Search for narrow resonances decaying to dijets in proton-proton collisions at $\sqrt{s} = 13$ TeV

CMS Collaboration; Canelli, F; Chiochia, V; Kilminster, B; Robmann, P; et al

Abstract: A search for narrow resonances in proton-proton collisions at $\sqrt{s} = 13$ TeV is presented. The invariant mass distribution of the two leading jets is measured with the CMS detector using a data set corresponding to an integrated luminosity of 2.4 fb$^{-1}$. The highest observed dijet mass is 6.1 TeV. The distribution is smooth and no evidence for resonant particles is observed. Upper limits at 95% confidence level are set on the production cross section for narrow resonances with masses above 1.5 TeV. When interpreted in the context of specific models, the limits exclude string resonances with masses below 7.0 TeV, scalar diquarks below 6.0 TeV, axigluons and colorons below 5.1 TeV, excited quarks below 5.0 TeV, color-octet scalars below 3.1 TeV, and W bosons below 2.6 TeV. These results significantly extend previously published limits.

DOI: https://doi.org/10.1103/PhysRevLett.116.071801

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-130180
Journal Article
Published Version

Originally published at:
CMS Collaboration; Canelli, F; Chiochia, V; Kilminster, B; Robmann, P; et al (2016). Search for narrow resonances decaying to dijets in proton-proton collisions at $\sqrt{s} = 13$ TeV. Physical Review Letters, 116(7):071801.
DOI: https://doi.org/10.1103/PhysRevLett.116.071801
Search for Narrow Resonances Decaying to Dijets in Proton-Proton Collisions at $\sqrt{s} = 13$ TeV

V. Khachatryan et al. (CMS Collaboration)

(Received 3 December 2015; published 18 February 2016)

A search for narrow resonances in proton-proton collisions at $\sqrt{s} = 13$ TeV is presented. The invariant mass distribution of the two leading jets is measured with the CMS detector using a data set corresponding to an integrated luminosity of 2.4 fb$^{-1}$. The highest observed dijet mass is 6.1 TeV. The distribution is smooth and no evidence for resonant particles is observed. Upper limits at 95% confidence level are set on the production cross section for narrow resonances with masses above 1.5 TeV. When interpreted in the context of specific models, the limits exclude string resonances with masses below 7.0 TeV, scalar diquarks below 6.0 TeV, axigluons and colorons below 5.1 TeV, excited quarks below 5.0 TeV, color-octet scalars below 3.1 TeV, and W' bosons below 2.6 TeV. These results significantly extend previously published limits.

DOI: 10.1103/PhysRevLett.116.071801

Deep inelastic proton-proton (pp) collisions often produce two or more energetic jets when the constituent partons are scattered with large transverse momenta (p_T). The invariant mass m_γ of the pair of jets having the largest values of p_T in the event (the dijet) has a spectrum that is predicted by quantum chromodynamics (QCD) to fall steeply and smoothly with increasing dijet mass [1,2]. Many extensions of the standard model predict the existence of new massive particles that couple to quarks (q) and gluons (g) and can be detected as resonances in the dijet mass spectrum. In this Letter, we report a search for narrow resonances, those with natural widths that are small compared to their mass m, using data recorded with the CMS detector from proton-proton collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV. The data correspond to an integrated luminosity of 2.4 fb$^{-1}$ from the 2015 running of the CERN LHC (Run 2).

The most stringent current bounds on dijet resonance production have been presented by the CMS [3–7] and ATLAS [8–12] Collaborations, using proton-proton collisions at $\sqrt{s} = 7$ and 8 TeV from LHC Run 1. A summary of previous searches and a comparison of the different strategies are presented in Ref. [13]. The present search is expected to be more sensitive than previous studies for dijet masses above 2 TeV, and has similar sensitivity as a contemporaneous search from ATLAS at $\sqrt{s} = 13$ TeV [14]. We present a model-independent search and, in addition, consider the following models of s-channel dijet resonances: string resonances [15,16], scalar diquarks [17], axigluons [18,19], colorons [19,20], excited quarks (q^*) [21,22], color-octet scalars [23], new gauge bosons (W' and Z') [24], and Randall-Sundrum (RS) gravitons (G) [25]. More details on the specific choices of couplings for these models can be found in Ref. [5].

