Quasi-oppositional symbiotic organisms search algorithm for different economic load dispatch problems

D. Das*, A. Bhattacharya, and R. Narayan Ray

Department of Electrical Engineering, National Institute of Technology, Agartala, Pin-799046, India.

Received 11 April 2018; received in revised form 15 August 2018; accepted 15 October 2018

KEYWORDS
Economic load dispatch;
Opposition-based learning;
Prohibited operating zone;
Symbiotic organisms search;
Valve point loading.

Abstract. In this paper, an effective meta-heuristic technique called quasi-oppositional symbiotic organisms search is applied for solving non-convex economic dispatch problems. Symbiotic organisms search is a soft computing technique, inspired by organisms in the ecosystem. This technique is implemented for improving the solution quality in minimum time. In order to improve the convergence rate, quasi-reflected numbers are used here instead of pseudo-random numbers. Different equality and inequality constraints such as transmission loss, load demand, prohibited operating zone, generator operating limits, and boundary of ramp rate are considered here. The presence of multiple fuels and valve point are also considered in some cases. This algorithm is applied to four different test systems. Simulation results are compared with many recently developed optimization techniques to show the superiority and consistency of this method. Simulation results also show that the computational efficiency of this algorithm is much better than the other meta-heuristic methods available in the literature.

© 2020 Sharif University of Technology. All rights reserved.

1. Introduction

In recent years, the minimization of fuel cost during electrical power production has become a major challenge for power engineers. The objective of economic dispatch is to reduce the price of power generation while satisfying various constraints.

Classical optimization techniques have been developed to find a solution to ELD problems. However, they are subject to various limitations. In linear programming [1] method, generator fuel cost characteristics are approximated as piecewise linear. This is one of the major disadvantages of this method, even though it is fast and reliable. Dynamic programming [2] technique was introduced by Wood and Wollenberg [3] applied this technique for solving the ELD problems. However, with an increase in system size, its execution time also increases. These classical methods are mainly calculus based, and they make use of derivatives. In some cases, these techniques converge to local optimal point. Practical ELD considers ramp rate limit, prohibited operating zone, multiple fuel options, etc. Therefore, the resultant ELD becomes a non-convex optimization problem, which is very difficult to solve by classical methods. Therefore, in recent years, numerous meta-heuristic and heuristic processes have been applied to solve various economic dispatch problems.

Simulated Annealing (SA) [4] was developed in 1993. This algorithm was inspired by annealing in metallurgy, a technique that involves heating and controlled cooling of a material in order to increase the crystals size and reduce their defects. Panigrahi et
al. [5] applied this technique to dynamic economic load dispatch problem for determining the nearly global optimal solution. However, it is not easy to set a suitable value for control parameter, and the convergence speed of this technique is also very low.

In 1993, Walters and Sheble [6] proposed Genetic Algorithm (GA) for solving ELD problems. It was found that the potential of GA for global optimization was very high. However, the performance of this method was not good at identifying local optima, and this algorithm was not effective for smooth unimodal function. Therefore, in order to improve the performance of GA, Improved Genetic Algorithm with Multiplier Updating (IGA-MU) was developed by Chiang [7] in 2005 for solving power economic dispatch.

Kennedy and Eberhart [8] proposed Particle Swarm Optimization (PSO) technique, motivated by flocking of birds and fish schooling. Gaing [9] applied this technique to different constrained ELD problems. However, this method is not always guaranteed to obtain global best solution. There is a chance to get stuck in a local optimal point. Therefore, various modifications and hybridization of PSO such as New PSO with Local Random Search (NPSO LRS) [10], adaptive PSO [11], improved coordinated-aggregation-based PSO [12], improved PSO [13], and species-based quantum particle swarm [14] have been presented to improve the efficiency of this algorithm.

Storn and Price [15] proposed Differential Evolution (DE) based on a population-based stochastic search technique. This technique gives nearly global optimal solution by iterative refining of the population through reproduction and selection. Iba et al. [16] proposed this DE technique in order to solve ELD problems. However, it was found that the performance of this technique was not satisfactory in terms of convergence speed for a large system. Therefore, various modified and hybridized versions of DE with a generator of chaos sequences and sequential quadratic programming [17], DE-PSO-DE [18], and improved DE [19] have been introduced to get a better quality solution.

Evolutionary programming [20] is a soft computing method. This methodology is capable of finding a near-optimal solution. However, the major demerit of this method is that the execution period of this technique is too long and, also, the application of this technique is restricted in practical areas. Therefore, for improving the computational efficiency of this technique, an improved fast evolutionary programming was proposed by Sinha et al. [21] for economic dispatch problems.

In 2008, bacterial foraging with Nelder-Mead algorithm [22] was developed in order to solve the economic dispatch problems. Biogeography-Based Optimization (BBO) was proposed by Simon [23]. Bhattacharya and Chattopadhyay [24] applied this technique to various non-convex ELD problems. Bhattacharya et al. (2010) proposed a hybrid method that combined DE with BBO (DE/BBO) [25] to solve both non-convex and convex ELD problems.

Lam and Li [26] developed Chemical Reaction Optimization (CRO) method. This technique was applied to continuous benchmark function, and the performance of this technique was found satisfactory. Bhattacharjee et al. [27] applied this methodology to the constrained ELD problem for finding nearly global optimal results. Oppositional Real-Coded Chemical Reaction Optimization (ORCCRO) was introduced by Bhattacharjee et al. [28] to solve non-convex optimization problems.

In 2011, Rao et al. [29] developed Teaching Learning-Based Optimization (TLBO) method. TLBO is based on two phases of education and they are ‘Teacher phase’ and ‘Learner phase’. It is observed that the performance of TLBO method is satisfactory when tested on various benchmark functions. In 2013, TLBO method was applied by Bhattacharjee et al. [30] to solve ELD problems. Banerjee et al. [31] proposed TLBO to find the solution of ELD. Chaotic Teaching-Learning Based Optimization with Levy flight (CTLBO) was proposed by He et al. [32] in order to solve ELD problems.

Mirjalili et al. [33] discovered grey wolf optimizer algorithm in order to solve various mathematical problems. Kamboj et al. [34] used this technique to solve the problems of constrained ELD. Self-Adaptive Differential Harmony Search (SADHS) algorithm and Chaotic Self-Adaptive Differential Harmony Search algorithm (CSADHS) techniques were proposed by Rajagopalan et al. [35] in 2014. An efficient Krill herd method was proposed by Mandal et al. [36] for solving both non-convex and convex ELD problems. In 2015, Barisal and Prusty [37] proposed Oppositional Invasive-Weed Optimization (OIWO) method to solve large-scale ELD problems. Mirjalili proposed ant lion optimization [38], which was implemented by Kamboj et al. [39] for solving various problems of ELD. In 2015, Selvathra et al. [40] developed a hybrid cross-entropy method and quadratic programming for solving ELD problems. Al-Betar et al. [41] proposed Tournament-based harmony search algorithm for solving non-convex ELD problems. Ghorbani and Babaee proposed Exchange Market Algorithm (EMA) [42], motivated by the stock exchange trading method, for solving ELD problems. In 2018, Mohammadi et al. introduced Modified Crow Search Algorithm (MCSCA) [43] for solving the non-convex economic load dispatch problem.

In 2014, Cheng and Prayogo [44] proposed a new optimization technique called Symbiotic Organisms Search (SOS) in order to solve various mathematical and engineering design problems. The proposed...
methodology recreates the intelligent conduct seen among creatures in nature. The main advantage of this algorithm is that specific algorithm parameters are not required. In 2016, SOS technique was implemented by Duman [45] to find the solution of optimal power flow. In 2017, Guven et al. [46] proposed SOS method to solve economic dispatch problems.

Opposition-Based Learning (OBL) was proposed by Tizhoosh [47] in order to improve back propagation in neural networks. In order to approach the solution, OBL exploits the opposite numbers. By contrasting a number to the opposite number, a compact search space is required to obtain the correct solution. It was demonstrated that a quasi-opposite number [48] was likely to be closer to the solution as compared to a random number. Further to this, a quasi-opposite number was typically nearer to the solution compared to an opposite number.

Since the quasi-opposite number is used here instead of the pseudo-random number, the solution obtained through the initialization process is nearer to the optimal solution. Hence, the number of iterations required to reach the optimal solution is less than that in other initialization processes. It is observed that the computational efficiency of this technique is better, which is the reason why the present authors have adopted this methodology in Quasi Oppositional Symbiotic Organisms Search (QOSOS) for accelerating the speed of convergence of SOS to a greater extent. It is seen that QOSOS is performed better than SOS and other well-known optimization techniques. In this paper, the QOSOS algorithm is used for solving various ELD problems, and the results obtained by QOSOS method are compared to other optimization techniques. The details of this proposed technique are discussed in Section 4.

The main contribution of this paper is to implement the OBL method in SOS algorithm in order to accelerate the convergence rate of SOS algorithm. It has already been discussed above that if quasi-random number is used instead of pseudo-random number, then the convergence rate improves because the solution obtained through the initialization process is nearer to the best solution. In 2009, Egezez et al. [48] proved that quasi-opposite number was always nearer to the best solution than random number and opposite number. It was also observed that, for an original estimated solution, quasi-reflected set (expected probability is 11/16) had a greater tendency to reach an optimal point as compared to quasi-opposite set (expected probability is 9/16). SOS algorithm itself is a strong optimization technique. This algorithm is validated and tested in various benchmark functions, and it is found that this algorithm gives better performance than the other well-known meta-heuristic based methods. Therefore, the present authors have adopted OBL in SOS techniques in order to improve the convergence rate of SOS and obtain a solution with better quality.

