Association between variant alleles of major histocompatibility complex class II regulatory genes and nasopharyngeal carcinoma susceptibility

Ping Zhoua,b, Sha Liub, Nan-Nan Jic, Shuang Zhangb, Peng Wangb, Bing Linb, Ping Yangb, Xian-Tao Linb, Yi-Zheng Caid, Zi-Ming Wange, Han Zhoue, Shi-Yao Sune and Xin-Bao Haoa,f

Major histocompatibility complex (MHC) class II regulatory genes play a paramount role in immune response that can exert a predominant influence on clinical outcome of Epstein–Barr virus infection consistently assumed as the main pathogenetic factor for nasopharyngeal carcinoma. To elucidate the relationship between allelic variants of MHC class II regulatory genes and susceptibility to nasopharyngeal carcinoma, a total of 28 polymorphic loci at MHC class II regulatory genes, involving CIITA, CREB1, RFX family genes (RFX5, RFXAP, and RFXANK), and NFY family genes (NFYA, NFYB, and NFYC), were genotyped by multiplex SNaPshot minisequencing in 137 patients with nasopharyngeal carcinoma and 107 healthy controls from the southern Chinese population. Allelic analysis disclosed that rs7404873, rs6498121, rs6498126, and rs56074043 shared correlations with nasopharyngeal carcinoma \((P_{\text{trend}} < 0.05)\). Further, rs6498126 on CIITA was independently associated with the risk of developing nasopharyngeal carcinoma \((CC \text{ vs. } GG, \text{ odds ratio: } 7.386, 95\% \text{ confidence interval: } 1.934–28.207, P_{\text{trend}} < 0.01)\). Conversely, rs7404873 on CIITA and rs56074043 on NFYB manifested epistatic interaction to decreased susceptibility of nasopharyngeal carcinoma \((rs7404873, TT \text{ vs. } GG, \text{ odds ratio: } 0.256, 95\% \text{ confidence interval: } 0.088–0.740, P_{\text{trend}} < 0.05; \text{rs56074043, AA vs. AG, odds ratio: } 0.341, 95\% \text{ confidence interval: } 0.129–0.900, P_{\text{trend}} < 0.05)\). Additionally, bioinformatics analysis revealed that the three variants were transcriptional regulatory in function and might impact the expression of nearby genes. The findings suggested genetic variants on MHC class II regulatory genes contributed to nasopharyngeal carcinoma susceptibility and might provide new insights for screening high-risk population. European Journal of Cancer Prevention 29: 531–537 Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc.

Keywords: alleles, disease susceptibility, major histocompatibility complex class II regulatory genes, nasopharyngeal carcinoma

Introduction
Nasopharyngeal carcinoma (NPC), an epithelial malignancy originating from nasopharynx, is a complex disease caused by an accumulation of Epstein–Barr virus (EBV) chronic infection, environmental risk factors, and host genetics in the multistep process of carcinogenesis (Chen et al., 2019). Virological factor is one of the main tumorigenic causes of NPC; however, infection with the same EBV has been found to result in various clinical outcomes in different patient, suggesting that there is a strong immunogenic component to affect individual vulnerability to EBV infection (Hildesheim and Wang, 2012; Mahdavifar et al., 2016). It has been generally established that cellular immunity against EBV infection primarily focus on major histocompatibility complex (MHC) class I-restricted CD8+ T cell after EBV penetration into epithelial cells or B lymphocytes (Antsiferova et al., 2014). Recently, researchers have subscribed to the belief that class II MHC-restricted CD4+ T cell is also the most widely distributed contributory factor in effective anti-infection and antitumor immunity (Lam et al., 2018). MHC class II molecule, an essential role for antigen presentation, has emerged as powerful immunoregulatory function in immune reaction and its deficiency may therefore engender autoimmune diseases, infectious diseases, and cancer (Marty Pyke et al., 2018; Tricot et al., 2018; Gameiro et al., 2019).

Supplemental Digital Content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal’s website (www.eurjcancerprev.com).

