Potential Regulatory Roles of MicroRNAs and Long Noncoding RNAs in Anticancer Therapies

Mengyan Xie,1 Ling Ma,1 Tongpeng Xu,1 Yutian Pan,1 Qiang Wang,2 Yutian Wei,3 and Yongqian Shu1

1Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China; 2Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; 3Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China

MicroRNAs and long noncoding RNAs have long been investigated due to their roles as diagnostic and prognostic biomarkers of cancers and regulators of tumorigenesis, and the potential regulatory roles of these molecules in anticancer therapies are attracting increasing interest as more in-depth studies are performed. The major clinical therapies for cancer include chemotherapy, immunotherapy, and targeted molecular therapy. MicroRNAs and long noncoding RNAs function through various mechanisms in these approaches, and the mechanisms involve direct targeting of immune checkpoints, cooperation with exosomes in the tumor microenvironment, and alteration of drug resistance through regulation of different signaling pathways. Herein we review the regulatory functions and significance of microRNAs and long noncoding RNAs in three anticancer therapies, especially in targeted molecular therapy, and their mechanisms.

MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) are important noncoding RNAs (ncRNAs), which display a remarkable variety of biological functions.1 ncRNAs can be classified by length (small, 18–200 nt; long, >200 nt) or by function (housekeeping ncRNAs and regulatory ncRNAs), with research over the last two decades largely focusing on regulatory ncRNAs.2 miRNAs, which are ~22 nt long, are the most widely studied class of regulatory ncRNAs, and these molecules mediate post-transcriptional gene silencing in animals by controlling the translation of mRNAs into proteins.3 lncRNAs, longer than 200 nt, are another subtype of regulatory ncRNAs that have a broad repertoire of functions in chromatin modification as well as in transcriptional, post-transcriptional, and translational regulation.4–7

miRNAs and lncRNAs are expressed at different levels in multiple cell and tissue types; they are also involved in tumorigenesis and the progression of aggressive cancer phenotypes.8 These molecules are identified as either carcinogenic or carcinostatic; are associated with cell growth, proliferation, migration, invasion, and apoptosis; and can even alter immune functions.9–10 RNA sequencing has confirmed that miRNA and lncRNA profiles can serve as highly sensitive and specific diagnostic and prognostic biomarkers. Because these molecules can be detected in diverse tumor tissues compared to normal samples and are associated with different clinicopathologic character-

miRNAs and lncRNAs Participate in Chemotherapy

Although chemotherapy remains a mainstay of anticancer treatment, the multi-organ toxicity and chemoresistance associated with this treatment strategy continues to be problematic.11

Recent studies of miRNAs and lncRNAs have indicated their latent therapeutic value for successful clinical translation. Results have confirmed that miRNAs and lncRNAs function as crucial regulators in different drug therapies, including chemotherapy, immunotherapy, and targeted molecular therapy, and the associated mechanisms have been investigated.

In this review, we discuss the ectopic expression of miRNAs and lncRNAs in multiple cancers and how they function in the three types of anticancer therapies, especially in targeted molecular therapy.

miRNAs and lncRNAs have indicated their latent therapeutic value for successful clinical translation. Results have confirmed that miRNAs and lncRNAs function as crucial regulators in different drug therapies, including chemotherapy, immunotherapy, and targeted molecular therapy, and the associated mechanisms have been investigated.

In this review, we discuss the ectopic expression of miRNAs and lncRNAs in multiple cancers and how they function in the three types of anticancer therapies, especially in targeted molecular therapy.
Bcl-2, miR-374b-5p and miR-15 were found to enhance the chemosensitivity of cancer cells by modulating apoptotic pathways.27,28 While investigating the role of lncRNAs involved in temozolomide (TMZ)-resistant glioma, Jia et al.29 and Cai and colleagues30 found that knockdown of lncRNAs H19 and MALAT1 reversed chemoresistance to TMZ by inhibiting or promoting their downstream targets. As a crucial regulator, lncRNA PVT1 directly acts on multiple drug resistance-associated molecules. Silencing of PVT1 downregulates the levels of multidrug resistance 1 (MDR1) and multidrug resistance protein 1 (MRP1) as well as the expression of antiapoptotic B cell lymphoma-2 (Bcl-2), but it upregulates levels of proapoptotic Bax and cleaved caspase-3.31 Mechanistically, the effects of lncRNAs TP53TG1, UCA1, MALAT1, and TUSC7 occur in an miRNA-dependent manner in which these molecules suppress expression of miRNAs, thus blocking relevant signaling pathways.22,24,30,32 In summary, the regulatory roles of miRNAs and lncRNAs have been widely investigated (Table 1), and these functions are important for chemoresistance. The modulatory effects of these molecules mainly impact transcription and apoptosis, indicating that miRNAs and lncRNAs are potential targets that may improve drug efficacy.

By mediating cell-cell communication, exosomes have been suggested to exert profound effects on the development of drug resistance.33 Indeed, by transferring miR-503 from the endothelium to the tumor microenvironment, thus interfering with interaction between breast cancer (BC) cells and the microenvironment, endothelial exosomes contribute to chemotherapeutic response in BC.33 In addition, exosome-transferred miR-21 derived from M2-polarized macrophages

Table 1. miRNAs and lncRNAs Involved in Chemotherapy

Cancer Type	ncRNA	Regulation of Chemoresistance	Target	Drug	Reference
NSCLC	miR-197	promotion	CKS1B/STAT3	DDP	19
	miR-130b	promotion	Wnt/b-catenin pathway	DDP	20
	lncRNA MALAT1	promotion	STAT3	DDP	21
	lncRNA TP53TG1	inhibition	miR-18a/PTEN	DDP	22
PC	miR-455-3p	promotion	TAZ	GEM	23
	miR-29c	inhibition	USP22	GEM	24
	miR-374b-5p	inhibition	Bcl-2	GEM	25
BC	miR-503	inhibition	CCND2, CCND3	EPI, PTX	26
	lncRNA LINP1	promotion	~	ADM, 5-FU	27
	miR-17	promotion	DEDD	DDP, 5-FU	28
GC	miR-218	inhibition	mTOR inhibitor	DDP	29
	miR-623	inhibition	CCND1	5-FU	30
	miR-191	promotion	Wnt/b-catenin pathway	5-FU	31
	miR-519b-3p	inhibition	ARID4B mRNA	CAPE/OXA/5-FU	32
CRC	miR-15	inhibition	NF-kB, Bcl-2	5-FU/OXA	33
	lncRNA PVT1	promotion	MDR1, MRP1, Bcl-2, Bax, cleaved caspase-3	DDP	34
	lncRNA MALAT1	promotion	EZH2	OXA	35
	lncRNA UCA1	promotion	miR-204-5p	5-FU	36
Glioma	lncRNA H19	promotion	Wnt/b-catenin pathway	TMZ	37
	lncRNA MALAT1	promotion	MIR-101	TMZ	38
	lncRNA DANCR	promotion	AXL/PI3K/Akt/ NF-kB	DDP	39
ESCC	miR-125a-5p	inhibition	STAT3	DDP	40
	lncRNA TUSC7	inhibition	MIR-224	DDP, 5-FU, and ADM/PTX	41
HCC	miR-16	inhibition	NF-kB	PTX	42
OC	miR-630	promotion	APAF-1	PTX	43
	miR-142-3p	inhibition	Sirtuin 1	DDP	44