2. Problem formulation

2.1. Objective function

The objective of economic dispatch is to minimize the total cost of power generation while satisfying various constraints. The fitness function of the economic dispatch case can be written as follows:

\[
C_T = \min \sum_{i=1}^{N} C_i(W_i) = \min \sum_{i=1}^{N} a_i + b_i W_i + c_i W_i^2,
\]

where \(C_i(W_i)\) shows the fuel price function of the \(i\)th generator; \(a_i\), \(b_i\), and \(c_i\) are the fuel price coefficients of the \(i\)th unit; \(N\) represents the total number of generating units; \(W_i\) is the output power of the \(i\)th unit. From this equation, it is observed that the fuel cost characteristic is quadratic in nature. However, in practice, the valve-point loading effect is introduced in the objective function. A sudden increase in losses has been observed when steam admission valve is opened. Therefore, a ripple is introduced in the cost function, which is known as the valve-point loading effect.

The overall objective function \(C_T\) of the economic dispatch problem with valve-point effect [28] can be expressed as follows:

\[
C_T = \left(\sum_{i=1}^{N} C_i(W_i) \right) = \left(\sum_{i=1}^{N} a_i + b_i W_i + c_i W_i^2 \right) + \left| E_i \times \sin \left(F_i \times (W_i^{\text{min}} - W_i) \right) \right|
\]

where \(E_i\) and \(F_i\) represent the coefficients of unit \(i\) with the valve-point effects.

Practically, multiple fuel sources are used for dispatching unit, and every unit must be represented with a piecewise quadratic function. In a network, the fuel price function of the generator with valve point and multiple fuel option [27] can be represented by:

\[
C_T = \sum_{i=1}^{N} C_{ip}(W_i),
\]

Eq. (4) is shown in Box I,

where \(N\) is the total number of generators; \(W_{ip-1}\) is the lower limit for fuel option \(p\) of the \(i\)th generating unit; \(a_{ip}, b_{ip}, c_{ip}, E_{ip}, \) and \(F_{ip}\) represent the coefficients of fuel price of the \(i\)th generator with fuel option \(p\).

2.2. Constraints of ELD

2.2.1. Constraint of real power or demand

The overall generation must be equal to transmission loss and system demands. This can be represented as follows:
\[\sum_{i=1}^{N} W_i - (W_D + W_L) = 0, \quad (5) \]

where \(W_L, W_D \) represent the total transmission loss and total system demand, respectively. The loss due to power transmission \(W_L \) can be calculated as follows:

\[W_L = \sum_{i=1}^{N} \sum_{j=1}^{N} W_{B_{ij}} W_j + \sum_{i=1}^{N} B_{ai} W_i + B_{ao}. \quad (6) \]

2.2.2. Operating limits constraint of generator

The generated power by individual generator must vary within their maximum and minimum limits. Therefore:

\[W_{i_{\text{min}}} \leq W_i \leq W_{i_{\text{max}}} \quad i = 1, 2, 3 \ldots N, \quad (7) \]

where \(W_{i_{\text{min}}} \) and \(W_{i_{\text{max}}} \) represent the lower and upper limits of the real power output of unit \(i \).

2.2.3. Ramp rate limit

In practical circumstances, the operating range of all online units may be confined by the ramp rate limit \[28\]. Depending on up (\(UR_i \)) and down (\(DR_i \)) ramp rate limits, the generation can be increased or decreased.

If generation increases:

\[W_i - W_{i_{\text{th}}} \leq UR_i. \quad (8) \]

If generation decreases:

\[W_{i_{\text{th}}} - W_i \leq DR_i. \quad (9) \]

where \(W_{i_{\text{th}}} \) is the power generation of the ith unit at an earlier hour.

2.2.4. Prohibited zone constraint

The units of the generator might have some zones where operation is limited because of faults in the machines, steam valve operation, boilers, vibration in shafts, etc. \[28\]. Thus, a discontinuous cost curve is produced in relation to the prohibited operating zone. Prohibited operating zone may be formulated as follows:

\[W_{i_{\text{min}}} \leq W_i \leq W_{i_{\text{th}}}^{(k)}, \quad 2 \leq k \leq n_i. \quad (10) \]

or:

\[W_{i_{\text{th}}}^{(k)} \leq W_i \leq W_{i_{\text{th}}}^{(k)} + W_{i_{\text{th}}}^{(k+1)} \]

where \(k \) represents total prohibited zone numbers of the \(i \)th unit. \(W_{i_{\text{th}}}^{(k)} \) and \(W_{i_{\text{th}}}^{(k+1)} \) represent higher and lower limits of the \(k \)th prohibited zone; \(n_i \) represents the total number of prohibited zones of the \(i \)th unit. During optimization, if \(W_{i_{\text{th}}}^{(k)} \geq W_i \geq (W_{i_{\text{th}}}^{(k)} + W_{i_{\text{th}}}^{(k+1)})/2 \), then \(W_i \) will be fixed to \(W_{i_{\text{th}}}^{(k+1)} \). Mathematically, this can be expressed as follows:

\[W_i = W_{i_{\text{th}}}^{(k)} \quad \text{if} \quad W_{i_{\text{th}}}^{(k)} \geq W_i \geq (W_{i_{\text{th}}}^{(k)} + W_{i_{\text{th}}}^{(k+1)})/2, \quad (11) \]

\[k = 2, 3, \ldots, n_i. \]

If \(W_{i_{\text{th}}}^{(k)} \leq W_i < (W_{i_{\text{th}}}^{(k)} + W_{i_{\text{th}}}^{(k+1)})/2 \), then \(W_i \) will be fixed to \(W_{i_{\text{th}}}^{(k+1)} \). Mathematically, this can be expressed as follows:

\[W_i = W_{i_{\text{th}}}^{(k+1)} \quad \text{if} \quad W_{i_{\text{th}}}^{(k)} < W_i < (W_{i_{\text{th}}}^{(k)} + W_{i_{\text{th}}}^{(k+1)})/2, \quad (12) \]

\[k = 2, 3, \ldots, n_i. \]

2.3. Calculation of slack generator power output

Without transmission loss:

\[W_N = W_D - \sum_{i=1}^{(N-1)} W_i. \quad (13) \]

With transmission loss:

\[W_N = W_D + W_L - \sum_{i=1}^{N-1} W_i. \quad (14) \]

By using Eqs. (6) and (14), the modified equation may be written as follows:
\[B_{NN}W_N^2 + W_N \left(2 \sum_{i=1}^{N-1} B_{Ni}W_i + B_{ON} - 1 \right) + \left(W_D + \sum_{i=1}^{N-1} \sum_{j=1}^{N-1} W_iB_{ij}W_j \right) + \sum_{i=1}^{N-1} B_{Ni}W_i - \sum_{i=1}^{N-1} W_i + B_{00} = 0. \tag{15} \]

\(W_N \) is the same as that mentioned in [25].

3. Symbiotic Organisms Search (SOS)

SOS is developed based on the relationship between two separate organisms. The word symbiosis represents the relationship between two specific species. Among the various advantageous relations found in nature, mutualism, commensalism, and parasitism [44] are the most widely recognized. Mutualism is a symbiotic relationship between two separate organisms, wherein both organisms get the advantage [44]. In commensalism between two organisms, one is benefited by the other without affecting it [44]. Parasitism is the relationship between two types of organisms in which one gets benefitted while harming the other [44]. SOS imitates the mutualism, commensalism, and parasitism phases of nature in order to generate a new solution.

3.1. Mutualism phase

The relationship between flowers and bees is an example of mutualism. Honeybees accumulate nectar flying from flower to flower and transform it into honey. In this process, honeybees circulate pollen, which inspires fertilization. Thus, both the honeybee and the flowers get benefitted.

In SOS, \(Z_i \) stands for an organism related to the \(i \)th individual from the eco-system. From the eco-system, another organism \(Z_j \) is then chosen randomly to interact with \(Z_i \). These two organisms are then made and involved in a mutualistic association, such that both \(Z_i \) and \(Z_j \) get benefitted. The new candidate solutions \(Z_{i\text{new}} \) and \(Z_{j\text{new}} \) are computed in light of the mutually beneficial interaction between \(Z_i \) and \(Z_j \). This is presented in Eqs. (16) and (17):

\[Z_{i\text{new}} = Z_i + \text{rand} (0, 1) \times (Z_{\text{best}} - \text{MutualVector} \times b_{f_1}). \tag{16} \]

\[Z_{j\text{new}} = Z_j + \text{rand} (0, 1) \times (Z_{\text{best}} - \text{MutualVector} \times b_{f_2}). \tag{17} \]

\[\text{MutualVector} = \frac{Z_i + Z_j}{2}. \tag{18} \]

where \(b_{f_1} \) and \(b_{f_2} \) are the benefit factors. \(Z_{i\text{new}} \) and \(Z_{j\text{new}} \) are the new candidate solutions obtained after modifying the values of \(Z_i \) and \(Z_j \) in the mutualism phase. \(Z_{\text{best}} \) represents the best organism obtained so far among all sets in the population matrix (Ecoystem) based on the fitness value. Sometimes, in some mutualism connections, one organism may get benefitted to a large extent, while the other may have just satisfactory benefit. Thus, organism \(Z_i \) may get more significant advantage than \(Z_j \) when interaction occurs between the two. Here, benefit elements \((b_{f_1} \) and \(b_{f_2} \) are resolved arbitrarily as either 1 or 2.

3.2. Commensalism phase

An example of the commensalism relationship is the relation between sharks and remora fish. The remora eats sustenance remains by attaching itself to the shark and, thus, gets benefitted. However, this does not affect the shark. Thus, the shark gets negligible, if any, benefit from the relations.

