INITIAL COEFFICIENT BOUNDS FOR CERTAIN CLASSES OF MERO MORPHIC BI-UNIVALENT FUNCTIONS

H. ORHAN, N. MAGESH AND V.K.BALAJI

Abstract. In this paper we extend the concept of bi-univalent to the class of meromorphic functions. We propose to investigate the coefficient estimates for two classes of meromorphic bi-univalent functions. Also, we find estimates on the coefficients $|b_0|$ and $|b_1|$ for functions in these new classes. Some interesting remarks and applications of the results presented here are also discussed.

2010 Mathematics Subject Classification: 30C45.

Keywords and Phrases: Analytic functions, univalent functions, bi-univalent functions, meromorphic functions, meromorphic bi-univalent functions.

1. Introduction

Let A denote the class of functions of the form

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n$$ \hspace{1cm} (1.1)

which are analytic in the open unit disc $U = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}$. Further, by S we shall denote the class of all functions in A which are univalent in U.

It is well known that every function $h \in S$ has an inverse h^{-1}, defined by

$$h^{-1}(h(z)) = z, \quad (z \in U)$$

and

$$h(h^{-1}(w)) = w, \quad (|w| < r_0(h); \ r_0(h) \geq \frac{1}{4}),$$

where

$$h^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \ldots.$$ \hspace{1cm} (1.2)

A function $h \in S$ is said to be bi-univalent in U if both $h(z)$ and $h^{-1}(z)$ are univalent in U. Let Σ_B denote the class of bi-univalent functions in U given by (1.1).

In 1967, Lewin [14] investigated the bi-univalent function class Σ and showed that $|a_2| < 1.51$. On the other hand, Brannan and Clunie [2] (see also [3, 4, 23]) and Netanyahu [15] made an attempt to introduce various subclasses of the bi-univalent function class Σ_B and obtained non-sharp coefficient estimates on the first two coefficients $|a_2|$ and $|a_3|$ of (1.1). But the coefficient problem for each of the following Taylor-Maclaurin coefficients $|a_n| (n \in \mathbb{N} \setminus \{1, 2\}; \ \mathbb{N} := \{1, 2, 3, \ldots\})$ is still an open problem. Following Brannan and Taha [4], many researchers (see [1, 3, 7, 8, 10, 16, 20, 22, 24, 26]) have recently introduced and investigated several interesting subclasses of the bi-univalent function class Σ_B and they have found non-sharp estimates on the first two Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$.
Let Σ denote the class of functions f of the form

$$f(z) = z + \sum_{n=0}^{\infty} \frac{b_n}{z^n},$$

which are meromorphic univalent functions defined in

$$\mathcal{V} := \{z : z \in \mathbb{C} \text{ and } 1 < |z| < \infty\}.$$

It is well known that every function $f \in \Sigma$ has an inverse f^{-1}, defined by

$$f^{-1}(f(z)) = z \quad (z \in \mathcal{V})$$

and

$$f^{-1}(f(w)) = w \quad (M < |w| < \infty, M > 0).$$

Furthermore, the inverse function f^{-1} has a series expansion of the form

$$f^{-1}(w) = w + \sum_{n=0}^{\infty} \frac{B_n}{w^n},$$

where $M < |w| < \infty$.

The coefficient problem was investigated for various interesting subclasses of the meromorphic univalent functions (see, for example [6, 12, 18]). In 1951, Springer [21] conjectured on the coefficient of the inverse of meromorphic univalent functions, latter the problem was investigated by many researchers for various subclasses (see, for details [11, 12, 13, 19, 25]).

Analogous to the bi-univalent analytic functions, a function $f \in \Sigma$ is said to be meromorphic bi-univalent if both f and f^{-1} are meromorphic univalent in \mathcal{V}. We denote by Σ_M the class of all meromorphic bi-univalent functions in \mathcal{V} given by (1.3).

