Collecting and compiling the oral accounts of Chinese scientists trained in the Soviet Union in the 1950s and 1960s: Practice and reflection

Liyuan Wang
China Social Sciences Press, China

Abstract
In recent years, the recovery and compilation of the oral histories of scientists has attracted increasing attention. The focus of the research has also expanded from individual experiences to collective experience. As part of the Project on Collecting the Historical Data of Chinese Scientists’ Academic Life, and following the norms of historiography, I and other team members compiled oral interviews and accounts of Chinese scientists trained in the Soviet Union in the 1950s and 1960s. Through the procedures of data collection, candidate selection, framework construction and detailed presentation, I compiled the oral accounts of 16 Soviet-educated Chinese scientists, supplemented by photos, annotations and other information. These materials describe the lived circumstances and feelings of those scientists in the early days of the People’s Republic of China and recreate the collective experience of this generation of scientists from multiple angles.

Keywords
Scientists, oral history, Project on Collecting the Historical Data of Chinese Scientists’ Academic Life, studying in the Soviet Union

1. The oral history of scientists: From individual experiences to collective experience

Scientists are regarded as part of a social elite due to their knowledge and contribution to society. Yet, at the same time, because of their dedication to academic research and the complexity and sometimes confidentiality of their studies, they have often kept out of the public eye. Even in academic circles, the study of their academic records and life experiences from the perspective of historical studies and social development is a relatively new practice.

The American Institute of Physics was one of the first international organizations to conduct oral interviews with scientists. After the death of Albert Einstein and Niels Bohr in the 1950s and 1960s, the...
institute found that the memories and personal accounts left by those great scientists were very limited, so it began work to ‘rescue’ oral histories of scientists (Good, 2017). The British Library also launched an oral history of British science project in 2009. At that time, it found that, since 2000, 27 world-leading British scientists, including seven Nobel laureates, had left little or no personal record of their life and career experiences (British Library, 2018).

Since the 1980s, some researchers have conducted research on oral interviews with Chinese scientists (Zhang, 2010). That work has involved Chen Xingshen (see Tian, 2000), Huang Zongzhen (see Fan et al., 2000), Shi Zhongci (see Wang, 2001) and other important scientists. Those studies are of high historical value because they have recreated historical details that are little known to the public and used different ways to present the oral histories of scientists.

One of the best works is the *Oral History of Chinese Science in the 20th Century* book series edited by Fan Hongye. The series was launched in 2006 with the purpose of rescuing the precious historical literature of Chinese science and technology in the 20th century. By 2018, the accounts of 400 scientists and scientific workers on the front line had been collected. Based on their accounts and summaries by the interviewers, 56 books, using 54 different types of accounts, were produced. The series is divided into four categories: transcripts of the interviews; oral autobiographies compiled by the interviewers based on the accounts of the interviewees; autobiographies written by the interviewees; and records of group interviews on the topics of major events, achievements, academic disciplines and institutions. The first three categories aim to recreate the development of various disciplines and their social backgrounds based on the career experiences of individual scientists (Shen, 2009; Xu, 2009; Yuan, 2010). The fourth category records the collective memories and experiences of scientists who were involved in major scientific events (Fang et al., 2014; Sun et al., 2010).

In 2010, the China Association for Science and Technology, together with 11 ministries and commissions, including the Organization Department of the Central Committee of the Communist Party of China, the Ministry of Education, the Ministry of Science and Technology, the Chinese Academy of Sciences (CAS) and the Chinese Academy of Engineering (CAE), jointly launched and implemented the Project on Collecting the Historical Data of Chinese Scientists’ Academic Life (PCDS). The main subjects of the project are CAS and CAE academicians who are over 80 years old and have rich academic experience and old scientific and technological workers who, although without the title of CAS or CAE academician, have made outstanding contributions to the development of science and technology in China.

With the academic experiences of these scientists as the main theme, the PCDS focuses on collecting and categorizing oral historical data that reflects the academic experiences, achievements and landmark events of the scientists, as well as physical objects and images that can truly demonstrate how they generated, developed and updated their thinking, views and concepts. So far, it is the largest project of its kind in China. By the end of 2018, 512 specific tasks of data collection had been carried out across the nation, collecting and transcribing many audio and video files of interviews with scientists and others.

