Biological Evaluation of Products Formed from the Irradiation of Chlorpromazine with a 266 nm Laser Beam

Alexandru T1,2, Armada A1,5, Danko B1,2, Hunyadi A1,5, Militaru A1,2, Boni M1,2, Nastasa V1,2, Martins A1,4,5, Viveiros M1,4, Pascu ML1,2, Molnar J1 and Amaral L3,4,5,6

1National Institute for Laser, Plasma and Radiation Physics, Laser Department, 077125, Magurele, Romania
2Faculty of Physics, University of Bucharest, 077125, Magurele, Romania
3Centre for Malaria and Tropical Diseases (CMDT), Institute of Tropical Medicine and Hygiene, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal
4Centre for Malaria and Tropical Diseases (CMDT), Institute of Tropical Medicine and Hygiene, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal
5COST Action BM0701 (ATENS) of the European Commission, Brussels, Belgium
6COST Action CM0804 of the European Commission, Brussels, Belgium
7Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
8Department of Medical Microbiology and Medical Immunology, University of Szeged, 6720 Szeged, Hungary

Abstract

Varying concentrations of Chlorpromazine Hydrochloride (CPZ) were exposed to a 266 nm laser beam for varying periods of time ranging from 4 to 24 hrs and the products of irradiation were evaluated for activity against a panel of bacteria that consisted of representatives of Gram-positives and Gram-negatives that expressed different degrees of efflux pump activity, and compared to the parental unexposed compound with prolonged irradiation. Whereas the antibacterial activity of the product against Staphylococcus aureus and Escherichia coli strains was many folds greater, no activity against their efflux pumps was noted. The activity of the products of irradiation against Salmonella enterica serovar Enteritidis was slight. However, the products of prolonged irradiation of CPZ produced increasingly significant concentration dependent inhibition of efflux by the Salmonella strains.

Keywords: Laser irradiation; Photodegradation; Chlorpromazine (CPZ); Escherichia coli; Salmonella enterica serovar Enteritidis; Antimicrobial activity; Inhibition of efflux pumps.

Introduction

Exposure of compounds to a high energy laser beam for varying periods of time is known to increase their biological activity [1-3]. Exposure of Chlorpromazine Hydrochloride (CPZ) to a 266 nm laser beam has been shown to increase its activity against a reference strain of Staphylococcus aureus ATCC 25923 [3]. The study has been extended to include a larger range of concentrations of CPZ exposed to prolonged periods of time to a 266 nm laser beam at an average energy of 6.3 mJ. The products of irradiation were examined for altered antibacterial activity against panels of Gram-positive and Gram-negative bacteria that differed with respect to the expression of their efflux pumps as well as for activity against their efflux pumps. The results of this study support the idea that exposure of an antibacterial agent to a high energy laser beam at a wavelength that matches the maximum absorbance of the compound is a prospective way to obtain molecules with increased antibacterial activity as compared to the parental compound. With respect to activity against the efflux pumps of the studied bacteria, the products produced from the irradiation of CPZ inhibited the efflux pump of the Salmonella strains in a concentration dependent manner and the degree of inhibition related to the prolongation of irradiation of CPZ.

Materials

Culture media and reagents

Mueller-Hinton (MH) (Sigma, Madrid, Spain), Luria Bertani (LB) and Tryptic Soy Broth (TSB) media Oxoid (Basingstoke, Hampshire, UK) were purchased in powder form. Stock solution of Ethidium Bromide (EB) (Sigma Aldrich) at 100 mg/L prepared in distilled water. CPZ from Sigma (Madrid, Spain), higher than 98.9% pure, was dissolved in distilled water to yield a concentration of 20 mg/mL immediately before use and protected from environmental (natural and/or artificial) light.

Bacterial strains

The panel of bacteria for evaluation of products of irradiation of CPZ consisted of Gram-positive wild-type Staphylococcus aureus American Type Culture Collection (ATCC) 25923 and Staphylococcus aureus HPV 107 (representative of the MRSA Iberian clone; it was isolated at a Portuguese hospital in 1992 and is characterized by resistance to several classes of antibiotics, particularly β-lactams, aminoglycosides, fluoroquinolones, macrolides, rifampicin and tetracycline [4,5]). The ATCC wild-type strain has an intrinsic efflux pump system and the HPV 107 strain has a plasmid containing the QacA gene which renders the bacterium multidrug resistance [6].