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Expression of MHC class II gene is principally regulated at the transcriptional level by several transactivating genes, namely MHC class II regulatory genes, comprising MHC class II transactivator (CIITA), CREB1, RFX family genes (RFX5, RFXAP, and RFXANK), and NFY family genes (NFYA, NFYB, and NFYC) (Lochamy et al., 2007; Sachini and Papamatheakis, 2017). During the transcriptional process of MHC class II gene, CIITA synergistic CREB1, RFX family, and NFY family assemble into a cell-specific multiprotein complex and coregulates MHC class II gene expression (Lochamy et al., 2007). There is evidence to demonstrate that mutations on MHC class II regulatory genes are responsible for MHC class II molecule deficiency, subsequently bringing as a result to the bare lymphocyte (Masternak et al., 1998). Similarly, it has been reported that variant alleles on MHC class II regulatory genes are correlated with susceptibility to immune diseases, infectious disease, and cancer (Zhang et al., 2007; Martínez et al., 2010; Steidl et al., 2011).

On the basis of functional relevance and clinical manifestation of MHC class II regulatory genes in the pathogenesis of immune-related diseases, our hypothesis is that genetic variants on CIITA, CREB1, RFX5, RFXAP, RFXANK, NFYA, NFYB, and NFYC might impress effects on MHC class II gene expression, then modifying host immune reaction to EBV infection and contributing to NPC development. Thus, we conducted a pilot association analysis starting from NPC cases and healthy controls in the Hainan population in South China.

Participants and methods

Study participants

For the case-control study, 137 NPC cases and 107 healthy controls were recruited from the First Affiliated Hospital of Hainan Medical University, the Second Affiliated Hospital of Hainan Medical University, and Hainan Cancer Hospital between January 2018 and June 2019. All patients were pathologically confirmed. Healthy controls with no self-reported history of cancer were randomly selected from physical examination centers and were frequency-matched to the NPC patients by age (±5 years), gender, residential region, and ethnicity. Informed consent was obtained from all the subjects, and the study was performed with the approval of the ethical committee of Hainan Medical University (No. 2018-35).

At recruitment, personal information on demographic factors, medical history, tobacco, and family cancer history were collected. Individuals were considered smokers if they smoked up to 1 year (20 pack per year) before the date of cancer diagnosis or the date of interview for controls. Epstein–Barr virus capsid antigen (EB-VCA) IgA was positively defined as an EBV infection. Two or more patients with NPC in an immediate family were defined as family history.

Variants selection

In the first stage, genome variations on CIITA, CREB1, RFX5, RFXAP, RFXANK, NFYA, NFYB, and NFYC were chosen based on biological function score (score ≥ 5) on Regulome DB database (Boyle et al., 2012). Then these functional variants were further selected according to genetic correlation with diseases in the previous genome-wide association studies or candidate genes studies. Afterwards, combined with Haploview 4.2 to construct linkage disequilibrium between candidate variants (parameter setting: Minimum MAF > 0.05, r2 < 0.8) on the basis of the population of Han Chinese in Beijing, China (CHB) in the International Genome Sample Resources 1000 genomes project thus excluded locus with strong evidence of linkage disequilibrium. Overall, 28 candidate variants on MHC class II regulatory genes were hypothesized to be associated with NPC and were selected for further genotyping (Table S1, Supplemental digital content 1, http://links.lww.com/EJCP/A269).

DNA preparation and PCR multiplex amplification

Genomic DNA was extracted from whole blood sample by commercial DNA extraction kits (Yaneng Bioscience Co., Ltd.). Fifty-six primers were used for amplification of the mutation region (Table S2, Supplemental digital content 1, http://links.lww.com/EJCP/A269), and PCR amplification (Applied Biosystem, Thermo Fisher Scientific Company) was conducted in a reaction mixture that contained 1 μl DNA template, 3 μl deoxynucleotide, 5 μl 2x Taq PCR Master Mix, and 1 μl Primer Mix. The PCR conditions were as follows: initial denaturation at 95°C for 5 min, followed by denaturation at 94°C for 30 s, annealing at 56°C for 30 s, extension at 72°C for 30 s, and final extension at 72°C for 2 min. Five microliters of the PCR products were separated and visualized following electrophoresis on a 2% agarose gel (Figure S1, Supplemental digital content 1, http://links.lww.com/EJCP/A269). Shrimp alkaline phosphatase (SAP) and exonuclease I was used for post-PCR purification of the examined PCR products.