The CMS detector and its coordinate system, including the azimuthal angle ϕ (in radians) and the pseudorapidity η, are described in detail in Ref. [26]. Events are selected using a two-tier trigger system. Events satisfying loose jet requirements at the first level (L1) are examined by the high-level trigger (HLT), where jets are clustered from particle-flow (PF) [27,28] candidates, discussed in the next paragraph. The jets with $p_T > 40$ GeV and $|\eta| < 3$ are used to compute H_T, the scalar sum of the jet p_T. Events are accepted if they have $H_T > 800$ GeV or include a jet with $p_T > 500$ GeV. At least one reconstructed vertex is required with $|z| < 24$ cm. The primary vertex is defined as the vertex with the highest sum of p_T^2 of the associated tracks.

The PF algorithm is used to reconstruct the particles in an event and to identify them as muons, electrons (with associated bremsstrahlung photons), photons (unconverted and converted into e^+e^- pairs), and either charged or neutral hadrons. These PF candidates are clustered into jets using the anti-k_t algorithm [29] with a distance parameter of 0.4, implemented in the FastJet package [30]. Charged PF candidates not originating from the primary vertex are removed prior to the jet finding. An event-by-event jet-area-based correction [31–33] is applied to the jets to remove the estimated energy from additional collisions in the same or adjacent bunch crossings (pileup). The jet momenta and energies are further corrected using calibration constants obtained from simulation, test beam results, and pp collision data at $\sqrt{s} = 13$ TeV, using methods
described in Ref. [33] with all in situ calibrations obtained from the current data. All jets are required to have $p_T > 30 \text{ GeV}$ and $|\eta| < 2.5$. The two jets with largest p_T are defined as the leading jets. Jet identification criteria [34] are applied to remove spurious jets associated with calorimeter noise. An event is rejected if either of the two leading jets does not satisfy the jet identification criteria.

Geometrically close jets are combined into “wide jets” and used to determine the dijet mass, as in our previous searches [4–7]. The wide-jet algorithm, designed for dijet resonance event reconstruction, reduces the analysis sensitivity to gluon radiation from the final state partons. The background from t-channel dijet events is suppressed by requiring the pseudorapidity separation of the two wide jets to satisfy $|\Delta\eta_{jj}| < 1.3$. The above requirements, originally developed for the analysis of Run 1 data, maximize the search sensitivity for isotropic decays of dijet resonances in the presence of QCD dijet background. It has been verified that these requirements remain optimal for collisions at $\sqrt{s} = 13 \text{ TeV}$. We select events with $m_{jj} > 1.2 \text{ TeV}$ for which the combined L1 trigger and HLT are found to be fully efficient.

Figure 1 shows the dijet mass spectrum, defined as the observed number of events in each bin divided by the integrated luminosity and bin width, with predefined bins of width corresponding to the dijet mass resolution [3]. The highest dijet mass observed is 6.1 TeV. The predicted mass distributions have Gaussian parametrization (solid curve) and to the prediction of the detector (dashed curve). The lower panel shows the difference between the data and the fitted parametrization, divided by the statistical uncertainties. The predicted distributions of narrow resonance signals for three models, with resonance mass values corresponding to the respective 95% confidence level exclusion limit, are shown in both panels (dash-dotted curves).

![Dijet mass spectrum](image)

FIG. 1. Dijet mass spectrum (points) compared to a fitted parametrization (solid curve) and to the prediction of the PYTHIA 8 [35] QCD MC event generator including simulation of the detector (dashed curve). The lower panel shows the difference between the data and the fitted parametrization, divided by the statistical uncertainties. The predicted distributions of narrow resonance signals for three models, with resonance mass values corresponding to the respective 95% confidence level exclusion limit, are shown in both panels (dash-dotted curves).