Similar to the mutualism stage, an organism, \(Z_j \), is chosen arbitrarily from the eco-system to associate with \(Z_i \). Here, organism \(Z_j \) gets benefit from the association, while organism \(Z_j \) neither gets benefitted nor hurt from the relation. Candidate solution \(Z_j \) is obtained by a commensal advantageous interaction between organisms \(Z_i \) and \(Z_j \), as given in Eq. (18). Organism \(Z_j \) is updated if a new fitness function value is superior to the pre-interaction fitness function value.

\[Z_{i\text{new}} = Z_i + \text{rand} (-1, 1) \times (Z_{\text{best}} - Z_j). \tag{19} \]

3.3. Parasitism phase

Parasitism is a relationship between two organisms in which one gets benefit at the cost of harming the other. In Parasitism, the parasite gets benefit while the host gets harmful affect by the relationship. The tapeworms are divided flatworms, which are found in the inner parts of the entrails of creatures such as bovines, pigs; people may be taken as an example of parasitism. Here, the flatworms are the parasites, which eat the host’s partly digested sustenance and, thus, get benefitted, whereas the host is affected by being deprived of the supplements. In SOS algorithm, organism \(Z_i \) acts as the tapeworm by creating an artificial parasite known as “parasite vector”. In the search space, parasite vector can be obtained by copying organism \(Z_i \) and, then, modifying the randomly chosen dimensions with a random number. From the eco-system organic entity, \(Z_i \) is chosen arbitrarily and serves as a parasite host. If the fitness function value of the parasite vector is superior, organism \(Z_j \) will be murdered by it. Thus, the parasite vector will acquire the place in the eco-system. If \(Z_j \) is superior, then \(Z_j \) will resist the parasite and, hence, the parasite will never again be able to sustain in that eco-system.
4. Oppositional Based Learning (OBL)

Tizhooosh proposed the application of the OBL [47] technique to enhance computational speed and accelerate the rate of the convergence of various optimization algorithms.

If \(y \) is the real number between \([pq, pr]\), then the opposite number of \(y \) may be expressed as follows:

\[
y_0 = pq + pr - y.
\]

(20)

where \(y_0 \) is the opposite number of \(y \).

If \(y \) is a real number between \([pq, pr]\), then the quasi-point, \(y_{q0} \), can be expressed as follows:

\[
y_{q0} = m \cdot d (pc, y_0).
\]

(21)

where \(pc \) represents the midpoint of the interval \([pq, pr]\); rand \((pc, x_0)\) is a random number distributed uniformly between \(pc \) and \(y_0 \). A similar logic may be applied for reflecting the quasi-opposite point \(y_{qr} \). If \(y \) is a real number between \([pq, pr]\), then the value of \(y_{qr} \) can be defined as follows:

\[
y_{qr} = m \cdot d (pc, y).
\]

(22)

where \(y_{qr} \) is the quasi-reflected point.

The above-mentioned definitions can reach out to larger dimensions without much of a stretch.

4.1. Implementation of OBL in SOS algorithm

The OBL technique is implemented in SOS algorithm in order to accelerate the convergence speed of SOS.

4.1.1. Algorithm for the quasi-reflection-based initialization

The steps are given below:

1. Randomly generate initial population \(U \) between maximum and minimum limits of decision variables and generate a reflection weight \(\mu \) between \([0, 1]\);
2. Generate Quasi-Reflected Sets (QRSs) for each initially generated population set, \(U \), using the following procedure;
3. For \(e = 1 : A \) (\(A = \text{pop set} \))
4. For \(f = 1 : B \) (\(B = \text{decision variable} \))
5. If \(U_{e,f} < \text{Median} \)
6. \(\text{QRS}_{e,f} = U_{e,f} + (\text{Median} - U_{e,f}) \times \mu \)\%
(\(\text{Median} = U_{e,f} = (pq + pr)/2 \))
7. Else
8. \(\text{QRS}_{e,f} = \text{Median} + (U_{e,f} - \text{Median}) \times \mu \)
9. End
10. End
11. End
12. Evaluate fitness value for QRS and total population
13. Sort out best \(A \) individuals on the basis of their fitness
14. Store the best population sets

4.1.2. Effect of jumping rate

QRSs have been used in SOS algorithm for accelerating the convergence speed. However, it has been found that if QRSs are generated in every step, the simulation time may be prolonged. Therefore, in order to optimize the computational time, a control parameter called jumping rate has been used. It is a control parameter whose value is set by the user in order to skip the creation of the quasi-reflected set in certain generation. The effect of this parameter in QOSOS algorithm is explained in the flow chart of Section 4.2.

1. For \(f = 1 : B \) (\(B = \text{decision variable} \));
2. If \(U_{e,f} < \text{Median} \)
3. \(\text{QRS}_{e,f} = U_{e,f} + (\text{Median} - U_{e,f}) \times \mu \)\%
(\(\text{Median} = U_{e,f} = (pq + pr)/2 \));
4. Else
5. \(\text{QRS}_{e,f} = \text{Median} + (U_{e,f} - \text{Median}) \times \mu \)
6. End
7. End
8. End
9. Evaluate fitness value for QRS if selected by \(J_r \)
10. End

4.2. Application of oppositional symbiotic organism search algorithm in ELD

The flow chart of QOSOS algorithm is described in Figure 1, which shows the application of QOSOS algorithm in ELD problems. The steps of the QOSOS method applied to economic load dispatch problems are given below:

Step 1: Initialize the number of generators, cosize \(n \), maximum fitness evaluation \(\text{max_fit} \), initial population counter \(\text{num_iter} = 0 \), initial number of fitness evaluations \(\text{num_fit_eval} = 0 \) and maximum number of iterations \(\text{max_iter} \), etc.;

Step 2: Generate output of \((N - 1)\) number of thermal generators randomly based on cosize and dimension of the problem. These are called decision variables:

\[
Z_j^i = (Z_j^\text{max} - Z_j^\text{min}) \times \text{rand} + Z_j^\text{min}
\]

for \(j = 1, 2, 3 \cdots N - 1 \).
Figure 1. Flow chart of Quasi Oppositional Symbiotic Organisms Search (QOSOS) applied to ELD.
Figure 1. Flow chart of Quasi Oppositional Symbiotic Organisms Search (QOSOS) applied to ELD (continued).
The initial population matrix (ecosystem) is presented below:

\[
Ecosystem = \begin{bmatrix}
Z_{11} & Z_{12} & Z_{13} & \cdots & Z_{1n} \\
Z_{21} & Z_{22} & Z_{23} & \cdots & Z_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
Z_{n1} & Z_{n2} & Z_{n3} & \cdots & Z_{nn}
\end{bmatrix}
\]

Step 3: Calculate the real power generation for slack generator. Verify real power balance constraint given in Eq. (5) for slack generator. If the output of slack generator does not meet generation operating limit constraint and other constraints mentioned in Eqs. (6) and (12), then go to Step 2; otherwise, go to Step 4;

Step 4: Calculate the objective function;

Step 5: Generate the quasi-reflected set of the population matrix using Eqs. (20)–(22);

Step 6: Check the limit of all constraints using Eqs. (5) and (12). If the constraints are satisfied, then go to Step 7; otherwise, go to Step 5;

Step 7: Calculate the fitness function (fitness 1) using the quasi-reflected set;

Step 8: Based on the fitness value, sort out the best set of the initial population matrix (ecosystem);

Step 9: Update the set in various phases of SOS (mutualism, commensalism, and parasitism).

- **Mutualism phase**
 1. Choose one organism \(Z_j \) randomly from ecosystem \((Z_j \neq Z_i) \);
 2. Determine mutual vector using Eq. (18) and benefit_factor;
 3. Modify the organisms \(Z_j \) and \(Z_i \) (\(Z_i \) stands for an organism related to the \(i \)th individual from the eco-system) on the basis of their mutual relationship in Eqs. (16) and (17);
 4. Check the limits of modified sets \(Z_{\text{new}} \) and \(Z_{j\text{new}} \). If any organism violates either upper or lower limit, then fix it to the respective limit and calculate the real power generation for slack generator. If the output of slack generator does not meet the generator’s operating limit constraint, then go to step (i); otherwise, go to step (iv);
 5. Calculate the fitness values \(f(Z_{\text{new}}) \) for \(Z_{\text{new}} \) and \(f(Z_{j\text{new}}) \) for \(Z_{j\text{new}} \) and check whether the modified sets are fitter than the previous set or not. If the modified set is fitter than the previous set, then accept it. Otherwise, reject this set and keep the previous set. The steps are given below:
 1. If \(f(Z_{\text{new}}) < \text{fitness}\, 1 \):
 2. If \(f(Z_{j\text{new}}) < \text{fitness}\, 1 \):
 3. \(Z_{\text{ecosystem}} = Z_{\text{new}} \);
 4. End;
 6. If \(f(Z_{j\text{new}}) < \text{fitness}\, 1 \):
 7. \(Z_{\text{ecosystem}} = Z_{j\text{new}} \);
 8. End.

- **Commensalism phase**
 1. Choose one organism \(Z_j \) randomly along with \(Z_i \);
 2. Modify \(Z_i \) using Eq. (19);
 3. Check the limit of all constraints. If any organism violates any constraint limit, then fix it to the respective limit and calculate the real power generation for slack generator. If the output of slack generator does not meet the generator’s operating limit constraint, then go to step (i); otherwise, proceed to step (iv);
 4. Calculate the fitness function value \(f(Z_{\text{new}}) \);
 5. If the modified set \(Z_{\text{new}} \) is fitter than the previous set, then accept the modified set to replace the previous one. Otherwise, reject the set and keep the previous one. The steps are given below:
 1. If \(f(Z_{\text{new}}) < \text{fitness}\, 1 \):
 2. \(\text{fitness}\, 1 = f(Z_{\text{new}}) \):
 3. \(Z_{\text{ecosystem}} = Z_{\text{new}} \);
 4. End.

