Connes-amenability and normal, virtual diagonals for measure algebras, I

Volker Runde

Dedicated to the memory of Barry E. Johnson, 1937–2002, on whose shoulders many of us stand.

Abstract

We prove that the measure algebra $M(G)$ of a locally compact group G is Connes-amenable if and only if G is amenable.

Keywords: locally compact group; group algebra; measure algebra; amenability; Connes-amenability; normal, virtual diagonal.

2000 Mathematics Subject Classification: 22D15, 43A10 (primary), 43A20, 43A60, 46E15, 46H25, 46M20, 47B47.

Introduction

In [16], B. E. Johnson introduced the notion of an amenable Banach algebra, and proved that a locally compact group G is amenable if and only if its group algebra $L^1(G)$ is amenable. The theory of amenable Banach algebras has been a very active field of research ever since. Once of the deepest results in this theory is due to A. Connes ([8]; see also [2]) and U. Haagerup ([12]): A C^*-algebra is amenable if and only if it is nuclear. In [24], S. Wassermann showed that a von Neumann algebra is nuclear/amenable if and only if it is subhomogeneous (see [22] for a proof that avoids the nuclearity-amenability nexus). This suggests that the definition of amenability from [16] has to be modified to yield a sufficiently rich theory for von Neumann algebras.

A variant of that definition — one that takes the dual space structure of a von Neumann algebra into account — was introduced in [18], but is most commonly associated

*Research supported by NSERC under grant no. 227043-00.
with A. Connes’ paper \[4\]. For this reason, we refer to this notion of amenability as to Connes-amenability (the origin of this name seems to be A. Ya. Helemski˘ı’s paper \[13\]). As it turns out, Connes-amenability is the “right” notion of amenability for von Neumann algebras: It is equivalent to several other important properties such as injectivity and semidiscreteness (\[2\], \[1\], \[3\], \[9\], \[25\]; see \[23\], Chapter 6) for a self-contained exposition).

The definition of Connes-amenability makes sense for a larger class of Banach algebras (called dual Banach algebras in \[22\]). Examples of dual Banach algebras (other than \(W^*\)-algebras) are: \(B(E)\), where \(E\) is a reflexive Banach space; \(M(G)\), where \(G\) is a locally compact group; \(PM_p(G)\), where \(p \in (1, \infty)\) and \(G\) is a locally compact group (these algebras are called algebras of \(p\)-pseudomeasures). The investigation of Connes-amenability for dual Banach algebras which are not \(W^*\)-algebras is still in its initial stages. Some results on Connes-amenable \(W^*\)-algebras, carry over: For instance, in \[20\], A. T.-M. Lau and A. L. T. Paterson showed that, for an inner amenable group \(G\), the group von Neumann algebra \(VN(G) = PM_2(G)\) is Connes-amenable if and only if \(G\) is amenable; this is generalized to \(PM_p(G)\) for arbitrary \(p \in (1, \infty)\) in \[22\]. On the other hand, one cannot expect matters for general dual Banach algebras to turn out as nicely as for von Neumann algebras: In \[22\], it was shown that \(B(E)\) is not Connes-amenable if \(E = \ell^p \oplus \ell^q\) with \(p, q \in (1, \infty) \setminus \{2\}\) and \(p \neq q\).

The dual Banach algebra we are concerned with in this paper is the measure algebra \(M(G)\) of a locally compact group \(G\). As for von Neumann algebras, amenability in the sense of \[16\] is too strong a notion to deal with measure algebras in a satisfactory manner: In \[7\], H. G. Dales, F. Ghahramani, and A. Ya. Helemskiı prove that \(M(G)\) is amenable for a locally compact group \(G\) if and only if \(G\) is discrete and amenable. In contrast, Connes-amenability is a much less restrictive demand: Since the amenability of a locally compact group \(G\) implies the amenability of \(L^1(G)\), and since \(L^1(G)\) is \(w^*\)-dense in \(M(G)\), it follows easily that \(M(G)\) is Connes-amenable provided that \(G\) is amenable. In this paper, we prove the converse.

I am grateful to S. Tabaldyev for discovering a near fatal error in an earlier, stronger version of Lemma \[4.2\].

1 Connes-amenability and normal, virtual diagonals

This section is preliminary in character. We collect the necessary definitions we require in the sequel. All of it can be found in \[22\], but sometimes our choice of terminology here is different.

Let \(\mathfrak{A}\) and \(\mathfrak{B}\) be Banach algebras, and let \(E\) be a Banach \(\mathfrak{A}\)-\(\mathfrak{B}\)-bimodule. Then \(E^*\) becomes a Banach \(\mathfrak{B}\)-\(\mathfrak{A}\)-bimodule via

\[
\langle x, b \cdot \phi \rangle := \langle x \cdot b, \phi \rangle \quad \text{and} \quad \langle x, \phi \cdot a \rangle := \langle a \cdot x, \phi \rangle \quad (a \in \mathfrak{A}, b \in \mathfrak{B}, \phi \in E^*, x \in E).
\]
Definition 1.1 Let \(\mathfrak{A} \) and \(\mathfrak{B} \) be Banach algebras. A Banach \(\mathfrak{A}\mathfrak{B} \)-bimodule \(E \) is called dual if there is a closed submodule \(E_\ast \) of \(E^\ast \) such that \(E = (E_\ast)^\ast \).

Remark There is no reason, in general, for \(E_\ast \) to be unique. If we refer to the \(w^\ast \)-topology on a dual Banach module \(E \), we always mean \(\sigma(E,E_\ast) \) with respect to a particular, fixed (often obvious) predual \(E_\ast \).

The following definition is due to B. E. Johnson ([16]):

Definition 1.2 A Banach algebra \(\mathfrak{A} \) is called amenable if, for every dual Banach \(\mathfrak{A}\mathfrak{B} \)-bimodule \(E \), every bounded derivation \(D: \mathfrak{A} \to E \) is inner.

We are interested in a particular class of Banach algebras:

Definition 1.3 A Banach algebra \(\mathfrak{A} \) is called dual if it is dual as a Banach \(\mathfrak{A} \)-bimodule.

Remark A Banach algebra which is also a dual space is a dual Banach algebra if and only if multiplication is separately \(w^\ast \)-continuous.

Examples 1. Every \(W^\ast \)-algebra is dual.

