Influenza season during COVID-19 pandemic: the storm that never came

With over 110 million individuals infected and almost 2.5 million deaths globally, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has taken a huge toll. The pressure on healthcare systems has never been greater, with 419,856 UK hospitalizations and 121,674 deaths since March 2020 due to coronavirus disease 2019 (COVID-19), as well as a huge backlog of postponed screening examinations and elective work. A major challenge has been to ensure the protection of vulnerable populations in society, including pregnant women.

As a clinically vulnerable population, pregnant women are more likely to require intensive care due to COVID-19 compared with non-pregnant women. Some studies have suggested that, compared with non-pregnant women with COVID-19, pregnant women with SARS-CoV-2 infection are more likely to die (1.2 vs 1.5 per 1000 cases; adjusted risk ratio, 1.7 (95% CI, 1.2–2.4)) while others found that the risk of death is similar.

With the increased demand for healthcare services, concerns began to arise around the potential impact of the concurrent influenza season on pregnant women and its burden on healthcare services. Data from Public Health England showed that individuals coinfected with SARS-CoV-2 and influenza between January and April 2020 were at greater risk of death compared with those infected with SARS-CoV-2 alone. Thus, it was concluded that particular efforts should be made to protect pregnant women against influenza during infectious peaks of the COVID-19 pandemic. As a result, in anticipation of the 2020–2021 winter influenza season in the UK, testing capacity was increased and flu vaccination programs reinforced, particularly for vulnerable populations. The World Health Organization’s Flu Awareness Campaign 2020 encouraged vulnerable individuals to take the flu vaccine to reduce the strain on healthcare systems, which were likely to be already under immense pressure due to COVID-19.

In order to aid countries preparing for this storm, predictions regarding the activity and impact of influenza were made, based on the earlier experience of countries in the Southern Hemisphere. Centers for Disease Control and Prevention data from Australia, South Africa and Chile showed that the number of specimens tested for influenza and the proportion of those testing positive declined significantly in comparison to previous years. Across all three countries between April and July 2020, 51 influenza-positive specimens were detected from a total of 83,307 specimens (0.06%). In contrast, in the same three countries during the same period in 2017–2019, 24,512 influenza-positive specimens were detected among 178,690 tested (13.7%). This corresponds to an unprecedented 228-fold decrease in flu diagnoses in the same time period. This dramatic fall is likely to be due to COVID-19 mitigation measures including improved hygiene practices, mask wearing and limited interpersonal contact.

Although there are no robust data from UK national bodies on the incidence of influenza in pregnant women, Google trend searches in the UK during the annual influenza season indicate a possible decline in cases. As a result, searches around the topic of ‘flu symptoms in pregnancy’ tend to follow the flu season closely (Figure 1). Comparing the number of such searches in November 2020 with those in November 2019 identified a 60% decrease. This may suggest a reduced prevalence of influenza among the UK population during this year’s flu season.

Potential explanations for the significant fall in cases of flu in the Southern Hemisphere and apparently in the UK include an increase in the uptake of flu vaccination in line with public health advice and COVID-19-related improved hygiene measures, social distancing measures and travel bans. However, in England, despite the drive to vaccinate vulnerable individuals, including pregnant women, there was no significant increase in the uptake of flu vaccination by pregnant women this winter. Provisional general practitioner surveillance data from Public Health England showed that the uptake rate for the seasonal influenza vaccine by pregnant women in 2020–2021 was 43.7% by the end of January 2021, with the trend in uptake almost identical to that in the 2019–2020 flu season. The comparable rates of uptake of the influenza vaccine suggests that the much lower rate of influenza cases this season is likely attributable to reduced transmission due to the social distancing and hygiene measures employed to reduce the spread of COVID-19.

Due to the absence of good data, it has been necessary to make inferences that suggest that the prevalence of influenza in pregnant women in the UK was far lower in the 2020–2021 season compared with that in previous years, similar to the pattern observed in national data in the Southern Hemisphere. UK vaccination data from the last two seasons suggest that the public health message to pregnant women that flu vaccination was particularly important this year had no impact.

