Foot Care Knowledge and Practices Among Japanese Nurses and Care Workers in Home Care and Adult Service Center: A Cross Sectional Study

CURRENT STATUS: UNDER REVIEW

Kashiko Fujii
Nagoya University, School of Health Science
✉ fujii_k@met.nagoya-u.ac.jp Corresponding Author

Takuyuki Komoda
Gifu Heart Center

Atsuko Maekawa
Graduate School Of Medicine, School Of Health Sciences

Mariko Nishikawa
University Of Human Environments

DOI: 10.21203/rs.3.rs-21949/v1

SUBJECT AREAS
Nursing

KEYWORDS
foot care, knowledge, practice, nurse, care worker
Abstract

Background Foot care knowledge and practices among nurses and care workers in the community greatly impact foot health maintenance and prevention of foot-related problems among older people. This study aimed to explore and examine the current foot care knowledge, practices, and perceptions among nurses and care workers at home care and adult day service center, along with their demographic characteristics and daily care for clients.

Methods This study analyzed 232 randomly selected front-line nurses and care workers working at home care or adult day service center in N City, A Prefecture, Japan. Data were obtained using questionnaires and subsequently analyzed using descriptive statistics, t-tests, Chi-square tests, Wilcoxon rank-sum tests, and Spearman’s rank correlation tests.

Results Among the 305 surveyed, 232 (63 nurses; 170 care workers) provided data. Although 57 nurses (91.9%) and 142 care workers (83.5%) showed interest in foot care, 33 nurses (53.2%) and 133 care workers (78.2%) stated that foot care education was insufficient. Knowledge and practice scores were associated with working status.

Background

As the population worldwide continues to rapidly age [1], growing demands and expanding costs for health care, particularly for geriatric care, have been greatly concerning for many countries. To reduce elderly care expenditure and hospital loading in Japan, the Japanese government has promoted the use of home health care services [2]. Indeed, studies have shown an increasing trend in the number of older people receiving home care services [3], with nurses and care workers playing a key role in maintaining the health of older individuals at home or within a community.

Foot problems have been one of the most prevalent concerns among older individuals. As the body ages, structural, functional, and physiological changes within the circulatory, skeletal, nervous, and dermatological systems can cause a range of foot problems, including toe nail problems, toe deformities, corns, calluses, fungal infections, cracks, fissures, macerations, and edema [4]. These conditions can lead to foot pain [5], which has been associated with reduced mobility and balance and increased risk for gait disorders, falls, and depression [6–10]. Many older people are frail and live
alone with limited access to medical care. Moreover, reduced vision, physical function, and manual dexterity [11], muscle alternations, [12] are some of the factors that inhibit their ability for foot self-care. Abdullah and Abbas [13] stated that nail problems are common among older adults and are often overlooked by primary caregivers despite their various physical and physiological characteristics.

The increasing number of older people within communities throughout Japan provides greater opportunities for nursing care at home, at day care service centers, or at day care centers offering rehabilitation [14]. Japan has two insurance programs that allow older people access to medical or nursing care (Appendix 1) according to their condition (i.e., some are vulnerable and bedridden, while others have good health). After matching procedural demand and supply, older people subsequently receive the necessary medical or physical care, as well as assistance with activities of daily living, from nurses and care workers providing home care services. Both nurses and care workers have equally high opportunities for physically contact with older individuals. Moreover, care workers’ subjective observation regarding the client’s physical and emotional condition are often shared with nurses and care managers in Japan. Previous studies in other countries have investigated nursing assistants’ detection of early signs of infection or acute or chronic illness in nursing homes [15–18]. Thus, both nurses and care workers function autonomously in detecting foot problems, making decisions regarding foot care, and reporting to other health care professionals.

Foot problems have been widely studied internationally. However, literature regarding foot conditions and foot care has predominantly focused on diabetes [19], while limited studies have been available on foot care knowledge, practices, and perceptions among nurses and care workers in home or community settings. Considering that podiatry is not considered as a specialty in Japan, foot care knowledge and skills can be obtained at private schools that charge exorbitant tuition fees. Moreover, the lack of foot care education within academic curriculum may lead to insufficient foot care knowledge and practices among nurses and care workers. The present study aimed to explore and examine the current knowledge, practices, and perceptions among nurses and care workers in in-home service providers, along with their demographic characteristics and daily number of clients. This
survey can serve as a reference for the future development of more effective foot care tools for nurses and care workers in home or community settings. The present study hypothesizes the following:

1. Both nurses and care workers show interest in learning foot care but may perceive to have insufficient education on and time for foot care and display a lack of confidence in the same.
2. No significant differences in foot care knowledge and practices exist between nurses and care workers regardless of working status or experiences due to the fundamental lack of foot care education in Japan.
3. Nurses obtain and demonstrate better foot care knowledge and practices related to vascular, neurologic, and skin disorders compared to care workers due to differences in educational curriculum.

Methods

Research design

This was a cross-sectional study using random cluster sampling. Target participants comprised nurses and care workers from 35 different in-home service providers [14] in N city, A prefecture, Japan. Data were collected from July to August 2019.

Instruments

Data were collected via questionnaires called Kashiko XJP, which were developed specifically for nurses and care workers included in this study. The questionnaires consisted of the following: (1) questions on demographic characteristics, daily number of clients or number of clients with foot problems, and perceptions regarding foot care; (2) 30 questions on foot care knowledge; and (3) 20 questions on foot care practices.

Sampling and Participants

Currently, 5381 nurses and 23,830 care workers work at in-home service providers in A Prefecture [20]. This study targeted nurses and care workers working at centers providing home care, home nursing, adult day care centers including day care services, or day care services with rehabilitation. Registered nurses (RN), licensed practical nurses (LPN), certified care workers, and non-certified care workers with different types of qualifications were included. Other countries identify care workers as “nursing assistants” nursing aides [15, 18]. The sample size was calculated based on a 95% confidence interval and 5% margin of error using a sample size chart. Accordingly, an initial sample size of 530 nurses and care workers was targeted with a nurse/care worker ratio of 20%/80% (1:4) and a 10% participant rejection rate. The inclusion criteria were nurses and care workers who (1)
worked part-time or full time, (2) provided physical care, including but not limited to walking assistance, diaper changing, bathing assistance, exercise promotion, and oral care assistance, and (3) worked for centers that never participated in any other foot care programs besides the current study. The Ministry of Health, Labour and Welfare (MHLW) provided a list of in-home service providers in N City, A Prefecture, Japan, among which 250 centers were initially randomly selected via computer for our study. An invitation mail and a postcard with a check box indicating the level of willingness to participate in the survey and the number of possible participants in each center were sent to all randomly selected centers. However, the target number of replies was not reached. Thus, 200 day care service centers were added using the same methodology. Overall, postcards from 78 centers were returned, among which 46 were willing to participate in the study and indicated the possible number of study participants. After confirming participation via telephone and personal visit by the main author (KF), questionnaires were sent to the 46 centers (305 nurses and care workers). Among the 305 nurses and care workers who had received questionnaires, 232 (76%) from 35 centers responded with written approval (62 nurses and 170 care workers) (Table 1).

