Comparison of Somatic Mutation Frequency among Immunoglobulin Genes

By Noboru Motoyama,* Takashi Miwa,* Yasuhiro Suzuki,† Hidechika Okada,* and Takachika Azuma*

From the *Department of Molecular Biology, Nagoya City University School of Medicine, Mizuho-ku, Mizuho-cho, Nagoya 467; and the †Department of Pathology, Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka 537, Japan.

Summary
We analyzed the frequency of somatic mutation in immunoglobulin genes from hybridomas that secrete anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) monoclonal antibodies. A high frequency of mutation (3.3-4.4%) was observed in both the rearranged VH186.2 and Vλ1 genes, indicating that somatic mutation occurs with similar frequency in these genes in spite of the absence of an intron enhancer in λ1 chain genes. In contrast to the high frequency in J-C introns, only two nucleotide substitutions occurred at positions -462 and -555 in the 5' noncoding region in one of the λ1-chain genes and in none of the other three so far studied. Since a similar low frequency of somatic mutation was observed in the 5' noncoding region of inactive λ2-chain genes rendered inactive because of incorrect rearrangement, this region may not be a target or alternatively, may be protected from the mutator system. We observed a low frequency of nucleotide substitution in unrearranged Vλ1 genes (≈1/15 that of rearranged genes). Together with previous results (Azuma T., N. Motoyama, L. Fields, and D. Loh, 1993. Int. Immunol. 5:121), these findings suggest that the 5' noncoding region, which contains the promoter element, provides a signal for the somatic mutator system and that rearrangement, which brings the promoter into close proximity to the enhancer element, should increase mutation efficiency.

The Ig gene family consists of H, κ, and λ chain genes, each of which has a unique structure in terms of the length of the J-C introns, and the number and location of enhancer elements (1-6). H and κ chain genes contain two enhancer elements, one in the J-C intron (intron enhancer) and the other, 3' to C exons (3' enhancer), whereas the λ chain gene lacks an intron enhancer (4-6). In a previous paper (7), we showed that a reporter gene, chloramphenicol acetyl transferase (CAT)1, was recognized as a target by the somatic mutator system when its expression was controlled by the VH promoter and IgH intron enhancer. Although the mechanism of somatic mutation is not yet understood, these results suggest that the promoter and enhancer elements, but not the V-(D)-J exon, are essential for induction of somatic mutation. Since λ chain genes lack the intron enhancer, it is possible that the frequency of somatic mutation is different between H and λ chain genes. Cumano and Rajewsky (8) reported a higher frequency of somatic mutation in the VH gene than in the Vλ1 gene from idiotype suppressed C57BL/6 mice after immunization with NP-chicken gamma globulin (CGG). The question arose as to whether such a skewed expression of somatic mutation was due to a difference in the effectiveness of promoter and enhancer functions or due to the use of these idiotypically suppressed mice. We addressed this question by comparing the DNA sequences of VH-D-JH and Vλ1-JA1 genes from the same hybridomas prepared from mice immunized with only NP-CGG.

If the promoter and enhancer play a critical role in expression of somatic mutation, it was expected that these regions would not be a target for somatic mutation. A low frequency of somatic mutation was shown in the promoter region of VH genes, which suggests the importance of its transcription (9-11). To estimate the 5' boundary for somatic mutation in λ1 chain genes, we first examined its frequency in the promoter region. However, an analysis using Ig genes from Ab-producing hybridoma cells would not be relevant because only genes with a promoter that retains this activity would be selected. Therefore, we analyzed the DNA sequences of the promoter region in λ2 chain genes that were inactive because of incorrect recombination in order to determine whether the lower frequency was related to gene expression.

Finally, we examined DNA sequences of unrearranged Vλ1

1 Abbreviations used in this paper: CAT, chloramphenicol acetyl transferase; CGG, chicken gamma globulin; NP (4-hydroxy-3-nitrophenyl)acetyl.
genes. It is important to analyze somatic mutation in unrearranged V genes in order to determine whether the promoter element alone, without cooperation of the enhancer, is capable of inducing somatic mutation. Somatic mutation was observed in unrearranged \textit{V}A1 and \textit{V}A2 genes from a myeloma MOPC315 which secretes IgA\textit{L}2 myeloma protein (12), although none was observed in unrearranged \textit{V} genes of other plasmacytomas (13–16). Since these studies were performed using plasmacytomas and since the number of somatic mutation in the rearranged genes used as controls was rather low, we thought it necessary to determine whether somatic mutation occurs in unrearranged genes using hybridomas with a high frequency of somatic mutation in their rearranged genes (17).