A function f in the class Σ is said to be meromorphic bi-univalent starlike of order α ($0 \leq \alpha < 1$) if it satisfies the following inequalities

$$f \in \Sigma_M, \quad \Re \left(z \frac{f'(z)}{f(z)} \right) > \alpha \quad (z \in \mathcal{V}) \quad \text{and} \quad \Re \left(\frac{wg'(w)}{g(w)} \right) > \alpha \quad (w \in \mathcal{V}),$$

where $g(w) = f^{-1}(w)$ is the inverse of $f(z)$ whose series expansion is given by (1.4), a simple calculation shows that

$$g(w) = w - b_0 - \frac{b_1}{w} \frac{b_2 + b_0b_1}{w^2} - \frac{b_3 + 2b_0b_2 + b_0^2b_1 + b_1^2}{w^3} + \ldots. \quad (1.5)$$

We denote by $\Sigma_M^*(\alpha)$ the class of all meromorphic bi-univalent starlike functions of order α. Similarly, a function f in the class Σ is said to be meromorphic bi-univalent strongly starlike of order α ($0 < \alpha \leq 1$) if it satisfies the following conditions

$$f \in \Sigma_M, \quad \left| \arg \left(z \frac{f'(z)}{f(z)} \right) \right| < \frac{\alpha \pi}{2} \quad (z \in \mathcal{V}) \quad \text{and} \quad \left| \arg \left(\frac{wg'(w)}{g(w)} \right) \right| < \frac{\alpha \pi}{2} \quad (w \in \mathcal{V}),$$

where $g(w)$ is given by (1.5). We denote by $\widetilde{\Sigma}_M^*(\alpha)$ the class of all meromorphic bi-univalent strongly starlike functions of order α. The classes $\Sigma_M^*(\alpha)$ and $\widetilde{\Sigma}_M^*(\alpha)$ were introduced and studied by Halim et al. [9].

Motivated by the works of Halim et al. [9] we define the following general subclasses $\Sigma_M^*(\alpha, \mu, \lambda)$ and $\widetilde{\Sigma}_M^*(\alpha, \mu, \lambda)$ of the function class Σ.

Definition 1.1. A function f given by (1.3) is said to be in the class $\Sigma_M^*(\alpha, \mu, \lambda)$ if the following conditions are satisfied:

$$f \in \Sigma_M, \ \Re\left((1-\lambda)\left(\frac{f(z)}{z}\right)^\mu + \lambda f'(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right) > \alpha \ (\mu \geq 0, \lambda \geq 1, \lambda > \mu; z \in \mathcal{V})$$

and

$$\Re\left((1-\lambda)\left(\frac{g(w)}{w}\right)^\mu + \lambda g'(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right) > \alpha \ (\mu \geq 0, \lambda \geq 1, \lambda > \mu; w \in \mathcal{V})$$

(1.6)

for some $\alpha (0 \leq \alpha < 1)$, where g is given by (1.5).

Definition 1.2. A function f given by (1.3) is said to be in the class $\tilde{\Sigma}_M^*(\alpha, \mu, \lambda)$ if the following conditions are satisfied:

$$f \in \Sigma_M, \ \left|\arg\left((1-\lambda)\left(\frac{f(z)}{z}\right)^\mu + \lambda f'(z)\left(\frac{f(z)}{z}\right)^{\mu-1}\right)\right| < \frac{\alpha \pi}{2} \ (\mu \geq 0, \lambda \geq 1, \lambda > \mu; z \in \mathcal{V})$$

and

$$\left|\arg\left((1-\lambda)\left(\frac{g(w)}{w}\right)^\mu + \lambda g'(w)\left(\frac{g(w)}{w}\right)^{\mu-1}\right)\right| < \frac{\alpha \pi}{2} \ (\mu \geq 0, \lambda \geq 1, \lambda > \mu; w \in \mathcal{V})$$

(1.8)

for some $\alpha (0 < \alpha \leq 1)$, where g is given by (1.5).

It is interesting to note that, for $\lambda = 1$ and $\mu = 0$ the classes $\Sigma_M^*(\alpha, \mu, \lambda)$ and $\tilde{\Sigma}_M^*(\alpha, \mu, \lambda)$ respectively, reduces to the classes $\Sigma_M^*(\alpha)$ and $\tilde{\Sigma}_M^*(\alpha)$ introduced and studied by Halim et al. [9].

The object of the present paper is to extend the concept of bi-univalent to the class of meromorphic functions defined on \mathcal{V} and find estimates on the coefficients $|b_0|$ and $|b_1|$ for functions in the above-defined classes $\Sigma_M^*(\alpha, \mu, \lambda)$ and $\tilde{\Sigma}_M^*(\alpha, \mu, \lambda)$ of the function class Σ_M by employing the techniques used earlier by Halim et al. [9].