Table 1
Number and type of providers contacted and replies received.

Provider type	Number of centers contacted	Questionnaires sent	Questionnaires returned	Collection rate
Day care service centers	370	36	25	69%
Day care centers offering	30	2	2	100%
rehabilitation				
Home nursing centers	20	6	6	100%
Home care centers	30	2	2	100%
Total number of centers	450	46	35	76%

Development of foot care knowledge and practice questionnaires

The questionnaires used herein were developed in Japan and were initially based on foot care knowledge and practice questionnaires for nurses in Finland [11, 19]. However, given the inclusion of care workers in the present study and the geographical differences in the standards of care between Japan and Finland, modifications to these questionnaires were required in order to address the purpose of this study. Therefore, a new questionnaire was developed utilizing three phases.

Phase one: draft creation
The item pool (Table 2) and subscales for the draft questionnaires were created based on a thorough literature review of 330 studies. Personal face-to-face contact or e-mail correspondence with foot researchers, including a foot care specialist (IY), and the main author's (KF) clinical experiences in nursing and foot care also contributed to the creation of the draft. Draft questionnaires consisted of 51 questions on knowledge covering seven subscales (Nail, Skin, Vascular and Neurologic Disorder, Toe and Arch, Infection, Shoes and Socks, and Sedentary Behavior) with three possible answers (yes, 1 point; no, 0 points; and I do not know, 0 points) and 45 questions on practices covering six subscales (Skin Assessment, Nail, Skin, Hygiene, Movement and Toe Exercise, and Consultation) with five possible answers (strongly relevant, 5 points; more relevant, 4 points; neutral, 3 points; less relevant, 2 points; and not relevant, 1 point). Other specific questions included demographic characteristics [age, sex, profession, part-time or full-time employment, working experience in the current profession, working experience in the current center (this question was later removed)], daily number of clients, number of clients with foot problems in the past month), and perceptions regarding foot care (interest in foot care, impression on the current foot care education, confidence in foot care, source of foot care knowledge, opinion on foot care manuals, sufficient time for foot care, willingness to learn more about foot care, and self-use of toe socks).
Phase 2: Content validity

Four experts, including a nurse researcher, a previously contacted foot care specialist (IY), and two researchers specializing in toe movement, as well as two nurses and a care worker with field experience, were contacted to review the draft questionnaires and provide their opinion regarding the usability and necessary adjustments at this stage. The validity of draft questionnaires was evaluated using two processes. Firstly, questionnaires were mailed to eight experts and hand-delivered to one expert for evaluation using the Content Validity Index (CVI), an internationally recognized scale and the most widely used approach for assessing content validity [22]. These experts included a foot care specialist (n = 1), nurses with extensive foot care experience (n = 3), a nursing academic researcher (n = 1), physical therapists specializing in foot and toe therapy (n = 2), a surgeon with extensive knowledge on foot physiology (n = 1), and a doctor with extensive knowledge on wound care (n = 1).

Secondly, a panel of experts consisting of a surgeon, three nurse researchers with expertise in foot research, a foot care specialist, and a nurse with foot care expertise, discussed the clarity, wording, relevance, and necessity of each question. During panel discussions, the mean CVI scores provided by
the nine experts who initially evaluated the questionnaires were used as reference. After further refinement, the questionnaires included 33 questions on foot care knowledge and 25 on foot care practices, along with 16 other specific questions regarding demographic characteristics, daily number of clients, and perceptions regarding foot care.

Phase 3: Pilot study

A pilot study was conducted among 100 nurses and care workers from in-home service providers and geriatric facilities excluding hospitals, among whom 87% and 73% responded to knowledge and practice questions, respectively. Their answers were subsequently analyzed using SPSS 24 (SPSS Inc, Chicago, IL) to determine their validity and reliability. Descriptive statistics was used to describe data characteristics and questionnaire scores. Questions regarding knowledge were then thoroughly reviewed based on accuracy rates. Five questions on practices demonstrated the ceiling effect and were thus removed. Cronbach’s alpha values, which were calculated to evaluate internal consistency, were between 0.5 and 0.7, with 0.70 being considered an acceptable value [21, 22]. However, acceptable Cronbach’s alpha values vary between researchers [23]. Thereafter, the final format of the self-administrated questionnaires, which consisted of 50 questions on knowledge (30 questions across seven subscales) and practices (20 questions across six subscales) along with 15 questions on demographic characteristics, daily number of clients, and perceptions regarding foot care, was established.

Data analysis

Data were recorded by two separate teams working simultaneously with the same information without being observed by the researchers using an outsourcing company. Data were then categorized into two groups, nurses and care workers, and subsequently analyzed using SPSS 24. Descriptive statistics, χ^2 tests, and the Wilcoxon rank-sum test were utilized for data analysis. Content validity was analyzed using the ceiling effect with means ± standard deviations, while reliability was analyzed by calculating Cronbach’s alpha values. Spearman’s rank correlation was used to determine the correlation (1) between knowledge and practice scores and gender, working experience in the current profession, and number of clients cared for per day and (2) between knowledge scores and
practice scores. The association between age and working status and knowledge and practice scores was analyzed using Student’s t-test.

Results

Demographic characteristics, daily number of clients, and perceptions on foot care

Among the 232 respondents, (52 RNs, 10 LPNs, 98 certified care workers, and 72 non-certified care workers with different types of qualifications), 225 were ultimately analyzed after excluding two nurses and five care workers for non-response to questions (Fig. 1).

Effect size was calculated using EZR for both knowledge and practice: Formula = (mean scores for nurses – mean scores for care workers) / [(SD for nurses + SD for care workers) / 2]. The number of nurses and care workers used in the formula included those who answered all questions. Although an effect size of 0.6 was calculated, a statistical power of 0.95 was obtained. Therefore, the final number of participants (225) was acceptable despite the initial target being 530.

The ratio between nurses and care workers was 1:3, which was quite close to the initially targeted ratio of 1:4. Complete results for demographic characteristics, daily number of clients, and perceptions regarding foot care are presented in Tables 3 and 4.
Table 3
Demographic characteristics, daily number of clients, and perceptions on foot care.

