA Time	Speedup
netMaker-5000n							
(0, 0.5]	85	233	22242	0.04	73310	0.14	3.37
(0.5, 5]	62	789	248797	1.63	542056	3.72	2.92
(5, 50]	78	1528	780908	15.71	1437358	30.54	1.94
(50, 500]	15	3394	1712258	82.13	280596	137.36	1.67
netMaker-10000n							
(0, 0.5]	65	288	39586	0.07	181726	0.34	5.08
(0.5, 5]	60	782	323734	1.77	912542	5.55	3.13
(5, 50]	55	1878	1134095	15.70	2505383	37.05	2.26
(50, 500]	38	3217	3370375	137.92	5990825	261.42	1.90
(500, 18000]	2	5200	7410039	605.85	11013419	931.79	1.54
netMaker-15000n							
(0, 0.5]	57	297	59043	0.10	321345	0.63	6.53
(0.5, 5]	57	840	364690	1.72	1235804	6.90	2.32
(5, 50]	62	1708	1246466	16.54	3231331	48.27	2.92
(50, 500]	55	2986	4097699	153.54	7965304	319.57	2.08
(500, 18000]	9	4876	9288820	687.00	15173429	1184.24	1.72
netMaker-20000n							
(0, 0.5]	50	324	83073	0.15	458753	1.03	6.92
(0.5, 5]	48	794	389028	1.58	1357132	6.50	4.12
(5, 50]	67	1656	1432648	17.81	3909492	55.89	2.34
(50, 500]	63	2884	4083009	129.84	8798571	300.66	2.32
(500, 18000]	12	5714	12125157	950.69	20908533	1690.19	1.28
netMaker-25000n							
(0, 0.5]	44	274	49470	0.10	357449	0.85	8.93
(0.5, 5]	43	725	416954	1.54	1710524	8.15	2.12
(5, 50]	38	1214	1424486	12.30	4144590	45.11	3.67
(50, 500]	55	2742	5079058	159.23	11233614	399.93	2.51
(500, 18000]	22	4610	12778316	827.36	22215895	1550.70	1.78
netMaker-30000n							
(0, 0.5]	39	281	57984	0.11	472935	1.22	11.08
(0.5, 5]	55	719	437503	1.61	2051738	10.08	6.27
(5, 50]	55	1608	1473406	15.69	4670018	58.13	3.70
(50, 500]	65	2911	4961126	148.45	11108866	358.13	2.41
(500, 18000]	26	5239	13930103	946.90	26853793	1932.81	2.04

Figure 2: NetMaker graphs with 20,000 nodes.
Figure 3: MDA vs. T-MDA on BAY network.
Table 4: T-MDA vs. MDA on road networks. For every graph, the results of the 100 instances are reported after dividing the instances into disjoint time intervals based on the time it took the T-MDA to solve them. All reported numbers are rounded geometric means. Scatter plots for each graph in Figure 10 - Figure 18.

Graph	T-MDA sol. time in $[s]$	N_t	T-MDA	MDA	Speedup				
	Solved	Inserted	Time	Solved	Inserted	Time			
BAY	(0, 0.5]	158	35/35	34475	0.05	35/35	1155634	1.82	33.66
	(0.5, 5]	1414	14/14	816555	1.52	14/14	23109806	105.44	69.21
	(5, 50]	3238	16/16	3277216	15.64	15/16	110689803	1652.72	105.69
	(50, 18000]	7968	9/9	10154740	119.88	7/9	157039057	4277.69	35.68
COL	(0, 0.5]	114	26/26	18029	0.07	26/26	607911	1.84	27.75
	(0.5, 5]	1437	15/15	809614	1.55	15/15	48424432	365.76	235.51
	(5, 50]	3158	11/11	3232778	14.77	9/11	71448233	1263.36	85.54
	(50, 18000]	11252	13/13	11315066	194.45	8/13	271408641	8793.20	45.22
CTR	(50, 500]	5719	2/2	12674561	125.40	1/2	346465533	12129.81	96.73
	(500, 18000]	15142	3/98	54537221	14453.27	0/98	-	-	-
FLA	(0, 0.5]	83	12/12	8573	0.08	12/12	18052	0.78	5.09
	(0.5, 5]	1032	4/4	653896	1.11	3/4	109357306	3681.38	330.52
	(5, 50]	4388	5/5	3121485	19.13	4/5	7244102	1603.72	83.85
	(50, 18000]	7416	6/3	11985005	158.29	6/16	315643174	13059.13	82.50
LKS	(0, 0.5]	18	2/2	2413	0.15	2/2	18052	0.78	5.09
	(0.5, 5]	1667	5/5	742907	1.98	5/5	26381733	131.73	66.60
	(5, 50]	3421	1/1	2031939	8.72	1/1	43969216	427.01	48.99
	(50, 18000]	8153	4/4	11299622	193.13	2/4	154637009	7979.71	63.56
NE	(0, 0.5]	173	6/6	26661	0.11	6/6	1246047	2.60	24.21
	(0.5, 5]	1406	4/4	546287	1.10	4/4	16329886	60.16	54.77
	(5, 50]	3521	12/12	2776277	14.29	10/12	107434232	1808.56	126.58
	(50, 18000]	6799	11/11	10296214	115.25	8/11	188332397	5635.33	48.90
NY	(0, 0.5]	173	6/6	26661	0.11	6/6	1246047	2.60	24.21
	(0.5, 5]	1406	4/4	546287	1.10	4/4	16329886	60.16	54.77
	(5, 50]	3521	12/12	2776277	14.29	10/12	107434232	1808.56	126.58
	(50, 18000]	6799	11/11	10296214	115.25	8/11	188332397	5635.33	48.90
W	(0.5, 5]	130	45/45	17848	0.04	45/45	399201	0.63	16.35
	(0.5, 5]	1642	12/12	740197	1.77	12/12	17226422	88.88	50.33
	(5, 50]	3660	19/19	3019715	18.32	19/19	109603246	2109.29	115.13
	(50, 500]	8992	13/13	8652758	138.75	10/13	158382727	5570.26	40.15
	(500, 18000]	16469	10/11	41812104	1962.75	0/11	-	-	-
	(50, 500]	11056	2/2	11340303	173.60	1/2	206900146	7125.17	41.04
	(500, 18000]	19414	4/95	75540488	16784.36	0/95	-	-	-
Table 5: Overview of the results collected on two dimensional grids of different sizes. N_t refers to the geometric mean of the cardinality of the solution sets. All instances were solved before the time limit was reached. The subdivision of the instances into time intervals was done based on the time it took the BDA-based algorithms to solve the instances. Corresponding plots: Figure 19-Figure 22.