The Gram-negative bacteria are Escherichia coli K-12 AG100 (wild-type), Escherichia coli K-12 AG100A (efflux pump AcrAB-TolC deleted [7]), Escherichia coli AG1000 (induced to high level resistance to tetracycline and over expresses its AcrAB-ToIC) [7]; Salmonella enterica serovar Enteritidis NCTC 13349 (wild-type), Salmonella enterica serovar Enteritidis 104 (clonal strain), Salmonella enterica serovar...
Enteritidis 5408 (clinical stain), Salmonella Enteritidis 104, and 5408 strains were derived from their respective parental strains by gradual exposure to ciprofloxacin which resulted in resistance to this antibiotic [8]. Whereas induced resistance of these progeny strains was due from over-expression of the acrB transporter of the AcrAB-ToIC efflux pump [8], with respect to the 104, resistance was in part due to the presence of a mutation in gyrA and two mutations in the stress gene sox [8].

Methods

Minimum inhibitory concentration (MIC)

MIC of the compounds were determined by the microplate broth microdilution method according to Clinical and Laboratory Standards Institute (CLSI) recommendations [9] and is defined as the lowest concentration of compound for which no visible growth is present. The MIC for each compound was determined at least three separate times.

Real-time ethidium bromide accumulation assay

The real-time activity of the compounds against efflux pumps of the panel of bacteria at concentrations at and below ½ their MIC has been described in detail [10]. This fluorometric method employs a Rotor-Gene™ 3000 Thermocycler with real time analysis software (Corbett Research, Sydney, Australia) that follows the accumulation of the universal substrate EB [9] and the data interpreted represent changes in the degree of fluorescence produced due to effects of the compounds on the activity of the efflux pump [9]. Briefly, the strains were cultured in appropriate medium until they reached an optical density at 600 nm (OD600) of 0.6 and were then centrifuged at 13,000 rpm for 3 minutes. Pellets were resuspended in Phosphate-Buffered Saline (PBS), washed twice and resuspended in PBS containing glucose (concentration of 0.4%). The OD600 was adjusted with PBS to 0.6, and aliquots of 45 µL were transferred to microtubes of 0.2 mL volume.

Results

To determine efflux-modulation activity, it is necessary to use a concentration of any potential efflux pumps inhibitor that is ½ MIC or below [11], which does not affect the viability of the bacterium [12]. The MIC of the products of prolonged irradiation of CPZ against the panel of Gram-positive and Gram-negative bacteria is described by table 1; the values of the results of MIC for the irradiated compounds that present a significant antimicrobial activity against bacteria than the un-irradiated one are highlighted in this table.

- The MIC for CPZ irradiated for 4, 8, 16, and 24 hrs against the S. aureus ATCC 25923 and HPV 107 was 8 times lower than that of the un-irradiated CPZ control.
- The MIC for CPZ irradiated for 4, 8, 16, and 24 hrs against the wild-type E. coli K-12 AG100 was 8 times lower than the one obtained for the un-irradiated CPZ control.
- The MIC for the above irradiated CPZ products against E. coli strains K-12 AG100A, AG100A, and AG100A was as much as 16 fold lower than the one obtained with the un-irradiated CPZ control.
- For Salmonella Enteritidis strains, the above irradiated CPZ products produced a marginal two fold decrease (barely significant) in the MIC as compared to the un-irradiated CPZ.

These results suggest that the activity of irradiated products of CPZ is significantly greater than that produced by the un-irradiated control CPZ.

Discussion

The study of accumulation of the effect of irradiated products of CPZ on the retention of EB (inhibition of efflux) was conducted at ½ their MICs and demonstrated that there is no significant activity against the efflux pumps of S. aureus ATCC 25923 and S. aureus HPV 107 and those of E. coli K-12 AG100, AG100A, AG100A, and AG100A (data not shown). It should be noted that concentrations of the irradiated CPZ products above the MIC did inhibit efflux (data not shown). With respect to the effect of the products of irradiation on the efflux pump of the Salmonella strains, as evident by the example provided by figure 1 demonstrating an inhibition of efflux of the Salmonella 104.

Most of medicinal compounds, developed during the 20th century have their origins in phenothiazines [13]. Phenothiazines at relatively high concentrations have activity against bacteria, where they can mediate effects such as: direct inhibition of replication [14], reduced antimicrobial resistance via increased drug efflux [15], inhibition of bacterial motility [16], enhanced killing of intracellular bacteria [17], elimination of plasmids [18], and inhibition of efflux pumps of Gram-positive and Gram-negative bacteria [19].

Phenothiazines can eliminate the plasmids from bacteria (plasmid curing) due to the smaller concentration (MIC) of the agent needed to inhibit plasmid replication as opposed to those required for the inhibition of replication of the bacterium harboring the plasmid [20,21].

Phenothiazines have been shown to inhibit the NorA efflux pump of S. aureus [20], the Qac efflux pump of the plasmid carried by a S. aureus multidrug resistant strain [6] and the AcrAB efflux pump of E. coli [15].

Phenothiazines affect the activity of genes that regulate and code the AcrAB efflux pump of E. coli [7,8,15] and Salmonella enterica.

