Vitamin D deficiency in chronic inflammatory rheumatic diseases: results of the cardiovascular in rheumatology [CARMA] study

Ana Urruticoechea-Arana†, María A. Martín-Martínez†, Santos Castañeda†, Carlos A. Sanchez Piedra, Carlos González-Juanatey, Javier Llorca, Federico Díaz-Gonzalez, Miguel A. González-Gay and on behalf of the CARMA Project Collaborative Group

Abstract

Introduction: The aim was to study the association between 25-hydroxyvitamin D (25(OH)D) levels and the clinical characteristics of patients with chronic inflammatory rheumatic diseases (CIRD).

Methods: We studied a cross-section from the baseline visit of the CARMA project (CARdiovascular in rheuMAtology), a 10-year prospective study evaluating the risk of cardiovascular events in rheumatoid arthritis (RA), ankylosing spondylitis (AS) and psoriatic arthritis (PsA) patients, and non-CIRD patients who attended rheumatology outpatient clinics from 67 hospitals in Spain. Non-CIRD group was frequency matched by age with the joint distribution of the three CIRD groups included in the study. 25(OH)D deficiency was defined if 25(OH)D vitamin levels were < 20 ng/ml.

Results: 2234 patients (775 RA, 738 AS and 721 PsA) and 677 non-CIRD subjects were assessed. The median (p25-p75) 25(OH)D levels were: 20.4 (14.4-29.2) ng/ml in RA, 20.9 (13.1-29.0) in AS, 20.0 (14.0-28.8) in PsA, and 24.8 (18.4-32.6) ng/ml in non-CIRD patients. We detected 25(OH)D deficiency in 40.5 % RA, 39.7 % AS, 40.9 % PsA and 26.7 % non-CIRD controls (p < 0.001). A statistically significant positive association between RA and 25(OH)D deficiency was found (adjusted (adj.) OR = 1.46; 95 % CI = 1.09-1.96); p = 0.012. This positive association did not reach statistical significance for AS (adj. OR 1.23; 95 % CI = 0.85-1.80) and PsA (adj. OR 1.32; 95 % CI = 0.94-1.84). When the parameters of disease activity, severity or functional impairment were assessed, a marginally significant association between 25(OH)D deficiency and ACPA positivity in RA patients (adj. OR = 1.45; 95 % CI = 0.99-2.12; p = 0.056), and between 25(OH)D deficiency and BASFI in AS patients (adj. OR = 1.08; 95 % CI = 0.99-1.17); p = 0.07) was also found.

Conclusions: Patients with RA show an increased risk of having 25(OH)D deficiency compared to non-CIRD controls.

Introduction

Vitamin D has raised great interest in recent decades due to its multiple physiological functions, including significant role in the regulation of the immune system [1–7]. Vitamin D deficiency is an extremely common health problem that affects up to 50 % of the general population during winter months in the Northern hemisphere [8]. Several studies have pointed out a potential association between vitamin D deficiency and cancer, some chronic infections, cardiovascular mortality and increased risk of some autoimmune diseases [8–13], such as type 1 diabetes mellitus [10], multiple sclerosis [10], systemic lupus erythematosus (SLE) [9, 11, 12] and rheumatoid arthritis (RA) [9, 13]. In this regard, some authors have reported an inverse relationship between serum levels of 25-hydroxyvitamin D (25(OH)D) and disease activity or functional impairment in patients with RA or early arthritis [14–21]. In a recent study, vitamin D deficiency was found in 30 % of RA patients [8]. Most studies assessing serum
25(OH)D levels in patients with chronic inflammatory rheumatic diseases (CIRD) were focused on patients with RA [9, 13–15, 17–20]. However, fewer studies have analyzed the presence of 25(OH)D deficiency in other CIRD such as ankylosing spondylitis (AS) or psoriatic arthritis (PsA) [21–24].

The aim of this study was to assess 25(OH)D levels in a cohort of Spanish patients with CIRD that included patients with RA, AS, PsA and non-CIRD, who were attending rheumatology outpatient clinics, and to determine the potential relationship between 25(OH)D levels and clinical characteristics of every disease included in the group of patients with CIRD.

Methods

Study design

Cross-sectional analysis from the baseline visit of the project, CARdiovascular in rheuMATology (CARMA), a 10-year prospective cohort study designed to determine the cardiovascular mortality risk in patients with CIRD compared to a cohort of patients without inflammatory pathological disease [25]. Information on this cohort has recently been reported. The institutional review board of each center approved the study and all patients signed an informed consent agreement.

Patients and controls

Based on the information from the Spanish Society of Rheumatology (SER), all the Spanish public hospitals (university and general community hospitals) that have rheumatology units were invited to take part in the present study. Finally, 67 (63.2 %) of the 106 centers agreed to participate in the study. They recruited 2,986 patients who attended rheumatology outpatient clinics from July 2010 to January 2012. Seventy-five patients declined the invitation. Therefore, 2,911 patients over 18 years old were included in the study. They were split into two different cohorts according to CIRD exposition. The CIRD patients consisted of 775 patients diagnosed with RA (1987 American College of Rheumatology (ACR) classification criteria) [26], 738 diagnosed with AS (modified New York criteria) [27] and 721 patients with PsA (Moll and Wright criteria) [28]. The control (non-CIRD) group included 677 patients without inflammatory rheumatic disease. The non-CIRD group was frequency-matched by age with the joint distribution of the three CIRD groups. Therefore, its distribution approximates the joint age distribution of the three CIRD. To see the list of participating centers, we advise readers to see the Acknowledgements section.

Variables and operative definitions

Both cohorts were evaluated following international protocols including standardized definitions and validated questionnaires. All patients included were continuously and systematically evaluated online and, to verify the quality of the information, an in situ monitoring data assessment was performed in 15 % of patients randomly selected.