Items	Category	Nurses¹ (n = 62)	Care workers² (n = 170)	p value
	n (%)	n (%)		
Sex	Male	2 (1.6)	29 (17.1)	0.002**
	Female	60 (98.4)	141 (82.9)	
Profession	Registered nurses	52 (83.9)	N/A	0.000***
	Licensed practical nurses	10 (16.1)	N/A	
	Certified care workers	N/A	98 (57.6)	
	Non-certified care workers	N/A	72 (42.4)	
Work status	Part time	34 (54.8)	64 (37.3)	0.017*
	Full time	28 (45.2)	106 (62.7)	
Number of clients cared for per day	1–5	29 (46.8)	14 (8.4)	0.000***
	6–10	7 (11.3)	37 (22.2)	
	11–20	13 (21.0)	53 (31.7)	
	21–30	10 (16.1)	34 (20.4)	
	31+	3 (4.8)	29 (17.4)	
Interest in foot care	Yes	57 (91.9)	142 (83.5)	0.105
	No	5 (8.1)	28 (16.5)	
Impression on current foot care	Sufficient	2 (3.2)	1 (0.6)	0.000***
education	Neutral	27 (43.5)	36 (21.2)	
	Insufficient	33 (53.2)	133 (78.2)	
Confidence in foot care	Confident	3 (4.8)	1 (0.6)	0.000***
	Neutral	31 (50.0)	43 (25.4)	
	Not confident	28 (45.2)	125 (74.0)	
Source of foot care knowledge	Not obtained	10 (17.2)	72 (43.4)	0.000***
	Work	18 (31.0)	24 (14.5)	0.005**
	Outside work	15 (25.9)	22 (13.3)	0.026*
	Journal/magazine	19 (32.8)	26 (15.7)	0.005**
	Internet	16 (27.6)	23 (13.9)	0.018*
	Colleagues	18 (31.0)	59 (35.5)	0.534
	Television	13 (22.4)	22 (13.3)	0.098
Opinion on care manuals	Required	48 (78.7)	128 (75.7)	0.472
	Neutral	13 (21.3)	37 (21.9)	
	Not required	0 (0.0)	4 (2.4)	
Sufficient time for foot care	Agree	19 (31.7)	26 (15.6)	0.007**
	Disagree	41 (68.3)	141 (84.4)	
Willingness to learn more about foot	Yes	53 (85.5)	120 (71.0)	0.057
care	Neutral	9 (14.5)	44 (26.0)	
	No	0 (0.0)	5 (3.0)	
Self-use of toe socks	Used	12 (19.4)	49 (29.0)	0.274
	Neutral	9 (14.5)	17 (10.1)	
	Not used	41 (66.1)	103 (60.9)	

¹ Chi-square distribution. *p < 0.05, **p < 0.01, ***p < 0.001

N = 232.
Item	Nurses	Care workers	p value
n	62	170	
Mean	51.2	47.8	
SD	12.2	11.6	
Age	0.062		
Working experience in the current profession	58	162	0.001***
n	23.2	9.2	
Mean	12.2	5.7	
SD			
Number of clients with foot problems cared for within past month	57	165	0.346
n	7.9	9.5	
Mean	8.3	11.6	
SD			

SD, standard deviation.
Student’s t-test *p < 0.05, **p < 0.01, ***p < 0.001

Nurses and care workers had a mean age of 51.2 (SD 12.2) and 47.8 (SD 11.6) years, respectively.

Nurses and care workers provided care to a mean of 7.9 (SD 8.3) and 9.5 (SD 11.6) clients with foot problems in the last month, respectively (Table 4). Moreover, 34 (54.8%) and 28 (45.2%) nurses worked part time and full time, while 64 (37.3%) and 106 (62.7%) care workers worked part time and full time, respectively (Table 3).

[Insert Table 3 here]

[Insert Table 4 here]

Around half of all nurses (29, 46.8%) cared for 1–5 clients a day, while 37 (22.2%) and 53 (31.7%) care workers cared for 6–10 clients and 11–20 clients per day, respectively. An overwhelming majority of nurses (57, 91.9%) and care workers (142, 83.5%) were interested in foot care. A total of 33 (53.2%) nurses and 133 (78.2%) care workers thought foot care education was lacking. Only 3 (4.8%) nurses and 1 (0.6%) care worker had confidence in their foot care practices. More than three quarters of nurses (48, 78.7%) and care workers (128, 75.7%) thought foot care guidelines were necessary. Furthermore, 41 (68.3%) nurses and 141 (84.4%) care workers thought they did not have sufficient time for foot care, while 53 (85.5%) nurses and 120 (71.1%) care workers were interested in learning more about foot care. A total of 59 care workers (35.5%) obtained foot care knowledge from colleagues, whereas 83% of nurses obtained it from various sources. Meanwhile, 72 care workers (43.4%) did not obtain foot care knowledge from any sources. A total of 12 (19.4%) nurses and 49
(29.0%) care workers used toe socks.

As shown in Table 5, practice scores were significantly associated with work status (part time and full time) for both nurses and care workers. Mean practice scores were higher among full-time providers than part-time providers in both groups.

Table 5
Correlation between knowledge and practice scores and demographic characteristics and daily number of clients.

	Total knowledge score		Total practice score			
	n	Spearman’s	p value	n	Spearman’s	p value
		correlation			coefficient	
Nurse (n = 62)						
Age	57	0.087	0.521	50	0.109	0.451
Working experience in the current profession	56	0.012	0.929	48	0.013	0.928
Number of clients cared for per day	60	−0.073	0.580	52	−.301	0.030*
Care workers (n = 170)						
Age	164	−0.080	0.306	142	0.117	0.165
Working experience in the current profession	158	0.069	0.387	137	0.332	0.000***

	Total knowledge score		Total practice score					
	n	Mean	SD	p value	n	Mean	SD	p value
Nurse (n = 62)								
Male	0	-	-	-	0	-	-	-
Female	59	25.1	2.4	0.708	51	65.5	13.6	0.023*
Work status: part time	33	25.3	2.5	0.708	25	61.4	13.8	0.023*
Work status: full time	27	25.0	2.4	0.708	27	69.9	12.3	
Care workers (n = 170)								
Male	26	22.6	5.7	0.875	25	55.1	13.4	0.26
Female	139	22.4	4.6	0.875	117	58.3	13.1	
Work status: part time	63	21.8	5.2	0.195	51	53.1	12.4	0.001**
Work status: full time	101	22.8	4.4	0.195	90	60.5	12.9	

Age, working experience in the current profession, and number of clients for per day were analyzed using "test for no correlation"

Sex and working status were analyzed using Student’s t-test

*p < 0.05, **p < 0.01, *** p < 0.001
Mean practice scores were found to be associated with the number of clients cared for per day among nurses and working experience in the current profession among care workers.

