On Submodules of Modules over Group Rings

Ortaç Öneşa, Mustafa Alkana, Mehmet Ucb

aDepartment of Mathematics, Akdeniz University, 07058 Antalya, Turkey
bDepartment of Mathematics, Mehmet Akif Ersoy University, 15030 Burdur, Turkey

Abstract. In this paper, we find some connections between submodules of a module over a group ring \(RG\) and subgroups of a group \(G\). Also, we prove that there is a direct connection between conjugate elements of \(G\) and \(RG\)-submodules of \(M\). Finally, we show that there is a correspondence between the associative powers \(\Delta_{n!}(G)\) of \(\Delta_n(G)\) and \(i\)th dimension subgroups \(\nabla_i(\Delta_n(G))\) of \(G\) over \(R\).

1. Introduction

The history of group rings dates back to long time and since then, many survey articles have appeared ([3], [6], [12], [13], [17]). But modules over group rings are one of the subjects studied in recent years by a lot of authors interested in algebra ([4], [5], [7], [8], [16]). As distinct from the definition of group module over group rings as defined in [7], we gave a definition of group module over group rings with the help of a group homomorphism from \(G\) to \(\text{End}(M)\) in [16]. As a continuous study of our previous paper, in here by this previous definition, we give some characterizations for modules over group rings in this paper.

Throughout this paper, all rings are commutative with identity and all modules are unital group modules over group rings unless stated otherwise.

Let \(R\) be a commutative ring with identity and \(G\) a group. The group ring of \(G\) over \(R\) is denoted by \(RG\), which is the set of all formal expressions of the form \(\sum r_g g\) where \(r_g \in R\) and \(r_g = 0\) for almost every \(g \in G\).

For elements \(r = \sum r_g g, s = \sum s_g g \in RG\), by writing \(r + s\), we mean \(r_g = s_g\) for all \(g \in G\).

In fact, \(RG\) is a ring with the following sum and multiplication

\[
r + s = \sum_{g \in G} r_g g + \sum_{g \in G} s_g g = \sum_{g \in G} (r_g + s_g) g
\]

and

\[
r a = \sum_{g, h \in G} (r_g a_h) (gh) = \sum_{g \in G} \sum_{h \in G} (r_g a_{h^{-1} g}) g
\]

2010 Mathematics Subject Classification. Primary 16S34; Secondary 20C05

Keywords. Group ring, Group Module, Module Filtration, Dimension Subgroup

Received: 10 February 2019; Revised: 07 April 2019; Accepted: 10 April 2019

Communicated by Yılmaz Simsek

We would like to thank the Scientific Technological Research Council of Turkey (TUBITAK) for funding through the project 116F056.

Email addresses: ortacns@gmail.com (Ortaç Öneş), alkan@akdeniz.edu.tr (Mustafa Alkan), mehmetuc@mehmetakif.edu.tr (Mehmet Uc)
where \(a = \sum_{h \in G} a_h h \in RG \).

The augmentation map of \(RG \) is a ring homomorphism from \(RG \) to \(R \) given by \(\sum_{g \in G} r_g g \to \sum_{g \in G} r_g \) and its kernel denoted by \(\Delta_R(G) \) is called the augmentation ideal of \(RG \). In other words, the ideal \(\Delta_R(G) \) of \(RG \) is defined as the following set:

\[
\left\{ \sum_{g \in G} r_g (g - 1) : g \in G, g \neq 1, r_g \in R \right\}.
\]

For a left ideal \(I \) of \(RG \), which is a subgroup of \(G \), is defined as the following set:

\[
[g \in G : g - 1 \in I] = G \cap (1 + I).
\]

One can observe that \(\nabla(\Delta_R(G, H)) = H \) for a subgroup \(H \) of \(G \).

Based on the definition and structure of a group ring, a group module over a group ring is defined as follows:

Let \(\tau \) be a group homomorphism from \(G \) to \(\text{End}(M) \). For all \(g \in G \), \(m \in M \), the multiplication \(mg \) is defined as

\[
mg = \tau(g)(m).
\]

In here, \(M \) is an \(RG \)-module with this multiplication and the group homomorphism \(\tau \) is a representation of \(G \) for \(M \over R \) ((16)).