One important feature of the PCDS is that it is focused on people. This ‘people-centred’ approach is manifested in two aspects. First, the subjects are mostly individual scientists, plus a small number of scientist groups. Second, the main subject is the life experiences of the scientists, which are used to mirror changes over time and the advance of science and technology. Because of its focus on people, the most outstanding achievements of the PCDS so far are research works such as biographies and oral accounts of older scientists, which focus on their personal experiences and life stories.

The PCDS presents typical cases in the construction of the modern Chinese scientific community and the development of science and technology in China. At the same time, summarizing common features from personal materials and answering specific questions about the history of science in China are priorities for further research. In particular, in the scientific and technological history of China, many scientists have planned and modified their academic
paths and restructured their research careers according to the country’s development needs. Through their collective efforts, many breakthroughs have been achieved. Their similar life trajectories and intragenerational characteristics have also contributed to their common way of thinking. Exploring their shared academic paths during the founding and construction of the People’s Republic of China, as well as their relations with the external environment, by revisiting historical scenes and digging into important historical events that they experienced during a specific historical period is an important field of research.

2. Oral accounts of Soviet-educated scientists involved in the PCDS

In the 1950s and 1960s, more than 16,000 university students, postgraduates, researchers and interns were sent by the Chinese Government to the Soviet Union to take part in specialized courses and further education programmes (Li, 2016: 175–177). Most were involved in science and technology. Some of them, after returning to China, made important contributions to the development of their disciplines and the economic and social development of the country. In December 2007, there were 100 CAS academicians and 109 CAE academicians who had educational experience in the Soviet Union (Li, 2016: 209–219).

Research on their education in the Soviet Union in the 1950s and 1960s has produced many summaries and statistics based on official documents and historical literature (see Li, 2010, 2016; Zhou et al., 2012). However, on the lived experience of the scientists, such as how they were selected for the programme and the details of their training and overseas studies, researchers have repeatedly quoted a few available memoirs, interviews and oral accounts, so many details need to be further clarified (see Shan and Wang, 2007; Soviet Union and CIS Branch, Western Returned Scholars Association, 2000; Zhu, 1997, 2003).

In 2016, the number of Soviet-educated scientists covered in the PCDS reached 78. Exploring and summarizing their oral accounts and other materials can help to enrich the empirical evidence on their research, recreate their experiences and enable us to re-evaluate and reconsider the value of this historical phenomenon and the people involved in it.

Following the norms of historical study (Fan, 2009), and based on my experience and inspiration gained from the PCDS and my research on the oral histories of scientists, I summarized the collected data, with a focus on the history of Soviet-educated scientists. This has included several different steps, such as data collection, candidate selection, framework construction and detailed presentation.

My work is based on adequate access to research materials. By reviewing the personal information of 395 scientists collected from 2010 to 2015 by the PCDS and checking the PCDS database, I obtained archives, photos and certificates of 55 scientists relating to their Soviet educational experience, as well as audio and video recordings and transcripts about this particular experience given by themselves or others. My aim was to establish the historical circumstances of China’s policy of sending students to the Soviet Union based on the memories of the scientists among them. Therefore, when selecting oral accounts, I gave priority to those materials with relatively complete and substantial information about their experiences in the Soviet Union. I did not include records from scientists who had since died or who could give only fragmented accounts due to their age or for reasons of confidentiality. Based on those principles, I chose 16 scientists.3

A central task of my work is to present the oral accounts of the 16 Soviet-educated scientists in a proper structure. It is not enough to simply sort out and list all the collected materials; it is necessary to establish a clear structure based on existing research and the available historical data as well as an in-depth consideration of the relevant historical issues.

2.1. Organization of structure

For structure, I followed the steps that scientists went through for study in the Soviet Union and divided the oral accounts of the scientists into three stages:

- pre-study period: selection and training before going to the Soviet Union
• study period: study and life in the Soviet Union
• post-study period: activities after returning home.

The scientist’s pre-study and post-study experiences are presented in a group mode; that is, the oral memories of the group are about a shared experience. For the study period, the scientists are divided into three groups based on the types of higher learning institutions they attended: comprehensive universities, engineering colleges and scientific research institutes. In each group, the oral memories of the scientists are described, and each scientist’s memories are structured and presented.

(1) Scientists who studied in comprehensive universities in the Soviet Union

Wu Yangjie studied organic chemistry at Moscow University as a postgraduate from 1954 to 1958 and graduated with a doctoral degree.

Hu Hongwen studied organic chemistry at Moscow University as a trainee teacher from 1957 to 1959 and graduated with a doctoral degree.