Foot care knowledge
Among the 232 participants included, 225 (96%) completely answered all questions regarding knowledge, while 7 (4%) did not answer parts of the questions. Table 6 details the accuracy rates of the answers. Significant differences were observed in the early detection of foot problems (Vascular and Neurologic 21) and skin tear on lower limbs (Skin 5) between nurses and care workers, with an accuracy difference of 34.3% and 25.5%, respectively, which was highest among knowledge items. Accuracy rates in both groups were low for the Shoes and Socks subscale.
Subscales	Item	Nurses	% Accuracy	Care workers
Nail 1	Cutting a toenail shorter than the tip of the toe may cause a curly nail, and/or an ingrown nail.	58	96.7	125
Nail 2	A toenail can be cut easier after soaking nails in warm water for 5–10 minutes.	57	95.0	148
Nail 3	Toenails protect the end of the foot and support body weight when walking.	55	91.7	120
Nail 4	When a nail is yellowed and rough, a fungal infection is the suspected cause.	55	91.7	146
Nail 5	The color of the nail can be used as barometer of general health.	57	95.0	154
Skin 1	Moisturizer should be applied immediately after taking a bath.	50	83.3	129
Skin 2	Corns and calluses have the same meaning.	45	75.0	103
Skin 3	Repeated friction and stimulation cause the keratin in the sole of the foot to become thicker.	49	81.7	118
Skin 4	Skin tear on an older person’s upper arms or elbow joints are often produced when a caregiver adds extra pressure when assisting movement.	38	63.3	66
Skin 5	Skin tear on lower limbs often occurs by coming into contact with appliances such as footrests.	52	86.7	101
Skin 6	Because there are no sebaceous glands on the soles, oil is unavailable, and the sole becomes dry easily.	38	63.3	95
Vascular and Neurologic 1	If the client suffers from severe diabetes, foot sensitivity is reduced and pain may not be noticed even though he/she was injured.	60	100.0	143
Vascular and Neurologic 2	When only one foot only suddenly becomes cold, blood vessels may be blocked by blood clots.	58	96.7	103
Vascular and Neurologic 3	Small wounds on an older person may develop into an ulcer if left without treatment.	58	96.7	134
Vascular and Neurologic 4	Signs of infection are flares (reddish tinge), swelling, pain and a feeling of heat.	56	93.3	134
Vascular and Neurologic 5	Even though pain is felt on one foot after a period of walking, it will go away after rest. Consequently, there is no need to worry.	52	86.7	144
Toe and Arch 1	There is no relationship between foot or toenail deformation, and pain in the waist or neck.	51	85.0	121
Toe and Arch 2	When one of the three arches on the foot collapses, various problems occur.	52	86.7	112
Toe and Arch 3	A stiff ankle is more likely to make a person stumble or fall.	59	98.3	137
Toe and Arch 4	Toe deformity influences the muscular strength of lower limbs.	58	96.7	152
Toe and Arch 5	Toe flexor exercise increases the calf muscle pump function of lower limbs.	60	100.0	128
Infection 1	Fungal bacteria can be removed from the nail clippers using alcohol.	43	71.7	126
Infection 2	When medical appliances are shared among clients without sufficient sterilization, infection spreads.	59	98.3	155
Infection 3	The bucket used for foot baths is cleaned only by rinsing with hot water.	45	75.0	126
Shoes and Socks 1	The client’s shoes have approximately 1-1.5cms space, measured from the longest toe, and allow the toes to move freely.	34	56.7	83
Shoes and Socks 2	Corns and calluses are not influenced by the type of socks worn.	31	51.7	97
Shoes and Socks 3	Shoe sizes are not absolute and vary by a maker.	53	88.3	142
Shoes and Socks 4	Shoes with a well-fixed heel prevent foot slippage.	29	48.3	98
Sedentary Behavior 1	Walking for one hour a day is enough to compensate for long sedentary periods.	54	90.0	146
Sedentary Behavior 2	Falls that happen when an older person moves from sitting to standing can be prevented by.	44	73.3	117
Chi-square test *p < 0.05, **p < 0.01, ***p < 0.001. Among the 232 participants, 225 (96%) answered all questions regarding knowledge.

Answer: yes = 1, no = 2, I do not know = 3

Foot care practices

Result for questions regarding practices among nurses and care workers are presented in Table 7. Among the 232 participants, 194 (84.4%) answered all 20 questions regarding practices. The results demonstrated some differences in foot care practices between nurses and care workers. Accordingly, significant differences between nurses and care workers were found in the daily assessment of clients’ feet, assessment of the skin between the toes and on the heel, use of nippers, method for reducing ingrown nail pain, the use of a grinder, drying of the skin between the toes, the use of soap, awareness regarding foot baths, and talking about foot care with other staff members. Both groups had close mean scores for the three items on Movement and Toe Exercises.
Table 7
Mean scores for questions regarding practices according to profession.

Item	Item content	Nurses (62)		
Skin Assessment 1	I (as care giver) check the clients’ feet every day.	59	3.1	
Skin Assessment 2	When I check each foot, the skin between the toes and on the heel is included.	59	3.1	
Skin Assessment 3	I check the clients’ shoes before they wear or take off their shoes.	58	2.0	
Nail 1	When I clip the clients’ nails, they are clipped straight with a curve at the corners.	58	3.6	
Nail 2	I always use the nipper when I cut the clients’ nails.	59	3.2	
Nail 3	When there is a slight ingrown nail, I know the method to reduce pain by taping and packing with cotton.	58	2.6	
Nail 4	I use a nail file or grinder to reduce the thickness of nails that require this treatment.	59	3.0	
Nail 5	Sterilizing method is the same within an institution after the use of a nipper.	59	2.7	
Skin 1	After I wash the clients’ feet, the area between the toes is dried thoroughly.	59	3.7	
Skin 2	When heels are cleaned every day, they become cleaner.	57	3.5	
Skin 3	Moisturizer is used on dry feet because dryness reduces the barrier function of skin.	59	4.2	
Skin 4	I sometimes apply Vaseline or an ointment to the skin without first wiping away previous excess Vaseline or ointments.	58	2.9	
Hygiene 1	It is beneficial to bathe in acidic bubble soap.	58	4.0	
Hygiene 2	Bathing opens the skin’s pores more effectively than showers; therefore, a bath is more effective in removing dirt.	58	4.0	
Hygiene 3	I understand the purpose, method and awareness points for care of a foot bath.	59	3.7	
Movement and Toe Exercise 1	I provide advice to clients when they stand from a chair.	59	3.5	
Movement and Toe Exercise 2	I always promote toe exercises to clients.	59	3.6	
Movement and Toe Exercise 3	I encourage clients to stand when they have been sitting for more than one hour.	57	3.2	
Consultation 1	I have an opportunity to talk about foot care with other staff members.	59	2.7	
Consultation 2	I always consult with others regarding which doctor or specialist the client should visit.	59	3.2	

SD, standard deviation

Mann-Whitney U *p < 0.05, **p < 0.01, *** p < 0.001

Five answers: strongly relevant = 5, more relevant = 4, neutral = 3, less relevant = 2, not relevant = 1 (points)

Among the 225 participants, 194 answered all of the questions.