NSCLC, non-small-cell lung cancer; PC, pancreatic cancer; BC, breast cancer; GC, gastric cancer; CRC, colorectal cancer; ESCC, esophageal squamous cell carcinoma; OC, ovarian cancer; HCC, hepatocellular carcinoma; APAF-1, apoptotic protease activating factor-1; CCND1-3, cyclin D1-3; DEDD, death effector domain-containing DNA-binding protein; EZH2, enhancer of zeste homolog 2; MDR1, multidrug resistance 1; MRP1, multidrug resistance protein 1; PTEN, phosphatase and tensin homolog deleted on chromosome 10; STAT3, signal transducer and activator of transcription 3; TAZ, transcriptional co-activator with PDZ-binding motif; TMZ, temozolomide; PI3K, phosphatidylinositol 3-kinase; USP22, ubiquitin-specific peptidase 22; Bcl-2, B cell lymphoma-2; DDP, cisplatin; GEM, gemcitabine; EPI, epirubicin; PTX, paclitaxel; 5-FU, 5-fluorouracil; CAPE, capecitabine; OXA, oxaliplatin; TMZ, temozolomide; ADM, adriamycin; PTX, paclitaxel.
angiogenesis. And the epithelial-mesenchymal transition (EMT), as well as tumor-promoting traits, such as cell migration, invasion, proliferation, apoptosis, and the restoration of which enhances the drug sensitivity of ovarian cancer cells through PD-1/PD-L1 checkpoint blockade. Tumor-infiltrating lymphocytes (TILs) in oral squamous cell carcinoma (OSCC) are sites where immune escape arises, an effect that can be reversed by blocking the PD-1/PD-L1 pathway. miR-197 enhances antitumor immune responses by inhibiting PD-L1 expression, thus weakening the aggressive features of OSCC. In addition to PD-L1, PD-1 is also an effective target for PD-1/PD-L1 pathway blockade. miR-138 exhibits antitumor efficacy by decreasing PD-1 expression, resulting in substantial tumor regression and a 43% increase in median survival time. In addition, co-expression of PD-1 and lncRNA AFAP1-AS1, which is associated with the poorest prognosis in nasopharyngeal carcinoma patients, suggests that this molecule is an ideal candidate for future clinical trials of anti-PD-1 immunotherapy.

Most miRNAs play a positive role in anticancer immunity by targeting immune checkpoints; however, there are also miRNAs that carry out the opposite functions. For example, miR-17-5p post-transcriptionally upregulates PD-L1 in metastatic melanoma, leading to significantly enhanced invasive properties.

Other immunologic mechanisms together with immune checkpoint blockades involve the antitumor functions of miRNAs. For example, it has been demonstrated that miRNAs drive exosome-mediated MAPK signaling by activating CD97 and proinflammatory cytokine production by activating cells of the mononuclear phagocytic system; because they are translated into short polypeptides, miRNAs also present the best targets for immunotherapy (Table 2).

miRNAs and IncRNAs Are Involved in Targeted Molecular Therapy

Targeted therapy is personalized treatment that involves the application of agents targeted toward specific molecular features of cancer cells, thereby minimizing toxicity and decreasing the cost of cancer care. These unique molecular targets that recognize and eliminate cancer cells are genetic alterations that are primarily mutated versions of epidermal growth factor receptor (EGFR), epidermal growth factor receptor 2 (HER2), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and v-Raf murine sarcoma viral oncogene homolog B (BRAF). In addition, the use of miRNAs and IncRNAs in targeted molecular therapy primarily involves the alteration of cellular sensitivity to drugs. Below we summarize the modulatory effects of miRNAs and IncRNAs on resistance to agents that have been approved in China.

EGFR and HER2 Mutations and Their Corresponding Agents

EGFR and HER2 are two common oncogenic mutations found in lung cancer and BC; they also occur in other types of malignancies. Antitumor targeted molecular therapeutic drugs mainly include gefitinib, erlotinib, and cetuximab targeting EGFR, trastuzumab and pertuzumab targeting HER2, and afatinib and lapatinib targeting both EGFR and HER2. Lapatinib, a tyrosine kinase inhibitor (TKI), was approved based on improvements in progression-free survival (PFS) and alleviation of side effects. In a survival analysis of HER2-positive BC, overall survival (OS) was significantly

| Table 2. miRNAs and IncRNAs Involved in the PD-1/PD-L1 Immune Checkpoint |
|-----------------------------|----------------|------------------|
| Cancer Type | ncRNA | Expression | Regulation of PD-L1 (PD-1) | Reference |
| Bone marrow stromal niche | miR-25-93-106b | ↑ | ↓ | 42 |
| Colorectal cancer | miR-138-5p | ↓ | ↓ | 43 |
| Laryngeal cancer | miR-217 | ↓ | ↓ | 44 |
| Lung adenocarcinoma | miR-200 | ↓ | ↑ | 45 |
| Ovarian cancer | miR-424(322) | ↓ | ↓ | 46 |
| Oral squamous cell carcinoma | miR-197 | ↑ | ↓ | 47 |
| Melanoma | miR-17-5p | ↓ | ↑ | 48 |
| Glioma | miR-138 | ↓ | ↓ (PD-1) | 49 |
| Nasopharyngeal carcinoma | AFAP1-AS1 | ↑ | ↑ (PD-1) | 50 |

Additional expression of miRNAs in PD-1/PD-L1 immune checkpoint blockade and various cellular processes in cancer has recently gained attention (Table 2). miR-25-93-106b, miR-138-5p, miR-217, and miR-200 were found to suppress the expression of PD-L1, thus rescuing decreased tumor immunity and inhibiting multiple metastatic traits, such as cell migration, invasion, proliferation, apoptosis, and the epithelial-mesenchymal transition (EMT), as well as angiogenesis.