sol. time in [s]	Instances	N_t	BDA based	BOA based	Speedup			
			Inserted	Time	Inserted	Time		
Grids-Bidi-Bucket	(0.5, 0.5)	2	434	3544743	0.44	5671696	0.53	1.22
	(0.5, 5)	30	599	11202640	1.73	17626082	2.24	1.30
	(5, 50)	17	902	36165995	7.72	56578747	10.36	1.34
Grids-Bidi-Heap	(0.5, 5)	26	553	8386782	1.82	15612581	3.24	1.78
	(5, 50)	23	864	30789899	9.55	57730831	17.77	1.86
Grids-Uni-Bucket	(0.5, 5)	32	587	7357548	1.89	10945046	2.06	1.09
	(5, 50)	17	902	25355482	8.66	37587174	10.67	1.23
Grids-Uni-Heap	(0.5, 5)	25	546	5836388	2.14	9843951	3.02	1.61
	(5, 50)	24	859	21198599	10.34	36295558	16.80	1.63

4.3 Biobjective Experiments

In the computational experiments presented in [11] the BOA*_c and BOBA* algorithms outperformed the BOA* algorithm from [20] and the BDA algorithm from [18]. The BOA*_c algorithm is based on the BOA* algorithm introduced in [20]. Both algorithms can be understood as variations of the classical label-setting MOSP algorithm by Martins [12]. They are equipped with improvements for the biobjective case that turn out to perform well in practical applications. Most significantly, the algorithms introduced in [20] and [11] utilize lazy queue management. This means that a newly explored path p is introduced into the priority queue while omitting both to check if the queue contains paths that dominate p as well as if p dominates existing paths in the queue. These dominance checks are commonly referred to as merge operations in the literature. The lazy queue management approach might be surprising due to the intractability of the MOSP problem. But in our experiments it becomes apparent that, this leads to an increased number of extractions from the queue. However, since dominance is checked in constant time in the biobjective case, irrelevant paths are discarded directly after their extraction without triggering a whole iteration of the algorithms’ main loop. A main takeaway from [20] and [11] is that for BOSP problems, the merge operation is less efficient than a lazy queue management in practice.

We refer to the 1-BDA and its parallelized bidirectional version as 1-BDA-based algorithms. Both algorithms are compared with the BOA*_c and the BOBA* algorithms to which we refer as BOA*-based algorithms. The comparisons are done with two different types of priority queues: binary heaps and bucket queues [5]. The latter can only be used for integer costs and in theory, an exponential number of buckets can be non-empty at the same time. However, as in [11], buckets yield better running times in our experiments.

Still, binary heaps are relevant. BOSP instances with rational costs or Time-Dependent BOSP instances with piecewise linear arc cost functions can not be solved using bucket queues. Moreover, 1-BDA-based algorithm using binary heaps require less iterations to solve any BOSP instance. In situations wherein the evaluation of arc costs is costly, this advantage becomes relevant. The reason for the reduced number of iterations is that bucket queues yield better performance if the list of explored paths in each bucket is not required to be lex. sorted.

For both types of queues we run the same set of experiments. On average, the parallel bidirectional searches are faster than their unidirectional siblings. However, due to the synchronization of threads in a parallel environment, counting the number of iterations is not deterministic in these cases: small variations can happen between different runs of the same instance. Thus, to compare the workload performed by the algorithms, the unidirectional versions are better suited.