SNaPshot minisequencing reaction

The single base extension (SBE) reaction was performed in a reaction mixture with 3 μl purified multiplex PCR product, 1 μl pooled extension primers (Table S2, Supplemental digital content 1, http://links.lww.com/EJCP/A269), 0.5 μl SNaPshot Mix, and 0.5 μl dH₂O. The SNaPshot reaction conditions were as follows: 40 SBE cycles of initial denaturation at 95°C for 10 s, primer annealing at 52°C for 5 s, and primer extension at 60°C for 30 s. SAP was used for post-SBE purification of the SNaPshot reaction products. Two microliters of minisequencing reaction product was mixed with 8 μl of formamide containing 0.4% LIZ120 and was denatured at 95°C for 5 min. After cooling down to −20°C, the fluorescently labeled fragments were resolved by capillary electrophoresis on an ABI 3730XL Genetic Analyzer for
allele discrimination. The resulting data were analyzed with the GeneMapper v 4.0 software.

Statistical analysis
Allele and genotype frequencies for variants were determined by gene counting. The significance of deviations from Hardy–Weinberg equilibrium was tested by χ^2 test. t-test was used to assess age difference and χ^2 test was employed to evaluate the differences in gender, smoking, EBV infection, and family history between cases and controls. Correlations between variations and NPC risk were estimated by logistic regression analysis with adjustment for gender, age, smoking, EBV infection, and family history. Odds ratio (OR) and 95% confidence interval (CI) were used to measure the strength of association. All analysis was performed using SPSS software (version 24.0, SPSS Inc., Chicago, Illinois). A P-value of less than 0.05 was considered significant.

Bioinformatics analysis
Potential function of associated loci was analyzed by Regulome DB and HaploReg v2. Regulome DB is a database that annotates single-nucleotide polymorphism (SNP) with known and predicted regulatory elements (Boyle et al., 2012). HaploReg v2 is a tool for exploring annotations of candidate regulatory SNPs at disease-associated loci and developing mechanistic hypotheses of the impact of noncoding variants on clinical phenotypes and normal variation (Ward and Kellis, 2012).

Results
Clinical and demographic characteristics
Table 1 shows that the median age was 56 ± 12 years in cases and 51 ± 9 year in controls, with no significant difference ($P_{trend} > 0.05$). No statistical difference was found in gender, smoking, and family history between the two groups ($P_{trend} > 0.05$), whereas more EBV infection were presented in NPC subjects than in control subjects (86.1% vs. 15.0%, $P_{trend} = 1.438 \times 10^{-28}$).

Variables	Cases (n = 137)	Controls (n = 107)	P value
Median age	56 ± 12	51 ± 9	0.126
Gender			0.080
Male	99 (72.3)	66 (61.7)	
Female	38 (27.7)	41 (38.3)	
Age (years)			0.136
≤45	33 (24.1)	35 (32.7)	
>45	104 (75.9)	72 (67.3)	
Smoking			0.604
No	75 (54.7)	55 (51.4)	
Yes	62 (45.3)	52 (48.6)	
EBV infection			1.438 × 10^{-28}
No	19 (13.9)	91 (85.0)	
Yes	118 (86.1)	16 (15.0)	
Family history			0.177
No	128 (93.4)	104 (97.2)	
Yes	5 (9.2)	3 (2.8)	

EBV, Epstein–Barr virus.