Additionally, miRNAs can enhance curative effects and restore immune functions indirectly through interaction with PD-L1. miR-424(322) regulates the PD-1/PD-L1 and CD80/CTLA-4 pathways in ovarian cancer by decreasing PD-L1 and CD80 expression, restoration of which enhances the drug sensitivity of ovarian cancer.
better in patients who were treated with the neoadjuvant lapatinib followed by the adjuvant trastuzumab than in those treated with trastuzumab alone (hazard ratio [HR], 0.32; p = 0.019).59 The addition of trastuzumab, a humanized monoclonal antibody, to carboplatin-paclitaxel was well tolerated by HER2-positive patients and increased PFS (12.6 months [experimental] versus 8.0 months [control], p = 0.005).55

However, numerous cases of acquired resistance reveal the limitation of targeted therapy. For example, acquired resistance to TKIs inevitably occurs in almost all NSCLC patients, and the major mechanisms include T790M, MET, and HER2/3 mutations as well as IGFR1 and PI3K activation.60,61 Additionally, emerging evidence highlights the master regulatory roles of miRNAs and IncRNAs in the acquisition of resistance, and it suggests potential targets for development in targeted therapy (Table 3).60,62–66

Drug	Cancer Type	Regulation of Resistance	ncRNA	Target	Reference
Lapatinib	HER2(+) BC	inhibition	miR-630	IGF1R	111
	triple-negative BC	inhibition	miR-7	Raf-1/MAPK/IL-6	78
	HER2(-) BC	inhibition	miR-16	CCNJ, FUBP1	112
		promotion	miR-21	IL-6/STAT3/ NFκB, PTEN/PI3K	117
		inhibition	miR-22	PTEN	111
Trastuzumab	HER2(+) BC	inhibition	miR-21	IGF1R	114
	HER2(+) GC	promotion	miR-21	PTEN	111
	melanoma	inhibition	miR-21	CAGE	117
Gefitinib	NSCLC	promotion	miR-21	PTEN, PDCD4, PI3K/Akt	77
		inhibition	miR-630	Akt/mTOR	83
Erlotinib	NSCLC	promotion	miR-641	NF1/ERK	112
Cetuximab	CRC	promotion	miR-7	EGFR/Sec	75
	HCC	inhibition	miR-9	eIF-5A-2	75
Pertuzumab	OC	inhibition	miR-150	Akt	126

miR-21, miR-7, and IncRNA UCA1 Regulate Drug Resistance

miR-21, which promotes cell proliferation and invasion and is upregulated in many cancers, is one of the most widely investigated miRNAs.67–70 In HER2-positive BC, miR-21 was found to be inversely correlated with the expression of PTEN and PDCD4; by triggering an interleukin-6 (IL-6)/STAT3/nuclear factor κB (NF-κB)-mediated signaling loop and activating the PI3K pathway, it is also related to decreased trastuzumab sensitivity.71 Blocking the action of miR-21 with antisense oligonucleotides (ASOs) re-sensitized resistant cells to the therapeutic effects of trastuzumab.72 Similarly, miR-21 downregulates the expression of PTEN and PDCD4 and activates the PI3K/Akt pathway in gefitinib-resistant NSCLC cell lines, and inhibiting miR-21 with ASOs suppresses tumor growth in nude mice treated with gefitinib.73 Serving as a molecular sponge for miR-21, IncRNA GAS5 increases PTEN levels by competitively binding to miR-21 in a trastuzumab-resistant BC cell.
miR-7 is another well-investigated miRNA that has been identified as both a tumor suppressor and promoter in a number of malignancies, such as BC, hepatocellular carcinoma (HCC), CRC, NSCLC, glioma, and melanoma. miR-7 also plays an indispensable role in drug resistance. Reestablished miR-7 expression abolishes HER2Δ16, the oncogenic isoform of HER2, and it induces cell proliferation and migration while sensitizing HER2Δ16-expressing cells to trastuzumab therapy. The off-target activity of lapatinib in inducing EGFR expression in BC was unexpectedly found to enhance metastasis, and this resistance-related phenotype was attributed to miR-7 downregulation. Moreover, restoration of miR-7 expression inhibits Raf-1 signaling activation and EGFR expression, thereby restricting lapatinib-induced metastasis. By directly targeting EGFR and Raf-1, miR-7 also inhibits cell resistance to cetuximab in CRC.

Previous studies have demonstrated the role of dysregulated miRNA expression in drug resistance, but, to date, few studies have examined lncRNAs. Nonetheless, Zhu et al. found that the lncRNA UCA1 desensitized BC cells to trastuzumab by impeding miR-18a repression of Yes-associated protein 1 (YAP1). In another study, UCA1 knockdown restored gefitinib sensitivity in cells with acquired resistance and no T790M mutations, and it inhibited activation of the Akt/mTOR pathway and EMT (Table 3).

miRNAs and lncRNAs Are Involved in the Effects of Sorafenib and Sunitinib

Sorafenib, the first systemic drug for patients with advanced HCC, inhibits the activity of multiple kinases, such as Raf kinase, VEGFR2, and platelet-derived growth factor receptor (PDGFR). This drug also increases the survival rate of renal cell carcinoma (RCC) patients. Regardless, poor primary response and acquired resistance remain the major obstacles for effective treatment with sorafenib. While assessing this urgent problem, researchers were able to identify the predictive and therapeutic functions of miRNAs and lncRNAs in sorafenib treatment (Table 4). By activating p53-dependent apoptosis, miR-27b was found to enhance the response to sorafenib in HCC and RCC, and the direct target of miR-27b was cyclin G1 (CCNG1), a negative regulator of p53.

Table 4. miRNAs and lncRNAs Involved in Sorafenib and Sunitinib Resistance

Drug	Cancer Type	Regulation of Resistance	ncRNA	Target	Reference
Sorafenib	HCC	inhibition	miR-27b	CCNG1	83
			let-7	Bcl-xL, Mcl-1	84
			miR-122	ADAM10, SRF, IGF1R	85,86
			miR-338-3p	HIF-1z	127
			miR-425-3p	–	32
			miR-34a	Bcl-2, Mcl-1	129
			miR-193b	Mcl-1	129
			Ad5-AIncRNA	miR-21, miR-153, miR-216a, miR-217, miR-494, miR-10a-5p	10
		promotion	miR-494	PTEN, PI3K/Akt	85
			miR-222	PTEN, PI3K/Akt	90
			miR-21	PTEN, PI3K/Akt	90
			miR-181a	RASSF1	53
			IncTUC338	RASAL1	131
	RCC	inhibition	miR-27b	CCNG1	83
			miR-30a	Beclin-1	87
			miR-200c	HO-1	122
	promotion		IncRNA SRLR	NF-κB	133
			IncRNA NEAT1	miR-34a	134
	RCC	inhibition	IncRNA SARCC	AR/miR-143-3p	94
		promotion	miR-144-3p	ARID1A	94
			IncRNA ARSR	miR-34, miR-449	91