Analyses of the frequency and location of somatic mutation are obviously important to further elucidate the somatic mutation mechanism (9, 10, 18–20). In this study, we compared the frequency among Ig genes from hybridomas in which rearranged \textit{V}A1 genes were shown to have a high level of somatic mutation (17).

Materials and Methods

Hybridomas. Hybridomas producing anti-NP mAbs were prepared at 5 wk (5E2, \(\gamma_2b\lambda_1\)), 12 wk (C6-8-2, \(\gamma_1\lambda_1\)), and 42 wk (E3-19, \(\gamma_2\lambda_1\); E11-14, \(\gamma_2\lambda_1\)) after immunization of C57BL/6 mice with NP-CGG (17, 21).

PCR, Cloning, and Sequencing. DNA was prepared from liver and hybridoma cells. Genomic DNA was amplified in a thermal cycler (Perkin-Elmer Corp., Norwalk, CT) using a Gene-Amp kit (Cetus, Norwalk, CT). The oligonucleotide primers used for the cloning of \textit{V}M, \textit{V}X2 and \textit{VH}186.2 genes are shown in Fig. 1. Since DNA sequences for the 5' noncoding regions flanking \textit{V}X1 or \textit{V}X2 genes from BALB/c mice had been determined (Motoyama, N., unpublished results), the primers which crosshybridize to C57BL/6 DNA were synthesized. For amplification, either liver or hybridoma DNA (0.1 \(\mu\)g) was mixed with appropriate primers shown in Fig. 1 at concentrations of 0.5 \(\mu\)M. The thermal protocol included 30 cycles of denaturation at 94°C for 1 min, primer annealing at 50°C for 1 min, and extension at 72°C for 2 min. The amplified DNA was digested with EcoRI and subjected to 1% agarose gel electrophoresis. The DNA was purified with silica beads and ligated with pBluescript SKII(+) and the ligation mixture was transfected into \textit{Escherichia coli} XL1-Blue. DNA from putative recombinants was analyzed by restriction enzyme digestion to confirm that a fragment of the appropriate size had been cloned.

Cloned DNA was sequenced by the dideoxy method with primers, as shown in Fig. 1. To minimize cloning artifacts, PCR and cloning were performed twice independently. At least two to six clones from each PCR were subjected to sequencing, but only the consensus nucleotide sequences produced in independent experiments are presented in this paper. In some experiments, DNA sequences were analyzed using an automatic 373A sequencer and a Taq Dye Primer Cycle Sequencing Kit, T3/T7 (Applied Biosystems, Foster City, CA).

Results

Fig. 2 shows the DNA sequences of rearranged VH-D-J genes from hybridomas secreting anti-NP mAbs, E3-19, E11-14, 5E2, and C6-8-2. As has been shown previously (22, 23), the major population of anti-NP Abs bearing \(\lambda_1\) chains from C57BL/6 mice use VH186.2, DFL16, and J2 gene segments. In fact, all four mAbs sequenced were encoded by VH186.2 and J2 gene segments; E3-19, E11-14, and 5E2 use DFL16, and C6-8-2 uses DQ52 (24). The DNA sequences were compared with the germline structure of respective gene segments. 12–29 nucleotide substitutions arising from somatic mutation were observed in \textit{V}H genes. These occur predominantly in the CDR1 and CDR2. Previously, we examined the DNA

![Figure 1. Schematic presentation of \(\lambda_1\) and \textit{V}H genes and oligonucleotide primers used for PCR, cloning, and sequencing.](image-url)
sequences of rearranged $\text{V}_{\lambda 1}$-$\text{J}_{\lambda 1}$ genes in the same hybridoma used in the present experiment and found 9-24 mutations also predominantly in CDR1 and CDR2 of $\text{V}_{\lambda 1}$ genes (17). Therefore, the number and the distribution of somatic mutations in VH genes were similar to those in their $\text{V}_{\lambda 1}$ gene counterparts in the same Ab-producing cells.