Association of allele frequency on MHC class II regulatory genes with nasopharyngeal carcinoma
The distribution of allele and genotype frequencies on MHC class II regulatory genes in each group is shown in Table 2. Variation at rs7197779, rs2551639, rs2709359, rs2709387, rs2233857, rs2233843, and rs62135502 has not yet been observed. Other genotype distributions were consistent with the existence of Hardy–Weinberg equilibrium ($P_{trend} > 0.05$). Allelic frequency of rs7404873 on CIITA for T and G were 53.3% and 46.7%, 62.6% and 37.4%, rs6498121 for T and G were 59.5% and 40.5%, 59.8% and 40.2%, and rs6498126 for C and G were 56.9% and 43.1%, 65.9% and 34.1% in the NPC populations and controls, respectively. In addition, allelic frequency of rs56074043 on NFYB for A and G were 90.4% and 9.6%, 85.0% and 15.0%. Based on logistic regression analysis with adjustment for gender, age, smoking, EBV infection, and family history, there was a strong linkage of allele G on rs6498126 with a high risk of NPC (OR: 1.855, 95% CI: 1.057–3.256, $P_{trend} < 0.05$), whereas allele G of rs7404873, rs6498121, and rs56074043 presented reduced susceptibility to NPC (rs7404873, OR: 0.472, 95% CI: 0.268–0.830, $P < 0.001$; rs6498121, OR: 0.544, 95% CI: 0.611–0.962, $P_{trend} < 0.05$; rs56074043, OR: 0.349, 95% CI: 0.154–0.788, $P_{trend} < 0.05$). No evidence for genotype–phenotype correlation was observed between $CREB$, $RFX5$, $RFXANK$, $RFXAP$, $NFYA$, and $NFYC$ and NPC risk ($P_{trend} > 0.05$).

Correlation of genotype frequency on MHC class II regulatory genes with nasopharyngeal carcinoma
In view of the logistic regression analysis with allele frequencies, we further analyzed the relevance between genotype frequencies of rs7404873, rs6498121, rs6498126, and rs56074043 and NPC occurrence. The genotype distribution of four loci is shown in Table 3. There was remarkable difference between NPC and control subjects in the distribution of GG/GG genotypes of rs6498126 (OR: 7.386, 95% CI: 1.934–28.207, $P_{trend} < 0.05$). Subjects bearing the GG homozygote on rs6498126 had an increased risk of NPC. Meanwhile, logistic regression analysis revealed a significant association of GG genotypes on rs7404873 and AG genotypes on rs56074043 with the low-risk of NPC (rs7404873, OR: 0.256, 95% CI: 0.088–0.740, $P_{trend} < 0.05$; rs56074043, OR: 0.341, 95% CI: 0.129–0.900, $P_{trend} < 0.05$). No relation between rs6498121 genotype and NPC risk was identified. Moreover, we explored the effects of demographic factors on genotype distribution of associated loci and the data manifested that there was no demographic factors linked closely to genotype distribution of rs7404873, rs6498126, and rs56074043 in NPC patients as shown in Table 4 ($P_{trend} > 0.05$).

Potential functional implication of associated loci
Two genetic loci, rs7404873 (Regulome DB score: 2b) and rs6498126 (Regulome DB score: 1f), are intronic region of
Table 2 Association between variants on major histocompatibility complex class II regulatory genes and risk of nasopharyngeal carcinoma in the Hainan population

No.	CHR	rs ID	Gene	POS	Base change	HW	Commona	Heterozygousb	Rareb	Case	Control	OR (95% CI)	P valueb
1	16	rs4781011	CIITA	10881454	T>G	0.144	74.6/74.8	24.1/25.2	1.40	86.1/13.9	86.9/13.1	1.189 (0.544–2.602)	0.604
2	16	rs7404873	CIITA	10897952	G>T	0.055	32.8/43.0	40.9/38.3	26.3/18.7	53.3/46.7	62.6/37.4	0.472 (0.268–0.830)	0.009
3	16	rs6498121	CIITA	10898858	T>G	0.606	32.2/34.5	54.7/50.5	13.1/15.0	59.5/40.5	59.8/40.2	0.544 (0.611–0.926)	0.036
4	16	rs11647384	CIITA	10903432	A>G	0.721	29.9/31.8	46.7/47.7	23.4/20.6	53.3/46.7	55.6/44.4	1.046 (0.611–1.789)	0.871
5	16	rs4774	CIITA	10906991	G>C	0.735	76.8/72.0	21.9/25.2	1.5/2.8	89.2/12.8	84.6/15.4	0.822 (0.385–1.753)	0.611
6	16	rs7187779	CIITA	10909070	G>C	ND	100/100	ND					
7	16	rs6498126	CIITA	10910506	G>C	0.137	29.2/40.2	56.2/51.4	1.4/8.4	56.9/43.1	65.9/34.1	1.855 (1.037–3.256)	0.031
8	16	rs11074938	CIITA	10912686	A>G	0.628	32.8/24.3	42.3/32.3	24.9/23.4	54.0/46.0	50.5/49.5	1.696 (0.966–2.977)	0.066
9	16	rs8052440	CIITA	10912847	G>A	0.478	62.0/68.2	31.4/29.9	6.6/1.9	77.7/22.3	83.2/16.8	1.583 (0.788–3.180)	0.197