Zhou Yulin studied partial differential equations at Moscow University as a postgraduate from 1954 to 1957 and graduated with a doctoral degree.

Yang Fuyu studied biochemistry at Moscow University as a postgraduate from 1956 to 1960 and graduated with a doctoral degree.

Zhang Siying studied mechanics and mathematics at Moscow University as a trainee teacher from 1957 to 1959 and graduated with a doctoral degree.

Yang Fuqing studied program design at the Computing Centre of the Academy of Sciences of the Soviet Union as a trainee teacher from 1957 to 1958 and at the Department of Mathematical Mechanics of Moscow University from April 1958 to October 1959.

(2) Scientists who studied in engineering colleges in the Soviet Union

Xu Zhifang studied water conservancy and soil improvement at the Moscow Institute of Water Engineering as a postgraduate from 1951 to 1955 and graduated with a doctoral degree.

Chen Houqun studied hydropower at the Moscow Institute of Dynamics as a college student from 1952 to 1958 and graduated with an engineering degree.

Guo Shangping studied oilfield development at the Moscow Petroleum Institute as a postgraduate from 1953 to 1957 and graduated with a doctoral degree.

Zhou Yaohe studied metallurgy at the Moscow Iron and Steel Institute as a postgraduate from 1953 to 1957 and graduated with a doctoral degree.

Jiang Yiyuan studied agricultural machinery at Leningrad Agricultural College as a trainee teacher from 1957 to 1959.

Chen Shilu studied aerodynamics at the Moscow Institute of Aeronautics as a trainee teacher from 1956 to 1958 and graduated with a doctoral degree.

(3) Scientists who studied in scientific research institutes in the Soviet Union

Yuan Chengye studied pharmaceutical chemistry at the Soviet Institute of Pharmaceutical Chemistry as a postgraduate from 1951 to 1955 and graduated with a doctoral degree.

Xie Yuyuan studied pharmaceutical chemistry at the Institute of Natural Organic Compound Chemistry of the Academy of Sciences of the Soviet Union as a postgraduate from 1951 to 1955 and graduated with a doctoral degree.

Chen Yushu studied mechanical nonlinear vibration at the Institute of Mechanics of the Academy of Sciences of the Soviet Union as a postgraduate from 1959 to 1963 and graduated with a doctoral degree.

Tang Xiaowei worked as a nuclear physics researcher at the Joint Institutes for Nuclear Research in Dubna from 1956 to 1960.

2.2. Presentation of source material

I organized the texts to present them in the first person. This method of writing is based mainly on the oral accounts of the scientists involved in the PCDS and an assessment of the targeted readers. The oral materials are sincere and detailed, so using the first-person narrative form helps to maintain the individuality of the scientists and their experiences. The intended readership includes both professional and other readers. For professionals, relatively complete
accounts will help them get a better picture of the information and use the information in future research. For other readers, first-person accounts can help them associate more closely with the personal experiences and life inspirations of the scientists, as if reading a story.

The PCDS emphasizes the academic use of the oral accounts, pictures and background materials of the scientists. Given the diverse types of material, many details deserve special attention during the sorting process. In choosing material, I mainly used transcripts of recordings of interviews of the scientists collected by the PCDS teams. Before I began sorting the material, most of the transcripts had been checked only for fluency and the content had not been restructured. Speaking of their experiences in the Soviet Union, each scientist did not necessarily give a full account in one interview but spoke about it in multiple interviews, so some content overlapped. In sorting the material, I put the statements of the same scientist about different stages of the Soviet education into different parts and put the statements of different scientists about the same stage together in chronological order. For a relatively complete description of a scientist’s experience, I retained the scientists’ own narrative content and logic, making only appropriate inductions and classifications, and thus retaining the original oral characteristics of the scientists and the vividness of the narration.

In addition, I enriched the information as much as possible by comparing different oral statements about the same experiences and by consulting various historical documents. I used annotations to expand information when the statements involved historical background, some organizations, other scholars and other important content. In order to further describe the historical situation of the scientists’ stay in the Soviet Union, I used contemporary photos of them and their study notes, published papers, degree certificates and other materials.

3. Case analysis: Activating the oral materials with questions

Sorting academic interviews is not just about checking for fluency, but about restructuring those accounts based on existing research, with specific questions in mind and from an observer’s perspective. It is particularly important to highlight the historical background and significance of the experiences of the scientists through academic annotation.

