Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions

Neruban Kumaran,1,2 Anthony T Moore,1,2,3 Richard G Weleber,4 Michel Michaelides1,2

ABSTRACT
Leber congenital amaurosis (LCA) and early-onset severe retinal dystrophy (EOSRD) are both genetically and phenotypically heterogeneous, and characterised clinically by severe congenital/early infancy visual loss, nystagmus, amaurotic pupils and markedly reduced/absent full-field electroretinograms. The vast genetic heterogeneity of inherited retinal disease has been established over the last 10-20 years, with disease-causing variants identified in 25 genes to date associated with LCA/EOSRD, accounting for 70-80% of cases, with thereby more genes yet to be identified. There is now far greater understanding of the structural and functional associations seen in the various LCA/EOSRD genotypes. Subsequent development/characterisation of LCA/EOSRD animal models has shed light on the underlying pathogenesis and allowed the demonstration of successful rescue with gene replacement therapy and pharmacological intervention in multiple models. These advancements have culminated in more than 12 completed, ongoing and anticipated phase I/II and III clinical trials. This review describes the clinical and genetic characteristics of LCA/EOSRD and the differential diagnoses to be considered. We discuss in further detail the diagnostic clinical features, pathophysiology, animal models and human treatment studies and trials, in the more common genetic subtypes and/or those closest to intervention.

INTRODUCTION
Inherited retinal disease (IRD) represents the second most common cause of legal blindness in childhood and the leading cause among the working aged population in England and Wales.1 Prior to identification of the causative genes, clinicians classified patients into groups based on Mendelian inheritance, age of onset and clinical features. The discovery of the underlying genetic causes over the last two decades has led to far greater understanding of disease mechanisms in IRD which has informed development of novel therapies, culminating in the first gene therapy trials for RPE65-associated Leber congenital amaurosis (LCA)/Early Onset Severe Retinal Dystrophy (EOSRD) in 2008.2-4

LCA was first described by Theodore Leber in 1869 and is now used to describe a group of severe recessively inherited, early infantile onset rod-cone dystrophies.3 In 1916, Leber described what he considered a milder form of the same disease4 which has had several names, including EOSRD, early childhood-onset retinal dystrophy (SECORD)7 and early-onset retinitis pigmentosa. Whereas LCA is congenital or presents within the first few months of life, is associated with nystagmus, poor pupil responses and in most instances an undetectable full-field electroretinogram (ERG); EOSRD/SECORD is defined as a severe retinal dystrophy presenting after infancy and usually before the age of 5 years. Other distinguishing features of EOSRD/SECORD include better residual visual function and small ERG signals, particularly for the lesser-affected photoreceptor system. Of note, there is significant overlap between the molecular causes of LCA and EOSRD, with some genes causing both clinical phenotypes. However, certain genes are more frequently associated with LCA, for example, GUCA2D, NMNAT1, CEP290 and AIPL1, whereas mutations in others including RPE65, LRAT and RDH12, more commonly result in an EOSRD phenotype.

To date, mutations in 25 genes have been identified as causing LCA/EOSRD; most are expressed solely or predominantly in the retina or the retinal pigment epithelium (RPE).8 These genes have been shown to encode proteins with a diverse range of retinal functions, including phototransduction, the visual cycle and photoreceptor development/integrity (table 1, figure 1).9-11

Given recent advances in understanding of the molecular basis of these disorders and the ongoing clinical trials of novel therapies, we herein review the clinical characteristics, animal models and pathophysiology of LCA/EOSRD, prioritising the more common genotypes and/or those closest to intervention.

Clinical characteristics
LCA/EOSRD has a prevalence between 1 in 33 00010 to 1 in 81 000,11 and is believed to account for ≥5% of all IRD.12

LCA is associated with severe visual impairment from birth or the first few months of life accompanied by roving eye movements or nystagmus and poor pupillary light responses. Eye poking, the ‘oculodigital’ sign, is common. The ERG is undetectable or severely abnormal. Fundus examination may be normal at presentation, but a variety of abnormal fundus appearances may be present or develop over time, including disc pallor, vessel attenuation or mild peripheral pigmentary retinopathy. There may also be disc drusen, optic disc

CrossMark
Table 1 Overview of the genes associated with LCA/EOSRD, the encoded proteins, their proposed function(s) and estimated frequency.

