THE f- AND h-VECTORS OF INTERVAL SUBDIVISIONS

IMRAN ANWAR AND SHAHEEN NAZIR

ABSTRACT. The interval subdivision $\text{Int}(\Delta)$ of a simplicial complex Δ was introduced by Walker. We give the complete combinatorial description of the entries of the transformation matrices from the f- and h-vectors of Δ to the f- and h-vectors of $\text{Int}(\Delta)$. We show that if Δ has non-negative h-vector then the h-polynomial of its interval subdivision has only real roots. As a consequence, we prove the Charney-Davis conjecture for $\text{Int}(\Delta)$, if Δ has non-negative reciprocal h-vector.

1. Introduction

In this paper, we study the behavior of the enumerative invariants of a simplicial complex under the interval subdivision, introduced by Walker [Wal88]. This work is motivated from the work of Brenti and Welker about the barycentric subdivision of simplicial complexes [BW08]. The enumeration data e.g., f-, h-, γ-, g-vectors of barycentric subdivision of a simplicial complex has been extensively studied in the literature, see [Sta92, BW08, KN09, Mur10, NPT11, Pet15]. Let Δ be a $(d-1)$-dimensional simplicial complex on the ground set V. The interval subdivision $\text{Int}(\Delta)$ of Δ is the simplicial complex on the ground set $I(\Delta \setminus \emptyset)$, where $I(\Delta \setminus \emptyset) := \{[A, B] \mid \emptyset \neq A \subseteq B \in \Delta\}$ as a partially ordered set ordered by inclusion defined as $[A, B] \subseteq [A', B'] \in I(\Delta \setminus \emptyset)$ if and only if $A' \subseteq A \subseteq B \subseteq B'$. By Walker [Wal88, Theorem 6.1(a)], the simplicial complex of all chains in the partially ordered set $I(\Delta \setminus \emptyset)$ is a subdivision of Δ. It can be noted that this subdivision is the special case $N = 1$ of the simplicial complex considered in [CMS84, Fig. 1.2]. The potential aim of this article is to analyze the behavior of f- and h-vectors moving from Δ to $\text{Int}(\Delta)$. In the main result of this paper we show that if the h-vector of a simplicial complex is non-negative then the h-polynomial of its interval subdivision has only real roots. Moreover, it is shown that the refined j-Eulerian polynomials of type B (defined in Section 2) are real-rooted.

The paper is organized as follows. In Section 2, we give the formula of f-vector of the interval subdivision $\text{Int}(\Delta)$ in terms of f-vector of the simplicial complex Δ. In Section 3, we study the transformation of h-vector of the interval subdivision $\text{Int}(\Delta)$. We give the interpretation of the coefficients of the matrix transformation of h-vector in terms of refined

Key words and phrases. Simplicial complex, subdivision of a simplicial complex, f-vector, h-vector.

The authors are grateful to Volkmar Welker for introducing the subject and his guidance. This project was started during the First Research School on Commutative Algebra and Algebraic Geometry (August 5 – 17, 2017) in IASBS, Iran. The authors would like to thank the organizers for providing them the opportunity and warm hospitality. This project is supported by the Higher Education Commission of Pakistan.
Eulerian numbers of type B. It is well known that these coefficients are j-Eulerian numbers of type A in the case of barycentric subdivision, see [Sta86, BW08]. Along the way, we also show that if h-vector of the simplicial complex Δ satisfies the Dehn-Sommerville relations, so does the h-vector of interval subdivision $\text{Int}(\Delta)$. Moreover, we investigate some simple results on the properties of f- and h-vector transformation matrices. In the sequel, we show that these transformation matrices are diagonalizable and similar. The Section 4 is devoted to the proof our main Theorem 4.1. It states that if Δ has a non-negative h-vector then the h-polynomial of its interval subdivision has only real zeros. Additionally, we prove that the refined j-Eulerian polynomials of type B are real-rooted. As a consequence of the Theorem 4.1, we succeed to prove the Charney-Davis for the interval subdivision of a simplicial complex Δ with non-negative reciprocal h-vector in Corollary 4.11.

2. f-vector Transformation

Throughout from here, Δ represents a $(d-1)$-dimensional simplicial complex on the ground set $V = [n]$. In this section, we will describe the transformation sending f-vector of Δ to f-vector of $\text{Int}(\Delta)$. Recall that the vector $f(\Delta) = (f_{-1}(\Delta), f_0(\Delta), \ldots, f_{d-1}(\Delta))$, where $f_i(\Delta)$ is the number of i-dimensional faces of Δ is called the f-vector of Δ with $f_{-1}(\Delta) = 1$ (for $\dim \emptyset = -1$).

By the definition of $\text{Int}(\Delta)$, an l-dimensional face in $\text{Int}(\Delta)$ is a chain $[A_0, B_0] \subset [A_1, B_1] \subset \ldots \subset [A_l, B_l]$ of intervals of length l in $I(\Delta \setminus \emptyset)$. As a warm-up we start with a description of $f_0(\text{Int}(\Delta))$.

$f_0(\text{Int}(\Delta))$: $f_0(\text{Int}(\Delta))$ is the number of intervals $[A, B]$, where $A \subseteq B$ for all $A, B \in \Delta \setminus \emptyset$. For any $B \in \Delta \setminus \emptyset$, all distinct subsets of B (excluding \emptyset) give rise to distinct intervals terminating at B. Since there are $f_{l-1}(\Delta)$ choices for B with $|B| = l$, and for a fixed $B \in \Delta$, the number of intervals of the form $[A, B]$ is $2^{|B|} - 1$. Therefore, the number of all possible intervals in $I(\Delta \setminus \emptyset)$ will be

$$(2^0 - 1)f_{-1}(\Delta) + (2^1 - 1)f_0(\Delta) + (2^2 - 1)f_1(\Delta) + (2^3 - 1)f_2(\Delta) + \cdots + (2^{d-1} - 1)f_{d-1}(\Delta).$$

Thus,

$$f_0(\text{Int}(\Delta)) = \sum_{k=0}^{d} (2^k - 1)f_{k-1}(\Delta). \quad (1)$$

Now we turn to the description of $f_k(\text{Int}(\Delta))$ in general.

$f_k(\text{Int}(\Delta))$: To compute $f_k(\text{Int}(\Delta))$, for $k \geq 0$, let us introduce some notations. It is easily seen that the number of chains of length k terminating in $[A, B]$ only depends on $\alpha = |B \setminus A|$. Let Q_k^α denote the number of chains of intervals of length k terminating at some fixed interval $[A, B]$, where $\alpha = |B \setminus A|$. By definition, $Q_k^\alpha = 0$ for $\alpha < k$ and $Q_0^\alpha = 1$ for all α.

