Database for the \textit{ampC} alleles in \textit{Acinetobacter baumannii}

Nabil Karah1,2*, Keith A. Jolley3, Ruth M. Hall4, Bernt Eric Uhlin1,2

1 The Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Molecular Biology, Umeå University, Umeå, Sweden, 2 Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden, 3 Department of Zoology, University of Oxford, Oxford, United Kingdom, 4 School of Life and Environmental Sciences, University of Sydney, Sydney, Australia

* nabil.karah@umu.se

Abstract

\textit{Acinetobacter baumannii} is a troublesome opportunistic pathogen with a high capacity for clonal dissemination. We announce the establishment of a database for the \textit{ampC} locus in \textit{A. baumannii}, in which novel \textit{ampC} alleles are differentiated based on the occurrence of \geq 1 nucleotide change, regardless of whether it is silent or missense. The database is openly accessible at the pubmlst platform for \textit{A. baumannii} (http://pubmlst.org/abaumannii). Forty-eight distinctive alleles of the \textit{ampC} locus have so far been identified and deposited in the database. Isolates from clonal complex 1 (CC1), according to the Pasteur multilocus sequence typing scheme, had a variety of the \textit{ampC} locus alleles, including alleles 1, 3, 4, 5, 6, 7, 8, 13, 14, 17, and 18. On the other hand, isolates from CC2 had the \textit{ampC} alleles 2, 3, 19, 20, 21, 22, 23, 24, 26, 27, 28, and 46. Allele 3 was characteristic for sequence types ST3 or ST32. The \textit{ampC} alleles 10, 16, and 25 were characteristic for CC10, ST16, and CC25, respectively. Our study points out that novel gene databases, in which alleles are numbered based on differences in their nucleotide identities, should replace traditional records that use amino acid substitutions to define new alleles.

Introduction

\textit{Acinetobacter baumannii} is a clinically important pathogen responsible for a wide range of hospital-acquired infections [1]. The \textit{ampC} gene of \textit{A. baumannii} was cloned and sequenced for the first time in 2000 [2]. The gene, also called \textit{bla}_{ADC} for \textit{Acinetobacter-Derived Cephalosporinase}, is intrinsic in \textit{A. baumannii} and all other members of the \textit{Acinetobacter calcoaceticus-Acinetobacter baumannii} (Acb) complex [3, 4]. It is located in the chromosome between \textit{folE}, encoding a GTP cyclohydrolase I enzyme, and an open reading frame encoding a hypothetical protein, as seen in the \textit{A. baumannii} reference strain ATCC 17978-mff (GenBank accession number CP012004, locus tag ACX60_05710). Overexpression of \textit{ampC}, due to the acquisition of a strong promoter located on an insertion sequence (IS) element, is the main mechanism of resistance to third-generation cephalosporins in \textit{A. baumannii} [5]. With few exceptions, variation in the amino acid sequence of AmpC in \textit{A. baumannii} usually does not affect the resistance spectrum [6, 7].
Some *A. baumannii* isolates were reported to carry a second copy of the *ampC* gene, located elsewhere in the chromosome [8, 9]. The additional copy was part of a DNA segment most likely derived from the chromosome of another *A. baumannii* strain. The segment was mobilized as part of Tn6168, a composite transposon made of two directly oriented copies of ISAba1 [8]. The *A. baumannii ampC* gene, together with an upstream ISOur1, was also detected in the genome of *Oligella urethralis*, leading to a cephalosporin resistance phenotype [10]. Interestingly, *A. baumannii* strain ACICU, from global clone 2 (GC2), was found to carry a 9 kb chromosomal segment, containing ISAba125-ampC, which was derived from a GC1 isolate [11]. This finding indicated the occurrence of a replacement in the chromosome of ACICU, most likely mediated by a homologous recombination event [11]. Similarly, distinctive ISAba1-associated *ampC* alleles were detected in the genome of GC1 isolates, once again highlighting the frequent occurrence of horizontal transfer of chromosomal DNA segments in *A. baumannii* [9, 12].

To track these imports, a clear numbering system of the *ampC* alleles is needed. Analysis of the *ampC* locus could also be a convenient method for exploring the molecular epidemiology of *A. baumannii*, taking into consideration that particular *ampC* alleles have been linked to certain clones of *A. baumannii* [9, 13]. This report aims to announce the establishment of a database for the *ampC* locus in *A. baumannii*.

New database for the *ampC* locus in *A. baumannii*

The database is hosted and maintained at the pubmlst platform for *A. baumannii* (http://pubmlst.org/abaumannii/) sited at the University of Oxford [14]. The platform provides an open access to all the data and allows submissions of novel sequences. However, novel sequence must simultaneously be submitted and assigned accession numbers by the International Nucleotide Sequence Database Collaboration (INSDC) (http://www.insdc.org/). Sequences must be complete and meet the validation criteria of INSDC. *ampC* sequences with novel nucleotide identities (> 1 nucleotide substitution) will be numbered successively.