At present, research on the sending of students to the Soviet Union in the 1950s and 1960s focuses mainly on analyses of official policies and archives, the collection of the memories of people who lived through that period, and summarizing the achievements of some scientists. Based on intensive research on the history of student education in the Soviet Union, the PCDS aims to explain how the policy was adopted and implemented by the selecting bodies and the selected individuals by studying the detailed behaviour of both individual scientists and groups of scientists. Through the vivid and concrete presentation of individual oral accounts, the project has recreated the life experiences of the scientists sent to the Soviet Union during that period, including their selection and training in China; their experiences of study, life, international exchange and political activities in the Soviet Union, especially their academic training and interactions with their Soviet tutors; their work after they returned home; and the application of their Soviet-acquired knowledge in their new posts.

The scientists included men and women who went to and returned from the Soviet Union in different years and had different educational backgrounds (undergraduate students, postgraduate students, trainee teachers). They attended different educational institutions and experienced different training methods.

The following are three examples of how I restructured the oral accounts of the Soviet-educated scientists, with some consideration of relevant academic issues.

3.1. Case 1: Oral accounts of the selection and training of students to be sent to the Soviet Union

Existing research on the selection and training of those who went to the Soviet Union has made full use of the relevant archives of the Ministry of Education and Beijing Foreign Studies University (Li, 2016).
However, those studies have often focused only on the relevant state policies and how the policies were implemented in the cases of individuals, including their feelings and reactions. Due to the lack of experience-based material, there is still great space for further research.

Sorting through the oral accounts of the Soviet-educated scientists, I started with the pre-study selection and training stage. I gathered the oral accounts of the 16 scientists, which tell us how these people from different regions, posts, universities and professions were gathered together for the national mission of studying in the Soviet Union, and how, after a series of training sessions, they had set out on their journeys.

I started with an introduction to and analysis of the selection policy and its formulation based on historical archives and then examined the information extracted from the oral accounts of the scientists about their selection and training. The candidate selection process was presented with the oral accounts of Xu Zhifang and three other scientists; the examination process was presented with the oral accounts of Guo Shangping and two other scientists; and the selection of trainee teachers was presented with the oral accounts of Zhang Siying and two other scientists. On the scientists’ preparatory training before going to the Soviet Union, the oral accounts of several scientists recorded their personal experience of Russian-language study, political study, physical exercise, qualification reviews and final preparations.

Through these accounts, readers will get a general picture of the policy of sending students to the Soviet Union and its development during this period, as well as the various steps of the selection and training process and the personal experiences of the scientists.

3.2. Case 2: Oral account of Yang Fuqing from the perspective of history and gender research

The first group of scientists all studied at Moscow University, which is a comprehensive university. Yang Fuqing was a female scientist and an early participant in computational mathematics in China. Her study in the Soviet Union was a typical example. I use her case to introduce the steps in the restructuring of oral accounts and the value of those accounts.

After preliminary screening, I found that Yang talked about her experience of studying in the Soviet Union in two interviews. Another two interviews with Xu Jiafu – her fellow postgraduate student in the Soviet Union – also mentioned this. With Yang’s personal accounts as the main body of the oral materials, I structured her story in three parts: ‘My first year at the Academy of Sciences of the Soviet Union’, ‘Entering Moscow University’ and ‘Extracurricular life at Moscow University’. I also included photos of Yang operating a computer, taking classes together with her classmates in the tutor’s office, performing at a party and attending activities of the Communist Youth League to create a lifelike scene.

Yang studied computer programming at the Computing Centre of the Academy of Sciences of the Soviet Union and Moscow University. The background to her study was the Chinese Government’s formulation of the *Outline of the Long-term Plan for the Development of Science and Technology 1956–1967* in 1956, which stressed the importance of developing new disciplines such as computer science. Yang and Xu were among the first batch of scholars sent to study computational mathematics abroad. Their experience in the Soviet Union is of great significance in the study of the history of science and technology and the history of computational mathematics of the People’s Republic of China. The oral materials include Yang’s personal accounts of her studies in computer science and computer programming and her memories of other schoolmates, plus annotations on the Mathematics Department of Peking University (her alma mater) and Xu’s oral accounts, thus presenting readers with the overseas studies experience of the pioneers of computational mathematics in China during that period. In addition, when compared with the memories of the other 15 scientists, Yang’s oral accounts demonstrated the unique experiences and perspective of female scientists. For example, her detailed accounts of participating in art performances and cooking at school fully showcased her lively and optimistic character and her exciting life in the Soviet Union.
3.3. Case 3: Zhou Yaohe’s oral account, which highlights the role of national needs in shaping the academic paths of individual scientists