We search in the dijet mass spectrum for narrow resonances. Figure 2 shows example dijet mass distributions for simulated signal events, generated with the PYTHIA 8 program. The predicted mass distributions have Gaussian cores from the jet energy resolution, and tails towards lower mass values primarily from QCD radiation. The contribution of this low-mass tail to the line shape depends on the parton content of the resonance (qq, gg, or gg). Resonances containing gluons, which emit QCD radiation more strongly than quarks, have a more pronounced tail. For the high-mass resonances, there is also a significant contribution that depends both on the PDF and on the natural width of the Breit-Wigner resonance. For resonances produced through interactions of nonvalent partons in the proton, the low-mass component of the Breit-Wigner resonance distribution is amplified by the rise of the parton probability distribution at low fractional momentum. These effects cause a large tail at low mass values. Neglecting the tails, the approximate value of the dijet mass resolution varies with resonance mass from 7% at 1.5 TeV to 4% at 7 TeV.

There is no evidence for a narrow resonance in the data, as seen from Fig. 1. The most significant excess in the data relative to the background fit occurs for a dijet mass of...
3.9 TeV. A fit to the hypothesis of a narrow qq resonance, which includes contributions from the bin at 3.9 TeV and neighboring bins, has a local statistical significance of 1.7 standard deviations. Figure 1 includes example signal distributions of the three kinds of narrow resonances (qq, qg, and gg) at the mass values (6.0, 5.0, and 3.1 TeV) corresponding to the limit set on the respective models (scalar diquark, excited quark, and color-octet scalar). These limits are presented below.

We use the dijet mass spectrum from wide jets, the background parametrization, and the dijet resonance shapes to set limits on new particles decaying to the parton background. The generated mass spectra are therefore not considered. Examples of the resonance shapes used are shown in Fig. 2. The data are fitted with the background function plus a signal shape, with the signal cross section a fitted parameter. The resulting fitting function, with the signal cross section set to zero, is used as the background estimate. The likelihood is formed using as input the data, the background estimate from the best fit, and the dependence of the dijet resonance shape on the type of the two final-state partons.

The dominant sources of systematic uncertainty are the jet energy scale, jet energy resolution, integrated luminosity, and the estimation of background. The uncertainty in the jet energy scale is 2%, determined from Run 2 data using the methods described in Ref. [33]. This uncertainty is propagated to the limits by shifting the dijet mass for signal events by ±2%. The uncertainty in the jet energy resolution translates into an uncertainty of 10% in the resolution of the dijet mass [33], and is propagated to the limits by increasing and decreasing by 10% the reconstructed width of the dijet mass shape for signal. The luminosity scale and its uncertainty are estimated from beam-beam scans utilizing the methods from Ref. [41]. The uncertainty in the integrated luminosity is 12%, and is propagated to the normalization of the signal. Not included in this analysis is a recent reevaluation of the integrated luminosity that increases the measured value by 4.3% and reduces the systematic uncertainty to 4.6%. Changes in the values of the parameters describing the background introduce a change in the signal strength that is accounted for as a systematic uncertainty. The dependence of the signal mass distributions on the number of pileup interactions is negligible.

To set upper limits on signal cross sections we use a Bayesian formalism [42] with a uniform prior for a positive signal cross section; log-normal priors are used to model systematic uncertainties in the jet energy scale, jet energy resolution, and integrated luminosity, all treated as nuisance parameters to be integrated over. We calculate the likelihood, namely the posterior probability density as a function of resonance cross section, independently at each value of resonance pole mass from 1.5 to 7.2 TeV in 0.1 TeV steps. Resonances with masses less than 1.5 TeV are too close to the lower edge of our dijet mass spectrum to produce a peak distinguishable from the background and are therefore not considered. Examples of the resonance shapes used are shown in Fig. 2. The data are fitted with the background function plus a signal shape, with the signal cross section a fitted parameter. The resulting fitting function, with the signal cross section set to zero, is used as the background estimate. The likelihood is formed using as input the data, the background estimate from the best fit of the signal + background hypothesis to the data, and the resonance shape multiplied by the resonance cross section. The uncertainty in the background is incorporated through marginalization, i.e., by integrating the likelihood over the background parameters using uniform priors. The integration is performed for each of the background nuisance parameters in a range around the best-fit values, corresponding to a decrease in the likelihood by a factor of 1000 from its maximum value for each parameter independently.