Nurses and care workers had low mean scores for checking clients’ shoes (2.0 and 2.1, respectively), method for reducing ingrown nail pain (2.6 and 1.9, respectively), and talking about foot care with other staff members (2.7 and 2.2, respectively). However, nurses and care workers had relatively high means scores for skin moisturizing (4.2 and 3.9, respectively) and bathing effects (4.0 and 3.6, respectively).

Although a ceiling effect was observed for items Nail 3, Skin 3, and Hygiene 2, they were statistically
acceptable given their SD of 1.4, 1.1, and 1.1, respectively (Table 8).

Table 8

Items	Mean	SD	M - SD	M + SD	Ceiling effect
Skin Assessment 1	2.8	1.1	1.8	3.9	0
Skin Assessment 2	2.7	1.1	1.6	3.8	0
Skin Assessment 3	2.0	0.9	1.1	2.9	0
Nail 1	3.3	1.3	2.1	4.6	0
Nail 2	2.6	1.6	1.0	4.1	0
Nail 3	2.1	1.4	0.7	3.4	1*
Nail 4	2.5	1.5	1.0	4.0	0
Nail 5	3.0	1.5	1.5	4.5	0
Skin 1	3.2	1.4	1.9	4.6	0
Skin 2	3.5	1.2	2.2	4.7	0
Skin 3	4.0	1.1	2.9	5.2	1*
Skin 4	2.6	1.4	1.2	4.1	0
Hygiene 1	3.7	1.2	2.5	4.9	0
Hygiene 2	4.0	1.1	2.8	5.1	1*
Hygiene 3	3.0	1.1	1.9	4.1	0
Movement and Toe Exercise 1	3.4	1.1	2.4	4.5	0
Movement and Toe Exercise 2	3.4	1.3	2.1	4.7	0
Movement and Toe Exercise 3	3.0	1.2	1.8	4.2	0
Consultation 1	2.4	1.2	1.2	3.6	0
Consultation 2	2.6	1.3	1.3	3.9	0

*ceiling effect.

Results for Cronbach’s alpha are detailed in Table 9. Accordingly, items on Skin Assessment, Nail, Skin, Hygiene, Movement and Toe Exercise, and Consultation had Cronbach’s alpha values of 0.72, 0.67, 0.65, 0.73, and 0.63, respectively.

Table 9

Subscale (practice)	Number of items (n = 20)	Cronbach’s α	Mean	SD	Min-to-max value
Skin Assessment	3	0.72	7.6	2.5	3.0–14.0
Nail	5	0.67	13.5	4.7	5.0–25.0
Skin	4	0.65	13.3	3.6	4.0–20.0
Hygiene	3	0.65	10.7	2.7	3.0–15.0
Movement and Toe Exercise	3	0.73	9.9	2.9	3.0–15.0
Consultation	2	0.63	4.9	2.1	2.0–10.0

Correlation between knowledge and practice scores

The correlation between knowledge and practice scores is presented in Table 10. Accordingly, a significant correlation between overall knowledge and practice scores was observed among both nurses (0.331; \(p = 0.017 \)) and care workers (0.339; \(p = 0.000 \)). Spearman’s rank correlation test
showed that the association between knowledge scores and Movement and Toe Exercises was above 0.4 for nurses, while association between knowledge scores and Skin, Hygiene, and Movement and Toe Exercise were above 0.3 for care workers.

Table 10

Subscale (practice)	Nurses (n = 52)	Care workers (n = 142)				
	n	coefficient	p value	N	coefficient	p value
Skin Assessment	52	0.227	0.105	142	0.101	0.236
Nail	52	0.259	0.064	142	0.188	0.026
Skin	52	0.186	0.186	142	0.313	0.000***
Hygiene	52	0.191	0.176	142	0.350	0.000***
Movement and Toe Exercise	52	0.417	0.002**	142	0.304	0.000***
Consultation	52	0.190	0.178	142	0.235	0.005**
Total	52	0.331	0.017*	140	0.339	0.000***

Spearman’s rank correlation.*p < 0.05, **p < 0.01, ***p < 0.001

Discussion

The results of the present study showed a significant association between foot care knowledge and practices among both nurses and care workers. The purpose of this study was to explore the strengths and weaknesses of both professions with regard to the provision of foot care and to develop strategies that improve the level of care within this area. One of features of the present study was the inclusion of care workers among the study participants. Care workers working in in-home service providers have countless opportunities to assess and come in contact with the client. Thus, statements like “he/she is not as usual” by non-nurses should be taken seriously and require follow-up [15].

Our results showed that both nurses and care workers were interested in learning about foot care and observing clients’ foot problems despite having low confidence, insufficient time, and limited foot care education. Indeed, 57 (92%) nurses and 165 (97%) care workers had cared for a mean of 7.9 and 9.5 clients with foot problems a month before the survey.

In contrast to our hypothesis, a significant correlation between working experience and practice scores had been observed, with full-time participants having higher mean scores. Moreover, working experience was significantly associated with practice scores among care workers. This is consistent with results presented in previous studies [19]. and could perhaps be attributed to increased chances for foot care practice with greater working hours.
Higher accuracy differences in the early detection of foot problems had been observed between both groups in contrast to our hypothesis. Despite nurses having received more in-depth anatomy and physiology education compared to care workers, only slight differences had been expected given the lack of foot care education in both professions. Previous studies indicated nursing assistant’ detection of early signs of symptom contribute to health care [15, 17]. Older people with low risk of foot problems might be undiagnosed and overlooked; therefore, they need medical help [23] and with high risk may develop worse conditions [24, 25].

Early detection and reporting of foot problems by care workers may lead to early treatment, which could potentially be life-saving. Therefore, enhancing knowledge on early detection among care workers should be emphasized.

The present study found that knowledge on shoes and socks had been lacking among both professions given the lower accuracy rates of related answers. Despite having more opportunities to observe the client’s foot when assisting with the wearing of shoes and socks or bathing, care workers were less aware of foot arches compared to nurses. Inappropriate shoes can cause calluses or corns, as well as toe and arch deformity [26, 27]. This is significant considering that the arch of the foot plays a vital role in balancing or walking. Although the effect of inappropriate footwear on the structure of foot has been extensively studied in other countries [27–32], limited research on the same has been available in Japan.