2. If \(E \) is a reflexive Banach space, then \(\mathcal{B}(E) = (E\hat{\otimes}E^\ast)^\ast \) is dual.

3. If \(G \) is a locally compact group, then \(\mathcal{M}(G) = \mathcal{C}_0(G)^\ast \) is dual.

4. If \(\mathfrak{A} \) is an Arens regular Banach algebra, then \(\mathfrak{A}^{**} \) is dual.

The following choice of terminology is motivated by the von Neumann algebra case:

Definition 1.4 Let \(\mathfrak{A} \) and \(\mathfrak{B} \) be dual Banach algebras. A dual Banach \(\mathfrak{A}\mathfrak{B} \)-bimodule is called normal if, for each \(x \in E \), the maps

\[\mathfrak{A} \to E, \quad a \mapsto a \cdot x \]

and

\[\mathfrak{B} \to E, \quad b \mapsto x \cdot b \]

are \(w^\ast \)-continuous.

We can now define Connes-amenable, dual Banach algebras:

Definition 1.5 A dual Banach algebra \(\mathfrak{A} \) is called Connes-amenable if, for every normal, dual Banach \(\mathfrak{A} \)-bimodule \(E \), every bounded, \(w^\ast \)-continuous derivation \(D: \mathfrak{A} \to E \) is inner.
Amenability in the sense of [16], can be intrinsically characterized in terms of so-called approximate and virtual diagonals ([17]). There is a related notion for Connes-amenable, dual Banach algebras.

If E_1, \ldots , E_n and F are dual Banach spaces, we write $L^w_*(E_1, \ldots , E_n; F)$ for the bounded, separately w^*-continuous, n-linear maps from $E_1 \times \cdots \times E_n$ into F. In case $E_1 = \cdots = E_n =: E$, we simply let $L^w_*(E_1, \ldots , E_n; F)$.

Let \mathfrak{A} and \mathfrak{B} be Banach algebras. Then $\mathfrak{A} \hat{\otimes} \mathfrak{B}$ becomes a Banach $\mathfrak{A}-\mathfrak{B}$-bimodule via

$$a \cdot (x \otimes y) := ax \otimes y \quad \text{and} \quad (x \otimes y) \cdot b := x \otimes yb \quad (a, x \in \mathfrak{A}, b, y \in \mathfrak{B}). \quad (1)$$

Suppose that \mathfrak{A} and \mathfrak{B} are dual. It is then routinely checked that $L^w_*(\mathfrak{A}, \mathfrak{B}; C)$ is a closed $\mathfrak{B}-\mathfrak{A}$-submodule of $(\mathfrak{A} \hat{\otimes} \mathfrak{B})^*$.

Let \mathfrak{A} be a dual Banach algebra, and let $\Delta_\mathfrak{A}: \mathfrak{A} \hat{\otimes} \mathfrak{A} \to \mathfrak{A}$ denote the diagonal operator induced by $\mathfrak{A} \times \mathfrak{A} \ni (a, b) \mapsto ab$. Since multiplication in \mathfrak{A} is separately w^*-continuous, we have $\Delta_\mathfrak{A}^* \mathfrak{A} \subset L^w_*(\mathfrak{A}, C)$. Taking the adjoint of $\Delta_\mathfrak{A}^* \mathfrak{A}$, we may thus extend $\Delta_\mathfrak{A}$ to $L^w_*(\mathfrak{A}, C)^*$ as an \mathfrak{A}-bimodule homomorphism (we denote this extension by Δ_{w^*}).

Definition 1.6 Let \mathfrak{A} be a dual Banach algebra. An element $M \in L^w_*(\mathfrak{A}, C)^*$ is called a normal, virtual diagonal for \mathfrak{A} if

$$a \cdot M = M \cdot a \quad \text{and} \quad a \Delta_{w^*} M = a \quad (a \in \mathfrak{A}).$$

One connection between Connes-amenability and the existence of normal, virtual diagonals is fairly straightforward ([8], [1]): If \mathfrak{A} has a normal, virtual diagonal, then \mathfrak{A} is Connes-amenable; in fact, it implies a somewhat stronger property ([22]). The main problem with proving the converse is that, in general, the dual module $L^w_*(\mathfrak{A}, C)^*$ need not be normal. For von Neumann algebras, however, Connes-amenability and the existence of normal, virtual diagonals are even equivalent ([8], [10]). We suspect, but have been unable to prove — except in the discrete case — that the same is true for the measure algebras of locally compact groups.

2 Separately C_0-functions on locally compact Hausdorff spaces

Our notation is standard: For a topological space X, we write $C_b(X)$ for the bounded, continuous functions on X; if X is locally compact and Hausdorff, $C_0(X)$ (or rather $C(X)$ if X is compact) denotes the continuous functions on X vanishing at infinity, and $M(X) \cong C_0(X)^*$ is the space of regular Borel measures on X.

Let X and Y be locally compact Hausdorff spaces. In this section, we give a description of $L^w_*(M(X), M(Y); C)$ as a space of separately continuous functions on $X \times Y$.
Definition 2.1 Let X and Y be locally compact Hausdorff spaces. A bounded function $f : X \times Y \to \mathbb{C}$ is called separately C_0 if:

(a) for each $x \in X$, the function

$$Y \to \mathbb{C}, \quad y \mapsto f(x, y)$$

belongs to $C_0(Y)$;

(b) for each $y \in Y$, the function

$$X \to \mathbb{C}, \quad x \mapsto f(x, y)$$

belongs to $C_0(X)$.

We define $SC_0(X \times Y)$ as the collection of all separately C_0-functions.

Lemma 2.2 Let X and Y be locally compact Hausdorff spaces, and let $f \in SC_0(X \times Y)$. Then the following hold:

(i) for each $\mu \in M(X)$, the function

$$Y \to \mathbb{C}, \quad y \mapsto \int_X f(x, y) \, d\mu(x)$$

belongs to $C_0(Y)$;

(ii) for each $\nu \in M(Y)$, the function

$$X \to \mathbb{C}, \quad x \mapsto \int_Y f(x, y) \, d\nu(y)$$

belongs to $C_0(X)$.

Proof We only prove (i).

