Drosophila Host Model Reveals New Enterococcus faecalis Quorum-Sensing Associated Virulence Factors

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation
Teixeira, N., S. Varahan, M. J. Gorman, K. L. Palmer, A. Zaidman-Remy, R. Yokohata, J. Nakayama, et al. 2013. “Drosophila Host Model Reveals New Enterococcus faecalis Quorum-Sensing Associated Virulence Factors.” PLoS ONE 8 (5): e64740. doi:10.1371/journal.pone.0064740. http://dx.doi.org/10.1371/journal.pone.0064740.

Published Version
doi:10.1371/journal.pone.0064740

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11708651

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Drosophila Host Model Reveals New Enterococcus faecalis Quorum-Sensing Associated Virulence Factors

Neuza Teixeira¹,²,³, Sriram Varahan⁴, Matthew J. Gorman⁴*, Kelli L. Palmer²#, Anna Zaidman-Remy³, Ryoji Yokohata⁵, Jiro Nakayama⁵, Lynn E. Hancock⁴, António Jacinto³, Michael S. Gilmore², Maria de Fátima Silva Lopes¹,⁶

¹ ITQB Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal, ² Departments of Ophthalmology, and Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America, ³ CEDOC Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal, ⁴ Division of Biology, Kansas State University, Manhattan, Kansas, United States of America, ⁵ Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, Fukuoka, Japan, ⁶ IBET Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal

Abstract

Enterococcus faecalis V583 is a vancomycin-resistant clinical isolate which belongs to the hospital-adapted clade, CC2. This strain harbours several factors that have been associated with virulence, including the *fsr* quorum-sensing regulatory system that is known to control the expression of GelE and SprE proteases. To discriminate between genes directly regulated by Fsr, and those indirectly regulated as the result of protease expression or activity, we compared gene expression in isogenic mutants of V583 variably defective in either *fsr* quorum sensing or protease expression. Quorum sensing was artificially induced by addition of the quorum signal, GBAP, exogenously in a controlled manner. The Fsr regulon was found to be restricted to five genes, gelE, sprE, ef1097, ef1351 and ef1352. Twelve additional genes were found to be dependent on the presence of GBAP-induced proteases. Induction of GelE and SprE by GBAP via Fsr resulted in accumulation of mRNA encoding *lrqA*, and this induction was found to be *lyrRS*-dependent. *Drosophila* infection was used to discern varying levels of toxicity stemming from mutations in the *fsr* quorum regulatory system and the genes that it regulates, highlighting the contribution of *lrqA* and bacteriocin EF1097 to infection toxicity. A contribution of SprE to infection toxicity was also detected. This work brought to light new players in *E. faecalis* success as a pathogen and paves the way for future studies on host tolerance mechanisms to infections caused by this important nosocomial pathogen.

Citation: Teixeira N, Varahan S, Gorman MJ, Palmer KL, Zaidman-Remy A, et al. (2013) Drosophila Host Model Reveals New Enterococcus faecalis Quorum-Sensing Associated Virulence Factors. PLOS ONE 8(5): e64740. doi:10.1371/journal.pone.0064740

Editor: Michael Otto, National Institutes of Health, United States of America

Received January 17, 2013; **Accepted** April 17, 2013; **Published** May 29, 2013

Copyright: © 2013 Teixeira et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by Fundação para a Ciência e Tecnologia (FCT), Lisbon, Portugal, through research grant PDC/CTV/67270/2006, co-financed through FEDER, awarded to MFSL; by National Institute of Health (NIH) through research grant 107782-01A2, awarded to LEH; portions of this work were supported by NIH grant AI072360, and the Harvard-wide Program on Antibiotic Resistance, A083214, both awarded to MGC; by the European Research Council Starting Grant 2007-STG-208631, awarded to AJ; and by Grants-in-Aid for Scientific Research (B) No. 24380050, awarded to JN. The work performed at Instituto de Tecnologia Química e Biológica was supported additionally by FEDER, awarded to MFSL; by National Institute of Health (NIH) through research grant AI77782-01A2, awarded to LEH; portions of this work were performed at CEDOC Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: flopes@itqb.unl.pt

Current address: The Division of Biology and Biomedical Sciences, Washington University at St. Louis, St. Louis, Missouri, United States of America

¤ Current address: Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas, United States of America

Introduction

Drosophila melanogaster is used increasingly as a model for identifying virulence factors of pathogenic microbes, and for elucidating their effects on the host [1]. The fruit fly presents several advantages, such as small size, short life cycle, short generation time, a fully sequenced genome and pre-existing libraries of genetic mutants. In addition, its immune system shares similarities with the mammalian immune system, including genes and pathways. In particular, the *Toll* and *Imd* pathways in *D. melanogaster* have parallels in the mammalian Toll-like (TLR) and interleukin-1 (IL-1) receptor families, and the mammalian tumour necrosis factor signalling pathway [2]. In 2007, Cox and Gilmore characterized the microbiome of this host and showed that *Enterococcus* sp. and naturally colonizes its alimentary canal; and that cytolysin, a toxin expressed by some strains of *Enterococcus faecalis*, contributes to death of the flies when colonized [3]. It is also known that *E. faecalis* are able to kill the flies and induce the *Toll* pathway after infection by septic injury, and that haemocytes (*Drosophila* circulating cells that function as phagocytes) also play a role in flys defence against these bacteria [4,5].

Enterococci are Gram-positive bacteria commonly found in gastrointestinal tract consortia, but are also adapted to survive and persist in the environment. In contrast to their benign role as members of the gut flora, select lineages of several enterococcal species have become leading causes of antibiotic resistant nosocomial infection, causing infections of the urinary tract, bloodstream, intra-abdominal and pelvic regions, and surgical sites [6].

E. faecalis, the species most frequently associated with nosocomial infections [7], possesses a number of traits that exacerbate the effects of infection. *Fsr* (*Enterococcus faecalis* sensor regulator) a two-
component, quorum sensing regulatory system, was first described in 2000 by Qin et al. as a paralog of the Agr system in *Staphylococcus aureus* [7]. Despite similarities, Agr is functionally distinct from Fsr as it uses the RNAII riboregulator [8]. The *fsr* operon comprises four genes: *fsrA*, *fsrB*, *fsrC* and *fsrD* [9]. The last encodes an autoinducing cyclic peptide named gelatinase biosynthesis-activating pheromone (GBAP), and this peptide is processed and exported out of the cell by FsrB. Accumulation of GBAP outside cells is sensed by the FsrC histidine kinase, leading to the activation of the response regulator FsrA. Activated FsrA induces expression of the *fsrBCD* genes forming an auto regulatory circuit that results in a rapid, exponential increase in GBAP signalling. Expression of a second operon is induced by FsrA consisting of two cistrons *gelE* and *sprE*. The first cistron, *gelE*, encodes gelatinase, an extracellular zinc metalloprotease, and the second, *sprE*, encodes a serine protease [7,10]. Several studies provided evidence that both Fsr and the proteases independently contribute to the pathogenicity of *E. faecalis* in different infection models [11, 12, 13, 14, 15, 16, 17]. The proteases have also been shown to be involved in biofilm formation [18], in translocation across intestinal T84 cells [19], in degradation of antimicrobial peptides (AMPs) from the immune system [18], in translocation across intestinal T84 cells [19], in translocation across intestinal T84 cells [19], in autolysis regulation [21] and as a paralog of the Agr system in *Staphylococcus aureus* [22, 23].