We group the k-chains in $I(\Delta \setminus \emptyset)$ according to the top element $[A, B]$ of the chain. For a fixed $[A, B]$, we have Q_k^{t-1} chains of length k terminating in $[A, B]$, where $t = |A|$ and
$l = |B|$. There are $f_l(\Delta)$ choices for B with $|B| = l$ and for a fixed B we have $\binom{l}{i}$ subsets $A \subseteq B$ with $|A| = t$. Hence, we have

$$f_k(\operatorname{Int}(\Delta)) = \sum_{i=0}^{d} \left[\sum_{t=1}^{l} \binom{l}{t} Q^i_{k-t} \right] f_{l-1}(\Delta). \quad (2)$$

In the next lemma, we formulate the number Q^α_k.

Lemma 2.1. The formula for Q^α_k is given as

$$Q^\alpha_k = \sum_{i=0}^{k} (-1)^i \binom{k}{i} (1 + 2(k - i))^\alpha. \quad (3)$$

Proof. We will prove (3) by induction on k. It is true for $k = 0$, follows from the definition. Now, suppose that (3) is true for $k - 1$. To compute Q^α_k, we intend to count all k-chains of intervals terminating at some fixed interval $[A, B]$ with $|B \setminus A| = \alpha$. Let $B = A \cup \{a_1, a_2, \ldots, a_\alpha\}$. The intervals strictly contained in $[A, B]$ are of the form $[A \cup \{a_{t1}, \ldots, a_{ti}\}, A \cup \{a_{t1}, \ldots, a_{ti+s}\}]$ unless $t = 0$ and $s = \alpha$. There are $\binom{\alpha}{s} \binom{s}{t}$ choices for intervals of the form $[A \cup \{a_{t1}, \ldots, a_{ti}\}, A \cup \{a_{t1}, \ldots, a_{ti+s}\}]$ contained in $[A, B]$, and the number of all chains of length $k - 1$ terminating at $[A \cup \{a_{t1}, \ldots, a_{ti}\}, A \cup \{a_{t1}, \ldots, a_{ti+s}\}]$ is Q^s_{k-1}. Hence for fixed α and k, we have the following recurrence relation

$$Q^\alpha_k = \sum_{i=0}^{\alpha} \binom{\alpha}{i} \left[\sum_{j=0}^{\alpha-i} \binom{\alpha-i}{j} Q^j_{k-1} \right] - Q^\alpha_{k-1}.$$

Since (3) is true for $k - 1$, so substitute the formula of Q^α_{k-1} in the above expression

$$Q^\alpha_k = \sum_{i=0}^{\alpha} \binom{\alpha}{i} \left[\sum_{j=0}^{\alpha-i} \binom{\alpha-i}{j} \sum_{m=0}^{k-1} (-1)^m \binom{k-1}{m} (1 + 2(k - 1 - m))^\alpha \right]$$

$$- \sum_{m=0}^{k-1} (-1)^m \binom{k-1}{m} (1 + 2(k - 1 - m))^\alpha.$$

Using binomial formula twice (first taking sum over j and then over i), we have

$$Q^\alpha_k = \sum_{m=0}^{k-1} (-1)^m \binom{k-1}{m} [(1 + 2k - 2m)^\alpha - (1 + 2k - 2(m+1))^\alpha]$$

Now, using the identity $\binom{k-1}{m} + \binom{k-1}{m-1} = \binom{k}{m}$, we get

$$Q^\alpha_k = (1 + 2k)^\alpha + \sum_{m=1}^{k-1} (-1)^m \binom{k}{m} (1 + 2k - 2m)^\alpha + (-1)^k$$

which gives the required form. \qed

Thus, we have the f-vector transformation as follows.
Theorem 2.2. Let Δ be a $(d - 1)$-dimensional simplicial complex. Then

$$f_k(\text{Int}(\Delta)) = \sum_{l=0}^{d} \sum_{i=0}^{k} (-1)^i \binom{k}{i} \left[(2 + 2k - 2i)^l - (1 + 2k - 2i)^l \right] f_{l-1}(\Delta).$$

(4)

for $0 \leq k \leq d - 1$ and $f_{-1}(\text{Int}(\Delta)) = f_{-1}(\Delta) = 1$.

Proof. The result readily follows from the binomial expansion on equation (2). \qed

Remark 2.3. The formula (4) can be represented in terms of Stirling’s number of second kind $S(n, k)$ as:

$$f_k(\text{Int}(\Delta)) = \sum_{l=0}^{d} \sum_{i=0}^{l} \binom{k}{i} k! S(j, k) \left[2^l - 2^l \right] f_{l-1}(\Delta).$$

(5)

Here, we include an example to demonstrate the above computed transformation.

Example 2.4. Let Δ be a 2-simplex on the ground set $\{1, 2, 3\}$, then the $f(\Delta) = (3, 3, 1)$. The ground set of the $\text{Int}(\Delta)$ will be the set of all possible intervals in $\Delta \setminus \emptyset$. Therefore, $f_0(\text{Int}(\Delta)) = \sum_{l=0}^{2} (2^l - 1) f_{l-1}(\Delta) = 19$, $f_1(\text{Int}(\Delta)) = \sum_{l=0}^{2} \sum_{i=0}^{1} (-1)^i \binom{1}{i} \left[(4 - 2i)^l - (3 - 2i)^l \right] f_{l-1}(\Delta) = 42$ and $f_2(\text{Int}(\Delta)) = \sum_{l=0}^{2} \sum_{i=0}^{2} (-1)^i \binom{2}{i} \left[(6 - 2i)^l - (5 - 2i)^l \right] f_{l-1}(\Delta) = 24$.
3. \(h \)-vector Transformation

In this section, we represent the \(h \)-vector of an interval subdivision in term of \(h \)-vector of the given simplicial complex. Recall that \(h \)-vector \(h(\Delta) = (h_0(\Delta), \ldots, h_d(\Delta)) \) of \((d-1) \)-simplicial complex \(\Delta \) is defined in terms of \(f \)-vector as

\[
h_k(\Delta) = \sum_{i=0}^{k} (-1)^{k-i} \binom{d-i}{k-i} f_{i-1}(\Delta).
\]

The \(h \)-polynomial of \(\Delta \) is defined as

\[
h(\Delta, x) = \sum_{i=0}^{d} h_i(\Delta) x^i.
\]

We need to recall some notions to give the combinatorial description of the entries of \(h \)-vector transformation matrix.

Signed Permutation Group \(B_d \). We present here some definitions and notations for the classical Weyl groups of type \(B \) (also known as the hyperoctahedral groups or the signed permutations group) and denoted as \(B_d \). It is the group consisting of all the bijections \(\sigma \) of the set \(\{\pm 1, \ldots, \pm d\} \) onto itself such that \(\sigma_i = -\sigma_{i+1} \) for all \(i \in \{\pm 1, \ldots, \pm d\} \). \(B_d \) can be viewed as a subgroup of \(S_{2d} \) and the element \(\sigma \in B_d \) is completely determined by \(\sigma_1, \ldots, \sigma_d \). In one-line notation, we write \(\sigma = \sigma_1 \ldots \sigma_d \). For \(\sigma \in B_d \), the descent set is defined as

\[
\text{Des}_{B}(\sigma) := \{ i \in [0, d-1] : \sigma_i > \sigma_{i+1} \},
\]

where \(\sigma_0 = 0 \) and the type \(B \) descent number is defined as \(\text{des}_{B}(\sigma) := |\text{Des}_{B}(\sigma)| \).