Let $\mu \in M(X)$. Since the measures with compact support are norm dense in $M(X)$, there is no loss of generality if we suppose that X is compact. Suppose that Y is not compact (the compact case is easier), and let Y_∞ be its one-point-compactification. Extend f to $X \times Y_\infty$ by letting

$$f(x, \infty) = 0 \quad (x \in X),$$

so that f is separately continuous on $X \times Y_\infty$. Let τ be the topology of pointwise convergence on $C(X)$. Since the map

$$Y_\infty \to C(X), \quad y \mapsto f(\cdot, y)$$

is continuous with respect to the given topology on Y_∞ and to τ on $C(X)$, the set

$$K := \{f(\cdot,y) : y \in Y_\infty \}$$

is τ-compact. By [11, Théorème 5], this means that K is weakly compact, so that the weak topology and τ coincide on K. Let $(y_\alpha)_{\alpha}$ be a convergent net in Y_∞ with limit y. Since $f(\cdot,y_\alpha) \overset{\tau}{\to} f(\cdot,y)$, it follows that

$$\lim_{\alpha} \int_X f(x,y_\alpha) \, d\mu(x) = \int_X f(x,y) \, d\mu(x).$$

This means that the function

$$Y_\infty \to \mathbb{C}, \quad y \mapsto \int_X f(x,y) \, d\mu(x)$$

is continuous on Y_∞; since it vanishes at ∞ by definition, this establishes (i). \hfill \Box

Remark For compact spaces, Lemma 2.2 is well known ([3, Theorem A.20]).

Lemma 2.3 Let X and Y be locally compact Hausdorff spaces, and let $f \in SC_0(X \times Y)$. Then the bilinear map

$$\Phi_f : M(X) \times M(Y) \to \mathbb{C}, \quad (\mu,\nu) \mapsto \int_Y \int_X f(x,y) \, d\mu(x) \, d\nu(y) \quad (2)$$

belongs to $L^2_{w^*}(M(X),M(Y);\mathbb{C})$.

Proof Clearly, Φ_f is bounded, and it is immediate from Lemma 2.2(i) that it is w^*-continuous in the second variable. Since f is separately continuous, it is $\mu \otimes \nu$-measurable for all $\mu \in M(X)$ and $\nu \in M(Y)$ by [15]. It follows that the integral in (2) not only exists, but — by Fubini’s theorem — is independent of the order of integration, i.e.

$$\Phi_f(\mu,\nu) = \int_X \int_Y f(x,y) \, d\nu(y) \, d\mu(x) \quad (\mu \in M(X), \nu \in M(Y)).$$

It then follows from Lemma 2.2(ii) that Φ_f is also w^*-continuous in the first variable. \hfill \Box

Proposition 2.4 Let X and Y be locally compact Hausdorff spaces. Then

$$SC_0(X \times Y) \to L^2_{w^*}(M(X),M(Y);\mathbb{C}), \quad f \mapsto \Phi_f \quad (3)$$

is an isometric isomorphism.
Clearly, \(\| \Phi f \| \leq \| f \|_{\infty} \) for all \(f \in SC_0(X \times Y) \). On the other hand,

\[
\| \Phi f \| \geq \sup \{|\Phi f(\delta_x, \delta_y)| : x \in X, y \in Y\} = \sup \{|f(x, y)| : x \in X, y \in Y\} = \| f \|_{\infty} \quad (f \in SC_0(X \times Y)),
\]

so that (2) is an isometry.

Let \(\Phi \in L_{w^*}(M(X), M(Y); \mathbb{C}) \) be arbitrary, and define

\[f : X \times Y \to \mathbb{C}, \quad (x, y) \mapsto \Phi(\delta_x, \delta_y). \]

It is immediate that \(f \in SC_0(X \times Y) \) such that \(\Phi f(\delta_x, \delta_y) = \Phi(\delta_x, \delta_y) \) for all \(x \in X \) and \(y \in Y \). Separate \(w^* \)-continuity yields that \(\Phi = \Phi f \). \(\square \)

We shall, from now on, identify \(SC_0(X \times Y) \) and \(L_{w^*}(M(X), M(Y); \mathbb{C}) \) as Banach spaces.

Proposition 2.5 Let \(X \) and \(Y \) be locally compact Hausdorff spaces. Then the map

\[M(X \times Y) \to L_{w^*}^2(M(X), M(Y); \mathbb{C})^*, \quad \mu \mapsto \Psi_\mu, \]

where

\[\Psi_\mu(f) := \int_{X \times Y} f(x, y) \, d\mu(x, y) \quad (\mu \in M(X \times Y), f \in SC_0(X \times Y)), \quad (4) \]

is an isometry.

Proof By [13] again, the integral in (4) is well-defined. Since \(C_0(X \times Y) \subset SC_0(X \times Y) \), it follows at once that \(\| \Psi_\mu \| = \| \mu \| \) holds for all \(\mu \in M(X \times Y) \). \(\square \)

3 Separately \(C_0 \)-functions on locally compact groups

Let \(G \) and \(H \) be locally compact groups. Then \(SC_0(G \times H) \) becomes a Banach \(M(H) \)-\(M(G) \)-bimodule through the following convolution formulae for \(f \in SC_0(G \times H), \mu \in M(H) \), and \(\nu \in M(G) \):

\[
(\mu \cdot f)(g, h) := \int_H f(g, hk) \, d\mu(k) \quad (g \in G, h \in H)
\]

and

\[
(f \cdot \nu)(g, h) := \int_G f(kg, h) \, d\nu(k) \quad (g \in G, h \in H).
\]

The following extension of Proposition 2.4 is then routinely checked:
Proposition 3.1 Let G and H be locally compact groups. Then

$$SC_0(G \times H) \rightarrow L^2_w(M(G), M(H); \mathbb{C}), \quad f \mapsto \Phi f$$

as defined in Proposition 2.4 is an isometric isomorphism of Banach $M(H)$-$M(G)$-bimodules.

Proof The $M(H)$-$M(G)$-bimodule action on $SC_0(G \times H)$ induces an $M(G)$-$M(H)$-bimodule action on $SC_0(G \times H)^*$. Embedding $M(G) \hat{\otimes} M(H)$ into $SC_0(G \times H)^*$, we need to show that $M(G) \hat{\otimes} M(H)$ is a $M(G) \hat{\otimes} M(H)$-submodule of $SC_0(G \times H)^*$ such that the module actions are the canonical ones (see (1)).

