Through the Looking-Glass with ALICE into the Quark-Gluon Plasma: A New Test for Hadronic Interaction Models Used in Air Shower Simulations

Luis A. Anchordoqui,1,2,3 Carlos García Canal,4 Sergio J. Sciutto,4 and Jorge F. Soriano1,2

1Department of Physics and Astronomy, Lehman College, City University of New York, NY 10468, USA
2Department of Physics, Graduate Center, City University of New York, NY 10016, USA
3Department of Astrophysics, American Museum of Natural History, NY 10024, USA
4Instituto de Física La Plata, UNLP, CONICET Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 69, (1900) La Plata, Argentina

Recently, the ALICE Collaboration reported an enhancement of the yield ratio of strange and multi-strange hadrons to charged pions as a function of multiplicity at mid-rapidity in proton-proton, proton-lead, lead-lead, and xenon-xenon scattering. ALICE observations provide a strong indication that a quark-gluon plasma is partly formed in high multiplicity events of both small and large colliding systems. Motivated by ALICE’s results, we propose a new test for hadronic interaction models used for analyzing ultra-high-energy-cosmic-ray (UHECR) collisions with air nuclei. The test is grounded in the almost equal column-energy density in UHECR-air collisions and lead-lead collisions at the LHC. We applied the test to post-LHC event generators describing hadronic phenomena of UHECR scattering and show that these QCD Monte Carlo-based codes must be retuned to accommodate the strangeness enhancement relative to pions observed in LHC data.

Besides addressing key questions in astrophysics, ultra-high-energy cosmic ray (UHECR) experiments provide unique access to particle physics at energies an order-of-magnitude higher center-of-mass energy than pp collisions at the Large Hadron Collider (LHC) [1]. However, a precise characterization of the particle physics properties is usually hampered by the ambiguity of model predictions computed through extrapolation of hadronic interaction models tuned to accommodate collider data. These predictions have sizable differences [2,4], even among modern (post-LHC) models [5], and quite often overlap with the phase of particle physics observables. Disentangling one from the other is of utmost importance to study particle physics in unexplored regions of the phase-space. The development of new approaches to reduce the systematic uncertainties of hadronic interaction models represents one of the most compelling challenges in UHECR data analysis. In this letter we introduce a reliable model for extrapolation into the ultra-high-energy domain.

QCD calculations on the Lattice [6] predict that under certain critical conditions of baryon number density and temperature, normal nuclear matter undergoes a phase transition to a deconfined state of quarks and gluons where chiral symmetry is restored [7]. For many purposes, such a quark-gluon plasma (QGP) can be described as a near-perfect fluid with surprisingly large entropy-density-to-viscosity ratio. Therefore, once formed, like any other hot object, the QGP transfers heat internally by radiation. Several phases can be identified during the QGP evolution. The initial state contains only gluons as well as valence u and d quarks, but strangeness is produced in the very early stages via hard (perturbative) 2 → 2 partonic scattering processes (gg → s̅s and q̅q → s̅s). Strangeness is also predominantly produced during the subsequent partonic evolution via gluon splittings (g → s̅s). This is because the very high baryochemical potential inhibits gluons from fragmenting into u̅u and d̅d, and therefore they fragment predominantly into s̅s pairs [8]. In the hadronization process that follows this leads to the strong suppression of pions (and hence photons), but allows the production of heavy hadrons with high transverse momentum (p_T) carrying away strangeness. At low p_T non perturbative processes dominate the production of strange hadrons. Thus, the abundances of strange particles relative to pions provide a powerful discriminator to identify the QGP formation.

A QGP can be created by heating nuclear matter up to a temperature of 2 × 10^{12} K, which amounts to 175 MeV per particle. Relativistic heavy-ion collisions are then the best tool one has to search for QGP production. Recently, the ALICE Collaboration reported enhancement of the yield ratio of multi-strange hadrons to charged pions as a function of multiplicity at mid-rapidity in LHC proton-proton (pp), proton-lead (pPb), lead-lead (PbPb), and xenon-xenon (XeXe) collisions [9,10]. More concretely:

• the production rate of K^0_0, Λ, φ, Ξ, and Ω increases with multiplicity faster than that for charged particles;
• the higher the strangeness content of the hadron, the more pronounced the increase;
• the ratios do not seem to depend on the system size or collision energies.