In order to derive our main results, we shall need the following lemma.

Lemma 1.3. (see [17]) If $\varphi \in \mathcal{P}$, then $|c_k| \leq 2$ for each k, where \mathcal{P} is the family of all functions φ, analytic in \mathbb{U}, for which

$$\Re\{\varphi(z)\} > 0 \quad (z \in \mathbb{U}),$$

where

$$\varphi(z) = 1 + c_1 z + c_2 z^2 + \cdots \quad (z \in \mathbb{U}).$$

2. Coefficient Bounds for the Function Classes $\Sigma_M^*(\alpha, \mu, \lambda)$ and $\tilde{\Sigma}_M^*(\alpha, \mu, \lambda)$

We begin this section by finding the estimates on the coefficients $|b_0|$ and $|b_1|$ for functions in the class $\Sigma_M^*(\alpha, \mu, \lambda)$.

Theorem 2.1. Let the function $f(z)$ given by (1.3) be in the following class:

$$\Sigma_M^*(\alpha, \mu, \lambda) \quad (0 \leq \alpha < 1; \lambda \geq 1; \mu \geq 0; \lambda > \mu).$$
Then
\[|b_0| \leq \frac{2(1 - \alpha)}{\lambda - \mu} \]
(2.1)
and
\[|b_1| \leq 2(1 - \alpha) \sqrt{\frac{(1 - \mu)^2(1 - \alpha)^2}{(\lambda - \mu)^4} + \frac{1}{(2\lambda - \mu)^2}}. \]
(2.2)

Proof. It follows from (1.6) and (1.7) that
\[(1 - \lambda) \left(\frac{f(z)}{z} \right)^\mu + \lambda f'(z) \left(\frac{f(z)}{z} \right)^{\mu - 1} = \alpha + (1 - \alpha)p(z) \]
(2.3)
and
\[(1 - \lambda) \left(\frac{g(w)}{w} \right)^\mu + \lambda g'(w) \left(\frac{g(w)}{w} \right)^{\mu - 1} = \alpha + (1 - \alpha)q(w), \]
(2.4)
where \(p(z) \) and \(q(w) \) are functions with positive real part in \(V \) and have the following forms:
\[p(z) = 1 + \frac{p_1}{z} + \frac{p_2}{z^2} + \cdots \]
(2.5)
and
\[q(z) = 1 + \frac{q_1}{w} + \frac{q_2}{w^2} + \cdots, \]
(2.6)
respectively. Now, equating coefficients in (2.3) and (2.4), we get
\[(\mu - \lambda)b_0 = (1 - \alpha)p_1, \]
(2.7)
\[(\mu - 2\lambda)(b_1 + (\mu - 1)\frac{b_0^2}{2}) = (1 - \alpha)p_2, \]
(2.8)
\[(\lambda - \mu)b_0 = (1 - \alpha)q_1 \]
(2.9)
and
\[(2\lambda - \mu)(b_1 - (\mu - 1)\frac{b_0^2}{2}) = (1 - \alpha)q_2. \]
(2.10)
From (2.7) and (2.9), we get
\[p_1 = -q_1 \]
(2.11)
and
\[b_0^2 = \frac{(1 - \alpha)^2(p_1^2 + q_1^2)}{2(\lambda - \mu)^2}. \]
(2.12)
Since \(\Re\{p(z)\} > 0 \) in \(V \), the function \(p(1/z) \in P \) and hence the coefficients \(p_n \) and similarly the coefficients \(q_n \) of the function \(q \) satisfy the inequality in Lemma 1.3, we get
\[|b_0| \leq \frac{2 - 2\alpha}{\lambda - \mu}. \]
This gives the bound on \(|b_0| \) as asserted in (2.1).