Let $\kappa, \mu \in M(G)$, and let $\nu \in M(H)$. Then we have for $f \in SC_0(G \times H)$:

$$\langle f, \kappa \cdot (\mu \otimes \nu) \rangle = \langle f \cdot \kappa, \mu \otimes \nu \rangle$$

$$= \int_H \int_G \int_G f(kg, h) \, d\kappa(k) \, d\mu(g) \, d\nu(h)$$

$$= \int_H \int_G f(g, h) \, d(\kappa \ast \mu)(g) \, d\nu(h)$$

$$= \langle f, \kappa \ast (\mu \otimes \nu) \rangle.$$

An analogous property holds for the right $M(H)$-module action on $SC_0(G \times H)^*$. □

Remark It is easy to see that $C_0(G \times H)$ is a closed $M(H)$-$M(G)$-submodule of $SC_0(G \times H)$, so that $M(G \times H) \cong C_0(G \times H)^*$ is a quotient of $SC_0(G \times H)^*$. It is easily checked that

$$\mu \cdot \nu = (\mu \otimes \delta_e) \ast \nu \quad (\mu \in M(G), \nu \in M(G \times H))$$

and

$$\nu \cdot \mu = \nu \ast (\delta_e \otimes \mu) \quad (\mu \in M(H), \nu \in M(G \times H)).$$

We have the following:

Proposition 3.2 Let G and H be locally compact groups. Then:

(i) $M(G \times H)$ is a normal, dual Banach $M(G)$-$M(H)$-bimodule.

(ii) The map

$$M(G \times H) \rightarrow L^2_w(M(G), M(H); \mathbb{C})^*, \quad \mu \mapsto \Psi_\mu,$$ \quad (6)

as defined in Proposition 2.5, is an isometric homomorphism of Banach $M(G)$-$M(H)$-bimodules.
The maps

\[M(G) \to M(G \times H), \quad \mu \mapsto \mu \otimes \delta_e \]

and

\[M(H) \to M(G \times H), \quad \nu \mapsto \delta_e \otimes \nu \]

are \(w^* \)-continuous. In view of the preceding remark and the fact that \(M(G \times H) \) is a dual Banach algebra, (i) is immediate.

For (ii), let \(\mu \in M(G) \) and \(\nu \in M(G \times H) \). Then we have for any \(f \in SC_0(G \times H) \):

\[
\langle f, \mu \cdot \Psi \nu \rangle = \langle f \cdot \mu, \Psi \nu \rangle = \int_{G \times H} \int_G f(kg, h) d\mu(k) d\nu(g, h) = \int_{G \times H} \int_{G \times H} f(kg, k'h) d(\mu \otimes \delta_e)(k, k') d\nu(g, h) = \int_{G \times H} f(g, h) d((\mu \otimes \delta_e) \ast \nu)(g, h) = \int_{G \times H} f(g, h) d(\mu \cdot \nu)(g, h) = \langle f, \Psi_{\mu \cdot \nu} \rangle. \]

Hence, (6) is a left \(M(G) \)-module homomorphism.

Analogously, one shows that (6) is a right \(M(H) \)-module homomorphism. \(\square \)

With these preparations made, we can already give an alternative proof of [22, Proposition 5.2].

For any locally compact group \(G \), the operator \(\Delta_\ast := \Delta_\ast^{*} |_{C_0(G)} \) is given by

\[
(\Delta_\ast f)(g, h) = f(gh) \quad (f \in C_0(G), \ g, h \in G). \]

If \(G \) is compact, \(\Delta_\ast \) maps \(C_0(G) = C(G) \) into \(C(G \times G) = C_0(G \times G) \). Hence, \(\Delta_{w^*} \) drops to an \(M(G) \)-bimodule homomorphism \(\Delta_{0, w^*} : M(G \times G) \to M(G) \).

Proposition 3.3 Let \(G \) be a compact group. Then there is a normal, virtual diagonal for \(M(G) \).

Proof Since \(G \) is amenable, \(M(G) \) is Connes-amenable (this is the easy direction of Theorem [5.3]).

Define a \(w^* \)-continuous derivation

\[D : M(G) \to M(G \times G), \quad \mu \mapsto \mu \otimes \delta_e - \delta_e \otimes \mu. \]
It is immediate that D attains its values in $\ker \Delta_{0,w^*}$. Being the kernel of a w^*-continuous $M(G)$-bimodule homomorphism between normal, dual Banach $M(G)$-bimodules, $\ker \Delta_{0,w^*}$ is a normal, dual Banach $M(G)$-bimodule in its own right. Since $M(G)$ is Connes-amenable, there is $N \in \ker \Delta_{0,w^*}$ such that

$$D\mu = \mu \cdot N - N \cdot \mu \quad (\mu \in M(G)).$$

Letting $M := \delta_e \otimes \delta_e - N$, and embedding M into $SC_0(G \times G)^*$ via Proposition 3.2, we obtain a normal, virtual diagonal for $M(G)$. \phantomsection \tag*{\hfill \Box}

Remark The proof of Proposition 3.3, does not carry over to non-compact, locally compact groups with Connes-amenable measure algebra because, for non-compact G, we no longer have $\Delta_4 C_0(G) \subset C_0(G \times G)$; in fact, it is easy to see that $\Delta_4 C_0(G) \cap C_0(G \times G) = \{0\}$ whenever G is not compact.

4 A left introverted subspace of separately C_0-functions

For general, possibly non-compact, locally compact groups, we need a Banach $M(G)$-bimodule that can play the rôle of $M(G \times G)$ in the proof of Proposition 3.3.

Let G be a locally compact group. For a function $f : G \to \mathbb{C}$ and for $g \in G$, define functions $L_g f, R_g f : G \to \mathbb{C}$ through

$$(L_g f)(h) := f(gh) \quad \text{and} \quad (R_g f)(h) := f(hg) \quad (h \in G).$$

A closed subspace E of $\ell^\infty(G)$ is called *left invariant* if $L_g f \in E$ for each $f \in E$ and $g \in G$. A left invariant subspace E of $\ell^\infty(G)$ is called *left introverted* if, for each $\phi \in E^*$, the function

$$\phi \cdot f : G \to \mathbb{C}, \quad g \mapsto \langle L_g f, \phi \rangle$$

belongs again to E.

Examples

1. $\ell^\infty(G)$ is trivially left introverted.

2. $C_0(G)$ is left introverted ([14], (19.5) Lemma)).