The primary endpoint was the presence of 25(OH)D deficiency defined as 25(OH)D levels below 20 ng/ml. The variable sunshine hours per month and province (geographical area in which the hospital is located) was established considering the hours of sunlight in the period of time between 60 and 90 days prior to the visit of inclusion of each patient. For this purpose we used the information published by the Spanish Meteorological Agency (SMA) [29]. When information on sunshine hours of the month and year was not available, we used the mean value of sunshine hours of the last 5 years in which information on sunshine hours in the same period of time and site was available. The 25(OH)D analysis was locally performed according to the methodology and reproducibility level of each institution.

Other variables analyzed were: (1) obesity (BMI ≥30, kg/m²) and main physical activity during working hours (low activity: sitting most of the time; moderate activity: standing most of the time and with little movement or effort; intense activity: walking most of the time or performing tasks that require high physical activity); (2) disease characteristics and parameters of disease activity: rheumatoid factor (RF), anti-cyclic citrullinated peptide antibodies (ACPA), HLA-B27 positivity, erythrocyte sedimentation rate (ESR) (mm/1st h), ultra-sensitive C-reactive protein (CRP) (mg/l), disease activity score including 28 joints-erythrocyte sedimentation rate (DAS28-ESR), health assessment questionnaire (HAQ (0–3)), Bath ankylosing spondylitis disease activity index (BASDAI (0–10)) and Bath ankylosing spondylitis functional index (BASFI (0–10)); (3) sociodemographic variables, and (4) other factors: disease severity, duration of the disease and therapies administered including calcium and vitamin D supplementation.

Statistical analysis

Numerical variables with a normal distribution were expressed as mean and standard deviation. Variables not normally distributed were shown as median and interquartile range (IQR, percentile (p)25 – p75). Absolute and relative frequencies of qualitative variables were calculated. We performed analysis of the main demographic and clinical variables stratified by type of disease. Stratified analysis of 25(OH)D deficiency (<20 ng/ml) was performed for each group of patients according to sociodemographic characteristics and clinical factors, using the Student t test or the Mann-Whitney U test. Qualitative variables were assessed using the Chi-square test, Yates correction, or Fisher test using 2 x 2 tables.

To study the association between 25(OH)D deficiency and CIRD, logistic regression models were constructed.
by calculating the odds ratios (OR) with 95 % CI and adjusting for potential confounding factors. In this regard, an adjusted model for sunshine hours was performed. It was carried out considering for this purpose the period of time between 60 and 90 days prior to the baseline visit blood test, which included assessment of 25(OH)D levels. To reduce variability in the methods of measurement of 25(OH)D from each participating hospital, the mixed logistic regression models were constructed with robust variance estimators using the hospital as cluster variable estimation. The same procedure was carried out to identify specific features of each disease. The selection of independent variables in the multivariate models was based on clinical judgment and those with a p-value <0.20 in the bivariate analysis. In all models of logistic regression, the independent variables were adjusted for the other variables in the model.

Data management and statistical analysis were centralized at the Research Unit of the SER following a pre-established analysis plan. All the analyses were performed using the SPSS 21.0 statistical program. Statistical significance was assumed at p <0.05.

Results

Sociodemographic and clinical characteristics

Demographic and clinical characteristics of patients included in this study are summarized in Table 1. There was a predominance of women in the group with RA, whereas most AS patients were men. Sex distribution was similar in the group with PsA. The mean age in patients with RA was higher than in patients with other CIRD. Although patients with AS were younger, the duration of disease was longer than in the other groups. The frequency of obesity was higher among PsA patients, whereas it was lower among controls, despite being the group that included more sedentary individuals (p <0.001). Smoking history was more commonly observed in those with AS.

It is worth noting that a great majority of patients with CIRD included in the study had low disease activity at time of recruitment. In this regard, CRP and ESR levels in RA, AS and PsA patients were remarkably low at the time of inclusion in the study, as well as the functional scores (HAQ and BASFI, respectively).

Individuals without CIRD (controls) had the following rheumatic diseases: osteoarthritis (30 %), osteoporosis (15.2 %), soft tissue disorders (18.8 %) and other non-inflammatory diseases (36 %). The distribution at recruitment of individuals with CIRD per hospital was uniform throughout the year 2011, whereas the recruitment of patients without CIRD occurred mainly between October and November 2011 (Additional file 1: Table S1).

25(OH)D levels and CIRD

Patients with CIRD had lower 25(OH)D levels than those from the non-CIRD controls (Table 1). The median (p25 – p75) 25(OH)D levels were: 20.4 (14.4 – 29.2) ng/ml in RA, 20.9 (13.1 – 29.00 ng/ml in AS, 20.0 (14.0 – 28.8) ng/ml in PsA and 24.8 (18.4 – 32.6) ng/ml in non-CIRD individuals. Globally, 25(OH)D deficiency was detected in 40.5 % of patients with RA, 39.7 % of patients with AS, 40.9 % of patients with PsA and 26.7 % of individuals with non-CIRD (p <0.001). The median of sunshine hours in the group of non-CIRD controls was higher than in the three groups of patients with CIRD (Table 2).

Among the variables related to activity and severity of inflammatory diseases, ACPA-positive RA patients had a higher frequency of 25(OH)D deficiency (66.9 %). It was also the case for AS, with higher values of BASDAI and BASFI in 25(OH)D-deficient patients (p <0.05 in both cases) (Table 2).