HCC, hepatocellular carcinoma; RCC, renal cell carcinoma; SRF, serum response factor; ADAM10, a distinctintegrin and metalloprotease family 10; IGF1R, insulin growth factor receptor 1; Bcl-2, B cell lymphoma-2; Bcl-xL, B cell lymphoma-extra large; Mcl-1, myeloid cell leukemia-1; HIF-1α, hypoxia-inducible factor-1; HO-1, heme oxygenase-1; RASAL1, RAS GTPase-activation protein (RasGAP) 1; RASAL1, RAS GTPase-activation protein (RasGAP) gene; CCNG1, cyclin G1; ARID1A, AT-rich interactive domain 1A; AR, androgen receptor.
Another miRNA that potentiates sorafenib-induced apoptosis in HCC is let-7, which reduces expression of the antiapoptotic Bcl-2 protein Bcl-xL and Mcl-1. Another miRNA that potentiates sorafenib-induced apoptosis in HCC is let-7, which reduces expression of the antiapoptotic Bcl-2 protein Bcl-xL and Mcl-1.84 miR-122 appears to sensitize HCC cells to sorafenib by targeting distintegrin and metalloprotease family 10 (ADAM10), serum response factor (SRF), and IGF1R.85,86 Moreover, exosomes derived by adipose tissue-derived mesenchymal stem cells help to deliver miR-122 into HCC cells, further promoting the chemosensitivity of these cells.87 miR-494 and miR-21, which are both upregulated in HCC and reinforce sorafenib resistance, directly suppress the expression of PTEN but activate the PI3K/Akt-signaling pathway, thereby contributing to the promotion of proliferation, migration, and invasion.88,89

Although these potential antiresistance targets have been identified, it is a challenge to restore sensitivity by regulating only one miRNA, because it may sequentially activate other compensatory pathways. Accordingly, Tang et al.90 generated an artificial lncRNA expressed by an adenoviral vector (Ad5-AlncRNA), which simultaneously targets multiple miRNAs, including miR-21, miR-153, miR-216a, miR-217, miR-494, and miR-10a-5p. As mentioned above, these miRNAs participate in the mechanisms underlying sorafenib resistance, and, thus, targeting multiple miRNAs may be a promising strategy for overcoming such resistance.

Sunitinib is the mainstay of therapeutic options for advanced RCC patients. This drug is a multitarget receptor TKI that mainly inhibits VEGFR and PDGFR. However, 10%–20% of advanced RCC patients are inherently resistant to sunitinib therapy, and most of the remaining patients exhibit drug resistance and tumor progression after 6–15 months of therapy.91 In studies of sunitinib resistance in RCC, miR-144-3p and lncRNAs ARSR and SARCC were found to affect malignancy via different targets91–93 (Table 4).

miRNAs and lncRNAs Are Involved in the Effects of Imatinib and Vemurafenib

Little is known about the effect of ncRNAs on imatinib and vemurafenib resistance in solid tumors. Sensitivity of melanoma to the BRAF(V600E) inhibitor vemurafenib is positively regulated by miR-579-3p, miR-216b, and miR-7, and it is negatively regulated by miR-204-5p and miR-211-5p.94–96 Imatinib, a small-molecule inhibitor that targets several receptor tyrosine kinases, including KIT and PDGFR, is primarily applied in the treatment of chronic myelogenous leukemia (CML) and gastrointestinal stromal tumors (GISTs). One study on imatinib-resistant glioblastoma revealed that ectopic expression of miR-203 with miRNA mimics effectively sensitizes cells to chemotherapy by targeting SNAI2.97

In summary, this review compiles the available literature on the miRNAs and lncRNAs involved in targeted therapy that have certain...
and explicit targets and pathways (Figure 1). All relevant publications were retrieved from the PubMed database, with keywords such as miRNA, IncRNA, exosome, PD-1/PD-L1, immunotherapy, chemoresistance, targeted therapy, lapatinib, gefitinib, trastuzumab, sorafenib, HER2, EGFR, and similar terms.

Conclusions
miRNAs and IncRNAs, subcategories of ncRNAs, have primarily been investigated as biomarkers for predicting the initiation and development of cancer, but they have recently been discovered to be involved in the curative process of three clinically adopted therapies. These molecules enhance or suppress cancer cell responses to chemotherapy drugs and targeted drugs indirectly by modulating relevant pathways, and they also affect immune checkpoint blockade therapy directly by altering the expression of PD-1/PD-L1. Over-expressing miRNAs and IncRNAs by mimics and silencing these molecules by small interfering RNAs (siRNAs) verify their therapeutic capacity in suppressing aggressive cell phenotypes and alleviating drug resistance.

Furthermore, rapid advances in elucidating the roles of miRNAs and IncRNAs in anticancer therapies have revealed several opportunities and challenges to address in the future. One opportunity is cooperation with extracellular vesicles, especially exosomes. As mentioned above, exosome-mediated miR-503 reduced chemoresistance after it was transferred from endothelial cells to tumor cells.25 Studies have demonstrated the communication shuttle function of exosomes between cells and that exosome-associated ncRNAs fulfill important jobs in regulating gene expression in cancer.26 However, more work on the therapeutic value of exosome-associated ncRNAs in cancer is needed. Second, miRNA-miRNA and miRNA-IncRNA networks reveal the complexity of ncRNA-mediated mechanisms in anticancer therapies, providing a better understanding of the ncRNA-mediated drug response and creative research approaches.98 One outstanding problem is whether ectopic miRNAs and IncRNAs actually function in vivo, and more research utilizing convenient in vivo model systems are needed. Future studies will likely focus on ncRNA-based drug development and integrated clinical trials, which may lead to a cure for cancer. Additionally, the investigation of circular RNAs, another ncRNA research hotspot, is needed to improve our understanding of the ncRNA therapeutic network.

All relevant publications were retrieved from the PubMed database, with key words such as miRNA, IncRNA, exosome, PD-1/PD-L1, immunotherapy, chemoresistance, targeted therapy, lapatinib, gefitinib, trastuzumab, sorafenib, HER2, EGFR and similar terms.

AUTHOR CONTRIBUTIONS
M.X. designed the research and drafted the manuscript. L.M. and T.X. critically revised the manuscript. Y.P., Q.W., and Y.W. discussed and revised the manuscript. All authors read and approved the final manuscript.

CONFLICTS OF INTEREST
The authors have no conflicts of interest.

ACKNOWLEDGMENTS
This work was supported by grants from the National Key Research and Development Program: The key technology of palliative care and nursing for cancer patients (ZDZX2017-ZL-01) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_1482).