So far, we have identified, curated and numbered a total of 48 distinctive alleles of the *ampC* locus in a collection of 188 *A. baumannii* isolates by means of the online available whole genome sequence records (Table 1). The *ampC* alleles 1, 3, 4, 5, 6, 7, 8, 13, 14, 17, and 18 were carried by isolates that belong to clonal complex 1 (CC1), corresponding to GC1, according to the Pasteur scheme for multilocus sequence typing (https://pubmlst.org/abaumannii/). Isolates from CC2, corresponding to GC2, had the *ampC* alleles 2, 3, 19, 20, 21, 22, 23, 24, 26, 27, 28, and 46. Nonetheless, *ampC* allele 2 was also present in one isolate from ST215 (27, 2, 7, 2, 2, 1, 2), which was not closely related to CC2. Similarly, allele 19 was present in isolates of ST500 (3, 3, 2, 2, 28, 1, 5) or ST522 (3, 3, 89, 2, 28, 1, 5), which were also not related to CC2. Although it was present in few isolates from CC1 and CC2, allele 3 was mainly characteristic for ST3 (3, 3, 2, 2, 3, 1, 3) or ST32 (1, 1, 2, 2, 3, 4, 4). The *ampC* locus alleles 10 and 16 were characteristic for CC10 and ST16, respectively. Likewise, all isolates from CC25 had the *ampC* locus allele 25. Allele 39 was present in all the ST78 (25, 3, 6, 2, 28, 1, 29) isolates, but also in one isolate from ST241 (40, 3, 15, 2, 40, 4, 4).

These linkages demonstrate that sequence analysis of the *ampC* variants is probably a practical method to search for clinically significant clones of *A. baumannii*, as previously described for the intrinsic *blaOXA-51*-like gene [15, 16]. However, the frequent occurrence of inter-strain exchanges of chromosomal segments should be taken into consideration. Therefore, analysis of *ampC* to study the epidemiology of *A. baumannii* should be complemented
Table 1. Numeration of the \textit{ampC} gene alleles in \textit{Acinetobacter baumannii}.

\textit{ampC} allele	Isolate	Pasteur scheme multi locus sequence type	GenBank accession	PubMed Identifier (PMID) / GenBank submission authors / other references
1	AYE	ST1 (1, 1, 1, 1, 5, 1, 1)	NC_010410	16415984; [9]
	AB5075	ST1	CP008706; AHAH00000000	24865555; [9]
	A1	ST1	CP010781	25767221; [9]
	3208	ST1	FJ172370.5; FBWZ00000000	19364869; [9]
	D2	ST1	GQ406245.5; FBWY00000000	20375036; [9]
	A92	ST1	GQ406246.3; FBWV00000000	20375036; [9]
	A85 (intrinsic)	ST1	KC118540.6; FBXA00000000	24907141; [9]
	AB307-0294	ST1	CP001172	18931120; [9]
	AB0057 (intrinsic)	ST1	CP001182	18931120; [9]
	6772166 (intrinsic)	ST1	FBWX00000000	[9]
	RBH3 (intrinsic)	ST1	FBXD00000000	[9]
	AB056 (intrinsic)	ST1	ADGZ00000000	20530228; [9]
	AB059 (intrinsic)	ST1	ADHB00000000	20530228; [9]
	AB908–13 (intrinsic)	ST1	AMHW00000000	23365658; [9]
	AB909-02-7 (intrinsic)	ST1	AMHZ00000000	23365658; [9]
	TG19582	ST1	AMIV00000000	23365658; [9]
	Canada BC-1 (intrinsic)	ST1	AMSZ00000000	Harkins et al., unpublished; [9]
	Canada BC-5 (intrinsic)	ST1	AFDN00000000	Harkins et al., unpublished; [9]
	IS-58	ST1	AMGH00000000	Harkins et al., unpublished; [9]
	IS-235	ST1	AMEI00000000	Harkins et al., unpublished
	IS-251	ST1	AMEJ00000000	Harkins et al., unpublished
	NIPH 290	ST1	APRD00000000	Feldgarden et al., unpublished; [9]
	NIPH 527 (RUH875)	ST1	APOW00000000	Cerqueira et al., unpublished; [9]
	ANC 4097	ST1	APRF00000000	Cerqueira et al., unpublished; [9]
	Naval-83	ST20 (3, 1, 1, 1, 5, 1, 1)	AMFK00000000	Harkins et al., unpublished; [9]
2	A91	ST2 (2, 2, 2, 2, 2, 2, 2)	JN968483	22351684
	NIPH 2061	ST2	APOW00000000	24277043
	OIFC180	ST2	AMDQ00000000	Harkins et al., unpublished
	CT77	ST2	AVOC00000000	24503987
	MRY09-0642	ST2	BASA00000000	23868126
	ORAB01	ST2	CP015483	Adams et al., unpublished
	XH856	ST2	CP014541	Feng et al., unpublished
	YU-R612	ST2	CP014215	27139604
	XH836	ST2	CP010779	26981403
	NCGM 237	ST2	AP013357	24550340
	BJAB0868	ST2	CP003849	23826102
	BJAB07104	ST2	CP003846	23826102
	MDR-ZJ06	ST2	CP001937	21788470
	TCDC-AB0715	ST2	CP002522.2	21398540