Multivariate analysis

Multivariate analysis (Table 3) disclosed a positive association with 25(OH)D deficiency in the patients with CIRD when compared with the non-CIRD subjects. This association with 25(OH)D deficiency was statistically significant in the group of patients with RA (adjusted (adj.) OR = 1.46; 95 % CI = 1.09, 1.96); p = 0.012. However, the positive association was not statistically significant for AS (adj. OR = 1.23; 95 % CI = 0.85, 1.80) and PsA (adj. OR = 1.32; 95 % CI = 0.94, 1.84). Women with RA had significantly higher risk of 25(OH)D deficiency than men (p <0.01). Likewise, obese RA and PsA patients (BMI ≥30) had higher risk of 25(OH)D deficiency

When the parameters of disease activity, severity or functional impairment were assessed, a marginally significant association between 25(OH)D deficiency and ACPA-positivity in RA patients (adj. OR = 1.45; 95 % CI = 0.99, 2.12; p = 0.056), and between 25(OH)D deficiency and BASFI in AS patients (adj. OR = 1.80; 95 % CI = 0.99, 1.17; p = 0.07) was also found (Table 3).

Discussion

Our results show that Spanish patients with RA attending rheumatology outpatient clinics have 25(OH)D deficiency. This baseline result is from a cohort of patients that has been followed prospectively to determine the cardiovascular outcome. To establish comparisons, we also assessed baseline 25(OH)D levels in non-CIRD controls attending the same rheumatology outpatient clinics [25].

Vitamin D plays an important role in the immune regulation [2]. Vitamin D deficiency has been observed in some autoimmune diseases, in particular in SLE [11, 12, 30] and RA [8, 20]. However, information related to undifferentiated spondyloarthropathies and AS is limited [21, 22, 31]. It is also the case for PsA [24].

In our series, the frequency of 25(OH)D deficiency (level <20 ng/ml) was higher in patients with RA than in the individuals from the non-CIRD control group. The
present study raises several points of potential interest. First, the CARMA cohort constitutes the largest series of comparisons of 25(OH)D levels in three well-established CIRD. In addition, a cohort of individuals without CIRD was used for comparison. Second, we assessed patients who were periodically followed at rheumatology outpatient clinics. Nevertheless, it is important to emphasize that baseline levels of 25(OH)D in the control population

Table 1

	Rheumatoid arthritis	Ankylosing spondylitis	Psoriatic arthritis	Controls
Age at inclusion, years, mean (SD)	57.1 (12.3)	48.1 (11.7)	51.8 (12.0)	54.0 (12.4)
Age at the beginning of disease, years, mean (SD)	45.8 (13.4)	29.7 (11.8)	39.5 (13.3)	48.5 (12.4)
Female sex, n (%)	581 (75.0)	200 (27.1)	327 (45.4)	437 (64.5)
Educational level, n (%)	467 (60.9)	318 (43.3)	331 (46.3)	229 (34.1)
University /secondary	300 (39.1)	416 (56.7)	383 (53.7)	443 (65.9)
Caucasian Race, n (%)	747 (96.6)	723 (98.0)	712 (98.9)	668 (98.7)
Others	26 (3.4)	15 (2.0)	8 (1.1)	9 (1.3)
Main activity, n (%)	236 (35.0)	263 (39.3)	253 (38.9)	291 (46.3)
Sedentary	290 (43.0)	238 (35.5)	241 (37.1)	207 (32.9)
Moderate	148 (22.0)	169 (25.2)	156 (24.0)	131 (20.8)
SEDENTARY	189 (24.4)	254 (34.4)	157 (21.8)	143 (21.2)
Moderate	202 (26.1)	240 (32.5)	227 (31.5)	176 (26.0)
Active with displacement	384 (49.5)	244 (33.1)	337 (46.7)	357 (52.8)
BMI, kg/m2, mean (SD)	26.9 (4.8)	27.4 (4.4)	28.2 (4.7)	26.7 (4.4)
Obesity (BMI ≥ 30), n (%)	180 (23.2)	186 (25.2)	209 (29.1)	147 (21.8)
Smoking status, n (%)	189 (24.4)	254 (34.4)	157 (21.8)	143 (21.2)
Current smokers	202 (26.1)	240 (32.5)	227 (31.5)	176 (26.0)
Past smokers	384 (49.5)	244 (33.1)	337 (46.7)	357 (52.8)
Never smokers	467 (60.9)	318 (43.3)	331 (46.3)	229 (34.1)
25(OH)D (ng/ml), median (p25 − p75)	20.4 (14.4−29.2)	20.9 (13.1−29.0)	20.0 (14.0−28.8)	24.8 (18.4−32.6)
25(OH)D deficiency, n (%)	314 (40.5)	293 (39.7)	295 (40.9)	181 (26.7)
Disease duration, years, median (p25 − p75)	8.0 (3.0–14.0)	15.0 (8.0–26.0)	9.0 (4.0–16.0)	2.0 (0.0–6.0)
Disease activity scores	528 (68.1)	528 (68.1)	528 (68.1)	528 (68.1)
RF-positive, n (%)	528 (68.1)	528 (68.1)	528 (68.1)	528 (68.1)
ACPA-positive, n (%)	482 (62.2)	482 (62.2)	482 (62.2)	482 (62.2)
Disease activity scores	528 (68.1)	528 (68.1)	528 (68.1)	528 (68.1)
DAS28-ESR, mean (SD)	3.2 (1.2)	3.2 (1.2)	3.2 (1.2)	3.2 (1.2)
HAQ (0–3), median (p25 – p75)	0.5 (0.1–1.1)	0.4 (0.0–0.9)	0.3 (0.0–0.9)	0.3 (0.0–0.9)
ESR (mm/h), median (p25 – p75)	170.0 (90.0–290.0)	100.0 (60.0–210.0)	120.0 (60.0–210.0)	100.0 (50.0–180.0)
CRP (mg/l), median (p25 – p75)	3.1 (1.2–8.0)	3.6 (1.6–8.9)	2.9 (1.4–6.1)	1.9 (1.3–3.3)
BASDAI (0–10), median (p25 – p75)	–	3.5 (1.7–5.3)	–	–
BASFI (0–10), median (p25 – p75)	–	3.1 (1.3–5.2)	–	–
HLA-B27, n (%)	–	561 (76)	–	–
Erosions (RA), n (%)	352 (45.4)	352 (45.4)	352 (45.4)	352 (45.4)
Biologic therapy (% ever treated), n (%)	313 (40.4)	349 (47.4)	300 (41.7)	300 (41.7)
Vitamin D, n (%)	325 (41.9)	82 (11.1)	114 (15.8)	138 (20.4)
Calcium supplements, n (%)	328 (42.3)	68 (9.2)	105 (14.6)	122 (18.0)