REFERENCES
1. Cech, T.R., and Steitz, J.A. (2014). The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157, 77–94.
2. Glasgow, A.M.A., De Santi, C., and Greene, C.M. (2018). Non-coding RNA in cystic fibrosis. Biochem. Soc. Trans. 46, 619–630.
3. Ma, P., Pan, Y., Li, W., Sun, C., Liu, J., Xu, T., and Shu, Y. (2017). Extracellular vesicles-mediated noncoding rNAs transfer in cancer. J. Hematol. Oncol. 10, 57.
4. Mohr, A.M., and Mott, J.L. (2015). Overview of microRNA biology. Semin. Liver Dis. 35, 3–11.
5. Li, Z.H., Li, L., Kang, L.P., and Wang, Y. (2018). MicroRNA-92a promotes tumor growth and suppresses immune function through activation of MAPK/ERK signaling pathway by inhibiting PTEN in mice bearing U14 cervical cancer. Cancer Med. 7, 3118–3131.
6. Li, C., Du, X., Xia, S., and Chen, L. (2018). MicroRNA-150 inhibits the proliferation and metastasis potential of colorectal cancer cells by targeting iASPP. Oncol. Rep. 40, 252–260.
7. Qiu, M., Xu, Y., Wang, J., Zhang, E., Sun, M., Zheng, Y., Li, M., Xia, W., Feng, D., Yin, R., and Xu, L. (2015). A novel IncRNA, LUADT1, promotes lung adenocarcinoma proliferation via the epigenetic suppression of p27. Cell Death Dis. e1858.
8. Wang, L., Wang, F., Na, L., Yu, J., Huang, L., Meng, Z.Q., Chen, Z., Chen, H., Ming, L.L., and Hua, Y.Q. (2018). LncRNA AB209630 inhibits gemcitabine resistance cell proliferation by regulating PI3K/AKT signaling in pancreatic ductal adenocarcinoma. Cancer Biomark. 22, 169–174.
9. Yang, X., Song, J.H., Cheng, Y., Wu, W., Bhagat, T., Yu, Y., Abraham, J.M., Ibrahim, S., Ravich, W., Roland, B.C., et al. (2014). Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells. Gut 63, 881–890.
10. Yang, H., Wang, S., Kang, Y.J., Wang, C., Xu, Y., Zhang, Y., and Jiang, Z. (2018). Long non-coding RNA SNHG1 predicts a poor prognosis and promotes colon cancer tumorigenesis. Oncol. Rep. 40, 261–271.
11. Ding, X., Zhang, S., Li, X., Feng, C., Huang, Q., Wang, S., Wang, S., Xia, W., Yang, F., Yin, R., et al. (2018). Profiling expression of coding genes, long noncoding RNA, and circular RNA in lung adenocarcinoma by ribosomal RNA-depleted RNA sequencing. FEBS Open Bio 8, 544–555.
12. Tengda, L., Shuping, L., Mingli, G., Jie, G., Yun, L., Weizei, Z., and Anmei, D. (2018). Serum exosomal microRNAs as potent circulating biomarkers for melanoma. Melanoma Res. 28, 295–303.
13. Shukla, S. (2018). Unravelling the Long Non-Coding RNA Profile of Undifferentiated Large Cell Lung Carcinoma. Noncoding RNA 4, E4.
14. Zhang, M.H., Yang, Y., Zhao, Y., Wei, H.B., Ma, Y.Q., Yang, C.J., Zhang, X.L., and Sun, Y.L. (2018). LncRNA DQ786243 expression as a biomarker for assessing prognosis in patients with gastric cancer. Eur. Rev. Med. Pharmacol. Sci. 22, 2304–2309.
15. Feng, H., Xu, M., Zhang, Y., Han, B., Wang, J., and Sun, P. (2018). Identification of Differentially Expressed MicroRNAs involved in the Pathogenesis of Colorectal Cancer. Clin. Lab. 64, 797–804.
16. Shen, Q.M., Wang, H.Y., and Xu, S. (2018). LncRNA GHET1 predicts a poor prognosis of the patients with non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci. 22, 2328–2333.
17. Sonawane, V.K., Mahajan, U.B., Shinde, S.D., Chatterjee, S., Chaudhari, S.S., Bhangale, H.A., Ojha, S., Goyal, S.N., Kundra, C.N., and Patil, C.R. (2018). A
Coombsensitizer Drug: Dasulifiram Prevents Doxorubicin-Induced Cardiac Dysfunction and Oxidative Stress in Rats. Cardiovasc. Toxicol. 18, 459–470.

Riquelme, I., Letelier, P., Riffo-Campos, A.L., Brebi, P., and Roa, J.C. (2016). Emerging Role of miRNAs in the Drug Resistance of Gastric Cancer. Int. J. Mol. Sci. 17, 424.

Fujita, Y., Yagishita, H., Hagwara, K., Yoshio, Y., Kosaka, N., Takehisa, F., Fujisawa, T., Tsuta, K., Nokihara, H., Tamura, T., et al. (2015). The clinical relevance of the miR-197/CKS1B/STAT3-mediated PD-L1 network in chemoresistant non-small-cell lung cancer. Mol. Ther. 23, 717–727.

Zhang, Q., Zhang, B., Sun, L., Yan, Q., Zhang, Y., Zhang, Z., Su, Y., and Wang, C. (2018). MicroRNA-130b targets PTEN to induce resistance to cisplatin in lung cancer cells by activating Wnt/β-catenin pathway. Cell Biochem. Funct. 36, 194–202.

Fang, Z., Chen, W., Yuan, Z., Liu, X., and Jiang, H. (2018). LncRNA-MALAT1 contributes to the cisplatin-resistance of lung cancer by upregulating MRPL and MDR1 via STAT3 activation. Biomed. Pharmacother. 101, 536–542.

Xiao, H., Liu, Y., Liang, P., Wang, B., Tan, H., Zhang, Y., Gao, X., and Gao, J. (2018). TP53GT1 enhances cisplatin sensitivity of non-small cell lung cancer cells through regulating miR-18a/PTEN axis. Cell Biosci. 8, 23.

Zhao, Y., Ma, K., Yang, S., Zhang, X., Wang, F., Zhang, X., Liu, H., and Fan, Q. (2018). MicroRNA-125a-5p enhances the sensitivity of esophageal squamous cell carcinoma cells to cisplatin by suppressing the activation of the STAT3 signaling pathway. Int. J. Oncol. 53, 644–658.