(Continued)
Table 1. (Continued)

Strain	STA	Accession Number	Reference		
ABNIH2	ST2	AFTA00000000			
AB210	ST2	AEOX00000000			
Naval-17	ST2	AFDO00000000	Harkins *et al*., unpublished		
Ab11111	ST2	AKAQ00000000	Murphy *et al*., unpublished		
ZWS1122	ST2	AMGR00000000			
ZWS1219	ST2	AMGS00000000			
Naval-113	ST2	AMZU00000000	Harkins *et al*., unpublished		
XH857	ST215	CP014540	Feng *et al*., unpublished		
3	A085	ST3	(3, 3, 2, 2, 1, 3)	KP881239; 26824943	
	AB4456	ST3	LREF00000000	Arivett *et al*., unpublished	
	AB3560	ST3	LRDV00000000	Arivett *et al*., unpublished	
	AB4857	ST3	AHAG00000000		
	OIFC137	ST3	AFDK00000000	Harkins *et al*., unpublished	
	OIFC109	ST3	ALAL00000000	Harkins *et al*., unpublished	
	IS-123	ST3	ALII00000000	Harkins *et al*., unpublished	
	Naval-81	ST3	AFDB00000000	Harkins *et al*., unpublished	
	Naval-13	ST3	AMDR00000000	Harkins *et al*., unpublished	
	WC-A-694	ST3	AMTA00000000	Harkins *et al*., unpublished	
	OIFC032	ST32	AFCZ00000000	Harkins *et al*., unpublished	
	OIFC087	ST32	AMFS00000000	Harkins *et al*., unpublished	
	OIFC099	ST32	AMFT00000000	Harkins *et al*., unpublished	
	1525283	ST32	JEXR00000000	Harris *et al*., unpublished	
	781407	ST32	JEZS00000000	Harris *et al*., unpublished	
	ABBL013	ST32	LLCT00000000		
	OIFC074	ST19	AMDE00000000	Harkins *et al*., unpublished; [9]	
	Naval-21	ST19	AMSY00000000	Harkins *et al*., unpublished; [9]	
	1999BJAB11	ST2	JSDB00000000	25487793	
	IS-143	ST414	(2, 2, 2, 2, 37, 2)	AMGE00000000	Harkins *et al*., unpublished
4	D15	ST1	FBXJ00000000	[9]	
	D13	ST1	FBXI00000000	[9]	
5	G7	ST1	FBXF00000000	[9]	
6	AB058	ST20	ADHA00000000	20530228; [9]	
7a	A388	ST1	JQ684178; FBXE00000000	22915466; [9]	
8a	A100	ST1	KP881241	26824943	
	A85 (acquired)	ST1	KC118540; 6, FBXA00000000	24907141	
	AB0057 (acquired)	ST1	CP001182	18931120; [9]	
	6772166 (acquired)	ST1	FBWX00000000	[9]	
	RBH3 (acquired)	ST1	FBXD00000000	[9]	
	AB056 (acquired)	ST1	ADGZ00000000	20530228; [9]	
	AB059 (acquired)	ST1	ADHB00000000	20530228; [9]	
	AB_908–13 (acquired)	ST1	AMHW00000000	23365658; [9]	
	AB_909-02-7 (acquired)	ST1	AMHZ00000000	23365658; [9]	
	Canada BC-1 (acquired)	ST1	AMSZ00000000	Harkins *et al*., unpublished; [9]	