Zhou Yaohe mentioned his experience in the Soviet Union three times in his oral accounts. I included his personal accounts in the group who attended engineering colleges and divided them into four parts: ‘Entering the field of metallurgy’, ‘Life at the Central Institute of Mechanical Technology and Manufacturing of the Soviet Union’, ‘Conducting research and obtaining patents’ and ‘Life in spare time’. His group photo with experts and colleagues in the Soviet Union and photos of his patent certificate and the certificate for his doctoral degree were also included.

Zhou graduated from Tsinghua University, majoring in mechanical manufacturing. When he was chosen to study in the Soviet Union, he was sent to study metallurgy at the Moscow Iron and Steel Institute. In his personal accounts, Zhou talked about the training methods used by Soviet engineering colleges, which placed more emphasis on the practical skills of students. He also shared his study and life experiences in the Soviet Union and the psychological transition he went through when changing his subject of study from machinery to metallurgy. He believed that he was assigned to his course for two reasons: the country needed metallurgical research professionals during that period; and he had attended an optional course on casting during his undergraduate studies. Zhou went through a period of anxiety after entering the field of metallurgy in the Soviet Union. Yet, with the guidance of the Soviet teachers and by his own efforts, he developed an independent research capability and obtained patents for his research. By studying in the Soviet Union, he linked his academic pursuit with the development needs of the country and dedicated his knowledge to serving the country. His experience epitomized the life experience of Chinese scientists in that specific historical period.

4. Conclusion

Summarizing the oral accounts of Soviet-educated scientists is a process that ranges from collecting the accounts to recreating the growth and history of a particular group. The experience of the group was deeply related to specific historical background and events. The scientists faced similar objective conditions and shared similar subjective feelings, such as pre-study selection and training and post-study distribution in the scientific and academic professions, and similar mental states. When examining the oral accounts of the whole group, I observed their similar experiences and the factors behind their choices and actions. I think this is an event-oriented oral history narration, but we cannot deny that individual oral accounts can show more details, so the main part of my compilation work is the stories of the 16 scientists. I believe that readers can understand the group more deeply by reading the stories of each scientist, but I just talked about the experiences of individual scientists in a specific historical period by using their oral accounts about particular events. Their other oral accounts of other times in their lives were not involved in the compilation. I think those are suitable for a person-oriented mode of narration.

Based on the collected and compiled oral accounts of Soviet-educated scientists, some new research tasks involving this group can be undertaken. First, we can use these materials to discuss the relationship between the Soviet-educated scientists and the establishment of some new disciplines in China in that period, as well as the changes they brought about in some traditional subjects. Second, the methods adopted in this study can be used to find other oral materials of scientists who had similar experiences, and some scientists can be interviewed on related topics for more information. I have provided some ways to deal with the oral history materials of different scientists speaking about the same event and have tried to combine different oral accounts and other historical materials, such as pictures, into an effective narrative frame.

Now the rescue of the oral histories of scientists – from filling in the blanks in their life records to studying the historical process behind collective events and to exploring their external environment and internal motivations – is attracting more and more attention from researchers, and the factors involved are also getting more complicated. We can never predict what results we will get in the next oral
interview; only by constantly learning about the scientists and adding new perspectives can we raise valuable questions and obtain meaningful information so that the oral histories of scientists can truly become the oral history about ‘scientists’, capturing the extraordinary features of this unique profession.

Acknowledgements
I would like to thank Professor Zhang Li, chief expert of the Project on Collecting the Historical Data of Chinese Scientists’ Academic Life and professor of Peking University, for her suggestions and guidance on the choice of research topics. I would also like to thank the teams responsible for the collection of the academic records of Wu Yangjie, Hu Hongwen, Zhou Yulin, Yang Fuyu, Zhang Siying, Yang Fuqing, Xu Zhifang, Chen Houqun, Guo Shangping, Zhou Yaohhe, Jiang Yiyuan, Chen Shilu, Yuan Chengye, Xie Yuyuan, Chen Yushu, Tang Xiaowei and other Soviet-educated scientists.

Declaration of conflicting interests
The author declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Funding
The author disclosed receipt of the following financial support for the research, authorship and/or publication of this article: This study was funded by the 64th batch of the China Postdoctoral Science Foundation (Grant No. 2018M641443).