3. The space

$$\mathcal{LUC}(G) := \{f \in C_b(G) : G \ni g \mapsto L_g f \text{ is norm continuous}\}$$

of *left uniformly continuous functions* on G is left introverted ([21], (2.11) Proposition)).
If E is a left introverted subspace of $\ell^\infty(G)$, then E^* is a Banach algebra in a natural manner:

$$\langle \phi \ast \psi, f \rangle := \langle \psi \bullet f, \phi \rangle \quad (\phi, \psi \in E^*, f \in E).$$

In case $E = C_0(G)$, this is the usual convolution product on $M(G)$.

We now define a certain space of separately C_0-functions which is, as we shall see, left introverted. For any locally compact group G, let G_{LUC} denote the character space of the commutative C^*-algebra $\mathcal{LUC}(G)$. The multiplication \ast on $\mathcal{LUC}(G)^\ast$ turns G_{LUC} into a compact semigroup with continuous right multiplication that contains G as a dense subsemigroup ([1]). Also, we use G^{op} to denote the same group, but with reversed multiplication.

Definition 4.1 For locally compact groups G and H, let

$$\mathcal{LUCS}_0(G \times H^{\text{op}}) := \{ f \in \mathcal{LUC}(G \times H^{\text{op}}) : \omega \bullet f \in SC_0(G \times H) \text{ for all } \omega \in (G \times H^{\text{op}})_{\text{LUC}} \}.$$

Remark If both G and H are compact, then $\mathcal{LUCS}_0(G \times H^{\text{op}}) = C(G \times H)$.

Lemma 4.2 Let G and H be locally compact groups, let $f \in \mathcal{LUCS}_0(G \times H^{\text{op}})$, and let $h \in H$. Then $\{ L_{(g,h)}f : g \in G \}$ is relatively weakly compact.

Proof The claim is clear for compact G, so that we may suppose without loss of generality that G is not compact.

By [11, Théorème 5], it is sufficient to show that $\{ L_{(g,h)}f : g \in G \}$ is relatively compact in $\mathcal{LUC}(G \times H^{\text{op}})$ with respect to the topology of pointwise convergence on $(G \times H^{\text{op}})_{\text{LUC}}$. Also, we may suppose without loss of generality that $h = e$.

Let $\hat{f} \in C((G \times H^{\text{op}})_{\text{LUC}})$ denote the Gelfand transform of f. The map

$$G \to \mathbb{C}, \quad g \mapsto \hat{f}((\delta_g \otimes \delta_e) \ast \omega)$$

is continuous for each $\omega \in (G \times H^{\text{op}})_{\text{LUC}}$. Let G_∞ denote the one-point-compactification of G. Let $(g_\alpha)_{\alpha}$ be a net in G with $g_\alpha \to \infty$. For any $\omega \in (G \times H^{\text{op}})_{\text{LUC}}$, we then have

$$\hat{f}((\delta_{g_\alpha} \otimes \delta_e) \ast \omega) = (\omega \bullet f)(g_\alpha, e) \to 0$$

because $\omega \bullet f \in SC_0(G \times H)$. Hence,

$$G \to \mathcal{LUC}(G \times H^{\text{op}}), \quad g \mapsto L_{(g,e)}f$$

(7)

extends as a continuous map to G_∞, where $\mathcal{LUC}(G \times H^{\text{op}})$ is equipped with the topology of pointwise convergence on $(G \times H^{\text{op}})_{\text{LUC}}$. As the continuous image of the compact space G_∞, the range of \hat{f} is compact in the topology of pointwise convergence on $(G \times H^{\text{op}})_{\text{LUC}}$.

\qed
Proposition 4.3 Let G and H be locally compact groups. Then $\mathcal{LUCSC}_0(G \times H^{\text{op}})$ is left introverted.

Proof Let $f \in \mathcal{LUCSC}_0(G \times H^{\text{op}})$, and let $\phi \in \mathcal{LUCSC}_0(G \times H^{\text{op}})^\ast$. Since $\mathcal{LUC}(G \times H^{\text{op}})$ is left introverted, it is immediate that $\phi \star f \in \mathcal{LUC}(G \times H^{\text{op}})$.

We first claim that $\phi \star f \in SC_0(G \times H)$. Fix $h \in H$; we will show that $(\phi \star f)(\cdot,h)$, i.e. the function

$$G \to \mathbb{C}, \quad g \mapsto \langle L_{(g,h)} f, \phi \rangle$$

belongs to $C_0(G)$. Since $(\phi \star f)(\cdot,h)$ is clearly continuous, all we have to show is that it vanishes at ∞. Suppose without loss of generality that G is not compact, and let $(g_\alpha)_{\alpha}$ be a net in G such that $g_\alpha \to \infty$. Let τ denote the topology of pointwise convergence on $G \times H$. It is clear that $L_{(g_\alpha,h)} f \xrightarrow{\tau} 0$. Since $\{ L_{(g,h)} f : g \in G \}$ is relatively weakly compact by Lemma 4.2, the weak topology and τ coincide on the weak closure of $\{ L_{(g,h)} f : g \in G \}$, so that, in particular, $\langle L_{(g_\alpha,h)} f, \phi \rangle \to 0$.

Analogously, one sees that $(\phi \star f)(g,\cdot) \in C_0(H)$ for each $g \in G$.

Let $\omega \in (G \times H^{\text{op}})^{\mathcal{LUC}}$. Since, by the foregoing,

$$\omega \star (\phi \star f) = (\omega \star \phi) \star f \in SC_0(G \times H),$$

it follows that $\phi \star f \in \mathcal{LUCSC}_0(G \times H^{\text{op}})$. \qed

Theorem 4.4 Let G and H be locally compact groups. Then we have:

(i) $\mathcal{LUCSC}_0(G \times H^{\text{op}})$ is a closed $\mathcal{M}(H)\mathcal{M}(G)$-submodule of $SC_0(G \times H^{\text{op}})$.

(ii) $\mathcal{LUCSC}_0(G \times H^{\text{op}})^\ast$ is a normal, dual Banach $\mathcal{M}(G)\mathcal{M}(H)$-bimodule.

(iii) If $H = G$, then Δ_* maps $C_0(G)$ into $\mathcal{LUCSC}_0(G \times G^{\text{op}})$.