Chang, Z.W., Jia, Y.X., Zhang, W.J., Song, L.J., Gao, M., Li, M.J., Zhao, R.H., Li, J., Zhang, X.L., Sun, Q.Z., and Qin, Y.R. (2018). LncRNA-TUSC7/miR-224 affected chemotherapy resistance of esophageal squamous cell carcinoma by competitively regulating DSC1. J. Exp. Clin. Cancer Res. 37, 56.

Bovy, N., Blomme, B., Frères, P., Dederen, S., Nivelles, O., Lion, M., Carnet, O., Martial, J.A., Noel, A., Thiry, M., et al. (2015). Endothelial exosomes contribute to the antitumor response during breast cancer neoadjuvant chemotherapy via microRNA transfer. Oncotarget 6, 10253–10266.

Jiang, L., Yang, W., Bian, W., Yang, H., Wu, X., Li, Y., Feng, W., and Liu, X. (2018). microRNA-623 targets cyclin D1 to inhibit cell proliferation and enhance the chemosensitivity of cells to 5-fluorouracil in gastric cancer. Oncol. Res., Published online March 1, 2018. https://doi.org/10.3727/096504018X15193469240508.

Sun, D., Wang, X., Sui, G., Chen, S., Yu, M., and Zhang, P. (2018). Downregulation of miR-374b-5p promotes chemotherapeutic resistance in pancreatic cancer by up-regulating multiple anti-apoptotic proteins. Int. J. Oncol. 52, 1491–1503.

Liu, L., Wang, D., Qiu, Y., Dong, H., and Zhan, X. (2018). Overexpression of microRNA-15 increases the chemosensitivity of colon cancer cells to 5-fluorouracil and oxaliplatin by inhibiting the nuclear factor-kB signalling pathway and inducing apoptosis. Exp. Ther. Med. 15, 2655–2660.

Bai, L., Tian, Y., Chen, Y., and Zhang, G. (2018). The silencing of LncRNA-H19 decreases chemoresistance of human glioma cells to temozolomide by suppressing epithelial-mesenchymal transition via the Wnt/β-Catenin pathway. OncoTargets Ther. 11, 313–321.

Cai, T., Liu, Y., and Xiao, J. (2018). Long noncoding RNA MALAT1 knockdown reverses chemoresistance to temozolomide via promoting microRNA-101 in glioblastoma. Cancer Med. 7, 1400–1415.

Peng, G., Xiong, W., Zhang, L., Li, Y., Zhang, Y., and Zhao, Y. (2018). Silencing long noncoding RNA PVT1 inhibits tumorigenesis and cisplatin resistance of colon cancer. Am. J. Transl. Res. 10, 138–149.

Bian, Z., Jin, L., Zhang, I., Yin, Y., Quan, C., Hu, Y., Feng, Y., Liu, H., Fei, B., Mao, Y., et al. (2016). LncRNA-UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p. Sci. Rep. 6, 23892.

Bi, R., Zhang, B., Zhang, X., Xue, J., Yuan, X., Yan, W., Zhu, W., Qian, H., and Xu, W. (2015). Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer. Cell Cycle 14, 2473–2483.

Tanne, A., Muniz, L.R., Puzio-Kuter, A., Leonova, K.I., Gudkov, A.V., Ting, D.T., Monasson, R., Cocco, S., Levine, A.I., Bhadra, N., and Greenbaum, B.D. (2015). Distinguishing the immunostimulatory properties of noncoding RNAs expressed in cancer cells. Proc. Natl. Acad. Sci. USA 112, 15154–15159.
in Patients With EGFR-Mutant Lung Adenocarcinoma. Clin. Lung Cancer 19, 387–394.e2.

53. Arumi, J., Tsuobota, T., Sakabe, T., and Shiota, G. (2016). miR-181a induces sorafenib resistance of hepatocellular carcinoma cells through downregulation of RASSF1 expression. Cancer Sci. 107, 1256–1262.

54. Luo, M., Wu, L., Zhang, K., Wang, H., Wu, S., O’Connell, D., Gao, T., Zhong, H., and Yang, Y. (2018). miR-216b enhances the efficacy of vemurafenib by targeting Bclin-1, UVRAG and ATG5 in melanoma. Cell. Signal. 42, 30–43.

55. Fader, A.N., Roque, D.M., Siegel, E., Buza, N., Hui, P., Abdelghany, O., Chambers, S.K., Secord, A.A., Havrilesky, L., O’Malley, D.M., et al. (2018). Randomized Phase II Trial of Carboplatin-Platixal Versus Carboplatin-Platixal-Trastuzumab in Uterine Serous Carcinomas That Overexpress Human Epidermal Growth Factor Receptor 2/neu. J. Clin. Oncol. 36, 2044–2051.

56. Xio, A.D., Ding, C., Zang, Y.S., and Yu, G. (2018). Rapid symptomatic relief of HER2-positive gastric cancer leptomeningeal carcinomatosis with lapatinib, trastuzumab and capcitabine: a case report. BMC Cancer 18, 206.

57. Heydt, C., Michels, S., Thress, K.S., Bergner, S., Wolf, J., and Buettert, R. (2018). Novel approaches against epidermal growth factor receptor tyrosine kinase inhibitor resistance. Oncotarget 9, 15418–15434.

58. Escrivá-de Romani, S., Arumi, M., Bellet, M., and Saura, C. (2018). HER2-positive breast cancer: Current and new therapeutic strategies. Breast 39, 80–88.

59. Untch, M., von Minckwitz, G., Gerber, B., Perry, G., Rosolem, M., Schlicht, H., et al. (2018). Analysis of Neoadjuvant Chemotherapy With Trastuzumab or Lapatinib in Patients With Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer in the GeparQinto (G5) Study (GBG 44). J. Clin. Oncol. 36, 1308–1316.

60. Lin, Y., Wang, X., and Jin, H. (2014). EGFR-TKI resistance in NSCLC patients: mechanisms and strategies. Am. J. Cancer Res. 4, 411–435.

61. Yang, Z., Yang, N., Ou, Q., Xiang, Y., Jiang, T., Wu, X., Bao, H., Tong, X., Wang, X., Shao, Y.W., et al. (2018). Investigating novel resistance mechanisms to third-generation EGFR tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients. Clin. Cancer Res. 24, 3097–3107.

62. Hannafon, B.N., and Ding, W.Q. (2013). Intercellular communication by exosome-derived microRNAs in cancer. Int. J. Mol. Sci. 14, 14242–14269.

63. Cheng, N., Cai, W., Ren, S., Li, X., Wang, Q., Pan, H., Zhao, M., Li, J., Zhang, Y., Zhao, C., et al. (2015). Long non-coding RNA UCA1 induces non-TGFβ acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway in EGFR-mutant non-small cell lung cancer. Oncotarget 6, 23582–23593.