Locus name	Causative gene	Protein	Protein function(s)	Approximate frequency
LCA 1	GUCY2D	Guanylate cyclase-1	Phototransduction	10%–20%
LCA 2	RPE65	Retinoid isomerase	Retinoid cycle	5%–10%
LCA 3	SPATA7	Spermatogenesis-associated protein 7	Photoreceptor ciliary transport	3%
LCA 4	AIPL1	AryH-hydrocarbon-interacting-protein-like 1	Phototransduction/protein biosynthesis	<5%
LCA 5	LCA5	Libercilin	Photoreceptor ciliary transport	1%–2%
LCA 6	RPGRIP1	Retinitis pigmentosa GTPase regulator-interacting protein 1	Photoreceptor ciliary transport	5%
LCA 7	CRX	Cone–rod homeobox	Photoreceptor morphogenesis	1%
LCA 8	CRB1	Crumbs homologue 1	Photoreceptor morphogenesis	10%
LCA 9	NMNAT1	Nicotinamide nucleotide adenyltransferase1	Coenzyme NAD biosynthesis	Unknown
LCA 10	CEP290	Centrosomal protein 290kDA	Photoreceptor ciliary transport	15%–20%
LCA 11	IMPDH1	Inosine 5′—monophosphate dehydrogenase 1	Guanine synthesis	5%
LCA 12	RD3	Protein RD3	Protein trafficking	<1%
LCA 13	RDH12	Retinol dehydrogenase 12	Retinoid cycle	10%
LCA 14	LRAT	Lecithin:retinol acyl transferase	Retinoid cycle	<1%
LCA 15	TULP1	Tubby-like protein	Photoreceptor ciliary transport	<1%
LCA 16	KCNJ13	Kir7 inwardly rectifying potassium channel	Phototransduction	Unknown
LCA 17	GDPF6	Growth differentiation factor 6	Photoreceptor morphogenesis	Unknown
OTX2		Orthodenticle homeobox 2 protein	Photoreceptor differentiation	Unknown
CABP4		Calcium-binding protein 4	Phototransduction	Unknown
CLUAP1		Clusterin associated protein 1	Photoreceptor ciliary transport	Unknown
IQCB1		IQ motif containing B1 protein	Photoreceptor ciliary transport	Unknown
DTD1		Death-domain containing protein 1	Unknown	Unknown
IFT140		Intraflagellar transport 140 chlamydomonas homologue protein	Photoreceptor ciliary transport	Unknown
ALMS1		ALMS Protein	Photoreceptor ciliary transport	Unknown
PRPH2		Peripherin	Photoreceptor outer segment structure/stabilisation	Unknown

Genes more frequently associated with LCA have been shaded blue, while those associated with EOSRD have been shaded green. Others have shown no clear predilection.

EOSRD, early-onset severe retinal dystrophy; LCA, Leber congenital amaurosis.

Figure 1 Spatial representation of expression of LCA/EOSRD genes, grouped according to their proposed function. EOSRD, early-onset severe retinal dystrophy; LCA, Leber congenital amaurosis.
Review

Kumaran N, et al. Br J Ophthalmol 2017;0:1–8. doi:10.1136/bjophthalmol-2016-309975

...odema or pseudopapilloedema, a flecked retina, maculopaty or nummular pigmentation (figure 2). Affected infants often have high hyperopia, or less commonly high myopia, suggesting impaired emmetropisation.

The rate of loss of visual function and early childhood visual acuity vary markedly in patients with LCA/EOSRD, with certain genotypes (eg, GUCY2D and AIPL1-LCA) known to be more severe than others, with earlier more profound visual loss. Although visual outcome is variable, vision when the child is old enough to be reliably tested is in the region of 3/60 to perception of light. Given the often severe and early visual loss, other areas of development including speech, social skills and behaviour may be delayed; early involvement of a specialist paediatrician with expertise in the developmental needs of children with visual impairment can significantly mitigate/delay disruption to these other fundamental areas of childhood development.

The identified genes account for approximately 70%–80% of LCA/EOSRD cases (table 1, figure 1 and below), with GUCY2D, CEP290, CRB1, RDH12 and RPE65 being the most common. It has been possible to identify certain characteristic associated phenotypes (figure 2 and below): RDH12-associated disease, which gives rise to an EOSRD phenotype is characterised by early-dense intraretinal pigment migration pigmentation and maculopathy. CRB1-associated disease has nummular pigmentation, maculopathy, relative preservation of para-arteriolar RPE, with retinal thickening and loss of lamination on optical coherence tomography. TULP1, AIPL1 and NMNAT1-associated disease are also characterised by maculopathy which in the case of patients with NMNAT1 mutations is of early onset and extensive.

Most cases of LCA/EOSRD occur in otherwise normal infants and any non-ocular symptoms or signs should be investigated for syndromic retinal dystrophies or neurometabolic disease, usually in conjunction with a paediatrician. Renal involvement (nephronophthisis which can lead to end-stage renal failure) may be seen in some genetic subtypes of LCA/EOSRD (eg, IQCB1, IFT140 and CEP290) as part of syndromes including Senior-Loken Syndrome and Joubert Syndrome. Early molecular diagnosis can help prioritise which children should have ongoing systemic investigations.