P value of logistic regression analysis. CHR, chromosome; CI, confidence intervals; EBV, Epstein–Barr virus; HW, Hardy–Weinberg equilibrium; ND, no data; OR, odds ratios; POS, position at bp.

The frequency of the genotypes in the patients/frequency of the genotypes in the controls.

The ORs and P values were adjusted for gender, age, smoking, EBV infection, and family history of nasopharyngeal carcinoma.

Table 3 The genotype frequency of four-associated variants in nasopharyngeal carcinoma patients and healthy controls

| rs ID | Gene | Cases (n = 137) | Controls (n = 107) | OR (95% CI) | P value | CI, confidence intervals; EBV, Epstein–Barr virus; OR, odds ratios.
|-------|---------|----------------|-------------------|------------|---------| The OR and P values were calculated by logistic regression analysis adjusted for gender, age, smoking, EBV infection, and family history of nasopharyngeal carcinoma.

CIITA, located within transcription factor binding sites, DNase peaks, and histone modifications as shown in the Regulome database. Rs7404873 was found in RUNX3 protein binding sites and Zfx binding motif when rs6498126 had eQTL effect on the expression of DEXI in monocytes and was speculated to bind Pax-8. Enquiry against haploReg revealed that both of rs7404873 and rs6498126 were related to enhance histone marks BLD. Meanwhile, rs7404873 altered the chromatin status for bindings of HNF4 and Zfx and rs6498126 changed the chromatin status for bindings of Pax-8, indicating that the two SNPs were highly accessible to regulatory factors (Table S3, Supplemental digital content 1, http://links.lww.com/EJC/P269). The other SNP, rs56074043, is an intronic variant at NFYB and its Regulome DB score is 2c. Regulome DB survey disclosed that rs56074043 was located in a region with protein binding, Tcfe2a or RUNX2 motifs, histone modifications, and chromatin structures. Data mining at HaploReg also showed proteins bound in ChIP-Seq experiments for rs56074043 (Table S3, Supplemental digital content 1, http://links.lww.com/EJC/A269)
Table 4 Association between demographic factors and genotype distribution in nasopharyngeal carcinoma patients

Factor/genotype	rs7404873 TT	rs7404873 TG + GG	rs6498126 CC	rs6498126 CG + GG	rs56074043 AA	rs56074043 AG + GG	P value
Gender							
Female	13	25	10	27	32	5	0.833
Male	32	67	30	70	82	17	0.734
Age (years)							
≤45	8	25	8	24	27	5	0.227
>45	37	67	32	73	87	17	0.227
Smoking							
No	25	50	21	54	62	12	0.894
Yes	20	42	19	43	52	10	0.299
EBV infection							
No	4	15	4	16	17	2	0.154
Yes	41	77	36	81	97	20	0.735
Family history							
No	40	88	37	91	105	22	0.154
Yes	5	4	3	6	9	0	0.154

EBV, Epstein–Barr virus.