64. Ricciuti, B., Mecca, C., Cenci, M., Leonardi, G.C., Perrone, L., Mencaroni, C., Crinò, L., Grignani, F., Baglivo, S., Chiari, R., et al. (2015). miRNAs and resistance to EGFR-TKIs in EGFR-mutant non-small cell lung cancer: beyond ‘traditional mechanisms’ of resistance. Ecancermedicalscience 9, 569.

65. Liu, X.H., Sun, M., Nie, F.Q., Ge, Y.B., Zhang, E.B., Yin, D.D., Kong, R., Xia, R., Liu, K.H., Li, J.H., et al. (2014). LncRNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol. Cancer 13, 92.

66. Jung, E.-J., Santarpia, L., Kim, J., Esteva, F.I., Moretti, E., Bzduz, A.U., Di Leo, A., Le, X.F., Bast, R.C., Jr., Park, S.T., et al. (2012). Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer 118, 2603–2614.

67. Yin, C., Zhou, X., Dang, Y., Yan, J., and Zhang, G. (2015). Potential Role of Circulating miR-21 in the Diagnosis and Prognosis of Digestive System Cancer: A Systematic Review and Meta-Analysis. Medicine (Baltimore) 94, e2123.

68. Melnik, B.C. (2015). MiR-21: an environmental driver of malignant melanoma? J. Transl. Med. 13, 202.

69. Wang, L.I., He, C.C., Sui, X., Cai, M.J., Zhou, C.Y., Ma, J.L., Wu, L., Wang, H., Han, S.X., and Zhu, Q. (2015). MiR-21 promotes intrahepatic cholangiocarcinoma proliferation and growth in vitro and in vivo by targeting PTEN and PTFEN. Oncotarget 6, 5932–5946.
87. Lou, G., Song, X., Yang, F., Wu, S., Wang, J., Chen, Z., and Liu, Y. (2015). Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma. J. Hematol. Oncol. 8, 122.

88. He, C., Dong, X., Zhai, B., Jiang, X., Dong, D., Li, B., Jiang, H., Xu, S., and Sun, X. (2015). miR-21 mediates sorafenib resistance of hepatocellular carcinoma cells by inhibiting autophagy via the PTEN/Akt pathway. Oncotarget 6, 28867–28881.

89. Liu, K., Liu, S., Zhang, W., Jia, B., Tan, L., Jin, Z., and Liu, Y. (2015). miR-494 promotes cell proliferation, migration and invasion, and increased sorafenib resistance in hepatocellular carcinoma by targeting PTEN. Oncol. Rep. 34, 1003–1010.

90. Tang, S., Tan, G., Jiang, X., Han, P., Zhai, B., Dong, X., Qiao, H., Jiang, H., and Sun, X. (2016). An artificial IncRNA targeting multiple miRNAs overcomes sorafenib resistance in hepatocellular carcinoma cells. Oncotarget 7, 73257–73269.

91. Qi, L., Ding, J., Chen, C., Wu, Z.J., Liu, B., Gao, Y., Chen, W., Liu, S., Wu, W., Li, X.F., et al. (2016). Exosome-Transmitted IncARSR Promotes Sunitinib Resistance in Renal Cancer by Acting as a Competing Endogenous RNA. Cancer Cell 29, 653–668.

92. Xiao, W., Lou, N., Ruan, H., Bao, L., Xiong, Z., Yuan, C., Tong, J., Xu, G., Zhou, Y., Qiu, Y., et al. (2017). Mir-144-3p Promotes Cell Proliferation, Metastasis, Sunitinib Resistance in Clear Cell Renal Cell Carcinoma by Downregulating ARID1A. Cell. Physiol. Biochem. 43, 2420–2433.

93. Zhai, W., Sun, Y., Guo, C., Hu, G., Wang, M., Zheng, I., Lin, W., Huang, Q., Li, G., Zheng, I., and Chang, C. (2017). LncRNA-SARCC suppresses renal cell carcinoma (RCC) progression via altering the androgen receptor (AR)/miRNA-143-3p signals. Cell Death Differ. 24, 1502–1517.

94. Fattore, L., Mancini, R., Acunzo, M., Romano, G., Lagana, A., Pisanu, M.E., Malpici, D., Madonna, G., Mallardo, D., Capone, M., et al. (2016). miR-579-3p controls melanoma progression and resistance to target therapy. Proc. Natl. Acad. Sci. USA 113, E5005–E5013.

95. Sun, X., Li, J., Sun, Y., Zhang, Y., Dong, L., Shen, C., Yang, L., Yang, M., Li, Y., Shen, G., et al. (2016). miR-7 reverses the targeting of BRAF in melanoma by targeting the EGFR/IGF1R/1R/CRAF and inhibiting the MAPK and PI3K/AKT signaling pathways. Oncotarget 7, 53558–53570.

96. Díaz-Martínez, M., Benito-Jardón, L., Alonso, L., Koetz-Ploch, L., Hernando, E., and Teixidó, J. (2018). miR-204-5p and miR-211-5p Contribute to BRAF Inhibitor Resistance in Human Glioblastoma by Promoting Epithelial-Mesenchymal Transition via SNAIL2. Front. Oncol. 8, 6914–6928.

97. Cilek, E.E., Oztruk, H., and Gur Dedegolu, B. (2017). Construction of miRNA-miRNA networks revealing the complexity of miRNA-mediated mechanisms in trastuzumab treated breast cancer cell lines. PLoS ONE 12, e0185588.

98. Zhan, T., Huang, X., Tian, X., Chen, X., Ding, Y., Luo, H., and Zhang, Y. (2018). Downregulation of MicroRNA-455-3p Links to Proliferation and Drug Resistance of Pancreatic Cancer Cells Via Targeting TAZ. Mol. Ther. Nucleic Acids 10, 215–226.

99. Liu, K., Liu, S., Zhang, W., Jia, B., Tan, L., Jin, Z., and Liu, Y. (2015). miR-16 mediates trastuzumab and lapatinib response in ErbB-2-positive breast cancer by targeting IGF1R. BMC Cancer 15, 3513.

100. Xia, D., Wang, Y., Zhang, W., Wang, J., Sun, L., Li, W., and Ye, X. (2016). MiR-16-induced trastuzumab and lapatinib response in HER2-positive breast cancer via its novel targets CCNJ and FUBP1. Oncogene 35, 6189–6202.

101. Ye, X., Bai, W., Zhu, H., Zhang, X., Chen, Y., Wang, L., Yang, A., Zhao, J., and Jia, L. (2014). MiR-221 promotes trastuzumab-resistance and metastasis in HER2-positive breast cancers by targeting PTEN. Biomed Rep. 47, 268–273.