25(OH)D deficiency is defined as 25(OH)D <20 ng/ml. *Hours of sunshine per month considering the period of time between 60 and 90 days prior to the baseline visit (blood test to determine the levels of 25(OH)D was performed at the baseline visit). BMI body mass index, 25(OH)D 25-hydroxyvitamin D, p25 – p75 25th to 75th percentile, RF rheumatoid factor, ACPA anti-cyclic citrullinated peptide antibodies, DAS28-ESR disease activity score using 28 joints-erythrocyte sedimentation rate, HAQ 0–3: health assessment questionnaire, ESR erythrocyte sedimentation rate, CRP C-reactive protein, BASDAI (0–10) Bath ankylosing spondylitis disease activity index, BASFI (0–10) Bath ankylosing spondylitis functional index, HLA-B27 histocompatibility antigen HLA-B27, RA rheumatoid arthritis

Table 2: Bivariate analysis according to each specific entity and the occurrence of 25(OH)D deficiency (25(OH)D <20 ng/ml)

Variables	Total	Rheumatoid arthritis	Ankylosing spondylitis	Psoriatic arthritis	Controls	p
Female, n (%)	1545 (53.1)	554 (51.2)	796 (55.0)	0.054	220 (70.1)	0.005
-		280 (79.5)	81 (23.9)	0.035	127 (43.1)	0.206
Age beginning disease, years, mean (SD)	40.5 (14.5)	40.4 (14.5)	41.4 (14.7)	0.079	45.8 (13.1)	0.743
-		46.1 (13.0)	29.6 (11.8)	0.620	39.2 (13.1)	0.846
Disease duration, years, mean (SD)	11.03 (10.4)	11.5 (10.2)	10.7 (10.5)	0.005	10.1 (8.5)	0.782
-		10.4 (9.1)	17.6 (11.9)	0.950	11.2 (8.4)	0.983
Educational level, n (%)						
Elementary	1693 (58.6)	646 (60.4)	819 (56.8)	0.071	212 (66.6)	0.926
-		242 (68.9)	182 (53.8)	0.84	173 (59.5)	0.985
University/secondary	1194 (41.4)	423 (39.6)	622 (43.2)	0.001	97 (31.4)	0.018
Smoking status, n (%)						
Current smokers	743 (25.5)	303 (28.0)	335 (23.2)	0.001	83 (24.4)	0.226
-		76 (21.6)	107 (36.5)	0.530	101 (34.2)	0.650
Past smokers	845 (29.0)	332 (30.7)	407 (28.1)	0.001	86 (27.4)	0.266
-		91 (26.1)	95 (32.4)	0.539	104 (34.9)	0.650
Never smokers	1322 (45.5)	447 (41.3)	705 (48.7)	0.001	145 (46.2)	0.911
-		184 (52.3)	91 (31.1)	0.385	135 (45.8)	0.761
Obesity (BMI ≥30), n (%)	2184 (75.0)	327 (30.2)	308 (21.3)	0.001	88 (28.0)	0.018
-		71 (20.2)	83 (28.3)	0.072	102 (34.7)	0.025
Main physical activity, n (%)						
Sedentary	1043 (39.8)	380 (39.3)	553 (40.8)	0.001	92 (34.3)	0.669
-		113 (36.1)	103 (39.6)	0.120	10 (41.5)	0.754
Moderate	976 (37.2)	363 (37.5)	472 (36.1)	0.734	113 (42.2)	0.696
-		136 (43.5)	90 (34.6)	0.976	100 (37.7)	0.386
Active with displacement	604 (23.0)	225 (23.2)	302 (23.1)	0.001	63 (23.5)	0.333
-		64 (20.4)	67 (25.8)	0.120	55 (20.8)	0.407
Sunshine hours /month*, median (p25 – p75)	189 (138–269)	161 (122–225)	210 (159–320)	<0.001	156 (101–193)	<0.001
-		184 (141–234)	200 (157–251)	<0.001	161 (122–202)	<0.001
Clinical characteristics						
ESR (mm/h), median (p25 – p75)	-	-	-	-	18.0 (9.0–28.0)	0.631
-		-	-	-	10.0 (6.0–23.2)	0.691
CRP (mg/l), median (p25 – p75)	-	-	-	-	3.1 (1.4–8.0)	0.543
-		-	-	-	3.2 (1.6–7.7)	0.333
RF positive, n (%)	-	-	-	-	252 (803)	0.105
-		-	-	-	210 (66.9)	0.022
ACPA positive, n (%)	-	-	-	-	143 (45.5)	0.254
-		-	-	-	14 (1.9–3.9)	0.28
Erosions, n (%)	-	-	-	-	2.8 (1.9–3.9)	0.807
DAS28-ESR, median (p25 – p75)	-	-	-	-	3.0 (2.3–4.0)	
Table 2 Bivariate analysis according to each specific entity and the occurrence of 25(OH)D deficiency (25(OH)D <20 ng/ml) (Continued)