In Table 5 and in Figures 19-22 we see that on two dimensional grids, the BDA-based algorithms always outperform the BOA-based algorithms. Interestingly, the bidirectional parallel algorithms using bucket queues are the only ones that need more than 5s to solve some instances. At the same time, these scenario is the only one in which 2 instances are solved in less than 0.5s. All in all, there are no big differences between the unidirectional and the bidirectional versions of the algorithms. The Grids-Bidi-Heap and Grids-Uni-Heap rows in Table 5 give a good intuition: the set of instances solved in less and in more than 5s are almost identical and the average number of queue insertions performed by the bidirectional search is much higher than in the unidirectional scenario. This happens because the calculated heuristic
does not effectively guide the searches towards their target nodes and this in turn is due to the randomly generated arc costs in the grid.

On road networks the situation changes. The calculated heuristics capture the metrical structure of the arc costs (road length and traversal time) and effectively guide the searches. On average, the bidirectional algorithms using bucket queues outperform their unidirectional siblings and the versions of the algorithms using binary heaps. We focus on a head to head comparison of the different versions of the BDA-based and BOA-based algorithms. In each comparison, both considered algorithms are either bidirectional or unidirectional and they always use the same type of priority queue. Table 6 gives an overview about where to find the relevant information and plots for every comparison.

Instances solved by TB-BDA-based algorithms in (0, 0.5)s These instances always favor the BOA\(^*\) and the BOBA\(^*\) algorithm. This is because on small instances the percentage of needless insertions into the queue that are performed due to the lazy heap management is small.

Instances solved by TB-BDA-based algorithms in (0.5, 5)s In the bidirectional scenario using buckets, the TB-BDA slightly outperforms the BOBA\(^*\) algorithm on all road networks except the CTR network, where the average speedup is \(\times 0.74\). In the unidirectional scenario using buckets, the BOBA\(^*\) algorithm is better than the TB-BDA algorithm on all road networks. Using binary heaps, the TB-BDA-based algorithms always outperform the BOA\(^*\) based algorithms. The greatest speedup of \(\times 1.42\) is achieved on the FLA network in the unidirectional scenario.

Instances solved by TB-BDA-based algorithms in (5, 50)s The TB-BDA-based algorithms almost always outperform the BOA\(^*\) based algorithms by \(\times 1.07\) (CTR) to \(\times 1.15\) (W) in the bidirectional scenario and \(\times 0.97\) (COL) to \(\times 1.07\) (FLA) in the unidirectional scenario. Using binary heaps, the speedups increase: \(\times 1.41\) (COL) to \(\times 1.65\) (LKS) in the bidirectional scenario and \(\times 1.43\) (COL) to \(\times 2.11\) (E) in the unidirectional scenario.

Instances solved by TB-BDA-based algorithms in (50, 500)s The results favor the TB-BDA-based algorithms. Using buckets, the greatest speedup of \(\times 1.18\) in the bidirectional scenario is reached on the FLA instances. Using binary heaps, the speedups are again greater than for buckets. On the E road network, the speedup on instances that the TB-BDA solves between 50s and 500s reaches \(\times 2.42\).

Instances solved by TB-BDA-based algorithms in (500, 7200)s We observe a slight decrease of the speedup factor but still the TB-BDA-based algorithms outperform the BOA\(^*\) based algorithms in every scenario. The implementation of the BOA\(^*\) based algorithms in [11] relies on a so called memory pool. It allocates big chunks of memory a priori to reduce reallocation of memory during the algorithm and also to avoid memory fragmentation. Moreover, labels that are discarded can be reused. These advantages become more useful as the workload of the algorithm increases. We tried a similar memory management technique for TB-BDA based algorithms. The running time gains were limited because these algorithms are designed to have a possibly small set of explored active paths at any point in time (at most one path per node in the priority queue \(Q\)). Since we wanted to deliver an implementation of the TB-BDA algorithms that follows the theoretical description in this paper and the derived bounds on the space consumption, we decided to report the results without using memory pools in the TB-BDA-based algorithms.

As already mentioned, the number of extractions made by each algorithm is better assessed by looking at the unidirectional results (Table 8 and Table 10). The TB-BDA-based algorithms always perform less iterations than the BOA based algorithms. This is to be expected because of the lazy heap management that is used in the BOA based algorithms. Moreover, the extra effort done to maintain binary heaps sorted (single buckets are not sorted in a bucket queue) pays off when it comes to the number of iterations. All in all, the TB-BDA-based algorithms using binary heaps need a minimal number of iterations to solve every instance.
5 Conclusion

In this paper, we introduced the Targeted Multiobjective Dijkstra Algorithm (T-MDA) for the One-to-One Multiobjective Shortest Path (MOSP) Problem. The T-MDA is a variant of the Multiobjective Dijkstra Algorithm (MDA) that guides the search towards the target node using a heuristic. The underlying idea is similar to the one used in the design of the A* algorithm for the classical One-to-One Shortest Path Problem and achieves an analogous effect. Making use of the dimensionality reduction that enables dominance checks in constant time in the biobjective case, we present a tuned version of the T-MDA, the Targeted Biobjective Dijkstra Algorithm (T-BDA) for the Biobjective Shortest Path (BOSP) Problem. The resulting algorithms are benchmarked against state of the art algorithms on different types of graphs from the literature. To the best of our knowledge, this paper is the first to present the solution of large scale MOSP instances, e.g., road networks, with more than \(d = 2 \) objectives by A*-like algorithms. Our experiments show that the T-MDA clearly outperforms the state of the art MDA on all considered instances. In the experiments on BOSP instances, we benchmarked the T-BDA-based algorithms (unidirectional and parallelized bidirectional) against recently published state of the art BOSP algorithms. These algorithms are based on the classical label setting algorithm for MOSP by Martins and use a lazy queue management instead of the time consuming merge operations required in the original version of the algorithm. On average, the BDA based algorithms achieved better running times on all instances except those solvable within fractions of a second.