Fig. 3 shows the DNA sequences of the 5' noncoding regions in active $\lambda 1$ chain genes. In contrast to DNA sequences of the coding region or of the $\text{J}_{\lambda 1}$-CA1 intron (17), only two mutations at position -462 (T to G) and -555 (T to C) from the start codon, ATG, were observed in E11-14. No substitutions, deletions, or additions of nucleotides were detected in the region from -1,059 to 90 of E3-19, 5E2, and C6-8-2. The frequency of somatic mutation was calculated to be 0.04%, which is \sim1/30 of that observed in the JX1-CX1 intron (17), only two nucleotide substitutions were observed in the 5' noncoding regions at positions -119 (T to C) and -436 (A to C) for E3-19, and -99 (A to G) for E11-14. Although the number of samples analyzed was limited because of the low numbers of rearranged genes in both $\lambda 1$ and $\lambda 2$ loci in one cell (one was active and the other inactive) (25), it was evident that somatic mutation occurs less frequently (0.4%) in the 5' noncoding region of inactive $\lambda 2$ genes from about -500 bp to the initiation codon, similar to active $\lambda 1$ genes.

The distribution of somatic mutation in $\lambda 1$ chain genes is summarized in Fig. 5. The published results are also included in this figure (17). The highest frequency of somatic mutation occurred in the $\text{V}_{\lambda 1}$-CA1 coding region, followed by gradually lower levels along the J-C intron and even into the CA1 region. On the other hand, the frequency of so-
398 Somatic Mutation Frequency of Immunoglobulin Genes
matic mutation decreased sharply 5' upstream and only two substitutions were observed in the 5' noncoding region of \(\lambda \) chain genes.

It was not known whether unrearranged \(\nu \) genes are a target in B cells in which somatic mutation is highly active. Therefore, we examined the unrearranged \(\nu \lambda \) genes from C6-8-2, E3-19, E11-14, and 5E2. Since \(\nu \lambda \) loci are supposed to be the germline configuration for both alleles in the parent cell (Sp2/0-Ag14), we assumed that there were three unrearranged \(\nu \lambda \) genes in these hybridomas, two from the Sp2/0-Ag14 cell and one from the spleen cell (25). Primers were designed to amplify only unrearranged \(\nu \lambda \) genes (Fig. 1), which were cloned and sequenced. Six cloned from each PCR were subjected to sequencing and only recurrent mutations were considered somatic mutation. As shown in Fig. 6 A, eight clones from C6-8-2 showed the same nucleotide sequence as a germline counterpart, whereas four had two recurrent mutations at positions 270 and 313. Essentially similar patterns of mutation to Fig. 6 A were observed in the sequences from E3-19 and 5E2 in addition to Sp2/0-Ag14 (data not shown). Therefore, these mutations (positions 270 and 313) would originate from the \(\nu \lambda \) gene of Sp2/0-Ag14 cells. In the case of E3-19, the recurrent mutations unique to E3-19 were observed at positions 196, 251, 307, and 411 in two clones from the first PCR in addition to those shared with the other hybridomas (positions 270 and 313). These results suggest that unrearranged \(\nu \lambda \) genes of Sp2/0-Ag14 and E3-19 were a target for the mutator system as in the case of MOPC315 (12).

Frequencies of somatic mutation at various loci of Ig genes are summarized in Table 1. The average frequency in rearranged VH genes was 4.4%. This value is similar to that obtained for rearranged active \(\nu \lambda \) (3.3%) or inactive \(\nu \lambda \) (4.2%), which is \(\sim \)15-fold higher than unrearranged \(\nu \lambda \) genes. The frequency in the JX1-CX1 intron was about 1/3 (1.1%) that of VH or \(\nu \lambda \) genes, whereas that for the 5' non-

Figure 3. Nucleotide sequences of the 5' noncoding region of active rearranged \(\lambda \) chain genes from E3-19, E11-14, C6-8-2, and 5E2.