Treatment	HAQ (0–3), median (p25 – p75)	BASDAI (0–10), median (p25 – p75)	BASFI (0–10), median (p25 – p75)	Biologic DMARD, n (%)	Vitamin D, n (%)	Calcium supplements, n (%)
HLA-B27, n (%)	-	218 (74.4)	3.8 (1.8–5.3)	3.7 (1.6–5.8)	120 (38.2)	623 (21.4)
HAQ (0–3), median (p25 – p75)	-	275 (81.1)	3.3 (1.8–5.0)	2.7 (1.2–4.7)	145 (49.5)	191 (17.6)
HAQ (0–3), median (p25 – p75)	0.193	0.042	0.003	0.019	0.470	0.001
HLA-B27, n (%)	-	123 (39.2)	150 (42.6)	23 (7.8)	145 (49.5)	191 (17.6)
HAQ (0–3), median (p25 – p75)	0.367	0.470	0.003	0.019	0.509	0.001
HLA-B27, n (%)	-	158 (46.6)	153 (46.6)	42 (12.4)	132 (44.7)	118 (37.6)
HAQ (0–3), median (p25 – p75)	0.367	0.470	0.003	0.019	0.509	0.001
HLA-B27, n (%)	-	142 (42.1)	132 (44.7)	33 (11.2)	142 (42.1)	118 (37.6)
HAQ (0–3), median (p25 – p75)	0.367	0.470	0.003	0.019	0.509	0.001
HLA-B27, n (%)	-	105 (25.1)	120 (31.8)	56 (16.6)	105 (25.1)	118 (37.6)
HAQ (0–3), median (p25 – p75)	0.367	0.470	0.003	0.019	0.509	0.001
HLA-B27, n (%)	-	105 (25.1)	120 (31.8)	56 (16.6)	105 (25.1)	118 (37.6)
HAQ (0–3), median (p25 – p75)	0.367	0.470	0.003	0.019	0.509	0.001
HLA-B27, n (%)	-	105 (25.1)	120 (31.8)	56 (16.6)	105 (25.1)	118 (37.6)

*Hours of sunshine per month considering the period of time between 60 and 90 days prior to the baseline visit (blood test to determine the levels of 25(OH)D was performed at the baseline visit). 25(OH)D 25-hydroxyvitamin D, BMI body mass index, p25 – p75 25th to 75th percentile, ESR erythrocyte sedimentation rate, CRP C-reactive protein, RF rheumatoid factor, ACPA anti-cyclic citrullinated peptide antibodies, DAS28-ESR, disease activity score using 28 joints-erythrocyte sedimentation rate, HAQ (0–3): health assessment questionnaire, HLA-B27 histocompatibility antigen HLA-B27, BASDAI (0–10) Bath ankylosing spondylitis disease activity index, BASFI (0–10) Bath ankylosing spondylitis functional index, DMARD disease-modifying anti-rheumatic drugs.
Table 3: Multivariate analysis of 25(OH)D deficiency (25(OH)D levels <20 ng/ml) in patients with chronic inflammatory rheumatic diseases

Variables	All Crude OR	All Adjusted OR	Rheumatoid arthritis Crude OR	Rheumatoid arthritis Adjusted OR	Ankylosing spondylitis Crude OR	Ankylosing spondylitis Adjusted OR	Psoriatic arthritis Crude OR	Psoriatic arthritis Adjusted OR	p	
Kind of disease (ref. controls)										
Rheumatoid arthritis	2.07 (1.53, 2.79)	1.46 (1.09, 1.96)	0.012							
Ankylosing spondylitis	2.00 (1.46, 2.74)	1.23 (0.85, 1.80)	0.273							
Psoriatic arthritis	2.03 (1.46, 2.81)	1.32 (0.94, 1.84)	0.110							
Age begining disease	1.00 (0.99, 1.00)	1.00 (0.99, 1.01)	0.985		1.00 (0.99, 1.01)	1.00 (0.99, 1.01)	0.715	1.00 (0.99, 1.01)	0.688	
Sex (ref. male)	0.86 (0.74, 0.99)	1.06 (0.88, 1.27)	0.561	0.60 (0.43, 0.85)	1.46 (1.07, 1.99)	1.54 (1.10, 2.17)	0.013	0.82 (0.61, 1.10)	0.781	
Disease duration, years	1.01 (1.00, 1.02)	1.00 (0.99, 1.01)	0.894	1.00 (0.98, 1.01)	1.00 (0.98, 1.02)	0.971	1.00 (0.98, 1.01)	1.00 (0.98, 1.01)	0.581	
Educational level (ref. elementary)	0.86 (0.67, 1.11)	0.99 (0.77, 1.29)	0.963	1.02 (0.71, 1.45)	1.17 (0.69, 1.72)	0.430	0.76 (0.52, 1.10)	0.81 (0.55, 1.19)	0.280	
Smoking status (ref. current smokers)	0.90 (0.74, 1.10)	0.91 (0.73, 1.13)	0.387	0.86 (0.58, 1.26)	0.80 (0.49, 1.29)	0.354	0.94 (0.62, 1.41)	1.11 (0.72, 1.70)	0.639	
Obesiy (BMI ≥ 30. kg/m²)	1.60 (1.32, 1.94)	1.96 (1.28, 1.90)	<0.001	1.54 (1.09, 2.17)	1.76 (1.18, 2.62)	0.006	1.39 (0.93, 2.09)	1.20 (0.78, 1.86)	0.408	
Sunshine hours/month*	0.99 (0.99, 0.99)	0.99 (0.99, 0.99)	<0.001	0.99 (0.99, 0.99)	0.99 (0.99, 0.99)	0.000	0.99 (0.99, 0.99)	0.99 (0.99, 0.99)	0.99 (0.99, 0.99)	<0.001
HAQ (0–3)	0.86 (0.69, 1.07)	0.90 (0.71, 1.14)	0.384							
ACPA-positive	–	–	1.45 (1.00, 2.09)	1.45 (0.99, 2.12)	0.056					
HLA-B27	–	–	–	–	0.68 (0.50, 0.92)	0.70 (0.48, 1.02)	0.062	–		
BASFI (0–10)	–	–	–	–	1.10 (1.02, 1.18)	1.08 (0.99, 1.17)	0.070	–		
Vitamin D therapy	0.60 (0.47, 0.77)	0.57 (0.43, 0.76)	<0.001	0.69 (0.48, 0.99)	0.78 (0.52, 1.18)	0.245	0.46 (0.26, 0.81)	0.43 (0.26, 0.81)	0.008	