Nurse and care workers were aware of the protective effects of moisturizers on the skin barrier; however, the 25.5% knowledge difference between both groups regarding skin tears should be emphasized in future foot education programs. Considering the decreased elasticity, dryness, and fragility of older people’ skin, identifying factors that trigger skin tears on their arms and feet can prevent further skin problems. Accordingly, Serra R et al. had reported risk factors for skin tears among frail populations [33]. Notably, small stones or objects inside the shoes may lead to skin breakage on the foot. Observing for signs on skin from improper footwear is imperative [34]. Assessment of the skin between the toes and on the heel has also been poor among Japanese studies, unlike those in other countries [35–37]. Skin maceration between the toes may increase the risk for
developing cellulitis from fungal infections. Indeed, a hospital based-study in Japan reported fungal infections among older people individuals [38], with another study on older people living at home and in nursing homes also showing the same [39]. Hence, assessing the skin between the toes should be included in a health care provider’s daily routine.

The present study found that more nurses than care workers practiced nail care. However, nurses had the lowest scores for ingrown nail care among the items on nail care practice. Admittedly, foot nail care, particularly nail cutting, among older people individuals can be challenging for both of nurses and care workers. Changes in nail characteristics may be normal and related to the natural aging process. However, nail disorders, including thickened, elongated, and ingrown nails, can be painful and disabling [40]. The MHLW in Japan provided a guideline to inform nurses and care workers on foot care based on qualifications [41]. Such information would be beneficial for the safe and regulated practice of foot care among nurses and care workers. Learning to use a grinder and toenail clipper requires time and knowledge. Care providers may also learn to use a nail file for reducing nail thickness to some degree or shape the nail edge. Nail disorder not only caused cosmetic problems but also showed negative effects on health related quality of life and psychological problems [13, 42]. Thus, nail care among older people individuals greatly contributes toward maintaining and improving quality of life.

Nurses and care workers had close mean scores for Movement and Toe Exercise. The present study included prevention of sedentary behavior and toe exercises in the general definition of foot care. A wide range of studies outside Japan have shown that sitting for long durations without standing every hour may cause adverse effects on the body [43–45]. Hence, monitoring sedentary time and promoting hourly standing among older people individuals should theoretically be promoted. However, this becomes challenging for nurses and care workers due to time constraints and the need for careful observation relate to safety.

The current study identified several challenges for future programs. Firstly, time constraints continue to be a universal issue for the nursing profession. Evidence has clearly shown that workload and access to equipment are among the challenges nurses and care workers face, which could lead to
insufficient time allotted toward caring for clients [46, 47], most of whom are vulnerable. When caring for several clients at one time, nurses and care workers observe them carefully and assist with walking or bathing, taking extreme caution due to the risk for falls. To account for this situation, efficient and comprehensive “hands-on” foot care tools, which can be learned and implemented quickly during regular working hours, can be developed for nurses and care workers. Previous studies can also be used as reference [35, 47, 48].

Secondly, the lack of foot care education in the school curriculum as well as in the work field has hindered foot care practice in Japan. According to one study, 78.7% (48) of nurses and 75.7% of care workers (128) stated that foot care manuals are necessary. Moreover, the results presented herein showed that foot care knowledge came from various sources, with some care providers not even knowing the source (Table 3). Hence, a certain structured system for foot care education should be incorporated into the current academic curriculum. Detecting foot problems or providing foot care for particular foot problems among older people individuals has remained challenging. Stolt et al. stressed the necessity of having regular, organized continuing education for all professional nurses engaged in clinical practice [11].

Gaining knowledge and practical experience through education or training sessions has been shown to foster confidence. Lack of confidence may affect the delivery of care [49]. Self-efficacy and confidence has often been associated with self-care behavior among patients with diabetes [50]. Nurse and care worker confidence may supplement foot self-care insufficiency among older people due to aging. Coping with nail thickness or reducing edema, however, may require further foot care education and training.

Thirdly, the lack of foot care specialists has hindered appropriate treatment of foot problems in Japan. Accordingly, Japan does not provide a national license for foot care specialists or foot care doctors equivalent to a podiatrist or pomologist. Moreover, the present study suggested that the current consultation system is lacking due to an absence of podiatry referral system in Japan compared to other countries [51–53]. While the incorporation of referral recommendations may be influenced by many factors [53], communication channels represent the strength of an organization. Considering
that nurses and care workers in in-home service providers do not immediately receive orders from
doctors, unlike those in the hospital, they may have more autonomy over decisions regarding further
referral after observing or assessing the foot problem.

The present study has explored the requirements for future foot care programs targeting nurses and
care workers. Given the various current limitations, new approaches toward enhancing knowledge
and practice among nurses and care workers need to be developed and exercised in the future.
Additional large-scale studies on nurses and care workers in in-home service providers will be
essential. However, researchers need to formulate strategies that address potential participation bias
with the current Japanese working situation.

Study limitations
The participants included herein were collected using cluster sampling. Thus, once a field manager of
a service center expressed willingness to respond to this study, nurses and care workers were more
likely to cooperate with the study. Nonetheless, we need to accumulate evidence and provide reasons
for the achieved response rates. Although 530 participants were initially targeted, this number could
not be met due to time and budget constraints. Nonetheless, the final sample size was determined to
be statistically appropriate. Non-certified care workers had several different types of certificates, the
differences in which could not be analyzed due to the small number of participants. Moreover, some
nurses worked as home care providers, which allowed them more time to assess the skin and toes of
their clients. The time allocated for foot care might differ depending on provider types and their roles.
To properly account for and analyze potential differences, future studies need to include a large
enough sample from each type of provider. The present study obtained Cronbach’s alpha values of
0.63–0.73 for all subscales on practice, which could have been attributed to the number of items
included in each subscale.

Conclusions
The present study showed that participants' interest levels and willingness to learn about foot care
was inversely proportional to their access to education.

Moreover, areas of early detection of foot problem, skin tear, as well as shoes and socks were
identified to be improved. We believe that the results presented herein will aid in the future establishment of intervention programs targeting nurses and care workers in in-home service providers, which would directly and positively impact foot health among older people individuals.

Appendix 1. Japanese insurance system

Japan has two types of insurance that older people can use to access care. The first insurance type is the National Health Insurance (NHI), which is paid for by all Japanese citizens and residents under 75 years old, although some companies pay for their employees’ premiums. Payment of the aforementioned premium grants an NHI card to an individual that covers 70–90% (typically 70%) of the cost for all eligible treatments. The cardholder will be responsible for the remaining 10–30% (typically 30%) of the treatment cost. The second insurance type is the Long-Term Care Insurance (LTCI), which is an extra charge paid by all Japanese citizens and residents over 40 and under 75. This type of insurance specifically covers illnesses related to old age or certain health problems for younger individuals. The LTCI can be claimed starting at the age of 65, or 40 for those with specific conditions, and will cover 70–90% of the cost for eligible treatments. The cardholder will be responsible for the remaining 10–30% of the treatment cost, with the exact amount paid depending on the cardholder’s previous income [54].