Continued
	Sample ID	ST	Accession Number	Reference
9	NIPH 190	ST9 (3, 1, 5, 3, 6, 1, 3)	APPL00000000	Kamolvit et al., unpublished
10	T214	ST10 (1, 3, 2, 1, 4, 4, 4)	JRTZ00000000	Cerqueira et al., unpublished
	NIPH 335	ST10	APOX00000000	Harkins et al., unpublished
	OIFC098	ST10	AMDF00000000	Harkins et al., unpublished
	466760	ST10	JEXB00000000	Harris et al., unpublished
	50595	ST10	JEXP00000000	Harris et al., unpublished
	3390	ST10	JFER00000000	Harris et al., unpublished
	1262761–105	ST10	JMOJ00000000	Harris et al., unpublished
	Ab04-mff	ST10	CP012006	26170289
	A078	ST23 (1, 3, 10, 1, 4, 4, 4)	KP881236	26824943
	BJAB0715	ST23	CP003847	23881610
	XH858	ST23	CP014528	Feng et al., unpublished
	11 NIPH 329	ST11 (1, 2, 6, 2, 3, 4, 4)	APQY00000000	24277043
	12 NIPH 615	ST12 (3, 5, 7, 1, 7, 2, 6)	JRTF00000000	24277043
	A076	ST1	KP881235	26824943
	A082	ST1	KP881238	26824943
15b	NIPH 1734 (LUH 8406)	ST15 (6, 6, 8, 2, 3, 5, 4)	APOX00000000	24277043
	16 UMB002	ST16 (7, 7, 2, 8, 4, 4)	AEPL00000000	21639920
	1043794	ST16	JEXB00000000	Harris et al., unpublished
	972082	ST16	JFAX00000000	Harris et al., unpublished
	232184	ST16	JEXF00000000	Harris et al., unpublished
	266680	ST16	JEXG00000000	Harris et al., unpublished
	655378	ST16	JEXH00000000	Harris et al., unpublished
	1064293_45	ST16	JEXI00000000	Harris et al., unpublished
	17c D36	ST81 (1, 1, 1, 1, 5, 1, 2)	CP012952	26879588; [9]
	18c D81	ST2	FBX00000000	23788477
	D78	ST1	FBX00000000	23788477
19c	RUH 134 (A320)	ST2	JN247441	23788477
	NIPH 24	ST2	APOF00000000	Cerqueira et al., unpublished
	NIPH 528	ST2	APRB00000000	Cerqueira et al., unpublished
	OIFC338	ST2	AMFX00000000	Cerqueira et al., unpublished
	XH859	ST2	CP014539	Feng et al., unpublished
	AB1H8	ST2	ANNO00000000	23723398
	AB5711	ST2	AHAJ00000000	23723398
	472237–120	ST500 (3, 3, 2, 2, 8, 1, 5)	JFCW00000000	Harris et al., unpublished
	1188188	ST500	JFDV00000000	Harris et al., unpublished
	1271213	ST500	JFDX00000000	Harris et al., unpublished
	1237893	ST500	JFEA00000000	Harris et al., unpublished
	480175	ST500	JFEU00000000	Harris et al., unpublished
	1276470–86	ST500	JFEU00000000	Harris et al., unpublished
	1121032	ST500	JEZD00000000	Harris et al., unpublished
	940793	ST500	JMNW00000000	Harris et al., unpublished
	29280	ST522 (3, 3, 89, 2, 28, 1, 5)	JEZT00000000	Harris et al., unpublished
20	A072	ST2	KP881233	26824943
	XH860	ST2	CP014538	Feng et al., unpublished

(Continued)
Table 1. (Continued)

AC29	ST2	CP007535	26824943
AC30	ST2	CP007577	26824943
PKAB07	ST2	CP006963	24652977
J65	ST2	JO867374	Wang, unpublished
MDR.MM	ST2	AZNQ00000000	20609238
DU202	ST2	AVGF00000000	24486871
TYTH-1	ST2	CP003856	23209228
KBN10P02143	ST2	CP013924	2714392
OIFC143	ST25	AFDL00000000	Harkins et al., unpublished
Naval-18	ST25	AFDA00000000	Harkins et al., unpublished
CI86	ST25	AVOB00000000	24503987
CI79	ST25	AVOD00000000	24503987
KBN10	ST25	JEVX00000000	Harris et al., unpublished
1429530	ST25	JEWM00000000	Harris et al., unpublished
NM3	ST25	JZBV00000000	23264451
RUH 1486	ST25	JZBU00000000	26462752
LUH 6220	ST25	JZBW00000000	26462752
161/07	ST25	JZCA00000000	26462752
4390	ST25	JZBY00000000	26462752
LUH 7841	ST402	JZBX00000000	26462752
ST2	JEZV00000000	Harris et al., unpublished	
ST2	AYGO00000000	24449752	
Naval-2	ST2	AMSX00000000	Harkins et al., unpublished
TG15234	ST2	ASEW00000000	23365658
TG15240	ST2	ASFB00000000	23365658
1043903	ST2	JETY00000000	Harris et al., unpublished
ST2	JETY00000000	Harris et al., unpublished	
1294217	ST2	JEWF01000000	Harris et al., unpublished
1406750	ST2	JEWK00000000	Harris et al., unpublished
724909	ST2	JEXF01000000	Harris et al., unpublished
UMB001	ST2	AEPI00000000	21639920
ABIsac_ColiS	ST2	CAKA00000000	23070160
ST2	APOQ00000000	24277043	
LAC-4	ST10	JICJ00000000	Cerqueira et al., unpublished
D46	ST25	KF030679.2	2378847
ST2	APPM00000000	24277043	
ST35	ST37	APRA00000000	24277043
ST38	APRE00000000	24277043	
ST38	APQV00000000	24277043	
ST40	ST49	APOQ00000000	24277043
J9	ST49	APYQ00000000	24277043
ST78	ST78	JEMX00000000	Harris et al., unpublished
831240	ST78	JEOO00000000	Harris et al., unpublished
855125	ST78	JMNTO00000000	Harris et al., unpublished

(Continued)
by characterizing other loci or preferably be taken within the context of whole-genome sequence analysis.