Proof For (i), first note that it is routinely checked that $\mu \cdot f, f \cdot \nu \in \mathcal{LUC}(G \times H^{\text{op}})$ for all $f \in \mathcal{LUCSC}_0(G \times H^{\text{op}})$ and all $\mu \in \mathcal{M}(G)$ and $\nu \in \mathcal{M}(H)$. Fix $f \in \mathcal{LUCSC}_0(G \times H^{\text{op}})$, $\mu \in \mathcal{M}(G)$, $\nu \in \mathcal{M}(H)$, and let $\omega \in (G \times H^{\text{op}})^{\mathcal{LUC}}$. Since

$$\omega \star (\mu \cdot f)(g,h) = \langle \mu \cdot L_{(g,h)} f, \omega \rangle \quad ((g,h) \in G \times H^{\text{op}}),$$

an application of Lemma 4.2 as in the proof of Proposition 4.3 yields that $\omega \star (\mu \cdot f) \in SC_0(G \times H^{\text{op}})$. A similar, but easier argument yields that $\omega \star (f \cdot \nu) \in SC_0(G \times H^{\text{op}})$.

For (ii), first observe that the canonical embedding of $\mathcal{M}(G \times H^{\text{op}})$ into $\mathcal{LUC}(G \times H^{\text{op}})^\ast$ via integration is an algebra homomorphism. If we view $\mathcal{M}(G \times H^{\text{op}})$ as a $\mathcal{M}(G)\mathcal{M}(H)$-submodule of $\mathcal{LUCSC}_0(G \times H^{\text{op}})^\ast$ (through Proposition 4.2(ii)), we see routinely that

$$\mu \cdot \nu = (\mu \otimes \delta_e) \ast \nu \mid_{\mathcal{LUCSC}_0(G \times H)} \quad (\mu \in \mathcal{M}(G), \nu \in \mathcal{M}(G \times H^{\text{op}})). \quad (8)$$
Fix $\mu \in M(G)$. By (the simple direction of) Equation (19) — actually already proven in [26] —, the map
\[
\mathcal{LUC}(G \times H^{\text{op}})^* \to \mathcal{LUC}(G \times H^{\text{op}})^*, \quad \phi \mapsto (\mu \otimes \delta_e) \ast \phi \tag{9}
\]
is w^*-continuous. Let $\phi \in \mathcal{LUC}(G \times H^{\text{op}})^*$ be arbitrary, and choose a net $(\nu_{\alpha})_{\alpha}$ in $M(G \times H^{\text{op}})$ that converges to ϕ in the w^*-topology (the existence of such a net follows with a simple Hahn–Banach argument). Then (9) and the w^*-continuity of (9), yield that
\[
\mu \cdot \phi = w^*\lim_{\alpha} \mu \cdot \nu_{\alpha} = w^*\lim_{\alpha} (\mu \otimes \delta_e) \ast \nu_{\alpha} = (\mu \otimes \delta_e) \ast \phi.
\]
Let $f \in \mathcal{LUCSC}_0(G \times H^{\text{op}})$. Then we have
\[
\langle f, \mu \cdot \phi \rangle = \langle f, (\mu \otimes \delta_e) \ast \phi \rangle = \langle \phi \cdot f, \mu \otimes \delta_e \rangle \tag{10}
\]
By Proposition 4.3, $\mathcal{LUCSC}_0(G \times H^{\text{op}})$ is left introverted, so that, in particular, $\phi \cdot f \in \mathcal{SC}_0(G \times H^{\text{op}})$. Let $(\mu_{\alpha})_{\alpha}$ be a net in $M(G)$ that converges to μ in the w^*-topology. Then (10) yields:
\[
\lim_{\alpha} \langle f, \mu_{\alpha} \cdot \phi \rangle = \lim_{\alpha} \langle \phi \cdot f, \mu_{\alpha} \otimes \delta_e \rangle = \langle \phi \cdot f, \mu \cdot \phi \rangle.
\]
It follows that, for any $\phi \in \mathcal{LUCSC}_0(G \times H^{\text{op}})^*$, the map
\[
M(G) \to \mathcal{LUCSC}_0(G \times H^{\text{op}})^*, \quad \mu \mapsto \mu \cdot \phi
\]
is w^*-continuous. Noting that
\[
\phi \cdot \nu = \phi \ast (\delta_e \otimes \nu) \quad (\nu \in M(H)),
\]
we see analogously that
\[
M(H) \to \mathcal{LUCSC}_0(G \times H^{\text{op}})^*, \quad \nu \mapsto \phi \cdot \nu
\]
is w^*-continuous for all $\phi \in \mathcal{LUCSC}_0(G \times H^{\text{op}})^*$. This proves (ii).

Suppose that $H = G$. It is well known $C_0(G) \subset \mathcal{LUC}(G) \cap \mathcal{RUC}(G)$, where
\[
\mathcal{RUC}(G) := \{ f \in C_b(G) : G \ni g \mapsto R_g f \text{ is norm continuous} \}.
\]
Let $f \in C_0(G)$, and note that
\[
L_{(g,h)} \Delta_s f = \Delta_s (L_g R_h f) \quad ((g, h) \in G \times G^{\text{op}}).
\]
The norm continuity of \(\Delta_* \) shows that \(\Delta_*f \in \mathcal{LUC}(G \times G^{\text{op}}) \). To show that \(\Delta_*f \in \mathcal{LUCSC}_0(G \times G^{\text{op}}) \), let \(\omega \in (G \times G^{\text{op}})^{\mathcal{LUC}} \). Let \(((g_\alpha, h_\alpha))_\alpha \) be a net in \(G \times G^{\text{op}} \) such that \((g_\alpha, h_\alpha) \to \omega \). Passing to a subnet, we may suppose that \((g_\alpha h_\alpha)_\alpha \) converges to some \(k \in G \) or tends to infinity. In the first case, we have

\[
(\omega \cdot \Delta_* f)(g, h) = \lim_\alpha \Delta_* f (gg_\alpha, h_\alpha h) = f(kh) \quad ((g, h) \in G \times H^{\text{op}})
\]

and in the second one

\[
(\omega \cdot \Delta_* f)(g, h) = \lim_\alpha \Delta_* f (gg_\alpha, h_\alpha h) = \lim_\alpha f (gg_\alpha h_\alpha h) = 0 \quad ((g, h) \in G \times H^{\text{op}}).
\]