References

[1] S. Ahmadi, G. Tack, D. Harabor, and P. Kilby. Bi-Objective Search with Bi-Directional A*. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on Algorithms (ESA 2021), volume 204 of Leibniz International Proceedings in Informatics (LIPIcs), pages 3:1–3:15, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
[2] F. K. Bökler. Output-sensitive complexity of multiobjective combinatorial optimization with an application to the multiobjective shortest path problem. PhD thesis, Technische Universität Dortmund, 2018.
[3] N. Cabrera, A. L. Medaglia, L. Lozano, and D. Duque. An exact bidirectional pulse algorithm for the constrained shortest path. Networks, 76(2):128–146, Jun 2020.
[4] C. Demetrescu, A. Goldberg, and D. Johnson. 9th DIMACS Implementation Challenge - Shortest Paths. http://www.diag.uniroma1.it/~challenge9/ Accessed: 2021-12-15.
[5] E. V. Denardo and B. L. Fox. Shortest-Route Methods: 1. Reaching, Pruning, and Buckets. Operations Research, 27(1):161–186, Feb 1979.
[6] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik 1, 1(1):269–271, Dec 1959.
[7] D. Duque, L. Lozano, and A. L. Medaglia. An exact method for the biobjective shortest path problem for large-scale road networks. European Journal of Operational Research, 242(3):788–797, 2015.
[8] M. Ehrgott. Multiobjective Optimization. Springer-Verlag, 2005.
[9] L. Mandow and J. L. Pérez-de-la Cruz. A new approach to multiobjective a* search. In IJCAI, 2005.
[10] L. Mandow and J. L. Pérez-de-la Cruz. Multiobjective a* search with consistent heuristics. Journal of the ACM, 57(5):1–25, Oct 2010.
[11] P. Maristany de las Casas, A. Sedeño-Noda, and R. Borndörfer. An improved multiobjective shortest path algorithm. Computers & Operations Research, 105424, Jun 2021.
[12] E. Q. V. Martins. On a multicriteria shortest path problem. European Journal of Operational Research, 16(2):236–245, May 1984.
[13] F. J. Pulido, L. Mandow, and J. L. Pérez-de-la Cruz. Dimensionality reduction in multiobjective shortest path search. Computers & Operations Research, 64:60–70, Dec 2015.
[14] L. Pulido, F. J. and Mandow and J. L. Pérez de la Cruz. Multiobjective shortest path problems with lexicographic goal-based preferences. European Journal of Operational Research, 239(1):89–101, Nov 2014.
[15] A. Raith and M. Ehrgott. A comparison of solution strategies for biobjective shortest path problems. Computers & Operations Research, 36(4):1299–1313, Apr 2009.
[16] A. Raith, M. Schmidt, A. Schöbel, and L. Thom. Extensions of labeling algorithms for multi-objective uncertain shortest path problems. Networks, 72(1):84–127, Mar 2018.
[17] A. Sedeño-Noda and A. Raith. A Dijkstra-like method computing all extreme supported non-dominated solutions of the biobjective shortest path problem. *Computers and Operations Research*, 57:83–94, may 2015.

[18] A. Sedeño-Noda and M. Colebrook. A biobjective dijkstra algorithm. *European Journal of Operational Research*, 276(1):106–118, jul 2019.

[19] A.J.V. Skriver and K.A. Andersen. A label correcting approach for solving bicriterion shortest-path problems. *Computers & Operations Research*, 27(6):507–524, may 2000.

[20] C. H. Ulloa, W. Yeoh, J. A. Baier, H. Zhang, L. Suazo, and S. Koenig. A simple and fast bi-objective search algorithm. In *Proceedings of the 30th International Conference on Automated Planning and Scheduling (ICAPS)*, pages 143–151. AAAI Press, 2020.
A Pseudocode of the Targeted Biobjective Dijkstra Algorithm (T-BDA)

Algorithm 2: Targeted Biobjective Dijkstra Algorithm

\begin{verbatim}
Input : MOSP instance \((G, s, t, c)\),
heuristics \(\pi\) and \(\overline{\pi}\) (\(\overline{\pi}\) only for BT-BDA),
nadir point \(\overline{\beta}_t\) of \(c(\mathcal{P}_{st})\),
\((1, 2)\)-lexicographic \(t\)-to-all shortest path tree \(T_{(1, 2)}\).

Output : Minimal complete set \(\mathcal{P}_{st}\) of efficient \(s\)-\(t\)-paths. In the bidirectional BT-BDA, it is not complete and has to be
combined with the set \(\mathcal{P}_{ts}\) computed by the backward search.