- **Parasitism phase**
 1. Select one organism randomly and generate parasite_vector by mutating \(Z_i \) by means of a random number in between upper and lower bounds;
 2. Check the constraints of parasite_vector. If any organism violates either upper or lower limit, then set it to the respective limit and calculate the real power generation for slack generator. If output of slack generator does not satisfy the generator’s operating limit constraint, then go back to step (i); otherwise, go to step (iii);
 3. Calculate the fitness function \(f(\text{parasite}_\text{vector}) \);
 4. If the modified set is fitter than the previous set, then accept the modified set. Otherwise, reject the modified set and keep the previous one. The steps are given below:
 1. If \(f(\text{parasite}_\text{vector}) < \text{fitness}\, 1 \):
 2. \(\text{fitness}\, 1 = f(\text{parasite}_\text{vector}) \):
 3. \(Z_{\text{ecosystem}} = \text{parasite}_\text{vector} \);
 4. End.
| Units | DE/BBO [25] | BBO [24] | GAAPI [42] | SOH-PSO [42] | EMA [42] | SOS | QOSOS |
|---------|-------------|----------|------------|--------------|----------|-----|-------|
| P_1 (MW) | 425.815607 | 455.000000 | 451.70 | 455.00 | 455.00 | 455.00 | 455.00 |
| P_2 (MW) | 419.88952 | 420.000000 | 380.00 | 380.00 | 380.00 | 380.00 | 380.00 |
| P_3 (MW) | 130.000000 | 130.000000 | 130.00 | 130.00 | 130.00 | 130.00 | 130.00 |
| P_4 (MW) | 127.109310 | 130.000000 | 129.53 | 130.00 | 130.00 | 130.00 | 130.00 |
| P_5 (MW) | 269.869956 | 270.000000 | 170.00 | 170.00 | 170.00 | 170.00 | 170.00 |
| P_6 (MW) | 459.155633 | 460.000000 | 469.96 | 460.00 | 460.00 | 460.00 | 460.00 |
| P_7 (MW) | 429.033732 | 430.000000 | 429.71 | 430.00 | 430.00 | 430.00 | 430.00 |
| P_8 (MW) | 69.906161 | 64.978264 | 75.35 | 117.53 | 72.0145 | 72.0979 | 71.6926 |
| P_9 (MW) | 58.753444 | 47.684539 | 34.96 | 77.90 | 58.6212 | 58.431100| 58.834260 |
| P_{10} (MW) | 80.549854 | 48.809702 | 160.00 | 119.54 | 160.00 | 129.9989 | 160.00 |
| P_{11} (MW) | 47.210660 | 59.049411 | 79.75 | 54.50 | 80.0000 | 80.0000 | 80.0000 |
| P_{12} (MW) | 73.167992 | 55.000000 | 80.00 | 80.00 | 80.0000 | 80.0000 | 80.0000 |
| P_{13} (MW) | 27.608892 | 26.853800 | 34.21 | 25.00 | 25.0000 | 25.0000 | 25.0000 |
| P_{14} (MW) | 15.494490 | 22.765547 | 21.14 | 17.86 | 15.0000 | 15.0000 | 15.0000 |
| P_{15} (MW) | 24.922388 | 36.935999 | 21.02 | 15.00 | 15.0000 | 15.0000 | 15.0000 |
| Total power (MW) | 2658.07018 | 2657.155242 | 2660.36 | 2662.29 | 2660.6626 | 2660.5288 | 2660.5270 |
| Power loss (MW) | 28.0702 | 27.15521443 | 30.36 | 32.28 | 30.6626 | 30.5288 | 30.5270 |
| Fuel cost ($/h) | 3270.70296 | 3271.23959 | 3273.295 | 3275.139 | 32704.4503 | 32702.9358 | 32702.9352 |

Step 10: Save the modified set;
Step 11: Generate random numbers;
Step 12: Check whether the jumping rate is greater than the random number or not. If it is greater than the random number, then go to Step 13; otherwise, go to Step 17;
Step 13: Using the modified set, generate the quasi-reflected set;
Step 14: Check the limit of all constraints. If all constraints are satisfied, then go to Step 15; otherwise, go to Step 13;
Step 15: Calculate the fitness function using the quasi-reflected set;
Step 16: Sort out the best set between the modified and QRoS;
Step 17: If the quasi-reflected set is fitter than the modified set, then accept this set. Otherwise, reject the quasi-reflected set and keep the modified one;
Step 18: Determine the best fitness and best organism;
Step 19: Go to Step 9 and repeat until the predefined max FE is reached.

5. Results and discussions

The QOSOS algorithm is applied to different test cases of ELD problem, and its performance is compared to various algorithms available in the literature. This algorithm has been coded in Matlab 9 with a computer equipped with 2.40 GHz core i3 to execute the program.

5.1. Description of test systems

5.1.1. Test system I

A 15-generator system with a system demand of 2630 MW is considered here. The transmission loss, prohibited operating zone, and ramp rate limit constraints are included in this case. The input data are available in [42]. The results obtained by QOSOS, SOS, DE/BBO [25], BBO [24], GAAPI [42], SOH-PSO [42], and EMA [42] are displayed in Table 1. The fuel price convergence curve is presented in Figure 2. Best, worst, and average fuel costs achieved

![Figure 2](image.png)
Table 2. Performance analysis of different methods taken after 50 try-outs.

Methods	Generation cost ($/h)	Time/iteration, (s)	No of hits to minimum solution		
	Max.	Min.	Average		
QOSOS	32705.5912	32702.9352	32703.0414	2.1	48
SOS	32705.5915	32702.9358	32703.0420	3	48
BBO [24]	32713.4991	32712.3959	32712.5282-384	17.5	44
DE/BBO [25]	32710.2306	32707.0296	32707.2864	12.4	46
MDE [12]	33245.54	32917.87	33066.76	NA	NA
PSO [42]	33031	32858	32989	NA	NA
ABC [12]	32708.27	32707.85	32707.95	NA	NA
PSO-SIF [12]	32709.92	32706.8800	32707.7900	NA	NA
θ-PSO [42]	32744.0306	32706.6856	32711.4955	NA	NA
EMA [12]	32704.4506	32704.4503	32704.4504	NA	NA
RCCRO* [27]	32698.9950329897	32698.995032997	32698.99503298	4	50
IA_EDP* [49]	32823.7590	32698.2038	32750.2176	NA	NA

*: Infeasible Solution.

by QOSOS, SOS, DE/BBO [25], MDE [42], PSO [42], BBO [24], ABC [42], PSO [42], PSO-SIF [42], θ-PSO [42], EMA [42], RCCRO [27], and IA_EDP [49] over 50 trails are presented in Table 2.

5.1.2. Test system II

A 40-unit system with a load demand of 10500 MW is considered here. The valve-point effect and transmission loss are also considered in this case. The input data are available in [28]. The β-loss coefficients of the transmission losses are obtained from the 6-generator system [50] by multiplying rows and columns up to 40 numbers of units. Simulation results of QOSOS method are compared to SOS, BBO, DE/BBO, SDE [51], and GAAPI [52] algorithms. Fuel price convergence curve for QOSOS and SOS is shown in Figure 3. The best results of these methods are displayed in Table 3. Mean, best, and worst fuel costs are obtained by QOSOS, SOS, and ORCCRO [28]. BBO, DE/BBO over 50 try-outs are displayed in Table 4.

5.1.3. Test system III

A-110 unit with a system demand of 15000 MW is considered here. The fuel price curve is quadratic in nature. The input data are available in [37]. The best results obtained by the proposed QOSOS and SOS methods are presented in Tables 5 and 6, respectively. The fuel price convergence curve is presented in Figure 4. Mean, average, and worst fuel prices achieved by QOSOS, SOS, OIWO [37], ORCCRO [28], SAB [37], SAF [37], SA [37], BBO [28], and DE/BBO [28] over 50 try-outs are shown in Table 7.

5.1.4. Test system IV

Here, a 160-unit system with multiple fuel options is considered. The input data are available in [37]. The transmission loss has not been considered here. The system demand is 43200 MW. The best results achieved by QOSOS and SOS method are shown in Tables 8 and 9, respectively. The best, average, and maximum fuel costs obtained by various methods

![Figure 3](image1.png)

Figure 3. Convergence characteristics of the 40-generator system with loss obtained by Quasi Oppositional Symbiotic Organisms Search (QOSOS) and Symbiotic Organisms Search (SOS).