Figure 4. Nucleotide sequences of inactively rearranged \(\nu \lambda 2 \) genes in hybridomas, E3-19 and E11-14, producing anti-NP mAbs bearing \(\lambda \) chain. The germline sequence obtained from liver DNA was compared with those from E3-19 and E11-14. (-) Nucleotides identical to the germline sequence.
Figure 5. (Top) Distribution of somatic mutation in λ1 chain genes. Mutation frequency (%) is the number of mutations per 50 bases sequenced and is plotted against the position number from the start codon ATG. For comparison, reference data (17) are included in this figure. (Bottom) Diagram showing rearranged λ1 chain gene.

Coding region was 0.04%, only 1/100 that of rearranged VH or VL genes. It is also clear that somatic mutation occurs less frequently in 5' noncoding regions of inactive λ2 chain genes (0.4%) than other loci. However, the frequency of mutation in the 5' noncoding region of the inactive λ2 chain gene is likely to be higher than that of the active λ1 chain gene although only a limited number of samples was analyzed.

Discussion

The VH promoter and intron enhancer have been shown to be important in induction of somatic mutation using transgenic mice carrying a reporter gene which was driven by these two regions (7). The finding that a non-Ig gene such as the CAT gene became a target of the somatic mutator system suggested that regulation elements such as the promoter and/or enhancer are involved. Since the H chain gene has an intron enhancer and the λ1 chain does not (6), we thought it of interest to determine whether the frequency of somatic mutation of VH and VL in the same B cells was different. Although the frequency in VL1 seemed to be slightly lower than VH (4.4 compared to 3.3%), the skewed expression of somatic mutation in VH genes, reported by Cumano and Rajewsky (8), was not observed in this study. This discrepancy may have arisen from different immunization conditions since Cumano and Rajewsky used mice that had been injected with an anti-Id mAb, Ac38, before immunization with NP-CGG (8). Therefore, it is unlikely that somatic mutation occurs preferentially in VH genes but not in VL1 genes under normal immunization conditions, although an intron enhancer is absent in λ chain genes (26). As shown by our group (7) and by Sohn et al. (27), somatic mutation was observed in transgenes containing only the H chain intron enhancer, although the mutation rate was lower than that of complete H chain genes. Therefore, the intron enhancer may play an essential role in the induction of somatic mutation in H-chain genes, whereas the 3' enhancer is more important in the case of λ and κ chain genes since λ chain genes which lack an intron enhancer are able to induce mutation with a frequency similar to VH genes (17), and since κ chain transgenes lacking the 3' enhancer element are not (28).

The lower frequency of somatic mutation in the 5' non-coding region compared with the Jα1-Cα1 intron was clearly evident in our study. The average frequency in the 5' non-coding region was ~1/30 that of the Jα1-Cα1 intron. Since the same region of inactive λ2 chain genes showed a 10-fold higher frequency, although still lower than that of the other

Figure 6. Nucleotide sequences of unrearranged VL1 genes from hybridoma, C6-8-2 (A) and E3-19 (B), producing anti-NP mAbs bearing λ1 chains. Unrearranged VL1 DNA was amplified twice independently using Taq DNA polymerase. Six clones from each PCR were subjected to sequencing. Nucleotide sequences identical to their germline counterpart are shown by solid lines and only locations different from the germline are indicated. The position was numbered relative to translation initiation site.
Table 1. Comparison of Frequency of Somatic Mutation among Ig Gene Loci

Cells	VH Active	V\(\lambda\) Active	5' Rearranged	V\(\lambda\) Inactive	5' Unrearranged	
E11-14	23/433	13/441	2/1149	13/420	2/495	
C6-8-2	12/433	9/441	0/1149	-	-	
5E2	13/433	12/441	0/1149	-	-	
E3-19	29/433	24/441	0/1149	22/420	2/495	
Sp2/0	-	-	-	-	2/441	
Average No. of mutations	19.3/433	14.5/441	0.5/1149	17.5/420	2/495	1/441
Frequency (%)	4.4	3.3	0.04	4.2	0.40	0.23

* Data taken from Motoyama et al. (17).
† Not included for calculation of average No. of mutations.

...loci, the much lower frequency of active \(\lambda\) 1 chain genes can be explained partly in terms of selection of unmutated genes, since we analyzed \(\lambda\) 1 chain genes from hybridomas producing \(\lambda\) chains. On the other hand, similar low frequencies in the 5' noncoding regions of the VH gene have been reported by others (10, 11). In the case of H chain genes, mutation frequency decreased immediately 5' upstream from the cap site. Therefore, it can be generalized that somatic mutation occurs in the 5' noncoding region with a lower frequency than in other Ig gene loci.