The differential diagnosis of an infant with severe visual loss and nystagmus is broad and includes both syndromic and non-syndromic diseases (table 2). Conditions that are important to be distinguished from LCA/EOSRD include complete and incomplete Achromatopsia, S-cone monochromatism, complete and incomplete congenital stationary night blindness and albinism; however careful examination and detailed investigation including electrophysiology usually allow an accurate diagnosis to be established. Molecular genetic testing may then allow a more specific diagnosis (table 2).

Selected specific genotypes

GUCY2D-associated LCA

GUCY2D was the first gene to be associated with LCA/EOSRD and is one of the most common, accounting for approximately 10%–20% of cases. GUCY2D is known to encode retinal guanylate cyclase-1 (RetGC1), expressed in photoreceptor outer segments, to a greater degree in cones than rods. RetGC1 is known to play an important role in photoreceptor recovery following phototransduction, thereby disease-causing variants in GUCY2D and subsequent RetGC1 deficiency result in the biochemical equivalent of chronic light exposure.
Patients with GUCY2D-associated LCA often have relatively normal fundi, and also experience significant photophobia in contrast to most other LCA/EOSRD genotypes. There can be relatively preserved outer retinal / photoreceptor structure on optical coherence tomography (OCT) in many patients, although foveal cone outer segment abnormalities and foveal cone loss has been observed. In contrast to other forms of LCA/EOSRD which have a rod–cone dystrophy phenotype, in GUCY2D disease patients often retain substantial rod function, with a smaller subset having detectable but reduced cone function (ie, cone–rod disease), based on ERG, psychophysical assessments and vision-guided mobility testing. Due to the majority of patients lacking cone-mediated vision, patients often present with markedly reduced visual acuity and a lack of colour perception.

Disease mechanisms and interventional approaches have been explored in several animal models of GUCY2D-LCA. Initially, gene replacement was investigated using an HIV1-based lentiviral vector in a naturally occurring chicken model and showed improved optokinetic reflexes and volitional visual behaviour. Subsequently, multiple groups have had therapeutic success in engineered mouse models. Both adeno-associated virus serotype 5 (AAV5) and recombinant adeno-associated virus serotype 2/8 (AAV 2/8) vectors carrying animal and human complementary DNA (cDNA), respectively, have been shown to rescue retinal function and preserve cone photoreceptors in RetGC1 knock-out mouse models. Moreover, an AAV8 based-gene replacement therapy, using the tyrosine capsid mutant AAV8(Y733F), has been shown to restore both useful cone and rod-mediated vision in a RetGC1/RetGC2 double knock-out mouse. These successful animal studies combined with the relative outer retinal preservation observed in patients with GUCY2D-LCA has resulted in advanced preparation for a human gene therapy trial.

RPE65-associated LCA
RPE65-associated LCA/EOSRD accounts for approximately 5%–10% of cases and has been the subject of the most clinical trials to date. RPE65 encodes a 65kD retinoid isomerase expressed in the RPE; a critical component of the retinoid (visual) cycle. As such, patients with RPE65 deficiency have a lack of 11-cis-retinal. Most children with RPE65 deficiency have an EOSRD phenotype with profound night blindness from birth but residual cone-mediated vision and often mild if any nystagmus. It has been suggested that cone photoreceptors have an alternative supply of 11-cis-retinal independent of RPE65, thus allowing cone-mediated vision in younger patients. However, due to the 11-cis-retinal deficiency in rod photoreceptors there is early and profound nystagmatism.

OCT studies have demonstrated relatively normal retinal thickness in some patients; with more commonly a central macular area of relatively preserved retina with a ring of thinning or more widespread retinal loss. There appears to be no clear relationship between age and thinning in the first three decades. This phenotypic variability irrespective of age, and varying both between and within families, is typical of the marked heterogeneity characterising IRD as a whole. RPE65-deficiency is also associated with reduced or absent autofluorescence on fundus autofluorescence imaging, suggesting low or absent levels of lipofuscin in the RPE.