![Figure 4](image2.png)

Figure 4. Convergence characteristics of the 110-generator system obtained by Quasi Oppositional Symbiotic Organisms Search (QOSOS) and Symbiotic Organisms Search (SOS).
Unit	Power outputs (MW)				
	QOSOS	SDE [51]	GAAP [52]	BBO	DE/BBO
P_1 (MW)	113.998208	110.06	114	112.541727	111.010874
P_2 (MW)	113.990687	112.41	114	113.215833	113.707080
P_3 (MW)	119.999761	120.00	120.00	119.506795	118.639216
P_4 (MW)	190.000000	188.72	190	188.371629	189.492251
P_5 (MW)	96.996697	85.91	97	90.412350	86.322613
P_6 (MW)	140.000000	140.00	140.00	139.048610	139.874742
P_7 (MW)	299.999670	250.19	300	294.971421	299.863328
P_8 (MW)	300.000000	290.68	300	299.181239	285.420119
P_9 (MW)	299.999941	300	300	296.464436	296.289081
P_{10} (MW)	279.598777	282.01	285.25	279.885675	285.071561
P_{11} (MW)	168.802970	180.82	226.3	160.149083	164.609461
P_{12} (MW)	94.001371	168.74	204.72	96.736599	94.000727
P_{13} (MW)	484.031540	469.96	346.48	484.043477	486.304449
P_{14} (MW)	484.040027	484.17	434.32	483.316174	480.659779
P_{15} (MW)	484.056224	487.73	431.34	483.766660	480.651462
P_{16} (MW)	484.041270	482.30	440.22	483.299544	485.019668
P_{17} (MW)	489.278603	499.64	500	490.831472	487.942092
P_{18} (MW)	489.280840	411.32	500	492.185686	491.080800
P_{19} (MW)	511.288305	510.47	550	511.281207	511.789157
P_{20} (MW)	511.293735	542.04	550	521.551143	544.886056
P_{21} (MW)	526.286092	544.81	550	526.424242	528.929799
P_{22} (MW)	550.000000	550.00	550	538.296144	540.587228
P_{23} (MW)	523.298180	550.00	550	534.744028	524.983999
P_{24} (MW)	523.266462	528.16	550	521.195398	524.119592
P_{25} (MW)	524.774829	524.16	550	526.144729	534.491096
P_{26} (MW)	523.376004	539.10	550	544.438777	529.147514
P_{27} (MW)	10.030764	10.00	11.44	11.305008	10.709604
P_{28} (MW)	10.081928	10.37	11.56	10.209941	10.000000
P_{29} (MW)	10.002668	10.00	11.42	10.713711	10.000314
P_{30} (MW)	87.851470	96.10	97	88.27085	90.062133
P_{31} (MW)	190.000000	185.33	190	189.843396	189.814900
P_{32} (MW)	189.999971	189.54	190	189.935000	187.686113
P_{33} (MW)	190.000000	189.96	190	189.128321	189.909857
P_{34} (MW)	199.999915	199.90	200	198.066854	199.833444
P_{35} (MW)	199.999994	196.25	200	199.916450	199.926719
P_{36} (MW)	164.818600	185.85	200	194.351445	163.038804
P_{37} (MW)	109.999979	109.72	110	109.429766	109.847519
P_{38} (MW)	109.999982	110.00	110	109.558632	109.203936
P_{39} (MW)	109.999917	95.71	110	109.621734	109.596388
P_{40} (MW)	549.999929	532.47	550	527.819702	543.227545

Total power (MW) 11458.484603

Power loss (MW) 995.484602

Fuel cost ($/hr) 136452.357142
such as ORCCRO [28], BBO [28], DE/BBO [37], EDE-DE [37], IGA-MU [37], CGA-MU [37], OIWO [37], SOS, and proposed QOSOS methods are presented in Table 10. The fuel price convergence curve for the 160-generator system is shown in Figure 5.

5.2. Parameter tuning

To check the impact of jumping rate on QOSOS algorithm, four test systems are taken and the program is executed for 50 individual trials for each system. The value of jumping rate varied from 0.1-0.9. The results obtained by QOSOS algorithm are shown in Table 11. From this table, it is found that when the value of jumping rate is 0.4, then the cost obtained by QOSOS algorithm is minimum for all systems. No changes are found when the value of jumping rate is above or below 0.4.

5.3. Comparative study

5.3.1. Quality of solution

In this paper, four test systems have been considered in order to investigate the solution quality of this proposed method. The best result achieved by QOSOS method is presented in Tables 1, 3, 5, and 8. The best

Table 4. Performance analysis of different methods taken after 50 try-outs.

Methods	Generation cost ($/hr)	Time/iteration (sec)	No. of hits to min. solution	
QOSOS	Max. 136452.357142	Min. 136452.357142	Average 136452.357142	0.05 50
SOS	Max. 136464.264253	Min. 136464.264253	Average 136464.264253	0.064 50
ORCCRO [28]	Max. 136855.190000	Min. 136855.190000	Average 136855.190000	0.07 50
BBO	Max. 137587.823244	Min. 137026.823244	Average 137116.583244	0.30 41
DE/BBO	Max. 137150.766993	Min. 136950.766993	Average 136966.766993	0.16 45

Table 5. Power output for Test system III against minimum fuel price using Quasi Oppositional Symbiotic Organisms Search (QOSOS) algorithm (PD = 15000 MW).

Units	Power outputs (MW)								
1	2.400260	21	68.900000	41	157.397800	61	45.013730	81	10.000000
2	2.400033	22	68.901740	42	220.000000	62	45.000000	82	12.443004
3	2.401600	23	68.900000	43	439.991800	63	184.977100	83	20.001900
4	2.400001	24	349.998700	44	559.997200	64	184.980500	84	199.895100
5	2.400000	25	400.000000	45	660.000000	65	184.968200	85	324.936800
6	4.000099	26	399.999400	46	615.208600	66	184.892900	86	439.984800
7	4.006499	27	499.999900	47	5.4001605	67	70.403840	87	21.870970
8	4.001311	28	499.996400	48	5.4014250	68	70.003120	88	20.892530
9	4.000657	29	199.989700	49	8.400334	69	70.000000	89	77.273580
10	6.251800	30	99.975330	50	8.400000	70	399.999800	90	83.322540
11	60.19975	31	10.001320	51	8.401234	71	399.999210	91	38.117670
12	35.768520	32	19.999700	52	12.000035	72	399.999830	92	96.862830
13	54.903420	33	79.994530	53	12.000130	73	103.998400	93	439.998800
14	25.008950	34	249.978000	54	12.000000	74	190.713000	94	500.000000
15	25.001280	35	359.973400	55	12.000000	75	89.816370	95	399.997800
16	25.000960	36	399.991400	56	25.446850	76	49.933960	96	471.430300
17	154.996900	37	40.000000	57	25.450350	77	160.005700	97	3.600000
18	154.997600	38	69.920000	58	35.008500	78	289.383700	98	3.600013
19	154.996400	39	99.992710	59	39.172200	79	172.673200	99	4.400455
20	154.968600	40	119.994100	60	45.000000	80	118.916100	100	4.402490

Fuel cost ($/h) 197939.7436
Table 6. Power output for Test system III against minimum fuel price using Symbiotic Organisms Search (SOS) algorithm (PD = 15000 MW).

Units	Power outputs (MW)								
1	2.404854	21	68.900240	41	150.077500	61	45.001110	81	10.000000
2	2.409338	22	68.938320	42	219.979000	62	45.004710	82	12.000000
3	2.400179	23	68.999420	43	439.999000	63	184.999400	83	20.000000
4	2.400021	24	349.999300	44	559.998700	64	184.999800	84	199.984000
5	2.400092	25	399.999900	45	660.000000	65	184.999380	85	319.204100
6	4.000000	26	399.999300	46	618.452400	66	184.999800	86	439.996600
7	4.000000	27	499.998400	47	5.400033	67	70.000020	87	10.026810
6	4.000000	28	500.000000	48	5.400037	68	70.000000	88	54.874640
9	4.000000	29	199.996800	49	8.400010	69	70.000020	89	87.245410
10	66.101900	30	99.997130	50	8.400016	70	359.196700	90	79.516720
11	58.838280	31	10.000010	51	8.486224	71	399.993500	91	51.425710
12	31.808300	32	19.980380	52	12.000000	72	399.999800	92	89.335600
13	50.054110	33	78.049800	53	12.000070	73	107.233000	93	439.981600
14	25.001380	34	219.997800	54	12.000000	74	184.549600	94	499.997100
15	25.000290	35	359.982400	55	12.000060	75	89.961320	95	599.987800
16	25.000380	36	399.966000	56	25.692140	76	50.000000	96	465.698500
17	154.983900	37	399.993200	57	25.209730	77	160.017300	97	3.600011
18	155.000000	38	69.999360	58	35.003600	78	302.931700	98	3.600000
19	154.994000	39	99.998330	59	35.000060	79	180.131500	99	4.404125
20	154.937100	40	117.832300	60	45.003020	80	119.966400	100	4.400107

Methods	Generation cost ($/h)	Time (s)	No of hits to minimum solution
QOSOS	197939.7436	24	50
SOS	197944.835	27	48
OIWO [37]	197989.93	45	48
ORCCRO [28]	198016.89	46	NA
SAB [37]	NA	NA	NA
SAF [37]	NA	NA	NA
SA [37]	NA	NA	NA
BBO [28]	199102.59	115	41
DE/BBO [28]	198828.57	132	43

fuel costs obtained by QOSOS and other optimization techniques are shown in Figure 6. Minimum, worst, and mean values of different algorithms are presented in Tables 2, 4, 7, and 10. From these tables, it is found that the cost obtained by QOSOS technique is better than that by other well-known optimization methods such as RCCRO, BBO, DE/BBO, SOS, OIWO, and so on. For example, in a 100-unit system, the fuel cost obtained by QOSOS method is less (9964.7743 $/h) than that by other well-known algorithms like SOS (9964.1983 $/h), DE/BBO (10007.05 $/h), BBO (10008.71 $/h), CGA-MU (10143.73 $/h), ED-DE
Table 8. Power output for Test system IV against minimum fuel price using Quasi Oppositional Symbiotic Organisms Search (QOSOS) algorithm \((FD = 43200 \text{ MW})\).