Let

\[
B^+_d := \{ \sigma \in B_d : \sigma_d > 0 \}
\]

and

\[
B^+_{d,j} := \{ \sigma \in B^+_d : \sigma_1 = j \}.
\]

Similarly, for the other half hyperoctahedral group \(B^-_d \), define

\[
B^-_d := \{ \sigma \in B_d : \sigma_d < 0 \}
\]

and

\[
B^-_{d,j} := \{ \sigma \in B^-_d : \sigma_1 = j \}.
\]

Let us define the \(j \)-Eulerian polynomials of type \(B^+ \) by

\[
B^+_{d,j}(t) := \sum_{\sigma \in B^+_{d,j}} t^{\text{des}_{B}(\sigma)} = \sum_{k=0}^{d-1} B^+(d,j,k) t^k,
\]

where \(B^+(d,j,k) \) be the number of elements in \(B^+_{d,j} \) with exactly \(k \) descents. Similarly, define the \(j \)-Eulerian polynomials of type \(B^- \) by

\[
B^-_{d,j}(t) = \sum_{\sigma \in B^-_{d,j}} t^{\text{des}_{B}(\sigma)} = \sum_{k=0}^{d-1} B^-(d,j,k) t^k,
\]
where \(B^-(d, j, k) \) be the number of elements in \(B_{d,j}^- \) with exactly \(k \) descents. Since \(B_{d,j} = B_{d,j}^+ \cup B_{d,j}^- \) so the \(j \)-Eulerian polynomial \(B_{d,j} \) of type \(B \) is

\[
B_{d,j}(t) = B_{d,j}^+(t) + B_{d,j}^-(t).
\]

Here, we list \(B_{d,j}^+(t) \) for \(d = 4 \) and \(1 \leq s \leq 4 \):

\[
\begin{align*}
B_{4,1}^+(t) &= 1 + 16t + 7t^2 \\
B_{4,2}^+(t) &= 14t + 10t^2 \\
B_{4,3}^+(t) &= 10t + 14t^2 \\
B_{4,4}^+(t) &= 7t + 16t^2 + t^3
\end{align*}
\]

The transformation of \(f \)-vector of \(\Delta \) to \(f \)-vector of interval subdivision \(\text{Int}(\Delta) \) is given by the matrix:

\[
\mathcal{F}_d = [b_{k,l}]_{0 \leq k, l \leq d},
\]

where

\[
b_{0,l} = \begin{cases} 1, & l = 0; \\ 0, & l > 0. \end{cases}
\]

and for \(1 \leq k \leq d \), we have

\[
b_{k,l} = \sum_{j=0}^{k-1} (-1)^j \binom{k-1}{j} [(2k - 2j)^l - (2k - 2j - 1)^l]
\]

\[
(8)
\]

h-Vector of Interval Subdivision. Let \(\mathcal{H}_d \) be the transformation matrix from \(f \)-vector to \(h \)-vector, then

\[
\mathcal{H}_d = [(-1)^{i+j} \binom{d-i}{j-i}]_{0 \leq i, j \leq d}
\]

and the inverse transformation is

\[
\mathcal{H}_d^{-1} = [(d-i)_{j-i}]_{0 \leq i, j \leq d}
\]

Thus,

\[
h(\text{Int}(\Delta)) = \mathcal{H}_d \mathcal{F}_d \mathcal{H}_d^{-1} h(\Delta)
\]

Let's denote it by

\[
\mathcal{R}_d = \mathcal{H}_d \mathcal{F}_d \mathcal{H}_d^{-1}.
\]

For example,

\[
\mathcal{R}_4 = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
61 & 46 & 32 & 22 & 15 \\
115 & 124 & 128 & 124 & 115 \\
15 & 22 & 32 & 46 & 61 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

In the following theorem, it has been shown that this transformation possesses a nice combinatorial description.
Theorem 3.1. The entries of the matrix \mathcal{R}_d are given as:

$$\mathcal{R}_d = [B^+(d+1, s+1, r)]_{0 \leq s,r \leq d}$$

To prove the above theorem, we need the following lemma regarding the recurrence relation of entries $b_{r,l}$ of matrix \mathcal{F}_d.

Lemma 3.2. For $1 \leq r \leq d - 1$ and $1 \leq l \leq d$,

$$\sum_{i=1}^{l} 2^i \binom{l}{i} b_{r,l-i} = b_{r+1,l}.$$

Proof. Using (8), we have

$$\sum_{i=1}^{l} 2^i \binom{l}{i} b_{r,l-i} = \sum_{i=1}^{l} 2^i \binom{l}{i} \sum_{j=0}^{r-1} (-1)^j \binom{r-1}{j} [(2r - 2j)^{l-i} - (2r - 2j - 1)^{l-i}]$$

$$= \sum_{j=0}^{r-1} (-1)^j \binom{r-1}{j} \sum_{i=1}^{l} 2^i \binom{l}{i} [(2r - 2j)^{l-i} - (2r - 2j - 1)^{l-i}]$$

$$= \sum_{j=0}^{r-1} (-1)^j \binom{r-1}{j} [(2r - 2j + 2)^l - (2r - 2j + 1)^l - (2r - 2j)^l + (2r - 2j - 1)^l]$$

By re-summing, we get

$$(2r + 2)^l - (2r + 1)^l + \sum_{j=0}^{r-2} (-1)^{j+1} \binom{r-1}{j} + \binom{r-1}{j+1} [(2r - 2j)^l]$$

$$- (2r - 2j - 1)^l + (-1)^r (2^l - 1)$$

$$= \sum_{j=0}^{r} (-1)^j \binom{r}{j} [(2(r + 1) - 2j)^l - (2(r + 1) - 2j - 1)^l]$$

$$= b_{r+1,l}.$$

Proof of Theorem 3.1 Let $C_{r,s}$ be the (r,s)-entry of the matrix $C = \mathcal{F}_d \mathcal{H}_d^{-1}$. We have

$$C_{r,s} = \sum_{l=0}^{d} \binom{d-s}{l-s} b_{r,l} = \sum_{l=0}^{d} \binom{d-s}{d-l} b_{r,l}.$$