The exact mechanisms by which Fsr and its regulated proteases contribute to toxicity of infection are not known. This has been confounded in part by unexplained variation in experimental results. In 2005, Singh et al. tested *fsrB* and *gelE* mutants in *E. faecalis* strain OG1RF in a rat endocarditis model. Deletion of the proteases led to a greater decrease in endocarditis severity than deletion of *fsrB*. In the absence of *fsrB*, the *gelE* expression was reduced, and the authors postulated that was the reason for the smaller attenuation of *fsrB* mutant [15]. In contrast, studies examining the role of these traits in rabbit endocarditis in *Staphylococcus aureus* [13,14], murine and *C. elegans* infection [11,12], and in a *G. mellonella* infection model [17] all found that *fsrB* deletion led to a greater attenuation than deletion of the proteases. These last results raised the possibility that Fsr could be affecting directly or indirectly more genes or their products than just the proteases. Bourgogne et al. compared gene expression in OG1RF with an isogenic *fsrB* deletion mutant, and provided some evidence that Fsr regulates more than *gelE* and *sprE* protease genes [24]. While it is known that host substrates, such as complement components C3, C3a and C5a are targeted by GelE [20,25,26], little is known regarding a functional role for SprE in production of host injury and death.

To decipher the role of *Fsr*-regulated genes in virulence, we used a clonal-complex (CC) 2 strain [27], *E. faecalis* V583, the first vancomycin enterococcal isolate in the US, which was obtained from a chronic bloodstream infection [28]. *E. faecalis* CC2 is the leading multidrug resistant hospital adapted clade [27,29]. To rigorously characterize the Fsr regulon, we compared gene expression in isogenic mutants in Fsr genes and each of the *Fsr*-regulated protease genes using microarrays and purified GBAP. *D. melanogaster* was used to examine the individual contribution to virulence of SprE protease and other genes found to be part of the Fsr regulon (or related to it, including EF1097, LrgAB and the two-component system LytRS).

Results

In order to precisely identify genes for which expression is altered when GBAP reaches effective quorum sensing concentration, we used a *fsrB* mutant, which is unable to produce GBAP, but is able to sense it [30]. We also used single and double protease mutants in the *fsrB* mutant background in order to identify any genes for which expression is indirectly controlled by Fsr through its regulation of protease levels. Table 1 shows key changes in gene expression in V583 and V583 A/fsrB, V583 A/gelE, V583 A/sprE and V583 A/gelE A/sprE after 10 min of GBAP exposure. Besides genes previously known, or predicted, to be regulated by Fsr through GBAP (gelE, sprE and *ef1097*) [7,10,24], 15 additional genes were differentially regulated by GBAP addition collectively in all four mutants (Table 1). In contrast to previous results using oligo-array study [24], the current approach employed a statistically more robust technology [31] and isolated the effects of only Fsr quorum sensing through the use of mutants and the exogenous quorum molecule.

Fsr Dependent Genes

As expected, V583 A/fsrB responded to GBAP by substantially increasing the expression of *gelE* (*ef1818*) (fold change 63) and *sprE* (*ef1817*) (fold change 59). To a lesser extent, *fsrC* (*ef1020*) (fold change 3) transcript abundance was also increased. As shown in Table 1, mutation of each protease gene did not affect the expression of the other genes in the *fsr* or *gelE-sprE* operons, showing that the presence of the deletions in these operons did not have polar effects on transcript abundance of the remaining protease gene (V583 A/fsrB/gelE expresses wild type levels of *sprE*, and V583 A/fsrB/gelE expresses wild type levels of *gelE*). In accordance to previous results by others [24], *fsrA* expression was not affected by GBAP. Genes for which expression was affected by GBAP in all the four mutants are therefore under the direct control of FsrA and not influenced by indirect activities of the proteases on secondary regulators. In addition to Fsr and protease genes, *ef1097* was induced by GBAP addition showing transcript abundance changes (fold change 31) similar to those observed for the protease genes. Transcripts of the *ef1352* gene where more abundant upon GBAP induction, but exhibited an increase of a lower magnitude (fold change 5).

To determine whether a specific promoter motif could be identified upstream of genes found to be regulated by Fsr through its quorum sensing, we compared known [32] and putative promoter regions. The V583 promoter regions of *ef1097*, *gelE* and *fsrB* possess a predicted FsrA binding motif [32]. However, this motif does not occur upstream of *ef1351*. This raises the possibility that induction of *ef1351–ef1352* in our experiments may be related to increased expression of the only gene which was also induced in the four mutants, but not independently controlled, *ef1097*. Alternatively, direct FsrA regulation mechanisms may be more complex than previously suspected.

Genes Dependent on Simultaneous Fsr and Proteases Activation

Some genes were found to be affected by the presence or absence of proteases, indicating an indirect regulatory pathway. Those only affected if *sprE* was absent (*ef1815, ef1816*); those affected only if either one of the proteases was absent (*ef0895*); those for which mRNA levels were altered only when both proteases were absent (*ef0411, ef0563, ef0891, ef0892, ef1218*); those for which mRNA accumulated only in the presence of both proteases (*ef3193* and *ef3194*) and those affected in the absence of only the gelE gene (*ef0468, ef0776*). These last two genes might respond to the high expression levels of *sprE* in a way yet to be determined. Overall, the twelve genes affected by the combined activation of Fsr and the proteases are putatively involved in different cellular processes, such as regulation, cell-wall metabolism and transport, and some are even of unknown function.
LytRS System is Required for GBAP Induction of lrgAB Genes