In 2001, Acland et al described successful gene therapy in Briard dogs with RPE65-retinopathy using subretinal delivery of recombinant adeno-associated virus serotype 2 (AAV2) vector with canine RPE65 cDNA under the control of the cytomegalovirus chicken beta actin promoter. Injected eyes of these dogs showed improved ERG, pupillometry and flash evoked cortical potentials in the dark-adapted state. Furthermore, these improvements were sustained for over 10 years. Subsequently, murine models of RPE65 deficiency have been characterised and rescued using gene replacement therapy, with significant improvement in visual function in both RPE65−/− mice and naturally occurring RPE65−/− mutant mice (Rd12 mouse) and the demonstration of a dose–response relationship. Success in canine and murine models resulted in four phase 1 gene therapy clinical trials in humans in close succession. The 2 to 3-year follow-up data on all four trials has been very encouraging, showing the intervention to be safe with varying levels of efficacy noted; however, most studies at later intervals have shown a lack of durability of the improvements, with continuing retinal degeneration even in patients with improved retinal function. Of the 12 patients enrolled in the UK trial, an initial improvement in retinal sensitivity, dark-adapted perimetry and vision-guided mobility was noted in six,
five and three patients, respectively. This improvement was not sustained, with only two patients having residual improvement greater than preinterventional levels, 3 years following subretinal injection. Similar results were noted in the other three clinical trials, with Testa et al reporting sustained improvement in visual acuity, visual field, nystagmus frequency and pupillometry at 3 years. Moreover, hand-held OCT imaging identified four patients (three of whom harboured the aforementioned common variant) with relative preservation of central outer retinal structure, all of whom were younger than 4 years of age.

Gene replacement therapy using an AAV2/8 vector in an APL1 knock-out mouse model has been shown to result in restoration of cellular function with photoreceptor cell preservation and improved retinal function, despite the severe rapidly progressive early-onset retinal degeneration seen in this mouse model. The early visual loss to perception of light or worse, the high-resolution OCT evidence of retained outer retinal structure early in life and the successfully treated animal models, raise the possibility of a gene therapy-based approach in APL1-LCA early in life; with a human clinical interventional study being in the advanced stages of development.

RPGRIP1-associated LCA
RPGRIP1-LCA is believed to be responsible for approximately 5% of cases. RPGRIP1 is a binding partner of retinitis pigmentosa GTPase regulator (RPGR) and is essential for anchoring RPGR at the connecting cilia between the inner and outer segments of photoreceptor cells. In contrast to other forms of LCA, RPGRIP1-LCA appears to be relatively non-progressive, following an initial rapid decline in visual function. Furthermore, photoreceptors in the central retina appear to remain present for a significant period following deterioration of visual function. These features suggest a wide window of opportunity for potential intervention.

An RPGRIP1 knock-out mouse and RPGRIP1 deficient mouse and dog models have been characterised and have provided models for preclinical gene replacement studies. In RPGRIP1 knock-out mice, both improved outer segment morphology and photoreceptor survival, and better preservation of ERG responses have been demonstrated with RPGRIP1 gene replacement using both AAV2 and AAV8 vectors. Improved photoreceptor function up to 24 months post-subretinal injection has also been shown in the canine model.

CRB1-associated LCA
Disease-causing sequence variants in CRB1 have been identified in a broad range of phenotypes, including the early-onset disorders LCA/EOSRD and retinitis pigmentosa with and without a Coats-like vasculopathy, a later-onset macular dystrophy and isolated autosomal recessive foveal retinoschisis. Approximately 10% of LCA/EOSRD patients harbour variants in CRB1. The CRB1 protein is known to colocalise with the zonula adherens, forming a major component of the outer limiting membrane and is believed to have a role in retinal development.

Both the severity and rate of progression vary significantly between patients with CRB1-associated LCA/EOSRD, with clinical examination and OCT findings often allowing directed molecular screening of CRB1. Characteristic findings include macular atrophy, nummular pigmentation, relative para-arteriolar preservation of the RPE and retinal thickening with loss of lamination—in direct contrast to other forms of LCA/EOSRD where progressive retinal thinning is commonplace.

CEP290-associated LCA
CEP290-LCA/EOSRD accounts for 15%–20% of cases, thereby representing one of the most common genetic causes.
localises to the centromeres and the connecting cilia of photoreceptors. The intronic variant c.2991+1655 A>G is the most common disease-causing mutation (especially in European countries and in the USA), having been identified in at least one allele in 77% of patients (n=43) in a study of CEP290-LCA.79

Retinal examination can be relatively normal in infancy with significant variability in visual function, with no correlation between age and visual acuity (VA) noted over an average follow-up period of 10 years; although severe VA loss (counting fingers or worse) is seen in most, but not all, children in the first decade.177980

Interestingly, OCT studies have shown that despite profound cone dysfunction, the foveal outer nuclear layer (cone nuclei) is structurally detectable until the fourth decade of life in some patients, although with abnormal inner and outer segments in contrast to the early loss of rod photoreceptors.81 These findings suggest a potential window of opportunity—wider for possible cone rescue than rod. Gene therapy-based intervention has been explored in vitro with a lentiviral vector containing human CEP290 and been shown to effectively transduce patient-specific induced pluripotent stem cell-derived photoreceptor precursor cells and rescue the cellular phenotype.82 Other molecular therapeutic avenues being explored focus on the common deep intronic splice donor site that leads to the insertion of a cryptic intronic and rescue the cellular phenotype.82