Biochem Pharmacol ISSN:2167-0501 BCPC, an open access journal

Volume 2 • Issue 1 • 1000109
shows that the irradiated products have no activity against the efflux pumps of these strains, the antimicrobial activity of the irradiated products of CPZ was many fold greater than that produced by unirradiated CPZ, and with respect to the Salmonella strains, it may be that the active products have activity against a non-AcrAB-toIC pump of the latter organism. If this is true, then this would be the first time that a compound(s) would have this type of efflux pump-selective activity. At this time the identity of the compound(s) that produce an inhibition of efflux by Salmonella is not known and is the subject of our current study.

The antimicrobial activity of the irradiated products of CPZ was identical against the S. aureus strains ATCC 25923 and HPV 107. However, because the irradiated products at ½ their MIC have no activity against the efflux pumps of these strains, the antimicrobial activity noted must be due to some other mechanism.

Due to the composition and structure of the cell envelope, Gram-negative bacteria have much higher intrinsic levels of resistance to various antibiotics, antiseptics, dyes, and detergents than Gram-positive bacteria do [22]. *Salmonella Enteritidis* has at least nine multidrug efflux pumps [23]. One of these efflux pumps, AcrAB, is the most efficient, playing a role in both drug resistance and virulence [24]. However, playing a role in both drug resistance and virulence [24].

Due to the composition and structure of the cell envelope, Gram-negative bacteria have much higher intrinsic levels of resistance to various antibiotics, antiseptics, dyes, and detergents than Gram-positive bacteria do [22]. *Salmonella Enteritidis* has at least nine multidrug efflux pumps [23]. One of these efflux pumps, AcrAB, is the most efficient, playing a role in both drug resistance and virulence [24]. Although for *E. coli* there are 36 drug transporters, belonging to the 4 major families of efflux transporters: MF, RND, SMR and ABC, only 21 of them can confer drug resistance either as single drug (e.g. drug-specific transporters such as TetA(B)) or as several unrelated drugs (e.g. multidrug transporters such as AcrB) [25]. For the ABC family only one ABC transporter confers drug resistance [26]. Because our study shows that the irradiated products have no activity against the efflux pump system of *E. coli* strains whereas they inhibit the efflux pump system of the Salmonella strains, it may be that the active products have activity against a non-AcrAB-toIC pump of the latter organism. If this is true, then this would be the first time that a compound(s) would have this type of efflux pump-selective activity. At this time the identity of the compound(s) that produce an inhibition of efflux by *Salmonella* is not known and is the subject of our current study.

Table 1: Minimum Inhibitory Concentrations (MIC) of the compounds for Gram-negative and Gram-positive strains.

Strains	CPZ unirradiated MIC (mg/L)	CPZ irradiated 4 h MIC (mg/L)	CPZ irradiated 8 h MIC (mg/L)	CPZ irradiated 16 h MIC (mg/L)	CPZ irradiated 24 h MIC (mg/L)
Staphylococcus aureus ATCC 25923	25	3.125	3.125	3.125	3.125
Staphylococcus aureus HPV 107	25	3.125	3.125	3.125	3.125
Escherichia coli K-12 AG100	25	3.125	3.125	3.125	3.125
Escherichia coli K-12 AG100A	25	1.56	1.56	1.56	1.56
Escherichia coli AG100TE8	50	3.125	3.125	3.125	3.125
Escherichia coli AG100ATE8	50	6.25	6.25	6.25	6.25
Salmonella Enteritidis NCTC 13349	50	25	25	25	25
Salmonella Enteritidis 104 AG100AK	50	25	25	25	25
Salmonella Enteritidis 5408	50	25	25	25	25
Salmonella Enteritidis 5408	50	25	25	25	25

References

1. Hunyadi A, Danko B, Boni M, Militaru A, Alexandru T, et al. (2012) Rapid, laser-induced conversion of 20-Hydroxyecdysone and its diacetonide -- experimental set-up of a system for photochemical transformation of bioactive substances. Anticancer Res 32: 1291-1297.

2. Pascu ML, Nastasa V, Smarandache A, Militaru A, Martins A, et al. (2011) Direct modification of bioactive phenothiazines by exposure to laser radiation. Recent Pat Antinfect Drug Discov 6: 147-157.
3. Pascu ML, Danko B, Martins A, Jedlinszki N, Alexandru T, et al. (2013) Exposure of Chlorpromazine to 266 nm laser beam generates new species with antibiotic properties: contributions to development of new process for drug discovery. PLoS One, 2013 Feb 06, DOI: 10.1371/journal.pone.0055767.

4. Sanches IS, Ramirez M, Troni H, Abeccasis M, Padua M, et al. (1995) Evidence for the geographic spread of a mexitilin-resistant Staphylococcus aureus clone between Portugal and Spain. J Clin Microbiol 33: 1243-1246.