EF3193–EF3194 correspond to the bgAB genes which, in S. aureus, are described to be involved in repression of murein hydrolase activity, decreased autolysis and increased tolerance to penicillin [33]. In S. aureus these genes are regulated by the LytRS two-component regulatory system, located immediately upstream of the bgAB genes [34]. There is no data about the function of bgAB genes in E. faecalis but it is known that they are also located downstream of lytRS homologs, which suggests that in V583 bgAB are regulated by LytRS. In our experiments, ef3193-3194 mRNA was more abundant upon GBAP induction only in fsr mutant, suggesting that these genes are not responding directly to FsrA activation, but probably to increased protease GelE and SprE expression, which only occurs when GBAP is added to the fsr mutant. In order to test the hypothesis that the large increase in bgAB abundance was the result of GBAP induction via the LytRS system, we deleted this two-component system from the fsr mutant strain and compared the expression of bgAB genes in the ΔfsrBΔlytRS and fsrB mutants (Figure 1). We found that GBAP is only able to induce bgAB genes if LytRS is functional. These results were not observed in previous studies of fsr regulation in OG1RF [24]. None of the E. faecalis ΔlytRS or ΔbgB mutant strains showed different antibiotic resistance profiles (Table S1) nor gelatinase activities when compared to the wild-type strain (data not shown). Low level expression of bgAB genes was observed in the ΔfsrBΔlytRS mutant (Figure S1), which points either to a constitutive expression of those genes or to the existence of another regulator(s) able to modulate their expression.

Fsr and the Proteases Affect D. melanogaster Tolerance to E. faecalis Infection

To test the functional importance of genes found to be directly and indirectly dependent on Fsr, we then tested the virulence of the fsr-related mutants in a D. melanogaster injection model. We first compared the ability of the triple mutant V583ΔfsrBΔgelEΔsprE, to the single V583ΔfsrB mutant, and the V583 parental strain, to kill
The fate of both the host (percentage of survival) and the bacteria (number of CFU) was followed for 24 h. In our assay, 50% of the flies were killed by the wild type strain 10 hours post-injection and after 14 h nearly all flies were dead (Figure 2A). For the same period of infection, the triple mutant V583ΔfsrBΔgelΔsprE strain only killed 15% of the infected flies. 24 h post-injection, the triple mutant V583ΔfsrBΔgelΔEAΔsprE was significantly attenuated (see Table S2 for detailed statistical analysis). These results show that the Fsr system and the proteases it regulates contribute measurably to toxicity in this model.

The survival curve of flies infected with the wild type strain shows two different killing rates: until 8 h, V583 strain is able to kill around 3 flies/hour; after this time, and until 12 h, V583 kills flies at a much higher rate, 15 flies/hour. At 8 h post infection, V583 cells reach the cell density considered to be able to induce the activation of the Fsr system in broth culture [9,35]. Although there is no data on the in vivo Fsr expression during E. faecalis growth inside the host, we cannot exclude the possibility that the increased killing rate after 8 h is due to induced expression of the proteases.

In order to dissect the contribution of fsr-regulated genes to the lethality of infection, we tested these genes separately by infecting the flies with single deletion mutants (Figure 2B). Deletion of both proteases, either in the double protease mutant or in the triple mutant, led to a greater attenuation of virulence than deletion of fsrB alone, which was attenuated to a similar level achieved by deletion of fsrB (Table S2). This result points to SprE as having a major role in E. faecalis virulence in the Drosophila model. All strains grew similarly inside Drosophila (Figure S2).

ef1097 Contributes to Toxicity in D. melanogaster Infection

The large increase in ef1097 mRNA abundance upon GABP addition, and the fact that it has been previously associated with Fsr system in another E. faecalis strain [24], led us to delete this gene to test its role in E. faecalis virulence. This mutant was constructed in VE14089, a plasmid cured derivative strain of V583, previously reported in G. mellonella to be less virulent than parental V583 strain [36]. Our results confirm that strain VE14089 is less virulent than V583 in the D. melanogaster model as well (compare control in Figure 2A and 2C). Previously, we compared the toxicity of V583ΔfsrBΔgelΔEAΔsprE and V583ΔgelΔEAΔsprE strains in the fly (Figure 2A and 2B). Both strains express ef1097, and therefore, the role of this protein was not assessed. Figure 2C clearly shows that deletion of ef1097 reduces killing of the flies by E. faecalis, therefore providing evidence for a role of this bacteriocin in E. faecalis toxicity in the fly. As deletion of ef1097 did not affect the gelatinase production ability of V583 strain (results not shown), the reduction of toxicity does not appear to be due to an effect on expression of fsr or the proteases it regulates.

LrgAB and LytRS Contribute Differently to Death of D. melanogaster

LytRS appears to induce lrgAB expression upon addition of GBAP to the fsb mutant strain (Figure 1). Interestingly, lytRS was previously found to be strongly induced during infection of G. mellonella, and proposed to contribute to E. faecalis VE14089 virulence in the same model [37]. The importance of LytRS was therefore tested in Drosophila infection. Our results (Figure 2D) did not show a significant difference in the fly survival (Table S2) following infection with the lytRS mutant as compared to wild type.
Our results cannot be compared to those of Hanin et al. [37] as both the strains and the infection protocols used were different. \(\text{lgrAB} \) are still expressed in the \(\text{lytRS} \) mutant. We thus wondered if complete abolishment of its expression would have a more pronounced effect on \(\text{D. melanogaster} \) toxicity than that of its regulator LytRS. The \(\text{lgrAB} \) mutant strain was significantly reduced in toxicity for \(\text{D. melanogaster} \) (Figure 2D, Table S2). This result highlights the relevance of the \(\text{lgrAB} \) operon in infection by \(\text{E. faecalis} \) and constitutes the first report on such a role for this operon in this species.

Discussion

Assessing the basis for virulence of an opportunistic pathogen, such as \(\text{E. faecalis} \), is difficult because it is invariably subtle and multifactorial. Research on this topic in recent years has concluded that the sole presence of a gene predicted to induce virulence in a strain does not necessarily imply that the same gene may lead to the same host fate in a different \(\text{E. faecalis} \) strains [17,30]. Besides the genome background and the host, the manner in which the microbe is introduced also play a role in determining whether or not a factor contributes to toxicity. \(\text{D. melanogaster} \) has been used as a model host to study pathogenesis because it provides easy handling, fast results, a fully sequenced genome, pre-existing libraries of genetic mutants, the possibility to play on the host side and similarities with the mammal immune system. In this work, we show that it can be used to discern varying levels of toxicity stemming from mutations in the \(\text{fsr} \) quorum regulatory system and the genes that it regulates.