Alkan generalized the augmentation mapping of \(RG \) to the group module in [2] and proved the following property:

\[
\Delta_M(H) = \left\{ \sum_{h \in H} \alpha_h (h - 1) : \alpha_h \in M \right\}
\]

is an \(RG \)-submodule of \(M \) and

\[
\Delta_M(H) = M \cdot \Delta_R(G, H),
\]

where \(H \) is a normal subgroup of \(G \).

Besides the relations among \(RG \)-submodules of a group module \(MG \) with regard to normal subgroups and elements of \(G \), there are other relations among subgroups of \(G \) and \(\Delta_R(G) \), its associative powers \(\Delta_R^i(G) \) and \(\Delta_M(G) \), its associative powers \(\Delta_M^i(G) \) which are defined below.

Firstly recall that associative powers

\[
\Delta_R^i(G) = \left\{ \sum_{g_1, g_2, \ldots, g_i \in H} r_{g_1, g_2, \ldots, g_i} (g_1 - 1)(g_2 - 1) \ldots (g_i - 1) : r_{g_1, g_2, \ldots, g_i} \in R \right\}
\]

of \(\Delta_R(G) \) are ideals of \(RG \). So, \(\Delta_R^i(G) \) is generated as an \(R \)-module by the elements \((g_1 - 1)(g_2 - 1) \ldots (g_i - 1) \) where \(g_1, g_2, \ldots, g_i \in G \). Since all \(\Delta_R^i(G) \)'s are ideals of \(RG \), we have \(G \cap (1 + \Delta_R^i(G)) = \nabla(\Delta_R^i(G)) \), which is a normal subgroup of \(G \). These normal subgroups \(\nabla(\Delta_R^i(G)) \) of \(G \) for \(i \geq 1 \) are called \(i \)-th dimension subgroups of \(G \) over \(R \). And, \(G = \nabla(\Delta_R(G)) \geq \nabla(\Delta_R^2(G)) \geq \ldots \geq \nabla(\Delta_R^i(G)) \geq \ldots \) is a filtration of \(G \).

Moreover, the decreasing series \(\Delta_R(G) \geq \Delta_R^2(G) \geq \ldots \geq \Delta_R^i(G) \geq \ldots \) is a filtration of the augmentation ideal \(\Delta_R(G) \). This filtration has the property that \(\Delta_R^i(G) \Delta_R^j(G) \subseteq \Delta_R^{i+j}(G) \).

In this paper, we find some connections between \(RG \)-submodules of \(M \) over \(RG \) and subgroups of \(G \) and a correspondence between associative powers \(\Delta_M^i(G) \)'s of \(\Delta_M(G) \) and \(i \)-th dimension subgroups \(\nabla(\Delta_R^i(G)) \) of \(G \).
In Section 2, we firstly deal with the structure of RG-submodules related to subgroups of G in Lemma 2.1 and Proposition 2.2. After giving a relation for a normal group of G related to an RG-submodule in Lemma 2.4, we prove that

$$\Delta_M(G, \nabla(N)) = \sum_{i=1}^{k} (\Delta_M(G, <x_i>))$$

if $\nabla(N) = <x_1, x_2, ... , x_k>$, where $x_i \in G$ and N is an RG-submodule of an RG-module M, in Theorem 2.5. Before Theorem 2.6, we deal with an RG-submodule of M to find a correspondence between conjugate elements of G and RG-submodules of M. Thus we close Section 2 by the following result: If

$$H_1 = gH_2g^{-1}$$

holds, then we have

$$\Delta_M(G, H_1) = \Delta_M(G, H_2),$$

where $g \in G$ and H_1 is a subgroup of G.

In Section 3, we firstly define associative powers of $\Delta_M(G)$ in Definition 3.1. After showing that $\Delta_M^i(G)$ is an RG-submodule of MG for $i \geq 1$ in Lemma 3.2, we give a characterization for $\Delta_M^i(G)$ in Lemma 3.3. Finally, in Theorem 3.5, we prove that there is a correspondence between the descending module filtration

$$\Delta_M(G) \geq \Delta_M^i(G) \geq ... \geq \Delta_M^2(G) \geq \Delta_M^1(G) \geq ...$$

and the filtration

$$G = \nabla(\Delta_M(G)) \geq \nabla(\Delta_M^2(G)) \geq ... \geq \nabla(\Delta_M^i(G)) \geq ...$$

of G.