1 Priority Queue: \(Q \leftarrow \emptyset\); \hspace{1cm} // \(Q\) is sorted according to the \(\overline{c}\) values of the contained paths.
2 Efficient \(s\)-\(v\)-paths: \(\mathcal{P}_{sv} \leftarrow \emptyset, \forall v \in V\);
// Due to the dimensionality reduction (Theorem 21), \(\overline{\beta}_{s,v}\) is the only relevant information for
the dominance checks at \(\mathcal{P}_{sv}\) until a new \(s\)-\(v\)-path is extracted.
3 Second cost component of the latest \(s\)-\(v\)-path extracted from \(Q\): \(\gamma^*_v \leftarrow \infty, \forall v \in V\setminus\{t\}\);
4 \(p_{\text{init}} \leftarrow \emptyset\);
5 \(Q \leftarrow Q.\text{insert}(p_{\text{init}});\)
6 while \(Q \neq \emptyset\) do
7 \(p \leftarrow Q.\text{extractMin}();\) \hspace{1cm} // head returns the last node of \(p^*_v\). If \(p_v^* = p_{\text{init}}\), it returns \(s\).
8 \(v \leftarrow \text{head}(p);\) \hspace{1cm} // Stopping condition for bidirectional search. Opposite search lowers \(\overline{\beta}_{t,1}\) when it finds an
efficient \(t\)-\(s\)-path. When this condition holds, the current search will not find any
\(s\)-\(t\)-path with an efficient cost vector that is unknown to the opposite search.
9 if \(\overline{c}_1(p) \geq \overline{\beta}_{t,1}\) then break;
10 \(\gamma^*_v \leftarrow c_2(p);\)
11 \(p^*_{\text{new}} \leftarrow \text{nextCandidatePath2d}(p, \overline{\delta}^-(v), \mathcal{P}, \overline{\beta}_t);\)
12 if \(p^*_{\text{new}} \neq \text{NULL} \text{ then } Q.\text{insert}(p^*_{\text{new}});\)
13 if \(\overline{\beta}_{t,2} \leq \overline{c}_2(p)\) then
14 continue
15 else
16 if \(\mathcal{P}_{sv} == \emptyset\) then \(\overline{\tau}_1(v) \leftarrow c_1(p);\)
// Lines 1723 possibly add shortcuts to \(\mathcal{P}_{st}\). See Section 3.1.
17 \(p_{st} \leftarrow p \circ T_{(1, 2)}(v);\) \hspace{1cm} // Check if \(p_{st}\) is dominated at \(\mathcal{P}_{st}\).
18 if \(\overline{\beta}_{t,2} > c_2(p_{st})\) then \hspace{1cm} // Strengthen upper bound.
19 \(q \leftarrow \text{last path in } \mathcal{P}_{st};\)
20 if \(c_1(q) == c_1(p_{st}) \text{ and } c_2(q) > c_2(p_{st})\) then \(\mathcal{P}_{st} \leftarrow (\mathcal{P}_{st} \setminus q, p_{st});\)
21 else \(\mathcal{P}_{st} \leftarrow (\mathcal{P}_{st}, p_{st});\)
22 \(\overline{\beta}_{t,2} \leftarrow c_2(p_{st});\)
23 if \(\pi_1(v) == \overline{\beta}_{t,1}\) then continue; \hspace{1cm} // No further efficient \(s\)-\(t\)-path via \(v\) exists.
24 \(\text{success} \leftarrow \text{False};\)
25 for \(w \in \overline{\delta}^+(v)\) do \((Q, \text{success}) \leftarrow \text{propagate2d}(p, w, Q, \gamma^*_w, \overline{\beta}_t);\)
26 if \(\text{success} == \text{True}\) then \(\mathcal{P}_{sv} \leftarrow (\mathcal{P}_{sv}, p);\)
27 return \(\mathcal{P}_{st};\)
\end{verbatim}
Procedure propagate2d

Input:
- s-v-path p.
- Node $w \in \delta^+(v)$.
- Priority Queue Q.
- Permanent paths \mathcal{P}.
- 2nd cost component of last extracted s-w-path γ_{sw}^*.
- Upper bound β_t.

Output: Updated Priority Queue Q, Boolean success indicating whether p was successfully propagated along (v, w).

1. $p_{w}^{\text{new}} \leftarrow p \circ (v, w)$;
2. $\text{success} \leftarrow \text{False}$;
 // These checks are the dominance checks of p_{w}^{new} at the sets of efficient paths at t and at w.
3. if $\beta_{t,2} \leq \bar{c}_2(p_{w}^{\text{new}})$ or $\beta_{w,2} \leq c_2(p_{w}^{\text{new}})$ then
 \hspace{1em} return $(Q, \text{success})$;
4. else
 \hspace{1em} $\text{success} \leftarrow \text{True}$;
 \hspace{1em} if not Q.contains(w) then
 \hspace{2em} Q.insert(p_{w}^{new});
 \hspace{1em} else
 \hspace{2em} $q \leftarrow Q$.getPath(w);
 \hspace{2em} if $\bar{c}(p_{w}^{\text{new}}) \prec_{\text{lex}} \bar{c}(q)$ then
 \hspace{3em} Q.decreaseKey(w, p_{w}^{new});
 \hspace{2em} return $(Q, \text{success})$;

Procedure nextCandidatePath2d

Input:
- s-v-path p.
- Neighborhood $\delta^-(v)$.
- $\forall (u, v) \in A$, $\text{lastProcessedPath}_{uv}$: first path in \mathcal{P}_{su} that can be a queue path for v after expansion along (u, v).
- Permanent paths \mathcal{P}.
- Upper bound β_t.