Currently, older people individuals receiving community-based care are divided into two groups. The first group consists of individuals who either do not require any home care from community service centers or are receiving family support. This group may consult with doctors at outpatient departments when necessary using their NHI. The second group consists of individuals who require or wish to receive home care from nurses or care workers employed by health service centers, short-stay service centers, or community-based service centers, such as day care centers. All relevant care is covered by either the LTCI or NHI.

To receive home nursing care services using the LTCI, a request to the relevant government department must be made either in person or by a designated family member. According to current calculations based on statistics from the MHLW as of March 2019, approximately 18% of individuals over 65 are recipients of the LTCI, among whom 57% use the coverage afforded to them under this
program [55, 56]

The remaining 82% of the population aged 65 years and older may have been denied care due to a non-qualifying condition or having been categorized into the pre-care group. Some older people and their families may have no knowledge or information regarding the LTCI system, while others are only willing to receive hospital care. Thus, the actual figure of individuals in need of home-based care remains unknown.

Abbreviations

MHLW
Ministry of Health, Labor and Welfare

NHI
National Health Insurance

LTCI
Long-Term Care Insurance

CVI
Content Validity Index

I-CVI
Item Content Validity Index

RN
registered nurse

LPN
licensed practical nurse

Declarations

Ethics approval and consent to participate

The Ethics Committee of the Human Environments University (2019N-002) and Nagoya University (2019-0150) approved this study. This study was conducting in accordance with the Helsinki Declaration. Information related to the purpose of the study, privacy, the right to discontinue, and future publication has been included in the cover letter. Consent for study participation was implied by the submission of a completed questionnaire.

Consent for publication

Not applicable
Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was partially funded by grants-in-aid for scientific research (2019-0150)

Author contributions

KF designed the study and collected, analyzed, and interpreted the data. TK and AM contributed to the concept of the study. TF and MN contributed to the interpretation of the data.

Acknowledgments

KF wishes to acknowledge the work and support of the following: All centers, nurses, and care workers who participated in, and shared their precious time for, this study; Ms Yamamichi, Fusspfleger at the Japan Fusspfleger School who provided tremendous expert advice regarding foot care; all the researchers, doctors, nurses, and foot care workers who formed the expert panel and participated in the CVI evaluation; Mr Fukushima for his expertise in statistics; and Mr. Furukawa, Mr Nakayama, Ms Yamada, Ms Matsuda, Ms Price, and Mr. DJ, Associate Professor of Kio University, Fukumoto for their valuable assistance. Finally, the main Author (FK) would like to thank all their family members, Kou, and Makoto for emotional support.

References

1. World Bank Group. Population ages 65 and above (% of total population. 2018 Accessed 25 Aug 2019. ZS?end=2018&start=1960&view=chart.

2. Japanese nursing association. Nursing for the older people in Japan. Accessed 25. Aug 2019.

3. Ministry of Health LaW, Heatlh and welfare bureau for the elderly. Long-term Care Insurance System of Japan. 2016. Accessed 25 Aug 2019.

4. Dunn J, Link C, Felson D, Crincoli M, Keysor J, McKinlay J. Prevalence of foot and ankle
conditions in a multiethnic community sample of older adults. Am J Epidemiol. 2004;159:491-8.

5. Garrow AP, Silman AJ, Macfarlane GJ. The Cheshire Foot Pain and Disability Survey: a population survey assessing prevalence and associations. Pain. 2004;110:378-84.

6. Awale A, Dufour AB, Katz P, Menz HB, Hannan MT. Link between foot pain severity and prevalence of depressive symptoms. Arthritis Care Res (Hoboken). 2016;68:871-6.

7. Dawson J, Thorogood M, Marks SA, Juszczak E, Dodd C, Lavis G, et al. The prevalence of foot problems in older women: a cause for concern. J Public Health. 2002;24:77-84.

8. Hawke F, Burns J. Understanding the nature and mechanism of foot pain. J Foot Ankle Res. 2009;2:1.

9. Menz HB, Lord SR. The contribution of foot problems to mobility impairment and falls in community-dwelling older people. J Am Geriatr Soc. 2001;49:1651-6.

10. Menz HB, Dufour AB, Casey VA, Riskowski JL, McLean RR, Katz P, et al. Foot pain and mobility limitations in older adults: the Framingham Foot Study. J Gerontol A Biol Sci Med Sci. 2013;68:1281-5.

11. Stolt M, Suhonen R, Puukka P, Viitanen M, Voutilainen P, Leino-Kilpi H. Nurses' foot care activities in home health care. Geriatric Nursing. 2013;34:491-7.

12. Volpi E, Nazemi R, Fujita S. Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care. 2004;7:405.

13. Abdullah L, Abbas O. Common nail changes and disorders in older people: Diagnosis and management. Can Fam Physician. 2011;57:173-81.

14. Ministry of Health LaW. Health and Welfare Services for the Elderly. 2013. Accessed 20Sept 2019.
15. Tingstrom P, Milberg A, Rodhe N, Ernerud J, Grodzinsky E, Sund-Levander M. Nursing assistants: "he seems to be ill" - a reason for nurses to take action: validation of the Early Detection Scale of Infection (EDIS). BMC Geriatr. 2015;15:122.

16. Boockvar K, Brodie HD, Lachs M. Nursing assistants detect behavior changes in nursing home residents that precede acute illness: development and validation of an illness warning instrument. J Am Geriatr Soc. 2000;48:1086–91.

17. Tingstrom P, Milberg A, Sund-Levander M. Early nonspecific signs and symptoms of infection in institutionalized elderly persons: perceptions of nursing assistants. Scand J Caring Sci. 2010;24:24–31.

18. Haugstvedt A, Aarflot M, Igland J, Landbakk T, Graue M. Diabetes knowledge in nursing homes and home-based care services: a validation study of the Michigan Diabetes Knowledge Test adapted for use among nursing personnel. BMC Nurs. 2016;15:40.

19. Stolt M, Suhonen R, Puukka P, Viitanen M, Voutilainen P, Leino-Kilpi H. Nurses' knowledge of foot care in the context of home care: a cross-sectional correlational survey study. J Clin Nurs. 2015;24:2916–25.

20. Ministry of Health LaW. e-Stat is a portal site for Japanese Government Statistics. 2019. Accessed 15 Sept 2019.

21. Zamanzadeh V, Ghahramanian A, Rassouli M, Abbaszadeh A, Alavi-Majd H, Nikanfar A-R. Design and implementation content validity study: development of an instrument for measuring patient-centered communication. Journal of caring sciences. 2015;4:165.

22. Campbell J. Characteristics of the foot health of ‘low risk’ older people: A principal components analysis of foot health measures. The Foot. 2006;16:44-50.

23. Taber KS. The use of Cronbach’s alpha when developing and reporting research
instruments in science education. Research in Science Education. 2018;48:1273–96.