Updated list of the AmpC protein variants

In parallel, we revised and updated a previous collection of the AmpC variants (Table 2) [13]. As previously recommended, the AmpC variants were numbered according to the chronology of getting published and/or submitted to the INSDC databases. Numbers were preceded by a hyphen. When it was possible, numbers assigned by previous studies were retained. Accordingly, AmpC-1 was used to label the first AmpC protein variant reported in 2000 [2, 13].

The designation AmpC-72 (GenBank accession: AIL90389) was omitted since it showed 100% amino acid similarity to AmpC-70 (GenBank accession: KQG48886). Two variants with different amino acid sequences were designated as AmpC-57 (GenBank accessions: ADO51072 and AEZ36052). Subjectively, AmpC-57 was given to the variant detected in two *A. baumannii* isolates from East Africa [17]. New variants were defined, based on ≥1 amino acid substitution, and numbered under supervision of the INSDC curators. It is very important to re-emphasize that the AmpC variant numbers (Table 2) are not matching and not exchangeable with the *ampC* allele numbers (Table 1).

Concluding remarks

In our opinion, having two databases, one for the gene alleles and one for the protein variants, will create a lot of confusion. With the rapid accumulation of bacterial whole genome sequences, we argue that genes and alleles should reasonably be defined and numbered based on their nucleotide identities. For molecular epidemiological studies, the novel database for *ampC* in *A. baumannii* will provide unambiguous details beyond traditional list of AmpC variants that are limited to alleles with amino acid substitutions. To conclude, we emphasize on using the basic definition of the word “allele” for bacterial genes, by which novel alleles should be defined regardless if they are associated with amino acid changes or not.
Table 2. Numeration of the AmpC protein variants encoded by Acinetobacter baumannii.

AmpC protein variant	GenBank accession number	Size (amino acid)	NCBI reference sequence	Other previous designations	PubMed Identifier (PMID) / GenBank submission authors
AmpC-1 (ADC-1)	CAB77444	383	WP_004714775	ADC-NIPH 1362	10639377
AmpC-2 (ADC-2)	AAO43172	383	WP_004746565	ADC-NIPH 1734	12709319
AmpC-3	AAOS59456	383	WP_063857798	–	12709319
AmpC-4	AAOS59475	383	WP_063857801	–	12709319
AmpC-5	CAE080827	383	WP_038405930	–	15047547
AmpC-6	AAR13676	383	WP_017725267	–	14742218
AmpC-7	AAT70411	383	WP_063857816	–	15980372
AmpC-10	ABI18382	388	WP_063857786	–	Hujer et al., unpublished
AmpC-11	ADG46039	383	WP_001211205	–	20713667; 16415984
AmpC-12	CAK95249	383	WP_063857787	–	19029333
AmpC-13	CAK95248	383	WP_063857788	–	19029333
AmpC-14	CAK95247	383	WP_063857789	–	19029333
AmpC-15	CAK95246	383	WP_063857790	–	19029333
AmpC-16	CAK95245	383	WP_063857791	–	19029333
AmpC-17	CAK95244	383	WP_063857792	–	19029333
AmpC-18	CAK95243	383	WP_002118772	–	19029333
AmpC-19	CAK95242	383	WP_063857793	–	19029333
AmpC-20	CAK95241	383	WP_063857794	–	19029333
AmpC-21	CAK95240	383	WP_063857795	–	19029333
AmpC-22	CAK95239	383	WP_063857796	–	19029333
AmpC-23	CAK95238	383	WP_063857797	–	19029333
AmpC-24	CAK95237	383	–	ADC-19	Beceiro & Bou., unpublished
AmpC-25	ABK34773	383	WP_0012112217	ADC-NIPH 528	18077114
AmpC-26	ADG46043	383	WP_001211238	ADC-NIPH 146	20713667
AmpC-29	ACC66195	383	–	–	Chiu et al., unpublished
AmpC-30	ADG46041	383	WP_001211218	ADC-NIPH 2061	20713667
AmpC-31	ADX04315	383	WP_001211223	–	22038960
AmpC-32	ENU68675	383	WP_004739487	ADC-NIPH 615	24277043
AmpC-38	ACC05873	383	WP_063857799	–	18765689
AmpC-39	ACC05874	383	WP_063857800	–	18765689
AmpC-41	ACN62070	383	WP_063857802	–	20368407
AmpC-42	ACN62071	383	WP_063857803	–	20368407
AmpC-43	ACN62072	383	WP_032053538	–	20368407
AmpC-44	ACN62073	383	WP_063857804	–	20368407
AmpC-50	ADG46038	383	WP_031965243	–	Rodriguez-Martinez et al., unpublished
AmpC-51	ADG46040	383	WP_063857805	–	20713667
AmpC-52	ADG46042	383	WP_001211232	–	20713667
AmpC-53	ADG46044	383	WP_063857806	–	20713667
AmpC-54	ADK35761	383	WP_063857807	–	20805394
AmpC-56	AEL30570	383	WP_031973850	–	21788456
AmpC-57	ADO51072	383	WP_001211226	–	24176550
AmpC-58	AFG25594	383	WP_063857808	–	Zhang, unpublished
AmpC-59	AFG25595	383	WP_063857809	–	Zhang, unpublished
AmpC-60	AFH53180	383	WP_063857810	–	Huang, unpublished
AmpC-61	AFI58570	383	WP_033503051	–	Zhou, unpublished
AmpC-62	AFK24475	383	WP_063857811	–	Wang, unpublished