Figure 3 shows the model-independent observed upper limits at 95% confidence level (C.L.) on $σBA$, i.e., the product of the cross section ($σ$), the branching fraction (B), and the acceptance (A) for the kinematic requirements $|Δη_{jj}| < 1.3$ and $|η| < 2.5$, for narrow qq, qg, and gg resonances. The acceptance of the requirement $m_{jj} > 1.2$ TeV has been taken into account by correcting the limits, and therefore does not appear in the acceptance A. Figure 3 also shows the expected limits on the cross section and their bands of uncertainty. The expected limits are estimated with pseudoexperiments generated using background-only hypotheses. The generated mass spectra are fit with a background + signal model to extract expected upper limits. The difference in the limits for qq, qg, and gg resonances at the same resonance mass originates from the difference in their line shapes. All upper limits presented

FIG. 2. The reconstructed resonance mass spectrum predicted by the *PYTHIA 8* [35] MC event generator, including simulation of the detector, for resonances generated with mass values 1, 3, 5, and 7 TeV, for quark-quark processes modeled by $q\bar{q} \to G \to q\bar{q}$ (solid line), for quark-gluon processes modeled by $qg \to q^* \to qg$ (dotted line), and for gluon-gluon processes modeled by $gg \to G \to gg$ (dashed line), where G is a RS graviton and q^* is an excited quark.
are compared to the parton-level predictions of σBA, without detector simulation, to determine mass limits on new particles. The model predictions shown in Fig. 3 are calculated in the narrow-width approximation [13] using the CTEQ6L1 [43] PDF at leading order, with a next-to-leading order correction factor of approximately 1.3 included for the W' and Z' models [44], and approximately 1.2 for the axigluon and coloron models [19]. The branching fraction B includes the direct decays of the resonance into qq, qg, and gg only, excluding top quarks, and no other decays giving jets are considered in the theoretical calculation of the model cross section. The acceptance is evaluated at the parton level for the resonance decay to two partons. In the case of isotropic decays it is $A \approx 0.6$ independent of resonance mass.

For a given model, new particles are excluded at 95% CL in mass regions where the theoretical prediction lies at or above the observed upper limit for the appropriate final state of Fig. 3. The mass limits reported in Table I represent significant extensions of the most stringent observed limits from LHC Run 1 [7,12]. For string resonances, the observed mass limit of 7.0 TeV extends the previous CMS limit of 5.0 TeV; for scalar diquarks, the observed mass limit of 6.0 TeV extends the previous CMS limit of 4.7 TeV; for axigluons and colorons, the observed mass limit of 5.1 TeV extends the previous CMS limit of 3.6 TeV;
for excited quarks, we set a mass limit of 5.0 TeV compared to the ATLAS limit of 4.06 TeV; for a color-octet scalar, the observed mass limit of 3.1 TeV improves the ATLAS limit of 2.70 TeV; and for a W' boson, we exclude masses up to 2.6 TeV, just beyond the ATLAS limit of 2.45 TeV. With the current data sample we cannot set mass limits on Z' bosons with standard-model-like couplings or on RS gravitons with dimensionless coupling less than 0.1.