Let $C_{r,s}$ denote the set of all set partitions $A = A_0 | A_1 | \ldots | A_r$ of rank r of $d+1$ elements among from $\{\pm 1, \pm 2, \ldots, \pm (d+1)\}$ for which exactly one of $\pm i$ appears in A with $\min A_0 = s + 1$ and $\max A_r > 0$. To form such a set partition, we first choose $d - l$ elements from $\{s+2, \ldots, d+1\}$ to put in A_0 along with $\min A_0 = s + 1$. This can be done in $\binom{d-s}{d-l}$ ways. For $r = 0$, we have $\binom{d-s}{d-l} = \binom{d-s}{l-s} = C_{0,s}$ such set partitions. For $r > 0$, to form $A_1 | \ldots | A_r$, we need to create a set partition from the remaining l elements, and this can be done in
\[b_{r,l} \text{ ways. Let's prove this claim by induction on } r. \text{ For } r = 1, \text{ to form } A_1, \text{ we need to put } l \text{ elements from } \{\pm 1, \ldots, \pm (d + 1)\} \text{ such that } \max A_1 > 0. \text{ Thus we have } 2^l - 1 \text{ ways, which is the same as } b_{1,l}. \text{ Suppose that the number of such set partitions } \{A_1| \ldots |A_r \text{ of } l \text{ elements from } \{\pm 1, \ldots, \pm (d + 1)\} \text{ is } b_{r,l}. \text{ Now, to form such set partition } \{A_1| \ldots |A_{r+1} \text{ of } l \text{ elements, we first choose } i \text{ elements from } l \text{ remaining elements, where } i > 0. \text{ This can be done in } 2^i \binom{l}{i} \text{ ways; and the set partition } A_2 \ldots |A_{r+1} \text{ from remaining } l - i \text{ elements can be done in } b_{r,l-i} \text{ ways (by induction hypothesis). Thus we have } \sum_{i=1}^{l} 2^i \binom{l}{i} b_{r,l-i} \text{ ways to form the required set partitions of rank } r + 1 \text{ of } l \text{ elements. By Lemma [3.2] we have}
\]
\[
\sum_{i=1}^{l} 2^i \binom{l}{i} b_{r,l-i} = b_{r+1,l}.
\]

Thus, \(|C_{r,s}| = C_{r,s} \), the \((r, s)\)-entry of the matrix \(C \).

Let
\[
C_s = \bigcup_{r=0}^{d} C_{r,s}
\]
be the collection of all set partitions of \(d + 1 \) elements from \(\{\pm 1, \pm 2, \ldots, \pm (d + 1)\} \) for which exactly one of \(\pm i \) appears in \(A \) with \(\min A_0 = s + 1 \) and \(\max A_r > 0 \). Let \(C_s(t) \) denote the generating function counting these set partitions according to the number of bars,
\[
C_s(t) = \sum_{A \in C_s} t^{\text{rank } A} = \sum_{r=0}^{d} C_{r,s} t^r.
\]

It can be noted that \(C_s(t) \) is also the generating function for column \(s \) of the matrix \(C \).

But each set partition \(A = A_0|A_1| \ldots |A_r \) can be mapped to a permutation \(\sigma = \sigma(A) \) by removing bars and writing each block in increasing order. Since \(\min A_0 = s + 1 \), this means \(\sigma_1 = s + 1 \), and \(\max A_r > 0 \) means \(\sigma_{d+1} > 0 \). That is, \(\sigma \in B_{d+1,s+1}^+ \). Further, \(\text{Des}_B(\sigma) \subset D \), where \(D = D(A) = \{\{A_0\}, |A_0| + |A_1|, \ldots, |A_0| + |A_1| + \ldots + |A_{r-1}|\} \), i.e., there must be bars in \(A \) where there are descents in \(\sigma \). So we can write
\[
C_s(t) = \sum_{A \in C_s} t^{\text{rank } A}
\]
\[
= \sum_{I \subset \{1, \ldots, d\}} \sum_{A \in C_s, D(A)=I} t^{|I|}
\]
\[
= \sum_{I \subset \{1, \ldots, d\}} \sum_{\sigma \in B_{d+1,s+1}^+, D(\sigma) \subset I} t^{|I|}
\]
\[
= \sum_{\sigma \in B_{d+1,s+1}^+, D(\sigma) \subset I} t^{|I|}
\]
\[
= \sum_{\sigma \in B_{d+1,s+1}^+, \text{Des}_B(\sigma)} t^{|\text{des}_B(\sigma)} \cdot (1 + t)^{d - \text{des}_B(\sigma)}
\]
\[
= (1 + t)^d B_{d+1,s+1}^+ (t/(1 + t)).
\]
Since $C_s(t)$ reads the column s of F_d^{-1}, the polynomial $H_d C_s(t) = B^+_d(t)$ reads the column s of $R_d = H_d F_d^{-1}$. Thus the columns of R_d are encoded by the j-Eulerian polynomials of type B^+.

\[\square \]

Corollary 3.3. Let Δ be a $(d - 1)$-dimensional simplicial complex such that $h_r(\Delta) \geq 0$ for all $0 \leq r \leq d$. Then for $0 \leq r \leq d$,

\[h_r(\text{Int}(\Delta)) \geq h_r(\Delta). \]

Proof. By Theorem 3.1 we have

\[h_r(\text{Int}(\Delta)) = \sum_{s=0}^{d} B^+(d + 1, s + 1, r) h_s(\Delta). \]

Since $B^+(d + 1, s + 1, r) \geq 1$ and $h_r(\Delta) \geq 0$ for all r, therefore the result follows. \[\square \]

Example 3.4. The above corollary is not true in general. Consider a 3-dimensional simplicial complex $\Delta = (1234, 125, 345)$ with f-vector $f(\Delta) = (1, 5, 10, 6, 1)$ and h-vector $h(\Delta) = (1, 1, 1, -3, 1)$. Then, $f(\text{Int}(\Delta)) = (1, 92, 380, 480, 192)$ and $h(\text{Int}(\Delta)) = (1, 88, 110, -8, 1)$.

Some basic facts about the numbers $B^+(d, s, r)$ are given in the following lemma:

Lemma 3.5. The following relations hold for $d \geq 1$, $1 \leq s \leq d$, $0 \leq r \leq d - 1$:

1. \[
 \sum_{r=0}^{d-1} B^+(d, s, r) = 2^{d-2}(d-1)!.
\]

2. \[
 B^+(d, s, r) = B^+(d, d - s + 1, d - r - 1).
\]

3. \[
 B^+(d, s, r) = \sum_{j=1}^{d-1} B^+(d - 1, -j, r) + \sum_{j=s}^{d-1} B^+(d - 1, j, r) + \sum_{j=1}^{s-1} B^+(d - 1, j, r - 1).
\]

Thus, the recurrence relation holds:

\[
B^+_{d,s}(t) = t \sum_{j=1}^{s-1} B^+_{d-1,j}(t) + \sum_{j=s}^{d-1} B^+_{d-1,j}(t) + \sum_{j=1}^{d-1} B^+_{d-1,-j}(t),
\]

with initial conditions $B^+_{1,1}(t) = 1$ and $B^+_{1,-1}(t) = 0$.