(Continued)
Table 2. (Continued)

AmpC-63	AFM80040	383	WP_063857812	−	Zhang, unpublished
AmpC-65	AFP73417	385	−	−	Ling, unpublished
AmpC-66	A FP73418	383	−	−	Ling, unpublished
AmpC-67	AEZ36052	383	WP_063857814	−	ADC-57, Zhou, unpublished; 24619228
AmpC-68	AGL39360	383	WP_063857815	−	Lee et al., 2014 (as a poster); 25372683
AmpC-70	KQG48886	383	WP_017480710	−	ADC-72a, Ozer et al., unpublished
AmpC-73	ALA14808	383	WP_001211219	−	26824943
AmpC-74	ALA14809	383	WP_001211203	−	26824943
AmpC-75	ALA14810	383	WP_063857817	−	26824943
AmpC-76	ALA14811	383	WP_001211237	−	ADC-NiPH 335, 26824943
AmpC-77	ALA14812	383	WP_063857818	−	26824943
AmpC-78	ALA14813	383	WP_057691006	−	26824943
AmpC-79	ALA14814	383	WP_001159760	−	26824943
AmpC-80	ALA14815	383	WP_029424536	−	26824943
AmpC-81	ALA14816	388	WP_059262723	−	26824943
AmpC-82	AOA49613	383	−	−	Saranathan et al., unpublished
AmpC-83	ANW47146	383	−	−	Kulkarni et al., unpublished
AmpC-84	ANW47149	383	−	−	Kulkarni et al., unpublished
AmpC-85	ANW47142	383	−	−	Kulkarni et al., unpublished
AmpC-86	ANW47143	383	−	−	Kulkarni et al., unpublished
AmpC-87	ANW47154	383	−	−	Kulkarni et al., unpublished
AmpC-88	ANW47135	383	−	−	Kulkarni et al., unpublished
AmpC-89	ANW47136	383	−	−	Kulkarni et al., unpublished
AmpC-90	ANW47147	383	−	−	Kulkarni et al., unpublished
AmpC-91	ANW47132	383	−	−	Kulkarni et al., unpublished
AmpC-92	ANW47134	383	−	−	Kulkarni et al., unpublished
AmpC-93	ANW47145	383	−	−	Kulkarni et al., unpublished
AmpC-94	ANW47137	383	−	−	Kulkarni et al., unpublished
AmpC-95	ANW47153	383	−	−	Kulkarni et al., unpublished
AmpC-96	ANW47150	388	−	−	Kulkarni et al., unpublished
AmpC-97	ANW47139	383	−	−	Kulkarni et al., unpublished
AmpC-98	ANW47138	383	−	−	Kulkarni et al., unpublished
AmpC-99	ANW47140	383	−	−	Kulkarni et al., unpublished
AmpC-100	ANW47141	385	−	−	Kulkarni et al., unpublished
AmpC-101	ANW47133	383	−	−	Kulkarni et al., unpublished
AmpC-102	ANW47148	383	−	−	Kulkarni et al., unpublished
AmpC-103	ANW69905	383	−	−	Kulkarni et al., unpublished
AmpC-104	ANW69906	383	−	−	Kulkarni et al., unpublished
AmpC-105	ANW69907	383	−	−	Kulkarni et al., unpublished
AmpC-106	ANW69909	383	−	−	Kulkarni et al., unpublished
AmpC-107	ANW69912	383	−	−	Kulkarni et al., unpublished
AmpC-108	AFJ94770	383	WP_001211216	−	22952140
AmpC-109	AAV32519	383	−	−	16441449
AmpC-110	ABO3812	383	−	−	Huang et al., unpublished
AmpC-111	ABV21800	384	WP_001211220	−	18591275
AmpC-112	ABV21801	383	−	−	18591275
AmpC-113	ABV21802	383	−	−	18591275
AmpC-114	ETY67158	384	−	−	20809238
AmpC-115	AFU38919	383	−	−	23209228

(Continued)
Acknowledgments

We thank Dr. Daniel Haft at the National Center for Biotechnology Information (NCBI) for his advice and recommendations with regards to the list of AmpC protein variants.