Units	Power outputs (MW)								
1	215.4707	31	214.5395	61	214.4882	91	216.3361	121	213.4613
2	208.2421	32	212.9581	62	213.1896	92	213.6980	122	212.9507
3	270.5703	33	270.5191	63	270.5373	93	273.5828	123	274.5690
4	212.8673	34	210.7176	64	210.9827	94	213.6695	124	242.8669
5	369.5572	35	369.8329	65	269.6497	95	272.6426	125	272.5625
6	241.7894	36	239.6364	66	239.2367	96	241.1156	126	242.9666
7	290.1276	37	290.0534	67	294.7046	97	289.9545	127	295.9490
8	243.2671	38	239.9100	68	242.1926	98	243.3335	128	240.8942
9	435.7920	39	438.4512	69	436.4554	99	437.9711	129	438.9170
10	279.0626	40	276.4841	70	275.8674	100	280.1669	130	279.0697
11	213.4607	41	214.8151	71	216.5635	101	214.5162	131	212.4382
12	210.2358	42	213.7012	72	209.7291	102	208.7377	132	210.7201
13	274.6187	43	270.5417	73	274.6109	103	270.5600	133	274.6145
14	240.3118	44	238.5647	74	239.6399	104	239.3716	134	242.0576
15	272.9514	45	269.5641	75	272.6561	105	269.1597	135	269.4461
16	239.6383	46	242.4611	76	243.8048	106	238.6986	136	238.5637
17	292.4608	47	294.8516	77	292.4516	107	292.4488	137	287.6749
18	240.4642	48	240.5824	78	241.9238	108	242.4625	138	241.7909
19	437.4157	49	435.6231	79	438.7262	109	436.2056	139	431.9449
20	275.8047	50	278.8602	80	275.4191	110	278.7097	140	280.4117
21	215.4967	51	213.4739	81	215.5277	111	216.6034	141	214.4785
22	209.4840	52	208.4938	82	212.2087	112	210.4831	142	209.7288
23	277.6109	53	270.5002	83	270.6099	113	271.5742	143	274.6101
24	241.5208	54	242.8655	84	238.0290	114	240.1773	144	243.3230
25	269.1498	55	272.6260	85	269.5430	115	269.8243	145	272.1808
26	239.7741	56	241.5204	86	239.2385	116	240.7154	146	240.8490
27	290.4996	57	292.4338	87	292.3779	117	289.6335	147	292.5119
28	239.7753	58	242.0573	88	241.6545	118	242.0599	148	241.1172
29	438.6057	59	438.2665	89	438.9649	119	436.8218	149	439.8503
30	276.0220	60	277.0527	90	279.0049	120	275.8644		

Fuel cost ($/h): 9964.7743

(10012.68 $/h), IGA-MU (10042.47 $/h), ORCCRO (10004.20 $/h), and OJWGO (9981.9834 $/h). The same results are found in other test systems. Therefore, it may be concluded that the performance of this QOSOS algorithm is better in terms of solution quality.

5.3.2. Robustness

The performance of QOSOS algorithm is judged after running the program for 50 numbers of trials. Out of 50 trials, QOSOS hits the minimum solution 48 times for Test system I, 50 times for Test system II, 50 times for Test system III, and 48 times for Test system IV. Therefore, the success rate of QOSOS is 96%, 100%, 100%, and 96%, respectively. However, in the case of other techniques like BBO, the success rate is 88% for Test system I, 82% for Test system 2, 82% for Test system III, and 80% for Test system IV. In the case of DE/BBO, out of 50 trials, DE/BBO hits the
Table 9. Power output for Test system IV against minimum fuel price using Symbiotic Organisms Search (SOS) algorithm (PD = 43200 MW).

Units	Power outputs (MW)								
1	213.4391	31	214.5556	61	213.4332	91	214.3808	121	215.1922
2	210.4716	32	210.7216	62	210.9736	92	212.2070	122	212.4339
3	277.3943	33	272.5008	63	274.6178	93	209.5789	123	275.6178
4	242.0593	34	241.9270	64	238.5639	94	238.9687	124	241.7895
5	272.4628	35	265.4339	65	272.5994	95	273.0647	125	272.1735
6	242.7277	36	230.7388	66	241.2541	96	242.1924	126	241.5203
7	289.8278	37	290.1600	67	285.3304	97	290.1447	127	295.1800
8	240.3105	38	240.9832	68	241.3873	98	241.1176	128	238.8334
9	439.9740	39	433.5012	69	433.0181	99	436.5588	129	439.7279
10	269.8171	40	277.6605	70	278.8895	100	276.4331	130	277.2311
11	214.5256	41	212.6012	71	214.1033	101	212.3253	131	216.1747
							Fuel cost ($/h):		9965.1983
12	209.4848	42	215.4363	72	211.9881	102	213.6914	132	210.2369
13	277.6397	43	273.7193	73	275.6212	103	272.7214	133	272.5977
14	242.3276	44	241.7895	74	239.7388	104	242.1933	134	241.3896
15	269.3434	45	271.6897	75	276.4731	105	271.2958	135	276.6546
16	241.3871	46	240.5786	76	241.5218	106	239.9127	136	243.0005
17	290.0881	47	296.6654	77	292.6219	107	290.2505	137	295.0211
18	240.9811	48	239.9064	78	241.7884	108	240.5734	138	237.7396
19	437.0648	49	435.8193	79	436.6464	109	433.5166	139	436.1278
20	277.9264	50	273.0427	80	279.0826	110	282.1311	140	276.5405
21	213.4619	51	214.4037	81	215.5236	111	214.4906	141	213.4624
22	214.9596	52	210.2307	82	214.4346	112	210.4817	142	212.7071
23	271.6030	53	275.6084	83	273.5992	113	271.5884	143	273.5283
24	241.7849	54	238.8384	84	242.3259	114	241.6547	144	240.3115
25	272.4845	55	272.7626	85	272.6467	115	273.1699	145	272.5002
26	240.7138	56	241.2563	86	242.4612	116	240.8523	146	240.8490
27	290.5941	57	293.8904	87	292.5437	117	288.3130	147	287.6947
28	238.1615	58	240.4132	88	241.5877	118	239.3601	148	239.3738
29	437.7040	59	434.6733	89	436.6298	119	437.9882	149	439.3068
30	278.8737	60	279.1716	90	279.0592	120	277.8026	150	276.5218

Table 10. Performance analysis of different methods taken after 50 try-outs.

Methods	Generation cost ($/h)	Time (s)	No of hits to minimum solution
QOSOS	9965.4929	12.8	48
SOS	9967.2648	14.3	48
DE/BBO [28]	100.10.36	35	42
BBO [28]	100.10.39	44	40
CGA-MU [37]	N/A	NA	NA
ED-DE [37]	N/A	NA	NA
IGA-MU [37]	N/A	NA	NA
ORCRO [28]	1004.45	19	48
OIWO [37]	9083.988	17.3	46
minimum solution 46 times for Test system I, 45 times for Test system II, 43 times for Test system III, and 42 times for Test system IV. Therefore, the success rates of DE/BBO are 92%, 90%, 86%, and 84%, respectively. Therefore, consistency of QOSOS method is found to be more than that of many other well-known soft computing methods.

5.3.3. Computational efficiency
The main objective of OBL is to accelerate the convergence rate. It has been observed that a quasi-opposite number [48] is likely to be nearer to the solution than a random number. Therefore, the authors have applied this in SOS in order to improve the convergence rate. In Test system I, it is found that the time/iteration of QOSOS technique is only 2.1 sec, which is less than other techniques like SOS (3 sec), BBO (17.5 sec), DE/BBO (12.4 sec), and RCCRO (4 sec). Therefore, by using QOSOS method, the computational efficiency is improved by 30%, 88%, 83.06%, and 47.5%, respectively. In Test system II, the time taken by QOSOS algorithm to complete one iteration is 0.05 sec. However, the time taken by SOS, ORCCRO, BBO, and DE/BBO algorithms for the same test system is 0.064 sec, 0.07 sec, 0.2 sec, and 0.16 sec, respectively. In Test system II, the improvement rates of computational efficiency by using QOSOS technique are 21.87%, 28.57%, 75%, and 68.75%, respectively. The similar performance is observed when it is applied to large-scale power systems such as 110-unit (the improvement rates of computational efficiency by using QOSOS methods as compared to SOS, OIWO, ORCCRO, BBO, and DE/BBO algorithms are 11.11%, 22.58%, 46.66%, 79.13%, and 81.81%, respectively) and 160-unit systems (the improvement of computational efficiency by using QOSOS methods as compared to SOS, DE/BBO, BBO, ORCCRO, and OIWO methods are 10.48%, 63.42%, 70.90%, 32.63%, and 26.01%, respectively). The simulation times for all test systems are described in Tables 2, 4, 7, and 10, respectively. From these tables, it is found that the computational efficiency of QOSOS is better than that of the recently developed optimization techniques.

It is also seen that when OBL is applied in SOS algorithm, then the convergence rate becomes faster than other techniques such as SOS, BBO, DE/BBO, RCCRO, EMA, and so on. For example, in Test system I, the number of iterations required to reach minimum value is lower in the case of QOSOS (shown in Figure 2) as compared to other methods such as RCCRO, DE/BBO, and BBO [27]. From Figure 2, it is found that by applying QOSOS algorithm, the number of iterations required to reach the best solution is only 6, whereas, from Ref. [27], it is observed that the number of iterations required to reach the minimum solution is approximately 158 for RCCRO, 174 for DE/BBO, and 190 for BBO. The same results are observed in Test system II. Here, it is observed that the total iteration required to reach minimum solution is 8 in the case of QOSOS method (shown in Figure 3), which is much less than other well-known techniques such as ORCCRO, BBO, and DE/BBO [28]. From [28], it is found that the number of iterations required to reach the best solution is approximately 191 for ORCCRO, 193 for DE/BBO, and 196 for BBO.

Jumping rate	Test system I	Test system II	Test system III	Test system IV
0.1	32711.3247	13649.114871	19794.9963	9971.2547
0.2	32715.3217	13650.331856	19793.459613	9975.3308
0.3	32705.6698	13641.20478	19794.0.1236	9968.6450
0.4	32702.9352	13645.357142	19793.7436	9964.7743
0.5	32708.7741	13647.524650	19794.0213	9966.2739
0.6	32710.4796	13649.12387	19794.1302	9969.8802
0.7	32708.2200	13647.123652	19794.0147	9971.5014
0.8	32712.3382	13646.517895	19794.0396	9965.9871
0.9	32705.2030	13650.214789	19794.23887	9968.1882
Therefore, it is clear that by using the OBL technique in SOS, the convergence rate becomes much faster than other well-known optimization methods.