Output: New queue path for v, if one exists.

1. $p_v^{\text{new}} \leftarrow \text{NULL}$; // Assume $\bar{c}(p_v^{\text{new}}) = [\infty]_i^{d}$.
2. for $u \in \delta^-(v)$ do
3. \hspace{1em} for $p_u \in (\mathcal{P}_{su}[\text{lastProcessedPath}_{uv}], |\mathcal{P}_{su}|)$ do
4. \hspace{2em} $p_v \leftarrow p_u \circ (u, v)$;
 \hspace{2em} // First condition is a dominance check of $\bar{c}(p_v)$ at $c(\mathcal{P}_{st})$. The second condition ensures that p is lex. smaller than p_v but does not dominate it. As a consequence, p_v would not be dominated at \mathcal{P}_{sv}.
5. \hspace{2em} if $\beta_{t,2} \leq \bar{c}_2(p_v)$ or not ($c_1(p_v) > c_1(p)$ and $c_2(p_v) < c_2(p)$) then
6. \hspace{2em} lastProcessedPath$_{uv} \leftarrow$ lastProcessedPath$_{uv} + 1$;
7. \hspace{2em} continue;
8. \hspace{2em} if $\bar{c}(p_v) \prec_{\text{lex}} \bar{c}(p_v^{\text{new}})$ then $p_v^{\text{new}} \leftarrow p_v$;
9. \hspace{2em} break; // Even if the lex. check fails, we stop and do not increase lastProcessedPath$_{uv}$.
10. return p_v^{new}.
B Scatter plots MDA vs. T-MDA

B.1 NetMaker instances

Figure 4: NetMaker graphs with 5,000 nodes.

Figure 5: NetMaker graphs with 10,000 nodes.

Figure 6: NetMaker graphs with 15,000 nodes.

Figure 7: NetMaker graphs with 20,000 nodes.
B.2 Road networks 3d

Figure 8: NetMaker graphs with 25,000 nodes.

Figure 9: NetMaker graphs with 30,000 nodes.

Figure 10: MDA vs. T-MDA on NY network.

Figure 11: MDA vs. T-MDA on BAY network.

Figure 12: MDA vs. T-MDA on COL network.

Figure 13: MDA vs. T-MDA on FLA network.
Targeted Multiobjective Dijkstra Algorithm

Figure 14: MDA vs. T-MDA on NE network.

Figure 15: MDA vs. T-MDA on LKS network.

Figure 16: MDA vs. T-MDA on E network.

Figure 17: MDA vs. T-MDA on W network.

Figure 18: MDA vs. T-MDA on CTR network.
C Biobjective Experiments

C.1 Tables

Table 7: Results BT-BDA vs. BOBA* using bucket queues on road networks. For every graph, the results of the 100 instances are reported after dividing the instances into disjoint time intervals based on the time it took the BT-BDA to solve them. We use rounded geometric means.

	BT-BDA sol. time in [s]	Instance count	\(N_i \)	BT-BDA	BOBA*	Speedup		
				Inserted	Time	Inserted	Time	
BAY	(0, 0.5)	99	62	40625	0.02	49943	0.02	0.75
	(0.5, 5)	1	655	4618916	0.54	5351638	0.56	1.04
COL	(0, 0.5)	91	83	47464	0.03	53794	0.02	0.73
	(0.5, 5)	9	1526	10694947	1.29	12840144	1.43	1.11
CTR	(0, 0.5)	4	105	103864	0.47	107033	0.03	0.07
	(0.5, 5)	21	1361	6528762	1.56	7664263	1.13	0.72
	(5, 50)	23	3438	73107725	17.64	85795476	18.46	1.05
	(50, 100)	31	8648	454823235	146.81	522860049	153.02	1.04
	(500, 7200)	21	21483	2820469600	1081.09	3254313265	1145.45	1.06
E	(0, 0.5)	31	181	210353	0.16	252177	0.05	0.30
	(0.5, 5)	14	1497	12341423	1.84	14470630	1.87	1.02
	(5, 50)	20	2691	56652148	11.18	67838991	12.57	1.12
	(50, 100)	28	6518	42791715	124.83	515680451	131.48	1.05
	(500, 7200)	7	14228	2113666222	735.75	2521366438	778.47	1.06
FLA	(0, 0.5)	74	133	107532	0.06	125394	0.03	0.46
	(5, 10)	19	1214	9175294	1.21	10818218	1.33	1.10
	(5, 50)	7	2582	53748512	9.80	63662475	11.53	1.18
LKS	(0, 0.5)	28	184	168986	0.13	199154	0.05	0.34
	(0.5, 5)	20	1595	11259390	1.62	13396943	1.70	1.05
	(5, 50)	22	3067	83435641	18.22	101859555	20.11	1.10
	(50, 100)	25	9562	581410031	173.10	701058691	186.76	1.08
	(500, 7200)	5	15199	1927723557	644.00	2271500621	698.51	1.08
NE	(0, 0.5)	49	165	185289	0.09	227362	0.04	0.46
	(0.5, 5)	40	1035	10336396	1.58	12779331	1.71	1.08
	(5, 50)	11	2138	58734135	13.27	72864414	14.23	1.07
NY	(0, 0.5)	100	57	24230	0.02	30239	0.02	0.32
	(0.5, 5)	16	278	482099	0.26	592757	0.10	0.38
W	(5, 50)	25	4009	80021210	15.03	93615464	17.28	1.15
	(50, 100)	24	10441	489914196	128.28	564094695	138.58	1.08
	(500, 7200)	6	16522	2202981245	753.26	2540792665	808.41	1.07
Table 8: Results of T-BDA vs. BOA* using bucket queues on road networks. For every graph, the results of the 100 instances are reported after dividing the instances into disjoint time intervals based on the time it took the BT-BDA to solve them. We use rounded geometric means.