Notes
1. The Implementation Plan for the Project of Collecting Historical Data of Scientists’ Academic life, 2010.
2. See for example, Fan et al. (2015), Han (2015) and the Oral History Special published in Chinese Journal for the History of Science and Technology, 2011, issue 2.
3. The 16 scientists include Wu Yangjie, Hu Hongwen, Zhou Yulin, Yang Fuyu, Zhang Siying, Yang Fuqing, Xu Zhifang, Chen Houqun, Guo Shangping, Zhou Yaohhe, Jiang Yiyuan, Chen Shilu, Yuan Chengye, Xie Yuyuan, Chen Yushu and Tang Xiaowei. Materials used in this study are all from transcriptions of oral interviews with these scientists, which are collected in the PCDS database.

References
British Library (2018) An oral history of British science: A new national life stories interview programme. Available at: https://www.bl.uk/.
Fan HY (2009) Reflections on the oral history of Chinese science in the 20th century: speech at the symposium on the oral history of Chinese science in contemporary times. Chinese Journal for the History of Science and Technology 3: 269–276 (in Chinese).
Fan HY, Chen DH and Chen DD (eds) (2015) My Meteorological Career: Oral Account of Chen Xuerong. Beijing: China Science and Technology Press (in Chinese).
Fan HY, Wang DL and Wei HN (2000) Interview with Huang Zongzhen. Chinese Journal for the History of Science and Technology 4: 316–323 (in Chinese).
Fang ZZ, Lin CL, Wu YW, et al. (2014) Witness the Detonation of China’s Atomic Bomb. Interviewed and edited by Hou YB. Changsha: Hunan Education Press (in Chinese).
Good GA (2017) Gathering the human stories of science. Physics Today 70(5): 74–75.
Han F (ed.) (2015) My Education Life: Oral Account of Shen Panwen. Beijing: China Science and Technology Press (in Chinese).
Li XS (ed.) (2010) Chinese History of Overseas Education, New China Volume. Guangzhou: Guangdong Education Press (in Chinese).
Li P (2016) Overseas Studies and Nation Building: A Study on Chinese Students’ Education in the Soviet Union in the Early Years of the People’s Republic of China. Shanghai: Shanghai Jiao Tong University Press (in Chinese).
Shan G and Wang YH (2007) A Documentary of Chinese Students in the Soviet Union. Beijing: Central Compilation and Translation Press (in Chinese).
Shen SJ (2009) Autobiography of Shen Shanjiong. Changsha: Hunan Education Press (in Chinese).
Soviet Union and CIS Branch, Western Returned Scholars Association (ed.) (2000) The Road of Students: The Footprints of Chinese Students in the Soviet Union in the Early Days of the People’s Republic. Beijing: China Youth Press (in Chinese).
Sun HL, Wen SX, Pan YS, et al. (2010) Interview Record of Scientific Expedition in Qinghai–Tibet Plateau (1973–1992). Changsha: Hunan Education Press (in Chinese).
Tian M (2000) Interview with Chen Xingshen. Chinese Journal for the History of Science and Technology 2: 117–127 (in Chinese).
Wang XQ (2001) Interview with Shi Zhongci. *Chinese Journal for the History of Science and Technology* 1: 48–55 (in Chinese).

Xu LZ (2009) *Interviews with Xu Lizhi*. Changsha: Hunan Education Press (in Chinese).

Yuan LP (2010) *Yuan Longping’s Oral Autobiography*. Changsha: Hunan Education Press (in Chinese).

Zhang L (2010) An overview of research progress on the oral history of Chinese science in recent years. In: *Academic Seminar on Inheritance and Innovation in Research on Doctors’ Biographies*, Jiangxi, China, 22–26 July (in Chinese).

Zhou SW, Li P, and Hao YQ (2012) *Record and Reflection of the Trend of Overseas Studies in the Soviet Union in the Early Years of the People’s Republic of China*. Shanghai: East China Normal University Press (in Chinese).

Zhu X (ed.) (1997) *You Are the Hope: Memory of the Years of Studying in the Soviet Union*. Beijing: China Youth Press (in Chinese).

Zhu X (ed.) (2003) *You Are the Hope: The Unforgettable and Extraordinary Years*. Beijing: China Metrology Press (in Chinese).

Author biography

Liyuan Wang is an editor of China Social Sciences Press. Her research interests are Chinese scientists in the 20th century and the history of higher education in China.