4. \[
 B^+(d, -s, r) = \sum_{j=1}^{d-1} B^+(d - 1, j, r - 1) + \sum_{j=s}^{d-1} B^+(d - 1, -j, r - 1) + \sum_{j=1}^{s-1} B^+(d - 1, -j, r).
\]

Thus, the recurrence relation holds:

\[
B^+_{d,-s}(t) = t \sum_{j=1}^{d-1} B^+_{d-1,j}(t) + \sum_{j=s}^{d-1} B^+_{d-1,-j}(t) + \sum_{j=1}^{s-1} B^+_{d-1,-j}(t).
\]
Proof. (1) follows from the definition of $B^+(d, s, r)$.
(2) Let $B^+(d, s, r)$ denote the set of all elements $\sigma \in B_{d,s}^+$ such that $\text{des}_B(\sigma) = r$. There is a bijection between the sets $B^+(d, s, r)$ and $B^+(d, d-s+1, d-r-1)$ given by $\sigma = (\sigma_1, \ldots, \sigma_d) \mapsto \bar{\sigma} = (\bar{\sigma}_1, \ldots, \bar{\sigma}_d)$, where

$$\bar{\sigma}_i := \begin{cases} d+1 - \sigma_i, & \sigma_i > 0; \\ -(d+1 + \sigma_i), & \sigma_i < 0. \end{cases}$$

Consider the following three possible cases:

- $\sigma_i > 0 > \sigma_{i+1}$ iff $\bar{\sigma}_i > 0 > \bar{\sigma}_{i+1}$
- $\sigma_i > \sigma_{i+1} > 0$ iff $\bar{\sigma}_{i+1} > \bar{\sigma}_i > 0$
- $0 > \sigma_i > \sigma_{i+1}$ iff $0 > \bar{\sigma}_{i+1} > \bar{\sigma}_i$

In the first case, $i \in \text{Des}_B(\sigma)$ iff $i \in \text{Des}_B(\bar{\sigma})$ and in other two cases, we have $i \in \text{Des}_B(\sigma)$ iff $i \notin \text{Des}_B(\bar{\sigma})$. It is clear that 0 is not descent of σ and $\bar{\sigma}$. Thus, $\text{des}_B(\sigma) + \text{des}_B(\bar{\sigma}) = d-1$.

(3) The recursion formula follows from the effect of removing $\sigma_1 = s$ from the signed permutation σ in $B_{d,s}^+$ with $\text{des}_B(\sigma) = r$. The proof of (4) is similar to (3). \qed

Recall that the h-vector $h(\Delta)$ of a $(d-1)$-dimensional simplicial complex Δ is reciprocal if $h_i(\Delta) = h_{d-1-i}(\Delta)$ for $0 \leq i \leq d$. This condition is equivalent to the h-vector satisfying the Dehn-Sommerville relations.

Corollary 3.6. Let Δ be a $(d-1)$-dimensional simplicial complex with reciprocal h-vector then $\text{Int}(\Delta)$ has also reciprocal h-vector.

Proof. The result follows from above Lemma 3.5(2) and Theorem 3.1. \qed

Some Properties of Transformation Matrices. In this subsection, we describe some properties of transformation matrices. We know from Theorem 2.2 and Theorem 3.1 that

$$f(\text{Int}(\Delta)) = F_d f(\Delta)$$

and

$$h(\text{Int}(\Delta)) = R_d h(\Delta).$$

Lemma 3.7. Let $d \geq 1$.

1. The matrices F_d and R_d are similar.
2. The matrices F_d and R_d are diagonalizable with eigenvalues 1 of multiplicity 2 and eigenvalues $2, 2!2, 3!, \ldots, 2^{d-1}.d!$ of multiplicity 1.

Proof. First assertion follows from the facts that the transformation from $f(\Delta)$ to $h(\Delta)$ is an invertible linear transformation and by Theorem 2.2 and Theorem 3.1. The second assertion follows as F_d is an upper triangular matrix with diagonal 1, 1, 2, 2!, 3!, ..., $2^{d-1}.d!$; the first and the second unit vectors are eigenvectors for the eigenvalue 1. \qed

The next result holds from the fact that F_{d+1} and F_d are upper triangular and that if one deletes the $(d + 2)$-nd column and row from F_{d+1} then one obtains F_d.

Remark with non-negative coefficients, then

\[B \]

Theorem 4.1. Let \(A \) be a descent set \(\text{Des} \) on symmetric group \(S_n \) unimodal.

Therefore, log-concave if there exists \(a \) with real roots. In particular, the \(Des \) for the eigenvalues \(1, 2, 2!, \ldots, 2^{d-1}.d! \).

The following result holds due to Lemma 6 in [BW08] and above lemmas.

Lemma 3.9. Let \(\Delta \) be a \((d-1)\)-dimensional simplicial complex. Let \(w_1^1, w_2^1, w_2^2, \ldots, w_{2^{d-1}.d!} \) be a basis of eigenvectors of the matrix \(R_{d,i} \), where \(w_1^1, w_2^1 \) are eigenvectors for the eigenvalue \(1 \) and \(w_{2^i} \) is an eigenvector for the eigenvalue \(2^i \), \(1 \leq i \leq d-1 \).

(1) If we expand \(h(\Delta) = a_1^1 w_1^1 + a_2^1 w_2^2 + \sum_{i=1}^{d-1} a_{2^i} w_{2^i} \) in terms of the eigenvectors, then \(a_{2^i} \neq 0 \).

(2) The first and last coordinate entry in \(w_2^1, \ldots, w_{2^{d-1}.d!} \) are zero.

(3) The vectors \(w_1^1 \) and \(w_2^2 \) can be chosen such that \(w_1^1 = (1, i_1, \ldots, i_{2^{d-2}.(d-1)!}, 0) \) and \(w_2^2 = (0, j_1, \ldots, j_{2^{d-2}.(d-1)!}, 1) \).

(4) The vector \(w_d \) can be chosen such that \(w_d = (0, b_1, \ldots, b_{2^{d-2}.(d-1)!}, 0) \) for strictly positive rational numbers \(b_{2^i} \), \(0 \leq i \leq d-2 \).

Remark 3.10. It can be easily seen that the eigenvector \((v_1, \ldots, v_{d+1})\) of \(F_d \) for the eigenvalue different from \(2^{d-1}.d! \) satisfies the identity \(\sum_{i=1}^{d+1} v_i = 0 \).

4. \(h \)-POLYNOMIAL IS REAL-ROOTED

We start this section with the description of the \(j \)-Eulerian polynomial of type \(B^+ \) and \(B^- \). Let's recall that a polynomial \(p(x) = \sum_{i=0}^{n} a_i x^i \) with real coefficients is unimodal if there exists \(j \) such that \(a_0 \leq a_1 \leq \cdots \leq a_j \geq a_{j+1} \geq \cdots \geq a_d \). The polynomial is said to be log-concave if \(a_i^2 \geq a_{i-1} a_{i+1} \) for \(1 \leq i \leq d-1 \). It is well-known that if \(p(x) \) is real-rooted with non-negative coefficients, then \(p(x) \) is log-concave and unimodal. Here, we present the main result of this section.

Theorem 4.1. Let \(\Delta \) be a \((d-1)\)-dimensional simplicial complex such that \(h \)-vector \(h(\Delta) = (h_0(\Delta), \ldots, h_d(\Delta)) \) is non-negative. Then the \(h \)-polynomial

\[h(\text{Int}(\Delta), t) = \sum_{i=0}^{d} h_i(\text{Int}(\Delta)) t^i \]

has only real roots. In particular, the \(h \)-polynomial \(h(\text{Int}(\Delta), t) \) is a log-concave, and hence unimodal.