Altogether, this provides unambiguous evidence for the formation of a QGP in high multiplicity small and large colliding systems [12].

Now, if the QGP is formed in relativistic heavy-ions collisions one would also expect to be formed in the scattering of UHECRs in the upper atmosphere [13,14]. Moreover, since the column-energy density in UHECR-
air collisions is comparable to that in PbPb collisions at the LHC, the precise characterization of the QGP properties from ALICE data enables us to investigate QGP models describing the scattering of cosmic rays that impinge on the Earth’s atmosphere with energy $10^8 \lesssim E/\text{GeV} \lesssim 10^{11}$. Indeed, as we show herein ALICE data straightforwardly constrain these models without the need to rely on energy extrapolation.

Before proceeding, we pause to note that the column-energy density is the relevant parameter to compare QGP models with experimental data. This is because in the center-of-mass the particles are extremely Lorentz contracted so the time it takes to pass through each other is small compared to the time for signals to propagate transversely, and hence the pertinent parameter is the total surface energy density. The best way of getting this point across is to consider the collision of two nuclei of baryon number A_1 and A_2 in the center-of-mass frame. The energies per nucleon for each nucleus are written as $E_1 = \sqrt{s}/(2A_1)$ and $E_2 = \sqrt{s}/(2A_2)$, where s denotes the total center of mass energy squared. Approximating each nucleus in its rest-frame as a cube of side $L = A^{1/3}$ gives the surface energy density in GeV/nucleon-cross-section 15

$$\Sigma = A^{1/3} E_1 + A^{1/3} E_2 = \frac{1}{2} \sqrt{s} \left(A_1^{-2/3} + A_2^{-2/3} \right). \quad (1)$$

For LHC PbPb scattering at a center-of-mass energy per nucleon pair $\sqrt{s_{NN}} = 5.02$ TeV, we can use \int_1 to obtain

$$\Sigma_{\text{LHC}} = 2.9 \times 10^4 \text{ GeV}, \quad (2)$$

whereas for LHC XeXe scattering at $\sqrt{s_{NN}} = 5.44$ TeV, we have

$$\Sigma_{\text{LHC}} = 1.2 \times 10^4 \text{ GeV}. \quad (3)$$

This must be compared to UHECR protons colliding with air nuclei at $10^{10.5} \lesssim s/\text{GeV}^2 \lesssim 10^{12.5}$, which leads to

$$9.8 \times 10^4 < \frac{\Sigma_{\text{pair}}}{\text{UHECR}}/\text{GeV} < 9.8 \times 10^5, \quad (4)$$

where we have taken $A_{\text{air}} = 14$. For the same primary energy, if the UHECR is a nucleus instead of proton the column energy density is reduced. Now, using \int_5 it is straightforward to see that for helium and carbon nuclei with $E \gtrsim 10^9$ GeV, $\Sigma_{\text{air}}^{\text{UHECR}} > \Sigma_{\text{LHC}}^{\text{PbPb}}$, but already for nitrogen (and of course nuclei with larger baryon number) there is a particular energy where $\Sigma_{\text{air}}^{\text{UHECR}} \approx \Sigma_{\text{LHC}}^{\text{PbPb}}$. For example, when a nitrogen with $E \sim 10^9$ GeV collides with an air nucleus there is a column-energy density comparable to $\Sigma_{\text{LHC}}^{\text{PbPb}}$, and therefore the QGP model predictions of these two scattering processes must be roughly the same.

We now turn to compare the predictions of post-LHC hadronic interaction models (QGSJET II-04 [16], EPOS-LHC [17], and SIBYLL 2.3c [18]) with the experimental data reported by the ALICE Collaboration [10]. We run 10^6 collisions for each of the models, pair of primary particles, and center-of-mass energy. In analogy with the analyses presented by the ALICE Collaboration, we select those collisions containing at least one charged particle within the central ($|\eta| < 1$) pseudorapidity region. For those collisions, we first select the charged particles at midrapidity ($|\eta| < 0.5$). To estimate the observable $\langle dN_{ch}/d\eta \rangle_{|\eta|<0.5}$, we write it as

$$\langle dN_{ch}/d\eta \rangle_{|\eta|<0.5} = \frac{\int_{|\eta|<0.5} dN_{ch}}{\int_{|\eta|<0.5} d\eta} = N_{ch}(|\eta| < 0.5) \equiv N_{ch}^\alpha, \quad (5)$$

the total number of charged particles at midrapidity which, for the i-th collision, is denoted by N_{ch}^α. For this collision, we measure the total number of particles $N_{i,\alpha}$ of several groups of species α, as described in Table~.