Disease-causing sequence variants in RDH12 are identified in up to approximately 10% of LCA/EOsRD patients.9,19 RDH12 encodes retinol dehydrogenase 12, a component of the visual cycle, which when deficient is believed to result in retinal toxicity secondary to all-trans-retinol accumulation.86

Most patients with biallelic RDH12 mutations have an EosRD rather than LCA phenotype. There is a recognisable fundus phenotype with widespread RPE and retinal atrophy and minimal intraretinal pigmentary in early childhood, with dense intraretinal bone-spicule pigmentation developing over time (figure 2).19 There is early progressive macular atrophy, with pigmentation and yellowing and corresponding macular excavation on OCT and loss of fundus autofluorescence.19

Promising results of AAV2/8-vector-mediated RDH12 gene replacement therapy in Rdb12 knock-out mice has raised the possibility of human clinical trials in the future.87

RDH12-associated LCA

Disease-causing sequence variants in RDH12 are identified in up to approximately 10% of LCA/EOsRD patients.9,19 RDH12 encodes retinol dehydrogenase 12, a component of the visual cycle, which when deficient is believed to result in retinal toxicity secondary to all-trans-retinol accumulation.86

Most patients with biallelic RDH12 mutations have an EosRD rather than LCA phenotype. There is a recognisable fundus phenotype with widespread RPE and retinal atrophy and minimal intraretinal pigmentary in early childhood, with dense intraretinal bone-spicule pigmentation developing over time (figure 2).19 There is early progressive macular atrophy, with pigmentation and yellowing and corresponding macular excavation on OCT and loss of fundus autofluorescence.19

Promising results of AAV2/8-vector-mediated RDH12 gene replacement therapy in Rdb12 knock-out mice has raised the possibility of human clinical trials in the future.87

LRAT-associated LCA

LRAT encodes Lecithin:retinol acyl transferase, a key enzyme in the vitamin A recycling pathway (visual cycle), with LRAT deficiency associated with a similar phenotype to RPE65-deficiency, although being far less common.9,85 As described for RPE65-deficiency, the synthetic prodrug QLT091001, a precursor to 9-cis-retinal, has been shown in a phase I trial to improve VA and kinetic visual fields in LRAT-LCA, with a phase III trial anticipated in the future.

Therapeutic advances potentially applicable to advanced LCA

Stem cell therapies hold great promise for the future to restore lost retinal cells in advanced disorders, including potentially LCA. At present, human stem cell therapy has primarily been confined to RPE transplantation, with two phase I/II studies reporting safe transplantation of human embryonic stem cell-derived RPE and induced pluripotent stem cell-derived RPE, respectively.8990 However, transplantation of other retinal cells, including photoreceptors—which would be needed in LCA, remains at a preclinical stage.

Clinical trials have also been conducted to investigate the therapeutic potential of electronic retinal prostheses in advanced retinal degeneration including choroideremia and retinitis pigmentosa. At present, current epiretinal or subretinal devices cannot sufficiently replace the high density of photoreceptors at the fovea and have thereby resulted in very low levels of VA improvement in a minority of patients, with a varied safety profile.9193

CONCLUSIONS

Improvements in molecular genetic testing and clinical assessments (primarily quantitative high-resolution retinal imaging) have led to a greater understanding of genotype–phenotype correlations and structure–function associations in LCA/EOsRD. This coupled with advances in gene therapy in both animal model studies and human clinical trials have resulted in a current new era of increasing clinical trials for multiple genetic subtypes of LCA/EOsRD and the cautious optimism for the development of proven successful and durable treatments which both improve visual function and halt/markedly slow retinal degeneration. Substantial challenges remain however, particularly for patients with severe visual loss from birth where normal visual pathway function has never been established, with intervention likely needed very early in infancy to fully address any potential cortical limitations and thereby optimise outcomes.

Acknowledgements The authors wish to thank Melissa Kasilian who assisted with the figures.

Contributors NK drafted the manuscript and provided critical revision. MM conceived and supervised the manuscript and provided critical revision. ATM and RGW provided critical revision of the manuscript.

Funding Supported by grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust and UCL Institute of Ophthalmology (UK), Fight For Sight (UK), Moorfields Eye Hospital Special Trustees (UK), Moorfields Eye Charity (UK), the Foundation Fighting Blindness (FFB, USA), Retinitis Pigmentosa Fighting Blindness (UK), and the Wellcome Trust (099173/Z/12/Z) (UK). Michel Michaelides is a recipient of an FFB Career Development Award.

Disclaimer The funding organisations had no role in the design or conduct of this research.

Competing interests None declared.