Author Contributions

Conceptualization: NK KJ RH BEU.

Table 2. (Continued)

AmpC	Accession	Length	Accession	Description	PubMed ID
AmpC-116	WP_017816757	383	WP_017816757	–	23723398
AmpC-117	ELW88222	383	WP_002157727	–	24277043
AmpC-118	ENW75976	383	WP_001211227	ADC-CIP 70–34T	24277043
AmpC-119	ENU51112	383	WP_004712857	ADC-NIPH 1669	24277043
AmpC-120	ENV26641	383	WP_002126587	ADC-NIPH 190	24277043
AmpC-121	ENW36647	383	WP_005109685	ADC-NIPH 201	24277043
AmpC-122	ENW46489	383	WP_005123276	ADC-NIPH 329	24277043
AmpC-123	ENV30802	383	WP_004840559	ADC-NIPH 60	24277043
AmpC-124	ENW51893	383	WP_005128228	ADC-NIPH 601	24277043
AmpC-125	ENV51227	383	WP_005131186	ADC-NIPH 67	24277043
AmpC-126	ENW72863	383	WP_005138362	ADC-NIPH 80	24277043
AmpC-127	ENW00696	383	WP_005046018	ADC-CIP 81–8T	24277043
AmpC-128	ENU07956	383	WP_004643536	ADC-NIPH 13	24277043
AmpC-129	ENV92309	383	WP_005039111	ADC-ANC 3680	24277043
AmpC-130	ENV41121	383	WP_004886093	ADC-NIPH 386	24277043
AmpC-131	ENU48760	383	WP_004707701	ADC-NIPH 2119T	24277043
AmpC-132	ENW11417	383	WP_005068074	ADC-ANC 3678	24277043
AmpC-133	ENU43147	383	WP_004700205	ADC-NIPH 973	24277043
AmpC-134	ENX43770	383	WP_005307218	ADC-NIPH 542	24277043
AmpC-135	ENV03983	383	WP_005790939	ADC-NIPH 817	24277043
AmpC-136	EOQ64883	383	WP_016137488	ADC-ANC 3811	24277043
AmpC-137	EOQ71234	383	WP_016140427	ADC-ANC 4050	24277043
AmpC-138	EOQ73533	383	WP_016146025	ADC-ANC 4052	24277043
AmpC-139	EXS60093	383	WP_032039838	–	Harris et al., unpublished
AmpC-140	EYSS5294	383	WP_001211209	–	Harris et al., unpublished
AmpC-141	EXD64655	383	WP_032062810	–	Harris et al., unpublished
AmpC-142	ETP95102	383	WP_031980335	–	24449752
AmpC-143	WP_033502167	383	WP_033502167	–	Liou et al., unpublished
AmpC-144	WP_001211214	383	WP_001211214	–	Sahl et al., unpublished
AmpC-145	KHY08585	383	WP_039270258	–	Adams et al., unpublished
AmpC-146	KVH30477	383	WP_039258389	–	Adams et al., unpublished
AmpC-147	KJC71195	383	WP_044718369	–	Adams et al., unpublished
AmpC-148	AJB47604	383	WP_039246976	–	McCrorison et al., unpublished
AmpC-149	ADY82440	383	WP_014207272	–	21441526
AmpC-150	AKT73351	383	WP_017386568	–	Ang et al., unpublished
AmpC-151	AMX20227	383	WP_063099318	–	Brasiliense et al., unpublished
AmpC-152	ADI89941	383	WP_013197184	–	20639327

*a AmpC-70 has the same amino acid sequence as AmpC-72 (ADC-72) with the GenBank accession number AIL90389 and PubMed IDentifier 25181293

https://doi.org/10.1371/journal.pone.0176695.t002
Data curation: NK KJ RH BEU.

Resources: NK BEU.

Supervision: NK KJ RH BEU.

Visualization: NK KJ RH BEU.

Writing – original draft: NK.

Writing – review & editing: NK KJ RH BEU.