In a representative of the hospital endemic lineage CC2, V583, the Fsr regulon is largely restricted to the five genes, namely gelE, sprE, ef1097, ef1351 and ef1352 found to be directly dependent on GBAP-induced Fsr activation, and twelve additional genes found to be dependent on GBAP induction of the proteases. Among these are genes coding for proteins involved in cell-wall, transport and regulatory functions. These genes are thus candidates to link the Fsr-proteases activity with the phenotypes known to be associated to their impairment, namely biofilm formation, adhesion and translocation to/in host-cells, autolysis and host damage and death. This contrasts with previous findings in the more commensal background, OG1RF, which was tested using an X-mer based oligonucleotide array with fewer controls and less redundancy than the Affymetrix microarrays used here. Our experiment assayed the first ten minutes after a burst of GBAP aiming to get clear, measurable and immediate changes in expression, whereas the study by Bourgogne et al [24] followed the changes in expression of an \(\text{fsrB} \) mutant spanning different growth stages. Their experimental design likely allowed for further events of differential expression to take place. Whether the differences in results stem from differences in strains, or differences in techniques and experimental approaches used, is not currently known.

Figure 2. \(\text{Drosophila} \) survival rates upon infection with \(\text{E. faecalis} \) strains. 75 Oregon R (5- to 7-day-old) male adult flies, raised at 25 \(^\circ\)C, were divided in tubes of 25 flies each, and infected, by septic injury onto the thorax with a thin needle, with V583 (A, B, D) and VE14089 derived strains (C). Data is representative of three independent experiments (225 flies per strain). Curves assigned with an * are significantly different (p<0.0001) from the respective wild-type -infected curve, as determined by log-rank analysis (Table S2).

doi:10.1371/journal.pone.0064740.g002
In the present study, we found that induction of GelE and SprE by GBAP via the fsr regulator resulted in accumulation of mRNA encoding lrgAB, and that this induction was lrgRS dependent, indicating a functional relationship between Fsr and LyrRS regulons. In S. aureus, autolysis is positively regulated by Agr, a paralog of Fsr, that positively regulates LrgAB [39]. Unlike S. aureus, in E. faecalis, FsrA does not regulate lrgAB genes directly, but does so indirectly. Both GelE and SprE have previously been shown to play a role in autolysis regulation in E. faecalis, respectively promoting and repressing it [40]. GelE is known to proteolytically activate AilA [21], a major autolysin. Recently, GelE was also found to control the levels of SalB, a protein with no evident peptidoglycan hydrolytic activity, but affecting the levels of proteins involved in cell-wall synthesis and cell division [41]. A salB mutant in OG1-RF strain showed abnormal cell-division and increased autolysis [41]. Given the current knowledge, we could speculate that autolysis regulation could constitute the functional link, found in this study, between Fsr and LyrRS. Future studies should address the mechanism behind GelE-SprE regulation of autolytic activities in E. faecalis and how they affect the expression of lrgAB operon through LyrRS regulation.

EF1097 protein, found by Bourgogne et al. 2006 [24] to be dependent on Fsr regulation in E. faecalis OG1RF, was here confirmed to be true also for the V583 strain. In 2007, Swo et al. [42] suggested that ef1097 gene encodes a precursor of antimicrobial proteins with similarities to the streptococcin SA-M57 in S. aureus. EF1097 is conserved in all E. faecalis strains (Table S2). Finding this bacteriocin to be similarly regulated in distinct E. faecalis strains, namely OG1RF and V583, suggests this is a common feature in the species. QS-activated bacteriocin production may constitute a means to kill surrounding and competing bacteria thus providing competitive advantage to E. faecalis when colonizing or infecting a host. The Fsr homologue in S. aureus, Agr, is known to regulate the expression of pro-inflammatory peptides, the phenol-soluble modulins (PSM), in a RNAIII independent way [43]. Several roles in pathogenesis have been attributed to these amphipathic peptides [44], including antimicrobial activity [45], biofilm formation, maturation and detachment [46], and cytolytic activity to neutrophils and other human cells [47]. Although the role of EF1097 is not as extensively studied as that of PSMs, their shared features, namely quorum-sensing induction and role in virulence, should direct further studies on EF1097 role in E. faecalis biology and interaction with the host.

Despite the inexistence of clues on the EF1097 mechanism of action, bacteriocins have been shown to produce changes in membrane potential and affect transport of magnesium and amino acids [48]. EF1352, which codes for a putative magnesium-translocating P-type ATPase, was induced in all strains used in the microarrays. However, this operon lacks the previously described FsrA binding motif in its promoter region. It is thus licit to speculate that expression of this operon may be dependent on expression of ef1097, as this is the only Fsr dependent gene with the FsrA motif not deleted and tested in the microarrays assays. Further studies are needed to understand the link between bacteriocin production and induction of an MgtA transporter, although we could hypothesise that EF1097 could induce ion leakage, which in turn, would induce MgtA.

Despite different mortality curves were produced upon infection of Drosophila with the tested mutants, they all grew similarly inside the host. Hosts have two ways to deal with an infection: resistance and tolerance [36,37]. Resistance is related with pathogen load and with mechanisms used to kill the pathogens: more resistant hosts have fewer pathogens. Tolerance is a consequence of the host ability to overcome the fitness cost imposed upon infection and induction of the immune system and is related to the ability of the host to remain healthy. Tolerance can be defined and measured from the slope of the health-by-microbe curve. We plotted the flys survival against pathogen load, assuming host population survival as a measure of its health (Figure 3), and confirmed that inactivation of Fsr and the two proteases increased flys tolerance to E. faecalis, whereas flies showed similar resistance towards all studied E. faecalis strains. Mechanisms involved both in tolerance [49,50] and resistance [5,31,52] of Drosophila towards enterococcal infections have been identified. If we understand how the E. faecalis virulence factors studied in this work affect the flies tolerance mechanisms and responses, we can postulate that future approaches to fight enterococci can be through improving host tolerance, providing an alternative, or complementary, approach to bacterial killing by use of antibiotics.

GelE is known to be able to degrade several host proteins. Therefore, besides its ability to degrade host immune factors, this protease may be involved in host tissue injury. Recently, GelE has also been implicated in release of Ace protein from the surface of E. faecalis cells in OG1RF strain [22]. In that study, authors showed that deletion of gelE gene increased the number of Ace proteins bound to the surface of the bacterial cells, increasing adherence to collagen. In the insect model G. mellonella, collagen adherence has been shown to be required for invasion and virulence [53]. Although this remains to be proven true for Drosophila, it is licit to speculate that the lower attenuation of the gelE mutant in this insect host model could be due to increased adherence to host cells and proteins. Despite considered to be cell-bound, SprE is also able to degrade host proteins, such as insulin and fibrinogen, but not immune system elements, such as complement from human serum or Cecropin from insect hemolymph [20]. Its major contribution to host death proven in this work needs thus urgent clarification.