102. Xu, M., Zhu, H.Y., Bai, W.D., Wang, T., Wang, L., Chen, Y., Yang, A.G., and Jia, L.T. (2014). Epigenetic silencing of miR-375 induces trastuzumab resistance in HER2-positive breast cancer by targeting JGFR. BMC Cancer 14, 134.

103. Le, X.F., Almesda, M.I., Mao, W., Spizzo, R., Rossi, S., Nico1oso, M.S., Zhang, S., Wu, Y., Calin, G.A., and Bast, R.C., Jr. (2012). Modulation of MicroRNA-194 and cell migration by HER2-targeting trastuzumab in breast cancer. PLoS ONE 7, e41170.

104. Ichikawa, T., Sato, F., Terasawa, K., Tsuchiya, S., Toi, M., Tsujimoto, G., and Shimizu, K. (2012). Trastuzumab produces therapeutic actions by upregulating miR-26a and miR-30b in breast cancer cells. PLoS ONE 7, e31422.

105. Sui, M., Jiao, A., Zhai, H., Wang, Y., Wang, Y., Sun, D., and Li, P. (2017). Upregulation of miR-125b is associated with poor prognosis and trastuzumab resistance in HER2-positive gastric cancer. Exp. Ther. Med. 14, 657–663.

106. Kim, Y., Kim, H., Park, D., Han, M., Lee, H., Lee, Y.S., Choe, J., Kim, Y.M., and Jeong, D. (2016). miR-217 and CAGE form feedback loop and regulates the response to anti-cancer drugs through EGFR and HER2. Oncotarget 7, 10297–10321.

107. Zhao, Q., Cao, J., Wu, Y.C., Liu, X., Han, J., Huang, C.X., Jiang, L.H., Hou, X.X., Mao, W.M., and Ling, Z.Q. (2015). Circulating miRNAs is a potential marker for gefitinib sensitivity and correlation with EGFR mutational status in human lung cancers. Am. J. Cancer Res. 5, 1692–1705.

108. Wu, D.W., Wang, Y.C., Wang, L., Chen, C.Y., and Lee, H. (2014). A low microRNA-125b expression is associated with resistance to gefitinib in lung adenocarcinomas via miR-630/YAP1/ERK feedback loop. Theranostics 4, 2688–2881.

109. Zhang, X.L., Shi, H.J., Wang, J.P., Tang, H.S., Wu, Y.B., Fang, Z.Y., Cui, S.Z., and Wang, L.T. (2014). MicroRNA-218 is upregulated in gastric cancer after cyclodestructive surgery and hyperthermic intraoperative chemotherapy and increases chemosensitivity to cisplatin. World J. Gastroenterol. 20, 11347–11355.

110. Guo, Z., Liu, Z., Yue, H., and Wang, J. (2018). Beta-element increases chemosensitivity to 5-fluorouracil through down-regulating microRNA-191 expression in colorectal carcinoma cells. J. Cell. Biochem. 119, 7032–7039.
123. Mussnich, P., Rosa, R., Bianco, R., Fusco, A., and D’Angelo, D. (2015). MiR-199a-5p and miR-375 affect colon cancer cell sensitivity to cetuximab by targeting PHLPP1. Expert Opin. Ther. Targets 19, 1017–1026.

124. Xue, F., Liu, Y., Zhang, H., Wen, Y., Yan, L., Tang, Q., Xiao, E., and Zhang, D. (2016). Let-7a enhances the sensitivity of hepatocellular carcinoma cells to cetuximab by regulating STAT3 expression. OncoTargets Ther. 9, 7253–7261.

125. Xue, F., Liang, Y., Li, Z., Liu, Y., Zhang, H., Wen, Y., Yan, L., Tang, Q., Xiao, E., and Zhang, D. (2018). MicroRNA-9 enhances sensitivity to cetuximab in epithelial phenotype hepatocellular carcinoma cells through regulation of the eukaryotic translation initiation factor 5A-2. Oncol. Lett. 15, 813–820.

126. Wuerkenbeke, D., Wang, J., Li, Y., and Ma, C. (2015). miRNA-150 downregulation promotes pertuzumab resistance in ovarian cancer cells via AKT activation. Arch. Gynecol. Obstet. 292, 1109–1116.

127. Xu, H., Zhan, L., Fang, Q., Sun, J., Zhang, S., Zhan, C., Liu, S., and Zhang, Y. (2014). MiR-338-3p inhibits hepatocarcinoma cells and sensitizes these cells to sorafenib by targeting hypoxia-induced factor 1α. PLoS ONE 9, e115565.

128. Yang, F., Li, Q.I., Gong, Z.B., Zhou, L., You, N., Wang, S., Li, X.L., Li, J.J., An, J.Z., Wang, D.S., et al. (2014). MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment. Technol. Cancer Res. Treat. 13, 77–86.

129. Mao, K., Zhang, J., He, C., Xu, K., Liu, J., Sun, J., Wu, G., Tan, C., Zeng, Y., Wang, J., and Xiao, Z. (2014). Restoration of miR-193b sensitizes Hepatitis B virus-associated hepatocellular carcinoma to sorafenib. Cancer Lett. 352, 245–252.

130. Liu, K., Liu, S., Zhang, W., Ji, B., Wang, Y., and Liu, Y. (2014). miR-222 regulates sorafenib resistance and enhance tumorigenicity in hepatocellular carcinoma. Int. J. Oncol. 45, 1537–1546.

131. Jin, W., Chen, L., Cai, X., Zhang, Y., Zhang, J., Ma, D., Cai, X., Fu, T., Yu, Z., Yu, F., and Chen, G. (2017). Long non-coding RNA TUC338 is functionally involved in sorafenib-sensitized hepatocarcinoma cells by targeting RASAL1. Oncol. Rep. 37, 273–280.

132. Gao, C., Peng, F.H., and Peng, L.K. (2014). MiR-200c sensitizes clear-cell renal cell carcinoma cells to sorafenib and imatinib by targeting heme oxygenase-1. Neoplasma 61, 680–689.

133. Xu, Z., Yang, F., Wei, D., Liu, B., Chen, C., Ban, Y., Wu, Z., Wu, D., Tan, H., Li, J., et al. (2017). Long noncoding RNA-SRLR elicits intrinsic sorafenib resistance via evoking IL-6/STAT3 axis in renal cell carcinoma. Oncogene 36, 1965–1977.

134. Liu, F., Chen, N., Gong, Y., Xiao, R., Wang, W., and Pan, Z. (2017). The long non-coding RNA NEAT1 enhances epithelial-to-mesenchymal transition and chemoresistance via the miR-34a/c-Met axis in renal cell carcinoma. Oncotarget 8, 62927–62938.