Somatic mutation was not prevented in unrearranged V\(\lambda\) 1 genes from E3-19, and results coincide with the occurrence of somatic mutation in unrearranged V\(\lambda\) 1 and V\(\lambda\) 2 genes of a myeloma, MOPC315 (12). The frequency of mutation in unrearranged V\(\lambda\) 1 in our study was 0.23% which is \(\sim\) 1/15 that of rearranged V\(\lambda\) 1 and of the same order as that of rearranged D-J genes (29). Since both E3-19 and MOPC315 secrete Abs bearing \(\lambda\) chains, it appeared that somatic mutation occurs in unrearranged V\(\lambda\) genes of B cells producing \(\lambda\) chains. However, we found two nucleotide substitutions in the unrearranged V\(\lambda\) 1 gene in Sp2/0-Ag 14 cells in which \(\lambda\) locus retains the germline configuration (25). Since nine nucleotide substitutions were found in the inactively rearranged \(\kappa\) chain gene (11), the mutator system was expected to be active at a specific developmental stage of Sp2/0-Ag14. Therefore, it can be generalized that somatic mutation occurs in the unrearranged V\(\lambda\) of B cells where the mutator mechanism is highly activated.

No somatic mutation was found in unrearranged VH and V\(\kappa\) genes in contrast to V\(\lambda\) genes (13–16). This may be explained in terms of the different germline structure between the \(\lambda\) locus and the \(\kappa\) locus. The \(\lambda\) locus is arranged as V\(\lambda\) 2/V\(\lambda\) 4/J\(\lambda\) 3/J\(\lambda\) 4, where E\(\lambda\) 2-4 and E\(\lambda\) 3-1 are enhancer elements located 15.5 kb downstream of CA4 and 35 kb downstream of CA1, respectively (6, 30). Since these gene segments are distributed over a rather limited distance (\(\sim\)200 kb) and since two enhancer elements in this locus are active in both \(\kappa\) and \(\lambda\) chain-producing B cells, unrearranged V\(\lambda\) genes are thought to be present in the open chromatin structure to which the mutator system is accessible. This is not the case for VH and V\(\kappa\) genes (31, 32).

In a previous paper, we suggested that the signal for induction of somatic mutation resides in the promoter and/or enhancer but not in the V-(D)-J exon, and that targets for the somatic mutator system are genes existing immediately 3' downstream of the promoter element. The finding that somatic mutation was practically absent in the 5' noncoding region (0.04%) suggests that the binding of protein factors to the regulatory elements in this region may be essential for induction of somatic mutation. The occurrence of somatic mutation in unrearranged V\(\lambda\) 1 genes, even though of low frequency (0.23%), supports the idea that the 5' noncoding region is able to induce mutation. Activity of the promoter would be highest when its position relative to the enhancer is optimized by recombination (28). Rogerson et al. (31) proposed a model that predicted the occurrence of mutator factors that bind to the mutation initiation region (MIR) located upstream of promoter. Our previous and present results are consistent with their model, suggesting a pivotal role for this region in the induction of somatic mutation specific to Ig genes.

Other than the 5' noncoding region, somatic mutation was not detected in CH and C\(\kappa\) loci (33). In the case of \(\lambda\) 1 chain genes, somatic mutation occurred in V\(\lambda\) 1-J\(\lambda\) 1 genes with highest frequency and decreased with distance from V\(\lambda\) 1.
Jα1 exon into Jα1-CA1 intron, and was observed even in CA1. This suggests that a specific signal for prohibiting mutation in the C exon does not reside in the Jα1-CA1 intron or CA1 exon. This may be the case for κ and H chain genes and hence the absence of somatic mutation in CH or Ck genes may be explained by their location some distance from the promoter elements. CH and Ck exons were separated from V-(D)-J exons by J-C introns of ~6.5 and 3 kb, respectively, which is lengthy in contrast to the short (1.2 kb) Jα1-CA1 intron. Therefore, it is likely that the distribution of somatic mutation 3' downstream is inversely proportional to the distance from the promoter. Recently, an unusual distribution of somatic mutation was reported in Vκ12.37-Jκ1 gene (34). In this gene, somatic mutation was observed at a high frequency in the 3' flanking region rather than in the V-J exon.