*Hours of sunshine per month considering the period of time between 60 and 90 days prior to the baseline visit (blood test to determine the levels of 25(OH)D was performed at the baseline visit). 25(OH)D: 25-hydroxyvitamin D, OR: odds ratio, BMI: body mass index, HAQ (0–3): health assessment questionnaire, ACPA: anti-cyclic citrullinated peptide antibodies, HLA-B27: histocompatibility antigen HLA-B27, BASFI (0–10): Bath ankylosing spondylitis functional index.
were also low, due to the inclusion in this population of a high percentage of subjects with osteoarthritis and/or osteoporosis, who are also likely to have low baseline 25(OH)D levels.

Nowadays it is not clear whether vitamin D deficiency is the cause or effect of the inflammatory process. In this regard, in a model of acute phase response after surgery, plasma concentrations of 25(OH)D were found to decrease after elective knee arthroplasty [32]. Furthermore, several studies have found an inverse association between 25(OH)D levels and activity parameters of some CIRD, such as DAS28, swollen joints and HAQ in RA and BASFI and BASDAI in AS [17, 19, 21]. Although the results from our study do not fully support all these findings, in the multivariate analysis a marginally statistically significant association between 25(OH)D deficiency and ACPA in RA and BASFI in AS was found. It is worth noting that our patients with CIRD had decreased 25(OH)D levels despite the fact that a great majority had low activity at the time of inclusion. Patients with CIRD have less mobility and life outdoors, which would also contribute negatively to maintain adequate levels of vitamin D. Therefore, 25(OH)D deficiency in these patients may be explained by a dual mechanism. On the one hand, chronic diseases can predispose to 25(OH)D deficiency directly by decreasing synthesis or increasing vitamin D catabolism, and on the other hand, indirectly lowering sunlight exposure in phases of reduced mobility and ability to spend time outdoors in patients with worse functional status.

We feel that our results may be considered of potential interest in daily clinical practice, as our population encompassed individuals periodically followed at rheumatology outpatient clinics, many of whom are controlled under biological treatment.

Although a recent umbrella review of systematic reviews and meta-analyses of observational studies and randomized trials did not demonstrate that supplementation of vitamin D improves the health of the general population [33], we believe it is important to monitor and supplement vitamin D to patients with CIRD and vitamin D deficiency, regardless of whether the deficiency of vitamin D may or may not have a pathogenic role, or whether it is merely an epiphenomenon associated with inflammatory disease.

Our study has some limitations. First, a potential limitation of the study was that the non-CIRD subjects were not completely healthy, as a high percentage of individuals included had osteoarthritis, osteoporosis and/or other musculoskeletal diseases, which by themselves are associated with some risk of 25(OH)D deficiency. Another limitation of this study may be that the control group had more sunshine hours because many controls were recruited in the months of October and November, and several studies indicate that the level of 25(OH)D is the result of sun exposure in a period of time between 60 to 90 days prior to the 25(OH)D assessment [34], which in our study corresponded with the months of July and August. With respect to the variability of the vitamin D measurement among all participating centers, we performed a mixed model of logistic regression to reduce the variability in the method of assessment of 25(OH)D levels.

Finally, another limitation is the possible ecological fallacy that we may be committing to impute the average hours of sunshine from one province to every individual. As the CARMA study was designed to determine the causality of cardiovascular mortality in patients with CIRD, information on the length of time during which individual patients were exposed to sunshine was not collected. Therefore, and because sun exposure is a key factor in the blood levels of vitamin D, and patients were not recruited in the same period of the year and in the same geographical area of the country, we decided to collect aggregate information on sunshine hours provided by the SMA as an adjustment variable in the multivariate model.

Conclusions

In summary, patients with RA followed at rheumatology outpatient clinics have high risk of 25(OH)D deficiency, in spite of presenting low-to-moderate disease activity due to tight control of the disease. In consequence, we believe that we must monitor the levels of vitamin D at baseline and during follow up, and supplement vitamin D if any deficiency is detected.