Graph	Instance count	Inserted Time	BOA* Enh Time	Speedup
BAY	(0, 0.5] 95	27703	33686	0.69
	(0.5, 5] 5	4012946	4844621	0.90
	(0, 0.5] 84	30264	36172	0.67
	(0.5, 5] 14	5361484	6613358	0.90
	(5, 50] 2	32256753	39730169	0.97
	(50, 500] 28	303654790	364040207	1.01
	(500, 7200] 27	1908034860	1988914831	1.02
COL	(0, 0.5] 4	67595	79430	0.08
	(0.5, 5] 18	4889049	6055539	0.72
	(5, 50] 23	50325472	61125858	1.00
	(50, 500] 28	303654790	364040207	1.01
	(500, 7200] 27	191998	1988914831	1.02
CTR	(0, 0.5] 27	113022	135219	0.25
	(0.5, 5] 15	6919429	8628146	0.97
	(5, 50] 22	41868328	51221472	1.04
	(50, 500] 27	316234376	398605061	1.04
	(500, 7200] 9	13640	1956197401	1.04
E	(0, 0.5] 27	75779	94182	0.43
	(0.5, 5] 15	6908224	8411956	0.91
	(5, 50] 22	45759407	55236464	1.07
	(50, 500] 27	316234376	398605061	1.04
	(500, 7200] 9	13640	1956197401	1.04
FLA	(0, 0.5] 70	121	94182	0.43
	(0.5, 5] 22	6908224	8411956	0.91
	(5, 50] 8	45759407	55236464	1.07
	(50, 500] 27	316234376	398605061	1.04
	(500, 7200] 9	13640	1956197401	1.04
LKS	(0, 0.5] 24	90095	110841	0.29
	(0.5, 5] 19	7579029	9435583	1.63
	(5, 50] 27	53244055	66781137	1.73
	(50, 500] 21	371893218	461995930	1.04
	(500, 7200] 9	14168	1779038464	1.05
NE	(0, 0.5] 45	131276	162577	0.42
	(0.5, 5] 40	7107872	9173581	0.93
	(5, 50] 15	40280288	51531456	1.02
NY	(0, 0.5] 98	18877	24046	0.58
	(0.5, 5] 2	2496976	3346304	0.47
	(5, 50] 14	338636	425815	0.37
	(50, 500] 21	410743130	488473926	1.08
	(500, 7200] 8	1567562508	1852468610	1.02
W	(0, 0.5] 14	338636	425815	0.37
	(0.5, 5] 27	7713009	9536562	1.62
	(5, 50] 30	61677780	74762048	1.75
	(50, 500] 21	410743130	488473926	1.08
	(500, 7200] 8	1567562508	1852468610	1.02
Table 9: Results BT-BDA vs. BOBA* using binary heaps on road networks. For every graph, the results of the 100 instances are reported after dividing the instances into disjoint time intervals based on the time it took the BT-BDA to solve them. We use rounded geometric means.