24. Boyko EJ, Ahroni JH, Cohen V, Nelson KM, Heagerty PJ. Prediction of diabetic foot ulcer occurrence using commonly available clinical information: the Seattle Diabetic Foot Study. Diabetes Care. 2006;29(6):1202–7.

25. Diehm C, Schuster A, Allenberg JR, Darius H, Haberl R, Lange S, et al. High prevalence of peripheral arterial disease and co-morbidity in 6880 primary care patients: cross-sectional study. Atherosclerosis. 2004;172:95–105.

26. Nix SE, Vicenzino BT, Smith MD. Foot pain and functional limitation in healthy adults with hallux valgus: a cross-sectional study. BMC Musculoskelet Disord. 2012;13:197.

27. Buldt AK, Menz HB. Incorrectly fitted footwear, foot pain and foot disorders: a systematic search and narrative review of the literature. J Foot Ankle Res. 2018;11:43.

28. Burns S, Leese G, McMurdo M. Older people and ill fitting shoes. Postgrad Med J. 2002;78:344–6.

29. Menz HB, Morris ME, Lord SR. Footwear characteristics and risk of indoor and outdoor falls in older people. Gerontology. 2006;52:174–80.

30. Hubscher M, Thiel C, Schmidt J, Bach M, Banzer W, Vogt L. Slip resistance of non-slip socks—an accelerometer-based approach. Gait Posture. 2011;33:740–2.

31. Lopez Lopez D, Losa Iglesias ME, Becerro de Bengoa Vallejo R, Palomo Lopez P, Morales Ponce A, Soriano Medrano A, et al. Optimal choice of footwear in the elderly population. Geriatr Nurs. 2015;36:458–61.

32. Shinohara J. Effects of five-toed socks with grippers and ankle bracing on dynamic postural control and subjective feelings during a jump-landing task in individuals with chronic ankle instability. 2011.

33. Serra R, Ielapi N, Barbetta A, de Franciscis S. Skin tears and risk factors assessment:
34. Ren M, Yang C, Lin DZ, Xiao HS, Mai LF, Guo YC, et al. Effect of intensive nursing education on the prevention of diabetic foot ulceration among patients with high-risk diabetic foot: a follow-up analysis. Diabetes Technol Ther. 2014;16:576–81.

35. Miller JD, Carter E, Shih J, Giovinco NA, Boulton AJ, Mills JL, et al. How to do a 3-minute diabetic foot exam: this brief exam will help you to quickly detect major risks and prompt you to refer patients to appropriate specialists. J Fam Pract. 2014;63:646–54.

36. Kaya Z, Karaca A. Evaluation of nurses' knowledge levels of diabetic foot care management. Nurs Res Pract. 2018;2018:8549567.

37. Lincoln N, Jeffcoate W, Ince P, Smith M, Radford K. Validation of a new measure of protective footcare behaviour: the Nottingham Assessment of Functional Footcare (NAFF). Practical Diabetes International. 2007;24:207–11.

38. Furue M, Yamazaki S, Jimbow K, Tsuchida T, Amagai M, Tanaka T, et al. Prevalence of dermatological disorders in Japan: a nationwide, cross-sectional, seasonal, multicenter, hospital-based study. J Dermatol. 2011;38:310–20.

39. Shusaku YM, Nobuhiko F, Katsumi F. Epidemiological study on trichophyton disseminating from the feet of the elderly. Jpn J Hyg. 2017;72:177–83. (In Japanese, abstract available in English).

40. Menz HB. Chronic foot pain in older people. Maturitas. 2016;91:110–4.

41. Ministry of Health LaW. Article 17 of the Doctors Act, Article 17 of the Dentists Act and about interpretation of public health nurse midwife nurse law Article 31 (in Japanese only). 2005. Accessed 10. Aug 2019.

42. Reich A, Szepietowski JC. Health-related quality of life in patients with nail disorders. Am J Clin Dermatol. 2011;12:313–20.
43. Siddarth P, Burggren AC, Eyre HA, Small GW, Merrill DA. Sedentary behavior associated with reduced medial temporal lobe thickness in middle-aged and older adults. PLoS One. 2018;13:e0195549.

44. Keevil VL, Wijndaele K, Luben R, Sayer AA, Wareham NJ, Khaw KT. Television viewing, walking speed, and grip strength in a prospective cohort study. Med Sci Sports Exerc. 2015;47:735–42.

45. Dunstan DW, Kingwell BA, Larsen R, Healy GN, Cerin E, Hamilton MT, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35:976–83.

46. Lavallée JF, Gray TA, Dumville J, Cullum N. Barriers and facilitators to preventing pressure ulcers in nursing home residents: A qualitative analysis informed by the Theoretical Domains Framework. Int J Nurs Stud. 2018;82:79–89.

47. McDonald A, Shah A, Wallace W. Diabetic foot education and Inlow’s 60-second foot screen. Diabet Foot Canada. 2013;1:18–32.

48. Borges J. Wanda OKS. Improving foot self-care behaviors with Pies Sanos. West J Nurs Res. 2008;30:325–41.

49. Turner C, Quine S. Nurses’ knowledge, assessment skills, experience, and confidence in toenail management of elderly people: Why are nurses and nursing assistants reluctant to cut toenails? Geriatr Nurs. 1996;17:273–7.

50. Sharoni SKA, Rahman HA, Minhat HS, Shariff-Ghazali S, Ong MHA. The effects of self-efficacy enhancing program on foot self-care behaviour of older adults with diabetes: a randomised controlled trial in elderly care facility, Peninsular Malaysia. PLoS One. 2018;13:e0192417.

51. Spink MJ, Menz HB, Fotoohabadi MR, Wee E, Landorf KB, Hill KD, et al. Effectiveness of a multifaceted podiatry intervention to prevent falls in community dwelling older
people with disabling foot pain: randomised controlled trial. BMJ. 2011;342:d3411.

52. Carter K, Cheung PP, Rome K, Santosa A, Lahiri M. Increasing podiatry referrals for patients with inflammatory arthritis at a tertiary hospital in Singapore: A quality improvement project. Foot. 2017;31:6-12.

53. Edwards N, Davies B, Ploeg J, Virani T, Skelly J. Implementing nursing best practice guidelines: impact on patient referrals. BMC Nurs. 2007;6(1):4.

54. Organizations FoNHI. Guide to Japan’s National Health Insurance (NHI) system. 2019. Accessed 20 Sept 2019.

55. Ministry of Health LaW. Care insurance business status report (provisional). 2019. Accessed 30 Aug 2019.

56. html. (In Japanese only).

57. Ministry of Health LaW. Care insurance business status report (provisional). Accessed 20. Aug 2019. (In Japanese only).

Figures
Figure 1

Trial profile

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
FC2aprilSTROBechecklist.docx