Armed with \int_5, we obtain the ratios to charged pions as

$$\Gamma_{\alpha,i} \equiv \frac{N_{i,\alpha}}{N_{\pi,i}}. \quad (6)$$

In Fig.~[1] we show the average ratios $\Gamma_{\alpha} \equiv \langle \Gamma_{\alpha,i} \rangle$ to all the collisions with the same N_{ch}^α for the six species (other than ϕ) listed in Table~.

We conclude that none of the models correctly reproduce the main tendencies of ALICE data, especially for the description of multi-strange hadron production.

We end with two observations:

- Over the last year there has been a tremendous amount of progress in modeling UHECR interactions with EPOS-LHC [19] [20]. In particular, the new EPOS-QGP has been properly tuned to reproduce the particle to pion ratio for the Ω baryon versus multiplicity at mid-rapidity as reported by the ALICE Collaboration [20]. It will be interesting to see whether the EPOS-QGP predictions of NN collisions at $\sqrt{s} = 167$ TeV also accurately match the experimental data.

- The formation of a QGP could play a significant role in the development of UHECR air-showers. In particular, the enhanced production of multi-strange hadrons in high-multiplicity small and

α	particles
π	$\pi^+ + \pi^-$
p	$p^+ + \bar{p}$
K	$K^+ + K^-$
Λ	$\Lambda + \bar{\Lambda}$
ϕ	2ϕ
Ξ	$\Xi^- + \bar{\Xi}^+$
Ω	$\Omega^- + \Omega^+$

TABLE I: Selected particle species α. |
The predictions of post-LHC hadronic interaction models (left, pp $\sqrt{s} = 7$ TeV; middle, pp $\sqrt{s} = 13$ TeV; right, NN $\sqrt{s} = 167$ TeV) are compared to data reported by the ALICE Collaboration: \diamond pp at $\sqrt{s} = 7$ TeV, \bullet pp $\sqrt{s} = 13$ TeV, \blacklozenge pPb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV, \square PbPb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV, \blacksquare XeXe at $\sqrt{s_{\text{NN}}} = 5.44$ TeV [10].

large colliding systems would suppress the fraction of energy which is transferred to the electromagnetic shower-component. The formation of QGP blobs in air showers would then enhance the number of muons reaching ground level, and would also modify the shape of the muon density distribution $\rho_\mu(r)$. The curvature of this distribution ($d^2\rho_\mu/dr^2$) has been proposed as a possible discriminator between hadronic interaction models with sufficient statistics [21]. A thorough study of these phenomena is underway and will be presented elsewhere [22].

Acknowledgements

L.A.A. and J.F.S. are supported by U.S. National Science Foundation (NSF Grant PHY-1620661) and by the National Aeronautics and Space Administration (NASA 80NSSC18K0464). C.G.C. and S.J.S. are supported by ANPCyT.

[1] L. A. Anchordoqui, Ultra-high-energy cosmic rays, Phys. Rep. 801, 1 (2019) doi:10.1016/j.physrep.2019.01.002 [arXiv:1807.09645 [astro-ph.HE]].

[2] L. A. Anchordoqui, M. T. Dova, L. N. Epele and S. J. Scuttolo, Hadronic interactions models beyond collider energies, Phys. Rev. D 59, 094003 (1999) doi:10.1103/PhysRevD.59.094003 [hep-ph/9810384].

[3] R. Ulrich, R. Engel and M. Unger, Hadronic multiparticle production at ultra-high energies and extensive air showers, Phys. Rev. D 83, 054026 (2011) doi:10.1103/PhysRevD.83.054026 [arXiv:1010.4310 [hep-ph]].

[4] D. d’Enterria, R. Engel, T. Pierog, S. Ostapchenko and K. Werner, Constraints from the first LHC data on hadronic event generators for ultra-high energy cosmic-ray physics, Astropart. Phys. 35, 98 (2011) doi:10.1016/j.astropartphys.2011.05.002 [arXiv:1101.5596 [astro-ph.HE]].