To proceed toward its proof, we give some definitions and results about descent statistics on symmetric group \(A_d \) and the hyperoctahedral group \(B_d \). Recall that for \(\sigma \in A_d \), the descent set \(\text{Des}_A(\sigma) = \{ i \in [d-1] : \sigma_i > \sigma_{i+1} \} \) and the descent number \(\text{des}_A(\sigma) = |\text{Des}_A(\sigma)| \). Let's denote the \(j \)-Eulerian polynomial of type \(A \) as

\[A_d, j(t) = \sum_{k=0}^{d-1} A(d, j, k) t^k, \]

(9)
where $A(d, j, k)$ is the number of permutations $\sigma \in A_d$ with $\sigma_1 = j$ and $\text{des}_A(\sigma) = k$. The next result gives the recurrence relation for $A_{d,j}(t)$. For $j = 1$, it is already known due to [Car75] and [Gar79].

Lemma 4.2. For $d \geq 1$ and $1 \leq j \leq d$, we have

$$A_{d,j}(t) = (1 + t(d - 2))A_{d-1,j} + t(1 - t) \frac{d}{dt}(A_{d-1,j}(t)) \quad (10)$$

*Proof. Let $\sigma = j\sigma_2 \cdots \sigma_{d-1} \in A_{d-1,j}$. For $i \in \{2, \ldots, d\}$, define σ^i in $A_{d,j}$ obtained from σ by inserting d at the ith position. For $2 \leq i \leq d$, we have $\sigma^i \in A_{d,j}$ if and only if $\sigma \in A_{d-1,j}$. Moreover, for $2 \leq i \leq d - 1$, we have

$$\text{des}_A(\sigma^i) = \begin{cases}
\text{des}_A(\sigma), & \text{if } i - 1 \in \text{Des}_A(\sigma); \\
\text{des}_A(\sigma) + 1, & \text{otherwise}.
\end{cases}$$

and $\text{des}_A(\sigma) = \text{des}_A(\sigma^d)$. Therefore,

$$A_{d,j}(t) = \sum_{\sigma \in A_{d,1}} t^{\text{des}_A(\sigma)} = \sum_{i=2}^{d-1} \left(\sum_{\sigma \in A_{d-1,1}} t^{\text{des}_A(\sigma^i)} \right) + \sum_{\sigma \in A_{d-1,j}} t^{\text{des}_A(\sigma^d)}$$

$$= \sum_{\sigma \in A_{d-1,j}} (\text{des}_A(\sigma)t^{\text{des}_A(\sigma)} + (d - 2 - \text{des}_A(\sigma))t^{\text{des}_A(\sigma)+1}) + A_{d-1,j}(t)$$

$$= (d - 2) \sum_{\sigma \in A_{d-1,j}} t^{\text{des}_A(\sigma)+1} + (1 - t) \sum_{\sigma \in A_{d-1,j}} \text{des}_A(\sigma)t^{\text{des}_A(\sigma)} + A_{d-1,j}(t)$$

$$= (1 + (d - 2)t)A_{d-1,j}(t) + t(1 - t) \frac{d}{dt}(A_{d-1,j}(t)).$$

\qed

The next result gives the recurrence relations for $B^+_{d,j}(t)$ and $B^-_{d,j}(t)$. It has already been proved in [AS13] for $j = 1$.

Lemma 4.3. For $d \geq 1$ and $1 \leq j \leq d$, we have

$$B^+_{d,j}(t) = 2(d - 2)tB^+_{d-1,j}(t) + 2t(1 - t) \frac{d}{dt}(B^+_{d-1,j}(t)) + B_{d-1,j}(t) \quad (11)$$

and

$$B^-_{d,j}(t) = 2(d - 2)tB^-_{d-1,j}(t) + 2t(1 - t) \frac{d}{dt}(B^-_{d-1,j}(t)) + tB_{d-1,j}(t) \quad (12)$$

*Proof. We will prove the relation (11) and the proof of (12) follows from the symmetry. Let $\sigma = j\sigma_2 \cdots \sigma_{d-1} \in B_{d-1,j}$. For $i \in \{2, \ldots, d\}$, define σ^i and σ^{-i} in $B_{d,j}$ obtained from σ by inserting d and $-d$ respectively at the ith position. For $2 \leq i \leq d - 1$, we have $\sigma^i \in B^+_{d,j}$ (respectively, $\sigma^{-i} \in B^-_{d,j}$) if and only if $\sigma \in B^-_{d,j}$. On the other hand, $\sigma^{-d} \in B^-_{d,j}$ and $\sigma^d \in B^+_{d,j}$ for every $\sigma \in B_{d,j}$. Moreover, for $2 \leq i \leq d - 1$, we have

$$\text{des}_B(\sigma^{\pm i}) = \begin{cases}
\text{des}_B(\sigma), & \text{if } i - 1 \in \text{Des}_B(\sigma); \\
\text{des}_B(\sigma) + 1, & \text{otherwise}.
\end{cases}$$
and des$_B(\sigma) = \text{des}_B(\sigma^{-d}) - 1$. Therefore,

$$B^{-}_{d,j}(t) = \sum_{\sigma \in B^{-}_{d,j}} t^{\text{des}_B(\sigma)} = \sum_{i=2}^{d-1} \left(\sum_{\sigma \in B^{-}_{d-1,j}} t^{\text{des}_B(\sigma^i)} + t^{\text{des}_B(\sigma^{i-1})} \right) + \sum_{\sigma \in B_{d-1,j}} t^{\text{des}_B(\sigma^{-d})}$$

$$= 2 \sum_{\sigma \in B^{-}_{d-1,j}} (\text{des}_B(\sigma)t^{\text{des}_B(\sigma)} + (d - 2 - \text{des}_B(\sigma))t^{\text{des}_B(\sigma)+1}) + tB_{d-1,j}(t)$$

$$= 2(d - 2) \sum_{\sigma \in B^{-}_{d-1,j}} t^{\text{des}_B(\sigma)+1} + 2(1 - t) \sum_{\sigma \in B_{d-1,j}} \text{des}_B(\sigma)t^{\text{des}_B(\sigma)} + tB_{d-1,j}(t)$$

$$= 2(d - 2)tB^{-}_{d-1,j}(t) + 2t(1 - t) \frac{d}{dt}(B^{-}_{d-1,j}(t)) + tB_{d-1,j}(t).$$

□

Lemma 4.4. For $d \geq 1$ and $1 \leq j \leq d$, we have

$$B^{+}_{d,j}(t) = t^d B^{-}_{d,j}(t^{-1})$$

(13)

and

$$B^{+}_{d,-j}(t) = t^d B^{-}_{d,j}(t^{-1})$$

(14)

Proof. There is a bijection between $B^{+}_{d,j}$ and $B^{-}_{d,-j}$ given as $\sigma \mapsto \bar{\sigma}$, where $\bar{\sigma} = (-j, -\sigma_2, \ldots, -\sigma_d)$. It is clear that $\sigma \in B^{+}_{d,j}$ if and only if $\bar{\sigma} \in B^{-}_{d,-j}$. As we know that des$_B(\sigma) + \text{des}_B(\bar{\sigma}) = d$, therefore, (13) follows. Similarly, (14) also holds. □

Let

$$T_{d,j}(t) := B^{+}_{d,j}(t^2) + \frac{1}{t} B^{-}_{d,j}(t^2).$$

Since for any $\sigma \in B^{-}_{d,j}$, des$_B(\sigma)$ is always strictly positive. Therefore, there is no constant term involved in $B^{-}_{d,j}(t^2)$. So, the right hand side of the above expression is a polynomial.