2. Submodules related to normal subgroups

In this section, we examine the connections between RG-submodules of M over RG and subgroups of G.

Lemma 2.1. Let H_1 and H_2 be normal subgroups of a group G and M be an RG-module. Then

i) $\Delta_M(G, <H_1 \cup H_2>) = \Delta_M(G, H_1) + \Delta_M(G, H_2)$, where $<H_1 \cup H_2>$ is the set generated by H_1 and H_2.

ii) $\Delta_M(G, H_1 \cap H_2) \subseteq \Delta_M(G, H_1) \cap \Delta_M(G, H_2)$.

Proof. i) It is clear that $\Delta_M(G, H_1) + \Delta_M(G, H_2) \subseteq \Delta_M(G, <H_1 \cup H_2>)$.

Take an element x in $\Delta_M(G, <H_1 \cup H_2>)$. Then $x = \sum_{g \in <H_1 \cup H_2>} m_g(g-1)$, where $m_g \in M$ and $g \in <H_1 \cup H_2>$. Since $g \in <H_1 \cup H_2>$, we get $x \in \Delta_M(G, H_1) + \Delta_M(G, H_2)$. Thus we have $\Delta_M(G, <H_1 \cup H_2>) = \Delta_M(G, H_1) + \Delta_M(G, H_2)$.

ii) Take an element x in $\Delta_M(G, H_1 \cap H_2)$. Then $x = \sum_{g \in H_1 \cap H_2} m_g(g-1)$, where $m_g \in M$ and $g \in H_1 \cap H_2$. Since $g \in H_1 \cap H_2$, it follows that $g \in H_1$ and $g \in H_2$. Thus $x \in \Delta_M(G, H_1) \cap \Delta_M(G, H_2)$. \square

Proposition 2.2. Let N be an RG-submodule of an RG-module M. Then

i) $\Delta_N(H) = \left\{ \sum_{h \in N} n_h(h-1) : n_h \in N \right\} \subseteq \Delta_M(G)$ is an R-submodule of M.

ii) $\Delta_{\Sigma_N}(H) = \sum \Delta_N(H)$ for submodule N_i of M.

Proof. i) It is clear that the sum of any two elements in $\Delta_N(H)$ is in $\Delta_N(H)$. Let $r \in R$ and $x \in \Delta_N(H)$. Then $r \cdot x = r \left(\sum_{y \in H} n_y (y - 1) \right) = \sum_{y \in H} rn_y (y - 1) \in \Delta_N(H)$, where $rn_y \in N$.

ii) Let x be in $\Delta_{\Sigma N}(H)$. Then $x = \sum_{h \in H} n_h (h - 1)$ with $n_h \in \sum N_i$. Since $n_h \in \sum N_i$, we have $n_h = t_{i_1} + t_{i_2} + \ldots + t_{i_k}$ with $t_{i_k} \in N_i$, and so

\[
x = \sum_{h \in H} n_h (h - 1) = \sum_{h \in H} (t_{i_1} + t_{i_2} + \ldots) (h - 1)
= \sum_{h \in H} t_{i_1} (h - 1) + \sum_{h \in H} t_{i_2} (h - 1) + \ldots \in \Delta_N(H).
\]

Let x be in $\sum \Delta_N(H)$. Then $x = \sum_{h \in H} n_{h_1} (h - 1) + \sum_{h \in H} n_{h_2} (h - 1) + \ldots$ and $n_{h_i} \in N_i$. Since $\sum n_{h_i} \in \sum N_i$, it follows that

\[
x = \sum_{h \in H} \left(\sum n_{h_i} \right) (h - 1) \in \Delta_{\Sigma N}(H)
\]

This completes the proof. \qed

Corollary 2.3. Let N be an RG-submodule of an RG-module M. If N is generated by the set S, then we have

\[
\Delta_N(H) = \left\{ \sum_{h \in H} s_h r_h (h - 1) : s_h \in S, r_h \in R \right\}.
\]

Proof. The proof of this result is similar to the proof of (ii) in Proposition 2.2. \qed

Let N be an RG-submodule of M. Then a subgroup $\triangledown(N)$ of G is defined in [2] as

\[
\triangledown(N) = G \cap (1 + (N : \text{RG} M)) = \left\{ g \in G : g - 1 \in (N : \text{RG} M) \right\}.
\]

Then we give the following lemma.