5.4. Statistical analysis
In recent years, various statistical methods [53, 54] have been used for performing comparisons between different algorithms. In this paper, Friedman test and Quade test are chosen to assess the performance of QOSOS algorithm statistically as compared to SOS and other well-known optimization methods. A null hypothesis (H_0) and an alternative hypothesis (H_1) are required to be defined in order to perform Friedman test and Quade test. H_0 denotes that there is no difference in the performance of the methods under comparison, and H_1 denotes that there is a difference in performance of the methods. A significance level of 5% is chosen. Table 12 describes the statistical analysis of the results obtained by QOSOS, SOS, DE/BBO, and BBO algorithms, and Table 13 describes the statistical analysis of the results obtained using QOSOS, SOS, and ORCCRO algorithms. Table 12 shows that F-statistic (chi-square) value is 11.1000 and Q-statistic value is 6. From Table 13, the F-statistic and Q-statistic values are found to be 6 and 12, respectively. Thus, in both of the cases, F-statistic value is greater than its corresponding critical chi-square value (7.82 for case 1 and 3.99 for case 2) and Q-statistic value is also

![Figure 6. Best cost obtained by Quasi Oppositional Symbiotic Organisms Search (QOSOS) and other well-known optimization techniques for Test systems I, II, III, and IV.](image_url)

![Table 12. Ranks achieved by Friedman and Quade tests in Test systems I, II, III, and IV. The statistic computed and related p-values are also shown.](table_url)
Table 13. Ranks achieved by Friedman and Quade tests in Test systems II, III, and IV. The statistic computed and related p-values are also shown.

Test systems	Friedman test	Quade test					
	QOSOS	SOS	ORCCRO	Test systems	QOSOS	SOS	ORCCRO
Test system II	1	2	3	Test system II	-3	0	3
Test system III	1	2	3	Test system III	-2	0	2
Test system IV	1	2	3	Test system IV	-1	0	1
Statistic	6			Statistic	12		
p-value	0.0498			p-value	0.0304		

Table 14. Average errors obtained in test case in Test system I, Test system II, Test system III, and Test system IV.

Test systems	QOSOS	SOS	DE/BBO	BBO
Test system I	0.1062	0.1068	4.3512	9.593084
Test system II	0	11.907111	514.4098	664.226102
Test system III	0	0.2476	386.9164	473.7064
Test system IV	0.0287	0.5066	42.7857	44.3857

Table 15. Average errors obtained in test case in Test systems II, III, and IV.

Test systems	QOSOS	SOS	ORCCRO
Test system II	0	11.907111	402.832858
Test system III	0	0.2476	76.5764
Test system IV	0.0287	0.5066	39.4357

greater than its critical value (3.86 for case 1 and 10.92 for case 2). It is also found that p-values obtained by Friedman test and Quade test are less than that at a 5% significance level. This proves that the null hypothesis can be rejected, which signifies a considerable difference in performance between the algorithms. The average errors of various techniques are shown in Tables 14 and 15. The average errors have been calculated as follows:

1. The minimum value among all algorithms for each test system has been chosen;
2. The minimum value has been subtracted from the mean value obtained by each algorithm;
3. All algorithms (rank-wise) have been arranged based on the value of average error.

Thus, based on the average errors evaluated for different cases, the algorithms are ranked, and the results are presented in Tables 12 and 13. From these tables, it is found that the rank acquired by QOSOS algorithm is the lowest, which indicates better performance of QOSOS. Therefore, it may be concluded that, in terms of quality solution, the QOSOS algorithm gives better results than other recently developed optimization techniques.

6. Conclusion

In this paper, Quasi Oppositional Symbiotic Organisms Search (QOSOS) was applied to find the solution to various complex economic dispatch problems. To investigate the computational efficiency, feasibility, and consistency of this method, four different tests were used here. The simulation results of QOSOS method were compared with results of other optimization techniques such as Symbiotic Organisms Search (SOS), Biogeography-Based Optimization (BBO), DE/BBO, Oppositional Real-Coded Chemical Reaction Optimization (ORCCRO), Teaching-Learning Based Optimization (TLBO), Exchange Market Algorithm (EMA), and so on. From these analyses, it was found that the consistency, convergence rate, and solution quality of QOSOS algorithm were better. Therefore, it may be used to find a solution to various complex optimization problems.

Acknowledgement

The authors would like to acknowledge the Department of Electrical Engineering, NIT Agartala for providing laboratory facilities.

References

1. Fanshel, S. and Lynes, E.S. “Economic power generation using linear programming”, IEEE Trans. Power Appar. Syst., 83(4), pp. 347-356 (1964), DOI: 10.1109/TPAS.1964.476611
2. Bellman, R., The Theory of Dynamic Programming, Rand Corp Santa Monica CA (1954).
3. Wood, J. and Wollenberg, B.F., *Power Generation, Operation, and Control*, John Wiley and Sons, 2nd Edn., Wiley New York (1984).

4. Ingber, L. “Simulated annealing : Practice versus Theory”, *Math. Comput. Modeling*, 18(11), pp. 29–57 (1993). DOI: 10.1016/0895-7177(93)90204-C

5. Panigrahi, C.K., Chattopadhyay, P.K., and Chakrabarti, R.N., et al. “Simulated annealing technique for dynamic economic dispatch”, *Electr. Power Compon. Syst.*, 34(5), pp. 575–586 (2006). DOI: 10.1080/1532500060083843

6. Walters, D.C. and Shleble, G.B. “Genetic algorithm solution of economic dispatch with valve point loadings”, *IEEE Trans. Power Syst.*, 8(3), pp. 1325-1331 (1993). DOI: 10.1109/59.260861

7. Chiang, C.L. “Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels”, *IEEE Trans. Power Syst.*, 20(4), pp. 1690–1699 (2005). DOI: 10.1109/TPWRS.2005.857924

8. Kennedy, J. and Eberhart, R. “Particle swarm optimization”, In *Proc. IEEE Int. Conf. Neural Networks*, IV, pp. 1942–1948 (1995). DOI: 10.1109/ICNN.1995.488068

9. Gaiw, Z.-L. “Particle swarm optimization to solving the economic dispatch considering the generator constraints”, *IEEE Trans. Power Syst.*, 18(3), pp. 1187–1195 (2003). DOI: 10.1109/TPWRS.2003.814889

10. Selvakumar, I. and Thanushkodi, K. “A new particle swarm optimization algorithm for nonconvex economic dispatch problems”, *IEEE Trans. Power Syst.*, 22(1), pp. 42-51 (2007). DOI: 10.1109/TPWRS.2006.889132

11. Panigrahi, B.K., Pandi, V.R., and Das, S. “Adaptive particle swarm optimization approach for static and dynamic economic load dispatch”, *Energy Convers. Manage.*, 49(6), pp. 1407–1415 (2008). DOI: 10.1016/j.enconman.2007.12.023

12. Vlachogiannis, I.K. and Lee, K.Y. “Economic load dispatch - a comparative study on heuristic optimization techniques with an improved coordinated aggregation-based PSO”, *IEEE Trans. Power Syst.*, 24(2), pp. 991–1001 (2009). DOI: 10.1109/TPWRS.2009.2016524

13. Park, J.B., Jeong, Y.W., Shin, J.R., et al. “An improved particle swarm optimization for non-convex economic dispatch problems”, *IEEE Trans. Power Syst.*, 25 (1), pp. 156–166 (2010). DOI: 10.1109/TPWRS.2009.2030293

14. Hosseini ted, V., Rafiee, M., Almahdian, M., et al. “Species-based quantum particle swarm optimization for economic load dispatch”, *Int. J. Electr. Power & Energy Syst.*, 63, pp. 311–322 (2014). DOI: 10.1016/j.ijepes.2014.05.066

15. Storn, R. and Price, K.V. “Differential evolution a simple and efficient heuristic for global optimization over continuous spaces”, *J. Global Optim.*, 11(4), pp. 341–359 (1997). DOI: 10.1023/A:100820282

16. Noman, N. and Iba, H. “Differential evolution for economic load dispatch problems”, *Electr. Power Syst. Res.*, 78(3), pp. 1322–1331 (2008). DOI: 10.1016/j.epr.2007.11.007

17. Coelho, L.D.S. and Mariani, V.C. “Combining of chaotic differential evolution and quadratic programming for economic dispatch optimization with valve-point effect”, *IEEE Trans. Power Syst.*, 21 (2), pp. 989–996 (2006). DOI: 10.1109/TPWRS.2006.873410

18. Paroush, R.P. and Das, K.N. “A novel hybrid optimizer for solving economic load dispatch problem”, *Int. J. Electr. Power & Energy Syst.*, 78, pp. 108–126 (2016). DOI: 10.1016/j.ijepes.2015.11.058

19. Zhou, D., Li, S., Wang, G-G., et al. “An improved differential evolution algorithm for the economic load dispatch problems with/without valve-point effects”, *Appl. Energy*, 181, pp. 375–390 (2016). DOI: 10.1016/j.apenergy.2016.08.067

20. Jayabharathi, T., Jayapralash, K., Jayakumar, N., et al. “Evolutionary programming techniques for different kinds of economic dispatch problems”, *Electr. Power Syst. Res.*, 75(2), pp. 169–176 (2005). DOI: 10.1016/j.epsr.2004.08.001

21. Sinha, N., Chakrabarti, R., and Chattopadhyay, P.K. “Evolutionary programming techniques for economic load dispatch”, *IEEE Trans. Evol. Comput.*, 7(1), pp. 83–94 (2003). DOI: 10.1109/TEVC.2002.806888