In either case, \(\omega \cdot \Delta_* f \in \mathcal{SC}_0(G \times H^{\text{op}}) \) holds. This proves (iii). \(\square \)

5 Connes-amenability of \(M(G) \)

Let \(G \) be a locally compact group. As a consequence of Theorem 4.4(iii), \(\Delta_M(G) \) extends to an \(M(G) \)-bimodule homomorphism \(\Delta_{0,w^*} : \mathcal{LUCSC}_0(G \times G^{\text{op}})^* \to M(G) \):

Proposition 5.1 Let \(G \) be a locally compact group such that \(M(G) \) is Connes-amenable. Then there is \(M \in \mathcal{LUCSC}_0(G \times G^{\text{op}})^* \) such that

\[
\mu \cdot M = M \cdot \mu \quad (\mu \in M(G)) \quad \text{and} \quad \Delta_{0,w^*}M = \delta_e.
\]

Proof Define a derivation

\[
D : M(G) \to \mathcal{LUCSC}_0(G \times G^{\text{op}})^*, \quad \mu \mapsto \mu \otimes \delta_e - \delta_e \otimes \mu.
\]

It is easy to see that \(D \) is \(w^* \)-continuous and attains its values in \(\ker \Delta_{0,w^*} \). Being the kernel of a \(w^* \)-continuous bimodule homomorphism, \(\ker \Delta_{0,w^*} \) is a \(w^* \)-closed submodule of the normal, dual Banach \(M(G) \)-module \(\mathcal{LUCSC}_0(G \times G^{\text{op}})^* \) and thus a normal, dual Banach \(M(G) \)-module in its own right. Since \(M(G) \) is Connes-amenable, there is thus \(N \in \ker \Delta_{0,w^*} \) such that

\[
D\mu = \mu \cdot N - N \cdot \mu \quad (\mu \in M(G)).
\]

The element

\[
M := \delta_e \otimes \delta_e - N
\]

then has the desired properties. \(\square \)

Remark Since \(\mathcal{LUCSC}_0(G \times G)^* \) is only a quotient of \(\mathcal{SC}_0(G \times G)^* \), Proposition 5.1 does not allow us to conclude that \(M(G) \) has a normal, virtual diagonal.
Lemma 5.2 Let G and H be locally compact groups. Then $\mathcal{LUCSC}_0(G \times H^{\text{op}})$ is an essential ideal of $\mathcal{LUC}(G \times H^{\text{op}})$.

Proof Let $f \in \mathcal{LUCSC}_0(G \times H^{\text{op}})$, let $F \in \mathcal{LUC}(G \times H^{\text{op}}) \subset \mathcal{LUC}(G \times H^{\text{op}})$, and let $\omega \in (G \times H^{\text{op}})\mathcal{LUC}$. Let $((g_\alpha, h_\alpha))_\alpha$ be a net in $G \times H^{\text{op}}$ converging to ω. Since

$$\omega \cdot (fF) = \lim_\alpha R_{(g_\alpha, h_\alpha)}(fF) = \lim_\alpha (R_{(g_\alpha, h_\alpha)} f)(R_{(g_\alpha, h_\alpha)} F) = (\omega \cdot f)(\omega \cdot F)$$

with pointwise convergence on $G \times H$ and since $\omega \cdot F \in \mathcal{LUC}(G \times H^{\text{op}})$, it follows that $\omega \cdot (fF) \in SC_0(G \times H)$. Hence, $\mathcal{LUCSC}_0(G \times H^{\text{op}})$ is an ideal of $\mathcal{LUC}(G \times H^{\text{op}})$. Since $C_0(G \times H) \subset \mathcal{LUCSC}_0(G \times H^{\text{op}})$, it is even an essential ideal. \qed

Theorem 5.3 For a locally compact group G, the following are equivalent:

1. G is amenable.
2. $M(G)$ is Connes-amenable.

Proof (i) \implies (ii): By \cite[Theorem 2.5]{16}, $L^1(G)$ is amenable. Since $L^1(G)$ is w^*-dense in $M(G)$, \cite[Proposition 4.2]{22} yields the Connes-amenability of $M(G)$.

(ii) \implies (i): Let $M \in \mathcal{LUCSC}_0(G \times G^{\text{op}})^*$ be as in Proposition 5.1. View M as a measure on the character space of the commutative C^*-algebra $\mathcal{LUCSC}_0(G \times G^{\text{op}})$, so that $|M| \in \mathcal{LUCSC}_0(G \times G^{\text{op}})^*$ can be defined in terms of measure theory. It is routinely checked that $|M| \neq 0$, and

$$\delta_g \cdot |M| = |M| \cdot \delta_g \quad (g \in G). \quad (11)$$

By Lemma 5.2 $\mathcal{LUCSC}_0(G \times G^{\text{op}})$ is an essential, closed ideal in $\mathcal{LUC}(G \times G^{\text{op}})$. We may therefore view $\mathcal{LUC}(G \times G^{\text{op}})$ as a C^*-subalgebra of the multiplier algebra $\mathcal{M}(\mathcal{LUCSC}_0(G \times G^{\text{op}}))$. Since $\mathcal{M}(\mathcal{LUCSC}_0(G \times G^{\text{op}}))$, in turn, embeds canonically into $\mathcal{LUCSC}_0(G \times G^{\text{op}})^*$, we may view $\mathcal{M}(\mathcal{LUCSC}_0(G \times G^{\text{op}}))$ and thus $\mathcal{LUC}(G \times G^{\text{op}})$ as a C^*-subalgebra of $\mathcal{LUCSC}_0(G \times G^{\text{op}})^*$, so that, in particular, $\langle f, |M| \rangle$ is well-defined for each $f \in \mathcal{LUC}(G \times G^{\text{op}})$. Note that the embedding of $\mathcal{LUC}(G \times G^{\text{op}})$ into $\mathcal{LUCSC}_0(G \times G^{\text{op}})^*$ is an $M(G)$-bimodule homomorphism (where the $M(G)$-bimodule action on $\mathcal{LUC}(G \times G^{\text{op}})$ is defined as on $SC_0(G \times G)$). Define

$$m: \mathcal{LUC}(G) \to \mathbb{C}, \quad f \mapsto \langle f \otimes 1, |M| \rangle.$$

Since $f \otimes 1 \in \mathcal{LUC}(G \times G^{\text{op}})$ for each $f \in \mathcal{LUC}(G)$, m is a well-defined, positive, linear
functional. For $f \in \mathcal{LUC}(G)$ and $g \in G$, we have:

$$\langle L_{g} f, m \rangle = \langle L_{(g,e)} (f \otimes 1), |M| \rangle = \langle f \otimes 1, \delta_{g} \cdot |M| \rangle = \langle f \otimes 1, |M| \rangle = \langle f \otimes 1, |M| \cdot \delta_{g} \rangle = \langle L_{(e,g)} (f \otimes 1), |M| \rangle = \langle f \otimes 1, |M| \rangle = \langle f, m \rangle.$$

Normalizing m, we thus obtain a left invariant mean on $\mathcal{LUC}(G)$. Hence, G is amenable by [23, Theorem 1.1.9].