[5] L. Calcagni, C. A. Garcia Canal, S. J. Scuttolo and T. Tarutina, LHC updated hadronic interaction packages analyzed up to cosmic-ray energies, Phys. Rev. D 98, no. 8, 083003 (2018) doi:10.1103/PhysRevD.98.083003 [arXiv:1711.04723 [hep-ph]].

[6] S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S. D. Katz, S. Krieg, C. Ratti and K. K. Szabo, The QCD equation of state with dynamical quarks, JHEP 1011, 077 (2010) doi:10.1007/JHEP11(2010)077 [arXiv:1007.2580 [hep-lat]].

[7] E. V. Shuryak, Quantum chromodynamics and the theory of superdense matter, Phys. Rept. 61, 71 (1980). doi:10.1016/0370-1573(80)90105-2

[8] J. Rafelski and B. Muller, Strangeness production in the quark-gluon plasma, Phys. Rev. Lett. 48, 1066 (1982) Erratum: [Phys. Rev. Lett. 56, 2334 (1986)]. doi:10.1103/PhysRevLett.48.1066, 10.1103/PhysRevLett.56.2334.

[9] J. Adam et al. [ALICE Collaboration], Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions, Nature Phys. 13, 535 (2017) doi:10.1038/nphys4111 [arXiv:1606.07424 [nucl-ex]].

[10] P. Palni (for the ALICE Collaboration), Multiplicity dependence of strangeness and charged particle production in proton-proton collisions, arXiv:1904.00005 [nucl-ex].

[11] F. Noferini, ALICE Highlights, MDPI Proc. 13, 6 (2019) doi:10.3390/proceedings2019013006 [arXiv:1906.02460 [hep-ex]].

[12] P. Koch, B. Miller and J. Rafelski, From strangeness enhancement to quarkgluon plasma discovery, Int. J. Mod. Phys. A 32, no. 31, 1730024 (2017) doi:10.1142/S0217751X17300241 [arXiv:1708.08115 [nucl-th]].

[13] G. R. Farrar and J. D. Allen, A new physical phenomenon in ultra-high energy collisions, EPJ Web Conf. 53, 07007 (2013) doi:10.1051/epjconf/20135307007 [arXiv:1307.2322 [hep-ph]].

[14] L. A. Anchordoqui, H. Goldberg and T. J. Weiler, Strange fireball as an explanation of the muon excess in Auger data, Phys. Rev. D 95, no. 6, 063005 (2017) doi:10.1103/PhysRevD.95.063005 [arXiv:1612.07328 [hep-ph]].

[15] G. R. Farrar, Particle physics at ultrahigh energies,
[16] S. Ostapchenko, Monte Carlo treatment of hadronic interactions in enhanced pomeron scheme I: QGSJET-II model, Phys. Rev. D 83, 014018 (2011) doi:10.1103/PhysRevD.83.014018 [arXiv:1010.1869 [hep-ph]].

[17] T. Pierog, I. Karpenko, J. M. Katzy, E. Yatsenko and K. Werner, EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider, Phys. Rev. C 92, no. 3, 034906 (2015) doi:10.1103/PhysRevC.92.034906 [arXiv:1306.0121 [hep-ph]].

[18] A. Fedynitch, F. Riehn, R. Engel, T. K. Gaisser and T. Stanev, The hadronic interaction model Sibyll-2.3c and inclusive lepton fluxes, [arXiv:1806.04140 [hep-ph]].

[19] S. Baur, H. Dembinski, T. Pierog, R. Ulrich and K. Werner, The ratio of electromagnetic to hadronic energy in high energy hadron collisions as a probe for collective effects, and implications for the muon production in cosmic ray air showers, [arXiv:1902.09265 [hep-ph]].

[20] T. Pierog, B. Guiot, I. Karpenko, G. Sophys, M. Stefaniak and K. Werner, EPOS 3 and air showers, EPJ Web Conf. 210, 02008 (2019). doi:10.1051/epjconf/201921002008

[21] L. Anchordoqui and H. Goldberg, Footprints of superGZK cosmic rays in the Pilliga State Forest, Phys. Lett. B 583, 213 (2004) doi:10.1016/j.physletb.2003.12.072 [hep-ph/0310054].

[22] L. A. Anchordoqui, C. Garcia Canal, S. J. Sciutto, and J. F. Soriano, Through the looking glass with ALICE into the quark-gluon plasma II: Hadronic interaction models, extensive air showers, and the muon puzzle, in preparation.