Discussion

EBV infection attached to be the most common causal agent of NPC is ubiquitous worldwide, affecting more than 95% of the worldwide population (Kanda et al., 2019). However, only a very small percentage of infected population develops EBV-associated NPC and its incidence shows remarkably different geographic distributions, which is paradoxical in comparison to the widespread infection (Mahdavifar et al., 2016). Besides, patients infected with the same EBV strain display various pathological processes and clinical outcomes (Tsang and Tsoa, 2015). These results suggest that host immune reaction could play a pivotal role in the various outcomes of EBV infection and recent work has documented that immune-related genetics may be the contributory factor, intervening the individual susceptibility to EBV infection (Hildesheim and Wang, 2012; Chen et al., 2019). In the genome-wide association studies, HLA genes residing at the MHC region have been widely recognized as genetic susceptible loci conferring NPC risk, which revealed that carriers of HLA risk-associated alleles may have differential viral antigen-presenting capacity and thus the ability to activate diverse antiviral immune responses, affecting the immune surveillance of viral infection and subsequently NPC susceptibility (Bei et al., 2010; Chin et al., 2015).

Recent studies have illuminated that class II MHC-restricted CD4+ T cell plays a key supporting role in anti-infective and antitumor immune responses by releasing various cytokines, thereafter amplifying the activity of CD8+ T cell and macrophages and inducing the activation and differentiation of B lymphocytes (Borst et al., 2018). MHC class II molecule, the integral membrane glycoproteins, is constitutively expressed on the surface of professional antigen-presenting cells, including dendritic cells, B cells, macrophages, and thymic epithelial cells, where it captures antigenic peptides and presents them to T lymphocytes (Roche and Furuta, 2015). Consequently, MHC class II molecule is fundamental to immune reaction and its deficiency can conduce to autoimmune diseases, infectious diseases, and cancer. The principal genetic defect, however, is not attributed to MHC class II gene themselves (Masternak et al., 1998). Instead, the affected genes involved CIITA, CREB1, RFX family genes (RFX5, RFXAP, and RFXANK), and NFY family genes (NFYA, NFYB, and NFYC) encoding trans-activating factors that regulate expression of MHC class II gene and are responsible for the deficiency of MHC class II molecule (Masternak et al., 1998). Reportedly, genetic mutation on MHC class II regulatory genes can impress effects on expression of MHC class II gene (Lochamy et al., 2007). As for genotype–phenotype correlation, genetic variants on CIITA, CREB1, NFYC, RFXANK, and RFXAP have been related to squamous cell lung carcinoma, liver cancer, chronic hepatitis B, systemic lupus erythematosus, multiple sclerosis, lymphocyte syndrome, rheumatoid arthritis, and type 2 diabetes (Kishimoto et al., 2005; Takenoyama et al., 2006; Zhang et al., 2007; Bronson et al., 2011; Wang et al., 2013; Xu et al., 2018; Pereira et al., 2019). Given its indispensable role in the expression of MHC class II gene, MHC class II regulatory genes may be the rudimentary candidates of susceptible genes for NPC. No data to date are available about the relationship between allele variants on MHC class II regulatory genes and susceptible traits to NPC.

This is the first study to address the role of allelic variants on MHC class II regulatory genes in nasopharyngeal tumorigenesis. We studied the sequence variability at CIITA, CREB1, RFX5, RFXAP, RFXANK, NFYA, NFYB, and NFYC in NPC patients and normal controls by SNAPSHOT analysis to evaluate whether there was association of genetic polymorphism with the etiology of NPC. CIITA genomic sequence variation represented by rs6498126 genotype GG was substantiated in relation to a high risk of NPC. On the contrary, genotype GG of rs7404873 on CIITA and genotype AG of rs56074043 on NFYB were
closely linked to a lower incidence of NPC. These findings lent support to the hypothesis that genetic variants on MHC class II regulatory genes had effects on NPC development. A similar scenario was the correlation of rs6498114 at CIITA with NPC risk in an extended genome-wide association study (Cui et al., 2016). The results denoted that CIITA and NFYB genes polymorphisms could impact NPC-associated MHC class II transcription, then interfere the presentation of EBV antigens to host immune cells and leading to NPC susceptibility.