Additional file

Additional file 1: Table S1. Distribution of the patients and controls according to the geographic area (region) and the month of the year of inclusion in the study. (DOC 70 kb)

Abbreviations

25(OH)D: 25-hydroxyvitamin D; ACPA: anti-cyclic citrullinated peptide antibodies; ACR: American College of Rheumatology; AS: ankylosing spondylitis; BASDAI (0–10): Bath ankylosing spondylitis disease activity index; BASFI (0–10): Bath ankylosing spondylitis functional index; BMI: body mass index; CARMA: Cardiovascular in rheumatology project; CIRD: chronic inflammatory rheumatic diseases; CRP: C-reactive protein; DAS28-ESR: Disease activity score including 28 joints-erythrocyte sedimentation rate; HAQ (0–3): Health assessment questionnaire; HLA-B27: histocompatibility leucocyte antigen B27; IQR: interquartile range; OR: odds ratio; p25 – p75: 25th to 75th percentile; PsA: psoriatic arthritis; RA: rheumatoid arthritis; RF: rheumatoid factor; SLE: systemic lupus erythematosus; SMA: Spanish Meteorological Agency.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

AUA, MAMM and SC carried out the data analysis and drafted the manuscript. CSP helped interpret the data and improve the manuscript. CGJ helped develop the study protocol and the manuscript, and also assisted in data interpretation. JL helped design the study protocol, interpret the data,
strenthen the manuscript and also performed the statistical analysis. FDG helped interpret the data and strengthen the manuscript. MAGG helped design and developed the CARMA project, assisted in data interpretation, and was responsible for the final draft of the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This publication was aided by members of the Research Unit of the SER. Dedicated to Dr José L. Fernández Sueiro who took part in the initial design of this project and passed away in 2012. The authors thank all of the health professionals and patients who generously participated in this study. Furthermore, the authors thank the approval of the study from all participating centers: Complejo Hospitalario A Coruña, A Coruña; Instituto Dexeus, Barcelona; Hospital Universitari Vall d’Hebron, Barcelona; Hospital Infantia Sofia, Madrid; Hospital S. Pedro de Alcántara, Cáceres; Hospital Son Llatzer, Palma de Mallorca; Hospital Unv. de Guadalajara; Hospital Clinic and Provincial, Barcelona; Hospital Clínic Universitari San Juan de Alicante; Hospital Clínico Universitario de Albacete; Hospital Mutua Terrassa, Terrassa; Hospital Ntra. Sra. de Candelaria, Santa Cruz de Tenerife; Hospital Universitario de Canarias, La Laguna, Tenerife; Hospital Universitarios de Valdecanas, Madrid; Hospital General de El Escorial, Madrid; Hospital General Virgen de la Concha, Zamora; Hospital Virgen de la Salud, Toledo; Hospital de los Reales, Madrid; Hospital Román y Cajal, Madrid; Hospital Universitari Vall d’Hebron de Barcelona; Hospital del Rainet, Zaragoza; Hospital General de Gran Canaria; Hospital de Cabueñas, Gijón; Hospital Gregorio Marañón, Madrid; Hospital Universitario de Salamanca; Hospital Unv. Marqués de Valdecilla, Santander; Hospital de la Marina Baixa, Alicante; Hospital de San Rafael, Barcelona; Hospital General Universitario, Valencia; Instituto Poal, Barcelona; Hospital Universitario Puerta de Hierro, Madrid; Hospital Clínico Universitario San Cecilio, A Coruña; Hospital Santiago Apóstol, Vitoria-Gasteiz; Consorci Sanitàri de Terrassa, Terrassa; Hospital de Valldecans, Barcelona; Hospital General de Albacete; Hospital Mutua Terrassa, Terrassa; Hospital Ntra. Sra. de Candelaria, Santa Cruz de Tenerife; Hospital Universitario de Canarias, La Laguna, Tenerife; Hospital Universitario de Valme, Sevilla; Institut Provincial de Rehabilitación, Madrid; Hospital de Cantoblanco, Madrid; Hospital Jerez de la Frontera, Cádiz; Hospital Obispual Polanco, Teruel; Hospital Infanta Leonor, Madrid; Hospital General de Elche, Alicante; Hospital Los Arcos, Murcia; Hospital Severo Ochoa, Madrid; Hospital Príncipe de Asturias, Madrid; Hospital Universitario 12 de Octubre, Madrid; Hospital Unius, Reina Sofia, Córdoba; Hospital Universitario de La Paz, Madrid; Hospital Gutiérrez Ortega, Valdepeñas, Ciudad Real; Hospital Virgen de la Arrixaca, Murcia; Hospital El Escorial, Madrid; Hospital de Basurto, Bilbao; Hospital Dos de Maig, Barcelona; Hospital del Mar, Barcelona; Hospital Universitario Son Espases, Palma de Mallorca; Hospital de Donostia, Donostia; Hospital de la Santa Creu i Sant Pau, Barcelona; Hospital de Palamós, Gerona; Hospital Comarcal de L’Alfàndec, Vilafranca del Penedès, Barcelona; Hospital Sierrallana, Torrelavega; Complejo Asistencial de León; Hospital General de Ciudad Real; Hospital General de Móstoles, Madrid; Hospital General Universitario de Elche, Alicante; Hospital Xeral Calde, Lugo. This project has been supported by an unrestricted grant from Abbvie, Spain. The design, interpretation of results and preparation of the manuscript has been done independently of Abbvie. Dr. González-Gay’s studies have been supported by grants from Fondo de Investigaciones Sanitarias, PS06/0024, PS09/00748 and PI12/00066, and RD12/009/0013 (RIER) from Instituto de Salud Carlos III (ISCIII) (Spain).