This work brought to light new players (Figure 4) in Fsr role in E. faecalis, namely LrgAB operon, which will help unravel the bacterial programmed cell death which, in turn, may help discover new approaches to control this important nosocomial pathogen. Moreover, Drosophila was successfully established as a model to study virulence associated genes in E. faecalis, highlighting LrgAB and EF1097 as novel virulence factors induced by QS. Using Drosophila as a model allowed us to show that SprE is, for us, a relevant player in host injury and to suggest that E. faecalis success during septic injury is not due to GelE acting as a bacterial defence against the flies AMPs, but that it could rather be through host injury.

Materials and Methods

Bacterial Strains and Plasmids

Strains and plasmids used in this study are listed in Table 2. E. faecalis strains were grown either in BHI, M17 broth/agar (Oxoid) or Enterococcal Agar (Quilaban) at 37 °C, unless a different growth temperature is specified. Escherichia coli strains were grown in LB medium (Sigma) at 37 °C with agitation. The following antibiotic concentrations were used: with E. faecalis, tetracycline 30 µg/ml; with E. coli, ampicillin 150 µg/ml and tetracycline 150 µg/ml.

Antibiotic Resistance Assay

Resistance to different antibiotics (Ciprofloxacin, Penicillin, Sulphamethoxazole, Vancomycin, Nitrofurantoin, Ofloxacin, Ampicillin, and Ceftriaxone) was determined according to the recommendations of the disk providers (Oxoid) [54], and results were interpreted according to the recommendations of the Clinical
and Laboratory Standards Institute (CLSI, formerly NCCLS) (http://www.clsi.org/).

General DNA Techniques

General molecular biology techniques were performed by standard methods. Restriction enzymes, polymerases and T4 DNA ligase were used according to manufacturers’ instructions. PCR amplification was performed using a Biometra thermocycler. When necessary, PCR products and DNA restriction fragments were purified with purification kits (Macherey-Nagel). Plasmids were purified using the Miniprep kit (Macherey-Nagel). Electroporation of E. coli and E. faecalis was carried out as described by Dower et al. (1988) and Dunny et al. (1991), using a Gene Pulser apparatus (Bio-Rad) [55, 56]. Plasmid inserts and mutant sequence were confirmed by sequencing at StabVida (Portugal).

Mutant Construction

E. faecalis V583 mutants (MG01[V583ΔfsrB ΔgelE]; MG02 [V583ΔfsrB ΔsprE]; and MG03[V583ΔfsrB ΔgelE ΔsprE]) were constructed by introducing pVT01(ΔgelE), pVT02(ΔsprE), and pVT03(ΔgelE ΔsprE), respectively into the VI13[V583ΔfsrB] strain and selecting for protease gene deletions essentially as described by Thomas et al. 2009 [21]. These strains are still responsive to external GBAP, but are not able to produce the QS molecule, as is the case of VI13[V583ΔfsrB] [30]. Construction of KS17[V583ΔlytSR] and KS18[V583ΔlrgAB] mutants was done similarly to the method described by Thurlow et al. using the marker less deletion vector pLT06 [57]. In brief, flanking regions of lytSR and lrgAB were amplified from E. faecalis V583 chromosomal DNA by PCR with primers LytP1, LytP2, LytP3, LytP4 and LrgP1, LrgP2, LrgP3, LrgP4 respectively (Table 2).

The flanking PCR fragments were ligated together following BamHI digestion and reamplified by PCR using the external primers P1 and P4, for both the lytSR and lrgAB deletion constructs. The resulting amplicons were digested with EcoRI and PstI and cloned into similarly digested pLT06 to create pKS103 (ΔlytSR) and pKS104 (ΔlrgAB). The resulting plasmids were confirmed by restriction analysis and sequenced. Plasmids were introduced into E. faecalis V583 by electroporation and selection of the desired mutant was performed as described [57]. To create KS19[V583ΔfsrBΔhsrR], VI13 was transformed with pKS103 (ΔhsrR) and selection for deletion of hsrR was performed as described [57].

E. faecalis V583Δef1097 was constructed essentially as described by Brinster et al. (2007) [58] in strain VE14089 [36]. Briefly, flanking regions of EF1097 were amplified from chromosomal DNA of V583 by PCR with primers EF1097_1, EF1097_2, EF1097_3 and EF1097_4 respectively (Table 2). The two cognate PCR fragments were fused by PCR using the external primers EF1097_1 and EF1097_4 for EF1097, respectively, and the resulting product was cloned into pGEM-T (Promega). The inserted PCR fragment was removed from its cloning vector by restriction enzymes and subsequently cloned into pG+host9 plasmid [59], which was then electroporated into E. faecalis VE14089. The efl097 single- and double crossover mutants were selected as described by Brinster et al. (2007) [58, 59]. Successful targeted mutations of efl097 were first identified by PCR screening and were confirmed by sequencing (StabVida, Portugal), and analysed by Vector NTI program (Invitrogen).

Figure 3. Drosophila-health by E. faecalis-load curve. Source data used to construct this figure was obtained from results on Figure 2, only considering time points at which enough flies alive were available. All strains show two different slopes corresponding to different tolerance values, revealing that at some point (pathogen load value) there is a huge decrease in tolerance to E. faecalis. This inflection point corresponds to a lower pathogen load for the wild type strain (105), when compared to the mutant strains (106). For 106 value of pathogen load, the wild type induced only 10% survival in the Drosophila population, as opposed to 90% survival of the Drosophila population infected with the triple mutant. doi:10.1371/journal.pone.0064740.g003
RNA Extraction and cDNA Synthesis for Microarrays

E. faecalis strains were grown in BHI, at 37°C, until 0.4 OD (600 nm). At this point, purified GBAP, prepared as previously described [29], was added to a final concentration of 10 nM in the culture. This concentration was previously shown to be able to induce the Fsr system [9,36]. In order to determine the effect of GBAP induction at a time in growth when we knew, from previous work [35], that the Fsr system was not yet fully activated, we chose 0.4 OD to add GBAP. The quorum-sensing molecule was added to induce the Fsr quorum-sensing system in strains which lack the ability to produce the GBAP molecule, but are still able to sense it. At time zero (immediately after GBAP addition) and after 10 min post-GBAP addition, RNA was extracted from cells and used to synthesize cDNA and perform microarray transcriptional analysis. Experiments without GBAP were also performed. To prepare samples for Affymetrix GeneChip analysis, a previously published protocol was used with few modifications [60]. Briefly, RNA was stabilized with RNA protect (Qiagen) and RNA was isolated with RNeasy columns per the manufacturer’s instructions (Qiagen). Samples were treated with RNase-free DNase I (Roche) to remove contaminating DNA, and the absence of contaminating DNA was confirmed by PCR. RNA integrity was verified using agarose gel electrophoresis of glyoxylated samples (Ambion). cDNA was prepared from RNA using Superscript II Reverse Transcriptase (Invitrogen) with random (N6) priming. cDNA was fragmented with dilute DNase I (Roche) and fragments were biotinylated with the BioArray Terminal Labeling Kit (Enzo Life Sciences) prior to hybridization.