Theorem 4.5. For $d \geq 1$ and $1 \leq j \leq d$, we have

$$T_{d,j}(t) = [1 + t + (d - 2)t^2]T_{d-1,j}(t) + 2(1 - t^2) \frac{d}{dt}(T_{d-1,j}(t))$$

(15)

Proof. Using product and chain rule, we have the following

$$\frac{d}{dt}(T_{d-1,j}(t)) = 2t \left[\frac{d}{dt}(B^{+}_{d-1,j}(t^2)) + \frac{1}{t} \frac{d}{dt}(B^{-}_{d-1,j}(t^2)) \right] - \frac{1}{t^2} B^{+}_{d-1,j}(t^2)$$

(16)
Using (11), (12) and (16), we have
\[T_{d,j}(t) = B_{d,j}^+(t^2) + \frac{1}{t} B_{d,j}^-(t^2) \]
\[= 2(d-2)t^2 B_{d-1,j}^+(t^2) + 2t^2(1-t^2) \frac{d}{dt}(B_{d-1,j}^+(t^2)) + B_{d-1,j}(t^2) + \]
\[\frac{1}{t}[2(d-2)t^2 B_{d-1,j}^-(t^2) + 2t^2(1-t^2) \frac{d}{dt}(B_{d-1,j}^-(t^2)) + t^2 B_{d-1,j}(t^2)] \]
\[= 2(d-2)t^2 T_{d-1,j}(t) + 2t^2(1-t^2) \frac{1}{2x} \frac{d}{dt}(T_{d-1,j}(t)) + \]
\[\frac{1}{t^2} B_{d-1,j}^-(t^2)] + (1+t)B_{d-1,j}(t^2) \]
\[= 2(d-2)t^2 T_{d-1,j}(t) + t(1-t^2) \frac{d}{dt}(T_{d-1,j}(t)) + \frac{1}{t}(1-t^2)B_{d-1,j}(t^2) + \]
\[(1+t)[B_{d-1,j}^+(t^2) + B_{d-1,j}^-(t^2)] \]
\[= [1 + t + (d-2)t^2] T_{d-1,j}(t) + 2(1-t^2) \frac{d}{dt}(T_{d-1,j}(t)). \]

\[\square \]

The following is the key result for proving real rootedness of \(B_j^+(t) \) and \(B_j^-(t) \). It generalizes the relation [YZ15 Equation (11)] for \(j = 1 \).

Proposition 4.6. For \(d \geq 1 \) and \(1 \leq j \leq d \),
\[(1+t)^{d-1}A_{d,j}(t) = T_{d,j}(t) \] (17)

Proof. We will show that both sides of (17) satisfy the same recurrence relation. It can be easily verified that the equality hold for \(d \leq 2 \). Let
\[S_{d,j}(t) := (1+t)^{d-1}A_{d,j}(t). \]

It is clear that
\[\frac{d}{dt}(S_{d-1,j}(t)) = (1+t)^{d-1} \frac{d}{dt}(A_{d-1,j}(t)) + (d-1)S_{d-1,j}(t) \] (18)

Using (10) and (18), we have
\[S_{d,j}(t) = (1+t)^{d-1}A_{d,j}(t) \]
\[= (1+t)^{d-1}[(1+t(t-2))A_{d-1,j}(t) + t(1-t) \frac{d}{dt}(A_{d-1,j}(t))] \]
\[= (1+t)(1+t(t-2))S_{d-1,j}(t) + t(1-t^2) \frac{d}{dt}(S_{d-1,j}(t)) - (d-1)S_{d-1,j}(t) \]
\[= [1 + t + (d-2)t^2] S_{d-1,j}(t) + t(1-t^2) \frac{d}{dt}(S_{d-1,j}(t)). \]

which gives the same recurrence relation (15) as \(T_{d,j} \). \[\square \]

Since \(B_{d,j}^+(t^2) \) involves only even powers in \(t \) and \(\frac{1}{t} B_{d,j}^-(t^2) \) involves only odd powers in \(t \), so we have the following corollary.
Corollary 4.7. For \(d \geq 1 \) and \(1 \leq j \leq d \), we have

\[
B_{d,j}^+(t) = E_2((1 + t)^{d-1}A_{d,j}(t)),
\]

and

\[
B_{d,j}^-(t) = E_2(t(1 + t)^{d-1}A_{d,j}(t)),
\]

where \(E_r \) is the operator on formal series defined by

\[
E_r \left(\sum_{k \geq 0} c_k t^k \right) = \sum_{k \geq 0} c_{rk} t^k.
\]

Let's recall a result from [Bre88] which is a key tool to prove the real rootedness of the polynomials \(B_{d,j}^+(t) \) and \(B_{d,j}^-(t) \).

Theorem 4.8. ([Bre88, Theorem 3.5.4]) Let \(p(x) = \sum_{i=0}^m a_i x^i \) be a polynomial having only real non-positive zeros. Then for each \(r \in \mathbb{N} \), the polynomial \(E_r(p(x)) \) (defined in (21)) has only real non-positive zeros.

Theorem 4.9. The polynomials \(B_{d,j}^+(t) \) and \(B_{d,j}^-(t) \) are real-rooted for all \(d \geq 1 \) and \(1 \leq j \leq d \).

Proof. It follows from Corollary 4.7, Theorem 4.8 and the fact that \(A_{d,j}(t) \) are real-rooted, see [BW08]. \(\square \)

A collection of polynomials \(f_1, f_2, \ldots, f_k \in \mathbb{R}[t] \) is said to be compatible if for all non-negative real numbers \(c_1, c_2, \ldots, c_k \), the polynomial \(\sum_{i=1}^k c_i f_i \) has only real zeros. The polynomials \(f_1, f_2, \ldots, f_k \in \mathbb{R}[t] \) are pairwise compatible if for all \(i, j \in \{1, \ldots, k\} \), \(f_i \) and \(f_j \) are compatible. By [CS07, 2.2], the polynomials \(f_1, f_2, \ldots, f_k \) with positive leading coefficients are pairwise compatible if they are compatible. In [VS13, Theorem 6.3], the authors gave some conditions under which a set of compatible polynomials are mapped to another set of compatible polynomials.

Theorem 4.10. Given a set of polynomials \(f_1, f_2, \ldots, f_k \in \mathbb{R}[t] \) with positive leading coefficients satisfying for all \(1 \leq i < j \leq k \) that

1. \(f_i \) and \(f_j \) are compatible, and
2. \(tf_i \) and \(f_j \) are compatible.

