Rödl, Vojtěch; Ruciński, Andrzej; Schacht, Mathias; Szemerédi, Endre
On the Hamiltonicity of triple systems with high minimum degree. (English) Zbl 1359.05089
Ann. Comb. 21, No. 1, 95-117 (2017).

Summary: We show that every 3-uniform hypergraph with minimum vertex degree at least \(0.8\left(\frac{n-1}{2}\right)\) contains a tight Hamiltonian cycle.

MSC:
05C65 Hypergraphs
05C45 Eulerian and Hamiltonian graphs

Keywords:
hypergraphs; Hamiltonian cycles; Dirac’s theorem

Full Text: DOI arXiv

References:
[1] Berge, C.: Graphs and Hypergraphs. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973) · Zbl 0254.05101
[2] Bermond, J.-C., Germa, A., Heydemann, M.-C., Sotteau, D.: Hypergraphes hamiltoniens. In: Problèmes Combinatoires et Théorie des Graphes, pp. 39-43. CNRS, Paris (1978) · Zbl 0413.05041
[3] Bollobás, B.: Extremal Graph Theory. Dover Publications, Inc., Mineola, NY (2004) · Zbl 1164.05051
[4] Bùk, E.; Hán, H.; Schacht, M., Minimum vertex degree conditions for loose Hamilton cycles in 3-uniform hypergraphs, J. Combin. Theory Ser. B, 103, 658-678, (2013) · Zbl 1274.05335 · doi:10.1016/j.jctb.2013.07.004
[5] Chung, F.R.K., Regularity lemmas for hypergraphs and quasi-randomness, Random Structures Algorithms, 2, 241-252, (1991) · Zbl 0756.05081 · doi:10.1002/rsa.3240020208
[6] Dirac, G.A., Some theorems on abstract graphs, Proc. London Math. Soc. (3), 2, 69-81, (1952) · Zbl 0047.17001 · doi:10.1112/plms/s3-2.1.69
[7] Erdős, P., On extremal problems of graphs and generalized graphs, Israel J. Math., 2, 183-190, (1964) · Zbl 0129.39905 · doi:10.1007/BF02759942
[8] Frankl, P.; Rödl, V., The uniformity lemma for hypergraphs, Graphs Combin., 8, 309-312, (1992) · Zbl 0777.05084 · doi:10.1007/BF02351586
[9] Glebov, R.; Person, Y., Wepe, W., On extremal hypergraphs for Hamiltonian cycles, European J. Combin., 33, 544-555, (2012) · Zbl 1257.05142 · doi:10.1016/j.ejc.2011.10.003
[10] Goodman, A.W., On sets of acquaintances and strangers at any party, Amer. Math. Monthly, 66, 778-783, (1959) · Zbl 0092.01305 · doi:10.2307/2310464
[11] Hán, H.; Person, Y.; Schacht, M., On perfect matchings in uniform hypergraphs with large minimum degree, SIAM J. Discrete Math., 23, 732-748, (2009) · Zbl 1191.05074 · doi:10.1137/080729657
[12] Hán, H.; Schacht, M., Dirac-type results for loose Hamilton cycles in uniform hypergraphs, J. Combin. Theory Ser. B, 100, 332-346, (2010) · Zbl 1209.05161 · doi:10.1016/j.jctb.2009.10.002
[13] Han, J.; Zhao, Y., Minimum vertex degree threshold for loose Hamilton cycles in 3-uniform hypergraphs, J. Combin. Theory Ser. B, 114, 70-96, (2015) · Zbl 1315.05095 · doi:10.1016/j.jctb.2015.03.007
[14] Han, J.; Zhao, Y., Forbidding Hamilton cycles in uniform hypergraphs. arXiv:1508.05623 (2015) · Zbl 1342.05082
[15] Janson, S., Łuczak, T., Ruci´nski, A.: Random Graphs. Wiley-Interscience, New York (2000)
[16] Katona, G.Y.; Kierstead, H.A., Hamiltonian chains in hypergraphs, J. Graph Theory, 30, 205-212, (1999) · Zbl 0924.05050 · doi:10.1002/(SICI)1097-0118(199903)30:3<205::AID-JGT5>3.0.CO;2-O
[17] Keevash, D.; Kühn, P.; Mycroft, R., Discrete Math., 311, 544-559, (2011) · Zbl 1226.05187 · doi:10.1016/j.disc.2010.11.013
[18] Kooi, J.; Person, Y.; Schacht, M., Dirac-type results for loose Hamilton cycles in uniform hypergraphs, J. Combin. Theory Ser. B, 103, 205-221, (2013) · Zbl 0623.05008 · doi:10.1016/j.jctb.2012.06.002
[19] Kühn, D.; Mycroft, R.; Osthus, D., Hamilton s-cycles in uniform hypergraphs, J. Combin. Theory Ser. A, 117, 910-927, (2010) · Zbl 1219.05107 · doi:10.1016/j.jcta.2010.02.010
[20] Kühn, D.; Osthus, D., Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree, J. Combin. Theory Ser. B,
Kühn, D.; Osthus, D.; Treglown, A., Perfect matchings in 3-uniform hypergraphs, J. Combin. Theory Ser. B, 103, 291-305, (2013) · Zbl 1262.05128 · doi:10.1016/j.jctb.2012.11.005