The identification of variants (rs7404873, rs6498126, and rs560704043) for NPC susceptibility emphasizes that the contribution of MHC class II regulatory genes to NPC-related immune should not be ignored. Bioinformatics analysis indicated that rs7404873 and rs6498126 on CIITA were transcriptional regulatory and could bind protein, and thus might be the functional variation (Boyle et al., 2012; Ward and Kellis, 2012). Both rs7404873 and rs6498126 are located in CIITA, which implies that CIITA represents a key molecule in the regulation of MHC class II genetic expression and its mutation may greatly influence MHC class II gene expression. It is noteworthy that rs560704043 on NFYB, having a biologically active protein bound, might be transcriptional functional (Boyle et al., 2012; Ward and Kellis, 2012). Collectively, MHC class II regulatory gene variability may confer NPC susceptibility via regulating NPC-associated MHC class II gene expression. Nevertheless, further studies are awaited to clarify whether and how rs7404873 or other genetic variants disrupt the transcriptional regulation of MHC class II gene and then are correlated with NPC occurrence.

Conclusion

The current data conveyed a linkage between variants on MHC class II regulatory genes (CIITA and NFYB) and NPC susceptibility. Moreover, we noted that these genetic mutations might be functional regulators for MHC class II gene expression. Conclusively, these results suggest genetic variants on CIITA and NFYB contribution to NPC pathogenesis and provide new insights for screening populations at a high risk of NPC. It has to be acknowledged that the principal limitation of this analysis was that the sample size recruited is not enough. Further studies with larger sample sizes, more ethnic groups, and more geographic regions are needed to replicate the findings and rule out the confounding effects of population. Certainly, more efforts are required to investigate the functional mechanism of genetic variants.

Acknowledgements

This study was supported by Hainan Province Health and Family Planning Commission (no. 18A200027) and Hainan Science and Technology Association (no. QCXM201917).

We thank Physical Examination Centers of the First Affiliated Hospital of Hainan Medical University for providing personal information and blood sample of healthy controls, Clinical Laboratory of the First Affiliated Hospital of Hainan Medical University for providing detection of Epstein–Barr virus capsid antigen, and Department of Biochemistry and Molecular Biology of Hainan Medical University for providing biotechnology support. We appreciate all patients and their families for their participation in this study.

Conflicts of interest

There are no conflicts of interest.

References

Antsiferova O, Müller A, Rämer PC, Chijioke O, Chatterjee B, Raykova A, et al. (2014). Adoptive transfer of EBV specific CD8+ T cell clones can transiently control EBV infection in humanized mice. Plos Pathog 10:e1004333.

Beij JX, Li Y, Jia WH, Feng BJ, Zhou G, Chen LZ, et al. (2010). A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci. Nat Genet 42:599–603.

Borst J, Ahrends T, Bjabala N, Melef CJM, Kastenmüller W (2018). CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 18:635–647.

Boyle AP, Hong EL, Harirhan M, Cheng Y, Schaub MA, Kasowski M, et al. (2012). Annotation of functional variation in personal genomes using regtools. Genome Res 22:1790–1797.

Bronson PG, Goldstein BA, Ramsay PP, Beckman KB, Noble JA, Lane JA, et al. (2011). The rs4774 CIITA missense variant is associated with risk of systemic lupus erythematosus. Genes Immun 12:667–671.

Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J (2019). Nasopharyngeal carcinoma. Lancet 394:64–80.

Chin YM, Mushiroda T, Takahashi A, Kubo M, Krishnan G, Yap LF, et al.; Malaysian NPC Study Group. (2015). HLA-A snps and amino acid variants are associated with nasopharyngeal carcinoma in Malaysian Chinese. Int J Cancer 136:678–687.

Cui Q, Feng GS, Mo HY, Sun J, Xia YF, Zhang H, et al. (2016). An extended genome-wide association study identifies novel susceptibility loci for nasopharyngeal carcinoma. Hum Mol Genet 25:3828–3834.

Gameiro SF, Ghasemi F, Barrett JW, Nichols AC, Mymyk JS (2019). High level expression of MHC-II in HPV+ head and neck cancers suggests that tumor epithelial cells serve an important role as accessory antigen presenting cells. Cancers (Basel) 11:1129.

Hildesheim A, Wang CP (2012). Genetic predisposition factors and nasopharyngeal carcinoma risk: a review of epidemiological association studies, 2000-2011: rosetta stone for NPC: genetics, viral infection, and other environmental factors. Semin Cancer Biol 22:107–116.