As suggested by the authors, (34) Vκ12.37 gene may lack a cis-element or have one which is mutated and determines location where somatic mutation occurs.

In conclusion, somatic mutation can be induced in V genes regardless of whether they are rearranged, although rearranged genes mutate with a higher frequency, more than 15-fold those of unrearranged genes. The signal for induction of somatic mutation may reside in the 5' noncoding region flanking V genes and the presence of an enhancer at the appropriate location would maximize promoter function. Cooperation of these regulatory elements should induce a high frequency of somatic mutation in V genes, or any genes which are regulated by these elements, in B cells after immunization with T-dependent antigens.

N. Motoyama is supported by fellowships of the Japan Society for the Promotion of Science for Japanese Junior Scientist. This work was supported in part by grants from the Japanese Ministry of Education, Science and Culture.

Address correspondence to Takachika Azuma, Department of Molecular Biology, Nagoya City University School of Medicine, Mizuho-cho, Mizuho-ku, Nagoya 467, Japan.

Received for publication 25 June 1993 and in revised form 22 September 1993.

References

1. Shimizu, A., N. Takahashi, Y. Yaoita, and T. Honjo. 1982. Organization of the constant-region gene family of the mouse immunoglobulin heavy chain. Cell. 28:499.
2. Max, E.E., J.C. Seiden, and P. Leder. 1979. Sequences of five potential recombination sites encoded close to an immunoglobulin κ constant region gene. Proc. Natl. Acad. Sci. USA. 76:3450.
3. Sakano, H., K. Hurpin, G. Heinrich, and S. Tonegawa. 1979. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature (Lond.). 280:288.
4. Dariavach, P., G.T. Williams, K. Campbell, S. Pettersson, and M.S. Neuberger. 1989. The mouse IgH 3' enhancer. Eur. J. Immunol. 21:1499.
5. Meyer, K.B., and M.S. Neuberger. 1989. The immunoglobulin κ locus contains a second, stronger B-cell-specific enhancer which is located downstream of the constant region. EMBO (Eur. Mol. Biol. Organ.) J. 8:1959.
6. Hagman, J., C.M. Rudin, D. Hasch, D. Chaplin, and U. Storb. 1990. A novel enhancer in the immunoglobulin A locus is duplicated and functionally independent of NFKB. Genes & Dev. 4:978.
7. Azuma, T., N. Motoyama, L.E. Fields, and D.Y. Loh. 1993. Mutations of the chloramphenicol acetyl transferase transgene driven by the immunoglobulin promoter and intron enhancer. Int. Immunol. 5:121.
8. Cumano, A., and K. Rajewsky. 1986. Clonal recruitment and somatic mutation in the generation of immunological memory to the hapten NP. EMBO (Eur. Mol. Biol. Organ.) J. 5:2459.
9. Clarke, C. J. Berenson, P.D. Governan, S. Crews, G. Sii, and K. Calame. 1982. An immunoglobulin promoter region is unaltered by DNA rearrangement and somatic mutation during B-cell development. Nucleic Acid Res. 10:7731.
10. Both, G.W., L. Taylor, J.W. Pollard, and E.T. Steele. 1990. Distribution of mutations around rearranged heavy-chain antibody variable-region genes. Mol. Cell Biol. 10:5187.
11. Lebecque, S.G., and P.J. Gearhart. 1990. Boundaries of somatic mutation in rearranged immunoglobulin genes: 5' boundary is near the promoter and 3' boundary is ~1 kb from V(D)J gene. J. Exp. Med. 172:1717.
12. Weiss, S., and G.E. Wu. 1987. Somatic point mutations in unrearranged immunoglobulin genes encoding the variable region of λ light chains. EMBO (Eur. Mol. Biol. Organ.) J. 6:927.
13. Pech, M., J. Hochtl, H. Schnell, and H.G. Zachau. 1981. Differences between germline and rearranged immunoglobulin VK coding sequences suggest a localized mutation mechanism. Nature (Lond.). 291:668.
14. Nishioka, Y., and P. Leader. 1980. Organization and complete sequence of identical embryonic and plasmacytoma V-region gene. J. Biol. Chem. 255:6658.
15. Selsing, E., and U. Storb. 1981. Somatic mutation of immunoglobulin light-chain variable-region genes. Cell. 25:47.
16. Gorski, J., P. Rollini, and B. Mach. 1983. Somatic mutations of immunoglobulin variable genes are restricted to the rearranged V gene. Science (Washington, DC). 220:1819.
17. Motoyama, N., H. Okada, and T. Azuma. 1991. Somatic mutation in constant regions of mouse λ light chains. Proc. Natl. Acad. Sci. USA. 88:7933.
18. Brenner, S., and C. Milstein. 1966. Origin of antibody variation. Nature (Lond.). 211:242.
19. Steel, E.J., and J.W. Pollard. 1987. Hypothesis: somatic hyper-
mutation by gene conversion via the error prone DNA → RNA information loop. Mol. Immunol. 24:667.