![Figure 1 Influenza in pregnancy-related Google search queries in the UK during the last 5 years. Dotted lines indicate the flu season of each year. Flu symptoms in pregnancy-related queries are at an all-time low in 2021. Numbers represent search interest relative to the highest point on the chart for the given region and time period.](image-url)
Three lessons can be drawn from this experience. First, better data around influenza infection rates, segmented according to demographic data including pregnancy status, are needed in order to inform public health policy. Second, hygiene and social distancing measures are effective in dramatically reducing transmission of influenza, in both pregnant and non-pregnant populations. And thirdly, new tactics are needed to effectively deliver the public health message around vaccination to pregnant women.

M. Elsaddig1, E. Kalafat2,3, P. O’Brien4,5 and A. Khalil1,6*

1 Fetal Medicine Unit, St George’s University Hospitals NHS Foundation Trust, University of London, London, UK; 2 Department of Statistics, Faculty of Arts and Sciences, Middle East Technical University, Ankara, Turkey; 3 Department of Obstetrics and Gynaecology, School of Medicine, Koc University, Istanbul, Turkey; 4 University College London Hospitals NHS Foundation Trust, London, UK; 5 The Royal College of Obstetricians and Gynaecologists, London, UK; 6 Vascular Biology Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK

*Correspondence. (e-mail: akhalil@sgul.ac.uk)

DOI: 10.1002/uog.23644

References

1. World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int [Accessed 13 February 2021].
2. GOV.UK. Official UK Coronavirus Dashboard. https://coronavirus.data.gov.uk/details/healthcare [Accessed 13 February 2021].
3. Allotey J, Stallings E, Bonet M, Yap M, Chatterjee S, Kew T, Debenham L, Llaval AC, Dixit A, Zhou D, Balajri R, Lee SI, Qiu X, Yuan M, Coomar D, van Wely M, van Leeuwen E, Kostova E, Kunst H, Khalil A, Fibers S, Brusaete V, Bosket N, Kara E, Kim CR, Thorson A, Odomo OT, Mokfonu I, Zamora J, Thangaratinam S; for PregCOVID-19 Living Systematic Review Consortium. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: living systematic review and meta-analysis. BMJ 2020; 370: m3320.
4. Zambrano LD, Ellington S, Strid P, Galang RR, Ohuyobio T, Tong VT, Woodworth KR, Nahabedian JF, Azizi-Baumgartner E, Gilboa SM, Meaney-Delman D; CDC COVID-19 Response Pregnancy and Infant Linked Outcomes Team. Update: Characteristics of Symptomatic Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status — United States, January 22–October 3, 2020. MMWR Morb Mortal Wkly Rep 2020; 69: 1641–1647.
5. Ellington S, Strid P, Tong VT, Woodworth K, Galang RR, Zambrano LD, Nahabedian J, Anderson K, Gilboa SM. Characteristics of Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status — United States, January 22–June 7, 2020. MMWR Morb Mortal Wkly Rep 2020; 69: 769–775.
6. Stowe J, Teslirer E, Zhao H, Guy R, Muller-Peddy B, Zambon M, Andrews N, Ramsay M, Lopez Benial J. Interactions between SARS-CoV-2 and Influenza and the impact of coinfection on disease severity: A test negative design. medRxiv [Preprint] 2020. DOI: 10.1101/2020.09.18.20189647.
7. World Health Organization. Flu Awareness Campaign 2020. https://www.euro.who.int/en/media-centre/events/events/2020/10/flu-awareness-campaign-2020 [Accessed 14 February 2021].
8. Olsen SJ, Azizi-Baumgartner E, Bliss JP, Brummel L, Sullivan S, Pineda RE, Cohen C, Fry AM. Decreased Influenza Activity During the COVID-19 Pandemic — United States, Australia, Chile, and South Africa, 2020. Am J Transplant 2020; 20: 3681–3685.
9. Google Trends. https://trends.google.com/trends/explore?date=today%205-y& geo=GB&q=flu%20symptoms%20in%20pregnancy [Accessed 14 February 2021].
10. Public Health England. Weekly national Influenza and COVID-19 surveillance report. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/982289/Weekly_Flu_and_COVID-19_report_w17.pdf.