Patient consent Not needed as no personal patient details are used.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

© Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
REFERENCES

1 Lew G, Michaelides M, Bunce C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16-64 years), 1999-2000 with 2009-2010. BMJ Open 2014;4:e004015.

2 Bainbridge JW, Smith AJ, Barker SS, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 2008;358:2231–9.

3 Maguire AM, Simonelli F, Pierro EA, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 2008;358:2240–8.

4 Hauswirth WW, Aleman TS, Kausal S, et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 2008;19:979–90.

5 Perrasat J, Rozet JM, Gerber S, et al. Leber congenital amaurosis. Mol Genet Metab 1999;68:200–8.

6 Leber T, Netzhaus DKder. In: Saemisch T, ed. Grafe Handbuch der gesamten Augenheilkunde. 2nd ed. Leipzig, Germany: W. Engelmann, 1916:1076–225.

7 Weleber RG, Michaelides M, Trzuzek KM, et al. The phenotype of Severe Early Childhood Onset Retinal Dystrophy (SECORD) from mutation of RPE65 and differentiation from Leber congenital amaurosis. Invest Ophthalmol Vis Sci 2011;52:291–301.

8 RetNet. Summaries. Secondary RetNet Summaries 30 Oct 2015. https://sph.uth.edu/retnet/sum-dis.htm.

9 den Hollander AI, Roepman R, Koenekoop RK, et al. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 2008;27:391–419.

10 Astuti GD, Berti ME, Pressing MN, et al. Comprehensive genotyping reveals RPE65 as the most frequently mutated gene in Leber congenital amaurosis in Denmark. Eur J Hum Genet 2014;22:256–62.

11 Wang H, Wang X, Zou X, et al. Comprehensive molecular diagnosis of a large chinese Leber Congenital Amaurosis Cohort. Invest Ophthalmol Vis Sci 2015;56:3642–55.

12 Koenekoop RK. An overview of Leber congenital amaurosis: a model to understand human retinal development. Surv Ophthalmol 2004;49:39–55.

13 Stone EM. Leber congenital amaurosis - a model for efficient genetic testing of heterogeneous disorders: Inviv Edward Jackson Memorial Lecture. Am J Ophthalmol 2007;144:791–811.

14 Heier KL, Traboulsi EI, Maumenee IH. The natural history of Leber’s congenital amaurosis. Age-related findings in 35 patients. Ophthalmology 1992;99:241–5.

15 Sonksen PM, Dale N. Visual impairment in infancy: impact on neurodevelopment and neurobiological processes. Dev Med Child Neurol 2002;44:782–91.

16 Perrasat J, Rozet JM, Gerber S, et al. Spectrum of retGC1 mutations in Leber’s congenital amaurosis. Eur J Hum Genet 2000;8:578–82.

17 den Hollander AI, Koenekoop RK, Yzer S, et al. Mutations in the CEP290 (NHJP6) gene are a frequent cause of Leber congenital amaurosis. Am J Hum Genet 2006;79:556–61.

18 Hanen S, Perrasat J, Gerber S, et al. Leber congenital amaurosis: comprehensive survey of the genetic heterogeneity, refinement of the clinical definition, and genotype-phenotype correlations as a strategy for molecular diagnosis. Hum Mutat 2004;23:306–12.

19 Mackay DS, Dev Borman A, Moradi P, et al. RDH12 retinopathy: novel mutations and phenotypic description. Mol Vis 2011;17:2706–16.

20 Divias TG, Holzbaur EL, Bennett J. Disruption of CEP290 microtubule/membrane-binding domains causes retinal degeneration. J Clin Invest 2013;123:4525–39.

21 Khan AQ, Bolz H, Bergmann C. Early-onset severe retinal dystrophy as the initial presentation of holoprosencephaly. J Neurol 2005;252:1820–5.

22 Estrada-Cuzzano A, Koenekoop RK, Coppieters F, et al. ICHC1 mutations in patients with leber congenital amaurosis. Invest Ophthalmol Vis Sci 2011;52:834–9.

23 Dizhoor AM, Lowe DG, Olshevskaia EV, et al. The human photoreceptor membrane guanylyl cyclase retGC, is present in outer segments and is regulated by calcium and a soluble activator. Neuron 1994;12:1345–52.

24 Liu X, Seno K, Nishizawa Y, et al. Ultrastructural localization of retinal guanylate cyclase in human and monkey retinas. Exp Eye Res 1994;59:761–8.

25 Jacobson SG, Cideciyan AV, Peshenko NV, et al. Determining consequences of retinal membrane guanylyl cyclase (retGC1) deficiency in human Leber congenital amaurosis en route to therapy: residual cone-photoreceptor vision correlates with biochemical properties of the mutants. Hum Mol Genet 2013;22:168–83.