22. Panigrahi, B.K. and Pandi, V.R. “Bacterial foraging optimization Nelder-Mead hybrid algorithm for economic load dispatch”, *IET Generation, Transm. Distrib.*, 2(4), pp. 556–65 (2008). DOI: 10.1049/iet-gtd:20070122

23. Simon, D. “Biogeography-based optimization”, *IEEE Trans. Evol. Comput.*, 12(6), pp. 702-713 (2008). DOI: 10.1109/TEVC.2008.919004

24. Bhattacharya, A. and Chattopadhyay, P.K. “Biogeography-based optimization for different economic load dispatch problems”, *IEEE Trans. Power Syst.*, 25(2), pp. 1064–1077 (2010). DOI: 10.1109/TPWRS.2009.2034525

25. Bhattacharya, A. and Chattopadhyay, P.K. “Hybrid differential evolution with biogeography-based optimization for solution of economic load dispatch”, *IEEE Trans. Power Syst.*, 25(4), pp. 1955–1964 (2010). DOI: 10.1109/TPWRS.2010.2043270

26. Lam, A.Y.S. and Li, V.O.K. “Chemical-reaction-inspired metaheuristic for optimization”, *IEEE Trans. Evol. Comput.*, 14(8) pp. 381–399 (2010). DOI: 10.1109/TEVC.2009.2033580

27. Bhattacharjee, K., Bhattacharya, A., and Dey, S.H.N. “Chemical reaction optimisation for different economic dispatch problems”, *IET Gener. Transm. Distrib.*, 8(3), pp. 530–541 (2014). DOI: 10.1049/iet-gtd:2013.0122

28. Bhattacharjee, K., Bhattacharya, A., and Dey, S.H. “Oppositional real coded chemical reaction optimization for different economic dispatch problems”, *Int. J.*
29. Rao, R.V., Savsani, V.J., and Vakharia, D.P., “Teaching-learning based optimization: a novel method for constrained mechanical design optimization problems”, Comp. Aided Design, 43(3), pp. 303–315 (2011). DOI: 10.1016/j.cad.2010.12.015

30. Bhattacharjee, K., Bhattacharya, A., and Dey, S.H.N., “Teaching learning based optimization for different economic dispatch problems”, Scientia Iranica, 21(3), pp. 870–884 (2013).

31. Banerjee, S., Maity, D., and Chanda, C.K., “Teaching learning based optimized valve point loading considering valve point loading effect”, Int. J. Electr. Power & Energy Syst., 73, pp. 456–464 (2015). DOI: 10.1016/j.ijepes.2015.05.036

32. He, X., Rao, Y., and Huang, J., “A novel algorithm for economic dispatch of power systems”, Neurocomputing, 171, pp. 1454–1461 (2016). DOI: 10.1016/j.neucom.2015.07.107

33. Mirjalili, S., Mirjalili, S.M., and Lewis, A., “Grey wolf optimizer”, Adv. Eng. Softw., 69, pp. 46–61 (2014). DOI: 10.1016/j.advengsoft.2013.12.007

34. Kamboj, V.K., Bath, S.K., and Dhillon, J.S., “Solution of non-convex economic load dispatch problem using grey wolf optimizer”, Neural Comput & Applic., 27(5), pp. 1301–1316 (2006). DOI: 10.1007/s00521-015-1934-8

35. Rajagopalan, A., Songod, V., and Govindasamy, R., “Solving economic load dispatch problems using chaotic self-adaptive differential harmony search algorithm”, Int. Trans. Electr. Energy Syst., 25(5), pp. 845–856 (2014). DOI: 10.1002/etep.1877

36. Mandal, B., Roy, P.K., and Mandal, S., “Economic load dispatch using krill herd algorithm”, Int. J. Electr. Power Energy Syst., 57, pp. 1–10 (2014). DOI: 10.1016/j.ijepes.2013.11.016

37. Barisal, A.K. and Prusty, R.C., “Large scale economic dispatch of power systems using oppositional invasive weed optimization”, Appl. Soft Comput., 29, pp. 122–137 (2015). DOI: 10.1016/j.asoc.2014.12.014

38. Mirjalili, S., “The ant lion optimizer”, Adv Eng Softw., 83, pp. 80–98 (2015). DOI: 10.1016/j.advengsoft.2015.01.010

39. Kamboj, V.K., Bladoria, A., and Bath, S.K., “Solution of non-convex economic load dispatch problem for small-scale power systems using ant lion optimizer”, Neural Comput & Applic., 28, pp. 2181–2192 (2016). DOI: 10.1007/s00521-015-2148-9

40. Sulvatra, M.S.P., Easter, S.E., Victoire, T.A., et al., “A hybrid with cross-entropy method and sequential quadratic programming to solve economic load dispatch problem”, IEEE Sys. Journal, 9(3), pp. 1031–1044 (2015). DOI: 10.1109/JSYST.2013.2297471

41. Al-Betar, M.A., Awadallah, M.A., Khader, A.T., et al., “Tournament based harmony search algorithm for non-convex economic load dispatch problem”, Appl. Soft comput., 47, pp. 449–459 (2016). DOI: 10.1016/j.asoc.2016.05.034

42. Ghobani, N. and Balaei, E., “Exchange market algorithm for economic load dispatch”, Int. J. Electr. Power Energy Syst., 75, pp. 19–27 (2016). DOI: 10.1016/j.ijepes.2015.08.013

43. Mohammadi, F. and Abd, H., “A modified crow search algorithm (MCsA) for solving economic load dispatch problem”, Appl. Soft Comput., 71, pp. 51–65 (2018). DOI: 10.1016/j.asoc.2018.06.040

44. Cheng, M.Y. and Prayogo, D., “Symbiotic organisms search: A new metaheuristic optimization algorithm”, Computers & Structures, 139, pp. 98–112 (2014). DOI: 10.1016/j.compstruc.2014.03.007

45. Duman, S., “Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones”, Neural Comput & Applic., 28, pp. 3571–3585 (2016). DOI: 10.1007/s00521-016-2355-0

46. Guvenç, U., Duman, S., Sonmez, Y., et al., “Symbiotic organisms search algorithm for economic load dispatch problem with valve point effect”, Scientia Iranica, 25(6), pp. 3490–3506 (2017).

47. Tizhoosh, H., “Opposition-based learning: A new scheme for machine intelligence”, In Proceedings of the International Conference on Computational Intelligence for Modelling Control and Automation, Austria, pp. 695–701 (2005). DOI: 10.1109/CIMCA.2005.1631345

48. Egezer, M., Simon, D., and Du, D., “Optimization”, In Proceedings of the IEEE International Conference on Oppositional Biogeography-Based Systems, Man and Cybernetics, San Antonio, TX, USA, pp. 1009–1014 (2009). DOI: 10.1109/CEC.2011.5949792

49. Aragon, V.S., Esquivel, S.C., and Coello, C.A.C., “An immune algorithm with power redistribution for solving economic load dispatch problems”, Inf. Sciences, 295, pp. 609–632 (2014). DOI: 10.1016/j.ins.2014.10.026

50. Ciorenţii, I. and Kyriakides, E., “Efficient hybrid optimization solution for the economic dispatch with nonsmooth cost function”, In Proc. IEEE Power Tech, Bucharest, Romania, pp. 1–7 (2009). DOI: 10.1109/PHTC.2009.5282062

51. Reddy A.S. and Vaiashka, K., “Shuffled differential evolution for large scale economic dispatch”, Electr. Power Syst. Res., 96, pp. 237–245 (2013). DOI: 10.1016/j.ener.2012.11.010

52. Ciorenţii, I. and Kyriakides, E., “A GA-API solution for the economic dispatch of generation in power system operation”, IEEE Trans. Power Syst., 27(1), pp. 233–242 (2011). DOI: 10.1109/TPWRS.2011.2168883

53. Derac, J., Garcia, S., Molina, D., et al., “A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms", *Swarm and Evolutionary Computation*, 1, pp. 3–18 (2011). DOI: 10.1016/j.swevo.2011.02.002

54. Shenkin, D.J., *Hand Book of Parametric and Non Parametric Statistical Procedures*, 4th Ed., Chapman & Hall/CRC (2006).

Biographies

Diptanu Das received his BE in Electrical Engg from NIT Agartala, India (formerly Tripura Engineering College) in 2009, MTech in Electrical Engg from NIT Agartala, India in 2011. He is currently pursuing the PhD degree at the Department of Electrical Engineering at NIT Agartala, India. He is also working as an Assistant Professor at the Department of Electrical Engineering of NIT Agartala, India. His areas of interest include power system optimization, power electronics, power, and energy system.

Aniruddha Bhattacharya received his BSc Engg in Electrical Engg from Regional Institute of Technology, Jamshedpur, India, 2000, M.E. E. and PhD in Electrical Power System from Jadavpur University, Kolkata, India, 2008 and 2011, respectively. His employment experience includes Siemens Metering Limited, India; Jindal Steel & Power Limited, Raigarh, India; Bankura Unnyani Institute of Engineering, Bankura, India; Dr. B. C. Roy Engineering College, Durgapur, India. He is currently an Assistant Professor at the Electrical Engineering Department, NIT Agartala, India. His areas of interest include power system load flow, optimal power flow, economic load dispatch, and soft computing applications to power system problems.

Rup Narayan Ray received his BE in Electrical Engg from University of Calcutta, India in 1985, his ME from Bengal Engineering College, Shibpur, India with specialization in Electrical Machines in 1995, and his PhD in Electrical Engineering from Jadavpur University, Kolkata, India in 2010. He joined teaching as a Lecturer at NIT Agartala (formerly Tripura Engineering College) in 1987. He is currently an Associate Professor at the Electrical Engineering Department, NIT Agartala, India. His areas of interest include electrical machines and drives, power qualities, and distributed generations.