Affymetrix GeneChip Analysis

Samples were hybridized to a previously described custom *E. faecalis* Affymetrix GeneChip [27] and scanned at the University of Iowa DNA Core Facility. All microarray experiments were performed in duplicate. Data was analysed using Affymetrix GeneChip Operating Software, which identifies probe sets with statistically significant hybridization over background (i.e. presence versus absence calls) and among those, identifies probe sets for which hybridization is significantly increased or decreased in pairwise comparisons of microarray experiments. Signal log ratios for differentially expressed probe sets were averaged and converted to
Table 2. Strains, plasmids and primers used in this study.

Strains	Relevant characteristics	Reference
E. coli		
DH5α	F− Δ(lacZΔM15)ΔZF180IΔlacPROABΔlacI159 proA1 endA1 hsdRI17(rK− mK−) phoA supE44 λ− thi-1 gyrA96 relA1	[63]
TG1 RepA	supE hsdD5 thi Δ(lac-proAB) F− (traD36 proAB-lacI-M15) repA	[64]
VE14188	GM1674 (dam− dcm− repA+)	[36]
E. faecalis		
VS83	Clinical isolate, TIGR sequence strain; VnR	[28]
VE14089	VS83 free of replicating plasmids	[36]
V13	E. faecalis VS83ΔfsrB, GelE−, SprE−, GBAP−	
MG01	E. faecalis VS83ΔfsrB::gfpE; GelE−, SprE−, GBAP−	This study
MG02	E. faecalis VS83ΔfsrB::sprE; GelE−, SprE−, GBAP−	This Study
MG03	E. faecalis VS83ΔfsrB::gfpEΔsprE; GelE−, SprE−, GBAP−	This Study
VT01	E. faecalis VS83ΔgfpE; GelE−, GBAP+	[40]
VT02	E. faecalis VS83ΔsprE; SprE−, GBAP+	[40]
VT03	E. faecalis VS83ΔgfpE::sprE; GelE−, SprE−, GBAP+	[40]
KS17	E. faecalis VS83ΔlytRS; GelE−, SprE−, GBAP+	This study
KS18	E. faecalis VS83ΔlygAB; GelE−, SprE−, GBAP+	This study
KS19	E. faecalis VS83ΔlytRS; GelE−, SprE−, GBAP−	This study
SAVE38	E. faecalis VE14089Δef1097, GelE+, SprE+, GBAP+	This study
Plasmids		
pGEM-T	High copy plasmid, AmpR	Promega
pG+host9	E. faecalis thermosensitive plasmid, EryR	[59]
pLT06	Temperature-sensitive cloning vector, CmR	[65]
pVI02	pLT06 containing engineered fsrB deletion	[30]
pVT01	pLT06 containing engineered gelE deletion	[40]
pVT02	pLT06 containing engineered sprE deletion	[40]
pVT03	pLT06 containing engineered gelE::sprE deletion	[40]
pKS103	pLT06 containing engineered lytRS deletion	This study
pKS104	pLT06 containing engineered lygAB deletion	This study
pSAVE37	pGEM-T containing engineered EF1097 deletion	This study
pSAVE38	pG+host9 containing engineered EF1097 deletion	This study
Primers		
EF1097_1	AAG ACA ACA CGGGATAAACACTCG	This study
EF1097_2	GCCTAGCCCACTTGAACCTGCTATGATAATGCGACCGCC	This study
EF1097_3	GCAGTCTAACGGCTAAGC	This study
EF1097_4	CTGAGTATCCCGAAATCCTTCATATTCCC	This study
LytP1	GAGAGATTCCGCTGGGACCTGCATTGC	This study
LytP2	CTCGGATCCGACACCCGGACAAGTCC	This study
LytP3	GAGAGACTCGGCTTCCTCCATCCG	This study
LytP4	CTCTCGACAGGGTAGGCAAATCGCTGTTG	This study
LytUp	GTATCAACGGATGATTACGCC	This study
LytDown	AATGCAATCGACCCCAAGG	This study
LrgP1	GAGAGATTCCGCTGGGACCTGCATTGC	This study
LrgP2	CTCGGATCCGACACCCGGACAAGTCC	This study
LrgP3	GAGAGACTCGGCTTCCTCCATCCG	This study
LrgP4	CTCTCGACAGGGTAGGCAAATCGCTGTTG	This study
LrgUp	CCATCAACGGATGATTACGCC	This study
LrgDown	TGGTACCGCTGGTGGTGGTGGGG	This study
mgelE_2	AAC GGA TAA CAC AGG GG	[17]
gelE	TCA TTC ATT GAC CAG	[17]
Table 2. Cont.

Strains	Relevant characteristics	Reference
lrgA_fw	GGCTTGTTCAATTCCGTCG	This study
lrgA_rv	AAGGCCGCCGTTCCACCGAGA	This study
lrgB	TCTATGGCAACTGCGCAACCAC	This study
mlrgB	AAGGTTCCTCTTATTACGCC	This study
gis24_f	TGGCTGGTAGAATCGGCAAGG	This study
gis24_rv	GTCTATGGTGCGATTTGC	This study

doi:10.1371/journal.pone.0064740.t002

to fold change values. Only genes with ≥3-fold differential expression were considered. The data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus [61] and are accessible through GEO Series accession number GSE42036 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42036).

Semi-quantitative RT-PCR

RNA was extracted from strains V583ΔlytRS and V583ΔfsrB grown in BHI broth at 37°C. Briefly, overnight cultured cells were diluted 1:100 and growth was monitored by following OD600. Cells were collected in the same conditions as those used for RNA extraction for microarrays. Total RNA was extracted and purified with an RNeasy Mini kit (Qiagen). RNA integrity was checked by electrophoresis on a 1% agarose gel (RNase free). cDNA was synthesized using random primers (Roche Diagnostics), 3 μg total RNA and a Transcriptor High Fidelity cDNA Synthesis kit (Roche Diagnostics). Serial dilutions of V583ΔfsrB and V583ΔlytRS cDNA were used for PCR in order to amplify cDNA of lrgA (primers: lrgA_fw, lrgA_rv), lrgB (primers: lrgB_fw, lrgB_rv) and gelE (primers: gelE_fw, gelE_rv) (Table 2).