Markström, K.; Ruciński, A., Perfect matchings (and Hamilton cycles) in hypergraphs with large degrees, European J. Combin., 32, 677-687, (2011) · Zbl 1229.05231 · doi:10.1016/j.ejc.2011.02.001

Moon, J.W.; Moser, L., On a problem of Turán, Akad. Mat. Kutató Int. Közl., 7, 283-286, (1962) · Zbl 0114.01206 · doi:10.1016/j.jctb.2006.02.004

Nordhaus, E.A.; Stewart, B.M., Triangles in an ordinary graph, Canad. J. Math., 15, 33-41, (1963) · Zbl 1262.05128 · doi:10.1016/j.jctb.2012.11.005

Razborov, A.A., On the minimal density of triangles in graphs, Combin. Probab. Comput., 17, 603-618, (2008) · Zbl 1170.05036 · doi:10.1017/S0963548308009895

Rödl, V., Ruciński, A.: Dirac-type questions for hypergraphs — a survey (or more problems for Endre to solve). In: Bárány, I., Solymosi, J., Sági, G. (eds.) An Irregular Mind, pp. 561-590. János Bolyai Math. Soc., Budapest (2010) · Zbl 1221.05255

Rödl, V.; Ruciński, A., Families of triples with high minimum degree are Hamiltonian, Discuss. Math. Graph Theory, 34, 361-381, (2014) · Zbl 1290.05114 · doi:10.7151/dmgt.1743

Rödl, V.; Ruciński, A.; Szemerédi, E., A Dirac-type theorem for 3-uniform hypergraphs, Combin. Probab. Comput., 15, 229-251, (2006) · Zbl 1109.05065 · doi:10.1016/j.jctb.2006.02.004

Rödl, V.; Ruciński, A.; Szemerédi, E., An approximate Dirac-type theorem for k-uniform hypergraphs, Combinatorica, 28, 229-260, (2008) · Zbl 1214.05130 · doi:10.1016/j.jcta.2008.10.002

Rödl, V.; Ruciński, A.; Szemerédi, E., Perfect matchings in large uniform hypergraphs with large minimum collective degree, J. Combin. Theory Ser. A, 116, 613-636, (2009) · Zbl 1214.05130 · doi:10.1016/j.jcta.2008.10.002

Rödl, V.; Ruciński, A.; Szemerédi, E., Dirac-type conditions for Hamiltonian paths and cycles in 3-uniform hypergraphs, Adv. Math., 227, 1225-1299, (2011) · Zbl 1220.05083 · doi:10.1016/j.aim.2011.03.007

Steger, A.: Die Kleitman-Rothschild methode. PhD thesis. Forschungsinstitut für Diskrete Mathematik, Rheinische Friedrichs-Wilhelms-Universität Bonn (1990) · Zbl 0748.05059

Szemerédi, E.: Regular partitions of graphs. In: Problèmes Combinatoires et Théorie des Graphes, pp. 399-401. CNRS, Paris (1978) · Zbl 0413.05055

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.