Kanda T, Yajima M, Ikuta K (2019). Epstein-Barr virus strain variation and cancer. Cancer Sci 110:1132–1139.

Kishimoto M, Kohno T, Okudela K, Otsuka A, Sasaki H, Tanabe G, et al. (2005). Mutations and deletions of the CBP gene in human lung cancer. Clin Cancer Res 11:512–519.

Lam JKP, Hui KF, Ning RJ, Xu XQ, Chan KH, Chiang AKS (2018). Emergence of CD4+ and CD8+ polyfunctional T cell responses against immunodominant lytic and latent EBV antigens in children with primary EBV infection. Front Microbiol 9:416.

Lochamy J, Rogers EM, Boss JM (2007). CREB and phospho-CREB interact with RXFS and CIITA to regulate MHC class II genes. Mol Immunol 44:837–847.

Mahdavifar N, Ghoneche M, Mohammadian-Hafshejani A, Khosravi B, Salehinia H (2016). Epidemiology and inequality in the incidence and mortality of nasopharynx cancer in Asia. Oncol Public Health Res Perspect 7:360–372.

Martinez A, Perdigones N, Cénit MC, Espino L, Varadé J, Lamas JR, et al. (2010). Chromosomal region 16p13: further evidence of increased predisposition to immune diseases. Ann Rheum Dis 69:309–311.

Marty Pyke R, Thompson WK, Salem RM, Font-Burgada J, Zanetti M, Carter H (2018). Evolutionary pressure against MHC class II binding cancer mutations. Cell 175:1991.
Masternak K, Barras E, Zufferey M, Conrad B, Corthals G, Aebersold R, et al. (1998). A gene encoding a novel RFX-associated transactivator is mutated in the majority of MHC class II deficiency patients. Nat Genet 20:273–277.

Pereira VCSR, Fontes-Dantas FL, Paradela ER, Mallettano FR, Scherpenhuijzen SSB, Mansur LF, et al. (2019). Polymorphisms in the CIITA -168A/G (rs3087456) and CIITA +1614G/C (rs4774) may influence severity in multiple sclerosis patients. Arq Neuropsiquiatr 77:166–173.

Roche PA, Furuta K (2015). The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol 15:203–216.

Sachini N, Papamatheakis J (2017). NF-Y and the immune response: dissecting the complex regulation of MHC genes. Biochim Biophys Acta Gene Regul Mech 1860:537–542.

Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P, et al. (2011). MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471:377–381.

Takenoyama M, Baurain JF, Yasuda M, So T, Sugaya M, Hanagiri T, et al. (2006). A point mutation in the NFYC gene generates an antigenic peptide recognized by autologous cytolytic T lymphocytes on a human squamous cell lung carcinoma. Int J Cancer 118:1992–1997.

Trier N, Iazarugaza J, Chailyan A, Marcatili P, Houen G (2018). Human MHC-II with shared epitope motifs are optimal Epstein-Barr virus glycoprotein 42 ligands-relation to rheumatoid arthritis. Int J Mol Sci 19:E317.

Tsang CM, Tsao SW (2015). The role of Epstein-Barr virus infection in the pathogenesis of nasopharyngeal carcinoma. Virol Sin 30:107–121.

Wang J, Ma L, Weng W, Qiao Y, Zhang Y, He J, et al. (2013). Mutual interaction between YAP and CREB promotes tumorigenesis in liver cancer. Hapatology 58:1011–1020.

Ward LD, Kellis M (2012). Haploreg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 40:D930–D934.

Xu Y, Song R, Long W, Guo H, Shi W, Yuan S, et al. (2018). CREB1 functional polymorphisms modulating promoter transcriptional activity are associated with type 2 diabetes mellitus risk in Chinese population. Gene 665:133–140.

Zhang X, Hong X, Deng G, Bai X (2007). Single nucleotide polymorphisms and functional analysis of class II transactivator (CIITA) promoter IV in persistent HBV infection. J Clin Virol 40:197–201.