5. Oliveira DC, Tomas A, de Lencastre H (2001) The evolution of pandemic clones of methicillin-resistant Staphylococcus aureus: identification of two ancestral genetic backgrounds and the associated mec elements. Microb Drug Resist 7: 349-361.

6. Costa SS, Ntokou E, Martins A, Viveiros M, Pournaras S, et al. (2010) Identification of the plasmid-encoded qacA efflux pump gene in mexitilin-resistant Staphylococcus aureus (MRSA) strain HP1/07, a representative of the MRSA Iberian clone. Int J Antimicrob Agents 36: 557-561.

7. Paixão L, Rodrigues L, Couto I, Martins M, Fernandes P, et al. (2009) Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli. J Biol Eng 3: 18.

8. Spengler G, Rodrigues L, Martins A, Martins M, McCusker M, et al. (2012) Genetic response of Salmonella enterica serotype Enteritidis to thioridazine rendering the organism resistant to the agent. Int J Antimicrob Agents 39: 16-21.

9. Park SH, Lim JA, Choi JS, Kim KA, Joo CK (2009) The resistance patterns of normal ocular bacterial flora to 4 fluoroquinolone antibiotics. Cornea 28: 68-72.

10. Pagès JM, Amaral L (2009) Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim Biophys Acta 1794: 826-833.

11. Viveiros M, Portugal I, Bettencourt R, Victor TC, Jorda AM, et al. (2002) Isoniazid-induced transient high-level resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 46: 2804-2810.

12. Dynek A, Armada A, Handzik J, Viveiros M, Spengler G, et al. (2012) The activity of 16 new hydantoin compounds on the intrinsic and overexpressed efflux pump system of Staphylococcus aureus. In Vivo 26: 223-229.

13. Amaral L, Fanning S, Pagès JM (2011) Efflux pumps of gram-negative bacteria: genetic responses to stress and the modulation of their activity by pH, inhibitors, and phenothiazines. Adv Enzymol Relat Areas Mol Biol 77: 61-108.

14. Amaral L, Kristiansen J, Lorian V (1992) Synergic effect of chlorpromazine on the activity of some antibiotics. J Antimicrob Chemother 30: 556-558.

15. Viveiros M, Jesus A, Brito M, Leandro C, Martins M, et al. (2005) Inducement and reversal of tetracycline resistance in Escherichia coli K-12 and expression of proton gradient-dependent multidrug efflux pump genes. Antimicrob Agents Chemother 49: 3578-3582.

16. Molnár J, Ren J, Kristiansen JE, Nakamura MJ (1992) Effects of some tricyclic psychopharmacons and structurally related compounds on motility of Proteus vulgaris. Antonie Van Leeuwenhoek 62: 319-320.

17. Martins M, Bleiss W, Marko A, Ordway D, Viveiros M, et al. (2004) Clinical concentrations of thioridazine enhance the killing of intracellular methicillin-resistant Staphylococcus aureus: an in vivo, ex vivo and electron microscopy study. In Vivo 18: 787-794.

18. Spengler G, Miczák A, Hajdú E, Kawase M, Amaral L, et al. (2003) Enhancement of plasmid curing by 9-aminoacridine and two phenothiazines in the presence of proton pump inhibitor 1-(2-benzoxazolyl)-3,3,3-trifluoro-2-propanone. Int J Antimicrob Agents 22: 223-227.

19. Sabatini S, Kaatz GW, Rossolini GM, Brandini D, Fravolini A (2008) From phenothiazine to 3-phenyl-1,4-benzothiazine derivatives as inhibitors of the Staphylococcus aureus NorA multidrug efflux pump. J Med Chem 51: 4321-4330.

20. Wainwright M, Amaral L, Kristiansen JE (2012) The evolution of antimycobacterial agents from non-antibiotics. Open Journal of Pharmacology 2.

21. Brown MH, Skurray RA (2001) Staphylococcal multidrug efflux protein QacA. J Mol Microbiol Biotechnol 3: 163-170.

22. Yu EW, Aires JR, Nikaido H (2003) AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacterial 185: 5657-5664.

23. Nishino K, Latifi T, Groisman EA (2006) Virulence and drug resistance roles of multidrug efflux systems of Salmonella enterica serovar Typhimurium. Mol Microbiol 59: 126-141.

24. Nikaido E, Shirasaki K, Yamaguchi A, Nishino K (2011) Regulation of the AcrAB multidrug efflux pump in Salmonella enterica serovar Typhimurium in response to indole and paraquat. Microbiology 157: 648-655.

25. Borges-Walsme M, McKeegan KS, Walsme AR (2003) Structure and function of efflux pumps that confer resistance to drugs. Biochem J 376: 313-338.

26. Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183: 5803-5812.