Lemma 2.4. Let N_i be an RG-submodule of an RG-module M. Then the followings hold:

i) $\bigcup_{i=1}^{n} \triangledown(N_i) \subseteq \triangledown \left(\sum_{i=1}^{n} N_i \right)$, where n is a positive integer.

ii) $\triangledown(\cap M(G, H_i)) = \cap H_i$, where H_i is a normal subgroup of a group G.

Proof. i) Using the distributive law, we have the following:

\[
\bigcup_{i=1}^{n} \triangledown(N_i) = \bigcup_{i=1}^{n} (G \cap (1 + (N_i : \text{RG} M)))
= G \cap \left(\bigcup_{i=1}^{n} (1 + (N_i : \text{RG} M)) \right)
\subseteq G \cap \left(1 + \left(\sum_{i=1}^{n} N_i : \text{RG} M \right) \right)
= \triangledown \left(\sum_{i=1}^{n} N_i \right).
\]

ii) Let g be in $G \cap (1 + \cap M(G, H_i))$. Then $g - 1 \in \cap M(G, H_i) \subseteq \Delta_M(G, H_i)$. Thus $g \in G \cap (1 + \Delta_M(G, H_i)) = \triangledown(\Delta_M(G, H_i)) = H_i$ and so $g \in \cap H_i$.

Let g be in $\cap H_i$. Then $g \in H_i$ for each i. Since $H_i = \triangledown(\Delta_M(G, H_i))$, it follows that $g \in \triangledown(\Delta_M(G, H_i))$. \qed
Theorem 2.5. Let $x_i \in G$ and N be an RG-submodule of an RG-module M. If $\forall (N) = \langle x_1, x_2, ..., x_k \rangle$, then we have

$$\Delta_M(G, \forall (N)) = \sum_{i=1}^k (\Delta_M(G, < x_i >)).$$

Proof. Since $x_i \in \forall (N)$ for all i, it follows that $\sum_{i=1}^k (\Delta_M(G, < x_i >)) \subseteq \Delta_M(G, \forall (N))$.

Let $\forall (N) = \langle x_1, x_2, ..., x_k \rangle$ and let x be in $\Delta_M(G, \forall (N))$. Then $x = \sum_{h \in \forall (N)} m_h(h - 1)$ with $m_h \in M$. Since $\forall (N) = \langle x_1, x_2, ..., x_k \rangle$, for each $x_i \in \forall (N)$, there exist some positive numbers $y_{1i}, y_{2i}, ..., y_{ki}$ such that $h = x_1^{y_{1i}}x_2^{y_{2i}}...x_k^{y_{ki}}$.

$$x = \sum_{h \in \forall (N)} m_h(h - 1) = \sum_{h \in \forall (N)} m_h \left(x_1^{y_{1i}}x_2^{y_{2i}}...x_k^{y_{ki}} - 1 \right)$$

$$= \sum_{h \in \forall (N)} m_h \left(\sum_{i=1}^k \left(x_1^{y_{1i}}x_2^{y_{2i}}...x_k^{y_{ki}} - 1 \right) \right) \in \sum_{i=1}^k \Delta_M(G, < x_i >).$$

We recall a well-known definition from [9]. Let g and h be two elements of a group G. The element ghg^{-1} is called the conjugate of h by g.

We are now ready to prove the relation between conjugate subgroups of G and RG-submodules of M.

Theorem 2.6. Let H_1 be a subgroup of a group G and $g \in G$. If $H_1 = gH_2g^{-1}$, then we have

$$\Delta_M(G, H_1) = \Delta_M(G, H_2)$$

Proof. Suppose that $H_1 = gH_2g^{-1}$ and let x be in $\Delta_M(G, H_1)$. Then $x = \sum_{h \in H_1} m_h(h - 1)$ with $h \in H_1$ and $m_h \in M$. Since $h \in H_1 = gH_2g^{-1}$, we have $h = gh_2g^{-1}$, where $h_2 \in H_2$. Thus

$$x = \sum_{h \in H} m_h(gh_2g^{-1} - g1^{-1}) = \sum_{h \in H} m_h(h_2^{-1}) g^{-1} \in g \Delta_M(G, H_2).$$