Graph	BT-BDA sol. time in [s]	N_t	BT-BDA	BOBA*	Speedup			
		Solved	Inserted	Time	Solved	Inserted	Time	
BAY (0, 0.5]	60	97/97	37714	0.02	97/97	43735	0.01	0.54
	632	3/3	3830848	0.68	3/3	4395194	0.74	1.09
COL (0, 0.5]	78	88/88	39187	0.02	88/88	43494	0.01	0.49
	1240	10/10	6377844	1.12	10/10	7628297	1.39	1.24
	1229	2/2	26245555	5.96	2/2	3131672	8.40	1.41
CTR (0, 0.5]	180	5/5	164244	0.33	5/5	213097	0.05	0.15
	1183	17/17	5579215	1.62	17/17	6648589	1.60	0.99
	3073	20/20	49779921	17.13	20/20	57364789	24.43	1.43
	6869	31/31	30847630	147.63	31/31	355402214	235.18	1.59
	19835	27/27	2275789128	1509.65	25/27	-	2291.72	1.52
E (0, 0.5]	152	28/28	160197	0.12	28/28	185554	0.03	0.28
	1326	13/13	7293211	1.49	13/13	8380494	1.77	1.18
	2270	21/21	42123470	11.85	21/21	49626258	19.46	1.64
	6037	28/28	342207810	157.68	28/28	410266755	281.83	1.79
	12307	10/10	1720688747	1052.32	10/10	2035247152	1721.61	1.64
FLA (0, 0.5]	123	71/71	91592	0.06	71/71	104436	0.03	0.44
	1161	20/20	7495450	1.50	20/20	8643346	1.99	1.32
	2183	9/9	41251739	13.62	9/9	49092614	19.71	1.45
LKS (0, 0.5]	184	28/28	163527	0.13	28/28	194267	0.04	0.34
	1509	16/16	9374568	2.07	16/16	11055888	2.56	1.24
	2749	24/24	62695082	20.54	24/24	76809676	33.87	1.65
	7885	20/20	405592558	185.01	20/20	490492841	339.63	1.84
	14254	12/12	1398550016	762.38	12/12	1666659527	1308.45	1.72
NE (0, 0.5]	152	46/46	153034	0.08	46/46	184880	0.03	0.41
	853	34/34	7738980	1.92	34/34	9596334	2.39	1.25
	1954	19/19	34172231	11.90	19/19	41450095	18.14	1.52
	2073	1/1	132356676	51.02	1/1	166036909	94.70	1.86
NY (0, 0.5]	57	100/100	23611	0.02	100/100	28374	0.01	0.54
	227	13/13	333907	0.20	13/13	379780	0.06	0.31
	3584	28/28	61540531	17.15	28/28	71560273	28.09	1.64
	9806	24/24	416197917	164.66	24/24	482695661	321.44	1.95
	17113	8/8	1915274474	1149.59	8/8	2231672678	1826.39	1.59
Table 10: Results T-BDA vs. BOA*_m using binary heaps on road networks. For every graph, the results of the 100 instances are reported after dividing the instances into disjoint time intervals based on the time it took the T-BDA to solve them. We use rounded geometric means.

Graph	(0, 0.5)	(0.5, 5]	(5, 50]	(50, 500]	(500, 7200]
BAY	53	92/92	24134	92/92	29612
	544	8/8	2984841	8/8	3622751
					1.14
					0.01
					0.57
COL	66	82/82	27128	82/82	32586
	1008	16/16	4830522	16/16	5966713
	1229	2/2	32212797	2/2	39852849
					18.30
					1.30
					1.13
CTR	105	4/4	67539	4/4	79856
	1029	13/13	3417148	13/13	4330385
	2566	21/21	29020798	21/21	35617705
	6001	30/30	200757115	30/30	242724359
	17860	32/32	163204510	32/32	- 3013.59
					1.64
E	105	25/25	91225	25/25	110015
	849	12/12	3770526	12/12	4770631
	2320	25/25	32160063	25/25	39606712
	5464	24/24	245243763	24/24	308196779
	11491	14/14	1165367046	14/14	1135431594
					2208.60
					2.04
FLA	118	69/69	71701	69/69	90697
	949	21/21	5966199	21/21	7392376
	2507	9/9	33198809	9/9	40329084
	2999	1/1	106379213	1/1	129750546
					127.05
					2.25
LKS	113	21/21	57393	21/21	71294
	1010	14/14	3914124	14/14	4901558
	2347	29/29	32055480	29/29	40380190
	6681	24/24	246563476	24/24	309467525
	14272	12/12	1277655419	12/12	1571844519
					2171.67
					1.97
NE	131	41/41	101825	41/41	126504
	769	35/35	4983924	35/35	6524521
	1771	23/23	26412133	23/23	33775376
	2073	1/1	84650339	1/1	111095228
					101.84
					1.86
NY	55	98/98	18834	98/98	24141
	573	2/2	2494212	2/2	3362606
					1.09
					1.25
W	224	12/12	265327	12/12	333299
	1152	22/22	5178536	22/22	6582838
	3006	26/26	31816717	26/26	38891925
	6923	28/28	231002964	28/28	278461075
	16509	12/12	1292686430	12/12	1169278518
					2180.79
					2.09
C.2 Graphics – Bidimensional-Grids

Figure 19

Figure 20

Figure 21

Figure 22
C.3 Graphics – Bidimensional-Bidirectional-Buckets

Figure 23

Figure 24

Figure 25

Figure 26

Figure 27

Figure 28
C.4 Graphics – Bidimensional-Unidirectional-Buckets
C.5 Graphics – Bidimensional-Bidirectional-Heaps

Figure 40

Figure 41

Figure 42

Figure 43

Figure 44
Targeted Multiobjective Dijkstra Algorithm

Figure 45

Figure 46

Figure 47

Figure 48

Figure 49
C.6 Graphics – Bidimensional-Unidirectional-Heaps

Figure 50

Figure 51

Figure 52

Figure 53

Figure 54

Figure 55
Targeted Multiobjective Dijkstra Algorithm

Figure 56: E-Unidirectional with Binary Heaps

Figure 57: W-Unidirectional with Binary Heaps

Figure 58: CTR-Unidirectional with Binary Heaps