26 Pasadilka S, Fishman GA, Stone EM, et al. Differential macular morphology in patients with RPE65-, CEP290-, GUCY2D-, and API-related Leber congenital amaurosis. Invest Ophthalmol Vis Sci 2010;51:2608–14.

27 Boye SE. Leber Congenital Amaurosis caused by mutations in GUCY2D. Cold Spring Harb Perspect Med 2015;5:a017350.

28 Williams ML, Coleman JE, Haire SE, et al. Lentiviral expression of retinal guanylate cyclase-1 (RetGC1) restores vision in an avian model of blindness. PLoS One 2006;3:e201.

29 Haire SE, Pang L, Boye SL, et al. Light-driven cone arrest translocation in cones of postnatal guanylate cyclase-1 knockout mouse retina treated with AAV-GC1. Invest Ophthalmol Vis Sci 2006;47:3745–53.

30 Boye SE, Boye SL, Pang L, et al. Functional and behavioral restoration of vision by gene therapy in the guanylate cyclase 1 (GC1) knockout mouse. PLoS One 2010;5:e11306.

58 Kollandaiavelu S, Huang J, Hurley JB, et al. AIP1, a protein associated with childhood blindness, interacts with alpha-subunit of rod phosphodiesterase (PDE6E) and is essential for its proper assembly. *J Biol Chem* 2009;284:30853–61.

59 Bellingham J, Davidson AE, Aboshia J, et al. Investigation of aberrant splicing induced by AIP1 variations as a cause of Leber Congenital Amorosu. *Invest Ophthalmol Vis Sci* 2015;56:7784–93.

60 Tan MH, Mackay DS, Cowing J, et al. Leber congenital amaurosis associated with AIP1L challenges in ascribing disease causation, clinical findings, and implications for gene therapy. *PloS One* 2012;7:e32330.

61 Aboshia J, Dubis AM, van der Spy J, et al. Preserved outer retina in AIP1 Leber’s congenital amaurosis: implications for gene therapy. *Ophthalmology* 2015;122:862–4.

62 Tan MH, Smith AJ, Pawlyk B, et al. Gene therapy for retinitis pigmentosa and Leber congenital amaurosis caused by defects in AIP1-1: effective rescue of mouse models of partial and complete Aip1 deficiency using AA2V12 and AA2V8 vectors. *Hum Mol Genet* 2009;18:2099–114.

63 Gerber S, Perrault I, Hanen S, et al. Complete exon-intron structure of the RPGR-interacting protein (RPGRIP1) gene allows the identification of mutations underlying Leber congenital amaurosis. *Eur J Hum Genet* 2001;9:561–71.

64 Dryja TP, Adams SM, Grimsby JL, et al. Null RPGRIP1 alleles in patients with Leber congenital amaurosis. *Am J Hum Genet* 2001;68:1295–8.

65 Zhao Y, Hong DH, Pawlyk B, et al. The retinitis pigmentosa GTPase regulator (RPGR)-interacting protein: subserving RPGR function and participating in disk morphogenesis. *Proc Natl Acad Sci U S A* 2003;100:3965–70.

66 Pelletier V, Jambou M, Delphin N, et al. Comprehensive survey of mutations in RP2 and RPGR in patients affected with distinct retinal dystrophies: genotype-phenotype correlations and impact on genetic counseling. *Hum Mutat* 2007;28:81–91.

67 Boylan JP, Wright AF. Identification of a novel protein interacting with RPGR. *Hum Mol Genet* 2000;9:2085–93.

68 Lu X, Ferreira PA. Identification of novel murine- and human-specific RPGRIP1 splice variants with distinct expression profiles and subcellular localization. *Invest Ophthalmol Vis Sci* 2005;46:1882–90.

69 U T. Leber congenital amaurosis caused by mutations in RPGRIP1. *Cold Spring Harb Perspect Med* 2015;5(4):a017384.

70 Jacobson SG, Cideciyan AV, Alleman TS, et al. Leber congenital amaurosis caused by an RPGRIP1 mutation shows treatment potential. *Ophthalmology* 2007;114:895–8.

71 Pawlyk BS, Smith AJ, Buch PK, et al. Gene replacement therapy rescues photoreceptor degeneration in a murine model of Leber congenital amaurosis lacking RPGRIP. *Invest Ophthalmol Vis Sci* 2005;46:3039–45.

72 Pawlyk BS, Bulbakov OV, Liu X, et al. Replacement gene therapy with a human RPGRIP1 sequence slows photoreceptor degeneration in a murine model of Leber congenital amaurosis. *Hum Gene Ther* 2010;21:993–1004.

73 Uhlenteau E, Petit L, Weber M, et al. Successful gene therapy in the RPGRIP1-deficient dog: a model of cone-rod dystrophy. *Mol Ther* 2014;22:265–77.