Thus we have $\Delta_M(G, H_1) \subseteq g \Delta_M(G, H_2)$. For the converse inclusion, let x be in $g \Delta_M(G, H_2)$. Then $x = g \left(\sum_{h \in H_2} m_h(h - 1) \right) g^{-1}$, where $h \in H_2$ and $m_h \in M$. For each $h \in H_2$, there exists an element $t_h \in H_1$ such that $h = g^{-1}t_hg$. Thus $x = g \left(\sum_{h \in H_2} m_h(gh^{-1}t_hg - 1) \right) g^{-1} = \sum_{h \in H_1} m_h(t_h - 1) \in \Delta_M(G, H_1)$. Hence we have $g \Delta_M(G, H_2)g^{-1} \subseteq \Delta_M(G, H_1)$. \(\square\)

Theorem 2.7. Let H and K be subgroups of G such that $G = HK$ and let M be an RG-module. Then the followings hold:

i) $\Delta_M(G, H) \Delta_R(G, K) = M(\Delta M(H, K) - 1)$,

ii) $[\Delta_M(G, H) \Delta_R(G, K)] \cap M(H \cap K) = M((H \cap K) - 1)^2$.
Lemma 3.3. Let \(G \) be a group and \(M \) an \(R \)-module. Then we have
\[
\Delta^i_{M}(G) = \sum_{g_1, g_2, \ldots, g_i \in G} m_{g_1, g_2, \ldots, g_i} (g_1 - 1) (g_2 - 1) \cdots (g_i - 1) \in \Delta^i_{M}(G),
\]
where \(\Delta^i_{M}(G) \) is an \(RG \)-submodule of \(MG \) for \(i \geq 1 \). Moreover, \(\Delta^i_{M}(G) \) is an \(RG \)-submodule of \(\Delta^1_{M}(G) \) for \(i \geq 1 \).

Proof. Since for any \(\sum_{g_1, g_2, \ldots, g_i \in G} m_{g_1, g_2, \ldots, g_i} (g_1 - 1) (g_2 - 1) \cdots (g_i - 1) \in \Delta^i_{M}(G) \), we can write
\[
\sum_{g_1, g_2, \ldots, g_i \in G} m_{g_1, g_2, \ldots, g_i} (g_1 - 1) (g_2 - 1) \cdots (g_i - 1) = \sum_{g_1, g_2, \ldots, g_i \in G} m_{g_1, g_2, \ldots, g_i} r_{g_1, g_2, \ldots, g_i} (g_1 - 1) (g_2 - 1) \cdots (g_i - 1)
\]
where \(\sum_{g_1, g_2, \ldots, g_i \in G} m_{g_1, g_2, \ldots, g_i} r_{g_1, g_2, \ldots, g_i} (g_1 - 1) (g_2 - 1) \cdots (g_i - 1) \in \Delta^i_{M}(G) \).
for some \(m \in M \) and \(\sum_{g_1, g_2, \ldots, g_i \in G} r_{g_1, g_2, \ldots, g_i} (g_1 - 1) (g_2 - 1) \ldots (g_i - 1) \in RG \) by the definition of \(\Delta^i_R(G) \). Hence, \(\Delta^i_M(G) = M.\Delta^i_R(G) \).

Theorem 3.4. Let \(G \) be a group and \(M \) an \(R \)-module. Then \(\Delta_M(G) \supseteq \Delta^2_M(G) \supseteq \ldots \supseteq \Delta^i_M(G) \supseteq \ldots \) is a descending module filtration of \(\Delta_M(G) \).

Proof. For the set of additive subgroups \(\Delta^i_M(G) \) of \(\Delta_M(G) \) for \(i \geq 1 \), we have \(\Delta^i_M(G) \subseteq \Delta^{i+1}_R(G) \). Moreover \(\Delta^i_R(G).\Delta^j_M(G) \subseteq \Delta^{i+j}_M(G) \) for all \(i, j \geq 1 \), obviously. \(\square \)

Theorem 3.5. Let \(G \) be a group and \(M \) an \(R \)-module. There is a correspondence between the descending module filtration

\[
\Delta_M(G) \supseteq \Delta^2_M(G) \supseteq \ldots \supseteq \Delta^i_M(G) \supseteq \ldots
\]

and the filtration

\[
G = \vee(\Delta_R(G)) \supseteq \vee(\Delta^2_R(G)) \supseteq \ldots \supseteq \vee(\Delta^i_R(G)) \supseteq \ldots
\]

of \(G \). In other words, there is a correspondence between the associative powers \(\Delta^i_M(G) \) of \(\Delta_M(G) \) and \(i \)th dimension subgroups \(\vee(\Delta^i_R(G)) \) of \(G \) over \(R \).