We believe that assertions (i) and (ii) in Theorem 5.3 are equivalent to:

(iii) $M(G)$ has a normal virtual diagonal.

Although we have been unable to prove this, Proposition 3.3 as well as the following corollary support this belief:

Corollary 5.4 Let G be a discrete group. Then the following are equivalent:

(i) G is amenable.

(ii) $\ell^{1}(G)$ is Connes-amenable.

(iii) There is a normal, virtual diagonal for $\ell^{1}(G)$.

Proof (i) \Longrightarrow (iii): If G is amenable, $\ell^{1}(G)$ is amenable, so that there is a virtual diagonal $M \in (\ell^{1}(G) \hat{\otimes} \ell^{1}(G))^{**}$ for $\ell^{1}(G)$. Let $\rho : (\ell^{1}(G) \hat{\otimes} \ell^{1}(G))^{**} \to \mathcal{L}_{\text{w}^{*}}^{2}(\ell^{1}(G), \mathbb{C})^{*}$ denote the restriction map. Then $\rho(M)$ is a normal, virtual diagonal for $\ell^{1}(G)$.

Since (i) \iff (ii) by Theorem 5.3, and since (iii) \implies (ii) for any dual Banach algebra, this proves the corollary.

Remark Since discrete groups are trivially inner amenable, the equivalence of (i) and (ii) in Corollary 5.4 can alternatively be deduced from [20]: If $\ell^{1}(G)$ is Connes-amenable, then so is $\text{VN}(G)$ by [22, Proposition 4.2], which, by [20], establishes the amenability of G.

References

[1] J. F. Berglund, H. D. Junghenn, and P. Milnes, *Analysis on Semigroups*. Wiley-Interscience, 1988.
[2] J. W. Bunce and W. L. Paschke, Quasi-expectations and amenable von Neumann algebras. *Proc. Amer. Math. Soc.* **71** (1978), 232–236.

[3] R. B. Burckel, *Weakly Almost Periodic Functions on Semigroups*. Gordon and Breach, 1970.

[4] A. Connes, Classification of injective factors. *Ann. of Math.* **104** (1976), 73–114.

[5] A. Connes, On the cohomology of operator algebras. *J. Funct. Anal.* **28** (1978), 248–253.

[6] G. Corach and J. E. Galé, Averaging with virtual diagonals and geometry of representations. In: E. Albrecht and M. Mathieu (ed.s), *Banach Algebras ’97*, pp. 87–100. Walter de Grutyer, 1998.

[7] H. G. Dales, F. Ghahramani, and A. Ya. Helemskiî, The amenability of measure algebras. *J. London Math. Soc.* (to appear).

[8] E. G. Effros, Amenability and virtual diagonals for von Neumann algebras. *J. Functional Analysis* **78** (1988), 137–153.

[9] E. G. Effros and E. C. Lance, Tensor products of operator algebras. *J. Funct. Anal.* **25** (1977), 1–34.

[10] E. G. Effros and A. Kishimoto, Module maps and Hochschild–Johnson cohomology. *Indiana Univ. Math. J.* **36** (1987), 257–276.

[11] A. Grothendieck, Critères de compacité dans les espaces fonctionnels généraux. *Amer. J. Math.* **74** (1953), 168–186.

[12] U. Haagerup, All nuclear C^*-algebras are amenable. *Invent. math.* **74** (1983), 305–319.

[13] A. Ya. Helemskiî, Homological essence of amenability in the sense of A. Connes: the injectivity of the predual bimodule (translated from the Russian). *Math. USSR–Sb* **68** (1991), 555–566.

[14] E. Hewitt and K. A. Ross, *Abstract Harmonic Analysis*, I and II. Springer Verlag, 1979.

[15] B. E. Johnson, Separate continuity and measurability. *Proc. Amer. Math. Soc.* **20** (1969), 420–422.

[16] B. E. Johnson, Cohomology in Banach algebras. *Mem. Amer. Math. Soc.* **127** (1972).

[17] B. E. Johnson, Approximate diagonals and cohomology of certain annihilator Banach algebras. *Amer. J. Math.* **94** (1972), 685–698.

[18] B. E. Johnson, R. V. Kadison, and J. Ringrose, Cohomology of operator algebras, III. *Bull. Soc. Math. France* **100** (1972), 73–79.

[19] A. T.-M. Lau, Continuity of Arens multiplication on the dual space of bounded uniformly continuous functions on locally compact groups and topological semigroups. *Math. Proc. Cambridge Phil. Soc.* **99** (1986), 273–283.
[20] A. T.-M. Lau and A. L. T. Paterson, Inner amenable locally compact groups. Trans. Amer. Math. Soc. 325 (1991), 155–169.

[21] A. L. T. Paterson, Amenability. American Mathematical Society, 1988.

[22] V. Runde, Amenability for dual Banach algebras. Studia Math. 148 (2001), 47–66.

[23] V. Runde, Lectures on Amenability. Lecture Notes in Mathematics 1774, Springer Verlag, 2001.

[24] S. Wassermann, On Tensor products of certain group C^*-algebras. J. Funct. Anal. 23 (1976), 239–254.

[25] S. Wassermann, Injective W^*-algebras. Math. Proc. Cambridge Phil. Soc. 82 (1977), 39–47.

[26] J. C. S. Wong, Invariant means on locally compact semigroups. Proc. Amer. Math. Soc. 31 (1972), 39–45.

Address: Department of Mathematical and Statistical Sciences
University of Alberta
Edmonton, Alberta
Canada T6G 2G1

E-mail: vrunde@ualberta.ca

URL: http://www.math.ualberta.ca/~runde/