The members of the CARMA Project Collaborative Group include: José L. Fernández Sueiro and Eugenia González de Rábago (Complejo Hospitalario A Coruña, Xubias de Arriba, A Coruña); María J. González Fernández, Ramón Huguet Codina, Beata Zoldi and Mercedes Ramontem (Instituto Dexeus, Barcelona); Sara Marsal, Gabriela Avila and Cayetano Alegre (Hospital Clínico Universitario Vall d’Hebron, Barcelona); Martina Steiner, Tatiana Cobo and Santiago Muñoz (Hospital Infantia Sofia, Madrid); Fernando Gamo, José García Tornín and María P. Moreno Gil (Hospital S. Pedro de Alcántara, Cáceres); Antonio J. Masi, Pilar Esplugas, Immaculada Ros and Mónica Ibañez (Hospital Son Llatzer, Palma de Mallorca); Jesús Tomero and José A. Piqueras (Hospital Unv. de Guadalajara); Raúl Menor, Marta Medrano and Emilio Giner Serret (Hospital Obispual Polanco, Teruel); Laura Cebrián Méndez and María Teresa Navío (Hospital Infanta Leonor, Madrid); Cristina Fernández Carballido (Hospital General de Elche, Alicante); Encarnación Págan and Pablo Mesa del Castillo (Hospital Los Arcos, Murcia); Esperanza Naredo and Ana Cruz (Hospital Severo Ochoa, Madrid); Ana Turón (Hospital Príncipe de Asturias, Madrid); Isabel Mateo, Julio Sánchez and María Galindo (Hospital Unv. 12 de Octubre, Madrid); Eduardo Collantes, Desireé Ruiz and Pilar Font (Hospital Unius, Reina Sofia, Córdoba); Gema Bonilla (Hospital Unv. La Paz, Madrid); Antonio López Meseguer (Hospital Gutiérrez Ortega, Valdepeñas, Ciudad Real); Manuel J. Moreno and Luis F. Linares (Hospital Virgen de la Arrixaca, Murcia); Mercedes Morcillo and Maria L. González Gómez (Hospital del Escorial, Madrid); María L. García Vivar, Natalia A. Rivera and Olala Fernández (Bertareliota (Hospital de Basurto, Bilbao); Manel Riera and Yolanda María Leon (Hospital Dos de Maig, Barcelona); Joan Maymó and Miriam Amill (Hospital del Mar, Barcelona); Jordi Fiter, Julia Fernández Melón and Luis Espadero (Hospital Son Espases, Palma de Mallorca); Joaquín Belzunegui and Inmaculada Bañegil (Hospital de Donostia, Donostia); César Díaz (Hospital de la Santa Creu i Sant Pau, Barcelona); Ramón Vallès (Hospital de Palamós, Gerona); Iván Castellví and María Bonet (Hospital Comarcal de L’Alfàndec, Vilafranca del Penedes, Barcelona); Jaime Calvo Aken (Hospital Serrallega, Torrelavega); Trinidad Pineda Sandoval (Complejo Asistencial de León); Eva Revuelta Evarad (Hospital General de Ciudad Real); Javier R. Godo (Hospital General de Móstoles, Madrid); Francisco Navarro Blasco (Hospital General Universitario de Elche, Alicante); José A. Miranda-Filloy (Hospital Xeral Calde, Lugo).

Author details

1Division of Rheumatology, Hospital Can Misses, Callao 11, 07800 Ibiza, Spain. 2Research Unit of Spanish Society of Rheumatology, Calle Maig, Barcelona. 3Division of Rheumatology, Hospital U de la Princesa, JES-Princesa, Calle Diego de León 62, 28006 Madrid, Spain. 4Division of Rheumatology, Hospital Clínico (hospital CLINIC) Provincial, Barcelona; Oscar Fontseré Patón, Benjamin Fernández Gutiérrez and Lydia Abasolo (Hospital Clínico Universitario de Navarra, Pamplona). 5Division of Rheumatology, Hospital de Jerez de la Frontera, Cádiz; José M. Moreno and Emilio Giner Serret (Hospital Obispual Polanco, Teruel); Laura Cebrián Méndez and María Teresa Navío (Hospital Infanta Leonor, Madrid); Cristina Fernández Carballido (Hospital General de Elche, Alicante); Encarnación Págan and Pablo Mesa del Castillo (Hospital Los Arcos, Murcia); Esperanza Naredo and Ana Cruz (Hospital Severo Ochoa, Madrid); Ana Turón (Hospital Príncipe de Asturias, Madrid); Isabel Mateo, Julio Sánchez and María Galindo (Hospital Unv. 12 de Octubre, Madrid); Eduardo Collantes, Desireé Ruiz and Pilar Font (Hospital Unius, Reina Sofia, Córdoba); Gema Bonilla (Hospital Unv. La Paz, Madrid); Antonio López Meseguer (Hospital Gutiérrez Ortega, Valdepeñas, Ciudad Real); Manuel J. Moreno and Luis F. Linares (Hospital Virgen de la Arrixaca, Murcia); Mercedes Morcillo and Maria L. González Gómez (Hospital del Escorial, Madrid); María L. García Vivar, Natalia A. Rivera and Olala Fernández (Bertareliota (Hospital de Basurto, Bilbao); Manel Riera and Yolanda María Leon (Hospital Dos de Maig, Barcelona); Joan Maymó and Miriam Amill (Hospital del Mar, Barcelona); Jordi Fiter, Julia Fernández Melón and Luis Espadero (Hospital Son Espases, Palma de Mallorca); Joaquín Belzunegui and Inmaculada Bañegil (Hospital de Donostia, Donostia); César Díaz (Hospital de la Santa Creu i Sant Pau, Barcelona); Ramón Vallès (Hospital de Palamós, Gerona); Iván Castellví and María Bonet (Hospital Comarcal de L’Alfàndec, Vilafranca del Penedes, Barcelona); Jaime Calvo Aken (Hospital Serrallega, Torrelavega); Trinidad Pineda Sandoval (Complejo Asistencial de León); Eva Revuelta Evarad (Hospital General de Ciudad Real); Javier R. Godo (Hospital General de Móstoles, Madrid); Francisco Navarro Blasco (Hospital General Universitario de Elche, Alicante); José A. Miranda-Filloy (Hospital Xeral Calde, Lugo).