D. melanogaster Infection

Oregon R male flies were injected with 50 nl of bacteria at 0.02 OD (600 nm) from one of the strains: V583, V583ΔfsrBΔgdpE, V583ΔfsrBΔgdpE, V583ΔfsrBΔgdpE, V583ΔfsrBΔgdpE, V583ΔlytRS, V583ΔlytRS, and V583ΔlytRS, V583ΔlytRS, V583ΔlytRS and V583ΔlytRS mutant) strains, in the absence of GBAP. Expression of gelE and gdpE were used as negative and positive controls, respectively. The RNA used for this analysis was previously treated with RNase-free DNase I to remove contaminating DNA and PCR was done in order to confirm absence of DNA from the RNA samples analysed.

Percentage of Similarities between V583 Genome and Other Genomes Published

The percentage of similarities was made with blast program (http://blast.ncbi.nlm.nih.gov/). The genomes that were used on this analysis were from Broad Institute page (http://www.broadinstitute.org/annotation/genome/enterococcus_faecalis/MultiHome.html) and compared with V583 genome (http://www.ncbi.nlm.nih.gov/nuccore/NC_004668.1). Statistical Analysis

Statistical analysis of Drosophila survival was performed using GraphPad Prism software version 5.03. Survival curves were compared using Log-rank and Gehan-Breslow-Wilcoxon tests. Statistical analysis of Drosophila survival was performed using t-test.

Supporting Information

Figure S1 *lrgAB* expression in the absence of GBAP. The semi-quantitative RT-PCR shows expression of *lrgAB* genes in the V113 ΔfsrB mutant and KS19 ΔlytRS mutant strains, in the absence of GBAP. Expression of gelE and gdpE were used as negative and positive controls, respectively. The RNA used for this analysis was previously treated with RNase-free DNase I to remove contaminating DNA and PCR was done in order to confirm absence of DNA from the RNA samples analysed.

Figure S2 *E. faecalis* growth curves in injected flies. Oregon R (5–7-day-old) male adult flies, raised at 25°C, were divided in tubes of 25 flies each, and infected, by septic injury onto the thorax with a thin needle, with V583 mutants. Flies were collected at 0, 4, 8, 12, and 24 h. Three groups of six flies for each time point were homogenized and plated in Enterococcal agar and *E. faecalis* CFUs were determined.

Table S1. (DOC)

Table S2. (DOC)

Table S3. (DOC)

Acknowledgments

The authors are grateful to Isabel Marques, from IGC, for her help in enterococcal genome comparison regarding genes directly regulated by Fsr.

Author Contributions

Conceived and designed the experiments: NT MdFSL MSG. Performed the experiments: NT SV MJG RY. Analyzed the data: NT KP AZR MdFSL. Contributed reagents/materials/analysis tools: MSG LEH JN AJ. MdFSL. Wrote the paper: NT MdFSL AZR KP LEH JN MSG AJ.
References