References

1. Karah N, Sundsfjord A, Towner K, Samuelsen O (2012) Insights into the global molecular epidemiology of carbapenem non-susceptible clones of Acinetobacter baumannii. Drug Resist Updat 15: 237–247. https://doi.org/10.1016/j.drup.2012.06.001 PMID: 22841809

2. Bou G, Martinez-Beltran J (2000) Cloning, nucleotide sequencing, and analysis of the gene encoding an AmpC β-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother 44: 428–432. PMID: 10639377

3. Hujer KM, Hamza NS, Hujer AM, Perez F, Helfand MS, Bethel CR, et al. (2005) Identification of a new allelic variant of the Acinetobacter baumannii cephaporinase, ADC-7 β-lactamase: defining a unique family of class C enzymes. Antimicrob Agents Chemother 49: 2941–2948. https://doi.org/10.1128/AAC.49.7.2941-2948.2005 PMID: 15980372

4. Perichon B, Goussard S, Walewski V, Krizova L, Cerqueira G, Murphy C, et al. (2014) Identification of 50 class D β-lactamases and 65 Acinetobacter-derived cephalosporinases in Acinetobacter spp. Antimicrob Agents Chemother 58: 936–949. https://doi.org/10.1128/AAC.01261-13 PMID: 24277043

5. Hamidian M, Hall RM (2013) ISAba1 targets a specific position upstream of the intrinsic ampC gene of Acinetobacter baumannii leading to cephalosporin resistance. J Antimicrob Chemother 68: 2682–2683. https://doi.org/10.1093/jac/dkt312 PMID: 23788477

6. Rodriguez-Martinez JM, Nordmann P, Ronco E, Poirel L (2010) Extended-spectrum cephalosporinase in Acinetobacter baumannii. Antimicrob Agents Chemother 54: 3484–3488. https://doi.org/10.1128/AAC.00050-10 PMID: 20547808

7. Tian GB, Adams-Haduch JM, Taracila M, Bonomo RA, Wang HN, Doi Y (2011) Extended-spectrum AmpC cephalosporinase in Acinetobacter baumannii: ADC-56 confers resistance to cefepime. Antimicrob Agents Chemother 55: 4922–4925. https://doi.org/10.1128/AAC.00704-11 PMID: 21788456

8. Hamidian M, Hall RM (2014) Tn6168, a transposon carrying an ISAba1 activated ampC gene and conferring cephalosporin resistance in Acinetobacter baumannii. J Antimicrob Chemother 69: 77–78. https://doi.org/10.1093/jac/dkt312 PMID: 23920428

9. Holt KE, Kenyon JJ, Hamidian M, Schultz MB, Pickard DJ, Dougan G, et al. (2016) Five decades of genome evolution in the globally distributed, extensively antibiotic resistant Acinetobacter baumannii GC1. Microbial Genomics 2:

10. Mammeri H, Poirel L, Mangeney N, Nordmann P (2003) Chromosomal integration of a cephaporinase gene from Acinetobacter baumannii into Oligella urethralis as a source of acquired resistance to β-lactams. Antimicrob Agents Chemother 47: 1536–1542. https://doi.org/10.1128/AAC.47.5.1536-1542.2003 PMID: 12709319

11. Hamidian M, Hancock DP, Hall RM (2013) Horizontal transfer of an ISAba125 activated ampC gene between Acinetobacter baumannii strains leading to cephalosporin resistance. J Antimicrob Chemother 68: 244–245. https://doi.org/10.1093/jac/dks345 PMID: 22915486

12. Hamidian M, Hall RM (2014) Resistance to third generation cephalosporins in Acinetobacter baumannii due to horizontal transfer of a chromosomal segment containing ISAba1-ampC. J Antimicrob Chemother 69: 2965–2966. https://doi.org/10.1093/jac/dku202 PMID: 24917581

13. Karah N, Dwibedi CK, Sjöstöm K, Edquist P, Johansson A, Wai SN, et al. (2016) Novel aminoglycoside resistance transposons and transposon-derived circular forms detected in carbapenem-resistant Acinetobacter baumannii clinical isolates. Antimicrob Agents Chemother 60: 1801–1818. https://doi.org/10.1128/AAC.02143-15 PMID: 26824943

14. Jolley KA, Maiden MCJ (2010) BiGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics 11: 595. https://doi.org/10.1186/1471-2105-11-595 PMID: 21143983

15. Pouraras S, Gogou V, Giannouli M, Dimitroulia E, Dafopoulou K, Tsakris A, et al. (2014) Single locus sequence-based typing of blaTEM-1β gene for rapid classification of Acinetobacter baumannii clinical
isolates to international clones. J Clin Microbiol 52: 1653–1657. https://doi.org/10.1128/JCM.03565-13 PMID: 24622099

16. Rafei R, Dabboussi F, Hamze M, Eveillard M, Lemarie C, Gaultier MP, et al. (2014) Molecular analysis of Acinetobacter baumannii strains isolated in Lebanon using four different typing methods. PLoS ONE 9(12): e115969. https://doi.org/10.1371/journal.pone.0115969 PMID: 25541711

17. Revathi G, Siu LK, Lu PL, Huang LY (2013) First report of NDM-1-producing Acinetobacter baumannii in East Africa. Int J Infect Dis 17: e1255–1258. https://doi.org/10.1016/j.ijid.2013.07.016 PMID: 24176550