Proof. We have a correspondence between \(\Delta^i_M(G) \) and \(\Delta^i_R(G) \) by the equality \(\Delta^i_M(G) = M.\Delta^i_R(G) \) given above. For all \(\Delta^i_R(G) \) are ideals of \(RG \), we have another correspondence between the associative powers \(\Delta^i_R(G) \) of \(\Delta_R(G) \) and the \(i \)th dimension subgroups of \(G \) over \(R \) via \(G \cap (1 + \Delta^i_R(G)) = \vee(\Delta^i_R(G)) \). Consequently, we have the correspondence between \(\Delta^i_M(G) \) and \(\vee(\Delta^i_R(G)) \). Hence, we get the following diagram which shows the desired correspondence between the descending module filtration of \(\Delta_M(G) \) and the filtration of \(G \) by the \(i \)th dimension subgroups of \(G \) over \(R \).

\[
\begin{array}{cccc}
\vee(\Delta_R(G)) & \supseteq \vee(\Delta^2_R(G)) & \supseteq \ldots & \supseteq \vee(\Delta^i_R(G)) \\
\uparrow & \uparrow & \ldots & \uparrow \\
\Delta_R(G) & \supseteq \Delta^2_R(G) & \supseteq \ldots & \supseteq \Delta^i_R(G) \\
\uparrow & \uparrow & \ldots & \uparrow \\
\Delta_M(G) & \supseteq \Delta^2_M(G) & \supseteq \ldots & \supseteq \Delta^i_M(G) \\
\uparrow & \uparrow & \ldots & \uparrow \\
& \supseteq \ldots & \supseteq \ldots & \supseteq \ldots \\
\end{array}
\]

\(\square \)

Acknowledgement

This article is dedicated to Professor Gradimir V. Milovanovic on the Occasion of his 70th anniversary. The authors thank the referees for their valuable comments and suggestions.

References

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992.
[2] M. Alkan, On the Relations between Subgroups of a Group and Submodules of Modules over Group Rings, AIP Conference Proceedings 1863 (2017), 300008(1)-300008(4).
[3] I. G. Connell, On the Group Ring, Canadian J. Math. 15 (1963) 650-685.
[4] O. Y. Dashkova, Modules over Group Rings of Nilpotent Groups, Ukrainian Mathematical Journal 64 (2012), 13-23.
[5] O. Y. Dashkova, Modules over Group Rings of Locally Soluble Groups with a Certain Condition of Minimality, Miskolc Mathematical Notes 15 (2014), 383-392.
[6] I. Kaplansky, Problems in the theory of rings, Amer. Math. Monthly 77 (1970), 445-454.
[7] M. T. Koan, T. K. Lee, Y. Zhou, On Modules Over Group Rings, Algebras and Representation Theory 17 (2014), 87-102.
[8] L. A. Kurdachenko, J. Otal, I. Y. Subbotin, Artinian Modules over Group Rings, Birkhäuser, Basel, 2007.
[9] S. K. Sehgal, Topics in Group Rings, Marcel Dekker, New York, 1978.
[10] S. K. Sehgal, An Introduction to Group Rings Springer, Dordrecht, 2002.
[11] I. B. S. Passi, Group Rings and Their Augmentation Ideals, Springer-Verlag, Berlin, 1974.
[12] D. S. Passman, Advances in Group Rings, Israel J. Math. 19 (1974), 67-107.
[13] D. S. Passman, The Jacobson Radical of Group Rings of Locally Finite Groups, Transactions of the American Mathematical Society 349 (1997), 4693-4751.
[14] D. S. Passman, The Algebraic Structure of Group Rings, Dover Publications, New York, 2011.
[15] O. Oneş, M. Alkan, On The Relations between Subgroups And Ideals, AIP Conference Proceedings (2018), accepted.
[16] M. Uc, O. Oneş, M. Alkan, On modules over Groups, Filomat 30 (2016), 1021-1027.
[17] A. E. Zalesskii, A. V. Mikhalev, Group Rings, Journal of Soviet Math. 4 (1975), 1-78.