1. Boyer L, Paquette N, Silverman N, Stuart LM (2012) Bacterial effectors: learning on the fly. Adv Exp Med Biol 710: 29–36.
2. Glavis-Bloom J, Muhammed M, Mylonakis E (2012) Of model hosts and man: using Caenorhabditis elegans, Drosophila melanogaster and Gallus gallus as model hosts for infectious disease research. Adv Exp Med Biol 710: 11–17.
3. Cox CR, Gilmore MS (2007) Native microbial colonization of Drosophila melanogaster and its use as a model of Enterococcus faecalis pathogenesis. Infect Immun 75: 1563–1576.
4. Schneider DS, Ayres JS, Brandt SM, Costa A, Dionne MS, et al. (2007) Drosophila eiger mutants are selective to pathogenic enterococci. PLoS Pathog 3: e43.
5. Nehme NT, Quintin J, Cho JH, Lee J, Lafarge MC, et al. (2011) Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections. PLoS One 6: e14743.
6. Gilmore MS, Colsens PS, Pallaresreddy SR, Murray BE (2002) Enterococcal virulence of Gardena. In: Gilmore MS, Colsens PS, Courvalin P, Dunny GM, Murray BE, Rice LB, editor. The Enterococci. Pathogenicity, Molecular Biology, and Antibiotic Resistance. Washington D.C.: American Society for Microbiology. 301–314.
7. Qin X, Singh KV, Weinstock GM, Murray BE (2000) Effects of Enterococcus faecalis fsr genes on production of gelatinase and a serine protease and virulence. Infect Immun 68: 2579–2586.
8. Novick RP, Ross HF, Projan SJ, Kornblum J, Keiswirth B, et al. (1993) Synchronization of staphylococcal development is controlled by a regulatory RNA molecule. EMBO J 12: 3967–3975.
9. Nakayama J, Cao Y, Horii T, Sakuda S, Akkermans AD, et al. (2001) Gelatinase biosynthesis-activating pheromone: a peptide lactone that mediates a quorum sensing signal in Enterococcus faecalis. Mol Microbiol 41: 145–154.
10. Qin X, Singh KV, Weinstock GM, Murray BE (2001) Characterization of fsr, a regulator controlling expression of gelatinase and serine protease in Enterococcus faecalis OG1RF. J Bacteriol 183: 3372–3382.
11. Gaspar DA, Sifiri CD, Mylonakis E, Qin X, Singh KV, et al. (2001) A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci U S A 98: 10892–10897.
12. Sifiri CD, Mylonakis E, Singh KV, Qin X, Gaspar DA, et al. (2002) Virulence effect of Enterococcus faecalis protease genes and the quorum-sensing lori in Caenorhabditis elegans and mice. Infect Immun 70: 5647–5650.
13. Engelbert M, Mylonakis E, Assfahl FM, Calderwood SB, Gilmore MS (2004) Contribution of gelatinase, serine protease, and fsr to the pathogenesis of Enterococcus faecalis endophthalmitis. Infect Immun 72: 3628–3633.
14. Mylonakis E, Engelbert M, Qin X, Sifiri CD, Murray BE, et al. (2002) The Enterococcus faecalis fsrB gene, a key component of the fsr quorum-sensing system, is associated with virulence in the rabbit endophthalmitis model. Infect Immun 70: 4670–4681.
15. Singh KV, Pallaresreddy SR, Nannini EC, Murray BE (2005) Fsr-independent production of protease/s may explain the lack of attenuation of an Enterococcus faecalis fsr mutant versus a wild-type strain in induction of endocarditis. Infect Immun 73: 6328–6334.
16. Bai AK, Ban HP, Vivanco JM (2005) Enterococcus faecalis mammalian virulence-related factors exhibit potent pathogenicity in the Arabidopsis thaliana plant model. Infect Immun 73: 464–475.
17. Gaspar F, Teixeira N, Rigottier-Gois L, Marujo P, Nielsen-LeRoux C, et al. (2010) Virulence of the collagen-binding MSCRAMM Ace through regulation of the systemic response in Drosophila melanogaster. PLoS ONE 5: e1000717.
18. Hancock LE, Perego M (2011) Enterococcus faecalis virulence regulator FnrA binding to target promoters. J Bacteriol 193: 1527–1532.
19. Groicher KH, Firek BA, Fujimoto DF, Bayles KW (2000) The Staphylococcus aureus lytB operon modulates murine hydrolytic activity and penicillin tolerance. J Bacteriol 182: 1794–1801.
20. Sharma-Künkell BK, Mann EE, Schulz JF, Kuehni-Keiser LJ, Donmeh PM, et al. (2009) The Staphylococcus aureus LytSR two-component regulatory system affects biofilm formation. J Bacteriol 191: 4767–4775.
21. Nakayama J, Cao Y, Horii T, Sakuda S, Nogasawa H (2001) Chemical synthesis and biological activity of the gelatinase biosynthesis-activating pheromone of Enterococcus faecalis and its analogs. Biosci Techno Biochem 65: 2322–2325.
22. Rigottier-Gois L, Alberti A, Houel A, Tall YF, Paly C, et al. (2011) Large-scale screening of a targeted Enterococcus faecalis mutant library identifies envelope fitness factors. PLoS One 6: e29023.
23. Hanin A, Sava I, Bao Y, Hubein J, Hartke A, et al. (2010) Screening of in vivo activated genes in Enterococcus faecalis during insect and mouse infections and growth in vitro. PLoS One 5: e10387.
24. Gaspar FB, Montero N, Akary E, Teixeira N, Matos R, et al. (2012) Incongruence between the cps type 2 genotype and host-related phenotypes of an Enterococcus faecalis food isolate. Int J Food Microbiol 158: 129–125.
25. Fujimoto DF, Brunsfield JW, Bayles KW (2000) Analysis of genetic elements controlling Staphylococcus aureus lytB expression: potential role of DNA topology in SaR regulation. J Bacteriol 182: 4822–4828.
26. Thomas VC, Thurlow LR, Boyle D, Hancock LE (2008) Regulation of autolysin-dependent extracellular DNA release by Enterococcus faecalis proteases influences biofilm development. J Bacteriol 190: 5690–5698.
27. Shankar J, Walker RG, Wilkinson MC, Ward D, Horshagh MJ (2012) SaB1 inactivation modulates culture supernatant extraproteins and affects autolysis and viability in Enterococcus faecalis OG1RF. J Bacteriol 194: 3369–3378.
28. Sree PM, Heng NC, Ting YT, Baird HJ, Carne A, et al. (2007) gfnA and ypkK encode enterococci V530 and corynycin gk, members of a new family of antimicrobial proteins (bacteriocins) with modular structure from Gram-positive bacteria. Microbiology 153: 3218–3227.
29. Quay SC, Jameson-Lee M, Villaruz AE, Bach TH, Khan BA, et al. (2008) RNAI-independent target gene control by the agr quorum-sensing system: insights into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell 32: 150–158.
30. Periasamy S, Chatterjee SS, Cheung GU, Otto M (2012) Phenol-soluble modulins in staphylococci: What are they originally for? Commun Integr Biol 5: 275–277.
31. Joo HS, Cheung GU, Otto M (2012) Bacterial virulence factors in Staphylococcus aureus and biological activity of the gelatinase biosynthesis-activating pheromone of Staphylococcus aureus. J Bacteriol 194: 6385–6387.
32. Bachmann J, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: direct induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci U S A 94: 14614–14619.
33. Brun S, Vidal S, Spellman P, Takahashi K, Tricoire H, et al. (2006) The Caenorhabditis elegans MAPKKK Mekk1 regulates the expression of Turandot stress genes in response to septic injury in Drosophila. Genes Cells 11: 397–407.
53. Abranches J, Miller JH, Martinez AR, Simpson-Haidaris PJ, Byrne RA, et al. (2011) The collagen-binding protein Cnm is required for *Streptococcus mutans* adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun 79: 2277–2284.

54. Lopes Mdo F, Ribeiro T, Martins MP, Temiro R, Crespo MT (2003) Gentamicin resistance in dairy and clinical enterococcal isolates and in reference strains. J Antimicrob Chemother 52: 214–219.

55. Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of *E. coli* by high voltage electroporation. Nucleic Acids Res 16: 6127–6145.

56. Dunny GM, Lee LN, LeBlanc JJ (1991) Improved electroporation and cloning vector system for gram-positive bacteria. Appl Environ Microbiol 57: 1194–1201.

57. Thurlow LR, Thomas VC, Hancock LE (2009) Capsular polysaccharide production in *Enterococcus faecalis* and contribution of CpsF to capsule serospecificity. J Bacteriol 191: 6203–6210.

58. Brinster S, Furlan S, Serror P (2007) C-terminal WxL domain mediates cell wall binding in *Enterococcus faecalis* and other gram-positive bacteria. J Bacteriol 189: 1244–1253.

59. Maguin E, Prevost H, Ehrlich SD, Gruss A (1996) Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol 178: 931–935.

60. Schuster M, Lostroh CP, Ogi T, Greenberg EP (2003) Identification, timing, and signal specificity of *Pseudomonas aeruginosa* quorum-controlled genes: a transcriptome analysis. J Bacteriol 185: 2066–2079.

61. Edgar R, Domrachev M, Lash AE (2002) Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210.

62. Hancock L, Perego M (2002) Two-component signal transduction in *Enterococcus faecalis*. J Bacteriol 184: 5819–5825.

63. Grant SG, Jessee J, Bloom FR, Hanahan D (1990) Differential plasmid rescue from transgenic mouse DNAs into *Escherichia coli* methylation-restriction mutants. Proc Natl Acad Sci U S A 87: 4645–4649.

64. Law J, Buist G, Haandrikman A, Kok J, Venema G, et al. (1993) A system to generate chromosomal mutations in *Lactococcus lactis* which allows fast analysis of targeted genes. J Bacteriol 175: 7011–7018.

65. Thurlow LR, Thomas VC, Fleming SD, Hancock LE (2009) *Enterococcus faecalis* capsular polysaccharide serotypes C and D and their contributions to host innate immune evasion. Infect Immun 77: 5551–5557.