74 Henderson RH, Mackay DS, Li Z, et al. Phenotypic variability in patients with retinal dystrophies due to mutations in CRB1. *Br J Ophthalmol* 2011;95:811–7.

75 Simonelli F, Zuliani G, Testa E, et al. Clinical and molecular genetics of Leber’s congenital amaurosis: a multicenter study of Italian patients. *Invest Ophthalmol Vis Sci* 2007;48:4284–90.

76 Tsang SH, Burke T, Oil M, et al. Whole exome sequencing identifies CRB1 defect in an unusual maculopathy phenotype. *Ophthalmology* 2014;121:1773–82.

77 Wolfson Y, Applegate CD, Strauss RW, et al. CRB1-related maculopathy with cystoid macular edema. *JAMA Ophthalmol* 2015;133:1357–60.

78 Kousi B, Dadakova L, Gaillyova R, et al. Phenotypic features of CRB1-associated early-onset severe retinal dystrophy and the different molecular approaches to identifying the disease-causing variants. *Graefes Arch Clin Exp Ophthalmol* 2016;254:1833–9.

79 McNally JJ, Genead MA, Wallia S, et al. Visual acuity changes in patients with leber congenital amaurosis and mutations in CEP290. *JAMA Ophthalmol* 2013;11:178–82.

80 Perrault I, Delphin N, Hanein S et al. Spectrum of NPH6/CEP290 mutations in Leber congenital amaurosis and delineation of the associated phenotype. *Hum Mutat* 2007;28:416.

81 Cideciyan AV, Rachel RA, Aleman TS, et al. Cone photoreceptors are the main targets for gene therapy of NPHP5 (IQCB1) or NPHP6 (CEP290) blindness: generation of an all-cone Nphp6 hypomorph mouse that mimics the human retinal ciliopathy. *Hum Mol Genet* 2011;20:1411–23.

82 Burnight ER, Wiley LA, Drack AV, et al. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype. *Gene Ther* 2014;21:662–72.

83 Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. *Mol Ther* 2016;24:430–46.

84 Veltrup M, Aartsma-Rus A. Antisense-mediated exon skipping: taking advantage of a trick from Mother Nature to treat rare genetic diseases. *Exp Cell Res* 2014;325:50–5.

85 Parfit DA, Lane A, Ramsden CM, et al. Identification and correction of mutations underlying inherited blindness in Human iPSC-Derived Optic Cups. *Cell Stem Cell* 2016;18:769–81.

86 Parker RO, Crouch RK, dehydrogenases R. RDHs) in the visual cycle. *Experimental eye research* 2010;91:788–92.

87 Thompson DA, Ili L, Yao J, et al. AAV-mediated expression of human Rdh12 in mouse Retina. *Investigative Ophthalmology & Visual Science* 2012;53:1916–16.

88 Dev Borman A, Ocaza LA, Mackay DS, et al. Early onset retinal dystrophy due to mutations in LRAT: molecular analysis and detailed phenotypic study. *Invest Ophthalmol Vis Sci* 2012;53:3927–38.

89 Schwartz SO, Tan G, Hosseini H, et al. Subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. *Invest Ophthalmol Vis Sci* 2016;57:OR5F1-c-9.

90 Mandal M, Watanabe A, Kurimoto Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. *N Engl J Med* 2017;376:1038–46.

91 Barry MP, Dagnelle G, Angus II Study Group. Use of the Angus II retinal prosthesis to improve visual guidance of fine hand movements. *Invest Ophthalmol Vis Sci* 2012;53:5095–101.

92 Klaue S, Goertz M, Rein S, et al. Stimulation with a wireless intracocular epiretinal implant elicits visual percepts in blind humans. *Invest Ophthalmol Vis Sci* 2011;52:449–55.

93 Zrenner E. Frighting blindness with microelectronics. *Sci Transl Med* 2013;5:210ps16.

94 Zeitz C, Robson AG. Audio I. Congenital stationary night blindness: an analysis and update of genotype-phenotype correlations and pathogenic mechanisms. *Prog Retin Eye Res* 2015;45:58–110.
Correction: *Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions*

Kumaran N, Moore AT, Weleber RG, *et al*. Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions. *Br J Ophthalmol* 2017;101:1147–54. doi: 10.1136/bjophthalmol-2016-309975.

The authors wish to correct the legend of table 1. It reads: *Genes associated with EOSRD. †Genes more frequently associated with LCA. However it should read: †Genes associated with EOSRD. *Genes more frequently associated with LCA.*

OPEN ACCESS This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by/4.0/

© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. Published by BMJ.

Br J Ophthalmol 2019;**103**:862. doi:10.1136/bjophthalmol-2016-309975corr1