20. Monser, T. 1990. The efficiency of antibody affinity maturation: can the rate of B-cell diversion be limiting? Immunol. Today. 11:305.

21. Azuma, T., N. Sakato, and H. Fujio. 1987. Maturation of the immune response to (4-hydroxy-3-nitrophenyl)acetyl (NP) hapten in C57BL/6 mice. Mol. Immunol. 24:287.

22. Bothwell, A.L., M. Paskind, M. Reth, T. Imanishi-Kari, K. Rajewsky, and D. Baltimore. 1981. Heavy chain variable region contributes to the NP⁺ family of antibodies: somatic mutation evident in a γ2a variable region. Cell. 24:625.

23. Cumano, A., and K. Rajewsky. 1985. Structure of primary anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibodies in normal and idiotypically suppressed C57BL/6 mice. Eur. J. Immunol. 15:512.

24. Kurosawa, Y., and S. Tonegawa. 1982. Organization, structure, and assembly of immunoglobulin heavy chain diversity DNA segments. J. Exp. Med. 155:201.

25. Nadel, B., P.-A. Cazenave, and P. Sanchez. 1990. Murine lambda gene rearrangements: the stochastic model prevails over the ordered model. EMBO (Eur. Mol. Biol. Organ.) J. 9:435.

26. Picard, D., and W. Schaffner. 1984. A lymphocyte-specific enhancer in the mouse immunoglobulin k gene. Nature (Lond.). 307:80.

27. Sohn, J., R.M. Gerstein, C.-L. Hsieh, M. Lemer, and E. Selsing. 1993. Somatic hypermutation of an immunoglobulin μ heavy chain transgene. J. Exp. Med. 177:493.

28. Sharpe, M.J., C. Milstein, J.M. Jarvis, and M.S. Neuberger. 1991. Somatic hypermutation of immunoglobulin κ may depend on sequence 3' of Cκ and occurs on passenger transgenes. EMBO (Eur. Mol. Biol. Organ.) J. 10:2139.

29. Roes, J., K. Huppi, K. Rajewsky, and F. Sablitzky. 1989. V gene rearrangement is required to fully activate the hypermutation mechanism in B cells. J. Immunol. 142:1022.

30. Storb, U., D. Haasch, B. Arp, P. Sanchez, P.-A. Cazenave, and J. Miller. 1989. Physical linkage of mouse κ genes by pulsed field gel electrophoresis suggests that the rearrangement process favors proximate target sequences. Mol. Cell Biol. 9:711.

31. Rogerson, B., J. Hackett, Jr., A. Peters, D. Haasch, and U. Storb. 1991. Mutation pattern of immunoglobulin transgenes is compatible with a model of somatic hypermutation in which targeting of the mutator is linked to the direction of DNA replication. EMBO (Eur. Mol. Biol. Organ.) J. 10:4331.

32. Brodeur, P.H. 1987. Genes encoding the immunoglobulin variable regions. In Molecular Genetics of Immunoglobulin. F. Calabi, and M.S. Neuberger, editors. Elsevier Science Publishers BV., Amsterdam. 81-109.

33. Berek, C., and C. Milstein. 1987. Mutation drift and repertoire shift in the maturation of the immune response. Immunol. Rev. 96:23.

34. Rickert, R., and S. Clarke. 1993. Low frequency of somatic mutation in two expressed Vκ genes: unequal distribution of mutation in 5' and 3' flanking region. Int. Immunol. 3:255.