Next, in order to find the bound on \(|b_1| \), we use (2.8) and (2.10), which yields,
\[(1 - \mu)^2(2\lambda - \mu)^2b_0^4 - 4(1 - \alpha)^2p_2q_2 = 4(2\lambda - \mu)^2b_1^2. \]
(2.13)
It follows from (2.13) that
\[b_1^2 = \frac{(1 - \mu)^2b_0^4}{4} - \frac{(1 - \alpha)^2}{(2\lambda - \mu)^2}p_2q_2. \]
Substituting the estimate obtained (2.12), and applying Lemma 1.3 once again for the coefficients p_2 and q_2, we readily get

$$|b_1| \leq 2(1 - \alpha) \sqrt{\frac{(1 - \mu)^2(1 - \alpha)^2}{(\lambda - \mu)^4} + \frac{1}{(2\lambda - \mu)^2}}.$$

This completes the proof of Theorem 2.1.

Next we estimate the coefficients $|b_0|$ and $|b_1|$ for functions in the class $\tilde{\Sigma}(\alpha, \mu, \lambda)$.

Theorem 2.2. Let the function $f(z)$ given by (1.1) be in the following class:

$$\tilde{\Sigma}(\alpha, \mu, \lambda) \quad (0 < \alpha \leq 1; \quad \lambda \geq 1; \quad \mu \geq 0; \quad \lambda > \mu).$$

Then

$$|b_0| \leq \frac{2\alpha}{\lambda - \mu} \quad (2.14)$$

and

$$|b_1| \leq 2\alpha^2 \sqrt{\frac{1}{(2\lambda - \mu)^2} + \frac{(1 - \mu)^2}{(\lambda - \mu)^4}}. \quad (2.15)$$

Proof. It follows from (1.8) and (1.9) that

$$(1 - \lambda) \left(\frac{f(z)}{z} \right)^\mu + \lambda f'(z) \left(\frac{f(z)}{z} \right)^\mu \left(\frac{1}{\lambda - \mu} \right)^{\mu-1} = [p(z)]^\alpha \quad (2.16)$$

and

$$(1 - \lambda) \left(\frac{g(w)}{w} \right)^\mu + \lambda g'(w) \left(\frac{g(w)}{w} \right)^\mu \left(\frac{1}{\lambda - \mu} \right)^{\mu-1} = [q(w)]^\alpha, \quad (2.17)$$

where $p(z)$ and $q(w)$ have the forms (2.5) and (2.6), respectively. Now, equating the coefficients in (2.16) and (2.17), we get

$$\mu - \lambda)b_0 = \alpha p_1, \quad (2.18)$$

$$(\mu - 2\lambda)(b_1 + (\mu - 1)b_0^2) = \frac{1}{2} \left[\alpha(\alpha - 1)p_1^2 + 2\alpha p_2 \right], \quad (2.19)$$

and

$$- (\lambda - \mu)b_0 = \alpha q_1 \quad (2.20)$$

and

$$(2\lambda - \mu)(b_1 - (\mu - 1)b_0^2) = \frac{1}{2} \left[\alpha(\alpha - 1)q_1^2 + 2\alpha q_2 \right]. \quad (2.21)$$

From (2.18) and (2.20), we find that

$$p_1 = -q_1 \quad (2.22)$$

and

$$b_0^2 = \frac{\alpha^2(p_1^2 + q_1^2)}{2(\lambda - \mu)^2}. \quad (2.23)$$

As discussed in the proof of Theorem 2.1 applying Lemma 1.3 for the coefficients p_2 and q_2, we immediately have

$$|b_0| \leq \frac{2\alpha}{\lambda - \mu}. \quad (2.24)$$

This gives the bound on $|b_0|$ as asserted in (2.14).
Next, in order to find the bound on $|b_1|$, by using (2.19) and (2.21), we get
\[2(2\lambda - \mu)^2 b_1^2 + (2\lambda - \mu)^2 (1 - \mu)^2 b_0^2 = \frac{\alpha^2 (\alpha - 1)^2 (p_1^4 + q_1^4)}{4} + \alpha^2 (p_2^2 + q_2^2) + \alpha^2 (\alpha - 1) (p_1^2 p_2 + q_1^2 q_2). \]

It follows from (2.24) and (2.23) that
\[2(2\lambda - \mu)^2 b_1^2 = \frac{\alpha^2 (\alpha - 1)^2 (p_1^4 + q_1^4)}{4} + \alpha^2 (p_2^2 + q_2^2) + \alpha^2 (\alpha - 1) (p_1^2 p_2 + q_1^2 q_2) \]
\[- \frac{(2\lambda - \mu)^2 (1 - \mu)^2 \alpha^4}{8(\mu - \lambda)^4} (p_1^4 + q_1^4). \]

Applying Lemma 1.3 once again for the coefficients p_1, p_2, q_1 and q_2, we readily get
\[|b_1| \leq 2\alpha^2 \sqrt{\frac{1}{(2\lambda - \mu)^2} + \frac{(1 - \mu)^2}{(\lambda - \mu)^4}}. \]

This completes the proof of Theorem 2.2.