Define another set of polynomials \(g_1, \ldots, g_k' \in \mathbb{R}[t] \) by

\[
g_l(t) = \sum_{i=0}^{n_l-1} t f_i + \sum_{i=n_l}^k f_i,
\]

for \(1 \leq l \leq k' \), \(0 \leq n_1 \leq n_2 \leq \cdots n_{k'} \leq k \). Then for all \(1 \leq i < j \leq k' \), we have

a: \(g_i \) and \(g_j \) are compatible, and
b: \(tg_i \) and \(g_j \) are compatible.
Proof of Theorem 4.1. Let us fix the order of polynomials $B_{d,j}^+(t)$ for $j \in \{\pm 1, \pm 2, \ldots, \pm d\}$ to apply Theorem 4.10. Define

$$f_i := \begin{cases} B_{d,i}^+(t), & 1 \leq i \leq d; \\ B_{d,i-2d-1}^+(t), & d + 1 \leq i \leq 2d. \end{cases}$$

We claim that the set of polynomials $\{f_i : 1 \leq i \leq 2d\}$ is compatible. We show it by induction on d. For $d = 1$, it is trivial. For $d = 2$, we have $f_1 = 1$ and $f_i = t$ for $2 \leq i \leq 4$. It is clear that these polynomials are pairwise compatible. Moreover, tf_i and f_j for $1 \leq i < j \leq 4$ are also compatible.

By Lemma 3.5 (3) and (4), the polynomials f_i satisfy the recurrence relation which has the same form required in Theorem 4.10. Therefore, by induction hypothesis, our claim is true. In particular, $\{f_j = B_{d,j}^+(t) : 1 \leq j \leq d\}$ is compatible for all $d \geq 1$. Since $h_i(\Delta)$ is non-negative for all i, the h-polynomial

$$h(\text{Int}(\Delta), t) = \sum_{i=0}^{d} h_i(\Delta)B_{d+1,i+1}^+(t)$$

is real-rooted. \hfill \Box

At this point, we are in position to relate our results to the Charney-Davis Conjecture. A $(d - 1)$-dimensional simplicial complex Δ with non-negative reciprocal h-vector satisfies the Charney-Davis Conjecture if $(-1)^{\lfloor \frac{d}{2} \rfloor}h(\Delta, -1) \geq 0$ holds.

Corollary 4.11. The Charney-Davis conjecture holds for the interval subdivision of a $(d - 1)$-dimensional simplicial complex Δ for which $h_i(\Delta) \geq 0$ and $h_i(\Delta) = h_{d-i}(\Delta)$ for $0 \leq i \leq d$.

Proof. Since Δ has $h_i(\Delta) \geq 0$ and $h_i(\Delta) = h_{d-i}(\Delta)$ for $0 \leq i \leq d$ so by Corollary 3.6, $\text{Int}(\Delta)$ has a reciprocal h-polynomial $h(\text{Int}(\Delta), t)$. By Theorem 4.1 we also know that $h(\text{Int}(\Delta), t)$ has only real zeros. Since the coefficients of $h(\text{Int}(\Delta), t)$ are non-negative and $h_0(\text{Int}(\Delta)) = 1$, it follows that the zeros of $h(\text{Int}(\Delta), t)$ are all strictly negative. Therefore, if β is a zero of $h(\text{Int}(\Delta), t)$ then $1/\beta$ is also a zero. Thus, the zeros are either -1 or come in pairs $\beta < -1 < 1/\beta < 0$. If -1 is a zero of $h(\text{Int}(\Delta), t)$ then the assertion follows trivially. If -1 is not a zero then d must be even and

$$h(\text{Int}(\Delta), -1) = \prod_{i=1}^{d/2} (-1 - \beta_i)(-1 - 1/\beta_i),$$

where for all $1 \leq i \leq d/2$, $\beta_i < -1 < 1/\beta_i < 0$, which shows that $h(\text{Int}(\Delta), -1)$ has sign $(-1)^{d/2}$. Thus

$$(-1)^{d/2}h(\text{Int}(\Delta), -1) \geq 0,$$

which implies the assertion. \hfill \Box
References

[AS13] Christos A Athanasiadis and Christina Savvidou, A symmetric unimodal decomposition of the derangement polynomial of type b, arXiv preprint arXiv:1303.2302 (2013).

[Bre88] Francesco Brenti, Unimodal, log-concave and pólya frequency sequences in combinatorics, Ph.D. thesis, Massachusetts Institute of Technology, 1988.

[BW08] Francesco Brenti and Volkmar Welker, f-vectors of barycentric subdivisions, Mathematische Zeitschrift 259 (2008), no. 4, 849–865.

[Car75] L. Carlitz, A combinatorial property of q-eulerian numbers, The American Mathematical Monthly 82 (1975), no. 1, 51–54.

[CMS84] Jeff Cheeger, Werner Müller, and Robert Schrader, On the curvature of piecewise flat spaces, Communications in mathematical Physics 92 (1984), no. 3, 405–450.

[CS07] Maria Chudnovsky and Paul Seymour, The roots of the independence polynomial of a clawfree graph, Journal of Combinatorial Theory, Series B 97 (2007), no. 3, 350–357.

[Gar79] Adriano M Garsia, On the “maj” and “inv” q-analogues of eulerian polynomials, Linear and Multilinear Algebra 8 (1979), no. 1, 21–34.

[KN09] Martina Kubitzke and Eran Nevo, The lefschetz property for barycentric subdivisions of shellable complexes, Transactions of the American Mathematical Society 361 (2009), no. 11, 6151–6163.

[Mur10] Satoshi Murai, On face vectors of barycentric subdivisions of manifolds, SIAM Journal on Discrete Mathematics 24 (2010), no. 3, 1019–1037.

[NPT11] Eran Nevo, T Kyle Petersen, and Bridget Eileen Tenner, The γ-vector of a barycentric subdivision, Journal of Combinatorial Theory, Series A 118 (2011), no. 4, 1364–1380.

[Pet15] T Kyle Petersen, Eulerian numbers, Eulerian Numbers, Springer, 2015, pp. 3–18.

[Sta86] Richard P Stanley, What is enumerative combinatorics?, Enumerative combinatorics, Springer, 1986, pp. 1–63.

[Sta92] ______, Subdivisions and local h-vectors, Journal of the American Mathematical Society 5 (1992), no. 4, 805–851.

[VS13] Mirkó Visontai and Carla D Savage, Eulerian polynomials of type d have only real roots, Discrete Mathematics & Theoretical Computer Science (2013).

[Wal88] James W Walker, Canonical homeomorphisms of posets, European Journal of Combinatorics 9 (1988), no. 2, 97–107.

[YZ15] Arthur LB Yang and Philip B Zhang, The real-rootedness of eulerian polynomials via the hermite–biehler theorem, arXiv preprint arXiv:1501.05824 (2015).

Abdus Salam School of Mathematical Sciences, Government College University, Lahore, Pakistan

Department of Mathematics, Lahore University of Management Sciences, Lahore, Pakistan

E-mail address: imrananwar@sms.edu.pk
E-mail address: shaheen.nazir@lums.edu.pk