In summary, a search for narrow resonances decaying into a pair of jets has been performed using a data sample of pp collisions at $\sqrt{s} = 13$ TeV corresponding to an integrated luminosity of 2.4 fb$^{-1}$. The dijet mass spectrum has been measured to be a smoothly falling distribution. In the analyzed data sample, there is no evidence for resonant particle production. We present generic upper limits on the observed data sample, there is no evidence for resonant excited quarks, color-octet scalars, and W' bosons.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MPS and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).
INFN Sezione di Firenze, Università di Firenze, Firenze, Italy

INFN Sezione di Firenze

INFN Laboratori Nazionali di Frascati, Frascati, Italy

INFN Sezione di Genova, Università di Genova, Genova, Italy

INFN Sezione di Napoli, Università di Napoli 'Federico II', Napoli, Italy, Università della Basilicata, Potenza, Italy, Università G. Marconi, Roma, Italy

INFN Sezione di Napoli

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy

INFN Sezione di Milano-Bicocca

INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy

INFN Sezione di Padova

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy

INFN Sezione di Pisa

INFN Sezione di Roma

INFN Sezione di Torino, Università di Torino, Torino, Italy, Università del Piemonte Orientale, Novara, Italy

INFN Sezione di Torino

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy

INFN Sezione di Trieste

Kangwon National University, Chunchon, Korea

Kyungpook National University, Daegu, Korea

Chonbuk National University, Jeonju, Korea

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

Korea University, Seoul, Korea

Seoul National University, Seoul, Korea

University of Seoul, Seoul, Korea

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

University of Auckland, Auckland, New Zealand

University of Canterbury, Christchurch, New Zealand

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
115 Northeastern University, Boston, Massachusetts, USA
116 Northwestern University, Evanston, Illinois, USA
117 University of Notre Dame, Notre Dame, Indiana, USA
118 Ohio State University, Columbus, Ohio, USA
119 Princeton University, Princeton, New Jersey, USA
120 University of Puerto Rico, Mayaguez, Puerto Rico
121 Purdue University, West Lafayette, Indiana, USA
122 Purdue University Calumet, Hammond, Indiana, USA
123 Rice University, Houston, Texas, USA
124 University of Rochester, Rochester, New York, USA
125 Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
126 University of Tennessee, Knoxville, Tennessee, USA
127 Texas A&M University, College Station, Texas, USA
128 Texas Tech University, Lubbock, Texas, USA
129 Vanderbilt University, Nashville, Tennessee, USA
130 University of Virginia, Charlottesville, Virginia, USA
131 Wayne State University, Detroit, Michigan, USA
132 University of Wisconsin—Madison, Madison, Wisconsin, USA

*Deceased.

Also at Vienna University of Technology, Vienna, Austria.
Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.
Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
Also at Universidade Estadual de Campinas, Campinas, Brazil.
Also at Centre National de la Recherche Scientifique (CNRS)—IN2P3, Paris, France.
Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at British University in Egypt, Cairo, Egypt.
Also at Suez University, Suez, Egypt.
Also at Cairo University, Cairo, Egypt.
Also at Fayoum University, El-Fayoum, Egypt.
Also at Université de Haute Alsace, Mulhouse, France.
Also at Tbilisi State University, Tbilisi, Georgia.
Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
Also at University of Hamburg, Hamburg, Germany.
Also at Brandenburg University of Technology, Cottbus, Germany.
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
Also at Eötvös Loránd University, Budapest, Hungary.
Also at University of Debrecen, Debrecen, Hungary.
Also at Wigner Research Centre for Physics, Budapest, Hungary.
Also at Indian Institute of Science Education and Research, Bhopal, India.
Also at University of Visva-Bharati, Santiniketan, India.
Also at King Abdulaziz University, Jeddah, Saudi Arabia.
Also at University of Ruhuna, Matara, Sri Lanka.
Also at Isfahan University of Technology, Isfahan, Iran.
Also at University of Tehran, Department of Engineering Science, Tehran, Iran.
Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Also at Laboratori Nazionali di Legnaro dell’INFN, Legnaro, Italy.
Also at Università degli Studi di Siena, Siena, Italy.
Also at Purdue University, West Lafayette, USA.
Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
Also at Malaysian Nuclear Agency, MOSTL Kajang, Malaysia.
Also at Consejo Nacional de Ciencia y Tecnología, Mexico city, Mexico.
Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
Also at Institute for Nuclear Research, Moscow, Russia.
Also at National Research Nuclear University ’Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