Remark 2.3. For $\lambda = 1$ and $\mu = 0$ the bounds obtained in Theorems 2.1 and 2.2 are coincidence with outcome of [9, Theorem 1 and Theorem 2]. Similarly, various interesting corollaries and consequences could be derived from our results, the details involved may be left to the reader.

References
[1] R. M. Ali, S.K.Lee, V.Ravichandran, S.Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), no. 3, 344–351.
[2] D.A. Brannan, J.G. Clunie (Eds.), Aspects of contemporary complex analysis, Academic Press, London, 1980.
[3] D. A. Brannan, J. Clunie and W. E. Kirwan, Coefficient estimates for a class of star-like functions, Canad. J. Math. 22 (1970), 476–485.
[4] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babeș-Bolyai Math. 31 (1986), no. 2, 70–77.
[5] M.Cağlar, H.Orhan and N.Yağmur, Coefficient bounds for new subclasses of bi-univalent functions, Filomat, in press.
[6] P. L. Duren, Coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 28 (1971), 169–172.
[7] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), no. 9, 1569–1573.
[8] S.P.Goyal and P.Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, J. Egyptian Math. Soc., 20 (2012), 179–182.
[9] S.A. Halim, S. G. Hamidi, and V. Ravichandran, Coefficient estimates for meromorphic bi-univalent functions, Preprint.
[10] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J. 22 (4) (2012), 15–26.
[11] G. P. Kapoor and A. K. Mishra, Coefficient estimates for inverses of starlike functions of positive order, J. Math. Anal. Appl. 329 (2007), no. 2, 922–934.
[12] J.G. Krzyż, R.J. Libera, E.J. Zlotkiewicz, Coefficients of inverse of regular starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979) 103–109.
[13] Y. Kubota, Coefficients of meromorphic univalent functions, K-odai Math. Sem. Rep. 28 (1976/77), no. 2–3, 253–261.
[14] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68.
[15] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z| < 1$, Arch. Rational Mech. Anal. 32 (1969), 100–112.

[16] H. Orhan, N. Magesh and V.K.Balaji, Initial coefficient bounds for a general class of bi-univalent functions, Preprint.

[17] C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen, 1975.

[18] M. Schiffer, Sur un probl`eme d’extr`eme de la repr´esentation conforme, Bull. Soc. Math. France 66 (1938), 48–55.

[19] G. Schober, Coefficients of inverses of meromorphic univalent functions, Proc. Amer. Math. Soc. 67 (1977), no. 1, 111–116.

[20] S. Sivaprasad Kumar, V.Kumar and V. Ravichandran, Estimates for the initial coefficients of bi-univalent functions, Preprint.

[21] G. Springer, The coefficient problem for schlicht mappings of the exterior of the unit circle, Trans. Amer. Math. Soc. 70 (1951), 421–450.

[22] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188–1192.

[23] T.S. Taha, Topics in univalent function theory, Ph.D. Thesis, University of London, 1981.

[24] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), no. 6, 990–994.

[25] Q.-H. Xu, C-B Lv, H.M. Srivastava, Coefficient estimates for the inverses of a certain general class of spirallike functions, Appl. Math. Comput. 219 (2013) 7000–7011.

[26] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), no. 23, 11461–11465.

Department of Mathematics, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey, E-MAIL: orhanhalit607@gmail.com

Post-Graduate and Research Department of Mathematics, Government Arts College for Men, Krishnagiri 635001, Tamilnadu, India, E-MAIL: nmagi2000@yahoo.co.in

Department of Mathematics, L.N. Govt College, Ponneri, Chennai, Tamilnadu, India, E-MAIL: balajilsp@yahoo.co.in